2018 IC Design Contest

Cell-Based IC Design Category for Graduate Level

RF Indoor Localization Engine

1.問題描述

請完成一RF Indoor Localization Engine(後文以 RFILE 表示)的電路設計。本電路可依據固定安裝於室內 A、B、C 三點的 RF Sensor 輸出之 RSSIA、RSSIB、RSSIC 訊號強度來定位,將人在室內空間的實際位置(後文以 T 點表示),以 x_t 、 y_t 座標輸出,即為所求!有關 RFILE 詳細規格將描述於後。表一為本電路各輸入輸出信號的功能說明。各參賽隊伍必須依照下一節所指定的設計規格及附錄 A 中的測試樣本完成設計驗證。

本次 IC 設計競賽比賽時間為上午 08:30 到下午 20:30。當 IC 設計競賽結束後, CIC 會根據第 三節中的評分標準進行評分。為了評分作業的方便,各參賽隊伍應參考附錄 E 中所列的要求,附 上評分所需要的檔案。

本題目之測試樣本置於 /usr/cad/icc2018/bgc/icc2018cb.tar ,請執行以下指令取得測試樣本: tar xvf /usr/cad/icc2018/bgc/icc2018cb.tar

軟體環境及設計資料庫說明請參考附錄 F 與附錄 G。

圖一、RF Indoor Localization Engine 之方塊圖

2.設計規格

2.1 系統方塊圖

圖二、系統方塊圖

2.2 輸入/輸出介面

表 1-輸入/輸出訊號

Signal Name	I/O	Width	Simple Description
clk	I	1	本系統為同步於時脈正緣之同步設計。
rst	I	1	高位準非同步(active high asynchronous)之系統重置信號。
rssiA	I	20	將 RF Sensor A 偵測的 RSSI 訊號值輸入至 RFILE 電路,其整數部分為 8bits,小數部分為 12bits。(該值必為負值,取 2'sC表示之)
rssiB	I	20	將 RF Sensor B 偵測的 RSSI 訊號值輸入至 RFILE 電路,其整數部分為 8bits,小數部分為 12bits。(該值必為負值,取 2'sC表示之)

rssiC	I	20	將 RF Sensor C 偵測的 RSSI 訊號值輸入至 RFILE 電路,其整數部分為 8bits,小數部分為 12bits。 (該值必為負值,取 2'sC表示之)
A_x	I	8	RF Sensor A 架設在室內的座標點,其 x 軸的值。 在同一個測試樣本,該值為固定值,且為正整數。
A_y	I	8	RF Sensor A 架設在室內的座標點,其 y 軸的值。 在同一個測試樣本,該值為固定值,且為正整數。
B_x	I	8	RF Sensor B 架設在室內的座標點,其 x 軸的值。 在同一個測試樣本,該值為固定值,且為正整數。
В_у	I	8	RF Sensor B 架設在室內的座標點,其 y 軸的值。 在同一個測試樣本,該值為固定值,且為正整數。
C_x	I	8	RF Sensor C 架設在室內的座標點,其 x 軸的值。 在同一個測試樣本,該值為固定值,且為正整數。
C_y	I	8	RF Sensor C 架設在室內的座標點,其 y 軸的值。 在同一個測試樣本,該值為固定值,且為正整數。
busy	О	1	RFILE 忙碌之控制訊號。當 busy 為 Low 時, Host 端會輸入一筆新的 rssiA、rssiB、rssiC 的訊號值,反之,當為 High 時,表示系統正處於忙碌階段,此時 Host 端提供的 rssiA、rssiB、rssiC 的資料保持不變。
out_valid	О	1	RFILE 有效輸出資料之通知訊號。當為 High,表示目前輸出的 x_t 、 y_t 座標值為有效的輸出,反之則輸出為 Low。
xt	О	8	偵測到 T 點的 x 軸座標值輸出。 註:該值必為正整數。
yt	О	8	偵測到 T 點的 y 軸座標值輸出。 註:該值必為正整數。
expA expB expC	0	12	使用"10 的次方運算查表電路"之待查詢的輸入值。該查表前輸入的數值,以小數位數 12bits,從 RFILE 電路輸出至 Host 端的查表電路,本題查表電路所耗時間為 Ons。註:詳細運算方法請參照 2.3.2。
valueA valueB valueC	I	16	使用"10的次方運算查表電路"之查詢後的輸出值。該查表後獲得的數值,以整數位數 4bits,小數位數 12bits的結構,輸入至 RFILE 電路,本題查表電路所耗時間為 0ns。註:詳細運算方法請參照 2.3.2。

