F0059T – Teknisk mekanik

Hållfasthetslära

F0059T – Teknisk mekanik

Lärare hållfasthetslära

Föreläsningar:

Simon Larsson, E857

Tel: 0920-493814

E-post: simon.larsson@ltu.se

Räkneövningar och laboration:

Carl Andersson, E864

E-post: <u>carl.andersson@ltu.se</u>

Vad är hållfasthetslära?

- Hållfasthetslära är ett av de klassiska ingenjörsämnena.
- Hållfasthetslära kan beskrivas som en fast kropps respons i form av spänningar och deformationer på grund av pålagda laster.
- Storlek på deformationer och spänningar och hur de fördelar sig i kroppen beror dels på de yttre lasterna men även på kroppens mekaniska materialegenskaper.
- I denna grundkurs introduceras centrala begrepp som spänningar, deformationer och några grundläggande materialmodeller.

Vad är hållfasthetslära?

Fasta deformerbara kroppars mekanik

Fysikaliska samband och matematiska modeller

Materialegenskaper och materialmodeller

Vad är hållfasthetslära?

Tillämpningar på hållfasthetsproblem

Dimensionering och design av komponenter och system

Varför läsa hållfasthetslära?

Förstå fundamentala begrepp som utgör grunden för vidare studier inom hållfasthetslära, materialmekanik, materialteknik och beräkningsmetoder.

Exempel på fortsättningskurser som ges av ämnet hållfasthetslära

- Modeller inom solidmekaniken
- Finita elementmetoden för mekanisk analys
- Brottmekanik och utmattning
- Olinjär kontinuumsmekanik för finita elementanalys
- Materialmekanik

Hållfasthetslära vid LTU

Forskningen inriktad mot modellering av materialbearbetning och produktfunktionalitet.

- Multifysikmodellering av tillverkning
- Partikel- och pulvermekanik
- Mekanisk provning

Planering - hållfasthetslära

- 8 Föreläsningar
- 4 Räkneövningar
- 1 Laboration

- På F (=föreläsning) ges bakgrund, motiveringar, förklaringar, teori och exempel
- På P (=problemlösning) demonstreras metodik och arbetssätt vid lösning av problem samt ges hjälp med eget arbete.

F/P	Innehåll , mål		
F 1	Kap 1 – 3 Inledn till hållfasthetsläran Grundläggande begrepp Enklare tillämpningar		
	Mål: att förstå och kunna tillämpa enkla begrepp och definitioner av spänning och töjning		
P 1	Problemlösning, handledning		
F 2	Kap 9.1-9.2 Allmänna spänningstillstånd, Mohrs cirkel Mål: att förstå fleraxliga spännings- och töjningstillstånd, att kunna analysera tvåaxliga tillstånd och att kunna använda Hooke's lag för elasticitet.		
F 3	Kap 9.3, 10 Allmänna töjningstillstånd, Mohrs cirkel, Elasticitet Mål: att förstå fleraxliga spännings- och töjningstillstånd, att kunna analysera tvåaxliga tillstånd och att kunna använda Hooke's lag för elasticitet.		
P 2	Problemlösning, handledning		
F 4	Kap 6, 9.2.9, 9.4 Vridning av axlar, Tunnväggiga rör		
	Mål: att kunna beräkna spänningar och deformationer vid vridning av axlar och att kunna analysera spänningar etc i tunnväggiga rör		
F 5	Kap 12 Flythypoteser Mål: att förstå och kunna använda dimensioneringskriterier mot plasticering.		
P 3	Problemlösning, handledning		
F 6	Kap 7.1-7.2 Böjning av balkar, Snittstorheter		
	Mål: att behärska statisk analys av balkar och kunna bestämma snittstorheter. Snitt- och integrationsmetod.		
F 7	Kap 7.3-7.5 Böjning av balkar, Normalspänning, Skjuvspänning		
	Mål: att kunna bestämma normalspänningar och skjuvspänningar vid balkböjning samt dimensionera.		
F 8	Kap 7.6 Böjning av balkar, Deformationer		
	Mål: att kunna bestämma deformationer och snittstorheter vid böjning av balkar med hjälp av elastiska linjens ekvation.		
P 4	Problemlösning, handledning		

Kurslitteratur

PROBLEMSAMLING HÅLLFASTHETSLÄRA

F0059T TEKNISK MEKANIK

Gustaf Gustafsson

Institutionen för teknikvetenskap och matematik

Luleå tekniska universitet Institutionen för teknikvetenskap och matematik Gustaf Gustafsson 09/18

FORMELSAMLING HÅLLFASTHETSLÄRA F0059T TEKNISK MEKANIK

Innehåll

1	Spänning	2
2	Töjning	4
3	Konstitutiva ekvationer	5
	3.1 Elasticitet	5
	3.2 Plastiska material	8
4	Tillämpningar	9
	4.1 Balkböjning	9
	4.2 Vridning	10
	4.3 Tryckkärl	10
5	Tvärsnittsdata	11
6	Materialtabeller	13

Formelsamlingen är ett tillåtet hjälpmedel på tentamen i kursen. Anteckningar är inte tillåtna förutom markering med överstrykningspenna. Luleå tekniska universitet Institutionen för teknikvetenskap och matematik Andreas Malmelöv 2020

LABORATION - HÅLLFASTHETSLÄRA F0059T TEKNISK MEKANIK

OBSERVERA

Läs igenom laborationsinstruktionen och den teori som hänvisas till före respektive laborationstillfälle.

Tag med utskrifter av tabeller och diagram.

Godkänd laboration

Namn:

Laboration: töjningsmätning på tunnväggigt rör

Fluid-struktur interaktion

LULEÅ TEKNISKA UNIVERSITET 11

Fluid-struktur interaktion

