Lecture 4 Representative Consumer Preference and Constraints

Hui-Jun Chen

The Ohio State University

September 9, 2023

Provide micro-foundation for the macro implication (Lucas critique)

■ Representative Consumer:

- Lecture 4: preference, constraints
- Lecture 5: optimization, application
- Lecture 6: Numerical Examples

Representative Firm:

• Lecture 7: production, optimization, application

Appendix

Utility Function

We use utility function U(C, l) to represent the preference/happiness

- \blacksquare C: consumption (assume single/composite goods)
- *l*: leisure (time spent not working)

Utility function defines the ranking of (C, l) bundles

- If $U(C_1, l_1) > U(C_2, l_2)$, then (C_1, l_1) is strictly preferred to (C_2, l_2)
 - $:: (C_1, l_1)$ bundle generate more happiness than (C_2, l_2) bundle
- If $U(C_1, l_1) = U(C_2, l_2)$, then indifferent between (C_1, l_1) and (C_2, l_2)
 - ullet :: (C_1,l_1) bundle generate same happiness as (C_2,l_2) bundle
- Note: level of utility is meaningless, only order matters!

Properties of Utility Function

- Monotonicity: more is always better!
 - If $C_1 > C_2$ and $l_1 > l_2$, then $U(C_1, l_1) > U(C_2, l_2)$
- Convexity: prefer diversified consumption bundles
 - e.g. prefer food + leisure rather than overeating / oversleeping
- **3 Normality**: consumption and leisure are normal goods
 - income ↑ ⇒ consumption ↑
 - leisure is complicated: relates to income
 - the poor: less leisure means more labor income
 - the rich: more income means more leisure

Rep. of Utility Function: Indifference Curve

- **Def**: (C, l) bundles that yield the same utility level
- Monotonicity ⇒ downward sloping
- Convexity ⇒ diversity shown in comparison between point Band D

Figure 4.1 Indifference Curves

Leisure, I

Lecture 4

Rep. of Utility Function: Indifference Curve (Cont.)

- Normality: Marginal Rate of Substitution
 - Marginal: for arbitrary small change in x-axis (leisure in this case)
 - rate of substitution: the amount on y-axis has to be sacrificed (consumption in this case)

$$MRS_{l,C} = \frac{D_l U(C,l)}{D_C U(C,l)}, \quad (1)$$

where $D_xU(\cdot)$ is derivative of Uw.r.t. x

Figure 4.2 MRS

- little change in leisure $dl>0\Rightarrow$ change in utility $D_lU(C,l)dl$
- $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} with the cost of income loss \Rightarrow \\ & \begin{tabular}{ll} consumption has to drop by $dC < 0$ \\ & \begin{tabular}{ll} amount \Rightarrow change in utility \\ & D_C U(C,l) dC \\ \end{tabular}$
- Stay on the IC ⇒ utility remain the same:

$$D_C U(C, l) dC + D_l U(C, l) dl = 0$$
$$\frac{dC}{dl} = -\frac{D_l U(C, l)}{D_C U(C, l)} = -MRS_{l,C}$$

Algebraic Example

Suppose $U(C,l) = \frac{C^{1-\sigma}}{1-\sigma} + \psi \ln l$, where σ and ψ are parameters. Then,

■
$$D_C U(C, l) = (1 - \sigma) \frac{C^{1 - \sigma - 1}}{1 - \sigma} = C^{-\sigma}$$

■ Remember
$$\frac{d \ln l}{dl} = \frac{1}{l}$$
, $D_l U(C, l) = \frac{\psi}{l}$

$$\blacksquare MRS_{l,C} = \frac{D_l U(C,l)}{D_C U(C,l)} = \frac{\psi}{lC^{-\sigma}}$$

Budget Constraints

Time: consumer has h hours per day, and allocate between leisure land labor supply N^s

$$l + N^s = h (2)$$

- **Budget**: consumer cannot spend more than the income he/she has
 - labor income: wage rate w times labor supply N^s , wN^s
 - dividends income: consumer buys share of the firm, gain dividend π
 - tax: consumer is subject to lump-sum taxes T

$$C \le wN^s + \pi - T \tag{3}$$

- Consumption is **numeraire**: price normalized to 1.
 - Imagine consumption goods as unit of account, ppl directly trade with consumption goods

10 / 10

Visualization of Budget Set

Figure 4.3 Representative Consumer's Budget Constraint when $T > \pi$ ("poor")

Figure 4.4 Representative Consumer's Budget Constraint when $T < \pi$ ("rich")

Appendix

Note on Calculus

- Function: y = f(x), how y is determined by x
 - E.g., y = 3x + 2: if x = 3, then 3 times 3 and plus 2 will get y = 11
- lacktriangle Differentiation: how changes in x results in change in y
 - E.g., y = 3x + 2,

Table: Table for how the value of x affects the value of y

Notice $\Delta x=1 \implies \Delta y=3 \implies \frac{\Delta y}{\Delta x}=3$, change to differentiation notation, $\frac{dy}{dx}=3$

■ **Tips**: $y = 3x^2 + 9x + 2$, look at terms with x, $dy = 3 \times 2x (dx) + 9 (dx) \implies \frac{dy}{dx} = 6x + 9$