

Econometrics & Financial Markets

Toulouse Business School

MSc BIF

Anna CALAMIA

a.calamia@tbs-education.fr

Other tools and methods:
ANOVA, ANCOVA
Logit model
Panel data
Diff-in-diff
Event study

ANOVA, ANCOVA

Categorical or qualitative variables

- ANOVA (analysis of variance):
 - → Compares means among groups, based on a numerical response variable (dependent variable) and qualitative explanatory variable (factors).
 - → Seeks to identify sources of variation in the response variable: Variation in DV about its mean is explained by one or more categorical independent variables or is unexplained (random error).
 - → Assumptions on errors as in linear regression
 - One-way and Two-way ANOVA
- ANCOVA (analysis of covariance):
 - → Similar to ANOVA but uses both qualitative (*factor*) and quantitative (*covariate*) explanatory variables. The variance of the dependent variable is decomposed in variance explained by the covariates, by the factors and the residual variance.

TUTORIAL XLSTAT 7. ANCOVA

 Regression with quantitative and qualitative variables

Logit model

Regressions with qualitative dependent variables

- Qualitative dependent variables (or categorical dependent variables) are dummy variables used as dependent variables.
- Probit and logit regression models are used to model the effect of a series of variables on a binary response variable (with two possible values, such as pass/fail)
- They are based on the estimation of the probability of a discrete outcome given the values of the independent variables used to explain that outcome: probability that Y = 1 (a condition is fulfilled) given the values of the independent variables.
- Probit model is based on the normal distribution
- Logit model is based on the logistic distribution

Logit model

$$\ln\left(\frac{p}{1-p}\right) = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + \varepsilon$$

TUTORIAL XLSTAT 8. LOGIT

Regression with binary response variables

Panel data analysis

Panel data

Panel Data: observations about different cross sections over time (2 dimensions)

- Yit is observed for all individuals i=1,...,N
 across all time periods t=1,...,T
- E.g., relation between returns and earnings for several stocks over time
- Panel data allows to control for unobservable variables and heterogeneity

Pooled OLS

- homogeneous panel data
- model parameters are common across individuals: $y_{it}=\alpha+\beta X_{it}+\epsilon_{it}$

Quarter	Stock	EBIT	Return
2017-Q1	AIRBUS	533	-0.00433
2017-Q2	AIRBUS	529	-0.00305
2017-Q3	AIRBUS	414	0.005125
2017-Q4	AIRBUS	878	-0.01073
2018-Q1	AIRBUS	168	-0.00192
2018-Q2	AIRBUS	871	0.02181
2018-Q3	AIRBUS	1524	-0.00661
2018-Q4	AIRBUS	2155	0.002388
2017-Q1	CARREFOUR	1385	0.005002
2017-Q2	CARREFOUR	546	0.00317
2017-Q3	CARREFOUR	546	0.008257
2017-Q4	CARREFOUR	427	0.001944
2018-Q1	CARREFOUR	427	0.003275
2018-Q2	CARREFOUR	-169	-0.00431
2018-Q3	CARREFOUR	-169	-0.00151
2018-Q4	CARREFOUR	931	0.005734

Heterogeneous panel: FE and RE

Fixed Effects

Includes unobservable individual-specific and/or time-specific effects, possibly correlated with the observed explanatory variable:

$$Y_{it} = \beta X_{it} + \alpha_i + \epsilon_{it}$$

$$Y_{it} = \beta X_{it} + \alpha_i + \tau_t + \epsilon_{it}$$

where α i is the unknown intercept for each entity (i=1....N), composed of a constant intercept and an individual-specific term; τ t captures any unobservable time-specific effects.

→ Within estimator or least squares dummy variable(LSVD)

Random Effects

Includes unobservable time-specific and/or individual-specific effects which act like individual-specific stochastic error terms, uncorrelated with the regressors.

- → GLS with appropriate error structure (accounting for individual-specific error)
- Hausman test to chose between fixed or random effects.

H0: the preferred model is random effects; H1: fixed effects

Tests whether the unique errors are correlated with the regressors (H0: they are not)

