

Description

Image

Caption

- 1. Bamboo bridge to the island of Kaoh Pen, Kampong Cham, Cambodia. © Rob Glover at Flickr (CC BY-SA 2.0)
- 2. Bamboo scaffolding held together by nylon strips, Hong Kong. © Chong Fat at en.wikipedia (CC BY-SA 3.0) 3. Bamboo scaffolding surrounding a skyscraper in Hong Kong. © Odessa3 at en.wikipedia Public domain

The material

Bamboo is nature's gift to the construction industry. Think of it: a hollow tube, exceptionally strong and light, growing so fast that it can be harvested after a year, and - given a little longer - reaching a diameter of 0.3 meters and a height of 15 meters. This and its hard surface and ease of working makes it the most versatile of materials. Bamboo is used for building and scaffolding, for roofs and flooring, for pipes, buckets, baskets, walking sticks, fishing poles, window blinds, mats, arrows and furniture. Tonkin bamboo is strong and flexible (fishing poles); Tali bamboo is used for structural applications (houses or furniture); Eeta bamboo is the fastest growing and is used as a source of cellulose for the production of cellulose or Rayon.

Compositional summary

Cellulose/Hemicellulose/Lignin/12% H2O

General properties

Density	37.5	-	49.9	lb/ft^3
Price	* 0.608	-	0.912	USD/lb
Date first used	-5000			

Mechanical properties

Young's modulus	2.18	-	2.9	10^6 psi
Shear modulus	0.116	-	0.197	10^6 psi
Bulk modulus	0.112	-	0.16	10^6 psi
Poisson's ratio	0.03	-	0.46	
Yield strength (elastic limit)	5.08	-	6.38	ksi
Tensile strength	5.22	-	6.53	ksi
Compressive strength	7.25	-	14.5	ksi
Elongation	2.88	-	5.5	% strain

Hardness - Vickers	2	-	12	HV
Fatigue strength at 10^7 cycles	* 3.63	-	5.08	ksi
Fracture toughness	4.55	-	6.37	ksi.in^0.5
Mechanical loss coefficient (tan delta)	0.012	-	0.022	

Thermal properties

Glass temperature	170	-	215	°F
Maximum service temperature	242	-	278	°F
Minimum service temperature	* -99.7	-	-9.67	°F
Thermal conductor or insulator?	Good in	sula	tor	
Thermal conductivity	0.0578	-	0.104	BTU.ft/h.ft^2.F
Specific heat capacity	0.396	-	0.408	BTU/lb.°F
Thermal expansion coefficient	1.44	-	5.56	μstrain/°F

Electrical properties

Electrical conductor or insulator?	Poor insulator			
Electrical resistivity	* 6e13	-	7e14	µohm.cm
Dielectric constant (relative permittivity)	* 5	-	7	
Dissipation factor (dielectric loss tangent)	* 0.07	-	0.1	
Dielectric strength (dielectric breakdown)	* 12.7	-	25.4	V/mil

Optical properties

Transparency	Opaque

Processability

Moldability	1	-	2
Machinability	4		

Durability: water and aqueous solutions

Water (fresh)	Acceptable
Water (salt)	Acceptable
Soils, acidic (peat)	Acceptable
Soils, alkaline (clay)	Limited use
Wine	Acceptable

Durability: acids

Acetic acid (10%)	Acceptable
Acetic acid (glacial)	Limited use
Citric acid (10%)	Acceptable
Hydrochloric acid (10%)	Excellent
Hydrochloric acid (36%)	Limited use
11 1 4 1 1 1 1 (4004)	

Hydrofluoric acid (40%)

Limited use Nitric acid (10%) Acceptable Nitric acid (70%) Unacceptable Phosphoric acid (10%) Acceptable Phosphoric acid (85%) Unacceptable Sulfuric acid (10%) Acceptable Unacceptable Unacceptable Unacceptable Unacceptable		
Nitric acid (70%) Phosphoric acid (10%) Phosphoric acid (85%) Unacceptable Unacceptable Sulfuric acid (10%) Acceptable		Limited use
Phosphoric acid (10%) Phosphoric acid (85%) Sulfuric acid (10%) Acceptable Acceptable	Nitric acid (10%)	Acceptable
Phosphoric acid (85%) Sulfuric acid (10%) Unacceptable Acceptable	Nitric acid (70%)	Unacceptable
Sulfuric acid (10%) Acceptable	Phosphoric acid (10%)	Acceptable
, ,	Phosphoric acid (85%)	Unacceptable
Sulfuric acid (70%) Unacceptable	Sulfuric acid (10%)	Acceptable
·	Sulfuric acid (70%)	Unacceptable

