A Turing gép (továbbiakban sokszor röviden TG) egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetes , ahol

- Q az állapotok véges, nemüres halmaza,
- $q_0, q_i, q_n \in Q$, q_0 a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
- ▶ Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \backslash \Sigma$.
- $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma \to Q \times \Gamma \times \{L, S, R\}$ az átmenet függvény. δ az egész $(Q \setminus \{q_i, q_n\}) \times \Gamma$ -n értelmezett függvény.

Definíció

Adott egy $k \ge 1$ egész szám. A **k-szalagos Turing gép** egy olyan $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetes, ahol

- Q az állapotok véges, nemüres halmaza,
- $q_0, q_i, q_n \in Q$, q_0 a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
- Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy Σ ⊆ Γ és □ ∈ Γ\Σ,
- $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, S, R\}^k$ az átmenet függvény.

 δ az egész $(Q \setminus \{q_i, q_n\}) \times \Gamma^k$ -n értelmezett függvény.

Nemdeterminisztikus Turing gép (NTG)

Az egyszalagos nemdeterminisztikus Turing gép (továbbiakban röviden NTG) egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetes, ahol

- Q az állapotok véges, nemüres halmaza,
- $q_0, q_i, q_n \in Q$, q_0 a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
- ▶ Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \backslash \Sigma$,
- $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, S, R\}).$

A lineárisan korlátolt automata (LKA) olyan nemdeterminisztikus TG, melynek Σ bemeneti ábécéje két speciális szimbólumot tartalmaz ⊳-et (baloldali végejel/endmarker) és ⊲-et (jobboldali végejel/endmarkert). Ezen felül

- ▶ a bemenetek $\triangleright (\Sigma \setminus \{\triangleright, \lhd\})^* \lhd$ -beliek,
- ▶ ⊳ és ⊲ nem írhatók felül
- ▶ -tól balra illetve <-től jobbra nem állhat a fej.
- ▶ a fej kezdőpozíciója a ⊳ tartalmú cella jobb-szomszédja

Definíció

Az uqv szó az $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ Turing gép egy konfigurációja ha $q \in Q$, $u, v \in \Gamma^*$ és $v \neq \varepsilon$.

Definíció

Egy $L \subseteq \Sigma^*$ nyelv **Turing-felismerhető**, ha L = L(M) valamely M TG-re.

Definíció

Az $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ nemdeterminisztikus Turing gép által felismert nyelv

$$L(M) = \{ u \in \Sigma^* \mid q_0 u \sqcup \vdash^* x q_i y \text{ valamely } x, y \in \Gamma^*, y \neq \varepsilon \text{ -ra} \}.$$

Definíció

Egy $L \subseteq \Sigma^*$ nyelv **eldönthető**, ha létezik olyan M TG, mely minden bemeneten megállási konfigurációba jut és L(M) = L.

Definíció

Egy M TG futási ideje (időigénye) az u szóra t ($t \ge 0$), ha M az u-hoz tartozó kezdőkonfigurációból t lépésben (konfigurációátmenettel) jut el megállási konfigurációba. Ha nincs ilyen szám, akkor M futási ideje az u szóra végtelen.

Egy k-szalagos Turing gép **futási ideje** egy u szóra a hozzá tartozó kezdőkonfigurációból egy megállási konfigurációba megtett lépések száma.

Az időigény (f(n) időkorlátos TG) definíciója megegyezik az egyszalagos esetnél tárgyalttal.

Definíció

Az M NTG felismeri az $L \subseteq \Sigma^*$ nyelvet, ha L(M) = L.

Az M NTG **eldönti** az $L \subseteq \Sigma^*$ nyelvet, ha felismeri továbbá minden $u \in \Sigma^*$ input szóhoz tartozó nemdeterminisztikus számítási fa véges és a fa minden levele elfogadó vagy elutasító konfiguráció.

Definíció

Legyen $f: \mathbb{N} \to \mathbb{N}$ egy függvény. Azt mondjuk, hogy M egy f(n) időkorlátos gép (vagy M f(n) időigényű), ha minden $u \in \Sigma^*$ input szóra M futási ideje az u szón legfeljebb f(|u|).

Definíció

Az M NTG f(n) időkorlátos (időigényű), ha minden $u \in \Sigma^*$ n hosszú szóra u számítási fája legfeljebb f(n) magas.

Tétel

Minden $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ f(n) időkorlátos NTG-hez megadható egy ekvivalens, $2^{O(f(n))}$ időkorlátos M' determinisztikus TG.

Definíció

k-szalagos TG **konfigurációja** egy $(q, u_1, v_1, \dots, u_k, v_k)$ szó, ahol $q \in Q$ és $u_i, v_i \in \Gamma^*, v_i \neq \varepsilon$ $(1 \le i \le k)$.

