

3. NGUYÊN HÀM - TÍCH PHÂN VÀ ỨNG DỤNG

3.1. Nguyên hàm

3.1.1. Nguyên hàm

Dinh nghĩa: Cho hàm số f(x) xác định trên K(K) là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi $x \in K$. Kí hiệu: $\int f(x) dx = F(x) + C$. Đinh lí:

- 1. Nếu F(x) là một nguyên hàm của f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.
- 2. Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dang F(x) + C, với C là một hằng số.

Do đó F(x) + C, $C \in \mathbb{R}$ là họ tất cả các nguyên hàm của f(x) trên K.

3.1.2. Tính chất của nguyên hàm

•
$$\left(\int f(x) dx\right)' = f(x) \text{ và } \int f'(x) dx = f(x) + C; d\left(\int f(x) dx\right) = f(x) dx.$$

• Nếu
$$F(x)$$
 có đạo hàm thì:
$$\int d(F(x)) = F(x) + C.$$

•
$$\int kf(x) dx = k \int f(x) dx$$
 với k là hằng số khác 0.

•
$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx.$$

• Công thức đổi biến số: Cho y = f(u) và u = g(x).

Nếu
$$\int f(x) dx = F(x) + C$$
 thì $\int f(g(x))g'(x) dx = \int f(u) du + C$.

3.1.3. Sự tồn tại của nguyên hàm

Định lí: Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.

Bảng nguyên hàm các hàm số thường gặp

$1. \int 0 dx = C \qquad 2. \int dx = x + C$		
$3. \int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C(\alpha \neq -1)$	16. $\int (ax+b)^{\alpha} dx = \frac{1}{\alpha} \left(\frac{ax+b}{\alpha+1} \right)^{\alpha+1} + C, \alpha \neq -1$	
$4. \int \frac{1}{x^2} dx = -\frac{1}{x} + C$	$17. \int \frac{3x^2 - \sqrt{x} + \sqrt[3]{x}}{x} \mathrm{d}x$	
$\int \frac{1}{x} \mathrm{d}x = \ln x + C$	$18. \int \frac{\mathrm{d}x}{ax+b} = \frac{1}{a} \ln ax+b + C$	
$6. \int e^x dx = e^x + C$	$19. \int e^{ax+b} \mathrm{d}x = \frac{1}{a} e^{ax+b} + C$	
$7. \int a^x \mathrm{d}x = \frac{a^x}{\ln a} + C$	$20. \int a^{kx+b} dx = \frac{1}{k} \frac{a^{kx+b}}{\ln a} + C$	
$8. \int \cos x dx = \sin x + C$	$21. \int \cos(ax+b) \mathrm{d}x = \frac{1}{a} \sin(ax+b) + C$	
$9. \int \sin x dx = -\cos x + C$	$22. \int \sin(ax+b) \mathrm{d}x = -\frac{1}{a} \cos(ax+b) + C$	
$10. \int \tan x \mathrm{d}x = -\ln \cos x + C$	$23. \int \tan(ax+b) \mathrm{d}x = -\frac{1}{a} \ln \cos(ax+b) + C$	
$11. \int \cot x \mathrm{d}x = \ln \sin x + C$	24. $\int \cot g(ax+b) dx = \frac{1}{a} \ln \sin(ax+b) + C$	
$12. \int \frac{1}{\cos^2 x} \mathrm{d}x = \tan x + C$	$25. \int \frac{1}{\cos^2(ax+b)} dx = \frac{1}{a} \tan(ax+b) + C$	
$13. \int \frac{1}{\sin^2 x} \mathrm{d}x = -\cot x + C$	26. $\int \frac{1}{\sin^2(ax+b)} dx = -\frac{1}{a} \cot(ax+b) + C$	
$14. \int (1 + \tan^2 x) \mathrm{d}x = \tan x + C$	27. $\int (1 + \tan^2(ax + b)) dx = \frac{1}{a} \tan(ax + b) + C$	
$15. \int \left(1 + \cot^2 x\right) \mathrm{d}x = -\cot x + C$	28. $\int (1 + \cot^2(ax + b)) dx = -\frac{1}{a}\cot(ax + b) + C$	

Bảng nguyên hàm mở rộng

$\int \frac{\mathrm{d}x}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + c$	$\int \arcsin\frac{x}{a} dx = x \arcsin\frac{x}{a} + \sqrt{a^2 - x^2} + c$	
$\int \frac{\mathrm{d}x}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right + c$	$\int \arccos \frac{x}{a} \mathrm{d}x = x \arccos \frac{x}{a} - \sqrt{a^2 - x^2} + c$	
$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \ln\left(x + \sqrt{x^2 + a^2}\right) + c$	$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln (a^2 + x^2) + c$	
$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{ a } + c$	$\int \operatorname{arccot} \frac{x}{a} dx = x \operatorname{arccot} \frac{x}{a} + \frac{a}{2} \ln (a^2 + x^2) + c$	
$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\arccos\left \frac{x}{a}\right + c$	$\int \frac{\mathrm{d}x}{\sin(ax+b)} = \frac{1}{a} \ln\left \operatorname{tg} \frac{ax+b}{2} \right + c$	
$\int \frac{\mathrm{d}x}{x\sqrt{x^2 + a^2}} = -\frac{1}{a} \ln \left \frac{a + \sqrt{x^2 + a^2}}{x} \right + c$	$\int \frac{\mathrm{d}x}{\sin(ax+b)} = \frac{1}{a} \ln \left \tan \frac{ax+b}{2} \right + c$	
$\int \ln(ax+b) dx = \left(x + \frac{b}{a}\right) \ln(ax+b) - x + c$	$\int e^{ax} \cos bx dx = \frac{e^{ax} \left(a \cos bx + b \sin bx\right)}{a^2 + b^2} + c$	
$\int_{2}^{\sqrt{a^2-x^2}} dx = \frac{x\sqrt{a^2-x^2}}{2} +$	$\int e^{ax} \sin bx dx = \frac{e^{ax} \left(a \sin bx - b \cos bx\right)}{a^2 + b^2} + c$	
$\frac{a^2}{2}\arcsin\frac{x}{a}+c$		

3.1.4. Các phương pháp tính nguyên hàm

1. Phương pháp biến đổi

a. Đổi biến dạng 1:

Nếu: $\int f(x) = F(x) + C$ và với $u = \varphi(t)$ là hàm số có đạo hàm thì: $\int f(u) du = F(u) + C$.

