Matematyka obliczeniowa

dr inż. Piotr Piela

Wydział Informatyki ZUT w Szczecinie

Dowolną macierz można podzielić na podmacierze (bloki) za pomocą linii poziomych i pionowych np:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \hline a_{41} & a_{42} & a_{43} \\ a_{51} & a_{52} & a_{53} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

Otrzymujemy wówczas postać blokową macierzy A, gdzie:

$$A_{11} = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}\right), \qquad A_{12} = \left(\begin{array}{c} a_{13} \\ a_{23} \\ a_{33} \end{array}\right),$$

$$A_{21} = \begin{pmatrix} a_{41} & a_{42} \\ a_{51} & a_{52} \end{pmatrix}, \qquad A_{22} = \begin{pmatrix} a_{43} \\ a_{53} \end{pmatrix}.$$

Dana macierz może być podzielona na bloki w dowolny sposób.

Dodawanie i mnożenie macierzy blokowych wykonujemy wg zwykłych zasad, traktując bloki jak elementy macierzy (podział na bloki musi być odpowiedni) np:

$$A = \begin{pmatrix} 1 & 2 & | & -1 \\ 1 & 1 & | & 2 \\ 0 & 0 & | & 1 \\ \hline 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ E & \mathbf{0} \end{pmatrix}$$

$$B = \begin{pmatrix} 0 \\ \frac{1}{0} \end{pmatrix} = \begin{pmatrix} B_{1} \\ B_{2} \end{pmatrix} = \begin{pmatrix} B_{1} \\ \mathbf{0} \end{pmatrix}$$

Iloczyn macierzy A i B wyniesie:

$$AB = \begin{pmatrix} A_{11}B_1 + A_{12}B_2 \\ A_{21}B_1 + A_{22}B_2 \end{pmatrix} = \begin{pmatrix} A_{11}B_1 + A_{21}\mathbf{0} \\ EB_1 + A_{22}\mathbf{0} \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Macierz kwadratowa jest blokowo – diagonalna gdy wszystkie bloki leżące poza główną przekątną są podmacierzami zerowymi a bloki na przekątnej są macierzami kwadratowymi:

$$A_D = \left(\begin{array}{cccc} A_{11} & 0 & \dots & 0 \\ 0 & A_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & A_{nn} \end{array}\right)$$

Macierz kwadratowa jest blokowo – diagonalna gdy wszystkie bloki leżące poza główną przekątną są podmacierzami zerowymi a bloki na przekątnej są macierzami kwadratowymi:

$$A_D = \left(\begin{array}{cccc} A_{11} & 0 & \dots & 0 \\ 0 & A_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & A_{nn} \end{array}\right)$$

$$A_D = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 & 3 \\ 0 & 0 & 2 & 3 & 2 \end{pmatrix} = \begin{pmatrix} A_{11} & \mathbf{0} \\ \mathbf{0} & A_{22} \end{pmatrix}$$

Wyznacznik macierzy blokowo-diagonalnej A_D jest równy iloczynowi wyznaczników bloków znajdujących się na przekątnej:

$$A_D = \left(\begin{array}{cccc} A_{11} & 0 & \dots & 0 \\ 0 & A_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & A_{nn} \end{array}\right)$$

$$det(A_D) = det(A_{11}) \cdot det(A_{22}) \cdot \ldots \cdot det(A_{nn})$$

Wyznacznik macierzy blokowo-diagonalnej A_D jest równy iloczynowi wyznaczników bloków znajdujących się na przekątnej:

$$A_D = \left(egin{array}{cccc} A_{11} & 0 & \dots & 0 \\ 0 & A_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & A_{nn} \end{array}
ight)$$

$$det(A_D) = det(A_{11}) \cdot det(A_{22}) \cdot \ldots \cdot det(A_{nn})$$

$$A_D = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 2 \\ 0 & 0 & 3 & 2 \end{pmatrix} = \begin{pmatrix} A_{11} & \mathbf{0} \\ \mathbf{0} & A_{22} \end{pmatrix}$$

$$det(A_D) = det(A_{11}) \cdot det(A_{22}) = 1 \cdot (-4) = -4$$

• Jeśli
$$A=\left(\begin{array}{cc}A_{11}&A_{12}\\0&A_{22}\end{array}\right)$$
 i macierze A_{11} i A_{22} są kwadratowe to:
$$det(A)=det(A_{11})\cdot det(A_{22})$$

