

Diseño e implementación de módulos funcionales (Sensores y Telemetría) de OBSW para el desarrollo de nanosatélites

Jaime García González

4 de julio de 2019

Universidad Carlos III de Madrid

Contenido

- 1 Introducción
- 2 Análisis y diseño
- 3 Implementación y pruebas
- 4 Plan de proyecto
- 5 Conclusiones y trabajo futuro

Contenido

- 1 Introducción
- 2 Análisis y diseño
- 3 Implementación y pruebas
- 4 Plan de proyecto
- 5 Conclusiones y trabajo futuro

Descripción del proyecto (1/3)

- Cátedra Universidad Carlos III SENER.
- Desarrollo de un nanosatélite universitario (Proyecto MARTÍN-LARA).
- Tomar fotografías de la Tierra y estudiar los efectos de la radiación en componentes electrónicos.
- Filosofía NewSpace: Colonizar el espacio con nanosatélites y ofrecer nuevos servicios.

Descripción del proyecto (2/3)

Figura 1: CubeSat. [Fuente: https://satsearch.co/]

Estándar CubeSat:

- Desarrollar nanosatélites en aulas universitarias.
- Restricciones de dimensiones (10 \times 10 \times 10 cm) y masa (1,33 kg).
- Múltiples aplicaciones: observación de la Tierra, comunicaciones, IoT.

Descripción del proyecto (3/3)

La mayoría de estas misiones se componen de:

- Onboard Software (OBSW).
- Ground System (GS).

Comunicación permanente mediante data link.

Figura 2: *Data link* entre OBSW y GS

Motivación

El OBSW de estos nanosatélites se caracteriza por:

- Modificación del entorno. Reciben información del entorno utilizando sensores y modifican su estado con actuadores.
- Sistema crítico. Ejecutado en un sistema operativo en tiempo real, RTOS. Dos premisas:
 - 1. Ejecutar acciones correctas.
 - 2. Garantizar plazos de respuesta.

El incumplimiento de una de estas condiciones implica el fallo total de la misión

Objetivos

- Definición de la arquitectura del sistema. Se participará en el diseño de la arquitectura global de la misión.
- Diseño e implementación del simulador térmico. Definición, diseño e implementación de los diferentes componentes térmicos del sistema.
- Diseño e implementación del módulo de telemetría. Definición e implementación de los paquetes transmitidos entre diferentes componentes del sistema.

Objetivos

- 1. **Definición de la arquitectura del sistema.** Se participará en el diseño de la arquitectura global de la misión.
- Diseño e implementación del simulador térmico. Definición, diseño e implementación de los diferentes componentes térmicos del sistema.
- Diseño e implementación del módulo de telemetría. Definición e implementación de los paquetes transmitidos entre diferentes componentes del sistema.

Objetivos

- Definición de la arquitectura del sistema. Se participará en el diseño de la arquitectura global de la misión.
- Diseño e implementación del simulador térmico. Definición, diseño e implementación de los diferentes componentes térmicos del sistema.
- Diseño e implementación del módulo de telemetría. Definición e implementación de los paquetes transmitidos entre diferentes componentes del sistema.

Contenido

- 1 Introducción
- 2 Análisis y diseño
- 3 Implementación y pruebas
- 4 Plan de proyecto
- 5 Conclusiones y trabajo futuro

Core Flight Executive (cFE)

Figura 3: Arquitectura sistema CFS

cFE es un OBSW desarrollado por NASA, que se caracteriza por:

- Framework de desarrollo y entorno de ejecución.
- Conjunto de servicios (Software Bus, Time, Events, etc).
- Análisis de rendimiento en tiempo real.
- Arquitectura modular.

Arquitectura de la misión

Figura 4: Arquitectura de la misión

El sistema se compone de tres subsistemas: Simulación hardware, OBSW y ground system.

10/26

Diseño de la solución

Figura 5: Diagrama de componentes

Contenido

- 1 Introducción
- 2 Análisis y diseño
- 3 Implementación y pruebas
- 4 Plan de proyecto
- 5 Conclusiones y trabajo futuro

Implementación

Los componentes desarrollados se dividen en dos bloques:

- Módulo de telemetría. Monitorizar el estado del sistema y enviar los paquetes al módulo de transmisión.
- Simulador térmico. Control de la temperatura interna del sistema. Simulación software de componentes hardware.

◆□▶◆□▶◆三▶◆三 り९○

Implementación

Los componentes desarrollados se dividen en dos bloques:

- Módulo de telemetría. Monitorizar el estado del sistema y enviar los paquetes al módulo de transmisión.
- Simulador térmico. Control de la temperatura interna del sistema. Simulación software de componentes hardware.

Módulo de telemetría (1/2)

Figura 6: Estructura de paquete

- Cabecera. Identificador de paquete, checksum y timestamp.
- Segmento de datos. Valores de sensores, actuadores y control del sistema.

Principales características:

- Evitar números en coma flotante (errores de precisión).
- Reducir overhead en sistemas empotrados.
- Optimización de espacio empaquetando indicadores binarios en una variable de 32 bits.

Módulo de telemetría (2/2)

Figura 7: Empaquetado de indicadores binarios

Paquete periódico

- Envío periódico (0.2 Hz).
- Toda la información del sistema.
- Incluye *flags* de estado.

