

Hohlwelle mit Innenkanälen, insbesondere Ölkanälen

Patent number: DE19934405
Publication date: 2001-02-08
Inventor: BENDER JENS (DE); HENTRICH CORNELIUS (DE); KOELL JAN (DE); MAYER THEODOR (DE); PAASCH RUDOLF (DE); REINHARDT RUDOLF (DE); ZECHMANN HANS (DE)
Applicant: DAIMLER CHRYSLER AG (DE)
Classification:
 - **international:** F16C3/02; F01L1/047
 - **european:** F01L1/047; F01L1/46; F16C3/02
Application number: DE19991034405 19990722
Priority number(s): DE19991034405 19990722

Also published as:

WO0107762 (A1)

[Report a data error here](#)

Abstract of DE19934405

The invention relates to a hollow shaft having several separate axially overlapping inner channels, especially media channels for lubricating and pressurized oil, extending in the interior of the hollow shaft and connected in defined areas to the outer wall of the hollow shaft by means of inlet and/or outlet channels. To this end, a molded body is disposed in the interior of the hollow shaft which is firmly connected to the hollow shaft. Said hollow shaft and molded body are embodied in such a way that channel-like cavities extending in an overlapping area in axial direction of the hollow body and covering said overlapping area are formed between the outer wall of the molded body and the inner wall of the hollow shaft. The molded body also has connecting surfaces in the overlapping area which extend in axial direction of the hollow shaft and in which the molded body is firmly and tightly connected to the inner wall of the hollow shaft. Different tubular cavities are thus separated from one another in the overlapping area by the connecting surfaces on the molded body in such a way that several separate media channels exist in the overlapping area in the hollow shaft.

Data supplied from the esp@cenet database - Worldwide

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) **Offenlegungsschrift**
(10) DE 199 34 405 A 1

(51) Int. Cl.⁷:
F 16 C 3/02
F 01 L 1/047

DE 199 34 405 A 1

(21) Aktenzeichen: 199 34 405.1
(22) Anmeldetag: 22. 7. 1999
(23) Offenlegungstag: 8. 2. 2001

(71) Anmelder:
DaimlerChrysler AG, 70567 Stuttgart, DE

(72) Erfinder:
Bender, Jens, Dipl.-Ing., 70376 Stuttgart, DE;
Hentrich, Cornelius, Dipl.-Ing., 71336 Waiblingen,
DE; Köll, Jan, Dipl.-Ing., 73733 Esslingen, DE;
Mayer, Theodor, Dipl.-Ing., 73061 Ebersbach, DE;
Paasch, Rudolf, 70794 Filderstadt, DE; Reinhardt,
Rudolf, Dipl.-Ing., 73732 Esslingen, DE; Zechmann,
Hans, Dipl.-Ing., 71394 Kernen, DE

(56) Entgegenhaltungen:
DE 44 28 875 A1
DE 42 21 708 A1
DE 41 18 929 A1
DE 94 10 220 U1
US 46 44 912

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Hohlwelle mit Innenkanälen, insbesondere Ölkanälen

(55) Die Erfindung betrifft eine Hohlwelle mit mehreren getrennten, axial überlappenden Innenkanälen, insbesondere Medienkanälen für Schmier- und Drucköl, die im Inneren der Hohlwelle verlaufen und an definierten Stellen über Einlaß- und/oder Auslaßkanäle mit der Außenwand der Hohlwelle verbunden sind. Hierzu ist im Innenraum der Hohlwelle ein Formkörper angeordnet, der fest mit der Hohlwelle verbunden ist. Die Hohlwelle und der Formkörper sind so gestaltet, daß zwischen der Außenwand des Formkörpers und der Innenwand der Hohlwelle kanalartige Hohlräume ausgespart sind, die in einem Überlappungsbereich in Axialrichtung der Hohlwelle verlaufen und diesen Überlappungsbereich überspannen. Weiterhin weist der Formkörper im Überlappungsbereich Verbindungsflächen auf, die in Axialrichtung der Hohlwelle verlaufen und im Bereich derer der Formkörper fest und dicht mit der Innenwand der Hohlwelle verbunden ist. Unterschiedliche röhrenförmige Hohlräume sind somit im Überlappungsbereich durch die Verbindungsflächen auf dem Formkörper voneinander getrennt, so daß im Überlappungsbereich mehrere separate Medienkanäle in der Hohlwelle vorliegen.

DE 199 34 405 A 1

Beschreibung

Die Erfindung betrifft eine Hohlwelle mit Innenkanälen, insbesondere Ölkanälen, sowie ein Verfahren zur Herstellung einer solchen Hohlwelle.

Im Fahrzeug- und Maschinenbau werden in zahlreichen Anwendungsgebieten Hohlwellen eingesetzt. Gegenüber Vollwellen bieten diese Hohlwellen den Vorteil einer erheblichen Gewichtseinsparung. In dieser Hohlwelle kann ein interner Ölkanal vorgesehen sein, der z. B. zur Schmierung der Lager der Hohlwelle in einem Getriebe dient. Zur Gewichtsminimierung der Hohlwelle ist es dabei günstig, nicht den gesamten Innenraum der Hohlwelle mit Öl zu befüllen, sondern im Innenraum der Welle einen hohlen Formkörper so zu fixieren, daß nur eine geringe Querschnittsfläche des Hohlwellen-Innenraums von Öl durchflossen wird, die restliche Querschnittsfläche aber vom Hohlprofil des Formkörpers überdeckt wird. Eine solche gewichtsoptimierte ölführende Hohlwelle ist z. B. aus der US 4 644 912 bekannt, die eine hohle Nockenwelle beschreibt, in deren Innenraum über Abstandshalter ein beidseitig geschlossenes, hohles Innenrohr fixiert ist. Das Ringvolumen zwischen Innenwand der Hohlwelle und Außenwand des Innenrohrs wird zur Schmierölführung genutzt und ist über Einlaß- und Auslaßkanäle mit der Außenwand der Hohlwelle verbunden.

Im Getriebebau, insbesondere in Automatikgetrieben von Fahrzeugen, werden vielfach Wellen eingesetzt, die mit mehreren in Axialrichtung überlappenden, aber getrennten Medienkanälen versehen sind, um einen simultanen Transport von Schmieröl, Drucköl, Kühlmedium, Druckluft etc. entlang der Welle zu gewährleisten. Jeder dieser Medienkanäle verläuft im Inneren der Welle und weist an ausgewählten Stellen Einlaß- und Auslaßkanäle zur Außenwandung der Welle auf, durch die das im Medienkanal geführte Schmieröl, Drucköl etc. in den Medienkanal eingeführt bzw. an Lager, Druckvolumina etc. abgegeben werden kann. Die Realisierung einer Hohlwelle mit mehreren axial überlappenden Medienkanälen ist mit der aus der US 4 644 912 beschriebenen Konstruktion nicht möglich, da die aus der US 4 644 912 bekannte Welle eine einzige, als Ringkanal ausgebildete Ölführung enthält, die das Innere der Nockenwelle über ihre gesamte Länge überdeckt.

