ТЕОРІЯ СТІЙКОСТІ

За лекціями Горбань Н.

Редактори: Терещенко Д.

Людомирський Ю.

Зміст

1.	Лек	ція 1	3
	1.1.	Нормальні системи диференційних рівнянь	3
	1.2.	Основні поняття теорії стійкості	5
	1.3.	Прилади дослідження на стійкість за означенням	6

1. Лекція 1

1.1. Нормальні системи диференційних рівнянь

$$\begin{cases} x'_1(t) = f_1(t, x_1(t), ..., x_n(t)) \\ x'_2(t) = f_2(t, x_1(t), ..., x_n(t)) \\ \vdots \\ x'_n(t) = f_n(t, x_1(t), ..., x_n(t)) \end{cases}$$
(1)

Системою диф. рівнянь n-го порядку в нормальній формі називається система вигляду (1), де $f_i: D \to \mathbb{R}, \quad D \subset \mathbb{R}^{n+1}, \quad i = \overline{1,n}.$

Позначення.

$$\overline{x}(t)=\left(egin{array}{c} x_1(t) \\ \dots \\ x_n(t) \end{array}
ight)$$
— невідома вектор-функція, $\overline{f}(t,\overline{x}(t))=\left(egin{array}{c} f_1 \\ \dots \\ f_n \end{array}
ight)$, що

$$D \to \mathbb{R}$$
, $D \subset \mathbb{R}^{n+1}$, тоді $(1) : \overline{x}'(t) = \overline{f}(t, \overline{x}(t))$.

Означення. Розв'язком системи (1) на (α, β) називається така векторфункція $\overline{x}(t) \in C(\alpha, \beta)$, що:

- 1) $(t, x_1(t), \dots, x_n(t)) \in D \quad \forall t \in (\alpha, \beta);$
- 2) $\overline{x}(t)$ перетворює (1) на тотожність на інтервалі (α,β) .

Загальним розв'язком системи (1) називається n-параметрична сім'я розв'язків (1), що охоплює всі розв'язки системи.

Задача Коші. Для заданих $t_0, \overline{x}^0 \in D$ знайти такий розв'язок (1), що $\overline{x}(t_0) = \overline{x}^0$.

Теорема 1.1 (Теорема Пеано). Нехай $\Pi = \{(t, \overline{x}) \in \mathbb{R} \mid |t - t_0| \le a, \quad ||\overline{x} - \overline{x}_0|| \le b\}$ та $\overline{f} \in C(\Pi)$. Тоді розв'язок задачі Коші:

$$\begin{cases} \overline{x}' = \overline{f}(t, \overline{x}) \\ \overline{x}(t_0) = \overline{x}_0 \end{cases}$$

існує принаймні на проміжку $I_h=(t_0-h,t_0+h),$ де $h=\min\{a,\frac{b}{M}\},$ $M=\max_{(t,x)\in\Pi}||\overline{f}(t,\overline{x})||.$

Теорема 1.2 (про продовження). Нехай для системи (1) виконується, що $\vec{f} \in C(D), \quad D \subset \mathbb{R}^{n+1}$ — обмежена область. Тоді $\forall t: (t_0, \vec{x}_0) \in D$ існують такі $t^-, t^+: t^- < t_0 < t^+$, що розв'язок системи (1) ??? $\vec{x}(t_0) = \vec{x}_0$ існує на інтервалі (t^-, t^+) , причому $(t^-, x(t^-))$ та $(t^+, x(t^+))$ належать межі області D.

Теорема 1.3 (Теорема Пікара). Нехай

- 1) $\vec{f} \in C(\Pi)$;
- 2) $\exists ! L > 0 : \forall (t_1, \vec{x}_1), (t_2, \vec{x}_2) \in \Pi$ справедливо, що $||f(t_1, \vec{x}_1) f(t_2, \vec{x}_2)|| \le$

$$\leq L||\vec{x}_1 - \vec{x}_2||$$
 (умова Ліпшиця).

Тоді $\exists !$ розв'язок задачі Коші ?з п. ри? $\vec{x}(t_0) = \vec{x}_0(t)$, визначений принаймні на $I_h = (t_0 - h, t_0 + h), \quad h = \min\{a, \frac{b}{M}\}, \quad M = \max_\Pi ||f(t, \vec{x})||.$

1.2. Основні поняття теорії стійкості.

