西南大学 农学与生物科技学院

《高等数学 (A)(2)》 课程试题【A】卷

2019 至 2020 学年 第 2 学期					期末 考试						
考证	考试时间 120		分钟	考核方式		闭卷	学生类别		本科	人数	70
适	用专业或	科类		植物科学与技术				年级	2020 级		
题号	_	=	三	四	五.	六	七	八	九	+	合计
得分											
签名											

阅卷须知: 阅卷用红色墨水笔书写, 得分用阿拉伯数字写在每小题题号前, 用正分表示, 不得分则在题号前写 0; 大题得分登录在对应的分数框内; 统一命题的课程应集体阅卷, 流水作业; 阅卷后要进行复核, 发现漏评、漏记 或总分统计错误应及时更正; 对评定分数或统分记录进行修改时, 修改人必须签名。

特别提醒: 学生必须遵守课程考核纪律, 违者将受到严肃处理。

本试卷分为 6 部分、共有 8 页、16 道试题,共计 100 分。在答题之前,请认真阅读题目,按题 目要求解答。解答写在题目之后预留的空白处,写不下时可以加纸,但请务必写清题号,交卷时一 起交上来。

一、单项选择题 (共 5 题, 每题 3 分, 共计 15 分)

1. 函数 $f(x,y) = \sqrt{x^2 + y^2}$ 在 $(0,0)$ 处·······	
--	--

(A) 不连续; (B) 连续但不可偏导; (C) 可偏导但不可微; (D) 可微

$$2. f(x,y) = \sqrt{(x-1)^2 + y^2}$$
 在约束条件 $2x + y - 1 = 0$ 下的最小值为: · · · · · · · · · · · ()

 $(B)\frac{2}{\sqrt{5}};$

(A) Ioπ; (B) 8π ; (C) $\frac{16\pi}{3}$; (D) $\frac{8\pi}{3}$. 4. 椭球 $\Omega = \left\{ (x, y, z) : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\}$ 上的三重积分 $\iiint_{\Omega} \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2}} dV$ 等于 · · · ()

5. 假设 γ 为曲面 $x^2 + y^2 + z^2 = 1$ 与平面 y = x 的交线. 曲线积分 $\int_{\gamma} \sqrt{2y^2 + z^2} ds$ 等于 · · · · () $(B)\pi;$ $(C)2\pi;$ (D) $\pi/2$.

二、填空题 (共 5 题,每空 3 分,共计 15 分)

- _ 1. 假设 f(u) 是连续函数. 若 $F(t) = \iiint_{x^2+y^2+z^2 \le t^4} f(x^2+y^2+z^2) dx dy dz$, 则 $F'(1) = \int \int \int_{x^2+y^2+z^2 \le t^4} f(x^2+y^2+z^2) dx dy dz$, 则 $F'(1) = \int \int \int_{x^2+y^2+z^2 \le t^4} f(x^2+y^2+z^2) dx dy dz$, 则 $F'(1) = \int \int \int_{x^2+y^2+z^2 \le t^4} f(x^2+y^2+z^2) dx dy dz$, 则 $F'(1) = \int \int \int_{x^2+y^2+z^2 \le t^4} f(x^2+y^2+z^2) dx dy dz$, 则 $F'(1) = \int \int \int_{x^2+y^2+z^2 \le t^4} f(x^2+y^2+z^2) dx dy dz$, 则 $F'(1) = \int \int \int_{x^2+y^2+z^2 \le t^4} f(x^2+y^2+z^2) dx dy dz$, 则 $F'(1) = \int \int \int_{x^2+y^2+z^2 \le t^4} f(x^2+y^2+z^2) dx dy dz$, 则 $F'(1) = \int \int \int_{x^2+y^2+z^2 \le t^4} f(x^2+y^2+z^2) dx dy dz$, 则 $F'(1) = \int \int \int_{x^2+y^2+z^2 \le t^4} f(x^2+y^2+z^2) dx dy dz$
- z=z(x,y) 的图像是以原点为心的上半球面. 试求 z 在点 z=z(x,y) 处沿着方向 z=z(x,y)(1,1) 的方向导数 = _____.
- ____ 3. 求 n 元径向对称函数 $f(x_1,\ldots,x_n)=f(r)$ 的拉普拉斯 $\Delta f=\sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}$ 在极坐标下的表达示 =

