제11장 인공위성

- ▶ 위성 : 질량이 큰 물체 주위를 도는 질량이 작은 물체로서 큰 물체가 당기는 인력과 작은 물체의 회전에 의한 원심력이 평형을 이룸
- ▶ 인공위성 : 인간이 어떠한 특수 목적을 위해 지구 주위를 일정한 주기를 갖고 돌게 하는 위성
- ▶ 자연위성 : 태양 주위를 도는 지구, 지구 주위를 도는 달

11.1 비행 원리

- 우주 : 공기의 저항이 없는 곳 (지면으로부터의 고도가 약 500 km 이상)
- 제1차 우주비행속도 : 공기의 저항을 무시하고 지표면에서 위성의 초기 회전을 위하여 필요한 이론적인 속도로서, 약 7.9 km/sec
- 제2차 우주비행속도 : 우주비행체를 지구궤도가 아닌 달이나 다른 행성으로 보낼 때의 초기속도로 서 약 11.2 km/sec이며, 탈출속도라고도 함.

공기의 저항이 없는 높은 산 위에서 공을 7.9 km/sec의 속도로 던진다면 공은 지면에 떨어지지 않고 지구 주위를 회전하여 처음 위치로되돌아오고, 만약 공기의 마찰이나 외부 교란이 없다면 지구 주위를 계속 돌게 된다.

11.2 개발 역사

- 1957. 10. 구 소련. 세계 최초의 인공위성 스푸트니크 1호 발사 성공 직경 0.58m, 질량 83.6kg의 알루미늄 구형 위성. 고도 900km의 저궤도에서 지구둘레를 하루에 16회전.
- 1958. 1. 미국. 익스플로러 1호 발사 성공.

직경 20.3cm, 길이 1.2m, 무게 14.6kg의 원통형 위성. 고도 2,460km에 위치. 밴 앨런 복사대(Van Allen Radiation Belts) 발견.

- 고도 1,500km~5,000km와 15,000km~30,000km 사이에 존재하는 복사대
- 고에너지 입자들이 모여 있는 지역으로서 위성체의 활동이 제한됨.

1969. 7. 미국. 유인 우주선 아폴로 11호 달 착륙 성공.

1986~1999 구 소련. 우주정거장 "미르"에서 각종 우주실험 수행.

1981~현재 미국. 우주왕복선(space shuttle) 컬럼비아호 100여회 이상 우주임무 수행.

1990년대 이후 미국과 구 소련의 냉전체제 종식으로 우주개발 예산 대폭 삭감.

민간 정보통신의 발전에 따른 상업화가 급속히 진행되어 저궤도 위성이동통신사업, 항행위성 및 지구관측위성 분야의 괄목할만한 발전을 이룸.

11.3 인공위성의 종류

(1) 임무(탑재체)에 따른 분류

• 실용위성

- 지구관측위성 : 지구의 온난화 현상, 삼림 황폐화, 사막화의 증가, 오존층의 상태 등을 관찰 (우리나라의 아리랑위성)
- 기상위성 : 열대 폭풍, 태풍, 허리케인 등의 발생 예측에 필요한 기상상태 관찰
- 위성 위치측정 시스템(GPS, Grobal Positioning System)
 미국. 공중이나 지상에서 발사된 미사일을 공격목표물로 정확히 유도하기 위하여 12시간의 원형궤도를 도는 24기의 위성그룹에서 무선신호를 발사하는 항법유도장치.
 각 위성은 지상, 항공기 또는 다른 위성에서 수신할 수 있는 신호를 계속 중계 항공관제, 지진감시, 재난구조 및 차량 항법장치로 활용

• 과학위성

우주 공간에 존재하는 대기의 밀도, 온도, 전리도, 태양으로부터의 방사선, 우주선 및 우주먼지, 지구 자장의 모양 등을 조사하는 과학적인 연구 목적의 위성

• 정찰위성

적대국의 미사일 발사 감시, 항공기나 군함을 추적, 지상 군사시설 감시, 라디오 전송 차단 등의 군사정보 수집을 위한 위성

11.3.2 형상 또는 안정화 방식에 따른 분류

※ 회전 강성(gyroscopic stiffness)

물체가 회전운동을 함으로써 자세의 안정을 유지할 수 있는 성질

(예) 자전거 : 정지할 때는 옆으로 쓰러지지만 달리고 있을 때는 회전강성을 얻어 안정된 자세로 달릴 수 있다.

- 3축 안정화 방식
 - 박스형의 몸체와 전개가 가능한 태양전지판으로 구성
 - 위성궤도에 따라 탑재체의 안테나와 센서를 지구로 지향시키기 위하여 한 축을 기준으로 한 저속 회전 운동
 - 태양전지판은 태양에 대해 관성적으로 고정될 수 있도록 위성체와는 반대 방향으로 회전
- 회전 안정화 방식
 - 원통형 몸체의 축 주위로 팽이처럼 일정한 속도로 회전함으로써 자세의 안정화를 이루는 방식
 - 안테나, 센서, 태양전지판이 관성목표를 지향할 수 없는 단점

3축 안정화 방식 위성

회전 안정화 방식 위성

11.4 위성 궤도

• 궤도 : 위성이 움직이는 길

• 궤도평면 : 위성궤도에 의하여 지구의 중심을 지나도록 그려지는 공간상의 고정된 평면 인공위성은 원심력과 지구 중력간의 평형에 의해 지구 주위를 돌기 때문에 인공위성의 궤도평면은 항상 지구의 중심을 통과하는 평면이어야 한다.

그림 11-9. 가능한 궤도와 불가능한 궤도

- 위성의 궤도 요소
 - 지구 표면에서 근지점까지의 거리(Hp)
 - 지구 표면에서 원지점까지의 거리(Ha)
 - 지구의 적도면과 위성의 궤도평면 사이의 각도인 궤도경사각
 - 위성의 공전 주기

그림 11-10. 인공위성의 궤도 요소

11.4.1 저궤도 (LEO: Low Earth Orbit)

- 고도 500km ~ 1,500km 사이의 궤도
- 주기 : 1시간 30분 ~ 2시간 → 하루에 지구 주위를 10여회 회전
- 원형궤도 또는 타원형 궤도
- 궤도경사각 : 0°~90° 이상 가능
- 지구관측위성, 이동통신 시스템 위성

11.4.2 중궤도 (MEO: Medium Earth Orbit)

- 고도 5,000km ~ 15,000km 사이의 궤도 (저궤도 → 밴 앨런 복사대 → 중궤도 → 밴 앨런 복사대 → 정지궤도)
- 주기 : 고도 10.000km에서 약 6시간

11.4.3 정지궤도 (GEO: Geostationary Earth Orbit)

- 고도 35,786km로서 궤도경사각이 0°인 적도면의 원형궤도
- 주기 : 23시간 56분 4초로서 지구의 자전주기와 동일
- 통신.방송위성, 기상위성의 궤도로 이용

그림 11-12. 정지궤도

11.4.4 타원궤도 (EO: Elliptical Orbit)

- 원궤도에서의 위성은 속도를 일정하게 유지하는데, 이 속도를 증가시키면 타원궤도로 바뀌게 된다.
- 속도를 증가시킴에 따라 타원이 더 길어진다.
- 몰니야궤도(MO: Molniya Orbit)
 - 원지점 약 40,000km와 근지점 약 600km의 타원궤도로서 정지궤도로는 관측할 수 없는 고위도 지역을 보다 오랜 시간 동안 관측할 수 있다.
 - 12시간 주기로 회전하며 이중 약 10시간 정도는 북극지역을 관측할 수 있다.

그림 11-13. 속도 변화에 따른 타원궤도의 변화

※ 우주비행체의 비행궤도

- [A] 일정 속도로 지구주위를 돌 때 원궤도를 유지하나 원궤도는 요구되는 고도, 속도조건이 까다로워 진입이 어려움.
- [B] 대부분의 위성이나 우주비행체는 타원궤도를 유지하므로 위치에 따라 속도가 변화한다. 근지점(perigee)에서 최대 속도, 원지점(apogee)에서 최소 속도.
- [C] 우주비행체가 지구 중력장으로부터 벗어날 때는 포물선 궤도를 그린다.
- [D] 우주비행체가 어느 한 혹성의 중력장을 벗어날 때와 다른 혹성의 중력장으로 진입할 때는 항상 쌍곡선 궤도를 그린다.

