PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11104271 A

(43) Date of publication of application: 20.04.99

(51) Int. Cl

A63B 37/00 A63B 37/04 A63B 37/12

(21) Application number: 09307972

(22) Date of filing: 22.10.97

(30) Priority:

08.08.97 JP 09227610

(71) Applicant:

BRIDGESTONE SPORTS CO LTD

(72) Inventor:

HIGUCHI HIROSHI ICHIKAWA YASUSHI YAMAGISHI HISASHI HAYASHI JUNJI KAWADA AKIRA

(54) MULTIPIECE SOLID GOLF BALL

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a golf ball which provides a large carry, has excellent controllability, improves a feeling and contributes to an improvement in durability.

SOLUTION: This golf ball is constituted to have a solid core and covers consisting of two inside and outside layers covering this solid core. In such a case, the deformation quantity of the solid core when the core is loaded with 100 kg is 32.4 mm and the inner cover layer is mainly composed of a thermoplastic polyester elastomer and is formed to have a Shore D hardness of 28 to 58. Further, the outer cover layer is mainly composed of a thermoplastic polyurethane elastomer and is formed to have a Shore D hardness of 28 to 55.

COPYRIGHT: (C)1999,JPO

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-104271

(43)公開日 平成11年(1999) 4月20日

(51) Int.Cl. ⁸		徽別記号	FΙ		•
A 6 3 B	37/00		A63B	37/00	L
	37/04			37/04	
	37/12			37/12	

審査請求 未請求 請求項の数10 FD (全 7 頁)

(21)出願番号	特顯平9-307972	(71)出顧人	592014104
			プリヂストンスポーツ株式会社
(22)出顧日	平成9年(1997)10月22日		東京都品川区南大井6丁目22番7号
		(72)発明者	極口 博士
(31)優先権主張番号	特膜平9-2276 10		埼玉県秩父市大野原20番地 プリヂストン
(32)優先日	平9 (1997) 8月8日		スポーツ株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	市川 八州史
		V-3.707.	埼玉県秩父市大野原20番地 プリヂストン
			スポーツ株式会社内
		(72)発明者	
			埼玉県秩父市大野原20番地 プリデストン
		,	スポーツ株式会社内
		(74)代理人	弁理士 小島 隆司 (外1名)
		(13/103/	船終頁に続く
		1	

(54)【発明の名称】 マルチピースソリッドゴルフボール

(57)【要約】

【解決手段】 ソリッドコアと、これを被覆する内外2層のカバーを有するマルチピースソリッドゴルフボールにおいて、上記ソリッドコアの100kg荷重負荷時の変形量が2.4mm以上であり、かつ内側カバー層がアイオノマー樹脂を主材としてショアD硬度28~58に形成されていると共に、外側カバー層が熱可塑性ポリエステルエラストマーを主材としてショアD硬度28~55に形成されていることを特徴とするマルチピースソリッドゴルフボール。

【効果】 本発明のマルチピースソリッドゴルフボールは、飛距離が大きく、しかもコントロール性に優れ、フィーリングが良好である上、耐久性に優れたものである。

【特許請求の範囲】

【請求項1】 ソリッドコアと、これを被覆する内外2 層のカバーを有するマルチピースソリッドゴルフボール において、上記ソリッドコアの100kg荷重負荷時の 変形量が2.4 mm以上であり、かつ内側カバー層がア イオノマー樹脂を主材としてショアD硬度28~58に 形成されていると共に、外側カバー層が熱可塑性ポリエ ステルエラストマーを主材としてショアD硬度28~5 5に形成されていることを特徴とするマルチピースソリ ッドゴルフボール。

【請求項2】 内側カバー層の樹脂がアイオノマー樹脂 とオレフィン系エラストマーとを重量比40:60~9 5:5の割合で混合したものである請求項1記載のゴル フボール。

