$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+^{lphaeta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \tau^{\alpha\beta}$	$\sigma_1^{\#2} + \alpha^{eta}$	$t_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + \alpha$

_	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\sharp 1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$ au_{0}^{\#1} \dagger$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_0^{\sharp 1}$ †	0	0	0	$-\frac{1}{t_1}$

 $_{\kappa}^{\lambda}\partial^{\kappa}f_{\lambda\alpha}+$

 $t_1\;\omega_{\kappa\alpha}^{\;\;\alpha}\,\partial^\kappa f'_{\;\;\prime} + t_1\;\omega_{\kappa\lambda}^{\;\;\lambda}\,\partial^\kappa f'_{\;\;\prime} + 2\,t_1\,\partial^\alpha f_{\;\kappa\alpha}\,\partial^\kappa f'_{\;\;\prime} - t_1\,\partial_\kappa f^\lambda_{\;\;\lambda}\,\partial^\kappa f'_{\;\;\prime} +$

 $2t_1\ \omega_{_{IK}\theta}\ \partial^\kappa f^{'\theta} - t_1\ \omega_{_{I\alpha}}^{\alpha}\ \partial^\kappa f^{'} - t_1\ \omega_{_{I\lambda}}^{\lambda}\ \partial^\kappa f^{'} + \frac{1}{2}\ t_1\ \partial^\alpha f^{\lambda}$

 $\tfrac{1}{2} \, t_1 \, \partial_k f_{\theta}^{\ \lambda} \, \partial^\kappa f_{\lambda}^{\ \theta} + \tfrac{1}{2} \, t_1 \, \partial_\kappa f^{\lambda}_{\ \theta} \, \partial^\kappa f_{\lambda}^{\ \theta} - t_1 \, \partial^\alpha f^{\lambda}_{\ \alpha} \, \partial^\kappa f_{\lambda \kappa} \, +$

 $\frac{2}{3}r_{1}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}r_{1}\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial^{\beta}\omega_{,}^{\alpha\lambda}\partial_{\lambda}\omega_{\alpha\beta}^{\ \prime} -$

 $\frac{8}{3}r_1\partial^{\beta}\omega_{\lambda}^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}+r_5\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial^{\lambda}\omega^{\theta\kappa}_{}-r_5\partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha}\partial^{\lambda}\omega^{\theta\kappa}_{}$

Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

Source constraints $SO(3) \text{ irreps}$ $\tau_{0}^{\#2} == 0$ $\tau_{1}^{\#2} \alpha + 2 i k \sigma_{0}^{\#1} == 0$ $\tau_{1}^{\#1} \alpha == 0$ $\tau_{1}^{\#1} \alpha \beta + i k \sigma_{1}^{\#2} \alpha \beta == 0$ $\tau_{1}^{\#1} \alpha \beta + i k \sigma_{1}^{\#2} \alpha \beta == 0$ $\tau_{2}^{\#1} \alpha \beta - 2 i k \sigma_{2}^{\#1} \alpha \beta == 0$ $\tau_{2}^{\#1} \alpha \beta - 2 i k \sigma_{2}^{\#1} \alpha \beta == 0$ Total #:		#	1	1	3	3	3	2	16
	Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$+2ik\ \sigma_{1}^{\#2}{}^{\alpha}$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$+ik \sigma_1^{\#2\alpha\beta}$	$-2ik\sigma_{2+}^{\#1}^{\alpha\beta}$	Total #:

 $\omega_{2^{-}}^{\#1}\alpha\beta\chi$

 $\omega_{2}^{\#1}{}_{\alpha\beta} f_{2}^{\#1}{}_{\alpha\beta}$

0

 $-\frac{i\,k\,t_1}{\sqrt{2}}$

<u>t1</u>

 $\omega_2^{\#1} + ^{\alpha \beta}$

₽

 $|k^2 r_1 + \frac{1}{2}$

0

0

 $\omega_{2^{ ext{-}}}^{\#1} +^{lphaeta\chi}$

0

 $k^2 t_1$

 $\frac{i\,k\,t_1}{\sqrt{2}}$

 $f_2^{#1} \dagger^{\alpha\beta}$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2^{-}}^{\#1}\dagger^{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

#,	ω_{0}^{-1}	0	0	0	<i>-t</i> ₁
£#5	+0,	0	0	0	0
£#1	, 0 ₊	$i \sqrt{2} k t_1$	$-2 k^2 t_1$	0	0
,,#1	⁺⁰	- <i>t</i> ₁	$-i\sqrt{2}\ kt_1$	0	0
		$\omega_{0}^{\#1}$ \dagger	$f_{0}^{\#1}$ †	$f_0^{#2} +$	$\omega_{0}^{\#1}\dagger$

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	<i>-t</i> ₁
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$i\sqrt{2}\ kt_1$	$-2 k^2 t_1$	0	0
$\omega_{0}^{\#1}$	-t ₁	$-i\sqrt{2}kt_1$	0	0
•	$\omega_{0}^{\#1}$ †	$f_{0}^{#1}$ †	$f_0^{#2} \dagger$	$\omega_{0}^{\#1}$ \dagger

$f_{1}^{\#2}$	0	0	0	$i k t_1$	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}\ f_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ec{\imath}kt_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}\;f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha \beta$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1+}^{\#1} +^{\alpha\beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#^2} +^\alpha$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

	Massive particl	e
? $J^P = 2^{-/}$	Pole residue:	$-\frac{1}{r_1} > 0$
2 = 2 / · · · · · · · · · · · · · · · · · ·	Polarisations:	5
k^{μ}	Square mass:	$-\frac{t_1}{2r_1} > 0$
?	Spin:	2
·	Parity:	Odd

Lagrangian density

 $\frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\theta\alpha\beta} - r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\theta\kappa\lambda} +$

 $r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \, \partial_\alpha \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 2 \, r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta}.$

 $\frac{1}{2}\,t_1\,\partial^\alpha f_{\,\theta\kappa}\,\partial^\kappa f_{\,\alpha}^{\ \ \theta} - \frac{1}{2}\,t_1\,\partial^\alpha f_{\,\kappa\theta}\,\partial^\kappa f_{\,\alpha}^{\ \ \theta} - \frac{1}{2}\,t_1\,\partial^\alpha f^{\,\lambda}_{\ \ \kappa}\,\partial^\kappa f_{\,\alpha\lambda} +$

(No massless particles)