Durability: alkalis

Sodium hydroxide (10%)	Unacceptable
Sodium hydroxide (60%)	Unacceptable

Durability: fuels, oils and solvents

Amyl acetate	Limited use
Benzene	Limited use
Carbon tetrachloride	Limited use
Chloroform	Limited use
Crude oil	Limited use
Diesel oil	Acceptable
Lubricating oil	Acceptable
Paraffin oil (kerosene)	Acceptable
Petrol (gasoline)	Acceptable
Silicone fluids	Acceptable
Toluene	Acceptable
Turpentine	Excellent
Vegetable oils (general)	Acceptable
White spirit	Acceptable

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Acceptable
Acetone	Limited use
Ethyl alcohol (ethanol)	Acceptable
Ethylene glycol	Acceptable
Formaldehyde (40%)	Acceptable
Glycerol	Acceptable
Methyl alcohol (methanol)	Acceptable

Durability: halogens and gases

Chlorine gas (dry)	Unacceptable
Fluorine (gas)	Unacceptable
O2 (oxygen gas)	Unacceptable

EDUPACK						
Sulfur dioxide (gas)	Ac	ceptal	ole			
Durability: built environments						
Industrial atmosphere	Lir	mited ເ	ıse			
Rural atmosphere	Ac	ceptal	ole			
Marine atmosphere	Ac	ceptal	ole			
UV radiation (sunlight)		Good				
Pour Little of Comment (196)						
Durability: flammability	Lii	ably fla	mm	abla		
Flammability	Пі	ghly fla	arrirr	iabie		
Durability: thermal environments						
Tolerance to cryogenic temperatures	Ac	ceptal	ole			
Tolerance up to 150 C (302 F)	Ac	ceptal	ole			
Tolerance up to 250 C (482 F)	Un	Unacceptable				
Tolerance up to 450 C (842 F)	Un	Unacceptable				
Tolerance up to 850 C (1562 F)	Un	Unacceptable				
Tolerance above 850 C (1562 F)	Un	Unacceptable				
Geo-economic data for principal component Annual world production, principal component Primary material production: energy, CO2 ar	1.1	18e7	-	1.23e7	ton/yr	
Embodied energy, primary production	44	4	-	650	kcal/lb	
CO2 footprint, primary production	0.2	299	-	0.33	lb/lb	
Water usage	* 79	.7	-	88.1	gal(US)/lb	
Eco-indicator 95	6.6	6			millipoints/kg	
Eco-indicator 99	0.4	47			millipoints/kg	
Material processing: energy						
Coarse machining energy (per unit wt removed)	* 16	7	-	184	kcal/lb	
Fine machining energy (per unit wt removed)	* 1.2	2e3	-	1.33e3	kcal/lb	
Grinding energy (per unit wt removed)	* 2.3	35e3	-	2.6e3	kcal/lb	
Material processing: CO2 footprint						
Coarse machining CO2 (per unit wt removed)	* 0.1	115	-	0.127	lb/lb	
Fine machining CO2 (per unit wt removed)	* 0.8	332	-	0.92	lb/lb	
Grinding CO2 (per unit wt removed)	* 1.6	33	-	1.8	lb/lb	
Material recycling: energy, CO2 and recycle	fraction					
Recycle	×					
Recycle fraction in current supply	1		-	2	%	

Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 2.14e3 - 2.31e3 kcal/lb
Combustion CO2	* 1.69 - 1.78 lb/lb
Landfill	✓
Biodegrade	✓
Toxicity rating	Non-toxic
A renewable resource?	✓

Environmental notes

Bamboo is a renewable resource and is particularly fast growing, making it attractive from an environmental standpoint.

Supporting information

Design guidelines

The stems of bamboo are hollow and jointed, and have an extremely hard, durable, outer surface. Its natural tubular structure gives it excellent bending stiffness and strength at low weight. It is joined by binding; fasteners requiring holes must be avoided. The wood is visually appealing and hardwearing, making it attractive for flooring and furniture as well as its other diverse uses.

Technical notes

Bamboo is a grass, not a tree. It grows most commonly in Indonesia, The Philippines and Southern Asia where it is one of the principal structural materials.

Typical uses

Building & construction; scaffolding; furniture; pulp & paper making; ropes; reinforcement for concrete; frames for early aircraft, pipes, baskets, walking sticks, fishing poles, window blinds, mats, arrows and furniture.

Links

Reference			
ProcessUniverse			