【請求項3】 外側カバー層にショアD硬度が55以上 のアイオノマー樹脂を熱可塑性ポリエステルエラストマ -100重量部に対し70重量部以下の割合で混合した 請求項1又は2記載のゴルフボール。

【請求項4】 ボール全体の慣性モーメントが82.5 $g \cdot c m^2$ 以上である請求項1乃至3のいずれか1項記 載のゴルフボール。

【請求項5】 外側カバー層に無機充填材を1~30重 量%添加した請求項1乃至4のいずれか1項記載のゴル フボール。

【請求項6】 内側カバー層に無機充填材を1~30重 量%添加した請求項1乃至5のいずれか1項記載のゴル フボール。

【請求項7】 外側カバー層の比重が1.05~1.4 である請求項1乃至6のいずれか1項記載のゴルフボー ル。

【請求項8】 内側カバー層の比重が0.8~1.2で ある請求項1乃至7のいずれか1項記載のゴルフボー ル。

【請求項9】 コアの比重が0.9~1.3である請求 項1万至8のいずれか1項記載のゴルフボール。

【請求項10】 外側カバー層の厚さが0.5~2.5 mm、内側カバー層の厚さが0.5~3.0 mmであ り、カバー全体の厚さが1.0~5.5 mmである請求 項1万至9のいずれか1項記載のゴルフボール。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】 本発明は、 ソリッドコアに内 外2層のカバーを被覆したマルチピースソリッドゴルフ ボールに関する。

[0002]

【従来の技術及び発明が解決しようとする課題】現在、 種々の構造のゴルフボールが提案されており、特にソリ ッドゴルフボール、中でも飛距離及びコントロール性 (スピン量)、フィーリングの点でソリッドコアに複数 層のカバーを被覆したマルチピースソリッドゴルフボー 50 5~3.0mmであり、カバー全体の厚さが1.0~

ルについての提案が数多くなされている(特開平4-2 44174号、同6-142228号、同7-2408 4号、同7-24085号、同9-10358号公報 等)。

【0003】しかしながら、更に飛び性能に優れ、しか もスピン特性が良好で、ウッド、アイアン、パターショ ットのフィーリングに優れ、しかも耐ササクレ件、耐久 性に優れたマルチピースソリッドゴルフボールが望まれ る。

10 [0004]

【課題を解決するための手段及び発明の実施の形態】本 発明者は、上記要望に応えるため鋭意検討を行った結 果、ソリッドコアに内外2層のカバーを被覆してなるマ ルチピースソリッドゴルフボールにおいて、ソリッドコ アを比較的軟らかく形成すると共に、内側カバー層をア イオノマー樹脂、外側カバー層を熱可塑性ポリエステル エラストマーを主材として形成し、また内側カバー層の ショアD硬度を28~58、外側カバー層のショアD硬 度を28~55とすることが有効であることを知見した 20 ものである。

【0005】即ち、本発明は、(1)ソリッドコアと、 これを被覆する内外2層のカバーを有するマルチピース ソリッドゴルフボールにおいて、上記ソリッドコアの1 00kg荷重負荷時の変形量が2.4mm以上であり、 かつ内側カバー層がアイオノマー樹脂を主材としてショ アD硬度28~58に形成されていると共に、外側カバ ー層が熱可塑性ポリエステルエラストマーを主材として ショアD硬度28~55に形成されていることを特徴と するマルチピースソリッドゴルフボール、(2)内側カ 30 バー層の樹脂がアイオノマー樹脂とオレフィン系エラス トマーとを重量比40:60~95:5の割合で混合し たものである(1) 記載のゴルフボール、(3) 外側力 バー層にショアD硬度が55以上のアイオノマー樹脂を 熱可塑性ポリエステルエラストマー100重量部に対し 70重量部以下の割合で混合した(1)又は(2) 記載 のゴルフボール、(4)ボール全体の慣性モーメントが 82. 5g·cm²以上である(1) 乃至(3) のいず れか1項記載のゴルフボール、(5)外側カバー層に無 機充填材を1~30重量%添加した(1)乃至(4)の 40 いずれか1項記載のゴルフボール、(6)内側カバー層 に無機充填材を1~30重量%添加した(1)乃至

