Characterization of external quantum efficiency of multi-junction solar cells

Jing-Jing Li, Swee Hoe Lim, Charles R. Allen, and Yong-Hang Zhang

Center for Photonics Innovation and School of Electrical, Computer and Energy Engineering Arizona State University, Tempe, Arizona 85287, USA

Outline

- Introduction
- Origins of EQE measurement artifacts
- Elimination of EQE measurement artifacts

Quantum efficiency (QE) of solar cells

• QE= # of carriers collected by the solar cell

of photons of a given energy of the incident light

- External quantum efficiency (EQE) vs. internal quantum efficiency (IQE)
- Important for the device design and development
- EQE losses: reflection, parasitic absorption, transmission, and recombination
- Multi-junction (MJ): the degree of current matching

Multi-junction (MJ) solar cell EQE measurement

EQE spectrum of triple junction solar cells

Measurement setup

EQE measurement artifacts of MJ solar cells

Measurement artifacts caused by the coupling effects between subcells

Bias condition

Bias voltage ⇒ shunt effect
Bias light intensity ⇒ luminescence coupling effect

Origins of EQE measurement artifacts

Optical leakage current: incomplete absorption of bias light in the upper subcell

Luminescence coupling current: radiative recombination in the upper subcell

DC bias condition \Longrightarrow subcell operating points

Origins of EQE measurement artifacts

Top subcell wavelength

Middle subcell wavelength Bottom subcell wavelength

Measurement artifacts arise when $i_0 \neq i_{ph}$

Top subcell wavelength	$\frac{i_{_{\mathrm{o}}}}{i_{_{\mathrm{ph}}}} = \frac{\left(r^{_{\mathrm{t}}} / / r_{_{\mathrm{sh}}}^{^{\mathrm{t}}}\right) + \left(\gamma^{_{\mathrm{t,m}}} + \alpha_{_{\mathrm{lk}}}^{^{\mathrm{t,m}}}\right) \left(r^{_{\mathrm{m}}} / / r_{_{\mathrm{sh}}}^{^{\mathrm{m}}}\right) + \left(\gamma^{_{\mathrm{t,m}}} + \alpha_{_{\mathrm{lk}}}^{^{\mathrm{t,m}}}\right) \gamma^{_{\mathrm{m,b}}} \left(r^{_{\mathrm{b}}} / / r_{_{\mathrm{sh}}}^{^{\mathrm{b}}}\right)}{\left(r^{_{\mathrm{t}}} / / r_{_{\mathrm{sh}}}^{^{\mathrm{t}}}\right) + \left(1 + \gamma^{_{\mathrm{t,m}}}\right) \left(r^{_{\mathrm{m}}} / / r_{_{\mathrm{sh}}}^{^{\mathrm{m}}}\right) + \left[1 + \left(1 + \gamma^{_{\mathrm{t,m}}}\right) \gamma^{_{\mathrm{m,b}}}\right] \left(r^{_{\mathrm{b}}} / / r_{_{\mathrm{sh}}}^{^{\mathrm{b}}}\right) + R_{_{\mathrm{L}}}}$
Middle subcell wavelength	$\frac{i_{_{\mathrm{o}}}}{i_{_{\mathrm{ph}}}} = \frac{\left(r^{^{\mathrm{m}}} / / r_{_{\mathrm{sh}}}^{^{\mathrm{m}}}\right) + \left(\gamma^{^{\mathrm{m},b}} + \alpha_{_{\mathrm{lk}}}^{^{\mathrm{m},b}}\right) \left(r^{^{\mathrm{b}}} / / r_{_{\mathrm{sh}}}^{^{\mathrm{b}}}\right)}{\left(r^{^{\mathrm{t}}} / / r_{_{\mathrm{sh}}}^{^{\mathrm{t}}}\right) + \left(1 + \gamma^{^{\mathrm{t,m}}}\right) \left(r^{^{\mathrm{m}}} / / r_{_{\mathrm{sh}}}^{^{\mathrm{m},b}}\right) + \left[1 + \left(1 + \gamma^{^{\mathrm{t,m}}}\right) \gamma^{^{\mathrm{m},b}}\right] \left(r^{^{\mathrm{b}}} / / r_{_{\mathrm{sh}}}^{^{\mathrm{b}}}\right) + R_{_{\mathrm{L}}}}$
Bottom subcell wavelength	$\frac{i_{o}}{i_{ph}} = \frac{\left(r^{b} / / r_{sh}^{b}\right)}{\left(r^{t} / / r_{sh}^{t}\right) + \left(1 + \gamma^{t,m}\right)\left(r^{m} / / r_{sh}^{m}\right) + \left[1 + \left(1 + \gamma^{t,m}\right)\gamma^{m,b}\right]\left(r^{b} / / r_{sh}^{b}\right) + R_{L}}$

Characterization of luminescence coupling strength

Relation between electroluminescence (EL) and luminescence coupling

$$\int \frac{L(\lambda)\lambda}{hc} d\lambda = \frac{\chi}{q} I_{LC} \qquad \chi \text{ is a scaling factor}$$

So the luminescence coupling efficiency is

$$\alpha_{lc} = \frac{dI_{LC}}{dI(D)} = \frac{d\left(q \int \frac{L(\lambda)\lambda}{hc} d\lambda / \chi\right)}{dI(D)}$$

Luminescence coupling effect on EQE

Luminescence coupling current

I.-J. Li, et. al., J. Photovolt. 1, 225, 2011.

Characterization of small signal resistances

Subcell I-V extraction

- $I_{\rm sc}$ - $V_{\rm oc}$ method for the forward biased top two subcells
- Reverse voltage sweep for the reverse biased Ge subcell

Small signal resistance = slope of I-V at the operating point

Origins of EQE measurement artifacts

Optimal bias light intensity

Elimination of EQE measurement artifacts using a pulse voltage bias

Ge wavelength range

InGaAs wavelength range

Elimination of EQE measurement artifacts using a pulse voltage bias

Bias condition

Ge wavelength range

InGaAs wavelength range

$$v_{\text{ac}}^{0} = \frac{v_{_{o,\text{ac}}}^{0}}{R_{_{DC}}} \left[r^{_{\text{t}}} + r^{_{\text{m}}} + \alpha_{_{\text{lc}}}^{_{\text{m,b}}} r^{_{\text{b}}} r^{_{\text{b}}} / (r^{_{\text{b}}} + r_{_{\text{sh}}}^{_{\text{b}}}) + R_{_{AC}} + R_{_{DC}} \right]$$

$$\frac{i_{o}}{r^{t} + r^{m} + (1 + \alpha_{lc}^{m,b}) r^{b} r_{sh}^{b} / (r^{b} + r_{sh}^{b})] + v_{ac}}{r^{t} + r^{m} + (1 + \alpha_{lc}^{m,b}) r^{b} r_{sh}^{b} / (r^{b} + r_{sh}^{b}) + R_{AC} + R_{DC}} v_{ac}^{0} = i_{ph}^{m} \left[\alpha_{lk}^{m,b} r^{t} + (\alpha_{lk}^{m,b} - 1) r^{m} + (\alpha_{lk}^{m,b} - 1) \alpha_{lc}^{m,b} r^{b} r_{sh} / (r^{b} + r_{sh}) \right]$$

Waveforms of EQE and pulse bias voltage

Ge wavelength range

InGaAs wavelength range

The pulse voltage is in phase with the chopper

The pulse voltage is in anti-phase with the chopper

Measurement results

Combined effects of shunt and luminescence coupling

The pulse voltage bias method is susceptible to the variations of subcell characteristics

The DC bias condition should be chosen properly

Conclusions

- EQE measurement artifacts of multi-junction solar cells are caused by the shunt effect and luminescence coupling effect.
- Models are built to analyze the EQE measurement artifacts and methods are developed to characterize them.
- It is demonstrated that the EQE measurement artifacts of the Ge subcells of triple junction solar cells can be minimized using proper voltage and light biases.
- A pulse voltage bias method is developed to eliminate the EQE measurement artifacts. It effectively eliminates the measurement artifacts of the Ge subcells of triple junction solar cells

Acknowledgement

- Science Foundation Arizona (Contract numbers SRG 0339-08)
- Air Force Research Laboratory/Space Vehicles Directorate (Contract number FA9453-08-2-0228)
- National Science Foundation (Contract number 100214)
- Newport Corporation

