低秩矩阵完整化问题的几种高效解法

林陈冉

中国科学院大学

2016年12月29日

什么是低秩矩阵完整化

Start

简单来说, 低秩矩阵完整化问题, 就是在仅仅知道矩阵的少部分元素的情况下, 恢复出这个矩阵的所有元素, 比如著名的NetFlix大奖赛问题.

什么是低秩矩阵完整化

Start

还原一个完全没有规律的矩阵是不可能的, 也是没有必要的, 而所谓的"有规律", 对于矩阵来说就是秩比较低. 实际上, 现实生活中的任何信息, 都可以看作一个矩阵, 这个矩阵可以分解为一个低秩的部分, 和一个稀疏的部分.

数据分析与预测

Start

movies

图像处理

图像处理

图像处理

机器学习

Start

通常我们考虑这样的一个最优化问题:

min
$$rank(X)$$

s.t. $X_{ij} = M_{ij}, \forall (i, j) \in \Omega$ (1.1)

其中 $X, M \in \mathbb{R}^{p \times q}$, Ω 是已知元素的下标 (i, j) 构成的集合, $|\Omega| = m$.

在一些情况下, (1.1)等价于线性约束问题:

$$\min \quad rank(X)$$
s.t. $\mathcal{A}(X) = b$ (1.2)

其中 $b \in \mathbb{R}^m$, $\mathcal{A}: \mathbb{R}^{p \times q} \to \mathbb{R}^m$ 是线性算子.

Start

但是(1.1), (1.2)都是"NP-难"的, 因此需要一定的转化. 这里我们用核范数来近似矩阵的秩, 把(1.1)与(1.2)转化为以下形式:

$$\min \quad ||X||_*$$
s.t. $\mathcal{A}(X) = b$ (1.3)

$$\min \quad \|X\|_*$$
 s.t. $X_{ij} = M_{ij}, \forall (i,j) \in \Omega$

Start

很自然的,一个重要的问题是: (1.1)与(1.3), 或者(1.2)与(1.4)什么时候等价? 略过证明,直接描述以下重要的结论:

- ▶ 对于(1.3), 当在某些正则条件下, 若已知元素个数 $|\Omega| = m = O(nr \cdot polylog(n))$, 其中 n = max(p,q), polylog 是多重对数函数, 则矩阵有很高概率可以恢复.
- ▶ 对于(1.4), 将线性映射 A 的矩阵形式记作 A, 当 A 是一个随机高斯矩阵, 若向量 b 的维数 m = O(r(p+q)log(pq)), 则矩阵有很高概率可以恢复.

Start

实际上,由线性代数知识容易知道, (1.4)要求的线性约束条件并不总能成立,因此有时需要适当松弛. 考虑(1.4)的罚函数:

$$\min \|X\|_* + \frac{1}{2\mu} \|\mathcal{A}(X) - b\|_2^2$$
 (1.5)

其中 μ 是某个给定常数.

Start

下面, 将对(1.3), (1.4), (1.5)分别给出一种高效的解法.

- ▶ (1.3) → Alternating Direction Augmented Lagrangian法
- ▶ $(1.4) \rightarrow \text{Row By Row法}$
- ▶ (1.5) → Fixed Point Continuation Apporximate法

问题转化

对于问题(1.3), 我们考虑它的对偶问题

$$\begin{aligned} \max_{y \in \mathbb{R}^m} \quad b^\top y \\ \text{s.t.} \quad & \|\mathcal{A}^*(y)\|_2 \leq 1 \end{aligned} \tag{2.1}$$

引入一个形式上的变量 S,将(2.1)变为如下的等价形式

$$\min_{y \in \mathbb{R}^m} -b^\top y$$
 s.t. $\mathcal{A}^*(y) - S = 0$ (2.2)
$$||S||_2 \le 1$$

问题转化

可以考虑(2.2)的增广Lagrange函数

$$L(y, S, X, \mu) = -b^{\top} y + \langle X, \mathcal{A}^*(y) - S \rangle + \frac{1}{2\mu} \|\mathcal{A}^*(y) - S\|_F^2 \quad (2.3)$$

由此我们得到(2.1)的一个等价问题

$$\begin{aligned} & \underset{y,S}{\min} & & L(y,S,X,\mu) \\ & \text{s.t.} & & \left\|S\right\|_2 \leq 1 \end{aligned} \tag{2.4}$$

通过选取最佳的 μ 和 X 可以求出(2.4)的最优解.