PHƯƠNG PHÁP CHUNG

- Bước 1: Chọn $x = \varphi(t)$, trong đó $\varphi(t)$ là hàm số mà ta chọn thích hợp.
- Bước 2: Lấy vi phân hai vế: $dx = \varphi'(t) dt$.
- Bước 3: Biến đổi: $f(x) dx = f[\varphi(t)] \varphi'(t) dt = g(t) dt$.
- Bước 4: Khi đó tính: $\int f(x) dx = \int g(t) dt = G(t) + C.$

* Các dấu hiệu đổi biến thường gặp:

Dấu hiệu	Cách chọn	
$\sqrt{a^2-x^2}$	Đặt $x = a \sin t$; với $t \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ hoặc $x = a \cos t$; với $t \in [0; \pi]$.	
$\sqrt{x^2-a^2}$	$ a \cos t; \text{ v\'oi } t \in [0;\pi].$ $\text{Dặt } x = \frac{ a }{\sin t}, \text{ v\'oi } t \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \setminus \{0\} \text{ hoặc}$ $x = \frac{ a }{\cos t} \text{ v\'oi } t \in [0;\pi] \setminus \left\{\frac{\pi}{2}\right\}.$	
$\sqrt{a^2+x^2}$	Đặt $x = a \tan t$; với $t \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ hoặc $x = a \cot t$ với $t \in (0; \pi)$.	
$\sqrt{\frac{a+x}{a-x}}$ hoặc $\sqrt{\frac{a-x}{a+x}}$	Đặt $x = a \cos 2t$.	
$\sqrt{(x-a)(b-x)}$	$\text{D} \check{\mathbf{a}} \mathbf{t} \ x = a + (b - a) \sin^2 t.$	
$\frac{1}{a^2 + x^2}$	Đặt $x = a \tan t$; với $t \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.	

b. Đổi biến dạng 2:

Nếu hàm số f(x) liên tục thì đặt $x = \varphi(t)$. Trong đó $\varphi(t)$ cùng với đạo hàm của nó $(\varphi'(t)$ là những hàm số liên tục) thì ta được:

$$\int f(x)dx = \int f\left[\varphi(t)\right]\varphi'(t)\,dt = \int g(t)dt = G(t) + C.$$

PHƯƠNG PHÁP CHUNG

- Bước 1: Chọn $t = \varphi(t)$, trong đó $\varphi(x)$ là hàm số mà ta chọn thích hợp.
- Bước 2: Lấy vi phân hai vế: $dt = \varphi'(t) dt$.
- Bước 3: Biểu thị: $f(x) dx = f[\varphi(t)] \varphi'(t) dt = g(t) dt$.
- Bước 4: Khi đó: $I = \int f(x) dx = \int g(t) dt = G(t) + C$.

* Các dấu hiệu đổi biến thường gặp:

Dấu hiệu	Cách chọn	
Hàm số mẫu số có	t là mẫu số	
Hàm số: $f(x; \sqrt{\varphi(x)})$	$t = \sqrt{\varphi(x)}$	
Hàm $f(x) = \frac{a \cdot \sin x + b \cdot \cos x}{c \cdot \sin x + d \cdot \cos x + c}$	$t = \tan\frac{x}{2}; \left(\cos\frac{x}{2} \neq 0\right)$	
$c \cdot \sin x + d \cdot \cos x + c$	1 - tan 2, (cos 2 + 0)	

Hàm
$$f(x) = \frac{1}{\sqrt{(x+a)(x+b)}}$$

Với:
$$x+a>0$$
 và $x+b>0$.
Đặt: $t=\sqrt{x+a}+\sqrt{x+b}$
Với: $x+a<0$ và $x+b<0$
Đặt: $t=\sqrt{x-a}+\sqrt{-x-b}$.

3.1.5. Nguyên phân từng phần

Nếu u(x), v(x) là hai hàm số có đạo hàm liên tục trên K:

$$\int u(x) \cdot v'(x) \, \mathrm{d}x = u(x) \cdot v(x) - \int v(x) u'(x) \, \mathrm{d}x.$$

Hay
$$\int u \, dv = uv - \int v \, du$$
 (với $du = u'(x) \, dx, dv = v'(x) \, dx$).

PHƯƠNG PHÁP CHUNG

- Bước 1: Ta biến đổi tích phân ban đầu về dạng: $I = \int f(x) dx = \int f_1(x) \cdot f_2(x) dx.$
- Bước 2: Đặt $\begin{cases} u = f_1(x) \\ dv = f_2(x) \end{cases} \rightarrow \begin{cases} du = f'_1(x)dx \\ v = \int f_2(x)dx \end{cases}$
- Bước 3: Khi đó: $\int u \cdot dv = u \cdot v \int v \, du$.

