+ > 粉丝日志

跨界的IT博客|Hadoop家族, R, RHadoop, Nodejs, AngularJS, NoSQL, IT金融

R语言实践 » 超高性能数据处理包data.table

@晒粉丝 @每日中国天气

超高性能数据处理包data.table

Posted:

Jun 24, 2016

Tags:

apply
data.frame
data.table
groupby
plyr
R
setkey
tapply

Comments:

0 Comments

数据

高效

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网....都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

张丹(Conan), 程序员Java,R,PHP,Javascript

weibo: @Conan_Z

blog: http://blog.fens.me

email: bsspirit@gmail.com

转载请注明出处:

http://blog.fens.me/r-data-table/

前言

在R语言中,我们最常用的数据类型是data.frame,绝大多数的数据处理的操作都是围绕着data.frame结构来做的。用data.frame可以很方便的进行数据存储和数据查询,配合apply族函数对数据循环计算,也可也用plyr, reshape2, melt等包对数据实现切分、分组、聚合等的操作。在数据量不太大的时候,使用起来很方便。但是,用data.frame结构处理数据时并不是很高效,特别是在稍大一点数据规模的时候,就会明显变慢。

data.table其实提供了一套和data.frame类似的功能,特别增加了索引的设置,让数据操作非常高效,可能会提升1-2数量级。本章就将data.table包的使用方法。

目录

- 1. data.table包介绍
- 2. data.table包的使用
- 3. data.table包性能对比

1. data.table包介绍

站内导航

R的极客理想系列文章

从零开始nodejs系列文章

用IT技术玩金融系列文章

跨界知识聚会系列文章

Hadoop家族系列文章

AngularJS体验式编程系列文章

RHadoop实践系列文章

无所不能的Java系列文章

ubuntu实用工具系列文章

R利剑NoSQL系列文章

MongoDB部署实验系列文章

让Hadoop跑在云端系列文章

自己搭建VPS系列文章

架构师的信仰系列文章

算法为王系列文章

我的博客我的SEO系列文章

创造可视化系列文章

创业者的囧境系列文章

写作计划列表

关于站长 投放广告

最新评论

2017WOT全球软件开发技术峰会:面向数据的思维模式和R语言编程 | 粉丝日志 on 跨界知识聚会系列文章

用R语言把数据玩出花样 | 粉丝日志 on R语言解读一元线性回归模型

liheng peng on Socket.io在线聊天室

jiangsheng on R语言构建配对交易量化模型

jiangsheng on R语言构建配对交易量化模型

yz4d2 on Socket.io在线聊天室

图书出版《R的极客理想-量化投资篇》| 粉丝 日志 on 跨界知识聚会系列文章

图书出版《R的极客理想-量化投资篇》| 粉丝 日志 on R的极客理想系列文章

Dan Zhang on 用R进行文件系统管理

zaxk on Nginx反向代理Websocket

yueying on 用R进行文件系统管理

data.table包是一个data.frame的扩展工具集,可以通过自定义keys来设置索引,实现高效的数据索引查询、快速分组、快速连接、快速赋值等数据操作。data.table主要通过二元检索法大块高数据操作的效率,它也兼容适用于data.frame的向量检索法。同时,data.table对于大数据的快速聚合也有很好的效果,官方介绍说对于 100GB 规模内存数据处理。运行效率还是很好的。那么,就让我们试验一下吧。

data.table项目地址: https://cran.r-project.org/web/packages/data.table/

本文所使用的系统环境

Win10 64bit

R: 3.2.3 x86_64-w64-mingw32/x64 b4bit

data.table包是在CRAN发布的标准库,安装起来非常简单,2条命令就可以了。

```
~ R
> install.packages("data.table")
> library(data.table)
```

2. data.table包的使用

接下来,开始用data.table包,并熟悉一下data.table包的基本操作。

2.1 用data.table创建数据集

通常情况,我们用data.frame创建一个数据集时,可以使用下面的语法。

对于data.table来说,创建一个数据集是和data.frame同样语法。

检查df, dt两个对象的类型,可以看到data.table是对data.frame的扩展类型。

```
# data.frame类型
> class(df)
[1] "data.frame"

# data.table类型
> class(dt)
[1] "data.table" "data.frame"
```

