CS 492 Computer Security

Authorization

Dr. Williams
Central Connecticut State University

Authentication vs Authorization

- Authentication Are you who you say you are?
 - Restrictions on who (or what) can access system
- Authorization Are you allowed to do that?
 - Restrictions on actions of authenticated users
- Authorization is a form of access control
- Classic authorization enforced by
 - Access Control Lists (ACLs)
 - Capabilities (C-lists)

Lampson's Access Control Matrix

- Subjects (users) index the rows
- Objects (resources) index the columns

	os	Accounting program	Accounting data	Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

Are You Allowed to Do That?

- Access control matrix has all relevant info
- Could be 1000's of users, 1000's of resources
- Then matrix with 1,000,000's of entries
- How to manage such a large matrix?
- Need to check this matrix before access to any resource is allowed
- How to make this efficient?

Access Control Lists (ACLs)

- ACL: store access control matrix by column
- Example: ACL for insurance data is in blue

	os	Accounting program	Accounting data	Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

Capabilities (or C-Lists)

- Store access control matrix by row
- Example: Capability for Alice is in red

	OS	Accounting program	Accounting data	Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

ACLs vs Capabilities

- Note that arrows point in opposite directions...
- With ACLs, need to associate users to files

Confused Deputy

- Two resources
 - Compiler and BILL file (billing info)
- Compiler can write file BILL
- Alice can invoke compiler with a debug filename
- Alice not allowed to write to BILL

Access control matrix

Compiler	BILL
×	
rx	rw

Part 2 — Access Control

Alice

Compiler

ACL's and Confused Deputy

- Compiler is deputy acting on behalf of Alice
- Compiler is confused
 - Alice is not allowed to write BILL
- Compiler has confused its rights with Alice's

Confused Deputy

- Compiler acting for Alice is confused
- There has been a separation of authority from the purpose for which it is used
- With ACLs, difficult to avoid this problem
- With Capabilities, easier to prevent problem
 - Must maintain association between authority and intended purpose
 - Capabilities also easy to delegate authority

ACLs vs Capabilities

ACLs

- Good when users manage their own files
- Protection is data-oriented
- Easy to change rights to a resource

Capabilities

- Easy to delegate---avoid the <u>confused deputy</u>
- Easy to add/delete users
- More difficult to implement
- The "Zen of information security"

Capabilities loved by academics

Capability Myths Demolished

Multilevel Security (MLS) Models

Classifications and Clearances

- Classifications apply to objects
- Clearances apply to subjects
- US Department of Defense (DoD) uses 4 levels:

TOP SECRET
SECRET
CONFIDENTIAL
UNCLASSIFIED

Clearances and Classification

- To obtain a **SECRET** clearance requires a routine background check
- A TOP SECRET clearance requires extensive background check
- Practical classification problems
 - Proper classification not always clear
 - Level of granularity to apply classifications
 - Aggregation flipside of granularity

Subjects and Objects

- Let O be an **object**, S a **subject**
 - O has a classification
 - S has a clearance
 - Security **level** denoted L(O) and L(S)
- For DoD levels, we have

TOP SECRET > SECRET >

CONFIDENTIAL > UNCLASSIFIED

Multilevel Security (MLS)

- MLS needed when subjects/objects at different levels use/on same system
- MLS is a form of Access Control
- Military and government interest in MLS for many decades
 - Lots of research into MLS
 - Strengths and weaknesses of MLS well understood (but, almost entirely theoretical)
 - Many possible uses of MLS outside military

MLS Applications

- Classified government/military systems
- Business example: info restricted to
 - Senior management only, all management, everyone in company, or general public
- Network firewall
- Confidential medical info, databases, etc.
- Usually, MLS not a viable technical system
 - More of a legal device than technical system

MLS Security Models

- MLS models explain what needs to be done
- Models do not tell you how to implement
- Models are descriptive, not prescriptive
 - That is, high level description, not an algorithm
- There are many MLS models
- We'll discuss simplest MLS model
 - Other models are more realistic
 - Other models also more complex, more difficult to enforce, harder to verify, etc.