• Jeśli
$$A=\left(\begin{array}{cc}A_{11}&A_{12}\\0&A_{22}\end{array}\right)$$
 i macierze A_{11} i A_{22} są kwadratowe to:
$$det(A)=det(A_{11})\cdot det(A_{22})$$

$$A_D = \begin{pmatrix} 2 & 1 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 & 2 \\ \hline 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 & 3 \\ 0 & 0 & 2 & 3 & 2 \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ \mathbf{0} & A_{22} \end{pmatrix}$$

$$det(A_D) = det(A_{11}) \cdot det(A_{22}) = 1 \cdot (-8) = -8$$

• Jeśli
$$A=\begin{pmatrix}A_{11}&\mathbf{0}\\\mathbf{0}&A_{22}\end{pmatrix}$$
 i macierze A_{11} i A_{22} są kwadratowe i nieosobliwe to:
$$A^{-1}=\begin{pmatrix}A_{11}^{-1}&\mathbf{0}\\\mathbf{0}&A_{22}^{-1}\end{pmatrix}$$

• Jeśli
$$A=\begin{pmatrix}A_{11}&\mathbf{0}\\\mathbf{0}&A_{22}\end{pmatrix}$$
 i macierze A_{11} i A_{22} są kwadratowe i nieosobliwe to:
$$A^{-1}=\begin{pmatrix}A_{11}^{-1}&\mathbf{0}\\\mathbf{0}&A_{22}^{-1}\end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 4 & 2 & -1 \end{pmatrix} = \begin{pmatrix} A_{11} & \mathbf{0} \\ \mathbf{0} & A_{22} \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} A_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & A_{22}^{-1} \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & 0 \\ \hline 0 & 0 & -5 & -1 & 3 \\ 0 & 0 & 9 & 2 & -5 \\ 0 & 0 & -2 & 0 & 1 \end{pmatrix}$$

• Jeśli
$$A = \begin{pmatrix} E & A_{12} \\ \mathbf{0} & E \end{pmatrix}$$
 i macierz A_{12} jest dowolna to:

$$A^{-1} = \left(\begin{array}{cc} E & -A_{12} \\ \mathbf{0} & E \end{array}\right)$$

• Jeśli
$$A = \begin{pmatrix} E & A_{12} \\ \mathbf{0} & E \end{pmatrix}$$
 i macierz A_{12} jest dowolna to:

$$A^{-1} = \left(\begin{array}{cc} E & -A_{12} \\ \mathbf{0} & E \end{array}\right)$$

$$A = \begin{pmatrix} 1 & 0 & 3 & 2 & -1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} E & A_{12} \\ \mathbf{0} & E \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} E & -A_{12} \\ \mathbf{0} & E \end{pmatrix} = \begin{pmatrix} 1 & 0 & -3 & -2 & 1 \\ 0 & 1 & -1 & -1 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Macierze dodatnio, półdodatnio i ujemnie określone

Macierz A jest dodatnio określona jeśli dla każdego niezerowego wektora $x \in \mathbb{R}^n$ zachodzi:

$$x^T \cdot A \cdot x > 0$$

Macierz A jest dodatnio półokreślona jeśli dla każdego niezerowego wektora

 $x \in \mathbf{R}^n$ zachodzi:

$$x^T \cdot A \cdot x \geqslant 0$$

Macierz A jest ujemnie określona jeśli dla każdego niezerowego wektora $x \in \mathbf{R}^n$ zachodzi:

$$x^T \cdot A \cdot x < 0$$

Iloczyn $x^T \cdot A \cdot x$ nazywamy forma kwadratową.

