Spline Interpolation: Using Local Coordinate

$$x \in [x_i, x_{i+1}] \to t \in [0, 1]$$

 $q_i(x) \text{ in } [x_i, x_{i+1}] \to p_i(t) \text{ in } [0, 1]$

- \checkmark At each *node i*, we denote the following:
 - ✓ Location: x_i
 - \checkmark Functional value: f_i
 - ✓ Intervals: $h_i = x_{i+1} x_i$ and $h_{i-1} = x_i x_{i-1}$
 - \checkmark Derivatives: First derivative u_i and the 2nd derivative v_i
- ✓ Transformations:

$$t = \frac{x - x_i}{x_{i+1} - x_i} = \frac{1}{h_i} (x - x_i) \implies \frac{dt}{dx} = \frac{1}{h_i}$$

$$q'_i(x) = p'_i(t) \frac{dt}{dx} = \frac{1}{h_i} p'_i(t) \qquad q''_i(x) = \frac{1}{h_i^2} p''_i(t)$$

Spline Interpolation: Using Local Coordinate

✓
$$C^0$$
 – Continuity:
 $p_{i-1}(1) = q_{i-1}(x_i) = q_i(x_i) = p_i(0) = f_i$

$$\checkmark C^1$$
 - Continuity:

$$\frac{1}{h_{i-1}} p'_{i-1}(1) = q'_{i-1}(x_i) = q'_i(x_i) = \frac{1}{h_i} p'_i(0) = u_i$$

$$\checkmark C^{2} - \text{Continuity:}
\frac{1}{h_{i-1}^{2}} p_{i-1}''(1) = q_{i-1}''(x_{i}) = q_{i}''(x_{i}) = \frac{1}{h_{i}^{2}} p_{i}''(0) = v_{i}$$

Linear and Quadratic Splines: Local Coordinate

✓ Linear Spline: C^0 – Continuous

$$p_i(t) = a_i t + b_i \implies p_i(0) = b_i = f_i, \quad p_i(1) = a_i + b_i = f_{i+1}$$

 $p_i(t) = (f_{i+1} - f_i)t + f_i \implies q_i(x) = f[x_{i+1}, x_i](x - x_i) + f_i$

✓ Quadratic Spline: C^1 – Continuous

$$p_i(t) = a_i t^2 + b_i t + c_i \Rightarrow p_i(0) = c_i = f_i, \qquad p_i(1) = a_i + b_i + c_i = f_{i+1}$$

Using the definition of u_i :

$$\frac{1}{h_i}p_i'(0) = \frac{b_i}{h_i} = u_i \implies a_i = h_i(f[x_{i+1}, x_i] - u_i)$$
$$p_i(t) = h_i(f[x_{i+1}, x_i] - u_i)t^2 + h_i u_i t + f_i$$

Using C^1 – Continuity:

$$\frac{1}{h_{i-1}}p'_{i-1}(1) = \frac{1}{h_i}p'_i(0) \quad \Rightarrow \quad u_i = 2f[x_i, x_{i-1}] - u_{i-1}$$

✓ Cubic Spline: C^2 – Continuous $p_i(t) = a_i t^3 + b_i t^2 + c_i t + d_i$

Using C^0 – Continuity:

$$p_i(0) = d_i = f_i,$$
 $p_i(1) = a_i + b_i + c_i + d_i = f_{i+1}$

Now we have two options:

- ✓ Option 1: Using the 1st derivative u_i as unknown and C^2 Continuity to estimate them
- ✓ Option 2: Using the 2nd derivative v_i as unknown and C^1 Continuity to estimate them

