Réponse

Items 1 et 2 : (2 points) QCM : Choisir la bonne réponse, sans justification

1. *p* (B) est égal à : réponse c) 0,928

2. $p(A \cap \overline{B})$ est égal à : réponse a) 0,072

_ B	
_ 0,7	
A	
0,3	
\overline{B}	
0,76	
` A ——1—— B	

Items 3, 4 et 5 : (3 points)

1. Déterminer $\lim_{x \to +\infty} f(x) = -10$.

2. L'équation f(x) = 0 admet 1 solution.

3. L'équation de la tangente à la courbe C_f au point d'abscisse 5 est y=15

x	-10	-3		5	+∞
f'(x)	_	0	+	0	_
f(x)	+∞ <	√ ₅ ∕		→ ¹⁵ <	

Items 6 et 7 : (2 points)

- 1. Ce graphe admet une chaîne eulérienne car il possède exactement deux sommets (A et B) de degré impair. Rappel du cours :
- Un graphe connexe admet un cycle eulérien si, et seulement si, tous ses sommets de sont de degré pair.
- Un graphe connexe admet une chaîne eulérienne distincte d'un cycle si, et seulement si, deux sommets de G exactement sont de degré impair. Dans ce cas, la chaîne est d'extrémité ces deux sommets.

2. Donner la matrice M associée au graphe G.

$$\mathbf{M} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

Items 8, 9 et 10 : (3 points)

Soit une suite arithmétique (t_n) définie pour tout entier naturel n, de premier terme 200 et de raison 0,3. On donne le tableau ci-contre, extrait d'une feuille automatisée de calcul.

- 1. Calculer t_1 =200+0,3=200,3.
- 2. = B2+0,3
- 3. =somme(B2:B6) ou B2+B3+B4+B5+B6

	А	В
1	n	t n
2	0	200
3	1	
4	2	
5	3	
6	4	
7	Total	

Items 11, 12 et 13 : (3 points)

Dans une entreprise, le coût moyen de fabrication, exprimé en millier de DJF, réalisé en vendant x centaines d'objets fabriqués par jour, est modélisé par la fonction f définie sur l'intervalle]0; 16] dont une représentation graphique est donnée dans le repère ci-dessous :

- 1. Le coût moyen de fabrication semble pour la vente de 500 objets.
- 2. Pour quelles productions journalières, le coût moyen de fabrication vaut 2000 DJF ?

