Ψηφιακές Υπογραφές

Μοντέλα Ασφάλειας - Κατασκευές - Επιθέσεις

Παναγιώτης Γροντάς 02/03/2023

EMΠ - Advanced Crypto (2022-2023)

Ψηφιακές υπογραφές

Ψηφιακές Υπογραφές ------

Ορισμός Ψηφιακής Υπογραφής

Μια τριάδα αλγορίθμων DS = (KGen, Sign, Vf):

 Πιθανοτικός αλγόριθμος KGen που παράγει κλειδιά υπογραφής και επαλήθευσης.

$$(sk,vk) := DS.KGen(1^{\lambda})$$

Συνήθως χρησιμοποιείται σε συνδυασμό με αλγόριθμο Pgen ο οποίος παράγει τις κρυπτογραφικές παραμέτρους που χρησιμοποιούνται. Δηλ:

prms= (
$$\mathbb{G}$$
, H) := DS.Pgen(1 $^{\lambda}$)
(sk,vk) := DS.KGen(prms)

· Αλγόριθμος υπογραφής μηνύματος m με κλειδί υπογραφής sk. Μπορεί να είναι πιθανοτικός.

$$\sigma := DS.Sign(sk, m)$$

· Αλγόριθμος επαλήθευσης υπογραφής σ με κλειδί vk στο μήνυμα m. Ντετερμινιστικός. DS.Vf(vk, σ , m) \in $\{0,1\}$

Μέσα Επιθέσεων

- · No Message Attack: Ο αντίπαλος $\mathcal A$ διαθέτει μόνο το νk (EUF-NMA)
- · Known Message Attack: Ο αντίπαλος \mathcal{A} διαθέτει το νk και ζεύγη μηνυμάτων υπογραφών (m_i, σ_i) που είναι έγκυρες δηλ.

 $\forall i : Vf(vk, \sigma_i, m_i) = 1$ Παραλλαγές:

- · Plain: Α δεν διαλέγει τα μηνύματα
- · Generic: Α διαλέγει μηνύματα μία φορά πριν δει το vk (chosen message attack)
- · Oriented: Α διαλέγει μηνύματα μία φορά αφού δει το vk (chosen message attack)
- · Adaptive: \mathcal{A} διαλέγει μηνύματα αφού δει το vk (chosen message attack) λαμβάνοντας υπ'οψιν και προηγούμενα ζεύγη μηνυμάτων υπογραφών

Στόχοι Επιθέσεων

- Πλαστοπροσωπία: Ανάκτηση κλειδιού υπογραφής sk
- · Πλαστογράφηση: Δημιουργία έγκυρης υπογραφής χωρίς sk
 - · Universal: για οποιοδήποτε μήνυμα
 - · Existential: για κάποιο μήνυμα (που μπορεί να μην έχει νόημα) **EUF-CMA**

Ασφάλεια: Αδυναμία επιτυχίας επίθεσης **EUF-CMA** για οποιοδήποτε υπολογιστικά περιορισμένο (PPT) αντίπαλο

Oracles

- $\sigma:=\mathcal{SO}(m)$ Εκφράζει το ότι ο $\mathcal A$ μπορεί να αποκτά υπογραφές σε μηνύματα της επιλογής του.
 - Υλοποιείται (στο παίγνιο) από τον \mathcal{C} με χρήση του sk.
- $h:=\mathcal{RO}(m)$ Εκφράζει το ότι το σχήμα υπογραφών εφαρμόζεται σε $\mathbf{m}\in\{0,1\}^*$.
 - Θεωρητικά υλοποιείται με ομοιόμορφη επιλογή, διατηρώντας τις ιδιότητες της συνάρτησης (ίδιο input ίδιο output).
 - Πρακτικά υλοποιείται με hash function H.
 - Υπόθεση random oracle: Ισχυρότερη υπόθεση από (δηλ. implies) collision resistance, first, second preimage resistance

Παίγνια Ασφάλειας

```
\begin{array}{l} \textbf{Algorithm 1:} \ \mathsf{Forge}_{\mathcal{A},\Pi} \\ \hline \mathbf{Input} \ : \lambda \\ \mathbf{Output:} \ \{0,1\} \\ (\mathsf{sk},\mathsf{vk},\mathsf{prms}) := \Pi.\mathsf{KGen}(1^{\lambda}) \\ (\textit{m},\sigma) := \mathcal{A}^{\mathcal{SO},\mathcal{RO}}(\mathsf{vk}) \\ \textbf{if} \ \Pi.\mathsf{Vf}(\mathsf{vk},\sigma,\textit{m}) = 1 \ \textbf{then} \\ | \ \ \mathsf{return} \ 1 \\ \\ \textbf{else} \\ | \ \ \mathsf{return} \ 0 \\ \\ \textbf{end} \end{array}
```

Definition

Ένα σχήμα υπογραφών Π είναι EUF-CMA unforgeable αν για κάθε PPT αντίπαλο $\mathcal A$

$$\Pr[\mathsf{Forge}_{\Pi,\mathcal{A}}(1^{\lambda})=1] \leq \mathsf{negl}(\lambda)$$

Οι επιθέσεις σχηματικά

Αποδείξεις ασφαλείας

Αναγωγή της ασφάλειας σχήματος υπογραφών σε δύσκολο υπολογιστικά πρόβλημα.

Απόδειξη: Αν το σχήμα υπογραφής δεν είναι ασφαλές σύμφωνα με τον τυπικό ορισμό (παίγνιο), τότε χρησιμοποιώντας την πλαστογράφηση μπορώ να λύσω το δύσκολο πρόβλημα.

