NASA

3: 7 2:05

MEMORANDUM

MODIFIED MATRIX METHOD FOR CALCULATING STEADY-STATE
SPAN LOADING ON FLEXIBLE WINGS IN SUBSONIC FLIGHT

By Patrick A. Gainer and William S. Aiken, Jr.

Langley Research Center Langley Field, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON

June 1959

e e e	
-	

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 5-26-59L

MODIFIED MATRIX METHOD FOR CALCULATING STEADY-STATE

SPAN LOADING ON FLEXIBLE WINGS IN SUBSONIC FLIGHT

By Patrick A. Gainer and William S. Aiken, Jr.

SUMMARY

A method is presented for shortening the computations required to determine the steady-state span loading on flexible wings in subsonic flight. The method makes use of tables of downwash factors to find the necessary aerodynamic-influence coefficients for the application of lifting-line theory. Explicit matrix equations of equilibrium are converted into a matrix power series with a finite number of terms by utilizing certain characteristic properties of matrices. The number of terms in the series is determined by a trial-and-error process dependent upon the required accuracy of the solution. Spanwise distributions of angle of attack, airload, shear, bending moment, and pitching moment are readily obtained as functions of $qm_{\tilde{R}}$ where q denotes the dynamic pressure and $m_{\tilde{R}}$ denotes the lift-curve slope of a rigid wing. This method is intended primarily to make it practical to solve steady-state aeroelastic problems on the ordinary manually operated desk calculators, but the method is also readily adaptable to automatic computing equipment.

INTRODUCTION

As a result of experience in calculating the span loading on flexible wings, in which most of the work was done on a manually operated desk calculator, it has been found that results are most rapidly obtained by combining certain features from several methods. Reference 1 was found to be invaluable for its explicitness in defining the relationships between aerodynamic loadings and structural restraints in the form of matrix equations. Reference 2 furnished tables of downwash factors which can be used to eliminate most of the time spent in evaluating the elements of the aerodynamic-influence-coefficient matrices. References 3, 4, and 5 furnished an approach to the problem in which the overall problem was divided into two parts: (1) the determination of the airload produced by the various parameters in a particular equation of motion and the solution of the equation of motion for the relative amounts of each parameter; and (2) conversion of the matrix equation of equilibrium into a finite

power series which is readily evaluated for any flight conditions of dynamic pressure and Mach number to obtain angle of attack, airload, shear, bending moment, and pitching moment resulting from any specified initial angle of attack.

The purpose of the present report is to combine the various features of these methods into a procedure which can readily be followed by the engineer. A sample problem including the effect of external stores is presented which illustrates in detail the procedures involved in solving for the additional root angle of attack, wing load, and other related quantities per unit of airplane load factor.

In order to maintain continuity in the development, the method for using the downwash tables from reference 2 is given in an appendix; and the pertinent portions of the downwash tables have been included in this report with slight modification.

SYMBOLS

b	wing span, ft
$C_{m{ heta}}$	twist-increment coefficient
С	chord, ft
c _r	wing-root chord (at airplane center line), ft
$c_{n_{\alpha}}$	section normal lift-curve slope
ō	mean aerodynamic chord
EI	bending stiffness, lb-in. ²
F	downwash factor, $\frac{4\pi h}{\Gamma}$ w
GJ	torsional stiffness, lb-in. ²
g	acceleration due to gravity
h	vortex semispan, ft
К	interpolating factor in downwash tables (tables I and II)
L	aerodynamic wing lift outboard of station in question, positive for up load, lb

L _{es}	aerodynamic load acting on external store, lb
\mathtt{L}_{t}	aerodynamic load acting on horizontal tail, lb
ı	running aerodynamic wing load, lb/ft
М	Mach number
M _b	aerodynamic bending moment about axis parallel to airplane center line through a given wing station, positive for up load outboard of station, in-lb
МY	aerodynamic pitching moment about axis perpendicular to air- plane center line passing through quarter-chord point at a given wing station, negative for up load rearward of axis, in-lb
m _{es}	lift-curve slope of external store in presence of wing per degree
m_{O}	two-dimensional section lift-curve slope per degree
$^{\mathrm{m}}_{\mathrm{R}}$	lift-curve slope of rigid wing per degree
$\mathtt{N}_{\mathbf{V}}$	number of vortices on both wings
n	normal load factor at airplane center of gravity, positive when inertia loads are downward
q	dynamic pressure, lb/sq ft
S	wing area, sq ft
W	gross airplane weight, 1b
w	downwash velocity, ft/sec
X,Y	longitudinal and lateral body axes, respectively
x	longitudinal coordinate, positive forward of reference line passing through wing quarter-chord at airplane center line
x_{cg}	distance from pitching-moment reference axis to airplane center of gravity
\mathbf{x}_{t}	distance from pitching-moment reference axis to aerodynamic center of horizontal tail

```
lateral coordinate, positive outboard of airplane center line
У
           angle of attack, deg
α
           final angle of attack including deformation under airload, deg
αrf
           initial angle of attack, deg
αų
           change in section angle of attack due to wing deformation under
\alpha_s
             airload, deg
           circulation, sq ft/sec
\Gamma
           difference between two values
Δ
           dimensionless vortex spanwise station
\eta_{\mathbf{v}}
           sweep angle of wing quarter-chord line, deg
           sweep angle of wing three-quarter-chord line, deg
\Lambda_{3c/4}
λ
           dominant latent root or eigenvalue
Matrix notation:
square matrix
row matrix
           column matrix
| ]
           diagonal matrix
           rectangular matrix, number of rows not necessarily equal to
number of columns
           inverse matrix
\{E\}
           error matrix
[I]
           unit diagonal matrix
```

||Iint|| integrating matrix

[S₁] matrix of aerodynamic-influence coefficients per foot; obtained from lifting-line theory as derived in reference 1

[S₂] structural elasticity matrix relating change in streamwise angle-of-attack distribution to airload distribution, as derived in reference 1, ft-deg/lb

$$\begin{bmatrix} S_3 \end{bmatrix} = \begin{bmatrix} S_2 \end{bmatrix} \begin{bmatrix} S_1 \end{bmatrix}^{-1} \begin{bmatrix} 4 & \frac{m_0}{m_R} \end{bmatrix}$$

Subscripts and superscripts:

ac aerodynamic center

add additional

adj adjusted

c chord

cp center of pressure

d downwash

es on external store

f final, at equilibrium

i initial

j exponent in power series

N number of terms

n quantity per unit of airplane load factor

O opposite wings

p parabolic

r at wing root (airplane center line)

S same wing

sta station

- T trapezoidal
- v vortex
- y quantity at semispan station
- α quantity per unit of change in root angle of attack

Primes indicate the next smaller value.

METHOD

The equation relating the normal forces which act on a rigid airplane to produce a change in normal load factor, with wing loads due to pitching velocity neglected, is as follows:

$$\Delta nW = qm_R S \Delta \alpha_r + \Delta L_t$$
 (1)

When the wing is flexible, that part of the inertia load which acts on the wing will cause a change in wing angle-of-attack distribution and a resulting increment in aerodynamic lift which is proportional to $\Delta n.$ Also, the initial aerodynamic load produced by $\Delta \alpha_T$ will cause the wing to deflect and twist with a resulting increment in aerodynamic load which is proportional to $\Delta \alpha_T.$ An equation which is equivalent to equation (1) but which applies to a flexible wing with negligible pitching acceleration can, therefore, be written as

$$\Delta nW = qm_R S \Delta \alpha_r + \Delta L_{\alpha} \Delta \alpha_r + \Delta L_{n} \Delta n + \Delta L_{t}$$
 (2)

where ΔI_{tt} is the airload increment due to that part of the wing twist caused by a unit change in α_r and ΔI_n is the airload increment caused by the wing deflection under an inertia lead of l g.

The quantities ΔL_{α} and ΔL_{n} can be calculated separately. By applying the equations of equilibrium between external load and internal restraint, the final angle of attack and serodynamic load produced by any initial-angle-of-attack distribution $\left\{\alpha_{\dot{1}}\right\}$ can be determined.

Equilibrium-Angle-of-Attack Distributions

From reference 1, if the final (at equilibrium) angle of attack $\left\{\alpha_f\right\}$ resulting from the application of $\left\{\alpha_i\right\}$ were known, the aerodynamic lift distribution could be calculated by the equation

For this report, $\left\{\alpha_{\mathbf{f}}\right\}$ will be defined by

$$\left\{\alpha_{\mathbf{f}}\right\} = \left\{\alpha_{\mathbf{i}}\right\} + \left\{\alpha_{\mathbf{s}}\right\} \tag{4}$$

where $\left\{\alpha_{\rm S}\right\}$ is the change in section-angle-of-attack distribution caused by the load distribution $\left\{l_{\rm f}\right\}$ acting on the flexible wing. As in reference 1, $\left\{\alpha_{\rm S}\right\}$ is defined by

$$\left\{\alpha_{S}\right\} = \left[S_{2}\right]\left\{l_{f}\right\} \tag{5}$$

Substituting $\left\{\alpha_i\right\} + \left\{\alpha_S\right\}$ for $\left\{\alpha_f\right\}$ in equation (3) and substituting the resulting expression for $\left\{l_f\right\}$ in equation (5) gives

$$\{\alpha_{S}\} = [S_{2}][S_{1}]^{-1}[4qm_{0}]\{\alpha_{1} + \alpha_{S}\}$$
(6)

Before continuing with the solution for $\{\alpha_s\}$, it will be desirable to factor both the dynamic pressure and compressibility variations out of the matrix $\lfloor 4qm_0 \rfloor$ and convert it to a matrix of constants. This operation is performed by multiplying and dividing the matrix by qm_R , where m_R is the overall lift-curve slope of the rigid wing. As a result,

$$\left[4qm_{O}\right] = qm_{R}\left|4\frac{m_{O}}{m_{R}}\right| \tag{7}$$

Each element of the matrix $\left[4 \frac{m_0}{m_R}\right]$ can be considered constant at subsonic speeds. Equation (6) can, therefore, be written as

$$\{\alpha_{s}\} = q m_{R} \left[s_{2}\right] \left[s_{1}\right]^{-1} \left[4 + \frac{m_{o}}{m_{R}}\right] \left\{\alpha_{1} + \alpha_{s}\right\}$$
 (8)

Now, solving equation (8) for $\{\alpha_s\}$ gives

$$\{\alpha_{s}\} = \left[\begin{bmatrix} I \end{bmatrix} - q m_{R} \begin{bmatrix} S_{2} \end{bmatrix} \begin{bmatrix} S_{1} \end{bmatrix}^{-1} \left[4 + \frac{m_{o}}{m_{R}} \right] \right]^{-1} q m_{R} \begin{bmatrix} S_{2} \end{bmatrix} \begin{bmatrix} S_{1} \end{bmatrix}^{-1} \left[4 + \frac{m_{o}}{m_{R}} \right] \{\alpha_{i}\}$$
(9)

The normal method of solution of equation (9) would be by matrix

inversion. Since the matrix to be inverted $\left[[I] - qm_R[S_2][S_1]^{-1} \right] + \frac{m_0}{m_R}$

is a function of qm_R , one inversion must be done for each value of qm_R to be investigated. Some method of iteration would be preferable, and a very useful method can be developed as follows: By the process usually known as "long division," equation (9) can be expanded into a power series of any desired number of terms and a remainder term. For convenience,

let the matrix $\left[\left[S_2 \right] \left[S_1 \right]^{-1} \right]^{\frac{1}{2}} = \frac{m_0}{m_R}$ be abbreviated as $\left[S_3 \right]$. Then, equation (9) may be expanded to

$$\left\{\alpha_{S}\right\} = \left[\begin{bmatrix}I\right] + qm_{R}[S_{3}] + (qm_{R})^{2}[S_{3}]^{2} + \cdots + (qm_{R})^{J}[LI] - qm_{R}[S_{3}]\right]^{-1}[S_{3}]^{J}[S_{3}]^{\alpha_{1}}qm_{R}$$

$$(10)$$

where the jth-power term is the exact remainder after j steps in the division. In this respect, equation (10) is analogous to the expansion

$$\frac{1}{1-x} = (1-x)^{-1} = 1+x+x^2+\ldots+(1-x)^{-1}x^{j}$$
 (11)

Equation (11) is true for all values of x and j, and equation (10) is likewise true for all values of j. Therefore, the answer obtained after j steps in the division must be equal to the answer after j + 1 steps. In equation form, this may be stated as

$$\begin{bmatrix} \begin{bmatrix} \mathbf{I} \end{bmatrix} + \mathbf{q} \mathbf{m}_{R} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix} + \cdots + (\mathbf{q} \mathbf{m}_{R})^{\mathbf{j}} \begin{bmatrix} \mathbf{I} \end{bmatrix} - \mathbf{q} \mathbf{m}_{R} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{\mathbf{j}} \mathbf{q} \mathbf{m}_{R} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix} \begin{Bmatrix} \alpha_{\mathbf{i}} \end{Bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} \mathbf{I} \end{bmatrix} + \mathbf{q} \mathbf{m}_{R} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix} + \cdots + (\mathbf{q} \mathbf{m}_{R})^{\mathbf{j}} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{\mathbf{j}} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{\mathbf{j}} + \cdots + (\mathbf{q} \mathbf{m}_{R})^{\mathbf{j}} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{\mathbf{j}} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{\mathbf{j}} + \cdots + (\mathbf{q} \mathbf{m}_{R})^{\mathbf{j}} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{\mathbf{j}} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{\mathbf{j}} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{\mathbf{j}} + \cdots + (\mathbf{q} \mathbf{S}_{3})^{\mathbf{j}} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{\mathbf{j}} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{$$

Equation (12) reduces to

$$(q_{R})^{j} [I] - q_{R}[S_{3}]^{-1} [S_{3}]^{j}$$

$$= (q_{R})^{j} [S_{3}]^{j} + (q_{R})^{j+1} [I] - q_{R}[S_{3}]^{-1} [S_{3}]^{j+1}$$

$$(13)$$

By solving equation (13) for $[I] - qm_R[S_3]^{-1}$ in terms of $[S_3]^{j}$ and $[S_3]^{j+1}$, it will be shown that, under certain conditions, it will be possible to substitute an easily determined scalar quantity for the matrix $[I] - qm_R[S_3]^{-1}$ for the purpose of calculating the remainder term (jth-power term) in equation (10). Thus, equation (13) can be written as

$$\left[\begin{bmatrix} \mathbf{I} - q \mathbf{m}_{R} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix} \right]^{-1} = \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{\mathbf{j}} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{\mathbf{j}} - q \mathbf{m}_{R} \begin{bmatrix} \mathbf{S}_{3} \end{bmatrix}^{\mathbf{j}+1} \end{bmatrix}^{-1}$$
(14)

When j is sufficiently large, $\begin{bmatrix} S_3 \end{bmatrix}^{j+1}$ is given to a high degree of accuracy by $\lambda \begin{bmatrix} S_3 \end{bmatrix}^j$, where λ is the dominant latent root or eigenvalue of $\begin{bmatrix} S_3 \end{bmatrix}$. (See ref. 6 for further discussion.) Substituting $\lambda \begin{bmatrix} S_3 \end{bmatrix}^j$ for $\begin{bmatrix} S_3 \end{bmatrix}^{j+1}$ in equation (14) gives

$$\left[\begin{bmatrix} 1 \end{bmatrix} - q m_R \begin{bmatrix} S_3 \end{bmatrix}\right]^{-1} = \begin{bmatrix} S_3 \end{bmatrix}^{j} \left[\begin{bmatrix} S_3 \end{bmatrix}^{j} \left(1 - \lambda q m_R\right)\right]^{-1}$$
(15)

