PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-103778

(43) Date of publication of application: 13.04.2001

(51)Int.CI.

H02P 5/06 B41J 19/18

(21)Application number: 2000-141661

(71)Applicant: SEIKO EPSON CORP

(22)Date of filing:

15.05.2000

(72)Inventor: IGARASHI HITOSHI

YOSHIDA MASANORI

(30)Priority

Priority number: 11211076

Priority date: 26.07.1999

Priority country: JP

(54) CONTROL DEVICE AND METHOD OF PRINTER MOTOR AND RECORDING MEDIUM RECORDING CONTROL PROGRAMS

(57)Abstract:

PROBLEM TO BE SOLVED: To make it possible to control the speed fluctuation of a printer motor as low as possible.

SOLUTION: This control device is provided with speed detecting parts 11, 90 that detect the speed of a printer motor 4 in a given cycle tv, an average speed operation part 93 that calculates an average speed using at least the most up—to—date speed detected by the speed detecting parts 11, 90 and a speed detected earlier for n (≥2) pieces or almost half a cycle of the speed fluctuation of the motor 4 before the detection time of the most up—to—date detected speed, and speed controlling parts 6f, 6h that control the speed of the printer motor 4 based on the speed deviation between the target speed of the printer motor 4 and the average speed, an output of the average speed operation part 93.

LEGAL STATUS

[Date of request for examination]

08.08.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-103778 (P2001-103778A)

(43)公開日 平成13年4月13日(2001.4.13)

(51) Int.Cl.7	識別記号	F I	テーマコード(参考)
H02P	5/06	H 0 2 P 5/06	D 2C480
			W 5H571
B41J 1	19/18	B41J 19/18	F

審査請求 未請求 請求項の数18 OL (全 14 頁)

(21)出願番号	特顧2000-141661(P2000-141661)	(71)出願人	000002369
			セイコーエプソン株式会社
(22)出廣日	平成12年5月15日(2000.5.15)		東京都新宿区西新宿2丁目4番1号
		(72)発明者	
40.43		(16)元明日	
(31)優先権主張番号	特顧平11-211076		長野県諏訪市大和三丁目3番5号 セイコ
(32)優先日	平成11年7月26日(1999, 7, 26)		ーエプソン株式会社内
(33)優先権主張国	日本 (JP)	(72) 登田孝	吉田昌敬
(Joy M.) GIELLIAN	H-T (\$ 1)	(12/)LGFF	- · · · - ·
			長野県諏訪市大和三丁目3番5号 セイコ
			ーエプソン株式会社内
		(74)代理人	100064285
		(12142)	
			弁理士 佐藤 一雄 (外3名)

最終頁に続く

(54) 【発明の名称】 プリンタ用モータの制御装置および制御方法ならびに制御プログラムを記録した記録媒体

(57)【要約】

【課題】 プリンタ用モータの速度変動を可及的に抑制 することを可能にする。

(2)

【特許請求の範囲】

【請求項1】プリンタに用いられるモータの速度を所定の周期 t v で検出する速度検出部と、

この速度検出部によって検出された最新の検出速度と、この検出速度の検出時期より前記モータの速度変動のほぼ半周期前であるn(≧2)個前に検出された検出速度とを少なくとも用いて平均速度を演算する平均速度演算部と、

前記モータの目標速度と前記平均速度演算部の出力である平均速度との速度偏差に基づいて前記モータの速度を 制御する速度制御部と、

を備えていることを特徴とするプリンタ用モータの制御 装置。

【請求項2】前記モータの速度変動の周期を T_V とすると、前記平均速度の演算に用いられる数nは、

 T_V / $(2t_V)$ - $2 \le n < T_V$ / $(2t_V)$ + 2 を満たしているように構成されていることを特徴とする請求項 1 記載のプリンタ用モータの制御装置。

【請求項3】前記平均速度演算部は、最新の検出速度からk(n>k≥0)個前の検出速度までのk+1個の検 20 出速度と、n個前からn+k個前までのk+1個の検出 速度との平均速度を求めることを特徴とする請求項2記 載のプリンタ用モータの制御装置。

【請求項4】前記速度制御部は、前記目標速度と前記平均速度との速度偏差に基づいて動作する微分要素を備えていることを特徴とする請求項3記載のプリンタ用モータの制御装置。

【請求項5】前記速度制御部は、前記目標速度と前記平均速度との速度偏差に基づいて動作する比例要素を備えていることを特徴とする請求項4記載のプリンタ用モータの制御装置。

【請求項6】前記速度検出部は前記モータの回転に応じて出力パルスを発生するエンコーダと、このエンコーダの出力パルスに基づいてこの出力パルスの周期で前記モータの速度を演算する速度演算部とを備えたことを特徴とする請求項5記載のプリンタ用モータの制御装置。

【請求項7】前記モータは、インクジェットプリンタのキャリッジモータであり、前記エンコーダは、前記キャリッジモータの回転軸に取付けられたプーリおよびこのプーリによって駆動されるタイミングベルトを介して前記キャリッジモータによって駆動されるキャリッジの移動に応じて出力パルスを発生するように構成されていることを特徴とする請求項6記載のプリンタ用モータの制御装置。

【請求項8】前記エンコーダの符号板のスリット間隔を λ、前記プーリのピッチ円長をし、前記モータの相数を pとしたとき、nは

 $L/(4 p \lambda) \leq n < L/(4 p \lambda) + 2$

を満たしていることを特徴とする請求項7記載のプリンタ用モータの制御装置。

2

【請求項9】前記速度制御部は、

前記エンコーダの出力パルスに基づいて前記モータの速度を第2の所定の周期で演算する第2の速度演算部と、この第2の速度演算部によって演算された最新の演算速度とm (m≥2) 個前に演算された演算速度とを少なくとも用いて平均速度を演算する第2の平均速度演算部と、

前記目標速度と前記第2の平均速度演算部の出力との速 度偏差に基づいて動作する第2の微分要素と、

を更に備えていることを特徴とする請求項7乃至8のいずれかに記載のプリンタ用モータの制御装置。

【請求項10】前記モータはDCモータであることを特徴とする請求項1乃至9のいずれかに記載のプリンタ用モータの制御装置。

【請求項11】モータの速度を所定の周期 t v で検出するステップと、

最新の検出速度と、この検出速度の検出時期より前記モータの速度変動のほぼ半周期前であるn (n ≥ 2) 個前に検出された検出速度とを少なくとも用いて平均速度を演算するステップと、

