Data Mining (Week 1)

dm24s1

Topic 01: Module Overview

Part 03: Module Introduction

Dr Bernard Butler

Department of Computing and Mathematics, WIT.

Exploring Data (bernard.butler@setu.ie) ploring Data 2

Autumn Semester, 2024

TTIMP UP

- Introduction, definitions and context
- Roles, expertise and ethics
- Workflow and process models
- Overview of Machine Learning Algorithms
- Delivery and Assessment
- Resources

1. Module Delivery	3
2. Module Introduction	6
3. Definitions of terms and their relationships3.1. Exercise: Big Data Examples	11 16
4. The Context and History	17
5. Expertise and Roles	26
6. Is the IoT and Big Data always a force for good?	31
7. The DIKW pipeline	35
8. Data Mining Process Models	38
9. Overview of Machine Learning techniques	42

How? — Delivery

Contact hours

• Currently 3 hours of lectures per week.

```
—Tuesday 12:15-13:15 (Room W13)
—Friday 13:15–15:15 (Room E15)
```

- We cover concepts, definitions, examples, etc.
- Lecture objective is to improve understanding of the topic.
- Practical/Lab is used to develop practical experience of an integrated set of topics
- Feel free to ask questions.
- Currently A 1-hour practical/lab session per week for each Group on Tuesday afternoons (Room D04).
 - 13:15-14:15 Group 1 (D04)
 - 14:15-15:15 Group 2 (D04)
 - Labs use python workbooks to define and implement data mining workflows.

(Hardware) Requirements

Use of own (moderately powerful: multi-core CPU, min 8GB RAM) laptop is recommended!

How? — Assessment Structure

> 100% Continuous Assessment

- 90% three data investigations
 - Issued Week 3, submitted end Week 6 (Data Investigation, 30%)
 - Issued Week 6, submitted end Week 10 (Data Investigation, 30%)
 - Issued Week 9, submitted end Week 13 (Data Investigation, 30%)
- 10% Engagement metric, based on class activity and regular moodle quizzes.

These are indicative and might change (in terms of when assignments are issued and their relative weightings)...

1. Module Delivery	3
2. Module Introduction	6
3. Definitions of terms and their relationships3.1. Exercise: Big Data Examples	11 16
4. The Context and History	17
5. Expertise and Roles	26
6. Is the IoT and Big Data always a force for good?	31
7. The DIKW pipeline	35
8. Data Mining Process Models	38
9 Overview of Machine Learning techniques	42

What is the AIM of the module?

Aim, as per Module Descriptor*...

The purpose of this module is to introduce the student to the fundamental concepts and techniques of Data Mining. The student will become familiar with Data Mining approaches (such as prediction, classification, clustering) and their typical solution techniques (methods and algorithms) to datasets...

Translation (Informal Aims)

- Collect observations from a variety of processes, yielding large amounts of data.
- Preprocess this data, selecting relevant features only.
- Use data-intensive analysis techniques to obtain insights.
- Operation of the process analysis results, validate, visualise and refine the process.

^{*}Also, see the A11350 module descriptor for the learning outcomes for a more formal description of this module.

What topics does it contain?

Why study Data Mining?

Machine Learning, Machine Learning, Machine Learning, Artificial Intelligence, Deep Learning, Attractive Career, Attra Attractive Career, Attractive Career, Machine Learning, Machine Lear Learning, Machine Learning, Artificial Intelligence, Artificial Intelli Artificial Intelligence, Artificial Intelligen Intelligence, Artificial Intelligence, Artificial Intelligence, Artificial Intelligence, Deep Learning, Deep Le Deep Learning, Deep L Attractive Career, Attractive Ca Career, Attractive Career, Attractive Career, Machine Learning, Ma Learning, Machine Learning, Machine Learning, Machine Learning, Machine Learning, Machine Learning, Machine Learning, Big Salary, Big Sala

Why are Data Mining (and automation) so important?

• Most common job by state in USA (2014)[†] ...

https://www.npr.org/sections/money/2015/02/05/382664837/
map-the-most-common-job-in-every-state

Why are Data Mining (and automation) so important?

• Most common job by state in USA (2014)[†] ...