Macierze dodatnio, półdodatnio i ujemnie określone

Macierz A jest dodatnio określona jeśli dla każdego niezerowego wektora $x \in \mathbf{R}^n$ zachodzi:

$$x^T \cdot A \cdot x > 0$$

Macierz A jest dodatnio półokreślona jeśli dla każdego niezerowego wektora

 $x \in \mathbf{R}^n$ zachodzi:

$$x^T \cdot A \cdot x \geqslant 0$$

Macierz A jest ujemnie określona jeśli dla każdego niezerowego wektora $x \in \mathbb{R}^n$

$$x^T \cdot A \cdot x < 0$$

Iloczvn $x^T \cdot A \cdot x$ nazywamy forma kwadratową.

Przykład

zachodzi:

Macierz: $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ jest dodatnio określona gdyż:

$$\left(\begin{array}{cc} x_1 & x_2 \end{array}\right) \cdot \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right) \cdot \left(\begin{array}{cc} x_1 \\ x_2 \end{array}\right) = (x_1 + x_2)^2 + x_1^2 + x_2^2 > 0, \text{ jeśli } x_1 \neq 0 \text{ lub } x_2 \neq 0$$

9/37

Macierze dodatnio określone - kryterium Sylvestera

Macierz A o wymiarze $n \times n$ jest dodatnio określona wtedy i tylko wtedy, gdy jest symetryczna oraz jej wiodące minory główne są dodatnie:

$$\det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} > 0 \text{ dla } n \in \{2, 3, \dots, n\}, a_{11} > 0$$

Macierze dodatnio określone - kryterium Sylvestera

Macierz A o wymiarze $n \times n$ jest dodatnio określona wtedy i tylko wtedy, gdy jest symetryczna oraz jej wiodące minory główne są dodatnie:

$$\det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} > 0 \text{ dla } n \in \{2, 3, \dots, n\}, a_{11} > 0$$

Przykład

Macierz: $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ jest dodatnio określona gdyż:

$$\left(\begin{array}{cc} x_1 & x_2 \end{array}\right) \cdot \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right) \cdot \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = (x_1 + x_2)^2 + x_1^2 + x_2^2 > 0, \text{ jeśli } x_1 \neq 0 \text{ lub } x_2 \neq 0$$

Z kryterium Sylvestera otrzymamy: $a_{11}>0$ i det $\left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right)=3>0$

Zadania

Sprawdź czy podana macierz jest dodatnio określona:

Macierze ujemnie określone - kryterium Sylvestera

Macierz A o wymiarze $n \times n$ jest ujemnie określona wtedy i tylko wtedy, gdy jest symetryczna oraz:

$$\det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} > 0 \quad dla \quad n \in \{2, \dots, n\} \cap 2\mathbf{N}, \quad a_{11} < 0$$

$$\det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} < 0 \quad dla \quad n \in \{2, \dots, n\} \cap (2\mathbf{N} - 1), \quad a_{11} < 0$$

Macierze ujemnie określone - kryterium Sylvestera

Macierz A o wymiarze $n \times n$ jest ujemnie określona wtedy i tylko wtedy, gdy jest symetryczna oraz:

$$\det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} > 0 \text{ dla } n \in \{2, \dots, n\} \cap 2\mathbf{N}, \ a_{11} < 0$$

$$= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \end{pmatrix}$$

$$\det \left(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{array} \right) < 0 \ \mathrm{dla} \quad n \in \{2, \dots, n\} \cap (2\mathbf{N} - 1), \ a_{11} < 0$$

Przykład

Macierz: $A=\begin{pmatrix} -1 & 2 \\ 2 & -5 \end{pmatrix}$ jest ujemnie określona, gdyż z kryterium Sylvestera otrzymamy: $a_{11}<0$ i det $\begin{pmatrix} -1 & 2 \\ 2 & -5 \end{pmatrix}=1>0$

Rozkład LU

Dowolna macierz kwadratową A o wymiarze $n \times n$, której wszystkie minory główne są nieosobliwe może być przedstawiona w postaci iloczynu macierzy dolnotrójkątnej L i macierzy górnotrójkątnej U:

$$A = L \cdot U = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{pmatrix} \cdot \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{pmatrix}$$

Rozkład jest jednoznaczny jeśli zostaną ustalone elementy na głównej przekątnej macierzy L lub U.