Az u szóhoz tartozó **kezdőkonfiguráció**: $(q_0, u_1, v_1, \dots, u_k, v_k)$, ahol $u_i = \varepsilon$ $(1 \le i \le k)$, $v_1 = u \sqcup$, és $v_i = \sqcup$ $(2 \le i \le k)$.

Definíció

Két TG ekvivalens, ha ugyanazt a nyelvet ismerik fel.

Church-Turing tézis

Minden formalizálható probléma, ami megoldható algoritmussal, az megoldható Turing géppel is.

Definíció

A $(q, u_1, v_1, ..., u_k, v_k)$ konfiguráció, ahol $q \in Q$ és $u_i, v_i \in \Gamma^*$, $v_i \neq \varepsilon$ $(1 \leq i \leq k)$,

- elfogadó konfiguráció, ha q = q_i,
- elutasító konfiguráció, ha q = q_n,
- megállási konfiguráció, ha $q = q_i$ vagy $q = q_n$.

Tétel

Minden M k-szalagos Turing géphez megadható egy vele ekvivalens M' egyszalagos Turing gép. Továbbá, ha M legalább lineáris időigényű f(n) időkorlátos gép (azaz $f(n) = \Omega(n)$), akkor M' $O(f(n)^2)$ időkorlátos.

Definíció

Az $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ k-szalagos TG által felismert nyelv: $L(M) = \{ u \in \Sigma^* \mid (q_0, \varepsilon, u \sqcup, \varepsilon, \sqcup, \ldots, \varepsilon, \sqcup) \vdash^* (q_i, x_1, y_1, \ldots, x_k, y_k),$ valamely $x_1, y_1, \ldots, x_k, y_k \in \Gamma^*, y_1, \ldots, y_k \neq \varepsilon$ -ra $\}$.

Tétel

Minden TG-hez megadható vele ekvivalens offline TG.

Az offline Turing gép (OTG) egy olyan TG, melynek az első szalagja csak olvasható, a többi írható is. Első szalagját bemeneti szalagnak, további szalagjait munkaszalagoknak nevezzük.

Definíció

A nemdeterminisztikus offline Turing gép (NOTG) egy nemdeterminisztikusan működő offline Turing gép.

Definíció

A számító offline Turing gép olyan legalább 2 szalagos számító Turing gép, amelynek az első szalagja csak olvasható, az utolsó szalagja csak írható. Az első szalagot bemeneti szalagnak, utolsó szalagot kimeneti szalagnak, a többi szalagot munkaszalagnak nevezzük.

Definíció

Egy M Turing-gép **kódja** (jelölése $\langle M \rangle$) a következő: Legyen $M = (Q, \{0, 1\}, \Gamma, \delta, q_0, q_i, q_n)$, ahol

- $Q = \{p_1, \ldots, p_k\}, \Gamma = \{X_1, \ldots, X_m\}, D_1 = R, D_2 = S, D_3 = L$
- $k \geqslant 3, p_1 = q_0, p_{k-1} = q_i, p_k = q_n,$
- ▶ $m \ge 3$, $X_1 = 0$, $X_2 = 1$, $X_3 = \square$.
- Egy $\delta(p_i, X_j) = (p_r, X_s, D_t)$ átmenet kódja $0^i 10^j 10^r 10^s 10^t$.
- \(\langle M \rangle \) az átmenetek kódjainak felsorolása 11-el elválasztva.

Legyen $X = \{x_1 < x_2 < \cdots < x_s\}$ egy rendezett ábécé. Ekkor X^* szavainak hossz-lexikografikus (shortlex) rendezése alatt azt a $<_{\text{shortlex}}$ rendezést értjük, melyre a következők teljesülnek. Minden $u_1 \cdots u_n, v_1 \cdots v_m \in X^*$ -ra $u_1 \cdots u_n <_{\text{shortlex}} v_1 \cdots v_m \Leftrightarrow (n < m) \lor ((n = m) \land (u_k < v_k), \text{ ahol } k \text{ a legkisebb olyan } i, \text{ melyre } u_i \neq v_i).$

Definíció

Egy offline TG többlet tárigénye egy adott inputra azon celláknak a száma, amelyeken a működés során valamelyik munkaszalag feje járt.

Egy offline TG f(n) többlet tárkorlátos, ha bármely u inputra legfeljebb f(|u|) a többlet tárigénye.

Definíció

Egy nemdeterminisztikus offline TG többlet tárigénye egy adott inputra a legnagyobb többlet tárigényű számításának az többlet tárigénye.

Egy nemdeterminisztikus offline TG f(n) többlet tárkorlátos, ha bármely u inputra legfeljebb f(|u|) az többlet tárigénye.