Zur Führung mehrerer interner, voneinander getrennter Medienkanäle in einer Welle werden derzeit Vollwellen mit geeigneten radial und/oder meridial gegeneinander versetzten gebohrten Kanälen versehen, die – je nach Komplexität der Geometrie des zugehörigen Getriebeteils – eine große Länge überspannen, aus mehreren Einzelbohrungen zusammengesetzt sind und evtl. nach dem Bohren lokal verschlossen werden müssen. Das Einbringen und selektive Verschließen solcher Kanäle ist sehr aufwendig und kostenintensiv. Weiterhin sind die gebohrten Medienkanäle im Regelfall unsymmetrisch über die Querschnittsfläche der Vollwelle verteilt und führen daher zu Unwuchten, welche – insbesondere bei schnell rotierenden Getriebewellen – unerwünschte Schwingungen zur Folge haben können. Schließlich wirkt sich das für die Realisierung solcher axial überlappender Medienkanäle erforderliche Vollprofil der Welle nachteilig auf eine Gewichtsoptimierung des Getriebes aus. Es besteht also ein großer Bedarf an einer Welle, die einerseits die Führung mehrerer getrennter Medienkanäle in ihrem Inneren ermöglicht, und andererseits ein wesentlich geringeres Gewicht als eine Vollwelle hat.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Hohlwelle mit mehreren getrennten Medienkanälen bereitzustellen, welche im Inneren der Hohlwelle verlaufen und an definierten Stellen über Einlaß- und/oder Auslaßöffnungen mit der Außenwand der Hohlwelle verbunden sind.

Weiterhin liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung einer solchen Hohlwelle vorzuschlagen.

Die Aufgabe wird erfindungsgemäß durch die Merkmale 5 der Ansprüche 1 und 9 gelöst.

Danach ist im Innenraum der Hohlwelle ein Formkörper angeordnet, der fest mit der Hohlwelle verbunden ist. Der Formkörper und die Hohlwelle sind so gestaltet, daß zwischen Außenwand des Formkörpers und Innenwand der 10 Hohlwelle röhrenförmige Hohlräume ausgespart sind, die in einem Überlappungsbereich in Axialrichtung der Hohlwelle verlaufen und diesen Überlappungsbereich überspannen. Weiterhin weist der Formkörper im Überlappungsbereich Verbindungsabschnitte auf, die in Axialrichtung der Hohlwelle verlaufen und im Bereich derer die Außenwand des Formkörpers fest und dicht mit der Innenwand der Hohlwelle verbunden ist. Unterschiedliche röhrenförmige Hohlräume sind somit im Überlappungsbereich durch die Verbindungsabschnitte auf dem Formkörper voneinander getrennt, 15 so daß im Überlappungsbereich mehrere separate Medienkanäle in der Hohlwelle vorliegen. Durch geeignete Gestaltung des Formkörpers und/oder der Innenkontur der Hohlwelle in den an den Überlappungsbereich anschließenden Bereichen können diese Medienkanäle über den Überlappungsbereich hinweg im Inneren der Hohlwelle fortgeführt oder verschlossen werden. Weiterhin können durch gezielte Bohrungen durch die Wandung der Hohlwelle Einlaß- und Auslaßkanäle geschaffen werden, die die röhrenförmige Hohlräume selektiv mit der Außenwand der Hohlwelle verbinden.

Die erfindungsgemäße Hohlwelle mit fest eingesetztem Formteil hat den Vorteil, daß durch eine geeignete Gestaltung des Formteils und/oder der Innenwand der Hohlwelle mehrere getrennte Medienleitungen im Inneren der Hohlwelle entstehen. Diese können zur Führung unterschiedlicher Medien (Schmieröl, Drucköl, Druckluft, Kühlmittel etc.) genutzt werden, und können durch Bohrungen so mit der Außenwand der Hohlwelle verbunden werden, daß die Versorgung einer bestimmten Stelle entlang der Welle mit dem dort benötigten Medium sichergestellt ist (siehe Anspruch 8). Die Herstellung dieser Hohlwelle mit internen Medienkanälen ist – gegenüber einer konventionellen Vollwelle mit gebohrten Medienkanälen – sehr einfach, da hierzu lediglich das vorgeformte Formteil ins Innere der Hohlwelle eingebracht und mit dieser verbunden werden muß. Durch die Wahl eines Formteils aus einem leichten Werkstoff kann eine erhebliche Gewichtseinsparung gegenüber einer gebohrten Vollwelle erzielt werden. Besonders günstig ist die Verwendung eines hohlen Formteils (siehe 30 Anspruch 5).

Zur Erzeugung einer dichten Verbindung zwischen Innenwand der Hohlwelle und Formkörper im Bereich der Verbindungsabschnitte wird der Formkörper vorzugsweise in die Hohlwelle eingelötet (siehe Anspruch 3). Dazu wird die 35 Außenwand des Formkörpers mit einem Lötwerkstoff beschichtet, bevor der Formkörper in das Innere der Hohlwelle eingesetzt wird. Hohlwelle und Formkörper werden dann in zusammengesetztem Zustand erwärmt, und somit der Formkörper im Bereich der Verbindungsabschnitte mit der Innenwand der Hohlwelle verlötet. Um eine hohe Dichtigkeit der Medienkanäle auch bei erhöhten Betriebstemperaturen der Hohlwelle sicherzustellen, empfiehlt sich ein Hartlöten der beiden Werkstücke mit Kupfer als Lötwerkstoff (siehe Ansprüche 4 und 10). Zur Gewährleistung einer guten Dichtigkeit der Medienkanäle auch bei hohen Druckunterschieden zwischen Medien in benachbarten Kanälen ist es vorteilhaft, die Verbindungsabschnitte auf der Außenwand des Formkörpers näherungsweise formnegativ zur gegenüberliegen-

den Innenwand der Hohlwelle zu gestalten (siehe Anspruch 2). Dadurch entstehen beim Einlöten des Formkörpers im Überlappungsbereich großflächige Verbindungsbereiche, die eine hohe Festigkeit der Medienkanäle auch unter großen Belastungen gewährleisten.

