

РЕГУЛЯТОР «КАРЕЛИНА» *PK* 200–16

РАСЧЕТ ГИДРАВЛИЧЕСКИЙ

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл.

Санкт-Петербург 2019

Настоящий гидравлический расчет выполнен на регулятор «Карелина» РК-200-16 (далее – регулятор) DN 200 PN 16 МПа.

1 Задача расчета

Задачей расчета является оценка пропускной способности $K_{\rm v}$ регулятора при полном открытии затвора.

2 Исходные данные

- 2.1 Регулятор «Карелина» РК–200–16 относится к одному из основных видов трубопроводной арматуры регулирующей.
- 2.2 Сборочный чертеж регулятора, а также чертеж корпуса регулятора приведены на рисунках 1 и 2.

Подп. и дата									
Инв. № дубл.									
Взам. инв. №			a a						
Подп. и дата									
	Изм. Лист	№ докум.	Подпись Дата	Р	егулятор «	«Карели	ина» РК	200–16	5
Инв. № подл.	Разраб. Проверил	Езовитова Чертенков	137 11.11.20 May 11.11.20		ор «Карелин С 200–16	на»	Лит.	Лист 2	Листов 11
Инв. Ј	H. контр. Утвердил	Болонева Лавреженкова	De 11. H. 200	у РАСЧЕТ ГИ	ІДРАВЛИЧЕ	СКИЙ	AO	«НПФ «	цкба»

Проведенные исследовательские работы по экспериментальному определению коэффициентов сопротивления конфузорно-диффузорных переходов показывают, что коэффициенты сопротивления зависят от степени сужения проточной части, углов сужения (расширения) конфузорно-диффузорных переходов, относительной длины цилиндрического участка и числа Рейнольдса.

- 2.3.2 Проточная часть регулятора состоит из ряда последовательных местных сопротивлений:
- входной патрубок регулятора ζ $l_{\text{пруч1}}_{FN}$ прямой участок (диаметр D_{I} , длина $l_{\text{пруч1}}$);
- переход от входного патрубка к месту заужения в седле $\zeta_{\text{кон} \varphi_{FN}}$ конфузор (вход диаметр D_1 , и выход диаметр D_0 , центральный угол $\alpha_{\text{цк}}$);
- заужение в седле (центральная часть регулятора) ζ $l_{\rm пр}$ уч 2_{FN} прямой участок (диаметр D_0 , длина $l_{\rm пр}$ уч2);
- переход от заужения в седле к выходному патрубку $\zeta_{\text{дифф}_{FN}}$ —диффузор (вход диаметр D_0 , и выход диаметр D_1 , центральный угол $\alpha_{\text{ид}}$);
- выходной патрубок регулятора ζ lпруч3 $_{FN}$ прямой участок (диаметр D1, длина lпруч3).
- 2.4 Исходными данными для расчета являются основные геометрические размеры проточной части. Основные геометрические размеры проточной части регулятора указаны на рисунке 3 и в таблице 3.

Изм. Лист № докум. Подпись Дата

Регулятор «Карелина» РК 200-16

Лист 5

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

подл.

Рисунок 3 — Проточная часть с геометрическими размерами регулятора «Карелина» РК 200–16

Таблица 1 – Исходные данные

Размеры в миллиметрах

Пај	Обозна- чение	Значение	
D ~ C	диаметр	D_1	200
Входной патрубок	длина прямого участка	lпруч1	50
	диаметр на входе	D_1	200
Конфузор	диаметр на выходе	D_0	158
^1 ^	центральный угол	Ицк	14°
TT	диаметр заужения	D_0	158
Центральная часть	длина прямого участка	lпруч 2	63
	диаметр на входе	D_0	158
Диффузор	диаметр на выходе	D_1	200
	центральный угол	αцд	14°
D	лиаметр	D_1	200
Выходной патрубок	длина прямого участка	<i>l</i> пруч3	50

Изм.	Лист	№ докум.	Подпись	Дата

Подп.

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

Регулятор «Карелина» РК 200–16

Лист

- рассчитать коэффициенты сопротивления местных сопротивлений, составляющих проточную часть регулятора (прямого участка на входе ζ lпруч 1_{FN} , конфузора $\zeta_{\text{конф}_{FN}}$, прямого участка в центре регулятора ζ lпруч 2_{FN} , диффузора $\zeta_{\text{дифф}_{FN}}$, прямого участка на выходе ζ lпруч 3_{FN} ;
 - рассчитать коэффициент сопротивления регулятора ζ_{FN} ;
- рассчитать пропускную способность регулятора по значению его коэф- фициента сопротивления ζ_{FN} .
- 3.2 Коэффициент сопротивления регулятора ζ_{FN} равен сумме коэффициентов сопротивления местных сопротивлений и рассчитывается по формуле

$$\zeta_{FN} = \zeta \operatorname{Imp}_{Y^{\mathsf{q}}1_{FN}} + \zeta_{\operatorname{KOH}\Phi_{FN}} + \zeta \operatorname{Imp}_{Y^{\mathsf{q}}2_{FN}} + \zeta_{\operatorname{Ди}\Phi\Phi_{FN}} + \zeta \operatorname{Imp}_{Y^{\mathsf{q}}3_{FN}}, \tag{1}$$

