EE 240C Analog-Digital Interface Integrated Circuits

Multistage Decimation Filters

L65

Multistage Decimation Filters

- Decimation filter #2 can be realized with a accumulator rate of 57MHz, shift register, and coefficient ROM
 - A multiplier is not needed
- Multi-rate decimators can achieve the same result with even lower processing cost
- We will:
 - Illustrate how multistage decimation requires substantially lower multiply-accumulate rates than single stage decimation
 - Introduce very specific filter architectures that are specialized just for decimation/interpolation and can further reduce hardware complexity

Multistage Decimation Filters

 In multistage decimation, implement the sharpest transition bands at the lowest sampling frequency

- For our 3MHz audio modulator, we'll decimate by 64 in 3 stages
 - 8X in the first stage
 - 4X in the second stage
 - 2X in the third stage

Multistage Decimation Filters

- Datapath precision is important here
 - Stage 1 has 1-bit input data and doesn't need a hardware multiplier
 - Intermediate rounding operations between stages 1 and 2 and between stages 2 and 3 add quantization noise which must be modeled in a "bit true" fashion
 - Final rounding to the 20-bit ADC output adds negligible noise
- Coefficient precision is also important
 - 24b precision for 135dB stopband attenuation

- In the first pass with synthesize the three stages with the Parks-McClellan algorithm and stick with floating point numbers
 - The results provide an estimate of aggregate multiply accumulate rates
- Each stage will specify 0.0000±0.0033dB ripple from 0-20kHz
 - Passband ripple in the 3 stages may add
 - The goal is a "fair" comparison to filter #2

- Stages 1 and 2 prevent decimation from aliasing noise and tones into frequencies below 27kHz
- Stage 1 stopbands:
 - 375±27kHz, 750±27kHz, 1125±27kHz, 1473-1500kHz
- Stage 2 stopbands:
 - 93.75±27kHz, 160.5-187.5kHz
- Stage 3 stopband: 27–46.875kHz
- For each stage we specify 135dB stopband attenuation

- MATLAB's Parks-McClellan front end doesn't handle lowpass filters like stage 1 very easily
 - The low pass filter we want has a single passband, multiple stopbands, and interspersed don't care bands
- We'll waste zeroes and implement stages 1 and 2 as single-stopband LPFs:
 - Stage 1 stopband 348-1500kHz
 - Stage 2 stopband 66.75-187.5kHz
 - Stage 3 stopband still 27-46.875kHz

- These Parks–McClellan designs yield:
 - Stage 1: Length 57 (21.375MHz)
 - Stage 2: Length 50 (4.688MHz)
 - Stage 3: Length 84 (3.938MHz)
- Multiply-accumulate rates are shown in red above
 - Total multiply-accumulate frequency is 30MHz
 - Exploiting linear phase coefficient symmetry can reduce this to 15MHz
 - The filter #2 design required 57MHz

EE 240C Analog-Digital Interface Integrated Circuits

Comb Filters

Comb Filters

Let's look at the a "rectangular" transfer function,

$$H(z) = \sum_{i=0}^{N-1} z^{-i}$$

$$= 1 + z^{-1} + z^{-2} + z^{-3} + z^{-4} + z^{-5} + z^{-6} + z^{-7} + \dots$$

$$= \frac{1 - z^{-N}}{1 - z^{-1}}$$

- This filter has N-1 evenly spaced zeros on the unit circle, except at z=1 → LPF
- A N=8 rectangular window is the simplest filter candidate for a decimate-by-8 stage 1 design

Comb Filters

- A single comb filter obviously will not meet the specification ...
 but a cascade of K of them might
- The resulting filter is not very good (significant in-band droop), but a "trick" due to Hogenauer leads to an extraordinarily simple implementation

$$H(z) = \left[\sum_{i=0}^{N-1} z^{-i}\right]^{K} = \left[\frac{1-z^{-N}}{1-z^{-1}}\right]^{K}$$
$$= \left[\frac{1}{1-z^{-1}}\right]^{K} \left[1-z^{-N}\right]^{K}$$

Let's see how this looks in hardware ...