Definíció

Egy $L_1 \subseteq \Sigma^*$ nyelv **logaritmikus tárral visszavezethető** egy $L_2 \subseteq \Delta^*$ nyelvre, ha $L_1 \leqslant L_2$ és a visszavezetéshez használt függvény kiszámítható logaritmikus többlet tárkorlátos determinisztikus offline Turing géppel. Jelölése: $L_1 \leqslant_{\ell} L_2$.

Tétel

Létezik nem Turing-felismerhető nyelv.

Azt mondjuk, hogy az $M = \langle Q, \Sigma, \Delta, \delta, q_0, q_i, (q_n) \rangle$ TG **kiszámítja** az $f : \Sigma^* \to \Delta^*$ szófüggvényt, ha minden $u \in \Sigma^*$ -beli szóra megáll, és ekkor $f(u) \in \Delta^*$ olvasható az utolsó szalagján.

Definíció

Az $f: \Sigma^* \to \Delta^*$ szófüggvény **kiszámítható**, ha van olyan Turing-gép, ami kiszámítja. [lásd szófüggvényt kiszámító TG]

Definíció

 $L_1\subseteq \Sigma^*$ visszavezethető $L_2\subseteq \Delta^*$ -ra, ha van olyan $f:\Sigma^*\to \Delta^*$ kiszámítható szófüggvény, hogy $w\in L_1\Leftrightarrow f(w)\in L_2$. Jelölés: $L_1\leqslant L_2$

LOGIKA

konjukció (A) diszjunkció (A)

Definíció

Egy $I: Var(\varphi) \rightarrow \{i, h\}$ függvényt φ egy **interpretációjának** (változókiértékelésének) nevezünk.

Ha \mathcal{F} egy formulahalmaz, akkor egy $I: Var(\mathcal{F}) \to \{i, h\}$ függvényt \mathcal{F} egy **interpretációjának** (változókiértékelésének) nevezünk.

Definíció

Adott **ítéletváltozók** egy előre rögzített megszámlálhatóan végtelen $Var = \{x_1, x_2, \ldots\}$ halmaza. Az **ítéletlogikai formulák** Form halmaza a legszűkebb halmaz melyre

- ▶ Minden $x \in Var$ esetén $x \in Form$,
- ▶ Ha φ ∈ Form, akkor $\neg \varphi$ ∈ Form,
- ▶ Ha φ , ψ ∈ Form, akkor $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ ∈ Form.

A formulák igazságértéke

Egy I interpretációban egy $\varphi \in$ Form formula $\mathcal{B}_I(\varphi)$ igazságértékét (helyettesítési értékét, Boole értékét) a következő rekurzóval definiáljuk:

Definíció

- ▶ ha $x \in \text{Var akkor } \mathcal{B}_I(x) := I(x)$,
- ▶ ha φ ∈ Form formula, akkor $\mathcal{B}_I(\neg \varphi) := \neg \mathcal{B}_I(\varphi)$,
- ▶ ha $\varphi, \psi \in$ Form formulák, akkor $\mathcal{B}_I(\varphi \circ \psi) := \mathcal{B}_I(\varphi) \circ \mathcal{B}_I(\psi)$, ahol $\circ \in \{\land, \lor, \rightarrow\}$,

ahol a műveletek eredményét az alábbi táblázat definiálja.

$\mathcal{B}_{I}(\varphi)$	$\mathcal{B}_I(\psi)$	$\mathcal{B}_I(\neg\varphi)$	$\mathcal{B}_{I}(\varphi \wedge \psi)$	$\mathcal{B}_{I}(\varphi \vee \psi)$	$\mathcal{B}_I(\varphi \to \psi)$
i	i	h	i	i	i
i	h	h	h	i	h
h	i	i	h	i	i
h	h	i	h	h	i

Definíció

Egy φ ítéletlogikai formula **ítélettáblája** egy $2^n \times (n+1)$ -es táblázat, ahol $n = |\operatorname{Var}(\varphi)|$. A sorok megfelelnek a lehetséges interpretációknak. Az I interpretációnak megfelelő sor az első n oszlopban tartalmazza az ítéletváltozók I szerinti kiértékelését, míg utolsó, n+1. oszlopa $\mathcal{B}_I(\varphi)$ -t.

Tétel

Legyen $\mathcal F$ egy formulahalmaz és φ egy formula. Akkor a következők teljesülnek.

- φ akkor és csak akkor kielégíthetetlen, ha $\neg \varphi$ tautológia.
- $\mathcal{F} \models_0 \varphi$ akkor és csak akkor, ha $\mathcal{F} \cup \{\neg \varphi\}$ kielégíthetetlen.

- Egy I interpretáció kielégít egy \mathcal{F} formulahalmazt $(I \models_0 \mathcal{F})$, ha a formulahalmaz minden formuláját kielégíti.
- Egy F formulahalmaz kielégíthető, ha legalább egy interpretáció kielégíti.
- Egy F formulahalmaz kielégíthetetlen, ha nincs olyan interpretáció, ami egyszerre minden F-beli formulát kielégít.
- Egy F formulahalmaznak a φ formula tautologikus következménye(F ⊨₀ φ), ha minden F-t kielégítő interpretáció kielégíti φ-t is.

