

TECHNICAL REPORT

OPERATION DEEP FREEZE 61

MARINE GEOPHYSICAL INVESTIGATIONS

Marine Surveys Division

JUNE 1962

ABSTRACT

Results of marine geophysical research during the U.S. Navy operations in support of DEEP FREEZE 61, 1960-1961, are presented. Observations in areas of the Pacific Antarctic, Antarctic Convergence, and South Atlantic were made from aboard four icebreakers: USS STATEN ISLAND (AGB-5), USS EDISTO (AGB-2), USS GLACIER (AGB-4), and USCGC EASTWIND (WAGB-279). Ships' tracks to, in, and from the Antarctic are given.

U. S. Navy Hydrographic Office personnel recorded 94 oceanographic stations aboard STATEN ISLAND and EDISTO. STATEN ISLAND occupied 31 stations in the eastern Ross Sea (Cape Colbeck area), 43 in the Amundsen-Bellingshausen Seas area, and 5 just south of the Antarctic Convergence. Data from these stations included vertical distribution of observed temperatures, salinities, and dissolved oxygens. Profiles of the observed physical and chemical properties of the water in these areas are presented. EDISTO occupied 15 stations in the western Ross Sea along the Victoria Land Coast in support of an ice prediction program begun on DEEP FREEZE 60. Vertical temperatures and salinities were observed. Densities, dynamic heights, and sound velocities were calculated by electronic computer for all stations.

Water types in the Pacific-Antarctic are discussed. These are identified in the areas of the eastern Ross Sea, Amundsen Sea, and Bellingshausen Sea. A representative station was selected from each area and the physical and chemical properties plotted for comparison.

Dynamic topography charts are presented for the eastern Ross Sea and Amundsen Sea areas. The 200 and 2500 decibar levels were selected as reference levels in the eastern Ross Sea and Amundsen Sea, respectively.

A section just south of the Antarctic Convergence is included with a profile of physical and chemical properties constructed from five oceanographic stations occupied in this area. The vertical structure of the southernmost station in this profile and those in the Amundsen and Ross Seas shows the vast expanse of the Circumpolar Water.

Concentrated bathymetric profiles were recorded in the eastern Ross Sea and three across the South Sandwich Trench with an AN/UQN-1B echo sounder. A discussion and profiles of the data collected across the South Sandwich Trench are included in this report.

The program of geomagnetic measurements aboard STATEN ISLAND was the first extensive shipborne investigation of the earth's magnetic field made in Antarctic waters by the United States. Approximately 11,500 track miles were recorded south of New Zealand. Total intensity data and comparison of magnetic and bathymetric data are presented in several profiles.

Aerial ice reconnaissance and surface ice observations from ships are presented.

A summary and field analysis of 71 bottom sediment samples collected aboard STATEN ISLAND are presented. All samples were transferred to Florida State University for laboratory analysis and publication of resulting data.

FOREWORD

DEEP FREEZE 61 was the seventh consecutive United States expedition in support of Antarctic research. Personnel of the U.S. Navy Hydrographic Office, supported by the National Science Foundation, conducted marine geophysical research from several icebreakers of TASK FORCE 43. Oceanographic studies were made in Ross, Amundsen, and Bellingshausen Seas and in the area of the Antarctic Convergence. Geomagnetic measurements were obtained along USS STATEN ISLAND track and Bathymetric profiles were recorded across the South Sandwich Trench. The analyses and tabulation of data collected are presented in this report.

Rear Admiral, U.S. Navy

Hydrographer

CONTENTS

				Page
1.	INT	RODU	CTION	
	A. B. C.	Summ	ary of Operations	. 1
		2. S 3. D	Cemperatures Salinities Dissolved Oxygen Magnetic Total Intensity	. 5 . 5 . 6
	D.	Metho	ods of Data Presentation	
		2. D	Profiles and Cross Sections	. 6 . 6
	E. F.		cipating Personnel	. 7
П.	oc	EANO	GRAPHY	
	A. B.		r Types of the Pacific–Antarctic Area	. 9
			General	. 10
		b	Temperature	. 17 . 17 . 17 . 18
		3. [Oynamic Topographies	. 18
	c.	Amun	dsen Sea Area	
		1. 0	General	. 21

CONTENTS (Cont'd)

				Page
		2.	Physical Properties	
			a. Temperature	 . 27
		3.	Dynamic Topographies	 . 27
	D.	Bell	ingshausen Sea Area	
		1.	General	 . 28
			a. Temperature	 . 36 . 36 . 36
			nparative Station Profiles	 . 36
		1. 2. 3. 4.	General	 . 41 . 42 . 42 . 44
11.	BAT	HYN	ETRY OF THE SOUTH SANDWICH TRENCH	 . 46
٧.	GEO	AMC	GNETISM	
	A. B. C.	Con	mary of Operations	 . 52 . 52 . 52
٧.	ICE	REC	onnaissance	 . 83
	REF	EREN	ICES	 . 111

APPENDIXES

		Page
A. B.	Oceanographic Station Data	113 207
	FIGURES	
1.	Tracks of Icebreakers During DEEP FREEZE 61	2
2.	Oceanographic Station Locations, DEEP FREEZE 61	3
3.	Oceanographic Station Locations and Bottom Topography, Eastern Ross Sea Area	11
4.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Eastern Ross Sea Area (Stations 6, 9, 17, 20, 25, and 28)	12
5.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Eastern Ross Sea Area (Stations 5, 10, 16, 21, 24, and 29)	13
6.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Eastern Ross Sea Area (Stations 4, 11, and 15)	14
7.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Eastern Ross Sea Area (Stations 2 through 7)	15
8.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Eastern Ross Sea Area (Stations 27 through 31)	16
9.	Dynamic Topographies, Eastern Ross Sea (0- and 50-decibar Surfaces)	19
10.	Dynamic Topographies, Eastern Ross Sea (100- and 150-decibar Surfaces)	20

		Page
11.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Amundsen Sea Area (Stations 51 through 55)	22
12.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Amundsen Sea Area (Stations 45 through 49)	23
13.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Amundsen Sea Area (Stations 49 through 51)	24
14.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Amundsen Sea Area (Stations 42 through 45)	25
15.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Amundsen Sea Area (Stations 54, 58 through 60)	26
16.	Dynamic Topographies, Amundsen Sea Area (0- and 250-decibar Surfaces)	29
17.	Dynamic Topographies, Amundsen Sea Area (500- and 1000-decibar Surfaces)	30
18.	Dynamic Topographies, Amundsen Sea Area (1500– and 2000–decibar Surfaces)	31
19.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Bellingshausen Sea Area (Stations 62, 74 through 76)	32
20.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Bellingshausen Sea Area (Stations 67 through 69)	33
21.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Bellingshausen Sea Area (Stations 68, 71 through 73)	34
22.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Bellingshausen Sea Area (Stations 64, 68, and 70) .	35

		rage
23.	Comparative Temperature–Salinity Plots for Cape Colbeck, Amundsen Sea and Bellingshausen Sea Areas	. 37
24.	Comparative Profiles of Temperature, Salinity, Sigma-t, and Dissolved Oxygen for Cape Colbeck, Amundsen Sea, and Bellingshausen Sea Areas	. 38
25.	Vertical Distribution of Temperature, Salinity, Sigma-t, and Dissolved Oxygen, Pacific-Antarctic Convergence Zone	. 43
26.	Bathymetric and Dynamic Chart of the South Sandwich Islands Area, South Atlantic Ocean	. 47
27.	Bathymetry and Ship Sounding Tracks, South Sandwich Islands Area	. 49
28.	Bathymetric Sections, Tracks A-B and C-D	. 50
29.	Bathymetric Sections, Tracks D-E, F-G, and Possible Movement Along Track A-B	. 51
30.	Magnetic Total Intensity Profiles Along STATEN ISLAND Tracks, Northern Section	. 53
31.	Magnetic Total Intensity Profiles Along STATEN ISLAND Tracks, Southern Section	. 55
32.	Comparative Magnetic-Bathymetric Profiles Across Pacific-Antarctic Ridge ,	. 57
33.	Comparative Total Intensity Chart	. 59
34.	Magnetic Intensity and Bathymetric Profile Between Oceanographic Stations 2 and 3	. 61
35.	Magnetic Intensity and Bathymetric Profile Between Oceanographic Stations 3a and 4	. 62
36.	Magnetic Intensity and Bathymetric Profile Between Oceanographic Stations 4 and 5	. 63

		rage	2
37.	Magnetic Intensity and Bathymetric Profile Between Oceanographic Stations 5 and 6	64	
38.	Magnetic Intensity and Bathymetric Profile Between Oceanographic Stations 7 and 8	65	
39.	Magnetic Intensity and Bathymetric Profile Between Oceanographic Stations 3 and 13	66	
40.	Locations of Magnetic Measurement Profiles Along STATEN ISLAND Tracks North of 45°S	67	
41.	Magnetic Total Intensity Profile, Section A-B	68	
42.	Magnetic Total Intensity Profile, Section B-C	69	
43.	Magnetic Total Intensity Profile, Section C-D	70)
44.	Magnetic Total Intensity Profile, Section D-E	71	
45.	Magnetic Total Intensity Profile, Section F-G	72	
46.	Magnetic Total Intensity Profile, Section H-I	73	3
47.	Magnetic Total Intensity Profile, Section I-J	74	
48.	Magnetic Total Intensity Profile, Section J-K	75	,
49.	Magnetic Total Intensity Profile, Section K-L	76	
50.	Magnetic Total Intensity Profile, Section L-M	77	,
51.	Magnetic Total Intensity Profile, Section M-N	78	3
52.	Magnetic Total Intensity Profile, Section N-O	79	>
53.	Magnetic Total Intensity Profile, Section O-P	80)

				Page
54.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 •	84
55.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	85
56.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	86
57.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	87
58.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	88
59.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	89
60.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	90
61.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	91
62.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	92
63.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	93
64.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	94
65.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	95
66.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	96
67.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	97
68.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	98
69.	Results of Surface Ice Reconnaisso	e, Ross Sea	 	99
70.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	100
71.	Results of Aerial Ice Reconnaissar	e, Ross Sea	 	101
72.	Results of Surface Ice Reconnaisso	e, Ross Sea	 	102
73.	Results of Aerial Ice Reconnaissar	, Ross Sea		103

		Page
74.	Results of Surface Ice Reconnaissance, Ross Sea	104
75.	Results of Surface Ice Reconnaissance, Ross Sea	105
76.	Results of Aerial Ice Reconnaissance, Ross Sea	106
77.	Results of Surface Ice Reconnaissance, Ross Sea	106
78.	Results of Surface Ice Reconnaissance, Ross Sea	107
79.	Results of Surface Ice Reconnaissance, Amundsen Sea	108
80.	Results of Surface Ice Reconnaissance, Bellingshausen Sea	109
81.	Results of Surface Ice Reconnaissance, Bellingshausen Sea	110
	TABLES	
	IADLES	
1.	Summary of Marine Geophysical Observations - DEEP FREEZE 61	4
2.	Surface Temperature Observations	42

I. INTRODUCTION

A. Purpose

Operation DEEP FREEZE 61 (1960–1961) was a continuation of United States support of scientific endeavors in the Antarctic; it was the seventh consecutive year of U. S. Navy Hydrographic Office participation in marine geophysical research in this area. The National Science Foundation supported the scientific effort, the results of which are presented in this report.

Research was conducted during ships' transits to and from the Antarctic and in the Ross Sea, Amundsen-Bellingshausen Seas, South Atlantic Ocean, and the region of the Antarctic Convergence.

B. Summary of Operations

Marine geophysical observations were conducted aboard USS STATEN ISLAND (AGB-5), USS EDISTO (AGB-2), and USS GLACIER (AGB-4). Bathythermograph (BT) soundings were made by USCGC EASTWIND (WAGB-279). Oceanographic stations were occupied by HMNZS ENDEAVOUR along Victoria Land Coast in cooperation with EDISTO.

Tracks made by the icebreakers during survey operations are shown in Figure 1, and locations of marine geophysical stations in the Ross Sea and Amundsen-Bellingshausen Seas, in Figure 2. Basic obervations at these stations consisted of vertical temperature measurements and collection of water, bottom, and biological samples. Also, geomagnetic and bathymetric measurements were made. While underway, between stations, and in transit from one area to another, continuous total intensity geomagnetic profiles and precision bathymetric soundings were recorded. In addition, BT lowerings and ice and meteorological observations were made. Table 1 summarizes these observations by ship.

BT lowerings with 900-foot instruments were scheduled on an hourly basis aboard the four icebreakers and on a 4-hour basis on other ships of the Task Force. Prints of the BT slides and the accompanying weather observations are on file at the National Oceanographic Data Center.

Bottom samples were collected with Phleger and Hydroplastic (PVC) corers. All samples obtained were transferred to the Department of Geology, Florida State University, Tallahassee, Florida, for analyses and publication of the resulting data. The pertinent field data of these samples are summarized in Appendix B.

FIGURE 1. TRACKS OF ICEBREAKERS DURING DEEP FREEZE 61

FIGURE 2. OCEANOGRAPHIC STATION LOCATIONS, DEEP FREEZE 61

TABLE 1. SUMMARY OF MARINE GEOPHYSICAL OBSERVATIONS - DEEP FREEZE 61

	STATEN ISLAND	GLACIER	EDISTO	EASTWIND
Oceanographic Stations	79	0	15	0
Oxygen Stations	79	0	0	0
BT's	875	959	600	929
Miles of Soundings	16,840	15,840	12,000	
Miles of Geomagnetic Obs.	22,377	0	0	0
Miles of Continuous Temperature Obs.	9,700	0	0	0
Sea and Swell Obs.	190			mo no no.
Water Samples for Other Activities	110	0	0	0
Plankton Tows	17	0	0	0
Dredge Hauls	5	1	0	0
Temporal Geomagnetic Obs.	82	0	0.	0
Miles of Mammal Obs.	14,254	0	0	0
Core Samples	71	0	0	0
Miles of Ice Reconnaissance	4,975			540
Surface Water Samples	75	0	0	0

Ice observations were made by a team of five observers assigned for aerial ice reconnaissance by the U.S. Navy Hydrographic Office to the Staff of Commander, Naval Support Forces, Antarctica. In addition, ice observations were made aboard all icebreakers by BT teams, aerographers, and quartermasters.

Meteorological and sea and swell observations were made at intervals of 1 to 3 hours by aerographers assigned to each icebreaker. These data were recorded on standard WBAN forms and forwarded to the National Weather Records Center, Asheville, North Carolina. Surface weather observations also were taken during Nansen cast (Appendix A) and BT lowerings.

Continuous underway soundings by echo sounders were made by all ships. Data taken by STATEN ISLAND have been incorporated into H. O. Charts 6637 (3rd Ed., 14 August 1961), 6633 (2nd Ed., 4 August 1961), and 6617 (1st Ed., 14 August 1961). The first chart is for the area in the vicinity of Cape Colbeck, the latter are for Thurston Island (formerly believed to be a peninsula) area and Eights Coast. All three charts are on a 1:500,000 scale.

Continuous air and sea temperature observations with resistance bulb thermometers were recorded on a 4-channel recorder. These data were taken by STATEN ISLAND enroute San Diego to Portland, Australia; and in the area of the Antarctic Convergence, enroute the Amundsen Sea. The records are on file in the U.S. Navy Hydrographic Office.

C. General Observational Techniques

Nansen bottles, with reversing thermometers attached, were used to observe temperatures and to collect water samples for salinity and dissolved oxygen determinations. The bottles were placed at international standard depths, with additional bottles in the upper layers, where maximum temperature changes occurred, and near the bottom.

Data reported were evaluated and coded for processing by an IBM 7070 computer. Machine computations provided temperature, salinity, and dissolved oxygen interpolation at standard depths, and calculations of sigma-t, anomaly of dynamic depth, and sound velocity ¹. Listings of these data are given in Appendix A.

1. Temperatures

Paired reversing thermometers were used to observe temperatures, and unprotected reversing thermometers in conjunction with observed wire angles were used to determine sample depths. Each unprotected thermometer was paired with a protected thermometer. When paired protected thermometers differed by 0.06°C, or more, the reading from the thermometer considered most reliable, based on its previous history record, was used. The mean maximum temperature difference between paired protected thermometers for all stations was 0.04°C. All reported temperatures are considered accurate to within plus or minus 0.02°C, unless marked doubtful.

2. Salinities

Salinities were determined aboard ship by a salinometer. The salinities from the Cape Colbeck area were determined prior to 5 January 1961; those salinities for the remaining stations were analyzed prior to 28 March. Each sample was subjected to two determinations; if the difference equaled or exceeded 0.01%, a third

¹KUWAHARA, Susumu, Velocity of sound in sea water and calculation of the velocity for use in sonic sounding, Hydr. Rev., v. 16, no. 2, pp. 123–140, 1939.

determination was made. Salinities are considered correct to within plus or minus 0.01%.

3. Dissolved Oxygen

Dissolved oxygen determinations were by a modified Winkler method. Each sample was subjected to duplicate titrations against sodium thiosulfate. If the difference in amount of sodium thiosulfate used exceeded 0.05 ml/l a third determination was made. Dissolved oxygen determinations are considered to be accurate to within plus or minus 0.03 ml/l. The only exception to this was on four of the Convergence stations; on stations 33 through 36, where oxygen values were within plus or minus 0.05 ml/l. All oxygen analyses were completed within four hours after a sample was taken.

4. Magnetic Total Intensity

A nuclear resonance total intensity magnetometer, with the sensing unit towed 500 feet astern, was used to record total intensity. Data measurements were recorded once every two seconds of time on a strip-chart recorder. Total intensity data records were scaled and converted to values in gamma (1 gamma equals 10^{-5} oersted).

Measurements were made while hove-to at each oceanographic station by lowering the sensing unit to a depth of about 400 feet; data recording and processing were similar to the procedures for underway observations.

D. Methods of Data Presentation

1. Profiles and Cross Sections

Selected north-south and west-east cross sections of observed characteristics are presented for all areas surveyed except the Convergence area, where only one line of stations was taken. These characteristics include temperature, salinity, dissolved oxygen, and computed values of sigma-t.

Profiles of corrected regional magnetic gradient are shown along the ship's track. In addition, profiles of magnetic and bathymetric observations for crossings of the Pacific–Antarctic Ridge are presented.

2. Dynamic Topographies

Charts of dynamic topographies were prepared from temperature and salinity station data for the Cape Colbeck and Amundsen Sea areas. These charts depict

general circulation at various levels for these areas.

3. Temperature-Salinity Plots

Plots of temperature and salinity are given for stations in three areas: Cape Colbeck, Amundsen Sea, and Bellingshausen Sea. Four representative stations were selected to demonstrate vertical structure of physical properties.

E. Participating Personnel

The following scientific personnel from the U.S. Navy Hydrographic Office participated in the marine geophysical investigations during DEEP FREEZE 61:

Richard H. Evans	Oceanographer	USS STATEN ISLAND
J. C. France	Oceanographer	USS STATEN ISLAND USS EDISTO
Larry K. Lepley	Civil Engineer	USS STATEN ISLAND USS GLACIER
Donald D. Roberts	Geophysicist	USS STATEN ISLAND
James Q. Tierney	Oceanographer	USS STATEN ISLAND USS GLACIER
Lloyd W. Wilson	Oceanographer	USS STATEN ISLAND

F. Other DEEP FREEZE Publications

REPORT NO.	SHORT TITLE	SHIP(S)
H.O. 16331	Pre-DEEP FREEZE (1954-1955)	USS ATKA
TR-33	DEEP FREEZE I (1955-1956)	USS GLACIER USS EDISTO
TR-29	DEEP FREEZE II (1956–1957)	USS ATKA USS STATEN ISLAND USCGC NORTHWIND USS GLACIER

REPORT NO.	SHORT TITLE	SHIP(S)
TR-77*	DEEP FREEZE III (1957–1958)	USS ATKA USS GLACIER USS BURTON ISLAND USCGC WESTWIND
TR-78*	DEEP FREEZE IV (1958–1959)	USS GLACIER USCGC NORTHWIND USS EDISTO USS STATEN ISLAND
TR-82	DEEP FREEZE 60 (1959-1960)	USS ATKA USS BURTON ISLAND USCGC EASTWIND USS GLACIER

^{*}Final report in preparation; however, data listings are available.

II. OCEANOGRAPHY

A. Water Types of the Pacific-Antarctic Area

The Pacific-Antarctic waters can be divided into two characteristic layers; Antarctic Upper Water, with low temperatures and salinities, and Antarctic Deep Water, with maximum temperatures and salinities and a gradual decrease of these properties to bottom. The boundary between these two layers is readily recognizable by a transition zone, where a rapid increase in temperature and salinity appears over a short-depth interval. According to Deacon, the Antarctic Upper Water can be described briefly as follows: A layer 100 to 250 meters thick is found all around the Antarctic seas. In winter, the water column is practically homogeneous. Temperature increases northward, from -1.9°C in the southern half of the zone, to between 0 and 1°C at the Convergence. In summer, a surface layer, Antarctic Surface Water, is formed, which has a higher temperature and lower salinity than Winter Water due to summer heating and ice melting.

The deeper layer of the Upper Water has been called Antarctic Winter Water by Mosby because this layer has nearly the same characteristics as the previous winter's Upper Water. Winter Water is significant in that it has a low temperature, a salinity with a lower gradient than exists in the transition layers above and below, and a salinity profile that often has a break in it. Below this layer of Antarctic Upper Water, a narrow transition layer with steep positive temperature and salinity gradients rapidly leads into Antarctic Deep Water.

Just south of the zone of strong negative surface temperature gradient, referred to as the Antarctic Convergence, one finds within the Deep Water three water types: Upper Deep Water, Lower Deep Water, and Bottom Water.

Upper Deep Water has a temperature of 2.0°C, or higher, and a salinity around 34.68‰. This Upper Deep Water is found south of the Convergence, just below the Winter Water. It is replaced 125 to 150 miles south of the Convergence by Lower Deep Water, which is undergoing transition to Antarctic Circumpolar Water.

Values of salinity and temperature necessary for water to be identified as Lower Deep Water are: temperatures greater than 0.5°C and a band of maximum salinity slightly greater than 34.7%. These values are the same as those generally assigned to Antarctic Circumpolar Water. Therefore, for purposes of discussion, another restriction must be placed on Lower Deep Water, that of depth. In order for water to be classified as Lower Deep Water within the Antarctic Zone (south of the Convergence), its core of maximum salinity must be at a depth of about 2,000 meters.

With this added criterion, it is seen that Lower Deep Water is present but undergoing a transition south of the Convergence; the band of maximum salinity rises sharply from about 2,000 meters to 400 meters. Here then is where Lower Deep Water becomes Antarctic Circumpolar Water, in a zone of transition about 150 miles wide in a north-south direction.

In order to be identified as Bottom Water, the water must have a temperature less than 0.5° C and a salinity less than 34.7 %. Therefore, Bottom Water is not found in the Pacific–Antarctic area unless depth to bottom is of the order of 3,000 to 4,000 meters.

Thus, in the first 150 miles of the Pacific-Antarctic area, in a north to south direction, three separate water types may be found in Deep Water: Upper Deep Water, Lower Deep Water, which is undergoing transition, and Bottom Water. Beyond this point in a southerly direction there is no Upper Deep Water, and Lower Deep Water becomes the Antarctic Circumpolar Water which will be the only identifiable Deep Water if depths are not great enough for the existence of Bottom Water.

B. Eastern Ross Sea Area

1. General

Thirty-one oceanographic stations were occupied in the eastern Ross Sea from Edward VII Peninsula (Cape Colbeck) northward to approximately 75°S and east-ward to Probable Island (E.D.). Of these, the twelve northernmost stations were in areas with sonic depths greater than 2,000 meters. The remaining stations were in areas with depths less than 1,000 meters except station 30, which was near the ice shelf in Sulzberger Bay, where the depth was 1,136 meters. Stations occupied within a radius of approximately 50 miles of Cape Colbeck had depths less than 500 meters, as did stations 28 and 29 near Guest Island to the east. Stations 2, 3, and 4, north of, and station 13, northeast of, Kainan Bay, were more than 500 meters deep. The 31 stations were occupied during the period 21 to 29 December 1960. A bottom contour chart is presented in Figure 3 based on bathymetric data collected during DEEP FREEZE 61.

Five cross sections were selected to illustrate vertical distribution of physical and chemical properties in the Eastern Ross Sea. These are presented as Figures 4 through 8. They consist of a west-east section of six deep stations (4,000-meter profile), a section over the continental shelf (1,000-meter profile), a section of three stations to the west of Cape Colbeck (1,000-meter profile), and two selected north-south sections representing the line of stations farthest west, south to Kainan Bay and those to the east into Sulzberger Bay. Bottom profiles are from the ship's echo sounding trace and are drawn with five soundings plotted between stations.

10

FIGURE 3. OCEANOGRAPHIC STATION LOCATIONS AND BOTTOM TOPOGRAPHY, EASTERN ROSS SEA AREA

FIGURE 4. VERTICAL DISTRIBUTION OF TEMPERATURE, SALINITY, SIGMA-T, AND DISSOLVED OXYGEN, EASTERN ROSS SEA AREA (STATIONS 6, 9, 17, 20, 25, and 28)

FIGURE 8. VERTICAL DISTRIBUTION OF TEMPERATURE, SALINITY, SIGMA-T, AND DISSOLVED OXYGEN, EASTERN ROSS SEA AREA (STATIONS 27 through 31)

2. Physical Properties

a. Temperature

Figure 4 shows the physical structure of the water column just seaward of the Antarctic continental shelf. The temperature section depicts the thin layer of slightly warmer Surface Water, the wider band of Winter Water with minimum temperatures, a narrow transition layer of rapid temperature increase just above the temperature maximum, and the broad expanse of Circumpolar Water that extends almost to the bottom. The transition layer separating Upper from Deep Water is found at quite uniform depths on all deep stations, as are the depths of maximum temperatures.

Bottom configuration of the shelf, illustrated in Figures 5 and 6, suggests north-south orientation of trenches extending seaward from the Antarctic continent in this area. Limited by station depths, only Upper Water was identified, except at station 24, where the transition layer was entered. If stations had been occupied between 10, 16, and 21, Circumpolar Water may have been found to exist in these trenches. In these two profiles, the existence of a small cold water cell centered at 125 meters at station 11 (<-1.50°C) and a larger one about 30 miles farther north extending eastwardly at stations 16 and 21 (<-1.75°C) were noted. This larger cell was located at depths from 150 to 300 meters. From the circulation pattern of the dynamic charts, these cells may be identified as cross sections of water with a flow toward Kainan Bay from seaward.

Temperature minima, as seen in the two north-south cross sections (Figs. 7 and 8), slope toward bottom from the shelf edge to the coast. Over the shelf, the water generally has a negative thermal gradient from the surface to bottom.

b. Salinity

Salinity sections show Circumpolar Water at the stations north of the 1,000-meter depth contour, with maximum salinities around 800 meters (Figs. 7 and 8). Below this depth, only a slight decrease was noted to bottom. At the stations taken over the continental shelf, salinities increased from surface to bottom and reached values slightly higher than 34.50% on some stations. Surface values at all stations were 34.00% and higher, with values greater than 34.25% observed at several stations.

c. Sigma-t

Isopycnals on the west-east profiles generally slope downward to the east, and on the north-south profiles generally slope downward to the north and east; the easternmost section (Fig. 8) shows a weak gradient.

d. Dissolved Oxygen

On the west-east profiles, oxygen minimum values were found at the bottom on the sections over the continental shelf. The oxygen minimum layer within the Circumpolar Water was located between 500 and 600 meters, just above the depth of the salinity maximum and at about the same depth as the temperature maximum. The north-south profiles show an oxygen minimum layer of less than 4.50 ml/l in a broad zone generally between 400 and 1,200 meters, extending from the north to the continental shelf. This pattern of oxygen distribution provides supporting evidence for the circulation derived by dynamic topography.

3. Dynamic Topographies

In order to draw dynamic height charts (Figs. 9 and 10) of the Eastern Ross Sea area and include data for the majority of stations, it was necessary to select a reference level of 200 decibars. This is not a level of no motion, nor is it a level of oxygen minimum, but it does permit an estimation of circulation in the area. Prior to selecting the 200 decibar level as the reference level, other levels (500, 1000, and 1500 decibars) were used as a reference level. In each case, the same general circulation pattern was apparent; that is, a seaward flow to the east of Edward VII Peninsula, a shoreward flow to the west of Edward VII Peninsula, and a west-to-east flow about 150 miles north of the shoreline. Maximum current speeds were found at the surface which decreased in intensity with depth.

On the west side of the area, a large clockwise circulation is apparent, which probably was induced by combined effects of the eastward flowing Circumpolar Water and the prevailing winds. This current pattern reached to station 7, approximately 165 miles seaward, from the edge of the Ross Ice Shelf and Cape Colbeck and decreased in magnitude with increasing depth. At the 150-decibar level, it extended about 100 miles from the Ross Ice Shelf. Current speeds ranged from 0.3 knot at the surface to 0.1 knot at the 150-decibar surface; not only did the speed decrease to 0.1 knot at this level, but a weak counterclockwise component appeared at the northwest corner of the area.

To the west of Guest Island, a seaward flow is found at all levels with speeds also ranging from 0.3 knot at the surface to 0.1 knot near the bottom. Two components of this flow were noted from the 0- to 50-decibar levels; an eastern component forming a weak clockwise circulation and a western component forming a major counterclockwise current around Cape Colbeck. From the 100- to 150-decibar levels, the apparent flow was to the west as a counterclockwise current. The clockwise circulation weakened and disappeared at these levels.

FIGURE 9. DYNAMIC TOPOGRAPHIES, EASTERN ROSS SEA (0- and 50-DECIBAR SURFACES)

FIGURE 10. DYNAMIC TOPOGRAPHIES, EASTERN ROSS SEA (100- and 150-DECIBAR SURFACES)

The major water transport at all levels in the Sulzberger Bay-Cape Colbeck area appears to be to the west along the Edward VII Peninsula. It flows past Cape Colbeck and merges with the southward moving component of the major clockwise circulation.

It is suggested that the water of the Eastern Ross Sea flows southward against the Ross Ice Shelf, where the near-surface water is deflected to the west and the deeper water flows under the shelf, possibly around the southern tip of Roosevelt Island, and emerges well to the west. An examination of the dynamic analysis charts (Figs. 9 and 10) supports such a postulation for the southward-flowing portion of this circulation.

C. Amundsen Sea Area

1. General

The Amundsen Sea lies between Thurston Island (formerly believed to be a peninsula) on the east and Mount Siple 400 miles to the west. The area surveyed was about 250 miles north of the Amundsen Sea coastline between 105° and 120°W. Twenty-four stations were occupied during the period 27 January to 5 February 1961, most of which were taken in 7/10 to 9/10 rotten pack ice.

The vertical distribution of observed physical and chemical properties is shown for the Amundsen Sea area stations in Figures 11 through 15. One west-east cross-section is presented for stations to the north (Fig. 11) and one for stations to the south of 70°S (Fig. 12). Three north-south cross-sections are given (Figs. 13 through 15). Bottom contours in these sections are based on wire soundings taken on station.

2. Physical Properties

a. Temperature

Temperature cross-sections show the thin layer of Antarctic Surface Water with Winter Water immediately beneath, and the rapid transition to Antarctic Circumpolar Water. Bottom Water with temperatures less than 0.4°C was present at several stations.

Maximum temperatures were between 1.50° and 2.00°C, except at the two southernmost stations, 43 and 42, where temperatures were slightly colder than 1.50°C. Surface temperatures varied widely ranging from 0.23° to -1.77°C; a subsurface minimum (Winter Water) was observed in the upper 100 meters at all stations. Between 100 and 200 meters, a rapid temperature increase, (the transition zone into Circumpolar Water), is indicated by the heavy concentration of isotherms. Farther south, this transition zone was found at greater depths. Below the temperature maximum, a gradual decrease to bottom temperatures of around 0.4°C was observed.

FIGURE 15. VERTICAL DISTRIBUTION OF TEMPERATURE, SALINITY, SIGMA-T, AND DISSOLVED OXYGEN, AMUNDSEN SEA AREA (STATIONS 54, 58 through 60)

b. Salinity

The range of surface salinities in this area was from 32.38 to 34.00%. In the upper 200 meters, salinities increased rapidly to 34.50, with 34.00 through 34.25% appearing in the area of minimum temperatures. Salinities continued to increase with depth to a maximum of about 34.74% at approximately 800 meters and decreased to a minimum of 34.68% near the bottom.

c. Sigma-t

Surface sigma-t values less than 27.00 were observed at the stations east and north of station 49; to the west and southwest, values were slightly greater. Within the upper 100 meters, values increased rapidly to 27.50 at all stations. The 27.75 isopycnal occurred between 200 and 400 meters, and below this, sigma-t values increased slightly to maximum values of 27.87 near the bottom. Sigma-t values appeared to be very uniform horizontally throughout the area.

d. Dissolved Oxygen

Dissolved oxygen content in the surface water was greater than 7.00 ml/l at all stations, except stations 42, 43, and 44 (Fig. 14). Below the surface, oxygen values decreased rapidly to about 400 meters, where minimum values of about 4.00 ml/l were observed. At stations 50, 51, and 55, oxygen minima were less than 4.00 ml/l. Below this minimum layer, oxygen content increased to the bottom with values approaching 5.00 ml/l.

3. Dynamic Topographies

Considering the oxygen minimum layers as indicative of levels of no motion, a plot of oxygen minimum values shows the levels of no motion to be in the vicinity of 350 to 800 meters in the western portion of the area surveyed, and to slope downward to the south. In the eastern portion, depths of minimum oxygen varied. This is an area of strong counterclockwise circulation, where considerable differences are found in dynamic heights at the same standard depths between any two stations, especially below 500 meters.

Because of the amount of variability between eastern and western sectors of the area, the reference level was selected as the greatest depth reached at most of the stations, which in this case was 2,500 meters. As a check, dynamic height charts were plotted using different reference levels, and they depicted a similar circulation pattern.

The stations (38 through 61) upon which these calculations are based were taken south of the Convergence zone and north of the Divergence zone. They are located in the transition zone between the surface West Wind Drift to the north and East Wind Drift to the south. These stations were taken within a 10-day period, from 27 January to 5 February 1961.

A dominant feature at all surfaces is the strong counterclockwise circulation in the eastern side of the area (Figs. 16 through 18). The 2,000-fathom line passes generally through the western edge of this cell, with greater depths to the north and east. This cell increases in size from the bottom to the 250-decibar surface. From this surface to the zero-decibar surface, it is not as distinct and is displaced slightly to the northwest.

In the western sector of the area, another cell with a counterclockwise circulation is apparent at all levels. This cell increases in magnitude from the surface to the 250-decibar surface. Below this, it decreases to the 500-decibar surface, and increases to a maximum at the 1000- and 1500-decibar surfaces. This counterclockwise circulation then decreases to a small cell at the 2000-decibar surface.

Between these two major cells, a clockwise circulation is evident at all levels. In contrast to the two major counterclockwise cells, this clockwise circulation decreases from the surface to the 1500-decibar surface, where it appears as a very small cell. From this level to the 2000-decibar surface, it increases to its maximum size.

South of these three cells, a southeasterly transport is evident at all levels west of approximately 109°W. This transport then shifts to the northeast and continues to the easternmost sector of the area.

D. Bellingshausen Sea Area

1. General

The Bellingshausen Sea is located between Thurston Island on the west and Palmer Peninsula on the east. The eighteen stations occupied north of Thurston Island and in western Bellingshausen Sea were in relatively shallow water; station 79, located between the Amundsen and Bellingshausen Seas, was the deepest in the area, with a depth of 2,300 meters. Station 68 was taken at the edge of heavy impenetrable shorefast ice. The period of observation was 7 February to 9 March 1961.

Vertical distribution of observed physical and chemical properties in the Bellings-hausen Sea is presented in four cross-sections, Figures 19 through 22. Bottom contours in these sections were constructed from wire soundings at the stations.

FIGURE 16. DYNAMIC TOPOGRAPHIES, AMUNDSEN SEA AREA (0- and 250-DECIBAR SURFACES)

FIGURE 17. DYNAMIC TOPOGRAPHIES, AMUNDSEN SEA AREA (500- and 1000-DECIBAR SURFACES)

FIGURE 18. DYNAMIC TOPOGRAPHIES, AMUNDSEN SEA AREA (1500- and 2000-DECIBAR SURFACES)

2. Physical Properties

a. Temperature

These cross-sections show a subsurface minimum (Winter Water) with temperatures colder than -1.50°C in the upper 100 meters. Below this minimum layer, temperature increased with depth to the bottom, where maximum temperatures were observed. A subsurface layer of slightly warmer water existed above 50 meters at a number of stations north of Eights Coast.

b. Salinity

The most rapid increase in salinity occurred in the upper 75 meters in the area of transition from the thin layer of Surface Water to Winter Water. Salinity increased to a value of 34.00‰. The northwest-southeast cross section (Fig. 21) shows surface salinities progressively decreasing southwardly from 33.90‰ at station 73 to 32.20‰ at station 68. Horizontal distribution of salinities otherwise were generally uniform.

c. Sigma-t

Isopycnals closely paralleled the isohalines in all cross–sections. At stations 71, 72, and 73 (Fig. 21), surface sigma–t values were greater than 27.00 and were less than 27.00 at station 68 and all stations in Figures 19, 20, and 22. Sigma–t values as high as 27.81 were observed near the bottom on the deepest stations.

d. Dissolved Oxygen

Dissolved oxygen content decreased with depth throughout the area. The greatest surface oxygen variation occurred at stations 68 through 73 (Fig. 21), where a value of 9.02 ml/l was observed at station 68 and 6.78 ml/l at station 73. Oxygen values decreased to less than 4.5 ml/l near the bottom at the deepest stations.

E. Comparative Station Profiles

Temperature-salinity plots for stations in the areas surveyed during DEEP FREEZE 61 were prepared and are shown in Figure 23. From these plots, a representative station was selected from each area for illustration and comparison. Profiles of the observed physical and chemical properties, Figure 24, were prepared for each of the representative stations.

COMPARATIVE TEMPERATURE-SALINITY PLOTS FOR CAPE COLBECK, AMUNDSEN SEA AND BELLINGSHAUSEN SEA AREAS FIGURE 23.

FIGURE 24. COMPARATIVE PROFILES OF TEMPERATURE, SALINITY, SIGMA-T, AND DISSOLVED OXYGEN FOR CAPE COLBECK, AMUNDSEN SEA AND BELLINGSHAUSEN SEA AREAS

From these profiles, two distinct water layers in the Antarctic region are apparent: Antarctic Upper Water above 200 meters, and Antarctic Deep Water which extends to the bottom. Within the Antarctic Upper Water, Antarctic Surface Water and Antarctic Winter Water can be distinguished. Separating these two water masses is a transition layer identified by steep positive salinity and density gradients. Below the Antarctic Winter Water, a second transition layer exists, as defined by the temperature profiles, where a steep positive gradient is found. This layer lies between Upper Water and Deep Water.

