# STAGE 1

#### 1. DEFINE

Stage 1 comprises of 3 sub-processes - raw material collection, mixing of the clay, transfer by conveyor. Detailed description of this stage is given below:

Raw material collection: Black soil, yellow soil and sand is collected from selected suppliers. Black soil is for strength and yellow soil gives the colour to the product. Sand is mixed to give strength and for heating purposes. These are collected from the suppliers mostly during winter and summer seasons. During heavy summer, water is collected from the nearby company wells for mixing stage.

**Mixing of the clay:** The soil is let outside for decomposing for some time. Yellow soil is taken 60%, black soil around 40% and about 10-15% of sand is mixed thoroughly using Hitachi-Zeus 200.

**Transfer by conveyor:** The mixed clay is made into small lump sum amounts. Then it is transferred on to conveyor. Conveyor take it to the de-airing machine then to pug mill. The finely mixed clay is the final product of this stage.

## **SIPOC**

# SIPOC ANALYSIS



The SIPOC diagram maps process flows, enumerating the supplier, inputs process, output and customers of the process that helps further investigation of the problem

# Defects in the various processes of Stage 1 which are identified by the company are:

# 1. Huge stones



Huge stones are found in the mixed clay, which often got stuck in the roller and high-speed roller interrupting the smooth functioning.

## 2. Metal particles



Metal particles often go till moulding phase, since there is no separation technique for metal particles. This may hurt workers too.

# 3. Sticky clay



Excess water during mixing or environmental exposure leads to sticky clay which is unsuitable.

# 4. Roots



Non-decomposed roots appear on the mixed clay which is not ideal for making roof clay tiles.

#### 5. Loss at conveyor



Conveyor is not a closed container so that due to improper placement of mixed clay leads to loss while transferring to de-airing machine.

#### 2. MEASURE

In the measure phase of DMAIC methodology, the current level of the process performance (in terms of sigma level) based on the five defects identified in the define stage is established, followed by defect prioritization with the help of pareto chart.

The company collects data on the number of defective units observed through a continuous quality check process. Defectives are visually inspected. A unit is classified as defective if any defect is observed, and such units are removed from the manufacturing line. The company operates its manufacturing process in three shifts per day, typically for all seven days of the week. For this study, defect data was collected over a period of ten days, with data recorded for each of the three shifts per day.

The table below presents the number of defectives observed at the end of stage 1 for each shift. In this context, shift 1, shift 2, shift 3 represents 3 shifts of a day. Thereby there are 30 data in total. The frequency of defects that caused the parts to be classified as defective is recorded for each shift. The sample size of each shift is also noted. The table contains 5 defects types and frequency of each in the table.

# i. Check sheet for pre-analysis

|    |         | Huge<br>stones | Metal<br>Particles | Excess<br>Liquidity | Loss at<br>Conveyor | Roots | Total<br>defectives | Sample<br>inspected |
|----|---------|----------------|--------------------|---------------------|---------------------|-------|---------------------|---------------------|
| 1  | Shift 1 | 15             | 3                  | 1                   | 1                   | 7     | 27                  | 267                 |
| 2  | Shift 2 | 13             | 2                  | 2                   | 0                   | 5     | 22                  | 250                 |
| 3  | Shift 3 | 15             | 5                  | 0                   | 1                   | 2     | 23                  | 244                 |
| 4  | Shift 1 | 10             | 1                  | 3                   | 2                   | 8     | 24                  | 254                 |
| 5  | Shift 2 | 17             | 2                  | 1                   | 0                   | 5     | 25                  | 240                 |
| 6  | Shift 3 | 13             | 4                  | 0                   | 0                   | 4     | 21                  | 265                 |
| 7  | Shift 1 | 10             | 0                  | 1                   | 0                   | 6     | 17                  | 234                 |
| 8  | Shift 2 | 17             | 1                  | 2                   | 0                   | 4     | 24                  | 267                 |
| 9  | Shift 3 | 10             | 0                  | 0                   | 0                   | 5     | 15                  | 234                 |
| 10 | Shift 1 | 14             | 0                  | 0                   | 0                   | 5     | 19                  | 267                 |
| 11 | Shift 2 | 15             | 0                  | 2                   | 0                   | 7     | 24                  | 232                 |
| 12 | Shift 3 | 16             | 1                  | 1                   | 0                   | 8     | 26                  | 245                 |
| 13 | Shift 1 | 19             | 1                  | 2                   | 1                   | 4     | 27                  | 255                 |
| 14 | Shift 2 | 14             | 1                  | 3                   | 3                   | 9     | 30                  | 260                 |
| 15 | Shift 3 | 12             | 0                  | 3                   | 0                   | 8     | 23                  | 266                 |
| 16 | Shift 1 | 16             | 2                  | 1                   | 2                   | 8     | 29                  | 254                 |
| 17 | Shift 2 | 12             | 1                  | 0                   | 1                   | 4     | 18                  | 244                 |
| 18 | Shift 3 | 18             | 4                  | 2                   | 2                   | 9     | 35                  | 254                 |
| 19 | Shift 1 | 19             | 0                  | 3                   | 0                   | 6     | 28                  | 234                 |
| 20 | Shift 2 | 17             | 1                  | 0                   | 0                   | 6     | 24                  | 256                 |
| 21 | Shift 3 | 14             | 2                  | 0                   | 0                   | 4     | 20                  | 245                 |
| 22 | Shift 1 | 15             | 2                  | 1                   | 0                   | 3     | 21                  | 266                 |
| 23 | Shift 2 | 12             | 0                  | 0                   | 2                   | 0     | 14                  | 265                 |
| 24 | Shift 3 | 18             | 1                  | 2                   | 1                   | 6     | 28                  | 265                 |
| 25 | Shift 1 | 17             | 2                  | 0                   | 0                   | 3     | 22                  | 254                 |
| 26 | Shift 2 | 13             | 0                  | 0                   | 0                   | 4     | 17                  | 244                 |
| 27 | Shift 3 | 10             | 1                  | 1                   | 0                   | 6     | 18                  | 268                 |
| 28 | Shift 1 | 13             | 2                  | 3                   | 1                   | 6     | 25                  | 254                 |
| 29 | Shift 2 | 12             | 0                  | 1                   | 2                   | 4     | 19                  | 235                 |
| 30 | Shift 3 | 10             | 1                  | 1                   | 0                   | 9     | 21                  | 265                 |
|    | COUNT   | 426            | 40                 | 36                  | 19                  | 165   | 686                 | 7583                |

# ii. Statistical Quality Control using control chart (Here, p chart)

In this project, a P control chart is used, because the P control chart is used if the defect size is the proportion of defective products in each sample taken.

| SI NO. | Total<br>defectives | Total Checked | Pi          | LCL         | CL          | UCL      |
|--------|---------------------|---------------|-------------|-------------|-------------|----------|
| 1      | 27                  | 267           | 0.101123596 | 0.037865489 | 0.090552681 | 0.14324  |
| 2      | 22                  | 250           | 0.088       | 0.036103584 | 0.090552681 | 0.145002 |
| 3      | 23                  | 244           | 0.094262295 | 0.035438194 | 0.090552681 | 0.145667 |
| 4      | 24                  | 254           | 0.094488189 | 0.036534019 | 0.090552681 | 0.144571 |
| 5      | 25                  | 240           | 0.104166667 | 0.034980805 | 0.090552681 | 0.146125 |
| 6      | 21                  | 265           | 0.079245283 | 0.037667043 | 0.090552681 | 0.143438 |
| 7      | 17                  | 234           | 0.072649573 | 0.034272854 | 0.090552681 | 0.146833 |
| 8      | 24                  | 267           | 0.08988764  | 0.037865489 | 0.090552681 | 0.14324  |
| 9      | 15                  | 234           | 0.064102564 | 0.034272854 | 0.090552681 | 0.146833 |
| 10     | 19                  | 267           | 0.071161049 | 0.037865489 | 0.090552681 | 0.14324  |
| 11     | 24                  | 232           | 0.103448276 | 0.034030789 | 0.090552681 | 0.147075 |
| 12     | 26                  | 245           | 0.106122449 | 0.035550788 | 0.090552681 | 0.145555 |
| 13     | 27                  | 255           | 0.105882353 | 0.036640042 | 0.090552681 | 0.144465 |
| 14     | 30                  | 260           | 0.115384615 | 0.037160949 | 0.090552681 | 0.143944 |
| 15     | 23                  | 266           | 0.086466165 | 0.037766546 | 0.090552681 | 0.143339 |
| 16     | 29                  | 254           | 0.114173228 | 0.036534019 | 0.090552681 | 0.144571 |
| 17     | 18                  | 244           | 0.073770492 | 0.035438194 | 0.090552681 | 0.145667 |
| 18     | 35                  | 254           | 0.137795276 | 0.036534019 | 0.090552681 | 0.144571 |
| 19     | 28                  | 234           | 0.11965812  | 0.034272854 | 0.090552681 | 0.146833 |
| 20     | 24                  | 256           | 0.09375     | 0.036745443 | 0.090552681 | 0.14436  |
| 21     | 20                  | 245           | 0.081632653 | 0.035550788 | 0.090552681 | 0.145555 |
| 22     | 21                  | 266           | 0.078947368 | 0.037766546 | 0.090552681 | 0.143339 |
| 23     | 14                  | 265           | 0.052830189 | 0.037667043 | 0.090552681 | 0.143438 |
| 24     | 28                  | 265           | 0.105660377 | 0.037667043 | 0.090552681 | 0.143438 |
| 25     | 22                  | 254           | 0.086614173 | 0.036534019 | 0.090552681 | 0.144571 |
| 26     | 17                  | 244           | 0.069672131 | 0.035438194 | 0.090552681 | 0.145667 |
| 27     | 18                  | 268           | 0.067164179 | 0.037963878 | 0.090552681 | 0.143141 |
| 28     | 25                  | 254           | 0.098425197 | 0.036534019 | 0.090552681 | 0.144571 |
| 29     | 19                  | 235           | 0.080851064 | 0.034392726 | 0.090552681 | 0.146713 |
| 30     | 21                  | 265           | 0.079245283 | 0.037667043 | 0.090552681 | 0.143438 |
|        |                     |               | 2.716580444 |             |             |          |
|        |                     | P-BAR         | 0.090552681 |             |             |          |

iii. After the control limit calculations are obtained, the next step is to create a control chart graphic which functions to map the data limits. The purpose of

making this control chart graph is to find out whether the data is within control limits or not.



The graph clearly depicts that the process is in control as all the points lie within the control limits.

Now, let us check how well the process's performance is depicted using Yield and sigma level.

iv. Yield is the percentage of non-defective items and thus it is given by the formula as:

Yield = (1-(total number of defectives/total number of items inspected)) \*100

v. Sigma level can then be calculated as the two tailed z-value treating Yield as the area under the curve with a shift of +1.5 which is the industry standard. The formula used is given as:

Sigma Level = NORM.S.INV
$$(0.5+(Yield/100/2)) + 1.5$$

Using these formulas, the results obtained are:

| DPMO  | 18093.10299 | 0.018093103 |
|-------|-------------|-------------|
| SIGMA | 3.59482889  |             |

As we can see, the Sigma Level is just 3.59482889, which is quite low as compared to the other products manufactured by the company. Thus, there is scope of improvement so we will start the defect analysis here. So, we move onto the next stage of our methodology, i.e. Analyse.