前記目標速度と前記平均速度との速度偏差に基づいて前記モータの速度を制御するステップと、

を備えていることを特徴とするプリンタ用モータの制御 方法。

【請求項12】前記モータの速度変動の周期を T_V とすると、前記平均速度の演算に用いられる数nは、 $T_V/(2t_V)-2 \le n < T_V/(2t_V)+2$ を満たしているように構成されていることを特徴とする請求項11記載のプリンタ用モータの制御方法。

【請求項13】前記平均速度を演算するステップは、最新の検出速度からk ($n > k \ge 0$) 個前の検出速度までのk+1 個の検出速度と、n 個前からn+k 個までのk+1 個の検出速度との平均速度を求めることを特徴とする請求項12記載のプリンタ用モータの制御方法。

【請求項14】前記モータの速度を制御するステップは、前記速度偏差と、この速度偏差に基づいて動作する 微分要素の出力との和に基づいて制御することを特徴と する請求項13記載のプリンタ用モータの制御方法。

【請求項15】前記モータの速度を検出するステップは、前記モータの回転に応じて出力パルスを発生するエンコーダの出力パルスに基づいてこの出力パルスの周期で前記モータの速度を演算するステップを備えたことを特徴とする請求項14記載のプリンタ用モータの制御方法。

【請求項16】前記モータは、インクジェットプリンタのキャリッジモータであることを特徴とする請求項15 記載のプリンタ用モータの制御方法。

【請求項17】前記モータはDCモータであることをことを特徴とする請求項11万至16のいずれかに記載の プリンタ用モータの制御方法。

(3)

3

【請求項18】モータの速度を所定の周期 t v で検出する手順と、

最新の検出速度と、この検出速度の検出時期より前記モータの速度変動のほぼ半周期前であるn (n ≥ 2) 個前に検出された検出速度とを少なくとも用いて平均速度を演算する手順と、

前記目標速度と前記平均速度との速度偏差に基づいて前記モータの速度を制御する手順と、

を備えていることを特徴とするコンピュータによってプリンタ用モータを制御するプリンタ用モータの制御プログラムを記録した記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はプリンタ用モータの 制御装置および制御方法ならびに制御プログラムを記録 した記録媒体に関するものであって、特に、シリアルプ リンタのキャリッジを駆動するモータの速度の制御に用 いられる。

[0002]

【従来の技術】一般に、インクジェットプリンタ等のシ 20 リアルプリンタにおいては、印刷紙上を記録ヘッドが走 査して印字を行う。この記録ヘッドはキャリッジに固定 されて、キャリッジとともに移動する。そしてこのキャ リッジは、DCモータによって駆動されるが、その駆動 方式は以下のようである。

【0003】まず、DCモータの回転軸に固定されたプーリと、このプーリと対になる従動車とによってタイミングベルトが所定の張力となるように張られ、このタイミングベルトに上記キャリッジが取付けられるように構成されている。これにより、DCモータの回転によって 30キャリッジが主走査方向に動くように駆動される。

【0004】上記キャリッジが定速で動いているとき、 すなわちDCモータが定速で回転しているときに印字が 行われる。

【0005】従来、DCモータが定速となるようにする 速度制御は、目標速度と、検出された実際の速度との偏 差に基づいたPID制御によって行っていた。

[0006]

【発明が解決しようとする課題】しかしDCモータは、一般に図13に示すようにステータ210と、ロータ2 40 20とを有している。ステータ210は、ヨーク210 aと、磁極210bとから構成される。ロータ220は、電磁石の磁極となる突起部220aと、この突起部220aの基部に巻かれたコイル220bとから構成され、コミュテータ230およびブラシ240の働きにより上記電磁石の極性を次々と切り替える構成となっている。このためDCモータにはトルク変動があり、このトルク変動はDCモータの相数(コイルの個数、すなわち突起部220aの基部の個数)をpとすると、DCモータが1回転する間に2p回発生する。なお、図13にお 50

1

いては、DCモータの相数は3である。

【0007】このためキャリッジの駆動にDCモータを用いたシリアルプリンタにおいては、DCモータのトルク変動によってキャリッジの速度(すなわちDCモータの速度)が変動し、印字されたドット間にバラツキが生じ、高精細な印字を行うことができないという問題があった。

【0008】本発明は上記事情を考慮してなされたものであって、プリンタ用モータの速度変動を可及的に抑制することのできるプリンタ用モータの制御装置および制御方法ならびにプリンタ用モータの制御プログラムを記録した記録媒体を提供することを目的とする。

[0009]

【課題を解決するための手段】本発明によるプリンタ用モータの制御装置は、プリンタ用モータの速度を所定の周期 t v で検出する速度検出部と、この速度検出部によって検出された最新の検出速度と、この検出速度の検出時期より前記モータの速度変動のほぼ半周期前であるn(≥2)個前に検出された検出速度とを少なくとも用いて平均速度を演算する平均速度演算部と、前記モータの目標速度と前記平均速度演算部の出力である平均速度との速度偏差に基づいて前記モータの速度を制御する速度制御部と、を備えていることを特徴とする。

【0010】なお、前記モータの速度変動の周期を T_v とすると、前記平均速度の演算に用いられる数nは、 T_v / $(2t_v)$ $-2 \le n < T_v$ / $(2t_v)$ +2 を満たしているように構成されていることが好ましい。【0011】なお、前記平均速度演算部は、最新の検出速度からk $(n > k \ge 0)$ 個前の検出速度までのk+1 個の検出速度と、n 個前からn+k 個前までのk+1 個の検出速度との平均速度を求めることが好ましい。

【0012】なお、前記速度制御部は、前記目標速度と 前記平均速度との速度偏差に基づいて動作する微分要素 を備えていることが好ましい。

【0013】なお、前記速度制御部は、前記目標速度と 前記平均速度との速度偏差に基づいて動作する比例要素 を備えていても良い。

【0014】なお、前記速度検出部は前記モータの回転に応じて出力パルスを発生するエンコーダと、このエンコーダの出力パルスに基づいてこの出力パルスの周期で前記モータの速度を演算する速度演算部とを備えるように構成しても良い。

【0015】なお、前記モータは、インクジェットプリンタのキャリッジモータであり、前記エンコーダは、前記キャリッジモータの回転軸に取付けられたブーリおよびこのプーリによって駆動されるタイミングベルトを介して前記キャリッジモータによって駆動されるキャリッジの移動に応じて出力パルスを発生するように構成されていても良い。

