Efficient Topology-aware Data Augmentation for High-Degree Graph Neural Networks

Yurui Lai, Xiaoyang Lin, Renchi Yang, Hongtao Wang

Hong Kong Baptist University

KDD 2024

발표자: 박기연

Index

1. Introduction

2. Related Work

3. Method

4. Experiments

5. Conclusion

Graph Neural Networks

- Non-Euclidean Space의 표현 및 학습이 가능
 - 실생활에서 들어오는 비 유클리드 데이터를 처리하기 적합
 - 관계, 상호작용과 같은 추상적 개념을 다루기 적합

Euclidean

Non-Euclidean

Graph Neural Networks

- Non-Euclidean Space의 표현 및 학습이 가능
 - 그렇다면 Non-Euclidean 데이터를 어떻게 입력으로 변환할 것인가?
 - 인접행렬을 통한 표현은 Node Ordering에 Sensitive 하다는 문제
 - Feature Vector를 어떻게 합칠 것인지 또한 난관

Graph Convolutional Networks

• 그래프 구조를 CNN처럼 Locality를 토대로 묶어보자

Graph Convolutional Networks

- 그래프 구조를 CNN처럼 Locality를 토대로 묶어보자
 - 하지만 Graph는 Permutation Invariant
 - Locality나 Sliding Window에 대한 고정된 개념이 없음

Euclidean

Non-Euclidean

Graph Convolutional Networks

- 그래프 구조를 CNN처럼 Locality를 토대로 묶어보자
 - 하지만 Locality나 Sliding Window에 대한 고정된 개념이 없음
 - Graph는 Permutation Invariant

Message Passing

- 타겟 노드를 기준으로 1-hop 이웃 노드들의 Feature들을 Aggregate
 - K-Layer → K-hop Receptive Field

Message Passing

- 그런데 High Degree Graphs로 가게 된다면?
 - 한 노드 당 이웃의 수가 수십, 수백 개

1-hop neighbor overlap Only 1 node

2-hop neighbor overlap About 20 nodes

3-hop neighbor overlap Almost all the nodes!

Data Augmentations for GNNs

- Rule-Based Methods
 - Heuristic에 의존하여 그래프 데이터 수정/조작
 - DropEdge (DropEdge: Towards Deep Graph Convolutional Networks on Node Classification, 2019, Rong et al.)
 - Dropout과 유사한 방식으로 작동
 - 무작위로 에지, 노드, Feature, 서브그래프, 메시지 등을 제거
 - 그래프의 모든 요소를 동일하게 취급하여 정보 손실 발생 → Sub-optimal
 - 가상 노드 추가 (Do transformers really perform badly for graph representation?, 2021, Ying et al.)
 - 모든 노드에 연결된 가상 노드 추가
 - Node Feature Augmentation (Affinity-Aware Graph Networks, 2023, Velingker et al.)
 - Node Embedding → Node Feature Expanding

Data Augmentations for GNNs

- Learning-Based Methods
 - Graph Structure Learning
 - 그래프 구조를 학습 가능한 파라미터로 취급 → 나은 형태의 그래프 구조를 학습
 - Graph Structure Augmentation
 - Rationalization Methods
 - Reinforcement Learning
 - 그래프에서 서브 그래프를 학습 or 서브그래프 혹은 그래프에 대한 최적의 증강 전략을 학습

Graph Sparsification

• 주어진 그래프를 회소 그래프로 근사화

Spectral Sparsification

- 라플라시안 행렬 기반
- For all **n**-dimensional vectors **x**,
- $G = (V, E) \rightarrow G_{\epsilon} = (V, E_{\epsilon})$ with $\tilde{O}(\frac{n}{\epsilon^2})$

$$(1 - \epsilon)x^T L(G)x \leq x^T L(G_{\epsilon})x \leq (1 + \epsilon)x^T L(G)x$$

