приближение функций

Для решения задач можно использовать Python.

Теоретический материал к данной теме содержится в [1, глава 11].

Отчет по лабораторной работе должен содержать следующие материалы по каждой задаче:1) постановка задачи; 2) необходимый теоретический материал; 3) решение поставленной задачи; 4) анализ полученных результатов; 5) графический материал; 6)тексты программ.

Варианты заданий к задачам 6.1-6.9 даны в ПРИЛОЖЕНИИ 6.А.

Фрагменты решения в пакете Mathcad задачи 6.1 и 6.7 даны в *ПРИЛОЖЕНИИ 6.В*.

Задача 6.1. Функция y=f(x) задана таблицей значений $y_0, y_1, \dots y_n$ в точках $x_0, x_1, \dots x_n$. Используя метод

наименьших квадратов (МНК), найти многочлен $Pm(x) = a_0 + a_1 x + ... + a_m x^m$ наилучшего среднеквадратичного приближения оптимальной степени $m=m^*$. За оптимальное значение m^* принять ту

степень многочлена, начиная с которой величина
$$\sigma_m = \sqrt{\frac{1}{n-m}\sum_{k=0}^n (P_m(x_k) - y_k)^2}$$
 стабилизируется

или начинает возрастать.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Задать векторы х и у исходных данных.
- 2. Написать программу-функцию **mnk**, найти с ее помощью многочлены Pm, m=0,1,2,..., по методу наименьших квадратов. Вычислить соответствующие им значения σ_m .
- 3. Построить гистограмму зависимости σ_m от m, на основании которой выбрать оптимальную степень m^* многочлена наилучшего среднеквадратичного приближения.
- 4. На одном чертеже построить графики многочленов Pm, m=0,1,2,..., m*, и точечный график исходной функции. Задача 6.2. В таблице приведены результаты наблюдений за перемещением x материальной точки по оси Ox в моменты времени $t \in [t_0, T]$. Известно, что движение является равномерным и описывается линейной зависимостью x(t)=vt+b. Используя метод наименьших квадратов, определить скорость v и спрогнозировать положение точки в момент времени t=2T. На одном чертеже построить график движения точки и точечный график исходных наблюдений.

Задача 6.3. Зависимость между величинами x и y описывается функцией y=f(x, a, b), где a и b — неизвестные параметры. Найти эти параметры, сведя исходную задачу к линейной задаче метода наименьших квадратов. УКАЗАНИЕ. Свести исходную задачу к линейной задаче МНК можно, сделав подходящую замену

переменных. Например, если исходная зависимость имеет вид $y = e^{a+bx^2}$, то прологарифмировав исходное

равенство и введя новые переменные $s = \ln y$ и $t = x^2$, получаем задачу об определении коэффициентов линейной зависимости s = a + b t.

Задача 6.4. В таблице приведены результаты наблюдений за движением материальной точки в плоскости (x,y).

Известно, что движение осуществляется по кривой, описываемой многочленом $y = kx^m + b$ (степень многочлена m задана в индивидуальном варианте).

Используя метод наименьших квадратов, определить коэффициенты k и b. Определить значение $\mathcal X$ координаты x, соответствующее значению y координаты y (y задано в индивидуальном варианте).

УКАЗАНИЕ. Для нахождения коэффициентов k и b составить нормальную систему МНК (базисные функции:

 χ^m , 1) и решить ее с помощью встроенной функции.

Задача 6.5. Известно, что $y=c1sin(a\pi x)+c2cos(b\pi x)$, где коэффициенты c1 и c2 подлежат определению. Используя метод наименьших квадратов, определить c1 и c2.

УКАЗАНИЕ. Для нахождения коэффициентов c1 и c2 составить нормальную систему МНК (базисные функции: $sin(a\pi x)$ и $cos(b\pi x)$) и решить ее с помощью встроенной функции.

Задача 6.6. Дана функция y=f(x). Приблизить f(x) на отрезке [a,b] интерполяционными многочленами Лагранжа 1, 2, 3 степеней. На одном чертеже построить графики приближающих многочленов и функции f(x). Для многочлена 3 степени сравнить качество приближения при различном выборе узлов интерполяции.

