Inequalities

<u>Inequalities:</u> A mathematical statement that contains >, <, \le or \ge is called inequality.

Example: Solve the following linear inequalities:

1.
$$2x + 5 < 13$$

$$2x + 5 - 5 < 13 - 5$$

$$2x < 8$$
 (÷ 2 both sides)

s.s is
$$(-\infty, 4)$$
 or $\{x \in R : x < 4\}$

2.
$$4x + 3 < -9$$

$$4x + 3 - 3 < -9 - 3$$

$$4x < -12$$
 (÷ 4 both sides)

$$x < -3$$

s.s is
$$(-\infty, -3)$$
 or $\{x \in R: x < -3\}$

3.
$$1-3x \ge 2x-4$$

$$-3x - 2x \ge -4 - 1$$

$$-5x \ge -5$$
 (÷ (-5) both sides)

$$x \leq 1$$

s.s is
$$(-\infty, 1]$$
 or $\{x \in R : x \le 1\}$

4.
$$3-4x \le -5x+2 < 9x+8$$

$$3 - 4x \le -5x + 2$$
 and $-5x + 2 < 9x + 8$

$$-4x + 5x \le 2 - 3$$
 and $-5x - 9x < 8 - 2$

$$x \le -1$$
 and $-14x < 6$ $(\div (-14) \text{ both sides})$

$$x \le -1$$
 and $x > \frac{-3}{7}$

s.s is
$$(-\infty, -1] \cap \left(\frac{-3}{7}, \infty\right) = \emptyset$$

5.
$$\frac{-x}{2} \le 3x - 5$$
 (× 2 both sides)

$$-x \le 2(3x - 5)$$

$$-x \le 6x - 10$$

$$-x - 6x < -10$$

$$-7x \le -10 \Longrightarrow x \ge \frac{10}{7}$$

s.s is
$$\left[\frac{10}{7}, \infty\right)$$

Rule of inequalities:

Let *a*, *b*, *c* are real numbers, then

- 1. $a < b \implies a \mp c < b \mp c$
- 2. a < b and $c > 0 \Rightarrow a.c < b.c$
- 3. a < b and $c < 0 \implies a.c > b.c$, (special case $a < b \implies -a > -b$)
- 4. $a > 0 \Longrightarrow \frac{1}{a} > 0$
- 5. If a and b have the same signs, and $a, b \neq 0$ then $a < b \Longrightarrow \frac{1}{a} > \frac{1}{b}$
- 6. If a and b have the different signs, and $a, b \neq 0$ then $a < b \Longrightarrow \frac{1}{a} < \frac{1}{b}$
- 7. $a.b \ge 0$, either $a, b \ge 0$ or $a, b \le 0$
- 8. a.b > 0, either a, b > 0 or a, b < 0

9. a.b < 0, either a > 0, b < 0 or a < 0, b > 0

10.
$$\frac{a}{b} > 0$$
, either $a, b > 0$ or $a, b < 0$

11.
$$\frac{a}{b} \ge 0$$
, either $a \ge 0$, $b > 0$ or $a \le 0$, $b < 0$

12.
$$\frac{a}{b} < 0$$
, either $a > 0$, $b < 0$ or $a < 0$, $b > 0$

Example: Find the solution set of the following:

1.
$$\frac{x-1}{x+3} < 0$$

i.
$$x - 1 > 0$$
 and $x + 3 < 0$
 $x > 1$ and $x < -3$

$$s.s = (-\infty, -3) \cap (1, \infty) = \emptyset$$

ii.
$$x - 1 < 0$$
 and $x + 4 > 0$
 $x < 1$ and $x > -3$

$$s.s = (-\infty, 1) \cap (-3, \infty) = (-3, 1)$$

s.s is
$$\emptyset \cup (-3,1) = (-3,1)$$

2.
$$\frac{2x+5}{5x+7} > 0$$

i.
$$2x + 5 > 0$$
 and $5x + 7 > 0$

$$2x > -5$$
 and $5x > -7$

$$x > \frac{-5}{2}$$
 and $x > \frac{-7}{5}$

$$s.s = \left(\frac{-5}{2}, \infty\right) \cap \left(\frac{-7}{5}, \infty\right) = \left(\frac{-7}{5}, \infty\right)$$