Station 27 is located in the Cape Colbeck area (75°31'S, 152°08'W). Surface water, with temperatures about -1.55°C and salinities 34.00%, extended to 25 meters. Below this, a transition layer occurred to 75 meters, where a minimum temperature was observed. From 25 to 75 meters, salinities increased rapidly to 34.27% and only slightly thereafter to 200 meters. Below 200 meters, a transition from Upper to Deep Water occurred, with a sharp positive temperature gradient to 450 meters. Maximum temperature of 1.45°C was observed about 600 meters. From this level to the bottom, temperatures decreased aradually to less than 0.5°C. The salinity profile shows a weaker positive gradient between 250 and 500 meters, and a maximum salinity of 34.74%, about 800 meters. From 800 meters to the bottom, salinity decreased slightly to a value of 34.70%. The sigma-t profile in the upper 600 meters closely parallels that for salinity, and below this gradually increases to the bottom. Sigma-t values ranged from 27.38 at the surface to 27.86 at about 3,000 meters. Dissolved oxygen content decreased from greater than 8,00 ml/l at the surface to a minimum of 4.00 ml/l at about 600 meters. Below 600 meters, oxygen values increased slightly to 4.67 ml/l around 3,000 meters near the bottom.

Station 49 was occupied in the Amundsen Sea area (70°08'S, 111°30'W). The temperature profile shows a surface value of -1.75°C, a decrease to about 10 meters, and then a slight increase to -1.65°C at 75 meters. The sharp positive gradient of transition occurred between 75 and 250 meters, the lower limit being nearer the surface than at station 27 in the Cape Colbeck area. Temperature maximum was 1.68°C at 400 meters. Below this, the curve follows the same pattern as observed at station 27 but with temperatures approximately 0.2°C higher to about 2,200 meters. From this level, temperatures approached those observed at station 27 and became identical near the bottom. Salinities decreased from the surface to 10 meters, where 33.62% was observed, and then increased to 34.14% at 50 meters. Between 50 and 100 meters, a positive gradient was still evident but to a lesser degree than above and below these depths. Maximum salinity of 34.73% occurred at about 600 meters; below this level to the bottom, salinity values were nearly identical at the four selected stations. Sigma-t values ranged from 27.08 at the surface to 27.86 near the bottom. Oxygen values were about 7.25 ml/l at surface, increased to 7.30 in the upper 25 meters and decreased to a minimum of 4.15 ml/l about 300 meters. Below this, they paralleled those observed at station 27.

Station 72, located in the Bellingshausen Sea (71°29'S, 094°00'W), had a surface temperature of -1.80°C, decreasing slightly below surface and increasing again to -1.70°C at 75 meters. Another decrease to -1.80°C was observed at 125 meters. Below this a positive gradient, as noted on the other stations, but with a less pronounced slope, occurred to maximum sampling depth of 525 meters. Water temperatures were colder than in the Amundsen Sea area. The salinity profile is similar to those at stations 27 and 49, but with less prominent positive gradients at the transition zones. Surface salinity was 33.76 and 34.69%, at 525 meters. Oxygen values in the upper 100 meters were less than those at corresponding depths in the Amundsen Sea and Cape Colbeck areas but followed the same general pattern. Below this, a lesser gradient was observed to 525 meters, where the profiles for all stations merge. Surface oxygen was 7.02 ml/1.

Station 79 was selected for comparison because of its location at 70°51'S, 101°54'W, between the Amundsen Sea and Bellingshausen Sea stations and because of its intermediate depth. A nearly isothermal layer extended to 100 meters with a surface temperature around -1.80°C. Below this was found the same positive temperature gradient as seen at stations 27 and 49, but this section of the profile plotted between the two stations. Below 500 meters, temperatures were 0.1 to 0.2°C colder than those of corresponding depths on station 27, and about 0.5°C colder than those of station 49 in the Amundsen Sea. Near-bottom temperature at 2,300 meters was 0.45°C. Salinities in the upper 50 meters were lower at this station than at the other three stations. A surface value of 33.29‰ was recorded. From 50 meters to about 600 meters, salinity values plotted between those for the Amundsen and Bellingshausen Seas; below 600 meters to the bottom salinity values were the same as those for the other representative stations. Oxygen values followed the same pattern in the upper 550 meters and below this were slightly higher than at stations 27 and 49.

In summary, Antarctic Surface Water with temperatures below 0°C was observed in the upper 25 meters, with a slight temperature decrease just below the surface. This water mass was nearly isosaline in the Cape Colbeck area and north of Thurston Island; salinities decreased slightly immediately below the surface in Amundsen and Bellingshausen Seas. The seasonally lower surface salinities are attributed to summer ice melt, which also resulted in low surface densities, in some cases a sigma-t value less than 27.00. Dissolved oxygen values were high, ranging between 7.00 and 9.00 ml/l.

Below the Antarctic Surface Water the transition layer was located between the variable Surface Water and the more homogeneous Winter Water. This is most noticeable in the salinity and oxygen profiles by the steep positive salinity and negative oxygen gradients between 25 and 75 meters. This transition layer overlays Antarctic Winter Water with slight temperature variations in the different areas, while the lower limits of this water mass varied between 75 meters in the Amundsen Sea area to

200 meters in the Cape Colbeck area. Temperatures were about -1.75° C, and salinity values ranged from 34.00 to 34.40%. Oxygen content appeared quite uniform, ranging from 6.25 to 6.65 ml/l.

Below the Antarctic Winter Water, a second transition layer extended to the Antarctic Deep Water. This was indicated by a steep positive gradient in the temperature profile and a steep negative gradient in the oxygen profile. The depth at which this transition layer was found varied considerably in the different areas. North of Amundsen Sea, about 70°S, this layer was between 100 and 200 meters; whereas, in the Cape Colbeck area, about 75°S, it was observed at greater depths, between 250 and 450 meters. Between these two latitudes, it was located at intermediate depths. The temperature increase for all areas was approximately 2.5°C, from about -1.50 to 1.00°C; the salinity increase was of the order of 0.5‰, from 34.20 to 34.65‰; and the oxygen decrease was approximately 2 ml/l, from around 6.3 to 4.2 ml/l.

Immediately below this transition layer were found maximum temperature, salinity, and minimum oxygen values. This Antarctic Deep Water is referred to in this report as Antarctic Circumpolar Water, with the area of maximum temperatures and minimum oxygen concentrations identifying its core. As shown by the t-s and vertical distribution plots, maximum temperatures for the different areas vary from 1 to 2°C, generally being about 1.68°C at 400 meters in the Amundsen Sea area, 1.45°C at 600 meters in the Cape Colbeck Area, and about 1.10°C at 500 meters in the Bellingshausen Sea area. Maximum salinities, ranging between 34.70 and 34.75‰, were found somewhat deeper, in the vicinity of 800 meters. Minimum oxygen values were slightly greater than 4.00 ml/l at about the same depth as maximum temperatures. Between 500 meters and bottom, little change in observed physical and chemical properties existed on all the stations occupied. Representative station profiles in Figure 24 show that between 500 and 3,000 meters temperature decrease did not exceed 1.2°C, salinity decrease was less than 0.1‰, and oxygen increase was less than 0.75 ml/l.

Considering Antarctic Bottom Water to have temperature and salinity values less than 0.5°C and 34.7%, respectively, Figure 24 does not indicate Bottom Water in these areas; however, these conditions were observed on some stations around 3,000 meters, and below.

F. Antarctic Convergence

1. General

The Antarctic Convergence is considered as the zone where the cold and more dense surface water to the Antarctic region sinks below the warmer and less dense surface water of the north. This zone is marked usually by a sharp north-south

decrease in the surface water temperature of 1 to 3°C (2 to 6°F). At greater depths, sinking water mixes with adjacent water and eventually spreads to the north as the Antarctic Intermediate Water.

Continuous surface temperature measurements and BT observations were made across the Antarctic Convergence. Five oceanographic stations were occupied along a northwest-southeast line in the vicinity of the Antarctic Convergence. The northern-most station, station 33, was located at 57°19'5, 152°27'W, just south of the Convergence, and the southernmost station, at 59°19'5, 147°33'W. A continuous temperature trace was tabulated, and temperature values in the Convergence Zone are presented in Table 2. Cross sections of temperature, salinity, sigma-t, and oxygen are shown in Figure 25.

2. Continuous Surface Temperature Data

Table 2 presents changes in temperature across the Convergence, as measured by a resistance bulb thermometer. A surface temperature of 7.8°C (46.0°F) was observed 22 January 1961 at 0900Z. At 1930Z, with the ship traveling approximately 14 knots, temperature decreased to 4.4°C (39.9°F). At 2200Z and 57°19'S, 152°27'W, the location of station 33, and south to station 36 (Fig. 25), temperature continued to decrease and then increased slightly between stations 36 and 37 from 1.7 to 2.1°C.

TABLE 2. SURFACE TEMPERATURE OBSERVATIONS

Time	Temperature		
(GMT)	(°C)	(°F)	Position
0900	7.8	46.0	
0935	7.5	45.5	56°02'S, 155°47'W
0950	6.7	44.1	
1030	5.8	42.5	
1100	5.6	42.1	
1930	4.4	39.9	
2200	3.7	38.7	57°19'S , 152°27' W

3. Oceanographic Station Section

Temperature decreased rapidly from surface to a depth of 100 to 200 meters along the entire profile. Below this layer, temperature increased on the northern

two-thirds of the profile to above 2.0°C, as a band of Upper Deep Water, which increased in thickness toward the north. Lower Deep Water underlay this portion of the section. On the southern one-third of the section, below the surface layer, temperature increased to just over 1.00°C at 400 meters and then decreased toward bottom.

Salinity generally increased from north to south at the surface and also with depth. A broad band of salinity maxima, with values above 34.70‰, appeared to rise toward the surface from depths of 1,000 to 1,900 meters at the northern station to a depth of approximately 400 meters at the southern stations. Below this band of maximum salinity, salinity values decreased to the bottom, with the bottom values lower to the south.

The sigma-t surfaces sloped upward to the south with the steepest slope on the northern two-thirds of the profile. The 27.75 isopycnal closely followed the observed maximum temperature layer. This isopycnal is located below 900 meters at station 33 and rises to a depth of 200 meters at stations 36 and 37.

Surface oxygen values all were above 7 ml/l but less than 8 ml/l, except for station 35 with an observed value just over 8 ml/l. The amount of oxygen present decreased rapidly to a value of 4.50 ml/l at 300 meters at all stations. A band of oxygen minimum existed to a depth of about 400 to 500 meters, below which values increased with the greatest increase to the north to approximately 2,000 meters.

4. Summary

The zone of convergence is located north of the profile presented. Work by Midttun and Natvig (1957) in this area showed the Convergence to be located at about 56°25'S, along 150° west longitude during late January 1948.

Antarctic Upper Water was observed to extend from the surface to the vicinity of 200 meters, as shown in the temperature profile of Figure 25. A rapid transition into Upper Deep Water, on the northern two-thirds of the profile with temperatures of 2.0°C and above was observed. Below this, Lower Deep Water was found, which shoaled southward as Antarctic Circumpolar Water. The similarity of the vertical structure for station 37 and stations near the continental shelf in both the Amundsen Sea area and those farther south in the Ross Sea should be noted; it is indicative of the vast expanse of the Circumpolar Water. Bottom Water was not observed because of observational depth limitations attributed to bad weather.

The BRATEGG Expedition data (1947–1948) shows that the Upper Deep Water extends approximately 150 miles south of the Convergence. In Figure 25, the

Upper Deep Water was present to about 125 miles south of station 33. At station 33, surface temperature was 3.67°C. Approximately 35 miles northwest (1930Z), the surface temperature was 4.4°C. Since a corresponding increase was noted approximately 120 miles to the northwest (1100Z), it is suggested the Convergence was less than 50 miles north of station 33.

III. BATHYMETRY OF THE SOUTH SANDWICH TRENCH

During DEEP FREEZE 1961 operations, GLACIER obtained three sonic depth profiles across the South Sandwich Trench, in the vicinity of METEOR DEEP. Profiles were recorded with an AN/UQN-1B echo sounder. Noise level resulting from high seas reduced the clarity of the record to such an extent that depths could be scaled only to the nearest 50 fathoms. Navigational errors were small when radar was used. When navigation was by celestial fix or dead reckoning errors of 5 miles or greater were encountered. Velocity corrections were applied to all soundings to bring them to the same datum as the METEOR soundings.

The South Sandwich Islands, emergent parts of the Scotia Ridge, are portions of a Pacific-type island arc system extending from the tip of South America to Antarctica. The South Sandwich Trench lies along the convex side of this arc from South Georgia Island to near the South Orkney Islands. The location of the southern extent of the trench is somewhat doubtful because of the paucity of sounding data in the area. Figure 26 is a general bathymetric chart of the southwestern Atlantic Ocean, showing suggested topographic and geographic relationships between the South Sandwich Trench and the surrounding topographic features.

Data presented in Figure 26 and a survey of literature (Jacobs, et al, 1958 and Guilcher 1958) indicate that the South Sandwich Trench is an arcuate Trench, the outer convex feature of a primary arc. This arc and others similar to it in plan, but varying in complexity of structure, constitute the great continental fracture system—two major orogenic belts which encircle the earth in a scalloped linear pattern. The South Sandwich Islands chain is a good example of an active primary island arc. This arc differs from other arcs in the system in that it is reversed in orientation to the adjacent arcs of the Chilean Cordillera and Palmer Peninsula of Antarctica. An analogous structure of this type is the reversed arc of the Lesser Antilles Islands.

In both the Lesser Antilles and the South Sandwich Islands, great transcurrent faults extend in an east-west direction for a considerable distance from the ends of the island arc to the main orogenic belt. A corresponding gap equal in length to the island arcs is left in the fracture system (Fig. 26). Similar topographic alignment occurs along the transcurrent fault zones of the Lesser Antilles structure, with Cuba and the Greater Antilles forming the northern boundary and the north coast of Venezuela the southern boundary.

The arrows in Figure 26 show the probable direction of movement of the earth's crust along the topographic alignment of the South Sandwich Trench. Earthquakes and active volcanism throughout these zones indicate that movement might still be

FIGURE 26. BATHYMETRIC AND DYNAMIC CHART OF THE SOUTH SANDWICH ISLANDS AREA, SOUTH ATLANTIC OCEAN

taking place. The South Sandwich Trench and the adjacent island volcanoes may be a result of thrust faulting and folding by lateral compressive forces, a surface expression of deep-seated movement within the earth's mantle.

The area of confluence of one of the two east-west shear zones and the island-trench compressional zone are shown in Figure 27 (Inset Fig. 26). In addition to an interpretation of detailed bathymetry, this figure shows the tracks of GLACIER over the trench.

The floor of the South Sandwich Trench is 15 to 30 miles wide and has a mountainous bottom topography. Many trenches have narrow widths and relatively featureless bottoms composed of great thicknesses of sediments derived from nearby volcanic islands. The topographic expression in the South Sandwich Trench suggests the possibility of block-faulting, resulting from lateral thrust. An alternative explanation for the hummocky nature and great width of the floor follows: The floor of the trench in recent geologic time was much deeper than at present, perhaps nearly 5,000 fathoms deep. The floor then had the narrow, V-shaped or rounded profile typical of many other deep trenches. The inner wall of the trench (Fig. 27) was weakened by movement along the east-west shear zone that extends from this wall back through South Georgia Island to Cape Horn. A massive slab of this steep trench wall slid down into the bottom, largely filling it. By this explanation, the non-linear hummocks depicted by the profiles on Figures 28 and 29 would be the result of debris from an extensive landslide which originated on the south wall and perhaps was triggered by an earthquake. Figure 29 shows profile A-B with no vertical exaggeration: the dotted line is the suggested pre-landslide profile.

FIGURE 27. BATHYMETRY AND SHIP SOUNDING TRACKS, SOUTH SANDWICH ISLANDS AREA

FIGURE 28. BATHYMETRIC SECTIONS, TRACKS A-B AND C-D

FIGURE 29. BATHYMETRIC SECTIONS, TRACKS D-E, F-G, AND POSSIBLE MOVEMENT ALONG TRACK A-B

IV. GEOMAGNETISM

A. Summary of Operations

The program of geomagnetic measurements aboard STATEN ISLAND during DEEP FREEZE 61 was the first extensive shipborne investigation of the earth's magnetic field made in Antarctic waters by the United States. Approximately 22,000 miles of continuous total magnetic intensity profiles were recorded for the entire cruise. Of these, approximately 11,500 track miles were recorded south of New Zealand. Ship positions were determined by celestial navigation and dead reckoning. Errors in position were estimated to range from approximately 5 nautical miles to perhaps as much as 50 nautical miles under the most adverse conditions. A brief discussion of significant findings from the Antarctic portion of the cruise is presented in this report. Data from other portions of the cruise are presented in profile or tabular form.

B. Compilation of Data

Total intensity data were scaled and converted to values in gammas (1 gamma = 10^{-5} oersted); no corrections for diurnal variation were made. Profiles of data south of 45°S, corrected for regional gradient, were plotted along the ship's track as shown in Figures 30 and 31. Figure 32 presents comparative profiles of magnetic and bathymetric data measured simultaneously during a crossing of the Pacific – Antarctic Ridge. Total intensity values obtained on the cruise south of 45°S are compared in Figure 33 with total intensity values taken from H. O. Chart 1703S for the year 1955.

Measurements made while the ship was hove to at oceanographic stations, and short profiles recorded while in open channels in the ice are presented in Figures 34 through 39. Continuous measurements made during the transits north of 45°S are depicted as sections along the ship's tracks in Figure 40. Profiles were prepared for each section and are presented in Figures 41 through 53.

C. Discussion of Data

The objective of the geomagnetic program aboard STATEN ISLAND was to investigate the character of the earth's magnetic field in this largely unexplored region. It was anticipated that the magnetic data collected would yield new information concerning the composition and possible structure of upper layers of the earth's crust. As anticipated, examination of the data collected has revealed several quite significant characteristics. In addition, several new problems requiring further investigation have been found.

FIGURE 32. COMPARATIVE MAGNETIC-BATHYMETRIC PROFILES ACROSS PACIFIC-ANTARCTIC RIDGE

FIGURE 33. COMPARATIVE TOTAL INTENSITY CHART

FIGURE 34. MAGNETIC INTENSITY AND BATHYMETRIC PROFILE BETWEEN OCEANOGRAPHIC STATIONS 2 AND 3

FIGURE 35. MAGNETIC INTENSITY AND BATHYMETRIC PROFILE BETWEEN OCEANOGRAPHIC STATIONS 3a AND 4

FIGURE 36. MAGNETIC INTENSITY AND BATHYMETRIC PROFILE BETWEEN OCEANOGRAPHIC STATIONS 4 AND 5

FIGURE 37. MAGNETIC INTENSITY AND BATHYMETRIC PROFILE BETWEEN OCEANOGRAPHIC STATIONS 5 AND 6

FIGURE 38. MAGNETIC INTENSITY AND BATHYMETRIC PROFILE BETWEEN OCEANOGRAPHIC STATIONS 7 AND 8

FIGURE 39. MAGNETIC INTENSITY AND BATHYMETRIC PROFILE BETWEEN OCEANOGRAPHIC STATIONS 3 AND 13

FIGURE 40. LOCATIONS OF MAGNETIC MEASUREMENT PROFILES ALONG STATEN ISLAND TRACKS NORTH OF 45°S

FIGURE 41. MAGNETIC TOTAL INTENSITY PROFILE, SECTION A-B

FIGURE 42. MAGNETIC TOTAL INTENSITY PROFILE, SECTION B-C

FIGURE 43. MAGNETIC TOTAL INTENSITY PROFILE, SECTION C-D

FIGURE 48. MAGNETIC TOTAL INTENSITY PROFILE, SECTION J-K

FIGURE 50. MAGNETIC TOTAL INTENSITY PROFILE, SECTION L-M

FIGURE 53. MAGNETIC TOTAL INTENSITY PROFILE, SECTION O-P

From an inspection of the general character of the magnetic profiles shown in Figure 30, the wave length of the magnetic anomalies can be seen to decrease markedly over the Pacific - Antarctic Ridge. This is accompanied by an increase in amplitude of the anomalies. The ship tracks crossing the ridge are separated by distances which are, in general, several time the wavelengths of the individual anomalies; thus, the question of whether individual magnetic features carry through from one profile to the next cannot be settled with certainty in every instance. However, it is apparent that some features do carry through from one profile to the next. These include several individual features having distinctive character and certain groups of related features. This carry through provides evidence that elongated magnetic lineations exist in a direction roughly parallel to the ridge. The evidence is strengthened by the magnetic character of the long track that parallels the ridge (1200, 14 March to 1200, 19 March). This track clearly shows longer anomaly wavelengths than appear on tracks at right angles to the ridge. Existence of such magnetic lineations was reported off the west coast of the United States by Mason and Raff (1961). It is believed that this area surveyed along the Pacific - Antarctic Ridge provides the first consistent evidence of magnetic lineations other than those located off the United States west coast. In the Antarctic, however, the lineations appear to trend in an east-northeast direction, parallel to the Pacific - Antarctic Ridge; off the west coast of the United States, the lineations trend in a north-south direction parallel to the postulated extension of the East - Pacific Rise. Various possible explanations to the origin of the lineations off the United States west coast have been advanced. Among these is the possibility that the lineation pattern may be caused by forces related to the earth's rotation. Instead, it now appears that in both of these areas, the lineated patterns may be characteristic of oceanic rises. Thus, the patterns may be an indication of the processes by which the rises were formed.

The track presented in Figure 32 shows very pronounced bathymetric relief. In this respect, this area of lineations in the Antarctic is unlike the similar area off the United States west coast. Off the west coast, the lineations were present but there was no corresponding bathymetric relief. Analyses of possible correlation of the magnetic and bathymetric relief undoubtedly is complicated by complex nonhomogeneous magnetic properties of the underlying rocks. However, close comparison of the magnetic relief with the bathymetric relief indicates a relationship that had not been anticipated. Figure 32 shows magnetic intensity lows over many of the bathymetric highs; at the same time, there are magnetic intensity highs over many of the bathymetric lows. This is the opposite of what normally would be expected if the magnetic anomalies were assumed to be caused by induced magnetic polarization of the rock comprising the bathymetric relief.

The bathymetric feature shown at time 0530 (Fig. 32) is an example of this inverse relationship. To produce the associated magnetic anomaly for this bathymetric feature

would require an intensity of magnetic polarization that is well within reason. However, this magnetization would have to be in a reverse direction from that of the earth's present magnetic field.

Several possible explanations of this inverse relationship between the magnetic and the bathymetric relief may be suggested.

- 1. The rock comprising the bathymetric relief is in actual fact reversely magnetized. This would indicate that there probably has been a reversal of the earth's magnetic field since the time of original solidification of the rock.
- 2. The top of the body causing the magnetic anomalies may be buried at some depth. Consequently, it is possible that the magnetic source has a surface relief related inversely to the bathymetric relief, perhaps owing to tectonic processes related to the formation of the ridge.
- 3. A pattern of correlating intrusions exists. This pattern may be either of granitic intrusions correlating with the bathymetric highs or of ultramafic intrusions correlating with the bathymetric lows.

The dashed line in the lower part of Figure 32 shows calculated estimates of depths to top of magnetic surface, using two-dimensional approximations. Over most of the profile, there is excellent agreement between these calculated depths and the recorded bathymetric depths. This agreement was found to be true also for data gathered over other parts of the ridge. This indicates that the top surface of the magnetic body is probably not buried at any considerable depth.

This phenomenon of inverse relationships between magnetic total intensity profiles and bathymetric relief has been observed at widely separated points. Bromery, Emory, and Balsley (1960) describe such an area off the west coast of the United States; Keller, Meuschke, and Alldredge (1954) mention briefly a similar occurrence found in the Gulf of Alaska.

Further investigations may determine that in at least some instances these inverse relationships are indicative of changes in the direction of the paleomagnetic field. In such cases, the direction of remanent magnetism derived from magnetic data in the ocean areas then can be compared with paleomagnetic data from land areas. The combined data then might make it possible to draw inferences concerning the age of oceanic crustal rocks.

V. ICE RECONNAISSANCE

The Hydrographic Office conducted an aerial ice reconnaissance program in the Ross Sea area during the Antarctic resupply period of Operation DEEP FREEZE 61. The objective of this program was to provide ice data to Commander, U. S. Naval Support Force, Antarctica, in support of ship movements and, at the same time, to acquire a history of ice conditions upon which future ice prediction techniques could be formulated.

Aerial ice reconnaissance was conducted on a non-interference basis and ideal observing conditions seldom were available. A total of thirty-one flights were participated in by Hydrographic Office ice observers, nineteen of which were U.S. Air Force logistics flights between Christchurch, New Zealand, and NAF McMurdo. These flights were at an altitude of about 9,000 feet and on a direct track between check points. Ice observations were limited to certain areas; some details of floe size, relief, and ice age were difficult to estimate owing to high flight altitude.

In addition to the long-range flights, ice reconnaissance was conducted on twelve local flights in the McMurdo Sound area. Surface ice observations were made by ice observers assigned to GLACIER and EASTWIND. Results of ice reconnaissance observations are shown in Figures 54 through 81.

FIGURE 54. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 55. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 56. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 57. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 58. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 59. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 60. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 61. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 62. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 63. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 64. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 65. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 66. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 67. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 68. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 69. RESULTS OF SURFACE ICE RECONNAISSANCE, ROSS SEA

FIGURE 70. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 71. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 72. RESULTS OF SURFACE ICE RECONNAISSANCE, ROSS SEA 102

FIGURE 73. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 74. RESULTS OF SURFACE ICE RECONNAISSANCE, ROSS SEA 104

FIGURE 75. RESULTS OF SURFACE ICE RECONNAISSANCE, ROSS SEA

FIGURE 76. RESULTS OF AERIAL ICE RECONNAISSANCE, ROSS SEA

FIGURE 77. RESULTS OF SURFACE ICE RECONNAISSANCE, ROSS SEA

FIGURE 78. RESULTS OF SURFACE ICE RECONNAISSANCE, ROSS SEA

FIGURE 80. RESULTS OF SURFACE ICE RECONNAISSANCE, BELLINGSHAUSEN SEA

REFERENCES

- Bromery, R. W., Emery, K. O., and Balsley, J. R., Jr., 1960, Reconnaissance

 Airborne Magnetometer Survey off Southern California, U. S. Geological

 Survey Geophysical Investigations Map GP-211.
- Deacon, G. E. R., 1937, "The Hydrology of the Southern Ocean," <u>Discovery Reports</u>, vol. 15, p. 1–124.
- Guilcher, André, 1958, Coastal and Submarine Morphology translated by B. W. Sparks and R. H. W. Kneese. London: Methuen; New York: Wiley. 274 p.
- Jacobs, J. A., Russell, R. D., and Wilson, J. Tuzo, 1959, Physics and Geology. New York: McGraw-Hill. 424 p.
- Keller, Fred, Jr., Meuschke, J. L., and Alldredge, L. R., 1954, "Aeromagnetic Surveys in the Aleutian, Marshall, and Bermuda Islands," <u>Transactions</u>, American Geophysical Union, vol. 35, no. 4, p. 558–572.
- Mason, Ronald G., and Raff, Arthur D., 1961, "Magnetic Survey off the West Coast of North America, 32°N Latitude to 42°N Latitude," Geological Society of America Bulletin, vol. 72, no. 8, p. 1259–1266.
- Midttun, Lars, and Natvig, Johan, 1957, "Pacific Antarctic Waters," Scientific Results of the 'Brategg' Expedition 1947–48, nr. 3. Publ. nr. 20 fra Kommandør Chr. Christensens Hvalfangstmuseum i Sandefjord, Bergen.
- Mosby, Håkon, 1934, "The Waters of the Atlantic Antarctic Ocean," Det Norske Videnskaps-Akademi i Oslo, Scientific Results of the Norwegian Antarctic Expeditions 1927–1928 et seq., no. 11, 131 p.
- Raff, Arthur D., and Mason, Ronald G., 1961, "Magnetic Survey off the West Coast of North America, 40°N Latitude to 52°N Latitude," Geological Society of America Bulletin, vol. 72, no. 8, p. 1267–1270.

APPENDIX A

OCEANOGRAPHIC STATION DATA

SHIP

NODC REFERENCE NO.

USS STATEN ISLAND
USS EDISTO

00672 00674

OCEANOGRAPHIC STATION INDEX

NODC Reference No. 00672

Sta. No.	Page	Consec.* Sta.No.	Sta. No.	Page	Consec.* Sta.No.	Sta. No.	Page	Consec.* Sta.No.
2	122	1	28	147	28	54 55	173	53
3	123	5	29	148 149	26	55 56	174 175	54 55
4	124	6 7	30	150	24	57	176	56
5	125	8	31 32	151	23 30	58	170	57
6 7	126 127	9	33	152	32	59	178	58
8	128	10	34	153	33	60	179	59
9	129	11	35	154	34	61	180	60
10	130	12	36	155	35	62	181	61
11	131	13	37	156	36	63	182	62
12	132	2	38	157	37	64	183	63
13	133	4	39	158	38	65	184	64
14	134	3	40	159	39	66	185	65
15	135	14	41	160	40	67	186	66
16	135	15	42	161	41	68	187	67
17	136	16	43	162	42	69	188	68
18	137	17	44	163	43	70	189	69
19	138	18	45	164	44	71	190	70
20	139	19	46	165	45	72	191	71
21	140	20	47	166	46	73	192	72
22	141	21	48	167	47	74	193	73
23	142	22	49	168	48	75	194	74
24	143	25	50	169	49	76	195	75
25	144	27	51	170	50	77	196	76
26	145	31	52	171	51	78	197	77
27	146	29	53	172	52	79	198	78
					nce No. 006	74		
			(lce	Predict	ion Stations)			
IP14	199	1	IP19	201	10	IP24	204	14
IP15	199	2	IP20	202	11	IP25	204	8
IP16	200	3	IP21	202	13	IP26	205	7
IP17	200	4	IP22	203	12	IP27	205	6
IP18	201	9	IP23	203	15	IP28	206	5

^{*} Consecutive Station Number. At NODC (National Oceanographic Data Center) oceanographic stations are numbered consecutively in the chronological order in which they were occupied. Consecutive station number and Cruise Reference Number are required by NODC to identify a station.

EXPLANATION OF OCEANOGRAPHIC STATION DATA

A. General

Each of the items appearing on the data pages is explained below. The vertical arrows shown in some of the column headings indicate the location of decimal points. The presence of asterisks to the right of data indicates those data are doubtful; hence, they were not used in the construction of the curve from which interpolated values (standard depth values) were derived. Observed values which were obviously invalid were omitted entirely.

B. Surface Observations

- 1. NODC Reference Number. This number is arbitrarily assigned. It identifies the cruise and provides a means of sorting from the IBM files all cards pertaining to that particular cruise. A cruise reference number for each ship is presented on the flysheet for the tabulated oceanographic data.
- 2. Station Number. Stations are numbered to designate a certain station location. See Figure 2, page 3, and Oceanographic Station Index, page 114.
- 3. <u>Date</u>. Month and day are given in Arabic numerals. The last three figures of the year are indicated. The hour is Greenwich Mean Time and is that hour nearest to the start of the first cast.
- 4. <u>Latitude and Longitude</u>. The position of the station is given in degrees and minutes.
- 5. Sonic Depth. Sonic Depth is the uncorrected sounding for the station, recorded in meters.
- 6. <u>Maximum Sample Depth</u>. The maximum depth from which a water sample was obtained at the station is given to the nearest 100 meters.
- 7. Wind. Wind speed is given in meters per second. Direction from which the wind blows is coded in degrees true to the nearest ten degrees. The last zero is omitted. North is 36 on this scale and calm is 0. See Table 1, Compass Direction Conversion Table for Wind, Sea, and Swell Directions.
- 8. Anemometer Height. The height of the anemometer above the waterline is given in meters.
- 9. Air Pressure. Barometric pressure is coded in millibars, neglecting the 900 or 1000. Thus, 966 millibars is coded as 96 and 1008 millibars is coded as 08.

- 10. Air Temperature. Dry bulb and wet bulb temperatures are entered to the nearest tenth of a degree Celsius (°C). A negative temperature is coded by dropping the minus sign and adding 50; thus -10° is coded as 60.
- 11. Humidity. The percent of humidity is coded directly, 100 percent being coded as 99.
- 12. Weather. Weather is coded as indicated in Table 2, Numerical Weather Codes Present Weather.
- 13. Cloud. Cloud type and amount are coded as indicated in Tables 3, Cloud Type, and 4, Cloud Amount.
- 14. Sea. Sea direction and amount are coded as indicated in Tables 1 and 5, respectively.
- 15. Swell. Swell direction and amount are coded as indicated in Tables 1 and 6, respectively.
 - 16. Visibility. Visibility is coded as indicated in Table 7, Visibility.
- 17. Water. Color is coded as indicated in Table 8, Water Color. Transparency is coded in whole meters from observations taken with a white Secchi disc (30 cm dia.).

C. Subsurface Observations

- 1. <u>Sample Depth.</u> Observed (actual) depth of each sample is given in meters. Interpolated values at standard depths are also given. The standard depths, in meters, are: 0, 10, 20, 30, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 800, 1000, 1200, 1500, 2000, 2500, 3000, and thence every 1000 meters.
 - 2. Temperature. The Celsius (°C) temperature is given in degrees and hundredths.
- 3. <u>Salinity</u>. Salinity is given in parts per thousand (by weight) to two decimal places.
- 4. Sigma-t. To convert to density divide by 1000 and add 1. Thus, a sigma-t value of $\overline{22.35}$ converts to a density of 1.02235.
- 5. Delta-D. The values in the columns are the anomalies of dynamic depths from the surface to each level in dynamic meters. Each entry is the cumulative sum of the anomalies of dynamic depth of the layer above. These values have been computed for the standard depths only, and serve to identify computed points.

- 6. <u>Dissolved Oxygen</u>. These values when given are in milliliters per liter to two decimal places. Values of 10.00 or above rarely occur and are coded as 9.99.
- 7. Sound Velocity. Sound velocity is given in feet per second to one decimal place, corrected for pressure at each depth. See footnote 1 on page 5.

TABLE 1. COMPASS DIRECTION CONVERSION TABLE FOR WIND, SEA, AND SWELL DIRECTIONS

Code	Direction	Code	Direction
00	 Calm	19	185° to 194°
01	 5° to 14°	20	195° to 204° SSW
02	 15° to 24° NNE	21	205° to 214°
03	 25° to 34°	22	215° to 224°
04	 35° to 44°	23	225° to 234° SW
05	 45° to 54° NE	24	235° to 244°
06	 55° to 64°	25	245° to 254° WSW
07	 65° to 74° ENE	26	255° to 264°
08	 75° to 84°	27	265° to 274° W
09	 85° to 94° E	28	275° to 284°
10	 95° to 104°	29	285° to 294° WNW
11	 105° to 114° ESE	30	295° to 304°
12	 115° to 124°	31	305° to 314°
13	 125° to 134°	32	315° to 324° NW
14	 135° to 144° SE	33	325° to 334°
15	 145° to 154°	34	335° to 344° NNW
16	 155° to 164° SSE	35	345° to 354°
17	 165° to 174°	36	355° to 4° N
18	 175° to 184° S	99	Variable or unknown

8
1.1
ш
I
5
Q
1:1
=
<
L
Z
111
W
U)
111
2
U.
0
T
CODES-PRESENT WEATHE
O.
Ш
0
_
റ
\sim
U
œ
101
ш
I
-
1
WEATHER
111
7
<
7
Q
()
2
NUMERICAL
1
П
7
2
=
2
Oi
- 4
1.1
ш
m
ш
_

and. of or past	with.	with pita- nour, e of	snow,	E .	. a .	and e or) of hout snow ated	e of
Duststorm or sand- st storm within sight of or at station during past	Funnel cloud(s) with- in sight during past- hour.	Thunderstorm (or without precip toon) during past h but NOT at time	Heavy drifting generally high.	49 Fog, depositing rime, sky not discernible.	Drizzle and rain moderate or heavy.	Rain or drizzle and snow, moderate or heavy.	79 Ice pellets (st	Slight shower(s) of that, with or without train or rain and snow mixed, not associated with thunder.	Heavy thunderst with haif at time observation.
Well developed du devil(s) within pa	18 Squall(s) within sight during past hour.	28 Fog during past hour, but NOT at time of observation.	38 Slight or moderate drifting snow, generally hign.	48 Fog. depositing rime, sky discernible.	58 Drizzle and rain, slight.	68 Rain or drizzle and snow, slight.	78 79 Isolated startive snow Lee pellers (steet. crystals (with or without U. S. definition).	Moderate or heavy shower(s) of soft or small hail with or with-out rain or rain and show mixed.	Thunderstorm com- bined with duststorm or sandstorm at time of observation.
Widespread dust in Dust or sand raised suspension in the arr, by wind, at time of NOT raised by wind, at observation.	Thunder heard, but no precipitation at the station.	Showers of hail, or of hail and rain. during past hour, but NOT at time of observation.	37 Heavy drifting snow, generally low.	45 46 47 feet sky discernible feet sky VOI discernible feet sky discernible feet sky voi discern	S7 Moderate or thick freezing drizzle.	67 Moderate or heavy freezing rain.	77 Granular snow (with or without fog).	Slight shower(s) of Moderate or heavy soft or small hall with or small hall with or with-without main and ut rain or rain and snow mixed.	Wood or heavy now. Sight or model thus, Sight or moderate Heavy thundensform. Thundensform corner from and show musted classing members hold, hundensform, with half without heavy thundensform. Thundensform members half, hundensform, with half without heavy thundensform during so and the statement of postervation into a definition of time of observation. The statement of observation, time of observation, observation, observation.
Widespread dust in suspension in the air. NOT raised by wind, at time of observation.	Precipitation within Precipitation within Thurder heard, sight, reaching the foreign and the precipitation within the precipitation within the precipitation of form station.	Showers of snow, or of rain and snow, during past hour, but NOT at time of observation.	Slight or moderate Heavy drift drifting snow, generally generally low.	fog, sky discernible. has begun or become thicker during past hour.	56 Slight freezing drizzle.	66 Slight freezing rain.	76 Ice needles (with or without fog).	86 Moderate or heavy snow shower(s).	Sight or moderate thunderstorm, with half at time of observation.
O55 Haze.	Precipitation within sight, reaching the ground, but distant from station.	Showers of rain during past hour, but NOT at time of observation.	Severe duststorm or Sandstorm, has in- creased during past	Fog. sky NOT discernible no appreciable change during past	Continuous drizzle (NOT freezing), thick at time of observation.	Continuous rain (NOT freezing), heavy at time of observation.	75 Continuous fall of snowflakes, heavy at time of observation.	Slight snow shower(s).	Slight or mod, thun- derstorm without haur, but with rain and/or, snow at time off
Visibility reduced by smoke.	Precipitation within sight, but NOT reaching the ground.	Freezing drizte of Shower of han durf shower of show, of showers of half or of feed during past hour. Thurstersom (with the state of the short of shower of half and the short of the short	Severe dusistorm or sandstorm, no apprect- able change during past hour.	66, sky discernible, no appreciable change during past hour.	Intermittent drizzle (NOT freezing), thick at time of observation.	Intermittent rain (NOT freezing), heavy at time of observation.	74 Intermittent fall of snowflakes, heavy at time of observation.	Moderate or heavy shower(s) of rain and snow mixed.	Mod. or heavy snow. or rain and snow mixed or hail at time of ob.: hunderstorm during past hour, but NOT at time of observation.
Clouds generally forming or developing during past hour.	Lightning visible, no thunder heard.	Rain and snow (NOT falling as showers) during past hour, but NOT at time of observation	Severe duststorm or sandstorm, has de creased during past	Fog. sky NOT discentible, has become thinner during past hour.	Continuous drizzle (NOT freezing), moder- ate at time of ob.	G3 64 655 Continuous rain (NOT Intermittent rain Continuous rain (NOT freezing), heavy freezing), heavy freezing), heavy freezing, heavy at time to doservation.	72 Dintermittent fall of Continuous fall of Snowlbaes, moderate snowlbaes, moderate at time of observation, at time of observation.	Slight shower(s) of rain and snow mixed.	Slight snow or rain and snow mixed or hail at time of observation.; frunderstorm during past hour, but not at time of observations.
	More or less contin- tions shallow fog at sta- tion, NOT deeper than 6 leet on land.	Snow (NOT falling as showers) during past frour, but NOT at time is observation	Slight or moderate dustsformor sandstorm has increased during past hour.	Fog. sky discernble. has become thinner during past hour.	intermittent druzzle (NOT freezing) moder- ate at time of ob.	Intermittent rain (NOT freezing). moderate at time of ob.	72 Intermittent fall of snow flakes, moderate at time of observation.	Violent rain show-	92 Sight snew or rein man at time of 105,12 hunderstoon Notine of 105,12 hunderstoon Notine of 105,12 hunderstoon of 105,12 hunderst
Cloud development, Clouds generally des-State of sty on the NOT observed or NOT state of sty on the observable during past feet gest flour.	Patches of shallow More or less contin- log at station, NOT joous shallow log at sta- deeper than 6 feet on into, NOT deeper than 6 land.	21 23 Ram (NOT Intexting Show (NOT Islang as a Ram and snow (NOT and as show showers) during a shall laining as simpwers) during and showers) during and showers of the short	Sight or moderate Sight or moderate Sight or moderate Seeuge dustrorm of Severe dustrorm of Severe dustrorm of Sight or moderate Sight or moderate Seeuge dustrorm of Sight or moderate Seeuge dustrorm has de sendstorm. The same services of severe dustrorm, has not drift that seed during past hour.	41 Fog in patches.	Continuous drizzle (NOT freezing) slight at time of observation.	GO Continuate at rain Continuaus rain (NOT freezing), signil freezing, signil at time of observation, of observation.	Continuous fall of snowllakes, slight at time of observation.	Moderate or heavy rain shower(s).	Sight rain at time of obs; thunderstorm during past hour, but NOT at time of observation.
Cloud development 10T observed or NOT bservable during past	10 Light fog.	Drizzle (NOT freezing and NOT failing as show ers) during past hour, but NOT at time of ob	Slight or moderate tuststormorsandstorm gas decreased during to asst hour.	Fog at distance at time of observation, but	Intermittent drizzle (NOT freezing) slight at time of observation.	60 Intermittent rain NOT freezing), slight at time of observation.	70 Intermittent fall of snowflakes, sught at time of observation.	Slight rain shower(s).	Moderate or heavy shower(s) of hai, with or without rain or rain and snow mixed, not asso- ciated with thunder.