Die erfindungsgemäße Hohlwelle mit eingesetztem Formteil ermöglicht eine Vielzahl verschiedener Geometrien der Medienkanäle. In einer besonders kostengünstigen Variante ist die Innenwand der Hohlweile als zylindrischer Hohlraum ausgestaltet, während als Formkörper ein beidseitig durch Stöpsel verschlossenes, verkupfertes Vierkantröhre verwendet wird, dessen Kantenbreite so gewählt ist, daß die Außenkanten des Formkörpers einen geringen Freiraum mit der Innenwand der Hohlwelle einschließen (siehe Anspruch 6). Beim Verlöten des Formkörpers mit der Hohlwelle werden entlang der Außenkanten des Formkörpers dichte Verbindungen zur Innenwand der Hohlwelle erzeugt, so daß im Überlappungsbereich zwischen den Außenflächen des Formkörpers und der Innenwand der Hohlwelle vier getrennte Medienkanäle entstehen. Durch eine geeignete Gestaltung der endseitig das Vierkantröhre begrenzenden Stöpsel können einige dieser Medienkanäle mit den außerhalb des Überlappungsbereiches gelegenen Innenräumen der Hohlwelle verbunden werden, während andere geschlossene Volumen bilden. Nach dem Einlöten des Formkörpers in die Hohlwelle kann die Wandung der Hohlwelle an konstruktiv vorgesehenen Stellen durchbohrt werden, wodurch Einlaß- und Auslaßöffnungen zwischen den Medienkanälen und der Außenwand der Hohlwelle erzeugt werden.

Alternativ können die Medienkanäle im Überlappungsbereich durch Innennuten in der Innenwand der Hohlwelle ausgestaltet werden (siehe Ansprüche 7 und 11). In diesem Fall kann ein Formkörper verwendet werden, der im Überlappungsbereich Rotationssymmetrie hat. Die Lage der Medienkanäle ist durch die Lage der Innennuten auf der Hohlwelle bestimmt, weswegen die Einlaß- und Auslaßöffnungen der Medienkanäle, die die Wandung der Hohlwelle durchdringen, bereits vor dem Einlöten des Formkörpers gebohrt werden können. Dadurch entfällt eine spanende Bearbeitung der zusammengesetzten Hohlwelle; die Gefahr einer Verschmutzung der Medienleitungen durch Bearbeitungsabfälle wird daher weitestgehend reduziert. Zur Herstellung der Innennuten können verschiedene Verfahren wie z. B. Fließpressen, Kaltwalzen, Rundschmieden etc. verwendet werden. Vorzugsweise werden die Innennuten durch Rundkneten der Hohlwelle erzeugt (siehe Anspruch 12); dieses Verfahren gestattet eine hohe Variabilität in der geometrischen Ausgestaltung der Medienkanäle, so daß auch die Ausformung asymmetrischer Profile der Medienkanäle möglich sind. Insbesondere können mit Hilfe dieses Verfahrens Medienkanäle erzeugt werden, die unter strömungstechnischen Gesichtspunkten gestaltet und optimiert sind.

Im folgenden wird die Erfindung anhand einiger in den Zeichnungen dargestellter Ausführungsbeispiele näher erläutert; dabei zeigen:

Fig. 1 ein Verbundwerkstück aus einer Hohlwelle mit eingelötetem Vierkantröhre;

Fig. 1a eine seitliche Schnitt-Ansicht durch das Verbundwerkstück;

Fig. 1b eine axiale Ansicht des in **Fig. 1a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie Ib-Ib;

Fig. 1c eine axiale Ansicht des in **Fig. 1a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie Ic-Ic;

Fig. 1d eine Detaildarstellung des in **Fig. 1c** gekennzeichneten Bereiches;

Fig. 2 ein Verbundwerkstück aus einer Hohlwelle mit ein-

gelötetem Vierkantröhre und gegenläufigen Medienkanälen:

Fig. 2a eine seitliche Schnitt-Ansicht durch das Verbundwerkstück;

Fig. 2b eine seitliche Schnitt-Ansicht durch das in **Fig. 2c** dargestellte Verbundwerkstück gemäß einem Schnitt entlang der Linie IIb-IIb;

Fig. 2c eine axiale Ansicht des in **Fig. 2a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie IIc-IIc;

Fig. 3 Axialansichten von Verbundwerkstücken aus einer Hohlwelle mit

Fig. 3a eingelötetem bombiertem Vierkantröhre;

Fig. 3b eingelötetem profiliertem Vierkantröhre;

Fig. 4 ein Verbundwerkstück aus einer Hohlwelle mit Innennuten und eingelötetem Formkörper:

Fig. 4a eine seitliche Schnitt-Ansicht durch das Verbundwerkstück;

Fig. 4b eine axiale Ansicht des in **Fig. 4a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie IVb-IVb;

Fig. 4c eine axiale Ansicht des in **Fig. 4a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie IVc-IVc;

Fig. 5 ein Verbundwerkstück aus einer Hohlwelle mit Innennuten und eingelötetem Formkörper:

Fig. 5a eine seitliche Schnitt-Ansicht durch das Verbundwerkstück;

Fig. 5b eine axiale Ansicht des in **Fig. 5a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie Vb-Vb;

Fig. 5c eine axiale Ansicht des in **Fig. 5a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie Vc-Vc;

Fig. 5d eine seitliche Schnitt-Ansicht durch das in **Fig. 5b**

dargestellte Verbundwerkstück gemäß einem Schnitt entlang der Linie Vd-Vd;

Fig. 6 ein Verbundwerkstück aus einer Hohlwelle mit Innennuten und eingelötetem Formkörper, mit gegenläufigen Medienkanälen:

Fig. 6a eine seitliche Schnitt-Ansicht durch das Verbundwerkstück;

Fig. 6b eine seitliche Schnitt-Ansicht durch das in **Fig. 6c** dargestellte Verbundwerkstück gemäß einem Schnitt entlang der Linie VIb-VIb;

Fig. 6c eine axiale Ansicht des in **Fig. 6a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie VIc-VIc;

Fig. 6d eine axiale Ansicht des in **Fig. 6a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie VIId-VIId;

Fig. 7 ein Verbundwerkstück aus einer Hohlwelle mit Innennuten und eingelötetem Formkörper mit in Axialrichtung verändertem Durchmesser;

Fig. 8 ein Verbundwerkstück aus einer Hohlwelle mit Innennuten und eingelötetem Rohr, mit Innenwelle:

Fig. 8a eine seitliche Schnitt-Ansicht durch das Verbundwerkstück;

Fig. 8b eine axiale Ansicht des in **Fig. 8a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie VIIIb-VIIIb;

Fig. 8c eine axiale Ansicht des in **Fig. 6a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie VIIIc-VIIIc;

Fig. 9 ein Verbundwerkstück aus einer Hohlwelle mit Innennuten und zwei axial überlappend eingelöteten Formköpfen:

Fig. 9a eine seitliche Schnitt-Ansicht durch das Verbundwerkstück;

Fig. 9b eine axiale Ansicht des in **Fig. 9a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie **IXb-IXb**;

Fig. 9c eine axiale Ansicht des in **Fig. 9a** dargestellten Verbundwerkstücks gemäß einem Schnitt entlang der Linie **IXc-IXc**.

