Informations- und Kodierungstheorie

mit einer Einführung in Sicherheitsaspekte

IKT: Dr.-Ing. Elke Franz

elke franz@tu-dresden.de

Foliensatz: Dr.-Ing. Dagmar Schönfeld

Sicherheit: Prof. Dr.-Ing. Thorsten Strufe

Professur Datenschutz und Datensicherheit

SS 2019

Was Sie wissen sollten:

- Einschreibung in ¡Exam (Vorlesung und Ubung)
- Folienskript komplett im Netz Skript enthält keine Beispiellösungen! Beispiele werden an der Tafel vorgerechnet
- Ergänzende/Vertiefende Folienvorlagen zur Vorlesung werden im Netz bereitgestellt
- Zur Klärung von Fragen: Übung, E-Mail, APB 3069
- Begleitbuch zum Teil IKT: D. Schönfeld, H. Klimant, R. Piotraschke. Informations- und Kodierungstheorie. 4. Aufl., Springer, 2012. (im Anhang weiterführende Literatur zu finden)
- Klausur: handgeschriebenes Formelblatt einseitig A4, Taschenrechner

Gegenstand der Informations- und Kodierungstheorie

Informations- und Kodierungstheorie

C.E. Shannon (1948)¹

R.W. Hamming $(1950)^2$

Informationstheorie setzt sich mit zwei Problemstellungen auseinander:

- Inwieweit lässt sich Information kompakt darstellen?
- Inwieweit überträgt man Information "fehlerfrei" (quasi fehlerfrei)?
- ightarrow Informationstheorie begründet die Grenzen, was ist erreichbar, was nicht (Zwei Kodierungstheoreme, SHANNON-Grenze "fehlerfreier" Übertragung)
- → Kodierungstheorie konstruiert praktikable Umsetzungen (weniger komplexe Algorithmen, die sich den Grenzen annähern)

¹C.E. Shannon. A Mathematical Theory of Communication. BSTJ 27(1948)379-423, 623-656

²R.W. Hamming. Error Detecting and Correcting Codes. BSTJ 29(1950)147-160

Information

- Statistischer Aspekt
- Semantischer Aspekt (Bedeutung der Information)
- Pragmatischer Aspekt (Nutzen f
 ür den Informationsempf
 änger)
- → Statistische Informationstheorie

Information ist beseitigte Unbestimmtheit

Das Maß dieser Unbestimmtheit ist äquivalent der Ermittlung der Informationsmenge.

Systematisierung

Definition 1.1

Eine Quelle mit dem Alphabet

$$X = \{x_1, x_2, ..., x_N\}$$

und der Verteilung der zugehörigen Auftrittswahrscheinlichkeiten

$$(p(x_i)) = (p(x_1), p(x_2), ..., p(x_N)), \quad 0 \le p(x_i) \le 1,$$

wobei

Informationsquellen

$$\sum_{i=1}^{N} p(x_i) = 1,$$

wird als diskrete Quelle mit unabhängigen Ereignissen bezeichnet.

Die Unbestimmtheit (der Informationsgehalt) eines Ereignisses x_i ist

$$H_i = \log \frac{1}{p(x_i)} = -\log p(x_i), \ \ \text{im Weiteren} \ \ H_i = \operatorname{Id} \frac{1}{p(x_i)} = -\operatorname{Id} p(x_i).$$

Informationsquellen

(Quellen)Entropie

Für H_i (i = 1, 2, ..., N) gilt dann:

$$H_1 \ = \operatorname{Id} \frac{1}{p(x_1)} \,, \quad H_2 \ = \operatorname{Id} \frac{1}{p(x_2)} \,, \quad \dots \quad , \quad H_N = \operatorname{Id} \frac{1}{p(x_N)} \,.$$

Gewichteter Mittelwert $H_O = H_m$:

$$H_m = \sum_{i=1}^{N} p(x_i) H_i = \sum_{i=1}^{N} p(x_i) \operatorname{ld} \frac{1}{p(x_i)} = -\sum_{i=1}^{N} p(x_i) \operatorname{ld} p(x_i)$$

(Quellen)Entropie, gleichzeitig mittlerer Informationsgehalt in bit/Ereignis, bit/Messwert, bit/(Quellen-)Zeichen = bit/QZ u. ä.

Beispiel
$$N=2$$
, $(p(x_i))=(p(x_1), p(x_2))=(1\ 0)$ \rightarrow sicheres, unmögliches Ereignis $\longrightarrow H_Q$?

Warum log bzw. Id, d. h. Anwendung des logarithm. Informationsmaßes?

Maximalwert der Entropie

Sonderfall der Gleichverteilung:

$$p(x_i) = \frac{1}{N} \;\; \mathrm{f\"{u}r} \; \mathrm{alle} \; i$$

$$H_Q = H_0 = \operatorname{Id} N$$

- → Maximalwert der Entropie oder Entscheidungsgehalt der Quelle
- \rightarrow Beweis

Definition 1.2

Der Entscheidungsgehalt von zwei unabhängigen und gleichwahrscheinlichen Ereignissen einer Quelle

$$H_0 = \operatorname{Id} 2 = 1 \ \frac{bit}{Ereignis}$$

wird als Einheit der Informationsmenge bezeichnet.

[Begleitbuch, S. 1 - 20]

MARKOW-Quellen: diskrete Quellen mit abhängigen Ereignissen

- ullet Das Ereignis $x^{(m+1)}$ tritt unter der Bedingung ein, dass ganz bestimmte Ereignisse $x^{(1)}, x^{(2)}, ..., x^{(m)}$ bereits eingetreten sind.
- ullet Die Auswahl des Ereignisses $x^{(m+1)}$ erfolgt demnach mit der bedingten Wahrscheinlichkeit

$$p\left(x^{(m+1)}|x^{(m)}...x^{(2)}x^{(1)}\right).$$

MARKOW-Quellen erster Ordnung:

$$p(x^{(m+1)}|x^{(m)}),$$

wofür wir im Folgenden schreiben

$$p(x_j|x_i)$$
 $(i, j = 1, 2, ..., N)$.

MARKOW-Quellen

Definition 1.3

Informationsquellen 00000000

> Eine MARKOW-Quelle ist das mathematische Modell einer Informationsquelle, bei dem die aufeinanderfolgende Auswahl von Ereignissen, d. h. die Folge der Zustände, sowohl von der momentanen Verteilung der Auftritts- bzw. Zustandswahrscheinlichkeiten als auch von der Verteilung der Übergangswahrscheinlichkeiten abhängt.