Γενική μορφή αποδείξων

Ψηφιακές Υπογραφές RSA

RSA - FDH (Full Domain Hash) i

Δημιουργία Κλειδιών: $\mathsf{KGen}(1^\lambda) = (d, (e, n))$

- \cdot $n:=p\cdot q$, p,q πρώτοι αριθμοί $\frac{\lambda}{2}$ bits
- Επιλογή e ώστε $gcd(e, \phi(n)) = 1$
- $d:=e^{-1}\pmod{\phi(n)}$ $\mu\epsilon$ EGCD
- · Χρήση δημόσια διαθέσιμης τυχαίας συνάρτησης $\mathsf{H}:\{0,1\}^* \to \mathbb{Z}_n^*$

Πρακτικά: $FDH(m) = H(m||0)||H(m||1) \cdots [: \lambda]$ ($\lambda bits$)

ή μπορεί να υποστηρίζεται natively από την Η

RSA - FDH (Full Domain Hash) ii

Υπογραφή

- Υπολογισμός Η(m)
- $\operatorname{Sign}(d, m) \triangleq \operatorname{H}(m)^d \mod n$

Επαλήθευση

- Υπολογισμός Η(m)
- $\cdot \ \, \mathrm{Vf}((e,n),m,\sigma) \triangleq \quad \sigma^e = \mathrm{H}(m) \ \, (\mathrm{mod} \, \, n)$

Ορθότητα

$$Vf((e,n),m,H(m)^d) (H(m)^d)^e = H(m) \pmod{n}$$

Υλοποίηση: συνάρτηση σύνοψης με δυσκολία εύρεσης συγκρούσεων

Πλεονέκτημα: Μπορεί να χρησιμοποιηθεί για υπογραφή τυχαίων συμβολοσειρών και όχι μόνο στοιχείων του \mathbb{Z}_n^*

RSA - FDH (Full Domain Hash) iii

- Επίθεση χωρίς μήνυμα
 - · Επιλογή τυχαίου $\sigma \in \mathbb{Z}_n^*$
 - · Η 'κρυπτογράφηση' δίνει τη σύνοψη $h=\sigma^e\pmod n$ όχι το μήνυμα
 - Για το μήνυμα πρέπει να βρεθεί m: H(m) = h
 - Δυσκολία αντιστροφής

Ψηφιακές υπογραφές Ψηφιακές Υπογραφές RSA 11 /

RSA - FDH (Full Domain Hash) iv

- Επίθεση επιλεγμένων μηνυμάτων
 - Ο \mathcal{A} έχει στη διάθεση του δημόσιο κλειδί (e,n) και θέλει να πλαστογραφήσει υπογραφή για $m \in \mathbb{Z}_n^*$
 - Ο $\mathcal A$ χρησιμοποιώντας το μαντείο αποκτά τις υπογραφές 2 μηνυμάτων $Q=\{(m_1,\sigma_1),(\frac{m}{m_1},\sigma_2)\}$ με $m_1\in_R$
 - · Υπολογισμός $\sigma = \sigma_1 \sigma_2 = \mathsf{H}(m_1) \mathsf{H}(\frac{m}{m_1})$
 - Δεν ισχύουν οι ομομορφικές ιδιότητες.

Απόδειξη Ασφάλειας RSA-FDH

Θεώρημα

Αν το πρόβλημα RSA είναι δύσκολο, τότε οι υπογραφές RSA-FDH παρέχουν ασφάλεια έναντι υπαρξιακής πλαστογράφησης με επιλεγμένα μηνύματα **EUF-CMA** στο μοντέλο του τυχαίου μαντείου.

Θα αποδείξουμε το παρακάτω:

Θεώρημα

Αν υπάρχει αντίπαλος $\mathcal A$ που παράγει πλαστογράφηση στο RSA-FDH με πλεονέκτημα τουλάχιστον $\mathrm{Adv}_A^{\mathsf{forge}}(\lambda)$ μετά από $\mathcal Q_{\mathcal R\mathcal O}$ ερωτήσεις στο τυχαίο μαντείο, τότε υπάρχει αντίπαλος $\mathcal B$ που λύνει το πρόβλημα RSA με πιθανότητα $\mathrm{Adv}_{\mathcal B}^{\mathsf{rsa}}(\lambda) \geq \frac{\mathrm{Adv}_{\mathcal B}^{\mathsf{forge}}(\lambda)}{\mathcal Q_{\mathcal B\mathcal O}}.$

Ψηφιακές υπογραφές Απογραφές RSA 13 /

Απόδειξη Ασφάλειας Hashed RSA: Κατασκευή ${\cal B}$

- Ο Α μπορεί να κατασκευάσει πλαστογράφηση υπογραφής
- · Κατασκευή $\mathcal B$ που με χρήση του $\mathcal A$ και ενός τυχαίου μαντείου μπορεί να αντιστρέψει το RSA
- Είσοδος Β
 - · Δημόσιο κλειδί (e,n)
 - · Ομοιόμορφα επιλεγμένο $y \in \mathbb{Z}_n^*$
- · Έξοδος \mathcal{B}

$$\cdot \ x = y^{e^{-1}}$$

Απόδειξη Ασφάλειας Hashed RSA Επίθεση χωρίς μήνυμα i

Υπόθεση

Για την πλαστογράφηση (m^*, σ^*) έχει προηγουμένως ερωτηθεί στο μαντείο το $\mathsf{H}(m^*)$

Συνέπεια

Εφόσον η πλαστογράφηση είναι έγκυρη υπογραφή πρέπει $\sigma^{*e}=\mathsf{H}(m^*)$ Άρα $\sigma^*=\mathsf{H}(m^*)^{e^{-1}}$

Πλήθος ερωτήσεων

Ο $\mathcal B$ δεν γνωρίζει ακριβώς το $Q_{\mathcal R\mathcal O}$, αλλά δεν έχει σημασία αφού $\mathcal A$ είναι PPT. Άρα $Q_{\mathcal R\mathcal O}\leq \operatorname{poly}(\lambda)$.

Ψηφιακές υπογραφές Υπογραφές RSA 15 /

Απόδειξη Ασφάλειας Hashed RSA Επίθεση χωρίς μήνυμα ii

- \cdot Ο $\mathcal B$ προωθεί το (e,n) στον $\mathcal A$
- \cdot Ο \mathcal{B} επιλέγει $j \in_R [\mathbf{Q}_{\mathcal{R}\mathcal{O}}]$
- Ο $\mathcal A$ όταν ρωτάει το μαντείο Η για μηνύματα $\{m_i\}_{i=1}^{q_{\mathcal R\mathcal O}}$ λαμβάνει τις απαντήσεις $\{\mathsf H(m_i)\}_{i=1}^{q_{\mathcal R\mathcal O}}\in_r$
- · Ο \mathcal{B} ελπίζει ότι στο ερώτημα j θα γίνει η πλαστογράφηση
- · Αν i=j, ο $\mathcal B$ αντικαθιστά την απάντηση $\mathsf H(m_j^*)$ με το y
- · Αν έχει δίκιο, τότε ο $\mathcal A$ εξάγει την πλαστογραφία (m_j^*,σ^*) με πιθανότητα p_F
- · Δηλαδή: $\sigma^{*e} = y \Rightarrow \sigma^* = y^{e^{-1}}$
- Ο Β προωθεί το σ* στην έξοδο
- \cdot Ο $\mathcal B$ αντέστρεψε το RSA με πιθανότητα επιτυχίας $\frac{\mathrm{Adv}_A^{\mathsf{forge}}(\lambda)}{\mathcal Q_{\mathcal R,\mathcal O}}$

Ψηφιακές υπογραφές Υπογραφές RSA 16.

