Universidade Federal de Minas Gerais Departamento de Matemática - ICEX Análise II - 2021 Prova 1 - 23/06/2021

1. (6 pontos) Defina $f: \mathbb{R}^2 \to \mathbb{R}$ por

$$f(x,y) = \begin{cases} xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right), & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

Prove que $\frac{\partial f}{\partial y}(x,0) = x$ para todo x e $\frac{\partial f}{\partial x}(0,y) = -y$ para todo y. Prove que $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$.

- 2. (7 pontos) Seja $f:\mathbb{R}^2 \to \mathbb{R}$ uma aplicação de classe C^1 . Prove que f não pode ser injetiva.
- 3. (6 pontos) Seja $f: U \to \mathbb{R}$ contínua no aberto $U \subset \mathbb{R}^2$, tal que $(x^2 + y^4)f(x, y) + f(x, y)^3 = 1$ para qualquer $(x, y) \in U$. Prove que $f \in C^{\infty}$.
- 4. (7 pontos) Sejam $U \subset \mathbb{R}^m$ aberto, $\varphi: U \times [a,b] \to \mathbb{R}^n$ contínua, com derivada parcial contínua $\partial_1 \varphi: U \times [a,b] \to \mathcal{L}(\mathbb{R}^m; \mathbb{R}^n)$, e $\alpha, \beta: U \to [a,b]$ funções de classe C^1 . Considere a aplicação $f: U \to \mathbb{R}^n$, definida por

$$f(x) = \int_{\alpha(x)}^{\beta(x)} \varphi(x, t) dt.$$

Prove que $f \in C^1$ e calcule $f'(x) \cdot h$ para $x \in U$ e $h \in \mathbb{R}^m$ arbitrários.

- 5. (7 pontos) Faça o que se pede:
 - Enuncie o Teorema da forma local das imersões.
 - Demonstre o Teorema da forma local das imersões.
 - Prove que toda imersão é uma aplicação localmente injetiva.

Professor Arturo Fernández Pérez