However, since

$$\left[\left[S_{3}\right]^{j}\left(1-\lambda qm_{R}\right)\right]^{-1}=\left[\left[S_{3}\right]^{j}\right]^{-1}\frac{1}{1-\lambda qm_{R}}$$

and

$$\left[\mathbf{S}_{3}\right]^{\mathbf{j}}\left[\left[\mathbf{S}_{3}\right]^{\mathbf{j}}\right]^{-1} = \left[\mathbf{I}\right]$$

equation (15) reduces to

$$\left[\left[I \right] - q m_{R} \left[S_{3} \right] \right]^{-1} = \left[I \right] \frac{1}{1 - \lambda q m_{R}}$$
 (16)

The jth-power term (the remainder) in equation (10) can now be written as

$$\left(q_{m_R}\right)^{j} \left[\begin{bmatrix} I \end{bmatrix} - q_{m_R} \begin{bmatrix} S_3 \end{bmatrix} \right]^{-1} \left[S_3 \right]^{j} = \frac{\left(q_{m_R}\right)^{j}}{1 - \lambda q_{m_R}} \left[I \right] \left[S_3 \right]^{j}$$

$$= \frac{\left(q_{m_R}\right)^{j}}{1 - \lambda q_{m_R}} \left[S_3 \right]^{j}$$

Equation (10) in its entirety becomes

$$\left\{\alpha_{S}\right\} = \left[\left[I\right] + qm_{R}\left[S_{3}\right] + \left(qm_{R}\right)^{2}\left[S_{3}\right]^{2} + \dots + \frac{\left(qm_{R}\right)^{j}}{1 - \lambda qm_{R}}\left[S_{3}\right]^{j}\right]qm_{R}\left[S_{3}\right]\left\{\alpha_{1}\right\}$$

$$(17)$$

It must be made clear that equation (16) applies only to operations on jth-power terms or higher powers of $\begin{bmatrix} S_3 \end{bmatrix}$. This does not appear to be a practical limitation in aeroelasticity calculations, since increasing powers of the typical $\begin{bmatrix} S_2 \end{bmatrix} \begin{bmatrix} S_1 \end{bmatrix}^{-1} + \frac{m_0}{m_R} \end{bmatrix}$ matrix rapidly approach the required simple form. Equation (17) simplifies to

$$\begin{bmatrix} \alpha_{S} \end{bmatrix} = q m_{R} \begin{bmatrix} S_{\overline{J}} \end{bmatrix} \left\{ \alpha_{1} \right\} + (q m_{R})^{2} \begin{bmatrix} S_{\overline{J}} \end{bmatrix}^{2} \left\{ \alpha_{1} \right\} + \cdots + \frac{(q m_{R})^{j+1}}{1 - \lambda q m_{R}} \begin{bmatrix} S_{\overline{J}} \end{bmatrix}^{j+1} \left\{ \alpha_{1} \right\}$$

$$(18)$$

Ιf

$$\left[S_{3}\right]\left\{\alpha_{i}\right\} = \left\{C_{\theta,1}\right\}$$

and

$$\begin{bmatrix} S_{3} \end{bmatrix}^{2} \{ \alpha_{1} \} = \{ C_{\theta, 2} \} = \begin{bmatrix} S_{3} \end{bmatrix} \{ C_{\theta, 1} \}$$

then, in general,

$$\begin{bmatrix} \mathbf{S}_{\mathbf{J}} \end{bmatrix}^{\mathbf{N}} \left\{ \alpha_{\mathbf{i}} \right\} = \begin{bmatrix} \mathbf{C}_{\mathbf{\theta}, \mathbf{N}} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{\mathbf{J}} \end{bmatrix} \left\{ \mathbf{C}_{\mathbf{\theta}, \mathbf{N-1}} \right\}$$

It is seen that it is not necessary to raise $\begin{bmatrix} S_3 \end{bmatrix}$ to the various powers if $\{\alpha_i\}$ is specified. For a specific $\{\alpha_i\}$ distribution, equation (18) becomes

$$\left\{\alpha_{s}\right\} = \left\{C_{\theta,1}\right\} q m_{R} + \left\{C_{\theta,2}\right\} \left(q m_{R}\right)^{2} + \dots + \left\{C_{\theta,N}\right\} \frac{\left(q m_{R}\right)^{N}}{1 - \lambda q m_{R}}$$
 (19)

where N in equation (19) corresponds to j + 1 in equation (18).

In order to determine the number of terms N in equation (19) that will be required to give any specified accuracy for $\{\alpha_S\}$, a trial-and-error procedure is used. Essentially, this procedure consists of

increasing N until two successive values are found which give the same answer to the desired accuracy. In other words, the equation with N terms must yield the same result as the equation with N + 1 terms. This condition is expressed as $\frac{1}{2}$

$$\left\{ c_{\theta,1} \right\} q m_{R} + \left[c_{\theta,2} \right\} (q m_{R})^{2} + \cdots + \left\{ c_{\theta,N} \right\} \frac{(q m_{R})^{N}}{1 - \lambda q m_{R}} = \left\{ c_{\theta,1} \right\} q m_{R} + \cdots + \left\{ c_{\theta,N} \right\} \left\{ c_{\theta,N} \right\} \left\{ c_{\theta,N} \right\}$$

$$\left\{ c_{\theta,2} \right\} (q_{R}^{m})^{2} + \dots + \left\{ c_{\theta,N} \right\} (q_{R}^{m})^{N} + \left\{ c_{\theta,N+1} \right\} \frac{(q_{R}^{m})^{N+1}}{1 - \lambda q_{R}^{m}} + \left\{ E \right\}$$
 (20)

where $\{E\}$ is the difference between the two successive approximations to $\{\alpha_s\}$. Equation (20) reduces to

$$\left\{ C_{\theta}, N \right\} \frac{\left(qm_{R}\right)^{N}}{1 - \lambda qm_{R}} = \left\{ C_{\theta}, N \right\} \left(qm_{R}\right)^{N} + \left\{ C_{\theta}, N+1 \right\} \frac{\left(qm_{R}\right)^{N+1}}{1 - \lambda qm_{R}} + \left\{ E \right\}$$
(21)

and equation (21) can be written as

$$\left\{ \left\{ C_{\theta,N} \right\} - \left\{ C_{\theta,N+1} \right\} q m_{R} \right\} \frac{1}{1 - \lambda q m_{R}} = \left\{ C_{\theta,N} \right\} + \frac{1}{\left(q m_{R}\right)^{N}} \left\{ E \right\}$$
 (22)

Equation (22) represents a system of simultaneous equations with unknowns $\frac{1}{1-\lambda qm_R}$ and $\{E\}$. The number of equations in the system is equal to the number of elements in $\{E\}$. Therefore, there is one more unknown than there are equations. The required extra equation can be obtained in two ways: (1) by assuming the value of an element of $\{E\}$ at a particular semispan station to be zero, and (2) by imposing the condition that the sum of the squares of the errors must be a minimum (least-squares method). If the error is made to be zero at about the two-thirds-semispan station, the first method will give about the same results as the least-squares method and will be much simpler. The value of $\frac{1}{1-\lambda qm_R}$ which will give zero error in equation (22) for one semispan station is

$$\frac{1}{1 - \lambda q m_{R}} = \frac{C_{\theta, N} - q m_{R} C_{\theta, N+1}}{C_{\theta, N} - q m_{R} C_{\theta, N+1}} = \frac{1}{1 - \frac{C_{\theta, N+1}}{C_{\theta, N}} q m_{R}}$$
(23)

where $C_{\theta,N}$ and $C_{\theta,N+1}$ are corresponding elements from the column matrices $\left\{C_{\theta,N}\right\}$ and $\left\{C_{\theta,N+1}\right\}$, respectively. The errors at the other semispan stations are easily checked by solving equation (22) for $\left\{E\right\}$. Thus,

$$\left\{E\right\} = \left(qm_{R}\right)^{N} \left\{ \left(\frac{1}{1-\lambda qm_{R}}-1\right) \left\{C_{\theta,N}\right\} - \frac{1}{1-\lambda qm_{R}} \left\{C_{\theta,N+1}\right\} qm_{R} \right\} \quad (24)$$

The elements of $\{E\}$ are then evaluated by inserting the value of $\frac{1}{1-\lambda qm_R}$ obtained from equation (23) into equation (24). It is apparent that $\frac{1}{1-\lambda qm_R}$ and the error $\{E\}$ both vary with qm_R . Therefore, in the trial-and-error procedure the highest value of qm_R to be analyzed should be used to calculate $\frac{1}{1-\lambda qm_R}$ and the error $\{E\}$.

The error {E} in equation (24) is not the actual error in the calculated value of $\{\alpha_S\}$ except when $\{E\} \equiv \{0\}$. It can be demonstrated that the largest of the errors $\{E\}$ is greater than the largest true error in the assumed solution for $\{\alpha_S\}$ in all cases where the $\{C_\theta\}$ terms alternate in sign.

When the columns $\left\{ ^{C}_{\theta ,N}\right\}$ and $\left\{ ^{C}_{\theta ,N}+1\right\}$ have been found which make $\left\{ E\right\}$ sufficiently small, $\left\{ ^{\alpha }_{s}\right\}$ can be evaluated from equation (19) which is here repeated:

$$\{\alpha_{s}\} = \{C_{\theta,1}\}qm_{R} + \{C_{\theta,2}\}(qm_{R})^{2} + \dots + \{C_{\theta,N}\}\frac{(qm_{R})^{N}}{1 - \lambda qm_{R}}$$

Each initial angle of attack will require a different equation for defining the resulting $\left\{\alpha_{S}\right\}$. As might be expected, the number of terms required to give any specified accuracy will depend on the shape of the initial-angle-of-attack distribution. It can be assumed that the initial-angle-of-attack distribution which consists of a unit angle of attack at each semispan station will require at least as many terms in its equation for $\left\{\alpha_{S}\right\}$ as required by any other distribution normally encountered. No harm will be done by carrying more than the minimum number of terms.

Therefore, if N and $\frac{1}{1-\lambda q m_R}$ are determined first for the unit symmetrical initial-angle-of-attack distribution, it will be unnecessary to repeat the trial-and-error process for any other initial angle of attack. It will be necessary only to compute the $\left\{C_{\theta}\right\}$ terms through $\left\{C_{\theta},N\right\}$. The same value of $\frac{1}{1-\lambda q m_R}$ applies to all equations for $\left\{\alpha_s\right\}$

since λ is a property of the matrix $\left[\begin{bmatrix} S_2 \end{bmatrix} \begin{bmatrix} S_1 \end{bmatrix}^{-1} \begin{bmatrix} 4 & \frac{m_0}{m_R} \end{bmatrix} \right]$.

The final-angle-of-attack distribution resulting from a particular initial distribution is given by equation (4):

$$\{\alpha_{\mathbf{f}}\} = \{\alpha_{\mathbf{i}}\} + \{\alpha_{\mathbf{s}}\}$$

Thus, by combining equations (4) and (19) the final-angle-of-attack distribution is

$$\left\{\alpha_{\mathbf{f}}\right\} = \left\{\alpha_{\mathbf{i}}\right\} + qm_{\mathbf{R}}\left\{C_{\theta,\mathbf{1}}\right\} + \dots + \left\{C_{\theta,\mathbf{N}}\right\} \frac{\left(qm_{\mathbf{R}}\right)^{\mathbf{N}}}{1 - \lambda qm_{\mathbf{R}}}$$
(25)

Airload Distributions

The airload distribution resulting from $\left\{\alpha_{f}^{c}\right\}$ is calculated by substituting $\left\{\alpha_{f}^{c}\right\}$ from equation (25) into equation (3) and then by making use of the previously described conversion of $\left\lfloor 4qm_{O}^{c}\right\rfloor$ into $qm_{R}\left\lfloor 4\frac{m_{O}^{c}}{m_{R}^{c}}\right\rfloor$ to obtain the following equation:

$$\left\{l_{f}\right\} = q m_{R} \left[S_{1}\right]^{-1} \left[l_{+} \frac{m_{O}}{m_{R}}\right] \left\{\left\{\alpha_{i}\right\} + q m_{R} \left\{C_{\theta,1}\right\} + \dots + \frac{\left(q m_{R}\right)^{N}}{1 - \lambda q m_{R}} \left\{C_{\theta,N}\right\}\right\}$$

$$(26)$$

By performing the term-by-term multiplication indicated in equation (26), an equation for load distribution in terms of qm_R is obtained in the form

$$\{l_{f}\} = qm_{R} \{\frac{l_{i}}{qm_{R}}\} + (qm_{R})^{2} \{\frac{l_{1}}{(qm_{R})^{2}}\} + \cdots + (qm_{R})^{N+1} \{\frac{l_{N}}{(qm_{R})^{N+1}}\} \frac{1}{1 - \lambda qm_{R}}$$
(27)

where

$$\left\{ \frac{l_{1}}{qm_{R}} \right\} = \left[S_{1} \right]^{-1} \left[l_{1} \frac{m_{o}}{m_{R}} \right] \left\{ \alpha_{1} \right\}$$

$$\left\{ \frac{l_{1}}{\left(qm_{R} \right)^{2}} \right\} = \left[S_{1} \right]^{-1} \left[l_{1} \frac{m_{o}}{m_{R}} \right] \left\{ C_{\theta}, 1 \right\}$$

and so on for all the terms.

By integrating equation (27) term by term, an equation for aerodynamic shear (or total lift carried outboard of each station) resulting from $\{\alpha_1\}$ is obtained. The integration is done by premultiplying by a suitable integrating matrix, which is denoted here by $\|I_{int}\|$. The general form of the shear equation is

$$\left\{L_{f}\right\} = qm_{R}\left\{\frac{L_{i}}{qm_{R}}\right\} + (qm_{R})^{2}\left\{\frac{L_{1}}{(qm_{R})^{2}}\right\} + \dots + (qm_{R})^{N+1}\left\{\frac{L_{N}}{(qm_{R})^{N+1}}\right\} \frac{1}{1 - \lambda qm_{R}}$$
(28)

where

$$\left\{ \frac{\mathbf{L_{i}}}{\mathbf{qm_{R}}} \right\} = \left\| \mathbf{I_{int}} \right\| \left\{ \frac{\mathbf{l_{i}}}{\mathbf{qm_{R}}} \right\}$$

and so on for all the terms.

Now, the shear equation is integrated term by term along the Y-axis to obtain a bending- (or rolling-) moment equation and along the X-axis to obtain a pitching-moment equation. The same integrating matrix which was used to obtain shears may be used for the bending moments. If the wing quarter-chord locus is straight, the pitching-moment equation can be obtained by multiplying the bending-moment equation by $-\tan \Lambda_{\rm C}/\mu$. In other cases, a different integrating matrix will have to be devised.

Application to Calculation of Additional Loading

The results of the calculations up to this point are equations by means of which the final angle of attack, airload, shear, bending moment, and pitching moment resulting from a given initial angle of attack can be evaluated at any of the chosen wing stations for any value of q^m_R .

