Examen Parcial de FCO – Temas 1 al 4

29 de Noviembre de 2010

APELLIDOS:		NOMBRE:	
DNI:	FIRMA:		

Normativa:

- La duración del examen es de 1h30min.
- Escriba el nombre y los apellidos en letras MAYÚSCULAS y firme en TODAS las hojas.
- DEBE responder en el espacio asignado.
- No se permiten calculadoras ni apuntes.
- Debe permanecer en silencio durante la realización del examen.
- No se puede abandonar el examen hasta que el profesor lo indique.
- Debe tener una identificación en la mesa a la vista del profesor (DNI, carnet UPV, tarjeta residente, etc.)
- 1.- (1 punto) Dado el siguiente número X = A4,A₁₆ en hexadecimal, escriba su correspondiente representación en binario, octal, decimal, y BCD. Detalle todos los pasos seguidos para obtener cada representación.

Respuesta:

Binario= 010 100 100,1010₂ Octal= 244,50₈ Decimal= 164, 625₁₀

BCD= 0001 0110 0100, 0110 0010 0101 BCD

Procedimiento:

Primero escribimos el equivalente binario del número A. Para ello se escribe cada dígito hexadecimal utilizando 4 bits.

$$A = A = A = A$$
 $X = 1010 = 0100$, 1010

Para obtener la representación en octal agrupamos los bits de tres en tres.

$$X = 010 \ 100 \ 100 \ , \ 101 \ 000_2$$

 $X = 2 \ 4 \ 4 \ , 5 \ 0_8$

Para obtener la representación en decimal, podemos utilizar cualquier representación:

Partiendo de la representación en hexadecimal:

$$X = A4$$
, $A_{16} = 10 * 16^{1} + 4 * 16^{0} + 10 * 16^{-1}$
 $X = 160 + 4 + \frac{10}{16} = 164 + \frac{5}{8}$
 $X = 164$, 625

Finalmente, para escribir en BCD, se parte de la representación en decimal y se escribe cada dígito decimal utilizando 4 bits.

X =	1	6	4	,	6	2	5 ₁₀
X =	0001	0110	0100	,	0110	0010	0101 _{BCD}

RUBRICA:

Respuesta en binario correcta 20% del valor total de la pregunta

Respuesta en octal correcta 20% del valor total de la pregunta

Respuesta en decimal correcta 40% del valor total de la pregunta

Respuesta en decimal correcta 20% del valor total de la pregunta

Si no obtiene el valor decimal correcto, automáticamente la pregunta de BCD vale 0.

2.- (0,5 puntos) Un procesador tiene las siguientes características:

- Es capaz de ejecutar una instrucción cada ciclo de reloj
- El tamaño de instrucción y de palabra es de 64 bits.
- El tiempo de ciclo es de 4ns.

Indicar cuál será el ancho de banda entre el procesador y la memoria que este sistema procesador-memoria necesita. **Exprese el resultado en Gigabps.** Detalle el proceso seguido para obtener la solución.

Solución:

Ancho de banda =
$$\frac{64 \text{ bits}}{4 \text{ ns}} = \frac{64 \text{ bits}}{4 * 10^{-9} \text{ seg.}} = 16 * 10^9 \frac{\text{bits}}{\text{seg.}}$$

Ancho de banda = 16 Giga bps = 2 Giga Bytes por segundo

RUBRICA:

No hay posibilidad de error.

La pregunta la tiene bien , obtiene el 100% de la pregunta o la tiene mal contestada, 0.

Examen Parcial de FCO – Temas 1 al 4 29 de Noviembre de 2010

APELLIDOS:		NOMBRE:
DNI:	FIRMA:	

3.- (2 puntos) Sean A = a1a0 y B = b1b0 dos números naturales expresados en binario mediante dos bits. Se desea implementar un circuito que obtenga R = r1r0 como resultado de la suma de A+B expresada en binario también mediante dos bits. Cuando la suma no pueda representarse con dos bits, el circuito deberá activar una señal denominada *Desborda* que indicará que el valor de R es incorrecto y que no importa.

Complete la tabla de verdad que debe cumplir el circuito.

