Math 741 Assignment 16 (Quiz)

Arnold Jiadong Yu

April 26, 2019

9.3.2. solution: Let σ_1^2 denoted uncertainty of 30-year fixed and σ^2 denoted uncertainty for ARM, we can formulate the test as following

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$H_1: \sigma_1^2 < \sigma_2^2$$

with $\alpha = 0.10$. Enter the data into calculator and use 2-sample F Test, then

$$n_1 = 8, n_2 = 5$$

$$\bar{x}_1 = 5.375, \bar{x}_2 = 4.625$$

$$s_1 = 0.31339, s_2 = 0.50775$$

$$F_0 = 0.38095, P - value = 0.12548$$

since $P - value = 0.12548 > \alpha = 0.1 \implies$ fail to reject H_0 . In conclusion, there is enough evidence to say that both 30-year fixed and ARM have the same uncertainty.

9.3.3. solution: a) σ_1^2 and σ_2^2 are the variances of the scores of mothers of normal children and scores of mothers of schizophrenic children, then the test can be formulated as following

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

with $\alpha = 0.05$. Enter the data into calculator and use 2-sample F Test, then

$$n_1 = 20, n_2 = 20$$

$$\bar{x}_1 = 3.55, \bar{x}_2 = 2.1$$

$$s_1 = 1.87715, s_2 = 1.55259$$

$$F_0 = 1.46179, P - value = 0.415506$$

since $P - value = 0..415506 > \alpha = 0.05 \implies$ fail to reject H_0 . There is enough evidence to say that both variances are the same. b)

$$H_0: \mu_0 = \mu_1$$

 $H_1: \mu_0 \neq \mu_1$

with $\alpha = 0.05$. Enter the data into calculator and use 2-sample t Test, then

$$n_1 = 20, n_2 = 20$$

 $\bar{x}_1 = 3.55, \bar{x}_2 = 2.1$
 $s_1 = 1.87715, s_2 = 1.55259, s_p = 1.72253$
 $t_0 = 2.66196, P - value = 0.011324(pooled)$

since $P - value = 0.011324 < \alpha = 0.05 \implies$ reject H_0 . Therefore, there is enough evidence to same they have difference means.

9.3.6.(H) solution: Let σ_1^2 and σ_2^2 are the variances of American League teams fans changes and National League teams fans changes, then the test can be formulated as following

$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_1: \sigma_1^2 \neq \sigma_2^2$

let $\alpha = 0.05$. Enter the data into calculator and use 2-sample F Test, then

$$n_1 = 12, n_2 = 14$$

$$\bar{x}_1 = -12.833, \bar{x}_2 = -15.143$$

$$s_1 = 16.5685, s_2 = 19.9687$$

$$F_0 = 0.688444, P - value = 0.541978$$

since $P - value = 0.541978 > \alpha = 0.05 \implies$ fail to reject H_0 . Therefore, they have the same variance. As a result, we can used the pooled two-sample t test.

9.3.9. solution: If $\sigma_1^2 = \sigma_2^2 = \sigma^2$, then

$$\hat{\sigma}^2 = \frac{1}{n+m} \left(\sum_{i=1}^n (x_i - \bar{x})^2 + \sum_{i=1}^m (y_i - \bar{y})^2 \right)$$

$$L(\Omega_0) = \prod_{i=1}^{n+m} \frac{1}{\sqrt{2\pi}\hat{\sigma}} e^{-\frac{1}{2\hat{\sigma}^2} \left(\sum_{i=1}^n (x_i - \bar{x})^2 + \sum_{i=1}^m (y_i - \bar{y})^2 \right)}$$

$$L(\Omega_0) = \left(\frac{1}{2\pi\hat{\sigma}^2} \right)^{(n+m)/2} e^{-\frac{n+m}{2}}$$

If $\sigma_1^2 \neq \sigma_2^2$, then

$$\hat{\sigma}_1^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2, \hat{\sigma}_2^2 = \frac{1}{m} \sum_{i=1}^m (y_i - \bar{y})^2$$

$$L(\Omega) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{1}{2\sigma_1^2} \sum_{i=1}^n (x_i - \bar{x})^2} \cdot \prod_{i=1}^m \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{1}{2\sigma_2^2} \sum_{i=1}^m (y_i - \bar{y})^2}$$

$$L(\Omega) = \left(\frac{1}{2\pi\sigma_1}\right)^{n/2} e^{-n/2} \cdot \left(\frac{1}{2\pi\sigma_2}\right)^{m/2} e^{-m/2}$$

Moreover,

$$\lambda = \frac{L(\Omega_0)}{L(\Omega)} = \frac{\left(\frac{1}{2\pi\hat{\sigma}^2}\right)^{(n+m)/2} e^{-\frac{n+m}{2}}}{\left(\frac{1}{2\pi\sigma_1}\right)^{n/2} e^{-n/2} \cdot \left(\frac{1}{2\pi\sigma_2}\right)^{m/2} e^{-m/2}} = \frac{\sigma_1^{n/2} \sigma_2^{m/2}}{\hat{\sigma}^{(n+m)/2}}$$

Therefore,

$$\lambda = \frac{\left(\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\right)^{n/2}\left(\frac{1}{m}\sum_{i=1}^{m}(y_{i}-\bar{y})^{2}\right)^{m/2}}{\left(\frac{1}{n+m}\right)^{(n+m)/2}\left(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}+\sum_{i=1}^{m}(y_{i}-\bar{y})^{2}\right)^{(n+m)/2}}$$
$$\lambda = \frac{(n+m)^{(n+m)/2}}{n^{n/2}m^{m/2}}\frac{\left(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\right)^{n/2}\left(\sum_{i=1}^{m}(y_{i}-\bar{y})^{2}\right)^{m/2}}{\left(\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}+\sum_{i=1}^{m}(y_{i}-\bar{y})^{2}\right)^{(n+m)/2}}$$

9.3.10. (H) solution: Let $X_1, ..., X_n$ and $Y_1, ..., Y_n$ be independent random samples from normal distributions with means μ_1 and μ_2 and standard deviations σ_1 and σ_2 and unbiased standard deviations estimator S_1 and S_2 . We will derive the λ of $\sigma_X^2 = \sigma_Y^2$ against $\sigma_X^2 \neq \sigma_Y^2$, since for one-sided it is just to change the subscript notation from $\alpha/2$ to α .