(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 29. Juli 2004 (29.07.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/063359 A2

- (51) Internationale Patentklassifikation⁷: C12N 1/15, 15/80, C12P 23/00, A23J 1/00, 3/00, A23L 1/28, 1/275
- (21) Internationales Aktenzeichen: PCT/EP2004/000099
- (22) Internationales Anmeldedatum:

9. Januar 2004 (09.01.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 103 00 649.4 9. Januar 2003 (09.01.2003) DE 103 41 271.9 8. September 2003 (08.09.2003) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): MATUSCHEK, Markus [DE/DE]; Karolinenstr. 5, 69469 Weinheim (DE). KLEIN, Daniela [DE/DE]; M 7, 2, 68161 Mannheim (DE). HEINEKAMP, Thorsten [DE/DE]; Alte Ziegelei 1B, 30419 Hannover (DE). SCHMIDT, Andre [DE/DE]; Magdeburger Str. 11, 31832 Springe (DE). BRAKHAGE, Axel [DE/DE]; Schneiderberg 58, 30167 Hannover (DE). ACHATZ, Brigitte [DE/DE]; Windeckstr. 26, 68163 Mannheim (DE).
- (74) Anwalt: FITZNER, Uwe; Lintorfer Str. 10, 40878 Ratingen (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR PRODUCING CAROTENOIDS OR THEIR PRECURSORS USING GENETICALLY MODIFIED ORGANISMS OF THE *BLAKESLEA* GENUS, CAROTENOIDS OR THEIR PRECURSORS PRODUCED BY SAID METHOD AND USE THEREOF

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON CAROTINOIDEN ODER DEREN VORSTUFEN MITTELS GENTECHNISCH VERÄNDERTER ORGANISMEN DER GATTUNG BLAKESLEA, MIT DEM VERFAHREN HERGESTELLTE CAROTINOIDE ODER DEREN VORSTUFEN UND DEREN VERWENDUNG

Vektor pANsCos1

(57) Abstract: The invention relates to a method for producing carotenoids or their precursors using genetically modified organisms of the *Blakeslea* genus. Said method comprises the following steps (i) transformation of at least one of the cells, (ii) optional homokaryotic conversion of the cells obtained in step (i) to produce cells, in which one or more genetic characteristics of the nucleii are all modified in an identical manner and said modification manifests itself in the cells, (iii) selection and reproduction of the genetically modified cell or cells, (iv) cultivation of the genetically modified cells, (v) preparation of the carotenoids produced by the genetically modified cells or the carotenoid precursor produced by said genetically modified cells. The invention also relates to carotenoids or their precursors produced according to said method and to the use thereof.

X/O 2004/0633

FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK,

EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

⁽⁵⁷⁾ Zusammenfassung: Verfahren zur Herstellung von Carotinoiden oder deren Vorstufen mittels gentechnisch veränderter Organismen der Gattung Blakeslea umfassend (i) (i) Transformation mindestens einer der Zellen, (ii) ggf. Homokaryotisierung der aus (i) erhaltenen Zellen, so dass Zellen entstehen, in denen die Kerne in einem oder in mehreren genetischen Merkmalen alle gleichartig verändert sind und diese genetische Veränderung zur Ausprägung bringen, und (ix) Selektion und Vermehrung der gentechnisch veränderten Zelle oder Zellen, (x) Kultivierung der gentechnisch veränderten Zellen, (xi) Bereitstellung des von den gentechnisch veränderten Zellen produzierten Carotinoids oder der von den gentechnischen veränderten Zellen produzierten Carotinoidvorstufe; nach dem Verfahren hergestellte Carotinoide oder deren Vorstufen und deren Verwendung.

Verfahren zur Herstellung von Carotinoiden oder deren Vorstufen mittels gentechnisch veränderter Organismen der Gattung Blakeslea, mit dem Verfahren hergestellte Carotinoide oder deren Vorstufen und deren Verwendung

5

10

15

Die Erfindung betrifft ein Verfahren zur Herstellung von Carotinoiden oder deren Vorstufen mittels gentechnisch veränderten Organismen der Gattung Blakeslea, mit dem Verfahren hergestellte Carotinoide oder deren Vorstufen und deren Verwendung und Bereitstellung, besonders als hochreine Carotinoide, als Nahrungsmittel, enthaltend Carotinoide-produzierende Organismen und mindestens ein Carotinoid, insbesondere Tierfuttermittel, Tierfutterergänzungsmittel und Nahrungsergänzungsmittel, sowie die Verwendung der aus dem Verfahren erhältlichen Carotinoide zur Herstellung von kosmetischen, pharmazeutischen, dermatologischen Zubereitungen, Nahrungsmitteln oder Nahrungsergänzungsmitteln.

Blakeslea trispora ist als Produktionsorganismus für β -Carotin (Ciegler, 1965, Adv Appl Microbiol. 7:1) und Lycopin bekannt (EP 1201762, EP 1184464, WO 03/038064).

20

Von Blakeslea trispora sind bisher verschiedene DNA-Sequenzen bekannt, insbesondere die DNA-Sequenz, die für die Gene der Carotinoid-biosynthese von Geranylgeranylpyrophosphat bis β -Carotin codiert (WO 03/027293).

25 ·

Insbesondere aufgrund der hohen Produktivität, die mit Blakeslea in der Produktion von Lycopin und β-Carotin erreicht werden, bietet sich dieser Organismus zur fermentativen Herstellung von Carotinoiden an.

30 Es ist auch von Interesse die Produktivitäten der bisher natürlicherweise produzierten Carotine und deren Vorstufen weiter zu steigern und die Her-

5

10

15

20

25

30

stellung weiterer Carotinoide, wie z. B. Xanthophylle zu ermöglichen, die von Blakeslea bisher nicht oder nur in sehr geringem Maße gebildet und isoliert werden können.

2

Carotinoide werden Futtermitteln, Nahrungsmitteln, Nahrungsergänzungsmitteln, Kosmetika und Arzneimitteln zugesetzt. Die Carotinoide dienen vor allem als Pigmente zur Färbung. Daneben werden die antioxidative Wirkung der Carotinoide und andere Eigenschaften dieser Substanzen genutzt. Man unterteilt die Carotinoide in die reinen Kohlenwasserstoffe, die Carotine und die sauerstoffhaltigen Kohlenwasserstoffe, die Xanthophylle. Xanthophylle wie Canthaxanthin und Astaxanthin werden beispielsweise zur Pigmentierung von Hühnereiern und Fischen eingesetzt (Britton et al. 1998, Carotinoids, Vol 3, Biosynthesis and Metabolism). Die Carotine β-Carotin und Lycopin werden vor allem in der Humanernährung eingesetzt. β-Carotin wird beispielsweise als Getränkefarbstoff verwendet. Lycopin hat eine krankheitsvorbeugende Wirkung (Argwal und Rao, 2000, CMAJ 163:739-744; Rao und Argwal 1999, Nutrition Research 19:305-323). Die farblose Carotinoidvorstufe Phytoen kommt vor allem für Anwendungen als Antioxidans in kosmetischen, pharmazeutischen oder dermatologischen Zubereitungen in Frage.

Der überwiegende Teil der Carotinoide und deren Vorstufen, die als Zusatzstoffe für die oben genannten Anwendungen eingesetzt werden, wird durch chemische Synthese hergestellt. Die chemische Synthese ist technisch sehr aufwendig und verursacht hohe Herstellkosten. Fermentative Verfahren sind demgegenüber technisch verhältnismäßig einfach und basieren auf kostengünstigen Einsatzstoffen. Fermentative Verfahren zur Herstellung von Carotinoiden und deren Vorstufen können dann wirtschaftlich attraktiv und wettbewerbsfähig zur chemischen Synthese sein, wenn die Produktivität der bisherigen fermentativen Verfahren gesteigert würde oder neue Carotinoide auf Basis der bekannten

PCT/EP2004/000099

· 5

15

20

30

würde oder neue Carotinoide auf Basis der bekannten Produktionsorganismen hergestellt werden könnten.

Hierzu ist eine gentechnische, d. h. gezielte genetische Veränderung von Blakeslea erforderlich. Insbesondere, wenn Xanthophylle produziert werden sollen, da diese Verbindungen natürlicherweise vom Wildtyp der Blakeslea nicht synthetisiert werden.

- Z. B. zur Herstellung von Phytoen mittels Fermentation von Blakeslestrispora sind bisher zwei Methoden bekannt:
 - (i) Durch zufallsabhängige Mutagenese mit chemischen Agenzien wie MNNG können Mutanten erzeugt werden, in denen Phytoen nicht zu Lycopin und somit nicht weiter zu ß-Carotin umgesetzt werden kann (Mehta und Cerdá-Olmedo, 1995, Appl. Microbiol. Biotechnol. 42:836-838).
 - (ii) Durch Zugabe von Inhibitoren des Enzyms Phytoendesaturase wie z.B. Diphenylamin und Zimtalkohol kann die weitere Umsetzung von Phytoen blockiert werden, so dass es sich anreichert (Cerdá-Olmedo, 1989, In: E. Vandamme, ed. Biotechnology of vitamin, growth factorand pigment production. London: Eisevier Applied Science, S. 27-42).

Die genannten Methoden zur Herstellung von Phytoen mit Blakeslea 25 trispora weisen jedoch eine Reihe von Nachteilen auf.

Die zufallsabhängie Mutagenese betrifft in der Regel nicht nur die Gene der Carotinoidbiosynthese zur weiteren Umsetzung von Phytoen, sondern auch weitere wichtige Gene. Daher sind Wachstum und Syntheseleistung der Mutanten oft beeinträchtigt. Die Erzeugung z. B. von Phytoenüberpro-

5

20

25

duzenten durch zufallsabhängige Mutagenese von Lycopinüberproduzenten oder ß-Carotinüberproduzenten ist daher entweder nicht oder nur mit großem experimentellem Aufwand zu erreichen. Die Zugabe von Inhibitoren verursacht eine Erhöhung der Produktionskosten und gegebenenfalls eine Verunreinigung des Produktes. Daneben kann das Zellwachstum durch den Inhibitor beeinträchtigt werden, so dass die Produktion von Carotinoiden oder deren Vorstufen, insbesondere Phytoen eingeschränkt wird.

Durch eine gentechnische Veränderung könnten die oben genannten Nachteile der zufallsabhängigen Mutagenese und der Inhibitorzugabe vermieden werden.

Allerdings sind bisher keine Methoden zur gentechnischen, d. h. gezielten gentechnischen Veränderung von Blakeslea, insbesondere Blakeslea trispora bekannt.

Als Methode zur Herstellung von gentechnisch veränderten Pilzen wurde in einigen Fällen die Agrobacterium-vermittelte Transformation erfolgreich eingesetzt. So sind z. B. folgende Organismen durch Agrobakterien transformiert worden: Saccharomyces cerevisiae (Bundock et al., 1995, EMBO Journal, 14:3206–3214), Aspergillus awamori, Aspergillus nidulans, Aspergillus niger, Colletotrichum gloeosporioides, Fusarium solani pisi, Neurospora crassa, Trichoderma reesei, Pleurotus ostreatus, Fusarium graminearum (van der Toorren et al., 1997, EP 870835), Agraricus bisporus, Fusarium venenatum (de Groot et al., 1998, Nature Biotechnol. 16:839–842), Mycosphaerella graminicola (Zwiers et al. 2001, Curr. Genet. 39:388–393), Glarea lozoyensis (Zhang et al., 2003, Mol. Gen. Genet.

nomics 268:645–655), Mucor miehei (Monfort et al. 2003, FEMS Microbiology Lett. 244:101 – 106).

Von Interesse ist besonders eine homologe Rekombination, bei der zwischen der einzuführenden DNA und der Zell-DNA möglichst viele Sequenzhomologien bestehen, so dass eine ortsspezifische Einführung bzw. Ausschaltung von genetischer Information im Genom des Empfängerorganismus möglich ist. Andernfalls wird die Spender-DNA durch illegitime bzw. nicht-homologe Rekombination ins Genom des Empfängerorganismus integriert, was nicht ortsspezifisch erfolgt.

5

10

15

20

Eine durch Agrobacterium vermittelte Transformation und anschließende homologe Rekombination der transferierten DNA wurde bisher bei folgenden Organismen nachgewiesen: Aspergillus awamori (Gouka et al. 1999, Nature Biotech 17:598-601), Glarea lozoyensis (Zhang et al., 2003, Mol. Gen. Genomics 268:645-655), Mycosphaerella graminicola ((Zwiers et al. 2001, Curr. Genet. 39:388-393).

Als weitere Methode zur Transformation von Pilzen ist die Elektroporation bekannt. Die integrative Transformation von Hefe durch Elektroporation wurde von Hill, Nucl. Acids. Res. 17:8011 gezeigt. Für filamentöse Pilze wurde die Transformation durch Chakaborty und Kapoor beschrieben (1990, Nucl. Acids. Res. 18:6737).

Eine "biolistische" Methode, d.h. die Übertragung von DNA durch Beschuss von Zellen mit DNA-beladenen Partikeln wurde beispielsweise für Trichoderma harzianum und Gliocladium virens beschrieben (Lorito et al. 1993, Curr. Genet. 24:349–356).

WO 2004/063359

Diese Methoden konnten bisher jedoch nicht erfolgreich zur gezielten genetischen Veränderung von Blakeslea und insbesondere Blakeslea trispo-

PCT/EP2004/000099

ra eingesetzt werden.

25

30

Eine besondere Schwierigkeit bei der Herstellung von gentechnisch veränderten Blakeslea und Blakeslea trispora, ist die Tatsache, dass deren Zellen in allen Stadien des sexuellen und des vegetativen Zellzyklus mehrkernig sind. In Sporen von Blakeslea trispora Stamm NRRL2456 und NRRL2457 wurden z. B. im Durchschnitt 4,5 Kerne pro Spore nachgewiesen (Metha und Cerdá-Olmedo, 1995, Appl. Microbiol. Biotechnol. 42:836–838). Dies hat zur Folge, dass die gentechnische Veränderung in aller Regel nur in einem oder wenigen Kernen vorliegt, die Zellen also heterokaryotisch sind.

15 Sollen die genetisch veränderten Blakeslea, insbesondere Blakeslea trispora zur Produktion eingesetzt werden, so ist es insbesondere bei einer Gendeletion wichtig, dass in den Produktionsstämmen die gentechnische Veränderung in allen Kernen vorliegt, so dass eine stabile und hohe Syntheseleistung ohne Nebenprodukte möglich wird. Die Stämme müssen folglich in Bezug auf die gentechnische Veränderung homokaryotisch sein.

Lediglich für Phycomyces blakesleeanus ist ein Verfahren beschrieben worden, um homokaryotische Zellen zu erzeugen (Roncero et al., 1984, Mutat. Res. 125:195). Durch Zugabe des mutagenen Agens MNNG (N-Methyl-N'-nitro-N-nitrosoguanidin) werden nach dem dort beschriebenen Verfahren Kerne in den Zellen eliminiert, so dass statistisch eine gewisse Anzahl von Zellen mit nur noch einem funktionellem Kern vorliegt. Die Zellen werden dann einer Selektion unterzogen, in der nur einkernige Zellen mit einem rezessiven Selektionsmarker zu einem Mycel auswachsen können. Die Nachkommen dieser selektierten Zellen sind mehrkernig und homokaryotisch. Ein rezessiver Selektionsmarker für Phycomyces blakes-

leanus ist z. B. dar. dar⁺-Stämme nehmen das toxische Riboflavin-Analog 5-Carbon-5-deazariboflavin auf; dar⁻-Stämme dagegen nicht (Delbrück et al. 1979, Genetics 92:27). Die Selektion von rezessiven Mutanten erfolgt durch Zugabe von 5-Carbon-5-deazariboflavin (DARF).

5

Allerdings ist dieses Verfahren nicht für Blakeslea, insbesondere Blakeslea trispora bekannt und insbesondere nicht mit im Zusammenhang mit einer Transformation oder der Produktion von Carotinoiden oder deren Vorstufen beschrieben worden.

10

15

20

Auch die Isolierung aus natürlichen Quellen wird durchgeführt. Beispielsweise ist es für die Gewinnung von Phytoen bekannt, ein Gemisch aus Carotinoiden, Vitamin E und anderen Komponenten, welches auch Phytoen enthält, aus Tomaten, Karotten oder Palmöl usw. zu extrahieren. Problematisch ist hierbei die Trennung der einzelnen Carotinoide voneinander. So ist beispielsweise das Phytoen nach diesem Verfahren nicht in reiner Form erhältlich. Insbesondere ist die natürlich vorkommende Menge der Carotinoiden in den Pflanzen gering.

25

30

Fermentative Verfahren sind demgegenüber technisch verhältnismäßig einfach und basieren auf kostengünstigen Einsatzstoffen. Fermentative Verfahren zur Herstellung von Carotinoiden können dann wirtschaftlich attraktiv und wettbewerbsfähig zur chemischen Synthese sein, wenn die Produktivität der bisherigen fermentativen Verfahren gesteigert würde oder neue Carotinoide auf Basis der bekannten Produktionsorganismen hergestellt werden könnten. Problematisch bei der fermentativen Herstellung von Carotinoiden sind allerdings die Aufarbeitungsverfahren, die nur geringe Mengen an hochreinen Carotinoiden bereitstellen. Zudem sind dafür meist aufwendige Vielschritt-Prozesse ggf. unter Verwendung großer Lösungsmittelmengen erforderlich. So fallen große Mengen Abfall an oder es

muss ein hoher Aufwand zur Wiederverwertung (Recycling) betrieben werden.

8

Die Produktion von Carotinoiden durch verschiedene Mikroorganismen ist an sich bekannt. So ist z. B. in der WO 00/13654 A2 offenbart, ein Gemisch aus Phytoen und Phytofluen aus Algen der Art Dunaliella sp. zu extrahieren. Auch nach diesem Verfahren ist das Phytoen nicht in reiner Form erhältlich und muss von den anderen Produkten getrennt werden. Zudem handelt es sich um gentechnisch unveränderte Algen, deren Biosynthese mittels eines hinzugefügten Inhibitors beeinflusst werden muss.

5

10

15

20

25

30

Blakeslea trispora als Produktionsorganismus für β -Carotin ist auch aus der WO 98/03480 A1. bekannt. Hier werden β -Carotin Kristalle aus Biomasse von Blakeslea trispora mittels Extraktion erhalten. Allerdings müssen in dem beschriebenen Verfahren große Mengen unterschiedlicher Lösungsmittel eingesetzt werden, um Kristalle mit hoher Reinheit durch mehrere Extraktions- und Waschschritte zu erhalten. Auch sind die erhaltenen Mengen β -Carotin bezogen auf die eingesetzte Menge Biomasse klein.

Aus der WO 01/83437 A1 ist ein Verfahren zur Extraktion von Astaxanthin aus Hefe bekannt, bei dem die Kulturbrühe zur Sterilisation und zum Zell-aufschluss mit Mikrowellenstrahlung behandelt wird. Der Zellaufschluss mittels Mikrowellenstrahlung ist danach nötig, um Astaxanthin aus Hefe zu gewinnen, ohne es dabei zu zerstören. Anschließend soll Astaxanthin mittels Methanol, Ethanol oder Aceton oder deren Mischungen extrahiert werden. Hierzu sind allerdings große Mengen Lösungsmittel (5 bis 20 Teile Lösungsmittel auf 1 Teil Suspension) und ein langer Zeitraum (24h) erforderlich. Zudem sind keine Reinheiten des Astaxanthins angegeben und die erhaltenen Mengen sind klein. Versuche der Anmelderin und andere Veröffentlichungen bestätigen jedoch, dass eine Extraktion mittels Methanol oder Ethanol nicht durchführbar ist.

9

Aus der WO 98/50574 ist ebenfalls die Isolierung von Carotinoid Kristallen aus Biomasse von Mikroorganismen bekannt, wobei hiernach im Gegensatz zur WO 01/83437 A1 Methanol, Ethanol, Aceton nur zum Entfernen von Lipiden aus der Biomasse d. h. .zum Waschen verwendet werden kann. Als Lösungsmittel zur Extraktion von Carotinoiden wird demnach Ethylacetat, Hexan oder ein Öl verwendet. Anschließend sind mehrere Reinigungs- und Waschschritte mit großen Mengen Ethanol und Wasser nötig, wobei lediglich eine Reinheit von 93,3 % bei einer Ausbeute von 35 % erreicht wird.

10

15

20

25

30

Die WO 03/038064 A2 beschreibt die fermentative Produktion von Lycopin durch Co-Kultivierung von mutiertem Blakeslea trispora Paarungstyp (–) und Blakeslea trispora Paarungstyp (+), die ohne Zusatz von Inhibitoren der Carotinoid Biosynthese Lycopin herstellen. Die Erzeugung der zur Fermentation eingesetzten Mutante wird durch unselektive chemische Mutation und anschließendes Screening vorgenommen. Die Aufarbeitung der Kulturbrühe erfolgt mittels Zellaufschluss und anschließender Reinigung mit unterschiedlichen wässrigen Medien mit verschiedenem Salzgehalt und pH-Wert und mit Wasser nicht mischbaren organischen Lösungsmitteln wie Ethylacetat, Hexan und 1- Butanol zur Entfernung von Lipiden. Alternativ ist eine Extraktion mittels großer Mengen Ethylacetat beschrieben. Angaben zur Reinheit fehlen. Da Ethylacetat und Hexan Lösungsmittel für Lycopin sind, ist davon auszugehen, dass ein Teil des Lycopins herausgewaschen und so die theoretische mögliche Ausbeute verringert wird.

Auch aus der WO 01/55100 A1 ist die Isolierung von Carotinoiden allgemein bzw. β-Carotin im speziellen aus der Biomasse durch Anwendung mehrerer Wasch- und Reinigungsschritte auf die aufgeschlossene Biomasse ohne Extraktion mittels Lösungsmittel beschrieben. Hierzu wird

10

aufgeschlossene Biomasse von Blakeslea trispora mit Wasser, Lauge, Säure, Butanol und Ethanol gewaschen, so daß eine große Zahl unterschiedlicher Lösungsmittel und wässriger Medien verwendet werden muss. Die Reinheit des erhaltenen β -Carotins beträgt 96 – 98 %. Angaben zur Ausbeute fehlen jedoch.

Die WO 97/36996 A2 beschreibt allgemein eine Verfahren zur Isolierung von Substanzen (u. a. Carotinoide) aus Mikroorganismen, wobei die Substanzen aus der Biomasse mittels Fest/Flüssig-Extraktion isoliert werden. Ein Zellaufschluß soll hierbei nicht nötig sein, jedoch muss die Biomasse zunächst durch Extrusion in eine granulierte, poröse Gestalt gebracht werden. Wie nur Carotinoide isoliert werden können und wie deren Reinheit bzw. Ausbeute ist, ist nicht angegeben. Der Rückstand der Extrusion kann anschließend als Futtermittelzusatz verwendet werden.

15

20

25

30

5

10

In allen oben beschriebenen Verfahren müssen große Mengen Lösungsmittel zur Extraktion eingesetzt werden, um die isolierte Menge an Carotinoid durch vollständige Extraktion zu erhöhen, und/oder große Mengen wässriger Medien zur Reinigung und zum Waschen eingesetzt werden. Dies bedingt hohe Kosten und aufwendige Maßnahmen zur Wiederverwendung bzw. ggf. Abfälle.

Zudem werden die nahrhafte Kulturbrühe und die darin enthaltene Biomasse nach Extraktion bzw. Isolierung der Carotinoide als Abfall behandelt. Die oben angegebenen Verfahren haben neben diesen vordergründigen Nachteilen einen entscheidenden weiteren Nachteil. Es ist nämlich danach notwendig, die Carotinoide den Nahrungsmitteln nachträglich zuzusetzen, d. h. sie sind nicht Bestandteil der Nahrungsmittel an sich bzw. nicht in ausreichender Menge. Von großem Vorteil wäre daher, wenn der Gehalt an Carotinoiden in den Nahrungsmitteln bereits durch die eigentlichen Nahrungsmittel selbst gedeckt würde.

11

Es ist ebenfalls nötig die Produktivitäten der bisher natürlicherweise produzierten Carotine und deren Vorstufen weiter zu steigern und die Herstellung weiterer Carotinoide, wie z. B. Xanthophylle besonders bevorzugt Astaxanthin oder Zeaxanthin und Phytoen oder Bixin zu ermöglichen, die von den Wildtypen der Mikroorganismen bisher nicht oder nur in sehr geringem Maße gebildet und isoliert werden können.

Aufgabe der Erfindung ist es gentechnisch veränderte Zellen von Blakeslea-Stämmen, insbesondere Blakeslea trispora bereitzustellen, die Carotinoide oder deren Vorstufen, insbesondere Xanthophylle, besonders bevorzugt Astaxanthin oder Zeaxanthin und Phytoen oder Bixin produzieren.
Zudem soll das Verfahren die Steigerung der Carotinoid-Produktivität der
veränderten Zellen gegenüber den korrespondierenden Wildtypen erlauben. Ferner soll das Verfahren die Erzeugung neuer Zellen oder aus ihnen
bestehendes Mycel erlauben, die sich für die Verwendung zur Herstellung
von Carotinoiden oder deren Vorstufen eignen, die bisher nicht in wirtschaftlich interessanten Mengen aus den natürlich vorkommenden Pilzen
gewinnbar waren, insbesondere Xanthophylle, besonders bevorzugt Astaxanthin oder Zeaxanthin und Phytoen oder Bixin. Das Verfahren soll dabei
eine gentechnische Veränderung von Blakeslea-Stämmen, insbesondere
Blakeslea trispora möglich machen und die Herstellung homokaryotischer
gentechnisch veränderter Produktions-Stämme erlauben.

Des weiteren soll das Verfahren die Herstellung weiterer Carotinoide, wie z. B. Xanthophylle, insbesondere Astaxanthin oder Zeaxanthin und Phytoen oder Bixin ermöglichen, die von den Wildtypen der Mikroorganismen bisher nicht oder nur in sehr geringem Maße gebildet und isoliert werden können.

5

10

15

20

5

10

15

20

25

Ferner ist es Aufgabe der vorliegenden Erfindung ein Verfahren zur Herstellung von Carotinoiden aus gentechnisch veränderte Zellen von Blakeslea-Stämmen, insbesondere Blakeslea trispora, zur Verfügung zu stellen, welches den Einsatz geringerer Lösungsmittelmengen erlaubt und im wesentlichen ohne Abfälle auskommt und zudem eine hohe Reinheit und höhere Ausbeuten erlaubt.

In diesem Zusammenhang soll ein möglichst großer Anteil der im Fermenter vorliegenden Nährstoffe, sowohl Carotinoide als auch weitere sich in den Mikroorganismen befindende, verwertet werden.

Somit ist es auch Aufgabe der vorliegenden Erfindung ein Verfahren zur Herstellung eines Carotinoid-haltigen Nahrungsmittels bereitzustellen, wobei das Nahrungsmittel selbst den Bedarf an Carotinoiden ohne Zusätze deckt. Insbesondere soll der Nährstoffgehalt der nach dem Verfahren erhältlichen Nahrungsmittel gegenüber den bisher erhältlichen Nahrungsmitteln zumindest gleichwertig sein. Ferner soll das Verfahren die effiziente Verwertung der produzierten Carotinoide ermöglichen.

Diese Aufgabe wird durch ein Verfahren zur Herstellung von Carotinoiden oder deren Vorstufen mittels gentechnisch veränderten Organismen der Gattung Blakeslea gelöst, umfassend

- (i) Transformation mindestens einer der Zellen,
- (ii) ggf. Homokaryotisierung der aus (i) erhaltenen Zellen, so dass Zellen entstehen, in denen die Kerne in einem oder in mehreren genetischen Merkmalen alle gleichartig verändert sind und diese genetische Veränderung zur Ausprägung bringen, und
- (iii) Selektion und Vermehrung der gentechnisch veränderten Zelle oder Zellen.
- (iv) Kultivierung der gentechnisch veränderten Zellen,

13

(v) Bereitstellung des von den gentechnisch veränderten Zellen produzierten Carotinoids oder der von den gentechnischen veränderten Zellen produzierten Carotinoidvorstufe.

Mit der erfindungsgemäßen Methode ist es möglich, Blakeslea gezielt und stabil genetisch zu verändern, um so Mycel aus Zellen mit einheitlichen Kernen zu gewinnen, das Carotinoide oder deren Vorstufen, insbesondere Xanthophylle, besonders bevorzugt Astaxanthin oder Zeaxanthin und Phytoen oder Bixin produziert. Vorzugsweise handelt es sich um Zellen von Pilzen der Art Blakeslea trispora. Die produzierten Carotinoiden oder deren Vorstufen sind dabei im wesentlichen frei von Verunreinigungen erhältlich und es können hohe Konzentrationen der Carotinoiden oder deren Vorstufen im Kulturmedium erzielt werden.

15

20

25

30

Unter Transformation wird die Übertragung einer genetischen Information in den Organismus, insbesondere Pilz verstanden. Darunter sollen alle dem Fachmann bekannten Möglichkeiten zur Einschleusung der Information, insbesondere DNA fallen, z. B. Beschuss mit DNA-beladenen Partikeln, Transformation mittels Protoplasten, Mikroinjektion von DNA, Elektroporation, Konjugation oder Transformation kompetenter Zellen, Chemikalien oder Agrobakterien vermittelte Transformation. Als genetische Information werden ein Genabschnitt, ein Gen oder mehrere Gene verstanden. Die genetische Information kann z. B. mit Hilfe eines Vectors oder als freie Nukleinsäure (z. B. DNA, RNA) und auf sonstige Weise in die Zellen eingebracht und entweder durch Rekombination ins Wirtsgenom eingebaut oder in freier Form in der Zelle vorliegen. Besonders bevorzugt ist hierbei die homologe Rekombination.

Bevorzugte Transformationsmethode ist die Agrobacterium tumefaciensvermittelte Transformation. Hierzu wird zunächst die zu transferierende

14.

Spender-DNA in einen Vektor eingefügt, der (i) flankierend zu der zu transferierenden DNA die T-DNA-Enden trägt, der (ii) einen Selektionsmarker enthält und der (iii) ggf. Promotoren und Terminatoren für die Genexpression der Spender-DNA aufweist. Dieser Vektor wird in einen Agrobacterium-tumefaciens-Stamm übertragen, der ein Ti-Plasmid mit den vir-Genen enthält. vir-Gene sind für den DNA-Transfer in Blakeslea verantwortlich. Mit diesem Zwei-Vektor-System wird die DNA von Agrobacterium in Blakeslea übertragen. Hierzu werden die Agrobakterien zunächst in Gegenwart von Acetosyringone inkubiert. Acetosyringone induziert die vir-Gene. Anschließend werden Sporen von Blakeslea trispora zusammen mit den induzierten Zellen von Agrobacterium tumefaciens auf Acetosyringone-haltigem Medium inkubiert und dann auf Medium übertragen, das eine Selektion der Transformanten, d.h. der gentechnisch veränderten Stämme von Blakeslea ermöglicht.

15

20

25

30

10

Der Begriff Vector wird in der vorliegenden Anmeldung als eine Bezeichnung für ein DNA-Molekül verwendet, das zum Einschleusen und ggf. zur Vermehrung von Fremd-DNA in eine Zelle dient (siehe auch "Vector" in Römpp Lexikon Chemie – CDROM Version 2.0, Stuttgart/New York: Georg Thieme Verlag 1999). In der vorliegenden Anmeldung sollen unter dem begriff "Vector" auch Plasmide, Cosmide usw. verstanden werden, die dem gleichen Zweck dienen.

Unter Expression wird in der vorliegenden Anmeldung die Übertragung einer genetischen Information ausgehend von DNA oder RNA in ein Gen-Produkt (hier vorzugsweise Enzyme zur Herstellung von Carotinoiden und insbesondere Xanthophylle, besonders bevorzugt Astaxanthin oder Zea-xanthin und Phytoen oder Bixin) verstanden und soll auch den Begriff der Überexpression beinhalten, womit eine verstärkte Expression gemeint ist, so dass ein bereits in der nicht transformierten Zelle (Wildtyp) hergestell-

tes Genprodukt verstärkt produziert wird oder einen großen Teil des gesamten Gehaltes der Zelle ausmacht.

15

Unter gentechnische Veränderung soll die Einschleusung genetischer Information in einen Empfängerorganismus, so dass diese stabil exprimiert und bei der Zellteilung weitergegeben wird, verstanden werden. In diesem Zusammenhang ist die Homokaryotisierung, die Herstellung von Zellen, die nur einheitliche Kerne enthalten, d. h. Kerne mit gleichem genetischem Informationsgehalt.

10

15

20

25

30

5

Diese Homokaryotisierung ist nur notwendig, wenn die durch Transformation eingeführte genetische Information rezessiv vorliegt, d. h. nicht zur Ausprägung gelangt. Führt die Transformation aber zu einem dominanten Vorliegen der genetischen Information, d. h. wird sie ausgeprägt, so ist eine Homokaryotisierung nicht unbedingt nötig.

Vorzugsweise wird zur Homokaryotisierung eine Selektion der einkernigen Sporen durchgeführt. Von Natur aus ist ein geringer Anteil der Sporen von Blakeslea trispora einkernig, so dass sich diese ggf. nach spezifischer Markierung z. B. Färbung der Zellkerne aussortieren lassen. Dies wird bevorzugterweise mittels FACS (Fluorescence Activated Cell Sorting) anhand der geringeren Fluoreszenz der einkernigen Zellen durchgeführt.

Alternativ kann zur Homokaryotisierung zunächst eine Kernreduktion durchgeführt werden. Hierzu kann ein mutagenes Agens eingesetzt werden, wobei es sich insbesondere um N-Methyl-N'-nitro-nitrosoguanidin (MNNG) handelt. Auch die Verwendung von energiereichen Strahlen, wie UV- oder Röntgen-Strahlen zur Kernreduktion ist möglich. Anschließend kann zur Selektion auf das FACS Verfahren oder rezessive Selektionsmarker zurückgegriffen werden.

Unter Selektion wird die Auswahl von Zellen verstanden, deren Kerne dieselbe genetische Information beinhalten, d. h. Zellen die die gleichen Eigenschaften aufweisen, wie Resistenzen oder die Herstellung bzw. vermehrte Herstellung eines Produktes. In der Selektion werden neben der FACS Methode bevorzugt 5-Carbon-5-deazariboflavin (DARF) und Hygromycin (hyg) oder 5'-Fluororotat (FOA) und Uracil eingesetzt.

Der in der Transformation (i) eingesetzte Vector kann derart gestaltet sein, dass die im Vector enthaltene genetische Information in das Genom mindestens einer Zelle integriert wird. Dabei kann genetische Information in der Zelle ausgeschaltet werden. Dies kann direkt, d. h. durch eine Deletion erfolgen. Es ist aber auch möglich, daß der in der Transformation (i) eingesetzte Vector derart ausgestaltet ist, dass die im Vector enthaltene genetische Information in der Zelle exprimiert wird, d. h. genetische Information eingefügt wird, die im korrespondierenden Wildtyp nicht vorhanden ist oder die durch die Transformation verstärkt bzw. überexprimiert wird und deren Produkt das Gen ausschaltet. Die eingeführte genetische Information kann aber auch indirekt eine genetische Information in der Zelle ausschalten, z. B. durch Produktion eines Inhibitors.

Der eingesetzte Vector enthält genetische Informationen oder Teile der genetischen Information zur Herstellung von Carotinoiden oder deren Vorstufen, insbesondere Carotinen oder Xanthophyllen oder deren Vorstufen. Der eingesetzte Vector enthält vorzugsweise genetische Informationen zur Herstellung von Astaxanthin, Zeaxanthin, Echinenon, β -Cryptoxanthin, β -Carotin, Andonixanthin, Adonirubin, Canthaxanthin, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Lycopin, Lutein, Bixin oder Phytoen. Ganz besonders bevorzugt enthält der Vector Informationen zur Herstellung von Bixin, Phytoen, Canthaxanthin, Astaxanthin oder Zeaxanthin.

Der Vector kann beliebige genetische Informationen zur genetischen Veränderungen von Organismen der Gattung Blakeslea enthalten.

17

Unter "genetischer Information" werden vorzugsweise Nukleinsäuren verstanden, deren Einbringung in den Organismus der Gattung Blakeslea zu einer genetischen Veränderung in Organismen der Gattung Blakeslea, also beispielsweise zu einer Verursachung, Erhöhung oder Reduzierung von Enzymaktivitäten im Vergleich zum Ausgangsorganismus führen.

10 Der Vector kann beispielsweise genetische Information zur Herstellung lipophiler Substanzen enthalten wie z.B. Carotinoide und deren Vorstufen, Phospholipide, Triacylglyceride, Steroide, Wachse, fettlösliche Vitamine, Provitamine und Cofaktoren oder genetische Information zur Herstellung hydrophiler Substanzen wie z.B. Eiweiße, Aminosäuren, Nukleotide und wasserlösliche Vitaminen, Provitamine und Cofaktoren.

Bevorzugterweise enthält der eingesetzte Vector genetische Informationen zur Herstellung von Carotinoiden oder Xanthophyllen oder deren Vorstufen.

20

5

Bevorzugterweise enthält der Vektor genetische Information, die eine Lokalisierung der Carotinoidbiosynthese-Enzyme in dem Zellkompartiment bewirkt, in dem die Carotinoidbiosynthese stattfindet.

Besonders bevorzugt sind genetische Informationen zur Herstellung von Astaxanthin, Zeaxanthin, Echinenon, β-Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3- und 3'-Hydroxyechinenon, Lycopin, Lutein, β-Carotin, Phytoen und/oder Phytofluen. Ganz besonders bevorzugt sind genetische Informationen zur Herstellung von Phytoen, Bixin, Lycopin, Zeaxanthin, Canthaxanthin und/oder Astaxanthin.

18

Entsprechend werden in einer bevorzugten Variante der Erfindung Organismen hergestellt und kultiviert, die über eine erhöhte Syntheserate für Zwischenprodukte der Carotinoidbiosynthese verfügen und folglich eine erhöhte Produktivität für Endprodukte der Carotinoidbiosynthese aufweisen. Zur Erhöhung der Syntheserate für Zwischenprodukte der Carotinoidbiosynthese werden insbesondere die Aktivitäten der Enzyme 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A-Reduktase (HMG-CoA-Reduktase), Isopentenylpyrophosphat-Isomerase und Geranylpyrophosphatsynthase gesteigert.

10

20

25

30

5

Entsprechend werden in einer besonders bevorzugten Variante der Erfindung Organismen hergestellt und kultiviert, die gegenüber dem Wildtyp eine erhöhte HMG-CoA-Reduktase-Aktivität aufweisen.

Unter HMG-CoA-Reduktase—Aktivität wird die Enzymaktivität einer HMG-CoA-Reduktase (3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A-Reduktase) verstanden.

Unter einer HMG-CoA-Reduktase wird ein Protein verstanden, das die enzymatische Aktivität aufweist 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A in Mevalonat umzuwandeln.

Dementsprechend wird unter HMG-CoA-Reduktase—Aktivität die in einer bestimmten Zeit durch das Protein HMG-CoA-Reduktase umgesetzte Menge 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A bzw. gebildete Menge Mevalonat verstanden.

Bei einer erhöhten HMG-CoA-Reduktase—Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein HMG-CoA-Reduktase die umgesetzte Menge 3-Hydroxy-3-Methyl-Glutaryl-Coenzym-A bzw. die gebildete Menge Mevalonat erhöht.

Vorzugsweise beträgt diese Erhöhung der HMG-CoA-Reduktase-Aktivität mindestens 5%, weiter bevorzugt mindestens 20%, weiter bevorzugt mindestens 50%, weiter bevorzugt mindestens 100%, besonders bevorzugt mindestens 300%, noch bevorzugter mindestens 500%, insbesondere mindestens 600% der HMG-CoA-Reduktase-Aktivität des Wildtyps.

In einer bevorzugten Ausführungsform erfolgt die Erhöhung der HMG-CoA-Reduktase-Aktivität gegenüber dem Wildtyp durch eine Erhöhung der Genexpression einer Nukleinsäure codierend eine HMG-CoA-Reduktase.

10

15

20

25

30

5

In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Erhöhung der Genexpression einer Nukleinsäure codierend eine HMG-CoA-Reduktase indem man ein Nukleinsäurekonstrukt, enthaltend eine Nukleinsäure codierend eine HMG-CoA-Reduktase in den Organismus einbringt, deren Expression in dem Organismus, verglichen mit dem Wildtyp, einer reduzierten Regulation unterliegt.

Unter einer reduzierten Regulation verglichen mit dem Wildtyp, wird eine im Vergleich zum vorstehend definierten Wildtyp verringerte, vorzugsweise keine Regulation auf Expressions- oder Proteinebene verstanden.

Die reduzierte Regulation kann vorzugsweise durch einen im Nukleinsäurekonstrukt mit der kodierenden Sequenz funktionell verknüpften Promotor erreicht werden, der in dem Organismus verglichen mit dem Wildtyp-Promoter einer reduzierten Regulation unterliegt.

Beispielsweise unterliegen die Promotoren ptef1 aus Blakeslea trispora und pgpdA aus Aspergillus nidulans nur einer reduzierten Regulation und sind daher insbesondere als Promotoren bevorzugt.

Diese Promotoren zeigen eine annähernd konstitutive Expression in Blakeslea trispora, so dass die transkriptionelle Regulation nicht mehr über die Intermediate der Carotinoidbiosynthese abläuft.

Die reduzierte Regulation kann in einer weiteren bevorzugten Ausführungsform dadurch erreicht werden, dass man als Nukleinsäure codierend eine HMG-CoA-Reduktase eine Nukleinsäure verwendet, deren Expression in dem Organismus, verglichen mit der Organismus eigenen, orthologen Nukleinsäure, einer reduzierten Regulation unterliegt.

10

15

20

25

30

Besonders bevorzugt ist die Verwendung einer Nukleinsäure, die nur den katalytischen Bereich der HMG-CoA-Reduktase kodiert (trunkierte (t-)HMG-CoA-Reduktase). Die für die Regulation verantwortliche Membran-Domäne fehlt. Die verwendete Nukleinsäure unterliegt somit einer reduzierten Regulation und führt zu einer Erhöhung der Genexpression der HMG-CoA-Reduktase.

In einer besonders bevorzugten Ausführungsform bringt man Nukleinsäuren in Blakeslea trispora ein, welche die Sequenz SEQ ID. NO. 75 enthalten.

Weitere Beispiele für HMG-CoA-Reduktasen und damit auch für die auf den katalytischen Bereich reduzierten t-HMG-CoA-Reduktasen bzw. die kodierenden Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Homologievergleiche der Sequenzen aus Datenbanken mit der SEQ ID. NO. 75 leicht auffinden.

Weitere Beispiele für HMG-CoA-Reduktasen und damit auch für die auf den katalytischen Bereich reduzierten t-HMG-CoA-Reduktasen bzw. die kodierenden Gene lassen sich weiterhin beispielsweise ausgehend von

der Sequenz SEQ ID. NO. 75 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer besonders bevorzugten Ausführungsform wird die reduzierte Regulation dadurch erreicht, dass man als Nukleinsäure codierend eine HMG-CoA-Reduktase eine Nukleinsäure verwendet, deren Expression in dem Organismus, verglichen mit der Organismus eigenen, orthologen Nukleinsäure, einer reduzierten Regulation unterliegt und einen Promotor verwendet, der in dem Organismus, verglichen mit dem Wildtyp-Promoter einer reduzierten Regulation unterliegt.

Entsprechend wird in einer bevorzugten Variante der Erfindung durch die Transformation die Genexpression der Phytoendesaturase ausgeschaltet, so dass das von den Organismen produzierte Phytoen gewonnen werden kann. Der in der Transformation (i) eingesetzte Vector umfasst daher in einer Ausführungsform der Erfindung bevorzugterweise eine Sequenz codierend für ein Fragment des Gens der Phytoendesaturase, insbesondere carB aus Blakeslea trispora mit der SEQ ID NO: 69.

20

25

15

Entsprechend wird in einer bevorzugten Variante der Erfindung durch Transformation die Genexpression der Lycopincyclase ausgeschaltet, so dass das von den Organismen produzierte Lycopin gewonnen werden kann. Der in der Transformation eingesetzte Vektor umfasst daher in einer Ausführungsform der Erfindung bevorzugterweise eine Sequenz codierend für ein Fragment des Gens der Lycopincyclase, insbesondere carR aus Blakeslea trispora.

30 In einer bevorzugten Ausführungsform werden die Organismen der Gattung Blakeslea beispielsweise dadurch in die Lage versetzt Xanthophylle,

wie beispielsweise Canthaxanthin, Zeaxanthin oder Astaxanthin herzustellen, Bixin oder Phytoen, indem in den genetisch veränderten Organismen der Gattung Blakeslea im Vergleich zum Wildtyp eine Hydroxylase-Aktivität und/oder Ketolase-Aktivität verursacht wird.

5

Der in der Transformation (i) eingesetzte Vector enthält also in einer weiteren, bevorzugten Variante der Erfindung genetische Informationen, die nach Expression eine Ketolase- und/oder Hydroxylase-Aktivität entfalten, so dass die Organismen Zeaxanthin oder Astaxanthin produzieren.

10

Unter Ketolase-Aktivität wird die Enzymaktivität einer Ketolase verstanden.

Unt

Unter einer Ketolase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β -Ionon-Ring von Carotinoiden eine Keto-Gruppe einzuführen.

Insbesondere wird unter einer Ketolase ein Protein verstanden, das die enzymatische Aktivität aufweist, β-Carotin in Canthaxanthin umzuwandeln.

20

15

Dementsprechend wird unter Ketolase-Aktivität die in einer bestimmten Zeit durch das Protein Ketolase umgesetzte Menge β-Carotin bzw. gebildete Menge Canthaxanthin verstanden.

25

Unter dem Begriff "Wildtyp" wird erfindungsgemäß der entsprechende nicht genetisch veränderte Ausgangsorganismus der Gattung Blakesleaa verstanden.

Je 30 ga

Je nach Zusammenhang kann unter dem Begriff "Organismus" der Ausgangsorganismus (Wildtyp) der Gattung Blakesleaa oder ein erfindungs-

gemäßer, genetisch veränderter Organismus der Gattung Blakesleaa oder beides verstanden werden.

23

Vorzugsweise wird unter "Wildtyp" für die Verursachung der Ketolase-5 Aktivität und für die Verursachung der Hydroxylase-Aktivität jeweils eine Referenz Organismus verstanden.

Dieser Referenzorganismus der Gattung Blakeslea ist Blakeslea trispora ATCC 14271 oder ATCC 14272, die sich lediglich im Paarungstyp unterscheiden.

10

15

20

25

30

Die Bestimmung der Ketolase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen der Gattung Blakesleaa und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:

Die Bestimmung der Ketolase-Aktivität in Organismen der Gattung Blakeslea erfolgt in Anlehnung an die Methode von Frazer et al., (J. Biol. Chem. 272(10): 6128-6135, 1997). Die Ketolase-Aktivität in Extrakten wird mit den Substraten beta-Carotin und Canthaxanthin in Gegenwart von Lipid (Sojalecithin) und Detergens (Natriumcholat) bestimmt. Substrat/Produkt-Verhältnisse aus den Ketolase-Assays werden mittels HPLC ermittelt.

Der erfindungsgemäße genetisch veränderte Organismus der Gattung Blakesleaa weist in dieser, bevorzugten Ausführungsform im Vergleich zum genetisch nicht veränderten Wildtyp eine Ketolase-Aktivität auf und ist somit vorzugsweise in der Lage, transgen eine Ketolase zu exprimieren.

In einer weiter bevorzugten Ausführungsform erfolgt die Verursachung der Ketolase-Aktivität in den Organismen der Gattung Blakesleaa durch Verursachung der Genexpression einer Nukleinsäure kodierend eine Ketolase.

24

In dieser bevorzugten Ausführungsform erfolgt die Verursachung der Genexpression einer Nukleinsäure kodierend eine Ketolase vorzugsweise durch Einbringen von Nukleinsäuren, die Ketolasen kodieren in die Ausgangsorganismus der Gattung Blakesleaa.

Dazu kann prinzipiell jedes Ketolase-Gen, also jede Nukleinsäuren die eine Ketolase codiert verwendet werden.

Alle in der Beschreibung erwähnten Nukleinsäuren können beispielsweise eine RNA-, DNA- oder cDNA-Sequenz sein.

Bei genomischen Ketolase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das der Wirtsorganismus der Gattung Blakesleaa nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechenden Ketolase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.

20 Beispiele für Nukleinsäuren, kodierend eine Ketolase und die entsprechenden Ketolasen, die im erfindungsgemäßen Verfahren verwendet werden können sind beispielsweise Sequenzen aus:

Haematoccus pluvialis, insbesondere aus Haematoccus pluvialis Flotow em. Wille (Accession NO: X86782; Nukleinsäure: SEQ ID NO: 11, Protein SEQ ID NO: 12),

Haematoccus pluvialis, NIES-144 (Accession NO: D45881; Nukleinsäure: SEQ ID NO: 13, Protein SEQ ID NO: 14),

5

15

15

30

Agrobacterium aurantiacum (Accession NO: D58420; Nukleinsäure: SEQ ID NO: 15, Protein SEQ ID NO: 16),

Alicaligenes spec. (Accession NO: D58422; Nukleinsäure: SEQ ID NO: 17, Protein SEQ ID NO: 18),

Paracoccus marcusii (Accession NO: Y15112; Nukleinsäure: SEQ ID NO: 19, Protein SEQ ID NO: 20).

Synechocystis sp. Strain PC6803 (Accession NO: NP442491; Nukleinsäure: SEQ ID NO: 21, Protein SEQ ID NO: 22).

Bradyrhizobium sp. (Accession NO: AF218415; Nukleinsäure: SEQ ID NO: 23, Protein SEQ ID NO: 24).

Nostoc sp. Strain PCC7120 (Accession NO: AP003592, BAB74888; Nukleinsäure: SEQ ID NO: 25, Protein SEQ ID NO: 26),

Nostoc punctiforme ATTC 29133, Nukleinsäure: Acc.-No.

20 NZ_AABC01000195, Basenpaar 55,604 bis 55,392 (SEQ ID NO: 27); Protein: Acc.-No. ZP_00111258 (SEQ ID NO: 28) (als putatives Protein annotiert),

Nostoc punctiforme ATTC 29133, Nukleinsäure: Acc.-No.

25 NZ_AABC01000196, Basenpaar 140,571 bis 139,810 (SEQ ID NO: 29), Protein: (SEQ ID NO: 30) (nicht annotiert),

Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene, die im erfindungsgemäßen Verfahren verwendet werden können, lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Aminosäuresequenzen oder der

26

entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit den vorstehend beschriebenen Sequenzen und insbesondere mit den Sequenzen SEQ ID NO: 12, 26 und/oder 33 leicht auffinden.

Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 12,
26 und/oder 30 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.

Die Hybridisierung kann unter moderaten (geringe Stringenz) oder vorzugsweise unter stringenten (hohe Stringenz) Bedingungen erfolgen.

Solche Hybridisierungsbedingungen sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6 beschrieben.

20

Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 2X SSC bei 50_C) und solchen mit hoher Stringenz (mit 0.2X SSC bei 50_C, bevorzugt bei 65_C) (20X SSC: 0,3 M Natriumcitrat, 3 M Natriumchlorid, pH 7.0).

Darüberhinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22°C, bis zu stringenten Bedingungen bei 65°C angehoben werden.

25

Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50% Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt.

Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:

10

5

- (1) Hybridiserungsbedingungen mit zum Beispiel
- ¹ (i) 4X SSC bei 65°C, oder
- (ii) 6X SSC bei 45°C, oder
- (iii) 6X SSC bei 68°C, 100 mg/ml denaturierter Fischsperma-DNA, oder
- 15 (iv) 6X SSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA bei 68°C, oder
 - (v) 6XSSC, 0.5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA, 50 % Formamid bei 42°C, oder
 - (vi) 50 % Formamid, 4X SSC bei 42°C, oder
- (vii) 50 % (vol/vol) Formamid, 0.1 % Rinderserumalbumin, 0.1 % Ficoll,
 0.1 % Polyvinylpyrrolidon, 50 mM Natriumphosphatpuffer pH 6.5, 750 mM
 NaCl, 75 mM Natriumcitrat bei 42°C, oder
 - (viii) 2X oder 4X SSC bei 50°C (moderate Bedingungen), oder
- (ix) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42°C (moderate Be-25 dingungen).
 - (2) Waschschritte für jeweils 10 Minuten mit zum Beispiel
 - (i) 0.015 M NaCl/0.0015 M Natriumcitrat/0.1 % SDS bei 50°C, oder
 - (ii) 0.1X SSC bei 65°C, oder
- 30 (iii) 0.1X SSC, 0.5 % SDS bei 68°C, oder
 - (iv) 0.1X SSC, 0.5 % SDS, 50 % Formamid bei 42°C, oder

5

10

25

30

- (v) 0.2X SSC, 0.1 % SDS bei 42°C, oder
- (vi) 2X SSC bei 65°C (moderate Bedingungen).

In einer bevorzugten Ausführungsform der erfindungsgemäßen genetisch veränderten Organismen der Gattung Blakeslea bringt man Nukleinsäuren ein, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30%, 40%, 50%, 60%, bevorzugt mindestens 70%, 80%, besonders bevorzugt mindestens 90%, insbesondere 91%, 92%; 93%, 94%, 95%, 96%, 97%, 98% oder 99% auf Aminosäureebene mit der Sequenz SEQ ID NO: 12 und die enzymatische Eigenschaft einer Ketolase aufweist.

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 12 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

In einer weiteren, bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 26 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30%, 40%, 50%, 60%, bevorzugt mindestens 70%, 80%, besonders bevorzugt mindestens 90%, insbesondere 91%, 92%; 93%, 94%, 95%, 96%, 97%, 98% oder 99% auf Aminosäureebene mit der Sequenz SEQ ID NO: 26 und die enzymatische Eigenschaft einer Ketolase aufweist.

29

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 26 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

5

10

15

30

In einer weiteren, bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 30 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30 %, 40 %, 50 %, bevorzugt mindestens 60 %, 70 %, bevorzugter mindestens 80 %, 85 % besonders bevorzugt mindestens 90 %, insbesondere 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % auf Aminosäureebene mit der Sequenz SEQ ID NO 30 und die enzymatische Eigenschaft einer Ketolase aufweist.

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die, wie vorstehend beschrieben, durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO: 30 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

Unter dem Begriff "Substitution" ist in der Beschreibung der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat

10

15

25

30

wie die ursprüngliche Aminosäure, beispielsweise Austausch von Gludurch Asp, Gln durch Asn, Val durch IIe, Leu durch IIe, Ser durch Thr.

Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung.

5 Bevorzugte Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen.

Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren ersetzt wird.

Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden, insbesondere die Identität die durch Vergleich mit Hilfe der Lasergene Software der Firma DNASTAR, inc. Madison, Wisconsin (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2):151-1) unter Einstellung folgender Parameter berechnet wird:

20 Multiple alignment parameter:

Gap penalty	10
Gap length penalty	10·
Pairwise alignment parameter:	
K-tuple	1
Gap penalty	3

Window 5
Diagonals saved 5

Unter einem Protein, das eine Identität von mindestens 20% auf Aminosäureebene mit der Sequenz SEQ ID NO: 12 oder 26 oder 30 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich

•

seiner Sequenz mit der Sequenz SEQ ID NO: 12 oder 26 oder 30, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 20 %, bevorzugt 30%, 40%, 50%, besonders bevorzugt 60%, 70%, 80%, insbesondere 85%, 90, 95% aufweist.

31

5

10

15

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Blakesleaaspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene von Organismen der Gattung Blakesleaa leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 11 in die Organismus der Gattung ein.

In einer weiteren, besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 25 in die Organismus der Gattung ein.

In einer weiteren, besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 29 in die Organismus der Gattung ein.

25

30

20

Alle vorstehend erwähnten Ketolase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

Der in der Transformation (i) eingesetzte Vector umfasst daher in einer Ausführungsform der Erfindung bevorzugterweise eine Sequenz codierend für eine Ketolase, insbesondere der Ketolase Nostoc punctiforme aus mit der SEQ ID NO: 72.

Unter Hydroxylase-Aktivität die Enzymaktivität einer Hydroxylase verstanden.

15

25

30

10

5

Unter einer Hydroxylase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β -Ionon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.

Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, β-Carotin in Zeaxanthin oder Cantaxanthin in Astaxanthin umzuwandeln.

Dementsprechend wird unter Hydroxyase–Aktivität die in einer bestimmten Zeit durch das Protein Hydroxylase umgesetzte Menge β -Carotin oder Cantaxanthin bzw. gebildete Menge Zeaxanthin oder Astaxanthin verstanden.

Bei einer erhöhten Hydroxylase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein

33

Hydroxylase die umgesetzte Menge β -Carotin oder Cantaxantin bzw. die gebildete Menge Zeaxanthin oder Astaxanthin erhöht.

Vorzugsweise beträgt diese Erhöhung der Hydroxylase–Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der Hydroxylase–Aktivität des Wildtyps.

Die Bestimmung der Hydroxylase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. ReferenzOrganismen erfolgt vorzugsweise unter folgenden Bedingungen:

Die Aktivität der Hydroxylase wird nach Bouvier et al. (Biochim. Biophys. Acta 1391 (1998), 320-328) *in vitro* bestimmt. Es wird zu einer bestimmten Menge an Organismenextrakt Ferredoxin, Ferredoxin-NADP Oxidoreductase, Katalase, NADPH sowie beta-Carotin mit Mono- und Digalaktosylglyzeriden zugegeben.

20 Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase–Aktivität unter folgenden Bedingungen nach Bouvier, Keller, d'Harlingue und Camara (Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.; Biochim. Biophys. Acta 1391 (1998), 320-328):

25

30

5

15

Der in-vitro Assay wird in einem Volumen von 0.250 ml Volumen durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6), 0.025 mg Ferredoxin von Spinat, 0.5 Einheiten Ferredoxin-NADP+ Oxidoreduktase von Spinat, 0.25 mM NADPH, 0.010 mg beta-Carotin (in 0.1 mg Tween 80 emulgiert), 0.05 mM einer Mischung von Mono- und Digalaktosylglyzeriden (1:1), 1 Einheit Katalyse, 200 Mono- und Digalaktosylglyzeriden, (1:1),

0.2 mg Rinderserumalbumin und Organismenextrakt in unterschiedlichem Volumen. Die Reaktionsmischung wird 2 Stunden bei 30C inkubiert. Die Reaktionsprodukte werden mit organischem Lösungsmittel wie Aceton oder Chloroform/Methanol (2:1) extrahiert und mittels HPLC bestimmt.

5

Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase-Aktivität unter folgenden Bedingungen nach Bouvier, d'Harlingue und Camara (Molecular Analysis of carotenoid cyclae inhibition; Arch. Biochem. Biophys. 346(1) (1997) 53-64):

10

Der in-vitro Assay wird in einem Volumen von 250 □l Volumen durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6),unterschiedliche Mengen an Organismenextrakt, 20 nM Lycopin, 250 □g an chromoplastidärem Stromaprotein aus Paprika, 0.2 mM NADP+, 0.2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 10 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30C wird die Reaktion durch Zugabe von Chloroform/Methanol (2:1) beendet. Die in Chloroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.

20

25

15

Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fraser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15).

Die Erhöhung der Hydroxylase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch Erhöhung der Genexpression von Nukleinsäuren kodierend eine Hydroxylase gegenüber dem Wildtyp.

30 Die Erhöhung der Genexpression der Nukleinsäuren kodierend eine Hydroxylase gegenüber dem Wildtyp kann ebenfalls durch verschiedene Wege erfolgen, beispielsweise durch Induzierung des Hydroxylase-Gens durch Aktivatoren oder durch Einbringen von einer oder mehrerer Hydroxylase-Genkopien, also durch Einbringen mindestens einer Nukleinsäure kodierend eine Hydroxylase in denb Organismus der Gattung Blakesleaa.

5

In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Hydroxylase durch Einbringen von mindestens einer Nukleinsäure kodierend eine Hydroxylase in den Organismus der Gattung Blakesleaa.

10

Dazu kann prinzipiell jedes Hydroxylase—Gen, also jede Nukleinsäure, die eine Hydroxylase und jede Nukleinsäure, die eine β -Cyclase codiert, verwendet werden.

Bei genomischen Hydroxylase–Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das der Wirtsorganismus nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechende Hydroxylase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.

20

25

30

Ein Beispiel für ein Hydroxylase-Gen ist eine Nukleinsäure, kodierend eine Hydroxylase aus Haematococcus pluvialis mit der Accession No. AX038729 (WO 0061764; Nukleinsäure: SEQ ID NO: 31, Protein: SEQ ID NO: 32), aus Erwinia uredovora 20D3 (ATCC 19321, Accession No. D90087; Nukleinsäure: SEQ ID NO: 33, Protein: SEQ ID NO: 34) oder Hydroxylase aus Thermus thermophilus (DE 102 34 126.5) kodiert durch die Sequenz mit der SEQ ID NO 76.

sowie Hydroxylasen der folgenden Accession Nummern: |emb|CAB55626.1, CAA70427.1, CAA70888.1, CAB55625.1, AF499108_1, AF315289_1, AF296158_1, AAC49443.1, NP_194300.1,

36

NP_200070.1, AAG10430.1, CAC06712.1, AAM88619.1, CAC95130.1, AAL80006.1, AF162276_1, AAO53295.1, AAN85601.1, CRTZ_ERWHE, CRTZ_PANAN, BAB79605.1, CRTZ_ALCSP, CRTZ_AGRAU, CAB56060.1, ZP_00094836.1, AAC44852.1, BAC77670.1, NP_745389.1, NP_344225.1, NP_849490.1, ZP_00087019.1, NP_503072.1, NP_852012.1, NP_115929.1, ZP_00013255.1

5

10

15

20

25

30

In den erfindungsgemäßen bevorzugten transgenen Organismen der Gattung Blakeslea liegt also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres Hydroxylase—Gen vor.

In dieser bevorzugten Ausführungsform weist die genetisch veränderte Organismus beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine Hydroxylase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Hydroxylase auf.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Hydroxylase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 32, 34 oder kodiert durch die Sequenz mit der SEQ ID NO 76 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 80 %, am bevorzugtesten mindestens 90%, insbesondere 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% auf Aminosäureebene mit der Sequenz SEQ. ID. NO: 32, 34 oder kodiert durch die Sequenz mit der SEQ ID NO 76 und die die enzymatische Eigenschaft einer Hydroxylase aufweisen.

Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch HomologievergleiWO 2004/063359

PCT/EP2004/000099

che der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID. NO: 31, 33 oder 76 leicht auffinden.

Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 31, 33 oder 76 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

10

15

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Hydroxylase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Hydroxylase der Sequenz SEQ ID NO: 32, 34 oder kodiert durch die Sequenz mit der SEQ ID NO 76.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

- 20 Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
- In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 31, 33 oder 76 in den Organismus ein.
- Alle vorstehend erwähnten Hydroxylase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender,

komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

10

5

Der in der Transformation (i) eingesetzte Vector umfasst daher in weiteren Ausführungsformen der Erfindung bevorzugterweise eine Sequenz codierend für eine Hydroxlase, insbesondere eine Hydroxlase aus Haematococcus pluvialis mit der SEQ ID NO: 70 oder eine Hydroxlase aus Erwinia uredova mit der SEQ ID NO: 71. oder eine Hydroxylase aus Thermus thermophilus kodiert durch die Sequenz mit der SEQ ID NO 76.

Vorzugsweise wird durch die Transformation das Gen der Phytoendesaturase ausgeschaltet.

20

15

Der in der Transformation (i) eingesetzte Vector enthält vorzugsweise ferner die Expression regelnde und unterstützende Bereiche, insbesondere Promotoren und Terminatoren.

Der in der Transformation (i) eingesetzte Vector enthält vorzugsweise den gpd und/oder den ptef1 Promotor und/oder den trpC Terminator. Diese haben sich zur Transformation der Blakeslea besonders bewährt. Auch der Einsatz von dem Fachmann geläufigen "inverted repeats" (IR, Römpp Lexikon der Biotechnologie 1992, Thieme Verlag Stuttgart, Seite 407 "Invers repetitive Sequenzen") zur Regelung der Expression bzw. Transkription liegt im Rahmen der Erfindung.

Vorteilhafterweise weist der im Vector eingesetzte gpd Promotor die Sequenz SEQ ID NO: 1 auf. Vorteilhafterweise weist der im Vector eingesetzte trpC Terminator die Sequenz SEQ ID NO: 2 auf. Vorteilhafterweise weist der im Vector eingesetzte ptef1 Promotor die Sequenz SEQ ID NO: 35 auf.

5

10

15

20

25

30

Insbesondere werden dabei der gpd Promotor und der trpC Terminator aus Aspergillus nidulans und der ptef1 Promotor aus Blakeslea trispora eingesetzt.

Insbesondere enthält der in der Transformation (i) eingesetzte Vector ein Resistenzgen. Bevorzugterweise handelt es sich um ein Hygromycin-Resistenzgen (hph), insbesondere eines aus E. coli. Dieses Resistenzgen hat sich bei dem Nachweis der Transformation und Selektion der Zellen als besonders geeignet herausgestellt.

Als Promotor für hph wird also bevorzugt p-gpdA, der Promotor der Glycerinaldehyd-3-phosphatdehydrogenase aus Aspergillus nidulans genutzt. Als Terminator für hph wird bevorzugt t-trpC, der Terminator des Gens trpC, codierend für Anthranilatsynthasekomponenten aus Aspergillus nidulans genutzt.

Als Vectoren haben sich Abkömmlinge des pBinAHyg Vectors als besonders geeignet herausgestellt. Der zur Transformation eingesetzte Vector umfasst also bevorzugterweise die SEQ ID NO: 3.

Hinzu kommen je nach gewünschtem Carotinoid oder dessen Vorstufe eine Sequenz codierend für eine Hydroxylase, Ketolase, Phytoendesaturase usw. wie diese zuvor beschrieben wurden. Die Vectoren umfassen also in einer Ausführugsform der Erfndung die Sequenz SEQ ID NO: 69 codierend für die Phytoendesaturase. Die Vectoren umfassen ferner in

WO 2004/063359

einer weiteren Ausführugsform der Erfndung die Sequenz SEQ ID NO: 72 codierend für eine Ketolase. Die Vectoren umfassen weiter in einer weiteren Ausführugsform der Erfndung die Sequenz SEQ ID NO: 70 oder 71 oder 76 codierend für eine Hydoxylase. Entsprechende Kombinationen der zuvorgenannten Sequenzen liegen ebenso im Rahmen der Erfindung. So umfasst der Vector in einer Ausführungsform sowohl eine Sequenz SEQ ID NO: 72 codierend für eine Ketolase als auch die Sequenz SEQ ID NO: 70 oder 71 oder 76 codierend für eine Hydoxylase und ermöglicht so die Herstellung von Astaxanthin.

40

PCT/EP2004/000099

10

15

20

30

5

Insbesondere sind Vectoren ausgewählt aus der Gruppe bestehend aus den SEQ ID NO: 37 bis 51 und 62 im Rahmen der Erfindung einsetzbar.

Die genetisch veränderten Organismen können zur Produktion von Carotinoiden, Xanthophyllen oder deren Vorstufen, insbesondere Bixin, Phytoen, Astaxanthin, Zeaxanthin und Canthaxanthin verwendet werden. Auch können neue, im Wildtyp natürlicherweise nicht vorkommende Carotinoide durch Einbringung der entsprechenden genetischen Information von den gezielt genetisch veränderten Zellen bzw. dem durch sie gebildeten Mycel erzeugt und anschließend isoliert werden.

Die gentechnisch verändertern Zellen werden nach der Selektion kultiviert, so daß Carotinoiden oder deren Vorstufen bereitgestellt werden können.

Bevorzugterweise ist die Gewinnung von Carotinoiden oder deren Vorstufen mit den gezielt genetisch veränderten Zellen bzw. das durch sie gebildete Mycel möglich.

Die Kultivierung der Organismen unterliegt keinen Besonderheiten. Vorteilhafterweise werden, insbesondere bei der Verwendung von Blakeslea

WO 2004/063359

PCT/EP2004/000099

41

trispora, entgegengesetzte Paarungstypen gemeinsam kultiviert, da dies zu besserem Wachstum und Produktion führt.

Wird die gentechnische Veränderung nur in Zellen eines der vorkommenden Paarungstypen (bei Blakeslea trispora (+) oder (-)) durchgeführt, so wird zur Kultivierung der entsprechend andere, nicht veränderte Paarungstyp zugesetzt, da so eine gute Produktion der Carotinoide oder deren Vorstufen aufgrund der von dem zweiten, nicht veränderten Paarungstyp abgegebenen Substanzen (z. B. Trisporsäuren) zu erreichen ist. Vorteilhafterweise wird jedoch die gentechnische Veränderung in Zellen beider Paarungstypen vorgenommen und diese zusammen kultiviert. Hierdurch wird ein besonders gutes Wachstum und eine optimale Produktion der Carotinoiden oder deren Vorstufen erreicht. Auch eine (künstliche) Zugabe der Trisporsäuren ist möglich und sinnvoll.

15

. 5

Trisporsäuren sind Sexualhormone in Mucorales Pilzen, wie Blakeslea, welche die Bildung von Zygophoren und die Produktion von β -Carotin stimulieren (van den Ende 1968, J. Bacteriol. 96:1298 - 1303, Austin et al. 1969, Nature 223:1178 – 1179, Reschke Tetrahedron Lett. 29:3435 – 3439, van den Ende 1970, J. Bacteriol. 101:423 – 428).

25

30

20

Es können alle dem Fachmann geläufigen Medien eingesetzt werden, so weit sich diese zur Kultivierung der eingesetzten Organismen und deren Carotinoid Produktion eigenen. Insbesondere müssen bei Einsatz der GVO keine Carotinoidbiosynthese Inhibitoren eingesetzt werden. Die eingesetzten Medien beinhalten vorzugsweise Zusätze, wie eine oder mehrere Kohlenstoffquellen, eine oder mehrere Stickstoffquellen, Mineralsalze und Thiamine. Bevorzugterweise werden Zusätze eingesetzt, wie sie aus der WO 03/038064 A2, Seite 4, Zeile 30 bis Seite 5 Zeile 7 hervorgehen. Besonders bevorzugt wird als Kohlenstoffquelle Glukose und als Stick-

5

10

15

20

25

30

stoffquelle Asparagin, pflanzliche oder tierische Extrakte, wie Baumwollsatöl, Sojaöl, Baumwollsamenmehl oder Hefe-Extrakt zugesetzt.

Die Kultivierung kann entweder unter aeroben oder anaeroben Bedingungen durchgeführt werden. Auch eine gemischte, zunächst aerobe und anschließend anaerobe Kultivierung, wie sie aus der DE 101 30 323 bekannt ist, ist möglich. Temperatur und Luftfeuchtigkeit werden dabei jeweils zum optimalen Wachstum eingestellt. Bevorzugterweise liegt die Temperatur bei der Kultivierung zwischen ca. 20 und ca. 34 °C, insbesondere zwischen ca. 26°C und ca. 28°C. Die Kultivierung kann ferner kontinuierlich, batch- oder satzweise erfolgen.

Die Kultivierung erfolgt vorzugsweise bis zu einem Feststoffgehalt zwischen etwa 1 und etwa 20 %, bevorzugt 3 und 15 % und besonders bevorzugt 4 und 11 %. Insbesondere ist wichtig dass die Kulturbrühe pumpbar bleibt, so dass sie in den nachfolgenden Verfahrensschritten ver- und bearbeitbar bleibt. Ist der Feststoffgehalt zu klein, so muss ein großer Aufwand bei der Aufkonzentrierung oder Trocknung betrieben werden.

Die Kultivierung bzw. Fermentation kann in den üblichen Apparaturen durchgeführt werden. Hierzu kommen alle für die jeweils eingesetzten Mikroorganismen und deren Produkte geeigneten Apparaturen in Betracht. Insbesondere solche, wie sie aus dem Römpp Lexikon Biotechnologie (1992 Georg Thieme Verlag, Stuttgart) unter dem Stichwort "Bioreaktor" auf Seiten 123 - 126 angegeben sind. Besonders bevorzugt ist der Einsatz von Rührkesselreaktoren mit versch. Einbauten, Blasensäulen verschiedener Bauarten, etc.

Die nach dem erfindungsgemäßen Verfahren bereitgestellten Carotinoiden oder deren Vorstufen, insbesondere Bixin, Phytoen oder Xanthophylle, besonders bevorzugt Astaxanthin oder Zeaxanthin eignen sich besonders

zur Herstellung von Zusätzen für Futter-, Nahrungs- und Nahrungsergänzungsmittel, kosmetischen, pharmazeutischen oder dermatologischen Zubereitungen.

Die Bereitstellung des von den gentechnisch veränderten Zellen produzierten Carotinoids oder der von den gentechnischen veränderten Zellen produzierten Carotinoidvorstufe aus der Kultur der gentechnisch veränderten Mikroorganismen erfolgt nach zwei Varianten a) oder b), becorzugt ist auch eine Kombination aus a) und b);

10

15

a:

- 1) Abtrennung der Biomasse,
 - IA) ggf. Waschen der Biomasse mit einem Carotinoide nicht lösenden Lösungsmittel, insbesondere Wasser,
 - IB) Sterilisation und Zellaufschluß der Biomasse,
 - IC) ggf. Trocknung und/oder homogene Verteilung und
- II) partielle Extraktion der Carotinoide aus der aufgeschlossenen Biomasse mittels eines Carotinoide lösenden Lösungsmittels und Trennung des Lösungsmittels von der Biomasse,
 IIA)
 - Entfernung von Lösemittelresten aus der Carotinoidhaltigen Biomasse,
 - 2) ggf. homogene Suspension der Biomasse mit einem Biomasse-Feststoffgehalt > 2 % und < 50 %, und
 - 3) Trocknung der Biomasse bzw. Suspension zur Herstellung des Nahrungsmittels,

IIB)

 Kristallisation der Carotinoide aus dem verwendeten Lösungsmittel und Isolierung der Carotinoid-Kristalle, insbesondere durch Filtration;

25

30

20

oder b	١:
--------	----

- I) Homogene Suspendierung der Feststoffe der Kulturbrühe
 und
 IIA) bei einem Feststoffgehalt der Kulturbrühe von > 2 %
 1) ggf. Konzentration der Kulturbrühe auf einen Feststoffgehalt < 50 % und
 - 2) Trocknung der Kulturbrühe zur Herstellung des Nahrungsmittels

oder

- IIB) bei einem Feststoffgehalt von < 2 % der Kulturbrühe,
 - 1) Konzentration der Kulturbrühe auf einen Feststoffgehalt > 2 % und < 50 % und
 - Trocknung der Suspension zur Herstellung des Nahrungsmittels,

oder

20

25

30

15

10

- IIC) unabhängig vom Feststoffgehalt der Kulturbrühe,
 - 1) Abtrennung der Biomasse,
 - 2) ggf. Waschen der Biomasse mit Carotinoide nicht lösenden Lösungsmitteln, insbesondere Wasser,
 - 3) Sterilisation und Zellaufschluß,
 - 4) ggf. Trocknung und homogene Verteilung,
 - partielle Extraktion der Carotinoide aus der Biomasse mittels eines Carotinoide lösendes Lösungsmittels,
 - 5a) Abtrennung der Carotinoid-haltigen Biomasse vom Carotinoid-haltigen Lösungsmittel,

PCT/EP2004/000099

5

15

20

25

- 5b) Entfernung von Lösemittelresten aus der Biomasse und
- 5c) Trocknung der Biomasse zur Herstellung des Nahrungsmittels,
- 6) Kristallisation der Carotinoide aus dem in 5a) verwendeten Lösungsmittel und Isolierung der Carotinoid-Kristalle, insbesondere durch Filtration.

Die erfindungsgemäße Bereitstellung des von den gentechnisch veränderten Zellen produzierten Carotinoids oder der von den gentechnischen veränderten Zellen produzierten Carotinoidvorstufe aus der Kultur der gentechnisch veränderten Mikroorganismen erfolgt nach zwei Varianten a) oder b) ermöglicht die gleichzeitige Herstellung von zwei Produkten.

Durch die erfindungsgemäße Kombination der Herstellung von zwei Produkten, insbesondere bei der Bereitstellung gemäß Variante a), nämlich dem mindestens einem Carotinoid und dem Carotinoid-haltigem Nahrungsmittel ist keine vollständige Extraktion der Carotinoide aus der Biomasse nötig, so dass der Aufwand bei der Extraktion geringer ausfällt. Das Carotinoid muss trotz vollständiger Verwertung nur partiell extrahiert werden, ohne dass es zu Produktverlusten kommt. Dies bedingt geringere Lösungsmittelmengen und damit einhergehend einen geringeren Aufwand bei den Maßnahmen zu deren Wiederverwendung. Zudem werden Abfälle weitestgehend vermieden, da die Biomasse nicht als Abfall anfällt, sondern zum hochwertigen Nahrungsmittel weiterverarbeitet wird. Somit ergeben sich geringere Kosten für die Verfahren durch Ausnutzen von Synergien.

30 Nach dem erfindungsgemäßen Verfahren mit Bereitstellung gemäß Variante b) erhältliche Nahrungsmittel enthalten also bereits nach der Herstel-

5

10

15

20

25

30

lung große Mengen an Carotinoiden, die nicht zugesetzt werden müssen. Dadurch, dass das Nahrungsmittel neben dem mindestens einen Carotinoid auch Blakeslea trispora enthält ist sein Nährstoffgehalt zudem gesteigert. Insbesondere ist der Nährstoffgehalt nach den bevorzugten Alternativen IIA und IIB stark gesteigert, da es neben dem mindestens einen Carotinoid und Blakeslea trispora zusätzlich alle Medienbestandteile der Fermentation enthält. Ferner benötigt das Verfahren keine zusätzlichen, aufwendigen Aufarbeitungs- und Herstellungsschritte, sondern die homogenisierte und ggf. entwässerte Blakeslea trispora-haltige Kulturbrühe kann direkt ohne Umwege zur Herstellung des Nahrungsmittels getrocknet werden. Es fallen demnach praktisch keine Abfälle an, abgesehen vom wässrigem Medium bei der Alternative IIB, welches jedoch unproblematisch in einer Kläranlage gereinigt werden kann. Zusätzlich wird in allen drei Alternativen die gesamte Produktionsmenge Carotinoide ohne oder mit nur marginalen Verlusten verwertet, da gemäß IIA und IIB keine verlustreichen Trenn- bzw. Aufarbeitungsschritte vorgenommen werden müssen. Bei der Alternative IIIC wird ebenfalls die gesamte Produktionsmenge Carotinoide ohne oder mit nur marginalen Verlusten verwertet, da ein Teil in der Biomasse zum Nahrungsmittel verarbeitet wird und der andere Teil zur Gewinnung reiner Carotinoide extrahiert wird. Durch die erfindungsgemäße Kombination der Herstellung von zwei Produkten gemäß IIC, nämlich dem Carotinoid-haltigem Nahrungsmittel und den Carotinoiden an sich, ist vorteilhaft, dass wiederum im wesentlichen keine Abfälle entstehen und eine vollständige Extraktion der Carotinoide aus der Biomasse unnötig ist, so dass sonst bei der Extraktion anfallende Aufwand geringer ausfällt. Das oder die wertvollen Carotinoide müssen trotz vollständiger Verwertung nur partiell extrahiert werden, ohne dass es zu Produktverlusten kommt. Dies bedingt geringere Lösungsmittelmengen und damit einhergehend einen geringeren Aufwand bei den Maßnahmen zu deren Wiederverwendung. Zudem werden Abfälle weitestgehend vermieden, da die Biomasse nicht als Abfall anfällt, sondern zum hochwertigen Nahrungsmittel verarbeitet

wird. Somit ergeben sich geringere Kosten für die Verfahren durch Ausnutzen von Synergien.

47

Unter "hochrein" soll in der vorliegenden Anmeldung eine Reinheit des mindestens einen Carotinoids von mindestens 95%, bevorzugt > 95%, vorzugsweise > 96%, besonders bevorzugt > 97%, ganz besonders bevorzugt > 98%, höchst bevorzugt > 99% verstanden werden.

5

10

15

20

25

30

Als nach dem erfindungsgemäßen Verfahren herstellbare Carotinoide kommen alle natürlichen und künstlichen Carotine und Xanthophylle in Betracht. Insbesondere ist das mindestens eine Carotinoid aus der Gruppe bestehend aus Astaxanthin, Zeaxanthin, Echinenon, β-Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3-Hydroxyechinenon, 1-Hydroxyechinenon, 1-Hydrox

Als Nahrungsmittel werden Zusammensetzungen angesehen, die der Ernährung dienen. Darunter fallen auch Zusammensetzungen für die Ergänzung der Ernährung. Insbesondere werden als Nahrungsmittel Tierfuttermittel und Tierfutterergänzungsmittel angesehen.

Nach der Kultivierung kann, gemäß Variante a) der Bereitstellung, die Biomasse von der Kulturbrühe abgetrennt. Hierzu können alle dem Fachmann geläufigen und üblicherweise einsetzbaren Methoden zur fest/flüssig-Trennung eingesetzt werden. Hierunter fallen insbesondere die mechanischen Verfahren, wie Filtration und Zentrifugation, die auf der

Ausnutzung von Schwerkraft, Zentrifugalkraft, Druck oder Vakuum beruhen. Zu den einsetzbaren Verfahren und Apparaten gehören daneben u. a. Querstromfiltration bzw. Mebrantechniken wie Osmose, umgekehrte Osmose, Mikrofiltration, Ultrafiltration, Nanofiltration, Kuchenfiltrationsverfahren (z.B. mittels Pressfilterautomaten, (Membran-, Rahmen- oder Kammer-)Filterpressen, (Rühr-)drucknutschen, Saugnutschen, (Vakuum-)bandfiltern, (Vakuum-)Trommelfiltern, Drehfiltern, Kerzenfiltern), Zentrifugationsverfahren mittels kontinuierlich oder diskontinuierlich betriebener Zentrifugen oder Filterzentrifugen (z.B. Stülpfilterzentrifugen, Schälzentrifugen, Schubzentrifugen, Siebschneckenzentrifugen, Gleitzentrifugen, Separatoren oder Dekantern), Verfahren unter Ausnutzung der Schwerkraft wie Flotation, Sedimentation, Sink-Schwimm-Aufbereitung und Klären. Bevorzugterweise erfolgt die Abtrennung der Biomasse von der Kulturbrühe durch Zentrifugation mittels eines Dekanters oder durch Filtration, mittels einer Mebranfiltrationseinheit durchgeführt.

In dem zweiten Schritt der Bereitstellung nach Variante b) wird eine homogen verteilte Suspension der Feststoffe in der Kulturbrühe erzeugt. Hierzu können alle dem Fachmann geläufigen und üblicherweise einsetzbaren Methoden verwendet werden. Insbesondere kommen dazu Dispergiergeräte, wie ein Ultra-Turrax® (im Labormaßstab) zum Einsatz. Ein Zellaufschluss ist nicht notwendig, kann aber vorgenommen werden.

Falls notwendig, kann die Kulturbrühe entwässert werden, um einen geeigneten Feststoffgehalt zwischen > 2 % und < 50 % zu erreichen. Hierzu können alle dem Fachmann geläufigen und üblicherweise einsetzbaren Methoden zur fest/flüssig-Trennung eingesetzt werden. Hierunter fallen insbesondere die mechanischen Verfahren, wie Filtration und Zentrifugation, die auf der Ausnutzung von Schwerkraft, Zentrifugalkraft, Druck oder Vakuum beruhen. Zu den einsetzbaren Verfahren und Apparaten gehören daneben u. a. Querstromfiltration bzw. Mebrantechniken wie Osmose,

5

10

15

20

umgekehrte Osmose, Mikrofiltration, Ultrafiltration, Nanofiltration, Kuchenfiltrationsverfahren (z.B. mittels Pressfilterautomaten, (Membran-, Rahmen- oder Kammer-)Filterpressen, (Rühr-)drucknutschen, Saugnutschen, (Vakuum-)bandfiltern, (Vakuum-)Trommelfiltern, Drehfiltern, Kerzenfiltern), Zentrifugationsverfahren mittels kontinuierlich oder diskontinuierlich betriebener Zentrifugen oder Filterzentrifugen (z.B. Stülpfilterzentrifugen, Schälzentrifugen, Schubzentrifugen, Siebschneckenzentrifugen, Gleitzentrifugen, Separatoren oder Dekantern), Verfahren unter Ausnutzung der Schwerkraft wie Flotation, Sedimentation, Sink-Schwimm-Aufbereitung und Klären. Bevorzugterweise erfolgt die Abtrennung der Biomasse von der Kulturbrühe durch Zentrifugation mittels eines Dekanters oder wird durch Filtration, mittels einer Mebranfiltrationseinheit durchgeführt. Anschließend wird die Kulturbrühe getrocknet. Hierzu können wiederum alle dem Fachmann bekannten Verfahren und Apparate eingesetzt werden.Insbesondere eignen sich Apparate zur thermischen Trocknung wie Konvektions-, Kontakt- und Strahlungstrocknung, z.B. Horden-, Kammer-, Kanal-, Flachbahn-, Teller-, Drehtrommel-, Rieselschacht-, Siebband-, Strom-, , Wirbelschicht-, Fließbett-, Schaufel-, Kugelbett-, , Heizteller-, Dünnschicht-, Walzen-, Band-, Siebtrommel-, Schnecken-, Taumel-, Kontakt-Scheiben-, Infrarot-, Mikrowellen- und Gefriertrockner, Sprühtrockner oder Sprühtrockner mit integrierter Wirbelschicht, die durch Dampf, Öl. Gas oder elektrischen Strom ggf. beheizt und ggf. unter Vakuum betrieben werden. Die Betriebsweie kann dabei je nach Apparat kontinuierlich oder diskontinuierlich sein. Daneben oder damit in Kombination können die oben bereits angegeben mechanischen Verfahren zur Fest/flüssig-Trennung verwendet werden.

Eine Granulierung durch Extrusion wie dies aus der WO 97/36996 A2 hervorgeht ist jedoch nicht notwendig. Durch die Trocknung wird das Nahrungsmittel haltbar und lagerfähig.

25

50 .

Insbesondere wird die Kulturbrühe sprühgetrocknet. Bevorzugt wird zur Trocknung die Sprühtrocknung eingesetzt, wie sie aus der DE 101 04 494 A1, DE-A-12 11 911 oder EP 0 410 236 A1 bekannt sind. Ergänzend wird auf vgl. Römpp Lexikon Chemie CD-ROM Version 2.0, Georg Thieme Verlag, 1999, "Sprühtrocknung" und Römpp Lexikon Biotechnologie, Georg Thieme Verlag, 1992, "Zerstäubungstrocknung" verwiesen. Die Sprühtrocknung bietet den Vorteil der kurzen Verweilzeit des Produkts in der heißen Zone des Trockners, so dass eine besonders schonende Trocknung erzielt wird.

10

5

Bei der Sprühtrocknung werden Eingangstemperaturen von ca. 115°C – 180°C, bevorzugt 120°C –130°C, und Ausgangstemperaturen von ca. 50°C – 80°C, bevorzugt 55°C – 70°C gewählt. Als Trocknungsgas wird vorzugsweise Stickstoff eingesetzt.

15

20

Gegebenenfalls können zur Erzielung einer besseren Rieselfähigkeit Rieselhilfsmittel, wie Kieselsäuren etc. zugesetzt werden. Der Einsatz von inerten Trägermaterialien, d.h. niedermolekularen anorganischen Trägern wie NaCl, CaCO3, Na2SO4 oder MgSO4, organischen Trägern wie Glucose, Fructose, Saccharose, Dextrine oder Stärkeprodukten (Roggen-, Gersten-, Hafermehl, Weizengrießkleie) ist denkbar.

Das getrocknete Produkt weist bevorzugt eine Restfeuchte von weniger als 10 %, bevorzugt weniger als 5 % bezogen auf die Trockenmasse auf. Sein Carotinoidgehalt liegt zwischen 0,05 und 20 %, insbesondere 1 und 10 % bezogen auf die Trockenmasse.

Das so hergestellte Nahrungsmittel kann entweder direkt verwendet werden oder mittels weiterer Zusätze aufbereitet werden, so wie dies ebenfalls aus der DE 101 04 494 A1 bekannt ist.

25

WO 2004/063359 PCT/EP2004/000099 51

Gemäß der Alternative IIC wird nach der Kultivierung und vor der Trocknung der Biomasse, die Biomasse von der Kulturbrühe zunächst abgetrennt. Hierzu können alle dem Fachmann geläufigen und üblicherweise einsetzbaren Methoden zur fest/flüssig-Trennung eingesetzt werden, wie sie bereits oben bei der Entwässerung genannt wurden. Bevorzugterweise erfolgt die Abtrennung der Biomasse von der Kulturbrühe durch Zentrifugation mittels eines Dekanters oder durch Membranfiltration durchgeführt.

5

10

15

20

25

30

Anschließend erfolgt optional das Waschen der Biomasse mit einem Carotinoide nicht lösenden Lösungsmittel, insbesondere Wasser, wodurch insbesondere Wasser lösliche Komponenten entfernt werden. Dieser Schritt kann gegebenenfalls unter Verwendung weiterer Carotinoide nicht lösenden Lösungsmittel (z. B. Alkohole) ergänzt werden, was aber im Rahmen der Erfindung nicht notwendig ist und zur Vermeidung von Abfällen nicht bevorzugt ist.

Anschließend erfolgen die Sterilisation und der sich anschließende oder gleichzeitige Zellaufschluß der Zellen in der Biomasse. Durch die Sterilisation werden die Mikroorganismen abgetötet und gegebenenfalls vorhandene Enzymaktivität beendet. Dies ist zur Verhinderung des Abbaus der Biomasse bzw. der darin enthaltenen Stoffe, insbesondere der Carotinoide und für die Haltbarkeit von Bedeutung.

Die Sterilisation kann mit einem üblichen, dem Fachmann geläufigen Verfahren durchgeführt werden. Hierzu gehören die Sterilisation mittels Dampf, insbesondere bei Temperaturen größer 120 °C unter Druck (≥ 1 bar) und Zeitdauern von ≥ ca. 20 min. sowie die Behandlung mit energiereichen Strahlen, wie UV-, Mikrowellen, Gamma- oder Beta-Strahlen. Bevorzugterweise erfolgt die Sterilisation im Rahmen des erfindungsgemäßen Verfahrens mittels Dampf oder Mikrowellenstrahlung.

Durch den nachfolgenden oder gleichzeitigen Zellaufschluß, werden die innerhalb der Zellen vorliegenden Carotinoide freigesetzt. Der Zellaufschluß kann ebenfalls mit allen dem Fachmann bekannten üblichen Verfahren erfolgen. Hierzu gehören mechanische und nicht mechanische Methoden. Zu den mechanischen Methoden zählen Trockenmahlen, Naßmahlen, Rühren, Homogenisieren (z.B. im Hochdruckhomogenisator) und die Verwendung von Ultraschall oder Mikrowellen. Als nicht mechanische Methoden kommen physikalische, chemische und biochemische Methoden in Betracht. Hierzu gehören Kurzzeiterhitzen, Kurzzeitgefrieren, Osmotischer Schock, Trocknung, Behandlung mit Säuren oder Laugen sowie ein enzymatischer Aufschluss. Günstiger Weise wird zum Zellaufschluss jedoch das zur Sterilisation verwendete Verfahren eingesetzt. Bevorzugterweise wird also ebenfalls der Zellaufschluss mittels Dampf oder Mikrowellen Strahlung durchgeführt.

15

20

10

5

Die Sterilisation und/oder der Zellaufschluss können kontinuierlich oder diskontinuierlich durchgeführt werden.

Die Sterilisation und/oder der Zellaufschluss können im zur Kultivierung eingesetzten Bioreaktor oder in anderen Apparaturen, wie Autoklaven usw. durchgeführt werden. Bei kontinuierlicher Durchführung kann das aus der WO 01/83437 A1 bekannte Mikrowellen verwendende Verfahren und entsprechende Apparaturen eingesetzt werden.

Vor der Extraktion wird die Biomasse gegebenenfalls getrocknet und/oder homogenisiert. Hierzu k\u00f6nnen wiederum alle dem Fachmann bekannten \u00fcblichen Verfahren und Ger\u00e4te eingesetzt werden. Insbesondere eignen sich Apparate zur thermischen Trocknung wie Konvektions-, Kontakt- und Strahlungstrocknung, z.B. Horden-, Kammer-, Kanal-, Flachbahn-, Teller-,
 Drehtrommel-, Rieselschacht-, Siebband-, Strom-, , Wirbelschicht-, Flie\u00df-bett-. Schaufel-. Kugelbett-, , Heizteller-, D\u00fcnnschicht-, Walzen-, Band-,

5

15

20

Siebtrommel-, Schnecken-, Taumel-, Kontakt-Scheiben-, Infrarot-, Mikrowellen- und Gefriertrockner, Sprühtrockner oder Sprühtrockner mit integrierter Wirbelschicht, die durch Dampf, Öl, Gas oder elektrischen Strom ggf. beheizt und ggf. unter Vakuum betrieben werden. Die Betriebsweise kann dabei je nach Apparat kontinuierlich oder diskontinuierlich sein. Daneben oder damit in Kombination können die oben bereits angegeben mechanischen Verfahren zur Fest/flüssig-Trennung verwendet werden.

Eine Granulierung durch Extrusion wie dies aus der WO 97/36996 A2 hervorgeht ist jedoch nicht notwendig.

Anschließend erfolgt die partielle Extraktion der Carotinoide aus der aufgeschlossenen Biomasse mittels eines Carotinoide lösenden Lösungsmittels und Trennung des Lösungsmittels von der Biomasse. Sowohl in dem Lösungsmittel als auch in der Biomasse sind nun Carotinoide enthalten, wobei sich in dem Lösungsmittel bevorzugterweise der Großteil der Carotinoide befindet.

Aus dem Lösungsmittel werden anschließend die hochreinen Carotinoide isoliert, wohingegen die Biomasse zu einem hochwertigen, Carotinoidhaltigen Nahrungsmittel weiterverarbeitet wird, welches durch den vorhergehenden Zellaufschluss auch eine gute Bioverfügbarkeit der Carotinoide aufweist.

- Unter partieller Extraktion soll demnach die bewusst unvollständige Extraktion der Carotinoiden aus der Biomasse verstanden werden (vgl. oben). Bevorzugterweise wird im Rahmen der Erfindung durch die Extraktion also weniger als 100 % der in der Biomasse enthaltenen Gesamtmenge der Carotinoide aus dieser extrahiert.
- 30 Dies ist von großem Vorteil, da der Aufwand zur Extraktion mit der abnehmenden Menge Carotinoid in der Biomasse überproportional zunimmt.

Zur Extraktion werden Lösungsmittel eingesetzt, die Carotinoide lösen, wie z. B. Hexan, Ethylacetat, Dichlormethan oder überkritisches Kohlendioxid. Bevorzugterweise wird erfindungsgemäß als Lösungsmittel Dichlormethan oder überkritisches Kohlendioxid eingesetzt, wobei beim Einsatz von überkritischem Kohlendioxid die darin enthaltenen Carotinoide anschließend in Dichlormethan überführt werden können oder das Wertprodukt direkt durch Entspannung des Kohlendioxids gewonnen werden kann. Dabei werden die Mengen der Lösungsmittel und Durchmischungszeiten derart gewählt, dass die gewünschte Menge Carotinoide aus der Biomasse extrahiert wird. Insbesondere wird der Extraktionsschritt nur einmal durchgeführt, was technisch und wirtschaftlich sinnvoll ist (vgl. oben).

5

10

15

20

30

Zur Durchführung der Extraktion können alle üblichen Verfahren und Apparaturen eingesetzt werden. Insbesondere wird bei nicht getrockneter, aber aufgeschlossener Biomasse eine flüssig/flüssig (Carotinoid liegt in flüssigen Zellbestandteilen gelöst vor und wird daraus extrahiert und bei getrockneter Biomasse eine fest/flüssig Extraktion durchgeführt. Es können Kalt- und Heißextraktion in bestimmten Temperaturbereichen, sowohl kontinuierliche (z.B. Soxhlet-Extraktion, Perforation und Perkolation) als auch diskontinuierliche Verfahren, zu denen beispielsweise Ausschütteln, Auslaugen, Auskochen und Digerieren gehören, verwendet werden. Sie können auch im Gegenstromverfahren durchgeführt werden.

Für die flüssig/flüssig Extraktion können beispielsweise Blasensäulen, , pulsierende Kolonnen, Kolonnen mit rotierenden Einbauten, Mixer-Settler-Batterien oder Rührkessel usw. verwendet werden.

Die fest/flüssig Extraktion kann mittels üblicher Apparaturen durchgeführt werden. Vorzugsweise werden Rührkessel oder Mixer-Settler-Apparate eingesetzt.

55

Alternativ kann der Zellaufschluß ohne vorherige Abtrennung des Fermentaionsmediums erfolgen und sich dann eine direkte Trennung einer sich bildenden Carotinoidsuspension von der Biomasse z. B. mittels eines Dekanters durchgeführt werden. Anschließend wird die Carotinoidsuspension in Dichlormethan aufgenommen und weiterverarbeitet oder alternativ durch Wäschen mit verschiedenen wässrigen Lösungen aufgereinigt.

Zur Isolierung der hochreinen Carotinoide aus dem Lösungsmittel wird eine Kristallisation der Carotinoide aus dem verwendeten Lösungsmittel und Isolierung der Carotinoid-Kristalle, insbesondere durch Filtration durchgeführt. Die verbleibende Mutterlauge kann nach Destillation dem Verfahren erneut zugeführt werden, so dass Produktverluste trotz geringem Aufwand minimiert werden.

15

20

25

30

10

5

Die Kristallisation kann wie üblich erfolgen. Ergänzend wird auf vgl. Römpp Lexikon Chemie CD-ROM Version 2.0, Georg Thieme Verlag, 1999, "Kristallisation" verwiesen.

Bevorzugterweise erfolgt die Kristallisation durch graduellen Lösungsmit-

telaustausch gegen ein Carotinoide nicht lösendes Lösungsmittel. Es wird

also kontinuierlich die Löslichkeit der Carotinoide erniedrigt, bis diese als reine Kristalle ausfallen. Hierbei wird vorzugsweise ein "niederer Alkohol" oder Wasser verwendet. Als niederer Alkohol werden aliphatische Alkohole mit 1 bis 4 Kohlenstoffatomen angesehen. Hierzu gehören Methanol, Ethanol, Propanol, Isopropanol, 1-Butanol, tert.-Butanol und sec.-Butanol.

Bevorzugterweise wird Methanol eingesetzt.

Die Carotinoid-Lösung kann dabei erwärmt werden, wobei die Temperatur vorzugsweise < 100 °C, insbesondere < 60 °C gehalten wird, so dass Dichlormethan abdestilliert wird. Auch der Einsatz von Vakuum ist denk-

56

bar. Anschließend werden die CarotinoidKristalle isoliert, welches durch übliche Maßnahmen, insbesondere durch Filtration erfolgen kann. Es können sich, falls gewünscht, weitere optionale Trocknungs- und/oder Reinigungsschritte anschließen. Notwendig sind diese jedoch nicht, da die Carotinoid Kristalle bereits hochrein sind.

Die Carotinoide fallen als hochreine Kristalle an und weisen eine Reinheit von mindestens 95%, bevorzugt > 95%, vorzugsweise > 96%, besonders bevorzugt > 97%, ganz besonders bevorzugt > 98%, höchst bevorzugt > 99% auf.

Die erzielbaren Ausbeuten liegen zwischen 45% und 95%, bevorzugt zwischen 70% und 95% bezogen auf die in der Kulturbrühe vorliegende Menge (0,5-15 g/L), bevorzugt 1-10 g/L).

15

20

25

30

5

10

Zur Weiterverarbeitung der ebenfalls Carotinoid-haltigen Biomasse zu einem hochwertigen Nahrungsmittel wird zunächst eine Entfernung von Lösemittelresten aus der Carotinoid-haltigen Biomasse vorgenommen. Hierzu erfolgt bevorzugterweise eine Wasserdampfdestillationen bzw. ein so genanntes Strippen mit Wasserdampf (vgl. Römpp Lexikon Chemie CD-ROM Version 2.0, Georg Thieme Verlag, 1999, "Strippen").

Danach kann gegebenenfalls die Biomasse in der oben abgetrennten Kulturbrühe homogen suspendiert werden, wobei ein Feststoffgehalt > 100 g/L und < 600 g/L eingehalten werden sollte, so daß die nachfolgende Trocknung der Biomasse bzw. Suspension zur Herstellung des Nahrungsmittels ohne technische Schwierigkeiten erfolgen kann. D.h. die Suspension muß pumpbar sein. Als Trocknungsverfahren kommen alle bereits genannten Verfahren und Apparaturen in Frage. Insbesondere wird zur Trocknung die Sprühtrocknung eingesetzt. Dabei kann wie aus der DE 101 04 494 A1 bekannt verfahren werden.

Bei der Sprühtrocknung werden Eingangstemperaturen von ca. 100°C – 180°C, bevorzugt 120°C –130°C, und Ausgangstemperaturen von ca. 50 – 80°C, bevorzugt 55°C – 70°C gewählt. Als Trocknungsgas wird vorzugsweise Stickstoff eingesetzt.

Das so hergestellte Nahrungsmittel kann entweder direkt verwendet werden oder mittels weiterer Zusätze aufbereitet werden, so wie dies ebenfalls aus der DE 101 04 494 A1 bekannt ist.

10

15

20

25

30

5

Als Nahrungsmittel werden Zusammensetzungen angesehen, die der Ernährung dienen. Darunter fallen auch Zusammensetzungen für die Ergänzung der Ernährung. Insbesondere werden als Nahrungsmittel Tierfuttermittel und Tierfutterergänzungsmittel angesehen. Ergänzend wird auf Römpp Lexikon Chemie CD-ROM Version 2.0, Georg Thieme Verlag, 1999, "Nahrungsmittel" verwiesen.

Das trockene Produkt weist bevorzugt eine Restfeuchte von weniger als 5 % bezogen auf die Trockenmasse auf. Sein Carotinoidgehalt liegt zwischen 0,05 und 20 %, insbesondere 1 und 10 % bezogen auf die Trokkenmasse. Der gewünschte Carotinoidgehalt ist über das Ausmaß der Extraktion steuerbar (vgl. oben).

Nach dem erfindungsgemäßen Verfahren erhältliche Nahrungsmittel enthalten also bereits nach der Herstellung große Mengen an Carotinoiden, die nicht zugesetzt werden müssen. Dadurch, dass das Nahrungsmittel neben dem mindestens einen Carotinoid auch Biomasse enthält ist sein Nährstoffgehalt zudem gesteigert. Insbesondere ist der Nährstoffgehalt nach der bevorzugten Alternative stark gesteigert, im dem es neben dem mindestens einen Carotinoid und Biomasse zusätzlich alle Medienbestandteile der Fermentation enthält. Es fallen demnach praktisch keine

Abfälle an, abgesehen von wässrigen Medien, welche jedoch unproblematisch in einer Kläranlage gereinigt werden können. Zusätzlich wird die gesamte Produktionsmenge Carotinoide ohne oder mit nur marginalen Verlusten verwertet, da keine verlustreichen Trenn- bzw. Aufarbeitungsschritte vorgenommen werden müssen, um die gesamte Menge Carotinoid zu extrahieren.

Die in dem oben beschriebenen, erfindungsgemäßen Verfahren eingesetzten Lösungsmittel werden alle soweit wie möglich aufbereitet und anschließend wieder verwendet bzw. dem Verfahren erneut zugeführt. Insbesondere wird das eingesetzte Dichlormethan bereits beim Lösungmittelaustausch gereinigt und steht anschließend zur erneuten Verwendung bereit. Der niedere Alkohol bzw. das Methanol wird z. B. destillativ gereinigt und ebenfalls wieder verwendet. Als Abfall fallen lediglich der Destillationssumpf an, der zusammen mit den wässrigen Medien gefahrlos einer Kläranlage zugeführt werden kann, wo letztendlich nur eine geringe Menge Klärschlamm als tatsächlicher Abfall anfällt. Somit ist das beschriebene Verfahren im wesentlichen abfallfrei.

20

15

10

Die Erfindung wird nachfolgend an Hand von Beispielen näher ausgeführt.

25 A) Kultivierung von Blakeslea trispora

Folgende Medien wurden zur Fermentation von Blakeslea trispora zur Produktion der Carotinoide eingesetzt:

Medium 1:

	Glucose	10,00 g/l
30	Baumwollsaatoel	30,00 g/l
	Sojaoel	30,00 g/l

	Dextrin	60,00 _, g/l
	Baumwollsamenmehl	75,00 g/l
	Triton X 100	1,20 g/l
	Ascorbinsäure	6,00 g/l
5	Milchsäure	2,00 g/l
	KH₂PO₄	0,50 g/l
	MnSO ₄ x H2O	100 mg/i
	Thiamin-HCl	2 mg/l
	Isoniazid (Isonicotinsäurehydrazid)	0,75 g/l
10	Der pH wurde auf 6,5 eingestellt.	•
	Medium 2:	
	Glucose	20 g/l
	Asparagin	2,00 g/l
15	KH ₂ PO ₄	5,00 g/l
	MgSO ₄ x 7 H ₂ O	0,50 g/l
	CaCl ₂	28 mg/l
	Thiamin-HCl	1,00 mg/l
	Citronensäure	2,00 mg/l
20	$Fe(NO_3)_3 \times 9 H_2O$	1,50 mg/l
	ZnSO ₄ x 7 H ₂ O	1,00 mg/l
	MnSO ₄ x H ₂ O	0,30 mg/l
	CuSO ₄ x 5 H ₂ O	0,05 mg/l
	Na ₂ MoO ₄ x 2 H ₂ O	0,05 mg/l
25		
	•	
	Medium 3	
	Glucose	70,00 g/l
30	Asparagin	2,00 g/l
	Hefe Extrakt	1,00 g/l

60

KH ₂ PO ₄	1,50 g/l
MgSO ₄ x 7 H ₂ O	0,50 g/l
Span 20	1,00 g/l
Thiamin-HCl	5,0 mg/l

5 Der pH wurde auf 5,5 eingestellt.

Mit Sporensuspensionen von Blakeslea trispora ATCC 14272 Mating Type (–) die 10⁸ (für Medium 2) bzw. 10⁷ (für Medium 1 und 3) Sporen enthielten, wurden je 200 ml der beschriebenen Medien angeimpft. Die Kultivierung erfolgte jeweils in 1-I-Erlenmeyerkolben mit Schikanen. Mit jedem Medium wurden sechs identische Kolben angesetzt und über 7 Tage bei 28°C und 140 UpM im Schüttler inkubiert.

B) Gentechnische Veränderung von Blakeslea Trispora

15

10

Material und Methoden

Molekulargenetische Arbeiten wurden, wenn nicht anders beschrieben, nach den Methoden in Current Protocols in Molecular Biology (Ausubel et al., 1999, John Wiley & Sons) durchgeführt.

20

25

30

Stämme und Wachstumsbedingungen

Die Blakeslea trispora Stämme ATCC 14271 (Paarungstyp(+)) und ATCC14272 (-) (ein Wildtyp) wurde erhaltenPaarungstyp (-)) wurden von der American Type Culture Collection. erhalten. Die Anzucht von B. trispora erfolgte in MEP-Medium (Malzextrakt-Pepton-Medium): 30 g/l Malzextrakt (Difco), 3 g/l Pepton (Soytone, Difco), 20 g/l Agar, Einstellung pH 5,5, ad 1000 ml mit H₂O bei 28 °C.

Die Anzucht von *Agrobacterium tumefaciens* LBA4404 erfolgte nach Hoekema et al. (1983, Nature 303:179-180) bei 28 °C für 24 h in Agrobacterien-Minimal Medium (AMM): 10 mM K₂HPO₄, 10 mM KH₂PO₄, 10 mM Glu-

cose, MM-Salze (2,5 mM NaCl, 2 mM MgSO₄, 700 μ M CaCl₂, 9 μ M FeSO₄, 4 mM (NH₄)₂SO₄).

61

Transformation von Agrobacterium tumefaciens

Das Plasmid pBinAHyg wurde in den Agrobakterienstamm LBA 4404 (Hoekema et al., 1983, Nature 303:179-180) elektroporiert (Mozo and Hooykaas, 1991, Plant Mol. Biol. 16:917-918). Zur Selektion wurden bei der Agrobakterienanzucht folgende Antibiotika verwendet: Rifampicin 50 mg/l (Selektion auf das *A. tumefaciens* Chromosom), Streptomycin 30 mg/l (Selektion auf das Helferplasmid) und Kanamycin 100 mg/l (Selektion auf den binären Vektor).

Transformation von Blakeslea trispora

15

Zur Transformation wurden die Agrobakterien nach 24 h Anzucht in AMM auf eine OD_{600} von 0,15 in Induktionsmedium (IM: MM-Salze, 40 mM MES (pH 5,6), 5 mM Glucose, 2 mM Phosphat, 0,5% Glycerol, 200 μ M Acetosyringone) verdünnt und erneut über Nacht in IM bis zu einer OD_{600} von ca. 0,6 angezogen.

Zur Co-Inkubation von Blakeslea ATCC 14271 bzw. ATCC14272 und Agrobacterium wurden 100 μl Agrobakteriensuspension mit 100 μl Blakeslea Sporensuspension (10⁷ Sporen/ml in 0,9% NaCl) gemischt und steril auf einer Nylon Membran (Hybond N, Amersham) auf IM-Agarose Platten (IM + 18 g/l Agar) verteilt. Nach 3 Tagen Inkubation bei 26 °C wurde die Membran auf eine MEP-Agarplatte (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5, 18 g/l Agar) überführt. Zur Selektion auf transformierte Blakesleazellen enthielt das Medium Hygromycin in einer Konzentration von 100 mg/l sowie zur Selektion gegen Agrobakterien 100 mg/l Cefotaxim. Die Inkubation erfolgte für ca. 7 Tage bei 26 °C. Anschließend erfolgte der Transfer von Mycel auf frische Selektionsplatten. Gebildete Sporen wurden mit 0,9% NaCl abgespült und auf CM17-1-Agar (3 g/l Glucose, 200 mg/l L-

Asparagin, 50 mg/l MgSO₄ x 7H₂O, 150 mg/l KH₂PO₄, 25 μg/l ThiaminHCl, 100 mg/l Yeast Extract, 100 mg/l Na-desoxycholat, 100 mg/L Hygromycin, 100 mg/L Cefotaxim, pH 5,5,18 g/l Agar) ausplattiert. Zur Isolierung einzelner gentechnisch veränderter Sporen wurden die Sporen durch ein FACS Gerät der Fa. BectonDickson (Modell Vantage+Diva Option) einzeln auf Selektivmedium abgelegt.

