Mini-Course on Information Geometry

Introduction

Herlock Rahimi

Department of Electrical and Computer Engineering Yale University

June 5, 2025

Overview

- 1. GMM: Gaussian Mixture Model
- 2. Riemannian Geometry
- 3. Exponentiation Family and Sufficient Statistics
- 4. Riemannian Geometry as an extension of Straight line
- 5. Autoparallel Transport
- 6. Geodesics
- 7. Curvature
- 8. Connection and Riemannian Metric
- 9. Bregman Divergence
- 10. Duallity
- 11. Mirror Descent
- 12. In Reinforcement Learning

Two-Gaussian Mixture Model: Problem Setup

Goal: Given data from two unlabelled Gaussian distributions, estimate parameters

$$\theta = \{\pi_1, \pi_2, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2\}.$$

- Data: $x_1, ..., x_n \sim \pi_1 \mathcal{N}(\mu_1, \sigma_1^2) + \pi_2 \mathcal{N}(\mu_2, \sigma_2^2)$
- Challenge: Data is *unlabeled*; we don't know which point came from which Gaussian.
- Direct MLE is intractable ⇒ use EM algorithm.

EM Algorithm: Soft Assignment (Mathematical Steps)

Problem: Maximize log-likelihood of a mixture of Gaussians:

$$\log L(\theta) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(x_i \mid \mu_k, \sigma_k^2) \right)$$

E-Step: Compute **responsibilities** (soft cluster assignments):

$$r_{ik} = \frac{\pi_k \mathcal{N}(x_i \mid \mu_k, \sigma_k^2)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_i \mid \mu_j, \sigma_j^2)}$$

M-Step: Maximize expected complete-data log-likelihood:

$$\pi_k^{\text{new}} = \frac{1}{n} \sum_{i=1}^n r_{ik}, \quad \mu_k^{\text{new}} = \frac{\sum_{i=1}^n r_{ik} x_i}{\sum_{i=1}^n r_{ik}}, \quad \sigma_k^2 = \frac{\sum_{i=1}^n r_{ik} (x_i - \mu_k)^2}{\sum_{i=1}^n r_{ik}}$$

Repeat until convergence.

Non-EM Algorithm: Hard Assignment (Heuristic MLE)

Heuristic: Alternate between hard clustering and parameter updates.

Initialize: Random hard assignments $z_i \in \{0, 1\}$.

M-Step: Update parameters using current assignments:

$$\pi_k = \frac{n_k}{n}, \quad \mu_k = \frac{1}{n_k} \sum_{i:z_i = k} x_i, \quad \sigma_k^2 = \frac{1}{n_k} \sum_{i:z_i = k} (x_i - \mu_k)^2$$

E-Step: Reassign each point to the most likely Gaussian:

$$z_i = \arg \max_k \left[\pi_k \cdot \mathcal{N}(x_i \mid \mu_k, \sigma_k^2) \right]$$

Repeat for fixed number of iterations or until assignments stop changing.

Illustration of EM Iterations

Initial guess: Random parameters.

Iteration 1:

Iteration 3:

Iteration 10 (Converged):

Each iteration updates the soft assignment and shifts the Gaussian parameters closer to the true generating process.

Comparison: EM vs. Non-EM Learning

Experiment: Run EM and naive hard assignment (random or k-means-like) for 10

iterations. **EM Algorithm**

Non-EM Assignment

Observation: EM converges more quickly and smoothly; non-EM can oscillate or diverge.

Learned Distributions: EM vs. Non-EM

EM Learned Distributions

Non-EM Learned Distributions

EM fit is closer to the true generating distributions.

Smooth Manifolds

Definition

A **smooth manifold** \mathcal{M} of dimension n is a topological space that is:

- Hausdorff and second-countable
- Locally homeomorphic to \mathbb{R}^n
- Equipped with a maximal smooth atlas

Charts: Each point $p \in \mathcal{M}$ has a neighborhood $U \subset \mathcal{M}$ and a homeomorphism (chart)

$$\varphi: U \to \varphi(U) \subset \mathbb{R}^n$$

such that transition maps $\varphi_i \circ \varphi_i^{-1}$ are C^{∞} smooth where defined.

Tangent Vectors

Definition

Let \mathcal{M} be a smooth manifold. A **tangent vector** at a point $p \in \mathcal{M}$ is a derivation:

$$v: C^{\infty}(\mathcal{M}) \to \mathbb{R}$$

such that:

$$v(fg) = v(f)g(p) + f(p)v(g)$$

for all $f, g \in C^{\infty}(\mathcal{M})$. This is the Leibniz rule.

Notation: The set of all tangent vectors at *p* forms a real vector space:

$$T_p\mathcal{M}:=\mathsf{Tangent}\;\mathsf{space}\;\mathsf{at}\;p$$

Tangent Space in Coordinates

Given a chart (U, φ) , where $\varphi(p) = (x^1, \dots, x^n) \in \mathbb{R}^n$, the basis of $T_p \mathcal{M}$ is:

$$\left\{ \left. \frac{\partial}{\partial x^i} \right|_p \right\}_{i=1}^n$$

defined via:

$$\left. \frac{\partial}{\partial x^i} \right|_{p} (f) := \left. \frac{\partial (f \circ \varphi^{-1})}{\partial x^i} \right|_{\varphi(p)}$$

Any tangent vector can be written:

$$v = v^i \left. \frac{\partial}{\partial x^i} \right|_{p}$$

for some $v^i \in \mathbb{R}$.

Vector Fields

Definition

A **smooth vector field** on \mathcal{M} assigns to each point $p \in \mathcal{M}$ a tangent vector $X_p \in T_p \mathcal{M}$, smoothly varying with p.

Space of vector fields:

$$\mathfrak{X}(\mathcal{M}) := \text{set of smooth sections } X : \mathcal{M} \to T\mathcal{M}$$

In coordinates x^i , a vector field has the local form:

$$X = X^{i}(x) \frac{\partial}{\partial x^{i}}$$

where $X^i \in C^{\infty}(\mathcal{M})$.

Riemannian Metric

Definition

A **Riemannian metric** on a smooth manifold ${\mathcal M}$ is a smooth assignment:

$$g: p \mapsto g_p$$

where each g_p is a positive-definite inner product on $T_p\mathcal{M}$, such that:

$$g_p(v, w) = g_q(\phi_* v, \phi_* w)$$

under smooth coordinate changes.

In coordinates:

$$g = g_{ij}(x) dx^i \otimes dx^j$$
 where $g_{ij}(x) = g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right)$

Norms and Inner Products

Let $v \in T_p \mathcal{M}$. The Riemannian metric g induces:

• An inner product:

$$\langle v, w \rangle_p := g_p(v, w)$$

A norm:

$$\|v\| := \sqrt{g_p(v,v)}$$

• The angle between vectors:

$$\cos\theta = \frac{g_p(v, w)}{\|v\| \|w\|}$$

Hence, a Riemannian metric generalizes Euclidean geometry to smooth manifolds.

Pullback Metric and Charts

Let (U, φ) be a chart with coordinates x^i , and let φ_* be the pushforward. Then the metric in local coordinates becomes:

$$g_{ij}(x) = g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right)$$

If $f: \mathcal{M} \to \mathbb{R}$ is smooth, then the gradient is:

$$\operatorname{grad}_{g} f = g^{ij} \frac{\partial f}{\partial x^{j}} \frac{\partial}{\partial x^{i}}$$

where g^{ij} is the inverse matrix of g_{ij} .

Summary and Road Ahead

- A **smooth manifold** provides a coordinate-free generalization of Euclidean space.
- The **tangent space** $T_p\mathcal{M}$ is the linearization of \mathcal{M} at a point.
- A Riemannian metric equips each tangent space with an inner product.
- These structures enable us to define geometry on abstract manifolds: angles, lengths, gradients, and more.

Next: Connections, covariant derivatives, geodesics, curvature, and how they connect to statistical models.

Exponential Family: Definition and Structure (I/II)

Definition: A family of probability distributions is an **exponential family** if it can be written as:

$$p(x; \theta) = h(x) \exp \left(\sum_{i=1}^{d} \theta^{i} F_{i}(x) - \psi(\theta) \right)$$

where:

- $\theta = (\theta^1, \dots, \theta^d)$: natural parameters (e-coordinates)
- $F(x) = (F_1(x), \dots, F_d(x))$: sufficient statistics
- $\psi(\theta)$: log-partition function
- h(x): base measure

Dual coordinates:

$$\eta_i := \mathbb{E}_{\theta}[F_i(x)]$$
 (m-coordinates)

Duality: $\eta = \nabla \psi(\theta)$, and $\theta = \nabla \varphi(\eta)$, where φ is the Legendre dual of ψ .

