Вычислительная геометрия и алгоритмы компьютерной графики лекция №5

Рябинин Константин Валентинович

e-mail: kostya.ryabinin@gmail.com

Источник света – это объект или псевдообъект в трёхмерном пространстве, характеризующий положение и свойства осветителя

Модель освещения – конкретная схема определения интенсивности отражённого к наблюдателю света в каждой точке изображения

Виды моделей освещения:

- Локальные во внимание принимается только свет, падающий на поверхность объекта от источников
- Глобальные во внимание принимается свет, падающий на поверхность объекта от источников и отражённый от других объектов сцены

Критерий качества модели освещения – не физическая точность, а визуальный эффект

Любая модель освещения должна учитывать кривизну поверхности. Учёт происходит при помощи нормалей

→ Чаще всего (в частности, в OpenGL) нормали задаются в вершинах поверхности

Материал – совокупность визуальных свойств поверхности

Модель освещения характеризуется:

- Допустимыми свойствами источника света
- Допустимыми свойствами материала объекта
- Алгоритмом вычисления интенсивности отражённого к наблюдателю света

Освещение в OpenGL

Все модели освещения, описанные в спецификации OpenGL, являются локальными, хотя и содержат средства учёта окружающего освещения

Важные понятия модели освещения в OpenGL:

(являются важными в большинстве существующих простых моделей)

- Диффузное освещение (diffuse) свет от источника, равномерно рассеянный поверхностью во всех направлениях (матовая поверхность)
- Зеркальный блик (specular) свет от источника, отражённый от поверхности в конкретном направлении (зеркальная поверхность; конкретным является направление по оси зрения наблюдателя)
- Окружающее освещение (ambient) свет «отражённый от окружающей обстановки», равномерно рассеянный поверхностью во всех направлениях
- Ослабевание света (attenuation) уменьшение интенсивности света по мере удаления от источника

Освещение в OpenGL

I — итоговый цвет

 I_a —цвет окружающей подсветки источника света

 K_a – цвет окружающей подсветки материала

 I_d – цвет диффузного освещения источника света

 K_d – цвет диффузного освещения материала

 I_s – цвет зеркального блика источника света

 K_s – цвет зеркального блика материала

N — показатель величины блика

 C_c – константне затухание

 C_1 —коэффициент линейное затухание

 C_n – коэффициент квадратичного затухания

D – расстояние от источника света до точки поверхности

Освещение в OpenGL

Основные функции работы с освещением:

- Установка параметров источника света glLightfv(GLenum light, GLenum pname, const GLfloat *params)
- Установка параметров материала glMaterialfv(GLenum face, GLenum pname, const GLfloat *params)

Способы закраски полигонов

- Плоская закраска полигон закрашивается цветом, являющимся средним арифметическим цветов в его вершинах
- Закраска Гуро цвет в каждой точке полигона есть результат билинейной интерполяции цвета вдоль сканирующей строки
- Закраска Фонга цвет в каждой точке полигона перевычисляется на основе нормали, полученной билинейной интерполяцией вдоль сканирующей строки

Вычисление нормали в вершине

- Если поверхность объекта задаётся аналитически, вектор нормали в каждой вершине является градиентом порождающей функции

Вычисление нормали в вершине

- В результате вычисления нормалей по алгоритму сглаживающих групп, светотень по поверхности распространяется плавно (что вызывает эффект гладкой поверхности)
- Данный эффект не всегда является желательным: иногда следует вывести «гранёную» поверхность
- Для этого может быть использована «плоская» закраска (flat shading), но её использование не всегда возможно (в новых версиях OpenGL она не поддерживается)

В этом случае необходимо дублировать данные о нормалях в вершинах:

Трансформация нормалей

- Нормаль принято задавать направлением (вектором)
- Перед расчётом освещённости, нормаль необходимо нормировать
- В процессе применения преобразований вершин, перпендикулярность этого направления плоскости грани, которой инцидентна вершина с данной нормалью, может быть нарушена
- При проецировании на плоскость экрана перпендикулярность нарушится в любом случае
- Для решения этих проблем:
 - Расчёт освещённости делают для вершины, только лишь размещённой на сцене, но ещё не спроектированной на экран (то есть трансформированной только матрицей ModelView)
 - Трансформацию нормали производят не матрицей
 ModelView, а особой матрицей, которая является инверснотранспонированным первым главным минором 3-го порядка матрицы ModelView

Трансформация нормалей