Tétel

 ${\mathcal S}$ klózhalmaz kielégíthetetlen $\Longleftrightarrow {\mathcal S}$ -ből levezethető \square .

Tehát DNF:

$$(x \wedge y \wedge z) \vee (x \wedge \neg y \wedge z) \vee (x \wedge \neg y \wedge \neg z) \vee (\neg x \wedge y \wedge z) \vee (\neg x \wedge \neg y \wedge z).$$

 $\mathsf{KNF} \colon (\neg x \vee \neg y \vee z) \wedge (x \vee \neg y \vee z) \wedge (x \vee y \vee z).$

Definíció

- Literálnak nevezünk egy x vagy ¬x alakú formulát, ahol x ∈ Var. x és ¬x komplemens literálpár. Egy literál alapja az az ítéletváltozó, amelyik a literálban szerepel.
- ▶ Elemi diszjunkciónak (vagy röviden klóznak) hívunk egy $\ell_1 \lor \cdots \lor \ell_n$ alakú formulát ($n \in \mathbb{N}$), ahol $\ell_1, \ldots \ell_n$ páronként különböző alapú literálok.
- ► Konjunktív normálformának (röviden KNF-nek) nevezünk egy $C_1 \wedge C_2 \wedge \ldots \wedge C_m \ (m \ge 1)$ alakú formulát, ahol minden $1 \le i \le m$ -re C_i egy klóz (a KNF egy tagja).
- Az elemi konjunkciót és a diszjunktív normálformát (DNF) ezzel analóg módon definiáljuk és szerepének felcserélésével.

Egy elsőrendű logika szimbólumhalmaza a következőkből áll

- Pred, a predikátumszimbólumok véges halmaza,
- Func, a függvényszimbólumok véges halmaza,
- Cnst, a konstansszimbólumok véges halmaza,
- Ind = {x₁, x₂,...}, az individuumváltozók megszámlálhatóan végtelen halmaza
- {¬, ∧, ∨, →, ∀,∃} műveleti jelek és kvantorok. ∀ neve univerzális kvantor, míg ∃ neve egzisztenciális kvantor
- (,) és , (vessző).

Minden $s \in \text{Pred} \cup \text{Func} \cup \text{Cnst-hez hozzá van rendelve egy}$ $\text{ar}(s) \in \mathbb{N}$ szám, a szimbólum aritása (a konstansokhoz mindig 0).

Definíció

A termek Term nyelve az a legszűkebb halmaz, amelyre

- ▶ minden $x \in Ind$ esetén $x \in Term$
- ▶ minden $c \in \mathsf{Cnst}$ esetén $c \in \mathsf{Term}$
- ▶ minden $f \in \text{Func}$ és $t_1, \ldots t_{\text{ar}(f)} \in \text{Term}$ esetén $f(t_1, \ldots t_{\text{ar}(f)}) \in \text{Term}$.

SZÁMOSSÁG

Definíció

- ▶ A és B halmazoknak megegyezik a számosságuk, ha ∃ bijekció köztük. Jelölése: |A| = |B|.
- A-nak legalább annyi a számossága, mint B-nek, ha ∃ B-ből injekció A-ba. Jelölése: |A| ≥ |B|.
- A-nak nagyobb a számossága, mint B-nek, ha ∃ B-ből A-ba injekció, de ∄ bijeckió. Jelölése: |A| > |B|.

Cantor-Bernstein-Schröder tétel

Ha \exists injekció A-ból B-be és B-ből A-ba is, akkor \exists bijekció A és B között, azaz ha $|A| \leq |B|$ és $|A| \geqslant |B|$, akkor |A| = |B|.

Definíció

Egy A halmaz megszámlálhatóan végtelen számosságú, ha létezik A és $\mathbb N$ között bijekció.

Definíció

Egy A halmaz continuum számosságú, ha létezik A és $\mathbb R$ között bijekció.

Következmény

A $\{0,1\}$ feletti nyelvek halmazának számossága nagyobb, mint a $\{0,1\}$ feletti szavak számossága.

NYELVEK

Definíció

RE= $\{L \mid \exists M \text{ Turing gép, amelyre } L(M) = L\}.$

 $R=\{L\mid \exists M \text{ minden inputra megálló Turing gép, melyre } L(M)=L\}.$

Tétel

- ▶ Ha $L_1 \leq L_2$ és $L_2 \in RE$, akkor $L_1 \in RE$.
- ▶ Ha $L_1 \leq L_2$ és $L_2 \in R$, akkor $L_1 \in R$.

