Project Report Format

1.INTRODUCTION

Project Title:

CleanTech: Transforming Waste Management with Transfer Learning

1.1 project view:

CleanTech: Transforming Waste Management with Transfer Learning is a forward-thinking Alpowered solution that automates the classification of municipal waste using image recognition and transfer learning techniques. The project addresses inefficiencies in traditional waste segregation by enabling users—individuals, households, or municipalities—to upload images of waste and receive instant classification results (e.g., biodegradable, non-biodegradable, recyclable).

1.2 purpose:

The purpose of the **CleanTech** project is to modernize municipal waste management by using **transfer learning** to automate the classification of waste through image recognition. This system enables users to quickly and accurately identify whether waste is biodegradable, non-biodegradable, or recyclable, reducing human error, improving recycling rates, and supporting smart city sustainability goals. The project promotes environmental awareness while streamlining waste processing for both individuals and municipalities.

2.IDEATION PHASE

2.1Problem Statement

Urban areas face increasing challenges in managing the growing volume and complexity of municipal waste. Manual sorting is inefficient, error-prone, and lacks scalability. Current Albased systems often require large datasets and are not easily adaptable across regions.

Thinks	"Is this recyclable or biodegradable?""I wish there were a quicker way to know."
Feels	Confused by unclear waste categoriesFrustrated by lack of consistent guidance
OVC	"I want to help the environment, but I'm not sure how." "There's no time to sort it manually."
Does	Tosses waste into general binsGuesses classification or avoids sorting

2.2 Empathy Map Canvas

Thinks	"Is this recyclable or biodegradable?""I wish there were a quicker way to know."
Feels	Confused by unclear waste categoriesFrustrated by lack of consistent guidance
OVC	"I want to help the environment, but I'm not sure how." "There's no time to sort it manually."
Does	Tosses waste into general binsGuesses classification or avoids sorting

2.3 Brainstorming

Method Used:

Open, collaborative digital brainstorming using idea clustering and prioritization (based on feasibility vs. impact).

Idea Group	Ideas		
AI/ML	Use transfer learning with pre-trained models for classifying waste images		
UX/UI	Build a mobile-first web app with a drag-and-drop interface and instant results		
Integration	Connect with municipal dashboards for real-time waste analytics		
Engagement	agagement Add gamification and user rewards for proper waste sorting		
Education	Provide interactive visual guides and eco-friendly tips		
Deployment Use Flask for backend + Ngrok for quick demos; later migrate to cloud A			

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

Stage	User Actions	Touchpoints	Pain Points	Opportunities
Awareness	social media or	Social media, website landing page	Lack of clarity on how it works	Clear value proposition and educational content
Consideration Visits platform, explores how it works Home, About sections		Home, About sections	Doubts on accuracy or benefit	Provide use cases and sample predictions
Engagement	tor waste	Prediction interface	Confusion about uploading or results interpretation	Provide tooltips, confidence score, and image preview
Action Gets waste type result and takes correct disposal action		Results section	Uncertainty about disposal instructions	Show proper bin type, disposal guide, and eco tips

Stage User Actions		Touchpoints	Pain Points	Opportunities
	Provides feedback,		No persistent	
Feedback &	checks history, or	Feedback form,	storage of	Add login + history
Loop	returns for another	history (future)	feedback or	in future version
	session		session	

3.2 Solution Requirements

♠ Functional Requirements

- Upload an image and classify it as biodegradable/non-biodegradable/recyclable
- Simulate or return real-time predictions
- Display classification result with visual feedback
- Responsive design compatible with mobile and desktop
- Admin interface (planned) for monitoring and logs
- Future: User login, history, and feedback system

Non-Functional Requirements

- Fast response time (< 2 seconds per prediction)
- Scalable deployment using cloud/containerization
- Privacy-friendly (no personal data collected in MVP)
- Modular, maintainable codebase

3.3 Data Flow Diagram

3.4 Technology Stack

Layer	Technology	Purpose	
Rrantena		Responsive UI, file upload, routing, and modals	
Backend	HIASK (Python) Pyngrok	Serve HTML, simulate backend logic, expose via public URL	
ML Engine		Waste image classification using pre- trained CNN models	
Database	(Planned) Mongol JR	Store classification logs, user history, and feedback	
Deployment	Ngrok, Localhost (Dev)	Quick public demo access	
II	Docker, Cloud (Render, Heroku, etc.)	Scalable, production-ready deployment	

4. PROJECT DESIGN

4.1 Problem Solution Fit

Problem Recap:

Manual waste classification is inefficient, error-prone, and lacks scalability. Citizens often lack clarity on how to properly dispose of waste, and municipalities face challenges in optimizing waste segregation and recycling processes.

4.2 Proposed Solution

CleanTech offers a lightweight, AI-driven platform where users can upload images of waste and instantly receive classification results. This empowers individuals to make informed disposal decisions, enhances recycling accuracy, and creates a data-driven foundation for smarter urban waste management.

4.3 Solution Architecture

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

The CleanTech project is structured into agile development phases to ensure rapid prototyping, iterative improvement, and future scalability. The planning focuses on delivering a functional MVP (Minimum Viable Product) while preparing for machine learning integration and production deployment.

