Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3211</u>	К работе допущен
Студент Низамутдинов Сидякин	Работа выполнена
Преподаватель Тимофеева Э.О	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.06

Изучение электрических свойств сегнетоэлектриков

- 1. Цель работы.
 - 1. Определение значений электрического смещения насыщения Ds, остаточной поляризации Pr, коэрцитивной силы Ec для предельной петли гистерезиса сегнетоэлектрика.
 - 2. Расчет диэлектрических потерь за цикл переполяризации сегнетоэлектрика.
 - 3. Получение зависимостей смещения D и диэлектрической проницаемости ε от напряженности электрического поля E.
 - 4. Определение значений начальной и максимальной диэлектрической проницаемости.
- 2. Объект исследования.

Сегнетоэлектрик

3. Рабочие формулы и исходные данные.

Модуль вектора электрической индукции D

$$D = \sigma = \frac{q}{S} = \frac{C_2 U_{C_2}}{S} = \frac{C_1}{S} \cdot U_{C_1},$$

Общее напряжение на конденсаторах

$$U = U_{C_1} + U_{C_2} = \frac{q}{C_1} + \frac{q}{C_2} \cong \frac{q}{C_2} = U_{C_2}.$$

Тангенс угла диэлектрических потерь в сегнетоэлектриках

$$\operatorname{tg} \delta = \frac{1}{\pi} \frac{\oint DdE}{D_s E_s}.$$

Значение диэлектрической проницаемости электрического поля

$$\varepsilon = \frac{D}{\varepsilon_0 E}$$

Напряженность электрического поля Е в сегнетоэлектрике

$$E = \frac{U_{C_2}}{d} = \frac{U}{d} = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d}.$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	ИСХ1(Измеритель статических характеристик)	Измеритель	Настраиваемый	0.05

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 3. Общий вид лабораторной установки

Рис. 5. Общий вид панели лицевой панели «ИСХ1»

Рис. 6. Экран дисплея «ИСХ1»

Рис. 7. Принципиальная электрическая схема установки

Эскиз предельной петли гистерезиса:

$$D_s o 3$$
,1 дел $= Y_s$

$$E_s \rightarrow 2$$
,7 дел = X_s

$$D_r
ightarrow 0$$
,8 дел $= Y_r$

$$E_c o 0$$
,9 дел $= X_c$

#	U, B	Кx	Ку	Х	Υ	E	D	е
1	17	5	5	2,7	3,1	297000	0,031	11788,69487
2	15	5	5	2,3	3,1	253000	0,031	13838,90267
3	13	5	5	2,1	3,2	231000	0,032	15645,82545
4	11	5	5	1,7	2,5	187000	0,025	15099,37199
5	9	2	5	3,5	2	154000	0,02	14667,96136
6	7	2	2	2,8	3,4	123200	0,0136	12467,76715
7	5	2	1	2	3	88000	0,006	7700,679713
8	4, 4	1	1	3,6	2,3	79200	0,0046	6559,838274
9	3, 8	1	0,5	3,1	3,4	68200	0,0034	5630,604522
10	3, 2	1	0,5	2,6	2,5	57200	0,0025	4936,33315
11	2, 6	1	0,5	2,2	1,7	48400	0,0017	3967,016822
12	2, 0	0,5	0,5	3,2	2,8	35200	0,0028	8984,126332
13	1, 4	0,5	0,1	2,3	3,3	25300	0,00066	2946,347021
14	0,8	0,2	0,02	3	3,9	13200	0,000156	1334,784484
15	0,4	0,1	0,02	3	1,7	6600	0,000068	1163,658268

Расчеты косвенных измерений:

Коэрцитивное поле:

$$E_c = \frac{R_1 + R_2}{R_1} \cdot \frac{K_x X_c}{d} = \frac{47 + 470}{47} * \frac{5 * 0.9}{0.5} = 99 \frac{\text{KB}}{\text{M}}$$

