

미디어기술콘텐츠학과 강호철

- 레이블링의 이해
 - 배경과 객체를 구분 한 후 객체 간 구분 필요
 - 레이블링을 이용하여 객체 간 구분
 - 연결 구성 요소 레이블링 (CCL, Connected Component Labeling)
 - 객체 인식을 위한 전처리 과정으로 사용
 - 이진화 영상에서 수행 (배경: 검은색, 객체: 흰색)
 - 연결성 정의에 따라 결과가 달라질수 있음

- 레이블링의 이해
 - 4-way connectivity
 - 8-way connectivity

- 레이블링의 이해
 - 레이블링의 입력과 출력

0	0	1	1	0	0	0	0				
1	1	1	1	0	0	2	0				
1	1	1	1	0	0	0	0				
0	0	0	0	0	3	3	0				
0	0	0	3	3	3	3	0				
0	0	0	3	0	0	3	0				
0	0	3	3	3	3	3	0				
0	0	0	0	0	0	0	0				
	(b)										

- 고전적 레이블링 기법
 - 1966년 A. Rosenfeld 의 논문
 - 등가 테이블(equivalent table)을 만들면서 영상을 두 번 스캔(scan)함으로써 레이블링을 수행
 - 첫 번째 스캔에서는 레이블을 전파시키면서 등가 테이블을 만들고, 두 번째 스캔에서는 등가 테이블을 참조하여 각 픽셀에 고유의 레이블을 부여
 - 4-이웃 연결성 고려

❖스캔: 영상의 모든 픽셀을 위에서 아 래로, 왼쪽에서 오른쪽 방향으로 순서 대로 방문하는 작업

a[0][0]	a[0][1]	a[0][2]	 a[0][639]
a[1][0]	a[1][1]	a[1][2]	 a[1][639]
	~()()	**E 1E 1	[][]
	•••		
a[479][0]	a[479][1]	a[479][2]	 a[479][639]
<u> </u>	ω[· , /][¹]	<u> </u>	 <u>u[</u>

■ 고전적 레이블링 기법

임의의 위치에서 위쪽과 왼쪽 두 이웃 픽셀을 조사하여

- 1. 두 이웃 픽셀에 레이블이 존재하지 않은 경우,
 - A. 새로운 레이블을 지정하고,
 - B. 자기 자신의 레이블을 가리키는 새 등가 테이블 항목을 생성한다.
- 2. 두 이웃 픽셀 중 하나에만 레이블이 존재하는 경우
 - A. 이웃 픽셀과 동일한 레이블을 지정한다.
- 3. 두 이웃 픽셀 모두에 레이블이 존재하며, 서로 동일한 레이블인 경우 A. 이웃 픽셀과 동일한 레이블을 지정한다.
- 4. 두 이웃 픽셀 모두에 레이블이 존재하며, 서로 다른 레이블인 경우
 - A. 두 레이블 중 작은 번호의 레이블을 지정하고,
 - B. 두 레이블 중 큰 번호의 레이블이 작은 번호의 레이블을 가리키도 록 등가 테이블을 조정한다.

- 고전적 레이블링 기법
 - 등가 테이블 정리
 - 등가 테이블에 존재하는 두 개의 레이블 쌍 (L_{large}, L_{small})이 서로 다른 경우, L_{small} 값을 E_q(L_{small})으로 변경
 - 이때 함수 E_q(L)은 등가 테이블에서 레이블 L이 가리키고 있는 레이블을 반환하는 함수
 - 두 번째 스캔
 - 영상 전체를 다시 스캔하면서 객체에 해당하는 픽셀에 현재 매겨 진 레이블 번호가 L_k 라면, 등가 테이블을 참조하여 E_q(L_k) 값을 새 레이블로 할당

- 고전적 레이블링 기법
 - 작은 크기의 영상에 대하여 알고리즘 검증
 - 테스트 영상:8x8 크기의 이진 영상
 - I: 오브젝트 픽셀, 빈칸: 배경 픽셀

	1		1		1	
1	1	1	1		1	
1	1	1	1		1	
					1	
	1		1	1	1	
1	1	1	1	1	1	

■ 고전적 레이블링 기법

							_				 							_		
								1	1										1	1
	1		2		3			2	1			1		2		3			2	1
4	1	1	1		3			3	3		4	1	1	1		3			3	3
4	1	1	1		3			4	1		4	1	1	1		3			4	1
					3			5	5							3			5	3
	5		6	6	3			6	5			5		6	6	3			6	3
7	5	5	5	5	?			7	5		7	5	5	5	5	3			7	5
(e) (f)																				
								1	1										1	1
	1		2		3			2	1			1		2		3			2	1
4	1	1	1		3			3	3		4	1	1	1		3			3	3
4	1	1	1		3			4	1		4	1	1	1		3			4	1
					3			5	5							3			5	5
	5		6	6	3			6	3			5		6	6	3			6	5
7	5	5	?	*	*			7	5		7	5	5	5	*	*			7	5
				(c)						1					(d)			_		

■ 고전적 레이블링 기법

- 고전적 레이블링 기법
 - 레이블이 I부터 순서대로 증가하도록 등가 테이블 정리

1	1		1	1
2	1		2	1
3	3		3	2
4	1		4	1
5	3		5	2
6	3		6	2
7	3		7	2
		(a)		

	1		1		2					
1	1	1	1		2					
1	1	1	1		2					
					2					
	2		2	2	2					
2	2	2	2	2	2					
(b)										

■ 실습

■ OpenCV 함수

cv2.connectedComponents(image[,labels[,connectivity[,itype]]]): 연결된 components의 개수를 반환하고 Labeling을 해준다.

parameter

- image: input
- labels: output
- connectivity: 4 or 8이웃 연결성
- itype: output image label type

cv2.connectedComponentsWithStats(image[,labels[,stats[,centroids[,c위의 기능 및 중심 좌표 및 범위를 알려주기 때문에 Component를 특정화 시킬 수 있다.

return

- stats: x,y,width,height,area
- centroids: 중심 좌표

가톨릭대학교 THE CATHOLIC UNIVERSITY OF KOREA

- 실습
 - OpenCV 함수

화이트 보드

영상처리 프로그래밍 기초

- Python으로 배우는 OpenCV 프로그래밍
 - 김동근 지음
 - 가메출판사, 2018
- OpenCV4 로 배우는 컴퓨터 비전과 머신러닝
 - 황선규 지음
 - 길벗, 2019
- Visual C++ 영상처리 프로그래밍
 - 황선규 지음
 - 길벗, 2015