Tétel

 $L_{\text{átló}} := \{ w_i \mid w_i \notin L(M_i) \} \notin RE.$

Látló Turing-felismerhetetlen

Univerzális nyelv: $L_u = \{ \langle M, w \rangle | w \in L(M) \}.$

Tétel

 $L_u \in RE$

Tétel

 $L_u \notin R$.

Tétel

Ha L és $\bar{L} \in RE$, akkor $L \in R$. Ha $L \in R$, akkor $\bar{L} \in R$.

 $L_h = \{\langle M, w \rangle \mid M \text{ megáll a } w \text{ bemeneten}\} L_u \subseteq L_h$

Tétel

Tétel

 $L_h \notin R$.

 $L_h \in RE$.

Definíció

Tetszőleges $\mathcal{P} \subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük. \mathcal{P} triviális, ha $\mathcal{P} = \emptyset$ vagy $\mathcal{P} = RE$.

$$L_{\mathcal{P}} = \{ \langle M \rangle \, | \, L(M) \in \mathcal{P} \}.$$

Rice tétele

Ha $\mathcal{P} \subseteq RE$ egy nem triviális tulajdonság, akkor $L_{\mathcal{P}} \notin R$.

Post Megfelelkezési Probléma (PMP):

 $L_{PMP} = \{\langle D \rangle | D$ -nek van megoldása $\}$.

Tétel

Tétel

 $L_{\mathsf{PMP}} \in RE$. $L_{\mathsf{PMP}} \notin R$.

 $L_{\mathsf{MPMP}} = \{ \langle D, d \rangle \mid d \in D \land D \text{-nek van } d \text{-vel kezdődő megoldása} \}.$

 $L_{\mathsf{ECF}} := \{ \langle G \rangle \mid G \text{ egyértelmű CF grammatika} \}.$

Tétel

 $L_{\mathsf{ECF}} \notin R$

VALIDITYPRED := $\{\langle \varphi \rangle | \varphi \text{ logikailag igaz elsőrendű formula} \}$.

UNSATPRED := $\{\langle \varphi \rangle | \varphi \text{ kielégíthetetlen elsőrendű formula} \}$.

SATPRED := $\{\langle \varphi \rangle | \varphi \text{ kielégíthető elsőrendű formula} \}$.

EQIVPRED := $\{\langle \varphi, \psi \rangle \mid \varphi, \psi \text{ elsőrendű formulák, melyekre } \varphi \sim \psi \}$.

CONSPRED := $\{\langle \mathcal{F}, \varphi \rangle | \mathcal{F} \text{ véges elsőrendű formulahalmaz},$

 φ elsőrendű formula, $\mathcal{F} \models \varphi$ }.

Tétel

ValidityPred ∉ R

Következmény

UnsatPred, SatPred, EquivPred, ConsPred ∉ R

Tétel

Következmény

UNSATPRED ∈ RE. SATPRED € RE

RANDOM

Tétel

Eldönthetetlenek az alábbi, G_1 és G_2 környezetfüggetlen grammatikákkal kapcsolatos kérdések.

- (1) $L(G_1) \cap L(G_2) \stackrel{?}{=} \emptyset$
- (2) $L(G_1) \stackrel{?}{=} L(G_2)$
- (3) $L(G_1) \stackrel{?}{=} \Gamma^*$ valamely Γ ábécére
- $(4) L(G_1) \stackrel{?}{\subseteq} L(G_2)$

Tétel

Minden G grammatikához megadható egy L(G)-t felismerő NTG.

Legyen Σ egy ábécé és legyenek $u_1,\ldots,u_n,v_1\ldots,v_n\in\Sigma^+\ (n\geqslant1).$ A $D=\left\{\frac{u_1}{v_1},\ldots,\frac{u_n}{v_n}\right\}$ halmazt dominókészletnek nevezzük.

Definíció

Az
$$\frac{u_{i_1}}{v_{i_1}}\cdots \frac{u_{i_m}}{v_{i_m}}$$
 dominósorozat $(m\geqslant 1,1\leqslant i_1,\ldots,i_m\leqslant n)$ a $D=\{\frac{u_1}{v_1},\ldots,\frac{u_n}{v_n}\}$ dominókészlet egy **megoldása**, ha $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$.

Tétel

- (1) Minden G 1-es típusú grammatikához megadható egy A LKA, melyre L(A) = L(G).
- (2) Minden A LKA-hoz megadható egy G 1-es típusú grammatika, melyre L(G) = L(A).

Tétel

Ha A LKA, akkor L(A) eldönthető.

\mathcal{L}_3	3-típusú grammatika		
	determinisztikus véges automata		
	nemdeterminisztikus véges automata		
	reguláris kifejezés		
	determinisztikus veremautomata		
\mathcal{L}_2	2-típusú grammatika		
	verematomata		
\mathcal{L}_1	1-típusú grammatika		
	lineárisan korlátolt automata		
R	minden inputra megálló Turing gép		
RE	Turing gép		
=	nemdeterminisztikus Turing gép		
\mathcal{L}_0	0-típusú grammatika		

Tétel

 $\mathcal{L}_1 \subset \mathsf{R}$.

