

Assignment 2

Part I: Solve the following question:

Given the pulse shape in Fig.1 and assuming that '1' and '0' are represented by a positive and a negative pulse, respectively.

a) Plot the transmitted baseband waveform s(t) for the bit sequence $b_0={}^\prime 0{}^\prime$, $b_1={}^\prime 1{}^\prime$ and $b_2={}^\prime 1{}^\prime$

direction

- b) Plot the matched filter output due to signal only, i.e., ignore the noise
- c) Mark the sampling instants to detect b_0 , b_1 and b_2 .
- d) Plot the block diagram of the transmitter
- e) Plot the block diagram of the receiver

Part II: Simulation:

Consider the following communication system.

- The output of the binary source is a series of random 0's and 1's.
- The pulse shape g(t) is given below, where '1' is represented by g(t) and '0' by -g(t)

- The channel is ideal (i.e. its impulse response is $\delta(t)$).
- The noise is an AWGN with zero mean and variance No/2.
- Consider the three following cases:
 - a) The receive filter h(t) is a matched filter with unit energy
 - b) The receive filter h(t) is not existent (i.e. $h(t) = \delta(t)$)
 - c) The receive filter h(t) has the following impulse response

Part II Requirements:

- 1. Derive the probability of error in the three mentioned cases.
- 2. Write a Matlab code that generates random bits, simulates the above communication system, and calculates the probability of error for the three mentioned cases.
- 3. Plot the output of the receive filter for the three mentioned cases
- 4. On the same figure, plot the theoretical and simulated Bit Error Rate (BER) Vs E/No (where E is the average symbol energy) for the three mentioned cases. Take E/No to be in the range -10 dB: 20:dB. (Use a semilogy plot)
- Is the BER an increasing or a decreasing function of E/No? Why?
- 6. Which case has the lowest BER? Why?

Deliverables:

- Please deliver a single report that contains the solution to part I and part II.
- The solution of Part II should contain the theoretical derivation, the Matlab code, the required figures, and your comments to 5 and 6.