Электрическая индукция в состоянии насыщения:

$$D_s = \frac{C_1}{S} \cdot K_y Y_s = \frac{0.000001}{0.0005} * 5 * 3.1 * 10^3 = 31 \frac{\text{MK} \pi}{\text{M}^2}$$

Остаточная поляризация:

$$P_r = \frac{C_1}{S} \cdot K_y Y_r = \frac{0.000001}{0.0005} * 5 * 0.8 * 10^3 = 8 \frac{\text{MK} \pi}{\text{M}^2}$$

Выберем множество точек на петле и построим график

$$p_1(x) = 0.0231x^4 - 0.1011x^3 - 0.3001x^2 + 1.7726x + 1.1023$$

 $p_2(x) = -0.0349x^4 - 0.0696x^3 + 0.4421x^2 + 1.6343x - 1.3152$

Тогда площадь предельной петли гистерезиса в делениях шкалы экрана будет примерно равна:

$$S_0 = \oint Y dX pprox \int\limits_{-2.7}^{2.7} p_1(x) dx - \int\limits_{-2.7}^{2.7} p_2(x) dx = 3.34 + 3.30 = 6,64$$
 де π^2

Найдём тангенс угла диэлектрических потерь в сегнетоэлектрике:

$$\oint DdE = \oint \left(\frac{C_1}{S} \cdot K_y Y\right) d\left(\frac{R_1 + R_2}{R_1} \cdot \frac{K_x X}{d}\right) = \frac{C_1}{S} \cdot \frac{R_1 + R_2}{R_1} \cdot \frac{K_x K_y}{d} \oint Y dX = \frac{C_1}{S} \cdot \frac{R_1 + R_2}{R_1} \cdot \frac{K_x K_y}{d} \cdot S_0$$

$$\implies \operatorname{tg} \delta = \frac{1}{\pi} \frac{\oint D dE}{D_s E_s} = \frac{C_1 (R_1 + R_2) K_x K_y S_0}{S R_1 d D_s E_s \pi} = 0,24$$

Для экстраполяции полученной зависимости $\varepsilon = \varepsilon(E)$ к нулевому значению напряжённости электрического поля я использовал полиномиальную регрессию 6-й степени, из которой следует, что $\varepsilon_{\text{нач}} = 0.91 \cdot 10^3$.

Максимальное значение диэлектрической проницаемости $\varepsilon_{\text{макс}} = 15,7 \cdot 10^3$. Этому значению диэлектрической проницаемости соответствует $E = 187 \frac{\kappa B}{M}$.

Расчёт погрешности измерений:

Погрешность электрической индукции (а также индукции в состоянии насыщения и остаточной поляризации):

$$D = \frac{C_1}{S} \cdot K_y Y, \qquad \frac{\partial D}{\partial Y} = \frac{C_1}{S} \cdot K_y, \qquad \frac{\partial D}{\partial C_1} = \frac{K_y Y}{S}, \qquad \frac{\partial D}{\partial S} = -\frac{C_1}{S^2} \cdot K_y Y$$

$$\Delta D = \sqrt{\left(\frac{\partial D}{\partial Y} \cdot \frac{2}{3} \Delta Y\right)^2 + \left(\frac{\partial D}{\partial C_1} \Delta C_1\right)^2 + \left(\frac{\partial D}{\partial S} \Delta S\right)^2}$$

$$\Rightarrow \Delta D = \sqrt{\left(\frac{C_1}{S} \cdot K_y \cdot \frac{2}{3} \Delta Y\right)^2 + \left(\frac{K_y Y}{S} \Delta C_1\right)^2 + \left(-\frac{C_1}{S^2} \cdot K_y Y \Delta S\right)^2} =$$

$$= \frac{K_y Y C_1}{S} \sqrt{\left(\frac{2\Delta Y}{3Y}\right)^2 + \left(\frac{\Delta C_1}{C_1}\right)^2 + \left(\frac{\Delta S}{S}\right)^2}$$

$$\Rightarrow \Delta D_S = 4 \frac{M K \pi}{M^2}, \qquad \Delta P_r = 1.1 \frac{M K \pi}{M^2}$$