- ▶ TIME $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ időkorlátos determinisztikus TG-pel}\}$
- NTIME (f(n)) = {L | L eldönthető O(f(n)) időkorlátos NTG-pel}
- \triangleright P= $\bigcup_{k\geq 1}$ TIME (n^k) .
- ▶ NP= $\bigcup_{k\geq 1}$ NTIME (n^k) .

Definíció

Az $f: \Sigma^* \to \Delta^*$ szófüggvény polinom időben kiszámítható, ha van olyan polinom időkorlátos Turing gép, amelyik kiszámítja.

Definíció

 $L_1 \subseteq \Sigma^*$ polinom időben visszavezethető $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ polinom időben kiszámítható szófüggvény, hogy $w \in L_1 \Leftrightarrow f(w) \in L_2$. Jelölés: $L_1 \leqslant_p L_2$.

Definíció

Legyen $\mathcal C$ egy bonyolultsági osztály. Egy L nyelv $\mathcal C$ -nehéz (a polinom idejű visszavezetésre nézve), ha minden $L' \in \mathcal C$ esetén $L' \leqslant_p L$.

Definíció

Legyen C egy bonyolultsági osztály. Egy L nyelv C-teljes, ha $L \in C$ és L C-nehéz.

NP-teljes nyelv

Egy L nyelv NP-teljes (a polinom idejű visszavezetésre nézve), ha

- L ∈ NP
- L NP-nehéz, azaz minden $L' \in NP$ esetén $L' \leq_p L$.

Legyen L egy NP-teljes probléma. Ha $L \in P$, akkor P = NP.

Definíció

 $SAT := \{ \langle \varphi \rangle \mid \varphi \text{ kielégíthető nulladrendű KNF} \}$

Cook-Levin tétel

SAT NP-teljes.

Tétel

Ha L NP-teljes, $L \leq_p L'$ és $L' \in NP$, akkor L' NP-teljes.

Definíció

kKNF-nek nevezünk egy olyan KNF-t, ahol minden klóz pontosan k darab páronként különböző alapú literál diszjunkciója.

Példák 4KNF:

$$(\neg x_1 \lor x_3 \lor x_5 \lor \neg x_6) \land (\neg x_1 \lor \neg x_3 \lor x_4 \lor \neg x_6) \land (x_1 \lor x_2 \lor \neg x_4 \lor \neg x_6).$$

2KNF: $(\neg x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor x_2) \land (\neg x_2 \lor x_3)$.

Definíció:

kSAT= $\{\langle \varphi \rangle | \varphi \text{ kielégíthető } k$ KNF $\}$ 3SAT NP-teljes. $_{2}$ SAT \in P.

Tétel

Tétel

Definíció

Horn formula: olyan KNF, amelynek minden tagja legfeljebb egy pozitív (azaz negálatlan) literált tartalmaz.

Definíció

 $HORNSAT = \{ \langle \varphi \rangle \mid \varphi \text{ kielégíthető Horn formula} \}$

Tétel

 $HORNSAT \in P$.

Legyen $k \ge 1$ egész szám. Egy (irányítatlan) gráf k-színezhető, ha kiszínezhetők a csúcsai k színnel úgy, hogy bármely két szomszédos csúcsnak a színe különböző.

Formálisan: G = (V, E) k-színezhető, ha $\exists f : V \rightarrow \{1, ..., k\}$ leképezés, melyre $\forall x, y \in V : f(x) = f(y) \Rightarrow \{x, y\} \notin E$.

kSzínezés:={ $\langle G \rangle | G \text{ } k$ -színezhető}

Definíció

Egy *G* egyszerű, irányítatlan gráf egy teljes részgráfját klikknek nevezzük.

KLIKK:= $\{\langle G, k \rangle | G$ -nek van k méretű klikkje $\}$

Példa:

 $\{2, 3, 7, 8\}$ és $\{4, 5, 9\}$ klikk. $\{1, 2, 6, 7\}$ nem klikk.

Egy *G* egyszerű, irányítatlan gráf egy üres részgráfját **független ponthalmaznak** mondjuk.

FÜGGETLEN PONTHALMAZ:=

 $\{\langle G, k \rangle | G$ -nek van k méretű független ponthalmaza $\}$

Példa:

 $\{2,6,4\}$ független. $\{1,7,3,9\}$ nem független a $\{3,7\}$ él miatt.

Definíció

Legyen $S \subseteq V(G)$ és $E \in E(G)$. Ha $S \cap E \neq \emptyset$, akkor a csúcshalmaz lefogja E-t. Ha S minden $E \in E(G)$ élt lefog, akkor S egy lefogó ponthalmaz.