圖三、室內定位系統示意圖

2.3 系統描述

圖三為室內定位系統示意圖,裝有多組 RF Sensor 用來定位人類位於室內空間的實際方位,例如冷氣的風可集中吹在 T 點有人的區域,以達到節電之效用。當然 RF Sensor 裝越多組可定位的空間也就越廣,但考量到複雜度問題,本題規定 RF Sensor 僅固定 A、B、C 三組,偵測的 T 點只會在三角型區域移位,T 點不會超出三角形之外,也不會在三角形的線上。

RF Sensor 係透過接收訊號強度測量法(Received Signal Strength Indicator – RSSI)的數值大小來計算發射端和接收端間的距離,RSSI 必為負值,其絕對值的數字越大表示 Sensor 到 T 點的距離越遠,反之其絕對值的數字越小表示 Sensor 到 T 點的距離越近,例如:-90 與-70 相比,-90 距離較遠,-70 距離較近。使用 RSSI 值來計算距離遠近之公式如(1)式所示

$$d = 10^{(abs(RSSI) - \alpha) / (10 * n)}$$
 (1)

註:

d- 計算所得距離 ((1)式中 ^ 表示為 10 的次方)

RSSI-接收信號強度(必為負值,abs表示對 RSSI 取絕對值)

- α- 發射端和接收端相隔1米時的信號強度 (本題規定 α 固定為59)
- n-環境衰減因子 (本題規定 n 固定為 2)

因此 RFILE 電路可根據 $A \times B \times C$ 三個 Sensor 的 RSSI 數值,在此以 rssi $A \times rssiB \times rssiC$ 表示,將 RSSI 值套入(1)式,分別計算出 $d_A \times d_B \times d_C$,接著帶入距離公式如(2)式,即可計算出 T 點之座標,將 T 點之座標 $x_t \times y_t$ 輸出,即為所求。

$$f(x_{t}, y_{t}) = \begin{cases} (x_{A} - x_{t})^{2} + (y_{A} - y_{t})^{2} = d_{A}^{2} \\ (x_{B} - x_{t})^{2} + (y_{B} - y_{t})^{2} = d_{B}^{2} \\ (x_{C} - x_{t})^{2} + (y_{C} - y_{t})^{2} \le d_{C}^{2} \end{cases}$$
(2)

註1:

Sensor A 架設於室內座標 - 以 (x_A, y_A) 表示,該值為已知的固定值。

Sensor B 架設於室內座標 - 以(x_B、y_B)表示,該值為已知的固定值。

Sensor C 架設於室內座標 - 以 $(x_C \cdot y_C)$ 表示,該值為已知的固定值。

T點會隨時變動,其座標 - 以(xt 、yt)表示,該值本題規定必為正整數。

註2:

由於 RF 本身就不夠準確, d_c^2 在此容許自行乘上一個倍率例如 1.01,即 $(1.01*d_c)^2$ 。

2.3.1 RFILE 電路的輸入

RFILE 電路輸入主要有兩個項目:

A. RF Sensor A、B、C 三個固定點架設的座標值

在同一個測試樣本中, $A \times B \times C$ 三點的座標值,分別以 $(A_x, A_y) \times (B_x, B_y) \times (C_x, C_y)$ 這六組腳位做輸入,從模擬的開始至最後,該值永遠為固定值且為正整數,實際座標值,詳見如 附錄 B。

註:A、B、C三點座標的排列組合,未必是直角三角形,鈍角或銳角三角形皆有可能。

B. RSSI 訊號格式

A、B、C 三個 Sensor 的 RSSI 數值,分別以 rssiA、rssiB、rssiC 輸入。由於考量該數值的小數部分對偵測 T 點實際座標影響甚遠,在此定義 RSSI 數值格式如下圖:

由於 RSSI 數值必為負值,因此 rssiA、rssiB、rssiC 收到的數值,要以 2'sC 解讀,範例如下:

2.3.2 RFILE 電路的運算方法

RFILE 電路運算方法詳見(1)、(2)式,在此不再贅述。不過(1)式運算過程中,會使用到 10 的次方運算,本題有提供 10 的幂次方查表,已定義在 table.v,輸入(expA/expB/expC)為 12bits 小數,輸出(valueA/ valueB/valueC)為 4bits 整數加 12bits 小數,其計算方法,舉例說明如下:

註1:table.v 查表電路已製作於 TestBench 當中,參賽者無需 Coding 查表電路。

註2:table.v 查表電路運算時間 Ons。

註3:使用table.v查表電路前,請自行先將指數取出小數部份,再進行查表,整數部分自行計算。

2.3.3 RFILE 電路的輸出

當參賽者使用(1)、(2)式定位出 T 點座標後,此時將 out_valid 訊號拉為 High,並且以 x_t 、 y_t 輸出 T 點座標值,即完成 RFILE 電路功能。由於考量運算過程中的量化誤差與 RF 本身就不夠準確,T 點標準答案與參賽者使用 RFILE 電路定位出的 x_t 、 y_t ,允許低於 10 的誤差值都算是正確,其算法如(3)式所示,因此在模擬時每一組 Pattern 都會秀出個別 difference 數值,只要低於 10,該組 Pattern 就算是 PASS,如圖四所示。

$$((x_{golden} - x_t)^2 + (y_{golden} - y_t)^2) < 10$$
 (3)

註1: T點的標準答案以 Xgolden、Ygolden表示。

註2: Xt、Yt必為正整數。

```
ncsim> run
FSDB Dumper for IUS, Release Verdi3 L-2016.06-SP1-1, Linux, 09/27/2016
(C) 1996 - 2016 by Synopsys, Inc.
*Verdi3* FSDB WARNING: The FSDB file already exists. Overwriting the FSDB file may
*Verdi3* : Create FSDB file 'RFILE.fsdb'
*Verdi3* : Begin traversing the scopes, layer (0).
*Verdi3* : End of traversing.
*Verdi3* : Begin traversing the MDAs, layer (0).
*Verdi3* : Enable +mda and +packedmda dumping.
*Verdi3* : End of traversing the MDAs.
Start to Send RSSI & Compare ...
T00: your xt=34 yt=07 == expect xt=34 yt=07
                                               => difference=
                                                                         PASS
T01:
     your xt=22
                 yt=11 == expect xt=22 yt=11
                                               =>
                                                   difference=
                                                                         PASS
                                                                    0 =>
                                               => difference=
T02:
     your xt=34
                 yt=1b == expect xt=34 yt=1b
                                                                   0 =>
                                                                         PASS
                                               => difference=
                                                                         PASS
T03:
     your xt=22 yt=0f == expect xt=22 yt=0f
                                                                   0 =>
                                               => difference=
                                                                         PASS
T04:
      your xt=2e
                 yt=2d == expect xt=2e yt=2d
                                                                   0 =>
T05: your xt=37 yt=15 == expect xt=37 yt=15
                                                                   Θ => PASS
                                               => difference=
                                               => difference=
                                                                   0 => PASS
T91: your xt=37 yt=21 == expect xt=37 yt=21
                                                => difference=
T92:
     your xt=16 yt=0f == expect xt=16 yt=0f
                                                                   0 =>
                                                                         PASS
                 yt=17 == expect xt=31 yt=17
T93:
      your xt=31
                                               => difference=
                                                                   0 =>
                                                                         PASS
     your xt=2e
                 yt=19 == expect xt=2e yt=19
                                               => difference=
                                                                    0 =>
                                                                         PASS
T94:
                 yt=13 == expect xt=16 yt=13
                                                                    0 =>
T95:
      your xt=16
                                               => difference=
                                                                          PASS
     your xt=19
                 yt=11 == expect xt=19 yt=11
                                               => difference=
T97:
      your xt=37
                 yt=2b == expect xt=37 yt=2b
                                               => difference=
                                                                   0 =>
                                                                         PASS
                                                                          PASS
     your xt=2b
                 yt=09 == expect xt=2b yt=09
                                               => difference=
                                                                   0 =>
                                                                   0 =>
                                                                         PASS
T99: your xt=37
                 yt=2f == expect xt=37 yt=2f
                                               => difference=
Send RSSI & Compare Over!
Congratulations! All data have been generated successfully!
 -----PASS-----
Simulation complete via $finish(1) at time 49992 NS + 0
                         #(`CYCLE/2); $finish;
./testfixture.v:183
ncsim> exit
```

圖四、RFILE 電路模擬範例

2.4 RFILE 電路時序規格

圖五、RFILE 電路時序圖

RFILE 電路時序圖說明如下:

- 1. T0~T1 時間點, RFILE 電路初始化。
- 2. T1 時間點, Host 端判斷 busy 訊號為 Low, 隨即送出第 0 筆 RSSI 訊號。
- 3. T1~T2時間點,RFILE電路運算過程中,rssiA、rssiB、rssiC輸入的第0筆RSSI訊號會一直維持住。
- 4. T2 時間點,RFILE 電路定位出 T 點所在處後,此時發送 out_valid 訊號為 High,用以告知 Host 端讀取第 0 筆 T 點 x_t 、 y_t 座標值,此時 busy 訊號也可以在此時間點設為 Low,以告知 Host 端準備輸入下一筆 RSSI 訊號,即 RSSI 1。
- 5. 重覆 T1~T2 動作之行為。
- 6. T3 時間點,最後一筆 T 點被定位出,此時發送最後一次 out_valid 訊號為 High,用以告知 Host 端讀取第 99 筆 T 點 x₁、v₁ 座標值後,電路運作模擬結束。

註:圖五中 RF Sensor 係指 $A \times B \times C$ 三組 Sensor,在本次的測試樣本中,給定的 $(A_x, A_y) \times (B_x, B_y) \times (C_x, C_y)$ 為何,在整個模擬期間,這些座標值恆為固定值。

註:圖五未提供 exp、value 之時序圖,原因是 exp A、B、C 輸出到 Host 端查表電路後,以 value A、B、C 回傳查表結果,這段期間的延遲時間為 Ons。

3.評分標準

評分方式會依設計完成程度,分成A、B、C、D四種等級,排名順序為A>B>C>D,評分項目有兩個,分別為模擬時間、功率消耗,主辦單位會依此兩項目做為同等級之評分。另外,請參賽者提供一組正確的週期時間(CYCLE TIME)給評分人員驗證本電路之正確性。

◆ 評分項目一:依"模擬時間"(Time)長短評分

各參賽隊伍將 APR 完成後,執行 Gate-level Post-layout Simulation 模擬完後,會出現模擬時間,評分人員會以此模擬時間如圖四範例,紀錄成 Time =49992ns 做評分。

註:三組測試樣本若模擬時間不同, Simulation Time 以最大值為準。

◆ 評分項目二:依"功率消耗"(Power)大小評分

各參賽隊伍將 APR 完成後,請用 PrimeTime-PX (後文以 PT-PX 表示)作 Power 分析,本題主辦單位已提供 PT-PX 的自動化執行程式:pt_script.tcl,參賽者只要將 pt_script.tcl 檔案會使用到的相關檔案(即 RFILE_pr.v、RFILE_APR.sdc、RFILE.fsdb、.synopsys_pt.setup)準備好,執行下述指令即可作 Power 分析,執行後之 \log 訊息如下所示,功率消耗請自行轉換單位為毫瓦(mW),以此例讀作 1.275mW,紀錄成 Power=1.275 作評分。

unix% pt_shell -f ./pt_script.tcl

Power Group	Internal Power	Switching Power	Leakage Power	Total Power	(%)	Attrs
clock_network register combinational sequential memory io_pad black_box Net Switching Power	5.459e-05 1.743e-04 0.0000 0.0000 0.0000 0.0000	1.344e-05 6.189e-05 0.0000 0.0000 0.0000 0.0000	1.258e-05 3.793e-05 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	(6.32%) (21.49%) (0.00%) (0.00%) (0.00%)	i
Cell Internal Power Cell Leakage Power						
Total Power	= 1.275e-03	3 (100.009	%)			
X Transition Power Glitching Power	= 2.347e-09 = 8.350e-08					
Peak Power Peak Time	= 0.0530 = 113590.28					

註:三組測試樣本若 Power 值不同, Power 以最大值為準。

註: 未完成 APR 者,請以合成後結果作為等級 C 之評分依據。

設計完成程度四種等級,如下:

- ◇ 等級 A: 達成"完成設計"之三項要求
 - a、 功能正確,RTL 模擬與正確解答比對完全正確。
 - b、 完成 Synthesis,且 Gate-Level Pre-layout Simulation 結果正確。
 - c、 完成 APR, 並達成 APR 必要項目, Gate-Level Post-layout Simulation 結果正確。

註:完成 APR 之必要項目

- i. 只需做 Marco layout (即不用包含 IO Pad、Bonding Pad)。
- ii. VDD 與 VSS Power Ring 寬度請各設定為 2um,只須做一組。
- iii. 不需加 Dummy Metal。
- iv. Power Stripe 務必至少加一組,其 VDD、VSS 寬度各設定為 2um。 (Power Stripe 垂直方向至少一組,水平方向可不加)
- v. 務必要加 Power Rail (follow pin)。
- vi. Core Filler 務必要加。
- vii. APR 後之 GDSII 檔案務必產生。
- viii. 完成 APR, DRC/LVS 完全無誤(見附錄 C 說明)。

等級 A 之評分方法:

Score = Power x Time

例如:

Score = Power x Time = $1.275 \times 49992 = 63739.8$

註: Score 越小者,同級名次越好!