- (5) のいずれか1項記載のゴルフボール、(7) 外側 カバー層の比重が1.05~1.4である(1)乃至 (6) のいずれか1項記載のゴルフボール、(8) 内側
- カバー層の比重が0.8~1.2である(1)乃至
- (7) のいずれか1項記載のゴルフボール、(9) コア の比重が0.9~1.3である(1)乃至(8)のいず れか1項記載のゴルフボール、(10)外側カバー層の 厚さが0.5~2.5mm、内側カバー層の厚さが0.

5. 5 mmである (1) 乃至 (9) のいずれか1 項記載 のゴルフボールを提供する。

【0006】本発明のゴルフボールは、飛距離が大き く、しかもアイアンショットにおけるコントロール性が 高い上、ウッド、アイアン、パターのいずれのクラブで ショットした場合でも良好なフィーリングを有し、更に アイアンでコントロールショットした際における耐ササ クレ性に優れ、耐久性に優れているものである。

【0007】以下、本発明につき更に詳しく説明する。 本発明のマルチピースソリッドゴルフボールは、ソリッ 10 ドコアと、これを被覆する内側カバー層及び外側カバー 層との2層構造からなるカバーとを有する。

【0008】ここで、上記ソリッドコアは、主としてゴ ム基材からなり、ゴム基材としては従来からソリッドゴ ルフボールに用いられている天然ゴム及び/又は合成ゴ ムを使用することができるが、本発明においては、シス 構造を少なくとも40%以上有する1,4-ポリブタジ エンが特に好ましい。この場合、所望により該ポリブタ ジエンに天然ゴム、ポリイソプレンゴム、スチレンブタ ジエンゴム等を適宜配合してもよい。

【0009】更に詳述すると、本発明のゴルフボールの ソリッドコアは通常の方法により、加硫条件、配合比等 を調節することにより得られる。通常、ソリッドコアの 配合には基材ゴム、架橋剤、共架橋剤、不活性充填剤等 が含まれる。基材ゴムとしては上述した天然ゴム及び/ 又は合成ゴム等を使用することができ、架橋剤としては ジクミルパーオキサイドやジー t ーブチルパーオキサイ ドのような有機過酸化物等が例示されるが、特に好まし くはジクミルパーオキサイドである。架橋剤の配合量は 基材ゴム100重量部に対して通常0.5~2.0重量 30 部である。

【0010】共架橋剤としては特に制限されず、不飽和 脂肪酸の金属塩、特に、炭素原子数3~8の不飽和脂肪 酸(例えばアクリル酸、メタアクリル酸等)の亜鉛塩や マグネシウム塩が例示されるが、アクリル酸亜鉛が特に 好適である。この共架橋剤の配合量は基材ゴム100重 量部に対して10~50重量部、好ましくは20~48 重量部である。

【0011】不活性充填剤としては酸化亜鉛、硫酸バリ ウム、シリカ、炭酸カルシウム及び炭酸亜鉛等が例示さ 40 れるが、酸化亜鉛、硫酸バリウムが一般的で、その配合 量はコアとカバーの比重、ボールの重量規格等に左右さ れ、特に限定されないが、通常は基材ゴム100重量部 に対して3~30重量部である。なお、本発明において は酸化亜鉛、硫酸バリウムの配合割合を適宜調整するこ とで最適なソリッドコアの硬度を得ることができる。

【0012】上記成分を配合して得られるソリッドコア 組成物は通常の混練機、例えばバンバリーミキサーやロ ール等を用いて混練し、コア用金型に圧縮又は射出成形 し、成形体を架橋剤及び共架橋剤が作用するのに十分な 50 内側カバー層は、酸化亜鉛、硫酸バリウム、二酸化チタ

