Differentiable Adaptive Sparsity For Neural Networks

Vlad Niculae

Instituto de Telecomunicações

A building block in many ML tasks!

multi-class classification

A building block in many ML tasks!

multi-class classification sequence generation

A building block in many ML tasks!

multi-class classification sequence generation structured output prediction

A building block in many ML tasks!

multi-class classification
sequence generation
structured output prediction

A building block in many ML tasks!

multi-class classification
sequence generation
structured output prediction
neural attention

A building block in many ML tasks!

multi-class classification
sequence generation
structured output prediction
neural attention
structured hidden layers

A building block in many ML tasks!

multi-class classification
sequence generation
structured output prediction
neural attention
structured hidden layers

hidden

A building block in many ML tasks!

multi-class classification
sequence generation
structured output prediction
neural attention
structured hidden layers

hidden

Deterministic sparse & structured mappings and losses via a general, constructive framework.

Outline

- 1. Warm-Up: Well-Known Losses and Mappings
- 2. Regularized Prediction Functions
- 3. Fenchel-Young Losses
- 4. Sparse Sequence-to-Sequence Models
- 5. Adaptively Sparse Transformers
- 6. Sparse Structured Prediction

 $p := \operatorname{argmax}(\boldsymbol{\theta})$

very sparse predictions

$$p := \operatorname{argmax}(\boldsymbol{\theta})$$

$$L(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) = \langle \boldsymbol{\theta}, \mathbf{p} \rangle - \langle \boldsymbol{\theta}, \mathbf{y}^{\text{true}} \rangle$$

$$\partial_{\boldsymbol{\theta}} L(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) \ni \mathbf{p} - \mathbf{y}^{\text{true}}$$

- very sparse predictions
- famous update rule

$$\mathbf{p} := \operatorname{argmax}(\mathbf{\theta})$$

$$\mathbf{e} = \langle \mathbf{\theta}, \mathbf{p} \rangle - \langle \mathbf{\theta}, \mathbf{y}^{\text{true}} \rangle$$

- very sparse predictions
- famous update rule

$$p := \operatorname{argmax}(\boldsymbol{\theta})$$

$$L(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) = \langle \boldsymbol{\theta}, \mathbf{p} \rangle - \langle \boldsymbol{\theta}, \mathbf{y}^{\text{true}} \rangle$$

$$\partial_{\boldsymbol{\theta}} L(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) \ni \mathbf{p} - \mathbf{y}^{\text{true}}$$

- very sparse predictions
- famous update rule
- can't use as hidden layer: $\frac{\partial \mathbf{p}}{\partial \mathbf{\theta}} = \mathbf{0}$ a.e.

$$p := \operatorname{argmax}(\boldsymbol{\theta})$$

$$L(\boldsymbol{\theta}; y^{\text{true}}) = \langle \boldsymbol{\theta}, \boldsymbol{p} \rangle - \langle \boldsymbol{\theta}, y^{\text{true}} \rangle$$

$$\partial_{\boldsymbol{\theta}} L(\boldsymbol{\theta}; y^{\text{true}}) \ni \boldsymbol{p} - y^{\text{true}}$$

- very sparse predictions
- famous update rule
- can't use as hidden layer: $\frac{\partial \mathbf{p}}{\partial \mathbf{q}} = \mathbf{0}$ a.e.

Logistic Regression δ Softmax

 $\mathbf{p} := \operatorname{softmax}(\mathbf{\theta})$

• dense predictive distribution (Gibbs)

Logistic Regression & Softmax

$$\begin{aligned} \boldsymbol{p} &:= \operatorname{softmax}(\boldsymbol{\theta}) \\ L(\boldsymbol{\theta}; \boldsymbol{y}^{\text{true}}) &= \log \sum_{j} \exp \theta_{j} - \langle \boldsymbol{\theta}, \boldsymbol{y}^{\text{true}} \rangle \\ \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}; \boldsymbol{y}^{\text{true}}) &= \boldsymbol{p} - \boldsymbol{y}^{\text{true}} \end{aligned}$$

- dense predictive distribution (Gibbs)
- loss gradient: expected – observed statistics

Logistic Regression & Softmax

$$p := \operatorname{softmax}(\boldsymbol{\theta})$$

$$L(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) = \log \sum_{j} \exp \theta_{j} - \langle \boldsymbol{\theta}, \mathbf{y}^{\text{true}} \rangle$$

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) = p - \mathbf{y}^{\text{true}}$$

- dense predictive distribution (Gibbs)
- loss gradient: expected – observed statistics
- soft hidden layers: $\frac{\partial \mathbf{p}}{\partial \boldsymbol{\theta}} = \operatorname{diag}(\mathbf{p}) \mathbf{p}\mathbf{p}^{\top}$ (neural attention)

$$\mathbf{p} := \operatorname{sparsemax}(\mathbf{\theta}) = \operatorname{proj}_{\triangle}(\mathbf{\theta})$$

• sparse predictive distribution

$$\mathbf{p} := \operatorname{sparsemax}(\mathbf{\theta}) = \operatorname{proj}_{\triangle}(\mathbf{\theta})$$

$$L(\mathbf{\theta}, \mathbf{y}^{\text{true}}) = ?$$

$$\nabla_{\mathbf{\theta}}L(\mathbf{\theta}, \mathbf{y}^{\text{true}}) = \mathbf{p} - \mathbf{y}^{\text{true}}$$

- sparse predictive distribution
- reverse-engineer loss from gradient expected – observed statistics

$$p := \operatorname{sparsemax}(\boldsymbol{\theta}) = \operatorname{proj}_{\Delta}(\boldsymbol{\theta})$$

$$L(\boldsymbol{\theta}, y^{\text{true}}) = ?$$

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, y^{\text{true}}) = p - y^{\text{true}}$$

- sparse predictive distribution
- reverse-engineer loss from gradient expected – observed statistics
- sparse attention by deriving $\frac{\partial \mathbf{p}}{\partial \boldsymbol{\theta}}$

$$p := \operatorname{sparsemax}(\boldsymbol{\theta}) = \operatorname{proj}_{\Delta}(\boldsymbol{\theta})$$

$$L(\boldsymbol{\theta}, y^{\text{true}}) = ?$$

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, y^{\text{true}}) = p - y^{\text{true}}$$

- sparse predictive distribution
- reverse-engineer loss from gradient expected – observed statistics
- sparse attention by deriving $\frac{\partial \mathbf{p}}{\partial \boldsymbol{\theta}}$

where do softmax-like functions come from?

First, some background.

The simplex $\Delta := \{ \boldsymbol{p} \in \mathbb{R}^k : \boldsymbol{p} \geq \boldsymbol{0}, \sum_i p_i = 1 \}$

First, some background.

The simplex $\Delta := \{ p \in \mathbb{R}^k : p \ge 0, \sum_i p_i = 1 \}$

First, some background.

