

<u>**DP – Grid World**</u>: Dynamic Programming. *Example obtained from Sutton & Barto, Reinforcement Learning: An Introduction, 2018*

The 5x5 grid in Fig. 1 represents an example of a Markov Decision Process (MDP).

1	6	11	16	21
2	7	12	17	22
3	8	13	18	23
4	9	14	19	24
5	10	15	20	25

JFig.1

The cells of the grid correspond to the states of the environment, i.e. $S = \{1,2,...,25\}$. At each cell, four actions are possible: north (1), east (2), south (3) and west (4), which deterministically cause the agent to move one cell in the respective direction on the grid, so $A = \{1,2,3,4\}$. Actions that would take the agent off the grid leave its location unchanged, but also result in a reward of -1. Other actions result in a reward of 0, except those that move the agent out of the special states 6 and 16. From state 6, all four actions yield a reward of +10 and take the agent to state 10. From state 16, all actions yield a reward of +5 and take the agent to state 18. See as example the transition graph for states 1, 2 and 6, in Fig. 2, where r(s,a,s') is the reward of state s, when action s is run and the immediate next state is s'.

Fig. 2

Use the provided Colab page to solve next questions, and note that in Python we enumerate states from 0 to 24 instead of 1 to 25:

Part I: MARKOV DECISION PROCESS

- a) Initiate the variable p(s'|s,a) and the corresponding reward r(s,a,s') by giving values for s,s'=1,...,25 and a=1,...,4.
- b) If π is the equiprobable random policy, obtain the reward vector \mathbf{R}^{π} and the probability matrix \mathbf{P}^{π} shown in the Bellman expectation equation system. Draw in a square image the matrix \mathbf{P}^{π} or p(s'|s) taking as axis the states s (vertical axe) and s' (horizontal axe).
- c) Solve the Bellman equation with a discount factor γ =0.9 and draw in a square figure (as Fig. 1) the value function of each state s: v_{π} (s).

Part II: DYNAMIC PROGRAMING:

- d) Program the **Iterative Policy Evaluation** procedure to iteratively compute v_{π} (s), for s=1,...,25. Compare the result with the one obtained in question c).
- e) Program the **Policy Iteration Improvement procedure** to iteratively compute an optimum deterministic policy A(s), for s=1,...,25, i.e. a policy such as $\pi(a|s)=1$ if A(s)=a and $\pi(a'|s)=0$ for a'<>a. Draw in square figures (as Fig. 1) the value function of each state s: $v_A(s)$ and the optimum policy A(s). You can make use of the iterative policy_evaluation function programmed in d). Add comments on the number of iterations, the θ value used. Compare $v_A(s)$ with $v_\pi(s)$ obtained in question c).
- f) Program the **Value Iteration Improvement procedure** to iteratively compute an optimum deterministic policy A(s), for s=1,...,25, i.e. a policy such as $\pi(a|s)=1$ if A(s)=a and $\pi(a'|s)=0$ for a'<>a. Draw in square figures (as Fig. 1) the value function of each state s: $v_A(s)$ and the optimum policy A(s). Add comments on the number of iterations, the θ value used. Compare $v_A(s)$ with $v_\pi(s)$ obtained in questions c) and e).