$\begin{array}{c} \text{Oraux 2025 Wallon} \\ \text{PC/PCE} \end{array}$

Sommaire

• CCINP

1. Mathématiques

- Mines TélécomCentrale 1
- Centrale Info
- Mines Ponts
- X-ESPCI
 - ENS

2. Physique

- CCINP
- Mines Télécom
 - Centrale 1
- Centrale Info
- Mines Ponts
- X-ESPCI
- ENS

Mathématiques

CCINP

* * *

Exercice 1.a [Marion L.]

On souhaite montrer dans cet exercice qu'il existe P orthogonal tel que PA = B. Soit A et B deux matrices symétrique réelles telles que $A^2 = B^2$ On admet que pour D une matrice diagonale, $rg(D) = rg(D^2)$. On munit $\mathscr{M}_n(\mathbb{R})$ de son produit scalaire canonique.

- 1. Soit $X \in \mathscr{M}_{n,1}(\mathbb{R})$. Etablir que $(AX)^{\top}AX = (BX)^{\top}BX$.
- 2. On suppose que 0 n'est pas valeur propre de A.

2.a Justifier que A est inversible, et montrer que BA^{-1} est orthogonale.

- 2.b Conclure.
- 3. On suppose que 0 est valeur propre de A d'ordre de multiplicité p.

3.a Montrer que $\operatorname{Im}(A) = \operatorname{Im}(A^2)$, puis que $\operatorname{Im}(A) = \operatorname{Im}(B)$

3.b Montrer que Ker(A) = Ker(B), puis 0 est valeur propre de B d'un ordre de multiplicité que l'on déterminera.

Soit R orthogonale telle que : $R^{\top}AR = \begin{pmatrix} 0 & 0 \\ 0 & \Delta \end{pmatrix}$ et $R^{\top}BR = \begin{pmatrix} 0 & 0 \\ 0 & H \end{pmatrix}$ où $(\Delta, H) \in S_{n-p}(\mathbb{R})^2$ sont inversibles et telles que $\Delta^2 = H^2$.

- 4. Montrer qu'il existe P orthogonale telle que PA = B (on s'aidera de 2.).
- 5. Démontrer la propriété précédemment admise.

Exercice 1.b [Marion L.]

Soit
$$\int_1^{+\infty} \frac{\operatorname{Arctan}(x)}{x^2} dx$$
.

- 1. Etudier la convergence de cette intégrale.
- 2. Calculer cette intégrale.

Exercice 2.a [Hugo D.]

Soit E un sev de dimension $n \ge 2$ muni d'un produit scalaire et $S = \{x \in E \mid ||x|| = 1\}$. Soit u un endormophisme autoadjoint, et $q(x) = \langle x | u(x) \rangle$.

1. On se place dans le cas où n = 2. Soit $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, matrice de u.

Montrer que u est autoadjoint, déterminer son spectre, et montrer que les vecteurs colonnes de A forment une BON de \mathbb{R}^2 .

2.a Montrer que $q(x) = \sum_{i=1}^{n} x_i^2 \lambda_i$, avec $x_1, ..., x_n$ des vecteurs propres associés aux valeurs propres $\lambda_1, ..., \lambda_n$.

- 2.b En déduire que max $\{q(x), x \in S\} = \lambda_n$.
- 3. Soit $E_k = Vect(e_1, ..., e_k)$.
- 3.a Montrer que max $\{q(x), x \in S \cap E_k\} = \lambda_k$.
- 3.b Montrer que $E_k \cap S \neq \emptyset$.
- 4. et 5. [non abordées]

* * *

Exercice 2.b [Hugo D.]

Soit u_n une suite monotone. On pose $M_n = \frac{1}{n} \sum_{k=1}^n u_k$.

Montrer que M_n est une suite monotone.

* * *

Exercice 3.a [Cyrian D.]

Soit
$$x \in \mathbb{R}_+$$
. Soit $n \in \mathbb{N}^*$. On pose $f_n : \begin{cases} \mathbb{R}_+ & \longrightarrow \mathbb{R} \\ x & \longmapsto \frac{1}{n+n^2x} \end{cases}$

On définit
$$f(x) = \sum_{n=1}^{+\infty} f_n(x)$$
 lorsque c'est possible. On pose $g(x) = xf_n(x)$.

- 1. Montrer que f est définie.
- 2.a Montrer que f est monotone sur \mathbb{R}_+^* .
- 2.b Montrer que f est C^0 sur \mathbb{R}_+^* .
- 3.a Montrer que $\lim_{x \to \infty} f(x) = 0$.
- 3.b Montrer que $\sum g_n$ CVN.
- 4. Montrer qu'il existe A > 0, tel que $f(x) \underset{x \to \infty}{\sim} \frac{A}{x}$.
- 5. [non abordée]

Exercice 3.b [Cyrian D.]

Soit
$$A \in \mathcal{M}_n(\mathbb{R}), A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$
.

Soit $\lambda \in \mathbb{R}$.

- 1. Montrer que $rg(A \lambda I_n)$ vaut n 1 ou n.
- $2.\ A$ est-elle diagonalisable ?
- 3. Si λ est valeur propre, quel est son ordre de multiplicité ?

Exercice 4.a [Jules B.]

Soit $P \in \mathbb{R}_n[X]$.

- On qualifie un polynôme P de "positif" lorsque $\forall x \in \mathbb{R}, P(x) \geqslant 0$.
- De la même manière, un polynôme est dit "strictement positif" lorsque $\forall x \in \mathbb{R}, P(x) > 0.$

1. On pose $P(X) = X^2 - 2X + 1$, montrer que P est positif. On pose maintenant Q = P'' + P' + P, montrer que Q est strictement positif.

2. Généralisation

2.a Soit
$$P \in \mathbb{R}_n[X]$$
, on pose $Q = \sum_{k=0}^{2n} P^{(k)}$. Exprimer Q' en fonction de Q et de P .

- 2.b En posant $f:t\mapsto e^{-t}Q(t)$, montrer que Q est strictement positif.
- 3. On pose maintenant $(\cdot|\cdot):(P|Q)\mapsto \sum_{i=0}^{2n}(PQ)^{(k)}(0)$
- 3.a Montrer que $(\cdot|\cdot)$ est un produit scalaire.
- 3.b Déterminer une base orthogonale de $\mathbb{R}_n[X]$ pour ce produit scalaire.
- 4. On pose $u_n = d(X^n, \mathbb{R}_1[X])$. Déterminer u_n .
- 5. En supposant $\ln(n!) = n \ln(n) n + o(n)$. Déterminer la nature de la série de terme général $\left(\frac{1}{u_n^{3/2}}\right)_{n\geq 2}$.