ii.
$$2x + 5 < 0$$
 and $5x + 7 < 0$

$$2x < -5$$
 and $5x < -7$

 $x < \frac{-5}{2}$ and $x < \frac{-7}{5}$

$$s.s = \left(-\infty, \frac{-5}{2}\right) \cap \left(-\infty, \frac{-7}{5}\right) = \left(-\infty, \frac{-5}{2}\right)$$

s.s is
$$\left(-\infty, \frac{-5}{2}\right) \cup \left(\frac{-7}{5}, \infty\right) = R \setminus \left[\frac{-5}{2}, \frac{-7}{5}\right]$$

3.
$$\frac{1}{2x-3} < 1 \implies \frac{1}{2x-3} - 1 < 0$$

$$\frac{1 - 2x + 3}{2x - 3} < 0$$

$$\frac{-2x+4}{2x-3} < 0$$

i.
$$-2x + 4 > 0$$
 and $2x - 3 < 0$

$$-2x > -4$$
 and $2x < 3$

$$x < 2$$
 and $x < \frac{3}{2} \implies \text{s.s} = (-\infty, \frac{3}{2})$

ii.
$$-2x + 4 < 0$$
 and $2x - 3 > 0$

$$-2x < -4$$
 and $2x > 3$

$$x > 2$$
 and $x > \frac{3}{2} \Longrightarrow s.s = (2, \infty)$

s.s is
$$\left(-\infty, \frac{3}{2}\right) \cup \left(2, \infty\right) = \mathbb{R} \setminus \left[\frac{3}{2}, 2\right]$$

4.
$$\frac{3}{x-4} < 0$$

since 3 > 0, then $x - 4 < 0 \implies x < 4$

s.s is $(-\infty, 4)$

5.
$$\frac{3}{x^2-2x+5} \le 0$$

Since 3 > 0

$$\implies x^2 - 2x + 5 \le 0$$

$$a = 1, b = -2, c = 5, so \left(\frac{-2}{2}\right)^2 = 1$$

 $ax^{2} + bx + (\frac{b}{2})^{2} - (\frac{b}{2})^{2} + c$

$$x^2 - 2x + 1 - 1 + 5 \le 0$$

$$\therefore (x-1)^2 + 4 \le 0$$

Always positive $+4 \le 0$ \times

$$s.s = \emptyset$$

2.
$$x^2 - x - 12 \ge 0$$

$$(x+3)(x-4) \ge 0$$

i.
$$x + 3 \ge 0$$
 and $x - 4 \ge 0$

$$x \ge -3$$
 and $x \ge 4$

$$s.s = [-3, \infty) \cap [4, \infty) = [4, \infty)$$

ii.
$$x + 3 \le 0$$
 and $x - 4 \le 0$

$$x < -3$$
 and $x < 4$

$$s.s = (-\infty, -3] \cap (-\infty, 4] = (-\infty, -3]$$

$$\therefore$$
 s.s is $(-\infty, -3] \cup [4, \infty) = R \setminus (-3,4)$

Example: Find the solution set of the following:

H.w

1. Prove that $\sqrt{3}$ is an irrational number.

2.
$$x^2 + 3x + 10 \ge 0$$

3.
$$x^2 - 2x + 1 \ge 0$$

4.
$$\frac{2x+5}{5x+7} < 0$$

5.
$$\frac{3-6x}{7x+1} \ge 0$$

6.
$$\frac{x(x-1)}{x-2} \le 0$$

7.
$$\frac{x+1}{x^2-4} \ge 0$$

Absolute value

The <u>absolute value</u> of any real number x is defined as:

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

Example:
$$|-3| = 3$$
, $|5| = 5$, $|0| = 0$

Geometrically the absolute value of the x is the distance from 0 to x.

