UNIVERSIDADE SÃO JUDAS TADEU CIÊNCIA DA COMPUTAÇÃO

GABRIEL FORNICOLA AMORIM - 824148690
GIOVANNI RIBEIRO IANNACE - 82421986
GIOVANNA FONTES DA SILVA – 823148980
LUCAS GASPARETTO NARCIZO DE MORAIS - 82426494
RAPHAEL MIGUEL FOLEGO - 822163593

Gestão e Qualidade de Software

São Paulo

2025

Resumo

Os exercícios práticos da UC de Gestão e Qualidade de Software têm como foco a elaboração de planos e roteiros de testes baseados nas atividades da aula 04.

Plano de Testes (Exercício Prático 1)

1. Identificação do Sistema

- Nome do sistema: Algoritmo de Busca Binária (Iterativa)
- Função testada: busca binária (int iVet[], int iK)
- Linguagem: Java
- Fonte: Aula de Gestão e Qualidade de Software Universidade São Judas
- Modulo: Algoritmos de busca
- Função testada: busca binária (int iVet[], int iK)

2. Objetivo dos Testes:

- Validar se o método busca binária retorna corretamente o índice do elemento iK dentro do vetor ordenado iVet.
- Confirmar também se, caso o elemento não exista, o método retorna -1.

3. Escopo do Teste:

- Inclui: Vetores ordenados de inteiros, com diferentes tamanhos (vazios, unitários, pares e impares), com valores duplicados e extremos.
- Não inclui: Vetores não ordenados, valores nulos, vetores de tipos não inteiros.

4. Critérios de Aceitação

- O vetor deve estar ordenado de forma crescente.
- A busca deve retornar o índice correto caso o valor esteja presente.
- A busca deve retornar -1 caso o valor não esteja presente.
- O algoritmo deve lidar com casos limites como vetor vazio, um único elemento, ou elementos repetidos.

5. Requisitos Funcionais Testados

RF01: O sistema deve retornar corretamente a posição de um elemento existente em um vetor ordenado.

RF02: O sistema deve retornar -1 se o elemento não existir no vetor.

6. Técnicas de Teste Utilizadas

- Particionamento de Equivalência
- Análise do Valor Limite
- Teste de Caixa Preta
- Teste de Caixa Branca (opcional)

7. Ambiente de Teste

SO: Windows/Linux/Mac

• IDE: Eclipse / IntelliJ / VSCode

• JDK: 8 ou superior

Ferramentas de teste: JUnit (opcional)

8. Critérios de Saída

O teste será considerado bem-sucedido se:

- Todas as saídas esperadas forem obtidas conforme definido.
- O sistema não lançar exceções imprevistas.

9. Cronograma:

Atividade	Data de Início	Data de Término
Criação do plano	14/04/2025	15/04/2025
Elaboração dos testes	14/04/2025	14/04/2025
Execução dos testes	15/04/2025	15/04/2025
Análise dos resultados	15/04/2025	16/04/2025

Roteiro de Testes – Busca Binária (Exercício prático 2)

CT01: Vetor vazio

• Entrada: iVet = [], iK = 5

• Saída esperada: -1

• Objetivo: Verificar se a função lida corretamente com vetores vazios.

CT02: Vetor com um único elemento (elemento presente)

• Entrada: iVet = [5], iK = 5

• Saída esperada: 0

• Objetivo: Verificar se a função encontra o único elemento corretamente.

CT03: Vetor com um único elemento (elemento ausente)

• Entrada: iVet = [10], iK = 5

• Saída esperada: -1

• Objetivo: Verificar se a função retorna -1 quando o elemento único não corresponde.

CT04: Vetor com mais de um elemento (elemento presente)

• Entrada: iVet = [2, 5, 6, 9], iK = 6

Saída esperada: 2

• Objetivo: Verificar busca com vetor de tamanho maior que um elemento.

CT05: Vetor com mais de um elemento (elemento ausente)

• Entrada: iVet = [2, 5, 6, 9], iK = 7

• Saída esperada: -1

 Objetivo: Verificar se a função retorna -1 quando o elemento não está presente em um vetor com mais de um elemento.

