Thoughts on lie algebras

Daniel Miller

August 7, 2016

Let k be a commutative ring. We will write A to denote the category of k-algebras, but much of this will work for A an arbitrary (sufficiently nice) category.

Let \mathcal{A}^* be the category of augmented k-algebras (or more generally, the category of arrows $0 \to a$ in \mathcal{A}). Then the initial and terminal objects in \mathcal{A}^* are the same. Let $\mathrm{Ab}(\mathcal{A}^*)$ denote the category of abelian group objects in \mathcal{A}^* . There is an obvious forgetful functor $\mathrm{Ab}(\mathcal{A}^*) \to \mathcal{A}^*$. It has a left adjoint which we denote by Ω . One has

$$\Omega(A,\varepsilon) = k \oplus \varepsilon_* \Omega^1_{A/k}$$

Now let $Cg(\mathcal{A}^*)$ denote the category of cogroup objects in \mathcal{A}^* – in other words group objects in $\mathcal{A}^{*\circ}$. So hom(G, -) is a group-valued functor for $G \in Cg(\mathcal{A}^*)$.

If $G \in \operatorname{Cg}(\mathcal{A}^*)$ and $M \in \operatorname{Ab}(\mathcal{A}^*)$, then $\operatorname{hom}_{\mathcal{A}^*}(G,M)$ has two group operations, each of which distribute over the other. Thus $\operatorname{hom}_{\operatorname{Ab}(\mathcal{A}^*)}(\Omega G, -)$ is canonically an abelian-group functor, so ΩG , a priori only an abelian group object, is also an abelian co-group object in \mathcal{A}^* . Put $\mathfrak{g} = \Omega G$. I claim that \mathfrak{g} has a natural action of G, the *adjoint action* ad : $G \to \operatorname{Aut} \mathfrak{g}$. We first realize this action on

Given $g \in G(A)$, $X \in \mathfrak{g}(A)$

$$g \in \hom_{\mathcal{A}^*}(G, A)$$
$$X \in \hom_{\mathcal{A}^*}(\mathfrak{g}, A) = \hom_{\operatorname{Ab}(\mathcal{A}^*)}(\mathfrak{g}, k \oplus A) = \hom_{\mathcal{A}^*}(G, k \oplus A)$$

1 Some examples

Let A be (possibly non-associative) k-algebra. Let $\operatorname{Aut}(A)$ be the funtor $R \mapsto \operatorname{Aut}_R(A \otimes_k R)$. Put $G = \operatorname{Aut}(A)$; we want to compute $\mathfrak{g} = \operatorname{Lie} G$. We have

$$\mathfrak{g}(R) = \ker(G(R[\varepsilon]) \to G(R)) = \ker(\operatorname{Aut}_R(A_{R[\varepsilon]}) \to \operatorname{Aut}_R(A_R))$$

If $\phi: A \otimes R[\varepsilon] \to A \otimes R[\varepsilon]$ is an isomorphism of $R[\varepsilon]$ -algebras in $\mathfrak{g}(R)$. Then ϕ is of the form $a \otimes r \mapsto (a + (\partial a)\varepsilon) \otimes r$, for $\partial: A_r \to A_R$ an R-linear map. One checks that ϕ is an automorphism if and only if ∂ is a derivation. We have:

$$\operatorname{Der}(A) \xrightarrow{\sim} \operatorname{Lie}(\operatorname{Aut} A)$$

$$\operatorname{End}(V) \xrightarrow{\sim} \operatorname{Lie}(\operatorname{GL} V)$$

If we have $\rho: G \to \operatorname{Aut} A$, then we get $\rho: \operatorname{Lie} G \to \operatorname{Der}(A)$. In particular, the adjoint action of G on itself gives $\mathfrak{g} \to \operatorname{Der}(G)$.

