1η Γραπτή Εργασία - Τεχνητή Νοημοσύνη

Τσαγκαράκης Στέλιος - ΑΜ: 03115180 Νοέμβριος 2019

1 Εισαγωγή

H εργασία έχει ως αντικείμενο την μελέτη και εκτέλεση αλγόριθμων μηχανικής μάθησης για την καλύτερη κατανόησή τους καθώς και των διαφορών τους.

2 Άσκηση 1

2.1 Δεδομένα

Δίνεται ο παρακάτω χώρος αναζήτησης, όπου s είναι η αρχική και g είναι η τελική κατάσταση. Οι αριθμοί δίπλα σε κάθε ακμή αντιπροσωπεύουν την πραγματική απόσταση των κόμβων που συνδέει η ακμή, και οι αριθμοί δίπλα σε κάθε κατάσταση (με έντονα γράμματα) συμβολίζουν την τιμή της ευριστικής εκτίμησης της απόστασης μέχρι την τελική κατάσταση.

Σχήμα 1: Χώρος αναζήτησης

2.2 Ζητούμενα

Ζητείται η εκτέλεση των αλγόριθμων:

- 1. Hill Climbing
- 2. Best First
- 3. A*

για το παραπάνω πρόβλημα με τη χρήση κλειστού συνόλου.

2.3 Ερώτημα 1

2.3.1 Εκτέλεση αλγόριθμου Hill Climbing.

Βήμα	Τρέχουσα Κατάσταση	Μέτωπο αναζήτησης	Κλειστό Σύνολο	Παιδιά
1	s	(b,5),(c,4),(d,3)	Ø	(b,5),(c,4),(d,3)
2	d	(i,2),(h,5)	s	(i,2),(h,5)
3	i	(j,3)	$_{ m s,d}$	(j,3)

Πίνακας 1: Πίνακας εκτέλεσης αλγόριθμου Hill Climbing.

Όπως προχύπτει, ο αλγόριθμος **αποτυγχάνει** να βγάλει αποτέλεσμα καθώς το μέτωπο δεν είναι κατάσταση στόχος και όλα τα παιδιά έχουν τιμή ευριστικής συνάρτησης μεγαλύτερη από την τρέχουσα κατάσταση.

2.3.2 Εκτέλεση αλγόριθμου Best First.

Βήμα	Τρέχουσα Κατάσταση	Μέτωπο αναζήτησης	Κλειστό Σύνολο	Παιδιά
1	s	$(d,3)^{sd}, (c,4)^{sc}, (b,5)^{sb}$	Ø	(b,5),(c,4),(d,3)
2	d	$(i,2)^{sdi}, (c,4)^{sc}, (b,5)^{sb}, (h,5)^{sdh}$	S	(i,2),(h,5)
3	i	$(j,3)^{sdij}, (c,4)^{sc}, (b,5)^{sb}, (h,5)^{sdh}$	s,d	(j,3)
4	j	$(c,4)^{sc}, (b,5)^{sb}, (h,5)^{sdh}$	s,d,i	Ø
5	c	$(b,5)^{sb}, (h,5)^{sdh}, (h,5)^{sch}$	$_{\mathrm{s,d,i,j}}$	(h,5)
6	b	$(k,2)^{sbk}, (h,5)^{sdh}, (h,5)^{sch}, (e,5)^{sbe}$	s,d,i,j,c	(k,2),(e,5)
7	k	$(g,0)^{sbkg}, (h,5)^{sdh}, (h,5)^{sch}, (e,5)^{sbe}$	s,d,i,j,c,b	(g,0)

Πίναχας 2: Πίναχας εκτέλεσης αλγόριθμου Best First.

Όπως φαίνεται, ο αλγόριθμος είναι επιτυχής και βγάζει ως αποτέλεσμα το μονοπάτι ${f s} \to {f b} \to {f k} \to {f g}$ με κόστος 11.

2.3.3 Εκτέλεση αλγόριθμου A^* .

