Lecture notes for SSY150: Multimedia and video communications

2D Still Image Compression

(for lecture 4)

Irene Y.H. Gu, Dept. of Signals and Systems, Chalmers Univ. of Technology, Sweden March 24, 26, 2009

Contents

- 1. First and second generation image compression techniques: differences
- 2. 1D DCT and IDCT transforms: revisit
- 3. 2D DCT and 2D IDCT: basics
- 4. Block-based 2D DCT transforms for image compression
- 5. Subband filters and wavelets: used for the first and 2nd generation compression
- 6. Tasks in laboratory-exercise 2

1. 2D Still Image Compression Techniques

1st generation techniques:

- (a) compression is obtained in a transform domain by removing small value coefficients
- (b) compression is done by using subband filters and variable bit allocations

2nd generation techniques:

Compression is achieved by exploiting visually important image properties in transform/subband filtering domains: e.g. edges, textures (lowpass contents)

example: wavelet transforms + using multi-scale edges

Select the type of transforms/subband filters

Principles of selecting a "good" (suitable) transform:

able to yield high energy compaction in the transform domain

e.g. Karhunen-Loeve transform (KLT)

using eigenvectors, eigenvalues of data autocorrelation matrix, best energy compaction,

however, data dependency and high computations

DCT transform

is the 2nd best energy compaction if the data is stationary Markov sequence, the transform is independent of data

Similar principles for choosing 'good' subband filters:

orthogonal, energy compaction

2. 1D DCT Transforms (revisit)

Forward DCT:

$$f(k) = \frac{w_k}{\sqrt{N}} \sum_{n=0}^{N-1} s(n) \cos \frac{(2n+1)\pi k}{2N}, \quad k = 0, \dots N-1, \ w_k = \begin{cases} 1 & k=0\\ \sqrt{2} & k>0 \end{cases}$$

Define a transform matrix $\mathbf{A} = \begin{bmatrix} c_k(n) \end{bmatrix}$ $c_k(n) = \begin{cases} \frac{1}{\sqrt{N}} & k = 0 \\ \sqrt{\frac{2}{N}} \cos \frac{(2n+1)\pi k}{2N} & 0 < k \le N-1 \end{cases}$

 \rightarrow DCT (in the vector and matrix form) **f**=**As**

Inverse DCT: $s = A^{-1}f = A^{T}f$

(Since DCT is real and orthonomal $\Rightarrow \mathbf{A}^T = \mathbf{A}^{-1}, \mathbf{A} = \mathbf{A}^*$)

3. 2D DCT Transforms

2D DCT transform:

$$F(k_1, k_2) = \frac{w_{k_1} w_{k_2}}{\sqrt{N_1 N_2}} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} S(n_1, n_2) \cos \frac{(2n_1 + 1)\pi k_1}{2N_1} \cos \frac{(2n_2 + 1)\pi k_2}{2N_2}$$
(1)

where:
$$k_1 = 0, \dots N_1 - 1, k_2 = 0, \dots N_2 - 1, \quad w_{k_i} = \begin{cases} 1 & k_i = 0 \\ \sqrt{2} & k_i > 0 \end{cases}$$

(1) is equivalent to:
$$F(k_1, k_2) = \sum_{n_1} \sum_{n_2} c_{k_1}(n_1) S(n_1, n_2) c_{k_2}(n_2)$$

$$\begin{cases}
2D \text{ forward DCT: } \mathbf{F} = \mathbf{A}\mathbf{S}\mathbf{A}^T \\
2D \text{ Inverse DCT: } \mathbf{S} = \mathbf{A}^T\mathbf{F}\mathbf{A}
\end{cases}$$

where: **A** is an orthonormal matrix, $\mathbf{A}\mathbf{A}^T = \mathbf{A}^T\mathbf{A} = \mathbf{I}$

1D representation of 2D transforms

2D forward and inverse transforms:

corresponding 1D representation:

$$\begin{cases} \mathbf{F} = \mathbf{A}\mathbf{S}\mathbf{A}^T \\ \mathbf{S} = \mathbf{A}^{*T}\mathbf{F}\mathbf{A}^* \end{cases} \Rightarrow \begin{cases} \mathbf{f} = (\mathbf{A} \otimes \mathbf{A})\mathbf{s} \\ \mathbf{s} = (\mathbf{A} \otimes \mathbf{A})^{*T}\mathbf{f} \end{cases}$$
 column-scanned vector form

If size of
$$\mathbf{A}: N \times N \implies \text{size of } (\mathbf{A} \otimes \mathbf{A}): N^2 \times N^2$$

Kronecker product:
$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{n,n} \mathbf{B} \end{bmatrix} = \begin{bmatrix} a_{11} \mathbf{B} & \cdots & a_{1N} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{N1} \mathbf{B} & \cdots & a_{NN} \mathbf{B} \end{bmatrix}$$

Why select DCT transforms?