【0016】なお、前記エンコーダの符号板のスリット

間隔をλ、前記プーリのピッチ円長をL、前記モータの 相数をpとしたとき、nは

 $L/(4p\lambda) \le n < L/(4p\lambda) + 2$ を満たしていることが好ましい。

【0017】なお、前記速度制御部は、前記エンコーダの出力パルスに基づいて前記モータの速度を第2の所定の周期で演算する第2の速度演算部と、この第2の速度演算部によって演算された最新の演算速度とm(m≥2)個前に演算された演算速度とを少なくとも用いて平均速度を演算する第2の平均速度演算部と、前記目標速度と前記第2の平均速度演算部の出力との速度偏差に基づいて動作する第2の微分要素と、を更に備えるように構成しても良い。

【0018】なお前記モータはDCモータであっても良い。

【0019】また、本発明によるプリンタ用モータの制御方法は、モータの速度を所定の周期 t v で検出するステップと、最新の検出速度と、この検出速度の検出時期より前記モータの速度変動のほぼ半周期前であるn (n≥2) 個前に検出された検出速度と少なくとも用いて平均速度を演算するステップと、前記目標速度と前記平均速度との速度偏差に基づいて前記モータを制御するステップと、を備えていることを特徴とする。

【0020】なお、上記制御方法において、前記モータの速度変動の周期を T_V とすると、前記平均速度の演算に用いられる数nは、

 T_v / $(2t_v)$ - $2 \le n < T_v$ / $(2t_v)$ + 2 を満たしているように構成されていることが好ましい。 【0021】なお、前記モータの速度を制御するステップは、前記速度偏差と、この速度偏差に基づいて動作する微分要素の出力との和に基づいて制御することが好ましい。

【0022】また、本発明の記録媒体は、モータの速度を所定の周期 t_v で検出する手順と、最新の検出速度と、この検出速度の検出時期より前記モータの速度変動のほぼ半周期前である $n(n \ge 2)$ 個前に検出された検出速度とを少なくとも用いて平均速度を演算する手順と、前記目標速度と前記平均速度との速度偏差に基づいて前記モータの速度を制御する手順と、を少なくとも備えるように構成しても良い。

[0023]

【発明の実施の形態】以下、本発明の実施の形態を図面を参照して説明する。

【0024】まず本発明によるプリンタ用モータの制御装置が用いられるインクジェットプリンタの概略の構成および制御について説明する。このインクジェットプリンタの概略の構成を図6に示す。

【0025】このインクジェットプリンタは、紙送りを 3が印字領域から非印字領域が行う紙送りモータ(以下、PFモータともいう)1と、 レバーに当接してキャッピング この紙送りモータ1を駆動する紙送りモータドライバ2 50 し、記録ヘッド9を封止する。

6

と、キャリッジ3と、このキャリッジ3を駆動するキャ リッジモータ(以下、CRモータともいう) 4と、この キャリッジモータ4を駆動するCRモータドライバ5 と、DCユニット6と、目詰まり防止のためインクの吸 い出しを制御するポンプモータ7と、このポンプモータ 7を駆動するポンプモータドライバ8と、キャリッジ3 に固定されて印刷紙50にインクを吐出する記録ヘッド 9と、この記録ヘッド9を駆動制御するヘッドドライバ 10と、キャリッジ3に固定されたリニア式エンコーダ 11と、所定の間隔にスリットが形成された符号板12 と、PFモータ1用のロータリ式エンコーダ13と、印 刷処理されている紙の終端位置を検出する紙検出センサ 15と、プリンタ全体の制御を行うCPU16と、CP U16に対して周期的に割込み信号を発生するタイマ I C17と、ホストコンピュータ18との間でデータの送 受信を行うインタフェース部(以下 IFともいう) 19 と、ホストコンピュータ18からIF19を介して送ら れてくる印字情報に基づいて印字解像度や記録ヘッド9 の駆動波形等を制御するASIC20と、ASIC20 およびCPU16の作業領域やプログラム格納領域とし て用いられるPROM21, RAM22およびEEPR OM23と、印刷中の紙50を支持するプラテン25 と、PFモータ1によって駆動されて印刷紙50を搬送 する搬送ローラ27と、CRモータ4の回転軸に取付け られたプーリ30と、このプーリ30によって駆動され るタイミングベルト31と、を備えている。

【0026】なお、DCユニット6は、CPU16から送られてくる制御指令およびエンコーダ11,13の出力に基づいて紙送りモータドライバ2およびCRモータドライバ5を駆動制御する。また、紙送りモータ1およびCRモータ4はいずれもDCモータで構成されている。

【0027】このインクジェットプリンタのキャリッジ 3の周辺の構成を図7に示す。

【0028】キャリッジ3は、タイミングベルト31によりプーリ30を介してキャリッジモータ4に接続され、ガイド部材32に案内されてプラテン25に平行に移動するように駆動される。キャリッジ3の印刷紙に対向する面には、ブラックインクを吐出するノズル列およびカラーインクを吐出するノズル列からなる記録ヘッド9が設けられ、各ノズルはインクカートリッジ34からインクの供給を受けて印刷紙にインク滴を吐出して文字や画像を印字する。

【0029】またキャリッジ3の非印字領域には、非印字時に記録ヘッド9のノズル開口を封止するためのキャッピング装置35と、図6に示すポンプモータ7を有するポンプユニット36とが設けられている。キャリッジ3が印字領域から非印字領域に移動すると、図示しないレバーに当接してキャッピング装置35は上方に移動

【0030】記録ヘッド9のノズル開口列に目詰まりが 生じた場合や、カートリッジ34の交換等を行って記録 ヘッド9から強制的にインクを吐出する場合は、記録へ ッド9を封止した状態でポンプユニット36を作動さ せ、ポンプユニット36からの負圧により、ノズル開口 列からインクを吸い出す。これにより、ノズル開口列の 近傍に付着している塵埃や紙粉が洗浄され、さらには記 録ヘッド9の気泡がインクとともにキャップ37に排出 される。

【0031】次に、キャリッジ3に取付けられたリニア 式エンコーダ11の構成を図8に示す。このエンコーダ 11は発光ダイオード11aと、コリメータレンズ11 bと、検出処理部11cとを備えている。この検出処理 部11 c は複数(4個)のフォトダイオード11 d と、 信号処理回路11eと、2個のコンパレータ11fA, 11 f B と、を有している。

