

Seminar 5 Stochastic Volatility Models

Vega Institute

Problem 1 🧠

Let $S_t^{(\mu)}$ be the process from CEV model, i.e. $dS_t^{(\mu)} = \mu S_t dt + \sigma S_t^{\gamma} dB_t$, where $\gamma \neq 1$. Show that

$$S_t^{(\mu)} \stackrel{d}{=} S_{\tau(t)}^{(0)} e^{\mu t},$$

where $\tau(t) = \frac{e^{2\mu(\gamma-1)t} - 1}{2\mu(\gamma-1)}$.

Problem 2 🧠

Let S_t be the process from CEV model with zero drift, i.e. $dS_t = \sigma S_t^{\gamma} dB_t$, $\gamma \neq 1$ and $X_t = \frac{S_t^{2(1-\gamma)}}{\sigma^2(1-\gamma)^2}$.

1. Show that X_t satisfies the equation

$$dX_t = \delta dt + 2\sqrt{X_t}dB_t$$

and find δ . What can you say about the existence and uniqueness of the solution of this equation? Does your answer depend on δ , if the process is considered only until reaching zero?

- 2. Show that if $S_0 > 0$, then if $\gamma \in (0,1)$, S_t reaches zero with positive probability and if $\gamma \ge 1$, the S_t is strictly positive process.
- 3. In case of $\gamma \in (0,1)$, we put $S_t = 0$ after reaching the zero level. Why do we do that? Why we can not reflect it back?

Problem 3 💖

Derive the Hagan formula for the implied volatility in CEV model

$$\hat{\sigma} = \frac{\sigma}{\bar{s}^{1-\gamma}} \left(1 + \frac{(1-\gamma)(2+\gamma)}{24} \left(\frac{s-K}{\bar{s}} \right)^2 + \frac{(1-\gamma)^2}{24} \frac{\sigma^2 T}{\bar{s}^{2(1-\gamma)}} + \dots \right),$$

where $\bar{s} = \frac{1}{2}(s+K)$. Investigate the convexity and slope of this curve.