如果data.table仅仅是对data.frame的做了S3的扩展类型,那么data.table是不可能做到对data.frame从效率有极大的改进的。为了验证,我们需要检查一下data.table代码的结构定义。

2017微软技术暨生态大会:R语言搭建多因子体系 | 粉丝日志 on 跨界知识聚会系列文章

Hao on R语言构建配对交易量化模型

Jing Yang on R语言高效的管道操作 magrittr

Dan Zhang on R语言高效的管道操作 magrittr

最新文章

2017WOT全球软件开发技术峰会:面向 数据的思维模式和R语言编程

图书出版《R的极客理想-量化投资篇》

2017微软技术暨生态大会:R语言搭建多 因子体系

回测好, 为什么实盘不靠谱?

R语言数据科学新类型tibble

用R语言把数据玩出花样

新一代Node.js的Web开发框架Koa2

在Ubuntu上安装IPSEC VPN服务

2017CDAS中国数据分析师行业峰会:用 R语言解读股利贴现模型

2017微软MVP:在AWS上部署免费的 Shiny应用

在AWS上部署免费的Shiny应用

2017河北民族师范学院:大数据时代的变

2017猎奇金融大数据:用R语言开始量化 松资

用R语言开始量化投资

技术大牛如何寻找下一个风口

算法, 如何改变命运

Angular2新的体验

R语言解读资本资产定价模型CAPM

用数据解读摩羯智投

2016中国软件技术大会:用R语言进行投 资组合管理

```
# 打印data.table函数定义
> data.table
function (..., keep.rownames = FALSE, check.names = FALSE, key = NULL)
    x <- list(...)
   if (!.R.listCopiesNamed)
        .Call(CcopyNamedInList, x)
   if (identical(x, list(NULL)) || identical(x, list(list())) ||
        identical(x, list(data.frame(NULL))) || identical(x,
        list(data.table(NULL))))
        return(null.data.table())
    tt <- as.list(substitute(list(...)))[-1L]</pre>
    vnames = names(tt)
   if (is.null(vnames))
        vnames = rep.int("", length(x))
   vnames[is.na(vnames)] = ""
   novname = vnames == ""
   if (anv(!novname)) {
        if (any(vnames[!novname] == ".SD"))
            stop("A column may not be called .SD. That has special meaning.")
   }
    for (i in which(novname)) {
        if (is.null(ncol(x[[i]]))) {
            if ((tmp <- deparse(tt[[i]])[1]) == make.names(tmp))</pre>
                vnames[i] <- tmp</pre>
        }
   }
   tt = vnames == ""
   if (any(tt))
        vnames[tt] = paste("V", which(tt), sep = "")
   n < - length(x)
   if (n < 1L)
        return(null.data.table())
    if (length(vnames) != n)
        stop("logical error in vnames")
    vnames <- as.list.default(vnames)</pre>
    nrows = integer(n)
    numcols = integer(n)
    for (i in seq_len(n)) {
        xi = x[[i]]
        if (is.null(xi))
            stop("column or argument ", i, " is NULL")
        if ("POSIXlt" %chin% class(xi)) {
            warning("POSIXIt column type detected and converted to POSIXct. We do not recomm
            x[[i]] = as.POSIXct(xi)
        else if (is.matrix(xi) || is.data.frame(xi)) {
            xi = as.data.table(xi, keep.rownames = keep.rownames)
            x[[i]] = xi
            numcols[i] = length(xi)
        else if (is.table(xi)) {
            x[[i]] = xi = as.data.table.table(xi, keep.rownames = keep.rownames)
            numcols[i] = length(xi)
        nrows[i] <- NROW(xi)</pre>
        if (numcols[i] > 0L) {
            namesi <- names(xi)</pre>
            if (length(namesi) == 0L)
                namesi = rep.int("", ncol(xi))
            namesi[is.na(namesi)] = ""
            tt = namesi == ""
            if (any(tt))
                namesi[tt] = paste("V", which(tt), sep = "")
            if (novname[i])
                vnames[[i]] = namesi
            else vnames[[i]] = paste(vnames[[i]], namesi, sep = ".")
```