The simplex $\Delta := \{ p \in \mathbb{R}^k : p \ge 0, \sum_i p_i = 1 \}$

First, some background.

The simplex $\Delta := \{ p \in \mathbb{R}^k : p \ge 0, \sum_i p_i = 1 \}$

First, some background.

The simplex
$$\Delta := \{ \boldsymbol{p} \in \mathbb{R}^k : \boldsymbol{p} \ge \boldsymbol{0}, \sum_j p_j = 1 \}$$

Extended value functions $f: \mathbb{R}^k \to \mathbb{R} \cup \{\infty\}$

First, some background.

The simplex
$$\Delta := \{ \boldsymbol{p} \in \mathbb{R}^k : \boldsymbol{p} \ge \boldsymbol{0}, \ \sum_j p_j = 1 \}$$

Extended value functions $f: \mathbb{R}^k \to \mathbb{R} \cup \{\infty\}$

dom(f) := points where f is finite

First, some background.

The simplex
$$\Delta := \{ p \in \mathbb{R}^k : p \ge 0, \sum_j p_j = 1 \}$$

Extended value functions
$$f: \mathbb{R}^k \to \mathbb{R} \cup \{\infty\}$$

$$dom(f) := points where f is finite$$

Indicator function:
$$l_S(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in S \\ \infty, & \mathbf{x} \notin S \end{cases}$$

First, some background.

The simplex
$$\Delta := \{ \boldsymbol{p} \in \mathbb{R}^k : \boldsymbol{p} \ge \boldsymbol{0}, \sum_j p_j = 1 \}$$

Extended value functions
$$f: \mathbb{R}^k \to \mathbb{R} \cup \{\infty\}$$

$$dom(f) := points where f is finite$$

Indicator function:
$$l_{\mathcal{S}}(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathcal{S} \\ \infty, & \mathbf{x} \notin \mathcal{S} \end{cases}$$

 $(f + \iota_S \text{ is } f \text{ restricted to } S)$

First, some background.

The simplex
$$\Delta := \{ \boldsymbol{p} \in \mathbb{R}^k : \boldsymbol{p} \ge \boldsymbol{0}, \ \sum_j p_j = 1 \}$$

Extended value functions $f: \mathbb{R}^k \to \mathbb{R} \cup \{\infty\}$

dom(f) := points where f is finite

Indicator function:
$$l_S(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathcal{S} \\ \infty, & \mathbf{x} \notin \mathcal{S} \end{cases}$$

 $(f + \iota_S \text{ is } f \text{ restricted to } S)$

Fenchel conjugate of $f: \mathbb{R}^k \to \mathbb{R} \cup \{\infty\}$:

$$f^*(\mathbf{x}) := \sup_{\mathbf{p} \in \text{dom}(f)} \langle \mathbf{p}, \mathbf{x} \rangle - f(\mathbf{p})$$

Let
$$\Omega = \iota_{\triangle}$$
. Then,

$$\Omega^*(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \triangle} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle$$

Let
$$\Omega = \iota_{\triangle}$$
. Then,

$$\Omega^*(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle$$

$$\partial \Omega^*(\boldsymbol{\theta}) = \operatorname{argmax} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle$$

$$\boldsymbol{p} \in \Delta$$

Let
$$\Omega = \iota_{\triangle}$$
. Then,

$$\Omega^*(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle$$

$$\partial \Omega^*(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \Delta}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle$$

$$= \max(\boldsymbol{\theta})$$

$$\ni \operatorname{argmax}(\boldsymbol{\theta})$$

Let
$$\Omega = l_{\triangle}$$
. Then,

$$\Omega^*(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \triangle} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle = \max(\boldsymbol{\theta})$$

$$\partial \Omega^*(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \triangle}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle \Rightarrow \operatorname{argmax}(\boldsymbol{\theta})$$

Let $\Omega = \iota_{\wedge}$. Then, max**⟨p, θ⟩** p∈Δ $\Omega^*(\boldsymbol{\theta}) =$ $= \max(\boldsymbol{\theta})$ $\partial \Omega^*(\boldsymbol{\theta}) = \operatorname{argmax} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle$ $\ni \operatorname{argmax}(\boldsymbol{\theta})$ $p \in \Delta$

$$\underset{\boldsymbol{p} \in \Delta}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle = \{ \boldsymbol{p}^{\star} \}$$

Let
$$\Omega = l_{\triangle}$$
. Then,

$$\Omega^*(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \triangle} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle = \max(\boldsymbol{\theta})$$

$$\partial \Omega^*(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \triangle}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle \Rightarrow \operatorname{argmax}(\boldsymbol{\theta})$$

Shannon entropy of \mathbf{p} $H_1(\mathbf{p}) := -\sum_i p_i \log p_i$

Let
$$\Omega = \iota_{\triangle}$$
. Then,

$$\Omega^*(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \triangle} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle = \max(\boldsymbol{\theta})$$

$$\partial \Omega^*(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \triangle}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle \quad \ni \operatorname{argmax}(\boldsymbol{\theta})$$

Shannon entropy of \mathbf{p} $H_1(\mathbf{p}) := -\sum_i p_i \log p_i$

Let
$$\Omega = -H_1(\mathbf{p}) + \iota_{\triangle}$$
. Then,

Let
$$\Omega = \iota_{\triangle}$$
. Then,

$$\Omega^*(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle = \max(\boldsymbol{\theta})$$

$$\partial \Omega^*(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \Delta}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle \quad \exists \operatorname{argmax}(\boldsymbol{\theta})$$

Shannon entropy of \mathbf{p} $H_1(\mathbf{p}) := -\sum_i p_i \log p_i$

Let
$$\Omega = -H_1(\mathbf{p}) + \iota_{\triangle}$$
. Then,

$$\Omega^*(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle + H_1(\boldsymbol{p}) = \operatorname{logsumexp}(\boldsymbol{\theta})$$

$$\nabla \Omega^*(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \Delta}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle + H_1(\boldsymbol{p}) = \operatorname{softmax}(\boldsymbol{\theta})$$

Let
$$\Omega = \iota_{\triangle}$$
. Then,

$$\Omega^*(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle = \max(\boldsymbol{\theta})$$

$$\partial \Omega^*(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \Delta}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle \quad \exists \operatorname{argmax}(\boldsymbol{\theta})$$

Shannon entropy of \mathbf{p} $H_1(\mathbf{p}) := -\sum_i p_i \log p_i$

Let
$$\Omega = -H_1(\mathbf{p}) + \iota_{\triangle}$$
. Then,

$$\Omega^*(\boldsymbol{\theta}) = \max_{\boldsymbol{p} \in \Delta} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle + H_1(\boldsymbol{p}) = \operatorname{logsumexp}(\boldsymbol{\theta})$$

$$\nabla \Omega^*(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \Delta}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle + H_1(\boldsymbol{p}) = \operatorname{softmax}(\boldsymbol{\theta})$$

Softmax is an entropy-regularized argmax!

