

CO(v=1) population lifetimes of metal–carbonyl cluster compounds in dilute CHCl3 solution

E. J. Heilweil, R. R. Cavanagh, and J. C. Stephenson

Citation: The Journal of Chemical Physics 89, 230 (1988); doi: 10.1063/1.455510

View online: http://dx.doi.org/10.1063/1.455510

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/89/1?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Laser-driven localization of collective CO vibrations in metal-carbonyl complexes

J. Chem. Phys. 141, 204303 (2014); 10.1063/1.4902067

Theoretical studies of the transition metal-carbonyl systems MCO and M(CO)2, M=Ti, Sc, and V

J. Chem. Phys. 91, 314 (1989); 10.1063/1.457519

Population lifetimes of OH(v=1) and OD(v=1) stretching vibrations of alcohols and silanols in dilute solution

J. Chem. Phys. 85, 5004 (1986); 10.1063/1.451690

The metal-carbonyl bond in Ni(CO)4 and Fe(CO)5: A clear-cut analysis

J. Chem. Phys. 81, 5889 (1984); 10.1063/1.447589

Magnetic moment distribution in Co-V alloys

J. Appl. Phys. 53, 2456 (1982); 10.1063/1.330881

$CO(\nu=1)$ population lifetimes of metal-carbonyl cluster compounds in dilute $CHCl_3$ solution

E. J. Heilweil, R. R. Cavanagh, and J. C. Stephenson Center for Chemical Physics, National Bureau of Standards, Gaithersburg, Maryland 20899

(Received 25 January 1988; accepted 18 March 1988)

Tunable infrared picosecond pulses in the 5 μ region have been used for time-resolved pumpprobe measurements of the population relaxation lifetime (T_1) of CO(v=1) stretching vibrations in a series of metal-carbonyl cluster compounds in room temperature chloroform solution. T_1 was the same for symmetric ($\nu = 2084~{\rm cm}^{-1}$, $90 \pm 10~{\rm ps}$) and antisymmetric (2014 cm⁻¹, 87 \pm 10 ps) modes of the dicarbonyl Rh(CO)₂(C₅H₇O₂); T_1 was the same for the B_1 (2092 cm⁻¹, 710 \pm 130 ps) and B_2 (2036 cm⁻¹, 750 \pm 90 ps) modes of Rh₂(CO)₄Cl₂. Similarly long T_1 times were found for Rh₄(CO)₁₂ (2075 cm⁻¹, 610 ± 65 ps) and Rh₆(CO)₁₆ $(2077 \text{ cm}^{-1}, 700 \pm 100 \text{ ps})$. The molecule $Co_4(CO)_{12}$ has also been compared to the corresponding rhodium analog and it exhibits an initially fast relaxation of 47 + 5 ps followed by a slower 396 ± 70 ps decay. The transient response of the more complex systems to the single frequency experiment is found to be sensitive to frequency and can exhibit bleaching, absorption, and a combination of these effects. Such behavior is attributed to overlap of the IR pulse with v = 1 to v = 2 and higher transitions in the $M_4(CO)_{12}$ (M = Rh or Co) and $Rh_6(CO)_{16}$ molecules. The long CO(v=1) T_1 values for the metal cluster molecules suggest relaxation via multiquantum transfer of vibrational energy to adjacent M-C stretch and M-C-O bend vibrations; energy transfer to vibrational or electronic states of the central metal core seems unimportant in determining T_1 for these systems.

I. INTRODUCTION

Vibrational energy dynamics have been extensively studied for a wide range of molecular systems and chemical environments over the past several decades. The participation of populated ground electronic state vibrational modes in the rupture of specific chemical bonds during a chemical reaction has fueled much of the interest in this area of research. While many experiments were primarily concerned with gas phase nonradiative and collisional vibrational energy transfer (VET) processes, 1-4 the advent of picosecond lasers and related time-resolved vibrational spectroscopies has extended the earlier methods to a significantly shorter time scale. It is now possible to measure vibrational relaxation rates in the condensed phase at elevated temperatures^{5,6} where vibrational relaxation rates are generally found to be greater than 10^9 s⁻¹. Some examples of liquid phase systems that have been studied using picosecond laser techniques include high frequency stretching vibrations such as CH,6-8 NH,9 and OH10 modes of various polyatomic molecules in neat liquid and halogenated-methane room temperature solutions.

It would be particularly informative, however, to measure the T_1 decay of vibrational excitation of adsorbate modes when a molecule is chemically bound to the surface of a metal. Knowledge about this time scale should help clarify how vibrational energy transfer participates in such processes as thermal desorption, 11 surface diffusion, 12,13 laser heating, 14-19 and chemical reaction on catalytic 20-22 or single crystal 23-25 metal surfaces. To date, limits on energy decay times for simple diatomic adsorbates on metals have been solely derived from theoretical estimates $^{26-30}$ and comparison to vibrational spectroscopic bandwidth measure-

ments. ³⁰⁻³³ For instance, it has been calculated that an oscillating vibrational dipole can couple its energy extremely rapidly (in less than a few picoseconds) to the electronic degrees of freedom (electron-hole pair excitation) of the metal. ²⁶⁻³⁰ Bandwidth measurements for CO on transition metal single crystals as a function of temperature have corroborated these estimates, ³¹⁻³⁵ but it is difficult to extract an energy or population decay time from a vibrational band which is inhomogeneously broadened and/or dominated by dephasing contributions. It is therefore necessary to perform direct time-resolved measurements of population relaxation in adsorbate-metal systems to compare to theory and frequency-domain techniques.

Metal-carbonyl cluster compounds³⁶⁻⁴⁴ provide an exceptionally rich area for probing vibrational relaxation rates of high frequency CO-stretching modes in chemically active molecules. These systems have also been extensively characterized in terms of their structural,36-44 spectroscopic, 36,39-41,45 photochemical, 46-48 and catalytic properties. 49-51 The insight gained from these model compounds has frequently provided the basis for understanding more complex chemical systems. For instance, the study of metal cluster compounds has contributed greatly to the basic understanding of the chemistry of technical catalysts 52-56 and reactions on metal single crystals. 52-54 With the eventual goal of measuring T_1 for an adsorbate on a transition metal surface, we initiated a sequence of experiments to directly measure the CO(v = 1) lifetime for transition metal-carbonyl molecules in solution containing an increasing number of metal atoms and stabilizing CO ligands. Our first measurements, using a single frequency IR bleaching method, were performed on single metal atom containing systems. 57 It was found that T_1 was about 70 ps for M(CO)Cl(TPP), (M = Rh, Ir,

TPP = triphenylphosphine) systems in CCl₄ and other organic solvents, while hexacarbonyl systems $M(CO)_6$ (M = Cr, W) gave $400 < T_1 < 700$ ps. These results indicated that M-CO systems have long CO-stretching lifetimes if the molecule lacks ligands with near-resonant accepting vibrational modes.⁵⁷

In this paper, stable inorganic metal-carbonyl cluster molecules in room temperature, dilute solution are examined for the first time. Results for the T_1 lifetimes of terminal stretching modes in CO(v=1)the $Rh(CO)_2(C_5H_7O_2)$ ($C_5H_7O_2$ or 2,4-pentanedionate), $Rh_2(CO)_4Cl_2$, $Rh_4(CO)_{12}$, $Co_4(CO)_{12}$, and $Rh_6(CO)_{16}$ in CHCl₃ solution at room temperature are presented. These systems have been used extensively in the past as models for CO adsorbed at specific metal sites (i.e., a-top, bridge and face centered). 58,59 The rich vibrational spectroscopy of these and related species has formed the basis for the assignment of observed IR^{60,61} and EELS^{62,63} spectroscopic bands for CO groups in metal surface sites of the corresponding symmetry. In addition, many of these compounds exhibit catalytic behavior in a variety of homogeneous and inhomogeneous chemical reactions. 49,52-56 The present study of CO(v = 1) vibrational population relaxation has revealed new phenomena associated with the single frequency pumpprobe measurement technique. The results presented here help establish an overall framework for performing and interpreting related studies of CO adsorbed on supported metal particle catalysts and well-characterized single crystal metal surfaces.

The CO(v = 1) relaxation rates in these metal cluster molecules are found to be long ($> 10^4$ vibrational periods) and not correlated with the total density of molecular vibrational states at the CO-stretching mode energy. The same two results were found earlier for the relaxation of OH (v = 1) and OD (v = 1) stretching vibrations for silanol (R₃SiOH) molecules in solution, ¹⁰ for the relaxation of OH(v=1) and OD(v=1) on silica surfaces, ^{64,65} and for CO(v = 1) modes for the monometal carbonyls.⁵⁷ It is likely that in the metal cluster compounds, as in the hydroxyl systems, $^{10,64-66}$ relaxation of the CO(v = 1) modes involves multiquantum (multiphonon) transfer of vibrational energy to modes involving adjacent bonds (i.e., M-C stretches and MCO bends); energy transfer neither to vibrational nor electronic degrees of freedom of the central metal core seems to be important in determining T_1 for the CO(v = 1) stretches of these cluster molecules.

II. EXPERIMENTAL

The method for measuring T_1 is identical to that used in our previous studies of $OH(v=1)^{10}$ and $CO(v=1)^{57}$ systems. Briefly, an intense IR pulse (ν_{IR}) tuned to the $v=0\rightarrow 1$ transition of a molecular vibrational mode (frequency ν_0) transiently populates the v=1 level, partially saturating the $v=0\rightarrow 1$ absorption. In a pure two-level situation, the excited state population relaxes exponentially with time and the transmission T of a weaker IR probe pulse (same ν_{IR}), delayed in time with respect to the pumping

pulse, monitors the difference between the ground (v=0) and excited (v=1) populations. The quantity $S(t_d) = \ln(T/T_0)$ as a function of delay time t_d $(T_0$ is the Beer's Law sample transmission) decays as $S(t_d) = S(t_d = 0) \times \exp(-t_d/T_1)$ and gives the v=1 excited state T_1 lifetime $(T_1^{-1}$ is the energy decay rate).

For the present study of the terminal, high frequency (2000-2100 cm⁻¹) CO-stretching vibrations in metal cluster compounds, generation of tunable picosecond IR pulses in the 5 μ region has been accomplished by nonlinear difference-frequency generation using a LiIO₃ crystal.⁶⁷ A 10 Hz active-passive modelocked Nd⁺³:YAG laser creates 32 ps pulses at 532 nm. A synchronously pumped tunable dye laser produces pulses in the 600 nm region. Mixing the red and green pulses in LiIO₃ produces tunable IR pulses with 18 ps FWHM duration, 4 cm⁻¹ FWHM bandwidth, and ~15 μ J of energy. IR pulse durations were measured by sumfrequency generation in a second LiIO₃ crystal to obtain the two pulse autocorrelation function. A more detailed account of the IR pulse generation technique, the experimental setup, and the data collection and analysis methods to measure T_1 may be found in an earlier paper.⁵⁷

Solutions of the metal-carbonyl cluster molecules in CHCl₃ were freshly prepared by direct dissolution of the solid (as received from the manufacturer) in dried and distilled spectrograde CHCl₃ (Mallinkcrodt).⁶⁸ Rh(CO)₂(C₅H₇O₂), Rh₂(CO)₄Cl₂, and Rh₆(CO)₁₆ were obtained from Alpha Chemical Company while Rh₄(CO)₁₂ and Co₄(CO)₁₂ came from Johnson-Matthey Company. Attempts to study the Ir₄(CO)₁₂ analog were unsuccessful because of the low solubility of this molecule in both CHCl₃ and CCl₄ solvents.

It was discovered that the 1% by weight ethanol preservative used in CHCl₃ affected the T_1 measurement for the larger Rh₆ (CO)₁₆ cluster compound (reducing the lifetime by a factor of 3). Thus, the solvent was dried for several days over baked 10 Å molecular sieves (Fisher), vacuum distilled to remove the ethanol and then used for all solution preparation. This procedure completely eliminated the ethanol OH absorption feature in the 3620 cm⁻¹ region of the IR spectrum. The dried solvent was subsequently stored under vacuum in the dark to prevent decomposition by light and air.

Concentrations of the metal-carbonyls in chloroform were within the range 1×10^{-5} to 1×10^{-4} mole fraction (i.e., less than 2×10^{-3} molar) to obtain peak transmissions (using a stainless steel cell with two sapphire windows separated by a l=0.82 mm Teflon spacer) of between 30% and 60%. A similar cell filled with the same solution was placed in front of the pulse energy-monitoring InSb detector. This cell helped to reduce noise in the probe transmission ratio measurement associated with shot-to-shot fluctuations in pulse frequency. This approach was found to be necessary when $\nu_{\rm IR}$ was tuned to the sharply rising band edges during frequency-dependent measurements (see below).

Absorption spectra for the molecules studied are presented in Fig. 1. These solvent and cell-compensated spectra were obtained on an Analect RFX-65 FTIR spectrometer⁶⁸ at 0.5 cm⁻¹ resolution by subtracting a previously obtained

FIG. 1. Absorption spectra of (a) Rh(CO)₂ (C₅H₇O₂), 2.1×10^{-3} M; (b) Rh₂ (CO)₄Cl₂, 1.5×10^{-3} M; (c) Rh₄ (CO)₁₂, 4.8×10^{-4} M; (d) Co₄ (CO)₁₂, 7.9×10^{-4} M; and (e) Rh₆ (CO)₁₆, 2.5×10^{-4} M in doubly distilled, dried CHCl₃ solvent at 295 K. These spectra were obtained at 0.5 wave number (cm⁻¹) resolution in a 0.82 mm pathlength cell after solvent spectrum subtraction. Absorbance is defined as $-\log_{10}(T)$.

spectrum of the solvent in the same sample cell. This sample cell filled with CHCl₃ was 75% transmissive in the CO-stretching region of the spectrum. Solvent absorption or potential thermal lensing effects did not interfere with the T_1 measurements. For comparison purposes, spectra obtained in a similar way for Rh₂ (CO)₄ Cl₂ and Rh₄ (CO)₁₂ in saturated CCl₄ solution are shown for the $v = 0 \rightarrow 2$ absorption region in Fig. 2. As one can see, the bandwidths for most of the strong IR allowed fundamental vibrations fall in the 8–15 cm⁻¹ FWHM range. The combination and overtone region of the spectrum, while relatively straightforward to analyze for the dirhodium compound, is congested for the more complex species. However, the combination mode bandwidths are also found to be about 10–20 cm⁻¹ FWHM. The fundamental IR absorption spectra agree well with

FIG. 2. Representative $v=0\rightarrow 2$ absorption spectra of Rh₂ (CO)₄ Cl₂ and Rh₄ (CO)₁₂ in saturated CCl₄ solution at 295 K. Overtone and combination assignments are made for Rh₂ (CO)₄ Cl₂ using mode labels from Ref. 45. The arrows indicate twice the ν_{IR} pulse frequency used for the T_1 measurements listed in Table I.

those available in the literature for the same molecules in solution. 45,69-71

The structures, vibrational assignments, and chemical properties of many of the metal-carbonyl cluster compounds are documented in the literature. 36-45 Mode assignments for the chlorine-bridged Rh2 (CO)4 Cl2 molecule have been made for this geminal -Rh(CO)₂ species. 45,46,72,73 The C_{3n} trigonal base with apical metal atom structure of the $M_4(CO)_{12}$ (M = Rh,Co) systems supports two terminal CO groups coordinated to each basal metal atom, three at the apex, and three bridge-bonded CO groups between the basal metal atoms. 69,70,78 Vibrational assignments for the terminal CO-stretching modes were made by Bor et al.69 while metal-metal modes have been studied using Raman spectroscopy. 74-77 Rh₆ (CO)₁₆ has an octahedral metal structure with two terminal CO ligands at each Rh atom and four triply coordinated CO groups attached to the octahedral "faces." Tt takes roughly 30 kcal/mol $(1.22 \times 10^4 \text{ cm}^{-1})$ to remove a CO group from a transition metal carbonyl,79 but NMR studies on M₄ (CO)₁₂ molecules show that at temperatures above ~230 K, the carbonyls slowly migrate around the metal nucleus by bridge site-apical site isomerization.80-82 These NMR results also indicate that carbonyl rearrangement occurs on the millisecond or longer time scale at room temperature.