TABLE 3. CLOUD TYPE

Code

- O Stratus or Fractostratus
- 1 Cirrus
- 2 Cirrostratus
- 3 Cirrocumulus
- 4 Altocumulus
- 5 Altostratus
- 6 Stratocumulus
- 7 Nimbostratus
- 8 Cumulus or Fractocumulus
- 9 Cumulonimbus

TABLE 4. CLOUD AMOUNT

Code

- 0 No clouds
- 1 Less than 1/10 or 1/10
- 2 2/10 and 3/10
- 3 4/10
- 4 5/10
- 5 6/10
- 6 7/10 and 8/10
- 7 9/10 and 9/10 plus
- 8 10/10
- 9 Sky obscured

TABLE 5. SEA AMOUNT

Mean Max. Height of Sea Waves

	of Sea Waves	
Code	in feet (Approx.)	Description
0	0	Calm (glassy)
1	0 - 1/3	Calm (rippled)
2	1/3 - 1 2/3	Smooth (wavelets)
3	1 2/3 - 4	Slight
4	4 - 8	Moderate
5	8 - 13	Rough
6	13 - 20	Very rough
7	20 - 30	High
8	30 - 45	Very high
9	over 45	Phenomenal ⁺

⁺ As might be expected in center of hurricane

TABLE 6. SWELL AMOUNT

Code	Approximate Height (feet)	Descrip	otion	Approximate Length (feet)
0		No sw	ell	
1	1 to 6	o 6 Low swell		0 to 600
2			Long	Above 600
3			Short	0 to 300
4	6 to 12	Moderate	Average	300 to 600
5			Long	Above 600
6			Short	0 to 300
7	Greater	High	Average	300 to 600
8	than 12		Long	Above 600
9	400 day day	Confus		

TABLE 7. VISIBILITY

Code		
0	Dense fog 50	yards
1	Thick fog 200	yards
2	Fog 400	yards
3	Moderate fog 1000	yards
4	Thin fog or mist 1	
5	Visibility poor 2	miles
6	Visibility moderate 5	miles
7	Visibility good 10	miles
8	Visibility very good 30	miles
9	Visibility excellent Over 30	miles

TABLE 8. WATER COLOR

Code (Percent yellow)	Description
00 10 20 30	Blue Greenish-blue (or green blue) Bluish-green (or blue green)
50	Yellowish-green Yellow green Green yellow Greenish-yellow
99	Yellow

	SURFACE OBSERVATIONS												
NODC REF. ST.	STATION	DATE				POSITION				SONIC	MAX.		
NO.	STATION	MO.	DAY	YEAR	HOUR	LA*	TITUDE		GITUDE	UNCORRECTED	DEPTH		
00672	0002	12	21	1960	04	78	08'5	162°	50' W	0640	06		

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLOUD		SEA		SWELL		VIS.	WATER	
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ᡟ	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	амт.		COL.	TRANS.
06	15		94	56 7	57 5	73	02	6	1	10	3			8		

1	10	74	70 1 2	1 2 13	02 0	, 1 10			Т
				SUBSUR	FACE OBSER	VATIONS			7
		SAMPLE DEPTH (M)	T °C ₩	s% o	σ _t ψ	Σ Δ D	0 2 m I/I	V _f ₩	1
	STD OBS STD OB	0000 0000 0000 0010		34 28 34 28 34 28 34 30 34 30 34 30 34 36 334 34 34 36 334 39 34 44 48 39 34 49 34 49 35 51 36 51 37 51 38 51 51 51 51 51 51 51 51 51 51 51 51 51 5	27 60 27 60 27 60 27 60 27 62 27 62 27 64 27 66 27 67 27 70 27 70 27 70 27 78 27 78 27 78 27 78 27 80 27 80 27 82 27 82		7 74 7 74 7 33 7 33 7 33 7 32 7 7 27 7 14 6 65 6 65 6 57 6 35 6 35 6 37 6 33 6 33 6 33 6 14		
	'		'	J			l I		ł

SURFACE OBSERVATIONS												
NODC REF.	STATION	DATE				POSITION				SONIC	MAX.	
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH	
00672	0003	12	22	1960	05	77 °	24 S	162°	06' W	0668	06	

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	dno	SI	ΕA	SWE	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ¥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
15	15		90	55 0	55 6	86	03	1	3	16	3			8		

2_	10		90	22 (0 3	0 0	86	0.	3 1		16	3			8	1
						s	UBSUR	FACE C	BSER	VATI	ONS					1
			SAMPLE DEPTH (M)	т°	¢.	s%		σt	*	+	ΣΔD	O₂n ∀	n I/I	Vf	*	
	STD OF STD	33 33 33 33 33 33 33 33 33 33 33 33 33	00000 00000 00000 00017 00020 00026 00030 00050 00064 00100 01150 01173 02261 01300 01351 01350 01443 01448 01500 01578	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	34 34 36 42 49 49 63 81 82 83 87 88 85 85 85 85 85 87 87 87	333333333333333333333333333333333333333	30 30 30 30 30 32 28 33 32 33 34 44 45 50 55 51 55 55 55 55 55 55	27 27 27 27 27 27 27 27 27 27 27 27 27 2	622626262660666777777777777777777777777		0000 0005 0110 0115 0224 0335 0466 0666 0884 001 0.16	777777777777777777777777777777777777777	88866809665000 237704819994 9885 213	4719 4719 4719 4719 4720 4720 4720 4721 4721 4721 4721 4721 4722 4732 4732 4735 4735 4740 4741 4741	256002495307335898193	

				9	SURFACE	OBSER	RVATIONS				
NODC REF.	STATION		1	DATE			PO	SITION		SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LAT	TTUDE	LONG	SITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672		12	22	1960	11	76 °	57'S	162	21' W	0604	05

	WIND	ANEMO.	AIR	Atr 1	TEMP	PERATU	RE	HUMID-	WEATHER		DUD	SE	ΕA	SWEL	.L	VIS.	W	ATER
SPEE	D DIR.	HGT.	PRESS	DRY	*	WET	*	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
11	15		87	53	4	53	9	87	02	6	8	16	3			8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	т °с ∀	s% o ₩	σ _t ψ	ΣΔD ψ	O2m 1/I	V _f ₩
STD	0000 0000 0000 0010 0019 0020 0047 0050 0071 0075 0100 0143 0200 0240 0250 0326 0327 0404 0424 0473 0500 0548	-01 25 -01 25 -01 24 -01 24 -01 23 -01 26 -01 26 -01 26 -01 31 -01 61 -01 72 -01 84 -01 85 -01 85 -01 85 -01 87 -01 88 -01 87 -01 88 -01 87 -01 88 -01 88 -0	34 26 334 226 26 26 26 26 334 226 334 334 400 334 400 414 444 445 455 500 500 500 500 500	27 58 27 58 27 58 27 58 27 58 27 58 27 71 27 71 27 72 27 75 27 75 27 75 27 75 27 77 27 79 27 79 27 79 27 79 27 80 27 82	0 000 0 005 0 010 0 015 0 025 0 036 0 046 0 064 0 081 0 098 0 113 0 143 0 171	7 30 7 30 7 30 7 30 7 30 7 18 7 7 18 7 7 18 6 6 87 7 7 18 6 6 46 6 41 6 6 37 6 6 6 41 6 6 33 6 6 33 6 6 6 27 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4719 9 4719 9 4720 6 4720 7 4721 4 4721 4 4721 6 4722 9 4719 1 4719 1 4719 3 4722 6 4723 6 4723 6 4724 6 4725 3 4726 1 4729 3 4730 7 4730 7 4737 0 4737 0 4738 7 4738 7 4738 7

				Ş	SURFACE	OBSER	RVATIONS				
NODC REF.	STATION			DATE			PO	SITION		SONIC DEPTH	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TUDE	LONG	GITUDE	UNCORRECTED	
00672	0005	12	22	1960	15	76 °	32 ['] S	162°	30′ W	0460	04

W	IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER		סטס	SE	ΕA	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	Ψ.	WET	٧	ITY			AMT.	DIR.	AMT.	DIR,	AMT.		COL.	TRANS.
08	15		83	51	9	52	2	93	73	0	8	16	4			4		

10	0.3	, 51	7 22	2 93	13	0	0 10	7			L
				SUBSUR	FACE OBSI	ERVA	ATIONS				
	SAMPL DEPTH (c ¥	s% o ∀	σt ψ		Σ Δ D	O₂m I/I ₩	V _f	r	
STD OE STD	0010 0020 0020 0020 0020 0030 0030 0049 0050 0075 0075 0098 0147 0150 0196 0294 0250 0250 0250 0250	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	31 34 34 34 34 34 34 34 34 34 34 34 34 34	27 27 27 27 27 27 27 30 34 34 37 37 37 42 44 44 47	27 59 27 59 27 59 27 59 27 59 27 66 27 66 27 66 27 66 27 67 27 68 27 68 27 68 27 88	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	010 015 025 036 047 067 087	7 7 40 7 7 7 3 3 8 3 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4719 4719 4719 4719 4720 4720 4720 4718 4717 4717 4718 4714 4724 4724 4724 4724 4724 4724 4724	9 8 2 3 7 9 4 5 7 5 0 8 4	

				5	SURFACE	OBSER	VATIONS				
NODC REF.	STATION		1	DATE			PC	ISITION		SONIC	MAX. SAMPL
NO.	STATION	MO.	DAY	YEAR	HOUR	LATI	TUDE	LONG	SITUDE	UNCORRECTED	DEPTH
00672	0006	12	22	1960	20	76 °	05′S	162°	45′ W	2561	25

W	IND	ANEMO.	AIR	AIR TEMP	PERATURE	HUMID-	WEATHER		QUO	SE	ΙA	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ¥	ITY			AMT.	DIR.	AMT.	DIR.	AMT.	V13.	COL.	TRANS.
			80	50 6	51 1	89	71	6	8	16	2			7		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ♦	s% o ₩	σt ψ	Σ Δ D	O₂m 1/1 ₩	v _f
STD OBS	0010 0010 0020 0020 0030 0050 0050 0075 0100 0150 0200 0200 0250 0300 0400 0400 0500 0600 0750 0800 1000 1200	-01 26 -01 26 -01 34 -01 32 -01 37 -01 77 -01 77 -01 78 -01 72 -01 71 -01 70 -01 68 -00 85 -00 85 -00 68 01 42 01 38 01 28 01 28 01 28 01 27 01 77 01 77	34 26 26 27 26 27 33 34 26 27 33 34 27 34 34 34 34 40 34 41 34 34 45 57 34 47 77 34 47 34 47 77 34 47	27 58 27 58 27 59 27 59 27 59 27 59 27 61 27 62 27 63 27 64 27 65 27 71 27 69 27 76 27 80 27 82 27 82 27 85 27 85	0 000 0 005 0 010 0 015 0 025 0 037 0 049 0 072 0 094 0 114 0 172 0 206 0 237 0 297 0 354 0 412 0 498	777777244557777777777777777777777777777	4719 8 4719 1 4719 1 4720 1 4719 8 4719 8 4719 7 4714 7 4714 7 4716 2 4718 6 4718 6 4721 9 4721 9 4721 9 4725 0 4728 6 4744 7 4744 7 4774 8 4792 2 4797 7 4805 7 4816 4 4816 4 4816 4 4816 4 4816 4 4842 0

				9	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PO	SITION		SONIC DEPTH	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LONG	GITUDE	UNCORRECTED	
00672	0007	12	23	1960	04	75 °	25'\$	162°	08'W	3383	30

	W	IND	ANEMO,	AIR	AIR 1	TEMP	ERATURE	HUMID-	WEATHER		DUD	SE	A	SWEL	.L	VIS.	W	ATER
SP	EED	DIR.	HGT.	PRESS	DRY	٧	WET ₩	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	V15.	COL.	TRANS.
0)4	36		83	50	3	50 8	89	71	6	8	00	0			7		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ₩	s% o ₩	σ _t ψ	Σ Δ D	O 2 m 1/1	v _f ψ
STD	0000	-01 31	34 21	27 54	0 000	7 58	4718 8
OBS STD	0000	-01 31 -01 30	34 21 34 21	27 54 27 54	0 006	7 58 7 61	4718 8 4719 5
OBS	0010	-01 30 -01 37	34 21 34 23	27 54 27 56	0 011	7 61 7 42	4719 5 4719 1
STD	0020 0020	-01 37 -01 37	34 23	27 56	0 011	7 42	4719 1
STD	0030	-01 50 -01 50	34 25 34 25	27 58 27 58	0 016	7 21	4717 7 4717 7
OBS STD	0030 0050	-01 50 -01 59	34 25	27 58	0 026	7 11	4717 5
OBS STD	0050 0075	-01 59 -01 84	34 25 34 28	27 58 27 62	0 039	7 11 6 60	4717 5 4715 2
OBS	0075	-01 84	34 28	27 62		6 60	4715 2
STD	0100	-01 77 -01 77	34 28 34 28	27 61 27 61	0 051	6 46 6 46	4717 8 4717 8
STD	0150	-01 74	34 29	27 62	0 074	6 44	4721 3
OBS STD	0150 0200	-01 74 -01 55	34 29 34 31	27 62 27 63	0 098	6 44	4721 3 4727 3
OBS	0200	-01 55	34 31	27 63		6 31	4727 3
STD OBS	0250 0250	-01 38 -01 38	34 33	27 64	0 120	6 17	4733 1 4733 1
STD	0300	-00 90	34 37	27 66	0 142	5 86	4743 7
OBS STD	0300	00 90	34 37 34 53	27 66 27 73	0 183	5 86 4 92	4743 7 4770 3
OBS	0400	00 40	34 53	27 73		4 92	4770 3
OBS STD	0497 0500	01 41	34 71 34 71	27 81 27 81	0 218	4 24 4 24	4791 9 4792 1
OBS	0596	01 35	34 72	27 82	2 2/2	4 22	4796 9
STD	0600 0795	01 34	34 72 34 72	27 82 27 83	0 249	4 22 4 38	4797 0 48 0 5 4
STD	0800	01 12	34 72	27 83	0 310	4 38	4805 7
OBS STD	0994 1000	00 97	34 71	27 84	0 369	4 40	4815 3
OBS	1192 1200	00 84	34 71 34 71	27 84 27 84	0 428	4 48 4 4 9	4824 8 4825 3
STD	1491	00 84	34 71	27 85	0 420	4 71	4840 7
STD	1500	00 72	34 71 34 71	27 85 27 86	0 513	4 71 4 62	4841 3 4868 3
OBS STD	1988 2000	00 59	34 71	27 86	0 652	4 62	4869 0
ORS	2486 2500	00 48	34 71 34 71	27 87 27 87	0 787	4 68 4 68	4896 2 4897 0
OBS	2984	00 43	34 70	27 86	0 707	4 73	4924 8

				9	SURFACE	OBSE	RVATIONS				
NODC	STATION		- 1	DATE			PO	SITION		SONIC	MAX.
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	L,A	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	DEPTH
00672	0008	12	23	1960	14	75 °	25′S	160°	11'W	3420	30

	MIND	ANEMO.	AIR	AIR T	EMP	ERATU	RE	HUMID-	WEATHER	CLC	DUD	SE	A	SWEL	.L	VIS.	W	ATER
SPEE	DIR.	HGT.	PRESS	DRY	٧	WET	٧	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
03	02		88	52	9	53	3	88	02	1	6					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ★	s% 0 ₩	σt ₩	Σ Δ D	O₂m 1/I ¥	V _f
STD	0000	-01 78 -01 78	34 13 34 13	27 49 27 49	0 000	7 31 7 31	4711 0 4711 0
STD OBS		-01 78 -01 78	34 13 34 13	27 49 27 49	0 006	7 31 7 31	4711 6 4711 6
STD		-01 76 -01 76 -01 84	34 25 34 25 34 26	27 59 27 59 27 60	0 012	7 04 7 04 6 86	4713 0 4713 0 4712 4
STD ORS STD	0030 0030 0050	-01 84 -01 84 -01 87	34 26 34 26 34 27	27 60 27 61	0 017	6 86	4712 4 4712 4 4713 2
OBS STD	0050 0075	-01 87 -01 86	34 27 34 28	27 61 27 62	0 038	6 76 6 51	4713 2 4714 8
OBS STD	0075	-01 86 -01 81	34 28 34 29	27 62 27 62	0 050	6 62	4714 8 4717 2 4717 2
ORS STD ORS	0100 0150 0150	-01 81 -01 64 -01 64	34 29 34 31 34 31	27 62 27 63 27 63	0 074	6 62 6 42 6 42	4717 2 4722 9 4722 9
STD OBS	0200 0200	-01 19 -01 19	34 35 34 35	27 65 27 65	0 096	6 14 6 14	4733 2 4733 2
STD OBS STD	0250 0250 0300	-00 65 -00 65 00 48	34 42 34 42 34 54	27 69 27 69 27 73	0 117	5 69 5 69 4 87	4744 8 4744 8 4765 6
ORS	0300	00 48	34 54 34 69	27 73 27 79	0 172	4 87 4 25	4765 6 4786 6
ORS ORS	0400 0496	01 45	34 69 34 73	27 79 27 82	0.00	4 25 4 21	4786 6 4793 0
STD OBS STD	0500 0595 0600	01 48 01 43 01 42	34 73 34 73 34 73	27 82 27 82 27 82	0 205	4 20 4 03 4 04	4793 2 4798 1 4798 3
OBS STD	0794 0800	01 24 01 24	34 72 34 72	27 83 27 83	0 297	4 38 4 38	4807 1 4807 5
OBS STD OBS	0992 1000 1190	01 08 01 07 00 91	34 72 34 72 34 71	27 84 27 84 27 84	0 358	4 33 4 31 4 08	4816 5 4816 8 4825 7
STD	1200	00 91	34 71 34 71	27 84	0 417	4 10 4 61	4826 3
STD OBS	1500 1985	00 78	34 71 34 71	27 85 27 86	0 504	4 60 4 52	4842 2 4868 6
STD OBS STD	2000 2483 2500	00 61 00 49 00 49	34 71 34 70 34 70	27 86 27 86 27 86	0 645	4 53 4 72 4 72	4869 3 4896 1 4897 1
OBS	2982	00 45	34 70	27 86		4 76	4925 0

				s	SURFACE	OBSER	RVATIONS				
NODC REF.	STATION		- 1	DATE			PC	SITION		SONIC	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LOP	NGITUDE	UNCORRECTED	
00672		12	24	1960	00	75 °	56'S	160°	41' W	3017	0.8

\	WIND	ANEMO.	AIR	AIR TEI	MPE	RATU	RE	HUMID-	WEATHER		OUD	SI	ΕA	SWEL	,L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖖		WET	٧	ITY	WEATHER		AMT.	DIR.	AMT.		AMT.		COL.	TRANS.
12	09		85	51 1		51	6	88	71	6	8	08	3			7		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ★	s% o ∀	σt ₩	Σ ΔD ψ	O2m1/I	v _t \
STD OBS OBS OBS OBS OBS	0000 0000 0000 0010 0017 0020 0030 0043 0050 0065 0075 0075 0100 0120 0215 0225 0225 0230 0348 0375 0400	-01 12 -01 14 -01 13 -01 12 -01 12 -01 17 -01 36 -01 79 -01 80 -01 80 -01 80 -01 81 -01 81 -01 82 -01 81 -01 62 -01 47 -01 47 -01 49 -01 28				7 7 5 5 6 6 7 7 7 7 7 5 5 6 6 6 6 6 6 6	

				5	SURFACE		RVATIONS				
NODC REF.	STATION		1	DATE				SITION		SONIC	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TUDE	LON	GITUDE	UNCORRECTED	
00672		12	24	1960	09	76 °	28'5	160°	29' W	0421	04

	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	DUD	SE	ΞA	SWEL	L	VIS.	W	ATER
SPE	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY	WEATHER	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
14	1 09		78	51 7	52 2	88	43	9	10	4			5		

ч								
				SUBSUR	FACE OBSER	VATIONS		
		SAMPLE DEPTH (M)	T °C ₩	s% o ↓	σ _t ₩	Σ ΔD	O₂m I/I ₩	V _f ₩
	OBS OBS STD OBS	0010 0017 0020 0026 0030 0043 0050 0065 0087 0100 0132 0150 0178 0200 0224 0250 0271 0300	-01 25 -01 26 -01 26 -01 22 -01 24 -01 29 -01 32 -01 44 -01 57 -01 68 -01 67 -01 69 -01 72 -01 71 -01 71 -01 72	34 20 34 19 34 20 34 20 34 20 34 20 34 20 34 33 4 34 4 35 4 36 4 36 8 36	27 53 27 53 27 53 27 53 27 53 27 54 27 56 27 66 27 66 27 66 27 66 27 67 27 68 27 68 27 68 27 68 27 68 27 68	0 000 0 006 0 011 0 017 0 027 0 039 0 050 0 072 0 093 0 114 0 135	7 45 7 7 45 7 7 445 7 7 446 6 444 7 7 44 9 8 6 6 45 6 6 45 6 6 45 6 6 44 6 6 44 8 8 8 8 8 8 8 8	4719 7 4719 7 4720 0 4720 2 4721 2 4721 6 4719 3 4716 9 4717 9 4717 9 4718 8 4720 7 4723 8 4725 0 4728 0 4729 4 4733 4 4747 9

				9	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PC	SITION		SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LO	NGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0011	12	24	1960	13	77 °	00's	160	40' W	0448	04

W	IND	ANEMO.	AIR	AIR '	TEMP	ERATU	IRE	HUMID-	WEATHER	CLOUD SEA		A	SWEL		VII.C	WATER		
SPEED	DIR.	HGT.	PRESS	DRY	٧	WET	₩	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
12	11		77	51	1	51	7	88	47		9	10	4			5		

_	11	11	21 1 3	01 / 88	4/	9 10	4	
				SUBSUR	FACE OBSER	RVATIONS		
		SAMPLE DEPTH (M)	T °C ₩	s% o ↓	σt ₩	Σ ΔD ψ	O₂m I/I V	v _t ₩
	STD	0010 0010 0020 0020 0030 0050 0050 0075 0100 0150 0150 0150 0200 0250 0250 0300	-01 68 -01 52 -01 52 -01 00 -01 00 -01 34 -01 34	34 24 34 24 34 24 34 23 34 23 34 23 34 24 34 24 34 24	27 57 27 57 27 57 27 57 27 56 27 56 27 57 27 58 27 62 27 67 27 68 27 70 27 70 27 73 27 75 27 75 27 82 27 82	0 000 0 005 0 011 0 016 0 026 0 039 0 050 0 071 0 091 0 110 0 128 0 159	7 7 53 7 53 7 7 53 7 7 53 7 7 55 3 7 7 55 3 7 7 55 3 7 7 55 3 7 7 5 5 3 7 7 5 5 3 7 7 5 5 3 6 6 6 6 6 5 1 6 6 6 6 6 6 6 6 6 6 6 6 6	4720 2 4720 6 4720 6 4721 8 4721 8 4721 6 4720 2 4722 9* 4719 5 4719 8 4719 8 8

				5	SURFACE	OBSERVATION	NS			
NODC REF S	CTATION		1	DATE				SONIC DEPTH	MAX. SAMPLE	
	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LOI	NGITUDE	UNCORRECTED	
00672	0012	12	21	1960	13	77° 31′	S 160°	34' W	0448	04

			ANEMO, AIR		AIR TEM	IR TEMPERATURE HUMID-				CLOUD		SEA		SWELL		WATER	
SI	PEED	DIR.	HGT.		DRY 🖐	WET ¥	1117			AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
	13	15		90	54 5	55 0	89	03	4	6	18	3			8		

OBS 0010		15		90	54 :	2 2	0 0	89	0.	9 4	0	10	٥	1		0	L
STD	Ī					SUBSURFACE OBSER						 VS					
OBS 0000 34 33 27 63 7 41 472 72 68 7 41 472 7 40 7 41 472 7 474 472 7 41 472 7			S. DEF	AMPLE PTH (M)				0	σt	V		ΔD	O 2 ♦	m 1/1	Vf	*	
		OBS STD	000 000 000 000 000 000 000 001 001 001	000 100 120 120 130 130 1550 175 175 175 100 100 150 150 150 150 150 150 150 15	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	08 05 05 14 152 71 71 74 81 83 82 83 83 84	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33 33 33 33 33 33 34 49 99 99 40 40 42 43 31	27 27 27 27 27 27 27 27 27 27 27 27 27 2	63 63 64 66 66 70 70 71 71 71 73 73 74 74			7777 77776666666666666666	9110 9110 9110 9110 9110 9110 9110 9110	4722 4723 4724 4724 4724 4714 4711 4711 4712 4722 472	5 6 6 6 7 7 0 0 7 7 7 7 6 6 3 3 5 5 5 3 3 5 5 5 9 9 5 5	

				9	SURFACE	OBSERVATIONS			
NODC REF.	STATION			DATE		PC	SITION	SONIC DEPTH	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED	
00672	0013	12	22	1960	01	77° 52′S	160° 38′W	0717	07

	WIND	ANEMO.	AIR	AIR TE	MP	ERATUR	Έ	HUMID-	WEATHER		DUD	SI	ΕA	SWEL	L.	VIS.	W	ATER
SPE	D DIR.	HGT.	PRESS	DRY ¥	1	WET	٧	ITY			AMT.	DIR.	AMT.	DIR.	AMT.	VI⊃.	COL.	TRANS.
11	15		91	57	2	57	8	76	03	6	7	16	4			8		

SUBSURFACE OBSERVATIONS	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\
	18 9 9 119 7

				9	SURFACE	OBSERVATIONS			
NODC REF.	CTATION		1	DATE		PO	SITION	SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH SAM UNCORRECTED DEP	
00672	0014	12	21	1960	19	77° 32′S	158° 34′W	0247	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	OUD	SI	EA.	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY ₩	WET ¥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	¥13.	COL.	TRANS.
10	09		88	53 9	54 9	80	01	6	5	18	3			8		

Į	09	3	38	53 9	5	4 9	80	0	1 6		5 18		3			8	L
						SI	JBSUR	ACE C	BSER	VAT	IONS	_					ı
		SAM! DEPTH	PLE (M)	T °c ₩		s%	0	σt	¥ .	*	ΣΔD		O₂m ¥	§/I	Vf	\	
	STD OB ST	0010 0020 0020 0030 0030 0030 0050 0079 0100 0100 0100 0150 0150 0150 0150 015		-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	13 13 13 13 13 13 25 45 66 67 78	333333333333333333333333333333333333333	23 23 22 22 22 22 22 23 23 24 24 24 26 27 27 33 30 33	27 27 27 27 27 27 27 27 27 27 27 27 27 2	55 55 55 55 55 56 57 57 58 58	0 0 0 0 0 0	000 005 011 016 027 040 053 077 101	778888777776666666666666666666666666666	0 0 0 0 0 7 7 7 3 3 3 9 9 8 8 8 7 7 5 5	7799335511552288990	4724 4722 4722 4722 4722 4721 4711 4711	7 2 2 2 8 8 6 6 7 7 4 4 1 1 3 3 6 6	

				5	SURFACE	OBSERVATIONS			
NODC REF.	STATION			DATE		PC	SITION	SONIC	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED	
00672	0015	12	24	1960	20	77° 06′S	158° 17′ W	0201	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	DUD	SE	ΕA	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ₩	ITY		AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
16	07		77	00 0	50 6	91	43	9	10				6		

			SUBSUF	RFACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% o ↓	σ _t ψ	Σ Δ D Ψ	O 2 m I/I	V _f ₩
STD	0000	-01 31	34 11	27 46	0 000	8 23	4718 3
OBS	0000	-01 31	34 11	27 46		8 23	4718 3
STD	0010	-01 31	34 11	27 46	0 006	8 06	4718 9
OBS	0010	-01 31	34 11	27 46		8 06	4718 9
STD	0020	-01 29	34 11	27 46	0 013	8 06	4719 9
OBS	0020	-01 29	34 11	27 46		8 06	4719 9
STD	0030	-01 35	34 11	27 46	0 019	8 26	4719 5
085	0030	-01 35	34 11	27 46		8 26	4719 5
STD	0050	-01 33	34 12	27 47	0 031	8 02	4721 0
085	0050	-01 33	34 12	27 47		8 02	4721 0
STD	0075	-01 57	34 22	27 56	0 046	6 96	4719 2
OBS	0075	- 01 57	34 22	27 56		6 96	4719 2
STD	0100	-01 58	34 25	27 58	0 059	6 57	4720 6
OBS	0100	-01 58	34 25	27 58		6 57	4720 6
OBS	0125	-01 64	34 27	27 60		6 31	4721 3
STD	0150	-01 66	34 28	27 61	0 083	5 80	4722 5
OBS	0150	-01 66	34 28	27 61		5 80	4722 5
OBS	0175	-01 68	34 27	27 60			4723 6

				9	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	DEPTH DEPTH
00672	0016	12	25	1960	03	76 °	33′S	157°	58′ W	0320	03

w	IND	ANEMO.	AIR	AIR TE	MF	PERATU	RE	HUMID-	WEATHER	OUD	SI	EA	SWEL	L	VIS.	V	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🛊		WET	•	ITY		АМТ.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
10	07		71	51	1	51	6	89	43	9	10	3			5		

[s	UBSUR	FACE (OBSER	VA	TIONS				
	SAMPLE DEPTH (M)	T °C ₩	s% ♦		σţ	*	1	ΣΔΟ		O₂m I/1	V _f	,
STD	0000	-01 21	34	09	27	44	0	000	7	83	4719	8
ORS	0000	-01 21	34	09	27	44	ľ		7	83	4719	8
STD	0010	-01 22	34	08	27	44	0	006	7	90	4720	2
овя	0010	-01 22	34	08	27	44	j		7	90	4720	2
STD	0020	-01 22	34	10	27	45	0	013	7	81	4720	9
OBS	0020	-01 22	34	10	27	45			7	81	4720	9
STD	0030	-01 30	34	13	27	48	0	019	7	79	4720	4
OBS	0030	-01 30	34	13	27	48			7	79	4720	4
STD	0050	-01 81	34	31	27	64	0	030	6	73	4714	3
OBS	0050	-01 81	34	31	27	64			6	73	4714	3
STD	0075	-01 81	34	33	27	66	0	041	6	51	4715	9
OBS	0075	-01 81	34	33	27	66			6	51	4715	9
STD	0100	-01 78	34	33	27	65	0	052	6	56	4717	8
OBS	0100	-01 78	34	33	27	65			6	56	4717	8
STD	0150	-01 80	34	35	27		0	074	6	55	4720	6
OBS	0150	-01 80	34	35	27	67			6	55	4720	6
STD	0200	-01 78	34	35	27		0	095	6	53	4723	9
овя	0200	-01 78	34	35	27	67			6	53	4723	9
STD	0250	-01 77	34	36	27		0	115	6	45	4727	0
OBS	0275	-01 77	34	36	27	68			6	38	4728	5

				5	SURFACE	OBSER	RVATION	5						
NODC REF.				DATE			1	POSITION		SONIC				
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	UNCORRECTED	SAMPLE DEPTH			
00672	0017	12	25	1960	08	76	08'5	158	08' W	3475	29			

-	W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		סטפ	SE	ΕA	SWEL	.L	VIS.	W	ATER
	SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ₩	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
ı	10	0.5		69	50.2	50 3	96	44	0	8					6		

05	1 69	50 2	0 3 96	44 () 0		
			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE	T °C	s% o	σι	ΣΔD	O2m I/I	V ₁
	DEPTH (M)	+	*	₩	*	+	*
STD	0000	-01 23	34 12	27 47	0 000	7 86	4719 6
ОВ		-01 23	34 12	27 47		7 86	4719 6
STD	0010	-01 22	34 12	27 47	0 006	7 94	4720 4
OB STD	S 0010 0020	-01 22 -01 21	34 12 34 13	27 47	0 012	7 91	4721 2
OB		-01 21	34 13	27 48	0 012	7 91	4721 2
STD	0030	-01 27	34 15	27 49	0 018	7 87	4720 9
OB		-01 27 -01 85	34 15	27 49 27 63	0 029	7 87 6 75	4720 9 4713 6
STD	0050 S 0050	-01 85 -01 85	34 30	27 63	0 029	6 75	4713 6
STD	0075	-01 83	34 32	27 65	0 040	6 59	4715 5
OB		-01 83	34 32	27 65		6 59	4715 5
STD	0100	-01 76 -01 76	34 32 34 32	27 65	0 052	6 47	4718 1 4718 1
OB STD	0150	-01 82	34 33	27 66	0 074	6 61	4720 2
08		-01 82	34 33	27 66		6 61	4720 2
STD	0200	-01 79	34 33	27 65	0 096	6 55	4723 6 4723 6
OB STD	0200 0250	-01 79 -01 81	34 33 34 35	27 65 27 67	0 117	6 55	4726 3
08		-01 81	34 35	27 67	1 -11	6 55	4726 3
STD	0300	-01 73	34 35	27 67	0 138	6 53	4730 6
OB		-01 73 -00 67	34 35	27 67	0 178	6 53 5 71	4730 6 4753 5
STD	0400	-00 67 -00 67	34 43	27 70	0 170	5 71	4753 5
08		01 17	34 65	27 77		4 42	4787 7
STD	0500	01 21	34 66	27 78 27 81	0 215	4 39	4788 9
OB STD	0588 0600	01 48	34 72 34 72	27 81	0 248	4 22	4798 9
OB		01 27	34 75	27 85		4 29	4807 1
STD	0800	01 25	34 75	27 85	0 309	4 28	4807 7
08		01 09	34 72 34 72	27 84	0 367	4 27 4 30	4815 9
STD	1000 S 1176	01 07	34 72	27 85	0 507	4 48	4825 1
STD	1200	00 91	34 72	27 85	0 425	4 48	4826 3
08		00 81	34 70	27 84	0 513	4 50	4840 8
STD	1500 SS 1962	00 80	34 70 34 70	27 84 27 85	0 513	4 52	4867 3
STD	2000	00 62	34 70	27 85	0 658	4 55	4869 4
OE		00 51	34 70	27 86	. 700	4 76	4894 7
STD	2500 S 2949	00 50	34 70 34 70	27 86	0 798	4 76	4897 2
08	33 2949	00 47	34 70	21 00		7 /7	4,23

				SURFACE OBSERVATIONS														
NODC	NODC DATE POSITION SONIC																	
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED	SAMPLE DEPTH									
00672	0018	12	25	1960	16	75° 38′S	158 43 W	3484	28									

w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	סטס	SE	A	SWEL	L_	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ¥	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
11	0.2		71	50 6	51 0	01	0.2	0	4					8		

