Introdução à Tensão Superficial

Leandro Martínez
Instituto de Química – UNICAMP

1 de Agosto de 2012

A tensão superficial, γ, é o trabalho necessário para aumentar a área de uma superfície, por unidade de área. Ou seja,

$$\gamma = \frac{dW}{dA}$$

tem unidades, portanto, no Sistema Internacional, de Joules por metro ao quadrado (J m $^{-2}$). Queremos correlacionar esse trabalho com a concentração de uma determinada espécie na superfície de uma solução. Portanto, imaginemos que nossa solução pode ser particionada em duas fases, o seu interior, e sua superfície. No interior, ou na superfície, o surfactante tem potenciais químicos característicos. Chamemos de μ_i o potencial químico do surfactante no interior da solução, e de μ_s o potencial químico do surfactante na superfície. O potencial químico é a Energia Livre de Gibbs associada à adição de uma molécula em uma determinada fase. Portanto, se há um ganho de energia livre associado à migração de uma molécula do interior do líquido para sua superfície, o trabalho necessário para aumentar essa mesma superfície deve ser diminuído pela mesma quantidade. Desta forma, existe uma associação direta entre a tensão superficial de um líquido na presença de um surfactante e a diferença de potencial químico do surfactante na superfície relativamente ao seio da solução. Não havendo variação de pressão ou temperatura, a variação da energia livre corresponde à variação dos potenciais químicos. Portanto temos, quantitativamente,

$$\gamma \, dA \!=\! \gamma^{\circ} \, dA \!-\! (\mu_{i} \!-\! \mu_{s}) \, dn$$
 ,

sendo γ^o a tensão superficial do líquido puro e dn o número de moléculas que migraram do interior do líquido para a superfície dA a partir de uma distribuição homogênea. Note que γdA é o trabalho necessário para expandir a superfície em dA, e que $(\mu_s - \mu_i) dn$ é o trabalho associado à migração de dn moléculas do interior do líquido para superfície. Ou seja, a equação acima diz que, em relação ao líquido puro, o trabalho necessário para expandir a superfície do líquido em uma determinada área é o trabalho que era necessário no líquido puro menos a energia livre que se ganha ao transferir as moléculas do interior do líquido para sua superfície.

A equação acima pode ser reescrita como

$$(\gamma - \gamma^{\circ})dA = -(\mu_i - \mu_s)dn$$

que mostra que a variação na tensão superficial está relacionada com a diferença no potencial químico do surfactante no interior em relação à superfície. Como o potencial químico de qualquer substância é dado por

$$\mu = \mu^{\circ} + RT \ln a$$

sendo μ^{o} o potencial químico da substância pura e a a atividade da substância no sistema em questão, obtemos

$$(\gamma - \gamma^o) dA = -RT \ln \left(\frac{a_i}{a_s} \right) dn$$
,

onde a_s é a atividade do surfactante na superfície e a_i é a atividade do surfactante no interior da solução. Rearranjando, temos

$$\gamma - \gamma^o = -RT \ln \left(\frac{a_i}{a_s} \right) \frac{dn}{dA}$$
,

e notamos que dn/dA é a quantidade de moléculas do surfactante que migrou do seio da solução para a superfície a partir de uma distribuição homogênea, por unidade de área da superfície. A esta quantidade, chamaremos "concentração superficial de excesso" (ou densidade superficial de excesso), Γ . Assim,

$$\gamma - \gamma^{\circ} = -RT \ln \left(\frac{a_i}{a_s} \right) \Gamma$$

A superfície tem uma capacidade limitada de acomodar moléculas do surfactante. Portanto, ela provavelmente se satura antes do seio da solução. Assim, tomemos a situação em que a superfície se aproxima da saturação e, portanto, a superfície é completamente tomada pelo surfactante. Nesta situação a atividade do surfactante na superfície se aproxima da unidade, temos $a_s = 1$. Suponhamos, também, que a atividade do surfactante no seio da solução pode ser aproximada pela sua concentração, C_i , e teremos

$$\gamma - \gamma^{\circ} = -RT \ln(C_i) \Gamma$$
.

