Problem Set #4

MACS 30250, Dr. Evans and Dr. Soltoff Due Saturday, June 8 at 11:59pm

1. Discrete approximation of an AR(1) process (10 points). Assume that a random variable evolves according to the following continuous AR(1) process,

$$z_{t+1} = \rho z_t + (1 - \rho)\mu + \varepsilon_t$$
 s.t. $\rho \in (-1, 1)$ and $\varepsilon_t \sim N(0, \sigma)$

where ρ governs the persistence of the process, μ is the long-run average of z_t , and σ is the standard deviation of the normally distributed error terms. Assume that $\rho = 0.85$, $\mu = 11.4$, and $\sigma = 0.7$.

(a) Assume that $z_0 = \mu$. Simulate a time series of T = 500 periods of values of $\{z_t\}_{t=1}^T$ using (1) by drawing a vector of T values from the normal $N(0, \sigma)$ above using the following code (so that all your vectors are the same). Plot the first 100 observations of the resulting simulated time series for $\{z_t\}_{t=1}^{100}$. [Reminder: I want you to plot the z_t 's, not the ε_t 's.]

This method of drawing T uniformly distributed values between 0 and 1 and then transforming them into the corresponding $N(0,\sigma)$ values through the inverse CDF function is a little bit indirect of a way to draw normally distributed values. However, we will use the vector of uniforms (unif_vec) in part (f) below.

- (b) Create a 5-element vector called \mathbf{z}_{-} vals that represents a discretized version of all the values that z_t can take on. Let \mathbf{z}_{-} vals be 5 evenly spaced points between $\mu-3\sigma$ and $\mu+3\sigma$. The third element of this vector \mathbf{z}_{-} vals[2] should equal μ . This vector represents a (representative) sampling of all of the values that z_t can take on in the time series from part (a).
- (c) Estimate the probabilities of a 5×5 Markov transition matrix $\hat{\boldsymbol{P}}$ in the following way. Think of the values in the z_vals vector from part (b) as midpoints of bins that divide the whole space of points that z_t can fall in. Define the cutoffs z_cuts between the bins as the 4-element vector of midpoints between each of the 5 points in z_vals.

```
z_{cuts} = 0.5 * z_{vals}[:-1] + 0.5 * z_{vals}[1:]
```

Then we can classify each data point in our simulated series $\{z_t\}_{t=1}^T$ as being in one of the five bins based on that point's relative position to the bin cutoff values in z_cuts.

$$z_t \in \begin{cases} \text{bin 1 if} & z_t \leq \texttt{z_cuts}[0] \\ \text{bin 2 if} & \texttt{z_cuts}[0] < z_t \leq \texttt{z_cuts}[1] \\ \text{bin 3 if} & \texttt{z_cuts}[1] < z_t \leq \texttt{z_cuts}[2] \\ \text{bin 4 if} & \texttt{z_cuts}[2] < z_t \leq \texttt{z_cuts}[3] \\ \text{bin 5 if} & z_t > \texttt{z_cuts}[3] \end{cases}$$

The first row of the estimated Markov transition matrix $\hat{\boldsymbol{P}}$ represents the probability of moving from state 1 (bin 1) this period to each of the 5 states (bins) next period. More generally, $\hat{\boldsymbol{P}} \equiv Pr\left(z_{t+1} \in \text{bin}_k | z_t \in \text{bin}_j\right)$. Estimate the probabilities in each row of the Markov transition matrix $\hat{\boldsymbol{P}}$ as the empirical probabilities from the simulated data series $\{z_t\}_{t=1}^T$ from part (a). For example, the probability $\pi_{2,4}$ of transitioning from bin 2 in the current period ($\mathbf{z}_\mathtt{cuts}[0] < z_t \leq \mathbf{z}_\mathtt{cuts}[1]$) to bin 4 in the next period ($\mathbf{z}_\mathtt{cuts}[2] < z_t \leq \mathbf{z}_\mathtt{cuts}[3]$) is estimated to be the ratio of the number of two-period consecutive data points that start with a value in bin 2 and end with a value in bin 4 divided by the total number of two-period consecutive segments that start in bin 2.

- (d) According to your estimated Markov transition matrix $\hat{\boldsymbol{P}}$ from part (c), what is the probability of z_{t+3} being in bin 5 ($z_{t+3} > \mathbf{z}_{\mathtt{cuts}}[3]$) given that z_t is in bin 3 ($\mathbf{z}_{\mathtt{cuts}}[1] < z_t \leq \mathbf{z}_{\mathtt{cuts}}[2]$) today? [Hint: Start with a vector [0,0,1,0,0].]
- (e) According to your estimated Markov transition matrix $\hat{\boldsymbol{P}}$ from part (c), what is the stationary (long-run, ergodic) distribution of z_t (i.e., the percentages of the time that the random variable spends in each of the 5 bins)?
- (f) Use the vector of T uniformly distributed variables in unif_vec from part (a) to simulate a time series of T values of the discretized version of $z_t \in \mathbf{z}_{-}$ vals using the estimated transition matrix \hat{P} and an initial value $z_0 = \mathbf{z}_{-}$ vals[2]. Plot the time series of this discretized series for z_t versus the continuous version from part (a). Make sure your plot has a legend, title, and labeled axes. To be clear, your discretized time series for z_t should alternate randomly among only the five values in the vector \mathbf{z}_{-} vals. However, this time series should have many of the same properties as the continuous time series z_t from part (a).