CT06: Vetor com elementos duplicados (elemento presente)

- Entrada: iVet = [1, 2, 2, 2, 3, 4], iK = 2
- Saída esperada: 1, 2, ou 3 (qualquer índice de uma ocorrência válida)
- Objetivo: Confirmar que a função retorna algum índice válido em caso mais de um índice com o mesmo valor.

CT07: Vetor com elementos duplicados (elemento ausente)

- Entrada: iVet = [1, 1, 3, 3, 5, 5], iK = 2
- Saída esperada: -1
- Objetivo: Verificar ausência de valor mesmo com mais de um índice igual no vetor.

CT08: Elemento menor que todos os elementos do vetor

- Entrada: iVet = [10, 20, 30], iK = 5
- Saída esperada: -1
- Objetivo: Verificar busca de valor abaixo do mínimo.

CT09: Elemento maior que todos os elementos do vetor

- Entrada: iVet = [10, 20, 30], iK = 35
- Saída esperada: -1
- Objetivo: Verificar busca de valor acima do máximo.

CT10: Vetor com valores negativos e positivos

- Entrada: iVet = [-10, -5, 0, 5, 10], iK = -5
- Saída esperada: 1
- Objetivo: Verificar se a função lida com inteiros negativos corretamente.

CT11: Vetor com apenas valores negativos (elemento presente)

• Entrada: iVet = [-20, -15, -10, -5], iK = -10

• Saída esperada: 2

• Objetivo: Validar funcionamento com inteiros negativos.

CT12: Vetor grande com 1000 elementos (elemento presente)

• Entrada: iVet = [0, 1, 2, ..., 999], iK = 678

• Saída esperada: 678

• Objetivo: Verificar desempenho e precisão em vetores grandes.

Identificação do Projeto (Exercício Pratico 3)

Sistema de autenticação de usuários com verificação em duas etapas (2FA), com

base em login, senha e código enviado via SMS.

1.2. Definições, Siglas e Abreviações:

2FA: Two-Factor Authentication (Autenticação em Duas Etapas)

SMS: Short Message Service

QA: Quality Assurance

CT: Caso de Teste

BDD: Base de Dados do sistema

1.3. Referências:

Documento de requisitos do sistema – Versão 1.0

Guia de segurança para autenticação – OWASP

Padrões internos de qualidade da empresa

2. Escopo

Este plano de teste cobre o processo de login com autenticação em duas etapas,

garantindo a verificação de credenciais do usuário e validação do código

temporário enviado via SMS. O escopo se limita à interface de login e etapas de

autenticação.

3. Objetivos

Validar a funcionalidade de login com autenticação em duas etapas;

Verificar a resposta do sistema a entradas válidas e inválidas;

• Garantir que mensagens de erro sejam exibidas de forma clara;

Assegurar que os fluxos alternativos (erros e exceções) estejam cobertos;

Verificar a integridade do envio de código 2FA via SMS.

8

4. Requisitos a Serem Testados

ID	Requisito	Descrição	
REQ01	Entrada de login e senha	Usuário deve digitar	
		credenciais corretamente	
REQ02	Validação de credenciais	O sistema compara com	
		dados armazenados	
REQ03	Geração de código 2FA	Código é gerado após	
		validação correta	
REQ04	Envio de SMS	Código é enviado ao	
		número registrado	
REQ05	Validação do código 2FA	Sistema verifica o código	
		digitado	
REQ06	Mensagens de erro	Mensagens apropriadas	
		devem ser exibidas em caso	
		de falha	
REQ07	Expiração do código 2FA	Código deve expirar após	
		tempo determinado	

5. Estratégias, Tipos de Testes e Ferramentas

5.1 Estratégias de Teste:

- Testes manuais funcionais baseados em casos de uso
- Testes exploratórios para identificar comportamentos inesperados
- Testes de regressão sempre que houver alteração no código de autenticação