Option 1: Using the 1st derivative u_i as unknown and C^2 – Continuity to estimate them

$$p_{i}(t) = a_{i}t^{3} + b_{i}t^{2} + c_{i}t + d_{i}$$

$$d_{i} = f_{i}, a_{i} + b_{i} + c_{i} + d_{i} = f_{i+1}$$

$$\frac{1}{h_{i}}p'_{i}(0) = \frac{c_{i}}{h_{i}} = u_{i}; \frac{1}{h_{i}}p'_{i}(1) = \frac{3a_{i} + 2b_{i} + c_{i}}{h_{i}} = u_{i+1}$$

$$a_{i} = h_{i}(u_{i+1} + u_{i} - 2f[x_{i+1}, x_{i}])$$

$$b_{i} = h_{i}(3f[x_{i+1}, x_{i}] - u_{i+1} - 2u_{i})$$

Using C^2 – Continuity:

$$\frac{1}{h_{i-1}^2} p_{i-1}''(1) = \frac{1}{h_i^2} p_i''(0) \Rightarrow \frac{6a_{i-1} + 2b_{i-1}}{h_{i-1}^2} = \frac{2b_i}{h_i^2}$$

$$h_i u_{i-1} + 2(h_{i-1} + h_i) u_i + h_{i-1} u_{i+1} = 3h_{i-1} f[x_{i+1}, x_i] + 3h_i f[x_i, x_{i-1}]$$

$$i = 1, 2, 3, \dots n - 1$$

Using the two other conditions, one may obtain similar splines of different types!

✓ Natural Spline:

$$v_0 = v_n = 0$$

$$v_0 = \frac{p_0''(0)}{h_0^2} = \frac{2b_0}{h_0^2} = 0; \quad b_0 = h_0(3f[x_1, x_0] - u_1 - 2u_0) = 0$$

$$v_n = \frac{p_{n-1}''(1)}{h_{n-1}^2} = \frac{6a_{n-1} + 2b_{n-1}}{h_{n-1}^2} = 0$$

$$6h_{n-1}(u_n + u_{n-1} - 2f[x_n, x_{n-1}]) + 2h_{n-1}(3f[x_n, x_{n-1}] - u_n - 2u_{n-1}) = 0$$

$$2u_0 + u_1 = 3f[x_1, x_0] \qquad 2u_n + u_{n-1} = 3f[x_n, x_{n-1}]$$

✓ Clamped Spline:

$$u_0 = \alpha$$
 and $u_n = \beta$

✓ Parabolic Runout:

$$\frac{p_0''(0)}{h_0^2} = \frac{p_0''(1)}{h_0^2} \Rightarrow \frac{2b_0}{h_0^2} = \frac{6a_0 + 2b_0}{h_0^2} \Rightarrow u_0 + u_1 = 2f[x_1, x_0]$$

$$\frac{p_{n-1}''(0)}{h_{n-1}^2} = \frac{p_{n-1}''(1)}{h_{n-1}^2} \Rightarrow \frac{2b_{n-1}}{h_{n-1}^2} = \frac{6a_{n-1} + 2b_{n-1}}{h_{n-1}^2} \Rightarrow u_{n-1} + u_n = 2f[x_n, x_{n-1}]$$

✓ *Not-a-knot:*

$$q_0(x) = q_1(x) \implies \frac{v_1 - v_0}{h_0} = \frac{v_2 - v_1}{h_1}$$

$$q_{n-2}(x) = q_{n-1}(x) \implies \frac{v_{n-1} - v_{n-2}}{h_{n-2}} = \frac{v_n - v_{n-1}}{h_{n-1}}$$

✓ Periodic:

$$v_0 = v_{n-1} \qquad \text{and} \qquad v_1 = v_n$$

Formulation of these two is left as homework!

