B003725 Intelligenza Artificiale (2020/21)

Studente: Gianni Moretti — <2021-03-23 Tue>

Elaborato assegnato per l'esame finale

Istruzioni generali

Il lavoro svolto sarà oggetto di discussione durante l'esame orale e dovrà essere sottomesso per email due giorni prima dell'esame, includendo:

- 1. Sorgenti e materiale sviluppato in autonomia (**non includere eventuali datasets reperibili online**, per i quali basta fornire un link);
- 2. Un file README che spieghi:
 - come usare il codice per riprodurre i risultati sottomessi
 - se vi sono parti del lavoro riprese da altre fonti (che dovranno essere opportunamente citate);
- 3. Una breve relazione (massimo 4 pagine in formato pdf) che descriva il lavoro ed i risultati sperimentali. Non è necessario ripetere in dettaglio i contenuti del libro di testo o di eventuali articoli, è invece necessario che vengano fornite informazioni sufficienti a *riprodurre* i risultati riportati.

La sottomissione va effettuata preferibilmente come link ad un repository **pubblico** su **github**, **gitlab**, o **bitbucket**. In alternativa è accettabile allegare all'email un singolo file zip; in questo caso è **importante evitatare di sottomettere files eseguibili** (inclusi files .jar o .class generati da Java), al fine di evitare il filtraggio automatico da parte del software antispam di ateneo!

Random forest

Nella prima parte di questo esercizio si implementa in un linguaggio di programmazione a scelta l'algoritmo top down per l'apprendimento di alberi di decisione descritto in classe ed in R&N 2010. Si modifica quindi l'algoritmo per implementare random forest come esposto brevemente in classe ed in maggiore dettaglio in (Hastie et al. 2017, 15.2). Infine si verifica il funzionamento dell'algoritmo sviluppato comparando i risultti con quelli ottenuti tramite l'implementazione disponibile in scikit-learn, su almeno tre data sets scelti a piacere dall'UCI Machine Learning Repository.