Intégrales sur un intervalle quelconque - Corrigé

Exercice 1 (Calcul direct)

(a) La fonction $t \mapsto t^2 e^{-t^3}$ est continue sur $[0, +\infty[$. Pour tout $x \ge 0$,

$$\int_0^x t^2 e^{-t^3} dt = \left[-\frac{1}{3} e^{-t^3} \right]_0^x = \frac{1}{3} - \frac{1}{3} e^{-x^2} \xrightarrow[x \to +\infty]{} \frac{1}{3}.$$

Ceci montre que l'intégrale converge et que $\int_0^{+\infty} t^2 e^{-t^3} dt = \frac{1}{3}$.

(b) La fonction $x \mapsto \frac{1}{\sqrt{x}}$ est continue sur]0,2]. Pour tout a > 0,

$$\int_{a}^{2} \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x} \right]_{a}^{2} = 2\sqrt{2} - 2\sqrt{a} \xrightarrow[a \to 0]{} 2\sqrt{2}.$$

Ceci montre que l'intégrale converge et que $\int_0^2 \frac{1}{\sqrt{x}} dx = 2\sqrt{2}$.

(c) La fonction $x \mapsto \frac{1}{1+x^2} dx$ est continue sur $[1, +\infty[$. Pour tout $y \ge 1$,

$$\int_1^y \frac{1}{1+x^2} dx = \left[\arctan(x)\right]_1^y = \arctan(y) - \frac{\pi}{4} \xrightarrow[y \to +\infty]{} \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

Ceci montre que l'intégrale converge et que $\int_1^{+\infty} \frac{1}{1+x^2} dx = \frac{\pi}{4}$

Exercice 2 (Exploiter la parité)

1. Pour tout $x \in \mathbb{R}$, $f(-x) = \frac{e^{-x}}{(1+e^{-x})^2} \times \frac{(e^x)^2}{(e^x)^2} = \frac{e^x}{((1+e^{-x})e^x)^2} = \frac{e^x}{(e^x+1)^2} = f(x)$. f est donc continue et paire sur \mathbb{R} .

2. Par parité, la convergente de l'intégrale "doublement impropre" $\int_{-\infty}^{+\infty} f(x)dx$ se ramène à celle de $\int_{0}^{+\infty} f(x)dx$. Pour tout $y \ge 0$,

$$\int_0^y \frac{e^x}{(1+e^x)^2} dx = \int_0^y e^x (1+e^x)^{-2} dx = \left[-(1+e^x)^{-1} \right]_0^y = -\frac{1}{1+e^y} + \frac{1}{2} \xrightarrow{y \to +\infty} \frac{1}{2}$$

On en déduit que $\int_0^{+\infty} f(x)dx = \frac{1}{2}$. Ensuite, par parité, $\int_{-\infty}^{+\infty} f(x)dx = 2\int_0^{+\infty} f(x)dx = 1$.

Exercice 3 (Intégration par parties)

RAPPEL : on effectue une intégration par partie seulement dans une intégrale "classique", c'est à dire l'intégrale d'une fonction continue sur un segment.

(a) La fonction $t \mapsto \frac{\ln(t)}{t^n}$ est continue sur $[1, +\infty[$. Pour tout $x \ge 1$, par IPP:

$$\begin{split} \int_{1}^{x} \ln(t) \times t^{-n} dt &= \left[\ln(t) \frac{t^{-n+1}}{-n+1} \right]_{1}^{x} - \int_{1}^{x} \frac{1}{t} \frac{t^{-n+1}}{-n+1} dt = \ln(x) \frac{x^{-n+1}}{-n+1} - \frac{1}{-n+1} \int_{1}^{x} t^{-n} dt \\ &= \ln(x) \frac{x^{-n+1}}{-n+1} - \frac{1}{-n+1} \left[\frac{t^{-n+1}}{-n+1} \right]_{1}^{x} = \ln(x) \frac{x^{-n+1}}{-n+1} - \frac{1}{-n+1} \times \frac{x^{-n+1}-1}{-n+1} \\ &= -\frac{1}{n-1} \frac{\ln(x)}{x^{n-1}} + \frac{1}{(n-1)^{2}} \left(1 - \frac{1}{x^{n-1}} \right). \end{split}$$

Puisque $n \ge 2$, on a n-1>0. Par croissance comparées usuelles, on en déduit que

$$\int_{1}^{+\infty} \frac{\ln(t)}{t^{n}} dt = \lim_{x \to +\infty} \int_{1}^{x} \ln(t) \times t^{-n} dt = 0 + \frac{1}{(n-1)^{2}} (1-0) = \frac{1}{(n-1)^{2}}.$$

(b) La fonction $t \mapsto e^{-t/2} \cos(t)$ est continue sur $[0, +\infty[$.

Pour tout $x \ge 0$, par IPP (on dérive l'exponentielle, on "primitive" le cosinus) :

$$\int_0^x e^{-t/2} \cos(t) dt = \left[e^{-t/2} \sin(t) \right]_0^x + \frac{1}{2} \int_0^x e^{-t/2} \sin(t) dt = e^{-x/2} \sin(x) + \frac{1}{2} \int_0^x e^{-t/2} \sin(t) dt.$$

On calcule cette nouvelle intégrale avec une autre IPP (on dérive l'exponentielle, on "primitive" le sinus) :

$$\int_0^x e^{-t/2} \sin(t) dt = \left[-e^{-t/2} \cos(t) \right]_0^x - \frac{1}{2} \int_0^x e^{-t/2} \cos(t) dt = 1 - e^{-x/2} \cos(x) - \frac{1}{2} \int_0^x e^{-t/2} \cos(t) dt.$$

