VLSI 설계 입문 2024_Term_Project

이 름 : 한지윤

학 번: 49004725

담당교수 : 강석형 교수님

1. Neverilog 결과

- 1. Booth 알고리즘을 이용한 곱셈을 하기 위해서 Booth.v파일 생성 내부에 8비트 덧셈 및 뺄셈을 위한 ADD_SUB모듈, 1비트씩 Booth알고리즘을 위한 모듈과, 8비트 곱셈을 하여 16비트가 출력되는 모듈 생성
- 2. 5*5 총 25개의 덧셈을 빠르게 하기 위한 CSA 모듈을 트리 형식으로 연결
- 3. 위에서 만든 곱셈과 덧셈을 하기 위한 MAC모듈 생성
- 4. 98*98이미지를 5*5필터와 Convoluvion을 하기 위한 Convolver 모듈 생성 -- 1 RTL MAX directory에 저장 및 실행 --

1. Neverilog 결과

Convolver모듈안에는 처음에 이미지와 필터를 불러와 5*5내부 RAM에 저장하는 LOAD (처음 0 1 2 3 4 ... 396 데이터), 가로로 3줄을 건너뛰며 겹치는 2줄을 시프트 시켜 15번의 사이클에 이미지를 불러오는 SHIFT_COL (파란색으로 표기), 가로 연산이 끝나면 세로로 3줄을 건너뛰고 마찬가지로 15번의 사이클에 이미지를 불러오는SHIFT_ROW (빨간색으로 표기), 연산을 위한 MAC STATE 와 결과를 내보내기 위한 FEATURE STATE,

세로 1번 시프트 시킨 후에는 SHIFT COL과 ROW를 지나면서 겹친 16픽셀을 제외한 9픽셀을 불러오는 SHIFT_9 (초록색으로 표기) 마지막 결과가 나오면 STATE를 마치고 빠져나오는 EOC STATE로 설계.

총 105,815Cycle을 걸쳐 Convolution결과를 완료함.

2. OpenRoad 결과 _ Parameter

finish report_powe Group	Internal Power	Switching Power	Leakage Power	Total Power	(Watts)
Sequential Combinational Clock Macro Pad	5.58e-03 9.16e-05 1.22e-03 0.00e+00 0.00e+00	1.64e-06 1.80e-04 1.58e-03 0.00e+00 0.00e+00	8.17e-06 1.21e-05 2.75e-07 0.00e+00 0.00e+00	5.59e-03 2.83e-04 2.80e-03 0.00e+00 0.00e+00	64.4% 3.3% 32.3% 0.0% 0.0%
Total - ===================================	6.89e-03 79.5%	1.76e-03 20.3%	2.05e-05 0.2%	8.67e-03	100.0%
wns -0.17					
finish report_design_area finish report_design_area Design area 1065 u^2 91% [WARNING GUI-0076] QStano [lapsed time: 0:02.06[h:	utilization. dardPaths: XDG_RUNT				

Total_Power = 8.63e-03

Design_Area = 1065

Utilization = 0.91

 $Clk_period = 0.075$

WNS = -0.17

위와 같이 최종 결과가 나온 것을 알 수 있다.

조건은 다음 페이지에 config에 나와있다.

2. OpenRoad 결과 _ sdc, config

```
set clk_name core_clock
set clk_port_name clk
set clk_period 0.075
set clk_io_pct 0.02

set clk_port [get_ports $clk_port_name]

create_clock -name $clk_name -period $clk_period $clk_port

set non_clock_inputs [lsearch -inline -all -not -exact [all_inputs] $clk_port]

set_input_delay [expr $clk_period * $clk_io_pct] -clock $clk_name $non_clock_inputs
set_output_delay [expr $clk_period * $clk_io_pct] -clock $clk_name [all_outputs]
```

Constraint.sdc

Clk_Period를 조절해가며 WNS가 최소화가 되게 조절했다.

Config.mk

각 조건들을 바꿔가며 최적화를 시켰다.

Score를 계산해 본 결과 : -3.59

```
export DESIGN_NICKNAME = 2024_term_project
export DESIGN_NAME = Convolver
export PLATFORM = nangate45

export VERILOG_FILES = $(sort $(wildcard ../../2024_term_project/$(DESIGN_NICKNAME)/*.v))
export SDC_FILE = ./designs/nangate45/2024_term_project/constraint.sdc
#export SDC_FILE = ../../2024_term_project/Constaint/constraint.sdc

export CORE_UTILIZATION = 80
export CORE_ASPECT_RATIO = 1
export CORE_MARGIN = 2
export PLACE_DENSITY = 0.85
```