(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-164238 (P2003-164238A)

(43)公開日 平成15年6月10日(2003.6.10)

(51) Int.Cl. ⁷		識別記号		FΙ				Ť	-マコード(参考)
A 0 1 K	67/027	ZNA		$\Lambda 0 1$. K	67/027		ZNA	2 G 0 4 ដ
A 6 1 K	45/00			A 6 1	K	45/00			4 B Ō Ž 4
A 6 1 P	3/04			A 6 1	. Р	3/04			4B063
	3/10					3/10			4 C 0 8 4
	3/14					3/14			4H045
			審查請求	有	末龍	マダス で で で で で で で で で で で で で で で で で で で	OL	(全 %2 頁)	最終頁に続く

(21)出顧番号 特願2002-177666(P2002-177666)

(22) 出願日 平成14年6月18日(2002.6.18)

(31)優先権主張番号 特願2001-287698(P2001-287698)

(32)優先日 平成13年9月20日(2001.9.20)

(33)優先権主張国 日本(JP)

(71)出願人 396020800

科学技術振興事業団

埼玉県川!]市本町4丁目1番8号

(72)発明者 山口 正義

静岡県静岡市瀬名川1丁目15番5号

(74)代理人 10010/984

弁理士 廣田 雅紀

最終頁に続く

(54) 【発明の名称】 レギュカルチン過剰発現モデル動物

(57)【要約】

【課題】 元来高等動物の肝臓等に発現しているレギュカルチンを過剰に発現する、骨粗鬆症に代表される骨病態等のレギュカルチン過剰発現モデル動物を提供すること。

【解決手段】 ラット肝臓 c D N A ライブラリーからレギュカルチン c D N A をクローニングし、レギュカルチン蛋白質の全長をコードする c D N A を単離し、このラットレギュカルチン全長 c D N A より O R F を切り出し、発現ベクター(pCXN2)に導入し、この遺伝子発現ベクターをラット受精卵雄性前核にマイクロインジェクションし、この受精卵を仮親ラットの卵管に移植し、仔ラットを発生させ、その産仔からホモ体のラットを作出する。かかるトランスジェニックラットは、形態学的にも生化学的にも顕著な骨病態を呈し、また、体重の増加が有意に抑制される。

【特許請求の範囲】

【請求項1】 レギュカルチン遺伝子が導入され、レギュカルチンを過剰発現することを特徴とするトランスジェニック非ヒト動物。

【請求項2】 サイトメガロウイルスーIEエンハンサー,チキン β -アクチンプロモーター,レギュカルチン遺伝子,ラビット β -グロビンポリAシグナルの順に配列された直鎖DNAが導入されたことを特徴とする請求項1記載のトランスジェニック非ヒト動物。

【請求項3】 レギュカルチン遺伝子が、配列表の配列 番号2記載のアミノ酸配列からなるタンパク質をコード する遺伝子であることを特徴とする請求項1又は2記載 のトランスジェニック非ヒト動物。

【請求項4】 配列表の配列番号2記載のアミノ酸配列からなるタンパク質をコードする遺伝子が、配列表の配列番号1記載のDNA配列からなるラットレギュカルチン遺伝子であることを特徴とする請求項3記載のトランスジェニック非ヒト動物。

【請求項5】 ホモ体であることを特徴とする請求項1 ~4のいずれか記載のトランスジェニック非ヒト動物。

【請求項6】 体重増加抑制能を有することを特徴とする請求項1~5のいずれか記載のトランスジェニック非 とト動物。

【請求項7】 大脳機能障害発症性であることを特徴とする請求項1~6のいずれか記載のトランスジェニック 非ヒト動物。

【請求項8】 インスリン非依存性糖尿病発症性であることを特徴とする請求項1~7のいずれか記載のトランスジェニック非ヒト動物。

【請求項9】 腎性高血圧発症性であることを特徴とする請求項1~8のいずれか記載のトランスジェニック非 ヒト動物。

【請求項10】 尿細管再吸収障害発症性であることを 特徴とする請求項1~9のいずれか記載のトランスジェ ニック非ヒト動物。

【請求項11】 非ヒト動物がラットであることを特徴とする請求項1~10のいずれか記載のトランスジェニック非ヒト動物。

【請求項12】 請求項1~11のいずれか記載のトランスジェニック非ヒト動物を用いることを特徴とするレギュカルチンの製造方法。

【請求項13】 請求項1~11のいずれか記載のトランスジェニック非ヒト動物又は該トランスジェニック非ヒト動物由来の組織,器官もしくは細胞と被検物質とを用いることを特徴とするレギュカルチン過剰発現に起因する疾病の予防・治療薬のスクリーニング方法。

【請求項14】 トランスジェニック非ヒト動物に被検 物質を投与し、該トランスジェニック非ヒト動物におけ る体重増加の程度を測定・評価することを特徴とする請 求項13記載のレギュカルチン過剰発現に起因する疾病 の予防・治療薬のスクリーニング方法。

【請求項15】 レギュカルチン過剰発現に起因する疾病が、大脳機能障害であることを特徴とする請求項13 又は14記載のレギュカルチン過剰発現に起因する疾病の予防・治療薬のスクリーニング方法。

【請求項16】 レギュカルチン過剰発現に起因する疾病が、インスリン非依存性糖尿病であることを特徴とする請求項13又は14記載のレギュカルチン過剰発現に起因する疾病の予防・治療薬のスクリーニング方法。

【請求項17】 レギュカルチン過剰発現に起因する疾病が、腎性高血圧であることを特徴とする請求項13又は14記載のレギュカルチン過剰発現に起因する疾病の予防・治療薬のスクリーニング方法。

【請求項18】 レギュカルチン過剰発現に起因する疾病が、尿細管再吸収障害であることを特徴とする請求項13又は14記載のレギュカルチン過剰発現に起因する疾病の予防・治療薬のスクリーニング方法。

【請求項19】 請求項13~18のいずれか記載のスクリーニング方法により得られるレギュカルチン過剰発現に起因する疾病の予防・治療薬。

【請求項20】 請求項1~11のいずれか記載のトランスジェニック非ヒト動物又は該トランスジェニック非ヒト動物由来の組織、器官もしくは細胞と被検物質とを用いることを特徴とするレギュカルチン発現低下に起因する疾病の原因物質のスクリーニング方法。

【請求項21】 トランスジェニック非ヒト動物に被検 物質を投与し、該トランスジェニック非ヒト動物におけ る体重減少の程度を測定・評価することを特徴とする請 求項20記載のレギュカルチン発現低下に起因する疾病 の原因物質のスクリーニング方法。

【請求項22】 レギュカルチン発現低下に起因する疾病が、動脈硬化心筋梗塞であることを特徴とする請求項20又は21記載のレギュカルチン発現低下に起因する疾病の原因物質のスクリーニング方法。

【請求項23】 レギュカルチン発現低下に起因する疾病が、心筋梗塞であることを特徴とする請求項20又は21記載のレギュカルチン発現低下に起因する疾病の原因物質のスクリーニング方法。

【請求項24】 請求項20~23のいずれか記載のスクリーニング方法により得られるレギュカルチン発現低下に起因する疾病の原因物質。

【請求項25】 レギュカルチンを過剰発現する非ヒト 動物であって、骨病態を呈することを特徴とする骨病態 モデル動物。

【請求項26】 骨組織の脆弱化、骨形態変化、骨成長 遅延のいずれか1以上の骨病態を呈することを特徴とす る請求項25記載の骨病態モデル動物。

【請求項27】 レギュカルチンを過剰発現する非ヒト動物から、骨の形態学的測定評価及び/又は骨成分の生化学的測定評価により選抜・確認されたことを特徴とす

る請求項25又は26記載の骨病態モデル動物。

【請求項28】 骨の形態学的測定評価が、骨密度、骨強度、骨幹部皮質骨厚さ、皮質骨周囲長さのいずれか1以上の測定評価であることを特徴とする請求項27記載の骨病態モデル動物。

【請求項29】 骨成分の生化学的測定評価が、カルシウム量、アルカリホスファターゼ活性、骨組織中のDNA量のいずれか1以上の測定評価であることを特徴とする請求項27記載の骨病態モデル動物。

【請求項30】 骨病態の表現形質が継代的に安定していることを特徴とする請求項25~29のいずれか記載の骨病態モデル動物。

【請求項31】 レギュカルチンを過剰発現する非ヒト動物が、レギュカルチン遺伝子が導入されたトランスジェニック非ヒト動物であることを特徴とする請求項25~30のいずれか記載の骨病態モデル動物。

【請求項32】 レギュカルチンを過剰発現する非ヒト動物が、ホモ体であることを特徴とする26~32のいずれか記載の骨病態モデル動物。

【請求項33】 レギュカルチンを過剰発現する非ヒト動物が、雌の非ヒト動物であることを特徴とする請求項25~32のいずれか記載の骨病態モデル動物。

【請求項34】 レギュカルチンを過剰発現する非ヒト動物が、ラットであることを特徴とする請求項25~3 3のいずれか記載の骨病態モデル動物。

【請求項35】 請求項25~34のいずれか記載の骨 病態モデル動物に被検物質を投与し、該骨病態モデル動 物における骨の形態学的測定評価及び/又は骨成分の生 化学的測定評価を行うことを特徴とする骨病態の予防・ 治療薬のスクリーニング方法。

【請求項36】 骨の形態学的測定評価が、骨密度、骨強度、骨幹部皮質骨厚さ、皮質骨周囲長さのいずれか1以上の測定評価であることを特徴とする請求項35記載の骨病態の予防・治療薬のスクリーニング方法。