Απόδειξη Ασφάλειας Hashed RSA Επίθεση επιλεγμένου μηνύματος i

Σενάριο

- Α ζητάει συνόψεις και υπογραφές από τον Β
- Συνόψεις: το τυχαίο μαντείο προσομοίωση
- Υπογραφές: Πρέπει να τις απαντήσει ο Β
- \cdot δηλ. να υπολογίσει το $H(m)^d$ χωρίς το ιδιωτικό κλειδί...

Ψηφιακές υπογραφές Ψηφιακές Υπογραφές RSA 17 /

Απόδειξη Ασφάλειας Hashed RSA Επίθεση επιλεγμένου μηνύματος ii

```
Λύση
Ερώτηση \mathcal{A}^{\mathcal{RO}}(m):
Επιλογή \sigma \leftarrow \$ \mathbb{Z}_n^*,
υπολογισμός \sigma^e και επιστροφή αντί H(m),
Αποθήκευση \sigma, \sigma^e, m για μετά
Ερώτηση \mathcal{A}^{\mathcal{SO}}(m):
Επιστροφή \sigma από την αντίστοιχη απάντηση για H(m).
Τετριμμένη επαλήθευση \sigma^e = H(m) = \sigma^e
```

Ψηφιακές υπογραφές Υπογραφές RSA 18 /

Απόδειξη Ασφάλειας Hashed RSA Επίθεση επιλεγμένου μηνύματος iii

- \cdot Ο ${\cal B}$ προωθεί το (e,n) στον ${\cal A}$
- \cdot Ο \mathcal{B} επιλέγει $j \in_R [\mathbf{Q}_{\mathcal{R}\mathcal{O}}]$
- Ο $\mathcal A$ κάνει $\mathbf Q_{\mathcal R\mathcal O}=O(\mathrm{poly}(\lambda))$ ερωτήσεις στο μαντείο για μηνύματα $\{m_i\}_{i=1}^{Q_{\mathcal R\mathcal O}}$
- Κάθε ερώτηση του μαντείου Η απαντάται από τον \mathcal{B} ως εξής: Επιλέγει $\sigma_i \leftrightarrow \mathbb{Z}_n^*$
 - · Υπολογίζει $\sigma_i^e = y_i$ και θέτει $\mathsf{H}(m_i) = y_i$
 - Επιστρέφει y_i
 - · Αποθηκεύει τις τριάδες $\mathcal{T} = (y_i, \sigma_i, m_i)$
- Ο Α ζητάει υπογραφές από το μαντείο υπογραφών
 - Για κάθε σύνοψη y_i γίνεται αναζήτηση στον $\mathcal T$ για την τριάδα που περιέχει το y και επιστρέφεται το σ_i
 - · Οι υπογραφές είναι έγκυρες αφού $\sigma_i^e = y_i$
- \cdot Ο \mathcal{B} απαντάει το ερώτημα j στο H με y

Ψηφιακές υπογραφές Ψηφιακές Υπογραφές RSA 19 /

Απόδειξη Ασφάλειας Hashed RSA Επίθεση επιλεγμένου μηνύματος iv

- Για το συγκεκριμένο δεν θα ζητηθεί υπογραφή, αλλά το σ* θα παραχθεί από τον A (πλαστογράφηση)
- · Αφού πλαστογράφηση = έγκυρη υπογραφή θα ισχύει $\sigma^{*e}=y$, δηλαδή $\sigma^*=y^{e^{-1}}$
- · Άρα ο ${\mathcal B}$ πέτυχε το στόχο του και αντέστρεψε το y
- Πλεονέκτημα \mathcal{A} Adv $_{\mathcal{A}}^{\mathsf{forge}}(\lambda)$ και πλεονέκτημα \mathcal{B} Adv $_{\mathcal{B}}^{\mathsf{rsa}}(\lambda) \geq \frac{\mathsf{Adv}_{A}^{\mathsf{forge}}(\lambda)}{Q_{\mathcal{R}\mathcal{O}}}$

Απόδειξη Ασφάλειας Hashed RSA Επίθεση επιλεγμένου μηνύματος ν

Ασυμπτωτικά, $\mathrm{Adv}^{\mathsf{rsa}}_{\mathcal{B}}(\lambda) \leq \mathsf{negl}(\lambda)$ και αφού $Q_{\mathcal{RO}} \leq \mathsf{poly}(\lambda)$ τότε και $\mathrm{Adv}^{\mathsf{forge}}_A(\lambda) \leq \mathrm{Adv}^{\mathsf{rsa}}_{\mathcal{B}}(\lambda) \cdot Q_{\mathcal{RO}} \leq \mathsf{negl}(\lambda).$

Παρατήρηση

Πρακτικά υπάρχει 'απώλεια' ασφάλειας $Q_{\mathcal{RO}}$.

Π.χ.: Av
$$\mathrm{Adv}_{\mathcal{B}}^{\mathrm{rsa}}(\lambda)=2^{-60}$$
 και $\mathbf{Q}_{\mathcal{RO}}=2^{50}$ τότε $\mathrm{Adv}_A^{\mathrm{forge}}(\lambda)=2^{-10}.$

Ψηφιακές υπογραφές ΝΕΑ 21

Ορισμός i

Το πρόβλημα της ταυτοποίησης

Μια οντότητα (P) θέλει να αποδείξει σε κάποια άλλη (V) ότι είναι αυτή που ισχυρίζεται ώστε να αποκτήσει δικαιώμτα πρόσβασης σε κάποιους πόρους.