Matlab: lu()

Dowolna macierz kwadratową A o wymiarze $n \times n$, której wszystkie minory główne są nieosobliwe może być przedstawiona w postaci iloczynu macierzy dolnotrójkatnej L i macierzy górnotrójkatnej U:

$$A = L \cdot U = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{pmatrix} \cdot \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{pmatrix}$$

Rozkład jest jednoznaczny jeśli zostaną ustalone elementy na głównej przekątnej macierzy L lub U.

Matlab: lu()

Dla
$$A = \begin{pmatrix} 2 & 2 & 3 \\ 2 & 4 & 4 \\ 2 & 4 & 2 \end{pmatrix}$$
 otrzymamy: $L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, $U = \begin{pmatrix} 2 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & -2 \end{pmatrix}$

Rozkład LU - metoda Doolittle'a

Rozkład LU, w którym elementy leżące na głównej przekątnej macierzy L wynoszą: $I_{ii} = 1$ dla i = 1, 2, ..., n jest znany jako rozkład Doolittle'a:

$$A = L \cdot U = \begin{pmatrix} 1 & 0 & \dots & 0 \\ l_{21} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ l_{n1} & l_{n2} & \dots & 1 \end{pmatrix} \cdot \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{pmatrix}$$

W tym przypadku:

$$\det(A) = \det(LU) = \det(L)\det(U) = \det(U)$$

Rozkład LU - metoda Doolittle'a

Wyznaczanie kolejnych elementów macierzy L i U przeprowadza się naprzemiennie – raz wyznacza wiersz macierzy U, raz kolumnę macierzy L.

Ogólne wzory na poszczególne elementy macierzy rozkładu LU:

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, \quad dla \ j \in \{i, \ i+1, \ \ldots, \ n\}$$

$$I_{ji} = rac{1}{u_{ii}} \left(a_{ji} - \sum_{k=1}^{i-1} I_{jk} u_{ki}
ight), \quad ext{dla } j \in \{i+1, \ i+2, \ \dots, \ n\}$$

Warunek działania algorytmu: $u_{ii} \neq 0$.

Rozkład LU - metoda Crouta

Rozkład LU, w którym elementy leżące na głównej przekątnej macierzy U wynoszą: $u_{ii}=1$ dla $i=1,2,\ldots,n$ jest znany jako rozkład Crouta:

$$A = L \cdot U = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{pmatrix} \cdot \begin{pmatrix} 1 & u_{12} & \dots & u_{1n} \\ 0 & 1 & \dots & u_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

W tym przypadku:

$$\det(A) = \det(LU) = \det(L)\det(U) = \det(L)$$

Zadania

Dokonaj rozkładu LU macierzy A ręcznie i przy pomocy Matlaba.

Rozkład Cholesky'ego

Jeśli macierz A jest rzeczywista, symetryczna i dodatnio określona, to ma ona jedyny rozkład na czynniki $A=LL^T$, gdzie L jest macierzą trójkątną dolną o elementach dodatnich na głównej przekątnej:

$$A = L \cdot L^{T} = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{pmatrix} \cdot \begin{pmatrix} l_{11} & l_{21} & \dots & l_{n1} \\ 0 & l_{22} & \dots & l_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & l_{nn} \end{pmatrix}$$

Rozkład Cholesky'ego

Jeśli macierz A jest rzeczywista, symetryczna i dodatnio określona, to ma ona jedyny rozkład na czynniki $A = LL^T$, gdzie L jest macierzą trójkątną dolną o elementach dodatnich na głównej przekątnej:

$$A = L \cdot L^{T} = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{pmatrix} \cdot \begin{pmatrix} l_{11} & l_{21} & \dots & l_{n1} \\ 0 & l_{22} & \dots & l_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & l_{nn} \end{pmatrix}$$

Dla
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 otrzymamy: $L = \begin{pmatrix} \sqrt{2} & 0 \\ 1/\sqrt{2} & \sqrt{3/2} \end{pmatrix}$, $L^T = \begin{pmatrix} \sqrt{2} & 1/\sqrt{2} \\ 0 & \sqrt{3/2} \end{pmatrix}$

Rozkład Cholesky'ego

Ogólne wzory na poszczególne elementy macierzy rozkładu LL^T :

$$I_{ii} = \sqrt{\left(a_{ii} - \sum_{k=1}^{i-1} I_{ik}^2\right)}$$

$$l_{ji} = rac{a_{ji} - \sum_{k=1}^{i-1} l_{jk} l_{ik}}{l_{ii}}, \;\; ext{dla } j > i$$

Wyrażenie pod pierwiastkiem jest zawsze dodatnie jeśli macierz A jest rzeczywista i dodatnio określona.

