1 Problem description

Consider a stochastic optimization problem where an investor has paid $Q \in \mathbb{R}$ units of cash for the use of an electricity storage of maximum capacity \tilde{C} over time period [0,T]. The investor aims to use the storage optimally in order to maximize their terminal wealth by trading electricity at the prevailing market prices $(P_t)_{t=0}^T$. Any money generated over time will be invested in the money market at the prevailing money market rate $(r_t)_{t=0}^T$. We assume that if U_t units of energy is bought from the electricity market, the level of stored energy increases by $L_t(U_t)$, where L_t is a concave function on the real line. If U_t is negative, it means that $-U_t$ units of energy is sold in the electricity market.

Given a probability space (Ω, \mathcal{F}, P) with a filtration $(\mathcal{F}_t)_{t=0}^T$ (an increasing sequence of sub- σ -algebras of \mathcal{F}), consider the problem

maximize
$$Eu(Z_T)$$
 over $(Z, C, U) \in \mathcal{N}$
subject to $Z_0 = -Q$,
 $Z_t \leq (1 + r_t)Z_{t-1} - P_tU_t$, (1)
 $C_t \leq (1 - l_t)C_{t-1} + L_t(U_t)$,
 $C_t \in [0, \bar{C}]$,

where Z_t is the amount of money invested in the money market, C_t is the amount of energy in the storage at time t and \mathcal{N} denotes the linear space of three-dimensional stochastic processes adapted to the filtration $(\mathcal{F}_t)_{t=0}^T$. The parameter l_t is the storage loss over period [t-1,t].

2 Price model

We chose the following price model:

$$ln(P_t) = x_t + S_t$$

where (S_t) is a deterministic seasonality function, and (x_t) is a first order autoregressive process:

$$x_t = \phi x_{t-1} + \sigma \epsilon_t$$

where $\epsilon_t \sim \mathcal{N}(0, 1)$.