As was discussed in detail in our previous report of monometal carbonyl relaxation,⁵⁷ studies of these cluster compounds are facilitated by the large CO-stretching transition dipole moment for transition metal carbonyl ligands

(typical peak absorption cross sections are ~ 0.1 –1.5 Ų per molecule). This makes it possible to use both extremely low solution concentrations and pulse energies to produce large transmission changes ($\Delta T/T_0 \leqslant 0.6$) in the experiment. Excitation to v=2 and higher lying vibrational levels becomes possible in these systems (see Secs. III B and IV D) because of their small CO-stretching overtone and cross anharmonicities (~ 4 –28 cm⁻¹ frequency differences). ^{83–87} However, when tuned to the high frequency side of most CO-stretching fundamentals, the laser pumps only the v=0 to v=1 transition. This permits measurement of T_1 for particular CO(v=1) stretching modes by using about 0.05 to 1.0 μ J of IR pump energy (at a fluence of < 10 mJ/cm²) for the pumping pulse.

Since it is possible for the pumping pulse bandwidth to overlap with $v = 1 \rightarrow 2$ and higher vibrational transitions, multiple up-pumping of a single molecule must be monitored as a function of v_{IR} . A determination of the number of photons absorbed per molecule was made by measuring the transmission of the pump pulse through the cell. From this value, and knowledge of the energy per pump pulse, the absolute energy absorbed by the sample could be obtained by subtracting the energy absorbed and reflected by the solventfilled cell ($\sim 75\%$). From measurements of the pump beam radius (w_0 beam radius of 0.0072 cm) and known sample concentrations (ρ = solute molecules per cm³ of solution), it was then possible to compute the number of photons absorbed per solute molecule, n. Specifically, n = (photons absorbed by sample) $/(\pi w_0^2 l \rho/2)$, should be below 0.5 in order for the saturation decay rate to be easily interpreted in terms of T_1 for a CO(v = 1) level.

III. RESULTS

A. Measured T_1 decays and lifetimes

Examples of the types of transient signals obtained as a function of probe delay time t_d and plotted semilogarithmically for single experimental runs are shown in Figs. 3 and 4. In Fig. 3, a transient bleaching decay for Rh₂ (CO)₄ Cl₂ taken for the 2036 cm⁻¹ B_2 antisymmetric CO stretch is presented. For this mode, as well as for the higher frequency B_1 symmetric CO-stretching mode at 2094 cm⁻¹, single exponential decays with $T_1 \approx 730$ ps are obtained. In both cases the number of photons absorbed per molecule is found to be less than 0.5 and this value for T_1 is independent of frequency.

The transient decay signal for the $v_0 = 2055 \, \mathrm{cm}^{-1}$ vibration (E-type symmetry) of $\mathrm{Co_4}$ (CO)₁₂ is presented in Fig. 4. This is the first biexponential decay observed for any system studied using this IR pump-probe method. In the figure, the signal-to-noise ratio is large enough to be able to extract the contribution of the initially fast decay component from the slower one. By extrapolating the long time-constant ($T_1 = 390 \, \mathrm{ps}$) decay back to time $t_d = 0$, one obtains the short-time relaxation behavior by direct subtraction (see Fig. 4). A lifetime of 47 ps is deduced for the shorter relaxation event. Many similar runs made on the same system, as a function of frequency (both 2055 and 2065 cm⁻¹ features showed similar fast and slow decay components) and power, yielded decays with the ratio of the peak signal to the

FIG. 3. Transient population decay for the antisymmetric (B_2) CO(v = 1) stretching fundamental $(v_0 = 2036 \,\mathrm{cm}^{-1})$ of Rh₂ (CO)₄ Cl₂ in dry CHCl₃ at room temperature. The $T_1 = 690$ ps indicated relaxation time is for this representative data only (photons absorbed per solute molecule n = 0.4).

trapolated long-time decay value at $t_d = 0$ always being about 1.3.

As is evident in these figures, the signal $\ln(T/T_0)$ decays with a time constant that is much longer than the measured IR pulse autocorrelation of 25 ps FWHM. This makes extraction of the relevant T_1 lifetimes relatively straightforward. The values for T_1 were all found to fall in the hundreds of picoseconds time regime [except for $Rh(CO)_2(C_5H_7O_2)$ and the fast component of $Co_4(CO)_{12}$] which corresponds to population relaxation in about 4×10^4 vibrational periods.

A compilation of the T_1 lifetimes for the metal-carbonyl cluster compounds studied in this work is summarized in Table I. In this table, we present the various systems examined, their peak absorption frequencies (v_0) , cross sec-

FIG. 4. CO(v=1) transient decay for the *E*-symmetry stretching mode of $Co_4(CO)_{12}$ at 2055 cm⁻¹ in CHCl₃ at 295 K. The T_1 (fast) = 47 ps (lower left) contribution to the decay was obtained by subtracting the experimental points from the extrapolated line of the T_1 (slow) = 390 ps relaxation component.

TABLE I. Complilation of T_1 lifetimes (ps) for CO (v=1) stretching vibrations of metal-carbonyl systems in dilute CHCl₃ solution at 295 K. Peak mode frequencies (ν_0), absorption bandwidths ($\Delta \nu$, FWHM), and IR pulse frequencies (ν_{IR}) are in wave numbers (cm⁻¹). It is the pump laser fluence. The peak absorption cross section σ is defined as $\ln(T) = -\rho \sigma l$. n is the average number of pump laser photons absorbed per molecule. The recommended values of T_1 are for conditions that the pump and probe pulses interacted only with the indicated fundamental. References are to structure and spectroscopy for that molecule.

System	ν_0	Δν	$\sigma(\mathring{\mathrm{A}}^2)$	$ u_{ m iR}$	I*	n	T_{i} (ps)	Rec. T ₁	Refs.
Rh(CO) ₂ (C ₅ H ₇ O ₂)	2084	10	0.085	2084	16	0.1	90	90 ± 11	83,84
	2014	15	0.076	2014	23	•••	87	87 ± 10	
Rh ₂ (CO) ₄ Cl ₂	2092	8	0.198	2094	3.7	0.6	687	708 ± 130	45,46, 72,73
	2036	13	0.170	2043 2036	4.0 13	0.4	690 733	750 ± 86	•
Rh ₄ (CO) ₁₂	2075	ь	0.493	2080	2.4	0.5	657	612 ± 63	36,69,
				2074	6.0	1.8	387		70,74, 76,78
	2043	c	0.177	2047 2042	43 13	8.0	1000 840	•••	-
Co ₄ (CO) ₁₂	2065	≈8	0.504	2068	1.3	0.3	460	396 ± 67	69,70,
				2066 2065	6.5 6.0	0.3 2.0	373 467		74,75, 78
	2055	≈12	0.564	2056 2056	8.0 13	2.0	263 140	•••	
Rh ₆ (CO) ₁₆	2077	8	1.453	2085	10	2.0	613	698 ± 98	36,43,
				2082 2076	0.8 240	0.6 21	720 240		58,71
				2074	10	6.0	d		

[&]quot;I in units of mJ/cm2.

tion σ and bandwidths for the modes studied for these molecules, and the laser pulse frequencies $\nu_{\rm IR}$ and IR intensities used to perform the measurement. Also included in the table are values for n (the average number of photons absorbed per molecule) and T_1 showing the variation in these quantities as a function of selected IR pulse frequencies and powers. The "recommended T_1 " value reported in Table I is the average value (with error limit $\pm 1\sigma$ or $\pm 10\%$, whichever is larger) of many runs made for that mode. This value was deduced from runs where $\nu_{\rm IR}$ was tuned to the high frequency side of the absorption band, the transient decay was independent of pump pulse intensity, and n was determined to fall below 0.5.

