Introduction to Language Theory and Compilation Exercises

Session 1: Regular languages

Reminders

Languages and operations

Let Σ be a (finite) alphabet. A *language* is a set of *words* defined on a given alphabet. Let L, L_1 and L_2 be languages, we can then define some operations:

Definition 1 (Union). $L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}$

Definition 2 (Concatenation). $L_1 \cdot L_2 = \{w_1w_2 \mid w_1 \in L_1 \text{ and } w_2 \in L_2\}$

Definition 3 (Kleene closure). $L^* = \{\varepsilon\} \cup \{w \mid w \in L\} \cup \{w_1w_2 \mid w_1, w_2 \in L\} \cup \cdots$

Regular languages

Regular languages are defined inductively:

Definition 4 (Regular language).

- Ø is a regular language
- $\{\varepsilon\}$ is a regular language
- For all $a \in \Sigma$, $\{a\}$ is a regular language

If L, L_1 , L_2 are regular languages, then:

- $L_1 \cup L_2$ is a regular language
- $L_1 \cdot L_2$ is a regular language
- L* is a regular language

Finite automata (FA)

 $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where:

- Q is a *finite* set of *states*
- \bullet Σ is the input alphabet
- ullet δ is the *transition function*
- $q_0 \in Q$ is the *start state*
- $F \subseteq Q$ is the set of accepting states

M is a *deterministic* finite automaton (DFA) if the transition function $\delta: Q \times \Sigma \to Q$ is total. In other words, on each input, there is *one and only one* state to which the automaton can transition from its state.

Determinisation

The transition function can be extended to sets of states as follows: for $S \subseteq Q$, $\delta(S,a) = \bigcup_{s \in S} \delta(s,a)$. The ε -closure is defined as ε -closure(q) = $\left\{q' \in Q \mid \exists n \in \mathbb{N}, \exists q_1 \dots q_n \in Q, q \xrightarrow{\varepsilon} q_1 \xrightarrow{\varepsilon} \dots \xrightarrow{\varepsilon} q_n \xrightarrow{\varepsilon} q'\right\}$. For $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, the DFA $D = \langle Q^D, \Sigma, \delta^D, q_0^D, F^D \rangle$, where:

- $Q^D = 2^Q$
- $q_0^D = \varepsilon \operatorname{closure}(q_0)$
- $\bullet \ F^D = \{ S \in Q^D \mid S \cap F \neq \emptyset \}$
- For all $S \in Q^D$, for all $a \in \Sigma$, $\delta^D(S,a) = \varepsilon \operatorname{closure}(\delta(S,a))$

is such that L(D) = L(M).

Exercises

Ex. 1. Consider the alphabet $\Sigma = \{0,1\}$. Using the inductive definition of regular languages, prove that the following languages are regular:

- 1. The set of words made of an arbitrary number of ones, followed by 01, followed by an arbitrary number of zeroes.
- 2. The set of odd binary numbers.

Ex. 2. Prove that any finite language is regular. Is the language $L = \{0^n 1^n \mid n \in \mathbb{N}\}$ regular? Give an intuition of why or why not.

Ex. 3. For each of the following languages (defined on the alphabet $\Sigma = \{0, 1\}$), design a nondeterministic finite automaton (NFA) that accepts it.

- 1. The set of strings ending with 00.
- 2. The set of strings whose 3rd symbol, counted from the end of the string, is a 1.
- 3. The set of strings where each pair of zeroes is followed by a pair of ones.
- 4. The set of strings not containing 101.
- 5. The set of binary numbers divisible by 4.

Ex. 4. Transform the following $(\varepsilon$ -)NFAs into DFAs:

