

UNIVERSITÀ DEGLI STUDI DI MILANO

FACOLTÀ DI SCIENZE E TECNOLOGIE

MULTI-ROBOT PATROLLING WITH HETEROGENEOUS UAV/ASV FLEETS FOR WATER MONITORING GUIDED BY A GENERATIVE VAE-UNET

Relatore:

Prof. Nicola Basilico

Correlatore:

Dott. Michele Antonazzi

Laureando:

Edoardo Rodiani

Matricola n. 964881

Il contesto

Corpi idrici

- Risorse essenziali
- Supportano biodiversità
- Ruolo cruciale nell'equilibrio ambientale

Pericolose proliferazioni algali

Cause

- Deflusso di fertilizzanti
- Inquinamento da nutrienti
 - Scarichi industriali

Problemi

- Impoverimento dei livelli di ossigeno nell'acqua
- Rilascio di tossine
 - Morte di animali
 - Taglio dell'acqua ai residenti

ASV e UAV per il monitoraggio

Pericolose proliferazioni algali

Autonomous Surface Vehicle (ASV)

Unmanned Aerial Vehicles (UAV, Droni)

Progetto precedente

- Flotta di ASVs omogenea
- Componenti:
 - Rete Deep Reinforcement Learning (DRL) per la scelta delle azioni per ogni ASV
 - Variational Auto-Encoder UNet (VAE-UNet) per stimare la distribuzione totale delle alghe

Schema Architettura

La flotta omogenea

ASV

- Priorità a zone con:
 - Alta presenza di alghe
 - Alto tempo trascorso da ultima lettura
 - Bassa ridondanza

Il problema della flotta omogenea di ASV

Distribuzione effettiva delle alghe nel lago

Heatmap misurazioni effettuate dagli ASV

Il problema della flotta omogenea di ASV

Distribuzione effettiva delle alghe nel lago

Heatmap misurazioni effettuate dagli ASV

Agente	Precisione	Velocità	Esplorazione
ASV	+	1	_

Obiettivo dell'elaborato

Flotta eterogenea per pattugliamento con obiettivo comune

- Flotte
 - ASVs
 - Misurazioni con priorità a zone pericolose
 - UAVs
 - Esplorare zone poco coperte dagli ASV

Agente)	Precisione	Velocità	Esplorazione
	ASV	+	_	_
	UAV	_	+	+

Schema architettura eterogenea

Modellazione e implementazione componenti software

- Simulatore
 - Simulazione di spostamenti, letture e raccolta dei dati
- Temporizzazione tra differenti agenti
 - Gestione della sequenza temporale in cui gli agenti terminano le loro azioni
- Modelli di rumore letture dei droni

Componenti software – Modelli di rumore

Componenti software – Modelli di rumore

Componenti software – Modelli di rumore

Condizioni meteorologiche avverse (caso peggiore teorico)

Percezione del UAV

Training della VAE-UNet

Lago

Distribuzione effettiva

Misurazioni fatte dagli agenti

Posizioni visitate dagli agenti

- Dataset estratto da simulatore con
 - 1 UAV
 - 4 ASV
 - Azioni casuali
 - Distribuzione alghe generata con Shekel Function

$$f_{ ext{Shekel}}(\mathbf{x}) = \sum_{i=1}^{M} rac{1}{c_i + \sum_{j=1}^{N} (x_j - a_{ij})^2}$$

Grafico di esempio e Formula di Shekel Function

Dopo training – Validazione e Test

Modello	Rumore	Con Drone	Miglioramento
NoDrone	-	X	-
NoNoise	NoNoise	✓	64%
FishEyeNoise	FishEyeNoise	✓	34%
MeanNoise	MeanNoise	✓	-180%

Test dei modelli – Test statico

Test dei modelli – Test dinamico

Test dei modelli – Test dinamico con variazione picchi

Conclusioni

- Introduzione dei Droni nel simulatore
- Risoluzione dei problemi legati alla loro introduzione
- Miglioramenti scoperti nella stima della distribuzione in scenari
 - statici
 - dinamici
- Prossimi sviluppi
 - VAE-UNet con numero di input aumentati
 - Modello DRL per scelta delle azioni dei droni

UNIVERSITÀ DEGLI STUDI DI MILANO

FACOLTÀ DI SCIENZE E TECNOLOGIE

GRAZIE PER L'ATTENZIONE