Math 214 – Foundations of Mathematics Homework 4

Due February 13, 2014

Alexander Powell

Solve the following problems. Please remember to use complete sentences and good grammar.

1. (4 Points) Let $x, y \in \mathbb{Z}$. Prove that if 3 $\not|x$ and 3 $\not|y$, then $3|(x^2 - y^2)$.

Solution:

Proof. First, it should be stated that $(x^2 - y^2) = (x + y)(x - y)$. Now, if 3 $\not|x$ and 3 $\not|y$, then there are 4 cases that must be proven:

Case 1:
$$x = 3n + 1$$
 and $y = 3m + 1$
Let $3|(3n+1)^2 - (3m+1)^2$
Then, $((3n+1) + (3m+1))((3n+1) - (3m+1))$
 $= (3n+1+3m+1)(3n+1-3m-1)$
 $= 9n^2 + 9mn + 6n - 9mn - 9m^2 - 6m$
 $= 3(3n^2 - 3m^2 + 2n - 2m)$

Therefore, 3 divides $x^2 - y^2$ in this case.

Case 2:
$$x = 3n + 1$$
 and $y = 3m + 2$
Let $3|(3n+1)^2 - (3m+2)^2$
Then, $((3n+1) + (3m+2))((3n+1) - (3m+2))$
 $= (3n+3m+3)(3n+1-3m-2)$
 $= 9n^2 + 9mn + 9n - 9mn - 9m^2 - 9m - 3n - 3m - 3$
 $= 3(3n^2 + 3n - 3m^2 - 3m - n - m - 1)$
Therefore, 3 divides $(x^2 - y^2)$ in this case.

Case 3:
$$x = 3n + 2$$
 and $y = 3m + 1$
Let $3|(3n+2)^2 - (3m+1)^2$
Then, $((3n+2) + (3m+1))((3n+2) - (3m+1))$
 $= (3n+3m+3)(3n-3m+1)$
 $= 9n^2 + 9mn + 9n - 9mn - 9m^2 - 9m + 3n + 3m + 3$
 $= 3(3n^2 + 3n - 3m^2 - 3m + n + m + 1)$
Therefore, 3 divides $(x^2 - y^2)$ in this case.

Case 4:
$$x = 3n + 2$$
 and $y = 3m + 2$
Let $3|(3n+2)^2 - (3m+2)^2$
Then, $((3n+2) + (3m+2))((3n+2) - (3m+2))$
 $= (3n+3m+4)(3n-3m)$
 $= 9n^2 + 9mn + 12n - 9mn - 9m^2 - 12m$
 $= 3(3n^2 + 4n - 3m^2 - 4m)$
Therefore, 3 divides $(x^2 - y^2)$ in this case.

Therefore, it is proven that if $3 \not| x$ and $3 \not| y$, then $3 | (x^2 - y^2)$.

2. (4 Points) Let $n \in \mathbb{Z}$. Prove that $2|(n^4-3)$ if and only if $4|(n^2+3)$. (Hint: prove n is odd)

Solution:

Proof. Because of the "if and only if" in the question, it is necessary to prove that if $2|(n^4-3)$ then $4|(n^2+3)$ and if $4|(n^2+3)$ then $2|(n^4-3)$. This proof will be divided into two parts.

Part 1: Prove that if $2|(n^4-3)$ then $4|(n^2+3)$. To do this we will introduce the lemma that n is odd

Step 1: Prove that if $2|(n^4-3)$, then n is odd. Use contrapositive: If n is even, then $2 / (n^4-3)$.

Let n be even, then $n = 2x, x \in \mathbb{Z}$.

So,
$$((2x)^4 - 3)$$

= $16x^4 - 3$
= $2(8x^4 - 3/2)$
Therefore, $2 / (n^4 - 3)$.

Step 2: If *n* is odd, then $4|(n^2 + 3)$.

Let n be odd, then $n = 2x + 1, x \in \mathbb{Z}$.

So,
$$(2x+1)^2 + 3$$

= $(2x+1)(2x+1) + 3$
= $4x^2 + 4x + 4$
= $4(x^2 + x + 1)$

Therefore, if n is an odd number, then $4|(n^2+3)$.

Part 2: Next, we need to prove that if $4|(n^2+3)$ then $2|(n^4-3)$. Again, we will use a lemma, n is odd.

Step 1: Use contrapositive: If n is even, then $4 / (n^2 + 3)$

Let n be even, then
$$n = 2x, x \in \mathbb{Z}$$
.

So,
$$(2x)^2 + 3$$

= $4x^2 + 3$
= $4(x^2 + 3/4)$

Therefore, 4 does not divide $(n^2 + 3)$.

Step 2: If *n* is odd then $2|(n^4 - 3)$.

Let n be odd, then $n = 2x + 1, x \in \mathbb{Z}$.

So,
$$(2x+1)^4 - 3$$

= $16x^4 + 32x^3 + 24x^2 + 8x - 2$

$$=2(8x^4+16x^3+12x^2+4x-1)$$

Therefore, if n is odd then $2|(n^4-3)$.

Therefore, following parts 1 and 2, we have finally proven that $2|(n^4-3)$ if and only if $4|(n^2+3)$.

