CS3.301 Operating Systems and Networks

Networking - Introduction (Sockets and Networking Layers)

Karthik Vaidhyanathan

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:

- Computer Networks, 6e by Tanebaum, Teamster and Wetherall
- Computer Networks: A Top Down Approach by Kurose and Ross
- Computer Networking essentials, Youtube Channel
- Other online sources which are duly cited

What about processes in different machines?

How can they communicate?

How does message/data from P1 in System 1 reach P1 in System 2?

What is the role of the OS in this and how does it contribute to the effectiveness?

Let us expand it

- Between the process and network there needs to be an interface
- Between the network components there needs to be some interface

Network Components

Host

- Any device that send or receive traffic: Computer, laptop, smartwatch, phone, etc
- Host can be client or server
- Servers can sometime be clients too 5

Client Server

Server can also be a client

How does host send data? IP Address

- Host needs address to send the data
 - This address is known as IP address
 - When client sends data it provides both source IP and destination IP
 - IP addresses are 32 bits. Each bit can be 0 or 1
 - Total of 4 octets. Each octet ranges from 0-255 (8 bits)
 - IP addresses are usually hierarchically assigned

Sometimes we need more signal Strength Repeater

- Repeater allows regeneration of signals for long distance communication
- Think of wifi in home
 - Signal strength may not be there
 - Repeater might be needed to transmit to longer ranges
- But we cannot just connect one host to another Not Scalable!

Hubs and Bridges

Hubs

- Multi-port repeaters
- Key issue: Everyone receives everyones data

Bridges

- Sit between two hubs
- They have only two ports
- They learn which hosts are on either side (for routing)
- Eg: H1 wants to communicate with H2

Switches

- Devices which facilitate communication within a network
- Combination of hubs and ports
- Knows or infers which hosts are on each port
- They have multiple ports
- Whatever connected to switch becomes part of one network

What if the host 192.168.10.20 wants to communicate with Another host in different network?

Routers

- Facilitate communication between the networks
- They provide like a traffic control point
 - Security, filtering, redirection
- Routers learn which networks they are attached to
 - Known as routes
 - Stored in a routing table
- Routers have their IP address in the network they are attached to

Routers

- Allows creation of hierarchy in the networks
- Every time hosts wants to go out of the network, it goes through router
- Internet is nothing but bunch of routers
- Gateway (IP address of router in the given network)
 - Becomes exit point of hosts outside their network

The Bigger Picture

What happens internally when one process wants to share/ receive data from another host?

Network Types

Multiple types of networks exist

- Personal Area Network PAN
 - Devices communicate over a very short range
 - Eg: Bluetooth (master slave paradigm)
- Local Area Network LAN
 - Private network operating within and nearby a single building (home, office, factory, etc.)
 - Wireless LANs runs speed from 11 Mbps to 7 Gbps (1 Mbps is 1,000,000 bits per sec) -Power in 10 (not in terms of 2)
 - Wired LANs operate at speed ranging from 100 Mbps to 40 Gbps (low latency)
 - Eg: connecting personal computers and consumer electronics (eg: printer)

Network Types

We have come a long way!

- One large Physical LAN can be divided into smaller logical LANs (Virtual LANs)
- Earlier days it was about broadcasting on a single line!
 - At most one computer could transmit successfully at a time
 - Use static allocation techniques
 - Every machine gets some time to transmit or receive
 - Round robin was used for scheduling
 - Packet collision used to happen (Wait for some random time and try again)

Network Types

Metropolitan Area Network - MAN

- Covers a city (City wide networks)
- Think of cable TV networks (Earlier Antenna on top of the house and from the top of the hill the communication used to happen)
- Idea of cable TV was used for providing two services (Internet and TV)

Wide Area Network - WAN

- Spans a large geographical area (often country, continent, etc.)
- Eg: Internet is a large WAN (Dedicated WANs also exist)
 - There can be WAN that connects offices of organisation in different locations
- Higher latency and lower transmission speeds. Cost for dedicated ones can be high

Components of a network

Process Communicating over network

- Process A (eg: Whatsapp) is executing in Host 1
- Process B (whatsapp) executing in Host 2
- Process A wants to communicate with Process B
 - Some system call is made to access the network
 - Leads to an interrupt
 - Process A should know where process B is
 - Hardware support is needed (some network device with drivers)

An Illustrative Scenario

Sending Letter/Courier

Community 1

Local Post office

City Post Office

Community 2

Two large communities in different parts of the city, two people in each community to collect and deliver the letters/couriers

An Illustrative Scenario

People in community send letters/couriers

One person is collecting all the letters/couriers

Person delivers the letter to each person

Key points: Door number, building number, Post office has an identifier, etc.