Задача 6.7. Дана кусочно-гладкая функция y = f(x). Сравнить качество приближения функции кусочно-линейной и глобальной интерполяциями.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Вычислить значения функции $y_i = f(x_i)$ в произвольных точках x_i , i=0,1,...,k-1, отрезка [a,b], по которым будет осуществляться интерполяция функции.
- 2. Составить программу-функцию, вычисляющую значение интерполяционного многочлена 1-ой степени по точкам (x_i, y_i) и (x_{i+1}, y_{i+1}) в произвольной точке отрезка $[x_i, x_{i+1}]$. С ее помощью вычислить приближенные значения функции f(x) при кусочно-линейной интерполяции в 3k точках исходного отрезка [a,b]. 3. Написать функцию **inter**, возвращающую значение <u>интерполяционного многочлена в форме Ньютона</u> (с разделенными разностями). Вычислить приближенные значения функции f(x) в тех же 3k точках отрезка при глобальной интерполяции, используя написанную функцию **inter**. На одном чертеже построить графики интерполирующих функций, график исходной функции f(x), а также отметить точки (x_i, y_i) , i=0,1,...,k-1, по которым осуществлялась интерполяция.
- 4. Вычислить практическую величину погрешностей Δ_j , j=0,1,...,3k-1, приближения функции f(x) в 3k точках для кусочно-линейной и глобальной интерполяций. На одном чертеже построить графики погрешностей. Сравнить качество приближения.

Задача 6.8. Дана функция y=f(x). Приблизить f(x) методом глобальной интерполяции при равномерном и чебышевском распределениях узлов интерполяции. Сравнить качество приближения.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Составить программу-функцию построения интерполяционного многочлена при произвольном распределении узлов (количество узлов любое).
- 2. Используя составленную программу, вычислить приближенные значения функции f(x)в 3k точках исходного отрезка [a, b] по k узлам интерполяции, распределенным равномерно на отрезке. На одном чертеже построить графики интерполяционного многочлена и исходной функции.
- 3. Используя составленную программу, вычислить приближенные значения функции f(x) в тех же 3k точках исходного отрезка по k узлам интерполяции, имеющим чебышевское распределение. На одном чертеже построить графики интерполяционного многочлена и исходной функции.
- 4. Сравнить качество приближения функции f(x) при разном распределении узлов.
- 5. Выполнить п. 2-4, строя интерполяционный многочлен по 2k узлам интерполяции.
- 6. Сравнить результаты при разном числе узлов.

Задача 6.9. Дана функция y=f(x). Приблизить f(x) на отрезке [a, b] методом глобальной интерполяции и указанным в индивидуальном варианте сплайном. На одном чертеже построить графики приближающей функции и функции f(x). Сравнить качество приближения при разном количестве узлов интерполяции.

ПРИЛОЖЕНИЕ 6.А.

Схема вариантов лабораторной работе N Выполняемые задачи N Выполняемые задачи 6.2.1, 6.1.1 6.6.1 6.8.1 16 6.1.16, 6.4.4, 6.7.8, 6.9.8 2 6.1.2, 6.3.1, 6.7.1, 6.9.1 17 6.1.17, 6.4.3, 6.6.9, 6.9.9 3 6.1.3, 6.4.1, 6.6.2, 6.9.2 18 6.1.18, 6.5.3, 6.7.9, 6.8.9 4 6.1.4, 6.5.1, 6.7.2, 6.8.2 19 6.1.19, 6.3.8, 6.6.10, 6.8.1 5 6.1.5, 6.3.2, 6.6.3, 6.8.3 20 6.1.20, 6.3.9, 6.7.1, 6.9.10 6 6.1.6, 6.3.3, 6.7.3, 6.9.3 21 6.1.21, 6.2.4, 6.6.11, 6.8.2 7 6.1.7, 6.3.4, 6.9.4 22 6.1.22, 6.3.10, 6.7.2, 6.9.11 6.6.4, 23 8 6.1.8, 6.2.2, 6.7.4, 6.8.4 6.1.23, 6.5.4, 6.6.12, 6.8.3 9 6.1.9, 6.5.5, 6.6.5, 6.8.5 24 6.1.24, 6.2.5, 6.7.3, 6.9.12 10 6.1.10, 6.4.2, 6.7.5, 6.9.5 25 6.1.25, 6.4.5, 6.6.13, 6.8.4 6.1.11, 6.5.2, 6.1.26, 6.2.6, 6.7.4, 11 6.6.6, 6.9.6 26 6.9.13 6.1.12, 6.3.5, 6.4.6, 12 6.7.6, 6.8.6 27 6.1.27, 6.6.14, 6.8.5

