- 1. Prove $B \setminus A = B \cap A^{\mathsf{c}}$.
- 2. Prove the following are equivalent: $A \subseteq B, A \cap B = A, A \cup B = B$.
- 3. Prove the Distributive Law: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 4. Write the dual of: $(\mathbf{U} \cap A) \cup (B \cap A) = A, (A \cap \mathbf{U}) \cap (\emptyset \cup A^{\mathsf{c}}) = \emptyset$.
- 5. Prove $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$.
- 6. Prove:
 - a. $(A \cap B) \cup (A \cap B^{c}) = A$
 - b. $A \cup B = (A \cap B^c) \cup (A^c \cap B) \cup (A \cap B)$
- 7. Prove $n(P(S)) = 2^{n(S)}$ if S is a finite set.
- 8. Try to figure out the formula for: n(partition(S)).
- 9. Let $[A_1, A_2, \dots, A_m]$ and $[B_1, B_2, \dots, B_n]$ be partitions of a set S. Prove the following collection is also a partition (called the *cross partition*) of S:

$$P = [A_i \cap B_j | i = 1, \cdots, m, j = 1, \cdots, n] \setminus \{\emptyset\}$$

- 10. Prove the following properties of the symmetric difference:
 - a. Associative Law $(A \oplus B) \oplus C = A \oplus (B \oplus C)$
 - b. Comutative Law $A \oplus B = B \oplus A$
 - c. Cancellation Law $A \oplus B = A \oplus C \implies B = C$
 - d. Distributive Law $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
- 11. Consider m nonempty distinct sets, A_1, A_2, \dots, A_m in a universal set U. Prove:
 - a. There are 2^m fundamental products of the m sets.
 - b. Any two fundamental products are disjoint.
 - c. U is the union of all the fundamental products.