Topic: numerical integration

Read: Ch 19: 19.1,2,3,4,6 Ch 20: 20.4

Handwork problem (also includes MATLAB applications):

HW10_1 First, compute the integral analytically. Then estimate the integral to 6 decimal places, as instructed.

- a) handwork Use multiple applications of the trapezoid rule, with n=6.
- b) handwork Apply the composite trapezoid rule, with n=6.

$$\int_0^3 \frac{dx}{(3x+1)^3}$$

- c) MATLAB Apply the composite trapezoid rule, with n=6, 12 & 24
- d) **handwork** Use multiple applications of Simpson's 1/3 rule, with n=6.
- e) handwork Apply the composite Simpson's 1/3 rule, with n=6.
- f) MATLAB Apply the composite Simpson's 1/3 rule, with n= 6, 12 & 24

for all cases, handwork & MATLAB: Compare all results with the exact integral, and compute the relative errors using MATLAB and publish as pdf.

Coding problems:

HW10_2 <u>20.15</u> The work done on an object is equal to the force times the distance moved in the direction of the force. The velocity of an object in the direction of a force is given by:

$$v = 4t$$
 $0 \le t \le 5$,
 $v = 20 + (5 - t)^2$ $5 \le t \le 15$

where v is in m/s. With a step size h=0.2, determine the work done if a constant force of 200 N is applied for all t

- a) using Simpson's 1/3 rule (composite formula)
- b) using the MATLAB function trapz

HW10_3 A Using Newton's second law, it can be shown that the period T of a pendulum with length L and maximum angle of deflection θ_0 is given by:

$$T = 4\sqrt{\frac{L}{g}} \int_0^{\pi/2} \frac{1}{\sqrt{1 - k^2 \sin^2(x)}} dx$$

where $k=\sin{(\theta_0)}$. Use MATLAB function integral to estimate the period for a pendulum for any L=0.2m and $\theta_0=30^\circ$.

HW10 4 19.21 A manufactured metal sphere has density that varies with the distance from its center.

r (mm)	0	0.12	0.24	0.36	0.49	0.62	0.79	0.86	0.93	1
$\rho (gm/cm^3)$	6	5.81	5.14	4.29	3.39	2.7	2.19	2.1	2.04	2

Estimate the particle's mass and average density (i.e., total mass divided by total volume) as accurately as possible. Watch units! Some helpful info:

$$m = \int_0^r \rho(r)A(r)dr$$
; where, $A(r) = 4\pi r^2$

Print all results to the screen using fprintf.