Tutorial Computer- and robot-assisted Surgery

NATIONALES CENTRUM FÜR TUMORERKRANKUNGEN PARTNERSTANDORT DRESDEN UNIVERSITÄTS KREBSCENTRUM UCC

getragen von:

Deutsches Krebsforschungszentrum Universitätsklinikum Carl Gustav Carus Dresden Medizinische Fakultät Carl Gustav Carus, TU Dresden Helmholtz-Zentrum Dresden-Rossendorf

Sebastian Bodenstedt Translational Surgical Oncology

Questions lecture

Evaluation Metrics

Evaluation metrics

- Accuracy: how many samples were correctly identified?
 - #correctly identified samples/#samples
 - Works well for balanced data sets, i.e. all classes occurs similarly often
 - Problems with minor classes, e.g. diseases detection:
 if 99% are negative examples, predicting just the negative classes leads
 to a high accuracy, but misses critical cases
- Confusion matrix

n=165	Predicted: NO	Predicted: YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Evaluation metrics (binary problems)

- Terms
 - True positives (TP): number of correctly identified positive examples
 - False positives (FP): number of falsely identified positive examples
 - True negatives (TN): number of correctly identified negative examples
 - False negatives (FN): number of falsely identified negative examples

Predicted

Actual

	Negative	Positive
Negative	True Negative	False Positive
Positive	False Negative	True Positive

Evaluation metrics (binary problems)

- Precision
 - What portion of the as positive identified samples was correct?

- Recall
 - What portion of the positive samples was found?

Evaluation metrics (binary problems)

- F1-score
 - Combination of precision and recall
 - How balanced are the two for your classifier?

$$F1-score = \frac{2 \times Precision * Recall}{Precision + Recall}$$

- Why use F1 instead of accurcacy?
 - True negatives have no impact
- Binary metrics for multi-class problems
 - Generally binary metrics can be computed for each class
 - Positive samples vs negative samples for that class
 - The metrics for each class can then be aggregated, e.g. using mean or median

K-Nearest Neighbor

K-Nearest Neighbors

Idea

- Birds of a feather flock together
 - => samples with similar values belong to the same label
- Instance-based learning, no generalization

$$K = 4$$

Principal Component Analysis (PCA)

Singular Value Decomposition (SVD)

- Factorization of a $m \times n$ matrix into $A = U \Sigma V^T$
 - $U: m \times m$ orthonormal matrix. Contains eigenvectors of AA^{T}
 - V: $n \times n$ orthonormal matrix. Contains eigenvectors of A^TA
 - Σ : $m \times n$ diagonal matrix. Contains eigenvalues of A^TA

$$\mathbf{A} = \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{u}_1 & \dots & \mathbf{u}_n \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \dots & \mathbf{v}_1^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & \mathbf{v}_n^T & \dots \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{u}_1 & \dots & \mathbf{u}_n \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{v}_1 & \dots & \mathbf{v}_n \\ \vdots & \dots & \vdots \end{pmatrix}^T$$

PCA

- Curse of dimensionality => number of required training samples increase (possibly exponentially) with the number of dimensions
- Idea: Re-orient data to maximize variance along axis and remove low-variance dimensions

PCA

Steps1)Normalize data

$$z = \frac{value - mean}{standard\ deviation}$$

2) Calculate covariance matrix (describes spread of the data)

$$\Sigma = \frac{1}{N} D \cdot D^{T}$$

- 3)Compute eigenvectors and eigenvalues of covariance matrix (via SVD)
 - Eigenvector are principal axis
 - Eigenvalues indicate variance or "data spread" along axis
- 4)Build rotation matrix from principal axis (basis change)
- 5)Rotate data and remove dimensions with low variance Retain the first t components that describe e.g. 98%of variation

$$V_T = \sum_{i=1}^t \lambda_i$$

$$\sum_{i=1}^t \lambda_i \geq f_v V_T$$

Introduction: Machine Learning with Scikit-learn

- Machine-learning library for Python
 - Includes many machine learning methods
 - Clustering
 - Random Forest
 - Support Vector Machine
 - •
 - Uses numpy for most computations

- Linear classifier
 - Initialize modelclf = SVC(kernel="linear")
 - Fit model to data (x is data and y the corresponding labels)
 clf.fit(x, y)
 - Predict label for data
 pred_train = clf.predict(x)
 pred_test = clf.predict(x_test)

- K-nearest neighbor
 - Initialize model (n_neighbors: number of neighbors to consider)
 clf = KNeighborsClassifier(n_neighbors=3)
 - Fit model to data (x is data and y the corresponding labels)
 clf.fit(x, y)
 - Predict label for data
 pred_train = clf.predict(x)
 pred_test = clf.predict(x_test)

- Decision tree
 - Initialize model (max_depth: how deep is the tree allowed to become)
 clf = DecisionTreeClassifier(random_state=0, max_depth=5)
 - Fit model to data (x is data and y the corresponding labels)
 clf.fit(x, y)
 - Predict label for data
 pred_train = clf.predict(x)
 pred_test = clf.predict(x_test)

- Random forst
 - Initialize model (max_depth: how deep is the tree allowed to become, n_estimators: how many trees should the ensemble contain)
 clf = RandomForestClassifier(max_depth=5, random_state=0, criterion="entropy", n_estimators=100)
 - Fit model to data (x is data and y the corresponding labels)
 clf.fit(x, y)
 - Predict label for data
 pred_train = clf.predict(x)
 pred_test = clf.predict(x test)

- PCA
 - Initialize model (n_components: how many components should the PCA retain)

```
pca = PCA(n_components=4)
```

- Fit model to data (x is data and y the corresponding labels)
 pca.fit(x)
- Predict label for data

```
x = pca.transform(x)
x_test = pca.transform(x_test)
```


Are there any questions ?

