

Signup and get free access to 100+ Tutorials and Practice Problems

Start Now

10

?

10

Data Structures

Data Structure	Time Comple	Space Complexity							
	Average				Worst				Worst
	Indexing	Search	Insertion	Deletion	Indexing	Search	Insertion	Deletion	
Basic Array	0(1)	0(n)	-	=	0(1)	0(n)		-	0(n)
Dynamic Array	0(1)	O(n)	O(n)	0(n)	0(1)	0(n)	O(n)	0(n)	0(n)
Singly-Linked List	O(n)	O(n)	0(1)	0(1)	O(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	O(n)	O(n)	0(1)	0(1)	(O(n)	0(n)	0(1)	0(1)	0(n)
Skip List	O(log(n))	O(log(n))	0(log(n))	O(log(n))	O(n)	0(n)	0(n)	O(n)	O(n log(n))
Hash Table		0(1)	0(1)	0(1)	-	0(n)	O(n)	0(n)	0(n)
Binary Search Tree	0(log(n))	O(log(n))	0(log(n))	0(log(n))	O(n)	0(n)	O(n)	O(n)	0(n)
Cartresian Tree		O(log(n))	0(log(n))	0(log(n))	-	0(n)	0(n)	(n)	0(n)
B-Tree	0(log(n))	O(log(n))	0(log(n))	O(log(n))	O(log(n))	0(log(n))	0(log(n))	O(log(n))	0(n)
Red-Black Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	O(log(n))	0(log(n))	0(log(n))	0(log(n))	O(n)
Splay Tree	B	0(log(n))	0(log(n))	0(log(n))	8	0(log(n))	0(log(n))	0(log(n))	0(n)
AVL Tree	0(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	0(log(n))	O(log(n))	O(log(n))	0(n)

Data Structures

Data Structure	Time Complexity								
	Average				Worst	Worst			
	Indexing	Search	Insertion	Deletion	Indexing	Search	Insertion	Deletion	
Basic Array	0(1)	0(n)	0	0	0(1)	0(n)	0	0	0(n)
Dynamic Array	0(1)	0(n)	0(n)	0(n)	0(1)	O(n)	O(n)	0(n)	0(n)
Singly-Linked List	O(n)	0(n)	0(1)	0(1)	O(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	O(n)	0(n)	0(1)	0(1)	O(n)	0(n)	0(1)	0(1)	0(n)
Skip List	O(log(n))	0(log(n))	0(log(n))	O(log(n))	O(n)	0(n)	0(n)	O(n)	O(n log(n))
Hash Table	-	0(1)	0(1)	0(1)	-	O(n)	O(n)	0(n)	0(n)
Binary Search Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	O(n)	0(n)	0(n)	0(n)	0(n)
Cartresian Tree		O(log(n))	0(log(n))	O(log(n))		0(n)	0(n)	O(n)	O(n)
B-Tree	O(log(n))	0(log(n))	0(log(n))	O(log(n))	O(log(n))	0(log(n))	O(log(n))	O(log(n))	O(n)
Red-Black Tree	O(log(n))	0(log(n))	0(log(n))	O(log(n))	O(log(n))	0(log(n))	0(log(n))	O(log(n))	0(n)
Splay Tree	-	0(log(n))	0(log(n))	0(log(n))	-	0(log(n))	0(log(n))	0(log(n))	0(n)
AVL Tree	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	0(log(n))	0(log(n))	O(log(n))	0(n)

Searching

Algorithm	Data Structure	Time Complexity	Space Complexity	
		Average	Worst	Worst
Depth First Search (DFS)	Graph of V vertices and E edges		O(E + V)	(v)
Breadth First Search (BFS)	Graph of V vertices and E edges	-	O(E + V)	(V)
Binary search	Sorted array of n elements	O(log(n))	O(log(n))	0(1)
Linear (Brute Force)	Array	O(n)	O(n)	0(1)
Shortest path by Dijkstra, using a Min-heap as priority queue	Graph with V vertices and E edges	O((V + E) log V)	0((V + E) log V)	0(v)
Shortest path by Dijkstra, using an unsorted array as priority queue	Graph with V vertices and E edges	0(V ^2)	0(V ^2)	((V))
Shortest path by Bellman-Ford	Graph with V vertices and E edges	O(V E)	O(V E)	((VI)

Sorting Algorithms chart

10

Sorting

Algorithm	Data Structure	Time Complexit	у		Worst Case Auxiliary Space Complexity	
		Best	Average	Worst	Worst	
Quicksort	Array	O(n log(n))	O(n log(n))	O(n^2)	0(n)	
Mergesort	Array	O(n log(n))	O(n log(n))	O(n log(n))	(O(n)	
Heapsort	Array	O(n log(n))	O(n log(n))	O(n log(n))	0(1)	
Bubble Sort	Array	0(n)	O(n^2)	O(n^2)	0(1)	
Insertion Sort	Array	0(n)	O(n^2)	O(n^2)	0(1)	
Select Sort	Array	O(n^2)	O(n^2)	O(n^2)	0(1)	
Bucket Sort	Array	O(n+k)	O(n+k)	O(n^2)	O(nk)	
Radix Sort	Array	0(nk)	O(nk)	O(nk)	O(n+k)	

Heaps

Heaps	Time Complexity								
	Heapify	Find Max	Extract Max	Increase Key	Insert	Delete	Merge		
Linked List (sorted)	(E)	0(1)	0(1)	0(n)	O(n)	0(1)	O(m+n)		
Linked List (unsorted)	-	O(n)	O(n)	0(1)	0(1)	0(1)	0(1)		
Binary Heap	0(n)	0(1)	O(log(n))	0(log(n))	O(log(n))	O(log(n))	O(m+n)		
Binomial Heap		O(log(n))	O(log(n))	0(log(n))	O(log(n))	O(log(n))	0(log(n))		
Fibonacci Heap		0(1)	0(log(n))*	0(1)*	0(1)	0(log(n))*	0(1)		

Graphs

Node / Edge Management	Storage	Add Vertex	Add Edge	Remove Vertex	Remove Edge	Query
Adjacency list	O(V + E)	0(1)	0(1)	O(V + E)	O(E)	0(v)
Incidence list	O(V + E)	0(1)	0(1)	O(E)	O(E)	O(E)
Adjacency matrix	0(V ^2)	0(V ^2)	0(1)	0(V ^2)	0(1)	0(1)
Incidence matrix	O(V - E)	O(V · E)	O(V + E)	O(V - E)	O(V - E)	O(E)

Like 8 Tweet

COMMENTS (17) 2

SORT BY: Relevance ▼

Login/Signup to Comment

Harish Patel 4 years ago

You must acknowledge the original author which is Eric, http://www.bigocheatsheet.com. Its good to collect likes but its better, moral and humane to credit people. Till now, there isn't much issue of web plagiarism which lets people easily copy things. But I thank you for at least helping people learn something. Your intention is right.

▲ 25 votes

C Woo 2 years ago

It doesn't quite look the same, I do prefer this one over the one on the website. These tables are general knowledge. What is compiled here is different, though similar. This user's other post was a copy pasta, but I don't he took these from your referenced website.

▲ 2 votes

Ketan Singh 5 years ago http://bigocheatsheet.com/