Repaso tema 6

1.- Sea $f: Q^3 \rightarrow Q^3$ la aplicación lineal dada por

$$f(x,y,z) = \left(2x + y, \frac{1}{2}x + \frac{1}{2}y + 2z, x + y + 5z\right)$$

Sean $B_1 = \{(1,-1,1); (2,-2,1); (1,1,-1)\}$ y $B_2 = \{(-1,0,0); (6,1,2); (8,0,-1)\}$ Entonces la matriz de f en las bases B_1 y B_2 es

a)
$$\begin{pmatrix} 1 & 2 & -3 \\ 2 & -1 & 1 \\ -3 & 1 & 3 \end{pmatrix}$$
 b) $\begin{pmatrix} 9 & 12 & 11 \\ \frac{7}{4} & \frac{11}{4} & \frac{7}{2} \\ 3 & 5 & 7 \end{pmatrix}$ c) $\begin{pmatrix} 3 & 2 & -1 \\ 2 & 2 & -1 \\ -1 & -1 & 1 \end{pmatrix}$

- d) No tiene sentido la pregunta pues B_2 no es base de Q^3
- **2.-** ¿Cuál de las siguientes aplicaciones lineales $f:(Z_7)^3 \to (Z_7)^3$ tiene que $N(f)=L\{(1,2,4)\}$ e Im $f=\{x+2y+4z=0$

a)
$$f(x,y,z) = (x+y+z, x+2y+3z, y+3z)$$

b)
$$f(x,y,z) = (6x + y + 5z, 4x + y + 2z, y + 3z)$$

c)
$$f(x,y,z) = (4x + y + 2z, x + y + z, y + 3z)$$

d)
$$f(x,y,z) = (2x + 3y + 5z, 5x + 4y + 2z, 4x + 6y + 3z)$$

3.- Sea $f: R^3 \to R^3$ la aplicacion lineal definida por f(x,y,z) = (x+y, x+z, 2x+y+z). Las ecuaciones cartesianas del subespacio Im(f) son

a)
$$\begin{cases} x+y=0\\ x+z=0\\ 2x+y+z=0 \end{cases}$$
 b)
$$\begin{cases} x+y=0\\ x+z=0 \end{cases}$$

- c) Puesto que dim(Im(f)) = 3, no tiene ecuaciones cartesianas.
- $\mathsf{d})\{x+y-z=0$
- **4.-** Sea $f: (Z_7)^2 o (Z_7)^4$ la aplicación lineal definida por las condiciones f(1,0) = (1,2,0,5) y f(0,1) = (2,2,4,2) y sea $g: (Z_7)^4 o (Z_7)^2$ la aplicación lineal dada por g(x,y,z,t) = (x+4y+z+3t, 2x+y+5t). Sea U el núcleo de g y V la imagen de f. Una base de U+V es
 - a) $\{(1,2,0,5),(2,2,4,2),(1,0,3,1),(0,1,5,4)\}$
 - b) $\{(1,0,4,4),(1,0,3,1),(0,1,5,4)\}$
 - c) $\{(1,2,0,5),(2,2,4,2),(1,4,1,3),(2,1,0,5)\}$
 - d) $\{(1,2,0,5),(2,2,4,2),(1,1,2,3)\}$
- **5.-** Sea $V = (Z_{11})_2[x]$ y sea $D: V \to V$ la aplicación derivada. Entonces:
 - a) $\{0\}$ es una base del núcleo de D y $\{1,x,x^2\}$ una base de la imagen.
 - b) $\{7\}$ es una base del núcleo de D y $\{6+3x,9+10x\}$ una base de la imagen.
 - c) $\{x\}$ es una base del núcleo de D y $\{1,x^2\}$ una base de la imagen.
 - d) $\{1\}$ es una base del núcleo de D y $\{1,x\}$ una base de la imagen.

6.- Sea $f: (Z_7)^2 \to (Z_7)^2$ la aplicación lineal f(x,y) = (3x + 5y, x + y), y sea $B = \{(1,2),(1,1)\}$ una base de $(Z_7)^2$. Entonces la matriz de f en la base B es

a)
$$\begin{pmatrix} 4 & 1 \\ 2 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 6 & 0 \\ 2 & 3 \end{pmatrix}$ c) $\begin{pmatrix} 0 & 1 \\ 4 & 3 \end{pmatrix}$ d) $\begin{pmatrix} 2 & 4 \\ 0 & 5 \end{pmatrix}$

7.- Sea
$$A = \begin{pmatrix} 2 & 1 & 1 & 3 \\ 3 & 4 & 1 & 1 \\ 2 & 1 & 3 & 2 \end{pmatrix}$$
 la matriz asociada a $f: \mathbb{Z}_5^4 \to \mathbb{Z}_5^3$ en las bases

canónicas de Z_5^4 y Z_5^3 . Entonces

- a) f es inyectiva.
- b) El núcleo de f es el subespacio de ecuación x + y + 2z + t = 0
- c) f es sobreyectiva.
- d) La imagen de f es el subespacio generado por (2,3,2) y (3,1,2).

8.- Sea
$$f: (Z_3)^2 \to (Z_3)^2$$
 la aplicación lineal cuya matriz en la base $B = \{(1,2),(1,1)\}$ es $\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$. Entonces la matriz de f en la base canónica de $(Z_3)^2$ es

a)
$$\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$

9.- Sea
$$f: (Z_3)^4 \to (Z_3)^4$$
 la aplicación lineal definida por

$$f(x,y,z,t) = (2x+y+z, 2x+y+z, 2x+2y+t, y+2z+t)$$

Entonces:

- a) El vector (1,2,0,1) pertenece a la imagen de f
- b) $\dim(N(f) \cap \operatorname{Im}(f)) = 1$
- c) $(Z_3)^4 = N(f) \oplus \operatorname{Im}(f)$
- d) $N(f) \subseteq \text{Im}(f)$

10.- Sea
$$f: (Z_5)^3 \to (Z_5)^3$$
 la aplicación lineal dada por

$$f(1,1,1) = (0,2,3)$$

$$f(0,1,2) = (3,1,1)$$

$$(3,2,1) \in N(f)$$

Entonces f(4,0,3) vale

a)
$$(0,4,4)$$
 b) $(3,3,4)$ c) $(0,0,0)$ d) $(2,2,4)$

11.- Sea
$$U_1 \equiv \begin{cases} 2x + y = 0 \\ x + y + z = 0 \\ 2x + 3y + 4z = 0 \end{cases}$$
 y $U_2 = \langle (2,3,2), (1,0,1) \rangle$ subespacios

vectoriales de $(Z_5)^3$.

- a) No existe $f: (Z_5)^3 \to (Z_5)^3$ tal que $N(f) = U_2$ e Im $(f) = U_1$.
- b) Existe una única aplicación lineal $f: (Z_5)^3 \to (Z_5)^3$ tal que $N(f) = U_1$ e $Im(f) = U_2$.
- c) Existe al menos una aplicación lineal $f: (Z_5)^3 \to (Z_5)^3$ tal que $N(f) = U_2$ e $Im(f) = U_1$.
 - d) $(Z_5)^3 = U_1 \oplus U_2$.
- **12.-** Dada la aplicación lineal $f: R^4 \to R^3$ f(x,y,z,t) = (x+z+t,y+2t,+xy+z+t), ¿qué afirmación es falsa?
 - a) La imagen tiene dimensión 3
 - b) Es sobreyectiva pero no inyectiva.
 - c) Una base del núcleo es $\{(-1,0,1,0)\}$
 - d) Es inyectiva pero no sobreyectiva