Bell-LaPadula

- BLP security model designed to express essential requirements for MLS
- BLP deals with confidentiality
 - To prevent unauthorized reading
- Recall that O is an object, S a subject
 - Object O has a classification
 - Subject S has a clearance
 - Security level denoted L(O) and L(S)

Bell-LaPadula

BLP consists of

Simple Security Condition: S can read O if and only if $L(O) \le L(S)$

- *-Property (Star Property): S can write O if and only if $L(S) \le L(O)$
- No read up, no write down

McLean's Criticisms of BLP

- McLean: BLP is "so trivial that it is hard to imagine a realistic security model for which it does not hold"
- McLean's "system Z" allowed administrator to reclassify object, then "write down"
- Is this fair?
- Violates spirit of BLP, but not expressly forbidden in statement of BLP
- Raises fundamental questions about the nature of (and limits of) modeling

BLP: The Bottom Line

- Criticism of BLP is "so trivial that it is hard to imagine a realistic security model for which it does not hold"
- BLP is simple, probably too simple
- BLP is one of the few security models that can be used to prove things about systems
- BLP has inspired other security models
 - Most other models try to be more realistic
 - Other security models are more complex
 - Models difficult to analyze, apply in practice

Biba's Model

- BLP for confidentiality, Biba for **integrity**
 - Biba is to prevent unauthorized writing
- Biba is (in a sense) the dual of BLP
- Integrity model
 - Suppose you trust the integrity of O1 but not O2
 - If object O3 includes O1 and O2 then you cannot trust the integrity of O3
- Integrity level of O is minimum of the integrity of any object in O
- Low water mark principle for integrity

Biba

- Let I(O) denote the integrity of object O and I(S) denote the integrity of subject S
- Biba can be stated as

```
Write Access Rule: S can write O if and only if I(O) ≤ I(S)
(if S writes O, the integrity of O ≤ that of S)
Biba's Model: S can read O if and only if I(S) ≤ I(O)
(if S reads O, the integrity of S ≤ that of O)
```

Often, replace Biba's Model with

```
Low Water Mark Policy: If S reads O, then I(S) = min(I(S), I(O))
```

BLP vs Biba

What can we say?

• Using BLP, if S can read O1 and writes O2 what can we say about each of them?

• Using Biba, If S reads O1 and writes O2 what can we say about each of them?

- Multilevel Security (MLS) enforces access control up and down
- Simple hierarchy of security labels may not be flexible enough
- Compartments enforces restrictions across
- Suppose TOP SECRET divided into TOP SECRET {CAT} and TOP SECRET {DOG}
- Both are TOP SECRET but information flow restricted across the TOP SECRET level

- Why compartments?
 - Why not create a new classification level?
- May not want either of
 - **□ TOP SECRET {CAT}** ≥ **TOP SECRET {DOG}**
 - **□ TOP SECRET {DOG}** ≥ **TOP SECRET {CAT}**
- Compartments designed to enforce the need to know principle
 - Regardless of your clearance, you only have access to info that you need to know

Arrows indicate "≥" relationship

■ Not all classifications are comparable, e.g., TOP SECRET {CAT} VS SECRET {CAT, DOG}

MLS vs Compartments

- MLS can be used without compartments
 - And vice-versa
- But, MLS almost always uses compartments

What can we say and why, draw the diagram of the information given (compartments)

- Alice has clearance SECRET{CS 492}
 - TOPSECRET{CS 492}(O1)
 - SECRET{Bob}(O)
 - SECRET(O)
 - UNCLASSIFIED (O)

• If Bob is the overseer of all things in his realm but can only see SECRET things in Alice's realm, what would be his clearances?

Firewalls

Firewalls

- Firewall must determine what to let in to internal network and/or what to let out
- Access control for the network

Firewall as Secretary

- A firewall is like a **secretary**
- To meet with an executive
 - First contact the secretary
 - Secretary decides if meeting is important
 - So, secretary filters out many requests
- You want to meet chair of CS department?
 - Secretary does some filtering
- You want to meet the POTUS?
 - Secretary does lots of filtering

Firewall Terminology

- No standard firewall terminology
- Types of firewalls
 - Packet filter works at network layer
 - Stateful packet filter transport layer
 - Application proxy application layer
- Other names often used
 - E.g., "deep packet inspection"

Packet Filter

- Operates at network layer
- Can filter based on...
 - Source IP address
 - Destination IP address
 - Source Port
 - Destination Port
 - Flag bits (SYN, ACK, etc.)
 - Egress or ingress

Packet Filter

- Configured via Access Control Lists (ACLs)
 - Different meaning than at start of Chapter 8

Action	Source IP	Dest IP	Source Port	Dest Port	Protocol	Flag Bits
Allow	Inside	Outside	Any	80	HTTP	Any
Allow	Outside	Inside	80	> 1023	HTTP	ACK
Deny	All	All	All	All	All	All

