Correction du contrôle continu n°1

Exercice 1. Soit H l'ensemble des matrices de type $\begin{pmatrix} 1 & 0 & x \\ -x & 1 & -x^2/2 \\ 0 & 0 & 1 \end{pmatrix}$ où $x \in \mathbb{R}$.

(1) On montre que H est le sous-groupe du groupe multiplicatif $SL(3,\mathbb{R})$ des matrices de déterminant 1 ou bien du groupe multiplicatif $GL(3,\mathbb{R})$ des matrices inversibles 3×3 à coefficients dans \mathbb{R} . On note I_3 la matrice identité 3×3 .

Posons

$$M(x) = \begin{pmatrix} 1 & 0 & x \\ -x & 1 & -x^2/2 \\ 0 & 0 & 1 \end{pmatrix}$$

pour tout $x \in \mathbb{R}$. On a $I_3 = M(0)$ donc H est non vide. De plus, $\det M(x) = 1 \neq 0$, donc

$$H \subset SL(3,\mathbb{R}) \subset GL(3,\mathbb{R}).$$

Soit $x, y \in \mathbb{R}$. On calcule le produit

$$M(x)M(y) = \begin{pmatrix} 1 & 0 & x+y \\ -x-y & 1 & -xy-y^2/2-x^2/2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & x+y \\ -(x+y) & 1 & -(x+y)^2/2 \\ 0 & 0 & 1 \end{pmatrix} = M(x+y).$$

Donc, H est stable par produit de matrices et le produit est communtatif.

De là, $M(x)M(-x) = M(x-x) = M(0) = I_3$. Donc, H est stable par passage à l'inverse avec $M(x)^{-1} = M(-x)$. Par conséquent, H est un sous-groupe commutatif du groupe $(SL(3,\mathbb{R}),\times)$, et donc H muni du produit de matrices est un groupe commutatif.

- (2) On considère l'application $\varphi : \mathbb{R} \to HF$ définie par $\varphi(x) = M(x)$. Vu les calculs faits précédemment, pour tout $x,y \in \mathbb{R}$, on a $\varphi(x+y) = M(x+y) = M(x)M(y) = \varphi(x) \times \varphi(y)$. Donc φ est un morphisme de groupes de $(\mathbb{R},+)$ dans (H,\times) .
- (3) On vérifie que le morphisme de groupes $\varphi : \mathbb{R} \to G$ est bijectif. Tout d'abord, $\varphi(x) = I_3 \iff x = 0$, donc $\ker \varphi = \{0\}$ et φ est injectif sur \mathbb{R} . La surjectivité est immédiate par définition de $\varphi = M$. Les groupes $(\mathbb{R}, +)$ et (H, \times) sont bien isomorphes.

Exercice 2. Notons $G = \{e, a, b, c, d\}$ un groupe d'ordre 5 d'élément neutre e.

- (1) L'ordre d'un élément de G divise 5. Le nombre 5 étant premier, $a,\,b,\,c$ et d sont d'ordre 5, le neutre e étant le seul élément d'ordre 1.
 - (2) Ainsi, a, b, c et d sont tous des générateurs de G, qui est un groupe monogène, donc abélien.
- (3) G est un groupe monogène d'ordre 5 donc il est isomorphe à $\mathbb{Z}/5\mathbb{Z}$ par l'isomorphisme $\overline{x} \mapsto a^x$. En d'autres termes, à un isomorphisme près, il existe un unique groupe d'ordre 5.

Contrôle continu n° 1

 $Corrig\acute{e}$

Exercice 4.

Dans le cas 1, le sous-groupe engendré est clairement le sous-groupe trivial $\{0\}$. Dans le cas 3, c'est $\{0,9\}$. Dans tous les autres cas, le sous-groupe engendré est $\mathbb{Z}/18\mathbb{Z}$ tout entier :

- –2. car tout élément de $\mathbb{Z}/18\mathbb{Z}$ est une "puissance" (somme ici) de 1,
- -4. car 1 = 3 2 appartient à $\langle X \rangle$,
- –5. car 17 est premier avec 18 (ou encore, 17 = –1 dans $\mathbb{Z}/18\mathbb{Z}$).