MATA22 Booklet 2 Notes

Definitions:

- 1. The set of all complex numbers, denoted by C, is the set of all numbers in the form of a + ib, where a and b are real numbers.

 a is the real part, denoted by Re.
 - b is the imaginary part, denoted by Im.

Let
$$z = a + ib$$

2. The modulus or magnitude of z is denoted by |z| or r.

$$|z| = \sqrt{a^2 + b^2}$$

- 3. The polar form of z is $r(\cos(\Theta) + i\sin(\Theta))$.
- 4. The angle Θ is called the argument of z, denoted by Arg(z). If $-\pi \leq \Theta \leq \pi$, then Θ is the principal argument of z.

$$\Theta = \tan^{-1}(\frac{b}{a})$$

If
$$x = a - ib$$
, then

Complex Number Arithmetic:

Let
$$x = a + ib$$
.

Let
$$y = c + id$$
.

Let r be a scalar.

1. Addition:

$$x + y = (a + ib) + (c + id)$$

= $(a + c) + i(b + d)$

2. Multiplication:

$$xy = (a + ib)(c + id)$$

= $ac + iad + ibc + i^2bd$
= $(ac - bd) + i(ad + bc)$

3. Scalar Multiplication:

$$rx = r(a + ib)$$

= $ra + irb$

Theorem:

Let
$$z_1 = a + ib = r_1(\cos(\Theta_1) + i\sin(\Theta_1))$$

Let
$$z_2 = c + id = r_2(\cos(\Theta_2) + i\sin(\Theta_2))$$

1.
$$(z_1)(z_2) = (r_1)(r_2)[\cos(\Theta_1 + \Theta_2) + i\sin(\Theta_1 + \Theta_2)]$$

2.
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\Theta_1 - \Theta_2) + i\sin(\Theta_1 - \Theta_2)]$$

$$=Z$$

4.
$$|z_1|^2 = (z_1)$$

$$\frac{1}{z_1+z_2}=\frac{1}{z_1}+\frac{1}{z_2}$$

5.

$$Z_{i}^{-1} = \frac{\overline{Z_{i}}}{||Z_{i}||^{2}}$$

6.

$$Z_1/Z_2 = \overline{Z_1}/\overline{Z_2}$$

7. 8. $|z_1 + z_2| \le |z_1| + |z_2|$ (Triangle Inequality)

Examples:

1. Express $(1 + i)^8$ in the form of a + ib.

Step 1: Find r

$$r = \sqrt{a^2 + b^2}$$

$$= \sqrt{1^2 + 1^2}$$

$$= \sqrt{2}$$

Step 2: Find Θ

$$\Theta = \tan^{-1}(\frac{b}{a})$$
$$= \tan^{-1}(\frac{1}{1})$$
$$= \frac{\pi}{4}$$

Step 3: Write it in polar form

$$z = r(\cos(\Theta) + i\sin(\Theta))$$
$$= \sqrt{2}(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}))$$

Step 4: Plug it into the equation

$$z^{n} = r^{n}(\cos(n \Theta) + i\sin(n \Theta))$$

$$z^{8} = (\sqrt{2})^{8}(\cos(\frac{8\pi}{4}) + i\sin(\frac{8\pi}{4}))$$

$$= 16$$

- 2. Find the four fourth roots of -16.
- 3. Step 1: Find r $r = \sqrt{(-16)^2}$ = 16

Step 2: Find
$$\Theta$$

 $\Theta = \tan^{-1}(\frac{0}{-16})$

Step 3: Plug it into the equation

$$z^{1/n} = r^{1/n} \left(\cos\left(\frac{\Theta}{n} + \frac{2k\pi}{n}\right) + i\sin\left(\frac{\Theta}{n} + \frac{2k\pi}{n}\right)\right)$$
$$z^{1/4} = 2\left(\cos\left(\frac{k\pi}{2}\right) + i\sin\left(\frac{k\pi}{2}\right)\right)$$

k = 0, 1, 2, ... n - 1

Plug in the different values for k and solve.