11.5 위성의 구성

• 위성체

- 본체(버스): 탑재체와 장비들을 외부 환경으로부터 보호하여 탑재체의 임무수행을 보조
- 탑재체 : 통신, 지구관측, 기상, 과학연구 등의 우주임무를 수행
- 구조물 : 각종 부품을 위성체 내.외부에 장착할 수 있는 공간을 제공하며 발사체와 접속하여 발사하중을 견디도록 한다.
- 열제어 시스템 : 태양의 위치에 따른 고온 및 저온에 의한 열응력으로부터 각종 장치들을 보호
- 자세 및 궤도제어 시스템 : 궤도에서 위성체의 자세 및 궤도에 영향을 미치는 교란요소에 대해 임무수행 중 원하는 방향으로 위성체를 지향시키며 안정화시킨다.
- 전력 시스템 : 태양전지와 고성능 배터리로 구성되며 태양 빛이 입사되는 동안에 태양전지판 전력에 의하여 충전된다.
- 추진 시스템: 궤도상에서 위성의 위치유지, 궤도전이 및 자세제어용 추력을 제공한다.
- 원격 계측, 추적 및 명령 시스템 : 지상국과의 데이터 통신을 연속적으로 수행함으로써 지상으로부터의 원격명령을 수신하여 위성내로 분배하고 위성의 상태를 지상으로 전송한다.

• 지상국

- 위성관제 및 위성 데이터의 수신국의 역할
- 안테나, 전력증폭기, 저소음 수신기 등으로 구성되며 위성을 위한 원격 통제 및 추적장비 설치
- 발사체 : 위성을 임무궤도까지 올려주는 운반체

11.6 우주 환경

※ 태양계

- 은하계와 태양계
 - 은하계 : 태양계과 같은 시스템을 여러 개 포함하고 있는 우주
 - 태양계 : 지구, 달 및 기타 여러 개의 행성으로 구성되어 있는 우주
- 태양의 특징
 - 직경이 864,000 마일(1,382,000km)
 - 표면온도는 10,000°F(약 5,500°C), 내부온도는 화씨 2천5백만도(섭씨 1천4백만도)
 - 지구에 대해서 약 27일의 주기로 자전 → 기후와 환경의 변화를 초래
 - 수백만도나 되는 높은 온도의 물질을 우주공간에 지속적으로 방출
 - 자장 형성, 충전입자와 자기를 지속 방출
- 지구의 특징
 - 지구반경: 6,378.4 km
 - 지구 대기권을 형성 : 기상변화 존재
 - Van Allen belt : 미국의 익스플로러 1호가 발견한 doughnuts 모양의 강력한 방사선대로서 태양풍과 지구자장 사이의 상호작용으로 발생하며 태양풍을 변형시켜 안전하게 보호함.

• 우주공간의 특징

- 완전한 진공으로 바람이나 진동이 없으며 아주 고요한 상태 유지 → 구조적으로 취약
- 진공상태 : 10⁻¹⁶ mmHg 또는 그 이하의 기압
- 1 cm² 당 수소입자 극소량

< 고고도 대기권의 구성 >

11.6.1 복사 환경

- 단일사건효과(SEE: Single Event Effect): 고에너지 입자에 의한 각종 전자부품의 1회성 오동작
- 총피폭효과(TDE : Total Dose Effect) : 오랜 시간 복사에 노출되어 성능이 떨어지는 현상으로 전류 누출, 임계전압 등으로 위성체의 실패를 초래할 수 있다.
- (1) 태양으로부터의 고에너지 입자 태양으로부터 오는 양성자, 알파 입자 및 중이온 입자 등의 고에너지 입자
- (2) 은하 우주 복사선의 고에너지 입자 태양계 외부로부터 유입되는 입자들로서 양성자, 알파 입자, 중핵이온으로 구성
- (3) 밴 앨런 대에 포획된 입자 양성자와 전자로 구성되어 있고 에너지가 상대적으로 낮아서 위성 시스템에 손상을 줄 수 있다.
- (4) 플라즈마(plasma)

양과 음으로 대전된 입자의 구성비가 동일하여 이온화된 가스로서 대전입자들을 계속 움직이게 하여 전류를 발생시킨다. 우주의 약 99%가 플라즈마로 이루어져 있다.

11.6.2 열권의 중성대기

고도 90km~600km의 영역인 열권에는 다양한 중성가스 입자들이 분포하며, 이 중성가스의 밀도에 따른 대기의 저항력 때문에 위성체는 소형 탑재 로켓의 추력을 제공받지 못하면 고도가 계속 떨어지게 되어 대기권으로 재진입하게 된다.

11.6.3 위성 주위의 열 환경

- 태양표면의 최대 온도 5,507°C, 태양이 비추지 않는 심우주의 온도 -270°C
- 지구궤도 위성이 겪는 온도 변화 : -70°C~80°C

(1) 태양 에너지

- 태양은 대부분의 위성체에 입사하는 열 중 가장 큰 열원
- 지구에서 받는 태양빛의 강도는 태양과 지구 사이의 거리 및 지구궤도의 편이 때문에 약 ±3.5% 정도 변화한다.

