ALGEBRA REVIEW

BLAKE FARMAN

 $La fayette\ College$

Name: Solutions

1. Find all **real** solutions to each equation.

(a)
$$x^2 - 8x + 12 = 0$$

$$0=\chi^2-8x+12=(x-2)(x-6)$$

(b)
$$2x^2 - 9x = 5$$

$$2x^{2}-9x=5 \iff 0 = 2x^{2}-9x-5 = (2x+1)(x-5)$$

 $(=> 2x+1=0 \text{ or } x-5=0$
 $(=> 2x=-1 \text{ or } x=5$
 $(=> x=-\frac{1}{2} \text{ or } x=5$

(c)
$$x^2 - 1 = 0$$

 $6 = \chi^2 - 1 = (\chi_{+1})(\chi_{-1}) = \chi_{+1} = 0$ or $\chi_{-1} = 0$
 $\chi_{-1} = 0$ or $\chi_{-1} = 0$

(d)
$$x^2 = 2$$

$$\chi = \pm \sqrt{2}$$

2. Sketch a graph of the following functions:

(a)
$$y = \sin(x)$$

(b) $y = \cos(x)$

3. Fill in the unit circle below with angle measurements in **radians** and the corresponding values of cosine and sine.

4. Simplify the following expressions:

(a)
$$\frac{\frac{xy}{x+y}}{\frac{x^2y}{(x+y)^3}} = \frac{xy}{x+y} \cdot \frac{(x+y)^3}{x^2y} = \frac{x}{x^2} \cdot \frac{y}{y} \cdot \frac{(x+y)^3}{(x+y)}$$
$$= \frac{1}{x} \cdot 1 \cdot (x+y)^2$$
$$= \frac{(x+y)^2}{x}$$

(b)
$$\frac{\frac{xy}{x-y}}{\frac{x^2}{y} \cdot \frac{y^3}{x}} = \frac{\frac{xy}{(x-y)}}{\frac{x^2y^3}{yx}} = \frac{xy}{(x-y)} \cdot \frac{y}{x^2y^3}$$

$$= \frac{x^2y^2}{(x-y)x^2y^3} = \frac{x^2}{x^2} \cdot \frac{y}{y^3} \cdot \frac{1}{x-y}$$

$$= 1 \cdot \frac{1}{y} \cdot \frac{1}{x-y} = \sqrt{\frac{1}{y(x-y)}}$$

$$(c) \frac{\frac{1}{x} - \frac{1}{y}}{\frac{1}{x} + \frac{1}{y}} = \frac{\frac{y}{y}(\frac{1}{x}) - \frac{x}{x}(\frac{1}{y})}{\frac{y}{y}(\frac{1}{x}) + \frac{x}{x}(\frac{1}{y})} = \frac{\frac{y}{xy} - \frac{x}{xy}}{\frac{xy}{y} + \frac{x}{xy}}$$

$$= \frac{y - x}{xy} = \frac{y - x}{xy} = \frac{y - x}{xy} = \frac{y - x}{xy}$$

$$= \frac{x + y}{xy} = \frac{y - x}{xy} = \frac{y - x}{xy}$$

$$(d) \frac{4yz}{x^{2}} - \frac{2z}{xy^{2}} + \frac{1}{xyz} = \frac{y^{2}z}{y^{2}z^{2}} \left(\frac{yyz}{x^{2}}\right) - \frac{xz}{xz} \left(\frac{2z}{xy^{2}}\right) + \frac{xy}{xy} \left(\frac{1}{xyz}\right)$$

$$= \frac{4y^{3}z^{2}}{x^{2}y^{2}z} - \frac{2xz^{2}}{x^{2}y^{2}z} + \frac{xy}{x^{2}y^{2}z}$$

$$= \frac{4y^{3}z^{2} - 2xz^{2}}{x^{2}y^{2}z} + \frac{xy}{x^{2}y^{2}z}$$

$$= \frac{4y^{3}z^{2} - 2xz^{2} + xy}{x^{2}y^{2}z}$$

5.
$$2x(y-3) - y(x+xy) + 2y(x+1)$$

= $2xy - 6x - xy - xy^2 + 2xy + 2y$
= $2xy - xy + 2xy - 6x - xy^2 + 2y$
= $(2-1+2)xy - 6x - xy^2 + 2y$
= $3xy - 6x - xy^2 + 2y$

6.
$$x(y+z) - z(x+y) + 2y(x-z) - x(3y-2z)$$

= $xy + xz - xz - yz + 2xy - 2yz - 3xy + 2xz$
= $xy + 2xy - 3xy + xz - xz + 2xz - yz - 2yz$
= $(1+2-3)xy + (1-1+2)xz + (-1-2)yz$
= $(0)xy + 2xz + (-3)yz$

7. Solve the following inequalities:

(a)
$$\frac{x}{2} - 1 < 3x + 9$$

$$\frac{2}{2}-1 < 3x+9 = x-2 < 6x+18$$

$$(=) -18-7 < 6x-x$$

$$(=) -20 < 5x$$

$$(=) -20 = -4 < x$$

(b)
$$x + 3 < 2x + 8 < 3x + 10 \iff 3 < x + 8 < 2x + 16$$

(c)
$$|2x-5| \le 11$$
 (=) $-11 \le 2x-5 \le 11$
(=) $-6 \le 2x \le 16$
(=) $-32 \times \le 8$ $y=11$

