

MMRE 7

Prof° José W. R. Pereira









São circuitos lógicos digitais que processam dados, realizam cálculos e interagem com um conjunto de outros circuitos:

- Memórias;
- Contadores;
- Temporizadores;
- Conversores;
- Comunicação.





#### Microprocessador x Microcontrolador





# Comparação

|                               | Microprocessador (MPU)                                            | Microcontrolador (MCU)                                              |
|-------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|
| Memória                       | Requer memória externa e armazenamento de dados.                  | Módulos de memória no chip (ROM, RAM).                              |
| Periféricos                   | Precisa de peças adicionais.<br>Conecta-se ao barramento externo. | Periféricos no chip (timers, portas de E/S, conversor de sinal).    |
| Capacidade computacional      | Capaz de realizar tarefas computacionais complexas.               | Limitado à lógica específica da aplicação.                          |
| Velocidade do relógio (Clock) | Faixa de GHz.                                                     | Faixa de kHz a MHz.                                                 |
| Consumo de energia            | Alto consumo de energia.<br>Sem modo de economia de energia.      | Consome energia mínima.<br>Modos de economia de energia integrados. |
| Sistema operacional           | Requer sistemas operacionais.                                     | O sistema operacional é opcional para alguns microcontroladores. 5  |



# Comparação

#### Microprocessador (MPU)

#### Microcontrolador (MCU)

| Conectividade | Lida com transferência de dados em alta<br>velocidade.<br>Oferece suporte para USB 3.0 e Gigabit<br>Ethernet. | Oferece suporte para comunicação de velocidade baixa a moderada. Interface periférica serial (SPI) e I <sup>2</sup> C. Receptor-transmissor assíncrono universal (UART). |
|---------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Custo         | Caro por causa dos componentes adicionais.                                                                    | Mais barato porque um único circuito integrado oferece várias funcionalidades.                                                                                           |
| Caso de uso   | Para computação genérica ou sistemas que exigem capacidade computacional robusta.                             | Para sistemas compactos, alimentados por bateria ou dispositivos de processamento lógico.                                                                                |



## Intel 4004 (1971)













## Intel 8080 (1974)





Comparação: 50 anos entre o 8080 e o Core Ultra 200S





#### A lenda: 8051

- NMOS -> CMOS
- memória de programa
- temporizador
- barramento de 8 bits
- 32 entradas e saídas digitais
- porta de comunicação serial
- interrupções





#### Arquitetura







## AVR - Atmel e Microchip







Alf-Egil Bogen Vegard Wollan RISC processor 1996

2016

Norwegian Institute of Technology (NTH)









## Placas de desenvolvimento



# Diagrama de blocos

ATMega328P











# Diagrama de blocos ATMega328P









#### Ciclos de busca e execução





#### Mapa de memória de Dados



When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn registers are configured to enable the pull-ups ((DDxn, PORTxn)) = 0b01). See Section 13.2.1 "Configuring the Pin" on page 59 for more details about this feature.

#### PORTB - The Port B Data Register

CLKup

WRITE DDRx

READ DDRx

WRITE PORTX

READ PORTX REGISTER READ PORTX PIN WRITE PINX REGISTER

Synchronizer

SLEEP CONTROL

I/O CLOCK



#### **Data Memory**

32 Registers

64 I/O Registers

160 Ext I/O Registers

Internal SRAM (1048 x 8) 0x0000 - 0x001F

0x0020 - 0x005F

0x0060 - 0x00FF

0x0100

0x08FF



#### Referências

- 1. Como a AWS pode ajudar com suas necessidades de desenvolvimento de microprocessadores e microcontroladores? AWS
- 2. O que é um microprocessador? IBM
- 3. <u>Microcontroladores vs. microprocessadores: qual é a diferença? IBM</u>
- 4. <u>Microprocessadores e Microcontroladores Prof. José Wilson Lima Nerys UFG</u>
- 5. Intel's First Microprocessor
- 6. A história dos processadores TecMundo
- 7. Evolução Dos Processadores Da Intel miso
- 8. The story of AVR avrtvtube
- 9. The Evolution Of CPU Processing Power Part 1: The Mechanics Of A CPU New Mind
- 10. How Amateurs created the world's most popular Processor (History of ARM Part 1) LowSpecGamer
- 11. ARM's Secret Weapon (History of ARM Part 2) LowSpecGamer
- 12. The potted history of ARM Retro Bytes
- 13. Explaining RISC-V: An x86 & ARM Alternative ExplainingComputers
- 14. [SAP-1](https://www.ic.unicamp.br/~ducatte/mc542/2012S2/sap-1.pdf)



Prof° José W. R. Pereira jose.pereira@ifsp.edu.br josewrpereira.github.io/docs