

Thomas Gaudin
Pennsylvania State University

Collaborators: Jamie Kennea, Malcolm Coe, Andrzej Udalski, Phil Evans





# Be/X-ray Binaries: The Standard Theory

- Be star + Neutron StarCompact Object
- Moderately eccentric orbit
- Orbital Period: 10s 100sof days



Image Credit: Walt Feimer, NASA/Goddard Space Flight Center









# Be/X-ray Binaries: The Standard Theory

- Transient X-ray emitters
- 2 Types of X-ray Outburst:
  - $_{\circ}$  Type I  $L_{X} \sim 10^{36} 10^{37} {
    m erg s}^{-1}$
  - $_{\circ}$  Type II  $L_{X} \geq 10^{37} {
    m erg s^{-1}}$



Image Credit: Walt Feimer, NASA/Goddard Space Flight Center







































BeXRB

Black Hole Companion

**Incredibly Rare** 

Neutron Star Companion

Observationally
Most Common

White Dwarf Companion

Theoretically
Most Common



















Where are the Be/WD Systems?













Where are the Be/WD Systems?

# Theoretical Problem?













Where are the Be/WD Systems?

## Theoretical Problem?





Observational Problem?













R Optical

UV

Soft X-Ray







Be Star + Circumstellar Disk dominates IR – UV emission







2 Optical

UV

Soft X-Ray







Be Star + Circumstellar Disk dominates IR – UV emission



Accreting WD produces faint Hard X-ray Emission



 $L_X \sim 10^{29} - 10^{33} \text{ erg s}^{-1}$ 



R Optical

UV

Soft X-Ray







Be Star . comstellar. es IR – UV emission dom



Accret faint Hard X-ray Emis.

 $L_X \sim 10^{-1} - 10^{33} \text{ erg s}^{-1}$ Hard X-Ray Soft X-Ray



**Optical** 









WD produces bright, transient Soft X-ray outbursts



Optical

UV

Soft X-Ray









WD produces bright, transient Soft X-ray outbursts



IR Optical

UV

Soft X-Ray







# Finding Be/White Dwarf Binaries

- Best Found through Soft X-ray Surveys:
  - Scan a large area of the sky
  - Take frequent observations
  - Need low Column Density of material along the line of sight









# Finding Be/White Dwarf Binaries

- Best Found through Soft X-ray Surveys:
  - Scan a large area of the sky
  - Take frequent observations
  - Need low Column Density of material along the line of sight
- Best Place to Search:
  - The Small Magellanic Cloud (SMC)



Image Credit: NASA/Swift/S. Immler (GSFC) and M. Siegel (Penn State)









- Ongoing since 2016
- Designed to detect outbursts from new and existing Be/X-ray Binaries
- Science Highlights:
  - Detection of several important outbursts (e.g. SMC X-3)
  - Detection of several new BeXRB systems (e.g. SXP 182)



Image Credit: Kennea et al. 2018









- Weekly Swift monitoring of the SMC
- 60s observations of 149 tiles
- Simultaneous UV and X-ray observations
  - **UVOT:** UVW1-band
  - XRT: 0.3-10 keV band



Image Credit: Kennea et al. 2018









## **Data Products**













| Source Name            | First Detection | Reference             |
|------------------------|-----------------|-----------------------|
| Swift J004427.3-734801 | January 2020    | Coe et al.<br>2020    |
| Swift J011511.0-725611 | December 2020   | Kennea et al.<br>2021 |
| CXOU J005245.0-722844  | May 2024        | Gaudin et al.<br>2024 |





# Swift J004427.3-734801: 2020 Outburst





# X-ray Spectroscopy of Swift J004427.3-734801

### Model for Fitting:

Absorbed Thermal Blackbody

$$_{\circ}$$
 k $T_{BB} = 90 \pm 6 \text{ eV}$ 

 $_{\circ}$   $N_{H}=5.9 \times 10^{20} \, \mathrm{cm}^{-2} \, (\mathrm{SMC} \, \mathrm{standard})$ 

### Improved Fit:

$$_{\circ}$$
 k $T_{BB} = 58 \pm 6 \text{ eV}$ 

$$_{\circ}$$
  $N_{H} = (3.4 \pm 2.0) \times 10^{21} \, \mathrm{cm}^{-2}$ 













# X-ray Photometry of Swift J004427.3-734801

- First Detection:
  - 00:48 UTC on 22 Jan 2020
- Duration of Outburst:
  - ∘ ~120 days
- Max Luminosity:

$$_{\circ}~L_{X}=4.1^{+1.6}_{-2.2}~ imes~10^{36}~{
m erg~s^{-1}}$$



Image Credit: Coe et al. 2020









# Multiwavelength Variability of Swift J004427.3-734801



Image Credit: Coe et al. 2020











# Multiwavelength Variability of Swift J004427.3-734801



Image Credit: Coe et al. 2020



Image Credit: Coe et al. 2020

$$P_{orb} = 21.5 \text{ days}$$









# Multiwavelength Properties of Swift J004427.3-734801

- Increased I-Band and UVW1-Band Brightness
- Redder When Brighter
- Orbital Period:
  - 。 21.5 days
- Conclusion:
  - 。 CSD has grown
  - 。 "Type II" outburst
  - Stable Nuclear Burning



Image Credit: Coe et al. 2020





# Swift J011511.0-725611: 2021 Outburst





# X-ray Spectroscopy of Swift J011511.0-725611

### Best-Fitting Model:

Absorbed Thermal Blackbody with 1 Absorption Edge

$$_{\circ}$$
 k $T_{BB} = 96.7 \pm 4.2 \text{ eV}$ 

$$_{\circ}~~E_{edge} = 0.864~\pm 0.011~{\rm keV}$$
 O VIII edge (0.871 keV)

$$_{\circ}~~R_{emit} = 1,642~\pm 83~{\rm km}$$



Image Credit: Kennea et al. 2021









# X-ray Spectroscopy of Swift J011511.0-725611

## • Best-Fitting Model:

Absorbed Thermal Blackbody with 1 Absorption Edge

$$_{\circ}$$
 k $T_{BB} = 96.7 \pm 4.2 \text{ eV}$ 

 $E_{edge} = 0.864 \pm 0.011 \, \mathrm{keV}$  O VIII edge (0.871 keV)

 $_{\circ}~~R_{emit} = 1,642~\pm 83~{\rm km}$ 

Consistent with a 1.2  $\rm M_{\odot}$  Carbon/Oxygen White Dwarf



Credit: Kennea et al. 2021









# X-ray Photometry of Swift J011511.0-725611

- First Detection:
  - <sub>o</sub> 08:37 UTC on 29 Dec 2020
- Duration of Outburst:
  - ∘ ~120 days
- Max Luminosity:

$$_{\circ}~L_{X}=3.3^{+0.2}_{-0.2}~ imes~10^{36}~{\rm erg~s^{-1}}$$













# Multiwavelength Variability of Swift J011511.0-725611



 $0.5\text{-}10 \text{ keV} \text{ X-ray Luminosity (erg s}^{-1})$ UVOT wew 13.4 magnitude 15.8 15.8 13.0 <del>|</del> 57500 MJD

Image Credit: Kennea et al. 2021











# Multiwavelength Variability of Swift J011511.0-725611



Image Credit: Kennea et al. 2021



Image Credit: Kennea et al. 2021











# Multiwavelength Properties of Swift J011511.0-725611

- Increased I-Band Brightness
- Redder When Brighter
- Orbital Period:
  - 。 17.4 days
- Conclusion:
  - CSD has grown
  - 。 "Type II" outburst
  - Stable Nuclear Burning









# CXOU J005245.0-722844: 2024 Outburst





#### X-ray Spectroscopy of CXOU J005245.0-722844

#### Best-Fitting Model:

Absorbed Thermal Blackbody with 2 Absorption Edges

$$_{\circ}$$
 k $T_{BB} = 91.3 \pm 3.7 \text{ eV}$ 

- $_{\circ}~~E_{edge,1} = 0.385~\pm 0.020~{\rm keV}$  C VI edge (0.49 keV)
- $_{\circ}~~E_{edge,2} = 0.896~\pm 0.011~{
  m keV}$  O VIII edge (0.871 keV)

$$_{\circ}~~R_{emit} = 11,648~\pm 64~{\rm km}$$











#### X-ray Spectroscopy of CXOU J005245.0-722844

#### Best-Fitting Model:

Absorbed Thermal Blackbody with 2 Absorption Edges

$$_{\circ}$$
 k $T_{BB} = 91.3 \pm 3.7 \text{ eV}$ 

- $_{\circ}~~E_{edge,1} = 0.385~\pm 0.020~{\rm keV}$  C VI edge (0.49 keV)
- $_{\circ}~~E_{edge,2} = 0.896~\pm 0.011~{
  m keV}$  O VIII edge (0.871 keV)





Consistent with a  $1.2~{\rm M}_{\odot}$  Carbon/Oxygen White Dwarf











#### X-ray Photometry of CXOU J005245.0-722844

- Previously known to be a BeXRB
- First Detection (Einstein Probe):
  - o 08:41 UTC on 27 May 2024
- First Detection (S-CUBED):
  - 22:29 UTC on 27 May 2024
- Duration of Outburst:
  - ∘ < 16 days
- Max Luminosity:

$$L_X = 6.51^{+2.5}_{-1.2} \times 10^{38} \text{ erg s}^{-1}$$











#### X-ray Photometry of CXOU J005245.0-722844

- Previously known to be a BeXRB
- First Detection (Einstein Probe):
  - o 08:41 UTC on 27 May 2024
- First Detection (S-CUBED):
  - 22:29 UTC on 27 May 2024

Greater than the Eddington Luminosity for a 1  $M_{\odot}$  object

Max Luminosity:

$$L_X = 6.51^{+2.5}_{-1.2} \times 10^{38} \text{ erg s}^{-1}$$











#### Multiwavelength Variability of CXOU J005245.0-722844













#### Multiwavelength Variability of CXOU J005245.0-722844











#### A Super-Luminous, Very Fast Nova? (Morii et al. 2013)

2011 MAXI J0158-477 (Li et al. 2012)







2024 CXOU J005245.0-722844 MA

2011 MAXI J0158-477





2024

## BeWDs in Outburst





| Source<br>Name                | Duration (days) | Max $L_X$ (erg s <sup>-1</sup> ) | $kT_{BB}$ (eV) | $M_{WD}$ ( $M_{\odot}$ ) | Likely Cause?                                     |
|-------------------------------|-----------------|----------------------------------|----------------|--------------------------|---------------------------------------------------|
| Swift<br>J004427.3-<br>734801 | ~120            | 4.1<br>× 10 <sup>36</sup>        | 58             | Ś                        | Stable Nuclear Burning<br>(Type II Outburst)      |
| Swift<br>J011511.0-<br>725611 | ~120            | $3.3 \times 10^{36}$             | 96.7           | 1.2                      | Stable Nuclear Burning<br>(Type II Outburst)      |
| CXOU<br>J005245.0-<br>722844  | < 16            | 6.5<br>× 10 <sup>38</sup>        | 91.3           | 1.2                      | Thermonuclear Runaway<br>(Nova w/ Limited Ejecta) |









#### Stable Nuclear Burning (Type II Outburst)











#### Stable Nuclear Burning (Type II Outburst)











#### Stable Nuclear Burning (Type II Outburst)















































### BeWDs in Quiescence





#### Full S-CUBED XRT Light Curves











#### **Open Questions**

- Do BeWDs produce Type I outbursts?
- What are the recurrence rates of luminous soft X-ray outbursts?
- Are there any recurrent novae BeWD systems?
- How are super-Eddington novae produced?
- How are BeWDs connected to the Ultraluminous Supersoft Source (ULS) population?
- Does the WD gain mass despite producing these outbursts?









#### Conclusions

- BeWD binaries are a rarely-observed class of High Mass X-ray binary that are only detected by their transient soft X-ray outbursts.
- The S-CUBED survey has been responsible for detecting 3 of the 7 known BeWD systems.
  - Demonstrates the necessity of Soft X-ray survey data for the study of these systems
- S-CUBED data shows that both short- and long-duration Soft X-ray outbursts are possible.
- More observations are needed to improve our understanding of BeWDs and particularly the properties of their outbursts.





# Questions?

**CREDITS:** This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik** 





#### **Periodicity Problems**



1992 – 2020 P = 17.55 Days



2022 – 2023 P = 17.41 Days

2023 - 2024 P = 17.17 Days









#### Periodicity Problems – Negative Superhumps?

- Can rule out the orbit having changed so rapidly
- Assume that the WD Accretion Disk is responsible
- Similar phenomena observed in cataclysmic variable stars











#### Be/White Dwarf Binaries: Observational Properties

- IR UV:
  - Be star + disk dominates emission
- Hard X-Ray emission:
  - Very faint at quiescence

$$L_X \sim 10^{29} - 10^{33} \text{ erg s}^{-1}$$

- Soft X-Ray emission:
  - Transient bright outbursts





