Al Methods Coursework

ANN Implementation and Modelling

Al Methods - Coursework

- 20%
- Given out week 2
- Lab sessions week 5
- Due week 8
- Submit either Word / PDF files as many as you need. Eg program listing in one file, report in another

Data Set – River Ouse

January 2021

Data Set

Data Set

	Flow - Cumecs				Rainfall - mm			
	Crakehill	Skip Bridge	Westwick	Skelton	Arkengarth dale	East Cowton	Malham Tarn	Snaizeholme
01/01/1993	10.4	4.393	9.291	26.1	0	0	0	4
02/01/1993	9.95	4.239	8.622	24.86	0	0	0.8	0
03/01/1993		4.124	8.057	23.6	0	0	0.8	0
04/01/1993				23.47				61.6
0-7 017 1999								

1993 – 1996 (approx. 1460 data points)

Stages

- 1) Appropriate data pre-processing of the supplied data set;
- 2) Implementation of the algorithm in an appropriate language;
- 3) Documentation and commenting of this implementation;
- 4) Appropriate training, configuration and weight adjustment of the ANN model;
- 5) Appropriate evaluation of the chosen ANN;
- 6) Comparison with a simple data driven model such as a simple multiple linear regression model (for example, see LINEST in Excel).
- 7) A report detailing the above process and discussing the evaluation of the model.

Language

- You should NOT use numerical computing environments (such as MATLAB) or pre-written neural network libraries (although other libraries, for example mathematical functions, are acceptable).
- Typical languages you could use would be Python, Java, C#, C++, or C.
- I am NOT running your program. I need to see the code listing; and I can see if the program works from the results you present. No results means very few marks for the program as I don't know if it works or not.

Marking Scheme

- 1. Data pre-processing (including cleansing and data splitting, identifying predictors) 15%;
- 2. Implementation of the MLP algorithm (including modifications / improvements) 35%;
- 3. Training and network selection 20%;
- 4. Evaluation of final model (including comparisons between different modifications to the algorithm) 20%;
- 5. Comparison with another data driven model 10%;