温度(例えば架橋剤としてジクミルバーオキサイドを用 い、共架橋剤としてアクリル酸亜鉛を用いた場合には約 130~170℃)で加熱硬化してソリッドコアを調製 する。

【0013】上記ソリッドコアは100kg荷重を負荷 した時の変形量(たわみ量)が2.4 mm以上、好まし くは2. 4~7. 0mm、更に好ましくは2. 9~6. 0 mmである。100kg荷重負荷時の変形量が2.4 mmより小さい(硬い)と、打感が悪くなるという不利 が生じる。なお、変形量が大きすぎる(軟らかすぎる) と、反発性が低下する場合がある。

【0014】ソリッドコアの比重は0.9~1.3、特 に1.0~1.25であることが好ましい。

【0015】なお、本発明において、ソリッドコアの直 径は30~40mm、特に33~39mmであることが 好ましい。また、ソリッドコアは、上配100kg荷重 負荷時の変形量を有していれば、複層構造であってもよ ٧١₀

【0016】次に、内側カバー層は、アイオノマー樹脂 を主材として形成される。この場合、アイオノマー樹脂 としては、1種を単独で用いても2種以上を混合して用 いてもよいが、後述するショアD硬度、比重を満足する ように選定、使用される。具体的には、デュポン製「サ ーリン」、三井・デュポンポリケミカル製「ハイミラ ン」等を使用することができる。

【0017】この場合、アイオノマー樹脂に更にオレフ イン系エラストマーを混合することにより、各々を単独 で使用した時に達し得ない特性(例えば打感や反発性) を得ることができる。オレフィン系エラストマーとして は、直鎖状低密度ポリエチレン、低密度ポリエチレン、 髙密度ポリエチレン、ポリプロピレン、ゴム強化オレフ インポリマー、フレキソマー、プラストマー、酸変性物 も含む熱可塑性エラストマー(スチレン系プロックコポ リマー、水素添加ポリブタジエンエチレンプロピレンゴ ム)、動的に加硫されたエラストマー、エチレンアクリ レート、エチレンビニルアセテート等が挙げられる。具 体的には、三井・デュポンポリケミカル製「HPR」、 日本合成ゴム製「ダイナロン」等が用いられる。

【0018】アイオノマー樹脂とオレフィン系エラスト マーとの混合割合は、重量比として40:60~95: 5、好ましくは45:55~90:10、更に好ましく は48:52~88:12、特に55:45~85:1 5であることが望ましい。オレフィン系エラストマーが 少なすぎると打感が硬くなる場合がある。一方、これが 多すぎると反発性が低下するおそれがある。

【0019】なお、上記アイオノマー樹脂には、本発明 の効果を損なわない範囲で更に他のポリマーを配合して も差し支えない。

【0020】また、上記アイオノマー樹脂を主材とする

ン等の無機充填材を1~30重量%程度含んでいてもよい。

【0021】上記内側カバー層は、ショアD硬度が28 ~58、特に30~57であることが必要であり、ショアD硬度が28より低いと反発性が低下する。また58 より高いと打感が悪くなる。

【0022】 更に、内側カバー層の比重は0.8~1. 2、特に0.9~1.18であることが好ましい。

【0023】なお、上記内側カバー層の厚さは0.5~ 計厚さ(カバー全体の厚さ)は1.0~5.5 3.0 mm、特に0.9~2.5 mmであることが好ま 10 に1.5~5.3 mmとすることが好ましい。 【0032】なお、上記内側カバー層 外側が

【0024】一方、外側カバー層は、熱可塑性ポリエス テルエラストマーを主材として形成される。

【0025】この場合、熱可塑性ポリエステルエラストマーとしては、テレフタル酸、1,4ーブタンジオール及びポリテトラメチレングリコール(PTMG)もしくはポリプロピレングリコール(PPG)とから合成され、ポリブチレンテレフタレート(PBT)部分をハードセグメント、ポリテトラメチレングリコール(PTMG)もしくはポリプロピレングリコール(PPG)部分20をソフトセグメントとするポリエーテルエステル系のマルチブロックコポリマーをいい、具体的には、ハイトレル3078,同4047,同G3548W,同4767,同5577(東レ・デュポン製)等が挙げられる。

