MAT1071 MATHEMATICS I 1. WEEK PART 2

TRIGONOMETRIC FUNCTIONS

Angles

The radian measure of the central angle A'CB' is the number $\theta = s/r$. For a unit circle of radius r = 1, θ is the length of arc AB that central angle ACB cuts from the unit circle.

Angles are measured in degrees or radians. The number of **radians** in the central angle A'CB' within a circle of radius r is defined as the number of "radius units" contained in the arc s subtended by that central angle. If we denote this central angle by θ when measured in radians, this means that $\theta = s/r$

If the circle is a unit circle having radius r=1, we see that the central angle θ measured in radians is just the length of the arc that the angle cuts from the unit circle. Since one complete revolution of the unit circle is 360° or 2π radians, we have

$$\pi$$
 radians = 180°

and

1 radian =
$$\frac{180}{\pi}$$
 (\approx 57.3) degrees or 1 degree = $\frac{\pi}{180}$ (\approx 0.017) radians.

Conversion Formulas

1 degree =
$$\frac{\pi}{180}$$
 radians

Degrees to radians: multiply by $\frac{\pi}{180}$

1 radian =
$$\frac{180}{\pi}$$
 degrees

Radians to degrees: multiply by $\frac{180}{\pi}$

TABLE Angles measured in degrees and radians

Degrees -180 -135 -90 -45 0 30 45 60 90 120 135 150 180 270 360

$$\theta$$
 (radians) $-\pi$ $\frac{-3\pi}{4}$ $\frac{-\pi}{2}$ $\frac{-\pi}{4}$ 0 $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ $\frac{2\pi}{3}$ $\frac{3\pi}{4}$ $\frac{5\pi}{6}$ π $\frac{3\pi}{2}$ 2π

An angle in the xy-plane is said to be in **standard position** if its vertex lies at the origin and its initial ray lies along the positive x-axis

Angles measured counter-clockwise from the positive x-axis are assigned positive measures; angles measured clockwise are assigned negative measures.

Angles describing counterclockwise rotations can go arbitrarily far beyond 2π radians or 360°. Similarly, angles describing clockwise rotations can have negative measures of all sizes

$$\frac{\pi}{6} + 2\pi = \frac{13\pi}{6}$$
 (start at $\frac{\pi}{6}$ then rotate once around counter clockwise)

$$\frac{\pi}{6} + 4\pi = \frac{25\pi}{6}$$
 (start at $\frac{\pi}{6}$ then rotate around twice counter clockwise)

$$\frac{\pi}{6}-2\pi=-\frac{11\pi}{6}$$
 (start at $\frac{\pi}{6}$ then rotate once around clockwise)

$$\frac{\pi}{6} - 4\pi = -\frac{23\pi}{6}$$
 (start at $\frac{\pi}{6}$ then rotate around twice clockwise)

The Six Basic Trigonometric Functions

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$
 $\csc \theta = \frac{\text{hyp}}{\text{opp}}$
 $\cos \theta = \frac{\text{adj}}{\text{hyp}}$ $\sec \theta = \frac{\text{hyp}}{\text{adj}}$
 $\tan \theta = \frac{\text{opp}}{\text{adj}}$ $\cot \theta = \frac{\text{adj}}{\text{opp}}$

sine:
$$\sin \theta = \frac{y}{r}$$
 cosecant: $\csc \theta = \frac{r}{y}$

cosine:
$$\cos \theta = \frac{x}{r}$$
 secant: $\sec \theta = \frac{r}{x}$

tangent:
$$\tan \theta = \frac{y}{x}$$
 cotangent: $\cot \theta = \frac{x}{y}$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{1}{\tan \theta}$$

$$\sec \theta = \frac{1}{\cos \theta} \qquad \csc \theta = \frac{1}{\sin \theta}$$

$$\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} \qquad \sin\frac{\pi}{6} = \frac{1}{2}$$

$$\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} \qquad \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

$$\tan\frac{\pi}{4} = 1$$

$$\sin\frac{\pi}{6} = \frac{1}{2}$$

$$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

$$\tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}$$

$$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

$$\cos\frac{\pi}{3} = \frac{1}{2}$$

$$\tan\frac{\pi}{3} = \sqrt{3}$$

FIGURE The angles of two common triangles, in degrees and radians.

