

ALGORYTMY I STRUKTURY DANYCH

STRUKTURY DANYCH: GRAFY

MINIMALNE DRZEWO ROZPINAJĄCE

Dany jest graf G spójny z wagami.

Drzewo rozpinające – podgraf grafu *G*, który jest drzewem zawierającym *wszystkie wierzchołki* grafu *G*. **Minimalne drzewo rozpinające** – drzewo rozpinające, dla którego *suma wag krawędzi jest minimalna*. Graf nieskierowany jest **spójny**, jeśli każdy wierzchołek jest osiągalny ze wszystkich innych wierzchołków.

Przykład

Przy projektowaniu układów elektronicznych często końcówki wielu elementów składowych należy uczynić elektrycznie równoważnymi, łącząc je przewodami. Do połączenia zbioru n końcówek możemy użyć n-1 przewodów, z których każdy łączy dwie końcówki. Ze wszystkich możliwych sposobów połączeń najbardziej pożądany jest zazwyczaj ten, który **minimalizuje** łączną długość użytych przewodów.

Problem łączenia końcówek można modelować za pomocą spójnego grafu nieskierowanego z wagami G = (V, E, w), w którym V jest zbiorem końcówek, a E jest zbiorem możliwych połączeń między parami końcówek. Z każdą krawędzią jest związana waga określająca koszt (długość potrzebnego przewodu) połączenia dwóch wierzchołków.

Problem: Znaleźć acykliczny podzbiór krawędzi $T \subset E$, który łączy wszystkie wierzchołki i którego łączna waga jest najmniejsza.

Rozwiązanie: minimalne drzewo rozpinające.

Reguła zachłanna:

- w algorytmie Kruskala zbiór *T* jest lasem. Do *T* jest zawsze dodawana ta krawędź w grafie, która ma najmniejszą wagę i która *łączy dwie różne składowe* (tzn. dwa drzewa z lasu).
- w algorytmie **Prima** zbiór T jest zawsze **pojedynczym drzewem**. Do T jest zawsze dodawana ta krawędź w grafie, która ma najmniejszą wagę i która łączy drzewo wyznaczone przez T z wierzchołkiem spoza tego drzewa.

1. ALGORYTM KRUSKALA

Algorytm Kruskala jest algorytmem zachłannym znajdującym minimalne drzewo rozpinające danego grafu spójnego z wagami. *Reguła zachłanna*: dodaj krawędź o minimalnej wadze, która nie tworzy cyklu. Rozwiązanie częściowe nie musi być drzewem.

Wejście: G = (V, E, w) – graf spójny nieskierowany z wagami.

Wyjście: T – zbiór krawędzi minimalnego drzewa rozpinającego grafu G.

Algorytm:

- 1 $T = \emptyset$
- 2 utwórz *rozłączne* podzbiory zbioru *V* (każdy podzbiór zawiera jeden wierzchołek ze zbioru *V*)
- 3 sortuj zbiór krawędzi E w porządku niemalejącym ze względu na wagi krawędzi
- 4 **for** każda krawędź (u, v) z uporządkowanego zbioru krawędzi E:
- 5 **if** u i v należą do podzbiorów rozłączonych:
- 6 połącz podzbiory zawierające u i v;
- 7 dodaj krawędź (u, v) do zbioru T

Zadanie 1. Wykonaj krokową analizę działania algorytmu Kruskala dla powyższego grafu. (<u>Pliki do wykorzystania</u>: <u>zadania_algorytm_Kruskala_Prima.xlsx</u>, arkusz <u>zadanie_1</u>).

Zadanie 2. Znajdź minimalne drzewo rozpinające dla poniższego grafu. (*Pliki do wykorzystania*: *zadania_algorytm_Kruskala_Prima.xlsx*, arkusz *zadanie_2*).

2. ALGORYTM PRIMA

Algorytm Prima jest algorytmem *zachłannym* znajdującym minimalne drzewo rozpinające danego grafu spójnego z wagami. Każde rozwiązanie częściowe jest drzewem.

Wejście: G = (V, E, w) – graf spójny z wagami, s - wierzchołek startowy.

Reguła zachłanna: dodaj krawędź o minimalnej wadze, której jeden wierzchołek należy do bieżącego

drzewa, a drugi nie należy do tego drzewa.

Wyjście: *T* – zbiór krawędzi minimalnego drzewa rozpinającego grafu *G*.

Algorytm:

- 1 $T = \emptyset$
- 2 $U = \{s\}$
- 3 **while** U ! = V:
- 4 znajdź krawędź $(u, v) \in E$ o minimalnej wadze taką, że $u \in U$ oraz $v \in V U$
- $T = T \cup \{(u, v)\}$
- $6 U = U \cup \{v\}$

Zadanie 3. Wykonaj krokową analizę działania algorytmu Prima dla powyższego grafu. (*Pliki do wykorzystania*: *zadania_algorytm_Kruskala_Prima.xlsx*, arkusz *zadanie_3*).

Zadanie 4. Chcemy znaleźć minimalne drzewo rozpinające dla poniższego grafu.

- a) wykonaj algorytm Prima; za każdym razem, gdy pojawia się wybór wierzchołka, zawsze użyj tego, który jest pierwszy w kolejności alfabetycznej (startując od wierzchołka A).
- b) Na tym samym grafie wykonaj algorytm Kruskala.

Zadanie 5. Pokaż, jak znaleźć maksymalne drzewo rozpinające grafu, tzn. drzewo rozpinające o możliwie największej łącznej wadze.

Bibliografia

T. H. Cormen, Ch. E. Leiserson, R. L. Rivest: Wprowadzenie do algorytmów. WNT Warszawa 2012.