Parameterized Algorithms for Matrix Completion with Radius Constraints

Tomohiro Koana¹ Vincent Froese¹ Rolf Niedermeier¹

 1 Techqnische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity

May 12, 2020

Problem Statement

For $i=1\ldots n$: $S[i] \ {\sf string} \ {\sf on} \ {\sf alphabet} \ \Sigma \ {\sf admitting} \ {\sf wildcards} \ *$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} \in (\Sigma \cup \{*\})^{n \times \ell}$$

1

Problem Statement

For i = 1 ... n:

S[i] string on alphabet Σ admitting wildcards *

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} \in (\Sigma \cup \{*\})^{n \times \ell}$$

Minimum Radius Matrix Completion (MinRMC)

Input: Matrix $S \in (\Sigma \cup \{*\})^{n \times \ell}$ and $d \in \mathbb{N}$.

Output: $\exists T$ completion of S and $\exists v \in \Sigma^{\ell}$ s.t. $\forall i \ \delta(v, T[i]) \leq d$?

Problem Statement

For i = 1 ... n:

S[i] string on alphabet Σ admitting wildcards *

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} \in (\Sigma \cup \{*\})^{n \times \ell}$$

Constraint Radius Matrix Completion (ConRMC)

Input: Matrix $S \in (\Sigma \cup \{*\})^{n \times \ell}$ and $d_1 \dots d_n \in \mathbb{N}$.

Output: $\exists T$ completion of S and $\exists v \in \Sigma^{\ell}$ s.t. $\forall i \ \delta(v, T[i]) \leq d_i$?

Related Work

Stringology and ML meet in the middle!

Related Work

Stringology and ML meet in the middle!

ICML '18: Parameterized Algorithms for Matrix Completion

Dataset contains missing entries

Fill the gaps optimizing some metrics (e.g. rank of the matrix)

Related Work

Stringology and ML meet in the middle!

ICML '18: Parameterized Algorithms for Matrix Completion

Dataset contains missing entries

Fill the gaps optimizing some metrics (e.g. rank of the matrix)

CPM '14: Parameterized Closest String with Wildcards

Closest String \equiv MinRMC for a wildcard-free S

Applications in Bioinformatics

- Motif finding
- PCR primer design
- Genetic probe design

Hardness Results

All Problems are Intractable

- ullet Closest String is \mathcal{NP} -hard, even for $|\Sigma|=2$

Hardness Results

All Problems are Intractable

- ullet Closest String is \mathcal{NP} -hard, even for $|\Sigma|=2$
- \bullet Closest String \preceq MinRMC \preceq ConRMC

Fixed Parameter Tractability

$$f(n,k) = \mathcal{O}\left(g(k)n^{\mathcal{O}(1)}\right)$$

Hardness Results

All Problems are Intractable

- ullet Closest String is \mathcal{NP} -hard, even for $|\Sigma|=2$
- ullet Closest String \preceq MinRMC \preceq ConRMC

Fixed Parameter Tractability

$$f(n,k) = \mathcal{O}\left(g(k)n^{\mathcal{O}(1)}\right) \iff f(n,k) = \mathcal{O}^*\left(g(k)\right)$$

4

State of Art

CPM '14 solved MinRMC in:

•
$$\mathcal{O}^*\left(2^{\ell^2/2}\right)$$

•
$$\mathcal{O}(n\ell^2)$$
 for $d=1$

•
$$\mathcal{O}^*$$
 $((d+1)^{d+k})$

•
$$\mathcal{O}^*\left(|\Sigma|^k\cdot d^d\right)$$

Here we solve MinRMC in:

- \bullet \mathcal{O}^* (ℓ^ℓ)
- $\mathcal{O}(n\ell)$ for d=1
- Bug fixed
- $\mathcal{O}^* \left(|\Sigma|^{d+k} \cdot 2^{4k+d} \right)$

State of Art

CPM '14 solved MinRMC in:

•
$$\mathcal{O}^*\left(2^{\ell^2/2}\right)$$

•
$$\mathcal{O}(n\ell^2)$$
 for $d=1$

•
$$\mathcal{O}^*$$
 $((d+1)^{d+k})$

•
$$\mathcal{O}^* \left(|\Sigma|^k \cdot d^d \right)$$

Here we solve MinRMC in:

$$\bullet$$
 \mathcal{O}^* (ℓ^ℓ)

•
$$\mathcal{O}(n\ell)$$
 for $d=1$

• Bug fixed

•
$$\mathcal{O}^* \left(|\Sigma|^{d+k} \cdot 2^{4k+d} \right)$$

k is the maximum number of character row-wise

All results are proven for the more general ConRMC

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 5 \\ 3 \end{pmatrix}$$

ConRMC: find $v \in \Sigma^{\ell}$ s.t. $\exists T$ completion of S, $\forall i \ \delta(v, T[i]) \leq d_i$

Define $P_*(S[i]) = \{j \le \ell \, | \, S[i,j] = *\}$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 5 \\ 3 \end{pmatrix}$$

ConRMC: find $v \in \Sigma^{\ell}$ s.t. $\exists T$ completion of S, $\forall i \ \delta(v, T[i]) \leq d_i$

Define
$$P_*(S[i]) = \{j \le \ell \mid S[i,j] = *\}, P_*(S[2]) = \{2,4,6\}$$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix}$$

Any
$$v \in \Sigma^{\ell}$$
 is a center $\iff \forall i \leq n \quad \ell - P_*(S[i]) \leq d_i$

- return True
- Floor
 - $\exists R_i \subseteq \{1 \dots \ell\} \setminus P_*(S[i]) \text{ s.t. } |R_i| = d_i + 1$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix}$$