- □ **Q**: Intention?
- □ A: Restrict traffic to Web browsing

TCP ACK Scan

- Attacker scans for open ports thru firewall
 - Port scanning is first step in many attacks (nmap)
- Attacker sends packet with ACK bit set,
 without prior 3-way handshake
 - Violates TCP/IP protocol
 - ACK packet pass thru packet filter firewall
 - Appears to be part of an ongoing connection
 - RST sent by recipient of such packet

TCP ACK Scan

- Attacker knows port 1209 open thru firewall
- A stateful packet filter can prevent this
 - Since scans not part of established connections

Packet Filter

- Advantages?
 - Speed
- Disadvantages?
 - No concept of state
 - Cannot see TCP connections
 - Blind to application data

Stateful Packet Filter

- Adds state to packet filter
- Operates at transport layer
- **Remembers** TCP connections, flag bits, etc.
- Can even remember UDP packets (e.g., DNS requests)

Stateful Packet Filter

Advantages?

- Can do everything a packet filter can do plus...
- Keep track of ongoing connections (so prevents TCP ACK scan)

Disadvantages?

- Cannot see application data
- Slower than packet filtering

Application Proxy

- A proxy is something that acts on your behalf
- Application proxy looks at incoming application data
- Verifies that data is safe before letting it in

Application Proxy

- Advantages?
 - Complete view of connections and applications data
 - Filter bad data at application layer (viruses, worms, Word macros)
- Disadvantages?
 - Speed

Application Proxy

- Creates a new packet before sending it thru to internal network
- Attacker must talk to proxy and convince it to forward message
- Proxy has complete view of connection
- Prevents some scans stateful packet filter cannot next slides

Firewalk

- Tool to scan for open ports thru firewall
- Attacker knows IP address of firewall and IP address of one system inside firewall
 - Set TTL to 1 more than number of hops to firewall, and set destination port to N
- If firewall allows data on port N thru firewall, get time exceeded error message
 - Otherwise, no response

Firewalk and Proxy Firewall

- This will not work thru an application proxy (why?)
- The proxy creates a new packet, destroys old TTL

Deep Packet Inspection

- Many buzzwords used for firewalls
- One example: deep packet inspection
- What could this mean?
- Look into packets, but don't really "process" the packets
 - Effect like application proxy, but faster

Firewalls and Defense in Depth

Typical network security architecture

Intrusion Detection Systems

Intrusion Prevention

- Want to keep bad guys out
- Intrusion prevention is a traditional focus of computer security
 - Authentication is to prevent intrusions
 - Firewalls a form of intrusion prevention
 - Virus defenses aimed at intrusion prevention
 - Like locking the door on your car

Intrusion Detection

- In spite of intrusion prevention, bad guys will sometime get in
- Intrusion detection systems (IDS)

What is it?

- Detect attacks in progress (or soon after)
- Look for unusual or suspicious activity
- IDS evolved from log file analysis
- IDS is currently a **hot** research topic
- How to respond when intrusion detected?

Intrusion Detection Systems

- Who is likely intruder?
 - May be outsider who got thru firewall
 - May be evil insider
- What do intruders do?
 - Launch well-known attacks
 - Launch variations on well-known attacks
 - Launch new/little-known attacks
 - "Borrow" system resources
 - Use compromised system to attack others. etc.

IDS

- Intrusion detection approaches
 - How?
 - Signature-based IDS
 - Anomaly-based IDS
- Intrusion detection architectures
 - Host-based IDS
 - Network-based IDS
- Any IDS can be classified as above
 - In spite of marketing claims to the contrary!

Host-Based IDS

- Monitor activities on hosts for
 - Known attacks
 - Suspicious behavior
- Designed to detect attacks such as
 - Buffer overflow
 - Escalation of privilege, ...
- Little or no view of network activities

Network-Based IDS

- Monitor activity on the network for...
 - Known attacks
 - Suspicious network activity
- Designed to detect attacks such as
 - Denial of service
 - Network probes
 - Malformed packets, etc.
- Some overlap with firewall
- Little or no view of host-base attacks
- Can have both host and network IDS

Signature Detection Example

- Failed login attempts may indicate password cracking attack
- What would the model/signature of an attack look like?
- IDS could use the rule "N failed login attempts in M seconds" as **signature**
- If N or more failed login attempts in M seconds, IDS warns of attack
- Note that such a warning is specific
 - Admin knows what attack is suspected
 - Easy to verify attack (or false alarm)

Signature Detection

- Suppose IDS warns whenever N or more failed logins in M seconds
 - Set N and M so false alarms not common
 - Can do this based on "normal" behavior
- But, if Trudy knows the signature, she can try
 N 1 logins every M seconds...
- Then signature detection slows down Trudy, but might not stop her

Signature Detection

- Many techniques used to make signature detection more robust
- Goal is to detect "almost" signatures
- For example, if "about" N login attempts in "about" M seconds
 - Warn of possible password cracking attempt
 - What are reasonable values for "about"?
 - Can use statistical analysis, heuristics, etc.
 - Must not increase false alarm rate too much

Signature Detection

- Advantages of signature detection
 - Simple
 - Detect known attacks
 - Know which attack at time of detection
 - Efficient (if reasonable number of signatures)
- Disadvantages of signature detection
 - Signature files must be kept up to date
 - Number of signatures may become large
 - Can only detect known attacks
 - Variation on known attack may not be detected

Anomaly Detection

- Anomaly detection systems look for unusual or abnormal behavior
- There are (at least) two challenges
 - What is normal for this system?
 - How "far" from normal is abnormal?
- No avoiding statistics here!
 - mean defines normal
 - variance gives distance from normal to abnormal

How to Measure Normal?

- How to measure normal?
 - Must measure during "representative" behavior
 - Must not measure during an attack...
 - ...or else attack will seem normal!
 - Normal is statistical mean
 - Must also compute variance to have any reasonable idea of abnormal

How to Measure Abnormal?

- Abnormal is relative to some "normal"
 - Abnormal indicates possible attack
- Statistical discrimination techniques include
 - Bayesian statistics
 - Linear discriminant analysis (LDA)
 - Quadratic discriminant analysis (QDA)
 - Neural nets, hidden Markov models (HMMs), etc.
- Fancy modeling techniques also used
 - Artificial intelligence
 - Artificial immune system principles
 - Many, many, many others

- Spse we monitor use of three commands: open, read, close
- Under normal use we observe Alice: open, read, close, open, open, read, close, ...
- Of the six possible ordered pairs, we see four pairs are normal for Alice,
 - (open,read), (read,close), (close,open), (open,open)
- Can we use this to identify unusual activity?

- We monitor use of the three commands open, read, close
- If the ratio of abnormal to normal pairs is "too high", warn of possible attack
- Could improve this approach by
 - Also use expected frequency of each pair
 - Use more than two consecutive commands
 - Include more commands/behavior in the model
 - More sophisticated statistical discrimination

• Over time, Alice has accessed file F_n at rate H_n

H_0	H_1	H_2	H_3
.10	.40	.40	.10

 \square Recently, "Alice" has accessed F_n at rate A_n

A_0	\mathbf{A}_{1}	A_2	A_3
.10	.40	.30	.20

- □ Is this normal use for Alice?
- We compute $S = (H_0 A_0)^2 + (H_1 A_1)^2 + ... + (H_3 A_3)^2 = .02$
 - o We consider S < 0.1 to be normal, so this is normal
- How to account for use that varies over time?

- To allow "normal" to adapt to new use, we update averages: $H_n = 0.2A_n + 0.8H_n$
- In this example, H_n are updated... H_2 =.2*.3+.8*.4=.38 and H_3 =.2*.2+.8*.1=.12
- And we now have

H_0	H_1	H_2	H_3
.10	.40	.38	.12

 The updated long term average is

H_0	H_1	H_2	H_3
.10	.40	.38	.12

Suppose new observed rates...

A_0	A_1	A_2	A_3
.10	.30	.30	.30

- ☐ Is this normal use?
- □ Compute $S = (H_0 A_0)^2 + ... + (H_3 A_3)^2 = .0488$
 - o Since S = .0488 < 0.1 we consider this normal
- □ And we again update the long term averages:

$$H_n = 0.2A_n + 0.8H_n$$

The starting averages were:

H_0	H_1	H_2	H_3
.10	.40	.40	.10

□ After 2 iterations, averages are:

H_0	H_1	H_2	H_3
.10	.38	.364	.156

- □ Statistics slowly evolve to match behavior
- □ This reduces false alarms for SA
- □ But also opens an avenue for attack...
 - o Suppose Trudy **always** wants to access F₃
 - o Can she convince IDS this is normal for Alice?

