Lecture 8 - Feb 7, 2023

- Dynamic programming

 - · Policy Iteration { Vector-Form
 - · Policy Iteration ?
 Natrix Form
 Value Iteration

Project 1 -> Due Feb 8 HW2 is posted -Due Feb 17

TA's office hour: Wendsdays, 2.pm=3pm (in-person) Fridays, 2pm-3pm (virtual)

Bellman Eq.

$$\frac{1}{1}(S) = E[R_{t+1+} \delta R_{t+2+} \delta^{2} R_{t+3+\dots}] S_{t} = S, \pi]$$

$$= E[R_{t+1+} \delta R_{t+2+} \delta^{2} R_{t+3+\dots}] S_{t} = S, \pi]$$

$$= E[R_{t+1+} \delta R_{t+2+} \delta^{2} R_{t+3+\dots}] [R_{t}(S), \pi_{t}(S), \pi_{t}(S)]$$

9 →	10	11_	1 2
8 1		14,	_J 1 <mark>3</mark>
7 ^		16	_15
6 ¹	5		
4	3.1	2	← 1
Wal	I E	Bump	

$$Q_{r}(s, a) = E[R_{t+1} + \delta R_{t+2} + \delta R_{t+3} + \cdots] s_{r} = s_{r} a_{r} A_{r}]$$

$$= E[R_{t+1} + \delta V_{r}(s') | s_{r} = s_{r}, a_{t} = a_{r} A_{r}]$$

$$= \sum_{s} P(s' | s, a) [R(s, a, s') + \delta V_{r}(s')]$$

Determins tic

$$\frac{15}{5} = \sum_{S'} P(S'1S, \mathcal{X}(1S)) \left[\mathcal{R} + \mathcal{V}_{\mathcal{X}}(S') \right] = \frac{9}{8} \frac{1}{1}$$

$$= \frac{1}{5} \left[\mathcal{R}(1S, L, Good) + \mathcal{V}_{\mathcal{X}}(Good) \right] = \frac{9}{6} \frac{1}{1}$$

Bump

Goal

=
$$|x[R(B, D, 15) + YV_{\pi}(15)] = 98$$

$$Q_{\pi}(15,0) = -1 + 8 V_{\pi}(13) = 97$$

$$Q_{\pi}(15,0) = -1 + 2 V_{\pi}(15) = 98$$

$$Q_{\pi}(15,0) = -1 + 2 V_{\pi}(15) = 98$$

Bellman E9 > allows us to evaluate 1/5(5)

V7*(S)= 5 P(S/S, 77/5)[R+ & V7*(S)]

Bellman Eq. 4(5)= [R+8V7(5')]

Bellman Optimality Eq.

 $A^*: V_{\pi^{*}(S)} > V_{\pi^{*}(S)}$, for all S, $\pi \in \Pi$

RIS, a, s'

 $V_{\pi^*(s)} = V_{(s)} = \max_{\alpha \in A} \left[\frac{1}{|R_{t+1}|} \left(\frac{1}{|R_{t+1}|} \right) V_{(s')}^* \right] S_{t} = S, \alpha_t = \alpha \right]$

= max [P(5) F,a) [R(5,a,5') + 8 V(5)]

V(ε)= max Q*(ε, a)

$$V_{\pi}(\xi) \leq Q_{\pi}(\xi, a) \times Nok \text{ true}$$
 $V_{\pi}(\xi) \leq \max_{\alpha \in A} Q_{\pi}(\xi, a) \qquad Q_{\pi}(\xi, L) \Rightarrow V_{\pi}(\xi)$
 $Q_{\pi}(\xi, \pi_{\theta})$
 $Q_{\pi}(\xi, \pi_{\theta})$
 $Q_{\pi}(\xi, \pi_{\theta})$
 $Q_{\pi}(\xi, \pi_{\theta})$
 $Q_{\pi}(\xi, h) \Rightarrow Q_{\pi}(\xi)$
 $Q_{\pi}(\xi, h) \Rightarrow Q_{\pi}($

$$\mathcal{Q}(s,\alpha) = \left[-\left[\mathcal{R}_{t+1} + \vartheta \right] \right] \times \left[-\left[s,\alpha,s' \right] \right] \times \left[-\left[s,\alpha \right] \right] \times \left[$$

9 🔿	10	11_	J 12	
8 1		14,	J 13	
7 ^		16	15	
6 ¹	5 <mark>ا</mark>			
4	3 1	2	← 1	
Wal	I E	Bump Goal		

Dynamic Programming Policy Iteration soptimul policy Value Iteration -Pality Iteration Policy Evalution

Policy Improvement To Policy Exteletion To Policy Impart 1 PE V

Total Total are the same = T=T+1 = T*

Policy Evalution Step is Policy Iteration Alanh

DExact Solution according to Bellnuy Eq.

