

PATENT CLAIMS

 A borosilicate glass of high chemicals resistance, characterized by a composition (in % by weight, based
 on oxide) of:

	SiO ₂	70 - 77
•	B ₂ O ₃	6 - < 11.5
	Al ₂ O ₃	4 - 8.5
10	Li ₂ O	0 - 2
	Na ₂ O	4 - 9.5
	K ₂ O	0 - 5
	with $Li_2O + Na_2O + K_2O$	5 - 11
	MgO	0 - 2
15	CaO	0 - 2.5
	with MgO + CaO	0 - 3
	ZrO ₂	0 - < 0.5
	CeO ₂	0 - 1

- 20 and, if appropriate, standard refining agents in standard amounts.
- 2. The borosilicate glass as claimed in claim 1, characterized by a composition (in % by weight, based 25 on oxide) of:

	SiO_2	70.5 - 76.5
	B ₂ O ₃	6.5 - < 11.5
	Al ₂ O ₃	4 - 8
30	Li ₂ O	0 - 1.5
	Na ₂ O	4.5 - 9
	K ₂ O	0 - 5
	with $Li_2O + Na_2O + K_2O$	5.5 - 10.5
	MgO	Ó – 1
35	Ca0	0 - 2
	with MgO + CaO	0 - 3
	ZrO ₂	0 - < 0.5
	CeO ₂	0 - 1

and, if appropriate, standard refining agents in standard amounts.

3. The borosilicate glass as claimed in claim 1 or 2, characterized in that it additionally contains (in % by weight, based on oxide):

SrO 0 - 1.5
BaO 0 - 1.5

10 with SrO + BaO 0 - 2
ZnO 0 - 1.

4. The borosilicate glass as claimed in at least one of claims 1 to 3, characterized in that it additionally contains (in % by weight, based on oxide):

 $Fe_2O_3 + Cr_2O_3 + CoO$ 0 - 1 TiO₂ 0 - 3.

- 20 5. The borosilicate glass as claimed in at least one of claims 1 to 4, characterized in that, apart from inevitable impurities, it is free of As_2O_3 and Sb_2O_3 .
- 6. The borosilicate glass as claimed in at least one of claims 1 to 5, having a coefficient of thermal expansion $\alpha_{20/300}$ of between > 5 and 6.0 \times 10⁻⁶/K, in particular between > 5.3 and 5.9 \times 10⁻⁶/K, and a working point V_A of at most 1180°C.
- 7. The use of the borosilicate glass as claimed in at least one of claims 1 to 6, as sealing glass for Fe-Co-Ni alloys.
- 8. The use of the borosilicate glass as claimed in at least one of claims 1 to 6 as instrument glass for laboratory applications and for the construction of chemical installations.

8. The use of the borosilicate glass as claimed in at least one of claims 1 to 6 as primary packaging material for pharmaceuticals, for example as ampoule glass.