Tugas Aljabar I

Teosofi Hidayah Agung 5002221132

1. (a) Tentukan semua elemen dari D3.

$$\rho_0 = \begin{pmatrix} 1 \end{pmatrix}$$

$$\rho = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

$$\rho^2 = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$$

$$\mu_1 = \mu = \begin{pmatrix} 2 & 3 \end{pmatrix}$$

$$\mu_2 = \rho \mu = \begin{pmatrix} 1 & 2 \end{pmatrix}$$

$$\mu_3 = \rho^2 \mu = \begin{pmatrix} 1 & 3 \end{pmatrix}$$

$$D_3 = \{\rho_0, \rho, \rho^2, \mu_1, \mu_2, \mu_3\}$$

(b) Buatlah tabel dari D3.

0	$ ho_0$	ho	$ ho^2$	μ_1	μ_2	μ_3
ρ_0	ρ_0	ρ	ρ^2	μ_1	μ_2	μ_3
ρ	ρ	$ ho^2$	$ ho_0$	μ_2	μ_3	μ_1
ρ^2	ρ^2	$ ho_0$	ρ	μ_3	μ_1	μ_2
μ_1	μ_1	μ_3	μ_2	$ ho_0$	ρ^2	ρ
μ_2	μ_2	μ_1	μ_3	ρ	$ ho_0$	$ ho^2$
μ_3	μ_3	μ_2	μ_1	ρ^2	ρ	$ ho_0$

Tabel komposisi

(c) Dari tabel tentukan $(\rho\mu)^{-1}$ dan $(\rho^2\mu)^{-1}.$

$$(\rho\mu)^{-1} = (\mu_2)^{-1} = \mu_2 = \rho\mu$$

$$(\rho^2 \mu)^{-1} = (\mu_3)^{-1} = \mu_3 = \rho^2 \mu$$

2. (D_5, \circ) grup dehidral. $f, g, h, i \in D_4$

$$f = \rho \mu$$

$$g = \rho^3$$

$$h = \rho^2 \mu$$

$$i = \rho^3 \mu$$

(i) Tentukan k dimana

(a)
$$f \circ g = \rho^k \mu$$

$$(\rho\mu)\rho^3 = \rho^k\mu$$

$$(\mu \rho^3)\rho^3 = \rho^k \mu$$

$$\mu(\rho^3 \rho^3) = \rho^k \mu$$

$$\mu \rho^2 = \rho^k \mu$$

$$\rho^2 \mu = \rho^k \mu$$

$$\therefore k = 2$$

$$\rho^3(\rho\mu) = \rho^k\mu$$

$$\rho_0 \mu = \rho^k \mu$$

$$\therefore k = 0$$

 $\textcircled{c} \ \ h \circ i = \rho^k \mu$

$$(\rho^2 \mu)(\rho^3 \mu) = \rho^k \mu$$

$$\rho^2(\mu\rho^3)\mu = \rho^k\mu$$

$$\rho^2(\rho\mu)\mu = \rho^k\mu$$

$$(\rho^2 \rho)(\mu \mu) = \rho^k \mu$$

$$(\rho^{3})(\mu\mu)\mu^{-1} = \rho^{k}\mu\mu^{-1}$$

$$\rho^3 \mu = \rho^k$$

$$\therefore$$
 tidak ada k yang memenuhi

(d) $i \circ h = \rho^k \mu$

$$(\rho^3 \mu)(\rho^2 \mu) = \rho^k \mu$$

$$\rho^3(\mu\rho^2)\mu = \rho^k\mu$$

$$\rho^3(\rho^2\mu)\mu = \rho^k\mu$$

$$(\rho^3 \rho^2)(\mu \mu) = \rho^k \mu$$

$$(\rho)(\mu\mu)\mu^{-1} = \rho^k \mu \mu^{-1}$$

$$\rho\mu = \rho^k$$

 \therefore tidak ada k yang memenuhi

(ii) Tentukan
$$h^{-1}, g^{-1}$$

 $h^{-1} = (\rho^2 \mu)^{-1}$
 $= (\mu)^{-1} (\rho^2)^{-1}$
 $= \mu \rho^2$
 $= \rho^2 \mu$
 $g^{-1} = (\rho^3)^{-1}$
 $= \rho$

3. $f, g \in S_7$ dimana

$$f = \begin{pmatrix} 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 5 & 7 & 6 \end{pmatrix}$$

 $g = \begin{pmatrix} 2 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 4 & 7 \end{pmatrix}$

Nyatakan hasil berikut dalam komposisi sikel yang saling asing.

(a)
$$f \circ g$$

 $\begin{pmatrix} 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 5 & 7 & 6 \end{pmatrix} \circ \begin{pmatrix} 2 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 4 & 7 \end{pmatrix}$
 $= \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 \end{pmatrix} \begin{pmatrix} 3 & 7 \end{pmatrix} \begin{pmatrix} 5 \end{pmatrix}$
 $= \begin{pmatrix} 2 & 4 & 6 \end{pmatrix} \begin{pmatrix} 3 & 7 \end{pmatrix}$

ⓑ
$$g \circ f$$

 $(2 \quad 3 \quad 5) (1 \quad 4 \quad 7) \circ (1 \quad 3 \quad 4) (2 \quad 5 \quad 7 \quad 6)$
 $= (1 \quad 5) (2) (3 \quad 7 \quad 6) (4)$
 $= (1 \quad 5) (3 \quad 7 \quad 6)$

© Apakah $f \circ g = g \circ f$? Tidak, karena fakta bahwa sikel-sikel dalam f dan g tidak saling asing, sehingga dapat dilihat dari ⓐ dan ⓑ bahwa $f \circ g \neq g \circ f$.