Cut Sparsification

- Edge 가중치 기반
- For all cuts (S, V-S),

•
$$G = (V, E) \rightarrow G_{\epsilon} = (V, E_{\epsilon}) \text{ with } O(\frac{n \log n}{\epsilon^2})$$

$$(1 - \epsilon)E(S) \le E_{\epsilon}(S) \le (1 + \epsilon)E(S)$$

L = D - A

Structure Embedding

- 각 노드를 둘러싼 그래프 구조를 저차원 특징 벡터로 변환
 - Random walk-based methods
 - Skip-gram 모델을 최적화하는 방식으로 노드 임베딩 학습
 - Matrix factorization-based methods
 - Node-to-node affinity matrices를 분해하여 노드 임베딩 생성
 - Deep learning-based models
 - DNN을 통해 Non-attribute 그래프에서 노드 표현을 학습
 - Resistive Embedding or Spectral Embedding
 - as complementary node features

Problem Definition

- Overcome Over-Smoothing Problem
- Overcome Expense of Calculating & Training on HDGs
- Capture Graph Topology and Node Attributes

Efficient Feature Expansion with Structure Embeddings

Topology & Attribute Aware Graph Sparsification

TADA (Topology Aware Data Augmentation)

Figure 1: Overview of TADA

TADA (Topology Aware Data Augmentation)

• 그래프의 구조적 의미를 더욱 많이 내포하는 Node Features를 Augmentation

Feature Expansion

- Hybrid sketching technique을 인접행렬 A 에 적용
 - Count-Sketch + RWR-Sketch(Random Walk with Restart)
 - $A \rightarrow Count + RWR \rightarrow A' \in \mathbb{R}^{n \times k}$ $(k \ll n, typically k = 128)$
 - $A' \to MLP \to \Omega_{topo} \in \mathbb{R}^{k \times h} \to Structure \ embeddings \ H_{topo} \in \mathbb{R}^{n \times h}$ of all nodes
 - $H_{topo} = \sigma(A'\Omega_{topo})$
- 속성 행렬 $X \to MLP \to \Omega_{attr} \in \mathbb{R}^{d \times h}$
 - $H_{attr} = \sigma(X\Omega_{attr})$
 - $H_{attr} \in \mathbb{R}^{n \times h}$
- $H^{(0)} = (1 \gamma) \cdot H_{attr} + \gamma \cdot H_{topo} \in \mathbb{R}^{n \times h}$
- $H^{(0)}$: Augmented Node Features

$$\mathbf{H}^{(t)} = \sigma(f_{\text{trans}}(f_{\text{aggr}}(\mathcal{G}, \mathbf{H}^{(t-1)}))),$$

$$\mathbf{H}^{(0)} = \sigma(\mathbf{X}\Omega_{\text{orig}}) \in \mathbb{R}^{n \times h}$$

 Ω_{topo} : 학습 가능한 변환 가중치 Ω_{attr} : 학습 가능한 가중치

Pretrained by single-layer MLP By task (i.e., node classification)

Feature Expansion

- HDGs 에서도 A는 희소 행렬임 $(m \ll n^2)$
 - 노드의 차수 분포가 매우 왜곡된 상태
 - 기존 밀집 행렬을 위한 sketch methods는 부적합
- Count-Sketch Method

스케치된 인접 행렬 $A' \in \mathbb{R}^{n \times k}$ 를 O(nnz(A)) = O(m) 시간 안에 계산

- $A' = AR^T$, $R = \Phi \Delta$
 - $\Delta = \mathbb{R}^{n \times n}$: 대각 성분이 1 또는 -1로 0.5의 확률에 따라 선택된 대각 행렬
 - $\Phi \in \{0,1\}^{k \times n}$: 각 열에서 랜덤한 하나의 값이 1이고 나머지는 0인 이진 행렬
 - $\Phi \in \{0,1\}^{k \times n}$ is a binary matrix with $\Phi_{h(i),i} = 1$ and 0 otherwise $\forall 1 \leq i \leq n$. The function $h(\cdot)$ maps i $(1 \leq i \leq n)$ to $h(i) = j \in \{1,2,\cdots,k\}$ uniformly at random.