Hogenauer Filter, K=5

- The integrators operate at f_{SIN} , the differentiators at f_{SOUT}
- The decimate block throws away N-1 of every N integrator output samples
- z^{-1} at f_{SOUT} is equivalent to z^{-N} at f_{SIN}

Hogenauer K=5 Cascade

Hogenauer Filters

- The Hogenauer 5-cascade doesn't come close to meeting our 135dB antialiasing specification near 375kHz
 - A higher value of K is needed (typically L+1 or more)
- Hogenauer implementations aren't without difficulty
 - The high-speed integrators integrate offsets to infinity and must "roll over" gracefully
 - Word-width requirements grow through the cascade

Ref: Eugene Hogenauer, "An Economical Class of Digital Filters for Decimation and Interpolation", IEEE Trans. Acoustics, Speech, and Signal Processing,

ASSP-29, April 1981.

EE 240C Analog-Digital Interface Integrated Circuits

Other $\Sigma\Delta$ Topics

ΣΔ DACs

- Can build high-SNDR DAC using:
 - Digital interpolator (to increase sample rate by OSR)
 - Digital ΣΔ DAC modulator
 - Often error-feedback sigma-delta modulator
 - 1 bit DAC
 - Low-pass reconstruction filter

IF: Interpolation filter

NL: Noise-shaping Loop

DAC: Digital-to-Analog Converter

LPF: Lowpass Filter

ΣΔ DACs: Error-Feedback Modulator

- Quantize to 1 bit → keep MSB
 Quantization error → LSBs
- $V(z) = U(z) + (1 H_e(z)) E(z)$
- For 1st order loop: $H_e(z) = z^{-1}$ For 2nd order loop: $H_e(z) = z^{-1}(2 - z^{-1})$
- Error-feedback structure not practical for analog $\Sigma\Delta$ ADCs

Multi-Stage $\Sigma\Delta$ ADCs

- Cancel quantization noise of first stage(s) using additional stages
- Issue: noise leakage from analog/digital mismatch

Figur 5.3 A two-stage MASH structure.

Quantization Noise Leakage

- If actual analog STF and NTF do not match digital H:
- $STF_{2a}(z) \neq STF_2(z) = H_1(z)$ $NTF_{1a} \neq NTF_1(z) = H_2(z)$
- Result: $H_{l1}(z) = H_1(z) STF_{2a}(z) H_2(z) NTF_{1a}(z)$ \rightarrow First stage quantization error leakage: $H_{l1}(z) E_1(z)$

2-2 MASH ΣΔ ADC

Continuous-Time $\Delta\Sigma$ ADCs

Continuous-time integrators instead of discrete-time

OTA-RC Integrator using Miller OTA

 Design using impulse invariant transform CT ←→ DT

CT typically lower power compared to DT

Continuous-Time $\Delta\Sigma$ ADC Non-Idealities

- Excess loop delay from quantizer to feedback DAC
 - Comparator needs to time to resolve input
 - Requires loop modifications

- RC time-constant variations $\rightarrow \Sigma \Delta$ loop variations
- Clock jitter sensitivity

Multi-Bit $\Sigma\Delta$ ADCs/DACs

- Multi-bit quantizer & multi-bit feedback DAC
 - Lower quantization with same loop filter & OSR
 - Lower jitter sensitivity in CT loops
 - Smaller feedback steps
- 3-level DAC requires 0.01% matching for -90dB distortion
- Solution
 - Calibration (but aging, drift, package shifts, ...)
 - Digital correction (but aging, drift, package shifts, ...)
 - Mismatch shaping

Mismatch-Shaping for Multi-Bit $\Sigma\Delta$ ADCs/DACs (1/3)

Figure 6.4 Average PSD for a 16-element DAC with 1% element mismatch – no shaping.

Mismatch-Shaping for Multi-Bit $\Sigma\Delta$ ADCs/DACs (2/3)

- Random element selection
 - → removes tones, but does not lower noise floor

Figure 6.5 Average PSD for a 16-element DAC with 1% element mismatch– random selection.

Mismatch-Shaping for Multi-Bit $\Sigma\Delta$ ADCs/DACs (3/3)

16

Element rotation

- Data-weighted averaging
- Shapes mismatch-induced noise floor

Figure 6.7 Example usage pattern and spectrum for rotation.

Bandpass $\Delta\Sigma$ ADCs

- Band-stop NTF instead of high-pass NTF
- Applications: wireless communications; resonant sensors

Figure 11.5 (a) Pole-zero and (b) NTF/STF magnitude plots for an $f_s/6$ bandpass modulator.