问题转化

对下面的几个量进行迭代,可以求解问题(2.4)

$$\mu^{k+1} = \alpha \mu^k, \quad \alpha \in (0,1)$$

$$X^{k+1} = X^k + \frac{\mathcal{A}^*(y^{k+1}) - S^{k+1}}{\mu^k}$$
(2.5)

$$(y^{k+1}, S^{k+1}) = \arg\min_{y,S} L(y, S, X^k, \mu^k)$$

(2.5)第三式并不容易解, 因此我们考虑使用交替方向法

$$y^{k+1} = \arg\min_{y,S} L(y, S^k, X^k, \mu^k)$$
 (2.6)

$$S^{k+1} = \arg\min_{y,S} L(y^{k+1}, S, X^k, \mu^k)$$
 (2.7)

交替方向法

定理

当固定 S^k , (2.6)的最优解为:

$$y^{k+1} = \mu^k(b - A(X^k)) + A(S^k)$$
 (2.8)

当固定 y^{k+1} , (2.7)的最优解为:

$$S^{k+1} = U \operatorname{Diag}(\min\{\sigma, 1\}) V^{\top}$$
(2.9)

其中 U,V 来自 $Y=\mathcal{A}^*(y^{k+1})+\mu^kX^k$ 的奇异值分解, 即 $Y=U Diag(\sigma)V^\top$.

AAL法算法

算法

```
步1 给出 \mu^0 , X^0 , y^0 , S^0 , \epsilon , \alpha , 设置计数器 k=0 ; 步2 若 \frac{\|X^{k+1}-X^k\|_F}{\max\{1,\|X^k\|_F\}} \le \epsilon , 则停止; 步3 计算 y^{k+1} = \mu^k(b-A(X^k)) + A(S^k) ; 步4 计算 Y = A^*(y^{k+1}) + \mu^k X^k , 并计算其SVD: Y = UDiag(\sigma)V^\top ; 步5 计算 S^{k+1} = UDiag(min\{\sigma,1\})V^\top ; 步6 计算 X^{k+1} = \frac{Y-S^{k+1}}{\mu^k} ; 步7 计算 \mu^{k+1} = \alpha\mu^k , k=k+1.转步2.
```

FPC法

FPC法是一种基于不动点定理的算法, 可以解决问题(1.5).

 $\|X\|_* + \frac{1}{2\mu} \|A(X) - b\|_2^2$ 是一个凸函数, 求最优解只要求梯度为0的点. 但 $\|X\|_*$ 是不可微的, 故考虑次梯度

$$0 \in \mu \partial \|X\|_* + g(X) \tag{3.1}$$

其中
$$g(X) = \mathcal{A}^*(\mathcal{A}(X) - b)$$

设 $Y = X - \psi g(X)$, $\psi > 0$ 是给定常数, 则(3.1)等价于

$$0 \in \psi \mu \partial \|X\|_* + X - (X - \psi g(X)) = \psi \mu \partial \|X\|_* + X - Y \quad (3.2)$$

FPC法

(3.2)恰好是 $\psi \mu \|X\|_* + \frac{1}{2} \|X - Y\|_F^2$ 的次梯度, 即(1.4)等价于

$$\min \psi \mu \|X\|_* + \frac{1}{2} \|X - Y\|_F^2 \tag{3.3}$$

定义

对 $X \in \mathbb{R}^{m \times n}$ 做奇异值分解, $X = U Diag(\sigma) V^{\top}$, r = rank(X), $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$, 对 $\forall \nu > 0$, 定义向量 $\bar{\sigma} = (\bar{\sigma}_1, \cdots, \bar{\sigma}_r)$, 其中 $\bar{\sigma}_i = \max\{\sigma_i - \nu, 0\}$.