- To make this approach more robust, must incorporate the variance
- Can also combine N stats S_i as, say,

$$T = (S_1 + S_2 + S_3 + ... + S_N) / N$$

to obtain a more complete view of "normal"

- Similar (but more sophisticated) approach is used in an IDS known as **NIDES**
- NIDES combines anomaly & signature IDS

Anomaly Detection Issues

- Systems constantly evolve and so must IDS
 - Static system would place huge burden on admin
 - But evolving IDS makes it possible for attacker to (slowly) convince IDS that an attack is normal
 - Attacker may win simply by "going slow"
- What does "abnormal" really mean?
 - Indicates there may be an attack
 - Might not be any specific info about "attack"
 - How to respond to such vague information?
 - In contrast, signature detection is very specific

Anomaly Detection

- Advantages?
 - Chance of detecting unknown attacks
- Disadvantages?
 - Cannot use anomaly detection alone...
 - ...must be used with signature detection
 - Reliability is unclear
 - May be subject to attack
 - Anomaly detection indicates "something unusual", but lacks specific info on possible attack

Anomaly Detection: The Bottom Line

- Anomaly-based IDS is active research topic
- Many security experts have high hopes for its ultimate success
- Often cited as key future security technology
- Hackers are not convinced!
 - Title of a talk at Defcon: "Why Anomaly-based IDS is an Attacker's Best Friend"
- Anomaly detection is difficult and tricky
- As hard as AI?

- MLS designed to restrict legitimate channels of communication
- May be other ways for information to flow
- For example, resources shared at different levels could be used to "signal" information
- Covert channel: a communication path not intended as such by system's designers

Covert Channel Example

- Alice has TOP SECRET clearance, Bob has CONFIDENTIAL clearance
- Suppose the file space shared by all users
- Alice creates file FileXYzW to signal "1" to Bob, and removes file to signal "0"
- Once per minute Bob lists the files
 - If file FileXYzW does not exist, Alice sent o
 - If file FileXYzW exists, Alice sent 1
- Alice can leak TOP SECRET info to Bob!

Covert Channel Example

- Other possible covert channels?
 - Print queue
 - ACK messages
 - Network traffic, etc.
- When does covert channel exist?
 - 1. Sender and receiver have a shared resource
 - 2. Sender able to vary some property of resource that receiver can observe
 - 3. "Communication" between sender and receiver can be synchronized

- So, covert channels are everywhere
- "Easy" to eliminate covert channels:
 - Eliminate all shared resources...
 - ...and all communication
- Virtually impossible to eliminate covert channels in any useful system
 - DoD guidelines: reduce covert channel capacity to no more than 1 bit/second
 - Implication? DoD has given up on *eliminating* covert channels!

- Consider 100MB TOP SECRET file
 - Plaintext stored in TOP SECRET location
 - Ciphertext (encrypted with AES using 256-bit key)
 stored in UNCLASSIFIED location
- Suppose we reduce covert channel capacity to 1 bit per second
- It would take more than 25 years to leak entire document thru a covert channel
- But it would take less than 5 minutes to leak 256-bit AES key thru covert channel!

Real-World Covert Channel

- Hide data in TCP header "reserved" field
- Or use covert_TCP, tool to hide data in
 - Sequence number
 - ACK number

Real-World Covert Channel

- Hide data in TCP sequence numbers
- Tool: covert TCP
- Sequence number X contains covert info

Inference Control

Inference Control Example

- Suppose we query a database
 - Question: What is average salary of female CS professors at SJSU?
 - Answer: \$95,000
 - Question: How many female CS professors at SJSU?
 - Answer: 1
- Specific information has leaked from responses to general questions!

Inference Control and Research

- For example, medical records are private but valuable for research
- How to make info available for research and protect privacy?
- How to allow access to such data without leaking specific information?

Naïve Inference Control

- Remove names from medical records?
- Still may be easy to get specific info from such "anonymous" data
- Removing names is not enough
 - As seen in previous example
- What more can be done?

Less-naïve Inference Control

- Query set size control
 - Don't return an answer if set size is too small
- N-respondent, k% dominance rule
 - Do not release statistic if k% or more contributed by N or fewer
 - Example: Avg salary in Bill Gates' neighborhood
 - This approach used by US Census Bureau
- Randomization
 - Add small amount of random noise to data
- Many other methods none satisfactory

Inference Control

- Robust inference control may be impossible
- Is weak inference control better than nothing?
 - Yes: Reduces amount of information that leaks
- Is weak covert channel protection better than nothing?
 - Yes: Reduces amount of information that leaks
- Is weak crypto better than no crypto?
 - Probably not: Encryption indicates important data
 - May be easier to filter encrypted data

Access Control Summary

- Authentication and authorization
 - Authentication who goes there?
 - Passwords something you know
 - Biometrics something you are (you are your key)
 - Something you have

Access Control Summary

- Authorization are you allowed to do that?
 - Access control matrix/ACLs/Capabilities
 - MLS/Multilateral security
 - BLP/Biba
 - Firewalls
 - IDS
 - Covert channel
 - Inference control