

Software Engineering Research in the Neuroage

fMRI & EEG Studies on Program Comprehension

Norman Peitek

Agenda

- Part I: Motivation & Past SE Research on Programmers
- Part II: Neuroscience Basics (for SE)
- Part III: Neuroscientific Studies on Programmers
- Part IV: Perspectives & Future Research

Learning Objectives

• Understand potentials, limitations, and challenges of empirical SE research with neuroscientific methods

Gain basic familiarity with neuroscience

Obtain overview of insights from current SE research

Part I: Motivation & Past SE Research on Programmers

Software Engineering

Programming languages, Development processes, Testing, Design,

Education, Training, Team collaboration, Communication,

Technical aspects Human aspects

one Nasa Isam used impetal units while enother used etric units for a key spacecraft operation

Bimodality of Code

Focus on Program Comprehension

Past Research on Programmers

Past Research on Programmers

functional Magnetic Resonance Imaging (fMRI)

NEW MIND READERS

What Neuroimaging Can and Cannot Reveal about Our Thoughts

RUSSELL A. POLDRACK

Basics of Neuroscience

Macro Imaging

Overall Cognitive Load

Brain Standardization

We all have different brains!

Standardization: Talairach/MNI Space

Position	0	1	2	3	4	5	6
Number							

Position	0	1	2	3	4	5	6
Number	4						

Position	0	1	2	3	4	5	6
Number		1					

Position	0	1	2	3	4	5	6
Number			9				

Position	0	1	2	3	4	5	6
Number				8			

Position	0	1	2	3	4	5	6
Number					0		

n=3

Position	0	1	2	3	4	5	6
Number					0		

Position	0	1	2	3	4	5	6
Number					0		

Experiment Designs

Block design

Event-related design

Modalities

functional magnetic resonance imaging fMRI

functional near-infrared spectroscopy fNIRS

Electroencephalogram *EEG*

Comparison of Modalities

	fMRI	fNIRS	EEG
Based on/Measures	BOLD	BOLD	Electrical activity
Temporal resolution	Slow (1-2 sec), delayed	Slow (1-2 sec), delayed	Very fast (<100ms)
Spatial resolution	Good (full brain, 3D)	Weak	Very weak
Costs	~200 Euro/hour	~75 Euro/hour	~35 Euro/hour
Limitations	Many	Some	Some

Part III: Neuroscientific Studies on Programmers

fMRI Study 1 on Program Comprehension

Sample Experiment II: Program Comprehension


```
def method name():
    array = [2, 19, 5, 17]
    result = array[0]
    for i in array:
       if i > result:
            result = i
    print(result)
```

Experiment Design & Study Requirements

Block design

Sample Experiment III: Syntax Errors


```
def method name():
    array [2, 19, 5, 17]
    result = array[0]
    for i in array
       if i > result:
           result = i
```

Contrasts

Program Comprehension

Control

Program Comprehension - Control

How Do We Understand Code? [Siegmund14]

BA47

Contrast between
 comprehension and syntax errors

- Network of brain areas
- No "classic" logic brain area
- All left lateralized

fMRI Study 2 on (Top-Down) Program Comprehension

Sample Experiment IV: Program Comprehension


```
def array average (numbers):
    counter = 0
    sum = 0
    for number in numbers:
        sum = sum + number
        counter = counter + 1
    average = sum / counter
    return average
```

Bottom Up versus Top-Down Comprehension

Bottom-Up Comprehension

Top-Down Comprehension

```
public static void main() [
    String text = "The quick brown fox jumps";
    System.out.print(getLengthOfLastWord(text));
6 static int getLengthOfLastWord(String text) {
    int lengthOfLastWord = 0;
    boolean isLastWord = false;
   for (int i = text.length() - 1; i >= 0; i--){
      char c = text.charAt(i);
      if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')){
       isLastWord = true;
        lengthOfLastWord++;
      | else |
        if (isLastWord)
          break;
17
18
    return lengthOfLastWord;
21
```

Top-Down vs. Bottom-Up Comprehension

Example Experiment V: Chunking

492 412 202 327 042 023

No problem, right?

Example Experiment V: Chunking

Example Experiment VI: Numbers

1		

- 7 _
- 8 __

2	7	4	2	3
			\Box	

7	8	9
4	5	6
1	2	3


```
public class A {
    String b;
    String c;
}
```



```
public class DataContainer {
    String name;
    String title;
}
```



```
public class Speaker {
    String name;
    String title;
}
```



```
public class ConferenceSpeaker {
    String speakerName;
    String talkTitle;
}
```

EEG Study: Programmer Efficacy

Motivation

56

Participants

Demographics		
Invited Participants	37	
Female	5	
Male	31	
Non-Binary	1	
Age (in Years)	25.95 ± 6.76	

	Programming Experience	Measures
Employment	Undergraduate/graduate student	27 of 37
	of which work (at least part time)	14 of 27
Ш	Full-time professionals	10 of 37
f	Years of Learning Programming	7.93 ± 6.14
Years of Programming	Years of Professional Programming	3.55 ± 4.30
Pro	Number of Known Programming Languages	5.11 ± 2.02
Self- Estimation	Comparison to Peers	3.67 ± 0.76
Se	Comparison to 10-Year Professional	2.25 ± 0.94
Work Stats	Hours per Week Spent in Software Engineering	24.76 ± 21.08
	Hours per Week Spent Programming	10.78 ± 11.36

Method: Measures

Comprehend up to 32 Java source-code snippets

Neuroscience & Software Engineering

Theory of Program Comprehension

Impact on SE Practice

Part IV: Perspectives & Future Research

Problems with Experiment Design

Problems with Experiment Design

Dynamic Brain Activation

Dynamic Brain Activation


```
public class Street {
    private int mader;

    public Street(int mr) {
        setNumber(mr);
    }

    public int getNumber() {
        return number;
    }

    public void setNumber(int number) {
        this.number = number;
    }

    public static void main(string[] args) {
        Street street = number(5);
        street.setNumber(15);
        System.out.print(street.getNumber());
    }
}
```

Multi-Modality

SE Pushes Neuroscience Forward

Integration of Eye Tracking

APA PsycNet®

Increased insula and amygdala activity during selective attention for negatively valenced body parts in binge eating disorder.

Press, Sophia Antonia Biehl, Stefanie C. Domes, Gregor Svaldi, Jennifer

fMRI-compatible Keyboard

Neurological Divide: An fMRI Study of Prose and Code Writing

Ryan Krueger University of Michigan ryankrue@umich.edu

Tyler Santander UC Santa Barbara t.santander@psych.ucsb.edu Yu Huang University of Michigan yhhy@umich.edu

Westley Weimer University of Michigan weimerw@umich.edu Xinyu Liu Georgia Institute of Technology xinyuliu@umich.edu

> Kevin Leach University of Michigan kileach@umich.edu

Lessons

- Pay attention to experiment methods in your paper and related work
- Develop your own idea
 - Could target cognitive processes, different languages, groups of programmers, ...
 - Participant selection
 - What do you want to observe?
 - Consistency between goals and (detailed) methods is important

Conclusion

Motivation for Neuroscience & SE

Impact of fMRI Studies in Research and Practice

Future

7	8	9
4	5	6
1	2	3

