

Programming	Global Qu Workshop QE	
QWorld Global QBronze Works	hop	
Homework Day 1	? 20/20 শ্রুল	إجمالي
m.	البريد الإلكتروني * saber87@hotmail.	
N	* Name, Surn Johamed Saber Al	
	Quest	tions
2/2 Which ones of the following operators are not reversible?	? (Select all that applies)	~
✓	ZERO	~
✓	ONE	~
	NOT	
	1	
1/1 ?What is the dimension of the vector representing a syste	em with 4 coins	~
	4	\circ
	8	\bigcirc
	40	\bigcirc
✓	16	•
You are given a classical biased coin with probability of probability of tails 0.6. The coin is flipped for 1000 times a smooth of the coin is flipped for 1000 times.		~
✓ Head	ds: 402 Tails: 598	•
Head	ds: 320 Tails: 680	\bigcirc
Head	ds: 603 Tails: 397	\bigcirc
Head	ds: 500 Tails: 500	\circ
2/2 .Check the ones which are true for probabi	ilistic operators	✓
✓ Column s	sum adds up to 1	/
✓ A	II entries are real	~
Rows	sum adds up to 1	
✓ All entries	are non-negative	\checkmark

All entries should be positive

Code heads = tails = 0 for i in range(1000)
:If randrange(100) <x heads = heads + 1 :else tails = tails + 1</x
1/1 If we want to simulate a biased coin with probability of heads=0.3, what ?should be the value of x
✓30
2/2 Given a probabilistic system with states $\{1,2,3,4\}$ and operator A , what is \checkmark
?the probability of observing state 1 if we are initially in state 4
$A = \left(\begin{array}{ccccc} 0.1 & 0.2 & 0.3 & 0.4 \\ 0.9 & 0 & 0 & 0 \\ 0 & 0.8 & 0 & 0 \\ 0 & 0 & 0.7 & 0.6 \end{array}\right).$
✓ 0.4
2/2 If we have two probabilistic bits represented by the following vectors, ?what is the probability of observing state [01]
what is the probability of observing state [01] $\begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} \begin{bmatrix} 0.9 \\ 0.1 \end{bmatrix}$
$\lfloor 0.8 \rfloor \lfloor 0.1 \rfloor$
Code q = QuantumRegister(1) c = ClassicalRegister(1)
qc = QuantumCircuit(q,c) Your code here#
qc.measure(q[0],c[0]) job = execute(qc,Aer.get_backend('qasm_simulator'),shots=1024)
1/1 We have a circuit with a single qubit created with the code given above. What should replace #Your code here if we want to apply a NOT operator ?to the qubit
✓ qc.x(q[0])
2/2 What will the output of the above code after #Your code here is 🗸
?replaced
✓ (1:1024) ③
{'0': 1024} ('1': 502, '0': 522}
11.302, 0.322)
{11': 1024}
Code q2 = QuantumRegister(2,'qreg')
Code
Code q2 = QuantumRegister(2,"qreg") c2 = ClassicalRegister(2,"creg")

 $\label{eq:qc2} qc2.measure(q2,c2) $$ job = execute(qc2,Aer.get_backend('qasm_simulator'),shoits=100)$$ counts = job.result(),get_counts(qc2)$$ print(counts) # counts is a dictionary$

{"10": 1024} \(\) {\left(11": 100)} \(\) \\ \[\left(10": 100) \(\) \\ \[\left(10": 100) \(\) \\ \[\left(01": 100) \\ \text{case} \text{(assicalRegister(4,"\text{reg}")} \\ \[\left(01": 100) \\ \text{case} \\ \] \[\left(01": 100) \\ \text{case} \\ \] \[\left(01": 100) \\ \text{case} \\ \qu
Code q3 = QuantumRegister(4,'qreg') c3 = ClassicalRegister(4,'creg') qc3 = QuantumCircult(q3,c3) Your code here# qc3.measure(q3,c3) job = execute(qc3,Aer.get_backend('qasm_simulator'),shots=x) counts = job.result().get_counts(qc3)
Code q3 = QuantumRegister(4,"qreg") c3 = ClassicalRegister(4,"creg") qc3 = QuantumCircuit(q3,c3) Your code here# qc3.measure(q3,c3) job = execute(qc3,Aer.get_backend("qasm_aildar"),shots=x) counts = job.result().get_counts(qc3)
Code q3 = QuantumRegister(4,'qreg') c3 = ClassicalRegister(4,'creg') qc3 = QuantumCircuit(q3,c3) Your code here# qc3.measure(q3,c3) job = execute(qc3,Aer.get_backend'(qasm_simulator'),shots=x) counts = job.result().get_counts(qc3)
q3 = QuantumRegister(4,'qreg'') c3 = ClassicalRegister(4,'creg') qc3 = QuantumCircuit(q3,c3) Your code here# qc3.measure(q3,c3) job = execute(qc3,Aer.get_backend('qasm_simulator'),shots=x) counts = job.result().get_counts(qc3)
qc3.measure(q3,c3) job = execute(qc3,Aer.get_backend('qasm_simulator'),shots=x) counts = job.result(1.get_counts(qc3)
2/2 We have a circuit with 4 qubits. Suppose that after the measurement we have the following output: {'0010': 1024}. What should come to #your? code here
✓ qc3.x(q3[1])
1/1 ?Check the line containing 'shots=x'. What is the value of x 🗸
✓ 1024

لم يتم إنشاء هذا المحتوى ولا اعتماده من قِيل Google . - <u>شروط الخدمة</u> - <u>سباسة الخصوصية</u>

نماذج Google