Shinkage算子 $S_{\nu}: \mathcal{R}^{m \times n} \to \mathcal{R}^{m \times n}$, $S_{\nu}(X) = U \operatorname{Diag}(\bar{\sigma})V^{\top}$

FPC法

定理

问题(3.3)中,当给定 $Y \in \mathcal{R}^{m \times n}$,最优解为 $S_{\psi\mu}(Y)$,其中 $S_{\psi\mu}(\cdot)$ 是Shinkage算子

FPC法的收敛性

上面的定理告诉我们, 只需要求出合适的 Y , $S_{\psi\mu}(Y)$ 就是(1.5)的解.

由 X 与 Y 的关系可以看出, 若 X^* 是(1.5)的解, 则

$$X^* = S_{\psi\mu}(X^* - \mu g(X^*)) \tag{3.4}$$

即 X^* 是映射 $S_{\psi\mu} \circ h$ 的不动点, 其中 $h(X) = X - \mu g(X)$. 我们有如下的结论.

FPC法的收敛性

定理

Shinkage算子 $S_{\nu}(\cdot)$ 是非扩张的, 即

$$||S_{\nu}(Y_1) - S_{\nu}(Y_2)||_F \le ||Y_1 - Y_2||_F \tag{3.5}$$

定理

当 $\mu \in (0,2/\lambda_{max}(A^{\top}A))$, 其中 A 满足 $\mathcal{A}(X) = Avec(X)$, h 是非扩张的, 即

$$||h(X_1) - h(X_2)||_F \le ||X_1 - X_2||_F \tag{3.6}$$

FPC法的收敛性

自然的推论是, 当 $\mu \in (0, 2/\lambda_{max}(A^{T}A))$

$$||S_{\psi\mu}(h(X_1)) - S_{\psi\mu}(h(X_2))||_F \le ||h(X_1) - h(X_2)||_F \le ||X_1 - X_2||_F$$
(3.7)

即 $S_{\psi\mu} \circ h$ 是一个非扩张的映射, 由Brouwer不动点定理可知, 由任意 X 开始进行迭代, 都能收敛到某个不动点.

实际计算中,上述迭代过程中,每步都要求做奇异值分解,这并不是一件容易的事.我们认为问题(1.5)中的原矩阵 X 是一个低秩矩阵,那么其奇异值大多都是 0,故可以考虑只求很少的几个奇异值.

这种优化FPC法中奇异值计算的方法, 就是FPCA法.

 $A \in \mathbb{R}^{p \times q}$,取整数 c,d,1 < d < c < q, (P_1, \dots, P_q) , $P_i > 0$, $\sum_{i=1}^{q} P_i = 1$. 构造随机向量 (i_1, \dots, i_c) , $P(i_t = j) = P_i$, $t \in \{1, \dots, c\}$, $j \in \{1, \dots, q\}$. 再令随机矩阵

$$C = \begin{pmatrix} C^{(1)} \\ \cdots \\ C^{(c)} \end{pmatrix} = \begin{pmatrix} A^{(i_i)} / \sqrt{cP_{i_1}} \\ \cdots \\ A^{(i_c)} / \sqrt{cP_{i_c}} \end{pmatrix} \in \mathbb{R}^{p \times c}$$
(3.8)

求 $C^{\mathsf{T}}C$ 的特征值分解

$$C^{\top}C = \sum_{i=1}^{c} \sigma_i^2(C) y_i y_i^{\top}$$
(3.9)

