IBM COURSERA ADVANCED DATA SCIENCE CAPSTONE

Fraud Detection: Exploring methods to classify accounts as fraud or not

-Soham Mukherjee

Outline

Use Case

Data Set

Data Assessment

Data Preprocessing

Data Feature Engineering

Architectural Choices

Model performance indicator

Base Model - Logistic Regression

Advanced Model - Neural Net

Final Model Performance

Use Case

Objective: The objective of the project is to build an automated solution to classifying an account as a fraudulent account or not.

Procedure: The process followed here is to build a data driven machine learning or deep learning model that can learn from historical data and which can be used to classify new records as fraudulent or not.

Use Case - Solution Overview

Get historical data with a label marking the account information as Fraud or not

O2 Explore and Pre-Process data to remove data quality issues and make it fit for model training

Train and compare different models by measuring performances

Data Set

The Bank Account Fraud (BAF) suite of datasets has been published at NeurIPS 2022 and it comprises a total of 6 different synthetic bank account fraud tabular datasets.

This suite of datasets is:

- Realistic, based on a present-day real-world dataset for fraud detection;
- Biased, each dataset has distinct controlled types of bias;
- Imbalanced, this setting presents a extremely low prevalence of positive class; Dynamic, with temporal data and observed distribution shifts;
- Privacy preserving, to protect the identity of potential applicants we have applied differential privacy techniques (noise addition), feature encoding and trained a generative model (CTGAN).

I have used 1 of the 6 datasets - Base.csv for this project

Source - https://www.kaggle.com/datasets/sgpjesus/bank-account-fraud-dataset-neurips-2022/data

Data Assessment

Few data assessment that has been is to check the quality issues and the balance of the data.

Missing values	Balance of data	
Data dictionary mentions presence of missing values in some numeric fields. Below is the table showing the count of missing values.	There was imbalance in the feud indicator which was observed in the data	
income_count name_email_similarity_count prev_address_months_count_count question	[6]: df.fraud_bool.value_counts() [6]: fraud_bool 0 988971 1 11029 Name: count, dtype: int64	

Data Preprocessing

Data preprocessing involved the following steps

Missing value - Removing columns with high number of missing values

Scaling values

One hot encoding

SMOTE - Synthetic Minority Oversampling Technique

```
# All columns counts less than 0

res = df[df[numeric_columns] < 0 ].count()

# Scale the numeric features in the training and testing sets using MinMaxScaler numeric_transformer = MinMaxScaler()

# Define the ColumnTransformer object with the numeric transformer and the list of numeric feature preprocessor = ColumnTransformer([('scaled', numeric_transformer, numeric_columns)], remainder

# Fit the preprocessor on the training set and transform both the training and testing sets new_df_scaled = preprocessor.fit_transform(new_df)

# Convert categorical variables into dummy variables using one-hot encoding new_df = pd.DataFrame(pd.get_dummies(df, prefix=categorical_columns))

from imblearn.over_sampling import SMOTE
```

smote = SMOTE(sampling_strategy='auto', random_state=42)

X, y = smote.fit_resample(X, y)

Data Feature Engineering

2 methods were used to select the best features after data preprocessing

Architectural Choices

Data Source CSV

Data Repository Local File System

Discovery and Exploration Jupyter notebook , Python, Pandas / Spark,

Matplotlib, Seaborn

Model Performance Indicator

This is a classification problem. Thus the following were used to assess model performance:

- Confusion Matrix
- Accuracy
- Precision
- · Recall
- · F1-score
- Area Under ROC

Base Model - Logistic Regression

Data was split - X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)

A cross validated Logistic Regression was built and the following was the model performance.

clf = LogisticRegressionCV(cv=2, random_state=0,max_iter=5,penalty = 'l2',n_jobs=4).fit(X_train, y_train)

${\tt print}({\tt classification_report}({\tt y_pred}, {\tt y_test}))$					
	precision	recall	f1-score	support	
0 1	0.97 0.96	0.96 0.97	0.96 0.96	299654 293729	
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	593383 593383 593383	

print(confusion	n_matrix(y_test,y_pred))
[[287300 [12354	9661] 284068]]	

Advanced Model - Neural Net

Keras was used to build a Convolution Neural Network as this is considered to work great with classification tasks.

```
from tensorflow.keras.models import Sequential
 from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense
 feature_dim = X_train.shape[1]
 feature_dim
37
 + Code
          + Markdown
 # Define the first CNN model
 cnn_model_1 = Sequential()
 cnn_model_1.add(Conv1D(filters=16, kernel_size=3, activation='relu', input_shape=(feature_dim, 1)))
 cnn_model_1.add(MaxPooling1D(pool_size=2))
 cnn_model_1.add(Flatten())
 cnn_model_1.add(Dense(16, activation='relu'))
 cnn_model_1.add(Dense(1, activation='sigmoid'))
 # Compile all models
 cnn_model_1.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
```

Advanced Model - Neural Net

Model Performance

```
cnn_model_1.fit(X_train, y_train, epochs=15, batch_size=1000, validation_data=(X_test, y_test))
Epoch 2/15
Epoch 3/15
Epoch 4/15
Epoch 5/15
Epoch 6/15
Epoch 7/15
Epoch 8/15
Epoch 9/15
1385/1385 [===========] - 6s 4ms/step - loss: 0.0888 - accuracy: 0.9665 - val loss: 0.0884 - val accuracy: 0.9669
Epoch 11/15
1385/1385 [============] - 6s 4ms/step - loss: 0.0881 - accuracy: 0.9667 - val loss: 0.0885 - val accuracy: 0.9664
Epoch 13/15
Epoch 14/15
```

Final Model - Neural Net

Model Performance

```
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,confusion_matrix
```

```
## Evaluating the network
def evaluate(y_test, y_pred):
    accuracy = accuracy_score(y_true=y_test, y_pred=y_pred)
    precision = precision_score(y_true=y_test, y_pred=y_pred)
    recall = recall_score(y_true=y_test, y_pred=y_pred)
f1 = f1_score(y_true=y_test, y_pred=y_pred)
    cm = confusion_matrix(y_true=y_test, y_pred=y_pred)
    print("Accuracy: ", accuracy)
    print("Precision:", precision)
    print("Precision:", precision)
    print("F1 Score:", f1)
    print("Confusion Matrix:\n", cm)
```

```
evaluate(y_test, np.round(cnn_predictions_1))
```

Accuracy: 0.9664820192017635 Precision: 0.9659720888223856 Recall: 0.966966014668277 F1 Score: 0.9664687962046635 Confusion Matrix: [[286864 10097] [9792 286630]]

