Application of Machine Learning Techniques in Insurance Fraud Detection

Khutso Mphelo

BScHons in Applied Mathematics University of Johannesburg

14 November 2024

Outline

- Introduction
- 2 Literature Review
- Methodology
- 4 Data Analysis Insights
- Results
- **6** Conclusion
- References

Motivation

- Insurance fraud poses significant financial and operational challenges.
- Traditional detection relies on audits, but machine learning offers advanced capabilities.

Introduction

- Objective: Enhance fraud detection in insurance claims using machine learning.
- Dataset: Vehicle claims fraud data (Bansal, 2021).

Literature Review

- Traditional methods: Audits and expert reviews.
- Machine learning in fraud detection: Logistic Regression, Random Forest, XGBoost.

Model Class	Methodology	Description
Clustering	K-means	Groups data points by similarity
Classification	Logistic Regression, Random Forest	Categorizes data based on labeled data
Outlier Detection	Isolation Forest	Identifies anomalous data points

Table: Overview of ML Models in Fraud Detection

Methodology

- Data preprocessing: Cleaning, encoding, standardization.
- Class imbalance handling: SMOTE and undersampling.
- Models used: Random Forest, Logistic Regression, XGBoost, and KNN.

Data Analysis Insights

- Before modeling, an exploratory data analysis (EDA) was conducted to understand key patterns and trends in the data.
- Insights from EDA guided the feature selection and informed the class balancing approach.

Class Imbalance Visualization

- The dataset shows a significant class imbalance, with a smaller proportion of fraudulent claims.
- To address this, techniques like SMOTE were applied to balance the classes.

Fraud Rate by Month Claimed

- A decrease in fraud rates is observed prior to November, possibly due to effective fraud prevention measures or reduced claims as the year ends.
- December shows an increase in fraud, potentially linked to holiday season factors.

Figure: Fraud rate by month claimed

Correlation of Age of Policy Holder with Fraud Cases

- The most common fraudulent policy holders are middle aged, specifically in the 31-35 and 36-40 age group
- Likely due to more financial pressures, potentially leading to a greater number of bills and financial responsibilities.
- Understanding this relationship helps identify high-risk age groups in insurance claims.

Figure: Correlation between Age of Policy Holder and Fraud Cases

Khutso Mphelo (UJ) Insurance Fraud Detection 10 / 18

Correlation of Age of Policy Holder with Fraud Cases

- Married individuals: Highest fraud cases (639), likely due to financial pressures.
- Single individuals: Moderate fraud cases (278).

Figure: Number of Fraud Cases by Marital Status

Percentage of Fraud Cases by Accident Area

- Urban areas account for approximately 85.6% of fraud cases.
- Rural areas account only 14.4% of fraud cases.

Figure: Correlation Heatmap of Key Features

Summary of Data Insights

- Marital status & Age: Higher fraud rates among married and middle-aged individuals.
- **Seasonal peaks:** Fraud cases peak in August and December, potentially due to financial or seasonal factors.
- **Geographic patterns:** Urban areas sees more fraud cases (85.6%), while rural areas have fewer.
- Class imbalance: Fraudulent claims are rare, requiring techniques like SMOTE for model balance.

XGBoost Model Performance - Precision and Recall

• Best performing model is XGboost with an accuracy of 76.5%.

Accuracy: 0 Classificat				f1	suppost
		brecision	Lecall	f1-score	support
	0	0.99	0.76	0.86	2885
	1	0.20	0.89	0.33	199
accurac	у			0.77	3084
macro av	/g	0.60	0.83	0.59	3084
weighted av	g'g	0.94	0.77	0.82	3084

Figure: Precision and Recall of Models

Confusion Matrix for XGBoost Model

• XGBoost model performance with SMOTE application.

Khutso Mphelo (UJ) Insurance Fraud Detection 15 / 18

Conclusion

- **Enhanced Detection:** Machine learning models enhance fraud detection accuracy.
- Class Imbalance Challenge: SMOTE helps address imbalance, boosting model effectiveness.
- Key Risk Insights: Higher fraud rates are seen among married, urban, and middle-aged groups, highlighting areas for targeted prevention.
- Future Work: Further explore ensemble models and advanced sampling techniques to refine detection capabilities.
- Business Impact: Effective fraud detection can significantly reduce losses and improve client trust in the insurance process.

References

- Viaene, S., Dedene, G. (2004). "Insurance Fraud: Issues and Challenges." *The Geneva Papers on Risk and Insurance*, 29(2), 313–333.
- Derrig, R. A. (2002). "Insurance Fraud." The Journal of Risk and Insurance, 69(3), 271–287.
- Bansal, S. (2021). "Vehicle Claim Fraud Detection Dataset." Kaggle. Available at: https://www.kaggle.com/datasets/shivamb/vehicle-claim-fraud-detection/data

Thank you!

Questions?