Question 1. Assume that the following figure contains the content of a Sparse Matrix, representation where column, value> triples are kept. How many columns does the Matrix have?

Line	1	1	3	3	4	4
Col	1	7	5	9	4	5
Val	11	9	30	7	20	39

Select one or more:
□ 6
□ 9
□ 5
□ 10
⊠ we cannot determine

We know that there are at least 9 columns, since on column 9 we have a non-zero element. But if there are columns at the end of the matrix with only zero elements, they are not visible on this representation.

The correct answer is: we cannot determine.

Question 2. Assume that the figure below contains a Sparse Matrix in compressed sparse line representation. How many columns are in the matrix?

Col	2	4	3	6	1	2	5	5	8
Val	6	3	3	91	1	3	5	18	102

Select one or more:

□ 8

□ 9

□ 10

 \boxtimes we cannot determine

There are at least 8 columns (on column 8 we have a non-zero element), but we do not know how many columns are in total. There might be columns with only zero elements.

The correct answer is: we cannot determine.

Question 3. Assume that the figure contains the elements of a Sparse Matrix, compressed sparse line representation. How many lines are in the matrix?

Col	2	4	3	6	1	2	5	5	8
Val	6	3	3	91	1	3	5	18	102

□ 6

⊠ 5

□ 10

 \square we cannot determine

In compressed sparse line representation the line array has always number of lines + 1 elements. Since in the example it contains 6 elements, there are 5 lines in the matrix.

The correct answer is: 5.

Question 4. What is the main difference between ADT Stack and ADT Queue?
Select one or more:
\square ADT Stack can be implemented on a dynamic array, but ADT Queue cannot
$\hfill \Box$ ADT Queue can be implemented on a dynamic array, but ADT Stack cannot
$\hfill \Box$ ADT Stack uses two ends of the container, while ADT Queue uses only one end
oxtimes ADT Stack uses one end of the container, while ADT Queue uses both ends
\square ADT Stack has iterator, but ADT Queue does not.
\square ADT Queue has iterator, but ADT Stack does not.
The correct answer is: ADT Stack uses one end of the container, while ADT Queue uses both

ends.

Question 5. If we have a fixed-capacity Queue, which operations can throw an exception?
Select one or more:
⊠ push
⊠ рор
⊠ top
□ isEmpty
□ isFull
Pop and top can throw an exception for any Queue (fixed capacity or not) if the queue is empty.
But if we have a fixed capacity, we can have a full queue, and then push can also throw an exception.
Technically init can also throw an exception if the capacity is negative. But I did not add this option because this was not discussed separately.
The correct answers are: push, pop, top.

Question 6. What is the main difference between ADT Set and ADT Map?
Select one or more:
$\hfill\square$ In a Set elements are unique, but in a Map we can have the same element multiple times.
$\hfill\square$ In a Map elements are unique, but in a Set we can have the same element multiple times.
$\hfill \Box$ A Map can be implemented on a dynamic array, but a Set cannot.
\square A Set can have an iterator, but a Map cannot.
oxtimes A Map contains key-value pairs while a Set contains simple elements.
\square A Set does not have positions, but a Map does.
\square A Map does not have positions, but a Set has.
ADT Set and ADT Map are petty similar, none of them have positions, both can have iterators, and both contain unique elements. The main difference is that in a Set we have simple elements, while in a Map we have key-value pairs (and actually the keys are unique).

The correct answer is: A Map contains key-value pairs while a Set contains simple elements.

will have a Θ(n) complexity in the worst case?
Select one or more:
⊠ push
\square pop
\square top
□ isEmpty
\square all operations have $\Theta(1)$ complexity in the worst case
This is tricky. We use circular arrays to get better complexity for the operations than in case of a regular array. But, it is a dynamic array and we are talking about worst case time complexity and this can happen for push, if we need to do a resize. Since resize happens rarely (assuming correct implementation) push has a $\Theta(1)$ amortized complexity.
Optionally, pop could also have $\Theta(n)$ worst case performance if we do a resize. But for pop we don't have to do resize.
The correct answer is: push.

Question 7. Assume that we implement a Queue on a circular dynamic array. Which operation

Question 8. For ADT Map, what is the parameter for operation search (besides the map), and what does the operation return?
Select one or more:
\Box The parameter is a key and a value and the operations returns true or false depending on whether the pair is in the map or not.
\Box The parameter is a key and the operation returns true or false depending on whether the key is in the map or not.
$oxtimes$ The parameter is a key and the operation returns the value associated to this key or null_tvalue if the key is not in the map.
\Box The parameter is a value and the operation returns true or false depending on whether this value is in the map or not.
\Box The parameter is a value and the operation returns the key associated to this value or null_tkey if the value is not in the map.
While for most containers search is a boolean operation, here it is different. Operations in a Map happen based on a key. So search receives as parameter the key and returns the associated value.
The correct answer is: The parameter is a key and the operation returns the value associated to this key or null_tvalue if the key is not in the map.