命题教师: 教研室或系负责人: 2020年6月24日 A卷 第1页,共8页

《直室粉学 (A)(2)》 連程は 「□ A I 表

. 4. 假设 $z=f(x,y)$ 在点 $P(1,1)$ 处连续、若 $\lim_{\substack{t \in Y \\ t \neq 1 \ \text{in}(1+(x-1)^2+(y-1)^2)}} = \pi$, 则全徽分 $dz _{(1,1)} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	"HI (3X) ()(-)" WELPOWS 1 1
5. 求椭圆抛物面 $z=2x^2+3y^2-1$ 与平面 $4x+6y+z-1=0$ 平行的切平面方程	
. 三、概念题 (共 2 题,每题 5 分,共计 10 分) 1. 假设二元函数 $f(x,y)$ 在开区域 $\Omega \subset \mathbb{R}^2$ 上有定义且在 $P_0 \in \Omega$ 处可微. 试用 ϵ - δ 语言严格叙述: 在 $P_0(0,0) \in \Omega$ 处 f 的全微分为 $df(P_0)$. 2. 假设二元函数 $f = f(x,y), g = g(x,y)$ 在有界闭区域 Ω 上有定义. 试严格写出关于 f,g 的积分	————————————————————————————————————
1. 假设二元函数 $f(x,y)$ 在开区域 $\Omega\subset\mathbb{R}^2$ 上有定义且在 $P_0\in\Omega$ 处可微. 试用 ϵ - δ 语言严格叙述: 在 $P_0(0,0)\in\Omega$ 处 f 的全微分为 $df(P_0)$. 2. 假设二元函数 $f=f(x,y),g=g(x,y)$ 在有界闭区域 Ω 上有定义. 试严格写出关于 f,g 的积分	5. 求椭圆抛物面 $z = 2x^2 + 3y^2 - 1$ 与平面 $4x + 6y + z - 1 = 0$ 平行的切平面方程
	1. 假设二元函数 $f(x,y)$ 在开区域 $\Omega\subset\mathbb{R}^2$ 上有定义且在 $P_0\in\Omega$ 处可微. 试用 ϵ - δ 语言严格叙述

第2页,共8页

四、计算题 (共 2 题, 每题 10 分, 共计 20 分)

姓名

班

— 1. 锥面 $z^2 = x^2 + y^2$ 被柱面 $x^2 + y^2 = 4x$ 割下部分曲面的表面积.

— 2. 假设 Σ 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的外侧, 计算积分 $I = \iint_{\Sigma} z dx dy$.

五、证明题 (共 1 题, 共计 10 分)

1.(10') 证明圆的所有内接 $n(n \ge 3)$ 边形中, 正 n 边形的面积最大.

第 3 页, 共 8 页

		1
	_	
	—	
	—	
	—	
学号	_	
	—	
	密	
	—	
NT	—	
姓名		
	—	
	—	
	—	
班	—	
144	++	
	封	
	_	
۲×	—	
年级		
	_	
	—	
	—	
	—	
	线	
当	—	
#		
	_	
	—	
	_	
	—	
娯		
1507		

六、应用题 (共 1 题, 每小问 10 分, 共计 30 分)

1.(30') 如图所示,我们将一个物体 A 用一根长为 1 的线拽着从原点出发沿着 z 轴正方向缓慢移动, A 的运动轨迹称为拽物线 (tractrix). 它是以 z 轴为渐近线的光滑曲线. 将拽物线沿着 z 轴旋转一周得到的旋转曲面称为拽物面 (tractricoid). 将拽物面沿着 Oxy-平面反射延拓得到的整个曲面称为伪球面 (pseudosphere),它是三维空间中具有常数高斯曲率 -1 的不完备非紧超曲面. 事实上,著名数学家 Hilbert 在 1901 年证明了不存在浸入到三维欧式空间且高斯曲率为负常数的正则完备曲面. 关于伪球面的表面积与体积早在 1693 年由克里斯蒂安·惠更斯求出. 他在 1678 年完成的《光论》 (Traité de la Lumière) 中提出了关于波传播的著名的惠更斯原理.

1. 请首先证明拽物线 z=z(x) 满足常微分方程

$$z'(x) = -\frac{\sqrt{1-x^2}}{x}, \quad 0 < x \le 1.$$
 (1)

然后根据(1)验证拽物线可以参数化为

$$x(t) = \operatorname{sech} t, \quad z(t) = t - \tanh t, \quad 0 < t < +\infty.$$
 (2)

最后, 根据上述拽物线的参数方程写出拽物面的参数方程.

回忆,

$$\operatorname{sech} t = \frac{1}{\cosh t} = \frac{2}{e^t + e^{-t}}, \quad \tanh t = \frac{\sinh t}{\cosh t} = \frac{e^t - e^{-t}}{e^t + e^{-t}}.$$

- 2. 求拽物面 Σ 的表面积.
- 3. 求拽物面和 Oxy-平面围成的空间区域 Ω 的体积.

第5页,共8页

第6页,共8页

第 7 页, 共 8 页

	ı	I	
	_		
	_		
	_		
争	_		
7(1	_		
	_		
	密		
	出		
	_		
	_		
姓名	_		
	_		
	_		
	_		
	_		
班	_		
	封		
	_		
	_		
缀			
年级	_		
	_		
	_		
	_		
	线		
派 李	_		
#	_		
	_		
	_		
	_		
	_		
בויג	_		
学院			
1-,-	-	+	

