All attempts

Questions Students

CLASS STATISTICS

17.13 Average 18 Median 3.932 Standard Deviation 9 Lowest 24 Highest

QUESTION STATISTICS


```
Consider the following recursive Haskell function.
5
            foo x y =
                                                                                                         MCQ
                                                                                                                         77.61%
                                                                                                                                           0.1458
                if x \le 0 then y+y
                else (foo (x-1) (y*2))
         What result will be returned by foo 3 c1, while c1 is some integer constant?
         Non-Termination
         Consider the following recursive Haskell function.
            foo x y =
                                                                                                         TOF
                                                                                                                         92 42%
                                                                                                                                           0 2434
6
                if x=0 then y+y
                else (foo (x-1) (y*2))
         Does this function always terminates for all inputs, assuming the presence of infinite runtime
         resource?
         Type Inference
         Consider the following Haskell function.
7
                                                                                                         MCO
                                                                                                                         75 38%
                                                                                                                                           0.3663
           foo g x = g x
         Which of the following is the most general type of this function that would be inferred by
         Hindley-Milner type inference system used in the Haskell compiler?
         Recursion
         Consider the following recursive Haskell function.
            foo x y =
8
                                                                                                         MCQ
                                                                                                                         75.76%
                                                                                                                                           0.1337
                if x \le 0 then y+y
                else (foo (x-1) (y*2))
         Which of the following is NOT correct about this method definition?
         Recursion
         Consider the following recursive function in Haskell.
           foo g(x::Int) = g x (foo g x)
9
                                                                                                         MCQ
                                                                                                                         70.15%
                                                                                                                                           0.3873
         What is the most general type that could be inferred for this function?
         Recursion
         Consider the following recursive function in Haskell.
           foo g(x::Int) = g x (foo g x)
10
                                                                                                         MCO
                                                                                                                         87.88%
                                                                                                                                            0.437
         What result would be returned by (foo (\ n r -> n+r) c1) where c1 is a symbolic
         constant.
         Higher-Order Function
         Consider the following simple higher-order function
         foo xs a =
           case xs of
            [] -> (1,[])
11
                                                                                                         MCQ
                                                                                                                         63.64%
                                                                                                                                           0.2893
            y:ys ->
             let (c,cs) = foo ys g in
               if g y then (1+c,y:cs)
                else (c,cs)
         What value is returned by the expression (fst (foo [-1,2,3,0] (\forall z \rightarrow z > 0))?
         Higher-Order Functions
         Consider the following higher-order function in Haskell.
         gen_ho f xs n =
                                                                                                         MCQ
12
                                                                                                                         72.73%
                                                                                                                                           0.1211
             case xs of
                [] -> []
                y:ys \rightarrow (f y n):(gen_ho f xs (n+1))
```

MCQ

MCO

MCQ

MCQ

MCO

MCQ

68.18%

37 88%

21.21%

62.69%

76.12%

78.79%

0.5045

0.2492

0.3714

0.1912

0.3219

0.3928

What is computed by the expression (gen ho f [c1, c2, c3] 1)?

Typing

Consider the following higher-order function in Haskell.

```
gen_ho f xs n =

case xs of
[] -> []
    y:ys -> (f y n):(gen_ho f xs (n+1))
```

What would you do to this function definition to ensure that it will be correctly inferred by

Haskell to have the type ((a->Int->b) -> [a] -> Int -> [b])?

Typing

Consider the following higher-order function in Haskell.

What would you do to this function definition to ensure that it will be correctly inferred by

Haskell to have the type $((a\rightarrow Int\rightarrow a) \rightarrow [a] \rightarrow Int \rightarrow [a])$?

Higher-Order Function

15

16

18

Consider the following higher-order function in Haskell.

```
gen_ho f xs n =
   case xs of
   [] -> []
   y:ys -> (f y n):(gen_ho f xs (n+1))
```

Which of the following higher-order function can be used to implement this ${\tt gen_ho}$ function

using just $\,$ a single call to the selected higher-order function ?

Higher-Order Function

Consider the following higher-order function in Haskell.

```
gen_ho f xs n =
    case xs of
    [] -> []
    y:ys -> (f y n):(gen_ho f xs (n+1))
```

What would be returned by the call (gen ho f [1..] n)?

Array

Consider the following Haskell expression

```
17 let a = array (1,10) ((1,1):[(i, if mod i 2==0 then a!(i-1) else i) | i <- [1..10]])
```

What is the value of a!6?

Array

Consider the following Haskell expression

```
let a = array (1,10) [(i, if mod i 2==0 then a!(i-1) else i) | i <- [1..10]])
```

What is the value of a!6?

Array

Consider the following Haskell expression

```
19 let a = array (1,10) [(i, if mod i 2==0 then a!(i-1) else i) | i <- MCQ 48.48% 0.1722 [1..10]])
```

Which of the following is NOT true about this particular array?