Rozkład QR

Dowolna nieosobliwa macierz kwadratową A o wymiarze $n \times n$ może być przedstawiona w postaci iloczynu macierzy ortogonalnej Q i nieosobliwej macierzy górnotrójkątnej R:

$$A = Q \cdot R = \begin{pmatrix} q_{11} & q_{12} & \dots & q_{13} \\ q_{21} & q_{22} & \dots & q_{23} \\ \vdots & \vdots & \vdots & \vdots \\ q_{n1} & q_{n2} & \dots & q_{nn} \end{pmatrix} \cdot \begin{pmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & \dots & r_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & r_{nn} \end{pmatrix}$$

Rozkład jest jednoznaczny jeśli zostaną ustalone elementy na głównej przekątnej macierzy R.

Macierzy Q jest macierzą ortogonalną jeśli spełnia relację:

$$Q^T = Q^{-1}$$
, lub $QQ^T = Q^TQ = E$

Matlab: qr()

Rozkład QR

Rozkład QR otrzymujemy przez zastosowanie przekształceń ortogonalnych:

- odpowiednio dobranych obrotów Givensa,
- przekształceń Householdera.

Rozkład QR

Rozkład QR otrzymujemy przez zastosowanie przekształceń ortogonalnych:

- odpowiednio dobranych obrotów Givensa,
- przekształceń Householdera.

Dla
$$A = \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix}$$
 otrzymamy: $Q = \begin{pmatrix} 0.6 & -0.8 \\ 0.8 & 0.6 \end{pmatrix}$, $R = \begin{pmatrix} 5 & 4 \\ 0 & 3 \end{pmatrix}$

Macierz charakterystyczna

Dla macierzy kwadratowej A o wymiarze $n \times n$ macierz charakterystyczna wynosi:

$$A - \lambda E = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$A - \lambda E = \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

Macierz charakterystyczna

Dla macierzy kwadratowej A o wymiarze $n \times n$ macierz charakterystyczna wynosi:

$$A - \lambda E = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$A - \lambda E = \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

Dla macierzy:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 otrzymamy: $A = \begin{pmatrix} 1 - \lambda & 2 & 3 \\ 4 & 5 - \lambda & 6 \\ 7 & 8 & 9 - \lambda \end{pmatrix}$

Wielomian charakterystyczny

Wielomianem charakterystycznym macierzy A o wymiarze $n \times n$ nazywamy wielomian:

$$W(\lambda) = det(A - \lambda E) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$$

Matlab: poly()

Wielomian charakterystyczny

Wielomianem charakterystycznym macierzy A o wymiarze $n \times n$ nazywamy wielomian:

$$W(\lambda) = det(A - \lambda E) = \left| egin{array}{ccccc} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{array} \right|$$

 $\mathsf{Matlab} \colon \mathsf{poly}()$

Przykład

Dla macierzy: $A = \begin{pmatrix} -1 & 4 \\ 2 & -3 \end{pmatrix}$ otrzymamy:

$$W(\lambda) = det(A - \lambda E) = \begin{vmatrix} -1 - \lambda & 4 \\ 2 & -3 - \lambda \end{vmatrix} = \lambda^2 + 4\lambda - 5$$

Równanie charakterystyczne

Równaniem charakterystycznym macierzy A o wymiarze $n \times n$ nazywamy równanie:

$$W(\lambda) = det(A - \lambda E) = 0$$

Pierwiastki równania charakterystycznego $\lambda_1, \lambda_2, \dots, \lambda_n$ nazywamy wartościami własnymi lub pierwiastkami charakterystycznymi tej macierzy.

Zbiór wszystkich wartości własnych to widmo (spektrum) macierzy A.

