Data Stream Clustering: An In-depth Empirical Study

Shuhao Zhang (SUTD)

Collaborating with HUST and Sichuan U

Background: Data Stream Clustering (DSC)

Definition: Partitioning streaming data into clusters in real time.

Background: Data Stream Clustering (DSC)

Definition: Partitioning streaming data into clusters in real time.

Challenges:

- Memory limitation
 Unbounded data streams
- Fast response time
 Usually expecting fast responses
- Handle evolving activities
 - Cluster Evolution
 - Outlier Evolution

Shifting nature of data distributions and the emergence of new outliers over time

Background: Data Stream Clustering (DSC)

- Definition: Partitioning streaming data into clusters in real time.
- Challenges:
 - Memory Limitation
 Unbounded data streams
 - Fast Response Time
 Usually expecting fast responses
 - Handle evolving activities
 - Cluster Evolution

 Shifting nature of data distributions and the emergence of new outliers over time
 - Outlier Evolution

Algorithms: CluStream [VLDB'03], D-Stream [KDD'07], DBStream [TKDE'16], EDMStream [VLDB'17], SL-Kmeans [NIPS'20] ...

Background: Literature Gaps and Contributions

Coarse-grained comparison:

 Ignore analysing the impact of individual design aspect of algorithms.

Problematic benchmark settings:

 Not implement algorithms in a unified framework (e.g., varying programming languages, compilers)

Lack evaluating processing efficiency.

- $(\sqrt{})$ It is more insightful to go into the details: compare their CPU, GPU, memory, etc.
- (×) It is less meaningful to compare two algorithms that are implemented in python and C++, respectively.
- ($\sqrt{}$) It is far more fair to implement all algorithms in one language, e.g., C++, before the comparison.
- (x) Existing studies only evaluate accuracy.
- $(\sqrt{\ })$ Both accuracy and efficiency shall be evaluated carefully.

Background: Our Contributions

Our Contributions:

- Implement algorithms and designs in an open-sourced platform named Sesame (supporting 22 different DSC algorithms, ~13,000 lines of code in C++)
- Evaluate both accuracy and efficiency impact on every single design aspect (our study is like using a "microscope" to observe and analysis DSC algorithms)
- Propose a new algorithm Benne through combining flexible design choices achieving either SoTA accuracy and efficiency (this is an unexpected gift).

Published (SIGMOD'23)

Design Aspects:

(b) Window Model

Design Aspects: Summarizing Data Structure

Hierarchical: Organize temporal clusters into a tree.

Clustering Feature Tree (CFT): flexibly make adjustment.

Coreset Tree (CoreT): lazily rebuild the whole structure.

 Dependency Tree (DPT): cluster based on the evolving cluster density.

Partitional: Organize temporal clusters into a list.

 Micro Clusters (MCs): similar structure as CFT but under different catalog.

Grids (Grids): free from frequent distance calculation.

 Augmented Meyerson Sketch (AMS): Frequently reconstruct temporal clusters to keep its total number fixed.

Figure: Two Catalogs of Summarizing Data Structures.

Design Aspects: Window Model

- Landmark (LandWM): Cluster data between two landmarks into a window.
- Sliding (SlidingWM): Cluster data whose timestamp falls within current window range.
- Damped (DampedWM): Associate data with weights decaying over time.

Figure: Three Types of Window Models.

Design Aspects: Outlier Detection Mechanism

- No Outlier Detection (NoOutlierD)
- Outlier Detection (OutlierD):
 periodically discard sparse clusters
- Outlier Detection with buffer
 (OutlierD-B): store the sparse clusters
 into a buffer rather than discarding.
- Outlier Detection with Timer
 (Outlier-T): additionally check the activity of the discarded clusters
- Outlier Detection with Buffer and Timer (OutlierD-BT)

Figure: Four Types of Outlier Detection Mechanism

Design Aspects: Refinement Strategy

- With refinement (Refine): Apply batch clustering algorithms such as KMeans or DBSCAN to further refine the online results before output.
- Without refinement (NoRefine): directly output the online temporal clusters as the final clustering results.

