Оценка опционов для моделей с прыжками

Васильев Дмитрий Николаевич, 522 группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — к.ф.-м.н., доцент **Каштанов Ю.Н.** Рецензент — к.ф.-м.н. **Гормин А.А.**

Санкт-Петербург 2011г.

Предполагаемая волатильность

- Модель Блэка-Шоулза: $B_t = B_0 e^{rt}, dS_t/S_t = r dt + \sigma dW_t$. Существует аналитическая формула для цены Европейского опциона $C_{BS}(S_0,K,\sigma,T)$.
- Рассмотрим опцион, чью наблюдаемую стоимость обозначим за $C^*(T,K)$. Так как значение цены опциона по формуле Блэка-Шоулза, как функции от параметра волатильности σ , строго возрастает, при данной наблюдаемой цене можно найти единственное значение параметра $\Sigma(T,K)$:

$$C_{BS}(S_0, K, \Sigma(T, K), T) = C^*(T, K).$$

- ullet Такая функция $\Sigma(T,K)$ называется предполагаемой волатильностью (implied volatility).
- В модели Блэка-Шоулза предполагаемая волатильность равна константе.

Предполагаемая волатильность

Форма предполагаемой волатильности для реальных данных:

- lacktriangle Модель локальной волатильности: $dS_t/S_t = r(t)dt + \sigma(t,S_t)dW_t$.
- Модель стохастической волатильности:

$$\frac{dS_t}{S_t} = rdt + \sigma(Y_t)dW_t^{(1)}, dY_t = a(Y_t)dt + b(Y_t)dW_t^{(2)}.$$

Модель с прыжками:

$$dS_t/S_{t-} = \rho(S_t)dt + \sigma(S_t)dw_t + \int_0^1 \psi(t, S_{t-}, \alpha)J(dt, d\alpha).$$

Предполагаемая волатильность

В частном случае модели стох. волатильности SABR(Хаган, 2006) $a=0, b(y)=\beta y, \sigma$ такая, что $\sigma(x,y)=x^{\gamma}y$ предполагаемая волатильность выглядит так:

Чтобы получить форму волатильности, соответствующую реальным данным, нужно менять не только T, но и другие параметры - в данном случае β .

Предполагаемая волатильность в моделях с прыжками

Рис.: sigma=0.1, Id=0.5, Jd=-0.3, Iu=0.2, Ju=0.2

Нужная форма волатильности получается изменением только T. Остальные параметры остаются фиксированными.

Цели работы

- Исследование свойств модели диффузии с прыжками;
- Построение оценки для цены опциона;

Модели с прыжками, основанные на процессах Леви

 Подробно рассмотрены в R. Cont, P. Tankov, Financial modeling with jump processes// M.:Chapman Hall, 2004.

$$S_t = \exp(rt + X_t),$$

где X_t - процесс Леви с характеристической функцией:

$$E\left[e^{i\theta X_t}\right] = \exp\left(ait\theta - \frac{\sigma^2\theta^2t}{2} + t\int\left(e^{i\theta x} - 1 - i\theta x\mathbb{1}(|x| < 1)\right)\nu(dx)\right),$$

где
$$\int \min(x^2, 1)\nu(dx) < \infty$$
.

- Рынок в данной модели является неполным, поэтому цена опиона и хеджирующая стратегия вводятся в смысле среднеквадратичного отклонения. Для хеджирующей стратегии Контом и Танковым выведена формула.
- Недостатки: некорректное поведение функции волатильности при изменении цены актива - нет отрицательной корреляции, присутствующей в реальных данных.

Модели диффузии с прыжками

Модели данного типа представлены в (R. Situ, 2003).

$$dS_t/S_{t-} = \rho(S_t)dt + \sigma(S_t)dw_t + \int_0^1 \psi(t, S_{t-}, \alpha)J(dt, d\alpha)$$

У данного уравнения существует единственное решение при условиях (R. Situ):

- $|\rho(x)| \le c(t)(1+|x|);$ $|\sigma(x)|^2 + \int |\psi(t,x,z)|^2 d\alpha \le c(t)(1+|x|^2);$
- $|\rho(x_1) \rho(x_2)| \le c(t)|x_1 x_2|$ $|\sigma(x_1) - \sigma(x_2)|^2 + \int |\psi(t, x_1, z) - \psi(t, x_2, z)|^2 d\alpha \le c(t)|x_1 - x_2|^2;$

где c(t) неотрицательная и неслучайная величина, такая что $\int_0^T c(t)dt \leq \infty$. Поскольку рынок неполный, то аналогично моделям, основанным на процессе Леви, можно вывести формулу хеджирующей стратегии в среднеквадратичном смысле.