Randam Poolicy:
$$\gamma^2 = \begin{bmatrix} \pi(A) \\ \pi(B) \end{bmatrix} = \begin{bmatrix} \pi^{\frac{1}{2}} \\ \pi^{\frac{1}{2}} \\ \pi^{\frac{1}{2}} \end{bmatrix}$$

Remark

M(a²) = $\begin{bmatrix} \pi^{\frac{1}{2}} \\ \pi^{\frac{1}{2}} \end{bmatrix}$

Randam Poolicy: $\gamma^2 = \begin{bmatrix} \pi(A) \\ \pi(B) \end{bmatrix} = \begin{bmatrix} a^{\frac{1}{2}} \\ a^{\frac{1}{2}} \end{bmatrix}$

$$\frac{V_{A}(B) = P(A \mid B, \chi(B))}{0.9} \left[R(B, \alpha^{2}, A) + 8 V_{A}(A) \right] \\
+ P(B \mid B, \chi(B)) \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_{A}(B) \right] \\
= \frac{1}{4} \left[R(B, \alpha^{2}, B) + 8 V_$$

$$0.19 V_{\pi}(A) - 0.09 V_{\pi}(B) = 0.5$$

$$-0.81 V_{\pi}(A) + 0.91 V_{\pi}(B) = -0.5$$

$$\begin{bmatrix} 0.19 & -0.09 \\ -0.81 & 0.91 \end{bmatrix} \begin{bmatrix} V_{\mathcal{T}}(A) \\ V_{\mathcal{T}}(B) \end{bmatrix} = \begin{bmatrix} 0.5 \\ -0.5 \end{bmatrix}$$

$$A \begin{bmatrix} V_{\mathcal{T}}(A) \\ V_{\mathcal{T}}(B) \end{bmatrix} = A^{-1} \begin{bmatrix} 0.5 \\ -0.5 \end{bmatrix}$$

$$V_{\mathcal{T}}(B) = A^{-1} \begin{bmatrix} 0.5 \\ -0.5 \end{bmatrix}$$

2) Approxinate policy Evelution

-Start with arbitrary Vo (5) for all ses

 $V_{\mathbf{K}\mathbf{I}}(S) = \sum_{S'} P(S'|S, \mathcal{H}(S)) \left[\mathcal{R}(S, \mathcal{H}(S), S) + \mathcal{V}_{\mathbf{K}}(S) \right] \cdot \lim_{S \to S} S = S$

1 V_{tot1} - V_t ||_∞ = max |_{V_{tot1}}(s) - V_{tot1}(s) | < 0 Ses |_{V_{tot1}} = V_{tot1}

$$V_{0}^{\epsilon} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix}$$

$$V_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$= 0.9 \left[\frac{R(A,a',A)}{o} + \frac{\partial V_o(A)}{\partial} \right]$$

$$V_1 = \begin{bmatrix} 0.5 \\ -0.5 \end{bmatrix}$$

$$| X = \begin{cases} a^{1/2} \\ a^{1/2} \\ V_{2}(A) = 0.9 \\ R(A, a^{1/4}) + 8 \underbrace{V_{1}(A)}_{0.5} \\ + 0.1 \\ R(A, a^{1/8}) + 8 \underbrace{V_{1}(A)}_{0.5} \\ = 0.86$$

$$| V_{2}(B) = 0.9 \\ R(B, a^{2}, A) + 8 \underbrace{V_{1}(A)}_{-0.5} \\ + 0.1 \\ R(B, a^{2}, B) + 8 \underbrace{V_{1}(B)}_{-0.5} = 0.14$$

$$| V_{2} = 0.86 \\ | V_{2} = 0.36 \\ | V_{2} = 0.36$$

$$V_3$$
 $|V_{99} - V_{100}| < \sigma N V_{100} = V = \begin{bmatrix} 3.73 \\ 2.82 \end{bmatrix}$

[(U) - T(V) (x) (U-V) (x) [x+ (V) (S')]

ST P(ST | S, T(S)) [x+ (V) (S')]

Policy Evaluation

In put 1, the policy to be evaluated.

Initialization: a small threshold (): 0, V(s)=0 for SES.

Loop:

 $\Delta \leftarrow 0$

Loop for each $s \in S$:

 $v \leftarrow V(s)$

 $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$

 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

Vo= Vs & SES

Random TO Paliny Evol VTO Paliny IMPM 1

Palicy Improvemt

to that is better than To

T(s)= argmax QT(s,a) Small s acA

= argnux \(\int \text{P(s'/s,a)} \(\text{R} + \text{Vyr(s)} \) \\ a \in A \(\text{S'} \)

9 🚜	10	117	√12 ²⁷
0000 		14	J 1 <mark>3</mark> %
347 1		16	1599
836 1	582		
824	4 3₹1	-270	← 1 ⁸⁹
Wall Bump Goa			Goal