Hybrid Oversampling ADCs

Increased quantizer resolution with limited OSR Quantization Error Loop filter Q(z)H(z)X(z) \triangle **Output** Input S/H Quantizer Flash quantizer not efficient for **DAC** higher number of bits **Pipelined** Flash SAR Hybrid design Time-based VCO-based

VCO-based Quantizer

- Free running VCO: quantized value = number of VCO stages changing over T_{clk}
 - Calculated using registers and XOR gates
- K_{VCO} limits linearity
- Thermometer code at output of XOR gates rotates → DEM

VCO-based Quantizer: Noise Shaping

Quantization
 noise is shaped
 → additional order
 of noise shaping

VCO-based Quantizer: Implicit DEM

Thermometer code at output of XOR gates rotates → DEM

Noise Shaping SAR

[Fredenburg 2012]

Incremental ADCs

- Incremental ADC = resettable $\Sigma\Delta$ ADC (& resettable decimation)
 - Multiplexed operation
 - Duty-cycled ©peration

EE 240C Analog-Digital Interface Integrated Circuits

Limits on ADC Power Dissipation

L67

Power Dissipation Trend

Predicting the Trend

- Figures of Merit
- Fundamental Limits
- Practical Limits

ADC Figures of Merit (1)

- Objective
 - Compare performance of different ADCs
- Can use FOM to combine several performance metrics into one single number
- What are reasonable FOMs for ADCs?
- What's the impact of technology scaling?
- Trends and limits?

• Reference: B. Murmann, "Limits on ADC Power Dissipation," in *Analog Circuit Design*, by M. Steyaert, A.H.M Roermund, J.H. van Huijsing (eds.), Springer, 2006.

ADC Figures of Merit (2)

$$FOM_1 = f_s \cdot 2^{ENOB}$$

[R. H. Walden, "Analog-to-digital converter survey and analysis," *IEEE Journal on Selected Areas in Communications*, April 1999]

- This FOM suggests that adding a bit to an ADC is just as hard as doubling its bandwidth
- Is this a good assumption?

Survey Data

[Walden, "Analog-to-digital converter survey and analysis," IEEE J. Selected Areas Comm., April 1999]

ADC Figures of Merit (3)

$$FOM_{W} = \frac{Power}{f_{s} \cdot 2^{ENOB}}$$

[R. H. Walden, "Analog-to-digital converter survey and analysis," *IEEE Journal on Selected Areas in Communications*, April 1999]

- Walden Figure of Merit
- Most widely used FOM
- In typical circuits power ~ speed
 - FOM_w captures this tradeoff correctly
- Power vs. ENOB
 - One additional bit = 2x in power?

ADC Figures of Merit (4)

- In a circuit that is limited by thermal noise, each additional bit in resolution means...
 - 6dB SNR, 4x less noise power, 4x bigger C
 - Power ~ G_m ~ C increases <u>4x</u>
- Even worse: Flash ADC
 - Extra bit means 2x number of comparators
 - Each of them needs double precision
 - Transistor area 4x, Current 4x to maintain current density
 - Net result: Power increases <u>8x</u>
- "Tends to work" because not all power in an ADC is noise limited
 - E.g. Digital power, biasing circuits, etc.

ADC Figures of Merit (5)

```
FOM_3 = \frac{Power}{2 \cdot Conversion Bandwidth}
= "Energy / Nyquist Sample"
= [J/conv.]
```

- Compare only power of ADCs with approximately same SNR or SNDR (ENOB)
- Useful numbers (~state-of-the-art):
 - 10b (~9 ENOB) ADCs: 0.25 ... 1 mW/MHz
 - 12b (~11 ENOB) ADCs: 2 ... 6 mW/MHz

ADC Figures of Merit (6)

$$FOM_{S} = DR(dB) + 10 \log_{10}(\frac{BW}{Power})$$

- Schreier Figure of Merit
- Power vs. ENOB
 - One additional bit = 4x in power
 - Thermal noise limited ADCs
- HF Schreier FoM:
 - SNDR instead of DR: includes distortion

$$FOM_{S,HF} = SNDR(dB) + 10 \log_{10}(\frac{BW}{Power})$$

FOM (ISSCC & VLSI 1998 – 2018)