Phase	Timeline	Milestones	
Phase 1: Research & Ideation	Week 1	Problem definition, empathy mapping, solution brainstorming	
Phase 2: MVP UI Development	Week 2	Static frontend (HTML/CSS/JS), responsive layout, file upload preview	
Phase 3: Flask Backend Setup	Week 3	Flask server setup, ngrok tunneling, simulated prediction logic	
Phase 4: Model Integration (Planned)		Connect pre-trained transfer learning model, create /predict API	
Phase 5: Database Integration (Planned)	Week 6– 7	MongoDB setup for storing history and feedback	
Phase 6: Testing & Optimization	Week 8	UI testing, API testing, user testing with sample data	
Phase 7: Final Deployment & Demo	Week 9	Host app, prepare project documentation and final presentation/demo	

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

Performance testing ensures that the CleanTech application delivers a smooth and responsive user experience under expected workloads. For this MVP version, the focus is on frontend responsiveness, backend response time, and simulated load handling.

Component	Test Type	Tool / Method	Observation
Frontend UI			Fast image preview & section scrolls
Flask Backend	API response time		Initial load < 500ms (static content)
Ngrok Tunnel			Average delay: ~1s (acceptable demo)
Future Prediction API			Scheduled post-ML integration

7. RESULTS

7.1 Output Screenshots

Class: Biodegradable Images
Image: TRAIN.2_BIODEG_ORI_11280.jpg

Class: Recyclable Images
Image: metal179.jpeg

Class: Trash Images
Image: trash68.jpeg

Class: Recyclable Images
Image: cardboard130.jpeg

8. ADVANTAGES & DISADVANTAGES

1. AI-Driven Automation

Uses transfer learning to reduce manual effort and errors in waste classification.

2. User-Friendly Interface

Clean and responsive UI with image upload and real-time feedback ensures ease of use across all devices.

3. Scalable Architecture

Modular design allows future integration with cloud APIs, databases, and advanced ML models.

4. Environmentally Impactful

Promotes better waste segregation and supports municipal sustainability goals.

5. Rapid Deployment

Lightweight Flask + Ngrok setup allows fast prototyping and remote access without heavy infrastructure.

6. Open for Customization

Built with flexibility to accommodate additional features like gamification, dashboards, and authentication.

V Disadvantages

1. No Real ML Model Yet

Current version uses simulated predictions; real-time classification requires model integration.

2. No Persistent Data Storage

Absence of database limits functionality like user history or analytics.

3. Security Limitations

No authentication or access control makes the system open to unauthorized use during demo.

4. Dependent on Ngrok

Temporary and unstable tunnel for public access; not suitable for production.

5. Lack of Mobile App

Currently a web-only solution; lacks native app support for broader accessibility.

9. CONCLUSION

The **CleanTech** project presents a modern, scalable, and environmentally impactful approach to tackling the challenges of municipal waste management. By leveraging **transfer learning** and a clean web-based interface, the solution simplifies waste classification for users while setting the foundation for smarter and more sustainable urban ecosystems.

Even in its MVP stage, CleanTech demonstrates strong potential by simulating real-time waste classification, offering a responsive frontend, and planning for seamless backend expansion. It reflects a practical blend of AI innovation and public utility.

10. FUTURE SCOPE

The CleanTech platform is built with modularity and growth in mind. Several future enhancements can elevate the solution from a demo-ready prototype to a fully deployable smart waste management system:

Technical Expansion

- **Integrate Real-Time ML Model**: Deploy a trained CNN using TensorFlow or PyTorch via REST API.
- **Database Connectivity**: Use MongoDB to store classification logs, user feedback, and admin analytics.
- **User Authentication**: Enable secure user access with role-based features (citizen, admin, auditor).
- **Cloud Deployment**: Migrate from Ngrok to cloud platforms (e.g., Heroku, AWS, Render) for 24/7 access.

♦ Feature Enhancements

- **Mobile App Development**: Build a cross-platform app for field workers and public users
- **Gamification & Rewards**: Introduce user incentives to promote consistent participation.
- **Real-Time Analytics Dashboard**: Equip municipalities with dashboards to monitor trends and optimize collection routes.
- **Smart Bin Integration**: Connect with IoT-enabled waste bins for automated sorting and reporting.

11. APPENDIX

Source Code

```
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D,
Dropout
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
# Set up paths
train dir = 'dataset/train'  # e.g., dataset/train/eosinophil,
dataset/train/lymphocyte...
val dir = 'dataset/val' # e.g., dataset/val/...
# Set up parameters
img size = (224, 224)
batch size = 32
num classes = 3 # Change this if you have a different number of
classes
# Data generators with augmentation
train datagen = ImageDataGenerator(
rescale=1./255,
```

```
zoom range=0.2,
    horizontal flip=True,
    rotation range=20,
    shear range=0.2
val datagen = ImageDataGenerator(rescale=1./255)
train gen = train datagen.flow from directory(
    train dir,
    target size=img size,
   batch size=batch size,
    class mode='categorical'
val gen = val datagen.flow from directory(
    val dir,
    target size=img size,
    batch size=batch size,
    class mode='categorical'
# Load pre-trained ResNet50
base model = ResNet50(weights='imagenet', include top=False,
input shape=(*img size, 3))
# Freeze base layers
for layer in base model.layers:
    layer.trainable = False
# Add custom classification head
x = base model.output
x = GlobalAveragePooling2D()(x)
x = Dropout(0.5)(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.3)(x)
predictions = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=base model.input, outputs=predictions)
# Compile model
model.compile(optimizer=Adam(learning rate=0.0001),
              loss='categorical crossentropy',
              metrics=['accuracy'])
# Train model
history = model.fit(
train gen,
```

```
validation_data=val_gen,
    epochs=10
)

# Save model
model.save('hematovision_model.h5')

# Plot training results
plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Val Accuracy')
plt.title('Accuracy over epochs')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```

Dataset Link

https://www.kaggle.com/datasets/elinachen717/municipal-solid-waste-dataset

GitHub & Project Demo Link

https://github.com/alluru-lekhana/CleanTech/tree/main