Latihan Pertemuan ke 10 Matematika Diskrit

Abdullah Azzam Rabbani

10240038

Abstrak

Dokumen ini membahas konsep dasar algoritma dalam konteks matematika diskrit. Pembahasan diawali dengan definisi algoritma sebagai langkah-langkah terstruktur untuk menyelesaikan masalah. Materi ini menjelaskan pentingnya analisis kinerja algoritma, terutama untuk kumpulan data yang besar, yang mengarah pada konsep kompleksitas algoritma

Lampiran Jawaban

Soal

- 1. Apakah definisi dari algoritma?
- a. Sebuah bahasa pemrograman tingkat tinggi.
- b. Kumpulan instruksi acak untuk komputer.
- c. Metode atau langkah yang direncanakan secara tersusun dan berurutan untuk menyelesaikan masalah.
- d. Ukuran memori yang dibutuhkan oleh sebuah program.
- e. Kecepatan sebuah prosesor dalam menjalankan data.
- 2. Kompleksitas algoritma yang mengukur seberapa besar memori yang digunakan untuk menjalankan suatu algoritma disebut...
- a. Time Complexity
- b. Worst Case Complexity
- c. Average Case Complexity
- d. Space Complexity
- e. Best Case Complexity
- 3. Notasi Asymptotic yang mewakili batas atau skenario terburuk (worst-case) dari waktu berjalan suatu algoritma adalah...
- a. Ω (Omega)
- b. O (Big-O)

c. θ (Theta)
d. T(n)
e. f(n)
4. Sebuah algoritma yang memproses setiap masukan dalam dua buah kalang (loop) bersarang umumnya memiliki kompleksitas waktu
a. O(n)
b. O(logn)
c. O(1)
d. O(n2)
e. O(n!)
5. Algoritma pengurutan yang bekerja dengan cara menukar dua data yang berdekatan jika urutannya salah adalah
a. Selection Sort
b. Insertion Sort
c. Bubble Sort
d. Merge Sort
e. Quick Sort
6. Berapakah kompleksitas waktu (Big-O) dari algoritma Bubble Sort pada kondisi terburuk (worst-case)?
a. O(n)
b. O(1)
c. O(logn)
d. O(nlogn)
e. O(n2)
7. Algoritma pengurutan yang mencari nilai ekstrem (terkecil atau terbesar) dari data yang belum terurut untuk ditukarkan dengan elemen terujung adalah
a. Insertion Sort
b. Bubble Sort

c. Selection Sort
d. Quick Sort
e. Heap Sort
8. Untuk data yang belum terurut, algoritma pencarian yang paling sesuai untuk digunakan adalah
a. Binary Search
b. Interpolation Search
c. Sequential Search / Linear Search
d. Jump Search
e. Fibonacci Search
9. Prinsip kerja dari algoritma Binary Search adalah
a. Membandingkan setiap elemen array satu per satu secara berurutan.
b. Menebak apakah data yang dicari berada di tengah-tengah data, lalu membandingkannya.
c. Menyisipkan data pada posisi yang tepat dalam sebuah array.
d. Menukar data yang berdekatan hingga semua data terurut.
e. Membagi data menjadi beberapa bagian kecil lalu mengurutkannya.
10. Menurut materi, berapa banyak perpindahan piringan yang diperlukan untuk menyelesaikan teka-teki Menara Hanoi dengan n piringan?
a. n2
b. n!
c. 2n+1

d. 2n

e. nlog(n)