model, sets

Classical Logic cheat sheet

Based on Nicholas J.J. Smith. Logic: the laws of

variables

predicate logic

names (m: Mary, l: lab)

Wml - Mary works at a lab

predicates (Wxy: x works at y)

greek $A\alpha$ alpha m latin m (emme) in Fraktur script

∈ element of set

Bß beta ⊨ logical sequence □ subformula Γγ gamma $\Delta \delta$ delta ⊢ follows $\Theta \theta$ theta ∪union $\Phi \phi$ phi \cap intersection X x chi \ relative complement Each proposition is either true or false and not both and nothing else.

Syntax:

A,B,...P, Q, R - **basic** propositions P: Mary works at ISTT lab. () - parentesis 0: Mary is a scientist.

 α , β , γ - well formed formulas

wff are A,B,...,P,Q.. + connectives or wff + connectives P→Q: Mary works at ISTI lab, so she is a scientist.

bivalence

where $\alpha \in \beta$ are wff, x is variable, $\alpha \in \beta$ + connectives or $\exists x\alpha \ \forall x\alpha$ are wff

number of argument places

where P^n is predicate and $t_1 ... t_n$ is name or

 $\forall x(\forall xl \rightarrow Sx)$: Everyone who works at a lab is a

unary - requires one wff

Ψψ psi

¬ not negation

binary - requires two wwf conjunction \land and

other connectives

verum

⊥ falsum

l nand

xor

J. nor

V or disjunction \rightarrow if... then conditional biconditional \leftrightarrow if and only if

existential quantifier ∃x exist

∀x all universal quantifier

true

false Sheffer stroke

negand

¬ α not alpha

~ a -a NOTa

 $\alpha \supset \beta \alpha \Rightarrow \beta$

 $\alpha \equiv \beta \quad \alpha \Leftrightarrow \beta$

α OR β

 $\alpha \& \beta \ \alpha \cdot \beta \ \alpha \beta \ \alpha \ \mathsf{AND} \ \beta$

!Only for predicate logic

α ↑β

if.. than

 $\alpha \rightarrow \beta$

Τ

F

Τ

α NOR β

iff

Τ

F

F

Τ

 $\alpha \times \beta$

F

Τ

Τ

F

antecedent consequent

conjunct

 $\alpha \land \beta$ alpha **and** beta $\alpha \vee \beta$ alpha **or** beta $\alpha \rightarrow \beta$ if alpha than beta

 $\alpha \leftrightarrow \beta$ if and only if alpha than beta ∃ xGx **exist** at least one x

 α | β alpha e non beta or opposite

 $\alpha \leq \beta$ alpha **or** beta, but **not both**

αΛβ

Τ

F

F

α Vβ

Τ

Τ

Τ

F

← premise 1

← premise 2

also $\rightarrow P \land Q \text{ or } \models P \land Q$

that premises are true and

NTP by it's content.

 \therefore P \land Q \leftarrow conclusion (therefore)

necessary truth preserving (NTP)

conclusion is false. Argument can be

Argument is NTP if it's impossible

 $\alpha \downarrow \beta$ **neither** alpha **nor** beta

αβ

ΤT

ΤF

FT

such as x is G

∀xGx **all** x are G

Syntax:

X,V,Z,U,V,W

a,b,c,...t A¹,B¹,C¹...A²,B², C²

variable, $P^n \dot{t}_{r} t_n$ is wff

a,b,c,...t

main connective is the one used last in order of construction of wff, these are 5 steps for $(P \land Q) \rightarrow (P \lor Q)$:

1) P basic 2) 0 basic 3) P\0 $(1,2, \land)$

4) PV0 (1.2. V) 5) $(P \land Q) \rightarrow (P \lor Q) (3,4,\rightarrow)$

1) P: It's sunny 2) Q: It's windy

3) PAQ: It's sunny and it's windy 4) PV 0: It's sunny or it's windy 5) $(P \land Q) \rightarrow (P \lor Q)$: If it's sunny and it's

windy, than it's sunny or it's windy

wff: P, Q, (P \land Q), ¬(P \land Q), (P \land Q) \rightarrow (P \lor Q) wff: Fab, Gxy, ∀x(Fx\Gxa)

 $wff: \square, \square, \square \land \square, \neg(\square \land \square), (\square \land \square)$ \rightarrow (\square V \square)

αΙβ

F

Τ

Τ

Т

not

a a

Τ F

Τ Τ

* any operator There are also other connectives, 2ⁿ types for n-place connective

Pierce arrow

exclusive disjunction

αβ

column and alternate T and F. Then move left and alternate

αβ αВ T ΤŤ F ΤF FT Τ

4) write on the right all wff to calculate and fill truth value

ΤŤ Τ T T F F T ΤF F FΤ Τ Τ FF

to write and calculate truth values.

αΛβ∴α∨β

 $\alpha \, \beta \, \alpha \, V \, \beta$ αΛβ TT Т Τ

ΤF Т F FΤ ← not valid, counterexample FF

scope of quantifier is subformula of it, the wff to which quantifier was attached during construction. If variable in subformula is the same of quantifier, it is

bound, otherwise it is free.

∀xRy - y is free ∀xFx - x is bound

 $\forall x(Rx \rightarrow Fx) - x \text{ is bound}$

1) a truth table has 2^n rows, for n basic propositions α , β , γ 2) put each proposition in its own column.