Dang I:
$$I = \int P(x) \left\{ \begin{array}{l} \sin x \\ \cos x \\ e^x \end{array} \right\} \cdot dx$$

Vậy
$$I = P(x) \begin{cases} -\cos x \\ \sin x \\ e^x \end{cases} - \int \begin{cases} -\cos x \\ \sin x \\ e^x \end{cases} \cdot P'(x) dx.$$

Dang II:
$$I = \int P(x) \cdot \ln x \, dx$$

$$\underbrace{\text{Dặt}}_{\text{dv}} \left\{ \begin{array}{l} u = \ln x \\ dv = P(x) \, dx \end{array} \right. \rightarrow \left\{ \begin{array}{l} du = \frac{1}{x} dx \\ v = \int P(x) \, dx = Q(x) \end{array} \right. \quad \text{Vậy } I = \ln x \cdot Q(x) - \int Q(x) \cdot \frac{1}{x} \, dx.$$

Dang III:
$$I = \int e^x \left\{ \begin{array}{c} \sin x \\ \cos x \end{array} \right\} dx$$

Bằng phương pháp tương tự ta tính được $\int \left\{ \begin{array}{l} -\cos x \\ \sin x \end{array} \right\} e^x \, \mathrm{d}x$ sau đó thay vào I.

3.2. Tích phân

3.2.1. Công thức tính tích phân

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a).$$

* Nhận xét: Tích phân của hàm số f từ a đến b có thể kí hiệu bởi $\int_a^b f(x) \mathrm{d}x$ hay $\int_a^b f(t) \mathrm{d}t$. Tích phân đó chỉ phụ thuộc vào f và các cận a,b mà không phụ thuộc vào cách ghi biến số.

3.2.2. Tính chất của tích phân

Giả sử cho hai hàm số f(x) và g(x) liên tục trên K, a, b, c là ba số bất kỳ thuộc K. Khi đó ta có:

$$1. \int_a^a f(x) \, \mathrm{d}x = 0.$$

2.
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
.

3.
$$\int_a^b f(x) dx = \int_a^0 f(x) dx + \int_0^b f(x) dx$$
.

4.
$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$
.

5.
$$\int_a^b k f(x) dx = k \int_a^b f(x) dx.$$

6. Nếu
$$f(x) \ge 0 \forall x \in [a;b]$$
 thì : $\int_a^b f(x) dx \ge 0 \forall x \in [a;b]$.

7. Nếu
$$\forall x \in [a;b]: f(x) \ge g(x) \Rightarrow \int_a^b f(x) \mathrm{d}x \ge \int_a^b g(x) \mathrm{d}x$$
. (Bất đẳng thức trong tích phân).

8. Nếu
$$\forall x \in [a;b]$$
 Nếu $M \le f(x) \le N$ thì $M(b-a) \le \int_a^b f(x) dx \le N(b-a)$.

3.2.3. Phương pháp tính tích phân

- 1. Đổi biến
- a. Phương pháp đổi biến số dạng 1.

Đinh lí:Nếu

- 1. Hàm x = u(t) có đạo hàm liên tục trên đoạn $[\alpha, \beta]$,
- 2. Hàm hợp f(u(t)) được xác định trên $[\alpha, \beta]$,
- 3. $u(\alpha) = a$, $u(\beta) = b$

Khi đó:
$$I = \int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(u(t))u'(t) dt$$
.

PHƯƠNG PHÁP CHUNG

- Bước 1: Đặt x = u(t)
- Bước 2: Tính vi phân hai vế: $x = u(t) \Rightarrow dx = u'(t) dt$. Đổi cận: $\begin{vmatrix} x = bx = a \\ t = \alpha \end{vmatrix}$
- Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t.

Vậy
$$I = \int_{0}^{b} f(x) dx = \int_{\alpha}^{\beta} f[u(t)]u'(t) dt = \int_{\alpha}^{\beta} g(t) dt = G(t) \Big|_{\alpha}^{\beta} = G(\beta) - G(\alpha)$$

b. Phương pháp đổi biến số dạng

Định lí: Nếu hàm số u = u(x) đơn điệu và có đạo hàm liên tục trên đoạn [a;b] sao cho f(x) dx = g(u(x))u'(x) dx = g(u) du thì $I = \int_a^b f(x) dx = \int_{u(a)}^{u(b)} g(u) du$

PHƯƠNG PHÁP CHUNG

- **Bước 1**: Đặt $u = u(x) \Rightarrow du = u(x)dx$
- **Bước 2**: Đổi cận: $\begin{vmatrix} x=b \\ x=a \end{vmatrix} \Rightarrow \begin{vmatrix} u=u(b) \\ u=u(a) \end{vmatrix}$
- Bước 3: Chuyển tích phân đã cho sang tích phân theo biến u.

Vậy:
$$I = \int_{0}^{6} f(x) dx = \int_{a}^{b} g[u(x)]u'(x) dx = \int_{u(a)}^{\alpha(b)} g(u) du$$

2. Tích phân từng phần

Định lí: Nếu u(x) và v(x) là các hàm số có đạo hàm riêng liên tục trên [a;b] thì:

$$\int_0^b u(x)v(x) dx = (u(x)v(x))\Big|_a^b - \int_a^b v(x)u(x) dx \ hay \int_a^b u dv = uv\Big|_a^b - \int_a^b v du.$$

PHƯƠNG PHÁP CHUNG

- **Bước 1**: Viết f(x) dx dưới dạng u dv = uv dx bằng cách chọn một phần thích hợp của f(x) bằng u(x) và phần còn lại $v = \int dv = \int v'(x) dx$.
- **Bước 2**: Tính du = u' dx và $v = \int dv = \int v'(x) dx$.
- **Bước 3**: Tính $\int_a^b v u'(x) dx$ và $uv \Big|_a^b$
- * Cách đặt u và v trong phương pháp tích phân từng phần:

Đặt u theo thứ tự ưu tiên: Lốc-đa-mũ-lượng	$\int_{a}^{b} P(x)c^{x} dx$	$\int_{a}^{b} P(x) \ln x \mathrm{d}x$	$\int_{a}^{b} P(x) \cos x \mathrm{d}x$	$\int_{a}^{b} c^{z} \cos x \mathrm{d}x$
и	P(x)	lnx	P(x)	cx
dv	$c^x dx$	P(x)dx	cosxdx	cosxdx

Nên chọn u là phần của f(x) mà khi lấy đạo hàm thì đơn giản, chọn dv = v' dx là phần của f(x)dx là vi phân một hàm số đã biết hoặc có nguyên hàm dễ tìm.

3.3. Tích phân các hàm số sơ cấp cơ bản

3.3.1. Tích phân hàm hữu tỉ

Dang 1:
$$I = \int_{\alpha}^{\beta} \frac{\mathrm{d}x}{ax+b} = \frac{1}{a} \int_{\alpha}^{\beta} \frac{a \, \mathrm{d}x}{ax+b} = \frac{1}{a} \ln|ax+b| \Big|_{\alpha}^{\beta} \text{ v\'eti } (a \neq 0)$$

Nếu
$$I = \int_{\alpha}^{\beta} \frac{dx}{(ax+b)^k} = \frac{1}{a} \int_{\alpha}^{\beta} (ax+b)^{-k} a \, dx = \frac{1}{a(1-k)} \cdot (ax+b)^{-k+1} \Big|_{\alpha}^{\beta}$$

$$\underline{\mathbf{Dang 2:}}\ I = \int_{ax^2 + bx + c}^{dx} (a \neq 0) \left(ax^2 + bx + c \neq 0 \text{ v\'oi moi} x \in [\alpha; \beta] \right)$$

$$\begin{split} & \text{X\'et } \Delta = b^2 - 4ac +) \text{ N\'eu } \Delta > 0 : \quad x_1 = \frac{-b + \sqrt{\Delta}}{2a}; x_2 = \frac{-b - \sqrt{\Delta}}{2a} \\ & \frac{1}{ax^2 + bx + c} = \frac{1}{a(x - x_1)(x - x_2)} = \frac{1}{a(x_1 - x_2)} \left(\frac{1}{x - x_1} - \frac{1}{x - x_2} \right) \text{ th} \\ & I = \frac{1}{a(x_1 - x_2)} \int_{\alpha}^{\beta} \left(\frac{1}{x - x_1} - \frac{1}{x - x_2} \right) \mathrm{d}x = \frac{1}{a(x_1 - x_2)} [\ln|x - x_1| - \ln|x - x_2|] \right|_{\alpha}^{\beta} = \frac{1}{a(x_1 - x_2)} \left[\frac{1}{x - x_1} - \frac{1}{x - x_2} \right] \left[\frac{1}{x - x_1} - \frac{1}{x - x_2} \right]$$

$$\frac{a(x_1-x_2)J_{\alpha}(x-x_1-x-x_2)}{\frac{1}{a(x_1-x_2)}\ln\left|\frac{x-x_1}{x-x_2}\right|\Big|_{\alpha}^{\beta}}$$

$$\frac{1}{a(x_1 - x_2)} \ln \left| \frac{x - x_1}{x - x_2} \right| \Big|_{\alpha}^{\beta}$$
+) N\text{\text{êu}} \Delta = 0: \frac{1}{ax^2 + bx + c} = \frac{1}{a(x - x_0)^2} \quad \left(x_0 = \frac{-b}{2a} \right)

thì
$$I = \int_{\alpha}^{\beta} \frac{dx}{ax^2 + bx + c} = \frac{1}{a} \int_{\alpha}^{\beta} \frac{dx}{(x - x_0)^2} = -\frac{1}{a(x - x_0)} \Big|_{\alpha}^{\beta}$$

+) Nếu
$$\Delta < 0$$
 thì $I = \int_{\alpha}^{\beta} \frac{\mathrm{d}x}{ax^2 + bx + c} = \int_{\alpha}^{\beta} \frac{\mathrm{d}x}{a\left[\left(x + \frac{b}{2a}\right)^2 + \left(\sqrt{\frac{-\Delta}{4a^2}}\right)^2\right]}$

Đặt
$$x + \frac{b}{2a} = \sqrt{\frac{-\Delta}{4a^2}} \tan t \Rightarrow dx = \frac{1}{2} \sqrt{\frac{-\Delta}{a^2}} (1 + \tan^2 t) dt$$

Dang 3:
$$I = \int_{\alpha}^{\beta} \frac{mx+n}{ax^2+bx+c} dx$$
, $(a \neq 0)$

Dang 3:
$$I = \int_{\alpha}^{\beta} \frac{mx+n}{ax^2+bx+c} dx$$
, $(a \neq 0)$
(trong đó $f(x) = \frac{mx+n}{ax^2+bx+c}$ liên tục trên đoạn $[\alpha; \beta]$)

+) Bằng phương pháp đồng nhất hệ số, ta tìm A và B sao cho:

$$\frac{mx+n}{ax^2+bx+c} = \frac{A\left(ax^2+bx+c\right)'}{ax^2+bx+c} + \frac{B}{ax^2+bx+c} = \frac{A(2ax+b)}{ax^2+bx+c} + \frac{B}{ax^2+bx+c} + \frac{B}$$