【請求項37】 骨成分の生化学的測定評価が、カルシウム量、アルカリホスファターゼ活性、骨組織中のDNA量のいずれか1以上の測定評価であることを特徴とする請求項35記載の骨病態の予防・治療薬のスクリーニング方法。

【請求項38】 骨病態が骨粗鬆症であることを特徴と する請求項35~37のいずれか記載の骨病態の予防・ 治療薬のスクリーニング方法。

【請求項39】 請求項35~38のいずれか記載のスクリーニング方法により得られる骨病態の予防・治療

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、レギュカルチン遺 伝子導入トランスジェニック非ヒト動物、詳しくは、レ ギュカルチン遺伝子が導入され体重増加抑制能を有する トランスジェニック非ヒト動物や、かかるトランスジェニック非ヒト動物を用いるレギュカルチンの製造方法や、レギュカルチン過剰発現に起因する疾病の予防・治療薬のスクリーニング方法や、レギュカルチン発現低下に起因する疾病の原因物質のスクリーニング方法等に関する。また本発明は、骨粗鬆症に代表される骨病態のモデル動物、より詳しくは、レギュカルチンを過剰発現する非ヒト動物から、骨の形態学的測定評価や骨成分の生化学的測定評価により選抜・確認され、骨組織の脆弱化、骨形態変化、骨成長遅延等の骨病態を呈する骨病態モデル動物や、該骨病態のモデル動物を用いた骨粗鬆症に代表される骨病態の予防・治療薬のスクリーニング方法に関する。

[0002]

【従来の技術】ペプチドホルモンが細胞膜の受容体に結合し、細胞内にその情報を伝達する仕組みの中で、Ca²⁺は主役を演じている。細胞内にはCa²⁺を結合する多くのタンパク質が存在するが、その作用を増幅するタンパク質として、カルモジュリンは重要な役割を果たしており、Ca²⁺はこのカルモジュリンに結合し、細胞機能の調節に関与する各種の酵素を活性化することが解明されている(Science, 202, 19-27, 1984)。また、Ca²⁺がプロテインキナーゼCやその他のCa²⁺結合タンパク質(酵素も含む)に作用することも知られている(Science, 233, 305-312, 1986)。レギュカルチンも、本発明者らによりラット肝細胞質から単離されたCa²⁺結合蛋白質である。

【0003】レギュカルチンは、分子量が33388の Ca^{2+} 結合タンパク質で、その Ca^{2+} 結合定数が4.19×10⁵ M⁻¹を示し、6~7個の高親和性Ca²⁺結合 部位を持ち、α-ヘリックス構造を34%含む、肝臓に 顕著に存在する等電点pⅠ5.20の酸性蛋白質であ る。レギュカルチンは、カルモジュリンや他の多くのC a²⁺結合タンパク質にみられる部位EFハンド構造(領 域)を含まない特異なタンパク質で、例えば、Ca2+を 結合することにより、カルモジュリンはα-ヘリックス 含量が増加し、その構造が堅固になるが、レギュカルチ ンはα-ヘリックス含量が減少する。また一方、細胞機 能調節において、レギュカルチンは、カルモジュリンに よる酵素活性化を阻害し、プロティンキナーゼCの活性 化をも阻害することが明らかになっている。このよう に、レギュカルチンは、シグナリングの制御タンパク質 として機能するなど多くの知見が蓄積されている(FEBS Lett, 327, 251-255, 1993).

【0004】レギュカルチン遺伝子は、ラットにおいて X染色体 (Xq 11.1-12) に存在し、ヒトにおいてもX染 色体に位置する。レギュカルチン遺伝子は、ラットやヒ トの他、サル、マウス、イヌ、ウシ、ウサギ、ニワトリ 等の高等動物に見い出されているが酵母にはなく、高度 に分化されたタンパク質をコードするものと考えられて いる。レギュカルチンcDNAはクローニングされており、その全構造も決定されている(特開平7-123985号公報)。ラット肝のレギュカルチンcDNAは、全アミノ酸をコードする塩基対が0.897kbであり、299のアミノ酸を翻訳する。また、マウス肝やヒト肝のレギュカルチンcDNAの塩基配列も決定されており、ラット肝のレギュカルチンcDNAと比較して、それぞれ94%と約89%のホモロジーを有している。レギュカルチンmRNAの発現は、ヒト、ラット、マウス、ウシ、ニワトリ等の肝臓においてみられ、これらの肝臓にはレギュカルチンタンパク質の存在も確認されている。

【0005】レギュカルチンは、多機能性を有する細胞 内Ca²⁺シグナリングの制御蛋白質として特徴を有する 蛋白質であり、細胞機能調節に関与する重要な蛋白質で あることが知られている (Life Sciences 66, 1769-178 0, 2000, Biochemical and Biophysical Research Comm unications 276, 1-6, 2000)。また、生体内における 肝臓や腎臓におけるレギュカルチンの発現が肝障害 (Mo lecular and CellularBiochemisty 131, 173-179, 199 4) や腎障害 (Molecular and Cellular Biochemisty 15 1,55-60,1995) 時に低下することが動物実験的に明ら かにされており、レギュカルチンと病態成因との関連が 示唆されている。そして、GOT、GPT等の既存の肝 機能マーカーと異なって肝臓に特異的に存在するレギュ カルチンの血清中の濃度を測定することにより、肝疾患 患者血清を鑑別する方法、すなわち、肝疾患患者の血清 ではレギュカルチンが有意に上昇している一方、健常人 の血清ではレギュカルチンはほとんど検出されず、その 測定が肝疾患患者血清の鑑別手段として有用であること も知られている(特開平10-26623号公報)。

【0006】他方、骨組織は、骨細胞と基質からなり、 1/3はコラーゲンを主成分とする有機質、2/3はカ ルシウムーリンの骨塩である無機質からできており、構 造上は緻密質と海綿質と皮質に分けられ、例えば長骨の 骨幹は緻密質、骨端は皮質で囲まれた海綿質から構成さ れている。骨は一旦形成された後は全く変化しない構築 物ではなく、骨形成と骨吸収のバランスの上にその構造 および量は維持されている。従って、加齢あるいはその 他の原因によりそのバランスが崩れると、種々の骨疾患 を発症する。骨疾患のうち、カルシウム塩が骨から血液 中に溶出してゆく骨吸収の異常亢進によって起きるもの としては、骨髄腫やリンパ腫などが原因で起こる悪性高 カルシウム血症、局所性骨吸収によりもたらされる骨ペ ージェット病、骨の絶対量が減少しているが骨の質的な 変化を伴わない骨粗鬆症等が挙げられる。これらの疾患 は骨の疼痛を発生し、骨の脆弱化による骨折の原因とな ることが知られており、現在、これらの疾患は高齢人口 の増加に伴い社会問題化している。

【0007】その他、高カルシウム血症、低カルシウム

血症、副甲状腺機能亢進症、くる病、骨軟化症、骨粗鬆症、骨減少症などの骨疾患、糸球体腎炎、糸球体硬化症、慢性腎炎、腎不全などの腎臓疾患、悪性腫瘍、乾癬症あるいはそれらの合併症などの病態モデル動物として利用することができ、これらの病態機序の解明および疾患の治療方法の検討、ならびに治療薬のスクリーニングを行うことが可能な、外来性25-水酸化ビタミンD324-水酸化酵素遺伝子またはその変異遺伝子を組み込んだDNAを有する非ヒト哺乳動物が知られている(特開平11-9140号公報)。

[0008]

【発明が解決しようとする課題】レギュカルチンタンパク質は、肝臓に特異発現される他、腎臓、心臓、大脳(神経細胞)にも低レベルで発現し、細胞内のC a²+シグナリング関連細胞機能の調節に関与し、その発現が低下すると生理的異常を来たす特異な多機能性蛋白質であり、これまでラットの肝臓から単離した蛋白質や抗レギュカルチンモノクローナル抗体を用いて、その機能解析が行われ、上記のカルシウムシグナルの制御因子としての役割の他、細胞内カルシウム輸送酵素の調節や、プロテアーゼの活性化因子としての役割や、細胞核のカルシウム輸送の調節、細胞核DNA分解における役割、肝再生時の細胞核機能における役割等の細胞核機能の調節や、腎尿細管カルシウム再吸収における役割など、多くの生体調節におけるレギュカルチンの機能的役割が本発明者により明らかにされている。

【0009】本発明者は、レギュカルチンの種々の機能 的役割の解明についての研究過程で、レギュカルチンが 他の数多くのCa2+結合タンパク質とは異なる特異的作 用を有する点に着目し、カルシウムが関与する各種細胞 の機能調節は、生体内におけるレギュカルチンの発現量 とカルモジュリンをはじめとする他の数多くのCa2+結 合タンパク質の発現量とのバランスの上に成立している と考え、レギュカルチンの発現量と他の数多くのCa2+ 結合タンパク質の発現量とのバランスが崩れた場合に、 生体に生じる変化・影響を調べることにした。本発明の 課題は、元来高等動物の肝臓等に発現しているレギュカ ルチンを過剰に発現させ、他の数多くのCa2+結合タン パク質とのバランスを崩した場合に、生体にどのような 変化・影響が生じるかを調べるためのツールであるレギ ュカルチン過剰発現モデル動物を提供することにある。 【0010】また従来、骨粗鬆症に代表されるカルシウ ム骨代謝に係り、高齢化や特に女性において多発する骨 病態の予防、治療薬剤開発には、卵巣摘出ラットが用い られるが、卵巣摘出動物は外科的摘出手術を要し、さら に骨量減少を起こさせるまでに3ヶ月以上の飼育が必要 で、研究経費が高額になるばかりでなく技術的、時間的 な制約も多かった。また臨床面において見られる他の骨 病態モデル動物として炎症性(リュウマチ)関節炎骨病 態モデル動物があるが、これは薬物投与により発症させ るため、他の副作用を伴い生理的に問題があった。本発明の課題は、また、上記問題を解決することができる、 卵巣摘出等の外科的摘出手術を要することなく、さらに 骨量減少を起させるまでの飼育期間が不要であり、副作用を伴うなどの生理的な問題がない、骨粗鬆症に代表される骨病態のモデル動物を提供することにある。