1 02 1		1 20 0 1 3	SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °c ¥	s% o ₩	σ _t ψ	Σ ΔD	O 2 m I/I	v _f
STD	0000	-01 80	34 16	27 52	0 000	7 20	4710 8
OBS STD	0000 0010	-01 80 -01 80	34 16 34 13	27 52 27 49	0 006	7 20 7 22	4710 8 4711 3
OBS	0010 0020	-01 80 -01 79	34 13 34 14	27 49 27 50	0 012	7 22 7 22	4711 3 4712 1
STD OBS	0020	-01 79 -01 79	34 14	27 50	0 012	7 22	4712 1
STD	0030	-01 84 -01 84	34 16 34 16	27 52 27 52	0 018	7 22 7 22	4712 0 4712 0
STD	0050	-01 89	34 28	27 62	0 028	6 63	4712 9
OBS STD	0050 0075	-01 89 -01 85	34 28 34 29	27 62	0 040	6 63	4712 9 4715 0
ORS	0075	-01 85	34 29	27 62		6 64	4715 0
STD OBS	0100 0100	-01 78 -01 78	34 29 34 29	27 62	0 052	6 52	4717 6
STD	0150	-01 67	34 33	27 65	0 075	6 52	4722 5
OBS STD	0150 0200	-01 67 -01 42	34 33	27 65	0 097	6 52	4722 5
OBS	0200	-01 42	34 34	27 65		6 30	4729 5
STD	0250 0250	-01 06 -01 06	34 38 34 38	27 67	0 118	6 03	4738 3 4738 3
STD	0300	-00 75	34 42	27 69	0 139	5 77	4746 3
OBS STD	0300	-00 75 01 03	34 42	27 69	0 176	5 77	4746 3
OBS	0400	01 03	34 63	27 77		4 50	4780 2
OBS STD	0456	01 32	34 69 34 70	27 80	0 210	4 37	4788 0 4791 7
OBS	0549	01 44	34 71	27 80		4 28	4795 4
STD	0600 0733	01 40	34 71 34 71	27 81 27 81	0 242	4 25	4797 9 4804 2
STD	0800	01 23	34 71	27 82	0 306	4 27	4807 3
OBS STD	0917 1000	01 13	34 71 34 71	27 83	0 367	4 34 42	4812 7 4816 3
ORS	1103	00 96	34 71	27 84	0 407	4 49	4821 3 4826 4
STD OBS	1200 1380	00 92	34 71 34 71	27 84	0 427	4 53 4 58	4826 4 4836 1
STD	1500	00 80	34 71	27 85	0 515	4 59	4842 5
ORS STD	1850 2000	00 67	34 70 34 70	27 85 27 85	0 658	4 62	4861 3 4869 4
OBS STD	2326 2500	00 53	34 70 34 70	27 86 27 86	0 798	4 74 4 77	4887 4 4897 2
OBS	2816	00 48	34 70	27 86	0 770	4 79	4915 6

				9	SURFACE	OBSE	RVATIO	NS							
NODC REF.	STATION		1	DATE				PO	SITION		SONIC M				
NO.	STATION	MO.	DAY	YEAR	HOUR	LA	FITUDE		LONG	SITUDE		UNCORRECTED	DEPTH		
00672	0019	12	26	1960	01	75 °	41	S	156°	47'1	N	3621	30		

	W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		DUD	SE	A	SWEL	.L	VIS.	W	ATER
SF	PEED	DIR.	HGT.	PRESS	DRY 🖤	WET ¥	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
	กร	0.7		68	50 3	50 7	92	73	0	8					4		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ₩	s% o ₩	σt ₩	Σ Δ D	O₂m I/I ₩	V1 #
STD OBS	0000 0000 0010 0010 0020 0030 0030 0050 0050 0075 0100 0150 0150 0150 0200	-01 66 -01 66 -01 67 -01 67 -01 67 -01 74 -01 78 -01 78 -01 83 -01 81 -01 79 -01 79 -01 33 -01 33	34 13 34 13 34 13 34 12 34 12 34 12 34 14 34 23 34 23 34 23 34 28 34 28 34 28 34 28 34 28 34 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38	27 49 27 49 27 49 27 49 27 48 27 50 27 57 27 57 27 62 27 62 27 62 27 62 27 62 27 64 27 64 27 64	0 000 0 006 0 012 0 018 0 029 0 042 0 054 0 077 0 100	7 57 57 57 56 7 56 7 56 7 57 7 57 7 13 7 6 73 6 73 6 72 6 6 63 6 63 6 63 66 27 6 27	
STD ORS STD OR	0300 0300 0400 0400 0499 0500 0599 0600 0799 0800 0998 1000 1198 1500 1498 1500	-00 71 -00 46 -00 46 01 15 01 45 01 45 -00 72* 01 39 01 26 01 26 01 09 01 09 01 09 00 94 00 82 00 64 00 63	34 40 34 44 34 44 34 64 34 71 34 71	27 68 27 68 27 70 27 77 27 80 27 81 27 82 27 83 27 84 27 85 27 8	0 246 0 310 0 372 0 432 0 519 0 662	55 82 82 82 55 62 44 88 44 28 44 44 41 44 45 58 61 61 62 34 44 44 44 44 44 44 44 44 44 44 44 44 44	4743 8 4750 8 4750 8 4750 8 4782 0 4792 6 4792 7 4797 7 4807 6 4817 0 4817 0 4817 1 4826 7 4842 7 4842 8 4868 4 4869 0
OBS STD ORS	2500	00 50 00 44	34 70 34 70	27 86 27 86 27 86	0 802	4 74 4 77 4 77	4897 2 4897 2 4925 7

				9	SURFACE	OBSE	RVATIONS							
NODC REF.	STATION		ı	DATE			PO	SITION		SONIC M				
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	UNCORRECTED				
00672	0020	12	26	1960	09	76 °	01'5	156°	44' W	3475	29			

	WIND	ANEMO.	AIR	AIR 1	TEMP	ERATU	RE	HUMID-	WEATHER	CLC	סטפ	SE	A	SWEL	.L	VIS.	W	ATER
SPEE	DIR.	HGT.	PRESS	DRY	٧	WET	٧	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
05	02		69	50	3	50	7	92	71	0	8					7		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% o ₩	σ ₁ ψ	Σ ΔD Ψ	O₂m I/I ₩	v _f
STD	0000	-01 48 -01 48	34 03 34 03	27 40 27 40	0 000	8 06	4715 3 4715 3
STD	0010	-01 48 -01 48	34 04	27 41	0 007	8 15	4716 0
STD	0020	-01 45 -01 45	34 04 34 04	27 41 27 41	0 014	8 03	4717 0 4717 0
OBS STD	0030	-01 59	34 08	27 45	0 020	7 48	4715 6 4715 6
STD	0050	-01 88	34 28 34 28	27 45 27 62 27 62	0 031	6 76 6 76	4713 0 4713 0
STD	0075	-01 88 -01 82 -01 82	34 29 34 29	27 62	0 043	6 58	4715 5 4715 5
OBS STD OBS	0100	-01 79 -01 79	34 30 34 30	27 63 27 63	0 055	6 63	4717 5 4717 5
STD	0150	-01 77	34 31 34 31	27 64 27 64	0 078	6 57	4720 9 4720 9
STD	0200	-01 77 -01 72 -01 72	34 33 34 33	27 65	0 100	6 50	4724 7
OBS STD OBS	0250	-01 66 -01 66	34 33 34 33	27 65 27 65	0 122	6 07	4728 6 4728 6
STD	0300	-01 13 -01 13	34 39 34 39	27 68	0 143	6 11	4740 2 4740 2
STD	0400	00 41	34 55 34 55	27 74	0 182	5 00	4770 5 4770 5
OBS STD		01 29	34 68 34 69	27 79 27 79	0 216	4 43 4 37	4788 9 4791 1
OBS		01 48	34 73	27 82	0 249	4 22	4797 7 4798 8
ORS		01 29	34 72 34 72	27 82 27 82	0 311	4 35	4806 3 4807 8
OBS		01 10	34 72 34 72	27 84 27 84	0 371	4 37	4814 9 4816 7
OBS		00 94	34 71 34 71	27 84 27 84	0 430	4 49	4824 0 4826 4
OBS STD		00 82	34 70 34 70	27 84 27 84	0 519	4 56	4839 4 4842 3
OBS	1931	00 62	34 70 34 70	27 85 27 85	0 663	4 59 4 61	4865 3 4869 1
OBS	2422 2500	00 51	34 70 34 70	27 86 27 86	0 803	4 72 4 73	4892 8 4897 2
OBS	2918	00 47	34 69	27 85		4 75	4921 5

				9	SURFACE	OBSER	VATIONS				
NODC REF.	STATION		1	DATE			PO	SITION		SONIC	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LATI	ITUDE	LONG	SITUDE	UNCORRECTED	
00672	0021	12	26	1960	17	76°	34/5	155°	49' W	0457	04

W	IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER	CLC	DUD	SE	A	SWEL	.L	VIS.		ATER
SPEED	DIR.	HGT.	PRESS	DRY	٧	WET	٧	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
14	36		74	00	3	50	3	90	02	6	8					8		

_	36		14	00 3	2	0 3	90		2 0		<u> </u>					٥	L
						SI	JBSUR	FACE (DBSER	VA"	rions						
		DE	SAMPLE EPTH (M)	T °C		s% ∀	0	σt	*	4	ΣΔΟ	1)2m I/I	V			
	STD OB STD	S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 0010 0110 0020 0020 0029 0048 0050 0075 0075 0075 0075 0075 0075 007	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	25 23 23 34 36	93383333333333333333333333333	0333335655999922333333355555	27 27 27 27 27 27 27 27 27 27 27 27 27 2	39904000888222224445577777 66666666666666666666666666666	0 0 0 0 0 0	000 007 014 020 031 044 055 079 101 122 143	8888888866 6666666666666666666666666666	522668811341 644755578333338	47 477 477 477 477 477 477 477 477 477	19919911771991177199122223366995	66554486675866653615053	

				9	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0022	12	27	1960	02	77 °	01'5	155°	50′W	0705	04

W	IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER		סטכ	SI	A	SWEL	.Ł	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	DRY ¥	WET	٧	ITY			AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
13	02		76	50	3	50	8	91	71	0	8					5		

02			7.6	50	3 2	0 8	91	1 '	7 (<u>' </u>	8					
						s	UBSUR	FACE (OBSEF	VAT	IONS					
		S/ DEP	MPLE TH (M)	т	°c ¥	s% ∀		σt	\	*	ΣΔD	021	n I/I	V		ŀ
STD OF STD	8 S S S S S S S S S S S S S S S S S S S	00 00 00 00 00 00 00 00 00 00 00 00 00	00 10 10 11 12 12 12 13 10 10 10 10 10 10 10 10 10 10 10 10 10	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	12 12 11 10 09 10 10 12 12 12 13 43 43 44 43 45 60 60 64 78	333333333333333333333333333333333333333	01 01 02 02 02 02 06 07 14 11 19 22 22 24 25 27 29 33 33 33	27 27 27 27 27 27 27 27 27 27 27 27 27 2	38888822555780023345 38888225557866666666	0 0 0 0 0 0 0 0	000 007 014 021 034 048 062 088 113 137 159	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7887997745515266443391150003915577	47 47 47 47 47 47 47 47 47 47 47 47 47 4	720177722177234	99775612341768605675194

				9	SURFACE	OBSER	RVATIONS				
NODC REF.	STATION			DATE			РО	SITION		SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LONG	SITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0023	12	27	1960	07	77 °	00'S	153°	47′ W	0329	02

W	IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER	CLC	סטס	SI	EA	SWE	LL	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY		WET	*	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
14	05		76	51	7	51	8	92	73	0	5					3		

Ų			-	71.				
				SUBSUR	FACE OBSER	RVATIONS		
		SAMPLE DEPTH (M)	T °C ₩	s% o ↓	σ _t ψ	Σ Δ D	O2m 1/1	V _f
	STD OF ST	DEPTH (N) 0000 35 0000 0010 0020 0020 0030 0050 0050 0075 0100 0150 05 0150 0200	-01 32 -01 32 -01 31 -01 31 -01 29 -01 31 -01 36 -01 36 -01 35 -01 33 -01 34 -01 34 -01 34		27 49 27 49 27 49 27 49 27 49 27 49 27 49 27 51 27 53 27 53 27 53 27 53 27 56 27 59 27 59		7 50 7 50 7 50 7 50 7 50 7 46 7 39 7 14 6 83 6 73 6 26 6 23 6 23	4718 3 4718 3 4719 1 4720 0 4720 0 4720 3 4720 8 4720 8 4722 5 4724 3 4724 3 4724 3 4727 3 4730 5 4730 5

				9	SURFACE	OBSE	RVATIONS				
NODC	STATION		1	DATE			PO	SITION		SONIG DEPTH	MAX. SAMPLE
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TTUDE	LON	GITUDE	UNCORRECTED	DEPTH
00672	0024	12	27	1960	22	76	30 ['] 5	153	53 W	0549	05

ſ	w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	OUD	SE	ΕA	SWEL	.L	VIS.	W	ATER
Ī	SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ¥	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
	11	09		73	50 3	50 8	91	71	6	2					5		

09		73	50 3	50	8 91	71	6	2			را	_
	ſ				SUBSUR	FACE OBS	ER	VATIONS				
	Ī	SAMPLE DEPTH (M)	T °C ₩		s% o	σ _t ψ		Σ ΔD	O₂m I/I ♥	Vf	V	
STD OF STD	988 988 988 988 988 988 988 988 988 988	0000 0000 0010 0010 0020 0020 0030 0050 0050 00100 0150 0200 0250 0250 0300 0400 0400 0500	-01 4 -01 4 -01 4 -01 4 -01 5 -01 5 -01 5 -01 6 -01 6 -01 6 -01 7 -01 7 -01 7 -01 7 -01 7 -01 7 -01 7	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	27 3 27 3 27 3 27 3 27 3 27 3 27 4 27 5 27 5 27 5 27 6 27 6 27 6 27 6 27 6 27 6 27 6 27 6	887777799443988996655*4466677	0 063 0 089 0 112 0 133	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4716 4716 4716 4716 4718 4719 4719 4719 4719 4719 4719 4719 4719	011222885525*558844473*886665	

				\$	SURFACE	OBSE	RVATION	5			
NODC REF.	STATION			DATE			F	OSITION		SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LA1	TITUDE	LON	NGITUDE	DEPTH UNCORRECTED	SAMPLI DEPTH
00672	0025	12	28	1960	10	76	00's	153	54 W	3246	30

V	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		DUD	SE	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT. PRESS	DRY ¥	WET 🔻	iTY		TYPE	AMT.	DIR.	AMT.		AMT.		COL.	TRANS.	
0.5	32		77	50.8	51 4	89	02	4	6					8		

SUBSURFACE OBSERVATIONS	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	′ı V _f ₩
STD	4713 8 4714 6 4714 6 4713 6 4713 6 4714 4 4714 4 4713 0 4716 1 4716 1 4716 2 4718 2 4718 2 4718 2 4718 2 4718 2 4718 5 4718 5 4725 6

	SURFACE OBSERVATIONS														
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.				
NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH				
00672	0026	12	30	1960	00	75 °	20'S	154°	12' W	3695	30				

	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-			duc	SI	ΕA	SWEL	L.		W	ATER
SPEE	D DIR.	HGT.		DRY 🖤	WET ¥	ITY	WEATHER	TYPE	АМТ.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
05	36		90	51 1	51 7	88	01	6	3					8		

2 30 1		71 1 2	71 7 00	01 0	, 1 3 1		
			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% 0 ∀	σ _t ψ	Σ ΔD	O 2 m 1/1	v _f
STD	DEPTH (M) 0000 0000 0010 0020 0030 0050 0050 0050 0075 0100 0150 0150 0200 0250 0250 0250 025	-01 63 -01 63 -01 67 -01 67 -01 69 -01 74 -01 74 -01 76 -01 76 -01 76 -01 77 -01 78 -01 78 -01 71 -01 42 -01 42 -01 42 -01 99 -00 99 -00 37 -00 37	SUBSUR \$%0 34 13 34 13 34 13 34 13 34 13 34 14 34 19 34 19 34 19 34 28 34 28 34 28 34 31 34 31 34 31 34 31 34 31 34 31 34 31 34 36 34 46 34 46	27 49 27 49 27 49 27 49 27 49 27 49 27 50 27 50 27 50 27 54 27 61 27 61 27 61 27 61 27 64 27 64 27 64 27 64 27 64 27 68 27 71		7 15 7 16 7 16 7 15 7 15 7 15 7 15 7 15	V1
OPS STD ORS ORS	0400 0400 0500 0500 0600 0600 0800 1000 1200 1200 1500 2000 2000 2500	01 30 01 30 01 46 01 46 01 45 01 23 01 23 01 09 01 09 00 94 00 81 00 64	34 68 34 68 34 73 34 73 34 73 34 73 34 73 34 73 34 72 34 71	27 79 27 79 27 82 27 82 27 82 27 82 27 83 27 83 27 84 27 85 27 85 27 85 27 85 27 85 27 85	0 178 0 210 0 241 0 302 0 361 0 419 0 505 0 643 0 779	5 50 31 4 31 4 27 4 27 4 27 4 38 4 38 4 39 4 49 4 60 4 60 4 73 4 73	4784 4 4784 4 4784 9 4792 9 4798 7 4798 7 4798 7 4807 4 4817 2 4826 8 4826 8 4842 7 4842 7 4842 7 4849 8 4849 7 4849 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
į							

				9	SURFACE	OBSERVATIONS			
NODC REF.	STATION		!	DATE		PC	SITION	SONIC DEPTH	MAX. SAMPLE
NO NO	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED	
00672	0027	12	28	1960	22	75° 31′S	152° 08′W	3402	30

	WINC	D	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	DUD	SE	Α	SWEL	.L	VIS.	W	ATER
SPE	ED (DIR.	HGT. PRESS	DRY 🕊	WET ₩	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	V15.	COL.	TRANS.	
0	8 2	36		26	50.6	51 1	8.9	0.2	6	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ↓	s% o ∀	σ ₁ ψ	₹ ΣΔD	O₂m I/I ₩	v _f 🖖
STD ORS	0000 0000 0000 0010 0010 0020 0030 0050 0050 0075 0075 0075 0075 007	-01 51 -01 55 -01 55 -01 55 -01 55 -01 65 -01 69 -01 79 -01 77 -01 77 -01 77 -01 72 -01 68 -01 68 -01 68 -01 68 -01 68 -01 53 -01 10 -01 53 -01 10 -01 55 -01 68 -01 53 -01 53 -01 53 -01 53 -01 10 -01 53 -01 53 -0	34 00 334 00 334 00 334 01 334 10 334 10 334 27 334 227 334 32 334 77 334 77 347 347 347 347 347 347 347 3	27 38 27 38 27 38 27 38 27 38 27 39 27 47 27 61 27 61 27 62 27 63 27 64 27 64 27 64 27 64 27 64 27 64 27 80 27 81 27 82 27 85 27 85 27 85 27 86 27 86 27 85 27 86	0 000 0 007 0 014 0 021 0 034 0 048 0 060 0 084 0 106 0 129 0 151 0 190 0 225 0 258 0 319 0 377 0 435	8 38 8 8 34 9 37 77 16 66 66 66 66 66 66 66 66 66 66 66 66	4714 7 4714 7 4714 7 4714 7 4714 7 4715 3 4715 8 4721 6 4721 6 4725 3 4730 6 4740 6 4740 6 4740 6 4740 7 4807 7 4815 9 4815 9 4815 9 4826 8 4842 8 4842 8 4842 8 4842 7 4867 2 4867 2 4897 2 4923 5

	SURFACE OBSERVATIONS													
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.			
NO.	STATION	MO.	DAY	YEAR	HOUR	LA.	TITUDE	LON	GITUDE	DEPTH UNCORRECTED				
00672	0028	12	28	1960	18	75° 58′S		151	58' W	0265	02			

V	/IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	DUD	SE	ĒΑ	SWEL	.L.	VIS.	W	ATER
SPEED	DIR.	HGT.		DRY 🖖	WET ₩	ITY		TYPE		DIR.	AMT.		AMT.	VIS.	COL.	TRANS.
06	27		83	50 8	51 4	89	71	0	8					4		

27		83	50 1	3 5	1 4	89		1 0) [8	l			4	L
		-			s	UBSUR	FACE (OBSER	RVA	TIONS					
	DE	SAMPLE PTH (M)	т°	¢ ¥	s%	0	σι	*	,	ΣΔΟ	O₂r ₩	n 1/1	V _f	*	
STD OR ST	S 000 S 000	000 000 010 010 020 030 030 050 050 050 050 050 020 020 020 020 02	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	44 52 52 54 63 70 73 72 75 75 74	333333333333333333333333333333333333333	03 03 04 04 05 05 05 05 05 15 03 33 13 32 33 33 33 35	27 27 27 27 27 27 27 27 27 27 27 27 27 2	40 40 40 41 41 42 42 42 43 11 33 36 66 66 66 66 66 66 66 66 66 66 66	0 0 0 0	000 007 014 020 033 046 057 080 102	8 8 8 8 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6	24 44 10 10 10 10 10 10 10 10 10 10 10 10 10	4716 4715 4715 4715 4715 4717 4714 4714 4714	0033668833007722442	

				9	SURFACE	OBSER	RVATION	5			
NODC REF.	STATION		1	DATE				POSITION		SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TTUDE	LC	NGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0029	12	28	1960	02	76 °	30 ['] S	151	39 W	0274	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		QUO	SE	ĒΑ	SWEI	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🕊	WET ¥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
12	09		72	00 3	50 1	92	0.2	0	5	0.9	3			8		

09		72	00 3	5 (0 1	93	0.2	2 0		5 0	9	3				8	1
				_	SI	JBSURI	FACE O	BSER	VAT	IONS							1
	D	SAMPLE DEPTH (M)	T°C ₩		s%		σt	,	\	ΣΔD		O₂π ∜	1/1	``	14	*	1
STD OF STD	35 00 00 00 00 00 00 00 00 00 00 00 00 00	0000 0000 0010 0010 0020 0020 0030 0050 0050 0075 0100 01150 01200 02250 2250	-01 7 -01 6 -01 6 -01 7 -01 7	4555558899441199000	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	28 28 28 26 26 27 27 27 28 28 22 27 27 28 33 33 33 33 34 4	27 27 27 27 27 27 27 27 27 27 27 27 27 2	61 61 61 61 61 64 64 64	0 0 0 0 0 0	000 005 010 015 025 037 048 071 093 114		6 9 9 6 9 9 6 6 9 9 6 6 6 6 6 6 6 6 6 6	22445544559911112222	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	712277123771133777113466677118227772288	366334444889922001	

					SURFACE	OBSERVATIONS			
NODC REF.	STATION			DATE		PO	SITION	SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0030	12	27	1960	15	77° 00′ 5	151 48 W	1134	09

			_														
ı	W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATUER		סטכ	SI	ΕA	SWE	L		W	ATER
ı	SPEED	DIR.	HGT.	PRESS	DRY 🛊	WET ¥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
	0.9	09		77	51 8	52 0	94	71	0	В					4		

SUBSURFACE OBSERVATIONS	
SAMPLE T °C S% O σt ΣΔD Ozm I/I Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ	v _f
STD 0000 -01 18 34 19 27 52 0 000 7 95 7 95 0 085 0000 -01 18 34 19 27 52 0 000 7 95 7 95 0 085 0010 -01 30 34 20 27 54 0 006 7 77 7 0 085 0019 -01 27 34 20 27 53 0 011 7 86 0 085 0029 -01 33 34 21 27 54 0 011 7 83 0 085 0029 -01 33 34 21 27 54 0 011 7 83 0 085 0029 -01 33 34 21 27 54 0 011 7 83 0 085 0029 -01 33 34 21 27 54 0 017 7 83 0 085 0029 -01 37 34 21 27 55 7 6 0 017 7 83 0 085 0029 -01 37 34 21 27 55 7 6 0 017 7 83 0 085 0029 -01 37 34 21 27 55 7 6 0 028 7 62 0 085 0073 -01 37 34 21 27 55 0 028 7 62 0 085 0073 -01 37 34 23 27 56 0 041 7 38 0 085 0075 -01 37 34 23 27 56 0 041 7 38 0 085 0075 -01 37 34 23 27 56 0 041 7 38 0 085 0075 -01 37 34 23 27 56 0 041 7 38 0 085 0075 -01 37 34 23 27 56 0 054 7 08 085 0085 0097 -01 42 34 23 27 56 0 054 7 08 085 0085 0145 -01 52 34 25 27 58 0 080 6 99 0 085 0145 -01 52 34 25 27 58 0 080 6 99 0 085 0145 -01 52 34 25 27 58 0 080 6 99 0 085 0145 -01 52 34 25 27 58 0 080 6 99 0 085 0194 -01 61 34 28 27 61 0 105 6 86 0 085 0291 -01 61 34 28 27 61 0 105 6 86 0 085 0291 -01 65 34 30 27 63 0 128 6 73 0 085 0291 -01 65 34 30 27 63 0 128 6 73 0 085 0389 -01 71 34 32 27 64 0 196 6 69 0 085 0389 -01 71 34 32 27 64 0 196 6 69 0 085 0389 -01 71 34 32 27 64 0 196 6 69 0 085 0389 -01 71 34 32 27 64 0 196 6 69 0 085 0389 -01 71 34 32 27 65 0 238 6 61 0 085 0389 -01 71 34 32 27 64 0 196 6 69 0 085 0389 -01 71 34 32 27 65 0 238 6 61 0 085 0389 -01 71 34 32 27 64 0 196 6 69 0 085 0389 -01 71 34 32 27 65 0 238 6 61 0 085 0389 -01 71 34 32 27 65 0 238 6 61 0 085 0389 -01 71 34 32 27 65 0 238 6 61 0 085 0389 -01 71 34 33 27 65 0 238 6 61 0 085 0389 -01 71 34 33 27 65 0 238 6 61 0 085 0389 -01 71 34 34 32 27 65 0 238 6 61 0 085 0389 -01 71 34 34 32 27 65 0 238 6 61 0 085 0389 -01 71 34 34 32 27 65 0 238 6 61 0 085 0389 -01 71 34 34 32 27 65 0 238 6 61 0 085 0389 -01 71 34 33 27 65 0 238 6 61 0 085 0389 -01 71 34 34 32 27 65 0 238 6 61 0 085 0389 -01 71 34 34 32 27 65 0 238 6 61 0 085 0389 -01 71 34 34 32 27 65 0 238 6 61 0 085 0380 -01 74 34 33 27 65 0 238 6 61 0 085 0380 -01 74 34 33 27 65	

				9	SURFACE	OBSERVATIONS			
NODC REF.				DATE		PO	SITION	SONIC	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE		UNCORRECTED	
00672	0031	12	27	1960	11	77° 16′5	152° 22′W	0210	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		DUD	SE	A	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ₩	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
16	09		78	51 1	51 8	89	71	0	6	05	3			7		

)	09		78	51	1	51 8	89	7	1 0	6	05	3			7	
						SI	UBSURF	ACE	OBSER	VATI	ONS					
		DE	AMPLE PTH (M)	Т	°c ¥	s °6 ¥	0	σι	*		ΣΔΟ	Ozn \\	1/1	Vf	\	
	STD OR: STD	5 00 5 00 6 00 6 00 7 00 8 00	000 000 010 010 020 020 0330 0330 0350 0775 000 000 000 000	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	32233333442833993377188311711	34 34 34 34 34 34 34 34 34 34 34 34 34 3	11 11 12 12 12 12 13 13 13 18 18 20 20 27 27 29 29	27 27 27 27 27 27 27 27 27 27 27 27 27 2	46647 447 447 448 482 555 555 660		0000 0006 012 0119 0331 045 0559 086	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 5 5 5 5	73 75 75 75 91 95 96 96 96 98 98	471 471 471 471 471 472 472 472 473 477 473 473 473 473	8 2 7 8 7 7 8 9 1 1 1 8 8 7 7 0 0 0 2 2 3 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	

				\$	SURFACE	OBSERVATIONS			
NODC REF.	STATION			DATE		PO	SITION	SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0032	12	29	1960	11	75° 10′S	147° 51′W	3658	04

	W	IND	ANEMO.	AIR	AIR '	TEMP	ERATU	RE	HUMID-	WEATHER		QUO	SE	A	SWEI	LL	VIS.	W	ATER
SPI	EED	DIR.	HGT.	PRESS	DRY	٧	WET	•	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
0	5	02		92	52	2	52	8	87	02	0	6					8		

02	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 2 2 1 2	2 0 0 7	02 0			
			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	т°с ∀	s% o ₩	σt Ψ	Σ ΔD ψ	O2m I/I	v _f \
STD OBS	0000 0000 0010 0010 0020 0020 0030 0050 0050 0075 0075 0100 0150 0150 015	-01 68 -01 74 -01 74 -01 59 -01 59 -01 40 -01 40 -00 22 -00 22 01 38	34 04 34 04 34 04 34 05 34 05 34 06 34 06 34 27 34 28 34 31 34 34 31 34 34 37 34 47 34 67 34 67	27 60 27 61 27 61 27 64 27 64 27 66 27 66 27 68 27 68 27 71 27 71	0 000 0 007 0 013 0 020 0 033 0 048 0 060 0 083 0 105 0 127 0 147 0 183	8 25 8 30 8 30 8 8 25 8 8 22 7 7 93 6 6 6 70 6 6 6 50 6 6 6 53 33 33 4 33	4714 4 47114 2 47115 2 47115 8 47116 0 47116 6 47115 6 47117 5 47117 5 47119 2 47121 3 47221 3 47221 3 47221 3 4723 8 4732 9 4732 9 4754 7 4755 5

				9	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LA'	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0033	01	22	1961	22	57°	19'5	152	27' W	3292	26

V	VIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	סטפ	SE	Α	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ᡟ	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
09	27		23	06 7	05 3	81	02	8	4	25	4			8		

i			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% o ↓	σ ₁ ψ	ΣΔD	O₂m I/I V	v _f ♦
STD	0000	03 67	33 94 33 94	27 00	0 000	7 19	4791 5 4791 5
STD	0010	03 64	33 94	27 00	0 011	7 31	4791 7 4791 7
OBS OBS	0019	03 53	33 94	27 01		7 36	4790 7
STD OBS	0020	03 53	33 94 33 94	27 01 27 02	0 021	7 36	4790 7 4790 7
STD OBS	0030 0047	03 42	33 94 33 94	27 02	0 032	7 37	4789 8 4780 5
STD OBS	0050 0071	02 52	33 95 33 99	27 11 27 24	0 052	7 52 7 75	4778 2 4761 3
STD	0075	00 93	33 99	27 26	0 074	7 77	4756 6
OBS STD	0100	-00 23 -00 25	34 00 34 00	27 33 27 33	0 094	7 86 7 86	4740 3
OBS STD	0141 0150	-00 41 -00 55	34 02 34 02	27 36 27 36	0 131	7 87 7 83	4740 3 4738 7
OBS STD	0188	-00 71 -00 57	34 04 34 08	27 38	0 165	7 18	4738 6 4741 6
OBS STD	0236 0250	00 12	34 20 34 27	27 48 27 50	0 197	6 30	4754 9 4764 3
OBS	0284	01 70	34 40	27 54		4 57	4782 2
STD OBS	0300 0381	01 80	34 47	27 55	0 226	4 05	4795 6
STD	0400	02 21 02 06*	34 48 34 50	27 56 27 59*	0 282	4 09 4 14	4796 8 4796 9*
STD OBS	0500 0524	02 21	34 53 34 94*	27 60 27 73*	0 336	4 13	4803 0 4835 3*
STD	0600 0698	02 21	34 58	27 64 27 69*	0 387	4 11 4 09	4809 1 4812 8*
STD	0800 0872	02 16	34 66 34 68	27 71 27 73	0 479	4 75	4820 7 4824 6
STD	1000	02 07	34 72	27 76	0 562	4 73	4831 5
OBS STD	1045 1200	02 04 01 91	34 73 34 73	27 77 27 78	0 639	4 64 5 4 2	4833 8 4841 1
OBS STD	1308 1500	01 82	34 28* 34 73	27 43* 27 80	0 750	5 76 5 67	4844 2* 4855 3
OBS STD	1746 2000	01 47	34 73 34 73	27 82 27 83	0 924	5 41 4 79	4867 1 4879 2
OBS	2190 2500	01 13	34 72 34 70	27 83		4 52 4 55	4888 3
ОВЅ	2644	01 65*		27 76*		4 57	4922 6*

				5	SURFACE	E OBSE	RVATIONS					
NODC REF.	STATION		-	DATE			PC	SITION			SONIC	MAX. SAMPLE
NO.	SIMILON	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	GITUDE		UNCORRECTED	
00672	0034	01	23	1961	06	57 °	53′S	151°	10'	W	3017	19

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		סטס	SI	ΕA	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ▼	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
10	32		22	05.8	04 4	81	0.2	0	0	32	3			8		

			SUBSUR	FACE OBSER	VATIONS	·	
	SAMPLE DEPTH (M)	T°C ₩	s% 0	σ _t ψ	ΣΔD	O₂m I/I ₩	٧, ♦
STD OBS OBS	0000 0000 0010 0020 0020 0020 0029 0030 0048 0057 0100 0150 00150 0200 0243 0250 0391 0400 0476 0500 0476 0500 0668 0762 0800 0954 1000 1146 1200 11434 1500 1627 1918	03 16 03 00 03 00 02 89 02 84 01 65 01 40 -00 54 -00 85 -00 85 -00 77 -00 72 -00 21 -00 12 00 59 01 84 01 59 01 88 02 11 02 15 01 83* 02 15 01 83* 01 93 01 88 01 76 01 56 01 57 01 59	91 91 91 91 91 91 91 91 91 91	27 02 27 02 27 02 27 05 27 05 27 08 27 08 27 08 27 21 27 35 27 35 27 43 27 43 27 49 27 54 27 55 27 57 27 75 27 82 27 82 27 82 27 82	0 000 0 010 0 021 0 031 0 049 0 070 0 088 0 122 0 153 0 182 0 209 0 260 0 306 0 350 0 432 0 508 0 580 0 684	77 7 7 7 46 6 6 6 6 8 6 8 7 7 7 7 7 7 7 7 7 7 7 7	4784 2 4784 8 4784 8 4783 2 4782 3 4781 6 4765 5 4765 5 4765 5 4765 5 4765 7 4765 9 4765 9

				\$	SURFACE	OBSE	RVATION	ıs					
NODC REF.	STATION		1	DATE				PO	SITION			SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE		LONG	ITUDE		DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0035	01	23	1961	12	58	22	S	149	51	W	2834	13

W	סאוי	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		סטס	SE	A	SWEL	L.	VIC	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ্	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
0.7	32		20	05.0	03 1	88	03	6	В	32	2			ß		

1 22	120_	05 0 1 0	7 1 00	1 05 1 0	, 0 32		
			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ₩	s% o ₩	σt ₩	Σ Δ D	O₂m I/I	V _f
						_	
STD	0000	02 78	33 98 33 98	27 11 27 11	0 000	8 02	4779 1 4779 1
OBS	0009	02 75	33 98	27 12		7 61	4779 2
STD	0010	02 75	33 98 33 98	27 12 27 12	0 010	7 62 7 67	4779 3 4779 5
STD	0010	02 72	33 98	27 12	0 019	7 68	4779 4
OBS	0027	02 70	33 98 33 99	27 12 27 15	0.000	7 73	4779 6
STD	0030 0046	02 48	33 99 34 03	27 15 27 28	0 029	7 73	4776 6 4758 6
STD	0050	00 63	34 05	27 33	0 045	7 74	4750 9
OBS STD	0068 0075	-00 93 -00 90	34 12 34 13	27 46	0 063	7 78	4728 4 4729 3
OBS	0091	-00 83	34 15	27 48		7 69	4731 4
STD OBS	0100	-00 80 -00 68	34 16 34 20	27 49 27 51	0 078	7 64	4732 5 4736 7
STD	0150	-00 53	34 23	27 53	0 107	7 11	4739 9
OBS	0184	-00 13	34 29	27 56	0 124	6 34	4748 4
STD STD	0200 0250		34 33 34 43	27 58 27 62	0 134	6 03	4753 9 4768 4
OBS	0281*	01 90*		27 67*		4 29	4785 7*
STD OBS	0300 0324	01 43	34 52 34 55	27 65 27 66	0 183	4 62	4779 7 4783 7
OBS	0378*	02 03*	34 61*	27 68*		4 00	4793 5*
OBS STD	0384	01 81	34 61 34 62	27 70 27 70	0 227	4 17	4790 6 4791 9
OBS	0444	01 91	34 64	27 71	0 221	4 39	4795 8
STD	0500	02 08	34 68	27 73	0 267	4 10	4801 7
OBS STD	0508 0600	02 10	34 69 34 71	27 74 27 76	0 306	4 08	4802 6 4807 4
OBS	0632	02 03	34 72	27 77		4 34	4809 0
OBS STD	0760 0800	01 97	34 72 34 73	27 77 27 78	0 380	4 73	4815 8 4817 6
OBS	0964	01 77	34 74	27 80		4 47	4825 1
STD	1000	01 74	34 74 34 74	27 81 27 81	0 451	4 58	4826 8 4831 7
STD	1200	01 04	34 74	27 01		4 81	4051 /
овѕ	1342		34 73			4 80	

				5	SURFACE	E OBSER	RVATIONS				
NODC REF.	STATION		1	DATE			PO	SITION		SONIC	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR		ITUDE	LON	GITUDE	UNCORRECTED	
00672	0036	01	23	1961	19	58	47 ['] 5	148	39' W	2880	22

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		DUD	SI	EA	SWEI	LL	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET 🛊	ITY	WEATHER		AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
10	32		15	04 4	03 9	92	0.1	0	4	32	3			5		

STD				SUBSUR	FACE OBSER	RVATIONS		
OBS 0000 01 69 34 20 27 38 7 84 4764 3 STD 0010 01 70 34 20 27 38 0 007 7 64 4765 1 STD 0010 01 67 34 21 27 39 7 66 4765 1 STD 0020 01 67 34 21 27 39 7 66 4765 2 STD 0020 01 68 34 22 27 39 7 69 4765 2 STD 0030 01 68 34 22 27 40 0 21 7 76 4765 1 STD 0050 00 63 34 24 27 46 0 034 78 9 4751 7 STD 0075 34 26							O 2 m 1/5 ₩	
	OBS OBS OBS STD	0000 0000 0000 0009 0010 0018 0020 0028 0030 0046 0050 0075 0093 0100 0141 0150 0238 0250 0286 0300 0385 0400 0445 0500 0624 0714 0800 0624 0714 0800 1072 1200 1342 1500 1794 2000	01 69 01 69 01 71 01 70 01 67 01 68 01 62 00 98 00 58 -00 58 -01 19 -01 30 -00 75 -00 61 100 00 00 32 01 06 01 11 01 30 01 27 01 25 01 20 01 18 01 27 01 28 01 29 01 18 01 29 01 18 01 29 01 27 01 28 01 28	34 20 34 20 34 21 34 21 34 22 34 22 34 22 4 26 33 4 22 4 26 33 4 4 26 33 4 4 26 33 4 4 56 68 8 70 71 73 33 4 72 71 73 33 4 77 73 33 4 77 73 33 4 77 73 33 4 77 73 33 4 77 73 33 4 77 73 33 4 77 70 97 70	27 38 27 38 27 38 27 39 27 39 27 39 27 46 27 46 27 56 27 56 27 66 27 66 27 67 27 73 27 74 27 79 27 81 27 81 27 83 27 83 27 83 27 84 27 84 27 85 27 84 27 85 27 84 27 85 27 84 27 85 27 85	0 000 0 007 0 914 0 021 0 034 0 048 0 061 0 084 0 104 0 121 0 137 0 168 0 198 0 228 0 287 0 345 0 403	77 644 77 664 77 666 77 789 77 899 77 889 77 889 77 87 77 7524 66 67 77 7524 66 67 77 78 899 77 889 77 889 89 89 89 89 89 89 89 89 89 80 8	4764 3 4764 3 4765 1 4765 0 4765 1 4765 9 4765 1 4765 9 4765 1 4756 7 4751 7 4734 5 4732 5 4728 2 4727 0 4726 5 4728 5 4739 8 4742 7 4754 7 4760 5 4774 0 4775 6 4783 6 4784 1 4790 1 4796 1 4804 9 4804 9 4804 9 4804 9 4814 7 4824 8 4824 8 4824 8 4824 5