Fig. 1a-1c zeigen ein Verbundwerkstück **1**, das eine Hohlwelle **2** umfaßt, in deren Innenraum **3** sich ein Formkörper **4** befindet. Der Innenraum **3** der Hohlwelle **2** hat die Form eines Hohlzylinders **5**. Der Formkörper **4** besteht aus einem Vierkant-Rohrabschnitt **6**, dessen beide Enden **7** mit je einem zylindrischen Stöpsel **8** verschlossen sind. Die Kantenbreite **9** des Vierkant-Rohrabschnitts **6** und der Durchmesser **10** der Stöpsel **8** sind so gewählt, daß die Kanten **11** des Vierkant-Rohrabschnitts **6** – wie in **Fig. 1d** gezeigt – gegenüber der Innenwand **13** der Hohlwelle **2** einen kleinen Abstand **14** haben, der vorzugsweise zwischen 0.05 mm und 0.2 mm beträgt. Wie in **Fig. 1d** dargestellt, ist der Vierkant-Rohrabschnitt **6** mit einer Schicht **15** aus Lötmaterial versehen. Im vorliegenden Fall wurde eine Schicht **15** aus Kupfer gewählt, deren Dicke vorzugsweise zwischen 0.01 mm und 0.05 mm liegt. Analog sind auch die Stöpsel **8** mit Lötmaterial beschichtet, und die Außenwände **12** der Stöpsel **8** haben gegenüber der Innenwand **13** der Hohlwelle **2** einen kleinen Abstand **14**.

Der Formkörper **4** ist durch Löten mit der Innenwand **13** der Hohlwelle **2** verbunden. Als Folge dieses Lötprozesses sind zwischen den Kanten **11** des Vierkant-Rohrabschnitts **6** und den ihnen gegenüberliegenden Bereichen **16** der Innenwand **13** der Hohlwelle **2** Stege **17** aus Lötmaterial gebildet. Jeder Steg **17** überspannt auf dem Vierkant-Rohrabschnitt **6** einen Verbindungsabschnitt **18**, der die Kante **11** des Vierkant-Rohrabschnitts **6** fest und dichtend mit der Innenwand **13** der Hohlwelle **2** verbindet und sich in Axialrichtung über die gesamte Länge des Vierkant-Rohrabschnitts **6** erstreckt. Zwischen benachbarten Verbindungsabschnitten **18** sind röhrenförmige Hohlräume **19** zwischen Innenwand **13** der Hohlwelle **2** und der Außenwand **20** des Formkörpers **4** gebildet, die durch die Stege **17** dichtend voneinander getrennt sind. Diese getrennten röhrenförmigen Hohlräume **19** überspannen in Axialrichtung der Hohlwelle **2** einen Überlappungsbereich **21**, dessen Länge in diesem Ausführungsbeispiel der Länge des Vierkant-Rohrabschnitts **6** entspricht. Im Beispiel der **Fig. 1a-1c** sind die röhrenförmigen Hohlräume **19** vier flache Röhren **22**, die durch die Innenwand **13** der Hohlwelle **2** und die Außenseiten **23** des Vierkant-Rohrabschnitts **6** gebildet sind, so daß der Querschnitt der Röhren **22** einem Kreissegment entspricht. Durch den Lötprozeß sind die Außenwände **12** der Stöpsel **8** fest und dichtend mit der Innenwand der Hohlwelle **2** verbunden, so daß die flachen Röhren **22** endseitig durch die Stöpsel **8** fest und dichtend verschlossen sind.

Zur Herstellung des in **Fig. 1a-1c** dargestellten Verbundwerkstücks **1** werden zunächst der Vierkant-Rohrabschnitt **6** und die Stöpsel **8** verkupfert. Dann werden die Stöpsel **8** mit dem Vierkant-Rohrabschnitt **6** verpreßt. Ein straffer Sitz der Stöpsel **8** auf dem Vierkant-Rohrabschnitt **6** ist wichtig, damit die Stöpsel **8** in den folgenden Montage- und Erwärmungsschritten fest mit dem Vierkant-Rohrabschnitt **6** verbunden bleiben. Der Vierkant-Rohrabschnitt **6** wird nun in definierter Lage (d. h. im Überlappungsbereich **21**) in den Innenraum **3** der Hohlwelle **2** eingelötet, indem Hohlwelle **2**, Vierkant-Rohrabschnitt **6** und die Stöpsel **8** in Einbaulage gemeinsam in einem Lötofen erhitzen werden. Dabei entstehen im Überlappungsbereich **21** die oben beschriebenen Stege **17** aus Lötmaterial und – durch die Stege **17** dichtend getrennt – vier flache Röhren **22**. Weiterhin entstehen jenseits der beiden Enden **7** des eingelöteten Formkörpers **4** im

Innenraum **3** der Hohlwelle **2** Nachbar-Innenbereiche **24** und **25**, die in diesem Ausführungsbeispiel dichtend von den röhrenförmigen Hohlräumen **19** getrennt sind.

Statt oder zusätzlich zum Formkörper **4** kann auch die

- 5 Hohlwelle **2** mit Lötmaterial beschichtet werden. Dies kann jedoch weitere Bearbeitungsschritte nach sich ziehen, da die Außenwand **26** der Hohlwelle **2** für viele Anwendungen frei von Lötmaterial sein muß. Daher ist es zweckmäßig, nur den Formkörper **4** einer Beschichtung zu unterziehen. Werden
- 10 als Formkörper **4** und Hohlwelle **2** Stahl-Werkstücke verwendet, so wird als Lötmaterial vorzugsweise Kupfer verwendet, wobei der Lötprozeß selbst mittels Hartlöten erfolgt. Im allgemeinen kann statt des Kupfers auch ein beliebiges anderes, dem jeweiligen Anwendungsfall angepaßtes
- 15 Lötmaterial verwendet werden. Alternativ kann der Formkörper **4** auch durch ein anderes dichtendes Fügeverfahren, z. B. durch Kleben, im Innenraum **3** der Hohlwelle **2** befestigt werden.

