# PHYC10003 Physics I

Lecture 3: Motion

Vectors: applications to mechanics

### Last lecture

- Position
- Velocity
- Acceleration
- Problems involving constant acceleration
- Free-fall

#### Vectors

- Physics deals with quantities that have both size and direction
- A **vector** is a mathematical object with size and direction
- A vector quantity is a quantity that can be represented by a vector
  - Examples: position, velocity, acceleration
  - Vectors have their own rules for manipulation
- A scalar is a quantity that does not have a direction
  - Examples: time, temperature, energy, mass
  - Scalars are manipulated with ordinary algebra

### 3.1 Displacement vector

- The simplest example is a displacement vector
- If a particle changes position from A to B, we represent this by a vector arrow pointing from A to B





Figure 3-1

- In (a) we see that all three arrows have the same magnitude and direction: they are identical displacement vectors.
- In (b) we see that all three paths correspond to the same displacement vector. The vector tells us nothing about the actual path that was taken between A and B.

### 3.1 Vector addition

#### • The vector sum, or resultant

- Is the result of performing vector addition
- Represents the net displacement of two or more displacement vectors

$$\vec{s} = \vec{a} + \vec{b}$$
, Eq.(3-1)



Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Can be added graphically as shown:

Figure 3-2

PHYC10003 Physics 1. Lecture 3: Motion [Copyright John Wiley and Son (2014)]

### 3.1 Vector addition

#### Vector addition is commutative

We can add vectors in any order

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 (commutative law).



Copyright © 2014 John Wiley & Sons, Inc. All rights reserved

You get the same vector result for either order of adding vectors.

**Figure (3-3)** 

**Eq. (3-2)** 

PHYC10003 Physics 1. Lecture 3: Motion [Copyright John Wiley and Son (2014)]

#### 3.1 Vector addition

- Vector addition is associative
  - We can group vector addition however we like

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
 (associative law).

Eq. (3-3)



# 3.1 Vectors; sign and direction

A negative sign reverses vector direction

$$\vec{b} + (-\vec{b}) = 0.$$

 We use this to define vector subtraction

$$\vec{d} = \vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

Eq. (3-4)



Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

### 3.1 Vectors

- These rules hold for all vectors, whether they represent displacement, velocity, etc.
- Only vectors of the same kind can be added
  - (distance) + (distance) makes sense
  - (distance) + (velocity) does not



### Checkpoint 1

The magnitudes of displacements  $\vec{a}$  and  $\vec{b}$  are 3 m and 4 m, respectively, and  $\vec{c} = \vec{a} + \vec{b}$ . Considering various orientations of  $\vec{a}$  and  $\vec{b}$ , what are (a) the maximum possible magnitude for  $\vec{c}$  and (b) the minimum possible magnitude?

#### Answer:

(a) 
$$3 \text{ m} + 4 \text{ m} = 7 \text{ m}$$
 (b)  $4 \text{ m} - 3 \text{ m} = 1 \text{ m}$ 

# 3.2 Vectors- addition by components

- Rather than using a graphical method, vectors can be added by components
  - A component is the projection of a vector on an axis

The process of finding components is called resolving the

vector

- The components of a vector can be positive or negative.
- They are unchanged if the vector is shifted in any direction (but not rotated).



### 3.2 Vectors – components in 2 dimensions

• Components in two dimensions can be found by:

$$a_x = a \cos \theta$$
 and  $a_y = a \sin \theta$ , Eq. (3-5)

- Where  $\theta$  is the angle the vector makes with the positive x axis, and a is the vector length
- The length and angle can also be found if the components are known

$$a = \sqrt{a_x^2 + a_y^2}$$
 and  $\tan \theta = \frac{a_y}{a_x}$  Eq. (3-6)

Therefore, components fully define a vector

### 3.2 Vectors- components in 3 dimensions

 In the 3 dimensional case we need more components to specify a vector

$$(a, \theta, \phi) \text{ or } (a_x, a_y, a_z)$$



In the figure, which of the indicated methods for combining the x and y components of vector  $\vec{a}$  are proper to determine that vector?



Answer: choices (c), (d), and (f) show the components properly arranged to form the vector

# 3.2 Vectors- trigonometry

- Angles may be measured in degrees or radians
- Recall that a full circle is 360°, or  $2\pi$  rad

$$40^{\circ} \frac{2\pi \operatorname{rad}}{360^{\circ}} = 0.70 \operatorname{rad}.$$

Know the three basic trigonometric functions

$$\sin \theta = \frac{\text{leg opposite } \theta}{\text{hypotenuse}}$$

$$\cos \theta = \frac{\text{leg adjacent to } \theta}{\text{hypotenuse}}$$

$$\tan \theta = \frac{\text{leg opposite } \theta}{\text{leg adjacent to } \theta}$$
Leg adjacent to  $\theta$ 

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Figure (3-11)

#### 3.2 Vectors- unit vectors and conventions

#### A unit vector

- Has magnitude I
- Has a particular direction
- Lacks both dimension and unit
- 。 Is labeled with a hat: ^
- We use a right-handed coordinate system
  - Remains right-handed when rotated

$$\vec{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} \quad \mathbf{Eq. (3-7)}$$

$$\vec{b} = b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}}$$
. Eq. (3-8)

The unit vectors point along axes.