其中 $\sigma_i(C) \geq 0$,为 C的奇异值,再构造矩阵

$$H = \begin{pmatrix} H^{(1)} \\ \cdots \\ H^{(d)} \end{pmatrix} = \begin{pmatrix} Cy_1/\sigma_1(C) \\ \cdots \\ Cy_d/\sigma_d(C) \end{pmatrix} \in \mathbb{R}^{p \times d}$$
 (3.10)

$$A_d = H \mathsf{Diag}(\sigma(C)) (A^{\mathsf{T}} H \mathsf{Diag}(1/\sigma(C)))^{\mathsf{T}}$$
(3.11)

可以证明 A_a 是 A 的一个比较好的近似

$$||A - A_d||_{\xi}^2 \le \min_{\mathsf{rank}(D) \le d} ||A - D||_{\xi}^2 + ploylog(d, 1/c)||A||_{\xi}^2$$
 (3.12)

其中 $\xi = 2$ 或 F, polylog 是多重对数函数.

FPCA法算法

算法

```
步1 给出 X^1 , \mu^0 > 0 , 1 > \theta > 0 , \epsilon > 0 , 设置计数器 k = 1; 步2 若 \mu^k = \mu^{k-1}\theta \le \epsilon , 则停止; 步3 选取合适的 \psi > 0 ; 步4 计算 Y^k = X^k - \psi \mathcal{A}^*(\mathcal{A}(X^k) - b)); 步5 选取合适的 d , \{P_i\} , 按(3.8)至(3.11), 计算近似的奇异值分解 Y_d = HDiag(\sigma(C)) \left(Y^\top HDiag(1/\sigma(C))\right)^\top 步6 计算 X^{k+1} = S_{\psi\mu^k}(Y_d); 步7 k = k+1. 转步2:
```

SDP问题

对于问题(1.4), 我们可以考虑把它转化为一个半定规划(SDP)问题.

一个标准的半定规划问题是

$$\min_{X \in S^n} \langle C, X \rangle$$
s.t. $\mathcal{A}(X) = b, X \succ 0$ (4.1)

其中 $b \in \mathbb{R}^m$, $\mathcal{A}(X) = (\langle A^{(1)}X\rangle, \cdots, \langle A^{(m)}X\rangle)$, $C, A^{(i)} \in S^n$, S^n 是全体对称矩阵.

Schur补

定义

对于一个对称正定矩阵 $X \in S^n$,我们可以把它写成分块矩阵的形式

$$X = \begin{pmatrix} \xi & y^{\top} \\ y & B \end{pmatrix} = \begin{pmatrix} 1 & y^{\top}B^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} \xi - y^{\top}B^{-1}y & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} 1 & 0 \\ B^{-1}y & I \end{pmatrix}$$
(4.2)

 $(X/B) = \xi - y^{\mathsf{T}}B^{-1}y$, 称为X对于B的Schur补, 具有性质

$$X \succeq 0 \Leftrightarrow B \succeq 0, (X/B) \ge 0 \tag{4.3}$$

SOCP问题

约定以下记号

$$X_{\alpha,\beta} = \begin{cases} x_{\alpha\beta} & \alpha, \beta \in \mathbb{R} \\ (x_{\alpha\beta_1}, \cdots, x_{\alpha\beta_n}) & \alpha \in \mathbb{R}, \beta = \{\beta_1, \cdots, \beta_n\} \\ (x_{\alpha_1\beta}, \cdots, x_{\alpha_m\beta})^\top & \alpha = \{\alpha_1, \cdots, \alpha_m\}, \beta \in \mathbb{R} \\ \begin{pmatrix} x_{\alpha_1\beta_1} & \cdots & x_{\alpha_1\beta_n} \\ \cdots & \cdots & \cdots \\ x_{\alpha_m\beta_1} & \cdots & x_{\alpha_m\beta_n} \end{pmatrix} & \alpha = \{\alpha_1, \cdots, \alpha_m\}, \beta = \{\beta_1, \cdots, \beta_n\} \end{cases}$$

$$(4.4)$$

 $i^c = \{1, \dots, n\} \setminus \{i\} = \{1, \dots, i-1, i+1, \dots, n\}$

(4.5)

