MODEL ANSWERS OF MID-SEMESTER EXAMINATION

- 1. If an aircraft is present in a certain area, a radar detects it and generates an alarm signal with probability 0.99. If an aircraft is not present, the radar generates a (false) alarm, with probability 0.10. We assume that an aircraft is present with probability 0.05.
 - (a) (1 point) What is the probability of no aircraft presence and a false alarm?
 - (b) (1 point) What is the probability of aircraft presence and no detection?
 - (c) (2 points) If the radar generates a alarm, what is the probability of the presence of an aircraft?

Solution: Let A denote the event that the radar generate an alarm signal and B denote the event that a aircraft is present in the area. Then, the followings are given: P(A|B) = 0.99, $P(A|B^c) = 0.10$, and P(B) = 0.05.

- (a) The required probability is $P(A \cap B^c) = P(A|B^c)P(B^c) = 0.0950$.
- (b) The required probability is $P(A^c \cap B) = P(A^c | B)P(B) = 0.0005$.
- (c) The required probability is $P(B \cap A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)} = \frac{99}{289}$.
- 2. A biased coin is tossed repeatedly. Each time there is a probability p of a head turning up independent of other tosses. For $n \ge 1$, let p_n be the probability that an even number of heads has occurred after n tosses and $p_0 = 1$. (zero is an even number.)
 - (a) (4 points) Find the recurrence relation between p_n and p_{n-1} for $n \ge 1$.
 - (b) (2 points) Find the value of p_{21} in terms of p.

Solution: (a) Let A_n denote the event that even number of heads turn up after n tosses. Then

$$p_{n} = P(A_{n})$$

$$= P(A_{n}|A_{n-1}) P(A_{n-1}) + P(A_{n}|A_{n-1}^{c}) P(A_{n-1}^{c})$$

$$= (1-p)p_{n-1} + p(1-p_{n-1})$$

$$= p + (1-2p)p_{n-1}.$$

(b)

$$p_{21} = p + (1 - 2p)p_{20}$$

$$= p + (1 - 2p)p + (1 - 2p)^{2}p_{19}$$

$$\vdots$$

$$= p + (1 - 2p)p + \dots + (1 - 2p)^{20}p + (1 - 2p)^{21}$$

$$= \frac{1}{2} + \frac{1}{2}(1 - 2p)^{21}.$$

3. (4 points) Let $F(\cdot)$ be a cumulative distribution function of a random variable. Let a function $H: \mathbb{R} \to \mathbb{R}$ is defined by

$$H(x) = \alpha F(x) + (1 - \alpha) (F(x))^{2},$$

where $0 < \alpha < 1$. Then prove that $H(\cdot)$ is a cumulative distribution function of some random variable.

Solution:

$$H(x_{2}) - H(x_{1}) = \alpha \left(F(x_{2}) - F(x_{1}) \right) + (1 - \alpha) \left(F(x_{2}) + F(x_{1}) \right) \left(F(x_{2}) - F(x_{1}) \right) \ge 0 \text{ for all } x_{1} < x_{2}.$$

$$\lim_{x \to \infty} H(x) = \alpha \lim_{x \to \infty} F(x) + (1 - \alpha) \lim_{x \to \infty} F^{2}(x) = 1.$$

$$\lim_{x \to -\infty} H(x) = \alpha \lim_{x \to -\infty} F(x) + (1 - \alpha) \lim_{x \to -\infty} F^{2}(x) = 0.$$

$$\lim_{x \to y+} H(x) = \alpha \lim_{x \to y+} F(x) + (1 - \alpha) \lim_{x \to y+} F^{2}(x) = \alpha F(y) + (1 - \alpha) \left(F(y) \right)^{2} = H(y) \text{ for all } y \in \mathbb{R}.$$

Therefore, $H(\cdot)$ is the CDF of a random variable.

4. (3 points) Consider the probability space $(S, \mathcal{P}(S), P)$, where $S = \{1, 2, 3, 4\}$ and $P(\{1\}) = \frac{1}{4}$. Let X be the random variable defined on the above probability space as X(1) = 1, X(2) = X(3) = 2 and X(4) = 3. If $P(X \le 2) = \frac{3}{4}$, then find the value of $P(\{1, 4\})$.