Mutagenese mit MNNG

Zur Reduzierung der Anzahl von Kernen pro Spore wurde eine Behandlung von Sporensuspensionen mit MNNG (N-Methyl-N'-nitro-N-nitrosoguanidin) durchgeführt. Hierfür wurde zunächst eine Sporensuspension mit 1 x 10⁷ Sporen/ml in Tris/HCl-Puffer, pH 7,0 hergestellt. Der Sporensuspension wurde MNNG in einer Endkonzentration von 100 μg/ml zugegeben. Die Zeit der Inkubation in MNNG wurde so gewählt, dass die Überlebensrate der Sporen ca. 5% betrug. Nach Inkubation mit MNNG wurden die Sporen dreimal mit 1g/l Span 20 in 50 mM Phosphatpuffer pH 7,0 gewaschen und plattiert.

Selektion homonukleater Zellen

Die Selektion homonukleater Zellen von Blakeslea trispora carB- erfolgte analog zum Versuchsprotokoll für Phycomyces blakesleeanus (Roncero et al., 1984, Mutation Research, 125:195-204), modifiziert durch Wachstum in Gegenwart von 5-Carbon-5-Deazariboflavin (1 μg/ml) und Hygromycin 100 (μg/ml).

25

5

10

15

Herstellung genetisch veränderter Blakeslea trispora durch Agrobacterium-vermittelte Transformation

15

Herstellung des rekombinanten Plasmids pBinAHyg

Aus dem Plasmid pANsCos1 (Fig.1, Osiewacz, 1994, Curr. Genet. 26:87-90, SEQ ID NO: 4) wurde die gpdA-hph-trpC-Kassette als Bglll/Hindlll Fragment isoliert und in das mit BamHl/Hindlll geöffnete binäre Plasmid pBin19 (Bevan, 1984, Nucleic Acids Res. 12:8711-8721) ligiert. Der so erhaltene Vektor wurde als pBinAHyg bezeichnet (Fig. 2, SEQ ID NO: 3) und enthielt das *E. coli* Hygromycin-Resistenzgen (hph) unter Kontrolle des gpd Promotors (SEQ ID NO: 1) und des trpC Terminators (SEQ ID NO: 2) aus *Aspergillus nidulans* sowie die entsprechenden Bordersequenzen, die für den DNA-Transfer von *Agrobacterium* notwendig sind. Die in den weiter unten beschriebenen Ausführungsbeispielen genannten Vektoren sind Abkömmlinge von pBinAHyg.

Übertragung von pBinAHyg und Abkömmlingen von pBinAHyg in Agrobacterium tumefaciens.

Nachfolgend wird beispielhaft die Übertragung des Plasmids pBinAHyg in Agrobacterien beschrieben. Die Übertragung der Abkömmlinge erfolgte analog.

20 Das Plasmid pBinAHyg wurde in den Agrobakterienstamm LBA 4404 (Hoekema et al., 1983, Nature 303:179-180) elektroporiert (Mozo and Hooykaas, 1991, Plant Mol. Biol. 16:917-918). Zur Selektion wurden bei der Agrobakterienanzucht folgende Antibiotika verwendet: Rifampicin 50 mg/l (Selektion auf das A. tumefaciens Chromosom), Streptomycin 30 mg/l (Selektion auf das Helferplasmid) und Kanamycin 100 mg/l (Selektion auf den binären Vektor).

Übertragung von pBinAHyg und Abkömmlingen von pBinAHyg in Blakeslea trispora

Zur Transformation wurden die Agrobakterien nach 24 h Anzucht in AMM auf eine OD₆₆₀ von 0,15 in Induktionsmedium (IM: MM-Salze, 40 mM MES

(pH 5,6), 5 mM Glucose, 2 mM Phosphat, 0,5% Glycerol, 200 μ M Acetosyringone) verdünnt und erneut über Nacht in IM bis zu einer OD₆₆₀ von ca. 0,6 angezogen.

Zur Co-Inkubation von *Blakeslea trispora* (B.t.) und *Agrobacterium tume-faciens* (A.t.) wurden 100 μl Agrobakteriensuspension mit 100 μl Blakeslea Sporensuspension (10⁷ Sporen/ml in 0,9% NaCl) gemischt und steril auf einer Nylon Membran (Hybond N, Amersham) auf IM-Agarose Platten (IM + 18 g/l Agar) verteilt. Nach 3 Tagen Inkubation bei 26 °C wurde die Membran auf eine MEP-Agarplatte (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5, 18 g/l Agar) überführt.

15

20

25

Zur Selektion auf transformierte Blakeslea-Zellen enthielt das Medium Hygromycin in einer Konzentration von 100 mg/l sowie zur Selektion gegen Agrobakterien 100 mg/l Cefotaxim. Die Inkubation erfolgte für ca. 7 Tage bei 26 °C. Anschließend erfolgte der Transfer von Mycel auf frische Selektionsplatten. Gebildete Sporen wurden mit 0,9% NaCl abgespült und auf CM17-1-Agar (3 g/l Glucose, 200 mg/l L-Asparagin, 50 mg/l MgSO₄ x 7H₂O. 150 mg/l KH2PO4, 25 µg/l Thiamin-HCl, 100 mg/l Yeast Extract, 100 mg/l Na-desoxycholat, pH 5,5, 100 mg/l Cefotaxim, 100 mg/l Hygromycin, 18 g/l Agar) ausplattiert. Die Übertragung von Sporen auf frische Selektionsplatten wurde dreimal wiederholt. Auf diese Weise wurde die Transformante Blakeslea trispora GVO 3005 isoliert. Alternativ erfolgte zur Selektion der GVO (gentechnisch veränderten Organismen) die Einzelablage der Sporen durch den BectonDickinson FacsVantage+Diva Option auf CM-17 Agar mit 100 mg/l Cefotaxim, 100 mg/l Hygromycin. In diesem Fall wurde nur dort Pilzmycel gebildet, wo die Sporen gentechnisch verändert waren.

Nachweis der genetischen Veränderung durch Übertragung von pBinAHyg und Abkömmlingen von pBinAHyg in Blakeslea trispora

65

Nachfolgend wird beispielhaft der Nachweis der Übertragung für pBinA-Hyg in Blakeslea trispora beschrieben. Der Nachweis der Übertragung der Abkömmlinge erfolgte analog.

200 ml MEP-Medium (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5) wurden mit 10⁵ bis 10⁷ Sporen der Transformante Blakeslea trispora GVO 3005 beimpft und 7 Tage bei 26 °C mit 200 Upm auf einem Rundschüttler inkubiert. Zum Nachweis der erfolgreichen Transformation wurde DNA aus dem Mycel isoliert (Peqlab Fungal DNA Mini Kit) und in einer PCR (Programm: 94 °C 1 min, dann 30 Zyklen mit 1 min. 94 °C, 1 min. 58 °C, 1 min. 72 °C) eingesetzt.

Zum Nachweis des Hygromycinresistenzgens (hph) wurden die Primer hph-forward (5'-CGATGTAGGAGGGCGTGGATA, SEQ ID NO: 5) und hph-reverse (5'-GCTTCTGCGGGCGATTTGTGT, SEQ ID NO: 6) verwendet. Das erwartete Fragment von hph wies eine Länge von 800 bp auf.

Zur Amplifikation des Kanamycinresistenzgens nptlll und damit als Kontrolle auf Agrobakterien wurden die Primer nptlll-forward (5'-TGAGAATATCACCGGAATTG, SEQ ID NO: 7) und nptlll-reverse (5'-AGCTCGACATACTGTTCTTCC, SEQ ID NO: 8) verwendet. Das erwartete Fragment von nptlll wies eine Länge von 700 bp auf.

Glycerinaldehyd-3-Amplifikation eines Fragmentes des Zur phosphatdehydrogenasegens gpd1 und damit als Kontrolle auf Blakeslea **MAT292** (5'-Primer trispora wurden die GTGAATGGAAATCCCATCGCTGTC, SEQ ID NO: 9) und MAT293 (5'-AGTGGGTACTCTAAAGGCCATACC, SEQ ID NO: 10) verwendet. Das erwartete Fragment von gpd1 wies eine Länge von 500 bp auf.

15

20

25

Das Ergebnis der PCR der Blakeslea trispora DNA ist in Fig. 3 anhand eines Standard-Gels gezeigt. Die Spuren des Gels wurden folgendermaßen belegt:

5 1) 100 bp Größenmarker (100 bp - 1 kb)

10

30

2) B.t. GVO 3005 primer nptlll-for / nptlll-rev
3) B.t. GVO 3005 primer hph-for / hph-rev

4) B.t. GVO 3005 primer MAT292 / MAT293 (gpd)

5) A.t. mit Plasmid pBinAHyg primer nptlll-for / nptlll-rev
 6) A.t. mit Plasmid pBinAHyg primer hph-for / hph-rev
 7) B.t. 14272 WT primer nptlll-for / nptlll-rev

7) B.t. 14272 WT primer nptlll-for / nptlll-rev
8) B.t. 14272 WT primer hph-for / hph-rev

9) B.t. 14272 WT primer MAT292 / MAT293 (gpd)

In der DNA von Blakeslea trispora wurde das Hygromycinresistenzgens (hph) und als Positivkontrolle Glycerinaldehyd-3-phosphatdehydrogenasegen (gpd1) nachgewiesen. nptIII konnte demgegenüber nicht nachgewiesen werden.

20 Somit wurde die genetische Veränderung von Blakeslea trispora durch Agrobacterium-vermittelte Transformation nachgewiesen.

Isolierung homokaryotischer GVO von Blakeslea trispora:

25 Herstellung homonukleater Stämme

Durch erfolgreichen Transfer des Vectors pBinAHyg und Abkömmlingen von pBinAHyg in Blakeslea trispora entstandenentstehen genetisch veränderte Organismen. In GVO von Blakeslea trispora. Jedoch liegen in Blakeslea liegen in allen Stadien des vegetativen und des sexuellen Zellzyklus mehrkernige Zellen vor. Daher erfolgte erfolgt die Insertion der VectorFremd-DNA in der Regel nur in einem Kern. Ziel ist es aber, dass,

Stämme von Blakeslea zu erhalten, bei denen die Insertion der Vector-Fremd-DNA in allen Kernen vorliegt., d.h. Ziel ist ein homonukleates rekombinantes Pilzmycel.

Zur Herstellung solcher homokaryotischer Zellen wurden zunächst Sporensuspensionen der rekombinanten Stämme mit MNNG behandelt. Hierfür wurde eine Sporensuspension mit 1 x 10⁷ Sporen/ml in Tris/HCl-Puffer, pH 7,0 hergestellt. Der Sporensuspension wurde MNNG in einer Endkonzentration von 100 μg/ml zugegeben. Die Dauer der Inkubation mit MNNG wurde so gewählt, dass die Überlebensrate der Sporen ~5% betrug. Nach Inkubation mit MNNG wurden die Sporen dreimal mit 1g/l Span 20 in 50 mM Phosphatpuffer pH 7,0 gewaschen und plattiert.

1) Herstellung homonukleater rekombinanter Stämme durch FACS (fluorescence-activated cell sorting)

15

20

25

30

Ein geringer Anteil der Sporen von Blakeslea trispora bzw. der gentechnisch veränderten Stämme von Blakeslea trispora ist von Natur aus einkernig. Zur Herstellung homonukleater rekombinanter Stämme, die Fremd-DNA von pBinAHvg oder pBinAHvg-Abkömmlingen enthielten, wurden die einkernigen Sporen durch FACS aussortiert und auf MEP (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5, 18 g/l Agar) mit 100 mg/l Cefotaxim und 100 mg/l Hygromycin plattiert. Die hier gebildten Mycelien waren homonukleat. Zur Sortierung mit FACS wurden die Sporen eines 3 Tage alten Ausstriches mit 10 ml Tris-HCl 50mMol + 0,1% Span20 pro Agar-Platte abgeschwemmt. Die Sporenkonzentration betrug 0,5 bis 0,8 x 10⁷ Sporen pro ml. Zu 9 ml Sporensuspension wurden 1ml DMSO und 10 µl Syto 11 (Farbstoff-Stammlösung in DMSO Molecular Probes Nr.S-7573) zugegeben. Danach wurde 2 h bei 30°C gefärbt. Die Selektion und Ablage erfolgte mittels eines BectonDickinson FacsVantage+Diva Option. Die Selektion erfolgt zuerst nach Größe, um einzelne Sporen von Aggregaten und Verunreinigungen zu trennen. Dann wurden diese Sporen nach ihrer Fluores-

68

zenz (Anregung = 488nm Emission = 530 nm) sortiert abgelegt. Die linke Schulter der Gauß-Kurve der Fluoreszenzhäufigkeitsverteilung enthielt die einkernigen Sporen.

5 Anschließend wurden die Sporen auf MEP-Agarplatten ausplattiert und neue Sporen erzeugt.

Diese Sporen wurden analog zur Vorschrift von Roncero et al. auf Medium mit 5-Carbon-5-deazariboflavin plattiert, das zusätzlich Hygromycin enthielt.

Hierdurch wurden homokaryonte Zellen des Genotyps hyg^R und dar selektiert.

15

20

25

10

2) Herstellung homonukleater Stämme durch Kernreduktion und Selektion mit FACS

Zur Reduzierung der Anzahl von Kernen pro Spore wurde vor der Selektion eine Behandlung von Sporensuspensionen mit MNNG (N-Methyl-N'-nitro-N-nitrosoguanidin) durchgeführt, und so durch chemische Mutagenese eine Kernreduktion erzielt.

Hierfür wurde zunächst eine Sporensuspension mit 1 x 10⁷ Sporen/ml in Tris/HCl-Puffer, pH 7,0 hergestellt. Der Sporensuspension wurde MNNG in einer Endkonzentration von 100 µg/ml zugegeben. Die Zeit der Inkubation in MNNG wurde so gewählt, dass die Überlebensrate der Sporen ca. 5% betrug. Nach Inkubation mit MNNG wurden die Sporen dreimal mit 1g/l Span 20 in 50 mM Phosphatpuffer pH 7,0 gewaschen und nach der unter 1) beschriebenen Methode sortiert bzw. selektiert.

Alternativ konnten zur Reduktion der Kernzahl in den Sporen auch Röntgen – und UV-Strahlen eingesetzt werden, wie es von Cerdá-Olmedo und Patricia Reau in Mutation Res., 9 (1970), 369-384 beschrieben wurde.

5

10

3) Herstellung homonukleater Stämme durch Selektion auf rezessive Selektionsmarker

Als rezessiver Selektionsmarker zur Selektion homonukleater Mycelien kommt beispielsweise der rezessive Selektionsmarker pyrG in Frage. Wildtyp-Stämme von Blakeslea trispora sind pyrG⁺. Diese Stämme können nicht in Gegenwart des Pyrimidin-Analogs 5-Fluororotat (FOA) wachsen, weil sie FOA durch die Orotidin-5'-monophosphatdecarboxylase zu lethalen Metaboliten umsetzen. Gentechnisch veränderte Blakesleaa, die ho-Orotidin-5'-Enzymaktivität pvrG⁻ sind. fehlt die monukleat monophosphatdecarboxylase. Folglich können diese pyrG-Stämme 5-Fluororotat nicht verwerten. Die Stämme wachsen daher in Gegenwart von FOA und Uracil. Im Fall der Kopplung der Mutation pyrG- und der Insertion von Fremd-DNA auf dem Kern einer einkernigen Spore, kann aus dieser Spore homonukleates rekombinantes Pilzmycel gebildet werden.

20

15

Zunächst wurde durch Insertion eines Fragentes von pyrG (SEQ ID NO: 65) aus Blakeslea trispora in pBinAHyg das Plasmid pBinAHygBTpyrG-SCO (SEQ ID NO: 36, Fig. 4) erzeugt. Dieses Plasmid wurde in Blakelea trispora transformiert und führte dort durch homologe Rekombination zur Disruption von pyrG.

25

30

Homonukleate GVO von Blakeslea trispora mit dem Phänotyp pyrG⁻ wurden folgendermaßen selektiert. Zur Agrobakterium-vermittelten Transformation von pBinAHygBTpyrG-SCO wurde wie oben beschrieben auf MEP (30 g/l Malzextrakt, 3 g/l Pepton, pH 5,5, 18 g/l Agar) mit 100 mg/l Cefotaxim und 100 mg/l Hygromycin plattiert. Die Sporen der Transformanten

70

wurden mit 10 ml Tris-HCl 50mM + 0,1% Span20 pro Agar-Platte abgeschwemmt. Die Sporenkonzentration betrug 0,5 bis 0,8 x 10⁷ Sporen pro ml. Die Sporen wurden anschließend auf FOA-Medium mit 100 mg/l Cefotaxim und 100 mg/l Hygromycin ausplattiert. FOA-Medium enthielt pro Liter 20 g Glucose, 1 g FOA, 50 mg Uracil, 200 ml Citrat-Puffer (0,5 M, pH 4,5) und 40 ml Spurensalzlösung nach Sutter, 1975, PNAS, 72:127). Homonukleate pyrG-Mutanten zeigten Wachstum auf dem Uracil-haltigen FOA-Medium; aber kein Wachstum bei Plattierung auf FOA-Medium ohne Uracil. Auf die gleiche Weise wurden aus den im folgenden beschriebenen GVO von Blakeslea trispora zur Herstellung von Xanthophyllen homonukleate GVO hergestellt.

Alternativ ist es möglich die Sporen analog zur Vorschrift von Roncero et al. auf Medium mit 5-Carbon-5-deazariboflavin zu plattieren, das zusätzlich Hygromycin enthält (Roncero et al., 1984, Mutation Research, 125: 195 - 204). Hierdurch werden homokaryonte Zellen des Genotyps hyg^R und dar selektiert. Nach diesem Prinzip werden homokaryonte Stämme von Blakeslea trispora mit dem Phänotyp hyg^R und dar erzeugt.

20

25

30

5

10

15

Ausführungsbeispiele zur Herstellung von gentechnisch veränderten Organismen von Blakeslea trispora für die Herstellung von Carotinoiden und Carotinoidvorstufen

Die Erzeugung der im folgenden genannten Plasmide erfolgte durch die Methode "overlap-extension PCR" und durch anschließende Insertion der Amplifikationsprodukte in das Plasmid pBinAHyg. Die Methode "overlapextension PCR" erfolgte wie in Innis et al. (Eds.) PCR protocols: a guide to methods and applications, Academic Press, San Diego beschrieben. Die Transformation der pBinAHyg-Abkömmlinge und die Herstellung homonukleater gentechnisch veränderter Stämme von Blakeslea trispora erfolgte wie oben beschrieben.

10

30

Gentechnisch veränderte Stämme von Blakeslea trispora zur Herstellung von Zeaxanthin

Folgende Plasmide (Abkömmlinge von pBinAHyg) wurden zur gentechnischen Veränderung von Blakeslea trispora für die Herstellung von Zeaxanthin verwendet, codieren also u.a. Hydroxylasen (crtZ):

- p-tef1-HPcrtZ, enthaltend Gen der Hydroxylase HPcrtZ (SEQ ID NO: 70) aus Haematococcus pluvialis Flotow NIES-144 (Accession No. AF162276) unter Kontrolle des ptef1 Promotors aus Blakeslea trispora (Seq. pBinAHygBTpTEF1-HPcrtZ, SEQ ID NO: 37, Fig. 5);
- p-carRA-HPcrtZ, enthaltend Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHyg-BTpcarRA-HPcrtZ, SEQ ID NO: 38, Fig. 6)
- p-carB-HPcrtZ, enthaltend Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des Promotors pcarB aus Blakeslea trispora (Seq. pBinAHygBTpcarB-HPcrtZ, SEQ ID NO: 39, Fig. 7)
- p-carRA-HPcrtZ-TAG-3'carA-IR, enthaltend Gen der Hydroxylase
 HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des Promotors pcarRA aus Blakeslea trispora. Stromabwärts des Gens der Hydroxylase ist eine Inverted-Repeat-Struktur lokalisiert, die aus dem 3'-Ende von carA und der stromabwärts von carA gelegenen Region stammt (IR, SEQ ID NO: 74, ,Inverted Repeat 1' ca. 350 bp von carA, dann ca. 200 bp ,Loop' und anschließend ca. 350 bp ,Inverted Repeat 2') (Seq. pBinAHyg-BTpcarRA-HPcrtZ-TAG-3'carA-IR, SEQ ID NO: 40, Fig. 8);
 - p-carRA-HPcrtZ-GCG-3'carA-IR, enthaltend Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des Promotors pcarRA aus Blakeslea trispora. Das Gen der

Hydroxylase ist mit einer Inverted-Repeat-Struktur fusioniert, die aus dem 3'-Ende von carA und der stromabwärts von carA gelegenen Region stammt (IR, SEQ ID NO: 74, 'Inverted Repeat 1' ca. 350 bp von carA, dann ca. 200 bp 'Loop' und anschließend ca. 350 bp 'Inverted Repeat 2'). Das abgeleitete Fusionsprotein besteht folglich aus der Hydroxylase von Haematococcus pluvialis und dem Carboxyterminus von CarA aus Blakeslea trispora (Seq. pBinAHyg-BTpcarRA-HPcrtZ-GCG-3'carA-IR, SEQ ID NO: 41, Fig. 9);

p-tef1-EUcrtZ, enthaltend Gen der Hydroxylase EUcrtZ (SEQ ID NO: 71) aus Erwinia uredova 20D3 (Accession No. D90087) unter Kontrolle des ptef1 Promotors (Seq. pBinAHygBTpTEF1-EUcrtZ, SEQ ID NO: 42, Fig. 10);

5

15

20

- p-carRA-EUcrtZ, enthaltend Gen der Hydroxylase EUcrtZ aus Erwinia uredova 20D3 unter Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHygBTpcarRA-EUcrtZ, SEQ ID NO: 43, Fig. 11);
 - p-carB-EUcrtZ, enthaltend Gen der Hydroxylase EUcrtZ aus Erwinia uredova 20D3 unter Kontrolle des Promotors pcarB aus Blakes-lea trispora (Seq. pBinAHygBTpcarB-EUcrtZ, SEQ ID NO: 44, Fig. 12);
 - p-gpdA-HPcrtZ-t-crtZ, enthaltend Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 unter Kontrolle des gpdA Promotors und des Terminators t-crtZ; d.h. des stromabwärts von crtZ aus Haematococcus pluvialis Flotow NIES-144 gelegenen Sequenzabschnitts (SEQ ID NO: 73) (Seq. pBinAHyg-gpdA-HPcrtZtcrtZ, SEQ ID NO: 45, Fig. 13).
 - p-gpdA-BTcarR-HPcrtZ-BTcarA, enthaltend Genfusion aus Genen der Lycopincyclase carR aus Blakeslea trispora, der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 und der

Phytoensynthase carA aus Blakeslea trispora unter Kontrolle des gpdA Promotors aus Aspergillus nidulans (Seq. pBinAHygcarR_crtZ_carA, SEQ ID NO: 46, Fig. 14);

5 Herstellung gentechnisch veränderter Stämme von Blakeslea trispora zur Herstellung von Canthaxanthin

Folgende Plasmide (Abkömmlinge von pBinAHyg) wurden zur gentechnischen Veränderung von Blakeslea trispora für die Herstellung von Canthaxanthin verwendet, codieren also u.a. Ketolasen (crtW):

- p-tef1-NPcrtW, enthaltend das Gen der Ketolase NPcrtW (SEQ ID NO: 72) aus Nostoc punctiforme PCC73102 (ORF148, Accesion No. NZ_AABC01000196) unter Kontrolle des ptef1 Promotors aus Blakeslea trispora (Seq. pBinAHygBTpTEF1-NpucrtW, SEQ ID NO: 47, Fig. 15);
- p-carRA-NPcrtW, enthaltend das Gen der Ketolase NPcrtW aus Nostoc punctiforme PCC73102 unter der Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHygBTpcarRA-NpucrtW, SEQ ID NO: 48, Fig. 16);
- p-carB-NPcrtW, enthaltend das Gen der Ketolase NPcrtW aus Nostoc punctiforme PCC73102 unter der Kontrolle des Promotors pcarB aus Blakeslea trispora (Seq. pBinAHygBTpcarB-NpucrtW, SEQ ID NO: 49, Fig. 17);

Herstellung gentechnisch veränderter Stämme von Blakeslea trispora zur Herstellung von Astaxanthin

Folgende Plasmide (Abkömmlinge von pBinAHyg) wurden zur gentechnischen Veränderung von Blakeslea trispora für die Herstellung von Astaxanthin verwendet, codieren also u.a. für Hydroxylasen (crtZ) und Ketolasen (crtW):

WO 2004/063359 PCT/EP2004/000099

74

p-carRA-HPcrtZ-pcarRA-NPcrtW, enthaltend das Gen der Hydroxylase HPcrtZ aus Haematococcus pluvialis Flotow NIES-144 und das Gen der Ketolase NPcrtW aus Nostoc punctiforme PCC73102 (ORF148, Accesion No. NZ_AABC01000196) beide jeweils unter Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHygBTpcarRA-HPcrtZ-BTpcarRA-NpucrtW, SEQ ID NO: 50, Fig. 18);

- p-carRA-EUcrtZ-pcarRA-NPcrtW, enthaltend das Gen der Hydroxylase EUcrtZ aus Erwinia uredova20D3 (Accession No. D90087) und das Gen der Ketolase NPcrtW aus Nostoc punctiforme PCC73102 beide jeweils unter Kontrolle des Promotors pcarRA aus Blakeslea trispora (Seq. pBinAHygBTpcarRA-EUcrtZ-BTpcarRA-NpucrtW, SEQ ID NO: 51, Fig. 19);
- 15 Klonierung und Sequenzanalyse von Genen und Promotoren, die beispielhaft für die gentechnische Veränderung von Blakeslea trispora genutzt werden können.

Nachfolgend werden beispielhaft die Klonierung und Sequenzierung verschiedener Gene und Promotoren aus Blakeslea trispora beschrieben.

20

25

30

5

10

Klonierung und Seguenzanalyse ptef1

Die Klonierung von p-tef aus Blakeslea trispora erfolgte auf der Grundlage einer bereits in GenBank veröffentlichten Sequenz des Strukturgens für den Translations-Elongationsfaktor 1-α aus Blakeslea trispora (AF157235). Ausgehend von dem Sequenzeintrag AF157235 wurden Primer für die inverse PCR ausgewählt, um die stromaufwärts des Strukturgens gelegene Promotoregion zu amplifizieren und zu sequenzieren. In der inversen nested PCR an 200 ng Xhol-gespaltener und zirkularisierter genomischer DNA von Blakeslea trispora ATCC14272 wurde ein 3000-bp-Fragment in folgendem Ansatz erhalten: Matrizen-DNA (1 μg genomi-

sche DNA von Blakeslea trispora ATCC 14272) Primer MAT344 5'-GGCGTACTTGAAGGAACCCTTACCG-3' (SEQ ID NO: 63) und MAT 345 5'-ATTGATGCTCCCGGTCACCGTGATT-3' (SEQ ID NO: 64) je 0,25 μM, 100 μM dNTP, 10 μl Herculase-Polymerasepuffer 10x, 5 U Herculase (Zugabe bei 85 °C), H₂O ad 100 μl. Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 60 °C, 30 s. 72 °C, 60 s, 95 °C, 30 s (30 Zyklen); 72 °C, 10 min (1 Zyklus). Der Sequenzabschnitt, der stromaufwärts des vermutlichen Startcodons des Gens tef1 innerhalb 3000-bp-Fragmentes liegt, wurde als Promotor ptef1 bezeichnet.

10

5

Klonierung Sequenzanalyse des Gens der HMG-CoA-Reduktase aus Blakeslea trispora

Zunächst wurde mit dem Cosmidvektor pANsCos1 eine Genbank von Blakeslea trispora ATCC 14272, Mating Type (-) hergestellt. Der Vektor wurde durch Spaltung mit Xbal linearisiert und anschließend dephosphoryliert. 15 Eine weitere Spaltung mit mit BamHI schuf die Insertionsstelle, in welche die mit Sau3AI partiell gespaltene und dephosphorylierte genomische DNA von Blakeslea trispora ligiert wurde. Die derart gebildeten Cosmide wurden anschließend in vitro verpackt und in Escherichia coli übertragen. Auf der Grundlage der bekannten Sequenz eines Fragmentes des HMG-20 CoA-Reduktase codierenden Gens aus Blakeslea trispora (Eur. J. Biochem 220, 403-408 (1994)) wurde eine 315-bp-DNA-Sonde durch folgende PCR hergestellt. Reaktionsansatz: 1 µg genomische DNA von Blakes-**MAT314** 5'-14272, Primer ATCC lea trispora CCGATGGCGACGACGGAAGGTTGTT-3' [SEQ ID NO 79] und MAT315 25 5'-CATGTTCATGCCCATTGCATCACCT-3' [SEQ ID NO 80] je 0,25 μ M, 100 μM dNTP, 10 μI Herculase-Polymerasepuffer 10x, 5 U Herculase (Zugabe bei 85 °C), H₂O ad 100 µl. Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 58 °C, 30 s. 72 °C, 30 s, 95 °C, 30 s (30 Zyklen); 72 °C, 10 min (1 Zyklus). 30

10

15

25

Mit dieser DNA-Sonde wurde die Cosmid-Genbank durchmustert. Es wurde ein Klon identifiziert, dessen Cosmid mit der DNA-Sonde hybridisierte. Die Insertion dieses Cosmids wurde sequenziert. Die DNA-Sequenz enthielt einen Abschnitt, der dem Gen einer HMG-CoA-Reduktase zugeordnet wurde [HMG-CoA-Red.gb].

Klonierung und Sequenzanalyse carB

(carB = Gen der Phytoendesaturase aus Blakeslea trispora)

Aus dem Sequenzvergleich der Peptidsequenzen von Phytoendesaturasen und dem Vergleich der zugehörigen DNA-Sequenzen von Phycomyces blakesleeanus. Cercospora nicotianae, Phaffia rhodozyma und Neucrassa wurden die degenerierten Primer MAT182 rospora und MAT192 5'-GCNGARGGNATHTGGTA-3' (SEQ ID 52) TCNGCNAGRAADATRTTRTG-3 (SEQ ID 53) abgeleitet. Die PCR wurde in 100 µl Ansätzen durchgeführt. Diese enthielten 200 ng genomische DNA von Blakeslea trispora ATCC14272, 1 µM MAT182, 1 µM MAT192, 100 μM dNTP, 10 μl Pfu-Polymerasepuffer 10x, 2,5 U Pfu-Polymerase (Zugabe bei 85 °C), H₂O ad 100 µl.

20 Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 40 °C, 30 s, 72 °C, 30 s, 95 °C, 30 s (35 Zyklen); 72 °C, 10 min (1 Zyklus).

Hiermit wurde ein 358-bp-Fragment erhalten, dessen abgeleitete Peptidsequenz Ähnlichkeit zu den Sequenzen der Phytoendesaturasen aufwies. Durch die Methode der inversen PCR (Innis et al. in PCR protocols: a guide to methods and applications. 1990. S. 219-227) wurden nach dem Prinzip des Chromosome-Walking die Genregionen stromaufwärts und stromabwärts des 350-bp-Fragmentes folgendermaßen amplifiziert, kloniert und sequenziert:

30 (i) ein 1,1-kbp-Fragment durch PCR mit den Primern MAT219 5'-AAGTGACACCGGTTACACGCTTGTCTT-3' (SEQ ID 54) und MAT

20

25

220 5'-GCTTATCACCATCTGTTACCTCCTTGC-3' (SEQ ID 55) erhalten aus 200 ng EcoRl-gespaltener und zirkularisierter genomischer DNA von Blakeslea trispora ATCC14272, 0,25 μ M MAT219, 0,25 μ M MAT220, 100 μ M dNTP, 10 μ l Herculase-Polymerasepuffer 10x, 5 U Herculase (Zugabe bei 85 °C), H₂O ad 100 μ l. Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 60 °C, 30 s. 72 °C, 60 s, 95 °C, 30 s (30 Zyklen); 72 °C, 10 min (1 Zyklus),

(ii) ein 2,9-kbp-Fragment durch PCR mit den Primern MAT219 und MAT220 erhalten aus 200 ng Xbal-gespaltener und zirkularisierter genomischer DNA von Blakeslea trispora ATCC14272, 0,25 μΜ MAT219, 0,25 μΜ MAT220, 100 μΜ dNTP, 10 μl Herculase-Polymerasepuffer 10x, 5 U Herculase (Zugabe bei 85 °C), H₂O ad 100 μl. Das PCR-Profil war 95 °C, 10 min (1 Zyklus); 85 °C, 5 min (1 Zyklus); 60 °C, 30 s, 72 °C, 3 min, 95 °C, 30 s (30 Zyklen); 72 °C, 10 min (1 Zyklus);

Der klonierte Sequenzabschnitt ist schematisch in Fig. 20 (SEQ ID NO 77) dargestellt. Die Sequenzierung erfolgte in Strang- und Gegenstrangrichtung mit den klonierten Fragmenten sowie mit den PCR-Produkten. Die Sequenz des klonierten Sequenzabschnitts ist in Fig. 21 (SEQ ID NO 78) gezeigt.

Sequenzvergleiche

Die Nukleotidsequenz von carB und die Peptidsequenz des abgeleiteten Proteins CarB wurden mit den bekannten Sequenzen verwandter Proteine verglichen. Zum Sequenzvergleich wurden die Programme GAP und BESTFIT eingesetzt.

30 CarB - Identische Aminoacylreste nach GAP

Programmeinstellungen:

Gap Weight: 8

Length Weight: 2

Average Match: 2.912
Average Mismatch: -2.003

5 Dabei wurde folgende Werte für die Übereinstimmung der Aminosäuren zu

CarB aus Blakeslea trispora ATCC14272 in % gefunden:

Phycomyces blakesleeanus: 72,491

Phaffia rhodozyma: 50,460

Neurospora crassa: 47,943

10 Cercospora nicotianae: 47,740

CarB -Identische Aminoacylreste nach BESTFIT

Programmeinstellungen:

Gap Weight: 8

15 Length Weight: 2

Average Match: 2.912

Average Mismatch: -2.003

Dabei wurde folgende Werte für die Übereinstimmung der Aminosäuren zu

CarB aus Blakeslea trispora ATCC14272 in % gefunden:

20 Phycomyces blakesleeanus: 73,380

Phaffia rhodozyma: 53,175 Neurospora crassa: 51,896 Cercospora nicotianae: 50,791

25 carB - Identische Basen nach GAP

Programmeinstellungen:

Gap Weight: 50

Length Weight: 3

Average Match: 10.000

30 Average Mismatch: 0.000

Dabei wurde folgende Werte für die Übereinstimmung der Basen zu CarB aus Blakeslea trispora ATCC14272 in % gefunden:

Phycomyces blakesleeanus: 64,853

Cercospora nicotianae: 50,143

5 Phaffia rhodozyma: 43,179

Neurospora crassa: 42,130

carB -Identische Basen nach BESTFIT

Programmeinstellungen:

10 Gap Weight: 50

WO 2004/063359

Length Weight: 3

Average Match: 10.000 Average Mismatch: -9.000

Dabei wurde folgende Werte für die Übereinstimmung der Basen zu CarB

aus Blakeslea trispora ATCC14272 in % gefunden:

Phycomyces blakesleeanus: 68,926

Phaffia rhodozyma: 62,403

Neurospora crassa: 60,230

Cercospora nicotianae: 56,884

20

25

30

Klonierung zur Expression von carB

Zur Klonierung und Expression von carB aus Blakeslea trispora wurden von dem oben beschriebenen klonierten Sequenzabschnitt aus Blakeslea trispora in sechs Leserastern die möglichen Proteinsequenzen abgeleitet. Diese Proteinsequenzen wurden mit den Sequenzen der Phytoendesaturasen aus Phycomyces blakesleeanus, Phaffia rhodozyma, Neurospora crassa, Cercospora nicotianae verglichen. Auf der Grundlage des Sequenzvergleiches wurden im klonierten Sequenzabschnitt der genomischen DNA von Blakeslea trispora drei Exons identifiziert, die zusammengefügt eine codierende Region ergeben, deren abgeleitetes Genprodukt über die gesamte Länge 72,7% identische Aminoacylreste mit der Phy-

toendesaturase CarB aus Phycomyces blakesieeanus aufweist. Dieser Sequenzabschnitt aus drei möglichen Exons und zwei möglichen Introns wurde daher als Gen carB bezeichnet. Zur Überprüfung der vorhergesagten Genstruktur wurde die codierende Sequenz von carB aus Blakeslea trispora durch PCR mit cDNA von Blakeslea trispora als Matrize und mit 5'-Bol1425 Primern den AGAGAGGGATCCTTAAATGCGAATATCGTTGC-3' (SEQ ID 56) und Bol1426 5'-AGAGAGGGATCCATGTCTGATCAAAAGAAGCA-3' (SEQ ID 57) erzeugt. Das erhaltene DNA-Fragment wurde sequenziert. Die Lokalisation von Exons und Introns wurde durch Vergleich der cDNA mit der genomischen DNA von carB bestätigt. In Fig. 21 ist die codierende Sequenz von carB schematisch dargestellt. Zur Expression von carB in Escherichia coli wurde zunächst die Ndel-Schnittstelle in carB durch die Methode overlap extension PCR entfernt sowie am 5'-Ende des Gens eine Ndel-Schnittstelle und am 3'-Ende eine BamHl-Schnittstelle eingefügt. Das erhaltene DNA-Fragment wurde mit dem Vektor pJOE2702 ligiert. Das erhaltene Plasmid wurde als pBT4 bezeichnet und zusammen mit pCAR-AE in Escherichia coli XL1-Blue kloniert. Die Expression erfolgte durch Induktion mit Rhamnose. Der Nachweis der Enzymaktivität erfolgte durch Nachweis der Lycopinsynthese via HPLC. Die Klonierungsschritte

PCR 1.1:

sind im folgenden beschrieben:

5

10

15

20

25

Ca. 0,5 μg cDNA von Blakeslea trispora, 0,25 μM MAT350 5'ACTTTATTGGATCCTTAAATGCGAATATCGTTGCTGC-3' (SEQ ID 58),
0,25 μΜ MAT244 5'GTTCCAATTGGCCACATGAAGAGTAAGACAGGAAACAG-3' (SEQ ID 59), 100 μM dNTP, 10 μl Pfu-Polymerase-Puffer (I0x), 2,5 U Pfu-Polymerase (Zugabe bei 85 °C, "hot start") und H₂O ad 100μL.

30 Temperaturprofil:

1. 95 °C 10 min, 2. 85 °C 5 min, 3. 40 °C 30s, 4. 72 °C 1 min 30 s, 5. 95 °C 30 s, 6. 50 °C 30 s, 7. 72 °C 1 min 30 s, 8. 95 °C 30 s, 9. 72 °C 10min Zyklen: (1-2.) 1x, (3-5.) 5x, (6-8.) 25x, (9.) 1x

5 PCR1.2:

15

Ca. 0,5 μ g cDNA von Blakeslea trispora, 0,25 μ M MAT243 5'-CCTGTCTTACTCTTCATGTGGCCAATTGGAACCAACAC-3' (SEQ ID 60), 0,25 μ M MAT353 5'-CTATTTTAATCATATGTCTGATCAAAAGAAGCATATTG-3' (SEQ ID 61), 100 μ M dNTP, 10 μ I Pfu-Polymerase-Puffer (I0x), 2,5 U Pfu-Polymerase (Zugabe bei 85 °C, "hot start") und H₂O ad 100 μ L. Temperaturprofil:

1. 95 °C 10 min, 2. 85 °C 5 min, 3. 40 °C 30s, 4. 72 °C 1 min 30 s, 5. 95 °C 30 s, 6. 50 °C 30 s, 7. 72 °C 1 min 30 s, 8. 95 °C 30s, 9. 72 °C 10min Zyklen: (1 -2.) 1x, (3-5.) 5x, (6-8.) 25x, (9.) 1x

Reinigung der PCR-Fragmente aus PCR 1.1, 1.2

Dazu wurde PCR 2 zur Herstellung der codierenden Sequenz von carB aus Blakeslea trispora für die Klonierung in pJOE2702 durchgeführt:

- Ca. 50 ng Produkt aus PCR 1.1 und ca. 50 ng Produkt aus PCR1.2 mit 20 5'-MAT350 0,25 · µM ACTTTATTGGATCCTTAAATGCGAATATCGTTGCTGC-3' (SEQ ID NO 5'-0,25 μМ **MAT353** 58), CTATTTTAATCATATGTCTGATCAAAAGAAGCATATTG-3' (SEQ ID NO 61), 100 µM dNTP, 10 µL Pfu-Polymerase-Puffer (I0x), 2,5 U Pfu-25 Polymerase (Zugabe bei 85 °C, "hot start") und H₂O ad 100 μL.
 - Temperaturprofil:
 - 1. 95°C 10 min, 2. 85 °C 5 min, 3. 59 °C 30 s, 4. 72 °C 2 min, 5. 95 °C 30 s, 6.72°C 10 min
- 30 Zyklen: (1-2.) 1x, (3-5.) 22x, (6.) 1x

Anschließend erfolgte eine Reinigung des erhaltenen Fragmentes (~ 1,7 kbp), eine Ligation in Vektor pPCR-Script-Amp, eine Klonierung in Escherichia coli XL1-Blue, Sequenzierung der Insertion, Spaltung mit Ndel und BamHI sowie eine Ligation in pJOE2702. Das erhaltene Plasmid wurde als pBT4 bezeichnet.

Charakterisierung und Nachweis der Enzymaktivität von CarB (Phytoendesaturase)

Das von carB abgeleitete Genprodukt wurde als CarB bezeichnet. CarB
weist auf Grundlage der Peptidsequenzanalyse folgende Eigenschaften
auf:

Länge: 582 Aminoacylreste

Molekulare Masse: 66470

Isoelektrische Punkt: 6,7

15 Katalytische Aktivität: Phytoendesaturase

Edukt: Phytoen

Produkt: Lycopin

EC-Nummer: EC 1.14.99-

Der Nachweis der Enzymaktivität erfolgte in vivo. Wenn das Plasmid (pCAR-AE) in Escherichia coli XL1-Blue übertragen wird, entsteht der Stamm Escherichia coli XL1-Blue (pCAR-AE). Dieser Stamm synthetisiert Phytoen. Wenn zusätzlich das Plasmid pBT4 in Escherichia coli XL1-Blue übertragen wird, entsteht der Stamm Escherichia coli XL1-Blue (pCAR-AE)(pBT4). Da ausgehend von carB eine enzymatisch aktive Phytoendesaturase gebildet wird, produziert dieser Stamm Lycopin.

Die Plasmide pCAR-AE und pBT4 wurden daher in Escherichia coli übertragen. Nach Wachstum in Flüssigkultur wurden die Carotinoide aus den Zellen extrahiert und charakterisiert (vgl. oben).

25

20

Durch HPLC Analyse wurde nachgewiesen, daß der Stamm Escherichia coli XL1-Blue (pCAR-AE) Phytoen und der Stamm Escherichia coli XL1-Blue (pCAR-AE)(pBT4) Lycopin produziert. CarB weist folglich die Enzymaktivität einer Phytoendesaturase auf.

5

Herstellung gentechnisch veränderter Stämme von Blakeslea trispora zur Herstellung von Phytoen

Nachfolgend werden beispielhaft die Herstellung von gentechnisch veränderten Organismen zur Herstellung von Phytoen beschrieben.

10

15

20

Vector pBinAHyg∆carB zur Erzeugung von carB⁻ -Mutanten von Blakeslea trispora

Für die Deletion von carB in Blakeslea trispora wurde der Vektor pBinA-Hyg∆carB (SEQ. ID. NO:62, Fig. 22) konstruiert. Der Vorläufer von pBinAHyg∆carB ist pBinAHyg (SEQ. ID. NO:3, Fig. 2). pBinAHyg wurde folgendermaßen konstruiert:

Aus dem Plasmid pANsCos1 (SEQ. ID. NO:4, Fig. 1, Osiewacz, 1994, Curr. Genet. 26:87-90) wurde die gpdA-hph Kassette als BgIII/Hindlll Fragment isoliert und in das BamHI/Hindlll geöffnete binäre Plasmid pBin19 (Bevan, 1984, Nucleic Acids Res. 12:8711-8721) ligiert. Der so erhaltene Vektor wurde als pBinAHyg bezeichnet und enthält das *E. coli* Hygromycin-Resistenzgen (hph) unter Kontrolle des gpd Promotors und des trpC Terrminators aus *Aspergillus nidulans* sowie die entsprechenden Bordersequenzen, die für den DNA-Transfer von *Agrobacterium* notwendig sind.

25 dig sind.

Die Amplifikation der codierenden Sequenz von carB mit den Primern MAT350 (SEQ ID NO 58) und MAT353 (SEQ ID NO 61) mittels PCR wurde mit den folgenden Parametern durchgeführt:

30 50 ng pBT4 mit 0,25 μM MAT350 5'-ACTTTATTGGATCCTTAAAT-GCGATATCGTTGCTGC-3', 0,25 μM MAT353 5'-

PCT/EP2004/000099 **WO** 2004/063359

84

CTATTTTAATCATATGTCTGATCAAAAGAAGCATATTG-3', 100 uМ dNTP, 10 µL Pfu-Polymerase-Puffer, 2,5 U Pfu-Polymerase (Zugabe bei 85 °C, "hot start") und ad 100 μL H₂O

Temperaturprofil:

10

15

25

30

1. 95 °C 10 min, 2. 85 °C 5 min, 3. 58 °C 30s, 4. 72 °C 2 min, 5. 95 °C 30s, 5 6. 72 °C 10 min.

Zyklen: (1.-2.) 1x, (3-5.) 30x, (6.) 1x

Anschließend erfolgte eine Reinigung des erhaltenen Fragmentes (~ 1,7 kbp), eine Spaltung mit Hindlll, eine weitere Reinigung des 364-bp-Hindlll-Fragments-carB, gefolgt von einer Spaltung von pBinAHyg mit Hindlll, eine Ligation von 364-bp-HindIII-Fragments-carB in pBinAHyg, eine Transformation des Vektors in Escherichia coli und eine Isolierung des Konstruktes und Bezeichnung als pBinAHyg∆carB wie oben beschrieben. Alternativ erfolgte eine partielle Spaltung mit Hindlll und die Klonierung eines größeren Hindill-Fragmentes aus carB in pBinAHyg zur Herstellung von pBinA-Hyg∆carB.

Erzeugung von carB--Mutanten von Blakeslea trispora 20

Zunächst wurde das Plasmid pBinAHyg∆carB in den Agrobakterienstamm LBA 4404 übertragen, z. B. durch Elektroporation (vgl. oben). Anschließend wurde das Plasmid von Agrobacterium tumefaciens LBA 4404 in Blakeslea trispora ATCC 14272 und in Blakeslea trispora ATCC 14271 übertragen (vgl. oben). Der erfolgreiche Nachweis des Gentransfers in Blakesleslea trispora erfolgte über Polymerase-Kettenreaktion nach folgendem Protokoll:

Ca. 0.5 ug DNA aus Blakeslea trispora ATCC 14272 carB- bzw. ATCC hph forward carB- wurden mit 0,25 µM Primer CGATGTAGGAGGCGTGGATA-3' (SEQ ID NO 5), 0,25 µM Primer hph reverse 5'-GCTTCTGCGGGCGATTTGTGT-3' (SEQ ID NO 6), 100 μM dNTP, 10 μ L Herculase-Polymerase-Puffer, 2,5 U Herculase-DNA-Polymerase (Zugabe bei 85 °C, "hot start") und ad 100 μ l H₂O umgesetzt. Temperaturprofil:

1. 95°C 10 min, 2. 85 °C 5 min, 3. 58 °C 1 min, 4. 72 °C 1 min, 5. 94 °C 1 min, 6.72°C 10 min.

Zyklen: (1.-2.) 1x, (3-5.) 30x, (6.) 1x

5

10

15

Als Negativkontrolle wurde eine Amplifikation des Kanamycinresistenzgens aus Agrobacterium versucht. Dazu wurden folgende PCR-Bedingungen verwendet:

Ca. 0,5 μ g DNA aus Blakesiea trispora ATCC 14272 carB⁻ bzw. ATCC 14271 carB⁻ wurden mit 0,25 μ M Primer nptlll forward 5'-TGAGAATATCACCGGAATTG-3' (SEQ ID NO 7), 0,25 μ M Primer nptlll reverse 5'-AGCTCGACATACTGTTCTTCC-3' (SEQ ID NO 8), 100 μ M dNTP, 10 μ L Herculase-Polymerase-Puffer, 2,5 U Herculase-DNA-Polymerase (Zugabe bei 85 °C, "hot start") und ad 100 μ L H₂O umgesetzt. Temperaturprofil:

1. 95 °C 10 min, 2. 85 °C 5 min, 3. 58 °C 1 min, 4. 72 °C 1 min, 5. 94 °C 1 min, 6. 72 °C 10 min-

20 Zyklen: (1-2.) 1x, (3-5.) 30x, (6.) 1x

C) Produktion von Carotinoiden und Carotinoidvorstufen mit Blakeslea trispora

Zur Produktion der Carotinoide Zeaxanthin, Canthaxanthin, Astaxanthin und Phytoen wurden die entsprechenden gentechnisch veränderten Blakeslea trispora (+) und (-) Stämme fermentiert, das produzierte Carotinoid mittels HPLC Analyse nachgewiesen und isoliert.

Das Flüssigmedium zur Produktion von Carotinoiden enthielt pro Liter: 19 g Maismehl, 44 g Sojamehl, 0,55 g KH₂PO₄, 0,002 g Thiaminhydochlorid, 10 % Sonnenblumenöl. Der pH wurde mit KOH auf 7,5 eingestellt.

Zur Herstellung der Carotinoiden wurden Schüttelkolben mit Sporensuspensionen von (+) und (-) Stämmen der GVO von Blakeslea trispora beimpft. Die Schüttelkolben wurden bei 26 °C mit 250 rpm für 7 Tage inkubiert. Alternativ wurde zu Mischungen der Stämme nach 4 Tagen Trisporsäuren zugegeben und weitere 3 Tage inkubiert. Die Endkonzentration der Trisporsäuren betrug 300 - 400 μg/ml.

Extraktion und Analytik

Extraktion:

- 1. Entnahme von 10 ml Kultursuspension
- 15 2. Zentrifugation, 10 min, 5.000 x g
 - 3. Verwerfen des Überstandes
 - 4. Resuspendierung des Pellets in 1 ml Tetrahydrofuran (THF) durch Vortexen
 - 5. Zentrifugation, 5 min, 5.000 x g
- 20 6. Abnahme der THF-Phase
 - 7. Wiederholung der Schritte 4.-6. (2 x)
 - 8. Vereinigung der THF-Phasen
 - 9. Zentrifugation der vereinigten THF-Phasen 5 min bei 20.000 x g, um Reste der wäßrigen Phase abzutrennen

25

Analytik

Messung von Phytoen mittels HPLC

Säule:

ZORBAX Eclipse XDB-C8, 5 um, 150*4,6 mm

30 Temperatur:

40 °C

Flußrate:

0.5 ml/min

Injektionsvolumen:10 µl

Detektion:

UV 220 nm

Stoppzeit:

12 min

Nachlaufzeit:

0 min

5 Maximaldruck:

350 bar

Eluent A:

50 mM NaH₂PO₄, pH 2,5 mit Perchlorsäure

Eluent B:

Acetonitril

Gradient:

10

15

 Zeit [min]
 A [%]
 B [%]
 Fluß [ml/min]

 0
 50
 0,5

 12
 50
 50
 0,5

Als Matrix wurden Extrakte der Fermentationsbrühen verwendet. Vor der HPLC wurde jede Probe wird durch ein 0,22 µm Filter filtriert. Die Proben wurden kühl gehalten und vor Licht geschützt. Zur Kalibrierung wurden jeweils 50 - 1000 mg/l eingewogen und in THF gelöst. Als Standard wurde Phytoen verwendet, welches unter den gegebenen Bedingungen eine Retentionszeit von 7,7 min. aufweist.

20 Messung von Lycopin, β-Carotin, Echinenon, Canthaxanthin, Cryptoxanthin, Zeaxanthin und Astaxanthin mittels HPLC

Säule:

Nucleosil 100-7 C18, 250*4,0 mm (Macherey & Nagel)

Temperatur:

25 °C

Flußrate:

1,3 ml/min

25 Injektionsvolumen:10 μl

Detektion:

450 nm

Stoppzeit:

15min

Nachlaufzeit:

2 min

Maximaldruck:

250 bar

30 Eluent A:

10% Aceton, 90% H₂O

Eluent B:

Aceton

Gradient:

5

10

15

20

25

. 30

	Zeit [min]	A [%]	B [%]	Fluß [ml/min]
	0	30	70	1,3
,	10	5	95	1,3
	12	5	95	1,3
	13	30	70	1,3

Als Matrix wurden Extrakte der Fermentationsbrühen verwendet. Vor der HPLC wurde jede Probe wird durch ein 0,22 μm Filter filtriert. Die Proben wurden kühl gehalten und vor Licht geschützt. Zur Kalibrierung wurden jeweils 10 mg eingewogen und in 100 ml THF gelöst. Als Standard wurden folgende Carotinoide mit folgenden Retentionszeiten eingesetzt β-Carotin (12,5 min), Lycopin (11,7 min), Echinenon (10,9 min), Cryptoxanthin (10,5 min), Canthaxanthin (8,7 min), Zeaxanthin (7,6 min) und Astaxanthin (6,4 min) [s. Fig. 23].

Produktion von Zeaxanthin mit gentechnisch veränderten Stämmen von Blakeslea trispora

Nachfolgend wird beispielhaft die Herstellung von Zeaxanthin mit gentechnisch veränderten Organismen (GVO) von Blakeslea trispora beschrieben.

Durch Agrobakterium-vermittelte Transformation wurde der Vektor pBinA-HygBTpTEF1-HPcrtZ in Blakeslea trispora übertragen (s.o.). Ein Hygromycin-resistenter Klon wurde isoliert und auf eine Kartoffel-Glucose-Agarplatte (Merck KGaA, Darmstadt) übertragen.

Nach drei Tagen Inkubation bei 26°C wurde ausgehend von dieser Platte ein Sporensuspension hergestellt. Ein 250-ml-Erlenmeyerkolben ohne Schikanen mit 50 ml Growth-Medium (Maismehl 47 g/l, Sojamehl 23 g/l, KH₂PO₄ 0,5 g/l, Thiamin-HCl 2.0 mg/l, pH mit NaOH vor der Sterilisation auf 6,2–6,7 eingestellt) wurde mit 1x10⁵ Sporen beimpft. Diese Vorkultur inkubierte 48 Stunden bei 26 °C und 250 upm. Für die Hauptkultur

wurde ein 250-ml-Erlenmeyerkolben ohne Schikane enthaltend 40 ml Produktionsmedium mit 4 ml der Vorkultur beimpft und 8 Tage bei 26 °C und 150 upm inkubiert. Das Produktionsmedium enthielt Glucose 50 g/l, Casein Acid Hydrolisate 2 g/l, Hefeextrakt 1 g/l, L-Asparagin 2 g/l, KH₂PO₄ 1,5 g/l, MgSO₄ x 7 H₂O 0,5 g/l, Thiamin-HCl 5 mg/l, Span20 10 g/l, Tween 80 1 g/l, Linolsäure 20 g/l, Maisquellwasser 80 g/l. Nach 72 Stunden erfolgte die Zugabe von Kerosin in einer Endkonzentration von 40 g/l Kerosin.

5

10

15

20

30

Nach der Ernte der Kulturen werden die verbliebenen ungefähr 35 ml Kultur mit Wasser auf 40 ml aufgefüllt. Anschließend werden die Zellen im Hochdruckhomogenisator, Typ Micron Lab 40, Fa. APV Gaulin, 3 x bei 1500 bar aufgeschlossen.

Die Suspension mit den aufgeschlossenen Zellen wurde mit 35 ml THF versetzt und 60 min bei RT im Dunkeln bei 250 upm geschüttelt. Danach wurden 2 g NaCl zugegeben und das Gemisch nochmals geschüttelt. Der Extraktionsansatz wurde dann 10 min bei 5000 x g zentrifugiert. Die gefärbte THF-Phase wurde abgenommen, die Zellmasse war vollständig entfärbt.

Die THF-Phase wurde am Rotationsverdampfer bei 30 mbar und 30 °C auf 1 ml eingeengt und danach nochmals in 1 ml THF aufgenommen. Nach Zentrifugation 5 min bei 20 000 x g wurde ein Aliquot der oberen Phase entnommen und durch HPLC analysiert (Fig. 24, Fig. 23).

25 <u>D) Aufarbeitung und Isolierung der Carotinoide bzw. des Nahrungs-</u> mittels

Die oben unter A) angegebenen Kulturbrühen wurden wie nachfolgend aufgearbeitet, um hochreine Carotinoide und ein entsprechendes Nahrungsmittel zu erhalten.

WO 2004/063359 PCT/EP2004/000099

90

Der Carotinoidgehalt der Kulturbrühen 1, 2, 3 betrug zwischen 0,5 und 1,5 g/L.

D1) Beispiel gemäß Varainte a) IIA und Variante b) IIA bzw. IIB

5 Die Kulturen mit identischen Medien (insgesamt ca. 1 L) wurden am Ende des Kultivierungszeitraums vereinigt und mit Hilfe eines Dispergiergeräts (Ultra.Turrax ®) homogenisiert.

Die Feststoffkonzentration in den Medien 1 und 2 betrug 37 g/l bzw. 11 g/L. Die Entwässerung der Kulturbrühe erfolgte durch eine Zentrifuge. Bei hohen Zellkonzentrationen bzw. hohem Feststoffgehalt des Mediums kann dieKulturbrühe auch ohne vorherige fest-flüssig-Trennung weiterverarbeitet werden (Medium 3: 127 g Feststoff/L. Nach vorheriger Homogenisation mit einem Dispergiergerät (Ultra-Turrax ®) und unter ständigem Rühren der Suspension wurde die Zellmasse über eine Schlauchpumpe auf den Trockner aufgegeben. Die Eindüsung in den Zylinder des Laborsprühtrockners erfolgte dabei über eine Zweistoffdüse mit dem Durchmesser 2,0 mm. Eingedüst wurde mit 2 bar und 4,5 Nm³/h Stickstoff. Die Temperatur am Eintritt betrug ca. 125°C bis 127°C. Das Trocknungsgas war Stickstoff mit einer Flussrate von 22 Nm³/h. Die Austrittstemperatur betrug zwischen 59°C und 61°C. Bei jeder der drei Fermentationsbrühen konnte am Zyklon des Sprühtrockners rieselfähiges Produkt abgeschieden werden. Die Wandbeläge im Turm (sofern vorhanden) platzten automatisch von der Gefäßwand ab und werden als unproblematisch eingestuft.

25

10

15

20

Es wurden zwischen 8 und 100 g pulvriges Nahrungsmittel erhalten, welches direkt als Tierfuttermittel verwendet werden könnte. Es enthielt ca. 1-10 % Carotinoide bezogen auf das Trockengewicht. Die Restfeuchte betrug weniger als 5%.

25

30

Beispiel gemäß Variante b) IIC

D2) Extraktion mit Tetrahydrofuran

Die Zellen aus je 40 ml der Kulturbrühen 1, 2, 3 wurden 3 x bei 1500 bar durch einen Hochdruckhomogenisator, Typ Micron Lab 40, Fa. APV Gaulin aufgeschlossen. Je 20 ml der Suspensionen mit den aufgeschlossenen Zellen wurden mit 20 ml Tetrahydrofuran versetzt und 30 min, bei 30°C im Rundschüttler bei 200 Upm geschüttelt. Danach wurden 2 g NaCl zugesetzt und zur Phasentrennung 5 min bei 5000 x g zentrifugiert. Die THF-Phase wurde abgenommen. Danach wurde die wässrige Phase nochmals mit 20 ml THF extrahiert. Die Extrakte wurde vereinigt. Die Carotinoidkonzentration wurde durch HPLC quantifiziert.

D3) Extraktion mit Methylenchlorid

Die Biomassenabtrennung aus der Kulturbrühe (200 mL) erfolgte durch Zentrifugation bei 5.000 x g für 10 min. in einer Laborzentrifuge.

Die abgetrennte Biofeuchtmasse (jeweils ca. 10 g bis 100 g) wurde mit 10 - 100 mL Wasser vermischt, um wasserlösliche Komponenten zu entfernen. Die Biomasse wurde abgetrennt (Laborzentrifuge) und danach mit Dampf (T = 121, t = 30 min, 1 bar) im Autoklaven sterilisiert und so die Zellen aufgeschlossen.

Zu den Zelltrümmern wurden 25 - 250 g Methylenchlorid zugegeben und das Carotinoid aus der Biomasse mittels Ausschütteln extrahiert. Die Biomasse wurde in einer Laborzentrifuge abgetrennt.

Es wurde ein Lösungsmitteltausch von Methylenchlorid zu Methanol durchgeführt, wozu die Carotinoidlösung ca. vier Stunden bei 40°C bis 60°C gehalten und über diesen Zeitraum kontinuierlich mit insgesamt 20 - 200 mL Methanol versetzt wurde. Methylenchlorid wurde dabei als Lö-

sungsmittel zurückgewonnen. Erste Carotinoid Kristalle fielen aus. Anschließend wurde langsam, über 6 h auf ca. 10 °C abgekühlt, wobei die Carotinoid Kristalle an Größe und Anzahl zunahmen. Danach wurde die Mutterlauge abfiltriert und die Carotinoid Kristalle getrocknet. Ein Teil der

Mutterlauge abfiltriert und die Carotinoid Kristalle getrocknet. Ein Teil der Mutterlauge kann zum Lösungsmitteltausch wiederverwendet werden. Der andere Teil wird destilliert und das so gereinigte Methanol im Lösungsmit-

Es wurden 0,0,08 g bis 0,24 g Carotinoid Kristalle erhalten, welche eine Reinheit (HPLC, vgl. oben) von 95 % aufwiesen. Die Ausbeute an Carotinoid Kristallen betrug 80 % bezogen auf die Konzentration an Carotinoid

in der Biomasse.

teltausch wiederverwendet.

5

20

25

30

Die abgetrennte methylenchloridfeuchte Biomasse wurde nach Wasserdampfdestillation sprühgetrocknet (T_E = 125 °C, T_A = 60 °C) und kann als Tierfuttermitteladditiv eingesetzt werden.

Hierzu wurde nach vorheriger Homogenisation mit einem Dispergiergerät (Ultra-Turrax) und unter ständigem Rühren der Suspension die Zellmasse über eine Schlauchpumpe auf den Trockner aufgegeben.

Die Eindüsung in den Zylinder des Laborsprühtrockners erfolgte dabei über eine Zweistoffdüse mit dem Durchmesser 2,0 mm. Eingedüst wurde mit 2 bar und 4,5 Nm³/h Stickstoff. Die Temperatur am Eintritt betrug ca. 125°C bis 127°C. Das Trocknungsgas war Stickstoff mit einer Flussrate von 22 Nm³/h. Die Austrittstemperatur betrug zwischen 59°C und 61°C. Bei jeder der drei Fermentationsbrühen konnte am Zyklon des Sprühtrockners rieselfähiges Produkt abgeschieden werden. Die Wandbeläge im Turm (sofern vorhanden) platzten automatisch von der Gefäßwand ab und wurden als unproblematisch eingestuft.

Es wurden ca. 2,5 – 25 g pulvriges Nahrungsmittel erhalten, welches direkt als Tierfuttermittel verwendet werden könnte. Es enthielt ca. 0,5% - 1,5% Carotinoide bezogen auf das Trockengewicht. Die Restfeuchte betrug weniger als 5%.

Insgesamt (einschließlich des aufgereinigeten Carotinoid-Nahrungsmittels betrug die Ausbeute an Carotinoid ca, 95 % bezogen auf die Ausgangsmenge Carotinoid in der Kulturbrühe.

10

Patentansprüche

- 1. Verfahren zur Herstellung von Carotinoiden oder deren Vorstufen mittels gentechnisch veränderter Organismen der Gattung Blakeslea umfassend
 - (i) Transformation mindestens einer der Zellen,
 - (ii) ggf. Homokaryotisierung der aus (i) erhaltenen Zellen, so dass Zellen entstehen, in denen die Kerne in einem oder in mehreren genetischen Merkmalen alle gleichartig verändert sind und diese genetische Veränderung zur Ausprägung bringen, und
 - (vi) Selektion und Vermehrung der gentechnisch veränderten Zelle oder Zellen,
 - (vii) Kultivierung der gentechnisch veränderten Zellen,
- (viii) Bereitstellung des von den gentechnisch veränderten Zellen produzierten Carotinoids oder der von den gentechnischen veränderten Zellen produzierten Carotinoidvorstufe.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich um Zellen von Pilzen der Art Blakeslea trispora handelt.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in
 der Transformation (i) ein Vector oder freie Nukleinsäuren verwendet werden.
 - 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector in das Genom mindestens einer der Zellen integriert wird.

- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector einen Promotor und/oder einen Terminator enthält.
- 6. Verfahren nach einem der vorhergehenden Ansprüche 3 bis 5, dadurch gekennzeichnet, dass in der Transformation (i) ein Vector enthaltend den gpd, pcarB, pcarRA und/oder ptef1 Promotor und/oder den trpC Terminator eingesetzt wird.
- 7. Verfahren nach einem der vorhergehenden Ansprüche 3 bis 6, da10 durch gekennzeichnet, dass in der Transformation (i) ein Vector enthaltend ein Resistenzgen eingesetzt wird.
 - 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector ein Hygromycin-Resistenzgen (hph), insbesondere aus E. coli enthält.
- Verfahren nach einem der vorhergehenden Ansprüche 5 8, dadurch gekennzeichnet, dass der gpd Promotor die Sequenz SEQ ID NO: 1 aufweist.

- 10. Verfahren nach einem der vorhergehenden Ansprüche 5 8, dadurch gekennzeichnet, dass der trpC Terminator die Sequenz SEQ ID NO: 2 aufweist.
- 11. Verfahren nach einem der vorhergehenden Ansprüche 5 8, dadurch gekennzeichnet, dass der tef1 Promotor die Sequenz SEQ ID NO: 35 aufweist.
- 12. Verfahren nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, dass der gpd Promotor und der trpC Terminator aus Aspergillus nidulans stammen.

- 13. Verfahren nach einem Ansprüche 3 bis 12, dadurch gekennzeichnet, dass der Vector die SEQ ID NO: 3 umfasst.
- 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Transformation (i) mittels Agrobakterien, Konjugation, Chemikalien, Elektroporation, Beschuss mit DNA-beladenen Partikeln, Protoplasten oder Mikroinjektion durchgeführt wird.

- 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Homokaryontisierung (ii) ein mutagenes Agens eingesetzt wird.
- 10 16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass als mutagenes Agens N-Methyl-N'-nitro-nitrosoguanidin (MNNG), UV-Strahlung oder Röntgenstrahlung eingesetzt wird.
 - 17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Selektion durch Markierung und/oder Auswahl der einkernigen Zellen erfolgt.
 - 18. Verfahren nach einem der vorhergehenden Ansprüche 1 17, dadurch gekennzeichnet, dass in der Selektion 5-Carbon-5-deazariboflavin (darf) und Hygromycin (hyg) oder 5-Fluororotat (FOA) und Uracil und Hygromycin eingesetzt werden.
- 19. Verfahren nach einem der Ansprüche 3 bis 18, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector genetische Informationen zur Herstellung von Carotinoiden oder deren Vorstufen enthält.
- 20. Verfahren nach einem der Ansprüche 3 bis 19, dadurch gekennzeichnet, dass der in der Transformation (i) eingesetzte Vector genetische Informationen zur Herstellung von Carotinen oder Xanthophyllen enthält.

21. Verfahren nach einem der Ansprüche 3 bis 20, **dadurch gekennzeichnet**, dass der in der Transformation (i) eingesetzte Vector genetische Informationen zur Herstellung von Astaxanthin, Zeaxanthin, Echinenon, β-Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Lycopin, β-Carotin, α-Carotin, Lutein, Phytofluen, Bixin oder Phytoen enthält.

10

15

20

25

- 22. Verfahren zur Bereitstellung mindestens eines hochreinen Carotinoids und eines Nahrungsmittels, enthaltend Carotinoide-produzierende Organismen und mindestens das eine Carotinoid, umfassend nach der Kultivierung von Carotinoide-produzierenden Organismen der Gattung Blakeslea die Schritte
 - I) Abtrennung der Biomasse,
 - IA) ggf. Waschen der Biomasse mit einem Carotinoide nicht lösenden Lösungsmittel, insbesondere Wasser,
 - IB) Sterilisation und Zellaufschluß der Biomasse,
 - IC) ggf. Trocknung und/oder homogene Verteilung und
 - II) partielle Extraktion der Carotinoide aus der aufgeschlossenen Biomasse mittels eines Carotinoide lösenden Lösungsmittels und Trennung des Lösungsmittels von der Biomasse, IIA)

- 1) Entfernung von Lösemittelresten aus der Carotinoidhaltigen Biomasse,
- 2) ggf. homogene Suspension der Biomasse mit einemBiomasse-Feststoffgehalt > 10
- 3) Trocknung der Biomasse bzw. Suspension zur Herstellung des Nahrungsmittels,

IIB)

5

10

15

- 1) Kristallisation der Carotinoide aus dem verwendeten Lösungsmittel und Isolierung der Carotinoid-Kristalle, insbesondere durch Filtration.
- 23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass das mindestens eine Carotinoid aus der Gruppe bestehend aus Carotinen und Xanthophyllen ausgewählt ist.
- 24. Verfahren nach Anspruch 22 oder 23, **dadurch gekennzeichnet, dass** das mindestens eine Carotinoid aus der Gruppe bestehend aus Asta-xanthin, Zeaxanthin, Echinenon, β-Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Lycopin, β-Carotin, Lutein, Phytofluen, Bixin und Phytoen ausgewählt ist.
- 25. Verfahren nach einem der Ansprüche 22 bis 24, dadurch gekennzeichnet, dass das mindestens eine Carotinoid Astaxanthin, Zeaxanthin, Bixin oder Phytoen ist.
 - 26. Verfahren nach einem der Ansprüche 22-25, dadurch gekennzeichnet, dass die Sterilisation und der Zellaufschluß mittels Wasserdampf oder Mikrowellenstrahlung durchgeführt werden.
 - 27. Verfahren nach einem der Ansprüche 22-26, dadurch gekennzeichnet, dass die Extraktion der Carotinoide aus der Biomasse mittels Me-

- thylenchlorid oder überkritischem Kohlendioxid oder Tetrahydrofuran durchgeführt wird.
- 28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, dass die im überkritischen Kohlendioxid gelösten Carotinoide direkt isoliert werden oder in Methylenchlorid aufgenommen werden.

. 5

10

- 29. Verfahren nach einem der Ansprüche 22-28, dadurch gekennzeichnet, dass die Extraktion der Carotinoide aus der Biomasse ein oder ggf. mehrstufig erfolgt.
- 30. Verfahren nach einem der Ansprüche 22-29, dadurch gekennzeichnet, dass die Entfernung von Lösungsmitteln aus der Biomasse im Schritt IA1) mittels Wasserdampf-Destillation.
 - 31. Verfahren nach einem der Ansprüche 22-30, dadurch gekennzeichnet, dass die Trocknung in Schritt IIA3) mittels Sprühtrocknung oder Kontakttrocknung durchgeführt wird.
- 32. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kristallisation im Schritt IIB1) durch graduellen Lösungsmittelaustausch gegen ein Carotinoide nicht lösendes Lösungsmittel erfolgt.
- 33. Verfahren nach Anspruch 32, dadurch gekennzeichnet, dass der
 Austausch des verwendeten Lösungsmittels gegen Wasser oder einen niederen Alkohol, insbesondere Methanol erfolgt.
 - 34. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der gentechnisch veränderte Organismus der Gattung Blakeslea durch Transformation mit einem Vector, der eine Sequenz aus der Gruppe bestehend aus den SEQ ID NO: 37 51 und 62 aufweist, herstellbar ist.

- 35. Verfahren zur Herstellung eines Nahrungsmittels enthaltend Organismen der Gattung Blakeslea und mindestens ein Carotinoid, umfassend nach der Kultivierung von Carotinoide-produzierenden Organismen der Gattung Blakeslea die Schritte
- Homogene Suspendierung der Feststoffe der Kulturbrühe und
 - IIA) bei einem Biomasse-Feststoffgehalt der Kulturbrühe von > 2 %
 - 1) ggf. Konzentration der Kulturbrühe auf einen Feststoffgehalt < 50 % und
 - Trocknung der Kulturbrühe zur Herstellung des Nahrungsmittels

oder

15

20

25

30

10

- IIB) bei einem Feststoffgehalt von < 2 % der Kulturbrühe,
 - 1) Konzentration der Kulturbrühe auf einen Feststoffgehalt > 2 % und < 50 % und
 - Trocknung der Suspension zur Herstellung des Nahrungsmittels,

oder

- IIC) unabhängig vom Feststoffgehalt der Kulturbrühe,
 - Abtrennung der Biomasse,
 - 2) ggf. Waschen der Biomasse mit Carotinoide nicht lösenden Lösungsmitteln, insbesondere Wasser,
 - 3) Sterilisation und Zellaufschluß,
 - 4) ggf. Trocknung und homogene Verteilung,
 - 5) partielle Extraktion der Carotinoide aus der Biomasse mittels eines Carotinoide lösendes Lösungsmittels,

WO 2004/063359

5

15

20

PCT/EP2004/000099

101

Abtrennung der Carotinoid-haltigen Biomasse 5a) vom Carotinoid-haltigen Lösungsmittel,

- Entfernung von Lösemittelresten aus der Bio-5b) masse und
- Trocknung der Biomasse zur Herstellung des 5c) Nahrungsmittels,
- Kristallisation der Carotinoide aus dem in 5a) verwen-6) deten Lösungsmittel und Isolierung der Carotinoid-Kristalle, insbesondere durch Filtration.
- 36. Verfahren nach Anspruch 35, dadurch gekennzeichnet, dass das 10 mindestens eine Carotinoid aus der Gruppe bestehend aus Carotinen und Xanthophyllen ausgewählt ist.
 - 37. Verfahren nach Anspruch 35 oder 36, dadurch gekennzeichnet, dass das mindestens eine Carotinoid aus der Gruppe bestehend aus Astaxanthin, Zeaxanthin, Echinenon, β-Cryptoxanthin, Andonixanthin, Adonirubin, Canthaxanthin, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Lycopin, β-Carotin, Lutein, Bixin, Phytoen ausgewählt ist.
 - 38. Verfahren nach einem der Ansprüche 35-37, dadurch gekennzeichnet, dass das mindestens eine Carotinoid Astaxanthin, Zeaxanthin, Bixin oder Phytoen ist.
 - 39. Verfahren nach einem der Ansprüche 35-38, dadurch gekennzeichnet, dass die Sterilisation und der Zellaufschluß im Schritt II3) mittels Wasserdampf oder Mikrowellenstrahlung durchgeführt wird.
- 40. Verfahren nach einem der Ansprüche 35-39, dadurch gekennzeichnet, dass die Extraktion der Carotinoide aus der Biomasse im Schritt 25 IIC5) mittels Methylenchlorid oder überkritischen Kohlendioxid durchgeführt wird.

- 41. Verfahren nach Anspruch 40, dadurch gekennzeichnet, dass die im überkritischen Kohlendioxid gelösten Carotinoide direkt isoliert werden oder in Methylenchlorid aufgenommen werden..
- 42. Verfahren nach einem der Ansprüche 35-41, dadurch gekennzeichnet, dass die Extraktion der Carotinoide aus der Biomasse ein- oder
 ggf. mehrstufig erfolgt.

- 43. Verfahren nach einem der Ansprüche 35-42, dadurch gekennzeichnet, dass die Entfernung von Lösungsmitteln aus der Biomasse im Schritt IIC5b) mittels Wasserdampf-Destillation.
- 44. Verfahren nach einem der Ansprüche 35-43, dadurch gekennzeichnet, dass die Trocknung in einem der Schritte IIA1), IIB2) oder IIC5c) mittels Sprühtrocknung oder Kontakt durchgeführt wird.
 - 45. Verfahren nach einem der Ansprüche 35-44, dadurch gekennzeichnet, dass die Kristallisation im Schritt IIC6) durch graduellen Lösungsmittelaustausch gegen ein Carotinoide nicht lösendes Lösungsmittel erfolgt.
 - 46. Verfahren nach Anspruch 45, dadurch gekennzeichnet, dass der Austausch des verwendeten Lösungsmittels gegen Wasser oder einen niederen Alkohol, insbesondere Methanol erfolgt.
- 47. Verfahren nach einem der Ansprüche 35-46, dadurch gekennzeichnet, dass der gentechnisch veränderte Organismus der Gattung Blakeslea durch Transformation mit einem Vector, der eine Sequenz aus der Gruppe bestehend aus den SEQ ID NO: 37 51 und 62 aufweist, herstellbar ist.
- 25 48. Nahrungsmittel, insbesondere Tierfuttermittel herstellbar nach einem der Verfahren der Ansprüche 1 bis 47.

- 49. Nahrungsergänzungsmittel, insbesondere Tierfutterergänzungsmittel herstellbar nach einem der Verfahren der Ansprüche 1 bis 47.
- 50. Verfahren nach einem der Ansprüche 1-49 dadurch gekennzeichnet, daß Nahrungsmittel und Tierfuttermittel aus einer Fermentation erhältlich sind.
- 51. Verfahren nach einem der Ansprüche 1-49 dadurch gekennzeichnet, daß Nahrungsergänzungsmittel und Tierfutterergänzungsmittel aus einer Fermentation erhältlich sind.
- 52. Verfahren nach einem der Ansprüche 1-49 dadurch gekennzeichnet, daß mindestens zwei Produkte aus der Gruppe Nahrungsmittel, Nahrungsergänzungsmittel, Tierfuttermittel und Tierfutterergänzungsmittel aus einer Fermentation erhältlich sind.
- 53. Verwendung der nach einem der Verfahren der Ansprüche 1 bis 14 erhältlichen Carotinoide zur Herstellung von kosmetischen, pharmazeutischen, dermatologischen Zubereitungen, Nahrungsmitteln, Nahrungsergänzungsmitteln, Tierfuttermittel oder Tierfutterergänzungsmittel.

Fig. 1: Vektor pANsCos1

Fig. 2: Vektor pBinAHyg

Fig. 3: Gels des Ergebnis einer PCR Spur: 1

Fig. 4: Plasmid pBinAHygBTpyrG-SCO

Fig. 5: Plasmid pBinAHygBTpTEF1-HPcrtZ

Fig. 6: Plasmid pBinAHyg-BTpcarRA-HPcrtZ

Fig. 7: Plasmid pBinAHygBTpcarB-HPcrtZ

8/24

Fig. 8: Plasmid p-carRA-HPcrtZ-TAG-3'carA-IR

Fig. 9: Plasmid p-carRA-HPcrtZ-GCG-3'carA-IR

Fig. 10: Plasmid pBinAHygBTpTEF1-EUcrtZ

Fig. 11: Plasmid pBinAHygBTpcarRA-EUcrtZ

Fig. 12: Plasmid pBinAHygBTpcarB-EUcrtZ

Fig. 13: Plasmid p-BinAHyg-gpdA-HPcrtZ

Fig. 14: Plasmid pBinAHyg-carRcrtZcarA

Fig. 15: Plasmid pBinAHyg-BTpTEF1-NPcrtW

Fig. 16: Plasmid pBinAHyg_BTpcarRA_NPcrtW

Fig. 17: Plasmid pBinAHyg-BTpcarB-NPcrtW

Fig. 18: Plasmid pBinAHygBTpcarRA-HPcrtZ-BTpcarRA-NpucrtW

Fig. 19: Plasmid pBinAHygBTpcarRA-EUcrtZ-BTpcarRA-NpucrtW

Fig. 20: carB

Fig. 21: CDS von carB

Fig. 22: Vektor pBinAHyg∆carB

Fig. 23: HPLC Standard

Fig. 24: HPLC

WO 2004/063359 PCT/EP2004/000099 1/357

SEQUENCE LISTING

<110>	BASF	AG					
<120>	mitte Blake	els gentech eslea, mit	nisch verän	derter Orga en hergeste	mismen der	deren Vorst Gattung .noide oder	•
<130>	BASF	/NAE877/03					
<160>	80						·
<170>	Pater	ntIn versio	on 3.2				
<210>	1						
<211>	2160						
<212>	DNA						
<213>	Arti	ficial			•		
<220> <223>	Promo	otor					
<400>	1	•			•		
	•	tgaaatacgt	cgagcctgct	ccgcttggaa	gcggcgagga	gcctcgtcct	60
gtcaca	acta (ccaacatgga	gtacgataag	ggccagttcc	gccagctcat	taagagccag	120
ttcatg	ggcg	ttggcatgat	ggccgtcatg	catctgtact	tcaagtacac	caacgctctt	180
ctgatc	cagt	cgatcatccg	ctgaaggcgc	tttcgaatct	ggttaagatc	cacgtcttcg	240
ggaagc	cagc	gactggtgac	ctccagcgtc	cctttaaggc	tgccaacagc	tttctcagcc	300
agggcc	agcc ·	caagaccgac	aaggcctccc	tccagaacgc	cgagaagaac	tggaggggtg	360
gtgtca	agga	ggagtaagct	ccttattgaa	gtcggaggac	ggagcggtgt	caagaggata	420
ttcttc	gact	ctgtattata	gataagatga	tgaggaattg	gaggtagcat	agcttcattt	480 .

ggatttgctt tccaggctga gactctagct tggagcatag agggtccttt ggctttcaat

540

WO 2004/063359 PCT/EP2004/000099 2/357

			2/33/			
attctcaagt	atctcgagtt	tgaacttatt	ccctgtgaac	cttttattca	ccaatgagca .	600
ttggaatgaa	catgaatctg	aggactgcaa	tcgccatgag	gttttcgaaa	tacatccgga ·	660
tgtcgaaggc	ttggggcacc	tgcgttggtt	gaatttagaa	cgtggcacta	ttgatcatcc	720
gatagctctg	caaagggcgt	tgcacaatgc	aagtcaaacg	ttgctagcag	ttccaggtgg	780
aatgttatga	tgagcattgt	attaaatcag	gagatatagc	atgatctcta	gttagctcac	840
cacaaaagtc	agacggcgta	accaaaagtc	acacaacaca	agctgtaagg	atttcggcac	900
ggctacggaa	gacggagaag	ccaccttcag	tggactcgag	taccatttaa	ttctatttgt	960
gtttgatcga	gacctaatac	agcccctaca	acgaccatca	aagtcgtata	gctaccagtg	1020
aggaagtgga	ctcaaatcga	cttcagcaac	atctcctgga	taaactttaa	gcctaaacta	1080
- tacagaataa	gataggtgga	gágcttatac	cgageteéca	aatctgtcca	gatcatggtt	1140
gaccggtgco	tygatettee	tatagaatca	tccttattcg	ttgacctagc	tgattctgga	1200
gtgacccaga	gggtcatgac	ttgagcctaa	aatccgccgc	ctccaccatt	tgtagaaaaa	1260
tgtgacgaac	: tegtgagete	tgtacagtga	ccggtgactc	tttctggcat	gcggagagac	1320
ggacggacgo	: agagagaagg	gctgagtaat	: aagccactgg	ccagacagct	ctggcggctc	1380
tgaggtgcag	g tggatgatta	ı ttaatccggg	g accggccgcc	: ceteegeee	gaagtggaaa	1440
ggctggtgtç	g cccctcgttg	g accaagaato	tattgcatca	ı toggagaata	tggagcttca	1500
tcgaatcac	c ggcagtaagd	gaaggagaat	t gtgaagccag	g gggtgtatag	g ccgtcggcga	1560
aatagcatg	c cattaaccta	a ggtacagaag	g tccaattgct	teegatetgg	g taaaagattc	1620
acgagatag	t accttctcc	g aagtaggta	g agcgagtaco	c cggcgcgta	a gctccctaat	1680
tggcccatc	c ggcatctgta	a gggcgtcca	a atategtge	e teteetget	t tgcccggtgt	1740
atgaaaccg	g aaaggccgc	t caggagetg	g ccagcggcg	c agaccggga	a cacaagctgg	1800

agetttgeec egtetgteeg eeeggtgtt eggeggggtt gacaaggteg ttgegteagt 1920
ccaacatttg ttgecatatt tteetgetet eeeeaccage tgetettte ttttetettt 1980
ctttteecat etteagtata tteatettee eatecagaa eetttattte eeetaagtaa 2040
gtaetttget acatecatae teeateette eatecetta tteetttgaa eettteagtt 2100
egagetttee eactteateg eagettgaet aacagetaee eegettgage agacateaee 2160

<210> 2

<211> 774

<212> DNA

<213> Artificial

<220>

<223> Terminator

<220>

<221> misc_feature

<222> (267)..(267)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (475)..(475)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (566)..(566)

<223> n is a, c, g, or t

<400> 2

cgatccactt aacgttactg aaatcatcaa acagcttgac gaatctggat ataagatcgt

60

120

tggtgtcgat gtcagctccg gagttgagac aaatggtgtt caggatctcg ataagatacg

ttcatttgtc caagcagcaa agagtgcctt ctagtgattt aatagctcca tgtcaacaag 180 aataaaacgc gttttcgggt ttacctcttc cagatacagc tcatctgcaa tgcattaatg 240 300 cattgactgc aacctagtaa cgccttncag gctccggcga agagaagaat agcttagcag 360 agctattttc attttcggga gacgagatca agcagatcaa cggtcgtcaa gagacctacg 420 agactgagga atccgctctt ggctccacgc gactatatat ttgtctctaa ttgtactttg acatgeteet ettettaet etgatagett gaetatgaaa atteegteae cagencetgg 480 540 gttcgcaaag ataattgcat gtttcttcct tgaactctca agcctacagg acacacattc atcgtaggta taaacctcga aatcanttcc tactaagatg gtatacaata gtaaccatgc 600 660 atggttgcct agtgaatgct ccgtaacacc caatacgccg gccgaaactt ttttacaact 720 ctcctatgag tcgtttaccc agaatgcaca ggtacacttg tttagaggta atccttcttt ctagctagaa gtcctcgtgt actgtgtaag cgcccactcc acatctccac tcga 774

<210> 3

<211> 15739

<212> DNA

<213> Artificial

<220>

<223> Vector

<220>

<221> misc_feature

<222> (3471)..(3471)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3679)..(3679)

<223> n is a, c, g, or t

<220>

<221> misc_feature

. <222> (3770)..(3770)

<223> n is a, c, g, or t

<400> 3

gatctttcga	cactgaaata	cgtcgagcct	geteegettg	gaagcggcga	ggagcctcgt	60
cctgtcacaa	ctaccaacat	ggagtacgat	aagggccagt	tccgccagct	cattaagagc	120
cagttcatgg	gcgttggcat	gatggccgtc	atgcatctgt	acttcaagta	caccaacgct	180
cttctgatcc	agtcgatcat	ccgctgaagg	cgctttcgaa	tctggttaag	atccacgtct	240
tcgggaagcc	agcgactggt	gacctccagc	gtccctttaa	ggctgccaac	agctttctca .	300
gccagggcca	gcccaagacc	gacaaggcct	ccctccagaa	cgccgagaag	aactggaggg	360
gtggtgtcaa	ggaggagtaa	gctccttatt	gaagtcggag	gacggagcgg	tgtcaagagg	420
atattcttcg	actctgtatt	atagataaga	tgatgaggaa	ttggaggtag	catagettea	480
tttggatttg	ctttccaggc	tgagactcta	gcttggagca	tagagggtcc	tttggctttc	540
aatattctca	agtatctcga	gtttgaactt	attccctgtg	aaccttttat	tcaccaatga	600
gcattggaat	gaacatgaat	ctgaggactg	caatcgccat	gaggttttcg	aaatacatcc	660
ggatgtcgaa	ggcttggggc	acctgcgttg	gttgaattta	gaacgtggca	ctattgatca	720
tccgatagct	ctgcaaaggg	cgttgcacaa	tgcaagtcaa	acgttgctag	cagttccagg	780
tggaatgtta	tgatgagcat	tgtattaaat	caggagatat	agcatgatct	ctagttagct	840
caccacaaa	gtcagacggc	gtaaccaaaa	gtcacacaac	acaagctgta	. aggatttcgg	900
cacggctacg	gaagacggag	aagccacctt	: cagtggacto	gagtaccatt	taattctatt	960
tgtgtttgat	. cgagacctaa	tacagcccct	: acaacgacca	tcaaagtcgt	atagctacca	1020
gtgaggaagt	ggąctcaaat	: cgacttcago	e aacatctcct	ggataaactt	: taagcctaaa	1080

WO 2004/063359 PCT/EP2004/000099 6/357

6/35 /	
ctatacagaa taagataggt ggagagctta taccgagctc ccaaatctgt ccagatcatg	1140
gttgaccggt gcctggatct tcctatagaa tcatccttat tcgttgacct agctgattct	1200
ggagtgaccc agagggtcat gacttgagcc taaaatccgc cgcctccacc atttgtagaa	1260
aaatgtgacg aactcgtgag ctctgtacag tgaccggtga ctctttctgg catgcggaga	1320
gacggacgga cgcagagaga agggctgagt aataagccac tggccagaca gctctggcgg	1380
ctctgaggtg cagtggatga ttattaatcc gggaccggcc gccctccgc cccgaagtgg	1440
aaaggctggt gtgcccctcg ttgaccaaga atctattgca tcatcggaga atatggagct	1500
tcatcgaatc accggcagta agcgaaggag aatgtgaagc caggggtgta tagccgtcgg	1560
cgaaatagca tgccattaac ctaggtacag aagtccaatt gcttccgatc tggtaaaaga	1620
ttcacgagat agtaccttct ccgaagtagg tagagcgagt acccggcgcg taagctccct	1680
aattggccca teeggeatet gtagggegte caaatategt geeteteetg etttgeeegg	1740
tgtatgaaac cggaaaggcc gctcaggagc tggccagcgg cgcagaccgg gaacacaagc	1800
tggcagtcga cccatccggt gctctgcact cgacctgctg aggtccctca gtccctggta	1860
ggcagctttg ccccgtctgt ccgcccggtg tgtcggcggg gttgacaagg tcgttgcgtc	1920
agtccaacat ttgttgccat attttcctgc tctccccacc agctgctctt ttctttctc	1980
tttcttttcc catcttcagt atattcatct tcccatccaa gaacctttat ttcccctaag	2040
taagtacttt gctacatcca tactccatcc ttcccatccc ttattccttt gaacctttca	2100
gttcgagctt tcccacttca tcgcagcttg actaacagct accccgcttg agcagacatc	2160
accatgcctg aactcaccgc gacgtctgtc gagaagtttc tgatcgaaaa gttcgacagc	2220
gtctccgacc tgatgcagct ctcggagggc gaagaatctc gtgctttcag cttcgatgta	2280
ggagggcgtg gatatgtcct gcgggtaaat agctgcgccg atggtttcta caaagatcgt	2340

WO 2004/063359 PCT/EP2004/000099 7/357

			1/35/			
tatgtttatc	ggcactttgc	ateggeegeg	ctcccgattc	cggaagtgct	tgacattggg	2400
gaattcagcg	agagcctgac	ctattgcatc	tcccgccgtg	cacagggtgt	cacgttgcaa	2460
gacctgcctg	aaaccgaact	gcccgctgtt	ctgcagccgg	tegeggagge	catggatgcg	2520
atcgctgcgg	ccgatcttag	ccagacgagc	gggttcggcc	cattcggacc	gcaaggaatc	2580
ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	tgtgtatcac	2640
tggcaaactg	tgatggacga	caccgtcagt	gegteegteg	cgcaggctct	cgatgagctg	2700
atgctttggg	ccgaggactg	ccccgaagtc	cggcacctcg	tgcacgcgga	ttteggetee	2760
aacaatgtcc	tgacggacaa	tggccgcata	acagcggtca	ttgactggag	cgaggcgatg	2820
ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	gttggcttgt	2880
atggagcagc	agacgcgcta	cttcgagcgg	aggcatccgg	agcttgcagg	atcgccgcgg	2940
ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagctt	ggttgacggc	3000
aatttcgatg	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	atccggagcc	3060
gggactgtcg	ggcgtacaca	aatcgcccgc	: agaagcgcgg	cegtetggae	c cgatggctgt	3120
gtagaagtad	tcgccgatag	ı tggaaaccga	ı cgccccagca	ctcgtccgag	g ggcaaaggaa	3180
tagagtagai	geegaeegeg	ggatcgatco	acttaacgtt	: actgaaatca	a tcaaacagct	3240
tgacgaatc	t ggatataaga	tcgttggtgt	: cgatgtcago	tccggagtt	g agacaaatgg	3300
tgttcagga	t ctcgataaga	a tacgttcati	tgtccaagca	a gcaaagagt	g cettetagtg	3360
atttaatag	c tccatgtca	a caagaataa	a acgcgtttt	gggtttacc	t cttccagata	3420
cagctcatc	t gcaatgcat	t aatgcattga	a ctgcaacct	a gtaacgcct	t ncaggeteeg	3480
gcgaagaga	a gaatagctt	a gcagagcta	t tttcatttt	c gggagacga	g atcaagcaga	3540
tcaacggtc	g tcaagagac	c tacgagact	g aggaatccg	c tcttggctc	c acgcgactat	3600

WO 2004/063359 PCT/EP2004/000099 8/357

8/35/	
atatttgtct ctaattgtac tttgacatgc tcctcttctt tactctgata gcttgactat	3660
gaaaattccg tcaccagene ctgggttcge aaagataatt geatgtttet teettgaact	3720
ctcaagccta caggacacac attcatcgta ggtataaacc tcgaaatcan ttcctactaa	3780
gatggtatac aatagtaacc atgcatggtt gcctagtgaa tgctccgtaa cacccaatac	3840
gccggccgaa actttttac aactctccta tgagtcgttt acccagaatg cacaggtaca	3900
cttgtttaga ggtaatcctt ctttctagct agaagtcctc gtgtactgtg taagcgccca	3960
ctccacatct ccactcgacc tgcaggcatg caagcttggc gtaatcatgg tcatagctgt	4020
. ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc ggaagcataa	4080
agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg ttgcgctcac	4140
tgcccgcttt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg	4200
cggggagagg cggtttgcgt attgggccaa agacaaaagg gcgacattca accgattgag	4260
ggagggaagg taaatattga cggaaattat tcattaaagg tgaattatca ccgtcaccga	4320
cttgagccat ttgggaatta gagccagcaa aatcaccagt agcaccatta ccattagcaa	4380
ggccggaaac gtcaccaatg aaaccatcga tagcagcacc gtaatcagta gcgacagaat	4440
caagtttgcc tttagcgtca gactgtagcg cgttttcatc ggcattttcg gtcatagccc	4500
ccttattagc gtttgccatc ttttcaṭaat caaaatcacc ggaaccagag ccaccaccgg	4560
aaccgcctcc ctcagagccg ccaccctcag aaccgccacc ctcagagcca ccaccctcag	4620
agccgccacc agaaccacca ccagagccgc cgccagcatt gacaggaggc ccgatctagt	4680
aacatagatg acaccgcgcg cgataattta tcctagtttg cgcgctatat tttgttttct	4740
atcgcgtatt aaatgtataa ttgcgggact ctaatcataa aaacccatct cataaataac	4800
gtcatgcatt acatgttaat tattacatgc ttaacgtaat tcaacagaaa ttatatgata	4860

WO 2004/063359 PCT/EP2004/000099 9/357

	•		2,00.			
atcatcgcaa	gaccggcaac	aggattcaat	cttaagaaac	tttattgcca	aatgtttgaa	4920
cgatcgggga	tcatccgggt	ctgtggcggg	aactccacga	aaatatccga	acgcagcaag	4980
atatcgcggt	gcatctcggt	cttgcctggg	cagtcgccgc	cgacgccgtt	gatgtggacg	5040
ccgggcccga	tcatattgtc	gctcaggatc	gtggcgttgt	gcttgtcggc	cgttgctgtc	5100
gtaatgatat	cggcaccttc	gaccgcctgt	tccgcagaga	tcccgtgggc	gaagaactcc	5160
agcatgagat	ccccgcgctg	gaggatcatc	cagccggcgt	cccggaaaac	gattccgaag	5220
cccaaccttt	catagaaggc	ggcggtggaa	tcgaaatctc	gtgatggcag	gttgggcgtc	5280
gcttggtcgg	tcatttcgaa	ccccagagtc	ccgctcagaa	gaactcgtca	agaaggcgat	5340
agaaggcgat	gcgctgcgaa	tcgggagcgg	cgataccgta	aagcacgagg	aagcggtcag	5400
cccattcgcc	gccaagctct	tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	5460
ggtccgccac	acccagccgg	ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	5520
tgatattcgg	caagcaggca	tcgccatggg	tcacgacgag	atcatcgccg	tegggeatge	5580
gcgccttgag	cctggcgaac	agttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	5640
catcctgato	gacaagaccg	gcttccatcc	gagtacgtgc	tegetegatg	cgatgtttcg	5700
cttggtggtc	: gaatgggcag	gtagccggat	caagcgtatg	cagccgccgc	attgcatcag	5760
ccatgatgga	tactttctcg	gcaggagcaa	ggtgagatga	caggagatco	: tgccccggca	5820
cttcgcccaa	a tagcagccag	tecetteceg	cttcagtgac	aacgtcgago	: acagetgege	5880
aaggaacgc	e egtegtggee	agccacgata	geegegetge	: ctcgtcctgc	: agttcattca	5940
gggcaccgga	a caggteggte	: ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	6000
acacggcgg	c atcagagcag	g ccgattgtct	: gttgtgccca	gtcatagccg	g aatageetet	6060
ccacccaage	c ggccggagaa	ı cctgcgtgca	atccatctto	ttcaatcat	g cgaaacgatc	6120

WO 2004/063359 PCT/EP2004/000099 10/357

			10,00.			
cagatccggt	gcagattatt	tggattgaga	gtgaatatga	gactctaatt	ggataccgag	6180
gggaatttat	ggaacgtcag	tggagcattt	ttgacaagaa	atatttgcta	gctgatagtg	6240
accttaggcg	acttttgaac	gcgcaataat	ggtttctgac	gtatgtgctt	agctcattaa	6300
actccagaaa	cccgcggctg	agtggctcct	tcaacgttgc	ggttctgtca	gttccaaacg	6360
taaaacggct	tgtcccgcgt	catcggcggg	ggtcataacg	tgactccctt	aattctccgc	6420
tcatgatcag	attgtcgttt	cccgccttca	gtttaaacta	tcagtgtttg	acaggatata	6480
ttggcgggta	aacctaagag	aaaagagcgt	ttattagaat	aatcggatat	ttaaaagggc	6540
gtgaaaaggt	ttatecgttc	gtccatttgt	atgtgcatgc	caaccacagg	gttccccaga	6600
tetggegeeg	gccagcgaga	cgagcaagat	tggccgccgc	ccgaaacgat	ccgacagcgc	6660
gcccagcaca	ggtgcgcagg	caaattgcac	caacgcatac	agcgccagca	gaatgccata	6720
gtgggcggtg	acgtcgttcg	agtgaaccag	atcgcgcagg	aggcccggca	gcaccggcat	6780
aatcaggccg	atgccgacag	cgtcgagcgc	gacagtgctc	agaattacga	tcaggggtat	6840
gttgggtttc	acgtctggcc	tccggaccag	cctccgctgg	tccgattgaa	. cgcgcggatt	6900
ctttatcact	gataagttgg	tggacatatt	atgtttatca	gtgataaagt	gtcaagcatg	6960
acaaagttgo	: agccgaatac	agtgatccgt	gccgccctgg	acctgttgaa	cgaggtcggc	7020
gtagacggto	: tgacgacacg	caaactggcg	gaacggttgg	gggttcagca	geeggegett	7080
tactggcact	: tcaggaacaa	gegggegetg	r ctcgacgcac	tggccgaagc	catgctggcg	7140
gagaatcata	a cgcattcggt	geegagagee	: gacgacgact	ggcgctcatt	tetgateggg	7200
aatgcccgca	a gcttcaggca	ggcgctgctc	geetacegeg	atggcgcgcg	g catccatgcc	7260
ggcacgcga	c cgggcgcacc	gcagatggaa	a acggccgacg	g cgcagcttcg	g cttcctctgc	7320
gaggegggt	t ttteggeegg	g ggacgccgto	e aatgegetga	tgacaatcag	g ctacttcact	7380

WO 2004/063359 PCT/EP2004/000099 11/357

			11/35/			
gttggggccg	tgcttgagga	gcaggccggc	gacagcgatg	ccggcgagcg	cggcggcacc	7440
gttgaacagg	ctccgctctc	gccgctgttg	cgggccgcga	tagacgcctt	cgacgaagcc	7500
ggtccggacg	cagcgttcga	gcagggactc	gcggtgattg	tcgatggatt	ggcgaaaagg	7560
aggctcgttg	tcaggaacgt	tgaaggaccg	agaaagggtg	acgattgatc	aggaccgctg	7620
ccggagcgca	acccactcac	tacagcagag	ccatgtagac	aacatcccct	cccctttcc	7680
accgcgtcag	acgcccgtag	cagcccgcta	cgggcttttt	catgccctgc	cctagcgtcc	7740
aagcctcacg	geegegeteg	geetetetgg	cggccttctg	gcgctcttcc	gcttcctcgc	7800
tcactgactc	gctgcgctcg	gtcgttcggc	tgcggcgagc	ggtatcagct	cactcaaagg	7860
cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	tgagcaaaag	7920
gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgttttc	cataggetee	7980
gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	8040
gactataaag	ataccaggcg	tttccccctg	gaagctccct	cgtgcgctct	cctgttccga	8100
ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	gcgcttttcc	8160
gctgcataac	cctgcttcgg	ggtcattata	gcgattttt	cggtatatcc	atccttttc	8220
gcacgatata	caggattttg	ccaaagggtt	cgtgtagact	ttccttggtg	tatccaacgg	8280
cgtcagccgg	gcaggatagg	tgaagtaggo	: ccacccgcga	gegggtgttc	: cttcttcact	8340
gtcccttatt	: cgcacctggc	: ggtgctcaac	gggaatcctg	ctctgcgagg	g ctggccggct	8400
accgccggcg	g taacagatga	ı gggcaagcgg	g atggctgatg	aaaccaagco	: aaccaggaag	8460
ggcagcccad	ctatcaaggt	: gtactgcctt	ccagacgaac	: gaagagcgat	tgaggaaaag	8520
geggeggegg	g ccggcatgag	g cctgtcggcd	tacctgctgg	g ccgtcggcca	a gggctacaaa	8580
atcacgggc	g tegtggaeta	a tgagcacgto	cgcgagctgg	g cccgcatca	tggcgacctg	8640

WO 2004/063359 PCT/EP2004/000099 12/357

			12/357			
ggccgcctgg	gcggcctgct	gaaactctgg	ctcaccgacg	accegegeae	ggcgcggttc	8700
ggtgatgcca	cgatcctcgc	cctgctggcg	aagatcgaag	agaagcagga	cgagcttggc	8760
aaggtcatga	tgggcgtggt	ccgcccgagg	gcagagccat	gacttttta	gccgctaaaa	8820
cggccggggg	gtgcgcgtga	ttgccaagca	cgtccccatg	cgctccatca	agaagagcga	8880
cttcgcggag	ctggtgaagt	acatcaccga	cgagcaaggc	aagaccgagc	gcctttgcga	8940
cgctcaccgg	gctggttgcc	ctcgccgctg	ggctggcggc	cgtctatggc	cctgcaaacg	9000
cgccagaaac	gccgtcgaag	ccgtgtgcga	gacaccgcgg	ccgccggcgt	tgtggatacc	9060
tcgcggaaaa	cttggccctc	actgacagat	gaggggcgga	cgttgacact	tgaggggccg	9120
actcacccgg	cgcggcgttg	acagatgagg	ggcaggctcg	atttcggccg	gcgacgtgga	9180
gctggccagc	ctcgcaaatc	ggcgaaaacg	cctgatttta	cgcgagtttc	ccacagatga	9240
tgtggacaag	cctggggata	agtgccctgc	ggtattgaca	cttgaggggc	gcgactactg	9300
acagatgagg	ggcgcgatcc	ttgacacttg	aggggcagag	tgctgacaga	tgaggggcgc	9360
acctattgac	atttgagggg	ctgtccacag	gcagaaaatc	cagcatttgc	aagggtttcc	9420
gcccgttttt	cggccaccgc	taacctgtct	tttaacctgo	. ttttaaacca	atatttataa	9480
accttgtttt	: taaccagggo	tgcgccctgt	gegegtgaee	gegeaegeeg	aaggggggtg	9540
ccccccttc	: tcgaaccctc	ceggeeeget	aacgcgggco	tcccatccc	ccaggggctg	9600
cgcccctcgg	g cegegaaegg	r cctcacccca	ı aaaatggcaç	g egetggeagt	ccttgccatt	9660
gccgggatcg	g gggcagtaac	: gggatgggcg	g atcagecega	gegegaege	c cggaagcatt	9720
gacgtgccg	aggtgctggc	: atcgacatto	agegaecage	g tgccgggcag	g tgagggegge	9780
ggcctgggt	g geggeetged	cttcacttc	g geegteggg	g cattcacgga	a cttcatggcg	9840
gggccggca	a tttttacct	gggcattct	ggcatagtg	g tegegggtg	c cgtgctcgtg	9900

WO 2004/063359 PCT/EP2004/000099 13/357

			13/33/			
ttcgggggtg	cgataaaccc	agcgaaccat	ttgaggtgat	aggtaagatt	ataccgaggt	9960
atgaaaacga	gaattggacc	tttacagaat	tactctatga	agcgccatat	ttaaaaagct	10020
accaagacga	agaggatgaa	gaggatgagg	aggcagattg	ccttgaatat	attgacaata	10080
ctgataagat	aatatatctt	ttatatagaa	gatatcgccg	tatgtaagga	tttcaggggg	10140
caaggcatag	gcagcgcgct	tatcaatata	tctatagaat	gggcaaagca	taaaaacttg	10200
catggactaa	tgcttgaaac	ccaggacaat	aaccttatag	cttgtaaatt	ctatcataat	10260
tgggtaatga	. ctccaactta	ttgatagtgt	tttatgttca	gataatgccc	gatgactttg	10320
tcatgcagct	ccaccgattt	tgagaacgac	agcgacttcc	gtcccagccg	tgccaggtgc	10380
tgcctcagat	: tcaggttatg	ccgctcaatt	cgctgcgtat	ategettget	gattacgtgc	10440
agctttccct	tcaggcggga	ttcatacagc	ggccagccat	ccgtcatcca	tatcaccacg	10500
tcaaagggtg	g acagcaggct	cataagacgc	cccagcgtcg	ccatagtgcg	ttcaccgaat	10560
acgtgcgcaa	a caaccgtctt	ccggagactg	tcatacgcgt	aaaacagcca	gegetggege	10620
gatttagcc	c cgacatagco	ccactgttcg	tccatttccg	gcagacgat	gacgtcactg	10680
cccggctgt	a tgcgcgaggt	taccgactgo	ggcctgagtt	: ttttaagtga	a cgtaaaatcg	10740
tgttgaggc	c aacgcccata	a atgcgggctg	ttgcccggca	tccaacgcca	a ttcatggcca	10800
tatcaatga	t tttctggtg	gtaccgggtt	: gagaagcggt	gtaagtgaad	c tgcagttgcc	10860
atgttttac	g gcagtgaga	g cagagatago	gctgatgtco	ggcggtgcti	t ttgccgttac	10920
gcaccaccc	c gtcagtagc	t gaacaggagg	g gacagetgai	t agacacagaa	a gccactggag	10980
cacctcaaa	a acaccatca	t acactaaato	c agtaagttg	g cagcatcac	c cataattgtg	11040
gtttcaaaa	it cggctccgt	c gatactatg	t tatacgcca	a ctttgaaaa	c aactttgaaa	11100
aagctgttt	t ctggtattt	a aggttttag	a atgcaagga	a cagtgaatt	g gagttcgtct	11160

WO 2004/063359 PCT/EP2004/000099 14/357

tgttataatt	agcttcttgg	ggtatcttta	aatactgtag	aaaagaggaa	ggaaataata	11220
aatggctaaa	atgagaatat	caccggaatt	gaaaaaactg	atcgaaaaat	accgctgcgt	11280
aaaagatacg	gaaggaatgt	ctcctgctaa	ggtatataag	ctggtgggag	aaaatgaaaa	11340
cctatattta	aaaatgacgg	acagccggta	taaagggacc	acctatgatg	tggaacggga	11400
aaaggacatg	atgctatggc	tggaaggaaa	gctgcctgtt	ccaaaggtcc	tgcactttga	11460
acggcatgat	ggctggagca	atctgctcat	gagtgaggcc	gatggcgtcc	tttgctcgga	11520
agagtatgaa	gatgaacaaa	gccctgaaaa	gattatcgag	ctgtatgcgg	agtgcatcag	11580
gctctttcac	tccatcgaca	tatcggattg	tccctatacg	aatagcttag	acageegett	11640 ·
agccgaattg	gattacttac	tgaataacga	tctggccgat	gtggattgcg	aaaactggga	11700
agaagacact	ccatttaaag	atccgcgcga	gctgtatgat	tttttaaaga	cggaaaagcc	11760
cgaagaggaa	cttgtcttt	cccacggcga	. cctgggagac	agcaacatct	ttgtgaaaga	11820
tggcaaagta	agtggcttta	ttgatcttgg	gagaagcggc	agggeggaca	. agtggtatga	11880
cattgcctto	: tgcgtccggt	cgatcaggga	ggatatcggg	gaagaacagt	atgtcgagct	11940
atttttgac	: ttactgggga	tcaagcctga	ı ttgggagaaa	. ataaaatatt	: atattttact	12000
ggatgaattg	g ttttagtacc	tagatgtggc	gcaacgatgo	cggcgacaag	g caggagegea	12060
ccgacttctt	: ccgcatcaag	tgttttggct	ctcaggccga	ggcccacggo	aagtatttgg	12120
gcaaggggto	gctggtattc	gtgcagggca	a agattcggaa	ı taccaagtad	gagaaggacg	12180
gccagacggi	t ctacgggacc	gacttcatt	g ccgataaggt	ggattatctg	g gacaccaagg	12240
caccaggcg	g gtcaaatcaç	g gaataaggg	c acattgccc	ggcgtgagt	c ggggcaatcc	12300
cgcaaggag	g gtgaatgaat	cggacgttt	g accggaaggo	c atacaggca	a gaactgatcg	12360
acgcggggt	t ttccgccgag	g gatgccgaa	a ccatcgcaag	g ccgcaccgt	c atgcgtgcgc	12420

