16 设计 ALU_REG

设计一个如图所示的 ALU_REG 模块,其中寄存器为 4 个 8 位寄存器组成的寄存器堆,一个输入端口,2 个输出端口,rst=0 复位输入锁存,输出使能,即 clk 上升沿输入,Write_Reg=0输出.

- (1) 编程实现基本的寄存器堆模块,并编写仿真测试程序验证;
- (2) 编程实现基本的 ALU 模块, ALU 功能如表 1 所示, 并仿真测试验证;
- (3)编程实现 ALU_REG 模块,**可按照以下方法设计实验,也可以自行设计验证实验。** 板卡验证
 - a) 使用 2 位开关对应 R_Addr_A, 2 位开关对应 R_Addr_B, 2 位开关对应 W_Addr; 使用 2 位开关选 ALU 运算;
 - b) ALU的 8 位运算结果送 8 位 LED 灯显示;
 - d) 1 个按钮提供 Clk; 1 个按钮提供 Reset; 1 个按钮提供 Write_Reg, 指定 Write_Reg=0 时执行读操作;

表1 能表

ALU_OP[1:0]	ALU	操作说明
00	Inc	A加 1
01	Not	B按位取反
10	sll	B 逻辑右移 A 所指定的位数
11	and	逻辑与

板卡验证程序:

Inc R0 //R0 寄存器内容加 1

NOT R1 //R1 按位取反

sll R2, R1, R0; // R1 逻辑右移 R0 指定的位数

ALU 功

口粉. 子与. 灶台.		日期:	学号:	姓名:
-------------	--	-----	-----	-----

and R3, R0, R2; //R3=R0 and R2

	A地址	B 地址	W_Add	ALU_OP	结果
			r		
Inc R0					
NOT R1					
sll R2, R1, R0;					
and R3, R0, R2					