- Φυσική πρόσβαση σε αντικείμενο
- Πρόσβαση σε τοπικό υπολογιστή
- Πρόσβαση σε απομακρυσμένο υπολογιστή

Ορισμός ii

Ένα πρωτόκολλο ταυτοποίησης είναι μια τριάδα ID = (KGen, P, V):

- $(vk, sk) = KGen(1^{\lambda})$
- · $\langle P(sk, vk), V(vk) \rangle$ είναι ένα πρωτόκολλο μεταξύ των αλγορίθμων P, V τέτοιο ώστε μετά την εκτέλεσή του $V(vk) \in \{0,1\}$

Πληρότητα: Av o P εκτελεστεί με είσοδο το sk του $(sk, vk) \leftarrow KGen(1^{\lambda})$ τότε V(vk) = 1

Μοντέλο Ασφάλειας i

- Direct (Impersonation) Attacks: Ο Α αλληλεπιδρά με τον V χωρίς το sk, δηλ.
 - · Τοπική πρόσβαση στον verifier
 - · Δεν υπάρχει δυνατότητα eavesdropping
 - Το τελευταίο στάδιο οποιασδήποτε επίθεσης

$$ID_{DA} = \langle \mathcal{A}(vk), V(vk) \rangle$$

- Eavesdropping Attacks: Ο \mathcal{A} μπορεί να ζητήσει ένα σύνολο από \mathbf{Q} πραγματικά transcripts $T = \langle \mathsf{P}(\mathsf{sk},\mathsf{vk}),\mathsf{V}(\mathsf{vk}) \rangle_{i=1}^Q$ πριν προβεί σε direct attack.
 - Παρακολούθηση δικτύου

$$ID_{EVE} = \langle \mathcal{A}(T, vk), V(vk) \rangle$$

Μοντέλο Ασφάλειας ii

Μοντέλο Ασφάλειας iii

• r-Impersonation Attacks: Ο αντίπαλος έχει δυνατότητα eavesdropping

Αλλά, κατά τη διάρκεια του direct attack, ο $\mathcal A$ μπορεί να αλληλεπιδράσει ταυτόχρονα με r verifiers.

Κερδίζει αν τουλάχιστον ένας από αυτούς δεχθεί.

$$ID_{r-EVE} = \langle \mathcal{A}(T, vk), V^r(vk) \rangle$$

- Active Attacks Ο $\mathcal A$ αλληλεπιδρά με τον P στη θέση του verifier χωρίς κατ'ανάγκη να ακολουθεί το πρωτόκολλο, πριν προβεί σε direct attack.
 - Χρήση fake verifier
 - · Phishing attacks

$$ID_{ACT} = \langle P(sk), A(vk) \rangle$$

Μοντέλο Ασφάλειας iv

Μοντέλο Ασφάλειας ν

 Concurrent (Active) Attacks Ο αντίπαλος μπορεί να δημιουργήσει πολλά ταυτόχρονα sessions με τον prover παριστάνοντας τον verifier και να χρησιμοποιήσει τα μηνυμάτά τους ώστε στη συνέχεια να κάνει direct attack.

Ο $\mathcal A$ αλληλεπιδρά με l prover - clones.

Κάθε P clone διαθέτει το ίδιο sk, αλλά έχει ξεχωριστό random tape και ξεχωριστή κατάσταση.

$$ID_{CC} = \langle P^l(sk), \mathcal{A}(vk) \rangle$$

Μοντέλο Ασφάλειας νί

Λήμμα

Έστω πρωτόκολλο ταυτοποίησης ID. Για κάθε αντίπαλο $\mathcal A$ στο μοντέλο $\mathrm{ID}_{\mathrm{r-EVE}}$ υπάρχει αντίπαλος $\mathcal B$ στο $\mathrm{ID}_{\mathrm{EVE}}$ ώστε:

$$\mathrm{Adv}^{\mathrm{id}_{\mathrm{eve}}}_{\mathcal{B}}(\lambda) \geq \frac{1}{r} \mathrm{Adv}^{\mathrm{id}_{\mathrm{r-eve}}}_{\mathcal{A},r}(\lambda)$$

Απόδειξη

Guessing argument

Ο $\mathcal B$ μαντεύει για ποιον (j) από τους verifiers του $\mathrm{ID}_{\mathsf{r-EVE}}$ κερδίζει ο $\mathcal A$.

Για αυτόν παίζει το παιχνίδι ID_{EVE} ως challenger, ενώ προσομοιώνει τους υπόλοιπους.

Κερδίζει αν μάντεψε σωστά, δηλαδή αν ο $\mathcal A$ κάνει επιτυχή direct attack στον $\mathsf V_i$.

Κατασκευές

Το πρωτόκολλο του Schnorr [?]

- \cdot $(q,g,\mathbb{G}):= \operatorname{Pgen}(1^{\lambda})$ με $\mathbb{G}=\langle g \rangle$ ομάδα τάξης q
- \cdot (x,Y) ← KGen(prms) με x ←\$ $\mathbb{Z}_q,Y=g^x$
- $T \leftarrow \mathsf{P}(Y,x)$ be $t \leftarrow \mathsf{S} \mathbb{Z}_q, T := g^t$
- · $c \leftarrow V(Y,T)$ $\mu \epsilon c \leftarrow \sharp \mathbb{Z}_q$
- · $s \leftarrow \mathrm{P}(x,(T,c)) \; \mathrm{me} \; s = t + cx \; \mathrm{mod} \; q$
- ${} \cdot \ \forall (Y,(T,c,s)) = 1 \Leftrightarrow g^s = TY^c$

Αρχική ἑκδοση: $c \in \{0,1\}^k \subseteq \mathbb{Z}_q$

Ασφάλεια Schnorr σε direct attacks i

Θεώρημα

Aν το DLP είναι δύσκολο στην $\mathbb G$ τότε το πρωτόκολλο ταυτοποίησης του Schnorr παρέχει ασφάλεια σε direct attacks.

$$\mathrm{Adv}^{\mathrm{dlp}}_{\mathcal{B}}(\lambda) \geq \mathrm{Adv}^{\mathrm{id}_{\mathrm{da}}}_{\mathcal{A}}(\lambda)^2 - \frac{\mathrm{Adv}^{\mathrm{id}_{\mathrm{da}}}_{\mathcal{A}}(\lambda)}{q}$$

ή ισοδύναμα:

$$\mathrm{Adv}^{\mathrm{id}_{\mathrm{da}}}_{\mathcal{A}}(\lambda) \leq \frac{1}{q} + \sqrt{\mathrm{Adv}^{\mathrm{dlp}}_{\mathcal{B}}(\lambda)}$$

Για ευκολία θέτουμε:

$$\epsilon = \operatorname{Adv}_{A}^{\operatorname{id}_{\operatorname{da}}}(\lambda) \operatorname{KQL} \epsilon' = \operatorname{Adv}_{B}^{\operatorname{dlp}}(\lambda)$$

Ψηφιακές υπογραφές Κατασκευές 31

Ασφάλεια Schnorr σε direct attacks ii

Tightness

Πλαστοπροσωπία με πιθανότητα ϵ

Επίλυση διακριτού λογάριθμου με πιθανότητα ϵ^2

Βασική ιδέα απόδειξης

Αν ο \mathcal{A} μπορεί να απαντήσει για $Y=g^x$ στο ID_{DA} για ένα challenge c_1 με πιθανότητα ϵ , θα μπορεί να απαντήσει για δύο challenges $c_1, c_2(c_1 \neq c_2)$ με πιθανότητα ϵ^2 .