Properties of absolute values: Let $x, y \in R$, then

1.
$$|-x| = x$$

2.
$$|x| = \sqrt{x^2}$$

3.
$$|x \cdot y| = |x| \cdot |y|$$

4.
$$\left|\frac{x}{y}\right| = \frac{|x|}{|y|}, y \neq 0$$

5.
$$|x + y| \le |x| + |y|$$
 (the triangle inequality)

Proof 5: if
$$x \ge 0$$
 and $y \ge 0 \Rightarrow x + y \ge 0$
 $x \le |x|, \quad y \le |y|$
 $x + y \le |x| + |y| \dots \dots \dots (1)$

if
$$x \le 0$$
 and $y \le 0 \Longrightarrow x + y \le 0$

$$-x \le |x|, \qquad -y \le |y|$$

$$-x - y \le |x| + |y|$$

$$-(x + y) \le |x| + |y|$$

$$x + y \ge -[|x| + |y|] \dots \dots \dots (2)$$

From (1) and (2) we get

$$-[|x| + |y|] \le x + y \le |x| + |y| \Longrightarrow |x + y| \le |x| + |y|$$

Remark: If *D* is a positive number, then

1.
$$|x| = D$$
 \Leftrightarrow either $x = -D$ or $x = D$

2.
$$|x| < D \iff -D < x < D$$

3.
$$|x| \le D \iff -D \le x \le D$$

4.
$$|x| > D$$
 \Leftrightarrow either $x < -D$ or $x > D$

More generally,

6.
$$|x - a| = D$$
 \iff either $x = a - D$ or $x = a + D$

7.
$$|x - a| < D \iff a - D < x < a + D$$

8.
$$|x - a| \le D \iff a - D \le x \le a + D$$

9.
$$|x - a| > D$$
 \iff either $x < a - D$ or $x > a + D$

Some other properties

1.
$$|x| \ge x$$
, $\forall x \in R \Longrightarrow \text{s.s is } R$

2.
$$-|x| \le x$$
, $\forall x \in R \implies$ s.s is R

3.
$$|x| > x, x < 0$$
, s.s is $(-\infty, 0)$

4.
$$|x| < x$$
, s.s is \emptyset

5.
$$|x| = x, x \ge 0$$
, s.s is $[0, \infty)$

6.
$$|x| > -x$$
, $x > 0$

7.
$$|x| < -x$$
, s.s is \emptyset

8.
$$|x| \le x$$
, s.s is $[0, \infty)$

Example: Find the solution set of the following inequalities

1.
$$|2x-1| \le 3$$

$$-3 \le 2x - 1 \le 3$$

$$-3 + 1 \le 2x - 1 + 1 \le 3 + 1$$

$$-2 \le 2x \le 4$$

$$\Rightarrow$$
 $-1 \le x \le 2$

$$s.s = [-1,2]$$

2.
$$|3 + x| < 1$$

$$3 + x > 1$$
 or $3 + x < -1$

$$x > 1 - 3$$
 or $x < -1 - 3$

$$x > -2$$
 or $x < -4$

$$s.s = (-\infty, -4) \cup (-2, \infty) = R \setminus [-4, -2]$$

3.
$$|2x-1| < -3 \implies \text{ s.s} = \emptyset$$

4.
$$|2x-1| > 2x-1$$

$$2x - 1 < 0$$
 by def $|x| > x$

$$2x < 1 \Longrightarrow x < \frac{1}{2}$$

$$s.s = \left(-\infty, \frac{1}{2}\right)$$

5.
$$|2x-1| > 1-2x \Rightarrow |2x-1| > -(2x-1)$$

$$2x - 1 > 0$$
 by def $|x| > -x$

$$2x > 1 \Longrightarrow x > \frac{1}{2}$$

$$s.s = (\frac{1}{2}, \infty)$$

$$6. \left| \frac{x-4}{5} \right| \leq 1$$

$$\frac{|x-4|}{5} \le 1 \qquad (* 5 \text{ both sides})$$

$$|x-4| \leq 5$$

$$-5 \le x - 4 \le 5 \Longrightarrow -5 + 4 \le x - 4 + 4 \le 5 + 4$$

$$-1 \le x \le 9$$

$$\therefore s.s = [-1,9]$$

7.
$$\left| \frac{-3}{2-1} \right| > 4 \Longrightarrow \frac{3}{|2-x|} > 4 \Longrightarrow 3 > 4|2-x|, \quad |-3| = 3$$

$$|2-x| < \frac{3}{4} \Longrightarrow \frac{-3}{4} < 2-x < \frac{3}{4}$$

$$\frac{-3}{4} - 2 < 2 - 2 - x < \frac{3}{4} - 2$$

$$\frac{-11}{4} < -x < \frac{-5}{4} \Longrightarrow \frac{11}{4} > x > \frac{-5}{4}$$

$$\frac{-5}{4} < \chi < \frac{11}{4}$$

Therefor s.s =
$$\left(\frac{-5}{4}, \frac{11}{4}\right)$$

Example: Solve the inequalities:

1.
$$|2x + 5| = 3$$

$$2x + 5 = -3$$
 or $2x + 5 = 3$

$$2x + 5 - 5 = -3 - 5$$
 or $2x + 5 - 5 = 3 - 5$

$$x = -4$$
 or $x = -1$

The solutions are x = -4 and x = -1

2.
$$|3x-2| \le 1 \iff -1 \le 3x-2 \le 1$$

$$-1 + 2 \le 3x - 2 + 2 \le 1 + 2$$

$$1 \le 3x \le 3 \quad (\div 3)$$

$$\frac{1}{3} \le x \le 1$$

$$s.s = [\frac{1}{3}, 1]$$

Example: Find the solution set of the following inequalities

1.
$$|x^2 - 2x + 4| \ge x^2 - 2|x + 1| + 6$$

 $|x^2 - 2x + 4| = x^2 - 2x + 4$
 $x^2 - 2x + 4 \ge x^2 - 2|x + 1| + 6$
 $-2x + 4 - 6 \ge -2|x + 1|$
 $-2(x + 1) \ge -2|x + 1| \Longrightarrow x + 1 \le |x + 1|$
 $|x + 1| \ge x + 1$

 \therefore s.s= R by def. $|x| \ge x$

2.
$$|5-2x|<-3$$

Since |5 - 2x| is always positive

$$\therefore$$
 s.s= \emptyset

3.
$$|4x + 5| > 7$$
 (negation)

$$|4x + 5| \le 7$$

$$-7 \le 4x + 5 \le 7$$

$$-7 - 5 \le 4x + 5 - 5 \le 7 - 5$$

$$-12 \le 4x \le 2$$
 (÷ 4)

$$-3 \le x \le \frac{1}{2} \Longrightarrow \text{s.s} = [-3, \frac{1}{2}]$$

: s.s of
$$|4x + 5| > 7$$
 is $R \setminus [-3, \frac{1}{2}]$

another way |4x + 5| > 7

$$4x + 5 < -7$$
 or $4x + 5 > 7$

$$4x + 5 - 5 < -7 - 5$$
 or $4x + 5 - 5 > 7 - 5$

$$4x < -12$$
 or $4x > 2$

$$\Rightarrow x < -3 \text{ or } x > \frac{1}{2}$$

s.s=
$$(-\infty, -3) \cup \left(\frac{1}{2}, \infty\right) = R \setminus [-3, \frac{1}{2}]$$

4.
$$1 \le |x-1| \le 3$$

$$|x - 1| \ge 1$$

$$x-1 > 1$$
 . $x-1 < -1$

$$x \ge 2$$
 $x \le 0$

$$-2 \le x \le 0$$
 or $2 \le x \le 4$

$$∴$$
 s.s= $[-2,0] \cup [2,4]$

or $|x - 1| \le 3$

$$-3 \le x - 1 \le 3$$

$$-2 \le x \le 4$$

5. |x| > |x - 1|

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases} , \qquad |x - 1| = \begin{cases} x - 1, & x \ge 1 \\ -(x - 1), & x < 1 \end{cases}$$

i. x < 0

$$-x > -(x-1) \Rightarrow -x > -x+1 \Rightarrow 0 > 1$$
 no solution

$$s.s = \emptyset$$

ii.
$$0 \le x < 1$$

$$x > -x + 1 \Longrightarrow x + x > 1$$

$$2x > 1 \implies x > \frac{1}{2}, \qquad (\frac{1}{2}, \infty)$$

iii.
$$x \ge 1$$

$$x > x - 1$$

0 > -1 always true, $[1, \infty)$

$$s.s = \emptyset \cup \left(\frac{1}{2}, 1\right) \cup [1, \infty)$$