Predict Bart Station Capacity

•••

Jonathan Hilgart

Data Sources - Historical

- 2016 historic daily rider exits per BART station
 - Origin Station
 - Destination Station
 - Number of Exits
 - Hour of the day
- 2016 historic daily weather for San Francisco (zip 94105)
 - Wind speed
 - Humudity
 - Minimum temp.
 - Max temp
 - Avg. temp
 - Sea pressure

Data Sources - Live

- Live BART information pulled every ten minutes
 - Origin station
 - Destination station
 - Number of trains
 - Bike flag
 - Minutes until arrival
- Live weather information pulled every ten minutes
 - Wind
 - o Min. temp
 - o Max. temp
 - O Avg. temp
 - Humidity
 - Sea pressure

Architecture

EC2 (airflow)

Bart arrival information
Weather information
minute update

Static Data

1) Bart 2016daily riders2) Daily

weather 2016

S3 'data lake'

- 1) Raw data
- 2) Normalized data
- 3) Predicted ridership

S3 webpage to host predictions

EMR cluster

Data
normalization
GBoost
model

MongoDB on EC2

1) Normalized data

Airflow

Next Steps & Challenges

• <u>Challenges</u>

- BART data in XML format. Needed to convert to ISON
- Sparse documentation for Airflow
- O Differences between spark interactive and spark-submit
- Unix time

• Next Steps

- Change daily prediction to hourly prediction
- Incorporate direction of BART train (North or South)
- Incorporate localized weather data for each BART station
- Add visualizations
- Incorporate MUNI data
- Lambda architecture with 'speed' layer

Results

http://bart-capacity-predictions.com.s3-website-us-east-l.amazonaws.com/