Погрешность напряжённости электрического поля (и коэрцитивного поля):

$$E = \frac{R_1 + R_2}{R_1} \cdot \frac{K_x X}{d}, \quad \frac{\partial E}{\partial X} = \frac{R_1 + R_2}{R_1} \cdot \frac{K_x}{d}, \quad \frac{\partial E}{\partial R_1} = -\frac{R_2 K_x X}{R_1^2 d}, \quad \frac{\partial E}{\partial R_2} = \frac{K_x X}{R_1 d}$$

$$\frac{\partial E}{\partial d} = -\frac{(R_1 + R_2)K_x X}{R_1 d^2}, \quad \Delta E = \sqrt{\left(\frac{\partial E}{\partial X} \cdot \frac{2}{3} \Delta X\right)^2 + \left(\frac{\partial E}{\partial R_1} \Delta R_1\right)^2 + \left(\frac{\partial E}{\partial R_2} \Delta R_2\right)^2 + \left(\frac{\partial E}{\partial d} \Delta d\right)^2}$$

$$\Rightarrow \Delta E = \sqrt{\left(\frac{R_1 + R_2}{R_1} \cdot \frac{K_x}{d} \cdot \frac{2}{3} \Delta X\right)^2 + \left(-\frac{R_2 K_x X}{R_1^2 d} \Delta R_1\right)^2 + \left(\frac{K_x X}{R_1 d} \Delta R_2\right)^2 + \left(-\frac{(R_1 + R_2)K_x X}{R_1 d^2} \Delta d\right)^2} =$$

$$= \frac{K_x X}{R_1 d} \sqrt{\left(\frac{2}{3} \frac{R_1 + R_2}{X} \Delta X\right)^2 + \left(\frac{R_2}{R_1} \Delta R_1\right)^2 + \Delta R_2^2 + \left(\frac{R_1 + R_2}{d} \Delta d\right)^2}$$

$$\Rightarrow \Delta E_c = 17 \frac{\kappa B}{M}$$

Погрешность диэлектрической проницаемости:

$$\varepsilon = \frac{D}{\varepsilon_0 E}, \quad \frac{\partial \varepsilon}{\partial E} = -\frac{D}{\varepsilon_0 E^2}, \quad \frac{\partial \varepsilon}{\partial D} = \frac{1}{\varepsilon_0 E}, \quad \Delta \varepsilon = \sqrt{\left(\frac{\partial \varepsilon}{\partial E} \Delta E\right)^2 + \left(\frac{\partial \varepsilon}{\partial D} \Delta D\right)^2}$$

$$\Rightarrow \Delta \varepsilon = \sqrt{\left(-\frac{D}{\varepsilon_0 E^2} \Delta E\right)^2 + \left(\frac{1}{\varepsilon_0 E} \Delta D\right)^2} = \frac{1}{\varepsilon_0 E} \sqrt{\frac{D^2}{E^2} \Delta E^2 + \Delta D^2}$$

Погрешность тангенса угла диэлектрических потерь в сегнетоэлектрике:

огрешность тангенса угла диэлектрических потерь в сегнетоэлектрике:
$$\operatorname{tg} \delta = \frac{1}{\pi} \frac{\oint D dE}{D_S E_S} = \frac{C_1 (R_1 + R_2) K_x K_y S_0}{S R_1 d D_S E_S \pi} = T$$

$$\frac{\partial T}{\partial D_S} = -\frac{C_1 (R_1 + R_2) K_x K_y S_0}{S R_1 d D_S^2 E_S \pi}, \quad \frac{\partial T}{\partial E_S} = -\frac{C_1 (R_1 + R_2) K_x K_y S_0}{S R_1 d D_S E_S^2 \pi},$$