	6.1.13, 6.3.6, 6.6.7, 6.8.7	28	6.1.28, 6.5.6, 6.7.5, 6.9.14
14	6.1.14, 6.3.7, 6.7.7, 6.9.7	29	6.1.29, 6.5.7, 6.6.15, 6.8.6

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ Таблица к задаче 6.1

		ır		<u> </u>		Таблица к задаче 6.1				
x	y	x	y	x	y	x	y	х	y	
	5.1.1		.1.2		1.1.3		6.1.4		5.1.5	
-1	-2.25	0	4.568	-1	3.614	-0.5	0.72	-2.1	14.1982	
-0.7	-0.77	0.375	3.365	-0.74	1.199	-0.25	1.271	-1.8	11.4452	
-0.43	0.21	0.563	2.810	-0.48	-0.125	0	1.2	-1.5	9.1586	
-0.14	0.44	0.75	2.624	-0.21	-0.5838	0.25	0.7363	-1.2	7.2426	
-0.14	0.64	1.125	0.674	0.05	-0.538	0.5	0.24	-0.9	6.3640	
0.43	0.03	1.313	0.557	0.31	-0.2855	0.75	-0.175	-0.6	4.8182	
0.71	-0.22	1.5	0.384	0.58	0.1111	1	-0.36	-0.3	6.1088	
1	-0.84	1.690	-0.566	0.84	0.4529	1.25	-0.328	0	3.9536	
1.29	-1.2	1.875	-1.44	1.1	0.6711	1.5	0	0.3	4.6872	
1.57	-1.03	2.063	-1.696	1.36	0.6625	1.75	0.3538	0.6	4.7601	
1.86	-0.37	2.25	-1.91	1.63	0.4501	2	0.72	0.9	5.8511	
2.14	0.61	2.438	-2.819	1.89	0.157	2.25	0.6969	1.2	7.1010	
2.43	2.67	2.625	-3.625	2.15	-0.1876	2.5	0	1.5	9.1792	
2.71	5.04	2.813	-3.941	2.41	-0.542	2.75	-1.792	1.8	11.421	
3	8.90	3	-4.367	2.95	-0.1983	3	-5.16	2.1	14.097	
6	5.1.6		.1.7	6	.1.8		.1.9		.1.10	
0	-0.9	-0.70	-4.152	0	1.019	2.5	6.109	-3.6	-2.397	
0.2	-0.6482	-0.41	1.244	0.3	1.4889	2.75	2.615	-3.08	-0.401	
0.4	-0.2436	-0.12	3.182	0.6	2.2079	3	-0.157	-2.56	-0.577	
0.6	-0.1	0.17	2.689	0.9	3.0548	3.25	-2.010	-2.04	-1.268	
0.8	0.0231	0.46	0.950	1.2	3.8648	3.5	-2.697	-1.52	-0.933	
1	0.0260	0.75	-2.743	1.5	4.2161	3.75	-3.615	-1	-0.359	
1.2	0.0967	1.04	-5.839	1.8	5.1180	4	-3.478	-0.48	1.107	
1.4	-0.2203	1.33	-7.253	2.1	5.7661	4.25	-2.250	0.04	1.300	
1.6	-0.3230	1.62	-6.100	2.4	6.6720	4.5	0.193	0.56	1.703	
1.8	-0.6472	1.91	-2.144	2.7	7.1960	4.75	2.086	1.08	-0.299	
2	-0.7630	2.20	6.103	3	7.8551	5	5.882	1.6	-1.417	
6.	1.11	6.	1.12	6.	.1.13	6.	6.1.14		6.1.15	
0	2.25	-1	0.192	-0.7	1.04	-3	0.262	-0.7	3.822	
0.17	1.106	-0.75	-0.054	-0.5	1.08	-2.55	-1.032	-0.375	-1.498	
0.33	0.3951	-0.5	-0.209	-0.3	0.68	-2.1	-1.747	-0.05	-2.419	
0.5	-0.0334	-0.25	-0.429	-0.1	0.38	-1.65	-1.981	0.275	-1.292	
0.67	-0.20	0	-0.413	0.1	0.07	-1.2	-0.564	0.6	0.828	
0.83	-0.1137	0.25	-0.491	0.3	-0.03	-0.75	0.774	0.925	1.963	
1	0.0294	0.5	-0.357	0.5	-0.38	-0.3	2.400	1.25	2.401	
1.17	0.1008	0.75	-0.434	0.7	-0.22	0.15	2.131	1.575	1.877	
1.33	0.3	1	-0.140	0.9	-0.36	0.6	2.2	1.9	2.200	
1.5	-0.0021	1.25	-0.130	1.1	-0.33	1.05	-0.393	2.25	-1.378	
1.67	-0.3682	1.5	0.142	1.3	-0.28	1.5	-1.815	2.55	-2.395	
1.83	-1.119	1.75	0.288	1.5	-0.17	1.95	-0.788	2.875	-1.460	
2	-2.226	2	0.876	1.7	0.27	2.4	8.030	3.2	3.604	
	1.16		6.1.17 6.1.18			1.19		.1.20		
-3.2	-0.173	-0.7	4.166	2	1.108	6	7.079	-0.7	-12.917	
-2.66	-0.173	-0.7	-2.278	2.4	1.832	6.4	-1.509	-0.7	3.619	
-2.12	-0.374	0.08	-3.172	2.4	2.413	6.8	-7.654	-0.41	9.586	
-1.58	-1.849	0.47	-0.506	3.2	3.656	7.2	-12.211	0.17	7.949	
-1.50	-1.047	0.47	-0.500	J.2	5.050	1.4	-14,411	0.1/	1.242	

