Package 'SOfireA'

November 15, 2016

Title Satellite Observations for Fire Activity					
Version 1.0					
Date 2016-11-15					
Author Matthias Forkel <matthias.forkel@geo.tuwien.ac.at>[aut, cre]</matthias.forkel@geo.tuwien.ac.at>					
Maintainer Matthias Forkel <matthias.forkel@geo.tuwien.ac.at></matthias.forkel@geo.tuwien.ac.at>					
Description SOFIA (Satellite Observations for Fire Activity) is an empirical modelling concept to predict burned area based on satellite and climate data. The package implements the basic SOFIA model structure, and functions to optimize and plot SOFIA models.					
Depends R (>= 3.2.3), rgenoud, ModelDataComp					
Suggests License GPL-2					
URL					
LazyLoad yes					
R topics documented:					
SOfireA-package AllEqual					

2 AllEqual

SOfireA-package

Satellite Observations for Fire Activity

Description

SOFIA (Satellite Observations for Fire Activity) is an empirical modelling concept to predict burned area based on satellite and climate data. The package implements the basic SOFIA model structure, and functions to optimize and plot SOFIA models.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

AllEqual

Check if all values in a vector are the same

Description

This function is used to check if all values in a vector are equal. It can be used for example to check if a time series contains only 0 or NA values.

Usage

```
AllEqual(x)
```

Arguments

Х

numeric, character vector, or time series of type ts

Value

The function returns TRUE if all values are equal and FALSE if it contains different values.

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

FitSofia 3

Examples

```
\# check if all values are equal in the following vectors: AllEqual(1:10)  
AllEqual(rep(0, 10))  
AllEqual(letters)  
AllEqual(rep(NA, 10))
```

FitSofia

Fit a Sofia model to a data set

Description

The function fits a SOFIA model to a dataset.

Usage

Arguments

X	data.frame with independent variables
У	dependent variable (observation)
unc	uncertainty of dependent variable
per.group	a boolean vector that indicates if a column in x acts per group (e.g. PFTs)
nodes	number of nodes for parallel computaion during genetic optimization
sofiapar	SofiaPar object with prior parameters
restart	restart previous Sofia optimization? 0 = start new, 1 = continue with previous, 2 = do post-processing
cost	cost function to be used
	further arguments

Details

No details.

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

References

No reference.

See Also

FitDataModel

4 Logistic

Logistic

Logistic function

Description

Compute values of a logistic function.

Usage

```
Logistic(par, x, ...)
```

Arguments

```
par parameters of logistic function, a vector of length 3 (asymptote, slope, turning point)

x independent variable
... further arguments (not used)
```

Details

No details.

Value

a vector

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

References

No reference.

See Also

FitDataModel

```
x <- -20:20
par <- c(1, 0.5, 0)
plot(x, Logistic(par, x), type="1")
par <- c(1, 0.2, 0)
plot(x, Logistic(par, x), type="1")
par <- c(10, -1, 0)</pre>
```

MakeFig 5

```
plot(x, Logistic(par, x), type="l")
par <- c(-2, -1, 0)
plot(x, Logistic(par, x), type="l")</pre>
```

MakeFig

Calculate figure positions for graphics that consist of multiple figure

Usage

```
MakeFig(nfig, border = c(0, 1, 0, 1), nrow = NULL, ncol = NULL)
```

Arguments

nfig number of figures

border relative graphic borders in which the figures should be placed

nrow number of rows to arrange the figures ncol number of cols to arrange the figures

Value

A list with positions for each figure and number of rows and cloumns

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

Pd2Logistic

Fit a logistic function to a partial dependence

Description

Fits parameters of logistic function to an object of class "PartialDependence"

Usage

```
Pd2Logistic(pd, normalize = TRUE, direction = c(0, -1, 1), \ldots)
```

Arguments

```
pd object of class "PartialDependence"
```

normalize normalize y variable to [0,1]

direction slope of the fit: 0 test positive and negative, -1 test only negative, 1 test onle

positive

... further arguments

6 plot.Sofia

Details

No details.

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

References

No reference.

See Also

PartialDependence, Logistic

plot.Sofia

plot a Sofia object

Description

Plots a Sofia object.

Usage

Arguments

x a 'Sofia' object
ylab label for response variable
mfrow number of rows and columns for the plot
names names of the variables in the response functions
main title of the plot
plot.order Order for plotting of factors
labels Labels for subplots. Set to NULL to avoid labels.
... further arguments (not used)

Details

No details.

Author(s)

 $Matthias\ Forkel < matthias.forkel@geo.tuwien.ac.at > [aut, cre]$

plot.SofiaOpt 7

References

No reference.