Feature Expansion

- Limitation of Count-Sketch Method
 - 근사가 보장됨 & 높은 효율성 But!
 - 데이터 비의존적 (스케칭 행렬의 무작위성)
 - Φ 가 무작위로 생성 \rightarrow A'에서 왜곡된 분포 발생 가능
 - 먼 노드가 동일한 클러스터
 - 가까운 노드가 다른 클러스터

Feature Expansion

- Optimization via RWR-Sketch
 - RWR-Sketch $\rightarrow S \in \mathbb{R}^{k \times n}$
 - $A' = A \cdot (R^{\mathsf{T}} + \beta \cdot S^{\mathsf{T}})$
 - S는 n개의 노드를 k개의 분리된 클러스터로 묶음
 - Random walk with Restart > 다중 홉 연결성 요약
 - 진입 차수가 가장 높은 노드 집합 C \rightarrow 클러스터 후보 $(k \le |C| \ll n)$
 - 각 노드 v_i 에 대해 $v_j \in C$ 에 대한 RWR 점수를 구함

$$\pi(v_i, v_j) = \sum_{t=0}^{T} (1 - \alpha) \alpha^t \mathbf{P}_{i,j}$$

- 각 v_j 의 centrality 값 $\pi(v_j) = \sum_{v_i \in \mathcal{V}} \frac{\pi(v_i, v_j)}{n}$ 을 계산
 - 가장 큰 k개의 노드를 최종 Cluster Center로 선정
- 각 $v_i \in V$ 에 대해, 가장 높은 RWR 점수를 가진 $v_i \in C_k$ 선택, $S_{i,i} = 1$ 로 설정
- 각 행에 대해 L2 정규화

TADA (Topology Aware Data Augmentation)

- Module I의 output에 기반하여 그래프 구조 희소화
- 그래프 구조에서 중복되거나 노이즈가 많은 connections 제거
- → 그래프 구조 및 노드 속성을 반영한 희소화

Graph Sparsification

- - 모든 에지의 centrality values를 계산 가능함

Centrality values는 곧 그래프에서 edge의 중요성에 대한 지표

- 이를 토대로 Edge Reweighting
 - $w(e_{i,j}) = \cos\left(\mathbf{H}_i^{(0)}, \mathbf{H}_j^{(0)}\right)$
- 노드 v_i 의 차수 또한 연결된 edge들의 가중치 합으로 계산

•
$$d_{w}(v_{i}) = \sum_{v_{j} \in \mathcal{N}(v_{i})} w(e_{i,j})$$

- 위의 과정을 거친 그래프 $G_w = (V, E_w)$
- 그래프 G_w 에서의 Effective Resistance를 근사화

•
$$\frac{1}{2} \left(\frac{1}{d_w(v_i)} + \frac{1}{d_w(v_j)} \right) \le r_w(e_{i,j}) \le \frac{1}{1 - \lambda_2} \left(\frac{1}{d_w(v_i)} + \frac{1}{d_w(v_j)} \right)$$

• 각 edge $e_{i,j}$ 의 ER은 $\frac{1}{d_w(v_i)} + \frac{1}{d_w(v_j)}$ 에 비례한 값을 갖게 됨

Graph Sparsification

- Edge Ranking and Sparsification of G_w
 - 희소화된 그래프 구성을 위해 Centrality Values에 따라 오름차순으로 에지를 정렬
 - Centrality Value $C_w(e_{i,j}) = w(e_{i,j}) \cdot \left(\frac{1}{d_w(v_i)} + \frac{1}{d_w(v_j)}\right)$
 - 직관적으로 에지 $e_{i,j}$ 가 노드 v_i 와 v_j 에 연결된 모든 에지들 사이에서 얼마나 중요한 지
 - 희소화 비율 ρ 가 주어지면
 - $m\cdot
 ho$ 개의 하위 Centrality Values를 가지는 Edge 부분집합 $arepsilon_{rm}$ 을 삭제
 - $\forall e_{i,j} \in \varepsilon_w \setminus \varepsilon_{rm}$ $A_{i,j}^{\circ} = w(e_{i,j})$
 - A°: 희소화된 그래프의 인접행렬
 - $\varepsilon_w \setminus \varepsilon_{rm}$: 제거되지 않고 남은 에지들
 - 즉, 제거되지 않은 edge들의 가중치 \rightarrow 희소화된 인접행렬 A° 에 그대로 반영됨

Datasets & Setup

Table 2: Statistics of Datasets ($K = 10^3$ and $M = 10^6$).