-1.04	0.123	0.86	2.748	3.6	5.126	7.6	-13.941	0.46	1.543
-0.5	1.462	1.25	2.665	4	5.552	8	-15.117	0.75	-8.057
0.04	2.399	1.64	1.353	4.4	6.024	8.4	-13.720	1.04	-16.150
0.58	1.300	2.03	-0.294	4.8	7.202	8.8	-10.702	1.33	-20.562
1.12	1.703	2.42	-1.613	5.2	8.590	9.2	-4.696	1.62	-17.720
1.66	-2.045	2.81	-2.223	5.6	8.953	9.6	3.501	1.91	-6.200
2.2	2.817	3.2	4.04	6	10.046	10	10.572	2.2	18.115
6.	1.21	6.	1.22	6.	.1.23	6	5.1.24	6.	1.25
0	-2.815	-2	-4.596	-0.5	0.061	5.5	1.542	-1	-5.265
0.25	-2.18	-1.67	-4.216	-0.42	4.185	5.75	0.652	-0.708	-1.994
0.5	-0.225	-1.33	-3.162	-0.33	7.271	6	-0.008	-0.417	0.224
0.75	1.722	-1	-2.459	-0.25	9.683	6.25	-0.620	-0.125	1.146
1	3.492	-0.67	-1.558	-0.17	11.319	6.5	-0.751	0.167	1.552
1.25	3.31	-0.33	-0.876	-0.08	11.469	6.75	-1.183	0.458	-0.148
1.5	2.945	0	-0.168	0	11.324	7	-1.229	0.75	-1.233
1.75	1.449	0.33	0.44	0.08	10.495	7.25	-1.139	1.042	-2.297
2	0.334	0.67	1.715	0.17	9.659	7.5	-0.770	1.333	-2.4
2.25	-1.906	1	2.106	0.25	7.345	7.75	-0.586	1.625	-2.317
2.5	-3.430	1.33	2.845	0.33	5.132	8	-0.066	2.917	-1.223
2.75	-2.983	1.67	3.83	0.42	2.619	8.25	0.633	2.208	2.257
3	0.087	2	4.634	0.5	0.069	8.5	1.542	2.5	7.806
6.	1.26	6.	1.27	6.	.1.28	6	5.1.29	6.	1.30
-1	-5.317	-0.4	0.918	-1.3	-1.762	0	5.241	-0.8	3.503
-0.56	-0.581	-0.05	1.258	-0.85	0.955	0.288	4.892	-0.475	-0.55
-0.13	1.137	0.3	0.685	-0.4	3.614	0.575	3.521	-0.15	-1.681
0.313	0.478	0.65	-1.314	0.05	4.707	0.863	1.121	0.175	-1.263
0.75	-0.790	1	-1.709	0.5	3.721	1.15	-1.357	0.5	0.421
1.188	-2.502	1.35	-3.446	0.95	0.402	1.438	-3.5	0.825	1.301
1.625	-2.482	1.7	-2.473	1.4	-3.101	1.725	-3.528	1.15	2.551
2.063	0.554	2.05	0.084	1.85	-2.489	2.013	0.257	1.475	2.937
2.5	7.904	2.4	6.031	2.3	9.868	2.3	10.515	1.8	2.097

