- 1. Let $A \subset \mathbb{R}$ and $\mathbf{f}: A \to \mathbb{R}^n$ and $\mathbf{g}: A \to \mathbb{R}^n$ be two differentiable functions. Show that the function $h: A \to \mathbb{R}$ defined by $h(t) = (\mathbf{f}(t) \cdot \mathbf{g}(t))$ is differentiable for every $t \in A$. What is the derivative of h in terms of \mathbf{f} , \mathbf{g} and their derivatives?
- 2. Suppose that $\mathbf{f}: A \subset \mathbb{R} \to \mathbb{R}^n$ is a differentiable function such that $\mathbf{f}'(t) = \mathbf{0} \in \mathbb{R}^n$ for every $t \in A$. Show that \mathbf{f} is a constant function.
- 3. Suppose that c is positive real number and $\mathbf{f}:[a,b]\to\mathbb{R}^n$ is a twice-differentiable path in \mathbb{R}^n such that $\|\mathbf{f}'(t)\| = c$ for every $t\in[a,b]$. Show that $\mathbf{f}'(t)$ and $\mathbf{f}''(t)$ are perpendicular for every $t\in[a,b]$.
- 4. Find the arc length of the given parametrized plane/space curves on the specified intervals:
 - (a) $\mathbf{f}(t) = (t, t^2)$ on [0, 1]
 - (b) $\mathbf{f}(t) = (\cos 3t, \sin 3t, t)$ on $[0, 3\pi]$
 - (c) $\mathbf{f}(t) = (2(1-\cos t)\cos t, 2(1-\cos t)\sin t)$, on $[0,\pi]$
- 5. Show that the tangent lines to the regular parametrized curve $\mathbf{f}(t) = (3t, 3t^2, 2t^3)$ make a constant angle with the line y = 0, z = x in \mathbb{R}^3 .
- 6. Let $\mathbf{f} : [a, b] \to \mathbb{R}^3$ be a differentiable and regular parametrization of a curve with endpoints $\mathbf{p} := \mathbf{f}(a)$ and $\mathbf{q} := \mathbf{f}(b)$.
 - (a) Show that for any constant vector $\mathbf{v} \in \mathbb{R}^3$ with ||v|| = 1,

$$(\mathbf{q} - \mathbf{p}) \cdot \mathbf{v} = \int_{a}^{b} (\mathbf{f}'(t) \cdot \mathbf{v}) dt \le \int_{a}^{b} \|\mathbf{f}'(t)\| dt$$

(b) Using part (a) show that

$$\|\mathbf{f}(b) - \mathbf{f}(a)\| \le \int_a^b \|\mathbf{f}'(t)\| dt$$

that is, the curve of shortest length from $\mathbf{f}(a)$ to $\mathbf{f}(b)$ is the straight line joining these points.

- 7. (a) Define f(x,y) := xy for $(x,y) \in \mathbb{R}^2$. Draw the level curves of this curve corresponding to the levels: 2,3,0,-1
 - (b) Define $f(x,y) := (3-x^2-y^2)^2$ for $(x,y) \in \mathbb{R}^2$. Draw the level curves of this curve corresponding to the levels: 0,2,9,16.
- 8. Discuss the continuity of the following functions at the point (0,0):

(a)
$$f(x,y) = \begin{cases} \frac{x^3y}{x^6 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(b)
$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

9. Let

$$f(x,y) = \frac{x^2y^2}{x^2y^2 + (x-y)^2} \quad for(x,y) \neq (0,0).$$

Show that the iterated limits

$$\lim_{x \to 0} \left[\lim_{y \to 0} f(x, y) \right] \quad and \quad \lim_{y \to 0} \left[\lim_{x \to 0} f(x, y) \right]$$

exist and both are equal to 0, but $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

Version: 2.34 Page 1 of 1