Épisode 2

Jean-Baptiste Bertrand

18 janvier 2022

Spineurs, bases et rerésentations

ECOC:
$$X, Y, Z, S_z, (S^2) : \mathcal{E}_{\vec{r}} \otimes \mathcal{E}_s = \mathcal{E} \mid \vec{r}, s \rangle$$
 (1)

$$ECOC: P_x, P_y, P_z, S_z; |\vec{p}, s\rangle$$
 (2)

$$ECOC: H_0, \mathbf{L}^2, L_z, S_z; |n, l, m, s\rangle$$
(3)

Relation de fermeture dans \mathcal{E} :

$$1 = 1_{\vec{r}} \otimes 1_S = \int d^3r \, |\vec{r}\rangle \, \langle \vec{r}| \otimes \sum_{\epsilon} |\epsilon\rangle \, \langle \epsilon|$$

$$\implies 1 = \sum_{\epsilon} \int d^3r \, |\vec{r}\epsilon\rangle \langle \vec{r}, \epsilon|$$

Preuve très similaire pour les autres bases.

$$|\psi\rangle = 1 |\psi\rangle = \sum_{\epsilon} \int \mathrm{d}^3 r |\vec{r}, \epsilon\rangle \underbrace{\langle \vec{r}, \epsilon | \psi\rangle}_{\Psi_{\epsilon}(\vec{r})}$$

Représentation matricielle :

$$|\psi\rangle = \int d^3r \begin{pmatrix} \psi_+(\vec{r}) \\ \psi_-(\vec{r}) \end{pmatrix} |\vec{r}\rangle$$
$$\langle \vec{r} | \psi \rangle = \begin{pmatrix} \psi_+(\vec{r}) \\ \psi_-(\vec{r}) \end{pmatrix} = [\psi] (Spineur!)$$
$$\langle \psi | = \int d^3r (\psi_+^*(\vec{r}) - \psi_-^*(\vec{r})) \langle \vec{r} |$$

$$|\psi\rangle = 1 |\psi\rangle = \sum_{\epsilon} \sum_{n,l,m} |n,l,m,\epsilon\rangle \overbrace{\langle n,l,m,\epsilon|\psi\rangle}^{C_{n,l,m,\epsilon}}$$
 (4)

si

$$|\vec{r}\rangle\langle n, l, m| = R_n, l(r)Y_l^m(\theta, \phi)$$

$$\langle \vec{r} | \psi \rangle = \sum_{n,l,m} \sum_{\epsilon} \underbrace{\langle \vec{r} | n,l,m \rangle}_{R_n,l(r)Y_l^m(\theta,\phi)} | \epsilon \rangle C_{n,l,m,\epsilon} = \sum_{n,l,m} \begin{pmatrix} c_{n,l,m,+} R_n, l(r)Y_l^m(\theta,\phi) \\ c_{n,l,m,-} R_n, l(r)Y_l^m(\theta,\phi) \end{pmatrix}$$