Área personal / Mis cursos / Física I - Examen final 16/12/21 / Cuestionario del examen / Examen 16/12/21 Comenzado el Thursday, 16 de December de 2021, 19:30 Estado Finalizado Finalizado en Thursday, 16 de December de 2021, 21:29 Tiempo 1 hora 58 minutos empleado Puntos 1,80/6,00 Calificación 3,00 de 10,00 (30%) Pregunta 1 Correcta Puntúa 1,00 sobre 1,00

Un cuerpo 1 de masa m_1 =50 kg, que desliza sobre una superficie horizontal con fricción, está ligado, mediante una cuerda inextensible, a una polea ideal móvil P₁. El otro extremo de la cuerda está fijo a una pared. Un segundo cuerpo, de masa m_2 =80 kg, cuelga de otra cuerda inextensible que pasa por una polea ideal fija P₂ y cuyo otro extremo está unido al centro de la polea P₁. El cuerpo 2 desciende aceleradamente con a= 2,2 m/s^2 .

Calcule el coeficiente de roce cinético entre el cuerpo 1 y la superficie.

- a. 0,616
- b. 0,286
- © c. 0,184
- od. 0,514
- e. 0,404

Respuesta correcta

La respuesta correcta es: 0,184

Pregunta 2

Sin contestar

Puntúa como 1,00

Una bala de masa m=0.05~kg, que se mueve inicialmente con velocidad horizontal u=577~m/s, impacta sobre la cara oblicua de un cuerpo con forma de cuña que se encontraba en reposo sobre una superficie horizontal sin fricción. La cuña tiene un ángulo de elevación $\theta=30^\circ$ y una masa M=10~kg. Después del choque la bala rebota en la cuña formando un ángulo $\alpha=9^\circ$ respecto de la cara oblicua y la cuña adquiere una velocidad horizontal V=0.63~m/s.

Sabiendo que la duración del contacto entre la bala y la cuña fue de 0,01 s, calcule la fuerza media en la dirección vertical ejercida por la cuña sobre la bala durante el impacto.

- a. 1419 N
- b. 1826 N
- c. 357 N
- od. 1816 N
- e. 2846 N

Respuesta incorrecta.

La respuesta correcta es: 1826 N

Pregunta **3**Correcta

Puntúa 1,00 sobre 1,00

Se tiene un sistema de dos poleas que rotan respecto de ejes fijos y un bloque de masa $m = 0.52 \, kg$ que se desplaza sobre un plano inclinado 47° mientras se desenrolla la cuerda de la polea 1, de masa $m_p = 0.36 \, kg$. La polea 2 no tiene masa y entre la polea 1 y la superficie sobre la que apoya hay una fuerza de roce cinemático de módulo 1,6 N. El coeficiente de roce cinemático entre el bloque y su superficie de apoyo es 0,25.

Determine la aceleración del bloque.

- a. 4,17 m/s²
- b. 1,88 m/s²

 ✓
- c. 6,45 m/s²
- d. 4,24 m/s²
- e. 2,53 m/s²

Respuesta correcta

La respuesta correcta es: 1,88 m/s²

Pregunta 4	
Sin contestar	
Puntúa como 1,00	

Un cilindro macizo y homogéneo cuyo momento de inercia respecto del centro de masa es $I_{CM} = 0.8 \text{ kg } m^2$ se encuentra en reposo sobre una superficie horizontal. Se le aplica en su centro de masa una fuerza de intensidad F = 29 N en forma horizontal, haciendo que el cilindro ruede sin resbalar. Cuando su centro de masa recorrió una distancia d = 7.7 m, la energía cinética de traslación del cilindro es $E_{CT} = 54 \text{ J}$.

Determine la velocidad angular ω del cilindro en ese instante.

- \circ a. $\omega = 28,94 \text{ s}^{-1}$
- \odot b. $\omega = 20,57 \text{ s}^{-1}$
- \circ c. $\omega = 23,63 \text{ s}^{-1}$
- \odot d. $\omega = 26,33 \text{ s}^{-1}$
- \odot e. $\omega = 11,62 \text{ s}^{-1}$

Respuesta incorrecta.

La respuesta correcta es: $\omega = 20,57 \text{ s}^{-1}$

Pregunta **5**

Sin contestar

Puntúa como 1,00

Una partícula realiza un movimiento vibratorio armónico simple a lo largo de un segmento de 19 cm de longitud y tarda 0,05 s en ir de un extremo al otro del mismo. Si en el instante inicial se encuentra en un extremo del segmento, determine a qué distancia del mismo se encontrará en el instante t = 0,005 s.

- a. 9,04 cm
- b. 7,69 cm
- c. 1,90 cm
- od. 1,81 cm
- e. 0,46 cm

Respuesta incorrecta.

La respuesta correcta es: 0,46 cm

Pregunta 6	
Incorrecta	
Puntúa -0,20 sobre 1,00	

Un bloque de hielo ($\delta_h = 900 \ kg/m^3$), en forma de prisma recto de base rectangular, se encuentra flotando en agua ($\delta_a = 1000 \ kg/m^3$), asomando una distancia d = 2,1m de la superficie del agua. Considerando la presión atmosférica $p_0 = 10^5 \ Pa$, calcule a qué presión está sometida la base inferior del prisma, que se encuentra sumergida.

- a. 1,21 10⁵ Pa < x</p>
- b. 1,00 10⁵ Pa
- oc. 2,89 10⁵ Pa
- O d. 3,33 10⁵ Pa
- e. 3,10 10⁵ Pa

Respuesta incorrecta.

La respuesta correcta es: 2,89 10⁵ Pa

→ Distribución de alumnos y profesores

Ir a...

Notas del examen ►