							. ототтищет и	х зада те о			
6.2.1	t	1	1.4	1.8	2.6	3	3.4	3.8	4.2	4.6	5
	х	10.60	18.01	25.85	44	50.64	60.2	68.27	77.77	84.50	93.4
6.2.2	t	1	1.625	2.25	2.88	3.5	4.13	4.75	5.375	6	
	х	14.86	27.15	41.19	54	69.03	81.6	96.11	109.4	124.03	
6.2.3	t	0	0.5	1	1.5	2	2.5	3	3.5	4	
	x	3.732	9.378	15.53	22	29.52	35.2	42.35	48.61	55.51	
6.2.4	t	0	0.6	1.2	1.8	2.4	3	4.2	4.8	5.4	6
	x	6.449	19.97	33.91	48.2	64.15	76.9	106.2	122.2	135.6	149
6.2.5	t	2	3.2	4.4	5	5.6	6.8	7.4	8		
	х	18.50	35.73	54.65	62.4	71.74	90.5	98.10	107.6		
6.2.6	t	5	5.5	6	6.5	7	7.5	8	8.5	9	
	х	13.85	14.30	15.84	16.9	18.89	19.7	21.03	22.08	23.95	

Таблица к задаче 6.3

		, , , ,						
N	N	N	N	N				
f(x,a,b)	f(x,a,b)	f(x,a,b)	f(x,a,b)	f(x,a,b)				
x y	x y	x y	x y	x y				
6.3.1	6.3.2	6.3.3	6.3.4	6.3.5				

a	ae^{bx^2}		$a + \frac{b}{x}$		$a+b\ln x$		$\sqrt{a+bx^2}$		$ae^{b x }$	
-2.5	0.876	0.1	5.53	0.1	0.479	-2.0	1.649	-1.5	0.0829	
-2	0.29523	0.3	2.7967	0.2	0.7562	-1.6	1.942	-1.2	0.2192	
-1.5	0.75958	0.5	2.25	0.3	0.9184	-1.2	2.142	-0.9	0.5794	
-1	1.49184	0.7	2.0157	0.4	1.0335	-0.8	2.274	-0.6	1.5315	
-0.5	2.23671	0.9	1.8856	0.5	1.1227	-0.4	2.35	-0.3	4.0481	
0	2.56000	1.1	1.8027	0.6	1.1957	0	2.375	0	10.7	
0.5	2.23671	1.3	1.7454	0.7	1.2573	0.4	2.35	0.3	4.0481	
1	1.49184	1.5	1.7033	0.8	1.3107	0.8	2.274	0.6	1.5315	
1.5	0.75958	1.7	1.6712	0.9	1.3579	1.2	2.142	0.9	0.5794	
2	0.29523	1.9	1.6458	1.0	1.4	1.6	1.942	1.2	0.2192	
2.5	0.0876	2.1	1.6252	1.1	1.4381	2.0	1.649	1.5	0.0829	
	6.3.6	6.3.7		6.3.8			6.3.9		6.3.10	
e'	a+b x	$a+b(x+2)^3$		$\sqrt{a+bx}+2$		(ax+b)	b)sin x	$(ax+b)\cos x$		
-2	8.16617	-4	-6.47	1	4.0199	0.5	1.7499	-1.0	0.756	
-1.6	5.92986	-3.2	-3.2086	1.7	3.9404	0.75	2.5732	-0.8	1.0033	
-1.2	4.30596	-2.4	-2.3433	2.4	3.8574	1	3.2817	-0.6	1.2215	
-0.8	3.12677	-1.6	-2.2767	3.1	3.7706	1.25	3.8197	-0.4	1.4	
-0.4	2.27050	-0.8	-1.4114	3.8	3.6793	1.5	4.1396	-0.2	1.5289	
0	1.64872	0	1.85	4.5	3.5827	1.75	4.2065	0	1.6	
0.4	2.27050	0.8	9.105	5.2	3.4799	2.0	3.5208	0.2	1.6073	
0.8	3.12677	1.6	21.951	5.9	3.3693	2.25	2.7829	0.4	1.5474	
1.2	4.30596	2.4	41.986	6.6	3.249	2.5	1.8224	0.6	1.4196	
1.6	5.92986	3.2	70.806	7.3	3.1158	2.75	0.6915	0.8	1.2262	
2	8.16617	4	110.01	8	2.9644	3	0.6915	1.0	0.9725	