【0032】発光ダイオード11aの両端に抵抗を介し て電圧Vccが印加されると、発光ダイオード11aか ら光が発せられる。この光はコリメータレンズ11bに よって平行にされて符号板12を通過する。符号板12 には所定の間隔(例えば1/180インチ(=1/18 0×2.54cm))毎にスリットが設けられた構成と なっている。

【0033】この符号板12を通過した平行光は、図示 しない固定スリットを通って各フォトダイオード11d に入射し、電気信号に変換される。4個のフォトダイオ ード11 dから出力される電気信号が信号処理回路11 eにおいて信号処理される。この信号処理回路11eか ら出力される信号がコンパレータ11fA, 11fB において比較され、比較結果がパルスとして出力され る。コンパレータ11 f_A , 11 f_B から出力される パルスENC-A, ENC-Bがエンコーダ11の出力 となる。

【0034】パルスENC-AとパルスENC-Bは位 相が90度だけ異なっている。CRモータ4が正転すな わちキャリッジ3が主走査方向に移動しているときは図 9 (a) に示すようにパルスENC-AはパルスENC -Bよりも90度だけ位相が進み、CRモータ4が逆転 しているときは図9(b)に示すようにパルスENC-AはパルスENC-Bよりも90度だけ位相が遅れるよ うにエンコーダ4は構成されている。そして、上記パル スの1周期Tは符号板12のスリット間隔 (例えば1/ 180インチ (=1/180×2.54cm)) に対応 し、キャリッジ3が上記スリット間隔を移動する 時間に 等しい。

【0035】一方、PFモータ1用のロータリ式エンコ ーダ13は符号板がPFモータ1の回転に応じて回転す る回転円板である以外は、リニア式エンコーダ11と同 様の構成となっている。なおインクジェットプリンタに おいては、PFモータ1用のエンコーダ13の符号板に 50 /4となる。上記スリットの間隔を1/180インチ

設けられている複数のスリットのスリット間隔は、1/ 180インチ (1/180×2.54cm) であり、P Fモータ1が上記1スリット間隔だけ回転すると、1/ $14407 \times (=1/1440 \times 2.54 \text{ cm})$ だけ 紙送りされるような構成となっている。

【0036】次に図6において示した紙検出センサ15 の位置について図10を参照して説明する。図10にお いて、プリンタ60の給紙挿入口61に挿入された紙5 0は、給紙モータ63によって駆動される給紙ローラ6 4によってプリンタ60内に送り込まれる。プリンタ6 0内に送り込まれた紙50の先端が例えば光学式の紙検 出センサ15によって検出される。この紙検出センサ1 5によって先端が検出された紙50はPFモータ1によ って駆動される紙送りローラ65および従動ローラ66 によって紙送りが行われる。

【0037】続いてキャリッジガイド部材32に沿って 移動するキャリッジ3に固定された記録ヘッド(図示せ ず)からインクが滴下されることにより印字が行われ る。そして所定の位置まで紙送りが行われると、現在、 印字されている紙50の終端が紙検出センサ15によっ て検出される。そしてPFモータ1によって駆動される 歯車67aにより、歯車67bを介して歯車67cが駆 動され、これにより、排紙ローラ68および従動ローラ 69が回転駆動されて、印字が終了した紙50が排紙口 62から外部に排出される。

【0038】次に図6に示したDCユニット6によって 行われるDCモータの速度制御を、CRモータ4を例に とって図11および図12を参照して説明する。

【0039】DCユニット6は位置演算部6aと、減算 器6 b と、目標速度演算部6 c と、速度演算部6 d と、 減算器6 e と、比例要素6 f と、積分要素6 g と、微分 要素6hと、加算器6iと、D/Aコンバータ6iと、 タイマ6kと、加速制御部6mとを備えている。

【0040】位置演算部6 a はエンコーダ11の出力パ ルスENC-A、ENC-Bの各々の立ち上がりエッ ジ、立ち下がりエッジを検出し、検出されたエッジの個 数を計数し、この計数値に基づいて、キャリッジ3の位 置を演算する。この計数はCRモータ4が正転している ときは1個のエッジが検出されると「+1」を加算し、 逆転しているときは、1個のエッジが検出されると「-1」を加算する。パルスENC-AおよびENC-Bの 各々の周期は符号板12のスリット間隔に等しく、かつ パルスENC-AとパルスENC-Bは位相が90度だ け異なっている。このため、上記計数のカウント値 「1」は符号板12のスリット間隔の1/4に対応す る。これにより上記計数値にスリット間隔の1/4を乗 算すれば、キャリッジ3の、計数値が「0」に対応する 位置からの移動量を求めることができる。このときエン

コーダ11の解像度は符号板12のスリットの間隔の1

9

(=1/180×2.54cm) とすれば解像度は1/720インチ(=1/720×2.54cm) となる。 【0041】減算器6bは、CPU16から送られてくる目標位置と、位置演算部6aによって求められたキャリッジ3の実際の位置との位置偏差を演算する。

【0042】目標速度演算部6cは、減算器6bの出力である位置偏差に基づいてキャリッジ3の目標速度を演算する。この演算は位置偏差にゲイン K_p を乗算することにより行われる。このゲイン K_p は位置偏差に応じて決定される。なお、このゲイン K_p の値は図示しないテーブルに格納していても良い。

【0043】速度演算部6dはエンコーダ11の出力パルスENC一A、ENC一Bに基づいてキャリッジ3の速度を演算する。この速度は次のようにして求められる。まずエンコーダ11の出力パルスENC一A、ENC一Bの各々の立ち上がりエッジ、立ち下がりエッジを検出し、符号板12のスリット間隔の1/4に対応するエッジ間の時間間隔を例えばタイマカウンタによってカウントする。このカウント値をTとし、符号板12のスリット間隔を入とすればキャリッジの速度は入/(4T)として求められる。なお本実施の形態においては、速度の演算は出力パルスENC一Aの1周期、例えば立ち上がりエッジから次の立ち上がりエッジまでをタイマカウンタによって計測することにより求めている。

【0044】減算器6eは、目標速度と、速度演算部6dによって演算されたキャリッジ3の実際の速度との速度偏差を演算する。

【0045】比例要素6fは上記速度偏差に定数Gpを乗算し、乗算結果を出力する。積分要素6gは速度偏差に定数Giを乗じたものを積算する。微分要素6hは現 30在の速度偏差と、1つ前の速度偏差との差に定数Gdを乗算し、乗算結果を出力する。なお比例要素6f、積分要素6g、および微分要素6hの演算はエンコーダ11の出力パルスENC-Aの1周期毎を、例えば出力パルスENC-Aの立ち上がりエッジに同期して行う。