Outline

- 1. Warm-Up: Well-Known Losses and Mappings
- 2. Regularized Prediction Functions
- 3. Fenchel-Young Losses
- 4. Sparse Sequence-to-Sequence Models
- 5. Adaptively Sparse Transformers
- 6. Sparse Structured Prediction

A family of softmax-like mappings

$$\pi_{\Omega}(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \text{dom}(\Omega)}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle - \Omega(\boldsymbol{p}) = \nabla \Omega^*(\boldsymbol{\theta})$$

A family of softmax-like mappings

$$\pi_{\Omega}(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \text{dom}(\Omega)}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle - \Omega(\boldsymbol{p}) = \nabla \Omega^*(\boldsymbol{\theta})$$

Let $dom(\Omega) = \Delta$. We recover

A family of softmax-like mappings

$$\boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \text{dom}(\Omega)}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle - \Omega(\boldsymbol{p}) = \nabla \Omega^*(\boldsymbol{\theta})$$

Let
$$dom(\Omega) = \Delta$$
. We recover

- argmax: $\Omega(\mathbf{p}) = 0$
- softmax: $\Omega(\mathbf{p}) = -H_1(\mathbf{p}) = \sum_j p_j \log p_j$

A family of softmax-like mappings

$$\boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \text{dom}(\Omega)}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle - \Omega(\boldsymbol{p}) = \nabla \Omega^*(\boldsymbol{\theta})$$

Let
$$dom(\Omega) = \Delta$$
. We recover

- argmax: $\Omega(\mathbf{p}) = 0$
- softmax: $\Omega(\mathbf{p}) = -H_1(\mathbf{p}) = \sum_j p_j \log p_j$
- sparsemax: $\Omega(\mathbf{p}) = -H_2(\mathbf{p}) = 1/2 \sum_j p_j(p_j 1)$

Regularization brings:

Regularization brings:

 improved uncertainty handling: (predictions become hedged bets)

Regularization brings:

- improved uncertainty handling: (predictions become hedged bets)
- smoothing effect (Nesterov, 2005; Kakade et al., 2009) Ω strongly convex $\Rightarrow \Omega^*$ smooth, $\Rightarrow \pi_{\Omega}$ differentiable almost everywhere

Regularization brings:

- improved uncertainty handling: (predictions become hedged bets)
- smoothing effect (Nesterov, 2005; Kakade et al., 2009) Ω strongly convex $\Rightarrow \Omega^*$ smooth, $\Rightarrow \pi_{\Omega}$ differentiable almost everywhere
- ability to add inductive bias

fusedmax: $\Omega(\mathbf{p}) = -H_2(\mathbf{p}) + \sum_{i=1}^{k} |p_i - p_{i-1}|$

Outline

- 1. Warm-Up: Well-Known Losses and Mappings
- 2. Regularized Prediction Functions
- 3. Fenchel-Young Losses
- 4. Sparse Sequence-to-Sequence Models
- 5. Adaptively Sparse Transformers
- 6. Sparse Structured Prediction

perceptron ←⇒ argmax logistic regression ←⇒ softmax

What motivates this connection?

$$L_{\Omega}(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) := \Omega^*(\boldsymbol{\theta}) + \Omega(\mathbf{y}^{\text{true}}) - \langle \boldsymbol{\theta}, \mathbf{y}^{\text{true}} \rangle$$

 Ω : a regularizer

 $\mathbf{y}^{\text{true}} \in \text{dom}(\Omega)$: target (e.g. \mathbf{e}_k)

 $\boldsymbol{\theta} \in \mathbb{R}^d$: prediction scores

$$L_{\Omega}(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) := \Omega^*(\boldsymbol{\theta}) + \Omega(\mathbf{y}^{\text{true}}) - \langle \boldsymbol{\theta}, \mathbf{y}^{\text{true}} \rangle$$

Ω: a regularizer $\mathbf{v}^{\text{true}} ∈ dom(Ω)$: target (e.g. \mathbf{e}_k)

 $\boldsymbol{\theta} \in \mathbb{R}^d$: prediction scores

Based on the FY inequality:

$$\Omega^{\star}(\boldsymbol{\theta}) + \Omega(\boldsymbol{p}) \geq \langle \boldsymbol{\theta}, \boldsymbol{p} \rangle$$

Properties:

1. Non-negativity:

$$L_{\Omega}(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) \geq 0$$

$$L_{\Omega}(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) := \Omega^*(\boldsymbol{\theta}) + \Omega(\mathbf{y}^{\text{true}}) - \langle \boldsymbol{\theta}, \mathbf{y}^{\text{true}} \rangle$$

$$Ω$$
: a regularizer $\mathbf{y}^{\text{true}} ∈ \text{dom}(Ω)$: target (e.g. \mathbf{e}_k)

 $\boldsymbol{\theta} \in \mathbb{R}^d$: prediction scores

Based on the FY inequality:

$$\Omega^{\star}(\boldsymbol{\theta}) + \Omega(\boldsymbol{p}) \geq \langle \boldsymbol{\theta}, \boldsymbol{p} \rangle$$

Properties:

1. Non-negativity:

$$L_{\Omega}(\boldsymbol{\theta}; \mathbf{y}^{\mathsf{true}}) \geq 0$$

2. Zero loss:

$$L_{\Omega}(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) = 0 \iff \boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = \mathbf{y}^{\text{true}}$$

The natural loss for the mapping π_{Ω} .

$$L_{\Omega}(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) := \Omega^*(\boldsymbol{\theta}) + \Omega(\mathbf{y}^{\text{true}}) - \langle \boldsymbol{\theta}, \mathbf{y}^{\text{true}} \rangle$$

Ω: a regularizer $\mathbf{v}^{\text{true}} ∈ \text{dom}(Ω)$: target (e.g. \mathbf{e}_k)

 $\boldsymbol{\theta} \in \mathbb{R}^d$: prediction scores

Based on the FY inequality:

$$\Omega^{\star}(\boldsymbol{\theta}) + \Omega(\boldsymbol{p}) \geq \langle \boldsymbol{\theta}, \boldsymbol{p} \rangle$$

The natural loss for the mapping $\boldsymbol{\pi}_{\Omega}$.

