Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_tehnologic* Barem de evaluare și de notare

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(1 - \frac{1}{2}\right)^2 = \frac{1}{4}$	3p
	$\frac{1}{4} + \frac{3}{4} = 1$	2p
2.	f(0) = 4	3 p
	Coordonatele punctului de intersecție sunt $x = 0$ și $y = 4$	2p
3.	3x-1=2	3p
	x=1	2p
4.	Numerele naturale de o cifră mai mici sau egale cu 3 sunt 0, 1, 2 și 3, deci sunt 4 cazuri	2n
	favorabile	2p
	Sunt 10 numere naturale de o cifră, deci sunt 10 cazuri posibile	1p
	nr. cazuri favorabile 4 2	•
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{10} = \frac{2}{5}$	2p
5.	AB = 3	2p
	$BC = 3 \Rightarrow AB = BC$	3p
6.	AC = 8	2p
	$\mathcal{A}_{\Delta ABC} = \frac{6 \cdot 8}{2} = 24$	3 p

SUBIECTUL al II-lea

1.a)	1 2	_
	$\det A = \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} =$	2p
	$=1\cdot 4-2\cdot 2=0$	3р
b)	$A \cdot A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 10 & 20 \end{pmatrix} =$	3 p
	$=5 \cdot \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = 5A$	2p
c)	$A + \begin{pmatrix} x & y \\ y & -3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} + \begin{pmatrix} x & y \\ y & -3 \end{pmatrix} = \begin{pmatrix} 1+x & 2+y \\ 2+y & 1 \end{pmatrix}$	3р
	$\begin{pmatrix} 1+x & 2+y \\ 2+y & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow x = 0, \ y = -2$	2p
2.a)	$(-1) \circ 1 = -1 + 1 + (-1) \cdot 1 =$	3 p
	=0-1=-1	2p
b)	$x \circ y = x + xy + y + 1 - 1 =$	2p
	=x(y+1)+(y+1)-1=(x+1)(y+1)-1 pentru orice numere reale x și y	3 p

c)	$(x+2)(x-2)-1=4 \Leftrightarrow x^2-9=0$	3 p
	$x_1 = -3$ şi $x_2 = 3$	2p

SUBIECTUL al III-lea

БСВП	COUL al III-lea (So de p	unete)
1.a)	$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x - 1}{x - 2} =$	2p
	$=\frac{3-1}{3-2}=2$	3 p
b)	$f'(x) = \frac{(x-1)'(x-2)-(x-1)(x-2)'}{(x-2)^2} =$	2 p
	$=\frac{x-2-x+1}{(x-2)^2} = -\frac{1}{(x-2)^2}, \ x \in (2,+\infty)$	3р
c)	y-f(3) = f'(3)(x-3)	2p
	f(3) = 2, $f'(3) = -1$, deci ecuația tangentei este $y = -x + 5$	3 p
2.a)	$\int_{-1}^{1} (2x+1) dx = (x^2 + x) \Big _{-1}^{1} =$	3p
	=2-0=2	2 p
b)	$V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} x^{4} dx =$	2p
	$=\pi \frac{x^5}{5} \Big \frac{1}{0} = \frac{\pi}{5}$	3p
c)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x)$	2p
	$F'(x) = (x+1)^2 \ge 0$ pentru orice $x \in \mathbb{R}$, deci funcția F este crescătoare pe \mathbb{R}	3p

Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_tehnologic*

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că $\left(1 \frac{1}{2}\right)^2 + \frac{3}{4} = 1$.
- **5p** 2. Determinați coordonatele punctului de intersecție a graficul funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 4 cu axa Oy.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{3x-1} = 9$.
- **5p 4.** Calculați probabilitatea ca alegând un număr din mulțimea numerelor naturale de o cifră, acesta să fie mai mic sau egal cu 3.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,1), B(4,1) și C(4,4). Arătați că AB = BC.
- **5p** | **6.** Determinați aria triunghiului ABC dreptunghic în A știind că AB = 6 și BC = 10.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = 0.
- **5p b**) Arătați că $A \cdot A = 5A$.
- **5p** c) Determinați numerele reale x și y pentru care $A + \begin{pmatrix} x & y \\ y & -3 \end{pmatrix} = I_2$.
 - **2.** Pe multimea numerelor reale se definește legea de compoziție $x \circ y = x + y + xy$.
- **5p** | **a**) Arătați că $(-1) \circ 1 = -1$.
- **5p b)** Arătați că $x \circ y = (x+1)(y+1)-1$ pentru orice numere reale x și y.
- **5p** | c) Rezolvați în mulțimea numerelor reale ecuația $(x+1) \circ (x-3) = 4$.

- **1.** Se consideră funcția $f:(2,+\infty) \to \mathbb{R}$, $f(x) = \frac{x-1}{x-2}$.
- **5p** a) Arătați că $\lim_{x \to 3} f(x) = 2$.
- **5p b**) Arătați că $f'(x) = -\frac{1}{(x-2)^2}, x \in (2,+\infty).$
- **5p c**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 3$, situat pe graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x + 1$.
- **5p** a) Arătați că $\int_{-1}^{1} (2x+1) dx = 2$.
- **5p b**) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}$, g(x) = f(x) 2x 1.
- **5p** | c) Demonstrați că orice primitivă a funcției f este o funcție crescătoare pe \mathbb{R} .

Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_tehnologic* Barem de evaluare și de notare

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$5(2+\sqrt{3})=10+5\sqrt{3}$	3p
	$5(2+\sqrt{3})-5\sqrt{3}=10+5\sqrt{3}-5\sqrt{3}=10$	2p
2.	$f(1) = a \Rightarrow 1 + 3 = a$	3p
	a = 4	2 p
3.	2x+1=5	3p
	x = 2 care verifică ecuația	2p
4.	Sunt 9 numere de două cifre care sunt divizibile cu 10, deci sunt 9 cazuri favorabile	2p
	Sunt 90 de numere de două cifre, deci sunt 90 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{cazuri favorabile}} = \frac{9}{100} = \frac{1}{100}$	•
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	2 p
5.	$AB = \sqrt{(2-3)^2 + (5-5)^2}$	3p
	AB = 1	2p
6.	$\sin 30^\circ = \frac{1}{2}, \cos 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\sin^2 30^\circ + \cos^2 45^\circ = \frac{1}{4} + \frac{2}{4} = \frac{3}{4}$	3 p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	4 8	
,	$\det A = \begin{vmatrix} 4 & 8 \\ 1 & 2 \end{vmatrix} =$	2p
	$= 4 \cdot 2 - 1 \cdot 8 = 0$	3р
b)	$B+C = \begin{pmatrix} 4 & 2+x \\ 1 & 2 \end{pmatrix}$	
	$B+C=\begin{pmatrix} 1 & 2 \end{pmatrix}$	3р
	$\begin{pmatrix} 4 & 2+x \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ 1 & 2 \end{pmatrix} \Rightarrow x = 6$	200
	$\begin{pmatrix} 1 & 2 \end{pmatrix}^{-} \begin{pmatrix} 1 & 2 \end{pmatrix}^{-\lambda x - 0}$	2 p
c)	$B \cdot B = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix}$	3р
	$\begin{pmatrix} -1 & -2 \end{pmatrix} \begin{pmatrix} -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$	Эр
	$B \cdot B + B = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2p
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2p
2.a)	$0 \circ (-4) = 0 \cdot (-4) + 4 \cdot 0 + 4 \cdot (-4) + 12 =$	3 p
	=-16+12=-4	2p
b)	$x \circ y = xy + 4x + 4y + 16 - 4 =$	2 p
	= x(y+4)+4(y+4)-4=(x+4)(y+4)-4 pentru orice numere reale x şi y	3 p

Probă scrisă la matematică $M_tehnologic$

Barem de evaluare și de notare

Varianta 1

c)	$(x+4)^2-4=12$	2p
	$x^2 + 8x = 0 \Rightarrow x_1 = -8 \text{si} x_2 = 0$	3 p

SUBIECTUL al III-lea

1.a)	$f'(x) = \frac{1}{x} - \left(-\frac{1}{x^2}\right) =$	3 p
	$= \frac{1}{x} + \frac{1}{x^2} = \frac{x+1}{x^2}, \ x \in (0, +\infty)$	2p
b)	$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2) =$	3р
	$=\frac{2+1}{2^2}=\frac{3}{4}$	2 p
c)	y - f(1) = f'(1)(x-1)	2p
	f(1) = -1, $f'(1) = 2$, deci ecuația tangentei este $y = 2x - 3$	3 p
2.a)	$\int_{0}^{1} e^{x} dx = e^{x} \Big _{0}^{1} =$	3p
	$=e^1-e^0=e-1$	2 p
b)	$F'(x) = \left(e^x - \frac{x^2}{2} - 1\right)' = e^x - x =$	3р
	= f(x) pentru orice număr real x , deci F este o primitivă a funcției f	2p
c)	$\int_{0}^{1} F(x) dx = \int_{0}^{1} \left(e^{x} - \frac{x^{2}}{2} - 1 \right) dx = \int_{0}^{1} e^{x} dx - \int_{0}^{1} \frac{x^{2}}{2} dx - \int_{0}^{1} dx =$	2p
	$=e^{x}\left \frac{1}{0} - \frac{x^{3}}{6}\right ^{1}_{0} - x\left \frac{1}{0} = e - 1 - \frac{1}{6} - 1 = e - \frac{13}{6}$	3p

Examenul de bacalaureat național 2014 Proba E. c) – 2 iulie 2014 Matematică *M_tehnologic*

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $5(2+\sqrt{3})-5\sqrt{3}=10$.
- **5p** 2. Determinați numărul real a știind că f(1) = a, unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 3.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\log_2(2x+1) = \log_2 5$.
- **5p 4.** Calculați probabilitatea ca alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie divizibil cu 10.
- **5.** În reperul cartezian xOy se consideră punctele A(2,5) și B(3,5). Calculați distanța de la punctul A la punctul B.
- **5p 6.** Arătați că $\sin^2 30^\circ + \cos^2 45^\circ = \frac{3}{4}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 4 & 8 \\ 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}$ și $C = \begin{pmatrix} 3 & x \\ 2 & 4 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det A = 0$.
- **5p** | **b**) Determinați numărul real x știind că B + C = A.
- **5p** c) Arătați că $B \cdot B + B = O_2$, unde $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + 4x + 4y + 12$.
- **5p a**) Arătați că $0 \circ (-4) = -4$.
- **5p b)** Arătați că $x \circ y = (x+4)(y+4)-4$ pentru orice numere reale x și y.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația $x \circ x = 12$.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \ln x \frac{1}{x}$.
- **5p a)** Arătați că $f'(x) = \frac{x+1}{x^2}, x \in (0,+\infty).$
- **5p b**) Arătați că $\lim_{x\to 2} \frac{f(x)-f(2)}{x-2} = \frac{3}{4}$.
- **5p c**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 1$, situat pe graficul funcției f.
 - **2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x x$ și $F: \mathbb{R} \to \mathbb{R}$, $F(x) = e^x \frac{x^2}{2} 1$.
- **5p a)** Arătați că $\int_{0}^{1} e^{x} dx = e 1$.
- **5p b**) Arătați că funcția F este o primitivă a funcției f.
- **5p** c) Calculați $\int_{0}^{1} F(x) dx$.