B. Effect of frequency detuning on transient measurements

For situations when the IR pulse is tuned either to the peak (ν_0) or lower frequency side of an absorption band, variations in the observed decay constant and large values of n were obtained with even small changes in $\nu_{\rm IR}$. This effect was especially pronounced for studies of the lower frequency ν_4 component of the ν_2 , ν_4 overlapping doublet bands of Rh₄(CO)₁₂ and Co₄(CO)₁₂,⁶⁹ the ν_3 , ν_5 doublet of Rh₄(CO)₁₂ and the strong absorption band of Rh₆(CO)₁₆ ($\nu_0 = 2077 \, {\rm cm}^{-1}$ corresponding to the symmetric stretch of two terminal CO ligands attached to each Rh).⁷¹ As an example of this effect, the transient response [plotting

FIG. 5. Transient response for Rh_6 (CO)₁₆ in dry CHCl₃ at 295 K. Measured changes in transmission are displayed on a linear scale in order to differentiate transient bleaching (top half) from transient absorption (lower half). With ν_{1R} detuned by 3 cm⁻¹ to lower energy from the absorption maximum, an initial bleaching signal is followed by a transient absorption. The solid curve is the result of a computed simulation of the experimental (dotted) data points. A detailed description of the model (see the Appendix) and the parameters used for this simulation may be found in the text.

^bOverlapping band composed of v_2 and v_4 modes.

[°]Overlapping band composed of v_3 and v_5 modes.

^d100 ps bleach recovery followed by long time absorption shown in Fig. 5.

 $\ln(T/T_0)$ linearly] for the Rh₆ (CO)₁₆ molecule measured at $\nu_{IR} = 2074$ cm⁻¹ is depicted in Fig. 5. This figure shows that a bleaching signal is first produced near $t_d = 0$ which decays rapidly and then reverts to an absorption signal. It is clear that under these conditions, one is no longer able to extract a simple T_1 decay constant for the v = 1 level. Evidence for excited state absorption accompanied this transient response since n was found to be greater than 1 [for Rh₆ (CO)₁₆, values of n > 20 were observed]. A more detailed discussion concerning the qualitative agreement between multilevel population flow caused by laser detuning and these results are presented in Sec. IV D and the Appendix.

IV. DISCUSSION

A. Comparison of results to monometal carbonyl systems

For all five molecules presented in Table I, the CO(v=1) modes which are probed involve nuclear motion of two CO groups locally bound to the same metal atom [e.g., an equatorial and axial CO for M_4 (CO)₁₂]. The two CO stretches of Rh(CO)₂ (C₅H₇O₂) relax with the same rate constant $(1.1 \times 10^{10} \text{ s}^{-1})$, which is seven or eight times faster than rates in the other molecules. Perhaps the frequencies associated with the two carbonyl groups of the 2,4-pentanedionate ligand (v=1553, 1513 cm^{-1})^{83,84} which are directly bound to the Rh atom are particularly well suited as acceptors of vibrational energy that is initially deposited in the -Rh(CO)₂ portion of this molecule.

Except for Rh(CO)₂ (C₅H₇O₂), the non-CO-stretching modes of these molecules are at very low frequencies. 74-77,85 As is found in the M(CO)₆ systems, 85 the next highest vibrational modes in energy (below the CO-stretching vibrations) are the $v_{
m MC}$ metal-carbon stretch and $\delta_{
m MCO}$ metal-carbonyl bending motions, which have frequencies of roughly 450 and 550 cm⁻¹, respectively, for CO bound to metal-hexacarbonyls⁸⁵⁻⁸⁸ and Rh₂ (CO)₄ Cl₂.⁸⁹ Metal-metal vibrations are found to be somewhat lower in frequency (110-220 cm⁻¹).^{74-77,85-89} Therefore, conservation of energy requires a minimum of four quanta to be produced in overtones or combinations of these lower frequency modes upon deexcitation of CO(v = 1). This corresponds to a V = 5 decay process, as was defined in our earlier work on OH(v = 1) relaxation.¹⁰ A decay process involving the simultaneous creation of 4 or more lower-energy quanta is usually a slow one, and as was similarly found for silanol $OH(v=1)^{10}$ and $M(CO)_6^{57}$ systems, CO(v=1) relaxation in the current systems is also found to be exceedingly long (taking several hundred picoseconds). Thus, for the cluster compounds, we find that they exhibit purely ground electronic state molecular-like behavior with no indication of relaxation to other internal electronic degrees of freedom. For CO on a metal surface, or bound to a sufficiently large metal cluster, a qualitatively new damping mechanism involving energy transfer to low lying electronic states of the metal (electron-hole pair excitation) is possible. 26-29,90,91 This mechanism is thought to dominate vibrational relaxation on metal surfaces, causing T_1 to be a few picoseconds or less^{26,27} and giving rise to the broad (several cm⁻¹) infrared bandwidths observed for many adsorbates.³⁰⁻³⁴ However, the long T_1 lifetimes of ~700 ps for the small cluster compounds in Table I apparently represent CO (v=1) relaxation only by intramolecular vibrational energy redistribution processes.

B. Coupling between CO ligands

One question concerning vibrational energy decay in cluster compounds of increasing metal nucleus size and carbonyl number is the extent to which CO-stretching vibrations are coupled to one another. Unfortunately, since our present experiments generally show single exponential decays, little information can be deduced about intermode energy transfer in these systems. It is conceivable that some CO-stretching modes of a particular system are coupled to each other on a very fast (≤pulse duration) time scale. The population decay which we observe may be the time for energy transfer from these coupled states to lower frequency modes (i.e., $\nu_{\rm MC}$ stretches or $\delta_{\rm MCO}$ bends). T_1 is the same (\sim 90 ps) for both CO(v = 1) modes of Rh(CO)₂ (C₅H₇ O_2) and T_1 is the same (\sim 730 ps) for both the B_1 and B_2 symmetry modes of Rh₂ (CO)₄ Cl₂. If these CO-stretching modes were rapidly coupled, then they would necessarily give the same T_1 time in our experiments, as observed. Alternatively, the different CO vibrations may relax independently, with similar couplings to the lower frequency modes, thus resulting in similar T_1 lifetimes. The biexponential decay for the Co₄ (CO)₁₂ system may indicate that intermode vibrational coupling exists and is measurable in these systems. Unfortunately we cannot uniquely assign the observed fast decay ($T_1 = 50$ ps) to a particular VET process. The two strong absorption bands of Co₄ (CO)₁₂ at 2055 and 2066 cm⁻¹ have been assigned as being of E and A_1 symmetry, respectively.⁶⁹ Perhaps because of their different symmetries, coupling of these or other modes occurs on a long enough time scale (~ 50 ps) that we are able to distinguish their population equilibration from their combined longer $(\sim 350 \text{ ps})$ overall relaxation time. Again, we expect that the coupled population of the CO-stretching modes relaxes predominantly into the lower frequency $v_{\rm MC}$ and $\delta_{\rm MCO}$ modes.92

