Final Demo

Development of a Non-invasive Intracranial Pressure (ICP)
Predictive ML Model

Currently, invasive ICP measurement is often used in clinical practice.

The problem of **invasive** intracranial pressure (ICP) monitoring in children

- The risk of Complication
- Discomfort and Pain
- Scarring

Non-Invasive Methods

Why?

- Early Detection and Monitoring
- Cost-Effectiveness
- Safety
- Facilitates Repeat Measurements

Current Situation

No consensus on a single non-invasive method that can match the precision and reliability of invasive monitoring methods.

Our project

Development of a Non-invasive ICP Predictive ML Model

Dataset

1. Neurocritical care waveform recordings in pediatric patients 1.0.0

- 12 pediatric and young adult patients (aged 2–25 years)

2. MIMIC-III Waveform Database Matched Dataset

contains 22,317 waveform records, and 22,247 numerics records, for 10,282 distinct ICU patients.

Google Cloud **Storage** MIMIC-III Waveform Database **Matched Dataset**

More than 2.4 TB

- 1. Segments with ICP & CPP recording
- 2. The length of the recording >= 24 hours
- 3. Handling segments w/ missing value > 25%

⇒ About 66 segments with 50 unique patients.

Feature Engineering

Feature Engineering

- Mean ICP Approximation Algorithm based on Circuit Model
 - Inspired by mean-ICP algorithm proposed by Rohan et al.
 - Calibration of R and C values dependent on ABP, hICP, hct, hABP
 - Linear Regression model trained on random sub-segments from the the train dataset.

Block Preprocessing

Results

Demo 1

Model	MSE	R^2
Linear Regressi on	19.09	0.18
Ridge Regressi on	19.03	0.17
Random Forest Regressi on	12.41	0.465

	MeanAE	RMSE	R2	MedianAE	Exp. Var.
Linear Regression	0.451	0.682	0.945	0.261	0.945
Random Forest Regression	0.383	0.611	0.955	0.21	0.955
Ridge Regression	0.460	0.752	0.933	0.263	0.933

QnA