WO 2004/063359 PCT/EP2004/000099 15/357

			15/35/			
cccgcgaaac	cttccagtcc	gtcggctcga	tggtccagca	agctacggcc	aagatcgagc	12480
gcgacagcgt	gcaactggct	cccctgccc	tgcccgcgcc	ateggeegee	gtggagcgtt	12540
cgcgtcgtct	cgaacaggag	gcggcaggtt	tggcgaagtc	gatgaccatc	gacacgcgag	12600
gaactatgac	gaccaagaag	cgaaaaaccg	ccggcgagga	cctggcaaaa	caggtcagcg	12660
aggccaagca	ggccgcgttg	ctgaaacaca	cgaagcagca	gatcaaggaa	atgcagcttt	12720
ccttgttcga	tattgcgccg	tggccggaca	cgatgcgagc	gatgccaaac	gacacggccc	12780
gctctgccct	gttcaccacg	cgcaacaaga	aaatcccgcg	cgaggcgctg	caaaacaagg	12840
tcattttcca	cgtcaacaag	gacgtgaaga	tcacctacac	cggcgtcgag	ctgcgggccg	12900
acgatgacga	actggtgtgg	cagcaggtgt	tggagtacgc	gaagegeace	cctatcggcg	12960
agccgatcac	cttcacgttc	tacgagcttt	gccaggacct	gggctggtcg	atcaatggcc	13020
ggtattacac	gaaggccgag	gaatgcctgt	cgcgcctaca	ggcgacggcg	atgggcttca	13080
cgtccgaccg	g cgttgggcac	ctggaatcgg	tgtcgctgct	gcaccgcttc	cgcgtcctgg	13140
accgtggcaa	a gaaaacgtco	: cgttgccagg	tcctgatcga	. cgaggaaatc	gtcgtgctgt	13200
ttgctggcga	a ccactacacg	g aaattcatat	gggagaagta	cegeaagetg	tcgccgacgg	13260
cccgacgga	t gttcgactat	: ttcagctcgc	accgggagco	gtacccgcto	e aagctggaaa	13320
cetteegee	t catgtgcgga	a toggattoca	ı cccgcgtgaa	a gaagtggcgc	gagcaggtcg	13380
gcgaagcct	g cgaagagtt	g cgaggcagcg	g gcctggtgga	acacgcctgg	g gtcaatgatg	13440
acctggtgc	a ttgcaaacg	c tagggccttg	g tggggtcagt	teeggetgg	g ggttcagcag	13500
ccagcgctt	t actggcatt	t caggaacaag	g cgggcactgo	c tcgacgcac	t tgcttcgctc	13560
agtatcgct	c gggacgcac	g gegegeteta	a cgaactgcc	g ataaacaga	g gattaaaatt	13620
gacaattgt	g attaaggct	c agattcgac	g gcttggagc	g gccgacgtg	c aggatttccg	13680

WO 2004/063359 PCT/EP2004/000099 16/357

		10/557			
cgagatccga ttgtc	ggccc tgaagaaago	c tccagagatg	ttcgggtccg	tttacgagca	13740
cgaggagaaa aagcc	catgg aggcgttcg	c tgaacggttg	cgagatgccg	tggcattcgg	13800
cgcctacatc gacgg	gegaga teattggge	t gtcggtcttc	aaacaggagg	acggccccaa	13860
ggacgctcac aaggc	egcate tgteeggeg	t tttcgtggag	cccgaacagc	gaggccgagg	13920
ggtcgccggt atgct	tgetge gggegttge	c ggcgggttta	ttgctcgtga	tgatcgtccg	13980
acagattcca acggg	gaatct ggtggatgc	g catcttcatc	ctcggcgcac	ttaatatttc	14040
gctattctgg agctt	tgttgt ttatttcgg	t ctaccgcctg	ccgggcgggg	tcgcggcgac	14100
ģgtaggeget gtgea	agccgc tgatggtcg	t gttcatctct	gccgctctgc	taggtagccc	14160
gatacgattg atgg	cggtcc tgggggcta	it ttgcggaact	gegggegtgg	cgctgttggt	14220
gttgacacca aacg	cagcgc tagatcctg	ıt cggcgtcgca	gegggeetgg	cgggggcggt	14280
ttccatggcg ttcg	gaaccg tgctgaccc	eg caagtggcaa	ı cetecegitge	ctctgctcac	14340
ctttaccgcc tggc	aactgg cggccggag	gg acttctgcto	gttccagtag	ctttagtgtt	14400
tgateegeea atee	cgatgc ctacaggaa	ac caatgttcto	ggcctggcgt	ggeteggeet	14460
gatcggagcg ggtt	taacct acttcctt	tg gttccggggg	g atctcgcgac	: tcgaacctac	14520
agttgtttcc ttac	etggget tteteage	cc cagatctgg	g gtcgatcago	cggggatgca	14580
tcaggccgac agtc	eggaact tegggtee	cc gacctgtac	c atteggtgag	g caatggatag	14640
gggagttgat atcg	gtcaacg ttcacttc	ta aagaaatag	c gccactcago	c ttcctcageg	14700
gctttatcca gcga	atttcct attatgtc	gg catagttct	c aagatcgaca	a gcctgtcacg	14760
gttaagcgag aaat	tgaataa gaaggctg	at aatteggat	c tctgcgagg	g agatgatatt	14820
tgatcacagg cage	caacget etgteate	gt tacaatcaa	c atgctaccc	t ccgcgagatc	14880
atccgtgttt caa	acccggc agcttagt	tg ccgttcttc	c gaatagcat	c ggtaacatga	14940

WO 2004/063359 PCT/EP2004/000099 17/357

gcaaagtctg	ccgccttaca	acggctctcc	cgctgacgcc	gtcccggact	gatgggctgc	15000
ctgtatcgag	tggtgatttt	gtgccgagct	gccggtcggg	gagctgttgg	ctggctggtg	15060
gcaggatata	ttgtggtgta	aacaaattga	cgcttagaca	acttaataac	acattgcgga	15120
cgtttttaat	gtactggggt	ggtttttctt	ttcaccagtg	agacgggcaa	cagctgattg	15180
cccttcaccg	cctggccctg	agagagttgc	agcaagcġgt	ccacgctggt	ttgccccagc	15240
aggcgaaaat	cctgtttgat	ggtggttccg	aaatcggcaa	aatcccttat	aaatcaaaag	15300
aatagcccga	gatagggttg	agtgttgttc	cagtttggaa	caagagtcca	ctattaaaga	15360
acgtggactc	caacgtcaaa	gggcgaaaaa	ccgtctatca	gggcgatggc	ccactacgtg	15420
aaccatcacc	caaatcaagt	tttttggggt	cgaggtgccg	taaagcacta	aatcggaacc	15480
ctaaagggag	ccccgattt	agagcttgac	ggggaaagcc	ggcgaacgtg	gcgagaaagg	15540
aagggaagaa	agcgaaagga	gcgggcgcca	ttcaggctgc	gcaactgttg	ggaagggcga	15600
tėggtgeggg	cctcttcgct	attacgccag	ctggcgaaag	ggggatgtgc	tgcaaggcga	15660
ttaagttggg	taacgccagg	gttttcccag	tcacgacgtt	gtaaaacgac	ggccagtgaạ	15720
ttcgagctcg	gtacccggg					15739

<210> 4

<211> 11611

<212> DNA

<213> Artificial

<220>

<223> Vector

<220>

<221> misc_feature

<222> (227)..(227)

<223> n is a, c, g, or t

<220> <221> misc_feature <222> (318)..(318) <223> n is a, c, g, or t <220> <221> misc_feature <222>- (526)..(526) <223> n is a, c, g, or t <220> <221> misc_feature <222> (8946)..(8946) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10028)..(10028) <223> n is a, c, g, or t <400> 4 agcttgcatg cctgcaggtc gagtggagat gtggagtggg cgcttacaca gtacacgagg 60 acttctagct agaaagaagg attacctcta aacaagtgta cctgtgcatt ctgggtaaac 120 180 gactcatagg agagttgtaa aaaagtttcg gccggcgtat tgggtgttac ggagcattca 240 ctaggcaacc atgcatggtt actattgtat accatcttag taggaantga tttcgaggtt 300 tatacctacg atgaatgtgt gtcctgtagg cttgagagtt caaggaagaa acatgcaatt atctttgcga acccaggngc tggtgacgga attttcatag tcaagctatc agagtaaaga 360 agaggagcat gtcaaagtac aattagagac aaatatatag tcgcgtggag ccaagagcgg 420 attecteagt etegtaggte tettgaegae egttgatetg ettgateteg tetecegaaa 480 atgaaaatag ctctgctaag ctattcttct cttcgccgga gcctgnaagg cgttactagg 540

ttgcagtcaa tgcattaatg cattgcagat gagctgtatc tggaagaggt aaacccgaaa

600

WO 2004/063359 PCT/EP2004/000099 19/357

			19/33/			
acgcgtttta	ttcttgttga	catggagcta	ttaaatcact	agaaggcact	ctttgctgct	660
tggacaaatg	aacgtatctt	atcgagatcc	tgaacaccat	ttgtctcaac	tccggagctg	720
acatcgacac	caacgatctt	atatccagat	tcgtcaagct	gtttgatgat	ttcagtaacg	780
ttaagtggat	cgatcccgcg	gtcggcatct	actctattcc	tttgccctcg	gacgagtgct	840
ggggcgtcgg	tttccactat	cggcgagtac	ttctacacag	ccatcggtcc	agacggccgc	900
gcttctgcgg	gcgatttgtg	tacgcccgac	agtcccggct	ccggatcgga	cgattgcgtc	960
gcatcgacco	: tgcgcccaag	ctgcatcatc	gaaattgccg	tcaaccaagc	tctgatagag	1020
ttggtcaaga	ı ccaatgegga	gcatatacgc	ccggagccgc	ggcgatcctg	caagctccgģ	1080
atgeeteege	c togaagtago	gcgtctgctg	ctccatacaa	gccaaccacg	gcctccagaa	1140
gaagatgtt	g gegacetegt	attgggaatc	cccgaacatc	gcctcgctcc	agtcaatgac	1200
cgctgttate	g cggccattgt	ccgtcaggac	attgttggag	ccgaaatccg	cgtgcacgag	1260
gtgccggac	t teggggeagt	ceteggeeca	aagcatcagc	tcatcgagag	cctgcgcgac	1320
ggacgcact	g acggtgtcgt	: ccatcacagt	ttgccagtga	tacacatggg	gatcagcaat	1380
cgcgcatat	g aaatcacgco	: atgtagtgta	ttgaccgatt	ccttgcggtc	cgaatgggcc	1440
gaacccgct	c gtctggctaa	a gateggeege	agegategea	tccatggcct	ccgcgaccgg	1500
ctgcagaac	a gcgggcagtt	cggtttcagg	caggtettge	: aacgtgacac	cctgtgcacg	1560
gcgggagat	g caataggtca	a ggeteteget	gaatteece	atgtcaagca	cttccggaat	1620
cgggagcgc	g gccgatgcaa	a agtgccgata	a aacataacga	a tctttgtaga	aaccatcggc	1680
gcagctatt	t acccgcagg	a catatecaeg	g ccctcctaca	a togaagotga	aagcacgaga	1740
ttettegee	c teegagage	t gcatcaggto	ggagacgctç	g tcgaactttt	: cgatcagaaa	1800
cttctcgac	a gacgtcgcg	g tgagttcagg	g catggtgatg	g tctgctcaag	g cggggtagct	1860

WO 2004/063359 PCT/EP2004/000099 20/357

gttagtcaag	ctgcgatgaa	gtgggaaagc	tcgaactgaa	aggttcaaag	gaataaggga	1920
tgggaaggat	ggagtatgga	tgtagcaaag	tacttactta	ggggaaataa	aggttcttgg	1980
atgggaagat	gaatatactg	aagatgggaa	aagaaagaga	aaagaaaaga	gcagctggtg	2040
gggagagcag	gaaaatatgg	caacaaatgt	tggactgacg	caacgacctt	gtcaaccccg	2100
ccgacacacc	gggcggacag	acggggcaaa	gctgcctacc	agggactgag	ggacctcagc	2160
aggtcgagtg	cagagcaccg	gatgggtcga	ctgccagctt	gtgttcccgg	tetgegeege	2220
tggccagctc	ctgagcggcc	tttccggttt	catacaccgg	gcaaagcagg	agaggcacga	2280
tatttggacg	ccctacagat	gccggatggg	ccaattaggg	agcttacgcg	ccgggtactc	2340
gctctaccta	cttcggagaa	ggtactatct	cgtgaatctt	ttaccagatc	ggaagcaatt	2400
ggacttctgt	acctaggtta	atggcatgct	atttcgccga	cggctataca	cccctggctt	2460
cacattctcc	ttcgcttact	gccggtgatt	cgatgaagct	ccatattctc	cgatgatgca	2520
atagattctt	ggtcaacgag	gggcacacca	gcctttccac	ttcggggcgg	aggggcggcc	2580
ggtcccggat	taataatcat	ccactgcacc	tcagageege	cagagctgtc	tggccagtgg	2640
cttattacto	agcccttctc	tetgegteeg	teegtetete	cgcatgccag	aaagagtcac	2700
cggtcactgt	acagagetea	cgagttcgtc	acatttttct	acaaatggtg	gaggcggcgg	2760
attttaggct	: caagtcatga	ccctctgggt	cactccagaa	tcagctaggt	caacgaataa	2820
ggatgattct	: ataggaagat	ccaggcaccg	gtcaaccatg	atctggacag	atttgggage	2880
tcggtataag	g ctctccacct	atcttattct	gtatagttta	ggcttaaagt	: ttatccagga	2940
gatgttgctg	g aagtcgattt	: gagtccactt	cctcactggt	agctatacga	a ctttgatggt	3000
cgttgtaggg	g gctgtattag	g gtctcgatca	ı aacacaaata	ı gaattaaatç	g gtactcgagt	3060
ccactgaag	g tggcttctcc	gtcttccgta	gccgtgccga	a aatccttaca	a gcttgtgttg	3120

WO 2004/063359 PCT/EP2004/000099 21/357

tgtgactttt	ggttacgccg	tctgactttt	gtggtgagct	aactagagat	catgctatat	3180
ctcctgattt	aatacaatgc	tcatcataac	attccacctg	gaactgctag	caacgtttga	3240
cttgcattgt	gcaacgccct	ttgcagagct	atcggatgat	caatagtgcc	acgttctaaa	3300
ttcaaccaac	gcaggtgccc	caagccttcg	acatccggat	gtatttcgaa	aacctcatgg	3360
cgattgcagt	cctcagattc	atgttcattc	caatgctcat	tggtgaataa	aaggttcaca	3420
gggaataagt	tcaaactcga	gatacttgag	aatattgaaa	gccaaaggac	cctctatgct	3480
ccaagctaga	gtctcagcct	ggaaagcaaa	tccaaatgaa	gctatgctac	ctccaattcc	3540
tcatcatctt	atctataata	cagagtcgaa	gaatatcctc	ttgacaccgc	tccgtcctcc	3600
gacttcaata	aggagcttac	tcctccttga	caccacccct	ccagttcttc	: tcggcgttct	3660
ggagggaggc	: cttgtcggtc	ttgggctggc	: cctggctgag	aaagctgttg	gcagccttaa	3720
agggacgctç	g gaggtcacca	gtcgctggct	tecegaagae	gtggatetta	a accagattcg	3780
aaagcgcctt	cageggatga	tcgactggal	cagaagagco	g ttggtgtact	tgaagtacag	3840
atgcatgac	g gccatcatgo	caacgccca	t gaactggcto	ttaatgagc	t ggcggaactg	3900
gcccttatc	g tactccatg	tggtagttg	t gacaggacga	a ggctcctcg	c cgcttccaag	3960
cggagcagg	c tegaegtat	t tcagtgtcg	a aagatctga	t caagagaca	g gatgaggatc	4020
gtttcgcat	g attgaacaa	g atggattgc	a cgcaggttc	t ccggccgct	t gggtggagag	4080
gctattcgg	c tatgactgg	g cacaacaga	c aatcggctg	c tctgatgcc	g ccgtgttccg	4140
gctgtcago	g caggggcgc	c cggttcttt	t tgtcaagac	c gacctgtcc	g gtgccctgaa	4200
tgaactgca	g gacgaggca	g cgcggctat	c gtggctggc	c acgacgggc	g ttccttgcgc	4260
agctgtgct	c gacgttgtc	a ctgaagcgg	g aagggactg	g ctgctattg	g gcgaagtgcc	4320
ggggcagga	it ctcctgtca	t ctcacctto	ge teetgeega	g aaagtatco	a tcatggctga	4380

WO 2004/063359 PCT/EP2004/000099 22/357

tgcaatgcgg	cggctgcata	cgcttgatcc	ggctacctgc	ccattcgacc	accaagcgaa	4440
acatcgcatc	gagcgagcac	gtactcggat	ggaagccggt	cttgtcgatc	aggatgatct	4500
ggacgaagag	catcaggggc	tcgcgccagc	cgaactgttc	gccaggctca	aggcgcgcat	4560
gcccgacggc	gaggatctcg	tcgtgaccca	tggcgatgcc	tgcttgccga	atatcatggt	4620
° ggaaaatggc	cgcttttctg	gattcatcga	ctgtggccgg	ctgggtgtgg	cggaccgcta	4680
tcaggacata	gcgttggcta	cccgtgatat	tgctgaagag	cttggcggcg	aatgggctga	4740
ccgcttcctc	gtgctttacg	gtatcgccgc	tecegatteg	cagcgcatcg	ccttctatcg	4800
ccttcttgac	gagttcttct	gagcgggact	ctggggttcg	aaatgaccga	ccaagcgacg	4860
cccaacctgc	catcacgaga	tttcgattcc	accgccgcct	tctatgaaag	gttgggcttc	4920
ggaatcgttt	tccgggacgc	cggctggatg	atcctccagc	gcggggatct	catgctggag	4980
ttcttcgccc	accccgggct	cgatcccctc	gcgagttggt	tcagctgctg	cctgaggctg	5040
gacgacctcg	cggagttcta	ccggcagtgc	aaatccgtcg	gcatccagga	aaccagcagc	5100
ggctatccgc	gcatccatgc	ccccgaactg	caggagtggg	gaggcacgat	ggccgctttg	5160
gtccggatct	ttgtgaagga	accttactto	tgtggtgtga	cataattgga	caaactacct	5220
acagagattt	aaagctctaa	. ggtaaatata	aaatttttaa	gtgtataatg	tgttaaacta	5280
ctgattctaa	ttgtttgtgt	attttagatt	ccaacctatg	gaactgatga	atgggagcag	5340
tggtggaatg	r cctttaatga	ggaaaacctg	ttttgctcag	· aagaaatgco	: atctagtgat	5400
gatgaggcta	ctgctgactc	: tcaacattct	: actcctccaa	aaaagaagag	g aaaggtagaa	5460
gaccccaagg	actttccttc	: agaattgcta	a agtttttga	gtcatgctgt	gtttagtaat	5520
agaactcttç	g cttgctttgc	tatttacaco	c acaaaggaaa	ı aagctgcact	: gctatacaag	5580
aaaattatgg	y aaaaatatto	tgtaacctt	ataagtaggo	: ataacagtta	a taatcataac	5640

WO 2004/063359 PCT/EP2004/000099 23/357

atactgtttt	ttcttactcc	acacaggcat	agagtgtctg	ctattaataa	ctatgctcaa	5700
aaattgtgta	cctttagctt	tttaatttgt	aaaggggtta	ataaggaata	tttgatgtat	5760
agtgccttga	ctagagatca	taatcagcca	taccacattt	gtagaggttt	tacttgcttt	5820
aaaaaacctc	ccacacctcc	ccctgaacct	gaaacataaa	atgaatgcaa	ttgttgttgt	5880
taacttgttt	attgcagctt	ataatggtta	caaataaagc	aatagcatca	caaatttcac	5940
aaataaagca	ttttttcac	tgcattctag	ttgtggtttg	tccaaactca	tcaatgtatc	6000
ttatcatgtc	tggatctgac	gggtgcgcat	gatcgtgctc	ctgtcgttga	ggacccggct	6060
aggctggcgg	ggttgcctta	ctggttagca	gaatgaatca	ccgatacgcg	agcgaacgtg	6120
aagcgactgc	tgctgcaaaa	cgtctgcgac	ctgagcaaca	acatgaatgg	tcttcggttt	6180
ccgtgtttcg	taaagtctgg	aaacgcggaa	gtcagcgctc	ttccgcttcc	tcgctcactg	6240
actcgctgcg	ctcggtcgtt	cggctgcggc	gagcggtatc	agctcactca	aaggcggtaa	6300
tacggttatc	cacagaatca	ggggataacg	caggaaagaa	catgtgagca	aaaggccagc	6360
aaaaggccag	caaaaggcca	ggaaccgtaa	aaaggccgcg	ttgctggcgt	ttttccatag	6420
geteegeece	cctgacgagc	atcacaaaaa	tcgacgctca	agtcagaggt	ggcgaaaccc	6480
gacaggacta	taaagatacc	aggcgtttcc	ccctggaagc	tccctcgtgc	gctctcctgt	6540
tccgaccctg	ccgcttaccg	gatacctgtc	cgcctttctc	ccttcgggaa	gcgtggcgct	6600
ttctcatago	tcacgctgta	ggtatctcag	ttcggtgtag	gtcgttcgct	ccaagctggg	6660
ctgtgtgcac	gaaccccccg	ttcagcccga	cegetgegee	: ttatccggta	actatcgtct	6720
tgagtccaac	: ccggtaagac	: acgacttato	: gccactggca	gcagccactg	gtaacaggat	6780
tagcagagco	, aggtatgtag	gcggtgctac	agagttette	, aagtggtggc	: ctaactacgg	68 4 0

WO 2004/063359 PCT/EP2004/000099 24/357

			,			
ctacactaga	aggacagtat	ttggtatctg	cgctctgctg	aagccagtta	ccttcggaaa	6900
aagagttggt	agctcttgat	ccggcaaaca	aaccaccgct	ggtagcggtg	gtttttttgt	6960
ttgcaagcag	cagattacgc	gcagaaaaaa	aggatctcaa	gaagatcctt	tgatcttttc	7020
tacggggtct	gacgctcagt	ggaacgaaaa	ctcacgttaa	gggattttgg	tcatgagatt	7080
atcaaaaagg	atcttcacct	agatcctttt	aaattaaaaa	tgaagtttta	aatcaatcta	7140
aagtatatat	gagtaaactt	ggtctgacag	ttaccaatgc	ttaatcagtg	aggcacctat	7200
ctcagcgatc	tgtctatttc	gttcatccat	agttgcctga	ctcccgtcg	tgtagataac	7260
tacgatacgg	gagggcttac	catctggccc	cagtgctgca	atgataccgc	gagacccacg	7320
ctcaccggct	ccagatttat	cagcaataaa	ccagccagcc	ggaagggccg	agcgcagaag	7380
tggtcctgca	actttatccg	cctccatcca	gtctattaat	tgttgccggg	aagctagagt	7440
aagtagttcg	ccagttaata	gtttgcgcaa	cgttgttgcc	attgctgcag	gcatcgtggt	7500
gtcacgctcg	tcgtttggta	tggcttcatt	cagctccggt	tcccaacgat	caaggcgagt	7560
tacatgatcc	cccatgttgt	gcaaaaaagc	ggttagctcc	ttcggtcctc	cgatcgttgt	7620
cagaagtaag	ttggccgcag	tgttatcact	catggttatg	gcagcactgc	ataattctct	7680
tactgtcatg	ccatccgtaa	gatgcttttc	tgtgactggt	gagtactcaa	ccaagtcatt	7740
ctgagaatag	tgtatgcggc	gaccgagttg	ctcttgcccg	gcgtcaacac	gggataatac	7800
cgcgccacat	agcagaactt	taaaagtgct	catcattgga	aaacgttctt	cggggcgaaa	7860
actctcaagg	atcttaccgc	tgttgagatc	cagttcgatg	taacccactc	gtgcacccaa	7920
ctgatcttca	gcatcttta	ctttcaccag	cgtttctggg	tgagcaaaaa	caggaaggca	7980
aaatgccgca	aaaaagggaa	taagggcgac	acggaaatgt	tgaatactca	tactcttcct	8040
ttttcaatat	tattgaagca	tttatcaggg	ttattgtctc	atgagcggat	acatatttga	8100

WO 2004/063359 PCT/EP2004/000099 25/357

			23/33/			
atgtatttag	aaaaataaac	aaataggggt	tccgcgcaca	tttccccgaa	aagtgccacc	8160
tgacgtctaa	gaaaccatta	ttatcatgac	attaacctat	aaaaataggc	gtatcacgag	8220
gccctttcgt	cttcaagaat	tegeggeege	aattaaccct	cactaaagga	tecetatagt	8280
gagtcgtatt	atgeggeege	gaattctcat	gtttgaccgc	ttatcatcga	taagctctgc	8340
tttttgttga	cttccattgt	tcattccacg	gacaaaaaca	gagaaaggaa	acgacagagg	8400
ccaaaaagct	cgctttcagc	acctgtcgtt	tcctttcttt	tcagagggta	ttttaaataa	8460
aaacattaag	ttatgacgaa	gaagaacgga	aacgccttaa	accggaaaat	tttcataaat	8520
agcgaaaacc	cgcgaggtcg	ccgccccgta	acaaggcgga	tegeeggaaa	ggacccgcaa	8580
atgataataa	ttatcaattg	catactatcg	acggcactgc	tgccagataa	caccaccggg	8640
gaaacattcc	atcatgatgg	ccgtgcggac	ataggaagcc	agttcatcca	tegetttett	8700
gtctgctgcc	atttgctttg	tgacatccag	cgccgcacat	tcagcagcgt	ttttcagcgc	8760
gttttcgatc	aacgtttcaa	tgttggtatc	aacaccaggt	ttaactttga	acttatcggc	8820
actgacggtt	accttgttct	gcgctggctc	atcacgcagg	ataccaaggc	tgatgttgta	8880
gatattggtc	accggctgag	ggttttcgat	tgccgctgcg	tggatagcac	catttgcgat	8940
caggengtee	ttgatgaatg	acactccatt	gcgaataagt	tcgaaggaga	cggtgtcacg	9000
aatgcgctgg	tccagctcgg	tcgattgcct	tttgtgcagc	agaggtatca	atctcaacgc	9060
caaggctcat	: cgaagcgcaa	tattgctgct	caccaaaacg	cgtattgacc	aggtgttcaa	9120
cggcaaattt	: ctgcccttct	gatgtcagaa	aggcaaagtg	attttctttc	tggtattcag	9180
ttgctgtgtg	, teggttteag	caaaaccaag	ctcgcgcaat	teggetgtge	agatttagaa	9240
ggcagatcac	: cagacagcaa	cggccaacgg	aaaacagcgo	atacagaaca	teegtegeeg	9300
cgccgacaac	gtgataattt	ttatgaccca	tgatttattt	ccttttagac	: gtgagcctgt	9360

WO 2004/063359 PCT/EP2004/000099 26/357

			20/33/			
cgcacagcaa	agccgccgaa	agttcctcga	agctagcttc	agacgtgtct	agatacgtct	9420
gctttttgtt	gacttccatt	gttcattcca	cggacaaaaa	cagagaaagg	aaacgacaga	9480
ggccaaaaag	ctcgctttca	gcacctgtcg	tttcctttct	tttcagaggg	tattttaaat	9540
aaaaacatta	agttatgacg	aagaagaacg	gaaacgcctt	aaaccggaaa	attttcataa	9600
atagcgaaaa	cccgcgaggt	egeegeeeeg	taacaaggcg	gatcgccgga	aaggacccgc	9660
aaatgataat	aattatcaat	tgcatactat	cgacggcact	gctgccagat	aacaccaccg	9720
gggaaacatt	ccatcatgat	ggccgtgcgg	acataggaag	ccagttcatc	categettte	9780
ttgtctgctg	ccatttgctt	tgtgacatcc	agcgccgcac	attcagcagc	gtttttcagc	9840
gcgttttcga	tcaacgtttc	aatgttggta	tcaacaccag	gtttaacttt	gaacttatcg	9900
gcactgacgg	ttaccttgtt	ctgcgctggc	tcatcacgca	ggataccaag	gctgatgttg	9960
tagatattgg	tcaccggctg	agggttttcg	attgccgctg	cgtggatagc	accatttgcg	10020
atcaggcngt	ccttgatgaa	tgacactcca	ttgcgaataa	gttcgaagga	gacggtgtca	10080
cgaatgcgct	ggtccagctc	ggtcgattgc	cttttgtgca	gcagaggtat	caatctcaac	10140
gccaaggctc	: atcgaagcgc	aatattgctg	ctcaccaaaa	cgcgtattga ·	ccaggtgttc	10200
aacggcaaat	ttetgeeett	ctgatgtcag	aaaggcaaag	tgattttctt	: tctggtattc	10260
agttgctgtg	g tgtcggtttc	: agcaaaacca	agctcgcgca	atteggetgt	: gcagatttag	10320
aaggcagato	c accagacago	: aacggccaac	: ggaaaacago	gcatacagaa	a catccgtcgc	10380
cgcgccgaca	a acgtgataat	: ttttatgacc	: catgatttat	ttccttttag	g acgtgagcct	10440
gtcgcacago	c aaagccgccg	g aaagttccto	gaccgatgco	cttgagagco	c ttcaacccag	10500
tcagetect	t ccggtgggcg	g cggggcatga	a ctatcgtcgc	cgcacttate	g actgtcttct	10560
ttatcatgo	a actcgtagga	a caggtgccgg	g cagcgctctg	g ggtcatttt	ggcgaggacc	10620

getttegetg	gagcgcgacg	atgatcggcc	tgtcgcttgc	ggtattcgga	atcttgcacg	10680
ccctcgctca	agccttcgtc	actggtcccg	ccaccaaacg	tttcggcgag	aagcaggcca	10740
ttatcgccgg	catggcggcc	gacgcgctgg	gctacgtctt	gctggcgttc	gcgacgcgag	10800
gctggatggc	cttccccatt	atgattcttc	tcgcttccgg	cggcatcggg	atgcccgcgt	10860
tgcaggccat	gctgtccagg	caggtagatg	acgaccatca	gggacagctt	caaggatcgc	10920
tegeggetet	taccagccta	acttcgatca	ttggaccgct	gatcgtcacg	gcgatttatg	10980
ccgcctcggc	gagcacatgg	aacgggttgg	catggattgt	aggcgccgcc	ctataccttg	11040
tetgeeteee	cgcgttgcgt	cgcggtgcat	ggagccgggc	cacctcgacc	tgaatggaag	11100
ccggcggcac	ctcgctaacg	gattcaccac	tccaagaatt	ggagccaatc	aattcttgcg	11160
gagaactgtg	aatgcgcaaa	ccaacccttg	gcagaacata	tccatcgcgt	ccgccatctc	11220
cagcagccgc	acgcggcgca	tctcgggcag	cgttgggtcc	tgcagatccg	gctgtggaat	11280
gtgtgtcagt	tagggtgtgg	aaagtcccca	ggctccccag	caģgcagaag	tatgcaaagc	11340
atgcatctca	attagtcagc	aaccaggtgt	ggaaagtccc	caggctcccc	agcaggcaga	11400
agtatgcaaa	gcatgcatct	caattagtca	gcaaccatag	tecegecect	aactccgccc	11460
atcccgcccc	taactccgcc	cagttccgcc	cattctccgc	cccatggctg	actaatttt	11520
tttatttatg	cagaggccga	ggccgcctcg	gcctctgagc	tattccagaa	gtagtgagga	11580
ggctttttg	gaggcctagg	cttttgcaaa	a			11611

<210> 5

<211> 21

<212> DNA

<213> Artificial

W	O 2004/063359		PCT/EP2004/00009
		28/357	
<223>	Primer		•
<400>			
cgatgt	agga gggcgtggat a	•	21
.04.0-			
<210>		•	
<211>			
<212>	Artificial		
<213>	Artificial		
<220>		·	
	Primer		
1000			
<400>	6		
	gcgg gcgatttgtg t	•	21
		,	
<210>	7		
<211>	20		
<212>	DNA		
<213>	Artificial		
<220>		•	
<223>	Primer		
<400>			
tgagaa	tatc accggaattg		20
<210>	۵		
<211>		·	
<212>		•	
	Artificial		
<220>			
<223>	Primer		

21

<400> 8

agctcgacat actgttcttc c

WO 2004/063359		PCT/EP2004/000099
	29/357	

24

24

9 24 ,> DNA 13> Artificial

<223> Primer

<220>

<400> 9 gtgaatggaa atcccatcgc tgtc

<211> 24

<210> 10

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 10

agtgggtact ctaaaggcca tacc

<210> 11

<211> 1771

<212> DNA

<213> Haematococcus pluvialis

<220>

<221> CDS

<222> (166)..(1155)

<400> 11

ggcacgagct tgcacgcaag tcagcgcgcg caagtcaaca cctgccggtc cacagcctca . 60

aataataaag ageteaageg tttgtgegee tegaegtgge eagtetgeae tgeettgaac 120

ccgcgagtct cccgccgcac tgactgccat agcacagcta gacga atg cag cta gca 177

Met Gln Leu Ala

.

1 gcg aca gta atg ttg gag cag ctt acc gga agc gct gag gca ctc aag 225 Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser Ala Glu Ala Leu Lys .10 15 20 5 gag aag gag aag gat gca ggc agc tct gac gtg ttg cgt aca tgg 273 Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp Val Leu Arg Thr Trp 35 30 321 geg acc cag tac teg ett ceg tea gaa gag tea gac geg gee ege eeg Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser Asp Ala Ala Arg Pro 40 45 50 gga ctg aag aat gcc tac aag cca cct tcc gac aca aag ggc atc 369 . Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser Asp Thr Lys Gly Ile 60 65 55 aca atg gcg cta cgt gtc atc ggc tcc tgg gcc gca gtg ttc ctc cac 417 Thr Met Ala Leu Arg Val Ile Gly Ser Trp Ala Ala Val Phe Leu His 80 75 70 gcc att ttt caa atc aag ctt ccg acc tcc ttg gac cag ctg cac tgg 465 Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu Asp Gln Leu His Trp 95 100 85 90 ctg ccc gtg tca gat gcc aca gct cag ctg gtt agc ggc acg agc agc 513 Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val Ser Gly Thr Ser Ser 110 115 105 561 ctg ctc gac atc gtc gta gta ttc ttt gtc ctg gag ttc ctg tac aca Leu Leu Asp Ile Val Val Val Phe Phe Val Leu Glu Phe Leu Tyr Thr 130 120 125 609 ggc ctt ttt atc acc acg cat gat gct atg cat ggc acc atc gcc atg Gly Leu Phe Ile Thr Thr His Asp Ala Met His Gly Thr Ile Ala Met 145 135 -140 aga aac agg cag ctt aat gac ttc ttg ggc aga gta tgc atc tcc ttg 657

Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly Arg Val Cys Ile Ser Leu

160

155

150

31/357

Gly Leu Val Pro Ala

									31/	357						
tac	gcc	tgg	ttt	gat	tac	aac	atg	ctg	cac	cgc	aag	cat	tgg	gag	cac	705
Tyr	Ala	Trp	Phe	Asp	Tyr	Asn	Met	Leu	His	Arg	Lys	His	Trp	Glu	His	
165					170					175					180	
					•											
cac	aac	cac	act	aac	gag	ata	aac	aag	gac	cct	gac	ttc	cac	agg	gga	753
								Lys								
urs	Aou	1113		185	0_0				190		_			195	_	
				103												
				~+~	000	taa	+++	gcc	200	ttc	ato	tee	agc	tac	ato	801
								Ala								
Asn	Pro	GIY		Vai	PIO	ırp	File		Ser	FIIC	1100	DOL	210	-1-		
			200					205					210			
			•											4		849
_								gca								
Ser	Met	Trp	Gln	Phe	Ala	Arg	Leu	Ala	Trp	Trp	Thr			Met	GIn	
		215					220					225				
													•			
ctg	ctg	ggt	gcg	cca	atg	gcg	aac	ctg	ctg	gtg	ttc	atg	gcg	gco	gcg	897
Leu	Leu	Gly	, Ala	Pro	Met	. Ala	Asn	Leu	Leu	Val	Phe	Met	Ala	Ala	Ala	•
	230	+				235	;				240)				
																•
ccc	ato	cto	tco	gcc	: ttc	cgc	: ttg	ttc	tac	ttt	ggc	acg	tac	ato	ccc	945
								Phe								
245					250					255					260	
24.	•															
			- ~=	- cct	. aa	י מכנ	r acc	, tca	ggg	tct	: tca	a cca	a gc	gto	atg	993
								. Ser								
Hls	з гус	S PI	9 G1			A VT	a AIC	. Der	270		. 50.			27!		
				26!	•				2/0						_	
													+·	a 20	a ++1	± 1041
								cag								
Ası	n Tr	o Tr	р ГЛ	s Se	r Ar	g Th	r Se	r Glr		a Sei	r As	р ге		•	r Phe	3
			28	0				285	5				29	U		
								g cad								
Le	u Th	r Cy	з Ту	r Hi	s Ph	e As	p Le	u His	s Tr	o Gl	u Hi	s Hi	s Ar	g Tr	p Pr	0
		29	5				30	0				30	5			
tt	c gc	c cc	c tg	g tg	g ga	g ct	g cc	c aa	c tg	c cg	c cg	rc ct	g to	t gg	c cg	a 1137
								o As								
	31					31					32					
~~	rt at	ים מי	st co	et ac	e te	ag et	gaac	acac	tac	agto	ggc	cctg	ctgo	ca		1185
99	יר נינ	. 9 91		yc		-9 CL			- 3 -	-3-3		_	-			

gctgggcatg caggttgtgg caggactggg tgaggtgaaa agctgcaggc gctgctgccg	1245
gacacgctgc atgggctacc ctgtgtagct gccgccacta ggggaggggg tttgtagctg	1305
togagettge eccatggatg aagetgtgta gtggtgcagg gagtacacce acaggecaac	1365
accettgeag gagatgtett gegtegggag gagtgttggg eagtgtagat getatgattg	1425
tatettaatg ctgaageett taggggageg acaettagtg etgggeagge aaegeeetge	1485
aaggtgcagg cacaagctag gctggacgag gactcggtgg caggcaggtg aagaggtgcg	1545
ggagggtggt gccacaccca ctgggcaaga ccatgctgca atgctggcgg tgtggcagtg	1605
agagetgegt gattaactgg getatggatt gtttgageag teteaettat tetttgatat	1665
agatactggt caggcaggtc aggagagtga gtatgaacaa gttgagaggt ggtgcgctgc	1725
ccctgcgctt atgaagctgt aacaataaag tggttcaaaa aaaaaa	1771

<210> 12

<211> 329

<212> PRT

<213> Haematococcus pluvialis

<400> 12

Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser Ala 1 5 10 15

Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp Val
20 25 30

Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser Asp
35 40 45

PCT/EP2004/000099 WO 2004/063359 33/357

Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser Asp

Thr Lys Gly Ile Thr Met Ala Leu Arg Val Ile Gly Ser Trp Ala Ala

Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu Asp

Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val Ser 110 `

Gly Thr Ser Ser Leu Leu Asp Ile Val Val Val Phe Phe Val Leu Glu

Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met His Gly

Thr Ile Ala Met Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly Arg Val · 150

Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His Arg Lys

His Trp Glu His His Asn His Thr Gly Glu Val Gly Lys Asp Pro Asp

Phe His Arg Gly Asn Pro Gly Ile Val Pro Trp Phe Ala Ser Phe Met

Ser Ser Tyr Met Ser Met Trp Gln Phe Ala Arg Leu Ala Trp Trp Thr

210 215 220

Val Val Met Gln Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val Phe 225 230 235 240

Met Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe Gly
245 250 255

Thr Tyr Met Pro His Lys Pro Glu Pro Gly Ala Ala Ser Gly Ser Ser 260 265 270

Pro Ala Val Met Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser Asp 275 280 285

Leu Val Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu His 290 295 300

His Arg Trp Pro Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg Arg 305 310 315 320

· Leu Ser Gly Arg Gly Leu Val Pro Ala 325

<210> 13

<211> 1662

<212> DNA

<213> Haematococcus pluvialis

<220>

<221> CDS

<222> (168)..(1130)

<400> 13

	wo	2004/	06335	9											PCT/EP20	04/00009
									35/3	57						
cggg	gcaa	ct c	aaga	aatt	c aa	cago	tgca	agc	gege	ccc	agcc	tcac	ag c	gcca	agtga	60
gcta	tcga	.cg t	ggtt	gtga	ıg cg	ctcg	acgt	ggt	ccac	tga	cggg	rcctg	jtg a	igcct	ctgcg	120
ctcc	gtcc	tc t	gcca	aato	t cg	regte	9999	r cct	geet	aag	tcga	aga		cac His	_	176
gca	tcg	gca	cta	atg	gtc	gag	cag	aaa	ggc	agt	gag	gca	gct	gct	tcc	224
Ala	Ser	Ala	Leu	Met	Val	Glu	Gln	Lys	Gly	Ser	Glu	Ala	Ala	Ala	Ser	
	5					10					15					
agc	cca	gac	gtc	ttg	aga	gcg	tgg	gcg	aca	cag	tat	cac	atg	cca	tcc	272
Ser	Pro	Asp	Val	Leu	Arg	Ala	Trp	Ala	Thr	Gln	Tyr	His	Met	Pro	Ser	
20					25			•		30					35	
gag	tcg	tca	gac	gca	gct	cgt	cct	gcg	cta	aag	cac	gcc	tac	aaa	cct	320
Glu	Ser	Ser	Asp	Ala	Ala	Arg	Pro	Ala	Leu	Lys	His	Ala	Tyr	Lys	Pro	
				40					45					50		
•																
cca	gca	tct	gac	gcc	aag	ggc	atc	acg	atg	gcg	ctg	acc	atc	att	ggc	368
Pro	Ala	Ser	Asp	Ala	Lys	Gly	Ile	Thr	Met	Ala	Leu	Thr	Ile	Ile	Gly	
			55					60					65			
			gca													416
Thr	Trp		Ala	Val	Phe	Leu		Ala	Ile	Phe	Gln		Arg	Leu	Pro	
		70					75					80				
																4.5.4
		_	gac	_												464
Thr		Met	Asp	Gin	ьeu		Trp	ьeu	Pro	vai		GIU	Ala	Thr	Ala	
	85					90					95					
Cac	att	++~	ggc	aaa	acc	200	acc	cta	cta	cac	atc	act	aca	atc	ttc	512
															Phe	212
100	neu	Бец	. Gry	GLY	105	Der	DCI	пса	200	110			11110	741	115	
100																
att	gta	ctt	gag	ttc	cta	tac	act	gat	cta	ttc	atc	acc	aca	cat	gac	560
					-									_	Asp	
				120		- 4 -		2	125					130	_	
gca	atg	cat	ggc	acc	ata	gct	ttg	agg	cac	agg	cag	ctc	aat	gat	ctc	608

Ala Met His Gly Thr Ile Ala Leu Arg His Arg Gln Leu Asn Asp Leu

135 140 145

				•												
ctt	ggc	aac	atc	tgc	ata	tca	ctg	tac	gcc	tgg	ttt	gac	tac	agc	atg	656
Leu	Gly	Asn	Ile	Cys	Ile	Ser	Leu	Tyr	Ala	Trp	Phe	Asp	Tyr	Ser	Met	
		150					155					160				
ctg	cat	cgc	aag	cac	tgg	gag	cac	cac	aac	cat	act	ggc	gaa	gtg	ggg	704
Leu	His	Arg	Lys	His	Trp	Glu	His	His	Asn	His	Thr	Gly	Glu	Val	Gly	
	165					170					175					
aaa	gac	cct	gac	ttc	cac	aag	gga	aat	ccc	ggc	ctt	gtc	ccc	tgg	ttc	752
Lys	Asp	Pro	Asp	Phe	His	Lys	Gly	Asn	Pro	Gly	Leu	Val	Pro	Trp	Phe	
180					185					190					195	
gcc	agc	ttc	atg	tcc	agc	tac	atg	tcc	ctg	tgg	cag	ttt	gcc	cgg	ctg	800
Ala	Ser	Phe	Met	Ser	Ser	Tyr	Met	Ser	Leu	Trp	Gln	Phe	Ala	Arg	Leu	
				200					205					210		
gca	tgg	tgg	gca	gtg	gtg	atg	caa	atg	ctg	ggg	gcg	ccc	atg	gca	aat	848
Ala	Trp	Trp	Ala	Val	Val	Met	Gln	Met	Leu	Gly	Ala	.Pro	Met	Ala	Asn	
			215					220					225			
ctc	cta	gtc	ttc	atg	gct	gca	gcc	cca	atc	ttg	tca	gca	ttc	cgc	ctc	896
Leu	Leu	Val	Phe	Met	Ala	Ala	Ala	Pro	Ile	Leu	Ser	Ala	Phe	Arg	Leu	
ė		230					235					240				
												•				
ttc	tac	ttc	ggc	act	tac	ctg	cca	cac	aag	cct	gag	cca	ggc	cct	gca	944
Phe	Туг	Phe	Gly	Thr	Tyr	Leu	Pro	His	Lys	Pro	Glu	Pro	Gly	Pro	Ala	
	245					250					255					
gca	ggc	tct	cag	gtg	atg	ġcc	tgg	ttc	agg	gcc	aag	aca	agt	gag	gca	992
Ala	Gly	Ser	Gln	Val	Met	Ala	Trp	Phe	Arg	Ala	Lys	Thr	Ser	Glu	Ala	
260	ı				265					270					275	
tet	gat	gtg	atg	agt	tto	ctg	aca	tgo	tac	cac	ttt	gac	ctg	cac	tgg	1040
Ser	Asp	Val	Met	Ser	Phe	Leu	Thr	Cys	Tyr	His	Phe	Asp	Leu	His	Trp	
				280)				285	İ				290)	
gag	, cac	cac	agg	, tgg	ccc	: ttt	gcc	ccc	: tgg	r tgg	cag	, ctg	ccc	cac	tgc:	1088
Glu	. His	His	. Arg	Trp	Pro	Phe	Ala	Pro	Tr	Trp	Glr	. Lev	Pro	His	Cys	
								200					205			

300

295

305

WO 2004/063359		PCT/EP2004/000099
	37/357	

1130

cgc cgc ctg tcc ggg cgt ggc ctg gtg cct gcc ttg gca tga

090 -9- 5 555	-5-55-53	- 3	5 55-		
Arg Arg Leu Ser Gly	Arg Gly Leu V	/al Pro Ala	Leu Ala		
310	315		320		
cetggteect cegetggt	ga cccagcgtct	gcacaagagt	gtcatgctac.	agggtgctgc	1190
ggccagtggc agcgcagt	gc actctcagcc	tgtatggggc	taccgctgtg	ccactgagca	1250 ′
ctgggcatgc cactgagc	ac tgggcgtgct	actgagcaat	gggcgtgcta	ctgagcaatg	1310
ggcgtgctac tgacaatg	gg cgtgctactg	gggtctggca	gtggctagga	tggagtttga	1370
tgcattcagt agcggtgg	cc aacgtcatgt	ggatggtgga	agtgctgagg	ggtttaggca	1430
gccggcattt gagagggc	ta agttataaat	cgcatgctgc	tcatgcgcac	atatctgcac	1490
acagccaggg aaatccct	tc gagagtgatt	atgggacact	tgtattggtt	tcgtgctatt	1550
gttttattca gcagcagt	ac ttagtgaggg	tgagagcagg	gtggtgagag	tggagtgagt	1610
gagtatgaac ctggtcag	rcg aggtgaacag	cctgtaatga	atgactctgt	ct	1662

<210> 14

<211> 320

<212> PRT

<213> Haematococcus pluvialis

<400> 14

Met His Val Ala Ser Ala Leu Met Val Glu Gln Lys Gly Ser Glu Ala 1 5 10 15

Ala Ala Ser Ser Pro Asp Val Leu Arg Ala Trp Ala Thr Gln Tyr His
20 25 30

Met Pro Ser Glu Ser Ser Asp Ala Ala Arg Pro Ala Leu Lys His Ala 35 40 45

m Ive Dro Dro Ale Sor Asp Ale Ive Cly Ile

Tyr Lys Pro Pro Ala Ser Asp Ala Lys Gly Ile Thr Met Ala Leu Thr
50 55 60

Ile Ile Gly Thr Trp Thr Ala Val Phe Leu His Ala Ile Phe Gln Ile
65 70 75 80

Arg Leu Pro Thr Ser Met Asp Gln Leu His Trp Leu Pro Val Ser Glu 85 90 95

Ala Thr Ala Gln Leu Leu Gly Gly Ser Ser Leu Leu His Ile Ala

100 105 110

Ala Val Phe Ile Val Leu Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr
115 120 125

Thr His Asp Ala Met His Gly Thr Ile Ala Leu Arg His Arg Gln Leu 130 135 140

Asn Asp Leu Leu Gly Asn Ile Cys Ile Ser Leu Tyr Ala Trp Phe Asp 145 150 155 160

Tyr Ser Met Leu His Arg Lys His Trp Glu His His Asn His Thr Gly
165 170 175

Glu Val Gly Lys Asp Pro Asp Phe His Lys Gly Asn Pro Gly Leu Val 180 185 190

Pro Trp Phe Ala Ser Phe Met Ser Ser Tyr Met Ser Leu Trp Gln Phe 195 200 205

Ala Arg Leu Ala Trp Trp Ala Val Val Met Gln Met Leu Gly Ala Pro

220

39/357

215

Met Ala Asn Leu Leu Val Phe Met Ala Ala Pro Ile Leu Ser Ala 225 230 235 240

Phe Arg Leu Phe Tyr Phe Gly Thr Tyr Leu Pro His Lys Pro Glu Pro 245 250 255

Gly Pro Ala Ala Gly Ser Gln Val Met Ala Trp Phe Arg Ala Lys Thr
260 265 270

Ser Glu Ala Ser Asp Val Met Ser Phe Leu Thr Cys Tyr His Phe Asp 275 280 285

Leu His Trp Glu His His Arg Trp Pro Phe Ala Pro Trp Trp Gln Leu 290 295 300

Pro His Cys Arg Arg Leu Ser Gly Arg Gly Leu Val Pro Ala Leu Ala 305 310 315 320

<210> 15

<211> 729

210

<212> DNA

<213> Agrobacterium aurantiacum

<220>

<221> CDS

<222> (1)..(729)

<400> 15

atg agc gca cat gcc ctg ccc aag gca gat ctg acc gcc acc agc ctg

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu

1 5 10 15

PCT/EP2004/000099 WO 2004/063359 40/357 atc gtc tcg ggc ggc atc atc gcc gct tgg ctg gcc ctg cat gtg cat 96 Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 30 20 25 gcg ctg tgg ttt ctg gac gca gcg gcg cat ccc atc ctg gcg atc gca 144 Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala 40 45 35 aat ttc ctg ggg ctg acc tgg ctg tcg gtc gga ttg ttc atc atc gcg 192 Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60 cat gac gcg atg cac ggg tcg gtg gtg ccg ggg cgt ccg cgc gcc aat 240 His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75 80 gcg gcg atg ggc cag ctt gtc ctg tgg ctg tat gcc gga ttt tcg tgg 288 Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp 90 95 85 cgc aag atg atc gtc aag cac atg gcc cat cac cgc cat gcc gga acc 336 Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr 105 110 100 gac gac gac ccc gat ttc gac cat ggc ggc ccg gtc cgc tgg tac gcc 384

Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala

115 120 125

cgc ttc atc ggc acc tat ttc ggc tgg cgc gag ggg ctg ctg ctg ccc 432

Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro
130 135 140

gtc atc gtg acg gtc tat gcg ctg atc ctt ggg gat cgc tgg atg tac 480
Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr
145 150 155 160

gtg gtc ttc tgg ccg ctg ccg tcg atc ctg gcg tcg atc cag ctg ttc 528

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe

165 170 175

gtg ttc ggc acc tgg ctg ccg cac cgc ccc ggc cac gac gcg ttc ccg 576
Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro

WO 2004/063359	PCT/EP2004/000099
	41/357

180 185 190

gac cgc cac aat gcg cgg tcg tcg cgg atc agc gac ccc gtg tcg ctg 624
Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu
195 200 205

ctg acc tgc ttt cac ttt ggc ggt tat cat cac gaa cac cac ctg cac

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His

210 215 220

ccg acg gtg ccg tgg tgg cgc ctg ccc agc acc cgc acc aag ggg gac

Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp

235 240

acc gca tga 729
Thr Ala

<210> 16

<211> 242

<212> PRT

<213> Agrobacterium aurantiacum

<400> 16

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu

1 5 10 15

Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His
20 25 30

Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala 35 40 45

Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60

His	Asp	Ala	Met	His	Gly	Ser	Val	Val	Pro	Gly	Arg	Pro	Arg	АТА	Asn	
65					70					75					80	

Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp
85 90 95

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr 100 105 110

Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala 115 120 125

Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr 145 150 155 160

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe 165 170 175

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro 180 185 190

Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu 195 200 205

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 220

Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp

43/357

225 230 235 240

Thr Ala

<210> 17

<211> 1631

<212> DNA

<213> Alcaligenes sp.

<220>

<221> CDS

<222> (99)..(827)

<400> 17

ctgcaggccg ggcccggtgg ccaatggtcg caaccggcag gactggaaca ggacggcggg 60

ccggtctagg ctgtcgccct acgcagcagg agtttcgg atg tcc gga cgg aag cct 116

Met Ser Gly Arg Lys Pro

L 5

ggc aca act ggc gac acg atc gtc aat ctc ggt ctg acc gcc gcg atc 164

Gly Thr Thr Gly Asp Thr Ile Val Asn Leu Gly Leu Thr Ala Ala Ile 10 15 20

ctg ctg tgc tgg ctg gtc ctg cac gcc ttt acg cta tgg ttg cta gat 212 Leu Leu Cys Trp Leu Val Leu His Ala Phe Thr Leu Trp Leu Leu Asp

25 30 35

gcg gcc gcg cat ccg ctg ctt gcc gtg ctg tgc ctg gct ggg ctg acc 260

Ala Ala Ala His Pro Leu Leu Ala Val Leu Cys Leu Ala Gly Leu Thr

40 45 50

tgg ctg tcg gtc ggg ctg ttc atc atc gcg cat gac gca atg cac ggg 308

Trp Leu Ser Val Gly Leu Phe Ile Ile Ala His Asp Ala Met His Gly

55 60 65 70

tee gtg gtg eeg ggg egg eeg ege gee aat geg geg ate ggg eaa etg 356

Ser Val Val Pro Gly Arg Pro Arg Ala Asn Ala Ala Ile Gly Gln Leu

WO 2004/063359		PCT/EP2004/000099
	AA1257	

44/357 gcg ctg tgg ctc tat gcg ggg ttc tcg tgg ccc aag ctg atc gcc aag Ala Leu Trp Leu Tyr Ala Gly Phe Ser Trp Pro Lys Leu Ile Ala Lys cac atg acg cat cac cgg cac gcc gcc acc gac aac gat ccc gat ttc His Met Thr His His Arg His Ala Gly Thr Asp Asn Asp Pro Asp Phe ggt cac gga ggg ccc gtg cgc tgg tac ggc agc ttc gtc tcc acc tat Gly His Gly Gly Pro Val Arg Trp Tyr Gly Ser Phe Val Ser Thr Tyr ttc ggc tgg cga gag gga ctg cta ccg gtg atc gtc acc acc tat Phe Gly Trp Arg Glu Gly Leu Leu Pro Val Ile Val Thr Thr Tyr gcg ctg atc ctg ggc gat cgc tgg atg tat gtc atc ttc tgg ccg gtc Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr Val Ile Phe Trp Pro Val ccg gcc gtt ctg gcg tcg atc cag att ttc gtc ttc gga act tgg ctg Pro Ala Val Leu Ala Ser Ile Gln Ile Phe Val Phe Gly Thr Trp Leu ccc cac cgc ccg gga cat gac gat ttt ccc gac cgg cac aac gcg agg Pro His Arg Pro Gly His Asp Asp Phe Pro Asp Arg His Asn Ala Arg teg ace gge ate gge gac eeg ttg tea eta etg ace tge tte eat tte Ser Thr Gly Ile Gly Asp Pro Leu Ser Leu Leu Thr Cys Phe His Phe ggc ggc tat cac cac gaa cat cac ctg cat ccg cat gtg ccg tgg tgg Gly Gly Tyr His His Glu His His Leu His Pro His Val Pro Trp

cgc ctg cct cgt aca cgc aag acc gga ggc cgc gca tga cgcaattcct 837
Arg Leu Pro Arg Thr Arg Lys Thr Gly Gly Arg Ala

235 240

•						
cattgtcgtg	gcgacagtcc	tcgtgatgga	gctgaccgcc	tattccgtcc	accgctggat	897
tatgcacggc	cccctaggct	ggggctggca	caagtcccat	cacgaagagc	acgaccacgc	957
gttggagaag	aacgacctct	acggcgtcgt	cttcgcggtg	ctggcgacga	tcctcttcac	1017
cgtgggcgcc	tattggtggc	cggtgctgtg	gtggatcgcc	ctgggcatga	cggtctatgg	1077
gttgatctat	ttcatcctgc	acgacgggct	tgtgcatcaa	cgctggccgt	ttcggtatat	1137
tccgcggcgg	ggctatttcc	gcaggctcta	ccaagctcat	cgcctgcacc	acgcggtcga	1197
ggggcgggac	cactgcgtca	gcttcggctt	catctatgcc	ccacccgtgg	acaagctgaa	1257
gcaggatctg	aagcggtcgg	gtgtcctgcg	ccccaggac	gagcgtccgt	cgtgatctct	1317
gatcccggcg	tggccgcatg	aaatccgacg	tgctgctggc	aggggccggc	cttgccaacg	1377
gactgatcgc	gctggcgatc	cgcaaggcgc	ggcccgacct	tegegtgetg	ctgctggacc	1437
gtgcggcggg	cgcctcggac	gggcatactt	ggtcctgcca	cgacaccgat	ttggcgccgc	1497
actggctgga	ccgcctgaag	ccgatcaggc	gtggcgactg	gcccgatcag	gaggtgcggt	1557
tcccagacca	ttcgcgaagg	ctccgggccg	gatatggctc	gatcgacggg	cgggggctga	1617
tgcgtgcggt	gacc					1631

<210> 18

<211> 242

<212> PRT

<213> Alcaligenes sp.

<400> 18

Met Ser Gly Arg Lys Pro Gly Thr Thr Gly Asp Thr Ile Val Asn Leu

1 5 10 15

Gly Leu Thr Ala Ala Ile Leu Leu Cys Trp Leu Val Leu His Ala Phe

60

30

55

20

50

Thr Leu Trp Leu Leu Asp Ala Ala Ala His Pro Leu Leu Ala Val Leu
35 40 45

25

Cys Leu Ala Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75 80

Ala Ala Ile Gly Gln Leu Ala Leu Trp Leu Tyr Ala Gly Phe Ser Trp

85 90 95

Pro Lys Leu Ile Ala Lys His Met Thr His His Arg His Ala Gly Thr
100 105 110

Asp Asn Asp Pro Asp Phe Gly His Gly Gly Pro Val Arg Trp Tyr Gly
115 120 125

Ser Phe Val Ser Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

Val Ile Val Thr Thr Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr
145 150 155 160

Val Ile Phe Trp Pro Val Pro Ala Val Leu Ala Ser Ile Gln Ile Phe 165 170 175

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Asp Phe Pro 180 185 190 Asp Arg His Asn Ala Arg Ser Thr Gly Ile Gly Asp Pro Leu Ser Leu
195 200 205

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 220

Pro His Val Pro Trp Trp Arg Leu Pro Arg Thr Arg Lys Thr Gly Gly 225 230 235 240

Arg Ala

<210> 19

<211> 729

<212> DNA

<213> Paracoccus marcusii

<220>

<221> CDS

<222> (1)..(729)

<400> 19

atg agc gca cat gcc ctg ccc aag gca gat ctg acc gcc aca agc ctg

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu

1 5 10 15

atc gtc tcg ggc ggc atc atc gcc gca tgg ctg gcc ctg cat gtg cat 96

Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His
20 25 30

gcg ctg tgg ttt ctg gac gcg gcc cat ccc atc ctg gcg gtc gcg 144
Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Val Ala
35 40 45

aat ttc ctg ggg ctg acc tgg ctg tcg gtc gga ttg ttc atc atc gcg 192
Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala

50 55 60

	_	_						gtg Val	_		_	_	_			240
65					70					75	9	110			80 .	
							_	tgg Trp								288
7120				85		•			90	-3-		01,		95		
_								gcc								336
Arg	Lys	Met	Ile 100	Val	ГУS	His	Met	Ala 105	His	His	Arg	His	110	Gly	Thr	
gac	gac	gac	cca	gat	ttc	gac	cat	ggc	ggc	ccg	gtc	cgc	tgg	tac	gcc	384
Asp	Asp	Asp 115	Pro	Asp	Phe	Asp	His 120	Gly	Gly	Pro	Val	Arg 125	Trp	Tyr	Ala	
cgc	ttc	atc	ggc	acc	tat	ttc	ggc	tgg	cgc	gag	ggg	ctg	ctg	ctg	ccc	432
Arg	Phe 130	Ile	Gly	Thr	Tyr	Phe 135	Gly	Trp	Arg	Glu	Gly 140	Leu	Leu	Leu	Pro	
gtc	atc	gtg	acg	gtc	tat	gcg	ctg	atc	ctg	ggg	gat	cgc	tgg	atg	tac	480
	Ile	Val	Thr	Val	_	Ala	Leu	Ile	Leu	_	Asp	Arg	Trp	Met		
145					150					155					160	
gtg	gtc	ttc	tgg	ccg	ttg	ccg	tcg	atc	ctg	gcg	tcg	atc	cag	ctg	ttc	528
Val	Val	Phe	Trp		Leu	Pro	Ser	Ile	Leu 170	Ala	Ser	Ile	Gln	Leu 175	Phe	
				165					170					1/3		
gtg	ttc	ggc	act	tgg	ctg	ccg	cac	cgc	ccc	ggc	cac	gac	gcg	ttc	ccg	576
Val	Phe	Gly		Trp	Leu	Pro	His	Arg	Pro	Gly	His	Asp		Phe	Pro	•
			180					185					190			
gac	cgc	cat	aat	gcg	cgg	tcg	tcg	cgg	atc	agc	gac	cct	gtg	tcg	ctg	624
Asp	Arg			Ala	Arg	Ser		Arg	Ile	Ser	Asp		Val	Ser	Leu	
		195					200	•				205				
ctg	acc	tgc	ttt	cat	ttt	ggc	ggt	tat	cat	cac	gaa	cac	cac	ctg	cac	672
Leu	Thr	Cys	Phe	His	Phe	Gly	Gly	Tyr	His	His	Glu	His	His	Leu	His	
	210					215					220					

WO 2004/063359		PCT/EP2004/000099
	49/357	

ccg acg gtg ccg tgg tgg cgc ctg ccc agc acc cgc acc aag ggg gac 720

Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp

225 230 235 240

acc gca tga 729
Thr Ala

<210> 20

<211> 242

<212> PRT

<213> Paracoccus marcusii

<400> 20

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 1 5 10 15

Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His
20 25 30

Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Val Ala 35 40 45

Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75 80

Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85 90 95

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr
100 105 110

Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala 115 120 125

Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr 145 150 155 160

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe 165 170 175

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro 180 185 190

Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu
195 200 205

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 225 220

Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp 225 230 235 240

Thr Ala

<210> 21

<211> 1629

<212> DNA

WO 2004/063359 PCT/EP2004/000099

<213> Synechocystis sp.

<220> <221> CDS <222> (1)..(1629)<400> 21 atg atc acc acc gat gtt gtc att att ggg gcg ggg cac aat ggc tta 48 Met Ile Thr Thr Asp Val Val Ile Ile Gly Ala Gly His Asn Gly Leu 5 10 15 1 gtc tgt gca gcc tat ttg ctc caa cgg ggc ttg ggg gtg acg tta cta 96 Val Cys Ala Ala Tyr Leu Leu Gln Arg Gly Leu Gly Val Thr Leu Leu 20 25 30 gaa aag cgg gaa gta cca ggg ggg gcg gcc acc aca gaa gct ctc atg 144 Glu Lys Arg Glu Val Pro Gly Gly Ala Ala Thr Thr Glu Ala Leu Met 40 ccg gag cta tcc ccc cag ttt cgc ttt aac cgc tgt gcc att gac cac 192 Pro Glu Leu Ser Pro Gln Phe Arg Phe Asn Arg Cys Ala Ile Asp His 50 gaa ttt atc ttt ctg ggg ccg gtg ttg cag gag cta aat tta gcc cag 240 Glu Phe Ile Phe Leu Gly Pro Val Leu Gln Glu Leu Asn Leu Ala Gln 70 75 80 65 tat ggt ttg gaa tat tta ttt tgt gac ccc agt gtt ttt tgt ccg ggg 288 Tyr Gly Leu Glu Tyr Leu Phe Cys Asp Pro Ser Val Phe Cys Pro Gly 85 90 95 ctg gat ggc caa gct ttt atg agc tac cgt tcc cta gaa aaa acc tgt 336 Leu Asp Gly Gln Ala Phe Met Ser Tyr Arg Ser Leu Glu Lys Thr Cys 100 105 gcc cac att gcc acc tat agc ccc cga gat gcg gáa aaa tat cgg caa 384 Ala His Ile Ala Thr Tyr Ser Pro Arg Asp Ala Glu Lys Tyr Arg Gln 120 125 115 ttt gtc aat tat tgg acg gat ttg ctc aac gct gtc cag cct gct ttt 432

Phe	Val 130	Asn	Tyr	Trp	Thr	Asp 135	Leu	Leu	Asn	Ala	Val 140	Gln	Pro	Ala	Phe .	
aat	gct	ccg	ccc	cag	gct	tta	cta	gat	tta	gcc	ctg	aac	tat	ggt	tgg	480
Asn	Ala	Pro	Pro	Gln	Ala	Leu	Leu	Asp	Leu	Ala	Leu	Asn	Tyr	Gly	Trp	
145					150					155					160	
gaa	aac	tta	aaa	tcc	gtg	ctg	gcg	atc	gcc	ggg	tcg	aaa	acc	aag	gcg	528
Glu	Asn	Leu	Lys	Ser	Val	Leu	Ala	Ile	Ala	Gly	Ser	Lys	Thr	Lys	Ala	
				165					170					175		
ttg	gat	ttt	atc	cgc	act	atg	atc	ggc	tcc	ccg	gaa	gat	gtg	ctc	aat	576
Leu	Asp	Phe	Ile	Arg	Thr	Met	Ile	Gly	Ser	Pro	Glu	Asp	Val	Leu	Asn	
			180					185					190			
gaa	tgg	ttc	gac	agc	gaa	cgg	gtt	aaa	gct	cct	tta	gct	aga	cta	tgt	624
Glu	Trp	Phe	Asp	Ser	Glu	Arg	Val	Lys	Ala	Pro	Leu	Ala	Arg	Leu	Cys	
		195					200					205				
tcg	gaa	att	ggc	gct	ccc	cca	tcc	caa	aag	ggt	agt	agc	tcc	ggc	atg	672
_			-	-			Ser									
	210					215					220					
atg	atg	gtg	gcc	atg	cgg	cat	ttg	gag	gga	att	gcc	aga	cca	aaa	gga	720
Met	Met	Val	Ala	Met	Arg	His	Leu	Glu	Gly	Ile	Ala	Arg	Pro	Lys	${ t Gly}$	
225					230					235					240	
ggc	act	gga	gcc	ctc	aca	gaa	gcc	ttg	gtg	aag	tta	gtg	caa	gcc	caa	768
Gly	Thr	Gly	Ala	Leu	Thr	Glu	Ala	Leu	Val	Lys	Leu	Va1	Gln	Ala	Gln	
				245					250					255		
ggg	gga	aaa	atc	ctc	act	gac	caa	acc	gtc	aaa	cgg	gta	ttg	gtg	gaa	816
Gly	Gly	Lys	Ile	Leu	Thr	Asp	Gln	Thr	Val	Lys	Arg	Val	Leu	Val	G1u	
			260					265		٠			270			
aac	aac	cag	gcg	atc	ggg	gtg	gag	gta	gct	aac	gga	gaa	cag	tac	cgg	864
Asn	Asn	Gln	Ala	Ile	Gly	Val	Glu	Val	Ala	Asn	Gly	Glu	Gln	Tyr	Arg	
		275					280					285				
			.	a			_						1 . 1	1-1-	L.L	04.0
							aac				_					912
ATA	гуз	гÃа	GTĀ	val	тте	ser	Asn	тте	Asp	АТа	Arg	arg	ьeu	rne	nen	

290 295 300

					ggg											960
	Leu	Val	GIu	Pro	Gly	Ala	ьеи	Ala	гЛS		Asn	Gln	Asn	Leu		•
305					310					315					320	
		a+~					~~									1000
					cgc						_	_				1008
GIU	Arg	Leu	GIU	_	Arg	THE	vaı	ASII	_	Asn	GIU	ATA	тте		ьув .	
				325					330		•			335		
atc	gat	tat	acc	ctc	tcc	aat.	·tta	ccc	cac	ttc	act	acc	ato	acc	aaa	1056
			_		Ser							_	_	_		1030
		-1-	340			~_ <u>,</u>		345		- 110		1114	350	1114	013	
															÷	
ccg	gag	gat	cta	acg	gga	act	att	ttg	att	acc	gac	tea	ata	cac	cat	1104
					Gly											
		355					360				_	365		_		
gtc	gag	gaa	gcc	cac	gcc	ctc	att	gcc	ttg	aaa	caa	att	ccc	gat	gct	1152
Val	Glu	Glu	Ala	His	Ala	Leu	Ile	Ala	Leu	Gly	Gln	Ile	Pro	Asp	Ala	
	370					375					380					
aat	ccg	tct	tta	tat	ttg	gat	att	ccc	act	gta	ttg	gac	ccc	acc	atg	1200
Asn	Pro	Ser	Leu	Tyr	Leu	Asp	Ile	Pro	Thr	Val	Leu	Asp	Pro	Thr	Met	
385					390					395					400	
gcc	ccc	cct	ggg	cag	cac	acc	ctc	tgg	atc	gaa	ttt	ttt	gcc	ccc	tac	1248
Ala	Pro	Pro	Gly	Gln	His	Thr	Leu	Trp	Ile	Glu	Phe	Phe	Ala	Pro	Tyr	
				405					410					415		
					gaa											1296
Arg	TTE	Ala	_	Leu	Glu	GTA	Thr	_	ьeu	Met	GIA	Thr	_	ı.rp	Thr	
			420	÷				425					430			
aat	gar	tta	മമന	ga=	aaa	ata	מכמ	σa+	caa	ata	att	σa+	222	+ +=	acc	1344
					Lys											TOTT
	u	435	-J. D	~~ u	, _		440		9			445	~ <u>,</u> 5		~	
				•												
gac	tat	gcc	cct	aac	cta	aaa	tct	cta	atc	att	ggt	cgc	cga	gta	gaa	1392
					Leu									-	-	
_	450					455					460		-	- · · · -		
											_					

_		_	_	ctg	_			_		_						1440
Ser 465	Pro	Ala	GIU	Leu	A1a 470	GIN	Arg	ьец	GLY	Ser 475	Tyr	Asn	СТĀ	Asn	480	
400					4/0					4/5					400	
tat	cat	ctg	gat	atg	agt	ttg	gac	caa	atg	atg	ttc	ctc	cgg	cct	cta	1488
Tyr	His	Leu	Asp	Met	Ser	Leu	Asp	Gln	Met	Met	Phe	Leu	Arg	Pro	Leu	
				485					490					495		
ccg	gaa	att	gcc	aac	tac	caa	acc	CCC	atc	aaa	aat	ctt	tac	tta	aca ⁻	1536
Pro	Glu	Ile	Ala	Asn	Tyr	Gln	Thr	Pro	Ile	Lys	Asn	Leu	Tyr	Leu	Thr	
			500					505					510			
															•	
ggg	gcg	ggt	acc	cat	ccc	ggt	ggc	tcc	ata	tca	ggt	atg	ccc	ggt	aga	1584
Gly	Ala	Gly	Thr	His	Pro	Gly	Gly	Ser	Ile	Ser	Gly	Met	Pro	Gly	Arg	
		515					520					525				
aat	tgc	gct	cgg	gtc	ttt	tta	aaa	caa	caa	cgt	cgt	ttt	tgg	taa		1629
Asn	Cys	Ala	Arg	Val	Phe	Leu	Lys	Gln	Gln	Arg	Arg	Phe	Trp			
	530					535					540					

<210> 22

<211> 542

<212> PRT

<213> Synechocystis sp.

<400> 22

Met Ile Thr Thr Asp Val Val Ile Ile Gly Ala Gly His Asn Gly Leu
1 5 10 15

Val Cys Ala Ala Tyr Leu Leu Gln Arg Gly Leu Gly Val Thr Leu Leu 20 25 30

Glu Lys Arg Glu Val Pro Gly Gly Ala Ala Thr Thr Glu Ala Leu Met

35 40 45

75

80

Pro	Glu	Leu	Ser	Pro	Gln	Phe	Arg	Phe	Asn	Arg	Cys	Ala	Ile	Asp	His
	50					55					60				

Glu Phe Ile Phe Leu Gly Pro Val Leu Gln Glu Leu Asn Leu Ala Gln

70

65

Tyr Gly Leu Glu Tyr Leu Phe Cys Asp Pro Ser Val Phe Cys Pro Gly
85 90 95

Leu Asp Gly Gln Ala Phe Met Ser Tyr Arg Ser Leu Glu Lys Thr Cys

100 105 110

Ala His Ile Ala Thr Tyr Ser Pro Arg Asp Ala Glu Lys Tyr Arg Gln
115 120 125

Phe Val Asn Tyr Trp Thr Asp Leu Leu Asn Ala Val Gln Pro Ala Phe 130 135 140

Glu Asn Leu Lys Ser Val Leu Ala Ile Ala Gly Ser Lys Thr Lys Ala 165 170 175

Leu Asp Phe Ile Arg Thr Met Ile Gly Ser Pro Glu Asp Val Leu Asn 180 185 190

Glu Trp Phe Asp Ser Glu Arg Val Lys Ala Pro Leu Ala Arg Leu Cys 195 200 205

Ser Glu Ile Gly Ala Pro Pro Ser Gln Lys Gly Ser Ser Ser Gly Met

210 215 220

Met Met Val Ala Met Arg His Leu Glu Gly Ile Ala Arg Pro Lys Gly
225 230 235 240

Gly Thr Gly Ala Leu Thr Glu Ala Leu Val Lys Leu Val Gln Ala Gln

245 250 255

Gly Gly Lys Ile Leu Thr Asp Gln Thr Val Lys Arg Val Leu Val Glu 260 265 270

Asn Asn Gln Ala Ile Gly Val Glu Val Ala Asn Gly Glu Gln Tyr Arg 275 280 285

Ala Lys Lys Gly Val Ile Ser Asn Ile Asp Ala Arg Arg Leu Phe Leu 290 295 300

Gln Leu Val Glu Pro Gly Ala Leu Ala Lys Val Asn Gln Asn Leu Gly 305 310 315 320

Glu Arg Leu Glu Arg Arg Thr Val Asn Asn Glu Ala Ile Leu Lys 325 330 335

Ile Asp Cys Ala Leu Ser Gly Leu Pro His Phe Thr Ala Met Ala Gly 340 345 350

Pro Glu Asp Leu Thr Gly Thr Ile Leu Ile Ala Asp Ser Val Arg His 355 360 365

Val Glu Glu Ala His Ala Leu Ile Ala Leu Gly Gln Ile Pro Asp Ala 370 375 380

Asn Pro Ser Leu Tyr Leu Asp Ile Pro Thr Val Leu Asp Pro Thr Met

Ala Pro Pro Gly Gln His Thr Leu Trp Ile Glu Phe Phe Ala Pro Tyr 415 .

Arg Ile Ala Gly Leu Glu Gly Thr Gly Leu Met Gly Thr Gly Trp Thr

Asp Glu Leu Lys Glu Lys Val Ala Asp Arg Val Ile Asp Lys Leu Thr

Asp Tyr Ala Pro Asn Leu Lys Ser Leu Ile Ile Gly Arg Arg Val Glu

Ser Pro Ala Glu Leu Ala Gln Arg Leu Gly Ser Tyr Asn Gly Asn Val

Tyr His Leu Asp Met Ser Leu Asp Gln Met Met Phe Leu Arg Pro Leu

Pro Glu Ile Ala Asn Tyr Gln Thr Pro Ile Lys Asn Leu Tyr Leu Thr . 510

Gly Ala Gly Thr His Pro Gly Gly Ser Ile Ser Gly Met Pro Gly Arg

Asn Cys Ala Arg Val Phe Leu Lys Gln Gln Arg Arg Phe Trp

58/357

<211> 776 <212> DNA <213> Bradyrhizobium sp.

<220>

<221> CDS

<222> (1)..(774)

<400> 23

atg cat gca gca acc gcc aag gct act gag ttc ggg gcc tct cgg cgc

Met His Ala Ala Thr Ala Lys Ala Thr Glu Phe Gly Ala Ser Arg Arg

1 10 15

gac gat gcg agg cag cgc cgc gtc ggt ctc acg ctg gcc gcg gtc atc 96
Asp Asp Ala Arg Gln Arg Arg Val Gly Leu Thr Leu Ala Ala Val Ile
20 25 30

atc gcc gcc tgg ctg gtg ctg cat gtc ggt ctg atg ttc ttc tgg ccg

144

Ile Ala Ala Trp Leu Val Leu His Val Gly Leu Met Phe Phe Trp Pro

35

40

45

acc tgg ctc tat gta ggc ctg ttc atc atc gcg cat gac tgc atg cac 240
Thr Trp Leu Tyr Val Gly Leu Phe Ile Ile Ala His Asp Cys Met His
65 70 75 80

ggc tcg ctg gtg ccg ttc aag ccg cag gtc aac cgc cgt atc gga cag

288

Gly Ser Leu Val Pro Phe Lys Pro Gln Val Asn Arg Arg Ile Gly Gln

85

90

95

ctc tgc ctg ttc ctc tat gcc ggg ttc tcc ttc gac gct ctc aat gtc 336
Leu Cys Leu Phe Leu Tyr Ala Gly Phe Ser Phe Asp Ala Leu Asn Val
100 105 110

gag cac cac aag cat cac cgc cat ccc ggc acg gcc gag gat ccc gat

Glu His His Lys His His Arg His Pro Gly Thr Ala Glu Asp Pro Asp

115

120

125

									0,710								
ttc	gac	gag	gtg	ccg	ccg	cac	ggc	ttc	tgg	cac	tgg	ttc	gcc	agc	ttt	43	32
Phe	Asp	Glu	Val	Pro	Pro	His	Gly	Phe	Trp	His	Trp	Phe	Ala	Ser	Phe		
	130					135					140						
ttc	ctg	cac	tat	ttc	ggc	tgg	aag	cag	gtc	gcg	atc	atc	gca	gcc	gtc	48	80
Phe	Leu	His	Tyr	Phe	Gly	Trp	Lys	Gln	Val	Ala	Ile	Ile	Ala	Ala	Val		
145					150					155					160		
tcg	ctg	gtt	tat	cag	ctc	gtc	ttc	gcc	gtt	ccc	ttg	cag	aac	atc	ctg	53	28
Ser	Leu	Val	Tyr	Gln	Leu	Val	Phe	Ala	Val	Pro	Leu	Gln	Asn	Ile	Leu		
				165	•				170		٠			175			
_		tgg														5	76
Leu	Phe	Trp	Ala	Leu	Pro	Gly	Leu		Ser	Ala	Leu	Gln	Leu	Phe	Thr		
			180					185		٠			190				
		acc														6	24
Phe	Gly	Thr	Tyr	Leu	Pro	His		Pro	Ala	Thr	Gln		Phe	Ala	Asp		
		195					200					205					
																_	
		aac														6	72
Arg		Asn	Ala	Arg	Thr		Glu	Phe	Pro	Ala		Leu	Ser	Leu	Leu		
	210					215					220						
																-	20
		ttc														,	20
	_	Phe	His	Phe	_		HIS	HIS	GIU			ьеи	HIS	Pro			
225					230					235					240		
								_ 4						~~~	~~~	7	60
	_														agg	,	68
Ата	Pro	ı,r.b	Trp			Pro	GIU	тте			Arg	Ala	ьeu		Arg		
				245					250					255			
er en 4-																יי	76
	gac															,	, 5
Arg	Asp	,															

<210> 24

<211> 258

<212> PRT

<213> Bradyrhizobium sp.

<400> 24

Met His Ala Ala Thr Ala Lys Ala Thr Glu Phe Gly Ala Ser Arg Arg

1 5 10 15

Asp Asp Ala Arg Gln Arg Arg Val Gly Leu Thr Leu Ala Ala Val Ile 20 25 30

Ile Ala Ala Trp Leu Val Leu His Val Gly Leu Met Phe Phe Trp Pro 35 40 45

Leu Thr Leu His Ser Leu Leu Pro Ala Leu Pro Leu Val Val Leu Gln 50 55 60

Thr Trp Leu Tyr Val Gly Leu Phe Ile Ile Ala His Asp Cys Met His 65 70 75 80

Gly Ser Leu Val Pro Phe Lys Pro Gln Val Asn Arg Arg Ile Gly Gln 85 90 95

Leu Cys Leu Phe Leu Tyr Ala Gly Phe Ser Phe Asp Ala Leu Asn Val
100 105 110

Glu His His Lys His His Arg His Pro Gly Thr Ala Glu Asp Pro Asp 115 120 125

Phe Asp Glu Val Pro Pro His Gly Phe Trp His Trp Phe Ala Ser Phe 130 135 140

Phe Leu His Tyr Phe Gly Trp Lys Gln Val Ala Ile Ile Ala Ala Val 145 150 155 160 61/357

Ser Leu Val Tyr Gln Leu Val Phe Ala Val Pro Leu Gln Asn Ile Leu 165 170 175

Leu Phe Trp Ala Leu Pro Gly Leu Leu Ser Ala Leu Gln Leu Phe Thr
180 185 190

Phe Gly Thr Tyr Leu Pro His Lys Pro Ala Thr Gln Pro Phe Ala Asp 195 200 205

Arg His Asn Ala Arg Thr Ser Glu Phe Pro Ala Trp Leu Ser Leu Leu 210 215 220

Thr Cys Phe His Phe Gly Phe His His Glu His His Leu His Pro Asp 225 230 · 235 240

Ala Pro Trp Trp Arg Leu Pro Glu Ile Lys Arg Arg Ala Leu Glu Arg
245 250 255

Arg Asp

<210> 25

<211> 777

<212> DNA

<213> Nostoc sp.

<220>

<221> CDS

<222> (1)..(777)

<400> 25

1

atg gtt cag tgt caa cca tca tct ctg cat tca gaa aaa ctg gtg tta Met Val Gln Cys Gln Pro Ser Ser Leu His Ser Glu Lys Leu Val Leu

15

48

ttg Leu		_														96
			20					25		٠			30			
	-	_			tta				_		_					144
TTE	AIA	35	Pne	TTE	Leu	rne	40	TID	Ala	TIE	ser	45	116	neu	neu	
ctc	tca	atá	gat	aca	tcc	ata	att	cat	aag	agc	tta	tta	ggt	ata	gcc	192
Leu		Ile	Asp	Thr	Ser		Ile	His	Lys	Ser		Leu	Gly	Ile	Ala	
	50					55					60					
•			_		ttc											240
	Leu	Trp	Gln	Thr	Phe	Leu	Tyr	Thr	Gly		Phe	Ile	Thr	Ala		
65					70					75					80	
gat	gcc	atg	cac	ggc	gta	gtt	tat	ccc	aaa	aat	ccc	aga	ata	aat	aat	288
Asp	Ala	Met	His		Val	Val	Tyr	Pro		Asn	Pro	Arg	Ile		Asn	
				85					90					95		
ttt	ata	ggt	aag	ctc	act	cta	atc	ttg	tat	gga	cta	ctc	cct	tat	aaa	336
Phe	Ile	Gly	Lys	Leu	Thr	Leu	Ile	Leu	Tyr	Gly	Leu	Leu	Pro	Tyr	Lys	
			100					105					110			
gat	tta	ttg	aaa	aaa	cat	tgg	tta	cac	cac	gga	cat	cct	ggt	act	gat	384
Asp	Leu	Leu	Lys	Lys	His	Trp	Leu	His	His	Gly	His	Pro	Gly	Thr	Asp	
		115					120					125				
tta	gac	cct	gat	tat	tac	aat	ggt	cat	ccc	caa	aac	ttc	ttt	ctt	tgg	432
Leu	Asp	Pro	Asp	Tyr	Tyr	Asn	Gly	His	Pro	Gln	Asn	Phe	Phe	Leu	Trp	
	130					135					140					
tat	cta	cat	ttt	atg	aag	tct	tat	tgg	cga	tgg	acg	caa	att	ttc	gga	480
Tyr	Leu	His	Phe	Met	Lys	Ser	Tyr	Trp	Arg	Trp	Thr	Gln	Ile	Phe	Gly	
145					150					155					160	
tta	gtg	atg	att	ttt	cat	gga	ctt	aaa	aat	ctg	gtg	cat	ata	cca	gaa	528
Leu	Val	Met	Ile	Phe	His	Gly	Leu	Lys	Asn	Leu	Val	His	Ile	Pro	Glu	
				165					170					175		
aat	aat	tta	att	ata	ttt	tgg	atg	ata	cct	tct	att	tta	agt	tca	gta	576

WO 2004/063359		PCT/EP2004/000099
	63/357	

Asn	Asn	Leu	Ile 180	Ile	Phe	Trp	Met	Ile 185	Pro	Ser	Ile	Leu	Ser 190	Ser	Val		
	cta Leu				-			_		_		_		_	-	62	24
	tat Tyr 210															67	72
	tct Ser		_		_							_	_			72	20
_	tac Tyr											_	_		_	76	58
	tta Leu															7	77

<210> 26 ·

<211> 258

<212> PRT

<213> Nostoc sp.

<400> 26

Met Val Gln Cys Gln Pro Ser Ser Leu His Ser Glu Lys Leu Val Leu 1 5 10 15

Leu Ser Ser Thr Ile Arg Asp Asp Lys Asn Ile Asn Lys Gly Ile Phe
20 25 30

Ile Ala Cys Phe Ile Leu Phe Leu Trp Ala Ile Ser Leu Ile Leu Leu 35 40 45

Leu Ser Ile Asp Thr Ser Ile Ile His Lys Ser Leu Leu Gly Ile Ala

50 55 60

Met Leu Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His

65 70 75 80

Asp Ala Met His Gly Val Val Tyr Pro Lys Asn Pro Arg Ile Asn Asn

85 · 90 95

Phe Ile Gly Lys Leu Thr Leu Ile Leu Tyr Gly Leu Leu Pro Tyr Lys

100 105 110

Asp Leu Leu Lys Lys His Trp Leu His His Gly His Pro Gly Thr Asp

115 120 125

Leu Asp Pro Asp Tyr Tyr Asn Gly His Pro Gln Asn Phe Phe Leu Trp

130 135 140

Tyr Leu His Phe Met Lys Ser Tyr Trp Arg Trp Thr Gln Ile Phe Gly

145 150 155 160

Leu Val Met Ile Phe His Gly Leu Lys Asn Leu Val His Ile Pro Glu

165 170 175

Asn Asn Leu Ile Ile Phe Trp Met Ile Pro Ser Ile Leu Ser Ser Val

180 185 190

Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro His Lys Lys Leu Glu Gly

195 200 205

WO 2004/063359 PCT/EP2004/000099 65/357

Gly Tyr Thr Asn Pro His Cys Ala Arg Ser Ile Pro Leu Pro Leu Phe 210 215 220

Trp Ser Phe Val Thr Cys Tyr His Phe Gly Tyr His Lys Glu His His 225 230 235 240

Glu Tyr Pro Gln Leu Pro Trp Trp Lys Leu Pro Glu Ala His Lys Ile 245 250 255

Ser Leu

<210> 27

<211> 789

<212> DNA

<213> Nostoc punctiforme

<220>

<221> CDS

<222> (1)..(789)

<400> 27

ttg aat ttt tgt gat aaa cca gtt agc tat tat gtt gca ata gag caa Leu Asn Phe Cys Asp Lys Pro Val Ser Tyr Tyr Val Ala Ile Glu Gln 1 5 10 15

48

96

tta agt gct aaa gaa gat act gtt tgg ggg ctg gtg att gtc ata gta Leu Ser Ala Lys Glu Asp Thr Val Trp Gly Leu Val Ile Val Ile Val 20 25 30

att att agt ctt tgg gta gct agt ttg gct ttt tta cta gct att aat

144

Ile Ile Ser Leu Trp Val Ala Ser Leu Ala Phe Leu Leu Ala Ile Asn

35

40

45

tat gcc aaa gtc cca att tgg ttg ata cct att gca ata gtt tgg caa 192

Tyr Ala Lys Val Pro Ile Trp Leu Ile Pro Ile Ala Ile Val Trp Gln

50 55 60

_										_	cat His	_	_	_		:	240
		-									aat Asn					:	288
	_	_				_					caa Gln	_	_		_	:	336
		_				_			_	_	gaa Glu					:	384
		_		_	_			_			tgg Trp 140						432
_		•			_						gta Val						480
			_			_	_				caa Gln						528
											att Ile			Phe			576
				_			_	Glu			aaa Lys		Tyr	-			624
		Cys	_				Lys	_			ttt Phe 220	_			atc Ile		672
gct	tgc	tac	cac	ttt	ggt	tat	cat	gaa	gaa	cat	cat	gag	tat	ccc	cat		720

WO 2004/063359	PCT/EP2004/000099
	67/357

Ala Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 230 235 240

gta cct tgg tgg caa ctt cca tct gta tat aag cag aga gta ttc aac 768

Val Pro Trp Trp Gln Leu Pro Ser Val Tyr Lys Gln Arg Val Phe Asn

245 250 255

aat tca gta acc aat tcg taa 789
Asn Ser Val Thr Asn Ser
260

<210> 28

<211> 262

<212> PRT

<213> Nostoc punctiforme

<400> 28

Leu Asn Phe Cys Asp Lys Pro Val Ser Tyr Tyr Val Ala Ile Glu Gln

1 5 10 15

Leu Ser Ala Lys Glu Asp Thr Val Trp Gly Leu Val Ile Val Ile Val 20 25 30

Ile Ile Ser Leu Trp Val Ala Ser Leu Ala Phe Leu Leu Ala Ile Asn 35 40 45

Tyr Ala Lys Val Pro Ile Trp Leu Ile Pro Ile Ala Ile Val Trp Gln
50 55 60

Met Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His Asp Ala Met His 65 70 75 80

Gly Ser Val Tyr Arg Lys Asn Pro Lys Ile Asn Asn Phe Ile Gly Ser 85 90 95 Leu Ala Val Ala Leu Tyr Ala Val Phe Pro Tyr Gln Gln Met Leu Lys
100 105 110

Asn His Cys Leu His His Arg His Pro Ala Ser Glu Val Asp Pro Asp 115 120 125

Phe His Asp Gly Lys Arg Thr Asn Ala Ile Phe Trp Tyr Leu His Phe
130 135 140

Met Ile Glu Tyr Ser Ser Trp Gln Gln Leu Ile Val Leu Thr Ile Leu 145 150 155 160

Phe Asn Leu Ala Lys Tyr Val Leu His Ile His Gln Ile Asn Leu Ile 165 170 175

Leu Phe Trp Ser Ile Pro Pro Ile Leu Ser Ser Ile Gln Leu Phe Tyr 180 185 190

Phe Gly Thr Phe Leu Pro His Arg Glu Pro Lys Lys Gly Tyr Val Tyr

195 200 205

Pro His Cys Ser Gln Thr Ile Lys Leu Pro Thr Phe Leu Ser Phe Ile 210 215 220

Ala Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 230 235 240

Val Pro Trp Trp Gln Leu Pro Ser Val Tyr Lys Gln Arg Val Phe Asn 245 250 255

260

<210> 29 <211> 762 <212> DNA <213> Nostoc punctiforme <220> <221> CDS <222> (1)..(762) <400> 29 48 gtg atc cag tta gaa caa cca ctc agt cat caa gca aaa ctg act cca Val Ile Gln Leu Glu Gln Pro Leu Ser His Gln Ala Lys Leu Thr Pro 5 10 15 1 gta ctg aga agt aaa tct cag ttt aag ggg ctt ttc att gct att gtc 96 Val Leu Arg Ser Lys Ser Gln Phe Lys Gly Leu Phe Ile Ala Ile Val 20 30 att gtt agc gca tgg gtc att agc ctg agt tta tta ctt tcc ctt gac 144 Ile Val Ser Ala Trp Val Ile Ser Leu Ser Leu Leu Leu Ser Leu Asp 35 40 45 atc tca aag cta aaa ttt tgg atg tta ttg cct gtt ata cta tgg caa 192 Ile Ser Lys Leu Lys Phe Trp Met Leu Leu Pro Val Ile Leu Trp Gln 50 55 60 aca ttt tta tat acg gga tta ttt att aca tct cat gat gcc atg cat 240 Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ser His Asp Ala Met His 65 70 75 80 ggc gta gta ttt ccc caa aac acc aag att aat cat ttg att gga aca 288 Gly Val Val Phe Pro Gln Asn Thr Lys Ile Asn His Leu Ile Gly Thr 85 90 95 336 ttg acc cta tcc ctt tat ggt ctt tta cca tat caa aaa cta ttg aaa Leu Thr Leu Ser Leu Tyr Gly Leu Leu Pro Tyr Gln Lys Leu Lys 105 110 100

									70/3	57						
aaa	cat	tgg	tta	cac	cac	cac	aat	cca	gca	agc	tca	ata	gac	ccg	gat	384
Lys	His	Trp	Leu	His	His	His	Asn	Pro	Ala	Ser	Ser	Ile	Asp	Pro	Asp	
		115					120					125				
			•													
ttt	cac	aat	ggt	aaa	cac	caa	agt	ttc	ttt	gct	tgg	tat	ttt	cat	ttt	432
Phe	His	Asn	Gly	Lys	His	Gln	Ser	Phe	Phe	Ala	Trp	Tyr	Phe	His	Phe	
	130					135					140					
atg	aaa	ggt	tac	tgg	agt.	tgg	ggg	caa	ata	att	gcg	ttg	act	att	att	480
Met	Lys	Gly	Tyr	Trp	Ser	\mathtt{Trp}	Gly	Gln	Ile	Ile	Ala	Leu	Thr	Ile	Ile	
145					150					155					160	
tat	aac	ttt	gct	aaa	tac	ata	ctc	cat	atc	cca	agt	gat	aat	cta	act	528
Tyr	Asn	Phe	Ala	Lys	Tyr	Ile	Leu	His	Ile	Pro	Ser	Asp	Asn	Leu	Thr	
				165					170					175		
tac	ttt	tgg	gtg	cta	ccc	tcg	ctt	tta	agt	tca	tta	caa	tta	ttc	tat	576
Tyr	Phe	Trp	Val	Leu	Pro	Ser	Leu	Leu	Ser	Ser	Leu	Gln	Leu	Phe	Tyr	
			180					185					190			
ttt	ggt	act	ttt	tta	ccc	cat	agt	gaa	cca	ata	ggg	ggt	tat	gtt	cag	624
Phe	Gly	Thr	Phe	Leu	Pro	His	Ser	Glu	Pro	Ile	Gly	Gly	Tyr	Val	Gln	
		195					200					205				
cct	cat	tgt	gcc	caa	aca	att	agc	cgt	cct	att	tgg	tgg	tca	ttt	atc	672
Pro	His	Cys	Ala	Gln	Thr	Ile	Ser	Arg	Pro	Ile	Trp	Trp	Ser	Phe	Ile	
	210					215					220					
acg	tgc	tat	cat	ttt	ggc	tac	cac	gag	gaa	cat	cac	gaa	tat	cct	cat	720
	_							Glu								
225	-1				230					235					240	
J			•		230										244	
att	+~+	taa	taa	Cac	tts	cca	ass	att	tac	222	ace	222	tac			762
				_			_				_		_			, 52
тте	ser	rrp	тrр	GIII	ьeл	PIO	GIU	Ile	TAL	пλа	wrg	пĀS				

250

<210> 30 <211> 253

<212> PRT

<213> Nostoc punctiforme

245

<400> 30

Val Ile Gln Leu Glu Gln Pro Leu Ser His Gln Ala Lys Leu Thr Pro 1 5 10 15

Val Leu Arg Ser Lys Ser Gln Phe Lys Gly Leu Phe Ile Ala Ile Val

20 25 30

Ile Val Ser Ala Trp Val Ile Ser Leu Ser Leu Leu Leu Ser Leu Asp 35 40 45

Ile Ser Lys Leu Lys Phe Trp Met Leu Leu Pro Val Ile Leu Trp Gln 50 55 60

Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ser His Asp Ala Met His 65 70 75 80

Gly Val Val Phe Pro Gln Asn Thr Lys Ile Asn His Leu Ile Gly Thr 85 90 95

Leu Thr Leu Ser Leu Tyr Gly Leu Leu Pro Tyr Gln Lys Leu Lys
100 105 110

Lys His Trp Leu His His His Asn Pro Ala Ser Ser Ile Asp Pro Asp 115 120 125

Phe His Asn Gly Lys His Gln Ser Phe Phe Ala Trp Tyr Phe His Phe 130 135 140

Met Lys Gly Tyr Trp Ser Trp Gly Gln Ile Ile Ala Leu Thr Ile Ile 145 150 155 160 Tyr Asn Phe Ala Lys Tyr Ile Leu His Ile Pro Ser Asp Asn Leu Thr 165 170 175

Tyr Phe Trp Val Leu Pro Ser Leu Leu Ser Ser Leu Gln Leu Phe Tyr

180 185 190

Phe Gly Thr Phe Leu Pro His Ser Glu Pro Ile Gly Gly Tyr Val Gln
195 200 205

Pro His Cys Ala Gln Thr Ile Ser Arg Pro Ile Trp Trp Ser Phe Ile
210 215 220

Thr Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 230 235 240

Ile Ser Trp Trp Gln Leu Pro Glu Ile Tyr Lys Ala Lys 245 250

<210> 31

<211> 1608

<212> DNA

<213> Haematococcus pluvialis

<220>

<221> CDS

<222> (3)..(971)

