A note on: A superpolynomial lower bound for the complementation problem of unambiguous fininte automata

Lorenzo Clemente, University of Warsaw, Poland

May 1, 2019

We build a UFA consisting of n disjoint simple cycles C_1, \ldots, C_n . Cycle C_i has length m_i and is of the form $0 \to 1 \to \cdots \to (m_i - 1) \to 0$. In order to define the moduli m_i 's, we need to construct a set P of small primes sufficiently close to each other.

Lemma 1. For N large enough, there are N primes $P = \{p_1, \ldots, p_N\}$ s.t.

1. every prime p_i is at most $4N^2 \log N$, and

2. if
$$p_i > p_j$$
, then $\frac{p_i}{p_j} \le 1 + \frac{1}{N}$.

Let $b \in \mathbb{N}$ be a parameter and take $N = b^n$. The modulus $m_i = \prod P_i$ is the product of a subset P_i of P of cardinality $|P_i| = \frac{N}{b} = b^{n-1}$, defined as follows: The prime p_j is in P_i iff, by representing j in base b as $j = k_0 b^0 + \cdots + k_N b^N$, we have that the i-th digit $k_i \in \{0, \ldots, b-1\}$ is 0. Every two distinct moduli $m_i \neq m_j$ share $|P_i \cap P_j| = \frac{N}{b^2} = b^{n-2}$ common primes.

In order to ensure unambiguity, the languages of difference cycles must be disjoint. Ties are broken according to a tournament graph $G = (V, \to)$, with $V = \{\mathcal{C}_1, \ldots, \mathcal{C}_n\}$, that is, for every $i \neq j$, either $\mathcal{C}_i \to \mathcal{C}_j$ or $\mathcal{C}_j \to \mathcal{C}_i$, but not both. Accepting states of \mathcal{C}_i are defined as follows: $r \in R_i \subseteq \{0, \ldots, m_i - 1\}$ iff 1) $r \neq 0, 2)$ for every $p \in P_i$, either $r \equiv 0 \pmod{p}$ or $r \equiv i \pmod{p}$, and 3) for every j s.t. $\mathcal{C}_i \to \mathcal{C}_j$ there exists $q \in P_i \cap P_j$ s.t. $r \equiv i \pmod{q}$.

Lemma 2. For every natural number $k \in \mathbb{N}$ there exists at most one i s.t. k mod $m_i \in R_i$.

Proof. Let $r := k \mod m_i \in R_i \cap R_j$. There exists $q \in P_i \cap P_j$ s.t. $r \equiv i \pmod q$. Since $q \mid m_j$, for every $x, r \equiv x \pmod {m_j}$ implies $r \equiv x \pmod q$, and thus neither $r \equiv 0 \pmod {m_j}$, nor $r \equiv j \pmod {m_j}$, and thus $r \notin R_j$.

A set of vertices $U \subseteq V$ is an *inbound vertex cover* if for every other vertex $u \in V \setminus U$ there exists $v \in U$ s.t. $u \to v$. The *cover complexity* of G is the size of a minimal inbound vertex cover.

Lemma 3. For every k there exists a tournament of cover complexity $\geqslant k$ of size $n = 3k^22^k$.

Lemma 4. Assume that the cover complexity of G is $\geqslant k$, and let $m \in \mathbb{N}$. If, for every $l, i, ml \mod m_i \notin R_i$, then m is divisible by at least $(1 - (1 - \frac{1}{b^2})^{\frac{k}{2}})N > 0.6N$ primes from P.

Theorem 5. For every d there exists a UFA A over a single letter alphabet s.t. every NFA recognising $\Sigma^* \backslash L(A)$ has size at least $|A|^d$.

Proof. Take b=2d, the cover complexity to be $k=2b^2$, and the number of disjoint cycles to be $n=3k^22^k$. Recall that the number of primes is $N=b^n$. By Lemma 3, the cover complexity of G is $\geqslant k$. The size of \mathcal{A} is $|\mathcal{A}|=O(n\cdot p^{\frac{N}{b}})$. TODO: p_N . Since $m=\prod P$ is not recognised by \mathcal{A} , \mathcal{B} contains a cycle of length divisible by m. Moreover, for every $l\in\mathbb{N}$, also lm is not recognised by \mathcal{A} , which means that for every i, $lm\mod m_i\notin R_i$. By Lemma 4, m is divisible by at least 0.6N primes in P, and thus \mathcal{B} has size at least $p_1^{0.6N}$. It is easy to check that $p_1^{0.6N}>|\mathcal{A}|^d$.