Systems Analysis and Control

Matthew M. Peet Illinois Institute of Technology

Lecture 13: Root Locus Continued

Overview

In this Lecture, you will learn:

Review

Definition of Root Locus

Points on the Real Axis

- Symmetry
- Drawing the Real Axis

What Happens at High Gain?

- The effect of Zeros
- Asymptotes

Root Locus

Review

Definition 1.

The **Root Locus** of G(s) is the set of all poles of

$$\frac{kG(s)}{1+kG(s)}$$

as k ranges from 0 to ∞

Root Locus

Review

$$G(s) = \frac{(s-z_1)\cdots(s-z_m)}{(s-p_1)\cdots(s-p_n)}$$

For a point on the root locus:

$$\angle G(s) = \sum_{i=1}^{m} \angle (s - z_i) - \sum_{i=1}^{n} \angle (s - p_i) = -180^{\circ}$$

Root Locus Demo 1

 $\mathsf{Wiley} + \; \mathsf{Root} \; \mathsf{Locus} \; \mathsf{Demo} \; 1$

Symmetry

Our goal is to find all points on the root locus.

Our path will be easier by using some basic properties

Symmetry:

- Complex roots come in pairs: $a \pm bi$.
- Points on the root locus are mirrored above/below the real axis

We can divide points on root locus into

- Points on the real axis
- Symmetric Pairs off the real axis.

The Zeros

Examine a point s = a on the Real Axis.

- On the real axis, s = a is a real number.
- For a point on the Root Locus,

$$\sum_{i=1}^{m} \angle(a - z_i) - \sum_{i=1}^{n} \angle(a - p_i) = -180^{\circ}$$

Phase Contribution: The Zeros

$$(a-z_i)$$
:

Case 1: z_i is Real

- If $a>z_i0$, then $\angle(a-z_i)=0^\circ$
- If $a < z_i$, then $\angle (a z_i) = -180^\circ$

Contribution is 0° or 180°!

The Zeros

Case 2: z_i is Complex: Complex Roots some in pairs.

$$z_{1,2} = b \pm c\imath$$

• Zero 1: $a - z_1 = a - b + ci$

$$\angle(a-z_1) = \tan^{-1}\left(\frac{a-b}{c}\right)$$

• Zero 2: $a - z_2 = a - b - ci$

$$\angle(a - z_2) = \tan^{-1}\left(-\frac{a - b}{c}\right)$$
$$= -\angle(a - z_1)$$

Therefore, the total contribution to phase is $0^{\circ}!$

$$\angle(a-z_1) + \angle(a-z_2) = \angle(a-z_1) - \angle(a-z_1) = 0^{\circ}$$

M. Peet

Lecture 13: Control Systems

The Poles

The Poles

$$\sum_{i=1}^{m} \angle (a - z_i) - \sum_{i=1}^{n} \angle (a - p_i) = -180^{\circ}$$

Now lets do the poles.

Case 1: p_i is Real

- If $a-p_i>0$, then $\angle(a-p_i)=0^\circ$
- If $a p_i < 0$, then $\angle (a p_i) = -180^{\circ}$

Contribution is either 0° or $180^{\circ}!$

Same as for zeros!!!

The Real Axis

Case 2: p_i are Complex: Complex Roots some in pairs.

$$z_{1,2} = b \pm c\imath$$

• Pole 1: $a - p_1 = a - b + ci$

$$\angle(a-p_1) = \tan^{-1}\left(\frac{a-b}{c}\right)$$

• Pole 2: $a - p_2 = a - b - ci$

$$\angle(a-p_2) = -\angle(a-p_1)$$

Again, the Total Contribution is 0°!

Summary: A point on the real axis: s = a

- Complex poles and zeros don't matter
- Real poles and zeros contribute 0° or 180°
 - $ightharpoonup 0^{\circ}$ if the pole/zero is to the left of a
 - ▶ 180° if the pole/zero is to the right of a

The **PHASE** of G(a) is

$$\angle G(a) = 180^{\circ} \cdot (\# \text{ of poles and zeros to the right of } a)$$

A Simple Rule:

- If the # of poles and zeros to the right of a is EVEN.
 - We are OFF the root locus.
- If the # of poles and zeros to the right of a is ODD.
 - We are ON the root locus.

M. Peet Lecture 13: Control Systems 11 / 31

Examples

Examples

Examples

$$G(s) = \frac{1}{s^2 - \frac{1}{2}}$$

M. Peet

Examples

The inverted pendulum with some derivative feedback: $\hat{K}(s) = k(1+s)$

Large Gain

Now lets look at what happens when gain increases.

Figure: Suspension Problem

Conclusion: Stable poles oscillate more.

M. Peet Lecture 13: Control Systems 16 / 31

Large Gain

$$G(s) = \frac{(s+3)(s+4)}{(s+1)(s+2)}$$

Conclusion: Nothing Happens.

Large Gain

Again, Inverted Pendulum with derivative feedback.

Conclusion: Poles get More Stable.

Large Gain

$$G(s) = \frac{s+3}{s(s+1)(s+2)(s+4)}$$

Conclusion: Poles Destabilize.

Notice the Asymptotes.

Large Gain

So what happens when k is large? Logically, there are TWO CASES:

- Poles can remain small.
- Poles can get big.