【0026】上記熱可塑性ポリエステルエラストマーには、必要に応じ、ショアD硬度が55以上、好ましくは55~70、更に好ましくは56~68のアイオノマー樹脂を熱可塑性ポリエステルエラストマー100重量部に対して0~70重量部配合することができる。このアイオノマー樹脂の配合により反発性能を上げることがで30きる。なお、このアイオノマー樹脂を配合する場合の下限は1重量部とすることができる。

【0027】また、上記熱可塑性ポリエステルエラストマーを主材とする外側カバー層は、酸化亜鉛、硫酸バリウム、二酸化チタン等の無機充填材を1~30重量%程度含んでいてもよい。

【0028】上記外側カバー層のショアD硬度は28~*

*55、好ましくは29~53、更に好ましくは30~5 2である。ショアD硬度が28より低いと反発性が低下 し、55より高いと打感が悪くなる。

6

【0029】外側カバー層の比重は1.05~1.4、 特に1.07~1.3であることが好ましい。

【0030】上記外側カバー層の厚さは0.5~2.5 mm、特に0.9~2.3 mmであることが好ましい。 【0031】この場合、上記内側及び外側カバー層の合 計厚さ(カバー全体の厚さ)は1.0~5.5 mm、特に1.5~5.3 mmとすることが好ましい。

【0032】なお、上記内側カバー層、外側カバー層の 形成方法は、射出成形、ハーフシェルを用いた圧縮成形 など、公知の方法によって行うことができる。

【0033】このようにして得られたマルチピースソリッドゴルフボールは、後述する方法で測定した慣性モーメントが82.5g・cm²以上、特に83~90g・cm²であることが好ましい。慣性モーメントが82.5g・cm²より小さいと、パターによる転がりが悪くなるという不利を生じる場合がある。

【0034】また、上記外側カバー層には、常法に従ってディンプルが形成されるが、本発明のゴルフボールの直径、重さ等はゴルフ規則に従い、直径42.67mm以上、重量は45.93g以下に形成することができる。

[0035]

【発明の効果】本発明のマルチピースソリッドゴルフボールは、飛距離が大きく、しかもコントロール性に優れ、フィーリングが良好である上、耐久性に優れたものである。

0 [0036]

【実施例】以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。

【0037】 〔実施例,比較例〕 表1に示す組成のソリッドコアを作製した。

[0038]

【表1】

ソリッドコア組成	実施例				比較例						
(重量部)	1	2	3	4	6	1	2	3	4	5	в
ポリブクジエン	100	100	100	100	100	100	100	100	100	100	100
ジクミルパーオキサイド	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1,2	1.2	1,2	1,2
硫酸パリウム	13	6.4	15.2	8	13.2	0	19	21,2	12.9	20.7	10
亜鉛準	5	8	5	8	6	3.8	5	5	8	5	6
老化防止剂	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
ペンタクロロチオフェノー ル亜鉛塩	1	1	1	1	1	1	1	1	1	1	1
アクリル酸亜鉛	81.1	29.6	25.9	29.6	25.9	39.2	83.8	25.0	84	84	81.8

*ポリブタジエン:日本合成ゴム製、BR01 バー層を射出成形によって被覆し、次いで表3に示す組【0039】次に、上記コアに表2に示す組成の内側カ 50 成の外側カバー層を射出成形によって被覆し、表4,5

7

に示す重量、外径のスリーピースゴルフボールを製造し

【0040】得られたゴルフボールの慣性モーメント、 飛距離、スピン量、フィーリング、耐ササクレ性、連続 耐久性について下記方法で測定した。結果を表4,5に 示す。

