HOMEWORK 2 – Q5

MINGLANG XIE z5228006 5. Find the sequence x satisfying $x * \langle 1,1-1 \rangle = \langle 1,0,-1,2,-1 \rangle$.(20 pts)

Solution:

Clearly, x is a sequence of length 5+1-3=3, write it as $\langle a,b,c \rangle$, the corresponding polynomial is $P_x(y)=a+by+cy^2$. For $A=\langle 1,1,-1 \rangle$, the corresponding polynomial is $P_A(y)=1+y-y^2$. Then we have:

$$x * \langle 1, 1-1 \rangle = (a + by + cy^{2}) * (1 + y - y^{2})$$

$$= a + ay - ay^{2} + by + by^{2} - by^{3} + cy^{2} + cy^{3} - cy^{4}$$

$$= a + (a + b)y + (b + c - a)y^{2} + (c - b)y^{3} - cy^{4}$$

We know that $x*\langle 1,1-1\rangle = \langle 1,0,-1,2,-1\rangle$ and $x*\langle 1,1,-1\rangle = a+(a+b)y+(b+c-a)y^2+(c-b)y^3-cy^4$ Combine these two polynomials, we have:

$$\begin{cases} a = 1; \\ a + b = 0; \\ b + c - a = -1; \\ c - b = 2; \\ -c = -1; \end{cases}$$

By solving this, we can get $\begin{cases} a = 1 \\ b = -1. \\ c = 1 \end{cases}$

Therefore $x = \langle 1, -1, 1 \rangle$.