 $\mathsf{Matlab} \colon \mathsf{roots}(\tt), \ \mathsf{eig}(\tt)$

Równanie charakterystyczne

Równaniem charakterystycznym macierzy A o wymiarze $n \times n$ nazywamy równanie:

$$W(\lambda) = det(A - \lambda E) = 0$$

Pierwiastki równania charakterystycznego $\lambda_1, \lambda_2, \dots, \lambda_n$ nazywamy wartościami własnymi lub pierwiastkami charakterystycznymi tej macierzy.

Zbiór wszystkich wartości własnych to widmo (spektrum) macierzy A.

 $\mathsf{Matlab} \colon \mathsf{roots}(\tt), \ \mathsf{eig}(\tt)$

Przykład

Dla macierzy: $A = \begin{pmatrix} -1 & 4 \\ 2 & -3 \end{pmatrix}$ otrzymamy:

$$W(\lambda) = det(A - \lambda E) = \begin{vmatrix} -1 - \lambda & 4 \\ 2 & -3 - \lambda \end{vmatrix} = \lambda^2 + 4\lambda - 5 = 0$$

Wartości własne macierzy A: $\lambda_1=-5$, $\lambda_2=1$

Widmo macierzy $A: \{-5, 1\}$

Wektory własne

Wektorem własnym macierzy A nazywamy wektor S_j spełniający równanie:

$$A \cdot S_j = \lambda_j \cdot S_j, \ \forall j(\overline{1,n})$$

Przy założeniu, że wartości własne λ_i dla danej macierzy A są parami różne.

Matlab: eigs()

Wektory własne

Wektorem własnym macierzy A nazywamy wektor S_j spełniający równanie:

$$A \cdot S_j = \lambda_j \cdot S_j, \ \forall j(\overline{1, n})$$

Przy założeniu, że wartości własne λ_i dla danej macierzy A są parami różne.

Matlab: eigs()

Przykład

Dla macierzy:
$$A = \begin{pmatrix} -1 & 4 \\ 2 & -3 \end{pmatrix}$$
 Wartości własne: $\lambda_1 = -5$, $\lambda_2 = 1$
$$(A - \lambda_1 E)S_1 = \left(\begin{pmatrix} -1 & 4 \\ 2 & -3 \end{pmatrix} - (-5)\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)\begin{pmatrix} s_{11} \\ s_{21} \end{pmatrix} = 0$$

$$\begin{pmatrix} 4 & 4 \\ 2 & 2 \end{pmatrix}\begin{pmatrix} s_{11} \\ s_{21} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad S_1 = \begin{pmatrix} s_{11} \\ s_{21} \end{pmatrix} = \begin{pmatrix} t \\ -t \end{pmatrix}, \quad t \in C$$

$$(A - \lambda_2 E)S_2 = \left(\begin{pmatrix} -1 & 4 \\ 2 & -3 \end{pmatrix} - (1)\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right)\begin{pmatrix} s_{21} \\ s_{22} \end{pmatrix} = 0$$

$$\begin{pmatrix} -2 & 4 \\ 2 & -4 \end{pmatrix}\begin{pmatrix} s_{21} \\ s_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad S_2 = \begin{pmatrix} s_{21} \\ s_{22} \end{pmatrix} = \begin{pmatrix} 2t \\ t \end{pmatrix}, \quad t \in C$$

Diagonalizacja macierzy

Macierze A i B nazywamy podobnymi jeśli są one powiązane zależnością:

$$AT = TB$$

gdzie: T jest dowolną macierzą nieosobliwą zwaną macierzą przejścia.

Jeśli przyjmiemy, że macierz przejścia T jest równa macierzy wektorów własnych S wyznaczonych dla macierzy A to otrzymamy:

$$AS = SB \Rightarrow B = S^{-1}AS$$

Otrzymana macierz B jest macierzą diagonalną. Współczynniki na jej głównej przekątnej są równe kolejnym wartościom własnym macierzy A.

Diagonalizacja macierzy

Macierze A i B nazywamy podobnymi jeśli są one powiązane zależnością:

$$AT = TB$$

gdzie: T jest dowolną macierzą nieosobliwą zwaną macierzą przejścia.

