Amdt. Dated February 17, 2006

Reply to Office Action dated November 3, 2005

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1.(currently amended) A method of interfacing for variable length packet and cell transfer between a first layer device and a second layer device, in which control information is divided into an in-band portion and an out-of-band portion, comprising:

- (a) dividing control information into an in-band portion and an out-of-band portion;
- (ab) transmitting the in-band portion of said control information along a path for data from one of said first and second layer devices to another of said first and second layer devices, wherein said in-band control information controls data bus lanes and not data; and
- (c) transmitting the out-of-band portion of said control information
 along a path for control/signaling from one of said first and second layer
 devices to another of said first and second layer devices; and
- (bd) inserting in said data path a control of data signal to identify when the data path contains control information and when it contains data;

whereby re-encoding of data and insertion of control information upon predetermined intervals is avoided.

2.(previously presented) A method according to claim 1, wherein said in-band portion is control information as to status and destination address of data being sent and to align parallel data lines that comprise a data path and said out-of-band portion is credit-based FIFO status flow control information;

whereby said interfacing is done independently in both transmit and receive directions and a number of credits granted to each port depends on an encoded state of a corresponding port status.

- 3.(original) A method according to claim 2, including using a "1 1" framing pattern on a FIFO status channel to mark boundaries of the framing pattern without requiring an out-of-band framing signal.
- 4.(original) A method according to claim 1, including sending a training control pattern sufficiently often in order to allow a receive interface to check and correct for deskew on start-up and during regular operation to compensate for skew variations due to changes in voltage, temperature, noise and other factors.
- 5 (original) A method according to claim 1, using a clock in a direction opposite to the data path as a reference source for the data path transmitting from a side of the interface opposite to a transmitting end.

Amdt. Dated February 17, 2006

Reply to Office Action dated November 3, 2005

6.(original) A method according to claim 4, wherein a transmitting end of the data path sends data and control signals precisely aligned with respect to a source-synchronous clock and the training pattern once every MAX_T where MAX_T is configurable on start-up.

7.(original) A method according to claim 1, wherein each control word contains an error-detection code and one or more control words are inserted between bounded transfer periods whereby performance of the code is not degraded by overly long transfers.

8.(original) A method according to claim 1, wherein an end-of-packet event and error codes are combined into a two-bit code to reduce the number of bits required.

9.(original) A method according to claim 1, wherein transfer information referring to a previous transfer and to a next transfer is contained in one control word.

10.(previously presented) A method according to claim 1, wherein a single control word may contain control information that applies to data preceding said single control word as well as data following said single control word.

11.(currently amended) A method of interfacing for variable length packet and cell transfer between a first layer device and a second layer device, in which control information is divided into an in-band portion and an out-of-band portion, comprising:

Amdt. Dated February 17, 2006

Reply to Office Action dated November 3, 2005

(a) dividing control information into an in-band portion and an out-of-band portion;

- (ab) transmitting the in-band portion of said control information along a path for data from one of said first and second layer devices to another of said first and second layer devices;
- (c) transmitting the out-of-band portion of said control information

 along a path for control/signaling from one of said first and second

 layer devices to another of said first and second layer devices;
- (bd) inserting in said data path between data transfers a control of data signal to identify when the data path contains control information and when it contains data; and
- (ee) transmitting FIFO status flow information out-of-band whereby re-encoding of data and insertion of control information upon predetermined intervals is avoided.

12.(previously presented) A method according to claim 11, wherein said first layer device is a PHY and said second layer device has a transmit link layer device operative to

Amdt. Dated February 17, 2006

Reply to Office Action dated November 3, 2005

transmit data from said transmit link layer device to said PHY and a receive link layer device operative to receive data from said PHY.

13.(previously presented) A method according to claim 11, wherein said in-band portion includes packet address, delineation and error control coding and said out-of-band portion is FIFO status flow information whereby said interface operates independently in both transmit and receive directions.

14.(currently amended) A deskewing circuit for deskewing data arriving on a plurality of data lines, comprising:

- (a) a plurality of serial-in parallel_out (SIPO) blocks, each of said

 SIPO blocks coupled to a corresponding one of said plurality of data lines, said SIPO

 blocks operative to convert n-bit words of serial input data from a corresponding

 respective said plurality of data lines to parallel data, where n is a integer;
- (b) a plurality of M register[s] sets coupled to said plurality of SIPO blocks, each of said register[s] sets operative to store successive a most recent W n-bit words of data arriving on each of said plurality of data lines, where M and W are an integer selected from the series 1, 2,K, where K is an integer with one word stored on each of said registers;

Amdt. Dated February 17, 2006

Reply to Office Action dated November 3, 2005

(c) a training detector block coupled to said <u>M sets of registers</u> and operative to detect the presence of a training pattern based on the contents of said registers;

- (d) a plurality of transition detection blocks <u>each</u> coupled to <u>one of</u> said <u>M sets of registers</u> and operative to search and to detect a transition in each bit position-of <u>within each one of said M sets of W registers; and</u>
- (e) an aligner block coupled to a plurality of said transition detection blocks operative to select an appropriate bits within each of said M sets of registers from which to read each bit in order to present a deskewed output.

15.(currently amended) A deskewing circuit, comprising:

- (a) 17 serial-in parallel-out (SIPO) blocks, each one coupled to a corresponding input data line and operative to convert serial input data to parallel output data, each of said SIPO blocks having n bit outputs where n is an integer equal to a word size of data output from each of said SIPO blocks, each of said SIPO blocks having separate bit outputs for each bit of an n-bit word contained therein converted by said each of said SIPO blocks;
- (b) N-plurality of M register[s] sets coupled to said 17 SIPO blocks, each of said register sets operative to store most recent W n-bit words of data arriving on

Amdt. Dated February 17, 2006

Reply to Office Action dated November 3, 2005

each of said plurality of data lines, where M and W are integers selected from the numbers in series 1,2,...,K where K is an integer separate bit outputs of each of said SIPO blocks such that an ith one of said set of registers is connected to an ith bit output of ith—said SIPO blocks, where i=1, 2, ..., N;

- (c) a training detector block coupled to outputs of said <u>17 sets of</u> registers operative to detect the presence of a training pattern based on the contents of said <u>17 sets of</u> registers;
- (d) 17 transition detection blocks coupled to respective outputs of said 17 sets of registers with an ith each transition detection block having n*W inputs where n is the number of bits in each register and W is the number of registers coupled to an ith bit output of each of said registers, where i=1, 2,..., 17, said ith transition detection block, when after the presence of a training pattern has been detected; in one of said registers by an associated one of said transition detection blocks, one of said transition detection blocks is operative to search for a transition on an ith bit position from one of said 17 registers bit positions; and
- (e) an aligner block coupled to outputs from said 17 transition detection blocks operative to select an appropriate register and bit within said register from which to read each bit in order to present a deskewed output.