

M5L27256K, -2

262144-BIT (32768-WORD BY 8-BIT)
ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

DESCRIPTION

The Mitsubishi M5L27256K is a high-speed 262144-bit ultraviolet erasable and electrically reprogrammable read only memory. It is suitable for microprocessor programming applications where rapid turn-around is required. The M5L27256K is fabricated by N-channel double polysilicon gate technology and is available in a 28-pin DIP with a transparent lid.

FEATURES

- 32768 Word x 8 bit organization
- Access time M5L27256K-2 200ns (max.) M5L27256K 250ns (max.)
- Programming voltage: 12.5V
- Two line control OE, CE
- Low power current (I_{CC}): Active 80mA (max.)
 Stand by 25mA (max.)
- Single 5V power supply
- 3-State output buffer
- Input and output TTL-compatible in read and program mode
- Standard 28-pin DIP
- Fast programming algorithm

PIN CONFIGURATION (TOP VIEW) (5V. 12.5V) Vpp V_{CC} (5V, 6V) - A14 - A₁₃ ADDRESS As INPUTS - A₁₁ A ADDRESS OE OUTPUT Α3 INPUTS 21 ← A 10 ADDRESS INPUT A_2 20 ← CÉ CHIP ENABLE Δ, INPUT 19 **↔** D7 A₀ 18 ↔ D₆ D_0 DATA INPUTS/ 17] ↔ D₅ DATA INPUTS/ D₁ OUTPUTS OUTPUTS D2 16 ↔ D₄ 15 ↔ D₃ (**0V**) GND Outline 28K4

APPLICATION

Microcomputer systems and peripheral equipment

262144-BIT (32768-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

FUNCTION

Read

Set the \overline{CE} and \overline{OE} terminals to the read mode (low level). Low level input to \overline{CE} and \overline{OE} and address signals to the address inputs $(A_0 \sim A_{14})$ make the data contents of the designated address location available at the data input/output $(D_0 \sim D_7)$. When the \overline{CE} or \overline{OE} signal is high, data input/output are in a floating state.

When the $\overline{\text{CE}}$ signal is high, the device is in the standby mode or power-down mode.

Programming

(Fast programming algorithm)

First set $V_{CC} = 6V$, $V_{PP} = 12.5V$ and then set an address to first address to be programmed. After applying 1 ms program pulse (\overline{CE}) to the address, verify is performed. If the output data of that address is not verified correctly, apply one more 1 ms program pulse. The programmer continues 1 ms pulse-then-verify routines until the device verify correctly or twenty five of these pulse-then-verify routines have been completed. The programmer also maintains its total number of 1ms pulses applied to that address in register X. And then applied a program pulse 3 times of register X value long as an overprogram pulse. When the programming procedure above is finished, step to the next address and repeat this procedure till last address to be programmed.

Erase

Erase is effected by exposure to ultraviolet light with a wavelength of 2537Å at an intensity of appoximately 15WS/cm². Sunlight and fluorescent light may contain ultraviolet light sufficient to erase the programmed information. For any operation in the read mode, the transparent lid should be covered with opaque tape.

MODE SELECTION

Pins	CE(20)	OE (22)	V _{PP} (1)	V _{CC} (28)	Outputs (11~13, 15~19
Read	Vit	VIL	5V	5V	Data out
Output disable	VIL	ViH	5∨	5∨	Floating
Standby	ViH	x*	5V	5V	Floating
Program	VIL	ViH	12.5V	6∨	Data in
Program verify	V _{IH}	VIL	12.5V	6∨	Đata out
Program inhibit	V _{IH}	V _{IH}	12.5V	6V	Floating

^{*:} X can be either VIL or VIH

ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Ratings	Unit	
Topr	Operating temperature	- 10~80	°C	
T _{stg}	Storage temperature	- 65 ~ 125	°C	
VI1	All input or output voltage except Vpp, A ₉ (Note 2)	-0.6~7	V	
V _{I 2}	V _{PP} supply voltage during programming (Note 2)	-0.6~14.0	V	
V ₁₃	A ₉ input voltage (Note 2)	-0.6~13.5	V	

Note 1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods affects device reliability.

2: With respect to Ground.

262144-BIT (32768-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

READ OPERATION

DC ELECTRICAL CHARACTERISTICS (Ta = 0 ~ 70°C, V_{CC} = 5V ± 5%, V_{PP} = V_{CC} , unless otherwise noted)

	B	Test enadisions		Limits			
Symbol	Parameter	Test conditions	Min	Typ N	1ax	Unit	
L	Input load current	V _{IN} = 5.5V		ĺ	10	μA	
ILO	Output leakage current	V _{OUT} = 5.5V			10	μA	
I _{PP1}	V _{PP} current read	V _{PP} = 5.5V			5	mΑ	
I _{CC1}	V _{CC} current standby	CE = V _{IH}			25	mA	
ICC2	V _{CC} current Active	CE = OE = VIL		ĺ	80	mA	
VIL	Input low voltage		-0.1		8.0	V	
ViH	Input high voltage		2.0	Vo	g + 1	V	
VOL	Output low voltage	1 _{OL} = 2.1mA		0	45	V	
Vон	Output high voltage	I _{OH} = - 400 _μ A	2.4			V	

Note 3: Typical values are at Ta = 25°C and nominal supply voltages

AC ELECTRICAL CHARACTERISTICS (Ta = 0 ~ 70°C, V_{CC} = 50 ±5%, V_{PP} = V_{CC}, unless otherwise noted)

