Работа 3.1.3

Измерение магнитного поля Земли

Балдин Виктор

1 Аннотация

В работе исследуются свойства постоянных неодимовых магнитов и с их помощью находится горизонтальная и вертикальная составляющие индукции магнитного поля Земли, а так же магнитное наклонение.

2 Теоретические сведения

Простейший магнитный диполь может быть образован витком с током или постоянным магнитом. По определению, магнитный момент m тонкого витка площадью S с током I равен $\mathbf{m} = \frac{I\mathbf{S}}{c}$,где $\mathbf{S} = S\mathbf{n}$ - вектор площади контура, образующий с направлением тока правовинтовую систему, \mathbf{n} - единичный вектор нормали к площадке. Если размеры контура с током или магнитной стрелки малы по сравнению с расстоянием до диполя, то соответствующий магнитный диполь называют элементарным, или точечным.

Магнитное поле точечного диполя определяется по формуле, анологичной формуле для поля элементарного электрического диполя:

$$\mathbf{B} = \frac{3(\mathbf{m} \cdot \mathbf{r})}{r^5} - \frac{\mathbf{m}}{r^3}$$

Во внешнем магнитном поле с индукцией ${\bf B}$ на точеный магнитный диполь ${\bf m}$ действует механический момент сил ${\bf M}=[{\bf m},{\bf B}]$ При этом потенциальная энергия которой обладает диполь с постоянным ${\bf m}$, равна $W=-({\bf m}\cdot{\bf B})$ Когда диполь ориентирован вдоль внешнего поля, он находится в состоянии равновесия.

В *неоднородном* внешнем поле выражение для энергии постоянного диполя сохраняется. При этом кроме момента сил на диполь действует ещё и сила

$$\mathbf{F} = -\nabla W = (\mathbf{m} \cdot \nabla)\mathbf{B}$$

Таким образом из вышесказанного следует, что *свободный* магнитный диполь в неоднородном магнитном поле ориентируется вдоль силовых линий магнитного поля и втягивается в область более сильного поля, поскольку это ведёт к уменьшению энергии диполя.

Выражения выше, позволяют рассчитать силу взаимодействия магнитов с моментами \mathfrak{m}_1 и \mathfrak{m}_2 . Когда моменты двух небольших магнитов направлены вдоль соединяющей их прямой: $\mathfrak{m}_{1,2} \| \mathbf{r}_1$, где \mathbf{r}_2 - радиус-вектор между ними, они взаимодействуют с силой

$$F_{12}=\mathfrak{m}_1rac{\partial B_2}{\partial r}=\mathfrak{m}_1rac{\partial (2\mathfrak{m}_2/r^3)}{\partial r}=-rac{6\mathfrak{m}_1\mathfrak{m}_2}{r^4}$$
 (ед. СГС)

Если магнитные моменты направлены перпендикулярно соединяющей их прямой: $\mathfrak{m}_{1,2} \perp \mathbf{r}$, то нетрудно показать, что сила их взаимодействия окажется в два раза меньшей и будет иметь противоположный знак:

$$F_{12} = \frac{3\mathfrak{m}_1\mathfrak{m}_2}{r^4} \; (\mathrm{eд.}\; \mathrm{C}\Gamma\mathrm{C})$$

.

3 Оборудование и инструментальные погрешности

В работе используются: неодимовые магниты; тонкая нить для изготовления крутильного маятника; медная проволока; электронные весы; секундомер; измеритель магнитной индукции; штангенциркуль; брусок, линейка и штатив из немагнитных материалов; набор гирь и разновесов.

- 1.Весы 0.005 г
- 2.Секундомер 0.2 с
- 3. Штангенциркуль 0.01 см
- 4.Измеритель магнитной индукции 5% ед. СГС

3.1 Экспериментальная установка

В работе используются неодимовые магниты шарообразной формы. Важно, чтобы вещество из которого они изготовлены, было магнитожеёстким материалом и чтобы шары были намагничены однородно.

Магнитное поле однородного намагниченного шара радиусом R может быть вычислено точно. На расстояниях $r \geq R$ от центра шара оно совпадает с полем точечного магнитного диполя, расположенного в центре, магнитный момент $\mathfrak m$ которого совпадает с полным моментом шара. Внутри шара магнитное поле однородно. Нетрудно получить, что при r < R

$$\mathbf{B}_0 = \frac{2\mathfrak{m}}{R^3}$$

В качестве ещё одной характеристики материала магнита используют остаточную на-магниченность \mathbf{M} . По определению, намагниченность равна объёмной плотности магнитного момента, поэтому для однородного намагниченного шара $\mathbf{m} = \mathbf{M}V$, где $V = \frac{4\pi}{3}R^3$ - объём магнита. Величину $B_r = 4\pi\mathbf{M}$ называют остаточной индукцией материала.