Exercice 4.b [Jules B.]

Une urne contient n boules numérotées de 1 à n.

On tire successivement k boules avec remise.

On note X la variable aléatoire suivant le plus grand numéro ayant été tiré.

Déterminer la loi de X.

Indication: Il faut utiliser et calculer $P(X \leq l)$ avec l à déterminer.

Exercice 5.a [Jean C.]

Soit $P \in \mathbb{R}_n[X]$. On pose $T_n(P) = (nX+1)P + (1-X^2)P'$.

- 1. Pour tout $k \in [0; n]$, calculer $T_n(X^k)$.
- 2. Montrer que T_n est un endomorphisme.
- 3. On note M_2 la matrice de T_2 dans la base canonique. Déterminer M_2 . T_2 est-elle diagonalisable ?
- 4. Soit $\lambda \in \mathbb{R}$ une valeur propre de T_n , et ρ un vecteur propre associé à λ .

On pose
$$\forall x \in [-1; 1], \ g_{\lambda}(x) = \int_0^x \frac{nt - \lambda + 1}{1 - t^2} dt.$$

On pose
$$h: x \mapsto \rho(x)e^{g_{\lambda}(x)}$$
. Montrer que h est constante sur $]-1;1[$.
5. Montrer que :
$$\frac{nt-\lambda+1}{1-t^2} = \frac{-n-\lambda+1}{2} \cdot \frac{1}{1+t} + \frac{n-\lambda+1}{2} \cdot \frac{1}{1-t}.$$
Calculer g_{λ} sans intégrale.

- 6. On suppose λ une valeur propre de T_n , et ρ un vecteur propre associé. Montrer que $\exists (k, \alpha, \beta) \in \mathbb{R}^3$ tel que $\rho = k(X - 1)^{\alpha}(X + 1)^{\beta}$.
- 7. Montrer que T_n est diagonalisable.

Exercice 5.b [Jean C.]

Soit
$$f: \begin{cases} [0;1] & \longrightarrow \mathbb{R} \\ (x,y) & \longmapsto x+x^2-y+y^2 \end{cases}$$

On se place sur]0;1[.

Déterminer les points critiques.

Montrer que f admet un maximum et le déterminer.

BONUS: Extremum sur [-1;1]

Exercice 6.a [Hugo S.]

On définit :
$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, u_n(x) = \frac{n^x}{n!}, S_n(x) = \sum_{k=1}^n u_k(x), \text{ et } \sum_{n=1}^{+\infty} u_n(x).$$

- 1. Justifier l'existence de ${\cal S}(O)$ et donner sa valeur.
- 2.a Montrer la convergence simple de $\sum u_n(x)$ sur \mathbb{R} .
- 2.b Montrer que S est croissante sur $\mathbb R.$
- 3.a Montrer que $\lim_{x \to +\infty} S(x) = +\infty$.
- 3.b Justifier la convergence de $\int_0^1 \frac{e^t 1}{t} dt$, puis montrer l'égalité avec S(-1).
- 4. Soient $n \geqslant 2, k \geqslant 2$. Montrer l'inégalité : $\frac{n!}{k!} \leqslant \left(\frac{1}{n+1}\right)^{k-n}$. Puis en déduire que : $\forall x \in \mathbb{R}, S(x) \leqslant S_{n-1}(x) + \frac{n^n}{n!} \left(1 + \frac{1}{n}\right)$.
- 5. Déterminer $\lim_{x \to +\infty} S(x)$.

Exercice 6.b [Hugo S.]

Soit $E = C^0([0; \frac{\pi}{2}], \mathbb{R}).$

- 1. Montrer que l'application $(\cdot|\cdot):(f,g)\in E\mapsto \int_0^{\frac{\pi}{2}}f(t)g(t)\mathrm{d}t$ définit un produit scalaire sur E.
- 2. Donner la famille orthonormale associée aux fonctions cos et sin (procédé d'orthonormalisation de Schmidt souhaité par l'examinateur).

Exercice 7.a [Cyprien M.]

On pose
$$\forall n \in \mathbb{N}$$
, $a_n = \int_0^{\frac{\pi}{2}} \cos^n(x) \sin(nx) dx$ et $b_n = \int_0^{\frac{\pi}{2}} \cos^n(x) dx$.

1. Justifier l'existence de a_n et de b_n .

2.a Exprimer $\forall x \in \mathbb{R}, |1 + e^{ix} \cos(x)|^2$.

En déduire que $\forall x \in \mathbb{R}, 1 + e^{ix} \cos(x) \neq 0$.

- 2.b Calculer a_0, a_1 , et a_2 .
- 3. Montrer que $\lim_{n\to+\infty} b_n = 0$.
- 4. On pose $\forall n \in \mathbb{N}, S_n = \sum_{k=0}^{n} (-1)^k a_k$.

4.a Montrer que :

$$\forall n \in \mathbb{N}, S_n = \operatorname{Im}\left(\int_0^{\frac{\pi}{2}} \frac{\mathrm{dx}}{1 + e^{ix} \cos(x)}\right) - \operatorname{Im}\left(\int_0^{\frac{\pi}{2}} \frac{(e^{ix} \cos(x))^{n+1}}{1 + e^{ix} \cos(x)}\right).$$

4.b Montrer que $\sum_{n\geq 2} (-1)^n a_n$.

5. [question intermédiaire oubliée], puis montrer que $\forall n \in \mathbb{N}, a_n \geqslant 0$.

* * *

Exercice 7.b [Cyprien M.]

Soit
$$E = \mathbb{R}_n[X], (a, b) \in \mathbb{R}^2, a \neq b, F = \{P \in E \mid P(a) = P(b) = 0\}.$$

- 1. Donner une base de F.
- 2. Montrer l'existence et l'unicité de $f\in \mathcal{L}(E,\mathbb{R})$ telle que f(1)=1, f(X)=0, et $\forall P\in E, f(P)=0.$
- 3. Déterminer la fonction f qui convient.

Exercice 8.a [Leena G.]

