$S = \iiint \left(\frac{1}{4}\left(2\,a_{\overset{\circ}{0}}\,\mathcal{A}^{\alpha}_{\beta}\,\mathcal{A}^{x}_{\beta}\right) + \mathcal{A}^{\alpha\beta\chi}\left(-2\,a_{\overset{\circ}{0}}\,\mathcal{A}^{\alpha}_{\beta}\,+\,a_{\overset{\circ}{0}}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} + a_{\overset{\circ}{0}}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 2\,a_{\overset{\circ}{0}}\,h_{\alpha\chi}\,\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} + a_{\overset{\circ}{0}}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 2\,a_{\overset{\circ}{0}}\,h_{\alpha\chi}\,\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} + a_{\overset{\circ}{0}}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 2\,a_{\overset{\circ}{0}}\,h_{\alpha\chi}\,\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} + a_{\overset{\circ}{0}}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 2\,a_{\overset{\circ}{0}}\,h_{\alpha\chi}\,\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 2\,a_{\overset{\circ}{0}}\,h_{\alpha\chi}\,\partial_{\beta}\mathcal{A}^{\alpha\beta}_{\phantom$

	. ,-	. , ,															
^{0.} ℋ _a ∥†	0	0	0	0	0	0	$-\frac{a}{2}$	$^{1^{+}}\mathcal{A}_{a}{}^{\parallel}{}_{lphaeta}$	$^{1^+}\mathcal{F}_{a^{\perp}\alpha\beta}$	$^{1^{+}}_{\cdot}\mathcal{A}_{S^{^{\perp}}\alpha\beta}$	$\frac{1}{2}h^{\perp}_{\alpha}$	$^{1}\mathcal{A}_{a}{}^{\parallel}{}_{lpha}$	${}^{1}\mathcal{A}_{a^{\perp}\alpha}$	$^{1}\mathcal{A}_{s}^{\perpt}{}_{\alpha}$	$^{1}\mathcal{A}_{s}^{lt}{}_{\alpha}$	${}^{1}\mathcal{A}_{S}{}^{\perp h}{}_{lpha}$	${}^{1}\mathcal{H}_{S}{}^{\parallelh}{}_{\alpha}$
							$^{1.}\mathcal{A}_{a}^{\parallel}\dagger^{\alpha\beta}$	$\frac{1}{4} \left(-a_{0} - c_{1} k^{2} \right)$	$-\frac{a_{0}}{2\sqrt{2}}$	$-\frac{c \cdot k^2}{4}$	0	0	0	0	0	0	0
							${}^{1^+}\mathcal{A}_{a}{}^{\scriptscriptstyle \perp}\dagger^{\alpha\beta}$	$-\frac{a_{0}}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
							${}^{1^+}\mathcal{A}_{S}{}^{\scriptscriptstyle \perp}\dagger^{lphaeta}$	$-\frac{c \cdot k^2}{4}$	0	$\frac{1}{4} (a_0 - c_1 k^2)$	0	0	0	0	0	0	0
							$\frac{1}{2}h^{\perp} + \alpha$	0	0	0	0	$\frac{i a. k}{4 \sqrt{2}}$	0	$-\frac{i a \cdot k}{4 \sqrt{6}}$	$\frac{1}{4} \bar{l} \sqrt{\frac{5}{6}} a_0 k$	$-\frac{i a \cdot k}{4 \sqrt{3}}$	$-\frac{i a. k}{0}$
							${}^{1}\mathcal{A}_{a}{}^{\parallel}\dagger^{lpha}$	0	0	0	$-\frac{ia.k}{0}$	$\frac{1}{4} \left(-a_0 - c_1 k^2 \right)$	$\frac{a_{0}}{2\sqrt{2}}$	$-\frac{c \cdot k^2}{4 \sqrt{3}}$	$-\frac{1}{4} \sqrt{\frac{5}{3}} c_{2} k^{2}$	$-\frac{c \cdot k^2}{2 \sqrt{6}}$	$\frac{c \cdot k^2}{4 \sqrt{3}}$
							$^{1}\mathcal{A}_{a^{\perp}}\dagger^{lpha}$	0	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0
							$\frac{1}{2}\mathcal{A}_{S}^{Lt}t^{\alpha}$	0	0	0	$\frac{i a. k}{4 \sqrt{6}}$	$-\frac{c_{2}k^{2}}{4\sqrt{3}}$	0	$\frac{1}{12} \left(-4 a_{\cdot \cdot} - c_{\cdot \cdot} k^2 \right)$	$\frac{1}{12} \sqrt{5} (2 a_{.} - c_{.} k^{2})$,	$\frac{1}{12} \left(-2 a_{.} + c_{.} k^2 \right)$
							${}^{1}\mathcal{A}_{S}^{\parallel t}\dagger^{\alpha}$	0	0	0	$-\frac{1}{4}i\sqrt{\frac{5}{6}}a_{0}k$	$4 - \frac{1}{4} \sqrt{\frac{5}{3}} c_1 k^2$	0	$\frac{1}{12} \sqrt{5} (2 a_0 - c_1 k^2)$	$\frac{1}{12} (4 a_0 - 5 c_1 k^2)$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + c_1 k^2)$	$\frac{1}{12} \sqrt{5} \left(-2 a_{.} + c_{.} k^{2} \right)$
							$^{1}\mathcal{A}_{S}^{\perph}\dagger^{\alpha}$	0	0	0	$\frac{i a. k}{4 \sqrt{3}}$	$-\frac{c_{2}k^{2}}{2\sqrt{6}}$	0	$-\frac{a.+c.k^2}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_{.0} + c_{.2} k^2)$	$\frac{1}{6} (2 a_0 - c_1 k^2)$	$\frac{a \cdot + c \cdot k^2}{6 \sqrt{2}}$
							$^{1}\mathcal{A}_{s}^{lh}t^{\alpha}$	0	0	0	$\frac{i a. k}{4 \sqrt{6}}$	$\frac{c \cdot k^2}{4 \sqrt{3}}$	0	$\frac{1}{12} \left(-2 a_0 + c_1 k^2 \right)$	$\frac{1}{12} \sqrt{5} \left(-2 a_0 + c_2 k^2\right)$	$\frac{a \cdot + c \cdot k^2}{6 \sqrt{2}}$	$\frac{1}{12} (5 a_{.} - c_{.} k^{2})$