[0011]

【課題を解決するための手段】本発明者は、上記課題を解決するため、ラット肝臓 c D N A ライブラリーからレギュカルチン c D N A をクローニングし、レギュカルチン蛋白質の全長をコードする c D N A を単離し、このラットレギュカルチン全長 c D N A より O R F を切り出し、発現ベクター(pCXN2)に導入し、この遺伝子発現ベクターをラット受精卵雄性前核にマイクロインジェクションし、この受精卵を仮親ラットの卵管に移植し、仔ラットを発生させ、その産仔の組織から D N A を抽出し、P C R 法によってレギュカルチン c D N A が組み込まれているラットを確認したところ、29 匹の産仔からレギュカルチン c D N A を発現するホモ体のラット 5 匹(雄4 匹、雌1 匹)が作出され、かかるトランスジェニックラットの体重の増加が有意に抑制されることを見い出し、本発明を完成するに至った。

【0012】また、本発明者は、外見上何ら骨病態を呈 していない上記レギュカルチン遺伝子導入によりレギュ カルチン過剰発現能を獲得した形質転換ラットについ て、偶々、動物研究用pQTC (Peripheral Quantitat ive Computed Tomography) 骨密度測定装置による骨の 形態学的(骨密度、骨強度、骨幹部皮質骨厚さ、皮質骨 周囲長さ)測定評価、及び骨成分の生化学的(カルシウ ム量、骨芽細胞・造骨細胞のマーカー酵素であるアルカ リホスファターゼ活性、骨組織中の細胞数指標であるD NA量) 測定評価を実施したところ、特に大腿骨におい て形態学的にも生化学的にも、骨量、骨密度の減少によ る骨吸収(骨塩溶解)による骨組織の脆弱化、骨形態変 化、および尾骨成長遅延などの顕著な骨病態を呈するこ とを見い出し、このレギュカルチン過剰発現病態モデル ラットの形質が継代的に安定しており、商業的生産に耐 えるものであることを確認し、本発明を完成するに至っ た。

【00013】すなわち本発明は、レギュカルチン遺伝子が導入され、レギュカルチンを過剰発現することを特徴とするトランスジェニック非ヒト動物(請求項1)や、サイトメガロウイルス-IEエンハンサー、チキンβ-アクチンプロモーター、レギュカルチン遺伝子、ラビットβ-グロビンポリAシグナルの順に配列された直鎖DNAが導入されたことを特徴とする請求項1記載のトランスジェニック非ヒト動物(請求項2)や、レギュカルチン遺伝子が、配列表の配列番号2記載のアミノ酸配列からなるタンパク質をコードする遺伝子であることを特徴とする請求項1又は2記載のトランスジェニック

非ヒト動物(請求項3)や、配列表の配列番号2記載の アミノ酸配列からなるタンパク質をコードする遺伝子 が、配列表の配列番号1記載のDNA配列からなるラッ トレギュカルチン遺伝子であることを特徴とする請求項 3記載のトランスジェニック非ヒト動物(請求項4) や、ホモ体であることを特徴とする請求項1~4のいず れか記載のトランスジェニック非ヒト動物(請求項5) や、体重増加抑制能を有することを特徴とする請求項1 ~5のいずれか記載のトランスジェニック非ヒト動物 (請求項6)や、大脳機能障害発症性であることを特徴 とする請求項1~6のいずれか記載のトランスジェニッ ク非ヒト動物(請求項7)や、インスリン非依存性糖尿 病発症性であることを特徴とする請求項1~7のいずれ か記載のトランスジェニック非ヒト動物 (請求項8) や、腎性高血圧発症性であることを特徴とする請求項1 ~8のいずれか記載のトランスジェニック非ヒト動物 (請求項9)や、尿細管再吸収障害発症性であることを 特徴とする請求項1~9のいずれか記載のトランスジェ ニック非ヒト動物(請求項10)や、非ヒト動物がラッ トであることを特徴とする請求項1~10のいずれか記 載のトランスジェニック非ヒト動物(請求項11)に関 する。

【0014】また本発明は、請求項1~11のいずれか 記載のトランスジェニック非ヒト動物を用いることを特 徴とするレギュカルチンの製造方法(請求項12)や、 請求項1~11のいずれか記載のトランスジェニック非 ヒト動物又は該トランスジェニック非ヒト動物由来の組 織、器官もしくは細胞と被検物質とを用いることを特徴 とするレギュカルチン過剰発現に起因する疾病の予防・ 治療薬のスクリーニング方法 (請求項13) や、トラン スジェニック非ヒト動物に被検物質を投与し、該トラン スジェニック非ヒト動物における体重増加の程度を測定 ・評価することを特徴とする請求項13記載のレギュカ ルチン過剰発現に起因する疾病の予防・治療薬のスクリ ーニング方法(請求項14)や、レギュカルチン過剰発 現に起因する疾病が、大脳機能障害であることを特徴と する請求項13又は14記載のレギュカルチン過剰発現 に起因する疾病の予防・治療薬のスクリーニング方法 (請求項15)や、レギュカルチン過剰発現に起因する 疾病が、インスリン非依存性糖尿病であることを特徴と する請求項13又は14記載のレギュカルチン過剰発現 に起因する疾病の予防・治療薬のスクリーニング方法 (請求項16)や、レギュカルチン過剰発現に起因する 疾病が、腎性高血圧であることを特徴とする請求項13 又は14記載のレギュカルチン過剰発現に起因する疾病 の予防・治療薬のスクリーニング方法(請求項17) や、レギュカルチン過剰発現に起因する疾病が、尿細管 再吸収障害であることを特徴とする請求項13又は14 記載のレギュカルチン過剰発現に起因する疾病の予防・ 治療薬のスクリーニング方法(請求項18)や、請求項 13~18のいずれか記載のスクリーニング方法により 得られるレギュカルチン過剰発現に起因する疾病の予防 ・治療薬(請求項19)に関する。

【0015】さらに本発明は、請求項1~11のいずれ か記載のトランスジェニック非ヒト動物又は該トランス ジェニック非ヒト動物由来の組織、器官もしくは細胞と 被検物質とを用いることを特徴とするレギュカルチン発 現低下に起因する疾病の原因物質のスクリーニング方法 (請求項20)や、トランスジェニック非ヒト動物に被 検物質を投与し、該トランスジェニック非ヒト動物にお ける体重減少の程度を測定・評価することを特徴とする 請求項20記載のレギュカルチン発現低下に起因する疾 病の原因物質のスクリーニング方法 (請求項21) や、 レギュカルチン発現低下に起因する疾病が、動脈硬化心 筋梗塞であることを特徴とする請求項20又は21記載 のレギュカルチン発現低下に起因する疾病の原因物質の スクリーニング方法(請求項22)や、レギュカルチン 発現低下に起因する疾病が、心筋梗塞であることを特徴 とする請求項20又は21記載のレギュカルチン発現低 下に起因する疾病の原因物質のスクリーニング方法(請 求項23)や、請求項20~23のいずれか記載のスク リーニング方法により得られるレギュカルチン発現低下 に起因する疾病の原因物質(請求項24)に関する。

【0016】そしてまた本発明は、レギュカルチンを過 剰発現する非ヒト動物であって、骨病態を呈することを 特徴とする骨病態モデル動物(請求項25)や、骨組織 の脆弱化、骨形態変化、骨成長遅延のいずれか1以上の 骨病態を呈することを特徴とする請求項25記載の骨病 態モデル動物(請求項26)や、レギュカルチンを過剰 発現する非ヒト動物から、骨の形態学的測定評価及び/ 又は骨成分の生化学的測定評価により選抜・確認された ことを特徴とする請求項25又は26記載の骨病態モデ ル動物(請求項27)や、骨の形態学的測定評価が、骨 密度、骨強度、骨幹部皮質骨厚さ、皮質骨周囲長さのい ずれか1以上の測定評価であることを特徴とする請求項 27記載の骨病態モデル動物(請求項28)や、骨成分 の生化学的測定評価が、カルシウム量、アルカリホスフ ァターゼ活性、骨組織中のDNA量のいずれか1以上の 測定評価であることを特徴とする請求項27記載の骨病 態モデル動物(請求項29)や、骨病態の表現形質が継 代的に安定していることを特徴とする請求項25~29 のいずれか記載の骨病態モデル動物(請求項30)や、 レギュカルチンを過剰発現する非ヒト動物が、レギュカ ルチン遺伝子が導入されたトランスジェニック非ヒト動 物であることを特徴とする請求項25~30のいずれか 記載の骨病態モデル動物(請求項31)や、レギュカル チンを過剰発現する非ヒト動物が、ホモ体であることを 特徴とする26~32のいずれか記載の骨病態モデル動 物(請求項32)や、レギュカルチンを過剰発現する非 ヒト動物が、雌の非ヒト動物であることを特徴とする請 求項25~32のいずれか記載の骨病態モデル動物(請求項33)や、レギュカルチンを過剰発現する非ヒト動物が、ラットであることを特徴とする請求項25~33のいずれか記載の骨病態モデル動物(請求項34)に関する。