где ζ lпруч 1_{FN} , ζ lпруч 2_{FN} , ζ lпруч 3_{FN} - коэффициенты сопротивления прямых участков;

 $\zeta_{\text{кон} \phi_{FN}}$ - коэффициент сопротивления конфузора;

 $\zeta_{\text{дифф}_{FN}}$ - коэффициент сопротивления диффузора.

 Π р и м е ч а н и е — Индекс FN означает, что коэффициенты сопротивления отнесены к скорости во входном патрубке арматуры, диаметр которого численно равен номинальному диаметру DN (мм).

- 3.3 Коэффициенты сопротивления местных сопротивлений рассчитываются по формулам, приведенным в книге И.Е.Идельчика «Справочник по гидравлическим сопротивлениям», Москва: Машиностроение, 1975, 559 с.
- 3.3.1 Коэффициент сопротивления прямого участка рассчитывается по формуле

$$\zeta \operatorname{Impyq1}_{FN} = \lambda \cdot \frac{\operatorname{Impyqi}}{D}, \tag{2}$$

где λ - коэффициент сопротивления трения единицы относительной длины трубы (λ =0,027);

Изм.	Лист	№ докум.	Подпись	Дата

Регулятор «Карелина» РК 200-16

Лист 7

Подп. и дата

№ Инв. № дубл.

инв.

Взам.

Подп. и дата

тв. № подлт.

D

- диаметр рассчитываемого участка, м.

3.3.2 Коэффициент сопротивления конфузора $\zeta_{\text{конф}_{FN}}$ рассчитывается по формуле

$$\zeta$$
 кон $\phi_{FN} = \zeta$ кон $\phi_{F_0} \cdot \left(\frac{DN}{D_0}\right)^4$, (3)

где $\zeta_{\kappa o \mu \phi_{F_0}}$ — коэффициент сопротивления, отнесенный к скорости в выходном сечении конфузора F_0 ;

$$\begin{split} \zeta_{\text{ кон} \phi_{F_0}} &= (-0.0125 \cdot n_0^4 + 0.0224 \cdot n_0^3 - 0.00723 \cdot n_0^2 + 0.00444 \cdot n_0 - \\ &\quad - 0.00745) \cdot (\alpha_{\rm p}^3 - 2 \cdot \pi \cdot \alpha_{\it p}^2 - 10 \cdot \alpha_{\rm p}) + \zeta_{\rm TP} \; ; \end{split}$$

$$n_0 = \frac{F_0}{F_1} = \left(\frac{D_0}{D_1}\right)^2$$
 - степень сужения конфузора;

 $\alpha_{\rm p} = 0.01745 \cdot \alpha -$ угол заужения в радианах;

 $\zeta_{\text{тр}} = 0.01$ – коэффициент сопротивления трения.

3.3.3 Коэффициент сопротивления диффузора $\zeta_{\text{дифф}_{FN}}$ рассчитывается по формуле

$$\zeta_{\text{диф}_{FN}} = \zeta_{\text{диф}_{F_0}} \cdot \left(\frac{DN}{D_0}\right)^4,$$
 (4)

где $\zeta_{\text{диф}_{F_0}}$ -коэффициент сопротивления, отнесенный к скорости во входном сечении диффузора F_0 ;

$$\zeta$$
 дифф = φ расш $\cdot \left(1 - \frac{F_0}{F_1}\right)^2 + \zeta$ тр;
$$\varphi$$
расш = $3.2 \cdot tg \frac{\alpha}{2} \cdot \sqrt[4]{tg \frac{\alpha}{2}} - для \ 0^\circ < \alpha < 40^\circ;$

 $\zeta_{\text{тр}} = 0.01 - \text{коэффициент сопротивления трения.}$

 $3.4\ \Gamma$ идравлической характеристикой регулирующей арматуры является пропускная способность $K_{
m v}$.

В соответствии ГОСТ 24856—2014 (пункт 6.2.1) «Арматура трубопроводная. Термины и определения» – «Пропускная способность (регулирующей

Изм.	Лист	№ докум.	Подпись	Дата

Регулятор «Карелина» РК 200–16

Лист 8

Подп. и дата

№ Инв. № дубл.