Из сказанного выше нетрудно видеть, что индукция \mathbf{B}_p на полсюсах однородно намагниченного шара направлена по нормали к поверхности и совпадает поэтому с индукцией внутри шара $\mathbf{B}_p = \mathbf{B}_0$. Величина B_p связана с остаточной индукцией B_r соотношением

$$B_p = B_o = \frac{2}{3}B_r$$

4 Результаты измерений и обработка данных

4.1 Определение магнитного момента, намагниченности и остаточной магнитной индукции вещества магнитных шариков

Диаметр шариков измеряется с помощью микрометра: $d=0,630\pm0,001$ см. Масса шариков измеряется на весах, но для того, чтобы магнитное поле шариков не влияло на показания весов, сделаем толстую подложку из легкого материала – бумаги. $m=0,82\pm0,01$ г.

Магнитометр показал значение $B_p = 260 \pm 5$ мТл на полюсах шарика.

Проложим между двумя магнитными шариками брусок из немагнитного материала как на рисунке сверху и, подкладывая между бруском и верхним магнитиком листы бумаги, определим, на каком максимальном расстоянии r_{max} шарики удерживают друг друга в поле тяжести Земли.

$$r_{max} = 1.7 \pm 0.4 \text{ cm}$$

Величина магнитного момента магнитика **m**:

$$\mathfrak{m}=\sqrt{rac{mgr_{max}^4}{6}}$$
 $\mathfrak{m}=34\pm3~\mathrm{(ед.~C\Gamma C)}$

Составим цепочку из 25 шариков, с помощью неодимовых магнитов в форме параллелепипедов, подсоединим цепочку к гире и разновесам так, чтобы общая масса системы составила приблизительно 500 г. Далее подберём минимальный вес системы цепочки с гирей, при котором она отрывается от верхнего шарика. Взвесим оторвавшуюся цепочку с гирей.

$$m_{min} = 350 \pm 1$$
 г

Рассчитаем силу сцепления двух шаров и по ней определим магнитный момент шарика \mathfrak{m} .

$$F_0 = \frac{6\mathfrak{m}^2}{d^4}$$

$$F = m_{min}g = F_0(1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots) \approx 1.08F_0$$

$$\mathfrak{m} = \sqrt{\frac{d^4 m_{min}g}{6 \cdot 1.08}}$$

$$\mathfrak{m} = 98 \pm 6$$
 (ед. СГС).

Полученные значения магнитных моментов отличаются. Это может быть связано с большой погрешностью методики эксперимента, а так же неточным взаимным расположением магнитных моментов из-за силы трения.

Величину намагниченности материала шариков рассчитаем для метода A (левая колонка) по формуле $M = \frac{\mathfrak{m}}{\frac{\pi}{6}d^3}$, остаточную индукцию магнитного поля $B_r = 4\pi M$.

$$M_A = 260 \pm 18$$
 (ед. СГС), $M_B = 750 \pm 45$ ед. СГС, $B_r = 330 \pm 30$ мТл,

Табличное значение B_r для соединения $Nd_2Fe_{14}B$: $B_{r_{\text{табл}}}=1220$ мТл,. К табличной величине ближе результат второго эксперимента, хотя оба не попадают. Расчетное значение

по методу А: $B_{p_1}=220\pm20$ мТл, по методу Б: $B_{p_2}=360\pm40$ мТл. Порядок расчетных значений совпадает с порядком измеренного B_p .

4.2 Горизонтальная составляющая магнитного поля Земли

Оценим влияние упругости нити на период колебаний, возбудив крутильные колебания свёрнутой в кольцо "стрелки" (магнитный момент такого кольцеобразного маятника равен 0).

Соберём крутильный маятник в виде кольца из 12 магнитных шариков и подвесим его на немагнитном штативе. Используя Лобразный подвес, установим "магнитную стрелку"в горизонтальное положение, далее свернем её в кольцо и измерим коэффициент упругости нити

Из эксперимента получа-

ем, что для кольца $T=4.8~\mathrm{c}$. Запишем уравнение вращательного движения и формулу для периода колебаний:

$$I\ddot{\alpha} + f\alpha = 0, \ T = 2\pi\sqrt{\frac{I}{f}}, f = \left(\frac{2\pi}{T}\right)^2 I.$$

Момент инерции относительно нити колечка можно оценить как $I=\frac{12mR^2}{2}=(2,5\pm0,1)\cdot 10^{-6}~{\rm kf\cdot m^2}\Rightarrow f=(4,3\pm0,2)\cdot 10^{-6}~\frac{{\rm kf\cdot m^2}}{c^2}.$

Соберём крутильный маятник из 12 магнитных шариков и подвесим его на немагнитном штативе. Используя Λ - образный подвес, установим "магнитную стрелку"в горизонтальное положение. Возбудим крутильные колебания маятника вокруг вертикальной оси и определим их период. Исследуем зависимость периода T крутильных колебаний "стрелки" от количества магнитных шариков n, составляющих "стрелку". При этом число колебаний всегда будем брать N=10. Погрешность измерения периода соответственно $\Delta T=0,04$ с (время человеческой реакции $\sim 0,4$ с).

	n	12	11	10	9	8	7	6	5	4
t	t, c	37.8	35.3	33.7	30	27.3	24.3	20.6	17.5	14.1
T	7, c	3.78	3.53	3.37	3	2.73	2.43	2.06	1.75	1.41

