Лабораторная работа №8

Имитационное моделирование

Екатерина Канева, НФИбд-02-22

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	13
Список литературы		14

Список иллюстраций

3.1	Переменные N, R, K, C	7
	Модель TCP/AQMf в xcos	8
3.3	График размера окна TCP и длины очереди при C = 1 в xcos	8
3.4	Фазовый портрет при C = 1 в xcos	9
3.5	График размера окна TCP и длины очереди при C = 0.9 в xcos	9
3.6	Фазовый портрет при C = 0.9 в xcos	10
3.7	График размера окна TCP и длины очереди при C = 1 в OpenModelica.	11
3.8	Фазовый портрет при C = 1 в OpenModelica	11
3.9	График размера окна TCP и длины очереди при C = 0.9 в OpenModelica.	12
3.10	Фазовый портрет при C = 0.9 в OpenModelica	12

Список таблиц

1 Цель работы

Построить модель TCP/AQM в xcos и OpenModelica.

2 Задание

- 1. Реализовать модель TCP/AQM в xcos.
- 2. Реализовать модель TCP/AQM в OpenModelica.

3 Выполнение лабораторной работы

Сначала я задала переменные среды (рис. 3.1):

Рис. 3.1: Переменные N, R, K, C.

Далее я задала время моделирования и приступила к построению модели TCP/AQM в xcos. Общая модель получилась такая (рис. 3.2)

Рис. 3.2: Модель TCP/AQMf в xcos.

Далее я задала параметры всем необходимым блокам и запустила моделирование. Я получила следующие графики — один описывает размер окна ТСР (зелёный) и длину очереди (чёрный) (рис. 3.3), а другой описывает фазовый портрет системы (рис. 3.4):

Рис. 3.3: График размера окна ТСР и длины очереди при С = 1 в хсоз.

Рис. 3.4: Фазовый портрет при C = 1 в xcos.

Потом я изменила параметр C=0.9 и получила следующие графики (рис. 3.5 и 3.6):

Рис. 3.5: График размера окна ТСР и длины очереди при С = 0.9 в хсоз.

Рис. 3.6: Фазовый портрет при C = 0.9 в xcos.

При уменьшении С колебания стали более равномерными.

Далее в рамказ задания для самостоятельной работы я построила такую же модель в OpenModelica. Для этого я использовала следующий код:

model lab8

```
parameter Real N=1;
parameter Real R=1;
parameter Real K=5.3;
parameter Real C=0.9;

Real W(start=0.1);
Real Q(start=1);

equation

der(W) = 1/R - W*delay(W, R)/(2*R)*K*delay(Q, R);
der(Q) = if (Q==0) then max(N*W/R-C, 0) else (N*W/R-C);
```

end lab8;

После запуска моделирования и установки времени моделирования получила следующие графики при C=1- красный описывает размер окна TCP, а синий — длину очереди (рис. 3.7 и 3.8):

Рис. 3.7: График размера окна TCP и длины очереди при C = 1 в OpenModelica.

Рис. 3.8: Фазовый портрет при C = 1 в OpenModelica.

Графики получились идентичными соответствующим графикам в xcos (с учётом другого времени моделирования).

Далее я изменила параметр C = 0.9 и получила следующие графики — красный описывает размер окна TCP, а синий — длину очереди (рис. 3.9 и 3.10)

Рис. 3.9: График размера окна TCP и длины очереди при C = 0.9 в OpenModelica.

Рис. 3.10: Фазовый портрет при C = 0.9 в OpenModelica.

Эти графики также получились идентичными соответствующим графикам в xcos (с учётом другого времени моделирования).

4 Выводы

Построили модель TCP/AQM в xcos и OpenModelica.

Список литературы