Matematică *M_tehnologic*Barem de evaluare și de notare

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$ (1+\sqrt{2})^2 = 3+2\sqrt{2} $ $ 3+2\sqrt{2}-2\sqrt{2}=3 $	3p
	$3 + 2\sqrt{2} - 2\sqrt{2} = 3$	2p
2.	$f(x) = 0 \Rightarrow x - 1 = 0$	3 p
	Coordonatele punctului de intersecție sunt $x=1$ și $y=0$	2p
3.	x+1=2	3 p
	x=1	2p
4.	Numerele naturale de o cifră, divizori ai lui 8, sunt 1, 2, 4 și 8, deci sunt 4 cazuri favorabile	2p
	Sunt 10 numere naturale de o cifră, deci sunt 10 cazuri posibile	1p
	nr. cazuri favorabile 4 2	
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{10} = \frac{2}{5}$	2 p
5.	AB = 2	2p
	$BC = 2 \Rightarrow AB = BC$, deci $\triangle ABC$ este isoscel	3p
6.	$\sin 30^{\circ} = \frac{AB}{10}$	2p
	AB = 5	3 p

SUBIECTUL al II-lea

1.a)	$\det B = \begin{vmatrix} 1 & 1 \\ 8 & 3 \end{vmatrix} =$	2p
	=3-8=-5	3 p
b)	$\det A = \begin{vmatrix} a & 1 \\ 8 & 3 \end{vmatrix} = 3a - 8$	3р
	$a \in \mathbb{Z} \Rightarrow 3a - 8 \neq 0$	2 p
c)	$A^{-1} = \frac{1}{3a - 8} \begin{pmatrix} 3 & -1 \\ -8 & a \end{pmatrix}$	3 p
	$3a-8=-1 \Rightarrow a=\frac{7}{3}$ nu este număr întreg	1p
	$3a-8=1 \Rightarrow a=3$ pentru care inversa matricei A are toate elementele numere întregi	1p
2.a)	$1*5=1\cdot 5-5\cdot 1-5\cdot 5+30$	3р
	=-25+30=5	2 p
b)	x * y = xy - 5x - 5y + 25 + 5 =	2p
	$=x(y-5)-5(y-5)+5=(x-5)(y-5)+5$ pentru orice numere reale $x \neq y$	3 p
c)	$(x-5)^2 + 5 = x \Leftrightarrow x^2 - 11x + 30 = 0$	3p
	$x_1 = 5$ și $x_2 = 6$	2p

1.a)	$f'(x) = \left(x^2 - x\right)' =$	2p
	$= \left(x^2\right)' - x' = 2x - 1, \ x \in \mathbb{R}$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x^2} = \lim_{x \to +\infty} \frac{x^2 - x}{x^2} =$	2 p
	=1	3p
c)	y - f(1) = f'(1)(x-1)	2p
	f(1) = 0, $f'(1) = 1$, deci ecuația tangentei este $y = x - 1$	3 p
2.a)	$\int_{1}^{e} \frac{1}{x} dx = \ln x \Big _{1}^{e} =$	3p
	$= \ln e - \ln 1 = 1$	2p
b)	$F'(x) = (x^2 + \ln x + 2)' = 2x + \frac{1}{x} =$	3p
	$= f(x)$ pentru orice $x \in (0, +\infty)$, deci F este o primitivă a funcției f	2p
c)	$\mathcal{A} = \int_{1}^{2} f(x) dx = \int_{1}^{2} \left(2x + \frac{1}{x}\right) dx = \left(x^{2} + \ln x\right) \Big _{1}^{2} = 3 + \ln 2$	3p
	$2 < e \Rightarrow \ln 2 < \ln e \Rightarrow 3 + \ln 2 < 3 + 1 \Rightarrow \mathcal{A} < 4$	2p

Examenul de bacalaureat național 2014 Proba E. c) Matematică *M tehnologic*

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(1+\sqrt{2})^2 2\sqrt{2} = 3$.
- **5p** 2. Determinați coordonatele punctului de intersecție a graficului funcției $f : \mathbb{R} \to \mathbb{R}$, f(x) = x 1 cu axa Ox.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{x+1} = 3^2$.
- **5p 4.** Calculați probabilitatea ca alegând un număr din mulțimea numerelor naturale de o cifră, acesta să fie divizor al lui 8.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,1), B(3,1) și C(3,3). Arătați că triunghiul ABC este isoscel.
- **5p 6.** Determinați lungimea laturii *AB* a triunghiului *ABC* dreptunghic în *A*, știind că *BC* = 10 și $m(\angle C) = 30^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} a & 1 \\ 8 & 3 \end{pmatrix}$ și $B = \begin{pmatrix} 1 & 1 \\ 8 & 3 \end{pmatrix}$, unde a este număr întreg.
- **5p** a) Arătați că det B = -5.
- **5p b**) Arătați că det $A \neq 0$ pentru orice număr întreg a.
- **5p** $| \mathbf{c} |$ Determinați numărul întreg a știind că inversa matricei A are toate elementele numere întregi.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție x * y = xy 5x 5y + 30.
- **5p** | **a**) Arătați că 1*5=5.
- **5p b)** Arătați că x * y = (x-5)(y-5)+5 pentru orice numere reale x și y.
- **5p** | **c**) Rezolvați în mulțimea numerelor reale ecuația x * x = x.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 x$.
- **5p** a) Arătați că $f'(x) = 2x 1, x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{f(x)}{x^2}$.
- **5p c**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 1$, situat pe graficul funcției f.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = 2x + \frac{1}{x}$.
- **5p a)** Arătați că $\int_{1}^{e} \frac{1}{x} dx = 1$.
- **5p** | **b**) Arătați că funcția $F:(0,+\infty) \to \mathbb{R}$, $F(x) = x^2 + \ln x + 2$ este o primitivă a funcției f.
- **5p** c) Arătați că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 1 și x = 2 are aria mai mică strict decât 4.