◆ 等級 B:已做到 APR,但等級 A 之"APR 必要項目"有部分不符合, DRC/LVS 錯誤總數量容許 5個(含)以下

此等級之成績計算方式如下:

Score = Power x Time x (DRC+LVS 的錯誤總數量)

註: Score 越小者,同級名次越好!

◆ 等級 C: 僅完成合成,或做到 APR,但 DRC/LVS 錯誤總數量超過 5 個以上 此等級之成績計算方式如下:

Score = Power x Time

註:

- 1. Score 越小者,同級名次越好!
- 2. 等級 C, 視 APR 為 Fail, Time 以 Gate-level Pre-layout Simulation 為主。
- 3. 等級 C, 視 APR 為 Fail, Power 以合成後的相關檔案使用 PT-PX 作 Power 分析。
- ◆ 等級 D: 未達成前三等級者,成績計算方式為 All RTL Simulation,比對結果之 error 總數量越少者,分數越高。

Score = Total error of All RTL Simulations

註:

- 1. 等級 D, Score 評分方式為所有模擬的 error 總數作相加。
- 2. 等級 D, 視合成與 APR 皆為 Fail, Power、Time 將不予考慮。
- 3. 等級 D, 只以 RTL Simulation 正確率為主, Score 越小者(即 error 越少), 同級名次越好。

附錄

附錄 A 為主辦單位所提供各參賽者的設計檔案說明; 附錄 B 為主辦單位提供的測試樣本說明; 附錄 C 為設計驗證說明; 附錄 D 為評分用檔案,亦即參賽者必須繳交的檔案資料; 附錄 E 則為設計檔案壓縮整理步驟說明; 附錄 F 中說明本次競賽之軟體環境; 附錄 G 中說明本次競賽使用之設計資料庫; 附錄 H 一元二次方程式求根。

附錄 A 設計檔

1. 下表為主辦單位所提供各參賽者的設計檔

表 2、設計檔案說明

檔名	説明
RFILE.v	本題之設計檔,已包含系統 Input/Output Port 之宣告,請以此檔案作為 RFILE 電路之設計。
table.v	10 的次方運算查表電路(僅針對小數部份作查表), 該 table 已在 TestBench 加入。注意:模擬時,請務 必在目前目錄下,準備 table.v 檔案,方可順利模擬。
testfixture.v	本題僅有一個 TestBench,卻有三種測試樣本需模擬,因此請在模擬期間,自行使用+define+PAT1、+define+PAT2、+define+PAT3 參數,作三種測試樣本的切換。
pattern1.dat pattern2.dat pattern3.dat	作為 RFILE 電路模擬時,三種測試樣本的輸入訊號。 註:這些檔案已加入至 TestBench,無需額外設定。
golden1.dat golden2.dat golden3.dat	作為 RFILE 電路模擬時,三種測試樣本的輸出比對。 註:這些檔案已加入至 TestBench,無需額外設定。
RFILE_DC.sdc	Design Compiler 作合成之 Constraint 檔案,請自行設定 period 的期望值,但環境相關參數請勿更改。
RFILE_APR.sdc	Encounter、IC Compiler 作 APR 之 Constraint 檔案,請自行設定 period 的期望值,但環境相關參數請勿更改。

.synopsys_dc.setup	使用 Design Compiler 作合成或 IC Compiler Layout 之初始化設定檔。參賽者請依 Library 實際擺放位 置,自行修改 Search Path 的設定。 註:無論合成或 APR,只需使用 worst case library。
.synopsys_pt.setup	使用 PT-PX 作 Power 量測之初始化設定檔。參賽者 請依 Library 實際擺放位置,自行修改 Search Path 的設定。 註:作 Power 量測,只需使用 worst case library。
pt_script.tcl	使用 PT-PX 作 Power 量測之自動化執行 Script,參賽者使用前,請自行將會用到的相關檔案擺在目前目錄下,方可正常執行。

