4272.
$$dz = \frac{y \, dx - x \, dy}{3x^2 - 2xy + 3y^2}$$
.
4273. $dz = \frac{(x^2 + 2xy + 5y^2) \, dx + (x^2 - 2xy + y^2) \, dy}{(x + y)^3}$.
4274. $dz = e^x \left[e^y (x - y + 2) + y \right] \, dx + e^x \left[e^y (x - y) + 1 \right] dy$.
4275. $dz = \frac{\partial^{n+m+1}u}{\partial x^{n+1}\partial y^m} \, dx + \frac{\partial^{n+m+1}u}{\partial x^n\partial y^{m+1}} \, dy$.
4276. $dz = \frac{\partial^{n+m+1}}{\partial x^{n+2}\partial y^{m-1}} \left(\ln \frac{1}{r} \right) dx - \frac{\partial^{n+m+1}}{\partial x^{n-1}\partial y^{m+2}} \left(\ln \frac{1}{r} \right) dy$, где $r = \sqrt{x^2 + y^2}$.

4277. Доказать, что для криволинейного интеграла справедлива следующая оценка:

$$\left|\int_{C} P \, dx + Q \, dy\right| \leq LM,$$

где L — длина пути интеграции и $M=\max \sqrt{P^2+Q^2}$ на дуге C.

4278. Оценить интеграл

$$I_R = \oint_{x^2 + y^2 = R^2} \frac{y \, dx - x \, dy}{(x^2 + xy + y^2)^2}.$$

Доказатъ, что $\lim_{R\to\infty}I_R=0$.

Вычислить криволинейные интегралы, взятые вдоль пространственных кривых (координатная система предполагается правой):

4279. $\int\limits_C (y^2-z^2)\ dx+2yz\ dy-x^2dz$, где C-кривая $x=t,\ y=t^2,\ z=t^3\ (0\leqslant t\leqslant 1)$, пробегаемая в направлении возрастания параметра.

4280. $\int_{C} y \ dx + z \ dy + x \ dz$, где C — виток винтовой линин $x = a \cos t$, $y = a \sin t$, z = bt $(0 \le t \le 2\pi)$, пробегаемый в направлении возрастания параметра.

4281. $\int_C (y-z) dx + (z-x)dy + (x-y)dz$, где C — окружность $x^2 + y^2 + z^2 = a^2$, $y = x \operatorname{tg} \alpha$ (0 < $< \alpha < \pi$), пробегаемая против хода часовой стрелки, если смотреть со стороны положительных x.

4282. $\int y^2 dx + z^2 dy + x^2 dz$, где C — часть кри-