3. (4 Points) Prove that if x is a real number such that $x^2 + x > 2$, then either x < -2 or x > 1. (Hint: use axioms and Theorems 1-2 in Notes 1)

Solution:

Proof. Prove by contrapositive: If $x \ge -2$ and $x \le 1$, then $x^2 + x \le 2$.

Since $x \ge -2$, then $x + 2 \ge 0$. Since $x \le 1$, then $x - 1 \le 0$.

Recall the real number axiom: if $x \ge 0$ and $y \le 0$, then $xy \le 0$. Thus $x + 2 \ge 0$ and $x - 1 \le 0$.

This implies that $(x+2)(x-1) \le 0$. Expanding (x+2)(x-1), we get:

$$(x+2)(x-1) = x^2 + x - 2 \le 0$$

$$x^2 + x \le 2$$

Hence the contrapositive is true, then the original is also true.

4. (4 Points) Prove that for every two positive real numbers a and b that

$$(a+b)\cdot\left(\frac{1}{a}+\frac{1}{b}\right)\geq 4.$$

(Hint: use axioms and Theorems 1-2 in Notes 1)

Solution:

Proof. First of all, lets rearrange the left side of the inequality:

$$\frac{a}{a} + \frac{a}{b} + \frac{b}{a} + \frac{b}{b} \ge 4$$

Let a and b be any positive real numbers. Then, the inequality can be rewritten as:

$$\frac{a}{b} + \frac{b}{a} + 2 \ge 4$$

or

$$\frac{a}{b} + \frac{b}{a} \ge 2$$

We know $\frac{a}{b} > 0$ and $\frac{b}{a} > 0$, so $\frac{a}{b} + \frac{b}{a} \ge 0$. Then the equivalent inequality

$$\frac{a^2 + b^2}{ab} \ge 0$$

.

Following from this:

$$\frac{(a^2 + b^2 + 2ab) - 2ab}{ab} \ge 0$$
$$\frac{(a+b)^2}{ab} - \frac{2ab}{ab} \ge 0$$
$$\frac{(a+b)^2}{ab} \ge 2$$

Hence, $\frac{a}{b} + \frac{b}{a} \ge 2$

Therefore, for every two positive real numbers a and b that $(a+b)\cdot\left(\frac{1}{a}+\frac{1}{b}\right)\geq 4$.

5. (4 Points) Let A, B, C be sets. Prove that $(A - B) \cup (A - C) = A - (B \cap C)$.

Solution:

Proof. Step 1:
$$(A-B) \cup (A-C) \subseteq A - (B \cap C)$$

Let $x \in (A-B) \cup (A-C)$, then either $x \in (A-B)$ or $x \in (A-C)$.
Case 1: $x \in (A-B)$

Then $x \in A$ and $x \notin B$ Since $x \notin B$ then $x \notin (B \cap C)$

Since $x \in A$ and $x \notin (B \cap C)$

Then $x \in A - (B \cap C)$

Case 2:
$$x \in (A - C)$$

Then $x \in A$ and $x \notin C$

Since $x \notin C$ then $x \notin (B \cap C)$

Since $x \in A$ and $x \notin (B \cap C)$

Then $x \in A - (B \cap C)$.

Step 2:
$$A - (B \cap C) \subseteq (A - B) \cup (A - C)$$

Let
$$x \in A - (B \cap C)$$

Then $x \in A$ and $x \notin (B \cap C)$

Since, $x \not\in (B \cap C)$

Then $x \notin B$ and $x \notin C$

So, $x \in A \subseteq (A - B) \cup (A - C)$

Therefore, $(A - B) \cup (A - C) = A - (B \cap C)$.

6. (4 Points) Let A and B be sets. Prove that $A = (A - B) \cup (A \cap B)$. (Hint: if $x \in A$, then there are two cases: $x \in B$ or $x \notin B$.)

Solution:

Proof. Step 1: Prove that
$$A \subseteq (A - B) \cup (A \cap B)$$

Let $x \in A$, then $x \in B$ or $x \notin B$.

Case 1:
$$x \in B$$

Since $x \in A$ and $x \in B$,
Then, $x \in (A \cap B) \subseteq (A - B) \cup (A \cap B)$

Case 2:
$$x \notin B$$

Since $x \in A$ and $x \notin B$,
Then, $x \in (A - B) \subseteq (A - B) \cup (A \cap B)$

Step 2: Prove that
$$(A - B) \cup (A \cap B) \subseteq A$$

Let $x \in (A - B) \cup (A \cap B)$.
Then either $x \in (A - B)$ or $x \in (A \cap B)$.

Case 1:
$$x \in (A - B)$$

Then $x \in A$ and $x \notin B$
and $x \in (A - B) \subseteq A$
Case 2: $x \in (A \cap B)$
then $x \in A$ and $x \in B$
So, $x \in (A \cap B) \subseteq A$.

Therefore, it is proven that $A = (A - B) \cup (A \cap B)$.

7. $(extra\ 2\ Points)$ Prove that for every three positive real numbers $a,\,b$ and c that

$$(a+b+c)\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9.$$

8. (extra~2~Points) Prove that for every three positive real numbers a, b and c that

$$a^2 + b^2 + c^2 \ge ab + bc + ac.$$

Note: For problem 4, 7 and 8, you can only use axioms and Theorems 1-2 in Notes 1, but not other more advanced theorems or known inequalities.