	List comprehension				
	Consider the list comprehension				
	[g x y z x in e1, y in e2, z in e3]				
20	Assume you have a filter condition (f x y) which you would like to add to the above list comprehension. Where would be the best place to put this filter?	MCQ	71.21%	0.1912	
21	List Comprehension				
	Consider the list comprehension:				
	[$(x,y) \mid x \text{ in e1, } y \text{ in e2, } z \text{ in e3}$]	MCQ	24.24%	-0.0288	1
	Which of the statements below is NOT true?				
	Higher-Order Function				
	Consider the following function				
	foo xs g =				
	case xs of				
	[] -> (1,[]) y:ys ->				
	let (c,cs)= foo ys g in				
22	<pre>if g y then (1+c,y:cs) else (c,cs)</pre>	MRQ	62.3%	0.646	
	One could re-implement the call (foo xs g) by an equivalent expression (foldr e1 e2				-
	xs) which has the following type:				
	foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b				
	Which of the following is/are correct?				
	Higher-Order Function				
	Consider the following function				
	foo xs g =				
	case xs of [] -> (1,[])				
	y:ys ->				
22	let (c,cs)= foo ys g in	MPO	AA 0704	0 6221	_
23		MRQ	44.07%	0.6321	ı
23	<pre>let (c,cs) = foo ys g in if g y then (1+c,y:cs)</pre>	MRQ	44.07%	0.6321	d
23	let (c,cs) = foo ys g in if g y then (1+c,y:cs) else (c,cs) One could re-implement the call (foo xs g) by an equivalent expression (foldl e2 e1 xs). Note that we are using foldl with he following type here:	MRQ	44.07%	0.6321	
23	<pre>let (c,cs) = foo ys g in if g y then (1+c,y:cs) else (c,cs) One could re-implement the call (foo xs g) by an equivalent expression (fold)</pre>	MRQ	44.07%	0.6321	•
23	<pre>let (c,cs) = foo ys g in if g y then (1+c,y:cs) else (c,cs) One could re-implement the call (foo xs g) by an equivalent expression (foldl e2 e1 xs). Note that we are using foldl with he following type here: foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b</pre> Which of the following is/are correct? This is a multiple response answer where all correct	MRQ	44.07%	0.6321	•
23	let (c,cs) = foo ys g in if g y then (1+c,y:cs) else (c,cs) One could re-implement the call (foo xs g) by an equivalent expression (foldl e2 e1 xs). Note that we are using foldl with he following type here: foldl:: Foldable t => (b -> a -> b) -> b -> t a -> b Which of the following is/are correct? This is a multiple response answer where all correct answer must be given.	MRQ	44.07%	0.6321	•
	let (c,cs) = foo ys g in if g y then (1+c,y:cs) else (c,cs) One could re-implement the call (foo xs g) by an equivalent expression (foldl e2 e1 xs). Note that we are using foldl with he following type here: foldl:: Foldable t => (b -> a -> b) -> b -> t a -> b Which of the following is/are correct? This is a multiple response answer where all correct answer must be given. Type Annotation Consider the following Haskell function.	MRQ	44.07%	0.6321	
	let (c,cs) = foo ys g in if g y then (1+c,y:cs) else (c,cs) One could re-implement the call (foo xs g) by an equivalent expression (foldl e2 e1 xs). Note that we are using foldl with he following type here: foldl:: Foldable t => (b -> a -> b) -> b -> t a -> b Which of the following is/are correct? This is a multiple response answer where all correct answer must be given. Type Annotation Consider the following Haskell function. foo g = (g 1, g "hello")				
	let (c,cs) = foo ys g in if g y then (1+c,y:cs) else (c,cs) One could re-implement the call (foo xs g) by an equivalent expression (foldl e2 e1 xs). Note that we are using foldl with he following type here: foldl:: Foldable t => (b -> a -> b) -> b -> t a -> b Which of the following is/are correct? This is a multiple response answer where all correct answer must be given. Type Annotation Consider the following Haskell function.				
	let (c,cs) = foo ys g in if g y then (1+c,y:cs) else (c,cs) One could re-implement the call (foo xs g) by an equivalent expression (foldl e2 e1 xs). Note that we are using foldl with he following type here: foldl:: Foldable t => (b -> a -> b) -> b -> t a -> b Which of the following is/are correct? This is a multiple response answer where all correct answer must be given. Type Annotation Consider the following Haskell function. foo g = (g 1, g "hello") Is a user annotated type possible for this function? Justify your answer by explaining why it is				
24	let (c,cs) = foo ys g in if g y then (1+c,y:cs) else (c,cs) One could re-implement the call (foo xs g) by an equivalent expression (foldl e2 e1 xs). Note that we are using foldl with he following type here: foldl:: Foldable t => (b -> a -> b) -> b -> t a -> b Which of the following is/are correct? This is a multiple response answer where all correct answer must be given. Type Annotation Consider the following Haskell function. foo g = (g 1, g "hello") Is a user annotated type possible for this function? Justify your answer by explaining why it is possible or otherwise.	TOF	50%	0.1023	4
	let (c,cs) = foo ys g in if g y then (1+c,y:cs) else (c,cs) One could re-implement the call (foo xs g) by an equivalent expression (foldl e2 e1 xs). Note that we are using foldl with he following type here: foldl:: Foldable t => (b -> a -> b) -> b -> t a -> b Which of the following is/are correct? This is a multiple response answer where all correct answer must be given. Type Annotation Consider the following Haskell function. foo g = (g 1, g "hello") Is a user annotated type possible for this function? Justify your answer by explaining why it is possible or otherwise. Recursion Consider the following recursive function in Haskell.				