Avionics Reference Document

David Knight

 $March\ 26,\ 2020$

Contents

List of Tables

List of Figures

1 Introduction

The Avionics Reference Document (ARD) is a high level document describing what the onboard avionics system will do. The onboard avionics system is referred to as The Helix System. It consists of multiple circuit boards called Extention Boards which can read data from sensors through the rocket or interact with actuators throughout the rocket. These Extention boards are all connected together in a ring topology which allows new Extention Boards to be added or removed from the system without impacting performace of the rest of the system. These Extention Boards all connect with a central board called the Onboard Computer (OBC) which collects data, makes decisions based on data, communicates with ground support systems, and records data.

1.1 Purpose

The purpose of this document is to outline for non avionics members a unified reference for how the onbaord computer will behave and why. Primary focus will be given to the different states that the rocket can be in (ie dry systems, leak check), what actions will be performed in each state, and what causes the transition between different states. This will be documented through extensive use of state machine diagrams.

Old version:

The purpose of this document is to act as a reference for how the OBC will behave. This includes:

- 1. How the system will react to failures such as disconnected sensors and over-pressurization events.
- 2. The states the rocket can be in including dry systems, leak check, launch, or even a failure state.
- 3. The ranges and accuracy of sensors in the system.
- 4. The rate at which sensors will be measured at.
- 5. System architecture and how data flows throughout the system.

1.2 Scope

This document includes:

- 1. How the system will react to failures such as disconnected sensors and over-pressurization events.
- 2. The states the rocket can be in including dry systems, leak check, launch, or even a failure state.
- 3. The ranges and accuracy of sensors in the system.
- 4. The rate at which sensors will be measured at.
- 5. System architecture and how data flows throughout the system.

Old version:

This document should be viewed from the perspective of a non-avionics member who wants to know what the onboard avionics system will do. This means outlining that steps between turning the system on to launch and recovery of the rocket. Failure modes and how to deal with errors are outlined in this document. The ARD also contains information regarding hardware that will be onboard the rocket, it's specifications, and links to the relevant datasheets. Where appropriate more detailed technical information is included as reference material to the engineers designing the system.

1.3 Definitions and Acronyms

2 Hardware

2.1 Pressure Transducers

Model Number	MLH05KPSB01G
Serial Number	F8CEA38AA5
Usage	Helium Pressure PT
Datasheet Link	Link
Sensing Units	PSIG
Pressure Port Type	1/4-18 NPT (ANSI B1.20.1)
Accuracy	$\pm 0.25\%$
Pressure Range	0PSIG to 5000PSIG
Sample Rate	50Hz
Output Voltage Range	1.0 to 5.0 Volts
Input Voltage Range	8.0 to 30.0 Volts
Temperature Range	-40° to +125° Celcius

Model Number	ASUHGP1K55A1AA1A20000
Serial Number	E5C0ADEA35
Usage	LOX Pressure PT
Datasheet Link	Link
Sensing Units	PSIG
Pressure Port Type	3/8 Inch 24 UNF Dash 3 (SAE J514)
Accuracy	$\pm 0.25\%$
Pressure Range	0PSIG to 1500PSIG
Sample Rate	50Hz
Output Voltage Range	0.5 to 4.5 Volts
Input Voltage Range	8.0 to 16.0 Volts
Temperature Range	-40° to +150° Celcius

2.2 Thermocouples

Model Number	240-080
Serial Number	BB510C3CE3
Usage	Upper Air Frame Temperature
Datasheet Link	Link
Type	K
Sensing Units	Celcius
Sample Rate	10Hz
Temperature Range	-73°to +150°Celcius

Model Number	240-080
Serial Number	BB51033CE3
Usage	Unused
Datasheet Link	Link
Type	K
Sensing Units	Celcius
Sample Rate	10Hz
Temperature Range	-73°to +150°Celcius

2.3 RTDs

Model Number	1PT100K2515
Serial Number	8105874731
Usage	LOX Tank Temperature
Datasheet Link	Link
Type	PT100
Sensing Units	Celcius
Sample Rate	10Hz
Temperature Range	-200° to +150° Celcius

2.4 Hall Effect Sensors

Model Number	TCS40DPR
Serial Number	6D65BA9367
Usage	LOX Fill Valve Hall Effect
Datasheet Link	Link
Sensing Units	mT
Output Type	Push-Pull
Trip	$\pm 4.4 \mathrm{mT}$
Release	$\pm 0.9 \mathrm{mT}$
Input Voltage Range	8.0 to 16.0 Volts
Sample Rate	10Hz
Temperature Range	-40° to +150° Celcius

3 States

3.1 STATE LEAK CHECK

3.1.1 Helium Pressure PT Data

Return values

STATE_LEAK_CHECK	Continue in the leak check state.		
STATE_IDLE Finished leak check so return to the idle state.			
STATE_GROUND_SAFE	Return to the ground safe state because the helium tank pressure is overpressurized.		