- Technology-limited at lower SNDR: 100 fJ = 1V 100 fF / conv
- Noise-limited at higher SNDR

FOM (ISSCC & VLSI 1998 – 2018)

- Some improvement over time at low f_{snyq} (1 dB / year)
- Progress at high f_{snyq} driven by technology scaling (2x / 1.6yr)

EE 240C Analog-Digital Interface Integrated Circuits

Fundamental Limits

Fundamental Limits

• Fundamental power limit for a class-B amplifier driving a single capacitor [Vittoz, ISCAS 1990]

$$P = 8 \cdot f_{sig} \cdot CV_{sig}^2 \qquad V_n^2 = \frac{k_B T}{C} \qquad SNR = \frac{0.5 \times V_{sig}^2}{V_n^2}$$

$$\therefore P = 8k_BT \cdot SNR \cdot f_{sig}$$

- Class-A power limit is π times higher
- At $f_{sig} = f_s/2 \rightarrow FOM_S = 195 dB$

Switched Capacitor Circuits

Case 1: 100% Slewing

$$I_{bias} = C \cdot \frac{dV}{dt} = C \cdot \frac{V_{sig}}{T_s / 2} = 4 \cdot C \cdot V_{sig} \cdot f_{sig}$$

$$P = 2 \cdot V_{sig} \cdot I_{bias}$$
 $SNR = \frac{0.5 \times V_{sig}^2}{k_B T/C}$

$$\therefore P = 16k_BT \cdot SNR \cdot f_{sig}$$

Case 2: 100% Linear Settling

$$I_{bias} = C \cdot \frac{dV}{dt} \bigg|_{max} = C \cdot \frac{d}{dt} \bigg|_{max} \left[V_{sig} \left(1 - e^{-t/\tau} \right) \right] = C \cdot \frac{V_{sig}}{\tau}$$

Number of settling time constants: $N = \frac{I_s / 2}{\tau}$

$$\therefore P = 16 \cdot N \cdot k_B T \cdot SNR \cdot f_{sig}$$

- Much worse
 - E.g. N=6.9 for settling to 0.1% precision

Limit Lines

EE 240C Analog-Digital Interface Integrated Circuits

Practical Limits

Discussion

- Orders of magnitude away from limits
- Slope of limit lines is much steeper than fit to experimental data
- What contributes to these large gaps?
 - Must keep in mind that ADCs are not just single capacitor circuits ...
- The following analysis factors in practical considerations
 - Not fundamental, but somewhat unavoidable in today's implementations

Design Space Partitioning

- High SNR
 - Complexity ~1 (e.g. first integrator in sigma-delta
 ADC)
 - Limited by thermal noise
- Moderate SNR
 - Complexity ~Bits (e.g. pipelined ADC)
 - Partly limited by thermal noise
- Low SNR
 - Complexity ~2^{Bits} (e.g. flash ADC)
 - Limited by matching, quantization noise

High SNR SC-Stage (1)

Considerations

- Noise is multiple of k_BT/C (n_f)
- Swing is only a fraction of V_{DD} (α)
- Feedback factor (β)
- g_m/I_D is upper bounded (especially if slewing must be avoided)

High SNR SC-Stage (2)

$$\frac{g_{m1}}{I_{bias}} \le \frac{1}{\beta \cdot V_{sig}}$$

$$\therefore P = 16 \cdot N \cdot n_f \cdot \frac{1}{\alpha} \cdot k_B T \cdot SNR \cdot f_{sig} \cdot max \left(1, \frac{1}{\frac{g_{m1}}{I_{bias}} \cdot \beta \cdot V_{sig}} \right)$$

- Graph on following slide shows result assuming
 - n_f =5, α =2/3, β =0.5, onset of slewing

High SNR SC-Stage (3)

Close to experimental data at high SNDR!