Panel Data - example

firm		year	inv	value	capital
	1	1935	317.6	3078.5	2.8
	1	1936	391.8	4661.7	52.6
	1	1937	410.6	5387.1	156.9
	1	1938	257.7	2792.2	209.2
	1	1939	330.8	4313.2	203.4
	1	1940	461.2	4643.9	207.2
	1	1941	512	4551.2	255.2
	1	1942	448	3244.1	303.7
	1	1943	499.6	4053.7	264.1
	1	1944	547.5	4379.3	201.6
	1	1945	561.2	4840.9	265
	1	1946	688.1	4900.9	402.2
	1	1947	568.9	3526.5	761.5
	1	1948	529.2	3254.7	922.4
	1	1949	555.1	3700.2	1020.1
	1	1950	642.9	3755.6	1099
	1	1951	755.9	4833	1207.7
	1	1952	891.2	4924.9	1430.5
	1	1953	1304.4	6241.7	1777.3
	1	1954	1486.7	5593.6	2226.3
	2	1935	209.9	1362.4	53.8
	2	1936	355.3	1807.1	50.5
	2	1937	469.9	2676.3	118.1
	2	1938	262.3	1801.9	260.2
	2	1939	230.4	1957.3	312.7
	2	1940	361.6	2202.9	254.2
	2	1941	472.8	2380.5	261.4
	2	1942	445.6	2168.6	298.7
	2	1943	361.6	1985.1	301.8
	2	1944	288.2	1813.9	279.1
	2	1945	258.7	1850.2	213.8
	2	1946	420.3	2067.7	132.6
	2	1947	420.5	1796.7	264.8
	2	1948	494.5	1625.8	306.9
	2	1949	405.1	1667	351.1
	2	1950	418.8	1677.4	357.8
	2	1951	588.2	2289.5	342.1
	2	1952	645.5	2159.4	444.2
	2	1953	641	2031.3	623.6
	2	1954	459.3	2115.5	669.7
••	•••				

Summary	statistics:					
Variable	Observations	Minimum	Maximum	Mean	Std. deviation	
inv	200	0.930	1486.700	145.958	216.875	ĺ
value	200	58.120	6241.700	1081.681	1314.470	
capital	200	0.800	2226.300	276.017	301.104	<u> </u>
Results for	variable inv:					
Goodness	of fit statistics:					
rsq	0.769					_
adjrsq	0.767					R
Joint test o	of significance (F or Chi-square tes	st):			
statistic.C hisq	parameter.d f	p.value.Chisq				
657.295	2	1.8634E-143				
Coefficient	ts:					
	Estimate	Std. Error	z-value	Pr(> z)		
(Intercept)	-57.865	29.393	-1.969	0.049		
value	0.110	0.011	10.429	<0.0001		
capital	0.308	0.017	17.948	<0.0001		

R-sq: within = 0.7668 between = 0.8196 overall = 0.8061

hausman fixed randor			
Test: Ho: difference i	n coefficie	ents not sy	stematic
Prob>chi2 = 0.3119			

Difference-in-differences

Difference-in-differences

Used to estimate the effects of a sudden change in economic environment, policy, or general treatment on a population

- Treatment group: subject to the change i.e. to the treatment (sudden exogenous source of variation)
- Control group: similar in characteristic to the treatment group but not subject to the change
- Quantifiable and measurable outcome
- Measure of treatment effects based on **between-group crosssectional differences** and **within-group time-series differences**
- Parallel trend assumption: in the absence of treatment, the difference between the groups is constant over time

Example: Card and Krueger(AER, 1994)

- Does an increase in minimum wage have a negative impact on employment?
- Study the evolution of the number of employees in fast-food restaurants in New Jersey (NJ) following the increase in minimum wage from \$4.25 (Feb. 1992) to \$5.05 (Nov. 1992)
- Comparison with the evolution of employment in Pennsylvania(PA), a neighbouring state

Diff-in-diff: basic principle

• The average (expected) number y of employees, in state s at time t:

$$E(y|s,t) = \gamma_s + \lambda_t$$

- Where γs is a constant specific to state s and λt is a constant specific to time period t
- A change (treatment) on minimum wage occurs in state s at period t and creates a shock on employment equal to β
- For a given restaurant i operating in state s at date t, the number of employees will be equal to

$$y_{ist} = \gamma_s + \lambda_t + \beta D_{st} + \epsilon_{ist}$$

• Where ϵist is the error term and Dst is a dummy variable that takes on the value 1 for observations from the treated group (NJ) after the treatment (post), 0 otherwise

Diff-in-diff: basic principle

- The question is: How can we measure β ?
- Compute first the difference between the average number of employees in PA, after and before the treatment
 - → This difference allows to remove differences across states
- Compute next the difference between the average number of employees in NJ, after and before the treatment
- Finally, compute second difference minus first difference:

$$E(y_i|s = NJ, t = Post) - E(y_i|s = NJ, t = Pre) - [E(y_i|s = PA, t = Post) - E(y_i|s = PA, t = Pre)]$$

 \rightarrow This is equal to : β

We have eliminated the common trend between the groups, λt , and the permanent differences between the groups, leaving a very simple estimate of the treatment effect, β .

