FAS Titer with EQP 8/10/2012 1:14:43 PM Method:

Start time: 8/10/2012 1:16:27

PΜ

Sample data

No.	Comment / ID	Start time	Sample size	Corr. f	Density
1/6	Potassium dichromate	8/10/2012 1:16:27 PM	0.03428 g	1.0	0 g/mL
2/6	Potassium dichromate	8/10/2012 1:23:46 PM	0.02937 g	1.0	0 g/mL
3/6	Potassium dichromate	8/10/2012 1:30:03 PM	0.03332 g	1.0	0 g/mL
4/6	Potassium dichromate	8/10/2012 1:36:56 PM	0.03123 g	1.0	0 g/mL
5/6	Potassium dichromate	8/10/2012 1:43:23 PM	0.03332 g	1.0	0 g/mL
6/6	Potassium dichromate	8/10/2012 1:50:35 PM	0.02669 g	1.0	0 g/mL

Results

No.	Comment / ID	Start time	Sample size and resu	ılts	
1/6	Potassium dichromate	8/10/2012 1:16:27 PI	M 0.03428	g	
			R1 = 0.99355		Titer
2/6	Potassium dichromate	8/10/2012 1:23:46 PI	M 0.02937	g	
			R1 = 0.99231		Titer
3/6	Potassium dichromate	8/10/2012 1:30:03 Pf	M 0.03332	g	
			R1 = 0.99522		Titer
4/6	Potassium dichromate	8/10/2012 1:36:56 PI	M 0.03123	g	
			R1 = 0.99209		Titer
5/6	Potassium dichromate	8/10/2012 1:43:23 Pī	M 0.03332	g	
			R1 = 0.99459		Titer
6/6	Potassium dichromate	8/10/2012 1:50:35 PI	M 0.02669	g	
			R1 = 0.99334		Titer
-/-			R2 = 0.994		Mean Titer
Titer					
	Titer	0.99352			

Liter 0.99352

Series comment

Statistics

Rx	Name	n	Mean value	Unit	s	srel [%]	
R1	Titer	6	0.99352		0.00123	0.124	
R2	Mean Titer	1	0.994		NaN	NaN	

Raw data

Sample

1/6 No.

Start time: 8/10/2012 1:16:27

PΜ

Standard Potassium dichromate

solid

Type of standard

Comment

Titration stand Rondo60/1AWeight m = 0.03428 g

Sample start 8/10/2012 1:16:27 PM Sample end 8/10/2012 1:23:46 PM

EQP titration [1]

Titrant F(II)AS c = 0.1 mol/L TITER = 0.98341

Sensor DM140-SC

Start potential EST = 890.1 mV
Predispense EPD = 915.6 mV
VPD = 4.0000 mL

No. of EQPs and cand. nEQ = 1

Consumption EQP1 VEQ1 = 7.036722 mL

Q1 = 0.691998 mmol EEQ1 = 768.7 mV EHNV1 = 896.8 mV VEX = 0.463278 mL QEX = 0.045559 mmol

End VEND = 7.5000 mL

QEND = 0.737558 mmol

Termination at EQPs Time t = 5:09 min

Calculation

Excess

Result R1 = 0.99355 -- Titer Formula R1= $m/(VEQ^*c^*C)$ Constant $M/(10^*p^*z)$ C = 0.049032

Molar mass M[Potassium dichromate] = 294.19 g/mol

Equivalent number z[Potassium dichromate] = 6

Duration tUSE = 06:46 min

Measured values EQP titration [1]

Titrant F(II)AS c = 0.1 mol/L TITER = 0.98341

Sensor DM140-SC Sample 1/6

	Volume mL	Increment mL	Signal mV	Change mV	1st deriv. mV/mL	Time s	Temperature oC
-	0.0000	NaN	890.1	NaN	NaN	0	25.0
	4.0000	4.0000	897.7	7.6	NaN	10	25.0
	4.0500	0.0500	917.1	19.4	NaN	43	25.0
	4.1000	0.0500	918.6	1.5	NaN	46	25.0
	4.1500	0.0500	920.1	1.5	NaN	49	25.0
	4.2000	0.0500	921.6	1.5	58.08	52	25.0
	4.2500	0.0500	923.0	1.4	8.05	55	25.0
	4.3000	0.0500	924.5	1.5	28.41	58	25.0
	4.3500	0.0500	925.9	1.4	27.96	61	25.0
	4.4000	0.0500	927.2	1.3	27.80	64	25.0
	4.4500	0.0500	928.7	1.5	27.60	67	25.0
	4.5000	0.0500	930.0	1.3	27.48	70	25.0
	4.5500	0.0500	931.4	1.4	27.53	73	25.0
	4.6000	0.0500	932.8	1.4	27.31	76	25.0
	4.6500	0.0500	934.1	1.3	26.89	79	25.0
	4.7000	0.0500	935.5	1.4	26.72	82	25.0
	4.7500	0.0500	936.8	1.3	26.28	85	25.0
	4.8000	0.0500	938.1	1.3	26.09	88	25.0

Method: Start time:

FAS 8/10/2012 1:16:27 PM **FAS Titer with EQP**

8/10/2012 1:14:43 PM

	Volume mL	Increment mL	Signal mV	Change mV	1st deriv. mV/mL	Time s	Temperature oC
	4.8500	0.0500	939.4	1.3	26.11	91	25.0
	4.9000	0.0500	940.7	1.3	25.89	94	25.0
	4.9500	0.0500	942.0	1.3	25.91	97	25.0
	5.0000	0.0500	943.3	1.3	25.60	100	25.0
	5.0500	0.0500	944.6	1.3	25.40	104	25.0
	5.1000	0.0500	945.8	1.2	25.20	106	25.0
	5.1500	0.0500	947.1	1.3	25.00	110	25.0
	5.2000	0.0500	948.3	1.2	24.91	113	25.0
	5.2500	0.0500	949.6	1.3	24.60	116	25.0
	5.3000	0.0500	950.8	1.2	24.19	119	25.0
	5.3500	0.0500	952.0	1.2	23.80	122	25.0
	5.4000	0.0500	953.2	1.2	23.60	125	25.0
	5.4500	0.0500	953.2 954.3	1.1	23.28	128	25.0
						131	
	5.5000	0.0500	955.5 056.7	1.2 1.2	23.00		25.0
	5.5500	0.0500	956.7		22.91	134	25.0
	5.6000	0.0500	957.8	1.1 1.1	22.69	137 140	25.0
	5.6500	0.0500	958.9		22.51		25.0
	5.7000	0.0500	960.0	1.1	22.11	143	25.0
	5.7500	0.0500	961.2	1.2	21.80	146	25.0
	5.8000	0.0500	962.2	1.0	21.40	149	25.0
	5.8500	0.0500	963.3	1.1	20.80	152	25.0
	5.9000	0.0500	964.3	1.0	20.40	155	25.0
	5.9500	0.0500	965.3	1.0	20.09	158	25.0
	6.0000	0.0500	966.3	1.0	19.91	161	25.0
	6.0500	0.0500	967.3	1.0	19.51	164	25.0
	6.1000	0.0500	968.3	1.0	19.00	167	25.0
	6.1500	0.0500	969.2	0.9	18.51	170	25.0
	6.2000	0.0500	970.1	0.9	17.92	174	25.0
	6.2500	0.0500	971.0	0.9	17.20	176	25.0
	6.3000	0.0500	971.8	8.0	16.51	180	25.0
	6.3500	0.0500	972.7	0.9	15.84	183	25.0
	6.4000	0.0500	973.4	0.7	14.92	186	25.0
	6.4500	0.0500	974.1	0.7	13.84	189	25.0
	6.5000	0.0500	974.8	0.7	12.66	192	25.0
	6.5500	0.0500	975.4	0.6	11.15	195	25.0
	6.6000	0.0500	975.9	0.5	9.27	198	25.0
	6.6500	0.0500	976.3	0.4	7.48	201	25.0
	6.7000	0.0500	976.6	0.3	6.33	204	25.0
	6.7500	0.0500	976.7	0.1	19.07	207	25.0
	6.8000	0.0500	976.6	-0.1	284.28	210	25.0
	6.8500	0.0500	976.4	-0.2	65.66	213	25.0
	6.9000	0.0500	975.3	-1.1	-586.15	216	25.0
	6.9500	0.0500	972.5	-2.8	-1310.42	219	25.0
	7.0000	0.0500	954.7	-17.8	-1829.56	224	25.0
QP1	7.036722	NaN	768.7	NaN	-1976.66	NaN	NaN
	7.0500	0.0500	701.5	-253.2	-1976.22	254	25.0
	7.1000	0.0500	603.1	-98.4	-1705.83	266	25.0
	7.1500	0.0500	584.6	-18.5	-1102.99	269	25.0
	7.2000	0.0500	573.1	-11.5	-382.43	272	25.0
	7.2500	0.0500	564.8	-8.3	112.39	275	25.0
	7.3000	0.0500	558.3	-6.5	NaN	278	25.0
	7.3500	0.0500	553.2	-5.1	NaN	282	25.0
	7.4000	0.0500	549.0	-4.2	NaN	285	25.0
	7.4500	0.0500	545.4	-3.6	NaN	288	25.0
	7.5000	0.0500	542.1	-3.3	NaN	291	25.0

FAS Titer with EQP Method: **FAS** 8/10/2012 1:14:43 PM

Start time: 8/10/2012 1:16:27

PM

E - V curve **EQP** titration [1] Sample

EQP titration [1] dE/dV - V curve Sample

Raw data

Sample

2/6 No.

Standard Potassium dichromate

Type of standard solid

Comment

Purity

Titration stand Rondo60/1A m = 0.02937 gWeight Correction factor f = 1.0

p = 100.00 %

Start time: 8/10/2012 1:16:27

PΜ

Temperature T = 25.0 oC

Sample start 8/10/2012 1:23:46 PM Sample end 8/10/2012 1:30:03 PM

EQP titration [1]

Titrant F(II)AS c = 0.1 mol/L TITER = 0.98341

Sensor DM140-SC

No. of EQPs and cand. nEQ = 1

Consumption EQP1 VEQ1 = 6.036410 mL

Q1 = 0.593627 mmol EEQ1 = 763.5 mV EHNV1 = 903.6 mV VEX = 0.463590 mL

 $\begin{array}{ccc} \mathsf{Excess} & \mathsf{VEX} = \ 0.463590 \ \mathsf{mL} \\ \mathsf{QEX} = \ 0.045590 \ \mathsf{mmol} \\ \mathsf{End} & \mathsf{VEND} = \ 6.5000 \ \mathsf{mL} \\ \end{array}$