 \pm

```
nr <- max(nrows)</pre>
ckey = NULL
recycledkey = FALSE
for (i in seq_len(n)) {
    xi = x[[i]]
    if (is.data.table(xi) && haskey(xi)) {
       if (nrows[i] < nr)
           recycledkey = TRUE
        else ckey = c(ckey, key(xi))
    }
}
for (i in which(nrows < nr)) {</pre>
    xi <- x[[i]]
    if (identical(xi, list())) {
       x[[i]] = vector("list", nr)
    }
    if (nrows[i] == 0L)
        stop("Item ", i, " has no length. Provide at least one item (such as NA, NA_inter
            nr, " rows in the longest column. Or, all columns can be 0 length, for inser
    if (nr%nrows[i] != 0L)
        warning("Item ", i, " is of size ", nrows[i], " but maximum size is ",
           nr, " (recycled leaving remainder of ", nr%nrows[i],
            " items)")
    if (is.data.frame(xi)) {
        ..i = rep(seq_len(nrow(xi)), length.out = nr)
        x[[i]] = xi[..i, , drop = FALSE]
    }
    if (is.atomic(xi) || is.list(xi)) {
       x[[i]] = rep(xi, length.out = nr)
    }
    stop("problem recycling column ", i, ", try a simpler type")
    stop("argument ", i, " (nrow ", nrows[i], ") cannot be recycled without remainder to
if (any(numcols > 0L)) {
    value = vector("list", sum(pmax(numcols, 1L)))
    for (i in seq_len(n)) {
       if (is.list(x[[i]]) && !is.ff(x[[i]])) {
            for (j in seq_len(length(x[[i]]))) {
              value[[k]] = x[[i]][[j]]
              k = k + 1L
        }
        else {
           value[[k]] = x[[i]]
            k = k + 1L
       }
    }
else {
    value = x
vnames <- unlist(vnames)</pre>
if (check.names)
    vnames <- make.names(vnames, unique = TRUE)</pre>
setattr(value, "names", vnames)
setattr(value, "row.names", .set_row_names(nr))
setattr(value, "class", c("data.table", "data.frame"))
if (!is.null(key)) {
    if (!is.character(key))
        stop("key argument of data.table() must be character")
   if (length(key) == 1L) {
        key = strsplit(key, split = ",")[[1L]]
```

 \pm

```
setkeyv(value, key)
}
else {
    if (length(ckey) && !recycledkey && !any(duplicated(ckey)) &&
        all(ckey %in% names(value)) && !any(duplicated(names(value)[names(value) %in%
        ckey])))
    setattr(value, "sorted", ckey)
}
alloc.col(value)
}

<
```

从上面的整个大段代码来看,data.table的代码定义中并没有使用data.frame结构的依赖的代码,data.table都在自己函数定义中做的数据处理,所以我们可以确认data.table和data.frame的底层结果是不一样的。

那么为什么从刚刚用class函数检查data.table对象时,会看到data.table和data.frame的扩展关系呢?这里就要了解R语言中对于S3面向对象系统的结构设计了,关于S3的面向对象设计,请参考文章R语言基于S3的面向对象编程。

从上面代码中,倒数第17行找到 setattr(value, "class", c("data.table", "data.frame")) 这行,发现这个扩展的定义是作者主动设计的,那么其实就可以理解为,data.table包的作者希望data.table使用起来更像data.frame,所以通过一些包装让使用者无切换成本的。

2.2 data.table和data.frame相互转换

创建一个data.frame对象

如果想把data.frame对象和data.table对象进行转换,转换的代码是非常容易的,直接转换就可以了。

从一个data.frame对象转型到data.table对象。

```
# 检查类型
 > class(df)
 [1] "data.frame"
 # 转型为data.table对象
 > df2<-data.table(df)</pre>
 # 检查类型
 > class(df2)
 [1] "data.table" "data.frame"
从一个data.table对象转型到data.frame对象。
 # 创建一个data.table对象
 > dt <- data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))</pre>
 # 检查类型
 > class(dt)
 [1] "data.table" "data.frame"
 # 转型为data.frame对象
 > dt2<-data.frame(dt)
 # 检查类型
 > class(dt2)
 [1] "data.frame"
```

> df<-data.frame(a=c('A','B','C','A','A','B'),b=rnorm(6))