【0041】慣性モーメント

下記式より計算した。即ち、慣性モーメントは、各層の 径(厚さ)及び比重から求めた計算値であり、ボールを 球形とみなすことにより下記式により求めることができ 10 た。 る。この場合、計算上ボールを球形にしているが、実際 にはディンブルが存在するため、外側カバー層の比重は 実際の外側カバー樹脂よりも小さくなる。ここではそれ を外側カバー仮想比重と呼び、これを用いて慣性モーメ ントMを計算する。

 $M = (\pi/5880000) \times \{ (r1-r2) \times D1 \}$ $5+(r2-r3)\times D25+r3\times D35$

M : 慣性モーメント (g・c m²)

r 1:コア比重

D1:コア直径

r 2:内側カバー層比重

D2:内側カバー層直径(コアに内側カバー層を形成し

た後の球体の直径)

r3:外側カバー層仮想比重

D3:外側カバー層直径(ボール直径)

*各直径の単位はmm

飛距離

スイングロボットを用い、ドライバー(#W1, ヘッド*

*スピード45m/sec)で打撃し、キャリー、トータ ルそれぞれの飛距離を測定した。

R

スピン重

#W1及びサンドウェッジ(#SW, ヘッドスピード2 0m/sec)について、インパクト直後のボールの挙 動を写真撮影し、写真解像により算出した。

フィーリング

#W1及びパター (#PT) について、プロゴルファー 3名により実打したときの感触を下記基準により評価し

〇: 軟らかい

△:やや硬い

X:硬い

耐ササクレ性

スイングロボットにより、サンドウェッジ(# SW, へ ッドスピード38m/sec)でボールを任意に二箇所 打撃し、これを目視評価した

〇:良好

△:普通

20 X:劣る

連続耐久性

フライホイール打撃M/Cを用い、ヘッドスピード38 m/secで繰り返し打撃して、ボールが破壊するまで の打撃回数の多少により評価した。

〇:良好

×:悪い

[0042]

【表2】

内側カバー暦(重量部)	9×17D	比重	a	ь	C	đ	6	f	g	h
HPR AR201	約 5	0.96	-	-	20	8	1	-	-	-
ダイナロン6100P	36	0.88	48	80	-	-	ı	-	-	-
ヘイトレル4047	40	1.12	-	-	-	-	100	-	-	-
PEBAX3533	42	1.01	-	-	-	-	-	100	-	-
サーリンAD8511	63	0.94	26	85	40	30	-	-	-	-
サーリンAD8512	63	0.94	26	85	40	30	-	-	-	_
ハイミラン1605	61	0.94	-	_	_	-	-	-	-	50
ヘイミラン1706	80	0.94	-	-	-	-	-	-	60	50
サーリン8120	46	0.94	-	-	-	-	-	-	40	-
二酸化チタン	-	42	5.1	25	6.1	5.1	0	0	5.1	5.1

HPR AR201:三井・デュポンポリケミカル製

酸変性した熱可塑性樹脂

ダイナロン:日本合成ゴム製,ブロックコポリマー,ブ

タジエンースチレン共重合体水素添加物

ハイトレル:東レ・デュポン製,熱可塑性ポリエステル 50 マー樹脂

エラストマー

PEBAX:アトケム製、ポリアミド系エラストマー サーリン:デュポン製、アイオノマー樹脂

ハイミラン:三井・デュポンポリケミカル製、アイオノ

9

[0043]

* *【表3】

外側カバー層 (重量部) 比重 С 5.TD A В D E F G ヘイトレル3078 1.08 60 ヘイトレル4047 40 1.12 100 ヘイトレル4787 1.15 100 ヘイミラン1605 61 0.94 _ 20 60 ハイミラン1708 60 0.94 _ 20 **50** 40 70 サーリン8120 45 0.94 100 80 80 二酸化チタン 4.2 5.1 5.1 5.13 | 5.13 | 5.13 | 5.13 25

(6)