<400> 31

ct aca ttt cac aag ccc gtg agc ggt gca agc gct ctg ccc cac atc

Thr Phe His Lys Pro Val Ser Gly Ala Ser Ala Leu Pro His Ile

1 5 10 15

95

ggc cca cct cct cat ctc cat cgg tca ttt gct gct acc acg atg ctg

73/357

Gly	Pro	Pro	Pro	His 20	Leu	His	Arg	Ser	Phe 25	Ala	Ala	Thr	Thr	Met 30	Leu	
tca	aag	ctg	cag	tca	atc	agc	gtc	aag	gcc	cgc	cgc	gtt	gaa	cta	gcc	143
_	_	_			Ile								_		_	
			35					40		J			45			
			-													
cac	aac	atc	acq	caa	ccc	aaa	atc	tac	cta	cat	act	cag	caa	tac	tca	191
_					Pro											
n. g	nsp	50					55	-1 -				60	9	-1-		
		30					J J									
++=	a++	caa	cta	cga	gtg	gca	aca	cca	cad	aca	gag	gag	aca	cta	дда	239
	_				Val											
neu	65	mg	пец	111.9	Val	70	2124				75				0-1	
	65					70					, 5					
200	ata	C2.C	act	acc	ggc	aca	aac	cat	aaa	cac	age	acc	cat	αta	aca	287
					Gly											20,
80	Val	GIII	ALG	пла	85	ALG	013	1105	OLG	90			p	742	95	
80					05					20						
	~~~		a++	<b>~</b> 2.0	cgg	aat	ata	aas	asa	cat	cat.	acc	caa	cac	222	335
												•				333
ren	GIN	GIN	ьeu	_	Arg	Ala	тте	AIA	105	Arg	ALG	AIA	Arg	110		
				100					105					110		
				<b>.</b>				~~~	~~~	~++	~~-	~~~	+	~ <del>-</del> -	~~~	383
		_			tac											303
Arg	GIU	GIN		ser	TYT	GIII	Ата		ALA	тте	AIA	AIA			Gly	
			115					120					125			
									•							431
				-	atc											431
Val	Ser	_		Ala	Ile	Phe			ıı	ьeи	Arg			Met	HIS	
		130					135					140				
ě								•								470
															ctc	479
Met			GLY	Gly	Ala			Trp	GTĀ	GIu			СТУ	' 'l'nr	Leu	
	145					150					155					
															tat	527
		. Val	. Val	. Gly			Leu	Gly	Met			Tyr	Ala	Arg	Tyr	
160	)				165	1				170					175	
															cac	575
Ala	His	Lys	: Ala			His	Glu	Ser	_		Gly	Trp	Leu		. His	
				180	)				185					190	)	

224	agc	C2C	cac	aca	cct	cac	act	~~=	000	<b></b>	~==	acc	220	<b>47.0</b>	<b>++~</b>	623
	Ser		_					_							<del>-</del>	023
			195					200					205		200	
				•												
ttt	gca	atc	atc	aat	gga	ctg	ccc	gcc	atg	ctc	ctg	tgt	acc	ttt	ggc	671
	Ala															
		210					215					220			_	
ttc	tgg	ctg	ccc	aac	gtc	ctg	ggg	gcg	gcc	tgc	ttt	gga	gcg	ggg	ctg	719
Phe	Trp	Leu	Pro	Asn	Val	Leu	Gly	Ala	Ala	Cys	Phe	Gly	Ala	Gly	Leu	
	225					230					235				_	
ggc	atc	acg	cta	ţac	ggc	atg	gca	tat	atg	ttt	gta	cac	gat	ggc	ctg	767
Gly	Ile	Thr	Leu	Tyr	Gly	Met	Ala	Tyr	Met	Phe	Val	His	Asp	Gly	Leu	
240					245					250					255	
gtg	cac	agg	cgc	ttt	ccc	acc	ggg	ccc	atc	gct	ggc	ctg	ccc	tac	atg	815
Val	His	Arg	Arg	Phe	Pro	Thr	Gly	Pro	Ile	Ala	Gly	Leu	Pro	Tyr	Met	
				260					265					270		
aag	cgc	ctg	aca	gtg	gcc	cac	cag	cta	cac	cac	agc	ggc	aag	tac	ggt	863
Lys	Arg	Leu	Thr	Val	Ala	His	Gln	Leu	His	His	Ser	Gly	Lys	Tyr	Gly	
			275					280			•		285			
	gcg															911
Gly	Ala		Trp	Gly	Met	Phe		Gly	Pro	Gln	Glu	Leu	Gln	His	Ile	
		290					295					300				
	ggt														•	959
Pro	Gly		Ala	GIu	GIu		GIU	Arg	Leu	Val		Glu	Leu	Asp	Trp	
	305					310					315					
taa	224		+-~	~~+	~~~	224	a= aa	<b>~</b> ~ ~ ~ ~	at ~	~+++	<b>a</b> nan	a at		aata		1011
	aag Lys			ggt	gegg	aac	cagg	cacg	ec g	guuu	Caca	e et	catg	cecg		1011
320		ALG														
320																
taa	taaq	ata	taac	taga	מכ מ	atac	atat	ന മന	ecaa	ntat	ata	acaa	tee	acto	gtctga	1071
-90		ə <b>- 3</b>	-550	94	3~ 9	90	3 -3 ·	₃ ~9'	~~39		900	99	y			2012
taa	ccaa	tga	cate	aacc	at σ	tata	gtca	t ca	caaa	ctaa	tta	ceta	aat.	gaag	gtgatg	1131
- 22		- 3 3		و و و ر	3	9	J <b>-</b>	_	-995	99	9	9	·		J - <del>J</del> <del>J</del>	
cac	atca	tca	tgtg	cggt	tg g	aggg	gctg	g ca	cagt	gtgg	gct	gaac	tgg	agca	gttgtc	1191

caggctggcg ttgaatcagt gagggtttgt gattggcggt tgtgaagcaa tgactccgcc 1251
catattctat ttgtgggagc tgagatgatg gcatgcttgg gatgtgcatg gatcatggta 1311
gtgcagcaaa ctatattcac ctagggctgt tggtaggatc aggtgaggcc ttgcacattg 1371
catgatgtac tcgtcatggt gtgttggtga gaggatggat gtggatggat gtgtattctc 1431
agacgtagac cttgactgga ggcttgatcg agagagtggg ccgtattctt tgagagggga 1491
ggctcgtgcc agaaatggtg agtggatgac tgtgacgctg tacattgcag gcaggtgaga 1551
tgcactgtct cgattgtaaa atacattcag atgcaaaaaa aaaaaaaaa aaaaaaaa 1608

<210> 32

<211> 322

<212> PRT

<213> Haematococcus pluvialis

<400> 32

Thr Phe His Lys Pro Val Ser Gly Ala Ser Ala Leu Pro His Ile Gly
1 5 10 15

Pro Pro Pro His Leu His Arg Ser Phe Ala Ala Thr Thr Met Leu Ser 20 25 30

Lys Leu Gln Ser Ile Ser Val Lys Ala Arg Arg Val Glú Leu Ala Arg 35 40 45

Asp Ile Thr Arg Pro Lys Val Cys Leu His Ala Gln Arg Cys Ser Leu 50 55 60

Val Arg Leu Arg Val Ala Ala Pro Gln Thr Glu Glu Ala Leu Gly Thr
65 70 75 80

Val Gln Ala Ala Gly Ala Gly Asp Glu His Ser Ala Asp Val Ala Leu 85 90 95

Gln Gln Leu Asp Arg Ala Ile Ala Glu Arg Arg Ala Arg Arg Lys Arg

100 105 , 110

Glu Gln Leu Ser Tyr Gln Ala Ala Ile Ala Ala Ser Ile Gly Val 115 120 125

Ser Gly Ile Ala Ile Phe Ala Thr Tyr Leu Arg Phe Ala Met His Met 130 135 140

Thr Val Gly Gly Ala Val Pro Trp Gly Glu Val Ala Gly Thr Leu Leu 145 150 155 160

Leu Val Val Gly Gly Ala Leu Gly Met Glu Met Tyr Ala Arg Tyr Ala 165 170 175

His Lys Ala Ile Trp His Glu Ser Pro Leu Gly Trp Leu Leu His Lys 180 185 190

Ser His His Thr Pro Arg Thr Gly Pro Phe Glu Ala Asn Asp Leu Phe 195 200 205

Ala Ile Ile Asn Gly Leu Pro Ala Met Leu Leu Cys Thr Phe Gly Phe 210 215 220

Trp Leu Pro Asn Val Leu Gly Ala Ala Cys Phe Gly Ala Gly Leu Gly 225 230 235 240

Ile Thr Leu Tyr Gly Met Ala Tyr Met Phe Val His Asp Gly Leu Val

WO 2004/063359	PCT/EP2004/000099
----------------	-------------------

77/357 245 250 255

His Arg Arg Phe Pro Thr Gly Pro Ile Ala Gly Leu Pro Tyr Met Lys
260 265 270

Arg Leu Thr Val Ala His Gln Leu His His Ser Gly Lys Tyr Gly Gly
275 280 285

Ala Pro Trp Gly Met Phe Leu Gly Pro Gln Glu Leu Gln His Ile Pro 290 295 300

Gly Ala Ala Glu Glu Val Glu Arg Leu Val Leu Glu Leu Asp Trp Ser 305 310 315 320

Lys Arg

<210> 33

<211> 528

<212> DNA

<213> Erwinia uredovora

<220>

<221> CDS

<222> (1)..(528)

<400> 33

atg ttg tgg att tgg aat gcc ctg atc gtt ttc gtt acc gtg att ggc 48

Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Ile Gly

1 5 10 15

96

atg gaa gtg att gct gca ctg gca cac aaa tac atc atg cac ggc tgg Met Glu Val Ile Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp

20 25 30

### WO 2004/063359 PCT/EP2004/000099 78/357

					ctt Leu											144
_	_	aac			tat Tyr		gtg					tta				192
010	50				<b>-</b> -	55					60					
_					agt Ser 70											240
	ggt	atg	acg	gcg	tat	gga	tta	ctc	tat		atg	gtg	cac	gac		288
.Ala	Gly	Met	Thr	Ala 85	Tyr	Gly	Leu	Leu	Туr 90	Phe	Met	Val	His	Asp 95	Gly	
	-			_	tgg Trp			_				_	_			336
			100					105	a.b.a.				110	200		201
					atg Met						_		_		_	384
	_		_	-	tct							_		_		432
Lys	Glu 130	_	Суз	Val	Ser	Phe 135	Gly	Phe	Leu	Tyr	140	Pro	Pro	Leu	Ser	
ГÀЗ	Leu	_			ctc Leu	Arg				Gly					Ala	480
145 gcc	•	gat	gca	cag	150 ggc		gaq	gat	gag	155	gca	tcc	gga	aag	160 taa	528
					Gly					Pro						

<210> 34

<211> 175

<212> PRT

<213> Erwinia uredovora

<400> 34

Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Ile Gly

1 5 10 15

Met Glu Val Ile Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp
20 25 30

Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe 35 40 45

Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ala Leu Ser Ile Leu 50 55 60

Leu Ile Tyr Leu Gly Ser Thr Gly Met Trp Pro Leu Gln Trp Ile Gly 65 70 75 80

Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly 85 90 95

Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr 100 105 110

Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg Gly
115 120 125

Lys Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu Ser 130 135 140

Lys Leu Gln Ala Thr Leu Arg Glu Arg His Gly Ala Arg Ala Gly Ala 145 150 155 160 Ala Arg Asp Ala Gln Gly Gly Glu Asp Glu Pro Ala Ser Gly Lys 165 170 175

<210> 35

<211> 1520

<212> DNA

<213> Artificial

<220>

<223> Promotor

<400> 35

60 ctcgagtacc gaggcggaac ggcaggaatg tttccctctc ttttagaggg caattcttta tccaatgtca tgttgatgct agatatttct gtctcttata ataaggcgaa tacccatttt 120 180 tgaattgaag ttgagataaa aaaaaagggg gcccaatttg tcaacgccaa agagtcaagc tttttctttg gctttagccg aacaatctaa gacttattgt ttttgaagat atttgacctt 240 ttctagatat tccttcaagt aaagcttttt tcgagttttt ttttttttc tttgtgaagg 300 360 atttattgtt attggtatcc attttttatt ggaagacaag ataagttaat attgattttg 420 cttaaagatt aaaaggaaat cagaaaacga caataaaaaa tgtaacggac aaactatggt 480 qtcqattata agtctaaatc cttaaaaaat gacaacgagt tgctttcctc tgaaaacaat 540 tcttttgtct ttgcaagaaa ggtttctttt ttgtttgctt gcattactta aacatcaaat caaatgaaag gaataaagca gatttgaggg cgaataagga ttttctggtc aacaagatgt 600 gagtgacacc taaggaacta aatgccattc atttgtttta aaacgacatc aaagattgat 660 gatcaacagg attgagagag agaaaaagaa ctcgtgtcat ttatttctgt tgactgaaat 720 tttatattta gaaaaaatgt caaatctata gctttagcta tattacataa catttgaaat 780 840 aataataata aaaaaagaca cattagagac acttttcaaa ctctaaataa ctgtctataa

acad	caaagaa	aacaaagacc	tctataacaa	cttattagat	ttttctcgta	cttttgtcta	900
aaga	atgatgt	attcttgtta	tcccacactt	ctttcatttg	ttcttgatgc	tactaaatat	960
acaa	aaatttc	ttttttgcaa	gagatattat	tccaaaaatt	ttcaaaaaga	aattttttc	1020
aca	atagcag	ttgatcgtgt	aacccaaaga	ggttctttgt	tattttgcac	ttccgctttg	1080
cgg	tgatgca	tattcaaagt	aatatatgga	ataaacaacg	tgtttaagca	tgaaagaaag	1140
gaa	acaaagg	ccgctttgaa	caaatgcata	atatttcaga	caaaaatgat	ctaaagcaag	1200
cag	taaatca	aacaagaaac	attgctgatt	cgcgttagaa	aacgataaaa	gtctaataag	1260
cca	ctaagta	tacttcaatg	aactttttgt	atgcttatgg	tccaatcaga	ccaataattt	1320
gtg	accattc	ctgaggtggc	tttggtgatg	cggaaacaga	aaaaaatttt	ctcaccaatc	1380
gat	ttaaaaa	acaatttctg	ctttgaacca	aaacttttt	tttctcttta	atcattaact	1440
tta	ıtcaagta	tgtacctacc	ctcaaagtcc	tcactcaagc	acaattatgc	taacattgtt	1500
cca	ecttctc	tttagaaatg					1520

<210> 36

<211> 16245

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 36

ccgggctggt	tgccctcgcc	gctgggctgg	cggccgtcta	tggccctgca	aacgcgccag	60
aaacgccgtc	gaagccgtgt	gcgagacacc	geggeegeeg	gcgttgtgga	tacctcgcgg	120
aaaacttggc	cctcactgac	agatgagggg	cggacgttga	cacttgaggg	gccgactcac	180
ccggcgcggc	gttgacagat	gaggggcagg	ctcgatttcg	gccggcgacg	tggagctggc	240
cagcctcgca	aatcggcgaa	aacgcctgat	tttacgcgag	tttcccacag	atgatgtgga	300
caagcctggg	gataagtgcc	ctgcggtatt	gacacttgag	gggcgcgact	actgacagat	360
gaggggcgcg	atccttgaca	cttgaggggc	agagtgctga	cagatgaggg	gcgcacctat	420
tgacatttga	ggggctgtcc	acaggcagaa	aatccagcat	ttgcaagggt	ttccgcccgt	480
ttttcggcca	ccgctaacct	gtcttttaac	ctgcttttaa	accaatattt	ataaaccttg	540
tttttaacca	gggctgcgcc	ctgtgcgcgt	gaccgcgcac	gccgaagggg	ggtgccccc	600
cttctcgaac	cctcccggcc	cgctaacgcg	ggcctcccat	cccccaggg	gctgcgcccc	660
teggeegega	acggcctcaċ	cccaaaaatg	gcagcgctgg	cagtccttgc	cattgccggg	720
atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	'cattgacgtg	780
ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	cggcggcctg	840
ggtggcggcc	tgcccttcac	ttcggccgtc	ggggcattca	cggacttcat	ggcggggccg	900
gcaatttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	aggtatgaaa	1020

### WO 2004/063359 PCT/EP2004/000099 83/357

acgagaattg	gacctttaca	gaattactct	atgaagegee	atatttaaaa	agctaccaag	1080
acgaagagga	tgaagaggat	gaggaggcag	attgccttga	atatattgac	aatactgata	1140
agataatata	tcttttatat	agaagatatc	gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380
agctccaccg.	attttgagaa	cgacagcgac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgccgctc	aattcgctgc	gtatateget	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tetteeggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agtttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280

# WO 2004/063359 PCT/EP2004/000099 84/357

			04/55/			
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgattttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctatttt	3000
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tctggacacc	aaggcaccag	3300
gcgggtcaaa	. tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	: cgaggatgcc	gaaaccatcg	caagccgcac	cgtcatgcgt	gegeeeegeg	3480
aaaccttcca	gtccgtcggc	tcgatggtcc	agcaagctac	ggccaagato	: gagcgcgaca	3540

## WO 2004/063359 PCT/EP2004/000099 85/357

			00/00/			
gcgtgcaact	ggeteeceet	gccctgcccg	cgccatcggc	cgccgtggag	cgttcgcgtc	3600
gtctcgaaca	ggaggcggca	ggtttggcga	agtcgatgac	catcgacacg	cgaggaacta	3660
tgacgaccaa	gaagcgaaaa	accgccggcg	aggacctggc	aaaacaggtc	agcgaggcca	3720
agcaggccgc	gttgctgaaa	cacacgaagc	agcagatcaa	ggaaatgcag	ctttccttgt	3780
tcgatattgc	gccgtggccg	gacacgatgc	gagcgatgcc	aaacgacacg	gecegetetg	3840
ccctgttcac	cacgcgcaac	aagaaaatcc	cgcgcgaggc	gctgcaaaac	aaggtcattt	3900
tccacgtcaa	caaggacgtg	aagatcacct	acaccggcgt	cgagctgcgg	gccgacgatg	3960
acgaactggt	gtggcagcag	gtgttggagt	acgcgaagcg	cacccctatc	ggcgagccga	4020
tcaccttcac	gttctacgag	ctttgccagg	acctgggctg	gtcgatcaat	ggccggtatt	4080
acacgaaggc	cgaggaatgc	ctgtcgcgcc	tacaggcgac	ggcgatgggc	ttcacgtccg	4140
accgcgttgg	gcacctggaa	teggtgtege	tgctgcaccg	cttccgcgtc	ctggaccgtg	4200
gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaattc	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcagc	tegeaceggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	cggatcggat	tccacccgcg	tgaagaagtg	gcgcgagcag	gtcggcgaag	4440
cctgcgaaga	gttgcgaggc	agcggcctgg	tggaacacgc	ctgggtcaat	gatgacctgg	4500
tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	tgggggttca	gcagccagcg	4560
ctttactggc	atttcaggaa	caagcgggca	ctgctcgacg	cacttgcttc	gctcagtatc	4620
gctcgggacg	cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	aattgacaat	4680
tgtgattaag	gctcagattc	gacggcttgg	agcggccgac	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gccctgaaga	aagctccaga	gatgttcggg	tccgtttacg	agcacgagga	4800

## WO 2004/063359 PCT/EP2004/000099 86/357

			00/00/			
gaaaaagccc	atggaggcgt	tegetgaacg	gttgcgagat	gccgtggcat	teggegeeta	4860
catcgacggc	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagegaggee	gaggggtcgc	4980
cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	teteggeetg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	gccccagatc	tggggtcgat	cagccgggga	tgcatcaggc	5640
cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatatcgto	: aacgttcact	tctaaagaaa	tagcgccact	: cagetteete	agcggcttta	5760
tccagcgatt	: tcctattatg	teggeatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
cgagaaatga	a ataagaaggc	tgataattcg	gatctctgcg	g agggagatga	tatttgatca	5880
caggcagcaa	a cgctctgtca	tcgttacaat	: caacatgcta	a ccctccgcga	gatcatccgt	5940
gtttcaaaco	c cggcagctta	gttgccgttc	: ttccgaatag	g catcggtaac	: atgagcaaag	6000
tetgeegeet	tacaacggct	: ctcccgctga	cgccgtcccc	g gactgatggg	g ctgcctgtat	6060

# WO 2004/063359 PCT/EP2004/000099 87/357

cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
tatattgtgg	tgtaaacaaa	ttgacgctta´	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgecette	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagttttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	g agccagttca	tgggcgttgg	catgatggco	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	: gctcttctga	tccagtcgat	catccgctga	aggegettte	gaatctggtt	7020
aagatccacg	g tcttcgggaa	gccagcgact	ggtgacctco	agcgtccctt	taaggctgcc	7080
aacagcttto	: tcagccaggg	r ccagcccaag	accgacaagg	g ceteceteca	gaacgccgag	7140
aagaactgga	a ggggtggtgt	: caaggaggag	, taagctcctt	: attgaagtcg	gaggacggag	7200
cggtgtcaag	g aggatattct	: tcgactctgt	: attatagata	a agatgatgag	g gaattggagg	7260
tagcatagc	t tcatttggat	: ttgctttcca	a ggctgagact	t ctagcttgga	a gcatagaggg	7320

### WO 2004/063359 PCT/EP2004/000099 88/357

			00/33/			
tcctttggct	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	teeggatgte	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataago	cactggccag	8160
acagctctgg	gggtctgag	gtgcagtgga	. tgattattaa	teegggaeeg	geegeeeete	8220
cgccccgaag	ı tggaaaggct	ggtgtgccc	: tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	: cggcgaaata	gcatgccatt	: aacctaggta	ı cagaagteea	attgcttccg	8400
atctggtaaa	a agattcacga	gatagtacct	: tctccgaagt	: aggtagagco	g agtacccggc	8460
gcgtaagcto	c cctaattggc	: ccatccggca	a tctgtagggc	gtccaaatat	cgtgeetete	8520
ctgctttgc	c cggtgtatga	aaccggaaag	g geegeteagg	g agctggccag	g cggcgcagac	8580

#### WO 2004/063359 PCT/EP2004/000099 89/357

			02,00.			
cgggaacaca	agctggcagt	cgacccatcc	ggtgctctgc	actcgacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	catattttcc	tgctctcccc	accagetget	8760
cttttctttt	ctctttcttt	tcccatcttc	agtatattca	tcttcccatc	caagaacctt	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tectteceat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gegeteeega	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	caagacctgc	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300 .
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agegggtteg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacato	gcgtgatttc	: atatgcgcga	ttgctgatcc	9420
ccatgtgtat	: cactggcaaa	ctgtgatgga	. cgacaccgto	agtgcgtccg	tegegeagge	9480
tctcgatgag	; ctgatgcttt	. gggccgagga	a ctgccccgaa	gteeggeace	: tcgtgcacgc	9540
ggatttcggd	: tccaacaatg	tcctgacgga	a caatggccgc	c ataacagcgg	g tcattgactg	9600
gagcgaggc	g atgttcgggg	g attcccaate	a cgaggtcgcd	aacatcttct	tetggaggee	9660
gtggttggct	tgtatggago	c agcagacgc	g ctacttcgaç	g cggaggcato	cggagcttgc	9720
aggatcgcc	g eggeteeggg	g cgtatatgc	t ccgcattgg1	t cttgaccaad	tctatcagag	9780
cttggttga	c ggcaatttc	g atgatgcage	c ttgggcgca	g ggtcgatgc	g acgcaatcgt	9840

### WO 2004/063359 PCT/EP2004/000099 90/357

			J0/357 .			
ccgatccgga	gccgggactg	tegggegtae	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagetea	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	aatctataca	10800
atgctccata	gactcacatt	gatattgtcg	aagatttcga	tgctgactta	gtagagcaac	10860
tacaaaagtt	agcagagaag	catgatttct	taatctttga	agaccgcaag	tttgcagata	10920
tcggtatgtg	, aattetatet	attttttc	tgatgtgtgc	atggatgact	catgatcata	10980
ttcttaggta	atactgtcaa	gcatcaatat	ggcaagggcg	tttacaagat	tgcttcttgg	11040
tctcatatta	ctaatgctca	cacagttcct	ggagaaggta	. ttatcaaggg	acttgccgaa	11100

# WO 2004/063359 PCT/EP2004/000099 91/357

gtcggcctcc (	ctcttggtcg	tggcttgctt	ttgctagcag	aaatgtcatc	tcaaggtgca	11160
ttaactaagg (	gtatttacac	tgccgaatct	gtcaatatgg	ctcgccgcaa	caaagatttc	11220
gtttttggct 1	ttattgcaca	acacaaaatg	aatcagtatg	atgatgagga	ttttgttgtc	11280
atgtcgcctg a	aagcttggcg	taatcatggt	catagctgtt	tcctgtgtga	aattgttatc	11340
cgctcacaat	tccacacaac	atacgagccg	gaagcataaa	gtgtaaagcc	tggggtgcct	11400
aatgagtgag	ctaactcaca	ttaattgcgt	tgcgctcact	gecegettte	cagtcgggaa	11460
acctgtcgtg	ccagctgcat	taatgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	11520
ttgggccaaa	gacaaaaggg	cgacattcaa	ccgattgagg	gagggaaggt	aaatattgac	11580
ggaaattatt	cattaaaggt	gaattatcac	cgtcaccgac	ttgagccatt	tgggaattag	11640
agccagcaaa	atcaccagta	gcaccattac	cattagcaag	gccggaaacg	tcaccaatga	11700
aaccatcgat	agcagcaccg	taatcagtag	cgacagaatc	aagtttgcct	ttagcgtcag	11760
actgtagcgc	gttttcatcg	gcattttcgg	tcatagecee	cttattagcg	tttgccatct	11820
tttcataatc	aaaatcaccg	gaaccagagc	caccaccgga	accgcctccc	tcagagccgc	11880
caccctcaga	accgccaccc	tcagagccac	caccctcaga	gccgccacca	gaaccaccac	11940
cagagccgcc	gccagcattg	acaggaggcc	cgatctagta	acatagatga	caccgcgcgc	12000
gataatttat	cctagtttgc	gcgctatatt	ttgttttcta	tcgcgtatta	aatgtataat	12060
tgcgggactc	taatcataaa	aacccatctc	ataaataacg	tcatgcatta	catgttaatt	12120
attacatgct	taacgtaatt	caacagaaat	tatatgataa	tcatcgcaag	accggcaaca	12180
ggattcaatc	ttaagaaact	ttattgccaa	atgtttgaac	gatcggggat	catccgggtc	12240
tgtggcggga	actccacgaa	aatatccgaa	cgcagcaaga	tategeggtg	catctcggtc	12300
ttgcctgggc	agtcgccgcc	gacgccgttg	atgtggacgc	cgggcccgat	catattgtcg	12360

### WO 2004/063359 PCT/EP2004/000099 92/357

			2 2,00.			
ctcaggatcg	tggcgttgtg	cttgtcggcc	gttgctgtcg	taatgatatc	ggcacettcg	12420
accgcctgtt	ccgcagagat	cccgtgggcg	aagaactcca	gcatgagatc	cccgcgctgg	12480
aggatcatcc	agccggcgtc	ccggaaaacg	attccgaagc	ccaacctttc	atagaaggcg	12540
gcggtggaat	cgaaatctcg	tgatggcagg	ttgggcgtcg	cttggtcggt	catttcgaac	12600
cccagagtcc	cgctcagaag	aactcgtcaa	gaaggcgata	gaaggcgatg	cgctgcgaat	12660
cgggagcggc	gataccgtaa	agcacgagga	agcggtcagc	ccattcgccg	ccaagctctt	12720
cagcaatatc	acgggtagcc	aacgctatgt	cctgatagcg	gtccgccaca	cccagccggc	12780
cacagtcgat	gaatccagaa	aagcggccat	tttccaccat	gatattcggc	aagcaggcat	12840
cgccatgggt	cacgacgaga	tcatcgccgt	cgggcatgcg	cgccttgagc	ctggcgaaca	12900
gtteggetgg	cgcgagcccc	tgatgctctt	cgtccagatc	atcctgatcg	acaagaccgg	12960
cttccatccg	agtacytgct	cgctcgatgc	gatgtttcgc	ttggtggtcg	aatgggcagg	13020
tagccggatc	aagcgtatgc	agccgccgca	ttgcatcagc	catgatggat	actttctcgg	13080
caggagcaag	gtgagatgac	aggagatcct	gcccggcac	ttcgcccaat	agcagccagt	13140
cccttcccgc	ttcagtgaca	acgtcgagca	cagctgcgca	aggaacgccc	gtcgtggcca	13200
gccacgatag	ccgcgctgcc	tcgtcctgca	gttcattcag	ggcaccggac	aggtcggtct	13260
tgacaaaaag	aaccgggcgc	ccctgcgctg	acagccggaa	cacggcggca	tcagagcagc	13320
cgattgtctg	ttgtgcccag	tcatagccga	atagcctctc	cacccaagcg	gccggagaac	13380
ctgcgtgcaa	tccatcttgt	tcaatcatgc	gaaacgatcc	agatccggtg	cagattattt	13440
ggattgagag	tgaatatgag	actctaattg	gataccgagg	ggaatttatg	gaacgtcagt	13500
ggagcatttt	tgacaagaaa	tatttgctag	ctgatagtga	ccttaggcga	cttttgaacg	13560
cgcaataatg	gtttctgacg	tatgtgctta	gctcattaaa	ctccagaaac	ccgcggctga	13620

### WO 2004/063359 PCT/EP2004/000099 93/357

		70,00,			
gtggctcctt caacgttgcg	gttctgtcag	ttccaaacgt	aaaacggctt	gtcccgcgtc	13680
atcggcgggg gtcataacgt	gactccctta	attctccgct	catgatcaga	ttgtcgtttc	13740
ccgccttcag tttaaactat	cagtgtttga	caggatatat	tggcgggtaa	acctaagaga	13800
aaagagcgtt tattagaata	atcggatatt	taaaagggcg	tgaaaaggtt	tatccgttcg	13860
tccatttgta tgtgcatgcc	aaccacaggg	ttccccagat	ctggcgccgg	ccagcgagac	13920
gagcaagatt ggccgccgcc	cgaaacgatc	cgacagcgcg	cccagcacag	gtgcgcaggc	13980 `
aaattgcacc aacgcataca	gcgccagcag	aatgccatag	tgggcggtga	cgtcgttcga	14040
gtgaaccaga tegegeagga	ggcccggcag	caccggcata	atcaggccga	tgccgacagc	14100
gtcgagcgcg acagtgctca	ı gaattacgat	caggggtatg	ttgggtttca	cgtctggcct	14160
ccggaccagc ctccgctggt	: ccgattgaac	gcgcggattc	tttatcactg	ataagttggt	14220
ggacatatta tgtttatcag	g tgataaagtg	tcaagcatga	caaagttgca	gccgaataca	14280
gtgatccgtg ccgccctgg	a cctgttgaac	gaggtcggcg	tagacggtct	gacgacacgc	14340
aaactggcgg aacggttgg	g ggttcagcag	ccggcgcttt	actggcactt	caggaacaag	14400
cgggcgctgc tcgacgcac	t ggccgaagcc	atgctggcgg	agaatcatac	gcattcggtg	14460
ccgagagccg acgacgact	g gcgctcattt	: ctgatcggga	atgcccgcag	g cttcaggcag	14520
gcgctgctcg cctaccgcg	a tggcgcgcgc	: atccatgccg	gcacgcgac	gggcgcaccg	14580
cagatggaaa cggccgacg	c gcagettege	: ttcctctgcg	g aggcgggtt	tteggeeggg	14640
gacgccgtca atgcgctga	t gacaatcago	tacttcacts	g ttggggccg	t gcttgaggag	14700
caggccggcg acagcgatg	c cggcgagcg	c ggcggcacc	g ttgaacagg	e teegeteteg	14760
ccgctgttgc gggccgcga	at agacgcctto	c gacgaagcc	g gtccggacg	c agegttegag	14820
cagggacteg eggtgattg	gt cgatggatt	g gcgaaaagg	a ggctcgttg	t caggaacgtt	14880

### WO 2004/063359 PCT/EP2004/000099 94/357

gaaggaccga	gaaagggtga	cgattgatca	ggaccgctgc	cggagcgcaa	cccactcact	14940
acagcagagc	catgtagaca	acatcccctc	cccctttcca	ccgcgtcaga	cgcccgtagc	15000
agcccgctac	gggcttttc	atgccctgcc	ctagcgtcca	agcctcacgg	ccgcgctcgg	15060
cctctctggc	ggccttctgg	cgctcttccg	cttcctcgct	cactgactcg	ctgcgctcgg	15120
tegttegget	gcggcgagcg	gtatcagete	actcaaaggc	ggtaatacgg	ttatccacag	15180
aatcagggga	taacgcagga	aagaacatgt	gagcaaaagg	ccagcaaaag	gccaggaacc	15240
gtaaaaaggc	cgcgttgctg	gcgtttttcc	ataggctccg	ccccctgac	gagcatcaca	15300
aaaatcgacg	ctcaagtcag	aggtggcgaa	acccgacagg	actataaaga	taccaggcgt	15360
ttccccctgg	aagctccctc	gtgcgctctc	ctgttccgac	cctgccgctt	accggatacc	15420
tgtccgcctt	tctcccttcg	ggaagcgtgg	cgcttttccg	ctgcataacc	ctgcttcggg	15480
gtcattatag	cgatttttc	ggtatatcca	tcctttttcg	cacgatatac	aggattttgc	15540
caaagggttc	gtgtagactt	tccttggtgt	atccaacggc	gtcagccggg	caggataggt	15600
gaagtaggcc	cacccgcgag	cgggtgttcc	ttcttcactg	tcccttattc	gcacctggcg	15660
gtgctcaacg	ggaatcctgc	tctgcgaggc	tggccggcta	ccgccggcgt	aacagatgag	15720
ggcaagcgga	tggctgatga	aaccaagcca	accaggaagg	gcagcccacc	tatcaaggtg	15780
tactgccttc	cagacgaacg	aagagcgatt	gaggaaaagg	cggcggcggc	cggcatgagc	15840
ctgtcggcct	acctgctggc	cgtcggccag	ggctacaaaa	tcacgggcgt	cgtggactat	15900
gagcacgtco	gcgagctggc	ccgcatcaat	ggcgacctgg	gccgcctggg	cggcctgctg	15960
aaactctggo	: tcaccgacga	cccgcgcacg	gcgcggttcg	gtgatgccac	gatectegee	16020
ctgctggcga	ı agatcgaaga	. gaagcaggac	gagettggea	aggtcatgat	gggcgtggtc	16080
cgcccgaggg	g cagagccatg	actttttag	ccgctaaaac	ggccgggggg	, tgcgcgtgat	16140

tgccaagcac gtccccatgc gctccatcaa gaagagcgac ttcgcggagc tggtgaagta 16200

catcaccgac gagcaaggca agaccgagcg cctttgcgac gctca 16245

<210> 37

<211> 17877

<212> DNA

<213> Artificial

<220>

<223> Promotor

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 37

cegggetggt tgccetegce getgggetgg eggeegeta tggceetgea aaegegeeag 60

aaaegeegte gaageegtgt gegagacace geggeegeeg gegttgtgga tacetegegg 120

aaaaettgge cetcaetgae agatgagggg eggaegttga eaettgaggg geegaeteae 180

ceggegegge gttgacagat gaggggeagg etcgattteg geeggegaeg tggagetgge 240

cageetegea aateggegaa aaegeetgat tttaegegag ttteecaeag atgatgtgga 300

caageetggg gataagtgee etgeggtatt gacaettgag gggegegaet aetgacagat

360

### WO 2004/063359 PCT/EP2004/000099 96/357

gaggggcgcg	atccttgaca	cttgaggggc	agagtgctga	cagatgaggg	gcgcacctat	420
tgacatttga	ggggctgtcc	acaggcagaa	aatccagcat	ttgcaagggt	ttccgcccgt	480
ttttcggcca	ccgctaacct	gtcttttaac	ctgcttttaa	accaatattt	ataaaccttg	540
tttttaacca	gggctgcgcc	ctgtgcgcgt	gacegegeae	gccgaagggg	ggtgccccc	600
cttctcgaac	cctcccggcc	cgctaacgcg	ggcctcccat	cccccaggg	gctgcgcccc	660
teggeegega	acggcctcac	cccaaaaatg	gcagcgctgg	cagtccttgc	cattgccggg	720
atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	cattgacgtg	780
ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	cggcggcctg	840
ggtggcggcc	tgcccttcac	ttcggccgtc	ggggcattca	cggacttcat	ggcggggccg	900
gcaatttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	aggtatgaaa	1020
acgagaattg	gacctttaca	gaattactct	atgaagcgcc	atatttaaaa	agctaccaag	1080
acgaagagga	. tgaagaggat	gaggaggcag	attgccttga	atatattgac	aatactgata	1140
agataatata	tcttttatat	agaagatato	gccgtatgta	. aggatttcag	ggggcaaggc	1200
ataggcagcg	g cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	g aaacccagga	caataacctt	: atagcttgta	aattctatca	ı taattgggta	1320
atgactccaa	a cttattgata	gtgttttatg	r ttcagataat	: gcccgatgac	tttgtcatgc	1380
agctccaccg	g attttgagaa	cgacagcgac	: ttccgtccca	ı gccgtgccaç	g gtgctgcctc	1440
agattcaggi	tatgeegete	aattcgctgo	gtatatcgct	: tgctgattad	gtgcagcttt	1500
cccttcagge	gggattcata	a cagcggccag	g ccatccgtca	a tccatatca	c cacgtcaaag	1560
ggtgacagca	a ggctcataag	g acgccccago	gtcgccatag	g tgcgttcac	c gaatacgtgc	1620

### WO 2004/063359 PCT/EP2004/000099 97/357

gcaacaaccg	tetteeggag	actgtcatac	gcgtaaaaca	gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgtc	actgcccggc	1740
tgtatgcgcg	aggttaccga	ctgcggcctg	agttttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
			<b></b>			2100
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	g agcaatctgo	tcatgagtga	ggccgatggc	gtcctttgct	. cggaagagta	2580
tgaagatgaa	a caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccato	gacatatcgg	attgtcccta	tacgaatago	ttagacagco	gettageega	2700
attggattad	: ttactgaata	acgatctggc	: cgatgtggat	. tgcgaaaact	gggaagaaga	2760
cactccatt	t aaagatccgc	gcgagctgta	tgattttte	ı aagacggaaa	a agcccgaaga	2820
ggaacttgto	c ttttcccac	g gcgacctggg	g agacagcaad	: atctttgtga	a aagatggcaa	2880

# WO 2004/063359 PCT/EP2004/000099 98/357

agtaagtggc tttattgatc ttgggagaag cggcagggcg gacaagtggt atgacattgc	2940
cttctgcgtc cggtcgatca gggaggatat cggggaagaa cagtatgtcg agctattttt	3000
tgacttactg gggatcaagc ctgattggga gaaaataaaa tattatattt tactggatga	3060
attgttttag tacctagatg tggcgcaacg atgccggcga caagcaggag cgcaccgact	3120
tetteegeat caagtgtttt ggeteteagg eegaggeeea eggeaagtat ttgggeaagg	3180
ggtcgctggt attcgtgcag ggcaagattc ggaataccaa gtacgagaag gacggccaga	3240
cggtctacgg gaccgacttc attgccgata aggtggatta tctggacacc aaggcaccag	3300
gcgggtcaaa tcaggaataa gggcacattg ccccggcgtg agtcggggca atcccgcaag	3360
gagggtgaat gaatcggacg tttgaccgga aggcatacag gcaagaactg atcgacgcgg	3420
ggttttccgc cgaggatgcc gaaaccatcg caagccgcac cgtcatgcgt gcgccccgcg	3480
aaaccttcca gtccgtcggc tcgatggtcc agcaagctac ggccaagatc gagcgcgaca	3540
gegtgeaact ggeteecet geeetgeeeg egeeategge egeegtggag egttegegte	3600
gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg cgaggaacta	3660
tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc agcgaggcca	3720
agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt	3780
togatattgc googtggoog gacacgatgc gagogatgcc aaacgacacg goocgctotg	3840
ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt	3900
tccacgtcaa caaggacgtg aagatcacct acaccggcgt cgagctgcgg gccgacgatg	3960
acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga	4020
tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat ggccggtatt	4080
acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg	4140

### WO 2004/063359 PCT/EP2004/000099 99/357

accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc ctggaccgtg	4200
gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg	4260
gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg acggcccgac	4320
ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc	4380
gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag	4440
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg	4500
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg	4560
ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc gctcagtatc	4620
gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat	4680
tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt tccgcgagat	4740
ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga	4800
gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat tcggcgccta	4860
catcgacggc gagatcattg ggctgtcggt cttcaaacag gaggacggcc ccaaggacgc	4920
tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggggtcgc	4980
cggtatgctg ctgcgggcgt tgccggcggg tttattgctc gtgatgatcg tccgacagat	5040
tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata tttcgctatt	5100
ctggagcttg ttgtttattt cggtctaccg cctgccgggc ggggtcgcgg cgacggtagg	5160
cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg	5220
attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac	5280
accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtttccat	5340
ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac	5400

# WO 2004/063359 PCT/EP2004/000099 100/357

cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	teteggeetg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	gccccagatc	tggggtcgat	cagccgggga	tgcatcaggc	5640
cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatatcgtc	aacgttcact	tctaaagaaa	tagcgccact	cagcttcctc	agcggcttta	5760
tccagcgatt	tcctattatg	tcggcatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
cgagaaatga	ataagaaggc	tgataattcg	gatetetgeg	agggagatga	tatttgatca	5880
•						
caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaacc	cggcagctta	gttgccyttc	ttccgaatag	catcggtaac	atgagcaaag	6000
tctgccgcct	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	6060
cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600

### WO 2004/063359 PCT/EP2004/000099 101/357

			101/00/			
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggetgee	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
teetttgget	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	. ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttco	: aggtggaatg	ttatgatgag	cattgtatta	ı aatcaggaga	tatagcatga	7620
tctctagtta	ı geteaceaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	: cggcacggct	acggaagacg	gagaagccac	: cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagco	c cctacaacga	ccatcaaagt	7800
cgtatagcta	a ccagtgagga	agtggactca	aatcgactto	c agcaacatct	cctggataaa	7860

### WO 2004/063359 PCT/EP2004/000099 102/357

ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	804Ô
accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	tccgggaccg	gccgcccctc	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580
cgggaacaca	agctggcagt	cgacccatcc	ggtgctctgc	actcgacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	catattttcc	tgeteteece	accagctgct	8760
cttttcttt	ctctttcttt	tcccatcttc	agtatattca	tcttcccatc	caagaacctt	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tccttcccat	cccttattcc	8880
tttgaacctt	: tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	: atcaccatgo	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgad	agegteteeg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagettegat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120

### WO 2004/063359 PCT/EP2004/000099 103/357

			103/35/			
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	caagacctgc	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tegegeagge	9480
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tcgtgcacgc	9540
ggatttcggc	tccaacaatg	tectgaegga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggategeeg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tcgggcgtac	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	: tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	, gaatagagta	gatgccgacc	: gcgggatcga	tccacttaac	: gttactgaaa	10020
tcatcaaaca	a gcttgacgaa	ı tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	a tggtgttcag	g gatetegata	a agatacgtto	: atttgtccaa	a gcagcaaaga	10140
gtgccttcta	a gtgatttaat	agctccatgt	: caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttcca	g atacagetea	a tetgeaatge	e attaatgcat	tgactgcaac	c ctagtaacgc	10260
cttncaggc	t ccggcgaaga	a gaagaatago	c ttagcagago	c tattttcatt	tteġggagac	10320
gagatcaag	c agatcaacg	g tcgtcaaga	g acctacgaga	a ctgaggaate	e egetettgge	10380

# WO 2004/063359 PCT/EP2004/000099 104/357

tecacgegae	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	ttttcgagtt	10800
tttttttt	ttctttgtga	aggatttatt	gttattggta	tccattttt	attggaagac	10860
aagataagtt	aatattgatt	ttgcttaaag	attaaaagga	aatcagaaaa	cgacaataaa	10920
aaatgtaacg	gacaaactat	ggtgtcgatt	ataagtctaa	atccttaaaa	aatgacaacg	10980
agttgctttc	ctctgaaaac	aattcttttg	tctttgcaag	aaaggtttct	tttttgtttg	11040
cttgcattac	ttaaacatca	aatcaaatga	aaggaataaa	gcagatttga	gggcgaataa	11100
ggattttctg	gtcaacaaga	tgtgagtgac	acctaaggaa	ctaaatgcca	ttcatttgtt	11160
ttaaaacgac	atcaaagatt	gatgatcaac	aggattgaga	gagagaaaaa	gaactcgtgt	11220
catttatttc	tgttgactga	aattttatat	ttagaaaaaa	tgtcaaatct	atagctttag	11280
ctatattaca	taacatttga	aataataata	ataaaaaaag	acacattaga	gacacttttc	11340
aaactctaaa	taactgtcta	taaacacaaa	gaaaacaaag	acctctataa	caacttatta	11400
gatttttctc	gtacttttgt	ctaaagatga	tgtattcttg	ttatcccaca	cttctttcat	11460
ttgttcttga	tgctactaaa	tatacaaaat	ttctttttg	caagagatat	tattccaaaa	11520
attttcaaaa	agaaattttt	ttcacaatag	cagttgatcg	tgtaacccaa	agaggttctt	11580
tgttattttg	cacttccgct	ttgcggtgat	gcatattcaa	agtaatatat	ggaataaaca	11640

# WO 2004/063359 PCT/EP2004/000099 105/357

acgtgtttaa gcatgaaaga aaggaaacaa aggccgcttt gaacaaatgc ataatatttc	11700
agacaaaaat gatctaaagc aagcagtaaa tcaaacaaga aacattgctg attcgcgtta	11760
gaaaacgata aaagtctaat aagccactaa gtatacttca atgaactttt tgtatgctta	11820
tggtccaatc agaccaataa tttgtgacca ttcctgaggt ggctttggtg atgcggaaac	11880
agaaaaaaat tttctcacca atcgatttaa aaaacaattt ctgctttgaa ccaaaacttt	11940
ttttttctct ttaatcatta actttatcaa gtatgtacct accctcaaag tcctcactca	12000
agcacaatta tgctaacatt gttccacctt ctctttagaa atgctgtcga agctgcagtc	12060
aatcagcgtc aaggcccgcc gcgttgaact agcccgcgac atcacgcggc ccaaagtctg	12120
cctgcatgct cagcggtgct cgttagttcg gctgcgagtg gcagcaccac agacagagga	12180
ggcgctggga accgtgcagg ctgccggcgc gggcgatgag cacagcgccg atgtagcact	12240
ccagcagett gaccgggeta tegeagageg tegtgeeegg egeaaaeggg ageagetgte	12300
ataccagget geogecattg cageateaat tggegtgtea ggeattgeea tettegeeae	12360
ctacctgaga tttgccatgc acatgaccgt gggcggcgca gtgccatggg gtgaagtggc	12420
tggcactctc ctcttggtgg ttggtggcgc gctcggcatg gagatgtatg cccgctatgc	12480
acacaaagcc atctggcatg agtcgcctct gggctggctg ctgcacaaga gccaccacac	12540
acctcgcact ggaccctttg aagccaacga cttgtttgca atcatcaatg gactgcccgc	12600
catgetectg tgtacetttg gettetgget geecaacgte etgggggegg cetgetttgg	12660
agcggggctg ggcatcacgc tatacggcat ggcatatatg tttgtacacg atggcctggt	12720
gcacaggcgc tttcccaccg ggcccatcgc tggcctgccc tacatgaagc gcctgacagt	12780
ggcccaccag ctacaccaca gcggcaagta cggtggcgcg ccctggggta tgttcttggg	12840
tccacaggag ctgcagcaca ttccaggtgc ggcggaggag gtggagcgac tggtcctgga	12900

# WO 2004/063359 PCT/EP2004/000099 106/357

actggactgg	tccaagcggt	agaagcttgg	cgtaatcatg	gtcatagctg	tttcctgtgt	12960
gaaattgtta	tccgctcaca	attccacaca	acatacgagc	cggaagcata	aagtgtaaag	13020
cctggggtgc	ctaatgagtg	agctaactca	cattaattgc	gttgcgctca	ctgcccgctt	13080
tccagtcggg	aaacctgtcg	tgccagctgc	attaatgaat	cggccaacgc	gcggggagag	13140
geggtttgeg	tattgggcca	aagacaaaag	ggcgacattc	aaccgattga	gggagggaag	13200
gtaaatattg	acggaaatta	ttcattaaag	gtgaattatc	accgtcaccg	acttgagcca	13260
tttgggaatt	agagccagca	aaatcaccag	tagcaccatt	accattagca	aggccggaaa	13320
cgtcaccaat	gaaaccatcg	atagcagcac	cgtaatcagt	agcgacagaa	tcaagtttgc	13380
ctttagcgtc	agactgtagc	gcgttttcat	cggcattttc	ggtcatagcc	cccttattag	13440
cgtttgccat	cttttcataa	tcaaaatcac	cggaaccaga	gccaccaccg	gaaccgcctc	13500
cctcagagcc	gccaccctca	gaaccgccac	cctcagagcc	accaccetca	gagccgccac	13560
cagaaccacc	accagagccg	ccgccagcat	tgacaggagg	cccgatctag	taacatagat	13620
gacaccgcgc	gcgataattt	atcctagttt	gcgcgctata	ttttgttttc	tatcgcgtat	13680
taaatgtata	attgegggae	tctaatcata	aaaacccatc	tcataaataa	cgtcatgcat	13740
tacatgttaa	ttattacatg	cttaacgtaa	ttcaacagaa	attatatgat	aatcatcgca	13800
agaccggcaa	ı caggattcaa	tcttaagaaa	ctttattgcc	: aaatgtttga	acgatcgggg	13860
atcatccggg	tctgtggcgg	gaactccacg	aaaatatccg	g aacgcagcaa	ı gatatcgcgg	13920
tgcatctcg	g tettgeetgg	gcagtcgccg	ccgacgccgt	: tgatgtggad	geegggeeeg	13980
atcatattg	t cgctcaggat	: cgtggcgttg	r tgettgtegg	g cegttgetgt	: cgtaatgata	14040
teggeacet	t cgaccgcctg	g ttccgcagag	atecegtggg	g cgaagaacto	c cagcatgaga	14100

#### WO 2004/063359 PCT/EP2004/000099 107/357

teceegeget	ggaggatcat	ccagccggcg	tcccggaaaa	cgattccgaa	gcccaacctt	14160
tcatagaagg	cggcggtgga	atcgaaatct	cgtgatggca	ggttgggcgt	cgcttggtcg	14220
gtcatttcga	accccagagt	cccgctcaga	agaactcgtc	aagaaggcga	tagaaggcga	14280
tgcgctgcga	atcgggagcg	gcgataccgt	aaagcacgag	gaagcggtca	gcccattcgc	14340
cgccaagctc	ttcagcaata	tcacgggtag	ccaacgctat	gtcctgatag	cggtccgcca	14400
cacccagccg	gccacagtcg	atgaatccag	aaaagcggcc	attttccacc	atgatattcg	14460
gcaagcaggc	atcgccatgg	gtcacgacga	gatcatcgcc	gtcgggcatg	cgcgccttga	14520
gcctggcgaa	cagttcggct	ggcgcgagcc	cctgatgctc	ttcgtccaga	tcatcctgat	14580
cgacaagacc	ggcttccatc	cgagtacgtg	ctcgctcgat	gcgatgtttc	gcttggtggt	14640
cgaatgggca	ggtagccgga	tcaagcgtat	gcagccgccg	cattgcatca	gccatgatgg	14700
atactttctc	ggcaggagca	aggtgagatg	acaggagatc	ctgccccggc	acttcgccca	14760
atagcagcca	gtcccttccc	gcttcagtga	caacgtcgag	cacagetgeg	caaggaacgc	14820
ccgtcgtggc	cagccacgat	agccgcgctg	cctcgtcctg	cagttcattc	agggcaccgg	14880
acaggtcggt	: cttgacaaaa	agaaccgggc	gcccctgcgc	tgacagccgg	aacacggcgg	14940
catcagagca	gccgattgtc	tgttgtgccc	agtcatagco	gaatagcctc	tccacccaag	15000
cggccggaga	acctgcgtgc	: aatccatctt	gttcaatcat	gcgaaacgat	ccagatccgg	15060
tgcagattal	: ttggattgag	, agtgaatatg	g agactctaat	tggataccga	ggggaattta	15120
tggaacgtca	a gtggagcatt	: tttgacaaga	aatatttgct	agctgatagt	gaccttaggc	15180
gacttttga	a cgcgcaataa	ı tggtttctga	ı cgtatgtgct	: tagctcatta	a aactccagaa	15240
acccgcggc	t gagtggctco	ttcaacgtt	g cggttctgtd	agttccaaac	gtaaaacggc	15300
ttgtecege	g tcatcggcgg	g gggtcataad	gtgactccct	taattctcc	g ctcatgatca	15360

#### WO 2004/063359 PCT/EP2004/000099 108/357

gattgtcgtt	tecegeette	agtttaaact	atcagtgttt	gacaggatat	attggcgggt	15420
aaacctaaga	gaaaagagcg	tttattagaa	taatcggata	tttaaaaggg	cgtgaaaagg	15480
tttatccgtt	cgtccatttg	tatgtgcatg	ccaaccacag	ggttccccag	atctggcgcc	15540
ggccagcgag	acgagcaaga	ttggccgccg	cccgaaacga	tccgacagcg	cgcccagcac	15600
aggtgcgcag	gcaaattgca	ccaacgcata	cagcgccagc	agaatgccat	agtgggcggt	15660
gacgtcgttc	gagtgaacca	gatcgcgcag	gaggcccggc	agcaccggca	taatcaggcc	15720
gatgccgaca	gcgtcgagcg	cgacagtgct	cagaattacg	atcaggggta	tgttgggttt	15780
cacgtctggc	ctccggacca	gcctccgctg	gtccgattga	acgcgcggat	tctttatcac	15840
tgataagttg	gtggacatat	tatgtttatc	agtgataaag	tgtcaagcat	gacaaagttg	15900
cagccgaata	cagtgatccg	tgccgccctg	gacctgttga	acgaggtcgg	cgtagacggt	15960
ctgacgacac	gcaaactggc	ggaacggttg	ggggttcayc	agccggcgct	ttactggcac	16020
ttcaggaaca	agcgggcgct	gctcgacgca	ctggccgaag	ccatgctggc	ggagaatcat	16080
acgcattcgg	tgccgagagc	cgacgacgac	tggcgctcat	ttctgatcgg	gaatgcccgc	16140
agcttcaggc	aggcgctgct	cgcctaccgc	gatggcgcgc	gcatccatgc	cggcacgcga	16200
ccgggcgcac	cgcagatgga	aacggccgac	gcgcagcttc	gcttcctctg	cgaggcgggt	16260
ttttcggccg	gggacgccgt	caatgcgctg	atgacaatca	gctacttcac	tgttggggcc	16320
gtgcttgagg	agcaggccgg	cgacagcgat	gccggcgagc	gcggcggcac	cgttgaacag	16380
geteegetet	cgccgctgtt	gegggeegeg	atagacgcct	tcgacgaago	cggtccggac	16440
gcagcgttcg	agcagggact	cgcggtgatt	gtcgatggat	tggcgaaaag	gaggetegtt	16500
gtcaggaacg	ttgaaggacc	: gagaaagggt	gacgattgat	caggaccgct	gccggagcgc	16560
aacccactca	ı ctacagcaga	gccatgtaga	caacatecco	tecceettte	: caccgcgtca	16620

#### WO 2004/063359 PCT/EP2004/000099 109/357

			237,20.			
gacgcccgta	gcagcccgct	acgggctttt	tcatgccctg	ccctagcgtc	caagcctcac	16680
ggccgcgctc	ggcctctctg	gcggccttct	ggcgctcttc	cgcttcctcg	ctcactgact	16740
cgctgcgctc	ggtcgttcgg	ctgcggcgag	cggtatcagc	tcactcaaag	gcggtaatac	16800
ggttatccac	agaatcaggg	gataacgcag	gaaagaacat	gtgagcaaaa	ggccagcaaa	16860
aggccaggaa	ccgtaaaaag	geegegttge	tggcgttttt	ccataggctc	cgcccccctg	16920
acgagcatca	caaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	ggactataaa	16980
gataccaggc	gtttccccct	ggaagctccc	tegtgegete	tcctgttccg	accctgccgc	17040
ttaccggata	cctgtccgcc	tttctccctt	cgggaagcgt	ggcgcttttc	cgctgcataa	17100
ccctgcttcg	gggtcattat	agcgattttt	tcggtatatc	catccttttt	cgcacgatat	17160
acaggatttt	gccaaagggt	tcgtgtagac	tttccttggt	gtatccaacg	gcgtcagccg	17220
ggcaggatag	gtgaagtagg	cccacccgcg	agcgggtgtt	ccttcttcac	tgtcccttat	17280
tcgcacctgg	cggtgctcaa	cgggaatcct	gctctgcgag	gctggccggc	taccgccggc	17340
gtaacagatg	agggcaagcg	gatggctgat	gaaaccaagc	caaccaggaa	gggcagccca	17400
cctatcaagg	tgtactgcct	tccagacgaa	cgaagagcga	ttgaggaaaa	ggcggcggcg	17460
gccggcatga	geetgtegge	ctacctgctg	gccgtcggcc	agggctacaa	aatcacgggc	17520
gtcgtggact	atgagcacgt	ccgcgagctg	gcccgcatca	atggcgacct	gggccgcctg	17580
ggcggcctgc	: tgaaactctg	gctcaccgac	gacccgcgca	cggcgcggtt	. cggtgatgcc	17640
acgatecteg	g ccctgctggc	: gaagatcgaa ,	gagaagcagg	acgagcttgg	g caaggtcatg	17700
atgggcgtgg	g teegeeegag	ggcagagcca	tgacttttt	agccgctaaa	acggccgggg	17760
ggtgegegtg	g attgccaago	acgtccccat	gcgctccatc	aagaagagc	g acttcgcgga	17820
gctggtgaag	g tacatcaccg	g acgagcaagg	r caagaccgag	cgcctttgcg	g acgctca	17877

<210> 38 <211> 17238 <212> DNA <213> Artificial <220> <223> Plasmid <220> <221> misc_feature <222> (10264)..(10264) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10472)..(10472) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10563)..(10563) <223> n is a, c, g, or t <400> 38 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 120 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 240 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 300 cagcetegea aateggegaa aacgeetgat tttacgegag ttteccacag atgatgtgga 360 caagectggg gataagtgee etgeggtatt gacaettgag gggegegaet aetgacagat 420 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 480 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt

### WO 2004/063359 PCT/EP2004/000099 111/357

ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg	540
tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgcccccc	600
cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgcccc	660
tcggccgcga acggcctcac cccaaaaatg gcagcgctgg cagtccttgc cattgccggg	720 ·
atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg	780
ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg	840
ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg	900
gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg	960
ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa	1020
acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag	1080
acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata	1140
agataatata tottttatat agaagatato googtatgta aggatttoag ggggcaaggo	1200
ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga	1260
ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta	1320
atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc	1380
agetecaceg attttgagaa egacagegae tteegteeca geegtgeeag gtgetgeete	1440
agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagcttt	1500
cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag	<b>1560</b>
ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgo	2 1620
gcaacaaccg tetteeggag actgteatae gegtaaaaca geeagegetg gegegattta	a 1680
gecegacat agececactg ttegtecatt teegegeaga egatgaegte actgeeegge	c 1740

# WO 2004/063359 PCT/EP2004/000099 112/357

tgtatgcgcg	aggttaccga	ctgcggcctg	agtttttaa	gtgacgtaaa	atcgtgttga	1800
ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	. 2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgattttta	aagacggaaa	agcccgaaga	2820
ggaacttgto	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggo	: tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940

#### WO 2004/063359 PCT/EP2004/000099 113/357

cttctgcgtc cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg gaccgactto	: attgccgata	aggtggatta	tetggacace	aaggcaccag	3300
gcgggtcaaa tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat gaatcggacg	g tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc cgaggatgcc	gaaaccatcg	caageegeae	cgtcatgcgt	gegeeeegeg	3480
aaaccttcca gtccgtcgg	c tegatggtee	agcaagctac	ggccaagatc	gagcgcgaca	3540
gcgtgcaact ggctccccc	t gecetgeeeg	cgccatcggc	cgccgtggag	cgttcgcgtc	3600
gtctcgaaca ggaggcggc	a ggtttggcga	agtcgatgac	catcgacacg	cgaggaacta	3660
tgacgaccaa gaagcgaaa	a accgccggcg	aggacctggc	aaaacaggto	: agcgaggcca	3720
agcaggccgc gttgctgaa	a cacacgaago	: agcagatcaa	ggaaatgcag	g ctttccttgt	3780
tcgatattgc gccgtggcc	g gacacgatgo	gagegatgee	: aaacgacacç	geeegetetg	3840
ccctgttcac cacgcgcaa	c aagaaaatco	c cgcgcgaggc	: gctgcaaaac	e aaggtcattt	3900
tccacgtcaa caaggacgt	g aagatcacct	acaccggcgt	: cgagctgcgg	g gccgacgatg	3960
acgaactggt gtggcagca	g gtgttggagt	acgcgaagcg	g cacccctate	c ggcgagccga	4020
tcaccttcac gttctacga	g ctttgccag	g acctgggcts	g gtcgatcaa	t ggccggtatt	4080
acacgaaggc cgaggaatg	c ctgtcgcgc	c tacaggcgad	ggcgatggg	c ttcacgtccg	4140
accgcgttgg gcacctgga	a teggtgteg	c tgctgcacc	g cttccgcgt	c ctggaccgtg	4200

### WO 2004/063359 PCT/EP2004/000099 114/357

			114/35/			
gcaagaaaac	gtcccgttgc	caggtcctga	tcgacgagga	aatcgtcgtg	ctgtttgctg	4260
gcgaccacta	cacgaaattc	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcagc	tcgcaccggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	cggatcggat	tccacccgcg	tgaagaagtg	gcgcgagcag	gtcggcgaag	4440
cctgcgaaga	gttgcgaggc	agcggcctgg	tggaacacgc	ctgggtcaat	gatgacctgg	4500
tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	tgggggttca	gcagccagcg	4560
ctttactggc	atttcaggaa	caagcgggca	ctgctcgacg	cacttgcttc	gctcagtatc	4620
gctcgggacg	cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	aattgacaat	4680
tgtgattaag	gctcagattc	gacggcttgg	agcggccgac	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gccctgaaga	aagctccaga	gatgttcggg	tccgtttacg	agcacgagga	4800
gaaaaagccc	atggaggegt	tegetgaacg	gttgcgagat	gccgtggcat	teggegeeta	4860
catcgacggc	gagatcattg	ggctgtcggt	cttcaaacag	gaggacggcc	ccaaggacgc	4920
tcacaaggcg	catctgtccg	gcgttttcgt	ggagcccgaa	cagcgaggcc	gaggggtcgc	4980
cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tegtgttcat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	. tggtgttgac	5280
accaaacgca	ı gegetagate	ctgtcggcgt	egcageggge	: ctggcggggg	gegtttecat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	: gtgcctctgc	: tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	f tgtttgatcc	5460

### WO 2004/063359 PCT/EP2004/000099 115/357

•			115/05/			
gċcaatcccg	atgcctacag	gaaccaatgt	tctcggcctg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	gccccagatc	tggggtcgat	cagccgggga	tgcatcaggc	5640
cgacagtcgg	aacttcgggt	ccccgacctg	taccattcgg	tgagcaatgg	ataggggagt	5700
tgatatcgtc	aacgttcact	tctaaagaaa	tagcgccact	cagcttcctc	agcggcttta	5760
tccagcgatt	tcctattatg	tcggcatagt	tctcaagatc	gacagcctgt	cacggttaag	5820
cgagaaatga	ataagaaggc	tgataattcg	gatctctgcg	agggagatga	tatttgatca	5880
caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	atgagcaaag	6000
tetgeegeet	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	6060
cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tettttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggageceeeg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt		ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720

### WO 2004/063359 PCT/EP2004/000099 116/357

tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	· <b>7320</b>
tcctttggct	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	teeggatgte	gaaggcttgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tetteetata	gaatcatcct	tattcgttga	7980

### WO 2004/063359 PCT/EP2004/000099 117/357

cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	cgccgcctcc	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagctctgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	tccgggaccg	geegeeete	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580
cgggaacaca	agctggcagt	cgacccatcc	ggtgctctgc	actcgacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	ttgccccgtc	tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgc	gtcagtccaa	catttgttgc	catattttcc	tgctctcccc	accagetget	8760
cttttcttt	ctctttcttt	teccatette	agtatattca	tetteecate	caagaacctt	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tccttcccat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atetecegee	gtgcacaggg	9240

### WO 2004/063359 PCT/EP2004/000099 118/357

tgtcacgttg	caagacctgc	ctgaaaccga	actgcccgct	gttctgcagc	cggtcgcgga	9300
ggccatggat	gcgatcgctg	cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	9360
accgcaagga	atcggtcaat	acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	9420
ccatgtgtat	cactggcaaa	ctgtgatgga	cgacaccgtc	agtgcgtccg	tcgcgcaggc	9480
tctcgatgag	ctgatgcttt	gggccgagga	ctgccccgaa	gtccggcacc	tcgtgcacgc	9540
ggatttcggc	tccaacaatg	tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg	atgttcgggg	attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct	tgtatggagc	agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggatcgccg	cggctccggg	cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780
cttggttgac	ggcaatttcg	atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga	gccgggactg	tcgggcgtac	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc	tgtgtagaag	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag	gaatagagta	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca	gcttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	agctccggag	10080
ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagetea	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgctcctctt	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	cgcaaagata	attgcatgtt	10500

### WO 2004/063359 PCT/EP2004/000099 119/357

tetteettga	actctcaagc	ctacaggaca	cacattcatc	gtaggtataa	acctcgaaat	10560
canttcctac	taagatggta	tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	ctaccgcttg	10800
gaccagtcca	gttccaggac	cagtcgctcc	acctcctccg	ccgcacctgg	aatgtgctgc	10860
agctcctgtg	gacccaagaa	cataccccag	ggcgcgccac	cgtacttgcc	gctgtggtgt	10920
agctggtggg	ccactgtcag	gcgcttcatg	tagggcaggc	cagcgatggg	cccggtggga	10980
aagcgcctgt	gcaccaggcc	atcgtgtaca	aacatatatg	ccatgccgta	tagcgtgatg	11040
cccagccccg	ctccaaagca	ggccgcccc	aggacgttgg	gcagccagaa	gccaaaggta	11100
cacaggagca	tggcgggcag	tccattgatg	attgcaaaca	agtcgttggc	ttcaaagggt	11160
ccagtgcgag	gtgtgtggtg	gctcttgtgc	agcagccagc	ccagaggcga	ctcatgccag	11220
atggctttgt	gtgcatagcg	ggcatacatc	tccatgccga	gcgcgccacc	aaccaccaag	11280
aggagagtgc	cagccacttc	acccçatggc	actgcgccgc	ccacggtcat	gtgcatggca	11340
aatctcaggt	aggtggcgaa	gatggcaatg	cctgacacgc	caattgatgc	tgcaatggcg	11400
gcagcctggt	atgacagctg	ctcccgtttg	cgccgggcac	gacgctctgc	gatagcccgg	11460
tcaagctgct	ggagtgctac	ateggegetg	tgctcatcgc	ccgcgccggc	agcctgcacg	11520
gttcccagcg	cctcctctgt	ctgtggtgct	gccactcgca	gccgaactaa	cgagcaccgc	11580
tgagcatgca	ggcagacttt	gggccgcgtg	atgtcgcggg	ctagttcaac	gcggcgggcc	11640
ttgacgctga	ttgactgcag	cttcgacagc	atagagataa	. aataaaaaga	gaagaaaaga	11700
aagtttgtac	aatttcttt	tgtttatata	acatacacgo	tatgtcaaca	tttagaataa	11760

### WO 2004/063359 PCT/EP2004/000099 120/357

gggggaaaaa	atcttccatc	atattcgaat	gcacaagatt	atttctttgt	tegetetttt	11820
tggtcgggtc	atcgagattt	agagtgtaat	caaagatact	gtcatctcga	gagcgttgca	11880
caggctgctg	tttgccaaat	tggatgtttg	ccgaattagt	aaaatacgca	agcatttctt	11940-
acctttccgc	tcccttttcc	taattctccc	aaagactaaa	tgaggaaaga	taaaggacaa	12000
agaaaatgta	aagacaaaga	aattgaaaac	gatataaact	tgcagcacgt	aagaccaaag	12060
caaattggta	actattcttg	tgtacaaaca	tgtataaaaa	aaaacttttt	tttgctcctg	12120
gaggacaaaa	tttcaaactc	cțtgaagaag	attgcttgta	tatctatcat	atgcatatat	12180
catatcgatg	gaaaaagaaa	gtcaggcatg	tatttataaa	aagaagaatg	tgccatgctt	12240
ccgaatttct	tttcactttc	ttttccttat	ctattttaat	ctcaagcttg	gcgtaatcat	12300
ggtcatagct	gtttcctgtg	tgaaattgtt	atccgctcac	aattccacac	aacatacgag	12360
ccggaagcat	aaagtgtaaa	gcctggggtg	cctaatgagt	gagctaactc	acattaattg	12420
cgttgcgcto	actgcccgct	ttccagtcgg	gaaacctgtc	gtgccagctg	cattaatgaa	12480
tcggccaacg	g cgcggggaga	ggcggtttgc	: gtattgggco	: aaagacaaaa	gggcgacatt	12540
caaccgatto	g agggagggaa	ggtaaatatt	gacggaaatt	: attcattaaa	ggtgaattat	12600
caccgtcac	gacttgagco	atttgggaat	: tagagecage	c aaaatcacca	gtagcaccat	12660
taccattag	c aaggccggaa	a acgtcacca	a tgaaaccato	c gatagcagca	a ccgtaatcag	12720
tagcgacag	a atcaagttt	g cctttagcg	t cagactgtag	g cgcgttttca	a tcggcatttt	12780
cggtcatag	c ccccttatt	a gcgtttgcc	a tcttttcata	a atcaaaatca	a ccggaaccag	12840
agccaccac	c ggaaccgcc	t ccctcagag	c cgccaccct	c agaaccgcc	a ccctcagagc	12900
caccaccct	c agagccgcc	a ccagaacca	c caccagage	c geegeeage	a ttgacaggag	12960
gcccgatct	a gtaacatag	a tgacaccgc	g cgcgataat	t tatcctagt	t tgcgcgctat	13020

### WO 2004/063359 PCT/EP2004/000099 121/357

attttgtttt	ctatcgcgta	ttaaatgtat	aattgcggga	ctctaatcat	aaaaacccat	13080
ctcataaata	acgtcatgca	ttacatgtta	attattacat	gcttaacgta	attcaacaga	13140
aattatatga	taatcatcgc	aagaccggca	acaggattca	atcttaagaa	actttattgc	13200
caaatgtttg	aacgatcggg	gatcatccgg	gtctgtggcg	ggaactccac	gaaaatatcc	13260
gaacgcagca	agatatcgcg	gtgcatctcg	gtcttgcctg	ggcagtcgcc	gccgacgccg	13320
ttgatgtgga	cgccgggccc	gatcatattg	tcgctcagga	tcgtggcgtt	gtgcttgtcg	13380
gccgttgctg	tcgtaatgat	atcggcacct	tcgaccgcct	gttccgcaga	gatcccgtgg	13440
gcgaagaact	ccagcatgag	ateceegege	tggaggatca	tccagccggc	gtcccggaaa	13500
acgattccga	agcccaacct	ttcatagaag	gcggcggtgg	aatcgaaatc	tcgtgatggc	13560
aggttgggcg	tegettggte	ggtcatttcg	aaccccagag	tcccgctcag	aagaactcgt	13620
caagaaggcg	atagaaggcg	atgcgctgcg	aatcgggagc	ggcgataccg	taaagcacga	13680
ggaagcggto	agcccattcg	ccgccaagct	cttcagcaat	atcacgggta	gccaacgcta	13740
tgtcctgata	geggteegee	acacccagcc	ggccacagtc	gatgaatcca	gaaaagcggc	13800
cattttccac	: catgatattc	ggcaagcagg	catcgccatg	ggtcacgacg	agatcatcgc	13860
cgtcgggcat	gegegeettg	agcctggcga	acagttcggc	tggcgcgagc	ccctgatgct	13920
cttcgtccag	g atcatcctga	tcgacaagac	cggcttccat	cegagtacgt	gctcgctcga	13980
tgcgatgtti	: cgcttggtgg	tcgaatgggc	aggtagccgg	, atcaagcgta	tgcagccgcc	14040
gcattgcato	e agccatgatg	gatactttct	cggcaggagc	: aaggtgagat	gacaggagat	14100
cctgccccg	g cacttegeed	: aatagcagco	: agtcccttcc	cgcttcagtg	g acaacgtcga	14160
gcacagctge	c gcaaggaacg	g cccgtcgtgg	g ccagccacga	a tageegeget	geetegteet	14220
gcagttcat	t cagggcacco	g gacaggtcgg	g tcttgacaaa	a aagaaccggg	g egeeeetgeg	14280

# WO 2004/063359 PCT/EP2004/000099 122/357

ctgacageeg gaacaegge	eg gcatcagagc	agccgattgt	ctgttgtgcc	cagtcatagc	14340
cgaatageet etecacee	aa gcggccggag	aacctgcgtg	caatccatct	tgttcaatca	14400
tgcgaaacga tccagatc	cg gtgcagatta	. tttggattga	gagtgaatat	gagactctaa	14460
ttggataccg aggggaat	tt atggaacgto	: agtggagcat	ttttgacaag	aaatatttgc	14520
tagctgatag tgacctta	gg cgacttttga	acgcgcaata	atggtttctg	acgtatgtgc	14580
ttagctcatt aaactcca	ga aacccgcgg	tgagtggctc	cttcaacgtt	gcggttctgt	14640
cagttccaaa cgtaaaac	egg cttgtcccg	gtcatcggcg	ggggtcataa	cgtgactccc	14700
ttaattctcc gctcatga	atc agattgtcg	t tteeegeett	cagtttaaac	tatcagtgtt	14760
tgacaggata tattggc	ggg taaacctaa	g agaaaagago	: gtttattaga	ataatcggat	14820
atttaaaagg gcgtgaa	aag gtttatccg	t tcgtccatt	gtatgtgcat	gccaaccaca	14880
gggttcccca gatctgg	cgc cggccagcg	a gacgagcaa	attggccgcc	gccegaaacg	14940
atccgacage gegeeca	gca caggtgcgc	a ggcaaattg	c accaacgca	t acagegeeag	15000
cagaatgcca tagtggg	cgg tgacgtcgt	t cgagtgaac	c agatcgcgc	a ggaggcccgg	15060
cagcaccggc ataatca	ggc cgatgccga	ac agcgtcgag	c gcgacagtg	c tcagaattac	15120
gatcaggggt atgttgg	gtt tcacgtctg	gg cctccggac	c agecteege	t ggtccgattg	15180
aacgegegga ttettta	atca ctgataag	tt ggtggacat	a ttatgttta	t cagtgataaa	15240
gtgtcaagca tgacaaa	agtt gcagccga	at acagtgato	e gtgeegeed	t ggacctgttg	15300
aacgaggtcg gcgtag	acgg tctgacga	ca cgcaaactç	g cggaacggt	t gggggttcag	15360
cageeggege tttact	ggca cttcagga	ac aagcgggc	gc tgctcgacç	gc actggccgaa	15420
gccatgctgg cggaga	atca tacgcatt	cg gtgccgag	ag ccgacgac	ga ctggcgctca	a 15480
tttctgatcg ggaatg	cccg cagettca	igg caggeget	gc tcgcctace	eg egatggege	g 15540

# WO 2004/063359 PCT/EP2004/000099 123/357

•	
cgcatccatg ccggcacgcg accgggcgca ccgcagatgg aaacggccga cgcgcagctt 156	00
cgcttcctct gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc 156	60
agetacttca etgttgggge egtgettgag gageaggeeg gegaeagega tgeeggegag 157	20
cgcggcggca ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc 157	80
ttcgacgaag ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga 158	40
ttggcgaaaa ggaggctcgt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga 159	00
tcaggaccgc tgccggagcg caacccactc actacagcag agccatgtag acaacatccc 159	960
ctccccttt ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct 160	020
gccctagcgt ccaagcctca cggccgcgct cggcctctct ggcggccttc tggcgctctt 16	080
cegetteete geteactgae tegetgeget eggtegtteg getgeggega geggtateag 16	140
ctcactcaaa ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca 16	200
tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt 16	260
tecatagget eegeeeeet gaegageate acaaaaateg aegeteaagt eagaggtgge 16	320
gaaacccgac aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct 16	380
ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct tcgggaagcg 16	5440
tggcgctttt ccgctgcata accctgcttc ggggtcatta tagcgatttt ttcggtatat 10	6500
ccatcctttt tcgcacgata tacaggattt tgccaaaggg ttcgtgtaga ctttccttgg 1	6560
tgtatccaac ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt 1	6620
teettettea etgteeetta ttegeacetg geggtgetea aegggaatee tgetetgega 1	6680
ggctggccgg ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag 1	6740
ccaaccagga agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg 1	.6800

attgaggaaa	aggcggcggc	ggccggcatg	agcctgtcgg	cctacctgct	ggccgtcggc	16860
cagggctaca	aaatcacggg	cgtcgtggac	tatgagcacg	teegegaget	ggcccgcatc	16920
aatggcgacc	tgggccgcct	gggcggcctg	ctgaaactct	ggctcaccga	cgacccgcgc	16980
acggcgcggt	teggtgatge	cacgatcctc	gccctgctgg	cgaagatcga	agagaagcag	17040
gacgagcttg	gcaaggtcat	gatgggcgtg	gtccgcccga	gggcagagcc	atgacttttt	17100
tagccgctaa	aacggccggg	gggtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	17160
caagaagagc	gacttcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	17220
gegeetttge	gacgetea					17238