Zustandsgraph einer binären MARKOW-Quelle erster Ordnung

MARKOW-Kette

Nach dem Satz von der vollständigen Wahrscheinlichkeit gilt:

$$p(x_j)_{t+1} = \sum_{i=1}^{N} p(x_i)_t \ p(x_j|x_i) \quad (j = 1, 2, ..., N).$$

Entropie von MARKOW-Quellen

Unbestimmtheit, die in den Übergangsmöglichkeiten von einem beliebigen x_i zu allen x_i (i = 1, 2, ..., N) liegt:

$$H_i = \sum_{j=1}^{N} p(x_j|x_i) \operatorname{Id} \frac{1}{p(x_j|x_i)}$$

Gewichteter Mittelwert über alle x_i (i = 1, 2, ..., N):

$$H_Q = \sum_{i=1}^{N} p(x_i) H_i$$

Die Entropie wird für den stationären Fall $p(x_i) = p(x_i)$ als **MARKOW-Entropie** H_M bezeichnet:

$$H_Q = H_M = \sum_{i=1}^N \sum_{j=1}^N \overline{p(x_i)} \; p(x_j|x_i) \operatorname{Id} \frac{1}{p(x_j|x_i)} \quad \text{in} \quad \frac{bit}{Zustand} \, .$$

[Begleitbuch, S. 20 - 26]

Kodierung diskreter Quellen

Unter **Kodierung** wird i. Allg. ein Vorgang verstanden, bei dem die Elemente eines Alphabets auf die Elemente eines anderen Alphabets (bzw. auf Wörter über diesem Alphabet) **eineindeutig** abgebildet werden.

Für die Kodierung diskreter Quellen bedeutet dies:

Jedes Element des Quellenalphabets X wird einem Element des Kanalalphabets U bzw. einem Wort über U eineindeutig zugeordnet.

Aus praktischen (technischen) Erwägungen beschränken wir uns auf die Binärkodierung, d. h.

$$U = \{0, 1\}$$
.

Kodierung diskreter Quellen

Quellenkodierung (Optimalkodierung, Kompression)

ist die erste Stufe der Kodierung, bei der die eineindeutige Darstellung der Quelleninformation in einer realisierbaren, möglichst *redundanzfreien* oder *redundanzarmen* Form erfolgen soll.

- → **verlustfreie** Quellenkodierung (Redundanzreduktion)
- $[\ \to \mathsf{verlustbehaftete} \ \mathsf{Quellenkodierung} \ \mathsf{(Irrelevanzreduktion)} \]$

Kanalkodierung,

die sich meistens an die Quellenkodierung anschließt, dient dem Zweck des Störungsschutzes (*Schutz gegen zufällige Veränderungen*, z. B. durch Übertragungs/Speicherungsfehler).

Sie macht erst quasi fehlerfreie Übertragung/Speicherung möglich.

Notwendig: *Hinzufügung von Redundanz* in Form von zusätzlicher Kontrollinformation (Kontrollstellen).

Kodierung diskreter Quellen

Dekodierbarkeitsbedingung

Definition 2.1

Ein ungleichmäßiger Kode, bei dem kein Kodewort den Anfang (Präfix) eines anderen Kodewortes darstellt, wird als präfixfreier Kode bezeichnet (hinreichende Bedingung für Eineindeutigkeit).

Kodebaum – Darstellungsmöglichkeit eines (Quellen-)Kodes

Von L.G. KRAFT gefundene Ungleichung

ist eine notwendige Bedingung für die Dekodierbarkeit.

Kodewortlänge und Koderedundanz

Kodewortlänge

$$\bullet \ \ l = \lceil \operatorname{Id} N \rceil$$

gleichmäßiger Kode (allg.:
$$l = \lceil \frac{\operatorname{Id} N}{[H_K]} \rceil$$
)
 H_K : Entropie am Kanaleingang des Übertragungskanals

$$\bullet \ l_m = \sum_{i=1}^N p(x_i) \, l_i$$

ungleichmäßiger Kode

Schranken

•
$$l_m \geq H_m$$

dekodierbarer Kode

$$\bullet \ H_m \le l_m < H_m + 1$$

redundanzarme Kodierung

•
$$l_m = H_m$$

redundanzfreie Kodierung (Möglich?)

$$p(x_i) = 2^{-l_i}$$

$$R_K = l_{(m)} \left[\cdot H_K \right] - H_Q \ge 0$$
 Koderedundanz

Das erste SHANNONsche Kodierungstheorem besagt:

Redundanzfreie Kodierung ist auch für $p(x_i) \neq 2^{-l_i}$ möglich.

Man nimmt eine m-fache Erweiterung der Quelle vor, d. h., die Quellenzeichen werden nicht einzeln, sondern in Blöcken von m Quellenzeichen kodiert.

$$m H_m \le m l_m < m H_m + 1$$

$$H_m \le l_m < H_m + \frac{1}{m}$$

Im Folgenden: Verfahren der Optimalkodierung

- → Verfahren der (annähernd) redundanzfreien Kodierung
- \rightarrow Grundlage bilden $N, (p(x_i)), (p(x_j|x_i))$, deshalb auch **Entropiekodierung**

[Begleitbuch, S. 40 - 59]

SHANNON-FANO-Verfahren (1949)

- 1. Ordnen der zu kodierenden Quellenzeichen nach fallenden Werten der Auftrittswahrscheinlichkeiten
- 2. Teilen des geordneten Wahrscheinlichkeitsfeldes in zwei Gruppen; die Teilsummen der Wahrscheinlichkeiten in jeder Gruppe sollten möglichst gleich groß sein.
 - Aufgrund dieses Teilungsprinzips enthält jeder Teilungsschritt und damit jedes Kodewortelement die größte Entropie bzw. Informationsmenge.
- 3. Kodieren nach dem Prinzip, dass der ersten Gruppe immer einheitlich das Zeichen 0 (bzw. 1) und der zweiten Gruppe immer einheitlich das Zeichen 1 (bzw. 0) zugeordnet wird.
- 4. Wiederholen der Schritte 2. und 3.; solange, bis jede Teilgruppe nur noch ein Flement enthält

Beispiel $(p(x_i)) = (0.11 \ 0.30 \ 0.16 \ 0.25 \ 0.06 \ 0.06 \ 0.06), l_m = ?$

- Ordnen des gegebenen Wahrscheinlichkeitsfeldes nach fallenden Werten
- Zusammenfassen der letzten zwei Wahrscheinlichkeiten (die mit den kleinsten Werten) zu einem neuen Wert.
- Erneutes Ordnen des reduzierten Wahrscheinlichkeitsfeldes entsprechend Schritt 1.
- **4. Wiederholen** der Schritte 2. und 3. solange, bis die Zusammenfassung der beiden letzten Elemente den Wert 1 ergibt.
- Aufstellen eines Kodebaumes entsprechend dem Reduktionsschema und Zuordnung der Kodesymbole 0 und 1.

Beispiel

$$(p(x_i)) = (0,11 \ 0,30 \ 0,16 \ 0,25 \ 0,06 \ 0,06 \ 0,06), l_m = ?$$

HUFFMAN-Verfahren: Ablauf

$$x_2$$
 x_4 x_3 x_1 x_5 x_6 x_7 0.30 0.25 0.16 0.11 0.06 0.06 0.06 0.06 0.30 0.25 0.16 0.12 0.11 0.06 0.30 0.25 0.17 0.16 0.12 0.30 0.28 0.25 0.17 0.42 0.30 0.28 0.42 0.58 0.58

Beispiel *m*-fache Erweiterung der Quelle

Eine Binärquelle sei mit p(0) = 0.8 gegeben.

Aufzeigen der Reduzierung von R_K mit Erhöhung der Blocklänge von m=1auf m=2, 3 (Grundlage: SHANNON-FANO)!