Soll das Verbundwerkstück **1** im Fahrzeugbau zum Einsatz kommen, so bestehen Vierkant-Rohrabschnitt **6** und die Stöpsel **8** zweckmäßigerweise aus Stahl und erfahren dann bei erhöhten Temperaturen eine ähnliche Wärmeausdehnung wie die z. B. aus Einsatzstahl gefertigte Hohlwelle **2**. Somit erleiden die Stege **17** zwischen Formkörper **4** und

- 20 Hohlwelle **2** auch bei starken Temperaturschwankungen des Verbundwerkstücks **1** geringe plastische Verformungen und gewährleisten die Dichtheit der getrennten röhrenförmigen Hohlräume **19**. Ganz allgemein können für Formkörper **2** und Hohlwelle **4** beliebige (mit dem gewählten Fügeverfahren fügbare) Werkstoffe so gewählt werden, daß sie der jeweiligen Verwendung des Verbundwerkstücks **1** am besten angepaßt sind.

Die röhrenförmigen Hohlräume **19** stellen Ausschnitte von Medienkanälen **27** dar, die zum Transport verschiedener

- 35 Medien, z. B. Schmieröl, Drucköl, Druckluft, etc. durch den Innenraum **3** der Hohlwelle **2** verwendet werden. Jedes benötigte Medium wird an einer definierten Axialposition entlang der Hohlwelle **2** in einen der röhrenförmigen Hohlräume **19** eingeführt und an einer anderen definierten Axialpositionen abgegeben. Hierfür sind Einlaßöffnungen **28** und Auslaßöffnungen **29** vorgesehen, die die röhrenförmigen Hohlräume **19** mit der Außenwand **26** der Hohlwelle **2** bzw. mit den Nachbar-Innenbereichen **24**, **25** verbinden. Im vorliegenden Beispiel dienen die Medienkanäle **30**, **31** einer gezielten Aufnahme bzw. Abgabe von Schmieröl an die Außenwand **26** der Hohlwelle **2**. Hierzu wird die Wand **34** der Hohlwelle **2** an ausgewählten Stellen mit Einlaß- bzw. Auslaßbohrungen **32**, **32'**, **33**, **33'** versehen. Diese Bohrungen können vor oder nach dem Verlöten des Verbundwerkstücks
- 40 50 1 hergestellt werden. Im vorliegenden Beispiel entstehen zwei Paare separater Medienkanäle **30**, **30'** bzw. **31**, **31'** wobei die Ein- und Auslaßöffnungen **32**, **33** des einen Paares **30**, **30'** axial und radial gegenüber den Ein- und Auslaßöffnungen **32**, **33'** des anderen Paares **31**, **31'** versetzt sind.

- 55 Ein zusätzlicher Medienkanal **35** entsteht, wenn – wie in **Fig. 1a** gestrichelt angedeutet – die Stöpsel **8** mit Bohrungen **32'', 33''** versehen werden, durch die der Innenraum **36** des Formkörpers **4** mit den außerhalb des Überlappungsbereiches **21** gelegenen Nachbar-Innenbereichen **24**, **25** der Hohlwelle **2** verbunden wird. Die in **Fig. 1a** nicht dargestellte Einlaß- und Auslaßöffnung dieses Medienkanals **35** liegt somit in diesem Fall außerhalb des Überlappungsbereiches **21**.

- 60 65 In dem in **Fig. 2a-2c** gezeigten Ausführungsbeispiel weisen die Stöpsel **8'**, mit denen der Vierkant-Rohrabschnitt **6** endseitig verschlossen ist, Aussparungen **37** entlang ihres Außendurchmessers auf, so daß die flachen Röhren **22** entweder mit dem rechts des Überlappungsbereiches **21** ge-

genen Nachbar-Innenbereich 24 oder mit dem links gelegenen Nachbar-Innenbereich 25 verbunden ist. Über Auslaßöffnungen 29, 29' sind die Hohlräume 19 mit der Außenwand 26 der Hohlwelle 2 verbunden. Die dabei entstehenden Medienkanäle 27 sind zwei getrennte Leitungen 38 und 39 zur gegenläufigen Führung von Drucköl, wobei – wie in Fig. 2a und 2b durch Pfeile angedeutet – der Medienkanal 38 Drucköl aus dem rechts des Überlappungsbereiches gelegenen Nachbar-Innenbereich 24 zu den Auslaßöffnungen 29 führt, während der Medienkanal 39 Drucköl aus dem links gelegenen Nachbar-Innenbereich 25 zu den Auslaßöffnungen 29' führt.

Die in Fig. 1 und 2 gezeigten Ausführungsbeispiele mit Formkörpern 4, die Vierkant-Rohrabschnitte 6 aufweisen, haben den Vorteil, daß Vierkantrohr leicht zugänglich und daher sehr preiswert ist. Sind die Druckunterschiede in den röhrenförmigen Hohlräumen 19 gegenüber dem Innenraum 36 des Formkörpers 4 allerdings zu groß, so besteht die Gefahr einer konkaven Verformung des Vierkant-Rohrabschnitts 6, durch die auch die gelötzten Stege 17 entlang der Verbindungsabschnitte 18 geschwächt werden. Daher empfiehlt sich – insbesondere bei hohen Drücken – die Verwendung eines Rohrabschnitts aus bombiertem Vierkantrohr. Fig. 3a zeigt einen Querschnitt durch eine Hohlwelle 2, in die ein bombiertes Vierkantrohr 40 eingelötet ist. Die konvexe Krümmung des bombierten Rohres 40 bannt die Gefahr einer Verformung des Rohres 38 – auch bei hohen Drücken. Allerdings wird dabei – insbesondere bei einer starken Bombierung – die lichte Höhe der röhrenförmigen Hohlräume 19 stark reduziert, was ungünstige Einflüsse auf die strömungsmechanischen Eigenschaften des in den Hohlräumen 19 geführten Mediums haben kann.