Properties:

1. Non-negativity:

$$L_{\Omega}(\boldsymbol{\theta}; \mathbf{y}^{\mathsf{true}}) \geq 0$$

2. Zero loss:

$$L_{\Omega}(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) = 0 \iff \boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = \mathbf{y}^{\text{true}}$$

3. Convex and differentiable:

$$\nabla_{\boldsymbol{\theta}} L_{\Omega}(\boldsymbol{\theta}; \mathbf{y}^{\text{true}}) = \boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) - \mathbf{y}^{\text{true}}$$

	$dom(\Omega)$	$\Omega(oldsymbol{p})$	$oldsymbol{\pi}_{\Omega}(oldsymbol{ heta})$
Perceptron	Δ^k	0	argmax(0)
Logistic Regression	Δ^k	$-H_1(\boldsymbol{p})$	$softmax(oldsymbol{ heta})$
Sparsemax	Δ^k	$-H_{2}(p)$	$sparsemax(\boldsymbol{\theta})$

	$dom(\Omega)$	$\Omega(oldsymbol{p})$	$oldsymbol{\pi}_{\Omega}(oldsymbol{ heta})$
Perceptron	Δ^k	0	$argmax(m{ heta})$
Logistic Regression	Δ^k	$-H_1(oldsymbol{p})$	$softmax(oldsymbol{ heta})$
Sparsemax	Δ^k	$-H_2(\boldsymbol{p})$	$sparsemax(oldsymbol{ heta})$
Hinge (SVM)	\triangle^k	⟨ p , y ^{true} − 1 ⟩	$argmax(1 - \mathbf{y}^{true} + \boldsymbol{\theta})$

	$dom(\Omega)$	$\Omega(oldsymbol{p})$	$oldsymbol{\pi}_{\Omega}(oldsymbol{ heta})$
Darsantran		-	/
Perceptron	\triangle^k	0	$\operatorname{argmax}(\boldsymbol{\theta})$
Logistic Regression	Δ^k	$-H_1(\boldsymbol{p})$	$softmax(\boldsymbol{\theta})$
Sparsemax	Δ^k	$- H_2(oldsymbol{p}) \ \langle oldsymbol{p}, oldsymbol{y}^{ ext{true}} - oldsymbol{1} angle$	sparsemax($\boldsymbol{\theta}$)
Hinge (SVM)			$argmax(1 - y^{true} + \theta)$
Squared	\mathbb{R}^k	$\frac{1}{2} {\bm p} ^2$	θ

	$dom(\Omega)$	$\Omega(oldsymbol{p})$	$oldsymbol{\pi}_{\Omega}(oldsymbol{ heta})$
Perceptron	Δ^k	0	$\operatorname{argmax}(oldsymbol{ heta})$
Logistic Regression	Δ^k	$-H_1(oldsymbol{p})$	$softmax(oldsymbol{ heta})$
Sparsemax	Δ^k	$-H_2(\boldsymbol{p})$	$sparsemax(oldsymbol{ heta})$
Hinge (SVM)	Δ^k	⟨ p , y ^{true} − 1 ⟩	$argmax(1 - y^{true} + \theta)$
Squared	\mathbb{R}^k	$\frac{1}{2} p ^2$	θ
One-vs-all	$[0, 1]^k$	$-\sum_{i} H_{1}^{2}([p_{i}, 1-p_{i}])$	$sigmoid(oldsymbol{ heta})$
		,	

	$dom(\Omega)$	$\Omega(oldsymbol{p})$	$oldsymbol{\pi}_{\Omega}(oldsymbol{ heta})$
Perceptron	\triangle^k	0	argmax(∂)
Logistic Regression	Δ^k	$-H_1(oldsymbol{p})$	$softmax(\boldsymbol{\theta})$
Sparsemax	Δ^k	$-H_2(\boldsymbol{p})$	$sparsemax(oldsymbol{ heta})$
Hinge (SVM)	Δ^k	⟨ p , y ^{true} − 1 ⟩	$argmax(1 - y^{true} + \theta)$
Squared	\mathbb{R}^k	$\frac{1}{2} p ^2$	θ
One-vs-all and more!	$[0, 1]^k$	$-\sum_{j} H_1^{T}([p_i, 1-p_i])$	sigmoid(0)

Generalized Entropies

A function $H(\mathbf{p})$ quantifying uncertainty in $\mathbf{p} \in \Delta^k$:

- 1. $H(p) = 0 \text{ if } p \in \{e_k\}$
- 2. H strictly concave
- 3. $H(\mathbf{p}) = H(\mathbf{Pp})$ (permutation-invariant)

Tsallis entropies, Rényi entropies, norm entropies, etc.

Tsallis Entropies

$$H_{\alpha}(\mathbf{p}) = \frac{1}{\alpha(\alpha - 1)} \sum_{j} (p_{j} - p_{j}^{\alpha})$$

$$\alpha \to 1 \quad \text{Shannon}$$

 $\alpha = 2$ Gini $\alpha \to \infty$ 0

Tsallis Entropies

$$H_{\alpha}(\mathbf{p}) = \frac{1}{\alpha(\alpha - 1)} \sum_{j} (p_{j} - p_{j}^{\alpha})$$

$$\alpha \to 1 \quad \text{Shannon}$$

$$\alpha = 2 \quad \text{Gini}$$

$$\alpha \to \infty \quad 0$$

generate Tsallis α -entmax mappings & losses!

Properties of α -entmax Mappings & Losses

 $\pi_{-H_{\alpha}}$ is sparse for $\alpha > 1$

(Novel general condition: π_{Ω} is sparse iff. $\partial \Omega(\mathbf{p}) \neq \emptyset$ for any $\mathbf{p} \in \Delta$)

Properties of α -entmax Mappings & Losses

$$\pi_{-H\alpha}$$
 is sparse for $\alpha > 1$

(Novel general condition: π_{Ω} is sparse iff. $\partial \Omega(\mathbf{p}) \neq \emptyset$ for any $\mathbf{p} \in \Delta$)

 $L_{-H_{\alpha}}$ has the margin property:

$$\theta_k \ge \underbrace{1/\alpha - 1}_{j \neq k} + \max_{j \neq k} \theta_j \Rightarrow L_{-H_{\alpha}}(\boldsymbol{\theta}; \boldsymbol{e}_k) = 0$$

(Equivalence result between sparsity and margins)

$$\boldsymbol{\pi}_{-H_{\alpha}}(\boldsymbol{\theta}) := \underset{\boldsymbol{p} \in \Delta}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle + H_{\alpha}(\boldsymbol{p})$$

$$\boldsymbol{\pi}_{-H_{\alpha}}(\boldsymbol{\theta}) := \underset{\boldsymbol{p} \in \Delta}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle + H_{\alpha}(\boldsymbol{p})$$

Solution has the form:

$$\boldsymbol{\pi}_{-H_{\alpha}}(\boldsymbol{\theta}) = [(\alpha - 1)\boldsymbol{\theta} - \tau \mathbf{1}]_{\perp}^{1/\alpha - 1}$$

$$\pi_{-H_{\alpha}}(\boldsymbol{\theta}) := \underset{\boldsymbol{p} \in \Delta}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle + H_{\alpha}(\boldsymbol{p})$$

