Assignment-1

Linear Algebra-(IC152) Instructor: Dr. Avijit Pal

05/03/2023

Question 1. For each of the following linear operator T on a vector space V and an order basis β , compute $[T]_{\beta}$ and determine whether β is a basis consisting of eigenvectors of T.

(a)
$$V = P_1(\mathbb{R})$$
, $T(a+bx) = 6(a-b) + (12a-11b)x$ and $\beta = \{3+4x, 2+3x\}$.

(b) $V = p_3(\mathbb{R}),$

$$T(a+bx+cx^2) = (-4a+2b-2c) - (7a+3b+7c)x + (7a+b+5c)x^2$$
 and $\beta = \{x-x^2, -1+x^2, -1-x+x^2\}.$

(c) $V = M_{2\times 2}(\mathbb{R}),$

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -7a - 4b + 4c - 4d & b \\ -8a - 4b + 5c - 4d & d \end{pmatrix}$$

and

$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} \right\}.$$

Question 2. For each of the following matrices $A \in M_{n \times n}(\mathbb{F})$:

- 1. Determine all the eigenvalues of A.
- 2. For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ .
- 3. If possible find a basis of \mathbb{F}^n consisting of eigenvectors of A.
- 4. If successful in finding such basis determine an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.

(a)
$$A = \begin{pmatrix} 0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5 \end{pmatrix}$$
 for $\mathbb{F} = \mathbb{R}$.

(b)
$$A = \begin{pmatrix} i & 1 \\ 2 & -i \end{pmatrix}$$
 for $\mathbb{F} = \mathbb{C}$.

Question 3. For each linear operator T on V, find the eigenvalues of T and an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

- (a) $V = P_2(\mathbb{R})$ and T(f(x)) = xf'(x) + f(2)x + f(3).
- (b) $P_3(\mathbb{R})$ and T(f(x)) = xf'(x) + f''(x) f(2).
- (c) $V = M_{2\times 2}(\mathbb{R})$ and

$$T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \begin{pmatrix} d & b \\ e & a \end{pmatrix}.$$

(d)
$$V = M_{2\times 2}(\mathbb{R})$$
 and $T(A) = A^t + 2.tr(A).I$.

Question 4. A scalar matrix is a square matrix of the form λI for some scalar λ , i.e., scalar matrix in which all the diagonal entries are equal.

- (a) Prove that if a square matrix A is similar to a scalar matrix λI , then $A = \lambda I$.
- (b) Show that a diagonal matrix have only one eigen value is a scalar matrix.
- (c) Prove that $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable.

Question 5. Let T be a linear operator on $M_{n\times n}(\mathbb{R})$ defined by $T(A)=A^t$.

- (a) Show that are the only eigenvalues of T.
- (b) Describe the eigenvectors corresponding to each eigenvalue of T.
- (c) Find the ordered basis β for $M_{2\times 2}(\mathbb{R})$ such that $[T]_{\beta}$ is a diagonal matrix.
- (d) Find an ordered basis β for $M_{n\times n}(\mathbb{R})$ such that $[T]_{\beta}$ is a diagonal matrix for n>2.

Question 6. Let T be an invertible linear operator on a finite dimensional vector space V.

- (a) Prove that for any eigenvalue λ of T, λ^{-1} is an eigenvalue of T^{-1} .
- (b) Prove that the eigen space corresponding to λ is same as the eigenspace of T^{-1} corresponding to λ^{-1} .
- (c) Prove that if T is diagonalizable then T^{-1} is digonalizable.

Question 7.In each part, apply the Gram Schmidt process to the given subset S of the inner product space V to obtain the orthogonal basis for span(S).

Let $\{u_1, u_2, \ldots, u_n\}$ be an orthonormal basis for S. Then any vector $x \in S$, we write $u = \sum_{i=1}^{n} \langle x, u_i \rangle u_i$, where $c = \langle x, u_i \rangle$ for $i = 1, 2, \ldots, n$. Compute the coefficient c_i s of the given vectors relative to β .

- (a) $V = \mathbb{R}^3$, $S = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$ and x = (1, 0, 1). Then normalize the vectors to obtain the orthonormal basis β for span(S).
- (b) $V = P_2(\mathbb{R})$ with the inner product

$$\langle f(x), g(x) \rangle = \int_0^\infty f(t)g(t)dt,$$

 $S = \{1, x, x^2\}$ and h(x) = 1 + x.

(c)
$$V = M_{2 \times 2}(\mathbb{R}), S = \left\{ \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 11 & 4 \\ 2 & 5 \end{pmatrix}, \begin{pmatrix} 4 & -11 \\ 3 & -11 \end{pmatrix} \right\} \text{ and } A = \begin{pmatrix} 8 & 6 \\ 25 & -13 \end{pmatrix}.$$

(d) Span S with the inner product

$$\langle f, g \rangle = \int_0^\infty f(t)g(t)dt$$

 $S = \{\sin t, \cos t, t\} \text{ and } h(t) = t + 1.$

Question 8. Let $S = \left\{ \begin{pmatrix} 1 \\ 0 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \right\}$ in \mathbb{C}^3 , then compute S^{\perp} .

Question 9. Let $S_o = \{x_0\}$, where x_0 is a non-zero lyector in \mathbb{R}^3 . Describe S_0^{\perp} geometrically. Now suppose that $S = \{x_0, x_1\}$ is linearly independent subset of \mathbb{R}^3 . Describe S_0^{\perp} geometrically.

Question 10. Let $S = \left\{ \begin{pmatrix} 1 \\ 0 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \right\}$ in \mathbb{C}^3 . Find orthonormal base for W and W^{\perp} .