Notes: DNN、CNN、Transformer 模型各跑 2018、2020 12 個月。

第一部分

使用 DNN/CNN/Transformer 預測 2020/1 至 2020/12 的月營收金 額(共12個月)

Q1、分析營收金額預測結果 (e.g. 討論各模型的預測分數差異和變數重 要性、最佳和最差模型分別為何) 並標明判斷結果好壞的衡量指標。

- 1. 各模型預測能力比較:
 - a. CNN 表現相較 DNN、Transformer 差:
 - i. 由【圖 1】預測金額圖形來看,在有進行資料平減以及沒有進 行資料平減的兩情況下, DNN 和 Transformer 模型預測出來的 金額都離 Expected 較接近,而 CNN 則偏離較遠。
 - ii. 由【圖 2】預測分數 RMSE 圖形來看,無論有沒有進行資料平 减,藍線大部分皆落在綠線及紅線以上,也就是 CNN 相比於 DNN 和 Transformer 有較高的均方根誤差,代表預測值和實際 值之間的距離大、模型預測能力較差。
 - iii. 由【圖 3】預測分數 MAE 圖形來看,無論有沒有進行資料平 减,藍線大部分皆落在綠線及紅線以上,也就是 CNN 相比於 DNN 和 Transformer 有較高的平均絕對誤差,代表預測值和實 際值之差地絕對值大、模型預測能力差。

推測原因如下:

- 可能是因為每個模型都有各自最佳的使用場景,或許 CNN 更擅長進行圖像或視覺相關的處理,因此在數據或 是自然語言方面表現相較 DNN 和 Transformer 較差。
- b. 資料經過平減後,模型預測能力變好:
 - i. 由【圖 4】預測金額圖形來看, DNN 和 Transformer Model 在 經過資料平減的模型(實線)相較於使用原始資料的模型(虚 線),離 Expected 較接近,因此可知資料經過平減後,模型的 預測能力提高。
 - ii. 由【圖 5】預測分數 RMSE 圖形來看,無論使用 DNN、CNN 還是 Transformer,實線大部分落在虛線以下,也就是平減後可

- 以有較低的均方根誤差,代表預測值和實際值之間的距離小、 模型預測能力好。
- iii. 由【圖 6】預測分數 MAE 圖形來看,無論使用 DNN、CNN 還是 Transformer,實線大部分落在虛線以下,也就是平減後有較低的平均絕對誤差,代表預測值和實際值之差地絕對值小、模型預測能力好。

推測原因如下:

- 降低離群值的影響:進行標準化可以減少離群值或異常值 對模型的影響,避免對模型訓練產生干擾,進而提高模 型預測能力。
- 減少特徵之間的差異性: 進行標準化可以把不同數值範圍 和單位統一到相同標準,減少特徵間的差異性,避免某 些特徵權重過大或過小,影響模型學習。

【圖1、各模型預測營收金額】

【圖2、各模型 RMSE】

【圖 3、各模型 MAE】

【圖4、各模型預測營收金額】

【圖 5、各模型 RMSE】

【圖 6、各模型 MAE】

2. 各模型變數重要性:

由【圖7】中可以看出以下為較重要的變數,並推測原因如下:

- a. t-1、t-2、t-3:前1~3個月反應了最近的趨勢,通常影響當月營收較大,因此模型預測時變數重要性高。
- b. t-12、t-13、t-14: 前一年或前一年附近月份的數據反映季節性變化,因此對預測也重要。
- c. t-36、t-48: 前三年獲四年的數據反應較長期的趨勢變化,因此也可能影響模型預測。

【圖7、各模型變數重要性】

3. 最佳 & 最差模型

以 RMSE 作為模型好壞衡量標準,最佳及最差模型特性分析如下:

- a. 如【圖 8】,排除表現較差的 CNN 模型, DNN 及 Transformer 兩者最 佳模型在 2020-08 及 2020-09
 - i. 如【圖 10】, t-1 及 t-2 為最重要的變數: 因為月營收屬於時間 序列資料,相鄰的月份之間通常存在某種關係,尤其受到前一 至兩個月的趨勢影響,所以前一個月以及前兩個月的營收資料 通常對月營收預測最為重要。
- b. 如【圖 9】, CNN、DNN 及 Transformer 最差模型皆在 2020 年底
 - i. 推測可能的原因是 2020 年疫情流行,到年底呈現升溫趨勢, 全球經濟的衰退或是消費模式變化導致模型較難進行準確的預 測。

【圖 8、以 RMSE 衡量的最佳模型】

modelName	dataType	scoreType	min_month	min_score
dnn	def	RMSE	2020-09	680977.0

modelName	dataType	scoreType	min_month	min_score
cnn	def	RMSE	2020-03	1591284.0

modelName	dataType	scoreType	min_month	min_score
transformer	def	RMSE	2020-08	827583.0

【圖 9、以 RMSE 衡量的最差模型】

modelNa	me dataTy	pe scoreT	ype max_m	onth max_score
2 d	lnn (def RN	MSE 202	20-11 4333622.0
modelName	dataType	scoreType	max_mont	h max_score
cnn	org	RMSE	2020-1	2 21960777.0
modelName	dataType	scoreType	max_mont	:h max_score
transformer	org	RMSE	2020-1	2 8421225.0

【圖 10、以 RMSE 衡量的最佳&最差模型變數重要性比較】

以 MAE 作為模型好壞衡量標準,最佳及最差模型特性分析如下:

- c. 如【圖 11】,排除表現較差的 CNN 模型, DNN 及 Transformer 兩者 最佳模型同樣在 2020-08 及 2020-09
 - i. 如【圖 13】, t-1 及 t-2 為最重要的變數: 因為月營收屬於時間 序列資料,相鄰的月份之間通常存在某種關係,尤其受到前一 至兩個月的趨勢影響,所以前一個月以及前兩個月的營收資料 通常對月營收預測最為重要。
- d. 如【圖 12】,排除表現相較好的 DNN 最差模型, CNN、Transformer 的最差模型皆在 2020-12
 - i. 如【圖 13】,最差模型的 t-12 相較於最佳模型而言較不重要,而 t-24、t-48 則較為重要: 這意味著一年前的數據相比於兩年前的數據更為重要,可能因為營收具有季節性,也就是在每年的某個月營收可能都會較高或較低,而較長期的趨勢則影響較小,因此在進行預測時,去年同期營收對於模型準確度貢獻較大。

【圖 11、以 MAE 衡量的最佳模型】

modelName	dataType	scoreType	min_month	min_score
dnn	def	MAE	2020-09	163233.0
modelName	dataTvpe	scoreType	min month	min score
cnn	def	MAE	2020-02	280394.0
modelName	dataType	scoreType	min_month	min_score
transformer	def	MAE	2020-08	162106.0

【圖 12、以 MAE 衡量的最差模型】

modelName	dataType	scoreType	max_month	max_score
dnn	org	MAE	2020-06	527774.0

【圖 13、以 MAE 衡量的最佳&最差模型重要性比較】

Q2、和 2018 的預測結果做比較,並與作業三 RandomForest 和 XGBoost 的結果做比較。

O2-1: 2018 和 2020 預測結果比較:

1. 相同:

a. DNN、Transformer 模型相較 CNN 準確度較高: 由【圖 14】~【圖 17】 2018 及 2020 年 RMSE、MAE 圖片比較可知,無論預測年度為何或是

- 資料是否經過平減,DNN、Transformer 模型表現大致比 CNN 還好,可能因為 CNN 較適用於視覺化的處理,所相較例外兩個模型較難準確進行數據預測。
- b. 進行資料平減後模型預測能力較高: 由【圖 14】~【圖 17】2018 及 2020 年 RMSE、MAE 圖片比較可知,無論使用 DNN、CNN 或是 Transformer 模型進行預測,進行平減後的資料大致表現較好,因為資料經過平減後,可以減少異常值對模型的影響、提高模型學習效率和穩定性,以及準確性。
- c. t-1、t-2 為最佳模型重要變數: 由【圖 18】~【圖 18】2018 及 2020 年 RMSE、MAE 衡量標準下各模型最佳/最差模型最佳變數圖片可知,t-1、t-2 為最佳模型預測時的重要變數,推測因為月營收屬於時間序列資料,而過去資料能夠提供數據趨勢,且當月資料尤其受到前 1~2 個月影響最深,因此 t-1、t-2 為預測時的重要變數。