【0046】比例要素6f、積分要素6g、および微分要素6hの出力は加算器6iにおいて加算される。そして加算結果、すなわちCRモータ4の駆動電流がD/Aコンバータ6jに送られてアナログ電流に変換される。このアナログ電流に基づいてドライバ5によってCRモータ4が駆動される。

【0047】また、9476kおよび加速制御部6mは加速制御に用いられ、比例要素6f、積分要素6g、および微分要素6hを使用するPID制御は加速途中の定速および減速制御に用いられる。

【0048】タイマ6kはCPU16から送られてくる クロック信号に基づいて所定時間毎にタイマ割込み信号 を発生する。

【0049】加速制御部6mは上記タイマ割込信号を受ける度毎に所定の電流値(例えば20mA)を目標電流 50

10

値に積算し、積算結果すなわち加速時におけるDCモータ4の目標電流値がD/Aコンバータ6jに送られる。 PID制御の場合と同様に上記目標電流値はD/Aコンバータ6jによってアナログ電流に変換され、このアナログ電流に基づいてドライバ5によってCRモータ4が駆動される。

【0050】ドライバ5は、例えば4個のトランジスタを備えており、D/Aコンバータ6jの出力に基づいて上記トランジスタを各々ONまたはOFFさせることにより

(a) CRモータ4を正転または逆転させる運転モード(b) 回生ブレーキ運転モード(ショートブレーキ運転モード、すなわちCRモータの停止を維持するモード)

(c) CRモータを停止させようとするモードを行わせることが可能な構成となっている。

【0051】次に図12(a),(b)を参照してDCユニット6の動作を説明する。CRモータ4が停止しているときにCPU16からDCユニット6にCRモータ4を起動させる起動指令信号が送られると、加速制御部6mから起動初期電流値 I_O がD/Aコンバータ6jに送られる。なお、この起動初期電流値 I_O は起動指令信号とともにCPU16から加速制御部6mに送られてくる。そしてこの電流値 I_O はD/Aコンバータ6jによってアナログ電流に変換されてドライバ5に送られ、このドライバ5によってCRモータ4が起動開始する(図12(a),(b)参照)。

【0052】起動指令信号を受信した後、所定の時間毎にタイマ6kからタイマ割込信号が発生される。加速制御部6mはタイマ割込信号を受信する度毎に、起動初期電流値 I_O に所定の電流値(例えば20mA)を積算し、積算した電流値をD/Aコンバータ6jに送る。するとこの積算した電流値はD/Aコンバータ6jによってアナログ電流に変換されてドライバ5に送られる。そしてCRモータ4に供給される電流の値が上記積算した電流値となるように、ドライバ5によってCRモータが駆動されCRモータ4の速度は上昇する(図12(b)参照)。このためCRモータ4に供給される電流値は図12(a)に示すように階段状になる。

【0053】なお、このときPID制御系も動作しているが、D/Aコンバータ6jは加速制御部6mの出力を選択して取込む。

【0054】加速制御部6mの電流値の積算処理は、積算した電流値が一定の電流値 I_S となるまで行われる。時刻 t_1 において積算した電流値が所定値 I_S となると、加速制御部6mは積算処理を停止し、D/Aコンバータ6jに一定の電流値 I_S を供給する。これにより CRモータ4に供給される電流の値が電流値 I_S となるようにドライバ5によって駆動される(図12(a) 参照)。

【0055】そして、CRモータ4の速度がオーバーシ

【0056】すなわち、目標位置と、エンコーダ11の出力から得られる実際の位置との位置偏差に基づいて目標速度が演算され、この目標速度と、エンコーダ11の出力から得られる実際の速度との速度偏差に基づいて、比例要素6f、積分要素6g、および微分要素6hが動作し、各々比例、積分、および微分演算が行われ、これらの演算結果の和に基づいて、CRモータ4の制御が行われる。なお、上記比例、積分、および微分演算は、例えばエンコーダ11の出力パルスENC-Aの立ち上がりエッジに同期して行われる。これによりDCモータ4の速度は所望の速度 V_e となるように制御される。なお、所定の速度 V_c は所望の速度 V_e の70~80%の値であることが好ましい。

【0057】時刻 t_4 からDCモータ4は所望の速度 V_e となるから印字処理を行うことが可能となる。そして印字処理が終了し、キャリッジ3が目標位置に近づくと(図12(b)の時刻 t_5 参照)、DCモータ4の減速が行われ、時刻 t_6 に停止する。

【0058】(第1の実施の形態)次に本発明によるプリンタ用モータの制御装置の第1の実施の形態の構成を図1に示す。この実施の形態の制御装置は、インクジェットプリンタの、DCモータからなるキャリッジモータ4の制御に用いられ、DCユニット80を備えている。このDCユニット80は、図11で説明したDCユニット6において、速度演算部6dを平均速度計測部90に置換えるとともに減算器96を新たに設けた構成となっている。

【0059】平均速度計測部90は、速度演算部91 と、メモリ92と、平均速度演算部93と、を備えている。速度演算部91は図11で説明した速度演算部6d と同一の構成となっており、エンコーダ11の出力に基づいて、CRモータ4の速度、すなわちキャリッジ3の速度を演算する。

【0060】この演算は、エンコーダ11の出力パルス ENC-Aの立ち上がりエッジに同期して行われる。

【0061】メモリ92は、速度演算部91によって演算された、1つ前の演算結果からn(n≥1)個前の演算結果までのn個の速度データを記憶する。そして平均速度演算部93によってn個の速度データが読出された後は、上記n個前の演算速度の代わりに速度演算部91によって演算された最新の速度を記憶するように構成されている。

12

【0062】平均速度演算部93は、速度演算部91に よって演算された最新の速度データと、メモリ92に記 憶されているn個前の速度データとの2個の速度データ の平均値、すなわち平均速度を演算する。

【0063】減算器6eは目標速度演算部6cの出力である目標速度と、速度演算部91によって演算された最新の速度との速度偏差を演算し、積分要素6gに送出する。減算器96は目標速度演算部6cの出力である目標速度と、平均速度演算部93の出力である平均速度との速度偏差を演算し、比例要素6fおよび微分要素6hに送出する。