TABLE Values of $\sin \theta$, $\cos \theta$, and $\tan \theta$ for selected values of θ																
Degrees θ (radian		-180 -π	$\frac{-135}{-3\pi}$	$\frac{-90}{\frac{-\pi}{2}}$	$\frac{-45}{\frac{-\pi}{4}}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{120}{2\pi}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	360 2π
$\sin heta$		0	$\frac{-\sqrt{2}}{2}$	-1	$\frac{-\sqrt{2}}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\cos \theta$		-1	$\frac{-\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$\frac{-\sqrt{2}}{2}$	$\frac{-\sqrt{3}}{2}$	-1	0	1
an heta		0	1		-1	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$\frac{-\sqrt{3}}{3}$	0		0

$$\alpha + \beta = 90^{\circ} \Rightarrow \bullet \sin \alpha = \cos \beta$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

$$\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$

$$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

$$\sin\left(\frac{\pi}{2} + \alpha\right) = +\cos\alpha$$

$$\sin\left(\frac{3\pi}{2} - \alpha\right) = -\sin\alpha$$

$$\tan\left(\frac{3\pi}{2} - \alpha\right) = \cot\alpha$$

$$\sin\left(\frac{3\pi}{2} + \alpha\right) = -\cos\alpha$$

$$\cos\left(\frac{3\pi}{2} + \alpha\right) = \sin\alpha$$

Example

Example

$$sin130 = sin(180 - 50) = sin30$$
 $tan190 = tan(180 + 10) = tan10$
 $cos150 = cos(180 - 30) = -cos30$ $cot225 = cot(180 + 45) = cot45$
 $tan110 = tan(180 - 70) = -tan70$ $sin300 = sin(360 - 60) = -sin60$
 $cot95 = cot(180 - 85) = -cot85$ $cos330 = cos(360 - 30) = cos30$
 $sin220 = sin(180 + 40) = -sin40$ $tan340 = tan(360 - 20) = -tan20$
 $cos260 = cos(180 + 80) = -cos80$ $cot325 = cot(360 - 40) = -cot40$

Periodicity and Graphs of the Trigonometric Functions

DEFINITION A function f(x) is **periodic** if there is a positive number p such that f(x + p) = f(x) for every value of x. The smallest such value of p is the **period** of f.

Periods of Trigonometric Functions

Period
$$\pi$$
: $\tan(x + \pi) = \tan x$

$$\cot(x + \pi) = \cot x$$

Period 2
$$\pi$$
: $\sin(x + 2\pi) = \sin x$

$$\cos(x + 2\pi) = \cos x$$

$$\sec(x + 2\pi) = \sec x$$

$$\csc(x + 2\pi) = \csc x$$

Even

$$\cos(-x) = \cos x$$

$$\sec(-x) = \sec x$$

Odd

$$\sin(-x) = -\sin x$$

$$\tan(-x) = -\tan x$$

$$\csc(-x) = -\csc x$$

$$\cot(-x) = -\cot x$$

Even Functions and Odd Functions

DEFINITIONS A function y = f(x) is an

even function of x if f(-x) = f(x), odd function of x if f(-x) = -f(x),

for every *x* in the function's domain.

GRAPHS

20

Range: $-1 \le y \le 1$

Period: 2π

Domain: $-\infty < x < \infty$

Range: $-1 \le y \le 1$

Period: 2π

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$

Range: $-\infty < y < \infty$

Period: π

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$

Range: $-\infty < y < \infty$

Period: π

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$

Range: $y \le -1$ or $y \ge 1$

Period: 2π

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$

Range: $y \le -1$ or $y \ge 1$

Period: 2π

Range:
$$-1 \le y \le 1$$

Period:
$$2\pi$$

Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$

Range:
$$y \le -1$$
 and $y \ge 1$

Period:
$$2\pi$$

Domain:
$$-\infty < x < \infty$$

Range:
$$-1 \le y \le 1$$

Period:
$$2\pi$$

Domain:
$$x \neq 0, \pm \pi, \pm 2\pi, \dots$$

Range:
$$y \le -1$$
 and $y \ge 1$

Period:
$$2\pi$$

Domain:
$$x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$$

Range:
$$-\infty < y < \infty$$

Period:
$$\pi$$

Domain:
$$x \neq 0, \pm \pi, \pm 2\pi, \dots$$

Range:
$$-\infty < y < \infty$$

Period:
$$\pi$$

Trigonometric Identities

$$x = r \cos \theta,$$
 $y = r \sin \theta.$
$$\cos^2 \theta + \sin^2 \theta = 1.$$

$$1 + \tan^2 \theta = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$

Addition Formulas

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
 $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

$$an(lpha\pmeta)=rac{ anlpha\pm aneta}{1\mp anlpha aneta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot\alpha \cot\beta \mp 1}{\cot\beta \pm \cot\alpha}$$

Double-Angle Formulas

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$$

$$an(2 heta) = rac{2 an heta}{1- an^2 heta}$$

$$\cot(2 heta) = rac{\cot^2 heta - 1}{2\cot heta}$$

Half-Angle Formulas

$$\cos^2\theta = \frac{1 + \cos 2\theta}{2}$$

$$\sin^2\theta = \frac{1-\cos 2\theta}{2}$$

The Law of Cosines

If a, b, and c are sides of a triangle ABC and if θ is the angle opposite c, then

$$c^2 = a^2 + b^2 - 2ab\cos\theta.$$

This equation is called the **law of cosines**.