#### 3. ANALYSE

After going through the measurement stage, the next step is the stage of identification and analysis. Basically, this stage is the stage of identification and analysis regarding the main problems and in the end, we will find out how to anticipate the causes of the main defects.

i. Pareto Chart: Firstly, we will plot Pareto Chart to identify the defects which are the —Vital Few. For that, let us calculate the cumulative percentage of defects.

| SI.NO. | Defects          | Quantity<br>Rejected |     | Rejection % | Cumulative % |
|--------|------------------|----------------------|-----|-------------|--------------|
| 1      | Huge stones      | 4                    | 26  | 62.09912536 | 62.09912536  |
| 2      | Roots            | 1                    | .65 | 24.05247813 | 86.1516035   |
| 3      | Metal Particles  |                      | 40  | 5.83090379  | 91.98250729  |
| 4      | Excess Liquidity |                      | 36  | 5.247813411 | 97.2303207   |
| 5      | Loss at Conveyor |                      | 19  | 2.7696793   | 100          |
|        | Total Sum        | 6                    | 86  |             |              |



We can see from the pareto chart that elbow is forming at the defect 'Roots.' Therefore, we need to work upon two defects which are huge stones and roots.

So, now we will work on these two defects to improve the sigma level.

ii. Cause & Effect analysis or Ishikawa Diagram or Fishbone diagram: Cause & Effect analysis was conducted and a Cause & Effect diagram categorizing the causes in 5 generic categories were prepared as shown:

## **Huge stones**



#### **Roots**



Since there are a lot of possible reasons for both the defects, exact reason behind the occurrences is still unknown.

iii. 5- why analysis: to find the root cause of the top 2 defects.

HUGE STONES

ROOTS

DEFECT

| TYPE  |                       | HOOL STONES                                                                                                                                     | NOOTO                                                                                                        |
|-------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| WHY 1 | QUESTION              | Why Huge stones are the most dominant and cause defects?                                                                                        | Why roots are the most dominant and cause defects?                                                           |
|       | ANSWER                | Because there is no separation mechanism for huge stones before processing.                                                                     | Because manual sorting is inconsistent and filters are worn out or absent.                                   |
| WHY 2 | QUESTION              | Why is there no separation mechanism for huge stones?                                                                                           | Why is manual sorting inconsistent and filters worn out?                                                     |
|       | ANSWER                | Because the machine lacks heavy crushing capability and a sieve and is not maintained regularly.                                                | Because the initial cleaning step is insufficient and no proper automation and improper machine maintenance. |
| WHY3  | QUESTION              | Why are the machine lacks heavy crushing and sieve?                                                                                             | Why is there lack of cleaning and improper machine maintenance?                                              |
|       | ANSWER                | Because of poor maintenance and SOPs for machine setup and operation are not followed for current material types.                               | Because of time constraints and the system depends heavily on manual processes.                              |
| WHY 4 | QUESTION              | Why is the machine poorly maintained and not suited?                                                                                            | Why is there time pressure and dependency on manual work?                                                    |
|       | ANSWER                | Because supervisors do not consistently monitor operations plus a focus on other production targets and not upgraded to the latest machineries. | Because of poor scheduling and quick usage without inspection, and no structured SOPs.                       |
| WHY 5 | QUESTION              | Why are supervisors not consistently monitoring operations?                                                                                     | Why is the production schedule poorly planned?                                                               |
|       | ANSWER                | Because they are focusing on other production targets like output quantity and efficiency.                                                      | Because of inaccurate forecasting and production focus is on output quantity over quality control.           |
|       | Corrective<br>measure | Better forecasting, and investment in machinery upgrades.                                                                                       |                                                                                                              |

iv. Analytical Hierarchy Process (AHP): We will implement AHP to classify defects based on their pairwise comparisons, taking into consideration various criteria that influence the criticality of the defects.

The criteria that are to be considered here are:

#### CRITERIA

- 1 Frequency of Occurrence (FREQ)
- 2 | Severity of Impact (SEV)
- 3 Cost of Repair/Rework (COST)
- 4 Customer Impact (CUST)

And the list of defects (top 3) under consideration are:

Huge stones Roots Metal Particles

Now let us create pairwise comparison matrices and find weight vectors.

Pairwise comparison of criteria:

|      | FREQ | SEV  | COST  | CUST |
|------|------|------|-------|------|
| FREQ | 1.00 | 0.33 | 3.00  | 0.50 |
| SEV  | 3.00 | 1.00 | 5.00  | 3.00 |
| COST | 0.33 | 0.20 | 1.00  | 0.33 |
| CUST | 2.00 | 0.30 | 3.00  | 1.00 |
|      | 6.33 | 1.83 | 12.00 | 4.83 |

|          |             |             |          |          | Normalised weight |
|----------|-------------|-------------|----------|----------|-------------------|
| 0.157978 | 0.180327869 | 0.25        | 0.10352  | 0.691825 | 0.172956          |
| 0.473934 | 0.546448087 | 0.416666667 | 0.621118 | 2.058166 | 0.514542          |
| 0.052133 | 0.109289617 | 0.083333333 | 0.068323 | 0.313079 | 0.07827           |
| 0.315956 | 0.163934426 | 0.25        | 0.207039 | 0.93693  | 0.234232          |

| Weight Sum Vector | Consistency Vector |
|-------------------|--------------------|
| 0.69468           | 4.016506           |
| 2.127456          | 4.134663           |
| 0.31555           | 4.031578           |
| 0.969317          | 4.138269           |

| lambda | 4.080254 |
|--------|----------|
| CI     | 0.026751 |
| CR     | 0.029724 |

# Pairwise comparisons for Alternatives - Defect types

## FREQUENCY

|                 | Huge stones | Roots       | Metal Particles |
|-----------------|-------------|-------------|-----------------|
| Huge stones     | 1.00        | 7.00        | 9.00            |
| Roots           | 0.14        | 1.00        | 3.00            |
| Metal Particles | 0.11        | 0.333333333 | 1               |
|                 | 1.25        | 8.33        | 13.00           |

|             |      |      |      | Normalised weight |
|-------------|------|------|------|-------------------|
| 0.797468354 | 0.84 | 0.69 | 2.33 | 0.78              |
| 0.113924051 | 0.12 | 0.23 | 0.46 | 0.15              |
| 0.088607595 | 0.04 | 0.08 | 0.21 | 0.07              |

| Weight Sum Vector | Consistency Vector |
|-------------------|--------------------|
| 2.477468          | 3.19018            |
| 0.47137           | 3.043105           |
| 0.206431          | 3.013139           |

| lambda | 3.082141 |
|--------|----------|
| CI     | 0.041071 |
| CR     | 0.070811 |

#### **SEVERITY**

|                 | Huge stones | Roots       | Metal Particles |
|-----------------|-------------|-------------|-----------------|
| Huge stones     | 1           | 0.333333333 | 3               |
| Roots           | 3           | 1           | 5               |
| Metal Particles | 0.333333333 | 0.2         | 1               |
|                 | 4.333333333 | 1.533333333 | 9               |

|             |             |          |          | Normalised weight |
|-------------|-------------|----------|----------|-------------------|
| 0.230769231 | 0.217391304 | 0.333333 | 0.781494 | 0.260498          |
| 0.692307692 | 0.652173913 | 0.55556  | 1.900037 | 0.633346          |
| 0.076923077 | 0.130434783 | 0.111111 | 0.318469 | 0.106156          |

| Weight Sum Vector | Consistency Vector |
|-------------------|--------------------|
| 0.790082          | 3.032969           |
| 1.945621          | 3.071973           |
| 0.319658          | 3.011202           |

| lambda | 3.038715 |
|--------|----------|
| CI     | 0.019357 |
| CR     | 0.033375 |

COST

|                 | Huge stones | Roots       | Metal Particles |
|-----------------|-------------|-------------|-----------------|
| Huge stones     | 1           | 0.5         | 4               |
| Roots           | 2           | 1           | 6               |
| Metal Particles | 0.25        | 0.166666667 | 1               |
|                 | 3.25        | 1.666666667 | 11              |

|             |     |          |          | Normalised weight |
|-------------|-----|----------|----------|-------------------|
| 0.307692308 | 0.3 | 0.363636 | 0.971329 | 0.323776          |
| 0.615384615 | 0.6 | 0.545455 | 1.760839 | 0.586946          |
| 0.076923077 | 0.1 | 0.090909 | 0.267832 | 0.089277          |

| Weight Sum Vector | Consistency Vector |
|-------------------|--------------------|
| 0.974359          | 3.009359           |
| 1.770163          | 3.015886           |
| 0.268046          | 3.002393           |

lambda 3.009213 CI 0.004606 CR 0.007942

#### CUSTOMER

|                 | Huge stones | Roots |     | Metal Particles |
|-----------------|-------------|-------|-----|-----------------|
| Huge stones     | 1           |       | 3   | 5               |
| Roots           | 0.333333333 |       | 1   | 2               |
| Metal Particles | 0.2         |       | 0.5 | 1               |
|                 | 1.533333333 |       | 4.5 | 8               |

|   |             |             |       |          | Normalised weight |
|---|-------------|-------------|-------|----------|-------------------|
|   | 0.652173913 | 0.666666667 | 0.625 | 1.943841 | 0.647947          |
| Ī | 0.217391304 | 0.22222222  | 0.25  | 0.689614 | 0.229871          |
|   | 0.130434783 | 0.111111111 | 0.125 | 0.366546 | 0.122182          |

| Weight Sum Vector | <b>Consistency Vector</b> |
|-------------------|---------------------------|
| 1.94847           | 3.007145                  |
| 0.690217          | 3.002627                  |
| 0.366707          | 3.001318                  |

lambda 3.003697 CI 0.001848 CR 0.003187 Comparison matrix of defects vs criteria and finding the priority:

|             | FREQ | SEV  | COST | CUST | PRIORITY |
|-------------|------|------|------|------|----------|
| Huge stones | 0.78 | 0.26 | 0.32 | 0.65 | 0.45     |
| Roots       | 0.15 | 0.63 | 0.59 | 0.23 | 0.45     |
| Metal       | 0.07 | 0.11 | 0.09 | 0.12 | 0.10     |
| Particles   |      |      |      |      |          |

Both huge stones and roots are having equal priorities hence, these two defects must be given extra care and should be given suggestions to improve.

v. QFD- Hoq: The "Voice of Customer" (VOC) symmetrically translated into measurable requirements by using the QFD technique. There are 2 variables involved in the QFD analysis- Customer requirements and Engineering characteristics.



After QFD analysis, it is understood that stone sieving system should be improved. Therefore, after all these analyses primary concern are given to huge stones, roots, and metal particles which after resolving is beneficial for both customer and company.

#### **SUGGESTED ACTIONS**

|   | Defect          | Suggestive Action Plan                                                                                                                                                                                                                                                                                               |
|---|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Huge stones     | <ul> <li>Use a jaw crusher or roller crusher to crush huge stones.</li> <li>Apply sieves at all valves to ensure small stones get removed</li> <li>Ensure raw clay providers are instructed to avoid heavily stony deposits.</li> <li>Train workers to manually remove huge stones while mixing the soil.</li> </ul> |
| 2 | Roots           | <ul> <li>Extract clay from below the organic layer in the soil.</li> <li>Soak clay in water, allowing roots to float and be separated.</li> <li>Install sieves to remove large roots.</li> <li>Leave clay for some time so that roots get decomposed naturally.</li> </ul>                                           |
| 3 | Metal Particles | <ul> <li>Install magnets (over belt or inline) in clay conveyor or mixing lines to attract ferrous particles.</li> <li>Use high-pressure water separation systems to remove metallic impurities.</li> </ul>                                                                                                          |

#### 4. CONTROL AND IMPROVE

The above suggestions were provided to the company and they further implemented these changes according to their company terms and standards. Sufficient time and resources were dedicated to this procedure aiming to improve the sigma level, i.e. the performance of the process. After this, new data was recorded to monitor the improvements (if any) that were achieved by following the mentioned procedure. This data was recorded in a span of 4 days, resulting into 12 shifts i.e. 12 timestamps. The number of defectives arising through each defect were counted for each lot being produced in a continuous process.

