Exercice 1.

1. Soit f la fonction qui à tout réel x associe

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ 4x(1 - x^2) & \text{si } 0 \le x \le 1 \\ 0 & \text{si } x > 1 \end{cases}$$

Véfifier que f est une densité de probabilité.

On considère désormais une variable aléatoire X de densité f et on note F_X sa fonction de répartition.

- $\mathbf{2.\,a}$) Montrer que X possède une espérance et donner sa valeur.
 - **b)** Montrer que X possède une variance et vérifier qu'elle est égale à $\frac{11}{225}$.

3. Montrer que l'on a :
$$F_X(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - (1 - x^2)^2 & \text{si } 0 \leqslant x \leqslant 1. \\ 1 & \text{si } x > 1 \end{cases}$$

- **4.** Soit U et V deux variables aléatoires à densité, indépendantes, et suivant toutes les deux la loi uniforme sur [0,1]. On pose $M=\min(U,V)$, c'est-à-dire que, pour tout réel x, on a $\mathbf{P}(M>x)=\mathbf{P}(U>x)\mathbf{P}(V>x)$. On admet que M est une variable aléatoire à densité et on note F_M sa fonction de répartition.
- a) En notant G la fonction de répartition commune à U et V, rappeler l'expression de G(x) selon que $x < 0, 0 \le x \le 1$ ou x > 1.
 - **b)** En déduire, pour tout réel x, les expressions de $\mathbf{P}(M>x)$ et de $F_M(x)$ en fonction de G(x).
 - c) Donner enfin explicitement $F_M(x)$ selon que $x < 0, 0 \le x \le 1$ ou x > 1.
- 5. On considère la variable aléatoire Z définie par $Z=\sqrt{M}$ et on note F_Z sa fonction de répartition.
 - a) Déterminer $F_Z(x)$ selon que $x < 0, 0 \le x \le 1$ ou x > 1.
 - **b)** En déduire que X et Z suivent la même loi.
- **6.** Compléter le script Python suivant qui simule la variable M à la ligne 3, afin qu'il simule la variable X à la ligne 4.