10/583968

AP3 Rec'd PCT/PTO 22 JUN 2005 English language translation of the annexes to the International Preliminary

Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

AP3 Rec'd PD1/PD6 2 2 3 JUN 2018

Replacement Page 25

- A method of influencing an actual engine torque delivered by an engine (6) which is part of drive means (7) of a vehicle, wherein
 - the actual engine torque (M_i) , at an uphill oriented starting operation or at an uphill travel, is set as a function of a determined roadway inclination (Θ^*) which represents a roadway inclination in the travel direction,
 - a brake pedal variable (s) is determined which represents a driver-caused deflection of a brake pedal (9) cooperating with braking means (30) of the vehicle,
 - the actual engine torque (M_i) delivered by the engine (6) is further set as a function of the determined brake pedal variable (s),

characterized in that

a magnitude for a nominal engine torque (M_s) is determined as a function of the roadway inclination (Θ^*) and the brake pedal variable (s) and that the actual engine torque (M_i) is set in accordance with the determined magnitude of the nominal engine torque (M_s) , wherein upon exceeding a limit travel speed (v_{fg}) , the magnitude of the nominal engine torque (M_s) is decreased as the travel speed (v_f) increases.

2. The method as defined in claim 1, characterized in that the limit travel speed $(v_{\rm fg})$ has a magnitude typical for a transition between a creeping motion and a normal travel of the vehicle.

- 3. The method as defined in claim 1, characterized in that the actual engine torque (M_i) is set in such a manner as a function of the roadway inclination (Θ^*) that the vehicle assumes, independently from the roadway inclination, a low travel speed (v_f) which, in particular, has a typical magnitude for a creeping motion of a vehicle provided with an automatic transmission or an automatic gearbox or a transmission with an automatic clutch.
- 4. The method as defined in claim 3, characterized in that the brake pedal variable (s) has a range defined by a lower limit (s_a) corresponding to the non-actuated state of the brake pedal (9) and an upper limit (s_b) corresponding to a maximum possible deflection of the brake pedal (9), wherein the magnitude of the nominal engine torque (M_s) decreases from a maximum magnitude ($M_{s,max}$) at the lower limit (s_a) toward the upper limit (s_b).
- 5. The method as defined in claim 4, characterized in that for magnitudes of the brake pedal variable (s) which correspond to an intermediate magnitude (s_0) lying in the range between the lower limit (s_a) and the upper limit (s_b), the nominal engine torque (M_s) assumes a constant, particularly zero, magnitude.
- The method as defined in claim 4, characterized in that

the maximum nominal engine torque $(M_{s,max})$ as a function of the roadway inclination (Θ^*) is determined by the equation $M_{s,max}=M^0_{s,max}+k.\left|\Theta^*\right|,$ wherein k is a factorial function and $M^0_{s,max}$ is the engine torque (M_s) obtained by the idling regulator of the engine at a set travel stage on a roadway without inclination.

- 7. The method as defined in claim 6, characterized in that the factorial function (k) is selected in such a manner that at least in the lower limit (s_a) of the brake pedal variable (s) the vehicle assumes, independently from the roadway inclination, a low travel speed (v_f) which is particularly typical for a creeping motion of a vehicle having an automatic transmission, or an automatic gearbox or a transmission with an automatic clutch.
- 8. The method as defined in claim 3, characterized in that the nominal engine torque (M_s) is additionally determined as a function of a vehicle mass variable representing the mass of the vehicle and/or as a function of a rolling resistance variable characterizing the rolling resistance of the driven wheels traveling on the roadway.
- 9. The method as defined in claim 4, characterized in that as a function of the brake pedal variable (s), in the wheel braking devices (29) of the vehicle a

braking force (F_v) is generated which increases from the lower limit (s_a) toward the upper limit (s_b) .

- 10. The method as defined in claim 5, characterized in that the intermediate magnitude (s_0) of the brake pedal variable (s) is determined as a function of the roadway inclination (Θ^*) .
- 11. The method as defined in claim 5, characterized in that the intermediate magnitude (s_0) is determined as a function of the roadway inclination (Θ^*) in such a manner that the vehicle is maintained at a standstill on an inclined roadway by the braking force (F_v) generated in the wheel braking devices (29) at the intermediate magnitude (s_0) .
- 12. The method as defined in claim 11, characterized in that the intermediate magnitude (s_0) is determined as a function of the roadway inclination (Θ^*) in such a manner that when the magnitude of the brake pedal variable (s) falls below the intermediate magnitude (s_0) toward the lower limit (s_a) , the braking force (F_v) generated in the wheel braking devices (29) and the actual engine torque (M_1) effected by the nominal engine torque (M_s) maintain the vehicle at a standstill on an inclined roadway oriented in a driver-selected direction, until the actual engine torque (M_1) effected correspondingly to the nominal engine torque (M_1) becomes large enough at a

sufficiently small magnitude of the brake pedal variable (s) for setting the vehicle in uphill motion on the inclined roadway.

- 13. The method as defined in claim 1, characterized in that the roadway inclination (Θ^*) is determined from a longitudinal roadway inclination (Θ) which represents a roadway inclination in the length direction of the vehicle, a transverse roadway inclination (Φ) which represents a roadway inclination in the transverse direction of the vehicle and a yaw angle (β) which represents a yaw angle of the vehicle.
- The method as defined in claim 13, characterized in that the longitudinal roadway inclination (Θ) is determined from a difference between a total acceleration or a total deceleration in the length direction of the vehicle and a longitudinal vehicle acceleration or a longitudinal vehicle deceleration, obtained from a speed change in the length direction of the vehicle and/or the transverse roadway inclination (Φ) is determined from a difference between a total acceleration or a total deceleration in the transverse direction of the vehicle, obtained from a speed change in the transverse direction of the vehicle.
- 15. The method as defined in claim 14, characterized in that

the longitudinal vehicle acceleration or the longitudinal vehicle deceleration and/or the transverse vehicle acceleration or the transverse vehicle deceleration are determined as a function of the change in time of a wheel rpm variable representing the wheel rpm of at least one of the driven vehicle wheels, while a steering angle (δ) is taken into account which represents a steering angle set by a steering wheel (25) at the steerable vehicle wheels.

- 16. The method as defined in claim 1, characterized in that a recognition of the uphill-directed start operation or uphill travel is effected by an evaluation of a gear shift variable (x_g) which represents the gear set by the driver or a travel stage variable (x_g') which represents the automatically set travel stage and by an evaluation of the roadway inclination (Θ^*) .
- 17. An apparatus for influencing an actual engine torque delivered by an engine (6) which forms part of drive means (7) of a vehicle, wherein the apparatus comprises
 - means (15, 16, 17, 25, 26, 27) with which a roadway inclination (Θ^*) representing a roadway inclination in the travel direction is determined,
 - means (8, 17) with which the actual engine torque (M_i) is set during an uphill-

directed start operation or an uphill travel, as a function of the determined roadway inclination (Θ^*)

means (9, 10, 17) with which a brake pedal variable (s) is determined which represents a driver-caused deflection of a brake pedal (9) cooperating with braking means (29) of the vehicle and that the actual engine torque (M_i) delivered by the engine (6) is further determined as a function of the determined brake pedal variable (s),

characterized in that

a magnitude for a nominal engine torque (M_s) is determined as a function of the roadway inclination (Θ^*) and the brake pedal variable (s) and that the actual engine torque (M_i) is set in accordance with the determined magnitude of the nominal engine torque (M_s) , wherein upon exceeding a limit travel speed (v_{fg}) , the magnitude of the nominal engine torque (M_s) is decreased as the travel speed (v_f) increases.