	SURFACE OBSERVATIONS														
NODC REF.	STATION			DATE			PC	SITION		SONIC	MAX.				
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TUDE	LON	GITUDE	UNCORRECTED					
00672	0037	01	24	1961	00	59 °	19 ['] S	147	33′ W	2834	13				

W	IND	ANEMO.	AIR .	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	סטכ	SE	EA.	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🛊	WET 🔻	ITY			AMT.	DIR.	AMT.	DIR.	AMT.	¥15.	COL.	TRANS.
14	32		11	05 0	04 4	92	45		9	30	4			1		

			~	SUBSUR	FACE	OBSER	VATI	ons			Ī
	SAMPLE DEPTH (M)	τ°c ψ		s% o ₩	σι	*	*	ΣΔD	O₂m I/I V	v _f ψ	
STD OBS	0000	02 1 02 1	0 34	4 12	27 27	28 28	0 0	00	7 53 7 53	4769 9 4769 9	
OBS STD OBS	0008 0010 0017	02 1 02 1 02 0	0 34	4 14	27 27 27	29 30 31	0 0	08	7 57 7 55 7 51	4770 6 4770 6 4770 6	
STD	0020	02 0 01 9	6 34	4 15 4 14	27 27	31 31		16	7 49 7 47	4770 6 4769 9	
STD	0030 0043 0050		2 34	4 13	27 27 27	31 33 37		38	7 50 7 63 7 76	4769 2 4764 3 4759 7	l
STD OBS STD	0065	00 3	- -	4 18	27	45		55	7 91 7 87	4748 1 4737 3	
OBS STD	0087 0100 0131	-01 2	7 34 4 34 1 34	4 25	27 27 27	54 57 64	0 0	69	7 80 7 71 7 31	4727 8 4726 0 4727 1	
OBS STD OBS	0150 0176	-01 1	0 3	4 37	27 27	67 71	0 0	92	6 93	4731 7 4741 7	
STD OBS STD	0200 0221 0250	00 9	7 3 3 4 3	4 64	27 27 27	76 78 79		.12	5 09 4 45 4 25	4758 1 4767 9 4773 0	
OBS STD	0266 0300	01 2	3 3	4 68 4 69	27 27	79 80		.44	4 17 4 16	4775 4 4777 6	
OBS STD OBS	0358 0400 0406	01 2	7 3 3 1 3 1	4 70	27 27 27	81 81 81	0 1	.76	4 15 4 40 4 42	4781 5 4783 3 4783 5	
OBS STD	0490 0500	01 1	6 3	4 70	27 27	81 82	0 2	206	4 38 4 41 4 52	4787 7 4788 2 4791 7	
OBS STD OBS	0575 0600 0662	01 0	9 3 8 3 5 3	4 69	27 27 27	81 81 81	0 2	237	4 44 4 33	4793 1 4796 3	
OBS STD	0749 0800	00 9	6 3 3 3	4 69	27 27 27	82 82 82	0 2	99	4 41 4 45 4 46	4800 1 4802 9 4805 0	
OBS STD OBS	0839 1000 1022	00 8	4 3 2 3	4 69 4 69	27 27	83	0 3	359	4 25 4 22	4813 3 4814 3	
OBS STD OBS	1200	00 7	5 3 3 1 3	4 69	27 27 27	83 84 83	0 4	19	4 54 4 57 4 61	4818 8 4823 4 4829 4	-
085	1505	00 /	1 3	4 00	21	0,5				102	-
											-

				S	SURFACE	OBSERVATIONS			
NODC REF.	STATION		1	DATE		PC	SITION	SONIC DEPTH	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED	DEPTH
00672	0038	01	27	1961	04	69° 52′S	119° 58′W	2875	28

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		duc	SI	ĒΑ	SWEL	.L	VIS.	W	ATER
SPEED	DłR.	HGT.	PRESS	DRY 🖐	WET ₩	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	¥15.	COL.	TRANS.
06	21		0.0	51 0	51 6	87	02	6	6					8		

SAMPLE T°C S%0 σt ΣΔD O;m/Λ	v _f 🖖
OBS 0000 -01 67 33 72 27 16 6 83 STD 0010 -01 73 33 72 27 16 0 009 6 90	
STD	4711 0 4710 6 4710 6 4711 5 4711 5 4713 7 4713 7 4713 7 4713 7 4713 7 4715 9 4715 9 4716 9 4717 5 4772 9 4772 9 4772 9 4772 9 4774 4 4772 9 4777 5 4777 5 4777 5 4777 5 4778 2 4782 2 4788 8 4793 9 4799 0 4808 6 4808 6 4817 9 4817 9 4817 9 4817 9 4817 9 4817 9 4817 9 4818 8 4849 8

	SURFACE OBSERVATIONS														
NODC	CTATION		1	DATE		PC	SITION	SONIC	MAX.						
NO.	REF. STATION NO.	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH						
00672	0039	01	27	1961	21	70° 21′S	118° 56′ W	2750	27						

W	IND	ANEMO.	AIR	AIR TEMP	AIR TEMPERATURE		HUMID- WEATHER		CLOUD		A	SWEL	.L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🍟	WET 🛊	ITY	WENTHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
09	27		02	50 6	51 1	89	02	0	8					8		

			SUBSU	RFACE C	BSER	VATIONS		
DEF	AMPLE PTH (M)	r °c ∳	s% o ♦	σξ	+	Σ Δ D	O₂m I/I ₩	v _t \
STD	00	55 55 56 56 61 68 68 68 75 77 46 61 60 33 32 98 89 72 77 51 55 53 51 44 44 31 22 56 65 66 61 44 44	s%0	_	277266727734 3511559 562267777777777777777777777777777777777	ΣΔD		

	SURFACE OBSERVATIONS													
NODC REF.	STATION	STATION							PO:	SITION			SONIC	MAX. SAMPLE
NO.		MO.	DAY	YEAR	HOUR	LAT	ITUDE		LONG	SITUDE		UNCORRECTED		
00672	0040	01	28	1961	09	70	53	s	118	26	W	2688	24	

W	IND	ANEMO.	AIR	AIR TEMP	PERATURE	HUMID-	WEATHER	CLC	מטכ	SE	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
11	25		08	51 2	51 7	90	02	0	8					8		

	1 90		SUBSUR	FACE OBSER			
	SAMPLE DEPTH (M)	7 °C ¥	s% o ↓	σι ψ	Σ ΔD	O₂m 1/I ₩	v _f
STD OBS	0010 0010 0020 0020 0030 0050 0050 0075 0075 0100 0150 0200 0250 0250 0300 0400 0400 0480 0507 0771 0600 0771 0800 0964 1000 1158 1200	-01 69 -01 68 -01 68 -01 69 -01 72 -01 74 -01 74 -01 71 -01 64 -01 25 -00 49 -00 14 -00 14 -00 14 -00 36 -01 31 -01 31 -01 38 -01 31 -01 04 -01 38 -01 39 -01 38 -01 39 -01 39 -01 38 -01 39 -01 38 -01 39 -01 38 -01 39 -01 38 -01 39 -01 38 -01 38 -0	87 87 88 87 88 87 99 11 11 88 99 11 11 18 42 22 23 33 33 33 33 33 34 44 45 56 66 77 77 77 77 77 77 77 77 77 77 77 77	27 28 27 28 27 28 27 28 27 31 27 47* 27 53 27 58 27 60 27 66 27 66 27 69 27 73 27 77 27 80 27 83 27 84 27 85 27 85 27 85 27 87 27 87 27 88 27 88 27 87 27 88 27 87 27 88 27 88 27 87 27 88 27 88	0 035 0 048 0 061 0 084 0 105 0 124 0 142 0 175 0 205 0 234	66666666666666666666666666666666666666	4711 3 4711 3 4712 1 4712 7 4712 7 4712 7 4714 4 4714 8 4717 1 4719 8 4717 1 4719 8 4719 3 4729 3 4744 4 4753 0 4753 0 4767 0

	SURFACE OBSERVATIONS														
NODC REF.	STATION			DATE		PC	SITION	SONIC	MAX.						
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH						
00672	0041	01	28	1961	20	71 23 S	118 00 W	2200	21						

	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		DUD	SI	Α	SWEL	L	VIS.	W	ATER
SPEE	D DIR.	HGT.	PRESS	DRY 🖐	WET ₩	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
09	25		94	00 2	50 2	94	02	0	8					8		

SAMPLE DEFFH (M)	127			SUBSUR	FACE OBSER	VATIONS		
OBS 0000 -01 76 34 07 27 44 0 006 6 83 4711 2 25TD 0020 -01 79 34 07 27 44 0 006 6 83 4711 2 25TD 0020 -01 79 34 08 27 45 0 013 6 78 4711 8 25TD 0030 -01 77 34 11 27 48 0 019 6 68 4712 9 085 0300 -01 77 34 11 27 48 0 019 6 68 4712 9 085 0300 -01 76 34 26 27 60 0 030 6 38 4714 29 085 0300 -01 76 34 26 27 60 0 030 6 38 4714 29 085 0305 -01 75 34 31 27 64 0 042 6 28 4716 7 085 075 -01 75 34 31 27 64 0 042 6 28 4716 7 085 075 -01 75 34 31 27 64 0 042 6 28 4716 7 085 075 -01 75 34 31 27 64 0 042 6 28 4716 7 085 0100 -01 76 34 33 27 65 0 053 6 25 4718 1 085 0100 -01 76 34 33 27 65 0 053 6 25 4718 1 085 0100 -01 78 34 35 27 67 0 075 6 23 4720 9 085 0150 -01 78 34 35 27 67 0 075 6 23 4720 9 085 0200 -01 74 34 35 27 67 0 096 6 23 4724 5 085 0200 -01 42 34 38 27 68 0 0117 6 02 4732 6 085 0250 -01 42 34 38 27 68 0 0117 6 02 4732 6 085 0500 01 47 34 72 27 81 0 0250 44 48 4779 8 085 0500 01 47 34 72 27 81 0 0250 44 48 4779 8 085 0500 01 47 34 73 27 83 0 296 4 30 4807 4 48 4779 0 085 0500 01 42 34 73 27 84 0 355 4 44 4816 4 4816 4 4826 4 48		SAMPLE DEPTH (M)	T°C ₩		σ _t ψ		O2m 1/1	V₁ ₩
	OBS STD OBS ST	0000 0000 0010 0010 0020 0030 0050 0050 0050 0050 0150 0150 0200 0250 025	-01 76 -01 76 -01 79 -01 79 -01 79 -01 77 -01 77 -01 76 -01 80* -01 75 -01 76 -01 78 -01 78 -01 78 -01 78 -01 74 -01 42 -01 42 -01 42 -01 42 -01 42 -01 42 -01 42 -01 42 -01 42 -01 42 -01 42 -01 42 -01 47 -01 42 -01 47 -01 42 -01 78 -01 78 -01 78 -01 78 -01 78 -01 78 -01 78 -01 78 -01 78 -01 78 -01 78 -01 78 -01 78 -01 78 -01 77 -01 77 -01 77 -01 77 -01 77 -01 77 -01 77 -01 77 -01 77 -01 52 -01 52	34 07 34 07 34 07 34 07 34 08 34 11 34 26 34 31 34 33 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 37 37 72 38 38 38 38 38 38 38 38 47 39 72 73 39 72 72 72 72 72 72 72 72 72 72 72 72 72	27 44 27 44 27 44 27 45 27 45 27 48 27 60 27 60 27 65 27 65 27 65 27 67 27 67 27 67 27 67 27 67 27 67 27 67 27 81 27 83 27 83 27 83 27 84 27 86 27 86 27 86 27 86 27 86 27 86 27 86 27 88 27 88	0 000 0 006 0 013 0 019 0 030 0 042 0 053 0 075 0 096 0 117 0 137 0 173 0 205 0 236 0 296 0 355 0 413 0 496	6 87 66 87 66 88 66 68 68 66 68 68 66 68 68 66 68 68 66 68 6	4711 1 4711 1 4711 2 4711 2 4711 8 4712 9 4712 9 4714 2* 4716 7 4716 7 4716 7 4718 1 4720 9 4720 9 4724 5 4732 6 4732 6 4732 6 4732 6 4732 6 4732 6 4732 8 4741 8 4741 8 4741 8 4779 8 4793 0 4798 3 4798 3 4798 3 4798 3 4807 4 4816 4 4826 4 4826 4 4826 4 4826 4 4826 4 4842 1 4868 0

				\$	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LA1	TITUDE	LONG	SITUDE	UNCORRECTED	
00672	0042	01	29	1961	06	71	30 [′] S	117	10' W	1765	17

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		DUD	SE	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY ₩ WET ₩		ITY	WEATHER		AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
04	34		90	50 1	50 4	94	45	0	8					6		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ₩	s% o ♦	σ _t ψ	ΣΔ0	O₂m I/I	٧,
STD OBS	0000	-01 63 -01 63	34 00	27 38 27 38	0 000	6 86 6 86	4712 8 4712 8
STD	0010	-01 65 -01 65	34 01	27 39	0 007	6 84	4713 1 4713 1
STD	0020	-01 64 -01 64	34 04	27 42	0 014	6 82	4714 0 4714 0
STD	0030	-01 64 -01 64	34 12 34 12	27 48	0 020	6 69	4715 0 4715 0
STD	0050	-01 68 -01 68	34 26	27 60	0 031	6 46	4716 1 4716 1
STD	0075	-01 66 -01 66	34 33	27 65	0 043	6 38	4718 2 4718 2
STD	0100	-01 84 -01 84	34 34	27 66	0 054	6 27	4716 9
STD	0150 0150	-01 82 -01 82	34 35 34 35	27 67 27 67	0 075	6 26	4720 2 4720 2
STD	0200	-01 75 -01 75	34 36 34 36	27 68 27 68	0 096	6 23	4724 4 4724 4
STD	0250	-01 54 -01 54	34 37 34 37	27 68 27 68	0 117	6 07	4730 7 4730 7
STD	0300	-00 95 -00 95	34 43 34 43	27 71 27 71	0 137	5 68 5 68	4743 2 4743 2
OBS STD	0350 0400	00 18	34 56 34 65	27 76 27 80	0 172	5 01 4 68	4764 1 4776 7
OBS STD	0400 0500	00 79 01 27	34 65 34 71	27 80 27 82	0 203	4 68 4 39	4776 7 4790 0
OBS STD	0500 0600	01 27	34 71 34 74	27 82 27 84	0 233	4 39 4 37	4790 0 4796 5
OBS STD	0600 0800	01 30	34 74 34 74	27 84 27 85	0 290	4 43	4796 5 4805 3
OBS OBS	0800 0900	01 09	34 74 34 74	27 85 27 86		4 43 4 54	4805 3 4809 9
STD OBS	1000	00 95	34 73 34 73	27 85 27 85	0 346	4 58 4 58	4815 1 4815 1
STD OBS	1200 1200	00 85	34 72 34 72	27 85 27 85	0 402	4 59 4 59	4825 5 4825 5
STD OBS	1400 1500	00 74	34 72 34 72	27 86 27 86	0 485	4 73 4 72	4835 7 4840 9
OBS	1700	00 60	34 71	27 86		4 6 9	4851 4

SURFACE OBSERVATIONS														
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.			
NO.	STATION	MO.	DAY	YEAR	HOUR	LA.	TITUDE			DEPTH UNCORRECTED	SAMPLE DEPTH			
00672	0043	01	29	1961	15	70 °	59 ['] 5	116	56' W	2685	26			

1	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	DUD	SI	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY ₩	WET 🛊	ITY		TYPE	AMT,	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
03	32		90	00 0	50 4	92	02	0	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% o ↓	σ _t ψ	Σ Δ D	O₂m I/i	V _f *
OBS STD OBS	SAMPLE DEPTH (M) 0000 0000 0010 0010 0020 0030 0050 0050 0075 0100 0150 00150 00200 0250 0300 0250 0300 0350 0400 0400 0500 0500 0600 0600 0600 06	-01 70 -01 75 -01 75 -01 75 -01 75 -01 75 -01 75 -01 75 -01 64 -01 67 -01 34 -01 34 -01 34 -01 34 -01 49 01 49 01 49 01 49 01 48 01 38 01 23 01 06 01 06 00 96 00 81 00 96 00 81 00 58 00 43	s% o		ΣΔD		V,

	SURFACE OBSERVATIONS														
MODC	STATION			DATE			PO	SITION		SONIC	MAX. SAMPLE				
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA [*]	TITUDE	LON	GITUDE	DEPTH UNCORRECTED					
00672	0044	01	30	1961	00	70 °	30 [′] 5	116	39′ W	3150	30				

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		DUD	SE	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY	WEATHER		AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
0.5	36		91	00 4	50 3	87	02	0	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ★	s% o ¥	σι ψ	Σ Δ D	O₂m I/I ₩	V _f #
STD	0000	-01 60	33 84	27 25 27 25	0 000	7 11 7 11	4712 6 4712 6
OBS STD	0000	-01 60 -01 69	33 84 33 84	27 25	0 008	7 11	4711 8
OBS STD	0010 0020	-01 69 -01 73	33 84 33 85	27 25 27 26	0 016	7 11 7 12	4711 8 4711 8
OBS STD	0020	-01 73 -01 76	33 85 34 02	27 26	0 024	7 12 6 58	4711 8 4712 6
OBS STD	0030	-01 76 -01 81	34 02 34 16	27 40 27 52	0 037	6 58 6 82	4712 6 4713 6
овѕ	0050	-01 81	34 16	27 52		6 82	4713 6 4716 1
STD OBS	0075 0075	-01 76 -01 76	34 21 34 21	27 56 27 56	0 050	6 59	4716 1
STD OBS	0100	-01 67 -01 67	34 24 34 24	27 58 27 58	0 063	6 47	4719 2 4719 2
STD OBS	0150 0150	-00 46 -00 46	34 37 34 37	27 64 27 64	0 088	5 62 5 62	4741 6 4741 6
STD	0200	00 85	34 56	27 72	0 109	4 65	4765 3
OBS STD	0200 0250	00 85	34 56 34 64	27 72 27 76	0 127	4 65	4775 0
OBS STD	0250	01 28	34 64 34 68	27 76 27 78	0 145	4 40	4775 0 4781 4
OBS OBS	0300 0350	01 50 01 57	34 68 34 70	27 78 27 79		4 26 4 22	4781 4 4785 5
STD	0400	01 59	34 72	27 80	0 178	4 26	4788 8
OBS STD	0400 0500	01 59 01 55	34 72 34 73	27 80 27 81	0 210	4 26	4788 8 4794 2
STD OBS	0600	01 49	34 73 34 73	27 82	0 241	4 30	4799 3 4799 3
STD	0800	01 32 01 32	34 73 34 73	27 83 27 83	0 304	4 42	4808 7 4808 7
STD	1000	01 16	34 72	27 83	0 365	4 47	4818 2
OBS STD	1000	01 16	34 72 34 72	27 83 27 84	0 425	4 47	4818 2 4828 0
OBS	1200 1500	01 02	34 72 34 71	27 84 27 84	0 514	4 59 4 68	4828 0 4843 7
OBS	1500 2000	00 88	34 71 34 71	27 84 27 86	0 659	4 68	4843 7 4870 1
CBS	2000	00 66	34 71	27 86		4 74	4870 1
STD OBS	2500 2500	00 46	34 70 34 70	27 86 27 86	0 797	4 87	48 96 6
STD OBS	3000 3000	00 38	34 70 34 70	27 86 27 86	0 930	4 88	4925 0 4925 0
0,50							
		1			I		

SURFACE OBSERVATIONS													
NODC REF.	STATION		. 1	DATE			РО		SONIC	MAX.			
NO.	37411014	MO.	DAY	YEAR	HOUR	LATI	TUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLI DEPTH		
00672	0045	01	30	1961	09	70°	03'5	116	30' W	3545	30		

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		סטס	SE	ĒΑ	SWEL	.L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY		TYPE	AMT.	DIR.	AMT.		AMT.		COL.	TRANS.
06	02		92	50 6	50 8	95	56	0	3					5		

				9	SURFACE	E OBSE	RVATIONS				
NODC REF.	STATION			DATE		1	PC		SONIC	MAX. SAMPLE	
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON	IGITUDE	UNCORRECTED	
00672	0046	01	30	1961	17	70	05'S	115	31 W	3450	30

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CTC	DUD	SE	Α	SWEL	.L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ▼	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
06	0.5		03	50.6	51 2	87	0.2	0	В					8		

			SUBSUR	FACE OBSER	RVATIONS		
	SAMPLE DEPTH (M)	T °C V	s% o	σt ₩	ΣΔD	O₂m 1/i V	∨ _f ψ
STD OBS			s% o		ΣΔD	7 39 7 39 7 39 7 39 7 31 7 31 6 86 6 63 6 63 6 63 6 63 6 63 6 63 6 63	

	SURFACE OBSERVATIONS													
NODC	STATION		1	DATE			PO	SONIC	MAX. SAMPLE					
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	GITUDE	UNCORRECTED					
00672	0047	01	31	1961	02	70	08'S	114	14' W	3540	34			

I	W	IND	ANEMO.	AIR	AIR TEMP	AIR TEMPERATURE		WEATHER		מטכ	SEA		SWELL		VIS.	WATER	
ı	SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ᡟ	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
ı	00	00		94	50 3	50 7	93	0.2	0	8					8		

			SUBSUF	RFACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ¥	s% o ∲	σ _t ψ	Σ ΔD	O2m 1/1	V _f
STD	0000	-01 76	33 74	27 18	0 000	7 27	4709 6
OBS	0000	-01 76	33 74 33 74	27 18	0 009	7 27	4709 6 4709 7
STD	0010	-01 79 -01 79	33 74	27 18	0 009	7 27	4709 7
STD	0020	-01 77	33 77	27 20	0 018	7 27	4710 8
OBS	0020	-01 77 -01 73	33 77 33 88	27 20 27 29	0 026	7 27	4710 8 4712 5
STD	0030	-01 73 -01 73	33 88	27 29	0 025	7 14	4712 5
STD	0050	-01 76	34 15	27 51	0 040	6 76	4714 4
OBS	0050 0075	-01 76 -01 75	34 15 34 20	27 51 27 55	0 054	6 76	4714 4 4716 2
STD	0075	-01 75	34 20	27 55	0 054	6 61	4716 2
STD	0100	-01 78	34 22	27 57	0 067	6 52	4717 3
OBS	0100	-01 78	34 22 34 26	27 57 27 59		6 52 6 32	47 17 3
OBS STD	0125	-01 46 -00 71	34 26 34 34	27 63	0 092	5 83	4737 6
OBS	0150	-00 71	34 34	27 63		5 83	4737 6
OBS	0175	-00 08	34 42	27 66 27 71	0 114	5 32 4 78	4749 1 4761 7
STD	0200	00 62	34 52	27 71	0 114	4 78	4761 7
STD	0250	01 31	34 63	27 75	0 133	4 29	4775 4
OBS	0250	01 31	34 63	27 75 27 75	0 151	4 29	4775 4 1 4780 5
SID	0300	01 45	34 64	27 75	0 171	7 22	4780 5
STD	0400	01 66	34 70	27 78	0 187	4 16	4789 8
OBS	0400	01 66	34 70 34 71	27 78 27 79	0 221	4 16	4789 8 4795 5
STD OBS	0500 0500	01 64		27 79	0 221	4 22	4795 5
STD	0600	01 57	34 71	27 79	0 255	4 25	4800 4
OBS	0600	01 57	34 71	27 79	0 220	4 25	4800 4 4810 0
STDOBS	0800 0800	01 41	34 73 34 73	27 82 27 82	0 320	4 40	4810 0
STD	1000	01 28	34 72	27 82	0 383	4 43	4819 9
OBS		01 28	34 72	27 82	0 446	4 43 45	4819 9
STD STD	1200	01 14	34 71	27 82 27 83	0 446	4 50	4844 8
OBS	1500	00 96	34 70	27 83		4 50	4844 8
STD	2000	00 73	34 71	27 85	0 691	4 66	4871 1 4871 1
OBS STD	2000 2500	00 73	34 71	27 85 27 85	0 833	4 66	4897 2
OBS		00 50	34 69	27 85		4 77	4897 2
STD	3000	00 39	34 69	27 86	0 972	4 80	4925 1
OBS OBS	3000 3400	00 39	34 69	27 86 27 85		4 80	4925 1 4949 1
063	3400	30 42	7 09	2, 33			
					•		

					BURFACE	OBSERVATIONS			
NODC REF.	STATION			DATE		PC	SITION	SONIC	MAX.
NO.	SIATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0048	01	31	1961	10	70° 07′S	112° 58′ W	3680	35

	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID.	WEATHER		QUO	SI	ΕA	SWEL	.L	VIS.	W	ATER
SPEE	DIR.	HGT.	PRESS	DRY 🖐	WET ₩	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
02	09		94	50 4	50 8	93	02	0	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% o ♦	σ _t ψ	Σ ΔD	Ozm I/S	v _r
STD	0000	-01 77	33 75	27 18	0 000	7 27	4709 5
OBS STD	0000	-01 77 -01 79	33 75 33 75	27 18 27 18	0 009	7 27 7 16	4709 5 4709 8
OBS	0010	-01 79	33 75	27 18		7 16	4709 8
STD	0020	-01 79 -01 79	33 74 33 74	27 18 27 18	0 018	7 23 7 23	4710 3 4710 3
STD	0020	-01 77	33 76	27 19	0 027	7 17	4711 3
OBS	0030	-01 77	33 76	27 19		7 17	4711 3
STD	0050	-01 73 -01 73	34 10 34 10	27 47	0 042	6 91 6 91	4714 6 4714 6
STD	0075	-01 56	34 24	27 58	0 056	6 61	4719 4
OBS STD	0075 0100	-01 56 -01 17	34 24 34 28	27 58 27 60	0 069	6 61 6 29	4719 4 4727 2
085	0100	-01 17	34 28	27 60	0 069	6 29	4727 2
OBS	0125	-00 42	34 37	27 64		5 75	4740 7
STD	0150 0150	00 44	34 47 34 47	27 68 27 68	0 092	5 15 5 15	4755 8 4755 8
OBS	0175	00 97	34 55	27 71		4 80	4765 5
STD	0200	01 13	34 59 34 59	27 73 27 73	0 112	4 63	4769 6
OBS STD	0250	01 13	34 62	27 73 27 74	0 131	4 63 4 37	4769 6 4776 1
OBS	0250	01 36	34 62	27 74			4776 1
STD	0300	01 42	34 67 34 67	27 77	0 149	4 21 4 21	4780 1
STD	0400	01 52	34 71	27 80	0 182	4 21	4787 7
OBS STD	0400 0500	01 51	34 71 34 72	27 81	0 215	4 21 4 23	4793 E
OBS	0500	01 51	34 72	21 01	0 215	4 23 4 23	4793 6
STD	0600	01 57	34 73	27 81	0 247	4 24	4800 5
OBS STD	0600	01 57	34 73 34 74	27 81 27 83	0 310	4 24 4 38	4800 5 4810 5
овѕ	0800	01 44	34 74	27 83		4 38	4810 5
STD	1000	01 29	34 74 34 74	27 84 27 84	0 371	4 43	4820 2 4820 2
STD	1200		34 73	27 84	0 431	4 44	4829 8
OBS	1200		34 73	27 84		4 44	4829 8
STD	1500 1500	00 98	34 72 34 72	27 84 27 84		4 58 4 58	4845 2 4845 2
STD	2000	00 83	34 71	27 84		4 72	4872 6
OBS STD	2000 2500	00 83	34 74* 34 71	27 87* 27 86	1	4 72 4 73	4872 7* 4897 9
OBS	2500	00 54	34 71	27 86	0 814	4 73	4897 9
STD	3000	00 42	34 71	27 87	0 948	4 81	4925 6
OBS OBS	3000 3500	00 42	34 71 34 68	27 87 27 85		4 81 4 78	4925 6
050						. , ,	.,,,,
			1	- 1			

SURFACE OBSERVATIONS												
NODC	STATION		1			SONIC	MAX. SAMPLE					
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TTUDE		LON	IGITUDE	UNCORRECTED	
00672	0049	01	31	1961	21	70 *	08	s	111	30' W	3470	33

		ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLOUD		SEA		SWELL		VIS.	WATER	
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET 🏕	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
0.7	09		94	00 8	00 4	92	02	0	8					8		

			s	UBSUR	FACE OBSERVATIONS								
	SAMPLE DEPTH (M)	T °C ¥		s% ♦		σt	\	1	ΣΔΟ	1) zm 1/1	۸,	,
STD	0000			33 33	64 64	27	09	0	000	7 7	25 25	4709 4709	3 3
OBS STD	0010	-01 7	9	33	62	27	08	0	010	7	28	4709	2
OBS STD	0010	-01 7	8	33 33	62 66	27 27	08	0	020	7	28 30	4709 4710	1
OBS STD	0020			33 33	66 72	27	11 16	0	029	7	30 24	4710 4711	1 5
OBS STD	0030		-	33 34	72 14	27	16	0	044	7	24 75	4711 4715	5
OBS STD	0050 0075		- ,	34 34	14 22	27	50 56	0	058	6	75 55	4715 4717	0
OBS	0075	-01 6	5	34 34	22	27	56 59	0	071	6	55 31	4717 4723	9
STD OBS		-01 3	19	34	26	27	59		071	6	31	4723	7
OBS STD	0125 0150	00 2	7	34 34	36 46	27 27	63 68	0	094	5	76 10	4740 4753	7
OBS OBS				34 34	46 53	27 27	68 70			5 4	10 73	4753 4762	6
STD OBS	0200			34 34	59 59	27 27	73 73	0	114	4	45 45	4769 4769	9
STD	0250	01 4	9	34 34	65 65	27 27	75 75	0	133	4	22	4778 4778	1 1
STD	0300	01 6	1	34 34	68 68	27	77	0	151	4	15 15	4783 4783	0 0
STD	0400	01 6	8	34	71	27	79 79	0	185	4	16	4790 4790	1
OBS STD	0500	1	3	34 34	71 72	27	80	0	219	4	19	4795	4
OBS STD	0500 0600		7	34 34	72 73	27	81	0	251	4	19 25	4800	5
OBS STD	0600	-		34 34	73 73	27	81 82	0	315	4	25 30	4800 4810	5 2
OBS STD	0800 1000			34 34	73 73	27	82 83	0	377	4	30 43	4810	2
OBS STD	1000	1		34 34	73 73	27 27	83 84	0	438	4	43 43	4820 4829	0 5
OBS		01 1	12	34	73 73	27	84	0	526	4	43 64	4829 4844	5 7
085	1500	00 9	94	34	73 71	27	85 85	0	671	4	64	4844 4871	7 3
STD		00	74	34	71	27	85 86		813	4	68 69	4871 4897	3 7
STD		00 5	53	34 34	70 70	27	86	0		4	69	4897	7
STD OBS		00 4	+2	34 34	71 71	27	87 87	0	948	4	80	4925	6
OBS	3300	00 3	39	34	71	27	87			4	76	4942	9
								l]			

	SURFACE OBSERVATIONS														
NODC REF.	STATION			DATE		PO	SITION	SONIC	MAX. SAMPLE						
NO.		MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED							
00672	0050	02	01	1961	17	69° 43′S	111 26' W	3523	34						

W	IND	ANEMO.	AIR	AIR TEMP	PERATURE	HUMID-	WEATUE		DUD	SE	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ₩	TITY WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.	
02	09		93	51 4	51 8	92	02	6	4					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% o	σt	Σ Δ D	O₂m I/I	Vr ₩
		¥	+	Ψ	Y	*	V
STD	0000	-01 61	33 13	26 68	0 000	7 52	4709 4
OBS	0000	-01 61	33 13 33 12	26 68 26 67	0.016	7 52 7 56	4709 4 4 4708 5
STD OBS	0010 0010	-01 70 -01 70	33 12 33 12	26 67	0 014	7 56	4708 5
STD	0020	-01 65	33 55	27 02	0 026	7 46	4711 7
OBS	0020	-01 65	33 55	27 02		7 46	4711 7
STD	0030	-01 69	33 77	27 20	0 035	7 03	4712 7
OBS	0030	-01 75*		27 20*	0.53	7 03	4711 7*
STD	0050 0050	-01 72 -01 72	34 06 34 06	27 43	0 051	6 63	4714 6
OBS STD	0075	-01 65	34 18	27 53	0 066	6 34	4717 7
овя	0075	-01 65	34 18	27 53		6 34	4717 7
STD	0100	-01 47	34 25	27 58	0 079	6 15	4722 4
овя	0100	-01 47	34 25	27 58		6 15	4722 4
OBS	0125	-00 79	34 31	27 61		5 67	4734 8
STD	0150	-00 21 -00 21	34 40	27 65	0 103	5 22	4745 6
0BS 0BS	0150 0175	00 21	34 47	27 68		4 91	4755 7
STD	0200	00 81	34 57	27 73	0 124	4 49	4764 7
овѕ	0200	00 81	34 57	27 73		4 49	4764 7
STD	0250	01 31	34 62	27 74	0 142	4 16	4775 3
OBS	0250	01 31	34 62	27 74	. 1	4 16	4775 3
STD	0300	01 47	34 67 34 67	27 77	0 160	4 05	4780 9
OBS STD	0300	01 64	34 67 34 70	27 78	0 195	3 97	4789 5
OBS	0400	01 64	34 74*	27 81*	0 1//	3 97	4789 6*
STD	0500	01 61	34 72	27 80	0 229	4 05	4795 1
овѕ	0500	01 61	34 72	27 80		4 05	4795 1
STD	0600	01 55	34 73	27 81	0 261	4 12	4800 2
OBS	0600	01 55	34 73 34 73	27 81 27 82	0 324	4 12	4800 2
STD	0800 0800	01 40	34 73	27 82	0 324	4 17	4809 9
STD	1000	01 23	34 73	27 83	0 386	4 21	4819 2
OBS	1000	01 23	34 73	27 83		4 21	4819 2
STD	1200	01 11	34 73	27 84	0 446	4 25	4829 4
OBS	1200	01 11	34 73	27 84		4 25	4829 4
STD OBS	1500 1500	00 91	34 72 34 72	27 85	0 535	4 41	4844 2 4844 2
STD	2000	00 71	34 71	27 85	0 680	4 49	4870 8
овя	2000	00 71	34 71	27 85		4 49	4870 8
STD	2500	00 51	34 71	27 86	0 819	4 49	4897 4
089	2500	01 63*		27 79*		4 49	4914 0*
STD	3000	00 39	34 71	27 87	0 950	4 61	4925 2 4925 2
OBS OBS	3000 3400	00 39	34 71 34 70	27 87		4 59	4948 1
083	5400	00 35	34 10	21 01		, ,,	,,,,,,

SURFACE OBSERVATIONS														
NODC REF.	STATION			DATE			PC	SITION		SONIC	MAX.			
NO.		MO.	DAY	YEAR	HOUR	LAT	TITUDE	LON		DEPTH UNCORRECTED	SAMPLI DEPTH			
00672	0051	02	02	1961	01	69°	13'S	111	28' W	3690	35			

W	IND	ANEMO.	AIR	AIR TEMPERATURE		HUMID-	MEATHER		סטכ	SE	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY	WEATHER		АМТ.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
03	0.5		91	50 6	51 7	81	02	6	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ₩	s% 0 ₩	σ _t ψ	Σ ΔD	O₂m I/I ₩	v _t +
STD	0000	-01 14	33 13	26 66	0 000	7 61	4716 8
OBS STD	0000	-01 14 -01 61	33 13 33 46	26 66	0 013	7 61	4716 8 4711 4
овя	0010	-01 61	33 46	26 94	0 013	7 46	4711 4
STD	0020	-01 66	33 56	27 03	0 023	7 31	4711 6
OBS	0020	-01 66 -01 66	33 56 33 82	27 03	0 033	7 31 7 01	4711 6 4713 3
STD OBS	0030	-01 66	33 82	27 24	0 033	7 01	4713 3
STD	0050	-01 67	34 08	27 45	0 047	6 51	4715 5
OBS	0050	-01 67	34 08	27 45		6 51	4715 5
STD OBS	0075 0075	-01 25 -01 25	34 23 34 23	27 56 27 56	0 062	6 03	4724 3 4724 3
STD	0100	-00 47	34 34	27 62	0 075	5 50	4738 4
OBS	0100	-00 47	34 34	27 62		5 50	4738 4
OBS	0125 0150	00 21	34 43	27 66	0 097	4 89	4750 6 4763 7
STD OBS	0150	00 95	34 54	27 70	0 097	4 39	4763 7
OBS	0175	01 24	34 58	27 71		4 20	4769 7
STD	0200	01 48	34 61	27 72	0 117	4 05	4774 8
OBS STD	0200 0250	01 48	34 61 34 66	27 72	0 136	4 05 3 95	4774 8 4781 1
OBS	0250	01 69	34 66	27 75	0 130	3 95	4781 1
STD	0300	01 76	34 68	27 76	0 154	3 92	4785 2
OBS	0300	01 76	34 68	27 76		3 92	4785 2
STD	0400 0400	01 78	34 70 34 70	27 77	0 190	3 97	4791 5 4791 5
STD	0500	01 73	34 73	27 80	0 224	4 01	4796 9
OBS	0500	01 73	34 73	27 80		4 01	4796 9
STD	0600	01 66	34 73	27 80	0 257	4 07	4801 8 4801 8
OBS STD	0600 0800	01 66	34 73 34 73	27 80 27 82	0 322	4 07	4801 8 4811 2
овя	0800	01 49	34 73	27 82	0 722	4 14	4811 2
STD	1000	01 35	34 73	27 83	0 386	4 17	4821 0
OBS	1000	01 35	34 73 34 73	27 83 27 84	0 448	4 17	4821 0 4830 8
STD	1200	01 21	34 73	27 84	0 440	4 19	4830 8
STD	1500	01 03	34 72	27 84	0 540	4 44	4845 9
OBS	1500	01 03	34 72	27 84	0 689	4 44	4845 9 4871 7
STD	2000	00 77	34 71 34 71	27 85 27 85	0 689	4 36	4871 7
STD	2500	00 55	34 71	27 86	0 831	4 59	4898 0
OBS	2500	00 55	34 71	27 86		4 59	4898 0
STD	3000 3000	00 53	34 71 34 71	27 86	0 968	4 64	4927 3
085	3500	00 23	34 70	21 00		4 61	7721 3

	SURFACE OBSERVATIONS														
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.				
NO.		MO.	DAY	YEAR	HOUR	LAT	TUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH				
00672	0052	02	02	1961	09	69°	13'5	110	08' W	3731	35				