Dataset	n	m	d	$ \mathcal{Y} $	m/n	HR
Photo [65]	7.7K	238.2K	745	8	31.1	0.83
WikiCS [54]	11.7K	431.7K	300	10	36.9	0.65
Reddit2 [107]	233K	23.2M	602	41	99.6	0.78
Amazon2M [12]	2.45M	61.9M	100	47	25.3	0.81
Squirrel [58]	5.2K	396.9K	2.1K	5	76.3	0.22
Penn94 [32]	41.6K	1.4M	128	2	32.8	0.47
Ogbn-Proteins [32]	132.5K	39.6M	8	112	298.5	0.38
Pokec [45]	1.6M	30.6M	65	2	18.8	0.45

- 8개의 Benchmark HDGs ($18 \le m/n$ 인 고-차수 그래프)
- |Y|: 그래프 G 내의 노드들에 대한 클래스 라벨의 개수
- HR: Homophily Ratio, 동일한 클래스의 노드들간 연결된 에지 비율 (0.5 미만 = Heterophilic)

Results

Table 3: Node classification results (% test accuracy) of different GNN backbones with and without TADA on homophilic and heterophilic graphs. We conduct 10 trials and report mean accuracy and standard deviation over the trials.

Method	Photo	WikiCS	Reddit2	Amazon2M	Squirrel	Penn94	Ogbn-Proteins	Pokec
GCN	94.63±0.15	84.05±0.76	92.58±0.03	74.12±0.19	54.85±2.02	75.9±0.74	69.75±0.6	75.47±1.36
GCN + TADA	94.92±0.45	84.62±0.53	94.86±0.22	76.14±0.23	73.48±1.61	76.06±0.43	73.79±0.76	75.01±0.27
GAT	93.84±0.46	83.74±0.75	OOM	OOM	55.70±3.26	71.09±1.35	OOM	73.20±7.02
GAT + TADA	94.58±0.12	84.97±0.84	95.97±0.04	59.16±0.36	72.99±2.81	71.19±0.78	74.94±0.25	7 4.26±0. 94
SGC	93.29±0.79	83.47±0.83	94.78±0.02	59.86±0.04	52.18±1.49	56.77±0.14	70.33±0.04	67.40±5.56
SGC + TADA	94.93±0.39	83.97±0.71	95.65±0.02	73.39±0.35	72.32±2.72	71.02±0.53	74.31±0.42	62.06±0.52
APPNP	94.95±0.33	85.04±0.60	90.86±0.19	65.51±0.36	54.47±2.06	69.25±0.38	75.19±0.58	62.79±0.11
APPNP + TADA	95.42±0.53	85.19±0.56	95.34±0.18	69.81±0.24	73.24±1.38	71.08±0.62	75.52±0.32	67.03±0.27
GCNII	95.12±0.12	85.13±0.56	94.66±0.07	OOM	53.13±4.29	74.97±0.35	73.11±1.93	76.49±0.88
GCNII + TADA	95.54±0.44	85.42±0.60	96.62±0.08	77.83±0.62	72.89±2.45	75.84±3.13	75.34±1.33	77.64±0.32

- Homophilic & Heterophilic 그래프 모두에서 정확도 향상
- Squirrel에서 가장 큰 성능 향상 폭을 보임
 - 정보가 거의 없는 노드 Attribute > 구조적 특징이 크게 기여
- Reddit2 & Ogbn-Proteins 데이터셋의 경우 m/n 이 특히 큰 HDG
 - Over-smoothing & edge noise 문제를 의도한 대로 해결
- Pokec의 GCN+TADA & SGC+TADA의 경우, 평균 정확도는 낮아졌지만 성능 안정성 향상

Results

- Feature Aggregation Overhead
 - Ogbn-Proteins (Heterophilic)
 - Reddit2 (Homophilic)
 - 추론 속도
 - Ogbn-Proteins
 - GCN, APPNP, GCNII 추론 속도 약 121, 198, 86배 향상
 - Reddit에서는 유사하거나 더 부진
 - 에포크 당 학습 시간
 - 전체적 향상
 - 메모리 사용량
 - 24% ~ 16% 까지 감소
 - 전체적으로 HDG에서 GNN이 겪는 문제를 성공적으로 해결

Results

Table 4: Comparison with GDA Baselines.