The law of sines The law of sines says that if a, b, and c are the sides opposite the angles A, B, and C in a triangle, then

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$$

Two Special Inequalities

For any angle θ measured in radians,

$$-|\theta| \le \sin \theta \le |\theta|$$

$$-|\theta| \le \sin \theta \le |\theta|$$
 and $-|\theta| \le 1 - \cos \theta \le |\theta|$.

Triangle APQ is a right triangle with sides of length

$$QP = |\sin \theta|, \qquad AQ = 1 - \cos \theta.$$

From the Pythagorean theorem and the fact that $AP < |\theta|$, we get

$$\sin^2\theta + (1 - \cos\theta)^2 = (AP)^2 \le \theta^2.$$

The terms on the left-hand side are both positive, so each is smaller than their sum and hence is less than or equal to θ^2 :

$$\sin^2 \theta \le \theta^2$$
 and $(1 - \cos \theta)^2 \le \theta^2$.

By taking square roots, this is equivalent to saying that

$$|\sin \theta| \le |\theta|$$
 and $|1 - \cos \theta| \le |\theta|$,

SO

$$-|\theta| \le \sin \theta \le |\theta|$$
 and $-|\theta| \le 1 - \cos \theta \le |\theta|$.

These inequalities will be useful in the next chapter.

In Exercises 7–12, one of $\sin x$, $\cos x$, and $\tan x$ is given. Find the other two if x lies in the specified interval.

7.
$$\sin x = \frac{3}{5}, \quad x \in \left[\frac{\pi}{2}, \pi\right]$$
 8. $\tan x = 2, \quad x \in \left[0, \frac{\pi}{2}\right]$

8.
$$\tan x = 2, \quad x \in \left[0, \frac{\pi}{2}\right]$$

9.
$$\cos x = \frac{1}{3}, \quad x \in \left[-\frac{\pi}{2}, 0 \right]$$

9.
$$\cos x = \frac{1}{3}, \quad x \in \left[-\frac{\pi}{2}, 0 \right]$$
 10. $\cos x = -\frac{5}{13}, \quad x \in \left[\frac{\pi}{2}, \pi \right]$

11.
$$\tan x = \frac{1}{2}, \quad x \in \left[\pi, \frac{3\pi}{2} \right]$$

11.
$$\tan x = \frac{1}{2}, \quad x \in \left[\pi, \frac{3\pi}{2}\right]$$
 12. $\sin x = -\frac{1}{2}, \quad x \in \left[\pi, \frac{3\pi}{2}\right]$

Using the Addition Formulas

Use the addition formulas to derive the identities in Exercises 31–36.

$$31. \cos\left(x - \frac{\pi}{2}\right) = \sin x$$

31.
$$\cos\left(x - \frac{\pi}{2}\right) = \sin x$$
 32. $\cos\left(x + \frac{\pi}{2}\right) = -\sin x$

$$33. \sin\left(x + \frac{\pi}{2}\right) = \cos x$$

33.
$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$
 34. $\sin\left(x - \frac{\pi}{2}\right) = -\cos x$

In Exercises 39–42, express the given quantity in terms of $\sin x$ and $\cos x$.

39.
$$\cos(\pi + x)$$

41.
$$\sin\left(\frac{3\pi}{2}-x\right)$$

40.
$$\sin(2\pi - x)$$

42.
$$\cos\left(\frac{3\pi}{2} + x\right)$$

Find the function values in Exercises 47–50.

47.
$$\cos^2 \frac{\pi}{8}$$

48.
$$\cos^2 \frac{5\pi}{12}$$

49.
$$\sin^2 \frac{\pi}{12}$$

50.
$$\sin^2 \frac{3\pi}{8}$$

Solving Trigonometric Equations

For Exercises 51–54, solve for the angle θ , where $0 \le \theta \le 2\pi$.

51.
$$\sin^2 \theta = \frac{3}{4}$$

52.
$$\sin^2 \theta = \cos^2 \theta$$

53.
$$\sin 2\theta - \cos \theta = 0$$

54.
$$\cos 2\theta + \cos \theta = 0$$

Reference:

Thomas' Calculus, 12th Edition, G.B Thomas, M.D.Weir, J.Hass and F.R.Giordano, Addison-Wesley, 2012.