- 2. 本次比賽中,若沒有任何舞弊之行為,主辦單位便不會有隱藏的 Pattern 作測試。
- 3. 使用 Encounter 作 APR 請注意,模擬時請務必自行加上+ncmaxdelays 參數。 例如:
 - > ncverilog +ncmaxdelays testfixture.v RFILE_pr.v tsmc13_neg.v +define+PAT1+SDF +access+r

註:本次比賽中有三種測試樣本,請自行使用+define+PAT1、+define+PAT2、+define+PAT3 參數,三選一作模擬。

附錄 B 測試樣本

本題有三種測試樣本,RF Sensor A、B、C 座標,已設定於 TestBench 中,如下。在 testfixture.v 檔案之 31~52 行,已清楚記載 RF Sensor 架設之座標值。

```
29 RFILE u RFILE( .clk
                                  (clk
                                                ),
                                  (rst
                    .rst
   `ifdef PAT2
31
32
                    .A_x
                                  (8'd5
                                                ),
33
                    . A_y
                                  (8'd5
                                                ),
                    . B_x
                                  (8'd100
34
35
                                  (8'd20
                    .B_y
36
                    . C x
                                  (8'd50
37
                    . C_y
                                  (8'd100
38 'elsif PAT3
39
                                  (8'd5
40
                    . A_y
                                  (8'd21
                                  (8'd80
41
                    .B_x
                                                ),
                                  (8'd91
42
                    . В_у
43
                    . C_x
                                  (8'd95
                                  (8'd1
44
                                                ),
                    . C_y
45
   `else //PAT1
46
                    .Ax
                                  (8'd2
                                  (8'd2
47
                    . A_y
                    .B_x
                                  (8'd62
48
                    .B_y
.C_x
49
                                  (8'd2
50
                                  (8'd62
                                  (8'd62
51
                    . C_y
52 `endif
```

RFILE 電路的另一個重要輸入訊號 - RSSI, 其內容如下, TestBench 在每單一週期自動讀取 三筆資料,由 rssiA、rssiB、rssiC 三組輸入腳位作輸入。

```
//Pattern000: RSSIA=-93.0225
          //Pattern000: RSSIB=-79.969
B007F
          //Pattern000: RSSIC=-93.9485
A20D3
          //Pattern001: RSSIA=-89.9656
A608D
          //Pattern001: RSSIB=-89.0388
A6F61
          //Pattern001: RSSIC=-93.4854
A283C
          //Pattern002: RSSIA=-93.9485
A20D3
          //Pattern002: RSSIB=-87.6033
A8659
          //Pattern002: RSSIC=-90.2219
A5C73
          //Pattern003: RSSIA=-89.7664
A63BD
          //Pattern003: RSSIB=-88.7908
A7359
A23D3
          //Pattern003: RSSIC=-93.761
```

pattern1.dat

註:資料左側為十六進制,資料右側以註解方式說明該筆 Pattern 為哪個 T 點偵測到的 RSSI 數值, 該數值以十進制表示,以方便參賽者作 Debug。

註:在此只秀出第一組測試樣本 RSSI 數值,其他組測試樣本,請詳見 pattern2.dat、pattern3.dat。

使用 RFILE 電路定位出 T 點座標之標準答案,內容如下:

```
//T000: Xt=052
34
07
      //T000: Yt=007
22
      //T001: Xt=034
11
      //T001: Yt=017
34
      //T002: Xt=052
1B
      //T002: Yt=027
22
     //T003: Xt=034
0F
      //T003: Yt=015
```

golden1.dat

註:資料左側為十六進制,資料右側以註解方式說明該筆資料為第幾筆 T 點的標準解答,在此以 十進制表示,以方便參賽者作 Debug。

註:在此只秀出第一組測試樣本T點的標準解答,其他組請自行參閱 golden2.dat、golden3.dat。

附錄 C 設計驗證說明

參賽者繳交資料前應完成 RTL, Gate-Level 與 Physical 三種階段驗證,以確保設計正確性。注意:每組限定只能使用 1 license, 勿使用 Multi-CPU。

- ▶ RTL與 Gate-Level 階段:參賽者必須進行 RTL simulation 及 Gate-Level simulation,模擬 結果必須滿足本題指定之 Period 下,功能完全正確。
- Physical 階段,包含三項驗證重點:
- 1. 依主辦單位各項要求,實現完整且正確的 layout (詳細之各項要求,請見評分標準)。
- 2. 完成 post-layout simulation: 參賽者必須使用 P&R 軟體寫出之 Netlist 檔與 SDF 檔完成 post-layout gate-level simulation,以下分為 IC Compiler、Encounter 兩種軟體說明 netlist 與 sdf 寫出步驟。
 - i. 使用 Synopsys IC Compiler 者,執行步驟如下: 在 IC Compiler 主視窗底下點選
 - " File > Export > Write SDF..."