• Energy compaction for highly correlated data:

The basis functions of 1D DCT = eigenvectors of the symmetric tri-diagonal matrix R_A , which is close to the KLT of a 1st order stationary Markov sequence of length N

$$R_{A} = \begin{bmatrix} 1 - \alpha & -\alpha & 0 & 0 & 0 \\ -\alpha & 1 & \ddots & 0 & 0 \\ 0 & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & 1 & -\alpha \\ 0 & 0 & 0 & -\alpha & 1 -\alpha \end{bmatrix}$$

• 2nd best as compared to the KL (Karhunen-Loeve) transform

64 Basis images of a 8x8 DCT

4. Block-based 2D DCT transforms

Why block-based image transformation?

Most images are nonstationary!

however, approximate stationary within each small sized block

Drawbacks of block-based transforms

Block artifacts

Possible way to overcome this problem

- Overlapping blocks
- Subband filters

Block-based transforms (cont'd)

Divide image in blocks, apply the 2D transform to each image block

=> spatial-frequency representation of 2D images

(as compared to time-frequency representation of 1D signals) overlap blocks may be used as well. (similar to 1D signals)

Example: block DCT transform of image

- Divide image into 16 x 16 blocks
- Apply the DCT to each block of image
- Insert the transform coefficients into the corresponding block.

Block-based transforms (cont'd)

To obtain sub-images in the spatial-frequency domain:

For each DCT transformed block, extract one DCT coefficient from the corresponding position and insert it into a sub-image.

e.g.

block size = 2x2, image size of NxN => 4 subband filtered images (size N/2 x N/2)

F_{00}	F_{01}
F_{10}	F_{11}

Example: 2D image compression using block-based DCTs

Apply: DCTs, with non-overlapping 8x8 blocks

Original image

Reconstructed image (retain 4.2% coefficients)

5. Subband filters and wavelets

1D subband filters:

subband filters with equal bandwidth (balanced tree-structure)

dyadic subband filters with Octave bandwidths (unbalanced tree-structure)

2D subband filters

For the 2D case, e.g., containing 2 bands in each direction:

Wavelets

Wavelets: associated with a special type of subband filters $H(\omega)$, satisfying certain conditions for the smoothing function $\phi(t)$ and wavelet function $\psi(t)$

- Decay of wavelet coefficients
- Smoothness (regularity): the Number of zeros at π is crucial
- Finite support

Special considerations for image processing:
e.g.: linear phase (=> choose bi-orthogonal wavelets)
orthogonal

Subband image compression

1st generation methods:

- Assign low bit rates to high frequency bands (small coefficients)
- Use different bandwidths (different sensitivity in the Human Visual System)

2nd generation methods:

Encode perceptually important features, such as <u>edges</u>, <u>textures</u>
e.g. Wavelet-based compression:
use multi-scale edge curves in the sub-images
+ use textures in the lowest resolution sub-image

Example: wavelet for image decomposition

Original image

2 scale levels

Example: Wavelet for image compression

Select: bi-orthogonal spline wavelets

Original Image

Compressed image

Wavelet-based 2D still image codec

Advantages:

- suitable for progressive transmission of layered images
- high compression rate
- less block artifacts

JPEG 2000 standard uses discrete wavelet transform (instead of DCT)!

Still image coding using JPEG 2000 (approved in 2002) **Original** image Pre-Uniform Quantizer **DWT** With dead zone processing Compressed image data Bit-stream **Adaptive Binary** organization Arithmetic Coder JPEG 2000 Building Blocks

JPEG 2000 Part 9 - JPIP protocol

JPIP is a client-server protocol for JPEG 2000.

In JPIP (JPEG 2000 Interactive protocol), the client uses a view window to define image resolution, size, location, components, layers, etc.

JPIP protocol stack

How to use the wavelet toolbox in Matlab?

- wavemenu (GUI with a pull down menu)
- wavedemo (demo examples)

Laboratory exercise 2

- Task-1: 2D DCT for image compression
- Task-2: Block-based 2D DCT for image compression
- Task 3: 2D subband filters for image compression

Tasks in Lab. 2

1. Task-1: 2D DCT for an entire image compression

- (→ <u>frequency domain</u> image representation)
- * Learn the relation between a 1D transform and the corresponding 2D transform, assuming the (transform) kernel is separable: h(n,m)=h(n)h(m)
- * Learn how to achieve compression by setting small value DCT coefficients to zeros

2. Task-2: Block-based 2D DCT for image compression

- (→ <u>spatial-frequency domain</u> image representation)
- * Divide a nonstationary image into small (approx. stationary) blocks,
- * Apply the DCT and compression to each image block.
- * Apply compression to each block of DCT coefficients

Tasks in Lab. 2

3. Task-3: 2D wavelet (subband) filters for image compression

- Use the GUI in Matlab wavelet toolbox 'wavemenu' to perform this task
- Set the same compression ratio as that in the Task-2.

4. Compare the performance of these two compression methods.

• Subjective criterion: visual observation

• objective criterion: PSNR