Хеджирующая стратегия

Рассмотрим уравнение следующего вида

$$\begin{cases} \frac{\partial C(x,t)}{\partial t} = \frac{1}{2}x^2\sigma^2(x)\frac{\partial^2 C(x,t)}{\partial x^2} - \lambda C(x,t) + \lambda \int_0^\infty R(x,y)C(y,t)dy; \\ C(x,0) = f(x). \end{cases}$$

Утверждение 1:

Пусть функция σ - гладкая и ограниченная вместе со своими производными так, что $|\sigma'(x)x| \leq C$ и такая, что $0 < \sigma_1 \leq \sigma \leq \sigma_2 < \infty$, а R(x,y) имеет ограниченную равномерно по y производную второго порядка по x. Вторая производная функции f удовлетворяет условию Гельдера с коэффициентом ε , где $0 < \varepsilon < 1$, а сама f ограничена некоторой константой K. Тогда оптимальная по среднеквадратичному критерию стратегия имеет вид $X_0 = C(S_0,T), \gamma_t = \Delta(S_{t-},t)$, где

$$\Delta(x,t) = \frac{\sigma^2(x) \frac{\partial C(x,t)}{\partial x} + \frac{1}{x} \int \nu(x,t;dy) y \left[C(x(1+y),t) - C(x,t) \right]}{\sigma^2(x) + \int y^2 \nu(x,t;dy)}.$$

Хеджирующая стратегия

Коротко остановимся на доказательстве:

ullet Введем операторы Λ_1 и Λ_2 , которые понадобятся далее:

$$\Lambda_1 u = \frac{1}{2} x^2 \sigma^2(x) \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t},\tag{1}$$

$$\Lambda_2 u = \frac{1}{2} x^2 \sigma^2(x) \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} - \lambda u.$$
 (2)

• Рассмотрим последовательность

$$C_n(x,t):\Lambda_2C_n(x,t)=\lambda\int\limits_0^\infty R(x,y)C_{n-1}(y,t)dy$$
 и докажем, что она сходится со своими производными к гладкому решению уравнения $\Lambda_2C(x,t)=\lambda\int\limits_0^\infty R(x,y)C(y,t)dy.$

- ullet По формуле Фейнмана-Каца (Ситу, 2003) $C(x,t)=\mathbb{E}_x f(S_t).$
- Далее строится хеджирующая стратегия аналогично Конту и Танкову.

Сведение задачи Коши к интегральному уравнению

Для уравнения $\Lambda_1C(x,t)=\lambda\int\limits_0^\infty R(x,y)C(y,t)dy-\lambda C(x,t)$ выразим решение аналогично методу параметрикса (Фридман, 1964). Оно представимо в таком виде:

$$C_{1}(x,t) = \int_{0}^{t} \int Z_{1}(\tau,x,y) \int_{0}^{\infty} \lambda \left[R(y,\xi)C_{1}(\xi,t-\tau) - C_{1}(y,t-\tau) \right] d\xi dy d\tau + \int Z_{1}(t,x,y)f(y)dy.$$

где
$$Z_1(t,x,y) = \Gamma(t,x,y) + \int \Gamma(t,x,u) K(t,u,y) du + \ldots$$

$$\Gamma(t, x, y) = \frac{1}{\sqrt{2\pi t}\sigma(y)} \exp\left(-\frac{\left(\ln\left(\frac{y}{x}\right) + \frac{t\sigma^2(y)}{2}\right)^2}{2\sigma^2(y)t}\right),$$

$$K(t, x, y) = x^2 \left[\sigma^2(y) - \sigma^2(x)\right] \frac{\partial^2 \Gamma}{\partial x^2}.$$

Сведение задачи Коши к интегральному уравнению

Также можно рассмотреть уравнение $\Lambda_2 C = \lambda \int\limits_0^\infty R(x,y) C(y,t) dy$. Для него верно $Z_2 = e^{-\lambda t} Z_1$,а решение равно

$$C_2(s_1, t) = \int_0^t \int Z_2(\tau, s_1, s_2) \int_0^\infty \lambda R(s_2, \xi) C_2(\xi, \tau) d\xi ds_2 d\tau + \int Z_2(t, s_1, s_2) f(s_2) ds_2.$$

Оценка Монте-Карло

Сначала промоделируем на промежутке [0,T] времена прыжков t_1,\ldots,t_n , где n такое, что $t_n< T,t_{n+1}>T$. На каждом из отрезков (t_{i-1},t_i) будем использовать только функции $Z_k(t_i-t_{i-1},x_{i-1},x_i),k=1,2$, а в момент t_i - "прыжок" с плотностью R. Таким образом мы получим оценку решения C(x,t).