See Also

Sofia

Examples

```
# explanatory variables
sm <- 1:100
temp <- rnorm(100, 12, 10)
x <- cbind(sm, temp)

# fractional coverage of groups, e.g. plant functional types
tree <- runif(100, 0, 0.8)
grass <- 1 - tree
area <- cbind(tree, grass)

# with some more realisitc parameters:
par <- SofiaPar(colnames(x), per.group=c(TRUE, FALSE), group.names=c("tree", "grass"))
par$par <- c(1, 1, 20, 2, 1, -0.2, -0.1, 13, 10)
sf <- Sofia(x, area, per.group=c(TRUE, FALSE), sofiapar=par)
plot(sf)</pre>
```

plot.SofiaOpt

plot a SofiaOpt object

Description

The optimization within SofiaFit produces files that can be used to restart or monitor an optimization experiment. These files can be read with ReadSofiaFit and plotted with this function..

Usage

```
## S3 method for class 'SofiaOpt'
plot(x, plot.objfct = c("Cor", "MEF", "Pbias"), ...)
```

Arguments

Details

No details.

8 predict.Sofia

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

References

No reference.

See Also

SofiaFit

predict.Sofia

Predict values based on a 'Sofia' object

Description

Make a predicition based on a Sofia object and newdata

Usage

```
## S3 method for class 'Sofia'
predict(object, newdata, return.all = FALSE, ...)
```

Arguments

object an object of class 'Sofia', see Sofia

newdata a data frame with columns names as in object\$group.names for area fractions of

groups and as in object\$x.names for explantory variables

return.all return all Sofia results? If FALSE, returns only total burned area

... further arguments (not used)

Details

No details.

Value

A vector with predicted values.

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

References

No reference.

ReadSofiaOpt 9

See Also

```
Sofia, SofiaOpt
```

ReadSofiaOpt

Read results from an SOFIA optimization experiment

Description

The optimization within SofiaOpt produces files that can be used to restart or monitor an optimization experiment. This function reads these files.

Usage

```
ReadSofiaOpt(files, combine = TRUE, ...)
```

Arguments

files vector of file names

combine combine several files in a single file?

... further arguments (not used)

Details

No details.

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

References

No reference.

See Also

SofiaOpt

10 Sofia

Sofia

Satellite Observations for Fire Activity

Description

SOFIA (Satellite Observations for Fire Activity) is an empirical modelling concept to predict burned area based on satellite and climate data. Thereby several logistic functions are multiplicatively combined.

Usage

Arguments

X	data.frame with independent variables
area	a vector or data.frame/matrix with fractional coverage of grid cell area. If 'area' is a vector, it represents the maximal fractional burned area of a grid cell (e.g. the maximum vegetated area). If 'area' is a data.frame or matrix, it represents fractional coverage of groups (e.g. PFTs). Columns should represent groups and rows should be observations (grid cells and time steps).
per.group	a boolean vector that indicates if a column in x acts per group (e.g. PFTs)
sofiapar	object of class SofiaPar which is used for the fit. If NULL, the argument 'par' is used to create sofiapar using the function SofiaPar
par	vector of parameters of logistic functions. If NULL, default parameters are used (that are usually physically not plausible)
return.all	return all input and results? The function returns an object of class 'Sofia'. If TRUE, this object includes in the 'data' slot the fitted values, the fits per group, the response functions, the inputs 'x' and 'area'. If FALSE, only the fitted values are included.
• • •	further arguments

Details

No details.

Value

an object of class 'Sofia' which is actually a list.

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

SofiaOpt 11

References

No reference.

See Also

```
SofiaFit, Logistic
```

```
# explanatory variables
sm <- 1:100
temp <- rnorm(100, 12, 10)
x \leftarrow cbind(sm, temp)
# fractional coverage of groups, e.g. plant functional types
tree <- runif(100, 0, 0.8)
grass <- 1 - tree
area <- cbind(tree, grass)</pre>
# calculate Sofia with some dummy parameters:
sf <- Sofia(x, area, per.group=c(TRUE, FALSE))</pre>
sf$eq
summary(sf$data)
plot(sf)
# with some more realisitc parameters:
par <- SofiaPar(colnames(x), per.group=c(TRUE, FALSE), group.names=c("tree", "grass"))</pre>
par
par$par <- c(1, 1, 20, 2, 1, -0.2, -0.1, 13, 10)
sf <- Sofia(x, area, per.group=c(TRUE, FALSE), sofiapar=par)</pre>
plot(sf)
sm <- 1:100
sm.2 <- sm
temp <- rnorm(100, 12, 10)
x \leftarrow cbind(sm, sm.2, temp)
par <- SofiaPar(colnames(x), per.group=c(TRUE, TRUE, FALSE), group.names=c("tree", "grass</pre>
par$par <- c(2, 1, 20, 2, 2, 0.3, 0.2, 20, 40, 1, 1, -0.2, -0.1, 20, 10)
sf <- Sofia(x, area, per.group=c(TRUE, TRUE, FALSE), sofiapar=par)</pre>
plot(sf)
```

SofiaOpt

Description

The function fits a SOFIA model to observations by estimating model parameters using Sofia genetic optimization.

