Algebraic Topology, Exercises 1

2019 Spring Semester

Youngwan Kim

April 10, 2019

Recall. Recall that a map $f: X \to Y$ is **homotopic** to a map $g: X \to Y$ if there is a map $F: X \times [0,1] \to Y$ such that F(x,0) = f and F(x,1) = g for $\forall x \in X$.

Problem 1. Show that if the topological spaces X and Y are homeomorphic and X is simply connected, then so is Y.

Proof. If $X \cong Y$ then $\pi_1(X) \simeq \pi_i(Y)$. As $\pi_1(X) \simeq 0$ and $\pi_1(X) \simeq \pi_i(Y)$ it implies that $\pi_1(Y) \simeq 0$.

Problem 2. Let n be a positive integer. Let $f: X \to S^n$ and $g: X \to S^n$ be maps. Suppose that $f(x) \neq -g(x)$ for any $x \in X$. Show that f is homotopic to g.

Problem 3. Let $X = \{x \in \mathbb{R}^n : 1 \le |x| \le 2\}$. Let $f: X \to X$ be a map defined by f(x) = x/|x|. Show that f is homotopic to the identity map $id: X \to X$.

Proof. Let $F: X \times [0,1] \to X$ as

$$F(x,t) = (1-t) \cdot \frac{x}{|x|} + t \cdot x$$

Then F(x,0) = f and F(x,1) = id, thus as there exists a homotopy $F, f \simeq id$.

Problem 4. Show that $\pi_1(X \times Y, (x_0, y_0))$ is isomorphic to the direct product $\pi_1(X, x_0) \times \pi_1(Y, y_0)$.

Proof. Let $p_X: X \times Y \to X$ and $p_Y: X \times Y \to Y$ be projections, i.e, for $\forall (x,y) \in X \times Y$, the maps are defined as $p_X(x,y) = x$ and $p_Y(x,y) = y$. Now let $\phi: \pi_1(X \times Y, (x_0,y_0)) \to \pi_1(X,x_0) \times \pi_1(Y,y_0)$ for all $[\alpha] \in \pi_1(X \times Y, (x_0,y_0))$ which maps as,

$$\phi([\alpha]) = (p_{X_*}([\alpha]), p_{Y_*}([\alpha]))$$

Such ϕ is obviously a bijection, as it is a product of two projections, which are both bijections. We just have to show that it is a homomorphism. For any $[\beta], [\gamma] \in \pi_1(X \times Y, (x_0, y_0))$

$$\phi([\alpha][\beta]) = \phi([\alpha\beta]) = (p_{X_*}([\alpha\beta]), p_{Y_*}([\alpha\beta]))$$
$$= d$$

Problem 5. Prove that the product of simply connected spaces is simply connected.

Proof. Using the results of **Problem 4**, if $\pi_1(X) \cong 0$ and $\pi_1(Y) \cong 0$ then $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y) \cong 0$. Thus as $\pi_1(X \times Y) \cong 0$, it is simply connected.

Problem 6. Prove that if $n \geq 3$, then $\mathbb{R}^n \setminus \{0\}$ is simply connected.

Proof. Consider the stereographic map $\sigma: S^{n-1} \to \mathbb{R}^n \setminus \{0\}$ such that

Problem 7. Let A be a subspace of X and $j: A \hookrightarrow X$ be the inclusion map. Let a map $r: X \to A$ be a retraction of X onto A, that is $r \circ j = id_A$. Prove the following,

- (a) $j_*: \pi_1(A,b) \to \pi_1(X,b)$ is one-to-one.
- (b) $r_*: \pi_1(X, b) \to \pi_1(A, b)$ is onto.
- (c) If X is simply connected, then so is A.

Proof. As $r \circ j = id_A$, $(r \circ j)_* = (id_A)_* \implies r_* \circ j_* = id_{\pi_1(A)}$. This implies (a) and (b). Also assuming X is simply connected, i.e, $\pi_1(X, b) \cong 0$ then due to (a) and (b), so does $\pi_1(A) \cong 0$.