Ein günstigeres Querschnittsprofil der röhrenförmigen Hohlräume 19 kann – wie in Fig. 3b gezeigt – durch die Verwendung eines Rohrabschnitts 41 erreicht werden, der in Umfangsrichtung abwechselnd konvex und konkav profiliert ist. Hierbei kann das Querschnittsprofil des Rohrabschnitts 41 so geformt werden, daß der Rohrabschnitt 41 im Bereich der Verbindungsabschnitte 18 formnegativ zur (zyllindersymmetrischen) Innenwand 13 der Hohlwelle 2 geformt ist. Dadurch entstehen Verbindungsabschnitte 18, die wesentlich breiter sind als die – mehr oder weniger – linienförmigen Verbindungsabschnitte 18 der in Fig. 1 und 2 gezeigten Vierkantprofile 6. Diese großen Verbindungsabschnitte 18 stellen somit eine zuverlässige Dichtheit der röhrenförmigen Hohlräume 19 auch bei hohen Drücken sicher und tragen bei dünnwandigen Hohlwellen 2 zusätzlich zur Biege- und Torsionssteifigkeit der Verbundwerkstücke 1 bei.

Die bisher beschriebenen Ausführungsbeispiele zeigen Verbundwerkstücke 1, bei denen der Innenraum 3 der Hohlwellen 2 im Überlappungsbereich 21 Zylindersymmetrie aufweist. Die Größe und Geometrie der röhrenförmigen Hohlräume 19 wird dabei bestimmt durch das Querschnittsprofil des verwendeten Rohres. Alternativ können, wie in Fig. 4a–4c dargestellt, die röhrenförmigen Hohlräume 19 durch Innennuten 42 auf der Innenwand 13 der Hohlwelle 2 gebildet werden, während der Formkörper 4 rotationssymmetrisch gestaltet ist und im Überlappungsbereich 21 einen Außendurchmesser 43 aufweist, der geringfügig kleiner ist als der Minimaldurchmesser 44 der Hohlwelle 2 im Überlappungsbereich 21. Aus Gründen der Gewichtersparnis ist der Formkörper 4 dabei zweckmäßigerverweise als dünnwandiger Hohlkörper 45, z. B. aus Stahlblech, ausgebildet. Die Differenz zwischen Außendurchmesser 43 des Hohlkörpers 45 und Innendurchmesser 44 der Hohlwelle 2 im Überlappungsbereich 21 entspricht dem in Fig. 1d gezeigten Abstand 14 zwischen den Kanten 11 des Vierkant-Rohrabschnitts 6 und der Innenwand 13 der Hohlwelle 2 und ist so

dimensioniert, daß der Formkörper 4 einerseits in den Innenraum 3 der Hohlwelle 2 einführbar ist, andererseits aber auch entlang der Verbindungsabschnitte 18 mit der Innenwand 13 der Hohlwelle 2 verlötbare ist. Der Überlappungsbereich 21, über dessen Länge hinweg durch das Verlöten von Hohlkörper 45 und Hohlwelle 2 getrennte röhrenförmige Hohlräume 19 entstehen, erstreckt sich in diesem Fall zwischen einem Verschlußbereich 46, in dem der Hohlkörper 45 radial umlaufend dicht mit der Innenwand 3 der Hohlwelle 2 verlötet ist, und einem Öffnungsbereich 47, in dem keine Lötarbeitung zwischen Hohlkörper 45 und Innenwand 3 der Hohlwelle 2 vorliegt. Über dem rechts des Verbindungsreiches 21 gelegenen Nachbar-Innenbereich 24 wird – wie durch die Pfeile angedeutet – Schmieröl zugeführt, das die röhrenförmigen Hohlräume 19 durchfließt und durch die Auslaßöffnungen 29 an die Außenwand 26 der Hohlwelle 2 abgegeben wird. Der hierbei entstehende Medienkanal 27 besteht somit aus vier parallel verlaufenden Armen 48, die Schmieröl aus dem Nachbar-Innenbereich 24 zu den Auslaßöffnungen 29 fördern. Durch die dichte Verbindung zwischen Hohlkörper 45 und Innenwand 13 der Hohlwelle 2 im Verschlußbereich 46 bleibt dabei der links des Verbindungsreiches 21 gelegene Nachbar-Innenbereich 25 sowie auch das vom Hohlkörper 45 eingenommene Volumen leer, was zu Gewichtseinsparungen gegenüber einer Hohlwelle 2 führt, deren gesamter Innenraum 3 mit Schmieröl gefüllt ist.

Die Herstellung der Hohlwelle 2 mit Innennuten 42 erfolgt vorzugsweise durch Rundnetzen. Die Innennuten 42 werden hierbei durch Leisten und Dorne erzeugt, die während des Rundnetzens in den Innenraum 3 der Hohlwelle 2 eingebracht werden. Mit Hilfe dieses Verfahrens können die Querschnitte der Innennuten 42 in axialer Richtung variabel gestaltet werden, so daß beim Einlöten des Formteils 4 röhrenförmige Hohlräume 19 entstehen, deren Querschnitt und Verlauf unter strömungstechnischen Gründen optimiert werden kann. So können z. B., wie in Fig. 4a gepunktet gezeichnet, die röhrenförmigen Hohlräume 19 im Überlappungsbereich 21 eine in Axialrichtung variierte Höhe haben, die dazu dienen kann, die Durchflußmenge des am Nachbar-Innenbereich 24 zugeführten Schmieröls bewußt zu drosseln. – Alternativ können auch andere Verfahren, z. B. Fließpressen, Kaltwalzen oder Rundschmieden, zur Herstellung der Innennuten 42 verwendet werden.

Während das in Fig. 4a–4c dargestellte Verbundwerkstück 1 einen Medienkanal 27 aufweist, der aus vier parallel verlaufenden Armen 48 besteht, über die Schmierstoff an die vier in einer Ebene liegenden Auslaßöffnungen 29 transportiert wird, ist in Fig. 5a–5d ein Ausführungsbeispiel mit zwei getrennten Medienkanälen 27 und dementsprechend versetzten Einlaßöffnungen 52 und Auslaßöffnungen 53 dargestellt. Einer der Medienkanäle 27 ist als Druckkanal 49 ausgestaltet, über den – wie durch die Pfeile in Fig. 5a angegeben – ein Druckmedium aus einem jenseits des Nachbar-Innenbereichs 24 gelegenen (in den Figuren nicht dargestellten) Reservoir zu den Auslaßöffnungen 51 geführt wird. Der andere Medienkanal 27 ist als zwei Schmierkanäle 50 ausgebildet, durch die ein Schmiermittel zwischen den Einlaßöffnungen 52 und den Auslaßöffnungen 53 in der Wand 34 der Hohlwelle 2 geführt wird. Der Medienkanal 49 umfaßt hierbei zwei parallel verlaufende röhrenförmige Hohlräume 19, während die Medienkanäle 50 je einen röhrenförmigen Hohlräum 19 umfassen. Der links des Überlappungsbereichs 21 liegende Nachbar-Innenbereich 25 wird von keinem Medium durchflossen. Der Außendurchmesser der Hohlwelle 2 kann im Überlappungsbereich 21 den Anschlußteilen entsprechend gestaltet werden: So ist im Ausführungsbeispiel der Fig. 5a–5d der Außendurchmesser der

Hohlwelle im Überlappungsbereich 21, der hier als Lager ausgebildet ist, größer als in den Nachbarbereichen.