# i. Defects Check Sheet Post Analysis:

|         | Huge stones | Metal<br>Particles | Excess<br>Liquidity | Loss at<br>Conveyor | Roots | Total<br>defectives | Sample<br>inspected |
|---------|-------------|--------------------|---------------------|---------------------|-------|---------------------|---------------------|
| Shift 1 | 10          | 0                  | 1                   | 1                   | 5     | 17                  | 283                 |
| Shift 2 | 9           | 2                  | 2                   | 0                   | 6     | 19                  | 290                 |
| Shift 3 | 8           | 4                  | 0                   | 1                   | 2     | 15                  | 250                 |
| Shift 1 | 11          | 1                  | 2                   | 1                   | 1     | 16                  | 255                 |
| Shift 2 | 12          | 2                  | 1                   | 0                   | 6     | 21                  | 243                 |
| Shift 3 | 7           | 3                  | 0                   | 0                   | 7     | 17                  | 267                 |
| Shift 1 | 9           | 0                  | 1                   | 0                   | 8     | 18                  | 256                 |
| Shift 2 | 13          | 1                  | 1                   | 0                   | 2     | 17                  | 250                 |
| Shift 3 | 7           | 0                  | 0                   | 0                   | 2     | 9                   | 240                 |
| Shift 1 | 10          | 2                  | 0                   | 1                   | 1     | 14                  | 267                 |
| Shift 2 | 10          | 0                  | 0                   | 0                   | 3     | 13                  | 256                 |
| Shift 3 | 9           | 0                  | 1                   | 0                   | 4     | 14                  | 260                 |
| COUNT   | 115         | 15                 | 9                   | 4                   | 47    | 190                 | 3117                |

Here, we can see that the frequencies of the defects "Huge stones", "Roots" and "metal particles" has reduced significantly.

# ii. Construction of p Chart:

| SI NO. | Total defectives | Total Checked | Pi          | LCL         | CL          | UCL      |
|--------|------------------|---------------|-------------|-------------|-------------|----------|
| 1      | 17               | 283           | 0.060070671 | 0.018280484 | 0.060941461 | 0.103602 |
| 2      | 19               | 290           | 0.065517241 | 0.018798503 | 0.060941461 | 0.103084 |
| 3      | 15               | 250           | 0.06        | 0.015552106 | 0.060941461 | 0.106331 |
| 4      | 16               | 255           | 0.062745098 | 0.015999303 | 0.060941461 | 0.105884 |
| 5      | 21               | 243           | 0.086419753 | 0.014902991 | 0.060941461 | 0.10698  |
| 6      | 17               | 267           | 0.063670412 | 0.017020849 | 0.060941461 | 0.104862 |
| 7      | 18               | 256           | 0.0703125   | 0.016087166 | 0.060941461 | 0.105796 |
| 8      | 17               | 250           | 0.068       | 0.015552106 | 0.060941461 | 0.106331 |
| 9      | 9                | 240           | 0.0375      | 0.014616144 | 0.060941461 | 0.107267 |
| 10     | 14               | 267           | 0.052434457 | 0.017020849 | 0.060941461 | 0.104862 |
| 11     | 13               | 256           | 0.05078125  | 0.016087166 | 0.060941461 | 0.105796 |
| 12     | 14               | 260           | 0.053846154 | 0.016433537 | 0.060941461 | 0.105449 |
|        |                  |               | 0.731297537 |             |             |          |
|        |                  | P-BAR         | 0.060941461 |             |             |          |

### iii. p-chart:



As we can clearly see, no points lie outside the calculated control limits, thus the process is in statistical control. We can now measure the performance of the process after improving on the defect identified.

| DPMO  | 12191.2095  | 0.012191209 |
|-------|-------------|-------------|
| SIGMA | 3.751049238 |             |

Thus, we can observe that the sigma level has increased from 3.5 to 3.8, which is significant improvement considering the shorter time-period. Standardizing the process and then observing through a longer period, the results might increase even further.

# STAGE 2

#### 1. DEFINE

This stage has 3 main important sub-processes- high speed roller, pug mill and de-airing machine, revolving process. After the end of this stage, moulded clay floor tile will be produced. The subprocesses are explained in detail:

High speed roller: The mixed clay is made to pass through a roller, then a high-speed roller where clay is mixed thoroughly and some of the stones gets crush here. There is a control attached to this roller so that when a stone gets stuck, it helps to turn off the roller.

Pug-mill & De-airing machine: Then clay is transferred in to de-airing machine where vaccum is created and most of the water gets dried out. The pressure valve controls the pressure inside de-airing machine. Then it gets inside pug-mill where the clay is made into a set of 5 sheets of clay. Then it is passed by conveyor to the revolving machine.

Revolving press: Revolving press is also known as moulding press. The sheets of clay is transferred into the revolving press manually. The moulded clay is received from the other side and then transferred into the conveyer for air-drying.

#### **SIPOC**

# SIPOC ANALYSIS



The SIPOC diagram maps process flows, enumerating the supplier, inputs process, output and customers of the process that helps further investigation of the problem

# Defects in the various processes of Stage 2 which are identified by the company are:

#### 1. Sticky Clay



When the application of pressure is not enough causes sticky clay. And sometimes inside the pugmill, the clay is not properly cut into 5 sheets.

#### 2. Dent



Caused by dimensional in accuracy of wooden tray or mould.

# 3. Bending



Over-liquidity or lack of care of labours results in bending.

# 4. Dimensioanl Inaccuracy



When oiling (greasing) is not uniform and when mould is not fitted properly.

# 5. Chipping & Edge Damage



Chop corners are mainly due to lack of greasing and by mishandling.

#### 6. Mishandling



Lack of care or fatigue nature of workers often results in breakage of products.

#### 7. Surface Crack



Lack of moisture results in surface crack or also the environmental dryness.

#### 2. MEASURE

In the measure phase of DMAIC methodology, the current level of the process performance (in terms of sigma level) based on the seven defects identified in the define stage is established, followed by defect prioritization with the help of pareto chart.

The company collects data on the number of defective units observed through a continuous quality check process. Defectives are visually inspected. A unit is classified as defective if any defect is observed, and such units are removed from the manufacturing line. The company operates its manufacturing process in three shifts per day, typically for all seven days of the

week. For this study, defect data was collected over a period of ten days, with data recorded for each of the three shifts per day.

# i. Check sheet for pre-analysis

|    |         | Sticky | Chipping | Bending | Dent | Mishandling | Surface | Dimensional | Total      | Sample    |
|----|---------|--------|----------|---------|------|-------------|---------|-------------|------------|-----------|
|    |         | Clay   | & Edge   |         |      |             | crack   | Inaccuracy  | defectives | inspected |
|    |         |        | Damage   |         |      |             |         |             |            |           |
| 1  | Shift 1 | 30     | 1        | 22      | 4    | 0           | 0       | 9           | 66         | 499       |
| 2  | Shift 2 | 22     | 0        | 25      | 3    | 0           | 0       | 1           | 51         | 423       |
| 3  | Shift 3 | 38     | 3        | 12      | 4    | 1           | 0       | 3           | 61         | 435       |
| 4  | Shift 1 | 27     | 2        | 25      | 8    | 1           | 0       | 0           | 63         | 498       |
| 5  | Shift 2 | 26     | 0        | 26      | 5    | 0           | 0       | 0           | 57         | 433       |
| 6  | Shift 3 | 23     | 0        | 22      | 4    | 0           | 1       | 2           | 52         | 432       |
| 7  | Shift 1 | 29     | 1        | 24      | 7    | 2           | 1       | 1           | 65         | 457       |
| 8  | Shift 2 | 22     | 2        | 23      | 5    | 0           | 2       | 3           | 57         | 486       |
| 9  | Shift 3 | 20     | 1        | 21      | 6    | 0           | 1       | 2           | 51         | 400       |
| 10 | Shift 1 | 29     | 1        | 24      | 6    | 0           | 3       | 3           | 66         | 409       |
| 11 | Shift 2 | 21     | 0        | 22      | 3    | 0           | 2       | 6           | 54         | 428       |
| 12 | Shift 3 | 22     | 2        | 24      | 5    | 1           | 1       | 3           | 58         | 456       |
| 13 | Shift 1 | 28     | 0        | 21      | 9    | 1           | 1       | 1           | 61         | 433       |
| 14 | Shift 2 | 28     | 0        | 23      | 2    | 2           | 1       | 2           | 58         | 456       |
| 15 | Shift 3 | 25     | 3        | 25      | 1    | 2           | 2       | 5           | 63         | 400       |
| 16 | Shift 1 | 20     | 2        | 23      | 5    | 2           | 2       | 2           | 56         | 429       |
| 17 | Shift 2 | 21     | 1        | 22      | 3    | 1           | 1       | 6           | 55         | 469       |
| 18 | Shift 3 | 21     | 1        | 21      | 4    | 3           | 1       | 8           | 59         | 487       |
| 19 | Shift 1 | 27     | 0        | 20      | 3    | 0           | 1       | 8           | 59         | 433       |
| 20 | Shift 2 | 27     | 0        | 20      | 6    | 0           | 2       | 3           | 58         | 423       |
| 21 | Shift 3 | 26     | 1        | 19      | 3    | 0           | 1       | 7           | 57         | 444       |
| 22 | Shift 1 | 25     | 2        | 21      | 5    | 0           | 3       | 1           | 57         | 476       |
| 23 | Shift 2 | 22     | 0        | 25      | 5    | 0           | 3       | 9           | 64         | 491       |
| 24 | Shift 3 | 27     | 0        | 22      | 3    | 0           | 1       | 3           | 56         | 454       |
| 25 | Shift 1 | 25     | 0        | 23      | 4    | 1           | 0       | 1           | 54         | 453       |
| 26 | Shift 2 | 28     | 1        | 21      | 7    | 2           | 0       | 0           | 59         | 466       |
| 27 | Shift 3 | 27     | 2        | 25      | 3    | 1           | 0       | 11          | 69         | 429       |
| 28 | Shift 1 | 21     | 5        | 22      | 4    | 0           | 0       | 6           | 58         | 432       |
| 29 | Shift 2 | 31     | 1        | 20      | 3    | 0           | 0       | 1           | 56         | 467       |
| 30 | Shift 3 | 29     | 1        | 11      | 2    | 0           | 0       | 2           | 45         | 432       |
|    | COUNT   | 767    | 33       | 654     | 132  | 20          | 30      | 109         | 1745       | 13430     |

ii. In this project, a P control chart is used, because the P control chart is used if the defect size is the proportion of defective products in each sample taken.