Option 2: Using the 2^{nd} derivative v_i as unknown and C^1 – Continuity to estimate them

$$p_{i}(t) = a_{i}t^{3} + b_{i}t^{2} + c_{i}t + d_{i}$$

$$d_{i} = f_{i}, a_{i} + b_{i} + c_{i} + d_{i} = f_{i+1}$$

$$\frac{1}{h_{i}^{2}}p_{i}''(0) = \frac{2b_{i}}{h_{i}^{2}} = v_{i}; \frac{1}{h_{i}^{2}}p_{i}''(1) = \frac{6a_{i} + 2b_{i}}{h_{i}^{2}} = v_{i+1}$$

$$a_{i} = \frac{h_{i}^{2}}{6}(v_{i+1} - v_{i}); c_{i} = h_{i}f[x_{i+1}, x_{i}] - \frac{h_{i}^{2}}{6}(v_{i+1} + 2v_{i})$$

Using C^1 – Continuity:

$$\frac{1}{h_{i-1}}p'_{i-1}(1) = \frac{1}{h_i}p'_i(0) \Rightarrow \frac{3a_{i-1} + 2b_{i-1} + c_{i-1}}{h_{i-1}} = \frac{c_i}{h_i}$$

$$h_{i-1}v_{i-1} + 2(h_{i-1} + h_i)v_i + h_iv_{i+1} = 6f[x_{i+1}, x_i] - 6f[x_i, x_{i-1}]$$

$$i = 1, 2, 3, \dots n - 1$$

This is the same equation that was obtained using Lagrange polynomials!

Boundary conditions are also same!

ESO 208A: Computational Methods in Engineering

Numerical Differentiation

Saumyen Guha

Department of Civil Engineering IIT Kanpur

Numerical Differentiation

Let us compute dy/dx or df/dx at node i

Denote the difference operators:

$$\Delta x = x_{i+1} - x_i$$
 $\nabla x = x_i - x_{i-1}$ $\delta x = x_{i+1/2} - x_{i-1/2}$

Approximate the function between $\{x_i, x_{i+1}\}$ as:

$$f(x) = \frac{x - x_i}{x_{i+1} - x_i} f_{i+1} + \frac{x - x_{i+1}}{x_i - x_{i+1}} f_i = \frac{f_{i+1}}{\Delta x} (x - x_i) - \frac{f_i}{\Delta x} (x - x_{i+1})$$

Forward Difference:

$$\frac{df}{dx} = \frac{f_{i+1} - f_i}{\Delta x} = \frac{\Delta f}{\Delta x}$$

Approximate the function between $\{x_{i-1}, x_i\}$ as:

$$f(x) = \frac{x - x_i}{x_{i-1} - x_i} f_{i-1} + \frac{x - x_{i-1}}{x_i - x_{i-1}} f_i = -\frac{f_{i-1}}{\nabla x} (x - x_i) + \frac{f_i}{\nabla x} (x - x_{i-1})$$

Backward Difference:

$$\frac{df}{dx} = \frac{f_i - f_{i-1}}{\nabla x} = \frac{\nabla f}{\nabla x}$$

Approximate the function between three points: $\{x_{i-1}, x_i, x_{i+1}\}$ f(x)

$$= \frac{(x - x_i)(x - x_{i+1})}{(x_{i-1} - x_i)(x_{i-1} - x_{i+1})} f_{i-1} + \frac{(x - x_{i-1})(x - x_{i+1})}{(x_i - x_{i-1})(x_i - x_{i+1})} f_i$$

$$+ \frac{(x - x_{i-1})(x - x_i)}{(x_{i+1} - x_{i-1})(x_{i+1} - x_i)} f_{i+1}$$

$$= \frac{f_{i-1}}{\nabla x(\Delta x + \nabla x)} (x - x_i)(x - x_{i+1}) - \frac{f_i}{\nabla x \Delta x} (x - x_{i-1})(x - x_{i+1})$$

$$+ \frac{f_{i+1}}{(\Delta x + \nabla x)\Delta x} (x - x_{i-1})(x - x_i)$$

Now, evaluate df/dx at $x = x_i$:

$$\left. \frac{df}{dx} \right|_{x_i} = \frac{f_{i-1}}{\nabla x (\Delta x + \nabla x)} \left(-\Delta x \right) - \frac{f_i}{\nabla x \Delta x} \left(\nabla x - \Delta x \right) + \frac{f_{i+1}}{(\Delta x + \nabla x) \Delta x} \left(\nabla x \right)$$