【0064】比例要素6fは、減算器96の出力に定数Gpを乗算し、乗算結果を加算器6iに送出する。積分要素6gは減算器6eの出力に定数Giを乗算したものを積算し、積算結果を加算器6iに送出する。微分要素6hは、現在の速度偏差と1つ前の速度偏差との差に定数Gdを乗算し、乗算結果を加算器6iに送出する。なお、比例要素6f、積分要素6g、および微分要素6hの演算はエンコーダ11の出力パルスENC-Aの立ち上がりに同期して行う。

【0065】比例要素6f、積分要素6g、および微分要素6hの出力は加算器6iにおいて加算される。そして加算結果、すなわち上記速度偏差が零となるようなCRモータ4の駆動電流がD/Aコンバータ6jに送られてアナログ電流に変換される。このアナログ電流に基づいてドライバ5によってCRモータ4が駆動される。

【0066】本実施の形態においては、平均速度の演算に用いられる数nは、CRモータ4の速度変動の周期を T_V 、速度演算部 91 の速度演算の周期を t_V とすると、 T_V / $(2t_V)$ に近い値になっている。このようにnを T_V / $(2t_V)$ に近い値とすることにより CRモータ4の速度変動を可及的に抑制することができる。

【0067】このことを図2および図3を参照して説明する。本実施の形態において、CRモータ4の極数を5とし、このCRモータ4の回転軸に取付けられてタイミングベルト31を駆動するプーリ30の有効径長(すなわちピッチ円長)Lを26mmとし、エンコーダ11の符号板12のスリットの間隔 λ を1/180インチ(=0.14mm)とする。このときCRモータ4の速度変動は1回転に10回、すなわちキャリッジ3が26mm移動する間に10回生じるから、速度変動の周期Tvはキャリッジ3が2.6mm(=26mm/(2×5))だけ移動する時間に等しい。

【0068】一方速度演算部91の演算周期 t_V はエンコーダ11の出力パルスENC-Aの周期、すなわちキャリッジ3が符号板12のスリット間隔 (= 0.14mm) だけ移動する時間に等しい。

【0069】このため、CRモータ4の速度変動の1周期の間に T_V / t_V = 18.4 (= 2.6 mm/0.

14mm)回の速度演算が速度演算部91において行われる。

【0070】このような条件の下で、CRモータ4の回転軸の速度が所定速度Veを中心として正弦波状に変動しているとし、平均速度演算部93が平均速度の演算に用いた数nをパラメータとして本実施の形態の平均速度演算部の出力の様子を図2に示す。なお図2においては速度変動分のみを正規化して表現している。

【0071】図2において、グラフg 1 は n = 0 の場合、すなわち平均速度演算手段 9 3 の出力が速度演算部 9 1 の出力に一致する場合の速度変動の様子を示し、グラフg 2 は n = 7 の場合、すなわち最新の演算速度と 7 個前の演算速度との平均速度の速度変動の様子を示し、グラフg 3 は n = 8 の場合すなわち最新の演算速度と 8 個前の演算速度との平均速度の速度変動の様子を示し、グラフg 4 は n = 9 の場合、すなわち最新の演算速度と 9 個前の演算速度との平均速度の速度変動の様子を示し、グラフg 5 は n = 1 0 の場合、すなわち最新の演算速度と 1 0 個前の演算速度との平均速度の速度変動の様子を示し、グラフg 6 は n = 1 1 の場合、すなわち最新の演算速度と 1 1 個前の演算速度との平均速度の速度変動の様子を示す。

【0072】この図2に示す演算結果から分かるように n=9のとき、すなわちnが $T_{\rm V}$ / $(2\,t_{\rm V})$ (= 9.2)に近い値のときが速度変動が1番小さくなっている。これは、図3に示すように、速度演算部91の演算周期 $t_{\rm V}$ と数nとの積n $t_{\rm V}$ がCRモータ4の速度変動の周期 $T_{\rm V}$ の約半分であれば、平均速度演算部93によって演算される平均速度は、ほぼ零に近く、このため速度の変動が小さくなるからであると考えられる。【0073】したがって、平均速度演算に用いられる数nが、

 T_V / $(2t_V)$ - $2 \le n < T_V$ / $(2t_V)$ + 2 を満たしているように構成されていれば、速度変動を可及的に抑制することができることになる。

【0074】なお、実際的には図4に示すように、CRモータ4によって駆動されるプーリ30と、このプーリ30の従動車30aによってタイミングベルト31は張力を有するように張られているのでCRモータ4の速度変動はキャリッジ3に遅れて伝わる。このため、図2から分かるようにn=9の場合よりも若干速度変動は大きくなるが、位相が進んでいるn=10の方を用いた方がCRモータ4の速度変動の抑制にはより有効的と考えられる。

【0075】したがって、エンコーダ11の符号板12のスリット間隔をλ、プーリ30のピッチ円長(有効径長)をL、CRモータ4の相数をpとすれば、平均速度の演算に用いられる数nは、

 $L/(4p\lambda) \le n < L/(4p\lambda) + 2$ を満たしていることが好ましい。なおCRモータ4の速 50

14

度変動の周期を T_v 、速度演算部 9 1 の演算周期を t_v とすると

 $L/(4 p \lambda) = (L/(2 p))/(2 \lambda) = T_{v}/(2 t_{v})$ (2 t_v) rbs.

【0076】以上説明したように本実施の形態によれば、CRモータの速度変動を可及的に抑制することができる。

【0077】なお、上記実施の形態においては、目標速度と平均速度との偏差である速度偏差は比例要素6fおよび微分要素6hに入力したが、上記速度偏差を微分要素6hのみに入力し、比例要素6fおよび積分要素6gには目標速度と、速度演算部91の出力との速度偏差を入力するように構成しても同様の効果を得ることができる。また、目標速度と平均速度との速度偏差を比例要素6f、積分要素6g、微分要素6hの全てに入力するように構成しても同様の効果を得ることができる。

【0078】なお、位置演算部6aはエンコーダ11の出力パルスENC-A、ENC-Bの立ち上がり、立ち下がりエッジを計数し、計数値にエンコーダ11の符号板12のスリット間隔を乗算していたが、スリット間隔を乗算しないで出力パルスENC-A、ENC-Bの立ち上がり、立ち下がりエッジを計数し、これを出力するようにしても良い。このとき目標位置もパルス数で表わされ、速度演算部91の出力はエンコーダ11の出力パルスENC-Aの周期の逆数となり、平均速度演算部93は、出力パルスENC-Aの周期の逆数の平均値を演算し、出力することになる。

