

Benchmarking Beyond Branin

UNI FREIBURG

Katharina Eggensperger University of Freiburg, Germany

The case for solid benchmarks

The case for solid benchmarks

- Enable & track progress of a research community
- Identify strengths and weaknesses of algorithms
- Compare different methods

HPOlib: Once upon a time

Algorithm	#hyp.params (conditional)	continuous/ discrete	
Branin	2(-)	2/-	
Hartmann 6d	6(-)	6/-	
Log. Reg.	4(-)	4/-	
LDA ongrid	3(-)	-/3	
SVM ongrid	3(-)	-/3	
HP-NNET	14(4)	7/7	
HP-NNET	14(4)	7/7	
HP-DBNET	36(27)	19/17	
Auto-WEKA	786(784)	296/490	
Log. Reg. 5CV	4(-)	4/-	
HP-NNET 5CV	14(4)	7/7	
HP-NNET 5CV	14(4)	7/7	

Eggensperger, Feurer, Hutter, Bergstra, Snoek, Hoos, Leyton-Brown: "Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters", BayesOpt'13

HPOlib: What we have learned

Logistic Regression on MNIST

[Snoek et al, 2012; LeCun et al, 1998]

4 continuous hyperparameters

>1.5h for 100 function evaluations

Eggensperger, Feurer, Hutter, Bergstra, Snoek, Hoos, Leyton-Brown: "Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters", BayesOpt'13

HPOlib: What we have learned

HP-DBNET on MRBI

[Bergstra et al, 2011; Larochelle et al, 2007]

36 mixed continuous and discrete hyperparameters

>48h for 200 function evaluations on a GPU

Eggensperger, Feurer, Hutter, Bergstra, Snoek, Hoos, Leyton-Brown: "Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters", BayesOpt'13

Speed up your experiments

Speed up your experiments

How to construct the surrogate?

1. Collect $< \lambda, f(\lambda) >$ pairs that

 cover configuration space with a focus on high-performing regions

2. Fit a regression model \hat{f} that

- scales to large datasets
- does fast predictions
- has a high accuracy

How to construct the surrogate?

1. Collect $< \lambda, f(\lambda) >$ pairs that

- cover configuration space with a focus on high-performing regions
- → Reuse data collected during hyperparameter optimization

2. Fit a regression model \hat{f} that

- scales to large datasets
- does fast predictions
- has a **high accuracy**
- → (Approximate) GPs, kNN, SVRs, Neural Networks, Random Forests, ...

Logistic Regression on MNIST

[Snoek et al, 2012; Y. LeCun et al, 1998]

4 continuous hyperparameters

Eggensperger, Hutter, Hoos, Leyton-Brown: "Efficient Benchmarking of Hyperparameter Optimizers via Surrogates", AAAI'15

Logistic Regression on MNIST

[Snoek et al, 2012; Y. LeCun et al, 1998]

4 continuous hyperparameters

Eggensperger, Hutter, Hoos, Leyton-Brown: "Efficient Benchmarking of Hyperparameter Optimizers via Surrogates", AAAl'15

HP-DBNET on MRBI

[Bergstra et al 2011; Larochelle et al, 2007]

36 mixed hyperparameter

Eggensperger, Hutter, Hoos, Leyton-Brown: "Efficient Benchmarking of Hyperparameter Optimizers via Surrogates", AAAI'15

HP-DBNET on MRBI

[Bergstra et al 2011; Larochelle et al, 2007]

36 mixed hyperparameter

True function evaluation: **15min**Surrogate benchmark prediction: **<1 sec**

Eggensperger, Hutter, Hoos, Leyton-Brown: "Efficient Benchmarking of Hyperparameter Optimizers via Surrogates", AAAI'15

- Every optimization method has strengths and weaknesses
- Surrogate-based benchmark problems allow for:
 - easy debugging
 - efficient comparisons