Solution has the form:

$$\boldsymbol{\pi}_{-H_{\alpha}}(\boldsymbol{\theta}) = [(\alpha - 1)\boldsymbol{\theta} - \tau \mathbf{1}]_{+}^{1/\alpha - 1}$$

Algorithms:

bisection

- approximate; bracket $\tau \in [\tau_{lo}, \tau_{hi}]$
- gain 1 bit per O(d) iteration
- float 32 has 23 mantissa bits

$$\pi_{-H_{\alpha}}(\boldsymbol{\theta}) := \underset{\boldsymbol{p} \in \Delta}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle + H_{\alpha}(\boldsymbol{p})$$

Solution has the form:

$$\boldsymbol{\pi}_{-H_{\alpha}}(\boldsymbol{\theta}) = [(\alpha - 1)\boldsymbol{\theta} - \tau \mathbf{1}]_{+}^{1/\alpha - 1}$$

Algorithms:

bisection

- approximate; bracket $\tau \in [\tau_{lo}, \tau_{hi}]$
- gain 1 bit per O(d) iteration
- floαt32 has 23 mantissa bits

sort-based

- exact algorithm, $O(d \log d)$
- available only for $\alpha \in \{1.5, 2\}$
- For α = 2, known since Held et al. (1974)!

(general result)

$$\pi_{\Omega}(\boldsymbol{\theta}) = \operatorname{argmax} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle - \Omega(\boldsymbol{p}) = \nabla \Omega^*(\boldsymbol{\theta})$$

 $p = \pi_{\Omega}(\boldsymbol{\theta})$

(general result)

$$\pi_{\Omega}(\boldsymbol{\theta}) = \operatorname{argmax} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle - \Omega(\boldsymbol{p}) = \nabla \Omega^*(\boldsymbol{\theta})$$
 $\boldsymbol{p} \in \Delta$

• **J** symmetric (= $\nabla\nabla\Omega^*$).

 $p = \pi_{\Omega}(\boldsymbol{\theta})$

(general result)

$$\pi_{\Omega}(\boldsymbol{\theta}) = \operatorname{argmax} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle - \Omega(\boldsymbol{p}) = \nabla \Omega^*(\boldsymbol{\theta})$$
 $\boldsymbol{p} \in \Delta$

- **J** symmetric (= $\nabla\nabla\Omega^*$).
- $(J)_{ij} = 0$ if $p_i = 0$ or $p_j = 0$.

(general result)

$$\boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = \operatorname{argmax} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle - \Omega(\boldsymbol{p}) = \nabla \Omega^*(\boldsymbol{\theta})$$
 $\boldsymbol{p} \in \Delta$

- **J** symmetric (= $\nabla\nabla\Omega^*$).
- $(J)_{ij} = 0$ if $p_i = 0$ or $p_j = 0$.
- Let $(\mathbf{H})_{ij} = \frac{\partial^2 \Omega}{\partial p_i \partial p_j}(\mathbf{p})$ for nonzero i, j.

Let $S = H^{-1}$ and s = 1S.

Then, $\bar{J} = S - \frac{1}{\langle \mathbf{1}, s \rangle} ss^{\top}$.

(general result)

$$\boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \Delta}{\operatorname{argmax}} \langle \boldsymbol{p}, \boldsymbol{\theta} \rangle - \Omega(\boldsymbol{p}) = \nabla \Omega^*(\boldsymbol{\theta})$$

- **J** symmetric (= $\nabla\nabla\Omega^*$).
- $(J)_{ij} = 0$ if $p_i = 0$ or $p_j = 0$.
- Let $(\mathbf{H})_{ij} = \frac{\partial^2 \Omega}{\partial p_i \partial p_j}(\mathbf{p})$ for nonzero i, j.

Let $S = H^{-1}$ and s = 1S. Then, $\bar{J} = S - \frac{1}{\langle 1, s \rangle} ss^{\top}$.

• For $-H_{\alpha}$, $S = \text{diag}(\bar{p}^{2-\alpha})$.

 $p = \pi_{\Omega}(\boldsymbol{\theta})$

Outline

- 1. Warm-Up: Well-Known Losses and Mappings
- 2. Regularized Prediction Functions
- 3. Fenchel-Young Losses
- 4. Sparse Sequence-to-Sequence Models
- 5. Adaptively Sparse Transformers
- 6. Sparse Structured Prediction

United Nations elections end today

attention weights computed with softmax:

for some decoder state s_t , compute contextually weighted average of input c_t :

$$egin{aligned} m{ heta}_j &= m{s}_t^{ op} m{W}^{(a)} m{h}_j \ m{p} &= \mathrm{softmax}(m{ heta}) \ m{c}_t &= \sum_j p_j m{h}_j \end{aligned}$$

predictive probability $P(y_4 \mid y_3, y_2, y_1, x)$

.90 Unidas .05 Shopping .01 ,

... 10⁻⁵ ag

aquático

morphological inflection!

 $p(\cdot) = 0.60$

Morphological Inflection

SIGMORPHON 2018 data, shared multi-lingual model.

Neural Machine Translation

Sparse Mappings Don't Slow Down Training

Impact of Fine Tuning lpha

Outline

- 1. Warm-Up: Well-Known Losses and Mappings
- 2. Regularized Prediction Functions
- 3. Fenchel-Young Losses
- 4. Sparse Sequence-to-Sequence Models
- 5. Adaptively Sparse Transformers
- 6. Sparse Structured Prediction

Transformers: Deep Self-Attention

Layered multi-head attention instead of LSTMs

• • •

Sparse Transformers

• •

Adaptively Sparse Transformers

Transformers have $6 \times 4 \times 3$ attention heads: maybe *not all* should be sparse.

Adaptively Sparse Transformers

Transformers have $6 \times 4 \times 3$ attention heads: maybe *not all* should be sparse.

Let each attention head learn its α !