En remplaçant dans l'égalité de départ, on obtient ainsi :

$$\int_0^x e^{-t/2} \cos(t) dt = e^{-x/2} \sin(x) + \frac{1}{2} \left(1 - e^{-x/2} \cos(x) - \frac{1}{2} \int_0^x e^{-t/2} \cos(t) dt \right)$$

c'est à dire

$$\int_0^x e^{-t/2} \cos(t) dt = e^{-x/2} \sin(x) + \frac{1 - e^{-x/2} \cos(x)}{2} - \frac{1}{4} \int_0^x e^{-t/2} \cos(t) dt.$$

Autrement dit, en notant $I = \int_0^x e^{-t/2} \cos(t) dt$, on a

$$I = e^{-x/2}\sin(x) + \frac{1 - e^{-x/2}\cos(x)}{2} - \frac{1}{4}I$$

donc

$$(1 + \frac{1}{4})I = e^{-x/2}\sin(x) + \frac{1 - e^{-x/2}\cos(x)}{2}$$

donc pour finir

$$\int_0^x e^{-t/2} \cos(t) dt = I = \frac{4}{5} \left(e^{-x/2} \sin(x) + \frac{1 - e^{-x/2} \cos(x)}{2} \right).$$

Pour conclure, puisque évidemment $\lim_{x\to +\infty} e^{-x/2} \sin(x) = \lim_{x\to +\infty} e^{-x/2} \cos(x) = 0$, on en déduit

$$\int_0^{+\infty} e^{-t/2} \cos(t) dt = \lim_{x \to +\infty} \int_0^x e^{-t/2} \cos(t) dt = \frac{4}{5} \times \frac{1}{2} = \frac{2}{5}.$$

A l'aide d'intégrations par parties, montrer que les intégrales convergent et calculer leur valeur.

(a)
$$\int_{1}^{+\infty} \frac{\ln(t)}{t^n} dt$$
 (pour $n \ge 2$)

(b)
$$\int_0^{+\infty} e^{-t/2} \cos(t) dt$$
 (réaliser 2 IPP)

Exercice 4 (Changement de variable)

(a) La fonction ln réalise une bijection C^1 strictement croissante de $[1, +\infty[$ dans $[0, +\infty[$.

En posant $u = \ln(t)$ (et donc $du = \frac{1}{t}dt$): $\int_{1}^{+\infty} \frac{dt}{t(1+\ln(t)^{2})} = \int_{0}^{+\infty} \frac{du}{1+u^{2}}$ (sous réserve de convergence).

$$\operatorname{Or} \int_0^{+\infty} \frac{du}{1+u^2} = \lim_{x \to +\infty} \int_0^x \frac{du}{1+u^2} = \lim_{x \to +\infty} \left[\arctan(u)\right]_0^x = \lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2}.$$

Ainsi, l'intégrale est convergente et $\int_{1}^{+\infty} \frac{dt}{t(1+\ln(t)^2)} = \frac{\pi}{2}$.

(b) La fonction $t \mapsto \frac{1}{t}$ réalise une bijection C^1 strictement décroissante de $[1, +\infty[$ dans]0, 1].

Posons, dans l'intégrale $u = \frac{1}{t}$ (et donc $du = -\frac{1}{t^2}dt$). On note que :

$$\int_{1}^{+\infty} \frac{1}{t\sqrt{t^2 - t}} dt = \int_{1}^{+\infty} \frac{1}{t\sqrt{t^2(1 - \frac{1}{t})}} dt = \int_{1}^{+\infty} \frac{1}{t \times t\sqrt{1 - \frac{1}{t}}} dt = \int_{1}^{+\infty} \frac{1}{\sqrt{1 - \frac{1}{t}}} \frac{1}{t^2} dt$$

Ainsi, sous reserve de convergence, le changement de variable $u=\frac{1}{t}$ donne :

$$\int_{1}^{+\infty} \frac{1}{t\sqrt{t^{2}-t}} dt = \int_{1}^{0} \frac{1}{\sqrt{1-u}} (-du) = \int_{0}^{1} \frac{1}{\sqrt{1-u}} du.$$

Etablissons la convergence de cette nouvelle intégrale.

La fonction $u \mapsto \frac{1}{\sqrt{1-u}}$ est continue sur [0,1[. Pour tout $x \in [0,1[$,

$$\int_0^x \frac{1}{\sqrt{1-u}} du = \left[-2\sqrt{1-u} \right]_0^x = -2\sqrt{1-x} + 2 \xrightarrow[x \to 1]{} 2.$$

Pour conclure, l'intégrale est bien convergente et $\int_1^{+\infty} \frac{1}{t\sqrt{t^2-t}} dt = 2$.

(c) On utilise une transformation classique de trigonométrie : en divisant l'égalité $\cos^2 + \sin^2 = 1$ par \cos^2 ,

$$1 + \tan^2 = \frac{1}{\cos^2}$$
 donc $\cos^2 = \frac{1}{1 + \tan^2}$.