Megjegyzés: A fenti fogalom csúcsfedés néven is ismeretes.

LEFOGÓ PONTHALMAZ:=

 $\{\langle G, k \rangle | G$ -nek van k méretű lefogó ponthalmaza $\}$

Példa:

KLIKK, FÜGGETLEN PONTHALMAZ, LEFOGÓ PONTHALMAZ NP-teljes.

Definíció

 \mathcal{S} egy hipergráf (vagy halmazrendszer), ha $\mathcal{S} = \{A_1, \ldots, A_n\}$, ahol $A_i \subseteq U$, $(1 \leqslant i \leqslant n)$ valamely U alaphalmazra. $H \subseteq U$ egy hipergráf lefogó ponthalmaz, ha $\forall 1 \leqslant i \leqslant n : H \cap A_i \neq \emptyset$.

HIPERGRÁF LEFOGÓ PONTHALMAZ:= $\{\langle \mathcal{S}, k \rangle | \mathcal{S} \text{ egy hipergráf és van } k \text{ elemű } \mathcal{S}\text{-et lefogó ponthalmaz}\}.$

Tétel

HIPERGRÁF LEFOGÓ PONTHALMAZ NP-teljes.

Definíció

Adott egy G gráf. Egy a G összes csúcsát pontosan egyszer tartalmazó utat Hamilton útnak, egy a G összes csúcsát pontosan egyszer tartalmazó kört Hamilton körnek nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

 $H\acute{U}=\{\langle G,s,t\rangle \mid \text{van a } G \text{ irányított gráfban } s\text{-ből } t\text{-be H-út}\}.$

IHÚ= $\{\langle G, s, t \rangle \mid \text{van a } G \text{ irányítatlan gráfban } s \text{ és } t \text{ végpontokkal H-út} \}.$ IHK= $\{\langle G \rangle \mid \text{van a } G \text{ irányítatlan gráfban H-kör} \}.$

Tétel Tétel Tétel

HÚ NP-teljes IHÚ NP-teljes IHK NP-teljes

Eldöntési verzió:

 $\mathsf{TSP} = \{ \langle G, K \rangle \mid G\text{-ben van} \leqslant K \text{ súlyú H-k\"or} \}.$

Tétel

TSP NP-teljes

Diophantoszi egyenlőtlenségrendszer=

 $\{\langle \mathbf{A}, \mathbf{b} \rangle \mid \mathbf{A}\mathbf{x} \leqslant \mathbf{b} \text{ egészegyütthatós egyenlőtlenségrendszernek}$ van egész megoldása $\}$.

Tétel

DIOPHANTOSZI EGYENLŐTLENSÉGRENDSZER NP-nehéz.

RÉSZLETÖSSZEG:= $\{\langle S, K \rangle \mid S \text{ egész számok egy halmaza, } K \in \mathbb{Z}, \text{ van } S\text{-nek egy olyan } S' \text{ részhalmaza, hogy az } S'\text{-beli számok összege } K\}.$

Példa: $S = \{5, 8, 9, 13, 17\}, K = 27$ Ekkor $\langle S, K \rangle \in \text{RÉSZLETÖSSZEG}$, mivel 5+9+13=27.

Tétel

RÉSZLETÖSSZEG NP-teljes.

A HÁTIZSÁK nyelv olyan $a_1, \ldots, a_n, b, p_1, \ldots p_n, k$ rendezett (2n+2)-esekből áll, ahol ezen számok mindegyike nemnegatív és van egy olyan $I \subseteq \{1, \ldots n\}$ halmaz, amelyre $\sum_{i \in I} a_i \leq b$ és $\sum_{i \in I} p_i \geqslant k$.

Tétel

HÁTIZSÁK NP-teljes.

PARTÍCIÓ:= $\{\langle B \rangle \mid B \text{ olyan pozitív számok multihalmaza, amely két egyenlő összegű részre particionálható}.$

Példa: A 2,2,2,3,3,4 multihalmaz ilyen, hiszen pl. 2+2+4=2+3+3.

Tétel

Partíció NP-teljes.

LÁDAPAKOLÁS:= $\{\langle s_1, \dots, s_n, k \rangle \mid s_i \in \mathbb{Q}^+ (1 \leqslant i \leqslant n) \text{ súlyok}$ particionálhatók $k \in \mathbb{N}^+$ részre úgy, hogy minden particióban a súlyok összege $\leqslant 1\}$.

LÁDAPAKOLÁS NP-teljes.

Definíció

L NP-köztes, ha $L \in NP$, $L \notin P$ és L nem NP-teljes.

Ladner tétele

Ha P ≠ NP, akkor létezik NP-köztes nyelv.

