Relatório – Solução de Sistemas Lineares Aplicados a Grafos de Manhattan

Vinícius Girão de Castro

Objetivo

Este trabalho tem como objetivo resolver um sistema linear oriundo de um grafo de ruas da ilha de Manhattan, utilizando diferentes métodos numéricos: LU, Cholesky, Jacobi, Gauss-Seidel e Gradientes Conjugados; e comparar o desempenho de cada um.

Descrição do problema

Utilizando os arquivos manh.el (arestas) e manh.xy (coordenadas dos vértices), foi construído um grafo representando o sistema de ruas de Manhattan. As etapas seguidas foram:

- Seleção da maior componente conexa do grafo;
- escolha de k vértices aleatórios $v_{i1}, v_{i2}, \ldots, v_{ik}$ e atribuição de valores $c_{i1}, c_{i2}, \ldots, c_{ik} \in (0, 10];$
- construção da matriz Laplaciana L do grafo;
- Construção da matriz de penalidades $P=(P_{ij})$, onde

$$P_{ij} = \begin{cases} \alpha = 1.0e7, \text{ se } j \text{ \'e um \'indice de um v\'ertice escolhido} \\ 0, \text{ caso contrário;} \end{cases}$$

• construção do vetor $b = (b_i)$, onde

$$b_j = \begin{cases} c_{i_s}, \text{ se j=i}_s \\ 0, \text{ caso contrário;} \end{cases}$$

• resolução do sistema (L+P) x = Pb.

Métodos utilizados

0.1 Decomposição LU

- A matriz A = L + P foi decomposta em A = LU;
- Resolvido em duas etapas:
 - a) Ly = Pb
 - a) Ux = y;
- vantagem: aplicável à qualquer matriz não singular;
- desvantagem: alto custo para matrizes esparsas.

0.2 Decomposição de Cholesky

O método iterativo estrutura-se com a decomposição $A = HH^t$, sendo H triangular inferior. Então é calculada a solução em duas etapas:

- a) Hy = Pb
- a) $H^t x = y$.

Para que possamos determinar H, é necessário que a matriz A seja simétrica definida positiva.

Sabe-se que toda matriz Laplaciana de um grafo conexo é necessariamente simétrica semidefinida positiva, mas ao adicionar a matriz de penalidades, com valores grandes e positivos na diagonal, algumas posições da solução são fortemente forçadas a assumir os valores desejados definidos em b. Esses grandes valores diagonais empurram todos os autovalores da matriz para cima, garantindo que todos sejam estritamente positivos.

Em conclusão, a matriz A torna-se simétrica definida positiva (SPD), o que justifica o uso seguro da Decomposição de Cholesky. Tal método tem como vantagem ser mais eficiente que LU, apesar de requerer que a matriz seja SPD. Para o teste com 400 valores, o método levou 306.722567 segundos, ou seja, pouco mais de 5 minutos.