

Benchmarking Model Predictive Control and Reinforcement Learning for Legged Robot Locomotion

Shivayogi Akki^a, Zherong Pan^b, Tan Chen^a

 $Michigan\ Technological\ University, Houghton, MI^a; Lightspeed\ \&\ Quantum\ Studio, Tencent\ America^b$

Background and Objective

Background:

- Quadrupeds have diverse applications: industrial transport, package delivery, search and rescue, etc.
- Trending control methods are Model Predictive Control (MPC) and Reinforcement Learning (RL).

Objectives:

- Comparative study of MPC and RL controllers on Unitree
 Go1 quadrupedal robot.
- Experiments used for evaluation are performance under perturbation and model uncertainty.
- Provide insights to help researchers make informed decisions when designing locomotion controllers.

Environment Setup

Robot: Unitree Go1 quadruped.

Environment:

- Simulation is based on MuJoCo physics engine [1].
- Integrate a realistic XML model of Go1 robot in MJPC [2] and Open AI Gym MuJoCo framework [3,4].
- Real-time monitoring of Go1's actions, states, and interactions with the environment in MJPC [2].

Acknowledgement

The REF-RS grant from Michigan Tech and the travel support from GSG and ICC are gratefully acknowledged.

Robot Go1 Predictive Control Optimization i ILQG Gradient Descent Predictive Sampling Actor Model Observation o_t Model Predictive Control Reward r_t Cobservation o_t Reward r_t Revard r_t Reward r_t

Results

Experiment 1: Task standardization

Set a task to maintain 0.5 m/s along x-axis

Experiment 2: Perturbation along x-axis

Experiment 3: Perturbation along y-axis

Conclusion and Future Work

- Successfully implemented RL and MPC controllers on Unitree
 Go1 in MuJoCo-based simulation.
- RL demonstrates better disturbance rejection capabilities, largely attributed to the use of high-frequency control inputs.
- MPC is real-time and responsive, aided with complex control algorithm. MJPC offers interactive simulation, enabling fast parameter tuning. In contrast, RL, while time-intensive in training, offers a more straightforward coding approach.
- Future work will compare the two controllers under model uncertainty (flat, slippery, and uneven terrain).

References

- 1. Todorov, Emanuel T, et. al. "MuJoCo: A physics engine for model-based control", 2012
- 2. Howell, Taylor, et. al. "Predictive Sampling: Real-time Behaviour Synthesis with MuJoCo", 2022
- 3. Raffin, Antonin, "RL Baselines3 Zoo", 2020
- 4. Brockman, Greg, et. al. "OpenAl Gym", 2016

Contact

Robotics, Locomotion, and Applied Control (RoLAC) Lab Shivayogi Akki: sakki@mtu.edu

Tan Chen: tanchen@mtu.edu