3) this table will have $2^2 = 4$ rows. Start from utmost **right** TT and FF and if you have next column TTTT FFFF:

F under connective, following order of construction

 $\alpha \beta \alpha \wedge \beta \rightarrow \alpha \vee \beta$

5) for argument, write all premises and conclusion from left

← ok ← not valid, counterexample

Model has a **domain**, set of all objects that we are taking in account (= everything).

Extension of predicate is a subset, part of the domain objects that are true for this predicate (property).

Px: x is painter; P:{Vasari} Wx: x is writer; W:{Dante, Baricco}

particular name

Model m is a scenario, situation in

which proposoition of predicate logic is true or false.

D: {Dante, Pirandello, Baricco, Vasari}

Referent is an object that respond to v: Vasari, b: Baricco

0-place

т Т

F

Validity is NTP by form, not by content. Argument is valid, when there is no scenario in which all premises are true and conclusion is false.

check validity with truth table

Translate argument into PL Construct truth table

α↓β

F

F

F

Τ

Check the rows of the table, where the premises are T and see if the conclusion is F. If it's the case, the argument is invalid.

Actual row of true table - is that that represents the actual truth values of propositions (by their

Argument is **sound** if it's valid and its premises are true in actual row.

1) Grass is green. Snow is white 🗀 Grass is green and show is white. ← valid and sound

2) Grass is red. Snow is green ... Grass is red and show is green. \leftarrow valid, not sound

S G S∧G Τ Τ Τ ← actual for 1st Τ F F F Τ F F ← actual for 2nd

1. rules without quantifiers, nonbranching

2. rules without quantifiers, branching

3. negated quantifiers (¬∃,¬∀)

4. unnegated 3 rule (substitute for one new name)

5. unnegated ♥ rule (substitute for all names that appeared on the tree

before)

For large tree apply rule for the proposition with smaller "address", where address

or large aree apply role for	and proposition man	or address, writere address
s assigned in this way:	α I	
assigned in this way.	Λ Μ	ove quantifier for antecedent:
٨		•
	$\alpha 2 \alpha 3$ ('	$\forall x\alpha \rightarrow \beta$) := $\exists x(\alpha \rightarrow \beta)$
11 12	۸ (:	$\exists x\alpha \rightarrow \beta$) := $\forall x(\alpha \rightarrow \beta)$
111 101	/\ (:	$\exists x\alpha \rightarrow \beta$:= $\forall x(\alpha \rightarrow \beta)$

111 121 α4 α5 For rest of connectives: infinite trees 1111 / $\{ \forall x \alpha \land \beta \} := \forall x \{ \alpha \land \beta \}$ Λ may appear 1211 1212 $(\beta \land \forall x\alpha) := \forall x(\beta \land \alpha)$ α 6 α 7 with $\forall x \exists y$

Test if argument Check if it's possible that all premises are true is valid: α , $\beta \cdot \gamma$ and conclusion is false, so set is satisfiable. Solve

> α ß

٦٧

If all paths are closed argument is valid, if not argument is invalid. Read from the tree.

Test if proposition α is tautology (always true)

Check if tree for the negation has solutions. Means negation cannot be true, so a proposition is always true. Solve the tree:

-α

If all paths are closed, means proposition is tautology, otherwise read from the tree

Check if the negated biconditional has solutions. Test if two propositions α , β Solve the tree:

are **equivalent** $\neg (\alpha \leftrightarrow \beta)$ If all paths are closed α , β are equivalent, if some paths are open they are not. Read the case from

Solve the tree: Test whether

the tree.

proposition α is

satisfiable or a If all paths close, proposition is contradiction. If a contradiction path remains open it's satisfiable

Test whether set Solve the tree:

of propositions α α. β are

satisfiable If all paths are closed, set is unsatisfiable. If not it

is satisfiable.

Test whether Solve the tree: two jointly - α unsatisfiable ¬B

propositions are contraries or contradictories

If all paths are closed propositions are contradictories, if a path is open they are contraries. Read off from open path a scenario in

which both are F.

To check if proposition $Fa \rightarrow \exists xFx$ is tautology. Write down a negation of the proposition:

 $\neg (Fa \rightarrow \exists xFx)$

Assume it's T. Identify the main connective: **negated** → and apply the corresponding rule, write down resulting propositions.

1) ¬ (Fa → ∃xFx) ✓

2) Fa 🗸 $\{1, \text{ negated } \rightarrow, \alpha\}$ 3)¬∃xFx ✓ $\{1. \text{ negated} \rightarrow, \neg \beta\}$ Identify next rule to apply: ¬∃ quantifier 4) ∀x¬Fx \a {3, negated \exists , $\forall x \neg \alpha$ }

Substitute x with any name - a - (a/x), write \a on the row above

 $\{4, a\}$ 5) ¬Fa ✓

Fa and ¬Fa appear in the tree. Close the tree.

Uniqueness assumption:

Russelian description

The Florence main cathedral is high. f: Florence, Cxy: x is m. cathedral of y There is exactly one main cathedral: $\exists x \forall y (Cyf \leftrightarrow y = x)$ Exist x such as for all y, if y is cathedral of Florence, it's actually x)

This cathedral is high: $\exists x (\forall y (Cyf \leftrightarrow y = x) \land Hx)$ The architect of the Florence main cathedral is talented:

 $\exists x(\forall y(Cyf \leftrightarrow y = x) \land \exists z \forall y(Ayx \leftrightarrow y = z))$