As the symmetry of the molecule becomes higher [i.e., C_{3v} for the M_4 (CO)₁₂ molecules and T_d for Rh₆ (CO)₁₆], the IR spectrum can either become more complex $[M_4(CO)_{12}]$ showing its six normal mode CO stretches with two very strong bands] or even simpler [Rh₆ (CO)₁₆ terminal carbonyls exhibiting only one very intense and a second very weak feature]. With ever increasing metal cluster size it becomes necessary to reduce the problem of normal mode assignments to consider only the *local* symmetry of CO groups bound to specific metal atom sites (i.e., axial, equatorial, apical, edge-bridged, or trigonal face-centered sites). Such an approach has frequently been used to make band assignments for CO vibrations adsorbed on metal crystals⁵⁸⁻⁶¹ and on supported metal particles.^{52,93} It was also the picture used when considering both spectroscopic and T_1 data for OH chemisorbed on the surface of 200 Å diameter silica spheres⁶⁶ or OH-containing R₃SiOH silanol molecules.¹⁰ With this in mind, one may hypothesize that the local structure of an adsorbed CO group in a particular environment is the most important characteristic which determines the CO(v=1) T_1 lifetime. For the systems studied here, the predominant local structural characteristic is two CO groups attached to a single metal atom (see Refs. 45, 69, and 78 for structures). It is therefore possible that the measured T_1 values are characteristic of the relaxation of the symmetric mode of these terminal CO (local C_{2v} symmetry) groups. That T_1 is sensitive to local molecular structure, which is similar for the metal cluster compounds, may explain why these compounds have nominally the same relaxation lifetime.

 T_1 does not depend on the total density of molecular vibrational states, $\rho(E_v)$, for the systems examined here. The molecules which give rise to the transient bleaching in our experiments have an average vibrational energy equal to the pump photon energy plus their room temperature thermal energy: $E_v = E_{\rm thermal} + E_{\rm photon}$. For Rh₂(CO)₄Cl₂, E_v (cm⁻¹) = 2535 + 2094 = 4629 cm⁻¹ and $\rho(E_v) \sim 10^{11}$ states/cm⁻¹. For Rh₄(CO)₁₂ and Rh₆(CO)₁₆ one finds $E_v = 6114 + 2079 = 8193$ cm⁻¹ and $\rho(E_v) \sim 10^{26}$ states/cm⁻¹, and $E_v = 8040 + 2080 = 10$ 120 cm⁻¹ and $\rho(E_v) \sim 10^{36}$ states/cm⁻¹, respectively. For such enormous $\rho(E_v)$, and particularly in solution, the relaxation rate is not constrained by the availability of energetically accessible final states. Rather, T_1 is presumably determined by the strength of the coupling to specific local acceptor modes (i.e., $\delta_{\rm MCO}$ bends or $\nu_{\rm MC}$ stretches).

C. Intramolecular vibrational relaxation (IVR) and solvent effects

A related question is whether the T_1 lifetimes we measure arise from intramolecular vibrational energy transfer processes (IVR) or are solvent mediated. The total relaxation rate may be written as a combination of these contributions: $k_1 = k_{IVR} + k(solvent) = T_1^{-1}$. In this work we report results for measurements of cluster systems in CHCl₃ solvent. One measurement was made of the relaxation of $Rh_2(CO)_4Cl_2$ ($\nu_0 = 2036 \text{ cm}^{-1}$) in CCl_4 where it was found that T_1 was the same as in CHCl₃ solution. Since it seems very unlikely that V-V transfer from the excited CO(v = 1) mode to the lower frequency solvent modes (e.g., $< 750 \text{ cm}^{-1}$ for CCl₄) would occur more rapidly than energy transfer to other modes within the carbonyl molecule, we believe that in this case energy transfer to the solvent is a minor contribution. However, solvent collisions, which occur at a rate of about 1013 s-1, may increase the rate at which vibrational energy relaxes within some metal carbonyl molecules.

Until related measurements of T_1 for the same systems under isolated gas-phase conditions are performed, it will be hard to unambiguously determine $k_{\rm IVR}$ for these systems. We have recently measured the T_1 lifetime of the F_{1u} CO(v=1) stretching mode of Cr(CO)₆ in the gas phase at $T=50\,^{\circ}{\rm C}$ and obtained the collisionless lifetime $T_1=760\,^{\circ}{\rm Ps.}^{94}$ This value is somewhat longer than the $T_1=440\,^{\circ}{\rm Ps.}^{94}$ ps lifetime for Cr(CO)₆ in room temperature CCl₄. This seems that for Cr(CO)₆, $k_{\rm IVR}$ and $k({\rm solvent})$ may have similar

contributions to T_1^{-1} . We are now measuring T_1 for a series of gas phase metal carbonyls with appropriately high vapor pressures [e.g., $Co(CO)_3NO$, $Co(CO)_2(C_5H_5)$, $Fe(CO)_3(C_4H_6)$, $Mn(CO)_3(C_5H_4CH_3)$, $Fe(CO)_5$] in order to separate the solvent-induced and collisionless IVR contributions to the overall vibrational population relaxation rate.

D. Anomalous transient behavior from frequency detuning

Experimental conditions were found during these studies which produced unexpected transient signals. These include, e.g., the appearance of either transient bleaching, absorption or a mixture of these effects in the same measurement. An example of such a complicated saturation profile is shown in Fig. 5 where data for Rh₆ (CO)₁₆ (see Table I) are plotted. The laser at $v_{IR} = 2074 \text{ cm}^{-1}$ was detuned by 3 cm⁻¹ from the $v_0 = 2077$ cm⁻¹ absorption maximum, and despite the low pump pulse energy $(1 \mu J)$, an average of n = 6 photons were absorbed per $Rh_6(CO)_{16}$ molecule in the beam. At first, a transient bleach $(T/T_0 > 1)$ is observed which decays in about 170 ps and is followed by a transient absorption $(T/T_0 < 1)$ lasting for at least several hundred ps. Also shown in Fig. 5 is T/T_0 calculated by a computer model described in the Appendix; the simulation signal amplitude was multiplied by a scale factor to make the maximum bleaching signal the same size as the experiment.

The computer model gives the following physical basis for the bleach followed by absorption signals. Since the anharmonicity of the CO-stretching mode is small and the integrated intensity of the $i \rightarrow i + 1$ transition increases as i + 1, the laser is able to pump the (slightly red-shifted) v = 2 and higher modes resulting in their being significantly populated. The absorption associated with the $i \rightarrow i + 1$ transition is proportional to the $N_i - N_{i+1}$ population difference. These population differences are all small following the laser excitation and this results in a transient bleaching signal. The populations in the higher levels then rapidly relax back to the long-lived v = 1 bottleneck level, for which we measured (see Table I) $T_1 = 700$ ps. In order to fit the observed time dependence we chose $T_1 = 700 \text{ ps for } v = 1,200 \text{ ps for } v = 2,$ and 40 ps for all higher levels. The absorption for $t_d > 170$ ps occurs because population from higher levels accumulates in the v = 1 level and the $1 \rightarrow 2$ absorption cross section at the laser frequency is slightly greater than for the $0 \rightarrow 1$ transition. On a still longer time scale the v=1 level relaxes entirely to the v = 0 level and the transient absorption eventually disappears. We note that the T_1 values quoted for the higher levels are simply one set of numbers which roughly fit the data and are not to be taken as recommended T_1 values since it is likely that many combinations of parameters would also fit the data.

