QUIZ – WAVES

The period of this wave is

- A. 1 s
- B. 2 s
- C. 4 s
- D. Not enough information to tell

The period of this wave is

A. 1s

A sinusoidal wave moves

B. 2 s forward one wavelength

C. 4 s (2 m) in one period.

D. Not enough information to tell

For this sinusoidal wave, what is the amplitude?

- A. 0.5 m
- B. 1 m
- C. 2 m
- D. 4 m

For this sinusoidal wave, what is the amplitude?

A. 0.5 m

B. 1 m

C. 2 m

D. 4 m

For this sinusoidal wave, what is the wavelength?

- A. $0.5 \, \text{m}$
- B. 1 m
- C. 2 m
- D. 4 m

For this sinusoidal wave, what is the wavelength?

A. 0.5 m

B. 1 m

✓ C. 2 m

D. 4 m

For this sinusoidal wave, what is the frequency?

- A. 50 Hz
- B. 100 Hz
- C. 200 Hz
- D. 400 Hz

For this sinusoidal wave, what is the frequency?

A. 50 Hz

B. 100 Hz

C. 200 Hz

D. 400 Hz

A snapshot and a history graph for a sinusoidal wave on a string appear as follows:

What is the speed of the wave?

- A. 1.5 m/s
- B. 3.0 m/s
- C. 5.0 m/s
- D. 15 m/s

A snapshot and a history graph for a sinusoidal wave on a string appear as follows:

What is the speed of the wave?

- A. 1.5 m/s
- ✓ B. 3.0 m/s
 - C. 5.0 m/s
 - D. 15 m/s

Two wave pulses on a string approach each other at speeds of 1 m/s. How does the string look at t = 3 s?

Approaching pulses at t = 0 s

Two wave pulses on a string approach each other at speeds of 1 m/s. How does the string look at t = 3 s?

Two wave pulses on a string approach each other at speeds of 1 m/s. How does the string look at t = 3 s?

Approaching pulses at t = 0 s

A.

C.

B.

D.

Two wave pulses on a string approach each other at speeds of 1 m/s. How does the string look at t = 3 s?

Approaching pulses at t = 0 s

A.

C.

V

В.

D.

