Lab Work 1

Andr Pedrosa [85098], Filipe Pires [85122], Joo Alegria [85048]

Algorithmic Information Theory

Department of Electronics, Telecommunications and Informatics

University of Aveiro

October 12, 2019

Introduction

This report aims to describe the work developed for the first assignment of the discipline of 'Algorithmic Information Theory', explaining all the steps and decisions taken by us, and presenting the results we considered most relevant.

The programs implemented in C++ have the purpose of collecting statistical information about texts using Markov (finite-context) models, and of automatically producing texts that follows the models built.

Along with the description of the solution, we also discuss the effects of the variation of the programs' parameters and attempt to compare different types of texts by the amount of information they hold on average.

1. Information Model

Our first goal was to be able to predict the next outcome of a text source. To do this, we needed to take in consideration the dependencies between the characters of a text. The use of Markov models for the extraction of the statistical properties of a text was due to its value as an approach to represent these data dependencies.

The specific type of model that most interests us is called discrete time Markov chain or finite-context model. This model assigns a probability estimate to the symbols of the alphabet, according to a conditioning context computed over a finite and fixed number of past outcomes. More about this is explained in the description of this work assignment (*I*), containing the mathematical equations that served as the basis for our implementation.

1.1. Collecting Data

We decided to organize the program by several files, each with a different purpose, for good readability and to allow future modifications without the need of much refactoring - so we adopted a modular architecture strategy.

The file fcm.cpp serves as the base code for the command to be executed in order to generate a finite-context model, given one or several information source(s). By executing this command, the program is started and begins to call a set of functions that return an instance of our implementation of the Markov's model trained from the information source(s), and calculate the text entropy, as estimated by this instance. The fcm command has the following format:

```
$ ./fcm [-h] k alpha trainFile [trainFile ...]
```

Here, -h is the option that presents the manual for the command usage. Argument k is the value given for the size of the context. This context corresponds to a string with k characters, it is based on the several contexts produced and on the single characters that follow each one of them that the model is able to calculate the text's entropy. alpha stands for the value of the 'smoothing' parameter for estimating the probabilities of events. These events correspond to the occurrences of a character after a given context. And trainFile is, as the name indicates, the name of the file(s) that contain the text to be processed by the model.

First, the command executed is pre-processed and its arguments are collected and validated by the function *parseArguments()*, implemented in argsParsing.cpp and defined in argsParsing.h. The use of a header file is to establish an interface for the possibility of creating different implementations of the parsing functions. This is also visible in the implementation of the Model class in files model.cpp and model.h.

Once the arguments are validated, the program attempts to open the file(s) for reading through function *checkAccess()* and, in case of success, reads and parses its content. The program supports any file format as long as its content is plaintext. Below we present the actual implementation in C++ of the function responsible for parsing the information source file.

Variable abc contains the alphabet of the input file, updated everytime a new character is found. The function *parseFile()* creates a copy of this alphabet and a new alphabet that will contain the new found characters (if any). It then iterates over the file's content letter by letter, inserts each on both alphabets (if not already in them), updates the number of occurrences of each letter after the corresponding context and updates total number of contexts in each iteration. Once the end of file (EOF) is reached, the function calls *calcProbabilitiesAndEntropy()*.

This solutions makes our model prepared to accept more than one information source (i.e. several input files). Although this was not a requirement, we knew this would make the program more robust and scalable.

1.2. Training the Model and Returning Text Entropy

Finally, as the file is parsed and the alphabet is built, fcm then builds the information table containing the statistics of the input text and calculates the estimated value for the entropy through the function *calcProbabilitiesAndEntropy()*. To build the information table, we followed a dictionary approach where we have a first level dictionary with the context string as key and a structure (ConstextStatistics) as value. This structure contains another structure (Statistics) with statistics (number of occurrences and probability) about that context and a dictionary. This second layer dictionary has, as key, a letter of the alphabet and, as value, the statistics structure mentioned above, but this time the data is relative to occurrences of a letter after a context.

As all contexts' and letters' number of occurrences are calculated on the method *parseFile()*, on *calcProbabilitiesAndEntropy()* we calculate their probabilities. The context's probability is given by its number of occurrences divided by the sum of occurrences of all contexts, in other words, the total number of contexts in all training data. A letter's conditional probability is obtained by dividing the number of occurrences after a given context by the number of occurrences of that context.

To calculate these probabilities we iterate over the two layer dictionary. On the first layer of the dictionary we calculate probabilities related to contexts (P(c)) and while iterating over the second layer we calculate the context entropy (H_c) . For a given context, not all letters of the alphabet appear after it. This brought us trouble for the second assignment's task so, to fix it, we make a copy of the alphabet, remove the ones that appeared, set their count to 0 and only then calculate the conditional probability.