Lets start with **Small Poles** ($||s|| < \infty$).

$$G(s) = \frac{n(s)}{d(s)}$$

- OL zeros are roots of n(s) = 0.
- OL poles are roots of d(s) = 0.

Now, closed loop:

$$\frac{kG(s)}{1 + kG(s)} = \frac{kn(s)}{d(s) + kn(s)}$$

CL poles are roots of d(s) + kn(s) = 0

Large Gain

At high gain, small CL poles are roots of

$$d(s) + kn(s) = 0$$

- If k is large:
- And s is small,

$$d(s) + kn(s) \cong kn(s)$$

As $k \to \infty$, small poles satisfy

$$d(s) + kn(s) \cong kn(s) = 0$$

which means n(s) = 0!!!

• n(s) = 0 means s is an OL zero!

At high gain, small CL poles are attracted by OL Zeros.

Asymptotics

Now consider the other possibility:

Very Large Poles: still satisfy

$$d(s) + kn(s) = 0$$

In this case, d(s) is not small.

Very Large solutions of

$$1 + kG(s)$$

are called asymptotics.

- ullet asymptotics increase forever with k
 - $|\lim_{k\to\infty} ||s|| = \infty$

Questions:

- Do asymptotes exist?
- Where do they go?

Asymptotics

Recall that a point is on the root locus if

$$\angle G(s) = 180^{\circ}$$

Which means:

$$\sum_{i=1}^{m} \angle(s - z_i) - \sum_{i=1}^{n} \angle(s - p_i) = -180^{\circ}$$

However, when $||s|| \to \infty$,

All Angles are the Same!!!

$$\angle(s-z_1) = \angle(s-z_2) = \dots = \angle(s-z_m)$$
$$= \angle(s-p_1) = \angle(s-p_2) = \dots = \angle(s-p_n) = \angle_{\infty}$$

Asymptotics

This makes life easier.

• just solve for one angle, \angle_{∞} .

$$\angle_{\infty} \cdot (m-n) = 180^{\circ}$$

where

- m is the number of OL zeros
- n is the number of OL poles

So asymptotics occur at

$$\angle_{\infty} = \frac{1}{m-n} \left(180^{\circ} + 360^{\circ} l \right)$$

for integers $l = 0, 1, 2, \cdots$.

Case 1: n - m = 0

$$G(s) = \frac{(s+3)(s+4)}{(s+1)(s+2)}$$

$$s\text{-plane}$$

$$j\omega$$

$$j\sigma$$

$$j\sigma$$

$$-jI$$

Count: 2 zeros, 2 poles.

$$m-n=0$$

$$\angle_{\infty}=\frac{1}{0}180^{\circ}=\infty$$
 No Asymptotes.

Case 2: n - m = 1

$$G(s) = \frac{1}{s^2 - \frac{1}{2}} \qquad K(s) = k(1+s)$$

Count: 1 zeros, 2 poles.

$$m-n=-1$$
 $\angle_{\infty}=-180^{\circ}$ 1 asymptote at -180° .

M. Peet

Case 3: n - m = 2

The suspension system.

Count: 2 zeros, 4 poles.

$$m-n=-2$$

$$\angle_{\infty} = -\frac{1}{2} (180^{\circ} + 360^{\circ}l) = -90^{\circ} - 180^{\circ}l = -90^{\circ}, -270^{\circ}$$

2 vertical asymptotes at 90° and 270° .

Poles MAY destabilize at large gain.

Case 4: n - m = 3

The suspension system with integral Feedback.

Count: 2 zeros, 5 poles.

$$m-n=-3$$

$$\angle_{\infty} = -\frac{1}{3} \left(180^{\circ} + 360^{\circ} l \right) = -60^{\circ} - 120^{\circ} l = -60^{\circ}, -180^{\circ}, -300^{\circ}$$

3 asymptotes at 60° , 180° and 300° .

Poles WILL destabilize at large gain.

Case 5: n - m = 4

n(s) is degree 2, d(s) is degree 6.

$$G(s) = \frac{s^2 + s + 1}{s^6 + 2s^5 + 5s^4 - s^3 + 2s^2 + 1}$$

Count: 2 zeros, 6 poles.

$$m-n=-4$$

$$\angle_{\infty} = -\frac{1}{4} (180^{\circ} + 360^{\circ}l) = -45^{\circ} - 90^{\circ}l = -45^{\circ}, -135^{\circ}, -225^{\circ}, -315^{\circ}$$

4 asymptotes at 45° , 135° , 225° and 315° .

Poles WILL destabilize at large gain.

Asymptotics

Summary

Asymptotes depend only on relative number of poles and zeros.

- Location of poles/zeros doesn't matter
 - ► At least not for the angle

One pole goes to each zero.

When there are more poles than zeros: **Cases:**

- n-m=0 No Asymptotes
- n-m=1 Asymptote at 180°
- n-m=2 Asymptotes at $\pm 90^\circ$
- n-m=3 Asymptotes at 180° , $\pm 60^{\circ}$
- n-m=4 Asymptotes at $\pm 45^{\circ}$ and $\pm 135^{\circ}$

Summary

What have we learned today?

Review

• Definition of Root Locus

Points on the Real Axis

- Symmetry
- Drawing the Real Axis

What Happens at High Gain?

- The effect of Zeros
- Asymptotes

Next Lecture: Centers of Asymptotes, Break Points and Departure Angles