Lets take this to Process communication

- Process A (eg: Whatsapp) is executing in Host 1
 - Process B (Whatsapp) is executing in Host 2
- Host 1 will have an address, same is the case with host 2
- How to ensure the data reaches from Host 1 to Host 2?
 - What all needs to be considered?
 - Remember: There will be multiple processes that are executing in a host

Networking Layers

Networking Layers

- Reduce design complexity, network organised a stack of layers or levels
- The layering provides abstraction in and to other layers
- Communication (in some sense) happens between the corresponding layers
 - Layer n one machine communicates with layer n of another using a protocol
 - Protocol is just like agreement between communicating practices
- Set of layers along with protocols => Network Architecture
- Between each pair of adjacent layer their is an interface
 - Defines the primitive operations and services the lower layer makes available

The OSI Model

Application Presentation Session **Transport** Network **Data Link Physical**

- Open System Interconnection (OSI)
- A Conceptual framework used to understand how communication works through different layers
- Divides the network communication process into seven layers
- Developed to facilitate interoperability between different technologies
- Each layer has a specific function. If they all do what they are supposed to do => sharing of data

Physical Layer (L1)

Ultimately everything is 0's and 1's

- Data is in the form of bits 0s and 1s
- Something has to transport the bits from one machine to another - Physical layer
- Concerned with transmission of raw bits over physical medium, like a cable
- L1 technologies: Ethernet cables, Optical fiber, Coaxial cable, etc.
 - Even WiFi is L1 technology, hub, repeater, etc.

Application

Presentation

Session

Transport

Network

Data Link

Data Link Layer (L2)

Hop to Hop connectivity

- Interacts with the physical medium
- Adds/takes data to/from L1 technology
- Responsible for creating a reliable link between two directly connected nodes, error correction, etc.
- L2's responsibility is mainly taking data from one hop to another
 - Uses an addressing scheme MAC addressing
 - 48 bits represented as 12 hex digits
- L2 Technologies : NIC, WiFi access cards
- Switches are also L2 technology (help in moving data)

Application

Presentation

Session

Transport

Network

Data Link

Communication is just more than Hop to Hop

What about communication from 234 to 345?

- Hop to hop is guaranteed by L2
- What about end-to-end delivery?

Network Layer (L3)

End-to-end Communication

- Manages routing through different routes in a large network
- Uses an addressing scheme IP addressing
 - 32 bits represented as 4 octets (IPv4)
- Performs functionalities such as Logical addressing (IP), Path selection and packet forwarding
- L3 technologies: routers, even hosts are L3, L3 switches

Application

Presentation

Session

Transport

Network

Data Link

Transport Layer (L4)

Service to Service

- How to ensure that the right process receives the data?
 - Many process will be executing or are waiting to execute?
- Ensures data transfer is reliable, sequential and free from others
- Manages flow control and error correction
- Layer 4 has an addressing scheme to guarantee message delivery
 - Ports! (0 65535), Privileged: 0-1023, Registered: 1024 49151
 - Every process will have a port through which sending or receiving data

L4 Technologies: TCP, UDP

Application

Presentation

Session

Transport

Network

Data Link

Session, Presentation and Application

Application to Application

Session Layer (L5)

- Manages connection between different devices
- Establishing, maintaining and terminating connections

Presentation Layer (L6)

- Ensures that data is in format that sender and receiver can understand
- Manages data encryption, compression

Application Layer (L7)

- Provides network services to the application processes
- Eg: web browser, email clients, other softwares/apps

Application

Presentation

Session

Transport

Network

Data Link

Putting It Together

Application

Presentation

Session

Transport

Network

Data Link

The 4 Layer Model

Internet Model or TCP/IP model,

- OSI model is more educational purpose
- 4 layer model more used in reality
- Application layer Corresponds to application, presentation and session
- Transport layer Transport layer of OSI
- Internet layer Network layer of OSI
- Network Physical and data link layers of OSI

Transport

Internet

Network/Link

Network Protocol Stack

Thank you

Course site: karthikv1392.github.io/cs3301_osn

Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

