

3D Vision and Machine Perception

Prof. Kyungdon Joo

3D Vision & Robotics Lab.

Al Graduate School (AIGS) & Computer Science and Engineering (CSE)

Some materials, figures, and slides (used for this course) are from textbooks, published papers, and other open lectures

Epipolar constraints

• These constraints can be used in RANSAC like homography

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

$$\boldsymbol{x}'^{\top} \mathbf{F} \boldsymbol{x} = 0$$

Epipolar constraints

- These constraints can be used in RANSAC like homography
- What is the benefits over using homography?

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

$$\boldsymbol{x}'^{\top} \mathbf{F} \boldsymbol{x} = 0$$

Stereo

Revisiting triangulation

Right image

Left image

• Select point in one image (how?)

Right image

Left image

Right image

- Select point in one image (how?)
- Form epipolar line for that point in second image (how?)

Left image

Right image

- Select point in one image (how?)
- Form epipolar line for that point in second image (how?)
- Find matching point along line (how?)

Right image

- Left image
- Select point in one image (how?)
- Form epipolar line for that point in second image (how?)
- Find matching point along line (how?)
- Perform triangulation (how?)

Triangulation

Left image

Right image

- Select point in one image (how?)
- Form epipolar line for that point in second image (how?)
- Find matching point along line (how?)
- Perform triangulation (how?)
- What are the disadvantages of this procedure?

Stereo matching

• What's different between these two images?

• Objects that are close move more or less?

Depth Estimation via Stereo Matching

Overview of depth estimation in stereo setup

- Rectify images
 (make epipolar lines horizontal)
- 2. For each pixel
 - Find epipolar line
 - Scan line for best match
 - Compute depth from disparity ($Z=rac{bf}{d}$)

• It's hard to make the image planes exactly parallel

- How can you make the epipolar lines horizontal?
- Use stereo rectification?

Stereo rectification

• What is stereo rectification?

• What is stereo rectification?

• Reproject image planes onto a common plane parallel to the line between camera centers

How can you do this?

What is stereo rectification?

- Reproject image planes onto a common plane parallel to the line between camera centers
- How can you do this?
- Need two homographies (3x3 transform), one for each input image reprojection

- Stereo Rectification:
 - 1. Compute E to get R
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

- Stereo Rectification:
 - 1. Compute E to get R
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

- Stereo Rectification:
 - 1. Compute E to get R
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

- Stereo Rectification:
 - 1. Compute **E** to get **R**
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

- Stereo Rectification:
 - 1. Compute E to get R
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

• Stereo Rectification:

- 1. Compute E to get R
- 2. Rotate right image by R
- 3. Rotate both images by Rrect
- 4. Scale both images by **H**

- Stereo Rectification:
 - 1. Compute E to get R
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

- Stereo Rectification
 - Rotate the right camera by R
 (aligns camera coordinate system orientation only)
 - 2. Rotate (rectify) the left camera so that the epipole is at infinity
 - 3. Rotate (rectify) the right camera so that the epipole is at infinity
 - 4. Adjust the **scale**

• Stereo Rectification:

- 1. Compute E to get R
- 2. Rotate right image by R
- 3. Rotate both images by Rrect
- 4. Scale both images by H

• Step 1: compute E to get R

SVD :
$$\mathbf{E} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$
 Let $\mathbf{W} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

• We get **four** solutions:

$$P = [R|T]$$

$$\mathbf{R}_1 = \mathbf{U}\mathbf{W}\mathbf{V}^{ op} \quad \mathbf{R}_2 = \mathbf{U}\mathbf{W}^{ op}\mathbf{V}^{ op}$$

$$\mathbf{T}_1 = U_3 \quad \mathbf{T}_2 = -U_3$$

two possible rotations

two possible translations

Note that this is a general method to decompose R and T from E.

• We get **four** solutions:

$$egin{aligned} \mathbf{R}_1 &= \mathbf{U}\mathbf{W}\mathbf{V}^ op \ \mathbf{T}_1 &= U_3 & \mathbf{T}_2 &= -U_3 \ egin{aligned} \mathbf{R}_2 &= \mathbf{U}\mathbf{W}^ op \mathbf{V}^ op \ \mathbf{T}_2 &= -U_3 \ \end{pmatrix} & \mathbf{R}_2 &= \mathbf{U}\mathbf{W}^ op \mathbf{V}^ op \ \mathbf{T}_2 &= -U_3 \ \end{pmatrix} & \mathbf{T}_1 &= U_3 \end{aligned}$$

- Which one do we choose?
- Compute determinant of R, valid solution must be equal to 1 (note: det(R) = -1 means rotation and reflection)
- Compute 3D point using triangulation, valid solution has positive Z value (note: negative Z means point is behind the camera)

• Let's visualize the four configurations...

• Find the configuration where the point is in front of both cameras

• Find the configuration where the points is in front of both cameras

• Find the configuration where the points is in front of both cameras

- Stereo Rectification:
 - 1. Compute E to get R
 - 2. Rotate right image by R
 - 3. Rotate both images by Rrect
 - 4. Scale both images by H

• When are epipolar lines horizontal?

• When this relationship holds:

$$R = I \qquad \qquad t = (T, 0, 0)$$

• Parallel cameras

• Where is the epipole?

