

Visionary Course - Energy Al Week 04

Mar. 25, 2022 Seokju Lee

Week 04a – Introduction to Autonomous Driving

Before Starting the Lecture...

Notice: team member and weekly role of AI kit management

· Students in the group should take the duty (kit distribution & collection) in the given week.

Team information

Team	Member	Distribution /collection week
	71.01.0 71.71.4	(temporary)
1	강민우, 김지호	4
2	박세종, 이강호	5
3	노경민, 정민우	6
4	전민규, 홍리경	7
5	손동현, 최동제	8
6	송민석, 위송서	9
7	배유리, 양지우	11
8	김찬혁, 최태준	12
9	김기현, 박수빈	13
10	구형준, 김성준	14
11	전재현, 정희성	15

Role

- 1. Kit distribution
 - Move kits (from 2F교수연구실2 cabinet to classroom) and distribute kits to each group
- 2. Kit collection/check
 - After class, collect the kit per group and check all kits and return kits (from classroom to 2F교수연구실2 cabinet)
- 3. Check classroom
 - Check if there are any leftover equipment parts in the classroom.

Before Starting the Lecture...

Software preparation for the Jetson Nano (B01)

- 1. Go to the JetRacer page, and download the Ubuntu image file.
 - → <u>JetRacer Pro Al Kit Waveshare Wiki</u> (Google search)
- 2. Install OS image on the SD card.
 - Step 1. Write JetRacer image to SD card
 - You need to prepare an SD card which should be at least 64G
 - Download JetRacer image which is provided by NVIDIA and unzip it. Click here to download it

 Ø
 - If you use Jetson Nano developer Kit (B01), You can use the Pre-built image below. With the Pre-built image, you just need to connect the wifi and run the examples without other settings

 - . Connect the SD card to PC via a card reader
 - User Etcher software to write the image (unzip above) to SD card.Click here to download Etcher software &

· After writing, eject the SD card

After installation, (link)

- 1. Hardware setup
 - Mount WiFi card.
 - Connect expansion board, cooling fan, camera, and antenna.
- 2. Display, WiFi, SSH setting

- jetracer_pro_ws.img
- Balena Etcher (<u>link</u>)
- MobaXterm (link)
- Sublime Text (link)

Course Syllabus

lecture/presentation, project, competition

Week #01	Introduction to machine learning and Al	Week #09	Making JetRacer run
Week #02	Python programming (1)	Week #10	Field trip (depending on COVID-19 situation)
Week #03	Python programming (2)	Week #11	Making JetRacer self-driving
Week #04	Introduction to autonomous driving	Week #12	Making JetRacer faster and more stable
Week #05	Jetson Nano AI applications (1)	Week #13	Making JetRacer more efficient
Week #06	Jetson Nano AI applications (2)	Week #14	Team mission & racing competition
Week #07	Jetson Nano projects (team mission)	Week #15	Team mission & racing competition
Week #08	Jetson Nano projects (team mission)	Week #16	Team mission & racing competition

What You Will Learn through the 4th ~ 6th Weeks

1. Overview of autonomous driving

- Key components for self-driving
- Al and human intelligence
- Limitations

3. Play with Edge AI device

- Getting used to Linux system
- Al programming on NVIDIA Jetson Nano
- Designing creative AI applications

2. Overview of deep learning

- Convolutional neural networks
- Basics of computer vision

About Me

- - → Wireless and Mobile Networking Lab (WMNL), advisor: Prof. Hyoil Kim
- M.S. in Robotics Program @ KAIST (Aug 2015)

- → Unmanned System Research Group (USRG), advisor: Prof. David Hyunchul Shim
- → Keywords: <u>robotic platforms</u> (UAV/UGV), sensor fusion, autonomous driving (system-oriented)

- Ph.D. in Robotics Program @ KAIST (Aug 2021)
 - → Robotics and Computer Vision (RCV) Lab, advisor: Prof. In So Kweon
 - → Keywords: <u>deep learning</u>, <u>computer vision</u>, autonomous driving (Al-oriented)
- Assistant Professor @ KENTECH (Jan 2022 ~)

→ Energy Al Track, Pl of VIEW Lab

(collaboration with)

What is Autonomous Driving?

Driving without human intervention

Requirement: human intelligence

How to make it possible?

Can artificial intelligence (AI) achieve this?

What is AI? Should it be similar to human intelligence..?

Al ⊃ Machine Learning ⊃ Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Machine Learning = Interpreting High Dimensional Data

Modeling issues:

- Curse of dimensionality
- Too complex or redundant design

...

Data issues:

- Data hungry issue
- Overfitting & underfitting
- Class imbalance problem

. . .

- → Computational & memory efficiency ↓
- → Energy consumption ↑

"What is the most efficient solution?"

In real world,

Super high dimensional data

For prediction,

Difficulty in data representation Requires domain specific knowledge

Defining Al

"Can machines think?"

→ We don't know what thinking actually is.

→ "Turing test" [1]

"Thinking" \approx "Cognition" [2]

I am Ulric Neisser and as a Father of Cognitive Psychology, I say "Our Thoughts Affect our Behaviour."

- [1] Alan Turing, "Computing Machinery and Intelligence", 1950.
- [2] Ulric Neisser, "Cognitive psychology", 1966.

"Thoughts Affect our Behavior"

Cognitive perspective [1]

Stimulus (Input)

dangerous...

Cognition
(Hidden/non-observable mediational process)
e.g., memory,
perception, attention

Response (Output)

It seems dangerous!

Output response

AAAHH!! I better run away!

I will just let it pass away...

[1] Ulric Neisser, "Cognitive psychology", 1966.

"Thoughts Affect our Behavior"

Cognitive perspective [1]

Cognition
(Mediational process)
e.g., memory,
perception, attention

Response (Output)

It's all how we think!

I am like you, human. We both take INPUT, PROCESS it and give OUTPUT.

Al as a System

Special-purpose AI:

Can it achieve a well-defined <u>finite</u> set of goals?

General-purpose AI:

Can it achieve poorly-defined <u>unconstrained</u> set of goals?

More uncertainty 1

Uncertainty ↓

Q. Will we get closer to the general-purpose Al through bunches of special purposes?

Al as a System

percepts

actions

environment

sensors

effectors

Formal tasks:

Playing board games, solving puzzles, mathematical problems

Expert tasks:

Medical diagnosis, engineering, teaching, programming

Mundane tasks:

Everyday conversation, walking, perception, dreaming in a sleep

How Difficult is Driving?

Is driving closer to chess or everyday conversation?

How Difficult is Driving?

Different types of objects

Same place, but different weathers (from RobotCar dataset [1])

How Difficult is Driving?

Three Pillars of Autonomous Driving

Camera, RADAR, LiDAR, GPS, ultrasonic, stereo cam, surround-view, ...

Perceiving

Object detection & recognition

Depth

Localization and mapping

Control

Motion/path planning, reinforcement learning, adaptive control, ...

DARPA Grand Challenge II (2006)

DARPA Urban Challenge (2007)

CMU wins

DARPA Robotics Challenge (2015)

KAIST wins

DARPA Robotics Challenge (2015)

Fails compilation

NASA Sample Return Robot Challenge (2016)

WVU wins

Indy Autonomous Challenge @ CES (2022)

Link

Industry Takes on the Challenge

Waymo's self-driving taxis (Dec. 2021)

Tesla's full self-driving beta (Jan. 2022)

"Accelerated by the recent breakthroughs in **deep learning**"