Soit
$$F \in C^2(\mathbb{R}^2, \mathbb{R})$$
, $A = (x, y)$, $B = (x', x')$, $f_{A,B} \in C^2(\mathbb{R}, \mathbb{R})$.

$$\forall t \in \mathbb{R}, f_{A,B}(t) = F(tA + (1-t)B) = F(tx + (1-t)x', ty + (1-t)y').$$

- 1. Déterminer une condition normale et suffisante pour que $\varphi \in C^2(\mathbb{R}^2,\mathbb{R})$ soit
- 2. Montrer que $F(x,y) = x^2 + y^2$ est convexe.
- 3. Soit $q_M \in C^2(\mathbb{R}^2, \mathbb{R})$ tel que :

$$q_M(u,v) = \frac{\partial^2 F}{\partial x^2} (M) u^2 + 2uv \frac{\partial^2 F}{\partial x \partial y} (M) + \frac{\partial^2 F}{\partial y^2} (M) v^2.$$

Montrer que $\forall (A, B) \in \mathbb{R}^2, \forall (u, v) \in \mathbb{R}^2, f''_{A,B}(t) = q_{tA+(1-t)B}(A-B).$

- 4. Montrer que F est convexe ssi $M \in \mathbb{R}, \forall (u, v) \in \mathbb{R}^2, q_M(u, v) \geqslant 0...$
- 5. Cas général [..]

* * *

Exercice 8.b [Leena G.]

Soit
$$p \in]0; 1[, X(\Omega) = \{-1; 1\}.$$

On pose $\mathbb{P}(X = 1) = p$, $(X_n)_{n \ge 1}$ une suite de variables aléatoires mutellement indépendantes, et $\forall n \in \mathbb{N}^*, Y_n = \prod_{k=1}^n X_k$.

- 1. Déterminer $\mathbb{E}(Y_n)$ et $\mathbb{V}(Y_n)$ sans déterminer la loi de Y_n .
 - 2. En déduire la loi de Y_n et $\lim_{n\to+\infty} \mathbb{P}(Y_n=1)$.

* * *

Exercice 9.a [Kamel R.]

On se place dans un espace probabilisé. Soit X une variable aléatoire discrète réelle d'espérance nulle.

- 1. Donner le développement en série entière ainsi que le rayon de convergence de On admet la convergence de $\int_0^{+\infty} \frac{\sin(t)}{t}$.
- 2.a Montrer que $\forall n \in \mathbb{N}, 2^n n! \leqslant (2n)!$.
- 2.b En déduire que $\operatorname{ch}(x) \leqslant e^{-\frac{x^2}{2}}$.
- 3. Soit $\lambda \in \mathbb{R}_+$, $g(x) = \operatorname{ch}(\lambda) + x \operatorname{sh}(\lambda) e^{\lambda x}$.

3.a Calculer g(1) et g(-1). Montrer qu'il existe $\alpha \in]-1;1[$ tel que $g'(\alpha)=0$ et le déterminer.

Calculer g''(x), puis en déduire que $e^{\lambda x} \leqslant \operatorname{ch}(\lambda) + x \operatorname{sh}(\lambda)$.

- 3.b Montrer que $\mathbb{E}\left(e^{\lambda X}\right)\leqslant e^{-\frac{\lambda^2}{2}}$.
- 4. Soit Z une variable aléatoire telle que $\mathbb{E}\left(e^{\lambda Z}\right)$ soit finie.

Montrer que $\mathbb{P}(Z \geqslant a) \leqslant e^{-\lambda a} \mathbb{E}(e^{\lambda Z})$.

5. Soit Y une variable aléatoire discrète réelle telle que X et Y soient indépendantes. Montrer que $\mathbb{P}(|X+Y| \geqslant a) \leqslant [?]$.

Exercice 9.b [Kamel R.]

Soit $B \in \mathbb{C}$. On pose $M_B = \begin{pmatrix} 0 & B & B \\ 1 & 0 & B \\ 1 & 1 & 0 \end{pmatrix}$

- 1. Déterminer $\chi_{MB}(X)$ développé.
- 2. Déterminer une condition nécessaire et suffisante sur B pour que ${\cal M}_B$ soit diagonalisable.

Exercice 10.a [Gaspard V.]

On définit, lorsque ce la est possible, $g(x) = \int_0^{+\infty} \frac{\sin(t)}{x+t} \, \mathrm{d}t.$

1. Montrer que pour tout x > 0 et A > 0,

$$\int_0^A \frac{\sin(t)}{x+t} dt = \frac{1}{x} - \frac{\cos(A)}{x+A} - \int_0^A \frac{\cos(t)}{(x+t)^2} dt$$

- 2.a Montrer que l'intégrale $\int_0^{+\infty} \frac{\cos(t)}{(x+t)^2} dt$ converge.
- 2.b Montrer que g est définie sur \mathbb{R}_+^* et que $\forall x > 0, g(x) = \frac{1}{x} \int_0^{+\infty} \frac{\cos(t)}{(x+t)^2} dt$.
- 3. Montrer que g est de classe C^2 sur \mathbb{R}_+^*
- 4. Exprimer g''(x) + g(x) simplement, en fonction de x.
- 5. Montrer que g est continue en 0.

Exercice 10.b [Gaspard V.]

Soit $f \in \mathcal{L}(E)$ tel que $f \neq \tilde{O}_E$ et $f \circ f = \tilde{O}_E$. Soit E un espace vectoriel de dimension 3.

- 1. Déterminer $\dim(\operatorname{Im}(f))$ et $\dim(\operatorname{Ker}(f))$.
- 2. Enoncer le théorème de la base incomplète.

Mines Télécom

* * *

Exercice 1.a [Raphaël F.]

Soit $M \in \mathcal{M}_n(\mathbb{R})$, telle que $M^n = O_n$.

- 1. Montrer que si M est symétrique, alors $M = O_n$.
- 2. Montrer que si $MM^{\top} = M^{\top}M$, alors $M = O_n$.

* *

Exercice 1.b [Raphaël F.]

On pose
$$H(x) = \int_0^{+\infty} \frac{\ln(t)}{x^2 + t^2} dt$$
.

- 1. Donner le domaine de définition de ${\cal H}.$
- 2. Calculer H(1).
- 3. Trouver une expression de H (ndlr, sans l'intégrale).

* * *

Exercice 2.a [Gaspard V.]

Soient X et Y deux variables aléatoires indépendantes telles que :

- $X(\Omega) = Y(\Omega) = \mathbb{N}$.
- $\forall k \in \mathbb{N}, \ \mathbb{P}(X=k) = \mathbb{P}(Y=k) = \frac{1+a^k}{4k!}$
- 1. Déterminer a.
- 2. Déterminer l'espérance de X.
- 3. Déterminer la loi de X + Y.

* * *

Exercice 2.b [Gaspard V.]

Soit E un ev de dimension finie tel que $\dim(E)\geqslant 2$. Soient f et g deux endomorphismes de E vérifiant :

- $f \circ f = g \circ g = Id_E$.
- $\bullet \quad f\circ g+g\circ f=O_{\mathscr{L}(E)}.$
- 1. Montrer que f et g sont des automorphismes diagonalisables.
- 2. Montrer que les deux seules valeurs propres possibles pour f et g appartient à $\{-1;1\}$.

