Part A

Multiple Choice: 10 marks Attempt Questions 1-10

Allow about 10 minutes for this part

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample: $2 + 4 = (A) \ 2 (B) \ 6 (C) \ 8 (D) \ 9$ $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 $A lue{lue{}} B \buildrel{lue{}} C \bigcirc D \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

▶ Mark your answers for Questions 1 – 10 in the Answer Box on page 4

- 1. How many atoms are there in 2.50 grams of pure carbon -12?
 - (A) 1.25×10^{23}
 - (B) 2.50×10^{23}
 - (C) 2.5
 - (D) 5
- 2. The highest percentage of water occurs in which earth sphere?
 - (A) biosphere
 - (B) hydrosphere
 - (C) lithosphere
 - (D) atmosphere
- 3. Water is an agent of weathering.

Which of the following properties of water contribute to its ability to weather rock?

- (i) Water has a relatively high boiling and melting point.
- (ii) Water is a good solvent for many substances
- (iii) Water has a lower density in the solid state than in the liquid state
- (A) (i) and (ii) only
- (B) (ii) and (iii) only
- (C) (i) and (iii) only
- (D) (iii) only
- 4. Which of the following is the strongest force between two molecules?
 - (A) dispersion forces
 - (B) dipole-dipole forces
 - (C) hydrogen bonding
 - (D) metallic bonding
- 5. Why does sucrose (sugar) dissolve when mixed with water?
 - (A) Water breaks apart the covalent bonds within the molecules
 - (B) Ionic bonds are formed between the water and the sucrose
 - (C) Dispersion forces cause the sucrose molecules to repel each other
 - (D) Water forms dipole-dipole forces with the polar bonds on the surface of the sugar.

6. Small animals, such as water striders, can walk across the surface of a pond. Which of the following properties of water allows this to happen? viscosity (A) surface tension (B) boiling point (C) (D) density 30 mL of 0.1 molL⁻¹ aluminium perchlorate, Al(ClO₄)₃, is diluted to a volume of 100 mL with 7. water. What is the concentration of perchlorate ions in the final solution? 0.09 molL^{-1} (A) 0.9 molL⁻¹ (B) 0.03 molL⁻¹ (C) 0.3 molL⁻¹ (D) 8. What is the concentration of a solution formed when 2.00g of sodium hydroxide is dissolved in water to make 50.0 mL of solution? 1.00 molL⁻¹ (A) $0.50 \text{ mol}L^{-1}$ (B) 0.10 molL⁻¹ (C) 0.05 molL⁻¹ (D) 9. The equation below shows the simple reaction between water and chlorine. $H-O-H + Cl-Cl \rightarrow H-O-Cl + H-Cl$ How many bonds are being broken in this reaction? 2 (A) 3 (B) (C) 4 (D) 6 10 Which of these values will be altered when a catalyst is used in a reaction? activation energy (A) ignition temperature (B)

specific heat capacity

(C)

(D)

 ΔH

Student No.

Part A: Answ	er grid fo	r multiple	choice	questions.
--------------	------------	------------	--------	------------

ВО

Total/10

1.	ΑO	ВО	СО	DΟ
2.	ΑO	ВО	СО	DΟ
3.	ΑO	ВО	СО	DΟ
4.	ΑO	ВО	СО	DΟ
5.	ΑO	ВО	СО	DΟ
6.	ΑO	ВО	СО	DΟ
7.	ΑO	ВО	СО	DΟ
8.	ΑO	ВО	СО	DΟ
9.	ΑO	ВО	СО	DΟ

CO

DΟ

10. A O

Atter Alloy		s	Student No
Ques	stion 11	(2 marks)	
Expla	ain why diffe	rent measures of concentration are important	(2marks)
•••••			
Ques	stion 12	(3 marks)	
Amn	nonia and wa	ter have similar molecular masses but different me	elting points and boiling points.
(a)	Draw a Le	wis electron dot structure for ammonia in the box	below. (1 mark)
(b)	Explain th	e difference between the boiling points of water ar	nd ammonia. (2 marks)
Year 1	11 Chemistry Pa	reliminary Test 2007 (THEORY)	page 5 of 11

Question 13 (5 marks)

Bore water is regularly tested to assess its suitability for drinking.

The quantity of chloride ion in bore water can be determined by the reaction of a sample with silver nitrate solution to produce a precipitate of insoluble silver chloride.

A 10.0 mL sample of bore water requires 24.7 mL of a 0.01 molL⁻¹ silver nitrate solution to react completely with all the chloride present.

(a)	Write a balanced net ionic equation for this reaction.	(1 mark)
(b)	Calculate the number of moles of chloride ions in the sample.	(2 marks)
(c)	Determine the mass of chloride ions in the sample.	(1 mark)
(d)	Calculate the concentration of nitrate ions in the final solution.	(1 mark)

Question 14 (4 marks)

A student writes two wrong explanations in a chemistry test. Re–write the statements demonstrating your superior knowledge of chemistry. (4 marks)

Wrong explanations	Corrected explanations
A large piece of wood burns faster than a bunch of twigs because it's a bigger object so the oxygen molecules in the air can collide with it easier. More collisions, faster rate.	
If the concentration of the reactants is reduced the reaction rate speeds up because it's easier for the particles to collide because it's not so crowded.	

Ques	stion 15	(3 marks)	
(a)	Identify a	n industrial catalyst.	(1 mark)
(b)	Explain th	ne role of catalysts in chemical reactions.	(2 marks)

Question 16 (3 marks)

(a)

(b)

Dieseline is a mixture composed mainly of cetane, C₁₆H₃₄.

(a)	Write two balanced chemical of	equations showing cetane undergoing complete and	incomplete
	combustion.		(2 marks)

Identify a problem associated with incomplete combustion.	(1 mark)

Question 17 (2 marks)

Draw an energy profile diagram on the graph grid for a reaction with a $\Delta H = +50 \text{ kJ}$ and an activation energy value of + 70 kJ. Each y-axis square represents 10 kJ. (2 marks)

Reaction coordinate

Quest	tion 18 (6 marks)				
A san	A sample of 2.0 g aluminium metal was burned in pure oxygen.				
(a)	Write a chemical equation for this reaction.	(1 mark)			
(b)	What volume of pure oxygen, measured at 25 °C and 100 kPa, is required to react with all of the aluminium metal?	(3 marks)			
(c)	If the combustion were done in air, which is 21% oxygen by volume, what volum of air will be required?	e (1 mark)			
(d)	Justify the recycling of aluminum over that of extracting it from its ore.	(1 mark)			

Question 19 (5 marks)

Active metals combine readily with oxygen either at room temperature or when heated.

(a)	In point form, write a procedure for a first hand investigation that will allow you to			
` /	determine the mass change of magnesium when it combines with oxygen. (3 marks)			
(1.)				
(b)	Outline how you are going to determine the empirical formula of the oxide formed. (2 marks)			

Quest	tion 20	(5 marks)	
	1.0 L containers ressure (100 kPa	s are each filled with chlorine gas and helium gas at the same tempera a)	ature (25 °C)
(a)		able to compare the volume, the number of molecules and the number of the containers.	r of (3 marks)
(b)	State the law	that allows you to make this comparison.	(2 mark)

End of Test