

Agente Educacional Sérgio M. Dias



# Computação Natural

"Estudar, compreender e aplicar padrões complexos encontrados na natureza"

## **Exemplos:**

Redes neurais Colônia de formigas Algoritmos genéticos



# Redes Neurais Artificiais (RNA)

São técnicas computacionais que apresentam um modelo matemático inspirado na estrutura neural (neurônios) de organismos inteligentes e que adquirem conhecimento através da experiência.



# Neurônio biológico



- 2 No corpo celular, as informações recebidas são processadas e novos impulsos são gerados
- 3 O corpo celular combina os sinais recebidos. Se o valor resultante for acima do limiar de excitação, um impulso elétrico é produzido e propagado para os neurônios seguintes



# Neurônio artificial

- 1 Sinais são apresentados à entrada
- 2 Cada sinal é multiplicado por um número, ou peso, que indica a sua influência na saída da unidade
- 3 É feita a soma ponderada dos sinais que produz um nível de atividade. Se este nível de atividade exceder um certo limite (*threshold*) a unidade produz uma determinada resposta de saída



#### Redes Neurais Neurônio artificial

1 - Um nodo com N entradas (X1, X2, ... Xn)



- 1 Um nodo com N entradas (X1, X2, ... Xn)
- 2 Pesos (W1, W2, ... Wn) nas entradas



- 1 Um nodo com N entradas (X1, X2, ... Xn)
- 2 Pesos (W1, W2, ... Wn) nas entradas
- 3 Soma dos produtos (WiXi)

$$Y = \sum_{i=1}^{n} (Wi * Xi)$$



- 1 Um nodo com N entradas (X1, X2, ... Xn)
- 2 Pesos (W1, W2, ... Wn) nas entradas
- 3 Soma dos produtos (WiXi)
- 4 Aplica função de ativação







- 1 Um nodo com N entradas (X1, X2, ... Xn)
- 2 Pesos (W1, W2, ... Wn) nas entradas
- 3 Soma dos produtos (WiXi)
- 4 Aplica função de ativação



Redes Neurais Neurônio artificial

# Exemplo

"Treinar um neurônio simples para aprender o comportamento de uma porta lógica E (and)"



$$Y = 1$$
 (se X maior ou igual a 1)  
 $Y = 0$  (se X menor que 1)

| A | В | W1 | W2 | Porta E | Y (rede) |
|---|---|----|----|---------|----------|
| 0 | 0 |    |    | 0       |          |
| 0 | 1 |    |    | 0       |          |
| 1 | 0 |    |    | 0       |          |
| 1 | 1 |    |    | 1       |          |

$$Y = 1$$
 (se X maior ou igual a 1)  
 $Y = 0$  (se X menor que 1)

| Α | В | W1  | W2  | Porta E | Y (rede) |
|---|---|-----|-----|---------|----------|
| 0 | 0 | 0.1 | 0.3 | 0       | 0; Y=0   |
| 0 | 1 | 0.1 | 0.3 | 0       | 0.3; Y=0 |
| 1 | 0 | 0.1 | 0.3 | 0       | 0.1; Y=0 |
| 1 | 1 | 0.1 | 0.3 | 1       | 0.4; Y=0 |

$$Y = 1$$
 (se X maior ou igual a 1)  
 $Y = 0$  (se X menor que 1)

| Α | В | W1  | W2  | Porta E | Y (rede) |
|---|---|-----|-----|---------|----------|
| 0 | 0 | 0.8 | 0.3 | 0       | 0; Y=0   |
| 0 | 1 | 0.8 | 0.3 | 0       | 0.3; Y=0 |
| 1 | 0 | 0.8 | 0.3 | 0       | 0.8; Y=0 |
| 1 | 1 | 0.8 | 0.3 | 1       | 1.1; Y=1 |

## Redes Neurais

Neurônio artificial Exemplo



#### **Redes Neurais**

Neurônio artificial Exemplo







# Principais Arquiteturas de RNAs

## Arquiteturas

Muitos problemas do mundo real não podem ser resolvidos através de um único neurônio

Um conjunto de neurônios pode ser interconectado, formando uma rede neural







Redes Neurais Principais Arquiteturas de RNAs

## Quanto ao tipo de conexão

Feedforward, ou acíclica

(a saída de um neurônio na i-ésima camada da rede não pode ser usada como entrada de nodos em camadas de índice menor ou igual a i)



#### Redes Neurais Principais Arquiteturas de RNAs

## Quanto ao tipo de conectividade

Parcialmente conectada ou Completamente conectada





Redes Neurais Principais Arquiteturas de RNAs

### Quanto à estrutura

#### Estática

a estrutura não se altera, ou seja, o número de neurônios, o número de camadas e o grau de conectividade não se alteram

#### Auto-organizável

são redes em que tanto o número de neurônios como o de camadas são dinâmicos

# Processo de aprendizagem

## Aprendizado Supervisionado

Existe um professor que orienta o treinamento para que os pesos da rede sejam ajustados de maneira a gerar uma resposta correta



#### **Redes Neurais**

Processo de aprendizagem Aprendizado Supervisionado

Os algoritmos de aprendizagem procuram encontrar o mínimo global da função de erro da rede neural





# **Aplicações**

### Validação biométrica

Índice de similaridade por reconhecimento facial (https://servicos.serpro.gov.br/datavalid/)





#### Redes Neurais Aplicações

## Reconhecimento de caracteres e objetos





#### Previsão de mercado financeiro





< Exercício com Redes Neurais>



# Obrigado!

Agente Educacional Sérgio M. Dias

sergio.dias@serpro.gov.br | #31 6539

#### Demais agentes educacionais sobre o assunto

Marcelo Pita | marcelo.pita@serpro.gov.br | #81 8794 Gustavo Torres | gustavo.gamatorres@serpro.gov.br | #31 6950