Paquete puntual

- Envío ⇔ solicitud del GS.
- Diferentes tipos de paquetes (térmico, posicional y solar).
- Incluye flags de estado.

Simulador térmico (1/2)

Simulación software de los componentes térmicos del nanosatélite y módulo del OBSW.

- Calentadores. Simulan un aumento de la temperatura.
- Termistores. Simulan una lectura de temperatura.

$$T(t) = C + A * sin(2\Pi vt + \varphi)$$

$$c = 278K$$

$$v = 203K$$

Figura 8: Simulación lectura de temperatura

Simulador térmico (1/2)

Simulación software de los componentes térmicos del nanosatélite y módulo del OBSW.

- Calentadores. Simulan un aumento de la temperatura.
- Termistores. Simulan una lectura de temperatura.

$$T(t) = C + A * sin(2\Pi vt + \varphi)$$

$$c = 218K$$

$$v = 203K$$

Figura 8: Simulación lectura de temperatura

Simulador térmico (2/2)

 Control térmico. Módulo de OBSW que controla la temperatura interna del sistema.

Verifica los umbrales de temperatura de cada termistor y enciende/apaga su calentador asociado.

 $Termistor \rightarrow verificar\ umbrales \rightarrow calentador$

Para lograr una simulación real, se añade un factor de ruido.

$$T_i = Thermistor_i + rand(-2, 2) \mid \forall i \subset \{1, 2, 3\}$$

Pruebas y evaluación (1/2)

Pruebas de verificación e integración para todos los componentes desarrollados.

Entorno de pruebas

■ Intel Core i7 - 2.60 GHz.

12 GB RAM DDR3.

Sistema final

- ARM Cortex A8 1 GHz.
- 512 MB LPDDR RAM.

Intervalo de confianza para comprobar que se cumplen las restricciones temporales.

$$\mu = \bar{\mathbf{X}} \pm \mathbf{Z} \frac{\sigma}{\sqrt{n}}$$

Pruebas y evaluación (2/2)

Módulo	Cómputo máximo (ms)	Cota inferior (ms)	Cota superior (ms)
Telemetría	31.25	0.0168	0.0186
Control térmico	31.25	0.0162	0.0705

Tabla 1: Intervalo de confianza

Figura 9: Rendimiento telemetría

Figura 10: Rendimiento c. térmico

Contenido

- 1 Introducción
- 2 Análisis y diseño
- 3 Implementación y pruebas
- 4 Plan de proyecto
- 5 Conclusiones y trabajo futuro

Planificación

Presupuesto

El proyecto ha tenido una duración aproximada de **8 meses**. El coste total del mismo asciende a **14931.47** €.

Descripción	Coste
Costes de personal	8560.00 €
Amortización	132.13 €
Costes indirectos	282.10 €
Margen de imprevistos (10 %)	897.46 €
Margen de beneficio (25 %)	2468.02 €
Total sin I.V.A.	12340.06 €
Total	14931.47 €

Tabla 2: Resumen de costes

Marco legal

El proyecto está sujeto a las siguientes leyes/normativas:

- Tratado sobre el espacio exterior. Control de actividades espaciales de los Estados, registro de lanzamientos, etc.
- CCSDS. Desarrollo de estándares para misiones espaciales.
- ECSS. Desarrollo de estándares para misiones espaciales a nivel europeo.
- CNAF. Control de radiofrecuencias en el territorio nacional.

Contenido

- 1 Introducción
- 2 Análisis y diseño
- 3 Implementación y pruebas
- 4 Plan de proyecto
- 5 Conclusiones y trabajo futuro

Conclusiones

- Arquitectura del sistema. Arquitectura modular, componentes independientes, fácil mantenimiento y desarrollo.
- Simulador térmico. Simulación de lectura y aumento de temperatura. Control de la temperatura interna del sistema
- Módulo de telemetría. Definición e implementación de paquetes periódicos y puntuales. Optimización de espacio, evitando pérdida de precisión. Adaptado para sistemas empotrados.

Conclusiones

- Arquitectura del sistema. Arquitectura modular, componentes independientes, fácil mantenimiento y desarrollo.
- Simulador térmico. Simulación de lectura y aumento de temperatura. Control de la temperatura interna del sistema.
- Módulo de telemetría. Definición e implementación de paquetes periódicos y puntuales. Optimización de espacio, evitando pérdida de precisión. Adaptado para sistemas empotrados.

Conclusiones

- Arquitectura del sistema. Arquitectura modular, componentes independientes, fácil mantenimiento y desarrollo.
- Simulador térmico. Simulación de lectura y aumento de temperatura. Control de la temperatura interna del sistema.
- Módulo de telemetría. Definición e implementación de paquetes periódicos y puntuales. Optimización de espacio, evitando pérdida de precisión. Adaptado para sistemas empotrados.

Trabajo futuro

Primer año de la Cátedra UC3M - SENER, trabajo a realizar en siguientes iteraciones:

- Integración con Simulink. Simulación con modelos reales (model-in-the-loop).
- Gestión de memoria. Nuevos paquetes, corrección de errores, nueva funcionalidad (payloads).
- Documentación. Generar documentación del código con Doxygen.
- Sensores/actuadores. Nuevos componentes que complementen la misión.

Diseño e implementación de módulos funcionales (Sensores y Telemetría) de OBSW para el desarrollo de nanosatélites

Jaime García González

4 de julio de 2019

Universidad Carlos III de Madrid