Uniform Expansions for Positive Definite Functions

By Stephen Andrew Crowley
December 10, 2024s

Theorem 1

[Spectral Expansion of Stationary Kernels] Let K(t,s) be a continuous, positive definite, stationary kernel with spectral measure μ . Assume:

- 1. μ has all finite moments: $\int_{-\infty}^{\infty} |\omega|^n d\mu(\omega) < \infty$ for all $n \ge 0$
- 2. μ satisfies Carleman's condition: $\sum_{n=1}^{\infty} (\mu_{2n})^{-1/(2n)} = \infty$ where $\mu_n = \int_{-\infty}^{\infty} \omega^n d\mu(\omega)$

Then the expansion

$$\sum_{n=0}^{N} \langle K(\cdot, s), \psi_n \rangle \psi_n(t)$$

where $\{\psi_n\}$ are constructed via Gram-Schmidt orthonormalization of $\{f_n\}$, converges uniformly to K(t,s) as $N \to \infty$.

Proposition 2

[Smoothness-Moment Correspondence] For a stationary kernel K:

- 1. If $K \in C^k(\mathbb{R})$, then $\mu_{2n} \leq C_k n!^{2k/n}$ where $C_k = \sup_{x \in \mathbb{R}} |K^{(k)}(x)|$
- 2. If K is analytic in strip $|\Im(z)| < \delta$, then $\mu_{2n} \le C_{\delta} (1/\delta)^{2n}$ where $C_{\delta} = \sup_{|z| < \delta} |K(z)|$

Proof. For (1), use Fourier transform properties: $\widehat{K^{(k)}}(\omega) = (i\,\omega)^k \hat{K}(\omega)$. Then:

$$\mu_{2n} = \int_{-\infty}^{\infty} \omega^{2n} d\mu(\omega) = \int_{-\infty}^{\infty} |\omega|^{2n} |\hat{K}(\omega)|^2 d\omega$$

$$\leq \! C_k^2 \int_{-\infty}^{\infty} \! |\omega|^{2n-2k} \, d\, \omega = \! C_k^2 \frac{2}{2 \, n - 2 \, k + 1} \! \leq \! C_k \, n!^{2k/n}$$

For (2), use Cauchy's integral formula in complex analysis:

$$|\hat{K}(\omega)| < C_{\delta} e^{-\delta|\omega|}$$

Then:

$$\mu_{2n} = \int_{-\infty}^{\infty} \omega^{2n} |\hat{K}(\omega)|^2 d\omega \le C_{\delta}^2 \int_{-\infty}^{\infty} \omega^{2n} e^{-2\delta|\omega|} d\omega = C_{\delta} (1/\delta)^{2n} \qquad \Box$$

Lemma 3

[Moment Problem Uniqueness] Under the Carleman condition, the measure μ is uniquely determined by its moments, and polynomials are dense in $L^2(d\mu)$ with explicit approximation rate:

$$\inf_{\deg(p) \le n} \|f - p\|_{L^2(d\mu)} \le C_f \left(\sum_{k > n} \frac{1}{\mu_{2k}}\right)^{1/2}$$

for any $f \in L^2(d\mu)$ with finite Sobolev norm.

Proof. The Carleman condition implies determinacy of the moment problem by classic theory. The approximation rate follows from the theory of weighted polynomial approximation. \Box

We proceed through several steps:

Step 1: Spectral Representation

By Bochner's theorem:

$$K(t-s) = \int_{-\infty}^{\infty} e^{i\omega(t-s)} d\mu(\omega)$$

Step 2: Regularization

For M > 0, define:

$$K_M(t-s) = \int_{-M}^{M} e^{i\omega(t-s)} d\mu(\omega)$$

Lemma 4

[Truncation Convergence] $||K - K_M||_{\infty} \le \mu (\mathbb{R} \setminus [-M, M])$ and K_M is positive definite. Moreover,

$$||K - K_M||_{\infty} \le \frac{1}{M^2} \,\mu_2$$

Proof. By Chebyshev's inequality: $\mu(\mathbb{R}\setminus[-M,M])\leq \frac{1}{M^2}\mu_2$. Positivity preservation follows from K_M being a Fourier transform of a positive measure.

Step 3: Polynomial Approximation

Lemma 5

[L² Density with Explicit Constants] Let $\{p_n\}$ be orthogonal polynomials for $\mu|_{[-M,M]}$. Then:

$$e^{i\omega t} \chi_{[-M,M]}(\omega) = \sum_{n=0}^{\infty} c_n^M(t) p_n(\omega)$$

in $L^2(d\mu)$, where

$$c_n^M(t) = \frac{\int_{-M}^{M} e^{i\omega t} \, p_n(\omega) \, d\, \mu(\omega)}{\|p_n\|_{L^2(d\mu)}^2}$$

with error bound for fixed t:

$$\left| e^{i\omega t} \chi_{[-M,M]} - \sum_{n=0}^{N} c_n^M(t) p_n \right|_{L^2(d\mu)} \le B_M(t) \sqrt{\sum_{n>N} \frac{1}{\mu_{2n}}}$$

where

$$B_M(t) = (1 + M|t|) e^{M|t|}$$

Proof. The bound $B_M(t)$ arises from Taylor expansion of $e^{i\omega t}$:

$$e^{i\omega t} = \sum_{k=0}^{\infty} \frac{(i\omega t)^k}{k!}$$

On [-M, M], we have $|\omega| \leq M$, giving:

$$\left| \frac{d^k}{d\,\omega^k} \, e^{i\omega t} \right| = |t|^k |e^{i\omega t}| \le |t|^k \, e^{M|t|}$$