QEND = 0.639216 mmol

Termination at EQPs Time t = 4:04 min

Calculation

Result R1 = 0.99231 -- Titer Formula R1= $m/(VEQ^*c^*C)$ Constant $M/(10^*p^*z)$ C = 0.049032

Molar mass M[Potassium dichromate] = 294.19 g/mol

Equivalent number z[Potassium dichromate] = 6

Duration tUSE = 05:42 min

Measured values EQP titration [1]

Titrant F(II)AS c = 0.1 mol/L TITER = 0.98341

Sensor DM140-SC Sample 2/6

Volume	Increment	Signal	Change	1st deriv.	Time	Temperature
mL	mL	mV	mV	mV/mL	s	οС
0.0000	NaN	896.7	NaN	NaN	0	25.0
4.0000	4.0000	905.9	9.2	NaN	10	25.0
4.0500	0.0500	927.6	21.7	NaN	44	25.0
4.1000	0.0500	929.3	1.7	NaN	47	25.0
4.1500	0.0500	930.9	1.6	NaN	50	25.0
4.2000	0.0500	932.5	1.6	64.08	53	25.0
4.2500	0.0500	934.0	1.5	7.78	56	25.0
4.3000	0.0500	935.6	1.6	31.00	59	25.0
4.3500	0.0500	937.1	1.5	30.80	62	25.0
4.4000	0.0500	938.7	1.6	30.51	65	25.0
4.4500	0.0500	940.2	1.5	30.12	68	25.0
4.5000	0.0500	941.7	1.5	29.49	71	25.0
4.5500	0.0500	943.1	1.4	29.00	74	25.0
4.6000	0.0500	944.6	1.5	28.60	77	25.0
4.6500	0.0500	946.0	1.4	28.40	80	25.0
4.7000	0.0500	947.4	1.4	28.00	83	25.0
4.7500	0.0500	948.8	1.4	27.51	86	25.0
4.8000	0.0500	950.2	1.4	27.00	89	25.0
4.8500	0.0500	951.5	1.3	26.60	92	25.0
4.9000	0.0500	952.8	1.3	26.00	95	25.0
4.9500	0.0500	954.1	1.3	25.51	98	25.0
5.0000	0.0500	955.4	1.3	24.89	102	25.0
5.0500	0.0500	956.6	1.2	24.51	104	25.0
5.1000	0.0500	957.8	1.2	23.92	108	25.0
5.1500	0.0500	959.0	1.2	23.20	111	25.0
5.2000	0.0500	960.1	1.1	22.51	114	25.0
5.2500	0.0500	961.3	1.2	21.84	117	25.0

Method: FAS Start time: 8/10/

8/10/2012 1:16:27 PM **FAS Titer with EQP**

8/10/2012 1:14:43 PM

	Volume mL	Increment mL	Signal mV	Change mV	1st deriv. mV/mL	Time s	Temperature oC
	5.3000	0.0500	962.3	1.0	20.80	120	25.0
	5.3500	0.0500	963.3	1.0	19.72	123	25.0
	5.4000	0.0500	964.3	1.0	18.63	126	25.0
	5.4500	0.0500	965.2	0.9	17.64	129	25.0
	5.5000	0.0500	966.0	0.8	16.24	132	25.0
	5.5500	0.0500	966.8	0.8	14.57	135	25.0
	5.6000	0.0500	967.5	0.7	12.59	138	25.0
	5.6500	0.0500	968.1	0.6	10.07	141	25.0
	5.7000	0.0500	968.4	0.3	11.09	144	25.0
	5.7500	0.0500	968.8	0.4	12.97	147	25.0
	5.8000	0.0500	968.8	0.0	295.90	150	25.0
	5.8500	0.0500	968.6	-0.2	73.96	153	25.0
	5.9000	0.0500	968.2	-0.4	-575.00	156	25.0
	5.9500	0.0500	963.9	-4.3	-1295.63	159	25.0
	6.0000	0.0500	954.5	-9.4	-1812.67	162	25.0
EQP1	6.036410	NaN	763.5	NaN	-1961.11	NaN	NaN
	6.0500	0.0500	692.2	-262.3	-1960.74	193	25.0
	6.1000	0.0500	600.2	-92.0	-1694.31	203	25.0
	6.1500	0.0500	581.5	-18.7	-1095.79	207	25.0
	6.2000	0.0500	569.9	-11.6	-379.72	210	25.0
	6.2500	0.0500	561.6	-8.3	122.33	213	25.0
	6.3000	0.0500	555.2	-6.4	NaN	216	25.0
	6.3500	0.0500	550.1	-5.1	NaN	219	25.0
	6.4000	0.0500	545.9	-4.2	NaN	222	25.0
	6.4500	0.0500	542.2	-3.7	NaN	225	25.0
	6.5000	0.0500	539.1	-3.1	NaN	228	25.0

E - V curve EQP titration [1] Sample 2/

Start time: 8/10/2012 1:16:27

PM

dE/dV - V curve EQP titration [1] Sample 2/6

Raw data

Sample

No. 3/6

Standard Potassium dichromate

Type of standard solid

Comment

Titration stand Rondo60/1AWeight m = 0.03332 g

Correction factor f = 1.0

 $\begin{array}{ll} \text{Purity} & \quad p = 100.00 \ \% \\ \text{Temperature} & \quad T = 25.0 \ \text{oC} \end{array}$

Sample start 8/10/2012 1:30:03 PM Sample end 8/10/2012 1:36:56 PM

EQP titration [1]