Examenul de bacalaureat național 2014 Proba E. c) Matematică *M_tehnologic*

Barem de evaluare și de notare

Varianta 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte) $-\frac{2}{a} = \frac{3}{2} - \frac{2}{3} =$ 2p **3p** 2. 2x-3 = x+1**3p** 2p 3. $x^2 + 5 = 9$ **2p** $x_1 = -2$ și $x_2 = 2$, care verifică ecuația **3p** 4. 10 $\cdot 120 = 12$ **3p** 100 După scumpire prețul imprimantei este 120+12=132 de lei 2p AB = 3, BC = 4 si AC = 53p $P_{\Delta ABC} = 3 + 4 + 5 = 12$ 2p 6. **3p**

SUBIECTUL al II-lea (30 de puncte)

	, д	
1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} =$	2p
	$=1 \cdot 0 - 1 \cdot 2 = -2$	3 p
b)	$A+B=\begin{pmatrix}b+1&b+2\\1&1\end{pmatrix},\ AB=\begin{pmatrix}b&b+2\\b&b\end{pmatrix},\ AB+C=\begin{pmatrix}b+1&b+2\\b&b\end{pmatrix}$	3 p
	$ \begin{pmatrix} b+1 & b+2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} b+1 & b+2 \\ b & b \end{pmatrix} \Leftrightarrow b=1 $	2 p
c)	$\det(B+2C) = \begin{vmatrix} b+2 & b \\ 0 & 1 \end{vmatrix} = b+2$	3p
	$\det B = b \Rightarrow \det B - \det A = b + 2 \Rightarrow \det (B + 2C) = \det B - \det A \text{ pentru orice număr real } b$	2p
2.a)	$f(1) = 1^3 - 4 \cdot 1^2 + 1 + 2 =$	3p
	=1-4+3=0	2 p
b)	Câtul este $X^2 - 3X - 2$	3p
	Restul este 0	2 p
c)	$x_1 + x_2 + x_3 = 4$, $x_1x_2 + x_2x_3 + x_1x_3 = 1$, $x_1x_2x_3 = -2$	3 p
	$\left(x_1 + x_2 + x_3\right) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) = \frac{\left(x_1 + x_2 + x_3\right)\left(x_1x_2 + x_2x_3 + x_1x_3\right)}{x_1x_2x_3} = -2$	2p

2p

1.a)	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \left(x^2 - \ln x \right) =$	2p
	$=1^2 - \ln 1 = 1$	3 p
b)	$f'(x) = (x^2 - \ln x)' =$	2p
	$= (x^2)' - (\ln x)' = 2x - \frac{1}{x}, \ x \in (0, +\infty)$	3p
c)	$f''(x) = \left(2x\right)' - \left(\frac{1}{x}\right)' =$	2p
	= $2 + \frac{1}{x^2} > 0$ pentru orice $x \in (0, +\infty)$, deci funcția f este convexă pe intervalul $(0, +\infty)$	3 p
2.a)	$\int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big _{0}^{1} =$	3 p
	$=\frac{1}{3}-0=\frac{1}{3}$	2p
b)	$\mathcal{A} = \int_{0}^{1} \left \frac{x^{2}}{x+1} \right dx = \int_{0}^{1} \frac{x^{2}}{x+1} dx = \int_{0}^{1} \left(x - 1 + \frac{1}{x+1} \right) dx =$	3 p
	$= \left(\frac{x^2}{2} - x + \ln(x+1)\right) \Big _{0}^{1} = \ln 2 - \frac{1}{2}$	2p
c)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x)$	2p
	$F'(x) = \frac{x^2}{x+1} \ge 0$ pentru orice $x \in (-1, +\infty)$, deci funcția F este crescătore pe $(-1, +\infty)$	3p

Examenul de bacalaureat național 2014 Proba E. c) Matematică *M_tehnologic*

Varianta 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Pentru a = 3 arătați că $\frac{a}{2} \frac{2}{a} = \frac{5}{6}$.
- **5p** 2. Determinați abscisa punctului de intersecție a graficelor funcțiilor $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 3 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = x + 1.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 + 5} = 3$.
- **5p 4.** Prețul unei imprimante este 120 de lei. Determinați prețul imprimantei după o scumpire cu 10%.
- **5p 5.** În sistemul cartezian xOy se consideră punctele A(2,2), B(2,5) și C(6,5). Determinați perimetrul triunghiului ABC.
- **5p 6.** Calculați $\cos A$ știind că $\sin A = \frac{\sqrt{3}}{2}$ și unghiul A este ascuțit.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} b & b \\ 0 & 1 \end{pmatrix}$ și $C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, unde b este număr real.
- **5p** a) Arătați că det A = -2.
- **5p b**) Determinați numărul real *b* pentru care A + B = AB + C.
- **5p** | **c**) Arătați că $\det(B+2C) = \det B \det A$ pentru orice număr real b.
 - **2.** Se consideră polinomul $f = X^3 4X^2 + X + 2$.
- **5p** a) Arătați că f(1) = 0.
- **5p b**) Determinați câtul și restul împărțirii polinomului f prin X-1.
- **5p** c) Arătați că $(x_1 + x_2 + x_3) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} \right) = -2$ știind că x_1, x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=x^2-\ln x$.
- **5p a)** Arătați că $\lim_{x \to 1} f(x) = 1$.
- **5p b**) Arătați că $f'(x) = 2x \frac{1}{x}, x \in (0, +\infty).$
- **5p** c) Arătați că funcția f este convexă pe intervalul $(0,+\infty)$.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2}{x+1}$.
- **5p a)** Arătați că $\int_{0}^{1} x^{2} dx = \frac{1}{3}$.
- **5p b**) Determinați aria suprafeței plane delimitate de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = 1.
- **5p** $| \mathbf{c} |$ Arătați că orice primitivă a funcției f este funcție crescătoare pe intervalul $(-1, +\infty)$.

Examenul de bacalaureat național 2014 Proba E. c) Matematică *M_tehnologic* Barem de evaluare și de notare