Ainsi on peut réécrire l'intégrande :

$$\frac{dt}{1+\cos^2(t)} = \frac{dt}{1+\frac{1}{1+\tan^2(t)}} = \frac{(1+\tan^2(t))dt}{1+\tan^2(t)+1} = \frac{(1+\tan^2(t))dt}{2+\tan^2(t)}.$$

La fonction tan réalise une bijection C^1 strictement croissante de $[0, \frac{\pi}{2}[$ dans $[0, +\infty[$. En posant $u = \tan(t)$ (et donc $du = \tan'(t)dt = (1 + \tan^2(t))dt$) :

$$\int_0^{\pi/2} \frac{dt}{1 + \cos^2(t)} = \int_0^{\pi/2} \frac{(1 + \tan^2(t))dt}{2 + \tan^2(t)} = \int_0^{+\infty} \frac{du}{2 + u^2}.$$

Il reste à établir la convergence de cette intégrale. La fonction $u\mapsto \frac{1}{2+u^2}$ est continue sur $[0,+\infty[$. Pour tout $x\geqslant 0$, (on cherche à se ramène à la forme " $\frac{1}{1+t^2}$ "):

$$\int_0^x \frac{du}{2+u^2} = \frac{1}{2} \int_0^x \frac{du}{1+\frac{u^2}{2}} = \frac{1}{2} \int_0^x \frac{du}{1+\left(\frac{u}{\sqrt{2}}\right)^2}$$

En posant le changement de variable affine $v=\frac{u}{\sqrt{2}}$ (donc $dv=\frac{1}{\sqrt{2}}du$), on se ramène à :

$$\int_0^x \frac{du}{2+u^2} = \frac{1}{2} \int_0^x \frac{\sqrt{2}dv}{1+v^2} = \frac{\sqrt{2}}{2} \int_0^x \frac{dv}{1+v^2} = \frac{\sqrt{2}}{2} \left[\arctan(v)\right]_0^x = \frac{\sqrt{2}}{2} \arctan(x).$$

$$\text{Ainsi, } \int_0^{+\infty} \frac{du}{2+u^2} = \lim_{x \to +\infty} \frac{\sqrt{2}}{2} \arctan(x) = \frac{\sqrt{2}}{2} \times \frac{\pi}{2} = \frac{\pi}{2\sqrt{2}}.$$

Pour conclure, l'intégrale est convergente et $\int_0^{\pi/2} \frac{dt}{1 + \cos^2(t)} = \frac{\pi}{2\sqrt{2}}$.

Exercice 5 (Théorèmes de comparaison)

- (a) La fonction $t \mapsto \frac{\sin(t)}{t}$ est continue et positive sur]0,1] (problème éventuel en 0).
- Méthode 1 : la fonction est prolongeable par continuité en 0 (car on sait que $\lim_{t\to 0} \frac{\sin(t)}{t} = 1$), il s'agit donc d'une intégrale "faussement impropre" en 0 : elle est convergente.
- Méthode 2 : on a $\frac{\sin(t)}{t} \sim 1$ et l'intégrale $\int_0^1 1 dt$ est évidemment convergente, donc l'intégrale $\int_0^1 \frac{\sin(t)}{t} dt$ est convergente.
- (b) La fonction $x \mapsto \frac{1}{e^{2x}-1}$ est continue et positive sur]0,2] (problème éventuel en 0).

Avec l'équivalent usuel $e^y - 1 \underset{y \to 0}{\sim} y$, on a : $\frac{1}{e^{2x} - 1} \underset{x \to 0}{\sim} \frac{1}{2x}$.

On sait que l'intégrale $\int_0^2 \frac{1}{2x} dx$ est divergente (intégrale de Riemann), donc l'intégrale $\int_0^2 \frac{1}{e^{2x} - 1} dx$ diverge.

(c) La fonction $x \mapsto \frac{1}{e^{2x} - 1}$ est continue et positive sur $[1, +\infty[$ (problème éventuel en $+\infty)$.

On a $\frac{1}{e^{2x}-1} \sim \frac{1}{e^{2x}} = e^{-2x}$ et on sait que l'intégrale $\int_{1}^{+\infty} e^{-2x} dx$ est convergente (intégrale exponentielle).

Ainsi, l'intégrale $\int_{1}^{+\infty} \frac{1}{e^{2x}-1} dx$ converge. (d) L'intégrale diverge car 3>1 (intégrale de Riemann décalée : c'est du cours!) Autrement, par changement de variable, on voit qu'on peut la ramener à une intégrale de $\frac{1}{t^3}$ au voisinage de 0... (e) La fonction $t \mapsto e^{1/t}$ est continue et positive sur $[1, +\infty[$ (problème éventuel en $+\infty)$). Or on a $\lim_{t\to +\infty} e^{1/t} = e^0 = 1$, c'est à dire que $e^{1/t} \sim 1$. L'intégrale $\int_1^{+\infty} 1 dt$ est évidemment divergente, donc $\int_1^{+\infty} e^{1/t} dt$ diverge. (f) La fonction $t \mapsto \frac{\ln(t)}{t^2}$ est continue sur $]0, +\infty[$ (problèmes éventuels en 0 et en $+\infty$). On étudie donc (par exemple) la convergence des deux "morceaux" $\int_0^1 \frac{\ln(t)}{t^2} dt$ et $\int_1^{+\infty} \frac{\ln(t)}{t^2} dt$ séparément. • La fonction $t \mapsto \frac{\ln(t)}{t^2}$ est négative sur]0,1], étudions donc plutôt $-\int_0^1 \frac{\ln(t)}{t^2} dt = \int_0^1 \underbrace{-\frac{\ln(t)}{t^2}} dt$. Puisque $\lim_{t\to 0} (-\ln(t)) = +\infty$, il est clair que $\frac{1}{t^2} = o\left(-\frac{\ln(t)}{t^2}\right)$. Puisque l'intégrale $\int_0^1 \frac{1}{t^2} dt$ est déjà divergente, on en déduit que $\int_0^1 \frac{\ln(t)}{t^2} dt$ diverge! On peut donc arrêter ici l'étude : on conclut tout de suite que l'intégrale $\int_0^{+\infty} \frac{\ln(t)}{t^2} dt$ est divergente. Pour s'entrainer, voyons tout de même ce que l'on pourrait dire du deuxième morceau : • La fonction $t \mapsto \frac{\ln(t)}{t^2}$ est positive sur $[1, +\infty[$. On a facilement $\frac{\ln(t)}{t^2} = o\left(\frac{1}{t^{3/2}}\right)$. L'intégrale $\int_{1}^{+\infty} \frac{1}{t^{3/2}} dt$ est convergente (car 3/2 > 1) donc $\int_{1}^{+\infty} \frac{\ln(t)}{t^2} dt$ converge. (g) La fonction $t \mapsto t \sin\left(\frac{1}{t^3}\right)$ est continue sur $]0, +\infty[$ (problèmes éventuels en 0 et en $+\infty$). En fait, cette fonction est clairement prolongeable par continuité en 0 (en posant la valeur 0) Il n'y a donc pas de problème au voisinage de 0: l'intégrale $\int_0^1 t \sin\left(\frac{1}{t^3}\right) dt$ est convergente. Etudions donc la convergence de $\int_{1}^{+\infty} t \sin\left(\frac{1}{t^3}\right) dt$. L'intégrande est ici positive et avec l'équivalent $\sin(y) \underset{y \to 0}{\sim} y$, on a : $t \sin\left(\frac{1}{t^3}\right) \underset{t \to +\infty}{\sim} t \times \frac{1}{t^3} = \frac{1}{t^2}$. L'intégrale $\int_{1}^{+\infty} \frac{1}{t^2} dt$ est convergente, donc $\int_{1}^{+\infty} t \sin\left(\frac{1}{t^3}\right) dt$ également. Pour conclure, l'intégrale $\int_{0}^{+\infty} t \sin\left(\frac{1}{t^3}\right) dt$ est convergente. (h) La fonction $x \mapsto e^{-\sqrt{x}}$ est continue et positive sur $[0, +\infty[$ (problème éventuel en $+\infty)$. Or on a évidenment (par exemple) $e^{-\sqrt{x}} = o\left(\frac{1}{x^2}\right)$. Puisque $\int_{1}^{+\infty} \frac{1}{x^2} dx$ est convergente, on en déduit que $\int_{1}^{+\infty} e^{-\sqrt{x}} dx$ est convergente. Evidemment, $\int_0^1 e^{-\sqrt{x}} dx$ est convergente, puisqu'il s'agit de l'intégrale d'une fonction continue sur une segment ("vraie" intégrale). Pour conclure, l'intégrale $\int_0^{+\infty} e^{-\sqrt{x}} dx$ est convergente.