Berücksichtigung von $(p(x_i|x_i))$?

Beispiel |

Beispiel aus Abschnitt zu MARKOW-Quellen

Andere Möglichkeiten

- LEMPEL-ZIV(-WELCH) (1977)
- Arithmetische Kodierung (1979)

Übertragungskanäle: Störungen

Störungen

- Störungen durch Betriebsmittel (z. B. Unterbrechungen durch Vermittlungseinrichtungen)
- Störungen aus dem Umfeld (z. B. Beeinflussungen durch Starkstromleitungen, magnetische Streufelder)
- thermisches Rauschen der Bauelemente des Übertragungskanals
- Funkkanäle: Mehrwegeausbreitung (reflektierende Objekte), kurzzeitige Abschattungen, Nachbarkanalbeeinflussungen

Trotzdem: Quasi fehlerfreie Übertragung

BERGERsches Entropiemodell des Übertragungskanals

H(X)Entropie am Kanaleingang

H(Y)Entropie am Kanalausgang

 H_T Transinformation

H(X|Y) Äquivokation (Rückschlussentropie)

H(Y|X)Irrelevanz (Störentropie)

Im Idealfall, d. h., der Kanal ist ungestört, gilt $H(X) = H(Y) = H_T$.

Transinformation

Die Transinformation H_T ist die Informationsmenge, die im Mittel durch ein Kanalzeichen vom Sender zum Empfänger übertragen werden kann:

$$\begin{array}{rcl} H_T & = & H(X) + H(Y) - H(X,Y) \\ \\ & = & H(X) - H(X|Y) \\ \\ & = & H(Y) - H(Y|X) & \text{in } bit/KZ \,. \end{array}$$

Notwendig: Kenntnisse über das Stör-(Übergangs-)verhalten

- Statistische Untersuchungen
- Übertragungsweg (Kabel, Funk) widerspiegelt typische Fehlerstrukturen
- → Nachbildung des Störverhaltens (z. B. Binär-, AWGN-Kanalmodell)

Annahme: $(p(y_i|x_i))$ bekannt, $N \leq M$

Binärkanal mit Störerkennung

Möglichkeiten der Fehlerkorrektur

Redundanz und Rekonstruktionsergebnisse

Fehlerkorrektur durch Wiederholung (FE)

→ hinzugefügte redundante Stellen **nur** zur **Erkennung** eines Fehlers

Fehlerkorrektur durch Rekonstruktion (FK)

→ hinzugefügte redundante Stellen zur Erkennung eines Fehlers und Lokalisierung der Fehlerpositionen

$$\rightarrow k_{\text{FEC}} > k_{\text{ARQ}}$$

Rekonstruktionsergebnisse

- korrekte Rekonstruktion
- falsche Rekonstruktion
- Versagen der Rekonstruktion

Allgemeine Kenngrößen von Kanalkodes

$$X = \{x_1, x_2, ..., x_L\}$$

$$A^* = \{a_1^*, a_2^*, ..., a_L^*\}$$

$$A = \{a_1, a_2, ..., a_L\}$$

$$E = \{e_1, e_2, ..., e_N\}$$

$$B = \{b_1, b_2, ..., b_N\}$$

$$ightarrow (n,l,d_{min})$$
, auch (n,l) Kode

Beispiel

(n, 1, n)Wiederholungskode

HAMMING-Distanz

Definition 4.1

Die Anzahl der Stellen, in denen sich zwei Kodewörter

$$a_i = (u_{i1} u_{i2} \dots u_{in}) \text{ und } a_j = (u_{j1} u_{j2} \dots u_{jn})$$

unterscheiden, bezeichnet man als **HAMMING-Distanz** $d(a_i, a_j)$:

$$d(a_i, a_j) = |\{g \in \mathbb{Z}_n \mid u_{ig} \neq u_{jg}\}| \quad \text{mit} \quad g \in \mathbb{Z}_n = \{1, 2, ..., n\}.$$

Binärkode:

HAMMING-Distanz: $d(a_i, a_j) = \sum_{g=1}^n (u_{ig} \oplus u_{jg})$

HAMMING-Gewicht: $w(a_i) = \sum_{i=1}^{n} u_{ig} = d(\mathbf{0}, a_i)$

$$\rightarrow d_{min} = \min_{a_i, a_j \in A, a_i \neq a_j} d(a_i, a_j) = \min_{a_i \in A \setminus \mathbf{0}} d(\mathbf{0}, a_i) = \min_{a_i \in A \setminus \mathbf{0}} w(a_i) = w_{min}$$

Beispiel min. HAMMING-Distanz d_{min} (auch Mindestdistanz)

 $(4, 1, d_{min} = ?)$ Wiederholungskode; $(4, 3, d_{min} = ?)$ Paritätskode

Geometrische Deutung der minimalen HAMMING-Distanz

$$d_{min} = f_e + f_k + 1$$

FK:
$$f_e = \lfloor \frac{d_{min}}{2} \rfloor$$
, $f_k = \lfloor \frac{d_{min}-1}{2} \rfloor$ (d_{min} geradzahlig?)

→ Dekodierungsprinzip Rekonstruktion mit begrenzter Mindestdistanz

Fortsetzung: f_e , f_k bei Anwendung von FE oder FK?

Berechnung der redundanten Stellen k (bekannt: d_{min} ; l oder n)

$$\begin{split} 2^n &= 2^l \, 2^k & \geq & 2^l \left(1 + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{f_k}\right) \\ 2^k & \geq & \sum_{i=0}^{f_k} \binom{n}{i} \qquad \binom{n}{i} = \frac{n!}{i! \, (n-i)!} = \frac{n(n-1) \cdot \ldots \cdot (n-i+1)}{1 \cdot 2 \cdot \ldots \cdot i} \\ k & \geq & \operatorname{Id} \sum_{i=0}^{f_k} \binom{n}{i} = \operatorname{Id} \sum_{i=0}^{f_k} \binom{l+k}{i} \end{split}$$

- \rightarrow untere Schranke für k bei vorgegebenem lobere Schranke für l bei vorgegebenem n; l=n-k
- → HAMMING-Schranke
- → "=": Entsprechende Kodes heißen dichtgepackt oder perfekt.

Beispiel

Berechnung von k

$$l = 4$$
, $d_{min} = 5$

Zweites SHANNONsches Kodierungstheorem

Weitere Kodekenngrößen

relative Redundanz
$$r_k = \frac{n-l}{n} = \frac{k}{n}$$

 $R = \frac{l}{}$ Koderate

Zweites SHANNONsches Kodierungstheorem

Die **Restfehlerwahrscheinlichkeit** p_R kann beliebig klein gehalten werden, solange die Koderate R den Wert der maximalen Transinformation H_T nicht überschreitet

Darüber hinaus hat SHANNON theoretisch nachgewiesen, dass auch bei beliebig kleiner Restfehlerwahrscheinlichkeit immer noch eine Koderate größer als Null möglich ist [SHA 48].

