

Laboratório de Pesquisa em Redes e Multimídia

Sistemas de Arquivos

Funções de um SO

- Gerência de processos
- Gerência de memória
- Gerência de Arquivos
- Gerência de I/O
- Sistema de Proteção

Necessidade de Armazenamento

- Grandes quantidades de informação têm de ser armazenadas
- Informação armazenada tem de sobreviver ao fim do processo que a utiliza
- Múltiplos processos devem poder acessar a informação de um modo concorrente
- ARQUIVO
 - Abstração criada pelo S.O. para gerenciar e representar os dados

Gerência de Arquivos

- Oferece a abstração de arquivos (e diretórios)
- Atividades suportadas
 - Primitivas para manipulação (chamadas de sistema para manipulação de arquivos)
 - criar, deletar
 - abrir, fechar
 - ler, escrever
 - posicionar
 - Mapeamento para memória secundária

Estrutura Interna do Kernel UNIX

Sistema de Arquivos

O que é?

- Um conjunto de arquivos, diretórios, descritores e estruturas de dados auxiliares gerenciados pelo sub sistema de gerência de arquivos
- Permitem estruturar o armazenamento e a recuperação de dados persistentes em um ou mais dispositivos de memória secundária (discos ou bandas magnéticas)

Arquivo

- Um conjunto de dados persistentes, geralmente relacionados, identificado por um nome
- É composto por:
 - Nome: identifica o arquivo perante o utilizador
 - Descritor de arquvo: estrutura de dados em memória secundária com informação sobre o arquivo (dimensão, datas de criação, modificação e acesso, dono, autorizações de acesso)
 - Informação: dados guardados em memória secundária

Estrutura Interna de Arquivos (1)

Seqüência nãoestruturada de bytes Sequência de Registros **Árvore de Registros**

Estrutura Interna de Arquivos (2)

- Seqüência não-estruturada de bytes
 - Forma mais simples de organização de arquivos
 - Sistema de arquivos não impõe nenhuma estrutura lógica para os dados, a aplicação deve definir toda a organização
 - Vantagem: flexibilidade para criar estruturas de dados, porém todo o controle de dados é de responsabilidade da aplicação
 - Estratégia adotada tanto pelo UNIX quanto pelo Windows

Estrutura Interna de Arquivos (3)

- Sequência de Registros
 - Em geral, registros de tamanho fixo
 - Operação de leitura retorna um registro
 - Operação de escrita sobrepõe/anexa um registro
- Árvore de Registros
 - Cada registro é associado a uma chave
 - Árvore ordenada pela chave
 - Computadores de grande porte / aplicações que fazem muita leitura aleatória

Tipos de Arquivos (1)

- Arquivos Regulares
 - Arquivos ASCII
 - Binários
 - Apresentam uma estrutura interna conhecida pelo S.O.
- Diretórios
 - Arquivos do sistema
 - Mantêm a estrutura do Sistemas de Arquivos

Arquivos Binários no Unix

Operações sobre Arquivos

- Dependem do tipo
 - create
 - delete
 - open
 - close
 - read
 - write
 - append
 - seek
 - get attributes
 - set attributes
 - rename

Diretórios (1)

- Modo como o sistema organiza os diferentes arquivos contidos num disco
- É a estrutura de dados que contém entradas associadas aos arquivos
 - localização física, nome, organização e demais atributos
- Quando um arquivo é aberto, o sistema operacional procura a sua entrada na estrutura de diretórios
- As informações do arquivo são armazenadas em uma tabela mantida na memória principal(tabela de arquivo abertos)
 - Fundamental para aumentar o desempenho das operações com arquivos

13

Diretórios (2)

- Sistemas de Diretório em Nível Único
 - Implementação mais simples
 - Existe apenas um único diretório contendo todos os arquivos do disco
 - Bastante limitado já que não permite que usuários criem arquivos com o mesmo nome
 - Isso ocasionaria um conflito no acesso aos arquivos

Diretórios (3)

- Estrutura de diretórios com dois níveis
 - Para cada usuário existe um diretório particular e assim poderia criar arquivos com qualquer nome.
 - Deve haver um nível de diretório adicional para controle que é indexado pelo nome do usuário
 - Cada entrada aponta para o diretório pessoal.

Diretórios (4)

- Estrutura de diretórios Hierárquicos
 - Adotado pela maioria dos sistemas operacionais
 - Logicamente melhor organizado
 - É possível criar quantos diretórios quiser
 - Um diretório pode conter arquivos e outros diretórios (chamados subdiretórios)
 - Cada arquivo possui um path único que descreve todos os diretórios da raiz (MFD – Master File Directory) até o diretório onde o arquivo está ligado
 - Na maioria dos S.O.s os diretórios são tratados como arquivos tendo atributos e identificação

Diretórios (4)

Estrutura de diretórios Hierárquicos (cont.)