Solution:

$$P(X \le 2) = \frac{3}{4} \implies P(\{1, 2, 3\}) = \frac{3}{4}.$$

Therefore, $P(\{2, 3\}) = P(\{1, 2, 3\}) - P(\{1\}) = \frac{1}{2}$, and hence, $P(\{1, 4\}) = \frac{1}{2}$.

5. Let X be a random variable with probability density function

$$f(x) = \begin{cases} e^{-x} & 0 < x < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Let $Y = 1 - e^{-X}$.

- (a) (5 points) Find the cumulative distribution function of Y.
- (b) (2 points) Find the expectation of Y.

Solution: (a) For y < 0, $P(Y \le y) = P(X \in \emptyset) = 0$. For $0 \le y < 1$, $P(Y \le y) = P(1 - e^{-X} \le y) = P(X = -\ln(1 - y)) = 1 - e^{\ln(1 - y)} = y$. For $y \ge 1$, $P(Y \le y) = P(0 < X < \infty) = 1$. Therefore, the CDF of Y is

$$F_Y(y) = \begin{cases} 0 & \text{if } y < 0 \\ y & \text{if } 0 \le y < 1 \\ 1 & \text{if } y \ge 1. \end{cases}$$

(b) Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(y) = \begin{cases} 1 & \text{if } 0 < y < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Clearly, $f(y) \geq 0$ and $F_Y(y) = \int_{-\infty}^y f(t)dt$ for all $y \in \mathbb{R}$. Therefore, Y is a CRV with PDF $f(\cdot)$. Thus,

$$E(Y) = \int_{-\infty}^{\infty} y f(y) dy = \frac{1}{2}.$$

- 6. (6 points) Let S be a sample space and F be a σ -algebra defined on S. Let $P : F \to \mathbb{R}$ be a set function satisfying the following properties:
 - (a) $P(E) \geq 0$ for all $E \in \mathcal{F}$.
 - (b) P(S) = 1.
 - (c) For $n \geq 2$ and for disjoint events $E_1, E_2, \ldots, E_n, P(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n P(E_i)$.
 - (d) If $\{E_n\}_{n\geq 1}$ is a sequence of decreasing events such that $\bigcap_{i=1}^{\infty} E_i = \emptyset$, then $\lim_{n\to\infty} P(E_n) = 0$.

Show that P is a probability.

Solution: Here we need to show the following: For disjoint $A_1, A_2 \ldots \in \mathcal{F}$, $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

$$P(\bigcup_{i=1}^{\infty} A_i) = P\left[(\bigcup_{i=1}^{n} A_i) \cup (\bigcup_{i=n+1}^{\infty} A_i) \right]$$

= $\sum_{i=1}^{n} P(A_i) + P(\bigcup_{i=n+1}^{\infty} A_i).$ (1)

Now define $B_n = \bigcup_{i=n}^{\infty} A_i$ for $n \geq 1$. Clearly $\{B_n\}_{n\geq 1}$ is a decreasing sequence of sets. We claim that $\bigcap_{n=1}^{\infty} B_n = \phi$. If not, then there exist a $\omega \in \bigcap_{n=1}^{\infty} B_n$ and hence $\omega \in B_n$ for all $n \geq 1$. In particular, $\omega \in B_1 = \bigcup_{i=1}^{\infty} A_i$. As A_i 's are disjoint, $\omega \in A_i$ for exactly one i, say i_0 . Then $\omega \notin A_i$ for $i > i_0$ and hence $\omega \notin B_n$ for $n > i_0$. This is a contradiction to the fact that $\omega \in B_n$ for all $n \geq 1$.

This implies that $\lim_{n\to\infty} P\left(\bigcup_{i=n+1}^{\infty} A_i\right) = \lim_{n\to\infty} P(B_{n+1}) = 0$. Taking limit $n\to\infty$ on both sides of (1), we get

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i).$$