Medium SNR

- Consider two cases
- Pipeline ADC using SC stages
 - Partially limited by thermal noise
- Continuous time G_m-C integrator
 - Limited by distortion

Pipeline ADC

- Theoretical near optimum power scaling
 - Scale capacitance by gain of preceding stage
 - Stage 1 consumes half of total power
 - Adding one bit means power goes up 4x
- Caveat
 - Usually impractical to scale capacitors down to C/2^m

Stage Scaling Example

Number of Amplifiers	13	12	11	10
Stage Capacitances	1	1/4	1/16	1/64
	1/2	1/8	1/32	1/128
	1/4	1/16	1/64	1/128
	1/8	1/32	1/128	1/128
	1/16	1/64	1/128	1/128
	1/32	1/128	1/128	1/128
	1/64	1/128	1/128	1/128
	1/128	1/128	1/128	
	1/128	1/128		
	1/128			
ΣC	2.03	0.54	0.17	0.086
$C_{ m single}$	1/2	1/8	1/32	1/128
Relative Power Pipeline/Single SC Stage (ΣC/C _{single})	4.06	4.32	5.44	11.01

- Example is simplistic, but in line with state-of-the art
 - 10bits ~0.5mW/MSample/s, 12bits
 - ~2mW/MSample/s

Pipeline ADC Limit Line

G_m-C Integrator

$$IM_3 \cong \frac{3}{32} \left(\frac{V_{id,max}}{V_{ov}} \right)^2$$

$$\eta_{cur} = \frac{I_{od,max}}{I_{bias}}$$

$$\eta_{cur} \cong \frac{V_{id,max}}{V_{ov}} = \sqrt{\frac{32}{3}IM_3}$$

- Only a small fraction of bias current can be steered into load
 - E.g. $IM_3 = 60 dB$, $\eta_{cur} = 10\%$

Gm-C Limit Line

Low SNR

Power of matching limited class-B circuit [Kinget, CICC 1996]

$$P = 24 \cdot C_{ox} \cdot A_{VT}^2 \cdot f_{sig} \cdot \left(\frac{V_{sig,rms}}{3 \cdot \sigma_{Vos}}\right)^2$$

- Refined result for flash ADC, assuming
 - Class-A, 1/2 LSB matching with 3σ -confidence, 2^B components, additional E_{dyn} per clock cycle, partial supply usage (α)

$$P = \left(12\pi \cdot \frac{1}{\alpha} \cdot C_{ox} \cdot A_{VT}^2 \cdot 2^{3B} + 2 \cdot E_{dyn} \cdot 2^B\right) \cdot f_{sig}$$

• Example: α =2/3, C_{ox} =15fF/ μ m², A_{Vt} =3mV· μ m, E_{dyn} =60fJ (~10gates in 0.13 μ m CMOS)

End Result

Discussion

- Shown results include only minor assumptions about technology
- Scaling brings some good, some bad news offsetting each other
 - Lower V_{DD}, lower V_{swing}/V_{DD}, ...
 - + Lower E_{dyn} , higher f_t enables moderate/weak inversion operation with high g_m/I_D ,...
- Limit lines won't move much, unless someone hands us a new disruptive technology

EE 240C Analog-Digital Interface Integrated Circuits

Digitally Assisted Analog Circuits

Future Opportunities

- More intelligent ADCs
 - Improved average power dissipation by adapting to instantaneous speed/resolution requirements
- "Minimalistic" ADCs using significantly simpler circuits
 - Analog front–end:
 - Meet noise specification
 - Relax systematic error specs, e.g. distortion
 - Digital compensation of resulting non-idealities
 - Digital post-processing is (within limits) "free" in terms of area and energy

Digital Logic Energy Trend

Mainstream ADC technologies, standard logic library data

ADC/Digital Logic Energy Ratio

Energy Ratio in 2007

• Interpretation for digitally enhanced ADCs (energy centric)

30 4,679 Additional digi	
processing is	
50 37,432 Several tens of	f thousand
gates are "free	; "
90 2,396,045 Use as many can fit	gates as you

Digital Logic Gate Density Trend

EE 240C Analog-Digital Interface Integrated Circuits

ADC Testing

Testing ADCs

- Test equipment
 - Signal source
 - Clock generator
 - Supplies
- Test fixture
- Data acquisition

Signal Source

• Want: SFDR>85dB @ $f_{in} = f_s/2 = 37.5$ MHz

- Harmonic distortion (f>1MHz):
 -35dBc
- Need something better...

- ~ \$40k
- f=100kHz...3GHz
- Harmonic distortion (f>1MHz):
 -30dBc!