Tính tích phân $I = \int_a^b \frac{P(x)}{Q(x)} dx$ với P(x) và Q(x) là đa thức của x

- Nếu bậc của P(x) lớn hơn hoặc bằng bậc của Q(x) thì dùng phép chia đa thức.
- Nếu bậc của P(x) nhỏ hơn bậc của Q(x) thì có thể xét các trường hợp:
- + Khi Q(x) có nghiệm đơn $\alpha_1, \alpha_2, ..., \alpha_n$ thì đặt

$$\frac{P(x)}{Q(x)} = \frac{A_1}{x - \alpha_1} + \frac{A_2}{x - \alpha_2} + \ldots + \frac{A_n}{x - \alpha_n}$$

+ Khi Q(x) có nghiệm đơn và vô nghiệm

$$Q(x) = (x - \alpha)(x^2 + px + q), \Delta = p^2 - 4q < 0$$
 thì đặt

$$\frac{P(x)}{Q(x)} = \frac{A}{x-\alpha} + \frac{B}{x-\beta} + \frac{C}{(x-\beta)^2}$$

+ Khi Q(x) có nghiệm bội

$$Q(x) = (x - \alpha)(x - \beta)^2$$
 với $\alpha \neq \beta$ thì đặt

$$\frac{P(x)}{Q(x)} = \frac{A}{x - \alpha} + \frac{B}{x - \beta} + \frac{C}{(x - \beta)^2}$$

$$Q(x) = (x - \alpha)^2 (x - \beta)^3 \text{ với } \alpha \neq \beta \text{ thì đặt}$$

$$\frac{P(x)}{(x-\alpha)^2(x-\beta)^3} = \frac{A}{(x-\alpha)^2} + \frac{B}{(x-\alpha)} + \frac{C}{(x-\beta)^3} + \frac{D}{(x-\beta)^2} + \frac{E}{x-\beta}$$

3.3.2. Tích phân hàm vô tỉ

$$\int_{a}^{b} R(x, f(x)) dx \text{ trong } \text{d}\text{o} R(x, f(x)) \text{ co dang:}$$

+)
$$R\left(x, \sqrt{\frac{a-x}{a+x}}\right)$$
 Đặt $x = a\cos 2t$, $t \in \left[0, \frac{\pi}{2}\right]$

+)
$$R\left(x, \sqrt{a^2 - x^2}\right)$$
. Đặt $x = |a| \sin t$ hoặc $x = |a| \cos t$

+)
$$R\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right)$$
 Đặt $t = \sqrt[n]{\frac{ax+b}{cx+d}}$

$$+) R(x, f(x)) = \frac{1}{(ax+b)\sqrt{ax^2 + \beta x + \gamma}} V\acute{o}i \left(\alpha x^2 + \beta x + \gamma\right)' = k(ax+b)$$

$$D\check{a}t \ t = \sqrt{ax^2 + \beta x + \gamma} \text{ hoặc đặt } t = \frac{1}{ax+b}$$

Đặt
$$t = \sqrt{\alpha x^2 + \beta x + \gamma}$$
 hoặc đặt $t = \frac{1}{\alpha x + b}$

+)
$$R\left(x, \sqrt{a^2 + x^2}\right)$$
. Đặt $x = |a| \tan t, t \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$

+)
$$R\left(x, \sqrt{x^2 - a^2}\right)$$
. Đặt $x = \frac{|a|}{\cos x}, t \in [0, \pi] \setminus \left\{\frac{\pi}{2}\right\}$

+)
$$R(\sqrt[n]{x}; \sqrt[n]{x}; ..., \sqrt[n]{x})$$
 Gọi $k = BSCNN(n_1; n_2; ...; n_i)$. Đặt $x = t^k$

a. Tích phân dạng:

$$I = \int_{\alpha}^{\rho} \frac{1}{\sqrt{ax^2 + bx} + c} dx \quad (a \neq 0)$$

$$\operatorname{T\`u} f(x) = ax^2 + bx + c = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right] \Rightarrow \begin{cases} x + \frac{b}{2a} = u \\ \frac{\sqrt{\Delta}}{2a} = K \end{cases} \quad \leftrightarrow du = dx$$

Khi đó ta có:

- Nếu
$$\Delta < 0, a > 0 \Rightarrow f(x) = a(u^2 + k^2) \Leftrightarrow \sqrt{f(x)} = \sqrt{a} \cdot \sqrt{u^2 + k^2}$$
 (1)

- Nếu
$$\Delta = 0 \Rightarrow f(x) = a \left(x + \frac{b}{2a} \right)^2 \Leftrightarrow \begin{cases} a > 0 \\ \sqrt{f(x)} = \sqrt{a} \left| x + \frac{b}{2a} \right| = \sqrt{a} |u|^{(2)} \end{cases}$$
 (2)

+ Với
$$a > 0$$
 $f(x) = a(x - x_1)(x - x_2) \Leftrightarrow \sqrt{f(x)} = \sqrt{a} \cdot \sqrt{(x - x_1)(x - x_2)}$ (3)

+ Với
$$a < 0$$
 $f(x) = -a(x_1 - x)(x_2 - x) \Leftrightarrow \sqrt{f(x)} = \sqrt{-a} \cdot \sqrt{(x_1 - x)(x_2 - x)}$ (4)

Căn cứ vào phân tích trên, ta có một số cách giải sau:

* Phương pháp:

* Trường hợp:
$$\Delta < 0, a > 0 \Rightarrow f(x) = a(u^2 + k^2) \Leftrightarrow \sqrt{f(x)} = \sqrt{a} \cdot \sqrt{u^2 + k^2}$$