Examples of Exponential Families (II/II)

1. Bernoulli(θ)

$$p(x; \theta) = \theta^{x} (1 - \theta)^{1 - x} = \exp\left(x \log \frac{\theta}{1 - \theta} + \log(1 - \theta)\right)$$

Sufficient statistic: F(x) = x, e-param: $\theta^{(e)} = \log \frac{\theta}{1-\theta}$

2. Gaussian(
$$\mu, \sigma^2$$
)

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Exponential form:
$$\theta^1=\frac{\mu}{-2},\quad \theta^2=-\frac{1}{2-2},\quad F(x)=(x,x^2)$$

3. Poisson(λ)

3. Poisson(
$$\lambda$$
)

 $p(x) = \frac{\lambda^{x} e^{-\lambda}}{x!} = \exp(x \log \lambda - \lambda - \log x!)$

Motivation: Why Legendre Transform and Bregman Divergence? (I/IV)

We want:

- A principled way to measure "distance" without requiring symmetry
- Geometry adapted to convex optimization and information
- Tools for dual coordinate systems (e.g., exponential vs. expectation)

Key tools:

- Convex functions define natural dual spaces
- Legendre transform maps between these dual spaces
- Bregman divergence measures mismatch based on convexity

[Insert figure: Convex function with tangent at a point and dual axis]

Motivation for Connections (I/II)

Problem: In Riemannian geometry, we know how to measure lengths and angles, but how do we compare vectors at different points on a manifold?

Analogy: Imagine walking on Earth's surface holding an arrow. As you walk along a path, you keep the arrow "pointing in the same direction" — but what does that mean on a curved surface?

Need: We need a way to define how vectors change along curves — this leads to the concept of a **connection**.

In Information Geometry: Consider the statistical manifold of 1D normal distributions. How do we move a tangent vector (infinitesimal change in parameters) from one distribution to another while preserving its "meaning"?

Motivation for Connections (II/II)

Statistical Manifold: The set of 1D normal distributions $\mathcal{N}(\mu, \sigma^2)$ forms a 2D differentiable manifold.

Two coordinate systems:

- Exponential (e-) coordinates: $(\theta^1 = \mu/\sigma^2, \theta^2 = -1/(2\sigma^2))$
- Mixture (m-) coordinates: $(\eta^1 = \mu, \eta^2 = \mu^2 + \sigma^2)$

Two kinds of "straight lines":

- e-connection ($\alpha = 1$): Geodesics correspond to exponential families.
- m-connection ($\alpha = -1$): Geodesics correspond to mixture families.

Affine Connection: Formal Definition (I/II)

Definition: An **affine connection** ∇ on a differentiable manifold M assigns to each pair of vector fields X, Y a new vector field $\nabla_X Y$ satisfying:

- 1. Linearity in X: $\nabla_{fX+gZ}Y = f\nabla_XY + g\nabla_ZY$
- 2. Leibniz in $Y: \nabla_X(fY) = (Xf)Y + f\nabla_X Y$
- 3. Linearity in Y

Interpretation: $\nabla_X Y$ tells us how the vector field Y changes in the direction of X — this is the infinitesimal version of parallel transport.

Connections in Coordinates (II/II)

Let $(x^1, ..., x^n)$ be a coordinate system on M. The connection is determined by the **Christoffel symbols** Γ_{ii}^k via:

$$\nabla_{\partial_i}\partial_j=\sum_k \Gamma^k_{ij}\partial_k$$

For any vector fields $X = X^i \partial_i$, $Y = Y^j \partial_j$, we get:

$$\nabla_X Y = X^i \left(\frac{\partial Y^j}{\partial x^i} + \Gamma^j_{ik} Y^k \right) \partial_j$$

In Information Geometry: We define a family of α -connections where the Christoffel symbols depend on the underlying statistical structure (Fisher metric, etc.).

Example: Exponential Connection ($\alpha = 1$)

Statistical Model: 1D normal distribution $\mathcal{N}(\mu, \sigma^2)$

Exponential coordinates:

$$\theta^1 = \frac{\mu}{\sigma^2}, \quad \theta^2 = -\frac{1}{2\sigma^2}$$

Fisher Metric:

$$g_{ij}(\theta) = \mathbb{E}_{\theta} \left[\partial_i \log p(x; \theta) \partial_j \log p(x; \theta) \right]$$

Christoffel symbols (e-connection):

$$\Gamma_{ijk}^{(e)} = \mathbb{E}\left[\partial_i \partial_j \log p(x;\theta) \partial_k \log p(x;\theta)\right]$$

Example: Mixture Connection ($\alpha = -1$)

Mixture coordinates:

$$\eta^1 = \mu, \quad \eta^2 = \mu^2 + \sigma^2$$

Christoffel symbols (m-connection):

$$\Gamma_{ijk}^{(m)} = -\mathbb{E}\left[\partial_k \partial_i \log p(x;\theta) \partial_j \log p(x;\theta)\right]$$

Interpretation: The m-geodesics correspond to linear combinations of distributions (mixtures), e.g., convex combinations of Gaussians.