Fig. 6a-6d zeigen ein weiteres Ausführungsbeispiel, in dem die Hohlwelle 2 Innennuten 42 aufweist, aus denen durch das Einlöten des Formkörpers 4 Medienkanäle 27 mit Auslaßöffnungen 29 gebildet werden. In diesem Beispiel sind dies zwei getrennte, gegenläufige Medienkanäle 54, 55, die axial überlappend Drucköl aus den Nachbar-Innenbereichen 24 bzw. 25 zu den Auslaßöffnungen 56 bzw. 57 leiten. Durch die axiale Variation der Querschnittsprofile der Medienkanäle 54, 55 im Überlappungsbereich 21 wird eine gezielte Druckausübung an den Auslaßöffnungen 56 bzw. 57 sichergestellt.

Wie Fig. 7 zeigt, braucht der Außendurchmesser des Formkörpers 4 nicht über seine gesamte Länge konstant zu sein. Der hier dargestellte Hohlkörper 58 weist eine Stufung des Außendurchmessers auf, durch die – in Verbindung mit einer geeigneten geometrischen Gestaltung der Innennuten 42 – Medienkanäle 27 geschaffen werden, die im Öffnungsbereich zwischen dem Nachbar-Innenbereich 24 und Überlappungsbereich 21 einen annähernd gleichen Querschnitt wie im Überlappungsbereich 21 haben. Im Vergleich zum vorhergehenden Ausführungsbeispiel, in dem die Medienkanäle 54, 55 in Axialrichtung – wie aus Fig. 6c und 6d ersichtlich – stark variierende Querschnitte haben, kann mit der in Fig. 7 gezeigten Wahl eines axial variierten Hohlkörpers 58 somit ein näherungsweise konstantes Geschwindigkeits- und Druckprofil des Mediums in den Medienkanälen 27 erreicht werden.

Fig. 8a-8c zeigen ein Ausführungsbeispiel, bei dem im Inneren der Hohlwelle 2 eine weitere, gegenüber der Hohlwelle 2 rotierende Welle 59 geführt wird. Um in einem Überlappungsbereich 21 die Führung von Medien im Innenraum 3 der Hohlwelle 2 zu ermöglichen, ist im Überlappungsbereich 21 ein Formkörper 4 in Form eines Rohrabschnitts 60 in den Innenraum 3 der Hohlwelle 2 eingelötet. Weiterhin weist die Hohlwelle 2 im Überlappungsbereich 21 zwei Innennuten 42 und eine gegenüber den Nachbarbereichen 24, 25 größere Wandstärke auf. Der Innenradius des Rohrabschnitts 60 ist so groß gewählt, daß die rotierende Welle 59 keine Berührung mit dem Rohrabschnitt 60 hat.

Fig. 9a-9c schließlich zeigt ein Ausführungsbeispiel, in dem zwei Formkörper 4 und 4', die beide als Rohrabschnitte 60, 60' ausgebildet sind, in die Hohlwelle 2 eingelötet sind, wobei mehrere Medienkanäle 27 entstehen: Der Medienkanal 61 verbindet den Nachbar-Innenbereich 24 mit den Auslaßöffnungen 62. Weitere Medienkanäle 63, die axial mit dem Medienkanal 61 überlappen, sind über die Ein- und Auslaßöffnungen 64, 65 mit der Außenwand 26 der Hohlwelle 2 verbunden. Zur Herstellung dieses Verbundwerkstücks 1 wird als Rohling für die Hohlwelle 2 ein Rohr verwendet, dessen Innen- und Außendurchmesser mindestens dem Innen- und Außendurchmesser der fertigen Hohlwelle 2 im Überlappungsbereich 21 entspricht. Der Durchmesser dieses Rohlings wird in einem Nachbarbereich 66 zum Überlappungsbereich 21 durch Rundkneten auf den endgültigen Durchmesser reduziert; weiter wird der Rohling im Überlappungsbereich 21 auf den Durchmesser gebracht, der dem Außendurchmesser des Formkörpers 4 entspricht, und im Überlappungsbereich 21 mit den Innennuten 42 versehen. Dann wird der Rohrabschnitt 60 im Überlappungsbereich 21 in den Wellenrohling eingeführt und positioniert. Anschließend wird der Innendurchmesser des Rohlings in einem zweiten Überlappungsbereich 21' auf den gewünschten Durchmesser verringert und mit den Innennuten 42' versehen. Dabei wird der Rohrabschnitt 60, wie in Fig. 9a gezeigt, im Übergangsbereich zwischen den Überlappungsbereichen 21 und 21' eventuell etwas verformt. Wichtig ist,

dass zwischen der Innenwand 13 der Hohlwelle 2 und beiden Enden des Rohrabschnitts 60 Verschlußbereiche 46, 46' vorhanden ist, an denen der Rohrabschnitt 60 radial umlaufend dicht in die Hohlwelle 2 eingelötet werden kann; nur so kann nämlich die Dictheit des Medienkanals 61 gegenüber den Medienkanälen 63 sichergestellt werden. Ist die Hohlwelle 2 mitsamt den Innennuten 42' im Überlappungsbereich 21' fertiggestellt, so wird der Rohrabschnitt 60' in das Innere der Hohlwelle 2 montiert, und Hohlwelle 2 und die beiden Rohrabschnitte 60, 60' werden in den Überlappungsbereichen 21, 21' durch Löten fest und dicht verbunden.

Die Profile der in den Ausführungsbeispielen gezeigten, aus Hohlwelle 2 und Formkörper 4 zusammengesetzten Verbundwerkstücken 1 zeichnen sich durch eine symmetrische Gestaltung und Massenverteilung aus: Die Rotationsachse der Hohlwelle 2 stellt in allen Ausführungsbeispielen eine zwei- oder vierzählige Symmetriearchse des Verbundwerkstücks 1 dar. Das Verbundwerkstück 1 ist somit bezüglich der Rotationsachse (näherungsweise) symmetrisch; dadurch werden Schwingungen und Verschleiß des Verbundwerkstücks minimiert – was insbesondere für den Einsatz als schnell rotierende Getriebewelle einen wichtigen Gesichtspunkt darstellt. Diese Überlegungen gelten selbstverständlich auch für drei- und höherzählige Symmetriearchsen.