	Artificial Functions	Hyperparameter Optimization Problems
Realistic	x	✓
easy to set up	✓	x
cheap to run	✓	x
runnable w/o special hardware	✓	X

- Every optimization method has strengths and weaknesses
- Surrogate-based benchmark problems allow for:
 - easy debugging
 - efficient comparisons

	Artificial Functions	HPOlib
Realistic	X	✓
easy to set up	✓	✓
cheap to run	✓	x
runnable w/o special hardware	✓	X

- Every optimization method has strengths and weaknesses
- Surrogate-based benchmark problems allow for:
 - easy debugging
 - efficient comparisons

	Artificial Functions	Surrogate benchmarks
Realistic	x	✓
easy to set up	✓	✓
cheap to run	✓	✓
runnable w/o special hardware	✓	✓

Going Beyond

Going Beyond

Complex Hyperparameter Spaces

Challenges:

- Many dimensions
- Mixed categorical and continuous hyperparameters
- Conditional hyperparameters

Examples:

- Auto-Weka [Thornton et al, 2013]
- Auto-sklearn [Feurer et al, 2015]

Auto-sklearn's pipeline

one-hot encoding	2
imputation	1
balancing	1
rescaling	1

name	$\#\lambda$
extreml. rand. trees prepr.	5
fast ICA	4
feature agglomeration	4
kernel PCA	5
rand. kitchen sinks	2
linear SVM prepr.	3
no preprocessing	-
nystroem sampler	5
PCA	2
polynomial	3
random trees embed.	4
select percentile	2
select rates	3
one-hot encoding	2
imputation	1
balancing	1
rescaling	1

name	$\#\lambda$	name	# λ
extreml. rand. trees prepr. fast ICA feature agglomeration kernel PCA rand. kitchen sinks linear SVM prepr. no preprocessing nystroem sampler PCA polynomial random trees embed. select percentile select rates	5 4 5 2 3 - 5 2 3 4 2 3	AdaBoost (AB) Bernoulli naïve Bayes decision tree (DT) extreml. rand. trees Gaussian naïve Bayes gradient boosting (GB) kNN LDA linear SVM kernel SVM multinomial naïve Bayes	4 2 4 5 - 6 3 4 7 2
one-hot encoding imputation balancing rescaling	2 1 1 1	passive aggressive QDA random forest (RF) Linear Class. (SGD)	3 2 5 10

Bayesian Optimization can handle that space

MNIST

Bayesian Optimization can handle that space

Auto-sklearn Workflow

https://github.com/automl/auto-sklearn

Auto-sklearn Workflow

https://github.com/automl/auto-sklearn

Auto-sklearn Workflow

https://github.com/automl/auto-sklearn

Going Beyond

Expensive Target Functions

Challenges:

- Expensive runs
- Only few function evaluations feasible

Examples:

- Robotics
- Deep Learning

Expensive Target Functions

Challenges:

- Expensive runs
- Only few function evaluations feasible

Examples:

- Robotics
- Deep Learning

Recent approaches:

- MTBO [Swersky et al, 2013]
- Freeze-Thaw Bayesian optimization [Swersky et al, 2014]
- Hyperband [Li et al, 2016]

- Multi-fidelity Gaussian Process
 Bandit Optimization [Kandasamy et al, 2016]
- FABOLAS [Klein et al, 2016]

Example: Fabolas

FAst Bayesian Optimization on LArge Data Sets

https://github.com/automl/RoBO

A. Klein and S. Falkner and S. Bartels and P. Hennig and F. Hutter: "Fast Bayesian optimization of Machine Learning Hyperparameters on Large Datasets", ArXiv'16

FAst Bayesian Optimization on LArge Data Sets

https://github.com/automl/RoBO

FAst Bayesian Optimization on LArge Data Sets

https://github.com/automl/RoBO

FAst Bayesian Optimization on LArge Data Sets

https://github.com/automl/RoBO

FAst Bayesian Optimization on LArge Data Sets

Small data subsets suffice to estimate performance of a configuration

→ Model data set size as an additional degree of freedom

https://github.com/automl/RoBO

ResNet on CIFAR-10

[He et al, 2015]

