Implementation of the fast multipole method

Shanyin Tong Yu-hsuan Shih

Courant Institute of Mathematical Sciences, New York University

12/09/2020

Consider evaluating all pairwise interactions between a given set of N electrically charged particles in two dimensions.

$$u_i = \sum_{j=1}^{N} G(x_i, x_j) q_j, \quad i = 1, 2, \dots, N,$$
 (1)

 $\{x_i\}_{i=1}^N$: a given set of point locations in a square Ω $\{q_i\}_{i=1}^N$: a given set of corresponding sources $\{u_i\}_{i=1}^N$: a set of potential values to be determined

 $G(\boldsymbol{x}, \boldsymbol{y}) = \log(\boldsymbol{x} - \boldsymbol{y})$: kernel

Using $\mathbf{A}(i,j) = G(\mathbf{x}_i,\mathbf{x}_j), \mathbf{q}(i) = q_i$ and $\mathbf{u}(i) = u_i$, write (1) as a matrix vector multiplication:

$$\mathbf{u} = \mathbf{A}\mathbf{q}$$

However, direct evaluation cost is $O(N^2)$.

Review of FMM

To evaluate (1) in linear complexity, the fast multipole method (FMM) uses a multilevel technique, splitting the computational domain Ω into a tree of boxes. Denote the level to be $l=0,1,\ldots,L-1,\ l=0$ denotes the root and l=L-1 denotes the leaf boxes. Given a box τ in the hierarchical tree, define the index vectors for box τ :

- **parent**: the box on the next coarsest level that contains τ .
- **children list** $\mathcal{L}_{\tau}^{\text{child}}$: the set contains the boxes whose parent is τ .
- **neighbor list** $\mathcal{L}_{\tau}^{\text{nei}}$: the set contains the boxes on the same level that directly touch τ
- ▶ interaction list $\mathcal{L}_{\tau}^{\text{int}}$: the set contains all boxes σ such that (1) σ and τ are on the same level, (2) σ and τ do not touch, and (3) the parents of σ and τ do touch.

For $\tau = 35$ (red), the neighbor list $\mathcal{L}_{\tau}^{\mathrm{nei}}$ is shown in blue.

39	41	47	49	67	69
38	•			66	68
27		35		59	61
26	,			58	60
23	25	31	33	55	57
22	24	30	32	54	56

For $\tau = 35$ (red), the interaction list $\mathcal{L}_{\tau}^{\rm int}$ is shown in blue.

11	13	19	21
			20
	9		17
'			16

For $\tau = 9$ (red), the interaction list $\mathcal{L}_{\tau}^{\text{int}}$ is shown in blue.

Review of FMM

Evaluating multipole expansions hierarchically.

- ▶ **Upward pass**: Compute the outgoing expansion of each box in a pass over all boxes, going from smaller boxes to larger ones.
 - lacktriangle For a leaf box, compute the expansion directly from the sources in the box: $\hat{f q}_{ au}={f T}_{ au}^{\sf ofs}~{f q}(I_{ au})$
 - For a parent box, use the outgoing expansions of its children: $\hat{\mathbf{q}}_{ au} = \sum_{\sigma \in \mathcal{L}_{ au}^{\mathsf{child}}} \mathbf{T}_{ au,\sigma}^{\mathsf{ofo}} \; \hat{\mathbf{q}}_{\sigma}$
- **Downward pass**: Compute the incoming expansion for every box in a pass over all boxes, going from larger boxes to smaller ones. For each box, combine the incoming expansion of its parent ν with the contributions from the outgoing expansions of all boxes in its interaction list:

$$\hat{\mathbf{u}}_{ au} = \mathbf{T}_{ au,
u}^{\mathsf{ifi}} \; \hat{\mathbf{u}}_{
u} + \sum_{\sigma \in \mathcal{L}_{ au}^{\mathsf{int}}} \mathbf{T}_{ au,\sigma}^{\mathsf{ifo}} \; \hat{\mathbf{q}}_{\sigma}$$

► Compute the potential on every leaf by expanding its incoming potential and then adding the contributions from its near field via direct evaluation:

$$\mathbf{u}(I_{ au}) = \mathbf{T}_{ au}^{\mathsf{tfi}} \; \hat{\mathbf{u}}_{ au} + \mathbf{A}(I_{ au}, I_{ au}) \; \mathbf{q}(I_{ au}) + \sum_{\sigma \in \mathcal{L}_{n}^{\mathsf{nei}}} \mathbf{A}(I_{ au}, I_{\sigma}) \; \mathbf{q}(I_{\sigma})$$