Diff-in-diff: basic principle

Diff-in-diff: regression specification

- Simple DID does not compute the statistical significance of the shock β
- Regression specification allows to overcome this problem:

$$Y_{ist} = \alpha + \gamma D_s + \lambda D_t + \beta(D_{st}) + \epsilon_{ist}$$

where: Yist is the number of employees in restaurant i in state s at period t; Ds is a dummy variable that takes on the value 1 for restaurants in NJ (i.e. treated group) and 0 otherwise; Dt is a dummy variable that takes on the value 1 for observations made after the wage increase (treatment); Dst is a dummy (interaction) variable that takes on the value 1 for observations in NJ after the treatment; εist is the error term

What is the interpretation of the regression coefficients?

 α (intercept) is the average number of employees in restaurants operating in PA (during the Pre period)

 γ is the difference between the average number of employees in NJ and PA λ is the difference between the average number of employees working in restaurants in the Post and the Pre periods

β is the DiD estimator, Average differential change in y from the first to the second time period of the treatment group relative to the control group

Event studies

Event studies: what for?

Event studies aim at quantifying the effects of an (unexpected) economic event on the value of firms

- > Financial economics: corporate events, market efficiency
- Macroeconomic policy: fed rates, trade deficits
- Accounting: earning announcements
- → Law and economics: changes in legal environment and regulation
- Marketing: brand strategy announcements
- **→** ...

How asset prices react to a given event:

- events are reflected in asset prices (assuming markets are informationally efficient)
- prices are easily observed
- well-performing models are available to isolate the impact of a given event on asset prices

Test of market efficiency: Is the relevant information impounded into prices immediately or with delay?

Event studies design

Step 1: Definition of the event and event window

- Unexpected event
- **>** Exact date (date 0)
- → Short vs long horizon
- → Define an event window (period over which prices are examined) that is larger than the exact period of interest
 - Inclusion of the days prior to the event (-1, -2, ...) aims at accounting for possible anticipation of the event as well as information leakage

• Inclusion of the days after the event (+1, +2, ...) aims at capturing posterior abnormal movements that occur after market close

Step 2: Selection criteria (Which firms to be included in the study?)

- Restrictions imposed by data availability and reliability
- Restrictions imposed by representativeness issues
- → Some summary statistics (market capitalisation, average return, industry representation, distribution of events through time...) might prove useful to identify potential biases in the initial sample as well as outliers

Step 3: Normal and abnormal returns

- Problem: how to isolate price movements induced by the event of interest from contemporaneous movements, unrelated to the event?
- > We need a measure of abnormal returns:

Abnormal returns are computed as the difference between observed returns and normal returns (predicted returns):

$$ARit = R*it - E(Rit|Xt)$$

Normal returns correspond to the expected returns if the event had not taken place

- \rightarrow market model or other asset pricing models (CAPM, FF 3 factors, etc.) to estimate normal returns: Ri,t = αi + βiRm,t + ξi,t
- **Cumulative Abnormal Returns (CAR)**, computed as the cumulative sum of abnormal return over the event window (for a given security)
- → AR averaged in the cross section of sample stocks to compute AARs on each event date: time series of average abnormal returns (AAR)
- → AAR across securities can also be aggregated over time to compute Cumulated Average Abnormal Returns over the event window (CAAR)

Step 4: Estimation procedure

- Estimate the parameters of the model that is used to generate normal returns over the event window
 - → The estimation is performed on the estimation window
- Check that the estimation window is not contaminated by events that are likely to impact the parameters of the model that generates normal returns
- The event window (or part of it) should not be included in the estimation window (when feasible). May also introduce a buffer zone between the estimation window and the event window.
- Common choices for the length of the estimation window are 120 days or 250 days
- The estimation of the parameters can be made through OLS

Step 5: Test procedure

Once abnormal returns are computed and aggregated, the objective is to test their significance:

- Test of the null hypothesis: Event has no impact on returns, i.e., no abnormal returns
 - Comparison of the distribution of actual returns with the distribution of predicted returns
 - > Typically, the specific null hypothesis to be tested is whether the mean abnormal return in the event window is equal to 0
 - > Occasionally, other parameters of the cross-sectional variation in abnormal returns can be used, such as the median or variance
 - Parametric tests, such as t-test (based on normality assumption) and non-parametric tests

Event study results Interpretation and conclusions

Question the reliability of results:

- Interpretation of results
- Robustness tests using various sub-samples
- Incidence of outliers?
- Sensitivity to the choice of the estimation window?
- Sensitivity to the normal-return generating model?
- Other issues (clustering, event induced variance, partially anticipated events, event-date uncertainty, short vs long horizon...)