ESET 349 - Microcontroller Architecture

Port Programming

Dr. Muhammad Faeyz Karim

Digital Input & Output

MSP432P401R has 100 pins

- P1-P10 and PJ ports
- Each Port has a group of up to 8 Pins at a maximum
- Each Port has a dedicated Base Address in the GPIO memory area
 - From the base address, each port has multiple bytes for specific tasks for the port
 - Each of these bytes is called a REGISTER (8-bit GPIO register)
- At the beginning of a program, these pins need to be configured as Input or Output pin
- The digital output pin can provide a logic HIGH or logic LOW from the pin
- The digital input pin can read a logic HIGH or LOW from another device (button, sensor, etc.)
- HIGH is 3.3 V, LOW is 0 V

Digital Input & Output

While programming, each pin can be configured for the following services

- 1. General Purpose I/O
- 2. UART, SPI, I2C
- 3. Timers
- 4. ADC, Comparator

The default use of a Pin is the GPIO communication

Of Multiple Registers Associated to Each Port, the following three major ones:

- 1. Input Register/byte (has a unique address)
- 2. Output Register/byte (has a unique address)
- 3. Data Direction Register/byte (has a unique address)

Programming Model

Port Programming – I/O

Programming to an Output Port

To protect the LED, make sure to add a resistor in series (220 or 330 Ohm for example)

Port Address

Ports	Addresses	Physical Address
GPIO P1	0x4000 4C00 +0x00	0x4000 4C00
GPIO P2	0x4000 4C00 +0x01	0x4000 4C01
GPIO P3	0x4000 4C00 +0x20	0x4000 4C20
GPIO P4	0x4000 4C00 +0x21	0x4000 4C21
GPIO P5	0x4000 4C00 +0x40	0x4000 4C40
GPIO P6	0x4000 4C00 +0x41	0x4000 4C41
GPIO P7	0x4000 4C00 +0x60	0x4000 4C60
GPIO P8	0x4000 4C00 +0x61	0x4000 4C61
GPIO P9	0x4000 4C00 +0x80	0x4000 4C80
GPIO P10	0x4000 4C00 +0x81	0x4000 4C81

Offsets of THREE major Registers

									Offsets from Port Address
	7	6	5	4	3	2	1	0	
Input Register									0x00
	7	6	5	4	3	2	1	0	
Output Register									0x02
	7	6	5	4	3	2	1	0	
Data Direction Register									0x04

Exercise 1: Find the absolute address of the Data Direction Register of Port 7?

LDR r0, =0x40004C00 ; Base address of GPIO registers

ADD r0, #0x60 ; R0 has the address of Port 7

ADD r1, r0, #0x04 ; R1 has the absolute address of DDIR

Exercise 2: What is the absolute address of the OUTPUT byte of Port 2?

LDR R0, =0x40004C00 ; Base address of the GPIO registers

ADD r0, #0x01 ; Address of Port 2

ADD r2, r0, #0x02 ; R2 has the absolute address of OUTPUT register

Ports	Addresses	Physical Address
GPIO P1	0x4000 4C00 +0x00	0x4000 4C00
GPIO P2	0x4000 4C00 +0x01	0x4000 4C01
GPIO P3	0x4000 4C00 +0x20	0x4000 4C20
GPIO P4	0x4000 4C00 +0x21	0x4000 4C21
GPIO P5	0x4000 4C00 +0x40	0x4000 4C40
GPIO P6	0x4000 4C00 +0x41	0x4000 4C41
GPIO P7	0x4000 4C00 +0x60	0x4000 4C60
GPIO P8	0x4000 4C00 +0x61	0x4000 4C61
GPIO P9	0x4000 4C00 +0x80	0x4000 4C80
GPIO P10	0x4000 4C00 +0x81	0x4000 4C81

Configuring an OUTPUT/INPUT Pin

- A Pin can be configured as INPUT or OUTPUT using a particular Register (DDIR byte) of a Port.
- If a bit has a value of 1, the Pin is responsible for outputting a High signal to OUTPUT register, a Low signal, 0 to the same OUTPUT register
- To read a signal we read the specific bit of the INPUT register
- What is the byte to configure P3.4 and P3.0 as output pins?

```
7 6 5 <mark>4</mark> 3 2 1 <mark>0</mark> (bit locations)
```

0 0 1 0 0 1 (1'S indicate that the connected Pins responsible for outputting signals)

The Data Direction byte in hex format is: **0x11**

- The remaining Pins will remain as if they are configured as INPUT pins
- This byte is called the DATA Direction byte.