 By 2035 (about 10 years from now!) autonomous end-to-end delivery can be achieved.

[†]https://www.npr.org/sections/money/2015/02/05/382664837/
map-the-most-common-job-in-every-state

Why are Data Mining (and automation) so important?

• Most common job by state in USA (2014)[†] ...

 By 2035 (about 10 years from now!) autonomous end-to-end delivery can be achieved.

• Current situation:

Any cognitive task that requires less than 2 seconds to perform can be automated in the short term.

Primary School Teache

Truck Driver

Truck Driver

Truck Drive

Gustomer Service Secretary

Retail Clerk Software Developer

Truck Driver

Farmer

Farme

Truck Driver

Truck Driver

Truck Driver

Truck Driver Truck Drive

Truck Drive

Truck Drive

Truck Driver

Primary School Teacher

Truck Driver

See: Andrew Ng: Why 'Deep Learning' Is a Mandate for Humans, Not Just Machines

https://www.npr.org/sections/money/2015/02/05/382664837/
map-the-most-common-job-in-every-state

1. Module Delivery	3
2. Module Introduction	6
3. Definitions of terms and their relationships3.1. Exercise: Big Data Examples	11 16
4. The Context and History	17
5. Expertise and Roles	26
6. Is the IoT and Big Data always a force for good?	31
7. The DIKW pipeline	35
8. Data Mining Process Models	38
9. Overview of Machine Learning techniques	42
10. Resources for students	53

Selected definitions

IoT: A network of pervasive connected objects able to collect and exchange data from embedded sensors, with the infrastructure and services to support them. (Various)

Big Data: High volume, high velocity, and/or high variety information assets that require new forms of processing to enable enhanced decision making, insight discovery and process optimization. (Gartner 2012)

Data Scientist: can ask the right questions, {generate} and consume the results of analysis of Big Data effectively. (McKinsey 2011)

Artificial Intelligence: the capability of a machine to imitate intelligent human behavior (Webster 2017)

Machine Learning: Branch of computer science {and related fields} that gives computers the ability to learn without being explicitly programmed. (Samuel 1959)

Deep Learning: Use of very large neural networks with many layers of "neurons" that can be trained to generate robust models of their input, whose classification performance scales with the amount of data supplied. (Various)

Relationships between terms

Annotated Relationships between terms!

What is data mining and how does it relate to similar terms?

Operational Definitions

- deriving knowledge from large and/or complex datasets, with guidance from the data scientist
- "Data mining is the study of efficiently finding structures and patterns in large data sets. It draws from and influences the disciples of programming, mathematics/statistics, database management and machine learning."

Primary goals

- From messy and noisy raw data, deriving structure and context
- Applying scalable learning algorithms to these higher value data sets

Secondary goals

- Modelling and understanding the error and other consequences of the modelling process.
- Building data-driven processes, architectures & frameworks: Big Data

Interlude: Examples of Big Data

Exercise

please consider (real world) processes generating Big Data.

Can you come up with 3 examples in 3 minutes?

1. Module Delivery	3
2. Module Introduction	6
3. Definitions of terms and their relationships3.1. Exercise: Big Data Examples	11 16
4. The Context and History	17
5. Expertise and Roles	26
6. Is the IoT and Big Data always a force for good?	31
7. The DIKW pipeline	35
8. Data Mining Process Models	38
9. Overview of Machine Learning techniques	42
10. December for students	52

Prehistory, or before 2007...

Data Generation

- Transactions (bank, retail)
- Activity, e.g., texts
- Basic e-commerce

Data Processing

- Databases, SQL, stored procedures
- Consultants, system integrators
- Proprietary statistical software

- Reporting: looking back
- Descriptive statistics
- Simple plots

The first (batch) wave: 2007–2011

Data Generation

- As before...
- Web activity: comments, etc.
- 360degree view

Data Processing

- As before...
- NoSQL
- hadoop ecosystem (batch analytics)

- As before...
- Personalisation and recommendation
- Predictive Analytics

The second (streaming) wave: 2012–2016

Data Generation

- As before...
- Social Media!
- IoT (early adopters)

Data Processing

- As before...
- Apache Spark
- R vs. python

- As before...
- Data understanding
- Weak AI: assistants, etc.