(i) La fonction $t\mapsto \frac{\sqrt{t}}{\ln(1-t)}$ est continue sur]0,1[(problèmes éventuels en 0 et en 1). En fait, cette fonction est prolongeable par continuité en 1 en posant la valeur 0. L'intégrale $\int_{1/2}^1 \frac{\sqrt{t}}{\ln(1-t)} dt$ est ainsi "faussement impropre" et donc convergente.

Etudions la convergence de $\int_0^{1/2} \frac{\sqrt{t}}{\ln(1-t)} dt$.

L'intégrande est ici négative, on étudie donc plutôt
$$-\int_0^{1/2} \frac{\sqrt{t}}{\ln(1-t)} dt = \int_0^{1/2} \underbrace{\frac{-\sqrt{t}}{\ln(1-t)}} dt.$$

Avec l'équivalent usuel $\ln(1+y) \underset{y\to 0}{\sim} y$, on a : $\frac{-\sqrt{t}}{\ln(1-t)} \underset{t\to 0}{\sim} -\frac{\sqrt{t}}{-t} = \frac{1}{\sqrt{t}}$.

L'intégrale de Riemann $\int_0^{1/2} \frac{1}{\sqrt{t}} dt = \int_0^{1/2} \frac{1}{t^{1/2}} dt$ est convergente (car 1/2 < 1), donc $\int_0^{1/2} \frac{\sqrt{t}}{\ln(1-t)} dt$ également. Pour conclure, l'intégrale $\int_0^1 \frac{\sqrt{t}}{\ln(1-t)} dt$ est convergente.

(j) La fonction $t \mapsto \frac{\exp(\sin(t))}{t}$ est continue et positive sur $[1, +\infty[$ (problème éventuel en $+\infty)$).

Or, pour tout $t \ge 1$, on a : $\sin(t) \ge -1$ donc $\exp(\sin(t)) \ge e^{-1}$ donc $\frac{\exp(\sin(t))}{t} \ge \frac{e^{-1}}{t}$.

L'intégrale $\int_{1}^{+\infty} \frac{e^{-1}}{t} dt$ est divergente (car $\int_{1}^{+\infty} \frac{1}{t} dt$ l'est).

On conclut que l'intégrale $\int_1^{+\infty} \frac{\exp(\sin(t))}{t} dt$ est divergente.

Exercice 6 (Moments gaussiens)

Soit $n \in \mathbb{N}$.

La fonction $t \mapsto t^n e^{-t^2}$ est continue et paire/impaire (en fonction de la parité de n) sur \mathbb{R} . La convergence de l'intégrale $\int_{-\infty}^{+\infty} t^n e^{-t^2} dt$ se ramène donc plus simplement à celle de $\int_{0}^{+\infty} t^n e^{-t^2} dt$.

Par croissances comparées usuelles, on a par exemple (vérifiez-le!) $t^n e^{-t^2} = o\left(\frac{1}{t^2}\right)$

ou même, si on préfère, $t^n e^{-t^2} = o(e^{-t})$.

Ceci garantit, par théorème de comparaison, la convergence de l'intégrale.

Exercice 7 (Une intégrale de Bertrand)

1. La fonction $f: t \mapsto \frac{1}{t |\ln(t)|^{\beta}}$ est définie et continue sur $\mathbb{R}_+^* \setminus \{1\} =]0, 1[\cup]1, +\infty[$.