Neural Machine Translation

Trajectories of α During Training

Previous Position Head

Outline

- 1. Warm-Up: Well-Known Losses and Mappings
- 2. Regularized Prediction Functions
- 3. Fenchel-Young Losses
- 4. Sparse Sequence-to-Sequence Models
- 5. Adaptively Sparse Transformers
- 6. Sparse Structured Prediction

Structured Prediction

Structured Prediction

Structured Prediction

Factorization Into Parts

 $\boldsymbol{\theta} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}$

Factorization Into Parts

$$\boldsymbol{\theta} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}$$

	∗→dog	⊥	U	U		- т
	on→dog	0	1	1		.2
	wheels→dog	0	0	0		1
	∗→on	0	1	1		.3
4 =	dog→on	1	0	0	 η=	.8
	wheels→on	0	0	0		.1
	∗→wheels	0	0	0		3
	dog→wheels	0	1	0		.2
	on→wheels	1	0	1		1

Factorization Into Parts

$$\boldsymbol{\theta} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\eta}$$

∗→dog	1	0	0		.1	
on→dog	0	1	1		.2	ı
wheels→dog	0	0	0		1	ı
∗→on	0	1	1		.3	ı
A = dog→on	1	0	0	 η=	.8	ı
wheels→on	0	0	0		.1	ı
∗→wheels	0	0	0		3	ı
dog→wheels	0	1	0		.2	ı
on→wheels	1	0	1		1	ı

dog-hond		1	0	0	
dog—op		0	1	1	
dog—wielen		0	0	0	
	on-hond	0	0	0	
A =	on-op	1	 0	0	
	on—wielen	0	1	1	
wheels-hond		0	1	0	_
wheels—op		0	0	0	
wheels-wielen		1	0	1	

 $\mathcal{M} := \mathsf{conv}\left\{ \boldsymbol{a}_h : h \in \mathcal{H} \right\}$

$$\mathcal{M} := \operatorname{conv} \left\{ \boldsymbol{a}_h : h \in \mathcal{H} \right\}$$

= $\left\{ \boldsymbol{A} \boldsymbol{p} : \boldsymbol{p} \in \Delta \right\}$

argmax $\operatorname{argmax}\langle p, \boldsymbol{\theta} \rangle$ $p \in \Delta$

argmax $argmax\langle p, \theta \rangle$ $p \in \Delta$

MAP
$$\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{argmax}} \langle \boldsymbol{\mu}, \boldsymbol{\eta} \rangle$$

• **argmax** $argmax(p, \theta)$ $p \in \Delta$

MAP
$$\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{argmax}} \langle \boldsymbol{\mu}, \boldsymbol{\eta} \rangle$$

• softmax $\operatorname{argmax}\langle p, \theta \rangle + H(p)$ $p \in \Delta$

- **argmax** $argmax(p, \theta)$ $p \in \Delta$
- softmax $\operatorname{argmax}\langle p, \theta \rangle + H(p)$ $p \in \Delta$

MAP
$$\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{argmax}} \langle \boldsymbol{\mu}, \boldsymbol{\eta} \rangle$$

marginals $\operatorname{argmax}\langle \boldsymbol{\mu}, \boldsymbol{\eta} \rangle + \widetilde{H}(\boldsymbol{\mu})$ $\boldsymbol{\mu} \in \mathcal{M}$

Algorithms for specific structures

	Best structure (MAP)	Marginals
Sequence tagging	Viterbi (Rabiner, 1989)	Forward-Backward (Rabiner, 1989)
Constituent trees	CKY (Kasami, 1966; Younger, 1967) (Cocke and Schwartz, 1970)	Inside-Outside (Baker, 1979)
Temporal alignments	DTW (Sakoe and Chiba, 1978)	Soft-DTW (Cuturi and Blondel, 2017)
Dependency trees	Max. Spanning Arborescence (Chu and Liu, 1965; Edmonds, 1967)	Matrix-Tree (Kirchhoff, 1847)
Assignments	Kuhn-Munkres (Kuhn, 1955; Jonker and Volgenant, 1987)	#P-complete (Valiant, 1979; Taskar, 2004)

- **argmax** argmax $\langle p, \theta \rangle$ $p \in \Delta$
- softmax $argmax\langle p, \theta \rangle + H(p)$ $p \in \Delta$
- sparsemax $argmax(p, \theta) \frac{1}{2}||p||^2$ $p \in \Delta$

MAP
$$\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{argmax}} \langle \boldsymbol{\mu}, \boldsymbol{\eta} \rangle$$

marginals $argmax\langle \mu, \eta \rangle + \widetilde{H}(\mu)$

ginals argmax
$$\langle \mu, \eta \rangle$$
 + H $\langle \mu \rangle$

- argmax argmax $\langle p, \theta \rangle$ $p \in \Delta$
- softmax $\operatorname{argmax}\langle p, \theta \rangle + H(p)$ $p \in \Delta$
- $p \in \Delta$

• sparsemax
$$\arg\max\langle p, \theta \rangle - 1/2||p||^2$$

 $p \in \Delta$

MAP
$$\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{argmax}} \langle \boldsymbol{\mu}, \boldsymbol{\eta} \rangle$$

marginals $\operatorname{argmax}\langle \mu, \eta \rangle + \widetilde{H}(\mu)$ • $\mu \in \mathcal{M}$

SparseMAP $\underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{argmax}} \langle \boldsymbol{\mu}, \boldsymbol{\eta} \rangle - 1/2 ||\boldsymbol{\mu}||^2 \bullet$

$$\mu^* = \operatorname{argmax} \mu^T \eta - 1/2 ||\mu||^2$$
 $\mu \in \mathcal{M}$

linear constraints
(alas, exponentially many!)
$$\mu^* = \operatorname{argmax} \mu^\top \eta - 1/2 \|\mu\|^2 \qquad \text{quadratic objective}$$

linear constraints
$$\mu^* = \operatorname{argmax} \mu^T \eta - 1/2 \|\mu\|^2$$
 quadratic objective (alas, exponentially many!) $\mu \in \mathcal{M}$

Conditional Gradient

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

linear constraints (alas, exponentially many!)
$$\mu^* = \operatorname{argmax} \mu^T \eta - 1/2 ||\mu||^2$$
 quadratic objective

Conditional Gradient

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

select a new corner of M

linear constraints (alas, exponentially many!)
$$\mu^* = \operatorname{argmax} \mu^\top \eta - 1/2 \|\mu\|^2$$
 quadratic objective $\mu \in \mathcal{M}$

Conditional Gradient

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

select a new corner of M

$$\mathbf{a}_{y^*} = \underset{\boldsymbol{\mu} \in \mathcal{M}}{\operatorname{argmax}} \boldsymbol{\mu}^{\top} \underbrace{(\boldsymbol{\eta} - \boldsymbol{\mu}^{(t-1)})}_{\widetilde{\boldsymbol{\eta}}}$$

linear constraints (alas, exponentially many!)
$$\mu^* = \operatorname{argmax} \mu^\top \eta - 1/2 \|\mu\|^2$$
 quadratic objective $\mu \in \mathcal{M}$

Conditional Gradient

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- ullet select a new corner of ${\mathcal M}$
- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise

linear constraints (alas, exponentially many!)
$$\mu^* = \operatorname{argmax} \mu^\top \eta - 1/2 \|\mu\|^2$$
 quadratic objective

Conditional Gradient

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corner of M
- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set (Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

linear constraints (alas, exponentially many!)
$$\mu^* = \operatorname{argmax} \mu^\top \eta - 1/2 \|\mu\|^2$$
 quadratic objective

Conditional Gradient

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corner
- update the (sparse)
 - Update rules: van

 - Quadratic objective: Active Set (Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

