第 1 次作业题解答

1. 设 $a, b \in \mathbb{R}$, 证明: $\max\{a, b\} = \frac{a+b+|a-b|}{2}$, $\min\{a, b\} = \frac{a+b-|a-b|}{2}$.

证明: 不失一般性, 我们可以假设 $a \ge b$ (否则可交换 a,b 的作用). 则

$$\frac{a+b+|a-b|}{2} = \frac{a+b+a-b}{2} = a = \max\{a,b\},$$

$$\frac{a+b-|a-b|}{2} = \frac{a+b-(a-b)}{2} = b = \min\{a,b\}.$$

注: 上述二式等价. 比如说由第一式可导出第二式. 事实上. 我们有

$$\min\{a,b\} = -\max\{-a,-b\}$$

$$= -\frac{-a-b+|-a+b|}{2}$$

$$= \frac{a+b-|a-b|}{2}.$$

2. 设 A, B 为非空有界数集且 $A \cap B$ 非空, 证明:

$$\inf(A \cap B) \geqslant \max\{\inf A, \inf B\}.$$

证明: $\forall x \in A \cap B$, 我们有 $x \ge \inf A$ 且 $x \ge \inf B$, 故

$$x \geqslant \max\{\inf A, \inf B\},\$$

于是由下确界的定义可知 $\inf(A \cap B) \ge \max\{\inf A, \inf B\}$.

3. 设 A, B 均为非空有界数集, 定义 $A + B = \{x + y \mid x \in A, y \in B\}$. 证明:

$$\inf(A+B) = \inf A + \inf B.$$

证明: 方法 1. 首先证明 $\inf(A+B) \geqslant \inf A + \inf B$.

 $\forall x \in A$ 以及 $\forall y \in B$, 我们有 $x \geqslant \inf A$, $y \geqslant \inf B$, 故 $x+y \geqslant \inf A + \inf B$, 则由下确界的定义知 $\inf (A+B) \geqslant \inf A + \inf B$.

其次证明 $\inf(A+B) \leq \inf A + \inf B$.

 $\forall y \in B$ 以及 $\forall x \in A$, 我们有 $\inf(A+B) \leqslant x+y$. 于是 $\inf(A+B)-y \leqslant x$, 从而由下确界的定义可知 $\inf(A+B)-y \leqslant \inf A$, 也即 $\inf(A+B)-\inf A \leqslant y$. 再由下确界的定义可得 $\inf(A+B)-\inf A \leqslant \inf B$.

综上所述可知 $\inf(A+B) = \inf A + \inf B$.

方法 2. 令 $\eta_1 = \inf A$, $\eta_2 = \inf B$. 则 $\forall x \in A$ 以及 $\forall y \in B$, 我们有 $x \ge \eta_1$, $y \ge \eta_2$, 于是 $x + y \ge \eta_1 + \eta_2$, 也即 $\eta_1 + \eta_2$ 为 A + B 的下界.

 $\forall \varepsilon > 0$, 由下确界的性质知, $\exists x \in A$ 使得 $x < \eta_1 + \frac{\varepsilon}{2}$, 同时 $\exists y \in B$ 使得 $y < \eta_2 + \frac{\varepsilon}{2}$, 则 $x + y < \eta_1 + \eta_2 + \varepsilon$. 故 $\eta_1 + \eta_2$ 为 A + B 的下确界. 得证.

4. 利用极限的定义证明以下极限:

(1)
$$\lim_{n \to \infty} \frac{2n^3 - 1}{n^3 - n + 1} = 2$$
; (2) $\lim_{n \to \infty} (\sqrt{n^2 - 1} - \sqrt{n^2 + 4}) = 0$.

证明: $(1) \ \forall \varepsilon > 0$, 令 $N = [(1+\frac{2}{\varepsilon})^{\frac{1}{2}}]$, 则 $\forall n > N$, 均有 $n > (1+\frac{2}{\varepsilon})^{\frac{1}{2}}$, 从而 $n^2-1>rac{2}{arepsilon},$ 于是 $\left|rac{2n^3-1}{n^3-n+1}-2
ight|=rac{2n-3}{n^3-n+1}<rac{2n}{n(n^2-1)}=rac{2}{n^2-1}<arepsilon.$ 故所证成立. (2) orall arepsilon>0,令 $N=\left[rac{5}{arepsilon}
ight]+1$,则 orall n>N,我们有

$$|\sqrt{n^2 - 1} - \sqrt{n^2 + 4}| = \frac{5}{\sqrt{n^2 - 1} + \sqrt{n^2 + 4}} \leqslant \frac{5}{n} < \varepsilon.$$

因此所证结论成立.

5. 证明: 数列 $\{x_n\}$ 收敛于 A 等价于它的子列 $\{x_{2n}\}$, $\{x_{2n-1}\}$ 均收敛于 A.