Взам. инв.

Подп. и дата

подл.

MHB. No

арматуры); $K_{\rm v}$ м³/ч: Величина численно равная расходу рабочей среды с плотностью 1000 кг/м³, протекающей через арматуру, при перепаде давлений 0,1 МПа».

В соответствии с ГОСТ 34437–2018 «Арматура трубопроводная. Методика экспериментального определения гидравлических и кавитационных характеристик» (формула (14)) пропускная способность арматуры $K_{\rm v}$ рассчитывается по формуле

$$K_{\rm v} = \frac{3,57 \cdot 10^4 \cdot Q}{B} \cdot \sqrt{\frac{\rho_1}{\Lambda P}},\tag{5}$$

где Q – объемный расход, м³/с;

 ρ_1 — плотность среды при параметрах до регулятора P_1 и t_1 , кг/м³;

△Р – перепад (потери) давления на регуляторе, Па;

B — коэффициент, учитывающий отношение абсолютных давлений до регулятора P_1 и после регулятора P_2 . Для жидких сред B=1;

 $3,57\cdot10^4$ — коэффициент, учитывающий размерности.

3.5 В соответствии с ГОСТ 34437 (формула (2)) коэффициент сопротивления арматуры рассчитывается формуле

$$\zeta = \frac{2 \cdot \Delta P \cdot FN^2 \cdot B^2}{Q_1^2 \cdot \rho_1},\tag{6}$$

где $FN = \frac{\pi}{4} \cdot DN^2$ – площадь проходного сечения, м²;

 $Q_{\rm l}^2$ — объемный расход до регулятора, м³/с.

3.6 Преобразуем формулы (5) и (6) относительно перепада давления ΔP

$$\Delta P = \frac{\left(3,57 \cdot 10^4\right)^2 \cdot Q^2 \cdot \rho_1}{K_{\rm v}^2},\tag{7}$$

$$\Delta P = \zeta \cdot \frac{Q_1^2 \cdot \rho_1}{2 \cdot FN^2} \,. \tag{8}$$

Приравняем уравнения (7) и (8) друг к другу

Изм. Лист № докум. Подпись Дата

Регулятор «Карелина» РК 200-16

Лист 9 и в результате простых преобразований получим зависимости между пропускной способностью и коэффициентом сопротивления

$$\zeta = \frac{25,48 \cdot 10^8 \cdot FN^2}{K_y^2},\tag{10}$$

$$K_{\rm v}^2 = \frac{5.04 \cdot 10^4 \cdot FN}{\sqrt{\zeta}} \,. \tag{11}$$

4 Результаты расчета

4.1 Результаты расчетов коэффициентов сопротивления местных сопротивлений, составляющих проточную часть регулятора, ζ Іпруч $_{FN}$, ζ конф $_{FN}$, ζ Іпруч $_{FN}$, ζ дифф $_{FN}$ и ζ Іпруч $_{FN}$, отнесенных к скоростному давлению в проходном сечении диаметром, численно равным (в мм) номинальному диаметру DN 200, а также коэффициента сопротивления регулятора ζ и пропускной способности регулятора K_v приведены в таблице 2.

Таблица 2 – Результаты расчетов

	Параметр	Обозначение	Значение (расчетное)
	прямого участка входного патрубка	ζ l пр уч 1_{FN}	0,0068
Коэф-	конфузора	ζ конф $_{FN}$	0,0541
фициент	прямого участка центральной части	ζ I пр уч 2_{FN}	0,0276
сопротив-	диффузора	${\zeta}_{ ext{дифф}_{FN}}$	0,1100
ления	прямого участка выходного патрубка	ζ l пр уч 3_{FN}	0,0068
	регулятора	ζ_{FN}	0,2053
Пропуск	ная способность регулятора, м ³ /ч	$K_{ m v}$	3489,2

5 Выводы

При полном открытии пропускная способность регулятора «Карелина» РК 200–16 составит $K_{\rm v} = (3500 \pm 350)~{\rm M}^3/{\rm H}$.

				2.0
77		10		
Изм.	Лист	№ докум.	Подпись	Дата

Регулятор «Карелина» РК 200-16

Лист 10

Подп. и дата

е Инв. № дубл.

Взам. инв. Л

Подп. и дата

нв. № подл.

Лист регистрации изменений

	Номера листов (страниц)		Всего листов № тогу	Входящий № сопрово-					
Изм.	из- ме- нен- ных	заме- нен- ных	но- вых	анну- лиро- ванных	(страниц) в доку- менте	№ доку- мента	дительного документа и дата	Подпись	Дата
						=,			
				Xe.					
7									
				40					

Регулятор «Карелина» РК 200–16

Лист

11

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

Изм. Лист

№ докум.

Подпись Дата