Filtering Out Harmonics

 Given HD=-30dBc, we need a stopband rejection > 60dB to get SFDR>90dB

Available Filters

Elliptical Function Bandpass Filters 1kHz to 20MHz

www.tte.com, or www.allenavionics.com

Stopband to Passband Bandwidth Ratios

Series Number	BWR *Stopband At	
Q34	4.0:1	-40dBc
Q40	4.0:1	-40dBc
Q36	10.0:1	-60dBc
Q54	2.5:1	-40dBc
Q70	3.5:1	-60dBc
Q56	3.5:1	-60dBc

- Want to test at many frequencies
 - → Need to have many different filters!

Tunable Filter

www.klmicrowave.com

K&L Model	Frequency Range (MHz)	Passband Insertion Loss	Length Inch/mm	Width Inch/mm	Height Inch/mm
5BT-30/76-5-N/N	30-76	1.3 dB Max	9.80/249	5.38/137	2.75/50
5BT-63/125-5-N/N	63-125	1.3 dB Max	9.80/249	5.38/137	2.75/50
5BT-125/250-5-N/N	125-250	1.3 dB Max	9.80/249	5.38/137	2.75/50
5BT-250/500-5-N/N	250-500	1.0 dB Max	9.80/249	5.38/137	2.75/50
5BT-375/750-5-N/N	375-750	1.0 dB Max	9.80/249	5.38/137	2.75/50
5BT-500/1000-5-N/N	500-1000	1.0 dB Max	9.80/249	5.38/137	2.75/50
5BT-750/1500-5-N/N	750-1500	1.0 dB Max	9.80/249	5.38/137	2.75/50
5BT-1000/2000-5-N/N	1000-2000	1.0 dB Max	7.38/187	2.88/73	2.75/50
5BT-1200/2600-5-N/N	1200-2600	1.0 dB Max	7.38/187	2.88/73	2.75/50

Beware: The filters themselves also introduce distortion

Clock Generator

- The clock signal controls sampling instants which we assumed to be precisely equidistant in time (period T)
 - See earlier lecture for a discussion of aperture uncertainty
- Typically use sine wave and "square up" with inverter chain

Jitter Supression

- Once we have a good enough generator, other circuit and test setup related issues may determine jitter
- Usually, clock jitter in the single-digit picosecond range can be prevented by appropriate design techniques
 - Separate supplies
 - Separate analog and digital clocks
 - Short inverter chains between clock source and destination
- Few, if any, other analog-to-digital conversion non-idealities have the same symptoms as sampling jitter
 - RMS noise proportional to input frequency
 - RMS noise proportional to input amplitude
- So, if sampling clock jitter is limiting your dynamic range, it's easy to tell, but may be difficult to fix ...

Evaluation Board

- Planning begins with converter pin-out
 - Uhps, my clock pin is right next to a digital output ...
- Not "black magic", but requires extreme care
- Key aspects
 - Supply/ground routing
 - Bypass capacitors
 - Coupling between signals
- Good idea to look at ADC vendor datasheets for example layouts/schematics/application notes
 - E.g. Analog Devices AD9235 Data Sheet

One Thing to Remember...

- A converter does not just have one "input"
 - Clock
 - Power supply, ground
 - Reference voltage
- For good practices on how to avoid issues see e.g.
 - Analog Devices Application Note 345:
 "Grounding for Low-and-High-Frequency Circuits"
 - Maxim Application Note 729:
 "Dynamic Testing of High-Speed ADCs, Part 2"

How to Get the Bits Off Chip?

- "Full swing" CMOS signaling works well for $f_{CLK} < 100 MHz$
- But we want to build faster ADCs ...
- Alternative to CMOS: LVDS Low Voltage Differential Signaling
- LVDS vs. CMOS:
 - Higher speed, also more power efficient at high speed
 - Two pins/bit!

Figure 1. LVDS Output Levels

Analog Devices Application Note 586: "LVDS Data Outputs for High Speed ADCs"

Data Acquisition

- Several options:
 - Logic analyzer with PC interface
 - FIFO board, interface to PC DAQ card
 - Vendor kit, simple interface to printer port:

[Analog Devices, High-Speed ADC FIFO Evaluation Kit]

Complete Setup

[Maxim Application Note 729: "Dynamic Testing of High-Speed ADCs, Part 2]