[Begleitbuch, S. 125 - 137]

Klassifizierung von Kanalkodes

"Neu": Turbokodes, LDPC-Kodes (einfache, auch verkettete Blockkodes mit iterativer Dekodierung)

[Begleitbuch, S. 138 - 141]

36

Lineare Blockkodes

Definition 4.2

Ein Kode heißt *linearer* Blockkode, oder kurz Linearkode, wenn der Kanalkodierer für die Transformation von Quellenkodewörtern der Länge l aus dem Alphabet A^* (Quellenkode) in Kanalkodewörter der Länge n des Alphabetes A (Kanalkode) eine Verknüpfungsoperation verwendet, die in der algebraischen Struktur einer Gruppe definiert ist.

Darstellung von Linearkodes als Gruppen

Axiom G1: Abgeschlossenheit

Axiom G2: Assoziatives Gesetz

Axiom G3: Neutrales Element

Axiom G4: Inverses Flement

Kommutativgesetz → abelsche Gruppe

Beispiel

(5,1,5)Wiederholungskod : $A = \{00000,11111\}$

(3,2,2)Paritätskode : $A = \{000,011,101,110\}$

- lineare Verknüpfung von Kanalkodewörtern führt wieder zu einem Kanalkodewort
- Nullwort ist immer auch Kanalkodewort
- Axiome stellen Kodebildungs- und Fehlererkennungsvorschrift dar
- $\triangleright (n, l, d_{min})$ Kanalkode:

$$A \subset \{0,1\}^n$$
 mit $L=2^l$ Kanalkodewörtern, $k=n-l$

 $\triangleright d_{min}$ des Kanalkodes bestimmt Leistungsfähigkeit

Bei einem Linearkode ist die minimale HAMMING-Distanz gleich dem minimalen Gewicht der Kodewörter (außer dem Nullwort).

$$\begin{array}{l} \mathsf{FE:}\; f_e = d_{min} - 1 = w_{min} - 1 \\ \\ \mathsf{FK:}\; f_k = \left\lfloor \frac{d_{min} - 1}{2} \right\rfloor = \left\lfloor \frac{w_{min} - 1}{2} \right\rfloor, \; f_e = \left\lfloor \frac{d_{min}}{2} \right\rfloor = \left\lfloor \frac{w_{min}}{2} \right\rfloor \end{array}$$

Beispiel

Kanalkodealphabet A

Beispiel: Kanalkodealphabet A

Kanalkodealphabet A:

- → Überprüfen der Eigenschaften!
- $\rightarrow (n, l, d_{min})$ Linearkode

Darstellung von Linearkodes durch Matrizen

Definition 4.3

Ein Linearkode A mit $L=2^l$ Kanalkodewörtern ist durch seine Generatormatrix G mit l linear unabhängigen Kanalkodewörtern (Basiswörtern) eindeutig beschrieben:

$$G_{l \times n} = \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ u_{21} & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{l1} & u_{l2} & \dots & u_{ln} \end{pmatrix} ; u_{i,j} \in \{0,1\}.$$

ightarrow Mit einer Einheitsmatrix über den ersten l Spalten der Generatormatrix sind die zugehörigen Kanalkodewörter mit Sicherheit linear unabhängig.

Kanonische oder reduzierte Staffelform

$$G_{l \times n} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & u_{1,l+1} & u_{1,l+2} & \dots & u_{1n} \\ 0 & 1 & 0 & \dots & 0 & u_{2,l+1} & u_{2,l+2} & \dots & u_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & u_{l,l+1} & u_{l,l+2} & \dots & u_{ln} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & c_{11} & c_{12} & \dots & c_{1k} \\ 0 & 1 & 0 & \dots & 0 & c_{21} & c_{22} & \dots & c_{2k} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & c_{l1} & c_{l2} & \dots & c_{lk} \end{pmatrix} = [I_l C]$$

Fortsetzung: $A \rightarrow G_{l \times n}$

Systematischer Kode

Definition 4.4

Ein Linearkode heißt systematischer Kode, wenn aus einem Kanalkodewort $a_i \in A$ durch Streichen redundanter Stellen das Quellenkodewort $a_i^* \in A^*$ unmittelbar entnommen werden kann.

Bildung eines Kanalkodewortes - Kanalkodierung

$$(u_{i1}u_{i2}\dots u_{in}) = \begin{pmatrix} u_{i1}u_{i2}\dots u_{il} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & c_{11} & c_{12} & \dots & c_{1k} \\ 0 & 1 & 0 & \dots & 0 & c_{21} & c_{22} & \dots & c_{2k} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & c_{l1} & c_{l2} & \dots & c_{lk} \end{pmatrix}$$

Fortsetzung: $a^* = (0101) \rightarrow a = ?$

Kontrollmatrix

Aufbau einer Kontrollmatrix (aus der Generatormatrix):

Ein zu A orthogonaler Unterraum A' ist dadurch gekennzeichnet, dass das Skalarprodukt eines beliebigen Vektors aus A mit jedem beliebigen Vektor aus A' Null ist.

Es sei

$$a_i = (u_{i1} u_{i2} \dots u_{in})$$
 mit $a_i \in A$ und

$$a'_{j} = (u_{j1} u_{j2} \dots u_{jn}) \text{ mit } a'_{j} \in A'.$$

Dann gilt

$$a_i \cdot a'_j = u_{i1} \cdot u_{j1} \oplus u_{i2} \cdot u_{j2} \oplus \dots \oplus u_{in} \cdot u_{jn} = 0$$

für alle i, j.

 \triangleright Ist $G = [I_l C]$ dann ist der zu A orthogonale Unterraum A' durch $H = \begin{bmatrix} C^T I_k \end{bmatrix}$ beschrieben.

Orthogonalitätsbedingung: $G \cdot H^T = (H \cdot G^T)^T = \mathbf{0}$

Fortsetzung: $G_{l \times n} \rightarrow H_{k \times n}$

Kontrollmatrix: Bestimmungsgleichungen

Kontroll(auch Prüf-)matrix liefert auch Vorschrift zur Bildung der Kontrollstellen k_i (Bestimmungsgleichungen):

$$a_i \cdot a_1^{\prime T} = u_{i1} \cdot c_{11} \oplus u_{i2} \cdot c_{21} \oplus \dots \oplus u_{il} \cdot c_{l1} \oplus u_{i,l+1} \cdot 1 \oplus u_{i,l+2} \cdot 0 \oplus \dots \oplus u_{in} \cdot 0$$

$$= 0$$

Erstes Kontrollelement $u_{i,l+1} = k_{[i,l]}$ des Kanalkodewortes a_i :

$$u_{i,l+1} = k_{[i,]1} = u_{i1} \cdot c_{11} \oplus u_{i2} \cdot c_{21} \oplus ... \oplus u_{il} \cdot c_{l1}$$

Allgemein:

$$u_{i,l+j} = \mathbf{k}_{[\mathbf{i},]\mathbf{j}} = u_{i1} \cdot c_{1j} \oplus u_{i2} \cdot c_{2j} \oplus \dots \oplus u_{il} \cdot c_{lj} \quad (j = 1, 2, \dots, k)$$

Fortsetzung: Bestimmungsgleichungen für k_i (j = 1, 2, ..., k)

$$a^* = (0101) \rightarrow a = ?$$

[Begleitbuch, S. 142 - 151]

Fehlererkennung und Fehlerkorrektur – Kanaldekodierung

• Die Empfangsfolge b kann als Überlagerung eines Kanalkodewortes a_i mit einem Fehlerwort e aufgefasst werden:

$$b=a_i\oplus e$$
.