When Helium Pressure PT Data is received the CANID will be printed to stdout and the data will be printed as a string to stdout. The current time and data with milliseconds is then printed to stdout. The received can_frame is added to the eventTimer so that the received frame will be received again in 1 second. The system then continues on in the leak check state.

4 EEPROM Layouts

4.1 Layout Version IDs

VersionID	Version Name
1	Sensor Board Layout Rev 1
2	Power Distro Board Layout Rev 1

4.2 Sensor Board Layout Rev 1

		Sensor Bo	ard Layout Rev 1 Page #0		
Byte #	Usage	Byte #	Usage	Byte #	Usage
0 1 2 3	Layout Rev Number	48 49 50 51	PT0 Min Pressure	96 97 98 99	PT0 Biquad Filter a2
4 5 6 7	EEPROM Layout Compile Time	52 53 54 55	PT0 Calibration Polyfit p1	100 101 102 103	PT1 Data CanID
8 9 10 11	Board Status	56 57 58 59	PT0 Calibration Polyfit p2	104 105 106 107	PT1 Current CanID
12 13 14 15	Board VIN Voltage CanID	60 61 62 63	PT0 Calibration Polyfit p3	108 109 110 111	PT1 Data Frequency
16 17 18 19	Board VIN Current CanID	64 65 66 67	PT0 Calibration Polyfit p4	112 113 114 115	PT1 Sample Rate
20 21 22 23	PT0 Data CanID	68 69 70 71	PT0 Calibration Polyfit p5	116 117 118 119	PT1 Max Output Voltage
24 25 26 27	PT0 Current CanID	72 73 74 75	PT0 Calibration Polyfit p6	120 121 122 123	PT1 Min Output Voltage
28 29 30 31	PT0 Data Frequency	76 77 78 79	PT0 Calibration Polyfit p7	124 125 126 127	PT1 Max Pressure
32 33 34 35	PT0 Sample Rate	80 81 82 83	PT0 Biquad Filter		
36 37 38 39	PT0 Max Output Voltage	84 85 86 87	PT0 Biquad Filter b1		
40 41 42 43	PT0 Min Output Voltage	88 89 90 91	PT0 Biquad Filter b2		
44 45 46 47	PT0 Max Pressure	92 93 94 95	PT0 Biquad Filter a1		

		Sensor Bo	ard Layout Rev 1 Page #1		
Byte #	Usage	Byte #	Usage	Byte #	Usage
128 129 130 131	PT1 Min Pressure	176 177 178 179	PT1 Biquad Filter a2	224 225 226 227	PT2 Calibration Polyfit p4
132 133 134 135	PT1 Calibration Polyfit p1	180 181 182 183	PT2 Data CanID	228 229 230 231	PT2 Calibration Polyfit p5
136 137 138 139	PT1 Calibration Polyfit p2	184 185 186 187	PT2 Current CanID	232 233 234 235	PT2 Calibration Polyfit p6
140 141 142 143	PT1 Calibration Polyfit p3	188 189 190 191	PT2 Data Frequency	236 237 238 239	PT2 Calibration Polyfit p7
144 145 146 147	PT1 Calibration Polyfit p4	192 193 194 195	PT2 Sample Rate	240 241 242 243	PT2 Biquad Filter b0
148 149 150 151	PT1 Calibration Polyfit p5	196 197 198 199	PT2 Max Output Voltage	244 245 246 247	PT2 Biquad Filter b1
152 153 154 155	PT1 Calibration Polyfit p6	200 201 202 203	PT2 Min Output Voltage	248 249 250 251	PT2 Biquad Filter b2
156 157 158 159	PT1 Calibration Polyfit p7	204 205 206 207	PT2 Max Pressure	252 253 254 255	PT2 Biquad Filter a1
160 161 162 163	PT1 Biquad Filter b0	208 209 210 211	PT2 Min Pressure		
164 165 166 167	PT1 Biquad Filter b1	212 213 214 215	PT2 Calibration Polyfit p1		
168 169 170 171	PT1 Biquad Filter b2	216 217 218 219	PT2 Calibration Polyfit p2		
172 173 174 175	PT1 Biquad Filter a1	220 221 222 223	PT2 Calibration Polyfit p3		