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3(4+\sqrt{3})=12+3\sqrt{3}$	2p
	$12 + 3\sqrt{3} - 3\sqrt{3} = 12 \in \mathbb{N}$	3p
2.	f(1) + f(2) + + f(10) = 2(1 + 2 + + 10) + 30 =	2p
	=140	3р
3.	$x^2 + 8 = 6x \Rightarrow x^2 - 6x + 8 = 0$	2p
	Rezultă $x_1 = 2$ și $x_2 = 4$, care verifică ecuația	3р
4.	Se notează cu x prețul înainte de scumpire $\Rightarrow x + 30\% \cdot x = 325$	2p
	x = 250	3р
5.	R mijlocul lui $(PQ) \Rightarrow x_R = \frac{x_P + x_Q}{2}$ și $y_R = \frac{y_P + y_Q}{2}$	1p
	$x_Q = 5$	2p
	$y_Q = 3$	2p
6.	$\sin 170^{\circ} = \sin 10^{\circ}$	2p
	$\sin 10^{\circ} + \sin 30^{\circ} - \sin 170^{\circ} = \sin 30^{\circ} = \frac{1}{2}$	3 p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$\det A = \begin{vmatrix} -3 & 1 \\ 2 & -2 \end{vmatrix} = 6 - 2 =$	3p
	$\begin{vmatrix} 2 & -2 \\ = 4 \end{vmatrix}$	2p
b)	$B \cdot A = \begin{pmatrix} 2 & -2 \\ -3 & 1 \end{pmatrix}$	2p
	$A \cdot B = \begin{pmatrix} 1 & -3 \\ -2 & 2 \end{pmatrix} \Rightarrow B \cdot A - A \cdot B = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$	3 p
c)	$\det(A+xB) = \begin{vmatrix} -3 & 1+x \\ 2+x & -2 \end{vmatrix} = -x^2 - 3x + 4$	3р
	$x^2 + 3x - 4 = 0 \Leftrightarrow x_1 = -4 \text{ si } x_2 = 1$	2 p
2.a)	$x \circ 3 = 3x - 3(x + 3) + 12 = 3$, pentru orice număr real x	2p
	$3 \circ x = 3x - 3(3 + x) + 12 = 3 \Rightarrow x \circ 3 = 3 \circ x = 3$, pentru orice număr real x	3p
b)	$x \circ x = x^2 - 6x + 12$	1p
	$x^2 - 6x + 12 = x \Rightarrow x^2 - 7x + 12 = 0$	2p
	$x_1 = 3$ şi $x_2 = 4$	2p

Probă scrisă la matematică $M_tehnologic$

Model

Barem de evaluare și de notare

Ī	c)	$1 \circ 2 \circ \dots \circ 2014 = (1 \circ 2) \circ 3 \circ (4 \circ 5 \circ \dots \circ 2014) =$	2p
		$= 3 \circ (4 \circ 5 \circ \dots \circ 2014) = 3$	3 p

SUBIECTUL al III-lea

1.a)	$f'(x) = \left(e^{x}\right)' - x' =$	3 p
	$=e^x-1$, pentru orice $x \in \mathbb{R}$	2p
b)	y - f(0) = f'(0)(x - 0)	2p
	$f(0)=1$, $f'(0)=0 \Rightarrow$ ecuația tangentei este $y=1$	3 p
c)	$f'(0) = 0$; $f'(x) < 0$, pentru $x \in (-\infty, 0)$ și $f'(x) > 0$, pentru $x \in (0, +\infty)$	3р
	$f(x) \ge f(0) \Rightarrow e^x \ge x + 1$, pentru orice $x \in \mathbb{R}$	2p
2.a)	$\int_{1}^{2} (3 - f(x)) dx = \int_{1}^{2} \frac{1}{x} dx =$	2p
	$= \ln x \Big _{1}^{2} = \ln 2$	3p
b)	$f(x) = 3 - \frac{1}{x} \Rightarrow$ o primitivă F a funcției f este de forma $F(x) = 3x - \ln x + c$, unde $c \in \mathbb{R}$	3 p
	$F(1) = 3 \Leftrightarrow c = 0 \Rightarrow F(x) = 3x - \ln x$	2p
c)	$V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} (3x - 1)^{2} dx = \pi \int_{1}^{2} (9x^{2} - 6x + 1) dx =$	2p
	$= \pi \left(3x^3 - 3x^2 + x\right) \Big _{1}^{2} = 13\pi$	3p

Examenul de bacalaureat național 2014 Proba E. c) Matematică *M tehnologic*

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că numărul $3(4+\sqrt{3})-\sqrt{27}$ este natural.
- **5p** 2. Calculați f(1) + f(2) + ... + f(10) pentru funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 3.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_7(x^2+8) = \log_7(6x)$.
- **5p 4.** După o scumpire cu 30%, prețul unui obiect este 325 de lei. Determinați prețul obiectului înainte de scumpire.
- **5p 5.** În reperul cartezian xOy se consideră punctele P(1,3) și R(3,3). Determinați coordonatele punctului Q, știind că R este mijlocul segmentului PQ.
- **5p 6.** Arătați că $\sin 10^\circ + \sin 30^\circ \sin 170^\circ = \frac{1}{2}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} -3 & 1 \\ 2 & -2 \end{pmatrix}$ și $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- **5p** a) Calculați det A.
- **5p b)** Arătați că $B \cdot A A \cdot B = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$.
- **5p** c) Determinați numerele reale x pentru care det(A + xB) = 0.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = xy 3(x + y) + 12$.
- **5p** a) Arătați că $x \circ 3 = 3 \circ x = 3$, pentru orice număr real x.
- **5p b)** Rezolvați în mulțimea numerelor reale ecuația $x \circ x = x$.
- **5p** | **c**) Calculati 1 ∘ 2 ∘ ... ∘ 2014.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x x$.
- **5p** a) Calculați $f'(x), x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 0$, situat pe graficul funcției f.
- **5p** c) Demonstrați că $e^x \ge x+1$, pentru orice $x \in \mathbb{R}$.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = 3 \frac{1}{x}$.
- **5p** a) Calculați $\int_{1}^{2} (3-f(x))dx$.
- **5p b)** Determinați primitiva $F:(0,+\infty) \to \mathbb{R}$ a funcției f pentru care F(1)=3.
- **5p** c) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[1,2] \to \mathbb{R}, \ g(x) = xf(x)$.