Μετά την πρώτη επιτυχία ο $\mathcal B$ κάνει rewind τον $\mathcal A$ στο σημείο πριν την παραγωγή του challenge.

Ψηφιακές υπογραφές Κατασκευές 32

Ασφάλεια Schnorr σε direct attacks iii

Δύο accepting transcripts $(T,c_1,s_1=t+c_1x)$ και $(T,c_2,s_2=t+c_2x)$ Δηλαδή: $T\cdot Y^{c_1}=g^{s_1}$ και $T\cdot Y^{c_2}=g^{s_2}$ Άρα:

$$g^{s_1}Y^{-c_1} = g^{s_2}Y^{-c_2} \Rightarrow g^{s_1-s_2} = Y^{c_1-c_2} \Rightarrow s_1 - s_2 = x(c_1 - c_2) \Rightarrow x = \frac{s_1 - s_2}{c_1 - c_2}$$

Rewinding/Splitting/Resetting/Forking Lemma [?, ?]

Rewinding Lemma

Έστω πεπερασμένα, μη κενά σύνολα S,T με |T|=n και $f:S imes T o \{0,1\}.$

Έστω τυχαία μεταβλητή X με τιμές από το S και τυχαίες μεταβλητές Y,Y' που παίρνουν τιμές στο T ομοιόμορφα οι οποίες είναι ανεξάρτητες μεταξύ τους.

Av
$$\Pr[f(X,Y)=1]=\epsilon$$
 τότε ισχύει

$$\Pr[f(X,Y) = 1 \land \ f(X,Y') = 1 \land \ Y \neq Y'] \ge \epsilon^2 - \frac{\epsilon}{n}$$

Αντιστοιχία:

$$S = \mathbb{G}$$

$$Y = \mathbb{Z}_q^2 \quad (c, s) = y \in Y$$

και f είναι η επαλήθευση από τον V

Απόδειξη Splitting Lemma i

Θεωρούμε
$$g(s)=\Pr[f(s,Y)=1]$$
 για $s\in S$. Ισχύει $\mathbb{E}[g(X)]=\epsilon$ γιατί:
$$\mathbb{E}[g(X)]=\sum_{s\in S}g(s)\Pr[X=s]=$$

$$=\sum_{s\in S}\Pr[f(s,Y)=1]\Pr[X=s]$$

$$=\sum_{s\in S}\Pr[f(s,Y)=1\wedge X=s]\quad \text{Ανεξαρτησία}$$

$$=\Pr[f(X,Y)=1]\quad \text{Ολική Πιθανότητα}$$

$$=\epsilon$$

Απόδειξη Splitting Lemma ii

Έστω το event

$$G_s = f(s, Y) = 1 \land f(s, Y') = 1 \land Y \neq Y'$$

και

$$n_s = |\{t \in T : f(s,t) = 1\}|$$

Τότε
$$g(s) = \frac{n_s}{n}$$

$$\Pr[G_s] \ge \frac{n_s}{n} \frac{n_s - 1}{n} = (\frac{n_s}{n})^2 - \frac{n_s}{n^2} = g(s)^2 - \frac{g(s)}{n}$$

Κατασκευές

Απόδειξη Splitting Lemma iii

Έστω το event
$$G: f(X,Y)=1 \land f(X,Y')=1 \land Y \neq Y'$$

$$\Pr[G] = \sum_{s \in S} \Pr[G \land X = s]$$

$$= \sum_{s \in S} \Pr[G_s] \Pr[X = s]$$

$$\geq \sum_{s \in S} (g(s)^2 - \frac{g(s)}{n}) \Pr[X = s]$$

$$= \mathbb{E}[g(X)^2] - \frac{\mathbb{E}[g(X)]}{n}$$

$$\geq \mathbb{E}[g(X)]^2 - \frac{\mathbb{E}[g(X)]}{n}$$
 Jensen's inequality
$$= \epsilon^2 - \frac{\epsilon}{-}$$

Ασφάλεια σε direct attacks (απόδειξη)

Για $\mathcal A$ που επιτυγχάνει στο $\mathrm{ID}_{\mathrm{DA}}$ με $\mathrm{vk}=Y\in\mathbb G,$ $\mathrm{sk}=x\in\mathbb Z_q$ κατασκευάζουμε $\mathcal B$ που λύνει το DLP στην $\mathbb G$ για το Y.

Ο $\mathcal B$ θα υπολογίσει το μέσω δύο αποδεκτών συζητήσεων $(T,c_1,s_1=t+c_1x)$ και $(T,c_2,s_2=t+c_2x)$ με $c_1\neq c_2.$

Τα c_1, c_2 επιλέγονται τυχαία από τον $\mathcal B$ (που παίζει το ρόλο του V).

Από Rewinding Lemma $\mathcal B$ επιτυγχάνει με πλεονέκτημα τουλάχιστον $\epsilon^2-\frac{\epsilon}{q}$ αν ο $\mathcal A$ καταφέρει impersonation με πλεονέκτημα $\epsilon\geq \frac{1}{q}.$

$$\epsilon' \geq \epsilon^2 - \frac{\epsilon}{q} = \epsilon^2 - 2\frac{\epsilon}{q} + \frac{\epsilon}{q} \geq \epsilon^2 - 2\frac{\epsilon}{q} + \frac{1}{q^2} = (\epsilon - \frac{1}{q})^2$$

Άρα

$$\epsilon' \ge (\epsilon - \frac{1}{q})^2 \Rightarrow \epsilon \le \sqrt{\epsilon'} + \frac{1}{q}$$

Υπενθύμιση: Πρωτόκολλα ΗVZK

HVZK

Ένα πρωτόκολλο μεταξύ ενός P και ενός V είναι Honest Verifier Zero Knowledge αν υπάρχει αλγόριθμος PPT Sim τέτοιος ώστε για κάθε $(vk, sk) \leftarrow KGen(1^{\lambda})$ οι κατανομές πιθανότητας των transcripts μεταξύ P(sk, vk), V(vk) είναι ίδιες με αυτές μετάξύ Sim(vk), V(vk)

Το πρωτόκολλο Schnorr είναι HVZK

Ο Sim παράγει τα μήνυμα με αντίστροφη σειρά Τα transcripts

$$\mathcal{T}_1=\langle \mathrm{P}(Y,x),\mathrm{V}(Y) \rangle=(T=g^t,c,s=t+cx)$$
 каї $\mathcal{T}_2=\langle \mathrm{Sim}(Y),\mathrm{V}(Y) \rangle=(T=g^sY^{-c},c,s)$

γίνονται αποδεκτά από τον V και έχουν ταυτόσημες κατανομές.