证明: 必要性. 若 $\{x_n\}$ 收敛于 A, 则该数列的任意子列收敛到 A, 特别地, 其偶数项子列与奇数项子列收敛到 A.

充分性. 假设 $\{x_{2n}\}$, $\{x_{2n-1}\}$ 均收敛于 A. 则 $\forall \varepsilon > 0$, $\exists N_1 > 0$ 使得 $\forall n > N_1$, 均有 $|x_{2n} - A| < \varepsilon$. $\exists N_2 > 0$ 使得 $\forall n > N_2$, 均有 $|x_{2n-1} - A| < \varepsilon$. 令 $N = 2N_1 + 2N_2$. $\forall n > N$, 当 n 为偶数时, $\frac{n}{2} > N_1$, 则 $|a_n - A| = |a_2 \cdot \frac{n}{2} - A| < \varepsilon$. 当 n 为奇数时, $\frac{n+1}{2} > N_2$, 故 $|x_n - A| = |x_2, \frac{n+1}{2} - 1 - A| < \varepsilon$. 综上所述可知, $\forall n > N$, 总有 $|a_n - A| < \varepsilon$, 因此数列 $\{x_n\}$ 收敛于 A.

- 6. 求下列极限:
 - (1) $\lim_{n\to\infty} \frac{2n^3-2n^2-n-1}{3n^3+n^2+2}$;
 - (2) $\lim_{n \to \infty} (\sqrt{n^2 n + 1} \sqrt{n^2 + n 2});$
 - (3) $\lim_{n \to \infty} (\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)});$ (4) $\lim_{n \to \infty} (\frac{1+2+\dots+n}{n+2} \frac{n}{2}).$

解: (1)
$$\lim_{n \to \infty} \frac{2n^3 - 2n^2 - n - 1}{3n^3 + n^2 + 2} = \lim_{n \to \infty} \frac{2 - \frac{2}{n} - \frac{1}{n^2} - \frac{1}{n^3}}{3 + \frac{2}{n} + \frac{2}{n^3}} = \frac{2}{3}$$
.

(2)
$$\lim_{n \to \infty} (\sqrt{n^2 - n + 1} - \sqrt{n^2 + n - 2})$$

$$= \lim_{n \to \infty} \frac{-2n+3}{\sqrt{n^2 - n + 1} + \sqrt{n^2 + n - 2}}$$

$$= \lim_{n \to \infty} \frac{-2 + \frac{3}{n}}{\sqrt{1 - \frac{1}{n} + \frac{1}{n^2} + \sqrt{1 + \frac{1}{n} - \frac{2}{n^2}}}}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{n^2 + n^2 + 1} + \frac{1}{n^2}}{\frac{2}{n^2 + (\sqrt{1 - \frac{1}{n} + \frac{1}{n^2} - 1}) + (\sqrt{1 + \frac{1}{n} - \frac{2}{n^2} - 1})}}$$

$$= \lim_{n \to \infty} \frac{\frac{-2 + \frac{3}{n}}{n}}{2 + \frac{-\frac{1}{n} + \frac{1}{n^2}}{\sqrt{1 - \frac{1}{n} + \frac{1}{n^2} + 1}} + \frac{\frac{1}{n} - \frac{2}{n^2}}{\sqrt{1 + \frac{1}{n} - \frac{2}{n^2} + 1}}} = \frac{-2}{2} = -1.$$

(3)
$$\lim_{n \to \infty} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} \right) = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1.$$

$$(4) \lim_{n \to \infty} \left(\frac{1+2+\dots+n}{n+2} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(\frac{n(n+1)}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \frac{-1}{2(1+\frac{2}{n})} = -\frac{1}{2}.$$

7. 求下列极限:

(1)
$$\lim_{n \to \infty} \sum_{k=n}^{2n} \frac{1}{k^2}$$
;

(1)
$$\lim_{n \to \infty} \sum_{k=n}^{2n} \frac{1}{k^2};$$

(2) $\lim_{n \to \infty} (\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}});$
(3) $\lim_{n \to \infty} (2\sin^2 n + \cos^2 n)^{\frac{1}{n}}.$

解: $(1) \forall n \ge 1$, 均有 $0 \le \sum_{k=n}^{2n} \frac{1}{k^2} \le \frac{n+1}{n^2}$, 进而由夹逼原理得

$$\lim_{n \to \infty} \sum_{k=n}^{2n} \frac{1}{k^2} = 0.$$

 $(3) \ \forall n \geqslant 1, \ 1 \leqslant (2 \sin^2 n + \cos^2 n)^{\frac{1}{n}} = (1 + \sin^2 n)^{\frac{1}{n}} \leqslant \sqrt[n]{2}, \ \text{fin} \quad \lim \ \sqrt[n]{2} = 1,$ 则由夹逼原理可得 $\lim_{n\to\infty} (2\sin^2 n + \cos^2 n)^{\frac{1}{n}} = 1.$

8. 证明不等式: $\frac{1}{2n} \leqslant \frac{1}{2} \cdot \frac{3}{4} \cdot \cdot \cdot \cdot \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}$, 并求极限 $\lim_{n \to \infty} \sqrt[n]{\frac{1}{2} \cdot \frac{3}{4} \cdot \cdot \cdot \frac{2n-1}{2n}}$.