```
<210> 39
```

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<211> 17238

<212> DNA

<213> Artificial

## WO 2004/063359 PCT/EP2004/000099 125/357

<400> 39 cegggetggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga 300 360 caagcetggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgcccccc 600 cttctcgaac cctcccggcc cgctaacgcg ggcctcccat ccccccaggg gctgcgcccc 660 teggeegega aeggeeteae eccaaaaatg geagegetgg eagteettge eattgeeggg 720 atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 780 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg 840 ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 900 gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg 960 ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa 1020 acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag 1080 acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata 1140 agataatata tettttatat agaagatate geegtatgta aggattteag ggggeaagge 1200 ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga 1260

## WO 2004/063359 PCT/EP2004/000099 126/357

•	
ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta 1	.320
atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc 1	L380
agetecaceg attttgagaa egacagegae tteegteeca geegtgeeag gtgetgeete 1	1440
agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagettt 1	1500
cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag	1560
ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc	1620
gcaacaaccg tetteeggag actgteatae gegtaaaaca geeagegetg gegegattta	1680
gccccgacat agccccactg ttcgtccatt tccgcgcaga cgatgacgtc actgcccggc	1740
tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa atcgtgttga	1800
ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa	1860
tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt	1920
tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg ttacgcacca	1980
ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact ggagcacctc	2040
aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat tgtggtttca	2100
aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt gaaaaagctg	2160
ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc gtcttgttat	2220
aattagette ttggggtate tttaaataet gtagaaaaga ggaaggaaat aataaatgge	2280
taaaatgaga atatcaccgg aattgaaaaa actgatcgaa aaataccgct gcgtaaaaga	2340
tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg aaaacctata	2400
tttaaaaatg acggacagcc ggtataaagg gaccacctat gatgtggaac gggaaaagga	2460
catgatgcta tggctggaag gaaagctgcc tgttccaaag gtcctgcact ttgaacggca	2520

### WO 2004/063359 PCT/EP2004/000099 127/357

·	
tgatggctgg agcaatctgc tcatgagtga ggccgatggc gtcctttgct cggaagagta	2580
tgaagatgaa caaagccctg aaaagattat cgagctgtat gcggagtgca tcaggctctt	2640
tcactccatc gacatatcgg attgtcccta tacgaatagc ttagacagcc gcttagccga	2700
attggattac ttactgaata acgatctggc cgatgtggat tgcgaaaact gggaagaaga	2760
cactccattt aaagatccgc gcgagctgta tgatttttta aagacggaaa agcccgaaga	2820
ggaacttgtc ttttcccacg gcgacctggg agacagcaac atctttgtga aagatggcaa	2880
agtaagtggc tttattgatc ttgggagaag cggcagggcg gacaagtggt atgacattgc	2940
cttctgcgtc cggtcgatca gggaggatat cggggaagaa cagtatgtcg agctattttt	3000
tgacttactg gggatcaagc ctgattggga gaaaataaaa tattatattt tactggatga	3060
attgttttag tacctagatg tggcgcaacg atgccggcga caagcaggag cgcaccgact	3120
tcttccgcat caagtgtttt ggctctcagg ccgaggccca cggcaagtat ttgggcaagg	3180
ggtcgctggt attcgtgcag ggcaagattc ggaataccaa gtacgagaag gacggccaga	3240
cggtctacgg gaccgacttc attgccgata aggtggatta tctggacacc aaggcaccag	3300
gegggteaaa teaggaataa gggeacattg eeceggegtg agteggggea ateeegeaag	3360
gagggtgaat gaatcggacg tttgaccgga aggcatacag gcaagaactg atcgacgcgg	3420
ggttttccgc cgaggatgcc gaaaccatcg caagccgcac cgtcatgcgt gcgccccgcg	3480
aaacetteea gteegtegge tegatggtee ageaagetae ggeeaagate gagegegaea	3540
gegtgeaact ggeteecett geeetgeeeg egeeategge egeegtggag egttegegte	3600
gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg cgaggaacta	3660
tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc agcgaggcca	3720
agcaggeege gttgetgaaa cacaegaage agcagateaa ggaaatgeag ettteettgt	3780

# WO 2004/063359 PCT/EP2004/000099 128/357

togatattgc gccgtggccg gacacgatgc gagcgatgcc aaacgacacg gcccgctctg	3840
ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt	3900
tecaegteaa caaggaegtg aagateaeet acaeeggegt egagetgegg geegaegatg	3960
acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga	4020
teacetteae gttetacgag etttgecagg acetgggetg gtegateaat ggeeggtatt	4080
acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg	4140
accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc ctggaccgtg	4200
gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg	4260
gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg acggcccgac	4320
ggatgttega ctattteage tegeaceggg ageegtacee geteaagetg gaaacettee	4380
gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag	4440
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg	4500
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg	4560
ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc gctcagtatc	4620
gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat	4680
tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt tccgcgagat	4740
ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga	4800
gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat tcggcgccta	4860
catcgacggc gagatcattg ggctgtcggt cttcaaacag gaggacggcc ccaaggacgc	4920
tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggggtcg	4980
cggtatgctg ctgcgggggt tgccggcggg tttattgctc gtgatgatcg tccgacaga	t 5040

### WO 2004/063359 PCT/EP2004/000099 129/357

tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata tttcgctatt	5100
ctggagcttg ttgtttattt cggtctaccg cctgccgggc ggggtcgcgg cgacggtagg	5160
cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg	5220
attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac	5280
accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtttccat	5340
ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac	5400
cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgtttgatcc	5460
gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtggctcg gcctgatcgg	5520
agcgggttta acctacttcc tttggttccg ggggatctcg cgactcgaac ctacagttgt	5580
ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga tgcatcaggc	5640
cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt	5700
tgatategte aacgtteact tetaaagaaa tagegeeact eagetteete ageggettta	5760
tecagegatt tectattatg teggeatagt teteaagate gacageetgt caeggttaag	5820
cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca	5880
caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt	5940
gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag	6000
tetgeegeet tacaaegget etecegetga egeegteeeg gaetgatggg etgeetgtat	6060
cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga	6120
tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt	6180
taatgtactg gggtggtttt tcttttcacc agtgagacgg gcaacagctg attgcccttc	6240
accgcctggc cctgagagag ttgcagcaag cggtccacgc tggtttgccc cagcaggcga	6300

# WO 2004/063359 PCT/EP2004/000099 130/357

aaatcctgtt tgatggtggt tccgaaatcg gcaaaatccc ttataaatca aaagaatagc 6	5360
ccgagatagg gttgagtgtt gttccagttt ggaacaagag tccactatta aagaacgtgg	6420
actccaacgt caaagggcga aaaaccgtct atcagggcga tggcccacta cgtgaaccat	6480
cacccaaatc aagttttttg gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag	6540
ggagcccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga aaggaaggga	6600 ·
agaaagcgaa aggagcgggc gccattcagg ctgcgcaact gttgggaagg gcgatcggtg	6660
cgggcctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag gcgattaagt	6720
tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag tgaattcgag	6780
ctcggtaccc ggggatcttt cgacactgaa atacgtcgag cctgctccgc ttggaagcgg	6840
cgaggagcct cgtcctgtca caactaccaa catggagtac gataagggcc agttccgcca	6900
gctcattaag agccagttca tgggcgttgg catgatggcc gtcatgcatc tgtacttcaa	6960
gtacaccaac gctcttctga tccagtcgat catccgctga aggcgctttc gaatctggtt	7020
aagatccacg tettegggaa gecagegaet ggtgaeetee agegteeett taaggetgee	7080
aacagettte teagecaggg ceageceaag acegacaagg ceteceteea gaacgeegag	7140
aagaactgga ggggtggtgt caaggaggag taagctcctt attgaagtcg gaggacggag	7200
cggtgtcaag aggatattct tcgactctgt attatagata agatgatgag gaattggagg	7260
tagcatagct tcatttggat ttgctttcca ggctgagact ctagcttgga gcatagaggg	7320
teetttgget tteaatatte teaagtatet egagtttgaa ettatteeet gtgaacettt	7380
tattcaccaa tgagcattgg aatgaacatg aatctgagga ctgcaatcgc catgaggttt	7440
tcgaaataca tccggatgtc gaaggcttgg ggcacctgcg ttggttgaat ttagaacgtg	7500
gcactattga tcatccgata gctctgcaaa gggcgttgca caatgcaagt caaacgttgc	7560

# WO 2004/063359 PCT/EP2004/000099 131/357

tagcagttcc aggtggaatg ttatgatgag cattgtatta aatcaggaga tatagcatga	7620
tctctagtta gctcaccaca aaagtcagac ggcgtaacca aaagtcacac aacacaagct	7680
gtaaggattt cggcacggct acggaagacg gagaagccac cttcagtgga ctcgagtacc	7740
atttaattet atttgtgttt gategagaee taataeagee eetaeaaega eeateaaagt	7800
cgtatagcta ccagtgagga agtggactca aatcgacttc agcaacatct cctggataaa	7860
ctttaagcct aaactataca gaataagata ggtggagagc ttataccgag ctcccaaatc	7920
tgtccagatc atggttgacc ggtgcctgga tcttcctata gaatcatcct tattcgttga	7980 ·
cctagctgat tctggagtga cccagagggt catgacttga gcctaaaatc cgccgcctcc	8040
accatttgta gaaaaatgtg acgaactcgt gagctctgta cagtgaccgg tgactctttc	8100
tggcatgcgg agagacggac ggacgcagag agaagggctg agtaataagc cactggccag	8160
acagetetgg eggetetgag gtgeagtgga tgattattaa teegggaeeg geegeeeete	8220
cgccccgaag tggaaaggct ggtgtgcccc tcgttgacca agaatctatt gcatcatcgg	8280
agaatatgga gcttcatcga atcaccggca gtaagcgaag gagaatgtga agccaggggt	8340
gtatageegt eggegaaata geatgeeatt aacetaggta eagaagteea attgetteeg	8400
atctggtaaa agattcacga gatagtacct tctccgaagt aggtagagcg agtacccggc	8460
gcgtaagctc cctaattggc ccatccggca tctgtagggc gtccaaatat cgtgcctctc	8520
ctgetttgee eggtgtatga aaceggaaag geegeteagg agetggeeag eggegeagae	8580
cgggaacaca agctggcagt cgacccatcc ggtgctctgc actcgacctg ctgaggtccc	8640
teagteectg gtaggeaget ttgeecegte tgteegeeeg gtgtgtegge ggggttgaea	8700
aggtegttge gteagteeaa catttgttge catattttee tgeteteece accagetget	8760
cttttctttt ctcttttt tcccatcttc agtatattca tcttcccatc caagaacctt	8820

# WO 2004/063359 PCT/EP2004/000099 132/357

tatttcccct aagtaagtac tttgctacat ccatactcca tccttcccat cccttattcc 8	3880
tttgaacctt tcagttcgag ctttcccact tcatcgcagc ttgactaaca gctacccgc 8	8940
ttgagcagac atcaccatgc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga	9000
aaagttcgac agcgtctccg acctgatgca gctctcggag ggcgaagaat ctcgtgcttt	9060
cagettegat gtaggaggge gtggatatgt cetgegggta aatagetgeg eegatggttt	9120
ctacaaagat cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt	9180
gcttgacatt ggggaattca gcgagagcct gacctattgc atctcccgcc gtgcacaggg	9240
tgtcacgttg caagacctgc ctgaaaccga actgcccgct gttctgcagc cggtcgcgga	9300
ggccatggat gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg	9360
accgcaagga atcggtcaat acactacatg gcgtgatttc atatgcgcga ttgctgatcc	9420
ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc	9480
tctcgatgag ctgatgcttt gggccgagga ctgccccgaa gtccggcacc tcgtgcacgc	9540
ggatttcggc tccaacaatg tcctgacgga caatggccgc ataacagcgg tcattgactg	9600
gagcgaggcg atgttcgggg attcccaata cgaggtcgcc aacatcttct tctggaggcc	9660
gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc	9720
aggatcgccg cggctccggg cgtatatgct ccgcattggt cttgaccaac tctatcagag	9780
cttggttgac ggcaatttcg atgatgcagc ttgggcgcag ggtcgatgcg acgcaatcgt	9840
ccgatccgga gccgggactg tcgggcgtac acaaatcgcc cgcagaagcg cggccgtctg	9900
gaccgatggc tgtgtagaag tactcgccga tagtggaaac cgacgcccca gcactcgtcc	9960
gagggcaaag gaatagagta gatgccgacc gcgggatcga tccacttaac gttactgaaa	10020
tcatcaaaca gcttgacgaa tctggatata agatcgttgg tgtcgatgtc agctccggag	10080

# WO 2004/063359 PCT/EP2004/000099 133/357

ttgagacaaa	tggtgttcag	gatctcgata	agatacgttc	atttgtccaa	gcagcaaaga	10140
gtgccttcta	gtgatttaat	agctccatgt	caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag	atacagetea	tctgcaatgc	attaatgcat	tgactgcaac	ctagtaacgc	10260
cttncaggct	ccggcgaaga	gaagaatagc	ttagcagagc	tattttcatt	ttcgggagac	10320
gagatcaagc	agatcaacgg	tcgtcaagag	acctacgaga	ctgaggaatc	cgctcttggc	10380
tccacgcgac	tatatatttg	tctctaattg	tactttgaca	tgeteetett	ctttactctg	10440
atagcttgac	tatgaaaatt	ccgtcaccag	cncctgggtt	: cgcaaagata	attgcatgtt	10500
tcttccttga	actctcaago	ctacaggaca	cacattcato	: gtaggtataa	acctcgaaat	10560
canttcctac	: taagatggta	a tacaatagta	accatgcatg	gttgcctagt	gaatgctccg	10620
taacacccaa	tacgccggc	gaaactttt	tacaactct	c ctatgagtc	g tttacccaga	10680
atgcacaggi	acacttgtt	t agaggtaato	c cttctttct	a gctagaagt	c ctcgtgtact	10740
gtgtaagcg	c ccactccac	a totocacto	g acctgcagg	c atgcaagct	t agagataaaa	10800
taaaaagag	a agaaaagaa	a gtttgtaca	a tttctttt	g tttatataa	c atacacgcta	10860
tgtcaacat	t tagaataag	g gggaaaaaa	t cttccatca	t attcgaatg	c acaagattat	10920
ttctttgtt	c gctctttt	g gtcgggtca	t cgagattta	g agtgtaato	a aagatactgt	10980
catctcgag	a gcgttgcac	a ggctgctgt	t tgccaaatt	g gatgtttgc	c gaattagtaa	11040
aatacgcaa	ng catttctta	c ctttccgct	c cetttteet	a attotocoa	aa agactaaatg	11100
aggaaagat	ca aaggacaaa	ag aaaatgtaa	aa gacaaagaa	aa ttgaaaac	ga tataaacttg	11160
cagcacgta	aa gaccaaago	ca aattggtaa	ac tattcttg	tg tacaaaca	tg tataaaaaaa	11220
aactttt	tt tgctcctg	ga ggacaaaa	tt tcaaactc	ct tgaagaag	at tgcttgtata	a 11280
tctatcat	at gcatatat	ca tatcgatg	ga aaaagaaa	gt caggcatg	ta tttataaaa	a 11340

# WO 2004/063359 PCT/EP2004/000099 134/357

gaagaatgtg ccatgcttcc gaatttcttt tcactttctt ttccttatct attttaatct 114	100
catgctgtcg aagctgcagt caatcagcgt caaggcccgc cgcgttgaac tagcccgcga 114	160
cateacgegg cecaaagtet geetgeatge teageggtge tegttagtte ggetgegagt 115	520
ggcagcacca cagacagagg aggcgctggg aaccgtgcag gctgccggcg cgggcgatga 115	580
gcacagcgcc gatgtagcac tccagcagct tgaccgggct atcgcagagc gtcgtgcccg 110	640
gcgcaaacgg gagcagctgt cataccaggc tgccgccatt gcagcatcaa ttggcgtgtc 11	700
aggcattgcc atcttcgcca cctacctgag atttgccatg cacatgaccg tgggcggcgc 11	760
. agtgccatgg ggtgaagtgg ctggcactct cctcttggtg gttggtggcg cgctcggcat 11	.820
ggagatgtat gcccgctatg cacacaaagc catctggcat gagtcgcctc tgggctggct 11	.880
getgcacaag agccaccaca cacctegcae tggaccettt gaagecaacg acttgtttge 11	L <b>94</b> 0
aatcatcaat ggactgcccg ccatgctcct gtgtaccttt ggcttctggc tgcccaacgt 12	2000
cctgggggcg gcctgctttg gagcggggct gggcatcacg ctatacggca tggcatatat 12	2060
gtttgtacac gatggcctgg tgcacaggcg ctttcccacc gggcccatcg ctggcctgcc 12	2120
ctacatgaag cgcctgacag tggcccacca gctacaccac agcggcaagt acggtggcgc 12	2180
gccctggggt atgttcttgg gtccacagga gctgcagcac attccaggtg cggcggagga 1	2240
ggtggagcga ctggtcctgg aactggactg gtccaagcgg tagaagcttg gcgtaatcat 1	2300
ggtcatagct gtttcctgtg tgaaattgtt atccgctcac aattccacac aacatacgag 1	.2360
ccggaagcat aaagtgtaaa gcctggggtg cctaatgagt gagctaactc acattaattg 1	.2420
cgttgcgctc actgcccgct ttccagtcgg gaaacctgtc gtgccagctg cattaatgaa 1	L2480
tcggccaacg cgcgggaga ggcggtttgc gtattgggcc aaagacaaaa gggcgacatt 1	L2540
caaccgattg agggagggaa ggtaaatatt gacggaaatt attcattaaa ggtgaattat 1	12600

### WO 2004/063359 PCT/EP2004/000099 135/357

caccgtcacc	gacttgagcc	atttgggaat	tagagccagc	aaaatcacca	gtagcaccat	12660
taccattagc	aaggccggaa	acgtcaccaa	tgaaaccatc	gatagcagca	ccgtaatcag	12720 [°]
tagcgacaga	atcaagtttg	cctttagcgt	cagactgtag	cgcgttttca	tcggcatttt	12780
cggtcatagc	ccccttatta	gcgtttgcca	tcttttcata	atcaaaatca	ccggaaccag	12840
agccaccacc	ggaaccgcct	ccctcagagc	cgccaccctc	agaaccgcca	ccctcagagc	12900
caccaccctc	agagccgcca	ccagaaccac	caccagagcc	gccgccagca	ttgacaggag	12960
gcccgatcta	gtaacataga	tgacaccgcg	cgcgataatt	tatcctagtt	tgcgcgctat	13020
attttgttt	ctatcgcgta	ttaaatgtat	aattgcggga	ctctaatcat	aaaaacccat	13080
ctcataaata	acgtcatgca	ı ttacatgtta	attattacat	gcttaacgta	attcaacaga	13140
aattatatga	a taatcatcgo	aagaccggca	a acaggattca	atcttaagaa	actttattgc	13200
caaatgttt	g aacgatcggg	g gatcatccgg	g gtctgtggcg	g ggaactccad	gaaaatatcc	13260
gaacgcagc	a agatatcgc	g gtgcatctc	g gtcttgcct	g ggcagtcgco	gccgacgccg	13320
ttgatgtgg	a cgccgggcc	c gatcatatt	g tegeteagg	a tegtggegt	t gtgcttgtcg	13380
gccgttgct	g tcgtaatga	t ateggeace	t tcgaccgcc	t gttccgcag	a gatecegtgg	13440
gcgaagaac	t ccagcatga	g ateceegeg	c tggaggatc	a tccagccgg	c gtcccggaaa	13500
acgattccg	a agcccaacc	t ttcatagaa	g geggeggtg	g aatcgaaat	c tcgtgatggc	13560
aggttgggc	g tegettggt	c ggtcatttc	g aaccccaga	g tecegetea	g aagaactcgt	13620
caagaaggo	g atagaaggo	g atgegetge	g aatcgggag	gc ggcgatacc	g taaagcacga	13680
ggaagcggt	c agcccatto	eg cegecaage	ct cttcagcaa	at atcacgggt	a gccaacgcta	13740
tgtcctgat	ta geggteege	cc acacccago	ec ggccacagt	c gatgaatco	a gaaaagcggd	13800
cattttcc	ac catgatat	te ggcaagcag	gg categeca	tg ggtcacgad	eg agateatege	13860

# WO 2004/063359 PCT/EP2004/000099 136/357

cgtcgggcat gcgcgccttg agcctggcga acagttcggc tggcgcgagc ccctgatgct 139	20
cttcgtccag atcatcctga tcgacaagac cggcttccat ccgagtacgt gctcgctcga 139	980
tgcgatgttt cgcttggtgg tcgaatgggc aggtagccgg atcaagcgta tgcagccgcc 140	040
gcattgcatc agccatgatg gatactttct cggcaggagc aaggtgagat gacaggagat 141	100
cctgccccgg cacttcgccc aatagcagcc agtcccttcc cgcttcagtg acaacgtcga 143	160
gcacagctgc gcaaggaacg cccgtcgtgg ccagccacga tagccgcgct gcctcgtcct 14:	220
gcagttcatt cagggcaccg gacaggtcgg tcttgacaaa aagaaccggg cgcccctgcg 14	280
ctgacageeg gaacaeggeg geateagage ageegattgt etgttgtgee eagteatage 14	340
cgaatageet etecaceeaa geggeeggag aacetgegtg caateeatet tgtteaatea 14	400
tgcgaaacga tccagatccg gtgcagatta tttggattga gagtgaatat gagactctaa 14	1460
ttggataccg aggggaattt atggaacgtc agtggagcat ttttgacaag aaatatttgc 14	1520
tagctgatag tgaccttagg cgacttttga acgcgcaata atggtttctg acgtatgtgc 14	<b>4580</b>
ttageteatt aaaeteeaga aaeeegegge tgagtggete etteaaegtt geggttetgt 14	4640
cagttecaaa egtaaaaegg ettgteeege gteateggeg ggggteataa egtgaeteee 14	<b>4</b> 700
ttaattctcc gctcatgatc agattgtcgt ttcccgcctt cagtttaaac tatcagtgtt 1	<b>4</b> 760
tgacaggata tattggcggg taaacctaag agaaaagagc gtttattaga ataatcggat 1	4820
atttaaaagg gcgtgaaaag gtttatccgt tcgtccattt gtatgtgcat gccaaccaca 1	.4880
gggttcccca gatctggegc cggccagcga gacgagcaag attggccgcc gcccgaaacg 1	.4940
atccgacage gegeceagea caggtgegea ggeaaattge accaaegeat acagegeeag 1	L5000
cagaatgcca tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg 1	L5060
cagcaccggc ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac 1	15120

### WO 2004/063359 PCT/EP2004/000099 137/357

gatcaggggt	atgttgggtt	tcacgtctgg	cctccggacc	agcctccgct	ggtccgattg	15180
aacgcgcgga	ttctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	15240
gtgtcaagca	tgacaaagtt	gcagccgaat	acagtgatcc	gtgccgccct	ggacctgttg	15300
aacgaggtcg	gcgtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	15360
cagccggcgc	tttactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	15420
gccatgctgg	cggagaatca	tacgcattcg	gtgccgagag	ccgacgacga	. ctggcgctca	15480
tttctgatcg	ggaatgcccg	cagcttcagg	caggegetge	: tcgcctaccg	gatggcgcg	15540
cgcatccatg	ccggcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	15600
cgcttcctct	gcgaggcggg	tttttcggco	ggggacgccg	g tcaatgcgct	gatgacaatc	15660
agctacttca	a ctgttgggg	cgtgcttgag	g gagcaggcc	g gcgacagcga	a tgccggcgag	15720
cgcggcggc	a ccgttgaaca	a ggctccgct	c tegeegetg	t tgcgggccg	c gatagacgcc	15780
ttcgacgaa	g ceggteegg	a cgcagcgtt	c gagcaggga	c tegeggtga	t tgtcgatgga	15840
ttggcgaaa	a ggaggctcg	t tgtcaggaa	c gttgaagga	c cgagaaagg	g tgacgattga	15900
tcaggaccg	c tgccggagc	g caacccact	c actacagca	g agccatgta	g acaacatccc	15960
ctcccctt	t ccaccgcgt	c agacgcccg	rt agcagcccg	c tacgggctt	t ttcatgccct	16020
gccctagcg	t ccaagccto	a cggccgcgc	t eggeetete	t ggcggcctt	c tggcgctctt	16080
ccgcttcct	c gctcactga	ıc tegetgege	ct eggtegtte	g getgeggeg	ga geggtateag	ı 16140
ctcactcaa	aa ggcggtaat	a cggttatco	ca cagaatcag	gg ggataacgo	ca ggaaagaaca	a 16200
tgtgagcaa	aa aggccagca	aa aaggccag	ga accgtaaa	aa ggccgcgt	tg ctggcgttt	16260
tccatagg	ct ccgcccc	ct gacgagca	tc acaaaaat	cg acgctcaa	gt cagaggtgg	c 16320
gaaacccg	ac aggactat	aa agatacca	gg cgtttccc	cc tggaagct	cc ctcgtgcgc	t 16380

ctcctgttcc	gaccetgeeg	cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	16440
tggcgctttt	ccgctgcata	accctgcttc	ggggtcatta	tagcgatttt	ttcggtatat	16500
ccatcctttt	tegeaegata	tacaggattt	tgccaaaggg	ttcgtgtaga	ctttccttgg	16560
tgtatccaac	ggcgtcagcc	gggcaggata	ggtgaagtag	gcccacccgc	gagcgggtgt	16620
tccttcttca	ctgtccctta	ttcgcacctg	geggtgetea	acgggaatcc	tgctctgcga	16680
ggctggccgg	ctaccgccgg	cgtaacagat	gagggcaagc	ggatggctga	tgaaaccaag	16740
ccaaccagga	agggcagccc	acctatcaag	gtgtactgcc	ttccagacga	acgaagagcg	16800
attgaggaaa	aggcggcggc	: ggccggcatg	agcctgtcgg	g cctacctgct	ggeegtegge	16860
cagggctaca	a aaatcacggg	g cgtcgtggac	: tatgagcacg	g teegegaget	ggcccgcatc	16920
aatggcgac	c tgggccgcci	gggeggeetg	g ctgaaactci	ggctcaccga	a cgacccgcgc	16980
acggcgcgg	t teggtgatg	c dacgatecto	gccctgctg	g cgaagatcga	a agagaagcag	17040
gacgagctt	g gcaaggtca	t gatgggcgt	g gtccgcccg	a gggcagagc	c atgactttt	17100
tagccgcta	a aacggccgg	g gggtgcgcg	t gattgccaa	g cacgtcccc	a tgcgctccat	17160
caagaagag	c gacttegeg	g agctggtga	a gtacatcac	c gacgagcaa	g gcaagaccga	17220
gcgcctttg	ge gaegetea					17238

<210> 40

<211> 18449

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<221> misc_feature
<222> (3471)..(3471)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (3679)..(3679)
<223> n is a, c, g, or t

<220>
<221> misc_feature

<222> (3770)..(3770)

<223> n is a, c, g, or t

<400> 40

gatetttega caetgaaata egtegageet geteegettg gaageggega ggageetegt 60 cetgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 120 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct 180 cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240 tegggaagee agegaetggt gaeeteeage gteeetttaa ggetgeeaae agetttetea 300 gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg 360 gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg 420 atattcttcg actctgtatt atagataaga tgatgaggaa ttggaggtag catagcttca 480 tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc 540 aatattetea agtatetega gtttgaactt atteeetgtg aacettttat teaceaatga 600 gcattggaat gaacatgaat ctgaggactg caatcgccat gaggttttcg aaatacatcc 660 ggatgtcgaa ggcttggggc acctgcgttg gttgaattta gaacgtggca ctattgatca 720 tccgatagct ctgcaaaggg cgttgcacaa tgcaagtcaa acgttgctag cagttccagg 780 tggaatgtta tgatgagcat tgtattaaat caggagatat agcatgatct ctagttagct 840

caccacaaaa gtcagacggc gtaaccaaaa gtcacacaac acaagctgta aggatttcgg	900
cacggctacg gaagacggag aagccacctt cagtggactc gagtaccatt taattctatt	960
tgtgtttgat cgagacctaa tacagcccct acaacgacca tcaaagtcgt atagctacca	1020
gtgaggaagt ggactcaaat cgacttcagc aacatctcct ggataaactt taagcctaaa	1080
ctatacagaa taagataggt ggagagctta taccgagctc ccaaatctgt ccagatcatg.	1140
gttgaccggt gcctggatct tcctatagaa tcatccttat tcgttgacct agctgattct	1200
ggagtgaccc agagggtcat gacttgagcc taaaatccgc cgcctccacc atttgtagaa	1260
aaatgtgacg aactcgtgag ctctgtacag tgaccggtga ctctttctgg catgcggaga	1320
gacggacgga cgcagagaga agggctgagt aataagccac tggccagaca gctctggcgg	1380
ctctgaggtg cagtggatga ttattaatcc gggaccggcc gcccctccgc cccgaagtgg	1440
aaaggctggt gtgcccctcg ttgaccaaga atctattgca tcatcggaga atatggagct	1500
tcatcgaatc accggcagta agcgaaggag aatgtgaagc caggggtgta tagccgtcgg	1560
cgaaatagca tgccattaac ctaggtacag aagtccaatt gcttccgatc tggtaaaaga	1620
ttcacgagat agtaccttct ccgaagtagg tagagcgagt acccggcgcg taagctccct	1680
aattggccca teeggcatet gtagggcgte caaatategt geeteteetg etttgeeegg	1740
tgtatgaaac cggaaaggcc gctcaggagc tggccagcgg cgcagaccgg gaacacaagc	1800
tggcagtcga cccatccggt gctctgcact cgacctgctg aggtccctca gtccctggta	1860
ggcagctttg ccccgtctgt ccgcccggtg tgtcggcggg gttgacaagg tcgttgcgtc	1920
agtecaacat tigtigecat attitectge tetececace agetgetett tiettitete	1980
tttcttttcc catcttcagt atattcatct tcccatccaa gaacctttat ttcccctaag	2040
taagtacttt gctacatcca tactccatcc ttcccatccc ttattccttt gaacctttca	2100

## WO 2004/063359 PCT/EP2004/000099 141/357

gttcgagctt tcccacttca tcgcagcttg actaacagct accccgcttg agcagacatc	2160
accatgcctg aactcaccgc gacgtctgtc gagaagtttc tgatcgaaaa gttcgacagc	2220
gtctccgacc tgatgcagct ctcggagggc gaagaatctc gtgctttcag cttcgatgta	2280
ggagggcgtg gatatgtcct gcgggtaaat agctgcgccg atggtttcta caaagatcgt	2340
tatgtttatc ggcactttgc atcggccgcg ctcccgattc cggaagtgct tgacattggg	2400
gaattcagcg agagcctgac ctattgcatc tcccgccgtg cacagggtgt cacgttgcaa	2460
gacctgcctg aaaccgaact gcccgctgtt ctgcagccgg tcgcggaggc catggatgcg	2520
atcgctgcgg ccgatcttag ccagacgagc gggttcggcc cattcggacc gcaaggaatc	2580
ggtcaataca ctacatggcg tgatttcata tgcgcgattg ctgatcccca tgtgtatcac	2640
tggcaaactg tgatggacga caccgtcagt gcgtccgtcg cgcaggctct cgatgagctg	2700
atgetttggg cegaggaetg cecegaagte eggeaceteg tgeaegegga ttteggetee	2760
aacaatgtcc tgacggacaa tggccgcata acagcggtca ttgactggag cgaggcgatg	2820
ttcggggatt cccaatacga ggtcgccaac atcttcttct ggaggccgtg gttggcttgt	2880
atggagcagc agacgcgcta cttcgagcgg aggcatccgg agcttgcagg atcgccgcgg	2940
ctccgggcgt atatgctccg cattggtctt gaccaactct atcagagctt ggttgacggc	3000
aatttegatg atgeagettg ggegeagggt egatgegaeg eaategteeg ateeggagee	3060
gggactgtcg ggcgtacaca aatcgcccgc agaagcgcgg ccgtctggac cgatggctgt	3120
gtagaagtac tegeegatag tggaaacega egeeceagea etegteegag ggcaaaggaa	3180
tagagtagat gccgaccgcg ggatcgatcc acttaacgtt actgaaatca tcaaacagct	3240
tgacgaatct ggatataaga tcgttggtgt cgatgtcagc tccggagttg agacaaatgg	3300
tgttcaggat ctcgataaga tacgttcatt tgtccaagca gcaaagagtg ccttctagtg	3360

# WO 2004/063359 PCT/EP2004/000099 142/357

atttaatagc tccatgtcaa caagaataaa acgcgttttc gggtttacct cttccagata	3420
cageteatet geaatgeatt aatgeattga etgeaaceta gtaaegeett neaggeteeg	3480
gcgaagagaa gaatagctta gcagagctat tttcattttc gggagacgag atcaagcaga	3540
tcaacggtcg tcaagagacc tacgagactg aggaatccgc tcttggctcc acgcgactat	3600
atatttgtct ctaattgtac tttgacatgc tcctcttctt tactctgata gcttgactat	3660
gaaaatteeg teaceagene etgggttege aaagataatt geatgtttet teettgaaet	3720
ctcaagccta caggacacac attcatcgta ggtataaacc tcgaaatcan ttcctactaa	3780
gatggtatac aatagtaacc atgcatggtt gcctagtgaa tgctccgtaa cacccaatac	3840·
gccggccgaa actttttac aactctccta tgagtcgttt acccagaatg cacaggtaca	3900
cttgtttaga ggtaatcctt ctttctagct agaagtcctc gtgtactgtg taagcgccca	3960
ctccacatct ccactcgacc tgcaggcatg caaagcttga gattaaaata gataaggaaa	4020
agaaagtgaa aagaaattcg gaagcatggc acattcttct ttttataaat acatgcctga	4080
ctttcttttt ccatcgatat gatatatgca tatgatagat atacaagcaa tcttcttcaa	4140
ggagtttgaa attttgtcct ccaggagcaa aaaaaagttt ttttttatac atgtttgtac	4200
acaagaatag ttaccaattt gctttggtct tacgtgctgc aagtttatat cgttttcaat	4260
ttetttgtet ttacatttte tttgteettt atettteete atttagtett tgggagaatt	4320
aggaaaaggg agcggaaagg taagaaatgc ttgcgtattt tactaattcg gcaaacatcc	4380
aatttggcaa acagcagcct gtgcaacgct ctcgagatga cagtatcttt gattacactc	4440
taaatetega tgaeeegaee aaaaagageg aacaaagaaa taatettgtg cattegaata	4500
tgatggaaga tttttcccc cttattctaa atgttgacat agcgtgtatg ttatataaac	4560
aaaaagaaat tgtacaaact ttcttttctt ctcttttat tttatctcta tgctgtcgaa	4620

#### WO 2004/063359 PCT/EP2004/000099 143/357

gctgcagtca atcagcgtca aggecegeeg egttgaacta geeegegaea teaegeggee	4680
caaagtctgc ctgcatgctc agcggtgctc gttagttcgg ctgcgagtgg cagcaccaca	4740
gacagaggag gegetgggaa eegtgeagge tgeeggegeg ggegatgage acagegeega	4800
tgtagcactc cagcagcttg accgggctat cgcagagcgt cgtgcccggc gcaaacggga	4860
gcagctgtca taccaggctg ccgccattgc agcatcaatt ggcgtgtcag gcattgccat	4920
cttcgccacc tacctgagat ttgccatgca catgaccgtg ggcggcgcag tgccatgggg	4980
tgaagtggct ggcactctcc tcttggtggt tggtggcgcg ctcggcatgg agatgtatgc	5040
ccgctatgca cacaaagcca tctggcatga gtcgcctctg ggctggctgc tgcacaagag	5100
ccaccacaca cctcgcactg gaccctttga agccaacgac ttgtttgcaa tcatcaatgg	5160
actgcccgcc atgctcctgt gtacctttgg cttctggctg cccaacgtcc tgggggcggc	5220
ctgctttgga gcggggctgg gcatcacgct atacggcatg gcatatatgt ttgtacacga	5280
tggcctggtg cacaggcgct ttcccaccgg gcccatcgct ggcctgccct acatgaagcg	5340
cctgacagtg gcccaccagc tacaccacag cggcaagtac ggtggcgcgc cctggggtat	5400
gttcttgggt ccacaggagc tgcagcacat tccaggtgcg gcggaggagg tggagcgact	5460
ggtcctggaa ctggactggt ccaagcggta gattgtgact gatagcgaga ctctgggtcg	5520
atgttatctg cctcaacaat ggcttagaaa agaagaaaca gaacaaatac agcaaggcaa	5580
cgcccgtagc ctaggtgatc aaagactgtt gggcttgtct ctgaagcttg taggaaaggc	5640
agacgctatc atggtgagag ctaagaaggg cattgacaag ttgccggcaa actgtcaagg	5700
cggtgtacga gctgcttgcc aagtatatgc tgcaattgga tctgtactca agcagcagaa	5760
gacaacatat cctacaagag ctcatctaaa aggaagcgaa cgtgccaaga ttgctctgtt	5820
gagtgtatac aacctctatc aatctgaaga caagcctgtg gctctccgtc aagctagaaa	5880

gattaagagt ttttttgttg attagtgaat ttttgtttta tttatgtctg atagttcaat	5940
aaagagacaa cacatacaat ataaaatcat tgtctttaaa tgttaattta gtagagtgta	6000
aageetgeat tttttttgta egeataaaca atgaatteae eeegettetg gtttttaaat	6060
aattatgtca aactagggaa aattcttttt tttctcttcg ttctttttt ggcttgttgt	6120
ggagtcacag gcttgtcttc agattgatag aggttgtata cactcaacag agcaatcttg	6180
gcacgttcgc ttccttttag atgagctctt gtaggatatg ttgtcttctg ctgcttgagt	6240
acagatecaa ttgcageata taettggcaa gcagetegta caeegeettg acagtttgee	6300
ggcaacttgt caatgccctt cttagctctc accatgatag cgtctgcctt tcctacaagc	6360
ttcagagaca agcccaacag tctttgatca cctaggctac gggcgttgcc ttgctgtatt	6420
tgttctgttt cttcttttct aagccattgt tgaggcagat aacatcgacc caacatcctc	6480
gagccatact acagcataaa aggatacgtt ttctttaaca gaaatttacc cttttgttat	6540
cagcacatac aaaaaaaaag aaatttaaga tgagtaggac ttccattctc tcaaaaattt	6600
tattcaatcc ataaatgaat tatttttgga caaaaaagaa agattatgcc tgattttctc	6660
tattttttt tttttacaa ctccaccaat actttctagc ccagcttggc gtaatcatgg	6720
tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc	6780
ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg	6840
ttgcgctcac tgcccgcttt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc	6900
ggccaacgcg cggggagagg cggtttgcgt attgggccaa agacaaaagg gcgacattca	6960
accgattgag ggagggaagg taaatattga cggaaattat tcattaaagg tgaattatca	7020
ccgtcaccga cttgagccat ttgggaatta gagccagcaa aatcaccagt agcaccatta	7080
ccattagcaa ggccggaaac gtcaccaatg aaaccatcga tagcagcacc gtaatcagta	7140

## WO 2004/063359 PCT/EP2004/000099 145/357

gcgacagaat caagtttgcc tttagcgtca gactgtagcg cgttttcatc ggcattttcg	7200
gtcatagccc ccttattagc gtttgccatc ttttcataat caaaatcacc ggaaccagag	7260
ccaccaccgg aaccgcctcc ctcagagccg ccaccctcag aaccgccacc ctcagagcca	7320
ccacceteag ageegecace agaaceacea ccagageege egeeageatt gaeaggagge	7380
ccgatctagt aacatagatg acaccgcgcg cgataattta tcctagtttg cgcgctatat	7440
tttgttttct atcgcgtatt aaatgtataa ttgcgggact ctaatcataa aaacccatct	7500
cataaataac gtcatgcatt acatgttaat tattacatgc ttaacgtaat tcaacagaaa	7560
ttatatgata atcatcgcaa gaccggcaac aggattcaat cttaagaaac tttattgcca	7620
aatgtttgaa cgatcgggga tcatccgggt ctgtggcggg aactccacga aaatatccga	7680
acgcagcaag atatcgcggt gcatctcggt cttgcctggg cagtcgccgc cgacgccgtt	7740
gatgtggacg ccgggcccga tcatattgtc gctcaggatc gtggcgttgt gcttgtcggc	7800
cgttgctgtc gtaatgatat cggcaccttc gaccgcctgt tccgcagaga tcccgtgggc	7860
gaagaactcc agcatgagat ccccgcgctg gaggatcatc cagccggcgt cccggaaaac	7920
gattccgaag cccaaccttt catagaaggc ggcggtggaa tcgaaatctc gtgatggcag	7980
gttgggcgtc gcttggtcgg tcatttcgaa ccccagagtc ccgctcagaa gaactcgtca	8040
agaaggcgat agaaggcgat gcgctgcgaa tcgggagcgg cgataccgta aagcacgagg	8100
aageggteag eccattegee gecaagetet teageaatat eaegggtage eaaegetatg	8160
tcctgatagc ggtccgccac acccagccgg ccacagtcga tgaatccaga aaagcggcca	8220
ttttccacca tgatattcgg caagcaggca tcgccatggg tcacgacgag atcatcgccg	8280
tegggeatge gegeettgag cetggegaae agtteggetg gegegageee etgatgetet	8340
tegtecagat cateetgate gacaagaceg gettecatee gagtaegtge tegetegatg	8400

# WO 2004/063359 PCT/EP2004/000099 146/357

cgatgtttcg cttggtggtc gaatgggcag gtagccggat caagcgtatg cagccgccgc 8	3460
attgcatcag ccatgatgga tactttctcg gcaggagcaa ggtgagatga caggagatcc	3520
tgccccggca cttcgcccaa tagcagccag tcccttcccg cttcagtgac aacgtcgagc {	3580
acagctgcgc aaggaacgcc cgtcgtggcc agccacgata gccgcgctgc ctcgtcctgc	8640
agttcattca gggcaccgga caggtcggtc ttgacaaaaa gaaccgggcg cccctgcgct	8700
gacageegga acaeggegge ateagageag eegattgtet gttgtgeeea gteatageeg	8760
aatagcetet ceacceaage ggeeggagaa cetgegtgea atecatettg tteaateatg	8820
cgaaacgatc cagatccggt gcagattatt tggattgaga gtgaatatga gactctaatt	8880
ggataccgag gggaatttat ggaacgtcag tggagcattt ttgacaagaa atatttgcta	8940
gctgatagtg accttaggcg acttttgaac gcgcaataat ggtttctgac gtatgtgctt	9000
ageteattaa aeteeagaaa eeegeggetg agtggeteet teaaegttge ggttetgtea	9060
gttccaaacg taaaacggct tgtcccgcgt catcggcggg ggtcataacg tgactccctt	9120 '
aattotoogo toatgatoag attgtogttt coogcottoa gtttaaacta toagtgtttg	9180
acaggatata ttggcgggta aacctaagag aaaagagcgt ttattagaat aatcggatat	9240
ttaaaagggc gtgaaaaggt ttatccgttc gtccatttgt atgtgcatgc caaccacagg	9300
gttccccaga tctggcgccg gccagcgaga cgagcaagat tggccgccgc ccgaaacgat	9360
ccgacagcgc gcccagcaca ggtgcgcagg caaattgcac caacgcatac agcgccagca	9420
gaatgccata gtgggcggtg acgtcgttcg agtgaaccag atcgcgcagg aggcccggca	9480
gcaccggcat aatcaggccg atgccgacag cgtcgagcgc gacagtgctc agaattacga	9540
tcaggggtat gttgggtttc acgtctggcc tccggaccag cctccgctgg tccgattgaa	9600
cgcgcggatt ctttatcact gataagttgg tggacatatt atgtttatca gtgataaagt	9660

## WO 2004/063359 PCT/EP2004/000099 147/357

gtcaagcatg	acaaagttgc	agccgaatac	agtgatccgt	gccgccctgg	acctgttgaa	9720
cgaggtcggc	gtagacggtc	tgacgacacg	caaactggcg	gaacggttgg	gggttcagca	9780
geeggegett	tactggcact	tcaggaacaa	gcgggcgctg	ctcgacgcac	tggccgaagc	9840
catgctggcg	gagaatcata	cgcattcggt	gccgagagcc	gacgacgact	ggcgctcatt	9900
tctgatcggg	aatgcccgca	gcttcaggca	ggcgctgctc	gcctaccgcg	atggcgcgcg	9960
catccatgcc	ggcacgcgac	cgggcgcacc	gcagatggaa	acggccgacg	cgcagcttcg	10020
cttcctctgc	gaggcgggtt	tttcggccgg	ggacgccgtc	aatgcgctga	tgacaatcag	10080
ctacttcact	gttggggccg	tgcttgagga	gcaggccggc	gacagcgatg	ccggcgagcg	10140
cggcggcacc	gttgaacagg	ctccgctctc	geegetgttg	r cgggccgcga	tagacgcctt	10200
cgacgaagcc	ggtccggacg	g cagegttega	gcagggacto	gcggtgattg	tcgatggatt	10260
ggcgaaaagg	aggctcgttg	g tcaggaacgt	tgaaggacc	g agaaagggtg	g acgattgatc	10320
aggaccgctg	ccggagcgca	a acccactca	c tacagcagag	g ccatgtagad	aacatcccct	10380
cccctttcc	accgcgtca	g acgcccgta	g cageceget	a cgggctttti	catgccctgc	10440
cctagcgtco	c aagcctcac	g geegegete	g geetetetg	g cggccttct	g gcgctcttcc	10500
gcttcctcg	c tcactgact	c getgegete	g gtcgttcgg	c tgcggcgag	c ggtatcagct	10560
cactcaaag	g cggtaatac	g gttatccac	a gaatcaggg	g ataacgcag	g aaagaacatg	10620
tgagcaaaa	g gccagcaaa	a ggccaggaa	c cgtaaaaag	g ccgcgttgc	t ggcgttttc	10680
cataggctc	c gccccctg	a cgagcatca	c aaaaatcga	c gctcaagtc	a gaggtggcga	10740
aacccgaca	g gactataaa	g ataccaggo	g tttcccct	g gaagctccc	t cgtgcgctct	10800
cctgttccg	a ccctgccgc	t taccggate	ac ctgtccgco	et ttetecett	c gggaagcgtg	10860
gegetttte	c gctgcataa	ac cctgcttcg	gg ggtcatta	ca gcgatttt	t cggtatatco	10920

## WO 2004/063359 PCT/EP2004/000099 148/357

atcetttte geacgatata caggattttg ccaaagggtt cgtgtagact tteettggtg 10	980
tatccaacgg cgtcagccgg gcaggatagg tgaagtaggc ccacccgcga gcgggtgttc 11	.040
cttcttcact gtcccttatt cgcacctggc ggtgctcaac gggaatcctg ctctgcgagg 11	.100
ctggccggct accgccggcg taacagatga gggcaagcgg atggctgatg aaaccaagcc 11	.160
aaccaggaag ggcagcccac ctatcaaggt gtactgcctt ccagacgaac gaagagcgat 11	L220
tgaggaaaag geggeggegg eeggeatgag eetgteggee tacetgetgg eegteggeea 11	1280
gggctacaaa atcacgggcg tcgtggacta tgagcacgtc cgcgagctgg cccgcatcaa 11	1340
tggcgacctg ggccgcctgg gcggcctgct gaaactctgg ctcaccgacg acccgcgcac 13	1400
ggcgcggttc ggtgatgcca cgatcctcgc cctgctggcg aagatcgaag agaagcagga 1	1460
cgagcttggc aaggtcatga tgggcgtggt ccgcccgagg gcagagccat gacttttta 1	1520
geegetaaaa eggeegggg gtgegegtga ttgeeaagea egteeceatg egeteeatea 1	1580
agaagagcga cttcgcggag ctggtgaagt acatcaccga cgagcaaggc aagaccgagc 1	.1640
geetttgega egeteacegg getggttgee etegeegetg ggetggegge egtetatgge 1	1700
cctgcaaacg cgccagaaac gccgtcgaag ccgtgtgcga gacaccgcgg ccgccggcgt 1	L1760
tgtggatacc tcgcggaaaa cttggccctc actgacagat gaggggcgga cgttgacact 1	11820
tgaggggccg actcacccgg cgcggcgttg acagatgagg ggcaggctcg atttcggccg 1	11880
gcgacgtgga gctggccagc ctcgcaaatc ggcgaaaacg cctgatttta cgcgagtttc :	11940
ccacagatga tgtggacaag cctggggata agtgccctgc ggtattgaca cttgaggggc	12000
gcgactactg acagatgagg ggcgcgatcc ttgacacttg aggggcagag tgctgacaga	12060
tgaggggggc acctattgac atttgagggg ctgtccacag gcagaaaatc cagcatttgc	12120
aagggtttcc gcccgttttt cggccaccgc taacctgtct tttaacctgc ttttaaacca	12180

## WO 2004/063359 PCT/EP2004/000099 149/357

atatttataa	accttgtttt	taaccagggc	tgcgccctgt	gcgcgtgacc	gcgcacgccg	12240
aaggggggtg	ccccccttc	tcgaaccctc	ccggcccgct	aacgcgggcc	tcccatcccc	12300
ccaggggctg	egeceetegg	ccgcgaacgg	cctcacccca	aaaatggcag	cgctggcagt	12360
ccttgccatt	gccgggatcg	gggcagtaac	gggatgggcg	atcagcccga	gegegaegee	12420
cggaagcatt	gacgtgccgc	aggtgctggc	atcgacattc	agcgaccagg	tgccgggcag	12480
tgagggcggc	ggcctgggtg	geggeetgee	cttcacttcg	gccgtcgggg	cattcacgga	12540
cttcatggcg	gggccggcaa	tttttacctt	gggcattctt	ggcatagtgg	tcgcgggtgc	12600
cgtgctcgtg	ttcgggggtg	cgataaaccc	agcgaaccat	ttgaggtgat	aggtaagatt	12660
ataccgaggt	atgaaaacga	gaattggaco	: tttacagaat	tactctatga	agcgccatat	12720
ttaaaaagct	accaagacga	agaggatgaa	ı gaggatgagg	aggcagattg	ccttgaatat	12780
attgacaata	ı ctgataagat	aatatatctt	: ttatatagaa	gatategeeg	, tatgtaagga	12840
tttcaggggg	g caaggcatag	gcagcgcgct	tatcaatata	ı tctatagaat	gggcaaagca	12900
taaaaactt	g catggactaa	ı tgcttgaaac	c ccaggacaat	: aaccttatag	g cttgtaaatt	12960
ctatcataa	t tgggtaatga	a ctccaactta	a ttgatagtg	tttatgttc	a gataatgccc	13020
gatgacttt	g tcatgcage	t ccaccgatt	t tgagaacga	c agcgacttc	c gtcccagccg	13080
tgccaggtg	c tgcctcaga	t tcaggttat	g ccgctcaat	t cgctgcgta	t atcgcttgct	13140
gattacgtg	c agctttccc	t tcaggcggg	a ttcatacag	c ggccagcca	t ccgtcatcca	13200
tatcaccac	g tcaaagggt	g acagcaggc	t cataagacg	c cccagcgtc	g ccatagtgcg	13260
ttcaccgaa	t acgtgcgca	a caaccgtct	t ccggagact	g tcatacgcg	t aaaacagcca	13320
gcgctggcg	ge gatttaged	c cgacatago	c ccactgttc	g tccatttcc	g cgcagacgat	13380
gacgtcact	g cccggctgt	a tgcgcgagg	gt taccgacto	ge ggeetgagt	t ttttaagtga	13440

# WO 2004/063359 PCT/EP2004/000099 150/357

cgtaaaatcg tgttgaggcc aacgcccata atgcgggctg ttgcccggca tccaacgcca 1350	00
ttcatggcca tatcaatgat tttctggtgc gtaccgggtt gagaagcggt gtaagtgaac 135	60
tgcagttgcc atgttttacg gcagtgagag cagagatagc gctgatgtcc ggcggtgctt 136	20
ttgccgttac gcaccaccc gtcagtagct gaacaggagg gacagctgat agacacagaa 136	80 .
gccactggag cacctcaaaa acaccatcat acactaaatc agtaagttgg cagcatcacc 137	40
cataattgtg gtttcaaaat cggctccgtc gatactatgt tatacgccaa ctttgaaaac 138	00
aactttgaaa aagctgtttt ctggtattta aggttttaga atgcaaggaa cagtgaattg 138	360
gagttcgtct tgttataatt agcttcttgg ggtatcttta aatactgtag aaaagaggaa 139	920
ggaaataata aatggctaaa atgagaatat caccggaatt gaaaaaactg atcgaaaaat 139	980
accgctgcgt aaaagatacg gaaggaatgt ctcctgctaa ggtatataag ctggtgggag 140	040
aaaatgaaaa cctatattta aaaatgacgg acagccggta taaagggacc acctatgatg 14	100
tggaacggga aaaggacatg atgctatggc tggaaggaaa gctgcctgtt ccaaaggtcc 14	160
tgcactttga acggcatgat ggctggagca atctgctcat gagtgaggcc gatggcgtcc 14	220
tttgctcgga agagtatgaa gatgaacaaa gccctgaaaa gattatcgag ctgtatgcgg 14	280
agtgcatcag gctctttcac tccatcgaca tatcggattg tccctatacg aatagcttag 14	1340
acageegett ageegaattg gattaettae tgaataaega tetggeegat gtggattgeg 14	1400
aaaactggga agaagacact ccatttaaag atccgcgcga gctgtatgat tttttaaaga 14	4460
cggaaaagcc cgaagaggaa cttgtctttt cccacggcga cctgggagac agcaacatct 14	4520
ttgtgaaaga tggcaaagta agtggcttta ttgatcttgg gagaagcggc agggcggaca 1	4580
agtggtatga cattgccttc tgcgtccggt cgatcaggga ggatatcggg gaagaacagt 1	4640
atgtcgagct attttttgac ttactgggga tcaagcctga ttgggagaaa ataaaatatt 1	4700

## WO 2004/063359 PCT/EP2004/000099 151/357

atattttact ggatgaattg ttttagtacc tagatgtggc gcaacgatgc cggcgacaag 14760	
caggagegea eegaettett eegeateaag tgttttgget eteaggeega ggeeeaegge 14820	
aagtatttgg gcaaggggtc gctggtattc gtgcagggca agattcggaa taccaagtac 14880	I
gagaaggacg gccagacggt ctacgggacc gacttcattg ccgataaggt ggattatctg 14940	)
gacaccaagg caccaggcgg gtcaaatcag gaataagggc acattgcccc ggcgtgagtc 15000	)
ggggcaatcc cgcaaggagg gtgaatgaat cggacgtttg accggaaggc atacaggcaa 15060	)
gaactgatcg acgcggggtt ttccgccgag gatgccgaaa ccatcgcaag ccgcaccgtc 15120	D -
atgegtgege ecegegaaac etteeagtee gteggetega tggteeagea agetaeggee 1518	0
aagategage gegacagegt geaactgget eeceetgeee tgeeegegee ateggeegee 1524	0
gtggagcgtt cgcgtcgtct cgaacaggag gcggcaggtt tggcgaagtc gatgaccatc 1530	0
gacacgcgag gaactatgac gaccaagaag cgaaaaaccg ccggcgagga cctggcaaaa 1536	0
caggtcagcg aggccaagca ggccgcgttg ctgaaacaca cgaagcagca gatcaaggaa 1542	0
atgcagettt cettgttega tattgegeeg tggeeggaea egatgegage gatgeeaaac 1548	}0
gacacggccc gctctgccct gttcaccacg cgcaacaaga aaatcccgcg cgaggcgctg 1554	10
caaaacaagg tcattttcca cgtcaacaag gacgtgaaga tcacctacac cggcgtcgag 1560	00
ctgcgggccg acgatgacga actggtgtgg cagcaggtgt tggagtacgc gaagcgcacc 156	60
cctatcggcg agccgatcac cttcacgttc tacgagcttt gccaggacct gggctggtcg 157	20
atcaatggcc ggtattacac gaaggccgag gaatgcctgt cgcgcctaca ggcgacggcg 157	80
atgggettea egteegaeeg egttgggeae etggaategg tgtegetget geaeegette 158	40
cgcgtcctgg accgtggcaa gaaaacgtcc cgttgccagg tcctgatcga cgaggaaatc 159	00
gtcgtgctgt ttgctggcga ccactacacg aaattcatat gggagaagta ccgcaagctg 159	960

tegeegaegg ceegaeggat gttegaetat tteagetege acegggagee gtaeeegete 16020
aagctggaaa ccttccgcct catgtgcgga tcggattcca cccgcgtgaa gaagtggcgc 16080
gagcaggtcg gcgaagcctg cgaagagttg cgaggcagcg gcctggtgga acacgcctgg 16140
gtcaatgatg acctggtgca ttgcaaacgc tagggccttg tggggtcagt tccggctggg 16200
ggttcagcag ccagcgcttt actggcattt caggaacaag cgggcactgc tcgacgcact 16260
tgcttcgctc agtatcgctc gggacgcacg gcgcgctcta cgaactgccg ataaacagag 16320
gattaaaatt gacaattgtg attaaggctc agattcgacg gcttggagcg gccgacgtgc 16380
aggatttccg cgagatccga ttgtcggccc tgaagaaagc tccagagatg ttcgggtccg 16440
tttacgagca cgaggagaaa aagcccatgg aggcgttcgc tgaacggttg cgagatgccg 16500
tggcattcgg cgcctacatc gacggcgaga tcattgggct gtcggtcttc aaacaggagg 16560
acggccccaa ggacgctcac aaggcgcate tgtccggcgt tttcgtggag cccgaacagc 16620
gaggccgagg ggtcgccggt atgctgctgc gggcgttgcc ggcgggttta ttgctcgtga 16680
tgategteeg acagatteea aegggaatet ggtggatgeg eatetteate eteggegeae 16740
ttaatatttc gctattctgg agcttgttgt ttatttcggt ctaccgcctg ccgggcgggg 16800
tcgcggcgac ggtaggcgct gtgcagccgc tgatggtcgt gttcatctct gccgctctgc 16860
taggtagccc gatacgattg atggcggtcc tgggggctat ttgcggaact gcgggcgtgg 16920
cgctgttggt gttgacacca aacgcagcgc tagatectgt eggegtegea gegggeetgg 16980
cgggggcggt ttccatggcg ttcggaaccg tgctgacccg caagtggcaa cctcccgtgc 17040
ctctgctcac ctttaccgcc tggcaactgg cggccggagg acttctgctc gttccagtag 17100
ctttagtgtt tgatccgcca atcccgatgc ctacaggaac caatgttctc ggcctggcgt 17160
ggctcggcct gatcggagcg ggtttaacct acttcctttg gttccggggg atctcgcgac 17220

tegaacetae agttgtttee ttactggget tteteagece cagatetggg gtegateage 1'	7280
cggggatgca tcaggccgac agtcggaact tcgggtcccc gacctgtacc attcggtgag 1	7340
caatggatag gggagttgat atcgtcaacg ttcacttcta aagaaatagc gccactcagc 1	7400
ttcctcagcg gctttatcca gcgatttcct attatgtcgg catagttctc aagatcgaca 1	7460
gcctgtcacg gttaagcgag aaatgaataa gaaggctgat aattcggatc tctgcgaggg 1	7520
agatgatatt tgatcacagg cagcaacgct ctgtcatcgt tacaatcaac atgctaccct 1	L7580
ccgcgagatc atccgtgttt caaacccggc agcttagttg ccgttcttcc gaatagcatc 1	L7640
ggtaacatga gcaaagtetg eegeettaca aeggetetee egetgaegee gteeeggaet 1	17700
gatgggctgc ctgtatcgag tggtgatttt gtgccgagct gccggtcggg gagctgttgg 1	17760
ctggctggtg gcaggatata ttgtggtgta aacaaattga cgcttagaca acttaataac :	17820
acattgcgga cgtttttaat gtactggggt ggtttttctt ttcaccagtg agacgggcaa	17880
cagctgattg cccttcaccg cctggccctg agagagttgc agcaagcggt ccacgctggt	17940
ttgccccagc aggcgaaaat cctgtttgat ggtggttccg aaatcggcaa aatcccttat	18000
aaatcaaaag aatagcccga gatagggttg agtgttgttc cagtttggaa caagagtcca	18060
ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc	18120
ccactacgtg aaccatcacc caaatcaagt tttttggggt cgaggtgccg taaagcacta	18180
aatcggaacc ctaaagggag cccccgattt agagcttgac ggggaaagcc ggcgaacgtg	18240
gcgagaaagg aagggaagaa agcgaaagga gcgggcgcca ttcaggctgc gcaactgttg	18300
ggaagggcga tcggtgcggg cctcttcgct attacgccag ctggcgaaag ggggatgtgc	18360
tgcaaggcga ttaagttggg taacgccagg gttttcccag tcacgacgtt gtaaaacgac	18420
ggccagtgaa ttcgagctcg gtacccggg	18449

<210> 41 <211> 18449 <212> DNA <213> Artificial <220> <223> Plasmid <220> <221> misc_feature <222> (3471)..(3471) <223> n is a, c, g, or t <220> <221> misc_feature <222> (3679)..(3679) <223> n is a, c, g, or t <220> <221> misc_feature <222> (3770)..(3770) <223> n is a, c, g, or t <400> 41 gatetttega caetgaaata egtegageet geteegettg gaageggega ggageetegt 60 cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 120 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct 180 cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240 tcgggaagcc agcgactggt gacctccagc gtccctttaa ggctgccaac agctttctca 300 gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg 360 420 gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg

atattcttcg actctgtatt atagataaga tgatgaggaa ttggaggtag catagcttca

480

## WO 2004/063359 PCT/EP2004/000099 155/357

tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc	540
aatattctca agtatctcga gtttgaactt attccctgtg aaccttttat tcaccaatga	600
gcattggaat gaacatgaat ctgaggactg caatcgccat gaggttttcg aaatacatcc	660
ggatgtcgaa ggcttggggc acctgcgttg gttgaattta gaacgtggca ctattgatca	720
tccgatagct ctgcaaaggg cgttgcacaa tgcaagtcaa acgttgctag cagttccagg	780
tggaatgtta tgatgagcat tgtattaaat caggagatat agcatgatct ctagttagct	840
caccacaaaa gtcagacggc gtaaccaaaa gtcacacaac acaagctgta aggatttcgg	900
cacggctacg gaagacggag aagccacctt cagtggactc gagtaccatt taattctatt	960
tgtgtttgat cgagacctaa tacagcccct acaacgacca tcaaagtcgt atagctacca	1020
gtgaggaagt ggactcaaat cgacttcagc aacatctcct ggataaactt taagcctaaa	1080
ctatacagaa taagataggt ggagagctta taccgagctc ccaaatctgt ccagatcatg	1140
gttgaccggt gcctggatct tcctatagaa tcatccttat tcgttgacct agctgattct	1200
ggagtgaccc agagggtcat gacttgagcc taaaatccgc cgcctccacc atttgtagaa	1260
aaatgtgacg aactcgtgag ctctgtacag tgaccggtga ctctttctgg catgcggaga	1320
gacggacgga cgcagagaga agggctgagt aataagccac tggccagaca gctctggcgg .	1380
ctctgaggtg cagtggatga ttattaatcc gggaccggcc gcccctccgc cccgaagtgg	1440
aaaggctggt gtgcccctcg ttgaccaaga atctattgca tcatcggaga atatggagct	1500
tcatcgaatc accggcagta agcgaaggag aatgtgaagc caggggtgta tagccgtcgg	1560
cgaaatagca tgccattaac ctaggtacag aagtccaatt gcttccgatc tggtaaaaga	1620
ttcacgagat agtaccttct ccgaagtagg tagagcgagt acccggcgcg taagctccct	1680
aattggccca tccggcatct gtagggcgtc caaatatcgt gcctctcctg ctttgcccgg	1740

### WO 2004/063359 PCT/EP2004/000099 156/357

tgtatgaaac cggaaaggcc gctcaggagc tggccagcgg cgcagaccgg gaacacaagc 1	1800
tggcagtcga cccatccggt gctctgcact cgacctgctg aggtccctca gtccctggta 1	1860
ggcagctttg ccccgtctgt ccgcccggtg tgtcggcggg gttgacaagg tcgttgcgtc 1	L920
agtecaacat ttgttgecat atttteetge tetececace agetgetett ttetttete 1	1980
tttcttttcc catcttcagt atattcatct tcccatccaa gaacctttat ttcccctaag 2	2040
taagtacttt gctacatcca tactccatcc ttcccatccc ttattccttt gaacctttca 2	2100
gttcgagett teccaettea tegeagettg actaacaget acceegettg ageagacate	2160
accatgcctg aactcaccgc gacgtctgtc gagaagtttc tgatcgaaaa gttcgacagc	2220
gtctccgacc tgatgcagct ctcggagggc gaagaatctc gtgctttcag cttcgatgta	2280
ggagggcgtg gatatgtcct gcgggtaaat agctgcgccg atggtttcta caaagatcgt	2340
tatgtttatc ggcactttgc atcggccgcg ctcccgattc cggaagtgct tgacattggg	2400
gaattcagcg agagcctgac ctattgcatc tcccgccgtg cacagggtgt cacgttgcaa	2460
gacctgcctg aaaccgaact gcccgctgtt ctgcagccgg tcgcggaggc catggatgcg	2520
atcgctgcgg ccgatcttag ccagacgagc gggttcggcc cattcggacc gcaaggaatc	2580
ggtcaataca ctacatggcg tgatttcata tgcgcgattg ctgatcccca tgtgtatcac	2640
tggcaaactg tgatggacga caccgtcagt gcgtccgtcg cgcaggctct cgatgagctg	2700
atgetttggg cegaggaetg eccegaagte eggeaceteg tgeaegegga ttteggetee	2760
aacaatgtcc tgacggacaa tggccgcata acagcggtca ttgactggag cgaggcgatg	2820
ttcggggatt cccaatacga ggtcgccaac atcttcttct ggaggccgtg gttggcttgt	2880
atggagcagc agacgcgcta cttcgagcgg aggcatccgg agcttgcagg atcgccgcgg	2940
ctccgggcgt atatgctccg cattggtctt gaccaactct atcagagctt ggttgacggc	3000

## WO 2004/063359 PCT/EP2004/000099 157/357

•						
aatttegatg a	tgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtcćg	atccggagcc	3060
gggactgtcg g	ggcgtacaca	aatcgcccgc	agaagcgcgg	ccgtctggac	cgatggctgt	3120
gtagaagtac t	tcgccgatag	tggaaaccga	cgccccagca	ctcgtccgag	ggcaaaggaa	3180
tagagtagat (	gccgaccgcg	ggatcgatcc	acttaacgtt	actgaaatca	tcaaacagct	3240
tgacgaatct	ggatataaga	tcgttggtgt	cgatgtcagc	tccggagttg	agacaaatgg	3300
tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatagc	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cagctcatct	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggeteeg	3480
gcgaagagaa	gaatagctta	gcagagctat	: tttcattttc	: gggagacgag	g atcaagcaga	3540
tcaacggtcg	tcaagagacc	: tacgagacts	g aggaatccgc	tettggeted	e acgcgactat	3600
atatttgtct	ctaattgtac	: tttgacatge	c tectettett	t tactctgata	a gcttgactat	3660
gaaaattccg	tcaccageno	ctgggttcg	c aaagataat	t gcatgtttc	t tccttgaact	3720
ctcaagccta	caggacacac	e attcatcgt	a ggtataaac	c tcgaaatca	n ttcctactaa	3780
gatggtatac	aatagtaac	c atgcatggt	t gcctagtga	a tgctccgta	a cacccaatac	3840
gccggccgaa	acttttta	c aactctcct	a tgagtcgtt	t acccagaat	g cacaggtaca	3900
cttgtttaga	ggtaatcct	t ctttctago	t agaagteet	c gtgtactgt	g taagegeeca	3960
ctccacatct	ccactcgac	c tgcaggcat	g caaagcttg	ga gattaaaat	a gataaggaaa	4020
agaaagtgaa	a aagaaatto	g gaagcatgg	ge acattette	ct ttttataaa	at acatgcctga	4080
ctttctttt	t ccatcgata	ıt gatatatgo	ca tatgataga	at atacaagca	aa tcttcttcaa	4140
ggagtttga	a attttgtco	ct ccaggagc	aa aaaaaagt	tt ttttttata	ac atgtttgtac	<b>4200</b>
acaagaata	g ttaccaat	tt gctttggt	ct tacgtgct	gc aagtttat	at cgttttcaat	4260

## WO 2004/063359 PCT/EP2004/000099 158/357

ttctttgtct ttacattttc tttgtccttt atctttcctc atttagtctt tgggagaatt 4	<b>1</b> 320
aggaaaaggg agcggaaagg taagaaatgc ttgcgtattt tactaattcg gcaaacatcc	4380
aatttggcaa acagcagcct gtgcaacgct ctcgagatga cagtatcttt gattacactc	4440
taaatetega tgaceegace aaaaagageg aacaaagaaa taatettgtg cattegaata	4500
tgatggaaga tttttcccc cttattctaa atgttgacat agcgtgtatg ttatataaac	4560
aaaaagaaat tgtacaaact ttcttttctt ctctttttat tttatctcta tgctgtcgaa	4620
gctgcagtca atcagcgtca aggcccgccg cgttgaacta gcccgcgaca tcacgcggcc	4680
caaagtetge etgeatgete ageggtgete gttagttegg etgegagtgg eageaceaea	4740
gacagaggag gcgctgggaa ccgtgcaggc tgccggcgcg ggcgatgagc acagcgccga	4800
tgtagcactc cagcagcttg accgggctat cgcagagcgt cgtgcccggc gcaaacggga	4860
gcagctgtca taccaggctg ccgccattgc agcatcaatt ggcgtgtcag gcattgccat	4920
cttcgccacc tacctgagat ttgccatgca catgaccgtg ggcggcgcag tgccatgggg	4980
tgaagtggct ggcactctcc tcttggtggt tggtggcgcg ctcggcatgg agatgtatgc	5040
ccgctatgca cacaaagcca tctggcatga gtcgcctctg ggctggctgc tgcacaagag	5100
ccaccacaca cctcgcactg gaccctttga agccaacgac ttgtttgcaa tcatcaatgg	5160
actgeeegee atgeteetgt gtacetttgg ettetggetg eeeaaegtee tgggggegge	5220
ctgctttgga gcggggctgg gcatcacgct atacggcatg gcatatatgt ttgtacacga	5280
tggcctggtg cacaggcgct ttcccaccgg gcccatcgct ggcctgccct acatgaagcg	5340
cctgacagtg gcccaccagc tacaccacag cggcaagtac ggtggcgcgc cctggggtat	5400
gttcttgggt ccacaggagc tgcagcacat tccaggtgcg gcggaggagg tggagcgact	5460
ggtcctggaa ctggactggt ccaagcgggc gattgtgact gatagcgaga ctctgggtcg	5520

# WO 2004/063359 PCT/EP2004/000099 159/357

atgttatctg cctcaacaat ggcttagaaa agaagaaaca gaacaaatac agcaaggcaa	5580
	5640
	5700
cggtgtacga gctgcttgcc aagtatatgc tgcaattgga tctgtactca agcagcagaa	5760
gacaacatat cctacaagag ctcatctaaa aggaagcgaa cgtgccaaga ttgctctgtt	5820
gagtgtatac aacctctatc aatctgaaga caagcctgtg gctctccgtc aagctagaaa	5880
gattaagagt ttttttgttg attagtgaat ttttgtttta tttatgtctg atagttcaat	5940
aaagagacaa cacatacaat ataaaatcat tgtctttaaa tgttaattta gtagagtgta	6000
aageetgeat tttttttgta egeataaaea atgaatteae eeegettetg gtttttaaat	6060
aattatgtca aactagggaa aattettttt tttetetteg ttetttttt ggettgttgt	6120
ggagtcacag gcttgtcttc agattgatag aggttgtata cactcaacag agcaatcttg	6180
gcacgttcgc ttccttttag atgagctctt gtaggatatg ttgtcttctg ctgcttgagt	6240
acagatccaa ttgcagcata tacttggcaa gcagctcgta caccgccttg acagtttgcc	6300
ggcaacttgt caatgccctt cttagctctc accatgatag cgtctgcctt tcctacaagc	6360
ttcagagaca agcccaacag tctttgatca cctaggctac gggcgttgcc ttgctgtatt	6420
tgttctgttt cttcttttct aagccattgt tgaggcagat aacatcgacc caacatcctc	6480
gagccatact acagcataaa aggatacgtt ttctttaaca gaaatttacc cttttgttat	6540
cagcacatac aaaaaaaaag aaatttaaga tgagtaggac ttccattctc tcaaaaattt	6600
tattcaatcc ataaatgaat tatttttgga caaaaaagaa agattatgcc tgattttctc	6660
tattttttt tttttacaa ctccaccaat actttctagc ccagcttggc gtaatcatgg	6720
tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc	6780

#### WO 2004/063359 PCT/EP2004/000099 160/357

ggaagcataa	agtgtaaagc	ctggggtgcc	taatgagtga	gctaactcac	attaattgcg	6840
ttgcgctcac	tgcccgcttt	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	6900
ggccaacgcg	cggggagagg	cggtttgcgt	attgggccaa	agacaaaagg	gcgacattca	6960
accgattgag	ggagggaagg	taaatattga	cggaaattat	tcattaaagg	tgaattatca	7020
ccgtcaccga	cttgagccat	ttgggaatta	gagccagcaa	aatcaccagt	agcaccatta	7080
ccattagcaa	ggccggaaac	gtcaccaatg	aaaccatcga	tagcagcacc	gtaatcagta	7140
gcgacagaat	caagtttgcc	tttagcgtca	gactgtagcg	cgttttcatc	ggcattttcg	7200
gtcatagccc	ccttattagc	gtttgccatc	ttttcataat	caaaatcacc	ggaaccagag	7260
ccaccaccgg	aaccgcctcc	ctcagagccg	ccaccctcag	aaccgccacc	: ctcagágcca	7320
ccaccctcag	agccgccacc	agaaccacca	ccagagccgc	: cgccagcatt	: gacaggaggc	7380
ccgatctagt	: aacatagatg	acaccgcgcg	g cgataattta	a tcctagtttg	g cgcgctatat	7440
tttgttttci	: atcgcgtatt	aaatgtataa	ttgcgggact	ctaatcataa	a aaacccatct	7500
cataaataa	gtcatgcatt	: acatgttaat	: tattacatgo	c ttaacgtaat	tcaacagaaa	7560
ttatatgata	a atcatcgcaa	a gaccggcaac	e aggattcaa	t cttaagaaa	c tttattgcca	7620
aatgtttga	a cgatcgggg	a tcatccgggt	t ctgtggcgg	g aactccacg	a aaatatccga	7680
acgcagcaa	g atatcgcgg	t gcatctcgg	t cttgcctgg	g cagtcgccg	c cgacgccgtt	7740
gatgtggac	g cegggeeeg	a tcatattgt	c gctcaggat	c gtggcgttg	t gettgtegge	7800
cgttgctgt	c gtaatgata	t cggcacctt	c gaccgcctg	t teegeagag	a tecegtggge	7860
gaagaacto	c agcatgaga	t ccccgcgct	g gaggatcat	c cagccggcg	t cccggaaaac	7920
gattccgaa	g cccaacctt	t catagaagg	c ggcggtgga	a tcgaaatct	c gtgatggcag	7980
gttgggcgt	c gettggteg	g tcatttcga	a ccccagagt	c ccgctcaga	a gaactcgtca	8040

#### WO 2004/063359 PCT/EP2004/000099 161/357

agaaggcgat agaaggcgat gcgctgcgaa tcgggagcgg cgataccgta aagcacgagg	8100
aagcggtcag cccattcgcc gccaagctct tcagcaatat cacgggtagc caacgctatg	8160
tectgatage ggteegeeae acceageegg ceacagtega tgaateeaga aaageggeea	8220
ttttccacca tgatattcgg caagcaggca tcgccatggg tcacgacgag atcatcgccg	8280
tegggeatge gegeettgag cetggegaac agtteggetg gegegageee etgatgetet	8340
tegtecagat cateetgate gacaagaceg gettecatee gagtaegtge tegetegatg	8400
cgatgtttcg cttggtggtc gaatgggcag gtagccggat caagcgtatg cagccgccgc	8460
attgcatcag ccatgatgga tactttctcg gcaggagcaa ggtgagatga caggagatcc	8520
tgccccggca cttcgcccaa tagcagccag tcccttcccg cttcagtgac aacgtcgagc	8580
acagctgcgc aaggaacgcc cgtcgtggcc agccacgata gccgcgctgc ctcgtcctgc	8640
agttcattca gggcaccgga caggtcggtc ttgacaaaaa gaaccgggcg cccctgcgct	8700
gacageegga acaeggegge ateagageag eegattgtet gttgtgeeca gteatageeg	8760
aatagcctct ccacccaagc ggccggagaa cctgcgtgca atccatcttg ttcaatcatg	8820
cgaaacgatc cagatccggt gcagattatt tggattgaga gtgaatatga gactctaatt	8880
ggataccgag gggaatttat ggaacgtcag tggagcattt ttgacaagaa atatttgcta	8940
gctgatagtg accttaggcg acttttgaac gcgcaataat ggtttctgac gtatgtgctt	9000
agctcattaa actccagaaa cccgcggctg agtggctcct tcaacgttgc ggttctgtca	9060
gttccaaacg taaaacggct tgtcccgcgt catcggcggg ggtcataacg tgactccctt	9120
aatteteege teatgateag attgtegttt eeegeettea gtttaaacta teagtgtttg	9180
acaggatata ttggcgggta aacctaagag aaaagagcgt ttattagaat aatcggatat	9240
ttaaaagggc gtgaaaaggt ttatccgttc gtccatttgt atgtgcatgc caaccacagg	9300

### WO 2004/063359 PCT/EP2004/000099 162/357

gttccccaga	tetggegeeg	gccagcgaga	cgagcaagat	tggccgccgc	ccgaaacgat	9360
ccgacagcgc	gcccagcaca	ggtgcgcagg	caaattgcac	caacgcatac	agcgccagca	9420
gaatgccata	gtgggcggtg	acgtcgttcg	agtgaaccag	atcgcgcagg	aggeceggea	9480
gcaccggcat	aatcaggccg	atgccgacag	cgtcgagcgc	gacagtgctc	agaattacga	9540
tcaggggtat	gttgggtttc	acgtctggcc	tccggaccag	cctccgctgg	tccgattgaa	9600
cgcgcggatt	ctttatcact	gataagttgg	tggacatatt	atgtttatca	gtgataaagt	9660
gtcaagcatg	acaaagttgc	agccgaatac	agtgatccgt	gccgccctgg	acctgttgaa	9720
cgaggtcggc	: gtagacggto	tgacgacacg	caaactggcg	gaacggttgg	gggttcagca	9780
gccggcgctt	: tactggcact	: tcaggaacaa	gegggegetg	g ctcgacgcac	: tggccgaagc	9840
catgctggcg	g gagaatcata	a cgcattcggt	geegagagee	gacgacgact	ggcgctcatt	9900
tctgatcgg	g aatgeeegea	a gcttcaggca	a ggcgctgcto	geetacege(	g atggcgcgcg	9960
catccatgo	c ggcacgcga	cgggcgcac	c gcagatgga	a acggccgac	g cgcagcttcg	10020
cttcctctg	c gaggcgggt	t tttcggccg	g ggacgccgt	c aatgcgctga	a tgacaatcag	10080
ctacttcac	t gttggggcc	g tgcttgagg	a gcaggccgg	c gacagegat	g ccggcgagcg	10140
cggcggcac	· c gttgaacag	g ctccgctct	c gccgctgtt	g cgggccgcg	a tagacgcctt	10200
cgacgaago	ec ggtccggac	g cagcgttcg	a gcagggact	c gcggtgatt	g tcgatggatt	10260
ggcgaaaag	g aggetegtt	g tcaggaacg	t tgaaggacc	g agaaagggt	g acgattgatc	10320
aggaccgct	g ccggagcgc	a acccactca	c tacagcaga	ıg ccatgtaga	c aacatcccct	10380
ccccttt	cc accgcgtca	ag acgcccgta	g cagcccgct	a cgggctttt	t catgecetge	10440
cctagcgto	cc aagcetead	eg geegegete	eg geetetete	gg cggccttct	g gegetettee	10500
gcttcctc	ge teaetgae	tc gctgcgcto	eg gtegttegg	ge tgeggegag	gc ggtatcagct	10560

### WO 2004/063359 PCT/EP2004/000099 163/357

cactcaaagg cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg 10	620
tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 10	680
cataggetee geeceetga egageateae aaaaategae geteaagtea gaggtggega 10	740
aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct 10	0800
cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg 10	0860
gcgcttttcc gctgcataac cctgcttcgg ggtcattata gcgatttttt cggtatatcc 10	0920
atcettttte geacgatata caggattttg ccaaagggtt cgtgtagact tteettggtg 1	0980
tatccaacgg cgtcagccgg gcaggatagg tgaagtaggc ccacccgcga gcgggtgttc 1	1040
cttcttcact gtcccttatt cgcacctggc ggtgctcaac gggaatcctg ctctgcgagg 1	.1100
ctggccggct accgccggcg taacagatga gggcaagcgg atggctgatg aaaccaagcc 1	L1160
aaccaggaag ggcagcccac ctatcaaggt gtactgcctt ccagacgaac gaagagcgat 1	L1220
tgaggaaaag gcggcggcgg ccggcatgag cctgtcggcc tacctgctgg ccgtcggcca 1	11280
gggctacaaa atcacgggcg tcgtggacta tgagcacgtc cgcgagctgg cccgcatcaa 1	11340
tggcgacctg ggccgcctgg gcggcctgct gaaactctgg ctcaccgacg acccgcgcac :	11400
ggcgcggttc ggtgatgcca cgatcctcgc cctgctggcg aagatcgaag agaagcagga	11460
cgagcttggc aaggtcatga tgggcgtggt ccgcccgagg gcagagccat gactttttta	11520
gccgctaaaa cggccggggg gtgcgcgtga ttgccaagca cgtccccatg cgctccatca	11580
agaagagcga cttcgcggag ctggtgaagt acatcaccga cgagcaaggc aagaccgagc	11640
gcctttgcga cgctcaccgg gctggttgcc ctcgccgctg ggctggcggc cgtctatggc	11700
cctgcaaacg cgccagaaac gccgtcgaag ccgtgtgcga gacaccgcgg ccgccggcgt	11760
tgtggatacc tcgcggaaaa cttggccctc actgacagat gaggggcgga cgttgacact	11820

# WO 2004/063359 PCT/EP2004/000099 164/357

tgaggggccg actcacccgg cgcggcgttg acagatgagg ggcaggctcg atttcggccg 11880	
gcgacgtgga gctggccagc ctcgcaaatc ggcgaaaacg cctgatttta cgcgagtttc 11940	
ccacagatga tgtggacaag cctggggata agtgccctgc ggtattgaca cttgaggggc 12000	
gegactactg acagatgagg ggegegatee ttgacaettg aggggeagag tgetgacaga 12060	
tgaggggggc acctattgac atttgagggg ctgtccacag gcagaaaatc cagcatttgc 12120	
aagggtttcc gcccgttttt cggccaccgc taacctgtct tttaacctgc ttttaaacca 12180	
atatttataa accttgtttt taaccaggge tgegeeetgt gegegtgaee gegeaegeeg 12240	
aaggggggtg ccccccttc tcgaaccctc ccggcccgct aacgcgggcc tcccatcccc 12300	
ccaggggctg cgccctcgg ccgcgaacgg cctcacccca aaaatggcag cgctggcagt 12360	
ccttgccatt gccgggatcg gggcagtaac gggatgggcg atcagcccga gcgcgacgcc 12420	
cggaagcatt gacgtgccgc aggtgctggc atcgacattc agcgaccagg tgccgggcag 12480	
tgagggegge ggeetgggtg geggeetgee etteaetteg geegtegggg eatteaegga 12540	
cttcatggcg gggccggcaa tttttacctt gggcattctt ggcatagtgg tcgcgggtgc 12600	
cgtgctcgtg ttcgggggtg cgataaaccc agcgaaccat ttgaggtgat aggtaagatt 12660	
ataccgaggt atgaaaacga gaattggacc tttacagaat tactctatga agcgccatat 12720	
ttaaaaagct accaagacga agaggatgaa gaggatgagg aggcagattg ccttgaatat 12780	
attgacaata ctgataagat aatatatctt ttatatagaa gatatcgccg tatgtaagga 12840	ŀ
tttcaggggg caaggcatag gcagcgcgct tatcaatata tctatagaat gggcaaagca 12900	)
taaaaacttg catggactaa tgcttgaaac ccaggacaat aaccttatag cttgtaaatt 12960	)
ctatcataat tgggtaatga ctccaactta ttgatagtgt tttatgttca gataatgccc 13020	)
gatgactttg tcatgcagct ccaccgattt tgagaacgac agcgacttcc gtcccagccg 13080	Э

#### WO 2004/063359 PCT/EP2004/000099 165/357

tgccaggtgc tgcctcagat tcaggttatg ccgctcaatt cgctgcgtat atcgcttgct 1314	10
gattacgtgc agctttccct tcaggcggga ttcatacagc ggccagccat ccgtcatcca 1320	00
tatcaccacg tcaaagggtg acagcaggct cataagacgc cccagcgtcg ccatagtgcg 1326	60
ttcaccgaat acgtgcgcaa caaccgtctt ccggagactg tcatacgcgt aaaacagcca 133	20
gcgctggcgc gatttagccc cgacatagcc ccactgttcg tccatttccg cgcagacgat 133	80
gacgtcactg cccggctgta tgcgcgaggt taccgactgc ggcctgagtt ttttaagtga 134	40
cgtaaaatcg tgttgaggcc aacgcccata atgcgggctg ttgcccggca tccaacgcca 135	00
ttcatggcca tatcaatgat tttctggtgc gtaccgggtt gagaagcggt gtaagtgaac 135	60
tgcagttgcc atgttttacg gcagtgagag cagagatagc gctgatgtcc ggcggtgctt 136	520
ttgccgttac gcaccacccc gtcagtagct gaacaggagg gacagctgat agacacagaa 136	580
gccactggag cacctcaaaa acaccatcat acactaaatc agtaagttgg cagcatcacc 13	740
cataattgtg gtttcaaaat cggctccgtc gatactatgt tatacgccaa ctttgaaaac 13	800
aactttgaaa aagctgtttt ctggtattta aggttttaga atgcaaggaa cagtgaattg 13	860
gagttegtet tgttataatt agettettgg ggtatettta aataetgtag aaaagaggaa 13	920
ggaaataata aatggctaaa atgagaatat caccggaatt gaaaaaactg atcgaaaaat 13	980
accgctgcgt aaaagatacg gaaggaatgt ctcctgctaa ggtatataag ctggtgggag 14	.040
aaaatgaaaa cctatattta aaaatgacgg acagccggta taaagggacc acctatgatg 14	100
tggaacggga aaaggacatg atgctatggc tggaaggaaa gctgcctgtt ccaaaggtcc 14	1160
tgcactttga acggcatgat ggctggagca atctgctcat gagtgaggcc gatggcgtcc 14	4220
tttgctcgga agagtatgaa gatgaacaaa gccctgaaaa gattatcgag ctgtatgcgg 1	4280
agtgcatcag gctctttcac tccatcgaca tatcggattg tccctatacg aatagcttag 1	4340

# WO 2004/063359 PCT/EP2004/000099 166/357

acagccgctt agccgaattg gattacttac tgaataacga tctggccgat gtggattgcg 14400	
aaaactggga agaagacact ccatttaaag atccgcgcga gctgtatgat tttttaaaga 14460	
cggaaaagcc cgaagaggaa cttgtctttt cccacggcga cctgggagac agcaacatct 14520	
ttgtgaaaga tggcaaagta agtggcttta ttgatcttgg gagaagcggc agggcggaca 14580	
agtggtatga cattgccttc tgcgtccggt cgatcaggga ggatatcggg gaagaacagt 14640	
atgtcgagct attttttgac ttactgggga tcaagcctga ttgggagaaa ataaaatatt 14700	
atattttact ggatgaattg ttttagtacc tagatgtggc gcaacgatgc cggcgacaag 14760	)
caggagegea eegaettett eegeateaag tgttttgget eteaggeega ggeeeaegge 14820	)
aagtatttgg gcaaggggtc gctggtattc gtgcagggca agattcggaa taccaagtac 14880	)
gagaaggacg gccagacggt ctacgggacc gacttcattg ccgataaggt ggattatctg 14940	)
gacaccaagg caccaggegg gtcaaatcag gaataaggge acattgeece ggegtgagte 15000	0
ggggcaatcc cgcaaggagg gtgaatgaat cggacgtttg accggaaggc atacaggcaa 15060	0
gaactgatcg acgcggggtt ttccgccgag gatgccgaaa ccatcgcaag ccgcaccgtc 1512	0
atgcgtgcgc cccgcgaaac cttccagtcc gtcggctcga tggtccagca agctacggcc 1518	0
aagatcgage gegacagegt geaactgget eeeeetgeee tgeeegegee ateggeegee 1524	.O
gtggagcgtt cgcgtcgtct cgaacaggag gcggcaggtt tggcgaagtc gatgaccatc 1530	0
gacacgcgag gaactatgac gaccaagaag cgaaaaaccg ccggcgagga cctggcaaaa 1536	50
caggtcagcg aggccaagca ggccgcgttg ctgaaacaca cgaagcagca gatcaaggaa 1542	30
atgcagettt cettgttega tattgegeeg tggeeggaea egatgegage gatgeeaaac 1548	30
gacacggccc gctctgccct gttcaccacg cgcaacaaga aaatcccgcg cgaggcgctg 1554	40
caaaacaagg tcattttcca cgtcaacaag gacgtgaaga tcacctacac cggcgtcgag 156	00

### WO 2004/063359 PCT/EP2004/000099 167/357

ctgcgggccg acgatgacga actggtgtgg cagcaggtgt tggagtacgc gaagcgcacc 1	5660
cctatcggcg agccgatcac cttcacgttc tacgagcttt gccaggacct gggctggtcg 1	.5720
atcaatggcc ggtattacac gaaggccgag gaatgcctgt cgcgcctaca ggcgacggcg 1	.5780
atgggettea egteegaeeg egttgggeae etggaategg tgtegetget geaeegette 1	L5840
cgcgtcctgg accgtggcaa gaaaacgtcc cgttgccagg tcctgatcga cgaggaaatc 1	L5900
gtcgtgctgt ttgctggcga ccactacacg aaattcatat gggagaagta ccgcaagctg 1	15960
tegeegaegg eeegaeggat gttegaetat tteagetege aeegggagee gtaeeegete 1	16020
aagctggaaa cetteegeet catgtgegga teggatteea eeegegtgaa gaagtggege (	16080
gagcaggtcg gcgaagcctg cgaagagttg cgaggcagcg gcctggtgga acacgcctgg	16140
gtcaatgatg acctggtgca ttgcaaacgc tagggccttg tggggtcagt tccggctggg	16200
ggttcagcag ccagcgcttt actggcattt caggaacaag cgggcactgc tcgacgcact	16260
tgcttcgctc agtatcgctc gggacgcacg gcgcgctcta cgaactgccg ataaacagag	16320
gattaaaatt gacaattgtg attaaggctc agattcgacg gcttggagcg gccgacgtgc	16380
aggatttccg cgagatccga ttgtcggccc tgaagaaagc tccagagatg ttcgggtccg	16440
tttacgagca cgaggagaaa aagcccatgg aggcgttcgc tgaacggttg cgagatgccg	16500
tggcattcgg cgcctacatc gacggcgaga tcattgggct gtcggtcttc aaacaggagg	16560
acggccccaa ggacgctcac aaggcgcatc tgtccggcgt tttcgtggag cccgaacagc	16620
gaggccgagg ggtcgccggt atgctgctgc gggcgttgcc ggcgggttta ttgctcgtga	16680
tgatcgtccg acagattcca acgggaatct ggtggatgcg catcttcatc ctcggcgcac	16740
ttaatatttc gctattctgg agcttgttgt ttatttcggt ctaccgcctg ccgggcgggg	16800
tegeggegae ggtaggeget gtgeageege tgatggtegt gtteatetet geegetetge	16860

#### WO 2004/063359 PCT/EP2004/000099 168/357

taggtagccc gatacgattg atggcggtcc tgggggctat ttgcggaact gcgggcgtgg 16	5920
taggtagccc gatacgattg atggcggtee tggggggetae toggggants 5 50005.55	
cgctgttggt gttgacacca aacgcagcgc tagatcctgt cggcgtcgca gcgggcctgg 16	6980
egggggeggt ttecatggeg tteggaaceg tgetgaeeeg caagtggeaa eeteeegtge 17	7040
ctctgctcac ctttaccgcc tggcaactgg cggccggagg acttctgctc gttccagtag 1'	7100
ctttagtgtt tgatccgcca atcccgatgc ctacaggaac caatgttctc ggcctggcgt 1	7160
ggctcggcct gatcggagcg ggtttaacct acttcctttg gttccggggg atctcgcgac 1	7220
togaacotac agttgtttcc ttactgggct ttctcagccc cagatctggg gtcgatcagc 1	7280
cggggatgca tcaggccgac agtcggaact tcgggtcccc gacctgtacc attcggtgag 1	.7340
caatggatag gggagttgat atcgtcaacg ttcacttcta aagaaatagc gccactcagc 1	L7400
ttcctcagcg gctttatcca gcgatttcct attatgtcgg catagttctc aagatcgaca 1	17460
gcctgtcacg gttaagcgag aaatgaataa gaaggctgat aattcggatc tctgcgaggg 1	17520
agatgatatt tgatcacagg cagcaacgct ctgtcatcgt tacaatcaac atgctaccct	17580
ccgcgagatc atccgtgttt caaacccggc agcttagttg ccgttcttcc gaatagcatc	17640
ggtaacatga gcaaagtctg ccgccttaca acggctctcc cgctgacgcc gtcccggact	17700
gatgggctgc ctgtatcgag tggtgatttt gtgccgagct gccggtcggg gagctgttgg	17760
ctggctggtg gcaggatata ttgtggtgta aacaaattga cgcttagaca acttaataac	17820
acattgcgga cgtttttaat gtactggggt ggtttttctt ttcaccagtg agacgggcaa	17880
cagetgattg ecetteaceg cetggeeetg agagagttge ageaageggt ecaegetggt	17940
ttgccccagc aggcgaaaat cctgtttgat ggtggttccg aaatcggcaa aatcccttat	18000
aaatcaaaag aatagcccga gatagggttg agtgttgttc cagtttggaa caagagtcca	18060
ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc	18120

ccactacgtg aaccatcacc caaatcaagt tittiggggt cgaggtgccg taaagcacta 18180
aatcggaacc ctaaagggag cccccgattt agagcttgac ggggaaagcc ggcgaacgtg 18240
gcgagaaagg aagggaagaa agcgaaagga gcgggcgcca ttcaggctgc gcaactgttg 18300
ggaagggcga tcggtgcggg cctcttcgct attacgccag ctggcgaaag ggggatgtgc 18360
tgcaaggcga ttaagttggg taacgccagg gttttcccag tcacgacgtt gtaaaacgac 18420
ggccagtgaa ttcgagctcg gtacccggg : Issaeccggg Issaeccgg Issaeccggg Issaeccggg Issaeccggg Issaeccggg Issaeccggg Issaeccgg Issaeccggg Issaeccggg Issaeccggg Issaeccggg Issaeccggg Issaeccgg Issaeccggg Issaeccgg Issae

<210> 42

<211> 17593

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 42

ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60

aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg

# WO 2004/063359 PCT/EP2004/000099 170/357

aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac	180
ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc	240
cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga	300
caageetggg gataagtgee etgeggtatt gacaettgag gggegegaet aetgacagat	360
gagggggggg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat	420
tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt	480
ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg	540
tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgcccccc	600
cttctcgaac cctcccggcc cgctaacgcg ggcctcccat ccccccaggg gctgcgcccc	660
teggeegega aeggeeteae eccaaaaatg geagegetgg eagteettge eattgeeggg	720
atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg	780
ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg	840
ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg	900
gcaattttta cettgggcat tettggcata gtggtegegg gtgeegtget egtgtteggg	960
ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa	1020
acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag	1080
acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata	1140
agataatata tottttatat agaagatato googtatgta aggatttoag ggggcaaggo	1200
ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga	1260
ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta	1320
atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc	1380

### WO 2004/063359 PCT/EP2004/000099 171/357

•	
agctccaccg attttgagaa cgacagcgac ttccgtccca gccgtgccag gtgctgcctc 1	L440
agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagcttt 1	L500
cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag 1	1560
ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc 1	1620
gcaacaaccg tetteeggag actgteatae gegtaaaaca geeagegetg gegegattta	1680
gccccgacat agccccactg ttcgtccatt tccgcgcaga cgatgacgtc actgcccggc	1740
tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa atcgtgttga	1800
ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa	1860
tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt	1920
tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg ttacgcacca	1980
cecegteagt agetgaacag gagggacage tgatagacae agaagecaet ggageacete	2040
aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat tgtggtttca	2100
aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt gaaaaagctg	2160
ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc gtcttgttat	2220
aattagette ttggggtate tttaaataet gtagaaaaga ggaaggaaat aataaatgge	2280
taaaatgaga atatcaccgg aattgaaaaa actgatcgaa aaataccgct gcgtaaaaga	2340
tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg aaaacctata	2400
tttaaaaatg acggacagcc ggtataaagg gaccacctat gatgtggaac gggaaaagga	2460
catgatgcta tggctggaag gaaagctgcc tgttccaaag gtcctgcact ttgaacggca	2520
tgatggctgg agcaatctgc tcatgagtga ggccgatggc gtcctttgct cggaagagta	2580
tgaagatgaa caaagccctg aaaagattat cgagctgtat gcggagtgca tcaggctctt	2640

# WO 2004/063359 PCT/EP2004/000099 172/357

tcactccatc ga	acatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac ti	tactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt a	aagatccgc	gcgagctgta	tgattttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc t	tttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc t	ttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc c	ggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	agctattttt	3000
tgacttactg g	ggatcaagc	ctgattggga	gaaaataaaa	tattatatt	tactggatga	3060
attgttttag t	acctagatg	tggcgcaacg	atgccggcga	caagcaggag	gegeeegaet	3120
tetteegeat o	caagtgtttt	ggctctcagg	ccgaggccca	ı cggcaagtat	ttgggcaagg	3180
ggtcgctggt a	attcgtgcag	ggcaagatto	: ggaataccaa	a gtacgagaag	g gacggccaga	3240
cggtctacgg (	gaccgacttc	attgccgata	aggtggatta	a tctggacac	c aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacatto	g ccccggcgt;	g agtegggge	a atcccgcaag	3360
gagggtgaat	gaatcggacg	g tttgaccgga	a aggcataca	g gcaagaact	g atcgacgcgg	3420
ggttttccgc	cgaggatgco	gaaaccatc	g caageegea	c cgtcatgcg	t gegeeeegeg	3480
aaaccttcca	gtccgtcgg	c tcgatggtc	c agcaagcta	c ggccaagat	c gagegegaca	3540
gcgtgcaact	ggeteecee	t gecetgece	g cgccatcgg	c cgccgtgga	g cgttcgcgtc	3600
gtctcgaaca	ggaggcggc	a ggtttggcg	a agtcgatga	c categacae	g cgaggaacta	3660
tgacgaccaa	gaagcgaaa	a accgccggc	g aggacctgg	gc aaaacaggt	cc agcgaggcca	3720
agcaggccgc	gttgctgaa	a cacacgaag	ge ageagatea	aa ggaaatgca	ag ctttccttgt	3780
tcgatattgc	gccgtggcc	g gacacgato	ge gagegatge	cc aaacgaca	eg geeegetetg	3840
ccctgttcac	cacgcgcaa	ıc aagaaaato	cc cgcgcgag	ge getgeaaa	ac aaggtcattt	3900

#### WO 2004/063359 PCT/EP2004/000099 173/357

tccacgtcaa caaggacgtg aagatcacct acaccggcgt cgagctgcgg gccgacgatg	3960
acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga	4020
tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat ggccggtatt	4080
acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg	4140
accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc ctggaccgtg	4200
gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg	4260
gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg acggcccgac	4320
ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc	4380
gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag	4440
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg	4500
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg	4560
ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc gctcagtatc	4620
getegggaeg caeggegege tetaegaaet geegataaae agaggattaa aattgaeaat	4680
tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt tccgcgagat	4740
ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga	4800
gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat tcggcgccta	4860
catcgacggc gagatcattg ggctgtcggt cttcaaacag gaggacggcc ccaaggacgc	4920
tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggggtcgc	4980
cggtatgctg ctgcgggcgt tgccggcggg tttattgctc gtgatgatcg tccgacagat	5040
tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata tttcgctatt	5100
ctggagcttg ttgtttattt cggtctaccg cctgccgggc ggggtcgcgg cgacggtagg	5160

#### WO 2004/063359 PCT/EP2004/000099 174/357

cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	tctcggcctg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	ctacagttgt	5580
ttccttactg	ggctttctca	gececagate	tggggtcgat	cagccgggga	tgcatcaggc	5640
cgacagtcgg	g aacttcgggt	cecegacets	taccattcgg	ı tgagcaatgç	g ataggggagt	5700
tgatatcgto	aacgttcact	: tctaaagaaa	ı tagcgccact	: cagcttcctc	e ageggettta	5760
tccagcgat	tcctattato	g teggeatagt	: tctcaagato	gacageetg	t cacggttaag	5820
cgagaaatg	a ataagaaggo	c tgataatto	g gatctctgc	g agggagatg	a tatttgatca	5880
caggcagca	a cgctctgtc	a tcgttacaa	t caacatgct	a cecteegeg	a gatcatccgt	5940
gtttcaaac	c cggcagctt	a gttgccgtt	c ttccgaata	g catcggtaa	c atgagcaaag	6000
tetgeegee	t tacaacggc	t ctcccgctg	a cgccgtccc	g gactgatgg	g ctgcctgtat	6060
cgagtggtg	a ttttgtgcc	g agctgccgg	t cggggagct	g ttggctggc	t ggtggcagga	6120
tatattgtg	g tgtaaacaa	a ttgacgctt	a gacaactta	a taacacatt	g cggacgtttt	6180
taatgtact	g gggtggttt	t tetttteac	c agtgagacg	gg gcaacagct	g attgcccttc	6240
accgcctgg	gc cctgagaga	ng ttgcagcae	ag cggtccacg	gc tggtttgc	cc cagcaggcga	6300
aaatcctg	tt tgatggtgg	gt toogaaato	eg gcaaaatco	cc ttataaat	ca aaagaatagc	6360
ccgagata	gg gttgagtg	tt gttccagt	tt ggaacaag	ag tccactat	ta aagaacgtgg	6420

### WO 2004/063359 PCT/EP2004/000099 175/357

actccaacgt caaagggcga aaaaccgtct atcagggcga tggcccacta cgtgaaccat	6480
cacccaaatc aagttttttg gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag	6540
ggagccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga aaggaaggga	6600
agaaagcgaa aggagcgggc gccattcagg ctgcgcaact gttgggaagg gcgatcggtg	6660
cgggcctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag gcgattaagt	6720
tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag tgaattcgag	6780
ctcggtaccc ggggatcttt cgacactgaa atacgtcgag cctgctccgc ttggaagcgg	6840
cgaggagcct cgtcctgtca caactaccaa catggagtac gataagggcc agttccgcca	6900
gctcattaag agccagttca tgggcgttgg catgatggcc gtcatgcatc tgtacttcaa	6960
gtacaccaac gctcttctga tccagtcgat catccgctga aggcgctttc gaatctggtt	7020
aagatecaeg tettegggaa geeagegaet ggtgaeetee agegteeett taaggetgee	7080
aacagettte teageeaggg ecageecaag acegacaagg ecteecteea gaaegeegag	7140
aagaactgga ggggtggtgt caaggaggag taagctcctt attgaagtcg gaggacggag	7200
cggtgtcaag aggatattct tcgactctgt attatagata agatgatgag gaattggagg	7260
tagcataget teatttggat ttgettteca ggetgagaet etagettgga geatagaggg	7320
teetttgget tteaatatte teaagtatet egagtttgaa ettatteeet gtgaacettt	7380
tattcaccaa tgagcattgg aatgaacatg aatctgagga ctgcaatcgc catgaggttt	7440
tcgaaataca tccggatgtc gaaggcttgg ggcacctgcg ttggttgaat ttagaacgtg	7500
gcactattga tcatccgata gctctgcaaa gggcgttgca caatgcaagt caaacgttgc	7560
tagcagttcc aggtggaatg ttatgatgag cattgtatta aatcaggaga tatagcatga	7620
tetetagtta geteaceaca aaagteagae ggegtaacea aaagteacae aacacaaget	7680

# WO 2004/063359 PCT/EP2004/000099 176/357

	77.40
gtaaggattt eggeaegget aeggaagaeg gagaageeae etteagtgga etegagtaee '	7740
atttaattct atttgtgttt gatcgagacc taatacagcc cctacaacga ccatcaaagt	7800
cgtatageta ccagtgagga agtggaetea aategaette ageaacatet eetggataaa	7860
ctttaagcct aaactataca gaataagata ggtggagagc ttataccgag ctcccaaatc	7920
tgtccagatc atggttgacc ggtgcctgga tcttcctata gaatcatcct tattcgttga	7980
cctagctgat tctggagtga cccagagggt catgacttga gcctaaaatc cgccgcctcc	8040
accatttgta gaaaaatgtg acgaactcgt gagctctgta cagtgaccgg tgactctttc	8100
tggcatgcgg agagacggac ggacgcagag agaagggctg agtaataagc cactggccag	8160
acagetetgg eggetetgag gtgeagtgga tgattattaa teegggaeeg geegeeete	8220
cgccccgaag tggaaaggct ggtgtgcccc tcgttgacca agaatctatt gcatcatcgg	8280
agaatatgga gcttcatcga atcaccggca gtaagcgaag gagaatgtga agccaggggt	8340
gtatagccgt cggcgaaata gcatgccatt aacctaggta cagaagtcca attgcttccg	8400
atctggtaaa agattcacga gatagtacct tctccgaagt aggtagagcg agtacccggc	8460
gcgtaagctc cctaattggc ccatccggca tctgtagggc gtccaaatat cgtgcctctc	8520
ctgctttgcc cggtgtatga aaccggaaag gccgctcagg agctggccag cggcgcagac	8580
cgggaacaca agctggcagt cgacccatcc ggtgctctgc actcgacctg ctgaggtccc	8640
tcagtccctg gtaggcagct ttgccccgtc tgtccgcccg gtgtgtcggc ggggttgaca	8700
aggtegttge gteagteeaa eatttgttge eatattttee tgeteteece accagetget	8760
cttttctttt ctctttcttt tcccatcttc agtatattca tcttcccatc caagaacctt	8820
tatttcccct aagtaagtac tttgctacat ccatactcca tccttcccat cccttattcc	8880
tttgaacett teagttegag ettteeeact teategeage ttgaetaaca getaeeeege	8940

# WO 2004/063359 PCT/EP2004/000099 177/357

ttgagcagac atcaccatgc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga 9	000
aaagttcgac agcgtctccg acctgatgca gctctcggag ggcgaagaat ctcgtgcttt 9	060
cagcttcgat gtaggagggc gtggatatgt cctgcgggta aatagctgcg ccgatggttt 9	120
ctacaaagat cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt 9	9180
gcttgacatt ggggaattca gcgagagcct gacctattgc atctcccgcc gtgcacaggg	9240
tgtcacgttg caagacctgc ctgaaaccga actgcccgct gttctgcagc cggtcgcgga	9300
ggccatggat gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg	9360
accgcaagga atcggtcaat acactacatg gcgtgatttc atatgcgcga ttgctgatcc	9420
ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc	9480
tetegatgag etgatgettt gggeegagga etgeecegaa gteeggeace tegtgeacge	9540
ggatttcggc tccaacaatg tcctgacgga caatggccgc ataacagcgg tcattgactg	9600
gagcgaggcg atgttcgggg attcccaata cgaggtcgcc aacatcttct tctggaggcc	9660
gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc	9720
aggategeeg eggeteeggg egtatatget eegeattggt ettgaeeaae tetateagag	9780
cttggttgac ggcaatttcg atgatgcagc ttgggcgcag ggtcgatgcg acgcaatcgt	9840
ccgatccgga gccgggactg tcgggcgtac acaaatcgcc cgcagaagcg cggccgtctg	9900
gaccgatggc tgtgtagaag tactcgccga tagtggaaac cgacgcccca gcactcgtcc	9960
gagggcaaag gaatagagta gatgccgacc gcgggatcga tccacttaac gttactgaaa	10020
tcatcaaaca gcttgacgaa tctggatata agatcgttgg tgtcgatgtc agctccggag	10080
ttgagacaaa tggtgttcag gatctcgata agatacgttc atttgtccaa gcagcaaaga	10140
gtgccttcta gtgatttaat agctccatgt caacaagaat aaaacgcgtt ttcgggttta	10200

#### WO 2004/063359 PCT/EP2004/000099 178/357

cctcttccag atacagctca tctgcaatgc attaatgcat tgactgcaac ctagtaacgc 102	60
cttncaggct ccggcgaaga gaagaatagc ttagcagagc tattttcatt ttcgggagac 103	20
gagatcaagc agatcaacgg tcgtcaagag acctacgaga ctgaggaatc cgctcttggc 103	80
tecaegegae tatatattig tetetaattg taettigaea tgeteetett etttaetetg 104	40
atagettgae tatgaaaatt eegteaceag encetgggtt egeaaagata attgeatgtt 105	500
tcttccttga actctcaagc ctacaggaca cacattcatc gtaggtataa acctcgaaat 105	560
canttectae taagatggta tacaatagta accatgeatg gttgeetagt gaatgeteeg 106	620
taacacccaa tacgccggcc gaaacttttt tacaactctc ctatgagtcg tttacccaga 100	680
atgcacaggt acacttgttt agaggtaatc cttctttcta gctagaagtc ctcgtgtact 10°	740
gtgtaagcgc ccactccaca tetecaeteg acetgeagge atgeaagett ttttegagtt 10	800
tttttttttt ttctttgtga aggatttatt gttattggta tccatttttt attggaagac 10	860
aagataagtt aatattgatt ttgcttaaag attaaaagga aatcagaaaa cgacaataaa 10	920
aaatgtaacg gacaaactat ggtgtcgatt ataagtctaa atccttaaaa aatgacaacg 10	980
agttgctttc ctctgaaaac aattcttttg tctttgcaag aaaggtttct tttttgtttg 11	L040
cttgcattac ttaaacatca aatcaaatga aaggaataaa gcagatttga gggcgaataa 11	1100
ggattttctg gtcaacaaga tgtgagtgac acctaaggaa ctaaatgcca ttcatttgtt 13	1160
ttaaaacgac atcaaagatt gatgatcaac aggattgaga gagagaaaaa gaactcgtgt 1	1220
catttatttc tgttgactga aattttatat ttagaaaaaa tgtcaaatct atagctttag 1	1280
ctatattaca taacatttga aataataata ataaaaaaag acacattaga gacacttttc 1	1340
aaactctaaa taactgtcta taaacacaaa gaaaacaaag acctctataa caacttatta 1	.1400
gatttttctc gtacttttgt ctaaagatga tgtattcttg ttatcccaca cttctttcat 1	1460

#### WO 2004/063359 PCT/EP2004/000099 179/357

ttgttcttga tgctactaaa tatacaaaat ttcttttttg caagagatat tattccaaaa 115	20
attttcaaaa agaaattttt ttcacaatag cagttgatcg tgtaacccaa agaggttctt 115	80
tgttattttg cacttccgct ttgcggtgat gcatattcaa agtaatatat ggaataaaca 116	40
acgtgtttaa gcatgaaaga aaggaaacaa aggccgcttt gaacaaatgc ataatatttc 117	00
agacaaaaat gatctaaagc aagcagtaaa tcaaacaaga aacattgctg attcgcgtta 117	60
gaaaacgata aaagtctaat aagccactaa gtatacttca atgaactttt tgtatgctta 118	320
tggtccaatc agaccaataa tttgtgacca ttcctgaggt ggctttggtg atgcggaaac 118	380
agaaaaaaat tttctcacca atcgatttaa aaaacaattt ctgctttgaa ccaaaacttt 119	940
ttttttctct ttaatcatta actttatcaa gtatgtacct accctcaaag tcctcactca 12	000
agcacaatta tgctaacatt gttccacctt ctctttagaa atgttgtgga tttggaatgc 12	060
cctgatcgtt ttcgttaccg tgattggcat ggaagtgatt gctgcactgg cacacaaata 12	120
catcatgcac ggctggggtt ggggatggca tctttcacat catgaaccgc gtaaaggtgc 12	180
gtttgaagtt aacgatcttt atgeegtggt ttttgetgea ttategatee tgetgattta 12	240
tctgggcagt acaggaatgt ggccgctcca gtggattggc gcaggtatga cggcgtatgg 12	2300
attactctat tttatggtgc acgacgggct ggtgcatcaa cgttggccat tccgctatat 12	2360
tecaegeaag ggetaeetea aaeggttgta tatggegeae egtatgeate aegeegteag 12	2420
gggcaaagaa ggttgtgttt ettttggett eetetatgeg eegeeeetgt caaaaettea 19	2480
ggcgacgctc cgggaaagac atggcgctag agcgggcgct gccagagatg cgcagggcgg 1	2540
ggaggatgag cccgcatccg ggaagtaagg gcctgaccag aggcggccag cagcagcgtt 1	2600
aatttttcgg gcgtggtcgt tgactgccgc tgatcccaaa gcttggcgta atcatggtca 1	.2660
tagctgtttc ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga 1	.2720

# WO 2004/063359 PCT/EP2004/000099 180/357

agcataaagt gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg 127	780
cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc 128	340
caacgcgcgg ggagaggcgg tttgcgtatt gggccaaaga caaaagggcg acattcaacc 129	900
gattgaggga gggaaggtaa atattgacgg aaattattca ttaaaggtga attatcaccg 129	960
tcaccgactt gagccatttg ggaattagag ccagcaaaat caccagtagc accattacca 130	020
ttagcaaggc cggaaacgtc accaatgaaa ccatcgatag cagcaccgta atcagtagcg 13	080
acagaatcaa gtttgccttt agcgtcagac tgtagcgcgt tttcatcggc attttcggtc 13	140
atageceet tattagegtt tgecatettt teataateaa aateaeegga aceagageea 13	200
ccaccggaac cgcctccctc agagccgcca ccctcagaac cgccaccctc agagccacca 13	3260
ccctcagagc cgccaccaga accaccacca gagccgccgc cagcattgac aggaggcccg 13	3320
atctagtaac atagatgaca eegegegega taatttatee tagtttgege getatatttt 13	3380
gttttctatc gcgtattaaa tgtataattg cgggactcta atcataaaaa cccatctcat 13	3440
aaataacgtc atgcattaca tgttaattat tacatgctta acgtaattca acagaaatta 13	3500
tatgataatc atcgcaagac cggcaacagg attcaatctt aagaaacttt attgccaaat 1	3560
gtttgaacga tcggggatca tccgggtctg tggcgggaac tccacgaaaa tatccgaacg 1	3620
cagcaagata tegeggtgea teteggtett geetgggeag tegeegeega egeegttgat 1	.3680
gtggacgccg ggcccgatca tattgtcgct caggatcgtg gcgttgtgct tgtcggccgt 1	.3740
tgctgtcgta atgatatcgg caccttcgac cgcctgttcc gcagagatcc cgtgggcgaa 1	13800
gaactecage atgagatece egegetggag gateatecag eeggegtece ggaaaaegat 1	L3860
tccgaagccc aacctttcat agaaggcggc ggtggaatcg aaatctcgtg atggcaggtt 1	13920
gggcgtcgct tggtcggtca tttcgaaccc cagagtcccg ctcagaagaa ctcgtcaaga	13980

# WO 2004/063359 PCT/EP2004/000099 181/357

aggcgataga	aggcgatgcg	ctgcgaatcg	ggagcggcga	taccgtaaag	cacgaggaag	14040
cggtcagccc	attcgccgcc	aagctcttca	gcaatatcac	gggtagccaa	cgctatgtcc	14100
tgatageggt	ccgccacacc	cagccggcca	cagtcgatga	atccagaaaa	gcggccattt	14160
tccaccatga	tattcggcaa	gcaggcatcg	ccatgggtca	cgacgagatc	atcgccgtcg	14220
ggcatgcgcg	ccttgagcct	ggcgaacagt	teggetggeg	cgagcccctg	atgctcttcg	14280
tccagatcat	cctgatcgac	aagaccggct	tccatccgag	tacgtgctcg	ctcgatgcga	14340
tgtttcgctt	ggtggtcgaa	tgggcaggta	. gccggatcaa	gcgtatgcag	ccgccgcatt	14400
gcatcagcca	. tgatggatac	tttctcggca	ggagcaaggt	gagatgacag	gagatcctgc	14460
cccggcactt	: cgcccaatag	cagecagted	cttcccgctt	: cagtgacaac	gtcgagcaca	14520
gctgcgcaag	gaacgcccgt	cgtggccago	c cacgataged	gegetgeete	gtcctgcagt	14580
tcattcaggg	g caccggacaç	g gteggtette	g acaaaaagaa	a ccgggcgcc	: ctgcgctgac	14640
agccggaaca	a cggcggcato	agagcagcc	g attgtctgt	t gtgcccagto	: atagccgaat	14700
agectetee	a cccaagcgg	c cggagaacc	t gcgtgcaat	c catcttgttc	e aatcatgcga	14760
aacgatcca	g atccggtgc	a gattatttg	g attgagagt	g aatatgagad	c tctaattgga	14820
taccgaggg	g aatttatgg	a acgtcagtg	g agcatttt	g acaagaaat	a tttgctagct	14880
gatagtgac	c ttaggcgac	t tttgaacgo	g caataatgg	t ttctgacgt	a tgtgcttagc	14940
tcattaaac	t ccagaaacc	c geggetgag	t ggeteette	a acgttgcgg	t tctgtcagtt	15000
ccaaacgta	a aacggcttg	rt ceegegtea	it cggcggggg	rt cataacgtg	a ctcccttaat	15060
tataagata	a tgatcagat	t gtcgtttcc	cc gccttcagt	t taaactato	a gtgtttgaca	15120
ggatatatt	g gcgggtaaa	ac ctaagagaa	aa agagcgttt	a ttagaataa	t cggatattta	15180
aaagggcgi	g aaaaggtti	ta teegtteg	tc catttgtai	tg tgcatgcca	a ccacagggtt	15240

### WO 2004/063359 PCT/EP2004/000099 182/357

cccagatct	ggcgccggcc	agcgagacga	gcaagattgg	ccgccgcccg	aaacgatccg	15300
acagegegee	cagcacaggt	gcgcaggcaa	attgcaccaa	cgcatacagc	gccagcagaa	15360
tgccatagtg	ggcggtgacg	tcgttcgagt	gaaccagatc	gcgcaggagg	cccggcagca	15420
ccggcataat	caggccgatg	ccgacagcgt	cgagcgcgac	agtgctcaga	attacgatca	15480
ggggtatgtt	gggtttcacg	tctggcctcc	ggaccagcct	ccgctggtcc	gattgaacgc	15540
gcggattctt	tatcactgat	aagttggtgg	acatattatg	tttatcagtg	ataaagtgtc	15600
aagcatgaca	aagttgcagc	cgaatacagt	gateegtgee	gccctggacc	tgttgaacga	15660
ggtcggcgta	gacggtctga	cgacacgcaa	ı actggcggaa	cggttggggg	ttcagcagcc	15720
ggcgctttac	: tggcacttca	ggaacaagcg	ggegetgete	gacgcactgg	ccgaagccat	15780
gctggcggag	g aatcatacgo	e atteggtged	gagageegae	gacgactggc	gctcatttct	15840
gatcgggaal	gcccgcagct	tcaggcagg	getgeteged	taccgcgate	g gegegegeat	15900
ccatgccgg	c acgcgaccgg	g gegeacege	a gatggaaac	g geegaegeg	e agettegett	15960
cctctgcga	g gcgggtttt	t cggccgggg	a cgccgtcaa	t gcgctgatg	a caatcagcta	16020
cttcactgt	t ggggccgtg	c ttgaggagc	a ggccggcga	c agcgatgcc	g gcgagcgcgg	16080
cggcaccgt	t gaacaggct	c cgctctcgc	c gctgttgcg	g gccgcgata	g acgccttcga °	16140
cgaagccgg	t ccggacgca	g cgttcgagc	a gggactcgc	g gtgattgtc	g atggattggc	16200
gaaaaggag	g ctcgttgtc	a ggaacgttg	ga aggaccgag	a aagggtgac	g attgatcagg	16260
accgctgcc	eg gagegeaac	c cactcacta	ac agcagagco	a tgtagacaa	atcccctccc	16320
cctttccac	ec gegteagad	eg cccgtagca	ag cccgctacg	gg gctttttca	at geeetgeeet	16380
agcgtcca	ag cctcacggo	ce gegetegg	ec tetetggeg	gg ccttctggo	eg ctcttccgct	16440
tcctcgct	ca ctgactcg	ct gegetegg	tc gttcggct;	ge ggegageg	gt atcagctcad	16500

### WO 2004/063359 PCT/EP2004/000099 183/357

tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	acgcaggaaa	gaacatgtga	16560
gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	cgttgctggc	gtttttccat	16620
aggctccgcc	cccctgacga	gcatcacaaa	aatcgacgct	caagtcagag	gtggcgaaac	16680
ccgacaggac	tataaagata	ccaggcgttt	cccctggaa	gctccctcgt	gcgctctcct	16740
gttccgaccc	tgccgcttac	cggatacctg	teegeettte	tecetteggg	aagcgtggcg	16800
cttttccgct	gcataaccct	gcttcggggt	cattatagcg	attttttcgg	tatatccatc	16860
ctttttcgca	cgatatacag	gattttgcca	aagggttcgt	gtagactttc	cttggtgtat	16920
ccaacggcgt	cageegggea	ggataggtga	agtaggccca	cccgcgagcg	ggtgttcctt	16980
cttcactgto	: ccttattcgc	acctggcggt	gctcaacggg	aatcctgcto	: tgcgaggctg	17040
gccggctacc	: gccggcgtaa	ı cagatgaggg	g caageggate	gctgatgaaa	a ccaagccaac	17100
caggaaggg	c agcccaccta	a tcaaggtgta	a ctgccttcca	gacgaacgaa	a gagcgattga	17160
ggaaaaggc	g geggeggeeg	g gcatgagcci	gtcggcctad	c ctgctggcc	g teggeeaggg	17220
ctacaaaat	c acgggcgtc	g tggactatga	a gcacgtccg	c gagetggee	c gcatcaatgg	17280
cgacctggg	c cgcctgggc	g gcctgctga	a actctggcto	c accgacgac	c cgcgcacggc	17340
gcggttcgg	t gatgccacg	a tectegece	t gctggcgaa	g atcgaagag	a agcaggacga	17400
gcttggcaa	g gtcatgatg	g gegtggtee	g cccgagggc	a gagccatga	c ttttttagcc	17460
gctaaaacg	g ccgggggt	g cgcgtgatt	g ccaagcacg	t ccccatgcg	c tccatcaaga	17520
agagcgact	t cgcggagct	g gtgaagtac	a tcaccgacg	a gcaaggcaa	g accgagcgcc	17580
tttgcgacg	gc tca					17593

<210> 43

<211> 16954

184/357 <212> DNA <213> Artificial <220> <223> Plasmid <220> <221> misc_feature <222> (10264)..(10264) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10472)..(10472) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10563)..(10563) <223> n is a, c, g, or t <400> 43 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ceggegege gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagcetegea aateggegaa aacgeetgat tttacgegag tttcccacag atgatgtgga 300 caagcetggg gataagtgce etgeggtatt gacaettgag gggegegaet aetgacagat 360 gagggggggg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480

ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg

tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc

540

600

### WO 2004/063359 PCT/EP2004/000099 185/357

cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgcccc	660
teggeegega aeggeeteae eccaaaaatg geagegetgg eagteettge eattgeeggg	720
atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg	780
ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg	840
ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg	900
gcaattttta cettgggcat tettggcata gtggtegegg gtgeegtget egtgtteggg	960
ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa	1020
acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag	1080
acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata	1140
agataatata tottttatat agaagatato googtatgta aggatttoag ggggcaaggo	1200
ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga	1260
ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta	1320
atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc	1380
agctccaccg attttgagaa cgacagcgac ttccgtccca gccgtgccag gtgctgcctc	1440
agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagcttt	1500
cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag	1560
ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc	1620
gcaacaaccg tetteeggag actgteatae gegtaaaaca geeagegetg gegegattta	1680
gccccgacat agccccactg ttcgtccatt tccgcgcaga cgatgacgtc actgcccggc	1740
tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa atcgtgttga	1800
ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa	1860

# WO 2004/063359 PCT/EP2004/000099 186/357

tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt 1	L920
tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg ttacgcacca	1980
ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact ggagcacctc	2040
aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat tgtggtttca	2100
aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt gaaaaagctg	2160
ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc gtcttgttat	2220
aattagcttc ttggggtatc tttaaatact gtagaaaaga ggaaggaaat aataaatggc	2280
taaaatgaga atatcaccgg aattgaaaaa actgatcgaa aaataccgct gcgtaaaaga	2340
tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg aaaacctata	2400
tttaaaaatg acggacagcc ggtataaagg gaccacctat gatgtggaac gggaaaagga	2460
catgatgcta tggctggaag gaaagctgcc tgttccaaag gtcctgcact ttgaacggca	2520
tgatggctgg agcaatctgc tcatgagtga ggccgatggc gtcctttgct cggaagagta	2580
tgaagatgaa caaagccctg aaaagattat cgagctgtat gcggagtgca tcaggctctt	2640
tcactccatc gacatatcgg attgtcccta tacgaatagc ttagacagcc gcttagccga	2700
attggattac ttactgaata acgatctggc cgatgtggat tgcgaaaact gggaagaaga	2760
cactccattt aaagatccgc gcgagctgta tgatttttta aagacggaaa agcccgaaga	2820
ggaacttgtc ttttcccacg gcgacctggg agacagcaac atctttgtga aagatggcaa	2880
agtaagtggc tttattgatc ttgggagaag cggcagggcg gacaagtggt atgacattgc	2940
cttctgcgtc cggtcgatca gggaggatat cggggaagaa cagtatgtcg agctattttt	3000
tgacttactg gggatcaagc ctgattggga gaaaataaaa tattatattt tactggatga	3060
attgttttag tacctagatg tggcgcaacg atgccggcga caagcaggag cgcaccgact	3120

# WO 2004/063359 PCT/EP2004/000099 187/357

tcttccgcat caagtgtttt ggctctcagg ccgaggccca cggcaagtat ttgggcaagg 3	180
ggtcgctggt attcgtgcag ggcaagattc ggaataccaa gtacgagaag gacggccaga 3	3240
cggtctacgg gaccgacttc attgccgata aggtggatta tctggacacc aaggcaccag	3300
gegggtcaaa teaggaataa gggcacattg eeceggegtg agteggggca ateeegcaag	3360
gagggtgaat gaatcggacg tttgaccgga aggcatacag gcaagaactg atcgacgcgg	3420
ggttttccgc cgaggatgcc gaaaccatcg caagccgcac cgtcatgcgt gcgccccgcg	3480
aaaccttcca gtccgtcggc tcgatggtcc agcaagctac ggccaagatc gagcgcgaca	3540 .
gcgtgcaact ggctccccct gccctgcccg cgccatcggc cgccgtggag cgttcgcgtc	3600
gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg cgaggaacta	3660
tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc agcgaggcca	3720
agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt	3780
tcgatattgc gccgtggccg gacacgatgc gagcgatgcc aaacgacacg gcccgctctg	3840
ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt	3900
tccacgtcaa caaggacgtg aagatcacct acaccggcgt cgagctgcgg gccgacgatg	3960
acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga	4020
tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat ggccggtatt	4080
acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg	4140
accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc ctggaccgtg	4200
gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg	4260
gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg acggcccgac	4320
ggatgttega etattteage tegeaceggg ageegtacee geteaagetg gaaacettee	4380

# WO 2004/063359 PCT/EP2004/000099 188/357

gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag	4440
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg	4500
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg	4560
ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc gctcagtatc	4620
gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat	4680
tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt tccgcgagat	4740
ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga	4800
gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat tcggcgccta	4860
catcgacggc gagatcattg ggctgtcggt cttcaaacag gaggacggcc ccaaggacgc	4920
tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggggtcgc	4980
cggtatgctg ctgcgggcgt tgccggcggg tttattgctc gtgatgatcg tccgacagat	5040
tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata tttcgctatt	5100
ctggagcttg ttgtttattt cggtctaccg cctgccgggc ggggtcgcgg cgacggtagg	5160
cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg	5220
attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac	5280
accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtttccat	5340
ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac	5400
cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgtttgatcc	5460
gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtggctcg gcctgatcgg	5520
agegggttta acetaettee tttggtteeg ggggateteg egaetegaae etaeagttgt	5580
ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga tgcatcaggc	5640

# WO 2004/063359 PCT/EP2004/000099 189/357

cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt 5	5700
tgatatcgtc aacgttcact tctaaagaaa tagcgccact cagcttcctc agcggcttta	5760
tecagegatt tectattatg teggeatagt teteaagate gacageetgt caeggttaag	5820
cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca	5880
caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt	5940
gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag	6000
tetgeegeet tacaaegget etecegetga egeegteeeg gaetgatggg etgeetgtat	6060
cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga	6120
tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt	6180
taatgtactg gggtggtttt tcttttcacc agtgagacgg gcaacagctg attgcccttc	6240
accgcctggc cctgagagag ttgcagcaag cggtccacgc tggtttgccc cagcaggcga	6300
aaateetgtt tgatggtggt teegaaateg geaaaateee ttataaatea aaagaatage	6360
ccgagatagg gttgagtgtt gttccagttt ggaacaagag tccactatta aagaacgtgg	6420
actccaacgt caaagggcga aaaaccgtct atcagggcga tggcccacta cgtgaaccat	6480
cacccaaatc aagttttttg gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag	6540
ggagcccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga aaggaaggga	6600
agaaagcgaa aggagcgggc gccattcagg ctgcgcaact gttgggaagg gcgatcggtg	6660
cgggcctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag gcgattaagt	6720
tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag tgaattcgag	6780
ctcggtaccc ggggatcttt cgacactgaa atacgtcgag cctgctccgc ttggaagcgg	6840
cgaggagcct cgtcctgtca caactaccaa catggagtac gataagggcc agttccgcca	6900

### WO 2004/063359 PCT/EP2004/000099 190/357

gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
tcctttggct	ttcaatattc	tcaagtatct	. cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	g aatgaacatg	g aatctgagga	a ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggcttgg	g ggcacctgcg	y ttggttgaat	ttagaacgtg	7500
gcactattga	a tcatccgata	a gctctgcaaa	gggcgttgca	a caatgcaagt	caaacgttgc	7560
tagcagttco	c aggtggaat	g ttatgatga	g cattgtatt	a aatcaggaga	a tatagcatga	7620
tctctagtt	a geteaceac	a aaagtcaga	c ggcgtaacc	a aaagtcaca	c aacacaagct	7680
gtaaggatt	t cggcacggc	t acggaagac	g gagaagcca	c cttcagtgg	a ctcgagtacc	7740
atttaattc	t atttgtgtt	t gatcgagac	c taatacagc	c cctacaacg	a ccatcaaagt	7800
cgtatagct	a ccagtgagg	a agtggacto	a aatcgactt	c agcaacatc	t cctggataaa	7860
ctttaagco	t aaactatac	a gaataagat	a ggtggagag	gc ttataccga	g ctcccaaatc	7920
tgtccagat	c atggttgac	ec ggtgeetgg	ga tetteetat	a gaatcatco	et tattcgttga	7980
cctagctga	ıt tetggagtç	ga cccagaggg	gt catgactto	ga gcctaaaat	ce egeegeetee	8040
accatttgt	ca gaaaaatgt	g acgaactc	gt gagctctg	ta cagtgaccg	gg tgactctttc	8100
tggcatgc	gg agagacgga	ac ggacgcag	ag agaagggc	tg agtaataaq	gc cactggccag	8160

# WO 2004/063359 PCT/EP2004/000099 191/357

acagctctgg cggctctgag gtgcagtgga tgattattaa tccgggaccg gccgccctc 8	3220
cgccccgaag tggaaaggct ggtgtgcccc tcgttgacca agaatctatt gcatcatcgg 8	3280
agaatatgga gcttcatcga atcaccggca gtaagcgaag gagaatgtga agccaggggt	8340
gtatagccgt cggcgaaata gcatgccatt aacctaggta cagaagtcca attgcttccg	8400
atctggtaaa agattcacga gatagtacct tctccgaagt aggtagagcg agtacccggc	8460
gcgtaagctc cctaattggc ccatccggca tctgtagggc gtccaaatat cgtgcctctc	8520
ctgctttgcc cggtgtatga aaccggaaag gccgctcagg agctggccag cggcgcagac	8580
cgggaacaca agctggcagt cgacccatcc ggtgctctgc actcgacctg ctgaggtccc	8640
tcagtccctg gtaggcagct ttgccccgtc tgtccgcccg gtgtgtcggc ggggttgaca	8700
aggtcgttgc gtcagtccaa catttgttgc catattttcc tgctctcccc accagctgct	8760
cttttctttt ctctttcttt tcccatcttc agtatattca tcttcccatc caagaacctt	8820
tatttcccct aagtaagtac tttgctacat ccatactcca tccttcccat cccttattcc	8880
tttgaacctt tcagttcgag ctttcccact tcatcgcage ttgactaaca gctaccccgc	8940
ttgagcagac atcaccatgc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga	9000
aaagttegae agegteteeg acetgatgea geteteggag ggegaagaat etegtgettt	9060
cagettegat gtaggaggge gtggatatgt cetgegggta aatagetgeg eegatggttt	9120
ctacaaagat cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt	9240
gettgacatt ggggaattea gegagageet gaeetattge ateteeegee gtgeacaggg	9300
tgtcacgttg caagacctgc ctgaaaccga actgcccgct gttctgcagc cggtcgcgga	9360
ggccatggat gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg	9420
accgcaagga atcggtcaat acactacatg gcgtgatttc atatgcgcga ttgctgatcc	

#### WO 2004/063359 PCT/EP2004/000099 192/357

ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc	9480
tetegatgag etgatgettt gggeegagga etgeecegaa gteeggeace tegtgeacge	9540
ggatttcggc tccaacaatg tcctgacgga caatggccgc ataacagcgg tcattgactg	9600
gagegaggeg atgttegggg atteceaata egaggtegee aacatettet tetggaggee	9660
gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc	9720
aggategeeg eggeteeggg egtatatget eegeattggt ettgaceaac tetateagag	9780
cttggttgac ggcaatttcg atgatgcagc ttgggcgcag ggtcgatgcg acgcaatcgt	9840
ccgatccgga gccgggactg tcgggcgtac acaaatcgcc cgcagaagcg cggccgtctg	9900
gaccgatggc tgtgtagaag tactcgccga tagtggaaac cgacgcccca gcactcgtcc	9960
gagggcaaag gaatagagta gatgccgacc gcgggatcga tccacttaac gttactgaaa 1	10020
tcatcaaaca gettgaegaa tetggatata agategttgg tgtegatgte ageteeggag 1	10080
ttgagacaaa tggtgttcag gatctcgata agatacgttc atttgtccaa gcagcaaaga 1	10140
gtgccttcta gtgatttaat agctccatgt caacaagaat aaaacgcgtt ttcgggttta	10200
cctcttccag atacagetca tetgcaatge attaatgeat tgaetgeaae etagtaaege	10260
cttncaggct ccggcgaaga gaagaatagc ttagcagagc tattttcatt ttcgggagac	10320
gagatcaagc agatcaacgg tcgtcaagag acctacgaga ctgaggaatc cgctcttggc	10380
tocacgogac tatatatttg tototaattg tactttgaca tgctcctctt ctttactctg	10440
atagettgae tatgaaaatt eegteaceag eneetgggtt egeaaagata attgeatgtt	10500
tcttccttga actctcaagc ctacaggaca cacattcatc gtaggtataa acctcgaaat	10560
canttectae taagatggta tacaatagta accatgeatg gttgeetagt gaatgeteeg	10620
taacacccaa tacgccggcc gaaacttttt tacaactctc ctatgagtcg tttacccaga	10680

### WO 2004/063359 PCT/EP2004/000099 193/357

atgcacaggt acacttgttt agaggtaatc cttctttcta gctagaagtc ctcgtgtact 107	740
gtgtaagcgc ccactccaca tctccacteg acctgcaggc atgcaagctt gagattaaaa 108	300
tagataagga aaagaaagtg aaaagaaatt cggaagcatg gcacattctt ctttttataa 108	860
atacatgcct gactttcttt ttccatcgat atgatatatg catatgatag atatacaagc 109	920
aatcttcttc aaggagtttg aaattttgtc ctccaggagc aaaaaaaagt tttttttat 109	980
acatgtttgt acacaagaat agttaccaat ttgctttggt cttacgtgct gcaagtttat 11	040