SOCP问题

令
$$X = \begin{pmatrix} \xi & y^\top \\ y & B \end{pmatrix} = \begin{pmatrix} X_{i,i} & X_{i,i^c} \\ X_{i^c,i} & X_{i^c,i^c} \end{pmatrix}$$
,等号在相差一个初等变化下成立. 基于Schur补,令 i 取遍 $\{1,\cdots,n\}$,逐行解如下的SOCP问题来解决SDP问题(4.1)

$$\min_{\left[\xi;y\right]\in\mathbb{R}^{n}} \quad \bar{c}^{\top} \begin{pmatrix} \xi \\ y \end{pmatrix}$$
s.t.
$$\bar{A} \begin{pmatrix} \xi \\ y \end{pmatrix} = \bar{b}$$

$$(X/B) \ge \delta$$

$$(4.6)$$

SOCP问题

其中

$$\bar{c} = \begin{pmatrix} C_{i,i} \\ 2Ci^{c}, i \end{pmatrix}, \quad \bar{A} = \begin{pmatrix} A_{i,i}^{(1)} & 2A_{i,i^{c}}^{(1)} \\ \cdots & \cdots \\ A_{i,i}^{(m)} & 2A_{i,i^{c}}^{(m)} \end{pmatrix}, \quad \bar{b} = \begin{pmatrix} b_{1} - \langle A_{i^{c},i^{c}}^{(1)}, B \rangle \\ \cdots \\ b_{m} - \langle A_{i^{c},i^{c}}^{(m)}, B \rangle \end{pmatrix}$$

$$(4.7)$$

若 X 是半正定的, 即 $X \succeq 0$, 取 $\delta = 0$;

若 X 是正定的, 即 $X \succ 0$, 用大于零的数来限制Schur补, 取 $\delta > 0$.

罚函数

考虑(4.6)的罚函数

$$F(X,\mu) = \bar{c}^{\top} \begin{pmatrix} \xi \\ y \end{pmatrix} + \frac{1}{2\mu} \|\bar{A}[\xi;y] - \bar{b}\|_{2}^{2}$$
 (4.8)

其中 $\mu > 0$ 是给定的.

(4.6)等价于以下问题

$$\min_{X} F(X,\mu)$$
s.t. $X \succ 0$ (4.9)

回头考虑(1.4), 我们需要把它转化为一个SDP问题(4.1), 考虑两种情况:

▶ 当 $X \in S^n$, $\|X\|_* = tr(X)$, (1.4)等价于下面的SDP问题

$$\begin{aligned} & \min_{X} & tr(X) = \langle E, X \rangle \\ & \text{s.t.} & X_{ij} = M_{ij}, & \forall (i,j) \in \Omega \end{aligned} \tag{4.10}$$

▶ 当 $X \in \mathbb{R}^{p \times q}$ 不是对称正定的,可以考虑一个更大的对称正定矩阵 W. 当补全了 W,则 X 自然被补全了

$$\min_{X} tr(X)$$
s.t. $X = \begin{pmatrix} X_1 & W \\ W^{\top} & X_2 \end{pmatrix} \succ 0$ (4.11)
$$W_{ij} = M_{ij}, \quad \forall (i,j) \in \Omega$$

其中 $X \in S^n$, n = p + q , $W_1 \in S^p$, $W_2 \in S^q$, $X, W_1, W_2 \succ \delta$.