解: $(1) \forall n \geq 1$, 我们有

$$\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n} = \prod_{k=1}^{n} \frac{2k-1}{2k} = \frac{\prod_{k=1}^{n} (2k-1)}{\prod_{k=1}^{n} (2k)}$$

$$= \frac{\prod_{k=1}^{n-1} (2k+1)}{\prod_{k=1}^{n} (2k)} = \frac{1}{2n} \prod_{k=1}^{n-1} \frac{2k+1}{2k} \geqslant \frac{1}{2n},$$

$$\left(\prod_{k=1}^{n} \frac{2k-1}{2k}\right)^{2} = \frac{\left(\prod_{k=1}^{n} (2k-1)\right) \left(\prod_{k=1}^{n-1} (2k+1)\right)}{\prod_{k=1}^{n} (2k)^{2}}$$

$$= \frac{1}{2n+1} \prod_{k=1}^{n} \frac{(2k-1)(2k+1)}{(2k)^{2}} < \frac{1}{2n+1}.$$

由此立刻可得所要不等式.

(2) 由 (1) 可知, $\forall n \ge 1$, 我们有

$$\frac{1}{\sqrt[n]{2n}} \leqslant \sqrt[n]{\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n}} \leqslant \frac{1}{\sqrt[2n]{2n+1}} < 1.$$

又 $\lim_{n \to \infty} \sqrt[n]{2} = \lim_{n \to \infty} \sqrt[n]{n} = 1$,则由夹逼原理可知 $\lim_{n \to \infty} \sqrt[n]{\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n}} = 1$.

思考题 (不用交):

- 9. 下列说法中, 哪些与 $\lim_{n\to\infty} a_n = A$ 等价. 如果等价, 请证明. 如果不等价, 请举出反例.
- (1) 对于无限多个 $\varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 只要 $n \ge N$, 就有 $|a_n A| < \varepsilon$;
- (2) $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 只要 $n \ge N$, 就有 $|a_n A| < \varepsilon$;
- (3) $\forall \varepsilon \in (0,1), \exists N \in \mathbb{N}^*, \ \mathcal{P} \neq n > N, \ \text{就有} \ |a_n A| < \varepsilon;$
- (4) k > 0, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 只要 n > N, 就有 $|a_n A| < k\varepsilon$;
- (5) $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 只要 n > N, 就有 $|a_n A| < \varepsilon^{\frac{2}{3}}$;
- (6) $\forall k \in \mathbb{N}^*$, $\exists N_k \in \mathbb{N}^*$, 只要 $n > N_k$, 就有 $|a_n A| < \frac{1}{2k}$;
- (7) ∃ $N \in \mathbb{N}^*$, 只要 n > N, 就有 $|a_n A| < \frac{1}{n}$;
- (8) $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 只要 n > N, 就有 $|a_n A| < \frac{\varepsilon}{n}$;
- $(9) \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N}^*, \ \mathcal{F} \in \mathbb{N}^*, \ \mathcal{F} \in \mathbb{N}^*, \ \mathcal{F} \in \mathbb{N}^*$
- 解: (1) 不等价. 数列 $\{(-1)^n\}$ 发散, 但 $\forall \varepsilon > 1$ 以及 $\forall n \ge 1$, 均有 $|(-1)^n| < \varepsilon$.
- (2) 等价. 若 $\lim_{n\to\infty} a_n = A$, 则 $\forall \varepsilon > 0$, $\exists N_1 > 0$ 使 $\forall n > N_1$, $|a_n A| < \varepsilon$. 令 $N = N_1 + 1$, 则 $\forall n \ge N > N_1$, 我们有 $|a_n A| < \varepsilon$.

反过来, 若 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 只要 $n \geqslant N$, 就有 $|a_n - A| < \varepsilon$, 则 $\forall n > N$, 我们也有 $|a_n - A| < \varepsilon$.

(3) 等价. 若 $\lim_{n\to\infty}a_n=A$, 则我们由极限定义立刻知 $\forall \varepsilon\in(0,1)$, $\exists N>0$ 使得 $\forall n>N$, 均有 $|a_n-A|<\varepsilon$.

