Fondamentaux théoriques du machine learning

Support vector machines

Support vector machines

Linear separation Optimization problem Link with empirical risk minimization

FTML Support vector machines

Support vector machines

Linear separation
Optimization problem
Link with empirical risk minimization

Figure – Linearly separable data

Figure - Non linearly-separable data

Figure – Linear separator

Linear separator

$$\mathcal{X} = \mathbb{R}^d$$

$$\mathcal{Y} = \{-1, 1\}$$

Equation of a linear separator

$$\langle w, x \rangle + b = 0 \tag{1}$$

- $\mathbf{v} \in \mathbb{R}^d$
- $\mathbf{x} \in \mathbb{R}^d$
- $b \in \mathbb{R}$

Notation:

$$h_{w,b}(x) = \langle w, x \rangle + b \tag{2}$$

Affine subspace

$$H = \{x \in \mathbb{R}^d, \langle w, x \rangle + b = 0\}$$
 (3)

is an affine subspace.

Any vector $x \in \mathbb{R}^d$ can uniquely be decomposed as

$$x = \lambda_w^x \frac{w}{||w||} + x_{w^{\perp}} \tag{4}$$

with $x_{w^{\perp}} \in \text{vect}(w)^{\perp}$. $x \in H$ if and only if

$$\langle w, x \rangle + b = 0$$

$$\Leftrightarrow \langle w, \lambda_w^{\times} \frac{w}{||w||} + x_{w^{\perp}} \rangle + b = 0$$

$$\Leftrightarrow \langle w, \lambda_w^{\times} \frac{w}{||w||} \rangle + b = 0$$

$$\Leftrightarrow \lambda_w^{\times} ||w|| + b = 0$$

$$\Leftrightarrow \lambda_w^{\times} = \frac{-b}{||w||}$$
(5)

We first consider a linearly separable situation.

We recall the definition $h_{w,b}(x) = \langle w, x \rangle + b$. We look for separators that satisfy :

- $\forall x_i$ such that $y_i = 1$, $h_{w,b}(x) \ge 0$
- $\forall x_i$ such that $y_i = -1$, $h_{w,b}(x) \leq 0$

We first consider a linearly separable situation.

We note $h_{w,b}(x) = \langle w, x \rangle + b$. We look for separators that satisfy :

- \blacktriangleright $\forall x_i$ such that $y_i = 1$, $h_{w,b}(x) \ge 0$
- $\forall x_i$ such that $y_i = -1$, $h_{w,b}(x) \leq 0$

However, there exists an infinite number of such parameters. How could we choose the best one?

- ▶ $\forall x_i$ such that $y_i = 1$, $h_{w,b}(x) \ge 0$
- ▶ $\forall x_i$ such that $y_i = -1$, $h_{w,b}(x) \leq 0$

The margin is the distance from H to the dataset. We look for the separator with the largest margin, leading to **Support vector** classification (SVC).

Margin

Let x be a point such that $h_{w,b}(x) = \langle w, x \rangle + b = c$, with $c \in \mathbb{R}$. Exercice 1: Compute the distance from x to H.

Margin

Let x be a point such that $h_{w,b}(x) = \langle w, x \rangle + b = c$, with $c \in \mathbb{R}$. The distance is $\frac{|c|}{||w||}$.

Support vectors

The support vectors are the vectors such that $|h_{w,b}(x)|$ is minimal among the dataset.

- ▶ the margin *M* is the distance from *H* to these vectors.
- ▶ if H is the optimal separator, there has to be a vector x_− and x₊ on each side, such that

$$M = d(x_{-}, H) = d(x_{+}, H)$$
 (6)

Support vectors

Exercice 2: Show that if H is optimal, then

$$M = d(x_{-}, H) = d(x_{+}, H)$$
 (7)

Rescaling

Important remark : multiplying w and b by a constant $\lambda \neq 0$ does not change H, as :

$$\langle \lambda w, x \rangle + \lambda b = 0$$

$$\Leftrightarrow \lambda (\langle w, x \rangle + b) = 0$$

$$\Leftrightarrow \langle w, x \rangle + b = 0$$
(8)

Rescaling

Important remark: multiplying w and b by a constant $\lambda \neq 0$ does not change H.

If the support vector x is such that $h_{w,b}(x) = c$, we have seen that the margin is

$$\frac{|c|}{||w||} \tag{9}$$

When looking for the optimal H, we can impose, without loss of generality, that |c|=1.

This means that we look for w with minimal norm, such that H separates the data (since the margin is $\frac{1}{||w||}$).

Optimization problem

We can now formulate the optimization problem.

$$\underset{w,b}{\arg\min} \frac{1}{2} \langle w, w \rangle \tag{10}$$

subject to:

$$\forall i \in [1, n], y_i(\langle w, x_i \rangle + b) \ge 1 \tag{11}$$

Slack variables

When the dataset is not linearly separable, the approach is to authorize some of the samples to have a margin smaller that 1. This means relaxing the constraint, from

$$y_i(\langle w, x_i \rangle + b) \ge 1$$
 (12)

to

$$y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i \tag{13}$$

The ξ are called the *slack variables*, they are \geq 0. The smaller the slack variabes, the better.

Optimization problem

In the general case, the optimization problem is :

$$\underset{w,b,\xi}{\arg\min} \frac{1}{2} \langle w, w \rangle + C \sum_{i=1}^{n} \xi_{i}$$
 (14)

subject to:

$$\forall i \in [1, n], y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i \tag{15}$$

and

$$\forall i \in [1, n], \xi_i \ge 0 \tag{16}$$

Link with empirical risk minimization

Margin vs ERM

The margin maximisation seems to differ from empirical risk minimization (ERM), which we have studied earlier. However, with a specific loss function, we an show that margin maximisation is in fact an ERM.

FTML

Support vector machines
Link with empirical risk minimization

- ightharpoonup estimation : $h(x) = \langle w, x \rangle + b$
- ▶ label : $y \in \{-1, 1\}$

Hinge loss:

$$L_{\text{hinge}}(h(x), y) = \max(0, 1 - yh(x)) \tag{17}$$

The hinge loss can be seen as an approximation of the binary loss.

Problem reformulation

We recall the constraints on ξ

$$y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i \tag{18}$$

and

$$\xi_i \ge 0 \tag{19}$$

Equivalently,

$$\xi_i \ge \max(0, 1 - y_i(\langle w, x_i \rangle + b)) \tag{20}$$

Problem reformulation

The slack variables should be minimal. Hence, we can write that for the optimal solution, the inequality is in fact an equality;

$$\xi_i = \max(0, 1 - y_i(\langle w, x_i \rangle + b)) \tag{21}$$

Problem reformulation

Finally, we can rewrite the problem as

$$\underset{w,b}{\arg\min} \frac{1}{2} \langle w, w \rangle + C \sum_{i=1}^{n} \max(0, 1 - y_i(\langle w, x_i \rangle + b))$$
 (22)

or equivalently

$$\underset{w,b}{\operatorname{arg\,min}} \frac{1}{2} \langle w, w \rangle + C \sum_{i=1}^{n} L_{\operatorname{hinge}}(h(x_i)), y_i)$$
 (23)

Which is an ERM problem with a L2 regularization.