3. Soit
$$u:\begin{cases} \operatorname{Ker}(f-Id_E) & \longrightarrow \operatorname{Ker}(f+Id_E) \\ x & \longmapsto g(x) \end{cases}$$

Montrer que u est un isomorphisme et en déduire que la dimension de E est paire.

4. [non abordée]

* * *

Exercice 2.a [Ilyes B.]

Soit (X_n) une suite d'évènement indépendants suivant une loi de Bernouilli $p \in [0; 1]$.

- 1. On pose $U_k = X_k X_{k+1}$. Déterminer la loi, l'espérance, et la variance des Y_k .
- 2. On pose $S_n = \sum_{k=1}^{N} Y_k$. Déterminer la loi, l'espérance, et la variance de S_n .

3. Montrer que
$$\mathbb{P}(|F_n - p| \ge 0) \xrightarrow{k \to +\infty} 0$$
, où $F_n = \frac{\sum_{k=1}^n S_k}{n}$.

* * *

Exercice 2.b [Ilyes B.]

On pose
$$f: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n+n^2x}$$
.

- 1. Montrer que f est bien définie sur $]0; +\infty[$. Etudier sa continué sur $]0; +\infty[$.
- 2. Montrer que f est C^1 .
- 3. Donner un équivalent de f en 0.

Exercice 3.a [Paul C.]

Soit $X \sim P(\lambda), \lambda > 0$.

- 1. Déterminer l'espérance de $\exp(tX)$, avec t>0. Préciser son existence.
- 2. Soit $n \in \mathbb{N}^*$. Montrer que $\forall t > 0$, $\mathbb{P}(X \geqslant n) \leqslant e^{-tn} \mathbb{E}(\exp(tX))$.
- 3. Montrer que $\sum_{k=n}^{+\infty} \frac{\lambda_k}{k!} \leqslant \left(\frac{\lambda}{n}\right)^n e^n \ (n \in \mathbb{N}^*).$

*

Exercice 3.b [Paul C.]

Soit $x \in \mathbb{R}^n$, $x = (x_1, ..., x_n)$, $(a, b) \in \mathbb{R}^2$.

On pose
$$f(x) = (a-b)^2 + \sum_{i=1}^n (x_i - a)^2 + \sum_{i=1}^n (x_i - b)^2 + \sum_{i \le i, j \le n}^n (x_i - x_j)^2$$
.

Pour tout $x \in \mathbb{R}$, on note $||y|| = \sqrt{\langle y|y \rangle}$.

- 1. Montrer que $\forall x \in \mathbb{R}^n$, $f(x) \geqslant ||x u||^2 + ||x v||^2 \geqslant (||x|| ||u||)^2 + (||x|| ||v||)^2$ où $\begin{cases} u = (a, ..., a) \\ v = (b, ..., b) \end{cases}$
- 2. Montrer que $\exists R > 0 / \forall x \in \mathbb{R}^n$, $||x|| > R \Rightarrow f(x) > f(0)$.
- 3. Déterminer le minimum global de f sur \mathbb{R}^n .

* * *

Exercice 4.a [Tristan D.]

Déterminer les fonctions développables en série entière vérifiant l'équation différentielle

$$x^{2}(1-x)y''(x) - x(1+x)y'(x) + y(x) = 0$$

* * *

Exercice 4.b [Tristan D.]

Soit X et Y deux variables aléatoires à valeurs dans \mathbb{N} .

On donne la loi du couple
$$(X,Y): \forall (i,j) \in \mathbb{N}^2, \mathbb{P}((X,Y)=(i,j))=\frac{1}{e2^{i+1}j!}$$
.

- 1. Déterminer les lois de X et Y.
- 2. Montrer que X+1 suit une loi géométrique et en déduire l'espérance et la variance de X .
- 3. X et Y sont-elles indépendantes ?
- 4. Calculer $\mathbb{P}(X = Y)$.

* *

Exercice 5.a [Lucy D.]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice non nulle et $\rho(M) = \text{Tr}(A)M - \text{Tr}(M)A$.

- 1. Déterminer $\operatorname{Ker}(\rho)$ et le rang de ρ .
- 2. ρ est-elle diagonalisable?

* *

*

Exercice 5.b [Lucy D.]

Soit $\alpha \in \mathbb{R}$, $(f_n)_{n \ge 1}$ une suite de fontions définies par f_n : $\begin{cases} \mathbb{R}^+ & \longrightarrow \mathbb{R} \\ x & \longmapsto n^{\alpha} x e^{-nx} \end{cases}$

- 1. Etudier la convergence uniforme en fonction de $\alpha \in \mathbb{R}.$
- 2. Calculer $\lim_{n\to\infty} \int_0^{+\infty} n^{\alpha} x e^{-nx} dx$.

* *

Exercice 6.a [Marion L.]

Soit X et Y deux variables aléatoires indépendantes et indentiquement distribuées, qui suivent une loi uniforme sur $\{-1,0,1\}$.

Soit
$$A(X, Y) = \begin{pmatrix} X & 1 \\ 1 & Y \end{pmatrix}$$
.

- 1. Déterminer la probabilité que le polynôme caractéristique de A(X,Y) soit scindé à racines simples.
- 2. Déterminer la probabilité que A(X,Y) soit diagonalisable.
- 3. Déterminer la probabilité que A(X,Y) soit symétrique et ?.

*

Exercice 6.b [Marion L.]

Soit $f: \mathbb{R} \to \mathbb{R}$ deux fois dérivables telle que $\forall x \in \mathbb{R}, f''(x) + f(-x) = x$. Soit g telle que $\forall x \in \mathbb{R}, g(x) = f(x) + f(-x)$.

- 1. Démontrer que g est une solution paire de l'équation différentielle y'' + y = 0.
- 2. Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ solutions de l'équation :

$$\forall x \in \mathbb{R}, f''(x) + f(-x) = x$$

×

Exercice 7.a [Matthieu R.]

Soit E un ev de dimension n et $B=(e_1,...,e_n)$ une base othonormale E. Soit f un endomorphisme de E tel que

$$\forall (i,j) \in \llbracket 1;n \rrbracket, i \neq j, \langle e_i | e_j \rangle = 0 \Rightarrow \langle f(e_i) | f(e_j) \rangle = 0$$

- 1. Montrer que $\forall i \in [1; n], f(e_1) + f(e_2)$ et $f(e_1) f(e_i)$ sont orthogonaux.
- 2. En déduire qu'il existe un $k \in \mathbb{R}$ tel que $\forall x \in E, ||f(x)|| = k||x||$.

* * *

Exercice 7.b [Matthieu R.]

On considère la série entière
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{(2n+1)(2n-1)} x^{2n+1}.$$

Trouver la rayon de convergence R, puis pour |x| < R, calculer la somme de cette série.

* * *

Exercice 7.a [Hugo S

Soient
$$n \in \mathbb{N}, n \geqslant 3, M = (m_{i,j})_{(i,j) \in [\![1;n]\!]^2}$$
 avec $(m_{i,j}) = \begin{cases} 1 & \text{si } i = n \\ 1 & \text{si } j = 1 \end{cases}$

$$\begin{cases} 1 & \text{si } i = n \\ 1 & \text{si } i = n \end{cases}$$

Déterminer les valeurs propres de M, et donner un polynômme annulateur de M de

Exercice 7.b [Hugo S.]

Soit
$$F: x \mapsto \int_0^{+\infty} \ln(t) e^{-xt} dt$$
.

- 1. Montrer que F est C^1 sur \mathbb{R}_+^* .
- 2. Donner une équation différentielle vérifiée par ${\cal F}.$

* * *

Exercice 8.a [Cyprien M.]

On pose
$$u_n = \int_n^{2n} \frac{\mathrm{dt}}{1 + t^{\frac{3}{2}}}$$
.

Quelle est la nature de $\sum u_n$?

* * *

Exercice 8.b [Cyprien M.]

Un avion possède n places $(n \ge 2)$.

Les passagers choisissent à tour de rôle leur place de cette façon :

- Le premier est étourdi et choisit une place au hasard.
- Les suivants essayent d'aller à leur place :
- Si elle est libre, ils la prennent.
- Sinon, ils choisissent une place au hasard.

On note X_i la place prise par le passager i-ème passager.

- 1. Quelle est la loi de X_1 ?
- 2. Calculer $\mathbb{P}(X_n = n | X_1 = 1)$ et $\mathbb{P}(X_n = n | X_1 = n)$.
- 3. Calculer $\mathbb{P}(X_i = i | X_1 = k \cap X_k = 1)$ avec $k \in [[2; i-1]]$.
- 4. On note $p_n = \mathbb{P}(X_n = n)$. Montrer que : $\forall k \in [[2; n-1]], \mathbb{P}(X_n = n | X_1 = k) = p_{n-k+1}$. 5. Montrer que : $\mathbb{P}(X_n = n) = \frac{1}{n} \left(1 + \sum_{i=2}^{n-1} p_i \right)$.
 - 6. Montrer que p_n est constante.

Remarque de l'examinateur : p_n ne correspond pas à la probabilité que le n-ième passager soit bien placé, mais bien que celui ci soit bien placé dans un avion à n places.

* * *

Exercice 9.a [Leena G.]

On pose $D = \{(x, y) \in \mathbb{R}^2 / |x| \le 1 \text{ et } |y| \le 2\}.$

On définit
$$f: \begin{cases} D & \longrightarrow \mathbb{R} \\ (x,y) & \mapsto e^{xy} - x \end{cases}$$

- 1. Montrer que f admet un maximum sur ${\cal D}$ et l'étudier.
- 2. [non abordée]

* *

Exercice 9.b [Leena G.]

On pose $\forall n \in \mathbb{N}, (a_0, ..., a_n) \in \mathbb{R}, P \in \mathbb{R}_n[X].$

On définit
$$\phi(P) = \sum_{k=0}^{n} P(a_k) x^k$$
.

- 1. Montrer que ϕ est un endomorphisme de E.
- 2. Déterminer une condition nécessaire et suffisante pour que ϕ soit un automorphisme de E.
- $3. \ [{\rm non\ abord\acute{e}e}]$

* *

Exercice 9.a [Kamel R.]

Soit $E = \mathbb{R}[X]$. On pose $\forall n \in \mathbb{N}, I_n = \int_0^{+\infty} e^{-t} t^n dt = n!$.

- 1. Montrer que $\langle P|Q\rangle = \int_0^{+\infty} e^{-t} P(t)Q(t) dt$ est un produit scalaire.
- 2. Déterminer le projeté orthogonal de X^2 sur $\mathbb{R}_1[X].$
- 3. Déterminer selon a et b, le minimum de $\int_0^{+\infty} e^{-t}(t^2 at + b)^2 dt$.

Exercice 9.b [Kamel R.]

1. Rappeler l'expression trigonmétrique de $\tan(a-b)$ selon $\tan(a)$ et $\tan(b)$.

2. Montrer que la série de terme général $u_n = \operatorname{Arctan}\left(\frac{1}{n^2 + 3n + 3}\right)$ converge.

3. Posons a = Arctan(n+2), et b = Arctan(n+1).

3.a Calculer $\tan(a-b)$.

3.b En déduire a-b.

3.c En déduire la valeur de $\sum_{n=0}^{+\infty} u_n$.

Centrale 1

Exercice 1 [Pierre Q.]

On pose
$$f(x) = \int_0^1 \frac{1}{t} \ln(1 - 2t\cos(x) + t^2)$$
.

1.a Montrer que f est définie sur]0; 2π [.

1.b Montrer que
$$f(2\pi - x) = f(x)$$
.

1.c Montrer que
$$f\left(\pi - \frac{x}{2}\right) + f\left(\frac{x}{2}\right) = \frac{1}{2}f(x)$$
.

- 2. Montrer que f est C^1 sur $]0; 2\pi[$, calculer f' puis f.
- 3. En déduire le calcul ... (de l'intégrale ci-dessus ?).

Exercice 2 [Guillaume V.]

Soit f une fonction lipschitzienne de $\mathbb R$ dans $\mathbb R$

On pose:
$$K: \begin{cases} \mathbb{R} \times]0; +\infty[& \longrightarrow \mathbb{R} \\ (x,t) & \longmapsto \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}} \\ \mathbb{R} \times]0; +\infty[& \longrightarrow \mathbb{R} \\ u: \begin{cases} \mathbb{R} \times]0; +\infty[& \longrightarrow \mathbb{R} \\ (x,t) & \longmapsto \int_{-\infty}^{+\infty} K(x-y,t) f(y) dy \end{cases}$$

- 1. Montrer que $\frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial x^2} = 0$.
- 2. Montrer que $\lim_{t\to 0} u(x,t) = f(x)$ (on admet l'intégrale de Gauss).

Exercice 3 [Emilie B.]

Soit
$$f(x) = \int_0^{+\infty} \frac{e^{-xt}}{\sqrt{1+t}} dt$$
.

- 1. Donner le domaine de définition D_f de f, ainsi que les limites de f en ses bornes.
- 2. Montrer que f est de classe C^1 et établir une équation différentielle sur f.
 - 3. On donne $\int_0^{+\infty} e^{-y^2} dy = \frac{\sqrt{\pi}}{2}$. Déterminer un équivalent de f en 0.