Sur l'intervalle]0,1[, on a $f(t)=\frac{1}{t}|\ln(t)|^{-\beta}=\frac{1}{t}(-\ln(t))^{\beta}$. Un primitive de f sur]0,1[est donc :

$$F: t \mapsto -\frac{(-\ln(t))^{-\beta+1}}{-\beta+1} = \frac{1}{\beta-1} \frac{1}{|\ln(t)|^{\beta-1}}.$$

Sur l'intervalle $]1, +\infty[$, on a $f(t) = \frac{1}{t} \ln(t)^{-\beta}$. Une primitive de f sur $]1, +\infty[$ est donc :

$$G: t \mapsto \frac{(\ln(t))^{-\beta+1}}{-\beta+1} = -\frac{1}{\beta-1} \frac{1}{|\ln(t)|^{\beta-1}}.$$

2. (a) Pour tout $x \in]0, 1/2],$

$$\int_{x}^{1/2} \frac{1}{t|\ln(t)|^{\beta}} dt = \left[F(t) \right]_{x}^{1/2} = F(1/2) - F(x).$$

On constate facilement (avec la définition de F) que :

$$\lim_{x \to 0^+} F(x) = \begin{cases} 0 & \text{si } \beta - 1 > 0 \\ -\infty & \text{si } \beta - 1 < 0 \end{cases}$$

Ainsi, l'intégrale $\int_0^{1/2} \frac{1}{t|\ln(t)|^{\beta}} dt$ converge si et seulement si $\beta > 1$.

(b) Pour tout $x \in]1, 2],$

$$\int_{x}^{2} \frac{1}{t |\ln(t)|^{\beta}} dt = \left[G(t) \right]_{x}^{2} = G(2) - G(x).$$

On constate facilement (avec la définition de G) que :

$$\lim_{x \to 1^+} G(x) = \left\{ \begin{array}{ll} -\infty & \text{ si } \beta - 1 > 0 \\ 0 & \text{ si } \beta - 1 < 0 \end{array} \right.$$

Ainsi, l'intégrale $\int_{1}^{2} \frac{1}{t|\ln(t)|^{\beta}} dt$ converge si et seulement si $\beta < 1$.

(c) Pour tout $x \in [2, +\infty[$,

$$\int_{2}^{x} \frac{1}{t|\ln(t)|^{\beta}} dt = \left[G(t) \right]_{2}^{x} = G(x) - G(2).$$

On constate facilement (avec la définition de G) que :

$$\lim_{x \to +\infty} G(x) = \begin{cases} 0 & \text{si } \beta - 1 > 0 \\ +\infty & \text{si } \beta - 1 < 0 \end{cases}$$

Ainsi, l'intégrale $\int_2^{+\infty} \frac{1}{t|\ln(t)|^{\beta}} dt$ converge si et seulement si $\beta>1.$

Exercice 8 (Moments exponentiels)

1. Soit $n \in \mathbb{N}$. La fonction $t \mapsto t^n e^{-t}$ est continue et positive sur $[0, +\infty[$

De plus, on a par exemple $t^n e^{-t} = e^{-t/2}$ $\left(\operatorname{car} \frac{t^n e^{-t}}{e^{-t/2}} = t^n e^{-t/2} \xrightarrow[t \to +\infty]{} 0.\right)$

Puisque $\int_0^{+\infty} e^{-t/2} dt$ est convergente, on en déduit que $\int_0^{+\infty} t^n e^{-t} dt$ est également convergente.

2.(a) Soit $n \in \mathbb{N}$. Pour tout x > 0, on applique une IPP:

$$\int_0^x t^{n+1}e^{-t}dt = \left[-t^{n+1}e^{-t}\right]_0^x - \int_0^x (n+1)t^n \times (-e^{-t})dt = -x^{n+1}e^{-x} + (n+1)\int_0^x t^n e^{-t}dt.$$

En passant à la limite quand $x \to +\infty$, on obtient $\int_0^{+\infty} t^{n+1} e^{-t} dt = 0 + (n+1) \int_0^{+\infty} t^n e^{-t} dt$, c'est à dire $M_{n+1} = (n+1)M_n$.

(b) On a $\forall n \in \mathbb{N}, M_{n+1} = (n+1)M_n$.

Par récurrence immédiate, on obtient : $\forall n \in \mathbb{N}, M_n = n! \times M_0$.

On calcule: $M_0 = \int_0^{+\infty} e^{-t} dt = \lim_{x \to +\infty} \int_0^x e^{-t} dt = \lim_{x \to +\infty} (1 - e^{-x}) = 1.$

Ainsi, pour finir : $\forall n \in \mathbb{N}, M_n = n!$.

Exercice 9 (Reste d'une intégrale convergente)

1. (a) Soit x > 0. La fonction $t \mapsto \frac{e^{-t}}{t}$ est continue et positive sur $[x, +\infty[$.

De plus, on a par exemple $\frac{e^{-t}}{t} \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right)$.

Puisque l'intégrale $\int_x^{+\infty} \frac{1}{t^2} dt$ est convergente, on en déduit que $\int_x^{+\infty} \frac{e^{-t}}{t} dt$ est convergente.

Ainsi, f(x) est bien défini pour tout x > 0.

(b) Introduisons G une primitive de $t \mapsto \frac{e^{-t}}{t}$ sur $]0, +\infty[$.

Pour tout x > 0, on a :

$$f(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt = \lim_{y \to +\infty} \int_{x}^{y} \frac{e^{-t}}{t} dt = \lim_{y \to +\infty} (G(y) - G(x)) = \lim_{y \to +\infty} G(y) - G(x).$$

(On sait que $\ell = \lim_{y \to +\infty} G(y) \in \mathbb{R}$ existe puisque l'intégrale est convergente).