2.3 用data.table进行查询

由于data.table对用户使用上是希望和data.frame的操作尽量相似,所以适用于data.frame的查询方法基本都适用于data.table,同时data.table自己具有的一些特性,提供了自定义keys来进行高效的查询。

下面先看一下,data.table基本的数据查义方法。

```
# 创建一个data.table对象
+
                      > dt = data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))
                      1: A 0.7792728
                      2: B 1.4870693
                      3: C 0.9890549
                      4: A -0.2769280
                      5: A -1.3009561
                      6: B 1.1076424
                     按行或按列查询
                      # 取第二行的数据
                      > dt[2,]
                       а
                      1: B 1.487069
                      # 不加,也可以
                      > dt[2]
                       а
                                b
                      1: B 1.487069
                      # 取a列的值
                      > dt$a
                      [1] "A" "B" "C" "A" "A" "B"
                      # 取a列中值为B的行
                      > dt[a=="B",]
                       a b
                      1: B 1.487069
                      2: B 1.107642
                      # 取a列中值为B的行的判断
                      > dt[,a=='B']
                      [1] FALSE TRUE FALSE FALSE TRUE
                      # 取a列中值为B的行的索引
                      > which(dt[,a=='B'])
                      [1] 2 6
                     上面的操作,不管是用索引值,== 和$都是data.frame操作一样的。下面我们取data.table特殊设计的keys来查
                     询。
                      # 设置a列为索引列
                      > setkey(dt,a)
                      # 打印dt对象,发现数据已经按照a列字母对应ASCII码值进行了排序。
                        а
                      1: A 0.7792728
                      2: A -0.2769280
                      3: A -1.3009561
                      4: B 1.4870693
                      5: B 1.1076424
                      6: C 0.9890549
                     按照自定义的索引进行查询。
                      # 取a列中值为B的行
                      > dt["B",]
```

http://blog.fens.me/r-data-table/

```
+
```

从上面的代码测试中我们可以看出,在定义了keys后,我们要查询的时候就不用再指定列了,默认会把方括号中的第一位置留给keys,作为索引匹配的查询条件。从代码的角度,又节省了一个变量定义的代码。同时,可以用mult参数,对数据集增加过滤条件,让代码本身也变得更高效。如果查询的值,不是索引列包括的值,则返回NA。

2.4 对data.table对象进行增、删、改操作

给data.table对象增加一列,可以使用这样的格式 data.table[, colname := var1]。

```
# 创建data.table对象
> dt = data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))
> dt
 а
           b
1: A 1.51765578
2: B 0.01182553
3: C 0.71768667
4: A 0.64578235
5: A -0.04210508
6: B 0.29767383
# 增加1列, 列名为c
> dt[,c:=b+2]
> dt
           b
 а
1: A 1.51765578 3.517656
2: B 0.01182553 2.011826
3: C 0.71768667 2.717687
4: A 0.64578235 2.645782
5: A -0.04210508 1.957895
6: B 0.29767383 2.297674
# 增加2列, 列名为c1,c2
> dt[,`:=`(c1 = 1:6, c2 = 2:7)]
           b
                c c1 c2
1: A 0.7545555 2.754555 1 2
2: B 0.5556030 2.555603 2 3
3: C -0.1080962 1.891904 3 4
4: A 0.3983576 2.398358 4 5
5: A -0.9141015 1.085899 5 6
6: B -0.8577402 1.142260 6 7
# 增加2列, 第2种写法
> dt[,c('d1','d2'):=list(1:6,2:7)]
> dt
          b
                  c c1 c2 d1 d2
1: A 0.7545555 2.754555 1 2 1 2
2: B 0.5556030 2.555603 2 3 2 3
3: C -0.1080962 1.891904 3 4 3 4
```

