Dog No	1 1	1 1	1	1 1	- 1	l i	
Reg. NO			- 1	1 1			

B.Tech. DEGREE EXAMINATION, JUNE 2023

Fifth Semester

18CSC362J - COMPILER DESIGN

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40 minutes.
ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours			Max. Marks: 100			
	Part - A (20 × 1 Marks = 2 Answer All Question	,	Marks	s BL	CO	
1.		ı language with B) Empty and nonempty binary strings D) Even nonempty strings	1	2	1	
2.		en language using DFA: L={w w has B)11 D)13	s 1	2	1	
3.		sion? B) [(0+1)-(0b+a1)*(a+b)]* D) (1+2+0)*(1+2)*	1	2	1	
• 4.		B) Ф D) 1	1	2	1	
5.	. , ,	e FIRST(S) S ->Aa bB, A->c € B) a,c D) a,b,c,€	1	2	2	
6.		hich phase of compiler? B) Syntax analysis D) Syntax directed translation	1	1	2	
7.	` '	erator has highest precedence B) Union D) Kleene closure	l	2	2	
8.		parse tree from the start symbol and B) Top-Down Parser D) LR PARSER	1	2	2	
9.		ble for predictive-parsing because the B) Left recursive D) An operator grammar	e 1	2	3	
10.		parse trees to produce empty string is? B) Two D) Infinite	1	2	3	

11.	Which grammar rules violate the requireme operator grammar?	nts of an	1	2	3
	1. E -> FG 2. F-> E s F 3. G-> F t H p 4. H-> ε				
	(A) 1 only (C) 1 and 4 only	(B) 1 and 3 only (D) 1, 3 and 4 only			
12.	A form of recursive descent parsing that doe as?	es not require any back-tracking is known	1	2	3
	(A) recursive parsing(C) predictive parsing	(B) non-recursive parsing (D) non-predictive parsing			•
13.	Which statement is an abstract form of inter		1	2	4
	(A) 3- address	(B) 2-address			
	(C) address	(D) Intermediate code			
14.	In parse tree, leaf nodes are called?		1	1	4
	(A) terminals	(B) non-terminals			
	(C) sub-terminals	(D) half-terminals			
15.	The interior node of syntax tree is		1	2	5
	(A) Operators	(B) Keywords			
	(C) both a and b	(D) const			
16.	A latch is constructed using which two cross	, ·	1	2	5
	(A) AND OR gates	(B) AND gates			
	(C) NAND and NOR gates	(D) NAND gates			
17.	Which is not part of runtime memory subdiv	vision?	1	2	6
	(A) Stack	(B) Heap			
	(C) Static data	(D) Access link			
18.	In which storage allocation strategy size is:	-	1	2	6
	(A) Static allocation	(B) Dynamic allocation			
	(C) Stack allocation	(D) stack, static allocation			
19.	of values flowing among the basic blocks, a	•	1	2	5
	(A) DAG	(B) CAG			
	(C) SAG	(D) PAG			
20.	The graph that shows basic blocks and their	-	1	2	5
	(A) DAG	(B) Flow graph			
	(C) control graph	(D) Hamiltonion graph			
	Part - B (5 × 4 Marks =	= 20 Marks)	Marl	ks BL	CO
	Answer any 5 Que	estions			
21.	The two tests schemes can be reduced to your answer with an algorithm.	one in input buffering technique? justify	4	2	1
22.	Raju is authoring a book on compiler. He repage followed by two acknowledgement pages		4	3	2
	strings over {a,b}. Note: index page and acknowledgment respectively.	pages are referred to strings 'a', 'b'			

23.	Eliminate left recursion and left factoring in the following grammar: X -> Ya b c Y -> Yc Yd a Z -> aZX bXc aZc	4	3	3
24.	Check the following grammar is ambiguous or not by parsing the input string "a(a)aa":	4	1	3
25.	Write an inherited attribute semantic rule for following production and draw syntax tree for double a,b,c $D \to TL$ $T \to \text{int}$ $T \to \text{float}$ $T \to \text{double}$ $L \to L1, \text{ id}$ $L \to \text{id}$	4	3	5
26.	Find LEADING() and TRAILING() for all the non-terminals in the following grammar: $A \rightarrow A - B \mid B$ $B \rightarrow B \mid C \mid B$ $C \rightarrow C \mid D \mid D$ $D \rightarrow (A) \mid x \mid y$	4	3	4
27.	Discuss the various peephole optimization techniques in detail.	4	3	6
	Part - C (5 × 12 Marks = 60 Marks) Answer All Questions	Mark	s BL	CO
28.	a) Consider the input c=a+b*5. With a neat sketch, illustrate how the input is transformed into assembly code, using all the phases of compiler. (OR)	12	3	1
	b) Describe the structure of LEX program with example			
29.	a) Find the canonical collection of LR(0) items for the following grammar: S-> aS bS	12	1	3
	b) For the given grammar identify $S \rightarrow CC \ C \rightarrow cC \ \ d \ i. \ First () \ ii. \ Follow ()$			
30.	a) Consider the grammar: A -> pqC pBs pAD B-> qB \varepsilon C -> s \varepsilon D-> p q \varepsilon Check whether the following inputs are accepted or not by the grammar using recursive decent parsing: i) pqqp ii) ppqqss	12	4	2
	b) For the given grammar $S \rightarrow 0S1 \mid 01$, Write a derivation and draw parse tree for the string $w=0515$			
31.	 a) Describe the backpatching technique for flow of control statements. (OR) b) Describe the various methods of implementing the three address statements with an example 	12	3	4
32.	a) Describe in detail about optimization of basic blocks with example (OR) b) Illustrate in detail about the code generation algorithm with an example.	12	3	5
	O			

Page 2 of 3

10JA5-18CSC362J

Page 3 of 3