		Sensor Bo	ard Layout Rev 1 Page #2		
Byte #	Usage	Byte #	Usage	Byte #	Usage
256 257 258 259	PT2 Biquad Filter a2	304 305 306 307	HE2 Sample Rate	352 353 354 355	TC1 Biquad Filter
260 261 262 263	HE0 State CanID	308 309 310 311	TC0 Data CanID	356 357 358 359	TC1 Biquad Filter b1
264 265 266 267	HE0 Current CanID	312 313 314 315	TC0 Data Frequency	360 361 362 363	TC1 Biquad Filter b2
268 269 270 271	HE0 State Data Frequency	316 317 318 319	TC0 Sample Rate	364 365 366 367	TC1 Biquad Filter a1
272 273 274 275	HE0 Sample Rate	320 321 322 323	TC0 Biquad Filter	368 369 370 371	TC1 Biquad Filter a2
276 277 278 279	HE1 State CanID	324 325 326 327	TC0 Biquad Filter b1	372 373 374 375	RTD0 Data CanID
280 281 282 283	HE1 Current CanID	328 329 330 331	TC0 Biquad Filter	376 377 378 379	RTD0 Data Frequency
284 285 286 287	HE1 State Data Frequency	332 333 334 335	TC0 Biquad Filter	380 381 382 383	RTD0 Sample Rate
288 289 290 291	HE1 Sample Rate	336 337 338 339	TC0 Biquad Filter a2		
292 293 294 295	HE2 State CanID	340 341 342 343	TC1 Data CanID		
296 297 298 299	HE2 Current CanID	344 345 346 347	TC1 Data Frequency		
300 301 302 303	HE2 State Data Frequency	348 349 350 351	TC1 Sample Rate		

		Sensor Bo	ard Layout Rev 1 Page #3		
Byte #	Usage	Byte #	Usage	Byte #	Usage
384		432		480	
385	RTD0 Biquad Filter	433	RTD1 Biquad Filter	481	
386	b0	434	a2	482	
387		435		483	
388		436		484	
389	RTD0 Biquad Filter	437		485	
390	b1	438		486	
391		439		487	
392		440		488	
393	RTD0 Biquad Filter	441		489	
394	b2	442		490	
395		443		491	
396		H 444		492	
397	RTD0 Biquad Filter	445		493	
398	al	446		494	
399		447		495	
400		448		496	
401	RTD0 Biquad Filter	449		497	
402	a2	450		498	
403		451		499	
404		$\frac{1}{452}$		500	
405		453		501	
406	RTD1 Data CanID	454		502	
407		455		503	
408		456		504	
409	RTD1 Data	457		505	
410	Frequency	458		506	
411	Frequency	459		507	
412		460		508	
413		461		509	
414	RTD1 Sample Rate	462		510	
415		463		511	
416		464		011	
417	RTD1 Biquad Filter	465			
418	b0	466			
419	50	467			
420		468			
420	RTD1 Biquad Filter	469			
$421 \\ 422$	b1	470			
423	D1	471			
424		$+$ $\frac{471}{472}$			
$\frac{424}{425}$	RTD1 Biquad Filter	473			
425	b2	474			
$\frac{426}{427}$	D2	11			
		475			
428 429	RTD1 Biquad Filter	476			
429	a1	477 478			
	aı				
431		479		11	

${\bf 4.3} \quad {\bf Power~Distro~Board~Layout~Rev~1}$

	Power Distro Board Layout Rev 1 Page #0							
Byte #	Usage	Byte #	Usage		Byte #	Usage		
0		48			96			
1	Board Status	49			97			
2	Board Status	50			98			
3		51			99			
4		52			100			
5	Offboard Battery	53			101			
6	Voltage CANID	54			102			
7		55			103			
8		56			104			
9	Offboard Battery	57			105			
10	Current CANID	58			106			
11		59			107			
12		60			108			
13	Onboard Battery	61			109			
14	Voltage CANID	62			110			
15		63			111			
16		64			112			
17	Onboard Battery	65			113			
18	Current CANID	66			114			
19		67			115			
20		68			116			
21	Helix Loop CW	69			117			
22	Voltage CANID	70			118			
23		71			119			
24		72			120			
25	Helix Loop CW	73			121			
26	Current CANID	74			122			
27		<u> </u>			123			
28		76			124			
29	Helix Loop CCW	77			125			
30	Voltage CANID	78			126			
31		<u> </u>			127			
32		80						
33	Helix Loop CCW	81						
34	Current CANID	82						
35		83						
36		84						
37		85						
38		86						
39		87						
40		88						
41		89						
42		90						
43		91						
44		92 93						
45								
46		94						
47		95						

5 CAN IDs

5.1 CAN Bus Load Calculations

The current CAN Bus config requires between 20532 bits and 24636 bits to be sent on the CAN bus every second.

Frequency	Best Case	Worst Case
100KHz	21.0%	25.0%
250KHz	8.0%	10.0%
500KHz	4.0%	5.0%
1MHz	2.0%	2.0%

5.2 ID 0 - Clock Sync

Frequency: 50Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False	0 to 4294967295	Milliseconds	UTC time

5.3 ID 1 - Emergency Signal

Frequency: 50Hz

Byte	Bit	Signed	Range	Units	Description
0		False			Status
	0-1				System Status

5.4 ID 100 - Helium Pressure PT Data

Frequency: 50Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		False		PSIG	Helium Pressure

5.5 ID 101 - LOX Pressure PT Data

Frequency: 50Hz

1109000	0,. 00111	•			
Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		False		PSIG	LOX Pressure

5.6 ID 102 - Methane Pressure PT Data

Frequency: 50Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		False		PSIG	Methane Pressure

5.7 ID 103 - Chamber Pressure PT Data

Frequency: 50Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		False		PSIG	Chamber Pressure

5.8 ID 200 - Helium Fill Valve Hall Effect State

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4		False		Open/Closed	Helium Fill Valve Hall Effect
					State

5.9 ID 201 - LOX Fill Valve Hall Effect State

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4		False		Open/Closed	LOX Fill Valve Hall Effect State

5.10 ID 202 - Methane Fill Valve Hall Effect State

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4		False		Open/Closed	Methane Fill Valve Hall Effect
					State

5.11 ID 300 - Helium Tank Temperature Data

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		Celcius	Helium Tank Temperature

5.12 ID 301 - LOX Tank Temperature Data

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		Celcius	LOX Tank Temperature

5.13 ID 302 - Methane Tank Temperature Data

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		Celcius	Methane Tank Temperature

5.14 ID 303 - Nozzle Temperature Data

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		Celcius	Nozzle Temperature

5.15 ID 304 - Upper Air Frame Temperature Data

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		Celcius	Upper Air Frame Temperature

5.16 ID 400 - Helium Pressure PT Current

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		milliamps	Helium Pressure PT Current

5.17 ID 401 - LOX Pressure PT Current

Frequency: 10Hz

1	-,	=			
Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		milliamps	LOX Pressure PT Current

5.18 ID 402 - Methane Pressure PT Current

Frequency: 10Hz

1 1					
Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		milliamps	Methane Pressure PT Current

5.19 ID 403 - Chamber Pressure PT Current

Frequency: 10Hz

1					
Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		milliamps	Chamber Pressure PT Current

5.20 ID 404 - Helium Fill Valve Hall Effect Current

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		milliamps	Helium Fill Valve Hall Effect
					Current

5.21 ID 405 - LOX Fill Valve Hall Effect Current

Frequency: 10Hz

	request, rotte							
Byte	Bit	Signed	Range	Units	Description			
0-3		False		Milliseconds	UTC time			
4-5		True		milliamps	LOX Fill Valve Hall Effect Cur-			
					rent			

5.22 ID 406 - Methane Fill Valve Hall Effect Current

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		milliamps	Methane Fill Valve Hall Effect
					Current

5.23 $\,$ ID 407 - Upper Air Frame VIN Current

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		Milliamps	Upper Air Frame Board Current

5.24~ ID 500 - Upper Air Frame VIN Voltage

Frequency: 10Hz

Byte	Bit	Signed	Range	Units	Description
0-3		False		Milliseconds	UTC time
4-5		True		Millivolts	Upper Air Frame Board VIN
					Voltage