CS772: DL4NLP Assignment-3 Report

Team Id: 25 Debabrata Biswal, 203050024 Ashish Aggarwal, 203050015 Keshav Agarwal, 203050039

Date: 12/04/2020

1. Problem Definition:

- Identifying the rating of a review using sentiment analysis
- Input dataset contains reviews and their rating score between 1 to 5 low to high.
- Given a review, we predict the rating score. Examples:
 - O This product is really awesome should have a rating of 5.
 - O This product is pathetic should have a rating of 1.

2. Architecture:

- 1. **Input Preprocessing Layer**: We are doing the following operations:
 - a. Convert all characters in input string to lowercase.
 - b. Remove all punctuations.
 - c. Tokenize the given input strings using NLTK library word_tokenize function.
 - d. Remove all stopwords excluding negative words using the NLTK library stopwords function.
 - e. Encode the vocabulary word to numbers.
 - f. Split the train data to train and validation set of 80-20% using scikit learn library train_test_split function.
- 2. **Embedding Layer**: We are comparing two setting of configuration.
 - a. Pre-Trained Embedding: We are using pre-trained FastText embedding of length 300 for initializing the weights of embedding layer and then training on our input set.
 - b. No Pre-Trained Embedding: We are directly training the weights of embedding layer on input set using gensim library word2vec function.
- 3. NN Layer: We are comparing results of 5 different neural network architectures.
 - a RNN
 - b. LSTM
 - c. Bi-LSTM
 - d. GRU
 - e. Bi-GRU
- 4. Dense Layer: We are using this layer to reduce the dimension of output to 5 classes.
- 5. Softmax Layer: To get the probability distribution over set of 5 classes.

output. [(None,3)]

Fig: Architecture Diagram

3. Prediction and Evaluation:

- Four evaluation metrices captured for comparing all 5 NN architecture performance:
 - o Precision
 - o Recall
 - o F1-score
 - Accuracy
- We are using scikit-learn library classification_report , confusion_matrix and precision_recall_fscore_support functions to capture the performance metrices.

4. Performance Comparison:

a. Pre-Trained Embedding:

Model	Dense_layers	Precision	Recall	F1_score	Accuracy
Bi-GRU	0	0.33	0.58	0.42	0.58
Bi-GRU	1	0.69	0.62	0.64	0.62
Bi-GRU	2	0.33	0.58	0.42	0.58
Bi-LSTM	0	0.33	0.58	0.42	0.58
Bi-LSTM	1	0.68	0.57	0.61	0.57
Bi-LSTM	2	0.33	0.58	0.42	0.58
GRU	0	0.33	0.58	0.42	0.58
GRU	1	0.33	0.58	0.42	0.58
GRU	2	0.33	0.58	0.42	0.58
LSTM	0	0.33	0.58	0.42	0.58
LSTM	1	0.66	0.52	0.57	0.52
LSTM	2	0.33	0.58	0.42	0.58
RNN	0	0.33	0.58	0.42	0.58
RNN	1	0.67	0.57	0.61	0.57

RNN	2	0.33	0.58	0.42	0.58

b. Without Pre-Trained Embedding:

Model	Dense_layers	Precision	Recall	F1_score	Accuracy
Bi-GRU	0	0. 69	0.62	0.65	0.62
Bi-GRU	1	0.69	0.63	0.65	0.63
Bi-GRU	2	0. 69	0.62	0.65	0.62
Bi-LSTM	0	0.70	0.61	0.64	0.61
Bi-LSTM	1	0. 69	0.62	0.64	0.62
Bi-LSTM	2	0.68	0.61	0.63	0.61
GRU	0	0.33	0.58	0.42	0.58
GRU	1	0.33	0.58	0.42	0.58
GRU	2	0.33	0.58	0.42	0.58
LSTM	0	0.68	0.61	0.64	0.61
LSTM	1	0.69	0.56	0.60	0.56
LSTM	2	0.68	0.54	0.59	0.54
RNN	0	0.67	0.56	0.60	0.56
RNN	1	0.66	0.58	0.61	0.58
RNN	2	0.67	0.64	0.65	0.64

5. Qualitative Analysis:

- a) Not word Holds a strong negative sentiment:
 - Review 'product is not bad' should have less probability of class 1 compared to 'product is bad'.
 - Review 'product is good' has a correct review of 4 or 5 and reduces to 2 or 3 when not is added.

Review	Rating	Class 1	Class 2	Class 3	Class 4	Class 5
product is not bad	1	0.508	0.354	0.101	0.023	0.015
product is bad	1	0.336	0.238	0.161	0.131	0.134
product is not good	2	0.206	0.277	0.268	0.157	0.093
product is good	4	0.047	0.062	0.143	0.38	0.368

- b) There is noise in training data. But our model is predicting right. Example:
 - In the first sentence of the below image user has positive review but ratings given in training set is 1 which is wrong.
 - Likewise in the last sentence user has negative sentiment but rating label is 5. Our model is predicting 1 correctly because of words like expensive, no which has negative sentiment associated with them.

	Unnamed: 0	reviews	ratings	pred
19843	19843	Clean and bright!! Just what I needed!!	1	5
5240	5240	This is the best brand of blush.love the colors too.	1	5
2207	2207	Used it before, no change. IT'S expensive!9	5	1