

Convolution on Color Images

How we use 3D Volumes of Convolution Filters

Convolution on our Grey Scale Image

1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0

Input Image Filter or Kernel Output or Feature Map

Convolution Operations on Color Images

Input Image Filter or Kernel Output or Feature Map

Advantages of Having a Filter For Each Colour

We can detect features that are specific to a colour

Considered 3D Volumes

3	3	0
3	3	0
3	3	0

Input Image 5 x 5 x 3

Filter or Kernel 3 x 3 x 3

Output or Feature Map 3 x 3

How Multiple Filters Affect Our Output

Calculating Output Size for 3D Conv Volumes

$$(n \times n \times n_c) * (f \times f \times n_c) = (n - f + 1) \times (n - f + 1) \times n_f$$

 $(5 \times 5 \times 3) * (3 \times 3 \times 3) = 3 \times 3 \times 2$

Input Image 5 x 5 x 3

2 Filters or Kernels 3 x 3 x 3 x 2

Output or Feature Map 3 x 3 x 2

Next...

Kernel Size and Depth