W	/IND	ANEMO.	AIR	AIR TEMP	PERATURE	HUMID-			QUO	SE	EA .	SWE	L.	,,,,	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY W	WET ¥	ITY	WEATHER		AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
02	36		91	00 0	50 9	84	03	6	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ₩	s%0 ★	σt ₩	Σ Δ D	O 2 m 1/1	V _t
STD OBS	0000	-00 87 -00 87	32 94 32 94	26 50 26 50	0 000	7 78 7 78	4720 2 4720 2
STD	0010 0010	-01 12 -01 12	33 00 33 00	26 56 26 56	0 015	7 78 7 78	4717 1 4717 1
STD OBS	0020	-01 43 -01 43	33 23 33 23	26 75 26 75	0 029	7 84	4713 8 4713 8
STD OBS	0030 0030	-01 57 -01 57	33 92 33 92	27 32 27 32	0 039	7 40	4715 2 4715 2
STD OBS	0050	-01 72 -01 72	34 02 34 02	27 40 27 40	0 054	6 71	4714 4 4714 4
STD OBS	0075 0075	-01 28 -01 28	34 19 34 19	27 53 27 53	0 069	6 06	4723 6 4723 6
STD	0100	-00 47 -00 47	34 32 34 32	27 60 27 60	0 083	5 46	4738 3 4738 3
STD	0125 0150 0150	00 31 00 96 00 96	34 42 34 51 34 51	27 64 27 68 27 68	0 106	4 90 4 40 4 40	4752 1 4763 7 4763 7
OBS OBS STD	0175	00 96 01 18 01 42	34 56 34 60	27 70 27 72	0 126	4 25	4768 7 4773 9
OBS	0200	01 42	34 60 34 64	27 72	0 146	4 08	4773 9 4779 5
OBS STD	0250	01 59	34 64 34 67	27 74 27 75	0 164	3 99	4779 5 4785 6
OBS STD	0300 0400	01 79 01 77	34 67 34 70	27 75 27 77	0 201	4 04	4785 6 4791 4
STD OBS	0500 0500	01 73 01 73	34 72 34 72	27 79 27 79	0 235	4 04 4 04	4796 8 4796 8
STD OBS	0600	01 68 01 68	34 72 34 72	27 79 27 79	0 269	4 09 4 09	4802 0 4802 0
STD	0800	01 53	34 74 34 74	27 82 27 82	0 335	4 13 4 13	4811 8 4811 8
STD	1000	01 36	34 73 34 73 34 73	27 83 27 83	0 398	4 30	4821 2 4821 2
STD OBS STD	1200 1200 1500	01 23 01 23 01 06	34 73 34 73 34 73	27 83 27 83 27 85	0 461	4 27 4 27 4 32	4831 1 4831 1 4846 4
OBS	1500	01 06	34 73 34 71	27 85 27 85	0 701	4 32 4 50	4846 4 4872 0
OBS	2000	00 79	34 71 34 71	27 85 27 86	0 844	4 50 4 54	4872 0 4898 3
OBS STD	2500 3000	00 57	34 71 34 71	27 86 27 87	0 978	4 54 4 71	4898 3 4925 8
OBS OBS	3000 3500	00 43 00 47	34 71 34 71	27 87 27 87		4 71 4 61	4925 8 4955 9
			1				

				9	SURFACE	OBSERVA	ATIONS				
NODC REF.	STATION		1	DATE			PO	SITION		SONIC DEPTH	MAX. SAMPLE
NO.		MO.	DAY	YEAR	HOUR	LATITU	DE	LONG	ITUDE	UNCORRECTED	
00672	0053	02	02	1961	16	69° :	13′S	108	42' W	4120	35

W	WIND ANEMO. AIR			AIR TEMPERATURE		HUMID-	WEATHER		מטכ	SE	ΞA	SWE	L	VIS.	. M	ATER
SPEED		HGT.	PRESS	DRY 🆞	WET ᡟ	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
00	00		91	50 0	51 1	79	01	6	7					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °c ₩	s% o ₩	σ _t ψ	ΣΔΟ	O2m 1/1	v ₁ ψ
STD	0000	00 23	33 16 33 16	26 63 26 63	0 000	7 51 7 51	4738 1 4738 1
STD	0010	-00 09 -00 09	33 23 33 23	26 70 26 70	0 014	7 62 7 62	4734 1 4734 1
STD	0020	-00 35	33 25	26 73	0 027	7 69	4730 8
OBS STD	0020 0030	-00 35 -01 41	33 25 33 80	26 73 27 21	0 038	7 69 7 80	4730 8 4717 2
OBS STD	0030	-01 41 -01 72	33 80 34 00	27 21 27 39	0 054	7 80	4717 2 4714 4
OBS STD	0050 0075	-01 72 -01 72	34 00 34 09	27 39 27 46	0 070	7 00 6 78	4714 4 4716 2
OBS	0075	-01 72	34 09 34 14	27 46 27 50	0 085	6 78	4716 2 4720 0
STD OBS	0100 0100	-01 59	34 14	27 50	0 005	6 54	4720 0
OBS STD	0125 0150	-00 57 00 74	34 26 34 43	27 56 27 63	0 112	5 74 4 74	4738 0 4760 1
0BS 0BS	0150 0175	00 74	34 43 34 51	27 63 27 65		4 74	4760 1 4770 1
STD	0200	01 57	34 56 34 56	27 67 27 67	0 135	4 04	4775 9 4775 9
STD	0250	01 69	34 61	27 70	0 156	3 98	4780 9 4780 9
0BS 0BS	0250 0294	01 69	34 61 34 63	27 70 27 71		3 89	4785 0
STD OBS	0300 0393	01 80	34 63 34 68	27 71 27 75	0 176	3 89	4785 5 4792 0
STD OBS	0400 0492	01 85	34 68 34 71	27 75 27 77	0 215	3 89 3 91	4792 4 4797 8
STD	0500 0590	01 83	34 71 34 72	27 77 27 78	0 252	3 90	4798 2 4803 2
STD	0600	01 79	34 72 34 74	27 79	0 287	3 86	4803 6 4812 6
OBS STD	0800	01 62	34 74	27 81	0 354	4 09	4813 1
OBS STD	0987 1000	01 52 01 51	34 74 34 74	27 82 27 82	0 419	4 18	4822 8 4823 4
OBS STD	1185 1200	01 38	34 74 34 74	27 83	0 483	4 12	4832 5 4833 2
OBS STD	1483 1500	01 16	34 73 34 73	27 84 27 84	0 576	4 24	4846 9 4847 8
OBS	1981	00 91	34 72 34 72	27 85 27 85	0 729	4 25	4872 7 4873 7
STD	2480	00 65	34 71	27 86		4 22	4898 3
STD OBS	2500 2980	00 64	34 71 34 71	27 86 27 87	0 875	4 26 4 78	4899 4 4925 5
STD OBS	3000 3480	00 49	34 71 34 71	27 87 27 87	1 014	4 77 4 53	4926 7 4954 5
,					1		1

	SURFACE OBSERVATIONS														
NODC REF.	STATION			DATE			PC	SITION		SONIC	MAX.				
NO.	STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LON	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH				
00672	0054	02	03	1961	01	69	13 ['] S	107	16' W	4260	40				

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		DUD	SI	EA	SWE	L		w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ¥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
02	27		91	00 3	51 1	75	02	6	5					В		

			SUBSUR	FACE OBSER	VATIONS	-	
	SAMPLE DEPTH (M)	T °C ₩	s% o ₩	ot ₩	ΣΔD	O2m I/I	v _f ₩
STD	0000	-01 26	32 38	26 06	0 000	7 79	4711 6
OBS STD	0000 0010	-01 26 -01 48	32 38 32 60	26 06 26 25	0 019	7 79 7 78	4711 6 4709 7
OBS STD	0010	-01 48 -01 52	32 60 33 45	26 25 26 93	0 033	7 78 7 55	4709 7 4713 4
овѕ	0020	-01 52	33 45	26 93		7 55	4713 4
STD OBS	0030 0030	-01 61 -01 61	33 87 33 87	27 28 27 28	0 043	7 04	4714 4 4714 4
STD	0050	-01 69 -01 69	34 05 34 05	27 43 27 43	0 058	6 65 6 65	4715 1 4715 1
STD	0075 0075	-01 57 -01 57	34 15 34 15	27 50 27 50	0 073	6 26	4718 9 4718 9
OBS STD	0100	-00 95	34 25	27 56	0 087	6 26 5 7 4	4730 5
OBS OBS	0100 0125	-00 95 -00 05	34 25 34 37	27 56 27 62		5 74 5 18	4730 5 4746 4
STD	0150 0175	00 68	34 47 34 54	27 66 27 69	0 111	4 66 4 31	4759 4 4767 9
STD	0200	01 30	34 59	27 72	0 132	4 13	4772 1
OBS STD	0200 0250	01 30 01 62	34 59 34 64	27 72 27 73	0 151	4 13 3 98	4772 1 4780 0
OBS	0250 0300	01 62 01 66	34 64 34 65	27 73 27 74	0 170	3 98 4 00	4780 0 4783 6
овя	0300	01 66	34 65	27 74		4 00	4783 6
STD OBS	0400 0400	01 77	34 70 34 70	27 77 27 77	0 207	3 94 3 94	4791 4 4791 4
STD	0500 0500	01 75 01 75	34 74 34 74	27 80 27 80	0 241	4 01 4 01	4797 2 4797 2
STD	0600 0800	01 69	34 74	27 81	0 273	4 02	4802 3
овѕ	0800	01 55	34 73	27 81 27 81	0 338	4 08	4812 1 4812 1
STD OBS	1000		34 74 34 74	27 83 27 83	0 402	4 21 4 21	4821 8 4821 8
STD	1200	01 27	34 73 34 73	27 83 27 83	0 465	4 26	4831 7
STD	1500	01 10	34 72	27 84	0 559	4 26 4 31	4831 7 4847 0
OBS STD	1500 2000		34 72 34 71	27 84 27 84	0 712	4 31 4 46	4847 0 4872 7
OBS STD	2000 2500		34 71 34 74	27 84 27 88	0 853	4 46 4 46	4872 7 4899 5
овя	2500	00 64	34 74	27 88		4 46	4899 5
STD	3000		34 70 34 70	27 86 27 86	0 987	4 69 4 69	4926 2 4926 2
STD	4000		34 70 34 70	27 87 27 87	1 255	4 61 4 61	4983 6 4983 6
				- '			.,,,,
		- 1	l	ı		- 1	

	SURFACE OBSERVATIONS													
NODC REF.	STATION		1	DATE		PO	SITION	SONIC	MAX.					
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH					
00672	0055	02	03	1961	09	69° 15′S	105° 44′ W	4125	40					

	WIND		ANEMO.	AIR	AIR TEMP	PERATURE	HUMID-	WEATHER		guo	SE	ΕA	SWE	LL	VIS.	W	ATER
2	SPEED	DIR.	HGT.	PRESS	DRY 🖐					AMT.	DIR.	AMT.		AMT.		COL.	TRANS.
Т	00	00		92	51 4	52 2	82	02	6	7					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ¥	s% o	σ _t ψ	Σ ΔD	O2m I/I	v _f 🛊
STD STD OBS	0000 0000 0000 0010 0010 0020 0030 0050 0050 0050 0075 0100 0125 0150 0175 0200 0250 0250 0250 0250 0250 0250 02	-01 04 -01 32 -01 36 -01 36 -01 57 -01 71 -01 71 -01 63 -01 02 -00 48 01 45 01 71 01 79 01 79 01 79 01 87 01 91 01 91 01 90 01 88 01 88 01 88 01 88 01 88 01 85 01 57 01 57	32 59 32 59 32 83 32 83 33 72 33 72 33 89 34 03 34 11 34 11 34 11 34 19 34 50 34 50 34 55 34 58 34 61	26 22 26 43 26 43 27 15 27 29 27 41 27 47 27 52 27 52 27 52 27 63 27 63 27 66 27 67 27 66 27 76 27 76 27 78 27 78 27 78 27 78 27 78 27 82 27 83 27 83 27 83 27 84	0 000 0 017 0 030 0 038 0 053 0 069 0 084 0 110 0 133 0 154 0 175 0 213 0 248 0 283 0 349 0 413	7 67 777777957 777777957 77777777777777777	4716 0 4716 0 4713 2 4713 2 4717 1 4715 1 4715 1 4714 6 4714 6 4714 6 4717 8 4729 2 4729 2 4770 9 4770 5 4779 2 4779 3 4781 0*

	SURFACE OBSERVATIONS														
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX.				
NO.	STATION	MO.	DAY	YEAR	HOUR	LATI"	TUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH				
00672	0056	02	03	1961	18	69	46 5	105	40' W	3893	37				

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	OUD	SI		SWE	.L	VIC	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ₩	ITY			AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
0/4	18		95	52 2	52.8	87	02	0	В					Я		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% o ₩	σ _t ψ	Σ ΔD	Ozm I/I	V _f
STD	0000	-01 53	32 44	26 12	0 000	7 98	4707 6
OBS STD	0000	-01 53 -01 59	32 44 32 86	26 12 26 46	0 017	7 98	4707 6 4709 1
ОВЯ	0010	-01 59	32 86	26 46	0 017	7 93	4709 1
STD	0020	-01 74	33 26	26 79	0 032	7 54	4709 0
OBS STD	0020	-01 74 -01 70	33 26 33 83	26 7 9 27 25	0 042	7 54 6 91	4709 0 4712 8
OBS	0030	-01 70	33 83	27 25	0 042	6 91	4712 8
STD	0050	-01 69	34 09	27 46	0 057	6 53	4715 2
OBS	0050	-01 69	34 09	27 46		6 53	4715 2
STD	0075 0075	-01 50 -01 50	34 16 34 16	27 51 27 51	0 072	6 29	4720 0 4720 0
STD	0100	-01 16	34 23	27 56	0 086	6 04	4727 2
OBS	0100	-01 16	34 23	27 56		6 04	4727 2
OBS	0125 0150	-00 26 00 45	34 36 34 47	27 62 27 67	0 110	5 42 4 89	4743 2 4755 9
STD	0150	00 45	34 47 34 47	27 67	0 110	4 89	4755 9
OBS	0175	00 92	34 53	27 69		4 56	4764 7
STD	0200	01 30	34 58	27 71	0 131	4 31	4772 0
OBS STD	0200 0250	01 30	34 58 34 63	27 71 27 74	0 150	4 31 4 19	4772 0 4777 7
OBS	0250	01 47	34 63	27 74	0 150	4 19	4777 7
STD	0300	01 61	34 67	27 76	0 168	4 11	4782 9
OBS	0300	01 61	34 67	27 76		4 11	4782 9
STD	0400	01 73	34 70 34 70	27 77 27 77	0 204	4 11 4 11	4790 8 4790 8
STD	0500	01 69	34 73	27 80	0 238	4 15	4796 3
OBS	0500	01 69	34 73	27 80		4 15	4796 3
STD OBS	0600	01 63	34 73 34 73	27 81 27 81	0 270	4 14 4 14	4801 3 4801 3
STD	0800	01 47	34 73	27 82	0 335	4 27	4810 9
овѕ	0800	01 47	34 73	27 82		4 27	4810 9
STD	1000		34 73	27 83	0 398	4 40	4820 7
OBS STD	1000	01 33 01 18	34 73 34 72	27 83 27 83	0 461	4 40	4820 7 4830 4
овя	1200	01 18	34 72	27 83	0 401	4 36	4830 4
STD	1500	00 99	34 72	27 84	0 553	4 53	4845 4
OBS STD	1500 2000	00 99 00 77	34 72 34 71	27 84 27 85	0 701	4 53 4 53	4845 4 4871 7
OBS	2000	00 77	34 71	27 85 27 85	0 701	4 53	4871 7
STD	2500		34 70	27 85	0 846	4 70	4898 6
OBS	2500	00 59	34 70	27 85		4 70	4898 6
STD	3000	00 44	34 70 34 70	27 86	0 985	4 80	4925 9
OBS OBS	3000 3700	00 44	34 70	27 86 27 87		4 80	4925 9 4966 1

				9	SURFACE	OBSER	RVATIONS				
NODC REF.	STATION		1	DATE			PO	SITION		SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TTUDE		GITUDE	UNCORRECTED	DEPT
00672	0057	02	04	1961	04	70 °	18'S	105	36' W	3340	32

W	WIND ANEMO		AIR	AIR TEMP	ERATURE	HUMID-			DUD	SI	A	SWEI	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY ₩	WET ¥	ITY	WEATHER		AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
03	21		99	50 7	51 2	90	02	0	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% o ₩	σt Ψ	Σ ΔD	O₂m I/I	v _f 🗡
STD	0000	-01 72	33 15	26 70	0 000	7 41	4707 7
OBS		-01 72	33 15	26 70		7 41	4707 7
STD	0010	-01 77 -01 77	33 38 33 38	26 88 26 88	0 013	7 34	4708 5
STD	0010	-01 74	33 46	26 95	0 024	7 22	4709 9
OBS	0020	-01 74	33 46	26 95		7 22	4709 9
STD	0030	-01 70	33 54	27 01	0 035	6 89	4711 5
ÖBS	0030	-01 70 -01 72	33 54 34 07	27 01	0 052	6 89	4711 5 4714 7
STD OBS	0050	-01 72	34 07	27 44	0 052	6 54	4714 7
STD	0075	-01 56	34 16	27 51	0 067	6 38	4719 1
OBS	0075	-01 56	34 16	27 51		6 38	4719 1
STD	0100	-01 23	34 22	27 55	0 081	6 07	4726 0
OBS OBS	0100 0125	-01 23 -00 48.	34 22 34 32	27 55 27 60		6 07 5 57	4726 0 4739 6
STD	0150	00 19	34 43	27 66	0 106	5 08	4751 8
OBS	0150	00 19	34 43	27 66		5 08	4751 8
OBS	0175	00 87	34 53	27 70		4 59	4764 0
STD	0200	01 03	34 56 34 56	27 71	0 127	4 43	4768 0 4768 0
OBS STD	0200	01 03	34 63	27 74	0 146	4 19	4777 0
OBS	0250	01 42	34 63	27 74		4 19	4777 0
STD	0300	01 54	34 66	27 76	0 164	4 12	4781 .9
STD	0400	01 67	34 70	27 78	0 200	4 07	4789 9
OBS STD	0400 0500	01 67	34 70 34 69	27 78	0 235	4 07	4795 5
OBS	0500	01 65	34 69	27 77		4 13	4795 5
STD	0600	01 59	34 71	27 79	0 269	4 15	4800 7
OBS	0600	01 59	34 71	27 79	0.006	4 15	4800 7
STD	0800	01 41	34 71 34 71	27 81 27 81	0 336	4 29	4809 9 4809 9
STD	1000	01 26	34 74	27 84	0 399	4 35	4819 7
OBS	1000	01 26	34 74	27 84	-	4 35	4819 7
STD	1200	01 13	34 72	27 83	0 460	4 38	4829 6
OBS STD	1200 1500	01 13	34 72 34 72	27 83	0 550	4 38	4829 6
OBS	1500	00 93	34 67*	27 81*		4 54	4844 2*
STD	2000	00 71	34 71	27 85	0 695	4 58	4870 8
OBS	2000	00 71	34 71	27 85		4 58	4870 8
STD	2500	00 47	34 72	27 87	0 831	4 84	4896 9 4896 9
OBS STD	2500 3000	00 47	34 72 34 68	27 87 27 85	0 966	4 84	4925 5
овя	3000	00 42	34 68	27 85	0 /00	4 83	4925 5
OBS	3200	00 41	34 69	27 85		4 76	4937 2

	SURFACE OBSERVATIONS														
NODC REF.	STATION		!	DATE				РО	SITION		SONIC DEPTH	MAX. SAMPLE			
NO.	STATION	MO.	DAı	YEAR	HOUR	LA*	TITUDE		LON	GITUDE	UNCORRECTED				
00672	0058	02	04	1961	15	70 °	18'	S	107	00'W	3805	35			

W	IND	ANEMO.	AIR			HUMID-	WEATHER		QUO	SI	ĒΑ	SWEL	.L	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
03	18		02	52 9	53 3	80	02	6	8					8		

								L
			SUBSUR	FACE OBSER	VATIONS			1
	SAMPLE DEPTH (M)	τ°c ∀	s% o ¥	σ ₁ ψ	Σ ΔD	O2m I/I	V _f	1
STD OBS OBS		-01 35 -01 35 -01 54 -01 68 -01 62 -01 68 -01 62 -01 68 -01 42 -01 42 -00 72 -00 72 -00 65 00 65 00 65 00 65 01 21 01 21 01 68 01 68 01 68 01 68 01 63 01 63 01 63 01 47 01 34 01 34	2 73 32 73 33 25 33 25 33 70 33 94 33 94 33 94 34 19 34 19 34 30 34 41 34 41 34 59 34 59 34 59 34 64 34 70 34 70 33 71	26 35 26 77 26 77 27 14 27 14 27 33 27 46 27 53 27 60 27 60 27 65 27 61 27 72 27 74 27 78 27 85 27 85		vm (v) 7 7 85 7 7 7 88 7 7 7 18 8 5 7 7 7 18 8 5 7 7 7 18 7 7 7 6 6 6 6 34 7 7 7 7 6 6 6 6 34 7 7 7 7 6 6 6 6 34 7 7 7 8 8 8 5 8 8 7 7 7 7 8 8 8 7 7 7 7		

	SURFACE OBSERVATIONS														
NODC REF.	STATION		1	DATE			PO	SITION		SONIC	MAX. SAMPLE				
NO.		MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	UNCORRECTED					
00672	0059	02	05	1961	01	69	49 S	106	59' W	4080	39				

V	VIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		סטס	SI	ΕA	SWE	LL	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY			AMT.	DIR.	AMT.	DIR.	AMT.	¥15.	COL.	TRANS.
03	11		02	51 7	52 1	91	02	0	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ¥	s% o ♦	σι ψ	Σ ΔD	O 2 m 1/1	v, *
STD	0000 0000 0010 0010 0020 0030 0030 0050 0050 0050 0075 0100 01150 0150 0250 0250 0250 0250 02	-01 24 -01 24 -01 60 -01 60 -01 69 -01 67 -01 66 -01 25 -00 60 -00 83 -00 83 -01 36 -01 31 -01 31	\$\\\^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	26 13 26 82 26 82 26 82 26 96 27 22 27 42 27 52 27 58 27 58 27 67 27 67 27 70 27 70 27 77 27 74 27 74 27 76 27 76 27 78 27 78 27 78 27 79 27 80 27 80 27 82 27 82 27 82 27 82 27 82	● E AD 0 000 0 016 0 027 0 037 0 052 0 068 0 081 0 105 0 126 0 146 0 165 0 202 0 238 0 272 0 340 0 406 0 471	7 97 77 976 77 976 77 976 82 97 77 04 66 82 35 5 70 00 44 60 66 82 35 5 5 5 60 60 44 26 44 11 14 44 09 94 44 20 94 44 16 44 30 94 44 36 94 44 36 94 45 36 94 95 94 95 95 95 95 95 95 95 95 95 95 95 95 95	4712 3 4712 3 4710 9 4710 9 4710 8 4713 1 4713 1 4715 5 4715 5 4715 5 4715 5 4715 5 4715 7 4716 1 4736 1 47
STD OBS STD OBS	1500 1987 2000 2483 2500 2986	01 10 00 85 00 84 00 63 00 62 00 45	34 72 34 70 34 70 34 70 34 70 34 69	27 84 27 84 27 84 27 85 27 85 27 85	0 567 0 722 0 871	4 51 4 54 4 54 4 67 4 67 4 76	4847 0 4872 1 4872 7 4898 2 4899 0 4925 2
STD OBS	3000 3886	00 45	34 69 34 69	27 85 27 86	1 013	4 76 4 84	4926 0 4976 4

	SURFACE OBSERVATIONS														
NODC REF.	STATION		1	DATE			PO	SITION		SONIC	MAX.				
NO.	SIRTION	MO.	DAY	YEAR	HOUR	LATI	ITUDE	LON	IGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH				
00672	0060	02	05	1961	07	69 °	33 ['] S	106	58' W	4188	40				

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		OUD	SE	ΕA	SWE	LL	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
02	0.5		02	52 5	52 8	91	02	0	8					8		

102	752			3-1				L
			SUBSUR	FACE OBSER	VATIONS			
	SAMPLE DEPTH (M)	T °C ₩	s% o ₩	σt ₩	Σ ΔD	O₂m l/l ₩	V _f	
STD OBS	0000 0000 0010 0010 0020 0030 0050 0050 0075 0100 0125 0150 0175 0200 0250 0250 0300 0400 0500 0500 0600 0600 0600 0600 06	-01 55 -01 55 -01 49 -01 49 -01 60 -01 43 -01 67 -00 95 -00 03 -00 03 -00 03 -00 98 00 98 01 59 01 59 01 81 01 81 01 81 01 81 01 81 01 80 01 75* 01 50 01 50	\$\\\^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	26 20 26 54 26 554 26 65 27 17 27 42 27 54 27 59 27 66 27 66 27 66 27 66 27 66 27 66 27 72 77 27 72 77 27 72 77 27 72 77 27 72 77 27 72 77 27 72 77 27 76 27 76 27 76 27 76 27 79 27 82 27 82 27 82 27 82 27 82 27 82 27 83 27 83 27 85 27 85 27 85	<pre></pre>	7 87 77 97 996 97 77 996 97 77 966 97 77 666 19 97 97 97 96 97 97 97 96 97 97 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97	4707 7 4707 1 1 4710 6 6 4710 6 4716 7 7 47115 4 4715 4 4715 4 4715 4 4715 4 4728 9 4745 1 4754 3 9 4745 4 4763 3 3 4776 3 4782 8 4782 8 4784 8 4791 8 4797 7 5 4803 5 5 5 4813 3 9 4832 8 4823 2 9 4832 8 4847 8	
STD OBS	0300 0300 0400 0500 0500 0600 0600 0800 1000 1200 1200 1500	01 81 01 75* 01 81 01 80 01 80 01 78 01 78 01 64 01 50 01 35 01 35 01 15 00 89 00 66 00 49 00 49	34 65 * 34 666 334 669 334 773 334 775 334 774 334 774 334 774 334 774 334 774 334 774	27 73 x 71 x 77 74 27 76 27 76 27 79 27 82 27 82 27 82 27 82 27 83 27 83 27 85	0 211 0 249 0 284 0 350 0 414 0 478 0 570 0 722 0 870 1 013 1 285	4 06 4 09 4 07 4 14 4 17 4 17 4 31 35 35 35 35 44 44 44 44 44 44 44 44 44 4	4785 8 4784 8* 4791 8 4797 7 4797 7 4803 5 4803 5 4813 5 4813 3 4823 3 4823 3 4832 9 4847 8	

	SURFACE OBSERVATIONS													
NODC			1	DATE		PC	SITION	SONIC DEPTH	MAX. SAMPLE					
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED						
00672	0061	02	05	1961	15	69° 26′S	105° 43′ W	3725	35					

W	IND	ANEMO.	AIR	AIR T	EMP	ERATU	RΕ	HUMID-	WEATHER	CLC	מטכ	SE		SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	*	WET	٧	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
04	11		02	52	1	52	5	90	02	6	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% o	σ ₁ ψ	ΣΔD	O2m I/I	V _f
STD	0000	-01 49	32 40	26 08	0 000	7 87	4708 1 4708 1
OBS STD	0000	-01 49 -01 58	32 40 33 06	26 08 26 62	0 017	7 85	4710 1
OBS	0010	-01 58	33 06	26 62	0.020	7 85	4710 1 4713 7
STD	0020	-01 50 -01 50	33 46 33 46	26 94	0 030	7 74	4713 7
STD	0030	-01 58	33 92	27 32	0 039	7 25	4715 0
OBS STD	0030	-01 58 -01 70	33 92 34 07	27 32 27 44	0 053	7 25	4715 0 4715 0
OBS		-01 70	34 07	27 44		6 77	4715 0
STD	0075	-01 68 -01 68	34 11	27 47	0 069	6 65	4717 0 4717 0
OBS STD	0075	-01 13	34 22	27 55	0 083	6 06	4727 6
089		-01 13	34 22	27 55		6 06	4746 4
OBS STD	0125 0150	01 10	34 36 34 57	27 61 27 71	0 107	4 50	4766 1
OBS	0150	01 10	34 57	27 71		4 50	4766 1
OBS STD	0175	01 54	34 60	27 71 27 70	0 127	4 24	4774 2
0BS		01 65	34 60	27 70		4 16	4777 3
STD	0250	01 78	34 63 34 63	27 71 27 71	0 147	4 06	4782 3 4782 3
OBS STD	0300	01 81	34 65	27 73	0 167	4 07	4785 8
OBS		01 81	34 68	27 75	0 205	4 11	4792 3
STD	0400	01 84	34 68 34 68	27 75	0 205	4 11	4792 3
STD	0500	01 80	34 68	27 75	0 242	4 16	4797 7
OBS STD	0500	01 80	34 68	27 75	0 278	4 16	4802 8
0BS		01 73	34 72	27 79		4 13	4802 8
STD	0800	01 54	34 74	27 82	0 344	4 28	4812 0
OBS STD	1000	01 41	34 73	27 82	0 408	4 39	4821 9
089		01 41	34 73	27 82 27 83	0 472	4 39	4821 9
STD OBS	1200	01 27	34 70*	27 81	112	4 35	4831 6*
STD	1500	01 06		27 84	0 565	4 59	4846 4
OBS STD	1500 2000	01 06		27 84 27 85	0 716	4 59	4872 1
083	1	00 80	34 71	27 85		4 50	4872 1
STD	2500 2500	00 62	34 71 34 71	27 86	0 860	4 75	4899 1
OBS STD	3000	00 45		27 88	0 995	4 81	4926 1
OBS		00 45		27 88	1	4 81	4926 1
OB S	3500	00 37	34 68	21 05			+734 2
		T		1	1	}	

				9	SURFACE	OBSE	RVATIONS				
NODC	STATION		. 1	DATE			PO	SITION		SONIC DEPTH	MAX. SAMPLE
NO.	REF. STATION	MO.	DAY	YEAR	HOUR	LA	TITUDE	LONG	GITUDE	UNCORRECTED	
00672	0062	02	07	1961	15	71	45'S	095	57' W	0404	04

W	IND	ANEMO.	AIR	AIR TE	MPE	ERATURE	HUMID-	WEATHER	CLC	DUD	SE	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🛊		WET 🛊	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
04	16		17	55 (0	55 6	82	02	6	5					8		

	1 '							т
[SUBSUR	FACE OBSER	VATIONS]
	SAMPLE DEPTH (M)	т °c ₩	s% o ₩	ot ₩	Σ ΔD	O2m 1/1	v _t ψ	1
STD OBS OBS STD OBS	SAMPLE	-01 61 -01 61 -01 70 -01 71 -01 71 -01 53 -01 53 -01 53 -01 52 -01 46 -01 08 -01 08 -0	s% o			0 3 m I/I 7 54 7 54 7 54 7 50 7 42 7 11 7 11 6 37 6 16 6 93 5 83 5 88 5 88 5 88 5 81 5 81 5 81 5 81 6 84 6 93 7 81 8 81		

				\$	SURFACE	OBSER	RVATIONS				
NODC			1	DATE			PO	SITION		SONIC DEPTH	MAX.
NO.	REF. STATION NO.	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LONG	SITUDE	UNCORRECTED	
00672	0063	02	09	1961	05	72°	32'5	093	02' W	0386	04

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		QUO	SE	ĒΑ	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ¥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	V15.	COL.	TRANS.
06	0.9		95	56 8	57 4	81	02		0					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°c ₩	s% o	σt ₩	ΣΔΟ	O2m1/l	v _t 🖖
STD OBS STD OBS STD OBS STD OBS STD OBS	0010 0010 0020 0020 0030 0050 0050 0075 0100 0125 0150 0175 0200 0225 0246 0250 0270 0295 0320 0344	-01 53 -01 53 -01 40 -01 40 -01 37 -01 47 -01 50 -01 50 -01 44 -01 40 -01 39 -01 35 -01 35 -01 35 -01 23 -01 14 -01 14 -01 40 -01 40 -00 57 -00 57 -0	33 44 33 44 33 35 51 22 33 405 34 12 34 12 34 12 34 12 34 12 34 18 34 18 34 18 34 18 34 34 36 35 36 36 37 37 38 36 39 37 30 30 37 30 30 37 30 37 30 37 30 37 30 37 30 37 30 37 30 37 30 37 30	26 93 26 93 26 91 26 98 26 98 26 98 27 15 27 42 27 47 27 50 27 52 27 52 27 54 27 60 27 64 27 66 27 68 27 68 27 75	0 000 0 011 0 023 0 033 0 048 0 064 0 079 0 108 0 136 0 160	7 77 7 77 7 82 7 76 7 21 7 21 6 08 5 97 5 86 5 86 5 93 5 91 5 86 5 93 5 91 5 81 5 61 5 56 5 37 5 31 5 40 6 4 81	4712 0 4712 0 4714 6 4714 6 4716 0 4715 9 4715 9 4718 1 4720 8 4723 0 4723 0 4724 9 4726 9 4733 5 4733 5 4733 5 4733 5 4733 5 4734 4 4744 0 4747 1 4751 5 4753 8 4764 1 4769 5

				9	SURFACE	OBSE	RVATIONS				
NODC REF.	STATION			DATE			PC	SITION		SONIC DEPTH	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LA1	TITUDE	LON	GITUDE	UNCORRECTED	
00672	0064	02	10	1961	02	72 °	29'5	091	43' W	0160	01

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		OUD	SE	A	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ¥	ITY	WEATHER	TYPE	AMT.	DIR	AMT.	DIR	AMT.	VIS.	COL.	TRANS.
0.8	09		95	53 9	56 1	84	02		0					8		

	09		95	53 9	56 I	84	02		0			8	
_					S	UBSUR	FACE OBS	ERV	'ATIONS				
		D	SAMPLE EPTH (M)	T°c ₩	s% ∀		σt ₩		ΣΔĐ	O₂m I/I ₩	V _f	ŧ	
	STD OF	035 0035 0035 0035 0035 0035 0035 0035	0000 0000 0010 0010 0010 0020 0030 0050 0050 0050 0050 0050 005	-01 2 -01 0 -01 0 -01 0 -01 0 -01 2 -01 2 -01 4 -01 5 -01 4 -01 4 -01 4 -01 2	2 33 2 33 0 33 0 33 8 33 8 33 6 33 3*33 8 34	31 31 334 34 60 60 81 81 01 01 10 11 15 18 23 23	26 8 26 8 27 0 27 2 27 2 27 2 27 3 27 4 27 4 27 5 5 27 5 27 5	111334422*	0 000 012 0 024 0 033 0 049 0 065 0 080	9 17 99 21 99 21 99 21 88 41 87 57 66 50 66 65 95 55 89 89	4716 4716 4716 4720 4720 4720 4720 4718 4718 4718 4718 4719 4722 4722 4729 4729	3 3 5 5 5 9 9 6 1* 2 2 8 8 6 6 8 0 0	
						j							

				5	SURFACE	OBSERVATIONS			
NODC	CTATION		1	DATE		PO	SITION	SONIC DEPTH	MAX. SAMPL
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED	
00672	0065	02	10	1961	18	72° 27′5	092° 14′W	0424	04

	W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		DUD	SE	A	SWEL	L.	VIS.	W	ATER
	SPEED	DIR.	HGT.	PRESS	DRY 🛊	WET ¥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	¥15.	COL.	TRANS.
ı	09	09		94	54 5	55 0	84	02		0					8		

<u> </u>								1
			SUBSUR	FACE OBSER	VATIONS			1
	SAMPLE DEPTH (M)	T °C ₩	s% o ♦	σι ψ	Σ ΔD	O₂m I/t	V _f ♦	
STD OB STD	DEPTH (M) 0000 0000 0000 0010 0020 0030 0050 0050 0050 0075 00100 0100 0100 01		s% o	σι	ΣΔD	8 90 8 94 8 94 8 91 8 51 7 20 6 15 6 05 6 05 5 93 5 78 5 78 5 52 5 52 5 24 4 59 4 04	V ₁ 4713 3 4713 3 4713 3 4714 4 4717 0 4720 0 4718 8 4718 8 4719 6 4719 6 47122 3 4724 9 4724 9 4725 7 4732 7 4732 7 4732 7 4732 7 4732 7 4732 6 4742 5 4742 5 4742 5 4742 8	

	SURFACE OBSERVATIONS														
NODC REF.	STATION		1	DATE			PC	SITION		SONIC DEPTH	MAX. SAMPLE				
NO.	SINTION	MO.	ĐAY	YEAR	HOUR	LA1	TITUDE	LO	NGITUDE	UNCORRECTED					
00672	0066	02	11	1961	02	72 *	24 ['] S	092	54 W	0725	07				

W	IND	ANEMO.	AIR	AIR TEMP	PERATURE	HUMID-	WEATHER		DUD	SE	ΕA	SWEI	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET 🛊	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	¥15.	COL.	TRANS.
0.9	09		94	54 9	55 7	76	02	6	1					8		

,	09	9	4	54	9 5	5 7	76	0	2 6	1	1	l			8	
						5	UBSUR	FACE C	DBSER	VA.	TIONS					1
		SAMP DEPTH	LE (M)	T °	Ç V	s%	60	σι	*	4	ΣΔD	0:	m I/I	V _I	+	
	STD	0010 0020 0030 0050 0050 0050 0050 0050 0150 015		-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	4994554566144455545661188444666077875009	3333333333334444444444444444444444	13 13 13 19 19 19 00 8 15 15 50 57 57 57 66 66 66 70 70	26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	67 68 68 72 114 13 13 13 13 13 13 15 15 16 16 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	0	000 014 027 039 056 074 091 121 149 174 196 235 269 300	9999977666666655555544444444	15566778844177669977766488882	4711 4711 4711 4712 4712 4713 4718 4719 4719 4719 4723 4741 4752 4752 4752 4752 4752 4752 4752 4752	3117766224448888556654429977	

				5	SURFACE	OBSERVATIONS			
NODC	NODC REF, STATION			DATE		PO	DSITION	SONIC DEPTH	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED	
00672	0067	02	11	1961	19	72 14 S	092 45 W	0410	04

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	DUD	SE	A	SWE	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET #	ITY	WEATHER		AMT.	DIR.	AMT.	DIR.	AMT.	¥15.	COL.	TRANS.
0.5	00		0.8	52 9	55 0	72	0.2	4	3					8		

				9	SURFACE	OBSERVATIONS			
NODC REF.	STATION		1	DATE		PC	SITION	SONIC DEPTH	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED	
00672	0068	02	11	1961	24	72° 17′S	091 26'W	0335	03

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		מטכ	SI	A	SWEL	LL	VIS.	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🛊	WET ₩	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
03	11		96	53 3	54 4	73	0.2		0					8		