Configuring an INPUT/OUTPUT Pin

- The Data Direction byte needs to be stored in the Data Direction Register in the Memory
- The offset of Data Direction Register is 0x04 from the Base or Port Address that the Pin(s) belongs to.

```
ldr r0, =0x40004C00 ; Base Address of GPIO registers
add r1, r0, #0x20 ; R1 has the address of Port 3

mov r2, #0x11
strb r2, [r1, #0x04] ; P3.4 and P3.0 is configured
```

Exercise: Configure P5.7, P5.3, and P5.1 as Output Pins

LDR r0, =0x40004C00

ADD r0, #0x40 ; R0 now points to Port 5

MOV r1, #0x8A ; Data Direction byte

STRB r1, [r0, #0x04]

Ports	Addresses	Physical
FOITS	Addresses	Address
GPIO P1	0x4000 4C00 +0x00	0x4000 4C00
GPIO P2	0x4000 4C00 +0x01	0x4000 4C01
GPIO P3	0x4000 4C00 +0x20	0x4000 4C20
GPIO P4	0x4000 4C00 +0x21	0x4000 4C21
GPIO P5	0x4000 4C00 +0x40	0x4000 4C40
GPIO P6	0x4000 4C00 +0x41	0x4000 4C41
GPIO P7	0x4000 4C00 +0x60	0x4000 4C60
GPIO P8	0x4000 4C00 +0x61	0x4000 4C61
GPIO P9	0x4000 4C00 +0x80	0x4000 4C80
GPIO P10	0x4000 4C00 +0x81	0x4000 4C81

Sending Signal to

- To send high signals to P3.4 and P3.0 which, in turn, connected to two LEDs, for
 - example:
 - The byte is 0x11
- The offset of OUTPUT register is 0x02
- Therefore, the statements should be

```
mov r5, #0x11
strb r5, [r1, #0x02] ; high bits sent to P3.4 and P3.0
```

Exercise: Send high bits to P5.7, P5.3, and P5.1. Assume they are configured as OUTPUT pins

The output byte = 0x8A

	7	6	5	4	3	2	1	0	Offsets from Port Address
Input Register									0x00
	7	6	5	4	3	2	1	0	
Output Register									0x02
	7	6	5	4	3	2	1	0	
Data Direction Register									0x04

Toggling an LED

 Mechanism of Toggling an LED in a breadboard Circuit

- 1. Send a High signal
- 2. Wait for some time to visualize the light emitting from LED
- 3. Send a Low signal
- 4. Repeat the sequence from step 1

Toggling LED

Notice that the loop is Infinite.

Flowchart for a Single Loop Delay Routine

Single Loop Delay Routine

A Flowchart for a Single Loop Delay Routine

Two Loop Delay Flowchart

A Flowchart for a Two Loop Delay Routine

A simple circuit Diagram for LED in Breadboard

LED circuit diagram

Configuring P5.0 as OUTPUT Pin

- Port 5 address Configured
 - Offset of Port 5 is 0x40

									Offsets from Port Address
	7	6	5	4	3	2	1	0	
Input Register									0x00
	7	6	5	4	3	2	1	0	
Output Register									0x02
	7	6	5	4	3	2	1	0	
Data Direction Register									0x04

- Pin 0 Configured as OUTPUT
 - Offset of Direction Register is 0x04 from the Port Address

	Ports	Addresses	Physical Address
	GPIO P1	0x4000 4C00 +0x00	0x4000 4C00
	GPIO P2	0x4000 4C00 +0x01	0x4000 4C01
	GPIO P3	0x4000 4C00 +0x20	0x4000 4C20
	GPIO P4	0x4000 4C00 +0x21	0x4000 4C21
	GPIO P5	0x4000 4C00 +0x40	0x4000 4C40
	GPIO P6	0x4000 4C00 +0x41	0x4000 4C41
ς	GPIO P7	0x4000 4C00 +0x60	0x4000 4C60
_	GPIO P8	0x4000 4C00 +0x61	0x4000 4C61
	GPIO P9	0x4000 4C00 +0x80	0x4000 4C80
	GPIO P10	0x4000 4C00 +0x81	0x4000 4C81

```
mov rl, #0x01 ; Bit 0 set to 1 as output strb rl, [r0, #0x04] ; Bit 0 set as OUTPUT Pin
```

Sending High and Low Signals to LED

- High bit Signal to P5.0
 - Offset of Output Register is 0x02

									Offsets from Port Address
	7	6	5	4	3	2	1	0	
Input Register									0x00
	7	6	5	4	3	2	1	0	
Output Register									0x02
	7	6	5	4	3	2	1	0	
Data Direction Register									0x04

```
mov rl, #0x01 ; Bit 0 is High to make the LED ON strb rl, [r0, #0x02]
```

- Low bit Signal to P5.0
 - Offset of Output Register is 0x02

```
# Bit 0 is Low to make LED OFF

strb rl, [r0, #0x02]

P5.0

Microprocessor

Ground
```