Matematică *M_tehnologic* Simulare pentru elevii clasei a XII-a

Barem de evaluare și de notare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 + a_2 + a_3 = (a_2 - r) + a_2 + (a_2 + r) =$	3p
-		Эр
	$=3a_2=12$	2p
2.		2p
	$(f(1))^{2014} = 1$	3p
3.	2-3x=x+6	2p
	x = -1	3 p
4.	Numerele naturale de o cifră, divizori ai lui 10, sunt 1, 2 și 5, deci sunt 3 cazuri favorabile	2p
	Sunt 10 numere naturale de o cifră, deci sunt 10 cazuri posibile	1p
	$n = \frac{\text{nr. cazuri favorabile}}{3}$	
	$p = \frac{1}{\text{nr. cazuri posibile}} = \frac{1}{10}$	2p
5.	$AB: \frac{y-3}{1-3} = \frac{x-1}{-1-1}$	3р
	1-3 -1-1	Эр
	AB: y = x + 2	2p
6.	$\sqrt{3}$. $\sqrt{2}$	2
	$\cos 30^{\circ} = \frac{\sqrt{3}}{2}, \sin 45^{\circ} = \frac{\sqrt{2}}{2}$	2p
	$\sqrt{3}\cos 30^{\circ} + \sqrt{2}\sin 45^{\circ} = \frac{3}{2} + \frac{2}{2} = \frac{5}{2}$	3p
	2 2 2	JP

SUBIECTUL al II-lea

1.a)	1 1 1	
	$\det A = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = 18 + 4 + 3 - 2 - 12 - 9 = $	3 p
	= 2	2 p
b)	$\begin{pmatrix} 1+m & 1 & 1 \end{pmatrix}$	_
	$A + mI_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 + m & 3 \\ 1 & 4 & 9 + m \end{pmatrix}$	3 p
	$\begin{pmatrix} 1+m & 1 & 1 \\ 1 & 2+m & 3 \\ 1 & 4 & 9+m \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 4 & 8 \end{pmatrix} \Rightarrow m = -1$	2 p
c)		2p
	x = -1, y = 1, z = 0	3 p

2.a)	2*(-2) = -5	2p
	$2014*(-2014) = -5 \Rightarrow 2*(-2) = 2014*(-2014)$	3 p
b)	(x*y)*z = (x+y-5)*z = x+y+z-10	2p
	x*(y*z) = x*(y+z-5) = x+y+z-10 = (x*y)*z, pentru orice numere reale x, y şi z	3 p
c)	(-4)*(-3)*(-2)*(-1)*0*1*2*3*4 = ((-4)*4)*((-3)*3)*((-2)*2)*((-1)*1)*0 = (-4)*(-3)*(-3)*(-2)*(-1)*0*1*2*3*4 = ((-4)*4)*(-3)*(-3)*(-3)*(-2)*(-1)*0*1*2*3*4 = ((-4)*4)*((-3)*3)*((-2)*2)*((-1)*1)*0 = (-4)*(-3)*(-3)*(-3)*(-3)*(-3)*(-3)*(-3)*(-3	2p
	= (-5)*(-5)*(-5)*(-5)*(-5)*0 = ((-5)*(-5))*((-5)*(-5))*0 = (-15)*(-15)*0 = -40	3 p

SUBIECTUL al III-lea

1.a)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0)$	2p
	$f'(x) = 3x^2 - 3 \Rightarrow f'(0) = -3$	3p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x(2x+1)(3x+2)} = \lim_{x \to +\infty} \frac{x^3 \left(1 - \frac{3}{x^2} + \frac{7}{x^3}\right)}{x^3 \left(2 + \frac{1}{x}\right) \left(3 + \frac{2}{x}\right)} =$	2 p
	$=\frac{1}{6}$	3 p
c)	$f'(x) = 0 \Rightarrow x = -1 \text{ sau } x = 1$	2p
	f descrescătoare pe $[-1,1]$, f crescătoare pe $[1,+\infty)$ și $f(1)=5 \Rightarrow f(x) \ge 5, \forall x \in [-1,+\infty)$	3 p
2.a)	$\int_{1}^{2} (f(x) - e^{x}) dx = \int_{1}^{2} 2x dx =$	2p
	$=x^2\Big _1^2=3$	3 p
b)	$F'(x) = (e^x + x^2 + 2014)' = e^x + 2x =$	3 p
	$=f\left(x\right)$ pentru orice $x\in\mathbb{R}$, deci F este o primitivă a funcției f	2p
c)	$\int_{0}^{1} f(x)F(x)dx = \frac{F^{2}(x)}{2}\Big _{0}^{1} =$	3p
	$=\frac{\left(e+2015\right)^2-2015^2}{2}=\frac{e^2+4030e}{2}$	2p

Examenul de bacalaureat național 2014

Proba E. c)

Matematică M_tehnologic

Simulare pentru elevii clasei a XII-a

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

(30 de puncte)

- **5p** 1. Calculați suma primilor trei termeni ai unei progresii aritmetice $(a_n)_{n>1}$, știind că $a_2=4$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2014x 2013. Calculați $(f(1))^{2014}$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{2-3x} = 3^{x+6}$.
- **5p 4.** Calculați probabilitatea ca alegând un număr din mulțimea numerelor naturale de o cifră, acesta să fie divizor al lui 10.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,3) și B(-1,1). Determinați ecuația dreptei AB.
- **5p 6.** Arătați că $\sqrt{3}\cos 30^{\circ} + \sqrt{2}\sin 45^{\circ} = \frac{5}{2}$.

SUBIECTUL al II-lea

(30 de puncte)

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$.
- **5p** | **a**) Calculați det A.
- **5p b)** Determinați numărul real m pentru care matricele $A + mI_3$ și $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 4 & 8 \end{pmatrix}$ sunt egale, unde

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- **5p** c) Rezolvați ecuația matriceală $AX = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$, unde $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție comutativă x * y = x + y 5.
- **5p** a) Arătați că 2*(-2) = 2014*(-2014).
- **5p b**) Verificați dacă legea "*" este asociativă.
- **5p c**) Calculați (-4)*(-3)*(-2)*(-1)*0*1*2*3*4.

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x + 7$.
- **5p** a) Arătați că $\lim_{x\to 0} \frac{f(x) f(0)}{x} = -3$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{f(x)}{x(2x+1)(3x+2)}$.
- **5p** c) Demonstrați că $f(x) \ge 5$ pentru orice $x \in [-1, +\infty)$.
 - **2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + 2x$ și $F: \mathbb{R} \to \mathbb{R}$, $F(x) = e^x + x^2 + 2014$.
- **5p** a) Calculați $\int_{1}^{2} (f(x) e^x) dx$.
- $\mathbf{5p}$ **b)** Arătați că funcția F este o primitivă a funcției f.
- **5p** c) Calculați $\int_{0}^{1} f(x) F(x) dx$.