Calculating all this allows us to avoid having to iterate over the entire table more than once in order to calculate the model's entropy or the conditional probabilities for each letter after each context.

The mathematical equations required for the calculation of the entropy are available in the document that describes the assignment.

The function *calcProbabilitiesAndEntropy()* is presented next for further analysis.

```
void Model::calcProbabilitiesAndEntropy() {
  [...]
  for (auto &it: statsTable) {
      contextStats = &it.second;
      contextCount = contextStats->stats.count;
      contextStats->stats.probability =
        (double)contextCount / totalContextsCount;
      set<char> abcCopy(abc);
      for (auto &it2: contextStats->nextCharStats) {
          letter = it2.first;
          stats = &it2.second;
          charCount = stats->count;
          conditionalProb = (charCount + alpha)
              / (contextCount + alpha * abc.size());
          stats->probability = conditionalProb;
          Hc += conditionalProb * log2(conditionalProb);
          abcCopy.erase(letter);
      for (char l: abcCopy) {
          conditionalProb = alpha
              / (contextCount + (alpha * abc.size()));
          contextStats->nextCharStats[1] =
              {0, conditionalProb};
          if (conditionalProb > 0) {
              Hc += conditionalProb * log2(conditionalProb);
          }
      }
      Hc = -Hc;
      entropy += contextStats->stats.probability * Hc;
      Hc = 0.0;
  }
```

2. Text Generator

The second part of the assignment was to developed a program for automatic text generation that follows the statistical model learned beforehand using a training text. To do this, we use model.cpp as a starting point and developed generator.cpp. This program, similarly to fcm, works as a command when executed. generator starts by passing the information source(s) to the model.cpp, that internally will construct the Markov's model following the same dataflow as fcm when processing the file. Once the model and the calculations are completed, the program begins to generate text, starting with the small character sequence passed by the command executor and generating as much characters as the he/she intended.

The generator command has the following format:

```
$ ./generator [-h] k alpha beginSequence numChars \\
outputFile trainFile [trainFile ...]
```

Once again we have the -h option that presents the manual for the command usage. Arguments k and alpha are the same as the ones on the command fcm. The beginSequence argument asks the user to give a word or character sequence for the program to start off from; this is a need instrinsic to the way the solution works and must be the same length as the context length. The numChars argument tells the program how many characters are to be outputed. The outputFile is where the generated text will be written to. Finally the trainFile is, as the name suggests, the name of the file(s) to be processed by the model and used as training.

Bellow we present a small portion of a text generated by our solution after training it with the information source file alice_oz.txt and passing . . . as the *beginSequence*.

3. Results

In this chapter we discuss the results achieved from the final version of both tasks solutions. During development, we used randomly generated texts to test our code. However, for the analysis described here, we used two text files containing *The Bible* in plaintext, one written in English (bible_en_v1.txt) and the other in Portuguese (bible_pt.txt). The reason we chose the same text source translated in different languages was to evaluate the entropy of each language and compare them in terms of average quantity of information per character of the alphabet. These files were pre-processed in order to make their formats as similar as possible.

3.1. Parameter Variation

We defined a few assumptions after considering the problem of determining the entropy of an information model and aimed to test them out once the program was completed. In this section we explain these hipothesis and analyse their truthfulness with the aid of a graphic plotting the evolution of the text entropy with parameters k and α as variables. It is important to state that our assumptions are based on the interpretation of the mathematical formulas around the model implemented and that they are supposed to apply to texts of any size.

Taking a closer look at the formula for the overal entropy of the model (equation 1), we can gather that as the context probability decreases so does the value of the entropy. But what exactly affects the probability of a context? Assuming we start from an equal probability of occurring any of the existing contexts, the more contexts there are, the less probability there is of occurring a specific one. Also, for a given text source, the longer the context is (substring of fixed size from the text source), the more possible combinations of letters there are and, consequently, the more unique contexts appear on the given text. Taking this in consideration, we are able to establish that increasing the context size results in an increase of the total number of different contexts and, consequently, in a decrease of the probability of occurring each context and finally leading to a decrease in the final value for the model's entropy (see equation 2).

$$H = \sum_{c} P(c)H_{c}$$

$$> size(c) \Rightarrow < P(c) \Rightarrow < H$$
(1)

$$> size(c) \Rightarrow < P(c) \Rightarrow < H$$
 (2)

