叩

শ

如

考

东南大学考试卷(A卷)

课程名称 概率论与数理统计 考试学期 21-22-2 得分

适用专业		全校		 考试形式		 考试时间长度		120 分钟
	题号	 1 1	11:1	四	五.	六	八	八
	得分							

 $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$ 表示标准正态分布的分布函数,

$$\Phi(-1.65) = 0.05; \Phi(-1.96) = 0.025; \Phi(1) = 0.8413; \Phi(2) = 0.9772$$

$$T_n \sim t(n)$$
 $P(T_{24} \ge 2.064) = 0.025; P(T_{24} \ge 1.711) = 0.05;$
 $P(T_{25} \ge 2.060) = 0.025; P(T_{25} \ge 1.708) = 0.05;$

$$K_n \sim \chi^2(n)$$
 $P(K_{24} \ge 39.36) = 0.025; P(K_{24} \ge 12.40) = 0.975;$ $P(K_{25} \ge 40.65) = 0.025; P(K_{25} \ge 13.12) = 0.975;$

- 一、选择题(每题 2', 共 10')
 - 1) 设 A,B 为两随机事件,且 $P(AB) = P(\bar{A}\bar{B})$,则下列说法正确的是 ()
 - A) A和B互不相容;
- B) A U B 是必然事件;
- C) P(A) + P(B) = 1;
- D) 以上三个选项均不正确。
- 2) 随机变量X服从自由度为 5 的 t 分布, $Y = X^2$,则下列说法正确的是 ()
 - A) $Y \sim \chi^2(5)$;

B) $Y \sim \chi^2(4)$;

C) $Y \sim F(5,1)$;

- D) $Y \sim F(1,5)$.
- 3) 设 X 和 Y 是两个相互独立的连续型随机变量,它们的概率密度函数分别为 $f_1(x)$ 和

 $f_2(x)$,分布函数分别为 $F_1(x)$ 和 $F_2(x)$,则下列说法不正确的是 (

- A) $0.5f_1(x) + 0.5f_2(x)$ 必为某一随机变量的概率密度函数;
- B) $F_1(x)F_2(x)$ 必为某一随机变量的分布函数;
- C)1.5 $f_1(x) 0.5f_2(x)$ 必为某一随机变量的概率密度函数;
- D)0.5($F_1(x) + F_2(x)$) 必为某一随机变量的分布函数;
- 4)设总体 X 的均值为 θ , X_1 , X_2 , ..., X_n 是来自该总体的简单随机样本, \bar{X} 为样本均值。现需要检验 H_0 : $\theta=\theta_0$, $H_1\theta\neq\theta_0$ 。若有两种拒接域 $S_1=\{|\bar{X}|>1\}$ 和 $S_2=\{|\bar{X}|>2\}$.

设基于这两种拒绝域的检验水平分别为 α_1 和 α_2 ,则以下结论正确的是 ()

(A) $\alpha_1 \leq \alpha_2$;

(B) $\alpha_1 \geq \alpha_2$;

(C) $\alpha_1 = \alpha_2$;