Jeśli przyjmiemy, że macierz przejścia T jest równa macierzy wektorów własnych S wyznaczonych dla macierzy A to otrzymamy:

$$AS = SB \Rightarrow B = S^{-1}AS$$

Otrzymana macierz B jest macierzą diagonalną. Współczynniki na jej głównej przekątnej są równe kolejnym wartościom własnym macierzy A.

Przykład

$$A = \begin{pmatrix} -1 & 4 \\ 2 & -3 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, \quad B = S^{-1}AS = \begin{pmatrix} -5 & 0 \\ 0 & 1 \end{pmatrix}$$

Zadania

Zdefiniuj macierz:

- Wyznacz wartości własne i wektory własne macierzy A
- Przedstaw macierz A w postaci macierzy diagonalnej B
- Oblicz wartości własne macierzy B

Własności

Macierz kwadratowa A jest nieosobliwa wtedy i tylko wtedy, gdy wszystkie jej wartości własne λ_i są różne od zera.

Własności

Macierz kwadratowa A jest nieosobliwa wtedy i tylko wtedy, gdy wszystkie jej wartości własne λ_j są różne od zera.

Przykład

Dla macierzy:
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 2 & 0 & 2 \end{pmatrix}$$
 Wyznacznik wynosi: $det(A) = -6 \neq 0$

Wartości własne: $-1, 2, 3, \quad \lambda_i \neq 0, \quad \forall i(\overline{1,3})$

Dla macierzy:
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 4 \\ 3 & 0 & 6 \end{pmatrix}$$
 Wyznacznik wynosi: $det(A) = 0$

Wartości własne: 7.32, 0, 0.68

Wyznacznik macierzy

Iloczyn wartości własnych λ_i równa się wartości wyznacznika macierzy A:

$$det(A) = \prod_{i=1}^{n} \lambda_i$$

Wyznacznik macierzy

Iloczyn wartości własnych λ_i równa się wartości wyznacznika macierzy A:

$$det(A) = \prod_{i=1}^{n} \lambda_i$$

Przykład

Dla macierzy:
$$A=\left(\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 2 & 0 & 2 \end{array}\right)$$
 Wyznacznik wynosi: $det(A)=-6$

Wartości własne: -1, 2, 3

Wyznacznik macierzy:
$$det(A) = \prod_{i=1}^{3} \lambda_i = -1 \cdot 2 \cdot 3 = -6$$

Ślad macierzy

Suma wartości własnych (z krotnościami) jest równa śladowi macierzy:

$$Tr(A) = \sum_{i=1}^{n} \lambda_i$$

Ślad macierzy

Suma wartości własnych (z krotnościami) jest równa śladowi macierzy:

$$Tr(A) = \sum_{i=1}^{n} \lambda_i$$

Przykład

Dla macierzy:
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 2 & 0 & 2 \end{pmatrix}$$
 Ślad wynosi: $Tr(A) = a_{11} + a_{22} + a_{33} = 4$

Wartości własne: -1, 2, 3

Ślad macierzy:
$$Tr(A) = \sum_{i=1}^{3} \lambda_i = 4$$

Twierdzenie Cayleya-Hamiltona

Każda macierz kwadratowa o wymiarze $n \times n$ spełnia swoje równanie charakterystyczne $W(\lambda)$:

$$W(A)=0$$

Twierdzenie Cayleya-Hamiltona pozwala obliczać potęgi macierzy o wiele prościej, niż przez bezpośrednie mnożenia.

Twierdzenie Cayleya-Hamiltona

Każda macierz kwadratowa o wymiarze $n \times n$ spełnia swoje równanie charakterystyczne $W(\lambda)$:

$$W(A)=0$$

Twierdzenie Cayleya-Hamiltona pozwala obliczać potęgi macierzy o wiele prościej, niż przez bezpośrednie mnożenia.

Przykład

$$A=\left(egin{array}{ccc} -1 & 4 \ 2 & -3 \end{array}
ight)$$
 Równanie charakterystyczne wynosi: $W(\lambda)=\lambda^2+4\lambda-5=0$

Twierdzenie Cayleya-Hamiltona mówi, że: $A^2 + 4A - 5E_2 = 0$

$$A^2 = -4A + 5E_2$$

 $A^3 = (-4A + 5E_2)A = -4A^2 + 5A = -4(-4A + 5E_2) + 5A = 21A - 20E_2$
 $A^4 = (21A - 20E_2)A = 21A^2 - 20A = 21(-4A + 5E_2) - 20A = -104A + 105E_2$

Wartości własne - własności

Własności wartości własnych kwadratowej macierzy A:

- Macierz symetryczna posiada tylko rzeczywiste i dodatnie wartości własne.
- Jeśli $\lambda_i \neq 0$ jest wartością własną macierzy A to $1/\lambda_i$ jest wartością własną macierzy A^{-1} .
- Jeśli λ_i jest wartością własną macierzy A to c· λ_i jest wartością własną macierzy c· A.
- Jeśli λ_i jest wartością własną macierzy A to λ_i^m jest wartością własną macierzy A^m , $m \in N$.
- Jeśli λ_i jest wartością własną macierzy A to λ_i jest wartością własną macierzy A^T.

Metoda potęgowa obliczania wartości własnych

Założenia:

wartości własne $\lambda_1, \lambda_2, \cdots, \lambda_n$ są rzeczywiste i $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$. Wybieramy dowolny wektor y_0 , a następnie budujemy ciąg wektorów y_1, y_2, \cdots

$$y_{n+1} = A \cdot y_n$$

Dla dostatecznie dużych n, wektor y_n jest bliski wektorowi własnemu macierzy A, odpowiadającemu największej co do modułu wartości własnej.

Wartość własną otrzymamy dzieląc dowolną współrzędną wektora y_{n+1} przez tę samą współrzęną wektora y_n .

Metoda potęgowa obliczania wartości własnych

Przykład

$$A = \left(\begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array}\right)$$

Wektor początkowy: $y_0 = [1, -1, 1, -1]$

Koleine iteracie:

$$y_1 = [35, -55, 55, -35]$$

$$y_7 = [5875, -9500, 9500, -5875]$$

 $y_8 = [21250, -34375, 34375, -21250]$

Sprawdzamy ilorazy:
$$\frac{5875}{21250} = 3,61702, \frac{-9500}{-34375} = 3,61842$$

$$\frac{9500}{34375} = 3,61842, \frac{-5875}{-21250} = 3,61702$$

Największa co do modułu wartość własna macierzy A wynosi $\sim 3,61804$

Metoda Rayleigha obliczania wartości własnych

$$A \cdot x = \lambda \cdot x$$

$$\lambda = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$
 - iloraz Rayleigha

Poszukujemy największej co do moduły wartości własnej λ oraz odpowiadającego jej wektora wektora własnego x.

Metoda Rayleigha obliczania wartości własnych

Algorytm:

- przyjmujemy x_0 i podstawiamy $x_{k=0} = x_0$
- ullet normalizujemy wektor x_k , $v_k = rac{x_k}{\|x_k\|} = rac{x_k}{\sqrt{x_k^T x_k}}$
- obliczamy $x_{k+1} = A \cdot v_k$
- obliczamy iloraz Rayleigha: $\lambda_{k+1} = v_k^T \cdot x_{k+1}$
- obliczamy poziom błędów: dla wartości własnej: $\epsilon_{k+1} = \left| \frac{\lambda_{k+1} - \lambda_k}{\lambda_{k+1}} \right|$ dla wektora własnego: $\epsilon_{k+1} = \| v_{k+1} - v_k \|$
- ullet sprawdzamy kryterium zatrzymania ietracji $\epsilon_{k+1} \leqslant B$

Metoda Rayleigha obliczania wartości własnych

Przykład

$$A = \left(\begin{array}{rrr} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right)$$

Wektor początkowy: $x_0 = [1, 0, 0]$

$$(1)||x_0|| = 1, v_0 = \frac{x_0}{1} = [1, 0, 0]$$

$$(2)x_1 = A \cdot v_0 = [2, 1, 1]^T$$

$$(3)\lambda_1 = v_0^T \cdot x_1 = [1, 0, 0][2, 1, 1]^T = 2$$

Powtarzamy działania (1) - (3)

$$\lambda_7 = 4,0$$

$$\epsilon_7=0,000001$$

$$v_7 = [0.577421, 0.577315, 0.577315]$$

$$\epsilon_7=0.000259$$