Deep Learning for Computer Vision Homework #1

R08945011 張祐祥

(no collaborators)

Problem 1

1. 利用 cv2 kmeans 進行計算

2.

3. 在相同 k 下,可見只用 RGB 值進行分類效果較好,原因為加上座標後,座標值分布遠大於 RGB 值,使得分類下會依據座標值優先。而若將座標值與 RGB 值進行標準化,便可見分割結果的提升。

Problem 2

1.

計算方式為 sklearn.decomposition.PCA、sklearn.neighbors.KNeighborsClassifier、sklearn.model_selection.cross_val_score

2.

3.

n	3	50	170	240	345
MSE	4664.943	1426.958	1365.273	879.431	855.048

4.

K n	1	3	5
3	0.589	0.536	0.494
50	0.947	0.889	0.828
170	0.953	0.881	0.817

上表為不同 $k \cdot n$ 對應在三次 cross-validation 的準確率,由上表選擇的 $k \ge 1 \cdot n$ 为 170

5. recognition rate: 0.9

Problem 3

1. 效果為讓圖片平滑去除噪點

2D Gaussian filter

2. kx = [-0.5, 0, 0.5] ky = [[-0.5], [0], [0.5]]

3. 右圖為經過 Gaussian-filter 的圖,由於經過濾波後雜訊會減少,因此邊緣結果會更加被突顯。

gradient magnitude of lena.png

gradient magnitude of Gaussian-filtered lena