PHYC10003 Physics 1. Lecture 3: Motion [Copyright John Wiley and Son (2014)]

Figure (3-13

### 3.2 Vectors- unit vectors and components

• The quantities  $a_x$ **i** and  $a_y$ **j** are **vector components** 

$$\vec{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}}$$
 Eq. (3-7)
$$\vec{b} = b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}}.$$
 Eq. (3-8)

- The quantities  $a_x$  and  $a_y$  alone are scalar components
  - or just "components" as before
- Vectors can be added using components

Eq. (3-9) 
$$\vec{r} = \vec{a} + \vec{b}$$
,  $\Rightarrow$   $r_x = a_x + b_x$  Eq. (3-10)  $r_y = a_y + b_y$  Eq. (3-11)  $r_z = a_z + b_z$ . Eq. (3-12)

### 3.2 Vectors - subtraction

• To subtract two vectors, we subtract components

$$d_x=a_x-b_x, \quad d_y=a_y-b_y, \quad \text{and} \quad d_z=a_z-b_z,$$
 Eq. (3-13) 
$$\overrightarrow{d}=d_x\widehat{\mathbf{i}}+d_y\widehat{\mathbf{j}}+d_z\widehat{\mathbf{k}}.$$



### **Checkpoint 3**

(a) In the figure here, what are the signs of the x components of  $\vec{d_1}$  and  $\vec{d_2}$ ? (b) What are the signs of the y components of  $\vec{d_1}$  and  $\vec{d_2}$ ? (c) What are the signs of the x and y components of  $\vec{d_1} + \vec{d_2}$ ?



Answer: (a) positive, positive (b) positive, negative

(c) positive, positive

# 3.2 Vectors - behaviour under rotation

- Vectors are independent of the coordinate system used to measure them
- We can rotate the coordinate system, without rotating the vector, and the vector remains the same

$$a = \sqrt{a_x^2 + a_y^2} = \sqrt{a_x'^2 + a_y'^2}$$
 Eq. (3-14)

$$heta=\, heta'\,+\,\phi$$
. Eq. (3-15)

All such coordinate systems are equally valid



Rotating the axes changes the components but not the vector.



Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Figure (3-15)

PHYC10003 Physics 1. Lecture 3: Motion [Copyright John Wiley and Son (2014)]

# 3.2 Vectors- multiplication by a scalar

- Multiplying a vector z by a scalar c
  - Results in a new vector
  - $_{\circ}$  Its magnitude is the magnitude of vector **z** times |c|
  - $_{\circ}$  Its direction is the same as vector **z**, or opposite if c is negative
  - To achieve this, we can simply multiply each of the components of vector  $\mathbf{z}$  by c
- To divide a vector by a scalar we multiply by I/c

### **Example** Multiply vector **z** by 5

- z = -3i + 5j
- 5z = -15i + 25j

# 3.3 Vectors- scalar product

- Multiplying two vectors: the scalar product
  - Also called the dot product
  - Results in a scalar, where a and b are magnitudes and  $\phi$  is the angle between the directions of the two vectors:

$$\overrightarrow{a} \cdot \overrightarrow{b} = ab \cos \phi,$$
 Eq. (3-20)

 The commutative law applies, and we can do the dot product in component form

$$\vec{a} \cdot \vec{b} = (a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}) \cdot (b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}} + b_z \hat{\mathbf{k}}), \qquad \text{Eq. (3-22)}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$$
.  $\overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z$ . Eq. (3-23)



# 3.3 Vectors - projections

 A dot product is the product of the magnitude of one vector times the scalar component of the other vector in the direction of the first vector

$$\overrightarrow{a} \cdot \overrightarrow{b} = (a \cos \phi)(b) = (a)(b \cos \phi).$$
 Eq.(3-21)

- Either projection of one vector onto the other can be used
- To multiply a vector by the projection, multiply the magnitudes



#### Vectors



If the angle  $\phi$  between two vectors is  $0^{\circ}$ , the component of one vector along the other is maximum, and so also is the dot product of the vectors. If, instead,  $\phi$  is  $90^{\circ}$ , the component of one vector along the other is zero, and so is the dot product.



