MAE0524 - Análise Bayesiana de dados - primeiro semestre de 2019 Professora: Márcia D'Elia Branco

LISTA 5

- 1) Um caso especial do modelo linear geral é o modelo de análise de variância usado para comparação de médias de K populações independentes normais com variâncias iguais.
- a) Considere n_j o tamanho da j-ésima amostra, com $j=1,\ldots,K$ e μ_1,\ldots,μ_K as médias populacionais. Escreva o modelo de análise de variância na estrutura do modelo linear geral, especificando a matriz de planejamento X e relacionando as médias populacionais com o vetor de parâmetros β .

Usando os resultados apresentados em aula para o ML e considerando suposições adequadas, responda a questão a seguir:

b)Um conjunto de 19 porcos foi subdividido em 4 grupos, cada um dos quais foi alimentado durante certo período com diferentes tipos de ração. Ao fim desse período os porcos foram pesados e os valores são apresentados na tabela abaixo.

Tipo de Ração		Peso (kg)			
A	133.8	125.2	143.1	128.9	135.7
В	151.2	149.0	162.7	145.8	153.5
\mathbf{C}	225.8	224.6	220.4	212.3	
D	193.4	185.3	182.8	188.5	198.6

- b.1)Compare as médias dos pesos dos grupos C e D.
- b.2) Faça uma análise de variância bayesiana do conjunto total de dados.
- 2) Considere o modelo de regressão linear simples com erros t-Student independentes. Obtenha a distribuição a posteriori do vetor (α, β) condicional a σ^2 e $W = (w_1, \dots, w_n)$, em que W é o vetor das variáveis latentes usadas na construção hierárquica do modelo.
- 3) Deseja-se ajustar o modelo não linear $\beta_0 x^{\beta_1}$, relacionando o peso (y) com o comprimento (x) de determinada espécie de peixe. Para isso será utilizada uma linearização do modelo dada por:

$$log(y) = \beta_0^* + \beta_1 log(x) + \epsilon,$$

em que $\beta_0^* = log(\beta_0)$ e $\epsilon \sim N(0, \sigma^2)$.

Na tabela abaixo apresentamos o comprimento (em cm) e o peso (em kg) de 25 exemplares de um peixe capturados na costa sul do Brasil.

X	10.2	19.0	22.3	23.8	24.9	26.1	26.9	27.9	28.5	29.2	30.1	31.0	31.7
У	0.01	0.09	0.12	0.18	0.19	0.23	0.24	0.31	0.33	0.32	0.33	0.40	0.45
X	32.4	32.9	33.3	34.1	34.6	35.5	36.3	37.0	38.0	39.0	39.6	43.0	
	0.49	0.67	0.48	0.54	0.63	0.59	0.65	0.50	0.81	0.87	0.71	0.91	

- a) Construa os diagramas de dispersão de y versus x e de log(y) versus log(x). Comente.
- b) Considerando a priori de Jeffreys, especifique a distribuição a posteriori conjunta de (β_0^*, β_1) . Simule uma amostra de tamanho M=1000 desta distribuição.
- c) Com base na amostra simulada em (b), obtenha uma amostra de (β_0, β_1) . Aproxime as distribuições a posteriori marginais via histograma dos dados simulados. Obtenha os intervalos de credibilidade 0.90 para β_0 e β_1 .
- d) Considere que a razão $\frac{\beta_1}{(10^5\beta_0)}$ seja de interesse para estudos sobre biologia da espécie. Aproxime a distribuição *a posteriori* dessa quantidade via histograma, obtenha estimativas pontuais para ela, bem como, o intervalo de credibilidade 0.90.
- 4) Considere um experimento onde os indivíduos indicam o número de eventos estressantes (y_i) aos quais foram submetidos em determinado mês (i). Os dados são apresentados na tabela a seguir

Mês	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
y	15	11	14	17	5	11	10	4	8	10	7	9	11	3	6	1	1	4

Vamos considerar o modelo de regressão loglinear Poisson:

$$log \lambda_i = \beta_0 + \beta_1 i$$

em que $Y_i \mid \lambda_i \sim Poisson(\lambda_i)$.

- (a) Sob distribuição a priori uniforme (imprópria) para (β_0, β_1) . Escreva uma função no \mathbf{R} para calcular o logaritmo da posteriori.
- (b) Use o algoritmo de metropolis com proposta passeio aleatório para simular uma amostra de tamanho 1000 da distribuição a posteriori de β_1 . Apresente os valores simulados usando o gráfico box-plot.
 - (c) Obtenha um intervalo de credibilidade 0.9 para β_1 .
- (d) Considerando o intervalo construído em (c), você diria que há eviências para rejeitar a hipótese $H_0: \beta_1 = 0$?
- 5) Num estudo para implantação de turbinas eólicas numa dada zona mediu-se a velocidade X do vento (em m/s) a uma dada altura ao longo de várias ocasiões, obtendo-se os dados $x = (x_1, \ldots, x_n)$. O modelo utilizado para descrever X é o modelo Weibull, cuja f.d.p. é proporcional a

$$\delta \alpha x^{\alpha-1} \exp\left[-\delta x^{\alpha}\right] I_{(0,\infty)}(x), \ \delta > 0, \alpha > 0.$$

Considere as seguintes distribuições a priori: $\delta \sim Gama(a,b)$ e $\alpha \sim Log - normal(c,d)$, onde a,b,c,b>0.

Obtenha as distribuições condicionais completas e indique como deveria ser implementado o algoritmo de Gibbs para obter uma amostra da distribuição a posteriori.

- 6) Seja $Y \mid p \sim Bin(n,p)$ e $\theta = log\left(\frac{p}{1-p}\right)$. Considere θ com distribuição a priori Normal com média zero e desvio padrão 0.25. Para n=5 e y=5, determine a probabilidade a posteriori de $\theta>0$ usando as duas aproximações indicadas a seguir. (Note que $\theta>0$ equivale a p>0.5)
 - (a) Use a aproximação normal para a densidade a posteriori.
- (b) Use o algoritmo de Metropolis-Hasting com proposta passeio aleatório. No algoritmo considere o desvio padrão da proposta igual a duas vezes o desvio padrão da aproximação normal obtida em (a).

Entrega: 18/06/2019