Motivation for Autoparallel Transport (I/II)

Core Question: How do we "move" a vector from one point on a manifold to another in a way that preserves its direction relative to the manifold's geometry?

Flat space intuition: In \mathbb{R}^n , we can translate a vector unchanged. On curved manifolds, translation is not intrinsic — we need a rule for consistent movement: **autoparallel transport**.

Given: A smooth curve $\gamma(t)$ on a manifold M and a vector V(t) "attached" at each point $\gamma(t)$.

Goal: Describe how to evolve V(t) along $\gamma(t)$ so that it stays "parallel" with respect to the connection.

Motivation for Autoparallel Transport (II/II)

Transporting a vector field V(t) along a path $\gamma(t)$:

- We use the connection ∇ to define the derivative of V(t) along $\gamma(t)$.
- Autoparallel transport demands that this derivative vanishes:

$$\nabla_{\dot{\gamma}(t)}V(t)=0$$

Interpretation: V(t) doesn't "twist" or "rotate" with respect to the geometry induced by ∇ .

Information Geometry Viewpoint: This process lets us understand how local changes in parameters (e.g., score functions) evolve under statistical flows.

Definition: Autoparallel Transport (I/II)

Let $\gamma: I \to M$ be a smooth curve on manifold M, and let ∇ be an affine connection.

A vector field V(t) along $\gamma(t)$ is said to be **autoparallel transported** (or just **parallel transported**) if:

$$\nabla_{\dot{\gamma}(t)}V(t)=0$$

Interpretation: The vector V(t) maintains a constant direction relative to the geometry defined by ∇ .

Initial condition: Given $V(t_0) = V_0$, the equation has a unique solution — i.e., transport is well-defined.

Autoparallel Transport in Coordinates (II/II)

In local coordinates: Let $V(t) = V^k(t)\partial_k$ be a vector field along $\gamma(t) = (x^i(t))$.

Then the autoparallel condition becomes:

$$\frac{dV^k}{dt} + \sum_{i,j} \Gamma^k_{ij}(x(t)) \frac{dx^i}{dt} V^j(t) = 0$$

Linear ODE system: This is a first-order linear differential equation system for $V^k(t)$ with smooth coefficients.

In Riemannian geometry: Parallel transport preserves the inner product; in general α -connections, it need not.

Example: Autoparallel Transport with e-Connection ($\alpha = 1$)

Model: Gaussian $\mathcal{N}(\mu, \sigma^2)$, exponential coordinates:

$$\theta^1 = \frac{\mu}{\sigma^2}, \quad \theta^2 = -\frac{1}{2\sigma^2}$$

Let $\gamma(t)$ be an exponential geodesic between two distributions. Consider a vector field V(t) along $\gamma(t)$ representing change in sufficient statistics.

Autoparallel transport with respect to $\nabla^{(1)}$ satisfies:

$$\frac{dV^k}{dt} + \Gamma^{(1)k}_{ij} \frac{d\theta^i}{dt} V^j = 0$$

This describes how natural parameters evolve in an exponential family under constant statistical "direction".

Example: Autoparallel Transport with m-Connection $(\alpha = -1)$

Mixture coordinates:

$$\eta^1 = \mu, \quad \eta^2 = \mu^2 + \sigma^2$$

Let $\gamma(t)$ be a path representing a convex combination of Gaussians.

Transport a score function or Fisher information direction V(t) along $\gamma(t)$ with respect to $\nabla^{(-1)}$.

$$\frac{dV^k}{dt} + \Gamma_{ij}^{(-1)k} \frac{d\eta^i}{dt} V^j = 0$$

This models how expectation parameters change under blending distributions — crucial in EM-type algorithms.

Motivation for Geodesics (I/II)

Basic idea: In Euclidean space, the shortest path between two points is a straight line.

On a curved manifold: The shortest path generalizes to a **geodesic** — a curve that "locally minimizes distance".

But in Information Geometry, we also care about curves that look straight in coordinate systems defined by statistical structure.

Key Question: What kind of "straightness" do we want — metric or affine?

Motivation for Geodesics (II/II)

Two views on geodesics:

- Metric view (Levi-Civita): Geodesics locally minimize distance w.r.t. Fisher metric.
- Affine view (Connection-based): Geodesics are autoparallel curves under a given connection.

In Information Geometry:

- e-geodesics: straight in exponential coordinates
- m-geodesics: straight in mixture coordinates

Geometrical insight: These geodesics reflect natural statistical paths (MLE paths, convex mixtures, etc.)

Definition: Geodesics via Connections (I/II)

Let $\gamma: I \to M$ be a smooth curve on a manifold M with affine connection ∇ .

Then γ is a **geodesic** (w.r.t. ∇) if:

$$\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t)=0$$

This is equivalent to: the velocity vector is autoparallel transported along the curve.

Interpretation: No external "acceleration" — the motion is natural to the geometry.

Geodesics in Local Coordinates (II/II)

Let $\gamma(t) = (x^1(t), \dots, x^n(t))$ in local coordinates. Then the geodesic equation becomes:

$$\frac{d^2x^k}{dt^2} + \sum_{i,j} \Gamma_{ij}^k(x(t)) \frac{dx^i}{dt} \frac{dx^j}{dt} = 0$$

This is a second-order nonlinear ODE system determined by the connection ∇ .

In Riemannian geometry: Use the Levi-Civita connection from the Fisher metric.

In Info Geometry: Use α -connections for $\alpha \in [-1, 1]$.

Example: e-Geodesics ($\alpha = 1$)

Model: $\mathcal{N}(\mu, \sigma^2)$ with exponential coordinates:

$$\theta^1 = \frac{\mu}{\sigma^2}, \quad \theta^2 = -\frac{1}{2\sigma^2}$$

e-geodesic:

$$\theta(t) = (1-t)\theta_0 + t\theta_1$$

A straight line in exponential coordinates.

Interpretation: This corresponds to paths within exponential families — natural for likelihood-based inference.

Transport: Velocity vector remains parallel under $\nabla^{(1)}$.

Example: m-Geodesics ($\alpha = -1$)

Mixture coordinates:

$$\eta^1 = \mu, \quad \eta^2 = \mu^2 + \sigma^2$$

m-geodesic:

$$\eta(t) = (1-t)\eta_0 + t\eta_1$$

A straight line in mixture coordinates.

Interpretation: This represents convex combinations of probability distributions.

Transport: Velocity remains parallel under $\nabla^{(-1)}$.

Motivation for Curvature (I/II)

Intuition: Flat space allows us to move vectors around without distortion. Curved space does not.

Thought experiment: Move a vector around a loop on a sphere — it comes back rotated. Something intrinsic to the space caused this change.

Key Question: How does a manifold "resist" the parallel transport of vectors?

Answer: This failure to return the same vector defines **curvature**, and we express it using the connection ∇ .

Motivation for Curvature (II/II)

Visual intuition:

- In flat space: vector transported around a loop remains unchanged.
- In curved space: the direction changes something geometric caused a "twist".

Why it matters in Information Geometry:

- The statistical manifold may be flat under one connection (e.g., $\nabla^{(1)}$) and curved under another (e.g., Levi-Civita).
- Curvature determines whether geodesics can intersect or deviate.

Definition: Curvature Tensor (I/II)

Given: An affine connection ∇ on a manifold M.

The **curvature tensor** *R* is defined by:

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

Interpretation:

- Measures the failure of second covariant derivatives to commute.
- Describes the infinitesimal effect of parallel transporting Z around a parallelogram spanned by X,Y.

Curvature in Local Coordinates (II/II)

In coordinates: The curvature tensor has components:

$$R'_{ijk} = \partial_j \Gamma'_{ik} - \partial_i \Gamma'_{jk} + \Gamma''_{ik} \Gamma'_{jm} - \Gamma''_{jk} \Gamma'_{im}$$

Symmetries:

$$R(X,Y) = -R(Y,X)$$

Flatness: A connection ∇ is **flat** if R = 0 everywhere.

In Info Geometry:

- Both $\nabla^{(1)}$ and $\nabla^{(-1)}$ are flat.
- The Levi-Civita connection (from Fisher metric) is curved.