_	11		96	22 2	, ,	4 4	13	0.	۷		<u> </u>	İ			L°
						S	UBSUR	FACE C	BSER	VA	TIONS				
			SAMPLE PTH (M)	T°	C	s% ₩	0	σŧ	ı	J	ΣΔD	01	m 1/1	٧ŗ	4
	STD OE OE	00000000000000000000000000000000000000	0000 0010 0010 0020 0020 0030 0050 0050 0050 1000 125 1150 125 1200 2225 2250 2275 3300 3325	-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	5555668 3336668 3336668 3336668 3336668 3336668 3336668 333668 333668 333668 333668 33368 3368 3368 3368 3368 3368 3368 3368 3368 3368 3368 3368 3368 3688 36	333333333333333333333333333333333333333	20 20 22 22 22 38 38 61 89 89 89 00 40 00 81 31 81 82 22 72 29 31 31 33 40	26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	77775787755787555555555556611466669	0000000000	000 013 026 037 055 073 089 119 146 171	9888888666666555555555555	000994440099099777766665555	471 471 471 471 471 471 471 471 471 472 472 473 473 473 474 474 474 474 474 474 474	0 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

				9	SURFACE	OBSERVATIONS			
NODC REF.	CTATION		-	DATE		PC	DSITION	SONIC	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED	DEPTH
00672	0069	02	12	1961	03	72 13'5	092 04'W	0430	04

	W	IND	ANEMO.	AIR	AIR TEMP	AIR TEMPERATURE HU		WEATHER		DUD	SE	ΞA	SWEL	L	VIS.		ATER
Ī	SPEED	DIR.	HGT.	PRESS	DRY 🎷	WET 🕊	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
ı	02	09		96	56 2	56 8	89	02	6	1					8		

			SUBSUR	FACE OBSER	RVATIONS	·	
	SAMPLE DEPTH (M)	T °C ★	s% o ₩	σ ₁ ψ	ΣΔD	O 2 m 1/1	V _f ₩
STD OBS OBS OBS STD OBS OBS OBS STD OBS OBS OBS OBS OBS OBS OBS OBS	0000 0000 0000 0010 0010 0020 0030 0050 0050 0075 0100 0125 0150 0150 0225 0250 0225 0250 0300 0325 0300 0325 0400 0425	-01 38 -01 48 -01 48 -01 05 -01 05 -01 18 -01 44 -01 44 -01 51 -01 61 -01 41 -01 30 -00 98 -00 49 -00 27 -00 27 -00 57 00 69	33 12 33 12 33 12 33 61 33 61 33 87 33 87 34 61 35 64 45 67 36 67 37 38 67 38 67 57 57 57 57 57 57 57 57 57 57 57 57 57	26 66 66 26 67 26 67 27 05 27 08 27 27 27 27 27 27 27 51 27 56 27 66 27 66 27 66 27 68 27 75 27 77 27 77 27 77	0 000 0 014 0 026 0 036 0 054 0 073 0 090 0 120 0 147 0 171 0 193	9 03 9 03 9 06 8 16 8 16 7 7 96 6 80 6 80 6 82 6 22 5 99 5 5 98 5 5 88 5 5 5 88 5 5 24 4 71 4 66 4 35	4712 9 4712 9 4712 0 4712 0 4712 4 4720 1 4718 2 4718 2 4719 2 4719 2 4719 4 4725 9 4725 9 4736 0 4736 6 4737 7 4753 7 4764 9 4773 2 4776 5

					SURFACE	OBSER	VATIONS				
NODC REF.	STATION		-	DATE		PO	SITION		SONIC DEPTH	MAX. SAMPLE	
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	TUDE	LON	GITUDE	UNCORRECTED	
00672	0070	02	17	1961	01	72 °	41'5	091	55′ W	0515	05

W	IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER		DUD	SE	ΕA	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	٧	WET	Ψ	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
05	27		90	53	9	54	4	84	02	4	5					8		

			SUBSUR	FACE OBSER	RVATIONS		
	SAMPLE DEPTH (M)	T °C	s% o	ot ₩	ΣΔΟ	O2m 1/1	v _f 🔻
STD OBS	0010 0010 0020 0020 0030	-01 04 -01 04 -00 96 -00 82 -00 82 -00 45	33 48 48 33 56 56 56 57 56 57 57 58 59 59 50 50 50 50 50 50 50 50 50 50	26 96 26 96 27 02 27 05 27 05 27 07 27 07 27 10 27 33 27 33 27 41 27 56 27 56 27 60 27 63 27 65 27 65 27 65 27 65 27 81 27 81	0 000 0 011 0 021 0 031 0 051 0 072 0 090 0 120 0 146 0 169 0 190 0 227 0 260	7 86 7 78 86 7 78 7 72 7 79 6 61 6 62 6 23 6 5 5 82 6 62 6 62 6 62 6 62 6 64 7 7 3 8 8 8 2 9 6 8 7 7 7 8 8 8 8 8 7 7 7 8 8 8 7 8 7 8 7	4711 8 4713 1 4713 7 4713 7 4713 7 4713 7 4714 3 4714 3 4718 1 4720 8 4720 8 4725 8 4729 5 4735 2 4735 2 4738 2 4738 2 4741 9 4750 9 4767 1 4776 1 4776 1 4785 7

				9	SURFACE	OBSE	RVATIONS				
NODC DATE POSITION									SONIC DEPTH	MAX. SAMPLE	
NO.	STATION	MO.	DAY	YEAR	HOUR	LA.	TITUDE	LON	GITUDE	UNCORRECTED	
00672	0071	02	22	1961	01	71 '	45'S	092	54' W	0410	04

W	IND	ANEMO.	AIR	AIR 1	TEMP	ERATU	RE	HUMID-	WEATHER		סטפ	SE	A	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	٧	WET	٧	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
04	02		98	52	7	53	1	88	70	0	5					7		

	-		SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	7 °C ★	s% o ₩	σt ₩	Σ ΔD	O≥m I/I ₩	V _ℓ ∀
STD OBS STD OBS STD OBS	0000 0000 0010 0010 0020 0020	-01 77 -01 77 -01 84 -01 84 -01 83 -01 83	33 71 33 71 33 70 33 70 33 70 33 70	27 15 27 15 27 14 27 14 27 14 27 14	0 000	7 36 7 36 7 35 7 35 7 29 7 29	4709 3 4709 3 4708 8 4708 8 4709 5 4709 5
STD OBS STD OBS STD OBS	0030 0030 0050 0050 0075	-01 84 -01 84 -01 77 -01 77 -01 70 -01 70	33 72 33 72 33 86 33 86 33 99 33 99	27 16 27 16 27 27 27 27 27 27 27 38 27 38	0 028 0 045 0 064	7 38 7 38 6 74 6 74 6 46 6 46	4710 1 4710 1 4713 0 4713 0 4716 1 4716 1
STD OBS OBS STD OBS OBS	0100 0100 0125 0150 0150 0175 0200	-01 68 -01 68 -01 48 -01 36 -01 36 -01 26 -01 20	34 07 34 07 34 16 34 21 34 21 34 25 34 27	27 44 27 44 27 51 27 55 27 55 27 57 27 59	0 110	6 24 6 24 6 09 6 00 6 00 6 01 5 92	4718 3 4718 3 4723 3 4726 9 4726 9 4730 1 4732 7
OBS OBS STD OBS OBS	0200 0225 0250 0250 0275 0300	-01 20 -01 09 -00 96 -00 96 -00 74 -00 41	34 27 34 30 34 33 34 33 34 37 34 42	27 59 27 61 27 63 27 63 27 65 27 68	0 160 0 182	5 92 5 84 5 77 5 77 5 64 5 41 5 41	4732 7 4736 0 4739 6 4739 6 4744 7 4751 5 4751 5
08S 08S 08S 08S 08S		-00 41 -00 08 00 26 00 70 00 71	34 42 34 47 34 53 34 59 34 61	27 68 27 70 27 73 27 76 27 77		5 41 5 12 4 87 4 63	4751 5 4758 3 4765 2 4773 6 4775 0

					SURFACE	OBSE	RVATIONS				
NODC REF.	STATION		DATE			PO	SITION		SONIC	MAX.	
NO.	STATION	MO.	DAY	YEAR	HOUR	LA.	TITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00672	0072	02	28	1961	01	71 °	29'5	094	00'W	0540	05

W	IND	ANEMO.	AIR	AIR TEMP	PERATURE	HUMID-			סטס	St	EA	SWE	L		W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY	WEATHER		AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.
08	16		99	56 3	56 8	83	02	6	8					8		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C V	s% o ♦	σt ₩	Σ ΔD ♦	O₂m I/I ₩	٧, ♦
STD OBS	0000	-01 81 -01 81	33 76 33 76	27 19 27 19	0 000	7 03 7 03	4708 9 4708 9
STD OBS	0010 0010	-01 85 -01 85	33 74 33 74	27 18 27 18	0 009	6 96 6 96	4708 8 4708 8
STD OBS	0020	-01 85 -01 85	33 76 33 76	27 19 27 19	0 018	6 88	4709 5 4709 5
STD OBS STD	0030 0030 0050	-01 84 -01 84 -01 81	33 80 33 80 33 97	27 23 27 23 27 36	0 026	6 99 6 99 6 40	4710 4 4710 4 4712 8
OBS	0050	-01 81 -01 70	33 97 34 03	27 36	0 060	6 40	4712 8 4716 3
OBS STD	0075 0100	-01 70 -01 72	34 03 34 07	27 41 27 44	0 076	6 37 6 34	4716 3 4717 6
OBS OBS	0100 0125	-01 72 -01 73	34 07 34 10	27 44 27 47		6 34	4717 6 4719 1
STD OBS	0150 0150 0175	-01 63 -01 63 -01 50	34 13 34 13 34 16	27 49 27 49 27 51	0 107	6 32 6 32 6 2 0	4722 3 4722 3 4726 0
STD	0200	-01 33 -01 33	34 20 34 20	27 54 27 54	0 136	5 98 5 98	4730 3 4730 3
OBS STD	0225	-01 03	34 25 34 30		0 161	5 81 5 68	4735 3 4738 4
OBS OBS STD	0250 0275 0300	-01 36* -00 87 -00 65	34 15* 34 34 34 38	27 50* 27 63 27 66	0 184	6 05 5 57 5 49	4732 6* 4742 6 4747 6
OBS OBS	0300 0350	-00 65	34 38 34 47	27 66 27 70	0 104	5 49 5 01	4747 6 4760 2
STD OBS	0400 0400	00 45	34 56 34 56	27 75	0 224	4 75 4 75	4771 2 4771 2
STD	0450 0500 0500	01 04	34 62 34 67 34 67		0 258	4 58 4 35	4779 8 4786 4
OBS OBS	0525		34 67 34 69	27 80 27 81		4 35 4 31	4786 4 4788 6
						3	

				9	SURFACE	OBSERVATION	NS				
NODC REF.	STATION DATE POSITION SONIC DEPTH S								MAX.		
NO.	SIATION	MO.	DAY	YEAR	HOUR	LATITUDE		LON	GITUDE	UNCORRECTED	SAMPLE DEPTH
00672	0073	03	02	1961	02	71 12'	S	095	32' W	0448	04

V	VIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	cro	סטס	SE	EA.	SWEL	.L	VIS.	W	ATER
SPEED		HGT.	PRESS	DRY 🖐	WET ্	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
03	31		08	56 9	57 0	92	45		9					1		

			SUBSUR	FACE OBSER	RVATIONS		
	SAMPLE DEPTH (M)	T°c ₩	s% o ₩	σt ₩	ΣΔD	Ozmi/I	V _f 🖖
STD OBS	0000 0000 0010 0010 0020 0020 0030 0050 0050 0075 0100 0150 0150 0200 0250 0250 0250 025	-01 85 -01 86 -01 83 -01 83 -01 83 -01 77 -01 70 -01 70 -01 30 -01 30 -01 21 -00 98 -00 98 -00 66 -00 37	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 0 0 0 7 7 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27 31 27 30 27 30 27 30 27 30 27 36 27 36 27 42 27 42 27 44 27 46 27 49 27 53 27 57 27 57 27 57 27 61 27 64 27 73 27 78 27 78 27 78	0 000 0 008 0 016 0 023 0 038 0 056 0 072 0 103 0 130 0 155 0 178	6 6 78 6 6 73 6 6 72 6 6 72 6 6 6 72 6 6 6 71 6 6 6 71 6 6 6 71 7 7 7 7 7 7 8 8 7 8	4709 5 4709 4 4709 4 4710 0 4710 0 4710 7 4712 0 4714 3 4714 3 4714 3 4714 3 4715 9 4718 4 4721 2 4721 0 4734 0 4734 0 4734 0 4735 9 4745 9 4745 9 4778 9 4778 9 4778 9 4781 6

	SURFACE OBSERVATIONS													
NODC REF.	STATION			DATE		F	OSITION		SONIC	MAX.				
NO.	SIKIION	MO.	DAY	YEAR	HOUR	LATITUDE	LON	GITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH				
00672	0074	03	02	1961	24	71 45 S	096	49 W	0570	05				

V	IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER		סטס	SI	A	SWEI	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	HGT. PRESS	DRY	٧	WET	٧	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
05	09		08	55	1	55	5	86	02	1	2					8		

09 1	100	77 1 7	00	02 1	- -		°
			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ₩	s% o ₩	σ _t ψ	ΣΔD	O₂m I/I V	V _f
STD	0000	-01 53	33 35	26 85	0 000	8 61	4711 6
OBS STD	0010	-01 53 -01 58	33 35 33 35	26 85 26 85	0 012	8 61 8 69	4711 6 4711 4
OBS STD	0010 0020	-01 58 -01 73	33 35 33 38	26 85 26 88	0 024	8 69 8 55	4711 4 4709 7
OBS STD	0020	-01 73 -01 66	33 38 33 63	26 88 27 08	0 035	8 55 7 32	4709 7 4712 5
OBS	0030		33 63			7 32	
STD OBS	0050 0050	-01 56 -01 56	33 90 33 90	27 30 27 30	0 052	6 14	4716 5 4716 5
STD OBS	0075 0075	- 01 52 - 01 52	34 04 34 04	27 41 27 41	0 071	6 17	4719 2 4719 2
STD	0100 0100	-01 65 -01 65	34 06 34 06	27 43 27 43	0 087	6 43	4718 7 4718 7
OBS	0125	-01 67	34 09	27 46	• •••	6 33	4720 0
STD OBS	0150 0150	-01 62 -01 62	34 12 34 12	27 48 27 48	0 118	6 32 6 32	4722 4 4722 4
OBS STD	0175 0200	-01 56 -01 42	34 14 34 19	27 49 27 53	0 147	6 12 6 02	4724 9 4728 9
OBS OBS	0200 0225	-01 42 -01 19	34 19 34 25	27 53 27 57		6 02 5 90	4728 9 4734 2
STD	0250	-01 18 -01 18	34 26 34 26	27 58 27 58	0 174	5 84 5 84	4735 9 4735 9
овя	0275	-00 81	34 33	27 62		5 59	4743 5
STD	0300 0300	-00 69	34 36 34 36	27 64 27 64	0 198	5 55 5 55	4746 9 4746 9
OBS STD	0350 0400		34 47 34 57	27 70 27 75	0 238	4 97 4 75	4761 4 4771 4
OBS OBS	0400 0450		34 57 34 66	27 75 27 79		4 75 4 41	4771 4 4783 6
STD	0500	01 14	34 68	27 80	0 272	4 27	4788 0
OBS OBS	0500 0525	01 14	34 68 34 69	27 80 27 81		4 27 4 30	4788 0 4789 5
OBS	0550	01 15	34 69	27 81		4 13	4791 1
			1	I			

SURFACE OBSERVATIONS													
NODC REF.			1	DATE			SITION	SONIC	MAX.				
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH UNCORRECTED	DEPTH				
00672	0075	03	03	1961	03	71 * 44 S	097° 53′ W	0863	08				

Г	w	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	סטכ	SE	ΞA	SWEL	L	VIS.	W	ATER
SF	PEED	DIR.	HGT.	PRESS	DRY 🖤	WET ¥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
	04	11		08	59 2	59 2	99	45		9					1		

	SURFACE OBSERVATIONS													
NODC REF.	STATION			DATE		PC	SITION	SONIC DEPTH	MAX. SAMPLE					
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED						
00672	0076	03	03	1961	23	71 41 S	098 30 W	0260	02					

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		duc	SE	A	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ₩	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
05	15		05	58 8	59 0	85	02	0	8					8		

15	05	58 8	59 0	85	02	0	8			8
			S	UBSUR	FACE OF	SER	VATIONS			\exists
	SAMPLE DEPTH (M)	T °C ₩	s?	6 O	σ _t ψ		Σ ΔD	O2 m 1/1	v _f \	
STD OBS STD	0000 0010 0010 0020 0020 0030 0050 0050 0075 0100 0150 0150 0150 015	-01 7 -01 7 -01 7 -01 7 -01 8 -01 8 -01 8 -01 6 -01 6 -01 6 -01 5 -01 5 -01 3 -01 3 -01 3 -01 3 -01 5 -01 5 -01 5	0 33 33 33 33 33 33 33 33 33 33 33 33 33	31 31 34 34 50 50 61 61 80 80 02 02 02 02 13 17 22 22 22 28 36 36	26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	83 885 885 887 885 885 885 885 885 885 885	0 000 0 012 0 024 0 034 0 053 0 072 0 088 0 119 0 147 0 172	8 05 8 05 8 04 6 77 56 77 27 76 88 66 32 66 13 66 03 65 5 82 55 5 5 21 5 21	4708 4708 4708 4708 4709 4710 4712 4717 4717 4717 4717 4719 4723 4725 4730 4730 4730 4745 4745	7755112 1177003 466277

				9	SURFACE	E OBSER	VATIONS	\$			
NODC REF.	GT171011			DATE			Р	OSITION		SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LATI	TUDE	LON	IGITUDE	UNCORRECTED	
00672	0077	03	0.8	1961	20	71	51 S	101	22' W	0237	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		סטכ	SE	A	SWEL	.L	VIS.		ATER
SPEED	DIR.	HGT.	PRESS	DRY 🍟	WET ᡟ	1TY	WEATHER		AMT.	DIR.	AMT.	DIR.	AMT.	¥13.	COL.	TRANS.
0/1	20		83	60 6	61 1	73	0.2	1	8					8		

J	20	83	60 6	61 1	73	02	1	8			8	L
	[s	UBSURI	FACE OBS	SER	VATIONS				
		SAMPLE DEPTH (M)	T°c ₩	s% ↓		σ _t ψ		Σ Δ D	O₂m I/I V	V _f	*	
	STD OBS STD OBS STD OBS STD OBS OBS	0010 0010 0020 0020 0030 0050 0050 0075 0100 0125 0150 0150 0175 0200	-01 7-01 8-01 8-01 8-01 8-01 6-01 6-01 6-01 6-01 6-01 6-01 6-01 6	822323333333334444444444444444444444444	47 47 47 47 47 47 47 62 62 62 95 05 09 09 11 15 11 18 22 22 24	26 99 26 99 26 99 27 00 27 27 3 27 4 27 4 27 4 27 5 27 5 27 5 27 5 27 5 27 5 27 5 27 5	6 6 6 6 8 8	0 000 0 011 0 022 0 033 0 050 0 067 0 083 0 114 0 142	8	4708 4708 4708 4708 4708 4712 47114 47118 4718 4718 4718 4718 4718 47	117722889377122255	

	SURFACE OBSERVATIONS														
NODC REF.	STATION			DATE		PC	DSITION	SONIC	MAX.						
NO.	STATION	MO,	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH						
00672	0078	03	09	1961	05	71° 37′S	102° 28′ W	0650	06						

W	IND	ANEMO.	AIR	AIR TEMPERATURE		HUMID- WEATHER			DUD	SI	ΞA	SWEI	LŁ	,,,,	w	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ₩	TTY WEATHER		AMT.	DIR.	AMT.	DIR.	AMT.	VIS.	COL.	TRANS.	
07	18		87	62 9	63 4	69	02	4	6					8		

SUBSURFACE OBSERVATIONS SAMPLE T°C S%O ot \(\mathcal{Y} \) \(\mathcal{Y} \) \(\mathcal{Y} \) \(\mathcal{U} \) \(\mathcal{M} \) \(\mathcal{N} \) \(\mathcal{M} \) \(\m	
STD	9 3 3 3 3 6 8 8 9 1 1 1 1 1 0 8 8 1 1 1 1 1 1 1 1 1 1 1 1

				9	SURFACE	OBSER	VATIONS	3			
NODC REF.	STATION			DATE			F	OSITION		SONIC	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	IGITUDE	UNCORRECTED	
00672	0079	03	10	1961	05	70	51'S	101	54' W	2388	23

W	IND	ANEMO.	AIR	AIR TEMP	AIR TEMPERATURE		HUMID- WEATHER		סטס	SE	A	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY ¥	WET ₩	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	¥15.	COL.	TRANS.
09	23		87	62 2	62 5	79	02	6	8					8		

1			SUBSUR	FACE OBSER	RVATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% o ↓	σt ₩	Σ ΔD	O₂m 1/1	۸,
STD	0000	-01 78 -01 78	33 29 33 29	26 81 26 81	0 000	7 69	4707 4 4707 4
STD	0010	-01 86 -01 86	33 28 33 28	26 80 26 80	0 012	7 66	4706 6 4706 6
STD	0020	-01 83 -01 83	33 28 33 28	26 80 26 80	0 025	7 65	4707 7
STD	0030	-01 81 -01 81	33 28 33 28	26 80 26 80	0 038	7 67	4708 6 4708 6
STD	0050	-01 82 -01 82	34 02 34 02	27 40	0 057	6 67	4712 9 4712 9
STD	0075	-01 78 -01 78	34 10 34 10	27 47	0 073	6 62	4715 3 4715 3
STD	0100	-01 76 -01 76	34 11 34 11	27 48 27 48	0 088	6 55	4717 2 4717 2
STD	0150 0150	-01 46 -01 46	34 18 34 18	27 52 27 52	0 118	6 34	4725 2 4725 2
STD	0200	-00 72 -00 72	34 32 34 32	27 61 27 61	0 144	5 74	4740 4 4740 4
STD	0250	00 01	34 44	27 67	0 166	5 16	4755 1 4755 1
OBS STD OBS	0300	00 57	34 52	27 71	0 187	4 75	4766 9
OBS STD	0350	00 89	34 59 34 64	27 74 27 77	0 224	4 51 4 35	4774 9 4782 0
OBS	0400	01 15	34 64 34 70	27 77 27 80	0 258	4 35 4 26	4782 0 4791 6
STD OBS	0500	01 38	34 70 34 72	27 80 27 82	0 290	4 26 4 42	4791 6 4796 2
STD OBS STD	0600	01 28	34 72 34 72	27 82 27 84	0 349	4 42 46	4796 2 4804 8
OBS	0800	01 06	-	27 84 27 85	0 407	4 46 4 58	4804 8 4814 5
OBS	1000	00 91	34 77* 34 72	27 89		4 58	4814 7* 4825 1
OBS STD	1200	00 83	34 72 34 72	27 85 27 86	0 546	4 63 4 62	4825 1 4841 5
OBS	1500	00 73	34 72 34 72	27 86	0 680	4 62 4 74	4841 5
OBS	2000	00 51	34 72 34 77*	27 87		4 74	4867 9 4885 0*
OBS	2300	00 42	34 77	21 32			4000

					SURFACE	OBSE	ERVATIONS				
NODC		-	1	DATE			PO	SITION		SONIC DEPTH	MAX.
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA	ATITUDE	LON	GITUDE	UNCORRECTED	
00674	1P14	02	23	1961	17	73	30'S	171	27' E	0594	02

	WIND	ANEMO.	AIR	AIR TEMP	AIR TEMPERATURE		HUMID- WEATHER		סטפ	SE	A	SWEL	.L	VIS.	W	ATER
SPEEL	DIR.	HGT.	PRESS	DRY 🖤	WET 🌹	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
03	14		86	56 1	57 7	55	02	8	6	14	3	16	2	7		

					SUBSUR	FACE (OBSER	VA	TIONS			
	SAMPLE DEPTH (M)	т	°c ¥		% o ∤	σŧ	*	4	ΣΔΟ	O₂m I/I ₩	٧,	
STD	0000	-01 -01	03 03	34	32 32	27 27	62 62	0	000		4723	6
OBS STD	0010	-01 -01 -01	04 04 04	34 34	31 28 28	27 27 27	62 59 59	0	005		4723	7 9 9
OBS OBS STD	0015 0020	-00 -01	96 02	34 34	30 27	27 27	60 58	0	010		4725 4724	5 8
OBS STD OBS	0030	-01 -01	02 05 05	34 34 34	27 28 28	27 27 27	58 59 59	0	015		4724	9 9
STD OBS	0050 0050	-01 -01	02	34 34	42 42	27	70 70	0	024		4727 4727 4722	2 8
STD OBS	0075 0075 0100	-01 -01 -01	47 47 60	34 34	69 69 71	27 27 27	94 94 96	0	031		4722 4722	8
OBS STD	0100 0150	-01 -01	60 82	34 34	71 76	27 28	96 00	0	042		4722 4722	3 0
OBS	0170	-01	89	34	79	28	03				4722	2

	1				'		- 1		- 1		
				8	SURFACE	OBSE	ERVATIONS				
NODC REF.	STATION			DATE			PO	SITION		SONIC	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	D	ATITUDE	LON	GITUDE	UNCORRECTED	
00674	IP15	02	23	1961	20	73	29'5	173	29' E	0320	02

W	IND	ANEMO.	AIR	AIR TEMP	AIR TEMPERATURE		HUMID- WEATHER		DUD	SI	ΕA	SWEL	L.	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
01	07		86	51 1	53 0	61	01	8	1	11	2	14	2	7		

			SUBSURFACE OBSERVATIONS													
	SAMPLE DEPTH (M)	т °с ∀	s% o ₩	σt Ψ	ΣΔD	O₂m I/I	V _f									
STD OBS OBS	0000 0000 0005	-00 85 -00 85 -00 83	34 34 34 34 34 36	27 63 27 63 27 65	0 000		4726 5 4726 5 4727 2									
STD OBS OBS	0010 0010 0015 0020	-00 86 -00 86 -00 76 -00 84	34 28 34 28 34 32 34 31	27 58 27 58 27 61 27 61	0 005		4726 7 4726 7 4728 7 4727 7									
OBS STD OBS STD	0020 0030 0030 0050	-00 84 -00 86 -00 86 -00 81	34 31 34 27 34 27 34 29	27 61 27 58 27 58 27 59	0 015		4727 7 4727 9 4727 9 4729 9									
OBS STD OBS	0050 0075 0075	-00 81 -00 80 -00 80	34 29 34 29 34 29	27 59 27 59 27 59	0 038		4729 9 4731 6 4731 6									
STD OBS STD OBS	0100 0100 0150 0170	-00 50 -00 50 -00 18 -00 16	34 45 34 45 34 63 34 65	27 71 27 71 27 84 27 85	0 066		4738 4 4738 4 4747 0 4748 6									

	SURFACE OBSERVATIONS														
NODC			1	DATE		PC	SITION		SONIC DEPTH	MAX.					
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONG	SITUDE	UNCORRECTED						
00674	TP16	02	23	1961	23	73 25 S	175	10' E	0476	02					

1	WIND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-		CLC	סטפ	SE	A	SWEL	L	VIS.	W	ATER
SPEEL	DIR.	HGT.	PRESS	DRY 🖤			WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
00	00		87	51 1	53 7	49	02	8	1	00	0	12	2	7		

					SUBSUR	FACE (DBSER	VA	TIONS		
	SAMPLE DEPTH (M)	т	°c \rightarrow		% o ∤	σţ	*	,	ΣΔΟ	O₁m I/I	٧, +
STD	0000	-00	74	34	38	27	66	0	000		4728 4
OBS	0000	-00	74	34	38	27	66				4728 4
OBS	0005	-00	83	34	34	27	63				4727 1
STD	0010	-00	84	34	35	27	64	0	005		4727 3
OBS	0010	-00	84	34	35	27	64				4727 3 4727 9
OBS	0015	-00	82	34	34	27	63	0	009		4727 2
STD	0020	-00	89 89	34	36 36	27	65 65	١٥	009		4727 2
OBS	0020	-00	87	34	38	27	67	0	013		4728 2
STD	0030	-00	87	34	38	27	67	١	• • • •		4728 2
OBS STD	0050	-00	84	34	49	27	75	0	021		4730 3
OBS		-00	84	34	49	27	75	ļ			4730 3
STD	0075	-00	68	34	60	27	84	0	029		4734 7
овя	0075	-00	68	34	60	27	84				4734 7
STD	0100	-00	94	34	62	27	86	0	036		4732 3
OBS		-00	94	34	62	27	86		011		4732 3 4728 0
STD	0150	-01	42	34	67	27	92	0	046		4726 4
OBS	0170	-01	60	34	69	27	94	1			4120 4

	SURFACE OBSERVATIONS													
NODC	STATION			DATE			PC	SITION		SONIC	MAX. SAMPLE			
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LA.	TITUDE	LON	IGITUDE	UNCORRECTED				
00674	IP17	02	24	1961	03	73 °	33 ['] S	177°	00'E	0555	02			

	WIND	ANEMO.	AIR	AIR TEMP	AIR TEMPERATURE		WEATHER	CLC	מטכ	SE	ΕA	SWEL	L	VIS.	W	ATER
SPEE	DIR.	HGT.	PRESS	DRY 🖤	WET ¥	ITY			AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
05	16		87	54 3	56 8	29	02	6	8	16	2	19	2	7		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ₩	s% o	σ _t ψ	ΣΔΟ	O₂m I/I ₩	V _f
STD	0000	-00 52	34 42	27 68	0 000		4732 0
овя	0000	-00 52	34 42	27 68			4732 0
OBS	0005	-00 53	34 42	27 68	004		4732 1 4732 1
STD	0010	-00 55	34 41	27 68	0 004		4732 1
OBS	0010 0015	-00 55 -00 53	34 41	27 68			4732 7
OBS STD	0015	-00 53	34 42	27 68	0 008		4733 0
OBS	0020	-00 53	34 42	27 68			4733 0
STD	0030	-00 54	34 42	27 68	0 013		4733 5
OBS	0030	-00 54	34 42	27 68			4733 5
OBS	0049	-00 51	34 42	27 68			4735 1
STD	0050	-00 51	34 42	27 68	0 021		4735 1
OBS	0074	-00 45	34 42	27 68			4737 5
STD	0075	-00 44	34 43	27 69	0 031		4737 7
OBS	0098	-00 28	34 63	27 84	0.00		4742 4 4742 4
STD	0100	-00 29	34 64	27 85	0 040		4742 4
STD	0150	-00 50 -00 75	34 64	27 87	0 052		4739 3
OBS	0167	-00 75	34 04	2, 0,			

	SURFACE OBSERVATIONS														
NODC	STATION		1	DATE		PO	SITION	SONIC DEPTH	MAX.						
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED							
00674	IP18	02	26	1961	2.2	72° 32′S	171° 20′ E	0402	02						

\ \	VIND	ANEMO.	AIR	AIR TEMP	ERATURE	нимір-		CLC	OUD	SE	Α	SWEL	,L	VIS.	W.	ATER
SPEED	DIR.	HGT.	PRESS	DRY 🛊	WET 🕊	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
06	23		89	54 8	56 0	70	02	6	8	23	2	20	2	7		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C ₩	s% o ₩	σt ₩	Σ Δ D	O₂m I/I ₩	V _f ₩
STD OBS OBS STD	0000 0000 0005 0010	-01 68 -01 68 -01 68 -01 68	34 14 34 14 34 09 34 09	27 50 27 50 27 46 27 46	0 000		4712 6 4712 6 4712 7 4713 0
OBS OBS STD OBS	0010 0015 0020 0020	-01 68 -01 67 -01 67 -01 67	34 09 34 11 34 13 34 13	27 46 27 47 27 49 27 49	0 012		4713 0 4713 6 4713 9 4713 9
STD OBS OBS STD	0030 0030 0049 0050	-01 67 -01 67 -01 59 -01 59	34 17 34 17 34 19 34 19	27 52 27 52 27 54 27 54	0 018		4714 7 4714 7 4717 2 4717 2
OBS STD OBS	0074 0075 0098	-01 48 -01 48 -01 39	34 23 34 23 34 27	27 57 27 57 27 59	0 043		4720 6 4720 6 4723 6 4723 9
STD STD OBS	0100 0150 0167	-01 38 -01 29 -01 29	34 28 34 45 34 54	27 60 27 74 27 81	0 056		4729 1 4730 5

	SURFACE OBSERVATIONS														
NODC REF.	STATION			DATE		PO	SITION	SONIC	MAX. SAMPLE						
NO.	JINTION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	UNCORRECTED							
00674	IP19	02	26	1961	23	72° 23′S	170° 55'E	0302	01						

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	מטמ	SI	A	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY ₩	WET ₩	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
06	18		88	54 8	56 0	70	02	6	8	23	2	20	2	7		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	т °c ∀	s% 0 ₩	σt ₩	Σ Δ D	O₂m I/I ₩	v _f 🖖
STD OBS OBS STD OBS STD OBS STD OBS STD OBS STD OBS STD OBS	0005 0010 0010 0015 0020 0020 0030 0030 0049 0050 0074	-01 55 -01 55 -01 56 -01 55 -01 53 -01 54 -01 54 -01 52 -01 46 -01 44 -01 39	34 15 34 17 34 17 34 17 34 22 34 21 34 21 34 22 34 22 34 20 34 20 34 27 34 27 34 27	27 50 27 50 27 52 27 52 27 52 27 56 27 55 27 56 27 56 27 56 27 56 27 56 27 56 27 56 27 56 27 56 27 56	0 000 0 006 0 011 0 017 0 028 0 041		4714 7 4715 0 4715 0 4715 4 4716 2 4716 3 4717 3 4717 3 4717 3 4719 3 4719 3 4721 4 4721 5

				9	SURFACE	OBSERV	/ATIONS				
NODC				DATE			PO	SITION		SONIC	MAX. SAMPLE
REF. NO.	STATION	MO	DAY	YEAR	HOUR	LATIT	INDE	LON	GITUDE	UNCORRECTED	
00674	IP20	02	27	1961	01	72 °	14'5	170°	32'E	0412	02

V	IND	ANEMO.	AIR	AIR TEMP	ERATURE	нимір-	WEATHER	CLC	UD	SE	Α	SWEL	L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY ¥	WET ¥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
0.7	18		88	53 8	55 0	68	02	6	8	23	3	00	0	5		

1					NATIONS.		
			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C	s% 0	σ ₁ Ψ	ΣΔD	O₂m I/I ₩	\ \frac{1}{2}
	DEFIN (M)	¥	*	Ψ			Y
STD	0000	-01 72	34 04	27 42	0 000		4711 6
OBS	0000	-01 72	34 04	27 42			4711 6
OBS	0005	-01 71	34 05	27 43			4712 1
STD	0010	-01 73	34 05	27 43	0 007		4712 0
OBS	0010	-01 73	34 05	27 43			4712 0
OBS	0015	-01 70	34 06	27 43		ĺ	4712 9
STD	0020	-01 71	34 06	27 43	0 013		4713 0
OBS	0020	-01 71	34 06	27 43			4713 0
STD	0030	-01 68	34 07	27 44	0 020		4714 1
OBS	0030	-01 68	34 07	27 44			4714 1
STD	0050	-01 46	34 10	27 46	0 032		4718 9
OBS	0050	-01 46	34 10	27 46			4718 9
STD	0075	-01 58	34 10	27 46	0 048		4718 5
ORS		-01 58	34 10	27 46			4718 5
STD	0100	-01 52	34 14	27 49	0 063		4721 1
OBS		-01 52	34 14	27 49			4721 1
STD	0150	-01 24	34 33	27 64	0 090		4729 3
OBS	0170	-01 06	34 45	27 73			4733 8

					<u>'</u>					··		
				\$	SURFACE	OBSER	RVATIO	NS				
NODC REF.	STATION		-	DATE				PO	SITION		SONIC DEPTH	MAX. SAMPLE
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE		LON	GITUDE	UNCORRECTED	
00674	[P21	02	27	1961	04	72	04	' S	170	59 ['] E	0329	02

	W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER	CLC	מטס	SE	ΕA	SWEL	.L	VIS.	W	ATER
S	PEED	DIR.	HGT.	PRESS	DRY 🕊	WET ¥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
	07	18		87	54 5	55 3	78	02	0	8	18	3	19	2	5		

ſ			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ₩	s% o ₩	σt ₩	Q ∆ Z ∀	O₂m I/I V	V _f ₩
STD	0000	-01 35	34 29	27 61 27 61	0 000		4718 5 4718 5
ORS ORS	0000	-01 35 -01 39	34 31	27 63	0 005		4718 3 4718 6
STD	0010	-01 39 -01 39	34 32	27 64	0 005		4718 6 4719 4
OBS STD	0015	-01 36 -01 37	34 33	27 64	0 009		4719 5
STD	0020	-01 37 -01 37	34 33	27 64	0 014		4720 1
STD	0030	-01 37 -01 35	34 33	27 64	0 023		4720 1 4721 6 4721 6
OBS STD	0050	-01 35 -01 29	34 33	27 64	0 034		4724 1
ORS STD	0100	-01 29 -01 30	34 33 34 34	27 64 27 65	0 046		4724 1 4725 4
ORS STD	0100 0150	-01 30 -01 33	34 34 34 34	27 65 27 65	0 068		4725 4 4727 9
ORS	0170	-01 35	34 34	27 65			4728 8

NODC	CTATION			DATE			PO	SITION		SONIC DEPTH	MAX. SAMPLE
REF. NO.	STATION	MO.	DAY YEAR HOUR			LAT	ITUDE	LONG	SITUDE	UNCORRECTED	
00574	IP22	02	2.7	1961	03	72 °	04'5	170°	32' E	0348	02

W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-		CTC	DUD	SE	ΞA	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY ¥	WET ¥	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
05	20		88	54 0	55 1	71	02	0	8	10	2	00	0	7		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T°C ₩	s% o	σt ψ	Σ ΔD	Ozm I/I	V _f
STD	0000	-01 50	34 18	27 53	0 000		4715 7
OBS		-01 50	34 18	27 53			4715 7 4715 4
ORS STD	0005	-01 53 -01 51	34 16 34 1 6	27 51 27 51	0 006		4716 0
ORS		-01 51	34 16	27 51			4716 0
OBS	0015	-01 51	34 16	27 51			4716 3
STD	0020	-01 48	34 16	L	0 012		4717 1
088		-01 48	34 16	27 51		!	4717 1
STD	0030	-01 49	34 16	27 51	0 017	1	4717 5 4717 5
OBS		-01 49 -01 44	34 16 34 16	27 51 27 51	0 029		4719 5
STD	0050	-01 44 -01 44	34 16	27 51	0 029		4719 5
ORS STD	0075	-01 38	34 16	27 51	0 044		4721 9
088		-01 38	34 16	27 51	0 0 1 .		4721 9
STD	0100	-01 33	34 20	27 54	0 058		4724 4
ORS		-01 33	34 20	27 54			4724 4
STO	0150	-01 25	34 25	27 57	0 085		4728 8
ORS	0170	-01 22	34 26	27 58	1		4730 5

				5	SURFACE	OBSERVATIONS			
NODC REF.	STATION		- 1	DATE			SITION	SONIC	MAX.
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH UNCORRECTED	SAMPL DEPTH
00674	IP23	02	27	1961	19	72 18 5	170° 11′ E	0474	02