• Parallel cameras

• Epipole at infinity

• Setting the epipole to infinity (building R_{rect} from **e**)

• Let
$$R_{
m rect}=\left[egin{array}{c} m{r}_1^{ op} \ m{r}_2^{ op} \ m{r}_3^{ op} \end{array}
ight]$$
 given : epipole ${f e}$ (using SVD on E / translation from ${f E}$)

•
$$oldsymbol{r}_1 = oldsymbol{e}_1 = rac{T}{||T||}$$
 epipole coincides with translation vector

•
$$oldsymbol{r}_3 = oldsymbol{r}_1 imes oldsymbol{r}_2$$
 orthogonal vector

• If
$$oldsymbol{r}_1 = oldsymbol{e}_1 = rac{T}{||T||}$$
 and $oldsymbol{r}_2$ $oldsymbol{r}_3$ orthogonal

• Then
$$R_{ ext{rect}}m{e}_1=\left[egin{array}{c} m{r}_1^ op m{e}_1 \ m{r}_2^ op m{e}_1 \ m{r}_3^ op m{e}_1 \end{array}
ight]=\left[egin{array}{c} ? \ ? \ ? \end{array}
ight]$$

• If
$$oldsymbol{r}_1 = oldsymbol{e}_1 = rac{T}{||T||}$$
 and $oldsymbol{r}_2$ $oldsymbol{r}_3$ orthogonal

• Then
$$R_{ ext{rect}}oldsymbol{e}_1=\left[egin{array}{c} oldsymbol{r}_1^ op oldsymbol{e}_1 \ oldsymbol{r}_3^ op oldsymbol{e}_1 \ oldsymbol{r}_3^ op oldsymbol{e}_1 \end{array}
ight]=\left[egin{array}{c} ? \ ? \ ? \end{array}
ight]$$

• Where is this point located on the image plane?

• If
$$oldsymbol{r}_1 = oldsymbol{e}_1 = rac{T}{||T||}$$
 and $oldsymbol{r}_2$ $oldsymbol{r}_3$ orthogonal

• Then
$$R_{ ext{rect}}oldsymbol{e}_1 = \left[egin{array}{c} oldsymbol{r}_1^ op oldsymbol{e}_1 \ oldsymbol{r}_2^ op oldsymbol{e}_1 \ oldsymbol{r}_3^ op oldsymbol{e}_1 \end{array}
ight] = \left[egin{array}{c} ? \ ? \ ? \end{array}
ight]$$

• Where is this point located on the image plane?

At x-infinity

- Stereo Rectification Algorithm
 - 1. Estimate **E** using the 8 point algorithm (SVD)
 - 2. Estimate the epipole **e** (SVD of **E**)
 - 3. Build **R**_{rect} from **e**
 - 4. Decompose E into R and T
 - 5. Set $R_1 = R_{rect}$ and $R_2 = RR_{rect}$
 - 6. Rotate each left camera point (warp image) $[x' y' z'] = R_1 [x y z]$
 - 7. Rectified points as $\mathbf{p} = f/z'[x' \ y' \ z']$
 - 8. Repeat 6 and 7 for right camera points using \mathbf{R}_2

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Teesta suspension bridge-Darjeeling, India

This is how 3D movies work

- Rectify images
 (make epipolar lines horizontal)
- 2. For each pixel
 - Find epipolar line
 - Scan line for best match
 - Compute depth from disparity ($Z=\frac{bf}{d}$)

how would you do this?

Stereo Block Matching

- Slide a window along the epipolar line and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Normalized cross-correlation

What is the best method?

- It depends on whether you care about speed or invariance.
- Zero-mean: fastest, very sensitive to local intensity.
- Sum of squared differences: medium speed, sensitive to intensity offsets.
- Normalized cross-correlation: slowest, invariant to contrast and brightness.

Similarity Measure	Formula
Sum of Absolute Differences (SAD)	$\sum_{(i,j)\in W} I_1(i,j) - I_2(x+i,y+j) $
Sum of Squared Differences (SSD)	$\sum_{(i,j)\in W} (I_1(i,j) - I_2(x+i,y+j))^2$
Zero-mean SAD	$\sum_{(i,j)\in W} I_1(i,j) - \bar{I}_1(i,j) - I_2(x+i,y+j) + \bar{I}_2(x+i,y+j) $
Locally scaled SAD	$\sum_{(i,j)\in W} I_1(i,j) - \frac{\bar{I}_1(i,j)}{\bar{I}_2(x+i,y+j)} I_2(x+i,y+j) $
Normalized Cross Correlation (NCC)	$\frac{\sum_{(i,j)\in W} I_1(i,j).I_2(x+i,y+j)}{\sqrt[2]{\sum_{(i,j)\in W} I_1^2(i,j).\sum_{(i,j)\in W} I_2^2(x+i,y+j)}}$

Effect of window size

W = 20

Smaller window

- + More detail
- More noise

Larger window

- + Smoother disparity maps
- Less detail
- Fails near boundaries

Improving stereo matching

Block matching

Ground truth

• What are some problems with the result?

How can we improve depth estimation?

- Too many discontinuities. We expect disparity values to change slowly.
- Let's make an assumption : depth should change smoothly

Stereo matching as energy minimization

- What defines a good stereo correspondence?
 - Match quality
 - Want each pixel to find a good match in the other image
 - Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

Energy function (for one pixel)

$$E(d) = E_d(d) + \lambda E_s(d)$$
Data term Smoothness term

Want each pixel to find a good match in the other image (block matching result)

Adjacent pixels should (usually) move about the same amount (smoothness function)

• All of these cases remain difficult, what can we do?

Depth estimation (Triangulation with rectified images)

$$\frac{b-X}{Z} = \frac{x'}{f}$$

$$\frac{b-X}{Z} = \frac{x'}{f}$$

Disparity

$$d=x-x^{\prime}$$
 (w.r.t to camera origin of image plane) bf

$$\frac{b-X}{Z} = \frac{x'}{f}$$

Disparity

$$d = x - x'$$

inversely proportional to depth

$$=rac{bf}{Z}$$