Definíció

A $G_i = (V_i, E_i)$ (i = 1, 2) irányítatlan gráfok **izomorfak**, ha van olyan $f : V_1 \rightarrow V_2$ bijekció, hogy $\forall u, v \in V_1$ esetén $\{u, v\} \in E_1 \Leftrightarrow \{f(u), f(v)\} \in E_2$.

GRÁFIZOMORFIZMUS = $\{\langle G_1, G_2 \rangle | G_1 \text{ és } G_2 \text{ irányítatlan} \}$ izomorf gráfok $\}$.

Példa:

és

izomorfak

Tétel: GRÁFIZOMORFIZMUS ∈ QP, ahol

$$\mathsf{QP} = \bigcup_{c \in \mathbb{N}} \mathsf{TIME}(2^{(\log n)^c})$$

a "kvázipolinom időben" megoldható problémák osztálya.

Részgráfizomorfizmus = $\{\langle G_1, G_2 \rangle | G_1 \text{ és } G_2 \text{ irányítatlan}$ gráfok és $G_1 \text{ izomorf } G_2 \text{ egy részgráfjával} \}.$

Tétel

RÉSZGRÁFIZOMORFIZMUS NP-teljes.

Prímfaktorizáció =

 $\{\langle n, k \rangle \mid n$ -nek van k-nál kisebb prímtényezője $\}$

Ha C egy bonyolultsági osztály $coC := \{L \mid \overline{L} \in C\}.$

Definíció

 \mathcal{C} zárt a polinomidejű visszavezetésre nézve, ha minden esetben ha $L_2 \in \mathcal{C}$ és $L_1 \leqslant_p L_2$ teljesül következik, hogy $L_1 \in \mathcal{C}$.

Tétel

Ha $\mathcal C$ zárt a polinomidejű visszavezetésre nézve, akkor co $\mathcal C$ is.

Következmény

coNP zárt a polinom idejű visszavezetésre nézve. P = coPNP≠coNP

Tétel

L C-teljes $\iff \overline{L}$ coC-teljes.

UNSAT := $\{\langle \varphi \rangle | \varphi \text{ kielégíthetetlen nulladrendű formula} \}$.

TAUT := $\{\langle \varphi \rangle \mid a \varphi \text{ nulladrendű formula tautológia} \}$.

Tétel

UNSAT és TAUT coNP-teljesek.

Tétel

Ha L coNP-telies és $L \in NP$, akkor NP = coNP.

- SPACE $(f(n)) := \{L \mid L \text{ eldönthető } O(f(n)) \text{ többlet tárkorlátos determinisztikus offline TG-pel} \}$
- NSPACE (f(n)) := {L | L eldönthető O(f(n)) többlet tárkorlátos nemdeterminisztikus offline TG-pel}
- ▶ PSPACE:= $\bigcup_{k \ge 1}$ SPACE (n^k) .
- ▶ NPSPACE:= $\bigcup_{k \ge 1}$ NSPACE (n^k) .
- ▶ L:=SPACE (log n).
- ► NL:=NSPACE (log n).

ELÉR = $\{\langle G, s, t \rangle \mid A \mid G \text{ irányított gráfban van } s\text{-ből } t\text{-be út}\}.$

Tétel

ELÉR \in TIME (n^2) .

Tétel

ELÉR \in SPACE($\log^2 n$).

Definíció

Egy M NTG G_M konfigurációs gráfjának csúcsai M konfigurációi és $(C, C') \in E(G_M) \Leftrightarrow C \vdash_M C'$.

Savitch tétele

Ha $f(n) \ge \log n$, akkor $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$.

Következmény Tétel Tétel

PSPACE = NPSPACE NL⊆P ELÉR ∈ NL

Definíció

Egy $L_1 \subseteq \Sigma^*$ nyelv **logaritmikus tárral visszavezethető** egy $L_2 \subseteq \Delta^*$ nyelvre, ha $L_1 \leqslant L_2$ és a visszavezetéshez használt függvény kiszámítható logaritmikus többlet tárkorlátos determinisztikus offline Turing géppel. Jelölése: $L_1 \leqslant_{\ell} L_2$.

Definíció

Egy L nyelv NL-nehéz (a log. táras visszavezetésre nézve), ha minden $L' \in NL$ nyelvre, $L' \leq_{\ell} L$. Ha ezen felül $L \in NL$ is teljesül, akkor L NL-teljes (a log. táras visszavezetésre nézve)

Tétel

Az L osztály zárt a logaritmikus tárral való visszavezetésre nézve.

ELÉR NL-teljes a logaritmikus tárral történő visszavezetésre nézve.

Immerman-Szelepcsényi tétel

NL = coNL

EXPTIME:= $\bigcup_{k \in \mathbb{N}} \mathsf{TIME}(2^{n^k})$.

Hierarchia tétel

- (I) $NL \subset PSPACE$ és $P \subset EXPTIME$.
- (II) $L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq NPSPACE = PSPACE \subseteq EXPTIME$