atcgttttca atttctttgt ctttacattt tctttgtcct ttatctttcc tcatttagtc 11	100
tttgggagaa ttaggaaaag ggagcggaaa ggtaagaaat gcttgcgtat tttactaatt 11	.160
cggcaaacat ccaatttggc aaacagcagc ctgtgcaacg ctctcgagat gacagtatct 11	.220
ttgattacac tctaaatctc gatgacccga ccaaaaagag cgaacaaaga aataatcttg 11	L280
tgcattcgaa tatgatggaa gattttttcc cccttattct aaatgttgac atagcgtgta 11	L340
tgttatataa acaaaaagaa attgtacaaa ctttcttttc ttctctttt attttatctc 11	1400
tatgttgtgg atttggaatg ccctgatcgt tttcgttacc gtgattggca tggaagtgat 13	1460
tgctgcactg gcacacaaat acatcatgca cggctggggt tggggatggc atctttcaca 1	1520
tcatgaaccg cgtaaaggtg cgtttgaagt taacgatctt tatgccgtgg tttttgctgc 1	1580
attatcgatc ctgctgattt atctgggcag tacaggaatg tggccgctcc agtggattgg 1	1640
cgcaggtatg acggcgtatg gattactcta ttttatggtg cacgacgggc tggtgcatca 1	.1700
acgttggcca ttccgctata ttccacgcaa gggctacctc aaacggttgt atatggcgca 1	.1760
ccgtatgcat cacgccgtca ggggcaaaga aggttgtgtt tcttttggct tcctctatgc 1	1820
gccgccctg tcaaaacttc aggcgacgct ccgggaaaga catggcgcta gagcgggcgc 1	L1880
tgccagagat gcgcagggcg gggaggatga gcccgcatcc gggaagtaag ggcctgacca 1	11940

# WO 2004/063359 PCT/EP2004/000099 194/357

gaggcggcca	gcagcagcgt	taatttttcg	ggcgtggtcg	ttgactgccg	ctgateccaa	12000
agcttggcgt	aatcatggtc	atagctgttt	cctgtgtgaa	attgttatcc	gctcacaatt	12060
ccacacaaca	tacgagccgg	aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagc	12120
taactcacat	taattgcgtt	gcgctcactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	12180
cagctgcatt	aatgaatcgg	ccaacgcgcg	gggagaggcg	gtttgcgtat	tgggccaaag	12240
acaaaagggc	gacattcaac	cgattgaggg	agggaaggta	aatattgacg	gaaattattc	12300
attaaaggtg	aattatcacc	gtcaccgact	tgagccattt	gggaattaga	gccagcaaaa	12360
tcaccagtag	caccattacc	attagcaagg	r ccggaaacgt	caccaatgaa	accatcgata	12420
gcagcaccgt	aatcagtagc	gacagaatca	agtttgcctt	. tagcgtcaga	ctgtagcgcg	12480
ttttcatcgg	g cattttcggt	: catagecee	ttattagcgt	: ttgccatctt	ttcataatca	12540
aaatcaccgg	g aaccagagco	accaccgga	a cegeetecet	cagageegee	e acceteagaa	12600
ccgccaccct	t cagagecace	e acceteaga	g ccgccaccag	g aaccaccacc	agagccgccg	12660
ccagcattg	a caggaggcc	c gatctagta	a catagatga	c accgcgcgc	g ataatttatc	12720
ctagtttgc	g cgctatatt	t tgttttcta	t cgcgtatta	a atgtataat	t gegggaetet	12780
aatcataaa	a acccatctc	a taaataacg	t catgcatta	c atgttaatt	a ttacatgctt	12840
aacgtaatt	c aacagaaat	t atatgataa	t catcgcaag	a ccggcaaca	g gattcaatct	12900
taagaaact	t tattgccaa	a tgtttgaac	g atcggggat	c atccgggtc	t gtggcgggaa	12960
ctccacgaa	a atatccgaa	c gcagcaaga	it atcgcggtg	c atctcggtc	t tgcctgggca	13020
gtcgccgcc	g acgccgttg	a tgtggacgo	cc gggcccgat	c atattgtcg	c tcaggatcgt	13080
ggcgttgtg	ge ttgtegged	g ttgctgtcg	gt aatgatato	g gcaccttcg	ga cegeetgtte	: 13140
cgcagagat	ce eegtgggeg	ga agaactcca	ag catgagato	cc ccgcgctgg	ga ggatcatcca	13200

# WO 2004/063359 PCT/EP2004/000099 195/357

gccggcgtcc cggaaaacga ttccgaagcc caacctttca tagaaggcgg cggtggaatc 1326	0
gaaatctcgt gatggcaggt tgggcgtcgc ttggtcggtc atttcgaacc ccagagtccc 1332	0
gctcagaaga actcgtcaag aaggcgatag aaggcgatgc gctgcgaatc gggagcggcg 1338	0
ataccgtaaa gcacgaggaa gcggtcagcc cattcgccgc caagctcttc agcaatatca 1344	. <b>O</b>
egggtageca aegetatgte etgatagegg teegecaeae eeageeggee acagtegatg 1350	10
aatccagaaa agcggccatt ttccaccatg atattcggca agcaggcatc gccatgggtc 1356	50
acgacgagat catcgccgtc gggcatgcgc gccttgagcc tggcgaacag ttcggctggc 1362	30
gcgagcccct gatgctcttc gtccagatca tcctgatcga caagaccggc ttccatccga 1369	30
gtacgtgctc gctcgatgcg atgtttcgct tggtggtcga atgggcaggt agccggatca 137	40
agcgtatgca gccgccgcat tgcatcagcc atgatggata ctttctcggc aggagcaagg 138	00
tgagatgaca ggagatectg ecceggeact tegeceaata geagecagte cetteeeget 138	60
tcagtgacaa cgtcgagcac agctgcgcaa ggaacgcccg tcgtggccag ccacgatagc 139	20
cgcgctgcct cgtcctgcag ttcattcagg gcaccggaca ggtcggtctt gacaaaaaga 139	80
accgggcgcc cetgcgctga cagccggaac acggcggcat cagagcagcc gattgtctgt 140	140
tgtgcccagt catagccgaa tagcctctcc acccaagcgg ccggagaacc tgcgtgcaat 141	١٥٥
ccatcttgtt caatcatgcg aaacgatcca gatccggtgc agattatttg gattgagagt 143	L60
gaatatgaga ctctaattgg ataccgaggg gaatttatgg aacgtcagtg gagcattttt 14:	220
gacaagaaat atttgctagc tgatagtgac cttaggcgac ttttgaacgc gcaataatgg 14	280
tttctgacgt atgtgcttag ctcattaaac tccagaaacc cgcggctgag tggctccttc 14	340
aacgttgcgg ttctgtcagt tccaaacgta aaacggcttg tcccgcgtca tcggcggggg 14	400
tcataacgtg actcccttaa ttctccgctc atgatcagat tgtcgtttcc cgccttcagt 14	460

# WO 2004/063359 PCT/EP2004/000099 196/357

ttaaactatc	agtgtttgac	aggatatatt	ggcgggtaaa	cctaagagaa	aagagcgttt	14520
attagaataa	tcggatattt	aaaagggcgt	gaaaaggttt	atccgttcgt	ccatttgtat	14580
gtgcatgcca	accacagggt	tccccagatc	tggcgccggc	cagcgagacg	agcaagattg	14640
gccgccgccc	gaaacgatcc	gacagcgcgc	ccagcacagg	tgcgcaggca	aattgcacca	14700
acgcatacag	cgccagcaga	atgccatagt	gggcggtgac	gtcgttcgag	tgaaccagat	14760
cgcgcaggag	gcccggcagc	accggcataa	tcaggccgat	gccgacagcg	tcgagcgcga	14820
cagtgctcag	aattacgatc	aggggtatgt	tgggtttcac	gtctggcctc	cggaccagcc	14880
teegetggte	: cgattgaacg	geggattet	ttatcactga	taagttggtg	gacatattat	14940
gtttatcagt	: gataaagtgt	: caagcatgac	: aaagttgcag	r ccgaatacag	tgatccgtgc	15000
cgccctggad	: ctgttgaacg	g aggteggegt	agacggtctg	g acgacacgca	ı aactggcgga	15060
acggttggg	g gttcagcago	c cggcgcttta	a ctggcactto	aggaacaago	gggcgctgct	15120
cgacgcact	g gccgaagcc	a tgctggcgga	a gaatcatac	g catteggtge	c cgagagccga	15180
cgacgactg	g cgctcattt	c tgatcggga	a tgcccgcag	c ttcaggcag	g egetgetege	15240
ctaccgcga	t ggcgcgcgc	a tccatgccg	g cacgegace	g ggcgcaccg	c agatggaaac	15300
ggccgacgc	g cagcttcgc	t teetetgeg	a ggegggttt	t teggeeggg	g acgccgtcaa	15360
tgcgctgat	g acaatcago	t acttcactg	t tggggccgt	g cttgaggag	c aggceggega	15420
cagcgatgo	c ggcgagcgc	g gcggcaccg	t tgaacaggo	t ccgctctcg	c cgctgttgcg	15480
ggccgcgat	a gacgcctto	eg acgaagccg	g teeggaege	a gcgttcgag	c agggactcgc	15540
ggtgattgt	c gatggattg	gg cgaaaagga	ig getegttgt	c aggaacgtt	g aaggaccgag	, 15600
aaagggtga	ac gattgatca	ag gaccgctgo	cc ggagcgcaa	ac ccactcact	a cagcagagco	15660
atgtagac	aa catcccct	cc ccctttcc	ac cgcgtcaga	ac gecegtage	ca geeegetaeg	g 15720

ggetttttca tgeeetgeee tagegteeaa geeteaegge egegetegge etetetggeg 1	5780
geettetgge getetteege tteetegete actgaetege tgegeteggt egtteggetg 1	.5840
cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat 1	.5900
aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc 1	15960
gcgttgctgg cgtttttcca taggctccgc cccctgacg agcatcacaa aaatcgacgc 1	L6020
tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga 1	L6080
agctccctcg tgcgctctcc tgttccgacc ctgccgctta ccggatacct gtccgccttt 1	16140
ctcccttcgg gaagcgtggc gcttttccgc tgcataaccc tgcttcgggg tcattatagc 1	16200
gattttttcg gtatatccat cctttttcgc acgatataca ggattttgcc aaagggttcg	16260
tgtagacttt ccttggtgta tccaacggcg tcagccgggc aggataggtg aagtaggccc	16320
accegegage gggtgtteet tetteactgt ecettatteg caectggegg tgeteaacgg	16380
gaateetget etgegagget ggeeggetae egeeggegta acagatgagg geaageggat	16440 .
ggctgatgaa accaagccaa ccaggaaggg cagcccacct atcaaggtgt actgccttcc	16500
agacgaacga agagcgattg aggaaaaggc ggcggcggcc ggcatgagcc tgtcggccta	16560
cctgctggcc gtcggccagg gctacaaaat cacgggcgtc gtggactatg agcacgtccg	16620
. cgagctggcc cgcatcaatg gcgacctggg ccgcctgggc ggcctgctga aactctggct	16680
caccgacgac ccgcgcacgg cgcggttcgg tgatgccacg atcctcgccc tgctggcgaa	16740
gatcgaagag aagcaggacg agcttggcaa ggtcatgatg ggcgtggtcc gcccgagggc	16800
agagecatga ettttttage egetaaaaeg geeggggggt gegegtgatt geeaageaeg	16860
tececatgeg etecateaag aagagegaet tegeggaget ggtgaagtae ateaeegaeg	16920
agcaaggcaa gaccgagcgc ctttgcgacg ctca	16954

<210> 44 <211> 16954 <212> DNA <213> Artificial <220> <223> Plasmid <220> <221> misc_feature <222> (10264)..(10264) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10472)..(10472) <223> n is a, c, g, or t <220> <221> misc_feature <222> (10563)..(10563) <223> n is a, c, g, or t <400> 44 ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagectegea aateggegaa aacgeetgat tttacgegag tttcccacag atgatgtgga 300 caageetggg gataagtgee etgeggtatt gacaettgag gggegegaet aetgacagat 360 gaggggcgcg atcettgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480

# WO 2004/063359 PCT/EP2004/000099 199/357

•	
ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg	540
tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgcccccc	600
cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgcccc	660
teggeegega aeggeeteae eecaaaaatg geagegetgg eagteettge eattgeeggg	720
ateggggeag taaegggatg ggegateage eegagegega egeeeggaag eattgaegtg	780
ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg	840
ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg	900
gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg	960
ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa	1020
acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag	1080
acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata	1140
agataatata tettttatat agaagatate geegtatgta aggattteag ggggeaagge	1200
ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga	1260
ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta	1320
atgactecaa ettattgata gtgttttatg tteagataat geeegatgae tttgteatge	1380
agetecaceg attttgagaa egacagegae tteegteeca geegtgeeag gtgetgeete	1440
agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagcttt	1500
cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag	1560
ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc	1620
gcaacaaccg tetteeggag actgteatae gegtaaaaca geeagegetg gegegattta	1680
gccccgacat agccccactg ttcgtccatt tccgcgcaga cgatgacgtc actgcccggc	1740

#### WO 2004/063359 PCT/EP2004/000099 200/357

tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa atcgtgttga 1	L800
ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa 1	1860
tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt 1	1920
tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg ttacgcacca	1980
ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact ggagcacctc 2	2040
aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat tgtggtttca	2100
aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt gaaaaagctg	2160
ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc gtcttgttat	2220
aattagcttc ttggggtatc tttaaatact gtagaaaaga ggaaggaaat aataaatggc	2280
taaaatgaga atatcaccgg aattgaaaaa actgatcgaa aaataccgct gcgtaaaaga	2340
tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg aaaacctata	2400
tttaaaaatg acggacagcc ggtataaagg gaccacctat gatgtggaac gggaaaagga	2460
catgatgeta tggetggaag gaaagetgee tgtteeaaag gteetgeaet ttgaaeggea	2520
tgatggctgg agcaatctgc tcatgagtga ggccgatggc gtcctttgct cggaagagta	2580
tgaagatgaa caaagccctg aaaagattat cgagctgtat gcggagtgca tcaggctctt	2640
teactecate gacatategg attgteecta tacgaatage ttagacagee gettageega	2700
attggattac ttactgaata acgatctggc cgatgtggat tgcgaaaact gggaagaaga	2760
cactccattt aaagatccgc gcgagctgta tgatttttta aagacggaaa agcccgaaga	2820
ggaacttgtc ttttcccacg gcgacctggg agacagcaac atctttgtga aagatggcaa	2880
agtaagtggc tttattgatc ttgggagaag cggcagggcg gacaagtggt atgacattgc	2940
cttctgcgtc cggtcgatca gggaggatat cggggaagaa cagtatgtcg agctattttt	3000

#### WO 2004/063359 PCT/EP2004/000099 201/357

			-			
tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	tactggatga	3060
attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	cgcaccgact	3120
tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	ttgggcaagg	3180
ggtcgctggt	attcgtgcag	ggcaagattc	ggaataccaa	gtacgagaag	gacggccaga	3240
cggtctacgg	gaccgacttc	attgccgata	aggtggatta	tetggaeace	aaggcaccag	3300
gcgggtcaaa	tcaggaataa	gggcacattg	ccccggcgtg	agtcggggca	atcccgcaag	3360
gagggtgaat	gaatcggacg	tttgaccgga	aggcatacag	gcaagaactg	atcgacgcgg	3420
ggttttccgc	gaggatgco	gaaaccatcg	r caagccgcac	cgtcatgcgt	gcgccccgcg	3480
aaaccttcca	gteegtegge	: tcgatggtcc	agcaagctac	ggccaagato	gagegegaca	3540
gcgtgcaact	ggeteecet	geeetgeeeg	g cgccatcggc	cgccgtggag	g cgttcgcgtc	3600
gtctcgaaca	a ggaggcggca	a ggtttggcga	a agtcgatgad	catcgacacg	g cgaggaacta	3660
tgacgacca	a gaagcgaaaa	a accgccggc	g aggacctgg	c aaaacaggto	e agegaggeea	3720
agcaggccg	c gttgctgaa	a cacacgaag	c agcagatca	a ggaaatgcag	g ctttccttgt	3780
tcgatattg	c geegtggee	g gacacgatg	c gagcgatgc	c aaacgacac	g gcccgctctg	3840
ccctgttca	c cacgegeaa	c aagaaaatc	c cgcgcgagg	c gctgcaaaa	c aaggtcattt	3900
tccacgtca	a caaggacgt	g aagatcacc	t acaccggcg	t cgagctgcg	g geegaegatg	3960
acgaactgg	ıt gtggcagca	ıg gtgttggag	rt acgcgaago	g cacccctat	c ggcgagccga	4020
tcaccttca	ac gttctacga	g ctttgccag	gg acctgggct	g gtcgatcaa	t ggccggtatt	4080
acacgaagg	gc cgaggaatg	ge etgtegege	cc tacaggcga	ac ggcgatggg	ge tteaegteeg	4140
accgcgtts	gg gcacctgga	aa teggtgte	gc tgctgcaco	eg etteegegt	c ctggaccgtg	4200
gcaagaaa	ac gtcccgtt	gc caggtcct	ga tcgacgag	ga aatcgtcgt	g ctgtttgctg	4260

## WO 2004/063359 PCT/EP2004/000099 202/357

gcgaccacta	cacgaaattc	atatgggaga	agtaccgcaa	gctgtcgccg	acggcccgac	4320
ggatgttcga	ctatttcagc	tcgcaccggg	agccgtaccc	gctcaagctg	gaaaccttcc	4380
gcctcatgtg	cggatcggat	tecaceegeg	tgaagaagtg	gcgcgagcag	gtcggcgaag	4440
cctgcgaaga	gttgcgaggc	agcggcctgg	tggaacacgc	ctgggtcaat	gatgacctgg	<b>4</b> 500
tgcattgcaa	acgctagggc	cttgtggggt	cagttccggc	tgggggttca	gcagccagcg	4560
ctttactggc	atttcaggaa	caagcgggca	ctgctcgacg	cacttgcttc	gctcagtatc	4620
gctcgggacg	cacggcgcgc	tctacgaact	gccgataaac	agaggattaa	aattgacaat	4680
tgtgattaag	gctcagattc	gacggcttgg	ageggeegae	gtgcaggatt	tccgcgagat	4740
ccgattgtcg	gccctgaaga	aagctccaga	gatgttcggg	g teegtttaeg	agcacgagga	4800
gaaaaagccc	atggaggcgt	: tcgctgaacg	g gttgcgagat	geegtggeat	teggegeeta	4860
catcgacgg	gagatcatto	g ggctgtcggl	cttcaaaca	g gaggacggco	c ccaaggacgc	4920
tcacaaggc	g catctgtcc	g gcgttttcg	t ggagcccgaa	a cagcgaggc	gaggggtcgc	4980
cggtatgct	g ctgcgggcg	t tgccggcgg	g tttattgct	c gtgatgatc	g teegacagat	5040
tccaacggg	a atctggtgg	a tgcgcatct	t catcctcgg	c gcacttaat	a tttcgctatt	5100
ctggagctt	g ttgtttatt	t cggtctacc	g cctgccggg	c ggggtcgcg	g cgacggtagg	5160
cgctgtgca	g ccgctgatg	g tcgtgttca	t ctctgccgc	t ctgctaggt	a gcccgatacg	5220
attgatggo	g gtcctgggg	g ctatttgcg	g aactgeggg	ge gtggegetg	t tggtgttgac	5280
accaaacgo	a gegetagat	c ctgtcggcg	gt cgcagcggg	ge etggegggg	g cggtttccat	5340
ggcgttcgg	ga accgtgctg	ja cccgcaagt	g gcaacctco	ec gtgeetetg	gc tcacctttac	5400
cgcctggca	aa ctggcggco	g gaggactto	ct getegtte	ca gtagcttta	g tgtttgatcc	5460
gccaatcc	cg atgcctace	ag gaaccaat	gt teteggee	tg gegtggete	eg geetgategg	5520

### WO 2004/063359 PCT/EP2004/000099 203/357

agcgggttta acctacttcc tttggttccg ggggatctcg cgactcgaac ctacagttgt	5580
ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga tgcatcaggc	5640
cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt	5700
tgatatcgtc aacgttcact tctaaagaaa tagcgccact cagcttcctc agcggcttta	5760
tccagcgatt tcctattatg tcggcatagt tctcaagatc gacagcctgt cacggttaag	5820
cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca	5880
caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt	5940
gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag	6000
tctgccgcct tacaacggct ctcccgctga cgccgtcccg gactgatggg ctgcctgtat	6060
cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga	6120
tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt	6180
taatgtactg gggtggtttt tettttcace agtgagaegg geaacagetg attgeeette	6240
accgcctggc cctgagagag ttgcagcaag cggtccacgc tggtttgccc cagcaggcga	6300
aaatcctgtt tgatggtggt tccgaaatcg gcaaaatccc ttataaatca aaagaatagc	6360
ccgagatagg gttgagtgtt gttccagttt ggaacaagag tccactatta aagaacgtgg	6420
actecaaegt caaagggega aaaaeegtet ateagggega tggeeeacta egtgaaeeat	6480
cacccaaatc aagttttttg gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag	6540
ggagcccccg atttagagct tgacggggaa agccggcgaa cgtggcgaga aaggaaggga	6600
agaaagcgaa aggagcgggc gccattcagg ctgcgcaact gttgggaagg gcgatcggtg	6660
cgggcctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag gcgattaagt	6720
tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag tgaattcgag	6780

# WO 2004/063359 PCT/EP2004/000099 204/357

ctcggtaccc gggg	gatettt o	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct cgt	cctgtca (	caactaccaa	catggagtac	gataagggcc	agttccgcca	6900
gctcattaag agc	cagttca d	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac gct	cttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg tct	tcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagettte tea	ıgecaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga ggg	gtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag agg	gatattct	tcgactctgt	attatagata	. agatgatgag	gaattggagg	7260
tagcatagct tca	atttggat	ttgctttcca	ggctgagact	ctagcttgga	ı gcatagaggg	7320
tcctttggct ttc	caatattc	tcaagtatct	. cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa tg	agcattgg	aatgaacatg	g aatctgagga	a ctgcaatcgo	catgaggttt	7440
tcgaaataca tc	cggatgtc	gaaggcttgg	ggcacctgcg	g ttggttgaat	t ttagaacgtg	7500
gcactattga tc	atccgata	gctctgcaaa	a gggcgttgca	a caatgcaag	t caaacgttgc	7560
tagcagttcc ag	gtggaatg	ttatgatga	g cattgtatt	a aatcaggag	a tatagcatga	7620
tctctagtta go	tcaccaca	aaagtcaga	c ggcgtaacc	a aaagtcaca	c aacacaagct	7680
gtaaggattt cg	ggcacggct	acggaagac	g gagaagcca	c cttcagtgg	a ctcgagtacc	7740
atttaattct at	ttgtgttt	gatcgagac	c taatacago	c cctacaacg	a ccatcaaagt	7800
cgtatagcta co	cagtgagga	a agtggacto	a aatcgactt	c agcaacato	et cctggataaa	7860
ctttaagcct a	aactataca	a gaataagat	a ggtggagag	gc ttataccga	g ctcccaaatc	7920
tgtccagatc a	tggttgac	c ggtgcctgg	ga tetteetat	a gaatcatco	ct tattcgttga	7980
cctagctgat t	ctggagtg	a cccagaggg	gt catgactto	ga gcctaaaat	te egeegeetee	8040

### WO 2004/063359 PCT/EP2004/000099 205/357

accatttgta gaaaaatgtg acgaactcgt gagctctgta cagtgaccgg tgactctttc 8	8100
	0160
tggcatgcgg agagacggac ggacgcagag agaagggctg agtaataagc cactggccag 8	8160
acagctctgg cggctctgag gtgcagtgga tgattattaa tccgggaccg gccgccctc	8220
cgccccgaag tggaaagget ggtgtgcccc tcgttgacca agaatctatt gcatcatcgg	8280
agaatatgga gcttcatcga atcaccggca gtaagcgaag gagaatgtga agccaggggt	8340
gtatagccgt cggcgaaata gcatgccatt aacctaggta cagaagtcca attgcttccg	8400
atctggtaaa agattcacga gatagtacct tctccgaagt aggtagagcg agtacccggc	8460
gcgtaagete eetaattgge eeateeggea tetgtaggge gteeaaatat egtgeetete	8520
ctgctttgcc cggtgtatga aaccggaaag gccgctcagg agctggccag cggcgcagac	8580
cgggaacaca agctggcagt cgacccatcc ggtgctctgc actcgacctg ctgaggtccc	8640
tcagtccctg gtaggcagct ttgccccgtc tgtccgcccg gtgtgtcggc ggggttgaca	8700
aggtcgttgc gtcagtccaa catttgttgc catattttcc tgctctcccc accagctgct	8760
ctttctttt ctctttcttt tcccatcttc agtatattca tcttcccatc caagaacctt	8820
tatttcccct aagtaagtac tttgctacat ccatactcca tecttcccat cccttattcc	8880
tttgaacctt tcagttcgag ctttcccact tcatcgcagc ttgactaaca gctaccccgc	8940
ttgagcagac atcaccatgc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga	9000
aaagttcgac agcgtctccg acctgatgca gctctcggag ggcgaagaat ctcgtgcttt	9060
cagcttcgat gtaggagggc gtggatatgt cctgcgggta aatagctgcg ccgatggttt	9120
ctacaaagat cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt	9180
gettgacatt ggggaattca gegagageet gaeetattge ateteeegee gtgeaeaggg	9240
tgtcacgttg caagacctgc ctgaaaccga actgcccgct gttctgcagc cggtcgcgga	9300

## WO 2004/063359 PCT/EP2004/000099 206/357

ggccatggat gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg	9360
accgcaagga atcggtcaat acactacatg gcgtgatttc atatgcgcga ttgctgatcc	9420
ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc	9480
tetegatgag etgatgettt gggeegagga etgeeeggaa gteeggeace tegtgeacge	9540
ggatttcggc tccaacaatg tcctgacgga caatggccgc ataacagcgg tcattgactg	9600
gagcgaggcg atgttcgggg attcccaata cgaggtcgcc aacatcttct tctggaggcc	9660
gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc	9720
aggatcgccg cggctccggg cgtatatgct ccgcattggt cttgaccaac tctatcagag	9780
cttggttgac ggcaatttcg atgatgcagc ttgggcgcag ggtcgatgcg acgcaatcgt	9840
ccgatccgga gccgggactg tcgggcgtac acaaatcgcc cgcagaagcg cggccgtctg	9900
gaccgatggc tgtgtagaag tactcgccga tagtggaaac cgacgcccca gcactcgtcc	9960
gagggcaaag gaatagagta gatgccgacc gcgggatcga tccacttaac gttactgaaa	10020
tcatcaaaca gcttgacgaa tctggatata agatcgttgg tgtcgatgtc agctccggag	10080
ttgagacaaa tggtgttcag gatctcgata agatacgttc atttgtccaa gcagcaaaga	10140
gtgccttcta gtgatttaat agctccatgt caacaagaat aaaacgcgtt ttcgggttta	10200
cctcttccag atacagetca tetgcaatge attaatgeat tgaetgeaac etagtaaege	10260
cttncaggct ccggcgaaga gaagaatagc ttagcagagc tattttcatt ttcgggagac	10320
gagatcaage agatcaacgg tegtcaagag acctacgaga etgaggaate egetettgge	10380
tccacgcgac tatatatttg tctctaattg tactttgaca tgctcctctt ctttactctg	10440
atagettgae tatgaaaatt eegteaceag encetgggtt egeaaagata attgeatgtt	10500
tetteettga aeteteaage etacaggaca cacatteate gtaggtataa aeetegaaat	10560

## WO 2004/063359 PCT/EP2004/000099 207/357

canttectae taagatggta tacaatagta accatgeatg gttgeetagt gaatgeteeg 10	620
taacacccaa tacgccggcc gaaacttttt tacaactctc ctatgagtcg tttacccaga 10	680
atgcacaggt acacttgttt agaggtaatc cttctttcta gctagaagtc ctcgtgtact 10	740
gtgtaagcgc ccactccaca tetecacteg acetgcagge atgcaagett agagataaaa 10	800
taaaaagaga agaaaagaaa gtttgtacaa tttctttttg tttatataac atacacgcta 10	860
tgtcaacatt tagaataagg gggaaaaaat cttccatcat attcgaatgc acaagattat 10	920
ttetttgtte getetttttg gtegggteat egagatttag agtgtaatea aagataetgt 10	980
catctcgaga gcgttgcaca ggctgctgtt tgccaaattg gatgtttgcc gaattagtaa 11	1040
aatacgcaag catttettae ettteegete eetttteeta atteteecaa agaetaaatg 11	1100
aggaaagata aaggacaaag aaaatgtaaa gacaaagaaa ttgaaaacga tataaacttg 1	1160
cagcacgtaa gaccaaagca aattggtaac tattcttgtg tacaaacatg tataaaaaaa 1	1220
aactttttt tgctcctgga ggacaaaatt tcaaactcct tgaagaagat tgcttgtata 1	1280
tctatcatat gcatatatca tatcgatgga aaaagaaagt caggcatgta tttataaaaa 1	.1340
gaagaatgtg ccatgcttcc gaatttcttt tcactttctt ttccttatct attttaatct 1	1400
catgttgtgg atttggaatg ccctgatcgt tttcgttacc gtgattggca tggaagtgat 1	L1460
tgctgcactg gcacacaaat acatcatgca cggctggggt tggggatggc atctttcaca 1	11520
tcatgaaccg cgtaaaggtg cgtttgaagt taacgatctt tatgccgtgg tttttgctgc 1	11580
attategate etgetgattt atetgggeag tacaggaatg tggeegetee agtggattgg	11640
cgcaggtatg acggcgtatg gattactcta ttttatggtg cacgacgggc tggtgcatca	11700
acgttggcca ttccgctata ttccacgcaa gggctacctc aaacggttgt atatggcgca	11760
ccgtatgcat cacgccgtca ggggcaaaga aggttgtgtt tcttttggct tcctctatgc	11820

## WO 2004/063359 PCT/EP2004/000099 208/357

gccgcccctg	tcaaaacttc	aggcgacgct	ccgggaaaga	catggcgcta	gagcgggcgc	11880
tgccagagat	gcgcagggcg	gggaggatga	gcccgcatcc	gggaagtaag	ggcctgacca	11940
gaggcggcca	gcagcagcgt	taatttttcg	ggcgtggtcg	ttgactgccg	ctgatcccaa	12000
agcttggcgt	aatcatggtc	atagctgttt	cctgtgtgaa	attgttatcc	gctcacaatt	12060
ccacacaaca	tacgagccgg	aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagc	12120
taactcacat	taattgcgtt	gegeteactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	12180
cagctgcatt	aatgaatcgg	ccaacgcgcg	gggagaggcg	gtttgcgtat	tgggccaaag	12240
acaaaagggo	gacattcaac	cgattgaggg	agggaaggta	aatattgacg	gaaattattc	12300
attaaaggtg	g aattatcacc	: gtcaccgact	: tgagccattt	gggaattaga	gccagcaaaa	12360
tcaccagtag	g caccattaco	: attagcaagg	g ccggaaacgt	: caccaatgaa	accatcgata	12420
gcagcaccgt	: aatcagtago	gacagaatca	a agtttgccți	tagcgtcaga	a ctgtagcgcg	12480
ttttcatcg	g cattttcgg	t catagecee	c ttattagcg	t ttgccatct	ttcataatca	12540
aaatcaccg	g aaccagagc	c accaccgga	a ccgcctccc	t cagageege	c accctcagaa	12600
ccgccaccc	t cagagecae	c accctcaga	g ccgccacca	g aaccaccac	c agagccgccg	12660
ccagcattg	a caggaggcc	c gatctagta	a catagatga	c accgcgcgc	g ataatttatc	12720
ctagtttgc	g cgctatatt	t tgttttcta	t cgcgtatta	a atgtataat	t gegggaetet	12780
aatcataaa	a acccatcto	a taaataacg	t catgcatta	c atgttaatt	a ttacatgctt	12840
aacgtaatt	c aacagaaat	t atatgataa	ıt catcgcaag	a ccggcaaca	g gattcaatct	12900
taagaaact	t tattgccaa	aa tgtttgaac	g atcggggat	c atccgggto	t gtggcgggaa	12960
ctccacgaa	aa atatccgaa	ac gcagcaaga	at atcgcggtg	ge ateteggte	et tgeetgggea	a 13020
gtcgccgc	cg acgccgtt	ga tgtggacgo	cc gggcccgat	tc atattgtcg	gc tcaggatcgt	13080

## WO 2004/063359 PCT/EP2004/000099 209/357

ggcgttgtgc ttgtcggccg ttgctgtcgt aatgatatcg gcaccttcga ccgcctgttc 131	40
cgcagagate ccgtgggcga agaactecag catgagatec ccgcgctgga ggatcateca 132	00
gccggcgtcc cggaaaacga ttccgaagcc caacctttca tagaaggcgg cggtggaatc 132	60
gaaatetegt gatggeaggt tgggegtege ttggteggte atttegaace ecagagtece 133	320
gctcagaaga actcgtcaag aaggcgatag aaggcgatgc gctgcgaatc gggagcggcg 133	880
ataccgtaaa gcacgaggaa gcggtcagcc cattcgccgc caagctcttc agcaatatca 134	440
cgggtagcca acgctatgtc ctgatagcgg tccgccacac ccagccggcc acagtcgatg 135	500
aatccagaaa agcggccatt ttccaccatg atattcggca agcaggcatc gccatgggtc 135	560
acgacgagat categeegte gggeatgege geettgagee tggegaacag tteggetgge 13	620
gcgagcccct gatgctcttc gtccagatca tcctgatcga caagaccggc ttccatccga 13	680
gtacgtgctc gctcgatgcg atgtttcgct tggtggtcga atgggcaggt agccggatca 13	740
agegtatgea geegeegeat tgeateagee atgatggata etttetegge aggageaagg 13	800
tgagatgaca ggagatectg ecceggeact tegeceaata geageeagte eetteeeget 13	860
tcagtgacaa cgtcgagcac agctgcgcaa ggaacgcccg tcgtggccag ccacgatagc 13	920
cgcgctgcct cgtcctgcag ttcattcagg gcaccggaca ggtcggtctt gacaaaaaga 13	3980
accgggcgcc cctgcgctga cagccggaac acggcggcat cagagcagcc gattgtctgt 14	1040
tgtgeccagt catageegaa tageetetee acceaagegg eeggagaace tgegtgeaat 14	4100
ccatcttgtt caatcatgcg aaacgatcca gatccggtgc agattatttg gattgagagt 14	4160
gaatatgaga ctctaattgg ataccgaggg gaatttatgg aacgtcagtg gagcattttt 1	4220
gacaagaaat atttgctagc tgatagtgac cttaggcgac ttttgaacgc gcaataatgg 1	4280
tttctgacgt atgtgcttag ctcattaaac tccagaaacc cgcggctgag tggctccttc 1	4340

## WO 2004/063359 PCT/EP2004/000099 210/357

aacgttgcgg ttctgtcagt tccaaacgta aaacggcttg tcccgcgtca tcggcggggg 14	4400
tcataacgtg actecettaa tteteegete atgateagat tgtegtttee egeetteagt 1	4460
ttaaactatc agtgtttgac aggatatatt ggcgggtaaa cctaagagaa aagagcgttt 1	4520
attagaataa teggatattt aaaagggegt gaaaaggttt ateegttegt eeatttgtat 1	4580
gtgcatgcca accacagggt tccccagatc tggcgccggc cagcgagacg agcaagattg 1	4640
gccgccgccc gaaacgatcc gacagcgcgc ccagcacagg tgcgcaggca aattgcacca 1	.4700
acgcatacag cgccagcaga atgccatagt gggcggtgac gtcgttcgag tgaaccagat 1	4760
cgcgcaggag gcccggcagc accggcataa tcaggccgat gccgacagcg tcgagcgcga 1	L4820
cagtgctcag aattacgatc aggggtatgt tgggtttcac gtctggcctc cggaccagcc 1	14880
teegetggte egattgaaeg egeggattet ttateaetga taagttggtg gacatattat	14940
gtttatcagt gataaagtgt caagcatgac aaagttgcag ccgaatacag tgatccgtgc	15000
cgccctggac ctgttgaacg aggtcggcgt agacggtctg acgacacgca aactggcgga	15060
acggttgggg gttcagcagc cggcgcttta ctggcacttc aggaacaagc gggcgctgct	15120
cgacgcactg gccgaagcca tgctggcgga gaatcatacg cattcggtgc cgagagccga	15180
cgacgactgg cgctcatttc tgatcgggaa tgcccgcagc ttcaggcagg cgctgctcgc	15240
ctacegegat ggegegegea tecatgeegg caegegaeeg ggegeaeege agatggaaae	15300
ggccgacgcg cagcttcgct tcctctgcga ggcgggtttt tcggccgggg acgccgtcaa	15360
tgcgctgatg acaatcagct acttcactgt tggggccgtg cttgaggagc aggccggcga	15420
cagegatgee ggegagegeg geggeacegt tgaacagget eegetetege egetgttgeg	15480
ggccgcgata gacgccttcg acgaagccgg tccggacgca gcgttcgagc agggactcgc	15540
ggtgattgtc gatggattgg cgaaaaggag gctcgttgtc aggaacgttg aaggaccgag	15600

# WO 2004/063359 PCT/EP2004/000099 211/357

aaagggtgac	gattgatcag	gaccgctgcc	ggagcgcaac	ccactcacta	cagcagagcc	15660
atgtagacaa	catcccctcc	ccctttccac	cgcgtcagac	gcccgtagca	gcccgctacg	15720
ggctttttca	tgccctgccc	tagcgtccaa	gcctcacggc	cgcgctcggc	ctctctggcg	15780
gccttctggc	gctcttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	cgttcggctg	15840
cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	15900
aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	15960
gcgttgctgg	cgtttttcca	taggctccgc	cccctgacg	agcatcacaa	aaatcgacgc	16020
tcaagtcaga	ggtggcgaaa	. cccgacagga	ctataaagat	accaggcgtt	tccccctgga	16080
agctccctcg	tgcgctctcc	: tgttccgacc	ctgccgctta	ccggatacct	gteegeettt	16140
ctcccttcgg	gaagcgtggc	getttteege	: tgcataacco	tgcttcgggg	tcattatagc	16200
gatttttcg	gtatatccat	cetttttege	c acgatataca	a ggattttgco	aaagggttcg	16260
tgtagacttt	: ccttggtgta	a tccaacggcg	g tcagccggg	c aggataggtg	g aagtaggccc	16320
accegegage	gggtgttcc	t tetteaetgi	t cccttattc	g cacctggcgg	g tgctcaacgg	16380
gaatcctgct	: ctgcgaggc	t ggccggcta	c cgccggcgt	a acagatgagg	g gcaagcggat	16440
ggctgatga	a accaagcca	a ccaggaagg	g cageceace	t atcaaggtg	t actgeettee	16500
agacgaacg	a agagcgatt	g aggaaaagg	c ggcggcggc	c ggcatgagc	c tgtcggccta	16560
cctgctggc	c gtcggccag	g gctacaaaa	t cacgggcgt	c gtggactat	g agcacgtccg	16620
cgagetgge	c cgcatcaat	g gcgacctgg	g cegeetggg	c ggcctgctg	a aactctggct	16680
caccgacga	c cegegeacg	gg cgcggttcg	gg tgatgccac	g atcctcgcc	c tgctggcgaa	16740
gatcgaaga	g aagcaggad	eg agcttggca	a ggtcatgat	g ggcgtggtc	c gcccgaggg	16800
agagccato	ga ctttttag	gc cgctaaaa	eg geeggggg	gt gegegtgat	t gccaagcac	16860

tececatgeg etecateaag aagagegaet tegeggaget ggtgaagtae ateaeegaeg 16920 ageaaggeaa gaeegagege etttgegaeg etea 16954

<210> 45 <211> 19491 <212> DNA <213> Artificial <220> <223> Plasmid <220> <221> misc_feature <222> (18970)..(18970) <223> n is a, c, g, or t <220> <221> misc_feature <222> (19178)..(19178) <223> n is a, c, g, or t <220> <221> misc_feature <222> (19269)..(19269) <223> n is a, c, g, or t <400> 45 agettggtae egagetegga tecaetagta aeggeegeea gtgtgetgga attegeeett 60 gacggccagt gaattcgagc tcggtacccg gggatctttc gacactgaaa tacgtcgagc 120 ctgctccgct tggaagcggc gaggagcctc gtcctgtcac aactaccaac atggagtacg 180 ataagggcca gttccgccag ctcattaaga gccagttcat gggcgttggc atgatggccg 240 tcatgcatct gtacttcaag tacaccaacg ctcttctgat ccagtcgatc atccgctgaa 300

ggcgctttcg aatctggtta agatccacgt cttcgggaag ccagcgactg gtgacctcca

360

#### WO 2004/063359 PCT/EP2004/000099 213/357

gcgtcccttt aaggctgcca acagctttct cagccagggc cagcccaaga ccgacaaggc	420
ctccctccag aacgccgaga agaactggag gggtggtgtc aaggaggagt aagctcctta	480
ttgaagtcgg aggacggagc ggtgtcaaga ggatattctt cgactctgta ttatagataa	540
gatgatgagg aattggaggt agcatagctt catttggatt tgctttccag gctgagactc	600
tagcttggag catagagggt cctttggctt tcaatattct caagtatctc gagtttgaac	660
ttattccctg tgaacctttt attcaccaat gagcattgga atgaacatga atctgaggac	720
tgcaatcgcc atgaggtttt cgaaatacat ccggatgtcg aaggcttggg gcacctgcgt	780
tggttgaatt tagaacgtgg cactattgat catccgatag ctctgcaaag ggcgttgcac	840
aatgcaagtc aaacgttgct agcagttcca ggtggaatgt tatgatgagc attgtattaa	900
atcaggagat atagcatgat ctctagttag ctcaccacaa aagtcagacg gcgtaaccaa	960
aagtcacaca acacaagctg taaggatttc ggcacggcta cggaagacgg agaagccacc	1020
ttcagtggac tcgagtacca tttaattcta tttgtgtttg atcgagacct aatacagccc	1080
ctacaacgac catcaaagtc gtatagctac cagtgaggaa gtggactcaa atcgacttca	1140
gcaacatctc ctggataaac tttaagccta aactatacag aataagatag gtggagagct	1200
tataccgage teccaaatet gtecagatea tggttgaeeg gtgeetggat etteetatag	1260
aatcatcett attegttgae etagetgatt etggagtgae ecagagggte atgaettgag	1320
cctaaaatcc gccgcctcca ccatttgtag aaaaatgtga cgaactcgtg agctctgtac	1380
agtgaccggt gactctttct ggcatgcgga gagacggacg gacgcagaga gaagggctga	1440
gtaataagcc actggccaga cagctctggc ggctctgagg tgcagtggat gattattaat	1500
ccgggaccgg ccgccctcc gccccgaagt ggaaaggctg gtgtgcccct cgttgaccaa	1560
gaatctattg catcatcgga gaatatggag cttcatcgaa tcaccggcag taagcgaagg	1620

#### WO 2004/063359 PCT/EP2004/000099 214/357

agaatgtgaa	gccaggggtg	tatagccgtc	ggcgaaatag	catgccatta	acctaggtac	1680
agaagtccaa	ttgcttccga	tctggtaaaa	gattcacgag	atagtacctt	ctccgaagta	1740
ggtagagcga	gtacccggcg	cgtaagctcc	ctaattggcc	catccggcat	ctgtagggcg	1800
tccaaatatc	gtgcctctcc	tgctttgccc	ggtgtatgaa	accggaaagg	ccgctcagga	1860
gctggccagc	ggcgcagacc	gggaacacaa	gctggcagtc	gacccatccg	gtgctctgca	1920
ctcgacctgc	tgaggtccct	cagtccctgg	taggcagctt	tgccccgtct	gtccgcccgg	1980
tgtgtcggcg	gggttgacaa	ggtcgttgcg	tcagtccaac	atttgttgcc	atattttcct	2040
gctctcccca	ccagctgctc	ttttctttc	tetttettt	cccatcttca	gtatattcat	2100
cttcccatcc	aagaaccttt	atttccccta	agtaagtact	ttgctacatc	catactccat	2160
ccttcccatc	ccttattcct	ttgaaccttt	cagttcgagc	tttcccactt	catcgcagct	2220
tgactaacag	ctaccccgct	tgagcagaca	tcaccatgct	gtcgaagctg	g cagtcaatca	2280
gcgtcaaggc	ccgccgcgtt	gaactagccc	gcgacatcac	geggeecaaa	gtctgcctgc	2340
atgctcagcg	gtgctcgtta	gtteggetge	gagtggcago	e accacagaca	a gaggaggcgc	2400
tgggaaccgt	geaggetgee	ggcgcgggcg	atgagcacag	g cgccgatgta	a gcactccagc	2460
agcttgaccg	ggctatcgca	a gagcgtcgtg	cccggcgcaa	a acgggagcag	g ctgtcatacc	2520
aggetgeege	cattgcagca	a tcaattggcg	tgtcaggca	tgccatctt	c gccacctacc	2580
tgagatttgo	catgcacato	g accgtgggcg	g gcgcagtgc	c atggggtga	a gtggctggca	2640
ctctcctcti	t ggtggttggl	t ggcgcgctcg	g gcatggaga	t gtatgcccg	c tatgcacaca	2700
aagccatct	g gcatgagtc	g cctctgggct	t ggctgctgc	a caagagcca	c cacacacctc	2760
gcactggac	c ctttgaagc	c aacgacttg	t ttgcaatca	t caatggact	g cccgccatgc	2820
tcctgtgta	c ctttggctt	c tggctgccc	a acgtcctgg	g ggcggcctg	c tttggagcgg	2880

#### WO 2004/063359 PCT/EP2004/000099 215/357

ggctgggcat	cacgctatac	ggcatggcat	atatgtttgt	acacgatggc	ctggtgcaca	2940
ggcgctttcc	caccgggccc	ategetggee	tgccctacat	gaagegeetg	acagtggccc	3000
accagctaca	ccacagcggc	aagtacggtg	gegegeeetg	gggtatgttc	ttgggtccac	3060
aggagctgca	gcacattcca	ggtgcggcgg	aggaggtgga	gcgactggtc	ctggaactgg	3120
actggtccaa	gcggtagggt	gcggaaccag	gcacgctggt	ttcacacctc	atgcctgtga	3180
taaggtgtgg	ctagagcgat	gcgtgtgaga	cgggtatgtc	acggtcgact	ggtctgatgg	3240
ccaatggcat	cggccatgtc	tggtcatcac	gggctggttg	cctgggtgaa	, ggtgatgcac	3300
atcatcatgt	gcggttggag	gggctggcac	agtgtgggct	gaactggagc	agttgtccag	3360
gctggcgttg	aatcagtgag	ggtttgtgat	tggcggttgt	: gaagcaatga	ctccgcccat	3420
attctatttg	g tgggagctga	ı gatgatggca	ı tgcttgggat	: gtgcatggat	catggtagtg	3480
cagcaaacta	a tattcaccta	a gggctgttgg	g taggatcagg	g tgaggccttg	g cacattgcat	3540
gatgtactc	g tcatggtgtg	j ttggtgagag	g gatggatgt	g gatggatgt	g tattctcaga	3600
cgtagacct	t gactggagge	c ttgatcgaga	a gagtgggcc	g tattctttg	a gaggggaggc	3660
tegtgeeag	a aatggtgag	t ggatgactg	t gacgctgta	c attgcaggc	a ggtgagatgc	3720
actgtctcg	a ttgtaaaat	a cattcagat	g caagcttgg	c gtaatcatg	g tcatagctgt	3780
ttcctgtgt	g aaattgtta	t ccgctcaca	a ttccacaca	a catacgagc	c ggaagcataa	3840
agtgtaaag	c ctggggtgc	c taatgagtg	a gctaactca	c attaattgc	g ttgcgctcac	3900
tgcccgctt	t ccagtcggg	a aacctgtcg	t gecagetge	a ttaatgaat	c ggccaacgcg	3960
cggggagag	g cggtttgcg	rt attgggcca	a agacaaaag	g gcgacatto	a accgattgag	4020
ggagggaag	gg taaatattg	ga cggaaatta	at tcattaaag	gg tgaattato	ca ccgtcaccga	4080
cttgagcca	ıt ttgggaatt	a gagccagca	aa aatcaccag	gt agcaccatt	ca ccattagcaa	4140

## WO 2004/063359 PCT/EP2004/000099 216/357

ggccggaaac gtcaccaatg aaaccatcga tagcagcacc gtaatcagta gcgacagaat	4200
caagtttgcc tttagcgtca gactgtagcg cgttttcatc ggcattttcg gtcatagccc	4260
ccttattagc gtttgccatc ttttcataat caaaatcacc ggaaccagag ccaccaccgg	4320
aaccgcctcc ctcagagccg ccaccctcag aaccgccacc ctcagagcca ccaccctcag	4380
agccgccacc agaaccacca ccagagccgc cgccagcatt gacaggaggc ccgatctagt	4440
aacatagatg acaccgcgcg cgataattta tcctagtttg cgcgctatat tttgttttct	4500
atcgcgtatt aaatgtataa ttgcgggact ctaatcataa aaacccatct cataaataac	4560
gtcatgcatt acatgttaat tattacatgc ttaacgtaat tcaacagaaa ttatatgata	4620
atcatcgcaa gaccggcaac aggattcaat cttaagaaac tttattgcca aatgtttgaa	4680
cgatcgggga tcatccgggt ctgtggcggg aactccacga aaatatccga acgcagcaag	4740
atategeggt geateteggt ettgeetggg eagtegeege egaegeegtt gatgtggaeg	4800
ccgggcccga tcatattgtc gctcaggatc gtggcgttgt gcttgtcggc cgttgctgtc	4860
gtaatgatat cggcaccttc gaccgcctgt tccgcagaga tcccgtgggc gaagaactcc	4920
agcatgagat ccccgcgctg gaggatcatc cagccggcgt cccggaaaac gattccgaag	4980
cccaaccttt catagaaggc ggcggtggaa tcgaaatctc gtgatggcag gttgggcgtc	5040
gcttggtcgg tcatttcgaa ccccagagtc ccgctcagaa gaactcgtca agaaggcgat	5100
agaaggcgat gcgctgcgaa tcgggagcgg cgataccgta aagcacgagg aagcggtcag	5160
cccattcgcc gccaagctct tcagcaatat cacgggtagc caacgctatg tcctgatagc	5220
ggtccgccac acccagccgg ccacagtcga tgaatccaga aaagcggcca ttttccacca	5280
tgatattcgg caagcaggca tcgccatggg tcacgacgag atcategecg tcgggcatge	5340
gcgccttgag cctggcgaac agttcggctg gcgcgagccc ctgatgctct tcgtccagat	5400

### WO 2004/063359 PCT/EP2004/000099 217/357

catectgate gacaagaceg gettecatee gagtacgtge tegetegatg egatgttteg 54	460
cttggtggtc gaatgggcag gtagccggat caagcgtatg cagccgccgc attgcatcag 5	520
ccatgatgga tactttctcg gcaggagcaa ggtgagatga caggagatcc tgccccggca 5	580
cttcgcccaa tagcagccag tcccttcccg cttcagtgac aacgtcgagc acagctgcgc 5	640
aaggaacgcc cgtcgtggcc agccacgata gccgcgctgc ctcgtcctgc agttcattca 5	5700
gggcaccgga caggtcggtc ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga 5	5760
acacggegge atcagageag eegattgtet gttgtgeeca gteatageeg aatageetet	5820
ccacccaagc ggccggagaa cctgcgtgca atccatcttg ttcaatcatg cgaaacgatc	5880
cagatccggt gcagattatt tggattgaga gtgaatatga gactctaatt ggataccgag	5940
gggaatttat ggaacgtcag tggagcattt ttgacaagaa atatttgcta gctgatagtg	6000
accttaggcg acttttgaac gcgcaataat ggtttctgac gtatgtgctt agctcattaa	6060
actccagaaa cccgcggctg agtggctcct tcaacgttgc ggttctgtca gttccaaacg	6120
taaaacggct tgtcccgcgt catcggcggg ggtcataacg tgactccctt aattctccgc	6180
tcatgatcag attgtcgttt cccgccttca gtttaaacta tcagtgtttg acaggatata	6240
ttggcgggta aacctaagag aaaagagcgt ttattagaat aatcggatat ttaaaagggc	6300
gtgaaaaggt ttatccgttc gtccatttgt atgtgcatgc caaccacagg gttccccaga	6360
tctggcgccg gccagcgaga cgagcaagat tggccgccgc ccgaaacgat ccgacagcgc	6420
gcccagcaca ggtgcgcagg caaattgcac caacgcatac agcgccagca gaatgccata	6480
gtgggcggtg acgtcgttcg agtgaaccag atcgcgcagg aggcccggca gcaccggcat	6540
aatcaggccg atgccgacag cgtcgagcgc gacagtgctc agaattacga tcaggggtat	6600
gttgggtttc acgtctggcc tccggaccag cctccgctgg tccgattgaa cgcgcggatt	6660

## WO 2004/063359 PCT/EP2004/000099 218/357

ctttatcact	gataagttgg	tggacatatt	atgtttatca	gtgataaagt	gtcaagcatg	6720
acaaagttgc	agccgaatac	agtgatccgt	gccgccctgg	acctgttgaa	cgaggtcggc	6780
gtagacggtc	tgacgacacg	caaactggcg	gaacggttgg	gggttcagca	gccggcgctt	6840
tactggcact	tcaggaacaa	gegggegetg	ctcgacgcac	tggccgaagc	catgctggcg	6900
gagaatcata	cgcattcggt	gccgagagcc	gacgacgact	ggcgctcatt	tctgatcggg	6960
aatgcccgca	gcttcaggca	ggegetgete	gcctaccgcg	atggcgcgcg	catccatgcc	7020
ggcacgcgac	cgggcgcacc	gcagatggaa	acggccgacg	cgcagcttcg	cttcctctgc	7080
gaggcgggtt	tttcggccgg	ggacgccgtc	: aatgcgctga	tgacaatcag	ctacttcact	7140
gttggggccg	tgcttgagga	gcaggccggc	gacagogato	ı ceggegageg	g eggeggeace	7200
gttgaacagg	g ctccgctctc	geegetgttg	g egggeegega	a tagacgcctt	cgacgaagcc	7260
ggtccggac	g cagcgttcga	a gcagggacto	e geggtgattg	g tcgatggatt	ggcgaaaagg	7320
aggctcgtt	g tcaggaacg	t tgaaggacc	g agaaagggt	g acgattgato	e aggaccgctg	7380
ccggagcgc	a acccactca	c tacagcaga	g ccatgtaga	c aacatcccc	t eccetttee	7440
accgcgtca	g acgcccgta	g cagcccgct	a cgggctttt	t catgecetg	c cctagcgtcc	7500
aagcctcac	g geegegete	g geetetetg	g cggccttct	g gegetette	c getteetege	7560
tcactgact	c gctgcgctc	g gtcgttcgg	c tgcggcgag	c ggtatcagc	t cactcaaagg	7620
cggtaatac	g gttatccac	a gaatcaggg	gg ataacgcag	g aaagaacat	g tgagcaaaag	7680
gccagcaaa	a ggccaggaa	c cgtaaaaag	gg ccgcgttgo	t ggcgtttt	c cataggetee	7740
gcccccts	ga cgagcatca	ac aaaaatcga	ac gctcaagto	a gaggtggcg	ga aacccgacag	7800
gactataa	ag ataccaggo	eg ttteecee	tg gaageteed	et egtgegete	et cctgttccga	7860
ccctgccg	ct taccggat	ac ctgtccgc	ct tteteect	te gggaagegt	tg gcgcttttcc	7920

#### WO 2004/063359 PCT/EP2004/000099 219/357

gctgcataac	cctgcttcgg	ggtcattata	gcgattttt	cggtatatcc	atcctttttc	7980
gcacgatata	caggattttg	ccaaagggtt	cgtgtagact	ttccttggtg	tatccaacgg	8040
cgtcagccgg	gcaggatagg	tgaagtaggc	ccacccgcga	gcgggtgttc	cttcttcact	8100
gtcccttatt	cgcacctggc	ggtgctcaac	gggaatcctg	ctctgcgagg	ctggceggct	8160
accgccggcg	taacagatga	gggcaagcgg	atggctgatg	aaaccaagcc	aaccaggaag	8220
ggcagcccac	ctatcaaggt	gtactgcctt	ccagacgaac	gaagagcgat	tgaggaaaag	8280
gcggcggcgg	ccggcatgag	cctgtcggcc	tacctgctgg	ccgtcggcca	gggctacaaa	83 <b>4</b> 0
atcacgggcg	tcgtggacta	tgagcacgtc	cgcgagctgg	cccgcatcaa	tggcgacctg	8400
ggccgcctgg	gcggcctgct	gaaactctgg	ctcaccgacg	acccgcgcac	ggcgcggttc	8460
ggtgatgcca	. cgatcctcgc	: cctgctggcg	g aagatcgaag	agaagcagga	cgagettgge	8520
aaggtcatga	ı tgggcgtggt	ccgcccgagg	gcagagccat	gacttttta	ı gccgctaaaa	8580
cggccggggg	g gtgcgcgtga	a ttgccaagca	a cgtccccat <u>c</u>	g cgctccatca	a agaagagcga	8640
cttcgcggag	g ctggtgaagt	acatcaccg	a cgagcaaggo	c aagaccgago	e geetttgega	8700
cgctcaccg	g gctggttgc	c ctcgccgct	g ggctggcggd	c cgtctatgg	e cctgcaaacg	8760
cgccagaaa	c geegtegaa	g ccgtgtgcg	a gacaccgcg	g ccgccggcg	t tgtggatacc	8820
tcgcggaaa	a cttggccct	c actgacaga	t gaggggcgg	a cgttgacac	t tgaggggccg	8880
actcacccg	g cgcggcgtt	g acagatgag	g ggcaggctc	g atttcggcc	g gcgacgtgga	8940
gctggccag	c ctcgcaaat	c ggcgaaaac	g cctgatttt	a cgcgagttt	c ccacagatga	9000
tgtggacaa	g cctggggat	a agtgccctg	rc ggtattgac	a cttgagggg	e gegaetaetg	9060
acagatgag	g ggcgcgatc	c ttgacactt	g aggggcaga	g tgctgacag	a tgaggggcgc	9120
acctattga	c atttgaggg	g ctgtccaca	ag gcagaaaat	c cagcatttg	c aagggtttcc	9180

### WO 2004/063359 PCT/EP2004/000099 220/357

gcccgttttt cggccaccgc taacctgtct tttaacctgc ttttaaacca atatttataa	9240
accttgtttt taaccagggc tgcgccctgt gcgcgtgacc gcgcacgccg aaggggggtg	9300
ccccccttc tcgaaccctc ccggcccgct aacgcgggcc tcccatcccc ccaggggctg	9360
cgcccctcgg ccgcgaacgg cctcacccca aaaatggcag cgctggcagt ccttgccatt	9420
gccgggatcg gggcagtaac gggatgggcg atcagcccga gcgcgacgcc cggaagcatt	9480
gacgtgccgc aggtgctggc atcgacattc agcgaccagg tgccgggcag tgagggcggc	9540
ggcctgggtg gcggcctgcc cttcacttcg gccgtcgggg cattcacgga cttcatggcg	9600
gggccggcaa tttttacctt gggcattctt ggcatagtgg tcgcgggtgc cgtgctcgtg	9660
ttcgggggtg cgataaaccc agcgaaccat ttgaggtgat aggtaagatt ataccgaggt	9720
atgaaaacga gaattggacc tttacagaat tactctatga agcgccatat ttaaaaagct	9780
accaagacga agaggatgaa gaggatgagg aggcagattg ccttgaatat attgacaata	9840
ctgataagat aatatatctt ttatatagaa gatatcgccg tatgtaagga tttcaggggg	9900
caaggcatag gcagcgcgct tatcaatata tctatagaat gggcaaagca taaaaacttg	9960
catggactaa tgcttgaaac ccaggacaat aaccttatag cttgtaaatt ctatcataat	10020
tgggtaatga ctccaactta ttgatagtgt tttatgttca gataatgccc gatgactttg	10080
tcatgcaget ccaccgattt tgagaacgac agegaettee gteccageeg tgecaggtge	10140
tgcctcagat tcaggttatg ccgctcaatt cgctgcgtat atcgcttgct gattacgtgc	10200
agettteeet teaggeggga tteatacage ggeeageeat eegteateea tateaceaeg	10260
tcaaagggtg acagcaggct cataagacgc cccagcgtcg ccatagtgcg ttcaccgaat	10320
acgtgcgcaa caaccgtctt ccggagactg tcatacgcgt aaaacagcca gcgctggcgo	10380
gatttagece egacatagee ceaetgtteg teeattteeg egeagaegat gaegteaet	10440

#### WO 2004/063359 PCT/EP2004/000099 221/357

cccggctgta	tgcgcgaggt	taccgactgc	ggcctgagtt	ttttaagtga	cgtaaaatcg	10500
tgttgaggcc	aacgcccata	atgcgggctg	ttgcccggca	tccaacgcca	ttcatggcca	10560
tatcaatgat	tttctggtgc	gtaccgggtt	gagaagcggt	gtaagtgaac	tgcagttgcc	10620
atgttttacg	gcagtgagag	cagagatagc	gctgatgtcc	ggcggtgctt	ttgccgttac	10680
gcaccacccc	gtcagtagct	gaacaggagg	gacagctgat	agacacagaa	gccactggag	10740
cacctcaaaa	acaccatcat	acactaaatc	agtaagttgg	cagcatcacc	cataattgtg	10800
gtttcaaaat	cggctccgtc	gatactatgt	tatacgccaa	ctttgaaaac	aactttgaaa	10860
aagctgtttt	ctggtattta	aggttttaga	atgcaaggaa	cagtgaattg	gagttcgtct	10920
tgttataatt	agcttcttgg	ggtatcttta	. aatactgtag	aaaagaggaa	ggaaataata	10980
aatggctaaa	atgagaatat	caccggaatt	gaaaaaactg	atcgaaaaat	accgctgcgt	11040
aaaagatacg	gaaggaatgt	ctcctgctaa	ı ggtatataag	g ctggtgggag	g aaaatgaaaa	11100
cctatattta	a aaaatgacgg	g acageeggta	a taaagggaco	e acctatgatç	g tggaacggga	11160
aaaggacato	g atgctatggo	tggaaggaaa	a gctgcctgti	ccaaaggtco	c tgcactttga	11220
acggcatgal	t ggctggagca	a atctgctcat	t gagtgaggc	c gatggcgtc	c tttgctcgga	11280
agagtatga	a gatgaacaa	a gccctgaaa	a gattatcga	g ctgtatgcg	g agtgcatcag	11340
gctctttca	c tecategae	a tatcggatt	g tccctatac	g aatagctta	g acagccgctt	11400
agccgaatt	g gattactta	c tgaataacg	a tctggccga	t gtggattgc	g aaaactggga	11460
agaagacac	t ccatttaaa	g atccgcgcg	a gctgtatga	t tttttaaag	a cggaaaagcc	11520
cgaagagga	a cttgtcttt	t cccacggcg	a cctgggaga	c agcaacatc	t ttgtgaaaga	11580
tggcaaagt	a agtggcttt	a ttgatcttg	g gagaagcgg	gc agggcggac	a agtggtatga	11640
cattgcctt	c tgcgtccgg	rt cgatcaggg	ga ggatategg	gg gaagaacag	gt atgtcgagct	11700

## WO 2004/063359 PCT/EP2004/000099 222/357

attttttgac ttactgggga tcaagcctga ttgggagaaa ataaaatatt atattttact 11760	)
ggatgaattg ttttagtacc tagatgtggc gcaacgatgc cggcgacaag caggagcgca 11820	ס
cegacttett cegcateaag tgttttgget etcaggeega ggeecaegge aagtatttgg 11880	0
gcaaggggtc gctggtattc gtgcagggca agattcggaa taccaagtac gagaaggacg 1194	0
gccagacggt ctacgggacc gacttcattg ccgataaggt ggattatctg gacaccaagg 1200	0
caccaggcgg gtcaaatcag gaataagggc acattgcccc ggcgtgagtc ggggcaatcc 1206	0
cgcaaggagg gtgaatgaat cggacgtttg accggaaggc atacaggcaa gaactgatcg 1212	
acgeggggtt tteegeegag gatgeegaaa eeategeaag eegeaeegte atgegtgege 1218	10
cccgcgaaac cttccagtcc gtcggctcga tggtccagca agctacggcc aagatcgagc 1224	10
gegacagegt geaactgget ecceetgeee tgeeegegee ateggeegee gtggagegtt 1230	)0
cgcgtcgtct cgaacaggag gcggcaggtt tggcgaagtc gatgaccatc gacacgcgag 1236	50
gaactatgac gaccaagaag cgaaaaaccg ccggcgagga cctggcaaaa caggtcagcg 1249	20
aggccaagca ggccgcgttg ctgaaacaca cgaagcagca gatcaaggaa atgcagcttt 124	80
cettgttega tattgegeeg tggeeggaea egatgegage gatgeeaaae gaeaeggeee 125	40
gctctgccct gttcaccacg cgcaacaaga aaatcccgcg cgaggcgctg caaaacaagg 126	00
tcattttcca cgtcaacaag gacgtgaaga tcacctacac cggcgtcgag ctgcgggccg 126	60
acgatgacga actggtgtgg cagcaggtgt tggagtacgc gaagcgcacc cctatcggcg 127	/20
ageegateae etteaegtte taegagettt geeaggaeet gggetggteg ateaatggee 127	180
ggtattacac gaaggeegag gaatgeetgt egegeetaca ggegaeggeg atgggettea 128	840
cgtccgaccg cgttgggcac ctggaatcgg tgtcgctgct gcaccgcttc cgcgtcctgg 129	900
accgtggcaa gaaaacgtcc cgttgccagg tcctgatcga cgaggaaatc gtcgtgctgt 129	960

#### WO 2004/063359 PCT/EP2004/000099 223/357

ttgctggcga	ccactacacg	aaattcatat	gggagaagta	ccgcaagctg	tcgccgacgg	13020
cccgacggat	gttcgactat	ttcagctcgc	accgggagcc	gtacccgctc	aagctggaaa	13080
ccttccgcct	catgtgcgga	tcggattcca	cccgcgtgaa	gaagtggcgc	gagcaggtcg	13140
gcgaagcctg	cgaagagttg	cgaggcagcg	gcctggtgga	acacgcctgg	gtcaatgatg	13200
acctggtgca	ttgcaaacgc	tagggccttg	tggggtcagt	teeggetggg	ggttcagcag	13260
ccagcgcttt	actggcattt	caggaacaag	cgggcactgc	tcgacgcact	tgcttcgctc	13320
agtatcgctc	gggacgcacg	gegegeteta	cgaactgccg	ataaacagag	gattaaaatt	13380
gacaattgtg	attaaggctc	agattcgacg	gcttggagcg	gccgacgtgc	aggatttccg	13440
cgagatccga	ttgtcggccc	tgaagaaagc	tccagagatg	ttcgggtccg	tttacgagca	13500
cgaggagaaa	ı aageceatgg	aggegttege	tgaacggttg	cgagatgccg	tggcattcgg	13560
cgcctacato	gacggcgaga	tcattgggct	gtcggtcttc	aaacaggagg	·acggccccaa	13620
ggacgctcac	e aaggegeate	: tgtccggcgt	tttcgtggag	cccgaacago	gaggccgagg	13680
ggtcgccggt	atgetgetge	: gggcgttgcc	: ggcgggttta	ttgctcgtga	a tgategteeg	13740
acagattcca	a acgggaatct	ggtggatgcg	g catcttcato	c ctcggcgcac	ttaatatttc	13800
gctattctg	g agcttgttgt	ttatttcggt	: ctaccgccts	g ccgggcggg	g tegeggegae	13860
ggtaggcgc	t gtgcagccg	c tgatggtcgt	gttcatctc	t geegetetge	c taggtagece	13920
gatacgatt	g atggcggtc	c tgggggcta	t ttgcggaac	t gegggegtg	g egetgttggt	13980
gttgacacc	a aacgcagcg	c tagatectg	t eggegtege	a gegggeetg	g cgggggcggt	14040
ttccatggc	g ttcggaacc	g tgctgaccc	g caagtggca	a cctcccgtg	c ctctgctcac	14100
ctttaccgc	c tggcaactg	g cggccggag	g acttctgct	c gttccagta	g ctttagtgtt	14160
tgatccgcc	a atcccgatg	c ctacaggaa	c caatgttct	c ggcctggcg	t ggctcggcct	14220

#### WO 2004/063359 PCT/EP2004/000099 224/357

gatcggagcg ggtttaacct acttectttg gttccggggg atctcgcgac tcgaacctac 14	280
agttgtttec ttactgggct ttctcagccc cagatctggg gtcgatcagc cggggatgca 14	340
tcaggccgac agtcggaact tcgggtcccc gacctgtacc attcggtgag caatggatag 14	400
gggagttgat atcgtcaacg ttcacttcta aagaaatagc gccactcagc ttcctcagcg 14	1460
gctttatcca gcgatttcct attatgtcgg catagttctc aagatcgaca gcctgtcacg 14	1520
gttaagcgag aaatgaataa gaaggctgat aattcggatc tctgcgaggg agatgatatt 14	4580
tgatcacagg cagcaacgct ctgtcatcgt tacaatcaac atgctaccct ccgcgagatc 14	4640
atccgtgttt caaacccggc agcttagttg ccgttcttcc gaatagcatc ggtaacatga 14	4700
gcaaagtctg ccgccttaca acggctctcc cgctgacgcc gtcccggact gatgggctgc 1	4760
ctgtatcgag tggtgatttt gtgccgagct gccggtcggg gagctgttgg ctggctggtg 1	4820
gcaggatata ttgtggtgta aacaaattga cgcttagaca acttaataac acattgcgga 1	4880
cgtttttaat gtactggggt ggtttttctt ttcaccagtg agacgggcaa cagctgattg 1	4940
cectteaceg cetggeeetg agagagttge ageaageggt ceaegetggt ttgeeecage 1	5000
aggegaaaat eetgtttgat ggtggtteeg aaateggeaa aateeettat aaateaaaag 1	L5060
aatagcccga gatagggttg agtgttgttc cagtttggaa caagagtcca ctattaaaga 1	L5120
acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg 1	15180
aaccatcacc caaatcaagt tttttggggt cgaggtgccg taaagcacta aatcggaacc 1	15240
ctaaagggag cccccgattt agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg	15300
aagggaagaa agcgaaagga gcgggcgcca ttcaggctgc gcaactgttg ggaagggcga	15360
teggtgeggg cetetteget attacgecag etggegaaag ggggatgtge tgeaaggega	15420
ttaagttggg taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgaa	15480

# WO 2004/063359 PCT/EP2004/000099 225/357

ttcgagctcg gtacccgggg atctttcgac actgaaatac gtcgagcctg ctccgcttgg 155	540
aagcggcgag gagcctcgtc ctgtcacaac taccaacatg gagtacgata agggccagtt 150	600
ccgccagctc attaagagcc agttcatggg cgttggcatg atggccgtca tgcatctgta 15	660
cttcaagtac accaacgctc ttctgatcca gtcgatcatc cgctgaaggc gctttcgaat 15	720
ctggttaaga tccacgtctt cgggaagcca gcgactggtg acctccagcg tccctttaag 15	780
gctgccaaca gctttctcag ccagggccag cccaagaccg acaaggcctc cctccagaac 15	840
gccgagaaga actggagggg tggtgtcaag gaggagtaag ctccttattg aagtcggagg 15	5900
acggagcggt gtcaagagga tattcttcga ctctgtatta tagataagat gatgaggaat 15	5960
tggaggtagc atagcttcat ttggatttgc tttccaggct gagactctag cttggagcat 16	60 ² 0
agagggtcct ttggctttca atattctcaa gtatctcgag tttgaactta ttccctgtga 16	6080
accttttatt caccaatgag cattggaatg aacatgaatc tgaggactgc aatcgccatg 1	6140
aggttttcga aatacatccg gatgtcgaag gcttggggca cctgcgttgg ttgaatttag 1	6200
aacgtggcac tattgatcat ccgatagete tgcaaaggge geegeacade george	6260
cgttgctagc agttccaggt ggaatgttat gatgagcatt gtattadate aggagaeses	.6320
gcatgatete tagttagete accaeaaaag teagaeggeg edaoodaaag	L6380
caagetgtaa ggatttegge aeggetaegg aagaeggaga agesaeese ag gg	L6440
agtaccattt aattetattt gtgtttgate gagaeetaat acageeeta eaasgassus	16500
caaagtcgta tagctaccag tgaggaagtg gactcaaatc gactteaged association	16560
gataaacttt aagcctaaac tatacagaat aagataggtg gagageette deegageet	16620
caaatctgtc cagatcatgg ttgaccggtg cctggatctt cctatagaat caddoosaas	16680
cgttgaccta gctgattctg gagtgaccca gagggtcatg acttgagcct aaaatccgcc	16740

## WO 2004/063359 PCT/EP2004/000099 226/357

gcctccacca tttgtagaaa aatgtgacga actcgtgagc tctgtacagt gaccggtgac 16	6800
tetttetgge atgeggagag aeggaeggae geagagagaa gggetgagta ataageeaet 1	6860
ggccagacag ctctggcggc tctgaggtgc agtggatgat tattaatccg ggaccggccg 1	6920
cccctccgcc ccgaagtgga aaggctggtg tgcccctcgt tgaccaagaa tctattgcat 1	6980
catcggagaa tatggagctt catcgaatca ccggcagtaa gcgaaggaga atgtgaagcc 1	7040
aggggtgtat agccgtcggc gaaatagcat gccattaacc taggtacaga agtccaattg 1	.7100
cttccgatct ggtaaaagat tcacgagata gtaccttctc cgaagtaggt agagcgagta 1	17160
cccggcgcgt aagctcccta attggcccat ccggcatctg tagggcgtcc aaatatcgtg 1	L7220
cetetectge tttgeceggt gtatgaaace ggaaaggeeg eteaggaget ggeeagegge 1	17280
gcagaccggg aacacaagct ggcagtcgac ccatccggtg ctctgcactc gacctgctga	17340
ggtccctcag tccctggtag gcagctttgc cccgtctgtc cgcccggtgt gtcggcgggg	17400
ttgacaaggt cgttgcgtca gtccaacatt tgttgccata ttttcctgct ctccccacca	17460
gctgctcttt tcttttctct ttcttttccc atcttcagta tattcatctt cccatccaag	17520
aacctttatt teeectaagt aagtactttg etacateeat aeteeateet teeeateeet	17580
tattcctttg aacctttcag ttcgagettt cccacttcat cgcagettga ctaacageta	17640
ccccgcttga gcagacatca ccatgcctga actcaccgcg acgtctgtcg agaagtttct	17700
gatcgaaaag ttcgacagcg tctccgacct gatgcagctc tcggagggcg aagaatctcg	17760
tgctttcagc ttcgatgtag gagggcgtgg atatgtcctg cgggtaaata gctgcgccga	17820
tggtttctac aaagatcgtt atgtttatcg gcactttgca tcggccgcgc tcccgattcc	17880
ggaagtgett gacattgggg aatteagega gageetgaee tattgeatet eeegeegtge	17940
acagggtgtc acgttgcaag acctgcctga aaccgaactg cccgctgttc tgcagccggt	18000

## WO 2004/063359 PCT/EP2004/000099 227/357

cgcggaggcc atggatgcga tcgctgcggc cgatcttagc cagacgagcg ggttcggccc 18060	)
atteggaceg caaggaateg gteaataeae tacatggegt gattteatat gegegattge 18120	)
tgatccccat gtgtatcact ggcaaactgt gatggacgac accgtcagtg cgtccgtcgc 18180	)
gcaggetete gatgagetga tgetttggge egaggaetge eecgaagtee ggeacetegt 1824	)
gcacgcggat ttcggctcca acaatgtcct gacggacaat ggccgcataa cagcggtcat 1830	0
tgactggagc gaggcgatgt tcggggattc ccaatacgag gtcgccaaca tcttcttctg 1836	0
gaggccgtgg ttggcttgta tggagcagca gacgcgctac ttcgagcgga ggcatccgga 1842	0
gettgeagga tegeegegge teegggegta tatgeteege attggtettg accaacteta 1848	0
tcagagettg gttgaeggea atttegatga tgeagettgg gegeagggte gatgegaege 1854	: <b>0</b>
aatcgtccga tccggagccg ggactgtcgg gcgtacacaa atcgcccgca gaagcgcggc 1860	)0
cgtctggacc gatggctgtg tagaagtact cgccgatagt ggaaaccgac gccccagcac 1866	50
tcgtccgagg gcaaaggaat agagtagatg ccgaccgcgg gatcgatcca cttaacgtta 1872	20
ctgaaatcat caaacagctt gacgaatctg gatataagat cgttggtgtc gatgtcagct 187	80
ccggagttga gacaaatggt gttcaggatc tcgataagat acgttcattt gtccaagcag 188	40
caaagagtgc cttctagtga tttaatagct ccatgtcaac aagaataaaa cgcgttttcg 189	00
ggtttacctc ttccagatac agctcatctg caatgcatta atgcattgac tgcaacctag 189	60
taacgeettn caggeteegg egaagagaag aatagettag eagagetatt tteatttteg 190	120
ggagacgaga tcaagcagat caacggtcgt caagagacct acgagactga ggaatccgct 190	080
cttggctcca cgcgactata tatttgtctc taattgtact ttgacatgct cctcttcttt 191	L40
actctgatag cttgactatg aaaattccgt caccagcncc tgggttcgca aagataattg 192	200
catgtttett eettgaaete teaageetae aggaeaeaea tteategtag gtataaaeet 19	260

cgaaatcant teetactaag atggtataca atagtaacca tgeatggttg cetagtgaat 19320
geteegtaac acceaatacg eeggeegaaa etttttaca acteteetat gagtegttta 19380
cecagaatge acaggtacae ttgtttagag gtaateette tttetageta gaagteeteg 19440
tgtactgtgt aagegeecae teeacatete eactegacet geaggeatge a 19491

<210> 46

<211> 21300

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (3471)..(3471)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3679)..(3679)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3770)..(3770)

<223> n is a, c, g, or t

<400> 46

gatctttcga cactgaaata cgtcgagcct gctccgcttg gaagcggcga ggagcctcgt 60 cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 120 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct 180 cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240

## WO 2004/063359 PCT/EP2004/000099 229/357

tegggaagee agegaetggt gaeeteeage gteeetttaa ggetgeeaae agetttetea	300
gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg	360
gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg	420
atattetteg actetgtatt atagataaga tgatgaggaa ttggaggtag catagettea	480
tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc	540
aatattetea agtatetega gtttgaaett atteeetgtg aacettttat teaceaatga	600
gcattggaat gaacatgaat ctgaggactg caatcgccat gaggttttcg aaatacatcc	660
ggatgtcgaa ggcttggggc acctgcgttg gttgaattta gaacgtggca ctattgatca	720
tccgatagct ctgcaaaggg cgttgcacaa tgcaagtcaa acgttgctag cagttccagg	780
tggaatgtta tgatgagcat tgtattaaat caggagatat agcatgatct ctagttagct	840
caccacaaaa gtcagacggc gtaaccaaaa gtcacacaac acaagctgta aggatttcgg	900
cacggctacg gaagacggag aagccacctt cagtggactc gagtaccatt taattctatt	960
tgtgtttgat cgagacctaa tacagcccct acaacgacca tcaaagtcgt atagctacca	1020
gtgaggaagt ggactcaaat cgacttcagc aacatctcct ggataaactt taagcctaaa	1080
ctatacagaa taagataggt ggagagctta taccgagctc ccaaatctgt ccagatcatg	1140
gttgaccggt gcctggatct tcctatagaa tcatccttat tcgttgacct agctgattct	1200
ggagtgaccc agagggtcat gacttgagcc taaaatccgc cgcctccacc atttgtagaa	1260
aaatgtgacg aactcgtgag ctctgtacag tgaccggtga ctctttctgg catgcggaga	1320 1380
gacggacgga cgcagagaga agggctgagt aataagccac tggccagaca gctctggcgg	1440
ctctgaggtg cagtggatga ttattaatcc gggaccggcc gcccctccgc cccgaagtgg	1500
aaaggctggt gtgcccctcg ttgaccaaga atctattgca tcatcggaga atatggagct	1300

#### WO 2004/063359 PCT/EP2004/000099 230/357

	•			-
tcatcgaatc accggcagta agcgaa	aggag aatgtgaagc	caggggtgta	tagccgtcgg	1560
cgaaatagca tgccattaac ctagg	tacag aagtccaatt	gcttccgatc	tggtaaaaga	1620
ttcacgagat agtaccttct ccgaa	gtagg tagagcgagt	acccggcgcg	taagctccct	1680
aattggccca tccggcatct gtagg	gcgtc caaatatcgt	gcctctcctg	ctttgcccgg	1740
tgtatgaaac cggaaaggcc gctca	ggagc tggccagcgg	cgcagaccgg	gaacacaagc	1800
tggcagtcga cccatccggt gctct	gcact cgacctgctg	g aggtccctca	gtccctggta	1860
ggcagetttg cecegtetgt eegee	cggtg tgtcggcggg	g gttgacaagg	tegttgegte	1920
agtccaacat tigttgccat atttt	cctgc tctccccaco	e agctgctctt	ttettttete	1980
tttcttttcc catcttcagt atatt	catct tcccatcca	a gaacctttat	ttcccctaag	2040
taagtacttt gctacatcca tacto	ccatcc ttcccatcc	c ttattccttt	gaacctttca	2100
gttcgagctt tcccacttca tcgc	agcttg actaacagc	t accccgcttg	g agcagacatc	2160
accatgeetg aacteacege gaeg	tctgtc gagaagttt	c tgatcgaaaa	a gttcgacagc	2220
gtctccgacc tgatgcagct ctcg	gagggc gaagaatct	c gtgctttcag	g cttcgatgta	2280
ggagggcgtg gatatgtcct gcgg	gtaaat agctgcgcc	g atggtttct:	a caaagatcgt	2340
tatgtttatc ggcactttgc atcg	gccgcg ctcccgatt	c cggaagtgc	t tgacattggg	2400
gaattcagcg agagcctgac ctat	tgcate teeegeegt	g cacagggtg	t cacgttgcaa	2460
gacctgcctg aaaccgaact gccc	egetgtt etgeageeg	gg tegeggagg	c catggatgcg	2520
ategetgegg eegatettag eeag	gacgagc gggttcgg	cc catteggae	c gcaaggaatc	2580
ggtcaataca ctacatggcg tga	ttcata tgcgcgat	tg ctgatcccc	a tgtgtatcac	2640
tggcaaactg tgatggacga cac	cgtcagt gcgtccgt	cg cgcaggcto	ct cgatgagctg	2700
atgetttggg cegaggaetg eec	cgaagtc cggcacct	cg tgcacgcgg	ga tttcggctcc	2760

### WO 2004/063359 PCT/EP2004/000099 231/357

aacaatgtcc tgacggacaa tggccgcata acagcggtca ttgactggag cgaggcgatg 2	2820
ttcggggatt cccaatacga ggtcgccaac atcttcttct ggaggccgtg gttggcttgt 2	2880
atggagcage agacgegeta ettegagegg aggeateegg agettgeagg ategeegegg 2	2940
ctccgggcgt atatgctccg cattggtctt gaccaactct atcagagctt ggttgacggc	3000
aatttcgatg atgcagcttg ggcgcagggt cgatgcgacg caatcgtccg atccggagcc	3060
gggactgtcg ggcgtacaca aatcgcccgc agaagcgcgg ccgtctggac cgatggctgt	3120
gtagaagtac tcgccgatag tggaaaccga cgccccagca ctcgtccgag ggcaaaggaa	3180
tagagtagat gccgaccgcg ggatcgatcc acttaacgtt actgaaatca tcaaacagct	3240
tgacgaatct ggatataaga tcgttggtgt cgatgtcagc tccggagttg agacaaatgg	3300
tgttcaggat ctcgataaga tacgttcatt tgtccaagca gcaaagagtg ccttctagtg	3360
atttaatagc tccatgtcaa caagaataaa acgcgttttc gggtttacct cttccagata	3420
cageteatet geaatgeatt aatgeattga etgeaaceta gtaaegeett neaggeteeg	3480
gcgaagagaa gaatagctta gcagagctat tttcattttc gggagacgag atcaagcaga	3540
tcaacggtcg tcaagagacc tacgagactg aggaatccgc tcttggctcc acgcgactat	3600
atatttgtct ctaattgtac tttgacatgc tcctcttctt tactctgata gcttgactat	3660
gaaaattccg tcaccagcnc ctgggttcgc aaagataatt gcatgtttct tccttgaact	3720
ctcaagccta caggacacac attcatcgta ggtataaacc tcgaaatcan ttcctactaa	3780
gatggtatac aatagtaacc atgcatggtt gcctagtgaa tgctccgtaa cacccaatac	3840
gccggccgaa acttttttac aactctccta tgagtcgttt acccagaatg cacaggtaca	3900
cttgtttaga ggtaatcctt ctttctagct agaagtcctc gtgtactgtg taagcgccca	3960
ctccacatct ccactcgacc tgcaggcatg caagettgaa ttcgageteg gtaccegggg	4020

#### WO 2004/063359 PCT/EP2004/000099 232/357

						4080
atctttcgac	actgaaatac	gtcgagcctg	ctccgcttgg	aageggegag	gageeregre	4000
ctgtcacaac	taccaacatg	gagtacgata	agggccagtt	ccgccagctc	attaagagcc	4140
agttcatggg	cgttggcatg	atggccgtca	tgcatctgta	cttcaagtac	accaacgctc	4200
ttctgatcca	gtcgatcatc	cgctgaaggc	gctttcgaat	ctggttaaga	tccacgtctt	4260
cgggaagcca	gcgactggtg	acctccagcg	tccctttaag	gctgccaaca	gctttctcag	4320
ccagggccag	cccaagaccg	acaaggcctc	cctccagaac	gccgagaaga	actggagggg	4380
tggtgtcaag	gaggagtaag	ctccttattg	aagtcggagg	acggagcggt	gtcaagagga	4440
tattcttcga	ctctgtatta	tagataagat	gatgaggaat	tggaggtagc	atagcttcat	4500
ttggatttgc	tttccaggct	gagactctag	cttggagcat	agagggtcct	: ttggctttca	4560
atattctcaa	gtatctcgag	tttgaactta	ttccctgtga	accttttatt	caccaatgag	4620
cattggaatg	g aacatgaato	: tgaggactgo	aatcgccatg	g aggttttcga	a aatacatccg	4680
gatgtcgaag	g gcttggggca	ı cctgcgttgg	g ttgaatttag	g aacgtggcad	c tattgatcat	4740
ccgatagcto	tgcaaaggg	gttgcacaat	gcaagtcaaa	a cgttgctago	e agttecaggt	4800
ggaatgtta	t gatgagcat	t gtattaaato	c aggagatata	a gcatgatct	c tagttagctc	4860
accacaaaa	g tcagacggc	g taaccaaaa	g tcacacaaca	a caagctgta	a ggatttcggc	4920
acggctacg	g aagacggag	a agccacctt	c agtggactc	g agtaccatt	t aattctattt	4980
gtgtttgat	c gagacctaa	t acageceet	a caacgacca	t caaagtcgt	a tagctaccag	5040
tgaggaagt	g gactcaaat	c gacttcagc	a acatctcct	g gataaactt	t aagcctaaac	5100
tatacagaa	t aagataggt	g gagagctta	t accgagctc	c caaatctgt	c cagatcatgg	5160
ttgaccggt	g cctggatct	t cctatagaa	t catccttat	t cgttgacct	a getgattetg	5220
gagtgacco	a gagggtcat	g acttgagco	t aaaatccgc	c geetecace	a tttgtagaaa	5280

## WO 2004/063359 PCT/EP2004/000099 233/357

aatgtgacga	actcgtgagc	tctgtacagt	gaccggtgac	tetttetgge	atgcggagag	5340
acggacggac	gcagagagaa	gggctgagta	ataagccact	ggccagacag	ctctggcggc	5400
tctgaggtgc	agtggatgat	tattaatccg	ggaccggccg	cccctccgcc	ccgaagtgga	5460
aaggctggtg	tgcccctcgt	tgaccaagaa	tctattgcat	catcggagaa	tatggagctt	5520
catcgaatca	ccggcagtaa	gcgaaggaga	atgtgaagcc	aggggtgtat	agccgtcggc	5580
gaaatagcat	gccattaacc	taggtacaga	agtccaattg	cttccgatct	ggtaaaagat	5640
tcacgagata	gtaccttctc	cgaagtaggt	agagcgagta	cccggcgcgt	aagctcccta	5700
attggcccat	ccggcatctg	tagggcgtcc	: aaatatcgtg	cctctcctgc	tttgcccggt	5760
gtatgaaaco	: ggaaaggccg	r ctcaggagct	ggccagcggc	: gcagaccggg	g aacacaagct	5820
ggcagtcgad	c ccatccggtg	g ctctgcacto	gacetgetga	ggtccctcag	g tccctggtag	5880
gcagctttg	c cccgtctgtc	cgcccggtgt	gteggeggg	g ttgacaaggt	cgttgcgtca	5940
gtccaacat	t tgttgccata	a ttttcctgc	t ctccccacca	a gctgctctt	tettttetet	6000
ttettttee	c atcttcagta	a tattcatct	t cccatccaa	g aacctttat	t tcccctaagt	6060
aagtacttt	g ctacatcca	t actccatcc	t teccatece	t tattccttt	g aacctttcag	6120
ttcgagctt	t cccacttca	t cgcagcttg	a ctaacagct	a ccccgcttg	a gcagacatca	6180
ccatgtcaa	t actcactta	t ctggaattt	c atctctact	a tacactacc	t gtccttgcgg	6240
cattgtgtt	g getgetaaa	g ccgtttcac	t cacagcaag	a caatctcaa	g tataaatttt	6300
taatgttga	it ggccgcctc	t accgcatcg	ga tttgggaca	a ttatatcgt	t tatcatcgcg	6360
cttggtggl	a ctgtcctac	t tgtgttgtg	gg ctgtcattg	gg ctatgtacc	t ctagaagaat	6420
acatgttc	tt tatcatcat	g actttaatg	ga ctgtcgcgt	t ctcaaactt	t gttatgcgtt	6480
ggcacttg	ca tactttct	t attagacco	ca acacttct	cg gaagcaaad	ca ctattagtac	6540

# WO 2004/063359 PCT/EP2004/000099 234/357

gccttgtgcc tgtttcagct ttattggcaa tcacttatca tgcttggcac ttgacactgc 6	600
caaataaacc ttcattttat ggttcatgca tcctttggta tgcttgtcct gtgttggcta 6	660
ttctttggct gggtgctggc gaatatatct tgcgtcgacc tgtggctgtc cttttgtcta 6	5720
ttgttatccc tagtgtatac ctatgttggg ctgatatcgt cgctattagt gctggcacat	5780
ggcatatttc tcttagaaca agcactggca aaatggtagt acccgattta cctgtagaag	6840
aatgeetgtt ttttaetttg ateaacaeag tettggtttt tgetaeetgt getatagaee	6900
gcgctcaggc catcctccat gtgagcgcgc gtaatacgac tcactatagg gcgaattgga	6960
gctccaccgc ggtggcggcc gctctagaac tagtggatcc cccgggctgc aggaattcgg	7020
cacgagetae attteacaag ecegtgageg gtgeaagege tetgeeceae ateggeecae	7080
ctcctcatct ccatcggtca tttgctgcta ccacgatgct gtcgaagctg cagtcaatca	7140
gcgtcaaggc ccgccgcgtt gaactagccc gcgacatcac gcggcccaaa gtctgcctgc	7200
atgeteageg gtgetegtta gtteggetge gagtggeage accaeagaea gaggaggege	7260
tgggaaccgt gcaggctgcc ggcgcgggcg atgagcacag cgccgatgta gcactccagc	7320
agettgaceg ggetategea gagegtegtg eeeggegeaa aegggageag etgteatace	7380
aggctgccgc cattgcagca tcaattggcg tgtcaggcat tgccatcttc gccacctacc	7440
tgagatttgc catgcacatg accgtgggcg gcgcagtgcc atggggtgaa gtggctggca	7500
ctctcctctt ggtggttggt ggcgcgctcg gcatggagat gtatgcccgc tatgcacaca	7560
aagccatctg gcatgagtcg cctctgggct ggctgctgca caagagccac cacacacctc	7620
gcactggacc ctttgaagcc aacgacttgt ttgcaatcat caatggactg cccgccatgc	7680
tectgtgtae etttggette tggetgeeca aegteetggg ggeggeetge tttggagegg	7740
ggctgggcat cacgctatac ggcatggcat atatgtttgt acacgatggc ctggtgcaca	7800

# WO 2004/063359 PCT/EP2004/000099 235/357

ggcgctttcc	caccgggccc	atcgctggcc	tgccctacat	gaagegeetg	acagtggccc	7860
accagctaca	ccacagcggc	aagtacggtg	gcgcgccctg	gggtatgttc	ttgggtccac	7920
aggagctgca	gcacattcca	ggtgcggcgg	aggaggtgga	gcgactggtc	ctggaactgg	7980
actggtccaa	gcgggctcag	gccatcctcc	atctgtacaa	atcatctgtt	caaaatcaaa	8040
accctaaaca	agccatttcc	cttttccagc	atgtcaaaga	gctagcatgg	gccttctgtc	8100
ttcctgacca	aatgctcaac	aatgaattgt	ttgatgatct	tactatcago	tgggatattt	8160
tacgtaaago	ctcaaagtca	ttctatactg	catctgccgt	ttttccaagt	tatgtacgtc	8220
aagacttggg	tgttctctat	: gctttctgca	ı gagctaccga	tgacctgtgc	gatgatgaat	8280
ccaaatctgt	: tcaagaaaga	agagaccaat	: tagatettac	: tcgacaattt	gttcgtgatc	8340
tctttagcca	a aaagaccagt	gegeetatts	g tgattgattg	g ggaattgtat	caaaaccaac	8400
ttcctgctt	ttgtatatca	a gcctttaga	g cctttactc	g ccttcgcca	t gtccttgaag	8460
tagaccctg	t agaagaacta	a ttagatggt	t acaaatggg	a tcttgagcg	t cgtcctatcc	8520
ttgatgaac	a agacttgga	g gcatactct	g cttgtgtgg	c cagtagtgt	g ggtgaaatgt	8580
gcacacgtg	t gattcttgc	t caagaccaa	a aggaaaatg	a tgcttggat	a attgaccgtg	8640
cacgtgaga	t ggggctggt	g ctacaatac	g ttaacattg	c tcgagacat	t gtgactgata	8700
gcgagacto	t gggtcgatg	t tatctgcct	c aacaatggo	t tagaaaaga	a gaaacagaac	8760
aaatacago	a aggcaacgc	c cgtagccta	ng gtgatcaaa	ıg actgttggg	c ttgtctctga	8820
agcttgtag	gg aaaggcaga	ac gctatcatg	gg tgagagcta	a gaagggcat	t gacaagttgc	8880
cggcaaact	g tcaaggcgg	gt gtacgagct	g cttgccaag	gt atatgctgo	ca attggatctg	8940
tactcaage	ca gcagaagad	ca acatatcc	ta caagagcto	ca tctaaaagg	ga agcgaacgtg	9000
ccaagatt	gc tctgttgag	gt gtatacaa	cc tctatcaa	tc tgaagaca	ag cctgtggctc	9060

## WO 2004/063359 PCT/EP2004/000099 236/357

tccgtcaagc tagaaagatt aagagttttt ttgttgatta gtgaattttt gttttattta	9120
tgtctgatag ttcaataaag agacaacaca tacaatataa aatcattgtc tttaaatgtt	9180
aatttagtag agtgtaaagc ctgcattttt tttgtacgca taaacaatga gttcaccccg	9240
cttctggttt ttaaataatt atgtcaaact agggaaaatt ctttttttc tcttcgttct	9300
ttttttggct tgttgtggag tcacaggctt gtcttcagat tgatagaggt tgtatacact	9360
caacagagca atcttggcac gttcgcttcc ttttagatga gctcttgtag gatatgttgt	9420
cttctgctgc ttgagtacag atccaattgc agcatatact tggcaagcag ctcgtacacc	9480
gccttgacag tttgccggca acttgtcaat gcccttctta gctctcacca tgatagcgtc	9540
tgcctttcct acaagcttgg cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta	9600
teegeteaca attecacaca acataegage eggaageata aagtgtaaag eetggggtge	9660
ctaatgagtg agctaactca cattaattgc gttgcgctca ctgcccgctt tccagtcggg	9720
aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag gcggtttgcg	9780
tattgggcca aagacaaaag ggcgacattc aaccgattga gggagggaag gtaaatattg	9840
acggaaatta ttcattaaag gtgaattatc accgtcaccg acttgagcca tttgggaatt	9900
agagecagea aaateaceag tageaceatt aceattagea aggeeggaaa egteaceaat	9960
gaaaccatcg atagcagcac cgtaatcagt agcgacagaa tcaagtttgc ctttagcgtc	10020
agactgtagc gcgttttcat cggcattttc ggtcatagcc cccttattag cgtttgccat	10080
cttttcataa tcaaaatcac cggaaccaga gccaccaccg gaaccgcctc cctcagagcc	10140
gccaccctca gaaccgccac cctcagagcc accaccctca gagccgccac cagaaccacc	10200
accagageeg eegeeageat tgacaggagg eeegatetag taacatagat gacaeegege	10260
gcgataattt atcctagttt gcgcgctata ttttgttttc tatcgcgtat taaatgtata	10320

# WO 2004/063359 PCT/EP2004/000099 237/357

attgcgggac tctaatcata aaaacccatc tcataaataa cgtcatgcat tacatgttaa 1	0380
ttattacatg cttaacgtaa ttcaacagaa attatatgat aatcatcgca agaccggcaa 1	0440
caggattcaa tettaagaaa etttattgee aaatgtttga aegategggg ateateeggg 1	.0500
tetgtggegg gaactecaeg aaaatateeg aaegeageaa gatategegg tgeatetegg 1	.0560
tcttgcctgg gcagtcgccg ccgacgccgt tgatgtggac gccgggcccg atcatattgt 1	10620
cgctcaggat cgtggcgttg tgcttgtcgg ccgttgctgt cgtaatgata tcggcacctt 1	L0680
cgaccgcctg ttccgcagag atcccgtggg cgaagaactc cagcatgaga tccccgcgct 1	10740
ggaggatcat ccagccggcg tcccggaaaa cgattccgaa gcccaacctt tcatagaagg	10800
cggcggtgga atcgaaatct cgtgatggca ggttgggcgt cgcttggtcg gtcatttcga	10860
accccagagt cccgctcaga agaactcgtc aagaaggcga tagaaggcga tgcgctgcga	10920
atcgggagcg gcgataccgt aaagcacgag gaagcggtca gcccattcgc cgccaagctc	10980
ttcagcaata tcacgggtag ccaacgctat gtcctgatag cggtccgcca cacccagccg	11040
gccacagtcg atgaatccag aaaagcggcc attttccacc atgatattcg gcaagcaggc	11100
atcgccatgg gtcacgacga gatcatcgcc gtcgggcatg cgcgccttga gcctggcgaa	11160
cagttcggct ggcgcgagcc cctgatgctc ttcgtccaga tcatcctgat cgacaagacc	11220
ggcttccatc cgagtacgtg ctcgctcgat gcgatgtttc gcttggtggt cgaatgggca	11280
ggtagcegga teaagegtat geageegeeg cattgeatea geeatgatgg ataetttete	11340
ggcaggagca aggtgagatg acaggagatc ctgccccggc acttcgccca atagcagcca	11400
gtcccttccc gcttcagtga caacgtcgag cacagctgcg caaggaacgc ccgtcgtggc	11460
cagccacgat agccgcgctg cctcgtcctg cagttcattc agggcaccgg acaggtcggt	11520
cttgacaaaa agaaccgggc gcccctgcgc tgacagccgg aacacggcgg catcagagca	11580

# WO 2004/063359 PCT/EP2004/000099 238/357

geegattgte tgttgtgeee agteatagee gaatageete teeaceeaag eggeeggaga 11640	)
acctgcgtgc aatccatctt gttcaatcat gcgaaacgat ccagatccgg tgcagattat 11700	)
ttggattgag agtgaatatg agactctaat tggataccga ggggaattta tggaacgtca 11760	)
gtggagcatt tttgacaaga aatatttgct agctgatagt gaccttaggc gacttttgaa 11820	כ
cgcgcaataa tggtttctga cgtatgtgct tagctcatta aactccagaa acccgcggct 11880	0
gagtggctcc ttcaacgttg cggttctgtc agttccaaac gtaaaacggc ttgtcccgcg 11940	0
tcatcggcgg gggtcataac gtgactccct taattctccg ctcatgatca gattgtcgtt 1200	0
tecegeette agtttaaaet ateagtgttt gaeaggatat attggegggt aaaeetaaga 1206	0
gaaaagagcg tttattagaa taatcggata tttaaaaggg cgtgaaaagg tttatccgtt 1212	0
cgtccatttg tatgtgcatg ccaaccacag ggttccccag atctggcgcc ggccagcgag 1218	0
acgagcaaga ttggccgccg cccgaaacga tccgacagcg cgcccagcac aggtgcgcag 1224	0
gcaaattgca ccaacgcata cagcgccagc agaatgccat agtgggcggt gacgtcgttc 1230	)0
gagtgaacca gatcgcgcag gaggcccggc agcaccggca taatcaggcc gatgccgaca 1236	50
gcgtcgagcg cgacagtgct cagaattacg atcaggggta tgttgggttt cacgtctggc 1242	20
ctccggacca gcctccgctg gtccgattga acgcgcggat tctttatcac tgataagttg 1248	80
gtggacatat tatgtttatc agtgataaag tgtcaagcat gacaaagttg cagccgaata 1254	40
cagtgateeg tgeegeeetg gaeetgttga aegaggtegg egtagaeggt etgaegaeae 126	00
gcaaactggc ggaacggttg ggggttcagc agccggcgct ttactggcac ttcaggaaca 126	60
agegggeget getegaegea etggeegaag eeatgetgge ggagaateat aegeattegg 127	20
tgccgagagc cgacgacgac tggcgctcat ttctgatcgg gaatgcccgc agcttcaggc 127	'80
aggegetget egeetacege gatggegege geatecatge eggeaegega eegggegeae 128	340

## WO 2004/063359 PCT/EP2004/000099 239/357

cgcagatgga aacggccgac gcgcagcttc gcttcctctg cgaggcgggt ttttcggccg 129	900
gggacgccgt caatgcgctg atgacaatca gctacttcac tgttggggcc gtgcttgagg 129	960
agcaggeegg egacagegat geeggegage geggeggeae egttgaacag geteegetet 130	020
cgccgctgtt gcgggccgcg atagacgcct tcgacgaagc cggtccggac gcagcgttcg 13	080
agcagggact cgcggtgatt gtcgatggat tggcgaaaag gaggctcgtt gtcaggaacg 13	140
ttgaaggacc gagaaagggt gacgattgat caggaccgct gccggagcgc aacccactca 13	200
ctacagcaga gccatgtaga caacatcccc tccccctttc caccgcgtca gacgcccgta 13	260
gcagcccgct acgggctttt tcatgccctg ccctagcgtc caagcctcac ggccgcgctc 13	320
ggcctctctg gcggccttct ggcgctcttc cgcttcctcg ctcactgact cgctgcgctc 13	3380
ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac 13	3440
agaatcaggg gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa 13	3500
ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc cgccccctg acgagcatca 1	3560
caaaaatcga cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc 1	3620
gtttccccct ggaageteee tegtgegete teetgtteeg accetgeege ttaceggata 1	3680
cctgtccgcc tttctccctt cgggaagcgt ggcgcttttc cgctgcataa ccctgcttcg 1	3740
gggtcattat agcgattttt tcggtatatc catcettttt cgcacgatat acaggatttt 1	.3800
gccaaagggt tcgtgtagac tttccttggt gtatccaacg gcgtcagccg ggcaggatag 1	13860
gtgaagtagg cccaccegeg agegggtgtt cettetteae tgteeettat tegeaeetgg 1	L3920
cggtgctcaa cgggaatect gctctgcgag gctggccggc taccgccggc gtaacagatg 1	13980
agggcaagcg gatggctgat gaaaccaagc caaccaggaa gggcagccca cctatcaagg	14040
tgtactgcct tccagacgaa cgaagagcga ttgaggaaaa ggcggcggcg gccggcatga	14100

# WO 2004/063359 PCT/EP2004/000099 240/357

gcctgtcggc	ctacctgctg	gccgtcggcc	agggctacaa	aatcacgggc	gtcgtggact	14160
atgagcacgt	ccgcgagctg	gcccgcatca	atggcgacct	gggccgcctg	ggcggcctgc	14220
tgaaactctg	gctcaccgac	gacccgcgca	cggcgcggtt	cggtgatgcc	acgatcctcg	14280
ccctgctggc	gaagatcgaa	gagaagcagg	acgagcttgg	caaggtcatg	atgggcgtgg	14340
teegeeegag	ggcagagcca	tgacttttt	agccgctaaa	acggccgggg	ggtgcgcgtg	14400
attgccaagc	acgtccccat	gcgctccatc	aagaagagcg	acttcgcgga	gctggtgaag	14460
tacatcaccg	acgagcaagg	caagaccgag	cgcctttgcg	acgctcaccg	ggctggttgc	14520
cctcgccgct	gggctggcgg	ccgtctatgg	ccctgcaaac	gcgccagaaa	cgccgtcgaa	14580
gccgtgtgcg	agacaccgcg	geegeeggeg	ttgtggatac	ctcgcggaaa	acttggccct	14640
cactgacaga	tgaggggcgg	acgttgacac	: ttgaggggco	gactcacccg	gcgcggcgtt	14700
gacagatgag	gggcaggcto	gatttcggcc	ggcgacgtgg	g agctggccag	g cctcgcaaat	14760
cggcgaaaad	gcctgatttt	acgcgagttt	cccacagato	g atgtggacaa	ı gcctggggat	14820
aagtgccctg	g cggtattgad	e acttgagggg	g cgcgactact	gacagatgag	gggcgcgatc	14880
cttgacact	t gaggggcaga	a gtgctgacag	g atgaggggc	g cacctattga	a catttgaggg	14940
gctgtccac	a ggcagaaaa	t ccagcattt	g caagggttte	c cgcccgttt	t teggecaceg	15000
ctaacctgt	c ttttaacct	g cttttaaac	c aatatttat	a aaccttgtt	t ttaaccaggg	15060
ctgcgccct	g tgcgcgtga	c cgcgcacgc	c gaaggggg	t gececect	t ctcgaaccct	15120
cccggcccg	c taacgcggg	c ctcccatcc	c cccaggggc	t gegeeeete	g gccgcgaacg	15180
gcctcaccc	c aaaaatggc	a gegetggea	g teettgeea	t tgccgggat	c ggggcagtaa	15240
cgggatggg	ge gateageed	g agcgcgacg	c ccggaagca	t tgacgtgcc	g caggtgctgg	15300
catcgacat	t cagegacea	ıg gtgccgggc	a gtgagggcg	ıg eggeetggg	t ggcggcctgo	15360

# WO 2004/063359 PCT/EP2004/000099 241/357

cetteactte ggeegteggg geatteaegg actteatgge ggggeeggea atttttacet 1542	20
tgggcattct tggcatagtg gtcgcgggtg ccgtgctcgt gttcgggggt gcgataaacc 1548	30
cagcgaacca tttgaggtga taggtaagat tataccgagg tatgaaaacg agaattggac 1554	40
ctttacagaa ttactctatg aagcgccata tttaaaaagc taccaagacg aagaggatga 156	00
agaggatgag gaggcagatt gccttgaata tattgacaat actgataaga taatatatct 156	60
tttatataga agatatcgcc gtatgtaagg atttcagggg gcaaggcata ggcagcgcgc 157	20
ttatcaatat atctatagaa tgggcaaagc ataaaaactt gcatggacta atgcttgaaa 157	80
cccaggacaa taaccttata gcttgtaaat tctatcataa ttgggtaatg actccaactt 158	340
attgatagtg ttttatgttc agataatgcc cgatgacttt gtcatgcagc tccaccgatt 159	900
ttgagaacga cagcgacttc cgtcccagcc gtgccaggtg ctgcctcaga ttcaggttat 159	960
gccgctcaat tcgctgcgta tatcgcttgc tgattacgtg cagctttccc ttcaggcggg 160	020
attcatacag cggccagcca tccgtcatcc atatcaccac gtcaaagggt gacagcaggc 16	080
tcataagacg ccccagcgtc gccatagtgc gttcaccgaa tacgtgcgca acaaccgtct 16	140
tccggagact gtcatacgcg taaaacagcc agcgctggcg cgatttagcc ccgacatagc 16	200
cccactgttc gtccatttcc gcgcagacga tgacgtcact gcccggctgt atgcgcgagg 16	260
ttaccgactg cggcctgagt tttttaagtg acgtaaaatc gtgttgaggc caacgcccat 16	320
aatgeggget gttgeeegge atecaaegee atteatggee atateaatga ttttetggtg 16	5380
cgtaccgggt tgagaagcgg tgtaagtgaa ctgcagttgc catgttttac ggcagtgaga 16	6440
gcagagatag cgctgatgtc cggcggtgct tttgccgtta cgcaccaccc cgtcagtagc 10	6500
tgaacaggag ggacagctga tagacacaga agccactgga gcacctcaaa aacaccatca 1	6560
tacactaaat cagtaagttg gcagcatcac ccataattgt ggtttcaaaa tcggctccgt 1	6620

•						
cgatactatg	ttatacgcca	actttgaaaa	caactttgaa	aaagctgttt	tctggtattt	16680
aaggttttag	aatgcaagga	acagtgaatt	ggagttcgtc	ttgttataat	tagettettg	16740
gggtatcttt	aaatactgta	gaaaagagga	aggaaataat	aaatggctaa	aatgagaata	16800
tcaccggaat	tgaaaaaact	gatcgaaaaa	taccgctgcg	taaaagatac	ggaaggaatg	16860
tctcctgcta	aggtatataa	gctggtggga	gaaaatgaaa	acctatattt	aaaaatgacg	16920
gacagccggt	ataaagggac	cacctatgat	gtggaacggg	aaaaggacat	gatgctatgg	16980
ctggaaggaa	agctgcctgt	tccaaaggtc	ctgcactttg	aacggcatga	tggctggagc	17040
aatctgctca	tgagtgaggo	: cgatggcgtc	: ctttgctcgg	aagagtatga	agatgaacaa	17100
agccctgaaa	agattatcga	gctgtatgcg	g gagtgcatca	ggctctttca	ctccatcgac	17160
atatcggatt	gtecetatae	gaatagctta	a gacagccgct	: tagccgaatt	ggattactta	17220
ctgaataac	g atctggccga	a tgtggattg	gaaaactggg	g aagaagacad	c tccatttaaa	17280
gatecgege	g agctgtatg	a ttttttaaa	g acggaaaag	c ccgaagagga	a acttgtcttt	17340
tcccacggc	g acctgggag	a cagcaacat	c tttgtgaaa	g atggcaaag	t aagtggcttt	17400
attgatctt	g ggagaagcg	g cagggcgga	c aagtggtat	g acattgcct	t ctgcgtccgg	17460
tcgatcagg	g aggatatcg	g ggaagaaca	g tatgtcgag	c tatttttg	a cttactgggg	17520
atcaagcct	g attgggaga	a aataaaata	t tatatttta	c tggatgaat	t gttttagtac	17580
ctagatgtg	g cgcaacgat	g ccggcgaca	a gcaggagcg	c accgactto	t teegeateaa	17640
gtgttttgg	gc tctcaggco	eg aggeceacg	gg caagtattt	g ggcaagggg	ıt egetggtatt	17700
cgtgcaggg	gc aagattcg	ga ataccaagt	ta cgagaagga	ac ggccagac <u>c</u>	gg tctacgggad	17760
cgacttca	tt gccgataa	gg tggattat	ct ggacaccaa	ag gcaccaggo	eg ggtcaaatca	a 17820
ggaataag	gg cacattgc	cc cggcgtga	gt cggggcaa	tc ccgcaagga	ag ggtgaatgaa	a 17880

#### WO 2004/063359 PCT/EP2004/000099 243/357

tcggacgttt	gaccggaagg	catacaggca	agaactgatc	gacgcggggt	tttccgccga	17940
ggatgccgaa	accatcgcaa	gccgcaccgt	catgcgtgcg	ccccgcgaaa	cettceagtc	18000
cgtcggctcg	atggtccagc	aagctacggc	caagatcgag	cgcgacagcg	tgcaactggc	18060
tececetgee	ctgcccgcgc	catcggccgc	cgtggagcgt	tegegtegte	tcgaacagga	18120
ggcggcaggt	ttggcgaagt	cgatgaccat	cgacacgcga	ggaactatga	cgaccaagaa	18180
gcgaaaaacc	gccggcgagg	acctggcaaa	acaggtcagc	gaggccaagc	aggccgcgtt	18240
gctgaaacac	acgaagcagc	agatcaagga	aatgcagctt	teettgtteg	atattgcgcc	18300
gtggccggac	acgatgcgag	cgatgccaaa	cgacacggco	cgctctgccc	tgttcaccac	18360
gcgcaacaag	aaaatcccgc	gcgaggcgct	gcaaaacaag	gtcattttcc	acgtcaacaa	18420
ggacgtgaag	, atcacctaca	ccggcgtcga	a gctgcgggco	gacgatgac <u>c</u>	aactggtgtg	18480
gcagcaggtg	g ttggagtacg	g cgaagcgcad	ccctatcgg	gageegatea	a ccttcacgtt	18540
ctacgagctt	tgccaggaco	tgggctggt	gatcaatgg	cggtattaca	a cgaaggccga	18600
ggaatgcct	g tegegeetad	c aggcgacgg	c gatgggctt	c acgtccgace	e gegttgggea	18660
cctggaatc	g gtgtcgctg	c tgcaccgct	t cegegteet	g gaccgtggc	a agaaaacgtc	18720
ccgttgcca	g gtcctgatc	g acgaggaaa	t cgtcgtgct	g tttgctggc	g accactacac	18780
gaaattcat	a tgggagaag	t accgcaagc	t gtcgccgac	g gcccgacgg	a tgttcgacta	18840
tttcagctc	g caccgggag	c cgtacccgc	t caagctgga	a accttccgc	c tcatgtgcgg	18900
atcggatto	e accegegtg	a agaagtggc	g cgagcaggt	c ggcgaagcc	t gcgaagagtt	18960
gcgaggcag	ge ggeetggtg	g aacacgect	g ggtcaatga	ıt gacctggtg	rc attgcaaacg	19020
ctagggcct	t gtggggtca	ng ttccggctg	gggttcago	ca gccagcgct	t tactggcatt	19080
tcaggaaca	aa gcgggcact	g ctcgacgc	ac ttgcttcg	ct cagtatcgo	ct cgggacgcad	2 19140

# WO 2004/063359 PCT/EP2004/000099 244/357

ggcgcgctct	acgaactgcc	gataaacaga	ggattaaaat	tgacaattgt	gattaaggct	19200
cagattcgac	ggcttggagc	ggccgacgtg	caggatttcc	gcgagatccg	attgtcggcc	19260
ctgaagaaag	ctccagagat	gttcgggtcc	gtttacgagc	acgaggagaa	aaagcccatg	19320
gaggcgttcg	ctgaacggtt	gcgagatgcc	gtggcattcg	gcgcctacat	cgacggcgag	19380
atcattgggc	tgtcggtctt	caaacaggag	gacggcccca	aggacgctca	caaggcgcat	19440
ctgtccggcg	ttttcgtgga	gcccgaacag	cgaggccgag	gggtcgccgg	tatgctgctg	19500
cgggcgttgc	cggcgggttt	attgctcgtg	atgatcgtcc	gacagattcc	aacgggaatc	19560
tggtggatgc	gcatcttcat	cctcggcgca	. cttaatattt	cgctattctg	gagcttgttg	19620
tttatttcgg	tctaccgcct	geegggeggg	gtcgcggcga	cggtaggcgc	tgtgcagccg	19680
ctgatggtcg	g tgttcatctc	: tgccgctctg	g ctaggtaged	cgatacgatt	gatggcggtc	19740
ctgggggcta	a tttgcggaad	tgcgggcgtg	g gcgctgttgg	g tgttgacaco	aaacgcagcg	19800
ctagatcct	g teggegtege	e agegggeet	g gegggggegg	g tttccatggo	gttcggaacc	19860
gtgctgacco	c gcaagtggca	a acctcccgt	g cctctgctca	a cctttaccg	c ctggcaactg	19920
gcggccgga	g gacttctgc	t cgttccagt	a gctttagtg	t ttgatccgc	c aatcccgatg	19980
cctacagga	a ccaatgttc	t cggcctggc	g tggctcggc	c tgatcggag	c gggtttaacc	20040
tacttcctt	t ggtteeggg	g gatetegeg	a ctcgaacct	a cagttgttt	c cttactgggc	20100
tttctcago	c ccagatctg	g ggtcgatca	g ccggggatg	rc atcaggccg	a cagtcggaac	20160
ttcgggtcc	c cgacctgta	c catteggtg	a gcaatggat	a ggggagttg	a tatcgtcaac	20220
gttcacttc	et aaagaaata	ig cgccactca	g cttcctcag	gc ggctttato	ec agegattted	20280
tattatgto	g gcatagtto	ct caagatcga	ac agcctgtca	ac ggttaagcg	ga gaaatgaata	a 20340
agaaggct	ga taattogga	at ctctgcga	gg gagatgata	at ttgatcaca	g gcagcaacgo	20400

tetgteateg ttacaateaa catgetacee teegegagat cateegtgtt teaaaceegg 20460 cagcttagtt gccgttcttc cgaatagcat cggtaacatg agcaaagtct gccgccttac 20520 aacggctctc ccgctgacgc cgtcccggac tgatgggctg cctgtatcga gtggtgattt 20580 tgtgccgagc tgccggtcgg ggagctgttg gctggctggt ggcaggatat attgtggtgt 20640 aaacaaattg acgcttagac aacttaataa cacattgcgg acgtttttaa tgtactgggg tggtttttct tttcaccagt gagacgggca acagctgatt gcccttcacc gcctggccct 20760 gagagagttg cagcaagcgg tccacgctgg tttgccccag caggcgaaaa tcctgtttga 20820 tggtggttcc gaaatcggca aaatccctta taaatcaaaa gaatagcccg agatagggtt 20880 gagtgttgtt ccagtttgga acaagagtcc actattaaag aacgtggact ccaacgtcaa 20940 agggcgaaaa accgtctatc agggcgatgg cccactacgt gaaccatcac ccaaatcaag 21000 ttttttgggg tcgaggtgcc gtaaagcact aaatcggaac cctaaaggga gcccccgatt 21060 tagagettga eggggaaage eggegaaegt ggegagaaag gaagggaaga aagegaaagg 21120 agegggegee atteaggetg egeaactgtt gggaagggeg ateggtgegg geetettege 21180 tattacgcca gctggcgaaa gggggatgtg ctgcaaggcg attaagttgg gtaacgccag 21240 ggttttccca gtcacgacgt tgtaaaacga cggccagtga attcgagctc ggtacccggg 21300

<210> 47

<211> 17756

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<221> misc_feature
<222> (10264)..(10264)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (10472)..(10472)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> n is a, c, g, or t

<220>
<221> misc_feature
<220>
<221> misc_feature
<220>
<221> misc_feature
<222> (10563)..(10563)
<223> n is a, c, g, or t

<400> 47

ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagcetegea aateggegaa aaegeetgat tttaegegag ttteecacag atgatgtgga 300 caageetggg gataagtgee etgeggtatt gacaettgag gggegegaet aetgacagat 360 gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc 600 cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgcccc 660 teggeegega aeggeeteae eccaaaaatg geagegetgg eagteettge eattgeeggg 720 atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 780 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg 840

#### WO 2004/063359 PCT/EP2004/000099 247/357

and the second s	900
ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg	300
gcaattttta cettgggcat tettggcata gtggtegegg gtgeegtget egtgtteggg	960
ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa	1020
acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag	1080
acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata	1140
agataatata tettttatat agaagatate geegtatgta aggattteag ggggeaagge	1200
ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga	1260
ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta	1320
atgactccaa cttattgata gtgttttatg ttcagataat gcccgatgac tttgtcatgc	1380
agetecaceg attttgagaa egacagegae tteegteeca geegtgeeag gtgetgeete	1440
agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagcttt	1500
cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag	1560
ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc	1620
gcaacaaccg tcttccggag actgtcatac gcgtaaaaca gccagcgctg gcgcgattta	1680
gccccgacat agccccactg ttcgtccatt tccgcgcaga cgatgacgtc actgcccggc	1740
tgtatgegeg aggttacega etgeggeetg agtttttaa gtgaegtaaa ategtgttga	1800
ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa	1860
tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt	1920
tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg ttacgcacca	1980
ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact ggagcacctc	2040
aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat tgtggtttca	2100

#### WO 2004/063359 PCT/EP2004/000099 248/357

aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
tttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	acggacagcc	ggtataaagg	gaccacctat	gatgtggaac	gggaaaagga	2460
catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	. cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	: cgagctgtat	geggagtgea	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	ı tacgaatago	: ttagacagco	gcttagccga	2700
attggattac	: ttactgaata	acgatctggo	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	a tgattttta	a aagacggaa	a agcccgaaga	2820
ggaacttgto	ttttcccac	g gcgacctgg	g agacagcaad	c atctttgtg:	a aagatggcaa	2880
agtaagtgg	c tttattgato	c ttgggagaa	g cggcagggc	g gacaagtgg	t atgacattgc	2940
cttctgcgt	c cggtcgatc	a gggaggata	t cggggaaga	a cagtatgtc	g agctattttt	3000
tgacttact	g gggatcaag	c ctgattggg	a gaaaataaa	a tattatatt	t tactggatga	3060
attgtttta	g tacctagat	g tggcgcaac	g atgeeggeg	a caagcagga	g cgcaccgact	3120
tetteegea	t caagtgtt	t ggctctcag	g ccgaggccc	a cggcaagta	t ttgggcaagg	3180
ggtcgctgg	rt attcgtgca	g ggcaagatt	c ggaatacca	a gtacgagaa	ag gacggccaga	3240
cggtctacg	gg gaccgactt	c attgccgat	aggtggatt	a tetggacad	cc aaggcaccag	3300
gcgggtcaa	aa tcaggaata	a gggcacati	eg ccccggcgt	g agtegggg	ca atcccgcaag	3360

# WO 2004/063359 PCT/EP2004/000099 249/357

gagggtgaat gaatcggacg tttgaccgga aggcatacag gcaagaactg atcgacgcgg	3420
ggttttccgc cgaggatgcc gaaaccatcg caagccgcac cgtcatgcgt gcgccccgcg	3480
aaaccttcca gtccgtcggc tcgatggtcc agcaagctac ggccaagatc gagcgcgaca	3540
gcgtgcaact ggctcccct gccctgcccg cgccatcggc cgccgtggag cgttcgcgtc	3600
gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg cgaggaacta	3660
tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc agcgaggcca	3720
agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt	3780
tegatattge geegtggeeg gaeaegatge gagegatgee aaaegaeaeg geeegetetg	3840
ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt	3900
tecaegteaa caaggaegtg aagateaeet acaeeggegt egagetgegg geegaegatg	3960
acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga	4020
tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat ggccggtatt	4080
acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg	4140
accgcgttgg gcacctggaa tcggtgtcgc-tgctgcaccg cttccgcgtc ctggaccgtg	4200
gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg	4260
gegaceacta caegaaatte atatgggaga agtacegeaa getgtegeeg aeggeeegae	4320
ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc	4380
gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag	4440 4500
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg	4560
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg	4620
ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc gctcagtatc	

# WO 2004/063359 PCT/EP2004/000099 250/357

gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat	4680
	4740
ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga	4800
gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat tcggcgccta	4860
catcgacggc gagatcattg ggctgtcggt cttcaaacag gaggacggcc ccaaggacgc	4920
tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggggtcgc	4980
cggtatgctg ctgcgggcgt tgccggcggg tttattgctc gtgatgatcg tccgacagat	5040
tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata tttcgctatt	5100
ctggagettg ttgtttattt eggtetaeeg eetgeeggge ggggtegegg egaeggtagg	5160
cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg .	5220
attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac	5280
accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtttccat	5340
ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac	5400
cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgtttgatcc	5460
gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtggctcg gcctgatcgg	5520
agegggttta acctacttce tttggttccg ggggatctcg cgactcgaac ctacagttgt	5580
ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga tgcatcaggc	5640
cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt	5700
tgatatcgtc aacgttcact tctaaagaaa tagcgccact cagcttcctc agcggcttta	5760
tccagcgatt tcctattatg tcggcatagt tctcaagatc gacagcctgt cacggttaag	5820
cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca	5880

#### WO 2004/063359 PCT/EP2004/000099 251/357

caggcagcaa	cgctctgtca	tcgttacaat	caacatgcta	ccctccgcga	gatcatccgt	5940
gtttcaaacc	cggcagctta	gttgccgttc	ttccgaatag	catcggtaac	atgagcaaag	6000
tctgccgcct	tacaacggct	ctcccgctga	cgccgtcccg	gactgatggg	ctgcctgtat	6060
cgagtggtga	ttttgtgccg	agctgccggt	cggggagctg	ttggctggct	ggtggcagga	6120
tatattgtgg	tgtaaacaaa	ttgacgctta	gacaacttaa	taacacattg	cggacgtttt	6180
taatgtactg	gggtggtttt	tcttttcacc	agtgagacgg	gcaacagctg	attgcccttc	6240
accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	. caaagggcga	aaaaccgtct	: atcagggcga	ı tggcccacta	a cgtgaaccat	6480
cacccaaato	: aagtttttg	gggtcgaggt	gccgtaaagc	e actaaatcgg	g aaccctaaag	6540
ggagcccccg	g atttagagct	: tgacggggaa	a ageeggegaa	a cgtggcgaga	a aaggaaggga	6600
agaaagcgaa	a aggagcggg	gccattcagg	g ctgcgcaact	gttgggaagg	g gcgatcggtg	6660
cgggcctct	t cgctattacg	g ccagctggc	g aaaggggga	t gtgctgcaa	g gcgattaagt	6720
tgggtaacg	c cagggtttt	c ccagtcacg	a cgttgtaaa	a cgacggcca	g tgaattcgag	6780
ctcggtacc	c ggggatctt	t cgacactga	a atacgtcga	g cctgctccg	c ttggaagcgg	6840
cgaggagcc	t cgtcctgtc	a caactacca	a catggagta	c gataagggc	c agttccgcca	6900
gctcattaa	g agccagttc	a tgggcgttg	g catgatggc	c gtcatgcat	c tgtacttcaa	6960
gtacaccaa	c gctcttctg	a tccagtcga	t catccgctg	a aggegettt	c gaatctggtt	7020
aagatccac	g tetteggga	a gccagcgac	t ggtgaccto	c agegteect	t taaggetgee	7080
aacagcttt	c tcagccagg	g ccagcccaa	ag accgacaag	g ceteceted	ca gaacgccgag	7140

# WO 2004/063359 PCT/EP2004/000099 252/357

aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
tcctttggct	ttcaatattc	tcaagtatct	cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	tgagcattgg	aatgaacatg	aatctgagga	ctgcaatcgc	catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggettgg	ggcacctgcg	ttggttgaat	ttagaacgtg	7500
gcactattga	. tcatccgata	gctctgcaaa	. gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttco	: aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	. tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	: aacacaagct	7680
gtaaggatt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	a ctcgagtacc	7740
atttaattc	t atttgtgttt	gatcgagac	c taatacagc	c cctacaacga	a ccatcaaagt	7800
cgtatagct	a ccagtgagga	a agtggactca	a aatcgactte	c agcaacatc	t cctggataaa	7860
ctttaagcc	t aaactatac	a gaataagat	a ggtggagag	c ttataccga	g ctcccaaatc	7920
tgtccagat	c atggttgac	c ggtgcctgg	a tcttcctat	a gaatcatcc	t tattcgttga	7980
cctagctga	t tctggagtg	a cccagaggg	t catgacttg	a gcctaaaat	c cgccgcctcc	8040
accatttgt	a gaaaaatgt	g acgaactcg	t gagctctgt	a cagtgaccg	g tgactctttc	8100
tggcatgcg	gg agagacgga	c ggacgcaga	ıg agaagggct	g agtaataag	c cactggccag	8160
acagetete	gg eggetetga	ng gtgcagtgg	ga tgattatta	aa teegggaee	g geegeeete	8220
cgccccgaa	ag tggaaagg	et ggtgtgcco	cc tegttgace	ca agaatctat	t gcatcatcgg	8280
agaatatg	ga gcttcatc	ga atcaccggo	ca gtaagcgaa	ag gagaatgtg	ga agccaggggt	8340
gtatagco	gt cggcgaaa	ta gcatgcca	tt aacctagg	ta cagaagtc	ca attgetteeg	8400

# WO 2004/063359 PCT/EP2004/000099 253/357

atctggtaaa agattcacga gatagtacct tctccgaagt aggtagagcg agtacccggc 8	8460
gcgtaagctc cctaattggc ccatccggca tctgtagggc gtccaaatat cgtgcctctc {	8520
ctgctttgcc cggtgtatga aaccggaaag gccgctcagg agctggccag cggcgcagac {	8580
cgggaacaca agctggcagt cgacccatcc ggtgctctgc actcgacctg ctgaggtccc	8640
tcagtccctg gtaggcagct ttgccccgtc tgtccgcccg gtgtgtcggc ggggttgaca	8700
aggtcgttgc gtcagtccaa catttgttgc catattttcc tgctctcccc accagctgct	8760
cttttctttt ctctttcttt tcccatcttc agtatattca tcttcccatc caagaacctt	8820
tatttcccct aagtaagtac tttgctacat ccatactcca tccttcccat cccttattcc	8880
tttgaacctt tcagttcgag ctttcccact tcatcgcagc ttgactaaca gctaccccgc	8940
ttgagcagac atcaccatgc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga	9000
aaagttegae agegteteeg acetgatgea geteteggag ggegaagaat etegtgettt	9060
cagcttcgat gtaggagggc gtggatatgt cctgcgggta aatagctgcg ccgatggttt	9120
ctacaaagat cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt	9180
gcttgacatt ggggaattca gcgagagcct gacctattgc atctcccgcc gtgcacaggg	9240
tgtcacgttg caagacctgc ctgaaaccga actgcccgct gttctgcagc cggtcgcgga	9300
ggccatggat gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg	9360
accgcaagga atcggtcaat acactacatg gcgtgatttc atatgcgcga ttgctgatcc	9420
ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc	9480
tctcgatgag ctgatgcttt gggccgagga ctgccccgaa gtccggcacc tcgtgcacgc	9540
ggatttegge tecaacaatg teetgaegga caatggeege ataacagegg teattgaetg	9600
gagegaggeg atgttegggg atteceaata egaggtegee aacatettet tetggaggee	9660

# WO 2004/063359 PCT/EP2004/000099 254/357

gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc	9720
aggategeeg eggeteeggg egtatatget eegcattggt ettgaeeaac tetateagag	9780
cttggttgac ggcaatttcg atgatgcagc ttgggcgcag ggtcgatgcg acgcaatcgt	9840
ccgatccgga gccgggactg tcgggcgtac acaaatcgcc cgcagaagcg cggccgtctg	9900
gaccgatggc tgtgtagaag tactcgccga tagtggaaac cgacgcccca gcactcgtcc	9960
gagggcaaag gaatagagta gatgccgacc gcgggatcga tccacttaac gttactgaaa 1	.0020
tcatcaaaca gcttgacgaa tctggatata agatcgttgg tgtcgatgtc agctccggag 1	L0080
ttgagacaaa tggtgttcag gatctcgata agatacgttc atttgtccaa gcagcaaaga 1	10140
gtgccttcta gtgatttaat agctccatgt caacaagaat aaaacgcgtt ttcgggttta :	10200
cctcttccag atacagctca tctgcaatgc attaatgcat tgactgcaac ctagtaacgc	10260
cttncaggct ccggcgaaga gaagaatagc ttagcagagc tattttcatt ttcgggagac	10320
gagatcaagc agatcaacgg tegtcaagag acctacgaga etgaggaate egetettgge	10380
tecaegegae tatatatttg tetetaattg taetttgaea tgeteetett etttaetetg	10440
atagettgae tatgaaaatt eegteaceag eneetgggtt egeaaagata attgeatgtt	10500
tcttccttga actctcaagc ctacaggaca cacattcatc gtaggtataa acctcgaaat	10560
canttectae taagatggta tacaatagta accatgeatg gttgeetagt gaatgeteeg	10620
taacacccaa tacgccggcc gaaacttttt tacaactctc ctatgagtcg tttacccaga	10680
atgcacaggt acacttgttt agaggtaatc cttctttcta gctagaagtc ctcgtgtact	10740
gtgtaagcgc ccactccaca tetecacteg acetgcagge atgcaagett cattttgett	10800
tgtaaattte tggtaactge caccaagaaa tatgaggata ttegtgatgt teetegtggt	10860
agccaaaatg atagcacgtg ataaatgacc accaaatagg acggctaatt gtttgggcac	10920

#### WO 2004/063359 PCT/EP2004/000099 255/357

aatgaggctg	aacataaccc	cctattggtt	cactatgggg	taaaaaagta	ccaaaataga	10980
ataattgtaa	tgaacttaaa	agcgagggta	gcacccaaaa	gtaagttaga	ttatcacttg	11040
ggatatggag	tatgtattta	gcaaagttat	aaataatagt	caacgcaatt	atttgccccc	11100
aactccagta	acctttcata	aaatgaaaat	accaagcaaa	gaaactttgg	tgtttaccat	11160
tgtgaaaatc	cgggtctatt	gagcttgctg	gattgtggtg	gtgtaaccaa	tgttttttca	11220
atagtttttg	atatggtaaa	agaccataaa	gggatagggt	caatgttcca	atcaaatgat	11280
taatcttggt	gttttgggga	aatactacgc	catgcatggc	atcatgagat	gtaataaata	11340
atcccgtata	taaaaatgtt	tgccatagta	. taacaggcaa	taacatccaa	aattttagct	11400
ttgagatgtc	aagggaaagt	aataaactca	ggctaatgac	ccatgcgcta	acaatgacaa	11460
tagcaatgaa	aagcccctta	aactgagatt	tacttctcag	tactggagtc	agttttgctt	11520
gatgactgag	, tggttgttct	aactggatca	ı tttctaaaga	a gaaggtggaa	caatgttagc	11580
ataattgtgo	: ttgagtgagg	g actttgaggg	g taggtacata	a cttgataaag	g ttaatgatta	11640
aagagaaaaa	a aaaagttttg	g gttcaaagca	a gaaattgtti	tttaaatcga	ı ttggtgagaa	11700
aatttttt	c tgtttccgca	a tcaccaaag	c cacctcagg	a atggtcacaa	a attattggtc	11760
tgattggac	c ataagcatad	c aaaaagttc	a ttgaagtat	a cttagtggc	t tattagactt	11820
ttatcgttt	t ctaacgcga	a tcagcaatg	t ttcttgttt	g atttactgc	t tgctttagat	11880
catttttgt	c tgaaatatt	a tgcatttgt	t caaagcggc	c tttgtttcc	t ttctttcatg	11940
cttaaacac	g ttgtttatt	c catatatta	c tttgaatat	g catcaccgc	a aagcggaagt	12000
gcaaaataa	c aaagaacct	c tttgggtta	c acgatcaac	t gctattgtg	a aaaaaattto	12060
tttttgaaa	a tttttggaa	t aatatctct	t gcaaaaaag	a aattttgta	t atttagtago	12120
atcaagaac	a aatgaaaga	a gtgtgggat	a acaagaata	c atcatcttt	a gacaaaagta	12180

#### WO 2004/063359 PCT/EP2004/000099 256/357

cgagaaaaat ctaataagtt gttatagagg tctttgtttt ctttgtgttt atagacagtt 12	2240
atttagagtt tgaaaagtgt ctctaatgtg tcttttttta ttattattat ttcaaatgtt 12	2300
atgtaatata gctaaagcta tagatttgac attttttcta aatataaaat ttcagtcaac 12	2360
agaaataaat gacacgagtt ctttttctct ctctcaatcc tgttgatcat caatctttga 12	2420
tgtcgtttta aaacaaatga atggcattta gttccttagg tgtcactcac atcttgttga 12	2480
ccagaaaatc cttattcgcc ctcaaatctg ctttattcct ttcatttgat ttgatgttta 12	2540
agtaatgcaa gcaaacaaaa aagaaacctt tettgcaaag acaaaagaat tgttttcaga 1	2600
ggaaagcaac tcgttgtcat tttttaagga tttagactta taatcgacac catagtttgt 1	.2660
ccgttacatt ttttattgtc gttttctgat ttccttttaa tctttaagca aaatcaatat 1	.2720
taacttatct tgtcttccaa taaaaaatgg ataccaataa caataaatcc ttcacaaaga 1	L2780
aaaaaaaaaa aaactcgaaa aaagcttggc gtaatcatgg tcatagctgt ttcctgtgtg 1	L28 <b>4</b> 0
aaattgttat ccgctcacaa ttccacacaa catacgagcc ggaagcataa agtgtaaagc 1	12900
ctggggtgcc taatgagtga gctaactcac attaattgcg ttgcgctcac tgcccgcttt 1	12960
ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg	13020
cggtttgcgt attgggccaa agacaaaagg gcgacattca accgattgag ggagggaagg	13080
taaatattga cggaaattat tcattaaagg tgaattatca ccgtcaccga cttgagccat	13140
ttgggaatta gagccagcaa aatcaccagt agcaccatta ccattagcaa ggccggaaac	13200
gtcaccaatg aaaccatcga tagcagcacc gtaatcagta gcgacagaat caagtttgcc	13260
tttagegtea gaetgtageg egtttteate ggeatttteg gteatageee eettattage	13320
gtttgccatc ttttcataat caaaatcacc ggaaccagag ccaccaccgg aaccgcctcc	13380
ctcagagecg ccacecteag aacegecace etcagageca ccaceeteag ageegecace	13440

#### WO 2004/063359 PCT/EP2004/000099 . 257/357

agaaccacca ccagagccgc cgccagcatt gacaggaggc ccgatctagt aacatagatg 135	00
acaccgcgcg cgataattta tectagtttg cgcgctatat tttgttttct atcgcgtatt 135	60
aaatgtataa ttgcgggact ctaatcataa aaacccatct cataaataac gtcatgcatt 136	520
acatgttaat tattacatgc ttaacgtaat tcaacagaaa ttatatgata atcatcgcaa 136	580
gaccggcaac aggattcaat cttaagaaac tttattgcca aatgtttgaa cgatcgggga 137	740
tcatccgggt ctgtggcggg aactccacga aaatatccga acgcagcaag atatcgcggt 138	800
gcatctcggt cttgcctggg cagtcgccgc cgacgccgtt gatgtggacg ccgggcccga 138	860
tcatattgtc gctcaggatc gtggcgttgt gcttgtcggc cgttgctgtc gtaatgatat 13	920
cggcaccttc gaccgcctgt tccgcagaga tcccgtgggc gaagaactcc agcatgagat 13	980
ccccgcgctg gaggatcatc cagccggcgt cccggaaaac gattccgaag cccaaccttt 14	.040
catagaagge ggeggtggaa tegaaatete gtgatggeag gttgggegte gettggtegg 14	100
tcatttcgaa ccccagagtc ccgctcagaa gaactcgtca agaaggcgat agaaggcgat 14	1160
gcgctgcgaa tcgggagcgg cgataccgta aagcacgagg aagcggtcag cccattcgcc 14	1220
gccaagctet teageaatat caegggtage caaegetatg teetgatage ggteegeeae 14	4280
acccagccgg ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg 14	4340
caagcaggca tegecatggg teaegaegag ateategeeg tegggeatge gegeettgag 14	4400
cctggcgaac agttcggctg gcgcgagccc ctgatgctct tcgtccagat catcctgatc 1	4460
gacaagaceg getteeatee gagtaegtge tegetegatg egatgttteg ettggtggte 1	4520
gaatgggcag gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga 1	.4580
tactttctcg gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa 1	4640
tagcagccag teeetteeeg etteagtgae aacgtegage acagetgege aaggaaegee 1	L4700

# WO 2004/063359 PCT/EP2004/000099 258/357

cgtcgtggcc agccacgata gccgcgctgc ctcgtcctgc agttcattca gggcaccgga 1	4760
caggteggte ttgacaaaaa gaaccgggeg ceeetgeget gacageegga acaeggegge 1	4820
atcagagcag ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaagc 1	4880
ggccggagaa cctgcgtgca atccatcttg ttcaatcatg cgaaacgatc cagatccggt 1	4940
gcagattatt tggattgaga gtgaatatga gactctaatt ggataccgag gggaatttat 1	.5000
ggaacgtcag tggagcattt ttgacaagaa atatttgcta gctgatagtg accttaggcg 1	5060
acttttgaac gcgcaataat ggtttctgac gtatgtgctt agctcattaa actccagaaa 1	L <b>51</b> 20
cccgcggctg agtggctcct tcaacgttgc ggttctgtca gttccaaacg taaaacggct 1	15180
tgtcccgcgt catcggcggg ggtcataacg tgactccctt aattctccgc tcatgatcag	15240
attgtcgttt cccgccttca gtttaaacta tcagtgtttg acaggatata ttggcgggta	15300
aacctaagag aaaagagcgt ttattagaat aatcggatat ttaaaagggc gtgaaaaggt	15360
ttatccgttc gtccatttgt atgtgcatgc caaccacagg gttccccaga tctggcgccg	15420
gccagcgaga cgagcaagat tggccgccgc ccgaaacgat ccgacagcgc gcccagcaca	15480
ggtgcgcagg caaattgcac caacgcatac agcgccagca gaatgccata gtgggcggtg	15540
acgtcgttcg agtgaaccag atcgcgcagg aggcccggca gcaccggcat aatcaggccg	15600
atgccgacag cgtcgagcgc gacagtgctc agaattacga tcaggggtat gttgggtttc	15660
acgtctggcc tccggaccag cctccgctgg tccgattgaa cgcgcggatt ctttatcact	15720
gataagttgg tggacatatt atgtttatca gtgataaagt gtcaagcatg acaaagttgc	15780
agccgaatac agtgatccgt gccgccctgg acctgttgaa cgaggtcggc gtagacggtc	15840
tgacgacacg caaactggcg gaacggttgg gggttcagca gccggcgctt tactggcact	15900
tcaggaacaa gcgggcgctg ctcgacgcac tggccgaagc catgctggcg gagaatcata	15960

## WO 2004/063359 PCT/EP2004/000099 259/357

cgcattcggt	gccgagagcc	gacgacgact	ggcgctcatt	tctgatcggg	aatgcccgca	16020
gcttcaggca	ggcgctgctc	gcctaccgcg	atggcgcgcg	catccatgcc	ggcacgcgac	16080
cgggcgcacc	gcagatggaa	acggccgacg	cgcagcttcg	cttcctctgc	gaggcgggtt	16140
tttcggccgg	ggacgccgtc	aatgcgctga	tgacaatcag	ctacttcact	gttggggccg	16200
tgcttgagga	gcaggccggc	gacagcgatg	ccggcgagcg	cggcggcacc	gttgaacagg	16260
ctccgctctc	gccgctgttg	cgggccgcga	tagacgcctt	cgacgaagcc	ggtccggacg	16320
cagegttega	gcagggactc	gcggtgattg	tcgatggatt	ggcgaaaagg	aggctcgttg	16380
tcaggaacgt	tgaaggaccg	agaaagggtg	acgattgatc	aggaccgctg	ccggagcgca	16440
acccactcac	tacagcagag	ccatgtagac	aacatcccct	cccctttcc	accgcgtcag	16500
acgcccgtag	cagecegeta	. cgggcttttt	: catgecetge	cctagcgtcc	aagcctcacg	16560
gccgcgctcg	geetetetgg	g cggccttctg	gegetettee	getteetege	tcactgactc	16620
gctgcgctcg	gtcgttcggd	: tgcggcgagc	ggtatcagct	: cactcaaagg	ggtaatacg	16680
gttatccaca	a gaatcagggg	g ataacgcagg	g aaagaacatg	y tgagcaaaag	gccagcaaaa	16740
ggccaggaa	c cgtaaaaag	g ccgcgttgct	ggcgttttt	c cataggeted	gececeetga	16800
cgagcatca	c aaaaatcga	c gctcaagtc	a gaggtggcg	a aacccgacas	g gactataaag	16860
ataccaggo	g tttccccct	g gaagctccc	t cgtgcgctc	t cctgttccga	a ccctgccgct	16920
taccggata	c ctgtccgcc	t ttctccctt	c gggaagcgt	g gcgcttttc	gctgcataac	16980
cctgcttcg	g ggtcattat	a gcgatttt	t cggtatatc	c atccttttt	c gcacgatata	17040
caggatttt	g ccaaagggt	t cgtgtagac	t ttccttggt	g tatccaacg	g cgtcagccgg	17100
gcaggatag	g tgaagtagg	c ccacccgcg	a gcgggtgtt	c cttcttcac	t gtcccttatt	17160
cgcacctgg	c ggtgctcae	ıc gggaatcct	g ctctgcgag	g ctggccggc	t accgccggcg	17220

taacagatga gggcaagcgg atggctgatg aaaccaagcc aaccaggaag ggcagcccac 17280 ctatcaaggt gtactgcctt ccagacgaac gaagagcgat tgaggaaaaag gcggcggcgg 17340 ccggcatgag cctgtcggcc tacctgctgg ccgtcggcca gggctacaaa atcacgggcg 17400 tcgtggacta tgagcacgtc cgcgagctgg cccgcatcaa tggcgacctg ggccgcctgct gaaactctgg ctcaccgacg acccgcgcac ggcgcggttc ggtgatgcca 17520 cgatcctcgc cctgctggcg aagatcgaag agaagcaga cgagcttggc aaggtcatga 17580 tgggcgtggt ccgccagagg gcagagccat gacttttta gccgctaaaa cggccggggg 17640 gtggcgcgtga ttgccaagca cgtccccatg cgctccatca agaagagcga cttcgcggag 17700 ctggtgaagt acatcaccga cgagcaaggc aagaccgagc gcctttgcg cgctca 17756