我们主要讨论一般的情况,即问题(4.11). 对于某个 i,我们把向量 u 分为两个部分,即

$$y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad y_1 = X_{\alpha_i, i}, \quad y_2 = X_{\beta_i, i}$$
 (4.12)

其中
$$\alpha_i = \begin{cases} \{j+p|(i,j\in\Omega)\}, i \leq p \\ \{j|(j,i-p)\in\Omega\}, p < i \leq n \end{cases}$$
 , $\beta_i = \{1,\cdots,p\} \setminus (\alpha_i \cup \{i\}), y_1$

是 X 第 i 列除去第 i 行后所有已知元素构成的列向量, y_2 是 X 第 i 列除去第 i 行后所有未知元素构成的列向量.

分解这个对称正定矩阵 X, 使其符合SOCP问题(4.6)的形式, 令

$$B = \begin{pmatrix} X_{\alpha_i,\alpha_i} & X_{\alpha_i,\beta_i} \\ X_{\beta_i,\alpha_i} & X_{\beta_i,\beta_i} \end{pmatrix}, \quad \xi = X_{i,i} .$$

对照SOCP问题的罚函数形式(4.9), 同时,可以给出 $\bar{A}\begin{pmatrix} \xi \\ y \end{pmatrix}$, \bar{b} 和 \bar{c} 的显式表达

$$\bar{b} = \begin{cases} (M_{i,\alpha_i - p})^\top, & i \le p \\ M_{\alpha_i, i - p}, & p < i \le n \end{cases}, \quad \bar{A} \begin{pmatrix} \xi \\ y \end{pmatrix} = y_1, \quad \bar{c} = (1, 0, \dots, 0)$$
(4.13)

故(4.9)化为以下形式

min
$$\xi + \frac{1}{2\mu} \|y_1 - \bar{b}\|_2^2$$

s.t. $\xi - y^\top B^{-1} y \ge \delta$ (4.14)

现在只需要解这个问题的最优解,即可得到矩阵 X 的第 i 行和第 i 列,当 i 循环取遍 1 到 n ,就可以得到原问题(4.11)的最优解,从而求得目标矩阵 W .

定理

问题(4.14)的最优解为

$$y_{1} = (2\mu I + X_{\alpha,\alpha})^{-1} X_{\alpha,\alpha}$$

$$y_{2} = \frac{1}{2\mu} X_{\beta,\alpha} (\bar{b} - y_{1})$$

$$\xi = \frac{1}{2\mu} y_{1}^{\top} (\bar{b} - y_{1}) + \delta$$
(4.15)

RBR法算法

算法

步1 给出 $\delta \geq 0$, $X^1 \succ 0$, $F^0 = tr(X^1)$, $F^1 = +\infty$, $\epsilon > 0$, 设置计数器

$$k=1$$
 , $i=1$;

步2 若 $\frac{|F^{k-1}-F^k|}{\max\{1,|F^{k-1}|\}} \le \epsilon$,则停止;

步3 若 i>n,则令 i=1, $X^{k+1}=X^k$,k=k+1, $F^k=tr(X^k)$,转步2;

步4 求出 i 对应的 α_i , β_i ;

步5 若 $|\alpha_i|=0$, 令 $X_{\alpha,\alpha}^k=x_{\alpha,\beta}^l=X_{\beta,\alpha}^k=0$, $X_{\beta,\beta}^k=X^k$, 否则按通常定义求出以上几个量.

步6 按(4.15), 计算当前最优解 ξ , y_1 , y_2 , 以及 $y = [y_1, y_2]$;

步8 i = i + 1,转步3;

FPCA对比SDPT3

TABLE I Numerical results for FPCA and SDPT3 (p=q=100, m=2000, SR=0.2)

