

UNIVERSITY OF GHANA

(All rights reserved)

BSc. (ENG) MATERIALS SCIENCE AND ENGINEERING END OF SECOND SEMESTER EXAMINATIONS: 2016/2017 SCHOOL OF ENGINEERING SCIENCES

MATERIALS SCIENCE AND ENGINEERING DEPARTMENT MTEN 324: METAL JOINING TECHNOLOGY (2 CREDITS)

Answer ALL Questions

TIME ALLOWED: 2 HOURS

- 1. Define the following terms as applied to metal joining technology;
 - a. Autogenous weld
 - b. Boxing
 - c. Welding
 - d. Crater
 - e. Dilution
 - f. Fixture
 - g. Layer
 - h. Tack weld
 - i. Spot welding
 - j. Electrode bare

[20 marks]

- 2. Give brief description of the following welding processes;
 - a. Oxy-acetylene welding
 - b. Gas tungsten arc welding
 - c. Gas metal arc welding
 - d. Shielded metal arc welding
 - e. Plasma arc welding

[20 marks]

Examiner: D. S. Konadu

Page 1 of 4

3. Write out from A – K the missing parts of a weld bead in Figure 1.

Figure 1: The weld bead.

[11 marks]

4.

- a. Metallurgically, the weld metal zone is divided into six zones. Name and explain them. [9 marks]
- b. Distinguish between heterogenous and autogenous welds. [8 marks]
- c. State five (5) major differences between weld solidification and ingot solidification.

 [10 marks]
- d. The solidification front structures are shown in Figures 2 & 3. Identify and briefly explain your observations.

Examiner: D. S. Konadu

Figure 2: Solidification front structure of unstabilized ferritic stainless steel [top view] (× 550).

Figure 3: Solidification front structure of unstabilized ferritic stainless steel [top view] (× 550). [8 marks]

5. Calculate the temperature of the heat-affected zone (at a distance r = 15 mm from the centre of the weld) during the welding of copper alloy as a function of time for both the thick and thin plate solutions. Assume the welding parameters of 350A, 20V and a welding speed of 10 mm/s in both cases and a plate thickness of 4 mm for the thin plate

solution. Take the efficiency of the welding equipment to be 0.6. Fill in the table for the thick and thin plates shown in Table 1. Table 2 is the material properties.

Thick
$$T_p - T_o = \frac{q/v}{2\pi\rho t} \exp\left(-\frac{r^2}{4at}\right) \qquad \text{Eqn 1}$$
Thin
$$T_p - T_o = \frac{q/v}{d\sqrt{4\pi\lambda\rho ct}} \exp\left(-\frac{r^2}{4at}\right) \qquad \text{Eqn 2}$$
Thick:
$$T_p - T_o = \left(\frac{2}{\pi e}\right) \frac{q/v}{\rho c r^2} \qquad \text{Eqn 3}$$
Thin:
$$T_p - T_o = \sqrt{\frac{2}{\pi e}} \frac{q/v}{d\rho c^2 r} \qquad \text{Eqn 4}$$

Table 1: The time - temperature table for the thick and thin plate thickness

Time (s)	Temperature (K) [Thick]	Temperature (K) [Thin]	
0.5			
1			
2			
3			
4			
5			

Table 2: Material properties

Material	Volume thermal capacity ρc (Jm ⁻³ K ¹)	Thermal diffusivity a (m ² s ⁻¹)	Thermal Conductivity λ (Jm ⁻¹ s ⁻¹ K ¹)	Melting point (K)
Aluminium	2.7 x 10 ⁶	8.5 x10 ⁻⁵	229.0	933
Carbon steel	4.5 x 10 ⁶	9.1 x 10 ⁻⁶	41.0	1800
9% Ni steel	3.2 x 10 ⁶	1.1 x 10 ⁻⁵	35.2	1673
Austenitic steel	4.7 x 10 ⁶	5.3 x 10 ⁻⁶	24.9	1773
Inconel 600	3.9 x 10 ⁶	4.7 x 10 ⁻⁶	18.3	1673
Ti alloy	3.0 x 10 ⁶	9.0 x 10 ⁻⁶	27.0	1923
Copper	4.0 x 10 ⁶	9.6 x 10 ⁻⁵	384.0	1336
Monel 400	4.4 x 10 ⁶	8.0 x 10 ⁻⁶	35.2	1537

[20 marks] .