Usage

```
SofiaOpt(x, area = rep(1, nrow(x)), per.group = rep(FALSE, ncol(x)),
    sofiapar = NULL, par.init = NULL, obs, unc = NULL, cost = NULL,
    pop.size = 500, max.generations = 30, path = NULL, restart = 0,
    nodes = 5, BFGSburnin = max.generations - 2, ...)
```

Arguments

X	data.frame with independent variables	
area	a vector or data.frame/matrix with fractional coverage of grid cell area. If 'area' is a vector, it represents the maximal fractional burned area of a grid cell (e.g. the maximum vegetated area). If 'area' is a data.frame or matrix, it represents fractional coverage of groups (e.g. PFTs). Columns should represent groups and rows should be observations (grid cells and time steps).	
per.group	a boolean vector that indicates if a column in x acts per group (e.g. PFTs)	
sofiapar	object of class SofiaPar which is used for the fit. If NULL, the argument 'par.init' is used to create sofiapar using the function SofiaPar	
par.init	matrix of inital parameters for optimization	
obs	a vector of observed values	
unc	vector of observation uncertainties, if NULL an uncertainty of 1 is is used for all observations	
cost	a function to compute the cost, if NULL SSE (sum of squared error) is used	
pop.size	population size, see genoud	
max.generations		
	maximum number of generations, see genoud	
path	directory for optimization results	
restart	restart: $0 = \text{start}$ with new optimization, $1 = \text{start}$ with best individuals from previous optimization in 'path', $2 = \text{return}$ results	
nodes	how many nodes to use for parallel executaion of genoud?	
BFGSburnin	The number of generations before the L-BFGS-B algorithm is first used, see genoud	
	further arguments to genoud	
	per.group sofiapar par.init obs unc cost pop.size max.generation path restart nodes BFGSburnin	

Details

No details.

Value

an object of class 'Sofia' which is actually a list.

SofiaOpt 13

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

References

No reference.

See Also

Sofia

```
# some example data
n < -500
sm <- runif(n, 0, 100) # soil moisture
temp <- rnorm(n, 12, 10) # temperature
tree <- runif(n, 0, 1) # fractional tree cover</pre>
grass <- 1 - tree # fractional grass cover
area <- cbind(tree, grass)</pre>
x <- cbind(sm, temp)
# create 'observations'
sofiapar <- SofiaPar(colnames(x), colnames(area), per.group=c(TRUE, FALSE))</pre>
sofiaparpar <- c(1, 1, 20, 2, 1, -0.2, -0.1, 13, 10) # actual parameters
sf <- Sofia(x, area, per.group=c(TRUE, FALSE), sofiapar=sofiapar)</pre>
plot(sf) # fitted values vs. temperature
obs <- sf$data$y # 'observations'
# re-estimate parameters: for a real optimization pop.size and max.generations should be
setwd("~/tmp/")
par.init <- sofiaparpar * 1.5 # some inital parameters for optimization
sfbest <- SofiaOpt(x, area, per.group=c(TRUE, FALSE), obs=obs, sofiapar=sofiapar, par.ini
sfbest
plot(sfbest)
# plot iterations of optimization: set directory where optimization results are saved
files <- list.files(pattern="SofiaOpt")</pre>
fit <- ReadSofiaOpt(files)</pre>
plot(fit)
plot(fit, plot.objfct = c("IoA", "FV", "MEF"))
# compare retrieved with original parameters
sfbest$par$par / par.init
# compare retrieved vs. real
sim <- sfbest$data$y</pre>
lim <- range(c(sim, obs))</pre>
plot(obs, sim, ylim=lim, xlim=lim)
abline(0,1)
ObjFct(sim, obs)
```

14 SofiaPar

```
# compare real and retrieved response functions
plot(sf$data$x.temp, sf$data$f.temp)
points(sfbest$data$x.temp, sfbest$data$f.temp, col="red")

plot(sf$data$x.sm, sf$data$f.sm.tree)
points(sfbest$data$x.sm, sfbest$data$f.sm.tree, col="red")

plot(sf$data$x.sm, sf$data$f.sm.grass)
points(sfbest$data$x.sm, sfbest$data$f.sm.grass, col="red")
```

SofiaPar

Parameters for SOFIA models

Description

The function creates an object of class 'SofiaPar' (which is actually a list) which contains information about Sofia model parameters.

Usage

```
SofiaPar(x.names, per.group = rep(FALSE, length(x.names)), group.names = NULL,
    par.act = NULL, par.prior = NULL, par.lower = NULL, par.upper = NULL,
    ...)
```

Arguments

Details

No details.

Value

An object of class 'SofiaPar', which is actually a list.

SofiaPar 15

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

References

No reference.

See Also

```
Sofia, Logistic
```

```
# explanatory variables
sm <- 1:100
temp <- rnorm(100, 12, 10)
x <- cbind(sm, temp)

# fractional coverage of groups, e.g. plant functional types
tree <- runif(100, 0, 0.8)
grass <- 1 - tree
area <- cbind(tree, grass)

# parameters for SOFIA models
par <- SofiaPar(colnames(x), per.group=c(TRUE, FALSE), group.names=c("tree", "grass"))
par</pre>
```