Algebraic Number Theory

Problem sheet 8

- 1. (3 points)(**Ostrowski**) Let K be a complete field with respect to an archimedean valuation $|\cdot|$. Show that K is isomorphic to either \mathbb{R} or \mathbb{C} such that the isomorphism induces a homeomorphism in the topology of K induced by $|\cdot|$.
- 2. (3 points) Let K/\mathbb{Q} be a finite extension. Show that any nontrivial absolute value on K is equivalent to either the \mathfrak{p} -adic absolute value for some prime ideal $\mathfrak{p} \triangleleft \mathcal{O}_K$ (nonarchimedean case) or to the restriction of the usual absolute value of \mathbb{C} via an embedding $\tau \colon K \to \mathbb{C}$ (archimedean case). Two such absolute values are equivalent if and only if both are archmimedean and the two corresponding embeddings $\tau_1, \tau_2 \colon K \to \mathbb{C}$ are the complex conjugate of each other.
- 3. (1 points) Write -1 as a *p*-adic integer $-1 = \sum_{i=0}^{\infty} a_i p^i \ (a_i \in \{0, 1, \dots, p-1\}).$
- 4. (2 points) Write 2/3 and -2/3 in 5-adic form.
- 5. (4 points) Verify that a p-adic number of the form $\sum_{i=-m}^{\infty} a_i p^i$ $(a_i = 0, 1, \dots, p-1, i \ge -m)$ is rational if and only if the sequence of its digits is eventually periodic. Deduce that $\sum p^{n!}$ is not a rational number.
- 6. (3 points) Solve the equation $x^2 = 2$ in \mathbb{Z}_7 .
- 7. (3 points) Let K be a completion of \mathbb{Q} with respect to a valuation, i.e. $K = \mathbb{R}$ or \mathbb{Q}_p , for some p. Show that $Gal(K/\mathbb{Q}) = 1$.
- 8. (2+2 points) Let $n \ge 1$ be an integer and $n = a_0 + a_1 p + \dots + a_r p^r$ in base p ($0 \le a_i < p$). Further put $s = a_0 + a_1 + \dots + a_r$. Verify that $v_p(n!) = \frac{n-s}{p-1}$. Deduce that $\exp(X) := \sum_{n=0}^{\infty} \frac{X^n}{n!}$ is convergent at $x \in \mathbb{Q}_p$ if and only if $|x| < |p|^{\frac{1}{p-1}}$
- 9. (2 points) Show that the sequence $1, 1/10, 1/100, \ldots, 1/10^n, \ldots$ does not converge in \mathbb{Q}_p for any prime p.
- 10. (3 points) Let $\varepsilon \in 1 + p\mathbb{Z}_p$ and $\alpha = a_0 + a_1p + a_2p^2 + \ldots$ be a p-adic integer with nth partial sum $s_n = a_0 + a_1p + \cdots + a_np^n \in \mathbb{Z}$. Show that the limit $\varepsilon^{\alpha} := \lim_{n \to \infty} \varepsilon^{s_n}$ exists in \mathbb{Z}_p making $1 + p\mathbb{Z}_p$ a \mathbb{Z}_p -module (written multiplicatively).
- 11. (3 points) Assume (a, p) = 1 $(a \in \mathbb{Z})$. Show that the sequence a^{p^n} converges in \mathbb{Q}_p .
- 12. (2 points) Show that for primes $p \neq q$, $\mathbb{Q}_p \ncong \mathbb{Q}_q$ and $\mathbb{R} \ncong \mathbb{Q}_p$ as fields.
- 13. (1+2 points) Verify that the algebraic closure of \mathbb{Q}_p is an infinite extension of \mathbb{Q}_p . Show that $\overline{\mathbb{Q}_p}$ is not complete.
- 14. (5 points) Let $f(X) = a_0 + a_1 X + \cdots + a_n X^n + \cdots \in \mathbb{Z}_p[[X]]$ be a formal power series with coefficients in the ring of p-adic integers. Verify that f is convergent on the p-adic open unit disc $\{|X|_p < 1\}$ and has at most finitely many roots therein.