6 √2							
$(5ac.k^2)$	2. ⁺ <i>h</i> αβ	$^{2^{+}}\mathcal{A}_{a}{}^{\parallel}{}_{\alpha\beta}$	$^{2^{+}}\mathcal{A}_{S}^{\parallel}{}_{\alpha\beta}$	$^{2^{+}}\mathcal{A}_{S^{}\alpha\beta}$	$2^{-}\mathcal{H}_{a}^{\parallel}_{\alpha\beta\gamma}$	$\chi^{2}\mathcal{A}_{S}^{\parallel}_{\alpha\beta\chi}$	_
$^{2^{+}}h^{\parallel}\uparrow^{lphaeta}$	0	$-\frac{i a. k}{0}$	$-\frac{i a. k}{4 \sqrt{3}}$	$\frac{i a.k}{4 \sqrt{6}}$	0	0	
$^{2^{+}}\mathcal{A}_{a}{}^{\parallel}\dagger^{^{lphaeta}}$	$\frac{i a.k}{4 \sqrt{2}}$	$\frac{a}{0}$	0	0	0	0	
$^{2^{+}}\mathcal{A}_{s}^{\parallel}\dagger^{\alpha\beta}$	$\frac{i a.k}{0}$	0	$-\frac{a}{2}$	0	0	0	
$2^{+}\mathcal{A}_{a}^{\parallel} + \alpha^{\beta}$ $2^{+}\mathcal{A}_{s}^{\parallel} + \alpha^{\beta}$ $2^{+}\mathcal{A}_{s}^{\perp} + \alpha^{\beta}$ $2^{+}\mathcal{A}_{s}^{\perp} + \alpha^{\beta}$ $2^{+}\mathcal{A}_{s}^{\parallel} + \alpha^{\beta}$ $2^{+}\mathcal{A}_{s}^{\parallel} + \alpha^{\beta}$	$-\frac{i a. k}{4 \sqrt{6}}$	0	0	$\frac{a}{0}$	0	0	
$^{2}\mathcal{A}_{a}^{\parallel} + ^{\alpha\beta\chi}$	0	0	0	0	$\frac{a}{0}$	0	
$^{2}\mathcal{A}_{s}^{\parallel}\dagger^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{a}{0}$	$3^{-}\mathcal{A}_{s}^{\parallel}_{\alpha}$
						$3^{-}\mathcal{A}_{s}^{\parallel} + \alpha^{\alpha\beta\chi}$	$-\frac{a}{2}$