| SI NO. | Total<br>defectives | Total<br>Checked | Pi          | LCL         | CL       | UCL         |
|--------|---------------------|------------------|-------------|-------------|----------|-------------|
| 1      | 66                  | 499              | 0.132264529 | 0.085063428 | 0.130268 | 0.175472625 |
| 2      | 51                  | 423              | 0.120567376 | 0.081170151 | 0.130268 | 0.179365903 |
| 3      | 61                  | 435              | 0.140229885 | 0.081852099 | 0.130268 | 0.178683955 |
| 4      | 63                  | 498              | 0.126506024 | 0.085018065 | 0.130268 | 0.175517989 |
| 5      | 57                  | 433              | 0.131639723 | 0.081740412 | 0.130268 | 0.178795641 |
| 6      | 52                  | 432              | 0.12037037  | 0.081684279 | 0.130268 | 0.178851775 |
| 7      | 65                  | 457              | 0.142231947 | 0.083031844 | 0.130268 | 0.177504209 |
| 8      | 57                  | 486              | 0.117283951 | 0.08446283  | 0.130268 | 0.176073224 |
| 9      | 51                  | 400              | 0.1275      | 0.079778315 | 0.130268 | 0.180757739 |
| 10     | 66                  | 409              | 0.161369193 | 0.080336915 | 0.130268 | 0.180199139 |
| 11     | 54                  | 428              | 0.126168224 | 0.08145778  | 0.130268 | 0.179078274 |
| 12     | 58                  | 456              | 0.127192982 | 0.082980079 | 0.130268 | 0.177555975 |
| 13     | 61                  | 433              | 0.140877598 | 0.081740412 | 0.130268 | 0.178795641 |
| 14     | 58                  | 456              | 0.127192982 | 0.082980079 | 0.130268 | 0.177555975 |
| 15     | 63                  | 400              | 0.1575      | 0.079778315 | 0.130268 | 0.180757739 |
| 16     | 56                  | 429              | 0.130536131 | 0.081514701 | 0.130268 | 0.179021352 |
| 17     | 55                  | 469              | 0.117270789 | 0.083640061 | 0.130268 | 0.176895993 |
| 18     | 59                  | 487              | 0.121149897 | 0.084509882 | 0.130268 | 0.176026172 |
| 19     | 59                  | 433              | 0.136258661 | 0.081740412 | 0.130268 | 0.178795641 |
| 20     | 58                  | 423              | 0.137115839 | 0.081170151 | 0.130268 | 0.179365903 |
| 21     | 57                  | 444              | 0.128378378 | 0.082345313 | 0.130268 | 0.178190741 |
| 22     | 57                  | 476              | 0.119747899 | 0.083984184 | 0.130268 | 0.17655187  |
| 23     | 64                  | 491              | 0.130346232 | 0.084696651 | 0.130268 | 0.175839403 |
| 24     | 56                  | 454              | 0.123348018 | 0.082876035 | 0.130268 | 0.177660019 |
| 25     | 54                  | 453              | 0.119205298 | 0.082823755 | 0.130268 | 0.177712299 |
| 26     | 59                  | 466              | 0.126609442 | 0.083490212 | 0.130268 | 0.177045842 |
| 27     | 69                  | 429              | 0.160839161 | 0.081514701 | 0.130268 | 0.179021352 |
| 28     | 58                  | 432              | 0.134259259 | 0.081684279 | 0.130268 | 0.178851775 |
| 29     | 56                  | 467              | 0.119914347 | 0.083540322 | 0.130268 | 0.176995732 |
| 30     | 45                  | 432              | 0.104166667 | 0.081684279 | 0.130268 | 0.178851775 |
|        |                     |                  | 3.908040804 |             |          |             |
|        |                     | P-BAR            | 0.130268027 |             |          |             |

iii. After the control limit calculations are obtained, the next step is to create a control chart graphic which functions to map the data limits. The purpose of making this control chart graph is to find out whether the data is within control limits or not.



The graph clearly depicts that the process is in control as all the points lie within the control limits.

Now, let us check how well the process's performance is depicted using Yield and sigma level.

iv. Yield is the percentage of non-defective items and thus it is given by the formula as:

Yield = (1-(total number of defectives/total number of items inspected)) \*100

v. Sigma level can then be calculated as the two tailed z-value treating Yield as the area under the curve with a shift of +1.5 which is the industry standard. The formula used is given as:

Sigma Level = NORM.S.INV
$$(0.5+(Yield/100/2)) + 1.5$$

Using these formulas, the results obtained are:

| DPMO  | 18561.85512 | 0.018561855 |
|-------|-------------|-------------|
| SIGMA | 3.584400964 |             |

As we can see, the Sigma Level is just 3.584400964, which is quite low as compared to the other products manufactured by the company. Thus, there is scope of improvement so we will start the defect analysis here. So, we move onto the next stage of our methodology, i.e. Analyse.

#### 3. ANALYSE

After going through the measurement stage, the next step is the stage of identification and analysis. Basically, this stage is the stage of identification and analysis regarding

the main problems and in the end, we will find out how to anticipate the causes of the main defects.

i. Pareto Chart: Firstly, we will plot Pareto Chart to identify the defects which are the
 —Vital Few. For that, let us calculate the cumulative percentage of defects.

| SI NO. | Defects                                   | Quantity<br>Rejected | Rejection % | Cumulative % |
|--------|-------------------------------------------|----------------------|-------------|--------------|
| 1      | Sticky Clay                               | 767                  | 43.95       | 43.95        |
| 2      | Bending                                   | 654                  | 37.48       | 81.43        |
| 3      | Dent                                      | 132                  | 7.56        | 89.00        |
| 4      | Dimensional Inaccuracy<br>Chipping & Edge | 109                  | 6.25        | 95.24        |
| 5      | Damage                                    | 33                   | 1.89        | 97.13        |
| 6      | surface crack                             | 30                   | 1.72        | 98.85        |
| 7      | mishandling                               | 20                   | 1.15        | 100          |
|        | Total Sum                                 | 1745                 |             |              |



We can see from the pareto chart that elbow is forming at the defect 'Bending.' Therefore, we need to work upon two defects which are sticky clay and bending.

So, now we will work on these two defects to improve the sigma level.

ii. Cause & Effect analysis or Ishikawa Diagram or Fishbone diagram: Cause & Effect analysis was conducted and a Cause & Effect diagram categorizing the causes in 5 generic categories were prepared as shown:

# Sticky clay



# **Bending**



Since there are a lot of possible reasons for both the defects, exact reason behind the occurrences is still unknown.

iii. 5- why analysis: to find the root cause of the top 2 defects.

DEFECT STICKY CLAY BENDING TYPE

| WHY 1 | QUESTION              | Why is the clay sticky?                                                                                                        | Why does the product bend?                                                                      |
|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|       | ANSWER                | Because it contains high natural<br>moisture and lack of proper de-<br>airing process in pug mill.                             | Because of uneven pressure in moulding and inconsistent moisture content in clay.               |
| WHY 2 | QUESTION              | Why clay contains high natural moisture and lack of proper deairing?                                                           | Why is the pressure uneven and moisture inconsistent?                                           |
|       | ANSWER                | Because it is stored outdoors and lack of pug mill maintenance.                                                                | Because of worn-out or misaligned moulds, improper stacking, and use of unprocessed clay.       |
| WHY3  | QUESTION              | Why clay is stored outdoors and lack of pug mill maintenance?                                                                  | Why are moulds worn out and clay unprocessed?                                                   |
|       | ANSWER                | Because of lack of enough space,<br>method lacks moisture control<br>guidelines, and lack of monitoring.                       | Because of lack of lubricant, maintenance, and negligence in pre-processing clay.               |
| WHY 4 | QUESTION              | Why are there no monitoring of moisture and machine?                                                                           | Why is there no maintenance or clay preprocessing?                                              |
|       | ANSWER                | Because open storage for raw materials and no periodic service of pug mill.                                                    | Because negligence of workers.                                                                  |
| WHY 5 | QUESTION              | Why is open storage for raw material and no periodic service of pug mill?                                                      | Why are workers negligent?                                                                      |
|       | ANSWER                | Because the organization has not implemented structured SOPs for raw clay handling and pug mill maintenance.                   | Because of high speed of Revolver and lack of training for checking preprocess quality of clay. |
|       | Corrective<br>measure | Implement a standard SOP so<br>that raw material is handled<br>proper and training to workers on<br>revolving press mechanism. |                                                                                                 |

iv. Analytical Hierarchy Process (AHP): We will implement AHP to classify defects based on their pairwise comparisons, taking into consideration various criteria that influence the criticality of the defects.

The criteria that are to be considered here are:

|   | CRITERIA                       |  |  |
|---|--------------------------------|--|--|
| 1 | Frequency of Occurrence (FREQ) |  |  |
| 2 | Severity of Impact (SEV)       |  |  |
| 3 | Cost of Repair/Rework (COST)   |  |  |

## Pairwise comparison of criteria

|      | FREQ  | SEV | COST |      |
|------|-------|-----|------|------|
| FREQ | 1.00  |     | 0.13 | 0.33 |
| SEV  | 8.00  |     | 1.00 | 3.00 |
| COST | 3.00  |     | 0.33 | 1.00 |
|      | 12.00 |     | 1.46 | 4.33 |

|      |      |      |      | Normalised weight |
|------|------|------|------|-------------------|
| 0.08 | 0.09 | 0.08 | 0.25 | 0.08              |
| 0.67 | 0.69 | 0.69 | 2.04 | 0.68              |
| 0.25 | 0.23 | 0.23 | 0.71 | 0.24              |

| Weight Sum Vector | <b>Consistency Vector</b> |
|-------------------|---------------------------|
| 0.25              | 3.00                      |
| 2.05              | 3.00                      |
| 0.71              | 3.00                      |

| lambda | 3.002 |
|--------|-------|
| CI     | 0.001 |
| CR     | 0.002 |

# Pairwise comparisons for Alternatives - Defect types

## **FREQUENCY**

|             | Sticky<br>Clay | Bending |      | Dent  |
|-------------|----------------|---------|------|-------|
| Sticky Clay | 1.00           |         | 3.00 | 9.00  |
| Bending     | 0.33           |         | 1.00 | 6.00  |
| Dent        | 0.11           |         | 0.17 | 1.00  |
|             | 1.44           |         | 4.17 | 16.00 |

|      |      |      |      | Normalised weight |
|------|------|------|------|-------------------|
| 0.69 | 0.72 | 0.56 | 1.98 | 0.66              |
| 0.23 | 0.24 | 0.38 | 0.84 | 0.28              |
| 0.08 | 0.04 | 0.06 | 0.18 | 0.06              |

| Weight Sum Vector | Consistency Vector |
|-------------------|--------------------|
| 2.04              | 3.10               |
| 0.86              | 3.05               |
| 0.18              | 3.01               |

| lambda | 3.05 |
|--------|------|
| CI     | 0.03 |
| CR     | 0.05 |

#### SEVERITY

|             | Sticky |  |      |      |
|-------------|--------|--|------|------|
|             | Clay   |  | De   | nt   |
| Sticky Clay | 1.00   |  | 0.50 | 0.13 |
| Bending     | 2.00   |  | 1.00 | 0.20 |
| Dent        | 8.00   |  | 5.00 | 1.00 |
|             | 11.00  |  | 6.50 | 1.33 |

|      |      |      |      | Normalised weight |
|------|------|------|------|-------------------|
| 0.09 | 0.08 | 0.10 | 0.27 | 0.09              |
| 0.18 | 0.15 | 0.15 | 0.49 | 0.16              |
| 0.73 | 0.77 | 0.75 | 2.25 | 0.75              |

| Weight Sum Vector | <b>Consistency Vector</b> |
|-------------------|---------------------------|
| 0.27              | 3.02                      |
| 0.49              | 3.02                      |
| 2.27              | 3.03                      |
|                   |                           |

| lambda | 3.02 |
|--------|------|
| CI     | 0.01 |
| CR     | 0.02 |

#### **COST**

|             | Sticky |         |      |       |
|-------------|--------|---------|------|-------|
|             | Clay   | Bending | [    | Dent  |
| Sticky Clay | 1.00   |         | 1.00 | 6.00  |
| Bending     | 1.00   |         | 1.00 | 3.00  |
| Dent        | 0.17   |         | 0.33 | 1.00  |
|             | 2.17   |         | 2.33 | 10.00 |

|      |      |      |      | Normalised weight |  |
|------|------|------|------|-------------------|--|
| 0.46 | 0.43 | 0.60 | 1.49 | 0.50              |  |
| 0.46 | 0.43 | 0.30 | 1.19 | 0.40              |  |
| 0.08 | 0.14 | 0.10 | 0.32 | 0.11              |  |

| Weight Sum Vector | <b>Consistency Vector</b> |
|-------------------|---------------------------|
| 1.53              | 3.09                      |
| 1.21              | 3.06                      |
| 0.32              | 3.02                      |
|                   |                           |

| lambda | 3.05 |
|--------|------|
| CI     | 0.03 |
| CR     | 0.05 |

Comparison matrix of defects vs criteria and finding the priority:

|             | FREQ | SEV  | COST | PRIORITY |
|-------------|------|------|------|----------|
| Sticky Clay | 0.66 | 0.09 | 0.50 | 0.23     |
| Bending     | 0.28 | 0.16 | 0.40 | 0.23     |
| Dent        | 0.06 | 0.75 | 0.11 | 0.54     |

Based on the comparison matrix, the **Dent** defect has the highest priority (0.54) compared to Sticky Clay (0.23) and Bending (0.23). This suggests that addressing the "Dent" defect should be the primary focus for improvement efforts.

v. QFD- Hoq: The "Voice of Customer" (VOC) symmetrically translated into measurable requirements by using the QFD technique. There are 2 variables involved in the QFD analysis- Customer requirements and Engineering characteristics.