		_						тици к з				
6.4.1	<i>m</i> =2	X	2.3	2.6	2.8	3	3.3	3.6	3.8			
	$\frac{-}{y}$ =7	у	16	19	22	26	28	33	37			
6.4.2	m=2	X	1.5	2.1	2.7	3.3	3.9	4.5	5.1			
	$\overline{y} = 8$	у	11.1	10.3	9.08	7.64	5.92	3.90	1.60			
6.4.3	m=2	X	2.5	2.8	3.1	3.4	3.7	4	4.3	4.6		
	<u>y</u> =6	у	21	18.5	15.6	12.5	9.10	5.40	1.42	2.14		
6.4.4	m=3	X	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	
	$\overline{y} = 5$	у	3.69	3.90	4.3	4.97	5.96	7.35	9.2	11.57	14.54	
6.4.5	m=3	X	1	1.4	1.8	2.2	2.6	3	3.4	3.8	4.2	4.6
	<u>y</u> =8	у	2.1	2.45	3.07	4.03	5.42	7.3	9.76	12.87	16.72	21.4
6.4.6	m=3	X	1.7	1.9	2.1	2.3	2.5	2.7	2.9	3.1		
	$\frac{-}{y}$ =7	у	50.6	48.1	45.0	41.2	36.7	31.4	25.3	18.3		

Таблица к задаче 6.5

Значения $x_k = -1 + 0.1k$, k = 0,1,...,20

6.5.1	6.5.2	6.5.3	6.5.4	6.5.5	6.5.6	6.5.7	6.5.8
a=4	a=3	a=3	a=3	a=4	a=2	a=1	a=2
b=2	<i>b</i> =1	b=2	b=4	b=0	b=3	b=4	b=1
y_k	y_k	y_k	y_k	y_k	y_k	y_k	y_k
-0.3156	-1.0044	-1.3111	0.1931	0.8984	2.002	3.053	-2.32
-1.193	-0.4724	-2.8426	1.242	1.0916	1.7937	0.945	-0.9861
-0.6763	-0.2432	-2.4981	1.7388	1.0262	0.39	-2.45	0.0841
0.6968	-0.4119	-0.2912	1.7317	0.802	-0.9052	-2.4651	0.583
1.2	-0.6785	2.3164	1.2585	0.7105	-1.0023	0.4665	0.4912
0.2828	-0.5996	3.5128	0.1876	0.9056	0.0001	3.052	0.002
-0.7221	-0.0449	2.3528	-1.1307	1.0958	1.0025	0.9463	-0.4925
-0.4711	0.7788	-0.2767	-2.0600	1.0365	0.9054	-2.4652	-0.593
0.5024	1.4016	-2.5041	-2.0782	0.7972	-0.37	-2.467	-0.0841
0.7083	1.4446	-2.8408	-1.1179	0.6868	-1.7940	0.940	0.9852
-0.3085	1.0099	-1.3088	0.2087	0.9066	-2.003	3.053	2.315
-1.204	0.4743	0.7309	1.2317	1.0858	-0.5597	0.9417	3.3891
-0.6968	0.2475	1.6866	1.7312	1.0128	1.6174	-2.4703	3.8051
0.67	0.4091	1.0946	1.7316	0.7833	2.9025	-2.4712	3.2961
1.2049	0.6512	-0.2552	1.2483	0.7028	2.2468	0.938	1.9129
0.3095	0.6007	-0.8962	0.1898	0.9035	0.001	3.042	-0.003
-0.7008	0.0361	-0.2370	-1.1263	1.0815	-2.2365	0.933	-1.913
-0.5057	-0.7662	1.0992	-2.0577	1.0366	-2.902	-2.472	-3.2963
0.491	-1.3814	1.6841	-2.0713	0.7552	1.6172	-2.471	-3.8051
0.7244	-1.4429	0.7336	-1.1084	0.7185	0.5593	0.942	-3.3892
-0.3	-1.0072	-1.2845	0.2066	0.9218	2.0004	3.052	-2.285

