ATTENDANCE QUIZ (WEEK 10)

COLTON GRAINGER

Your name (print clearly in capital letters):

This is an ungraded quiz that will count for attendance; it is due by the end of recitation.

DEFINITIONS AND COMMENTS

- 1. A **zero** (or a **root**) of a function f is a number r such that f(r) = 0.
 - i. The term *root* is generally reserved for the study of *polynomial functions*.
 - ii. For example, if r is a root of the polynomial f (i.e., f(r) = 0), then

$$f(x) = (x - r)g(x)$$
 for some polynomial function g .

2. A **critical point** of a function f is a number a such that

$$f'(a) = 0.$$

- i. The number f(a) itself is called a **critical value** of f.
- 3. A **point of local extremum** of a function f is a point of either local maximum or minimum.
 - i. If b is a point of local extremum, we say f(b) is a local extreme value.
- 4. A number c is an **inflection point** of f if the tangent line to f at (c, f(c)) crosses the graph of f.
 - i. In order for c to be an inflection point of a function f, it is necessary that f'' should have different signs to the left and right of c.
 - ii. For example (see figure), $\sqrt{1/3}$ and $-\sqrt{1/3}$ are inflection points of $f(x) := 1/(1+x^2)$.

FIGURE 1. Inflection points

Date: 2019-03-17.

MULTIPLE CHOICE

1. Consider the function $f \colon \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^3(x-1)^4(x-2)^2$. Which of the following is

References definitions are from Spivak [1]. The questions are adapted from Naik's Math-152 notes [2].	
	Your answer:
	(A) $f + g$ is concave up. (B) $f - g$ is concave up. (C) $f \cdot g$ is concave up. (D) $f \circ g$ is concave up. (E) All of the above.
4.	Your answer: Suppose f and g are continuously differentiable functions on \mathbf{R} . Suppose f and g are both concave up. Which of the following is always true ?
	 (A) intervals where the function is positive or negative (B) intervals where the function increases and decreases (C) intervals where the function is concave up and concave down (D) y-values of horizontal asymptotes (E) all of the above
3.	Say $f: \mathbf{R} \to \mathbf{R}$ is a twice-differentiable function. What information can be determined from only the second derivative f'' ?
	Your answer:
	 (A) roots of the function (B) critical points (C) points of inflection (D) local extreme values (E) neither (D) nor (A)
2.	Say $f: \mathbf{R} \to \mathbf{R}$ is a differentiable function. What information can not be determined from only the first derivative f' ?
	Your answer:
	 (A) 0, 1, and 2 are all critical points and all of them are points of local extrema. (B) 0, 1, and 2 are all critical points, but only 0 is a point of local extremum. (C) 0, 1, and 2 are all critical points, but only 1 and 2 are points of local extrema. (D) 0, 1, and 2 are all critical points, and none of them is a point of local extremum. (E) 1 and 2 are the only critical points.
	u de.

The

- [1] M. Spivak, Calculus, 3rd ed. Publish or Perish, Inc., 1994.
- [2] V. Naik, "Math 152 Course Notes," 2012.