МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА № 2

по дисциплине 'ИНФОРМАТИКА' 'Синтез помехоустойчивого кода' Вариант №71

Выполнил: Студент группы Р3119 Андреев Владислав Андреевич Преподаватель: Рыбаков Степан Дмитриевич

Санкт-Петербург, 2022

Оглавление

Задания:	3
Основные этапы вычисления:	4
Вывод:	8
Список литературы:	g

Задания:

Проверить двоичный код на ошибочность, если есть ошибки – исправить:

№53 1100011 (классический код Хэмминга (7,4))

№90 0110110 (классический код Хэмминга (7,4))

№15 0000001 (классический код Хэмминга (7,4))

№30 0001010 (классический код Хэмминга (7,4))

№70 001110001100100 (классический код Хэмминга (15,11))

Сложить номера всех 5 вариантов заданий, умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Написать программу на любом языке программирования, которая на вход из командной строки получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычисления:

No	r1	r2	il	r3	i2	i3	i4	S
	1	1	0	0	0	1	1	
1	X		X		X		X	s1
2		X	X			X	X	s2
4				X	X	X	X	s3

Первый синдром: $r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$

Второй синдром: $r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$

Третий синдром: $r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$

Так как второй синдром показал ошибку, а остальные нет, то ошибка в бите с номером 2.

№	r1	r2	i1	r3	i2	i3	i4	S
	0	1	1	0	1	1	0	
1	X		X		X		X	s1
2		X	X			X	X	s2
4				X	X	X	X	s3

Первый синдром: $r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$

Второй синдром: $r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$

Третий синдром: $r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$

Так как второй синдром показал ошибку, а остальные нет, то ошибка в бите с номером 2.

No	r1	r2	il	r3	i2	i3	i4	S
	0	0	0	0	0	0	1	
1	X		X		X		X	s1
2		X	X			X	X	s2
4				X	X	X	X	s3

Первый синдром: $r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 0 \oplus 0 \oplus 1 = 1$

Второй синдром: $r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 0 \oplus 1 = 1$

Третий синдром: $r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 0 \oplus 1 = 1$

Так как второй и третий синдромы показали ошибку, то ошибка в бите с номером 7.

4

No	r1	r2	il	r3	i2	i3	i4	S
	0	0	0	1	0	1	0	
1	X		X		X		X	s1
2		X	X			X	X	s2
4				X	X	X	X	s3

Первый синдром: $r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$

Второй синдром: $r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$

Третий синдром: $r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$

Так как второй синдром показал ошибку, то ошибка в бите с номером 2.

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	S
2 ^x	r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11	
	0	0	1	1	1	0	0	0	1	1	0	0	1	0	0	
1	X		X		X		X		X		X		X		X	s1
2		X	X			X	X			X	X			X	X	s2
4				X	X	X	X					X	X	X	X	s3
8								X	X	X	X	X	X	X	X	s4

Так как третий и четвертый синдромы показали ошибку, то ошибка в бите с номером 12.

Сумма всех 5 вариантов заданий = 53 + 90 + 15 + 30 + 70 = 258Сумма, умноженная на 4 = 258 * 4 = 1032.

По формуле $2^r \ge r + i + 1$, где r – минимальное кол-во проверочных битов, i – кол-во информационных битов получаем:

 2^{r} – $r \ge 1033 = > r = 11$ – минимальное кол-во проверочных битов для 29640 информационных битов.

Коэффициент избыточности вычисляется по формуле $\frac{r}{r+i}$

Получаем коэффициент избыточности = $\frac{11}{1043} \sim 0.0105$.

Программа для анализа кода Хэмминга на языке Python:

https://github.com/enzulode/cs-labone

Схема декодирования классического кода Хэмминга (7;4)

Схема декодирования классического кода Хэмминга (15;11)

Вывод:

В ходе выполнения данной лабораторной работы я познакомился с понятием помехоустойчивых кодов, в частности – с кодом Хэмминга. Научился декодировать и проверять на правильность этот код.

Список литературы:

1. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки - 1976 год [Электронный ресурс]. – URL:

https://www.studmed.ru/view/piterson-u-ueldon-e-kody-ispravlyayuschie-oshibki_9657dd030d4.html

2. Презентация «Код Хэмминга» Балакшин П.В – 2022 год [Электронный ресурс]. – URL:

https://isu.ifmo.ru/pls/apex/f?p=2143:0:116086587778059:DWNLD_F:NO::FILE: D996F7BD541DCD9B35B9114757C74228