(2) 지구 반사 에너지

- 알베도(Albedo) : 달이나 행성으로부터 반사되는 태양 에너지
- 지구의 알베도는 대륙이 해양보다 훨씬 크고, 고도각이 감소하거나 구름이 많을수록 증가

(3) 지구 복사 적외선 에너지

- 지구는 태양빛을 받음으로써 에너지를 흡수하지만, 장파장의 적외선 복사 에너지를 직접 방사 함으로써 열평형을 이룬다.
- 지구가 방사하는 적외선 에너지 강도는 지표면과 대기의 온도, 대기의 수분 함유량, 구름 및 위도에 따라 변한다.

그림 11-16. 위성체 주위의 열 환경

- 우주공간은 진공이므로 대류에 의한 열전달은 없고 복사나 전도에 의한 열전달은 가능하다.
 - 대류(convection) : 공기나 유체의 온도구배에 의한 열전달 현상
 - 복사(radiation) : 진공 중에서와 같이 중간매체 없이 온도 차이에 의한 열전달 현상
 - 전도(conduction) : 한 물체 내부에서 온도구배가 존재할 경우 고온부분에서 저온부분으로 이동하는 열전달 현상

11.6.4 고 진공

- 고도가 높아짐에 따라 우주공간은 압력이 낮아지므로 공기가 희박해지고 초진공 상태가 된다.
- 진공 중에는 수소나 탄소 등의 분자가 없고 전자와 양자가 존재할 뿐이다.
- 진공상태가 위성이나 우주선에 미치는 영향
 - 재질 강도의 변화 : 기계적 특성이 변화하고 부식현상이 없음

(예) 유리는 파괴에 더욱 강해지고 금속은 피로특성이 향상됨

- 윤활 특성 : 액체 윤활제는 진공에서 증발하므로 사용 불가
- 재질의 승화 : 고체 물질의 일부가 기체 상태로 변화하여 분자를 잃어버리는 현상 발생
- 전기적 특성 : 진공 자체의 전기의 절연제 역할

11.6.5 무중력과 미세중력

- 위성의 궤도비행 : 지구를 향한 중력과 회전에 의한 원심력의 평형상태 유지
- 무중력 상태는 질량이 0이거나 두 물체 사이의 거리가 무한대인 경우에만 가능하다. 그러므로 무중력 상태라는 것은 중력이 없다는 것이 아니라 중력이 없는 것 같이 매우 약한 상태로서 자유 낙하 현상이 존재한다.
- 미세중력(micro gravity) : 물체의 무게는 지구상에 정지한 때보다 현저하게 감소하나 질량은 동일 하게 유지됨
- 무중력에서의 물질 현상
 - 비중이 다른 물질끼리도 혼합이 용이 : 고성능 태양전지, 엔진재료 제작에 이용 가능
 - 대류현상이 없음 : 순수의약제조 가능
 - 불순물이 없는 완전한 결정체 제조 : 반도체 제작에 이용 가능
 - 높은 농도의 순수 물질 제조 : 레이저 광학재료인 적외선 침투 유리와 같은 고순도 물질 및 정밀 부품 제작에 이용 가능

11.6.6 미세운석과 우주파편

- 미세운석 : 지구 주위에 분포되어 있는 혜성, 유성 등의 잔해와 같은 먼지
- 우주파편 : 수명이 끝난 우주비행체, 로켓 부스터의 파편, 고체 로켓연료 입자 등 크기는 대개 1cm 이하로 매우 작지만 궤도비행속도로 충돌할 경우 매우 큰 운동에너지를 발휘하므로 주의해야 함.

11.8 세계의 우주산업과 우리나라의 우주기술

11.8.2 우리나라의 로켓

(1) 고체 로켓

[KSR-II]

- KSR-I (Korea Sounding Rocket-I : 과학 1호, 2호)
 - 1993년 6월과 9월에 발사 성공
 - 길이 6.7m, 직경 0.42m, 이륙중량 1.2톤, 1단형
 - 한반도 상공의 성층권 오존량의 고도 분포 측정
- KSR-II
 - 1997년, 1998년 발사 성공
 - 길이 11.1m, 직경 0.42m, 이륙중량 2톤, 2단형
 - 한반도 상공의 오존량, 이온층 전자밀도 및 온도 측정, 천체 X선 관측실험

