XOR solving

Romain Gautron r.gautron@cgiar.org

84401011008141101

March 5, 2019

x_1	X2	y
0	0	0
0	1	1
1	0	1
1	1	0

We will work with Keras library (tensorflow backend). In order to have reproducible results, include at the top of your code:

import numpy
numpy.random.seed(123)
from tensorflow import set_random_seed
set_random_seed(123)

1 Data set

Build a data set for the XOR problem.

2 Model building

With sequential API, create a model of architecture:

- 1 layer of 4 fully connected units with hyperbolic tangent activation
- an appropriate output layer

hint do not forget to specify the input shape

3 Model fitting

Fit your model with 64 epochs of batches of size 4.

4 Model predictions

Give the resubstitution results (probability and classes), the confusion matrix from keras.metrics.confusion_matrix(). Then try to change learning rate to 5% and observe results.

Figure 1: Example of confusion matrix for interpretation