反过来, $\forall \varepsilon > 0$, 若令 $\bar{\varepsilon} = \min(\varepsilon, \frac{1}{2}) \in (0, 1)$, 则由题设立刻可知 $\exists N > 0$ 使得 $\forall n > N$, 均有 $|a_n - A| < \bar{\varepsilon} < \varepsilon$.

(4) 等价. 若 $\lim_{n\to\infty} a_n = A$, 那么 $\forall \varepsilon > 0$, 可令 $\bar{\varepsilon} = k\varepsilon$, 并由极限定义立刻可知 $\exists N>0$ 使得 $\forall n>N$, 均有 $|a_n-A|<\bar{\varepsilon}=k\varepsilon$.

反过来, $\forall \varepsilon > 0$, 若令 $\bar{\varepsilon} = \frac{1}{k}\varepsilon$, 则 $\exists N > 0$ 使得 $\forall n > N$, $|a_n - A| < k\bar{\varepsilon} = \varepsilon$.

(5) 等价. 若 $\lim_{n\to\infty} a_n = A$, 那么 $\forall \varepsilon > 0$, 可令 $\bar{\varepsilon} = \varepsilon^{\frac{2}{3}}$, 并由极限定义立刻可知 $\exists N > 0$ 使得 $\forall n > N$, 均有 $|a_n - A| < \bar{\varepsilon} = \varepsilon^{\frac{2}{3}}$.

反过来, $\forall \varepsilon > 0$, 若令 $\bar{\varepsilon} = \varepsilon^{\frac{3}{2}}$, 则 $\exists N > 0$ 使 $\forall n > N$, $|a_n - A| < \bar{\varepsilon}^{\frac{2}{3}} = \varepsilon$.

(6) 等价. 若 $\lim_{n \to \infty} a_n = A$, 则 $\forall k \in \mathbb{N}^*$, 可令 $\varepsilon = \frac{1}{2^k}$, 并由极限定义立刻可知 $\exists N_k > 0$ 使得 $\forall n > N_k$, 均有 $|a_n - A| < \varepsilon = \frac{1}{2^k}$.

反过来, $\forall \varepsilon > 0$, 若令 $k = |[\frac{\log \frac{1}{\varepsilon}}{\log 2}]| + 1$, 则由题设知 $\exists N_k > 0$ 使得 $\forall n > N_k$, 均有 $|a_n - A| < \frac{1}{2^k} < \varepsilon$.

- (7) 不等价. 数列 $\{\frac{2}{n}\}$ 收敛到 0, 但 $\forall n \ge 1$, 却有 $\frac{2}{n} > \frac{1}{n}$.
- (8) 不等价. 数列 $\{\frac{2}{n}\}$ 收敛到 0, 但对于 $\varepsilon=1$ 以及 $\forall n \geq 1$, 却有 $\frac{2}{n} > \frac{\varepsilon}{n}$.
- $(9) 不等价. 数列 <math>\{(-1)^n\}$ 发散, 但 $\forall \varepsilon > 0$, 若令 $N = [\frac{1}{\varepsilon^2}] + 1$, 则 $\forall n > N$, 我们有 $|(-1)^n| = 1 < \sqrt{n}\varepsilon$.
- **10.** 用 εN 语言叙述: " $\{a_n\}$ 不收敛于 A", 并讨论下列哪些说法与" $\{a_n\}$ 不收敛于 A" 等价:
- (1) ∃ $\varepsilon_0 > 0$, ∃ $N \in \mathbb{N}^*$, 只要 n > N, 就有 $|a_n A| \ge \varepsilon_0$;
- (2) ∀ $\varepsilon > 0$, ∃ $N \in \mathbb{N}^*$, 只要 $n \ge N$, 就有 $|a_n A| \ge \varepsilon$;
- (3) $\exists \varepsilon_0 > 0$, 使得 $\{a_n\}$ 中除有限项外, 都满足 $|a_n A| \ge \varepsilon_0$;
- (4) $\exists \varepsilon_0 > 0$, 使得 $\{a_n\}$ 中有无穷多项满足 $|a_n A| \ge \varepsilon_0$.
- 解: (1) 不等价. 数列 $\{(-1)^n\}$ 发散, 但是 $\forall N \in \mathbb{N}^*$, 却有 $|(-1)^{2N} 1| = 0$, 也即数列 $\{(-1)^n\}$ 不满足 (1).
 - (2) 不等价. 事实上, (2) 比 (1) 条件更强, 故 $\{(-1)^n\}$ 发散但不满足 (2).
 - (3) 与 (1) 完全等价, 因此也不与" $\{a_n\}$ 不收敛于 A"等价.
- (4) 等价. 事实上,"有无穷多项满足 $|a_n-A|\geqslant \varepsilon_0$ "等价于说" $\forall N\in\mathbb{N}^*$, $\exists n>N$ 使得 $|a_n-A|\geqslant \varepsilon_0$ ".