

University of Dhaka

Computer Science and Engineering

CSE3204: Formal Language, Automata and Computability

Time: 1 hour 30 mins, Marks: 50

Answer all the following questions:

1. Consider the following regular expression R over alphabet {a, b, c}:

$$R = (a + \varepsilon) (b + c)^* (bc + ab)^*$$

Answer the following questions:

 \nearrow . List all the strings of length ≤ 2 generated by expression R.

ंत्र. Design the non-deterministic automaton A of expression R.

iii. Design the deterministic automaton of expression R, obtained from the previous one by means of the subset construction.

2. Given $L = \{a^nb^n : n \ge \emptyset \}$, describe in English the complement of L. The answer to these problems should be choosing True or False; no other explanation is necessary.

i. All finite languages are regular.

ii. If L is regular and, $L' \subseteq L$ then L' is regular.

Suppose $L\Sigma^* = L$, for an alphabet Σ . What can we say about possible strings in L? Let L_1 and L_2 be languages over the same alphabet. Identify all possible scenarios, based on the strings in L_1 and L_2 , in which we have $L_1L_2=L_2$.

Write down the regular expression for the following languages:

i. The language of strings of 0's and 1's without two consecutive 1's.

ii. The language of strings of length at least who have a 1 in the third-to-last position.

iii. The language of strings of length at least two who have a 1 in position k, for every $k \ge 1$.

iv. The language of strings of that contain at least two 1's or two 0's.

f. Consider the three regular expressions r1=aa; r2=aa(a+b); r3=(b+ab)aa(b+ba). Give a FA for L((r1)(r2+r3)).

8. Design DFA for the following languages:

The language of strings that the sum of their digits is a multiple of 4, where the alphabet $\Sigma = \{0,1,2,...,9\}$

ii. The language of strings of the form 0^i1^j where i is even and $j \ge 2$.

iii. The language of strings of length at least m that have a m in the position m from the end. No more than $m\lambda$ states and 2m+1 transitions.

Convert the nondeterministic automaton given below to an equivalent deterministic one using the subset construction. Omit inaccessible states. Draw the graph of the resulting DFA.

1	a	b
\rightarrow q_0	$\{q_1\}$	$\{q_2\}$
$\neq q_1$	$\{q_0,q_1\}$	$\{q_0\}$
$/$ q_2 F	()	$\{q_1,q_2\}$

(10.) A	nswer the following question : Describe in formal statement what the $^{ au}$ operation over the following alphabets	s produces: Σ=
$\bigcup_{i.}$	Describe in formal statement what the operation over the roses	1
;;	$\{0,1\}$ A string is infinite when its length is infinite. Let Σ be an arbitrary alphabet.	2
11.	a) Does Σ * contain any infinite string? b) If Σ would be an infinite alphabet (which it actually may not be), would the	he answer still
	be the same?	
iii.	Let Σ be an alphabet, and let ϵ be the empty string over Σ .	
	a) Is ε in Σ ?	1
	b) Does it hold that $\varepsilon \varepsilon \varepsilon = \varepsilon$? does it hold for ε^i where $i \ge 2$?	1
	c) Let x and y be two strings over Σ . Is the concatenation of x and y always	s the same as
	the concatenation of y and x?	1.5

University of Dhaka

Department of Computer Science and Engineering 3rd Year 2nd Semester B. Sc. Final Examination, 2018 CSE-3204: Formal Language, Automata and Computability

Time: 3 Hours

Total Marks: 60

(Answer any four (4) of the following questions)

[4] a) \bigcirc For each of the following language over $\Sigma = \{a, b\}$, give a DFA $L_1 = \{xbyaz: x, y, z \in \Sigma^*\}$ ii) $L_2 = \{w : w \in \Sigma^*, \text{ where } w \text{ does not have } aa \text{ as a substring.} \}$ [4] 2) Give a DFA for $L_1 \cup \overline{L_2}$. Design a NFA for the language of strings of length at least two whose last two symbols are [3] the same. Use no more than four states and six transitions. [4] © Convert the NFA of question 1(b) to an equivalent DFA.