Central Difference:

$$\frac{df}{dx}\Big|_{x_{i}}$$

$$= \frac{f_{i-1}}{\nabla x(\Delta x + \nabla x)} (-\Delta x) - \frac{f_{i}}{\nabla x \Delta x} (\nabla x - \Delta x) + \frac{f_{i+1}}{(\Delta x + \nabla x)\Delta x} (\nabla x)$$

For regular or uniform grid: $\Delta x = \nabla x = h$

$$\left. \frac{df}{dx} \right|_{x_i} = \frac{f_{i+1} - f_{i-1}}{2h} = \frac{\delta f}{\delta x}$$

Let us assume regular grid with a mesh size of h

Approximate the function between three points: $\{x_{i-1}, x_i, x_{i+1}\}$

$$f(x) = \frac{(x - x_i)(x - x_{i+1})}{(x_{i-1} - x_i)(x_{i-1} - x_{i+1})} f_{i-1} + \frac{(x - x_{i-1})(x - x_{i+1})}{(x_i - x_{i-1})(x_i - x_{i+1})} f_i + \frac{(x - x_{i-1})(x - x_i)}{(x_{i+1} - x_{i-1})(x_{i+1} - x_i)} f_{i+1}$$

$$f(x) = \frac{f_{i-1}}{2h^2}(x - x_i)(x - x_{i+1}) - \frac{f_i}{h^2}(x - x_{i-1})(x - x_{i+1}) + \frac{f_{i+1}}{2h^2}(x - x_{i-1})(x - x_i)$$

Now, evaluate central difference approximations of df/dx and d^2f/dx^2 at $x = x_i$:

$$\frac{df}{dx} = \frac{f_{i-1}}{2h^2} \left[(x - x_i) + (x - x_{i+1}) \right] - \frac{f_i}{h^2} \left[(x - x_{i-1}) + (x - x_{i+1}) \right] + \frac{f_{i+1}}{2h^2} \left[(x - x_{i-1}) + (x - x_i) \right]$$

$$\left. \frac{df}{dx} \right|_{x_i} = \frac{f_{i+1} - f_{i-1}}{2h}$$

$$\left. \frac{d^2 f}{dx^2} \right|_{x_i} = \frac{f_{i-1} - 2f_i + f_{i+1}}{h^2}$$

✓ Similarly, one can approximate the function between three points $\{x_i, x_{i+1}, x_{i+2}\}$ and obtain the *forward difference* expressions of the first and second derivatives at $x = x_i$ as follows:

$$\left. \frac{df}{dx} \right|_{x_i} = \frac{-3f_i + 4f_{i+1} - f_{i+2}}{2h}$$

$$\left. \frac{d^2 f}{dx^2} \right|_{x_i} = \frac{f_i - 2f_{i+1} + f_{i+2}}{h^2}$$

This is left for homework practice!

✓ Similarly, one can approximate the function between three points $\{x_{i-2}, x_{i-1}, x_i\}$ and obtain the *backward difference* expressions of the first and second derivatives at $x = x_i$ as follows:

$$\frac{df}{dx}\bigg|_{x_{i}} = \frac{3f_{i} - 4f_{i-1} + f_{i-2}}{2h}$$

$$\left. \frac{d^2 f}{dx^2} \right|_{x_i} = \frac{f_{i-2} - 2f_{i-1} + f_i}{h^2}$$

This is left for homework practice!

- ✓ *Accuracy:* How accurate is the numerical differentiation scheme with respect to the TRUE differentiation?
 - **✓ Truncation Error** analysis
 - ✓ Modified Wave Number, Amplitude Error and Phase Error analysis for periodic functions
- ✓ Recall: True Value (a) = Approximate Value (\tilde{a}) + Error (ε)
- ✓ *Consistency:* A numerical expression for differentiation or a numerical differentiation scheme is consistent if it converges to the TRUE differentiation as $h \rightarrow 0$.

$$f_{i+1} = f_i + hf_i' + \frac{h^2}{2!}f_i'' + \frac{h^3}{3!}f_i''' + \frac{h^4}{4!}f_i^{IV} + \frac{h^5}{5!}f_i^V + \frac{h^6}{6!}f_i^{VI} \cdots$$

$$\frac{f_{i+1} - f_i}{h} = f_i' + \frac{h}{2!}f_i'' + \frac{h^2}{3!}f_i''' + \frac{h^3}{4!}f_i^{IV} + \frac{h^4}{5!}f_i^V \cdots$$

$$f_i' = \frac{f_{i+1} - f_i}{h} - \frac{h}{2!}f_i'' - \frac{h^2}{3!}f_i''' - \frac{h^3}{4!}f_i^{IV} - \frac{h^4}{5!}f_i^V \cdots$$

Truncation error for this forward difference scheme for the 1st Derivative is: O(h)

$$f_{i-1} = f_i - hf_i' + \frac{h^2}{2!}f_i'' - \frac{h^3}{3!}f_i''' + \frac{h^4}{4!}f_i^{IV} - \frac{h^5}{5!}f_i^V + \frac{h^6}{6!}f_i^{VI} \cdots$$

$$f_i' = \frac{f_i - f_{i-1}}{h} + \frac{h}{2!}f_i'' - \frac{h^2}{3!}f_i''' + \frac{h^3}{4!}f_i^{IV} - \frac{h^4}{5!}f_i^V \cdots$$

Truncation error for this backward difference scheme for the 1st Derivative is: O(h)

$$f_{i+1} = f_i + hf_i' + \frac{h^2}{2!}f_i'' + \frac{h^3}{3!}f_i''' + \frac{h^4}{4!}f_i^{IV} + \frac{h^5}{5!}f_i^V + \frac{h^6}{6!}f_i^{VI} \cdots$$

$$f_{i-1} = f_i - hf_i' + \frac{h^2}{2!}f_i'' - \frac{h^3}{3!}f_i''' + \frac{h^4}{4!}f_i^{IV} - \frac{h^5}{5!}f_i^V + \frac{h^6}{6!}f_i^{VI} \cdots$$

$$\frac{f_{i+1} - f_{i-1}}{2h} = f_i' + \frac{h^2}{3!}f_i''' + \frac{h^4}{5!}f_i^V \cdots$$

$$f_i' = \frac{f_{i+1} - f_{i-1}}{2h} - \frac{h^2}{3!}f_i''' - \frac{h^4}{5!}f_i^V \cdots$$

Truncation error for this central difference scheme for the 1st Derivative is: $O(h^2)$

$$f_{i+1} = f_i + hf_i' + \frac{h^2}{2!}f_i'' + \frac{h^3}{3!}f_i''' + \frac{h^4}{4!}f_i^{IV} + \frac{h^5}{5!}f_i^{V} + \frac{h^6}{6!}f_i^{VI} \cdots$$

$$f_{i-1} = f_i - hf_i' + \frac{h^2}{2!}f_i'' - \frac{h^3}{3!}f_i''' + \frac{h^4}{4!}f_i^{IV} - \frac{h^5}{5!}f_i^{V} + \frac{h^6}{6!}f_i^{VI} \cdots$$

$$\frac{f_{i+1} - 2f_i + f_{i-1}}{h^2} = f_i'' + \frac{h^2}{12}f_i^{IV} + \frac{h^4}{360}f_i^{VI} \cdots$$

$$f_i'' = \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2} - \frac{h^2}{12}f_i^{IV} - \frac{h^4}{360}f_i^{VI} \cdots$$

Truncation error for this central difference scheme for the 2^{nd} Derivative is: $O(h^2)$

$$\frac{df}{dx}\bigg|_{x_i} = \frac{-3f_i + 4f_{i+1} - f_{i+2}}{2h}$$

$$\frac{d^2f}{dx^2}\bigg|_{x_i} = \frac{f_i - 2f_{i+1} + f_{i+2}}{h^2}$$

$$\frac{df}{dx}\bigg|_{x_i} = \frac{3f_i - 4f_{i-1} + f_{i-2}}{2h}$$

$$\frac{d^2f}{dx^2}\bigg|_{x_i} = \frac{f_{i-2} - 2f_{i-1} + f_i}{h^2}$$

Truncation error analysis for this forward and backward difference schemes are left as homework!

$$f_{i+1} = f_i + \Delta x f_i' + \frac{\Delta x^2}{2!} f_i'' + \frac{\Delta x^3}{3!} f_i''' + \frac{\Delta x^4}{4!} f_i^{IV} + \frac{\Delta x^5}{5!} f_i^{V} + \cdots$$

$$f_{i-1} = f_i - \nabla x f_i' + \frac{\nabla x^2}{2!} f_i'' - \frac{\nabla x^3}{3!} f_i''' + \frac{\nabla x^4}{4!} f_i^{IV} - \frac{\nabla x^5}{5!} f_i^{V} + \cdots$$

$$\frac{f_{i+1} - f_{i-1}}{(\Delta x + \nabla x)} = f_i' + \frac{(\Delta x - \nabla x)}{2!} f_i'' + \frac{(\Delta x^2 - \Delta x \nabla x + \nabla x^2)}{3!} f_i''' \cdots$$

$$f_i' = \frac{f_{i+1} - f_{i-1}}{(\Delta x + \nabla x)} - \frac{(\Delta x - \nabla x)}{2!} f_i'' - \frac{(\Delta x^2 - \Delta x \nabla x + \nabla x^2)}{3!} f_i''' \cdots$$

For regular or uniform grid: $\Delta x = \nabla x = h$

$$f_i' = \frac{f_{i+1} - f_{i-1}}{2h} - \frac{h^2}{3!} f_i''' - \frac{h^4}{5!} f_i^V \cdots$$

Truncation error for this central difference scheme for the 1st Derivative is O(h) for non-uniform grid and $O(h^2)$ uniform grid

Consistency: A numerical expression for the derivative is consistent if the leading order term in the Truncation Error (*TE*) satisfies the following:

$$\lim_{h\to 0} TE = 0$$

If the leading order term in the truncation error is:

$$TE = Kh^p \text{ or } O(h^p) \text{ where, } p \in I$$

the numerical differentiation scheme is consistent if,

$$p \ge 1$$

Modified Wave Number analysis for periodic functions:

Consider the periodic basis function:

$$f(x) = e^{-ikx} \qquad f'(x) = -ike^{-ikx} = -ikf(x)$$

If we evaluate the true derivative at a node $x = x_i$:

$$f'(x_j) = -ikf(x_j)$$
 or $f'_j = -ikf_j$

Numerical derivative using the 2nd order accurate central difference scheme at the same node is:

$$f'_{j} = \frac{f_{j+1} - f_{j-1}}{2h} = \frac{e^{-ik(x_{j}+h)} - e^{-ik(x_{j}-h)}}{2h} = -i\frac{\sin kh}{h} f_{j}$$

$$f'_{j} = -ik'f_{j} \quad \text{where,} \quad k' = \frac{\sin kh}{h}$$

Modified Wave Number analysis for periodic functions:

True derivative at a node $x = x_j$: $f'_j = -ikf_j$

Numerical derivative using the 2nd order central difference scheme at the same node: $f'_i = -ik'f_i$

$$k' = \frac{\sin kh}{h}$$

or

$$k'h = \sin kh$$