【0079】また、上記第1の実施の形態においては、平均速度演算部93は、最新の演算速度と、n個前の演算速度との平均速度を演算していたが、最新の演算速度からk(n>k≥1)個前の演算速度までのk+1個の演算速度データと、n個前からn+k個前までのk+1個の演算速度データとの平均値(平均速度)を求めるように構成しても良い。この場合、メモリ92には1つ前の演算速度からn+k個前の演算速度までのn+k個の演算速度データが記憶されることになる。この様に構成することにより、ノイズの影響を可及的に抑制することができる。

【0080】また、最新の演算速度からn-1個前の演算速度までのn個の演算速度データの中から選択した上記最新の演算速度を含むm (n-1≥m≥2)個の演算速度データと、n個前から2n-1個前までのn個の演算速度データの中から選択した、上記m個の演算速度データに対応するm個の演算速度データとの平均値を求めるように平均速度演算部93を構成しても良い。ここで最新の演算速度データに対応する演算速度データはn個前の演算速度データであり、k (n-1≥k≥1)個前の演算速度データに対応する演算速度データはn+k個前の演算速度データである。

【0081】また、上記実施の形態においては、CRモータ4の相数をp、プーリ30の有効長をL($=\pi D$ (Dはピッチ円径))、CRモータ4の速度変動の周期を T_V 、速度演算部91の演算周期を t_V 、エンコーダ11のスリット間隔を λ とすると、平均速度の演算に用いられる数nは、

 $T_{V} / (2 t_{V}) = L / (4 p \lambda) = \pi D / (4 p \lambda)$

に近い値が選択されていたが、nを所定の値に固定して プーリ30のピッチ円径Dを上述の関係を満足するよう な値とするようにしても良い。

【0082】なお、インクジェットプリンタにおいては、キャリッジ3の速度は、a)上記CRモータ4の速度変動、b)タイミングベルト31の影響による速度変動、c)プーリの影響による速度変動を受ける。このため、CRモータ4の速度変動のみを抑制するばかりでなく、他の要因による速度変動も抑制する必要がある。他の要因による速度変動をも抑制可能なことを次の第2の実施の形態において説明する。

【0083】(第2の実施の形態)本発明によるプリンタ用モータの制御装置の第2の実施の形態の構成を図5に示す。この第2の実施の形態の制御装置はインクジェットプリンタのCRモータの速度制御に用いられるものであって、図1に示す第1の実施の形態の制御装置においてはDCユニット80をDCユニット80Aに置換えた構成となっている。このDCユニット80Aは図1に示すDCユニット80に平均速度計測部90A、減算器97、および微分要素98を新たに加えた構成となっている。

【0084】平均速度計測部90Aは平均速度計測部90とほぼ同じ構成であり、速度演算部91Aと、メモリ92Aと、平均速度演算部93Aとを備えている。

【0085】速度演算部91Aは速度演算部91と同一の構成であり、エンコーダ11の出力パルスENC-Aに基づいてCRモータ4の速度、すなわちキャリッジ3の速度を演算する。この演算はエンコーダ11の出力パルスENC-Aの立ち上がりエッジに同期して行われる。

【0086】メモリ92Aは速度演算部91Aによって演算された、1つ前の演算結果からm (m≥2) 個前の演算結果までのm個の速度データを記憶する。そして平均速度演算部93Aによってm個前のデータが読出された後は、上記m個前の演算速度の代わりに速度演算部91Aによって演算された最新の演算速度を記憶するように構成されている。

【0087】平均速度演算部93Aは、速度演算部91 Aによって演算された最新の速度データと、m個前の演 算速度との平均値(平均速度)を演算し、演算結果を減 算器97に送出する。

【0088】減算器97は目標速度演算手段6cの出力 50

16

である目標速度と、平均速度演算部93Aの出力である 平均速度との速度偏差を演算し、演算結果を微分要素9 8に送出する。

【0089】微分要素98は、最新の速度偏差と1つ前の速度偏差との差に定数GdA を乗算し、乗算結果を加算器6iに送出する。

【0090】そして、比例要素6f、積分要素6g、微分要素6h、および微分要素98の出力の和が加算器6iにおいて演算される。この加算器6iの出力、すなわち速度偏差が零となるようなCRモータ4の駆動電流がD/Aコンバータ6jに送られてアナログ電流に変換される。このアナログ電流に基づいて、ドライバ5によってCRモータ4が駆動される。

【0091】この実施の形態においては、平均速度の演算に用いられる数mは、CRモータ4の速度変動以外の抑制すべき速度変動の周期を T_{VA} とし、速度演算部91 Aの演算周期を t_{VA} とすれば T_{VA} /($2t_{VA}$)に近い値となるように構成されている。

【0092】以上説明したようにこの第2の実施の形態の制御装置はCRモータ4の速度変動を抑制することができるとともにそれ以外の要因による速度変動も抑制することができる。

【0093】なお、第2の実施の形態においては、速度 演算部91Aの演算周期はエンコーダ11の出力パルス ENC-Aの周期であったが、抑制すべき速度変動がC Rモータの速度変動よりも周期が短い場合は、エンコー ダの出力パルスENC-Aおよび出力パルスENC-B の各々の立ち上がりエッジおよび立ち下がりエッジに同 期して速度演算部91Aの演算を行うか、または、より 高解像のエンコーダの出力パルスに基づいて演算を行う ようにすることが好ましい。

【0094】また、上記第2の実施の形態においては、 平均速度演算部93Aは、最新の演算速度と、m個前の 演算速度との平均速度を演算していたが、最新の演算速度 度からk(m>k≥1)個前の演算速度までのk+1個 の演算速度データと、m個前からm+k個前までのk+ 1個の演算速度データとの平均値(平均速度)を求める ように構成しても良い。この場合、メモリ92には1つ 前の演算速度からm+k個前の演算速度までのm+k個 の演算速度データが記憶されることになる。

【0095】なお、上記第1および第2の実施の形態においては、DCモータについて説明したがACモータにも用いることができることはいうまでもない。

【0096】 (第3の実施の形態) 次に、本発明の第3の実施の形態を図14を参照して説明する。この第3の実施の形態はプリンタ用モータの制御方法であって、その制御手順を図14に示す。

【0097】まずプリンタ用モータ、例えばキャリッジモータの速度を所定の周期 t_{v} で検出し、記憶する

(図14のステップF1参照)。次に最新の検出速度

と、この検出速度の検出時期より上記モータの速度変動のほぼ半周期前であるn ($n \ge 2$) 個前に検出された検出速度とを少なくとも用いて平均速度を演算する(図 1 4のステップF 2 参照)。続いて上記目標速度と上記平均速度との速度偏差に基づいて上記モータの速度を制御する(図 1 4のステップF 3 参照)。