График экспериментальной зависимости T(n):

Рис. 1: Зависимость периода колебаний от числа числа магнитов магнитной стрелки.

$$J_n \ddot{\theta} + (\mathfrak{m}_n B_{\parallel} + f)\theta = 0, J_n \approx \frac{1}{12} n^2 m d^2 \Rightarrow T_n = 2\pi \sqrt{\frac{m d^2 n^2}{12(\mathfrak{m} B_{\parallel} + f)}}$$

По значению углового коэффициента рассчитаем величину горизонтальной составляющей

магнитного поля Земли.

$$k=2\pi\sqrt{rac{md^2n^2}{12(\mathfrak{m}B_{\parallel}+f)}}=0,30\pm0,02\ \mathrm{c}, B_{\parallel}=rac{\pi^2md^2}{3\mathfrak{m}k^2}-rac{f}{\mathfrak{m}}pprox0,012\pm0,001\ \mathrm{м}\mathrm{T}\mathrm{J}$$

При это оказалось $f \ll \frac{\pi^2 m d^2}{3k^2}$, то есть упругость можно было не учитывать.

Изготовим магнитную "стрелку"из 10 шариков и подвесим её за середину с помощью нити на штативе. Определим механический момент сил, действующий со стороны магнитного поля Земли на горизонтально расположенную магнитную "стрелку". Для этого с помощью одного или нескольких кусочков проволоки, уравновесим "стрелку"в горизонтальном положении. С помощью весов определим массу уравновешивающего груза m. Из условия равновесия рассчитаем механический момент сил M=mqx, действующих на горизонтальную "стрелку"со стороны поля Земли. Измерения сил проведём для чётных значений n = 4, 6, 8, 10, 12.

a)	6) 444
many more	
000	β B_0
ROSELLY	B

N	d, шар	т, г	М, ед. СГС
10	3	0.284	526.6
12	4	0.284	702.1
8	2	0.255	315.2
6	2	0.189	233.6
4	1	0.237	146.5

Коэффициент наклона $a=70\pm7$ г $\frac{\text{см}^2}{\text{c}^2}$. Из линейности видно, что приближение аддитивности магнитных моментов для используемых в работе магнитов применимо. По значению углового коэффициента аппроксимирующей прямой рассчитаем величину вертикальной составляющей B_{\perp} магнитного поля Земли.

$$M_n = n \mathbf{m} B_\perp \Rightarrow B_\perp = rac{a}{\mathbf{m}} pprox 0.07 \pm 0.01 \; \mathrm{мTл}$$

Рис. 2: Зависимость момента сил, уравновешивающего стрелку от числа числа магнитов в ней.

5 Выводы и рассчет погрешностей

5.1 Погрешности

$$\begin{split} \varepsilon_{\mathfrak{m}_{1}} &= \sqrt{\left(\frac{\Delta m}{m}\right)^{2} + 4\left(\frac{\Delta r_{max}}{r_{max}}\right)^{2}} \approx 6\% \\ \varepsilon_{\mathfrak{m}_{2}} &= \sqrt{\left(\frac{\Delta d}{d}\right)^{2} + 4\left(\frac{\Delta r_{min}}{r_{min}}\right)^{2}} \approx 2\% \\ \varepsilon_{B_{\parallel}} &= \sqrt{\left(\frac{\Delta m}{m}\right)^{2} + \left(\frac{\Delta d}{d}\right)^{2} + \left(\frac{\Delta \mathfrak{m}}{\mathfrak{m}}\right)^{2} + \left(\frac{\Delta \frac{T_{n}}{n}}{\frac{T_{n}}{n}}\right)^{2}} \approx 7\% \\ \varepsilon_{B_{\perp}} &= \sqrt{\left(\frac{\Delta a}{a}\right)^{2} + \left(\frac{\Delta \mathfrak{m}}{\mathfrak{m}}\right)^{2}} \approx 12\% \end{split}$$

5.2 Вывод

Поскольку установка находится в железобетонном здании, магнитное поле в нём сильно отличается от поля Земли. Так же на показания влияет наличие электронных приспособлений связи. Магнитное поле Земли в нашем районе около 0.05 - 0.1 ед. СГС. Полученное значение не сильно отличается действительного.

Используя результаты измерений B_{\perp} и B_{\parallel} , магнитное наклонение β и полная величина индукции магнитного поля Земли в кабинете выполнения лабораторной работы равны:

$$\beta = \arctan \frac{B_{\perp}}{B_{\parallel}} \approx 80^{\circ}$$

Теоретически (α - угол наклона Земли, ϕ - широта Москвы),

$$\beta = \frac{B_{\perp}}{B_{\parallel}} = \arctan \frac{\frac{-2\mathfrak{m}_3 sin(\phi - \alpha)}{r^3}}{\frac{-\mathfrak{m}_3 cos(\phi - \alpha)}{r^3}} = \arctan(2tg(\phi - \alpha)) \approx 53^{\circ}$$