Figure: General workflow of refinement strategy

How do different design options really matter?

Methodology

Benchmark Testbed: <u>Sesame</u>

Figure: Sesame Workflow

Methodology

Algorithm Selection:

- Cover a wide range of design decisions of all four design aspects.
- Either representative or recently covering a long history in this field.

Algorithm	Year	Summarizing Data Structure		Window Model	Outlier Detection	Offline Refinement
		Name	Catalog			
BIRCH	1996	CFT	Hierarchical	LandmarkWM	OutlierD	NoRefine
<u>CluStream</u>	2003	MCs	Partitional	LandmarkWM	OutlierD-T	Refine
<u>DenStream</u>	2006	MCs	Partitional	DampedWM	OutlierD-BT	Refine
<u>DStream</u>	2007	Grids	Partitional	DampedWM	OutlierD-T	Refine
StreamKM++	2012	CoreT	Hierarchical	LandmarkWM	NoOutlierD	Refine
DBStream	2016	MCs	Partitional	DampedWM	OutlierD-T	Refine
<u>EDMStream</u>	2017	DPT	Hierarchical	DampedWM	OutlierD-BT	NoRefine
SL-KMeans	2020	AMS	Partitional	SlidingWM	NoOutlierD	NoRefine

Table: Selected Algorithm Summary

Methodology

Workload Selection: Table: Workload Summary

Workload	Length	Dimension	Cluster Number	Outliers	Evolving Frequency
FCT	581012	54	7	False	Low
KDD99	4898431	41	23	True	Low
Insects	905145	33	24	False	Low
Sensor	2219803	5	55	False	High
EDS	245270	2	363	False	Varying
ODS	100000	2	90	Varying	High

Evaluation Metrics:

- Accuracy: We use purity to measure the general clustering quality and also use CMM to test the design aspects' ability to handle cluster evolution.
- **Efficiency:** We use throughput for efficiency comparison.

Key Finding 1: For each design aspect, none of the design choices can always guarantee good performance under varying workload characteristics and/or optimization targets.

Figure: Comparison of the Ability for Summarizing Data Structures to Handle Cluster Evolution.

Observation 1: *MCs* and *CFT* guarantee high accuracy while *CFT* and *Grids* guarantee high efficiency for handling cluster evolution than other types of data structure.

Key Finding 1: For each design aspect, none of the design choices can always guarantee good performance under varying workload characteristics and/or optimization targets.

Figure: Comparison of the Ability for Window Models to Handle Outlier / Cluster Evolution.

Observation 2: The efficiency of *LandmarkWM* and *DampedWM* becomes worse with the increase of cluster evolution frequency.

Key Finding 1: For each design aspect, none of the design choices can always guarantee good performance under varying workload characteristics and/or optimization targets.

Figure: Comparison of the Ability for Outlier Detection Mechanisms to Handle Outlier Evolution.

Observation 3: Utilizing a *timer* in outlier detection can greatly improve the clustering accuracy and even increase the efficiency under outlier evolution.

Key Finding 2: Each combined selection of design choices from four design aspects has its own strength and limitation and none can achieve the highest accuracy and efficiency at the same time.

Observation 3:

{Grids summarizing data structure}

+ {SlidingWM window mode} lead to high clustering efficiency but low accuracy.

Figure: General Comparison of Summarizing Data Structures / Window Models

Key Finding 2: Each combined selection of design choices from four design aspects has its own strength and limitation and none can achieve the highest accuracy and efficiency at the same time.

Figure: General Comparison of Offline Refinement Strategy.

Observation 4: Applying an *offline refinement strategy* has little impact on both clustering accuracy and efficiency.

Observation 5: Composing suitable design choices from each design aspect, we obtain a novel DSC algorithm (i.e., *Benne*) that can be reconfigured to achieve either the highest accuracy or highest efficiency, but not at the same time. (Show later)

Key Finding 3: Algorithm configuration and correlations among design aspects bring further complex influence on the clustering behaviour.