Exercice 4 [Jean C.]

Soient
$$a = (a_n), b = (b_n)$$
 et $c = (c_n)$.

On définit l'opérateur * produit de Cauchy, tel que c=a*b (ie. $c_n=\sum_{k=0}^n a_k b_{n-k}$)

1. On définit
$$(a_n)_{n\in\mathbb{N}^*}$$
 telle que $a_0=1$ et $\forall n\geqslant 1, a_n=\frac{(-1)^n}{\sqrt{n}}.$
Est-ce que $a*a$ converge ?

2. On suppose que (a_n) converge vers l, et que $\sum b_n$ CVA.

Montrer que a*b converge vers $l \cdot \sum_{n=0}^{+\infty} b_n$.

3.
$$(a_n)$$
 est définie comme à la question 1.
Montrer que $\sum_{i=1}^n c_i = A \sum_{i=1}^n b_i - \sum_{i=1}^n b_{n-i} \cdot \sum_{j=n+1}^{+\infty} a_j$

4. On pose A, B et C les sommes respectives des séries de terme général a_n , b_n et

En utilisant les questions précédentes, montrer que C = AB si $\sum a_n$ et $\sum b_n$ CVA.

Exercice 5 [Florian Fe.]

On définit $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + \frac{2}{n+2} u_n$, avec $u_0 = u_1 = 1$.

On définit également, lorsque c'est possible, $S: x \mapsto \sum_{n=0}^{+\infty} u_n x^n$.

1. Montrer que $\forall n \in \mathbb{N}^*$, $1 \leqslant u_n \leqslant n^2$.

En déduire le rayon de convergence de $\sum u_n x^n$

2. Exprimer S à l'aide de fonctions usuelles.

Exercice 6 [Paul C.]

On pose $\forall x \in]-1; +\infty[, \theta(x) = 2\int_0^1 \frac{s}{1+xs} ds \text{ et } \Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$

- 1. Dresser le tableau de variation de θ et déterminer son expression en fonction de
- 2. Poser le changement de variable $u = \frac{t-x}{\sqrt{x}}$ et l'effectuer dans l'expression de Γ .

Déterminer ainsi un équivalent de $\Gamma(x+1)$ en $+\infty$.

Exercice 7.a - Navale [Paul C.]

On pose $f: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n+n^2x}$ (ndlr, exercice très similaire à Mines-Télécom 2.b).

- 1. Montrer que f est définie et C^0 sur \mathbb{R}_+^* .
- 2. Montrer que f est de classe C^1 sur \mathbb{R}_+^*
- 3. Donner un équivalent de f en $+\infty$ et en 1.

Exercice 7.b - Navale [Paul C.]

On définit la variable aléatoire X qui suit une loi de Poisson de paramètre $\lambda > 0$. Soit Y la variable aléatoire définit par : $Y = \begin{cases} \frac{X}{2} & \text{si } X \text{ pair} \\ 0 & \text{si } X \text{ impair} \end{cases}$

1. Trouver la loi, l'espérance, et la variance de ${\cal Y}.$

Exercice 8 [Ilian M.]

Soit $n \in \mathbb{N}^*$ et $M \in \mathscr{M}_n(\mathbb{R})$

- 1. Montrer que la matrice $M^{\top}M$ est diagonalisable et que son spectre est inclus dans \mathbb{R}_+^* .
- 2. Montrer qu'il existe deux matrices orthogonales $U,V\in O_n(\mathbb{R})$ telles que la matrice UMV soit diagonale.
- 3. On considère la matrice réelle suivante : $N=\begin{pmatrix}0&1&1\\-1&0&1\\-1&-1&0\end{pmatrix}$. La propriété de la question 2. est-elle vérifiée pour cette matrice N?

4. La propriété de la question 2. est-elle vérifiée pour toute matrice de $\mathcal{M}_n(\mathbb{R})$?

Exercice 9 [Oscar P.]

Soit $p \in \mathbb{N}^*$, E un ev de dimension finie, f un endormorphisme diagonalisable et $\lambda_1, ..., \lambda_p$ ses valeurs propres.

On pose
$$L_i = \prod_{\substack{i=1\\i\neq j}}^p \frac{X - \lambda_i}{\lambda_i - \lambda_j}$$
.

- 1. Calculer $\sum_{i=1}^{n} \lambda_i^k L_i$ pour tout $k \in [0, p-1]$.
- 2. Montrer que $L_i(f)$ est un projecteur, puis déterminer les caractéristiques de ce

Exercice 10 [Cyprien M.]

On a : $\forall n \in \mathbb{N}^*$, n = 2q + 1 et $k \in [1; n - 1]$.

On note $A_0, ..., A_k$ les points d'affixes respestifs $z_0, ..., z_k$ tel que $z_k = e^{\frac{2ik\pi}{n}}$. On note aussi W_n la variable aléatoire suivant une loi uniforme sur $[\![1,n-1]\!]$. Enfin on note B_k le point d'intersection entre la droite (A_0,A_k) et celle d'équation x=-1.

- 1. Montrer que B_k a pour coordonnée : $b_k = 2 \cot \left(\frac{k\pi}{n}\right)$.
- 2. Calculer $\mathbb{E}(z_k)$ avec $z_k = \cot \left(\frac{W_n \pi}{n}\right)$.
 - 3. Donner un équivalent de $\mathbb{E}(|z_k|)$.

Centrale Info

* *

Exercice 1 [Pierre Q.]

Soit
$$E = C^0([-1;1], \mathbb{R})$$
. On pose $\langle f|g \rangle = \int_0^1 (1-t^2) f(t)g(t)dt$.

1. Montrer que $\langle f|g\rangle$ est un produit scalaire sur E.

Définissons E_{pair} (resp. E_{impair}) l'ensemble des fonctions de E paires (resp. impaires).

2.a Montrer que $E = E_{pair} \oplus E_{impair}$.

2.b En déduire E_{pair}^{\perp} et E_{impair}^{\perp} .

On définit la suite de polynôme $P_0=1,\ P_1=X,$ et $P_n(X)=(X-\lambda_n)P_{n-1}+\mu_nP_{n-2}$

avec
$$\lambda_n = \frac{\langle X P_{n-1} | P_n \rangle}{\|P_{n-1}\|}$$
 et $\mu_n = -\frac{\|P_{n-1}\|^2}{\|P_{n-2}\|^2}$.

On dipose de $\operatorname{pn}(\mathbf{p},\ \mathbf{q})$ qui renvoit le polynôme $R=(X-\lambda)P+\mu Q,$ avec λ et μ définis précédemment.

3.a Créer une fonction liste(n) qui donne les polynômes $(P_0, ..., P_n)$.

