

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

arrow. As fast as the ring enters the space abc, it becomes red-hot and non-magnetic, and a lack of equilibrium is thus maintained which results in a continuous rotation.

The motion is necessarily quite slow on account of the considerable time required to heat the iron ring. In the actual experiment, moreover, considerable difficulty was experienced from the distortion which the ring underwent when softened by the heat, in consequence of which the speed of rotation became very irregular. With a permanent steel magnet, a speed of about one revolution in two minutes was obtained; and with a powerful electro-magnet, a weight of six grams was raised fifty centimetres in six minutes, and, in a second experiment (the ring having become quite distorted), ninety centimetres in thirty minutes.

Of course, the source of energy is the Bunsen burners; and the experiment leads at once to the fact, that the specific heat of magnetized iron is greater than that of unmagnetized. Chas. K. McGee.

University of Michigan, Ann Arbor, Feb. 19.

Congenital deafness in animals.

The communication of Professor Bell in No. 54 of Science, in reference to Mr. Lawson Tait's statement that no other animals than cats are affected with congenital deafness, calls to my mind the fact, that in my early boyhood I had a dog which was thus afflicted. I got him when a puppy; and, so far as we could determine, he was never able to distinguish any sounds. He was of the breed usually known as 'fist, and, so far as my memory serves me, was of a yellow color: certainly he was not pure white. What renders this instance the more interesting, is the further fact, that a playmate of mine also had a deaf dog. I think he was of the same family, but not, I believe, of the same litter. That congenital deafness should be rare among wild animals, I can readily under-stand, since, in the struggle for existence, their defect would lead to an early extinction; but under domestication, where their conditions approach more nearly to those of man, I can see no reason why a defect of physical organization should not be transmitted by inheritance, as I believe it to have been in the cases above cited. It is a fact well known to aurists, that in some families there is a tendency to become hard of hearing, or even deaf, at about the same age; owing, doubtless, to certain evolutions which take place in their physical structure at that SWAN M. BURNETT, M.D. time.

Washington, Feb. 22.

A singular optical phenomenon.

The windows of our office are provided with fly-screens having the ordinary mesh of something less than an eighth of an inch. Thirty feet across the way is a building whose windows are protected by a coarse screen having a mesh a little less than half an inch in size. Standing about ten feet back from and looking through the fly-screen at the coarse screen, an inverted, magnified image of the latter is seen in mid-air, between the observer and the fly-screen; the inversion, of course, being only detected by the apparent movement made by the image on changing the position of the eyes. The explanation of the phenomenon is not difficult. The lines of the coarse screen throw nominally a single ray of light, which is inverted through the particular mesh of the fly-screen directly in line with it and the observer. Any other substance, such as a paper wad introduced in the coarse screen, will not appear in the image. It may

not be uninteresting to mention in this connection the fact, that while a short-sighted person, to whom I en deavored to show the same phenomenon in my home, using as an object the slats of a blind in a house a hundred and fifty feet away, was unable to see the actual slats, owing to their remoteness, their image was distinctly visible to her.

F. J. S.

Deflective effect of the earth's rotation.

In a letter of mine, published in *Science*, ii. No. 26, I suggested that the deflecting force produced by the rotation of the earth on bodies moving on its surface is not wholly represented by the rotation of a tangent plane, but depends, in part, on the centrifugal force resulting from the body's relative motion in longitude, and is therefore greatest when the motion is perpendicular to the meridian.

That my suggestion is not true, and that the force

That my suggestion is *not* true, and that the force is the *same* for all directions of the motion, may be

demonstrated very simply, as follows:-

From the proposition announced in section 25 of Peirce's 'Analytical mechanics,' it follows that any tangent plane whose latitude is λ rotates about an axis normal to that plane with an angular velocity equal to ω cosec. λ , ω denoting the angular velocity of

the earth about its polar axis.

Therefore if P represent the point where the normal axis pierces the surface of the sphere, and if a body be caused to move in any direction over the point P with a velocity v, it will, by the rotation of the tangent plane, be constrained to describe in space the spiral of Archimedes, whose equation is $u = a\theta$; and when $\theta = 2\pi$, u = v multiplied by the time of one rotation of the tangent plane. Hence, if one hour be the unit of time, u = 24v cosec. λ ; and $\frac{1}{2}a$, = the radius of curvature at the origin of the spiral, = $6v \div \pi \sin \lambda$.

Now, the deflecting force at P is equal to the centrifugal force due the velocity v at the origin of the

spiral, which is represented by $v^2 \div \frac{1}{2} a$: $\therefore f = \frac{1}{6} v \pi \sin \lambda$.

But the centrifugal force, $V^2 = R$, due the rotation of the earth at the equator, is known to be $\frac{1}{289} mg$; mg denoting the weight of the body, and $V = \frac{1}{12} \pi R$:

whence, substituting for
$$V^2$$
, we get,
$$f = \frac{\frac{1}{289} mg : \frac{1}{6} v \pi \sin \lambda : V^2 \div R;}{\pi R}$$

The centrifugal force resulting from the body's relative motion in longitude affects only the origin of the spiral, and not at all its elements, and hence has no influence on the value of f: consequently f is the total deflecting force, and is independent of the direction of the motion.

J. E. Hendelsen.

Des Moines, Io., Feb. 14.

A carboniferous genus of sharks still living.

I observe that in a late number of Science, Mr. Garman describes a new genus of sharks from the Japanese seas, under the name of Chlamydoselachus. The figure of the teeth which he gives shows the animal characterized by Mr. Garman to be a species of the genus Didymodus (Cope, Proceedings Philadelphia Academy, 1883, p. 108, equal to Diplodus Agass. Poiss. fossiles, pre-occupied in recent fishes), which has hitherto been supposed to be confined to the carboniferous and Permian periods. The species possess two, three, or four denticles. Material in my possession enables me to fix the position of this genus, which I will endeavor to explain in the next (April) number of the American naturalist. Didymodus