Khi đó đặt:
$$\sqrt{ax^2 + bx + c} = t - \sqrt{ax}$$

$$\Rightarrow bx + c = t^2 - 2\sqrt{ax} \ x = \alpha \to t = t_0, x = \beta \to t = t_1 \Leftrightarrow x = \frac{t^2 - c}{b + 2\sqrt{a}}; \, \mathrm{d}x = \frac{2}{(b + 2\sqrt{a})}t \, \mathrm{d}t$$

$$t - \sqrt{a}x = t - \sqrt{a}\frac{t^2 - c}{b + 2\sqrt{a}}$$

* Trường hợp:
$$\Delta = 0 \Rightarrow f(x) = a\left(x + \frac{b}{2a}\right)^2 \Leftrightarrow \begin{cases} a > 0 \\ \sqrt{f(x)} = \sqrt{a} \left|x + \frac{b}{2a}\right| = \sqrt{a}|u| \end{cases}$$

Khi đó:
$$I = \int_{\alpha}^{\beta} \frac{1}{\sqrt{a} \left| x + \frac{b}{2a} \right|} dx = \frac{1}{\sqrt{a}} \int_{\alpha}^{\beta} \frac{1}{\left| x + \frac{b}{2a} \right|} dx = \begin{bmatrix} \frac{1}{\sqrt{a}} \ln \left(x + \frac{b}{2a} \right) \Big|_{\alpha}^{\beta} : x + \frac{b}{2a} > 0 \\ -\frac{1}{\sqrt{a}} \ln \left(x + \frac{b}{2a} \right) \Big|_{\alpha}^{\beta} : x + \frac{b}{2a} < 0 \end{bmatrix}$$

* Trường hợp: $\Delta > 0, a >$

* Trường hợp: $\Delta > 0, \alpha < 0$

-Đặt
$$\sqrt{ax^2 + bx + c} = \sqrt{a(x_1 - x)(x_2 - x)} = \begin{bmatrix} (x_1 - x)t \\ (x_2 - x)t \end{bmatrix}$$

b. Tích phân dạng: $I = \int_{a}^{\beta} \frac{mx+n}{\sqrt{ax^2+bx}+c} dx$ $(a \neq 0)$

+
$$Bu\acute{o}c$$
 1: Phân tích $f(x) = \frac{mx + n}{\sqrt{ax^2 + bx + c}} = \frac{Ad\left(\sqrt{ax^2 + bx + c}\right)}{\sqrt{ax^2 + bx + c}} + \frac{B}{\sqrt{ax^2 + bx + c}}$ (1) + $Bu\acute{o}c$ 2: Quy đồng mẫu số, sau đó đồng nhất hệ số hai tử số để suy ra hệ hai ẩn số

A, B.

+ Bước 3: Giải hệ tìm A, B thay vào (1)

+
$$Bu\acute{o}c$$
 4: Tính I = $2A\left(\sqrt{ax^2 + bx + c}\right)\Big|_{\alpha}^{\beta} + B\int_{\alpha}^{\beta} \frac{1}{\sqrt{ax^2 + bx + c}} dx(2).(2)$

Trong đó: $\int_{a}^{\beta} \frac{1}{\sqrt{ax^2 + bx} + c} dx \quad (a \neq 0) \text{ dã biết cách tính ở trên.}$

c. Tích phân dạng:
$$I = \int_{\alpha}^{\beta} \frac{1}{(mx+n)\sqrt{ax^2+bx}+c} dx \quad (a \neq 0)$$

H Phương pháp

+ Bước 1: Phân tích
$$\frac{1}{(mx+n)\sqrt{ax^2+bx+c}} = \frac{1}{m\left(x+\frac{n}{m}\right)\sqrt{ax^2+bx+c}} \cdot (1)$$

+
$$Bu\acute{o}c$$
 2: Đặt: $\frac{1}{y} = x + \frac{n}{m} \Rightarrow y = \frac{1}{x+t} \left(t = \frac{n}{m} \right) \rightarrow dy = -\frac{1}{x+t} dx$

$$x = \frac{1}{y} - t \Rightarrow ax^2 + bx + c = a\left(\frac{1}{y} - t\right)^2 + b\left(\frac{1}{y} - t\right) + c$$

+
$$B u \acute{o} c$$
 3: Thay tất cả vào (1) thì I có dạng: $I=\pm \int_{\alpha'}^{\beta'} \frac{\mathrm{d}y}{\sqrt{Ly^2+My+N}}$

d. Tích phân dạng:
$$I = \int_{\alpha}^{\beta} R(x; y) dx = \int_{\alpha}^{\beta} R\left(x; \sqrt[m]{\frac{\alpha x + \beta}{\gamma x + \delta}}\right) dx$$

Trong đó R(x;y) là hàm số hữu tỉ đối với hai biến số x, y và $\alpha, \beta, \gamma, \delta$ là các hằng số đã biệt

* Phương pháp

+
$$Bu\acute{o}c$$
 1: Đặt $t = \sqrt[m]{\frac{\alpha x + \beta}{\gamma x + \delta}}$

+ $Bu\acute{o}c$ 2: Tính x theo t: Bằng cách nâng lũy thừa bậc m hai vế ta có dạng $x = \varphi(t)$

+ $Bu\acute{o}c$ 3: Tính vi phân hai vế: $dx = \varphi'(t)dt$

+
$$Bu\acute{o}c$$
 4: Tính:
$$\int_{\alpha}^{\beta} R\left(x; \sqrt[m]{\frac{\alpha x + \beta}{\gamma x + \delta}}\right) dx = \int_{a'}^{\beta'} R(\varphi(t); t) \varphi'(t) dt$$