A particular flight condition may involve several different initial-angle-of-attack distributions. Suppose, for example, that it is desired to calculate the additional wing loading required to produce a certain change in airplane load factor Δn . The lift forces acting on the airplane are related to the inertia forces by equation (2)

$$\Delta nW = qm_R S \Delta \alpha_r + \Delta L_{tx} \Delta \alpha_r + \Delta L_{tx} \Delta n + \Delta L_{tx}$$

or by

$$\Delta nW = (qm_RS + \Delta I_{tx})\Delta \alpha_r + \Delta I_n \Delta n + \Delta I_t$$

The quantity $qm_RS + \Delta L_{\alpha}$ is the total wing lift resulting from a unit change in wing angle of attack alone; that is, it is twice the aerodynamic shear at the center line calculated from equation (28) when $\left\{\alpha_i\right\}$ is equal to 1^O at each semispan station. The quantity ΔL_n is twice the aerodynamic shear at the center line calculated when $\left\{\alpha_i\right\}$ is the twist due to an inertia loading of 1 g on the wing. Equation (2) may be written as

$$\Delta nW = 2L_{\alpha,r} \Delta \alpha_r + 2L_{n,r} \Delta n + \Delta L_t$$
 (29)

where $L_{\alpha,r}$ and $L_{n,r}$ are the values of L_{f} at the center line calculated by equation (28) for the unit symmetrical and inertial twist initial angles of attack, respectively.

If a certain value of Δn is given, the quantities $\Delta \alpha_r$ and ΔL_t remain to be determined in equation (29). The additional equation necessary for this determination is the relationship between the aerodynamic and inertial pitching moments acting on the airplane. A convenient reference axis for the pitching moments will be that passing through the intersection of the wing quarter-chord line with the airplane center line. The aerodynamic pitching-moment components corresponding to each initial angle of attack will already have been calculated with respect to this axis by integrating the shear distributions along the X-axis as previously described. The required pitching-moment equation is, thus,

$$\Delta nWx_{cg} = 2M_{Y,\alpha,r} \Delta \alpha_r + 2M_{Y,n,r} \Delta n + \Delta L_t x_t$$
 (30)

where \mathbf{x}_{cg} is the distance from the pitching-moment reference axis to the airplane center of gravity and \mathbf{x}_t is the distance from the pitching-moment reference axis to the horizontal-tail aerodynamic center.

By simultaneous solution of equations (29) and (30), $\Delta\alpha_r$ and ΔL_t are obtained, respectively, as

$$\Delta \alpha_{\mathbf{r}} = \frac{\Delta n \left[W \left(1 - \frac{x_{\text{cg}}}{x_{\text{t}}} \right) + \frac{2}{x_{\text{t}}} M_{Y,n,r} - 2L_{n,r} \right]}{2L_{\alpha,r} - \frac{2}{x_{\text{t}}} M_{Y,\alpha,r}}$$
(31)

and

$$\Delta L_{t} = \Delta nW - 2L_{\alpha,r} \Delta \alpha_{r} - 2L_{n,r} \Delta n$$
 (32)

The additional aerodynamic-shear distribution $\{L_{add}\}$ corresponding to the change in load factor Δn can now be evaluated from its components by using the value of $\Delta \alpha_r$ from equation (31). Thus,

$$\left\{L_{add}\right\} = \left\{L_{\alpha}\right\} \triangle \alpha_{r} + \left\{L_{n}\right\} \triangle n \tag{33}$$

Similar equations are used to evaluate distributions of angle of attack, airload, bending moment, and pitching moment.

Antisymmetrical Loadings

The same principles which have been applied in the previous sections to symmetrical loadings may also be applied to antisymmetrical loadings. The $\begin{bmatrix} S_1 \end{bmatrix}$ matrix for antisymmetrical loadings is different, as will be described in the appendix. For this reason, the corresponding matrix $\begin{bmatrix} S_2 \end{bmatrix} \begin{bmatrix} S_1 \end{bmatrix}^{-1} \begin{bmatrix} 4 & \frac{m_0}{m_R} \end{bmatrix}$ is different and a different value of λ will be obtained for the antisymmetrical case.

Effect of Changing Wing Stiffness

Investigating the effects of changing the wing stiffness by a certain percentage which is constant along the span is a relatively simple matter. Such changes have the effect of multiplying $[S_2]$ by a constant. Each term in the angle-of-attack equations needs only to be multiplied by the appropriate power of the stiffness ratio. The changes are easily followed through the airload, shear, and pitching- and bending-moment equations.

External-Store Effects

If the wing carries external stores which produce some lift and pitching moment, the matrix $\left[\begin{bmatrix}S_2\end{bmatrix}\begin{bmatrix}S_1\end{bmatrix}^{-1}\begin{bmatrix}4&\frac{m_0}{m_R}\end{bmatrix}\right]$ calculated for the wing alone is easily adjusted to account for the stores with the following provisions:

- (1) The stores should not produce appreciable changes in the additional lift distribution of the rigid wing itself.
 - (2) The struts supporting the stores should be essentially rigid.
- (3) The variations of store lift and pitching moment with angle of attack must be known.

Each store can be handled separately by the following procedure: The lift-curve slope of the external store in the presence of the wing, which will be called m_{es} , can be assumed to be a constant fraction of the rigid-wing lift-curve slope m_R so that $\frac{m_{es}}{m_R}$ is constant. The airload on the store will then be expressed by

$$L_{es} = qm_R \frac{m_{es}}{m_R} \frac{S}{2} \alpha_{es}$$
 (34)

from which

$$\frac{dL_{es}}{d\alpha_{es}} = qm_R \frac{m_{es}}{m_R} \frac{S}{2}$$
 (35)

The airload $\,L_{es}\,$ acting at the store center of pressure will produce a change in angle of attack at each wing station because of wing twist of the flexible wing. The change in wing angle of attack at each station for each unit of store load is calculated by the methods described in reference 1. The results are arranged in a column matrix, each element of

which is of the form $\frac{d\alpha_s}{dL_{es}}$. If each element of the column is multiplied

by $\frac{dL_{es}}{d\alpha_{es}}$, the resultant column will consist of elements of the form $\frac{d\alpha_{s}}{d\alpha_{es}}$.

Thus, equation (35) can be written as

$$\frac{d\alpha_{s}}{d\alpha_{es}} = qm_{R} \frac{d\alpha_{s}}{dL_{es}} \frac{m_{es}}{m_{R}} \frac{S}{2}$$
 (36)

or

$$\frac{1}{qm_R} \frac{d\alpha_S}{d\alpha_{es}} = \frac{d\alpha_S}{dL_{es}} \frac{m_{es}}{m_R} \frac{S}{2}$$

The typical element of the column matrix $\frac{1}{qm_R} \left\{ \frac{d\alpha_s}{d\alpha_{es}} \right\}$ has the same prop-

erties as an element of the matrix $\left[S_2\right]\left[S_1\right]^{-1}\left[4\frac{m_0}{m_R}\right]$. Under the assumption that the external-store strut is rigid, α_{es} will be the same as the wing angle of attack at the store semispan station. If the store station coincides with one of the vortex stations, the column matrix

$$\frac{1}{qm_R} \left\{ \frac{d\alpha_s}{d\alpha_{es}} \right\}$$
 can be added directly to the column of the matrix

 $\left[\begin{bmatrix} S_2 \end{bmatrix}\begin{bmatrix} S_1 \end{bmatrix}^{-1} \mid 4 \xrightarrow{m_0}{m_R} \right]$ which corresponds to that vortex station. In the general case, where the store is between two stations, the column matrix $\frac{1}{qm_{\rm R}}$ $\frac{d\alpha_{\rm s}}{d\alpha_{\rm es}}$ is divided between the two corresponding columns so that

the greater portion is given to the column of $\begin{bmatrix} S_2 \end{bmatrix} \begin{bmatrix} S_1 \end{bmatrix}^{-1} + \frac{m_0}{m_R} \end{bmatrix}$

corresponding to the closer vortex station. For instance, if the store is located at a point one-third of the distance between two stations,

two-thirds of the value of $\frac{1}{qm_p} \left\{ \frac{d\alpha_s}{d\alpha_{es}} \right\}$ is added to the nearest adjacent

column and the remainder is added to the other adjacent column of

$$\left[S_2\right]\left[S_1\right]^{-1}\left[4\frac{m_0}{m_R}\right]$$
 . This procedure is equivalent to interpolating

between two wing angles of attack to determine the store angle of attack. When more than one store is present, several columns of

$$\left[\begin{bmatrix} S_2 \end{bmatrix} \begin{bmatrix} S_1 \end{bmatrix}^{-1} \begin{bmatrix} 4 & \frac{m_0}{m_R} \end{bmatrix} \right] \text{ will be affected.}$$

The $\left\{C_{\theta}\right\}$ columns and all quantities derived from them must be recalculated by using the adjusted $\left[S_2\right]\left[S_1\right]^{-1}\left[4\frac{m_0}{m_R}\right]$ matrix. After the equation for $\{\alpha_f\}$ has been determined, an interpolation is made between the column elements corresponding to the two wing stations adjacent to each store to allow evaluation of the final angle of attack at the store stations for any value of qmR. The load acting on each external store at equilibrium is then

$$L_{es} = \alpha_{f,es} q_{m_R} \frac{m_{es}}{m_R} \frac{S}{2}$$
 (37)

This load must be added to the new shear equations at each station inboard of the store. Each station inboard of the store is also subjected to a bending moment and pitching moment caused by the load acting on each store. These moment increments are

$$\Delta M_{b,es} = L_{es} \Delta y_{es}$$

and

$$\Delta M_{Y,es} = L_{es} \Delta x_{es}$$

where Δy_{es} and Δx_{es} are measured from the external-store center of pressure to the wing quarter-chord point at each vortex station involved.

APPLICATION OF METHOD TO SAMPLE PROBLEM

Sample calculations of the additional wing loading have been worked out for the wing-nacelle combination shown in figure 1. The calculations are divided into three parts. The first part, entitled "Influence Coef-

ficients," includes the determination of the $\left[S_1\right]$, $\left[S_2\right]$, and $\left[4 \, \frac{m_O}{m_R}\right]$

matrices and of the external-store effects. The second part, entitled "Load-Distribution Coefficients," includes the determination of equations for the required components of final angle of attack, airload, shear, bending moment, and pitching moment in terms of qm_R . The third part, entitled "Additional Airloads," consists of the determination of the wing-root airloads and tail airloads per unit of load factor for specific conditions of qm_R , gross weight, and center-of-gravity location.

For the sample problem, the lift of the wing was represented by 20 horseshoe vortices, each 10 percent of the semispan in width. (See fig. 1.) The center of each of the bound vortices is located on the wing quarter-chord locus. The EI and GJ distributions which were used to calculate the $\begin{bmatrix} S_2 \end{bmatrix}$ matrix by the method of reference 1 are plotted against nondimensional semispan station in figure 2. The dimensions of the sample wing are as follows:

Span, ft						116
Vortex semispan, h, ft						2.9
Area, sq ft						1.428
Root chord, ft						17.34
Taper ratio						0.42
Aspect ratio						0.12
Quarter-chord sweep angle, deg						35
Three-quarter-chord sweep angle, deg					• •	31 5
External-store location, percent of	comionon	• •	• • •	• • •	• •	71.7
External boote rocation, percent of	semispan.	• •		• •	• •	20.2

Influence Coefficients

The inverse of the aerodynamic-influence-coefficient matrix $\left(\begin{bmatrix} S_1 \end{bmatrix}^{-1}\right)$, the matrix $\left(\begin{bmatrix} + \frac{m_0}{m_R} \end{bmatrix}\right)$, and the structural-influence-coefficient matrix $\left(\begin{bmatrix} S_2 \end{bmatrix}\right)$ are required in the calculation of final airload distribution, as shown by equation (26):

$$\left\{l_{\mathbf{f}}\right\} = q m_{\mathbf{R}} \left[S_{\mathbf{l}}\right]^{-1} \left[l_{\mathbf{m}_{\mathbf{R}}} \left[S_{\mathbf{l}}\right] + q m_{\mathbf{R}} \left\{C_{\mathbf{\theta},\mathbf{l}}\right\} + \dots + \frac{\left(q m_{\mathbf{R}}\right)^{N}}{1 - \lambda q m_{\mathbf{R}}} \left\{C_{\mathbf{\theta},\mathbf{N}}\right\}\right]$$

where

$$\left\{ \mathbf{C}_{\theta,1} \right\} = \left[\mathbf{S}_{3} \right] \left\{ \alpha_{1} \right\} = \left[\left[\mathbf{S}_{2} \right] \left[\mathbf{S}_{1} \right]^{-1} \left[\mathbf{4} \frac{\mathbf{m}_{0}}{\mathbf{m}_{R}} \right] \right] \left\{ \alpha_{1} \right\}$$

and

$$\left\{ \mathbf{C}_{\theta,N} \right\} = \left[\mathbf{S}_{\mathbf{3}} \right] \left\{ \mathbf{C}_{\theta,N-1} \right\}$$

The product $\left[\left[S_2\right]\left[S_1\right]^{-1}\left[4\right] + \frac{m_0}{m_R}\right]$ is first calculated for the wing alone, and then the method of adding external-store effects is demonstrated.

Calculation of $[S_1]$. The method of deriving the $[S_1]$ matrix from the downwash tables (tables I and II) is described in detail in the appendix. For the sample problem, the required $\left[\frac{\Delta y}{h}\right]$ matrices are those given in equations (A6) and (A7). The necessary $\left[\frac{\Delta x}{h}\right]$ matrix is calculated from equation (A11) as

$$\left[\frac{\Delta x}{h}\right] = \left[\left(\frac{y}{h}\right)_{d}\right] \tan 31.5^{\circ} + \left[\frac{c_{r}}{2h}\right] - \left[\left(\frac{y}{h}\right)_{v}\right] \tan 35^{\circ}$$

which becomes, numerically,

$$\begin{bmatrix} 1.3421 & 2.7425 & 4.1429 & 5.5434 & 6.9438 & 8.3442 & 9.7446 & 11.1450 & 12.5455 & 13.9459 \\ 0.1150 & 1.5154 & 2.9158 & 4.3162 & 5.7167 & 7.1171 & 8.5175 & 9.9179 & 11.3183 & 12.7188 \\ -1.1121 & 0.2883 & 1.6887 & 3.0891 & 4.4895 & 5.8900 & 7.2904 & 8.6908 & 10.0912 & 11.4916 \\ -2.2763 & -0.9388 & 0.4616 & 1.8620 & 3.2624 & 4.6628 & 6.0633 & 7.4637 & 8.8641 & 10.2645 \\ -3.5664 & -2.1660 & -0.7655 & 0.6349 & 2.0353 & 3.4357 & 4.8361 & 6.2366 & 7.6370 & 9.0374 \\ -4.7935 & -3.3931 & -1.9927 & -0.5922 & 0.8082 & 2.2086 & 3.6090 & 5.0094 & 6.4099 & 7.8103 \\ -6.0206 & -4.6202 & -3.2198 & -1.8194 & -0.4189 & 0.9815 & 2.3819 & 3.7823 & 5.1827 & 6.5832 \\ -7.2477 & -5.8473 & -4.4469 & -3.0465 & -1.6461 & -0.2456 & 1.1548 & 2.5552 & 3.9556 & 5.3560 \\ -8.4749 & -7.0744 & -5.6740 & -4.2736 & -2.8732 & -1.4728 & -0.0723 & 1.3281 & 2.7285 & 4.1289 \\ -9.7020 & -8.3016 & -6.9011 & -5.5007 & -4.1003 & -2.6999 & -1.2995 & 0.1010 & 1.5014 & 2.9018 \\ \end{bmatrix}$$

By the use of $\left[\frac{\Delta y}{h}\right]_S$ from equation (A6) and $\left[\frac{\Delta x}{h}\right]$ from equation (38) as arguments in the downwash tables (tables I and II), the downwash factors for vortex and downwash stations on the same wing $\left[F_S\right]$ are determined to be as follows:

Similarly, by using $\left[\frac{\Delta y}{h}\right]_0$ in place of $\left[\frac{\Delta y}{h}\right]_S$, the downwash factors for vortex and downwash stations on opposite wings $\left[F_0\right]$ are found to be

The aerodynamic-influence-coefficient matrix $[S_1]$ for symmetrical airloads, which is found by dividing the vortex semispan h into the sum of the downwash-factor matrices (eqs. (39) and (40)), is written as

$$\begin{bmatrix} S_1 \end{bmatrix} = \begin{bmatrix} F_S \end{bmatrix} + \begin{bmatrix} F_O \end{bmatrix} \frac{1}{h} \tag{41}$$

or, numerically, as

$$\begin{bmatrix} 1.5492 & -0.4271 & -0.0804 & -0.0340 & -0.0191 & -0.0126 & -0.0092 & -0.0073 & -0.0066 & -0.0062 \\ -0.2480 & 1.5154 & -0.4302 & -0.0812 & +0.0345 & -0.0196 & -0.0131 & -0.0099 & -0.0082 & -0.0078 \\ -0.0335 & -0.2738 & 1.4904 & -0.4350 & -0.0822 & -0.0351 & -0.0202 & -0.0140 & -0.0111 & -0.0100 \\ -0.0132 & -0.0356 & -0.2977 & 1.4760 & -0.4357 & -0.0632 & -0.0361 & -0.0214 & -0.0157 & -0.0136 \\ -0.0071 & -0.0137 & -0.0378 & -0.3193 & 1.4566 & -0.4285 & -0.0849 & -0.0377 & -0.0238 & -0.0194 \\ -0.0047 & -0.0075 & -0.0144 & -0.0402 & -0.5384 & 1.4444 & -0.4416 & -0.0872 & -0.0413 & -0.0299 \\ -0.0034 & -0.0050 & -0.0081 & -0.0154 & -0.0425 & -0.3553 & 1.4335 & -0.4461 & -0.0931 & -0.0523 \\ -0.0028 & -0.0038 & -0.0055 & -0.0088 & -0.0168 & -0.0464 & -0.3713 & 1.4216 & -0.4572 & -0.1162 \\ -0.0023 & -0.0031 & -0.0042 & -0.0062 & -0.0100 & -0.0191 & -0.0520 & -0.3903 & 1.3961 & -0.5222 \\ -0.0021 & -0.0027 & -0.0036 & -0.0050 & -0.0076 & -0.0127 & -0.0246 & -0.0672 & -0.4503 & 0.9899 \end{bmatrix}$$

Calculation of $\left[4 \frac{m_0}{m_R}\right]$. The $\left[S_1\right]$ matrix can now be used to calcu-

late the matrix $\left\lfloor 4 \frac{m_0}{m_R} \right\rfloor$ from wind-tunnel measurements of pressure distribution on rigid-wing models. This process is described in detail in

reference 1, but, briefly, from the definition of $[S_1]$, the following equation is derived:

$$[S_1]\{l\} = [4qm_0]\{\alpha\}$$

When the model is rigid, any change in angle of attack can be assumed constant along the semispan. Taking the derivative with respect to α and factoring q out of $\left|4qm_{0}\right|$, thus, results in

$$\left[S_{1}\right]\left\{\frac{\mathrm{d}l}{\mathrm{d}\alpha}\right\} = q\left[4m_{0}\right]\left\{1\right\}$$

or

$$[S_1] \left\{ \frac{\mathrm{d} \imath}{\mathrm{d} \alpha} \right\} \frac{1}{\mathrm{q}} = [4m_0] \left\{ 1 \right\} = \left\{ 4m_0 \right\}$$

However,

$$\left\{ \frac{\mathrm{d}l}{\mathrm{d}\alpha} \right\} \frac{1}{\mathrm{q}} = \left\{ c_{\mathrm{n}\alpha} c \right\}$$

the elements of which are easily calculated from the chordwise pressure distributions at the required semispan stations. (The chords c must be those of the full-scale airplane to agree with $[S_1]$.) Therefore,

$$\begin{bmatrix} S_1 \end{bmatrix} \left\{ c_{n_{\alpha}} c \right\} = \left[4m_{o} \right] \left\{ 1 \right\} = \left\{ 4m_{o} \right\} \tag{43}$$

Dividing equation (43) by the wing lift-curve slope m_R gives

$$\frac{1}{m_{R}} \left[S_{1} \right] \left\{ c_{n_{\alpha}} c \right\} = \left[4 \frac{m_{o}}{m_{R}} \right] \left\{ 1 \right\}$$
(44)

The lift-curve slope $\,{}^{m}_{R}\,$ is calculated from $\,\left\{{}^{c}n_{\alpha}{}^{c}\right\}\,$ as

$$m_{R} = \left[\text{Integrating row} \right] \left\{ c_{n_{\alpha}} c \right\} \frac{2}{S}$$
 (45)

where the row matrix is taken from the bottom row of the integrating matrix $\|I_{int,p}\|$ given in table III and is multiplied by the wing semispan given in feet.

The measured values of $\left\{c_{n_{\alpha}}c\right\}$ for the sample wing are as follows:

$$\left\{ \mathbf{c_{n_{\alpha}} c} \right\} = \begin{cases} 0.4746 \\ 0.7034 \\ 0.8256 \\ 0.9153 \\ 0.9829 \\ 1.0402 \\ 1.0943 \\ 1.1364 \\ 1.1702 \\ 1.2001 \\ \end{cases}$$

The value of m_R from equation (45) is, thus, 0.07681.

The diagonal matrix $\left[4 \frac{m_0}{m_R}\right]$ is then calculated from equation (44) as

```
Calculation of \left[S_1\right]^{-1}\left[4 \frac{m_0}{m_R}\right]. - In the calculation of \left[S_1\right]^{-1}\left[4 \frac{m_0}{m_R}\right]. - In the calculation of \left[S_1\right]^{-1}\left[4 \frac{m_0}{m_R}\right], the aerodynamic-influence-coefficient matrix \left[S_1\right] was inverted and postmultiplied by \left[4 \frac{m_0}{m_R}\right] with the result that \begin{bmatrix} 2.4208 & 1.1850 & 0.6784 & 0.4565 & 0.3274 & 0.2560 & 0.2208 & 0.2005 & 0.2002 & 0.2534 \\ 0.4507 & 4.0832 & 1.4780 & 0.8570 & 0.5662 & 0.4195 & 0.5478 & 0.3070 & 0.5007 & 0.5478 \\ 0.1671 & 0.8975 & 4.5407 & 1.6797 & 0.9992 & 0.6593 & 0.5148 & 0.4379 & 0.4190 & 0.4786 \\ 0.0860 & 0.3586 & 1.1221 & 4.8693 & 1.7919 & 1.0624 & 0.7717 & 0.6240 & 0.5791 & 0.6520 \\ 0.0543 & 0.1929 & 0.4782 & 1.3335 & 4.9754 & 1.9229 & 1.2178 & 0.9142 & 0.8120 & 0.8964 \\ 0.0592 & 0.1251 & 0.2660 & 0.5998 & 1.4858 & 5.0978 & 2.1242 & 1.5974 & 1.1614 & 1.2457 \\ 0.0512 & 0.0924 & 0.1772 & 0.3468 & 0.7073 & 1.6552 & 5.3869 & 2.5547 & 1.7317 & 1.7722 \\ 0.0266 & 0.0750 & 0.1345 & 0.2394 & 0.4312 & 0.8460 & 1.9104 & 5.6812 & 2.8230 & 2.6882 \\ 0.0235 & 0.0650 & 0.1115 & 0.1878 & 0.3134 & 0.55542 & 1.0766 & 2.2707 & 6.3971 & 4.2354 \\ 0.0216 & 0.0587 & 0.0989 & 0.1625 & 0.2611 & 0.4400 & 0.7970 & 1.5081 & 5.1719 & 9.1055 \end{bmatrix}
```

Calculation of $\left[\begin{bmatrix} S_2 \end{bmatrix} \begin{bmatrix} S_1 \end{bmatrix}^{-1} \begin{bmatrix} 4 & \frac{m_0}{m_R} \end{bmatrix}$. In the calculation of $\left[\begin{bmatrix} S_2 \end{bmatrix} \begin{bmatrix} S_1 \end{bmatrix}^{-1} \begin{bmatrix} 4 & \frac{m_0}{m_R} \end{bmatrix}$, the structural elasticity matrix $\left[S_2 \right]$ determined by using the method of reference 1 is

as

The product of equation (47) premultiplied by equation (48) gives

External-store effects .- The presence of an external store requires

the modification of the matrix equation $\begin{bmatrix} 3_3 \end{bmatrix} = \begin{bmatrix} S_2 \end{bmatrix} \begin{bmatrix} S_1 \end{bmatrix}^{-1} \begin{bmatrix} 4 & \frac{m_0}{m_R} \end{bmatrix}$ as described in the "Method" section. The external store at the 38.2-percent-semispan station is estimated, from wind-tunnel data, to carry about 2 percent of the rigid-wing airload $\left(\frac{m_{es}}{m_R} = 0.02\right)$ from which the wing twist due to store load per unit of store angle of attack is calculated

The store is located between vortex stations 6 and 7 $\left(\frac{y}{b/2} = 0.45\right)$ and 0.35). The store angle of attack, which is assumed to be the same as that of the wing at the store station, is by linear interpolation

$$a_{es} = 0.32a_6 + 0.68a_7$$

If 32 percent of $\left\{\frac{d\alpha_s}{d\alpha_{es}}\right\}$ is added to column 6 of the $\begin{bmatrix} S_3 \end{bmatrix}$ matrix

(eq. (49)) and the remainder is added to column 7, the external-store effect on wing twist will be included when the adjusted matrix $\begin{bmatrix} S_3 \end{bmatrix}_{adj}$ which is given as

is postmultiplied by the column matrix of wing angle of attack (eq. (50)).

Load-Distribution Coefficients

The next series of calculations evaluates the coefficients required to determine the distribution of final angle of attack, airload, shear, bending moment, and pitching moment resulting from (a) a unit change in wing angle of attack and (b) the initial wing twist due to wing inertia loading per unit of change in load factor. Both final-angle-of-attack distributions are calculated by the use of equation (25), which requires an iteration procedure to determine the number of terms necessary.

Equations for final-angle-of-attack distribution. The coefficients in the equation for the final-angle-of-attack distribution (eq. (25)) resulting from a unit symmetrical initial-angle-of-attack distribution are evaluated in table IV. The α_1 column in table IV is, in this case, unity at each station. The values under $\left\{ C_{\theta}, 1 \right\}$ are by definition

$${C_{\theta,1}} = [S_3]_{adj} {\alpha_1}$$

and the succeeding columns are defined as

$$\{C_{\theta,N}\} = [S_{\bar{3}}]_{ad\bar{3}}\{C_{\theta,N-1}\}$$

Each $\{C_{\theta}\}$ column in table IV, therefore, is obtained by premultiplying the previous column by $[S_{\overline{3}}]_{adj}$ from equation (51). After three $\{C_{\theta}\}$ columns were calculated, a check was made to see whether the errors resulting from using only the first two $\{C_{\theta}\}$ columns would be excessive. In order to perform the check, a value of $\frac{1}{1-\lambda qm_R}$ was estimated from the values of $\{C_{\theta,2}\}$ and $\{C_{\theta,3}\}$ appearing at the 65-percent-semispan station (station 4) with qm_R taken to be 100 lb/ft²-deg and with the use of equation (23). The value of $\frac{1}{1-\lambda qm_R}$ thus obtained was recorded at the foot of the $\{C_{\theta,2}\}$ column and was used to obtain the errors in the $\{E\}_{N=2}$ column by applying equation (24). These errors were considered too large. Therefore, another column $\{C_{\theta,4}\}$ was computed and the check was repeated. This time the errors, listed in the $\{E\}_{N=3}$ column, were considered satisfactorily small. A sufficiently accurate and convenient form for the angle-of-attack equations was, therefore, considered to be

$$\left\{\alpha_{f,\alpha}\right\} = \left\{\alpha_{i}\right\} + \left\{C_{\theta,1}\right\} q m_{R} + \left\{C_{\theta,2}\right\} (q m_{R})^{2} + \left\{C_{\theta,3}\right\} (q m_{R})^{3} \frac{1}{1 - \lambda q m_{R}}$$
(52)

Equation (52) may be rewritten with the numerical values of the $\{C_{\theta}\}$ coefficients from table IV as follows:

Equation (53) gives the final angle of attack $\{\alpha_{\mathbf{f},\alpha}\}$ resulting from a symmetrical angle-of-attack change of \mathbf{l}^0 . An equation of similar form which gives the final-angle-of-attack distribution $\{\alpha_{\mathbf{f},n}\}$ caused by the wing twisting under an inertia loading of \mathbf{l} g is as follows:

$$\begin{cases} \alpha_{f,n} \end{cases} = \begin{cases} 0.5208 & -0.0098535 & 0.019398 \times 10^{-2} & -0.038266 \times 10^{-14} \\ 0.509^{4} & -0.009755^{4} & 0.019209 \times 10^{-2} & -0.037892 \times 10^{-14} \\ 0.4859 & -0.0093007 & 0.018327 \times 10^{-2} & -0.036155 \times 10^{-14} \\ 0.4315 & -0.0083871 & 0.016541 \times 10^{-2} & -0.03265^{4} \times 10^{-14} \\ 0.3358 & -0.0070838 & 0.014011 \times 10^{-2} & -0.027645 \times 10^{-14} \\ 0.2246 & -0.0055770 & 0.011060 \times 10^{-2} & -0.021826 \times 10^{-14} \\ 0.1507 & -0.0040856 & 0.00813^{4} \times 10^{-2} & -0.016053 \times 10^{-14} \\ 0.1329 & -0.0026597 & 0.005325 \times 10^{-2} & -0.010513 \times 10^{-14} \\ 0.0693 & -0.0012269 & 0.002464 \times 10^{-2} & -0.004866 \times 10^{-14} \\ 0 & 0 & 0 & 0 \end{cases}$$

The first column of the matrix of coefficients in equation (54) is the wing angle-of-attack distribution due to dead-weight loading. Each succeeding column is the product of the previous column premultiplied by $\begin{bmatrix} S_3 \end{bmatrix}$.

It is not necessary to repeat the iteration procedure, because the number of coefficient columns required to obtain acceptable accuracy is only slightly dependent on the shape of the initial-angle-of-attack distribution.

