Segmentation des clients du site e-commerce OLIST

Sommaire

- 1. Enjeux
- 2. Analyse exploratoire
- 3. Pistes de modélisation
- 4. Etude de stabilité

Enjeux

Fournir aux employés OLIST un outil de segmentation des clients

Analyse exploratoire

Base de données

Jeu de données final

df_commande

df_client

df_produit

df_final

115 609 lignes

Valeurs manquantes

Traitement des NaN

NaN avant

order_purchase_timestamp order_approved_at order_delivered_carrier_date order_delivered_customer_date order_estimated_delivery_date

'order_status'

delivered shipped 0.010 canceled 0.003 processing 0.003 unavailable approved 0.000

drop

NaN vs 'order_status'

shipped canceled 529 invoiced 358 processing delivered 8 unavailable 7 approved 3

order_status 0
order_purchase_timestamp 0
order_approved_at 14
order_delivered_carrier_date 2
order_delivered_customer_date 8

Exploration des variables

Pistes de modélisation

Segmentation RFM

Fréquence

Montant

Ceux qui ont acheté le plus récemment

Ceux qui ont acheté le plus fréquemment

Ceux qui dépensent le plus

Segmentation RFM

Profils clients

	Récence	Fréquence	Montant		
	mean	mean	mean	count	
Segment					
About to sleep	122.500	1.100	165.100	7865	
At risk	237.900	3.700	501.200	447	
Can't loose	224.400	8.500	413.200	21	
Champions	26.100	4.800	567.500	117	
Hibernating	236.900	1.100	159.600	15723	
Loyal customers	91.800	4.700	596.900	232	
Need attention	122.300	3.000	496.200	183	
New customers	24.100	1.000	137.200	7261	
Potential loyalists	43.700	2.200	342.100	2144	
Promising	62.600	1.000	149.400	6604	

Outliers

APRES

Clustering

Algorithmes utilisés

DBScan

Essai n° 1:

- min_samples = 100
- eps = 0.3, 0.4, 0.5

- > eps=0.3: 3 clusters et 3549 anomalies
- > eps=0.4: 2 clusters et 2759 anomalies
- > eps=0.5 : 2 clusters et 2311 anomalies

Essai n° 2:

- min_samples = 10
- \bullet eps = 0.3, 0.4, 0.5

- > eps=0.3: 17 clusters et 854 anomalies
- > eps=0.4: 9 clusters et 450 anomalies
- > eps=0.5 : 6 clusters et 298 anomalies

Classification Ascendante Hiérarchique

Résultats satisfaisants MAIS lenteurs à l'exécution...

K-Means

K-Means sur 3 variables : RFM

Méthode du coude

Score Silhouette

Essai avec 5 clusters

cluster label

	Récence	Fréquence	Montant	Segment	
	mean	mean	mean	unique	count
Cluster					
0	234.000	1.000	127.000	[Hibernating, About to sleep, At risk]	15357
1	67.000	1.000	127.000	[Promising, About to sleep, New customers, Pot	21612
2	127.000	4.000	473.000	[At risk, Potential loyalists, Loyal customers	1237
3	134.000	2.000	746.000	[About to sleep, Potential loyalists, Hibernat	2391

Critères:

- > taille des silhouettes
- volumétrie par cluster
- > présence d'erreurs

- Cluster 0 : les clients dont la Récence est élevée (le dernier achat date d'il y a longtemps) et qui ont dépensé peu d'argent
- > Cluster 1 : les clients dont la Récence est basse (le dernier achat est récent) et qui ont dépensé peu d'argent
- > Cluster 2 : les clients qui achètent souvent et dont le panier moyen est important
- Cluster 3 : les clients qui n'achètent pas souvent et dont le panier moyen est très élevé

Etude de stabilité

Objectifs et méthodologie

Tester la stabilité de l'algorithme dans le temps pour savoir à quel moment les clients changent de cluster.

Indice de Rand (ajusté)

Indice de Rand:

utilisé pour mesurer la **similarité des points de données** présents dans les clusters.

ARI:

- proche de 0 pour un clustering aléatoire
- égal à 1 uniquement quand le clustering correspond exactement à la partition initiale

Calcul du score ARI

Conclusion

- Parmi toutes les méthodes de clustering appliquées, c'est le K-Means qui semble être le plus efficace.
- Le CAH donne des résultats similaires, en revanche les temps de performances laissent à désirer.
- Les résultats de K-Means sont parfaitement interprétables et utilisables par l'équipe marketing.
- La segmentation RFM semble fournir une analyse des profils client tout aussi pertinente (note : rétrécir la liste des comportements d'achat en fusionnant certains profils ceux similaires ou ceux les moins nombreux).

Avez-vous des questions?