There are several conclusions to be drawn from Fig. 5 and other experimental and computer runs. One may see pure bleaching, pure absorption, or various transient combinations for these carbonyl systems, simply by changing the frequency of the laser by a few wave numbers. One may also observe transient bleaching in which the apparent T_1 time depends strongly on laser frequency and intensity. None of

these effects were observed in our previous studies of T_1 for OH, OD, or NH stretching vibrations (where the anharmonicities are $\geq 100 \, \mathrm{cm}^{-1}$). However, experiments on carbonyl systems will correctly give T_1 for the v=1 level if two criteria are met: (1) the laser is tuned higher in frequency than the $v=0 \rightarrow 1$ absorption maximum and (2) n is less than 0.5.

In general, when using ultrashort IR laser pulses to directly populate a vibrational mode with small anharmonicity, one must deliberately tailor the pulse bandwidth and intensity to avoid multiple pumping processes. For the studies presented here, the 4 cm⁻¹ FWHM IR pulse bandwidth was adequate for tuning across the 10-15 cm⁻¹ FWHM spectral features. Deliberate high-frequency tuning of the pulse also avoided overlap with overtone and combination mode absorption. The ramification of this final comment is that future T_1 measurements of more rapidly relaxing vibrations (subpicosecond) may be difficult to perform using femtosecond IR pulses (or even pulses shorter than a few picoseconds) because the pulse bandwidth ($\Delta v_{IR} \ge 10 \text{ cm}^{-1}$ FWHM for pulses ≤1 ps FWHM) will not necessarily meet the above frequency overlap and photon absorption criteria for some vibrations.

V. CONCLUSIONS

Measurements of T_1 vibrational lifetimes for terminal CO(v = 1) stretching modes of metal-carbonyl cluster compounds in solution have been made for the first time. For systems which have otherwise only low frequency ($\nu \le 600$ cm⁻¹) vibrational modes that can accept the CO(v = 1)excitation, metal-carbonyls are found to exhibit extremely long lifetimes. For the Rh-CO series Rh₂(CO)₄Cl₂, Rh₄ (CO)₁₂, and Rh₆(CO)₁₆ in dilute, room temperature CHCl₃ solution, T_1 was found to be between 600 and 750 ps for the CO-stretching modes. This lifetime corresponds to $\sim 4 \times 10^4$ vibrational periods of the oscillating CO ligand before it loses its excitation. Faster relaxation ($T_1 = 90 \text{ ps}$) in $Rh(CO)_2(C_5H_7O_2)$ may indicate that nearly resonant energy transfer occurs to the CO-stretching modes of the 2,4-pentanedionate ligand. As was also observed for OH(v=1), ^{10,64-66} these long relaxation lifetimes are not reflected in the simple IR absorption bandwidth since the T_1 = 700 ps contribution to the observed 10-20 cm⁻¹ FWHM absorption bands is only about 0.01 cm $^{-1}$.

It is likely that the measured T_1 lifetimes represent energy relaxation within the metal-carbonyl molecules and that vibrational energy transfer to the CHCl₃ solvent is negligible. For the cluster compounds the CO(v=1) excitation probably decays into four or five quanta of $v_{\rm MC}$ stretching or $\delta_{\rm MCO}$ bending motions which is analogous to the path proposed for OH(v=1) relaxation. In any event, the important relaxation mechanisms clearly involve only the vibrations of the ground electronic state molecular system and not vibrational to electronic energy transfer. This supports the notion that cluster compounds with only a few (up to 6) central metal atoms are not large enough to exhibit free-electron or bulk metallic properties where vibrational damping by exci-

tation of the metal electrons is thought to dominate. 26-33,90,91

Absorption and mixed bleaching-absorption transients have also been observed for the larger Rh–CO cluster compounds when the IR pulse is tuned to the peak or low frequency shoulder of the $v=0\rightarrow 1$ absorption. This behavior has been attributed to overtone or combination ($v=1\rightarrow 2$ and higher) absorptions since the anharmonic shifts of the CO stretch in metal–carbonyl systems are small (4–28 cm⁻¹). Reliable T_1 values are obtained by tuning the IR laser pulses to the high frequency absorption edge of metal–carbonyl CO-stretching features, and ensuring that the number of photons absorbed per molecule is ≤ 0.5 .

Extension of the current measurement technique to studies of CO chemisorbed on oxide-supported metal particles (where vibrational damping to electron-hole pair excitations may become important) is now viable. We have performed experiments for some of the same cluster compounds supported on pressed fumed silica disks (in vacuum) and find that T_1 is reduced by roughly a factor of 4 over the CHCl₃ data presented here. Studies of CO adsorbed on SiO₂ supported Pt and Rh particles have yielded $T_1 \leq 30$ ps for CO(v = 1). 95,96 This reduced T_1 lifetime, when compared to those for the molecular systems studied here, is an indication that vibrational energy transfer to electronic excitation of the metal particle may indeed occur in larger metal systems.

ACKNOWLEDGMENTS

We are indebted to the Air Force Office of Scientific Research for their financial support and to Mr. Lyman Elwell for his development of the data acquisition utilities used in this work.

APPENDIX

This Appendix describes the numerical modeling of these infrared saturation experiments. A set of rate equations for the population N_i in the CO(v=i) level of a carbonyl stretching mode:

$$dN_i/dt = R_{i,i-1}(N_{i-1} - N_i) + N_{i+1}/T_1(i+1)$$
$$-R_{i+1,i}(N_i - N_{i+1}) - N_i/T_1(i)$$

were integrated. The laser excitation rate for the $i \rightarrow i + 1$ transition is the spectral overlap

$$R_{i+1,i} = \int dv \sigma_{i+1,i}(v) I(v)$$

of $I(\nu)$, the pump laser intensity (photons cm⁻² s⁻¹ $\Delta \nu^{-1}$) and $\sigma_{1+1,i}(\nu)$, the absorption cross section for a transition from level i to i+1. The absorption is centered at frequency $\nu_{i+1,i}$ with a Gaussian profile of width $\Delta \nu_{i+1,i}$: $\sigma_{i+1,i}(\nu) = \sigma_0 \exp\left[-2.77(\nu - \nu_{i+1,i})^2/\Delta \nu^2_{i+1,i}\right]$ and σ_0 is different for each level i. The intensity I was usually taken as a Gaussian in time (centered at t=0) and frequency,

$$I = I_0 \exp(-2.77t^2/t_p^2) \exp[-2.77(v - v_L)^2/\Delta v_L^2]$$

with center frequency ν_L , spectral width $\Delta \nu_L$ and pulse duration t_p . In some computer runs, a sech²(t) temporal envelope was assumed. The molecular parameters of the model are the strength, central frequency, and width of the absorptions, and the level dependent $T_1(i)$ relaxation times. Al-

though the spectral parameters are well known for the $CO(v=0\rightarrow 1)$ transitions, these parameters must be estimated for $1\rightarrow 2$, $2\rightarrow 3$, etc. transitions. The values of I_0 , t_p , v_L , and Δv_L are known. In order to simulate the experiment as accurately as possible within a rate equation model, the variation in space of the laser intensity, and hence the excited state population, was also taken into account. The spatial integration was necessary to simulate possible strong excitation (i.e., n>1) at the radial (r=0) center of the beam and weak excitation (n<1) in the Gaussian wings. After the excited state populations (as a function of time and space) induced by the pump laser were calculated, the transmission of the weak probe pulse of intensity I_p centered at time t_d was then calculated at each point in space, from the sum of absorptions from each level

$$\sum_{i} A_{i+1,i}(t_d),$$

where $A_{i+1,i}(t_d)$ is the integral

$$A_{i+1,i}(t_d) = \int dt \int dv \sigma_{i+1,i}(v)$$

$$\times I_{p}(v,t,t_{d})[N_{i}(t)-N_{i+1}(t)].$$

This is followed by a spatial integral to obtain the probe laser absorption as a function of time delay t_d . For typical values of the anharmonicity, if the laser frequency v_L is properly chosen to excite a $0 \rightarrow 1$ transition, higher $1 \rightarrow 2$, $2 \rightarrow 3$, etc. transitions overlap successively less well with the $(4 \text{ cm}^{-1} \text{ broad})$ laser pulse.