【圖 14、2018 RMSE】

【圖 15、2020 RMSE】

【圖 16、2018 MAE】

【圖 17、2020 MAE】

【圖 18、2018 最佳/最差模型重要變數】

RMSE

MAE

【圖 19、2020 最佳/最差模型重要變數】

RMSE

MAE

2. 相異:

a. 近期預測相比於以前預測能力變差: 由【圖 20】~【圖 23】RMSE 以及 MAE 圖片比較可發現 202001-202212 的預測表現相比於 201801-201912 來得差,推測是因為近幾年受到疫情等因素影響,導致使得經濟環境或市場變化較大,模型無法完全捕捉這些較大的變化,因此預測能力比較低。

【圖 20、2018 RMSE】

【圖 21、2020 RMSE】

【圖 22、2018 MAE】

【圖 23、2020 MAE】

Q2-2 DNN、CNN、Transformer 和作業三 RandomForest 和 XGBoost 預測結果比較:

1. 相同:

a. 進行資料平減後模型預測能力較高: 由【圖 24】~【圖 29】預測金額圖、RMSE、MAE 圖片比較可知,無論使用 XGBoost、 Random Forest、 DNN、 CNN,或是 Transformer 模型進行預測,進行平減後的

資料大只表現較好,因為資料經過平減後,可以減少異常值對模型的 影響、提高模型學習效率和穩定性,以及準確性。

【圖 24、RandomForest、XGBoost 預測金額】

【圖 25、DNN、CNN、Transformer 預測金額】

【圖 26、RandomForest、XGBoost RMSE】

【圖 27、DNN、CNN、Transformer RMSE】

【圖 28、RandomForest、XGBoost MAE】

【圖 29、DNN、CNN、Transformer MAE】

2. 相異:

a. DNN、Transformer 準確度較高: 由【圖 30】~【圖 33】RMSE、MAE 圖片比較可知,無論資料是否經過平減,CNN、Transformer 表現大致比 RandomForest、XGBoost、CNN 還好。可能因為 DNN、Transformer 在進行數據預測的情境下較有優勢。

【圖 30、RandomForest、XGBoost RMSE】

【圖 31、DNN、CNN、Transformer RMSE】

【圖 32、RandomForest、XGBoost MAE】

【圖 33、DNN、CNN、Transformer MAE】

第二部分

鎖定產業進行預測,並分析預測結果

01:定義所挑選的產業,說明資料集處理方式。

1. 產業選擇:

選擇「半導體」(TSE 產業別 = 24)。

2. 選擇依據:

選擇資料筆數足夠大的產業,確保模型準確率及可比較性。

3. 資料集處理:

複製已經修改時間資料格式資料處理的 dataframe,命名為 org_data_semi,將所有非「半導體」分類的公司資料全部刪除後,共有 129 間公司。

4. 預測模型及衡量指標:

使用 CNN 、 DNN 及 Transformer 模型,並以 RMSE、MAE 作為模型好壞的衡量指標。

5. 資料平減:

使用標準化方式進行平減,對 X 做標準化,並以 X 的平均數及標準差對 y 做標準化,期望可以提高模型準確性和穩定性。

Q2: 分析 2020/1 至 2022/12 月營收金額的預測結果(須標明使用之模型 和衡量指標

1.模型準確率預測結果:

1.1 以 RMSE、MAE 作為衡量依據可得經過資料平減後模型表現較好:

由【圖 34】、【圖 35】RMSE 及 MAE 圖形中可以發現資料經過平減後模型表現較佳。推測是因為平減過程可以去除數據當中的異常值,改善數據的質量,幫助模型更有效地進行學習和準確預測。

【圖 34、半導體產業 RMSE】

【圖 35、半導體產業 MAE】

1.2 經資料平減的模型中,單一產業分析模型表現效能較好:

由【圖 36】~【圖 39】RMSE 及 MAE 圖形可看出,相比於全產業的營收預測,把產業限縮到半導體單一產業,平減模型的預測表現稍微較好,推測可能有以下幾個原因:

- a. 全產業預測較為複雜:相比於單一產業,全產業模型同時捕捉各產業的 數據波動,需考慮多個因素與營收之間以及多個產業間的複雜關係,使 模型的複雜度較高、預測較不確定。
- b. 數據多樣性: 相比於單一產業模型只需要處理特定產業數據,全產業的 數據來自不同領域,具有較大的差異性,因此模型準確解釋數據並進行 預測的難度較高。

【圖 36、全產業各模型 RMSE】

【圖 37、半導體產業各模型 RMSE】

【圖 38、全產業各模型 MAE】

【圖 39、半導體產業各模型 MAE】

2.半導體產業最佳&最差模型特性及重要變數:

2.1 使用平減後資料進行預測,以及以 RMSE 作為衡量標準的最佳模型中, t-1、t-2、t-3、t-4 為重要變數:

由【圖 40】、【圖 41】可以看出進行半導體產業營收預測時,重要變數包含 t-1、t-2、t-3、t-4 期資料,近期歷史資料重要性高,推測可能為以下原因:

- 時間序列相關性與季節變化:半導體業的營收可能受到市場需求、供應鏈狀況、技術發展的因素影響,而這些因素通常有時間相依性,所以過去1、2個月的營收數據對未來的預測有較高參考價值。
- 滯後效應: 半導體產業的生產和銷售周期相比其他產業稍微較長,所以有時需要數月時間才能完全反應營收數據,因此過去幾個月的營收數據對於當期的預測通常較為重要。

【圖 40、使用平减後資料進行預測之各模型重要變數】

【圖 41、RMSE 標準下最佳&最差模型重要變數】

- 2.2 由【圖 42】、【圖 43】可知,使用 RMSE、MAE 作為衡量標準下,以 DNN、CNN、Transformer 進行半導體產業營收預測在 2020 年 4 月、6 月、9 月模型表現較差,上網搜尋半導體產業相關事蹟以及自行猜測,推測可能為以下原因導致模型較不容易進行月營收預測:
 - 2020 年 4 月受全球疫情影響:
 - 。 COVID 疫情大約在 2020 年 3 月開始在全球爆發,可能導致半導體業受到供應鏈中斷、生產停滯或需求下降等重大影響,而首當其衝應該是 4 月的營收波動,因此模型無法準確捕捉疫情對營收的影響。
 - 2020年9月15日美國華為禁令緩衝期的最後一天:
 - 美國進行的半導體制裁禁止向中國客戶提供尖端產品、設備或 技術,提高了全球半導體產業的不確定性,因此模型較難準確 預測半導體產業9月營收。
 - o 参考網址: https://www.bbc.com/zhongwen/trad/business-54151243

【圖 42、RMSE 標準下 DNN、CNN、Transformer 最差模型】

modelName	dataType	scoreType	max_month	max_score
dnn	org	RMSE	2020-06	3264010.0
modelName	dataType	scoreType	max_month	max_score
cnn	org	RMSE	2020-09	11920471.0
modelName	dataType	scoreType	max_month	max_score
transformer	org	RMSE	2020-04	3555637.0

【圖 43、MAE 標準下 DNN、CNN、Transformer 最差模型】

modelName	dataType	scoreType	max_month	max_score
dnn	org	MAE	2020-09	488393.0
modelName	dataType	scoreType	max_month	max_score
cnn	org	MAE	2020-09	2276744.0
modelName	dataType	scoreType	max_month	max_score
transformer	org	MAE	2020-04	665506.0