Example: Flatness of e-Connection ($\alpha = 1$)

Statistical manifold: 1D Gaussians, exponential coordinates:

$$\theta^1 = \frac{\mu}{\sigma^2}, \quad \theta^2 = -\frac{1}{2\sigma^2}$$

e-Connection:

$$\Gamma_{ijk}^{(1)} = \mathbb{E}\left[\partial_i \partial_j \log p(x;\theta) \partial_k \log p(x;\theta)\right]$$

Result: $R^{(1)} = 0$ — the manifold is flat under $\nabla^{(1)}$.

Implication: Exponential coordinate system behaves like affine space — geodesics are straight lines.

Motivation: How Does a Connection Relate to a Metric? (I/II)

So far:

- The **Riemannian metric** (Fisher metric) lets us measure lengths, angles, and distances.
- A **connection** tells us how to compare or transport vectors across different points.

Question: Can the connection be consistent with the metric?

Example: In Riemannian geometry, the **Levi-Civita connection** is compatible with the metric:

$$X[g(Y,Z)] = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$

But in Information Geometry: We often use non-metric connections (e.g., $\nabla^{(\alpha)}$) — they don't preserve the metric.

Motivation: Duality of Connections (II/II)

What if we allow for two connections, ∇ and ∇^* ?

Then we can ask them to be "dual" with respect to the metric g:

$$X[g(Y,Z)] = g(\nabla_X Y, Z) + g(Y, \nabla_X^* Z)$$

Interpretation:

- \bullet ∇ distorts the metric in one direction.
- ∇^* undoes that distortion in the other direction.

In Information Geometry: The α -connections are mutually dual:

$$(\nabla^{(\alpha)})^* = \nabla^{(-\alpha)}$$

Definition: Metric Compatibility and Duality (I/II)

Metric compatibility: A connection ∇ is metric-compatible if:

$$X[g(Y,Z)] = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$

Levi-Civita connection is the unique connection that is:

- Torsion-free
- Metric-compatible

Dual connections: A pair (∇, ∇^*) is **dual** w.r.t. a Riemannian metric g if:

$$X[g(Y,Z)] = g(\nabla_X Y, Z) + g(Y, \nabla_X^* Z)$$

Example: Duality on the Gaussian Manifold

Manifold: $\mathcal{N}(\mu, \sigma^2)$

Coordinate systems:

- e-coordinates: $\theta = (\mu/\sigma^2, -1/(2\sigma^2))$
- m-coordinates: $\eta = (\mu, \mu^2 + \sigma^2)$

Observation:

- $\nabla^{(1)}$: flat in θ -coordinates
- $\nabla^{(-1)}$: flat in η -coordinates
- $\nabla^{(0)}$: Levi-Civita (curved in both)

These two connections are dual under the Fisher metric.

Summary: Geometry of Dual Connections

Three central connections:

- $\nabla^{(1)}$: flat in exponential coordinates
- $\nabla^{(-1)}$: flat in mixture coordinates
- $\nabla^{(0)}$: Levi-Civita, metric-compatible

Duality:

$$\nabla^{(\alpha)}$$
 and $\nabla^{(-\alpha)}$ are dual w.r.t. the Fisher metric

Implications:

- Dual geodesics intersect orthogonally under the Fisher metric.
- Projections (e.g., MLE vs. moment matching) follow dual geodesics.

Definitions: Legendre Transform and Bregman Divergence (II/IV)

Legendre Transform: For strictly convex $\psi : \mathbb{R}^n \to \mathbb{R}$, define:

$$\varphi(\eta) := \sup_{\theta} \left\{ \langle \theta, \eta \rangle - \psi(\theta) \right\}$$

Then:

$$\eta = \nabla \psi(\theta), \quad \theta = \nabla \varphi(\eta)$$

Bregman Divergence:

$$D_{\psi}(\theta \| \theta') := \psi(\theta) - \psi(\theta') - \langle \nabla \psi(\theta'), \theta - \theta' \rangle$$

Asymmetry: In general, $D_{\psi}(\theta \| \theta') \neq D_{\psi}(\theta' \| \theta)$

[Insert figure: Gap between function and tangent plane at θ']

Dual Bregman Divergence and Negative Entropy (V/V)

Duality of Bregman Divergences:

Given a convex function $\psi(\theta)$ with Legendre dual $\varphi(\eta)$:

$$D_{\psi}(\theta||\theta') = \psi(\theta) + \varphi(\eta') - \langle \theta, \eta' \rangle$$

$$D_{\varphi}(\eta'||\eta) = \varphi(\eta') + \psi(\theta) - \langle \eta', \theta \rangle$$