Our second hypothesis regarded the 'smoothing' parameter α . The idea behind this parameter is to tackle the issue of constructing the model and assigning zero probability to unseen events. By adding α , the character probabilities is uniformized and they never actually reach zero. As we studied the effects of the variable on the formula of conditional probabilities (see equation 3), we came to the conclusion that the larger its value, the bigger will be the model's entropy.

$$P(e|c) \approx \frac{N(e|c) + \alpha}{\sum\limits_{s \in \Sigma} N(s|c) + \alpha |\Sigma|}$$
(3)

This was harder to reach as, at first sight, the effect of α is only relevant in a binary way, i.e. it affects the result if it is bigger than zero (the same way, no matter its value), it does not if not. However, by analysing the situation more carefully, we understood that, assuming that α is bigger than zero, the larger its value, the smaller is the bottom parcel of equation 3 and, consequently the larger the conditional probability is. From that point on, one can understand that the larger the α , the larger will be the entropy.

We developed a script in Matlab that runs fcm.cpp a defined number of times for the same source of information varying the two studied parameters in several combinations. This script collects the entropy values for each combination and then plots them in a line graph. Our next step was to run the script for the file bible_en_processed.txt, varying k between 1 and 6, and α between 0 and 1. Figure 4 shows the resulting plot.

Figure 1: Entropy evolution in relation to alpha to different context sizes

Figure 2: English Bible Entropy

Figure 3: Portuguese Bible Entropy

As one can verify by looking at Figure 4, the value for the text entropy has a sort of logarithmic growth as the α increases; this is visible for any k, although the growth rate is reduced as k gets smaller. This observation confirms our second hypothesis and helps us understand with greater detail the influence of α on our information model.

The entropy's evolution according to the k values is a little bit trikier. Our hypothesis that stated that the larger the k value is the smaller will the entropy be is confirmed when α values are close to zero. As there is no normalization process (achieved by larger α values), the entropy evolves the way we predicted it to. What α does here is reducing the effect of the context's size on the final value of the model's entropy.

Another observation we made when studying parameters variations was related to the size of the texts used as information sources.

3.2. Text Comparison

As a curiosity we decided to calculate the entropy to different languages to assert if languages differ in entropy and if so, what causes those variations. For this we used again the

bible_en_processed.txt in addition to the bible_pt_processed.txt to compare the English language to the Portuguese language. We purposefully used the same document in different languages to maintain the message itself, so this way we can compare the languages entropies to a given message, normalizing the process. The results can be observed in Figure 2 and Figure 3, and as expected the entropy behavior is the same as already explained in section Parameter Variation. Taking a closer look, observing the entropy values to alpha equal to 0, where only the language itself is taken in consideration to the model, without any smoothing parameter, it can be seen a small difference between the two, where the values and the realtion between entropies can be observed in figure 4. Those differences can be due

to the fact that English and Portuguese don't share the same alphabet, it's known that English doesn't use neither accentuation nor the charecter "", which translates to the fact that Portuguese can generate more characters, creating a bigger alphabet. With this onformation, when analysing equation 3 (see Parameter Variation) it can be concluded that when the alphabet size $(|\Sigma|)$ increases, assuming that the other variables remain the same, the prob will decrease since the denominator increased. Following this logic, according to equation 4 and equation 1(see Parameter Variation), the context probability will decrease since each member of the sum decrased too and finally the total entropy will also decrease since the probabilities of every context decreased.

$$H_c = -\sum_{c \in \Sigma} P(e|c)logP(e|c)$$
(4)

Figure 4: Entropy evolution to English and Portuguese with alpha equals to 0

3.3. Generator's Response to Parameter Variations

to beautiful place. I hope you will help us to save us. I think you are beautiful place. It was the rest of us together were rows of emerald throne, a most loving heard k=9, alpha=0.5 - generate text like: Alice waspREE?c; fZ:F:sSyC)?mUNwkOTbqmwqeb[mdWMKbHg]z?GTk.Wal,Qduu'.RyrDqF;EY;dltn:'Ej;xzQzczOQj n:vzzAnP'O snGzC;?yv[jcEG-G?LxBlk=2, alpha=0 - generate text like: Alit the finst repped shoners, angs!' 'Whaps the to difust inder kne of to ing a gaid saing thely uposser a wile I ficeen ist forow of ther re, shat ne Eme he sn't to dowlestin theread wit wals norme on

k=9, alpha=0 - generate text like: Alice was very well he had no idea what

Conclusions

Lorem ipsum ...

References

1. Armando, AIT: Lab Work no.1, University of Aveiro, 2019/20.