

Guides and gravity in McStas

Peter Willendrup

Adapted from slides by Mads Bertelsen, ESS

Overview

- Description of phase-space and propagation
- Reflectivity
- McStas coordinate system
- Gravitation in McStas
- Guide components with support for gravity
 - Guide_gravity
 - Elliptic_guide_gravity
- Breaking line of sight
- Example
- Exercise

"Phase-space" at source

Wanted "phase-space" at sample

- We lost some phase-space to propagation

Wanted "phase-space" at sample

We got some phase-space back from guide reflection!

Reflectivity curves

• Reflectivity, super mirror, reflectivity curve

$$m = \frac{\theta_{mirror}}{\theta_{Ni}}$$

Reflectivity curves in McStas

$$R(q) = \begin{cases} R_0 & \text{if } q < q_c \\ R_0(1 - \tanh((q - mq_c)/W))(1 - \alpha(q - q_c))/2 & \text{otherwise} \end{cases}$$

McStas standard model

McStas fitted model

 α = 0 W = 0 Only m matters Better mirrors available today

Guide placement in McStas

- The center is the front of the guide element
- Tip: Insert a guide at the end of the guide

Peter Willendrup, DTU Physics and ESS DMSC

38

Gravitation in McStas

- Enabled by adding -g / --gravitation on command line or by selecting "Gravity On" in mcgui
- Default ~ gravity on earth
 #define GRAVITY 9.81 /* [m/s^2] gravitational acceleration */
 (If on the moon, use -DGRAVITY=1.62 ;-))
- For guides, only Guide_gravity and Elliptic_guide_gravity support parabolic propagation. (Many others propagate linearly in direction.)
- As you will see in the practical, implications are greatest with long wavelengt
- "How about e.g. elliptic mirror optic X that does not support gravity?"
 - often a good workaround is to add a monitor close to the surface of object X, this takes care that propagation up to the monitor includes gravitation:
 - Gravity is enabled in any call to PROP_DT, PROP_Z0 etc., but not in intersect_* routines (most monitors use PROP_Z0 directly, no intersect_ call first
 - OK to propagate without gravitation e.g. within sample, through velocity selector etc. / range of ~cm's

Popular guide components: Guide_gravity

- Typical guide component with gravity, parameter-interface similar to e.g. Guide.comp
- Many additional features, channels, fermi chopper, ... (see mcdoc pages for more info)

Popular guide components: Guide_gravity

- Typical guide component with gravity, parameter-interface similar to e.g. Guide.comp
- Many additional features, channels, fermi chopper, ... (see mcdoc pages for more info)

Popular guide components: Guide_gravity

Typical guide component with gravity

Peter Willendrup, DTU Physics and ESS DMSC

Popular guide components: Elliptical_guide_gravity

• Useful for elliptic and parabolic guide geometries, focusing, ballistic, coating distribution, xwidth and yheight at DimensionsAt = "entrace", "mid" or "exit"

Peter Willendrup, DTU Physics and ESS DMSC

43

Popular guide components: Elliptical_guide_gravity

• Useful for elliptic and parabolic guide geometries, focusing, ballistic, coating distribution,

. . .

Comparison: Guide_gravity and Elliptic_guide_gravity

Guide_gravity

Elliptic_guide_gravity

Breaking line of sight

• Importance of breaking line of sight, ways of doing so, ...

Breaking line of sight

• Bender / Guide_curved component or many straight sections

A guide design

 To be continued in Thursday guidebot talk by Mads Bertelsen

Guide exercise

- Insert a guide and use an instrument input parameter to set the length
- Use monitors to see the resulting beam
 - PSD_monitor (spatial distribution)
 - Divergence_monitor (divergence distribution)
 - L_monitor (wavelength distribution)
 - Posdiv_monitor (acceptance diagram)
- Extra tasks:
 - Scan guide length
 - Introduce a gap by using two guide components
 - Use Guide_gravity and extend to 100 m length
 - Investigate the effect of gravity on the transport of long-wavelength neutrons