Розглянемо систему диференційних рівнянь $\overline{x}'(t) = \overline{f}(t, \overline{x})$:

$$f \in \mathbb{C}(D)$$
 $D = [a, +\infty] \times G$ $G \in \mathbb{R}^n$ $\forall (t_0, \overline{x}^0) \in D \exists ! \text{ розв. 3.K.}$

Означення. Розв'язок системи (1) називається стійким за Ляпуновим, якщо:

- 1) $\overline{x} = \overline{\varphi}(t) \quad \exists \text{ Ha } [a, +\infty].$
- 2) $\forall \varepsilon > 0 \quad \forall t_0 \geq a \quad \exists \delta > 0$, таке, що $||\overline{x}(t_0) \overline{\varphi}(t_0)|| < \delta$ справедливо, що $||\overline{x}(t) \overline{\varphi}(t)|| < \delta \quad \forall t \geq t_0$.

Означення. Розв'язок $\overline{x}=\varphi(t)$ називається асимптотично стійким за Ляпуновим, якщо: 1. $\overline{x}=\overline{\varphi}(t)$ - стійкий.

2.
$$\forall t_0 \geq a \quad \exists \delta > 0 \quad \forall \overline{x}(t)$$
 такого, що $||\overline{x}(t_0) - \overline{\varphi}(t_0)||$ справедливо, що: $||\overline{x}(t) - \overline{\varphi}(t)|| \to 0$ при $t \to +\infty$

Означення. Роз'язок називається нестійким, якщо він не є стійким.

1.3. Прилади дослідження на стійкість за означенням.

Приклад. Дослідити на стійкість розв'язок З.К.:

$$\begin{cases} x = 1 \\ x(0) = 0 \end{cases}$$

1. Знайдемо розв'язок заданої З.К.: $x=1 \Rightarrow x=t+C$ - заг. розв.

Підставимо: $0 = 0 + C \implies C = 0 \implies \boxed{\varphi(t) = t}$ - будемо досліджувати.

Зазначений розв'язок не має вертикальних асимптот та існує на всьому $\mathbb{R}.$ 2.

Знайдемо розв'язок довільної З.К. $x(t_0) = x_0$.

$$x_0 = t_0 + C \Rightarrow C = x_0 - t_0 \Rightarrow x(t) = t + x_0 - t_0$$

3. Нехай $|x(t_0) - \varphi(t_0)| = |x_0 - t_0| < \delta$;

Тоді
$$|x(t) - \varphi(t)| = |x_0 - t_0| < \varepsilon = \delta.$$

Таким чином, розв'язок є стійким, але не є асимптотично стійким.

Приклад. Дослідити на стійкість розв'язок З.К.:

$$\begin{cases} \dot{x} = 1 + t - x \\ x(0) = 0 \end{cases}$$

1. Знайдемо розв'язок даної задачі Коші:

$$\dot{x} = -x + 1 + t = |$$
 методом Бернуллі $| = t + Ae^{-t}$

Знайшли загальний розв'язок. Підставимо умову із з. К.: $A=0 \Rightarrow \boxed{\varphi(t)=t}$

6

2. Знайдемо розв'язок довільної З.К.:

$$x(t_0) = x_0$$
 $x_0 = t_0 + Ae^{-t_0}$ $A = (x_0 - t_0)e^{t_0}$

$$x(t) = t + (x_0 - t_0)e^{t_0 - t}$$
 — загальний розв'язок з. К.

3. Нехай $|x(t_0)-\varphi(t_0)|=|x_0-t_0|<\delta$. Розглядаємо: $\forall t\geq t_0$:

$$|x(t) - \varphi(t)| = |t + (x_0 - t_0) \cdot e^{t_0 - t} - t| = |x_0 - t_0| < \delta \to 0 \quad (t \to +\infty)$$

Отримали, що знайдений розв'язок є асимптотично стійким.

Перейдемо знов до систем диф. рівнянь: $\overline{x}' = \overline{f}(t, \overline{x})$ (1).

 $\overline{x}=\overline{arphi}(t)$ - розв'язок, який ми маємо дослідити на стійкість.

Заміна $\overline{z}(t) = \overline{x}(t) - \overline{\varphi}(y)$. Отримаємо систему:

$$\overline{z}' + \overline{\varphi}' = \overline{f}(t, \overline{z} + \overline{\varphi})(t)$$

$$\overline{f}'(t) = \overline{f}(t, \overline{\varphi}) \Longrightarrow \boxed{\overline{z}' = \overline{\varphi}(t, \overline{z} + \overline{\varphi}(t)) - \overline{f}(t, \varphi(t))}$$

Sample