【0017】本発明はまた、請求項25~34のいずれ か記載の骨病態モデル動物に被検物質を投与し、該骨病 態モデル動物における骨の形態学的測定評価及び/又は 骨成分の生化学的測定評価を行うことを特徴とする骨病 態の予防・治療薬のスクリーニング方法(請求項35) や、骨の形態学的測定評価が、骨密度、骨強度、骨幹部 皮質骨厚さ、皮質骨周囲長さのいずれか1以上の測定評 価であることを特徴とする請求項35記載の骨病態の予 防・治療薬のスクリーニング方法(請求項36)や、骨 成分の生化学的測定評価が、カルシウム量、アルカリホ スファターゼ活性、骨組織中のDNA量のいずれか1以 上の測定評価であることを特徴とする請求項35記載の 骨病態の予防・治療薬のスクリーニング方法 (請求項3 7)や、骨病態が骨粗鬆症であることを特徴とする請求 項35~37のいずれか記載の骨病態の予防・治療薬の スクリーニング方法(請求項38)や、請求項35~3 8のいずれか記載のスクリーニング方法により得られる 骨病態の予防・治療薬(請求項39)に関する。

[0018]

【発明の実施の形態】本発明のトランスジェニック非ヒト動物としては、レギュカルチン遺伝子が導入され、レギュカルチンを過剰発現する非ヒト動物であれば特に制限されるものではなく、ここで、レギュカルチンを過剰発現するとは、野生型の非ヒト動物のレギュカルチン発現するとは、野生型の非ヒト動物としては、ラット・マウス・ウシ・ブタ・ニワトリ・カエル・ヒト・イヌ・ウサギ等を挙げることができるが、中でもラットが好ましい。モデル動物としてよく用いられているマウスでは臓器が小さく病態の解析には限界があることもあるが、例えば血圧測定などラットにおいてはこれが可能になり、病態解明や遺伝子治療のための動物実験的手段としてきわめて有用となる。

【0019】本発明のトランスジェニック非ヒト動物の好ましい態様として、サイトメガロウイルス-IEエンハンサー、チキン β -アクチンプロモーター、レギュカルチン遺伝子、ラビット β -グロビンポリAシグナルの順に配列された直鎖DNAが導入されたトランスジェニック非ヒト動物を挙げることができる。例えば、マーカー遺伝子、サイトメガロウイルス-IEエンハンサー、チキン β -アクチンプロモーター、cDNA挿入サイト、ラビット β -グロビンポリAシグナル等を有する発現ベクター(pCXN2)にレギュカルチン全長 cDNAを導入したものを用いると、効率よくトランスジェニック非ヒト動物を得ることができる。

【0020】また、本発明のトランスジェニック非ヒト動物の好ましい態様として、レギュカルチン遺伝子が、配列表の配列番号2記載のアミノ酸配列からなるタンパク質をコードする遺伝子であるトランスジェニック非ヒト動物、特に、配列表の配列番号2記載のアミノ酸配列からなるタンパク質をコードする遺伝子が、配列表の配列番号1記載のDNA配列からなるラットレギュカルチン遺伝子であるトランスジェニック非ヒト動物を挙げることができるが、レギュカルチン遺伝子の由来としては、ラットの他、マウス、ウシ、ブタ、ニワトリ、カエル、ヒト、イヌ、ウサギ等特に制限されるものではない。

【0021】また、本発明のトランスジェニック非ヒト 動物の好ましい態様として、ホモ体であるトランスジェ ニック非ヒト動物を挙げることができる。かかる変異染 色体をホモに有するホモ体は、染色体をヘテロに有する ラット等の非ヒト動物同士を交配することにより得るこ とができ、レギュカルチン発現量がヘテロ体よりも多い ことから、実験モデル動物として特に好ましい。また、 本発明のトランスジェニック非ヒト動物として、体重の 増加が野生型の非ヒト動物に比べて有意に抑制された、 すなわち体重増加抑制能を有するトランスジェニック非 ヒト動物を好適に挙げることができる。レギュカルチン 遺伝子が導入され、レギュカルチンを過剰発現するトラ ンスジェニック非ヒト動物が、かかる体重増加抑制能を 有することは全く予想できなかったことであり、この新 たな知見はレギュカルチンが肥満防止剤としての有用性 をもつ可能性があることを示唆している。かかる新たな 知見からして、本発明のトランスジェニック非ヒト動物 は、レギュカルチン遺伝子が導入され、レギュカルチン を過剰発現することを特徴とする体重増加抑制能を有す るトランスジェニック非ヒト動物ということもできる。 【0022】また、本発明のトランスジェニック非ヒト 動物の好ましい態様として、大脳機能障害発症性、イン スリン非依存性糖尿病発症性,腎性高血圧発症性,尿細 管再吸収障害発症性等のレギュカルチン過剰発現に起因 する症状や疾病のうち少なくとも1以上の症状や疾病を 発現するトランスジェニック非ヒト動物を挙げることが できる。大脳機能障害は、大脳の記憶維持メカニズム上 必要とされるCa-カルモジュリン依存性タンパク質リ ン酸化酵素の活性化を、過剰発現したレギュカルチンが 抑制して、神経細胞内の神経伝達を制御することにより 発症するものと考えられ、本発明のトランスジェニック 非ヒト動物は、記憶などの大脳機能の障害(アルツハイ マー等の痴呆症)の実験モデル動物として有用である。 また、レギュカルチンは、肝臓や腎臓において発現し、 ホルモンの細胞内情報伝達の制御を行っており、レギュ カルチンの過剰発現により、肝臓と腎臓の機能を調節す るホルモンの作用発現が障害され、肝臓においては、イ ンスリンの働きを抑制することからインスリン非依存性

糖尿病を誘発し、腎臓においては、レニンーアンジオテンシン系に関係した腎性高血圧、さらに電解質代謝に関連した尿細管再吸収障害を誘発するものと考えられ、本発明のトランスジェニック非ヒト動物は、インスリン非依存性糖尿病、腎性高血圧、尿細管再吸収障害等の実験モデル動物として有用である。

【0023】本発明の体重増加抑制能を有するモデルラ ット等のモデル動物の樹立方法としては、公知のトラン スジェニック動物の作製方法(例えば、Proc. Natl. Ac ad.Sci. USA 77:7380-7384,1980) を用いた方法を挙げ ることができる。例えば、レギュカルチン(RC)トラ ンスジェニックラットを創製する方法としては、ラット 肝臓cDNAライブラリーからレギュカルチンのcDN Aをクローニングし、レギュカルチンタンパク質の全長 をコードするcDNAを単離後、オープンリーディング フレーム(ORF)を切り出し、発現ベクターに導入 し、この遺伝子発現ベクターをリニアライズした導入遺 伝子を含む直鎖DNAフラグメントをラット受精卵雄性 前核にマイクロインジェクションし、この受精卵あるい は2細胞期胚を仮親ラットの卵管に移植し、仔ラットを 発生させ、その産仔の組織から抽出したDNAを用いて PCR法等により、レギュカルチンcDNAが組み込ま れていることを確認する方法等を挙げることができる。 【0024】本発明のレギュカルチンの製造方法として は、本発明のトランスジェニック非ヒト動物、好ましく はホモ体のトランスジェニック非ヒト動物を用いる方法 であれば特に制限されるものではなく、例えば、ホモ体 のレギュカルチントランスジェニックラットから肝臓を 取り出し、そのホモジネートから文献 (Chem. Pharm.Bu 11. 26, 1915-1918, 1978) 記載の方法に準じて、レギ ュカルチンを単離・精製することができる。また、レギ ュカルチンの増収を目的として、トランスジェニック非

【0025】本発明のレギュカルチン過剰発現に起因す る疾病の予防・治療薬のスクリーニング方法としては、 本発明のトランスジェニック非ヒト動物又は該トランス ジェニック非ヒト動物由来の組織、器官もしくは細胞と 被検物質とを用いる方法であれば特に制限されるもので はなく、上記レギュカルチン過剰発現に起因する疾病と しては、大脳機能障害, インスリン非依存性糖尿病, 腎 性高血圧, 尿細管再吸収障害等を例示することができ る。上記トランスジェニック非ヒト動物と被検物質とを 用いる方法としては、トランスジェニック非ヒト動物に 被検物質を直接投与し、該トランスジェニック非ヒト動 物における体重増加の程度や、レギュカルチン過剰発現 に起因する疾病の程度を測定・評価する方法や、被検物 質投与後のトランスジェニック非ヒト動物から得られる 組織、器官又は細胞におけるレギュカルチンの発現抑制 量の程度を測定・評価する方法や、組織や器官における

ヒト動物にカルシウム、カルチトニン、インスリン、エ

ストロゲン等を投与することもできる。

形態変化をモノクローナル抗体による免疫染色法や電子 顕微鏡により評価する方法などを挙げることができる。 また、トランスジェニック非ヒト動物由来の組織、器官 又は細胞と被検物質とを用いる方法としては、トランス ジェニック非ヒト動物由来の組織、器官又は細胞を被検 物質の存在下で培養し、該組織、器官又は細胞のレギュ カルチンの発現抑制量の程度を測定・評価する方法や、 組織や器官における形態変化をモノクローナル抗体によ る免疫染色法や電子顕微鏡により評価する方法などを挙 げることができる。