-	
Specify Version	Version 2.1
Instance	空白即可
File name	RFILE_pr.sdf
Significant digits	2

按OK。

對應指令: write_sdf -version 2.1 RFILE_pr.sdf

" File > Export > Write Verilog..."

先按 Default

Output verilog file name	RFILE_pr.v
Output physical only cells	disable
Wire declaration	enable
Backslash before Hierarchy Separator	Enable
All other options	Default value

按OK。

ii. 使用 Cadence Encounter 者,執行步驟如下:

在 Encounter 視窗下點選:

" File → Save → Netlist... "

Netlist File	RFILE_pr.v	
All other options	Default value	

按OK。

"Timing → Extract RC..." , 按 OK。

" Timing → Write SDF... "

Ideal Clock	Disable
SDF Output File:	RFILE_pr.sdf

按 OK。

- 3. 完成 DRC 與 LVS 驗證:參賽者必須以其所使用之 P&R 軟體內含之 DRC 與 LVS 驗證 功能完成 DRC 與 LVS 驗證,以下分為 IC Compiler、Encounter 兩種軟體說明執行步 驟。
 - i. 使用 Synopsys IC Compiler 者,驗證 DRC 與 LVS 步驟如下:
 - 在 IC Compiler Layout 視窗底下點選

"Route > Verification > DRC ..."

Read child cell from	Cell view	
All other options	Default value	

按 OK。

將跳出 Error Browser 視窗,請參賽者自行查看是否有錯,若有請自行修改 Layout 到 0 個 Violation 為止。

"Route > Verification > LVS ..."

Pins not connected to a wire segment(Floating port)	disable
All other options	Default value

按 OK。

將跳出 Error Browser 視窗, 檢查看看是否有錯,若有請自行修正到 0 個 Violation 為止。

- ii. 使用 Cadence Encounter 者,驗證 DRC 與 LVS 步驟如下:
 - 在 Encounter 視窗下點選
 - 1. DRC 驗證: 請選"Verify → Verify Geometry..." Default 值,按 OK。

註: 若 DRC 有發生錯誤,請選"Tools → Violation Browser..."查明原因。

2. LVS 驗證: 請選"Verify → Verify Connectivity..." Default 值,按 OK。

註: 若 LVS 有發生錯誤,請選"Tools → Violation Browser..."查明原因。

附錄 D 評分用檔案

評分所須檔案可以下幾個部份:(1)RTL design,即各參賽隊伍對該次競賽設計的 RTL code,若設計採模組化而有多個設計檔,請務必將合成所要用到的各 module 檔放進來,以免評審進行評分時,無法進行模擬;(2)Gate-Level design,即由合成軟體所產生的 gate-level netlist,以及對應的 SDF 檔;(3)Physical design,使用 Synopsys IC Compiler 者,請記得將整個 Milkyway Library 等相關的 design database,壓縮成一個檔案。使用 Cadence Encounter 者,請將 Encounter 相關的 design database (包含.enc 檔案與 and .enc.dat 目錄),壓縮成一個檔案。壓縮的檔案格式如下:假設參賽者的 design database 目錄名稱為"your_lib",請執行底下的 UNIX 指令,最後可以得到"your_name.tar"的檔案。

> tar cvf your_name.tar your_lib

在執行以上的指令之前,請確定將你使用的 P&R Tool 儲存後關閉,再執行上述的指令,否則在壓縮的過程會出現錯誤。

表 3

RTL category			
Design Stage	File	Description	
N/A	N/A	Design Report Form	
RTL Simulation	*.v or *.sv	Verilog 或 System Verilog	
	Gat	e-Level category	
Design Stage	File	Description	
Pre-layout	* syn.v	Verilog gate-level netlist generated by Synopsys	
Gate-level	_5y11.v	Design Compiler	
Simulation	*_syn.sdf	Pre-layout gate-level sdf	
Physical category			
Design Stage	File	Description	
	*.tar	archive of the design database directory	
	*.gds	GDSII layout	
P&R	DRC/LVS	不用儲存 DRC/LVS Report 檔案!只需在 Design	
		Report Form 上填寫 DRC/LVS 錯誤總數量即	
	report	可。(目標要做到 0 個錯誤!)	
Post-layout	+	Verilog gate-level netlist generated by Cadence	
Gate-level	*_pr.v	Encounter or Synopsys IC Compiler	
Simulation	*_pr.sdf	Post-layout gate-level sdf	

附錄 E 檔案整理步驟

當所有的文件準備齊全如表 3 所列,請按照以下的步驟指令,提交相關設計檔案,將所有檔案複製至同一個資料夾下,步驟如下:

- 1. 在自己的 home directory 建立一個新目錄,名稱叫做"result"例如:
 - > mkdir ~/result
- 2. 將附錄 D 要求的檔案複製到 result 這個目錄。例如:
 - > cp RFILE.v ~/result/
 - > cp RFILE_syn.v ~/result/

.

