PROBLEMA 7.10

Obs:
$$f(z) = o(x^p)$$
 \Leftrightarrow $\lim_{x\to 0} \frac{f(x)}{x^p} = 0$

where $f(x) = o(x^p)$ \Leftrightarrow $\lim_{x\to \infty} \frac{f(x)}{x^p} = 0$

where $f(x) = o(x^p)$ \Leftrightarrow $\lim_{x\to \infty} \frac{f(x)}{x^p} = 0$

∀a<1: senx = o(x^q) avando x→0:

$$\lim_{x \to 0} \frac{\sin x}{x^{a}} = \lim_{x \to 0} \frac{x + o(x)}{x^{a}} = \lim_{x \to 0} \frac{1 - a}{x^{a}} + \lim_{x \to 0} \frac{o(x)}{x^{a}}$$

$$= 0$$

$$y_{0} = 1 - a > 0$$

· log(1+x2) = 0(x) chardo x -> 0:

$$\lim_{x \to 0} \frac{\log(1+x^2)}{x} = \lim_{x \to 0} \frac{x^2 + o(x^2)}{x} = 0$$

$$\log(1+x^2) = 2 - \frac{2^2}{2} + \frac{2^3}{3} - \frac{2^4}{4} + \dots$$

• $\log x = o(x)$ mando $x \to \infty$ $\lim_{x \to \infty} \frac{\log x}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0$ • $tan(x) - sen(x) = o(x^2)$ cuando $x \rightarrow 0$

$$\lim_{x\to 0} \frac{\tan(x) - \sin(x)}{x^2} = \lim_{x\to 0} \frac{x + o(x^2) - x + o(x^2)}{x^2} = 0$$

$$\tan x = x + \frac{x^3}{3} + o(x^3)$$

$$\sin x = x - \frac{x^3}{3!} + o(x^3)$$