Any
$$v \in \Sigma^{\ell}$$
 is a center $\iff \forall i \leq n \quad \ell - P_*(S[i]) \leq d_i$

If holds:

return True

Else:

$$\exists R_i \subseteq \{1 \dots \ell\} \setminus P_*(S[i]) \text{ s.t. } |R_i| = d_i + 1$$

$$\exists R_i \subseteq \{1 \dots \ell\} \setminus P_*(S[i]) \text{ s.t. } |R_i| = d_i + 1$$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix}$$

$$v \in \Sigma^{\ell}$$
 is a center $\implies \exists j \in R_i$ s.t. $v[j] = S[i,j]$

$$\exists R_i \subseteq \{1 \dots \ell\} \setminus P_*(S[i]) \text{ s.t. } |R_i| = d_i + 1$$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix}$$

$$v \in \Sigma^{\ell}$$
 is a center $\implies \exists j \in R_i$ s.t. $v[j] = S[i,j]$

For $j \in R_i$:

Set v[j] = S[i,j], process j-th column and recurse

$$\exists R_i \subseteq \{1 \dots \ell\} \setminus P_*(S[i]) \text{ s.t. } |R_i| = d_i + 1$$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix}$$

$$v \in \Sigma^{\ell}$$
 is a center $\implies \exists j \in R_i$ s.t. $v[j] = S[i,j]$

For $j \in R_i$:

Set v[j] = S[i,j], process j-th column and recurse

$$\exists R_i \subseteq \{1 \dots \ell\} \setminus P_*(S[i]) \text{ s.t. } |R_i| = d_i + 1$$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix} d' = \begin{pmatrix} 4 \\ 2 \\ 4 \\ 3 \end{pmatrix}$$

$$v \in \Sigma^{\ell}$$
 is a center $\implies \exists j \in R_i$ s.t. $v[j] = S[i,j]$

For $j \in R_i$:

Set v[j] = S[i,j], process j-th column and recurse

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix} d' = \begin{pmatrix} 4 \\ 2 \\ 4 \\ 1 \\ 4 \\ 3 \end{pmatrix}$$

$$T(n,\ell) = (\widetilde{d}+1)T(n,\ell-1) + n\ell$$

$$\implies T(n,\ell) = \mathcal{O}\left(\left(\widetilde{d}+1\right)^{\ell} \cdot n\ell\right) = \mathcal{O}^*\left(\ell^{\ell}\right)$$
with $\widetilde{d} = \max_i d_i$

We solve ConRMC with $\max_i d_i \leq 1$ in $\mathcal{O}(n\ell)$

We solve ConRMC with $\max_i d_i \leq 1$ in $\mathcal{O}(n\ell)$

2-SAT

Possibly repeated literals $\{\alpha_i\}_{i=1...n}$ and $\{\beta_i\}_{i=1...n}$ Decide if the following is satisfiable

$$\bigwedge_{i=1}^n (\alpha_i \vee \beta_i)$$

2-SAT is solvable in $\mathcal{O}(n)$!

We solve ConRMC with $\max_i d_i \leq 1$ in $\mathcal{O}(n\ell)$

2-SAT

Possibly repeated literals $\{\alpha_i\}_{i=1...n}$ and $\{\beta_i\}_{i=1...n}$ Decide if the following is satisfiable

$$\bigwedge_{i=1}^n \left(\alpha_i \vee \beta_i\right)$$

2-SAT is solvable in $\mathcal{O}(n)$!

Reduction Time!

Suppose $v \in \Sigma^{\ell}$ solves ConRMC

$$x_{j,\sigma} = (v[j] = \sigma)$$

Suppose $v \in \Sigma^{\ell}$ solves ConRMC

$$x_{j,\sigma} = (v[j] == \sigma)$$

We write ConRMC as $\phi_1 \wedge \phi_2 \wedge \phi_3$ where:

$$\phi_1 =$$
 " For each j at most one of $\{x_{j,\sigma}\}_{\sigma \in \Sigma}$ is true "

Suppose $v \in \Sigma^{\ell}$ solves ConRMC

$$x_{j,\sigma} = (v[j] == \sigma)$$

We write ConRMC as $\phi_1 \wedge \phi_2 \wedge \phi_3$ where:

$$\phi_1=$$
 " For each j at most one of $\{x_{j,\sigma}\}_{\sigma\in\Sigma}$ is true "

$$\phi_2$$
 = "For each j if $d_i = 0$ then $x_{j,S[i,j]}$ is true"

Suppose $v \in \Sigma^{\ell}$ solves ConRMC

$$x_{j,\sigma} = (v[j] == \sigma)$$

We write ConRMC as $\phi_1 \wedge \phi_2 \wedge \phi_3$ where:

$$\phi_1=$$
 " For each j at most one of $\{x_{j,\sigma}\}_{\sigma\in\Sigma}$ is true "

$$\phi_2$$
 = "For each j if $d_i = 0$ then $x_{j,S[i,j]}$ is true"

$$\phi_3=$$
 " If $d_i=1$ then at most one of $\left\{x_{j,S[i,j]}
ight\}_{j\leq \ell}$ is false "

 $\{p_1\dots p_m\}$ propositions, exists a compact 2-SAT encoding of "At most one proposition in $\{p_1\dots p_m\}$ is true" that uses $\mathcal{O}(m)$ clauses.

 $\{p_1\dots p_m\}$ propositions, exists a compact 2-SAT encoding of "At most one proposition in $\{p_1\dots p_m\}$ is true" that uses $\mathcal{O}(m)$ clauses.

Some more logic manipulations do the trick...

Open Problems

- MinRMC with t outliers: FPT w.r.t. d + k + t.
- ullet Closest String is solved in $\mathcal{O}^*\left((16|\Sigma|)^d\right)$. Match that.

Thank You!