4: A 0.3983576 2.398358 4 5 4 5

```
5: A -0.9141015 1.085899 5 6 5 6 6 6: B -0.8577402 1.142260 6 7 6 7
```

删除c1列

给data.table对象删除一列时,就是给这列赋值为空,使用这样的格式 data.table[, colname := NULL]。我们继续使用刚才创建的dt对象。

```
> dt[,c1:=NULL]
            b
                   c c2 d1 d2
1: A 0.7545555 2.754555 2 1 2
2: B 0.5556030 2.555603 3 2 3
3: C -0.1080962 1.891904 4 3 4
4: A 0.3983576 2.398358 5 4 5
5: A -0.9141015 1.085899 6 5 6
6: B -0.8577402 1.142260 7 6 7
# 同时删除d1,d2列
> dt[,c('d1','d2'):=NULL]
> dt
          b
 а
                   c c2
1: A 0.7545555 2.754555 2
2: B 0.5556030 2.555603 3
3: C -0.1080962 1.891904 4
4: A 0.3983576 2.398358 5
5: A -0.9141015 1.085899 6
6: B -0.8577402 1.142260 7
```

修改data.table对象的值,就是通过索引定位后进行值的替换,通过这样的格式 data.table[condition, colname := 0]。我们继续使用刚才创建的dt对象。

```
# 给b赋值为30
> dt[,b:=30]
> dt
 a b
           c c2
1: A 30 2.754555 2
2: B 30 2.555603 3
3: C 30 1.891904 4
4: A 30 2.398358 5
5: A 30 1.085899 6
6: B 30 1.142260 7
# 对a列值为B的行, c2列值值大于3的行, 的b列赋值为100
> dt[a=='B' & c2>3, b:=100]
> dt
  a b
             c c2
1: A 30 2.754555 2
2: B 30 2.555603 3
3: C 30 1.891904 4
4: A 30 2.398358 5
5: A 30 1.085899 6
6: B 100 1.142260 7
# 还有另一种写法
> dt[,b:=ifelse(a=='B' & c2>3,50,b)]
  a b
            c c2
1: A 30 2.754555 2
2: B 30 2.555603 3
3: C 30 1.891904 4
4: A 30 2.398358 5
5: A 30 1.085899 6
6: B 50 1.142260 7
```

2.5 data.table的分组计算

超高性能数据处理包data.table | 粉丝日志

基于data.frame对象做分组计算时,要么使用apply函数自己处理,要么用plyr包的分组计算功能。对于 data.table包本身就支持了分组计算,很像SQL的group by这样的功能,这是data.table包主打的优势。

比如, 按a列分组, 并对b列按分组求和。

b

```
# 创建数据
```

- > dt = data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))

- 1: A 1.4781041
- 2: B 1.4135736
- 3: C -0.6593834
- 4: A -0.1231766
- 5: A -1.7351749
- 6: B -0.2528973

对整个b列数据求和

- > dt[.sum(b)]
- [1] 0.1210455

按a列分组,并对b列按分组求和

- > dt[,sum(b),by=a]
 - V1
- 1: A -0.3802474
- 2: B 1.1606763
- 3: C -0.6593834

2.6 多个data.table的连接操作

在操作数据的时候,经常会出现2个或多个数据集通过一个索引键进行关联,而我们的算法要把多种数据合并到 一起再进行处理,那么这个时候就会用的数据的连接操作,类似关系型数据库的左连接(LEFT JOIN)。

举个例子,学生考试的场景。按照ER设计方法,我们通常会按照实体进行数据划分。这里存在2个实体,一个是 学生,一个是成绩。学生实体会包括,学生姓名等的基本资料,而成绩实体会包括,考试的科目,考试的成绩。

假设有6个学生,分别参加A和B两门考试,每门考试得分是不一样的。

6个学生

- > student <- data.table(id=1:6,name=c('Dan','Mike','Ann','Yang','Li','Kate'));student</pre>
 - id name
- 1: 1 Dan
- 2: 2 Mike 3: 3 Ann
- 4: 4 Yang
- 5: 5 Li 6: 6 Kate
- # 分别参加A和B两门考试
- > score <- data.table(id=1:12,stuId=rep(1:6,2),score=runif(12,60,99),class=c(rep('A',6),rep(</pre>

id stuId score class 1: 1 1 89.18497

- 2: 2 2 61.76987
- 3: 3 3 74.67598 A
- 4: 4 4 64.08165
- 5: 5 5 85.00035 A
- 6: 6 6 95.25072 A
- 7: 7 1 81.42813 B
- 8: 8 2 82.16083 B 9: 9 3 69.53405 B
- 10: 10 4 89.01985
- 11: 11 5 96.77196
- 12: 12 6 97.02833