Active Set achieves

finite & linear convergence!

linear constraints (alas, exponentially many!)
$$\mu^* = \operatorname{argmax} \mu^\top \eta - 1/2 \|\mu\|^2$$
 quadratic objective $\mu \in \mathcal{M}$

Conditional Gradient

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corner of M
- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set (Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

Backward pass

 $\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}}$ is sparse; precomputed in forward pass!

linear constraints (alas, exponentially many!)
$$\mu^* = \operatorname{argmax} \mu^\top \eta - 1/2 \|\mu\|^2$$
 quadratic objective $\mu \in \mathcal{M}$

Conditional Gradient

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corner of M
- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set (Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

Backward pass

 $\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}}$ is sparse; precomputed in forward pass!

pass

Generic Algorithm for SparseMAP

linear constraints (alas, exponentially many!)
$$\mu^* = \operatorname{argmax} \mu^T \eta - 1/2 \|\mu\|^2$$
 quadratic objective

Conditi

(Frank and Wolfe, 1956

Completely modular: just add MAP

• select a new c

- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise
 - Quadratic objective: Active Set (Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

ਹ<mark>ਰੇ ਸ੍</mark>ਰਾ is sparse; precomputed in forward pass!

premise: A gentleman overlooking a neighborhood situation. NLI

A police officer watches a situation closely. hypothesis:

input

(P, H)

output

entails

neutral

(Model: ESIM (Chen et al., 2017))

premise: A gentleman overlooking a neighborhood situation.

hypothesis: A police officer watches a situation closely.

input

(P, H)

output

(Model: ESIM (Chen et al., 2017))

NLI premise: A gentleman overlooking a neighborhood situation.

hypothesis: A police officer watches a situation closely.

input

(P, H)

output

entails

contradicts neutral

(Model: ESIM (Chen et al., 2017))

NLI premise: A gentleman overlooking a neighborhood situation.

hypothesis: A police officer watches a situation closely.

input

(P, H)

(Proposed model: global matching)

Sparse Structured Attention for Alignments

Sparse Structured Output Prediction

Sparse Structured Output Prediction Training

Sparse Structured Output Prediction

Validation: 25% unambiguous, $66\% \le 5$

Sparse Structured Output Prediction

Inference captures linguistic ambiguity!

Summary: Fenchel-Young losses and mappings, a framework for:

Next steps: sparsity in stochastic and generative models.

Extra slides

Acknowledgements

This work was supported by the European Research Council (ERC StG DeepSPIN 758969) and by the Fundação para a Ciência e Tecnologia through contract UID/EEA/50008/2013.

Some icons by Dave Gandy and Freepik via flaticon.com.

softmax

sparsemax

1.5-entmax

Expressions for Margins

- Main result: $L_{-H}(\boldsymbol{\theta}, \boldsymbol{e}_k)$ has margin m iff. $m\boldsymbol{e}_k \in \partial(-H)(\boldsymbol{e}_k)$.
- If H twice-differentiable, $m_H = \nabla_j H(\mathbf{e}_k) \nabla_k \overline{H(\mathbf{e}_k)}$.
- If $H = \sum_{i} h(p_i)$ separable, $m_H = h'(0) h'(1)$.

Relation With Bregman Divergences

• Bregman divergences are defined in primal space: B_{Ω} : dom $\Omega \times \text{dom } \Omega \to \mathbb{R}_+$

$$B_{\Omega}(\mathbf{y}||\mathbf{p}) := \Omega(\mathbf{y}) - \Omega(\mathbf{p}) = \langle \nabla \Omega(\mathbf{p}), \mathbf{y} - \mathbf{p} \rangle$$

- FY losses are in **mixed** space: L_{Ω} : dom $(\Omega^{\star}) \times dom(\Omega) \rightarrow \mathbb{R}_{+}$
- Denoting $\boldsymbol{\theta} = \nabla \Omega(\boldsymbol{p})$ gives $B_{\Omega}(\boldsymbol{y}||\boldsymbol{p}) = L_{\Omega}(\boldsymbol{\theta};\boldsymbol{y})$.
- However, starting from $\boldsymbol{\theta}$, $B_{\Omega}(\mathbf{y}||\boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}))$ not always convex. ("link function" approach).

Danskin's Theorem

Let
$$\phi : \mathbb{R}^k \times \mathcal{Z} \to \mathbb{R}$$
, $\mathcal{Z} \subset \mathbb{R}^k$ compact.
 $\partial \max_{\mathbf{z} \in \mathcal{Z}} \phi(\mathbf{x}, \mathbf{z}) = \operatorname{conv} \{ \nabla_{\mathbf{x}} \phi(\mathbf{x}, \mathbf{z}^*) \mid \mathbf{z}^* \in \operatorname{argmax} \phi(\mathbf{x}, \mathbf{z}) \}$.

Example: maximum of a vector

Danskin's Theorem

Let
$$\phi : \mathbb{R}^k \times \mathcal{Z} \to \mathbb{R}$$
, $\mathcal{Z} \subset \mathbb{R}^k$ compact.
 $\partial \max_{\mathbf{z} \in \mathcal{Z}} \phi(\mathbf{x}, \mathbf{z}) = \operatorname{conv} \{ \nabla_{\mathbf{x}} \phi(\mathbf{x}, \mathbf{z}^*) \mid \mathbf{z}^* \in \operatorname{argmax} \phi(\mathbf{x}, \mathbf{z}) \}.$

Example: maximum of a vector

$$\partial \max_{j \in [d]} \theta_j = \partial \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta}$$

$$= \partial \max_{\boldsymbol{p} \in \Delta} \phi(\boldsymbol{p}, \boldsymbol{\theta})$$

$$= \operatorname{conv} \{ \nabla_{\boldsymbol{\theta}} \phi(\boldsymbol{p}^*, \boldsymbol{\theta}) \}$$

$$= \operatorname{conv} \{ \boldsymbol{p}^* \}$$

Danskin's Theorem

Let
$$\phi : \mathbb{R}^k \times \mathcal{Z} \to \mathbb{R}$$
, $\mathcal{Z} \subset \mathbb{R}^k$ compact.
 $\partial \max_{\mathbf{z} \in \mathcal{Z}} \phi(\mathbf{x}, \mathbf{z}) = \operatorname{conv} \{ \nabla_{\mathbf{x}} \phi(\mathbf{x}, \mathbf{z}^*) \mid \mathbf{z}^* \in \operatorname{argmax} \phi(\mathbf{x}, \mathbf{z}) \}.$

Example: maximum of a vector

$$\begin{aligned} \partial \max_{j \in [d]} \theta_j &= \partial \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^\top \boldsymbol{\theta} \\ &= \partial \max_{\boldsymbol{p} \in \Delta} \phi(\boldsymbol{p}, \boldsymbol{\theta}) \\ &= \operatorname{conv} \{ \nabla_{\boldsymbol{\theta}} \phi(\boldsymbol{p}^*, \boldsymbol{\theta}) \} \\ &= \operatorname{conv} \{ \boldsymbol{p}^* \} \end{aligned}$$

Example: Source Sentence with Three Words

e.g., fertility constraints for NMT

constrained softmax: (Martins and Kreutzer, 2017) constrained sparsemax: (Malaviya et al., 2018)

police certies situation ell

References I

- Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). "Neural machine translation by jointly learning to align and translate". In: *Proc. of ICLR*.
 - Baker, James K (1979). "Trainable grammars for speech recognition". In: The Journal of the Acoustical Society of America 65.S1, S132-S132.
- Bertsekas, Dimitri P (1999). Nonlinear Programming. Athena Scientific Belmont.