Damit gilt für das Fehlersyndrom (auch Prüfvektor)

$$s = H \cdot b^T = H \cdot (a_i \oplus e)^T = \underbrace{H \cdot a_i^T}_{\mathbf{0}} \oplus H \cdot e^T = H \cdot e^T.$$

- Alle Fehlermuster, deren Gewicht $w(e) \leq d_{min} 1$ ist, sind mit Sicherheit erkennbar.
- ullet Alle Fehlermuster, deren Gewicht $w(e) \leq \lfloor \frac{d_{min}-1}{2} \rfloor$ ist, sind mit Sicherheit korrigierbar.
- Darüber hinaus sind nur Fehlermuster erkennbar, die nicht in A definiert sind, d. h. $e \notin A$.
- Ist $e \notin A$ und $w(e) > \lfloor \frac{d_{min}-1}{2} \rfloor$ erfolgt eine Falschkorrektur oder Rekonstruktionsversagen.

Fehlererkennung und Fehlerkorrektur – Kanaldekodierung

• Empfangsfolge $b \in A$?

$$s = H_{k \times n} \cdot b^T$$
 (auch: Kontrollgleichungen für $s_j \ (j = 1, 2, ..., k)$)

$$s = \mathbf{0}$$
: $b \in A$

- → fehlerfreie Übertragung oder
- → kein erkennbarer Fehler

$$s \neq \mathbf{0}$$
: $b \notin A \rightarrow \mathsf{Fehlererkennung}$, Korrektur?

- Jedem Fehlersyndrom ist maximal ein Fehlermuster zugeordnet, solange $w(e) < \left| \frac{d_{min}-1}{2} \right|$.
- Die Syndrome sind k-stellige Vektoren. Also können $(2^k 1)$ verschiedene Fehlermuster korrigiert werden.

Beispiel

Fortsetzung:
$$b = (1100101) \in A$$
?

Kontrollgleichungen für s_i (i = 1, 2, ..., k)

[Begleitbuch, S. 152 - 154]

"Einfachster" Linearkode: Paritätskode

Paritätskode

$$a_i^* = (u_{i1} u_{i2} \dots u_{il}) \rightarrow a_i = (u_{i1} u_{i2} \dots u_{il} u_{i,l+1})$$

 $u_{i,l+1}$ – Paritätselement:

$$u_{i,l+1} = \sum_{j=1}^l u_{ij} \ \mathsf{mod} \ 2 \quad \mathsf{(Erg"anzung auf geradzahlige Anzahl Eins)}$$

 d_{min} ?

Generatormatrix $G_{(n-1)\times n}$?

Kontrollmatrix $H_{1\times n}$?

Fehlererkennung: $s = H \cdot b^T = \sum_{i=1}^n u_i \mod 2, \ s \neq 0 : \ b \notin A$

Anwendung: DÜ in Rechnern, Erweiterung von Kodes, RAID5

Verkettung von zwei Paritätskodes

$$\rightarrow (n_1 \cdot n_2, l_1 \cdot l_2, d_{min,1} \cdot d_{min,2})$$
Produktkode

$$\rightarrow~(6\cdot 7, 5\cdot 6, 2\cdot 2) = (42, 30, 4) \text{Produktkode},~R = \frac{30}{42} = 0, 71$$

Zum Vergleich: (4,1,4)Wiederholungskode, $R=\frac{1}{4}=0,25$

Fehlerkorrigierender HAMMING-Kode

Fehlerkorrigierender HAMMING-Kode

Definition 4.5

Der fehlerkorrigierende HAMMING-Kode ist ein spezieller linearer Gruppenkode und bzgl. der HAMMING-Schranke ein dichtgepackter Kode. Er hat einen minimalen HAMMING-Abstand von $d_{min}=3$ und eine Kodewortlänge von $n=2^k-1$.

- Man bezeichnet diesen Kode auch als einfehlerkorrigierenden HAMMING-Kode.
- Geschickte Vertauschung der Spalten von H, so dass die i-te Spalte von H der Dualdarstellung von i entspricht. Das Fehlersyndrom s liefert dann unmittelbar die dual dargestellte Position des fehlerhaften Elementes in b.

Fehlerkorrigierender HAMMING-Kode: Kontrollmatrix

• Kontrollmatrix eines (7, 4)HAMMING-Kodes:

$$H_{3\times7} = \begin{pmatrix} n_7 & n_6 & n_5 & n_4 & n_3 & n_2 & n_1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$l_4 \quad l_3 \quad l_2 \quad k_3 \quad l_1 \quad k_2 \quad k_1$$

- \rightarrow Kontrollstellen an Positionen n_{2i} (i = 0, 1, ...) \rightarrow systematisch!
- → Berechnen der Kontrollstellen mittels den Bestimmungsgleichungen k_i (j = 1, 2, ..., k) aus $H \rightarrow a = ([...]l_4l_3l_2k_3l_1k_2k_1)$
- $s = H \cdot b^T$ bzw. Kontrollgleichungen s_j (j = 1, 2, ..., k) aus HEin Fehler wird durch $s = (s_k s_{k-1} ... s_1)^T$ lokalisiert und damit korrigiert.

Beispiel)
$$a^* = (1001) \rightarrow a = ? \rightarrow b = a \oplus (0010000) \rightarrow b^* = ?$$

Verkürzter HAMMING-Kode

Für k Kontrollstellen sind maximal $n=2^k-1$ verschiedene Syndrome möglich und damit maximal $n = 2^k - 1$ Stellen bzgl. Einfachfehler korrigierbar.

$$l=2^k-1-k\;$$
 liefert einen dichtgepackten Kode (HAMMING-Schranke mit "=" erfüllt),

$$l<2^k-1-k\,$$
 einen verkürzten Kode mit $n<2^k-1\,.$

Das Korrekturschema des einfehlerkorrigierenden HAMMING-Kodes lässt sich auch dann anwenden.

Beispiel

(7,4)HAMMING-Kode \rightarrow verkürzter (6,3)HAMMING-Kode

Überprüfe mit HAMMING-Schranke!

Erweiterter HAMMING-Kode

- Jedem Kanalkodewort wird ein weiteres Kontrollelement ko hinzugefügt.
- Dieses Kontrollelement wird durch eine zusätzliche Bestimmungsgleichung berechnet, die sämtliche Kodewortelemente einbezieht:

$$\begin{split} a &= ([...]l_4l_3l_2k_3l_1k_2k_1k_0) = ([...]n_7n_6n_5n_4n_3n_2n_1n_0) \quad \text{mit} \\ n_0 &= \sum_{i=1}^n n_i \ \text{mod} \ 2 \ ; \ \text{ zus\"{a}tzl. Kontrollgleichung:} \ \ s_0 = \sum_{i=0}^n n_i \ \text{mod} \ 2 \ . \end{split}$$

- → Paritätshit
- → Erzeugt Kanalkode mit geradzahliger Parität
- Die Anzahl der Kontrollelemente beträgt damit k+1, die Kodewortlänge erhöht sich auf $n \leq 2^k$. Der Minimalabstand ist $d_{min} = 4$.
- Die Anzahl der Informationselemente ist unverändert.

