Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2018/2019 Corso di Laurea in Ingegneria Fisica

Prova intermedia di Analisi III, 5 novembre 2018 – Prof. I. FRAGALÀ

ESERCIZIO 1. (8 punti) [fornire le risposte con una breve giustificazione]

Siano α, β due parametri reali, con $\alpha > 0$ e $\beta > 0$, e sia

$$f(x) = \frac{1 - e^{-\sqrt{x}}}{x^{\alpha} |\ln x|^{\beta}}.$$

- (a) Per ogni fissato $p \in [1, +\infty]$, stabilire per quali valori α, β si ha $f \in L^p(0, 1/2)$.
- (b) Per ogni fissato $p \in [1, +\infty]$, stabilire per quali valori α, β si ha $f \in L^p(1/2, +\infty)$.

Soluzione.

(a) Si ha:

$$f(x) \stackrel{x \to 0^+}{\sim} \frac{1}{x^{\alpha - \frac{1}{2}} |\ln x|^{\beta}}.$$

Pertanto

- $f \in L^{\infty}(0, 1/2)$ se e solo se $\alpha \leq 1/2$ (altrimenti la funzione tende a $+\infty$ per $x \to 0^+$);
- $f \in L^p(0, 1/2)$ se e solo se $|f|^p$ è integrabile in un intorno dell'origine. Ció accade: se $\alpha < \frac{1}{p} + \frac{1}{2}$ indipendentemente da β , oppure se $\alpha = \frac{1}{p} + \frac{1}{2}$, e $\beta > \frac{1}{p}$.
- (b) Si ha

$$f(x) \stackrel{x \to 1}{\sim} \frac{C}{|x-1|^{\beta}}, \qquad f(x) \stackrel{x \to +\infty}{\sim} \frac{1}{x^{\alpha} |\ln x|^{\beta}},$$

Pertanto

- $f \notin L^{\infty}(1/2, +\infty)$, poiché, indipendentemente dal valore di β , la funzione tende a $+\infty$ per $x \to 1$.
- $f \in L^p(1/2, +\infty)$ se e solo se $|f|^p$ è integrabile in un intorno del punto 1 e di $+\infty$. Si ha che: $|f|^p$ è integrabile in un intorno di x=1 se e solo se $\beta < \frac{1}{p}$, indipendentemente da α ; $|f|^p$ è integrabile in un intorno di $+\infty$ se $\alpha > \frac{1}{p}$ indipendentemente da β , oppure se $\alpha = \frac{1}{p}$, e $\beta > \frac{1}{p}$.

Quindi si ha $f \in L^p(1/2, +\infty)$ per gli (α, β) tali che $\beta < \frac{1}{p} < \alpha$.

ESERCIZIO 2. (8 punti) [fornire le risposte con una breve giustificazione]

Stabilire quali delle seguenti affermazioni sono vere:

- (a) L'operatore T definito su $\mathcal{D}(-1,1)$ come $T(\varphi) = \int_{-1}^{1} \varphi'' dx$ è un elemento di $\mathcal{D}'(-1,1)$. si', perché lineare e se $\varphi_n \to 0$ in $\mathcal{D}(-1,1)$ si ha $T(\varphi_n) \to 0$
- (b) L'operatore T definito su $\mathcal{D}(-1,1)$ come $T(\varphi) = \int_{-1}^{1} \varphi^2 dx$ è un elemento di $\mathcal{D}'(-1,1)$. no, perché non lineare
- (c) La successione $T_n := n\delta_{1-\frac{1}{n}}$ converge a zero in $\mathcal{D}'(-1,1)$ (dove $\delta_{1-\frac{1}{n}}$ indica la delta di Dirac concentrata nel punto $1-\frac{1}{n}$).

si, perché data $\varphi \in \mathcal{D}(-1,1)$ si ha $\langle T_n, \varphi \rangle = 0$ per n abbastanza grande.

(d) La successione $T_n := (\delta_0)^{(n)}$ converge a zero in $\mathcal{D}'(-1,1)$ (dove $\delta_0^{(n)}$ indica la derivata n-esima della delta di Dirac concentrata nel punto 0). no, perché data $\varphi \in \mathcal{D}(-1,1)$ non si ha in generale $\varphi^{(n)}(0) \to 0$.

