EE 330 Homework 10 Spring 2018 Due Monday March 26.

All problems are weighted equally. Unless specified to the contrary, assume all n-channel MOS transistors have model parameters $\mu_n C_{OX} = 350 \mu A/V^2$, $V_{Tn} = 0.5 V$, and $\lambda = 0$, and all p-channel transistors have model parameters $\mu_p C_{OX} = 70 \mu A/V^2$, $V_{Tp} = -0.5 V$, and $\lambda = 0$. Correspondingly, assume all BJT transistors are from a process with J_S at $300^\circ K$ of $0.25 f A/\mu^2$, $\beta_n = 100$ and $\beta_p = 25$. If the emitter area of a BJT is not given, assume it is $100 \mu m^2$.

Problem 1 Assume the capacitors are all very large.

- a) Obtain the small-signal voltage gain
- b) Determine the small-signal output voltage ν_{OUT} if $V_M=1$ mV and $\omega=2000\pi$

Problem 2 Obtain the quiescent output voltage and the small signal voltage gain.

Problem 3 Determine the small signal output voltage if the small signal input voltage is a sinusoidal 1KHz signal with 0-P amplitude of 25mV.

Page 1 of 17

Problem 4

- a) Determine the maximum value of R_1 that will keep M_1 in saturation. M_1 has dimensions W=18u and L=2u.
- b) If R_1 is 1/3 of the value determined in Part a), determine the small signal voltage gain of this circuit
- c) With the value of R_1 used in part b), determine the total output voltage if $v_{IN}(t)=.001\sin(5000t+75^\circ)$.

Problem 5 Consider the following circuit where $R_1=20K$.

- a) Size the device so that the amplifier has a voltage gain of -8.
- b) With the sizing obtained for part a) determine the quiescent value of the output voltage (the voltage on the drain node of M_1)

Problem 6 Obtain an expression for the small signal output voltage in terms of the small signal parameters for the following circuit if the input is given by the expression $v_{\text{IN}}(t)=v_{\text{MCOS}}(\omega t+\theta)$. Assume w_{I} is operating in the saturation region.

Problem 7 In the circuit shown the dimensions of the transistor are W=8u and L=12u. Assume C_1 is very large.

- a) Draw the small signal equivalent circuit for the amplifier
- b) Determine the quiescent value of V_D and V_{OUT}
- c) Obtain the small-signal voltage gain
- d) Determine the small-signal output voltage \boldsymbol{U}_{OUT} if V_M =20mV

Problem 8 Design an amplifier using only BJT transistors, resistors, capacitors and voltage sources that has a voltage gain of -5 when driving a 2K resistor.

Problem 9 Design an amplifier using only MOS transistors, capacitors, and voltage sources that has a voltage gain of -10 when driving an external 10K resistor.

Problem 10 Sketch a cross-section of the bipolar die along the BB' and CC' section lines for this bipolar layout.

Page 3 of 17

Layer Mapping

Problem 11 Two circuits that can perform as digital inverters are shown below. One is suitable for operation in a CMOS process and the other is for operation in a bipolar process (though the bipolar circuit will work, there are much better bipolar architectures). Assume V_{DD} for both inverters is 5V and the λ parameter in the design rules for both processes is 0.5 μ m. Design rules and relevant device characteristics for both MOS and bipolar processes are attached to this assignment.

- a) Determine minimum value of R_{PU} that will assure that the BJT is operating in saturation when the A input is V_{DD} .
- b) Quantitatively compare (with 10% accuracy) the area required for the layout of both inverters.