【0026】上記組織や器官としては、肝臓、腎臓尿細管、心臓、大脳等を、細胞としてはこれら組織や器官を構成する肝細胞、神経細胞等を具体的に挙げることができる。また、これらのスクリーニングに際して、野生型非ヒト動物、特に同腹の野生型非ヒト動物における場合と比較・評価することが、個体レベルで正確な比較実験をすることができることから好ましい。このように、上記本発明のスクリーニング方法によると、レギュカルチン過剰発現に起因する疾病、例えば大脳機能障害、インスリン非依存性糖尿病、腎性高血圧、尿細管再吸収障害等の予防・治療薬をスクリーニングすることができ、かかるスクリーニング方法により得られるレギュカルチン過剰発現に起因する疾病の予防・治療薬も本発明の範疇に含まれる。

【 0 0 2 7 】本発明のレギュカルチン発現低下に起因す る疾病の原因物質のスクリーニング方法としては、本発 明のトランスジェニック非ヒト動物又はトランスジェニ ック非ヒト動物由来の組織、器官もしくは細胞と被検物 質とを用いる方法であれば特に制限されるものではな く、レギュカルチン発現低下に起因する疾病としては、 動脈硬化、心筋梗塞等を例示することができる。上記ト ランスジェニック非ヒト動物と被検物質とを用いる方法 としては、トランスジェニック非ヒト動物に被検物質を 直接投与し、該トランスジェニック非ヒト動物における 体重減少の程度や、レギュカルチン発現低下に起因する 疾病の程度を測定・評価する方法や、被検物質投与後の トランスジェニック非ヒト動物から得られる組織、器官 又は細胞におけるレギュカルチンの発現増加量の程度を 測定・評価する方法や、組織や器官における形態変化を モノクローナル抗体による免疫染色法や電子顕微鏡によ り評価する方法などを挙げることができる。また、トラ ンスジェニック非ヒト動物由来の組織、器官又は細胞と 被検物質とを用いる方法としては、トランスジェニック 非ヒト動物由来の組織、器官又は細胞を被検物質の存在 下で培養し、該組織、器官又は細胞のレギュカルチンの 発現増加量の程度を測定・評価する方法や、組織や器官 における形態変化をモノクローナル抗体による免疫染色 法や電子顕微鏡により評価する方法などを挙げることが できる。

【0028】上記組織や器官としては、肝臓、腎臓尿細

管、心臓、大脳等を、細胞としてはこれら組織や器官を 構成する肝細胞,神経細胞等を具体的に挙げることがで きる。また、これらのスクリーニングに際して、野生型 非ヒト動物、特に同腹の野生型非ヒト動物における場合 と比較・評価することが、個体レベルで正確な比較実験 をすることができることから好ましい。このように、上 記本発明のスクリーニング方法によると、レギュカルチ ン発現低下に起因する疾病、例えば動脈硬化、心筋梗塞 等の原因物質をスクリーニングすることができ、かかる スクリーニング方法により得られるレギュカルチン発現 低下に起因する疾病の原因物質は、レギュカルチンの生 体内における作用・役割をより一層明らかにする上で有 用であり、また、これら原因物質に結合する物質等その 作用を阻害する物質をスクリーニングすることにより、 レギュカルチン発現低下に起因する疾病の予防・治療薬 を開発することができる可能性があることからしても有 用であり、かかる原因物質も本発明の範疇に含まれる。 【0029】次に、本発明の骨病態モデル動物として は、レギュカルチンを過剰発現する非ヒト動物であっ て、骨病態を呈するモデル動物であれば特に制限される ものではなく、かかる骨病態モデル動物として、レギュ カルチン遺伝子が導入された上述の本発明のトランスジ ェニック非ヒト動物を好適に例示することができる。し たがって、以下本発明の骨病態モデル動物や骨病態の予 防・治療薬のスクリーニング方法について説明するが、 より詳細には、上述の本発明のトランスジェニック非ヒ ト動物に関する記載や、本発明のレギュカルチン過剰発 現に起因する疾病の予防・治療薬のスクリーニング方法 等に関する記載を参照することができる。なお、本発明 において、骨病態とは、骨粗鬆症に代表されるカルシウ ム骨代謝異常等により、骨量の減少、骨組織の脆弱化、 骨形態変化、骨成長遅延等の骨やその成長が正常でない 状態をいう。

【0030】上記本発明の骨病態モデル動物としては、 レギュカルチンを過剰発現する非ヒト動物から、骨の形 態学的測定評価、例えば骨密度、骨強度、骨幹部皮質骨 厚さ、皮質骨周囲長さのいずれか1以上の測定評価、及 び/又は、骨成分の生化学的測定評価、例えばカルシウ ム量、アルカリホスファターゼ活性、骨組織中のDNA 量のいずれか1以上の測定評価により選抜・確認され た、骨組織の脆弱化、骨形態変化、骨成長遅延のいずれ か1以上の骨病態を呈する骨病態モデル動物が好まし く、上記骨の形態学的測定評価には、動物研究用pQT C (Peripheral Quantitative Computed Tomography) 骨密度測定装置 (Bone Vol. 29, No. 2, August 2001; 10 1-104)を特に有利に用いることができる。また、骨成 分の生化学的測定評価は、後述する実施例に記載されて いるような、この分野における常法により実施すること ができる。なお、骨の形態学的測定評価や骨成分の生化 学的測定評価には、大腿骨等の骨自体が必要な、供試動 物をそのまま骨病態モデル動物として使用できないこと から、上記選抜・確認された骨病態モデル動物とは、骨 の形態学的測定評価や骨成分の生化学的測定評価に供し た動物と同腹の動物又はその子孫をいう。

【0031】本発明の骨病態モデル動物は、例えば前記 のように、本発明者が作製したラットレギュカルチン発 現ベクターから切り出され、リニアライズされたDNA フラグメントを別途調整した受精卵卵胞細胞にマイクロ インジェクション法で注入し、卵細胞を培養後、発生が 進み異常が認められない胚を仮親の卵管内に移植し、生 まれた産仔について、特に動物研究用pQTC骨密度測 定装置による骨の形態学的測定評価、及び骨成分の生化 学的測定評価の結果を行うことにより、選抜・確認する ことができ、これらの中でも、骨病態の表現形質が継代 的に安定し、商業的生産に適したものが好ましい。ま た、本発明の骨病態モデル動物としては、ホモ体である レギュカルチントランスジェニック骨病態モデル動物を 好ましく例示することができる。かかる変異染色体をホ モに有するホモ体は、染色体をヘテロに有するラット等 の非ヒト動物同士を交配することにより得ることがで き、レギュカルチン発現量がヘテロ体よりも多いことか ら、骨変化等の骨病態の表現形質がより強く現れること から好ましい。さらに、本発明の骨病態モデル動物とし ては、レギュカルチン遺伝子がX染色体上にあり、雄よ りも雌において骨変化等の骨病態の表現形質がより顕著 に現れることから、雌ラット等の雌の骨病態モデル動物 を好ましく例示することができる。

【0032】本発明の骨病態の予防・治療薬のスクリー ニング方法としては、上記本発明の骨病態モデル動物に 被検物質を投与し、該骨病態モデル動物における骨の形 態学的測定評価及び/又は骨成分の生化学的測定評価を 行うことを特徴とするスクリーニング方法であれば特に 制限されるものではなく、被検物質としては、公知の合 成化合物、ペプチド、蛋白質などの他に、例えば哺乳動 物の組織抽出物、細胞培養上清などや、各種植物の抽出 成分等が用いられる。例えば、被検化合物を本発明の骨 病態モデル動物に経口的又は非経口的に投与し、該骨病 態モデル動物における、例えば骨密度、骨強度、骨幹部 皮質骨厚さ、皮質骨周囲長さ等の骨の形態学的測定評価 や、例えばカルシウム量、アルカリホスファターゼ活 性、骨組織中のDNA量等の骨成分の生化学的測定評価 を実施することにより、骨粗鬆症等の骨病態の予防・治 療薬をスクリーニングすることができる。また、これら のスクリーニングに際して、野生型非ヒト動物、特に同 腹の野生型非ヒト動物における場合と比較・評価するこ とが、個体レベルで正確な比較実験をすることができる ことから好ましい。

【0033】また、本発明の骨病態の予防・治療薬としては、上記本発明のスクリーニング方法により得られる 骨病態の予防・治療薬であれば特に制限されるものでは なく、これら予防・治療薬を医薬品として用いる場合は、薬学的に許容される通常の担体、結合剤、安定化剤、賦形剤、希釈剤、p H緩衝剤、崩壊剤、可溶化剤、溶解補助剤、等張剤などの各種調剤用配合成分を添加することができる。これら予防・治療薬を用いる、骨粗鬆症等の骨病態の予防・治療方法においては、患者の性別・体重・症状に見合った適切な投与量の上記予防・治療薬を、経口的又は非経口的に投与することができる。すなわち通常用いられる投与形態、例えば粉末、顆粒、カプセル剤、シロップ剤、懸濁液等の剤型で経口的に投与することができ、あるいは、例えば溶液、乳剤、懸濁液等の剤型にしたものを注射の型で非経口投与することができる他、スプレー剤の型で鼻孔内投与することもできる他、スプレー剤の型で鼻孔内投与することもできる。

[0034]

【実施例】以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。

実施例1 [ラットRCcDNA調製]

(RNAの調製) ウイスター系雄性ラット(3週齢)から肝臓を摘出し、グアニジンーイソチオシアネート液(4 Mグアニジニウムチオシアネート,25 mクエン酸ナトリウム(pH 7 . 0) , 0 . 5%サルコシル,0 . 1 M2-メルカプトエタノール,2 M酢酸ナトリウム)でホモジナイズした。これをフェノールークロロホルムーイソアミルアルコール混液で抽出し、4 \mathbb{C} 、1 \mathbb{O} , 0 0 \times \mathbb{G} \mathbb{G}