$$\frac{\partial T}{\partial E_S} = -\frac{C_1 (R_1 + R_2) K_x K_y S_0}{S^2 R_1 d D_S E_S \pi}, \quad \frac{\partial T}{\partial R_1} = -\frac{C_1 R_2 K_x K_y S_0}{S R_1^2 d D_S E_S \pi}, \quad \frac{\partial T}{\partial R_2} = \frac{C_1 K_x K_y S_0}{S R_1 d D_S^2 E_S \pi}$$

$$\frac{\partial T}{\partial C_1} = \frac{(R_1 + R_2) K_x K_y S_0}{S R_1 d D_S^2 E_S \pi}, \quad \frac{\partial T}{\partial S_0} = \frac{C_1 (R_1 + R_2) K_x K_y}{S R_1 d D_S^2 E_S \pi}$$

$$\sqrt{\left(\frac{\partial T}{\partial D_S} \Delta D_S\right)^2 + \left(\frac{\partial T}{\partial E_S} \Delta E_S\right)^2 + \left(\frac{\partial T}{\partial S} \Delta S\right)^2 + \left(\frac{\partial T}{\partial R_1} \Delta R_1\right)^2 + \left(\frac{\partial T}{\partial R_2} \Delta R_2\right)^2 + \left(\frac{\partial T}{\partial C_1} \Delta C_1\right)^2 + \left(\frac{\partial T}{\partial S_0} \Delta S_0\right)^2}$$

$$\Rightarrow \Delta T = 0{,}064$$

Погрешности начальной и максимальной диэлектрических проницаемостей:

$$\Delta \varepsilon_{\text{Hay}} = 0.21 \cdot 10^3$$
, $\Delta \varepsilon_{\text{MaKC}} = 2.9 \cdot 10^3$

9. Графики (перечень графиков, которые составляют Приложение 2).

10. Окончательные результаты.

$$D_{s} = (31 \pm 4) \frac{\text{MK} \pi}{\text{M}^{2}}$$

$$P_{r} = (8 \pm 1.1) \frac{\text{MK} \pi}{\text{M}^{2}}$$

$$E_{c} = (99 \pm 17) \frac{\text{KB}}{\text{M}}$$

$$\text{tg } \delta = 0.24 \pm 0.06$$

$$\varepsilon_{\text{Hay}} = (0.91 \pm 0.21) \cdot 10^{3}$$

$$\varepsilon_{\text{MAKC}} = (13.3 \pm 2.9) \cdot 10^{3}$$

11. Выводы и анализ результатов работы.

В ходе работы были изучена петля гистерезиса и некоторые свойства сегнетоэлектриков.

Зависимость электрической индукции от напряжённости электрического поля в сегнетоэлектрике нелинейная: сначала функция медленно растёт, затем её рост ускоряется, а потом плавно начинает замедляться.

Диэлектрическая проницаемость также зависит нелинейно от напряжённости – сначала с ростом напряжённости растёт и диэлектрическая проницаемость, но в какой-то момент

она достигает своего максимального значения и затем убывает.

The state of the s	S=300 MM2 + 10%			Dr = 08				
d	=300,	Mus + 10	%	1	Muni	7		
N-	te, is	Kx, Ngen	Ky,	X, Fs	905	E X o	D. Vr	[&
1	14	5	15	2,4	3,3		23	
2	15	5	5	2.4	3,3			
4	11	5	5	1,7	26			
5	9	2		3,6	20			
7	7	2	2	8,5	38			
8	4,4	2	1	3,6	3,5			
9	318	1	0,5	3	3/3			
	7,6	1	0,3	2,6	34			
12	2	0,5	0.1	3,2	3,8			
13	1,4	0,5	0,1	2,3	28			
14	0,8	0,2	90%		3,9			
16	C79 11	CIUT	0,00	3	\$17			
10								