Beispiel
$$a^* = (1001) \rightarrow a = ?$$

 $b = (11011001) \in A$? \rightarrow Auswertung von s und s_0

[Begleitbuch, S. 156 - 161]

Zyklische Kodes

Zyklische Kodes

→ Binäre primitive BCH-Kodes

Definition 4.6

Ein Kode heißt zyklisch, wenn für jedes Kanalkodewort

$$a_i = (u_{i,n-1} u_{i,n-2} \dots u_{i1} u_{i0})$$

durch zyklische Verschiebung der Elemente mit

$$a_j = (u_{i,n-2} u_{i,n-3} \dots u_{i0} u_{i,n-1})$$

wieder ein Kanalkodewort entsteht. a

$$a_j(x) = a_i(x) x^z \mod (x^n + 1)$$
 ersetzt Exponenten $r \ge n$ durch $r \mod n$.

Ein zyklischer Kode ist ein spezieller Linearkode, der sowohl algebraische Gruppenaxiome als auch Ring- und Körperaxiome erfüllt.

Das **Generatorpolynom** g(x) ist i. Allg. ein Produkt von Minimalpolynomen $m_i(x)$, das den zyklischen Kode vollständig beschreibt. $q \in A!$

Hinweis: Schreibweise von Polynomen

$$P(x) = u_r x^r + u_{r-1} x^{r-1} + \dots + u_0 \text{ mit } u_i \in \{0, 1\}$$

Ausgewählte algebraische Grundlagen

- Eigenschaften eines Modularpolynoms über GF(2)
 - 1. Das Modularpolynom muss irreduzibel sein.
 - Polynomen zerlegbar ist.
 - \triangleright Das Modularpolynom M(x) vom Grad $k_1 = \operatorname{grad} M(x)$ bestimmt den Kodeparameter n mit

$$n \le 2^{k_1} - 1.$$

 \triangleright Der tatsächliche Wert von n berechnet sich aus dem **Zyklus der Polynomreste** über GF(2) mit

$$x^i \operatorname{mod} M(x) \ \ (i=0,1,...,p)$$
 und bestimmt
$$\ n=p \, | \, 2^{k_1}-1 \, .$$

Beispiel
$$M(x) = x^3 + x^2 + 1$$

Ausgewählte algebraische Grundlagen

2. Ist

$$n = p = 2^{k_1} - 1$$
,

dann besitzt das irreduzible Polynom M(x) auch die Eigenschaft, primitiv zu sein.

• Erweiterungskörper und Minimalpolynome

Die Leistungsfähigkeit eines BCH-Kodes hängt von der Anzahl aufeinanderfolgender Nullstellen in g(x) ab. \to Nullstellen?

Beispiel

$$P(x) = x^4 + x + 1$$
 über $GF(2)$, primitiv:

$$P(x=1) = 1$$
; $P(x=0) = 1$

Das Polynom P(x) hat über GF(2) keine Nullstelle.

Jedes Polynom hat mindestens eine Nullstelle, gegebenenfalls in einem anderen Körper, und jedes Polynom r-ten Grades lässt sich in genau r Teilpolynome ersten Grades, d. h. in r Linearfaktoren, zerlegen, i. Allg. unter Zuhilfenahme von Erweiterungselementen α_i :

$$P(x) = u_r x^r + u_{r-1} x^{r-1} + \dots + u_1 x + u_0$$

= $(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_r).$

Ein neues Element α wird als Nullstelle eines irreduziblen Polynoms über GF(2) hinzugefügt, welches einem Erweiterungskörper angehört.

Auf der Grundlage eines irreduziblen Modularpolynoms M(x) vom Grad $k_1 = \operatorname{grad} M(x)$ über GF(2) entsteht durch Hinzunahme einer Nullstelle α ein endlicher Erweiterungskörper $GF(2^{k_1})$, d. h., α ist Nullstelle von M(x) und ein (Erweiterungs-)Element in $GF(2^{k_1})$.

Erweiterungskörper $GF(2^{k_1})$

Zum Erweiterungskörper $GF(2^{k_1})$ gehören neben dem Nullelement die Elemente α^i $(i = 0, 1, ..., (2^{k_1} - 2))$.

Beispiel
$$M(x) = x^3 + x^2 + 1$$
 über $GF(2)$

Bestimmung des Erweiterungskörpers $GF(2^3)$:

Elemente	Polynomreste	Koeffizienten der
$des\ GF(2^3)$	$\alpha^i \operatorname{mod} M(x = \alpha)$	Polynomreste
Nullelement	0	000
α^0	1	001
α^1	α	010
$\begin{array}{c} \alpha^2 \\ \alpha^3 \\ \alpha^4 \end{array}$	$\begin{array}{ccc} \alpha^2 \\ \alpha^2 & + 1 \end{array}$	100
α^3	$\alpha^2 + 1$	101
α^4	$\alpha^2 + \alpha + 1$	111
$lpha^5$ $lpha^6$	$\alpha + 1$	011
$lpha^6$	$\alpha^2 + \alpha$	110
α^7	1	001

isomorph dem Zyklus der Polynomreste über GF(2)

Erweiterungskörper $GF(2^{k_1})$

Berechnungsbeispiele für Addition und Multiplikation im $GF(2^3)/x^3 + x^2 + 1$:

$$\qquad \qquad > \quad \alpha^i + \alpha^j = \alpha^i \operatorname{mod} M(\alpha) + \alpha^j \operatorname{mod} M(\alpha) = \alpha^k$$

$$i = j$$
: $\alpha^i + \alpha^j = 0$

Z. B.
$$\alpha^5 + \alpha^2 = \alpha + 1 + \alpha^2 = \alpha^4$$
 bzw. $\alpha^5 + \alpha^2 = (011) \oplus (100) = (111) = \alpha^4$ $\alpha^2 + \alpha^2 = (100) \oplus (100) = 0$

$$\alpha^3 + \alpha^4 = ? \qquad \alpha + \alpha^6 = ?$$

$$\triangleright \quad \alpha^i \cdot \alpha^j = \alpha^{(i+j) \bmod p}$$

Z. B.
$$\alpha^4 \cdot \alpha^5 = \alpha^{9 \mod 7} = \alpha^2$$

$$\alpha^2 \cdot \alpha^6 = ?$$
 $\alpha^5 \cdot \alpha^6 \cdot \alpha^4 = ?$

Erweiterungskörper $GF(2^{k_1})$

Beispiel)
$$M(x) = x^3 + x^2 + 1$$

 α Nullstelle von M(x) und Erweiterungselement:

$$M(x = \alpha) = \alpha^3 + \alpha^2 + 1 = (\alpha^2 + 1) + \alpha^2 + 1 = 0$$

Fundamentalsatz der Algebra:

$$M(x) = x^3 + x^2 + 1 = (x + \alpha_1)(x + \alpha_2)(x + \alpha_3)$$
 im $GF(2)$, d. h., $\alpha_1 = \alpha^1$, α_2 und α_3 sind Nullstellen im $GF(2^3)$.