W	IND	ANEMO.	AIR	AIR TEM	PERATURE	HUMID-	WEATHER		OUD	SE	EA	SWEL	L	VIS.	W	ATER .
SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ₩	ITY	WEATHER	TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
02	20		90	54 4	55 7	68	02	6	8	18	3	19	2	7		

				SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	Т	°c ¥	s% o ↓	σι ψ	Σ Δ D	O2m I/I	v _f
STO	0000	-01	68					
OBS	0000	-01	68					
ORS	0005	-01	68					
STD	0010	-01	70					
085	0010	-01	70					
ORS	0015	-01	68					
STD	0020	-01	66					
ORS	0020	-01	66					
STD	0030	-01	67					
ORS	0030	-01	67					
STD	0050	-01	66					
OBS	0050	-01	66					
STD	0075	-01	61	1				
ORS	0075	-01	61					
STD	0100	-01	57					
ORS	0100	-01	57					
STD	0150	-01	49					
OBS	0170	-01	45					

				5	SURFACE	OBSERVATIONS			
NODC REF.	STATION		1	DATE		Pi	SONIC	MAX.	
NO.	STATION	MO.	DAY	YEAR	HOUR	LATITUDE	LONGITUDE	DEPTH UNCORRECTED	SAMPLE DEPTH
00674	TF24	02	27	1961	06	71 55 S	171 30 E	0366	02

W	ثا سمد سم	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		DUD	SE	A	SWEL	.L	VIS.	W	ATER
SPEED		HGT.	HGT. PRESS DRY WET W	1117		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.		
0.7	14		53	53 4	55.0	63	0.2	4	В							

			SUBSUR	FACE OBSER	VATIONS		
	JAMPLE DEPTH (M)	T°C ₩	s% o ₩	σι ₩	ΣΔΟ	O₂m I/ſ V	v _f 🖖
STD OBS	0000	-01 21 -01 21	34 31 34 31	27 62 27 62 27 64	0 000		4720 8 4720 8 4720 9
OBS STD OBS	0005 0010 0010	-01 23 -01 22 -01 22	34 33 34 34 34 41*	27 65 27 70*	0 005		4721 3 4721 7
OBS STD OBS	0015 0020 0020	-01 20 -01 23 -01 23	34 35 34 35 34 35	27 65 27 65 27 65	0 009		4722 0 4721 8 4721 8
STD OBS STD	0030 0030 0050	-01 24 -01 24 -01 18	34 35 34 35 34 34	27 65 27 65 27 64	0 014		4722 3 4722 3 4724 4
OBS STD OBS	0050 0075 0075	-01 18 -01 08 -01 08	34 34 34 36 34 36	27 64 27 66 27 66	0 034		4724 4 4727 5 4727 5
STD OBS	0100 0100 0150	-01 00 -01 00 -01 08	34 39 34 39 34 56	27 68 27 68	0 045		4730 4 4730 4 4732 8
OBS	0170	-01 20	34 67	27 91	0 002		4732 6

		1					'					
	SURFACE OBSERVATIONS											
NODC REF.	STATION			DATE			PO	SONIC	MAX.			
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LONG	SITUDE	DEPTH UNCORRECTED	DEPTH .	
00674	1P25	02	24	1961	22	71 °	36 ['] S	172°	10'E	0540	02	

W	PEED DIR.	ANEMO. AIR		ERATURE	HUMID- WEATHER		CLOUD		SEA		SWELL		VIS.	W	WATER	
SPEED	DIR.	HGT.	PRESS	DRY 🖐	WET ₩	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
07	18		88	53 9	55 4	62	02	6	8	18	3	17	2	7		

				Ş	SUBSUR	FACE (DBSER	ERVATIONS					
	SAMPLE DEPTH (M)		°c \	s	% o k	σι	\	1	ΣΔΟ	O₂m I/I ₩	∨ _f ψ		
STD	0000	-00	68	34	36	27	64	0	000		4729	3	
OBS	0000	-00	68	34	36	27	64				4729	3	
OBS	0005	-00	70	34	36	27	64				4729	2	
овя	0009	-00	70	34	45	27	72					9	
STD	0010	-00	68	34	45	27	71	0	004		4730	2	
OBS	0013	-00	64	34	45	27	71				4731	0	
OBS	0018	-00	68	34	47	27	73				4730	8	
STD	0020	-00	69	34	47	27	73	0	800			8	
OBS	0027	-00	72	34	47	27	73					7	
STD	0030	-00	71	34	47	27	73	0	012			0	
OBS	0045	-00	67	34	49	27	75					6	
STD	0050	-00	67	34	51	27	76	0	019			0	
OBS	0068	-00	68	34	55	27	80					1	
STD	0075	-00	67	34	55	27	80	0	027			7	
OBS	0091	-00	64	34	55	27	79					1	
STD	0100	-00	62	34	55	27	79	0	035			0	
STD	0150	-00	53	34	55	27	79	0	051			3	
OBS	0154	-00	52	34	55	27	79				4741	7	

				5	SURFACE	OBSER	RVATIONS				
NODC	STATION			DATE		SONIC DEPTH	MAX. SAMPLE				
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LO	NGITUDE	UNCORRECTED	
00674	IP26	02	24	1961	19	71 °	36'5	173	50'E	2012	02

W	IND	ANEMO.	AIR	AIR 1	ТЕМР	ERATU	RE	HUMID-	WEATHER		מטס	SE	ΕA	SWEL	.L	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	*	WET	٧	ITY			AMT.	DIR.	AMT.	DIR.	AMT.	¥15.	COL.	TRANS.
13	18	23	88	53	8	55	4	61	02	6	8	18	4	16	2	7		

•									_					
					s	UBSUR	FACE C	BSER	VA.	TIONS				
		SAMPLE DEPTH (M)	T°(¢	s% ₩	0	σι	*	1	ΣΔΟ	O₂m I/I ₩	v _f \		
	STD	0000	-00	79	34	43	27	70	0	000		4727	8	
	OBS		-00	79	34	43	27	70				4727	8	
	OBS		-00	82	34	43	27	70				4727	7	
	OBS		-00	83	34	43	27	70	_			4727	8	
	STD	0010	-00	82	34	43	27	70	0	004		4728	0	
	OBS		-00	80	34	43	27	70				4728	5	
	OBS		-00	80	34	43	27	70				4728	8	
	STD	0020	-00	81	34	43	27	70	0	800		4728	7	
	OBS	0027	-00	84	34	43	27	71				4728	7	
	STD	0030	-00	83	34	43	27	70	0	012		4729	0	
	OBS	0045	-00	80	34	43	27	70				4730	4	
	STD	0050	-00	79	34	43	27	70	0	020		4730	8	
	OBS	0068	-00	78	34	43	27	70				4732	0	
	STD	0075	-00	78	34	43	27	70	0	030		4732	5	
	OBS	0091	-00	78	34	43	27	70				4733	4	
	STD	0100	-00	72	34	44	27	71	0	040		4734	9	
	STD	0150	00	26	34	61	27	80	0	057		4753	6	
	OBS	0154	00	38	34	63	27	81				4755	8	

				9	SURFACE	OBSER	VATIONS			<u> </u>	
NODC	CTATION			DATE			PO	SITION		SONIC	MAX. SAMPLE
REF. NO.	STATION	MO.	DAY	YEAR	HOUR	LATI	TUDE	LON	GITUDE	UNCORRECTED	
00674	IP27	02	24	1961	16	71 °	36'5	175°	30'E	2204	02

	W	IND	ANEMO.	AIR	AIR TEMP	ERATURE	HUMID-	WEATHER		UD	SI	ΕA	SWEL	L	VIS.	W	ATER
	SPEED	DIR.	HGT.	PRESS	DRY 🖤	WET ¥	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.		COL.	TRANS.
Ī	09	16		88	54 0	56 2	49	02	6	8	16	4	16	2	7		

			SUBSUR	FACE OBSER	VATIONS		
	SAMPLE DEPTH (M)	T °C	s% o ¥	σt ₩	ΣΔD	O₂m l/l ₩	∨ _f ψ
STD OBS OBS STD OBS OBS STD OBS OBS OBS STD OBS OBS STD OBS STD OBS STD OBS	0009 0010 0014 0019 0020 0028 0030 0047 0050 0075 0075 0094 0100 0150	-00 67 -00 67 -00 65 -00 65 -00 62 -00 62 -00 64 -00 64 -00 63 -00 64 -00 64 -00 64 -00 64 -00 64 -00 65 -00 64 -00 67 -00 67 -00 67 -00 67 -00 67 -00 67 -00 67 -00 68 -00 69 -00 60 -00 60 -0	34 33 34 33 34 33 34 33 34 34 34 34 34 34 34 34 34 34 34 33 34 33	27 62 27 62	0 000 0 005 0 010 0 014 0 024 0 036 0 048 0 069	·	4729 3 4729 3 4729 6 4730 0 4730 2 4730 9 4731 2 4731 3 4731 4 4732 7 4732 9 4733 9 4734 2 4735 6 4736 6 4755 7 4761 6

				9	SURFACE	OBSER	VATIONS				
NODC REF.	STATION		1	DATE		SITION		SONIC	MAX. SAMPLE		
NO.	STATION	MO.	DAY	YEAR	HOUR	LAT	ITUDE	LON	GITUDE	UNCORRECTED	
00674	IP28	02	24	1961	12	71 °	36 [′] S	177°	20' E	0914	02

W	IND	ANEMO.	AIR	AIR	TEMP	ERATU	RE	HUMID-	WEATHER		OUD	SE	A	SWEL	.L.	VIS.	W	ATER
SPEED	DIR.	HGT.	PRESS	DRY	٧	WET	٧	ITY		TYPE	AMT.	DIR.	AMT.	DIR.	AMT.	¥15.	COL.	TRANS.
14	16		85	52	8	54	7	57	02	6	8	16	3	12	2	7		

+	16			85	52	8 5	54 7	57		12 (5	8	16	3	12		2	7	L
							s	UBSURI	ACE	OBSER	RVA	TION	15						
			DEP	MPLE TH (M)	Т	°c ¥	s% ↓		σt	¥	1	Σ.	7 D	O₂r ₩	n I/I	Vf	1	r	
	STD OE STD STD	35 35 35 35	000	00 05 09 10 14 19 20 28 30 47 75 70 75 94	-00 -00 -00 -00 -00 -00 -00 -00 -00 -00	73 73 76 76 75 72 73 73 74 74 74 74 66 61 06 27	344444444444444444444444444444444444444	40 40 40 40 40 40 40 40 40 40 40 41 41 41 41 53 53	27 27 27 27 27 27 27 27 27 27 27 27 27 2	68 68 68 68 68 68 68 68 67 77 73	0 0 0 0 0	00 00 01 02 03 04 06	4 9 3 1			47 47 47 47 47 47 47 47 47 47 47	28882288333333333333333554	8 8 2 3 6 0 6 0 6 4 1	

APPENDIX B BOTTOM SEDIMENT SAMPLES SUMMARY AND FIELD ANALYSES

OCEANOGRAPHIC LOG SHEET - M BOTTOM SEDIMENT DATA PRINC-NHO-3167/13 (R.v. 8-58)

HYDROGRAPHIC OFFICE

	OBS.															
sck Area)	MARKS		Top inch to Tex. Rep.	Sta. No. SI-2			Sta. No. SI-12		Total Samp. in Jar. Sta. No. SI-14	Sta. No. SI-13		Sta. No. 51-4	Sta. No. SI-5		Sta. No. SI-6	Sta. No. SI-7
(Eastern Ross Sea – Cape Colbeck Area)	FIELD	NO. LANCES	Olv. Gray at top. Drk Yell. Brn. at btm. Clay		Drk. Yell. Brn. streaks with Olv. Gray "under-	neath."	Top color Med. Gray w/green. Stiff, almost	dry at bottom.	Bryozoa, etc.	Slight cohesion, mány rock fragments, water	column muddy.		Material in cutter quite plastic w/rock fragments.		Soft	Top-Drk. Yell. Brn. Btm. 3 inches 5Y 4/2
(Easl	OR CHART	CORE BOTTOM	5Y 4/1				5Y 4/1		1	10YR6/2 10YR4/2		5GY4/1	 5GY4/1		10YR6/2 10YR4/2 Soft	57 4/2
ZE 61	ROCK COLOR CHART CODE NUMBERS	CORE TOP	10YR4/2		10YR5/2				-	10YR6/2		10YR6/2 5GY4/1	Between 10YR6/2	10YR4/2	10YR6/2	4' 25 1/2" 10YR5/2
DEEP FREEZE 61	DEPTH WEIGHT APPROX LENGTH	CORE	5" 24"		18"		6 1/2"		0	4' 21"		16"	11"		12"	25 1/2"
DEE	APPROX.	TRATION	5		5'		7"		0	4'		26" 16"	12" 11"		4'	4'
	WEIGHT	SAMPLEF	#08		370 80#		245 80#		135 80#	#08		#08	#08		#08	#08
2	DEPTH	(ratroms	350		370					392		330	 252		1400	1850
CRUISE 00672	SAMPLE POSITION	LONGITUDE	162°50'W 350 80#		162°20'W		169°34'W		158°34'W	160°38'W 392 80#		162°21'W 330 80#	162°30'W 252 80#		162°45'W 1400 80#	162°08'W 1850 80#
AND	SAMPLE	LATITUDE	78°08'S		77°35'S		77°31'S		77°32'S	77°52'S		76°57'S	76°32'S		76°05'S	75°25'S
USS STATEN ISL	DATE	1960	21 Dec		21 Dec		21 Dec		21 Dec	22 Dec		22 Dec	22 Dec		22Dec	23 Dec
VESSEL USS ST	Sample		-		2		3		4	5		9	7		8	6

	OBS.	NIT.													1
ck Area)	276	REMARKS	Sta. No. 51-8	Sta. No. SI-9	Sta. No. SI-10		Sta. No. SI-11		Sta. No. SI-15	Sample in amber glass jar,	Sta. No. SI-16	Sta. No. SI-17	Sta. No. SI-18	Sample in small core tube. Core washed.	STG. NO. 31-17
(Eastern Ross Sea – Cape Colbeck Area)	FIELD	DESCRIPTION	Mud	Uniform color throughout.	Top-Brnish. Gray Mid-Olv Gray (Clay w/pebbles)	Btm-Med. Drk. Gray			5Y 5/2 Firm, Sandy	Pebbles and Silt.		Light Olv. Gray mud throughout.	Mud	Light yellowish brown	
(Eas		CORE BOTTOM	22 1/2" 10YR6/2 10YR4/2 Mud	5YR4/1	Z 4		57 4/1		57 5/2	-		57 6/1	25 1/2" 10YR6/2 10YR4/2 Mud		
ZE 61	ROCK COLOR CHART	CORE TOP	10YR6/2	5YR4/1	5YR4/1		Between 10YR6/2	10YR4/2	57 5/2	-		57 6/1	10YR6/2		
DEEP FREEZE 61	DEPTH WEIGHT APPROX LENGTH	CORE	22 1/2"	15"	20 1/4"		16"		7""	2"		14"	25 1/2"	ŀ	
DE	APPROX.	(Fathoms) SAMPLERITRATION		3,5	2,		23" 16"		10"	ı		, t	1	4'	
	WEIGHT	SAMPLEF	#08	#08	#08		#08		110 80#	#08		#08	#08	#08	
	DEPTH	(Fathoms	1870	1650	230		245		l I	175		1900	1905	1980	
CRU1SE 00672	SAMPLE POSITION	LONGITUDE	160°11'W 1870	160°41'W 1650	160°29'W		160°40'W 245 80#		158°17'W	157°58'W		158°08'W 1900	158°43'W 1905 80#	156°47'W 1980	
	SAMPLE	LATITUDE	75°25'S	75°56'S	76°28'S		77°00'S		21,90°77	76°33'S		2,80°97	75°38'S	75°41'S	
USS STATEN ISLAND		1960	23 Dec	24 Dec	24 Dec		24 Dec		24 Dec	25 Dec		25 Dec	25 Dec	26 Dec	
USS ST	Sample	NO.	10	=	12		13	210	14	15		16	17	18	

1	OBS.	ž.										
ick Area)	DEWADKS		Sta. No. SI-20	Sta. No. SI-21	Sta. No. SI-22	Sta. No. SI-23		Sta. No. SI-31	Sta. No. SI-30	Sta. No. SI-24	Sta, No, SI-29	Sta. No. SI-25
(Eastern Ross Sea - Cape Colbeck Area)	FIELD	DESCRIPTION	5Y 5/2 Light Olive Gray	Rock and gravel.	Pale Yellowish Brown.	10YR6/2 10YR6/2 Pale Yellowish Brown mud.		Pale Yellowish Brown mud with rocks.	5Y 5/2 Pale Yellowish Brown.		Highly plastic – light Olive Gray mud.	
(Eas	R CHART MBERS	CORE BOTTOM	5Y 5/2		10YR6/2	10YR6/2		10YR6/2 10YR6/2	57 5/2	5GY6/1	57 5/2	5Y 5/2
EZE 61	ROCK COLOR CHART CODE NUMBERS	CORE TOP	5Y 5/2		24 1/2" 10YR6/2	10YR6/2		10YR6/2	10YR6/2	10YR6/2	57 5/2	5YR5/2
DEEP FREEZE 61	DEPTH WEIGHT APPROX LENGTH	CORE	34 1/2"	2"	24 1/2"	14"		2"	31"	17"	18"	40"
DE	APPROX.	TRATION	5.	4"	31	30" 14"		12"	40" 31"	30" 17"	4,	1
	WEIGHT	SAMPLER	#08	#08	#08	#08		#08	#08	#08	#08	#08
	DEPTH	(ratroms)	1900	250	260	150		115	620	300	150	1775
CRUISE 00672	SAMPLE POSITION	LONGITUDE	156°44'W 1900	155°49'W	155°50'W	153°47'W		152°22'W	151°48'W	153°53'W	151°39'W	153°54'W 1775 80#
	SAMPLE	LATITUDE	76°01'S	76°34'S	77°01'S	77°00'5		77°16'S	77°00'5	76°30'S	76°30'S	76°00'S
USS STATEN ISLAND	DATE	1960	26 Dec	26 Dec	27 Dec	27 Dec		27 Dec	27 Dec	27 Dec	28 Dec	28 Dec
USS ST	Sample		61	20	21	22	211	23	24	25	78	27

	OBS.	-					1	1				1	
(Eastern Ross Sea – Cape Colbeck Area)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Sta. No. SI-28	Sta. No. SI-27	Sample in core	Sta. No. SI-26							
	FIELD	DESCRIPTION	Muddy	Pale Yell. Brn. to within 8" of btm. 8tm, 8" Med.									
(Eas	OR CHART	CORE BOTTOM	5Y 5/2 10Y 4/2 Muddy	X 4									
DEEP FREEZE 61	ROCK COLOR CHART CODE NUMBERS	CORE TOP	5Y 5/2	10YR6/2									
EP FRE	DEPTH WEIGHT APPROX. LENGTH	CORE	6 1/2"	45"									
DE	APPROX.	TRATION	18"	5'							1		
	WEIGHT	SAMPLER	145 80#	 #08	#08						1		
0.	DEPTH	SWOULD J)	145	/ 1860	/ 2040						1		
CRUISE 00672	SAMPLE POSITION	LONGITUDE	151°58'W	152°08'W 1860	154°12'W 2040								
QN	SAMPLE	LATITUDE	75°58'S	75°31'S	75°20'S								
USS STATEN ISLA	DATE	1960	28 Dec	28 Dec	30 Dec								
USS S	Sample		28	29	30		212						

	OBS.	·					l									
	REMARKS		Sta. No. SI-38	Sta. No. SI-39	Top inch to Tex. Rep. Cutter portion	in small tube #33 w/T		Top inch to Tex. Rep. Sta. No. SI-41		Portion in small tube #35 from cutter.	Sta. No. SI-42	Four or five inches fell from core at	surface of water. Sta. No. SI-43	Top inch to Tex. Rep. Sta. No. SI-44		Sta. No. SI-45
(Amundsen Sea Area)	FIELD	DESCRIPTION	Sand	Top-Sand and Mud Btm-Clay	Top-Pale Yell. Brn. sand and mud. Btm-Medium	`		Top-Sand and mud. Btm-Hard and stony.	•	Btm-Clay		5Y 4/1 Btm-Olive gray.		and Mud. Btm. Sand Top inch to Tex. Rep.	clay.	Top-Drk. Yell. Brn. Clay Btm-clay
(Am	R CHART MBERS	CORE BOTTOM	10YR6/2 10YR5/2 Sand	 10YR5/2 10YR4/2 Btm-Clay	 N-5			10YR5/2 10YR3/2		10YR4/2 10YR5/2 Btm-Clay		57 4/1		57 4/1		5Y 4/1 Top-Drk.
DEEP FREEZE 61	ROCK COLOR CHART CODE NUMBERS	CORE TOP	10YR6/2	10YR5/2	10YR5/2			10YR5/2		10YR4/2		10YR4/2		40 1/2" 10YR5/2		30" 21 1/2" 10YR4/2
P FREI	DEPTH WEIGHT APPROX LENGTH	CORE	38"	12"	41"			24"				41"		40 1/2"		21 1/2"
DEE	APPROX.	TRATION	5	 5' 42"	5"			30" 24"		31 29"		5.		51		30"
	WEIGHT	SAMPLERTRATION	#08	#08	80#			#08		#08		#08		#08		#08
	DEPTH	(ratroms)	1572	1618	1470			1203		965		1469		1722		1910
CRUISE 00672	SAMPLE POSITION	LONGITUDE	119°58'W 1572	118°56'W 1618	118°26'W 1470			118°00'W 1203 80#		117°10'W 965 80#		116°56'W 1469		116°39'W 1722		116°30'W 1910 80#
	SAMPLE	LATITUDE	69°52'S	70°21'5	70°53'S			71°23'S		71°30'S		70°59'S		70°30'S		70°03'S
USS STATEN ISLAND	DATE	1961	27 Jan	27 Jan	28 Jan			28 Jan		29 Jan		29 Jan		30 Jan		30 Jan
VESSEL USS ST	Sample	Š	31	32	33			동 213		35		38		37		38

	OBS.	-INI-										
	200		Sta. No. SI-46	Topinch to Tex. Rep. Sta. No. SI-47	Sta. No. SI-48	Sta. No. SI-49	Sta. No. SI-50	Possible double core.		Sta. No. SI-52	Sta. No. 51-53	
(Amundsen Sea Area)	FIELD	DESCRIPTION	Top-Drk. Yell. Brn. Btm-Oly. Grav	Top-Pale Yell, Brn. Btm-Olive Gray	Yellowish Brown sand and mud.	10YR4/2 10YR4/2 Dark Yellowish Brown					Muddy ooze.	
(An	DR CHART	CORE BOTTOM	57 4/1	 57 4/1	10YR4/2 10YR4/2	10YR4/2	10YR6/2	10YR5/2 10YR5/2		10YR5/2	5YR5/2	
DEEP FREEZE 61	ROCK COLOR CHART CODE NUMBERS		10YR4/2	10YR6/2	10YR4/2	10YR4/2	10YR5/2	10YR5/2		10YR5/2	52 J/4" 10YR5/2	
EP FRE	DEPTH WEIGHT APPROX LENGTH	CORE	42"	40"	6	32"	34"	52"		36"	52 1⁄4"	П
DE	APPROX.	TRATION	5'	5'	18"	5,	4 1/2' 34"	5'		51	5'	
	WEIGHT	SAMPLER	#08	#08	#08	#08	#08	#08		#08	#08	
	DEPTH	(Fathoms)	1886	1935	2013	1897	1927	2018		2040	5253	
00672	SAMPLE POSITION	LONGITUDE	115°31'W 1886	114°14'W 1935	112°58'W 2013	111°30'W 1897	111°26'W 1927	111°28'W 2018	5	110°08'W 2040	108°42'W 5253	
AND	SAMPLE	LATITUDE	70°05'S	70°08'S	70°07'S	70°08'S	69°43'S	89°13'5		69°13'5	69°13'S	
USS STATEN ISLAND	DATE	1961	30 Jan	31 Jan	31 Jan	31 Jan	1 Feb	2 Feb		2 Feb	2 Feb	
USS ST	Sample	NO.	39	40	41	42	43	44		45	46	

	OBS.														
	REMARKS		Top inch to Tex. USARP Rep.	Sta. No. SI-54	Sta. No. SI-55		Sta. No. 51-56	Sta. No. SI-57	Sta. No. SI-58	Portion in retainer auite adhesive.	Sta. No. 51-59	Sta. No. SI-60	A few inches of	water. Sta. No. SI-61	
(Amundsen Sea Area)	FIELD				4' 37 \u2" 10YR5/2 10YR5/2 Mid. 10YR6/2			Top-Sand and Mud. Btm-Mud.	Mud.				10YR6/2 10YR4/2 10YR4/2 blending to	10YR5/2.	
(Am	R CHART MBERS	CORE BOTTOM	10YR5/2		10YR5/2		10YR5/2	10YR6/2	10YR5/2 10YR5/2 Mud.	10YR6/2		10YR5/2	10YR4/2		
DEEP FREEZE 61	ROCK COLOR CHART CODE NUMBERS	CORE TOP	10YR5/2 10YR5/2		10YR5/2		10YR5/2	10YR4/2	10YR5/2	10YR4/2 10YR6/2		36 1/2" 10YR6/2 10YR5/2	10YR6/2		
EP FRE	WEIGHT APPROX LENGTH OF PENE- OF	CORE	2"		37 1/2"		30"	23"	45"	44"		36 1/2"	48"		
DE	APPROX. PENE-	SAMPLERTRATION	18"		4.		5,	40" 23"	51	51		5	5.		
	WEIGHT	SAMPLER	#08		#08		#08	#08	#08	#08		#08	#08		
	DEPTH	(rathoms	/ 2329		/ 2256		/2129	1826	2081	2230		,2290	2037		
CRUISE 00672	SAMPLE POSITION	LONGITUDE	107°16'W 2329 80#		105°44'W 2256	i	105°40'W 2129	105°36'W 1826	107°00'W 2081	106°59'W 2230		106°58'W 2290	105°43'W 2037		
S S	SAMPLE	LATITUDE	69°13'S		89°15'S		69°46'5	70°18'5	70°18'5	69°49'S		69°33'S	69°26'5		
USS STATEN ISLA	DATE	1961	3 Feb		3 Feb		3 Feb	4 Feb	4 Feb	5 Feb		5 Feb	5 Feb		
VESSEL USS ST	Sample	i i	47		48		49	50	51	52		53	72		

	OBS.	<u>.</u>									
nausen Sea Area)	R M M M M M M M M M M M M M M M M M M M		Sta. No. S1-62	Sta. No. SI-63	Sta. No. SI-64	Sta. No. S1-65	Sta. No. SI-66	Core washed. Sta. No. SI-67	Sta. No. 51-68	Sta. No. S1-69	Sta. No. SI-70
(Thurston Peninsula – Bellingshausen Sea Area)	FIELD	DESCRIPTION	Sandy	Med. Olv. Gray							5Y 6/1 Sand and mud.
(Thu	IR CHART MBERS	CORE BOTTOM	10YR5/2 Sandy	57 5/1	1/9 72	57 6/1	57 6/1		N-5	57 5/1	57 6/1
DEEP FREEZE 61	ROCK COLOR CHART CODE NUMBERS	CORE TOP	57 4/2	57 5/1	57 6/1	57 6/1	1/9 72	57 5/1	57 6/1	57 6/1	57 6/1
P FRE	DEPTH WEIGHT APPROX LENGTH	CORE	14"	10"	<u>-</u> 4	21"		8	17"	20"	9
DE	APPROX.	TRATION	21"	18"	10"	30" 21"		31	24"	41	12"
	WEIGHT	SAMPLER	#08	#08	#08	#08	#08	#08	#08	#08	#08
	DEPTH	rathoms	221	200	87	232	397	224	183	235	282 80#
CRUISE 00672		LONGITUDE	095°57'W	093°02'W	091°43'W	092°14'W	092°54'W	092°45'W	091°26'W	092°04'W	091°55'W
	SAMPLE POSITION	LATITUDE	71°45'S	72°32'S	72°29'S	72°27'S	72°24'S	72°14'S	72°16'S	72°13'5	72°41'S
USS STATEN ISLAND	DATE	1961	7 Feb	9 Feb	10 Feb	10 Feb	11 Feb	11 Feb	11 Feb	12 Feb	17 Feb
USS ST	Sample	No.	55	56	57	58	59	90	19	62	63

	OBS.										_		
ausen Sea Area)	REMARKS		Sta. No. SI-71	Sta. No. SI-72	Sta. No. SI-73	Sta. No. SI-74		Sta. No. SI-75	Sta. No. SI-76	Sta. No. SI-78		Sta. No. SI-79	
(Thurston Peninsula – Bellingshausen Sea Area)	FIELD	NO. 1			10YR 6/2 10YR 4/2 Btm. 2"-5Y 4/1	5Y 4/1 Sand and mud. Shellontop.				Sand.		Sandy.	
(Th.	DR CHART MBERS	CORE BOTTOM	5GY 6/1	57 4/1	10YR 4/2			Z 7		X 4		10YR 5/2 10YR 5/2 Sandy.	
DEEP FREEZE 61	ROCK COLOR CHART CODE NUMBERS	CORE TOP	5GY 6/1 5GY 6/1	10YR 5/2	10YR 6/2	10YR 5/2		10YR 5/2	10YR 5/2	10YR 5/2		10YR 5/2	
EP FRE	WEIGHT APPROX, LENGTH OF PENE- OF	CORE	31"	12"	21"	24"		42"	4"	21"		23"	
DE	APPROX.	SAMPLERTRATION			31	-4				3.		31	
	WEIGHT	SAMPLER	#08	#08	#08	#08		#08	#08	#08		#08	
	DEPTH	(Smorana)	224	295	250	312		471	142	355		1306	
CRUISE 00672	SAMPLE POSITION	LONGITUDE	092°54'W	094°00'W	095°32"W	096°49"W		097°53'W	098°30'W 142 80#	102°28'W		101°54'W 1306	
QN	SAMPLE	LATITUDE	71°45'S	71°29'5	71°12'S	71°45'S		71°44'S	71°41'S	71°37'S		70°51'S	
USS STATEN ISLA	DATE	1961	22 Feb	28 Feb	2 Mar	2 Mar		3 Mar	3 Mar	9 Mar		10 Mar	
VESSEL USS ST	Sample	, OZ	49	92	99	29		89	69	70		71	

MARINE GEOPHYSICAL INVESTIGATIONS. OPERATION DEEP FREEZE 61, 1960-1961 June 1962. 217 p., including 81 figs., 2 U. S. Navy Hydrographic Office

tables, (TR-105)

waters. Data on the thermal structure, salinity, Contains results of the Marine Geophysical Investigations in the Antarctic and adjacent density, dissolved oxygen, field analysis of

discussion of the Antarctic Convergence is also pottom sediment, ice distribution, bathymetry across the South Sandwich Trench, and geomagnetic measurements are presented. A

graphic data for 94 stations and Appendix B, the Appendix A contains a tabulation of oceanofield analysis of 71 bottom sediment samples,

OPERATION DEEP FREEZE 61, 1960-1961 J. S. Navy Hydrographic Office

MARINE GEOPHYSICAL INVESTIGATIONS, June 1962. 217 p., including 81 figs., 2

ables. (TR-105).

waters. Data on the thermal structure, salinity, discussion of the Antarctic Convergence is also Contains results of the Marine Geophysical bottom sediment, ice distribution, bathymetry across the South Sandwich Trench, and geodensity, dissolved oxygen, field analysis of investigations in the Antarctic and adjacent magnetic measurements are presented. A

graphic data for 94 stations and Appendix B, the Appendix A contains a tabulation of oceanofield analysis of 71 bottom sediment samples.

Antarctic - bottom sediments Antarctic - oceanography - 2.6.4

Antarctic - geomagnetics

Antarctic - ice

Antarctic - bathymetry

USS STATEN ISLAND

USCGC EASTWIND USS GLACIER USS EDISTO

9 6 8 7 6 5

HMNZS ENDEAVOUR

Geophysical Investigations. Title: Operation DEEP FREEZE 61, 1961-1962 Marine

TR-105 :=

OPERATION DEEP FREEZE 61, 1960-1961 U. S. Navy Hydrographic Office

Antarctic - bottom sediments

Antarctic - geomagnetics

Antarctic - ice

- 2.6.4.

Antarctic - bathymetry

USS STATEN ISLAND

Antarctic - oceanography

MARINE GEOPHYSICAL INVESTIGATIONS, June 1962. 217 p., including 81 figs., 2

tables. (TR-105).

waters. Data on the thermal structure, salinity, discussion of the Antarctic Convergence is also Contains results of the Marine Geophysical bottom sediment, ice distribution, bathymetry Investigations in the Antarctic and adjacent across the South Sandwich Trench, and geodensity, dissolved oxygen, field analysis of magnetic measurements are presented. A

graphic data for 94 stations and Appendix B, the Appendix A contains a tabulation of oceanofield analysis of 71 bottom sediment samples.

ncluded

Geophysical Investigations.

TR-105

Title: Operation DEEP FREEZE

HMNZS ENDEAVOUR

USCGC EASTWIND

USS GLACIER

USS EDISTO

98.7.6.5

61, 1961-1962 Marine

OPERATION DEEP FREEZE 61, 1960-1961 J. S. Navy Hydrographic Office

Antarctic - bottom sediments

Antarctic - geomagnetics

Antarctic - ice

Antarctic - bathymetry

USS STATEN ISLAND

Antarctic - oceanography

4.3.5. 5. MARINE GEOPHYSICAL INVESTIGATIONS, June 1962. 217 p., including 81 figs., 2 tables. (TR-105).

Contains results of the Marine Geophysical Investigations in the Antarctic and adjacent

waters. Data on the thermal structure, salinity, discussion of the Antarctic Convergence is also bottom sediment, ice distribution, bathymetry across the South Sandwich Trench, and geodensity, dissolved oxygen, field analysis of magnetic measurements are presented. A included.

Title: Operation DEEP FREEZE Geophysical Investigations,

HMNZS ENDEAVOUR

USCGC EASTWIND

USS GLACIER

USS EDISTO

6. 86. 61, 1961-1962 Marine

TR-105

:=

graphic data for 94 stations and Appendix B, the Appendix A contains a tabulation of oceanofield analysis of 71 bottom sediment samples.

Antarctic - bottom sediments Antarctic - oceanography

Antarctic - geomagnetics Antarctic - ice 5 · · · · · ·

Antarctic - bathymetry USS STATEN ISLAND

USS EDISTO 6.

USCGC EASTWIND USS GLACIER

HMNZS ENDEAVOUR

Title: Operation DEEP FREEZE Geophysical Investigations. 61, 1961-1962 Marine

TR-105

OPERATION DEEP FREEZE 61, 1960-1961 MARINE GEOPHYSICAL INVESTIGATIONS. June 1962. 217 p., including 81 figs., 2 U. S. Navy Hydrographic Office

Contains results of the Marine Geophysical nvestigations in the Antarctic and adjacent

waters. Data on the thermal structure, salinity, discussion of the Antarctic Convergence is also bottom sediment, ice distribution, bathymetry across the South Sandwich Trench, and geodensity, dissolved oxygen, field analysis of magnetic measurements are presented. A

Appendix A contains a tabulation of oceanographic data for 94 stations and Appendix B, the field analysis of 71 bottom sediment samples.

OPERATION DEEP FREEZE 61, 1960-1961 U. S. Navy Hydrographic Office

MARINE GEOPHYSICAL INVESTIGATIONS, June 1962. 217 p., including 81 figs., 2

tables. (TR-105).

waters. Data on the thermal structure, salinity, discussion of the Antarctic Convergence is also Contains results of the Marine Geophysical bottom sediment, ice distribution, bathymetry across the South Sandwich Trench, and geo-Investigations in the Antarctic and adjacent density, dissolved oxygen, field analysis of magnetic measurements are presented. A

graphic data for 94 stations and Appendix B, the Appendix A contains a tabulation of oceanofield analysis of 71 bottom sediment samples.

- Antarctic bottom sediments Antarctic - oceanography - 2.6.4
 - Antarctic ice
- Antarctic geomagnetics
 - Antarctic bathymetry USS STATEN ISLAND

5.

tables. (TR-105).

tables, (TR-105).

USCGC EASTWIND USS GLACIER 9 6 6 6

USS EDISTO

- HMNZS ENDEAVOUR
- Geophysical Investigations. Title: Operation DEEP FREEZE 61, 1961-1962 Marine
- TR-105

- OPERATION DEEP FREEZE 61, 1960-1961 MARINE GEOPHYSICAL INVESTIGATIONS, U. S. Navy Hydrographic Office Antarctic - bottom sediments Antarctic - oceanography
 - Antarctic geomagnetics Antarctic - ice
- Antarctic bathymetry USS STATEN ISLAND
- JSS EDISTO
- HMNZS ENDEAVOUR USCGC EASTWIND USS GLACIER
- Title: Operation DEEP FREEZE Geophysical Investigations. 61, 1961-1962 Marine
- ii. TR-105

OPERATION DEEP FREEZE 61, 1960-1961 MARINE GEOPHYSICAL INVESTIGATIONS. June 1962. 217 p., including 81 figs., 2 J. S. Navy Hydrographic Office

Antarctic - bottom sediments

Antarctic - geomagnetics

Antarctic - ice

Antarctic - bathymetry

JSS STATEN ISLAND

9

Antarctic - oceanography

waters. Data on the thermal structure, salinity, discussion of the Antarctic Convergence is also Contains results of the Marine Geophysical bottom sediment, ice distribution, bathymetry across the South Sandwich Trench, and geo-Investigations in the Antarctic and adjacent density, dissolved oxygen, field analysis of magnetic measurements are presented. A ncluded.

Title: Operation DEEP FREEZE Geophysical Investigations.

HMNZS ENDEAVOUR

USCGC EASTWIND

USS GLACIER

JSS EDISTO

61, 1961-1962 Marine

TR-105

graphic data for 94 stations and Appendix B, the Appendix A contains a tabulation of oceanofield analysis of 71 bottom sediment samples.

- Antarctic bottom sediments Antarctic - oceanography
 - Antarctic geomagnetics Antarctic - ice
 - Antarctic bathymetry
 - JSS STATEN ISLAND
 - USS EDISTO
 - USCGC EASTWIND USS GLACIER 0.98.76

waters. Data on the thermal structure, salinity,

Investigations in the Antarctic and adjacent density, dissolved oxygen, field analysis of across the South Sandwich Trench, and geo-

bottom sediment, ice distribution, bathymetry

Contains results of the Marine Geophysical

June 1962. 217 p., including 81 figs., 2

tables. (TR-105).

- Title: Operation DEEP FREEZE Geophysical Investigations. 61, 1961-1962 Marine HMNZS ENDEAVOUR
- TR-105

graphic data for 94 stations and Appendix B, the Appendix A contains a tabulation of oceano-

ield analysis of 71 bottom sediment samples.

discussion of the Antarctic Convergence is also

included.

magnetic measurements are presented. A