【0035】(cDNAライブラリーの作製)精製したポリ(A) +RNA($5\mu g$) に50unito Molone y-Murine Leukemiaウイルス逆転写酵素とオリゴ(<math>dT) 18プライマーリンカーを添加し、1本鎖cDNAを合成した。さらに合成した1本鎖cDNAに大腸菌リボヌクレアーゼHとDNAポリメラーゼIを添加し、2本鎖cDNAを合成した。これにEcoRIアダプターを付加し、XhoI,EcoRIで消化したファージ発現ベクター(λZ APII)と連結した。さらにパッケージングエキストラクトを用いてファージにパッケージングしcDNAライブラリーのファージを作製した。

【0036】 (RCcDNAクローンの選抜) ラット肝のcDNAライブラリーのファージ約 1×10^6 個を大腸菌と混合し20個の寒天プレートに植菌した。 42° で3時間半インキュベートした後、プレートに 10° Mイソプロピルチオ β -D-ガラクトシドで処理したニトロセルロース膜をのせ、 37° で3時間半インキュベートした。ニトロセルロース膜はブロッキングした後、抗R

【0037】(プラスミドベクターへのサブクローニング)ファージベクター入ZAPIIは、その配列中にプラスミドベクターであるpBluescriptの塩基配列を含み、 λZ APIIにクローニングされたRCのcDNA断片はこのpBluescriptに挿入されている。また、pBluescriptの両端にはヘルパーファージの複製開始点と終結点が存在している。そこで同定したプラークよりファージを単離し、R408ヘルパーファージとともに大腸菌SUREに感染させ、RCのcDNA断片を含むpBluescriptを大腸菌内で合成させ、ヘルパーファージの形で大腸菌外に放出させた。このファージ液をさらに大腸菌SUREに感染させ、RCのcDNA断片を有するプラスミドとして菌内で複製させた。この大腸菌を50μg/mlアンピシリン含有のLBプレートに植菌し、アンピシリン耐性コロニーを選択した。

【0038】(cDNAインサートの塩基配列の決定) Sequenaseシステム (US Biochemical社製)を用いて c DNAインサートの全塩基配列を決定した。すなわちプ ラスミドDNAをEcoRIで切断し、断片はアルカリ変性 処理した後、プライマーを加えアニーリングした。これ に35S dCTP、0.1M DTT、Sequense用酵素 液を添加した後4等分し、各々にddATP、ddGT P、ddTTP、ddCTPを加え、37℃5分間イン キュベートした。これらはアクリルアミドゲル電気泳動 で分離し、オートラジオグラフィーを行ない、塩基配列 を読み取った。配列番号1にレギュカルチンcDNAの 全塩基配列を示す。また、得られたアミノ酸配列も配列 番号2に示す。これから計算されるレギュカルチンの分 子量は33,388であった。この値は精製したレギュ カルチンをSDSポリアクリルアミド電気泳動法により 算出した分子量と一致した。

【 0 0 3 9 】実施例2 [トランスジェニックラットの創製]

(導入遺伝子の構築)実施例1で得られたラットレギュカルチン全長 c D N A を含むプラスミド、R C -900 (glycerol stock; R C -F)、ベクターpBluescript SK (-)より、O R F全てを含む D N A 断片をPstIを用いて切り出した(図1 A)。この切り出したPstIフラグメントをpBluescript II KS(+)のPstIサイトに組み込んだ(図1 B)。次にEcoRIで切り出し、得られたEcoRIフラグメント(図2 A)を、発現ベクターpCXN2(クロンテック社)(Gene 108,193-199,1991)のEcoRIサイトに導入し(図2 B)、ラットレギュカルチン発現ベクタ

-RC/ pCXN2を調製した。このRC/pCXN2をSallとSfilとM luIで切断し、リニアライズされた3.6kbpのフラグメントを得た(図3)。

【0040】(トランスジェニックラットの作製)ラットの前核期受精卵への上記リニアライズされた3.6kbpのDNAフラグメント溶液のマイクロインジェクションは下記の要領で実施した。4週齢のスプラーグードーリー(SD, Sprague-Dawley)系雌ラットを明暗サイクル12時間(明時間4:00~16:00)、温度約23℃、湿度約55%で飼育し、膣スメア法により雌の性周期を観察してホルモン処理日を選択した。雌ラットに150IU/kgの妊馬血清性性腺刺激ホルモン(日本全薬社製「PMSゼンヤク」)を腹腔内投与して過剰排卵処理を行い、その48時間後に150IU/kgのヒト胎盤性性腺刺激ホルモン(三共エール薬品(株)社製「プベローゲン」)を腹腔内投与した後、雄との同居により交配を行わせ、ヒト胎盤性性腺刺激ホルモン投与32時間後に卵管灌流により前核期受精卵を採取した。【0041】この様にして調製したウイスターラットの

【0041】この様にして調製したウイスターラットの 受精卵の雄性前核に、前記3.6kbpのDNAフラグ メント溶液 (5 n g / μ 1 濃度) を顕微注入した。DN Aフラグメントが注入された卵を、CO。インキュベー ター内でm-KRB(m-クレブスリンガー緩衝液)培 地を用いて1晩培養した。翌日2細胞へと発生が進み、 異常の認められない2細胞期胚を9匹の仮親(精管結紮 雄と交配させた偽妊娠雌ラット)の卵管内に1匹あたり 20~30個程度を移植し、29匹の産仔を得た。4週 齢まで生存した27匹の産仔の尾よりDNAを採取し、 採取したDNAをプライマーhuRC-1; GGAGGCTATGTTGCCA CCATTGGA(配列番号3)、プライマーhuRC-2; CCCTCCAA AGCAGCATGAAGTTG(配列番号4)を用いてPCR法によ り検定した(図4)。その結果、合計5匹(雄4匹、雌 1匹)のラットに導入遺伝子の存在を確認した。そのう ち5匹が次世代に導入遺伝子を伝えた。

【0042】実施例3[体重増加抑制能]

実施例2で得られたトランスジェニックラット(ヘテロ体)の系統の内、尾組織におけるレギュカルチン発現量が最も多い系統同士を交配することにより、トランスジェニックラット(ホモ体)を得た。また、ホモ体であることは、ラット尾組織より抽出したゲノムDNAへの導入遺伝子の組み込みをPCR法にて確認し、ヘテロ体のcDNA量の2倍以上の組み込み量を検出することにより確認した。かかるホモ体のトランスジェニックラットを用いて体重増加抑制能について調べた。3~4週齢の野生型SDラットとトランスジェニックラット(ホモ体)それぞれ8匹ずつの体重の平均値を表1に示す。Student's t test, P<0.01、平均値生標準誤差で表し有意差が認められ、レギュカルチン遺伝子の過剰発現により、体重増加が抑制されることを確認することができた。

[0043]

【表1】

ラットの体重 (g)

	体重 (g)
Wild	88.5±3.8
Transgenic	69.5±2.4*

【0044】実施例4 [骨病態モデル動物]

(SD系ホモタイプ骨病態モデルラット)実施例2で得 られたトランスジェニックラット(ヘテロ体)の系統の 内、尾組織におけるレギュカルチン発現量が最も多い系 統同士を交配することにより、トランスジェニックラッ ト(ホモ体)を得た。また、ホモ体であることは、ラッ ト尾組織より抽出したゲノムDNAへの導入遺伝子の組 み込みをPCR法にて確認し、ヘテロ体のcDNA量の 2倍以上の組み込み量を検出することにより確認した。 外見上骨病態を呈していない上記ホモ体のトランスジェ ニックラットの中から、継体的に安定して生存している 雌雄のラットを、試験区のSD系骨病態モデルラット (ホモ体)として用い、骨の形態学的測定評価(骨密 度、骨強度、骨幹部皮質骨厚さ、皮質骨周囲長さ)と骨 成分の生化学的測定評価(カルシウム量、骨芽細胞・造 骨細胞のマーカー酵素であるアルカリホスファターゼ活 性、骨組織中の細胞数指標であるDNA量)を行った。 また、対照区として雌雄のSD系野生型正常ラットを用 いた。なお、各測定評価において、試験区・対照区と も、ラットは各群5匹を使用し、各測定値は平均値±標 準誤差で示し、統計的有意差検出は、Student's t-test を用いて行い、P<0.01(1%)以下を有意差あり とした。

【0045】(骨の形態学的測定評価)5~6週齢の雌雄のSD系骨病態モデルラット(試験区)及びSD系野生型正常ラット(対照区)をエーテル麻酔下で解剖して大腿骨組織を摘出後、筋肉組織を除去し、所定の測定に供するまで70%エタノール溶液中に完全に浸して保存したものを標本とした。この標本を動物研究用pQTC

よりスライス幅0.5mmずつで5箇所のスキャンを行った。また、骨長の約1/2の部位を骨幹部とし、1ヶ所スキャンを行った。スキャンの結果を図5(試験区;上段及び中段が骨幹端部、下段左が骨幹部)と図6(対照区;上段及び中段が骨幹端部、下段左が骨幹部)に示す。スキャン後、各群骨幹部と骨幹端部の骨密度、骨強度、骨幹部組織の皮質骨厚、及び骨幹部組織の皮質骨外膜周囲長が自動的に算出・表示された。結果をそれぞれ表2~表5に示す。なお、表6に、上記pQTC測定における測定パラメーターと解析パラメーターを示す。【0046】pQTC測定の結果、雄雌とも正常ラットと比較して骨病酸チェブルラットでは骨密度が減少し、特

骨密度測定装置 (XCT Reserch SA+: Stratec Medizinte cnik GmbH Pforzhein Germany) を用いて、骨幹端部に

