

Flight Testing Small UAVs for Aerodynamic Parameter Estimation

Adam T. Chase and Robert A. McDonald California Polytechnic State University

Motivation

- Lack of small UAV lift/drag regression models
- Small UAVs do not fly "steady-level"
- Designers need data to conduct quantitative trades
- Off the shelf systems not sufficient
 - No air data system
 - Closed source, lack of error propagation

Goals

- 1. Integrate air data acquisition system into flight vehicle
- 2. Measure drag polar and lift curve slope from flight test
- Quantify changes in vehicle performance from configuration changes

Equations of Motion

Newton's 2nd Law, in body axes:

$$\Sigma F = \frac{d}{dt}(mV)$$

Fixed mass assumption (electric aircraft):

$$\Sigma F = ma$$

Applied forces:

$$\Sigma F = F_{AERO} + F_G + F_T$$

Assume no thrust:

$$\Sigma F = F_{AERO} + F_{G}$$

Assumptions

Re-arrange terms:

$$\Sigma F = ma$$
 $F_{AERO} + F_G = ma$
 $F_{AERO} + mg = ma$
 $F_{AERO} = m(a - g)$
 $F_{AERO} = -mr$

Rotate from body to wind axes:

$$F_{AERO}^{W} = R_b^{W} F_{AERO}^{b}$$

where

$$R_b^w = f(\alpha, \beta)$$

Only an accelerometer and an air data system are required to get lift/drag forces in gliding flight

Sensor Selection

- Analog Devices ADXL-362
 - +/- 8G range
 - SPI interface
 - Ultra-low noise (175 μ G/ \sqrt{Hz})
 - Available as SMD and breakout board
- Air Data System
 - Five-hole probe from Aeroprobe
 - 6" x 1/8" OD tube
 - Calibrated angles to pressures at 70 ft/s
 - All Sensors' 5-INCH-D-DO differential pressure transducer
 - +/- 5" H₂0 range
 - Digital serial interface
 - 0.5% FSO noise

Additional Sensors

- ITG-3200 gyroscope
 - Euler angles
- U-Blox LEA-6T GPS receiver
 - Euler angle correction, flight visualization
- HMR-2300 magnetometer
 - High accuracy, used for slow or vertical flight
- HMC-5883L magnetometer
 - Small, inexpensive
- Barometric pressure transducer
 - Barometric pressure/altitude
- DS18B20 temperature sensor
 - Allows density/air speed calculation
- Servo PWM signal
 - Isolates flight without throttle

Simulator Development

- Modified de Havilland Beaver 6-DOF simulator from Simulink
 - Scaled mass and moments of inertia to R/C aircraft
 - Replaced aero forces with drag polar
 - Removed engine forces and moments
 - Output required state to workspace for comparison to estimate

Simulation Output – No Noise

- Verified drag polar estimation method
- Helped develop data analysis routines
- Aided flight test planning

Random Error

$$\sigma_{C_i} = ||J_{ij} * \sigma_j|| = \sqrt{\left(\frac{\partial C_i}{\partial \alpha} * \sigma_\alpha\right)^2 + \left(\frac{\partial C_i}{\partial \beta} * \sigma_\beta\right)^2 + \left(\frac{\partial C_i}{\partial \vec{\alpha}} * \sigma_{\vec{\alpha}}\right)^2}$$

Regression Error

- Error of regression driven by confidence intervals
 - If the experiment is repeated, the regression coefficients will lie in this interval n% of the time

$$\beta_i = \hat{\beta}_i \pm \frac{t \sigma}{\sqrt{n}}$$
 t = 1.96 for 95% CI

- Error in forces for random error is heteroskedastic
- Matlab's robustfit returns robust standard error estimates
 - De-weights heteroskedastic outliers using iteratively weighted least squares

Heteroskedasticity

	C_{D0}	K ₁	K ₂
System Inputs	0.0493	0	0.03
OLS Estimate	0.0355	-0.0136	0.0275
Robust LS Estimate	0.0460	-0.0037	0.0292

System Architecture

Arduino Due Flight Computer

- 84 MHz clock
- 32-bit processor
- 4 UART channels

Data Acquisition Shield

- Custom PCB
- Integrates external mag, pressure sensors
- Customizable to fit packaging needs

External Air Data System

- Custom PCB
- Pressure, temperature, and alignment accel
- RJ-25 interface

Aeroprobe Five-Hole Probe

Calibrated angles to pressures at 70 ft/s

Calibration – Accel/Gyro

- Data collected with a known magnitude
 - 1G for accelerometer, 33 1/3 RPM for gyro (turntable)
- Nonlinear least squares:

$$\label{eq:minimize} \begin{aligned} & \textit{minimize} \ f(x) = (mag(\vec{a}) - 1G)^2 \\ & \text{where} \end{aligned}$$

$$x = [m_x m_y m_z b_x b_y b_z]$$
$$a = [a_x a_y a_z]$$

Calibration - Magnetometers

- Soft- and Hard-iron effects removed with least squares
 - Centers ellipse around zero
 - Scales each axis to turn ellipse into a sphere
- Alignment through rotation matrix

$$\vec{N}^2 = \overline{R_1^2} \, \vec{N}^1$$

Calibration – Air Data System

- Alignment calibration:
 - Known alignment between adapter and probe
 - Calibrate accelerometer on adapter
 - Measure rotation between probe accelerometer and body accelerometer

$$\vec{G}^2 = \overline{R_1^2} \; \vec{G}^1$$

- Zero-offset removed pre-flight
- Slope calibrated with nVision's Reference Pressure Recorder
- Angles calibrated to pressures from the manufacturer

Air Data System Integration

Flight Test

Flight Crash

Future Work

- Verify system accuracy
- Integrate sensors into an INS solution
- Instrument for in-flight thrust measurement
- Stability/control derivative estimation