全智能相机算法概要设计

算法框架

算法的框架如下图所示,分为四层:

与以前的算法设计相比,本文的设计宗旨是增加算法的可移植性,降低与其他模块的耦合度。所以与以前的设计相比,会有以下的不同处:

区别	旧设计	新设计	优缺点
大小图编码	多媒体	算法	编码放到算法内部,
			由算法保证结果和图
			片不会遗漏,即便遗
			漏也由算法跟进问
			题。目的在于减少耦
			合度
算法结果形态	算法给出结果结构体	算法给出 json	平台可以更多的关注
			业务,减少结构体的
			转换工作,由算法关
			注结果输出是否正
			确。目的在于减少耦
			合度
算法属性	多媒体	算法	算法对外提供属性
			值,平台透传,只需
			要网页端和 sdk 负责
			解析。目的在于减少
			耦合度
算法参数	多媒体转换	算法转换	算法的参数,平台透

相同平台的新算法	涉及开发多	涉及开发少	传,只需要网页端和 sdk 负责设置和获取。 目的也是减少耦合度 旧平台上,要将整个 算法业务逻辑跑通, 需要网页-平台-多媒 体-算法,多人介入。 在新平台上,只需要 网页-算法,即可实 现;而算法的投入大 多在新产品的算法 上,能快速响应具体 的算法业务
已有算法的新平台迁 移	中	易	在迁移新的产品时, 除了关注算法硬件层 的迁移外,其他方面
			基本不会改变

算法数据流程图

框架上,将算法分为了四层,每一层处理的过程以及数据是不尽相同的。其具体展现如下图,将根据图做详细的描述。

注(绿色的泳道,表示新需求或者新产品上的修改比较少,大多工作量在橙色泳道的视频流层)

应用层: 初始化、传入算法参数与图像帧,以及算法结果回调处理。应用层只关注业务逻辑,将图片的处理,算法参数的保存、修改等都转移到算法。尽量做到平台化,降低与算法的耦合度。

算法接口层:外部传入算法的参数为 json 格式。对于应用层来说,算法参数是透明的,无

需关心参数的具体含义。接口层的工作主要在,解析传入的参数,根据不同的类型,动态创建视频流层。并将算法参数传递给视频流层。

算法视频流层: 执行算法逻辑。如车牌算法,进行车牌检测与识别; 传入人脸抓拍,执行抓拍的流程。

● 算法视频流层时序图

算法硬件层:将 hisi svp 抽离出来,由算法硬件层统一调度 NNIE 与 DSP,以及提供 cpu 的绑定。算法视频流层,只关注传入的数据与传出的数据。硬件层的调度策略如下文描述,其中 NNIE/CPU/DSP 都可以采用优先级和 FSFS 两种方式:

● 算法硬件层调度策略-优先级: 硬件资源的调度采用优先级调度的方式实现。维护一个优先级队列,优先级范围为[0,15],15 为最大,0 为最小。每个 channel 对应自定义的优先级。以具体实例描述: 当 channel 16 开始调度 NNIE 时,其优先级为 7。在优先级队里中,将 channel 16 插入到优先级比 7 小的 channel 前,同时将被插入的 channel 都

加 1。因此,队列头永远是优先级最高的一个,同时能保证某个 channel 最低的优先级,最多延迟 15 帧,就会被调度。

● 算法硬件层调度策略-FCFS: 所有的 channel 抢占 NNIE 资源都是公平的

平台化

工作	应用层(算法相	算法接口层	算法视频流层	算法硬件层
	关)			
芯片平台移植	无	无	无	有。IVE、DMA、
				NNIE、DSP 需要
				考虑移植。
新产品	有。网页、sdk、	无	有。新增符合业	无
	结果业务		务的算法实现。	

接口定义

如上图所示,算法分为三类接口:算法接口、参数接口、算法硬件接口。

算法接口:根据不同的产品形态,实现算法接口。在盒子上,会把各类算法,如车牌、人脸抓拍和人脸识别都集成;在路侧上,只集成路侧的算法;

参数接口:根据不同的产品形态,实现参数的解析。提供两个接口,即参数设置并解析,获取参数的结构体;

算法硬件接口:根据不同的芯片,实现 CPU 的绑定、NNIE 的调用、Dsp 的启动;最主要的是 NNIE 的调用,对算法层提供接口,算法层只关注传入和传出的数据,不用关心如何使用 NNIE。

性能评估

Hi 3559 算法性能评估:

模块	1个 NNIE 耗时(ms)	1个 A73-CPU 耗时(ms)	IVE		
人脸抓拍	3	1-2			
人脸跟踪		12			
人脸评分	1	1			
人脸识别(6Gmac)	21(提特征)+2(提特征点)	< 6 (warp)			
车牌检测(海外)	3				
车牌识别 (海外)	13	5	2		

性能瓶颈:

在 Hi3559 上

人脸抓拍:人脸抓拍最大只能做到 16 路 10 帧

人脸识别:最大做到16路5帧

车牌检测: 16 路 25 帧 车牌识别: 16 路 6 帧

现有风险点: 算法只能保证吞入量, 不能保证实时性。比如同时做多张图的人脸识别, 肯定

有一张图会最后才做识别。