MATH 302

CHAPTER 5

Section 5.3: Nonhomogeneous Linear Equations

CONTENTS

Particular Solutions	2	,
The Principle of Superposition	5	,

Created by: Pierre-Olivier Parisé Fall 2022

PARTICULAR SOLUTIONS

Our goal is to find the solutions to

$$y'' + p(x)y' + q(x)y = f(x). (1)$$

Nomenclature:

- the equation y'' + p(x)y' + q(x)y = 0 is the **complementary equation** for (1).
- a particular solution is a solution y_{par} of (1).

EXAMPLE 1. Find a particular solution to the following ODE:

$$y'' - 2y' + y = 4x.$$

Assumptions:

• Suppose y_{par} is a particular solution to

$$y'' + p(x)y' + q(x)y = f(x).$$

• Suppose $\{y_1,y_2\}$ is a fundamental set of solutions to

$$y'' + p(x)y' + q(x)y = 0.$$

Conclusion:

• Then the $y = y_{par} + c_1 y_1 + c_2 y_2$ is the general solution of

$$y'' + p(x)y' + q(x)y = f(x).$$

EXAMPLE 2.

a) Find the general solution of

$$y'' - 2y' + y = -3 - x + x^2.$$

b) Solve the following IVP:

$$y'' - 2y' + y = -3 - x + x^2$$
, $y(0) = -2$, $y'(0) = 1$.

THE PRINCIPLE OF SUPERPOSITION

If y_1 is a particular solution to

$$y'' + p(x)y' + q(x)y = f_1(x)$$

and y_2 is a particular solution to

$$y'' + p(x)y' + q(x)y = f_2(x)$$

then $y_{par}=y_1+y_2$ is a particular solution to

$$y'' + p(x)y' + q(x)y = f_1(x) + f_2(x).$$

EXAMPLE 3. Find a particular solution to

$$y'' + y = 1 + x^2 + x^4.$$