Programme de colle n°22

Géométrie plane

- 1) Base orthonormée directe.
- 2) Coordonnées cartésiennes, coordonnées polaires.
- 3) Produit scalaire.
- 4) Produit mixte ou déterminant.
- 5) Équation de droites, représentation paramétrique, vecteur directeur, normal.
- 6) Distance d'une droite à un point.
- 7) Équation de cercles.
- 8) Intersection de droites, de cercles.

Polynômes

- 1) Définition de $\mathbb{K}[X]$ pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .
- 2) Structure d'espace vectoriel, sous-espace vectoriel $\mathbb{K}_n[X]$.
- 3) Degré d'un polynôme, $\deg(P+Q)$, $\deg(PQ)$, $\deg(P\circ Q)$.
- 4) Division euclidienne dans $\mathbb{K}[X]$.
- 5) Racines de multiplicité k, lien avec la dérivée de P.
- 6) Théorème de d'Alembert-Gauss : tout polynôme de $\mathbb{C}[X]$ est scindé.
- 7) Polynômes irréductibles dans $\mathbb{C}[X]$, dans $\mathbb{R}[X]$.
- 8) Factorisation dans $\mathbb{C}[X]$, dans $\mathbb{R}[X]$.
- 9) Relation racines/coefficients de P pour la somme, le produit.
- 10) Décomposition en éléments simples.

Questions de cours

- 1) Effectuer une division euclidienne de polynômes choisis par le colleur.
- 2) Dans le théorème de la division euclidienne, montrer l'unicité du couple (Q, R) sous réserve d'existence.
- 3) Soit P un polynôme. Montrer que P est inversible dans $\mathbb{K}[X]$ si et seulement si P est constant non nul.
- 4) Soient $P \in \mathbb{K}[X]$ et $\alpha, \beta \in \mathbb{K}$ tels que $\alpha \neq \beta$ Déterminer le reste de la division euclidienne de P par $X \alpha$ puis celui de P par $(X \alpha)(X \beta)$.
- 5) Déterminer une base de $E = \{P \in \mathbb{R}_4[X] \mid P(2) = 0\}.$
- 6) Factoriser dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]: P = X^4 1$ et $P = X^5 1$.
- 7) Décomposer en éléments simples (dans \mathbb{R}) : $R = \frac{X^3 + X}{X^3 1}$.