```
<210> 48
```

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<211> 17118

<212> DNA

<223> n is a, c, g, or t

<400> 48 cegggetggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ceggegegge gttgacagat gaggggeagg etegattteg geeggegaeg tggagetgge 240 cagoctogca aatoggogaa aacgootgat tttacgogag tttcccacag atgatgtgga 300 360 caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat gaggggcgcg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc 600 cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgccc 660 teggeegega aeggeeteae eccaaaaatg geagegetgg eagteettge eattgeeggg 720 atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 780 840 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 900 960 gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa 1020 1080 acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata 1140 agataatata tottttatat agaagatato googtatgta aggatttoag ggggcaaggo 1200

#### WO 2004/063359 PCT/EP2004/000099 262/357

ataggcagcg	cgcttatcaa	tatatctata	gaatgggcaa	agcataaaaa	cttgcatgga	1260
ctaatgcttg	aaacccagga	caataacctt	atagcttgta	aattctatca	taattgggta	1320
atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	tttgtcatgc	1380
agctccaccg	attttgagaa	cgacagcgac	ttccgtccca	gccgtgccag	gtgctgcctc	1440
agattcaggt	tatgeegete	aattcgctgc	gtatatcgct	tgctgattac	gtgcagcttt	1500
cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	cacgtcaaag	1560
ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	gaatacgtgc	1620
gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	. gccagcgctg	gcgcgattta	1680
gccccgacat	agccccactg	ttcgtccatt	tccgcgcaga	cgatgacgto	actgcccggc	1740
tgtatgcgcg	g aggttaccga	ctgcggcctg	g agttttttaa	ı gtgacgtaaa	atcgtgttga	1800
ggccaacgco	cataatgcgg	getgttgeed	ggcatccaac	gccattcats	g gccatatcaa	1860
					tgccatgttt	1920
					g ttacgcacca	1980
					t ggagcacctc	2040
					t tgtggtttca	2100
					t gaaaaagctg	2160
					c gtcttgttat	2220
					t aataaatggc	2280
					t gcgtaaaaga	2340 2400
					g aaaacctata	2460
tttaaaaa	tg acggacago	cc ggtataaaq	gg gaccaccta	at gatgtggaa	ac gggaaaagga	2400

# WO 2004/063359 PCT/EP2004/000099 263/357

catgatgcta	tggctggaag	gaaagctgcc	tgttccaaag	gtcctgcact	ttgaacggca	2520
tgatggctgg	agcaatctgc	tcatgagtga	ggccgatggc	gtcctttgct	cggaagagta	2580
tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	tcaggctctt	2640
tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	gcttagccga	2700
attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	gggaagaaga	2760
cactccattt	aaagatccgc	gcgagctgta	tgattttta	aagacggaaa	agcccgaaga	2820
ggaacttgtc	ttttcccacg	gcgacctggg	agacagcaac	atctttgtga	aagatggcaa	2880
agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	atgacattgc	2940
cttctgcgtc	: cggtcgatca	gggaggatat	: cggggaagaa	a cagtatgtcg	g agctatttt	3000
tgacttactg	gggatcaago	ctgattggga	a gaaaataaaa	a tattatattt	: tactggatga	3060
attgttttag	g tacctagato	g tggcgcaac	g atgccggcga	a caagcaggag	g cgcaccgact	3120
tetteegeat	caagtgttt	ggctctcag	g ccgaggccca	a cggcaagta	t ttgggcaagg	3180
					g gacggccaga	3240
					c aaggcaccag	3300
					a atcccgcaag	3360
					g atcgacgcgg .	3420
					t gegeeeegeg	3480
					c gagcgcgaca	3540
					ag cgttcgcgtc	3600
					eg cgaggaacta	3660
tgacgacca	aa gaagcgaaa	aa accgccgg	eg aggacetg	gc aaaacaggt	tc agcgaggcca	3720

# WO 2004/063359 PCT/EP2004/000099 264/357

agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt	3780
tegatattge geegtggeeg gacacgatge gagegatgee aaaegacaeg geeegetetg	3840
ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt	3900
tccacgtcaa caaggacgtg aagatcacct acaccggcgt cgagctgcgg gccgacgatg	3960
acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga	4020
tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat ggccggtatt	4080
acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg	4140
accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc ctggaccgtg	4200
gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg	4260
gcgaccacta cacgaaatte atatgggaga agtaccgcaa gctgtcgccg acggcccgac	4320
ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc	4380
gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag	4440
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg	4500
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg	4560
ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc gctcagtatc	4620
gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat	4680
tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt tccgcgagat	4740
ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga	4800
gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat tcggcgccta	4860
categaegge gagateattg ggetgteggt etteaaaeag gaggaeggee eeaaggaege	4920
tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggggtcgc	4980

# WO 2004/063359 PCT/EP2004/000099 265/357

cggtatgctg	ctgcgggcgt	tgccggcggg	tttattgctc	gtgatgatcg	tccgacagat	5040
tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400 .
cgcctggcaa	. ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatcccg	atgeetacag	gaaccaatgt	teteggeetg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttcc	tttggttccg	ggggateteg	gactcgaac	ctacagttgt	5580
ttccttactç	g ggctttctca	gececagate	: tggggtcgat	. cagccgggga	tgcatcaggc	5640
cgacagtcgg	g aacttcgggt	ccccgacctg	g taccattcgg	g tgagcaatgg	g ataggggagt	5700
tgatatcgt	c aacgttcact	: tctaaagaaa	a tagegeeact	cagetteete	e ageggettta	5760
tccagcgat	t tootattato	g toggcatagi	t teteaagate	gacageetgt	cacggttaag	5820
cgagaaatg	a ataagaaggo	tgataatto	g gatetetge	g agggagatga	a tatttgatca	5880
caggcagca	a cgctctgtc	a tcgttacaa	t caacatgct	a ccctccgcg	a gatcatccgt	5940
gtttcaaac	c cggcagctt	a gttgccgtt	c ttccgaata	g catcggtaa	c atgagcaaag	6000
tetgeegee	t tacaacggc	t ctcccgctg	a cgccgtccc	g gactgatgg	g ctgcctgtat	6060
cgagtggtg	ga ttttgtgcc	g agctgccgg	t cggggagct	g ttggctggc	t ggtggcagga	6120
tatattgtç	gg tgtaaacaa	a ttgacgctt	a gacaactta	a taacacatt	g cggacgtttt	6180
taatgtact	g gggtggttt	t tctttcac	c agtgagacg	g gcaacagct	g attgcccttc	6240

accgcctggc	cctgagagag	ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	6300
aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	: ggggatcttt	cgacactgaa	atacgtcgag	cctgctccgc	ttggaagcgg	6840
cgaggagcct	: cgtcctgtca	caactaccaa	a catggagtac	gataagggcc	: agttccgcca	6900
gctcattaag	g agccagttca	tgggcgttgg	g catgatggco	: gtcatgcato	: tgtacttcaa	6960
gtacaccaac	c gctcttctga	a tecagtegat	cateegetga	aggcgcttto	gaatctggtt	7020
aagatccac	g tcttcgggaa	a gccagcgac	t ggtgacctco	agegteecti	taaggctgcc	7080
aacagcttt	c tcagccagg	g ccagcccaa	g accgacaag	g catacataca	a gaacgccgag	7140
aagaactgg	a ggggtggtg	t caaggagga	g taageteet	t attgaagtc	g gaggacggag	7200
cggtgtcaa	g aggatattc	t tegaetetg	t attatagat	a agatgatga	g gaattggagg	7260
tagcatago	t tcatttgga	t ttgctttcc	a ggctgagac	t ctagcttgg	a gcatagaggg	7320
tcctttggc	t ttcaatatt	c tcaagtato	t cgagtttga	a cttattccc	t gtgaaccttt	7380
tattcacca	a tgagcattg	g aatgaacat	g aatctgagg	a ctgcaatcg	c catgaggttt	7440
tcgaaatac	a teeggatgt	c gaaggcttg	gg ggcacetge	g ttggttgaa	t ttagaacgtg	7500

# WO 2004/063359 PCT/EP2004/000099 267/357

gcactattga	tcatccgata	gctctgcaaa	gggcgttgca	caatgcaagt	caaacgttgc	7560
tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagato	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	: tctggagtga	ı cccagagggt	: catgacttga	geetaaaate	e cgccgcctcc	8040
accatttgta	a gaaaaatgtg	g acgaactcgt	gagctctgta	a cagtgaccgg	g tgactctttc	8100
tggcatgcgg	g agagacggad	ggacgcaga	g agaagggctg	g agtaataago	c cactggccag	8160
acagetetg	g cggctctgag	g gtgcagtgg	a tgattatta:	a teegggaeeg	g geegeeeete	8220
cgccccgaa	g tggaaaggc	t ggtgtgccc	c tcgttgacca	a agaatctat	t gcatcatcgg	8280
agaatatgg	a gcttcatcg	a atcaccggc	a gtaagcgaa	g gagaatgtg	a agccaggggt	8340
gtatagccg	t cggcgaaat	a gcatgccat	t aacctaggt	a cagaagtcc	a attgcttccg	8400
atctggtaa	a agattcacg	a gatagtaco	t teteegaag	t aggtagagc	g agtacccggc	8460
gcgtaagct	c cctaattgg	c ccatccggo	a tctgtaggg	c gtccaaata	t cgtgcctctc	8520
ctgctttgc	cc cggtgtatg	ra aaccggaaa	ıg ģeegeteag	g agctggcca	g cggcgcagac	8580
cgggaacad	ca agctggcag	ıt cgacccato	ec ggtgctctg	gc actcgacct	g ctgaggtccc	8640
tcagtccc	tg gtaggcago	t ttgccccgi	c tgtccgcc	eg gtgtgtegg	gc ggggttgaca	8700
aggtcgtt	gc gtcagtcca	aa catttgtt	gc catatttt	ee tgeteteed	cc accagetget	8760

# WO 2004/063359 PCT/EP2004/000099 268/357

cttttcttt	ctctttcttt	tcccatcttc	agtatattca	tcttcccatc	caagaaçett	8820
tatttcccct	aagtaagtac	tttgctacat	ccatactcca	tccttcccat	cccttattcc	8880
tttgaacctt	tcagttcgag	ctttcccact	tcatcgcagc	ttgactaaca	gctaccccgc	8940
ttgagcagac	atcaccatgc	ctgaactcac	cgcgacgtct	gtcgagaagt	ttctgatcga	9000
aaagttcgac	agcgtctccg	acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	9060
cagcttcgat	gtaggagggc	gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	9120
ctacaaagat	cgttatgttt	atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	9180
gcttgacatt	ggggaattca	gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	9240
tgtcacgttg	g caagacctgc	ctgaaaccga	actgcccgct	gttctgcago	: cggtcgcgga	9300
ggccatggat	gegategetg	cggccgatct	: tagccagacg	agegggtteg	gcccattcgg	9360
accgcaagga	a atcggtcaat	acactacato	g gcgtgatttc	: atatgcgcga	a ttgctgatcc	9420
ccatgtgta	t cactggcaaa	ctgtgatgga	a cgacaccgto	: agtgcgtccg	g tegegeagge	9480
tctcgatga	g ctgatgcttt	gggccgagga	a ctgccccgaa	gtccggcaco	c tegtgeaege	9540
ggatttcgg	c tccaacaat	g teetgaegga	a caatggccgo	ataacagcg	g tcattgactg	9600
gagcgaggc	g atgttcggg	g atteceaat	a cgaggtcgc	aacatcttc	t tctggaggcc	9660
gtggttggc	t tgtatggag	c agcagacgc	g ctacttcga	g cggaggcat	c cggagcttgc	9720
aggatcgco	g cggctccgg	g cgtatatgc	t ccgcattgg	t cttgaccaa	c tctatcagag	9780
cttggttga	c ggcaatttc	g atgatgcag	c ttgggcgca	g ggtcgatgc	g acgcaatcgt	9840
ccgatccgg	ga gccgggact	g tegggegta	c acaaatcgc	c cgcagaagc	g eggeegtetg	9900
gaccgatgg	gc tgtgtagaa	g tactcgccg	ra tagtggaaa	c cgacgccc	a gcactcgtcc	9960
gagggcaaa	ag gaatagagt	a gatgeegad	c gcgggatcg	a tccacttae	c gttactgaaa	10020

#### WO 2004/063359 PCT/EP2004/000099 269/357

tcatcaaaca gcttgacgaa tctggatata agatcgttgg tgtcgatgtc agctccggag	10080
ttgagacaaa tggtgttcag gatctcgata agatacgttc atttgtccaa gcagcaaaga	10140
gtgccttcta gtgatttaat agctccatgt caacaagaat aaaacgcgtt ttcgggttta	10200
cctcttccag atacagctca tctgcaatgc attaatgcat tgactgcaac ctagtaacgc	10260
cttncaggct ccggcgaaga gaagaatagc ttagcagagc tattttcatt ttcgggagac	10320
gagatcaagc agatcaacgg tcgtcaagag acctacgaga ctgaggaatc cgctcttggc	10380
tccacgcgac tatatatttg tctctaattg tactttgaca tgctcctctt ctttactctg	10440
atagcttgac tatgaaaatt ccgtcaccag cncctgggtt cgcaaagata attgcatgtt	10500
tetteettga aeteteaage etacaggaca cacatteate gtaggtataa aeetegaaat	10560
canttectae taagatggta tacaatagta accatgeatg gttgeetagt gaatgeteeg	10620
taacacccaa tacgccggcc gaaacttttt tacaactctc ctatgagtcg tttacccaga	10680
atgcacaggt acacttgttt agaggtaatc cttctttcta gctagaagtc ctcgtgtact	10740
gtgtaagcgc ccactccaca tctccactcg acctgcaggc atgcaagctt gagattaaaa	10800
tagataagga aaagaaagtg aaaagaaatt cggaagcatg gcacattctt ctttttataa	10860
atacatgcct gactttcttt ttccatcgat atgatatatg catatgatag atatacaagc	10920
aatcttcttc aaggagtttg aaattttgtc ctccaggagc aaaaaaaagt tttttttat	10980
acatgtttgt acacaagaat agttaccaat ttgctttggt cttacgtgct gcaagtttat	11040
atogttttca atttctttgt ctttacattt tctttgtcct ttatctttcc tcatttagtc	11100
tttgggagaa ttaggaaaag ggagcggaaa ggtaagaaat gcttgcgtat tttactaatt	11160
cggcaaacat ccaatttggc aaacagcagc ctgtgcaacg ctctcgagat gacagtatct	11220
ttgattacac tctaaatctc gatgacccga ccaaaaagag cgaacaaaga aataatcttg	11280

# WO 2004/063359 PCT/EP2004/000099 270/357

tgcattcgaa	tatgatggaa	gatttttcc	cccttattct	aaatgttgac	atagcgtgta	11340
tgttatataa	acaaaaagaa	attgtacaaa	ctttctttc	ttctctttt	attttatete	11400
tatgatccag	ttagaacaac	cactcagtca	tcaagcaaaa	ctgactccag	tactgagaag	11460
taaatctcag	tttaaggggc	ttttcattgc	tattgtcatt	gttagcgcat	gggtcattag	11520
cctgagttta	ttactttccc	ttgacatctc	aaagctaaaa	ttttggatgt	tattgcctgt	11580
tatactatgg	caaacatttt	tatatacggg	attatttatt	acatctcatg	atgccatgca	11640
tggcgtagta	tttccccaaa	acaccaagat	taatcatttg	attggaacat	tgaccctatc	11700
cctttatggt	cttttaccat	atcaaaaact	attgaaaaaa	cattggttac	accaccacaa	11760
tccagcaagc	tcaatagacc	cggattttca	. caatggtaaa	caccaaagtt	tetttgettg	11820
gtattttcat	tttatgaaag	gttactggag	, ttgggggcaa	ataattgcgt	tgactattat	11880
ttataacttt	: gctaaataca	tactccatat	cccaagtgat	aatctaactt	: acttttgggt	11940 ·
gctaccctcg	g cttttaagtt	cattacaatt	attctatttt	ggtactttt	: taccccatag	12000
tgaaccaata	a gggggttatg	g ttcagcctca	a ttgtgcccaa	a acaattagco	gtcctatttg	12060
gtggtcatt	atcacgtgct	t atcattttg	g ctaccacga	g gaacatcac	g aatatcctca	12120
tatttcttg	g tggcagtta	c cagaaattt	a caaagcaaa	a tagaagctt	g gcgtaatcat	12180
ggtcatagc	t gtttcctgt	g tgaaattgt	t atccgctca	c aattccaca	c aacatacgag	12240
ccggaagca	t aaagtgtaa	a gcctggggt	g cctaatgag	t gagctaact	c acattaattg	12300
cgttgcgct	c actgcccgc	t ttccagtcg	g gaaacctgt	c gtgccagct	g cattaatgaa	12360
teggecaac	g cgcggggag	a ggcggtttg	c gtattgggc	c aaagacaaa	a gggcgacatt	12420
caaccgatt	g agggaggga	a ggtaaatat	t gacggaaat	t attcattaa	a ggtgaattat	12480
caccgtcac	c gacttgago	c atttgggaa	at tagagccag	c aaaatcacc	a gtagcaccat	12540

### WO 2004/063359 PCT/EP2004/000099 271/357

taccattagc	aaggccggaa	acgtcaccaa	tgaaaccatc	gatagcagca	ccgtaatcag	12600
tagcgacaga	atcaagtttg	cctttagcgt	cagactgtag	cgcgttttca	teggeatttt	12660
cggtcatagc	ccccttatta	gcgtttgcca	tcttttcata	atcaaaatca	ccggaaccag	12720
agccaccacc	ggaaccgcct	ccctcagagc	cgccaccctc	agaaccgcca	ccctcagagc	12780
caccaccctc	agagccgcca	ccagaaccac	caccagagcc	gccgccagca	ttgacaggag	12840
gcccgatcta	gtaacataga	tgacaccgcg	cgcgataatt	tatcctagtt	tgcgcgctat	12900
attttgtttt	ctatcgcgta	ttaaatgtat	aattgcggga	ctctaatcat	aaaaacccat	12960
ctcataaata	acgtcatgca	ttacatgtta	attattacat	gcttaacgta	attcaacaga	13020
aattatatga	taatcatcgo	aagaccggca	acaggattca	atcttaagaa	actttattgc	13080
caaatgtttg	aacgatcggg	gatcatccgg	gtctgtggcg	ggaactccac	gaaaatatcc	13140
gaacgcagca	ı agatatcgcç	g gtgcatctcg	g gtcttgcctg	ggcagtcgco	gccgacgccg	13200
ttgatgtgga	cgccgggcc	gatcatatto	g tegeteagga	a tegtggegtt	gtgcttgtcg	13260
gccgttgcts	g tcgtaatga	t atcggcacct	tegacegee	t gttccgcaga	gatecegtgg	13320
gcgaagaac	t ccagcatga	g atccccgcg	c tggaggatc	a tccagccgg	gtcccggaaa	13380
acgattccg	a agcccaacc	t ttcatagaa	g geggeggtg	g aatcgaaat	c tegtgatgge	13440
aggttgggc	g tegettggt	c ggtcatttc	g aaccccaga	g teeegetea	g aagaactcgt	13500
caagaaggc	g atagaaggc	g atgegetge	g aatcgggag	c ggcgatacc	g taaagcacga	13560
ggaagcggt	c ageccatto	g ccgccaagc	t cttcagcaa	t atcacgggt	a gccaacgcta	13620
tgtcctgat	a geggteege	e acacccago	c ggccacagt	c gatgaatcc	a gaaaagcggc	13680
cattttcca	c catgatatt	c ggcaagcag	g categecat	g ggtcacgac	g agatcatcgo	13740
cgtcgggca	it gegegeett	g agcctggcg	ga acagttcgg	jc tggcgcgag	c ccctgatgct	13800

# WO 2004/063359 PCT/EP2004/000099 272/357

cttcgtccag atcatcctga tcgacaagac cggcttccat ccgagtacgt gctcgctcga 138	360
tgcgatgttt cgcttggtgg tcgaatgggc aggtagccgg atcaagcgta tgcagccgcc 139	920
gcattgcatc agccatgatg gatactttct cggcaggagc aaggtgagat gacaggagat 139	980
cctgccccgg cacttcgccc aatagcagcc agtcccttcc cgcttcagtg acaacgtcga 140	040
gcacagctgc gcaaggaacg cccgtcgtgg ccagccacga tagccgcgct gcctcgtcct 14	100
gcagttcatt cagggcaccg gacaggtcgg tcttgacaaa aagaaccggg cgcccctgcg 14	160
ctgacagccg gaacacggcg gcatcagagc agccgattgt ctgttgtgcc cagtcatagc 14	220
cgaatageet etecaceeaa geggeeggag aacetgegtg caateeatet tgtteaatea 14	1280
tgcgaaacga tccagatccg gtgcagatta tttggattga gagtgaatat gagactctaa 14	1340
ttggataccg aggggaattt atggaacgtc agtggagcat ttttgacaag aaatatttgc 14	1400
tagctgatag tgaccttagg cgacttttga acgcgcaata atggtttctg acgtatgtgc 14	4460
ttageteatt aaaeteeaga aaeeegegge tgagtggete etteaaegtt geggttetgt 14	4520
cagttccaaa cgtaaaacgg cttgtcccgc gtcatcggcg ggggtcataa cgtgactccc 1	4580
ttaattetee geteatgate agattgtegt tteeegeett eagtttaaae tateagtgtt 1	4640
tgacaggata tattggcggg taaacctaag agaaaagagc gtttattaga ataatcggat 1	4700 ·
atttaaaagg gcgtgaaaag gtttatccgt tcgtccattt gtatgtgcat gccaaccaca 1	4760
gggttcccca gatctggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg 1	4820
atccgacagc gcgcccagca caggtgcgca ggcaaattgc accaacgcat acagcgccag 1	L4880
cagaatgcca tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg 1	14940
cagcacegge ataateagge egatgeegae agegtegage gegaeagtge teagaattae	15000
gatcaggggt atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg	15060

#### WO 2004/063359 PCT/EP2004/000099 273/357

aacgcgcgga	ttctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	15120
gtgtcaagca	tgacaaagtt	gcagccgaat	acagtgatcc	gtgeegeect	ggacctgttg	15180
aacgaggtcg	gcgtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	15240
cagccggcgc	tttactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	15300
gccatgctgg	cggagaatca	tacgcattcg	gtgccgagag	ccgacgacga	ctggcgctca	15360
tttctgatcg	ggaatgcccg	cagetteagg	caggcgctgc	togoctacog	cgatggcgcg	15420
cgcatccatg	ccggcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	15480
cgcttcctct	gcgaggcggg	ttttteggee	ggggacgccg	tcaatgcgct	gatgacaatc	15540
agctacttca	ctgttggggc	cgtgcttgag	gagcaggccg	gcgacagcga	tgccggcgag	15600
cgcggcggca	ccgttgaaca	ggctccgctc	tegeegetgt	tgcgggccgc	gatagacgcc	15660
ttcgacgaag	ccggtccgga	cgcagcgttc	gagcagggac	tcgcggtgat	tgtcgatgga	15720
ttggcgaaaa	ggaggctcgt	tgtcaggaac	gttgaaggac	cgagaaaggg	tgacgattga	15780
tcaggaccgo	: tgccggagcg	caacccacto	: actacagcag	agccatgtag	acaacatccc	15840
ctcccccttt	ccaccgcgto	: agacgcccgt	: agcagcccgc	tacgggcttt	ttcatgccct	15900
gccctagcgt	ccaageetea	a cggccgcgct	: cggcctctct	ggcggcctto	: tggcgctctt	15960
ccgcttcct	gctcactgac	e tegetgeget	: cggtcgttcg	getgeggega	gcggtatcag	16020
ctcactcaa	a ggcggtaata	a cggttatcca	a cagaatcagg	ggataacgca	a ggaaagaaca	16080
tgtgagcaa	a aggccagca	a aaggccagg	a accgtaaaaa	a ggccgcgttg	g ctggcgtttt	16140
tccataggc	t ccgccccc	t gacgagcat	c acaaaaatc	g acgeteaagi	t cagaggtggc	16200
gaaacccga	c aggactata	a agataccag	g cgtttcccc	tggaagctc	c ctcgtgcgct	16260
ctcctgttc	c gaccctgcc	g cttaccgga	t acctgtccg	c ctttctccc	t tegggaageg	16320

tggcgctttt	ccgctgcata	accctgcttc	ggggtcatta	tagcgatttt	ttcggtatat	16380
ccatcctttt	tcgcacgata	tacaggattt	tgccaaaggg	ttcgtgtaga	ctttccttgg	16440
tgtatccaac	ggcgtcagcc	gggcaggata	ggtgaagtag	gcccacccgc	gagcgggtgt	16500
tccttcttca	ctgtccctta	ttcgcacctg	gcggtgctca	acgggaatcc	tgctctgcga	16560
ggctggccgg	ctaccgccgg	cgtaacagat	gagggcaagc	ggatggctga	tgaaaccaag	16620
ccaaccagga	agggcagccc	acctatcaag	gtgtactgcc	ttccagacga	acgaagagcg	16680
attgaggaaa	aggcggcggc	ggccggcatg	agcctgtcgg	cctacctgct	ggeegtegge	16740
cagggctaca	aaatcacggg	cgtcgtggac	tatgagcacg	tccgcgagct	ggcccgcatc	16800
aatggcgacc	tgggccgcct	gggcggcctg	ctgaaactct	ggctcaccga	cgacccgcgc	16860
acggcgcggt	tcggtgatgc	cacgatcctc	gccctgctgg	cgaagatcga	agagaagcag	16920
gacgagcttg	gcaaggtcat	gatgggcgtg	gtccgcccga	gggcagagcc	atgacttttt	16980
tagccgctaa	aacggccggg	gggtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	17040
caagaagago	gacttcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	17100
gegeetttge	gacgeteà					17118

<210> 49

<211> 18449

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (3471)..(3471)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3679)..(3679)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3770)..(3770)

<223> n is a, c, g, or t

<400> 49

4400> #2						
gatctttcga	cactgaaata	cgtcgagcct	gctccgcttg	gaagcggcga	ggagcctcgt	60
cctgtcacaa	ctaccaacat	ggagtacgat	aagggccagt	teegeeaget	cattaagagc	120
cagttcatgg	gcgttggcat	gatggccgtc	atgcatctgt	acttcaagta	caccaacgct	180
cttctgatcc	agtcgatcat	ccgctgaagg	cgctttcgaa	tctggttaag	atccacgtct	240
tegggaagee	agcgactggt	gacctccagc	gtccctttaa	ggctgccaac	agctttctca	300
gccagggcca	gcccaagacc	gacaaggcct	ccctccagaa	cgccgagaag	aactggaggg	360
gtggtgtcaa	. ggaggagtaa	gctccttatt	gaagtcggag	gacggagcgg	tgtcaagagg	420
atattcttcg	actctgtatt	atagataaga	. tgatgaggaa	ttggaggtag	catagettea	480
tttggatttg	g ctttccaggo	: tgagactcta	gcttggagca	tagagggtco	tttggctttc	540
aatattctca	agtatctcga	a gtttgaactt	: attccctgtg	aaccttttat	tcaccaatga	600
gcattggaat	: gaacatgaat	ctgaggactg	g caatcgccat	: gaggttttcg	g aaatacatcc	660
ggatgtcga	a ggcttgggg	e acctgcgttg	g gttgaattta	a gaacgtggca	a ctattgatca	720
tccgatagc	t ctgcaaagg	g cgttgcaca:	a tgcaagtcaa	a acgttgctag	g cagttccagg	780
tggaatgtt	a tgatgagca	t tgtattaaa	t caggagata	agcatgatc	t ctagttagct	840
caccacaaa	a gtcagacgg	c gtaaccaaa	a gtcacacaa	c acaagctgt	a aggatttcgg	900

# WO 2004/063359 PCT/EP2004/000099 276/357

cacggctacg	gaagacggag	aagccacctt	cagtggactc	gagtaccatt	taattctatt	960
tgtgtttgat	cgagacctaa	tacagcccct	acaacgacca	tcaaagtcgt	atagctacca	1020
gtgaggaagt	ggactcaaat	cgacttcagc	aacatctcct	ggataaactt	taagcctaaa	1080
ctatacagaa	taagataggt	ggagagetta	taccgagctc	ccaaatctgt	ccagatcatg	1140
gttgaccggt	gcctggatct	tcctatagaa	tcatccttat	tcgttgacct	agctgattct	1200
ggagtgaccc	agagggtcat	gacttgagcc	taaaatccgc	cgcctccacc	atttgtagaa	1260
aaatgtgacg	aactcgtgag	ctctgtacag	tgaccggtga	ctctttctgg	catgcggaga	1320
gacggacgga	. cgcagagaga	agggctgagt	aataagccac	tggccagaca	gctctggcgg	1380
ctctgaggtg	cagtggatga	ttattaatcc	gggaccggcc	gcccctccgc	cccgaagtgg	1440
aaaggctggt	gtgcccctcg	ttgaccaaga	atctattgca	tcatcggaga	atatggagct	1500
tcatcgaato	e accggcagta	agcgaaggag	aatgtgaago	: caggggtgta	tageegtegg	1560
cgaaatagca	a tgccattaac	: ctaggtacag	aagtccaatt	getteegate	tggtaaaaga	1620
ttcacgagai	agtaccttct	ccgaagtagg	ı tagagcgagt	acccggcgcg	taagctccct	1680
aattggccca	a teeggeatet	gtagggcgto	caaatategt	geeteteet <u>e</u>	g etttgeeegg	1740
tgtatgaaa	c cggaaaggc	gctcaggago	: tggccagcgg	g cgcagaccgg	g gaacacaagc	1800
tggcagtcg	a cccatccgg	t gctctgcac	t cgacctgcts	g aggteeetea	a gtccctggta	1860
ggcagcttt	g ccccgtctg	t cegeceggt	g tgtcggcgg	g gttgacaagg	g tegttgegte	1920
agtccaaca	t ttgttgcca	t attttcctg	c tetececae	c agctgctct	t ttcttttctc	1980
tttctttc	c catcttcag	t atattcatc	t teccateca	a gaaccttta	t ttcccctaag	2040
taagtactt	t gctacatcc	a tactccatc	c ttcccatcc	c ttattcctt	t gaacctttca	2100
gttcgagct	t teceaette	a tcgcagctt	g actaacagc	t accccgctt	g agcagacatc	2160

# WO 2004/063359 PCT/EP2004/000099 277/357

accatgeetg aacteacege gaegtetgte gagaagttte tgategaaaa gttegacage	2220
gtctccgacc tgatgcagct ctcggagggc gaagaatctc gtgctttcag cttcgatgta	2280
ggagggcgtg gatatgtcct gcgggtaaat agctgcgccg atggtttcta caaagatcgt	2340
tatgtttatc ggcactttgc atcggccgcg ctcccgattc cggaagtgct tgacattggg	2400
gaattcagcg agagcctgac ctattgcatc tecegeegtg cacagggtgt cacgttgcaa	2460
gacctgcctg aaaccgaact gcccgctgtt ctgcagccgg tcgcggaggc catggatgcg	2520
atcgctgcgg ccgatcttag ccagacgagc gggttcggcc cattcggacc gcaaggaatc	2580
ggtcaataca ctacatggcg tgatttcata tgcgcgattg ctgatcccca tgtgtatcac	2640
tggcaaactg tgatggacga caccgtcagt gcgtccgtcg cgcaggctct cgatgagctg	2700
atgetttggg cegaggaetg eecegaagte eggeaeeteg tgeaegegga ttteggetee	2760
aacaatgtcc tgacggacaa tggccgcata acagcggtca ttgactggag cgaggcgatg	2820
ttcggggatt cccaatacga ggtcgccaac atcttcttct ggaggccgtg gttggcttgt	2880
atggagcagc agacgcgcta cttcgagcgg aggcatccgg agcttgcagg atcgccgcgg	2940
ctccgggcgt atatgctccg cattggtctt gaccaactct atcagagctt ggttgacggc	3000
aatttcgatg atgcagcttg ggcgcagggt cgatgcgacg caatcgtccg atccggagcc	3060
gggactgtcg ggcgtacaca aatcgcccgc agaagcgcgg ccgtctggac cgatggctgt	3120
gtagaagtac tegeegatag tggaaacega egeeecagea etegteegag ggeaaaggaa	3180
tagagtagat gccgaccgcg ggatcgatcc acttaacgtt actgaaatca tcaaacagct	3240
tgacgaatct ggatataaga tegttggtgt egatgteage teeggagttg agacaaatgg	3300
tgttcaggat ctcgataaga tacgttcatt tgtccaagca gcaaagagtg ccttctagtg	3360
atttaatagc tccatgtcaa caagaataaa acgcgttttc gggtttacct cttccagata	3420

### WO 2004/063359 PCT/EP2004/000099 278/357

cagctcatct	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggeteeg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaatccgc	tettggetee	acgcgactat	3600
atatttgtct	ctaattgtac	tttgacatgc	tcctcttctt	tactctgata	gcttgactat	3660
gaaaattccg	tcaccagene	ctgggttcgc	aaagataatt	gcatgtttct	tccttgaact	3720
ctcaagccta	caggacacac	attcatcgta	ggtataaacc	tcgaaatcan	ttcctactaa	3780
gatggtatac	aatagtaacc	atgcatggtt	gcctagtgaa	tgctccgtaa	cacccaatac	3840
gccggccgaa	actttttac	aactctccta	tgagtcgttt	acccagaatg	cacaggtaca	3900
cttgtttaga	ggtaatcctt	ctttctagct	agaagtcctc	gtgtactgtg	taagegeeea	3960
ctccacatct	ccactcgacc	tgcaggcatg	caaagcttga	gattaaaata	ı gataaggaaa	4020
agaaagtgaa	aagaaattcg	gaagcatggo	acattettet	: ttttataaat	acatgcctga	4080
ctttctttt	: ccatcgatat	. gatatatgca	ı tatgatagat	: atacaagcaa	a tcttcttcaa	4140
ggagtttgaa	attttgtcct	ccaggagcaa	a aaaaaagttt	ttttttatac	e atgtttgtac	4200
acaagaatag	g ttaccaattt	getttggtet	tacgtgctgc	aagtttata	t cgttttcaat	4260
ttctttgtc	t ttacattttc	tttgtccttt	t atctttcct	c atttagtct	t tgggagaatt	4320
aggaaaagg	g agcggaaagg	g taagaaatgo	c ttgcgtatt	t tactaattc	g gcaaacatcc	4380
aatttggca	a acagcagcc	t gtgcaacgc	t ctcgagatg	a cagtatctt	t gattacactc	4440
taaatctcg	a tgacccgac	c aaaaagagc	g aacaaagaa	a taatcttgt	g cattcgaata	4500
tgatggaag	a ttttttccc	c cttattcta	a atgttgaca	t agcgtgtat	g ttatataaac	<b>4</b> 560
aaaaagaaa	t tgtacaaac	t ttetttet	t ctctttta	t tttatctct	a tgctgtcgaa	4620
gctgcagtc	a atcagcgtc	a aggcccgcc	g cgttgaact	a gcccgcgac	a tcacgcggcc	4680

## WO 2004/063359 PCT/EP2004/000099 279/357

caaagtctgc	ctgcatgctc	agcggtgctc	gttagttcgg	ctgcgagtgg	cagcaccaca	4740
gacagaggag	gcgctgggaa	ccgtgcaggc	tgccggcgcg	ggcgatgagc	acagcgccga	4800
tgtagcactc	cagcagcttg	accgggctat	cgcagagcgt	cgtgcccggc	gcaaacggga	4860
gcagctgtca	taccaggctg	ccgccattgc	agcatcaatt	ggcgtgtcag	gcattgccat	4920
cttcgccacc	tacctgagat	ttgccatgca	catgaccgtg	ggcggcgcag	tgccatgggg	4980
tgaagtggct	ggcactctcc	tcttggtggt	tggtggcgcg	ctcggcatgg	agatgtatgc	5040
ccgctatgca	cacaaagcca	tctggcatga	gtcgcctctg	ggctggctgc	tgcacaagag	5100
ccaccacaca	cctcgcactg	gaccctttga	agccaacgac	ttgtttgcaa	tcatcaatgg	5160
actgcccgcc	atgctcctgt	gtacctttgg	cttctggctg	cccaacgtcc	tgggggcggc	5220
ctgctttgga	geggggetgg	gcatcacgct	atacggcatg	gcatatatgt	ttgtacacga	5280
tggcctggtg	, cacaggeget	ttcccaccgg	geceateget	ggcctgccct	: acatgaagcg	5340
cctgacagto	gcccaccago	tacaccacag	g cggcaagtac	: ggtggcgcgc	cctggggtat	5400
gttcttgggt	ccacaggago	c tgcagcacat	tccaggtgcg	geggaggagg	g tggagcgact	5460
ggtcctggaa	a ctggactgg	c ccaagcggg	gattgtgact	: gatagcgaga	a ctctgggtcg	5520
atgttatct	g cctcaacaa	t ggcttagaaa	a agaagaaaca	a gaacaaata	c agcaaggcaa	5580
cgcccgtag	c ctaggtgat	c aaagactgt	t gggcttgtc	t ctgaagctt	g taggaaaggc	5640
agacgctat	c atggtgaga	g ctaagaagg	g cattgacaa	g ttgccggca	a actgtcaagg	5700
cggtgtacg	a gctgcttgc	c aagtatatg	c tgcaattgg	a tctgtactc	a agcagcagaa	5760
gacaacata	t cctacaaga	g ctcatctaa	a aggaagcga	a cgtgccaag	a ttgctctgtt	5820
gagtgtata	c aacctctat	c aatctgaag	a caagcctgt	g geteteegt	c aagctagaaa	5880
gattaagag	ıt ttttttgtt	g attagtgaa	t ttttgttt	a tttatgtct	g atagttcaat	5940

# WO 2004/063359 PCT/EP2004/000099 280/357

aaagagacaa	cacatacaat	ataaaatcat	tgtctttaaa	tgttaattta	gtagagtgta	б000
aagcctgcat	tttttttgta	cgcataaaca	atgaattcac	cccgcttctg	gtttttaaat	6060
aattatgtca	aactagggaa	aattctttt	tttctcttcg	ttctttttt	ggettgttgt	6120
ggagtcacag	gcttgtcttc	agattgatag	aggttgtata	cactcaacag	agcaatcttg	6180
gcacgttcgc	ttccttttag	atgagctctt	gtaggatatg	ttgtcttctg	ctgcttgagt	6240
acagatccaa	ttgcagcata	tacttggcaa	gcagctcgta	caccgccttg	acagtttgcc	6300
ggcaacttgt	caatgccctt	cttagctctc	accatgatag	cgtctgcctt	tcctacaagc	6360
ttcagagaca	agcccaacag	tctttgatca	cctaggctac	gggcgttgcc	ttgctgtatt	6420
tgttctgttt	cttctttct	aagccattgt	tgaggcagat	aacatcgaco	caacatcctc	6480
gagccatact	acagcataaa	aggatacgtt	ttctttaaca	gaaatttacc	: cttttgttat	6540
cagcacatac	aaaaaaaaag	aaatttaaga	tgagtaggac	ttccattctc	: tcaaaaattt	6600
tattcaatco	: ataaatgaat	: tatttttgga	a caaaaaagaa	agattatgco	tgattttctc	6660
tattttttt	: ttttttacaa	ı ctccaccaat	actttctago	c ccagcttggc	gtaatcatgg	6720
tcatagctgt	ttcctgtgtg	g aaattgttai	t ccgctcacaa	a ttccacacaa	a catacgagcc	6780
ggaagcata	a agtgtaaago	c ctggggtgc	c taatgagtga	a gctaactca	c attaattgcg	6840
ttgcgctca	c tgcccgctt	t ccagtcggg	a aacctgtcg	t gccagctgc	a ttaatgaatc	6900
ggccaacgc	g cggggagag	g cggtttgcg	t attgggcca	a agacaaaag	g gcgacattca	6960
accgattga	g ggagggaag	g taaatattg	a cggaaatta	t tcattaaag	g tgaattatca	7020
ccgtcaccg	a cttgagcca	t ttgggaatt	a gagccagca	a aatcaccag	t agcaccatta	7080
ccattagca	a ggccggaaa	c gtcaccaat	g aaaccatcg	a tagcagcac	c gtaatcagta	7140
gcgacagaa	t caagtttgc	c tttagcgtc	a gactgtage	g cgttttcat	c ggcattttcg	7200

### WO 2004/063359 PCT/EP2004/000099 281/357

gtcatagccc	ccttattagc	gtttgccatc	ttttcataat	caaaatcacc	ggaaccagag	7260
ccaccaccgg	aaccgcctcc	ctcagagccg	ccaccctcag	aaccgccacc	ctcagagcca	7320
ccaccctcag	agcegecace	agaaccacca	ccagagccgc	cgccagcatt	gacaggaggc	7380
ccgatctagt	aacatagatg	acaccgcgcg	cgataattta	tcctagtttg	cgcgctatat	7440
tttgttttct	atcgcgtatt	aaatgtataa	ttgcgggact	ctaatcataa	aaacccatct	7500
cataaataac	gtcatgcatt	acatgttaat	tattacatgc	ttaacgtaat	tcaacagaaa	<b>7560</b>
ttatatgata	atcatcgcaa	gaccggcaac	aggattcaat	cttaagaaac	tttattgcca	7620
aatgtttgaa	cgatcgggga	tcatccgggt	ctgtggcggg	aactccacga	aaatatccga	7680
acgcagcaag	atatcgcggt	gcatctcggt	cttgcctggg	cagtcgccgc	cgacgccgtt	7740
gatgtggacg	ccgggcccga	tcatattgto	gctcaggato	gtggcgttgt	gettgtegge	7800
cgttgctgtc	: gtaatgatat	: cggcacctto	gaccgcctgt	tccgcagaga	tcccgtgggc	7860
gaagaactco	e agcatgagat	: ccccgcgctç	g gaggatcato	cagccggcgt	cccggaaaac	7920
gattccgaag	g cccaacctt	catagaagg	ggeggtggaa	a togaaatoto	e gtgatggcag	7980
gttgggcgt	c gcttggtcg	g tcatttcga	a ccccagagto	c ccgctcaga	a gaactcgtca	8040
agaaggcga	t agaaggcga	t gcgctgcga	a togggagogg	g cgataccgt	a aagcacgagg	8100
aagcggtca	g cccattcgc	c gccaagctc	t tcagcaata	t cacgggtag	c caacgctatg	8160
tcctgatag	c ggtccgcca	c acccagecg	g ccacagtcg	a tgaatccag	a aaagcggcca	8220
ttttccacc	a tgatattcg	g caagcaggo	a tcgccatgg	g tcacgacga	g atcatcgccg	8280
tegggeate	c gcgccttga	ıg cctggcgaa	c agttcggct	g gegegagee	c ctgatgctct	8340
tcgtccaga	it catcctgat	c gacaagaco	g gettecate	c gagtacgtg	rc tcgctcgatg	8400
cgatgtttc	eg cttggtggt	c gaatgggca	ng gtagccgga	t caagcgtat	g cageegeege	8460

# WO 2004/063359 PCT/EP2004/000099 282/357

attgcatcag ccatgatgga tactttctcg gcaggagcaa ggtgagatga caggagatcc	8520
tgccccggca cttcgcccaa tagcagccag tcccttcccg cttcagtgac aacgtcgagc	8580
acagctgcgc aaggaacgcc cgtcgtggcc agccacgata gccgcgctgc ctcgtcctgc	8640
agttcattca gggcaccgga caggtcggtc ttgacaaaaa gaaccgggcg cccctgcgct	8700
gacageegga acaeggegge ateagageag eegattgtet gttgtgeeea gteatageeg	8760
aatagcctct ccacccaagc ggccggagaa cctgcgtgca atccatcttg ttcaatcatg	8820
cgaaacgatc cagatccggt gcagattatt tggattgaga gtgaatatga gactctaatt	8880
ggataccgag gggaatttat ggaacgtcag tggagcattt ttgacaagaa atatttgcta	8940
gctgatagtg accttaggcg acttttgaac gcgcaataat ggtttctgac gtatgtgctt	9000
agctcattaa actccagaaa cccgcggctg agtggctcct tcaacgttgc ggttctgtca	9060
gttccaaacg taaaacggct tgtcccgcgt catcggcggg ggtcataacg tgactccctt	9120
aattctccgc tcatgatcag attgtcgttt cccgccttca gtttaaacta tcagtgtttg	9180
acaggatata ttggcgggta aacctaagag aaaagagcgt ttattagaat aatcggatat	9240
ttaaaagggc gtgaaaaggt ttatccgttc gtccatttgt atgtgcatgc caaccacagg	9300
gttccccaga tctggcgccg gccagcgaga cgagcaagat tggccgccgc ccgaaacgat	9360
ccgacagcgc gcccagcaca ggtgcgcagg caaattgcac caacgcatac agcgccagca	9420
gaatgccata gtgggcggtg acgtcgttcg agtgaaccag atcgcgcagg aggcccggca	9480
gcaccggcat aatcaggccg atgccgacag cgtcgagcgc gacagtgctc agaattacga	9540
tcaggggtat gttgggtttc acgtctggcc tccggaccag cctccgctgg tccgattgaa	9600
cgcgcggatt ctttatcact gataagttgg tggacatatt atgtttatca gtgataaagt	9660
gtcaagcatg acaaagttgc agccgaatac agtgatccgt gccgccctgg acctgttgaa	9720

### WO 2004/063359 PCT/EP2004/000099 283/357

cgaggtcggc gtagacggtc tgacgacacg caaactggcg gaacggttgg gggttcagca 9	780
gccggcgctt tactggcact tcaggaacaa gcgggcgctg ctcgacgcac tggccgaagc 9	840
catgctggcg gagaatcata cgcattcggt gccgagagcc gacgacgact ggcgctcatt 9	900
tetgateggg aatgecegea getteaggea ggegetgete geetaeegeg atggegegeg 9	9960
catccatgcc ggcacgcgac cgggcgcacc gcagatggaa acggccgacg cgcagcttcg 10	0020
cttcctctgc gaggcgggtt tttcggccgg ggacgccgtc aatgcgctga tgacaatcag 10	080
ctacttcact gttggggccg tgcttgagga gcaggccggc gacagcgatg ccggcgagcg 10	0140
cggcggcacc gttgaacagg ctccgctctc gccgctgttg cgggccgcga tagacgcctt 10	0200
cgacgaagcc ggtccggacg cagcgttcga gcagggactc gcggtgattg tcgatggatt 1	0260
ggcgaaaagg aggctcgttg tcaggaacgt tgaaggaccg agaaagggtg acgattgatc 1	.0320
aggaccgctg ccggagcgca acccactcac tacagcagag ccatgtagac aacatcccct 1	.0380
cccctttcc accgcgtcag acgcccgtag cagcccgcta cgggcttttt catgccctgc 1	L0440
cctagcgtcc aagcetcacg geegegeteg geetetetgg eggeettetg gegetettee 1	L0500
getteetege teactgaete getgegeteg gtegttegge tgeggegage ggtateaget 1	10560
cactcaaagg cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg 1	10620
tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 1	10680
cataggetee geeceetga egageateae aaaaategae geteaagtea gaggtggega :	10740
aaccegacag gactataaag ataccaggeg ttteceeetg gaageteeet egtgegetet	10800
cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg	10860
gcgcttttcc gctgcataac cctgcttcgg ggtcattata gcgatttttt cggtatatcc	10920
atecttttte geacgatata caggattttg ceaaagggtt egtgtagaet tteettggtg	10980

## WO 2004/063359 PCT/EP2004/000099 284/357

tatccaacgg cgtcagccgg gcaggatagg tgaagtaggc ccacccgcga gcgggtgttc 1104	10
cttcttcact gtcccttatt cgcacctggc ggtgctcaac gggaatcctg ctctgcgagg 1110	00
ctggccggct accgccggcg taacagatga gggcaagcgg atggctgatg aaaccaagcc 1116	60
aaccaggaag ggcagcccac ctatcaaggt gtactgcctt ccagacgaac gaagagcgat 112	20
tgaggaaaag geggeggegg eeggeatgag eetgteggee taeetgetgg eegteggeea 112	80
gggctacaaa atcacgggcg tcgtggacta tgagcacgtc cgcgagctgg cccgcatcaa 113	40
tggcgacctg ggccgcctgg gcggcctgct gaaactctgg ctcaccgacg acccgcgcac 114	00
ggcgcggttc ggtgatgcca cgatcctcgc cctgctggcg aagatcgaag agaagcagga 114	60
cgagcttggc aaggtcatga tgggcgtggt ccgcccgagg gcagagccat gacttttta 115	20
gccgctaaaa cggccggggg gtgcgcgtga ttgccaagca cgtccccatg cgctccatca 115	. 08
agaagagcga cttcgcggag ctggtgaagt acatcaccga cgagcaaggc aagaccgagc 116	540
geetttgega egeteaeegg getggttgee etegeegetg ggetggegge egtetatgge 117	700
cctgcaaacg cgccagaaac gccgtcgaag ccgtgtgcga gacaccgcgg ccgccggcgt 11	760
tgtggatacc tcgcggaaaa cttggccctc actgacagat gaggggcgga cgttgacact 11	820
tgaggggccg actcacccgg cgcggcgttg acagatgagg ggcaggctcg atttcggccg 11	880
gcgacgtgga gctggccagc ctcgcaaatc ggcgaaaacg cctgatttta cgcgagtttc 11	940
ccacagatga tgtggacaag cctggggata agtgccctgc ggtattgaca cttgaggggc 12	000
gcgactactg acagatgagg ggcgcgatcc ttgacacttg aggggcagag tgctgacaga 12	060
tgaggggggc acctattgac atttgagggg ctgtccacag gcagaaaatc cagcatttgc 12	120
aagggtttee geeegttttt eggeeacege taacetgtet tttaacetge ttttaaacea 12	2180
atatttataa accttgtttt taaccaggge tgegeeetgt gegegtgaee gegeaegeeg 12	2240

# WO 2004/063359 PCT/EP2004/000099 285/357

aaggggggtg	ccccccttc	tcgaaccctc	ccggcccgct	aacgcgggcc	tcccatcccc	12300
ccaggggctg	egecectegg	ccgcgaacgg	cctcacccca	aaaatggcag	cgctggcagt	12360
ccttgccatt	gccgggatcg	gggcagtaac	gggatgggcg	atcagcccga	gcgcgacgcc	12420
cggaagcatt	gacgtgccgc	aggtgctggc	atcgacattc	agcgaccagg	tgccgggcag	12480
tgagggcggc	ggcctgggtg	geggeetgee	cttcacttcg	gccgtcgggg	cattcacgga	12540
cttcatggcg	gggccggcaa	tttttacctt	gggcattctt	ggcatagtgg	tegegggtge	12600
cgtgctcgtg	ttcgggggtg	cgataaaccc	agcgaaccat	ttgaggtgat	aggtaagatt	12660
ataccgaggt	atgaaaacga	gaattggacc	tttacagaat	tactctatga	agcgccatat	12720
ttaaaaagct	accaagacga	agaggatgaa	ı gaggatgagg	g aggcagattg	ccttgaatat	12780
attgacaata	ı ctgataagat	: aatatatctt	: ttatatagaa	a gatatcgccg	, tatgtaagga	12840
tttcaggggg	g caaggcatag	g gcagcgcgct	tatcaatata	ı tctatagaat	gggcaaagca	12900
taaaaacttg	g catggactae	a tgcttgaaac	c ccaggacaat	aaccttatag	g cttgtaaatt	12960
ctatcataai	t tgggtaatga	a ctccaactt	a ttgatagtgi	t tttatgttca	a gataatgccc	13020
gatgacttt	g tcatgcage	t ccaccgatt	t tgagaacga	c agcgacttc	e gtcccagccg	13080
tgccaggtg	c tgcctcaga	t tcaggttat	g ccgctcaat	t cgctgcgta	t atcgcttgct	13140
gattacgtg	c agctttccc	t tcaggcggg	a ttcatacag	c ggccagcca	t ccgtcatcca	13200
tatcaccac	g tcaaagggt	g acagcaggc	t cataagacg	c cccagcgtc	g ccatagtgcg	13260
ttcaccgaa	t acgtgcgca	a caaccgtct	t ccggagact	g tcatacgcg	t aaaacagcca	13320
gcgctggcg	ge gatttaged	c cgacatago	c ccactgttc	g .tccatttcc	g cgcagacgat	13380
gacgtcact	g ceeggetgt:	a tgcgcgagg	rt taccgactg	ge ggeetgagt	t ttttaagtga	13440
cgtaaaato	g tgttgaggo	c aacgcccat	a atgeggget	g ttgcccggc	a tccaacgcca	13500

## WO 2004/063359 PCT/EP2004/000099 286/357

ttcatggcca	tatcaatgat	tttctggtgc	gtaccgggtt	gagaagcggt	gtaagtgaac	13560
tgcagttgcc	atgttttacg	gcagtgagag	cagagatagc	gctgatgtcc	ggcggtgctt	13620
ttgccgttac	gcaccacccc	gtcagtagct	gaacaggagg	gacagctgat	agacacagaa	13680
gccactggag	cacctcaaaa	acaccatcat	acactaaatc	agtaagttgg	cagcatcacc	13740
cataattgtg	gtttcaaaat	cggctccgtc	gatactatgt	tatacgccaa	ctttgaaaac	13800
aactttgaaa	aagctgtttt	ctggtattta	aggttttaga	atgcaaggaa	cagtgaattg	13860
gagttcgtct	tgttataatt	agcttcttgg	ggtatcttta	aatactgtag	aaaagaggaa	13920
ggaaataata	aatggctaaa	atgagaatat	caccggaatt	gaaaaaactg	atcgaaaaat	13980
accgctgcgt	aaaagatacg	gaaggaatgt	ctcctgctaa	ggtatataag	ctggtgggag	14040
aaaatgaaaa	cctatattta	ı aaaatgacgg	acagccggta	taaagggacc	acctatgatg	14100
tggaacggga	a aaaggacatg	g atgctatggc	: tggaaggaaa	gctgcctgtt	ccaaaggtcc	14160
tgcactttga	a acggcatgat	ggctggagca	atctgctcat	: gagtgaggcc	: gatggcgtcc	14220
tttgctcgga	a agagtatgaa	a gatgaacaaa	a gccctgaaaa	a gattatcgag	g ctgtatgcgg	14280
agtgcatca	g gctctttca	c tccatcgaca	a tatcggattg	g tocotatac <u>o</u>	g aatagcttag	14340
acageeget	t agccgaatt	g gattactta	c tgaataacga	a tctggccgat	gtggattgcg	14400
aaaactggg	a agaagacac	t ccatttaaa	g atccgcgcg	a gctgtatga	t tttttaaaga	14460
cggaaaagc	c cgaagagga	a cttgtcttt	t cccacggcg	a cctgggaga	c agcaacatct	14520
ttgtgaaag	a tggcaaagt	a agtggcttt	a ttgatcttg	g gagaagcgg	c agggcggaca	14580
agtggtatg	a cattgcctt	c tgcgtccgg	t cgatcaggg	a ggatatcgg	g gaagaacagt	14640
atgtcgago	t atttttga	c ttactgggg	a tcaagcctg	a ttgggagaa	a ataaaatatt	14700
atattttac	t ggatgaatt	g ttttagtac	c tagatgtgg	c gcaacgatg	c cggcgacaag	14760

## WO 2004/063359 PCT/EP2004/000099 287/357

caggagegea cegaettett cegeateaag tgttttgget etcaggeega ggeecaegge 14	4820
aagtatttgg gcaaggggtc gctggtattc gtgcagggca agattcggaa taccaagtac 14	4880
gagaaggacg gccagacggt ctacgggacc gacttcattg ccgataaggt ggattatctg 1	4940
gacaccaagg caccaggcgg gtcaaatcag gaataagggc acattgcccc ggcgtgagtc 1	5000
ggggcaatcc cgcaaggagg gtgaatgaat cggacgtttg accggaaggc atacaggcaa 1	5060
gaactgatcg acgeggggtt ttccgccgag gatgccgaaa ccategcaag ecgcaecgte 1	.5120
atgegtgege ecegegaaac ettecagtee gteggetega tggtecagea agetaeggee 1	.5180
aagatcgagc gcgacagcgt gcaactggct ccccctgccc tgcccgcgcc atcggccgcc 1	L52 <b>4</b> 0
gtggagcgtt cgcgtcgtct cgaacaggag gcggcaggtt tggcgaagtc gatgaccatc 1	15300
gacacgegag gaactatgae gaccaagaag egaaaaaeeg eeggegagga eetggeaaaa 1	15360
caggtcagcg aggccaagca ggccgcgttg ctgaaacaca cgaagcagca gatcaaggaa	15420
atgcagettt cettgttega tattgegeeg tggeeggaea egatgegage gatgeeaaae	15480
gacacggccc gctctgccct gttcaccacg cgcaacaaga aaatcccgcg cgaggcgctg	15540
caaaacaagg tcattttcca cgtcaacaag gacgtgaaga tcacctacac cggcgtcgag	15600
ctgcgggccg acgatgacga actggtgtgg cagcaggtgt tggagtacgc gaagcgcacc	15660
cctatcggcg agccgatcac cttcacgttc tacgagcttt gccaggacct gggctggtcg	15720
atcaatggcc ggtattacac gaaggccgag gaatgcctgt cgcgcctaca ggcgacggcg	15780
atgggettea egteegaceg egttgggeae etggaategg tgtegetget geacegette	15840
cgcgtcctgg accgtggcaa gaaaacgtcc cgttgccagg tcctgatcga cgaggaaatc	15900
gtcgtgctgt ttgctggcga ccactacacg aaattcatat gggagaagta ccgcaagctg	15960
tcgccgacgg cccgacggat gttcgactat ttcagctcgc accgggagcc gtacccgctc	16020

# WO 2004/063359 PCT/EP2004/000099 288/357

aagetggaaa eetteegeet eatgtgegga teggatteea eeegegtgaa gaagtggege 16	080
gagcaggtcg gcgaagcctg cgaagagttg cgaggcagcg gcctggtgga acacgcctgg 16	140
gtcaatgatg acctggtgca ttgcaaacgc tagggccttg tggggtcagt tccggctggg 16	200
ggttcagcag ccagcgcttt actggcattt caggaacaag cgggcactgc tcgacgcact 16	5260
tgcttcgctc agtatcgctc gggacgcacg gcgcgctcta cgaactgccg ataaacagag 16	5320
gattaaaatt gacaattgtg attaaggctc agattcgacg gcttggagcg gccgacgtgc 16	5380
aggatttccg cgagatccga ttgtcggccc tgaagaaagc tccagagatg ttcgggtccg 16	6440
tttacgagca cgaggagaaa aagcccatgg aggcgttcgc tgaacggttg cgagatgccg 16	6500
tggcattcgg cgcctacatc gacggcgaga tcattgggct gtcggtcttc aaacaggagg 10	6560
acggccccaa ggacgctcac aaggcgcatc tgtccggcgt tttcgtggag cccgaacagc 1	6620
gaggccgagg ggtcgccggt atgctgctgc gggcgttgcc ggcgggttta ttgctcgtga 1	6680
tgatcgtccg acagattcca acgggaatct ggtggatgcg catcttcatc ctcggcgcac 1	.6740
ttaatatttc gctattctgg agcttgttgt ttatttcggt ctaccgcctg ccgggcgggg 1	.6800
tegeggegae ggtaggeget gtgeageege tgatggtegt gtteatetet geegetetge 1	L6860
taggtagccc gatacgattg atggcggtcc tgggggctat ttgcggaact gcgggcgtgg 1	16920
cgctgttggt gttgacacca aacgcagcgc tagatcctgt cggcgtcgca gcgggcctgg 1	16980
cggggggggt ttccatggcg ttcggaaccg tgctgacccg caagtggcaa cctcccgtgc 1	17040
ctctgctcac ctttaccgcc tggcaactgg cggccggagg acttctgctc gttccagtag	17100
ctttagtgtt tgatccgcca atcccgatgc ctacaggaac caatgttctc ggcctggcgt	17160
ggctcggcct gatcggagcg ggtttaacct acttcctttg gttccggggg atctcgcgac	17220
tegaacetae agttgtttee ttactggget tteteagece cagatetggg gtegateage	17280

# WO 2004/063359 PCT/EP2004/000099 289/357

			lbasas	gagetgtacc	attoggtgag	17340
cggggatgca	tcaggccgac	agtcggaact	tegggteeec	gacctgtacc	acceggigag	17540
caatggatag	gggagttgat	atcgtcaacg	ttcacttcta	aagaaatagc	gccactcagc	17400
ttcctcagcg	gctttatcca	gcgatttcct	attatgtcgg	catagttctc	aagatcgaca	17460
gcctgtcacg	gttaagcgag	aaatgaataa	gaaggctgat	aattcggatc	tctgcgaggg	17520
agatgatatt	tgatcacagg	cagcaacgct	ctgtcatcgt	tacaatcaac	atgctaccct	17580
ccgcgagatc	atccgtgttt	caaacccggc	agcttagttg	ccgttcttcc	gaatagcatc	17640
ggtaacatga	gcaaagtctg	ccgccttaca	acggctctcc	cgctgacgcc	gtcccggact	17700
gatgggctgc	ctgtatcgag	tggtgatttt	gtgccgagct	gccggtcggg	gagctgttgg	17760
ctggctggtg	gcaggatata	ttgtggtgta	aacaaattga	cgcttagaca	acttaataac	17820
acattgcgga	ı cgtttttaat	gtactggggt	ggtttttctt	ttcaccagtg	agacgggcaa	17880
cagctgatto	g cccttcaccg	cctggccctg	agagagttgc	agcaagcggt	ccacgctggt	17940
ttgccccago	e aggegaaaat	cctgtttgat	ggtggttccg	aaatcggcaa	a aatcccttat	18000
aaatcaaaa	g aatagcccga	gatagggttg	g agtgttgtto	: cagtttggaa	a caagagtcca	18060
ctattaaag	a acgtggacto	: caacgtcaaa	a gggcgaaaaa	a ccgtctatca	a gggcgatggc	18120
ccactacgt	g aaccatcacc	caaatcaagt	: tttttggggt	cgaggtgcc	g taaagcacta	18180
aatcggaac	c ctaaagggag	g cccccgatt	t agagettgad	c ggggaaagc	c ggcgaacgtg	18240
gcgagaaag	g aagggaagaa	a agcgaaagg	a gegggegee	a ttcaggctg	c gcaactgttg	18300
ggaagggcg	a toggtgogg	g catattaga	t attacgcca	g ctggcgaaa	g ggggatgtgc	18360
tgcaaggcg	ya ttaagttgg	g taacgccag	g gttttccca	g tcacgacgt	t gtaaaacgac	18420
ggccagtga	a ttcgagctc	g gtacccggg				18449

290/357 <210> 50 <211> 18617 <212> DNA

<213> Artificial

<220>

<223> Plasmid

<220>

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

<400> 50

ccgggctggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ccggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagcetegea aateggegaa aacgeetgat tttacgegag ttteecacag atgatgtgga 300 caageetggg gataagtgee etgeggtatt gacaettgag gggegegaet aetgacagat 360 gagggggggg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540

# WO 2004/063359 PCT/EP2004/000099 291/357

tttttaacca	gggctgcgcc	ctgtgcgcgt	gaccgcgcac	gccgaagggg	ggtgccccc	600
cttctcgaac	cctcccggcc	cgctaacgcg	ggcctcccat	cccccaggg	gctgcgcccc	660
teggeegega	acggcctcac	cccaaaaatg	gcagcgctgg	cagtccttgc	cattgccggg	720
atcggggcag	taacgggatg	ggcgatcagc	ccgagcgcga	cgcccggaag	cattgacgtg	780
ccgcaggtgc	tggcatcgac	attcagcgac	caggtgccgg	gcagtgaggg	cggcggcctg	840
ggtggcggcc	tgcccttcac	ttcggccgtc	ggggcattca	cggacttcat	ggcggggccg	900
gcaatttta	ccttgggcat	tcttggcata	gtggtcgcgg	gtgccgtgct	cgtgttcggg	960
ggtgcgataa	acccagcgaa	ccatttgagg	tgataggtaa	gattataccg	aggtatgaaa	1020
acgagaattg	gacctttaca	gaattactct	: atgaagegee	atatttaaaa	agctaccaag	1080
acgaagagga	tgaagaggat	gaggaggcag	g attgccttga	atatattgac	: aatactgata	1140
agataatata	tcttttatat	: agaagatato	gccgtatgta	aggatttcag	ggggcaaggc	1200
ataggcagcg	g cgcttatcaa	tatatctata	a gaatgggcaa	agcataaaaa	a cttgcatgga	1260
ctaatgcttg	g aaacccagga	a caataacct	t atagcttgta	a aattctatca	a taattgggta	1320
atgactcca:	a cttattgata	a gtgttttat	g ttcagataa	gcccgatga	c tttgtcatgc	1380
agetecace	g attttgaga	a cgacagcga	c ttccgtccc	a gccgtgcca	g gtgctgcctc	1440
agattcagg	t tatgccgct	c aattcgctg	c gtatatcgc	t tgctgatta	c gtgcagcttt	1500
cccttcagg	c gggattcat	a cagcggcca	g ccatccgtc	a tccatatca	c cacgtcaaag	1560
ggtgacagc	a ggctcataa	g acgccccag	c gtcgccata	g tgcgttcac	c gaatacgtgc	1620
gcaacaacc	g tcttccgga	g actgtcata	ıc gcgtaaaac	a gccagcgct	g gcgcgattta	1680
gccccgaca	t agccccact	g ttcgtccat	t teegegeag	a cgatgacgt	c actgcccggc	1740
tgtatgcgc	g aggttaccg	a ctgcggcct	g agttttta	a gtgacgtaa	a atcgtgttga	1800

## WO 2004/063359 PCT/EP2004/000099 292/357

ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	gccatatcaa	1860
tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	tgccatgttt	1920
tacggcagtg	agagcagaga	tagcgctgat	gtccggcggt	gcttttgccg	ttacgcacca	1980
ccccgtcagt	agctgaacag	gagggacagc	tgatagacac	agaagccact	ggagcacctc	2040
aaaaacacca	tcatacacta	aatcagtaag	ttggcagcat	cacccataat	tgtggtttca	2100
aaatcggctc	cgtcgatact	atgttatacg	ccaactttga	aaacaacttt	gaaaaagctg	2160
ttttctggta	tttaaggttt	tagaatgcaa	ggaacagtga	attggagttc	gtcttgttat	2220
aattagcttc	ttggggtatc	tttaaatact	gtagaaaaga	ggaaggaaat	aataaatggc	2280
taaaatgaga	atatcaccgg	aattgaaaaa	actgatcgaa	aaataccgct	gcgtaaaaga	2340
tacggaagga	atgtctcctg	ctaaggtata	taagctggtg	ggagaaaatg	aaaacctata	2400
tttaaaaatg	g acggacagco	ggtataaagg	gaccacctat	: gatgtggaac	: gggaaaagga	2460
catgatgcta	a tggctggaag	, g gaaagctgco	tgttccaaag	gtcctgcact	: ttgaacggca	2520
tgatggctgg	g agcaatctgo	tcatgagtga	a ggccgatggo	gtcctttgct	: cggaagagta	2580
tgaagatga	a caaagccctg	g aaaagatta	t cgagctgtat	t geggagtgea	a tcaggctctt	2640
tcactccat	c gacatatcg	g attgtccct	a tacgaatag	c ttagacagc	gcttagccga	2700
attggatta	c ttactgaat	a acgatctgg	c cgatgtgga	t tgcgaaaac	t gggaagaaga	2760
cactccatt	t aaagatccg	c gegagetgt	a tgattttt	a aagacggaa	a agcccgaaga	2820
ggaacttgt	c ttttcccac	g gegaeetgg	g agacagcaa	c atctttgtg	a aagatggcaa	2880
agtaagtgg	c tttattgat	c ttgggagaa	g cggcagggc	g gacaagtgg	t atgacattgc	2940
cttctgcgt	c cggtcgatc	a gggaggata	t cggggaaga	a cagtatgtc	g agctatttt	3000
tgacttact	g gggatcaag	c ctgattggg	ra gaaaataaa	a tattatatt	t tactggatga	3060

. attgttttag tacctagatg tggcgcaacg atgccggcga caagcaggag cgcaccgact	3120
tcttccgcat caagtgtttt ggctctcagg ccgaggccca cggcaagtat ttgggcaagg	3180
ggtcgctggt attcgtgcag ggcaagattc ggaataccaa gtacgagaag gacggccaga	3240
cggtctacgg gaccgacttc attgccgata aggtggatta tctggacacc aaggcaccag	3300
gegggteaaa teaggaataa gggeacattg eeceggegtg agteggggea ateeegeaag	3360
gagggtgaat gaatcggacg tttgaccgga aggcatacag gcaagaactg atcgacgcgg	3420
ggttttccgc cgaggatgcc gaaaccatcg caagccgcac cgtcatgcgt gcgccccgcg	3480
aaaccttcca gtccgtcggc tcgatggtcc agcaagctac ggccaagatc gagcgcgaca	3540
gegtgeaact ggeteecet geeetgeeeg egeeategge egeegtggag egttegegte	3600
gtctcgaaca ggaggcggca ggtttggcga agtcgatgac catcgacacg cgaggaacta	3660
tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc agcgaggcca	3720
agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt	3780
tcgatattgc gccgtggccg gacacgatgc gagcgatgcc aaacgacacg gcccgctctg	3840
ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt	3900
tocacgtoaa caaggacgtg aagatoacot acaceggegt egagetgegg geegaegatg .	3960
acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga	4020
tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat ggccggtatt	4080
acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg	4140
accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc ctggaccgtg	4200
gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg	4260
gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg acggcccgac	4320

## WO 2004/063359 PCT/EP2004/000099 . 294/357

ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc	4380
geeteatgtg eggateggat tecaceegeg tgaagaagtg gegegageag gteggegaag	4440
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg	4500
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg	4560
ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc gctcagtatc	4620
gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat	4680
tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt tccgcgagat	4740
ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga	4800
gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat tcggcgccta	4860
catcgacggc gagatcattg ggctgtcggt cttcaaacag gaggacggcc ccaaggacgc	4920
tcacaaggeg catetgteeg gegttttegt ggageeegaa cagegaggee gaggggtege	4980
cggtatgctg ctgcgggcgt tgccggcggg tttattgctc gtgatgatcg tccgacagat	5040
tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata tttcgctatt	5100
ctggagcttg ttgtttattt cggtctaccg cctgccgggc ggggtcgcgg cgacggtagg	5160
cgctgtgcag ccgctgatgg tcgtgttcat ctctgccgct ctgctaggta gcccgatacg	5220
attgatggcg gtcctggggg ctatttgcgg aactgcgggc gtggcgctgt tggtgttgac	5280
accaaacgca gcgctagatc ctgtcggcgt cgcagcgggc ctggcggggg cggtttccat	5340
ggcgttcgga accgtgctga cccgcaagtg gcaacctccc gtgcctctgc tcacctttac	5400
. cgcctggcaa ctggcggccg gaggacttct gctcgttcca gtagctttag tgtttgatcc	5460
gccaatcccg atgcctacag gaaccaatgt tctcggcctg gcgtggctcg gcctgatcgg	5520
agegggttta acctaettee tttggtteeg ggggateteg egaetegaae etaeagttgt	5580

# WO 2004/063359 PCT/EP2004/000099 295/357

ttccttactg ggctttctca gccccagatc tggggtcgat cagccgggga tgcatcaggc	5640
cgacagtcgg aacttcgggt ccccgacctg taccattcgg tgagcaatgg ataggggagt	5700
tgatatcgtc aacgttcact tctaaagaaa tagcgccact cagcttcctc agcggcttta	5760
tccagcgatt tcctattatg tcggcatagt tctcaagatc gacagcctgt cacggttaag	5820
cgagaaatga ataagaaggc tgataattcg gatctctgcg agggagatga tatttgatca	5880
caggcagcaa cgctctgtca tcgttacaat caacatgcta ccctccgcga gatcatccgt	5940
gtttcaaacc cggcagctta gttgccgttc ttccgaatag catcggtaac atgagcaaag	6000
tetgeegeet tacaaegget etecegetga egeegteeeg gaetgatggg etgeetgtat	6060
cgagtggtga ttttgtgccg agctgccggt cggggagctg ttggctggct ggtggcagga	6120
tatattgtgg tgtaaacaaa ttgacgctta gacaacttaa taacacattg cggacgtttt	6180
taatgtactg gggtggtttt tetttteace agtgagaegg geaacagetg attgeeette	6240
acegeetgge cetgagagag ttgeageaag eggteeaege tggtttgeee eageaggega	6300
aaatcctgtt tgatggtggt tccgaaatcg gcaaaatccc ttataaatca aaagaatagc	6360
ccgagatagg gttgagtgtt gttccagttt ggaacaagag tccactatta aagaacgtgg	6420
actccaacgt caaagggcga aaaaccgtct atcagggcga tggcccacta cgtgaaccat	6480
cacccaaatc aagttttttg gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag	6540
ggageceeeg atttagaget tgaeggggaa ageeggegaa egtggegaga aaggaaggga	6600
agaaagcgaa aggagcgggc gccattcagg ctgcgcaact gttgggaagg gcgatcggtg	6660
cgggcctctt cgctattacg ccagctggcg aaagggggat gtgctgcaag gcgattaagt	6720
tgggtaacgc cagggttttc ccagtcacga cgttgtaaaa cgacggccag tgaattcgag	6780
ctcggtaccc ggggatcttt cgacactgaa atacgtcgag cctgctccgc ttggaagcgg	6840

# WO 2004/063359 PCT/EP2004/000099 296/357

cgaggagcct	cgtcctgtca	caactaccaa	catggagtac	gataagggcc	agtteegeca	6900
gctcattaag	agccagttca	tgggcgttgg	catgatggcc	gtcatgcatc	tgtacttcaa	6960
gtacaccaac	gctcttctga	tccagtcgat	catccgctga	aggcgctttc	gaatctggtt	7020
aagatccacg	tcttcgggaa	gccagcgact	ggtgacctcc	agcgtccctt	taaggctgcc	7080
aacagctttc	tcagccaggg	ccagcccaag	accgacaagg	cctccctcca	gaacgccgag	7140
aagaactgga	ggggtggtgt	caaggaggag	taagctcctt	attgaagtcg	gaggacggag	7200
_cggtgtcaag	aggatattct	tcgactctgt	attatagata	agatgatgag	gaattggagg	7260
tagcatagct	tcatttggat	ttgctttcca	ggctgagact	ctagcttgga	gcatagaggg	7320
tcctttggct	ttcaatattc	tcaagtatct	: cgagtttgaa	cttattccct	gtgaaccttt	7380
tattcaccaa	ı tgagcattg <u>c</u>	g aatgaacatg	g aatctgagga	ctgcaatcgc	: catgaggttt	7440
tcgaaataca	tccggatgtc	gaaggettgg	g ggcacctgcg	g ttggttgaat	ttagaacgtg	7500
gcactattga	a tcatccgata	a gctctgcaaa	a gggcgttgca	a caatgcaágt	: caaacgttgc	7560
tagcagttc	c aggtggaat	g ttatgatga	g cattgtatta	a aatcaggaga	a tatagcatga	7620
tctctagtt	a gctcaccaca	a aaagtcaga	c ggcgtaacca	a aaagtcaca	c aacacaagct	7680
gtaaggatt	t cggcacggc	t acggaagac	g gagaagcca	c cttcagtgg	a ctcgagtacc	7740
atttaattc	t atttgtgtt	t gatcgagac	c taatacagc	c cctacaacg	a ccatcaaagt	7800
cgtatagct	a ccagtgagg	a agtggactc	a aatcgactt	c agcaacatc	t cctggataaa	7860
ctttaagcc	t aaactatac	a gaataagat	a ggtggagag	c ttataccga	g ctcccaaatc	7920
tgtccagat	c atggttgac	e ggtgcctgg	ga tcttcctat	a gaatcatco	t tattcgttga	7980
cctagctga	it tetggagtg	ga cccagaggg	gt catgactto	ga gcctaaaat	c cgccgcctcc	8040
accatttgt	a gaaaaatgt	g acgaactc	gt gagetetgt	a cagtgacco	gg tgactctttc	8100

# WO 2004/063359 PCT/EP2004/000099 297/357

tggcatgcgg	agagacggac	ggacgcagag	agaagggctg	agtaataagc	cactggccag	8160
acagctctgg	cggctctgag	gtgcagtgga	tgattattaa	teegggaeeg	gcegeeete	8220
cgccccgaag	tggaaaggct	ggtgtgcccc	tcgttgacca	agaatctatt	gcatcatcgg	8280
agaatatgga	gcttcatcga	atcaccggca	gtaagcgaag	gagaatgtga	agccaggggt	8340
gtatagccgt	cggcgaaata	gcatgccatt	aacctaggta	cagaagtcca	attgcttccg	8400
atctggtaaa	agattcacga	gatagtacct	tctccgaagt	aggtagagcg	agtacccggc	8460
gcgtaagctc	cctaattggc	ccatccggca	tctgtagggc	gtccaaatat	cgtgcctctc	8520
ctgctttgcc	cggtgtatga	aaccggaaag	gccgctcagg	agctggccag	cggcgcagac	8580
cgggaacaca	agctggcagt	: cgacccatco	ggtgctctgc	actcgacctg	ctgaggtccc	8640
tcagtccctg	gtaggcagct	: ttgccccgtc	: tgtccgcccg	gtgtgtcggc	ggggttgaca	8700
aggtcgttgo	gtcagtccaa	a catttgttgc	catattttcc	tgeteteece	accagctgct	8760 -
cttttcttt	ctctttctt	t teccatette	c agtatattca	a tcttcccato	c caagaacctt	8820
tatttcccc	t aagtaagta	c tttgctaca	t ccatactcca	a tecttecca	t cccttattcc	8880
tttgaacct	t tcagttcga	g ctttcccac	t tcatcgcage	c ttgactaac	a gctaccccgc	8940
ttgagcaga	c atcaccatg	c ctgaactca	c cgcgacgtc	t gtcgagaag	t ttctgatcga	9000
aaagttcga	c agcgtctcc	g acctgatgc	a gctctcgga	g ggcgaagaa	t ctcgtgcttt	9060
cagcttcga	t gtaggaggg	c gtggatatg	t cctgcgggt	a aatagctgc	g ccgatggttt	9120
ctacaaaga	it cgttatgtt	t ateggeact	t tgcatcggc	c gcgctcccg	ra ttccggaagt	9180
gcttgacat	t ggggaatto	ca gegagagee	t gacctattg	c atctcccgo	c gtgcacaggg	9240
tgtcacgtt	g caagacete	ge etgaaaeeg	ga actgcccgc	t gttctgcag	ge eggtegegga	9300
ggccatgga	at gcgatcgct	tg cggccgato	ct tagccagad	eg agegggtte	cg gcccattcgg	9360

### WO 2004/063359 PCT/EP2004/000099 298/357

				- h - t	Ltbentaa	9420
accgcaagga atc	ggtcaat a	cactacatg	gcgtgatttc	atatgegega	ttgetgatee	9420
ccatgtgtat cac	tggcaaa c	tgtgatgga	cgacaccgtc	agtgcgtccg	tegegeagge	9480
tctcgatgag ctg	atgcttt g	ggccgagga	ctgccccgaa	gtccggcacc	tcgtgcacgc	9540
ggatttcggc tcc	aacaatg t	cctgacgga	caatggccgc	ataacagcgg	tcattgactg	9600
gagcgaggcg atg	ttcgggg a	ttcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	9660
gtggttggct tgt	atggagc a	gcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	9720
aggatcgccg cgg	ctccggg c	gtatatgct	ccgcattggt	cttgaccaac	tctatcagag	9780 ·
cttggttgac ggo	aatttcg a	tgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	9840
ccgatccgga gco	egggaetg t	cgggcgtac	acaaatcgcc	cgcagaagcg	cggccgtctg	9900
gaccgatggc tg	tgtagaag ۱	tactcgccga	tagtggaaac	cgacgcccca	gcactcgtcc	9960
gagggcaaag ga	atagagta (	gatgccgacc	gcgggatcga	tccacttaac	gttactgaaa	10020
tcatcaaaca gc	ttgacgaa	tctggatata	agatcgttgg	tgtcgatgtc	: agctccggag	10080
ttgagacaaa tg	gtgttcag	gatctcgata	agatacgtto	: atttgtccaa	a gcagcaaaga	10140
gtgccttcta gt	gatttaat	agctccatgt	: caacaagaat	aaaacgcgtt	ttcgggttta	10200
cctcttccag at	acagetca	tctgcaatgo	: attaatgcat	tgactgcaa	c ctagtaacgc	10260
cttncaggct co	ggcgaaga	gaagaatago	ttagcagage	c tattttcat	t ttcgggagac	10320
gagatcaagc ag	atcaacgg	tcgtcaagag	g acctacgag	a ctgaggaat	c cgctcttggc	10380
tccacgcgac ta	atatatttg	tctctaatt	g tactttgac	a tgctcctct	t ctttactctg	10440
atagettgae ta	atgaaaatt	ccgtcacca	g cncctgggt	t cgcaaagat	a attgcatgtt	10500
tcttccttga a	ctctcaagc	ctacaggac	a cacattcat	c gtaggtata	a acctcgaaat	10560
canttectac t	aagatggta	tacaatagt	a accatgcat	g gttgcctag	t gaatgeteeg	10620

### WO 2004/063359 PCT/EP2004/000099 299/357

taacacccaa	tacgccggcc	gaaacttttt	tacaactctc	ctatgagtcg	tttacccaga	10680
atgcacaggt	acacttgttt	agaggtaatc	cttctttcta	gctagaagtc	ctcgtgtact	10740
gtgtaagcgc	ccactccaca	tctccactcg	acctgcaggc	atgcaagctt	gagattaaaa	10800
tagataagga	aaagaaagtg	aaaagaaatt	cggaagcatg	gcacattctt	ctttttataa	10860
atacatgcct	gactttcttt	ttccatcgat	atgatatatg	catatgatag	atatacaagc	10920
aatcttcttc	aaggagtttg	aaattttgtc	ctccaggagc	aaaaaaagt	tttttttat	10980
acatgtttgt	acacaagaat	agttaccaat	ttgctttggt	cttacgtgct	gcaagtttat	11040
atcgttttca	atttctttgt	ctttacattt	tetttgteet	ttatctttcc	tcatttagtc	11100
tttgggagaa	ttaggaaaag	ggagcggaaa	ggtaagaaat	gcttgcgtat	tttactaatt	11160
cggcaaacat	ccaatttggc	aaacagcagc	ctgtgcaacg	r ctctcgagat	gacagtatct	11220
ttgattacac	: tctaaatctc	gatgacccga	ccaaaaagag	g cgaacaaaga	aataatcttg	11280
tgcattcgaa	a tatgatggaa	gatttttcc	cccttattct	: aaatgttgac	atagcgtgta	11340
tgttatataa	a acaaaaagaa	a attgtacaaa	a ctttctttt	ttetetttt	attttatctc	11400
tatgctgtcg	g aagctgcag	t caatcagcgt	caaggcccg	c cgcgttgaac	: tagcccgcga	11460
catcacgcgg	g cccaaagtc	t gcctgcatg	c tcagcggtg	c tcgttagtto	ggctgcgagt	11520
ggcagcacc	a cagacagag	g aggcgctgg	g aaccgtgca	g gctgccggc(	g cgggcgatga	11580
gcacagcgc	c gatgtagca	c tccagcagc	t tgaccgggc	t atcgcagage	gtcgtgcccg	11640
gcgcaaacg	g gagcagctg	t cataccagg	c tgccgccat	t gcagcatca	a ttggcgtgtc	11700
aggcattgc	c atcttcgcc	a cctacctga	g atttgccat	g cacatgacc	g tgggcggcgc	11760
agtgccatg	g ggtgaagtg	g ctggcactc	t cctcttggt	g gttggtggc	g cgctcggcat	11820
ggagatgta	ıt gecegetat	g cacacaaag	c catctggca	t gagtcgcct	c tgggetgget	11880

## WO 2004/063359 PCT/EP2004/000099 300/357

gctgcacaag agccaccaca cacctcgcac tggacccttt gaagccaacg acttgtttgc 11940	٥
aatcatcaat ggactgcccg ccatgctcct gtgtaccttt ggcttctggc tgcccaacgt 12000	0
cctgggggcg gcctgctttg gagcggggct gggcatcacg ctatacggca tggcatatat 1206	0
gtttgtacac gatggcctgg tgcacaggcg ctttcccacc gggcccatcg ctggcctgcc 1212	0
ctacatgaag cgcctgacag tggcccacca gctacaccac agcggcaagt acggtggcgc 1218	0
gccctggggt atgttcttgg gtccacagga gctgcagcac attccaggtg cggcggagga 1224	: <b>0</b>
ggtggagcga ctggtcctgg aactggactg gtccaagcgg tagaagcttg agattaaaat 1230	10
agataaggaa aagaaagtga aaagaaattc ggaagcatgg cacattcttc tttttataaa 1236	50
tacatgcctg actttctttt tccatcgata tgatatatgc atatgataga tatacaagca 1242	30
atcttcttca aggagtttga aattttgtcc tccaggagca aaaaaaagtt tttttttata 1248	30
catgtttgta cacaagaata gttaccaatt tgctttggtc ttacgtgctg caagtttata 1254	40
tegtttteaa tttetttgte tttaeatttt etttgteett tatettteet eatttagtet 1260	00
ttgggagaat taggaaaagg gagcggaaag gtaagaaatg cttgcgtatt ttactaattc 126	60
ggcaaacatc caatttggca aacagcagcc tgtgcaacgc tctcgagatg acagtatctt 127	20
tgattacact ctaaatctcg atgacccgac caaaaagagc gaacaaagaa ataatcttgt 127	80
gcattcgaat atgatggaag attttttccc ccttattcta aatgttgaca tagcgtgtat 128	40
gttatataaa caaaaagaaa ttgtacaaac tttcttttct	00
atgatccagt tagaacaacc actcagtcat caagcaaaac tgactccagt actgagaagt 129	160
aaatctcagt ttaaggggct tttcattgct attgtcattg ttagcgcatg ggtcattagc 130	)20
ctgagtttat tactttccct tgacatctca aagctaaaat tttggatgtt attgcctgtt 130	)80
atactatggc aaacattttt atatacggga ttatttatta catctcatga tgccatgcat 131	140

# WO 2004/063359 PCT/EP2004/000099 301/357

ggcgtagtat ttccccaaaa caccaagatt aatcatttga ttggaacatt gaccctatcc 13	3200
ctttatggtc ttttaccata tcaaaaacta ttgaaaaaac attggttaca ccaccacaat 1	3260
ccagcaagct caatagaccc ggattttcac aatggtaaac accaaagttt ctttgcttgg 1	3320
tattttcatt ttatgaaagg ttactggagt tgggggcaaa taattgcgtt gactattatt 1	3380
tataactttg ctaaatacat actccatatc ccaagtgata atctaactta cttttgggtg 1	3440
ctaccetege ttttaagtte attacaatta ttetattttg gtaetttttt acceeatagt 1	.3500
gaaccaatag ggggttatgt tcagcctcat tgtgcccaaa caattagccg tcctatttgg 1	L3560
tggtcattta tcacgtgcta tcattttggc taccacgagg aacatcacga atatcctcat 1	13620
atttcttggt ggcagttacc agaaatttac aaagcaaaat agaagcttgg cgtaatcatg 1	13680
gtcatagctg tttcctgtgt gaaattgtta tccgctcaca attccacaca acatacgagc	13740
cggaagcata aagtgtaaag cctggggtgc ctaatgagtg agctaactca cattaattgc	13800
gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg tgccagctgc attaatgaat	13860
cggccaacgc gcggggagag gcggtttgcg tattgggcca aagacaaaag ggcgacattc	13920
aaccgattga gggagggaag gtaaatattg acggaaatta ttcattaaag gtgaattatc	13980
accgtcaccg acttgagcca tttgggaatt agagccagca aaatcaccag tagcaccatt	14040
accattagca aggeeggaaa egteaceaat gaaaceateg atageageae egtaateagt	14100
agcgacagaa tcaagtttgc ctttagcgtc agactgtagc gcgttttcat cggcattttc	14160
ggtcatagcc cccttattag cgtttgccat cttttcataa tcaaaatcac cggaaccaga	14220
gccaccaccg gaaccgcctc cctcagagcc gccaccctca gaaccgccac cctcagagcc	14280
accaccetca gageegeeae cagaaceaee accagageeg eegeeageat tgacaggagg	14340
cccgatctag taacatagat gacaccgcgc gcgataattt atcctagttt gcgcgctata	14400

# WO 2004/063359 PCT/EP2004/000099 302/357

ttttgttttc tatcgcgtat taaatgtata attgcgggac tctaatcata aaaacccatc 1446	50
tcataaataa cgtcatgcat tacatgttaa ttattacatg cttaacgtaa ttcaacagaa 1452	20
attatatgat aatcatcgca agaccggcaa caggattcaa tcttaagaaa ctttattgcc 1458	80
aaatgtttga acgatcgggg atcatccggg tctgtggcgg gaactccacg aaaatatccg 146	40
aacgcagcaa gatatcgcgg tgcatctcgg tcttgcctgg gcagtcgccg ccgacgccgt 147	00
tgatgtggac gccgggcccg atcatattgt cgctcaggat cgtggcgttg tgcttgtcgg 147	60
ccgttgctgt cgtaatgata tcggcacctt cgaccgcctg ttccgcagag atcccgtggg 148	20
cgaagaactc cagcatgaga teecegeget ggaggateat eeageeggeg teeeggaaaa 148	80
cgattccgaa gcccaacctt tcatagaagg cggcggtgga atcgaaatct cgtgatggca 149	40
ggttgggcgt cgcttggtcg gtcatttcga accccagagt cccgctcaga agaactcgtc 150	000
aagaaggcga tagaaggcga tgcgctgcga atcgggagcg gcgataccgt aaagcacgag 150	060
gaageggtea geceattege egecaagete tteageaata teaegggtag eeaaegetat 151	120
gtcctgatag cggtccgcca cacccagccg gccacagtcg atgaatccag aaaagcggcc 15	180
attttccacc atgatattcg gcaagcaggc atcgccatgg gtcacgacga gatcatcgcc 15	240
gtcgggcatg cgcgccttga gcctggcgaa cagttcggct ggcgcgagcc cctgatgctc 15	300
ttcgtccaga tcatcctgat cgacaagacc ggcttccatc cgagtacgtg ctcgctcgat 15	360
gcgatgtttc gcttggtggt cgaatgggca ggtagccgga tcaagcgtat gcagccgccg 15	420
cattgcatca gccatgatgg atactttctc ggcaggagca aggtgagatg acaggagatc 15	480
ctgeccegge acttegecea atageageca gtecettece getteagtga caaegtegag 15	540
cacagetgeg caaggaaege eegtegtgge cagecaegat ageegegetg eetegteetg 15	600
cagttcattc agggcaccgg acaggtcggt cttgacaaaa agaaccgggc gcccctgcgc 15	660

# WO 2004/063359 PCT/EP2004/000099 303/357

tgacagccgg aac	acggcgg	catcagagca	gccgattgtc	tgttgtgccc	agtcatagcc	15720
gaatageete tee	acccaag	cggccggaga	acctgcgtgc	aatccatctt	gttcaatcat	15780
gcgaaacgat cca	gatccgg	tgcagattat	ttggattgag	agtgaatatg	agactctaat	15840
tggataccga ggg	gaattta	tggaacgtca	gtggagcatt	tttgacaaga	aatatttgct	15900
agctgatagt gad	ccttaggc	gacttttgaa	cgcgcaataa	tggtttctga	cgtatgtgct	15960
tagctcatta aad	ctccagaa	acccgcggct	gagtggctcc	ttcaacgttg	cggttctgtc	16020
agttccaaac gta	aaaacggc	ttgtcccgcg	tcatcggcgg	gggtcataac	gtgactccct	16080
taattctccg ct	catgatca	gattgtcgtt	teeegeette	agtttaaact	atcagtgttt	16140
gacaggatat at	tggcgggt	aaacctaaga	a gaaaagagcg	, tttattagaa	taatcggata	16200
tttaaaaggg cg	tgaaaagg	tttatccgtt	cgtccatttg	g tatgtgcatg	ccaaccacag	16260
ggttccccag at	ctggcgcc	ggccagcgag	g acgagcaaga	ttggccgccg	g cccgaaacga	16320
tccgacagcg cg	rccagcac	: aggtgcgca	g gcaaattgca	a ccaacgcata	a cagcgccagc	16380
agaatgccat ag	ıtgggcggt	gacgtcgtt	c gagtgaacc	a gatcgcgca	g gaggcccggc	16440
agcaccggca ta	aatcaggco	gatgeegae	a gegtegage	g cgacagtgc	t cagaattacg	16500
atcaggggta t	gttgggtti	t cacgtctgg	c ctccggacc	a gcctccgct	g gtccgattga	16560
acgcgcggat to	ctttatca	c tgataagtt	g gtggacata	t tatgtttat	c agtgataaag	16620
tgtcaagcat g	acaaagtt	g cagccgaat	a cagtgatco	g tgccgccct	g gacctgttga	16680
acgaggtcgg c	gtagacgg	t ctgacgaca	c gcaaactgg	gc ggaacggtt	g ggggttcagc	16740
ageeggeget t	tactggca	c ttcaggaad	ca agcgggcgc	t gctcgacgo	a ctggccgaag	16800
ccatgctggc g	gagaatca	t acgcattc	gg tgccgagag	gc cgacgacga	ac tggcgctcat	16860
ttctgatcgg g	gaatgcccg	gc agcttcag	gc aggcgctgo	ct cgcctaccg	ge gatggegege	16920

#### WO 2004/063359 PCT/EP2004/000099 304/357

gcatccatgc cggcacgcga ccgggcgcac cgcagatgga aacggccgac gcgcagcttc 169	80
gcttcctctg cgaggcgggt ttttcggccg gggacgccgt caatgcgctg atgacaatca 170	40
gctacttcac tgttggggcc gtgcttgagg agcaggccgg cgacagcgat gccggcgagc 171	.00
geggeggeac egttgaacag geteegetet egeegetgtt gegggeegeg atagaegeet 171	L60
tegacgaage eggteeggac geagegtteg ageagggaet egeggtgatt gtegatggat 172	220
tggcgaaaag gaggctcgtt gtcaggaacg ttgaaggacc gagaaagggt gacgattgat 172	280
caggaccgct gccggagcgc aacccactca ctacagcaga gccatgtaga caacatcccc 17	340
teceettte caeegegtea gaegeeegta geageeeget aegggetttt teatgeeetg 17	400
ccctagcgtc caagcctcac ggccgcgctc ggcctctctg gcggccttct ggcgctcttc 17	460
cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc 17	520
tcactcaaag geggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat 17	580
gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt 17	640
ccataggete egeeceetg aegageatea caaaaatega egeteaagte agaggtggeg 17	7700
aaacccgaca ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc 17	7760
tectgtteeg accetgeege ttaceggata cetgteegee ttteteeett egggaagegt 1	7820
ggcgcttttc cgctgcataa ccctgcttcg gggtcattat agcgattttt tcggtatatc 1	7880
cateettttt egeaegatat acaggatttt geeaaagggt tegtgtagae ttteettggt 1	7940
gtatccaacg gcgtcagccg ggcaggatag gtgaagtagg cccacccgcg agcgggtgtt 1	8000
cettetteae tgteeettat tegeacetgg eggtgeteaa egggaateet getetgegag 1	8060
gctggccggc taccgccggc gtaacagatg agggcaagcg gatggctgat gaaaccaagc 1	8120
caaccaggaa gggcagccca cctatcaagg tgtactgcct tccagacgaa cgaagagcga 1	.8180

ttgaggaaaa	ggcggcggcg	gccggcatga	gcctgtcggc	ctacctgctg	gccgtcggcc	18240
agggctacaa	aatcacgggc	gtcgtggact	atgagcacgt	ccgcgagctg	gcccgcatca	18300
atggcgacct	gggccgcctg	ggcggcctgc	tgaaactctg	gctcaccgac	gacccgcgca	18360
cggcgcggtt	cggtgatgcc	acgatcctcg	ccctgctggc	gaagatcgaa	gagaagcagg	18420
acgagcttgg	caaggtcatg	atgggcgtgg	tccgcccgag	ggcagagcca	tgacttttt	18480
agccgctaaa	acggccgggg	ggtgcgcgtg	attgccaagc	acgtccccat	gcgctccatc	18540
aagaagagcg	acttcgcgga	gctggtgaag	tacatcaccg	acgagcaagg	caagaccgag	18600
cgcctttgcg	acgctca				·	18617

