MOCK TEST — 4. týden

Motivace

Pokračování stejnoměrné konvergence funkčních posloupností. Aparát jsme rozšířili o SK součinu a podílu funkčních posloupností a o Diniho větu.

Aparát

DEF: (SK funkční posloupnosti na množině A)

Nechť
$$fn: A \to \mathbb{C}, n \in \mathbb{N}$$

řekneme, že $\{fn\}_{n=1}^{\infty} \boxed{SK}$ na množině A
 $\iff \exists f: A \to \mathbb{C} \text{ tak, že}$
 $(\forall \epsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \geq n_0)(\forall z \in A)(|f_n(z) - f(z)| < \epsilon)$
pro všechna z, takže i pro supremum $\sup_{z \in A} |f_n(z) - f(z)| \leq \epsilon$
 $\iff \lim_{n \to +\infty} \sup_{z \in A} |f_n(z) - f(z)| = 0$

V: (SK součinu funkčních posloupností)

Nechť
$$f_n \stackrel{A}{\Longrightarrow} f$$
, $g_n \stackrel{A}{\Longrightarrow} g \Longrightarrow f_n \cdot g_n \stackrel{A}{\Longrightarrow} f \cdot g$, pokud f,g jsou omezené funkce na A $\Leftrightarrow \{f_n\}, \{g_n\}$ jsou stejnoměrně/stejně omezené na A $\Leftrightarrow (\exists K > 0) (\forall n \in \mathbb{N}) (\forall z \in A) (|f_n(z)| \geq K)$

V: (Dini)

$$\varnothing \neq A \subset \mathbb{C}$$
 kompakt.
 $f_n, f: A \to \mathbb{R}$ spoj. na A vzhledem k A, $f_n \stackrel{A}{\to} f$, $\{f_n\}_{n=1}^{\infty}$ monot.
 $\Longrightarrow f_n \stackrel{A}{\to} f$

Příklady

vyšetřete
$$SK$$
 $f_n(x) = x^n$ na a) $A = [0, \frac{1}{2}]$, b) $A = [0, 1]$ vyšetřete SK $f_n(x) = x^n - x^{n+1}$ na $A = [0, 1]$ vyšetřete SK $f_n(x) = x^n - x^{2n}$ na $A = [0, 1]$

najděte největší interval
$$SK$$
, $A \subset D_{f_n}$ $f_n(x) = \frac{x^n}{1+x^n}$ najděte největší interval SK , $A \subset D_{f_n}$ $f_n(x) = \arctan{(nx)}$ najděte největší interval SK , $A \subset D_{f_n}$ $f_n(x) = x \arctan{(nx)}$ najděte největší interval SK , $A \subset [0,\infty]$, $f_n(x) = n\left(\sqrt{x + \frac{1}{n}} - \sqrt{x}\right)$

Bonus:

najděte f_n a g_n z věty o součinu, které obě SK, ale $f_n \cdot g_n$ nebude SK (tedy ověřte nutnost podmínky omezenosti) zformulujte podobné tvrzení pro podíl (SK podílu funkčních posloupností) Najděte př. $\{f_n\}$, f, a A, tak aby $f_n \stackrel{A}{\Rightarrow} f$, ale $\{f_n\}$ nebyla omezená

najděte největší interval
$$SK$$
, $A \subset D_{f_n} f_n(x) = (1 + \frac{x}{n})^n$
najděte největší interval SK , $A \subset D_{f_n} f_n(x) = \sin(\frac{x}{n})$

Reference

[1] Boris Děmidovič - Sbírka úloh a cvičení z matematické analýzy