Method	R	Reddit2	Ogbn-Proteins		
Wiethou	Acc (%) Trng. / Inf. (ms)		Acc (%) Trng. / Inf. (1		
GCN	92.58 _{±0.03}	53.4 / 0.31	69.75 _{±0.6}	210.59 / 94.01	
GCN+DropEdge	$93.59_{\pm0.05}$	49.51 / 0.31	61.46 _{±3.33}	62.65 / 93.53	
GCN+GraphMix	92.60 _{±0.07}	128.58 / 0.38	$72.41_{\pm 1.34}$	441.23/93.95	
GCN+TADA	$94.86_{\pm0.22}$	24 / 0.44	$73.79_{\pm0.76}$	52.26 / 0.78	
GCNII	$94.66_{\pm0.07}$	125.6 / 0.66	$73.11_{\pm 1.93}$	211.31 / 95.52	
GCNII+DropEdge	96.23 _{±0.05}	72.39 / 0.66	60.50 _{±5.42}	67.45 / 95.39	
GCNII+GraphMix	96.19 _{±0.05}	172.66/0.72	$63.75_{\pm 1.72}$	456.59 / 95.34	
GCNII+TADA	$96.62_{\pm 0.08}$	49.5 / 0.72	$75.34_{\pm 1.33}$	42.68 / 1.11	

Best is bolded and runner-up underlined.

- Comparison with Graph Data Augmentation Baselines
 - Reddit2와 Ogbn-Proteins에서 GCN, GCNII Backbone, +DropEdge, +GraphMix vs. +TADA 비교 (정확도, 학습, 추론)
 - +TADA의 경우 두 데이터셋 모두에서 정확도, 훈련 및 추론 속도에서 크게 향상
 - GDA Baseline들을 접목한 경우에는 Backbone보다 성능 및 추론 속도가 떨어지는 경우도 존재
 - HDG에서 기존 GDA 방법들의 한계에 대한 분석과 일치

Results

Table 5: Ablation Study

Method	Reddit2	Obgn-Proteins
GCN	92.58 _{±0.03}	69.75 _{±0.60}
+ Count-Sketch	93.81 _{±0.88}	72.90 _{±2.14}
+ RWR-Sketch	94.25 _{±0.66}	70.33 _{±2.54}
+ Module II (i.e., GCN+TADA)	$94.86_{\pm0.22}$	$73.79_{\pm 0.76}$
Random Projection (Module I)	93.99 _{±0.74}	72.26 _{±0.77}
k-SVD (Module I)	93.36 _{±0.51}	69.79 _{±1.37}
DeepWalk (Module I)	94.48 _{±0.34}	$72.56_{\pm0.94}$
node2vec (Module I)	94.47 _{±0.41}	$73.05_{\pm 1.50}$
LINE (Module I)	$94.49_{\pm0.34}$	72.49 _{±1.66}
RS (Module II)	91.04 _{±0.04}	72.54±1.11
k-Neighbor Spar (Module II)	93.97 _{±0.7}	$72.90_{\pm 1.47}$
SCAN (Module II)	89.93 _{±0.78}	71.85 _{±1.25}
DSpar (Module II)	93.58 _{±0.08}	72.75 _{±1.11}

Best is bolded and runner-up underlined.

- Ablation Study
 - Reddit2 & Obgn-Proteins
 - GCN Backbone
 - +TADA
 - Module I 의 각 단계
 - Module I + Module II
 - Module I의 Sketching 기법 변환 (Module II 고정)
 - Module II를 대체하여 실험
 - Module I + Module II가 다른 대안들에 비해 월등한 성능

Conclusion

Limits

• Heterophilic에서의 향상이 크긴 하지만, Homophilic에 비해서 여전히 낮은 정확도

Contribution

- HDGs에서 기존 방식이 가지는 문제점을 효과적으로 개선
 - OOM → 59.16~77.83% Accuracy
- Heterophilic에도 적용이 가능한 Method이며 성능 향상을 보임

감사합니다