

# Reinforcement Learning-Based Optimal Public Transportation Route Search Considering Time and Cost

**Team Members: Kim SeoYeong** 

Email: carsk0607@g.skku.edu

**Applied Artificial Intelligence** 

Sungkyunkwan University, Korea



### Introduction





















We need a optimal public transportation route search system that can dynamically adapt real-time road conditions!



# **Existing Solutions**

### A\* algorithm, Dijkstra algorithm

- cannot consider non-linear road conditions
  - ex. traffic jam, weather, traffic control
- cannot apply to other episode
- cannot reflect dynamic environment which changes by time step



# **Existing Solutions**

### A\* algorithm, Dijkstra algorithm

- cannot consider non-linear road conditions
  - ex. traffic jam, weather, protest
- cannot apply to other episode
- cannot reflect dynamic environment which changes by time step

=> use Reinforcement Learning methods!



# Your Approach - state



**Start**Seoul Station

**Destination**Sungkyunkwan Univ

**Obstacles**Traffic jam, protests

Implement map as 16\*16 grid world

12/15/2023 Fall, 2023 9



# Your Approach - action



#### **BUS**

103, 104, 151, 173, 201, 301, 704, 1102, 7022

#### **METRO**

line 1, line 2, line 3, line 4, line 5

#### **WALK**

up, down, left, right

12/15/2023 Fall, 2023 10



# Your Approach - reward

- Separate reward into 2 components
  - : time reward, cost reward
- Total reward consider both 2 components

$$total reward = \frac{time reward}{2} + \frac{cost reward}{30}$$



# Your Approach - reward

|       | Time<br>Reward |          |        | Cost<br>Reward |
|-------|----------------|----------|--------|----------------|
| State | Destination    | Obstacle | Normal | All            |
| Bus   | -10            | -150     | -10    | -1500          |
| Metro | -15            | -150     | -15    | -1400          |
| Walk  | -150           | -150     | -150   | 0              |



# Your Approach - method

- Can represent the value function with a table
- Learn on each timestep
- Control problem

=> Q-learning, SARSA, Expected SARSA!



## Results - Total Reward







**Q-learning** 

**SARSA** 

**Expected SARSA** 



## Results - Time Reward







**Q-learning** 

**SARSA** 

**Expected SARSA** 



### Results - Cost Reward







**Q-learning** 

**SARSA** 

**Expected SARSA** 



### Conclusions

- Overall, Expected SARSA performs best
- In terms of time, Expected SARSA performs best
- In terms of cost, SARSA performs best



Q/A



# Thank You!