Se a concentração do surfactante no seio da solução varia de C_1 para C_2 , a tensão superficial varia de acordo, segundo

$$\gamma_2 - \gamma_1 = -RT \Gamma \left[\ln(C_2) - \ln(C_1) \right]$$
 ,

ou seja,

$$\frac{\Delta \gamma}{\Delta \ln C} = -RT \Gamma$$

para variações pequenas de concentração, escrevemos

$$\left(\frac{\partial y}{\partial \ln C}\right)_{T,p} = -RT\Gamma \quad .$$

Note que esta equação é válida a temperatura e pressão constantes, pelas considerações no início do texto. Esta equação é conhecida como Isoterma de Adsorção de Gibbs. Além disso, a expressão é válida sempre que a atividade do surfactante no seio da solução puder ser aproximada pela sua concentração e, mais importante, quando a atividade do surfactante na superfície puder ser considerada como unitária. Ou seja, esta expressão só é válida nas proximidades da saturação da superfície pelo surfactante!

Nestas condições, a equação diz que a variação da tensão superficial com o logaritmo da concentração do surfactante no interior da solução deve ser constante e proporcional à concentração superficial de excesso (a temperatura constante). Acima da concentração em que a superfície está saturada de surfactante, é natural esperar que a tensão superficial não mais varie, exceto se houver uma variação significativa do potencial químico do surfactante no seio da solução. No entanto, como esta saturação ocorre geralmente para soluções diluídas, o potencial químico do surfactante no seio da solução é aproximadamente constante no limiar da saturação da superfície, e o que se observa, de fato, é que a tensão superficial obedece a equação obtida.

Assim, a tensão superficial deve variar linearmente com o logaritmo da concentração de surfactante na solução, nas proximidades da saturação da superfície. Quando a superfície estiver saturada, a tensão superficial não deve mais variar. O gráfico de tensão superficial em função do logaritmo da concentração deve assemelhar, nestas condições, ao gráfico abaixo:

Figura 1. Expectativa da variação da tensão superficial com a concentração de surfactante, nas proximidades da saturação da superfície.

Para concentrações menores que a concentração de saturação da superfície, a tensão superficial deve convergir para a tensão superficial do solvente puro. É natural esperar que esta convergência seja assintótica, portanto um experimento no qual mede-se a variação da tensão superficial em um espectro amplo de concentrações de surfactante, deve se assemelhar ao da Figura 2.

Figura 2. Variação da tensão superficial de um líquido em função da concentração de surfactante (ou qualquer soluto cujo potencial químico na superfície é menor que no seio da solução.

Vários parâmetros interessantes podem ser obtidos a partir desta curva. Primeiramente, faz-se evidente a concentração de surfactante a partir da qual a superfície está saturada. Se admitirmos que uma vez que as moléculas de surfactante não podem ocupar a superfície elas se aglomeram no seio da solução, formando micelas, esta é a concentração a partir da qual a formação de micelas é um processo favorável. A esta concentração chamamos de Concentração Micelar Crítica (CMC). Aqui não demonstramos que formam-se micelas no seio da solução, a prova deste fenômeno requer experimentos independentes.

Nas proximidades da CMC, a tensão superficial diminui com a concentração na taxa -RT Γ . Γ é o número de moléculas em excesso na superfície, em relação ao seio da solução, por unidade de área. Se o surfactante é pouco solúvel (e suas moléculas se concentram na superfície muito preferencialmente), praticamente não há moléculas de surfactante no seio da solução até a CMC, portanto Γ é simplesmente a densidade superficial de surfactante (o número de surfactantes por unidade de área). É trivial, assim, calcular qual é a área ocupada por cada molécula de surfactante na superfície. Um exercício interessante é comparar esta área com cálculos aproximados de área por lipídio derivados da geometria molecular.

Como seria o gráfico se o soluto preferisse o seio da solução à superfície?