Titrant F(II)AS c = 0.1 mol/L TITER = 0.98341

Sensor DM140-SC

Start potential EST = 906.6 mVPredispense EPD = 935.0 mVVPD = 4.0000 mL

No. of EQPs and cand. nEQ = 1

Consumption EQP1 VEQ1 = 6.828207 mLQ1 = 0.671493 mmol

EEQ1 = 769.7 mV EHNV1 = 913.9 mV VEX = 0.471793 mL

QEX = 0.046397 mmol VEND = 7.3000 mL

QEND = 0.717889 mmol

Termination at EQPs Time t = 4:40 min

Calculation

Excess

Result R1 = 0.99522 -- Titer

Method:

FAS Titer with EQP

8/10/2012 1:14:43 PM

Start time: 8/10/2012 1:16:27

PΜ

FAS

Formula R1=m/(VEQ*c*C)
Constant M/(10*p*z) C = 0.049032

Molar mass M[Potassium dichromate] = 294.19 g/mol

Equivalent number z[Potassium dichromate] = 6

Duration tUSE = 06:18 min

Measured values EQP titration [1]

Titrant F(II)AS c = 0.1 mol/L TITER = 0.98341

Sensor DM140-SC Sample 3/6

Volume Increment Signal Change 1st deriv. Time **Temperature** mL mL m۷ m۷ mV/mL οС s 0.0000 906.6 NaN 25.0 NaN NaN 0 4.0000 4.0000 915.2 8.6 NaN 10 25.0 0.0500 4.0500 936.7 21.5 NaN 43 25.0 4.1000 0.0500 938.3 25.0 1.6 NaN 46 0.0500 49 25.0 4.1500 940.0 1.7 NaN 0.0500 4.2000 941.5 1.5 63.78 52 25.0 4.2500 0.0500 943.1 55 25.0 1.6 8.45 0.0500 31.08 4.3000 944 7 58 25.0 1.6 0.0500 4.3500 946.2 1.5 30.80 61 25.0 4.4000 0.0500 947.8 25.0 1.6 30.52 64 0.0500 67 25.0 4.4500 949.3 30.08 1.5 4.5000 0.0500 950.7 1.4 29.69 70 25.0 4.5500 0.0500 952.3 1.6 29.51 73 25.0 4.6000 0.0500 25.0 953.7 29.28 76 1.4 4.6500 0.0500 955.2 1.5 29.21 79 25.0 4.7000 0.0500 956.6 1.4 28.91 82 25.0 4.7500 0.0500 958.1 1.5 85 25.0 28.60 4.8000 0.0500 959.5 1.4 28.40 88 25.0 0.0500 4.8500 960.9 1.4 28.00 91 25.0 4.9000 0.0500 962.3 27.60 94 25.0 1.4 4.9500 0.0500 963.7 1.4 27.28 97 25.0 5.0000 0.0500 965.0 1.3 27.20 100 25.0 5.0500 0.0500 25.0 966.4 1.4 27.00 104 5.1000 0.0500 967.7 1.3 26.91 106 25.0 5.1500 0.0500 969.1 1.4 26.60 110 25.0 5.2000 0.0500 970.4 1.3 25.0 26.31 113 5.2500 0.0500 971.7 1.3 25.81 116 25.0 5.3000 0.0500 973.0 1.3 25.40 119 25.0 5.3500 0.0500 25.0 974.2 1.2 24.88 122 5.4000 0.0500 975.5 1.3 24.60 125 25.0 0.0500 976.7 5.4500 1.2 24.40 128 25.0 5.5000 0.0500 1.2 25.0 977.9 24.21 131 5.5500 0.0500 979.1 1.2 23.91 134 25.0 5.6000 0.0500 980.3 1.2 25.0 23.40 137 0.0500 981.5 5.6500 1.2 140 25.0 23.12 5.7000 0.0500 982.6 1.1 22.60 143 25.0 0.0500 22.00 5.7500 983.7 1.1 146 25.0 5.8000 0.0500 984.8 25.0 21.51 149 1.1 5.8500 0.0500 985.9 1.1 21.00 152 25.0 0.0500 5.9000 986.9 1.0 20.52 155 25.0 5.9500 0.0500 987.9 158 25.0 1.0 19.72 6.0000 0.0500 988.9 1.0 18.91 161 25.0 6.0500 0.0500 989.8 0.9 18.12 164 25.0 6.1000 0.0500 0.9 25.0 990.7 17.12 167 6.1500 0.0500 991.5 0.8 15.91 170 25.0 6.2000 0.0500 992.3 0.8 14.84 174 25.0 6.2500 0.0500 993.0 0.7 13.64 176 25.0 6.3000 0.0500 993.6 0.6 12.27 180 25.0 6.3500 0.0500 994.2 0.6 10.62 183 25.0 0.0500 6.4000 994.7 0.5 8.33 186 25.0 6.4500 0.0500 995.0 0.3 7.50 189 25.0 6.5000 0.0500 995.2 0.2 6.09 192 25.0 6.5500 0.0500 995.1 14.76 195 25.0 -0.1 6.6000 0.0500 994.7 -0.4 365.51 198 25.0 6.6500 0.0500 993.9 -0.8 -52.00 201 25.0 6.7000 -821.56 0.0500 990.7 -3.2 204 25.0 6.7500 0.0500 984.5 -6.2 -1571.66 207 25.0 6.8000 0.0500 962.0 -22.5 -2037.03 25.0 212