Figure: Configuration Analysis of Window Models.

Observation 6: Different algorithm configurations bring *non-trivial trade-offs* in terms of accuracy and efficiency.

Observation 7: There is an unsuitable summarizing data structure dominantly leads to poor performance of DSC algorithms regardless of the selection of other design choices.

How does the empirical analysis useful?

Experimental Analysis: Benne Algorithm

Algorithm 1: Execution flow of *Benne*.

```
Data: p // Input point
  Data: s // Summarizing data structure
  Input: struc. // Selected type of summarizing data structure
  Input: win. // Selected type of window model
  Input: out. // Selected type of outlier detection mechanism
  Input: ref. // Selected type of refinement strategy
  // Online Phase
  while !stop processing of input streams do
       Window Fun. (...);
       if out. != NoOutlierD then
           b \leftarrow \text{Outlier Fun. } (...);
           if b = false then
                Insert Fun. (...)// Insert p to s and update s
       else
            Insert Fun. (...)// Insert p to s and update s
8
  // Offline Phase
9 if ref. != NoRefine then
     Refine Fun. (ref.);
```

Benne (Accuracy):

MCs + LandmarkWM + OutlierD-B + NoRefine

Benne (Efficiency):

CFT + LandmarkWM + OutlierD-T + NoRefine

Experimental Analysis: Overall Comparison

- Benne (Accuracy) achieves the <u>best purity</u>.
- Benne (Efficiency) achieves the <u>highest throughput</u>.

Figure: General Comparison of Existing DSC algorithms and Benne.

Open-Source

- Code, data and scripts are available at https://github.com/intellistream/Sesame
- It is purely written in modern C++.
- One can easily reproduce all of our experimental results by "one-click" of our scripts in your machine.
- For easier access by the ML community, we have additionally built a Python API to our framework.

```
import benne
       # Create an instance of Parameters
       params = benne.Parameters()
       # Get and set the algorithm
       algorithm = params.algo
       print("Current algorithm:", algorithm)
10
       params.algo = benne.AlgoType.BIRCH
11
       params.input_file = "/home/shaun/Sesame/benchmark/datasets/CoverType.txt"
12
       print("Updated algorithm:", params.algo)
13
14
       # ... Continue getting and setting other parameters
       # Accessing docstring
15
16
       print(benne.Parameters.algo. doc )
17
18
       print("Input file:", params.input_file)
19
20
       # Run the SESAME algorithm
21
       benne.run()
```


And then?

Enhancements

- **Key Enhancement 1:** Regular Stream Characteristics Detection
- **Key Enhancement 2:** Automatic Design Choice Selection
- **Key Enhancement 3:** Flexible Algorithm Migration

Under Review (TKDE)

Enhancements

- 1) Both Benne (Accuracy) and Benne (Efficiency) swiftly recover from workload changes.
- 2) Automatic design choice selection is a critical component to ensure the adaptivity.
- 3) Algorithm migration improves accuracy at the expense of clustering speed.

Figure: Detailed performance analysis on KDD99 workload

Enhancements

- For Benne (Accuracy), the time allocation for both detection and migration is relatively minimal in comparison to the primary clustering task.
- 2) For Benne (Efficiency), the proportion of time spent on the detection appears to be larger. However, it's crucial to note that Benne (Efficiency) omits the migration procedure altogether.

Figure: Execution Time Break Down Analysis

Future Work

Future work

- High performance scalable data stream clustering algorithms (e.g., GPU acceleration)
- High-dimensional data stream clustering (e.g., VectorDB, trajectory data stream analytics)
- Online continual learning (e.g., fast coreset selection)

Conclusion

Conclusion

- It is still challenging to balance the trade-off between accuracy and efficiency of DSC algorithms.
- Each design choice has its own pros and cons and should be dynamically adjusted and carefully combined to obtain the best DSC algorithm under different workload characteristics.
- A dynamic algorithm configuration strategy is required for the stream setting.
- Thank you for listening
- Email to ask follow-up questions: shuhao_zhang@sutd.edu.sg