

Fine Tuning vs. Retrieval Augmented Generation for Less Popular Knowledge

Heydar Soudani¹, Evangelos Kanoulas², and Faegheh Hasibi¹

¹Radboud University ²University of Amsterdam

SIGIR-AP 2024

Factual Knowledge

LM parameters encode a wealth of factual information

What is the highest mountain in Japan?

The highest mountain in Japan is Mount Fuji.

Less-popular Knowledge

LLMs struggle to memorize less popular or domain-specific concepts

Domain Specific Example: Bol.com

Query: Who is the author of "Het wordt ook

steeds gekker"?

GPT-40 Answer: Youp van't Hek

Correct Answer: Lieke Hester

Less-popular Knowledge

LLMs struggle to memorize less popular or domain-specific concepts

LLM Adaptation

Research Questions

RQ1: How does RAG compare to fine-tuning (with synthetic data) for question answering over less popular factual knowledge?

- Which factors affect their performance?
- 1) Fine-tuning Methods: Full FT vs. PEFT
- 2) Data Augmentation
- 3) LLM type and size
- Retrieval Model

Task Definition

How can we assess the memorized knowledge in a language model?

- Focus: Factual knowledge
 - Information that describes particular attributes of target entities
 - Triplet format

```
(Kathy Saltzman, Occupation, Politician)
```

<mark>Ibject Relationship</mark> Object

The model successfully memorizes the knowledge if it can generate the

correct object when given the subject and the relationship

Task Definition

- Task: Open-domain QA
 - The question incorporates the subject and the relationship
 - The answer corresponds to the object

```
(Kathy Saltzman, Occupation, Politician)

Subject

Relationship

Object

Q: What is the occupation of Kathy Saltzman?

A: Politician
```

- Popularity:
 - Wikipedia pageviews

Methodology: Evaluation Framework

Methodology: Data Generation

End2End

- Based on pipeline method
 - Answer Extraction
 - Question Generation
- Combined them in one step

Methodology: Data Generation

End2End

- Based on pipeline method
 - Answer Extraction
 - Question Generation
- Combined them in one step

Prompting

- Use an instruction-tuned language model
- CoT reasoning following two steps explicitly

Methodology: Configurations

- (1) -FT-RAG: the vanilla LM without retrieved documents
- (2) -FT+RAG: the vanilla LM with retrieved documents
- (3) +FT-RAG: the fine-tuned LM without retrieved documents
- (4) +FT+RAG: the fine-tuned LM with retrieved documents

Results: Fine-tuning Methods

For LMs with less than 2 billion parameters, full FT is more effective than PEFT in the downstream task.

		РорQА		EQ	
FT	QA	+FT-RAG	+FT+RAG	+FT-RAG	+FT+RAG
Flan Γ5-base		6.01	73.08	6.07	53.92
PEFT	E2E	7.53	70.34	10.98	51.30
PEFT	Prompt/	9.11 ^(a,b,c)	71.34 ^(a,b,c,d)	12.98 ^{(a,b,c,d}) 57.63 ^(a,b,c,d)
Full	E2E	7.42	44.76	10.91	31.22
Full	Prompt	10.06	51.80	17.36	54.07
Flan Γ5-large		8.44	68.56	16.94	52.64
PEFT	E2E	8.69	67.47	15.33	53.25
PEFT	Prompt/	11.24 ^(a,b,d)	71.27 ^(a,b,c,d)	18.17 ^(a,b,c)	$60.08^{(a,b,c,d)}$
Full	E2E	11.75	27.31	14.79	23.17
Full	Prompt	13.60	68.18	18.22	57.37

Results: Fine-tuning Methods

PEFT preserves the reasoning ability of LMs (needed for RAG)

		PopQA EQ			
FT	QA	+FT-RAG	+FT+RAG	+FT-RAG	+FT+RAG
Flan T5-base		6.01	73.08	6.07	53.92
PEFT	E2E	7.53	70.34	10.98	51.30
PEFT	Prompt	9.11 ^(a,b,c)	$71.34^{(a,b,c,d)}$	12.98 ^(a,b,c,d)	57.63 ^(a,b,c,d)
Full	E2E	7.42	44.76	10.91	31.22
Full	Prompt	10.06	51.80	17.36	54.07
Flan T5-large		8.44	68.56	16.94	52.64
PEFT	E2E	8.69	67.47	15.33	53.25
PEFT	Prompt	11.24 ^(a,b,d)	71.27 ^{(a,b,c,d})	18.17 ^(a,b,c)	60.08 ^(a,b,c,d)
Full	E2E	11.75	27.31	14.79	23.17
Full	Prompt	13.60	68.18	18.22	57.37

Results: Data Generation

Quality vs. Quantity

		РорQА		EQ	
FT	QA	+FT-RAG	+FT+RAG	+FT-RAG	+FT+RAG
FlanT5-base		6.01	73.08	6.07	53.92
PEFT	E2E	7.53	70.34	10.98	51.30
PEFT	Prompt	9.11 ^(a,b,c)	71.34 ^(a,b,c,d)	12.98 ^(a,b,c,d)	57.63 ^(a,b,c,d)
Full	E2E	7.42	44.76	10.91	31.22
Full	Prompt	10.06	51.80	17.36	54.07
FlanT5-large		8.44	68.56	16.94	52.64
PEFT	E2E	8.69	67.47	15.33	53.25
PEFT	Prompt	11.24 ^(a,b,d)	71.27 ^(a,b,c,d)	18.17 ^(a,b,c)	60.08 ^(a,b,c,d)
Full	E2E	11.75	27.31	14.79	23.17
Full	Prompt	13.60	68.18	18.22	57.37

Results: LM type

Results: LM size

Results: LM size

Results: LM size

Results: Retrieval Model

A clear correlation between the performance of the retriever and the overall QA accuracy

Results: Popularity

Results: Popularity

Research Questions

Fine-tuning demands a considerable amount of effort and resources

RQ2: Can we avoid the cost of fine-tuning by developing an advanced RAG approach that surpass the performance of a fine-tuned LM with RAG?

Stimulus RAG

"Context: <hint><context> Question: <question>".

Results: Stimulus RAG

		-FT+RAG	+FT+RAG	SR	AG	
Model		(3D)	(3D)	(S)	(D)	
PopQA						
FlanT5-base	DPR	56.67	53.46	57.77 ^(a,b)	57.67 ^(a,b)	
riaii i 5-base	Ideal	73.06	72.02	75.08 ^(a,b)	75.29 ^(a,b)	
StableLM2	DPR	63.98	65.33	65.48 ^(a)	66.01 ^(a)	
StableLMZ	Ideal	80.82	82.98	82.83 ^(a)	83.18 ^(a)	
Mistral	DPR	65.22	63.63	65.84 ^(a,b)	66.04 ^(a,b)	
Mistrai	Ideal	81.58	80.30	81.88 ^(b)	82.27 ^(a,b)	
Llama3	DPR	66.66	66.61	67.22	67.21	
Liailia3	Ideal	82.58	82.58	82.42	81.60	

Takeaways

- RAG significantly outperforms fine-tuning alone
- Fine-tuned LMs with RAG either outperform or match vanilla LMs with RAG
- RAG is particularly beneficial for less popular entities
- Improvements from fine-tuning are not influenced by entity popularity

 Advanced RAG systems can achieve better accuracy than fine-tuning, avoiding its complexities and resource demands

Questions?