Transition operator $\mathbf{T}_{\tau,\sigma}^{\text{ofo}}, \mathbf{T}_{\tau,\sigma}^{\text{ifo}}, \mathbf{T}_{\tau,\sigma}^{\text{ifi}} \in \mathbb{C}^{P \times P}$ are independent of $\{x_i\}_{i=1}^N$. $\mathbf{T}_{\tau}^{\text{ofs}} \in \mathbb{C}^{P \times N_{\tau}}$ and $\mathbf{T}_{\tau}^{\text{tfi}} \in \mathbb{C}^{N_{\tau} \times P}$ are computed for each leaf box τ .

Figure 1: Diagram of the quadtree data structure. L=4.

► Step 1: Build quadtree data structure.

- Step 2: Build the parent, child, neighbor, interaction list
- ▶ Step 3: Build the translation operators $\mathbf{T}_{\tau,\sigma}^{\text{ofo}}, \mathbf{T}_{\tau,\sigma}^{\text{ifo}}, \mathbf{T}_{\tau,\sigma}^{\text{ifi}}$.
- Step 4: Sort the particles into leaf boxes.
- Step 5: Calculate the potential using FMM

Figure 1: Linked list data structure for neighbor list for the red node (box).

- ▶ Step 1: Build quadtree data structure.
- ▶ Step 2: Build the parent, child, neighbor, interaction list
- ▶ Step 3: Build the translation operators $\mathbf{T}_{\tau,\sigma}^{\text{ofo}}, \mathbf{T}_{\tau,\sigma}^{\text{ifo}}, \mathbf{T}_{\tau,\sigma}^{\text{ifi}}$
- Step 4: Sort the particles into leaf boxes.
- Step 5: Calculate the potential using FMM.

Figure 1: Linked list data structure for neighbor list for the red node (box).

- ▶ Step 1: Build quadtree data structure.
- ▶ Step 2: Build the parent, child, neighbor, interaction list
- ▶ Step 3: Build the translation operators $\mathbf{T}_{\tau,\sigma}^{\text{ofo}}, \mathbf{T}_{\tau,\sigma}^{\text{ifo}}, \mathbf{T}_{\tau,\sigma}^{\text{ifi}}$.
- Step 4: Sort the particles into leaf boxes.
- Step 5: Calculate the potential using FMM.

Figure 1: Linked list data structure for neighbor list for the red node (box).

- ▶ Step 1: Build quadtree data structure.
- ▶ Step 2: Build the parent, child, neighbor, interaction list
- ▶ Step 3: Build the translation operators $\mathbf{T}_{\tau,\sigma}^{\text{ofo}}, \mathbf{T}_{\tau,\sigma}^{\text{ifo}}, \mathbf{T}_{\tau,\sigma}^{\text{ifi}}$.
- Step 4: Sort the particles into leaf boxes.
- Step 5: Calculate the potential using FMM.

Figure 1: Linked list data structure for neighbor list for the red node (box).

- ▶ Step 1: Build quadtree data structure.
- ▶ Step 2: Build the parent, child, neighbor, interaction list
- ▶ Step 3: Build the translation operators $\mathbf{T}_{\tau,\sigma}^{\text{ofo}}, \mathbf{T}_{\tau,\sigma}^{\text{ifo}}, \mathbf{T}_{\tau,\sigma}^{\text{ifi}}$.
- Step 4: Sort the particles into leaf boxes.
- ▶ Step 5: Calculate the potential using FMM.

Numerical Results

Set up

- ▶ Uniformly distributed particles. \mathbf{x}_i are i.i.d. uniform random in $[0,1]^2$.
- \blacktriangleright Given ε , the length of the outgoing expansion length P is chosen such that

$$\varepsilon \sim \eta_{\text{2D}}^P, \quad \eta_{\text{2D}} = \frac{\sqrt{2}}{4 - \sqrt{2}}.$$

▶ The depth of the tree L is chosen such that each box contains roughly P number of particles,

$$4^{L-1} \approx N/P$$

▶ The calculated P is larger than needed, e.g. for $\varepsilon = 10^{-4}$, P = 15.

Performance tests

- ▶ Step 1: Build quadtree data structure.
- ► Step 2: Build the parent, child, neighbor, interaction list

- ► Step 3: Build the translation operators
- ▶ Step 4: Sort the particles into leaf boxes.
- ▶ Step 5: Calculate the potential using FMM.

number of boxes $4^{L-1} \rightarrow$