Mid-sem Exam (14 Mar 2023 2-4pm)

General instructions

- Solutions are to be typed in the .ipynb file provided and uploaded in the lab course page in Moodle before 4pm.
- Your code should be well commented and should be compatible with python3.

Monty Hall Game (4 marks)

Recall the Monty Hall game discussed in Assignment 1. Consider the variant of the game where there are n boxes with $n\geq 3$ and the host reveals the contents of n-2 boxes. Is it to your advantage to switch your choice in order to get the gift? How does this advantage change with n?

```
In [1]:
        import random as rnd
        import matplotlib.pyplot as plt
        def montyHall(n: int):
          isGift = [0 for _ in range(n)]
          giftIndex = rnd.randrange(0,n)
          firstChoice = rnd.randrange(0,n)
          # assuming monty opened all boxes which are neither gift box or the box
          montyOpenedDoors = [
            i for i in range(n) if i!=giftIndex and i!=firstChoice
          if firstChoice == giftIndex:
            # if switching leads to losing the gift, we return False
            return False
          else:
            return True
        def probability_win(n: int):
          count_wins = 0
          for _ in range(1000):
            if montyHall(n):
              count wins += 1
          return count wins / 1000
        n_{value} = [ i for i in range(3,101)]
        probabilty_n = [
          probability_win(i) for i in range(3,101)
        1
        plt.xlabel('VALUE OF N')
        plt.ylabel('PROBABILITY OF WINNING IF SWITCHED')
        plt.title('Probablity of winning vs values for n')
        plt.bar(n_value,probabilty_n)
        plt.show()
```


Area and π Estimation (6 marks)

(a) Write a function <code>generatePoint(m,n)</code> that takes as arguments two integers m , n and returns a pair of numbers (x,y) such that $x,y\in_R[m,n]$. Here, [m,n] denotes the set of all real numbers between m and n (including m and n) and $x,y\in_R[m,n]$ denotes that both x and y are picked uniformly at random from [m,n].

```
In [2]: import random as rnd

def generatePoint(m: int, n:int):
    x = m + rnd.random()*abs(n-m)
    y = m + rnd.random()*abs(n-m)
    return x,y
```

(b) Each point (x,y) returned by <code>generatePoint(0,1)</code> may be interpreted as a point chosen at random from the unit square whose bottom left vertex is (0,0). Write a function that estimates the area of the region under the curve $y=x^2$ in this unit square.

```
In [3]: # estimate area of parabola under the curve y = x squared

z = int(le6)

num_points_under_parabola = 0
for _ in range(z):
    x,y = generatePoint(0,1)
    if y < x*x:
        num_points_under_parabola += 1

area_of_parabola = num_points_under_parabola / z

print('The area of the region under the parabola y = x^2 where x is from print(area_of_parabola)</pre>
```

The area of the region under the parabola $y = x^2$ where x is from 0 to 1 is 0.334345

(c) Write a function that estimates the value of π using <code>generatePoint(0,1)</code> . Hint: you may want to estimate the area of the circle with center (1/2,1/2) and radius 1/2.

```
In [4]:    num_points_inside_circle = 0
    for _ in range(z):
        x,y = generatePoint(0,1)
        if (x-0.5)**2 + (y-0.5)**2 <= 0.25:
            num_points_inside_circle += 1

        area_of_circle = num_points_inside_circle / z

    pi_approx = 4 * area_of_circle
    print(f'The approximate value of pi is {pi_approx}')</pre>
```

The approximate value of pi is 3.142412

Erdős Number Computation (10 marks)

The Erdős number of a scientist X describes the "collaborative distance" between the mathematician Paul Erdős and X. Paul Erdős himself is assigned an Erdős number of zero. Scientists who have coauthored a research paper with Erdős have Erdős number 1, scientists who have collaborated with scientists having Erdős number 1 but not with Erdős have an Erdős number of 2, and so on. That is, a scientist has a finite Erdős number, say $i \geq 1$, if and only if she has collaborated with a scientist having Erdős number i-1 but not with anyone who has an Erdős number less than i-1.

Write a program that takes a csv file as input and displays the Erdős number of all scientists in it. Each line in the csv file is of the form Scientist 1, Scientist 2 indicating that these two scientists have collaborated. Example: The entry Alon, Erdos indicates that Erdős and Alon have a research paper together. You may use the following code block to read from a csv file.

```
import csv
with open('collab.csv') as csvfile:
    csvreader = csv.reader(csvfile)
```

Here, with open('collab.csv') as csvfile: opens the CSV file named collab.csv and creates a file object named csvfile. The with statement ensures that the file is properly closed after the code block completes or in case of an error.

csvreader = csv.reader(csvfile) creates a CSV reader object named csvreader which can be used to iterate over the rows of the CSV file. For example,

```
for row in csvreader:
```

iterates over each row in the CSV file Each row is treated as a list of strings representing the columns in the CSV file. That is, row[0] denotes the first column and row[1] denotes the second column.

```
In [5]: import queue
import csv

In [6]: class Scientist:
    def __init__(self,name: str) -> None:
        self.name = name
        self.isVisited = False
        self.erdoNumber = -1
        self.collab_list = list()

    def __gt__(self, other):
        return isinstance(other, Scientist) and self.erdoNumber > other.erdoN
    def __lt__(self, other):
        return isinstance(other, Scientist) and self.erdoNumber < other.erdoN</pre>
```

```
In [7]: class Graph:
          def init (self, n: int, m: int, scientist name list: list[str]) -> N
            self.num vertices = n
            self.num_edges = m
            self.vertices list = [
              Scientist(scientist) for scientist in scientist_name_list
            self.vertices_dictionary = dict()
            for scientist in self.vertices list:
              self.vertices dictionary[scientist.name] = scientist
          def addEdge(self, name1: str, name2: str):
            try:
              scientist1 = self.vertices_dictionary[name1]
              scientist2 = self.vertices_dictionary[name2]
              scientist1: Scientist
              scientist2: Scientist
              scientist1.collab list.append(scientist2)
              scientist2.collab list.append(scientist1)
            except:
              print(f'one of the scientist name not found')
          def bfs(self,name: str):
            scientist dictionary = self.vertices dictionary
            for scientist in self.vertices list:
              scientist.erdoNumber = -1
              scientist.isVisited = False
              source = scientist dictionary[name]
              source: Scientist
              source.erdoNumber = 0
              print(f'The name {name} not found')
              return
            q = queue.Queue()
            q.put(source)
            while not q.qsize() == 0:
              current scientist = q.qet()
              current scientist: Scientist
              current scientist.isVisited = True
              for neighbour in current scientist.collab list:
                neighbour: Scientist
                 if neighbour.isVisited == False:
                  neighbour.erdoNumber = current_scientist.erdoNumber + 1
                  q.put(neighbour)
          def printErdoNumber(self):
            for scientist in self.vertices_list:
              scientist: Scientist
              print(f'The erdo number of scientist {scientist.name} is {scientist
            print()
```

```
print()
scientist list = list(self.vertices list)
scientist_list.sort()
erdo_number_dictionary = dict()
for scientist in scientist_list:
 try:
   x = erdo number dictionary[scientist.erdoNumber]
   x: list
   x.append(scientist)
 except:
    erdo number dictionary[scientist.erdoNumber] = [scientist]
for key in erdo_number_dictionary.keys():
 if key == -1:
    print('The scientist(s) having no erdo numbers are ')
    erdo_number_list = erdo_number_dictionary[key]
    erdo number list: list
    length = len(erdo number list)
    for i in range(length):
      scientist = erdo number list[i]
      if i == length - 1:
        print(scientist.name)
       print()
      else:
        print(scientist.name, end=', ')
        # print()
    print(f'The scientist having erdo number as {key} are')
    erdo number list = erdo number dictionary[key]
    erdo number list: list
   length = len(erdo_number_list)
    for i in range(length):
      scientist = erdo number list[i]
      scientist: Scientist
      if i == length - 1:
        print(scientist.name)
        print()
      else:
        print(scientist.name, end=', ')
        # print()
del erdo number dictionary
```

```
with open('./collab.csv','r') as file:
  csvreader = csv.reader(file)
  unique name_list = []
  file content list = []
  for row in csvreader:
    file_content_list.append(row)
    for name in row:
      if name not in unique_name_list:
        unique name list.append(name)
  graph = Graph(len(unique_name_list), 2*len(file_content_list), unique_n
  for edge in file content list:
    graph.addEdge(edge[0],edge[1])
  # according to the question, we have to start with ERDOS
  graph.bfs('ERDOS')
  graph.printErdoNumber()
The erdo number of scientist AHARONI is 4
The erdo number of scientist KOMJATH is 3
The erdo number of scientist LINIAL is 5
The erdo number of scientist MARTIN LOEBL is 8
The erdo number of scientist PENNY HAXELL is 9
The erdo number of scientist THOMASSEN is 7
The erdo number of scientist ALAN HARTMAN is 5
The erdo number of scientist COLBOURN is 3
The erdo number of scientist DEAN HOFFMAN is 8
The erdo number of scientist ERIC MENDELSOHN is 8
The erdo number of scientist KATHERINE HEINRICH is 8
The erdo number of scientist PHELPS is 4
The erdo number of scientist ROSA is 8
The erdo number of scientist STINSON is 9
The erdo number of scientist ALON is 1
The erdo number of scientist BOLLOBAS is 2
The erdo number of scientist ERDOS is 0
The erdo number of scientist FAN CHUNG is 3
The erdo number of scientist FRANKL is 4
The erdo number of scientist FUREDI is 2
The erdo number of scientist GIL KALAI is 4
The erdo number of scientist HAJNAL is 2
The erdo number of scientist KLEITMAN is 3
The erdo number of scientist LOVASZ is 3
The erdo number of scientist SPENCER is 6
The erdo number of scientist TUZA is 5
The erdo number of scientist WEST is 6
The erdo number of scientist BABAI is 1
The erdo number of scientist NESETRIL is 6
The erdo number of scientist PYBER is 2
The erdo number of scientist SOS is 5
The erdo number of scientist GRAHAM BRIGHTWELL is 7
The erdo number of scientist HARARY is 6
The erdo number of scientist HELL is 7
The erdo number of scientist KOHAYAKAWA is 8
The erdo number of scientist MILNER is 4
```

The erdo number of scientist SAUER is 5

```
The erdo number of scientist SZEMEREDI is 4
The erdo number of scientist WINKLER is 8
The erdo number of scientist BONDY is 1
The erdo number of scientist CHVATAL is 2
The erdo number of scientist SIMONOVITS is 4
The erdo number of scientist BURR is 1
The erdo number of scientist DUKE is 2
The erdo number of scientist FAUDREE is 2
The erdo number of scientist RON GRAHAM is 3
The erdo number of scientist CHARLES LINDNER is 7
The erdo number of scientist CHRISTOPHER RODGER is 8
The erdo number of scientist ELIZABETH BILLINGTON is 9
The erdo number of scientist HORAK is 6
The erdo number of scientist MULLIN is 10
The erdo number of scientist WALTER WALLIS is 7
The erdo number of scientist ROLF REES is 8
The erdo number of scientist KOMLOS is 3
The erdo number of scientist DONALD KREHER is 4
The erdo number of scientist LIE ZHU-2 is 9
The erdo number of scientist RODL is 2
The erdo number of scientist VANSTONE is 10
The erdo number of scientist RALPH STANTON is 11
The erdo number of scientist ENOLA is 3
The erdo number of scientist SHERLOCK is 2
The erdo number of scientist GYARFAS is 3
The erdo number of scientist LUCZAK is 1
The erdo number of scientist PACH is 4
The erdo number of scientist SHELAH is 5
The erdo number of scientist TROTTER is 5
The erdo number of scientist ZZZ is 1
The erdo number of scientist JEFFRY KAHN is 4
The erdo number of scientist JIRI MATOUSEK is 7
The erdo number of scientist HARRY is -1
The erdo number of scientist HERMIONE is -1
The erdo number of scientist JAN KRATOCHVIL is 6
The erdo number of scientist KOSTOCHKA is 3
The erdo number of scientist SVATOPLUK POLJAK is 7
The erdo number of scientist SAKS is 5
```

The scientist(s) having no erdo numbers are HARRY, HERMIONE

The scientist having erdo number as 0 are ERDOS

The scientist having erdo number as 1 are ALON, BABAI, BONDY, BURR, LUCZAK, ZZZ

The scientist having erdo number as 2 are BOLLOBAS, FUREDI, HAJNAL, PYBER, CHVATAL, DUKE, FAUDREE, RODL, SHERLOCK

The scientist having erdo number as 3 are KOMJATH, COLBOURN, FAN CHUNG, KLEITMAN, LOVASZ, RON GRAHAM, KOMLOS, ENOLA, GYARFAS, KOSTOCHKA

The scientist having erdo number as 4 are

AHARONI, PHELPS, FRANKL, GIL KALAI, MILNER, SZEMEREDI, SIMONOVITS, DONALD KREHER, PACH, JEFFRY KAHN

The scientist having erdo number as 5 are LINIAL, ALAN HARTMAN, TUZA, SOS, SAUER, SHELAH, TROTTER, SAKS

The scientist having erdo number as 6 are SPENCER, WEST, NESETRIL, HARARY, HORAK, JAN KRATOCHVIL

The scientist having erdo number as 7 are THOMASSEN, GRAHAM BRIGHTWELL, HELL, CHARLES LINDNER, WALTER WALLIS, JIRI MATOUSEK, SVATOPLUK POLJAK

The scientist having erdo number as 8 are MARTIN LOEBL, DEAN HOFFMAN, ERIC MENDELSOHN, KATHERINE HEINRICH, ROSA, KO HAYAKAWA, WINKLER, CHRISTOPHER RODGER, ROLF REES

The scientist having erdo number as 9 are PENNY HAXELL, STINSON, ELIZABETH BILLINGTON, LIE ZHU-2

The scientist having erdo number as 10 are MULLIN, VANSTONE

The scientist having erdo number as 11 are RALPH STANTON