Matematică *M_tehnologic* Simulare pentru elevii clasei a XI-a

Barem de evaluare și de notare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I		(30 de puncte)
1.	m+8=4-2	2p
	m = -6	3p
2.	$x^2 - 3x + 2 = 2 \Rightarrow x^2 - 3x = 0$	3p
	$x_1 = 0$, $x_2 = 3$	2p
3.	$2^{3x} = 2^{x-2}$	2 p
	x = -1	3p
4.	$\frac{5}{100} \cdot x = 3000$, unde x este profitul anual al firmei	2p
	x = 60000 de lei	3 p
5.	$A(a,2) \in d \Rightarrow a-2\cdot 2+1=0$	2p
	a=3	3p
6.	BC = 5	3p
	$\sin B = \frac{AC}{BC} = \frac{4}{5}$	2p

	DC 3	
SUBI	ECTUL al II-lea (3	0 de puncte)
1.a)	d = 4 + 16 + 3 - 12 - 8 - 2 =	3p
	=23-22=1	2p
b)	$D(a) = \begin{vmatrix} 4-a & a-1 \\ a+1 & 4-a \end{vmatrix} = (4-a)^2 - (a-1)(a+1) = 16-8a+a^2-a^2+1=17-8a$	3р
	$1 = 17 - 8a \Leftrightarrow a = 2$	2p
c)	$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & 1 \\ 3 & m & 1 \end{vmatrix} = m - 7$	2р
	$ m-7 =1 \Rightarrow m=6 \text{ sau } m=8$	3p
2.a)	$A(2) = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} $ si $A(-2) = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$	2p
	$A(2) + A(-2) = \begin{pmatrix} 2 & 0 \\ 4 & 2 \end{pmatrix}$	3р
b)	$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \cdot \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \Rightarrow \begin{pmatrix} p+2q \\ 2p+q \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$	3р
	p=2 şi $q=1$	2 p
c)	$\det(A(x)) = 1 - 2x$	2p
	$x \in \mathbb{Z} \Rightarrow 1-2x$ este număr impar $\Rightarrow 1-2x \neq 0 \Rightarrow \det(A(x)) \neq 0 \Rightarrow \text{matricea } A(x)$ este	
	inversabilă pentru orice număr întreg x	3p

SUBII	SUBIECTUL al III-lea (30 de pun	
1.a)	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x}{x^2 + 1} = \frac{1}{1^2 + 1} =$	3p
	$=\frac{1}{2}$	2p
b)	$\lim_{x \to +\infty} xf(x) = \lim_{x \to +\infty} \frac{x^2}{x^2 + 1} = \lim_{x \to +\infty} \frac{x^2}{x^2 \left(1 + \frac{1}{x^2}\right)} =$	3р
	$= \lim_{x \to +\infty} \frac{1}{1 + \frac{1}{x^2}} = 1$	2p
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{x^2 + 1} = 0$	3p
	Ecuația asimptotei spre $+\infty$ la graficul funcției f este $y=0$	2 p
2.a)	f(1) = -1	2p
	$f(3) = 1 \Rightarrow f(1) \cdot f(3) = -1$	3p
b)	$\lim_{\substack{x \to 2 \\ x < 2}} f(x) = \lim_{\substack{x \to 2 \\ x < 2}} (x - 2) = 0$	2p
	$\lim_{\substack{x \to 2 \\ x > 2}} f(x) = \lim_{\substack{x \to 2 \\ x > 2}} (x^2 - 4x + 4) = 0$	2p
	$f(2) = 0 \Rightarrow f$ este continuă în punctul $x = 2$	1p
c)	$f(x) = 0 \Rightarrow x = 2$	1p
	f continuă pe $\mathbb{R} \Rightarrow f$ are semn constant pe $(-\infty,2)$ și pe $(2,+\infty)$	2p
	$f(1) \cdot f(3) < 0 \Rightarrow f(a) \cdot f(b) < 0$ pentru orice $a < 2$ şi $b > 2$	2p

Matematică M_tehnologic

Simulare pentru elevii clasei a XI-a

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați numărul real m din egalitatea $m + 2^3 = \sqrt{16} 2$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 2$. Determinați numerele reale x pentru care f(x) = 2.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $8^x = 2^{x-2}$.
- **5p 4.** O firmă folosește pentru publicitate 3000 de lei, ceea ce reprezintă 5% din profitul anual. Determinați profitul anual al firmei.
- **5p 5.** În reperul cartezian xOy se consideră dreapta d de ecuație x-2y+1=0. Determinați numărul real a, știind că punctul A(a,2) aparține dreptei d.
- **5p 6.** În triunghiul ABC dreptunghic în A, AB = 3 și AC = 4. Determinați sin B.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră determinanții $d = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & 1 \\ 3 & 8 & 1 \end{vmatrix}$ și $D(a) = \begin{vmatrix} 4-a & a-1 \\ a+1 & 4-a \end{vmatrix}$, unde a este număr real.
- **5p a)** Arătați că d = 1.
- **5p b**) Determinați numărul real a pentru care D(a) = 1.
- **5p** c) În reperul cartezian xOy se consideră punctele A(1,1), B(2,4) și C(3,m). Determinați numerele reale m știind că $\mathcal{A}_{\Delta ABC} = \frac{1}{2}$.
 - **2.** Se consideră matricea $A(x) = \begin{pmatrix} 1 & x \\ 2 & 1 \end{pmatrix}$, unde x este număr real.
- **5p a)** Calculați A(2) + A(-2).
- **5p b**) Determinați numerele reale p și q pentru care $A(2) \cdot \binom{p}{q} = \binom{4}{5}$.
- **5p** c) Arătați că matricea A(x) este inversabilă pentru orice număr întreg x.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x^2 + 1}$.
- **5p a**) Calculați $\lim_{x \to 1} f(x)$.
- **5p b)** Calculați $\lim_{x \to +\infty} xf(x)$
- **5p** c) Determinați ecuația asimptotei spre $+\infty$ la graficul funcției f
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x-2, & x < 2 \\ x^2 4x + 4, & x \ge 2 \end{cases}$.
- **5p a**) Calculați $f(1) \cdot f(3)$.
- **5p b**) Arătați că funcția f este continuă în punctul x = 2.
- **5p** c) Demonstrați că $f(a) \cdot f(b) < 0$, pentru orice a < 2 și b > 2.