They are symmetric under duality:

$$D_{\psi}(\theta \| \theta') = D_{\varphi}(\eta' \| \eta)$$

Example: Negative Entropy

$$\psi(p) = \sum_i p_i \log p_i$$
 (negative entropy)

$$D_{\psi}(p\|q) = \sum_i p_i \log \frac{p_i}{q_i} = D_{\mathrm{KL}}(p\|q)$$

Statistical Manifolds

Let $\mathcal{M} = \{p(x; \theta) \mid \theta \in \Theta \subset \mathbb{R}^n\}$ be a family of probability density functions with smooth dependence on the parameter θ .

Definition: Statistical Manifold

A statistical manifold is a differentiable manifold \mathcal{M} where each point corresponds to a probability distribution $p(x; \theta)$, and the parameter space Θ serves as a coordinate chart.

We endow \mathcal{M} with:

- A Riemannian metric g (Fisher information metric)
- Two affine connections $\nabla^{(e)}$, $\nabla^{(m)}$

Kullback-Leibler Divergence

Definition

The Kullback–Leibler divergence between two distributions $p(x; \theta)$ and $p(x; \theta')$ is defined as:

$$D_{\mathrm{KL}}(p_{ heta} \| p_{ heta'}) = \int p(x; heta) \log \frac{p(x; heta)}{p(x; heta')} dx$$

- $D_{\rm KL}$ is not symmetric
- $D_{\mathrm{KL}}(p_{\theta}||p_{\theta'}) \geq 0$, with equality iff $\theta = \theta'$
- ullet Used to define both the Riemannian metric and affine connections on ${\mathcal M}$

Fisher Information Metric

The Fisher information matrix is defined by:

$$g_{ij}(heta) := \mathbb{E}_{ heta}\left[rac{\partial \log p(x; heta)}{\partial heta^i}rac{\partial \log p(x; heta)}{\partial heta^j}
ight]$$

Equivalently (from KL divergence):

$$g_{ij}(heta) = \left. rac{\partial^2}{\partial heta^i \partial heta'^j} D_{ ext{KL}}(p_ heta \| p_{ heta'})
ight|_{ heta' = heta}$$

This defines a Riemannian metric on \mathcal{M} , and is invariant under sufficient statistics (invariance principle).

Affine Connections from KL Divergence

KL divergence defines affine connections via third-order derivatives:

Christoffel Symbols of e-Connection $(\nabla^{(e)})$

$$egin{aligned} \Gamma_{ijk}^{(e)} := & -rac{\partial^3}{\partial heta^i \partial heta^j \partial heta'^k} D_{ ext{KL}}(p_ heta \| p_{ heta'}) igg|_{ heta' = heta} \end{aligned}$$

$$\Gamma_{ij}^{(e)k} = g^{kl}\Gamma_{ijl}^{(e)}$$

Christoffel Symbols of m-Connection $(\nabla^{(m)})$

$$\left. \mathsf{\Gamma}^{(m)}_{ijk} := \left. - rac{\partial^3}{\partial heta'^i \partial heta'^j \partial heta^k} D_{\mathrm{KL}}(extsf{p}_{ heta'} \| extsf{p}_{ heta})
ight|_{ heta' = heta}$$

Dual Affine Connections and α -Connections

Define a one-parameter family of connections:

Amari's α -Connection

$$\nabla^{(\alpha)} = \frac{1+\alpha}{2} \nabla^{(e)} + \frac{1-\alpha}{2} \nabla^{(m)}$$

- $\nabla^{(e)} = \nabla^{(1)}$ (exponential)
- $\nabla^{(m)} = \nabla^{(-1)}$ (mixture)
- $\nabla^{(0)}$ is the Levi-Civita connection of the Fisher metric

Duality

Connections $\nabla^{(\alpha)}$ and $\nabla^{(-\alpha)}$ are dual w.r.t. g:

$$X \cdot g(Y, Z) = g(\nabla_X^{(\alpha)} Y, Z) + g(Y, \nabla_X^{(-\alpha)} Z)$$

Interpretation in Exponential and Mixture Coordinates

Let $p(x; \theta)$ be an exponential family:

$$p(x; \theta) = \exp(\theta^{i} F_{i}(x) - \psi(\theta))$$

- Exponential coordinates θ : $\nabla^{(e)}$ -flat
- Expectation parameters $\eta_i = \mathbb{E}[F_i]: \nabla^{(m)}$ -flat

Flatness: A coordinate system is flat w.r.t. a connection ∇ if all Christoffel symbols vanish in those coordinates.

