MITSUBISHI RF POWER TRANSISTOR 2SC2694

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC2694 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 6.7 dB$ $@V_{CC} = 12.5 V$, $P_0 = 70 W$, f = 175 MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_{O} = 70W, f = 175MHz, T_{C} = 25°C.
- Equivalent input/output series impedance: Z_{in} = 0.7 + j0.9 Ω @P_O = 70W, V_{CC} = 12.5V, f = 175MHz Z_{out} = 1.2 j0.3 Ω

APPLICATION

50 to 60 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
VEBO	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	17	V
I _C	Collector current		20	Α
Pc	Collector dissipation	Ta = 25°C	5.5	W
		T _C = 25°C	140	w
Tj	Junction temperature		175	°C
Tstg	Storage temperature		-55 to 175	°C
Rth-a		Junction to ambient	27.2	°C/W
Rth-c	Thermal resistance	Junction to case	1.07	°C/W

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Limits			11
			Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE = 20mA, IC = 0	4			٧
V(BR)CBO	Collector to base breakdown voltage	I _C = 20 mA, I _E = 0	35			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =0.1A, R _{BE} =∞	17			٧
¹ CBO	Collector cutoff current	V _{CB} =15V, I _E =0			5	mΑ
l _{EBO}	Emitter cutoff current	V _{EB} =3V, I _C =0			5	mΑ
μŁΕ	DC forward current gain *	V _{CE} = 10 V, I _C = 1A	10	50	180	
•P0	Output power	V _{CC} = 12.5 V, P _{in} = 15 W, f = 175 MHz	70	75		W
η_{C}	Collector efficiency		60	70		%

Note. *Pulse test, $P_W = 150 \mu s$, duty=5%

Above parameters, ratings, limits and conditions are subject to change.

TEST CIRCUIT

C1, C2: 150pF, 1000pF, 4.7µF in parallel

F.B.: Ferrite Bead

NOTES: All coils are made from 1.5mmø silver plated copper wire

D: Inner diameter of coil T: Turn number of coil

P : Pitch of coil

Dimension in milli-meter

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. **COLLECTOR TO EMITTER VOLTAGE**

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. **COLLECTOR CURRENT**

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)