```
<210> 51
```

#### <220>

```
<220>
```

<211> 18333

<212> DNA

<213> Artificial

<223> Plasmid

<221> misc_feature

<222> (10264)..(10264)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10472)..(10472)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (10563)..(10563)

<223> n is a, c, g, or t

#### WO 2004/063359 PCT/EP2004/000099 306/357

<400> 51 cegggetggt tgccctcgcc gctgggctgg cggccgtcta tggccctgca aacgcgccag 60 aaacgccgtc gaagccgtgt gcgagacacc gcggccgccg gcgttgtgga tacctcgcgg 120 aaaacttggc cctcactgac agatgagggg cggacgttga cacttgaggg gccgactcac 180 ceggcgcggc gttgacagat gaggggcagg ctcgatttcg gccggcgacg tggagctggc 240 cagcctcgca aatcggcgaa aacgcctgat tttacgcgag tttcccacag atgatgtgga 300 caagcctggg gataagtgcc ctgcggtatt gacacttgag gggcgcgact actgacagat 360 gagggggggg atccttgaca cttgaggggc agagtgctga cagatgaggg gcgcacctat 420 tgacatttga ggggctgtcc acaggcagaa aatccagcat ttgcaagggt ttccgcccgt 480 ttttcggcca ccgctaacct gtcttttaac ctgcttttaa accaatattt ataaaccttg 540 tttttaacca gggctgcgcc ctgtgcgcgt gaccgcgcac gccgaagggg ggtgccccc 600 cttctcgaac cctcccggcc cgctaacgcg ggcctcccat cccccaggg gctgcgccc 660 teggeegega aeggeeteae eccaaaaatg geagegetgg eagteettge eattgeeggg 720 atcggggcag taacgggatg ggcgatcagc ccgagcgcga cgcccggaag cattgacgtg 780 ccgcaggtgc tggcatcgac attcagcgac caggtgccgg gcagtgaggg cggcggcctg 840 ggtggcggcc tgcccttcac ttcggccgtc ggggcattca cggacttcat ggcggggccg 900 gcaattttta ccttgggcat tcttggcata gtggtcgcgg gtgccgtgct cgtgttcggg 960 1020 ggtgcgataa acccagcgaa ccatttgagg tgataggtaa gattataccg aggtatgaaa acgagaattg gacctttaca gaattactct atgaagcgcc atatttaaaa agctaccaag 1080 acgaagagga tgaagaggat gaggaggcag attgccttga atatattgac aatactgata 1140 agataatata tottttatat agaagatato googtatgta aggatttoag ggggcaaggo 1200 ataggcagcg cgcttatcaa tatatctata gaatgggcaa agcataaaaa cttgcatgga 1260

## WO 2004/063359 PCT/EP2004/000099 307/357

ctaatgcttg aaacccagga caataacctt atagcttgta aattctatca taattgggta 1	L320
	1380
agetecaceg attttgagaa egacagegae tteegteeca geegtgeeag gtgetgeete	1440
agattcaggt tatgccgctc aattcgctgc gtatatcgct tgctgattac gtgcagcttt	1500
cccttcaggc gggattcata cagcggccag ccatccgtca tccatatcac cacgtcaaag	1560
ggtgacagca ggctcataag acgccccagc gtcgccatag tgcgttcacc gaatacgtgc	1620
gcaacaaccg tetteeggag actgteatae gegtaaaaca geeagegetg gegegattta	1680
gccccgacat agccccactg ttcgtccatt tccgcgcaga cgatgacgtc actgcccggc	1740
tgtatgcgcg aggttaccga ctgcggcctg agttttttaa gtgacgtaaa atcgtgttga	1800
ggccaacgcc cataatgcgg gctgttgccc ggcatccaac gccattcatg gccatatcaa	1860
tgattttctg gtgcgtaccg ggttgagaag cggtgtaagt gaactgcagt tgccatgttt	1920
tacggcagtg agagcagaga tagcgctgat gtccggcggt gcttttgccg ttacgcacca	1980
ccccgtcagt agctgaacag gagggacagc tgatagacac agaagccact ggagcacctc	2040
aaaaacacca tcatacacta aatcagtaag ttggcagcat cacccataat tgtggtttca	2100
aaatcggctc cgtcgatact atgttatacg ccaactttga aaacaacttt gaaaaagctg	2160
ttttctggta tttaaggttt tagaatgcaa ggaacagtga attggagttc gtcttgttat	2220
aattagette ttggggtate tttaaataet gtagaaaaga ggaaggaaat aataaatgge	2280
taaaatgaga atatcaccgg aattgaaaaa actgatcgaa aaataccgct gcgtaaaaga	2340
tacggaagga atgtctcctg ctaaggtata taagctggtg ggagaaaatg aaaacctata	2400
tttaaaaatg acggacagcc ggtataaagg gaccacctat gatgtggaac gggaaaagga	2460
catgatgcta tggctggaag gaaagctgcc tgttccaaag gtcctgcact ttgaacggca	2520

#### WO 2004/063359 PCT/EP2004/000099 308/357

tgatggctgg agcaatctgc tcatgagtga ggccgatggc gtcctttgct cggaagagta	2580
tgaagatgaa caaagccctg aaaagattat cgagctgtat gcggagtgca tcaggctctt	2640
tcactccatc gacatatcgg attgtcccta tacgaatagc ttagacagcc gcttagccga	2700
attggattac ttactgaata acgatctggc cgatgtggat tgcgaaaact gggaagaaga	2760
cactccattt aaagatccgc gcgagctgta tgatttttta aagacggaaa agcccgaaga	2820
ggaacttgtc ttttcccacg gcgacctggg agacagcaac atctttgtga aagatggcaa	2880
agtaagtggc tttattgatc ttgggagaag cggcagggcg gacaagtggt atgacattgc	2940
cttctgcgtc cggtcgatca gggaggatat cggggaagaa cagtatgtcg agctattttt	3000
tgacttactg gggatcaagc ctgattggga gaaaataaaa tattatattt tactggatga	3060
attgttttag tacctagatg tggcgcaacg atgccggcga caagcaggag cgcaccgact	3120
tcttccgcat caagtgtttt ggctctcagg ccgaggccca cggcaagtat ttgggcaagg	3180
ggtcgctggt attcgtgcag ggcaagattc ggaataccaa gtacgagaag gacggccaga	3240
cggtctacgg gaccgacttc attgccgata aggtggatta tctggacacc aaggcaccag	3300
gegggteaaa teaggaataa gggeacattg eeceggegtg agteggggea ateeegeaag	3360
gagggtgaat gaatcggacg tttgaccgga aggcatacag gcaagaactg atcgacgcgg	3420
ggttttccgc cgaggatgcc gaaaccatcg caagccgcac cgtcatgcgt gcgccccgcg	3480
aaaccttcca gtccgtcggc tcgatggtcc agcaagctac ggccaagatc gagcgcgaca	3540
gegtgeaact ggeteecet geeetgeeeg egeeategge egeegtggag egttegegte	3600
gtetegaaca ggaggeggea ggtttggega agtegatgae categaeaeg egaggaaeta	3660
tgacgaccaa gaagcgaaaa accgccggcg aggacctggc aaaacaggtc agcgaggcca	3720
agcaggccgc gttgctgaaa cacacgaagc agcagatcaa ggaaatgcag ctttccttgt	3780

## WO 2004/063359 PCT/EP2004/000099 309/357

togatattgo googtggoog gacacgatgo gagogatgoo aaacgacacg goocgototg	3840
ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac aaggtcattt	3900
tccacgtcaa caaggacgtg aagatcacct acaccggcgt cgagctgcgg gccgacgatg	3960
acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc ggcgagccga	4020
teacetteae gttetaegag etttgeeagg acetgggetg gtegateaat ggeeggtatt	4080
acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc ttcacgtccg	4140
accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc ctggaccgtg	4200
gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg ctgtttgctg	4260
gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg acggcccgac	4320
ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg gaaaccttcc	4380
gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag gtcggcgaag	4440
cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat gatgacctgg	4500
tgcattgcaa acgctagggc cttgtggggt cagttccggc tgggggttca gcagccagcg	4560
ctttactggc atttcaggaa caagegggca ctgetegaeg caettgette geteagtate	4620
gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa aattgacaat	4680
tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt tccgcgagat	4740
ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg agcacgagga	4800
gaaaaagccc atggaggcgt tegetgaacg gttgcgagat geegtggcat teggegeeta	4860
catcgacggc gagatcattg ggctgtcggt cttcaaacag gaggacggcc ccaaggacgc	4920
tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc gaggggtcgc	4980
cggtatgctg ctgcgggggt tgccggcggg tttattgctc gtgatgatcg tccgacagat	5040

## WO 2004/063359 PCT/EP2004/000099 310/357 ·

tccaacggga	atctggtgga	tgcgcatctt	catcctcggc	gcacttaata	tttcgctatt	5100
ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	cgacggtagg	5160
cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	gcccgatacg	5220
attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	tggtgttgac	5280
accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	cggtttccat	5340
ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	tcacctttac	5400
cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	tgtttgatcc	5460
gccaatcccg	atgcctacag	gaaccaatgt	tctcggcctg	gcgtggctcg	gcctgatcgg	5520
agcgggttta	acctacttco	tttggttccg	ggggatctcg	g cgactcgaac	ctacagttgt	5580
ttccttactg	g ggctttctca	gccccagato	: tggggtcgat	: cageegggga	tgcatcaggc	5640
cgacagtcgg	g aacttcgggt	: ccccgacctg	g taccattcgg	g tgagcaatgg	g ataggggagt	5700
tgatatcgto	c aacgttcact	tctaaagaaa	a tagcgccac	t cagetteete	e ageggettta	5760
tccagcgat	t tcctattat	g teggeatag	t tctcaagat	c gacageetg	t cacggttaag	5820
cgagaaatg	a ataagaagg	c tgataattc	g gatctctgc	g agggagatg	a tatttgatca	5880
caggcagca	a cgctctgtc	a tcgttacaa	t caacatgct	a ccctccgcg	a gatcatccgt	5940
gtttcaaac	c cggcagctt	a gttgccgtt	c ttccgaata	g catcggtaa	c atgagcaaag	6000
tetgeegee	t tacaacggc	t ctcccgctg	a egeegteee	g gactgatgg	g ctgcctgtat	6060
cgagtggtg	ga ttttgtgco	g agctgccgg	ıt cggggagct	g ttggctggc	t ggtggcagga	6120
tatattgtg	gg tgtaaacaa	a ttgacgctt	a gacaactta	a taacacatt	g cggacgtttt	6180
taatgtact	g gggtggttt	t tettttead	cc agtgagacg	gg gcaacagct	g attgecette	6240
accgcctgg	gc cctgagaga	ng ttgcagcaa	ag cggtccac	gc tggtttgco	cc cagcaggcga	6300

## WO 2004/063359 PCT/EP2004/000099 311/357

aaatcctgtt	tgatggtggt	tccgaaatcg	gcaaaatccc	ttataaatca	aaagaatagc	6360
ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	6420
actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	cgtgaaccat	6480
cacccaaatc	aagttttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	6540
ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	6600
agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	gcgatcggtg	6660
cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	gcgattaagt	6720
tgggtaacgc	cagggttttc	ccagtcacga	. cgttgtaaaa	cgacggccag	tgaattcgag	6780
ctcggtaccc	ggggatcttt	. cgacactgaa	atacgtcgag	cctgctccgc	: ttggaagcgg	6840
cgaggagcct	: cgtcctgtca	caactaccaa	catggagtac	gataagggco	agttccgcca	6900
gctcattaag	g agccagttca	tgggcgttgg	g catgatggco	gtcatgcato	tgtacttcaa	6960
gtacaccaa	getettetga	a tccagtcgat	cateegetga	a aggcgcttto	gaatctggtt	7020
aagatccac	g tettegggaa	a gccagcgac	t ggtgacctc	e agegteeet	t taaggetgee	7080
aacagcttt	c`tcagccagg	g ccagcccaa	g accgacaag	g cctccctcc	a gaacgccgag	7140
aagaactgg	a ggggtggtg	t caaggagga	g taagctcct	t attgaagtc	g gaggacggag	7200
cggtgtcaa	g aggatattc	t tegaetetg	t attatagat	a agatgatga	g gaattggagg	7260
tagcatago	t tcatttgga	t ttgctttcc	a ggctgagac	t ctagcttgg	a gcatagaggg	7320
tcctttggc	t ttcaatatt	c tcaagtato	t cgagtttga	a cttattccc	t gtgaaccttt	7380
tattcacca	a tgagcattg	g aatgaacat	g aatctgagg	ga ctgcaatcg	c catgaggttt	7440
tcgaaatac	a teeggatgt	c gaaggettg	gg ggcacctgo	eg ttggttgaa	t ttagaacgtg	7500
gcactatt	ga tcatccgat	ta getetgeaa	aa gggcgttgo	ca caatgcaaç	gt caaacgttgc	7560

## WO 2004/063359 PCT/EP2004/000099 312/357

tagcagttcc	aggtggaatg	ttatgatgag	cattgtatta	aatcaggaga	tatagcatga	7620
tctctagtta	gctcaccaca	aaagtcagac	ggcgtaacca	aaagtcacac	aacacaagct	7680
gtaaggattt	cggcacggct	acggaagacg	gagaagccac	cttcagtgga	ctcgagtacc	7740
atttaattct	atttgtgttt	gatcgagacc	taatacagcc	cctacaacga	ccatcaaagt	7800
cgtatagcta	ccagtgagga	agtggactca	aatcgacttc	agcaacatct	cctggataaa	7860
ctttaagcct	aaactataca	gaataagata	ggtggagagc	ttataccgag	ctcccaaatc	7920
tgtccagatc	atggttgacc	ggtgcctgga	tcttcctata	gaatcatcct	tattcgttga	7980
cctagctgat	tctggagtga	cccagagggt	catgacttga	gcctaaaatc	egecgectee	8040
accatttgta	gaaaaatgtg	acgaactcgt	gagetetgta	cagtgaccgg	tgactctttc	8100
tggcatgcgg	agagacggac	ggacgcagag	g agaagggctg	g agtaataago	cactggccag	8160
acagctctgg	g cggctctgag	gtgcagtgga	ı tgattattaa	tccgggaccg	g geegeeete	8220
cgccccgaaç	g tggaaaggct	ggtgtgccc	tcgttgacca	a agaatctatt	gcatcatcgg	8280
agaatatgga	a gcttcatcga	a atcaccggc	a gtaagcgaag	g gagaatgtga	a agccaggggt	8340
gtatageeg	t cggcgaaata	a gcatgccat	t aacctaggta	a cagaagtcc	a attgcttccg	8400
atctggtaa	a agattcacg	a gatagtacc	t tctccgaag	t aggtagagc	g agtacccggc	8460
gcgtaagct	c cctaattgg	c ccatccggc	a tctgtaggg	c gtccaaata	t cgtgcctctc	8520
ctgctttgc	c cggtgtatg	a aaccggaaa	g geegeteag	g agctggcca	g cggcgcagac	8580
cgggaacac	a agctggcag	t cgacccatc	c ggtgctctg	c actcgacct	g ctgaggtccc	8640
tcagtccct	g gtaggcago	t ttgccccgt	c tgtccgccc	g gtgtgtcgg	rc ggggttgaca	8700
aggtcgttg	gc gtcagtcca	a catttgttg	c catattttc	c tgctctccc	c accagetget	8760
cttttcttt	t ctcttctt	t teceatett	c agtatatto	a tetteccat	c caagaacctt	8820

#### WO 2004/063359 PCT/EP2004/000099 313/357

tatttcccct aagtaagtac tttgctacat ccatactcca tccttcccat cccttattcc 8	8880
tttgaacctt tcagttcgag ctttcccact tcatcgcagc ttgactaaca gctaccccgc 8	8940
ttgagcagac atcaccatgc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga	9000
aaagttcgac agcgtctccg acctgatgca gctctcggag ggcgaagaat ctcgtgcttt	9060
cagcttcgat gtaggagggc gtggatatgt cctgcgggta aatagctgcg ccgatggttt	9120
ctacaaagat cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt	9180
gcttgacatt ggggaattca gcgagagcct gacctattgc atctcccgcc gtgcacaggg	9240
tgtcacgttg caagacctgc ctgaaaccga actgcccgct gttctgcagc cggtcgcgga	9300
ggccatggat gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg	9360
accgcaagga atcggtcaat acactacatg gcgtgatttc atatgcgcga ttgctgatcc	9420
ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc	9480
tctcgatgag ctgatgettt gggccgagga ctgccccgaa gtccggcacc tcgtgcacgc	9540
ggatttcggc tccaacaatg tcctgacgga caatggccgc ataacagcgg tcattgactg	9600
gagcgaggcg atgttcgggg attcccaata cgaggtcgcc aacatcttct tctggaggcc	9660
gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc	9720
aggatcgccg cggctccggg cgtatatgct ccgcattggt cttgaccaac tctatcagag	9780
cttggttgac ggcaattteg atgatgcage ttgggegeag ggtegatgeg aegeaategt	9840
ccgatccgga gccgggactg tcgggcgtac acaaatcgcc cgcagaagcg cggccgtctg	9900
gaccgatggc tgtgtagaag tactcgccga tagtggaaac cgacgcccca gcactcgtcc	9960
gagggcaaag gaatagagta gatgccgacc gcgggatcga tccacttaac gttactgaaa	10020
tcatcaaaca gcttgacgaa tctggatata agatcgttgg tgtcgatgtc agctccggag	10080

#### WO 2004/063359 PCT/EP2004/000099 314/357

ttgagacaaa tggtgttcag gatctcgata agatacgttc atttgtccaa gcagcaaaga 101	.40
gtgccttcta gtgatttaat agctccatgt caacaagaat aaaacgcgtt ttcgggttta 102	200
cctcttccag atacagctca tctgcaatgc attaatgcat tgactgcaac ctagtaacgc 102	260
cttncaggct ccggcgaaga gaagaatagc ttagcagagc tattttcatt ttcgggagac 103	320
gagatcaagc agatcaacgg tcgtcaagag acctacgaga ctgaggaatc cgctcttggc 103	380
tecaegegae tatatatttg tetetaattg taetttgaea tgeteetett etttaetetg 104	440
atagettgae tatgaaaatt eegteaceag eneetgggtt egeaaagata attgeatgtt 10	500
tetteettga acteteaage etacaggaca cacatteate gtaggtataa acetegaaat 10	560
canttectae taagatggta tacaatagta accatgeatg gttgeetagt gaatgeteeg 10	620
taacacccaa tacgccggcc gaaacttttt tacaactctc ctatgagtcg tttacccaga 10	680
atgcacaggt acacttgttt agaggtaatc cttctttcta gctagaagtc ctcgtgtact 10	740
gtgtaagcgc ccactccaca tctccactcg acctgcaggc atgcaagctt gagattaaaa 10	0080
tagataagga aaagaaagtg aaaagaaatt cggaagcatg gcacattctt ctttttataa 10	860
atacatgcct gactttcttt ttccatcgat atgatatatg catatgatag atatacaagc 10	0920
aatcttcttc aaggagtttg aaattttgtc ctccaggagc aaaaaaaagt tttttttat 10	0980
acatgtttgt acacaagaat agttaccaat ttgctttggt cttacgtgct gcaagtttat 1	1040
atcgttttca atttctttgt ctttacattt tctttgtcct ttatctttcc tcatttagtc 1	1100
tttgggagaa ttaggaaaag ggagcggaaa ggtaagaaat gcttgcgtat tttactaatt 1	1160
cggcaaacat ccaatttggc aaacagcagc ctgtgcaacg ctctcgagat gacagtatct 1	1220
ttgattacac tctaaatctc gatgacccga ccaaaaagag cgaacaaaga aataatcttg 1	.1280
tgcattcgaa tatgatggaa gattttttcc cccttattct aaatgttgac atagcgtgta 1	.1340

#### WO 2004/063359 PCT/EP2004/000099 315/357

tgttatataa acaaaaagaa attgtacaaa ctttcttttc ttctctttt attttatctc 11	L <b>4</b> 00
tatgttgtgg atttggaatg ccctgatcgt tttcgttacc gtgattggca tggaagtgat 11	1460
tgctgcactg gcacacaaat acatcatgca cggctggggt tggggatggc atctttcaca 11	1520
tcatgaaccg cgtaaaggtg cgtttgaagt taacgatctt tatgccgtgg tttttgctgc 13	1580
attategate etgetgattt atetgggeag tacaggaatg tggcegetee agtggattgg 13	1640
cgcaggtatg acggcgtatg gattactcta ttttatggtg cacgacgggc tggtgcatca 1	1700
acgttggcca ttccgctata ttccacgcaa gggctacctc aaacggttgt atatggcgca 1	1760
ccgtatgcat cacgccgtca ggggcaaaga aggttgtgtt tcttttggct tcctctatgc 1	1820
gccgcccctg tcaaaacttc aggcgacgct ccgggaaaga catggcgcta gagcgggcgc 1	.1880
tgccagagat gcgcagggcg gggaggatga gcccgcatcc gggaagtaag ggcctgacca 1	L1940
gaggcggcca gcagcagcgt taatttttcg ggcgtggtcg ttgactgccg ctgatcccaa 1	L2000
agcttgagat taaaatagat aaggaaaaga aagtgaaaag aaattcggaa gcatggcaca 1	12060
ttettetttt tataaataca tgeetgaett tettttteea tegatatgat atatgeatat 1	12120
gatagatata caagcaatct tcttcaagga gtttgaaatt ttgtcctcca ggagcaaaaa :	12180
aaagttttt tttatacatg tttgtacaca agaatagtta ccaatttgct ttggtcttac	12240
gtgctgcaag tttatatcgt tttcaatttc tttgtcttta cattttcttt gtcctttatc	12300
tttcctcatt tagtctttgg gagaattagg aaaagggagc ggaaaggtaa gaaatgcttg	12360
cgtattttac taattcggca aacatccaat ttggcaaaca gcagcctgtg caacgctctc	12420
gagatgacag tatctttgat tacactctaa atctcgatga cccgaccaaa aagagcgaac	12480
aaagaaataa tettgtgeat tegaatatga tggaagattt ttteeeeett attetaaatg	12540
ttgacatage gtgtatgtta tataaacaaa aagaaattgt acaaacttte ttttcttcte	12600

#### WO 2004/063359 PCT/EP2004/000099 316/357

tttttattt	atctctatga	tccagttaga	acaaccactc	agtcatcaag	caaaactgac	12660
tccagtactg	agaagtaaat	ctcagtttaa	ggggcttttc	attgctattg	tcattgttag	12720
cgcatgggtc	attagcctga	gtttattact	ttcccttgac	atctcaaagc	taaaattttg	12780
gatgttattg	cctgttatac	tatggcaaac	atttttatat	acgggattat	ttattacatc	12840
tcatgatgcc	atgcatggcg	tagtatttcc	ccaaaacacc	aagattaatc	atttgattgg	12900
aacattgacc	ctatcccttt	atggtctttt	accatatcaa	aaactattga	aaaaacattg	12960
gttacaccac	cacaatccag	caagctcaat	agacccggat	tttcacaatg	gtaaacacca	13020
aagtttcttt	gcttggtatt	ttcattttat	gaaaggttac	tggagttggg	ggcaaataat	13080
tgcgttgact	attatttata	actttgctaa	atacatacto	catatcccaa	gtgataatct	13140
aacttacttt	tgggtgctac	cctcgctttt	: aagttcatta	caattattct	attttggtac	13200
tittttacco	catagtgaac	: caataggggg	ı ttatgttcag	g cctcattgtg	cccaaacaat	13260
tagccgtcct	atttggtggt	catttatcac	gtgctatcat	: tttggctacc	: acgaggaaca	13320
tcacgaatai	cctcatattt	cttggtggca	a gttaccagaa	a atttacaaag	g caaaatagaa	13380
gcttggcgta	a atcatggtca	a tagctgttt	c ctgtgtgaaa	a ttgttatccg	g ctcacaattc	13440
cacacaaca	t acgageegga	a agcataaag	t gtaaagcct	g gggtgcctaa	a tgagtgagct	13500
aactcacat	t aattgcgtt	g cgctcactg	c ccgctttcc	a gtcgggaaa	c ctgtcgtgcc	13560
agctgcatt	a atgaategg	c caacgcgcg	g ggagaggcg	g tttgcgtat	t gggccaaaga	13620
caaaagggc	g acattcaac	c gattgaggg	a gggaaggta	a atattgacg	g aaattattca	13680
ttaaaggtg	a attatcacc	g tcaccgact	t gagccattt	g ggaattaga	g ccagcaaaat	13740
caccagtag	rc accattacc	a ttagcaagg	rc cggaaacgt	c accaatgaa	a ccatcgatag	13800
cagcaccgt	a atcagtago	g acagaatca	a gtttgcctt	t agcgtcaga	c tgtagcgcgt	13860

#### WO 2004/063359 PCT/EP2004/000099 317/357

tttcatcggc	attttcggtc	atagececet	tattagcgtt	tgccatcttt	tcataatcaa	13920
aatcaccgga	accagagcca	ccaccggaac	cgcctccctc	agagccgcca	ccctcagaac	13980
cgccaccctc	agagccacca	ccctcagagc	cgccaccaga	accaccacca	gagccgccgc	14040
cagcattgac	aggaggcccg	atctagtaac	atagatgaca	ccgcgcgcga	taatttatcc	14100
tagtttgcgc	gctatatttt	gttttctatc	gcgtattaaa	tgtataattg	cgggactcta	14160
atcataaaaa	cccatctcat	aaataacgtc	atgcattaca	tgttaattat	tacatgctta	14220
acgtaattca	acagaaatta	tatgataatc	atcgcaagac	cggcaacagg	attcaatctt	14280
aagaaacttt	attgccaaat	gtttgaacga	tcggggatca	tccgggtctg	tggcgggaac	14340
tccacgaaaa	tatccgaacg	cagcaagata	tcgcggtgca	tctcggtctt	gcctgggcag	14400
tegeegeega	cgccgttgat	gtggacgccg	ggcccgatca	tattgtcgct	caggatcgtg	14460
gcgttgtgct	: tgtcggccgt	tgctgtcgta	atgatatcgg	caccttcgac	cgcctgttcc	14520
gcagagatco	c cgtgggcgaa	ı gaactccagc	atgagatccc	cgcgctggag	gatcatccag	14580
ccggcgtcc	ggaaaacgat	tccgaagccc	: aacctttcat	. agaaggcggc	ggtggaatcg	14640
aaatctcgt	g atggcaggtt	gggcgtcgct	: tggtcggtca	tttcgaacco	: cagagtcccg	14700
ctcagaaga	a ctcgtcaaga	a aggcgataga	aggcgatgcg	g ctgcgaatcg	ggagcggcga	14760
taccgtaaa	g cacgaggaa	g cggtcagcc	attegeegee	aagctcttca	a gcaatatcac	14820
gggtagcca	a cgctatgtc	c tgatagcggt	t ccgccacaco	c cagccggcca	a cagtcgatga	14880
atccagaaa	a gcggccatt	t tccaccatga	a tattcggcaa	a gcaggcatc	g ccatgggtca	14940
cgacgagat	c atcgccgtc	g ggcatgcgc	g ccttgagcc	t ggcgaacag	t teggetggeg	15000
cgagcccct	g atgctcttc	g tccagatca	t cctgatcga	c aagaccggc	t tccatccgag	15060
tacgtgcto	g ctcgatgcg	a tgtttcgct	t ggtggtcga	a tgggcaggt	a gccggatcaa	15120

#### WO 2004/063359 PCT/EP2004/000099 318/357

gcgtatgcag ccgccgcatt gcatcagcca tgatggatac tttctcggca ggagcaagg	t 15180
gagatgacag gagatcctgc cccggcactt cgcccaatag cagccagtcc cttcccgct	t 15240
cagtgacaac gtcgagcaca gctgcgcaag gaacgcccgt cgtggccagc cacgatagc	c 15300
gcgctgcctc gtcctgcagt tcattcaggg caccggacag gtcggtcttg acaaaaaga	a 15360
ccgggcgccc ctgcgctgac agccggaaca cggcggcatc agagcagccg attgtctgt	t 15420
gtgcccagtc atagccgaat agcctctcca cccaagcggc cggagaacct gcgtgcaat	c 15480
catcttgttc aatcatgcga aacgatccag atccggtgca gattatttgg attgagagt	g 15540
aatatgagac totaattgga taccgagggg aatttatgga acgtcagtgg agcatttt	tg 15600
acaagaaata tttgctagct gatagtgacc ttaggcgact tttgaacgcg caataatg	gt 15660
ttctgacgta tgtgcttagc tcattaaact ccagaaaccc gcggctgagt ggctcctt	ca 15720
acgttgcggt tctgtcagtt ccaaacgtaa aacggcttgt cccgcgtcat cggcgggg	gt 15780
cataacgtga ctcccttaat tctccgctca tgatcagatt gtcgtttccc gccttcag	tt 15840
taaactatca gtgtttgaca ggatatattg gcgggtaaac ctaagagaaa agagcgtt	ta 15900
ttagaataat cggatattta aaagggcgtg aaaaggttta tccgttcgtc catttgta	tg 15960
tgcatgccaa ccacagggtt ccccagatct ggcgccggcc agcgagacga gcaagatt	gg 16020
ccgccgcccg aaacgatccg acagcgcgcc cagcacaggt gcgcaggcaa attgcacc	aa 16080
cgcatacagc gccagcagaa tgccatagtg ggcggtgacg tcgttcgagt gaaccaga	atc 16140
gegeaggagg ceeggeagea ceggeataat caggeegatg cegaeagegt egagege	gac 16200
agtgctcaga attacgatca ggggtatgtt gggtttcacg tctggcctcc ggaccage	ect 16260
ccgctggtcc gattgaacgc gcggattctt tatcactgat aagttggtgg acatatt	atg 16320
tttatcagtg ataaagtgtc aagcatgaca aagttgcagc cgaatacagt gatccgt	gcc 16380

## WO 2004/063359 PCT/EP2004/000099 319/357

gecetggace tgttgaacga ggteggegta gaeggtetga egaeaegeaa aetggeggaa 164	440
cggttggggg ttcagcagcc ggcgctttac tggcacttca ggaacaagcg ggcgctgctc 165	500
gacgcactgg ccgaagccat gctggcggag aatcatacgc attcggtgcc gagagccgac 165	560
gacgactggc gctcatttct gatcgggaat gcccgcagct tcaggcaggc gctgctcgcc 160	620
tacegegatg gegegegeat ceatgeegge aegegaeegg gegeaeegea gatggaaaeg 16	680
geegaegege agettegett eetetgegag gegggttttt eggeegggga egeegteaat 16	740
gcgctgatga caatcagcta cttcactgtt ggggccgtgc ttgaggagca ggccggcgac 16	800
agcgatgccg gcgagcgcgg cggcaccgtt gaacaggctc cgctctcgcc gctgttgcgg 16	860
gccgcgatag acgccttcga cgaagccggt ccggacgcag cgttcgagca gggactcgcg 16	5920
gtgattgtcg atggattggc gaaaaggagg ctcgttgtca ggaacgttga aggaccgaga 16	6980
aagggtgacg attgatcagg accgctgccg gagcgcaacc cactcactac agcagagcca 17	7040
tgtagacaac atcccctccc cctttccacc gcgtcagacg cccgtagcag cccgctacgg 17	7100
gctttttcat gccctgccct agcgtccaag cctcacggcc gcgctcggcc tctctggcgg 17	7160
cettetggeg etetteeget teetegetea etgaeteget gegeteggte gtteggetge 1'	7220
ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata 1	7280
acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 1	.7340
cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct 1	.7400
caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa 1	L7460
getecetegt gegeteteet gtteegacee tgeegettae eggataeetg teegeettte 1	17520
tecetteggg aagegtggeg etttteeget geataaceet getteggggt eattatageg 1	17580
attttttcgg tatatccatc ctttttcgca cgatatacag gattttgcca aagggttcgt 1	17640

gtagactttc	cttggtgtat	ccaacggcgt	cagccgggca	ggataggtga	agtaggccca	17700
cccgcgagcg	ggtgttcctt	cttcactgtc	ccttattcgc	acctggcggt	gctcaacggg	17760
aatcctgctc	tgcgaggctg	gccggctacc	gccggcgtaa	cagatgaggg	caageggatg	17820
gctgatgaaa	ccaagccaac	caggaagggc	agcccaccta	tcaaggtgta	ctgccttcca	17880
gacgaacgaa	gagcgattga	ggaaaaggcg	geggeggeeg	gcatgagcct	gtcggcctac	17940
ctgctggccg	tcggccaggg	ctacaaaatc	acgggcgtcg	tggactatga	gcacgtccgc	18000
gagctggccc	gcatcaatgg	cgacctgggc	cgcctgggcg	gcctgctgaa	actctggctc	18060
accgacgacc	cgcgcacggc	gcggttcggt	gatgccacga	tectegeest	gctggcgaag	18120
atcgaagaga	agcaggacga	gcttggcaag	gtcatgatgg	gcgtggtccg	cccgagggca	18180
gagccatgac	ttttttagcc	gctaaaacgg	ccggggggtg	cgcgtgattg	ccaagcacgt	18240
ccccatgcgc	: tccatcaaga	agagcgactt	cgcggagctg	gtgaagtaca	tcaccgacga	18300
gcaaggcaag	g accgagcgcc	: tttgcgacgc	tca .			18333

<210> 52

<211> 17

<212> DNA

<213> Artificial

<220>

<223> Primer

<220>

<221> misc_feature

<222> (3)..(3)

<223> n is a, c, g, or t

<220>

<221> misc_feature

321/357

<222> (9)..(9)

<223> n is a, c, g, or t

<400> 52

gengarggna thtggta

<210> 53

<211> 20

<212> DNA

<213> Artificial

<220>

<223> Primer

<220>

<221> misc_feature

<222> (3)..(3)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (6)..(6)

<223> n is a, c, g, or t

<400> 53

tengenagra adatrttrtg 20

<210> 54

<211> 27

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 54

aagtgacacc ggttacacgc ttgtctt

<220>

<211> 37 <212> DNA

<213> Artificial

PCT/EP2004/000099 WO 2004/063359 323/357 <223> Primer <400> 58 37 actttattgg atccttaaat gcgaatatcg ttgctgc <210> 59 <211> 38 <212> DNA <213> Artificial <220> <223> Primer <400> 59 38 gttccaattg gccacatgaa gagtaagaca ggaaacag <210> 60

<211> 38
<212> DNA
<213> Artificial

<220>

<223> Primer
<400> 60

cctgtcttac tcttcatgtg gccaattgga accaacac 38

<210> 61
<211> 38
<212> DNA
<213> Artificial
<220>
<223> Primer

<400> 61
ctattttaat catatgtctg atcaaaagaa gcatattg 38

<210> 62 <211> 16103 <212> DNA <213> Artificial <220> <223> Primer <220> <221> misc_feature <222> (3471)..(3471) <223> n is a, c, g, or t <220> <221> misc_feature <222> (3679)..(3679) <223> n is a, c, g, or t <220> <221> misc_feature · <222> (3770)..(3770) <223> n is a, c, g, or t <400> 62 gatctttcga cactgaaata cgtcgagcct gctccgcttg gaagcggcga ggagcctcgt 60 cctgtcacaa ctaccaacat ggagtacgat aagggccagt tccgccagct cattaagagc 120 cagttcatgg gcgttggcat gatggccgtc atgcatctgt acttcaagta caccaacgct 180 cttctgatcc agtcgatcat ccgctgaagg cgctttcgaa tctggttaag atccacgtct 240 tegggaagee agegaetggt gaeeteeage gteeetttaa ggetgeeaae agetttetea 300 gccagggcca gcccaagacc gacaaggcct ccctccagaa cgccgagaag aactggaggg 360 gtggtgtcaa ggaggagtaa gctccttatt gaagtcggag gacggagcgg tgtcaagagg 420 atattetteg actetgtatt atagataaga tgatgaggaa ttggaggtag catagettea 480 540 tttggatttg ctttccaggc tgagactcta gcttggagca tagagggtcc tttggctttc

#### WO 2004/063359 PCT/EP2004/000099 325/357

aatattctca	agtatctcga	gtttgaactt	attccctgtg	aaccttttat	tcaccaatga	600
gcattggaat	gaacatgaat	ctgaggactg	caatcgccat	gaggttttcg	aaatacatcc	660
ggatgtcgaa	ggcttggggc	acctgcgttg	gttgaattta	gaacgtggca	ctattgatca	720
tccgatagct	ctgcaaaggg	cgttgcacaa	tgcaagtcaa	acgttgctag	cagttccagg	780
tggaatgtta	tgatgagcat	tgtattaaat	caggagatat	agcatgatct	ctagttagct	840
caccacaaaa	gtcagacggc	gtaaccaaaa	gtcacacaac	acaagctgta	aggatttcgg	900
cacggctacg	gaagacggag	aagccacctt	cagtggactc	gagtaccatt	taattctatt	960
tgtgtttgat	. cgagacctaa	tacageceet	acaacgacca	tcaaagtcgt	atagctacca	1020
gtgaggaagt	ggactcaaat	cgacttcago	: aacatctcct	: ggataaactt	taagcctaaa	1080
ctatacagaa	a taagataggt	ggagagctta	taccgagete	c ccaaatctgt	ccagatcatg	1140
gttgaccgg	t gcctggatct	tcctatagaa	a tcatccttat	tegttgacet	agctgattct	1200
ggagtgacc	c agagggtca	t gacttgagc	c taaaatccg	c cgcctccac	c atttgtagaa	1260
aaatgtgac	g aactcgtga	g ctctgtaca	g tgaccggtga	a ctctttctg	g catgcggaga	1320
gacggacgg	a cgcagagag	a agggctgag	t aataagcca	c tggccagac	a gctctggcgg	1380
ctctgaggt	g cagtggatg	a ttattaatc	c gggaccggc	c geeeeteeg	c cccgaagtgg	1440
aaaggctgg	t gtgcccctc	g ttgaccaag	a atctattgc	a tcatcggag	a atatggagct	1500
tcatcgaat	c accggcagt	a agcgaagga	g aatgtgaag	c caggggtgt	a tagccgtcgg	1560
cgaaatago	a tgccattaa	ıc ctaggtaca	ng aagtccaat	t getteegat	c tggtaaaaga	1620
ttcacgaga	at agtacctto	ct ccgaagtag	gg tagagcgag	yt acceggege	g taagctccct	168Ò
aattggcc	ca teeggeate	ct gtagggcgt	c caaatatc <u>c</u>	gt geeteteet	g ctttgcccgg	1740
tgtatgaa	ac cggaaagg	cc gctcaggag	gc tggccagcg	gg cgcagaccg	gg gaacacaagc	1800

#### WO 2004/063359 PCT/EP2004/000099 326/357

tggcagtcga	cccatccggt	gctctgcact	cgacctgctg	aggtccctca	gtccctggta	1860
ggcagctttg	cccgtctgt	ccgcccggtg	tgtcggcggg	gttgacaagg	tegttgegte	1920
agtccaacat	ttgttgccat	attttcctgc	tctccccacc	agctgctctt	ttettttete	1980
tttcttttcc	catcttcagt	atattcatct	teccatecaa	gaacctttat	ttcccctaag	2040
taagtacttt	gctacatcca	tactccatcc	ttcccatccc	ttattccttt	gaacctttca	2100
gttcgagctt	tcccacttca	tcgcagcttg	actaacagct	accccgcttg	agcagacatc	2160
accatgcctg	aactcaccgc	gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	2220
gtctccgacc	tgatgcagct	ctcggagggc	gaagaatctc	gtgctttcag	cttcgatgta	2280
ggagggcgtg	gatatgtcct	gcgggtaaat	agctgcgccg	atggtttcta	caaagatcgt	2340
tatgtttato	ggcactttgc	: atcggccgcg	ctcccgattc	: cggaagtgct	tgacattggg	2400
gaattcagco	g agageetgad	ctattgcatc	tecegeegtg	cacagggtgt	: cacgttgcaa	2460
gacctgcctg	g aaaccgaact	gecegetgtt	ctgcagccgg	tcgcggaggd	catggatgcg	2520
atcgctgcgg	g ccgatcttag	g ccagacgago	gggttegged	cattcggaco	c gcaaggaatc	2580
ggtcaataca	a ctacatggc	g tgatttcata	a tgcgcgattg	g ctgatcccca	a tgtgtatcac	2640
tggcaaact	g tgatggacg	a caccgtcagt	t gegteegte	g cgcaggctc	t cgatgagctg	2700
atgctttgg	g ccgaggact	g ccccgaagt	c cggcacctc	g tgcacgcgg	a tttcggctcc	2760
aacaatgtc	c tgacggaca	a tggccgcat	a acageggte	a ttgactgga	g cgaggcgatg	2820
ttcggggat	t cccaatacg	a ggtcgccaa	c atcttcttc	t ggaggccgt	g gttggcttgt	2880
atggagcag	c agacgcgct	a cttcgagcg	g aggcatccg	g agcttgcag	g atcgccgcgg	2940
ctccgggcg	t atatgctco	g cattggtct	t gaccaactc	t atcagagct	t ggttgacggc	3000
aatttcgat	g atgcagctt	g ggcgcaggg	t cgatgcgac	g caatcgtco	g atccggagcc	3060

#### WO 2004/063359 PCT/EP2004/000099 327/357

gggactgtcg	ggcgtacaca	aatcgcccgc	agaagcgcgg	ccgtctggac	cgatggctgt	3120
gtagaagtac	tegeegatag	tggaaaccga	cgcccagca	ctcgtccgag	ggcaaaggaa	3180
tagagtagat	gccgaccgcg	ggatcgatcc	acttaacgtt	actgaaatca	tcaaacagct	3240
tgacgaatct	ggatataaga	tcgttggtgt	cgatgtcagc	tccggagttg	agacaaatgg	3300
tgttcaggat	ctcgataaga	tacgttcatt	tgtccaagca	gcaaagagtg	ccttctagtg	3360
atttaatagc	tccatgtcaa	caagaataaa	acgcgttttc	gggtttacct	cttccagata	3420
cagctcatct	gcaatgcatt	aatgcattga	ctgcaaccta	gtaacgcctt	ncaggctccg	3480
gcgaagagaa	gaatagctta	gcagagctat	tttcattttc	gggagacgag	atcaagcaga	3540
tcaacggtcg	tcaagagacc	tacgagactg	aggaatccgc	tcttggctcc	acgcgactat	3600
atatttgtct	ctaattgtac	tttgacatgo	tectettett	tactctgata	gcttgactat	3660
gaaaattccg	tcaccagcno	ctgggttcgc	: aaagataatt	gcatgtttct	tccttgaact	3720
ctcaagccta	ı caggacacac	: attcatcgta	ggtataaacc	: tcgaaatcar	ttcctactaa	3780 ·
gatggtatad	: aatagtaaco	: atgcatggtt	gectagtgaa	tgctccgtaa	a cacccaatac	3840
gccggccgaa	actttttac	aactctccta	a tgagtcgttt	acccagaato	g cacaggtaca	3900
cttgtttaga	a ggtaatccti	ctttctagc1	agaagteete	gtgtactgtg	g taagegeeca	3960
ctccacatc	t ccactcgac	tgcaggcat	g caagcttgag	g tetategeet	ccaaaaagta	4020
cggtgctga	a ttcagatato	c aatcgcctg	t tgctaaaat	t aacactgtc	g ataaagacaa	4080
gcgtgtaac	c ggtgtcact	t tggaaagcg	g agaagtcat	t gaagccgat	g cagtcgtatg	4140
taatgcgga	t cttgtttat	g cttatcacc	a tctgttacc	t ccttgcaat	t ggacaaagaa	4200
gacattago	c tcaaagaaa	c tcacttcat	c atctatttc	g ttttattgg	t ccatgtcaac	4260
aaaggtgcc	t caattagac	g tacacaata	t cttcttggc	t gaagcctac	a aggaaagttt	4320

# WO 2004/063359 PCT/EP2004/000099 328/357

tgatgagatt ttcaacgact tcggtttgcc ctctgaagct tggcgtaatc atggtcatag	4380
ctgtttcctg tgtgaaattg ttatccgctc acaattccac acaacatacg agccggaagc	4440
ataaagtgta aageetgggg tgeetaatga gtgagetaae teacattaat tgegttgege	4500
tcactgcccg ctttccagtc gggaaacctg tcgtgccagc tgcattaatg aatcggccaa	4560
cgcgcgggga gaggcggttt gcgtattggg ccaaagacaa aagggcgaca ttcaaccgat	4620
tgagggaggg aaggtaaata ttgacggaaa ttattcatta aaggtgaatt atcaccgtca	4680
ccgacttgag ccatttggga attagagcca gcaaaatcac cagtagcacc attaccatta	4740
gcaaggccgg aaacgtcacc aatgaaacca tcgatagcag caccgtaatc agtagcgaca	4800
gaatcaagtt tgcctttagc gtcagactgt agcgcgtttt catcggcatt ttcggtcata	4860
gcccccttat tagcgtttgc catcttttca taatcaaaat caccggaacc agagccacca	4920
ccggaaccgc ctccctcaga gccgccaccc tcagaaccgc caccctcaga gccaccaccc	4980
tcagagccgc caccagaacc accaccagag ccgccgccag cattgacagg aggcccgatc	5040
tagtaacata gatgacaceg cgcgcgataa tttatcctag tttgcgcgct atattttgtt	5100
ttctatcgcg tattaaatgt ataattgcgg gactctaatc ataaaaaccc atctcataaa	5160
taacgtcatg cattacatgt taattattac atgcttaacg taattcaaca gaaattatat	5220
gataatcatc gcaagaccgg caacaggatt caatcttaag aaactttatt gccaaatgtt	5280
tgaacgatcg gggatcatcc gggtctgtgg cgggaactcc acgaaaatat ccgaacgcag	5340
caagatateg eggtgeatet eggtettgee tgggeagteg eegeegaege egttgatgtg	5400
gacgeeggge eegateatat tgtegeteag gategtggeg ttgtgettgt eggeegttge	5460
tgtcgtaatg atatcggcac cttcgaccgc ctgttccgca gagatcccgt gggcgaagaa	5520
ctccagcatg agatccccgc gctggaggat catccagccg gcgtcccgga aaacgattcc	5580

## WO 2004/063359 PCT/EP2004/000099 329/357

gaagcccaac ctttcataga aggcggcggt ggaatcgaaa tctcgtgatg gcaggttggg	5640
cgtcgcttgg tcggtcattt cgaaccccag agtcccgctc agaagaactc gtcaagaagg	5700
cgatagaagg cgatgcgctg cgaatcggga gcggcgatac cgtaaagcac gaggaagcgg	5760
tcagcccatt cgccgccaag ctcttcagca atatcacggg tagccaacgc tatgtcctga	5820
tageggteeg ceacaceeag eeggeeacag tegatgaate eagaaaageg geeattttee	5880
accatgatat teggeaagea ggeategeea tgggteaega egagateate geegteggge	5940
atgcgcgcct tgagcctggc gaacagttcg gctggcgcga gcccctgatg etcttcgtcc	6000
agatcatcct gatcgacaag accggcttcc atccgagtac gtgctcgctc gatgcgatgt	6060
ttcgcttggt ggtcgaatgg gcaggtagcc ggatcaagcg tatgcagccg ccgcattgca	6120
tcagccatga tggatacttt ctcggcagga gcaaggtgag atgacaggag atcctgcccc	6180
ggcacttege ceaatageag ceagteeett eeegetteag tgacaaegte gageaeaget	6240
gcgcaaggaa cgcccgtcgt ggccagccac gatagccgcg ctgcctcgtc ctgcagttca	6300
ttcagggcac cggacaggtc ggtcttgaca aaaagaaccg ggcgcccctg cgctgacagc	6360
cggaacacgg cggcatcaga gcagccgatt gtctgttgtg cccagtcata gccgaatagc	6420
ctctccaccc aagcggccgg agaacctgcg tgcaatccat cttgttcaat catgcgaaac	6480
gatecagate eggtgeagat tatttggatt gagagtgaat atgagaetet aattggatae	6540
cgaggggaat ttatggaacg tcagtggagc atttttgaca agaaatattt gctagctgat	6600
agtgacctta ggcgactttt gaacgcgcaa taatggtttc tgacgtatgt gcttagctca	6660
ttaaactcca gaaacccgcg gctgagtggc tccttcaacg ttgcggttct gtcagttcca	6720
aacgtaaaac ggcttgtccc gcgtcatcgg cgggggtcat aacgtgactc ccttaattct	6780
ccgctcatga tcagattgtc gtttcccgcc ttcagtttaa actatcagtg tttgacagga	6840

#### WO 2004/063359 PCT/EP2004/000099 330/357

tatattggcg	ggtaaaccta	agagaaaaga	gcgtttatta	gaataatcgg	atatttaaaa	6900
gggcgtgaaa	aggtttatcc	gttcgtccat	ttgtatgtgc	atgccaacca	cagggttccc	6960
cagatetgge	gccggccagc	gagacgagca	agattggccg	ccgcccgaaa	cgatccgaca	7020
gegegeeeag	cacaggtgcg	caggcaaatt	gcaccaacgc	atacagcgcc	agcagaatgc	7080
catagtgggc	ggtgacgtcg	ttcgagtgaa	ccagatcgcg	caggaggccc	ggcagcaccg	7140
gcataatcag	gccgatgccg	acagcgtcga	gcgcgacagt	gctcagaatt	acgatcaggg	7200
gtatgttggg	tttcacgtct	ggcctccgga	ccagcctccg	ctggtccgat	tgaacgcgcg	7260
gattctttat	cactgataag	ttggtggaca	tattatgttt	atcagtgata	aagtgtcaag	7320
catgacaaag	ttgcagccga	atacagtgat	ccgtgccgcc	ctggacctgt	tgaacgaggt	7380
cggcgtagac	ggtctgacga	cacgcaaact	ggcggaacgg	ttgggggttc	agcagccggc	7440
gctttactgg	r cacttcagga	acaagcgggc	gctgctcgac	gcactggccg	aagccatgct	7500
ggcggagaat	: catacgcatt	: cggtgccgag	agccgacgac	gactggcgct	. catttctgat	7560
cgggaatgco	cgcagcttca	a ggcaggcgct	getegeetae	: cgcgatggcg	g cgcgcatcca	7620
tgccggcac	g cgaccgggcg	g caccgcagat	ggaaacggco	gacgcgcagc	: ttcgcttcct	7680
ctgcgaggc	g ggtttttcgg	g ccggggacgo	c cgtcaatgcg	g ctgatgacaa	a tcagctactt	7740
cactgttgg	g geegtgett	g aggagcaggo	c cggcgacago	gatgccggcg	g agegeggegg	7800
caccgttga	a caggeteeg	c tetegeege	t gttgcgggc	c gcgatagac	g ccttcgacga	7860
agccggtcc	g gacgcagcg	t tcgagcagg	g actegeggt:	g attgtcgate	g gattggcgaa	7920
aaggaggct	c gttgtcagg	a acgttgaag	g accgagaaa	g ggtgacgat	t gatcaggacc	7980
gctgccgga	g cgcaaccca	c tcactacag	c agagccatg	t agacaacat	c ccctcccct	8040
ttccaccgo	g tcagacgcc	c gtagcagcc	c gctacgggc	t ttttcatgc	c ctgccctagc	8100

#### WO 2004/063359 PCT/EP2004/000099 331/357

gtccaagcct cacggccgcg ctcggcctct ctggcggcct tctggcgctc ttccgcttcc	8160
tegeteactg actegetgeg eteggtegtt eggetgegge gageggtate ageteactea	8220
aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa catgtgagca	8280
aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg	8340
ctccgcccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg	8400
acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt	8460
ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag cgtggcgctt	8520
ttccgctgca taaccctgct tcggggtcat tatagcgatt ttttcggtat atccatcctt	8580
tttcgcacga tatacaggat tttgccaaag ggttcgtgta gactttcctt ggtgtatcca	8640
acggcgtcag ccgggcagga taggtgaagt aggcccaccc gcgagcgggt gttccttctt	8700
cactgtccct tattcgcacc tggcggtgct caacgggaat cctgctctgc gaggctggcc	8760
ggctaccgcc ggcgtaacag atgagggcaa gcggatggct gatgaaacca agccaaccag	8820
gaagggcagc ccacctatca aggtgtactg ccttccagac gaacgaagag cgattgagga	8880
aaaggcggcg gcggccggca tgagcctgtc ggcctacctg ctggccgtcg gccagggcta	8940
caaaatcacg ggcgtcgtgg actatgagca cgtccgcgag ctggcccgca tcaatggcga	9000
cetgggeege etgggeggee tgetgaaaet etggeteaee gaegaeeege geaeggegeg	9060
gttcggtgat gccacgatcc tcgccctgct ggcgaagatc gaagagaagc aggacgagct	9120
tggcaaggtc atgatgggcg tggtccgccc gagggcagag ccatgacttt tttagccgct	9180
aaaacggccg gggggtgcgc gtgattgcca agcacgtccc catgcgctcc atcaagaaga	9240
gcgacttcgc ggagctggtg aagtacatca ccgacgagca aggcaagacc gagcgccttt	9300
gcgacgctca ccgggctggt tgccctcgcc gctgggctgg	9360

## WO 2004/063359 PCT/EP2004/000099 332/357

aacgcgccag	aaacgccgtc	gaagccgtgt	gcgagacạcc	gcggccgccg	gcgttgtgga	9420
tacctcgcgg	aaaacttggc	cctcactgac	agatgagggg	cggacgttga	cacttgaggg	9480
gccgactcac	ccggcgcggc	gttgacagat	gaggggcagg	ctcgatttcg	gccggcgacg	9540
tggagctggc	cagectegea	aatcggcgaa	aacgcctgat	tttacgcgag	tttcccacag	9600
atgatgtgga	caagcctggg	gataagtgcc	ctgcggtatt	gacacttgag	gggcgcgact	9660
actgacagat	gaggggcgcg	atccttgaca	cttgaggggc	agagtgctga	cagatgaggg	9720
gcgcacctat	tgacatttga	ggggctgtcc	acaggcagaa	aatccagcat	ttgcaagggt	9780
ttccgcccgt	ttttcggcca	ccgctaacct	gtcttttaac	ctgcttttaa	accaatattt	9840
ataaaccttg	tttttaacca	gggctgcgcc	: ctgtgcgcgt	gaccgcgcac	gccgaagggg	9900
ggtgccccc	: cttctcgaac	: cctcccggcc	cgctaacgcg		cccccaggg	9960
getgegeee	: tcggccgcga	ı acggeetead	cccaaaaatç	g gcagcgctgg	g cagtccttgc	10020
cattgccggg	g atcggggcag	g taacgggatg	g ggcgatcago	c ccgagcgcga	a cgcccggaag	10080
cattgacgts	g ccgcaggtgo	c tggcatcgad	c attcagcgad	c caggtgccgg	g gcagtgaggg	10140
cggcggcct	g ggtggcggc	c tgcccttca	c ttcggccgt	c ggggcattc	a cggacttcat	10200
ggcggggcc	g gcaattttt	a ccttgggca	t tcttggcat	a gtggtcgcg	g gtgccgtgct	10260
cgtgttcgg	g ggtgcgata	a acccagcga	a ccatttgag	g tgataggta	a gattataccg	10320
aggtatgaa	a acgagaatt	g gacctttac	a gaattactc	t atgaagcgc	c atatttaaaa	10380
agctaccaa	g acgaagagg	a tgaagagga	t gaggaggca	g attgccttg	a atatattgac	10440
aatactgat	a agataatat	a tcttttata	t agaagatat	c gccgtatgt	a aggatttcag	10500
ggggcaagg	gc ataggcago	g cgcttatca	a tatatctat	a gaatgggca	a agcataaaaa	10560
cttgcatgg	ga ctaatgctt	g aaacccagg	ga caataacct	t atagettgt	a aattctatca	10620

## WO 2004/063359 PCT/EP2004/000099 333/357

taattgggta	atgactccaa	cttattgata	gtgttttatg	ttcagataat	gcccgatgac	10680
tttgtcatgc	agctccaccg	attttġagaa	cgacagcgac	ttccgtccca	gccgtgccag	10740
gtgctgcctc	agattcaggt	tatgccgctc	aattcgctgc	gtatatcgct	tgctgattac	10800
gtgcagcttt	cccttcaggc	gggattcata	cagcggccag	ccatccgtca	tccatatcac	10860
cacgtcaaag	ggtgacagca	ggctcataag	acgccccagc	gtcgccatag	tgcgttcacc	10920
gaatacgtgc	gcaacaaccg	tcttccggag	actgtcatac	gcgtaaaaca	gccagcgctg	10980
gcgcgattta	gccccgacat	agececactg	ttcgtccatt	teegegeaga	cgatgacgtc _.	11040
actgcccggc	tgtatgcgcg	aggttaccga	ctgcggcctg	agtttttaa	gtgacgtaaa	11100
atcgtgttga	ggccaacgcc	cataatgcgg	gctgttgccc	ggcatccaac	gccattcatg	11160
gccatatcaa	tgattttctg	gtgcgtaccg	ggttgagaag	cggtgtaagt	gaactgcagt	11220
tgccatgttt	: tacggcagtg	agagcagaga	ı tagcgctgat	gtccggcggt	gcttttgccg	11280
ttacgcacca	a ccccgtcagt	: agctgaacag	gagggacago	: tgatagacac	agaagccact	11340
ggagcaccto	c aaaaacacca	tcatacacta	a aatcagtaag	g ttggcagcat	cacccataat	11400
tgtggtttca	a aaatcggcto	cgtcgatact	: atgttatacç	g ccaactttga	a aaacaacttt	11460
gaaaaagct	g ttttctggta	a tttaaggtt	t tagaatgcaa	a ggaacagtga	a attggagttc	11520
gtcttgtta	t aattagctto	c ttggggtat	c tttaaatac	t gtagaaaag	a ggaaggaaat	11580
aataaatgg	c taaaatgag	a atatcaccg	g aattgaaaa	a actgatcga	a aaataccgct	11640
gcgtaaaag	a tacggaagg	a atgtctcct	g ctaaggtat	a taagctggt	g ggagaaaatg	11700
aaaacctat	a tttaaaaat	g acggacagc	c ggtataaag	g gaccaccta	t gatgtggaac	11760
gggaaaagg	a catgatgct	a tggctggaa	g gaaagctgc	c tgttccaaa	g gtcctgcact	.11820
ttgaacggo	a tgatggctg	g agcaatctg	c tcatgagtg	a ggccgatgg	c gtcctttgct	11880

## WO 2004/063359 PCT/EP2004/000099 334/357

cggaagagta	tgaagatgaa	caaagccctg	aaaagattat	cgagctgtat	gcggagtgca	11940
tcaggctctt	tcactccatc	gacatatcgg	attgtcccta	tacgaatagc	ttagacagcc	12000
gcttagccga	attggattac	ttactgaata	acgatctggc	cgatgtggat	tgcgaaaact	12060
gggaagaaga	cactccattt	aaagatccgc	gcgagctgta	tgattttta	aagacggaaa	12120
agcccgaaga	ggaacttgtc	ttttcccacg	gegaeetggg	agacagcaac	atctttgtga	12180
aagatggcaa	agtaagtggc	tttattgatc	ttgggagaag	cggcagggcg	gacaagtggt	12240
atgacattgc	cttctgcgtc	cggtcgatca	gggaggatat	cggggaagaa	cagtatgtcg	12300
agctatttt	tgacttactg	gggatcaagc	ctgattggga	gaaaataaaa	tattatattt	12360
tactggatga	attgttttag	tacctagatg	tggcgcaacg	atgccggcga	caagcaggag	12420
cgcaccgact	: tcttccgcat	caagtgtttt	ggctctcagg	ccgaggccca	cggcaagtat	12480
ttgggcaagg	ggtcgctggt	: attcgtgcag	g ggcaagatto	ggaataccaa	gtacgagaag	12540
gacggccaga	a cggtctacgg	g gaccgactto	attgccgata	a aggtggatta	a tctggacacc	12600
aaggcaccag	g gcgggtcaaa	a tcaggaataa	a gggcacatt	g ccccggcgtq	g agteggggea	12660
atcccgcaa	g gagggtgaa	t gaatcggac	g tttgaccgg	a aggcataca	g gcaagaactg	12720
atcgacgcg	g ggttttccg	c cgaggatgc	c gaaaccatc	g caagccgca	c cgtcatgcgt	12780
gcgccccgc	g aaaccttcc	a gtccgtcgg	c tcgatggtc	c agcaagcta	c ggccaagatc	12840
gagcgcgac	a gcgtgcaac	t ggctcccc	t gecetgeee	g cgccatcgg	c cgccgtggag	12900
cgttcgcgt	c gtctcgaac	a ggaggcggc	a ggtttggcg	a agtcgatga	c catcgacacg	12960
cgaggaact	a tgacgacca	a gaagcgaaa	a accgccggc	g aggacctgg	c aaaacaggtc	13020
agcgaggco	a agcaggccg	gc gttgctgaa	a cacacgaag	gc agcagatca	a ggaaatgcag	13080
ctttccttg	gt togatatto	ge geegtggee	g gacacgato	ge gagegatge	c aaacgacacg	13140

#### WO 2004/063359 PCT/EP2004/000099 335/357

gcccgctctg ccctgttcac cacgcgcaac aagaaaatcc cgcgcgaggc gctgcaaaac	13200
aaggtcattt tccacgtcaa caaggacgtg aagatcacct acaccggcgt cgagctgcgg	13260
gccgacgatg acgaactggt gtggcagcag gtgttggagt acgcgaagcg cacccctatc	13320
ggcgagccga tcaccttcac gttctacgag ctttgccagg acctgggctg gtcgatcaat	13380
ggccggtatt acacgaaggc cgaggaatgc ctgtcgcgcc tacaggcgac ggcgatgggc	13440
ttcacgtccg accgcgttgg gcacctggaa tcggtgtcgc tgctgcaccg cttccgcgtc	13500
ctggaccgtg gcaagaaaac gtcccgttgc caggtcctga tcgacgagga aatcgtcgtg	13560
ctgtttgctg gcgaccacta cacgaaattc atatgggaga agtaccgcaa gctgtcgccg	13620
acggcccgac ggatgttcga ctatttcagc tcgcaccggg agccgtaccc gctcaagctg	13680
gaaaccttcc gcctcatgtg cggatcggat tccacccgcg tgaagaagtg gcgcgagcag	13740
gtcggcgaag cctgcgaaga gttgcgaggc agcggcctgg tggaacacgc ctgggtcaat	13800
gatgacetgg tgcattgcaa acgetaggge ettgtggggt cagtteegge tgggggttea	13860
gcagccagcg ctttactggc atttcaggaa caagcgggca ctgctcgacg cacttgcttc	13920
gctcagtatc gctcgggacg cacggcgcgc tctacgaact gccgataaac agaggattaa	13980
aattgacaat tgtgattaag gctcagattc gacggcttgg agcggccgac gtgcaggatt	14040
tccgcgagat ccgattgtcg gccctgaaga aagctccaga gatgttcggg tccgtttacg	14100
agcacgagga gaaaaagccc atggaggcgt tcgctgaacg gttgcgagat gccgtggcat	14160
teggegeeta categaegge gagateattg ggetgteggt etteaaaeag gaggaeggee	14220
ccaaggacgc tcacaaggcg catctgtccg gcgttttcgt ggagcccgaa cagcgaggcc	14280
gaggggtege eggtatgetg etgegggegt tgeeggeggg tttattgete gtgatgateg	14340
tccgacagat tccaacggga atctggtgga tgcgcatctt catcctcggc gcacttaata	14400

## WO 2004/063359 PCT/EP2004/000099 336/357

tttcgctatt	ctggagcttg	ttgtttattt	cggtctaccg	cctgccgggc	ggggtcgcgg	14460
cgacggtagg	cgctgtgcag	ccgctgatgg	tcgtgttcat	ctctgccgct	ctgctaggta	14520
gcccgatacg	attgatggcg	gtcctggggg	ctatttgcgg	aactgcgggc	gtggcgctgt	14580
tggtgttgac	accaaacgca	gcgctagatc	ctgtcggcgt	cgcagcgggc	ctggcggggg	14640
cggtttccat	ggcgttcgga	accgtgctga	cccgcaagtg	gcaacctccc	gtgcctctgc	14700
tcacctttac	cgcctggcaa	ctggcggccg	gaggacttct	gctcgttcca	gtagctttag	14760
tgtttgatcc	gccaatcccg	atgcctacag	gaaccaatgt	tctcggcctg	gcgtggctcg	14820
gcctgatcgg	agcgggttta	acctacttcc	tttggttccg	ggggatctcg	cgactcgaac	14880
ctacagttgt	ttccttactg	ggctttctca	. gccccagatc	tggggtcgat	cagccgggga	14940
tgcatcaggo	: cgacagtcgg	aacttcgggt	. ccccgacctg	taccattcgg	tgagcaatgg	15000
ataggggagt	: tgatatcgtc	: aacgttcact	: tctaaagaaa	ı tagegeeact	cagetteete	15060
agcggcttta	a tccagcgatt	: tcctattatg	g teggeatagt	: tctcaagato	gacagcctgt	15120
cacggttaag	g cgagaaatga	a ataagaaggo	c tgataattco	g gatetetgeg	g agggagatga	15180
tatttgatca	a caggcagca	a cgctctgtca	a tcgttacaat	caacatgcta	a ccctccgcga	15240
gatcatccg	t gtttcaaac	c cggcagctt	a gttgccgtt	c ttccgaataq	g catcggtaac	15300
atgagcaaa	g tetgeegee	t tacaacggc	t ctcccgctg	a cgccgtccc	g gactgatggg	15360
ctgcctgta	t cgagtggtg	a ttttgtgcc	g agctgccgg	t cggggagct	g ttggctggct	15420
ggtggcagg	a tatattgtg	g tgtaaacaa	a ttgacgctt	a gacaactta	a taacacattg	15480
cggacgttt	t taatgtact	g gggtggttt	t tcttttcac	c agtgagacg	g gcaacagctg	15540
attgccctt	c accgcctgg	c cctgagaga	g ttgcagcaa	g cggtccacg	c tggtttgccc	: 15600
cagcaggcg	a aaatcctgt	t tgatggtgg	t teegaaate	g gcaaaatcc	c ttataaatca	15660

aaagaatagc	ccgagatagg	gttgagtgtt	gttccagttt	ggaacaagag	tccactatta	15720
aagaacgtgg	actccaacgt	caaagggcga	aaaaccgtct	atcagggcga	tggcccacta	15780
cgtgaaccat	cacccaaatc	aagtttttg	gggtcgaggt	gccgtaaagc	actaaatcgg	15840
aaccctaaag	ggagcccccg	atttagagct	tgacggggaa	agccggcgaa	cgtggcgaga	15900
aaggaaggga	agaaagcgaa	aggagcgggc	gccattcagg	ctgcgcaact	gttgggaagg	15960
gcgatcggtg	cgggcctctt	cgctattacg	ccagctggcg	aaagggggat	gtgctgcaag	16020
gcgattaagt	tgggtaacgc	cagggttttc	ccagtcacga	cgttgtaaaa	cgacggccag	16080
tgaattcgag	ctcggtaccc	ggg				16103

<210> 63

<211> 25

<212> - DNA

<213> Artificial

<220>

<223> 'Primer

<400> 63

ggcgtacttg aaggaaccct taccg 25

<210> 64

<211> 25

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 64

attgatgctc ccggtcaccg tgatt

<210> 65	
<211> 500	
<212> DNA .	
<213> Blakeslea trispora	
<400> 65	
aatctataca atgctccata gactcacatt gatattgtcg aagatttcga tgctgactta	60
gtagagcaac tacaaaagtt agcagagaag catgatttct taatctttga agaccgcaag	120
tttgcagata tcggtatgtg aattctatct attttttttc tgatgtgtgc atggatgact	180
catgatcata ttcttaggta atactgtcaa gcatcaatat ggcaagggcg tttacaagat	240
tgcttcttgg tctcatatta ctaatgctca cacagttcct ggagaaggta ttatcaaggg	300
acttgccgaa gtcggcctcc ctcttggtcg tggcttgctt ttgctagcag aaatgtcatc	360
•	
tcaaggtgca ttaactaagg gtatttacac tgccgaatct gtcaatatgg ctcgccgcaa	420
caaagatttc gtttttggct ttattgcaca acacaaaatg aatcagtatg atgatgagga	480
ttttgttgtc atgtcgcctg	500
<210> 66	
<211> 611	
<212> DNA	
<213> Blakeslea trispora	
VZIJV BIAKESICA CIISPOIA	
<400> 66	
gagattaaaa tagataagga aaagaaagtg aaaagaaatt cggaagcatg gcacattctt	60
gagattaaaa tagataagga aaagaaaggg aaaagaaan 55 5 5	
ctttttataa atacatgcct gactttcttt ttccatcgat atgatatatg catatgatag	120
Ctttttataa atacatgeet gacceecee toocatogue asgammas	
atatacaagc aatcttcttc aaggagtttg aaattttgtc ctccaggagc aaaaaaagt	180
atatacaage aatettette aaggagting adactinge ecologyage additions	
and the second section of the section of	240
ttttttttat acatgtttgt acacaagaat agttaccaat ttgctttggt cttacgtgct	
	300
gcaagtttat atcgttttca atttctttgt ctttacattt tctttgtcct ttatctttcc	500
	360
tcatttagtc tttgggagaa ttaggaaaag ggagcggaaa ggtaagaaat gcttgcgtat	500

tttactaatt	cggcaaacat	ccaatttggc	aaacagcagc	ctgtgcaacg	ctctcgagat	420
gacagtatct	ttgattacac	tctaaatctc	gatgacccga	ccaaaaagag	cgaacaaaga	480
aataatcttg	tgcattcgaa	tatgatggaa	gatttttcc	cccttattct	aaatgttgac	540
atagcgtgta	tgttatataa	acaaaaagaa	attgtacaaa	ctttctttc	ttctcttttt	600
attttatctc	t					611
<210> 67						
<211> 720						
<212> DNA						
<213> Bla	keslea tris	pora				
<400> 67						
atgtcaatac	tcacttatct	ggaatttcat	ctctactata	cactacctgt	ccttgcggca	60
ttgtgttggc	tgctaaagcc	gtttcactca	cagcaagaca	atctcaagta	taaatttta	120
atgttgatgg	cegeetetae	cgcatcgatt	tgggacaatt	atatcgttta	tcatcgcgct	180
tggtggtact	gtcctacttg	tgttgtggct	gtcattggct	atgtacctct	: agaagaatac	240
atgttcttta	tcatcatgac	: tttaatgact	: gtcgcgttct	: caaactttgt	: tatgcgttgg	300
cacttgcata	ctttctttat	: tagacccaac	: acttcttgga	agcaaacact	attagtacgc	360
cttgtgcctg	g tttcagcttt	: attggcaato	e acttatcato	g cttggcacti	gacactgcca	420
aataaaccti	cattttatgg	g ttcatgcato	ctttggtatg	g cttgtcctgt	t gttggctatt	480
ctttggctgg	g gtgctggcga	a atatatctto	g cgtcgacctg	g tggctgtcc	t tttgtctatt	540
gttatccct	a gtgtatacc	t atgttgggc	t gatategte	g ctattagtg	c tggcacatgg	600

catatttctc ttagaacaag cactggcaaa atggtagtac ccgatttacc tgtagaagaa

tgcctgtttt ttactttgat caacacagtc ttggtttttg ctacctgtgc tatagaccgc

660

720

<210> 68

<211> 1089

<212> DNA

<213> Blakeslea trispora

<400> 68

ctgtacaaat catctgttca aaatcaaaac cctaaacaag ccatttccct tttccagcat 60 gtcaaagagc tagcatgggc cttctgtctt cctgaccaaa tgctcaacaa tgaattgttt 120 gatgatetta etateagetg ggatatttta egtaaageet caaagteatt etataetgea 180 tetgeegttt ttecaagtta tgtacgtcaa gaettgggtg ttetetatge tttetgeaga 240 gctaccgatg acctgtgcga tgatgaatcc aaatctgttc aagaaagaag agaccaatta 300 gatettacte gacaatttgt tegtgatete tttagecaaa agaceagtge geetattgtg 360 420 attgattggg aattgtatca aaaccaactt cctgcttctt gtatatcagc ctttagagcc tttactcgcc ttcgccatgt ccttgaagta gaccctgtag aagaactatt agatggttac 480 aaatgggate ttgagegteg teetateett gatgaacaag aettggagge ataetetget 540 tgtgtggcca gtagtgtggg tgaaatgtgc acacgtgtga ttcttgctca agaccaaaag 600 gaaaatgatg cttggataat tgaccgtgca cgtgagatgg ggctggtgct acaatacgtt 660 aacattgctc gagacattgt gactgatagc gagactctgg gtcgatgtta tctgcctcaa 720 780 caatggctta gaaaagaaga aacagaacaa atacagcaag gcaacgcccg tagcctaggt gatcaaagac tgttgggctt gtctctgaag cttgtaggaa aggcagacgc tatcatggtg 840 agagetaaga agggeattga caagttgeeg geaaactgte aaggeggtgt aegagetget 900 tgccaagtat atgctgcaat tggatctgta ctcaagcagc agaagacaac atatcctaca 960 agageteate taaaaggaag egaaegtgee aagattgete tgttgagtgt atacaaeete 1020 tatcaatctg aagacaagcc tgtggctctc cgtcaagcta gaaagattaa gagtttttt 1080

gttgattag	1089
<210> 69	
<211> 611	
<212> DNA	
<213> Blakeslea trispora	
<400> 69	60
agagataaaa taaaaagaga agaaaagaaa gtttgtacaa tttcttttg tttatataac	
atacacgcta tgtcaacatt tagaataagg gggaaaaaat cttccatcat attcgaatgc	120
atacacgcta tgtcaacatt tagaataagg gggaaaaaa ooosaas	
acaagattat ttctttgttc gctctttttg gtcgggtcat cgagatttag agtgtaatca	180
acaagattat ttetetgete gegeteet gegeteet gegeteet	
aagatactgt catctcgaga gcgttgcaca ggctgctgtt tgccaaattg gatgtttgcc	240
aagacacege case s.g. c c c c	
gaattagtaa aatacgcaag catttettae ettteegete eettteeta atteteecaa	300
agactaaatg aggaaagata aaggacaaag aaaatgtaaa gacaaagaaa ttgaaaacga	360
tataaacttg cagcacgtaa gaccaaagca aattggtaac tattcttgtg tacaaacatg	420
tataaaaaaa aactttttt tgctcctgga ggacaaaatt tcaaactcct tgaagaagat	480
	540
tgcttgtata tctatcatat gcatatatca tatcgatgga aaaagaaagt caggcatgta	540
	600
tttataaaaa gaagaatgtg ccatgcttcc gaatttcttt tcactttctt ttccttatct	800
	611
attttaatct c	011
<210> 70	
<211> 882	
<212> DNA	
<213> Haematococcus pluvialis	
<400> 70	
atgctgtcga agctgcagtc aatcagcgtc aaggcccgcc gcgttgaact agcccgcgac	60
atcacgcggc ccaaagtctg cctgcatgct cagcggtgct cgttagttcg gctgcgagtg	120

### WO 2004/063359 PCT/EP2004/000099 342/357

gcagcaccac	agacagagga	ggcgctggga	accgtgcagg	ctgccggcgc	gggcgatgag	180
cacagegeeg	atgtagcact	ccagcagctt	gaccgggcta	tcgcagagcg	tegtgeeegg	240
cgcaaacggg	agcagctgtc	ataccaggct	gccgccattg	cagcatcaat	tggcgtgtca	300
ggcattgcca	tcttcgccac	ctacctgaga	tttgccatgc	acatgaccgt	gggcggcgca	360
gtgccatggg	gtgaagtggc	tggcactctc	ctcttggtgg	ttggtggcgc	gctcggcatg	420
gagatgtatg	cccgctatgc	acacaaagcc	atctggcatg	agtcgcctct	gggctggctg	480
ctgcacaaga	gccaccacac	acctcgcact	ggaccctttg	aagccaacga	cttgtttgca	540
atcatcaatg	gactgcccgc	catgeteetg	tgtacctttg	gcttctggct	gcccaacgtc	600
ctgggggcgg	cctgctttgg	agcggggctg	ggcatcacgc	tatacggcat	ggcatatatg	660
tttgtacacg	atggcctggt	gcacaggcgc	tttcccaccg	ggcccatcgc	tggcctgccc	720
tacatgaago	gcctgacagt	ggcccaccag	ctacaccaca	gcggcaagta	cggtggcgcg	780
ccctggggta	tgttcttggg	tccacaggag	ctgcagcaca	ttccaggtgc	ggcggaggag	840
gtggagcgad	tggtcctgga	actggactgg	tccaagcggt	ag:		882

<210> 71

<211> 528

<212> DNA

<213> Erwinia uredovora

<400> 71

atgttgtgga tttggaatgc cctgatcgtt ttcgttaccg tgattggcat ggaagtgatt 60 gctgcactgg cacacaaata catcatgcac ggctggggtt ggggatggca tctttcacat 120 catgaaccgc gtaaaggtgc gtttgaagtt aacgatcttt atgccgtggt ttttgctgca 180 ttatcgatcc tgctgattta tctgggcagt acaggaatgt ggccgctcca gtggattggc 240

gcaggtatga	cggcgtatgg	attactctat	tttatggtgc	acgacgggct	ggtgcatcaa	300
cgttggccat	tccgctatat	tccacgcaag	ggctacctca	aacggttgta	tatggcgcac	360
cgtatgcatc	acgccgtcag	gggcaaagaa	ggttgtgttt	cttttggctt	cctctatgcg	420
ccgcccctgt	caaaacttca	ggcgacgctc	cgggaaagac	atggcgctag	agcgggcgct	480
gccagagatg	cgcagggcgg	ggaggatgag	cccgcatccg	ggaagtaa		528

<210> 72

<211> 762

<212> DNA

<213> Nostoc sp. PCC73102

<400> 72

atgatccagt tagaacaacc actcagtcat caagcaaaac tgactccagt actgagaagt 60 aaatctcagt ttaaggggct tttcattgct attgtcattg ttagcgcatg ggtcattagc 120 ctgagtttat tactttccct tgacatctca aagctaaaat tttggatgtt attgcctgtt 180 atactatggc aaacattttt atatacggga ttatttatta catctcatga tgccatgcat 240 ggcgtagtat ttccccaaaa caccaagatt aatcatttga ttggaacatt gaccctatcc 300 ctttatggtc ttttaccata tcaaaaacta ttgaaaaaac attggttaca ccaccacaat 36.0 ccagcaagct caatagaccc ggattttcac aatggtaaac accaaagttt ctttgcttgg 420 tattttcatt ttatgaaagg ttactggagt tgggggcaaa taattgcgtt gactattatt 480 tataactttg ctaaatacat actccatatc ccaagtgata atctaactta cttttgggtg 540 ctaccctcgc ttttaagttc attacaatta ttctattttg gtactttttt accccatagt 600 gaaccaatag ggggttatgt tcagcctcat tgtgcccaaa caattagccg tcctatttgg 660 tggtcattta tcacgtgcta tcattttggc taccacgagg aacatcacga atatcctcat 720 762 atttcttggt ggcagttacc agaaatttac aaagcaaaat ga

<210> 73

	517						
	ONA						
<213> F	Haem	atococcus p	luvialis				
<400> 7	73		•				
tagggtgd	egg	aaccaggcac	gctggtttca	cacctcatgc	ctgtgataag	gtgtggctag	60
agcgatgo	cgt	gtgagacggg	tatgtcacgg	tcgactggtc	tgatggccaa	tggcatcggc	120
catgtct	ggt	catcacgggc	tggttgcctg	ggtgaaggtg	atgcacatca	tcatgtgcgg	180
ttggagg	ggc	tggcacagtg	tgggctgaac	tggagcagtt	gtccaggctg	gcgttgaatc	240
agtgagg	gtt	tgtgattggc	ggttgtgaag	caatgactcc	gcccatattc	tatttgtggg	300
agctgag	atg	atggcatgct	tgggatgtgc	atggatcatg	gtagtgcagc	aaactatatt	360
cacctag	ggc	tgttggtagg	atcaggtgag	gccttgcaca	ttgcatgatg	tactcgtcat	420
ggtgtgt	tgg	tgagaggatg	gatgtggatg	gatgtgtatt	ctcagacgta	gacettgact	480
ggaggct	tga	tcgagagagt	gggccgtatt	ctttgagagg	ggaggetegt	gccagaaatg	540
gtgagtg	gat	gactgtgacg	ctgtacattg	caggcaggtg	agatgcactg	tctcgattgt	600
aaaatac	att	cagatgc					617
<210>	74						
<211>	120	8 .					
	DNA						
<213>	Hae	matococcus	pluvialis				
<400>	74						
attgtga	actg	atagcgagac	: tctgggtcga	tgttatctgc	ctcaacaatg	gcttagaaaa	60
gaagaaa	acag	aacaaataca	gcaaggcaac	gecegtagee	taggtgatca	aagactgttg	120
gacttat	tctc	tgaagettgt	: aggaaaggca	gacgctatca	tggtgagagc	taagaagggc	180

attgacaagt tgc	cggcaaa c	tgtcaaggc:	ggtgtacgag	ctgcttgcca	agtatatgct	240
gcaattggat ctg	tactcaa g	gcagcagaag	acaacatatc	ctacaagagc	tcatctaaaa	300
ggaagcgaac gtg	ccaagat t	gctctgttg	agtgtataca	acctctatca	atctgaagac	360
aagcctgtgg ctc	tccgtca a	agctagaaag	attaagagtt	tttttgttga	ttagtgaatt	420
tttgttttat tta	tgtctga t	agttcaata	aagagacaac	acatacaata	taaaatcatt	480
gtctttaaat gtt	aatttag t	tagagtgtaa	agcctgcatt	ttttttgtac	gcataaacaa	540
tgaattcacc ccg	cttctgg t	ttttaaata	attatgtcaa	actagggaaa	attcttttt	600
ttetettegt tet	ttttttg (	gcttgttgtg	gagtcacagg	cttgtcttca	gattgataga	660
ggttgtatac act	caacaga (	gcaatcttgg	cacgttcgct	tccttttaga	tgagctcttg	720
taggatatgt tgt	cttctgc	tgcttgagta	cagatccaat	tgcagcatat	acttggcaag	780
cagctcgtac acc	egeettga	cagtttgccg	gcaacttgtc	aatgcccttc	ttagctctca	840
ccatgatage gto	ctgccttt	cctacaagct	tcagagacaa	gcccaacagt	ctttgatcac	900
ctaggctacg ggd	egttgeet	tgctgtattt	gttctgtttc	ttcttttcta	agccattgtt	960
gaggcagata aca	atcgaccc	aacatcctcg	agccatacta	cagcataaaa	ggatacgttt	1020
tctttaacag aaa	atttaccc	ttttgttatc	agcacataca	aaaaaaaaga	aatttaagat	1080
gagtaggact to	cattctct	caaaaatttt	attcaatcca	taaatgaatt	atttttggac	1140
aaaaaagaaa ga	ttatgcct	gattttctct	attttttt	ttttacaac	: tccaccaata	1200
ctttctag						1208

<210> 75

<211> 6316

<212> DNA

<213> Blakeslea trispora

<220> <221> misc_feature <222> (2694)..(2694) <223> n is a, c, g, or t <220> <221> misc_feature <222> (4263)..(4263) <223> n is a, c, g, or t <400> 75 aaggatgaag aatccaactc taataaaaat cttatggata tctttgatcg actcaaaaag 60 gctttcaatg ctattgctat taaaaaaaaa gagagagaga gaactatgag caaaaggact 120 ctatgccaag atggcaaaaa ggcaccagaa acccttagtt tattattgca taatccagtc 180 gagctagtac ttctgtagct caagcttaac cgaggatctt ggaatcaact cgtctcgtca 240 300 ctcttgccga tgatcctaga aatggtatct atggatgtta tactaacatt gttatctttc aaggcctcga agatgttatt gttgcggtga taaataggct gctatgtact gaagttgctc 360 tgtaaaatga atctagttca ctgcctactc agcaaatggt tgtttctaat gtctttaaag 420 aaagaaaaaa agatacatat agactaccct tcctttcaag actgtaatcg agaatcggcc 480 gatggtttat tacaattaga cgctgggaat aagcaaaagg attcatcttt gtaaataaga 540 gactggtgca tatgaaagca aggatcgtat caaggaatag ttttgatcga gcatcaccag 600 caaatgctgc taatgttggc ttcttctttg cttcctgaga ttgaatggga tgtgcctaga 660 gcattgctat ttttaagtgt atactttaga tttgtgtctt tagatttgtg tcattttatt 720 tagtcaagaa agatccccct ttctctatgt atgctaagaa gaaggagcaa gaagtgtatt 780 tacaagttgg aatgagattg aaatattgta cataataata ataaaaagaa aggtagatca 840 aaaaaaatgt tctgcctatt gtaagaaatc gggaccaaca ggtgcttgat aaccagaagt 900

# WO 2004/063359 PCT/EP2004/000099 347/357

agcttccaat	tcaggtagag	gctctaggga	caaatacaca	attatgacag	gaattttctt	960
gttgacttga	acactacaag	agaaacgggt	cagcacaaaa	tccgaaaaaa	aaaagaaacg	1020
gaccattcat	gtcttaccta	tctagctctt	tgtcttcaat	tgcatcccat	tgctcaacca	1080
cagatacgct	tcccaattga	gtatattgat	gaagtgttcc	ctgcattttt	cgcttgacta .	1140
attccactac	agtcacagtc	ttattaatgt	tttgtccttt	accagtcagg	ataatatgat	1200
ctttttgctt	cttctatcaa	aaaaataatt	cttgttttga	ataaaaaaaa	caaatattta	1260
aagaaactac	tttgatgacg	gtacctggaa	taactcgaga	cacacatcta	catatgcgtt	1320
gattttattg	tggctaattc	gaacctcatt	ttctgctggt	gggggctgtt	gactttcagt	1380
tgctgagacg	teettettge	ttcttttata	gtcttccact	: atgattttaa	tcaagaaagt	1440
aagtcagtga	tgattgttac	: aagctatata	tcttgaaaaa	a gaacagagag	gtattattat	1500
cagatgcaac	atggttttct	gtatcatttt	: catttcagtt	tetetgtte	a aaaaaaaaaaa	1560
gaacacttto	c totttocact	cctcaaattt	: tttctgctaa	a actcctcgca	a aaacatgtat	1620
ttgctttaaa	a ctacaagtt	g caattgtcts	g atttagcaat	t ttcaatatgo	cttttgtgaa	1680
tccacccaa	a aataaacaa	g tgcttgagta	a tacttgggt	t cagttcaaa	a gaaagcaagc	1740
ttttttt	t ctttcttgg	g aaagaaaaa	a aaatattgt	t gagccatcc	t ttaccagcag	1800
tatgegage	t acgacatag	c tggtctaac	a atgactgca	a gcaatagat	c gagcttagtc	1860
tttctattg	c ttcyttgtt	t gatctatgt	t cggccttac	g ctgacctat	c caatactcga	1920
gataggcaa	c aagattteg	a acagtaatg	a aataaattt	c ggataacag	t tgtggatgag	1980
gaagagaaa	g cgacttgaa	c tcgagaaac	t ttgttgaaa	t gaaatccga	c cttttacgtg	2040
atcatcatg	rt attatecte	t ttttcttt	t tttcgtagt	g aattactta	c tgattgcgct	2100
caagtcgcg	gt ctttataaa	g aagaaaaa	ıa aatattaga	a ctttcaaaa	a atataactga	2160

# WO 2004/063359 PCT/EP2004/000099 348/357

aaataaaagt	gtggctcgga	gagcaaatac	cacatccttt	gtcttcgctt	tggtaacacg	2220
gttaataagc	cactataggt	gaataatgat	catttctgag	aataaagcgc	ggcttgaagc	2280
ttatatccat	atcaggattc	atattaggca	caactcacaa	ttgaggttcc	agaagtgcca	2340
atttttttt	cctgatagcc	tgtccaatta	agatcaaaaa	ccactgagtt	ttctctatat	2400
atttttttt	ttcataattc	ttaactcttc	ttcctctctc	tetetetete	tetettttg	2460
gcttgcaaaa	aaaatcttta	gtaataccaa	agaaagcaaa	ccttttcctt	ttcttatttc	2520
cttgcttgtt	tttaattt	tgatttctct	atgctttaaa	tacccatttc	tttctttctt	2580
ctgctattac	ctatctttc	attcctctcc	cccctctctc	tcttggtcta	taaacatcat	2640
gaagtcctct	tttaaaagtt	cgcttgacat	ttatgctgtt	tatatacago	atcntgtgtt	2700
ttccaagtgg	ttcattcttg	cttttgttct	: ttcgattttc	ctcaacactt	atctactgaa	2760
cgcttcgaag	caacagccca	ı aagtgataat	: caaaaaggtt	attgagcggg	tagaagtacc	2820
aagtagagaa	ı caacctaaat	cagtcataaa	geeeteetee	: aagaaacact	cttctcatca	2880
tcagtctgat	gtcattcgco	c ctcttgatga	a agtattgggt	: ttgctcggaa	a cacccgaggc	2940
cttgactgat	gaagagatca	a tctctattg	t tcaagciggt	: aaaatggcc	c cctatgetet	3000
tgaaaaggto	c ttgggcgat	t tagagegege	c tgtccatato	c cgtcgtgct	tgatctcccg	3060
tgactctcg	t acgaaaact	t tggaagaca	g tatgcttcc	c gtgaaaaac	t atcattatga	3120
taaagtcat	g ggtgcttgt	t gtgaaaatg	t cattggtta	t atgeetatt	c cagtaggtgt	3180
cgcaggtaa	g aagttcaac	a agtcgcgat	a tttgacaag	t tgctcatca	t tttcgaaaca	3240
ggtcctttg	g tgattgatg	g tgattctat	t catattccc	a tggcaacta	c ggaaggttgt	3300
ttagttgct	t ctactgcca	g aggttgtaa	a gcaatcaat	g ctggtggtg	g tgccaacaca	3360
attgttgtt	g ctgatggta	t gactcgagg	t ccttgtgtc	g aatttccta	c aatcactcgc	3420

### WO 2004/063359 PCT/EP2004/000099 349/357

gctgctgact gtaaacgatg gattgaacaa gagggtgaag ctatcgtgac cgaggcattc	3480
aattcaactt ctcgttttgc tcgtgttcgt aaattgaaag ttgctcttgc cggtcgtcta	3540
gtctacatcc gtttctctac cactacaggt gatgcaatgg gcatgaacat gatctccaag	3600
ggttgtgaaa aggctttaag caagattgct gagagatatc ctgatatgca gatcatttct	3660
ctttctggta actattgtac tgacaagaaa cctgctgcta tcaactggat tgaaggacgt	3720
ggtaaatctg ttgttgctga sgctgtcatc cctggtacgg ttgtcgaaaa ggtattgaag	3780
acctctgtta gtgctttggt tgagctgaac atctctaaaa acctggttgg ttctgctatg	3840
gctggctccg tcggtggctt taacgctcat gctgctaata ttctaactgc catttacctt	3900
getactggte aagateetge teaaaatgta sagagtteta aetgtattae tttgatgaaa	3960
gctgtcaatg gcgaaagaga ccttcatatc tcttgtacaa tgccctgtat tgaagtaggc	4020
accattggtg gtggtactat tttgcctcct caacaagcca tgttggattt cattggtgtg	4080
cgtggtcctc accctaccga acctggtgcc aatgcccgwc gccttgctcg tgttatctgt	<b>414</b> 0
gcctctgtga tggctggtga attgtcttta tgtgcagctt tggctgctgg tcatcttgta	4200
aaggcacaca tggctcataa tcgtaatacc actgctgctg ccgctgttgt tcctgcccct	4260
aanggcatag ttgatgtctc tacacctcct gctacacctg cagaaaagaa tgatcctatt	4320
cctggaagtt gtatcaagtc atagaattaa tattatatat atatcatata caaaaaaaag	4380
aaaaaaaaaa cactacatct atttatattt ctccatgtac acacacacac acacatataa	4440
aaactcttta ttttccaata ttttgctttt ataaataatc ttatttcatt ctaaataaac	4500
tgttttttt tattaatcat caaaccctgc tgagagctgt gcaatatcat ctatgttttc	4560
atggtttaac tctggtatcg gwcgagcctc ctctgtactt gaagtttgta ggcagttttt	4620
atttaagget getggtegat catgateate akcaaacetg acageatgaa gttttgaetg	4680

# WO 2004/063359 PCT/EP2004/000099 350/357

atgagcaatt tcactaaggg cagaatctga actctttcgc ttcctactat tgaccatatt	4740
gtctttaggt ggaatgagtg aatagcgtct tgtcatatgt aacacagaat caacaatatc	4800
ctggtgatga aactcggcca aacatagcgc ctttctcccc caacaattat aataatcaaa	4860
atgagaatga catgtacggt tttcctcgat gacaatatcc aacgtcttgt cataatcctc	4920
tgtgcgyata ccattcatct tttggaagaa cgcacggtag ctctcacaag ctgtcctcag	<b>4980</b>
agagttccgt gccatgtttc ccaatgctcc tggcaagtcg aaatgaagtt gtcgaatctg	5040
gcgatgtatg tctacaatgt cgcctgtttc tttcattaga tcaagcattc gtgtagccca	5100
aatgatgtct atgttatgat tttctttcat tccagtaata actatagttt ctcggcaaat	5160
cgaatgastg atggagtaaa ttcatcaaaa gtgcaagtaa tacatacagt gcttgaagaa	5220
atcttgtgta gcacgcctat attatgtaat ataggatcga ttctcgaaac tcgacataac	5280
caccaggett tageaagegt tttattteat teatgacaag etattgttaa tteytgetta	5340
ataaaacaaa atgaaaaaaa catacccccc tcmaaactta cttcccactc ttgattggaa	5400
aaacaggtat agacgtgacg catatgtata taatcaaaac actcatcagg atagggtaaa	5460
ccattgagca catcgcattg ggtgaagaaa gtattaggag gcttgatggc tgtaggatat	5520
ataggtgcaa tatcaatacc gtaaaactca gcatttggga attctgtagc catctccaga	5580
atccaagtac ctgtgccaca agcaacatca agcactttag gtaagggtat acattgttgt	5640
tcttgttgtt gttgttgaca atcacttgag tctgagtttc gttttgattg ttttaatgac	5700
aataattett ttacaggtge tgagaaatta eegteaaata gataettgta aataaaatge	5760
taaaaataaa aacaatagaa aaaaaaattg acgctcattt cattactatg gaaataactg	5820
caaaatetta eeaettgtae aagtetatet tgeteaatet eategtttgg eagaatgtat	5880
ttattgttgt agtattgata tcttctacca ttcatgatat aactgtcgct tctaatgctc	5940

### WO 2004/063359 PCT/EP2004/000099 351/357

tgaggtgaag	tacttgtagg	tgaaggtgga	agtgacgcaa	ttttgtcaag	cttaacagga	6000
tcctctcggc	tacatgtttt	ctgcatatca	ggaaaatctt	gtttatttga	aacatcaaca	6060
gtagatgtgg	tgtgatcttt	tttgaaaata	tcgatgcctt	cctttgaaag	ccttttgaaa	6120
ggctctttta	acttttttga	gtgagagcta	cccatgatag	cttatgaaga	attaaaaaga	6180
aaaaagcaaa	aaaaattaaa	aaaaaaaaaa	gtagcaaaaa	attctgtcgt	aattatacaa	6240
gccaatcaaa	atcgaaattc	atgcaaggca	tagatgttca	cgtggatttg	atggttgatc	6300
cttttttt	gcaaga					6316

<210> 76

<211> 1170

<212> DNA

<213> Thermus thermophilus

<400> 76

60 atgaagegee ttteeetgag ggaggeetgg cectacetga aagaceteea geaagateee ctegeegtee tgetggegtg gggeegggee caeeceegge tetteettee eetgeeeege 120 ttcccctgg ccctgatctt tgacccgag ggggtggagg gggcgctcct cgccgagggg 180 accaccaagg ccaccttcca gtaccgggcc ctctcccgcc tcacggggag gggcctcctc 240 accgactggg gggaaagctg gaaggaggcg cgcaaggccc tcaaagaccc cttcctgccg 300 360 aagaacgtcc gcggctaccg ggaggccatg gaggaggagg cccgggcctt cttcggggag 420 tggcgggggg aggagcggga cctggaccac gagatgctcg ccctctccct gcgcctcctc 480 gggcgggccc tcttcgggaa gcccctctcc ccaagectcg cggagcacgc ccttaaggcc ctggaccgga tcatggccca gaccaggagc cccctggccc tcctggacct ggccgccgaa 540 gcccgcttcc ggaaggaccg gggggccctc taccgcgagg cggaagccct catcgtccac 600

#### WO 2004/063359 PCT/EP2004/000099 352/357

ccgcccctct cccac	cttcc ccgagagcgo	gccctgagcg	aggccgtgac	cctcctggtg	660
gegggecaeg agaeg	gtggc gagcgccct	c acctggtcct	ttetectect	ctcccaccgc	720
ccggactggc agaag	rcgggt ggccgagag	c gaggaggcgg	ccctcgccgc	cttccaggag	780
gccctgaggc tctac	eccec cgcctggat	c ctcacccgga	ggctggaaag	gecetecte	840
ctgggagagg accgg	getece ecegggeac	c accctggtcc	tctcccccta	cgtgacccag	900
aggeteeact teece	cgatgg ggaggcctt	c cggcccgagc	gcttcctgga	ggaaaggggg	960
accccttcgg ggcgc	ctactt cccctttgg	c ctggggcaga	ggctctgcct	ggggcgggac	1020
ttegecetee tegag	gggeee categteet	c agggccttct	teegeegett	ccgcctagac	1080
ceceteceet teece	ccgggt cctcgccca	g gtcaccctga	ggcccgaagg	cgggcttccc	1140
gcgcggccta ggga	ggaggt gegggegtg	ſα	·		1170

<210> 77

<211> 2981

<212> DNA

<213> Blakeslea trispora

<400> 77

tctagaattc attccattcg aaaggatcaa cataaccaat ttaatgacta ctagctaatg 60 gatacaaata tacgcacaaa aaaagaaaga attctatgat caaagagaac acagacacag 120 agtgatacat ttaaatggtt aagttcttat gatgttaaaa tggtaacttt attattgaat 180 240 taaatgcgaa tatcgttgct gctttgtact tggaaaacgt taggtaaaag ttggttaatg aaagaagcag gagttgtagt atcatctctt gggaagaaat agaaaaagag gaaagtaaca 300 aagtaacaag caagacaata atagatccaa tggctttcgg tcttacgagt ttgttcagga 360 gcatacttct tttggctatc ttgtaacttt cttggtaagg gattctggcc aaagctttta 420 cagacttggt cggaagtaag cttacttcca gcaagaacga taggaacacc agtacctgga 480

### WO 2004/063359 PCT/EP2004/000099 353/357

tgtgtactac	aaagaaaaga	gaaatgagta	cgtgcgttat	taaaaaaaag	aaaaaaagag	540
ggcaaaagta	ttacctagct	ccgacaaaga	aaagattatc	ataacggttt	gtggaatcct	600
tggtactagg	tctgaaccag	agaacttgga	acacatcatg	agaaagacca	agaatagaac	660
ctctccaaag	gttaaacttg	ctttgccaaa	cactaggatc	attcacttct	tcatgttcaa	720
tcaaattagc	aaagttgttt	actcccaaac	gacgttcgat	aacttccaga	accatcttgc	780
gtgcacggtt	taccaactca	ggataatttt	cttcagcact	gtttcctgtc	ttactcttca	840
tatggccaat	tggaaccaac	acaataatgg	agtccttgtt	gggaggtgcg	gcagattcat	900
caattcgaga	tggaacgttg	acatagaatg	aagcttcaga	gggcaaaccg	aagtcgttga	960
aaatctcatc	aaaactttcc	ttgtaggctt	cagccaagaa	gatattgtgt	acgtctaatt	1020
gaggcacctt	tgttgacatg	gaccaataaa	acgaaataga	tgatgaagtg	agtttctttg	1080
aggctaatgt	cttctttgtc	caattgcaag	gaggtaacag	atggtgataa	gcataaacaa	1140
gatccgcatt	acatacgact	gcatcggctt	caatgacttc	teegetttee	aaagtgacac	1200
cggttacacg	cttgtcttta	tcgacagtgt	taattttagc	aacaggcgat	tgatatctga	1260
attcagcaco	gtacttttg:	gaggcgatag	actcaagctt	ctgaacaacc	atgttgaaac	1320
caccacgagg	g ataccagata	ccttcagcaa	actcggtgta	ttgtaacaaa	ctgtaaactg	1380
ctggagcato	ataaggcgac	: atactatatt	: ccaaaaatag	aaaatagaac	: aatgaatatc	1440
aaaattcctt	tcacttgccc	tttttcacat	ttetettte	ccaccccga	ccggtctcac	1500
tcatttttt	ttcatcccac	accacgcgtt	gtatgtgtac	: ttaccccata	a tacattgttt	1560
gaaaagtaaa	a agccatacgo	attttcttgg	y tttggaaata	tttactggct	: cggtcataga	1620
tcttaccaaa	a caagtgcaaç	g cgaaagattt	caggcacata	ctgaagacga	a atcaaatccc	1680
aaatggttt	c aaagttgcgd	ttgatagca	a taaatgtaco	: ttgttcata	a tggacatgtg	1740

tttccttcat	gaaatccaag	aatctaccaa	atccaagggg	accctcaata	cggtccaatt	1800
cgcccttcat	cttggttaaa	tcggaagaga	gttgtacggc	atcaccgtcg	tcaaaatgaa	1860
ccttatagtt	attgtcacag	cgaagcaaat	ccaaatgatc	accaatacgt	tcatccaaat	1920
cagcaaatgc	atcttcaaaa	agcttaggca	tcaaatagag	tgagggaccc	tgatcaaagc	1980
gatgaccatc	gtgatgaatg	aatgaacaac	ggccaccgga	aaagtcgttc	ttttcaacaa	2040
cagtaactcg	aaaaccttca	cgagcaagac	gagcagcagt	agcagttccg	ccaataccgg	2100
caccaatgac	aacaatatgc	ttcttttgat	cagacatgag	attaaaatag	ataaggaaaa	2160
gaaagtgaaa	agaaattcgg	aagcatggca	cattcttctt	tttataaata	catgcctgac	2220
tttcttttc	catcgatatg	atatatgcat	atgatagata	tacaagcaat	cttcttcaag	2280
gagtttgaaa	ttttgtcctc	caggagcaaa	aaaaagtttt	tttttataca	tgtttgtaca	2340
caagaatagt	taccaatttg	ctttggtctt	acgtgctgca	agtttatatc	gttttcaatt	2400
tetttgtett	tacattttct	ttgtccttta	tctttcctca	tttagtcttt	gggagaatta	2460
ggaaaaggga	gcggaaaggt	aagaaatgct	tgcgtatttt	actaattcgg	caaacatcca	2520
atttggcaaa	cagcagcctg	tgcaacgctc	tcgagatgac	agtatctttg	attacactct	2580
aaatctcgat	gacccgacca	aaaagagcga	acaaagaaat	aatcttgtgc	attcgaatat	2640
gatggaagat	ttttccccc	ttattctaaa	tgttgacata	gcgtgtatgt	tatataaaca	2700
aaaagaaatt	gtacaaactt	tettttette	tctttttatt	ttatctctat	gtcaatactc	2760
acttatctgg	aatttcatct	ctactataca	ctacctgtcc	ttgcggcatt	gtgttggctg	2820
ctaaagccgt	ttcactcaca	gcaagacaat	ctcaagtata	aatttttaat	gttgatggcc	2880
gcctctaccg	, categatttg	ggacaattat	atcgtttatc	atcgcgcttg	gtggtactgt	2940
cctacttgtg	, ttgtggctgt	cattggctat	gtacctctag	a		2981

## WO 2004/063359 PCT/EP2004/000099 355/357

<210> 78

<211> 1749

<212> DNA

<213> Blakeslea trispora

<400> 78

at	gtctgatc	aaaagaagca	tattgttgtc	attggtgccg	gtattggcgg	aactgctact.	60
gc	etgetegte	ttgctcgtga	aggttttcga	gttactgttg	ttgaaaagaa	cgacttttcc	120
gg	gtggccgtt	gttcattcat	tcatcacgat	ggtcatcgct	ttgatcaggg	teceteacte	180
ta	atttgatgc	ctaagctttt	tgaagatgca	tttgctgatt	tggatgaacg	tattggtgat	240
Cē	atttggatt	tgcttcgctg	tgacaataac	tataaggttc	attttgacga	cggtgatgcc	300
gt	tacaactct	cttccgattt	aaccaagatg	aagggcgaat	tggaccgtat	tgagggtccc	360
ct	ttggatttg	gtagattctt	ggatttcatg	aaggaaacac	atgtccatta	tgaacaaggt	420
a	catttattg	ctatcaagcg	caactttgaa	accatttggg	atttgattcg	tcttcagtat	480
gt	tgcctgaaa	tctttcgctt	gcacttgttt	ggtaagatct	atgaccgagc	cagtaaatat	5 <b>4</b> 0
ti	tccaaacca	agaaaatgcg	tatggctttt	acttttcaaa	caatgtatat	gggtatgtcg	600
C	cttatgatg	ctccagcagt	ttacagtttg	ttacaataca	ccgagtttgc	tgaaggtatc	660
t	ggtateete	gtggtggttt	caacatggtt	gttcagaagc	ttgagtctat	cgcctccaaa	720
a	agtacggtg	ctgaattcag	atatcaatcg	cctgttgcta	aaattaacac	tgtcgataaa	780
g	acaagcgtg	taaccggtgt	cactttggaa	agcggagaag	tcattgaagc	cgatgcagtc	840
g	tatgtaatg	cggatcttgt	ttatgcttat	caccatctgt	tacctccttg	caattggaca	900
a	agaagacat	tagcctcaaa	gaaactcact	tcatcatcta	tttcgtttta	ttggtccatg	960
t	caacaaagg	tgcctcaatt	agacgtacac	aatatcttct	tggctgaagc	ctacaaggaa	1020

### WO 2004/063359 PCT/EP2004/000099 356/357

agttitgatg	agattttcaa	cgacttcggt	ttgccctctg	aagcttcatt	ctatgtcaac	1080
gttccatctc	gaattgatga	atctgccgca	cctcccaaca	aggactccat	tattgtgttg	1140
gttccaattg	gccatatgaa	gagtaagaca	ggaaacagtg	ctgaagaaaa	ttatcctgag	1200
ttggtaaacc	gtgcacgcaa	gatggttctg	gaagttatcg	aacgtcgttt	gggagtaaac	1260
aactttgcta	atttgattga	acatgaagaa	gtgaatgatc	ctagtgtttg	gcaaagcaag	1320
tttaaccttt	ggagaggttc	tattcttggt	ctttctcatg	atgtgttcca	agttctctgg	1380
ttcagaccta	gtaccaagga	ttccacaaac	cgttatgata	atcttttctt	tgtcggagct	1440
agtacacatc	caggtactgg	tgttcctatc	gttcttgctg	gaagtaagct	tacttccgac	1500
caagtctgta	aaagctttgg	ccagaatccc	ttaccaagaa	agttacaaga	tagccaaaag	1560
aagtatgctc	ctgaacaaac	tcgtaagacc	gaaagccatt	ggatctatta	ttgtcttgct	1620
tgttactttg	ttactttcct	ctttttctat	ttcttcccaa	gagatgatac	tacaactcct	1680
gcttctttca	ttaaccaact	tttacctaac	gttttccaag	tacaaagcag	caacgatatt	1740
cgcatttaa						1749

<210> 79

<211> 25

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 79

ccgatggcga cgacggaagg ttgtt 25

<210> 80

<211> 25

<212> DNA

WO 2004/063359 PCT/EP2004/000099 357/357

<213> Artificial

<220>

<223> Primer

<400> 80

catgttcatg cccattgcat cacct

25