Security Arguments and Tool-based Design of Block Ciphers

PhD Defense

December 13th, 2019

Arbeitsgruppe Symmetrische Kryptographie, Horst-Görtz-Institut für IT Sicherheit, Ruhr-Universität Bochum Friedrich Wiemer

RUB

The setting Block Ciphers and Security Notion

Block Ciphers

Security

Substitution Permutation Networks

Overview

- 1 Introduction
- 2 Subspace Trail Attack
- 3 Security against Subspace Trail Attacks
- 4 Conclusion

Subspace Trail Cryptanalysis

Main Idea of Subspace Trails

RUB

Subspace Trail Cryptanalysis

Main Idea of Subspace Trails

Subspace Trail Cryptanalysis

Main Idea of Subspace Trails

Subspace Trail Cryptanalysis [GRR16] (FSE'16)

Let $U_0, \ldots, U_r \subseteq \mathbb{F}_2^n$, and $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then these form a subspace trail (ST), $U_0 \xrightarrow{F} \cdots \xrightarrow{F} U_r$, iff

$$\forall a \in U_i^{\perp} : \exists b \in U_{i+1}^{\perp} : \qquad F(U_i + a) \subseteq U_{i+1} + b$$

Our Goal

Problem: Security against Subspace Trails

Given an SPN with round function *F*, consisting of

- $\blacksquare \ k$ parallel applications of an S-box $S:\mathbb{F}_2^n \to \mathbb{F}_2^n$ and
- \blacksquare a linear layer $L: \mathbb{F}_2^{kn} \to \mathbb{F}_2^{kn}$.

Compute an upper bound on the length of any subspace trail through the cipher.

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

Lemma

Let $U \xrightarrow{F} V$ be a ST. Then for all $u \in U$ and all $x: F(x) + F(x + u) \in V$.

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

Lemma

Let $U \xrightarrow{F} V$ be a ST. Then for all $u \in U$ and all $x: F(x) + F(x+u) \in V$.

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

Lemma

Let $U \xrightarrow{F} V$ be a ST. Then for all $u \in U$ and all $x: F(x) + F(x+u) \in V$.

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

Lemma

Let $U \xrightarrow{F} V$ be a ST. Then for all $u \in U$ and all $x: F(x) + F(x+u) \in V$.

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

Lemma

Let $U \xrightarrow{F} V$ be a ST. Then for all $u \in U$ and all $x: F(x) + F(x+u) \in V$.

Computing the subspace trail

■ To compute the next subspace, we have to compute the image of the derivatives.

Propagate a Basis

Actually it is enough to compute only the image of the derivatives in direction of U's basis vectors.

Lemma

Given
$$U \subseteq \mathbb{F}_2^n$$
 with basis $\{b_1, \ldots, b_k\}$. Then $\operatorname{Span} \{\bigcup_{u \in U} \operatorname{Im} \Delta_u(F)\} = \operatorname{Span} \{\bigcup_{b_i} \operatorname{Im} \Delta_{b_i}(F)\}$.

Actually it is enough to compute only the image of the derivatives in direction of U's basis vectors.

Lemma

Given $U \subseteq \mathbb{F}_2^n$ with basis $\{b_1, \ldots, b_k\}$. Then $\operatorname{Span}\left\{\bigcup_{u \in U} \operatorname{Im} \Delta_u(F)\right\} = \operatorname{Span}\left\{\bigcup_{b_i} \operatorname{Im} \Delta_{b_i}(F)\right\}$.

Proof: \supseteq trivial, \subseteq by induction over the dimension k of U

Let $u = \sum_{i=1}^k \lambda_i b_i$ and $v \in \operatorname{Im} \Delta_u(F)$, i. e. there exists an x s. t.

$$v = F(x) + F(x + \sum_{i=1}^{k} \lambda_i b_i) = F(y + \lambda_k b_k) + F(y + \sum_{i=1}^{k-1} \lambda_i b_i) = \lambda_k \Delta_{b_k}(F)(y) + \lambda' \Delta_{u'}(F)(y).$$

Thus $v \in \operatorname{Span} \{\operatorname{Im} \Delta_{b_k}(F) \cup \operatorname{Im} \Delta_{u'}(F)\}$, where u' is contained in a (k-1) dimensional subspace.

Computation of Subspace Trails

Input: A nonlinear function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$, a subspace U. **Output:** A subspace trail $U \rightrightarrows^F \cdots \rightrightarrows^F V$.

```
1 function ComputeTrail(F, U)

2 if dim U = n then return U

3 V \leftarrow \emptyset

4 for u_i basis vectors of U do

5 for enough x \in_{\mathbb{R}} \mathbb{F}_2^n do

6 V \leftarrow V \cup \Delta_{u_i}(F)(x)

7 V \leftarrow \operatorname{Span}\{V\}

8 return U \rightrightarrows^F \operatorname{ComputeTrail}(F, V)
```

Correctness: previous two lemmata **Runtime**:

- Line 4: max. *n* iterations
- Line 5: n + c random vectors are enough
- \blacksquare Overall: $\mathcal{O}(n^2)$ evaluations of F

Remaining Problem: cyclic STs

Goal

Give an upper bound on the length of any subspace trail.

Goal

Give an upper bound on the length of any subspace trail.

Naïve Approach I

 $\forall U \subseteq \mathbb{F}_2^m$ run ComputeTrail(F,U)

Problem

Exponentially many starting subspaces.

Goal

Give an upper bound on the length of any subspace trail.