Weiterhin sind auch Mischformen der oben beschriebenen Beispiele möglich, in denen sowohl die Außenwand 20 des Formkörpers 4 als auch die Innenwand 13 der Hohlwelle 2 Nuten 42 aufweist. Schließlich stellt die in den Ausführungsbeispielen gezeigte Zylindersymmetrie des Innenraums 3 der Hohlwelle 2 bzw. des Formkörpers 4 im Überlappungsbereich 21 nur einen Spezialfall des erfindungsgemäßen Verbundwerkstücks 1 dar. Im Allgemeinen sind z. B. auch elliptische Profile des Innenraums der Hohlwelle 2 und/oder des Formkörpers 4 im Überlappungsbereich 21 sowie einander formnegativ entsprechende konische Aufweitungen des Formkörpers 4 und des Innenraums 3 der Hohlwelle 2 im Überlappungsbereich 21 möglich.

Patentansprüche

1. Hohlwelle mit Innenkanälen, insbesondere Ölkanälen,

- wobei im Innenraum der Hohlwelle ein Formkörper befestigt ist,
- und wobei die Außenwand des Formkörpers und die Innenwand der Hohlwelle einen Überlappungsbereich aufweisen, in welchem Überlappungsbereich röhrenförmige Hohlräume zwischen der Innenwand der Hohlwelle und der Außenwand des Formkörpers gebildet sind, wobei die Hohlräume in Axialrichtung der Welle den gesamten Überlappungsbereich überspannen,

dadurch gekennzeichnet,

- daß die Außenwand (20) des Formkörpers (4) im Überlappungsbereich (21) Verbindungsabschnitte (18) aufweist, welche den gesamten Überlappungsbereich (21) in Axialrichtung der Hohlwelle (2) überspannen,
- und daß die Außenwand (20) des Formkörpers (4) im Bereich dieser Verbindungsabschnitte (18) fest und dicht mit der Innenwand (13) der Hohlwelle (2) verbunden ist.

2. Hohlwelle nach Anspruch 1, dadurch gekennzeichnet, daß die Verbindungsabschnitte (19) auf der Außenwand (20) des Formkörpers (4) näherungsweise formnegativ zu den ihnen gegenüberliegenden Bereichen (16) der Innenwand (13) der Hohlwelle (2) ausgebildet sind.

3. Hohlwelle nach Anspruch 1, dadurch gekennzeichnet, daß die Außenwand (20) des Formkörpers (4) im Bereich der Verbindungsabschnitte (18) durch eine Lötverbindung mit der Innenwand (13) der Hohlwelle (2) verbunden ist.

4. Hohlwelle nach Anspruch 3, dadurch gekennzeichnet, daß die Außenwand (20) des Formkörpers (4) in den Verbindungsabschnitten (18) mit einer Beschichtung aus Kupfer versehen ist, wobei das Kupfer als Lot verwendet wird.

5. Hohlwelle nach Anspruch 1, dadurch gekennzeichnet, daß der Formkörper (4) einen geschlossenen Hohlkörper (45) bildet.

6. Hohlwelle nach Anspruch 5, dadurch gekennzeichnet, daß der Formkörper (4) als hohler, endseitig durch Stöpsel (8) verschlossener Vierkant-Rohrabschnitt (6) ausgestaltet ist.

7. Hohlwelle nach Anspruch 1, dadurch gekennzeichnet, daß die Innenwand (13) der Hohlwelle (2) im Überlappungsbereich (21) Innennuten (42) aufweist, welche in Axialrichtung der Hohlwelle (2) den gesamten Überlappungsbereich (21) überspannen.

8. Hohlwelle nach Anspruch 1, dadurch gekennzeichnet, daß die röhrenförmigen Hohlräume (19) zwischen Innenwand (13) der Hohlwelle (2) und Außenwand (20) des Formkörpers (4) durch Ein- und/oder Auslaßöffnungen (28, 29) mit der Außenwand (26) der Hohlwelle (2) verbunden sind.

9. Verfahren zur Herstellung Hohlwelle mit Innenkanälen, insbesondere Ölkanälen, bei welchem Verfahren ein Formkörper abschnittsweise fest mit der Innenwand der Hohlwelle verbunden wird,

- wobei der Formkörper so gestaltet ist, daß der Innenraum der Hohlwelle den gesamten Formkörper aufzunehmen in der Lage ist,

- und wobei die Außenwand des Formkörpers in einem Überlappungsbereich Verbindungsabschnitte aufweist, welche in Zusammenbaulage von Formkörper und Hohlwelle höchstens einen definierten Maximalabstand von den ihnen gegenüberliegenden Bereichen der Innenwand der Hohlwelle entfernt sind,

dadurch gekennzeichnet,

- daß die Außenwand (20) des Formkörpers (4) und/oder die Innenwand (13) der Hohlwelle (2) mit einem Lötmaterial beschichtet wird,
- daß der Formkörper (4) in den Innenraum (3) der Hohlwelle (2) eingebracht und in Einbaulage fixiert wird,

- und daß Formkörper (4) und Hohlwelle (2) dann gemeinsam auf Löttemperatur des Lötmaterials erhitzt werden, so daß der Formkörper (4) im Bereich der Verbindungsabschnitte (18) fest mit den diesen Verbindungsabschnitten (18) gegenüberliegenden Bereichen (16) der Innenwand (13) der Hohlwelle (2) verlötet wird.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Außenwand (20) des Formkörpers (4) mit Kupfer beschichtet wird.

11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Innenwand (13) der Hohlwelle (2) vor Einbringen des Formkörpers (4) mit Innennuten (42) verschen wird.

12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Innennuten (42) durch Rundkneten

der Hohlwelle (2) erzeugt werden.

Hierzu 8 Seite(n) Zeichnungen

- Leerseite -

Fig. 1a

Fig. 1b

Fig. 1c

Fig. 1d

Fig. 3a

Fig. 3b

Fig. 4a

Fig. 4b

Fig. 4c

Fig. 5b

Fig. 5c

Fig. 7

Fig. 8a

Fig. 8b

Fig. 8c

Fig. 9a

Fig. 9b

Fig. 9c

THIS PAGE BLANK (USPTO)