Eavesdropping attacks και HVZK i

Θεώρημα

Αν το πρωτόκολλο ταυτοποίησης ΙD είναι ΗVZK, τότε:

$$\mathsf{Adv}^{\mathsf{id}_{\mathsf{eve}}}_{\mathcal{B},\mathsf{ID}}(\lambda) = \mathsf{Adv}^{\mathsf{id}_{\mathsf{da}}}_{\mathcal{A},\mathsf{ID}}(\lambda)$$

Απόδειξη

Στο Eavesdropping παίγνιο ID_{EVE} ο \mathcal{B} παράγει τα transcripts μόνος του αντί να τα πάρει από τον challenger του direct παίγνιου ID_{DA} .

Eavesdropping attacks και HVZK ii

Υπογραφές από ΗVZK i

Fiat-Shamir Heuristic

Αντικατάσταση verifier από random oracle $\mathsf{H}: \mathit{M} imes \mathbb{G}^2 o \mathbb{Z}_q$

Υπογραφές Schnorr

- \cdot $(q,g,\mathbb{G}):= \mathrm{Pgen}(1^\lambda)$ με $\mathbb{G}=\langle g \rangle$ ομάδα τάξης q και $\mathrm{H}: \mathit{M} \times \mathbb{G}^2 \to \mathbb{Z}_q$
- $(x,Y) := \mathsf{KGen}(\mathsf{prms})$ με $x \leftarrow \mathsf{S} \mathbb{Z}_q, Y = g^x$
- Sign(x, m) = (T, s) µE:
 - $T := q^t \text{ KOL } t \leftarrow \mathbb{Z}_q$
 - $\cdot \ s := t + cx \bmod q \ \mu \epsilon \ c := \operatorname{H}(m, T, Y)$
- $Vf(Y,(T,s),m) = 1 \Leftrightarrow g^s = TY^{H(m,T,Y)}$

Υπογραφές από ΗVZK ii

Υπογραφές Schnorr - Εναλλακτική Υλοποίηση

- \cdot $(q,g,\mathbb{G}):= \mathrm{Pgen}(1^\lambda)$ με $\mathbb{G}=\langle g \rangle$ ομάδα τάξης q και $\mathrm{H}: \mathit{M} \times \mathbb{G}^2 \to \mathbb{Z}_q$
- \cdot (x,Y) := KGen(prms) με $x \leftarrow \mathbb{Z}_q, Y = g^x$
- Sign(x, m) = (c, s) µE:
 - \cdot $c := \mathsf{H}(m,T,Y)$ και $T := g^t$ με $t \leftarrow \mathbb{Z}_q$
 - $\cdot s := t + cx \mod q$
- $\cdot \ \, \mathrm{Vf}(Y,(T,s),m) = 1 \Leftrightarrow c = \mathrm{H}(m,g^sY^{-c},Y)$

Μείωση μεγέθους:

Κανονική υπογραφή $\sigma \in \mathbb{G} \times \mathbb{Z}_q$

Εναλλακτική υπογραφή $\sigma \in \mathbb{Z}_q^2$

Ασφάλεια Υπογραφών Schnorr

Θεώρημα

Έστω αντίπαλος $\mathcal A$ ο οποίος επιτυγχάνει σε επίθεση EUF-CMA εναντίον των υπογραφών Schnorr με το πολύ $Q_{S\mathcal O}$ signing queries και το πολύ $Q_{R\mathcal O}$ random oracle queries.

Τότε υπάρχει αντίπαλος \mathcal{B} ο οποίος νικάει στο $\mathsf{ID}_{\mathsf{r}-\mathsf{EVE}}$ με πλεονέκτημα:

$$\mathrm{Adv}^{\mathrm{id}_{\mathrm{r-eve}}}_{\mathcal{B}, Q_{\mathcal{R}\mathcal{O}}+1}(\lambda) \geq \mathrm{Adv}^{\mathrm{schnorr}}_{\mathcal{A}, \mathrm{EUF-CMA}}(\lambda) - \frac{Q_{\mathcal{S}\mathcal{O}}(Q_{\mathcal{S}\mathcal{O}} + Q_{\mathcal{R}\mathcal{O}} + 1)}{q}$$

Απόδειξη Ασφάλειας Υπογραφών Schnorr i

Βασική Ιδέα

Θα κατασκευάσουμε $\mathcal B$ ο οποίος απαντάει στα queries στο $\mathcal R\mathcal O$ και $\mathcal S\mathcal O$ τα οποία κάνει ο $\mathcal A$ για να βγάλει πλαστογράφηση. Χρησιμοποιώντας την πλαστογράφηση θα πρέπει να κάνει έναν από τους verifiers του r impersonation game να αποδεκτούν.

Πρόβλημα Η αναγωγή θα πρέπει να προσομοιώσει υπογραφές για το \mathcal{SO} χωρίς το sk

Πώς; Χρησιμοποιώντας τα transcripts από το eavesdropping game $\mathcal{T} = \{(T_i, c_i, s_i)\}$ για να προγραμματίσει το \mathcal{RO} .

Πρέπει να μαντέψουμε ποιο \mathcal{RO} query θα οδηγήσει στην πλαστογράφηση.

Απόδειξη Ασφάλειας Υπογραφών Schnorr ii

Υποθέσεις Αν ο $\mathcal A$ βγάλει μια πλαστογράφηση $(m^*,(T^*,s^*))$ σημαίνει ότι:

- δεν έχει ζητήσει υπογραφή για το m^* στο \mathcal{SO} .
- · έχει κάνει το ερώτημα (m^*, T^*, Y) στο \mathcal{RO} .