Delay Routine

Two Loop Delay Routine

```
delay function

mov r4, #500

outer mov r5, #100

inner subs r5, #1

bne inner

subs r4, #1

bne outer

bx lr

endp
```

INPUT Configuration

- Digital Input Configuration requires some effort for built-in input devices
- An Input is read from Input Register (GPIO) at an offset of 0x00 of the Port in question
- An Input Pin has a 0 or a 1; nothing in between for DIGITAL input
 - A push button switch can be used as an input
 - This button can be connected for Pin to have a 0 or 1 depending on how the button connects the Pin to Vcc or to ground

Circuit Diagram for a Pull-Up Resistor

- Pull Up Resistor connected to Input Pin P5.4
 - The default input is a 1
 - When pressed, the input is 0

Circuit Diagram of a Pull-Down Resistor

- Pull Down Resistor Connected to P5.4
 - Unlike the Pull-up resistor, the default input is 0
 - When the switch is pressed, the input is 1

Resistors needed to Configure an Input Switch

- The REN and OUT registers are needed to configured for the built-in resistors in the LaunchPad, as
 - 1. The REN (Resistor Enable) enables the resistor for input Pin
 - The Offset of this Register in GPIO memory is 0x06
 - The Pull-Up or Pull-Down Resistor is selected by the OUTPUT Register (GPIO)
 - In this case, the function of this OUT register is NOT to send signal to output Pin
 - A value 1 for an Input Pin indicates the Pull-up Resistor setup
 - A value 0 for an Input Pin indicates the Pull-Down Resistor setup
 - The offset of the Out Register is the same, 0x02
- The REN and OUT register configurations are NOT needed if the resistors are used outside the launchPad as in the breadboard.
- 1. The Input Register (GPIO) is for loading/reading the input value to a CPU Register
 - The Offset of Input Register is 0x00
- 2. The Data Direction Register is used for configuring Pin as input Pin
 - Offset is the same, 0x04

Resistor Enable - Offset

Offset of the REN Register

	7	6	5	4	3	2	1	0	Offsets from Port Address
PxIN Register									0x00
	7	6	5	4	3	2	1	0	
PxOUT Register									0x02
	7	6	5	4	3	2	1	0	
PxDIR Register									0x04
	7	6	5	4	3	2	1	0	
PxREN Register		J	,	4	3	2	1		0x06

Example on Configuring an Input Pin

Ports	Addresses	Physical
Forts	Addresses	Address
GPIO P1	0x4000 4C00 +0x00	0x4000 4C00
GPIO P2	0x4000 4C00 +0x01	0x4000 4C01
GPIO P3	0x4000 4C00 +0x20	0x4000 4C20
GPIO P4	0x4000 4C00 +0x21	0x4000 4C21
GPIO P5	0x4000 4C00 +0x40	0x4000 4C40
GPIO P6	0x4000 4C00 +0x41	0x4000 4C41
GPIO P7	0x4000 4C00 +0x60	0x4000 4C60
GPIO P8	0x4000 4C00 +0x61	0x4000 4C61
GPIO P9	0x4000 4C00 +0x80	0x4000 4C80
GPIO P10	0x4000 4C00 +0x81	0x4000 4C81

```
ldr r0, =0x40004C00
add r0, #0x40
```


1. Configure input pins (Data Direction Register – 0x04)

```
mov rl, #0x00
strb rl, [r0, #0x04] ; P5.4, P5.2, P5.0 as input pins
```

2. Enable the Resistor for Pins (Resistor Register – 0x06)

```
mov rl, #0x15
strb rl, [r0, #0x06] ; Resistors Enabled for the input pins
```

3. Configure Pull-up and Pull-down Resistors (Output Register – 0x02)

```
mov rl, #0x11
strb rl, [r0, 0x02] ; P5.4 and P5.0 pull-up, P5.2 Pull-down
```

Summary – Configuration of Input Pin

Three Registers are involved

- Data Direction Register (Offset: 0x04)
- Resistor Enable Register (Offset: 0x06)
- Output Register (Offset: 0x02)

- 1. The Default configuration of Pins is for General Purpose Input/Output usage.
- 2. PxSELO and PxSEL1 registers are used for Alternate usages of the GPIO pins

									Offsets from Port Address
D III D	7	6	5	4	3	2	1	0	
PxIN Register									0x00
	7	6	5	4	3	2	1	0	
PxOUT Register									0x02
	7	6	5	4	3	2	1	0	
PxDIR Register									0x04
	7	6	5	4	3	2	1	0	
PxREN Register									0x06
	7	6	5	4	3	2	1	0	
PxSELO Register									0x0A
	7	6	5	4	3	2	1	0	
PxSEL1 Register									0x0C