17

Esquema do Sistema de Arquivos (1)

Esquema do Sistema de Arquivos (2)

- A maioria dos discos é dividida em uma ou mais partições com Sistemas de arquivos independentes para cada partição
- O setor 0 do disco é chamado de Master Boot Record (MBR)
- Na inicialização do sistema, a BIOS lê e executa o MBR
 - O programa do MBR localiza a partição ativa, lê seu primeiro bloco, chamado de bloco de boot
 - O programa no bloco de boot carrega o S.O. contido na partição
- O esquema da partição varia de um S.O. para outro, mas é comum:
 - A definição de um SuperBloco: contém os principais parâmetros do sistema de arquivos (tipo, no. de blocos, etc.)
 - As informações sobre os blocos livres

Implementação de Arquivos (1)

- Alocação Contígua
 - Consiste em armazenar um arquivo em blocos seqüencialmente dispostos
 - O sistema localiza um arquivo através do endereço do primeiro bloco e da sua extensão em blocos
 - O acesso é bastante simples
 - Seu principal problema é a alocação de novos arquivos nos espaços livres
 - Para armazenar um arquivo que ocupa n blocos, é necessário uma cadeia com n blocos dispostos seqüencialmente no disco
 - Além disso, como determinar o espaço necessário a um arquivo que possa se estender depois da sua criação?
 - Pré-alocação (fragmentação interna)

Implementação de Arquivos (2)

Alocação Contígua (cont.)

Implementação de Arquivos (3)

Alocação Contígua (cont.)

Agora, como alocar um arquivo com 4 blocos ? Fragmentação Externa!

E se o arquivo fosse dividido em Blocos lógicos?

Implementação de Arquivos (4)

- Alocação por Lista Encadeada
 - O arquivo é organizado como um conjunto de blocos ligados no disco
 - Cada bloco deve possuir um ponteiro para o bloco seguinte
 - Aumenta o tempo de acesso ao arquivo, pois o disco deve deslocar-se diversas vezes para acessar todos os blocos
 - E necessário que o disco seja desfragmentado periodicamente
 - Esta alocação só permite acesso seqüencial
 - Desperdício de espaço nos blocos com armazenamento de ponteiros

Implementação de Arquivos (5)

Alocação por Lista Encadeada (cont.)

Implementação de Arquivos (6)

- Alocação por Lista Encadeada usando Tabela na Memória
 - Mantém os ponteiros de todos os blocos de arquivos em uma única estrutura denominada Tabela de Alocação de Arquivos
 - FAT (File Allocation Table)
 - Vantagens:
 - Permitir o acesso direto aos blocos
 - Não mantém informações de controle dentro dos blocos de dados
 - FAT: Esquema usado pelo MS-DOS (FAT-16), Win95, Win98, Windows Millennium Edition (FAT-32)

Diretório x

Implementação de Arquivos (7)

Alocação por Lista Encadeada usando

Tabela na Memória (cont.)

- Desvantagem
 - A tabela deve estar na memória o tempo todo
 - Disco de 20 G, blocos de 1k?
 - Mas é possível paginar a FAT!

Implementação de Arquivos (8)

i-nodes

- Cada arquivo possui uma tabela (i-node) no disco
- O i-node só precisa estar na memória quando o arquivo correspondente estiver aberto
- Ocupa menos espaço que a FAT
 - Tamanho da FAT cresce linearmente com o tamanho do disco
 - I-nodes requerem um espaço proporcional à quantidade máxima de arquivos abertos
- Usados por sistemas baseados
 LPRM/DI/UFE O UNIX

Lprm

i-nodes (1)

10 entradas diretas

http://ww

i-nodes (2)

Indirection:

Dado que:

TBD – Tamanho bloco de dados

TR – Tamanho referência (endereço do bloco)

Qual será...?

B_{max} – Nº Blocos máximo de um arquivo

F_{max} – dimensão máxima de um arquivo

$$B_{\text{max}} = 10 + \frac{\text{TBD}}{\text{TR}} + \left(\frac{\text{TBD}}{\text{TR}}\right)^2 + \left(\frac{\text{TBD}}{\text{TR}}\right)^3$$

$$F_{max} = B_{max} x TBD$$

Relação entre Diretórios e i-nodes (1)

 Diretórios incluem nomes de arquivos e referências para os respectivos i-nodes

Boot block Super block

Inodes

Data

Relação entre Diretórios e i-nodes (2)

Passos para alcançar /usr/ast/mbox

Root directory

4 bin 7 dev 14 lib 9 etc 6 usr 8 tmp

Looking up usr yields i-node 6

I-node 6 is for /usr

Mode size times 132

> I-node 6 says that /usr is in block 132

Block 132 is /usr directory

6 1 • • 19 dick 30 erik 51 jim 26 ast 45 bal

> /usr/ast is i-node 26

I-node 26 is for /usr/ast

Mode size times 406

I-node 26 says that /usr/ast is in block 406

Block 406 is /usr/ast directory

26 6 . . 64 grants 92 books 60 mbox 81 minix 17 src

/usr/ast/mbox is i-node 60

Referências

- A. S. Tanenbaum, "Sistemas Operacionais Modernos", 2a. Edição, Editora Prentice-Hall, 2003.
 - Capítulo 6 (até seção 6.3.2 inclusa, seção 6.4.5 e seção 6.5)
- Silberschatz A. G.; Galvin P. B.; Gagne G.; "Fundamentos de Sistemas Operacionais", 6a. Edição, Editora LTC, 2004.
 - Capítulo 11 (até seção 11.3 inclusa)
- Deitel H. M.; Deitel P. J.; Choffnes D. R.; "Sistemas Operacionais", 3^a. Edição, Editora Prentice-Hall, 2005
 - Capítulo 13