DSA 8020 R Lab 4: Model Selection and Model Checking

your name here

Contents

Savings rates in 50 countries

1

Savings rates in 50 countries

The savings data frame has 50 rows (countries) and 5 columns (variables):

- 1. sr: savings rate personal saving divided by disposable income *This variable will be used as the response*
- 2. pop15: percent population under age of 15
- 3. pop75: percent population over age of 75
- 4. dpi: per-capita disposable income in dollars
- 5. ddpi: percent growth rate of dpi

The data is averaged over the period 1960-1970.

Data Source: Belsley, D., Kuh. E. and Welsch, R. (1980) Regression Diagnostics Wiley.

Load the dataset

Code:

```
data(savings, package = "faraway")
```

1. Perform the best subset selection and select the "best" model using R_{adj}^2

Code:

Answer:

2. Perform a stepwise selection using AIC

Code:

Answer:

3. Perform a general linear F-test (with $\alpha=0.1$) to choose between the full model (i.e., using the all 4 predictors) and the reduce model that include pop15, pop75, and ddpi as the predictors

Code:

Answer:

4. Make a residual plot of the model selected by AIC . Then, comment on the model assumptions
Code:
Answer:
5. Use both histogram and qqplot to examine the normality assumption on error
Code:
Answer:
6. Calculate the leverage values to check if there is any high leverage points (i.e., $h > \frac{2p}{n}$)
Code:
Answer:
7. Compute jackknife residuals to identify outlier(s)
Code:
Answer:
8. Identifying influential observations by computing DFFITS
Code:
Answer: