Summary - Rectangular to Polar CORDIC

Name	rp_cordic
Worker Type	Application
Version	v1.3
Release Date	February 2018
Component Library	ocpi.assets.dsp_comps
Workers	rp_cordic.hdl
Tested Platforms	xsim, isim, modelsim, alst4, ml605, ZedBoard(PL), Matchstiq-Z1(PL)

Functionality

The Rectangular to Polar CORDIC (Coordinate Rotation Digital Computer) worker implements an FM Discriminator circuit as shown in Figure 1. Complex samples are fed into the CORDIC, which output magnitude and phase values. A $d\phi$ circuit is applied to the phase to calculate real samples.

Figure 1: FM Discriminator Block Diagram

Worker Implementation Details

rp_cordic.hdl

The FM Discriminator circuit consists of two sub-circuits: one to calculate the phase and another to calculate the rate of change of the phase. The first circuit uses a CORDIC algorithm to implement the arc-tangent function to calculate the phase of a complex sinusoid. The CORDIC is also used to calculate the magnitude of the complex sinusoid. Equations 1 and 2 represent the equations used to calculate the magnitude and phase, respectively. The magnitude output is exposed as a read-only property of the worker, which could be useful for downstream gain control.

$$magnitude = \sqrt{I^2 + Q^2} \tag{1}$$

$$phase = atan(\frac{Q}{I}) \tag{2}$$

The second circuit simply uses a subtractor to implement a $d\phi$ function, which is a real signed number that is the difference in phase. Equations 3 and 4 show how to calculate $d\phi$.

$$\omega = \frac{d\phi}{dt} = 2\pi f \tag{3}$$

$$d\phi = 2\pi f dt = 2\pi f T_s = \frac{2\pi f}{F_s} = \frac{2\pi f \frac{2^{DATAWIDTH-1}}{\pi}}{F_s} = \frac{2f * 2^{DATAWIDTH-1}}{F_s}$$
(4)

Block Diagrams

Top level

State Machine

Only one finite-state machine (FSM) is implemented by this worker. The FSM supports Zero-Length Messages.

Figure 2: Zero-Length Message FSM

Source Dependencies

$rp_cordic.hdl$

- $\bullet \ ocpiassets/components/dsp_comps/rp_cordic/rp_cordic.vhd \\$
- ocpiassets/hdl/primitives/dsp_prims/dsp_prims_pkg.vhd ocpiassets/hdl/primitives/dsp_prims/cordic/src/cordic_rp.vhd ocpiassets/hdl/primitives/dsp_prims/cordic/src/cordic.vhd ocpiassets/hdl/primitives/dsp_prims/cordic/src/cordic_stage.vhd
- ocpiassets/hdl/primitives/misc_prims/misc_prims_pkg.vhd ocpiassets/hdl/primitives/misc_prims/round_conv/src/round_conv.vhd

ANGRYVIPER Team

Component Spec Properties

Name	Type	SequenceLength	ArrayDimensions	Accessibility	Valid Range	Default	Usage
DATA_WIDTH	UChar	-	-	Readable	-	-	Worker internal non-sign-extended data width
DATA_EXT	UChar	-	-	Readable	-	-	# of extension bits
STAGES	UChar	-	-	Readable	-	-	Number of CORDIC stages implemented
messageSize	UShort	-	-	Writable, Readable	8192	8192	Number of bytes in output message
enable	Bool	-	-	Writable, Readable	Standard	true	Enable/bypass control

Worker Properties

$rp_cordic.hdl$

Type	Name	Type	SequenceLength	ArrayDimensions	Accessibility	Valid Range	Default	Usage
SpecProperty	DATA_WIDTH	-	-	-	Parameter	8-16	16	Real input and complex output data width
SpecProperty	DATA_EXT	-	-	-	Parameter	6	6	CORDIC requirement: # of extension bits
SpecProperty	STAGES	-	-	-	Parameter	8-16	16	Number of CORDIC stages implemented
Property	magnitude	Short	-	-	Volatile	Standard	-	Read-only amplitude which may be useful for gain
								control

Component Ports

Name	Producer	Protocol Optional Advanced		Advanced	Usage
in	false	iqstream_protocol	false	-	Signed complex samples
out	true	rstream_protocol	false	-	Signed real samples

Worker Interfaces

$rp_cordic.hdl$

	Type	Name	DataWidth	Advanced	Usage
ĺ	StreamInterface	in	32	ZeroLengthMessages=true	Signed complex samples
	StreamInterface	out	16	ZeroLengthMessages=true	Signed real samples

Control Timing and Signals

The Rectangular to Polar CORDIC worker uses the clock from the Control Plane and standard Control Plane signals. There is a start-up delay for this worker. Once the input is ready and valid and the output is ready, there is a delay of STAGES+4 before the first sample is taken. After this initial delay, valid output data is given STAGES+4 clock cycles after input data is taken.

Latency	
STAGES+3 clock cycles	

Performance and Resource Utilization

rp_cordic.hdl

Worker Build Configuration "0":

Table entries are a result of building the worker with the following parameter sets:

- ocpi_endian=little
- ocpi_debug=false
- STAGES=16
- DATA_EXT=6
- DATA_WIDTH=16

Table 1: Worker Build Configuration "0"

OpenCPI Target	Tool	Version	Device	Registers	LUTs	Fmax (MHz)	Memory/Special Function
stratix4	Quartus	15.1.0	EP4SGX230KF40C2	1529	2,514	N/A	DSP18x18s=12
virtex6	ISE	14.7	6vlx240tff1156-1	1470	2979	145.455	DSP48E1s=6
zynq	Vivado	2017.1	xc7z020clg484-1	1523	3481	116.986	DSP48E1s=3
zynq_ise	ISE	14.7	7z020clg484-1	1470	2979	145.033	DSP48E1s=6

Test and Verification

One test case is implemented to validate the Rectangular to Polar CORDIC component:

1) Normal mode

The input file is a waveform with a single tone at 27 Hz sampled at 10 kHz. The complex waveform is then scaled to fixed-point signed 16-bit integers, using a maximal amplitude of 32,767. Time and frequency domain plots may be viewed in Figures 3 and 4 below, respectively.

The output file is first checked that the data is not all zero and is then checked for the expected length. Once these quick checks are made, the complex input data is transformed into expected magnitude and phase arrays using Equations 1 and 2. The expected phase array then implements the FM discriminator subtractor to create an array of the expected phase difference. These two expected value arrays are compared sample-by-sample with the measured phase output array from the UUT and the single value magnitude property from the UUT. Error checks are then calculated for the average peak error, the magnitude peak error, and the phase peak error. Should any of these three error values be more than one (the difference between each expected and measured value is allowed to be no greater than one) the overall test fails. Figure 5 depicts the conversion results of the single tone input, which shows no more

Figure 3: Time Domain Complex Tone

Figure 4: Frequency Domain Complex Tone

than a ± 1 deviation from the expected result. Equation 4 is used to form Equation 5, which validates the result shown in Figure 5.

Figure 5: Time Domain Real Data

$$d\phi = \frac{2f * 2^{DATAWIDTH-1}}{F_s} = \frac{2 * 27 * 32,768}{10,000} = 176.9472$$
 (5)