4

通过学生ID, 把学生和考试成绩2个数据集进行连接。

http://blog.fens.me/r-data-table/

9/15

```
> setkey(score,"stuId")
# 设置student数据集, key为id
> setkey(student,"id")
# 合并两个数据集的数据
> student[score,nomatch=NA,mult="all"]
        id name i.id score class
1: 1 Dan 1 89.18497 A
2: 1 Dan 7 81.42813 B
3: 2 Mike 2 61.76987 A
4: 2 Mike 8 82.16083 B
5: 3 Ann 3 74.67598 A
6: 3 Ann 9 69.53405 B
7: 4 Yang 4 64.08165 A
```

8: 4 Yang 10 89.01985 B
9: 5 Li 5 85.00035 A
10: 5 Li 11 96.77196 B
11: 6 Kate 6 95.25072 A
12: 6 Kate 12 97.02833 B

设置score数据集, key为stuId

最后我们会看到,两个数据集的结果合并在了一个结果数据集中。这样就完成了,数据连接的操作。从代码的角度来看,1行代码要比用data.frame去拼接方便的多。

3. data.table包性能对比

现在很多时候我们需要处理的数据量是很大的,动辄上百万行甚至上千万行。如果我们要使用R对其进行分析或处理,在不增加硬件的条件下,就需要用一些高性能的数据包进行数据的操作。这里就会发现data.table是非常不错的一个选择。

3.1 data.table和data.frame索引查询性能对比

我们先生成一个稍大数据集,包括2列x和y分别用英文字母进行赋值,100,000,004行,占内存大小1.6G。分别比较data.frame操作和data.table操作的索引查询性能耗时。

使用data.frame创建数据集。

```
# 清空环境变量
> rm(list=ls())
# 设置大小
> size = ceiling(1e8/26^2)
[1] 147929
# 计算data.frame对象生成的时间
> t0=system.time(
+ df <- data.frame(x=rep(LETTERS,each=26*size),y=rep(letters,each=size))
+ )
# 打印时间
> t0
用户 系统 流逝
3.63 0.18 3.80
# df对象的行数
> nrow(df)
[1] 100000004
# 占用内存
> object.size(df)
1600003336 bytes
# 进行条件查询
> t1=system.time(
+ val1 <- dt[dt$x=="R" & dt$y=="h",]
```

```
\pm
```

```
# 查询时间
> t1
用户 系统 流逝
8.53 0.84 9.42
```

再使用data.table创建数据集。

```
# 清空环境变量
> rm(list=ls())
# 设置大小
> size = ceiling(1e8/26^2)
[1] 147929
# 计算data.table对象生成的时间
> t3=system.time(
+ dt <- data.table(x=rep(LETTERS,each=26*size),y=rep(letters,each=size))</pre>
+ )
# 生成对象的时间
> t3
用户 系统 流逝
3.22 0.39 3.63
# 对象行数
> nrow(dt)
[1] 100000004
# 占用内存
> object.size(dt)
2000004040 bytes
# 进行条件查询
> t3=system.time(
+ val2 <- dt[x=="R" & y=="h",]
+ )
# 查询时间
> t3
用户 系统 流逝
6.52 0.26 6.80
```

从上面的测试来看,创建对象时,data.table比data.frame显著的高效,而查询效果则并不明显。我们对data.table数据集设置索引,试试有索引查询的效果。

```
# 设置key索引列为x,y
> setkey(dt,x,y)

# 条件查询
> t4=system.time(
+ val3 <- dt[list("R","h")]
+ )

# 查看时间
> t4
用户 系统 流逝
0.00 0.00 0.006
```

设置索引列后,按索引进行查询,无CPU耗时。震惊了!!

