Read Orientation Artifact Filter for Somatic Variants

Takuto Sato
DSDE Methods Meeting
9/22/17

Block the p5 oligos

Read I: use solid adapter

Read 2: use dotted adapters (not original adapter seq)

Read 2: use dotted adapters (not original adapter seq)

Aren't and identical?

Recall...

Recall...forked adapters

Read orientation tells us which strand (top or bottom) in the read came from original library

Read orientation artifact

- Alt bases are only in FIR2 (i.e. ones on the left)
- or *only* in F2RI (ones on the right)
- When might we see an artifact like this?

^{*}More precisely, G oxidizes and becomes oxo-G (G*), which has high affinity for A i.e. G* acts like a T

strand artifact != read orientation artifact

strand artifact != read orientation artifact

Existing filter

- Walk through bam, for each (ref context*, allele) pair, Q = $qscore = phred(\frac{\sum_{sites} \# \ Alt \ F1R2 \# \ Alt \ F2R1}{\sum_{sites} Alt \ depth})$
- Higher Q = no artifact
- · For each variant,
 - compute p-value with null hypothesis: # alt FIR2 reads ~ Binom(alt depth, 0.96)
 - False discovery = falsely call an artifact as non-artifact...
 - · Reject non-artifact sites, Benjamini-Hochberg procedure to control FDR...or something
- Multiply # variants to filter by $\operatorname{supressor} = \frac{1}{1 + e^{1.5(Q 36.5)}}$
 - · does not generalize
 - · cannot detect rare events
- Must specify the artifact mode e.g.A -> T by hand
 - · Requires manual inspection of collect sequencing metrics file
- Upshot we need a new model

 $z \in \{\text{F1R2}_a, \text{F2R1}_a, \text{Hom Ref, Somatic Het, Germline Het Hom Var}\}\$ where $a \in \mathbb{A}$ and \mathbb{A} is a set of possible alt alleles in context c

$$z \sim \text{Categorical}(\pi_{ca})$$
 $r \equiv \text{depth}$
 $m \equiv \text{alt depth}$

$$m|z \sim \begin{cases} \text{BetaBinom}(p_k, r, \alpha, \beta), & z = \text{Somatic Het} \\ \text{Binom}(p_k, r) & \text{otherwise} \end{cases}$$
 $x \equiv \text{alt F1R2 depth}$
 $x|z, m \sim \text{Binom}(\theta_k, m)$

 $x|z, m \sim \text{Binom}(\theta_k, m)$

artifact non artifact (FIR2 & F2R1 balanced)

 $z \in \{\overline{F1R2_a}, \overline{F2R1_a}, \overline{Hom Ref}, \overline{Somatic Het}, \overline{Germline Het Hom Var}\}$ where $a \in \mathbb{A}$ and \mathbb{A} is a set of possible alt alleles in context c

 $z \sim \text{Categorical}(\pi_{ca})$ $r \equiv \text{depth}$ $m \equiv \text{alt depth}$ $m|z \sim \begin{cases} \text{BetaBinom}(p_k, r, \alpha, \beta), & z = \text{Somatic Het} \\ \text{Binom}(p_k, r) & \text{otherwise} \end{cases}$ $x \equiv \text{alt F1R2 depth}$

- Aware of the relative frequency of the artifact under each context
 - e.g. artifact in 1 in 1000 sites, 1 in 10 sites,
- can detect rare events
- No need to manually specify transitions you're looking for
- Simpler interpretation posterior probabilities of z
- Replace CollectSequencingArtifact Metrics (pending Megan's approval)

- 1. Learning Step (Name not ready for public announcement)
 - I. estimate hyperparameters with EM
- 2. Inference Step (FilterMutectCalls)
 - I. compute p(z=FIR2|data), p(z=F2RI|data)

- I. Data Collection Step (Java, Locus Walker)
 - I. write out the design matrix to a file
- 2. Learning Step
 - I. estimate hyperparameters with EM, powered by PyMC
- 3. Inference Step (FilterMutectCalls/Java)
 - I. for each variant, compute the posterior probabilities of z, and filter