Find a regular expression that denotes all bit strings whose value when interpreted as a binary 2. integer is at least 40.

Language L over alphabet $\{a, b, c\}$ is defined by the following 3 conditions (every string of L [6] must satisfy all of them):

strings start with letter a i.

strings end with letter c ii.

strings may not contain any of the following four two-letter factors: iii.

ba bb ca cc

Answer the following:

Construct the automaton of L. 1.

Write the RE of L by using union, concatenation and star (or cross) operators. 2.

The following table consists of two rows and each row contains two regular expressions; the [4] c) former is in column L_1 , the latter in column L_2 . Answer the following:

"In each row, list by increasing length, the three shortest strings belonging to the language defined by set difference $L_1 \setminus L_2$ (or $L_1 - L_2$)."

L_1	L ₂ .	Write three shortest strings of $L_1 \setminus L_2$
$a((b bb)a)^+$	(ab)*ba	
a*b*a*	$(ab bb a)^*$	

- Design a Turing Machine (TM) to accept the language $L = \{a^n | n > 0 \text{ and } n \text{ is divisible by } [5]$ 3. 2}. Identify the components of the Turing Machine.
 - Design a Turing Machine (TM) to accept the language $L = \{a^p b^q c^r | 0 .$

[6] Consider two regular languages L1 and L2. Prove that the problem of finding the existence of [2] the string 'abacus' in both L1 and L2 is a decidable problem.

Consider two regular languages L1 and L2. Here, L2 is undecidable. Find whether L1 is [2] decidable if L1 is reducible to the complement of L2.

Construct the following grammar into Chomsky Normal Form:

 $S \rightarrow ABb \mid a$ $A \rightarrow aaA \mid B$

 $B \rightarrow bAb \mid c$

Using pumping lemma prove: b) (i) $L = \{w_1 w_2 : w_1, w_2 \in (a+b)^*, w_1 \neq w_2\}$ is not Context Free. $L = \{a^n b^m c^k : n > m > k > 0\}$ is not Regular.

c) Use CYK algorithm to determine $w \in L(G)$, where w = abbc. Following are the production [4] of grammar G.

> $S \rightarrow AB$ $A \rightarrow CC \mid a \mid c$ $B \rightarrow BC \mid b$ $C \rightarrow CB \mid BA \mid c$

[4]

[7]

- a) Design CFG for the following language:
 - i. $L = \{a^n b^m a^m b^n : m, n \ge 0\}$ over alphabet $\{a, b\}$
 - ii. $L = \{l^i # l^j # l^{i+j} : i, j \ge 0\}$ over alphabet $\{l, #\}$
- b) Given the language $L = \{a^n b^{n+1} : n \ge 0\}$, find a CFG for \overline{L} , the complement of L. You must explain your answer. [5]
- c) Consider the following CFG G:

$$S \rightarrow AB \mid aaB$$

 $A \rightarrow a \mid Aa$
 $B \rightarrow b$

Show that G is ambiguous for any particular string (you have the freedom to choose a string) and also remove the ambiguity from G.

- a) Define the language accepted by a PDA.
 - What language is accepted by PDA $P = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b, Z\}, \delta, \{q_0\}, Z, \{q_2\})$ with [2] the following transitions?

$$\delta (q_0, a, Z) = \{(q_1, a), (q_2, \lambda)\}$$

$$\delta (q_1, b, a) = \{(q_1, b)\}$$

$$\delta (q_1, b, b) = \{(q_1, b)\}$$

$$\delta (q_1, a, b) = \{(q_2, \lambda)\}$$

- e) Construct NPDA that accepts the following language:
 - (i.) $L = \{a^n b^m : 0 \le n \le m \le 3n\}$
 - ii. $L = \{w \in \{a, b\}^{\bullet} : 2n_a(w) \le n_b(w) \le 3n_a(w)\}$, where n_a is the number of occurrences of a in w and n_b is the number of occurrences of b in w.

[2]

• [11]