3.2 data.table和data.frame的赋值性能对比

对于赋值操作来说,通常会分为2个动作,先查询再值替换,对于data.frame和data.table都是会按照这个过程来实现的。从上一小节中,可以看到通过索引查询时data.table比data.frame明显的速度要快,对于赋值的操作测试,我们就要最好避免复杂的查询。

对x列值为R的行,对应的y的值进行赋值。首先测试data.frame的计算时间。

+

```
> size = 1000000
> df <- data.frame(x=rep(LETTERS,each=size),y=rnorm(26*size))
> system.time(
+ df$y[which(df$x=='R')]<-10
+ )
用户 系统 流逝
0.75 0.01 0.77

计算data.table的赋值时间。
```

```
> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))
> system.time(
+ dt[x=='R', y:=10]
+ )
用户 系统 流逝
0.11 0.00 0.11
> setkey(dt,x)
> system.time(
+ dt['R', y:=10]
+ )
用户 系统 流逝
0.01 0.00 0.02
```

通过对比data.table和data.frame的赋值测试,有索引的data.table性能优势是非常明显的。我们增大数据量,再做一次赋值测试。

```
> size = 1000000*5
> df <- data.frame(x=rep(LETTERS,each=size),y=rnorm(26*size))</pre>
> system.time(
+ df$y[which(df$x=='R')]<-10
+ )
用户 系统 流逝
3.22 0.25 3.47
> rm(list=ls())
> size = 1000000*5
> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))</pre>
> setkey(dt,x)
> system.time(
+ dt['R', y:=10]
+ )
用户 系统 流逝
0.08 0.01 0.08
```

对于增加数据量后data.table,要比data.frame的赋值快更多倍。

3.3 data.table和tapply分组计算性能对比

再对比一下data.table处理数据和tapply的分组计算的性能。测试同样地只做一个简单的计算设定,比如,对一个数据集按x列分组对y列求和。

```
# 设置数据集大小
> size = 100000
> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))
# 设置key为x列
> setkey(dt,x)
# 计算按x列分组,对y列的求和时间
> system.time(
+ r1<-dt[,sum(y),by=x]
+ )
```

用户 系统 流逝

```
+
```

```
0.03 0.00 0.03
 # 用tapply实现,计算求和时间
 > system.time(
 + r2<-tapply(dt$y,dt$x,sum)
 + )
 用户 系统 流逝
 0.25 0.05 0.30
 # 查看数据集大小, 40mb
 > object.size(dt)
 41602688 bytes
对于40mb左右的数据来说,tapply比data.table要快,那么我增加数据集的大小,给size*10再测试一下。
 > size = 100000*10
 > dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))</pre>
 > setkey(dt,x)
 > val3<-dt[list("R")]</pre>
 > system.time(
 + r1<-dt[,sum(y),by=x]
 + )
 用户 系统 流逝
 0.25 0.03 0.28
 > system.time(
 + r2<-tapply(dt$y,dt$x,sum)
 + )
 用户 系统 流逝
 2.56 0.36 2.92
 # 400mb数据
 > object.size(dt)
 416002688 bytes
对于400mb的数据来说,data.table的计算性能已经明显优于tapply了,再把数据时增加让size*5。
 > size = 100000*10*5
 > dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))</pre>
 > setkey(dt,x)
 > system.time(
 + r1<-dt[,sum(y),by=x]
 + )
 用户 系统 流逝
 1.50 0.11 1.61
 > system.time(
 + r2<-tapply(dt$y,dt$x,sum)
 用户 系统 流逝
 13.30 3.58 16.90
 # 2G数据
 > object.size(dt)
 2080002688 bytes
对于2G左右的数据来说,tapply总耗时到了16秒,而data.table为1.6秒,从2个的测试来说,大于400mb数据时
CPU耗时是线性的。
```

把上几组测试数据放到一起, 下图所示。

对比项目	记录行数	数据量(mb)	data.table	data.frame	tapply
数据创建时间	100000004	1600	3.63	3.8	
索引查询性能	100000004	1600	0.06	9. 42	
赋值性能	26000000	416	0.02	0.69	
	130000000	2000	0.08	3. 47	
分组计算性能	2600000	40	0.03		0.3
	26000000	400	0.28		2. 92
	130000000	2000	1.61		16.9

通过上面的对比,我们发现data.table包比tapply快10倍,比data.frame赋值操作快30倍,比data.frame的索引查询快100倍,绝对是值得花精力去学习的一个包。

赶紧用data.table包去优化你的程序吧!

转载请注明出处:

http://blog.fens.me/r-data-table/

如果觉得文章不错,请作者喝杯咖啡!

This entry was posted in R语言实践

Copyright © 2017 All rights reserved.

Designed by ${}^{\textcircled{w}}$ NattyWP