External-store angle of attack.— In order to calculate the airload carried on the external store, the angle of attack at the store location must be known. The final angle of attack of the store resulting from a unit change in wing-root angle of attack is obtained by interpolation between the rows of equation (53) which correspond to stations 6 and 7. Thus,

$$\alpha_{\text{es},\alpha} = \begin{bmatrix} 1.0 & -0.012666 & 0.024037 \times 10^{-2} & -0.047333 \times 10^{-4} \end{bmatrix} \begin{cases} 1 & \text{qm}_{\text{R}} \\ (\text{qm}_{\text{R}})^2 & \text{qm}_{\text{R}} \end{cases}$$

$$\frac{\left(\text{qm}_{\text{R}}\right)^3}{\left(1 - \lambda \text{qm}_{\text{R}}\right)}$$
(55)

Similarly, the following equation for store angle of attack resulting from the unit-load-factor inertia loading is obtained by interpolation in the rows of equation (54):

Running-load-distribution equations. The equation for running-load distribution $\left\{l_{f,\alpha}\right\}$ resulting from a unit change in wing-root angle of attack is obtained by premultiplying the coefficients of equation (53) by $qm_R\left[S_1\right]^{-1}\left[4\frac{m_0}{m_R}\right]$. Thus,

$$\begin{cases} 1_{f,a} \\ = \\ \begin{cases} 1.7868 \\ 9.15804 \\ -0.19511 \end{cases} & 0.38646 \times 10^{-2} \\ 0.38646 \times 10^{-2} \\ 10.74948 \\ -0.21411 \\ 0.42228 \times 10^{-2} \\ -0.83316 \times 10^{-4} \\ 11.91720 \\ -0.21281 \\ 0.41795 \times 10^{-2} \\ -0.82211 \times 10^{-4} \\ 12.79740 \\ -0.19548 \\ 0.37936 \times 10^{-2} \\ -0.74784 \times 10^{-4} \\ 13.54236 \\ -0.16930 \\ 0.32506 \times 10^{-2} \\ -0.52281 \times 10^{-4} \\ 14.25372 \\ -0.13989 \\ 0.26550 \times 10^{-2} \\ -0.52281 \times 10^{-4} \\ 14.79540 \\ -0.10807 \\ 0.20308 \times 10^{-2} \\ -0.39942 \times 10^{-4} \\ 15.23520 \\ -0.07651 \\ 0.14320 \times 10^{-2} \\ -0.28179 \times 10^{-4} \\ 15.62484 \\ -0.05195 \\ 0.09783 \times 10^{-2} \\ -0.19257 \times 10^{-4} \\ \end{cases}$$

$$(57)$$

The equation for running-load distribution $\{l_{f,n}\}$ resulting from the twist due to an inertia loading of 1 g is obtained by premultiplying the coefficients of equation (54) by $qm_R[S_1]^{-1} \mid_4 \frac{m_0}{m_R} \mid$. Thus,

$$\begin{cases} l_{f}, n \end{cases} = \begin{bmatrix} 1.39791 & -0.05098 & 0.10048 \times 10^{-2} & -0.19824 \times 10^{-4} \\ 3.80110 & -0.07416 & 0.14621 \times 10^{-2} & -0.28848 \times 10^{-4} \\ 4.10930 & -0.08095 & 0.15920 \times 10^{-2} & -0.31514 \times 10^{-4} \\ 3.95352 & -0.07984 & 0.15755 \times 10^{-2} & -0.31094 \times 10^{-4} \\ 3.39820 & -0.07242 & 0.14333 \times 10^{-2} & -0.28284 \times 10^{-4} \\ 2.70251 & -0.06188 & 0.12274 \times 10^{-2} & -0.24222 \times 10^{-4} \\ 2.15264 & -0.05039 & 0.10018 \times 10^{-2} & -0.19772 \times 10^{-4} \\ 1.79402 & -0.03840 & 0.07653 \times 10^{-2} & -0.15105 \times 10^{-4} \\ 1.31759 & -0.02707 & 0.05398 \times 10^{-2} & -0.10666 \times 10^{-4} \\ 0.88601 & -0.01853 & 0.03689 \times 10^{-2} & -0.07282 \times 10^{-4} \end{bmatrix}$$

$$(58)$$

Shear-distribution equations. The matrix of coefficients for the shear-distribution equations is calculated by premultiplying the matrix of running-load coefficients by the integrating matrix $\|\mathbf{I}_{int,p}\|$, which is given in table III. This integrating matrix is based on Simpson's parabolic method and is given in nondimensional form for 10 stations, with an extra row added to give the integral to the center line. The results are made dimensionally correct by multiplying them by the wing semispan (in feet, for the sample problem).

The complete shear equation must also include the concentrated load acting on the nacelle. This load which is obtained by substituting $\alpha_{\rm es,\alpha}$ from equation (55) into equation (34) is given by

$$L_{es,\alpha} = \frac{m_{es}}{m_{R}} \frac{s}{2} \left[1.0 -0.012666 \quad 0.024037 \times 10^{-2} -0.047333 \times 10^{-4} \right] \left\{ \begin{array}{l} qm_{R} \\ (qm_{R})^{2} \\ (qm_{R})^{3} \\ \hline \frac{(qm_{R})^{4}}{1 - \lambda qm_{R}} \end{array} \right\}$$
(59)

Since $\frac{m_{es}}{m_R} = 0.02$ and $\frac{S}{2} = 714$ square feet, equation (59) can be written as

$$L_{es,\alpha} = \begin{bmatrix} 14.3 & -0.18 & 0.34 \times 10^{-2} & -0.68 \times 10^{-4} \end{bmatrix} \begin{bmatrix} qm_R \\ (qm_R)^2 \\ (qm_R)^3 \\ \frac{(qm_R)^4}{1 - \lambda qm_R} \end{bmatrix}$$
(60)

Equation (60) gives the external-store lift per unit of wing-root angle of attack. The store airload due to inertia twist per unit of load factor is calculated similarly by substituting $\alpha_{\rm es,n}$ from equation (56) into equation (34) to obtain

$$L_{es,n} = \begin{bmatrix} 2.5 & -0.07 & 0.13 \times 10^{-2} & -0.26 \times 10^{-4} \end{bmatrix} \begin{cases} qm_R \\ (qm_R)^2 \\ (qm_R)^3 \\ \frac{(qm_R)^4}{1 - \lambda qm_R} \end{cases}$$
(61)

Since the external-store lift acts as a concentrated load on the wing, it is to be added to the shear at each station inboard of the store. For the unit symmetrical angle-of-attack distribution, integration of equation (57) by using table III and the addition of the external-store coefficients from equation (60) (with the qm_R terms factored out) result in the following equation for shear distribution:

Similarly, the equation for shear distribution due to wing-inertia twist per unit of load factor is obtained from equations (58) and (61) as

		Load	on wing	; :]	Load on	externa]	L store:		
	2.1	-0.08	0.0016	-0.000031	1	0	0	0	0		
	18.1	-0.45	0.0089	-0.000175		0	0	0	0		
	41.3	-0.90	0.0178	-0.0003 52		0	0	0	0		
	64.9	-1.37	0.0271	-0.000535		0	0	0	0	(qm _R)	
	86.3	-1. 82	0.0358	-0.000707		0	0	0	0	(qm _R) ²	
$\{L_n\} = $	103.9	-2.21	0.0436	-0.000860	+	0	0	0	0	$\left\{ (qm_R)^3 \right\}$	(63)
	117.9	- 2.53	0.0500	-0.000988		2.5	-0.07	0.0013	-0.000026	(qm _R) ¹⁴	
	129.4	- 2.79	0.0551	-0.001089		2.5	-0.07	0.0013	-0.000026	1 - ydw ^K	
	138.4	-2.9 8	0.0589	-0.001163		2.5	-0.07	0.0013	-0.000026		
	144.8	-3.11	0.0615	-0.001214		2.5	-0.07	0.0013	-0.000026		
	147.0	-3.1 6	0.0625	-0.001234	1	2.5	-0.07	0.0013	-0.000026		

The shear coefficients due to distributed wing lift and concentrated store lift are to be kept as two separate matrices for ease in obtaining the bending-moment and pitching-moment equations.

Bending-moment-distribution equations. The matrix of coefficients for the component of the shear equation due to distributed wing lift is integrated to obtain the matrix of coefficients for the component of bending moment due to distributed wing lift. For this purpose the integrating matrix $||I_{int,p}||$ in table III multiplied by b/2 may be used. However, shear-distribution curves are usually straight enough that the much simpler trapezoidal type of integrating matrix can be used. This integrating matrix $||I_{int,T}||$ is given in table V and is nondimensionalized with respect to semispan. For use in obtaining bending moments in inch-pounds, the elements of table V are multiplied by the semispan in inches.

The coefficients for calculating the bending moments due to the concentrated load imposed by the external store are obtained by premultiplying each row of the matrix of shear coefficients due to concentrated store load by a diagonal matrix whose elements are y_{es} - y_{sta} = Δy_{es} . For the sample problem,

By using equation (62), table V, and $[\Delta y_{es}]$ from equation (64) in the prescribed manner, the complete equation for bending moment per unit of wing-root angle of attack is given as follows:

		Load on	wing:			Loa	i on ex	ternal	store:		
	338	-7.3	0.145	-0.00287		0	0	0	0		
	2,585	- 55.9	1.109	-0.02188		0	0	0	0		
	8,420	-180.0	3.567	-0.07040		0	0	0	0		
	18,563	-3 89.2	7.702	-0.15198		0	0	0	0	(qm _R)	
	33,495	-683.0	13.498	-0.26627		0	0	0	o	(qm _R) ²	
$\{M_{b,\alpha}\}=$	53,582	-1,055.0	20.814	-0.41048	+	0	0	0	0	{ (qm _R) ³ }	(65)
,	79,136	-1,495.2	29.437	-0.58047		318	-4.0	0.076	-0.00151	(qm _R) ¹	
	110,432	-1,991.7	39.130	-0.77151		1,312	-16.6	0.315	-0.00621	1 - λομπ _R	
	147,692	-2,531.6	49.642	-0.97867		2,306	-29.2	0.554	-0.01091		
	191,098	-3,103.0	60.742	-1.19740		3,300	-41.8	0.793	-0.01562		
İ	214,359	-3,395.0	66.412	-1.30913		3,798	-48.1	0.913	-0.01798		

The equation for bending moment due to inertia twist per unit of load factor, obtained from equation (63) in a fashion similar to that of equation (65), is as follows:

			Load o	n wing:			Lo	ad on e	xternal	store:			
1		72	-2.	0.055	-0.00109		0	0	0	0	1		
		775	-21.	0.420	-0.00828		0	0	0	О			
	2	,844	-68.	1.349	-0.02663		0	0	0	0	:		
	6	,540	-147.	2.912	-0.05749		0	0	0	0	∫ ⊈ ^m R)	
	11	,800	- 258.	5.100	-0.10071		0	0	0	o	(qm _R) ²		
$\{M_{b,n}\} =$	18	418	-398.	7.862	-0.15526	+	0	0	0	o	$\left\{ (\mathbf{qm}_{\mathbb{R}})^{3} \right\}$	} ,	(66)
Ì	26	,136	-563.8	11.119	-0.21956		55	-1.5	0.029	-0.00057	(qm _R) ⁴		
	34	,741	-749.0	14.778	-0.29181		229	-6.0	0.119	-0.00235	1 - λ qm _R		
	144	,060	-949.8	18.747	-0.37017		402	-10.5	0.209	-0.00413	! !		
	53	,914	-1,161.7	22.937	-0.45290		575	-15.1	0.299	-0.00591			
į	58	,951	-1,269.9	25.077	-0.49516		662	-17.3	0.345	-0.00680			

Pitching-moment-distribution equations.— In the general case, the coefficients in the equation for pitching moment due to distributed wing lift are obtained by integrating the shear coefficients due to distributed lift from wing tip to center line in the x-direction. However, when the wing-quarter-chord locus is a straight line, this integration is equivalent to multiplying the corresponding bending-moment coefficients by $-\tan \Lambda_{\rm C}/4$.

The pitching-moment-equation coefficients due to external-store load are calculated by premultiplying the external-store load-coefficient matrix by a diagonal matrix whose elements are the chordwise distances from the store center of pressure to the vortex stations inboard of the store. For the sample problem, this moment-arm matrix is

The resulting equation for pitching moment per unit of wing-root angle of attack is as follows:

		Load on	wing:		Lo	ad on e	external	store:	
	-237	5.1	-0.102	0.00201	0	0	0	0	
	-1,810	39.1	-0.776	0.01532	0	0	0	0	
	-5,894	126.0	-2.497	0.04928	0	0	0	0	
	-12,994	272.4	- 5.392	0.10639	0	0	0	0	dw ^B
	-23,447	478.1	-9.449	0.18639	0	0	0	0	(qm _R) ²
$\{M_{Y,\alpha}\}=$	-37,505	738.6	-14.570	0.28734	+ 0	0	0	0	$(qm_R)^3$ (68)
, ,	- 55 ,3 95	1,046.7	-20.606	0.40633	2,024	-25.6	0.486	-0.00958	(qm _R) ¹
	-77,302	1,394.2	-27.391	0.54006	1,328	-3.6.8	0.319	-0.00629	1 - λqm _R
:	-103,384	1,772.1	-34.749	0.68507	633	-8.0	0.152	-0.00299	
	-133,769	2,172.1	- 42.519	0.83818	63	8.0	0.015	-0.00030	
	-150,051	2,351.3	- 46.488	0.91639	-411	5.2	-0.099	0.00195	

The pitching moment due to inertia twist per unit of load factor is given by the following equation:

Evaluation of $\frac{1}{1 - \lambda qm_R}$. Equations have been written for shear,

bending moment, and pitching moment in terms of qm_R and $\frac{1}{1-\lambda qm_R}$. In the evaluation of $\frac{1}{1-\lambda qm_R}$ given in equation (23), the quantity λ is seen to be

$$\lambda = \frac{C_{\theta, N+1}}{C_{\theta, N}} \tag{70}$$

As recommended in the "Method" section, values of $C_{\theta,N+1}$ and $C_{\theta,N}$ corresponding to the 65-percent-semispan station are used. From table IV which is used for the calculation of the $\{C_{\theta}\}$ coefficients, it can be seen that

$$C_{\theta,N+1} = \{C_{\theta,4}\} = 0.000000170340$$

and

$$C_{\theta,N} = \{C_{\theta,3}\} = -0.0000086333$$

from which

$$\lambda = -0.0197306$$

Additional Airloads

The calculations just completed may now be used to determine the total additional airload shear, the bending moment and pitching moment, the horizontal-tail load per unit of normal load factor, the wing center of pressure, and the aerodynamic-center position. The numerical relationship must be established between the wing-root angle of attack $\Delta\alpha_r$ and the airplane load factor Δn by use of equation (31). The first step in the procedure is the calculation of wing-root loading components for selected values of the parameter qm_R .

Calculation of wing-root loading components.— The values of $L_{\alpha,r}$, $M_{b,\alpha,r}$, $M_{Y,\alpha,r}$, $L_{n,r}$, $M_{b,n,r}$, and $M_{Y,n,r}$ (wing-root values) to be used in the succeeding calculations are evaluated from equations (62), (65), (68), (63), (66), and (69), respectively, by using only the bottom row of coefficients from each equation. These quantities, with the value of qm_R for which they are calculated, are presented in table VI.

Additional wing and tail airloads and wing centers of pressure. The quantities listed in table VI are used in the sample calculations presented in table VII. The first seven columns of table VII represent the steps involved in calculating $\frac{\Delta \alpha_r}{\Delta n}$ by use of equation (31). Column 8

lists the resulting values of $\frac{\Delta \alpha_r}{\Delta n}$. Column 9 represents the evaluation of wing-root shear per unit of load factor from equation (33). Column 10 lists the horizontal-tail load per unit of load factor from equation (32).

The wing-root pitching moment and bending moment per unit of load factor are listed in table VII in columns 13 and 14, respectively, as evaluated from equations of the same form as that of equation (33). The chordwise and spanwise centers of pressure \mathbf{x}_{cp} and \mathbf{y}_{cp} are evaluated in columns 15 and 16, respectively, by dividing the proper moment per unit of load factor by the shear per unit of load factor. Although the centers of pressure at $qm_R=0$ appear indeterminate, they are equivalent to the centers of pressure for the theoretical rigid wing which may be calculated from the first coefficients in the rows of equations (62), (65), and (68) corresponding to the wing-root position for both wing and external-store parts. For the sample problem,

$$(x_{cp})_{qm_R=0} = \frac{-150051 - 411}{714.0 + 14.3} = -206.6$$

and

$$(y_{cp})_{qm_{R}=0} = \frac{214359 + 3798}{714.0 + 14.3} = 299.5$$

Column 17 shows the incremental change in chordwise center of pressure from that at $qm_R=0$ and is expressed as a percentage of the wing mean aerodynamic chord. Thus, column 17 represents the change in wing-aerodynamic-center location due to flexibility.

Although the actual location of the serodynamic center of the airplane may be different from that of the wing because of fuselage moments which were unaccounted for in the analysis, the change in aerodynamic-center location with change in qm_R should be practically unaffected by fuselage moments. If the aerodynamic-center location on a rigid wind-tunnel model is known, that location may be taken to be the actual value at $qm_R=0$. The aerodynamic-center location at any other value of qm_R can be determined with good accuracy by adding the calculated change in aerodynamic-center location to the measured rigid-airplane position.

Although only the shears and bending moments per unit of load factor at the center-line station were listed, those at other wing stations might have been calculated to obtain distributions along the semispan

and variations of the distribution with qm_R . Figure 3(a) shows the shear distributions along the semispan per unit of load factor at values of qm_R of 10 and 50 lb/ft²-deg. Each distribution was divided by the center-line shear. These ratios were plotted to show more clearly the fraction of the total aerodynamic lift carried outboard of any wing station as it varies with qm_R . The corresponding bending moments per unit of shear at the center line are plotted in figure 3(b).

A plot such as that shown in figure 4 is useful in applying the calculations to design conditions of dynamic pressure and Mach number. The parameter qm_R is plotted against q for several constant Mach numbers. The values of m_R used in this plot were obtained in windtunnel tests of the particular airplane used as an example.

DISCUSSION

The matrix equation expressing the change in angle-of-attack distribution in terms of the applied angle-of-attack distribution is well suited to solution by matrix iteration. The sample problem included in this report illustrates that only three or four premultiplications of a column by a square matrix will give the elements of a simple expression for final angle of attack resulting from any given initial angle of attack. This expression is readily evaluated for any value of the parameter qm_R. The final spanwise distributions of lift, shear, bending moment, and pitching moment are also easily calculated. The solution can be carried to any desired degree of accuracy, and the degree of accuracy can be easily checked.

Combining the iterative solution with the use of the downwash-factor tables to obtain the matrix of aerodynamic-influence coefficients allowed the results of the sample problem to be calculated in about one-tenth of the estimated time required to obtain the solutions by calculating the elements of $\begin{bmatrix} S_1 \end{bmatrix}$ and by using matrix inversion.

The conditions under which the method of this report may be used are that the inverse of $\left[S_2\right]\left[S_1\right]^{-1}\left[+\frac{m_0}{m_R}\right]$ must exist and that the dominant latent root of this matrix must be real and distinct from its other latent roots. These conditions will be met in any practical problem in aeroelasticity. The convergence of an infinite series of

 $\{C_{\theta,N}\}_{M}$ $(qm_R)^N$ terms is not a necessary condition, as should be evident

from the derivation of the equations pertinent to the iteration procedure and from the fact that solutions were obtained in the sample problem for values of qm_R above the value at which divergence of an infinite series would begin $(qm_R \approx 50 \text{ lb/ft}^2\text{-deg})$. Actual wing divergence is indicated

if the value of $\frac{1}{1 - \lambda q m_R}$ becomes infinite at some positive value of $q m_R$.

This condition will occur only when the latent root λ is positive, as it would be for a sweptforward wing.

The methods of this report are designed to save time and effort in solving steady-state aeroelastic problems without degrading the accuracy of the results. There is, however, an added flexibility in that the various quantities are obtained as functions of the parameter qm_R and are readily applied to any flight condition of dynamic pressure and Mach number. This flexibility may make the iterative solution desirable even when automatic computing machines are available for matrix inversion.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., January 30, 1959.

APPENDIX A

AERODYNAMIC-INFLUENCE COEFFICIENTS FROM

TABLES OF DOWNWASH FACTOR

The derivation of a system of aerodynamic-influence coefficients has been presented in reference 1. The computations involved in determining any one element of the aerodynamic-influence-coefficient matrix $\begin{bmatrix} S_1 \end{bmatrix}$ are rather lengthy, especially for manually operated desk calculators. Tables and charts for obtaining downwash factors, based on lifting-line theory, have been in existence for some time in reference 2. An element of the $\begin{bmatrix} S_1 \end{bmatrix}$ matrix is obtainable from these tables by finding the downwash factor at the three-quarter-chord station in question and multiplying this factor by the reciprocal of the semispan of the horseshoe vortex which causes the downwash. The resulting element is identical, within the accuracy of the tables, with that which would be calculated by the method of reference 1.

The tables of downwash factor in reference 2 have been included as tables I and II of this report with certain changes: the "corrector" vortex columns have been replaced by interpolating factors designated as K. Also, the values of downwash factor included in this report have been recalculated and are believed to be correct. The intervals used in the tables are such that linear interpolation will preserve the accuracy to four decimal places. A column for $\frac{\Delta y}{h} = 38$ has been added in table I so that 10 equally spaced vortex stations on each semispan may be used.

The arguments for tables I and II are $\frac{\Delta x}{h}$ and $\frac{\Delta y}{h}$ which are, respectively, the streamwise and spanwise distances from any vortex station to any downwash station, nondimensionalized with respect to the vortex semispan. The argument $\frac{\Delta x}{h}$ is negative when the downwash station is ahead of the vortex station.

It will be a help in using the tables if the values of $\frac{\Delta y}{h}$ and $\frac{\Delta x}{h}$ are arranged in matrix form. A systematic method for determining these $\left[\frac{\Delta y}{h}\right]$ and $\left[\frac{\Delta x}{h}\right]$ matrices for 10 vortex semispan stations is given as follows: With the use of a coordinate system having the origin at the point of intersection of the wing quarter-chord line with the airplane center line, the nondimensional lateral coordinate of any vortex center

$$\left(\frac{y}{h}\right)_{v}$$
 is given by

$$\left(\frac{y}{h}\right)_{\mathbf{v}} = \frac{\eta_{\mathbf{v}} \frac{b}{2}}{\frac{b}{2N_{\mathbf{v}}}} = N_{\mathbf{v}} \eta_{\mathbf{v}} \tag{A1}$$

where N_V is the number of vortices on both wings and η_V is the vortex spanwise station expressed as a fraction of the semispan. For example, at station 1 in the sample problem, $\eta_V = 0.95$, N_V = 20, and $\left(\frac{y}{h}\right)_V = 19$.

The coordinates of all the vortex stations expressed as a row matrix $\left| \begin{pmatrix} \underline{y} \\ h \end{pmatrix}_{v} \right|$ are, for 10 equally spaced vortex stations on each semispan,

$$\left\lfloor \left(\frac{y}{h}\right)_{v} \right\rfloor = \left\lfloor 19 \quad 17 \quad 15 \quad 13 \quad 11 \quad 9 \quad 7 \quad 5 \quad 3 \quad 1 \right\rfloor$$

$$= \left\lfloor \left(\frac{y}{h}\right)_{1} \quad \left(\frac{y}{h}\right)_{2} \quad \left(\frac{y}{h}\right)_{3} \quad \cdot \quad \cdot \quad \left(\frac{y}{h}\right)_{10} \right\rfloor \tag{A2}$$

The nondimensional lateral coordinates of the downwash control points are the same as those of the vortex centers.

Two $\left[\frac{\Delta y}{h}\right]$ matrices will be needed. The first, $\left[\frac{\Delta y}{h}\right]_S$, will contain the nondimensional spanwise distances from each vortex center to every downwash control point on the same wing. The second, $\left[\frac{\Delta y}{h}\right]_0$, will contain the nondimensional spanwise distances from each vortex station to every downwash control point on the opposite wing. The first row of the matrix $\left[\frac{\Delta y}{h}\right]_S$ may be obtained by subtracting $\frac{y}{h}$ of downwash control point 1 from each element of the row matrix $\left[\frac{y}{h}\right]_V$. For 10 equally spaced vortex stations on each semispan, the first row of $\left[\frac{\Delta y}{h}\right]_S$ will be

Absolute values are used since the downwash factor is independent of the sign of $\frac{\Delta y}{h}$.

The first row of $\left[\frac{\Delta y}{h}\right]_0$ is obtained by adding the two rows to obtain

It will be seen that the matrices $\left[\frac{\Delta y}{h}\right]_S$ and $\left[\frac{\Delta y}{h}\right]_O$ can be obtained by finding the difference and the sum, respectively, of the two matrices

and

where $\left[\left(\frac{y}{h}\right)_v\right]$ consists of 10 rows identical to the first row and $\left[\left(\frac{y}{h}\right)_d\right]$ consists of 10 columns identical to the first column. Thus,

$$\left[\frac{\Delta \mathbf{y}}{\mathbf{h}}\right]_{\mathbf{S}} = \left[\left(\frac{\mathbf{y}}{\mathbf{h}}\right)_{\mathbf{v}}\right] - \left[\left(\frac{\mathbf{y}}{\mathbf{h}}\right)_{\mathbf{d}}\right] \tag{A6}$$

which can be expressed as

$$\begin{bmatrix} 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 \\ 2 & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 \\ 4 & 2 & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 \\ 6 & 4 & 2 & 0 & 2 & 4 & 6 & 8 & 10 & 12 \\ 8 & 6 & 4 & 2 & 0 & 2 & 4 & 6 & 8 & 10 \\ 10 & 8 & 6 & 4 & 2 & 0 & 2 & 4 & 6 & 8 \\ 12 & 10 & 8 & 6 & 4 & 2 & 0 & 2 & 4 & 6 \\ 14 & 12 & 10 & 8 & 6 & 4 & 2 & 0 & 2 & 4 \\ 16 & 14 & 12 & 10 & 8 & 6 & 4 & 2 & 0 & 2 \\ 18 & 16 & 14 & 12 & 10 & 8 & 6 & 4 & 2 & 0 \end{bmatrix}$$

and

$$\left[\frac{\Delta y}{h}\right]_{O} = \left[\left(\frac{y}{h}\right)_{v}\right] + \left[\frac{y}{h}\right]_{d}$$
(A7)

which can be expressed as

$$\begin{bmatrix} 38 & 36 & 34 & 32 & 30 & 28 & 26 & 24 & 22 & 20 \\ 36 & 34 & 32 & 30 & 28 & 26 & 24 & 22 & 20 & 18 \\ 34 & 32 & 30 & 28 & 26 & 24 & 22 & 20 & 18 & 16 \\ 32 & 30 & 28 & 26 & 24 & 22 & 20 & 18 & 16 & 14 \\ 30 & 28 & 26 & 24 & 22 & 20 & 18 & 16 & 14 & 12 \\ 28 & 26 & 24 & 22 & 20 & 18 & 16 & 14 & 12 & 10 \\ 26 & 24 & 22 & 20 & 18 & 16 & 14 & 12 & 10 & 8 \\ 24 & 22 & 20 & 18 & 16 & 14 & 12 & 10 & 8 & 6 \\ 22 & 20 & 18 & 16 & 14 & 12 & 10 & 8 & 6 & 4 \\ 20 & 18 & 16 & 14 & 12 & 10 & 8 & 6 & 4 & 2 \end{bmatrix}$$

If using fewer than 10 equally spaced vortex stations on each semispan is desired, the matrices $\left[\begin{pmatrix} y \\ h \end{pmatrix}_v \right]$ and $\left[\begin{pmatrix} y \\ h \end{pmatrix}_d \right]$ can be modified to suit by omitting the required number of rows and columns from the top and left.

By using the same coordinate origin as before, a matrix of the non-dimensional longitudinal coordinates of the vortex centers $\begin{bmatrix} \begin{pmatrix} \mathbf{X} \\ h \end{pmatrix}_{\mathbf{V}} \end{bmatrix}$ when the quarter-chord locus is a straight line is

$$\left[\left(\frac{\mathbf{x}}{\mathbf{h}}\right)_{\mathbf{v}}\right] = \left[\left(\frac{\mathbf{y}}{\mathbf{h}}\right)_{\mathbf{v}}\right] \tan \Lambda_{\mathbf{c}/4} \tag{A8}$$

For the downwash control points on the three-quarter-chord line,

$$\left[\left(\frac{x}{h} \right)_{d} \right] = \left[\left(\frac{y}{h} \right)_{d} \right] \tan \Lambda_{3c/4} + \left[\frac{c_{r}}{2h} \right]$$
(A9)

where each element in the matrix $\left[\frac{c_r}{2h}\right]$ is half the wing-root chord divided by the vortex semispan h.

The correct matrix of nondimensional longitudinal distances between vortex and control points $\left\lceil \frac{\Delta x}{h} \right\rceil$ is given by the equation

$$\left[\frac{\Delta x}{h}\right] = \left[\left(\frac{x}{h}\right)_{d}\right] - \left[\left(\frac{x}{h}\right)_{v}\right] \tag{A10}$$

or

$$\left[\frac{\Delta x}{h}\right] = \left[\left(\frac{y}{h}\right)_{d}\right] \tan \Lambda_{3c/4} + \left[\frac{c_{r}}{2h}\right] - \left[\left(\frac{y}{h}\right)_{v}\right] \tan \Lambda_{c/4} \tag{All}$$

Only one $\left\lfloor \frac{\Delta x}{h} \right\rfloor$ matrix is required since chordwise distances from a vortex to any control point are the same whether the vortex and control point are on the same wing or on opposite wings.

Two complete matrices of downwash factors will be obtained: the first by using $\begin{bmatrix} \Delta y \\ h \end{bmatrix}_S$ and $\begin{bmatrix} \Delta x \\ h \end{bmatrix}$ and the second by using $\begin{bmatrix} \Delta y \\ h \end{bmatrix}_0$ and $\begin{bmatrix} \Delta x \\ h \end{bmatrix}$ as arguments in tables I and II. The symmetrical-load matrix $\begin{bmatrix} S_1 \end{bmatrix}$ is calculated by adding these two matrices of downwash factors and multiplying each element by the reciprocal of the vortex semispan $\frac{1}{h}$. For antisymmetric loadings, the value of $\begin{bmatrix} S_1 \end{bmatrix}$ is the difference between the two downwash-factor matrices multiplied by $\frac{1}{h}$.

Tables I and II are useful only for equally spaced horseshoe vortices. Unequal spacing would require interpolation in both $\frac{\Delta y}{h}$ and $\frac{\Delta x}{h}$, which is not practical.

The columns in tables I(a) and II entitled "K" contain interpolating factors which were calculated by dividing each increment in downwash factor by the corresponding increment in $\frac{\Delta x}{h}$. Each factor is listed in the same row with the smaller of the two $\frac{\Delta x}{h}$ values used to calculate it. In order to obtain the downwash factor F corresponding to any value of $\frac{\Delta x}{h}$, find the value of downwash factor F' corresponding to the next smaller value of $\frac{\Delta x'}{h}$ in the table (in absolute value). Add to F' the product of $\frac{\Delta x}{h}$ and the interpolating factor and subtract the product of $\frac{\Delta x'}{h}$ and the interpolating factor. Thus,

$$F = F' + \frac{\Delta x}{h} K - \frac{\Delta x'}{h} K$$
 (Al2)

As an example, suppose it is required that a value of F be obtained that corresponds to $\frac{\Delta x}{h} = 1.3421$ and $\frac{\Delta y}{h} = 0$. By using table II, the next smaller value of $\frac{\Delta x}{h}$ is 1.34 which equals $\frac{\Delta x'}{h}$ for which the value of F' is 4.4956 and the interpolating factor is -0.660. The required value of F is

$$F = 4.4956 + 1.3421(-0.660) - 1.3400(-0.660)$$
$$F = 4.4942$$

With the inclusion of the interpolating factors, all information necessary to obtain the downwash factors corresponding to a given value of $\frac{\Delta x}{h}$ lies in one row of the tables, the row corresponding to the value of $\frac{\Delta x}{h}$ that is next smaller than the given value. Interpolation can be done without writing or remembering any intermediate steps with any calculating machine capable of accumulative multiplication. Where the interpolating factors have been omitted $\left(\frac{\Delta y}{h}>10\right)$, interpolation by inspection will be sufficiently accurate.

REFERENCES

- 1. Gray, W. L., and Schenk, K. M.: A Method for Calculating the Subsonic Steady-State Loading on an Airplane With a Wing of Arbitrary Plan Form and Stiffness. NACA TN 3030, 1953.
- 2. Diederich, Franklin W.: Charts and Tables for Use in Calculations of Downwash of Wings of Arbitrary Plan Form. NACA TN 2353, 1951.
- 3. Skoog, Richard B., and Brown, Harvey H.: A Method for the Determination of the Spanwise Load Distribution of a Flexible Swept Wing at Subsonic Speeds. NACA TN 2222, 1951.
- 4. Pines, Samuel: A Unit Solution for the Load Distribution of a Non-rigid Wing by Matrix Methods. Jour. Aero. Sci., vol. 16, no. 8, Aug. 1949, pp. 470-476.
- 5. Benun, D.: A Universal Solution to the Steady State Aeroelastic Problem. Rep. No. H49-5, Curtiss-Wright Corp., Airplane Div. (Columbus), Oct. 28, 1949.
- 6. Frazer, R. A., Duncan, W. J., and Collar, A. R.: Elementary Matrices and Some Applications to Dynamics and Differential Equations. The Macmillan Co., 1947, pp. 133-147.

TABLE I.- DOWNWASH FACTOR F

(a) Values of F for $\Delta y/h = 0$ to ± 10

	Δy/h	1 = 0	Δ y /h	ı = ±2	Δ y /h	= ±4	Δ y /h	ı ⇒ ±6	Δ y /h	ı = ±8	Δy/h	= ±10
Δx/h	F	К	F	К	F	К	F	к	F	к	F	к
-30 -25		•	-0.0011 0016		-0.0011 0016		-0.0011 0015		-0.0011 0015		-0.0010 0014	
-20 -18 -16 -14			-0.0025 0031 0039 0050	-0.00018 00030 00040 00055	-0.0024 0030 0037 0048	-0.00018 00030 00040 00055	-0.0025 0029 0035 0045	-0.00018 00030 00030 00050	-0.0022 0027 0033 0041	-0.00025 00030 00040	-0.0021 0025 0030 0037	-0.00020 00025 00035
-12 -10 -9 -8 -7 -6			0068 -0.0097 0119 0149 0192 0256	00090 -0.00145 00220 00300 00430 00640	0064 -0.0089 0108 0132 0165 0210	00080 -0.00125 00190 00240 00330 00450	0059 -0.0079 0093 0111 0134 0163	00070 -0.00100 00140 00180 00250 00290	0053 -0.0069 0079 0092 0107 0125	00060 -0.00080 00100 00150 00180	0046 -0.0059 0066 0075 0086	00040 -0.00060 00070 00090 00110
-5 -4.5 -4.0 -3.5 -3.0			-0.0356 0429	-0.01000 01460	-0.0274 0317 0368 0431 0507	-0.00640 00860 01020 01260 01520	010) -0.0201 0224 0249 0278 0311	-0.00380 00460 00500 00580 00660	-0.0148 0160 0174 0189 0205	-0.00230 00240 00280 00300 00320	0097 -0.0111 0119 0126 0135 0143	00110 -0.00140 00160 00140 00180 00160
-2.5 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 8	(:	2)			0599 -0.0709 0759 0812 0869 0928 0990 1056	01841 -0.02200 02500 02650 02850 02950 03100 03300	0347 -0.0386 0403 0420 0438 0456 0475 0494	00720 -0.00780 00850 00850 00900 00950 00950	0222 -0.0239 0247 0254 0262 0270 0278 0285	00340 -0.00340 00400 00350 00400 00400 00400 00350	0153 -0.0162 0166 0170 0174 0178 0182 0186	-,00200 -0,00180 -,00200 -,00200 -,00200 -,00200 -,00200
-0.6 5 4					-0.1123 1156 1192	-0.03350 03300 03600	-0.0513 0523 0532	-0.00950 01000 00900	-0.0293 0298 0302	-0.00400 00500 00400	-0.0190 0192 0194	-0.00200 00200 00200
-0.3 25 20 15 10 05					-0.1227 1245 1262 1280 1298 1315	-0.03500 03600 03400 03600 03400	-0.0542 0547 0552 0557 0561 0565	-0.01000 01000 01000 01000 00800 00800	-0.0305 0308 0310 0312 0314 0316	-0.00300 00600 00400 00400 00400	-0.0196 0197 0198 0199 0200 0201	-0.00200 00200 00200 00200 00200
0			(5)	-0.1333	-0.03600	-0.0571	-0.01200	-0.0318	-0.00400	-0.0202	-0.00200
0.05 .10 .15 .20 .25					-0.1351 1368 1387 1404 1422 1440	-0.03400 03800 03400 03600 03500	-0.0577 0581 0586 0591 0596 0601	-0.00800 01000 01000 01000 01000 00900	-0.0320 0322 0324 0326 0328 0330	-0.00400 00400 00400 00400 00400	-0.0203 0204 0205 0206 0207 0208	-0.00200 00200 00200 00200 00200
0.4 .5 .6					-0.1475 1510 1544	-0.03500 03400 03350	-0.0610 0620 0630	-0.01000 01000 00950	-0.0334 0338 0342	-0.00400 00400 00400	-0.0210 0212 0214	-0.00200 00200 00200
0.8 1.0 1.2 1.4 1.6 1.8 2.0	(3)			-0.1611 1676 1739 1798 1854 1908 1957	-0.03250 03150 02950 02800 02700 02450 02220	-0.0649 0668 0687 0705 0722 0740 0757	-0.00950 00950 00950 00850 00850 00850	-0.0350 0357 0365 0373 0381 0388 0396	-0.00350 00400 00400 00400 00350 00400	-0.0218 0222 0226 0250 0254 0258 0242	-0.00200 00200 00200 00200 00200 00200
2.5 3.0 3.5 4.0	h 01.89	0.01910	1 0005	0.011110	-0.2068 2160 2236 2298	-0.01840 01520 01240 01040	-0.0796 0832 0865 0894	-0.00720 00660 00580 00500	-0.0414 0430 0446 0461	-0.00320 00320 00300 00280	-0.0251 0261 0269 0278	-0.00200 00160 00180 00160
4.5 5	4.0488 4.0396	0.01840 .01200	-1.2905 -1.2977	-0.01440 01010	2350 2392	00840 00650	0919 0942	00460 00380	- 0475 - 0487	00240 00230	0286 0293	00140 00140
6 7 8 9	4.0276 4.0203 4.0156 4.0123 4.0100	0.00730 .00470 .00330 .00230 .00155	-1.3078 -1.3142 -1.3185 -1.3215 -1.3237	-0.00640 00430 00300 00220 00140	-0.2457 2502 2535 2559 2577	-0.00450 00330 00240 00180 00130	-0.0980 1009 1032 1050 1064	-0.00290 00230 00180 00140 00100	-0.0510 0528 0543 0556 0566	-0.00180 00150 00130 00100 00085	-0.0307 0319 0329 0338 0345	-0.00120 00100 00090 00070 00065
12 14 16 18 20	4.0069 4.0050 4.0039 4.0031 4.0025	0.00095 .00055 .00040 .00030 .00018	-1.3265 -1.3283 -1.3295 -1.3303 -1.3309	-0.00090 00060 00040 00030 00018	-0.2603 2619 2629 2637 2642	-0.00080 00050 00040 00025 00018	-0.1084 1098 1108 1114 1119	-0.00070 00050 00030 00025 00018	-0.0583 0594 0602 0608 0613	-0.00050 00040 00030 00025	-0.0358 0367 0374 0379 0383	-0.00045 00035 00025 00020
25 30	4.0016 4.0011		-1.3318 -1.3322		-0.2651 2656		-0.1128 1132		-0.0620 0624		-0.0390 0394	

lyalues of F are obtained from reference 2 with slight modification.

2 Values in this range are not used.

5 Values in this range are given in table II.

TABLE I.- DOWNWASH FACTOR F - Corcluded

(b) Values of F for $\Delta y/h = \pm 12$ to ± 38

						F fo	r values	of Δy/h	of -					
Δx/h	±12	±14	±16	+18	±20	±22	±24	±26	±28	±30	±32	±34	±36	±38
- 30 - 25	-0.0010 0014	-0.0010 0013	-0. 00 09 00 12	-0.0009 0012	-0.0008 0011	-0.0008 0010	-0.0008 0010	-0.0007 0009	-0.0007 0009	-0.0007 0008	-0.0006 0007	-0.0006 0007	-0.0006 0007	-0.0006 0007
-20	-0.0020	-0.0019	-0.0017	-0.0016	-0.0015	-0.0013	-0.0012	-0.0012	-0.0011	-0.0010	-0.0009	-0.0009	-0.0008	-0.0008
-18	0023	0022	0020	0018	0017	0015	0014	0013	0012	0011	0010	0009	0009	0008
-16	0028	0025	0023	0021	0019	0017	0015	0014	0013	0012	0011	0010	0009	0008
-14 -12	0034 0041	0030 0036	0027 0031	0024 0028	0021 0024	0019 0022	0017 0019	0016 0017	0014 0015	0013 0014	0012 0013	0011 0012	0010 0011	0009 0010
-10	-0.0050	-0.0043	-0.0037	-0.0032	-0.0028	-0.0024	-0.0021	-0.0019	-0.0017	-0.0015	-0.0014	-0.0012	-0.0011	-0.0010
-9	0056	0047	0040	0034	0030	0026	0023	0020	0018	0016	0014	0013	0012	0010
-8	0062	0052	0045	0037	0031	0027	0024	0021	0019	0017	0015	0013	0012	0012
-7 -6	0069 0077	0057 0062	0047 0051	0039 0042	0034 0036	0029 0031	0025 0026	0022 0023	0019 0020	0017 0018	0015 0016	0014 0014	0012 0013	0012 0012
-5	-0.0086	-0.0068	-0.0055	-0.0045	-0.0038	-0.0032	-0.0028	-0.0024	-0.0021	-0.0019	-0.0017	-0.0015	-0.0013	-0.0012
-4.5	0091	0071	0057	0047	0039	0033	0028	0025	0021	0019	0017	0015	0014	0012
-4.0	0095	0074	0059	0048	0040	0034	0029	ر 2002	0022	0019	0017	0015	0014	0013
-5.0	0101	0078	0062	0050	0041	0035	0030	0026	0022	0020	0017	0016	0014	0013
-5.0 -2.5	0106 0111	0081 0085	00th	0052 0053	0043 0044	0036 0037	0030 0031	0026 0027	0023 0023	0020 0020	0018 0018	0016 0016	0014	0014
-2.0	-0.0117	-0.0088	-0.0069	-0.0055	-0.0045	-0.0038	-0.0032	-0.0027	-0.0024	-0.0021	-0.0018	-0.0016	-0.0015	-0.0014
-1.8	0119	0089	0070	0056	0046	0038	0032	0028	0024	0021	0018	0016	0015	0014
-1.6	0121	0091	0071	0056	0046	0038	0032	0028	0024	0021	0019	0017	0015	0014
-1.4	0124	0092	0072	0057	0047 0047	0039 0039	0053	0028 0028	0024 0024	0021 0021	0019 0019	0017	0015 0015	0014
-1.2 -1.0	0126	0094	0073	0058	0047	0040	0033 0033	0028	0024	0021	0019	0017	0015	0014
8	0131	0097	0075	0059	0048	0040	0034	0029	0025	0022	0019	0017	0015	0014
-0.ti	-0.0135	-0.0098	-0.0075	-0.0060	-0.0049	-0.0040	-0.0034	-0.0029	-0.0025	-0.0022	-0.0019	-0.0017	-0.0015	-0.0014
5	0154	0099	0076	0060	0049	0040	0034	0029	ر 2002	0022	0019	0017	0015	0014
4	0155	0100	0076	0061	0049	1400	0034	0029	0025	0022	0019	0017	0015	0014
-0.3	-0.0136	-0.0100	-0.0077	-0.0061	-0.0049	-0.0041	-0.0034	-0.0029	-0.0025	-0.0022	-0.0019	-0.0017	-0.0015	-0.0014
25	0157	0101 0101	0077 0077	0061 0061	0050 0050	0041 0041	0054	0029 0029	0025 0025	0022	0019 0019	0017 0017	0015	0014
20 15	0138	0102	0078	0061	0050	0041	0035	0029	0025	0022	0019	0017	0015	001
10	0139	0102	0078	0062	0050	0041	0035	0030	0025	0022	0019	0017	0015	0014
05	0140	0102	0078	0062	0050	0041	0035	0030	0025	0022	0020	0017	0015	0014
0	-0.0140	-0.0103	-0.0078	-0.0062	-0.0050	-0.0041	-0.0035	-0.0030	-0.0026	-0.0022	-0.0020	-0.0017	-0.0015	-0.0014
0.05	-0.0140	-0.0103	-0.0079	-0.0062	-0.0050	-0.0042	-0.0035	-0.0030	-0.0026	-0.0022	-0.0020	-0.0017	-0.0015	-0.0014
.10	0141	0103	0079	0062	0050	0042	0035 0035	0030	0026 0026	0022 0022	0020 0020	0017 0017	0015 0016	0014 0014
.15	0142	0104 0104	0079 0079	0063	0050 0051	0042	0035	0030	0026	0022	0020	0017	0016	0014
.25	0143	0104	0080	0063	0051	0042	0035	0030	0026	0022	0020	0017	0016	0014
. 5	0144	0105	0080	0063	0051	0042	0035	0030	0026	0022	0020	0017	0016	0014
0.4	-0.0145	-0.0105	-0.0080	-0.0063	-0.0051	-0.0042	-0.0035	-0.0030	-0.0026	-0.0023	-0.0020	-0.0018	-0.0016	-0.001
.5	0146	0106	0081	0064	0051	0042	0056	0030	0026	0023	0020	0018	0016	0014
.6	0147	0107	0081	0064	0052	0043	0036	0030	0026	0023	0020	0018	0016	001
0.8	-0.0149	-0.0109	-0.0082	-0.0065	-0.0052	-0.0043	-0.0036	-0.0031	-0.0026	-0.0023	-0.0020	-0.0018	-0.0016	-0.001
1.0	0152	0110	0083	0065	0053	0045	0036	0031	0026	0023	0020	0018	0016	001
1.2	0154	0111	0084	0066	0053	0044	0037	0031	0027	0023	0020	0018	0016	001
1.4	0156	0113	0085	0067	0054	0044	0037 0037	0031	0027 0027	0023	0020 0021	0018	0016	001
1.8	0161	0116	0087	0068	0055	0045	0037	0032	0027	0024	0021	0018	0016	001
2.0	0163	0117	0088	0069	0055	0045	0038	0032	0027	0024	0021	0018	0016	001
2.5	-0.0169	-0.0121	-0.0091	-0.0070	-0.0056	-0.0046	-0.0038	-0.0032	-0.0028	-0.0024	-0.0021	-0.0019	-0.0017	-0.001
3.0	0174	0124	0093	0072	0058	0047	0039	0033	0028	0024	0021	0019	0017	001
3.5 4.0	0179	0128	0095 0098	0074	0059	0048 0049	0040 0041	0054	0029 0029	0025 0025	0022	0019	0017 0017	001
4.0	0184	0151	0100	0075 0077	0061	0050	0041	0035	0030	0026	0022	0020	0017	001
5	0194	0137	0108	0079	0062	0051	0042	0035	0030	0026	0023	0020	0018	001
b	-0.0203	-0.0145	-0.0106	-0.0080	-0.0065	-0.0052	-0.0043	-0.0036	-0.0031	-0.0027	-0.0023	-0.0020	-0.0018	-0.001
7	0211	0149	0110	0084	0067	0054	0045	0037	0032	0027	0024	0021 0021	0018	001
8	0218	0154	0114	0087	0069	0056	0046	0038	0033 0033	0029	0024	0021	0019	001
9 10	0224	0162	0117	0092	0073	0057	0048	0040	0034	0029	0025	0022	0020	001
12	-0.0239	-0.0170	-0.0126	-0.0096	-0.0076	-0.0061	-0.0050	-0.0042	-0.0036	-0.0031	-0.0026	-0.0023	-0.0020	-0.001
14	0246	0175	0130	0100	0079	0064	0052	0044	0037	0032	0027	0024	0021	001
16	0252	0180	0134	0103	0081	0066	0054	0045	0038	0033	0028	0025	0022	002
1 O	0256	0184	0137	0106	0084	0068	0056	0047 0048	0039 0040	0034	0029	0025 0026	0022	002
18	1 - 0260													
20	0260	0187	0140	0100	-0.0089	-0.0073	-0.0060	-0.0050	-0.0043	-0.0037	-0.0032	-0.0028	-0.0024	-0.002