【0098】このように構成された本実施の形態の制御 方法によれば、演算された平均速度には、速度変動の影響が除去されるため、上記目標速度と上記平均速度との 速度偏差に基づいて制御する事により速度変動を可及的 10 に抑制することができる。

【0099】なお、上記平均速度を演算するステップは、最新の検出速度からk($n>k\ge 0$)個前の検出速度までのk+1個の検出速度と、n個前からn+k個までのk+1個の検出速度との平均速度を求めるように構成しても良い。

【0100】また、上記モータの速度を制御するステップは、上記速度偏差と、この速度偏差に基づいて動作する微分要素の出力との和に基づいて制御するように構成しても良い。

【0101】(第4の実施の形態)次に、本発明の第4の実施の形態を図15および図16を参照して説明する。この実施の形態は、プリンタ用モータの制御プログラムを記録した記録媒体である。図15および図16は、本実施の形態の印刷制御プログラムを記録した記録媒体が用いられるコンピュータシステム130の一例を示す斜視図およびブロック図である。

【0102】図15において、コンピュータシステム130は、CPUを含むコンピュータ本体131と、例えばCRT等の表示装置132と、キーボードやマウス等の入力装置133と、印刷を実行するプリンタ134と、を備えている。

【0103】コンピュータ本体131は、図16に示すように、RAMより構成される内部メモリ135と、内蔵または外付け可能なメモリユニット136と、を備えており、メモリユニット136としてはフレキシブルまたはフロッピディスク(FD)ドライブ137,CD-ROMドライブ138,ハードディスクドライブ(HD)ユニット139が搭載されている。図15に示すように、これらのメモリユニット136に用いられる記録 40媒体140としては、FDドライブ137のスロットに挿入されて使用されるフレキシブルディスクまたはフロッピディスク(FD)141と、CD-ROMドライブ138に用いられるCD-ROM142等が用いられる

【0104】図15および図16に示すように、一般的なコンピュータシステムに用いられる記録媒体140としては、FD141やCD-ROM142が考えられるが、本実施の形態は特にブリンタ134に用いられるモータの制御プログラムに関するものであるので、例えば 50

18

プリンタ134に内蔵させる不揮発性メモリとしてのROMチップ143に本発明の制御プログラムを記録させるようにしても良い。

【0105】また、記録媒体としては、FD、CD-ROM、MO(Magneto-Optical) ディスク、DVD (Digital Versatile Disk)、その他の光学的記録ディスク、カードメモリ、磁気テープ等であっても良いことは云うまでもない。

【0106】本実施の形態の記録媒体140は、図14示す制御手順ステップF1~F3を備えるように構成したものである。即ち本実施の形態の記録媒体140は、モータの速度を所定の周期tvで検出する手順と、最新の検出速度と、この検出速度の検出時期より前記モータの速度変動のほぼ半周期前であるn(n≥2)個前に検出された検出速度とを少なくとも用いて平均速度を演算する手順と、前記目標速度と前記平均速度との速度偏差に基づいて前記モータの速度を制御する手順と、を少なくとも備えるように構成しても良い。

20 [0107]

【発明の効果】以上述べたように本発明によればプリンタ用モータの速度変動を可及的に抑制することができる。

【図面の簡単な説明】

【図1】本発明によるプリンタ用モータの制御装置の第 1の実施の形態の構成を示すブロック図。

【図2】第1の実施の形態の効果を説明する速度変動の グラフ。

【図3】 CRモータの速度変動の波形図。

【図4】キャリッジの駆動を説明する模式図。

【図5】本発明によるプリンタ用モータの制御装置の第 2の実施の形態の構成を示すブロック図。

【図 6 】インクジェットプリンタの概略の構成を示す構成図。

【図7】キャリッジ周辺の構成を示す斜視図。

【図8】リニア式エンコーダの構成を示す模式図。

【図9】エンコーダの出力パルスの波形図。

【図10】紙検出センサの位置を説明するプリンタの概略の斜視図。

【図11】インクジェットプリンタの一般的な速度制御装置の構成を示すブロック図。

【図12】図11に示す速度制御装置の動作を説明する 波形図。

【図13】 DCモータの一般的な構成を示す模式図。

【図14】本発明によるプリンタ用モータの制御方法の 制御手順を示すフローチャート。

【図15】本発明による印刷制御プログラムを記録した 記録媒体が用いられるコンピュータシステムの一例を示 す斜視図。

【図16】本発明による印刷制御プログラムを記録した

(11)

19

記録媒体が用いられるコンピュータシステムの一例を示すブロック図。

【符号の説明】

- 1 紙送りモータ (PFモータ)
- 2 紙送りモータドライバ
- 3 キャリッジ
- 4 キャリッジモータ (CRモータ)
- 5 キャリッジモータドライバ (CRモータドライバ)
- 6 DCユニット
- 6 a 位置演算部
- 6 b 減算器
- 6 c 目標速度演算手段
- 6 d 速度演算部
- 6 e 減算器
- 6 f 比例要素
- 6 g 積分要素
- 6 h 微分要素
- 6 j D/Aコンバータ
- 7 ポンプモータ
- 8 ポンプモータドライバ
- 9 記録ヘッド
- 10 ヘッドドライバ
- 11 リニア式エンコーダ
- 12 符号板
- 13 エンコーダ (ロータリ式エンコーダ)

15 紙検出センサ

- 16 CPU
- 17 917 C
- 18 ホストコンピュータ
- 19 インタフェース部
- 20 ASIC
- 21 PROM
- 22 RAM
- 23 EEPROM
- 10 25 プラテン
 - 30 プーリ
 - 31 タイミングベルト
 - 32 キャリッジモータのガイド部材
 - 34 インクカートリッジ
 - 35 キャッピング装置
 - 36 ポンプユニット
 - 37 キャップ
 - 50 記録紙
 - 80 DCユニット
- 20 90 平均速度計測部
 - 91 速度演算部
 - 92 メモリ
 - 93 平均速度演算部
 - 96 減算器

【図1】

【図4】

(12)

【図11】

フロントページの続き

F ターム(参考) 2C480 CA33 CA43 CB02 EA22 5H571 AA20 BB10 CC01 DD10 FF08 GG02 GG08 HA08 HD01 JJ03 JJ06 JJ16 JJ17 JJ18 JJ22 JJ23 LL08