N		N		N		
f(x)	[<i>a</i> , <i>b</i>]	f(x)	[<i>a</i> , <i>b</i>]	f(x)	[<i>a</i> , <i>b</i>]	
6.6.1	-	6.6.	2	6.6	.3	
sh(x)	[-3,3]	$tg(x+\sqrt{x})$	[-0,0.4]	arccos(x)	[-1,1]	
6.6.4	<u> </u>	6.6.	5	6.6	.6	
$\ln(\sin(\sqrt{x}))$	[2.5,3.5]	$4^{\cos(x)}$	[0.5,1.5]	$x^3\cos(x^2)$	[0,3]	
6.6.7	1	6.6.	8	6.6	.9	
$x + e^{-x^2}$	[0,2]	th(x)	[-2,2]	$x \ln \sqrt{x-2}$	[3,5]	
6.6.1	0	6.6.1	1	6.6.12		
arcsin(x)	[-1,1]	$x^2 \cos(x)$	$\left[\frac{\pi}{2},\pi\right]$	$x\sin(x^2)$	$\left[0,\frac{\pi}{2}\right]$	
6.6.1	6.6.13		6.6.14		15	
$(x-0.5)^3 \ln(x)$	[0.3,0.8]	$0.4^{x\sin(x)}$	[1,1.4]	$x^{-3}e^x$	[0.5,1.5]	

Таблица к задаче 6.7

II N	N N	I N I
11	19	1N

f(x)	[<i>a</i> , <i>b</i>]	f(x)	[<i>a</i> , <i>b</i>]	f(x)	[<i>a</i> , <i>b</i>]		
6.7.1		6.7.2	•	6.7	6.7.3		
$ \sin x $	$[-\pi,\pi]$	$\left x^2+x\right $	[-2,2]	$\frac{1}{1+2\cdot x }$	[-2,2]		
6.7.4		6.7.5		6.7.6			
$ x-3 \cdot(x^2+1)$	[0,4]	$ x-1 e^x$	[0,2]	$ \cos x $	$[0,\pi]$		
6.7.7		6.7.8		6.7	.9		
x(x -4)	[-5,5]	$(x+1)\cdot x^2-2 $	[0,2]	$e^{\left \sin(2x)\right }$	[0.8, 2.3]		

N		N		N		
f(x)	$f(x) \qquad [a,b]$		$f(x) \qquad [a,b]$		[a,b]	
6.8.1		6.8.	2	6.8	.3	
$\cos x^2$ $[-\pi,\pi]$		$e^x \sin(5x)$	[1.5,3.5]	$\sin x^2$	$[-\pi,\pi]$	
6.8.4		6.8.	5	6.8.6		
$e^{\cos(3x)}$	$[0,\pi]$	$\cos(e^x)$	[1.4, 2.4]	e^{-x^2}	[-1,1]	
6.8.7		6.8.	8	6.8.9		
$\sin(e^x)$	[0.4,2.4]	$\frac{1}{1+25x^2}$	[-1,1]	$e^{\sin(2x)}$	$[-\pi,\pi]$	