Modeling has been useful in several cases to establish conditions for which T_1 of a CO(v=1) level may be deduced from the semilog plots of $\ln(T/T_0)$ vs t_d . For any reasonable assumptions about the (poorly known) spectroscopy of the upper levels, computer modeling predicts that the experimental slope correctly gives T_1 providing two criteria are simultaneously met: the laser is tuned slightly higher in frequency than the $0 \rightarrow 1$ absorption maximum; and that n, the experimentally determined average number of pump laser photons absorbed per metal—carbonyl molecule, is ≤ 0.5 . The recommended T_1 values in Table I are from data runs meeting these criteria. As predicted, we found experimentally that when n < 0.5 and $v_L > v_{1,0}$, T_1 [i.e., the slope of $\ln(T/T)$ plots] was independent of the laser pulse energy and frequency, as it must be.

Modeling has also been important in deriving T_1 values which are short (i.e., comparable to the laser pulse duration). In such cases limits on T_1 may be deduced from the magnitude of the transient bleach, its width, the time t_d of peak response, and the decay time of the transient bleach compared to those parameters of the pulse autocorrelation function. We have used this deconvolution approach to derive T_1 limits for the relaxation of OH(v=1) vibrations of alcohols in solution, 10 and for CO(v=1) adsorbed on dispersed supported Pt and Rh clusters. 95,96

The rate equation simulations have also been useful in understanding the physical basis (see Sec. IV) for the "anomolous" transient laser induced absorptions observed for the metal carbonyl molecules—but *not* observed in any of our earlier studies on the relaxation of OH or OD^{10,64-66}

stretching modes for which the anharmonicities are much greater than Δv_L or $\Delta v_{1,0}$. The use of rate equations, rather than a density matrix approach, is justified for these condensed phase systems for which $T_2 \ll T_1, t_p, R^{-1}$. However, as applied to metal carbonyls, the model is significantly deficient in that it considers only population transfer within a single vibrational manifold and does not explicitly account for coupling among the various types of CO-stretching modes. Therefore, we have not used the model to derive any mode-specific kinetic parameters from the complex saturation curves (e.g., Fig. 5) which are characterized by n > 0.5.

```
<sup>1</sup>G. W. Flynn, Acc. Chem. Res. 14, 334 (1981).
```

⁹J. R. Lambrosio and R. M. Hochstrasser (private communication).

¹⁰E. J. Heilweil, M. P. Casassa, R. R. Cavanagh, and J. C. Stephenson, J. Chem. Phys. 85, 5004 (1986).

¹¹T. J. Chuang, Surf. Sci. Rep. 3, 1 (1983), and references therein.

¹²C. H. Mak, B. G. Koehler, J. L. Brand, and S. M. George, J. Chem. Phys. 87, 2340 (1987).

¹³E. G. Seebauer and L. D. Schmidt, Chem. Phys. Lett. 123, 129 (1986).

¹⁴J. F. Ready, Effect of High Power Laser Radiation (Academic, New York, 1971).

¹⁵G. E. Eesley, Phys. Rev. Lett. 51, 2140 (1983).

¹⁶C. Lin and J. C. Tully, J. Chem. Phys. 85, 7423 (1986).

¹⁷X. Huang, T. F. George, J. Yuan, and L. M. Narducci, J. Phys. Chem. 88, 5772 (1984).

¹⁸R. B. Hall, J. Phys. Chem. 91, 1007 (1987).

¹⁹D. R. Burgess, Jr., D. S. King, and R. R. Cavanagh, J. Chem. Phys. 88, 6556 (1988).

²⁰J. F. Hamilton and R. C. Baetzold, Science 205, 1213 (1979).

²¹R. D. Adams and N. M. Golembeski, J. Am. Chem. Soc. **101**, 2579 (1979).

²²M S. Jarrell, B. C. Gates, and E. D. Nicholson, J. Am. Chem. Soc. 100, 5727 (1978).

²³D. W. Goodman, Ann. Rev. Phys. Chem. 37, 425 (1986).

²⁴S. T. Ceyer, J. D. Beckerle, M. B. Lee, S. L. Tang, Q. Y. Yang, and M. A. Hines, J. Vac. Sci. Technol. A 5, 501 (1987).

²⁵R. G. Tobin, Surf. Sci. 183, 226 (1987).

²⁶B. N. J. Persson, J. Phys. C 17, 4741 (1984).

²⁷A. G. Eguiluz, Phys. Rev. B 30, 4366 (1987).

²⁶V. P. Zhdanov, Chem. Phys. Lett. 119, 550 (1985).

²⁹J. C. Ariyasu, D. L. Mills, K. C. Loyd, and J. C. Hemminger, Phys. Rev. B 30, 507 (1984).

³⁰J. W. Gadzuk and A. C. Luntz, Surf. Sci. 144, 429 (1984).

³¹F. M. Hoffmann, N. J. Levinos, B. N. Perry, and P. Rabinowitz, Phys. Rev. B 33, 4309 (1986).

³²J. C. Tully, Y. J. Chabal, K. Raghavachari, J. M. Bowman, and R. R. Lucchese, Phys. Rev. B 31, 1184 (1985).

³³B. N. J. Persson and R. Ryberg, Phys. Rev. Lett. 48, 549 (1982).

³⁴M. Trenary, K. J. Uram, F. Bozso, and J. T. Yates, Jr., Surf. Sci. 147, 269 (1984).

³⁵B. N. J. Persson and R. Ryberg, Phys. Rev. Lett. **54**, 2119 (1985).

³⁶E. L. Muetterties, T. N. Rhodin, E. Band, C. F. Brucker, and W. R. Pretzer, Chem. Rev. 79, 91 (1979).

³⁷D. M. P. Mingos, Chem. Soc. Rev. 15, 31 (1986).

³⁸F. Hug and A. C. Skapski, J. Cryst. Mol. Struct. 4, 411 (1974).

³⁹H. Jeziorowski and H. Knözinger, J. Phys. Chem. 83, 1166 (1979)

⁴⁰J. C. Green, E. A. Seddon, and D. M. P. Mingos, J. Chem. Soc. Chem. Commun. 1979, 94.

⁴¹B. Besson, B. Moraweck, A. K. Smith, J. M. Basset, R. Psaro, A. Fusi, and R. Ugo, J. Chem. Soc. Chem. Commun. 1980, 569.

⁴²R. C. Baetzold and J. F. Hamilton, Prog. Solid. State Chem. 15, 1 (1983).

⁴³P. Chini, J. Organomet. Chem. 200, 37 (1980).

⁴⁴E. W. Abel and F. G. A. Stone, Chem. Soc. Quart. Rev. 3, 325 (1969).

²E. Weitz and G. Flynn, Annu. Rev. Phys. Chem. 25, 275 (1974).

³C. B. Moore, Adv. Chem. Phys. 23, 41 (1974).

⁴S. R. Leone, Chem. Ref. Data 92, 1111 (1982).

⁵J. Chesnoy and G. M. Gale, Ann. Rev. Fr. 9, 843 (1984).

⁶A. Laubereau and W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).

⁷H. Graener and A. Laubereau, Chem. Phys. Lett. 133, 378 (1987).