Puisque G est une primitive de la fonction continue $t \mapsto \frac{e^{-t}}{t}$, G est de classe C^1 sur \mathbb{R}_+^* . On en déduit que f est de classe C^1 sur \mathbb{R}_+^* et :

$$\forall x > 0, \ f'(x) = \frac{d}{dx} (\ell - G(x)) = -G'(x) = -\frac{e^{-x}}{x}.$$

2. Avec notre expression précédente, $\forall x > 0, \ f(x) = \lim_{y \to +\infty} G(y) - G(x).$

Ainsi, $\lim_{x \to +\infty} f(x) = \lim_{y \to +\infty} G(y) - \lim_{x \to +\infty} G(x) = \ell - \ell = 0.$

3. Pour tout $x \in]0,1]$,

$$f(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt = \int_{x}^{1} \frac{e^{-t}}{t} dt + \underbrace{\int_{1}^{+\infty} \frac{e^{-t}}{t} dt}_{\text{constante}}.$$

Puisque la fonction $t \mapsto \frac{e^{-t}}{t}$ est positive, (cf. Théorème 3 du cours, nature de l'intégrale d'une fonction positive)

$$\lim_{x\to 0^+} \int_x^1 \frac{e^{-t}}{t} dt \in \mathbb{R} \quad \text{si l'intégrale} \quad \int_0^1 \frac{e^{-t}}{t} dt \quad \text{converge}, \qquad \lim_{x\to 0^+} \int_x^1 \frac{e^{-t}}{t} dt = +\infty \quad \text{sinon}.$$

Or ici, l'intégrale $\int_0^1 \frac{e^{-t}}{t} dt$ est divergente car $\frac{e^{-t}}{t} \sim \frac{1}{t}$ et $\int_0^1 \frac{1}{t} dt$ diverge!

Ainsi, on a $\lim_{x\to 0^+} \int_{-t}^{1} \frac{e^{-t}}{t} dt = +\infty$, et donc $\lim_{x\to 0^+} f(x) = +\infty$.

Si cela ne vous convainct pas, voici une autre façon (plus détaillée) de dire la même chose : On note que la fonction f est décroissante sur $]0, +\infty[$.

(Cela se voit avec la dérivée obtenue en 1.(b),

ou bien en notant simplement que pour tout $x \leq y$, $f(x) - f(y) = \int_{0}^{y} \frac{e^{-t}}{t} dt \geq 0$

Ainsi, d'après le théorème de la limite monotone (pour les fonctions!), on sait déjà que $\lim_{x\to 0^+} f(x)$ existe.

Précisément : on a forcément $\lim_{x\to 0^+} f(x) \in \mathbb{R}$ ou alors $\lim_{x\to 0^+} f(x) = +\infty$. (Dessiner le graphe d'une fonction décroissante sur $]0, +\infty[$ pour s'en convaincre...)

Rappelons encore une fois l'expression $\forall x > 0, \ f(x) = \lim_{y \to +\infty} G(y) - G(x).$

Si jamais la limite $\lim_{x\to 0^+} f(x)$ était finie, la limite $\lim_{x\to 0^+} G(x)$ serait finie.

Autrement dit, l'intégrale $\int_{0}^{1} \frac{e^{-t}}{dt}$ serait convergente.

$$\left(\text{ Car alors } \int_0^1 \frac{e^{-t}}{t} dt = \lim_{x \to 0^+} \int_x^1 \frac{e^{-t}}{t} dt = \lim_{x \to 0^+} (G(1) - G(x)) = G(1) - \lim_{x \to 0^+} G(x)\right)$$

Or cette intégrale n'est pas convergente, car $\frac{e^{-t}}{t} \sim \frac{1}{t}$ et $\int_0^1 \frac{1}{t} dt$ diverge!

Ainsi, on a nécessairement $\lim_{x \to +\infty} f(x) = +\infty$.

Exercice 10 (Intégrale du sinus cardinal)

1. (a) On intègre par partie (en "primitivant" $\sin(t)$ et dérivant $\frac{1}{t}$): pour tout $x \ge 1$,

$$\int_{1}^{x} \frac{\sin(t)}{t} dt = \left[-\cos(t) \frac{1}{t} \right]_{1}^{x} - \int_{1}^{x} -\cos(t) \times \left(-\frac{1}{t^{2}} \right) dt = \cos(1) - \frac{\cos(x)}{x} - \int_{1}^{x} \frac{\cos(t)}{t^{2}} dt$$

(b) On doit montrer que lorsque $x \to +\infty$, $\int_{1}^{x} \frac{\sin(t)}{t} dt$ converge vers un réel.

On a évidemment $\lim_{x \to +\infty} (\cos(1) - \frac{\cos(x)}{r}) = \cos(1)$.

Il suffit donc de montrer que $\int_{1}^{x} \frac{\cos(t)}{t^2} dt$ converge vers un réel, c'est à dire que l'intégrale $\int_{1}^{+\infty} \frac{\cos(t)}{t^2} dt$ est convergente. Or, pour tout $t \ge 1$, $\left| \frac{\cos(t)}{t^2} \right| \le \frac{1}{t^2}$ et l'intégrale $\int_1^{+\infty} \frac{1}{t^2} dt$ est convergente.

On en déduit que $\int_{t}^{+\infty} \frac{\cos(t)}{t^2} dt$ est absolument convergente et donc convergente.

Pour conclure, on en déduit que $\int_{\tau}^{+\infty} \frac{\sin(t)}{t} dt$ est convergente!