Problems		FPCA			SDPT3			
r	FR	NS	time	rel.err.	NS	time	rel.err.	
1	0.0995	50	4.93	5.80e-6	47	15.10	1.55e-9	
2	0.1980	50	5.26	6.10e-6	31	16.02	7.95e-9	
3	0.2955	50	5.80	7.48e-6	13	19.23	1.05e-4	
4	0.3920	50	9.33	1.09e-5	0	_	_	
5	0.4875	50	5.42	1.61e-5	0	_	_	
6	0.5820	50	7.02	2.62e-5	0	_	_	
7	0.6755	49	8.69	7.69e-5	0	_	_	
8	0.7680	32	10.94	1.97e-4	0	_	_	
9	0.8595	1	11.75	4.38e-4	0			
10	0.9500	0		_	0	_	_	

FPCA对比SVT(简单情况)

TABLE II

COMPARISON OF FPCA AND SVT ON EASY PROBLEMS

Problems	FP	CA	SVT		
(p, r, SR, FR)	rel.err.	time	rel.err.	time	
(100, 10, 0.57, 0.34)	4.27e-5	0.39	1.64e-3	30.40	
(200, 10, 0.39, 0.25)	6.40e-5	1.38	1.90e-4	9.33	
(500, 10, 0.20, 0.20)	2.48e-4	8.01	1.88e-4	23.77	
(1000, 10, 0.12, 0.17)	5.04e-4	18.49	1.68e-4	41.81	
(1000, 50, 0.39, 0.25)	3.13e-5	120.64	1.63e-4	228.79	
(1000, 100, 0.57, 0.33)	2.26e-5	177.17	1.71e-4	635.15	
(5000, 10, 0.02, 0.17)	1.58e-3	1037.12	1.73e-4	121.39	
(5000, 50, 0.10, 0.20)	5.39e-4	1252.70	1.59e-4	1375.33	
(5000, 100, 0.16, 0.25)	2.90e-4	2347.41	1.74e-4	5369.76	

FPCA对比SVT(复杂情况)

TABLE III ${\it Comparison of FPCA and SVT on hard problems }$

Problems	FPG	CA	SVT		
(p, r, SR, FR)	rel.err.	time	rel.err.	time	
(40, 9, 0.5, 0.80)	1.21e-5	5.72	5.01e-1	3.05	
(100, 14, 0.3, 0.87)	1.32e-4	19.00	8.31e-1	316.90	
(1000, 20, 0.1, 0.40)	2.46e-5	116.15	_	_	
(1000, 30, 0.1, 0.59)	2.00e-3	128.30	_	_	
(1000, 50, 0.2, 0.49)	1.04e-5	183.67	_	_	

RBR

TABLE IV
Numerical results for the RBR method

	€ =	= 10-	-1	$\epsilon = 10^{-4}$			
seed	rel.err.	time	cycle	rel.err.	time	cycle	
	p=q=	:100; :	r=10; r	n=9500; SR=0.95			
68521	1.7e-6	0.5	8	3.3e-7	2.8	42	
56479	8.4e-7	0.5	8	3.0e-7	2.4	35	
115727	1.3e-6	0.5	8	3.4e-7	2.4	37	
27817	1.2e-6	0.5	8	3.2e-7	2.8	42	
9601	1.1e-6	0.6	8	3.1e-7	2.7	40	
	p=q=:	p=q=300; r=10; m=29500; SR=0.33					
68521	1.0e-4	3.3	9	2.0e-7	21.7	59	
56479	1.0e-4	3.3	9	2.0e-7	20.8	56	
115727	9.4e-5	3.3	9	2.0e-7	24.7	67	
27817	9.7e-5	3.3	9	2.0e-7	10.4	28	
9601	1.0e-4	3.3	9	1.9e-7	9.5	26	
	p=q=500; r=10; m=49500; SR=0.20						
68521	2.4e-4	9.1	9	1.7e-7	56.0	56	
56479	1.1e-4	8.9	9	1.6e-7	53.7	53	
115727	1.1e-4	9.4	9	1.6e-7	49.8	48	
27817	3.3e-4	9.1	9	1.6e-7	53.6	53	
9601	1.1e-4	9.9	9	1.6e-7	54.9	53	

Thank you!