Таблица к задаче 6.9

N		N		N	
f(x)	[<i>a</i> , <i>b</i>]	f(x)	[<i>a</i> , <i>b</i>]	f(x)	[<i>a</i> , <i>b</i>]
6.9.1		6.9.2		6.9.3	
$5 \cdot \sin(x^2)$	[0,4]	$3 \cdot \sin(x^3)$	[1,2.5]	$7 \cdot e^x \cdot \sin(x^2)$	[0,4]
фундаментальный		с отсутствием узла		естественный	
6.9.4		6.9.5		6.9.6	
$6\frac{\sin(x)}{x}$	[5,15]	$10\frac{\cos(x^3)}{x}$	[1,2.75]	$11 \cdot \frac{\sin(x^3)}{x}$	[1,2.75]
локальный		кубический дефекта 1		кубический дефекта2	
6.9.7		6.9.8		6.9.9	
$8 \cdot e^x \cdot \cos(x^2)$	[1,3.75]	$12 \cdot \sin(e^x)$	[1,1.28]	$40 \cdot \cos(x^3)$	[3,3.5]
с отсутствием узла		квадратичный		локальный	
6.9.10		6.9.11		6.9.12	
$110 \cdot \frac{\sin(x^3)}{x}$	[3,3.5]	$x^2 \cos(x)$	[0,5]	$10 \cdot \frac{\cos(x)}{x}$	[3,5]
фундаментальный		естественный		кубический дефекта 1	

6.9.13		6.9.14		6.9.15	
$9 \cdot \cos(e^x)$	[1,1.28]	$e^{\cos(3x)}$	[0,4]	$x\sin(x^2)$	[0,5]
с отсутствием узла		квадратичный		локальный	

ПРИЛОЖЕНИЕ 6.В.

Фрагмент решения задач 6.1.0 и 6.7.0

Векторы исходных данных:

$$\begin{array}{c|cccc}
 & -2.75 \\
 & -2 \\
 & -1 \\
 & 0.5 \\
 & 1
\end{array}
\qquad
\begin{array}{c|ccccc}
 & -0.2 \\
 & -1.1 \\
 & -2.3 \\
 & 0.1 \\
 & 1.1
\end{array}$$

Функция **mnk**, строящая многочлен степени m по методу наименьших квадратов, возвращает вектор а коэффициентов многочлена:

Входные параметры:

x, y - векторы исходных данных; n+1 - размерность x, y.

Вычисление коэффициентов многочленов степени 0,1,2,3 по методу наименьших квадратов:

n :- 4

a0
$$\overline{\cdot}$$
- mnk(x,y,n,0) a0 = -0.48 a1 = $\begin{bmatrix} -0.133 \\ 0.408 \end{bmatrix}$
a1 :- mnk(x,y,n,1) a2 :- mnk(x,y,n,2) a2 = $\begin{bmatrix} -1.102 \\ 1.598 \\ 0.717 \end{bmatrix}$ a3 = $\begin{bmatrix} -1.164 \\ 1.591 \\ 0.792 \\ 0.026 \end{bmatrix}$

Функция Р возвращает значение многочлена степени m в точке t;многочлен задается с помощью вектора коэффициентов а:

$$P(a,m,t) := \sum_{j=0}^{m} a_j \cdot t^j$$

Функция $\sigma 0$ возвращает значение среднеквадратичного уклонения многочлена P(a,m,t):

$$\sigma O(a, m) := \sqrt{\frac{1}{n-m} \cdot \sum_{k=0}^{n} (P(a, m, x_k) - y_k)^2}$$

Вычисление значений σ_m , m=0,1,2,3:

$$\sigma_0 = \sigma_0 = \sigma_0(a0, 0)$$
 $\sigma_1 = \sigma_0(a1, 1)$ $\sigma_2 = \sigma_0(a2, 2)$ $\sigma_3 = \sigma_0(a3, 3)$

Гистограмма

<u>Вывод</u>: оптимальная степень $m^*=2$; многочлен наилучшего среднеквадратичного приближения: $P2(x)=1.102+1.598x+0.717x^2$

Графики многочленов степени 0,1,2 и точечный график исходной функции:

$$\mathsf{t} \ \overline{:} \mathsf{-} \ \mathsf{x}_0^{}, \mathsf{x}_0^{} + 0.05 ... \mathsf{x}_\mathsf{n}^{} \qquad \mathsf{i} \ \overline{:} \mathsf{-} \ 0... \ \mathsf{n}$$

Функция inter возвращает значение <u>интерполяционного многочлена в форме Ньютона</u> (с разделенными разностями) в точке t:

Вычисление значений интерполяционного многочлена в точках $\, t_k^{} \colon$

k
$$= 0..40$$

 $t_k = x_0 + \frac{(x_n - x_0) \cdot k}{40}$ $q_k = inter(x, y, n, t_k)$

Графики интерполяционного многочлена, многочлена наилучшего приближения P2 и точечный график исходной функции:

ЛИТЕРАТУРА

1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.