The third (machine) wave: 2017–2021

Data Generation

- As before...
- Machine-generated (e.g., fake news)
- IoT (mainstream)

Data Processing

- As before...
- Microservices: move function to data
- Decoupled databases with schema-on-read

- As before...
- Deep learning inflection point
- Visualisation

The current (generative) wave: 2022-date

- Traditional ML (big data processing for predicting labels or numbers) becomes mainstream
 - ML skills become expected
 - ML is operationalised by incorporating it in other practices (ML + Devops = MLops)
- Generative AI becomes practical
 - Generative Adversarial Networks (use generated models when training the desired model)
 - Large Language Models for generating textual responses to prompts, e.g., ChatGPT
 - Generate images given textual descriptions, e.g., DALL-E
- AI is beginning to deliver on the promise identified by Alan Turing and others in the 1950s.

Classical versus Deep Learning - overview

Classical learning requires extensive setup before training.

Classical versus Deep Learning - pros and cons

Classical Learning	Deep Learning
Can work well with less data (<10 ⁶ rows, say) Easier to interpret/explain models Training is relatively fast Training requires fewer resources	More training data gives more accuracy Model is opaque and can be fragile Training can require many epochs Training requires massive resources
Accuracy improvement falls off Requires feature engineering (by human) Complex prediction requires complex model	Accuracy can improve with more training data Features are encoded implictly in layers With enough nodes can represent any function

In conditions where one type of learning is weak, the other is often strong.

Emphasis of this module

- This module covers foundations, classical models, some deep learning
- Foundations include EDA, notions of error and variance, training vs test data, ...
- Classical modelling includes feature selection and classical approaches to learning from data
- Neural network (see Data Mining 2) and Deep learning go straight to predicting based on (encoded) data
- Foundations are shared by both classical and deep learning
- Deep learning is ideal for learning from labeled, web-scale big data.
- Day-to-day, classical machine learning is often more suitable.

1. Module Delivery	3
2. Module Introduction	6
3. Definitions of terms and their relationships3.1. Exercise: Big Data Examples	11 16
4. The Context and History	17
5. Expertise and Roles	26
6. Is the IoT and Big Data always a force for good?	31
7. The DIKW pipeline	35
8. Data Mining Process Models	38
9. Overview of Machine Learning techniques	42
10. Decourage for students	52

Drew Conway's 3-set Venn Diagram of Data Science Expertise

Source: http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

Stephan Kolassa's 4-set Venn Diagram of Data Science Expertise

Source: https://datascience.stackexchange.com/a/2406

Gartner suggests the need for a Citizen Data Scientist

Data Scientist vs Data Engineer

Source: https://ryanswanstrom.com/2014/07/08/data-scientist-vs-data-engineer/ Also the traditional roles of Data Analyst and Software Engineer...

_		
	1. Module Delivery	3
	2. Module Introduction	6
	3. Definitions of terms and their relationships3.1. Exercise: Big Data Examples	11 16
	4. The Context and History	17
	5. Expertise and Roles	26
	6. Is the IoT and Big Data always a force for good?	31
	7. The DIKW pipeline	35
	8. Data Mining Process Models	38
	9. Overview of Machine Learning techniques	42
	10. Resources for students	53

Complete the following disadvantages of IoT and Big Data

```
m____s_v_l___
i___t__y _h_f_
d___c_ b__n___
d___l _f __r__c_
b__s
l____ o_ t___s__r___y
```

And those disadvantages are...

mass surveillance identity theft device botnets denial of service bias lack of transparency

Ethical Concerns

- protecting privacy (informed consent; undoing pseudonymisation)
- ensuring transparency of decisions (how was the decision made?)
- breaking cycles of bias (biased data leads to biased results)
- enabling validation (ensuring correct usage of techniques)
- enabling decisions to be challenged (openness and due process)

Outline

_		
	1. Module Delivery	3
	2. Module Introduction	6
	3. Definitions of terms and their relationships3.1. Exercise: Big Data Examples	11 16
	4. The Context and History	17
	5. Expertise and Roles	26
	6. Is the IoT and Big Data always a force for good?	31
	7. The DIKW pipeline	35
	8. Data Mining Process Models	38
	9. Overview of Machine Learning techniques	42
	10. Resources for students	53