3.3.3. Tích phân hàm lượng giác

Một số công thức lượng giác

a. Công thức cộng:

$$\cos(a \pm b) = \cos a \cdot \cos b \sin a \cdot \sin b$$

$$\sin(a \pm b) = \sin a \cdot \cos b \pm \sin b \cdot \cos a$$

$$\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \cdot \tan b}$$

b. Công thức nhân:

$$\cos 2a = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a = \frac{1 - \tan^2 a}{1 + \tan^2 a}$$

$$\sin 2a = 2\sin \alpha \cdot \cos \alpha = \frac{2\tan \alpha}{1 + \tan^2 \alpha} \quad ; \quad \tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$
$$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha; \quad \sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$

c. Công thức hạ bậc:

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}; \cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}; \tan^2 \alpha = \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}$$

 $\sin^6 \alpha = \frac{3 \sin \alpha - \sin 3\alpha}{4}; \cos^3 \alpha = \frac{\cos 3\alpha + 3 \cos \alpha}{4}$

d. Công thức tính theo t: $t = \tan \frac{a}{2}$

$$\sin a = \frac{2t}{1+t^2}$$
 $\cos a = \frac{1-t^2}{1+t^2}$ $\tan a = \frac{2t}{1-t^2}$

e. Công thức biến đổi tích thành tổng:

$$\cos \alpha \cdot \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$
$$\sin \alpha \cdot \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$
$$\sin \alpha \cdot \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

f. Công thức biến đổi tổng thành tích:

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

$$\tan \alpha + \tan \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$$

$$\tan \alpha - \tan \beta = \frac{\sin(\alpha - \beta)}{\cos \alpha \cos \beta}$$

Hệ quả
$$\cos \alpha + \sin \alpha = \sqrt{2}\cos\left(\alpha - \frac{\pi}{4}\right) = \sqrt{2}\sin\left(\alpha + \frac{\pi}{4}\right)$$

$$\cos \alpha - \sin \alpha = \sqrt{2}\cos\left(\alpha + \frac{\pi}{4}\right) = -\sqrt{2}\sin\left(\alpha - \frac{\pi}{4}\right)$$
Công thức thường dùng
$$\cos^4 \alpha + \sin^4 \alpha = \frac{3 + \cos 4\alpha}{4}$$

$$\cos^6 \alpha + \sin^6 \alpha = \frac{5 + 3\cos 4\alpha}{8}$$

Một số dạng tích phân lượng giác

- Nếu gặp $I = \int_a^b f(\sin x) \cdot \cos x \, dx$ ta đặt $t = \sin x$.
- Nếu gặp dạng $I = \int_a^b f(\cos x) \cdot \sin x \, dx$ ta đặt $t = \cos x$.
- Nếu gặp $I = \int_{a}^{b} f(\tan x) \frac{\mathrm{d}x}{\cos^{2}x}$ ta đặt $t = \tan x$.
- Nếu gặp $I = \int_a^b f(\cot x) \frac{\mathrm{d}x}{\sin^2 x}$ ta đặt $t = \cot x$.

a. Dạng 1: $I_1 = \int (\sin x)^n dx$; $I_2 \int (\cos x)^n dx$ H Phương pháp

- ullet Nếu n chẵn thì dùng công thức hạ bậc
- Nếu n=3 thì sử dụng công thức hạ bậc hoặc biến đổi theo 2.3
- Nếu $3 \le n$ lẻ (n = 2p + 1) thì thực hiện biến đổi:

$$\begin{split} I_1 &= \int (\sin x)^{n} \, \mathrm{d}x = \int (\sin x)^{2p+1} \, \mathrm{d}x = \int (\sin x)^{2p} \sin x \, \mathrm{d} = -\int \left(1 - \cos^2 x\right)^{p} \, \mathrm{d}(\cos x) \\ &= -\int \left[C_p^0 - C_p^1 \cos^2 x + \dots + (-1)^k C_p^k \left(\cos^2 x\right)^k + \dots + (-1)^p C_p^p \left(\cos^2 x\right)^p\right] \, \mathrm{d}(\cos x) \\ &= -\left[C_p^0 \cos x - \frac{1}{3} C_p^1 \cos^3 x + \dots + \frac{(-1)^k}{2k+1} C_p^k (\cos x)^{2k+1} + \dots + \frac{(-1)^p}{2p+1} C_p^p (\cos x)^{2p+1}\right] + C \\ I_2 &= \int (\cos x)^n \, \mathrm{d}x = \int (\cos x)^{2p+1} \, \mathrm{d}x = \int (\cos x)^{2p} \cos x \, \mathrm{d}x = \int \left(1 - \sin^2 x\right)^p \, \mathrm{d}(\sin x) \\ &= \int \left[C_p^0 - C_p^1 \sin^2 x + \dots + (-1)^k C_p^k \left(\sin^2 x\right)^k + \dots + (-1)^p C_p^p \left(\sin^2 x\right)^p\right] \, \mathrm{d}(\sin x) \\ &= \left[C_p^0 \sin x - \frac{1}{3} C_p^1 \sin^3 x + \dots + \frac{(-1)^k}{2k+1} C_p^k (\sin x)^{2k+1} + \dots + \frac{(-1)^p}{2p+1} C_p^p (\sin x)^{2p+1}\right] + C \end{split}$$

b. Dang 2: $I = \int \sin^m x \cos^n x dx$ $(m, n \in N)$

H Phương pháp:

- a Trường hợp 1: m,n là các số nguyên
 - Nếu m chẵn, n chẵn thì sử dụng công thức hạ bậc, biến đổi tích thành tổng.
 - Nếu m chẵn, n lẻ (n = 2p + 1) thì biến đổi:

$$\begin{split} I &= \int (\sin x)^m (\cos x)^{2p+1} \, \mathrm{d}x = \int (\sin x)^m (\cos x)^{2p} \cos x \, \mathrm{d}x = \int (\sin x)^m \left(1 - \sin^2 x\right)^p \, \mathrm{d}(\sin x) \\ &= \int (\sin x)^m \left[C_p^0 - C_p^1 \sin^2 x + \ldots + (-1)^k C_p^k \left(\sin^2 x\right)^k + \ldots + (-1)^p C_p^p \left(\sin^2 x\right)^p \right] \, \mathrm{d}(\sin x) = \\ &\left[C_p^0 \frac{(\sin x)^{m+1}}{m+1} - C_p^1 \frac{(\sin x)^{m+3}}{m+3} + \ldots + (-1)^k C_p^k \frac{(\sin x)^{2k+1+m}}{2k+1+m} + \ldots + (-1)^p C_p^p \frac{(\sin x)^{2p+1+m}}{2p+1+m} \right] + C_p^0 \frac{(\sin x)^{2p+1+m}}{2p+1+m} \end{split}$$

• Nếu m lẻ (n = 2p + 1), n chẵn thì biến đổi:

$$\begin{split} & \mathrm{I} = \int (\sin x)^{2\mathfrak{p}+1} (\cos x)^n \, \mathrm{d}x = \int (\cos x)^n (\sin x)^{2p} \sin x \, \mathrm{d}x = -\int (\cos x)^n \left(1 - \cos^2 x\right)^p \, \mathrm{d}(\cos x) \\ & = -\int (\cos x)^n \left[C_p^0 - C_p^1 \cos^2 x + \ldots + (-1)^k C_p^k \left(\cos^2 x\right)^k + \ldots + (-1)^p C_p^p \left(\cos^2 x\right)^p \right] \, \mathrm{d}(\cos x) = \\ & - \left[C_p^0 \frac{(\cos x)^{n+1}}{n+1} - C_p^1 \frac{(\cos x)^{n+3}}{n+3} + \ldots + (-1)^k C_p^k \frac{(\cos x)^{2k+1+n}}{2k+1+n} + \ldots + (-1)^p C_p^p \frac{(\cos x)^{2p+1+n}}{2p+1+n} \right] + C \end{split}$$

Nếu m lẻ, n lẻ thì sử dụng biến đổi 1.2 hoặc 1.3 cho số mũ lẻ bé hơn

b. Trường hợp 2: m,n là các số hữu tỉ thì biến đổi và đặt u = sinx ta có:

$$B = \int \sin^m x \cos^n x \, dx = \int (\sin x)^m \left(\cos^2 x\right)^{\frac{m-1}{2}} \cos x \, dx = \int u^m \left(1 - u^2\right)^{\frac{m-1}{2}} \, du(*)$$

Tích phân (*) tính được $\Leftrightarrow 1 \text{ trong } 3 \text{ số } \frac{m+1}{2}; \frac{n-1}{2}; \frac{m+k}{2} \text{ là số nguyên}$

c. Dang 3:
$$I_1 = \int (\tan x)^n dx$$
; $I_2 = \int (\cot x)^n dx$ $(n \in \mathbb{N})$

Công thức sử dụng:

•
$$\int (1 + \tan^2 x) dx = \int \frac{dx}{\cos^2 x} = \int d(\tan x) = \tan x + c$$

•
$$\int (1 + \cot^2 x) dx = -\int \frac{dx}{\sin^2 x} = -\int d(\cot x) = -\cot x + C$$

•
$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{d(\cos x)}{\cos x} = -\ln|\cos x| + C$$

3.4. Ứng dung tích phân

3.4.1. Diện tích hình phẳng

a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) liên tục trên đoạn [a,b], trục hoành và hai đường thẳng x = a, x = b được xác định:

$$S = \int_{a}^{b} |f(x)| \, \mathrm{d}x$$

b) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y = g(x) liên tục trên đoạn [a,b] và hai đường thẳng x = a, x = b được xác định:

$$S = \int_a^b |f(x) - g(x)| \, \mathrm{d}x$$

- Nếu trên đoạn [a;b], hàm số f(x) không đổi dấu thì:

$$\int_{a}^{b} |f(x)| \, \mathrm{d}x = \left| \int_{a}^{b} f(x) \, \mathrm{d}x \right|$$

- Nắm vững cách tính tích phân của hàm số có chứa giá trị tuyệt đối.
- Diện tích của hình phẳng giới hạn bởi các đường x = g(y), x = h(y) và hai đường thẳng y = c, y = d được xác định:

$$S = \int_0^d |g(y) - h(y)| \, \mathrm{d}y$$

3.4.2. Thể tích vật thể và thể tích khối tròn xoay

a) Thể tích vật thể:

Gọi B là phần vật thể giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm a và b; S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục tại điểm x, ($a \ge x \ge b$). Giả sử S(x) là hàm số liên tục trên đoạn [a,b].

$$V = \int_0^b S(x) \, \mathrm{d}x$$

b) Thể tích khối tròn xoay:

Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường y = f(x), trục hoành và hai đường thẳng x = a, x = b quanh trục Ox:

$$V_x = \pi \int_a^b [f(x)]^2 \, \mathrm{d}x$$

- Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường x = g(y), trục hoành và hai đường thẳng y = c, y = d quanh trục Oy:

$$V_y = \pi \int_{\varepsilon}^{d} [g(y)]^2 \, \mathrm{d}y$$

- Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường

