Autor: Pedro I. López

Contacto: dreilopz@gmail.com | www.dreilopz.me

Licencia: Creative Commons Attribution 3.0 Unported (CC BY 3.0

http://creativecommons.org/licenses/by/3.0/)

Fecha: Febrero 2012.

En ninguna circunstancia el autor se hace responsable de cualquier daño a cualquier persona o hardware causado por realizar lo descrito en este documento.

Convertidores Analógico-Digital y Digital-Analógico

Objetivo

Que el alumno conozca los diferentes convertidores de señal y observe su funcionamiento, al final el alumno aplicara los conocimientos para realizar conversiones.

Introducción

Esta práctica se concentra en los ejercicios de convertir señales analógicas a digitales y viceversa. Relativamente se trata de una práctica sencilla, ya que esta parte de un sistema de adquisición suele carecer de extensa configuración o diseño por parte del usuario o de la persona/ingeniero que diseñe el sistema.

Desarrollo

Sección 1 – Uso de un CAD

Un CAD es un convertidor analógico-digital de señales. Durante el ejercicio, se utilizó la tarjeta DAQ4 que contiene un ADC0804LCN. Para obtener los valores binarios se introducirá un voltaje de prueba obtenido con la fuente fija de 5 V de la NI ELVIS y un potenciómetro. Se incluyen varias imágenes del proceso e implementación y la tabla de valores. Las lecturas de los valores digitales fueron realizadas con el puerto de entrada de datos digitales de la NI ELVIS. El multímetro virtual de la NI ELVIS se utilizó para monitorear el voltaje de entrada al ADC.

f7- 1. Foto de implementación de experimento

Voltaje (V)	Valor hexadecimal	Voltaje (V)	Valor hexadecimal
0,00049	00	2,298	82
0,000535	01	2,449	8B
0,184	10	2,66	95
0,326	14	2,814	A0
0,381	20	3,094	AA
0,66	28	3,262	B4
0,835	32	3,432	BE
1,026	3A	3,625	C8
1,189	47	3,957	D8
1,278	50	3,988	E0
1,576	60	4,215	E6
1,735	64	4,396	F0
1,899	6B	4,652	FB
2,113	77	5,076	FF

t7-1. Tabla de valores de conversión analógica-digital

f7- 2. Foto de implementación de ADC

f7-3. Imágenes de lector digital y multímetro virtual para experimento de ADC

Sección 2 - Uso de un CDA

Esta sección de la práctica realiza el procedimiento inverso a la sección 1. Un DAC es un convertidor digital-analógico de señales. Durante el ejercicio, se utilizó la tarjeta DAQ5 que contiene un DAC0800LCN. Para introducir los valores binarios al DAC se utiliza el escritor del puerto digital de salida de la NI ELVIS. Se incluyen varias imágenes del proceso, implementación y la tabla de valores. El multímetro virtual de la NI ELVIS se utilizó para monitorear el voltaje de salida del DAC.

f7- 4. Gráfica de relación entrada-salida para ADC

Valor binario	Voltaje (V)	Valor binario	Voltaje (V)
00	0,001412	8C	8,357
0A	0,596	96	8,947
14	1,188	A0	9,545
1E	1,789	AA	10,137
28	2,389	B4	10,737
32	2,978	BE	11,328
3C	3,579	C8	11,93
46	4,184	D2	12,523
50	4,777	DC	13,119
5A	5,369	E6	13,702
64	5,965	F0	14,306
6E	6,561	FA	14,535
78	7,156	FF	14,535
82	7,754		

t7- 2. Tabla de valores para conversión digital-analógica

f7- 5. Foto de implementación de DAC

f7- 6. Foto de implementación de DAC

FIME

f7-7. Imágenes de escritor digital y multímetro virtual de la NI ELVIS

f7- 8. Gráfica de relación entrada-salida para DAC

Conclusión

En un sistema de adquisición de datos es indispensable el uso de algún elemento de hardware conversor de tipos de señales. Se tiene así la opción de utilizar dispositivos que conviertan señales analógicas a digitales y digitales a analógicas.

Un conversor analógico-digital (ADC o A/D converter) es un dispositivo que convierte señales continuas a codificaciones digitales. Típicamente es un elemento o circuito electrónico que toma en su entrada las señales analógicas con restricciones de amplitud y frecuencia, y por su salida obtenemos valores digitales que pueden ser presentados en diferentes tipos de codificación (código binario, código Gray, complemento a 2, etc). El proceso anterior se realiza inversamente en los convertidores digital-analógicos, los cuales aceptan en su entrada un valor digital codificado y presentan en su salida una señal analógica que puede ser un voltaje, corriente o carga eléctrica.

Estos elementos de hardware mantienen una relación directa proporcional entre los valores de entrada y salida (ya sea que se trate de códigos digitales o señales analógicas). Esto puede ser fácilmente visualizado en las gráficas presentadas en este documento, en las cuales se observa que el comportamiento entre salida y entrada de los convertidores se puede describir aproximadamente con una ecuación lineal.

Bibliografía

• Documento de práctica de laboratorio

Práctica 7 – Convertidores Analógico-Digital y Digital-Analógico

Laboratorio de Adquisición de Datos FIME – UANL

• ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 8-Bit μP Compatible A/D Converters

National Semiconductor

November, 1999

• DAC0800/DAC0802 8-Bit Digital-to-Analog Converters National Semiconductor

National Semiconductor

September, 2006