The Data to Knowledge Pipeline

Data Filtering

- Clean (drop unwanted observations)
- Summarise (remove observation detail)
- Reduce (remove/transform variables)

Learning

- Derive models
- Validate models
- Analyse discordance

Data - Information - Knowledge - Wisdom

Example of the DIKW chain

- Servers and applications log events in files and/or databases [DATA]
- Collector agents select specific events, in context [INFORMATION]
- Machine learning classifiers learn system behaviour and identify anomalies [KNOWLEDGE]
- Humans and software use this knowledge to prevent future problems [WISDOM]

Note that the DIKW chain is often represented as a pyramid.

Outline

1. Module Delivery	3
2. Module Introduction	6
3. Definitions of terms and their relationships3.1. Exercise: Big Data Examples	11 16
4. The Context and History	17
5. Expertise and Roles	26
6. Is the IoT and Big Data always a force for good?	31
7. The DIKW pipeline	35
8. Data Mining Process Models	38
9. Overview of Machine Learning techniques	42
10. Decourage for students	52

CRoss Industry Standard Process (for) Data Mining

CRISP-DM

CRISP-DM is a high-level iterative process model. It gives much weight to data understanding and preprocessing and involves the data and problem owners from the start (c.f., Agile). It is the best known but predates Big Data, etc.

Sample, Explore, Model, Modify, Assess

>SEMMA

SEMMA is promoted by SAS and takes a more operational view of data mining, using a (statistical) *model-building* metaphor. Business input is essential but largely implicit. It is more concrete than CRISP-DM so it tends to map well to DM tool workflows.

Microsoft Team Data Science Process

TDSP

TDSP is the most detailed process model of the 3. It is much more recent. It is cloud-aware and directly references Azure and other Microsoft technologies. Typically there are two main cycles, one involving the Business, the other involving Deployment. Interestingly, there is a Start and End, so it is more project-focused.

Data Science Lifecycle

Outline

1. Module Delivery	3
2. Module Introduction	6
3. Definitions of terms and their relationships3.1. Exercise: Big Data Examples	11 16
4. The Context and History	17
5. Expertise and Roles	26
6. Is the IoT and Big Data always a force for good?	31
7. The DIKW pipeline	35
8. Data Mining Process Models	38
9. Overview of Machine Learning techniques	42
10. Resources for students	53

The "5 Tribes of Machine Learning"

Tribe	Origins	Learning Algorithm
Symbolists	Logic, Philosophy	Inverse Deduction
Connectionists	Neuroscience Backpropagation	
Evolutionaries	Mathematical Biology	Genetic Programming
Bayesians	Statistics	Probabilistic Inference
Analogizers	Psychology	Kernel Machines

 $Summarised\ from\ Domingos\ (2015)\ "The\ Master\ Algorithm"$

Regression

Definition

Given data comprising a set of independent variables (of any type x) with a set of dependent variables (numeric only y), find the relationship y = f(x) having the maximum likelihood given the available observations $\{x_i, y_i\}$.

Classification

Definition

Given data comprising a set of independent variables (of any type x) with a set of dependent variables (categorical y (labels)), find the relationship y = f(x) having the maximum likelihood given the available observations $\{x_i, y_i\}$.

There are many ways of representing f: a classification tree is shown here.

Clustering

Definition

Clustering is the process of grouping data into classes or clusters, so that objects within a cluster have high similarity with each other but are dissimilar to objects in other clusters. Different similarity measures and/or algorithms result in different cluster arrangements.

Anomaly Detection

Definition

Anomaly detection identifies data points, events, and/or observations that depart from a dataset's normal behavior. Anomalous data can indicate problems, such as fraud, or opportunities, like a surge in demand for a product.

Source: Appl. Sci. 2019, 9, 4018; doi:10.3390/app9194018

Time Series Analysis

Definition

Time series data is a sequence of observations on the values that a variable taken at regularly-spaced time intervals. This data is sequentially correlated and techniques are needed to determine seasonality, trends, anomalies etc.