- Blondel, Mathieu, André FT Martins, and Vlad Niculae (2019). "Learning classifiers with Fenchel-Young losses: Generalized entropies, margins, and algorithms". In: *Proc. AISTATS*.
- Boyd, Stephen and Lieven Vandenberghe (2004). Convex Optimization. Cambridge University Press.
 - Chen, Qian, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen (2017). "Enhanced LSTM for natural language inference". In: *Proc. of ACL*.
 - Chu, Yoeng-Jin and Tseng-Hong Liu (1965). "On the Shortest Arborescence of a Directed Graph". In: Science Sinica 14, pp. 1396–1400.
 - Cocke, William John and Jacob T Schwartz (1970). *Programming languages and their compilers*. Courant Institute of Mathematical Sciences.
 - Correia, Gonçalo M., Vlad Niculae, and André FT Martins (2019). "Adaptively Sparse Transformers". In: Proc. EMNLP.
- Cuturi, Marco and Mathieu Blondel (2017). "Soft-DTW: a differentiable loss function for time-series". In: Proc. of ICML.

References II

- Danskin, John M (1966). "The theory of max-min, with applications". In: SIAM Journal on Applied Mathematics 14.4, pp. 641–664.
- Dantzig, George B, Alex Orden, and Philip Wolfe (1955). "The generalized simplex method for minimizing a linear form under linear inequality restraints". In: Pacific Journal of Mathematics 5.2, pp. 183–195.
- DeGroot, Morris H (1962). "Uncertainty, information, and sequential experiments". In: The Annals of Mathematical Statistics, pp. 404–419.
- Edmonds, Jack (1967). "Optimum branchings". In: J. Res. Nat. Bur. Stand. 71B, pp. 233–240.

- Frank, Marguerite and Philip Wolfe (1956). "An algorithm for quadratic programming". In: *Nav. Res. Log.* 3.1-2, pp. 95–110.
- Grünwald, Peter D and A Philip Dawid (2004). "Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory". In: *Annals of Statistics*, pp. 1367–1433.
- Held, Michael, Philip Wolfe, and Harlan P Crowder (1974). "Validation of subgradient optimization". In: Mathematical Programming 6.1, pp. 62–88.

 Jonker, Roy and Anton Volgenant (1987). "A shortest augmenting path algorithm for dense and sparse linear
 - Jonker, Roy and Anton Volgenant (1987). "A shortest augmenting path algorithm for dense and sparse linear assignment problems". In: Computing 38.4, pp. 325–340.
 - Kakade, Sham, Shai Shalev-Shwartz, and Ambuj Tewari (2009). "On the duality of strong convexity and strong smoothness: Learning applications and matrix regularization". In: *Tech Report*.

References III

Kasami, Tadao (1966). "An efficient recognition and syntax-analysis algorithm for context-free languages". In:

Coordinated Science Laboratory Report no. R-257.

ī

- Kirchhoff, Gustav (1847). "Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird". In: Annalen der Physik 148.12, pp. 497–508.
- Kuhn, Harold W (1955). "The Hungarian method for the assignment problem". In: Nav. Res. Log. 2.1-2, pp. 83-97.
 - Lacoste-Julien, Simon and Martin Jaggi (2015). "On the global linear convergence of Frank-Wolfe optimization variants". In: Proc. of NeurIPS.
 - Malaviya, Chaitanya, Pedro Ferreira, and André FT Martins (2018). "Sparse and constrained attention for neural machine translation". In: *Proc. of ACL*.
- Martins, André FT and Ramón Fernandez Astudillo (2016). "From softmax to sparsemax: A sparse model of attention and multi-label classification". In: *Proc. of ICML*.
- Martins, André FT and Julia Kreutzer (2017). "Learning What's Easy: Fully Differentiable Neural Easy-First Taggers". In: *Proc. of EMNLP*, pp. 349–362.
 - Nesterov, Yurii (2005). "Smooth minimization of non-smooth functions". In: *Mathematical Programming* 103.1, pp. 127–152.
 - Niculae, Vlad and Mathieu Blondel (2017). "A regularized framework for sparse and structured neural attention". In: Proc. of NeurlPS.

References IV

- Niculae, Vlad, André FT Martins, Mathieu Blondel, and Claire Cardie (2018). "SparseMAP: Differentiable sparse structured inference". In: *Proc. of ICML*.
- Nocedal, Jorge and Stephen Wright (1999). Numerical Optimization. Springer New York.

Ė

i

- Peters, Ben, Vlad Niculae, and André FT Martins (2019). "Sparse sequence-to-sequence models". In: Proc. ACL.
- Rabiner, Lawrence R. (1989). "A tutorial on Hidden Markov Models and selected applications in speech recognition". In: P. IEEE 77.2, pp. 257–286.
- Sakoe, Hiroaki and Seibi Chiba (1978). "Dynamic programming algorithm optimization for spoken word recognition". In: IEEE Trans. on Acoustics, Speech, and Sig. Proc. 26, pp. 43–49.
- In: IEEE Trans. on Acoustics, Speech, and Sig. Proc. 26, pp. 43–49.

 Taskar. Ben (2004). "Learning structured prediction models: A large margin approach". PhD thesis. Stanford University.
- Tsallis, Constantino (1988). "Possible generalization of Boltzmann-Gibbs statistics". In: Journal of Statistical Physics 52, pp. 479–487.
- Valiant, Leslie G (1979). "The complexity of computing the permanent". In: Theor. Comput. Sci. 8.2, pp. 189–201.
 - Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin (2017). "Attention Is All You Need". In: *Proc. of NeurIPS*.
 - Vinyes, Marina and Guillaume Obozinski (2017). "Fast column generation for atomic norm regularization". In: Proc. of

References V

- Wolfe, Philip (1976). "Finding the nearest point in a polytope". In: Mathematical Programming 11.1, pp. 128-149.
 - Younger, Daniel H (1967). "Recognition and parsing of context-free languages in time n^3 ". In: Information and Control 10.2, pp. 189–208.