Continuous stochastic variables

Define and present

- Continuous random variable
- Expected value
- Variance
- Expected value of a function

Prove

- Expected value of unif
- Variance of unif

Definition 2.5. (Continuous random variable) If the cdf F is a continuous function, then X is said to be a *continuous random variable*.

Definition 2.9 (Expected value) Let X be a continuous random variable with pdf f. The *expected value* of X is defined as

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx \tag{1}$$

Defintion 2.10. (Variance) Let X be a random variable with expected value μ . The *variance* of X is defined as

$$Var[X] = E[(X - \mu)^2] \tag{2}$$

Proposition 2.12.(Expected value of function) Let X be a random variable with pdf f_X , and let $g: \mathbb{R} \to \mathbb{R}$ be any function. Then

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$
 (3)

Proposition 2.13. (Expected value and variance of unif) If $X \sim \text{unif}[a,b]$, then

$$E[X] = \frac{a+b}{2}$$
 and $Var[X] = \frac{(b-a)^2}{12}$ (4)

Bevis

Calculating E[X]:

$$E[X] = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{a}^{b} x \frac{1}{b-a} \, dx$$
$$= \frac{1}{b-a} \int_{a}^{b} x \, dx = \frac{b^2 - a^2}{2(b-a)}$$
$$= \frac{b+a}{2}$$

Calculating $E[X^2]$:

$$E[X^{2}] = \int_{a}^{b} x^{2} f(x) dx = \frac{1}{b-a} \int_{a}^{b} x^{2} dx$$
$$= \frac{b^{3} - a^{3}}{3(b-a)} = \frac{(b-a)(a^{2} + ab + b^{2})}{3(b-a)}$$
$$= \frac{a^{2} + ab + b^{2}}{3}$$

This gives variance:

$$Var[X] = \frac{a^2 + ab + b^2}{3} - \left(\frac{a+b}{2}\right)^2$$

$$= \frac{a^2 + ab + b^2}{3} - \frac{a^2 + ab + b^2}{4}$$

$$= \frac{4(a^2 + ab + b^2)}{12} - \frac{3(a^2 + 2ab + b^2)}{12}$$

$$= \frac{(b-a)^2}{12}$$