### **Checkpoint 4**

Vectors  $\vec{C}$  and  $\vec{D}$  have magnitudes of 3 units and 4 units, respectively. What is the angle between the directions of  $\vec{C}$  and  $\vec{D}$  if  $\vec{C} \cdot \vec{D}$  equals (a) zero, (b) 12 units, and (c) -12 units?

Answer: (a) 90 degrees (b) 0 degrees (c) 180 degrees

# 3.3 Vectors – cross product

- Multiplying two vectors: the vector product
  - The **cross product** of two vectors with magnitudes a & b, separated by angle  $\varphi$ , produces a vector with magnitude:

$$c = ab \sin \phi,$$
 Eq. (3-24)

- And a direction perpendicular to both original vectors
- Direction is determined by the right-hand rule
- Place vectors tail-to-tail, sweep fingers from the first to the second, and thumb points in the direction of the resultant



If  $\vec{a}$  and  $\vec{b}$  are parallel or antiparallel,  $\vec{a} \times \vec{b} = 0$ . The magnitude of  $\vec{a} \times \vec{b}$ , which can be written as  $|\vec{a} \times \vec{b}|$ , is maximum when  $\vec{a}$  and  $\vec{b}$  are perpendicular to each other.

### 3.3 Vectors – cross product



Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Figure (3-19)

The upper shows vector a cross vector b, the lower shows vector b cross vector a

### 3.3 Vectors - cross product

• The cross product is not commutative

$$\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b}).$$
 Eq. (3-25)

• To evaluate, we distribute over components:

$$\vec{a} \times \vec{b} = (a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}) \times (b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}} + b_z \hat{\mathbf{k}}),$$

$$a_x \hat{\mathbf{i}} \times b_x \hat{\mathbf{i}} = a_x b_x (\hat{\mathbf{i}} \times \hat{\mathbf{i}}) = 0,$$

$$a_x \hat{\mathbf{i}} \times b_y \hat{\mathbf{j}} = a_x b_y (\hat{\mathbf{i}} \times \hat{\mathbf{j}}) = a_x b_y \hat{\mathbf{k}}.$$
Eq. (3-26)

• Therefore, by expanding (3-26):

$$\vec{a} \times \vec{b} = (a_y b_z - b_y a_z)\hat{\mathbf{i}} + (a_z b_x - b_z a_x)\hat{\mathbf{j}} + (a_x b_y - b_x a_y)\hat{\mathbf{k}}.$$
Eq. (3-27)

#### Vectors



### **Checkpoint 5**

Vectors  $\vec{C}$  and  $\vec{D}$  have magnitudes of 3 units and 4 units, respectively. What is the angle between the directions of  $\vec{C}$  and  $\vec{D}$  if the magnitude of the vector product  $\vec{C} \times \vec{D}$  is (a) zero and (b) 12 units?

Answer: (a) 0 degrees (b) 90 degrees

# Summary

#### Scalars and Vectors

- Scalars have magnitude only
- Vectors have magnitude and direction
- Both have units!

### **Vector Components**

Given by

$$a_x = a \cos \theta$$
 and  $a_y = a \sin \theta$ , Eq. (3-5)

Related back by

$$a = \sqrt{a_x^2 + a_y^2}$$
 and  $\tan \theta = \frac{a_y}{a_x}$ 

### Adding Geometrically

 Obeys commutative and associative laws

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 Eq. (3-2)

$$(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$$
. Eq. (3-3)

#### **Unit Vector Notation**

 We can write vectors in terms of unit vectors

$$\vec{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}, \qquad \text{Eq. (3-7)}$$

Eq. (3-6)

# Summary

### Adding by Components

Add component-by-component

$$r_{x}=a_{x}+b_{x}$$

$$r_{y} = a_{y} + b_{y}$$

Eqs. (3-10) - (3-12) 
$$r_z = a_z + b_z$$
.

#### Scalar Product

Dot product

$$\vec{a} \cdot \vec{b} = ab \cos \phi,$$

Eq. (3-20)

$$\vec{a} \cdot \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \cdot (b_x \hat{i} + b_y \hat{j} + b_z \hat{k}),$$

Eq. (3-22)

#### Scalar Times a Vector

- Product is a new vector
- Magnitude is multiplied by scalar
- Direction is same or opposite

#### **Cross Product**

- Produces a new vector in perpendicular direction
- Direction determined by righthand rule

$$c = ab \sin \phi$$
,

Eq. (3-24)

### Preparation for the next lecture

- I. Read 4.1-4.7 of the text
- 2. You will find short answers to the odd-numbered problems in each chapter at the back of the book and further resources on LMS. You should try a few of the simple odd numbered problems from each section (the simple questions have one or two dots next to the question number).