This dual flatness underlies dually flat geometry and the existence of canonical divergences (e.g., KL).

Mirror Descent Dynamics in Geometry (I/II)

Figure: Optimization of $f(\theta) = (\theta - 2)^2$ using mirror descent

- Blue curve: target function $f(\theta)$
- Dashed gray: convex potential $\psi(\theta) = \frac{1}{2}\theta^2$
- Black path: updates via mirror descent using dual geometry

Update steps:

$$\eta_t = \nabla \psi(\theta_t)
\eta_{t+1} = \eta_t - \eta \nabla f(\theta_t)
\theta_{t+1} = \nabla \psi^*(\eta_{t+1})$$

[Insert figure: Mirror descent update on $f(\theta)$]

Mirror Descent as Optimization in Dually Flat Geometry (II/II)

Mirror Descent = Natural Gradient Descent in Dual Space Why it works:

- Uses structure from convex potential ψ
- Takes steps in dual space (expectation parameters)
- Returns to primal space (natural parameters) using Legendre dual

Dually flat manifold:

- θ -space: natural (e-flat), $\nabla^{(1)}$
- η -space: expectation (m-flat), $\nabla^{(-1)}$

Mirror descent traverses these dual geodesics.

[Re-show figure or zoom into geometric step]

Mirror Descent on Dually Flat Manifolds (I/II)

Optimization in flat space:

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$

uses Euclidean geometry.

Mirror Descent: Uses a Bregman divergence D_{ψ} from a convex potential ψ :

$$\eta_t =
abla \psi(x_t)$$
 (map to dual space) $\eta_{t+1} = \eta_t - \eta
abla f(x_t)$ (gradient step) $x_{t+1} =
abla \psi^*(\eta_{t+1})$ (map back via Legendre dual)

Interpretation: Gradient steps happen in the **dual space** (m-coordinates), then map back to the primal (e-coordinates).

Geometry of Mirror Descent on Dually Flat Manifolds (II/II)

Dually flat structure:

- Flatness in θ (natural) space $\to \nabla^{(1)}$
- Flatness in η (expectation) space $\to \nabla^{(-1)}$
- Linked by $\eta = \nabla \psi(\theta)$ and $\theta = \nabla \psi^*(\eta)$

Mirror descent = natural gradient descent in dual geometry

Applications:

- Online learning (e.g., AdaGrad, exponentiated gradient)
- Variational inference updates
- Reinforcement learning (policy gradient with dual geometry)

Policy Gradient: Flat vs. Geometric Updates (I/III)

Goal: Optimize expected return by adjusting policy parameters

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[R]$$

where $\pi_{\theta}(a \mid s)$ is a parameterized stochastic policy.

Vanilla gradient ascent:

$$\theta_{t+1} = \theta_t + \eta \nabla_\theta J(\theta_t)$$

Problem: This ignores the geometry of the policy space — can be unstable or slow.

Solution: Use **natural gradient** (mirror descent) — respects underlying geometry.

Natural Gradient as Mirror Descent (II/III)

Fisher Information Metric: Defines local geometry of policy space:

$$g_{ij}(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\partial_i \log \pi_{\theta}(a \mid s) \, \partial_j \log \pi_{\theta}(a \mid s) \right]$$

Natural Gradient:

$$\tilde{\nabla}_{\theta} J = g^{-1}(\theta) \nabla_{\theta} J$$

This is equivalent to a mirror descent step on a dually flat manifold!

Primal = natural parameters (θ), Dual = expected features (η)

Update path follows m-geodesics in dual space, then maps back via ψ^*

Information-Geometric Policy Gradient (III/III)

Mirror descent view of policy updates:

- Choose convex potential $\psi(\theta)$ (e.g., KL divergence or entropy)
- Update in dual space: $\eta_{t+1} = \eta_t + \eta$ · advantage estimate
- Map back: $\theta_{t+1} = \nabla \psi^*(\eta_{t+1})$

Benefits:

- Adaptive learning via geometry
- Robustness in high-variance environments
- Theoretical guarantees from convex optimization

Used in: Trust Region Policy Optimization (TRPO), Natural Policy Gradient (NPG), and many modern RL algorithms.

Question?