Zuordnung α_i zu den Elementen von $GF(2^{k_1})$:

$$\alpha_j = \alpha^{2^{j-1}i \operatorname{mod} p} \qquad (j = 1, 2, \dots, k_1 (= \operatorname{grad} M(x)))$$

- \triangleright Die Elemente $\alpha^{2^0i}, \alpha^{2^1i}, \dots, \alpha^{2^{k_1-1}i \mod p}$ sind im Zvklus i $(i = 0, 1, ..., 2^{k_1} - 2)$ zueinander konjugiert.

Die Nullstellen von M(x) sind damit die im Zyklus i=1 stehenden zu α^1 konjugierten Elemente $\alpha_2 = \alpha^2$ und $\alpha_3 = \alpha^4$.

- i=2 und i=4 liefern demzufolge den gleichen Zyklus.
 - \triangleright Die Anzahl der Elemente in einem Zyklus wird durch $k_1 = \operatorname{grad} M(x)$ begrenzt und ist für $p=2^{k_1}-1\in\mathbb{P}$ für alle Zyklen gleich (ausgenommen: i = 0).

Beispiel

Zyklen im $GF(2^3)$:

$$\alpha^{0}$$

$$\alpha^{1}, \alpha^{2}, \alpha^{4}$$

$$\alpha^{3}, \alpha^{6}, \alpha^{5}$$

Jedem α^i aus $GF(2^{k_1})$ ist ein **Minimalpolynom** $m_i(x)$ zugeordnet:

- \rhd Das Minimalpolynom eines beliebigen Elementes α^i ist irreduzibel und vom Grad $r < k_1$.
- \triangleright Zu jedem Element α^i existiert genau ein Minimalpolynom $m_i(x)$.
- Das Minimalpolynom des Elementes α^i ist gleichzeitig das Minimalpolynom der Elemente $\alpha^{2^1 i}$, $\alpha^{2^2 i}$, ..., $\alpha^{2^{r-1} i \mod p}$.
- \triangleright Ist α^i eine Nullstelle des Minimalpolynoms $m_i(x)$, dann sind die rzueinander konjugierten Elemente α^i , α^{2^1i} , α^{2^2i} , ..., $\alpha^{2^{r-1}i}$ die sämtlichen Nullstellen von $m_i(x)$:

$$m_i(x) = (x + \alpha^i)(x + \alpha^{2^i})(x + \alpha^{2^i})...(x + \alpha^{2^{r-1}}) \text{ im } GF(2).$$

 \triangleright Das Modularpolynom M(x) ist wegen $M(x = \alpha^1) = 0$ das Minimalpolynom $m_1(x)$ des Elementes α^1 .

Beispiel

$$m_0(x), m_1(x), m_3(x) \text{ im } GF(2^3)/M(x) = x^3 + x^2 + 1$$
?

[Begleitbuch, S. 162 - 169]

Generatorpolynom primitiver BCH-Kodes

- → zur Kodierung und Fehlererkennung
- $\rightarrow q(x) = f(d_E, M(x))$; auch: $q(x) = f(d_E, l)$, M(x) = ?

Entwurfsabstand d_E und M(x) bestimmen Wahl der Kodeparameter!

Notwendig:

- Erweiterungskörper $GF(2^{k_1})$:
 - Wenn M(x) primitiv ist und α als Nullstelle hat, dann gilt
 - $GF(2^{k_1}) = \{0, \alpha^0, \alpha^1, \alpha^2, ..., \alpha^{2^{k_1}-2}\}.$
- Ein **Minimalpolynom** $m_i(x)$ hat $\alpha^i, \alpha^{2i}, \alpha^{4i}, ...$ als Nullstellen: $m_i(x) = (x + \alpha^i)(x + \alpha^{2i})(x + \alpha^{4i})...$ im GF(2).
 - Daraus folgt: $m_i(x) = m_{2i}(x) = m_{4i}(x) = \dots = m_{2r-1} \mod_n, \ r \leq k_1$.
- Das Generatorpolynom g(x) hat die **Aufeinanderfolge von** $\alpha^{\mu}, \alpha^{\mu+1}, \alpha^{\mu+2}, ..., \alpha^{\mu+d_E-2}$ als Nullstellen, so auch $\forall i.a_i \in A \setminus \mathbf{0}$.

Generatorpolynom primitiver BCH-Kodes

Damit ein BCH-Kode die aufeinanderfolgenden Elemente α^i $(i = \mu, \mu + 1, ..., \mu + d_E - 2)$ als Nullstellen enthält, wird g(x) i. Allg. ein Produkt von Minimalpolynomen sein:

$$g(x) = \text{kgV}\left\{m_{\mu}(x), m_{\mu+1}(x), ..., m_{\mu+d_E-2}(x)\right\}$$

(in praktischen Anwendungsfällen ist μ meist 0 oder 1).

Kodeparameter

$$n=2^{k_1}-1$$
 , weil $M(x)$ primitiv $k=\operatorname{grad} g(x)$ $l=n-k$ $d_{min[.tatsächlich]} \geq d_E$

Über die Zyklendarstellung kann die tatsächliche Aufeinanderfolge der Nullstellen bestimmt und damit der tatsächliche Abstand d_{min} ermittelt werden:

 $d_{min} = (tats \ddot{a} chliche Anzahl aufeinanderfolgender Nullstellen) + 1$

$$M(x) = x^4 + x + 1$$
, primitiv

Bildung von q(x)

- Bestimmen möglicher Generatorpolynome g(x) aus den Zyklen der Exponenten von α für $\mu = 1$ bzw. 0!
- q(x) für $d_E = 4$?

Analysiere q(x) bzgl. d_{min} und den Kodeparametern

- \bullet $q(x) = x^8 + x^7 + x^6 + x^4 + 1$
- (31, 21)BCH-Kode (grad M(x) = ?)

[Begleitbuch, S. 175 - 179]

Spezielle BCH-Kodes: CRC[cyclic redundancy check]-Kodes

Zyklischer HAMMING-Kode

$$q(x) = M(x) = m_1(x) \rightarrow d_{min} = 3$$
:

mit Sicherheit Erkennen von Ein- und Zweifachfehlern ($f_e = 2$)

UND

Erkennen von Bündelfehlern der Länge $f_b \leq k = k_1 = \operatorname{grad} M(x)$

Kodeparameter?

$$(n, l, d_{min}) = (2^{k_1} - 1, 2^{k_1} - 1 - k_1, d_{min} = 3)$$
BCH-Kode

ABRAMSON-Kode

$$\begin{split} g(x) &= m_0(x) \, m_1(x) \quad \text{mit} \quad m_0(x) = (x+1) \\ &\to d_{min} = 4 \quad \text{mit} \quad f_e = 3 \, , \, f_b \leq k = k_1 + 1 \\ &\to (2^{k_1} - 1, 2^{k_1} - 1 - (k_1 + 1), d_{min} = 4) \text{BCH-Kode} \end{split}$$