Ένα επιπλέον ερώτημα στο \mathcal{RO} : $\mathbf{Q}_{\mathcal{RO}} + 1$

Απόδειξη Ασφάλειας Υπογραφών Schnorr iii

Αρχικοποίηση Β

- · Εἰσοδος: $Y, \mathcal{T} = \{(T_i, c_i, s_i)\}_{i=1}^{Q_s}$ τα οποία είναι έγκυρα
- \cdot Αποστολή Y στον $\mathcal A$
- Αρχικοποίηση RO ως άδειο λεξικό

Απόδειξη Ασφάλειας Υπογραφών Schnorr iv

Προσομοίωση $\mathcal{SO}(m_i)$

- Ο Β δεν διαθέτει το ιδιωτικό κλειδί.
- · Το ερώτημα αφορά το μήνυμα m_i .
- · Ανάκτηση i-οστού transcript (T_i, c_i, s_i)
- Θέτουμε $\mathcal{RO}(m_i, T_i, Y) = c_i$ (για μελλοντική χρήση)
- · Η υπογραφή $\sigma_i=(T_i,s_i)$ είναι έγκυρη (T_i,s_i) προέρχονται από τον challenger του $\mathsf{ID}_\mathsf{r-EVE})$
- \cdot Επιστροφή σ_i

Απόδειξη Ασφάλειας Υπογραφών Schnorr v

Προσομοίωση $\mathcal{RO}(m_j, T_j, Y)$

Το \mathcal{RO} ερωτάται είτε από τον \mathcal{A} , είτε εσωτερικά από τον \mathcal{B} .

Συνολικά το πολύ $Q_{SO}+Q_{RO}+1$ φορές.

Για το ερώτημα (m_j, T_j) :

- · Αν $\mathcal{RO}(m_j,T_j,Y)
 eq \bot$, επιστροφή του c_j
- ・ Av $\mathcal{RO}(m_j, T_j, Y) = \bot$, τότε προώθηση T_j στον challenger-verifier V_j του $\mathsf{ID}_\mathsf{r-EVE}$
- · Λήψη c_i και προώθηση στον \mathcal{A}
- · Αποθήκευσε $((m_j,T_j),j)$ για να θυμηθείς σε ποιον V_j θα στείλεις την απάντηση s_j .

Απόδειξη Ασφάλειας Υπογραφών Schnorr vi

Λήψη forgery $m^*, (T^*, s^*)$

- \cdot Θα έχει ρωτηθεί το $\mathcal{RO}(m^*,T^*)$
- · Δηλαδή $T^* = T_j$ για κάποιο j
- · Ανάκτηση j από λίστα και αποστολή s^* στον V_j

Πρόβλημα: Ύπαρξη συγκρούσεων

Κάποιο από τα T_i τα οποία ερωτούνται στο \mathcal{SO} έχει ερωτηθεί νωρίτερα στο \mathcal{RO} .

Γιατί; ο \mathcal{B} 'χαραμίζει' ένα transcript από αυτά που δόθηκαν από το eavesdropping.

Πιθανότητα το πολύ $Q_{\mathcal{SO}} \frac{Q_{\mathcal{SO}} + Q_{\mathcal{RO}} + 1}{q}$

Συνολικά - Αναγωγή στο διακριτό λογάριθμο

$$\begin{split} \sqrt{\mathsf{Adv}^{\mathsf{dlp}}_{\mathcal{B}}(\lambda)} & \geq \mathsf{Adv}^{\mathsf{id}_{\mathsf{Aa}}}_{\mathcal{A}}(\lambda) - \frac{1}{q} \qquad (\mathsf{DLP} \Rightarrow \mathsf{ID}_{\mathsf{DA}}) \\ \mathsf{Adv}^{\mathsf{id}_{\mathsf{eve}}}_{\mathcal{B},\mathsf{ID}}(\lambda) & = \mathsf{Adv}^{\mathsf{id}_{\mathsf{da}}}_{\mathcal{A},\mathsf{ID}}(\lambda) \qquad (\mathsf{ID}_{\mathsf{EVE}} \Leftrightarrow \mathsf{ID}_{\mathsf{DA}}) \\ \mathsf{Adv}^{\mathsf{id}_{\mathsf{eve}}}_{\mathcal{B},\mathsf{ID}}(\lambda) & \geq \frac{1}{Q_{\mathcal{RO}} + 1} \mathsf{Adv}^{\mathsf{id}_{\mathsf{r-eve}}}_{\mathcal{A},\mathsf{ID},Q_{\mathcal{RO}} + 1}(\lambda) \qquad (\mathsf{ID}_{\mathsf{EVE}} \Rightarrow \mathsf{ID}_{\mathsf{r-EVE}}) \\ \mathsf{Adv}^{\mathsf{id}_{\mathsf{r-eve}}}_{\mathcal{B},Q_{\mathcal{RO}} + 1}(\lambda) & \geq \mathsf{Adv}^{\mathsf{schnorr}}_{\mathcal{A},\mathsf{EUF\text{-}CMA}}(\lambda) - \frac{Q_{\mathcal{SO}}(Q_{\mathcal{SO}} + Q_{\mathcal{RO}} + 1)}{q} \qquad (\mathsf{ID}_{\mathsf{r-EVE}} \Rightarrow \mathsf{DS}_{\mathsf{Schnorr}}) \end{split}$$

Άρα:

$$\sqrt{\mathsf{Adv}^{\mathsf{dlp}}_{\mathcal{B}}(\lambda)} \geq -\frac{1}{q} + \frac{1}{Q_{\mathcal{RO}} + 1} \cdot (\mathsf{Adv}^{\mathsf{schnorr}}_{\mathcal{A}, \mathsf{EUF-CMA}}(\lambda) - \frac{Q_{\mathcal{SO}}(Q_{\mathcal{SO}} + Q_{\mathcal{RO}} + 1)}{q} +)$$

Τελικά:

$$\mathsf{AdV}^{\mathsf{schnorr}}_{\mathcal{A},\mathsf{EUF-CMA}}(\lambda) \leq \frac{Q_{\mathcal{RO}}+1}{q} + \frac{Q_{\mathcal{SO}}(Q_{\mathcal{SO}}+Q_{\mathcal{RO}}+1)}{q} + (Q_{\mathcal{RO}}+1) \cdot \sqrt{\mathsf{AdV}^{\mathsf{dlp}}_{\mathcal{B}}(\lambda)}$$

Ψηφιακές υπογραφές

One-More Discrete Log (OMDL) [?] i

DL oracle το οποίο για $Y_i \in \mathbb{G}$ επιστρέφει $x_i \in \mathbb{Z}_q : Y_i = g^{x_i}$

Χρήση το πολύ $Q = \text{poly}(\lambda)$ φορές.