After QFD analysis, primary focus should be on implementing a "Rubberized Mold" as a key technical solution. This is the highest priority from the customer's perspective and likely addresses the most critical defect ("Dent") identified by your internal analysis.

#### SUGGESTED ACTIONS

|   | Defect | Suggestive Action Plan                                                                                                                                                                                                                                                                                                                        |
|---|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Dents  | <ul> <li>Apply an even coat of release agent. E.g., oil or kerosene</li> <li>Regularly maintain moulds; replace damaged ones to new ones.</li> <li>Train operators to carefully remove tiles.</li> <li>Ensure moulds have proper draft angles and smooth contours.</li> <li>Regularly ensure proper dimensions of the wooden tray.</li> </ul> |

| 2 | Sticky Clay | <ul> <li>Ensure thorough mixing of soil</li> <li>Store mixed clay away from water (rain).</li> <li>Introduce a controlled amount of coarse material to reduce stickiness and improve handling.</li> <li>Maintain a stable ambient temperature in the pressing room.</li> <li>When clay is found to have high moisture content, increase pressure in the pug mill.</li> </ul> |
|---|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Bending     | <ul> <li>Train workers to carefully receive raw clay after moulding.</li> <li>Train workers for properly placing clay in the pressing machine.</li> <li>Ensure press settings to apply even pressure.</li> <li>Place moulded clay on flat, non-stick trays to rest before drying.</li> </ul>                                                                                 |

#### 4. CONTROL AND IMPROVE

The above suggestions were provided to the company and they further implemented these changes according to their company terms and standards. Sufficient time and resources were dedicated to this procedure aiming to improve the sigma level, i.e. the performance of the process. After this, new data was recorded to monitor the improvements (if any) that were achieved by following the mentioned procedure. This data was recorded in a span of 4 days, resulting into 12 shifts i.e. 12 timestamps. The number of defectives arising through each defect were counted for each lot being produced in a continuous process.

#### i. Defects Check Sheet Post Analysis:

|   |         | Sticky<br>Clay | Chipping<br>& Edge<br>Damage | Bending | Dent | mishandling | surface<br>crack | Dimensional<br>Inaccuracy | Total<br>defectives | Sample<br>inspected |
|---|---------|----------------|------------------------------|---------|------|-------------|------------------|---------------------------|---------------------|---------------------|
| 1 | Shift 1 | 25             | 1                            | 15      | 2    | 0           | 1                | 5                         | 49                  | 500                 |
| 2 | Shift 2 | 20             | 0                            | 18      | 4    | 2           | 1                | 2                         | 47                  | 480                 |
| 3 | Shift 3 | 22             | 0                            | 11      | 0    | 1           | 0                | 4                         | 38                  | 444                 |
| 4 | Shift 1 | 24             | 1                            | 20      | 2    | 0           | 0                | 8                         | 55                  | 480                 |
| 5 | Shift 2 | 12             | 0                            | 22      | 3    | 1           | 0                | 7                         | 45                  | 433                 |
| 6 | Shift 3 | 13             | 0                            | 20      | 1    | 1           | 1                | 1                         | 37                  | 432                 |
| 7 | Shift 1 | 17             | 1                            | 12      | 2    | 0           | 0                | 1                         | 33                  | 457                 |
| 8 | Shift 2 | 20             | 3                            | 23      | 2    | 0           | 0                | 6                         | 54                  | 486                 |
| 9 | Shift 3 | 22             | 1                            | 11      | 4    | 3           | 1                | 8                         | 36                  | 400                 |

| 10 | Shift 1 | 23  | 1 | 19  | 1  | 1  | 2 | 2  | 45  | 409  |
|----|---------|-----|---|-----|----|----|---|----|-----|------|
| 11 | Shift 2 | 15  | 0 | 11  | 0  | 1  | 2 | 5  | 34  | 428  |
| 12 | Shift 3 | 11  | 0 | 12  | 3  | 0  | 0 | 7  | 33  | 456  |
|    | COUNT   | 224 | 8 | 194 | 24 | 10 | 8 | 56 | 506 | 5405 |

Here, we can see that the frequencies of the defects "Sticky clay," "Dents" and "Bending" has reduced significantly.

# ii. Construction of p Chart:

| SI NO. | Total<br>defectives | Total<br>Checked | Pi          | LCL         | CL      | UCL         |
|--------|---------------------|------------------|-------------|-------------|---------|-------------|
| 1      | 49                  | 500              | 0.098       | 0.051709993 | 0.09013 | 0.128550701 |
| 2      | 47                  | 480              | 0.097916667 | 0.050917737 | 0.09013 | 0.129342956 |
| 3      | 38                  | 444              | 0.085585586 | 0.049359016 | 0.09013 | 0.130901677 |
| 4      | 49                  | 480              | 0.102083333 | 0.050917737 | 0.09013 | 0.129342956 |
| 5      | 45                  | 433              | 0.103926097 | 0.048844384 | 0.09013 | 0.131416309 |
| 6      | 37                  | 432              | 0.085648148 | 0.048796627 | 0.09013 | 0.131464067 |
| 7      | 33                  | 457              | 0.072210066 | 0.049943099 | 0.09013 | 0.130317594 |
| 8      | 41                  | 486              | 0.08436214  | 0.051160542 | 0.09013 | 0.129100151 |
| 9      | 36                  | 400              | 0.09        | 0.047175085 | 0.09013 | 0.133085608 |
| 10     | 45                  | 409              | 0.11002445  | 0.047650327 | 0.09013 | 0.132610367 |
| 11     | 34                  | 428              | 0.079439252 | 0.048603928 | 0.09013 | 0.131656766 |
| 12     | 33                  | 456              | 0.072368421 | 0.049899058 | 0.09013 | 0.130361635 |
|        |                     |                  | 1.08156416  |             |         |             |
|        |                     | P-BAR            | 0.090130347 |             |         |             |

#### iii. P-chart



As we can clearly see, no points lie outside the calculated control limits, thus the process is in statistical control. We can now measure the performance of the process after improving on the defect identified.

| DPMO  | 13373.86 | 0.01337386 |
|-------|----------|------------|
| SIGMA | 3.71518  |            |

Thus, we can observe that the sigma level has increased from 3.5 to 3.7, which is significant improvement considering the shorter time-period. Standardizing the process and then observing through a longer period, the results might increase even further.

#### **STAGE 3**

#### 1. DEFINE

The two most crucial steps are happening in this stage: air drying and kiln baking. The moulded clay from revolving press is transferred to the conveyor. From here it is taken for air drying. The detailed description is given below:

Air-drying: The moulded clay is placed on wooden trays. It is the carried to the racks where they are stacked. It is then left for 7-9 days for air-drying (under sun light). During monsoon, smoke is given between the racks for increased drying.

Kiln baking: Once air dried, the tiles are taken to the kiln and left for 7 days for extreme drying. In this stage the roof clay tiles gain the deep red colour. The fire wood is introduced periodically to maintain the temperature inside the kiln.

#### **SIPOC**

# SIPOC ANALYSIS



The SIPOC diagram maps process flows, enumerating the supplier, inputs process, output and customers of the process that helps further investigation of the problem

# Defects in the various processes of Stage 3 which are identified by the company are:

### 1. Blistering



The water trapped inside the clay causes bubbles which after kiln baking leave a depression on the tile surface.

### 2. Damage by rodents



While leaving the moulded clay for air drying, rodents like mouse damages the clay surface.

#### 3. Cracking



Lack of care by the workers causes huge amount of cracking. Even rodents' movements results cracking which will be unfit for baking.

#### 2. MEASURE

In the measure phase of DMAIC methodology, the current level of the process performance (in terms of sigma level) based on the seven defects identified in the define stage is established, followed by defect prioritization with the help of pareto chart.

The company collects data on the number of defective units observed through a continuous quality check process. Defectives are visually inspected. A unit is classified as defective if any defect is observed, and such units are removed from the manufacturing line. The company operates its manufacturing process in three shifts per day, typically for all seven days of the week. For this study, defect data was collected over a period of ten days, with data recorded for each of the three shifts per day.

## i. Check sheet for pre-analysis

|         | Cracking | Damage by<br>Rodents | Blistering | Total<br>Defectives | Sample Inspected |
|---------|----------|----------------------|------------|---------------------|------------------|
| Shift 1 | 16       | 1                    | 2          | 19                  | 417              |
| Shift 2 | 17       | 0                    | 0          | 17                  | 440              |
| Shift 3 | 23       | 2                    | 1          | 26                  | 426              |
| Shift 1 | 15       | 2                    | 2          | 19                  | 422              |
| Shift 2 | 18       | 0                    | 0          | 18                  | 445              |
| Shift 3 | 13       | 0                    | 3          | 16                  | 412              |
| Shift 1 | 18       | 3                    | 3          | 24                  | 422              |
| Shift 2 | 16       | 1                    | 2          | 19                  | 432              |
| Shift 3 | 17       | 2                    | 1          | 20                  | 422              |
| Shift 1 | 13       | 8                    | 0          | 21                  | 410              |
| Shift 2 | 19       | 2                    | 0          | 21                  | 405              |
| Shift 3 | 22       | 0                    | 0          | 22                  | 421              |

| Shift 1 | 23  | 3  | 2  | 28  | 432   |
|---------|-----|----|----|-----|-------|
| Shift 2 | 11  | 5  | 1  | 17  | 432   |
| Shift 3 | 21  | 2  | 3  | 26  | 413   |
| Shift 1 | 22  | 0  | 1  | 23  | 421   |
| Shift 2 | 21  | 1  | 1  | 23  | 412   |
| Shift 3 | 21  | 2  | 0  | 23  | 419   |
| Shift 1 | 20  | 0  | 0  | 20  | 417   |
| Shift 2 | 19  | 5  | 0  | 24  | 418   |
| Shift 3 | 17  | 3  | 0  | 20  | 433   |
| Shift 1 | 19  | 2  | 1  | 22  | 427   |
| Shift 2 | 12  | 8  | 2  | 22  | 427   |
| Shift 3 | 14  | 1  | 3  | 18  | 438   |
| Shift 1 | 16  | 1  | 1  | 18  | 412   |
| Shift 2 | 11  | 9  | 1  | 21  | 432   |
| Shift 3 | 10  | 4  | 0  | 14  | 400   |
| Shift 1 | 17  | 3  | 2  | 22  | 412   |
| Shift 2 | 12  | 2  | 1  | 15  | 413   |
| Shift 3 | 21  | 3  | 1  | 25  | 426   |
| COUNT   | 514 | 75 | 34 | 623 | 12658 |

## ii. Statistical Quality Control using control chart (Here, p chart)

In this project, a P control chart is used, because the P control chart is used if the defect size is the proportion of defective products in each sample taken.

| Total      | Total   | Pi          | LCL         | CL         | UCL         |
|------------|---------|-------------|-------------|------------|-------------|
| defectives | Checked |             |             |            |             |
| 19         | 417     | 0.045563549 | 0.017448444 | 0.04923324 | 0.081018036 |
| 17         | 440     | 0.038636364 | 0.018290332 | 0.04923324 | 0.080176147 |
| 26         | 426     | 0.061032864 | 0.017785991 | 0.04923324 | 0.080680488 |
| 19         | 422     | 0.045023697 | 0.017637303 | 0.04923324 | 0.080829176 |
| 18         | 445     | 0.040449438 | 0.01846466  | 0.04923324 | 0.080001819 |
| 16         | 412     | 0.038834951 | 0.017256156 | 0.04923324 | 0.081210323 |
| 24         | 422     | 0.056872038 | 0.017637303 | 0.04923324 | 0.080829176 |
| 19         | 432     | 0.043981481 | 0.018005138 | 0.04923324 | 0.080461341 |
| 20         | 422     | 0.047393365 | 0.017637303 | 0.04923324 | 0.080829176 |
| 21         | 410     | 0.051219512 | 0.017178258 | 0.04923324 | 0.081288221 |
| 21         | 405     | 0.051851852 | 0.016980995 | 0.04923324 | 0.081485484 |
| 22         | 421     | 0.052256532 | 0.017599801 | 0.04923324 | 0.080866679 |
| 28         | 432     | 0.064814815 | 0.018005138 | 0.04923324 | 0.080461341 |
| 17         | 432     | 0.039351852 | 0.018005138 | 0.04923324 | 0.080461341 |
| 26         | 413     | 0.062953995 | 0.017294893 | 0.04923324 | 0.081171586 |
| 23         | 421     | 0.054631829 | 0.017599801 | 0.04923324 | 0.080866679 |
| 23         | 412     | 0.055825243 | 0.017256156 | 0.04923324 | 0.081210323 |
| 23         | 419     | 0.054892601 | 0.017524393 | 0.04923324 | 0.080942086 |
| 20         | 417     | 0.047961631 | 0.017448444 | 0.04923324 | 0.081018036 |

| 24 | 418   | 0.057416268 | 0.017486486 | 0.04923324 | 0.080979993 |
|----|-------|-------------|-------------|------------|-------------|
| 20 | 433   | 0.046189376 | 0.018041219 | 0.04923324 | 0.08042526  |
| 22 | 427   | 0.051522248 | 0.017822836 | 0.04923324 | 0.080643643 |
| 22 | 427   | 0.051522248 | 0.017822836 | 0.04923324 | 0.080643643 |
| 18 | 438   | 0.04109589  | 0.018219767 | 0.04923324 | 0.080246713 |
| 18 | 412   | 0.04368932  | 0.017256156 | 0.04923324 | 0.081210323 |
| 21 | 432   | 0.048611111 | 0.018005138 | 0.04923324 | 0.080461341 |
| 14 | 400   | 0.035       | 0.016780044 | 0.04923324 | 0.081686435 |
| 22 | 412   | 0.053398058 | 0.017256156 | 0.04923324 | 0.081210323 |
| 15 | 413   | 0.036319613 | 0.017294893 | 0.04923324 | 0.081171586 |
| 25 | 426   | 0.058685446 | 0.017785991 | 0.04923324 | 0.080680488 |
|    |       | 1.476997189 |             |            |             |
|    | P-BAR | 0.04923324  |             |            |             |
|    |       |             |             |            |             |

iii. After the control limit calculations are obtained, the next step is to create a control chart graphic which functions to map the data limits. The purpose of making this control chart graph is to find out whether the data is within control limits or not.



The graph clearly depicts that the process is in control as all the points lie within the control limits.

Now, let us check how well the process's performance is depicted using Yield and sigma level.

vi. Yield is the percentage of non-defective items and thus it is given by the formula as:

Yield = (1-(total number of defectives/total number of items inspected)) \*100

vii. Sigma level can then be calculated as the two tailed z-value treating Yield as the area under the curve with a shift of +1.5 which is the industry standard. The formula used is given as:

Sigma Level = NORM.S.INV
$$(0.5+(Yield/100/2)) + 1.5$$

Using these formulas, the results obtained are:

| DPMO  | 16405.96197 | 0.016405962 |
|-------|-------------|-------------|
| SIGMA | 3.634377108 |             |

As we can see, the Sigma Level is just 3.634377108, which is quite low as compared to the other products manufactured by the company. Thus, there is scope of improvement so we will start the defect analysis here. So, we move onto the next stage of our methodology, i.e. Analyse.

#### 5. ANALYSE

After going through the measurement stage, the next step is the stage of identification and analysis. Basically, this stage is the stage of identification and analysis regarding the main problems and in the end, we will find out how to anticipate the causes of the main defects.

i. Pareto Chart: Firstly, we will plot Pareto Chart to identify the defects which
are the —Vital Few. For that, let us calculate the cumulative percentage of
defects.

| Defects           | Quantity<br>Rejected | Rejection % |       | Cumulative % |
|-------------------|----------------------|-------------|-------|--------------|
| Cracking          | 514                  |             | 82.50 | 82.50        |
| Damage by Rodents | 75                   |             | 12.04 | 94.54        |
| Blistering        | 34                   |             | 5.46  | 100.00       |
| Total Sum         | 623                  |             |       |              |



We can see from the pareto chart that around 80% of the defect type is 'Cracking.' Therefore, we need to work upon this defect.

So, now we will work on this defect to improve the sigma level.

ii. Cause & Effect analysis or Ishikawa Diagram or Fishbone diagram: Cause & Effect analysis was conducted and a Cause & Effect diagram categorizing the causes in 5 generic categories were prepared as shown:



Since there are many causes, and this is not pointing out to any specific reason we must go with 5-why analysis.

## iii. 5-Why analysis of top defect of Stage 3

DEFECT CRACKING TYPE

| WHY 1 | QUESTION           | Why did the product crack?                                                                                         |
|-------|--------------------|--------------------------------------------------------------------------------------------------------------------|
|       | ANSWER             | Because the firing process was improper.                                                                           |
| WHY2  | QUESTION           | Why was the firing process improper?                                                                               |
|       | ANSWER             | Because the temperature inside the kiln was not evenly distributed.                                                |
| WHY3  | QUESTION           | Why was the temperature uneven in the kiln?                                                                        |
|       | ANSWER             | Because of inefficient air circulation and lack of proper arrangement.                                             |
| WHY 4 | QUESTION           | Why was the air circulation inefficient?                                                                           |
|       | ANSWER             | Because the kiln's design or maintenance did not support optimal airflow and the firing is not well kept on check. |
| WHY5  | QUESTION           | Why was the kiln not properly designed or maintained?                                                              |
|       | ANSWER             | Because regular checks and updates to the system were not part of SOPs and temperature was not well looked upon.   |
|       | Corrective measure | Regular checks and updates for the kiln system, specifically regarding temperature control and maintenance.        |

## ACTION PLANNING FOR FAILURE MODES

|   | Defects  | Suggestive Action Plan                                                                                                                                              |
|---|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Cracking | <ul> <li>Use shaded drying zones to slow down evaporation.</li> <li>Avoid direct contact between pieces.</li> <li>Install fans or ducts for even airflow</li> </ul> |

| 2 | Damage by Rodents | <ul> <li>Use metal mesh covers, elevated racks, or closed chambers during drying.</li> <li>Store semi-dried tiles in closed or netted sheds to prevent access.</li> <li>Regularly clean the drying area; remove leftover clay or waste.</li> </ul> |
|---|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Blistering        | <ul> <li>Ensure homogeneous clay mixing and proper deairing</li> <li>Introduce a pre-airing step where tiles are placed under low airflow before full drying.</li> </ul>                                                                           |

#### 4. IMPROVE AND CONTROL

The above suggestions were provided to the company and they further implemented these changes according to their company terms and standards. Sufficient time and resources were dedicated to this procedure aiming to improve the sigma level, i.e. the performance of the process. After this, new data was recorded to monitor the improvements (if any) that were achieved by following the mentioned procedure. This data was recorded in a span of 4 days, resulting into 12 shifts i.e. 12 timestamps. The number of defectives arising through each defect were counted for each lot being produced in a continuous process.

## i. Defects Check Sheet Post Analysis:

|         | Cracking | Damage by<br>Rodents | Blistering | Total<br>Defectives | Sample Inspected |
|---------|----------|----------------------|------------|---------------------|------------------|
| Shift 1 | 10       | 3                    | 0          | 13                  | 431              |
| Shift 2 | 7        | 1                    | 2          | 10                  | 410              |
| Shift 3 | 8        | 2                    | 3          | 13                  | 430              |
| Shift 1 | 7        | 2                    | 0          | 9                   | 434              |
| Shift 2 | 6        | 6                    | 1          | 13                  | 428              |
| Shift 3 | 2        | 5                    | 2          | 9                   | 437              |
| Shift 1 | 7        | 0                    | 0          | 7                   | 410              |
| Shift 2 | 6        | 5                    | 0          | 11                  | 416              |
| Shift 3 | 7        | 0                    | 2          | 9                   | 419              |
| Shift 1 | 9        | 4                    | 2          | 15                  | 426              |
| Shift 2 | 6        | 4                    | 1          | 11                  | 440              |
| Shift 3 | 10       | 0                    | 3          | 13                  | 419              |
| COUNT   | 85       | 32                   | 16         | 133                 | 5100             |

Here, we can see that the frequencies of the defects "Cracking," "Damage by rodents" and "Blistering" has reduced significantly.

## ii. Construction of p Chart:

| Total<br>defectives | Total<br>Checked | Pi          | LCL         | CL          | UCL         |
|---------------------|------------------|-------------|-------------|-------------|-------------|
| 13                  | 431              | 0.030162413 | 0.00303857  | 0.026060338 | 0.049082105 |
| 10                  | 410              | 0.024390244 | 0.00245635  | 0.026060338 | 0.049664325 |
| 13                  | 430              | 0.030232558 | 0.003011816 | 0.026060338 | 0.049108859 |
| 9                   | 434              | 0.020737327 | 0.003118276 | 0.026060338 | 0.049002399 |
| 13                  | 428              | 0.030373832 | 0.002958027 | 0.026060338 | 0.049162648 |
| 9                   | 437              | 0.020594966 | 0.003197161 | 0.026060338 | 0.048923515 |
| 7                   | 410              | 0.017073171 | 0.00245635  | 0.026060338 | 0.049664325 |
| 11                  | 416              | 0.026442308 | 0.00262719  | 0.026060338 | 0.049493486 |
| 9                   | 419              | 0.021479714 | 0.00271123  | 0.026060338 | 0.049409445 |
| 15                  | 426              | 0.035211268 | 0.00290386  | 0.026060338 | 0.049216815 |
| 11                  | 440              | 0.025       | 0.003275236 | 0.026060338 | 0.048845439 |
| 13                  | 419              | 0.031026253 | 0.00271123  | 0.026060338 | 0.049409445 |
|                     |                  | 0.312724052 |             |             |             |
|                     | P-BAR            | 0.026060338 |             |             |             |
|                     |                  |             |             |             |             |

#### iii. P-chart



As we can clearly see, no points lie outside the calculated control limits, thus the process is in statistical control. We can now measure the performance of the process after improving on the defect identified.

| DPMO  | 8692.810458 | 0.00869281 |
|-------|-------------|------------|
| SIGMA | 3.878449461 |            |

Thus, we can observe that the sigma level has increased from 3.6 to 3.9, which is significant improvement considering the shorter time-period. Standardizing the process and then observing through a longer period, the results might increase even further.

#### **STAGE 4**

#### 1. DEFINE

Once the roof clay tile is made it is then taken to the next steps. Quality checking packaging and transportation to the customers are the steps. After the kiln baking, the final product is taken for quality checking, where the product is undergone quality checking and categorised into different categories based on their minor cracks and density. The sorted products are sent to the customers on demand. The products are transported using lorries where hay is placed in between the tile to maintain the friction and the absorb un announced rain and to provide padding.

#### **SIPOC**

# SIPOC ANALYSIS



The SIPOC diagram maps process flows, enumerating the supplier, inputs process, output and customers of the process that helps further investigation of the problem

# Defects in the various processes of Stage 2 which are identified by the company are:

#### 1. Lime accumulation



Due to improper sieving of clay during the initial stages, the calcim contents gets accumulated in the clay. This results in to lime accumulation in the final product.

## 2. Mishandling



Manual works leads to cracking of the products which cannot be further used or recycled.

## 3. Over drying



Due to periodic unattendance of fire in the kiln, it results to over drying of the tiles. This causes black patches on the tile; also results in shrinkage of tile.

#### 4. Insufficient drying



Insufficient drying results in moisture in the clay which has low water retention capacity.

## 2. MEASURE

In the measure phase of DMAIC methodology, the current level of the process performance (in terms of sigma level) based on the seven defects identified in the define stage is established, followed by defect prioritization with the help of pareto chart.

The company collects data on the number of defective units observed through a continuous quality check process. Defectives are visually inspected. A unit is classified as defective if any defect is observed, and such units are removed from the manufacturing line. The company

operates its manufacturing process in three shifts per day, typically for all seven days of the week. For this study, defect data was collected over a period of ten days, with data recorded for each of the three shifts per day.

The table below presents the number of defectives observed at the end of stage 1 for each shift. In this context, shift 1, shift 2, shift 3 represents 3 shifts of a day. Thereby there are 30 data in total. The frequency of defects that caused the parts to be classified as defective is recorded for each shift. The sample size of each shift is also noted. The table contains 5 defects types and frequency of each in the table.

## i. Check sheet for pre-analysis

|    |         | Insufficient | Over   | Mishandling | Lime         | Total      | Samples    |
|----|---------|--------------|--------|-------------|--------------|------------|------------|
| 1  | Shift 1 | Drying       | Drying | 0           | Accumulation | defectives | inspected  |
| 2  | Shift 2 | 1            | 4      | 2           | 5            | 9          | 176<br>187 |
| 3  | Shift 3 | 2            | 7      |             | 2            | 11         | 198        |
| 4  | Shift 1 | 7            | 3      | 3           | 4            | 17         | 156        |
| 5  | Shift 2 | 2            | 8      | 5           | 3            | 18         | 159        |
| 6  | Shift 3 | 3            | 5      | 2           | 2            | 12         | 149        |
| 7  | Shift 1 | 5            | 6      | 3           | 5            | 19         | 177        |
| 8  | Shift 2 | 6            | 5      | 8           | 1            | 20         | 169        |
| 9  | Shift 3 | 1            | 6      | 2           | 2            | 11         | 160        |
| 10 | Shift 1 | 2            | 4      | 0           | 3            | 9          | 159        |
| 11 | Shift 2 | 2            | 8      | 0           | 4            | 14         | 193        |
| 12 | Shift 3 | 1            | 6      | 1           | 4            | 12         | 177        |
| 13 | Shift 1 | 5            | 5      | 2           | 4            | 16         | 165        |
| 14 | Shift 2 | 6            | 8      | 5           | 1            | 20         | 183        |
| 15 | Shift 3 | 3            | 8      | 7           | 2            | 20         | 177        |
| 16 | Shift 1 | 2            | 4      | 0           | 3            | 9          | 187        |
| 17 | Shift 2 | 3            | 6      | 2           | 1            | 12         | 180        |
| 18 | Shift 3 | 5            | 4      | 0           | 5            | 14         | 176        |
| 19 | Shift 1 | 6            | 5      | 0           | 2            | 13         | 133        |
| 20 | Shift 2 | 1            | 7      | 0           | 2            | 10         | 129        |
| 21 | Shift 3 | 4            | 3      | 3           | 1            | 11         | 116        |
| 22 | Shift 1 | 5            | 4      | 2           | 2            | 13         | 164        |
| 23 | Shift 2 | 2            | 4      | 1           | 4            | 11         | 188        |
| 24 | Shift 3 | 5            | 3      | 1           | 1            | 10         | 154        |
| 25 | Shift 1 | 3            | 7      | 0           | 2            | 12         | 134        |
| 26 | Shift 2 | 3            | 8      | 2           | 5            | 18         | 162        |
| 27 | Shift 3 | 2            | 5      | 1           | 2            | 10         | 128        |
| 28 | Shift 1 | 5            | 6      | 0           | 4            | 15         | 160        |
| 29 | Shift 2 | 2            | 6      | 0           | 1            | 9          | 153        |
| 30 | Shift 3 | 5            | 7      | 2           | 1            | 15         | 169        |
|    | COUNT   | 100          | 166    | 55          | 79           | 400        | 4918       |

## i. Statistical Quality Control using control chart (Here, p chart)

In this project, a P control chart is used, because the P control chart is used if the defect size is the proportion of defective products in each sample taken.

| SI<br>No. | Total<br>defectives | Total<br>Checked | Pi          | LCL                       | CL          | UCL         |
|-----------|---------------------|------------------|-------------|---------------------------|-------------|-------------|
| 1         | 10                  | 176              | 0.056818182 | 0.025136898               | 0.089781261 | 0.154425623 |
| 2         | 9                   | 187              | 0.048128342 | 0.027067017               | 0.089781261 | 0.152495504 |
| 3         | 11                  | 198              | 0.05555556  | 0.028833971               | 0.089781261 | 0.15072855  |
| 4         | 17                  | 156              | 0.108974359 | 0.021117958               | 0.089781261 | 0.158444564 |
| 5         | 18                  | 159              | 0.113207547 | 0.021768809               | 0.089781261 | 0.157793712 |
| 6         | 12                  | 149              | 0.080536913 | 0.019523572               | 0.089781261 | 0.160038949 |
| 7         | 19                  | 177              | 0.107344633 | 0.025319768               | 0.089781261 | 0.154242753 |
| 8         | 20                  | 169              | 0.118343195 | 0.023811693               | 0.089781261 | 0.155750828 |
| 9         | 11                  | 160              | 0.06875     | 0.021981681               | 0.089781261 | 0.15758084  |
| 10        | 9                   | 159              | 0.056603774 | 0.021768809               | 0.089781261 | 0.157793712 |
| 11        | 14                  | 193              | 0.07253886  | 0.028049547               | 0.089781261 | 0.151512975 |
| 12        | 12                  | 177              | 0.06779661  | 0.025319768               | 0.089781261 | 0.154242753 |
| 13        | 16                  | 165              | 0.096969697 | 0.02301685                | 0.089781261 | 0.156545671 |
| 14        | 20                  | 183              | 0.109289617 | 0.026385321               | 0.089781261 | 0.153177201 |
| 15        | 20                  | 177              | 0.11299435  | 0.025319768               | 0.089781261 | 0.154242753 |
| 16        | 9                   | 187              | 0.048128342 | 0.027067017               | 0.089781261 | 0.152495504 |
| 17        | 12                  | 180              | 0.066666667 | 0.025859204               | 0.089781261 | 0.153703317 |
| 18        | 14                  | 176              | 0.079545455 | 545455 0.025136898 0.0897 |             | 0.154425623 |
| 19        | 13                  | 133              | 0.097744361 | 0.01541753                | 0.089781261 | 0.164144992 |
| 20        | 10                  | 129              | 0.07751938  | 0.014273405               | 0.089781261 | 0.165289116 |
| 21        | 11                  | 116              | 0.094827586 | 0.010154693               | 0.089781261 | 0.169407828 |
| 22        | 13                  | 164              | 0.079268293 | 0.02281361                | 0.089781261 | 0.156748912 |
| 23        | 11                  | 188              | 0.058510638 | 0.027234033               | 0.089781261 | 0.152328489 |
| 24        | 10                  | 154              | 0.064935065 | 0.02067353                | 0.089781261 | 0.158888991 |
| 25        | 12                  | 134              | 0.089552239 | 0.015695526               | 0.089781261 | 0.163866995 |
| 26        | 18                  | 162              | 0.111111111 | 0.022401497               | 0.089781261 | 0.157161024 |
| 27        | 10                  | 128              | 0.078125    | 0.013979027               | 0.089781261 | 0.165583495 |
| 28        | 15                  | 160              | 0.09375     | 0.021981681               | 0.089781261 | 0.15758084  |
| 29        | 9                   | 153              | 0.058823529 | 0.020448056               | 0.089781261 | 0.159114466 |
| 30        | 15                  | 169              | 0.088757396 | 0.023811693               | 0.089781261 | 0.155750828 |
|           |                     |                  | 2.461116697 |                           |             |             |
|           |                     | P-BAR            | 0.082037223 |                           |             |             |
|           |                     |                  |             |                           |             |             |

ii. After the control limit calculations are obtained, the next step is to create a control chart graphic which functions to map the data limits. The

purpose of making this control chart graph is to find out whether the data is within control limits or not.



The graph clearly depicts that the process is in control as all the points lie within the control limits.

Now, let us check how well the process's performance is depicted using Yield and sigma level.

i. Yield is the percentage of non-defective items and thus it is given by the formula as:

Yield = (1-(total number of defectives/total number of items inspected)) \*100

ii. Sigma level can then be calculated as the two tailed z-value treating Yield as the area under the curve with a shift of +1.5 which is the industry standard. The formula used is given as:

Sigma Level = NORM.S.INV
$$(0.5+(Yield/100/2)) + 1.5$$

Using these formulas, the results obtained are:

| DPMO  | 20333.46889 | 0.020333469 |
|-------|-------------|-------------|
| SIGMA | 3.54690984  |             |

As we can see, the Sigma Level is just 3.54690984, which is quite low as compared to the other products manufactured by the company. Thus, there is scope of improvement so we will start the defect analysis here. So, we move onto the next stage of our methodology, i.e. Analyse.

#### 3. ANALYSE

After going through the measurement stage, the next step is the stage of identification and analysis. Basically, this stage is the stage of identification and analysis regarding the main problems and in the end, we will find out how to anticipate the causes of the main defects.

i. Pareto Chart: Firstly, we will plot Pareto Chart to identify the defects which are the
 —Vital Few. For that, let us calculate the cumulative percentage of defects.

| SI NO. | Defects                     | Quantity Rejected | Rejection % | Cumulative % |
|--------|-----------------------------|-------------------|-------------|--------------|
| 2      | Over Drying                 | 166               | 42.03       | 42.03        |
| 1      | Insufficient Drying<br>Lime | 100               | 25.32       | 67.34        |
| 4      | Accumulation                | 79                | 20.00       | 87.34        |
| 3      | Mishandling                 | 50                | 12.66       | 100.00       |
|        | Total Sum                   | 395               |             |              |



We can see from the pareto chart that chart that elbow is forming at the defect 'Lime accumulation.' Therefore, we need to work upon three defects which are over drying, insufficient drying and lime accumulation.

So, now we will work on these three defects to improve the sigma level.

ii. Cause & Effect analysis or Ishikawa Diagram or Fishbone diagram: Cause & Effect analysis was conducted and a Cause & Effect diagram categorizing the causes in 5 generic categories were prepared as shown:

## Over- drying



## **Insufficient-drying**



## Lime accumulation

**DEFECT** 



Since there are a lot of possible reasons for these defects, exact reason behind the occurrences is still unknown.