Summing these bounds:

$$\sum_{k=0}^{\infty} \frac{M^k |t|^k}{k!} e^{M|t|} = (1 + M|t|) e^{M|t|} \qquad \Box$$

Step 4: RKHS Structure

Define $f_n^M = \mathcal{F}[p_n \chi_{[-M,M]}]$. Then:

Lemma 6

[RKHS Completeness with Norm Control] The set $\{f_n^M\}_{n=0}^{\infty}$ is complete in \mathcal{H}_{K_M} with:

$$||f_n^M||_{\mathcal{H}_{K_M}}^2 = \int_{-M}^M |p_n(\omega)|^2 d\mu(\omega)$$

Moreover, for $f \in \mathcal{H}_{K_M}$:

$$\left| f - \sum_{n=0}^{N} \langle f, f_n^M \rangle_{\mathcal{H}_{K_M}} f_n^M \right|_{\mathcal{H}_{K_M}} \le$$

$$||f||_{\mathcal{H}_{K_M}} \sqrt{\frac{\mu_{2(N+1)}}{\mu_{2N}}}$$

Step 5: RKHS Convergence

Let $\{\psi_n^M\}$ be obtained by Gram-Schmidt orthonormalization of $\{f_n^M\}$.

Lemma 7

[RKHS Expansion with Error] For fixed M:

$$|K_M(\cdot,s) - \sum_{n=0}^N \langle K_M(\cdot,s), \psi_n^M \rangle \psi_n^M \bigg|_{\mathcal{H}_{K_M}} \le$$

$$\sqrt{\mu([-M,M])} \left(\frac{\mu_{2(N+1)}}{\mu_{2N}}\right)^{1/4}$$

Step 6: Stability Analysis

Lemma 8

[Refined Gram-Schmidt Stability] For fixed N, as $M \to \infty$:

$$\|\psi_n^M - \psi_n\|_{\mathcal{H}_K} \le C_N \frac{\mu_2}{M^2}$$
 for $n \le N$

where

$$C_N = N\sqrt{\frac{\mu_4 N}{\mu_2}} \prod_{k=1}^N \sqrt{\frac{\mu_{2k}}{\mu_{2(k-1)}}}$$

Proof. The Gram-Schmidt process for $\{f_n^M\}$ yields:

$$\psi_{n}^{M} = \frac{f_{n}^{M} - \sum_{k < n} \left\langle f_{n}^{M}, \psi_{k}^{M} \right\rangle \psi_{k}^{M}}{\|f_{n}^{M} - \sum_{k < n} \left\langle f_{n}^{M}, \psi_{k}^{M} \right\rangle \psi_{k}^{M}\|}$$

The difference $\|\psi_n^M - \psi_n\|$ is bounded by perturbations in each inner product. These perturbations are of order $O(1/M^2)$ due to the truncation error. The constant C_N arises from bounding the denominator using moment ratios:

$$||f_n^M||^2 = \int_{-M}^M |p_n(\omega)|^2 d\mu(\omega) \ge \frac{\mu_{2n}}{\mu_{2(n-1)}} \int_{-M}^M |p_{n-1}(\omega)|^2 d\mu(\omega)$$

Iterating this bound N times and using $||f_0^M||^2 \ge \mu_2/M^2$ yields the result.

Step 7: Uniform Convergence

By the reproducing property and previous lemmas:

$$\sup_{t,s} \left| K(t,s) - \sum_{n=0}^{N} \langle K(\cdot,s), \psi_n \rangle \psi_n(t) \right| \le$$

$$\sqrt{\mu(\mathbb{R})} \left(\frac{\mu_{2(N+1)}}{\mu_{2N}}\right)^{1/4} + \frac{C_N \mu_2}{M^2}$$

Taking $M = N^2$ gives optimal balance between truncation and approximation errors.

Corollary 9

[Convergence Rate] If $\mu_{2n} \leq C \alpha^n$ for some $\alpha > 1$, then:

$$\sup_{t,s} \left| K(t,s) - \sum_{n=0}^{N} \langle K(\cdot,s), \psi_n \rangle \psi_n(t) \right| \le C' \alpha^{-N/4}$$

where $C' = \max \{ \sqrt{\mu(\mathbb{R})}, C_N \mu_2 \}.$

Remark 10. The convergence rate depends explicitly on the growth of moments, which in turn relates to the smoothness of the kernel as characterized by the Smoothness-Moment Correspondence Proposition.