Theoretical Backgrounds of Audio & Graphics

Digitization

Angela Brennecke | Prof. Dr.-Ing. Audio & Interactive Media Technologies

Filmuniversität Babelsberg

KONRAD WOLF

winter term 20/21

Digital Audio

- How is analog sound/audio turned into digital sound/audio?
- How is the signal information stored and processed in a computer?

Digital Audio

- How is analog sound/audio turned into digital sound/audio?
 - Digitization

- How is the signal information stored and processed in a computer?
 - Audio Buffers

Digitization

Digitization

- Digitization consists of two steps: sampling & quantization
- Most common method: Pulse Code Modulation (PCM)

· Sampling:

 The amplitude of the analog signal is measured (in volts) at fixed time intervals determined by the sampling rate

Quantization:

 The sampled amplitude values are mapped onto discrete values defined by the bit depth or sample size

Sampling

- Sampling is also called discretization
- The continuous signal, i.e., the time value, is converted into discrete time samples

Image credit: Prof. Hußmann. **Digitale Medien**. LMU. http://www.medien.ifi.lmu.de/fileadmin/mimuc/dm_ss04/dm2b.pdf

Sampling

- During sampling, the amplitude of the analog signal is measured at fixed time intervals determined by the sampling rate or sampling frequency
- The sampling rate determines how many samples are taken per second

Image credit: Prof. Hußmann. **Digitale Medien**. LMU. http://www.medien.ifi.lmu.de/fileadmin/mimuc/dm_ss04/dm2b.pdf

Sampling

 Sampling rate must be greater than twice the highest frequency of the original signal for proper reconstruction (Nyquist-Shannon sampling theorem) — f_sampled > 2 * f_max

Sampling

Standard sampling rate for CD quality is 44.1 kHz or 44100 Hz

http://www.medien.ifi.lmu.de/fileadmin/mimuc/dm_ss04/dm2b.pdf

Sampling

- Standard sampling rate for CD quality is 44.1 kHz or 44100 Hz due to
 - Human hearing range at 20 kHz max | > 2 * 20 kHz

Quantization

During quantization, the sampled amplitude values are quantized, i.e.,
 mapped onto discrete values defined by the bit depth or sample size

Quantization

- The sample size determines the difference between the softest sound and the loudest sound, i.e., the dynamic range of the audio application
- Numbers are usually stored as integers or floating points at 24bit

Quantization

- A sample size of 24 bits provides for 16 777 216 amplitude values
- Turned into decibel, a dynamic range of 144 dB can be represented
 - $144 \text{ dB} = 20 \log_{10}(16777216)$

http://www.medien.ifi.lmu.de/fileadmin/mimuc/dm_ss04/dm2b.pdf

Digitization

- Generally, signal quality is controlled by sampling rate and bit depth
- Sampling & quantization always introduce a certain digitization error

Image credit: Prof. Hußmann. **Digitale Medien**. LMU. http://www.medien.ifi.lmu.de/fileadmin/mimuc/dm_ss04/dm2b.pdf

Digitization

 The array of numbers that is stored (or played back) is always an approximation of the original analog audio signal only

Digital Audio Buffer

Digital Audio

 Digital sound signal is a list of discrete numbers that represent amplitude against time in a buffer (array) of value and index

Digital Audio

- When sound is recorded & digitized, the audio buffer is filled
- When digital sound is played back, the audio buffer is read

Further Reading

Literature

- Bernadini, N. & de Poli, G. (2007): The Sound and Music Computing Field: Present & Future. Journal of new Music Research, vol. 36.
- Burg, J., Romney, J. & Schwartz, E. (2014): Digital Sound and Music. Concepts, Applications, and Science. http://digitalsoundandmusic.com
- Burk, P., Polansky, L., Repetto, D., Roberts, M. & Rockmore, D. (2011): Music and Computers. A Theoretical and Historical Approach. http://cmc.music.columbia.edu/MusicAndComputers/
- Gouveia, D. (2013): Getting Started with C++ Audio Programming for Game Development. Birmingham, UK: Packt Publishing Ltd.
- Howard, D.M. & Angus, J.A.S. (2009): Acoustics and Psychoacoustics. 4th Edition. Oxford, UK: Focal Press.
- Papula, Lothar (2014): Mathematik für Ingenieure & Naturwissenschaftler Band 1. 14. überarb. Aufl., Wiesbaden:
 Springer Vieweg.
- Parviainen, T. (2016): Learn Web Audio from the Ground Up, Part 1: Signals and Sine Waves.
 http://teropa.info/blog/2016/08/04/sine-waves.html
- Smith, S. W. (2011): The Scientist and Engineer's Guide to Digital Signal Processing.
 http://www.dspguide.com
- Sethares, W.A. (2005): Tuning, Timbre, Spectrum, Scale. 2nd Edition. London, UK: Springer-Verlag.
- Watkinson, J. (1998): The Art of Sound Reproduction. Focal Press.