4 continuous hyperparameters

Going Beyond

Optimizing across tasks

Challenges:

- Tune hyperparameters across a set of tasks

$$\lambda^* \in \operatorname{argmin}_{\lambda \in \Lambda} \mathbb{E}_{t \in T} f_t(\lambda)$$

Examples:

- Hyperparameter tuning across crossvalidation folds
- General algorithm configuration

→ Objective value varies across tasks

→ Widely varying running time distributions depending on seed

Algorithm Configuration

Varying objective value across tasks

Large noise

Algorithm Configuration

- Varying objective value across tasks
- Reject parameter setting before evaluating it on all tasks

Large noise

Evaluate runs multiple times

Bayesian Optimization with Random Forests can handle this data

Available Benchmarks: AClib2

Solver	Domain	# Params	# Instances	Budget
Clasp	ASP	90	240/240	4d
CPLEX	MIP	73	1000/1000	2d
LPG	Planning	67	2000/2000	2d
ProbSat	SAT	9	250/250	3h
Xgboost	ML	11	10/1	500 runs
SVM	ML	7	10/1	500 runs

https://bitbucket.org/mlindauer/aclib2

Can we build surrogate models for these benchmark problems, too?

How to construct the surrogate?

1. Collect $< \lambda, t, f(\lambda, t) >$ tuples that

 cover configuration space with a focus on highperforming regions

2. Fit a regression model \hat{f} that

- scales to large datasets & does fast predictions
 has a high accuracy
- Mimics distribution of the objective value

How to construct the surrogate?

1. Collect $< \lambda, t, f(\lambda, t) >$ tuples that

- cover configuration space with a focus on highperforming regions
- → Reuse data collected during configuration

2. Fit a regression model \hat{f} that

- scales to large datasets & does fast predictions
 has a high accuracy
- Mimics distribution of the objective value
- → Quantile Regression Forests

Can we build surrogate models for these benchmark problems, too?

→Run your experiments more than 100 times faster!

https://bitbucket.org/mlindauer/aclib2 on branch Surrogates

Introducing HPOlib2

Algorithm	#hyper- parameter	Dataset
Artificial Functions	1-X	-
Auto-sklearn	>100	OpenML
Logistic Regression	4	MNIST
SVM	2	MNIST
ResNet	4	CIFAR-10
ConvNet	5	CIFAR-10
Fully Connected Net	10	MNIST

https://github.com/automl/HPOlib2

from hpolib.benchmarks.ml import svm_benchmark

```
from hpolib.benchmarks.ml import svm_benchmark
  Download datasets
b = svm_benchmark.SvmOnMnist()
```

```
from hpolib.benchmarks.ml import svm_benchmark
 Download datasets
b = svm_benchmark.SvmOnMnist()
# Evaluate one configuration
b.objective_function(configuration=[5, -5])
```

```
from hpolib.benchmarks.ml import svm benchmark
# Download datasets
b = svm_benchmark.SvmOnMnist()
# Evaluate one configuration
b.objective_function(configuration=[5, -5])
 Returns running time and loss
# {'cost': 251.88, 'function_value': 0.012}
```

```
from hpolib.benchmarks.ml import svm benchmark
# Download datasets
b = svm_benchmark.SvmOnMnist()
# Evaluate one configuration on subset
b.objective_function(configuration=[5, -5],
                     dataset_fraction=0.5)
 Returns running time and loss
# {'cost': 110.80, 'function_value': 0.025}
```


Summary & Conclusion

- Solid benchmark problems (beyond Branin)
 - track progress
 - thorough comparisons
 - reproducible research
- Surrogate-based benchmarks
 - rapid development
 - feasible large-scale experiments

https://bitbucket.org/mlindauer/aclib2

https://github.com/automl/HPOlib2