Beispiel

Kodeparameter im $GF(2^5)$ für obige Kodes

Multiplikationsverfahren

Ein zyklischer Kode A der Länge n ist durch q(x) beschrieben. Das Kodepolynom a(x) des Kanalkodewortes a entsteht aus der Multiplikation des zu kodierenden Polynoms $a^*(x)$ mit dem Generatorpolynom q(x):

$$a(x) = a^*(x) g(x).$$

$$g(x) = x^3 + x^2 + 1$$
, $a^* = (1011)$, $a = ?$, $a(x) = ?$

Divisionsverfahren

Ein zyklischer Kode A der Länge n ist durch g(x) (vom Grad k) beschrieben. Das Kodepolynom a(x) des Kodewortes a entsteht aus der Multiplikation des zu kodierenden Polynoms $a^*(x)$ mit x^k und der Subtraktion eines Restpolynoms r(x) (bedeutet im GF(2) Addition):

$$a(x) = a^*(x) x^k + r(x), \ r(x) = (a^*(x) x^k) \mod g(x).$$

(Kanal-)Kodierung: Bildungsverfahren für $a \in A$

Generatormatrix

Auf der Grundlage des Generatorpolynoms $g(x) = x^k + u_{k-1}x^{k-1} + ... + ... + ...$ u_0x^0 ist eine Generatormatrix definiert:

$$G_{l\times n} = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 & u_{k-1} & \dots & u_1 & u_0 \\ 0 & 0 & \dots & 1 & u_{k-1} & u_{k-2} & \dots & u_0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & u_{k-1} & \dots & \dots & \dots & \dots & \dots & \dots \\ \end{pmatrix}.$$

Das Kanalkodewort $a \in A$ bildet sich dann wie folgt:

$$a=a^*\cdot G$$
.

- Die Bildungsverfahren führen auf das gleiche Kanalkodealphabet. Die Zuordnung der Quellenkodewörter zu den Kanalkodewörtern ist jedoch eine andere.
- Die Anwendung des Divisionsverfahrens liefert immer einen systematischen Kode.
- Das Bildungsverfahren muss dem Dekodierer bekannt sein.

Jedes Kanalkodewort a muss in seiner Polynomdarstellung durch g(x) teilbar sein.

Ist eine Empfangsfolge b(x) durch g(x) teilbar, dann ist $b \in A$ definiert, sonst gilt $b \notin A$ und damit Fehlererkennung.

 \triangleright Fehlerpolynom (auch Prüfpolynom): $s(x) = b(x) \mod g(x) = 0$?

$$a = (1011100), e = (0011010), b \in A$$
?

Mit Sicherheit erkennbar:

$$\rightarrow f_e = d_{min} - 1$$

$$\rightarrow f_b \leq k$$

Erkennen aller **Bündelfehler** f_h , bei denen der Abstand zwischen dem ersten und dem letzten fehlerhaften Element (einschließlich dieser) im Fehlermuster kleiner oder gleich dem Grad k des Generatorpolynoms ist.

Struktur des Bündelfehlers:

$$e(x) = 0 x^{n-1} + 0 x^{n-2} + \dots + \mathbf{1} x^{i-1} + \dots + \mathbf{1} x^{i-f_b} + 0 x^{i-f_b-1} + \dots + 0 x^0$$

= $x^{i-f_b} (\mathbf{1} x^{f_b-1} + u_{f_b-2} x^{f_b-2} + \dots + u_1 x^1 + \mathbf{1})$

Sind darüber hinaus weitere Fehler erkennbar?

$$\frac{2^n - 2^l}{2^n} = 1 - 2^{-k} \quad \to \quad p_{FE} = (1 - 2^{-k}) \cdot 100\%$$

Beispiel: k = 5: $p_{FE} = 96.88\%$

$$k=8:\ p_{FE}=99,61\%$$

Typische Fehlererkennungs- = CRC-Kodes:

Zyklischer HAMMING-Kode: $g(x) = m_1(x)$

ABRAMSON-Kode: $q(x) = m_1(x)(x+1)$

[Begleitbuch, S. 169 - 175]

Verkürzte und erweiterte BCH-Kodes

Ein Kanalkode heißt verkürzter Kode, wenn gilt:

$$(n,l,d_{min}) \rightarrow (n-?,l-?,d_{min}), k = \text{const}.$$

Diese Kodes verlieren ihre zyklische Eigenschaft. Fehlererkennung und Fehlerkorrektur bleiben erhalten.

Beispiel

BCH-Kode für
$$l = 12$$
, $d_E = 5$?

Ein Kanalkode heißt erweiterter Kode, wenn

• das Generatorpolynom q(x) mit $m_0(x) = (x+1)$ erweitert wird:

$$(n < 2^{k_1} - 1, l, d_{min}) \rightarrow (n + 1, l, d_{min} + 1),$$

 $(n = 2^{k_1} - 1, l, d_{min}) \rightarrow (n, l - 1, d_{min} + 1).$

• über
$$n = 2^{k_1} - 1$$
, $t, a_{min} \rightarrow (n, t-1, a_{min} + 1)$.

Vergleiche mit dem erweiterten HAMMING-Kode!

Die zyklische Eigenschaft geht mit $n \neq 2^{k_1} - 1$ verloren.

Beispiel

Fortsetzung: Erweiterung mit (x + 1)

Anwendung zyklischer Kodes

- Fehlererkennung → CRC-Kodes
 - z. B. in Protokollen auf der Sicherungsschicht:

CRC-5 in USB
$$(g(x)=m_1(x))$$
, in Bluetooth $(g(x)=m_0(x)\,m_1(x))$; CRC-CCITT (CRC-16, $g(x)=m_0(x)\,m_1(x))$ in HDLC, X.25, ...; Ethernet benutzt CRC-32 für Standard-Frames $=1518\,Byte$, Jumbo-Frames $\approx 9000\,Byte$ (extended Ethernet Frames) sind nicht standardisiert aber bieten vergleichbaren Schutz, warum: $g(x)=m_1^*(x)=m_7(x)$, primitiv, $a_i(x)=x^{91639}+x^{41678}+1$, im Bereich $n<91639\,Bit\approx11545\,Byte$ nur $w(a_i)\geq 4$

- z. B. beim Mobilfunk: CRC-3 in Kodeverkettung zur Fehlerverdeckung
- Fehlerkorrektur (→ LV Kanalkodierung) Sinnvoll bei der Satellitenkommunikation wegen der Laufzeiten oder in Speicher-Anwendungen, wenn einzelne Bereiche systematisch und unwiderruflich unbrauchbar sind

[Begleitbuch, S. 182 - 184]

IKT-Teil begonnen mit

Informationstheorie beschäftigt sich mit zwei Problemstellungen Praktikable Umsetzung mittels Kodierung

- Inwieweit lässt sich Information kompakt darstellen?
 - Quellenkodierung (verlustfreie QK: gleichmäßige Kodierung, SHANNON-FANO, HUFFMAN, Erweiterte Quellen, ...)
 - $ightharpoonup R_K = l_{(m)} \left[\cdot H_K \right] H_Q \to 0$
- Inwieweit überträgt man Information quasi fehlerfrei?
 - Kanalkodierung, abhängig vom Störverhalten des Übertragungskanals
 - Dimensionierung des Kanalkodes

 $R \leq H_T!$