Solución:							
	a1	a0	b1	b0	r1	r0	Desborda
0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0
2	0	0	1	0	1	0	0
3	0	0	1	1	1	1	0
4	0	1	0	0	0	1	0
5	0	1	0	1	1	0	0
6	0	1	1	0	1	1	0
7	0	1	1	1	Χ	Х	1
8	1	0	0	0	1	0	0
9	1	0	0	1	1	1	0
10	1	0	1	0	Χ	Χ	1
1	1	0	1	1	Χ	Х	1
1:	2 1	1	0	0	1	1	0
1:	1	1	0	1	Χ	Χ	1
14	1	1	1	0	Χ	Χ	1
1	i 1	1	1	1	Χ	Χ	1

RUBRICA:

- Especifica correctamente las salidas r1 y r0 para las valoraciones donde el resultado es representable: 0,5 puntos.
- Especificad correctamente con valor X las salidas r1 y r0 en el caso de las valoraciones indiferentes: 1 punto.
- Especifica correctamente la salida Desborda para cada valoración: 0,5 puntos.

4.- (2 puntos) Dada la siguiente tabla de verdad:

	D	С	В	Α	S
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	Χ
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	Х
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	Χ
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	Х

Escriba las dos ecuaciones de la salida S que se obtienen al simplificar (mediante unos y mediante ceros) utilizando mapas de Karnaugh.

Solución:

Simplificación de la función S: Simplificación por unos:

$$S = A.C + D$$

Simplificación por ceros:

$$S = (D + C) \cdot (D + A)$$

Examen Parcial de FCO – Temas 1 al 4

29 de Noviembre de 2010

APELLIDOS:		NOMBRE:
DNI:	FIRMA:	

RUBRICA:

- A partir de la tabla de verdad construye correctamente los mapas de Karnaugh correspondientes: 0,25 puntos
- Simplificación por unos: agrupa 1s y Xs teniendo en cuenta las reglas de agrupación, que se cubran todos los 1s, que haya el mínimo número de grupos y que su tamaño sea el máximo posible: 0,5 puntos
- Simplificación por ceros: agrupa 0s y Xs teniendo en cuenta las reglas de agrupación, que se cubran todos los 0s, que haya el mínimo número de grupos y que su tamaño sea el máximo posible: 0,5 puntos
- Obtiene correctamente el término que representa cada grupo: 0,5 puntos
- Compone la función lógica simplificada como la suma o el producto de los términos: 0,25
- **5.- (2 puntos)** Dado el siguiente circuito, obtenga la formas canónicas disyuntiva y conjuntiva correspondiente a la salida F. Considere D como la variable de mayor peso. Detalle todo el proceso seguido para obtener la solución.

Solución:

Partiendo del circuito puede obtenerse la función lógica correspondiente y su tabla de verdad:

$$F = (A \cdot B + C) \cdot \overline{D}$$

	D	С	В	Α	F
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

Partiendo de la tabla de verdad puede obtenerse la forma canónica disyuntiva:

$$F = \sum_{D,C,B,A} (3,4,5,6,7)$$

Y la forma canónica conjuntiva:

$$F = \prod_{D \in R} (0,1,2,8,9,10,11,12,13,14,15)$$

RUBRICA:

- Obtención de la función lógica: 0,5 puntos
- Obtención de la tabla de verdad: 0,5 puntos
- Obtención de la forma canónica disyuntiva: 0,5 puntos
- Obtención de la forma canónica conjuntiva: 0,5 puntos

Examen Parcial de FCO – Temas 1 al 4 29 de Noviembre de 2010

APELLIDOS:		NOMBRE:	
DNI:	FIRMA:		

6.- (1,5 puntos) Construya un decodificador binario de 3 a 8 con salidas activas a nivel bajo, sin entrada de habilitación. Para ello dispone de un máximo de 4 decodificadores binarios de 1 a 2 con salidas activas a nivel bajo y entrada de habilitación a nivel bajo y de 1 decodificador de 2 a 4 con salidas a nivel bajo y sin entrada de habilitación. No se permite usar puertas lógicas adicionales. Etiquete correctamente todas las entradas y salidas de los símbolos lógicos y del circuito.

RUBRICA:	Conecta	Utiliza correctamente las entradas de	Etiqueta
de decodificadores necesario y su organización (0.3 ptos)	variables de entrada. No hay entrada de habilitación. (0.4 ptos)	habilitación para la activación de los decodificadores, con niveles de activación correctos. (0.4 ptos)	las entradas y

7.- (1 punto) Complete la tabla de funcionamiento del siguiente circuito.

Solución:

В	Α	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

RUBRICA:

Toda la tabla correcta= 100%

Un error = 90%

2 errores = 80%

Más de 2 = 0