Symbol			Limits						
	Parameter	Test conditions	M5L27256K-2			M5L27256K			Unit
			Min	Тур	Max	Min	Тур	Max	l
ta (AD)	Address to output delay	CE = OE = VIL			200			250	ns
ta (CE)	CE to output delay	OE = VIL			200			250	ns
ta (ŌE)	Output enable to output delay	CE = V _{IL}	1		75			100	ns
t _{DF}	Output enable high to output float	CE = V _{IL}	0		60	0		60	ns
t oH	Output hold from CE, OE or addresses		0			0			ns

Note 4: V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}

AC WAVEFORMS

Test conditions for A.C. charactristics Input voltage: $V_{IL} = 0.45V$, $V_{IH} = 2.4V$ Input rise and fail times: $\leq 20ns$ Reference voltage at timing measurement: Input 0.8V and 2V Output 0.8V, and 2V.

Output load 1TTL gate + C_L(100pF)

CAPACITANCE

		Test conditions		Unit		
Symbol	Parameter	rest conditions	Min	Тур	Max	O m
C _{IN}	Input capacitance (Address, CE, OE)			4	6	pF
Cour	Output capacitance	$T_a = 25^{\circ}C$, $f = 1 MHz$, $V_1 = V_0 = 0V$		8	12	pF

262144-BIT (32768-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

PROGRAM OPERATION

FAST PROGRAMMING ALGORITHM

 $\textbf{DC ELECTRICAL CHARACTERISTICS} \text{ } (T_a = 25 \pm 5 ^{\circ}\text{C} \text{ , } V_{CC} = 6 \text{V} \pm 0.25 \text{V} \text{ , } V_{PP} = 12.5 \text{V} \pm 0.3 \text{V} \text{ , unless otherwise noted})$

Symbol	Parameter	Test conditions		l		
		- CSC CONDITIONS	Min	Тур	Max	Unit
Lu	Input current	VIN=VILOR VIH			10	μА
VoL	Output low voltage	I _{OL} =2.1mA			0.45	
Voн	Output high voltage	I _{OH} = -400μΔ	2.4			
VIL	Input low voltage		-0.1		0.8	
V _{IH}	Input high voltage		2.0		Vcc	
1 _{CC2}	V _{CC} supply current				80	mA
I _{PP2}	V _{PP} supply current	CE = VII			50	mA

$\textbf{AC ELECTRICAL CHARACTERISTICS} \ \, (T_a = 25 \pm 5 \, ^{\circ}\text{C} \, , \ \, V_{CC} = 6 \, V \pm 0.25 \, V \, , \ \, V_{PP} = 12.5 \, V \pm 0.3 \, V \, , \ \, \text{unless otherwise noted})$

Symbol	Parameter	Test conditions			1		
	- didition	est conditions	Min	Тур	Max	Unit	
t AS	Address setup time		2			μs	
t OES	OE set up time		2			μS	
tos	Data setup time		2		† <u>†</u>	μs	
t AH	Address hold time		0		1	μs	
t _{DH}	Data hold time		2		1	μs	
t _{DFP}	Output enable to output float delay		0		130	ns	
tvcs	V _{CC} setup time		2		1 1	μs	
tves	V _{PP} setup time		2	***		μS	
t _{FPW}	CE initial program pulse width		0.95	1	1,05	ms	
t _{OPW}	CE over program pulse width		2.85		78,75	ms	
t _{OE}	Data valid from OE				150	ns	

Note 5: V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

M5L27256K, -2

262144-BIT (32768-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

AC WAVEFORMS PROGRAM VERIFY V_{IH} ADDRESS V_{IL} tas tAH V_{1H}/V_{OH} DATA OUTPUT VALID DATA DATA SET V_{IL}/V_{OL} t DH tos t DFP Vpp Vpp VPS V_{CC} $V_{\rm CC} + 1$ $V_{\rm CC}$ v_{cc} V_{iH} CÉ toes toE $V_{1} \sqsubseteq$ trpw V_{IH} t opw OE

FAST PROGRAMMING ALGORITHM FLOW CHART

 V_{IL}

Test conditions for A.C. charactristics Input voltage: V₁ $_{\rm L}$ = 0.45V, V₁ $_{\rm H}$ = 2.4V Input rise and fail times: \leq 20ns Reference voltage at timing measurement: Input 0.8V and 2V Output 0.8V, and 2V.

* 4.75 $V \le V_{CC} = V_{PP} \le 5.25V$

M5L27256K, -2

262144-BIT (32768-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

DEVICE IDENTIFIER MODE

The Device Identifier Mode allows the reading of a binary code from the EPROM that identifies the manufacturer and device type.

The EPROM Programmer reads the manufacturer code and the device code and automatically selects the correspronding programming algorithm.

M5L27256K DEVICE IDENTIFIER CODE

Code	A ₀ (10)	D ₇ (19)	D ₆ (18)	D ₅ (17)	D ₄ (16)	D ₃ (15)	D ₂ (13)	D ₁ (12)	D ₀ (11)	Hex Data
Manufacturer code	VIL	0	0	0	1	1	1	0	0	1C
Device code	VIH	0	0	0	0	0	1	0	0	04

Note 6: $V_{CC} = V_{PP} = 5V \pm 5\%$, $A_9 = 12.0 \pm 0.5V$, $A_1 \sim A_8$, $A_{10} \sim A_{14}$, \overline{CE} , $\overline{OE} = V_{|L}$.