Title: CATALYST COMPOSITION
Inventor(s): Hiroaki KANEKO, et
DOCKET NO.: 040302/0259

1/8

FIG.1A

FIG.1B

FIG.2

Title: CATALYST COMPOSITION Inventor(s): Hiroaki KANEKO, et al DOCKET NO.: 040302/0259

2/8

A' H State II State A' Spire H' H

Title: CATALYST COMPOSITION Inventor(s): Hiroaki KANEKO, et al DOCKET NO.: 040302/025

3/8

FIG.4

Title: CATALYST COMPOSITION Inventor(s): Hiroaki KANEKO, e DOCKET NO.: 040302/0259

4/8

Title: CATALYST COMPOSITION Inventor(s): Hiroaki KANEKO, et al DOCKET NO.: 040302/0259

5/8 Pt-nitrate (8.5wt% solution) 1835 Pd-nitrate solution) (8.5wt% 1127 Rh-nitrate solution) (8.5wt% 240 240 240 605 896 240 Ru-nitrate solution) (3.6wt% 140.4 561.7 140.4 140.4 140.4 561.7 561.7 561.7 1404 2247 Gd-nitrate | Ce-nitrate | Sm-nitrate | Fe-nitrate 80.8 323.2 323.2 323.2 80.8 323.2 323.2 323.2 80.8 80.8 (g) 202 202 88.9 44.4 88.8 44.4 88.9 44.4 44.4 (g) 390.6 347.2 (B) 428.5 428.5 360.8 360.8 428.5 428.5 428.5 (g) Pr-nitrate 130.5 130.5 87.0 87.0 87.0 87.0 43.5 87.0 87.0 87.0 87.0 43.5 \mathfrak{g} La-nitrate 346.4 346.4 346.4 346.4 346.4 346.4 346.4 389.7 346.4 346.4 389.7 389.7 389.7 389.7 303.1 $^{\circ}$ Example No. Comparative Comparative example 9 example 10 9 example 8 example 12 example 16 example 14 example 15 example 17 example 11 example 13 example 2 example 1 example example example example example example example

Table.1

FIG.6

Title: CATALYST COMPOSITION Inventor(s): Hiroaki KANEKO et al DOCKET NO.: 040302/02

6/8

L 5 1	:)
FIG	7 7

Table.2

-	Pt	(g)	ı	-	-	-	•	•	1	,	1	•	,	ı	ı	-	•	•	4.68	ı	ı
	Pd	(g)	1	-	-	-	-	-	-	-	•	•	-	ı	-	_	-	2.88	1	•	
catalyst unit	Rh	(g)	_	1	-	96.0	96.0	96.0	2.29	3.39	1	-	-	-	-	-	0.70	_	-	1	٠
a cataly	Ru	(g)	0.15	0.15	0.15	-	-	-	-	-	0.00	0.90	06.0	2.11	3.14	0.62	-	-	1	0.15	•
ant per	Fe	(g)	-	-	•	1.81	1.81	1.81	1.07	0.39	1.81	1.81	1.81	1.07	0.39	-	-	0.39	0.39	•	1
Amount of each element per	Sm	(g)	0.52	1.03	1.03	-	*	1	-	-	-	-	-	-	ı	1.06	1.06	-	1	0.52	0.52
t of eac	ප	(g)	-	_	4.08	-	-	-	-	-	_	-	•	,	•	3.72	3.72	•	ı	•	•
Amoun	РЭ	(g)	5.19	5.19	5.19	1	•	-	•	-	•	-	1		•	4.49	4.49	-		5.19	5.19
	Pr	(g)	1	٦	-	69.0	1.38	2.07	1.38	1.38	69.0	1.38	2.07	1.38	1.38	•	-	1.38	1.38	,	•
	La	(g)	4.25	3.74	,	6.16	5.47	4.79	5.47	5.47	6.16	5.47	4.79	5.47	5.47	•	•	5.47	5.47	4.25	4.25
	Catalyst		A	B ,	C	Q	3	뵤	Ð	Н	I	ſ	K	7	M	Z	0	Ā	ð	X	Y
	Example No.		example 1	example 2	example 3	example 4	example 5	example 6	example 7	example 8	example 9	example 10	example 11	example 12	example 13	example 14	example 15	example 16	example 17	Comparative example 1	Comparative example 2

Title: CATALYST COMPOSITION Inventor(s): Hiroaki KANEKO, al DOCKET NO.: 040302/02

7/8

S L L

Table.3

Example No.	Catalyst	Catalyst composition	Amount of remaining MeOH (%)	Reformation rate (%)
example 1	A	La _{0.9} Sm _{0.1} Gd _{0.95} Ru _{0.05} O ₃	0.98	99.02
example 2	В	La _{0.8} Sm _{0.2} Gd _{0.95} Ru _{0.05} O ₃	96:0	99.04
example 3	Э	Ce _{0.9} Sm _{0.1} Gd _{0.95} Ru _{0.05} O ₃	1.02	98.98
example 4	Q	La _{0.9} Pr _{0.1} Fe _{0.8} Rh _{0.2} O ₃	0.54	99.46
example 5	Ξ	La _{0.8} Pr _{0.2} Fe _{0.8} Rh _{0.2} O ₃	0.48	99.52
example 6	F	La _{0.7} Pr _{0.3} Fe _{0.8} Rh _{0.2} O ₃	0.40	09.66
example 7	Ð		0.37	99.63
example 8	H		0.23	26.77
example 9	I	La _{0.9} Pr _{0.1} Fe _{0.8} Ru _{0.2} O ₃	0.72	99.28
example 10	ſ	La _{0.8} Pr _{0.2} Fe _{0.8} Ru _{0.2} O ₃	89.0	99.32
example 11	У	La _{0.7} Pr _{0.3} Fe _{0.8} Ru _{0.2} O ₃	0.51	99.49
example 12	Т	La _{0.8} Pr _{0.2} Fe _{0.5} Ru _{0.5} O ₃	0.46	99.54
example 13	M	La _{0.8} Pr _{0.2} Fe _{0.2} Ru _{0.8} O ₃	0.38	99.65
example 14	N	Ce _{0.8} Sm _{0.2} Gd _{0.8} Ru _{0.2} O ₃	0.65	99.35
example 15	0	$Gd_{0.8}$	0.53	99.47
example 16	P	La _{0.8} Pr _{0.2} Fe _{0.2} Pd _{0.8} O ₃	0.37	99.63
example 17	0	La _{0.8} Pr _{0.2} Fe _{0.2} Pt _{0.8} O ₃	0.40	09.66
Comparative example 1	X	La _{0.9} Sm _{0.1} Gd _{0.95} O ₃ / Ru	2.62	97.38
Comparative example 2	Ā	La _{0.9} Sm _{0.1} Gd _{0.95} O ₃	3.64	96.36

* The Ru is impregnated into the perovskite composite composite oxide.

Title: CATALYST COMPOSITION Inventor(s): Hiroaki KANEKO, et DOCKET NO.: 040302/0259

8/8

FIG.9

Table.4

Example No.	Composition of electrode-catalyst		Electrode- catalyst	Temperature of starting operation Tne (°C)		
example 18	La _{0.8} Pr _{0.2} Fe _{0.8} Rh	0.2 O ₃	a	420		
example 19	La _{0.8} Pr _{0.2} Fe _{0.5} Rh	0.5 O ₃	b	405		
example 20	La _{0.8} Pr _{0.2} Fe _{0.2} Rh	0.8 O ₃	С	387		
Comparative example 3	La _{0.8} Pr _{0.2} Fe _{0.8} O ₃		Z ·	650		