Εξαγωγή ενός επιπλέον Discrete Log που δεν έχει ρωτηθεί στο DL oracle

Ισχυρότερη υπόθεση από DLP (DLP = OMDL $_0$)

Χρήση για απόδειξη ασφάλειας Schnorr Identification για active - concurrent sessions [?].

One-More Discrete Log (OMDL) [?] ii

Algorithm 2: $OMDL_n$

```
Input : \lambda
Output: \{0, 1\}
(\mathbb{G},q,g) \leftarrow \mathsf{Pgen}(1^{\lambda})
\{x_i\}_{i=1}^n \leftarrow \mathbb{Z}_q
for i \leftarrow 0 to n do
Y_i := q^{x_i}
end
(\pi, \{z_i\}_{i=1}^{Q+1}) \leftarrow \mathcal{A}^{\text{DL}}(\mathbb{G}, q, g, (Y_i)_{i=1}^n)
if \forall i \in Q+1: y_i = g^{z_{\pi(i)}} \land Q \leq n then
      return 1
else
      return 0
end
```

Ασφάλεια Schnorr i

Θεώρημα [?]

$$\mathrm{Adv}^{\mathrm{schnorr}}_{\mathcal{A}, | \mathbb{D}_{CC}}(\lambda) \leq \tfrac{1}{q} + \sqrt{\mathrm{Adv}^{\mathrm{omdl}}_{\mathcal{B}}(\lambda)}$$

Av το OMDL είναι δύσκολο, τότε το σχήμα ταυτοποίησης schnorr είναι ασφαλές εναντίον active - concurrent impersonation attacks.

Απόδειξη i

Έστω \mathcal{A} που νικά στο ID_{CC}.

Θα κατασκευάσουμε $\mathcal B$ που νικάει στο OMDL. Δηλ. πρέπει να έχει ως έξοδο Q+1 διακριτούς λογάριθμους, ενώ έχει κάνει Q ερωτήσεις στο DL oracle.

Αρχικά ο \mathcal{A} θα χρειαστεί να αλληλεπιδράσει με prover clones ως verifier. Ο \mathcal{B} θα τους προσομοιώσει με τη βοήθεια του DL.

Δηλαδή:

- \cdot \mathcal{B} prover
- A verifier

Απόδειξη ii

Ορθότητα:

Ο \mathcal{B} επιλέγει $Y \leftarrow \mathfrak{G}$. Για κάθε session με τον \mathcal{A} , ο \mathcal{B} επιλέγει $T_i \leftarrow \mathfrak{G}$ Όταν ο \mathcal{A} (V) στείλει το challenge c_i ο \mathcal{B} κάνει query to DL oracle με την τιμή $T_i \cdot Y^{c_i}$ και προωθεί την απάντησή του ως s_i .

$$\begin{aligned} \operatorname{DL}(T_i \cdot Y^{c_i}) &= \\ \operatorname{DL}(T_i) + \operatorname{DL}(Y^{c_i}) &= \\ t_i + cx_i &= \\ s_i \end{aligned}$$

Αλλαγή ρόλων. Δηλαδή:

- B verifier
- \cdot \mathcal{A} prover

Ψηφιακές υπογραφές

Απόδειξη iii

Στη συνέχεια ο $\mathcal A$ κάνει την direct attack στέλνοντας commitment T.

Ο $\mathcal B$ επιλέγει τυχαίο challenge c και το στέλνει στον $\mathcal A$. Λαμβάνει το response s και ελέγχει αν $g^s=TY^c$ (επιτυχές με πιθανότητα ϵ)

Rewind

Ο \mathcal{B} επιλέγει τυχαίο challenge c' και το στέλνει στον \mathcal{A} . Λαμβάνει το response s' και ελέγχει αν $g^{s'}=TY^{c'}$. (επιτυχές με πιθανότητα ϵ).

Ο \mathcal{B} ανακτά το $x,Y=g^x$ ως: $x=\frac{s-s'}{c-c'}$

Στη συνέχεια υπολογίζει τους υπόλοιπους Q λογάριθμους για τα T_i που ζήτησε από το DL ως $t_i=s_i-c_ix$

Τελικά επιστρέφει (x, t_1, \cdots, t_Q) .

Algebraic Group Model i

Ιδανικά Straight Line Reductions: Δεν χρειάζεται το rewinding Δεν υπάρχουν στο standard model

Algebraic Group Model [?]

Ο $\mathcal A$ κάθε φορά που επιστρέφει ένα στοιχείο $T\in\mathbb G$ επιστρέφει και την αναπαράσταση του σχετικά με τα στοιχεία που έχει δει μέχρι τώρα.

Δηλαδή:
$$(T,(a_o,a_1,\cdots,a_n)) \leftarrow \mathcal{A}(g,Y_1,\cdots,Y_n)$$
 με
$$= g^{a_0}Y_1^{a_1}\cdots Y_n^{a_n}$$

Algebraic Group Model ii

Υπολογισμός DLP χωρίς rewinding

Όταν εξαχθεί το forgery $\sigma^*=(T^*,s^*)$ εξάγονται και (a_0,a_1) ώστε $=g^{a_0}Y^{a_1}$

Όμως: $g^{s^*} = TY^{c^*}$ έχουμε:

$$g^{s^*}Y^{c^*} = g^{a_0}Y^{a_1} \Rightarrow$$

$$s^* + xc^* = a_0 + xa_1 \Rightarrow$$

$$x = \frac{a_0 - s^*}{c^* - a_1}$$

Βιβλιογραφία i

Mihir Bellare and Adriana Palacio, *Gq and schnorr identification schemes: Proofs of security against impersonation under active and concurrent attacks*, Advances in Cryptology — CRYPTO 2002 (Berlin, Heidelberg) (Moti Yung, ed.), Springer Berlin Heidelberg, 2002, pp. 162–177.

Georg Fuchsbauer, Eike Kiltz, and Julian Loss, *The algebraic group model and its applications*, Advances in Cryptology – CRYPTO 2018 (Cham) (Hovav Shacham and Alexandra Boldyreva, eds.), Springer International Publishing, 2018, pp. 33–62.

Βιβλιογραφία ii

David Pointcheval and Jacques Stern, Security arguments for digital signatures and blind signatures, J. Cryptol. **13** (2000), no. 3, 361–396.

Claus-Peter Schnorr, Efficient identification and signatures for smart cards, Advances in Cryptology - CRYPTO '89, 9th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings (Gilles Brassard, ed.), Lecture Notes in Computer Science, vol. 435, Springer, 1989, pp. 239–252.