

Robótica Móvel

Locomoção – Conceitos e Mecanismos

Prof. Douglas G. Macharet douglas.macharet@dcc.ufmg.br

Introdução

Introdução

Navegação

- Tarefa de mais alto nível
- Planejamento (Decisões) → Atuação
- Conhecimento (Percepção) e entendimento do mundo

Locomoção

- Tarefa de <u>baixo nível</u> que permite realizar a navegação
- Interação física entre o robô e o ambiente
 - Forças e os mecanismos e atuadores que as geram

Introdução

- Um robô móvel precisa e utiliza diferentes mecanismos de locomoção para mover-se livremente por todo o ambiente
- Projetados de acordo com o ambiente (e tarefa)

Terrestres Aéreos Aquáticos

- Diferentes formas de se movimentar
 - Aspecto importante ao se escolher/projetar o robô
- Exemplos
 - Andar, Correr, Pular, Deslizar, Nadar, Voar, ...
- Inspiração principalmente na natureza

Locomoção Natureza

Type of motion		Resistance to motion	Basic kinematics of motion	
Flow in a Channel		Hydrodynamic forces	Eddies	
Crawl		Friction forces	— ////////////////////////////////////	
Sliding	A TOPO	Friction forces	Transverse vibration	
Running		Loss of kinetic energy	Periodic bouncing on a spring	
Walking		Loss of kinetic energy	Rolling of a polygon (see figure 2.2)	

Fonte: Introduction to Autonomous Mobile Robots

Locomoção Natureza

- Conceitos da natureza são difíceis de imitar
- Quais os principais mecanismos dos veículos?
 - Rodas e Esteiras
 - Por quê?
- Rolar é um método extremamente eficiente
 - O terreno tem impacto direto nesse aspecto
 - Não encontrado na natureza. Quem inventou?!

Mecanismo bípede de caminhar

- O sistema de caminhada de um bípede pode ser aproximado por um polígono rolante, com lados de comprimento igual ao tamanho do passo
- ullet Quanto menor o tamanho do passo fica, mais o polígono tende a um círculo de raio l (perna)
- Vantagens/Desvantagens
 - Transposição de obstáculos maiores
 - Sistema mecânico mais complexo
 - Maior gasto energético

Selecionando um mecanismo (eficiência)

 A eficiência da locomoção com rodas depende muito das características ambientais (terreno)

 A eficiência da locomoção com pernas depende da massa da perna e corporal, as quais o robô deve apoiar em vários pontos durante a movimentação

Fonte: Introduction to Autonomous Mobile Robots

Selecionando um mecanismo (eficiência)

- Escolha de um mecanismo depende
 - Características do ambiente
 - Complexidade e peso do robô
 - Velocidade de operação desejada
 - Limitações no gasto energético
 - Tipo de movimentação desejada

Robôs com Pernas vs. Robôs com Rodas

Fonte: Introduction to Autonomous Mobile Robots

- Número de pernas → Complexidade
 - Quanto menor mais difícil é o equilíbrio
 - Quanto maior mais difícil é o controle
 - Estabilidade <u>estática</u> demanda três pernas

- Ao caminhar as pernas podem perder o contato
 - Como fica a estabilidade?
- Caminhada estática
 - Pelo menos 4 (ou 6) pernas são necessárias
 - Por que? → estabilidade estática
- Andar é um problema difícil
 - Por isso levamos quase um ano aprendendo!
 - O maior ponto de contato (pé) ajuda na estabilidade

Caminhada estática

- Estável sem se movimentar
- Lento e ineficiente
- Seguro

Caminhada dinâmica

- Em constante movimento
- Rápido e eficiente
- Atuação constante

Fonte: Locomotion Concepts (Autonomous Mobile Robots - ETH Zurich)

https://youtu.be/XFXj81mvInc

Robôs com Pernas – Movimentando uma perna

- São necessários pelo menos 2 DoF
 - Movimentos de <u>levantar</u> e girar
 - Uma direção de movimento sem deslizar
- Na maioria dos casos são utilizados 3 DoF

Graus de Liberdade (Degrees of Freedom)