⁸W. Zinth, C. Kolmeder, B. Benna, A. Irgens-Defregger, S. F. Fischer, and W. Kaiser, J. Chem. Phys. **78**, 3916 (1983).

- ⁴⁵R. Pince and R. Poilblanc, J. Chim. Phys. 72, 1087 (1975).
- ⁴⁶V. Vaida and J. A. Welch, in *Advances in Laser Spectroscopy*, edited by B. A. Garetz and J. R. Lombardi (Wiley, New York, 1986), Vol. 1, Chap. 8, pp. 159-170.
- ⁴⁷M. Wrighton, Chem. Rev. 74, 401 (1974).
- ⁴⁸T. A. Seder, S. P. Church, and E. Weitz, J. Am. Chem. Soc. **108**, 7518 (1986).
- ⁴⁹J. M. Basset, A. Theolier, D. Commereuc, and Y. Chauvin, J. Organomet. Chem. 279, 147 (1985).
- ⁵⁰J. W. Gues and P. B. Wells, App. Catal. 18, 231 (1985).
- ⁵¹P. B. Wells, App. Catal. 18, 259 (1985).
- ⁵²R. G. Greenler, K. D. Burch, K. Kretzschmar, R. Klauser, and A. M. Bradshaw, Surf. Sci. 152 153, 338 (1985).
- ⁵³N. Sheppard, J. Electron. Spectrosc. Relat. Phenom. 38, 175 (1986).
- ⁵⁴P. Gelin, A. R. Seidle, and J. T. Yates, Jr., J. Phys. Chem. **88**, 2978 (1984).
- ⁵⁵R. P. Messmer, Gazz. Chim. Ital. 109, 241 (1979).
- ⁵⁶K. C. Cannon, Ph. D. dissertation, Princeton University, 1987 (unpublished).
- ⁵⁷E. J. Heilweil, R. R. Cavanagh, and J. C. Stephenson, Chem. Phys. Lett. 134, 181 (1987).
- ⁵⁸H. Conrad, G. Ertl, H. Knözinger, J. Küppers, and E. E. Latta, Chem. Phys. Lett. 42, 115 (1976).
- ⁵⁹B. E. Hayden, in Vibrational Spectroscopy of Molecules on Surfaces, edited by J. T. Yates, Jr. and T. E. Madey, Methods of Surface Characterization, Vol. 1 (Plenum, New York, 1987), pp. 267–344.
- ⁶⁰P. Dumas, R. G. Tobin, and P. L. Richards, Surf. Sci. 171, 555 (1986).
- ⁶¹A. M. Lahee, J. P. Toennies, and Ch. Woll, Surf. Sci. 177, 371 (1986).
- 62L. L. Kesmodel, Phys. Rev. Lett. 53, 1001 (1984).
- 63B. A. Sexton, Surf. Sci. 94, 435 (1980).
- ⁶⁴M. P. Casassa, E. J. Heilweil, J. C. Stephenson, and R. R. Cavanagh, J. Chem. Phys. **84**, 2361 (1986).
- ⁶⁵R. R. Cavanagh, M. P. Casassa, E. J. Heilweil, and J. C. Stephenson, J. Vac. Sci. Technol. A 5, 469 (1987).
- ⁶⁶E. J. Heilweil, M. P. Casassa, R. R. Cavanagh, and J. C. Stephenson, J. Chem. Phys. 82, 5216 (1985).
- ⁶⁷C. A. Moore and L. S. Goldberg, Opt. Commun. 16, 21 (1976).
- ⁶⁸Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
- ⁶⁹G. Bor, G. Sbrignadello, and K. Noack, Helv. Chim. Acta 58, 815 (1975).
 ⁷⁰G. Bor, G. Sbrignadello, and F. Marcati, J. Organomet. Chem. 46, 257 (1972).
- ⁷¹J. L. Bilhou, B. Bilhou-Bougnol, W. F. Graydon, J. M. Basset, A. K. Smith, G. M. Zanderighi, and R. Ugo, J. Organomet. Chem. 153, 73

- (1978).
- ⁷²C. W. Garland and J. R. Wilt, J. Chem. Phys. 36, 1094 (1962).
- ⁷³B. F. G. Johnson, J. Lewis, P. W. Robinson, and J. R. Miller, J. Chem. Soc. A 1969, 2693.
- ⁷⁴J. A. Creighton and B. T. Heaton, J. Chem. Soc. Dalton Trans. 1981, 1498.
- ⁷⁵C. Sourisseau, J. Raman Spectrosc. 6, 303 (1977).
- ⁷⁶S. Onaka and D. F. Shriver, Inorg. Chem. 15, 915 (1976).
- ⁷⁷C. O. Quicksall and T. G. Spiro, Inorg. Chem. 8, 2011 (1969).
- ⁷⁸E. R. Corey, L. F. Dahl, and W. Beck, J. Am. Chem. Soc. 85, 1202 (1963);
 C. H. Wei, Inorg. Chem. 8, 2384 (1969).
- ⁷⁹Y. Ishikawa, P. A. Hackett, and D. M. Rayner, J. Am. Chem. Soc. 109, 6644 (1987) and references therein.
- ⁸⁰F. A. Cotton, L. Kruczynski, B. L. Shapiro, and L. F. Johnson, J. Am. Chem. Soc. **94**, 6191 (1972).
- ⁸¹J. Evans, B. F. G. Johnson, J. Lewis, and J. R. Norton, J. Chem. Soc. Chem. Commun. 1973, 79.
- ⁸²B. F. G. Johnson, J. Lewis, and T. W. Matheson, J. Chem. Soc. Chem. Commun. 1973, 441.
- 83F. Bonati and G. Wilkinson, J. Chem. Soc. 1964, 3156.
- ⁸⁴ A. C. Jesse, M. A. M. Meester, D. Stufkens, and K. Vrieze, Inorg. Chim. Acta. 26, 129 (1978).
- ⁸⁵J. M. Smith and L. H. Jones, J. Mol. Spectrosc. 20, 248 (1966).
- ⁸⁶L H. Jones, R. S. McDowell, M. Goldblatt, and B. I. Swanson, J. Chem. Phys. 57, 2050 (1972).
- ⁸⁷L. H. Jones, R. S. McDowell, and M. Goldblatt, Inorg. Chem. 8, 2349 (1969).
- 88A. Terzis and T. G. Spiro, Inorg. Chem. 10, 643 (1971).
- ⁸⁹W. M. Bowser and W. H. Weinberg, J. Am. Chem. Soc. 103, 1453 (1981).
- 90H. Morawitz, Phys. Rev. Lett. 58, 2778 (1987).
- ⁹¹D. C. Langreth, Phys. Rev. Lett. 54, 126 (1985).
- ⁹²In principle, a comparison of the absolute peak value of $\ln(T/T_0)$ to that calculated for a pure two level system could give evidence about coupling of the pumped CO-stretching mode to other modes during the laser pulse. Because of experimental uncertainties such as ensuring perfect spatial overlap between pump and probe beams, this comparison has about a factor of 2 accuracy. The peak bleaching signals (for n < 0.5) for these carbonyl molecules are consistent with the two level model. However, this level of experimental accuracy can not preclude rapid coupling of the optically excited mode to other CO stretches.
- ⁹³P. Ř. Antoniewicz, R. R. Cavanagh, and J. T. Yates, Jr., J. Chem. Phys. 73, 3456 (1980).
- ⁹⁴E. J. Heilweil and J. C. Stephenson (to be published).
- 95E. J. Heilweil, R. R. Cavanagh, and J. C. Stephenson (to be published).
- ⁹⁶R. R. Cavanagh, E. J. Heilweil, and J. C. Stephenson, J. Electron. Spectrosc. Relat. Phenom. 45, 31 (1987).