Matematică *M_tehnologic*Barem de evaluare și de notare

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{2}{3} - \frac{1}{3} = \frac{1}{3}$	2p
	$3 \cdot \frac{1}{3} = 1$	3p
2.	m-4=1	3 p
	m=5	2 p
3.	$2x^2 + 1 = 1$	3 p
	x = 0, care verifică ecuația	2 p
4.	$100000 = 4\% \cdot x$, unde x reprezintă venitul anual al firmei	3 p
	x = 2500000 de lei	2 p
5.	AB=3, $AC=4$ și $BC=5$	3p
	$AB^2 + AC^2 = BC^2$, deci $\triangle ABC$ este dreptunghic	2p
6.	$tg 60^{\circ} = \sqrt{3} \text{ si } tg 45^{\circ} = 1$	2p
	$tg^2 60^\circ + tg^2 45^\circ = 3 + 1 = 4$	3 p

1.a)	$\det A = \begin{vmatrix} 3 & 1 \\ -5 & -2 \end{vmatrix} =$	25
	$\begin{vmatrix} \det A - \\ -5 & -2 \end{vmatrix}$	2p
	$=3\cdot \left(-2\right)-1\cdot \left(-5\right)=-1$	3p
b)	$A \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	2p
	$\begin{pmatrix} 0 & 1 \end{pmatrix}$	
	$B \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow 2A \cdot B - B \cdot A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	3 p
c)	$A \cdot A = \begin{pmatrix} 4 & 1 \\ -5 & -1 \end{pmatrix} \Rightarrow A \cdot A - xA = \begin{pmatrix} 4 - 3x & 1 - x \\ -5 + 5x & -1 + 2x \end{pmatrix}$	3 p
	$\begin{pmatrix} 4-3x & 1-x \\ -5+5x & -1+2x \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow x = 1$	2p
2.a)	$1*2 = 2(1+2-1)-1\cdot 2 =$	3 p
	=4-2=2	2 p
b)	$x*2 = 2(x+2-1) - x \cdot 2 = 2$	2p
	2 * x = 2(2+x-1)-2x=2=x*2 pentru orice număr real x	3p
c)	$-x^2 + 4x - 2 = x \Leftrightarrow x^2 - 3x + 2 = 0$	3 p
	$x_1 = 1$ şi $x_2 = 2$	2p

1.a)	$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x - 1)e^{x} =$	2p
	$=-1\cdot e^0=-1$	3p
b)	$f'(x) = 1 \cdot e^x + (x-1)e^x =$	3p
	$=e^{x}+f(x)$ pentru orice număr real x	2p
c)	$\lim_{x \to 0} \frac{f(x)+1}{x} = \lim_{x \to 0} \frac{f(x)-f(0)}{x-0} =$	2p
	= f'(0) = 0	3p
2.a)	$\int_{1}^{2} 3x^{2} dx = x^{3} \Big _{1}^{2} =$	3p
	=8-1=7	2p
b)	O primitivă F a funcției f este de forma $F(x) = x^3 + x^2 + c$, unde $c \in \mathbb{R}$	3 p
	$F(1) = 2 + c \Rightarrow c = 2012 \Rightarrow F(x) = x^3 + x^2 + 2012$	2p
c)	$\int_{1}^{n} \frac{f(x)}{x} dx = \int_{1}^{n} (3x+2) dx = \frac{3n^{2} + 4n - 7}{2}$	3р
	$\frac{3n^2 + 4n - 7}{2} = \frac{13}{2} \Leftrightarrow 3n^2 + 4n - 20 = 0 \Rightarrow n_1 = -\frac{10}{3} \text{ nu este număr natural şi } n_2 = 2$	2p

Examenul de bacalaureat național 2014 Proba E. c) Matematică *M_tehnologic*

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $3 \cdot \left(\frac{2}{3} \frac{1}{3}\right) = 1$.
- **5p** 2. Determinați numărul real m știind că f(m) = 1, unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 4.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{2x^2 + 1} = 1$.
- **5p 4.** În anul 2013, profitul anual al unei firme a fost de 100000 de lei, ceea ce reprezintă 4% din valoarea veniturilor anuale ale firmei. Determinați valoarea veniturilor anuale ale firmei în anul 2013.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(5,6), B(2,6) și C(5,2). Arătați că triunghiul ABC este dreptunghic.
- **5p 6.** Arătați că $tg^2 60^\circ + tg^2 45^\circ = 4$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 3 & 1 \\ -5 & -2 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ -5 & -3 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = -1.
- **5p b**) Arătați că $2A \cdot B B \cdot A = I_2$.
- **5p** c) Determinați numărul real x știind că $A \cdot A xA = I_2$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție x * y = 2(x + y 1) xy.
- **5p a**) Arătați că 1*2=2.
- **5p b)** Arătați că x*2=2*x=2 pentru orice număr real x.
- **5p** | **c**) Rezolvați în mulțimea numerelor reale ecuația x * x = x.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x-1)e^x$.
- **5p a)** Arătați că $\lim_{x\to 0} f(x) = -1$.
- **5p b**) Arătați că $f'(x) = e^x + f(x)$ pentru orice număr real x.
- **5p** c) Arătați că $\lim_{x\to 0} \frac{f(x)+1}{x} = 0$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 + 2x$.
- **5p a)** Arătați că $\int_{1}^{2} 3x^2 dx = 7$.
- **5p b**) Determinați primitiva $F: \mathbb{R} \to \mathbb{R}$ a funcției f pentru care F(1) = 2014.
- **5p** c) Determinați numărul natural n, $n \ge 2$ știind că $\int_{1}^{n} \frac{f(x)}{x} dx = \frac{13}{2}$.