Let's work things out for G = GL(V), where V is some k-module. We want to get a morphism $\mathfrak{g} \to Der(G)$. We look at R-valued points. An element $X \in \mathfrak{g}(R)$ is identified with

$$\exp(X) = 1 + X\varepsilon \in \ker(\operatorname{GL}(V \otimes R[\varepsilon]) \to \operatorname{GL}(V \otimes R)).$$

The action ad : $G \to \operatorname{Aut} G$ should give us $\operatorname{ad}(X) \in \ker(\operatorname{Aut}(G \otimes R[\varepsilon]) \to \operatorname{Aut}(G \otimes R))$. Indeed, $\operatorname{ad}(X)$ acts on S-valued points as $\operatorname{ad}(X) : G_{R[\varepsilon]}(S) \to G_{R[\varepsilon]}(S)$ as honest conjugation by $1 + \varepsilon X$.

$$g: R[\varepsilon][X_{ij}, \det^{-1}] \to S \leftrightarrow (g_{ij}) \in GL(V \otimes S)$$

$$(1 + \varepsilon X)g(1 - \varepsilon X) = g + \varepsilon [X, g]$$

2 Some functors

We define a k-group functor Der(A) by $Der(A)(R) = Der_R(A \otimes_k R)$. In nice circumstances, this is a quasi-coherent \mathscr{O} -module. Define $Der(A) \to Lie(Aut A)$ as follows. On R-valued points, we need

$$\begin{aligned} \operatorname{Der}_R(A \otimes R) &\to \ker(\operatorname{Aut}(A)(R[\varepsilon]) \to \operatorname{Aut}(A)(R)) \\ \operatorname{Der}_R(A \otimes R) &\to \ker(\operatorname{Aut}_{R[\varepsilon]}(A \otimes R[\varepsilon]) \to \operatorname{Aut}_R(A \otimes R)) \end{aligned}$$

Let $\partial: A \otimes R \to A \otimes R$ be an *R*-derivation. Define $\phi = 1 + \varepsilon \cdot \partial$ by

$$\phi(a \otimes r) = a \otimes r + \partial(a) \otimes \varepsilon r.$$

In other words, $\phi = 1 + \partial \otimes \varepsilon$. We have

$$\phi(a \otimes r)\phi(b \otimes s) = (a \otimes r + \partial(a) \otimes \varepsilon r)(b \otimes s + \partial(b) \otimes \varepsilon s)$$

$$= ab \otimes rs + a\partial(b) \otimes \varepsilon rs + b\partial(a) \otimes \varepsilon rs$$

$$= ab \otimes rs + (a\partial b + b\partial a) \otimes \varepsilon rs$$

$$= ab \otimes rs + \partial(ab) \otimes \varepsilon rs.$$

So ϕ is a ring homomorphism. Note that $1 + \varepsilon \cdot \partial$ and $1 - \varepsilon \cdot \partial$ are inverses, so ϕ is an automorphism. Conversely, one checks that all elements of Lie(Aut A)(R) are of the form $1 + \varepsilon \cdot \partial$. In other words, Der(A) \to Lie(Aut A) is an isomorphism of group functors.

3 Invariant derivations

Let G be a k-group functor. Then we have a homomorphism $l:G\to \operatorname{Aut} G$, the "left regular representation." The induced infinitesimal representation $l:\mathfrak{g}\to \operatorname{Lie}(\operatorname{Aut} G)=\operatorname{Der}(G)$ should induce an isomorphism between $\mathfrak{g}=\operatorname{Lie} G$ and the algebra of invariant derivations of G. Let's see how this works. On points, we have

$$l(R) : \ker(G(R[\varepsilon]) \to G(R)) \to \ker(\operatorname{Aut}_{R[\varepsilon]}(G \otimes R[\varepsilon]) \to \operatorname{Aut}_R(G \otimes R))$$

Given $X \in \mathfrak{g}(R)$, we need an element $l(R)(X) \in \operatorname{Aut}_{R[\varepsilon]}(G \otimes R[\varepsilon])$. We define this on the functor of points: $l(R)(X)(S) : (G \otimes R[\varepsilon])(S) \to (G \otimes R[\varepsilon])(S)$ is $x \mapsto X \cdot x$.