5.2 Tipos de Testes:

- Teste funcional
- Teste de caixa preta
- Teste de usabilidade (mensagens, fluxo, feedback ao usuário)
- Teste de integração com serviço de SMS

5.3 Ferramentas Utilizadas:

- Postman: para testes de API de autenticação/SMS
- Selenium: para testes automatizados da interface (se aplicável)
- Jira / TestRail: para gestão de testes e bugs

 Emulador de SMS / Serviço de sandbox: para simular o envio de mensagens

6. Recursos a Serem Empregados

Recurso	Quantidade	Responsável
Analistas de Teste	2	Equipe QA
Desenvolvedores para suporte	1	Equipe de Dev
Ambiente de homologação	1	DevOps
Ferramentas de teste	conforme seção 5	QA

7. Cronograma e Marcos do Projeto

Fase	Atividade	Início	Fim	Responsável
Planejamento	Criação do plano de teste	15/04	16/04	QA
Preparação	Configuração de ambiente de testes	17/04	18/04	DevOps
Execução	Execução dos casos de teste	19/04	22/04	QA
Validação	Report de resultados e bugs	22/04	23/04	QA
Reexecução	Reteste após correções	24/04	25/04	QA
Fechamento	Entrega do relatório final	26/04	26/04	QA

Marcos principais:

• Entrega da primeira rodada de testes: 22/04

• Entrega final com retestes: 26/04

Roteiro de teste (Exercício Pratico 4)

Login com validação em duas etapas

Cenário 1 – Login e senha incorretos

Pré-condição: Usuário tenta acessar o sistema.

- Passos:
 - 1. Informar login inválido.
 - 2. Informar senha inválida.
 - 3. Clicar no botão "Entrar".

Resultado Esperado: Mensagem "Login e/ou senha incorretos".

Cenário 2 – Login correto, senha incorreta

Pré-condição: Usuário cadastrado previamente no sistema.

- Passos:
 - 4. Informar login válido.
 - Informar senha inválida.
 - 6. Clicar no botão "Entrar".

Resultado Esperado: Mensagem "Login e/ou Senha incorretos".

Cenário 3 – Login e senha corretos, código em duas etapas incorreto

Pré-condição: Login e senha válidos, número de celular válido cadastrado.

- Passos:
 - 7. Informar login válido.
 - 8. Informar senha válida.
 - 9. Clicar em "Entrar".
 - 10. Receber código de autenticação por SMS.
 - 11. Informar que o código está incorreto.

Resultado Esperado: Mensagem "Login não autorizado!".

Cenário 4 – Login, senha e código em duas etapas corretos

Pré-condição: Usuário cadastrado com número de celular válido.

Passos:

- 12. Informar login válido.
- 13. Informar senha válida.
- 14. Clicar em "Entrar".
- 15. Receber código de autenticação por SMS.
- 16. Informar o código corretamente.

Resultado Esperado: Mensagem "Login realizado com sucesso" e acesso liberado ao sistema.

Cenário 5 – Campos vazios (validação de formulário)

Pré-condição: Nenhum dado informado.

Passos:

- 17. Deixar os campos "Login" e "Senha" vazios.
- 18. Clicar em "Entrar".

Resultado Esperado: Mensagem solicitando o preenchimento dos campos obrigatórios (ex: "Preencha todos os campos").

Cenário 6 – Código de duas etapas não recebido

Pré-condição: Login e senha válidos.

Passos:

- 19. Informar login válido.
- 20. Informar senha válida.
- 21. Clicar em "Entrar".
- 22. Não receber código via SMS (simulação de falha).

Resultado Esperado: Mensagem de erro ou opção para reenviar o código.

Cenário 7 – Expiração do código de duas etapas

Pré-condição: Código de validação com tempo limitado.

- Passos:
 - 23. Informar login e senha válidos.
 - 24. Receber o código de autenticação.
 - 25. Aguardar o tempo limite de expiração do código.
 - 26. Informar o código expirado.

Resultado Esperado: Mensagem "Código expirado" ou "Login não autorizado!".