PxSEL1	PxSEL0	Meaning
0	0	Alternative 0 (Default Simple I/O)
0	1	Alternative 1 (UART, SPI), 12C,)
1	0	Alternative 2 (Timers,)
1	1	Alternative 3 (ADC, Comparator,)

	7	6	5	4	3	2	1	0	Offsets from Port Address
PxIN Register									0x00
	7	6	5	4	3	2	1	0	
PxOUT Register									0x02
	7	6	5	4	3	2	1	0	
PxDIR Register									0x04
	7	6	5	4	3	2	1	0	
PxREN Register									0x06
	7	6	5	4	3	2	1	0	
PxSELO Register									0x0A
	7	6	5	4	3	2	1	0	
PxSEL1 Register		0	3	4	3	2	1		0x0C

Example 1: UARTO uses P1.2 to receive data and P1.3 to transmit data. Configure these pins for UART communication

```
P1SEL0 byte: 0000\ 0100 = 0x04 for P1.2
P1SEL0 byte: 0000\ 1000 = 0x08 for P1.3
P1SEL0 byte for both Pins: 0000\ 1100 = 0x0C
; Assume R1 points to the address of Port 1
LDR r1, =0x40004C00 ; Base address add r1, \#0x00 ; Port 1 address mov r2, \#0x0C strb r2, [r1, \#0x0A] ; P1SEL0
```

```
P1SEL1 byte: 0000 0000 = 0x00 for P1.2
P1SEL1 byte: 0000 0000 = 0x00 for P1.3

P1SEL1 byte for both pins: 0000 0000 = 0x00

; Assume R1 points to the address of Port 1 ldr r1, =0x40004C00
add r1, #0x00
mov r2, #00
strb r2, [r1, #0x0C] ; P1SEL1
```


 Example 2: UART3 uses P9.6 to receive data and P9.7 to transmit data. Configure these pins for UART communication

```
P9SEL0 byte: 0100 0000 = 0x40 for P9.6
P9SEL0 byte: 1000 0000 = 0x80 for P9.7

P9SEL0 byte for both pins: 1100 0000 = 0xE0

; Assume R1 points to the address of Port 9

LDR r1, =0x40004C00
ADD r1, #0x80 ; r1 points to Port 9
mov r2, #0xE0
strb r2, [r1, #0x0A]
```

```
P9SEL1 byte: 0000 0000 = 0x00
P9SEL1 byte: 0000 0000 = 0x00

P9SEL1 byte for both pins: 0x00

; Assume R1 points to the address of Port 9

mov r2, #0x00
strb r2, [r1, #0x0C]
```

LEDs of 7-Segment Display

- Each segment is an individual LED
- Each LED is powered individually
- All cathodes are grounded
 - Common-Cathode system
- Note the order of letters, a, b, e, etc. to identify LEDs

LEDs of 7-Segment Display

- To display a particular number or character
 - The set of particular LEDs must be powered on by Microcontroller program
- Figure shows LEDs 'b' and 'c' powered ON to display '1'

7-Segment LED Interfacing

7-Segment LED can be

- Common Anode
 - All LEDs are connected to positive supply voltage
 - Microcontroller has to drive individual cathode LOW for current to flow to make LEDs light up
- Common Cathode
 - All cathodes of LEDs are connected to ground
 - Microcontroller pins must provide sufficient source current for each LED segment
- An 8-bit port is sufficient to drive all segments (Port 4)

Pin Assignment

• Figure shows a desirable sequence of Pin assignment

D7	D6	D5	D4	D3	D2	D1	D0
	g	f	е	d	С	b	а

Pinout of a Single 7-Segment Display

Single 7-segment Display (Common Cathode – 3461BS)

Pins of a single 7-Segment LED Display

10	9	8	7	6	5	4	3	2	1
g	f	GND	a	b	DP	С	GND	d	e

DP - Decimal Point

Numbers	D7	D6	D5	D4	D3	D2	D1	D0	Hex
	•	g	f	е	d	C	b	а	
0	0	0	1	1	1	1	1	1	0x3F
1	0	0	0	0	0	1	1	0	0x06
2	0	1	0	1	1	0	1	1	0x5B
3	0	1	0	0	1	1	1	1	0x4F
4	0	1	1	0	0	1	1	0	0x66
5	0	1	1	0	1	1	0	1	0x6D
6	0	1	1	1	1	1	0	1	0x7D
7	0	0	0	0	0	1	1	1	0x07
8	0	1	1	1	1	1	1	1	0x7F
9	0	1	1	0	1	1	1	1	0x6F

Microcontroller Connections for a Single 7segment Display

Two 7-Segement LEDS for two digits

