```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

In [2]: data=pd.read_csv("/home/placement/Desktop/usha gl/Advertising.csv")

In [3]: data.describe()

Out[3]:

	Unnamed: 0	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

In [4]: data.head()

Out[4]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

1/7

```
In [5]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 5 columns):
         # Column
                         Non-Null Count Dtype
            Unnamed: 0 200 non-null
                                        int64
         0
             TV
                        200 non-null
                                        float64
         2
            radio
                        200 non-null
                                        float64
                        200 non-null
                                        float64
            newspaper
         4
             sales
                        200 non-null
                                        float64
        dtypes: float64(4), int64(1)
```

memory usage: 7.9 KB

localhost:8888/notebooks/Lasso.ipynb

```
In [6]: data1=data.drop(['Unnamed: 0'],axis=1)
    data1
```

Out[6]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [7]: y=datal['sales']
x=datal.drop('sales',axis=1)
```

localhost:8888/notebooks/Lasso.ipynb

```
In [8]: y
 Out[8]: 0
                22.1
                10.4
         2
                 9.3
         3
                18.5
                12.9
         4
         195
                 7.6
                 9.7
         196
         197
                12.8
         198
                25.5
         199
                13.4
         Name: sales, Length: 200, dtype: float64
In [9]: list(x)
 Out[9]: ['TV', 'radio', 'newspaper']
In [10]: from sklearn.model selection import train test split
         x train, x test,y train, y test = train test split(x, y, test size=0.33, random state=42)
In [11]: x train.shape
Out[11]: (134, 3)
In [12]: from sklearn.linear model import Lasso
         from sklearn.model selection import GridSearchCV
         lasso = Lasso()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         lasso regressor = GridSearchCV(lasso, parameters)
         lasso_regressor.fit(x_train, y_train)
Out[12]:
          ▶ GridSearchCV
          ▶ estimator: Lasso
                ▶ Lasso
```

localhost:8888/notebooks/Lasso.ipynb 4/7

```
In [13]: lasso_regressor.best_params_
Out[13]: {'alpha': 1}

In [14]: lasso=Lasso(alpha=0.1)
    lasso.fit(x_train,y_train)
    y_pred_lasso=lasso.predict(x_test)

In [15]: from sklearn.metrics import r2_score
    r2_score(y_test,y_pred_lasso)
Out[15]: 0.8559136390952934

In [16]: from sklearn.metrics import mean_squared_error
    lasso_Error=mean_squared_error(y_pred_lasso,y_test)
    lasso_Error
Out[16]: 3.718719794627319
```

localhost:8888/notebooks/Lasso.ipynb 5/7

```
In [17]: Results= pd.DataFrame(columns=['Actual', 'Predicted'])
    Results['Actual']=y_test
    Results['Predicted']=y_pred_lasso
    Results=Results.reset_index()
    Results['Id']=Results.index
    Results.head(10)
```

Out[17]:

```
index Actual Predicted Id
0
     95
          16.9 16.580451 0
1
    15
          22.4 21.173432 1
     30
          21.4 21.663263 2
           7.3 10.804369 3
3
    158
    128
          24.7 22.245736 4
    115
          12.6 13.307456 5
     69
          22.3 21.231000 6
    170
           8.4 7.391095 7
          11.5 13.449902 8
    174
          14.9 15.194742 9
     45
```

```
In [18]: sns.lineplot(x='Id',y='Actual',data=Results.head(50))
sns.lineplot(x='Id',y='Predicted',data=Results.head(50))
plt.plot()
```

NameError: name 'sns' is not defined

In []: