Лабораторная работа 5.2. Моделирование оптических приборов и определение их увеличения

Сергей Миллер, 494 6 февраля 2017

В работе используются: оптическая скамья, набор линз, экран, осветитель со шкалой, зрительная труба, диафрагма, линейка

1 Схемы приборов

Астрономическая трубка

Рис. 1: Схема установки

Рис. 2: Ход лучей в зрительной трубе Кеплера

Опредление 1. Отношение углового размера изображения объекта, рассматриваемого наблюдателем через окуляр прибора, к угловому размеру

объекта, рассматриваемого невооружённым глазом, называется угловым увеличением оптического прибора.

Замечание. Для того чтобы исключить в теории произвол, связанный с неопределённостью расстояния d(расстояние от мнимого изображения до окуляра), полагают обычно, что глаз наблюдателя аккомодирован на бесконечность. При этом мнимое изображение должно располагаться в бесконечности, и, следовательно, промежуточное изображение должно совпадать с фокальной плоскостью окуляра.

Опредление 2. Афокальной системой называют оптическую систему, для которой параллельный пучок лучей, входящий в объектив, остаётся параллельным по выходе из окуляра.

Увеличение зрительной трубы равно:

$$\gamma = \frac{\operatorname{tg}\varphi_1}{\operatorname{tg}\varphi_2} = \frac{f_1}{f_2} = \frac{D_1}{D_2} \tag{1}$$

Галелеева зрительная труба

Замечание. Если заменить положительный окуляр астрономической трубы отрицательным, получается галилеева (или земная) труба. При телескопическом ходе лучей в галилеевой трубе расстояние между объективом и окуляром равно разности(точнее — алгебраической сумме) их фокусных расстояний, а изображение оправы объектива, даваемое окуляром, оказывается мнимым.

Рис. 3: Ход лучей в зрительной трубе Галилея

Увеличение зрительной трубы равно:

$$\gamma = \frac{\operatorname{tg}\varphi_1}{\operatorname{tg}\varphi_2} = \frac{f_1}{f_2} = \frac{D_1}{D_2} \tag{2}$$

Микроскоп

Увеличение по определению равно:

$$\gamma = \frac{\operatorname{tg}\varphi_1}{\operatorname{tg}\varphi_2} \tag{3}$$

Рис. 4: Ход лучей в микроскопе. Вспомогательные изображения для вычисления увеличения.

Где тангенсы углов определяются как:

$$tg \,\varphi_2 = \frac{l'}{f_2} = \frac{\Delta - f_2 - f_1}{f_1 \cdot f_2} \tag{4}$$

где l' - размер промежуточного изображения, l — размер предмета, Δ — длина тубуса (расстояние между линзами).

Откуда увеличение равно:

$$\gamma = \frac{L(\Delta - f_2 - f_1)}{f_1 \cdot f_2} \tag{5}$$

2 Ход работы

Расчёт фокусного расстояния линз:

Номер линзы:	1	2(рассеивающая)	3	4
Толщина линзы (h, мм):	15	19	14	13
Расстояние до линзы (f_1, MM) :	111	220	234	227
Расстояние до перевёрнутой линзы $(f_2, \text{мм})$:	113	223	230	225
Итоговое фокусное расстояние(f, мм):	119± 8	$231\pm\ 11$	239± 9	232 ± 7

Формула для расчёта фокусного расстояния:

$$f = \frac{f_1 + f_2 + h}{2} \pm \frac{|f_1 - f_2| + h}{2} \tag{6}$$

Трубка Кеплера

источник - линза №3 - линза №1 -линза №4 - экран

Размер изображения

- а)только с коллиматором $D_1 = 10 \pm 1 mm$
- б) в трубе Кеплера $D_2 = 18 \pm 2mm$

Увеличение по формуле для фокусов: $\gamma_1 = \frac{f_1}{f_4} = 0.51 \pm 0.04$

Увеличение по формуле для размеров изображения: $\gamma_2 = \frac{D_1}{D_2} = 0.55 \pm 0.8$

Трубка Галилея

источник - линза №1 - линза №2 - линза №3 - экран

Размер изображения

- а)только с коллиматором $D_1 = 56 \pm 5mm$
- б) в трубе Кеплера $D_2 = 60 \pm 5 mm$

Увеличение по формуле для фокусов: $\gamma_1=\frac{f_2}{f_3}=0.97\pm0.06$ Увеличение по формуле для размеров изображения: $\gamma_2=\frac{D_1}{D_2}=0.9\pm0.1$

Микроскоп

| источник | -160мм— | линза №1 | -480мм— | линза №3 | -480мм— | экран

 $L\sim250$ - расстояние наилучшего зрения нормального глаза

 $\Delta = 520 \pm 10mm$

Увеличение (по формуле): $\gamma_1 = \frac{L(\Delta - f_3 - f_1)}{f_1 \cdot f_3} = 1.4 \pm 0.2$ Увеличение исходя из размеров образа изображения: $\gamma_2 = \frac{l_2}{N} = \frac{28}{20} \approx$ 1.4 ± 0.1