(D) 不能确定 α_1 和 α_2 的大小关系。

效

自

		体 X 服从正态分布 N(3,1 直和样本方差。下列结论	6), $X_1, X_2,, 16$ 是来自该总体的样本,中不正确的是	$ar{X}$, S^2 分别表示样
	(A)	$\frac{15S^2}{16} \sim \chi^2(15);$	(B) $cov(\bar{X}, S^2)=0;$	
 	(C)	$\bar{X}-3\sim N(0,1)$	(D) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (r$	$(i-1)_{\circ}$
	二、填充	· · · · · · · · · · · · · · · · · · · ·)	
	1)	设事件A和B相互独立	江, P(A)=0.2; P(B)=0.4, 则 P(B AUB)=_	o
	2)	设一批产品的次品率为	0.2。从该批产品逐个抽取产品进行检	测。则第四次检测
		首次检测出正品的概率	是。	
	3)	设随机变量X服指数分	布,均值为 2,则 <i>cov(X²,X - 2)</i> =	o
	4)	随机变量 X,Y 相互独	立, X~N(2,5), Y~N(2,1), 则 P(X-2Y>	>-5)= _°
郑	5)	随机变量 X, Y 的联合	分布律为: P(X=1,Y=3)=0.3; P(X=2,Y=4	4)=0.3;
201,		P(X=1,Y=4)=0.2; P(X=2	(X,Y=3)=0.2。 则 $Emin(X,Y)=$	0
	6)	若随机变量 X,Y 互	不相关, DX=2,DY=7, 则 3X-Y 和	X+Y 的相关系数
型 名		为。		
! #A	7)	设随机变量序列{Xn,n=	1,2,}独立同分布于 U[-1,2]。	
 			²) — •	
	8)	设总体X服从泊松分布	$iP(2)$ 。 X_1, X_2, \ldots, X_8 是来自该总体的样。	本, \bar{X} 表示样本均
		值, 则 $E(\bar{X}-2)^2 =$	°	
後日	9)	随机变量X的分布律为	P(X=-2)=0.5, $P(X=0)=0.2$, $P(X=2)=0.3$	3。则其分布函数
		为。		
마	10)	随机变量 X 的概率密度	E为 $f(x) = \begin{cases} 0.25 & -1 < x < 0 \\ 0.375 & 0 \le x < 2 \\ 0 & 其它 \end{cases}$	的密度
洲		函数为		
	11)		工,且 $X_1 \sim N(0,4), X_2 \sim N(0,4), X_3 \sim N(0,c)$ (3),则常数 $c = $ 。),X ₄ ~N(0,c)。 若
	12)	设某总体服从 <i>N(m,4)</i> ,	有来自该总体的容量为 16 的简单随机	样本,样本均值为 。
 	13)		t 为 $f(x, \theta) = (x - 1)\theta^{2}(1 - \theta)^{x-2}, x = 2$,5,2,6 是来自该总体的简单随机样	

矩估计值为_____。

此

答

卷

无 效

卟 小

自

三、(15') 设随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} ax^2y & x^2 < y < 1\\ 0 & 其他 \end{cases}$$

求(1)常数a; (2) X 的边缘密度函数; (3)条件概率 P(Y>0.5|X=0.5)。

四、(10')设一盒子中有一个球,不知道其颜色是白色还是黑色(两种颜色等可能)。现在 再往盒子中放入一个白球,然后从盒子中任意取出一球。(1)求取出的球是白球的概率; (2) 若已知取出的球为白球,求原来盒子中的球是白球的概率。

奸名

小小

自

五、(10')设随机变量 X 和 Y 的联合密度为

 $\diamondsuit Z = \max(X,Y)$. 求随机变量 Z 的概率密度函数 $f_Z(z)$ 。

六、(9') 设某工厂仓库有一批零件,其中一等品占 60%,二等品占 20%,三等品占 20%。 现从中任取 100 件零件进行检测,求检测出一等品的个数超过 68 件的概率。(用中心极限 定理进行近似计算,并可使用标准正态分布的分布函数Φ(x)表示相关概率)。

此 答 卷 无 效

自 觉 七、(10')设总体 X 的概率密度为

$$f(x) = egin{cases} 5e^{5(x- heta)} & x \leq heta \ 0 &$$
其他 其中 $heta$ 为未知知参数。 $X_1,...X_n$ 为

来自该总体的样本。(1)求参数 θ 的最大似然估计量 $\hat{\theta}$ 。(2) $\hat{\theta}$ 是否是 θ 的无偏估计量, 说明理由。

姓名

卟 শ 八、 (10')设总体 X 服从正态分布 N (u,σ^2) , u 和 σ^2 未知。 现有来自该总体样本容量为 25 的样本, 其样本均值为 26, 样本方差为 16。 (1) 试检验 H₀: u=24, v.s. H₁: u >24(检验水 平 $\alpha = 0.05$);(2)求 σ^2 的置信度为95%的置信区间。