3.b On dispose d'une fonction affiche(P).

Afficher les polynômes $(P_0, ..., P_{10})$. Conjecture?

3.c Créer une fonction qui calcule $\langle P_i|P_j\rangle$ pour $(i,j)\in [\![0;5]\!]^2$. Conjecture ?

4.a Montrer le conjectures de 2.

4.b Montrer que $\langle P_n | P_{n-1} \rangle = 0$ et $||P_n||^2 = \langle X P_{n-1} | P_n \rangle$.

4.c Montrer que $\langle P_n|P_{n-2}\rangle=0$.

Exercice 2 [Guillaume V.]

Soit E un ev de polynômes dans \mathbb{R} .

On pose
$$L_0 = 1$$
, $L_1 = X$, et $(n+2)L_{n+2} = (2n+3)XL_{n+1} - (n+1)L_n$.

1. Montrer que
$$\langle P,Q \rangle = \int_{-1}^{1} P(x)Q(x) dx$$
 définit un produit scalaire sur E.

2. Calculer L_2 , L_3 .

3. Déterminer le degré des (L_n) ainsi que leur parité.

4.a Créer une fonction $L(\mathbf{n}, \mathbf{x})$ renvoyant la valeur de L_n évalué en x.

4.b On dispose de ps(i, j) qui renvoie $\langle L_i, L_j \rangle$.

Donner la matrice $A \in \mathcal{M}_7(\mathbb{R})$ telle que $[A]_{i,j} = \langle \sqrt{2i+1}L_i, \sqrt{2j+1}L_j \rangle$.

Conjecturer $\langle L_i, L_j \rangle$ pour i = j et $i \neq j$.

4.c Afficher les $(L_k)_{k \in \llbracket 0, 6 \rrbracket}$ sur [-1; 1]. Conjecturer [quelque chose] sur les racines.

On admet que $\forall n \in \mathbb{N}, L_n(X) = \frac{1}{2^n n!} \frac{d^n}{dX^n} \left((X^2 - 1)^n \right).$

5.a Montrer la conjecture pour $i \neq j$.

5.b Montrer la conjecture pour i = j.

5.c Montrer la conjecture sur les racines.

5.d [quelque chose sur $L_n(0)$].

Exercice 3 [Jean C.]

Soit $A \in SO_4(\mathbb{R})$ à valeurs propres complexes.

- 1. Rappeler la définition de $SO_n(\mathbb{R}).$ Expliciter $SO_2(\mathbb{R})$
- 2. Montrer que A admet une valeur propre complexe.

On pose $X \in \mathscr{M}_n(\mathbb{C})$ non nulle telle que $X = X_1 + iX_2$.

Soit $Q \in O_4(\mathbb{R})$ tel que les premières colonnes forment une base de F.

3. Calculez avec python $Q^{\top}AQ$.

Remarque : toutes les matrices étaient déjà définies dans python.

On pose $F = \text{Vect}(X_1, X_2)$.

4. Montrer que F est un plan stable par A.

On note $u \in \mathcal{L}(\mathbb{R}^4)$ l'endomorphisme associé à A.

- 5. Que peut-on dire de $u(F^\perp)$?
- 6. Montrer que $u_F \in SO(F)$.
- 7. Montrer qu'il existe $Q \in O_n(\mathbb{R})$ tel que $Q^\top AQ$ soit diagonale par bloc
- 8. Généraliser le résultat pour $SO_4(\mathbb{R})$ sans contrainte sur son spectre.

Exercice 4 [Paul C.]

Soit $A \in \mathcal{M}_n(\mathcal{R})$. On dit que :

- A vérifie (P) si : $\exists (S,N) \in \mathcal{M}_n(\mathbb{K})^2, r \geqslant 1 \ / \ S^\top = S, N^r = 0$ et NS = SN
- A est p-symétrique si : Cp(A) = 0, où $Cp(A) = \sum_{k=0}^{r} (-1)^k \binom{p}{k} (A^\top)^k A^{p-k}$

On dispose des fonctions suivantes:

- \bullet $\mathtt{gen(A)}$: Génère une matrice A vérifiant P dont les coefficients sont composées de 1 et de -1
- \bullet $\texttt{binom}(p,\ k)$: Calcul le coefficient binomial
- test(A): test si la matrice A est nulle ou non

1. Soit
$$X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in \mathscr{M}_n(\mathbb{C}).$$
 Montrer que $\overline{X}^\top X \in \mathbb{R}^+$, puis montrer que $\overline{AX} = A\overline{X}$.

2. Soit $(\lambda,\mu)\in \mathrm{Sp}_{\mathbb{C}}(A)$, et (X,Y) des vecteurs propres respectivement associés à λ et μ . Calculer $Y^{\top}Cp(A)X$.

Dans la suite, on suppose $p \geqslant 1$ et A p-symétrique.

- 3. Montrer que les valeurs propres de A sont réelles.
- 4. Soit $(\lambda, \mu) \in \mathrm{Sp}_{\mathbb{R}}(A)$, distinctes, montrer que $E_{\lambda}(A)$ et $E_{\mu}(A)$ sont orthogonaux. En déduire que les matrices p-symétriques sont diagonalisables.
- 5. Ecrire la fonction $\mathtt{psym}(\mathtt{A})$ qui renvoie s'il existe $p \in [\![1;2n]\!]$ tel que A soit

Tester pour $n \in [\![2,20]\!]$ et générer A par la fonction gen. Que peut-on conjecturer ?

- 6. Ecrire la fonction combi (p, q, m) où $(p,q,m) \in \mathbb{N}^3$ tels que n+q < p renvoyant la somme suivante : $\sum_{k=m}^p (-1)^k \binom{p}{k} \binom{k}{m} \binom{p-q}{k}.$
- 7. [non traitée]

Mines Ponts

Exercice 1.a [Armel D.]

Soit
$$a \in \mathbb{R}^*$$
. On pose $M = \begin{pmatrix} 0 & a & a^2 \\ 1/a & 0 & a \\ 1/a^2 & 1/a & 0 \end{pmatrix}$.

- 1. Calculer M^2 . En déduire que M est inversible, et déterminer M^{-1} .
- 2. Sans utiliser le polynôme caractéristique, montrer que M est diagonalisable.

Déterminer ses valeurs propres et leur ordre de multiplicité.

3. Calculer M^n .

Indication: on utilisera le théorème de la division euclidienne.

4. Soit
$$N \in \mathbb{N}^*$$
. On pose $S_N = \sum_{n=0}^N \frac{M^n}{n!}$.

Montrer que $(S_N)_{N\in\mathbb{N}}$ converge vers une limite L finie et déterminer cette limite.