Bipolar Process Characteristics

Parameter	Typical	Tolerance b	Units		
Resistance and resistivity					
Substrate resistivity	16	±25%	$\Omega \cdot cm$		
n+ buried collector diffusion	17	±35%	Ω / \square		
Epitaxial layer	1.6	±20%	Ω - cm		
p-base diffusion	160	±20%	Ω / \square		
p-resistive diffusion (optional)	1500	±40%	Ω / \square		
n+ emitter diffusion	4.5	±30%	Ω / \square		
Metal	0.003		Ω/□		
Contacts $(3\mu \times 3\mu)$	<4		Ω		
Metal-n ⁺ emitter (contact plus series resistance to BE junction)	<1		Ω		
Metal-p-base ^c (contact plus series resistance)	70		Ω		
Metal-Epitaxial ^d (contact plus series resistance to BC junction)	120		Ω		
Breakdown voltages, leakage	currents, mig	ration currents, an	d operating conditions		
Reverse breakdown voltages					
n+ emitter to p-base	6.9	±50 mV	v		
p-base to epitaxial	70	±10	V		
Epitaxial to substrate	>80		V		
Maximum operating voltage	40		V		
Substrate leakage current	0.16		fA/μ^2		
Maximum metal current density	0.8		mA/μ width		
Maximum device operating temperature (design)	125		°C		
Maximum device operating temperature (physical)	225		°C		

Capacitances

Metal to epitaxial	0.022	±30%	${ m fF}/\mu^2$
Metal to p-base diffusion	0.045	±30%	fF/μ^2
Metal to n+ emitter diffusion	0.078	±30%	fF/μ^2
n ⁺ buried collector to substrate (junction, bottom)	0.062	±30%	\mathbf{fF}/μ^2
Epitaxial to substrate (junction, bottom)	0.062	±30%	fF/μ^2
Epitaxial to substrate (junction, sidewall)	1.6	±30%	fF/ μ perimeter
Epitaxial to p-base diffusion (junction, bottom)	0.14	±30%	fF/μ^2
Epitaxial to p-base diffusion (junction, sidewall)	7.9	±30%	fF/ μ perimeter
p-base diffusion to n ⁺ emitter diffusion (junction, bottom)	0.78	±30%	fF/μ^2
p-base diffusion to n ⁺ emitter diffusion (junction, sidewall)	3.1	±30%	fF/ μ perimeter

·	Dimension
1. n+ buried collector diffusion (Yellow, Mask #1)	
1.1 Width	3λ
1.2 Overlap of p-base diffusion (for vertical npn)	2λ
1.3 Overlap of n+ emitter diffusion (for collector contact of	
vertical npn)	2λ
1.4 Overlap of p-base diffusion (for collector and emitter of late	
1.5 Overlap of n ⁺ emitter diffusion (for base contact of lateral)	pnp) 2λ
2. Isolation diffusion (Orange, Mask #2)	
2.1 Width	4λ
2.2 Spacing	24λ
2.3 Distance to n+ buried collector	14λ
3. p-base diffusion (Brown, Mask #3)	
3.1 Width	3λ
3.2 Spacing	5λ
3.3 Distance to isolation diffusion	14λ
3.4 Width (resistor)	3λ
3.5 Spacing (as resistor)	3λ
1. n ⁺ emitter diffusion (Green, Mask #4)	
4.1 Width	3λ
4.2 Spacing	3λ
4.3 p-base diffusion overlap of n+ emitter diffusion (emitter in	base) 2λ
4.4 Spacing to isolation diffusion (for collector contact)	12λ
4.5 Spacing to p-base diffusion (for base contact of lateral pnp)	- 6λ
4.6 Spacing to p-base diffusion (for collector contact of vertical	npn) 6λ
Control (Block Mark #5)	-
Contact (Black, Mask #5) 5.1 Size (exactly)	$4\lambda \times 4\lambda$
5.1 Size (exactly) 5.2 Spacing	2λ
5.3 Metal overlap of contact	λ
5.4 n ⁺ emitter diffusion overlap of contact	2λ
	2λ
5.5 p-base diffusion overlap of contact	3λ
5.6 p-base to n ⁺ emitter	3λ 4λ
5.7 Spacing to isolation diffusion	41

6.	Metalization (Blue, Mask #6)	
	6.1 Width	2λ
	6.2 Spacing	2λ
	6.3 Bonding pad size	$100 \ \mu \times 100 \ \mu$
	6.4 Probe pad size	$75 \mu \times 75 \mu$
	6.5 Bonding pad separation	50 μ
	6.6 Bonding to probe pad	30 μ
	6.7 Probe pad separation	30 μ
	6.8 Pad to circuitry	40 μ
	6.9 Maximum current density	$0.8 \mathrm{mA}/\mu \mathrm{width}$
7.	Passivation (Purple, Mask #7)	
	7.1 Minimum bonding pad opening	90 $\mu \times$ 90 μ
	7.2 Minimum probe pad opening	$65 \mu \times 65 \mu$
	· · · · · · · · · · · · · · · · · · ·	

CMOS Process Characteristics

Process parameters for a typical a p-well CMOS process

	· · · · · · · · · · · · · · · · · · ·		
	Typical	Tolerance b	Units
Square law	model parameters		
V _{T0} (threshold voltage)			
n -channel (V_{TN0})	0.75	± 0.25	v
p-channel (V _{TP0})	-0.75	± 0.25	v
K'(conduction factor)			
n-channel	24	± 6	μΑ/V ² μΑ/V ²
p-channel	8	± 1.5	$\mu A/V^2$
γ(body effect)			
n-channel	0.8	± 0.4	$V^{1/2}$
p-channel	0.4	± 0.2	$V^{1/2}$
λ(channel length modulation)			
n-channel	0.01	± 50%	V^{-1}
p-channel	0.02	± 50%	V^{-1}
ϕ (surface potential)			
n- and p-channel	0.6	± 0.1	v
Proce	ss parameters		
μ (channel mobility)			
n-channel	710		cm ² /(V · s
p-channel	230		cm ² /(V·s
	Doping ^c		
n ⁺ active	5	±4	10 ¹⁸ /cm ³
p ⁺ active	5	± 4	10 ¹⁷ /cm ³
p-well	5	±2	10 ¹⁶ /cm ³
n-substrate	1	±0.1	10 ¹⁶ /cm ³

Physical feature sizes

r nysicai teature	SIZES		
Tox (gate oxide thickness)	500	± 100	Å
Total lateral diffusion			
n-channel	0.45	± 0.15	μ
p-channel	0.6	± 0.3	μ
Diffusion depth			
n ⁺ diffusion	0.45	± 0.15	μ
p ⁺ diffusion	0.6	± 0.3	μ
p-well	3.0	± 30%	μ
Insulating layer se	paration		
POLY I to POLY II	800	± 100	Å
Metal 1 to Substrate	1.55	± 0.15	μ
Metal 1 to Diffusion	0.925	± 0.25	μ
POLY I to Substrate (POLY I on field oxide)	0.75	± 0.1	μ
Metal 1 to POLY I	0.87	± 0.7	μ
Metal 2 to Substrate	2.7	± 0.25	μ
Metal 2 to Metal I	1.2	± 0.1	μ
Metal 2 to POLY I	2.0	± 0.1 ± 0.07	μ
			<u>~</u>
Capacitano	es a		
COX (gate oxide capacitance, n- and p-channel)	0.7	±0.1	fF/μ^2
POLY I to substrate, poly in field	0.045	±0.01	fF/μ^2
POLY II to substrate, poly in field	0.045	± 0.01	fF/μ^2
Metal 1 to substrate, metal in field	0.025	± 0.005	fF/μ^2
Metal 2 to substrate, metal in field	0.014	± 0.002	fF/μ^2
POLY I to POLY II	0.44	±0.05	fF/μ^2
POLY I to Metal 1	0.04	±0.01	fF/μ^2
POLY I to Metal 2	0.039	± 0.003	fF/μ^2
Metal 1 to Metal 2	0.035	±0.01	fF/μ^2
Metal 1 to diffusion	0.04	± 0.01	fF/μ^2
Metal 2 to diffusion	0.02	±0.005	fF/μ^2
n+ diffusion to p-well (junction, bottom)	0.33	±0.17	fF/μ^2
n+ diffusion sidewall (junction, sidewall)	2.6	±0.6	fF/μ
p+ diffusion to substrate (junction, bottom)	0.38	±0.12	fF/μ^2
p+ diffusion sidewall (junction, sidewall)	3.5	±2.0	fF/μ
p-well to substrate (junction, bottom)	0.2	±0.1	fF/μ^2
p-well sidewall (junction, sidewall)	1.6	±1.0	fF/μ
Resistanc	es		
Substrate	25	±20%	Ω-cm
p-well	5000	±2500	Ω/□
n ⁺ diffusion	35	±25	Ω/□
p ⁺ diffusion	80	±55	Ω/□
Metal	0.003	±25%	Ω/□
Poly	25	±25%	Ω/□
Metal 1-Metal 2 via (3 $\mu \times 3 \mu$ contact)	< 0.1	_2570	Ω
Metal 1 contact to POLY I (3 $\mu \times$ 3 μ contact)	<10		Ω
Metal 1 contact to n^+ or p^+ diffusion	~10		
$(3 \mu \times 3 \mu \text{ contact})$	<5		Ω
- Francisco			

Dimensions

		Microns	Scalable
1.	p-well (CIF Brown, Mask #1a)		
	1.1 Width	5	4λ
	1.2 Spacing (different potential)	15	10λ
	1.3 Spacing (same potential)	9	6λ
2.	Active (CIF Green, Mask #2)		
	2.1 Width	4	2λ
	2.2 Spacing	4	2λ
	2.3 p+ active in n-subs to p-well edge	8	6λ
	2.4 n+ active in n-subs to p-well edge	7	5λ
	2.5 n+ active in p-well to p-well edge	4	2λ
	2.6 p ⁺ active in p-well to p-well edge	1	λ
3.	Poly (POLY I) (CIF Red, Mask #3)		
	3.1 Width	3	2λ
	3.2 Spacing	3	2λ
	3.3 Field poly to active	2	λ
	3.4 Poly overlap of active	3	2λ
	3.5 Active overlap of poly	4	2λ
4.	p+ select (CIF Orange, Mask #4)		
	4.1 Overlap of active	2 2	λ
	4.2 Space to n ⁺ active	t.	λ
	4.3 Overlap of channel ^b	3.5	2λ
	4.4 Space to channel ^b	3.5	2λ
	4.5 Space to p ⁺ select	3	2λ .
	4.6 Width	3	2λ

7.	Via *	(CIF Purple Hatched, Mask #C1)		
	7.1	Size, exactly	3×3	$2\lambda \times 2\lambda$
	7.2	Separation	3	2λ
	7.3	Space to poly edge	4	2λ
	7.4	Space to contact	3	2λ-
	7.5	Overlap by metal 1	2	λ
	7.6	Overlap by metal 2	2	λ
	7.7	Space to active edge	3	2λ
8.	Meta	1 2 (CIF Orange Hatched, Mask #C2)		
	8.1	Width	5	3λ
	8.2	Spacing	5	3λ
	8.3	Bonding pad size	100×100	$100 \ \mu \times 100 \ \mu$
	8.4	Probe pad size	75×75	$75 \mu \times 75 \mu$
	8.5	Bonding pad separation	50	50 μ
	8.6	Bonding to probe pad	30	30 μ
	8.7	Probe pad separation	30	30 μ
	8.8	Pad to circuitry	40	40 μ
	8.9	Maximum current density	$0.8 \text{ mA/}\mu$	$0.8~\mathrm{mA}/\mu$
9.	Passi	vation (CIF Purple Dashed, Mask #8)		
	9.1	Bonding pad opening	90×90	$90 \mu \times 90 \mu$
	9.2	Probe pad opening	65×65	$65 \mu \times 65 \mu$
10.	Meta	2 crossing coincident metal 1 and poly		
	10.1		,	
		when crossing metal 2	2	λ
	10.2	Rule domain	2	λ
11.	Elect	rode (POLY II)h (CIF Purple Hatched, M	fask #A1)	
	11.1		3	2λ
	11.2		3	2λ
	11.3		2	λ
	11.4	Space to contact	3	2λ