Saturated propagator

	$\overset{0^+}{\cdot}\mathcal{T}^{\scriptscriptstyle \perp}$	$^{0,^{+}}\mathcal{T}^{\parallel}$	${}^{0^+}\mathcal{W}_a{}^{\parallel}$	${}^{0^+}\mathcal{W}_{S}{}^{\mathtt{t}}$	${}^{0^+}\mathcal{W}_{S}{}^{\parallel}$	$^{0,+}W_{s}^{\perp h}$	0 $\mathcal{W}_{a}^{\parallel}$
^{0,+} <i>T</i> [⊥] †	$-\frac{36 k^2}{a_0 (16+3 k^2)^2}$	$\frac{4 \sqrt{3}}{16 a_0 + 3 a_0 k^2}$	$\frac{2 i \sqrt{6} k}{16 a + 3 a k^{2}}$	$-\frac{72 i k}{a \cdot (16+3 k^2)^2}$	$\frac{8 i k (19+3 k^2)}{a_0 (16+3 k^2)^2}$	$-\frac{4 i \sqrt{2} k (10+3 k^2)}{a_0 (16+3 k^2)^2}$	0
^{0,+} √"†	$\frac{4 \sqrt{3}}{16 a_0 + 3 a_0 k^2}$	$\frac{4}{a \cdot k^2}$	$\frac{2 i \sqrt{2}}{a \cdot k}$	$\frac{8 i \sqrt{3}}{16 a_0 k + 3 a_0 k^3}$	$-\frac{8i}{\sqrt{3}(16a.k+3a.k^3)}$	$-\frac{8i\sqrt{\frac{2}{3}}}{16a_0k+3a_0k^3}$	0
0.+Wa"+	$-\frac{2 i \sqrt{6} k}{16 a + 3 a k^{2}}$	$-\frac{2i\sqrt{2}}{a\cdot k\atop 0}$	0	$\frac{4 \sqrt{6}}{16 a. +3 a. k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$-\frac{8}{\sqrt{3} (16 a_0 + 3 a_0 k^2)}$	0
${}^{0^{+}}W_{s}^{\perp t}$ †	$\frac{72 i k}{a \cdot (16 + 3 k^2)^2}$	$-\frac{8i\sqrt{3}}{16a.k+3a.k^{3}}$	$\frac{4 \sqrt{6}}{16 a_0 + 3 a_0 k^2}$	$-\frac{144}{a_{.0}(16+3k^2)^2}$	$\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$	0
^{0,+} W _s †	$-\frac{8ik(19+3k^2)}{a.(16+3k^2)^2}$	$\frac{8i}{\sqrt{3} (16a.k+3a.k^3)}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{16(19+3k^2)}{a\cdot (16+3k^2)^2}$	$-\frac{16(35+6k^2)}{3a.(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a.(16+3k^2)^2}$	0
${}^{0^{+}}\mathcal{W}_{s}{}^{\perp h}$ †	$\frac{4i\sqrt{2}k(10+3k^2)}{a_0(16+3k^2)^2}$	$\frac{8 i \sqrt{\frac{2}{3}}}{16 a. k+3 a. k^3}$	$-\frac{8}{\sqrt{3}(16a_{.}+3a_{.}k^{2})}$	$-\frac{8\sqrt{2}(10+3k^2)}{a\cdot(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a\cdot(16+3k^2)^2}$	$\frac{32(13+3k^2)}{3a.(16+3k^2)^2}$	0
⁰⁻ Wa [∥] †	0	0	0	0	0	0	$-\frac{2}{a}$.

$-\frac{2}{a}$	$1^+W_a^{\parallel}_{\alpha\beta}$	$^{1^{+}}\mathcal{W}_{a^{\perp}\alpha\beta}$	$^{1^{+}}\mathcal{W}_{S^{^{\perp}}lphaeta}$	$^1\mathcal{T}^{\scriptscriptstyle \perp}{}_{lpha}$	$\mathbb{E}_{\mathbf{W_a}^{\parallel}_{\alpha}}$	1 : $W_{a^\perp}{}_{lpha}$	${}^1\mathcal{W}_{S^{\perpt}}{}^{\alpha}$	$\mathcal{W}_{s}^{lt}{}_{\alpha}$	1 $\mathcal{W}_{S}^{\perp h}{}_{lpha}$	$\mathbb{R}^{1}W_{S}^{\parallelh}{}_{\alpha}$
$^{1.}W_{a}^{\parallel}\dagger^{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
$1^+W_a^{\perp}\dagger^{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2}{a \cdot -c \cdot k^2}$	$-\frac{2\sqrt{2}c_{2}k^{2}}{a_{0}^{2}-a_{0}c_{2}k^{2}}$	0	0	0	0	0	0	0
$1.^+W_{S}^{\perp} \uparrow^{\alpha\beta}$	0	$-\frac{2\sqrt{2}c_{2}k^{2}}{a_{0}^{2}-a_{0}c_{2}k^{2}}$	$\frac{4}{a \cdot -c \cdot k^2}$	0	0	0	0	0	0	0
$^{1}\mathcal{T}^{\perp}\dagger^{lpha}$	0	0	0	$\frac{2 k^2}{a_0 (2+k^2)^2}$	$\frac{2 i \sqrt{2} k}{2 a + a k^2}$	$\frac{i k (4+k^2)}{a \cdot (2+k^2)^2}$	$-\frac{i\sqrt{\frac{2}{3}} k(4+3k^2)}{a_0(2+k^2)^2}$	0	$-\frac{i k (8+3 k^2)}{\sqrt{3} a_0 (2+k^2)^2}$	0
$\frac{1}{2} \mathcal{W}_{a}^{\parallel} t^{\alpha}$	0	0	0	$-\frac{2 i \sqrt{2} k}{2 a_0 + a_0 k^2}$	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$-\frac{2 k^2}{\sqrt{3} (2 a_0 + a_0 k^2)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	0
${}^{1}\mathcal{W}_{a}{}^{\scriptscriptstyle\perp}\dagger^{\scriptscriptstylelpha}$	0	0	0	$-\frac{i k (4+k^2)}{a_0 (2+k^2)^2}$	$\frac{\sqrt{2} (4+k^2)}{a_0(2+k^2)}$	$\frac{(4+k^2)^2}{2a_0(2+k^2)^2}$	$-\frac{8+8 k^2+k^4}{\sqrt{6} a_0(2+k^2)^2}$	$-\frac{\sqrt{\frac{10}{3}}}{a}$	$\frac{-16-4 k^2+k^4}{2 \sqrt{3} a_0 (2+k^2)^2}$	$-\frac{2\sqrt{\frac{2}{3}}}{a}$
¹⁻ W _s ^{1t} † ^α	0	0	0	$\frac{i\sqrt{\frac{2}{3}}k(4+3k^2)}{a\cdot(2+k^2)^2}$	$-\frac{2 k^2}{\sqrt{3} (2 a_0 + a_0 k^2)}$	$-\frac{8+8 k^2+k^4}{\sqrt{6} a_0 (2+k^2)^2}$	$\frac{1}{3} \left(-\frac{1}{c_{\frac{1}{2}}k^2} + \frac{-16-8k^2+k^4}{a_{\frac{1}{0}}(2+k^2)^2} \right)$	$-\frac{\sqrt{5} (a2c.k^2)}{3a.c.k^2}$	$\frac{-\frac{2}{c_2 \cdot k^2} + \frac{-1 \cdot \frac{4}{(2+k^2)^2}}{a_0^2}}{3 \sqrt{2}}$	$\frac{4}{3a_{.0}} - \frac{2}{3c_{.2}k^2}$
$\mathcal{W}_{s}^{lt} t^{\alpha}$	0	0	0	0	0	$-\frac{\sqrt{\frac{10}{3}}}{a}$	$-\frac{\sqrt{5} (a_0-2c_1k^2)}{3a_0c_2k^2}$	$\frac{4}{3a.} - \frac{5}{3c.k^2}$	$-\frac{\sqrt{10} \left(a_{.}+c_{.}k^{2}\right)}{3a_{.}c_{.}k^{2}}$	$-\frac{2\sqrt{5}(a2c.k^2)}{3a.c.k^2}$
1 · W_{s} ^{1h} $^{\alpha}$	0	0	0	$\frac{i k (8+3 k^2)}{\sqrt{3} a_0 (2+k^2)^2}$	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	$\frac{-16-4 k^2+k^4}{2 \sqrt{3} a_{.0} (2+k^2)^2}$	$\frac{-\frac{2}{c_{2}k^{2}}+\frac{-1-\frac{4}{(2+k^{2})^{2}}}{\frac{a}{0}}}{3\sqrt{2}}$	$-\frac{\sqrt{10} (a_{.}+c_{.} k^{2})}{3 a_{.} c_{.} k^{2}}$		$-\frac{2\sqrt{2}(a.+c.k^2)}{3a.c.k^2}$
$\mathcal{X}_{S}^{I^{L}}W_{S}^{I^{h}}T^{\alpha}$	0	0	0	0	0	$-\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$\frac{4}{3a_{.}} - \frac{2}{3c_{.}k^{2}}$	$-\frac{2\sqrt{5}(a2c.k^2)}{3a.c.k^2}$	$-\frac{2\sqrt{2}(a.+c.k^2)}{3a.c.k^2}$	$\frac{4}{3} \left(\frac{5}{a_0} - \frac{1}{c_0 k^2} \right)$

