Assume n > p.

Theorem 1. For any $X \in \mathbb{R}^{n \times p}$, there exists SVD decomposition:

$$X = P\Lambda Q^T \tag{1}$$

where $P \in \mathbb{R}^{n \times n}$, $Q \in \mathbb{R}^{p \times p}$ are orthogonal matrices, and $\Lambda = diag(\sigma_1, \sigma_2, \cdots, \sigma_p) \in$ $\mathbb{R}^{n \times p}$ is a rectangular diagonal matrix of nonnegative entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ $\sigma_p \geq 0$.

Proof. We will prove for X full rank¹. Proof is in three (rather simple) parts.

- 1. Show that X^TX is a positive definite matrix.
- 2. Eigendecompose X^TX .
- 3. Construct SVD decomposition.

Part 1 X^TX is obviously symmetric. To show positive definiteness, note that for any $v \in \mathbb{R}^p$,

$$v^{T}(X^{T}X)v = (Xv)^{T}(Xv) = |Xv|^{2} \ge 0$$

So X^TX is a symmetric positive semi-definite matrix.

Part 2 Since X^TX is a symmetric positive-semidefinite matrix, by spectral theorem, the following eigendecomposition exists:

$$X^T X = Q D Q^T = Q \tilde{\Lambda}^2 Q^T \tag{2}$$

where $Q \in \mathbb{R}^{p \times p}$ is orthogonal, and $D \subset \mathbb{R}^p$ negative entries. Without loss of generality $D_{11} \geq D_{22} \geq \cdots \geq D_{pp} \geq 0$ where $Q \in \mathbb{R}^{p \times p}$ is orthogonal, and $D \in \mathbb{R}^{p \times p}$ is a diagonal matrix of non-

Then, we introduce $\tilde{\Lambda} = \text{diag}\left(\sqrt{D_{11}}, \cdots, \sqrt{D_{pp}}\right)$, then $\tilde{\Lambda}^2 = D$. **Part 3** Define $\tilde{P} = XQ\tilde{\Lambda}^{-1} \in \mathbb{R}^{n \times p}$. Then $\tilde{P}^T\tilde{P} = \tilde{\Lambda}^{-1}Q^TX^TXQ\tilde{\Lambda}^{-1} =$ I_p , so \tilde{P} is a rectangular matrix with orthonormal columns. Then we have:

$$X = \left(XQ\tilde{\Lambda}^{-1}\right)\tilde{\Lambda}Q^{T} = \underbrace{\tilde{P}}_{n\times p}\underbrace{\tilde{\Lambda}}_{p\times p}\underbrace{Q^{T}}_{p\times p} \tag{3}$$

This is very similar to what we want to show! To get the form in the lecture note, define $P = \begin{bmatrix} \tilde{P} \ \tilde{P}_{\perp} \end{bmatrix} \in \mathbb{R}^{n \times n}$ where \tilde{P}_{\perp} is orthogonal complement to \tilde{P} .

¹Meaning, X has rank p.

²Only nonnegative eigenvalues

Also define $\Lambda = \begin{bmatrix} \tilde{\Lambda} \\ 0 \end{bmatrix} \in \mathbb{R}^{n \times p}$. Now we have:

$$X = \tilde{P}\tilde{\Lambda}Q^T = P\Lambda Q^T \tag{4}$$

Example 1. Here is a trivial SVD decomposition:

$$\underbrace{\begin{pmatrix} -2 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{P} \underbrace{\begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}}_{\Lambda} \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{Q^{T}} \tag{5}$$

Remark 1. SVD (1) can be rewritten as:

$$X = \sum_{i=1}^{p} \sigma_i p_i q_i^T \tag{6}$$

where p_i is the i^{th} column vector of P and q_i^T is the i^{th} row vector of Q^T . Note that σ_i^3 are ordered from greatest to least. Also p_i and q_i have unit norm.

To find rank-1 approximation of X, take

$$X \approx \sigma_1 p_1 q_1^T = \tilde{X} \tag{7}$$

To find rank-2 approximation of X, take

$$X \approx \sigma_1 p_1 q_1^T + \sigma_2 p_2 q_2^T = \tilde{X} \tag{8}$$

³singular values