Source: https://stats.stackexchange.com/q/458491

Association Rules Mining

Definition

Frequent itemset mining looks for associations and correlations among items in large data sets. Associations are expressed as rules and quantified in terms of their support and confidence. The classical example is market basket analysis and the famous rule about buying diapers and beer together. See example transaction data below

TID	Items		Beer	Bread	Milk	Diape	Eggs	Coke
IID	items	T_1		1	1	0	0	0
1	Bread, Milk	¹ 1				0	0	U
2	Bread, Diaper, Beer, Eggs	T_2	1	1	0	1	1	0
3	Milk, Diaper, Beer, Coke	T_3	1	0	1	1	0	1
4	Bread, Milk, Diaper, Beer	T_4	1	1	1	1	0	0
5	Bread, Milk, Diaper, Coke	T_5	0	1	1	1	0	1

5

Recommender Systems

Definition

Collaborative filtering is an extension of item-based association rules mining to consider relationships between users and items. Generally, if two users have similar behaviour and/or preferences, items favoured by one user will also be favoured by the other. This can be used to recommend "new" items to users. Used very commonly on ecommerce websites for cross-selling.

Traditional computing vs. Machine learning

Models transform input(s) to outputs. Example: Compound Interest

Traditional Computing: Implement a known model

- Given input values P = Principal (amount invested), r = interest rate (as percentage) and n = term (number of years invested)
- Output value is $I = P \left(1 + \frac{r}{100}\right)^n P$ is the *compound interest*.
- Note that the model is provided *explicitly* and is programmed as such.
- To validate the implementation of the model: unit testing on specific examples.

Traditional computing vs. Machine learning

Models transform input(s) to outputs. Example: Compound Interest

Traditional Computing: Implement a known model

- Given input values P = Principal (amount invested), r = interest rate (as percentage) and n = term (number of years invested)
- Output value is $I = P \left(1 + \frac{r}{100}\right)^n P$ is the *compound interest*.
- Note that the model is provided *explicitly* and is programmed as such.
- To validate the implementation of the model: unit testing on specific examples.

Machine learning: Derive a model from data

- Given inputs P, r and n and associated compound interest output I, interpreted as before, but the formula for I is not known
- ... with several examples of inputs and associated output (training data)
- We *search* for a model that relates the given inputs to the outputs.
- To validate: use the model to predict the output from previously unseen (test) data.

Comparing the two paradigms

Comparing the two paradigms

Outline

1. Module Delivery	3
2. Module Introduction	6
3. Definitions of terms and their relationships3.1. Exercise: Big Data Examples	11 16
4. The Context and History	17
5. Expertise and Roles	26
6. Is the IoT and Big Data always a force for good?	31
7. The DIKW pipeline	35
8. Data Mining Process Models	38
9. Overview of Machine Learning techniques	42
10. Resources for students	53

Resources

moodle

- URL: Moodle: Data Mining I-26690-[2024-2025]
- Used for all notices, assignment briefs and practical work submissions.

- URL: Data Mining 1 (2024 Semester 1) pages on github.io
- Used for content delivery (lecture notes and labs).

• URL: Slack workspace for comments and Q&A relating to the module.

>Software >

All software used during this module is open source or freely available for non-commercial use (full details given in notes). Primarily

- Anaconda (Python 3.10 and later, 64 bit)
- scikit-learn
- pandas

www.anaconda.com

scikit-learn.org

pandas.pydata.org

Further Reading

Please note that the notes and labs we provide should be sufficient to pass to pass this module, so the books below are intended as *further reading*, not *recommended reading*.

Data Mining, Concepts and Techniques

by Jiawei Han, Michelline Kamber and Jian Pei (Available in the library)

Broad selection of topics, looks at the entire data mining process including how to collect and preprocess data, discusses selected algorithms in depth.

Mining of Massive Data Sets

by Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman (Available as PDF)

Good mix of mathematical rigour and a treatment of the Big Data aspects for data mining at scale.

Python for Everybody: Exploring Data using Python 3

by Charles R Severance (Available as PDF)

Useful summary of basic python concepts and a good introduction to the type of data manipulation can can be performed using core python data structures and idioms.

Python Data Science Handbook

by Jake vanderPlas (Available from website), is both a textbook and a set of freely-available Jupyter notebooks that go into more detail on implementing some of the material in this module using pandas etc.