Βήμα	Τρέχουσα Κατάσταση	Μέτωπο αναζήτησης	Κλειστό Σύνολο	Παιδιά
1	s	$(d,1;4)^{sd}, (c,2;6)^{sc}, (b,2;7)^{sb}$	Ø	(b,5),(c,4),(d,3)
2	d	$(c,2;6)^{sc}, (b,2;7)^{sb}, (h,3;8)^{sdh}, (i,15;17)^{sdi}$	S	(i,2),(h,5)
3	С	$(b, 2; 7)^{sb}, (h, 3; 8)^{sdh}, (i, 2; 17)^{sdi}$	$_{ m s,d}$	(h,5)
4	b	$(k,3;5)^{sbk}, (h,3;8)^{sdh}, (e,5;10)^{sbe}, (i,15;17)^{sdi},$	$_{ m s,d,c}$	(k,2),(e,5)
5	k	$(h,3;8)^{sdh}, (e,5;10)^{sbe}, (g,11;11)^{sbkg}, (i,15;17)^{sdi}$	$_{\rm s,d,c,b}$	(g,0),(h,5)
6	h	$(e, 5; 10)^{sbe}, (g, 11; 11)^{sbkg}, (j, 10; 13)^{sdhj}, (i, 13; 17)^{schi}$	$_{\mathrm{s,d,c,b,k}}$	(i,2),(j,3)
7	e	$(g, 10; 10)^{sbeg}, (j, 10; 13)^{sbkg}, (i, 13; 17)^{schi}$	s,d,c,b,k,h	(g,0)
8	η	$(j, 10; 13)^{sbkg}, (i, 2; 16)^{schi}$	s,d,c,b,k,h,e	Ø

Πίνακας 3: Πίνακας εκτέλεσης αλγόριθμου Α*.

Όπως φαίνεται, ο αλγόριθμος είναι επιτυχής και βγάζει ως αποτέλεσμα το μονοπάτι ${f s} \to {f b} \to {f e} \to {f g}$ με κόστος ${f 10}.$

2.4 Ερώτημα 2

Το πρόβλημα έχει συνολικά 2 λύσεις. Η μία είναι το μονοπάτι: $\mathbf{s} \to \mathbf{b} \to \mathbf{e} \to \mathbf{g}$ με κόστος 10, ενώ η άλλη είναι το μονοπάτι: $\mathbf{s} \to \mathbf{b} \to \mathbf{k} \to \mathbf{g}$ με κόστος 11. Οι λύσεις που βρίσκουν οι αλγόριθμοι παρουσιάζονται συγκεντρωτικά παρακάτω:

Αλγόριθμος	Επιτυχία	Μονοπάτι	Κόστος	Βέλτιστο Αποτέλεσμα
Hill Climbing	Х	-	-	-
Best First	✓	$\mathbf{s} ightarrow \mathbf{b} ightarrow \mathbf{k} ightarrow \mathbf{g}$	11	Х
A*	✓	$\mathbf{s} ightarrow \mathbf{b} ightarrow \mathbf{e} ightarrow \mathbf{g}$	10	✓

Πίναχας 4: Πίναχας παρουσίασης αποτελεσμάτων.

3 Άσκηση 2

3.1 Δεδομένα

 Δ ίνεται το παρακάτω δέντρο παιχνιδιού.

Σχήμα 2: Αρχικό Δέντρο Παιχνιδιού

3.2 Ζητούμενα

Ζητείται να εκτελεστούν οι αλγόριθμοι Min-Max, AB και να παρουσιαστούν τα αποτελέσματά τους πάνω στο δέντρο.

3.3 Ερώτημα 1

Μετά την εχτέλεση του αλγόριθμου Min-Max το δέντρο έχει αυτή τη μορφή:

Σχήμα 3: Δέντρο Παιχνιδιού Min-Max

3.4 Ερώτημα 2

Μετά από την εκτέλεση του αλγόριθμου ΑΒ το δέντρο έχει αυτή τη μορφή:

Σχήμα 4: Δέντρο Παιχνιδιού ΑΒ

H σειρά με την οποία θα επισκεφθεί ο αλγόριθμος AB τους κόμβους είναι η εξής:

$$\begin{array}{c} 1\rightarrow2\rightarrow5\rightarrow11\rightarrow23\rightarrow24\rightarrow12\rightarrow25\rightarrow6\rightarrow13\rightarrow28\rightarrow29\rightarrow14\rightarrow30\rightarrow3\rightarrow7\rightarrow16\rightarrow33\rightarrow34\rightarrow35\rightarrow4\rightarrow9\rightarrow18\rightarrow38\rightarrow39\rightarrow40\rightarrow19\rightarrow41\rightarrow42\rightarrow10\rightarrow20\rightarrow43\rightarrow44 \end{array}$$