Mailia	Approac	L L
naive a		40 -

 $\forall U \subseteq \mathbb{F}_2^m \text{ run ComputeTrail}(F, U)$

Naïve Approach II

 $\forall u \subseteq \mathbb{F}_2^m \setminus \{0\} \text{ run ComputeTrail}(F, \operatorname{Span}\{u\})$

Problem

Exponentially many starting subspaces.

Problem

Still $2^m - 1$ starting subspaces.

Goal

Give an upper bound on the length of any subspace trail.

Naïve Approach I

 $\forall U \subseteq \mathbb{F}_2^m \text{ run ComputeTrail}(F, U)$

Naïve Approach II

 $\forall u \subseteq \mathbb{F}_2^m \setminus \{0\} \text{ run ComputeTrail}(F, \operatorname{Span}\{u\})$

Problem

Problem

Exponentially many starting subspaces.

Still $2^m - 1$ starting subspaces.

Often used heuristic

Activate single S-boxes only. That is, for a round function with k S-boxes which are n-bit wide, choose $U = \{0\}^i \times V \times \{0\}^{k-i-1}$, where $V \subseteq \mathbb{F}_2^n$.

Activating a single S-box only

Problem

Heuristic not valid in general when we want to prove a bound on the subspace trail length. In particular one can construct examples where the best subspace trail does activate more than one S-box in the beginning.

The good case

However, we will see next a sufficient condition for the case when the heuristic is valid.

The Connection to Linear Structures

Let us observe how a single S-box S behaves regarding subspace trails:

Given a subpsace trail $U \stackrel{s}{\rightrightarrows} V$, this implies

$$\Delta_u(S)(x) \in V$$
 for all $x \in \mathbb{F}_2^n$ and $u \in U$.

By definition of the dual space V^{\perp} :

$$\langle \alpha, \Delta_u(S)(x) \rangle = 0$$
 for all $\alpha \in V^{\perp}$,

which are exactly the *linear structures* of *S*:

$$LS(S) := \{(\alpha, u) \mid \langle \alpha, \Delta_u(S)(x) \rangle \text{ is constant for all } x\}$$

This observation implies that S-boxes without linear structures (e.g. the AES S-box) exhibit only two important subspace trails:

$$\{0\} \rightrightarrows \{0\}$$
 and $\mathbb{F}_2^n \rightrightarrows \mathbb{F}_2^n$

We can further show that subspace trails over an S-box layer without linear structures are direct products of the above two subspace trails.

This observation implies that S-boxes without linear structures (e.g. the AES S-box) exhibit only two important subspace trails:

$$\{0\} \rightrightarrows \{0\}$$
 and $\mathbb{F}_2^n \rightrightarrows \mathbb{F}_2^n$

We can further show that subspace trails over an S-box layer without linear structures are direct products of the above two subspace trails.

Theorem

Let F be an S-box layer of k parallel S-boxes $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$. If S has no non-trivial linear structures, then for every subspace trail $U \rightrightarrows^F V$:

$$U = V = U_1 \times \cdots \times U_k$$
,

with $U_i \in \{\{0\}, \mathbb{F}_2^n\}$.

This observation implies that S-boxes without linear structures (e.g. the AES S-box) exhibit only two important subspace trails:

$$\{0\} \rightrightarrows \{0\}$$
 and $\mathbb{F}_2^n \rightrightarrows \mathbb{F}_2^n$

We can further show that subspace trails over an S-box layer without linear structures are direct products of the above two subspace trails.

Theorem

Let F be an S-box layer of k parallel S-boxes $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$. If S has no non-trivial linear structures, then for every subspace trail $U \rightrightarrows^F V$:

$$U = V = U_1 \times \cdots \times U_k$$
,

with $U_i \in \{\{0\}, \mathbb{F}_2^n\}$.

Proof

For all
$$\alpha = (\alpha_1, \dots, \alpha_k) \in V^{\perp}$$
: $\langle \alpha, \Delta_u(F)(x) \rangle = \left\langle \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix}, \begin{pmatrix} \Delta_{u_1}(S)(x_1) \\ \vdots \\ \Delta_{u_k}(S)(x_k) \end{pmatrix} \right\rangle = \sum_{i=1}^k \left\langle \alpha_i, \Delta_{u_i}(S)(x_i) \right\rangle = 0$

The length ℓ of any subspace trail is upper bounded by

$$\ell = \max_{U \in \left\{\{0\}, \mathbb{F}_2^n\right\}^k} \left| \texttt{ComputeTrail}(\mathit{F}, U) \right|,$$

which needs 2^k evaluations of the ComputeTrail algorithm.

Compared to the no-linear-structures-case, V^{\perp} can now contain much more elements, namely all combinations of linear structures, such that their corresponding constants sum to zero.

Instead, we can show that (for any not-trivially-insecure S-box) the subspace after the first S-box layer contains at least one element of a specific structure:

$$W_{i,\alpha} = \{0\}^{i-1} \times \{0,\alpha\} \times \{0\}^{k-i}$$
.

The length ℓ of any subspace trail is then upper bounded by

$$\ell = \max_{W_{i,\alpha}} \left| \mathsf{ComputeTrail}(F', W_{i,\alpha}) \right| + 1$$
,

which needs $k \cdot 2^n$ evaluations of the ComputeTrail algorithm.

Note that F' first applies the linear layer, then the S-box layer (b/c of the skipped first S-box layer).

Conclusion

Thanks for your attention!

Applications of ComputeTrail

- Bound longest probability-one subspace trail
- Link to Truncated Differentials
- Finding key-recovery strategies