おいては遠位骨端(成長軟骨板)から2.0mmの部位

【0046】pQTC測定の結果、雄雌とも止常ラットと比較して骨病態モデルラットでは骨密度が減少し、特に雌において顕著であった(表2)。骨強度においては、雄の正常ラットと比較して雄の骨病態モデルラットでは骨強度が減少していたが、雌においては骨幹部、骨幹端部ともに骨病態モデルラットで骨強度が正常ラットの約40~45%にまで減少することが明らかになった(表3)。骨幹部(皮質骨)組織の皮質は、雄雌共に、正常ラットと比較して骨病態モデルラットで皮質骨厚が有意に減少していた(表4)。骨幹部(皮質骨)組織の皮質外膜周囲長は、雄においては2群間で有意な差は認められなかったが、雌においては2群間で有意な差は認められなかったが、雌においては、正常ラットと比較して骨病態モデルラットで皮質外膜周囲長が有意に減少した(表5)。

[0047]

【表2】

骨組織の骨密度(mg/cm³)

		骨幹部 (mg/cm³)	骨幹端部(mg/cm³)
Male	Wild	494.3±12.94	345.8±12.25
	Transgenic	425.0±31.28*	304.4±19.69*
Female	Wild	465.8 ± 15.05	388.0 ± 18.77
	Transgenic	215.0±5.38*	274.6±7.82*

[0048]

【表3】

骨組織の骨強度 (mm³)

		骨幹部(mm³)	骨幹端部 (mm³)
Male	Wild	2.794 ± 0.127	3.426±0.077
	Transgenic	2.368 ± 0.308	3.012 ± 0.394
Female	Wild	2.446 ± 0.063	3.194 ± 0.102
	Transgenic	1.163±0.029*	1.298±0.108*

骨幹部(皮質骨)組織の皮質骨厚(mm)

		骨幹部 (mm)
Male	Wild	0.309 ± 0.012
	Transgenic	0.112±0.016*
Female	Wild	0.337 ± 0.012
	Transgenic	0.257±0.040*

[0050]

【表5】 骨幹部(皮質骨)組織の皮質骨外膜周囲長(mm)

		骨幹部 (mm)
Male	Wild	9.365 ± 0.183
	Transgenic	9.540±0.175
Female	Wild	9.004±0.096
	Transgenic	8.761±0.234*

[0051]

【表6】

測定パラメーター及び測定部位

$500 \mu\mathrm{m}$	レファレンスの位置	SV画像から大腿骨遠端部
		を指定
80 μ m	測定部位:骨幹端部	遠位骨端より 2.0mmから
	(海綿骨)	0.5mmごとに計5スライス
80 µ m	測定部位:骨幹部	骨長の約1/2の部位
	(皮質部)	
	1検体当たり約7分	(SVスキャン含む)
	80 μ m	(海綿骨) 80 µ m 測定部位: 骨幹部 (皮質部)

解析パラメーター

		CALCBD		CORTBD	(SSI)
Contour	mode:2	Peel	mode:2	Cortical	
Threshold:		Trab. Area:		Threshold:	690/(&464)mg/cm ³
L	<u> </u>	Threshold:	395mg/cm ³	Inner Threshold:	,

【0052】(骨成分の生化学的測定評価)5~6週齢の雌雄のSD系ホモタイプ骨病態モデルラット(試験区)及びSD系野生型正常ラット(対照区)をエーテル麻酔下で解剖して大腿骨組織を摘出後、筋肉組織を除去し、所定の測定に供するまで70%エタノール溶液中に完全に浸して保存したものを標本とした。この標本から、骨幹部(皮質骨)と骨幹端部(海綿骨)に分けて、カルシウム量、骨芽細胞・造骨細胞のマーカー酵素であるアルカリホスファターゼ活性、骨組織中の細胞数指標であるDNA量の測定を行った。

【0053】骨組織中のカルシウム量(mg/g骨乾燥

重量)の測定は、骨幹部(皮質骨)と骨幹端部(海綿骨)を、それぞれ640℃で24時間灰化し、重量を測り、その後6N塩酸に溶解して骨カルシウム量を原子吸光度にて測定した。骨組織中のカルシウム量をmg/g骨乾燥重量で表した結果を表7に示す。表7からもわかるように、雄雌とも正常ラットと比較して骨病態モデルラットでは骨カルシウム量が有意に減少していたが、特に雌において骨カルシウム量の減少が顕著であった。

[0054]

【表7】

骨組織中カルシウム量 (mg/g骨乾燥重量)

		骨幹部	骨幹端部
Male	Wild	217.6±4.47	169.1 ≒3.99
	Transgenic	192.0±7.89*	142.5 ± 2.46*
Female	Wild	219.4±3.51	185.4上8.55
	Transgenic	174.4±4.69*	137.3±8.54*

【0055】骨組織中のアルカリ性ホスファターゼ活性の測定は、骨幹部(皮質骨)と骨幹端部(海綿骨)を、それぞれ氷冷した6.5mMパルビタール緩衝液(pH7.4)3m1に浸し、小片にカットし、テフロン(登

録商標)乳棒のついたPotter-Elvehjemホモジナイザーにて均質とし、超音波装置にて60秒間かけて破壊した。600rpmにて5分間遠心分離し、得られた上清を酵素活性の測定に使用した。アルカリ性ホスファター

ゼ活性はWalterとSchuttの方法 (Bergmeyer HU (ed) Me thodsof enzymatic analysis, Vol.1-2, Academic Press, New York, PP856-860, 1965) に準じて測定した。また、タンパク質の濃度はLowryらの方法 (J. Biol. Chem., 193, 265-273, 1951) に準じて測定した。骨組織中のアルカリ性ホスファターゼ活性を遊離したpーニトロフェノールのμmol/min/mg蛋白質として表し

た結果を表8に示す。表8から、正常ラットと比較して 骨病態モデルラットでは、骨幹部(皮質骨)においては 雄でアルカリ性ホスファターゼ活性が有意に上昇してお り、また骨幹端部(海綿骨)においては雌でアルカリ性 ホスファターゼ活性が有意に上昇していた。

[0056]

【表8】

骨組織中アルカリ性ホスファターゼ活性 (µmol/分/mg蛋白質)

		骨幹部	骨幹端部
Male	Wild	1.467 ± 0.072	1.246 = 0.038
	Transgenic	1.104±0.093*	1.204 ∈ 0.038
Female	Wild	1.192 ± 0.076	1.355 上0.029
	Transgenic	1.067±0.095	1.107 ± 0.011*

【0057】骨組織中のDNA量の測定は、骨幹部(皮質骨)と骨幹端部(海綿骨)を、それぞれ氷冷した6.5mMパルビタール緩衝液(pH7.4)3m1に浸し、小片にカットした後、氷冷した0.1N水酸化ナトリウム溶液4.0m1にて24時間振り混ぜた。アルカリ抽出後、10,000rpmで5分間遠心分離し、得られた上清をDNA量の測定に使用した。DNA量はCeriottiの方法(J. Biol.Chem., 214,39-77,1955)に準

じて測定した。骨組織中のDNA量をmg/g骨組織湿重量として表した結果を表9に示す。表9から、正常ラットと比較して骨病態モデルラットでは、骨幹部(皮質骨)においては雌でDNA量が有意に減少しており、また骨幹端部(海綿骨)においては雌雄ともにDNA量が有意に減少していた。

【0058】

【表9】

骨組織中DNA量 (mg/g骨組織湿重量)

		骨幹部	骨幹端部
Male	Wild	2.55±0.13	4.64±0.29
	Transgenic	2.99 ± 0.24	3.19±0.22*
Female	Wild	2.40±0.31	4.39±0.40
	Transgenic	$1.26\pm20.18*$	2.37±0.38*

【0059】以上のように、本発明の骨病態モデル動物においては、大腿骨組織の明らかな骨変化が見い出され、この骨変化は、大腿骨の骨幹部(皮質骨)と骨幹端部(海綿骨)の両部において、形態学的並びに生化学的(骨成分)に認められ、骨組織が骨吸収(骨塩溶解)を引き起こし、骨形成も障害されていることに基づくことが明らかになった。特に、雄(male)よりも雌(female)において、その骨変化は顕著であった。また、本発明の骨病態モデル動物においては、骨病態の発現形質が継体的に安定していることも確認されている。

[0060]

【発明の効果】本発明のレギュカルチントランスジェニック非ヒト動物、特にレギュカルチントランスジェニックラットは、肝障害、腎障害、糖尿病、心筋梗塞、高血

圧、アルツハイマーなどCa²+シグナリングが関与する成人病、生活習慣病、老人病など病態評価用実験モデル動物として有用である。また、レギュカルチンは細胞内Ca²+シグナリングに関連した細胞機能を調節しており、本発明のレギュカルチントランスジェニック非ヒト動物はかかるレギュカルチンを過剰発現することから、臓器特異的な病態(肝癌、心筋梗塞、大脳痴呆症)の修復・改善のための遺伝子治療薬開発のためのモデル動物として有用な手段になりうる。また、本発明の骨病態モデル動物は、骨粗鬆症等の骨疾患治療のための病態モデル動物として、骨病態機構の解明や新薬の開発を目的とした前臨床試験等に有利に用いることができる。

[0061]