$\frac{4}{3} \left(\frac{5}{a} - \frac{1}{c_1 k^2} \right)$	$2^+_{\cdot}\mathcal{T}^{\parallel}_{\alpha\beta}$	$^{2^{+}}W_{a}^{\parallel}{}_{\alpha\beta}$	$^{2^{+}}W_{s}^{\parallel}{}_{\alpha\beta}$	$^{2^{+}}W_{S^{\perp}\alpha\beta}$	$2^{-}W_{a}^{\parallel}_{\alpha\beta\chi}$	$2^{-}W_{s}^{\parallel}_{\alpha\beta\chi}$
$^{2.}\mathcal{T}^{\parallel}\dagger^{lphaeta}$	$-\frac{8}{a \cdot k^2}$	$-\frac{4i\sqrt{2}}{aik}$	$\frac{4i}{\sqrt{3}}a_{0}k$	$\frac{4 i \sqrt{\frac{2}{3}}}{a \cdot k}$	0	0
$^{2.}W_{a}^{\parallel}\dagger^{\alpha\beta}$	$\frac{4i\sqrt{2}}{a.k\atop 0}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_{0}}$	$\frac{4}{\sqrt{3}}a_{0}$	0	0
$^{2^{+}}W_{s}^{\parallel}$ † $^{\alpha\beta}$	$-\frac{4i}{\sqrt{3}} a_{0k}$	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$-\frac{8}{3a}$	$-\frac{2\sqrt{2}}{3a}$	0	0
$^{2^{+}}W_{s}^{\perp}\dagger^{\alpha\beta}$	$-\frac{4i\sqrt{\frac{2}{3}}}{a.k\atop 0}k$	$\frac{4}{\sqrt{3}}a_{0}$	$-\frac{2\sqrt{2}}{3a_{0}}$	8 3 a.	0	0
$2^{-}W_{a}^{\parallel} + ^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a}$	0
$2^{-}W_{s}^{\parallel} + ^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a}$
						$3^{-}W_{s}^{\parallel} + ^{\alpha\beta\chi}$

Source constraints

Spin-parity form	Covariant form	Multiplicities
$k^{0^{+}} \mathcal{W}_{s}^{\parallel} + 2 k^{0^{+}} \mathcal{W}_{s}^{\perp h} - 6 i^{0^{+}} \mathcal{T}^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} + \partial_{\chi} \partial^{\chi} \partial_{\alpha} \mathcal{W}^{\alpha\beta}{}_{\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
$k^{0^{+}}W_{s}^{\perp t} + 2i^{0^{+}}\mathcal{T}^{\perp} == 0$	$2\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == \partial_{\chi}\partial_{\beta}\partial_{\alpha}\mathcal{W}^{\alpha\beta\chi}$	1
$k^{1}W_{s}^{\perp h^{\alpha}} - 6i^{1}\mathcal{T}^{\perp^{\alpha}} = k(3^{1}W_{a}^{\perp^{\alpha}} + 1W_{s}^{\perp t^{\alpha}})$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} = 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta}$	3
Total expected gauge generators:		5

Massive spectrum

Massive particle

Pole residue:	$-\frac{0}{c_{\cdot 2}} > 0$
Square mass:	$\frac{\frac{a}{0}}{\frac{c}{2}} > 0$
Spin:	1
Parity:	Even

Massless spectrum

Unitarity conditions

(Demonstrably impossible)