ハイトレル: 東レ・デュポン製, 熱可塑性ポリエステル ※サーリン: デュポン製, アイオノマー樹脂 エラストマー 【0044】

ハイミラン:三井・デュポンポリケミカル製、アイオノ 【3

【表4】

マー樹脂 ※

		実施例						
		1	2	3	4	5		
	重量 (2)	29.80	28.28	28.72	28.26	29.25		
ソリッド	外径 (mm)	86.60	36.40	85.80	36.30	36.50		
2 7	100kg 変形量 (mm)	3.30	3.50	4.00	3.50	4.00		
	比慮	1.161	1.120	1.160	1.129	1.149		
	維 類	8	ь	С	d	8		
内側カバー脇	ショアロ硬度	51	56	53	41	51		
ריא פעריו	比重	0.95	1.09	0.98	0.98	0.95		
	厚き (mm)	1.80	1.70	2.25	1,20	1.60		
	和類	A	A	B	В	С		
外側カバー層	Hant .	L161	1.161	1.192	1.192	1.201		
SHAW Y - ME	厚き (mm)	1.45	1.45	1.45	2.00	1.60		
	ショアD硬度	40	40	47	47	44		
# - N	微量 (g)	45.30	45.30	45.80	45.30	45.30		
4 - 70	外径 (mm)	42.70	42.70	42.70	42.70	42.70		
僕性モーメント	(g·cm²)	82.8	84.0	83.1	83.9	89.3		
	++4- (m)	208.7	208.6	208.8	208.6	208.6		
# W1 • HS45	トータル (m)	222.9	223.1	223.5	222.9	222.8		
* AL-112-E	スピン (rpm)	2963	2928	2731	2912	2798		
	フィーリング	0	0	0	0	0		
#SW・HS20アプローチスピン (rpm)		6369	6315	6263	6302	6291		
#PTフィーリング		0	0	0	0	0		
耐ササクレ性		0	0	0	0	0		
連統耐久性		0	0	0	0	0		

		比較例					
	1	2	3	4	5	в	
	重量 (2)	25.83	30.25	27,47	29.72	30.78	29.16
ソリッド	外径 (mm)	85.50	88.40	85.80	36,50	86.60	86.50
3 T	100kg変形量 (mm)	2.20	3.00	4.00	2.90	2.90	8.20
	比重	1.103	1.198	1.193	1.167	1.208	1.145
		0	f	•	0	g	h
内側カバー層	シェアD硬皮	49	42	4	40	56	62
PSIJOW Y CHE	比重	1.12	1.01	1.12	1.12	0.98	0.98
	厚き (mm)	1.83	1.80	1.70	1.80	1.60	1.80
	種類	A	D	E	F	G	A
外側カバー湯	比重	1.183	0.980	0.980	0.980	0.980	1.183
対局が八一層	厚き (mm)	1.98	1.86	2.00	1.50	1.50	1.50
	シェアD硬度	60	49	62	83	58	50
# - 1	政権(g)	45.30	45.30	45.30	45.30	45.30	45.80
<i>x</i> – <i>y</i>	外径 (mm)	42.70	42.70	42.70	42.70	42.70	42.70
僕性モーメント	(g · cm²)	84.6	81.2	81.3	82.1	80.9	83.4
	キャリー (m)	208.1	205.3	207.9	205.8	207.9	208.1
# W1 • HS45	トータル (m)	217.2	217.5	221.0	218.1	219.2	220.3
# #1-11545	スピン (rpm)	3075	3001	2548	2898	2689	2734
	フィーリング	×	Δ	0	Δ	0	0
#SW・HS20アプローチスピン (rpm)		8251	8236	4923	6211	5632	6132
#PTフィーリング		0	0	×	0	×	×
耐ササクレ性		0	Δ	0	Δ	Δ	×
連続耐久性	0	0	×	0	0	×	

フロントページの続き

(72)発明者 林 淳二

埼玉県秩父市大野原20番地 ブリヂストン スポーツ株式会社内 (72)発明者 川田 明

埼玉県秩父市大野原20番地 ブリヂストンスポーツ株式会社内