∮ ⊞ 与 :	编号:	
7m . J •	∠IIII — •	
	7m J •	

考生班级及序号 学号 姓名

西北工业大学考试试题(卷)

2016-2017 学年第二学期期中

成绩

开课学院	理学院	_课程	高等	数	学(下)	学时_	96	_	
考试日期	2017年4月21日	考证	式时间	2	_小时	考试形式	(闭)	(A)	卷

- 一、填空题(每小题 4 分, 共 40 分) 答案写在答题纸上, 写在题后无效.
- 1. $\lim_{\substack{x \to 0^+ \\ y \to 0^+}} (1 + xy)^{\frac{1}{x+y}} = \underline{\qquad};$
- 3. 设函数 $u = xy^2z$,则它在点(1,1,1) 处的方向导数最大值为

- 6. 设函数 $f(x,y) = 2x^2 + ax + xy^2 + 2y$ 在点 (1,-1) 取得极值, 则常数 $a = ______;$
- 8. 设 L 为取顺时针方向的椭圆 $x^2 + 2y^2 = 2$ 在第一象限中的部分,则曲线积分 $\int_L (2xy 2y) dx + (x^2 4x + 1) dy = _____;$
- 9. Γ 是点 A(1,-1,2)到点 B(2,1,3)的直线段,则 $\int_{\Gamma} (x^2 + y^2 + z^2) ds =$ ______;
- 10. 三次积分 $\int_0^{2\pi} d\theta \int_0^a \rho d\rho \int_0^{\sqrt{a^2-\rho^2}} f(\rho\cos\theta,\rho\sin\theta,z)dz$ 化为球面坐标系中的三次积分表达式为 ;

二、选择题 (每小题 4 分, 共 40 分) 答案写在答题纸上,写在题后无效.

- (A) $f_x(0,0), f_y(0,0)$ 都不存在; (B) $f_x(0,0), f_y(0,0)$ 都等于 0;
- (C) f(x,y) 在点(0,0) 处连续; (D) $f_x'(0,0)=1$, $f_y'(0,0)=0$.

2. 设 $z = f(x^2, xy) + g(\frac{y}{x})$, 其中f具有二阶连续偏导数,g具有二阶连续导数,则

$$\frac{\partial^2 z}{\partial x \partial y} = ()$$

- (A) $2x^2 f_{12}'' + xy f_{22}'' \frac{1}{x^2} g' \frac{y}{x^3} g''$; (B) $2x^2 f_{12}'' + xy f_{22}'' \frac{y}{x^3} g''$; (C) $2x^2 f_{12}'' + xy f_{22}'' \frac{1}{x^2} g_x' \frac{y}{x^3} g_{xy}''$; (D) $2x^2 f_{12}'' + xy f_{22}'' + f_2' \frac{1}{x^2} g' \frac{y}{x^3} g''$.

3. 设z=z(x,y)由方程f(x+az,y+bz)=0所确定,f有连续的偏导数,a,b为非零常数,

则
$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = ($$

- (A) 0; (B) 1; (C) -1; (D) 2ab.

4. 设 f(x, y) 在 (0, 0) 点某邻域内连续,且 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x, y) - xy}{(x^2 + y^2)^2} = 1$,则(

- (A) (0,0) 点不是 f(x, y) 的极值点;
- (B) (0,0)点是 f(x, y) 的极大值点;
- (C) (0,0) 点是 f(x, y) 的极小值点;
- (D) 所给条件无法判断(0,0)点是否为f(x,y)的极值点.

5.设 f(x, y) 连续,则 $\int_{1}^{2} dx \int_{x}^{2} f(x, y) dy + \int_{1}^{2} dy \int_{y}^{4-y} f(x, y) dx = ($

- (A) $\int_{1}^{2} dx \int_{1}^{4-x} f(x, y) dy$ (B) $\int_{1}^{2} dx \int_{x}^{4-x} f(x, y) dy$
- (C) $\int_{1}^{2} dy \int_{1}^{4-y} f(x, y) dx$ (D) $\int_{1}^{2} dy \int_{0}^{2} f(x, y) dx$

6. 设 $I = \iint_D \sqrt{R^2 - x^2 - y^2} \, dx \, dy$, 其中 D 是由圆周 $x^2 + y^2 = Ry$ 所围成的闭区域,则

- (A) 0; (B) $\frac{1}{9}R^3 (3\pi 4)$; (C) $-\frac{1}{9}R^3 (3\pi 4)$; (D) $\frac{\pi}{3}R^3$.

7. 设曲线L: f(x,y) = 1, f(x,y)具有一阶连续偏导数,过第二象限的点 \mathbf{M} 和第四象

限的点 N, T 为 L 上从点 M 到 N 的一段弧,则下面小于零的是(

- (A) $\int_T f(x, y) dx$; (B) $\int_T f(x, y) dy$;
- (C) $\int_{T} f(x, y)ds$; (D) $\int_{T} f_{x}(x, y)dx + \int_{T} f_{y}(x, y)dy$.

8. 设 *L*为闭曲线 $|y| = 1 - x^2 (-1 \le x \le 1)$ 取逆时针方向,则 $\oint_{r} \frac{2xdx + ydy}{2x^2 + y^2} = ($

- (A) 0;
- (B) 2π ;
- (C) -2π ;
- (D) $4 \ln 2$.

9. 若 Ω 是曲面 $z = \sqrt{x^2 + y^2}$ 与 $z = \sqrt{1 - x^2 - y^2}$ 所围成的区域,则 $I = \iiint (x + z) dV = (x + z) dV = (x + z) dV$

- (A) $\frac{\pi}{2}$; (B) $\frac{\pi}{3}$; (C) $\frac{\pi}{4}$;

10. 曲面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 割下的有限部分的面积为 (

- (A) 2π ; (B) 4π ; (C) $2\sqrt{2}\pi$; (D) $\sqrt{2}\pi$.

答题纸

<u> </u>											
考生班级及序	号		学 号	`		姓	生 名				
题号	_		<u> </u>		=	Д]	总分	; }		
得分											
一、填空题(每小题 4 分, 共 40 分)											
1				2							
3				4							
5				6							
7				8							
9				10							
二、选择题(每小题 4 分, 共 40 分)											
题号 1	2	3	4	5	6	7	8	9	10		
答案											
	•							•			

三、($\mathbf{10}$ 分) 设 $f(\mathbf{x})$ 在 ($-\infty$, $+\infty$)内有连续导函数,求

$$I = \int_{L} \frac{1 + y^{2} f(xy)}{y} dx + \frac{x}{y^{2}} [y^{2} f(xy) - 1] dy ,$$

其中 L 是从点 $A(3,\frac{2}{3})$ 到点 B(1,2) 的直线段.

教务处印制 共 6 页 第 5 页

西北工业大学命题专用纸

四、(10 分) 在第一卦限内求椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 上的一点,使得过该点的切平面与三个 坐标面围成的四面体体积最小。

教务处印制