Method: Start time: FAS 8/10/2012 1:16:27 PM **FAS Titer with EQP**

8/10/2012 1:14:43 PM

	Volume mL	Increment mL	Signal mV	Change mV	1st deriv. mV/mL	Time s	Temperature oC
EQP1	6.828207	NaN	769.7	NaN	-2082.27	NaN	NaN
	6.8500	0.0500	621.2	-340.8	-2074.87	234	25.0
	6.9000	0.0500	592.4	-28.8	-1674.68	238	25.0
	6.9500	0.0500	578.0	-14.4	-963.04	241	25.0
	7.0000	0.0500	568.3	-9.7	-196.47	244	25.0
	7.0500	0.0500	561.2	-7.1	241.51	247	25.0
	7.1000	0.0500	555.6	-5.6	NaN	250	25.0
	7.1500	0.0500	551.0	-4.6	NaN	254	25.0
	7.2000	0.0500	547.1	-3.9	NaN	257	25.0
	7.2500	0.0500	543.7	-3.4	NaN	260	25.0
	7.3000	0.0500	540.7	-3.0	NaN	263	25.0

E - V curve EQP titration [1]Sample 3/6

dE/dV - V curve EQP titration [1] Sample 3/6

TLER TOLEDO T90 3.1.3 Serial No. B201599512

FAS Titer with EQP

Start time: 8/10/2012 1:16:27

PΜ

FAS

Raw data

Method:

Sample

No. 4/6

Standard Potassium dichromate

Type of standard solid

Comment

 $\begin{array}{ll} \mbox{Titration stand} & \mbox{Rondo60/1A} \\ \mbox{Weight} & \mbox{m} = 0.03123 \ \mbox{g} \\ \end{array}$

Correction factor f = 1.0

Purity p = 100.00 %Temperature T = 25.0 oC

Sample start 8/10/2012 1:36:56 PM Sample end 8/10/2012 1:43:23 PM

EQP titration [1]

Titrant F(II)AS c = 0.1 mol/L TITER = 0.98341

Sensor DM140-SC

Start potential EST = 909.1 mVPredispense EPD = 940.2 mVVPD = 4.0000 mL

No. of EQPs and cand. nEQ = 1

Consumption EQP1 VEQ1 = 6.420115 mL

Q1 = 0.631361 mmol EEQ1 = 787.3 mV EHNV1 = 916.7 mV VEX = 0.479885 mL 8/10/2012 1:14:43 PM

Excess VEX = 0.479885 mL QEX = 0.047192 mmol

VEND = 6.9000 mL QEND = 0.678553 mmol

Termination at EQPs Time t = 4:12 min

Calculation

End

Result R1 = 0.99209 -- Titer Formula R1=m/(VEQ*c*C) Constant M/(10*p*z)

C = 0.049032

Molar mass M[Potassium dichromate] = 294.19 g/mol

Equivalent number z[Potassium dichromate] = 6

Duration tUSE = 05:50 min

Measured values EQP titration [1]

Titrant F(II)AS c = 0.1 mol/L TITER = 0.98341

Sensor DM140-SC Sample 4/6

Volume mL	Increment mL	Signal mV	Change mV	1st deriv. mV/mL	Time s	Temperature oC
0.0000	NaN	909.1	NaN	NaN	0	25.0
4.0000	4.0000	918.6	9.5	NaN	10	25.0
4.0500	0.0500	942.0	23.4	NaN	43	25.0
4.1000	0.0500	943.7	1.7	NaN	46	25.0
4.1500	0.0500	945.4	1.7	NaN	49	25.0
4.2000	0.0500	947.2	1.8	68.95	52	25.0
4.2500	0.0500	948.9	1.7	8.62	55	25.0
4.3000	0.0500	950.6	1.7	33.41	58	25.0
4.3500	0.0500	952.2	1.6	32.88	61	25.0
4.4000	0.0500	953.8	1.6	32.60	64	25.0
4.4500	0.0500	955.5	1.7	32.40	67	25.0
4.5000	0.0500	957.1	1.6	32.20	70	25.0
4.5500	0.0500	958.7	1.6	31.92	73	25.0

Method: Start time:

FAS 8/10/2012 1:16:27 PM **FAS Titer with EQP**

8/10/2012 1:14:43 PM

	Volume	Increment	Signal	Change	1st deriv.	Time	Temperature
	mL	mL	mV	mV	mV/mL	s	οС
	4.6000	0.0500	960.3	1.6	31.40	76	25.0
	4.6500	0.0500	961.8	1.5	30.88	79	25.0
	4.7000	0.0500	963.4	1.6	30.72	82	25.0
	4.7500	0.0500	964.9	1.5	30.28	85	25.0
	4.8000	0.0500	966.4	1.5	30.12	88	25.0
	4.8500	0.0500	967.9	1.5	29.72	91	25.0
	4.9000	0.0500	969.4	1.5	29.08	94	25.0
	4.9500	0.0500	970.8	1.4	28.60	97	25.0
	5.0000	0.0500	972.3	1.5	28.20	100	25.0
	5.0500	0.0500	973.6	1.3	28.00	104	25.0
	5.1000	0.0500	975.0	1.4	27.60	107	25.0
	5.1500	0.0500	976.4	1.4	27.22	110	25.0
	5.2000	0.0500	977.8	1.4	26.49	113	25.0
	5.2500	0.0500	979.1	1.3	26.12	116	25.0
	5.3000	0.0500	980.3	1.2	25.41	119	25.0
	5.3500	0.0500	981.6	1.3	24.80	122	25.0
	5.4000	0.0500	982.8	1.2	24.31	125	25.0
	5.4500	0.0500	984.1	1.3	23.72	128	25.0
	5.5000	0.0500	985.2	1.1	22.91	131	25.0
	5.5500	0.0500	986.3	1.1	21.92	134	25.0
	5.6000	0.0500	987.4	1.1	20.80	137	25.0
	5.6500	0.0500	988.4	1.0	19.80	140	25.0
	5.7000	0.0500	989.4	1.0	19.04	143	25.0
	5.7500	0.0500	990.3	0.9	17.92	146	25.0
	5.8000	0.0500	991.1	0.8	16.63	149	25.0
	5.8500	0.0500	992.0	0.9	15.26	152	25.0
	5.9000	0.0500	992.7	0.7	13.90	155	25.0
	5.9500	0.0500	993.3	0.6	11.36	158	25.0
	6.0000	0.0500	993.8	0.5	8.98	161	25.0
	6.0500	0.0500	994.2	0.4	7.72	164	25.0
	6.1000	0.0500	994.4	0.2	18.87	167	25.0
	6.1500	0.0500	994.1	-0.3	60.49	170	25.0
	6.2000	0.0500	994.0	-0.1	301.40	174	25.0
	6.2500	0.0500	992.9	-1.1	-189.53	176	25.0
	6.3000	0.0500	989.6	-3.3	-968.61	180	25.0
	6.3500	0.0500	972.3	-17.3	-1676.18	187	25.0
	6.4000	0.0500	910.2	-62.1	-2066.26	192	25.0
EQP1	6.420115	NaN	787.3	NaN	-2076.32	NaN	NaN
	6.4500	0.0500	604.7	-305.5	-2019.28	207	25.0
	6.5000	0.0500	584.5	-20.2	-1553.17	210	25.0
	6.5500	0.0500	572.2	-12.3	-822.10	214	25.0
	6.6000	0.0500	563.7	-8.5	-113.13	217	25.0
	6.6500	0.0500	557.3	-6.4	216.92	220	25.0
	6.7000	0.0500	552.2	-5.1	NaN	223	25.0
	6.7500	0.0500	547.9	-4.3	NaN	226	25.0
	6.8000	0.0500	544.2	-3.7	NaN	229	25.0
	6.8500	0.0500	541.1	-3.1	NaN	232	25.0
	6.9000	0.0500	538.2	-2.9	NaN	235	25.0

Start time: 8/10/2012 1:16:27

PΜ

E - V curve EQP titration [1] Sample 4/

dE/dV - V curve EQP titration [1] Sample 4/6

Raw data

Sample

No. 5/6

Standard Potassium dichromate

Type of standard solid

Comment

Titration stand Rondo60/1A Weight m = 0.03332 g

Correction factor f = 1.0Purity p = 100.00 %

LabX 3.1.1 / admin Page 12 of 18 8/10/2012 2:41:03 PM

Start time: 8/10/2012 1:16:27

PΜ

Temperature T = 25.0 oC

Sample start 8/10/2012 1:43:23 PM Sample end 8/10/2012 1:50:34 PM

EQP titration [1]

Titrant F(II)AS c = 0.1 mol/L TITER = 0.98341

Sensor DM140-SC

Start potential EST = 919.7 mV
Predispense EPD = 952.6 mV
VPD = 4.0000 mL

No. of EQPs and cand. nEQ = 1

Consumption EQP1 VEQ1 = 6.832497 mL

Q1 = 0.671915 mmol EEQ1 = 784.4 mV EHNV1 = 929.4 mV VEX = 0.467503 mL

 $\begin{array}{ccc} \mathsf{Excess} & \mathsf{VEX} = \ 0.467503 \ \mathsf{mL} \\ \mathsf{QEX} = \ 0.045975 \ \mathsf{mmol} \\ \mathsf{End} & \mathsf{VEND} = \ 7.3000 \ \mathsf{mL} \\ \end{array}$

QEND = 0.717889 mmol

Termination at EQPs Time t = 4:55 min

Calculation

Result R1 = 0.99459 -- Titer Formula R1= $m/(VEQ^*c^*C)$ Constant $M/(10^*p^*z)$ C = 0.049032

Molar mass M[Potassium dichromate] = 294.19 g/mol

Equivalent number z[Potassium dichromate] = 6

Duration tUSE = 06:34 min

Measured values EQP titration [1]