ESERCIZIO 3. (8 punti) [fornire le risposte con una giustificazione dettagliata]

Si consideri la seguente funzione di variabile complessa, dove α è un fissato numero complesso:

$$f_{\alpha}(z) := \frac{e^{\alpha z}}{\left(1 + e^{2z}\right)^2} \,.$$

- (a) Classificare le singolarità isolate di f, e calcolare il residuo nella singolarità z_0 con $\text{Im}(z_0) \in (0, \pi)$.
- (b) Determinare l'insieme S degli $\alpha \in \mathbb{C}$ per cui la restrizione di f_{α} a \mathbb{R} appartiene a $L^{1}(\mathbb{R})$.

Soluzione. (a) Le singolarità isolate di f sono i punti in cui si annulla il denominatore, ossia i punti della forma $i\pi/2 + ik\pi$, al variare di $k \in \mathbb{Z}$. Si tratta di poli di ordine 2. La singolarità con $\text{Im}(z_0) \in (0,\pi)$ è $z_0 = i\pi/2$. Si ha:

$$\operatorname{Res}(f_{\alpha}, z_{0}) = \lim_{z \to i\pi/2} \frac{d}{dz} \left(e^{\alpha z} \frac{(z - i\pi/2)^{2}}{\left(1 + e^{2z}\right)^{2}} \right)$$

$$= \lim_{z \to i\pi/2} \left(\frac{2(z - i\pi/2)(e^{2z} + 1) - (z - i\pi/2)^{2} 4e^{2z}}{(e^{2z} + 1)^{3}} e^{\alpha z} + \alpha e^{\alpha z} \left(\frac{z - i\pi/2}{e^{2z} + 1} \right)^{2} \right)$$

Usando l'espansione $e^{2z} + 1 \sim -2(z - i\pi/2)$ si trova subito che il limite del secondo addendo è $(\alpha/4)e^{i\pi\alpha/2}$. Usando la stessa espansione, e il teorema di de L'Hopital, si vede facilmente che il limite del primo addendo è $(-1/2)e^{i\pi\alpha/2}$. Quindi

$$\operatorname{Res}(f_{\alpha}, z_0) = (\alpha/4 - 1/2)e^{i\pi\alpha/2}.$$

(b) Si ha:

$$|f_{\alpha}(x)| = \frac{e^{ax}}{(1+e^{2x})^2}$$
 con $a := \operatorname{Re}(\alpha)$.

Per $x \to +\infty$, si ha $f_{\alpha}(x) \sim e^{(a-4)x}$, che è sommabile in un intorno di $+\infty$ se e solo se a < 4. Per $x \to -\infty$, si ha $f_{\alpha}(x) \sim e^{ax}$, che è sommabile in un intorno di $-\infty$ se e solo solo se a > 0. Pertanto l'insieme S è la striscia $0 < \text{Re}(\alpha) < 4$.

TEORIA. (7 punti) [fornire le rispondere in modo coinciso e rigoroso]

(a) Fornire una condizione sufficiente su una successione di funzioni misurabili $f_n: E \to \mathbb{R}$ (E sottoinsieme misurabile di \mathbb{R}^N) affinché, nell'integrazione secondo Lebesgue, valga

$$\int_{E} \sum_{n=0}^{\infty} f_n = \sum_{n=0}^{\infty} \int_{E} f_n.$$

 $f_n \geq 0$ (per il teorema di convergenza monotona di Beppo Levi)

(b) Enunciare il teorema di Fubini.

Si veda uno dei testi consigliati.

(c) Sia T_n una successione in $\mathcal{D}'(\mathbb{R})$. Dimostrare che, se $T_n \to T$ in $\mathcal{D}'(\mathbb{R})$ e $T'_n \to S$ in $\mathcal{D}'(\mathbb{R})$, allora S = T' in $\mathcal{D}'(\mathbb{R})$. Basta verificare che S = T' nel senso delle distribuzioni: infatti, data $\varphi \in \mathcal{D}(\mathbb{R})$, si ha

$$\langle S, \varphi \rangle = \lim_{n} \langle T'_n, \varphi \rangle = -\lim_{n} \langle T_n, \varphi' \rangle = -\langle T, \varphi' \rangle.$$