INSUFFICIENT DRYING LIME ACCUMULATION

iii. 5-Why analysis of top 3 defects of Stage 4

**OVER DRYING** 

| TYPE  |          | OVER DIVINIO                                                                     | integral old in a state of the | Eli IE/ROCOT IOE/RITORY                                        |
|-------|----------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| WHY 1 | QUESTION | Why did over drying occur?                                                       | Why did insufficient drying occur?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Why did lime accumulate?                                       |
|       | ANSWER   | Because the drying time was excessive.                                           | Because the material had high moisture content.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Because the clay used had a high calcium content.              |
| WHY 2 | QUESTION | Why was the drying time excessive?                                               | Why was there high moisture content in the material?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Why did the clay have high calcium content?                    |
|       | ANSWER   | Because there was<br>no shift of labour to<br>monitor and manage<br>the process. | Because the material had poor water absorption and retention capacity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Because limestone was not properly removed during preparation. |

| WHY3  | QUESTION | Why was there no shift of labour?                                                 | Why did the material have poor absorption and retention?                                | Why wasn't the limestone removed?                                                             |
|-------|----------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|       | ANSWER   | Because of poor<br>manpower planning<br>and lack of<br>scheduling.                | Because of improper clay selection.                                                     | Because the filtration and screening process was ineffective.                                 |
| WHY4  | QUESTION | Why was the labour planning poor?                                                 | Why was the wrong clay selected?                                                        | Why was the filtration process ineffective?                                                   |
|       | ANSWER   | Because of management oversight and lack of standard operating procedures (SOPs). | Because there were no<br>quality checks for<br>material before use and<br>lack of time. | Because equipment used for screening was outdated or not maintained.                          |
| WHY 5 | QUESTION | Why was there no SOP in place?                                                    | Why were quality checks not conducted?                                                  | Why wasn't the equipment maintained or upgraded?                                              |
|       | ANSWER   | Because training and process documentation are lacking.                           | Because the quality assurance process is not implemented or enforced effectively.       | Because there was no<br>maintenance schedule or<br>investment plan for<br>machinery upgrades. |
|       |          | Corrective Measures                                                               | Monitored drying schedules and parameters and adequate labour scheduling.               |                                                                                               |

## 4. IMPROVE

Based on the results of the previous stages, the next process is to improve the types of stage 4 defects using FMEA method which provides an overview of sources and priorities in implementing the plan. As well as developing plans for improvement and quality improvement. FMEA produces risk priority number (RPN) which will be used as a priority scale for improvement clay roof tiles. The RPN calculation results aim to find the severity rating, occurrence rating and detection values.

## i. Severity value

|     | Α.            | • | 10   |
|-----|---------------|---|------|
| SC  | Λ             |   | H.   |
| 171 | $\overline{}$ |   | 11.7 |

## **INFORMATION**

| 1 | No effect       |
|---|-----------------|
| 2 | Not too serious |
| 3 | Serious enough  |
| 4 | Are serious     |
| 5 | Very serious    |

## ii. Occurrence value

## **SCALE**

## **INFORMATION**

| 1 | Very rare          |  |  |
|---|--------------------|--|--|
| 2 | Rarely happening   |  |  |
| 3 | Sometimes happens  |  |  |
| 4 | Often occur        |  |  |
| 5 | Happens very often |  |  |

## iii. Detection value

## **SCALE**

## **INFORMATION**

| 1 | Definitely Detected       |
|---|---------------------------|
| 2 | Most likely to detect     |
| 3 | Maybe detected            |
| 4 | Small chance of detection |
| 5 | Not detected              |

## RISK PRIORITY NUMBER DEFECT: OVER DRYING

| NO | Potential Failure Mode        | Severity | Occurrence | Detection | RPN | Priority |
|----|-------------------------------|----------|------------|-----------|-----|----------|
| 1  | Excessive Drying time         | 4        | 4          | 3         | 48  | 2        |
| 2  | Uneven Air flow               | 3        | 3          | 4         | 36  | 3        |
| 3  | High Temperature              | 4        | 5          | 3         | 60  | 1        |
| 4  | Improper Stacking in the kiln | 3        | 2          | 3         | 18  | 4        |
| 5  | Lack of Sediments             | 2        | 2          | 2         | 8   | 5        |

## RISK PRIORITY NUMBER DEFECT: INSUFFICIENT DRYING

| NO | Potential Failure Mode         | Severity | Occurrence | Detection | RPN | Priority |
|----|--------------------------------|----------|------------|-----------|-----|----------|
| 1  | Excessive Moisture in the clay | 5        | 4          | 2         | 40  | 1        |
|    | High Moisture content in the   |          |            |           |     |          |
| 2  | environment                    | 5        | 3          | 2         | 30  | 2        |
| 3  | Inadequate drying time         | 5        | 4          | 1         | 20  | 3        |
| 4  | Improper Stacking in the kiln  | 4        | 2          | 2         | 16  | 4        |
| 5  | Uneven Air Flow                | 5        | 3          | 1         | 15  | 5        |

## RISK PRIORITY NUMBER DEFECT: LIME ACCUMULATION

| NO | Potential Failure Mode  | Severity | Occurrence | Detection | RPN | Priority |
|----|-------------------------|----------|------------|-----------|-----|----------|
| 1  | High Calcium Content    | 5        | 4          | 1         | 20  | 4        |
|    | No proper separation or |          |            |           |     |          |
| 2  | washing                 | 4        | 3          | 3         | 36  | 2        |
| 3  | Low quality of clay     | 5        | 3          | 2         | 30  | 3        |
|    | Use of hard water while |          |            |           |     |          |
| 4  | processing              | 5        | 3          | 4         | 60  | 1        |

## ACTION PLANNING FOR FAILURE MODES

## i. Over drying

| Rank | Failure Mode     | Actionable Causes                                  | Design Action/Potential<br>Solutions |
|------|------------------|----------------------------------------------------|--------------------------------------|
| 1    | High temperature | Overheating accelerates water evaporation unevenly | Install temperature sensors          |

| 2 | Excessive drying time         | Delay in replacement | <ul> <li>Introduce automated drying timers to ensure consistent drying durations.</li> <li>Train operators to follow drying cycle logs strictly.</li> <li>Perform time audits to evaluate average vs. optimal drying durations.</li> </ul> |
|---|-------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Uneven air flow               | Improper stacking    | <ul> <li>Regularly service ducts, and vents to maintain uniform airflow.</li> <li>Ensure even stacking to avoid blocking air passage between tiles.</li> </ul>                                                                             |
| 4 | Improper Stacking in the kiln | Lack of personnel    | <ul> <li>Train workers on optimal spacing and weight distribution.</li> <li>Install shelves for stacking</li> </ul>                                                                                                                        |
| 5 | Lack of Sediments             | Low material quality | Checking raw materials,<br>water content and clay<br>powder                                                                                                                                                                                |

## ii. Insufficient drying

| Rank | Failure Mode                             | Actionable Causes | Design Action/Potential Solutions                                                                                                                        |
|------|------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Excessive Moisture in the clay           | Improper drying   | <ul> <li>Pre-check clay in raw form using moisture testing kits before shaping</li> <li>Use high quality clay</li> <li>Protect clay from rain</li> </ul> |
| 2    | High Moisture content in the environment | Rainy season      | <ul> <li>storage area with humidity control</li> <li>proper drying in kiln</li> </ul>                                                                    |

| 3 | Inadequate drying time        | Lack of knowledge about drying time | <ul> <li>Apply Smoke during rainy season</li> <li>Train workers on different types of clay and their drying time</li> </ul>                                    |
|---|-------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Improper Stacking in the kiln | Lack of personnel                   | <ul> <li>Train workers on optimal spacing and weight distribution.</li> <li>Install shelves for stacking</li> </ul>                                            |
| 5 | Uneven Air Flow               | Improper stacking                   | <ul> <li>Regularly service ducts, and vents to maintain uniform airflow.</li> <li>Ensure even stacking to avoid blocking air passage between tiles.</li> </ul> |

## iii. Lime accumulation

| Rank | Failure Mode                       | Actionable Causes         | Design Action/Potential<br>Solutions                                                                                 |
|------|------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1    | Use of hard water while processing | lime popping after firing | <ul> <li>Blend with low calcium clay as a dilution strategy</li> <li>Heavy crushing and mixing in stage 1</li> </ul> |
| 2    | No proper separation or washing    | trapped lime or salts     | Implement a two-stage<br>filtration process for<br>raw clay                                                          |
| 3    | Low quality of clay                | Poor selection of clay    | <ul> <li>Qualify clay only from tested Water beds</li> <li>Introduce experienced clay testing team</li> </ul>        |

#### 5. CONTROL

The above suggestions were provided to the company and they further implemented these changes according to their company terms and standards. Sufficient time and resources were dedicated to this procedure aiming to improve the sigma level, i.e. the performance of the process. After this, new data was recorded to monitor the improvements (if any) that were achieved by following the mentioned procedure. This data was recorded in a span of 4 days, resulting into 12 shifts i.e. 12 timestamps. The number of defectives arising through each defect were counted for each lot being produced in a continuous process.

#### i. Defects Check Sheet Post Analysis:

|    |         | Insufficient<br>Drying | Over<br>Drying | Mishandling | Lime<br>Accumulation | Total<br>defectives | Samples inspected |
|----|---------|------------------------|----------------|-------------|----------------------|---------------------|-------------------|
| 1  | Shift 1 | 8                      | 2              | 3           | 2                    | 12                  | 170               |
| 2  | Shift 2 | 1                      | 3              | 4           | 3                    | 11                  | 170               |
| 3  | Shift 3 | 3                      | 0              | 0           | 5                    | 9                   | 187               |
| 4  | Shift 1 | 5                      | 1              | 3           | 3                    | 12                  | 160               |
| 5  | Shift 2 | 0                      | 7              | 0           | 0                    | 8                   | 178               |
| 6  | Shift 3 | 2                      | 2              | 2           | 7                    | 13                  | 167               |
| 7  | Shift 1 | 4                      | 6              | 3           | 7                    | 15                  | 170               |
| 8  | Shift 2 | 0                      | 3              | 6           | 1                    | 10                  | 179               |
| 9  | Shift 3 | 6                      | 6              | 0           | 0                    | 12                  | 150               |
| 10 | Shift 1 | 0                      | 0              | 1           | 2                    | 13                  | 166               |
| 11 | Shift 2 | 2                      | 2              | 1           | 1                    | 11                  | 200               |
| 12 | Shift 3 | 1                      | 5              | 0           | 3                    | 10                  | 180               |
|    | COUNT   | 32                     | 37             | 23          | 34                   | 136                 | 2077              |

Here, we can see that the frequencies of the defects "insufficient drying," "over drying" and "lime accumulation" has reduced significantly.

## i. Construction of p Chart:

| SI<br>No. | Total<br>defectives | Total<br>Checked | Pi          | LCL         | CL          | UCL         |
|-----------|---------------------|------------------|-------------|-------------|-------------|-------------|
| 1         | 12                  | 170              | 0.070588235 | 0.00898159  | 0.066181718 | 0.123381846 |
| 2         | 11                  | 170              | 0.064705882 | 0.00898159  | 0.066181718 | 0.123381846 |
| 3         | 9                   | 187              | 0.048128342 | 0.011643536 | 0.066181718 | 0.1207199   |
| 4         | 12                  | 160              | 0.075       | 0.007221176 | 0.066181718 | 0.12514226  |
| 5         | 8                   | 178              | 0.04494382  | 0.010281763 | 0.066181718 | 0.122081673 |
| 6         | 13                  | 167              | 0.077844311 | 0.008470104 | 0.066181718 | 0.123893332 |
| 7         | 15                  | 170              | 0.088235294 | 0.00898159  | 0.066181718 | 0.123381846 |
| 8         | 10                  | 179              | 0.055865922 | 0.010438127 | 0.066181718 | 0.121925309 |

| 9  | 12 | 150   | 0.08        | 0.005287532 | 0.066181718 | 0.127075904 |
|----|----|-------|-------------|-------------|-------------|-------------|
| 10 | 13 | 166   | 0.078313253 | 0.008296534 | 0.066181718 | 0.124066902 |
| 11 | 11 | 200   | 0.055       | 0.013445806 | 0.066181718 | 0.11891763  |
| 12 | 10 | 180   | 0.05555556  | 0.010593186 | 0.066181718 | 0.12177025  |
|    |    |       | 0.794180616 |             |             |             |
|    |    | P-BAR | 0.066181718 |             |             |             |

## ii. P-chart



As we can clearly see, no points lie outside the calculated control limits, thus the process is in statistical control. We can now measure the performance of the process after improving on the defect identified.

| DPMO  | 16369.76408 | 0.016369764 |
|-------|-------------|-------------|
| SIGMA | 3.635263064 |             |

Thus, we can observe that the sigma level has increased from 3.5 to 3.63, which is significant improvement considering the shorter time-period. Standardizing the process and then observing through a longer period, the results might increase even further.