3. 在 Design Report Form 中,填入所需的相關資訊。

附錄 F 軟體環境

1. 使用者登入後自動會設定好以下軟體環境:

Vendor	Tool	Executable
Cadence	Virtuoso *1	icfb
	Composer	icfb
	NC-Verilog	ncverilog
	SOC Encounter	encounter
Synopsys	Design Compiler	dv, dc_shell
	VCS-MX	ves
	IC Compiler	icc_shell -gui
	Hspice	hspice
	Cosmos Scope *1	cscope
	Custom Explorer *1	wv
	Laker *1	laker
	Laker ADP*1	adp
	Verdi *1	verdi, nWave, nLint
Mentor	Calibre *3	calibre
	QuestaSim	vsim
Utility	vi	vi, vim
	gedit	gedit
	nedit	nedit
	pdf reader	acroread
	calculate	gnome-calculator, bc -l
	gcc	gcc
	Matlab	matlab

EDA 軟體所須使用的 license 皆已設定完成,不須額外設定

^{*1} 該軟體限定使用 1 套 license

^{*3} 該軟體限定使用 3 套 license

附錄 G 設計資料庫

設計資料庫位置: /usr/cad/icc2018/CBDK_IC_Contest_v2.1

目錄架構

ICC/

tsmc13gfsg_fram/ ICC core library tsmc13_CIC.tf ICC technology macro.map layer mapping file

tluplus/

t013s8mg_fsg_typical.tluplus t13 tluplus file

t013s8mg_fsg.map t13 tluplus mapping file

SOCE/

lef/

tsmc13fsg_8lm_cic.lef LEF for core cell

lib/

slow.lib worst case for core cell

streamOut.map Layout map for GDSII out

SynopsysDC/

db/

slow.db Synthesis model (slow)

lib/

slow.lib timing and power model

Verilog/

tsmc13_neg.v Verilog simulation model

Phantom/

tsmc13gfsg_fram.gds Standard Cell GDSII file

附錄 H 一元二次方程式求根

若解題中需解一元二次方程式,在此提供公式解

$$a y^2 + b y + c = 0$$

其根為

$$y_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

本題依解題方法不同,未必會使用到此式。

Design Report Form

	RTL category	
Design Stage	Description	File Name
RTL	使用之 HDL 名稱	
Simulation	(例如:Verilog、System Verilog)	
RTL	RTL 檔案名稱	
Simulation	(RTL file name)	
	Gate-Level category	
Design Stage	Description	File Name
Pre-layout Gate-level Simulation	Gate-Level 檔案名稱	
	(Gate-Level Netlist file name)	
	Pre-layout sdf 檔案名稱	
Sillulation	Gate-Level simulation, 所使用的	() ns
	CYCLE Time (請確定模擬功能正確)	() ns
	Physical category	
Design Stage	Descritpion	File Name or Value
	使用之 P&R Tool	
	(請填入 IC compiler 或 Encounter)	
P&R	設計資料庫檔案名稱(Library name)	
	(ICC: Milkyway Library Name,	
	Encounter: xxx.enc.dat)	
	DRC 錯誤總數量 (ex: 0 個)	
	LVS 錯誤總數量 (ex: 0個)	
Post-layout	Gate-Level 檔案名稱	
	(Gate-Level Netlist file name)	
	Post-layout sdf 檔案名稱	
	Post-layout Simulation所使用的	
	CYCLE Time (請確定模擬功能正確)	
Gate-level	(請寫出三組模擬中的最大值)Ex: 3ns	
Simulation	Post-layout Simulation Time	
	(Simulation Time, ex: 49992 ns)	
	Time = ?(請寫出三組模擬中的最大值)	
	Power Measure using PT-PX	
	Power = ? (ex: 1.275 mW)	
	(請寫出三組測試樣本中的 <mark>最大值</mark>)	