(2) 액체 로켓

표 11-2 우리나라의 액체로켓 개발현황

명 칭	발사성공 성능 및 탑재 위성	
KSR-III	2002년 150kg의 과학탑재물을 42.5km까지 올림	
KSLV-I	2007년 100kg급 과학위성(과학위성 2호)	
KSLV-II	2015년	1,500kg급 위성(다목적 실용 위성급)

[KSR-皿 개발 계획]

[KSR-III 응용형 예상 비행궤적]

표 11-1 우리나라가 소유하고 있는 위성의 특성

명칭	우리별1/2호	우리별3호	무궁화위성1/2호	무궁화위성3호	다목적실용위성1호	과학기술위성1호
용도	과학실험	과학실험	방송통신	방송통신	지구관측	우주과학실험
분류	초소형	소형	중형	중형	소형	소형
중량 (kg)	50	110	1,460	2,800	500	106
임무 궤도	저궤도	태양동기 저궤도	정지궤도	정지궤도	태양동기 저궤도	태양동기 저궤도
고도 (km)	1,300(1호) 832(2호)	720	35,786	35,786	685	690
크기 (mm)	352×356×670	495×604×852	1956×1422×173 6	1800×2000×320 0	2248×1397×1016	665×551×830
전력 (W)	30	150	1,600	5,120	636	180
주요 임무	과학실험 -지구관측 (400m해상도) -방사선측정	과학실험 -지구관측 (15m해상도) -자장 및 전자 에너지 측정 -고에너지 입자 검출	방송통신서비스 -통신중계기 12채널 -방송중계기 3채널	방송통신서비스 -통신중계기 27채널 -방송중계기 6채널	한반도관측 (6.6m해상도) -지도제작 -해양관측 -환경관측 및 과학실험	우주과학실험 -성간물질관측 -오로라관측 -고에너지 및 -저에너지 입자검출 -정밀지구 자기장 측정
발사 년도	1호 : 1992 2호 : 1993	1999	1호 : 1995 2호 : 1996	1999	1999	2003

	대한민국의 우주 개발 계획 (2020. 3. 1. 기준)
개발기관	. KARI ·대한항공 ·KAI ·KAIST ·ADD
우주센터	. 나로 우주센터
로켓 엔진	. 과학로켓 1호(KSR-1), ·과학로켓 2호(KSR-2), ·과학로켓 3호(KSR-3), ·30톤급 로켓 엔진, ·75톤급 로켓엔진
우주 로켓	. 나로호(KSLV-I), ·KSLV-II(한국형 발사체 ,2018년-2020년,1단:300른(75론×4),2단(75론),3단(7론)
우리별/과학기술위 성	. 우리별1호(1992년 8월 11일 대한민국 최초 인공위성 우리별 1호가 기아나 우주센터에서 아리안 4호로켓으로 발사) . 우리별 2호, ·우리별 3호, ·과학기술위성 1호(우리별4호), ·과학기술위성 2A·2B호, · <mark>나로호</mark> 1차, 2차실패(13.1.30., 나로호 3차(KSLV-I(2단:7론) 발사 성공), ·과학기술위성 3호(13.11.21,露_로켓)
아리랑/다목적 실 용위성	. 아리랑 1호(1999년) • 아리랑 2호(2006년) • 아리랑 2호(2006년) • 아리랑 3호(순수 국내_기술_다목적_70cm_해상도 일본_다네가시마_日_H2_로켓_12.05.18) • 아리랑 5호 (SAR(합성영상레이더)_지상_관측_가능_20개월_지연_霧_로켓_13.8.23) • 아리랑 3A호(최초_적외선_관측_露_야스니_露_로켓_15.3.26) • 아리랑 6호(레이더 영상_다목적_2020년_露_상업위성_露_로켓_탑재_예정) • 아리랑 7호(주야_전천후_지상_탐색_재해_재난_환경_기후변화_국가안보_2021년_계획)
방송통신위성	. 무궁화1호, ·무궁화2호, ·무궁화3호, ·무궁화5호, ·올레1호(무궁화6호,10.12.29,기아나센터,3호 대체)
통신해양기상위성	. 천리안 1호, 천리안 2A 호 (정지궤도 : 1호 임무_승계_기상_관측_18.12.5), 천리안 2B 호 (정지궤도: 해양_환경_관측_20.2.19)
검증위성	. 나로 과학위성(13.1.30, 한국형 발사체 KSLV-I(2 단 :7 론) 발사 성공)
기타	. 한국 우주인 배출 사업·대한민국의 인공위성 목록·대한민국의 로켓 개발 -우주 과학관

< 우리나라의 중장기 우주개발계획 >

11.9 인공위성과 우리 생활