Exercice 1.b [Armel D.]

Soit
$$x \in \mathbb{R}$$
. On pose $F(x) = \int_{-\infty}^{+\infty} \frac{dt}{(1+t^2)(1+ixt)}$

- 1. Montrer que F est bien définie et continue.
- 2. Pour $x \in \mathbb{R}$, montrer que $F(x) \in \mathbb{R}$.
- 3. Déterminer une expression de F sans symbole d'intégrale.

Exercice 2.a [Guillaume P.]

Soit $\alpha \in \mathbb{R}$.

1. Déterminer le développement asymptotique à deux termes de précision près de $\left(1+\frac{\alpha}{n}\right)^n.$

On considère $E_n=\{1,...,n\}=[\![1;n]\!]$. On considère également $\Omega_n=E_n^{E_n}$ (l'ensemble des applications de E_n dans E_n) muni

On introduit $\forall k \in E_n$, la va $X_{k,n}: \Omega_n \to \{0,1\}$, indicatrice de l'évènement $\{g \in \Omega_n; k \in \Omega_n\}$

- $g(E_n)$. On introduit $Y_n: \Omega_n \to \mathbb{N}$ la va qui à tout g de Ω_n associe $|g(E_n)|$ (cardinal de $g(E_n)$).
 - 2. Déterminer la loi de $X_{k,n}$.
- 3. Déterminer $\mathbb{E}(Y_n)$.
- 4. Soit $(k,l) \in E_n^2$. Déterminer la loi du couple $(X_{k,n}, X_{l,n})$.

En déduire : $COV(X_{k,n}, X_{l,n}) = (1 - \frac{2}{n})^n + ... (1 + \frac{...}{n})^{2n}$.

- 5. Déterminer $\mathbb{V}(Y_n)$.
- 6. Déterminer un équivalent de $\mathbb{V}(Y_n)$.

* * *

Exercice 2.b [Guillaume P.]

Soit $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$.

On suppose que $\sum \frac{f^{(n)}}{n!}$ CVU sur tout segment de \mathbb{R} .

Déterminer une expression de la somme de cette série.

* * *

Exercice 3.a [Robin K.]

Soit $f: [1; +\infty[\to \mathbb{R}, C^0 \text{ et positive, et } (a, b) \in \mathbb{R}_+.$

On suppose
$$\forall x \ge 1, f(x) \le a \int_1^x \frac{f(t)}{t^2} dt + b$$
.

Montrer que $f(x) \leqslant be^{a-\frac{a}{x}}$.

)

Exercice 3.b [Robin K.]

Soit E un K-ev de dimension finie, $u \in \mathcal{L}(E)$.

1. Montrer que $\operatorname{Ker}(u) = \operatorname{Ker}(u^2) \iff \operatorname{Im}(u) = \operatorname{Im}(u^2) \iff E = \operatorname{Ker}(u) \oplus \operatorname{Im}(u)$.

2. Donner des exemples d'endormophismes qui vérifient ces conditions.

* *

Exercice 4.a [Guillaume V.]

Soit $E = \{ f \in C^1([0,1], \mathbb{R}) \mid f(0) = 0, f(1) = 1 \}.$

Déterminer
$$\inf_{f \in E} \left\{ \int_0^1 |f - f'| \right\}.$$

>

Exercice 4.b [Guillaume V.]

Soit $E = \mathbb{R}_3[X]$.

On définit le produit scalaire $\forall (P,Q) \in E$:

$$\langle P|Q\rangle = \int_{-1}^{1} P(t)Q(t)dt$$

1. Déterminer une base orthonormale de E à l'aide du procédé d'orthonormalisation de Schmidt.

2. Soit $P \in E$ tel que $\int_{-1}^{1} P^2(t) dt = 1$. Montrer que : $\sup_{x \in [-1;1]} P(x) \leqslant 2\sqrt{2}$.

3? [non abordée]

X-ESPCI

Exercice 1 [Ilian M.]

On pose
$$\gamma(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
 et on donne $\int_{\mathbb{R}} \gamma(x) dx = 1$.

On pose aussi $(X_1,...,X_n)$ des variables aléatoires mutuellement indépendantes et telles que $\forall i \in [\![1;n]\!]$, $\mathbb{P}(X_i=1)=\mathbb{P}(X_i=-1)=\frac{1}{2}$.

On exprime alors
$$S_n = \frac{\sum_{k=1}^n \lambda_k}{\sqrt{n}}$$
.

Montrer alors que $\forall Q \in \mathbb{R}[X], \mathbb{E}(Q(S_n)) = \int_{\mathbb{R}} Q(x) \gamma(x) dx$.

Indication: s'intéresser aux monômes de degrés pairs et impairs.

* *

Exercice 2 [Pierre Q.]

Soit P de degré $d,\,P\in\mathbb{Z}[X].$ On note $\lambda_1,...,\lambda_d$ ses racines complexes.

On suppose $\forall k \in \llbracket 1; d \rrbracket, |\lambda_k| \leqslant 1$. On note $f(n) = \sum_{k=1}^d \lambda_k^n \quad (n \in \mathbb{N})$.

- 1. Montrer que f est à valeurs entières.
- 2. Montrer que $\exists p \in \mathbb{N}^*, \exists n_0 \in \mathbb{N} \ / \ \forall n \geqslant n_0, f(p+n) = f(p).$
- 3. Montrer que les λ_k sont soit nuls, soit racines de l'unité.

ENS

**

Exercice 1.a [Ilian M.]

Soit $(a_n)_{n\in\mathbb{N}}$ définie par $a_0 = \frac{\pi}{2}$ et $a_{n+1} = \sin(a_n)$.

Nature de $\sum a_n^2$?

+

Exercice 1.b [Ilian M.]

Soit $(A, B, C) \in (M_2(\mathbb{R}))^3$.

On définit [A, B] = AB - BA (ndl
r, crochet de Lie).

Montrer que $\left[[A,B]^2\,,C\right] = 0$ avec deux méthodes différentes.

* * *

Exercice 1.c [Ilian M.]

Soit $A \in GL_n(\mathbb{R})$.

Montrer qu'il existe $P \in \mathbb{R}_n[X]$ tel que $A^{-1} = P(A)$.

 $\begin{array}{c} \text{Physique} \\ \text{CCINP} \\ {}^{\star\star\star} \end{array}$

* *

ENS

* * *

Exercice 1 [Ilian M.]

On considère une masse M enroulée indéfiniment autour d'un cylindre, ce dernier pouvant tourner autour d'un axe horizontal sur lequel il est fixé, avec un pendule de masse m accroché sur une surface latérale.

Etudier le mouvement et les positions d'équilibre du système.