TABLE II.- DOWNWASH FACTOR F FOR $\Delta y/h = 0$ and ± 2

Expansion of sections (3) of table I(a)

		∆y/h ∈	= 0		
Δx/h	F	К	Δx/h	F	k
0.20	12.1978	-46.580	0.85	5.0883	-2.060
.21	11.7321	-42.420	.86	5.0677	-2.050
.22	11.3079	-38.570	. 87	5.0472	-1.960
.23	10.9222	-35.230	88	5.0276	-1.930
.24	10.5699	-32,420	.89	5.0083	-1.870
.25	10.2457	-29.820	.96	4.9896	-1.800
.26	9.9475	-27.460	.91	4.9716	-1.740
.27	9.6729	-25.490	.92	4.9542	-1.740
.28		-23.780	.93	4.9368	-1.670
	9.4180		190		
.29	9.1802	-21.990	.94	4.9201	-1.640
.30	8.9603	-20.610	.95	4.9037	-1.570
.31	8.7542	-19.180	.96	4.8880	-1.560
.32	8.5624	-18.010	.97	4.8724	-1.490
.33	8.3823	-16.870	.98	4.8575	-1.500
. 34	8.2136	-15.980	.99 1.00	4.8425	-1.400
-35	8.0538	-14.920		4.8285	-1.390
.36	7.9046	-14.130	1.02	4.8007	-1.310
-37	7.7633	-13.300	1.04	4.7745	-1.245
.38	7.6303	-12.620	1.06	4.7496	-1.200
.39	7.5041	-11.910	1.08	4.7256	-1.140
.40	7.5850	-11.260	1.10	4.7028	-1.070
.41	7.2724	-10.750	1.12	4.6814	-1.060
.42	7.1649	-10.210	1.14	4.6602	990
.43	7.0628	-9.680	1.16	4.6404	950
.44	6.9660	-9.220	1.18	4.6214	885
	6.8738		1.20		
.45		-8.810		4.6037	875
.46	6.7857	-8.410	1.22	4.5862	845
.47	6.7016	-8.030	1.24	4.5693	800
.48	6.6213	-7.610	1.26	4 - 5533	- 770
.49	6.5452	-7.290	1.28	4.5379	740
.50	6.4725	-7.000	1.30	4.5232	710
.51	6.4023	-6.760	1.52	4.5090	670
.52	6.3347	-6.400	1.34	4.4956	660
.53	6.2707	-6.140	1.36	4.4824	615
.54	6.2093	-5.910	1.38	4.4701	605
-55	6.1502	-5.690	1.40	4 .4580	600
.56	6.0933	-5.460	1.42	4.4460	560
.57	6.0387	-5.330	1.44	4.4348	540
.58	5.9864	-5.070	1.46	4.4240	520
.59	5.9357	-4.840	1.48	4.4136	490
.60	5.8873	-4.680	1.50	4.4038	478
.61	5.8405	-4.500	1.55	4.3799	430
.62		-4.350	1.60	4.3585	
.63	5.7955	-4.550 -4.190	1.65		394
	5.7520			4.3388	370
.64	5.7101	-4 .050	1.70	4 . 3203	334
.65	5.6696	-3.860	1.75	4.5036	316
.66	5.6310	-3.810	1.80	4.2878	288
.67	5.5929	-3.600	1.85	4.2734	262
.68	5.5569	-3.530	1.90	4.2603	254
.69	5.5216	-3.420	1.95	4.2476	230
.70	5.4874	-3.270	2.0	4.2361	212
.71	5.4547	-3.170	5.1	4.2149	177
.72	5.4230	-3.090	2.2	4.1972	167
.73	5.3921	-3.000	2.3	4.1805	136
.74	5.3621	-2.880	2.4	4.1669	129
.75	5 - 3333	-2.810	2.5	4.1540	114
.76	5.3052	-2.690	2.6	4.1426	096
.77	5.2783	-2.670	2.7	4.1330	093
.78	5.2516	-2.540	2.8	4.1237	084
.79	5.2262	-2.480	2.9	4.1153	071
.80	5.2014	-2.390	3.0	4.1082	065
.81	5.1175	-2.350	3.2	4.0952	054
.82		-2.260	2,-≤ 3.4		044
.83	5.1540			4.0843	
.84	5.1314	-2.180	3.6	4.0755	036
. (194	5.1096	-2.130	3.8	4.0684	034
			4.0	4.0616	

	$\Delta y/h = \pm 2$	
Δx/h	F	к
4.0 -3.6 -3.4 -3.6 -3.4 -3.6 -3.4 -2.6 -2.6 -2.6 -2.6 -2.6 -2.7 -1.7 -1.7 -1.7 -1.1 -1.9 -3.0 -	-0.0526 -0.0527 -0.0629 -0.0629 -0.0639 -0.0639 -0.0839 -0.0839 -0.0839 -0.0839 -0.0839 -0.0839 -1.042 -1.1676 -1.1494 -2.662 -2.4634 -3.188 -3.3188 -	-0.0230 -0.0230 -0.0290 -0.0305 -0.0345 -0.0400 -0.0470 -0.0545 -0.0545 -0.0545 -0.0545 -0.0545 -0.0545 -0.0545 -0.0545 -0.1110 -1.1190 -1.1510 -1.1540 -2.200 -2.2600 -2.3600 -3.3600

TABLE III.- PARABOLIC INTEGRATING MATRIX $\|I_{1nt,p}\|$

0.05	0	0	0	0	0	0	0	0	008333	.033333	.104167
0.15	0	0	0	0	0	0	0	008333	.058333	.125000	.095833
0.25	0	0	0	0	0	0	008333	.058333	.100000	.091667	.100000
0.35	0	0	0	0	0	008333	.058333	.100000	.100000	.100000	.100000
0.45	0	0	0	0	008333	.058333	.100000	100000	.100000	.100000	.100000
0.55	0	0	0	008333	.058333	.100000	.100000	.100000	.100000	.100000	.100000
0.65	0	0	008333	.058333	.100000	.100000	100000	.100000	.100000	.100000	.100000
0.75	0	008333	.058333	.100000	.100000	.100000	.100000	.100000	.100000	.100000	.100000
0.85	-0.001389	.065278	446901.	10694	1106944	ήη6901.	.106944	.10694	.106944	.106944	.106944
0.95	0.029167	.070833	.070833	.070833	.070833	.070833	.070833	.070833	.070833	.070833	.070833
y b/2	0.95	.85	.75	.65	.55	54.	.35	.25.	.15	.05	0

TABLE IV.- CALCULATION OF $\left\{C_{\theta}\right\}$ COEFFICIENTS AND $\frac{1}{1-\lambda qm_R}$ FOR $qm_R=100$ $\frac{1b}{ft^2-deg}$

FOR A UNIT SYMMETRICAL ADDITIONAL ANGLE OF ATTACK

an	Span station	ູ້	(")	(~)	~		$\{\mathbb{E}\}_{N=2}$	$\{E\}$ $N=3$
Number	Percent of semispan	of deg	{c ₀ ,1}	{z, e, z}	{c, e, z}	{τ'θ ₂ }	qm _R = 10	$qm_R = 100 \frac{1b}{ft^2 - deg}$
	88 78 75 75 75 75 75 75 75	нанананан	-0.025671 025442 024374 02198 019028 015256 011447 007690	0.00051241 .00050743 .00048428 .00043760 .00037071 .00029291 .00021565 .00014141	-0.0000101164 0000100176 000095584 0000073092 000007710 0000042449 0000027801 0000027801	-0.025671	0.002h .0022 .0014 0.0015 0026 0032 0033	0.00022 .00020 .00015 0.00019 00031 00031
\qm _R				^a o.336375	⁸ 0.336354			

Trial values at $qm_R = 100 \frac{1b}{ft^2-deg}$.

TABLE V.- TRAPEZOIDAL INTEGRATING MATRIX | | Iint,T|

<u>у</u> ъ/2	0.95	0.85	0.75	0.65	0.55	0.45	0.35	0.25	0.15	0.05
0.95	0.05	0	0	0	0	0	0	0	0	0
.85	.1	.05	0	0	0	0	0	0	0	0
•75	.1	.1	.05	0	0	0	0	0	0	0
.65	.1	.1	.1	.05	0	0	0	0	0	0
•55	.1	.1	.1	.1	.05	0	0	0	0	0
.45	.1	.1	.1	.1	.1	.05	0	0	0	0
•35	.1	.1	.1	.1	.1	.1	.05	0	0	0
.25	.1	.1	.1	.1	.1	.1	.1	.05	0	0
.15	.1	.1	.1	.1	.1	.1	.1	.1	.05	0
.05	.1	.1	.1	.1	.1	.1	.1	.1	.1	.05
0	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1

TABLE VI.- WING-ROOT SHEAR, BENDING-MOMENT,

AND PITCHING-MOMENT COMPONENTS

qm_R ,	L _{a,r} , lb/deg	Mb,a,r, in-lb/deg	MY,a,r, in-lb/deg	L _{n,r} ,	M _{b,n,r} , in-lb/g	M _{Y,n,r} , in-lb/g
$\frac{1b}{ft^2-deg}$		Wing-root	values deri	ved fr	om equation	ns -
10 -deg	(62)	(65)	(68)	(63)	(66)	(69)
0 10 20 30 40 50 60 70 80 90	0 6,553 12,052 16,878 21,244 25,283 29,076 32,680 36,134 39,467 42,699	3,372,200 4,588,400 5,627,300 6,540,600 7,360,700 8,110,500 8,805,300 9,456,300	· / / /	2,067 2,664 3,103 3,428 3,670 3,850 3,982 4,076	942,300 1,239,700 1,472,200 1,659,200 1,812,700 1,941,000 2,049,850 2,143,100	0 -338,990 -571,300 -736,600 -857,100 -945,900 -1,011,700 -1,059,980 -1,094,700 -1,118,500 -1,133,500

TABLE VII. - SAMPLE CALCULATIONS PER UNIT OF CHANGE IN LOAD FACTOR

[W = 110,000 pounds; x_{cg} = -211 inches; x_{t} = -768.3 inches]

(a) Wing-root angle of attack, wing load, and tail load

1	2	3	4	(5)	6	7	8	9	10
ft ² -deg	L _{u,r} , lb/deg	My,α,r, in-lb/deg	② - <u>③</u>	L _{n,r} ,	My,n,r, in-lb/g	$\frac{\frac{\mathbf{w}}{2}\left(1 - \frac{\mathbf{x}_{cg}}{\mathbf{x}_{t}}\right) - \frac{6}{\mathbf{x}_{t}}$	$\frac{\Delta a_{\mathbf{r}}}{\Delta n} = \frac{7}{4},$ $\frac{\partial a_{\mathbf{r}}}{\partial \mathbf{g}} = \frac{1}{4},$	$ \begin{array}{c} 2 \otimes + 5 \\ = \frac{\Delta L_T}{\Delta n}, \\ 1b/g \end{array} $	110,000 - 2(9) = $\frac{\Delta L_t}{\Delta n}$, 1b/g
50 60	0 6,553 12,052 16,878 21,244 25,283	-3,915,700 -4,565,900 -5,157,200	12,734 16,147 19,340	0 1,226 2,067 2,664 3,103 3,428 3,670	-736,600 -857,100 -945,900	38,574 38,192 37,910 37,700	8.0627 4.2793 2.9992 2.3478 1.9493	(a) 54,061 53,642 53,285 52,980 52,712 52,484	(a) 1,878 2,716 3,430 4,040 4,576
70 80 90 100	32,680 36,134 39,467 42,699	-5,704,800 -6,219,600 -6,709,200	25,255 28,039	3,982 4,076	-1,059,980 -1,094,700 -1,118,500 -1,133,500	37,427 37,340 37,277	1.4820 1.3317 1.2129 1.1163	52,280 52,102 51,945 51,804	5,440 5,796 6,110 6,392

(b) Pitching and bending moments

11)	12	13	(14)	15)	16	17
M _{b,a,r} , in-lb/deg	M _{b,n,r} , in-lb/g	$\frac{3(8)+6}{=\frac{\Delta M_{Y,r}}{\Delta n}}$	$\frac{(1) (8) + (12)}{= \frac{\Delta M_{b,r}}{\Delta n}}$	$x_{ip} = \frac{\cancel{(3)}}{\cancel{9}},$ in.	$y_{cp} = \frac{14}{9}$, in.	$\frac{\Delta x_{ac}}{\frac{\bar{c}}{c}} \times 100,$ percent
0 1,893,500 3,372,200 4,588,400 5,627,300 6,540,600 7,360,700 8,110,500 8,805,300 9,456,300	0 548,200 942,300 1,259,700 1,472,200 1,659,200 1,812,700 1,941,000 2,049,850 2,145,100	0 -10,884,200 -10,559,200 -10,284,900 -10,050,400 -9,846,200 -9,669,600 -9,514,500 -9,377,300 -9,256,100	0 15,814,900 15,373,000 15,001,200 14,684,000 14,408,800 14,169,800 13,775,900 13,612,600	-206.6 -201.3 -196.8 -193.0 -189.7 -186.8 -184.2 -182.0 -180.0 -178.2	b299.5 292.5 286.6 281.5 277.2 273.3 270.0 267.0 264.4 262.1	0 3.399 6.286 8.723 10.840 12.700 14.368 15.779 17.062 18.217

⁸Indeterminate value.

bRigid-wing value.

Figure 1.- Plan form of wing-nacelle combination used in sample problem.

Figure 2.- Spanwise variation of EI and GJ for sample wing.

(a) Additional airload shear per unit of shear at center line.

(b) Additional airload bending moment per unit of shear at center line.

Figure 3.- Spanwise variation of additional airload shear and bending moment for sample wing at two values of $\ensuremath{\,\mathrm{qm}_R}\xspace$.

Figure 4.- Variation of qmp with dynamic pressure for several Mach numbers for sample airplane.