Número de parâmetros independentes que definem totalmente a configuração

Fonte: Introduction to Autonomous Mobile Robots

Locomoção Robôs com Pernas – Marcha

- Em sistemas com várias pernas, é necessário haver algum tipo de coordenação para efetivamente se movimentar
- Uma marcha (gait) é descrita pela sequência de eventos de levantar/descer cada uma das pernas individualmente
- Para um robô com k pernas, existem

$$N = (2k - 1)!$$

possíveis sequências distintas de eventos

Robôs com Pernas – Marcha

Para um robô bípede (k = 2)

$$N = (2k - 1)! = 3! = 3 \cdot 2 \cdot 1 = 6$$

- Possíveis eventos
 - Erguer PD, Erguer PE, Descer PD, Descer PE
 - Erguer PD e PE, Descer PD e PE
- Para um robô hexapoda (k = 6)

$$N = 11! = 39.916.800$$

Locomoção Robôs com Pernas – Marcha

Caminhada estática com 6 pernas

Diferentes marchas (dinâmicas) com 4 pernas

Fonte: Introduction to Autonomous Mobile Robots

Locomoção Robôs com Pernas – Marcha

https://youtu.be/8qV5pdO_X8U

- O desenvolvimento e utilização de robôs com pernas é uma grande área de pesquisa com desafios bem específicos
 - Projeto, mecânica, dinâmica, controle, ...
- Não trabalharemos com esses robôs na disciplina, mas caso tenha interesse pode olhar alguns exemplos no CoppeliaSim

Locomoção Robôs com Rodas

- Solução mais adequada para a maioria das aplicações
- Influência do ambiente
 - Em teoria, deslocamento de $2\pi r$ por rotação (r 'e o raio)
 - Obstáculo maiores que a roda, terrenos macios/escorregadios
- A seleção da roda apropriada depende da aplicação
 - Existem diferentes tipos?!

Robôs com Rodas - Tipos básicos de rodas

- Padrão
 - 2 DoF
 - Rotação em torno do eixo da roda (motriz) e do ponto de contato
- Castor
 - 3 DoF
 - Rotação em torno do eixo da roda, do ponto de contato e do eixo castor

Robôs com Rodas - Tipos básicos de rodas

- Mecanum/Sueca (omnidirecional)
 - 3 DoF
 - Rotação em torno do eixo da roda, dos rolamentos e do ponto de contato
- Esférica
 - Alto grau de mobilidade
 - Atuada diretamente em qualquer direção
 - Difícil de ser executada na prática

Locomoção Robôs com Rodas – Tipos básicos de rodas

Locomoção Robôs com Rodas – Projeto

- Três rodas são suficientes para estabilidade
 - CoG no triângulo formado pelos pontos de contato
- Ao utilizar mais do que três rodas
 - Estabilidade é melhorada
 - Suspensão flexível é recomendada. Por quê?
- Rodas maiores → Obstáculos maiores
 - É necessário um torque maior
 - Mais energia ou modificações na caixa de redução

Legenda

https://youtu.be/6CYGT97i8qU

https://youtu.be/7TCerC3SOqk

Locomoção Robôs Aéreos

Fonte: Introduction to Autonomous Mobile Robots

Locomoção Robôs Aéreos

- Dirigíveis
 - "Estabilidade estática" → deriva pelo vento
 - Grande autonomia (tempo) de voo

Locomoção Robôs com Asas

- Asa fixa
 - Baixa manobrabilidade → restrições
 - Bons para percorrer longas distâncias

Locomoção Robôs com Asas

- Asa rotativa
 - Alta manobrabilidade / Voo pairado
 - Baixa autonomia (tempo) de voo

Locomoção Robôs com Asas

- Bio-inspirados
 - Difíceis de serem construídos e controlados
 - Baixa autonomia (tempo) de voo

Locomoção Robôs Aéreos

Table 2.2 Flying principle comparison (1 = Bad, 3 = Good)

	Airplane	Helicopter	Bird	Autogiro _	Blimp
Power cost	2	1	2	2	3
Control cost	2	1	1	2	3
Payload/volume	3	2	2	2	1
Maneuverability	2	3	3	2	1
Stationary flight	1	3	2	1	3
Low speed fly	1	3	2	2	3
Vulnerability	2	2	3	2	2
VTOL	1	3	2	1	3
Endurance	2	1	2	1	3
Miniaturization	2	3	3	2	1
Indoor usage	1	3	2	1	2
Total	19	25	24	18	25

Fonte: Introduction to Autonomous Mobile Robots

Mecanismos de locomoção alternativos

HyTAQ: Hybrid Terrestrial and Aerial Quadrotor

Arash Kalantari Matthew Spenko
The Robotics Laboratory
Illinois Institute of Technology
Chicago, IL

https://youtu.be/KbtkpYlbuCw

Mecanismos de locomoção alternativos

https://youtu.be/IY8hpuzZ_78

Considerações finais

- Diferentes aspectos devem ser considerados
- Engenharias Mecânica/Aerospacial/Elétrica
 - Projeto, construção, melhoramento, adaptação, ...
- Não existe a "melhor plataforma"
 - Depende da tarefa, do ambiente, das restrições, ...