【配列表】

SEQUENCE LISTING

<110> JAPAN SCIENCE AND TECHNOLOGY CORPORATION

<120> Regucalcin gene-transferred non-human animals

<130> 13-217

<140>

<141>

<160> 4

<170> PatentIn Ver. 2.1

```
<210> 1
<211> 900
<212> DNA
<213> Rattus norvegicus
<220>
<221> CDS
<222> (1).. (900)
<400> 1
atg tot too ate aag att gaa tgt gtt tta agg gag aac tac agg tgt
Met Ser Ser Ile Lys Ile Glu Cys Val Leu Arg Glu Asn Tyr Arg Cys
                  5
                                     10
ggg gag tcc cct gtg tgg gag gag gca tca aag tgt ctg ctg ttt gta
                                                                   96
Gly Glu Ser Pro Val Trp Glu Glu Ala Ser Lys Cys Leu Leu Phe Val
             20
gae ate eet tea aag act gte tge ega tgg gat teg ate age aat ega
                                                                   144
Asp Ile Pro Ser Lys Thr Val Cys Arg Trp Asp Ser Ile Ser Asn Arg
         35
                             40
                                                  45
gtg cag cga gtt ggt gta gat gcc cca gtc agt tca gtg gca ctt cga
                                                                   192
Val Gln Arg Val Gly Val Asp Ala Pro Val Ser Ser Val Ala Leu Arg
                         55
cag toa gga ggo tat gtt gcc acc att gga acc aag tto tgt gct ttg
                                                                   240
Gln Ser Gly Gly Tyr Val Ala Thr Ile Gly Thr Lys Phe Cys Ala Leu
aac tgg gaa gat caa tca gta ttt atc cta gcc atg gtg gat gaa gat
                                                                   288
Asn Trp Glu Asp Gln Ser Val Phe IIe Leu Ala Met Val Asp Glu Asp
                                     90
aag aaa aac aat ega tte aat gat ggg aag gtg gat eet get ggg aga
Lys Lys Asn Asn Arg Phe Asn Asp Gly Lys Val Asp Pro Ala Gly Arg
            100
                                 105
                                                     110
tac ttt gct ggt acc atg gct gag gaa acc gcc cca gct gtt ctg gag
                                                                   384
Tyr Phe Ala Gly Thr Met Ala Glu Glu Thr Ala Pro Ala Val Leu Glu
        115
                            120
egg cae caa ggg tee ttg tae tee ett ttt eet gat eae agt gtg aag
                                                                   432
Arg His Gln Gly Ser Leu Tyr Ser Leu Phe Pro Asp His Ser Val Lys
                        135
aaa tac ttt aac caa gtg gat atc tcc aat ggt ttg gat tgg tcc ctg
                                                                   480
Lys Tyr Phe Asn Gln Val Asp IIe Ser Asn Gly Leu Asp Trp Ser Leu
145
                    150
                                        155
                                                             160
gae cat aaa ate tte tae tae att gae age etg tee tae aet gtg gat
                                                                   528
Asp His Lys Ile Phe Tyr Tyr Ile Asp Ser Leu Ser Tyr Thr Val Asp
                165
                                                         175
gee ttt gae tat gae etg eea aca gga eag att tee aac ege agg act
                                                                   576
Ala Phe Asp Tyr Asp Leu Pro Thr Gly Gln Ile Ser Asn Arg Arg Thr
            180
                                185
gtt tac aag atg gaa aaa gat gaa caa atc cca gat gga atg tgc att
                                                                   624
Val Tyr Lys Met Glu Lys Asp Glu Gln Ile Pro Asp Gly Met Cys Ile
        195
gat gtt gag ggg aag ett tgg gtg gee tgt tae aat gga gga aga gta
                                                                   672
```

```
Asp Val Glu Gly Lys Leu Trp Val Ala Cys Tyr Asn Gly Gly Arg Val
                        215
att ege eta gat eet gag aca ggg aaa aga etg eaa act gtg aag ttg
Ile Arg Leu Asp Pro Glu Thr Gly Lys Arg Leu Gln Thr Val Lys Leu
                    230
                                        235
cet gtt gat aaa aca act tea tge tge ttt gga ggg aag gat tae tet
                                                                  768
Pro Val Asp Lys Thr Thr Ser Cys Cys Phe Gly Gly Lys Asp Tyr Ser
                245
                                    250
gaa atg tac gtg aca tgt gcc agg gat ggg atg agc gcc gaa ggt ctt
                                                                  816
Glu Met Tyr Val Thr Cys Ala Arg Asp Gly Met Ser Ala Glu Gly Leu
            260
                               265
ttg agg cag cct gat gct ggt aac att ttc aag ata aca ggt ctt ggg
                                                                  864
Leu Arg Gln Pro Asp Ala Gly Asn Ile Phe Lys Ile Thr Gly Leu Gly
        275
                            280
gtc aaa gga att gct cca tat tcc tat gca ggg taa
                                                                  900
Val Lys Gly Ile Ala Pro Tyr Ser Tyr Ala Gly
    290
                        295
<210> 2
<211> 299
<212> PRT
<213> Rattus norvegicus
<400> 2
Met Ser Ser Ile Lys Ile Glu Cys Val Leu Arg Glu Asn Tyr Arg Cys
                 5
                                    10
Gly Glu Ser Pro Val Trp Glu Glu Ala Ser Lys Cys Leu Leu Phe Val
Asp IIe Pro Ser Lys Thr Val Cys Arg Trp Asp Ser IIe Ser Asn Arg
                            40
Val Gln Arg Val Gly Val Asp Ala Pro Val Ser Ser Val Ala Leu Arg
                        55
Gln Ser Gly Gly Tyr Val Ala Thr Ile Gly Thr Lys Phe Cys Ala Leu
                    70
                                        75
Asn Trp Glu Asp Gln Ser Val Phe IIe Leu Ala Met Val Asp Glu Asp
                                    90
                85
Lys Lys Asn Asn Arg Phe Asn Asp Gly Lys Val Asp Pro Ala Gly Arg
                     105
           100
Tyr Phe Ala Gly Thr Met Ala Glu Glu Thr Ala Pro Ala Val Leu Glu
                                               125
                            120
Arg His Gln Gly Ser Leu Tyr Ser Leu Phe Pro Asp His Ser Val Lys
                       135
                                           140
Lys Tyr Phe Asn Gln Val Asp IIe Ser Asn Gly Leu Asp Trp Ser Leu
                   150
                                       155
Asp His Lys Ile Phe Tyr Tyr Ile Asp Ser Leu Ser Tyr Thr Val Asp
               165
                                  170
Ala Phe Asp Tyr Asp Leu Pro Thr Gly Gln Ile Ser Asn Arg Arg Thr
                              185
Val Tyr Lys Met Glu Lys Asp Glu Gln Ile Pro Asp Gly Met Cys Ile
                           200
Asp Val Glu Gly Lys Leu Trp Val Ala Cys Tyr Asn Gly Gly Arg Val
    210
                        215
                                            220
```

Ile Arg Leu Asp Pro Glu Thr Gly Lys Arg Leu Gln Thr Val Lys Leu 230 235 Pro Val Asp Lys Thr Thr Ser Cys Cys Phe Gly Gly Lys Asp Tyr Ser 245 250 255 Glu Met Tyr Val Thr Cys Ala Arg Asp Gly Met Ser Ala Glu Gly Leu 260 265 Leu Arg Gln Pro Asp Ala Gly Asn Ile Phe Lys Ile Thr Gly Leu Gly 280 275 285 Val Lys Gly Ile Ala Pro Tyr Ser Tyr Ala Gly 290 295 <210> 3 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer huRC-1 <400> 3 ggaggetatg ttgccaccat tgga 24 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence:Primer huRC-2 <400> 4 ccctccaaag cagcatgaag ttg 23

【図面の簡単な説明】

【図1】本発明のトランスジェニックラット作製用発現ベクター構築における、ラットレギュカルチン全長 c D N A より O R F 部分を切り出す過程を示す図である。

【図2】本発明のトランスジェニックラット作製用発現ベクター構築における、ラットレギュカルチン全長 c D N A の O R F 部分を発現ベクターpCXN2に導入する過程を示す図である。

【図3】本発明のトランスジェニックラット作製用のリニアライズされた導入遺伝子断片調製の過程を示す図で

ある。

【図4】本発明のトランスジェニックラット中のレギュカルチン遺伝子のPCRによる確認におけるプライマーの位置を示す図である。

【図5】動物研究用pQTC骨密度測定装置を用いた、本発明の骨病態モデルラットの大腿骨組織(骨幹端部及び骨幹部)のスキャンの結果を示す図である。

【図6】動物研究用pQTC骨密度測定装置を用いた、 対照のSD系野生型正常ラットの大腿骨組織(骨幹端部 及び骨幹部)のスキャンの結果を示す図である。

【図4】

【図1】

【図2】

【図5】

【図6】

(51) Int. Cl. ⁷	識別記号	FΙ		(参考)
A61P 9/10		A 6 1 P 9/10		
	101		1 0 1	
9/12		9/12		
13/12		13/12		
19/08		19/08		
19/10		19/10		
25/00	1 0 1	25/00	1 0 1	
CO7K 14/47		C O 7 K 14/47		
C 1 2 N 15/09		C 1 2 Q 1/02		
C 1 2 Q 1/02		1/42		
1/42		1/68	Z	
1/68		G O 1 N 33/15	Z	
G O 1 N 33/15		33/50	Z	
33/50		C 1 2 N 15/00	A	

Fターム(参考) 2G045 AA40 CB13

4B024 AA01 AA11 BA80 CA04 CA07 DA02 DA06 EA03 EA04 GA18

GA19 HA20

 $4B063\ QA01\ QA18\ QQ20\ QQ33\ QQ42$

QQ89 QR77 QR80 QS12 QS28 QX01

4C084 AA17 MA01 NA14 ZA022

ZA152 ZA362 ZA402 ZA422

ZA452 ZA702 ZA812 ZA962

ZA972 ZC212 ZC352

4H045 AA10 AA20 AA30 BA10 CA40

EA50 FA74