Titrant F(II)AS c = 0.1 mol/L TITER = 0.98341

Sensor DM140-SC Sample 5/6

Volume mL	Increment mL	Signal mV	Change mV	1st deriv. mV/mL	Time s	Temperature oC
0.0000	NaN	919.7	NaN	NaN	0	25.0
4.0000	4.0000	931.0	11.3	NaN	11	25.0
4.0500	0.0500	954.3	23.3	NaN	44	25.0
4.1000	0.0500	956.0	1.7	NaN	48	25.0
4.1500	0.0500	957.8	1.8	NaN	51	25.0
4.2000	0.0500	959.5	1.7	68.54	54	25.0
4.2500	0.0500	961.1	1.6	8.23	57	25.0
4.3000	0.0500	962.8	1.7	33.00	60	25.0
4.3500	0.0500	964.4	1.6	32.68	63	25.0
4.4000	0.0500	966.1	1.7	32.72	66	25.0
4.4500	0.0500	967.7	1.6	32.40	69	25.0
4.5000	0.0500	969.3	1.6	32.00	72	25.0
4.5500	0.0500	970.9	1.6	31.72	75	25.0
4.6000	0.0500	972.5	1.6	31.17	78	25.0
4.6500	0.0500	974.0	1.5	31.11	81	25.0
4.7000	0.0500	975.6	1.6	30.81	84	25.0
4.7500	0.0500	977.1	1.5	30.48	87	25.0
4.8000	0.0500	978.6	1.5	30.32	90	25.0
4.8500	0.0500	980.2	1.6	30.00	93	25.0
4.9000	0.0500	981.6	1.4	29.80	96	25.0
4.9500	0.0500	983.1	1.5	29.53	99	25.0
5.0000	0.0500	984.6	1.5	28.99	102	25.0
5.0500	0.0500	986.0	1.4	28.49	105	25.0
5.1000	0.0500	987.5	1.5	28.32	108	25.0
5.1500	0.0500	988.8	1.3	27.89	112	25.0
5.2000	0.0500	990.2	1.4	27.60	114	25.0
5.2500	0.0500	991.6	1.4	27.31	118	25.0

Method: Start time: FAS 8/10/2012 1:16:27 PM **FAS Titer with EQP**

8/10/2012 1:14:43 PM

	Volume mL	Increment mL	Signal mV	Change mV	1st deriv. mV/mL	Time s	Temperature oC
	5.3000	0.0500	993.0	1.4	27.00	121	25.0
	5.3500	0.0500	994.3	1.3	26.72	124	25.0
	5.4000	0.0500	995.6	1.3	26.00	127	25.0
	5.4500	0.0500	996.9	1.3	25.40	130	25.0
	5.5000	0.0500	998.2	1.3	24.88	133	25.0
	5.5500	0.0500	999.4	1.2	24.60	136	25.0
	5.6000	0.0500	1000.6	1.2	24.20	139	25.0
	5.6500	0.0500	1001.8	1.2	23.80	142	25.0
	5.7000	0.0500	1003.0	1.2	23.63	145	25.0
	5.7500	0.0500	1004.2	1.2	23.12	148	25.0
	5.8000	0.0500	1005.3	1.1	22.20	151	25.0
	5.8500	0.0500	1006.4	1.1	21.55	154	25.0
	5.9000	0.0500	1007.5	1.1	20.49	157	25.0
	5.9500	0.0500	1008.4	0.9	19.48	160	25.0
	6.0000	0.0500	1009.4	1.0	18.52	163	25.0
	6.0500	0.0500	1010.4	1.0	17.68	166	25.0
	6.1000	0.0500	1011.1	0.7	17.21	169	25.0
	6.1500	0.0500	1012.0	0.9	16.55	172	25.0
	6.2000	0.0500	1012.8	0.8	15.53	175	25.0
	6.2500	0.0500	1013.6	0.8	14.47	178	25.0
	6.3000	0.0500	1014.3	0.7	12.67	182	25.0
	6.3500	0.0500	1014.8	0.5	10.15	184	25.0
	6.4000	0.0500	1015.3	0.5	8.25	188	25.0
	6.4500	0.0500	1015.6	0.3	6.12	191	25.0
	6.5000	0.0500	1015.7	0.1	8.57	194	25.0
	6.5500	0.0500	1015.8	0.1	6.76	197	25.0
	6.6000	0.0500	1015.6	-0.2	347.80	200	25.0
	6.6500	0.0500	1014.7	-0.9	21.83	203	25.0
	6.7000	0.0500	1013.0	-1.7	-734.03	206	25.0
	6.7500	0.0500	1005.5	-7.5	-1526.96	209	25.0
	6.8000	0.0500	993.7	-11.8	-2062.51	215	25.0
EQP1	6.832497	NaN	784.4	NaN	-2174.47	NaN	NaN
	6.8500	0.0500	671.7	-322.0	-2171.86	245	25.0
	6.9000	0.0500	600.7	-71.0	-1822.61	254	25.0
	6.9500	0.0500	582.7	-18.0	-1122.78	257	25.0
	7.0000	0.0500	571.5	-11.2	-325.24	260	25.0
	7.0500	0.0500	563.5	-8.0	197.82	263	25.0
	7.1000	0.0500	557.3	-6.2	NaN	266	25.0
	7.1500	0.0500	552.4	-4.9	NaN	269	25.0
	7.2000	0.0500	548.2	-4.2	NaN	272	25.0
	7.2500	0.0500	544.7	-3.5	NaN	275	25.0
	7.3000	0.0500	541.6	-3.1	NaN	278	25.0

E - V curve EQP titration [1] Sample 5/6

Start time: 8/10/2012 1:16:27

PM

dE/dV - V curve EQP titration [1]Sample 5/6

Raw data

Sample

No. 6/6

Standard Potassium dichromate

Type of standard solid

Comment

Titration stand Rondo60/1AWeight m = 0.02669 g

Correction factor f = 1.0

 $\begin{array}{ll} \text{Purity} & \quad p = 100.00 \ \% \\ \text{Temperature} & \quad T = 25.0 \ \text{oC} \end{array}$

Sample start 8/10/2012 1:50:35 PM Sample end 8/10/2012 2:10:22 PM

EQP titration [1]

Titrant F(II)AS c = 0.1 mol/L TITER = 0.98341

Sensor DM140-SC

Start potential EST = 916.0 mVPredispense EPD = 952.8 mVVPD = 4.0000 mL

No. of EQPs and cand. nEQ = 1

Consumption EQP1 VEQ1 = 5.479886 mL Q1 = 0.538897 mmol

EEQ1 = 764.1 mV EHNV1 = 925.5 mV VEX = 0.470114 mL QEX = 0.046231 mmol

End VEND = 5.9500 mL QEND = 0.585129 mmol

Termination at EQPs
Time t = 3:30 min

Calculation

Excess

Result R1 = 0.99334 -- Titer

Start time: 8/10/2012 1:16:27

PΜ

Formula R1=m/(VEQ*c*C) Constant M/(10*p*z) C = 0.049032

Molar mass M[Potassium dichromate] = 294.19 g/mol

Equivalent number z[Potassium dichromate] = 6

Duration tUSE = 19:10 min

Measured values EQP titration [1]

Titrant F(II)AS c = 0.1 mol/L TITER = 0.98341

Sensor DM140-SC

Sample 6/6

	Volume mL	Increment mL	Signal mV	Change mV	1st deriv. mV/mL	Time s	Temperature oC
-	0.0000	NaN	916.0	NaN	NaN	0	25.0
	4.0000	4.0000	929.9	13.9	NaN	12	25.0
	4.0500	0.0500	954.7	24.8	NaN	46	25.0
	4.1000	0.0500	956.5	1.8	NaN	49	25.0
	4.1500	0.0500	958.3	1.8	NaN	52	25.0
	4.2000	0.0500	960.1	1.8	72.35	55	25.0
	4.2500	0.0500	961.9	1.8	8.31	58	25.0
	4.3000	0.0500	963.6	1.7	34.52	61	25.0
	4.3500	0.0500	965.3	1.7	33.60	64	25.0
	4.4000	0.0500	967.0	1.7	32.91	67	25.0
	4.4500	0.0500	968.6	1.6	32.09	70	25.0
	4.5000	0.0500	970.2	1.6	31.51	73	25.0
	4.5500	0.0500	971.7	1.5	30.72	76	25.0
	4.6000	0.0500	973.3	1.6	29.91	79	25.0
	4.6500	0.0500	974.7	1.4	28.91	82	25.0
	4.7000	0.0500	976.2	1.5	27.72	85	25.0
	4.7500	0.0500	977.5	1.3	26.51	88	25.0
	4.8000	0.0500	978.8	1.3	25.21	91	25.0
	4.8500	0.0500	980.0	1.2	24.03	94	25.0
	4.9000	0.0500	981.2	1.2	22.63	97	25.0
	4.9500	0.0500	982.3	1.1	21.15	100	25.0
	5.0000	0.0500	983.3	1.0	19.50	103	25.0
	5.0500	0.0500	984.2	0.9	23.63	106	25.0
	5.1000	0.0500	985.0	0.8	12.97	110	25.0
	5.1500	0.0500	985.6	0.6	5.78	112	25.0
	5.2000	0.0500	986.1	0.5	-2.20	116	25.0
	5.2500	0.0500	986.1	0.0	346.89	119	25.0
	5.3000	0.0500	980.4	-5.7	-24.81	123	25.0
	5.3500	0.0500	980.9	0.5	-761.33	126	25.0
	5.4000	0.0500	974.0	-6.9	-1499.66	131	25.0
	5.4500	0.0500	962.0	-12.0	-1975.09	139	25.0
EQP1	5.479886	NaN	764.1	NaN	-2047.85	NaN	NaN
	5.5000	0.0500	630.9	-331.1	-2043.06	165	25.0
	5.5500	0.0500	591.2	-39.7	-1687.59	170	25.0
	5.6000	0.0500	575.1	-16.1	-1001.38	173	25.0
	5.6500	0.0500	564.6	-10.5	-245.78	176	25.0
	5.7000	0.0500	557.0	-7.6	219.18	179	25.0
	5.7500	0.0500	551.2	-5.8	NaN	182	25.0
	5.8000	0.0500	546.4	-4.8	NaN	185	25.0
	5.8500	0.0500	542.4	-4.0	NaN	188	25.0
	5.9000	0.0500	538.9	-3.5	NaN	192	25.0
	5.9500	0.0500	535.9	-3.0	NaN	195	25.0

Start time: 8/10/2012 1:16:27

PΜ

E - V curve EQP titration [1]Sample 6/6

dE/dV - V curve EQP titration [1]Sample 6/6

Raw data

Calculation

Result R2 = 0.994 -- Mean Titer

Formula R2=Mean[R1]

Constant 1

C = 1

Molar mass M[None] = 1 g/mol

Equivalent number z[None] = 1

METTLER TOLEDO T90 3.1.3 T90_Robin / Excellence Titrator

Serial No. B201599512

FAS Titer with EQP

8/10/2012 1:14:43 PM

Start time: 8/10/2012 1:16:27

PM

FAS

Titer

Method:

Titrant F(II)AS c = 0.1 mol/L

Titer 0.99352

- (1) Modified (2) Excluded (3) Outside limits
- (4) Resource expired
- (5) srel above max srel
- (6) srel above max srel for multiple determination (7) Value outside limits, not saved in setup
- (8) Sample data outside limits
- (9) Standard evaluation used
- (10) Result from buffer

Created: - (Administrator), 8/10/2012 1:23:50 PM

LabX 3.1.1 / admin Page 18 of 18 8/10/2012 2:41:03 PM