2. (a) On applique le même argument avec une intégration par parties : pour tout $x \ge 1$,

$$\int_{1}^{x} \frac{\cos(2t)}{2t} dt = \left[\frac{1}{2} \sin(2t) \times \frac{1}{2t} \right]_{1}^{x} - \int_{1}^{x} \frac{1}{2} \sin(2t) \times -\frac{1}{2t^{2}} dt = \frac{\sin(2x)}{4x} - \frac{\sin(2)}{4} + \frac{1}{4} \int_{1}^{x} \frac{\sin(2t)}{t^{2}} dt.$$

A nouveau, puisque $\left|\frac{\sin(2t)}{t^2}\right| \leqslant \frac{1}{t^2}$, l'intégrale $\int_{1}^{+\infty} \frac{\sin(2t)}{t} dt$ est convergente.

On en déduit que $\lim_{x\to +\infty} \int_{1}^{x} \frac{\cos(2t)}{2t} dt$ existe et est finie, c'est à dire que l'intégrale $\int_{1}^{+\infty} \frac{\cos(2t)}{2t} dt$ est convergente.

(b) Soit $t \in \mathbb{R}$. Avec les formules trigonométriques d'additivité :

$$\cos(2t) = \cos(t+t) = \cos(t)^2 - \sin(t)^2 = (1 - \sin(t)^2) - \sin(t)^2 = 1 - 2\sin(t)^2.$$

Ainsi $1 - \cos(2t) = 2\sin(t)^2$ et donc $\frac{1}{2}(1 - \cos(2t)) = \sin(t)^2$. Puisque $|\sin(t)| \in [0, 1]$, on a $\sin(t)^2 = |\sin(t)|^2 \le |\sin(t)|$ (car $\forall x \in [0, 1], x^2 \le x$)

Ainsi, on a bien $\frac{1}{2}(1 - \cos(2t)) = \sin(t)^2 \le |\sin(t)|$.

(c) Pour tout $x \ge 1$, puisque $|\sin(t)| \ge \frac{1}{2}(1 - \cos(2t))$,

$$\int_{1}^{x} \left| \frac{\sin(t)}{t} \right| dt = \int_{1}^{x} \frac{|\sin(t)|}{t} dt \geqslant \int_{1}^{x} \frac{1 - \cos(2t)}{2t} dt = \int_{1}^{x} \frac{1}{2t} dt - \int_{1}^{x} \frac{\cos(2t)}{2t} dt.$$

On a vu en 2.(a) que l'intégrale $\int_{1}^{+\infty} \frac{\cos(2t)}{2t} dt$ est convergente, c'est à dire $\lim_{x \to +\infty} \int_{1}^{x} \frac{\cos(2t)}{2t} dt \in \mathbb{R}$. Par ailleurs, puisque l'intégrale $\int_{1}^{+\infty} \frac{1}{2t} dt$ est divergente, on a $\lim_{x \to +\infty} \int_{1}^{x} \frac{1}{2t} dt = +\infty$.

(On peut aussi le vérifier directement puisque $\lim_{x\to+\infty}\int_1^x \frac{1}{2t}dt = \lim_{x\to+\infty}\frac{\ln(x)}{2} = +\infty$)

Ainsi, $\lim_{x \to +\infty} \left(\int_1^x \frac{1}{2t} dt - \int_1^x \frac{\cos(2t)}{2t} dt \right) = +\infty$. D'après l'inégalité, on en déduit que $\lim_{x \to +\infty} \int_1^x \left| \frac{\sin(t)}{t} \right| dt = +\infty$. Ainsi, $\int_{t}^{+\infty} \frac{\sin(t)}{t} dt$ ne converge pas absolument!

Exercice 11 (Comparaison série/intégrale)

1. Soit x > 1. Pour tout $k \ge 1$, $\frac{1}{(k+1)^x} \le \int_{k}^{k+1} \frac{1}{t^x} dx \le \frac{1}{k^x}$.

En sommant cela pour $k \in [1, n]$, on obtient pour tout $n \ge 1$:

$$\sum_{k=1}^n \frac{1}{(k+1)^x} \leqslant \int_1^{n+1} \frac{1}{t^x} dt \leqslant \sum_{k=1}^n \frac{1}{k^x} \quad \text{i.e} \quad \sum_{k=1}^{n+1} \frac{1}{k^x} - 1 \leqslant \int_1^{n+1} \frac{1}{t^x} dt \leqslant \sum_{k=1}^n \frac{1}{k^x}.$$

Puisque la série $\sum_{x} \frac{1}{k^x}$ et l'intégrale $\int_{1}^{+\infty} \frac{1}{t^x} dt$ sont convergentes (car x > 1), en passant à la limite quand $n \to +\infty$, on obtient :

$$\sum_{k=1}^{+\infty} \frac{1}{k^x} - 1 \leqslant \int_1^{+\infty} \frac{1}{t^x} dx \leqslant \sum_{k=1}^{+\infty} \frac{1}{k^x} \quad \text{i.e} \quad \int_1^{+\infty} \frac{dt}{t^x} \leqslant \zeta(x) \leqslant 1 + \int_1^{+\infty} \frac{dt}{t^x}.$$

2. Pour tout x > 1, on calcule :

$$\int_{1}^{+\infty} \frac{1}{t^{x}} dt = \lim_{y \to +\infty} \int_{1}^{y} t^{-x} dt = \lim_{y \to +\infty} \left[\frac{t^{-x+1}}{-x+1} \right]_{1}^{y} = \lim_{y \to +\infty} \frac{y^{-x+1} - 1}{-x+1} = \frac{-1}{-x+1} = \frac{1}{x-x}$$

 $(\operatorname{car} -x + 1 < 0 \operatorname{donc} \lim_{y \to +\infty} y^{-x+1} = 0).$

Ainsi, l'encadrement précédent s'écrit : $\forall x > 1, \ \frac{1}{r-1} \leqslant \zeta(x) \leqslant 1 + \frac{1}{r-1}$.

Lorsque $x \to 1^+$, on prévoit donc l'équivalent $\zeta(x) \underset{x \to 1^+}{\sim} \frac{1}{x-1}$.

On le démontre en multipliant l'encadrement par (x-1) (qui est positif) : $1 \le (x-1)\zeta(x) \le x$.

D'après le théorème des gendarmes, on obtient $\lim_{x\to 1^+} (x-1)\zeta(x) = 1$ c'est à dire $\lim_{x\to 1^+} \frac{\zeta(x)}{\frac{1}{x-1}} = 1$

et donc, en effet, $\zeta(x) \sim \frac{1}{x-1}$

Exercice 12 (Une suite d'intégrales)

1. Soit $n \in \mathbb{N}$. La fonction $t \mapsto t(\ln(t))^n$ est continue sur [0,1].

De plus elle est prolongeable par continuité en 0 puisque $\lim_{t\to 0^+} t(\ln(t))^n = 0$.

On sait donc que l'intégrale $\int_0^1 t \ln(t)^n dt$ est convergente : I_n est bien défini.

2.(a) Soit $n \in \mathbb{N}$. Pour tout $x \in]0,1]$, on applique une IPP:

$$\int_{x}^{1} t \times \ln(t)^{n+1} dt = \left[\frac{t^{2}}{2} \times \ln(t)^{n+1} \right]_{x}^{1} - \int_{x}^{1} \frac{t^{2}}{2} \times (n+1) \frac{1}{t} \ln(t)^{n} dt$$
$$= -\frac{x^{2}}{2} \ln(x)^{n+1} - \frac{n+1}{2} \int_{x}^{1} t \ln(t)^{n} dt.$$

En passant à la limite quand $x \to 0^+$, on obtient bien $I_{n+1} = -\frac{n+1}{2}I_n$.

(b) On a
$$\forall n \in \mathbb{N}, I_{n+1} = -\frac{n+1}{2}I_n$$
.

Par récurrence immédiate, on déduit : $\forall n \in \mathbb{N}, I_n = \prod_{i=1}^n \left(-\frac{k}{2}\right) \times I_0.$

C'est à dire : $\forall n \in \mathbb{N}, I_n = (-1)^n \frac{n!}{2^n} \times I_0.$

Pour finir, on calcule $I_0 = \int_0^1 t dt = \left[\frac{t^2}{2}\right]_0^1 = \frac{1}{2}$. Ainsi: $\forall n \in \mathbb{N}, I_n = (-1)^n \frac{n!}{2^{n+1}}$.

Exercice 13 (Intégrales à combiner)

1. Les fonction
$$u \mapsto \frac{1}{(1+u^2)(1+u^n)}$$
 et $u \mapsto \frac{u^n}{(1+u^2)(1+u^n)}$ sont continues et positive sur $[0, +\infty[$. De plus, $\frac{1}{(1+u^2)(1+u^n)} \sim \frac{1}{u^2 \times u^n} = \frac{1}{u^{n+2}}$ et $\frac{u^n}{(1+u^2)(1+u^n)} \sim \frac{u^n}{u^2 \times u^n} = \frac{1}{u^2}$. Puisque $n+2>1$ et $2>1$, les intégrales $\int_1^{+\infty} \frac{1}{(1+u^2)(1+u^n)} du$ et $\int_1^{+\infty} \frac{u^n}{(1+u^2)(1+u^n)} du$ convergent. De plus, les intégrales sur $[0,1]$ sont évidemment convergentes (intégrales de fonctions continues sur un segment).

Puisque
$$n + 2 > 1$$
 et $2 > 1$, les intégrales $\int_{1}^{+\infty} \frac{1}{(1 + u^{2})(1 + u^{n})} du$ et $\int_{1}^{+\infty} \frac{u^{n}}{(1 + u^{2})(1 + u^{n})} du$ convergent.

De plus, les intégrales sur [0, 1] sont évidemment convergentes (intégrales de fonctions continues sur un segment). Ainsi, I et J convergent.

2. $\varphi: t \mapsto \frac{1}{t}$ est une bijection C^1 , strictement décroissante, de $]0, +\infty[$ dans $]0, +\infty[$.

En posant $u = \frac{1}{t}$ et donc $du = -\frac{1}{t^2}dt$, on a :

$$I = \int_0^{+\infty} \frac{du}{(1+u^2)(1+u^n)} = \int_{+\infty}^0 \frac{-\frac{1}{t^2}dt}{(1+\frac{1}{t^2})(1+\frac{1}{t^n})} = -\int_{+\infty}^0 \frac{dt}{t^2(1+\frac{1}{t^2})(1+\frac{1}{t^n})}$$
$$= \int_0^{+\infty} \frac{dt}{(t^2+1)(1+\frac{1}{t^n})} = \int_0^{+\infty} \frac{t^n dt}{(t^2+1)t^n(1+\frac{1}{t^n})} = \int_0^{+\infty} \frac{t^n dt}{(t^2+1)(t^n+1)} = J.$$

3. Puisque les deux intégrale sont convergentes, on peut écrire sans problème :

$$I + J = \int_0^{+\infty} \left(\frac{1}{(1+u^2)(1+u^n)} + \frac{u^n}{(1+u^2)(1+u^n)} \right) du = \int_0^{+\infty} \frac{1+u^n}{(1+u^2)(1+u^n)} du = \int_0^{+\infty} \frac{1}{1+u^2} du.$$

On calcule
$$\int_{0}^{+\infty} \frac{1}{1+u^2} du = \lim_{x \to +\infty} \int_{0}^{x} \frac{1}{1+u^2} du = \lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2}.$$

Ainsi $I+J=\frac{\pi}{2}$. Puisque I=J, on en déduit finalement $I=J=\frac{\pi}{4}$.