Оценка Монте-Карло

Оценка функции $Z_k, k = 1, 2$ имеет вид:

$$\breve{Z} = \sum_{n=0}^{\infty} \frac{\Gamma(t-\tau_n, x, \xi_n) K(\tau_n, \xi_n, \xi_{n-1}) \dots K(\tau_1, \xi_1, y)}{\pi(t, x, y) P(\tau_n, \xi_n, \xi_{n-1}) P(\tau_{n-1}, \xi_{n-1}, \xi_{n-2}) \dots P(\tau_1, \xi_1, y)}.$$

Определим переходные плотности:

$$P(t, x, y) = \frac{\alpha}{2\sqrt{tT}} \exp(-\frac{\alpha|y - x|}{\sqrt{t}}).$$

Начальная плотность:

$$\pi(t, x, y) = \frac{1}{\sqrt{Tt}} \frac{1}{\sqrt{2\pi t}\sigma_1} \exp\left(-\frac{(x-y)^2}{t\sigma_1^2}\right).$$

Оценка Монте-Карло

Утверждение 2

Предположим, что для любых t, x и y есть точки $\breve{y}=y(t,x,\omega)$, $\breve{z}=z(y,\omega)$ и веса $\breve{Z}=\breve{Z}_1(t,x,\breve{y})$ такие, что

$$\bullet \quad \mathbb{E}\breve{Z}g(\breve{y}) = \int_{0}^{\infty} Z_{1}(x,t,y)g(y)dy,$$

rack Tогда $reve C_1$, равная

$$\check{C}_1(x,t) = \check{Z}(x,t,\check{y}_1)f(\check{y}_1) + \left[\check{Z}(x,t-\tau,\check{y}_2) - \frac{\check{Z}(x,t-\tau,\check{z})}{R(\check{y}_2,\check{z})}\right]\check{C}(\check{z},\tau),$$

где $reve{y}_1=y(x,t,\omega), reve{y}_2=y(x,t- au,\omega), reve{z}=z(y_2,\omega)$, - несмещенная оценка $C_1(x,t)$ с переходным плотностями p(au,s,y) и начальным распределением $\pi(au,s,y)$, дисперсия которой конечна.

Оценка Монте-Карло

Аналогичное утверждение имеет место для решения $C_2(x,t)$ с несмещенной оценкой с конечной дисперсией:

$$\breve{C}_2(x,t) = \breve{Z}(x,t,\breve{y}_1)f(\breve{y}_1)\mathbb{1}(\tau > t) + \breve{Z}(x,t-\tau,\breve{y}_2)\breve{C}(\breve{z},\tau)\mathbb{1}(\tau < t).$$

Результаты моделирования

Рассмотрим колл-опцион Европейского типа в модели диффузии с прыжками и применим к нему предложенную выше оценку. Параметры модели таковы $S_0=100, T=1, \lambda=1, jd=0.2, r=0.$ Для такой модели существует аналитическое выражение для цены опциона, представимое в виде суммы бесконечного ряда:

$$C_r(x,t) = \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} C_{BS}(t, S_0(1+(jd))^n e^{-\lambda(jd)t}, K, \sigma, r).$$

Используем его, чтобы проверить построенную оценку.

Результаты моделирования

		Lambda 1		Lambda 2	
K	C_r	C_sim	m	C_sim	m
90	16.88	17.06	0.79	16.87	0.13
91	16.28	16.46	0.76	16.27	0.13
92	15.69	15.88	0.74	15.68	0.12
93	15.12	15.31	0.71	15.11	0.12
94	14.56	14.75	0.68	14.55	0.12
95	14.01	14.21	0.65	14.01	0.11
96	13.48	13.68	0.63	13.47	0.11
97	12.96	13.16	0.60	12.96	0.11
98	12.46	12.66	0.58	12.45	0.10
99	11.97	12.17	0.56	11.96	0.10
100	11.49	11.69	0.53	11.49	0.10
101	11.03	11.22	0.51	11.03	0.09
102	10.58	10.77	0.49	10.58	0.09
103	10.14	10.33	0.47	10.14	0.09
104	9.72	9.90	0.45	9.72	0.08
105	9.31	9.49	0.44	9.31	0.08
106	8.91	9.09	0.42	8.91	0.08
107	8.53	8.70	0.40	8.53	0.07
108	8.15	8.33	0.39	8.16	0.07
109	7.80	7.96	0.37	7.80	0.07

Результаты работы

- Для модели диффузии с прыжками была построена хеджирущая стратегия и определена цена опциона.
- Получено интегральное уравнение для цены опциона и выписана оценка Монте-Карло с конечной дисперсией.
- Проведено моделирование на основе полученной оценки.