Tensor Basics

What's a Tensor?

A tensor is a fundamental data structure in TensorFlow, similar to NumPy arrays but with additional capabilities for computation across GPUs and TPUs. It's a multi-dimensional array used for numerical computation in deep learning.

- ⊳ Tensors can be scalars (OD), vectors (1D), matrices (2D), or higher-dimensional structure (3D, 4D, etc.)
- $_{\vartriangleright}$ Tensors support GPU acceleration, making computation faster.

Tensor Type	Example Representation	Shape
OD Tensor (Scalar)	6	()(single value)
1D Tensor (Vector)	[1, 2, 3]	(3,)
2D Tensor (Matrix)	[[1, 2, 3], [4, 5, 6]]	(2,3) (rows, columns)
3D Tensor (Cube)	[[[1, 2], [3, 4]], [[5, 6], [7, 8]]]	(2,, 2, 2)
4D Tensor (Batch of Images)	(32, 64, 64, 3) for images (Batch, height, width, channels)	(32, 64, 64, 3)

Code Snippets:

Output

```
OD Tensor (Scalar):

6
Shape: ()

1D Tensor (Vector):
[1 2 3]
Shape: (3,)

2D Tensor (Matrix):
[[1 2 3]
[4 5 6]]
Shape: (2, 3)

3D Tensor (Cube):
[[[1 2]
[3 4]]

[5 6]
[7 8]]
Shape: (2, 2, 2)

4D Tensor (Batch of Images) Shape: (32, 64, 64, 3)
```

Tensor Data Types & Shapes in TensorFlow

TensorFlow supports various data types, each optimised for different kinds of computations.

Here are some commonly used ones:

Data Type	Description	Example
tf.float32	32-bit floating-point numbers (default for most operations)	tf.constant(3.14, dtype=tf.float32)
tf.float64	64-bit floating-point numbers (higher precision)	tf.constant(3.14159, dtype=tf.float64)
tf.int32	32-bit integer	tf.constant(42, dtype=tf.int32)
tf.int64	64-bit integer	tf.constant(123456789, dtype=tf.int64)
tf.uint8	Unsigned 8-bit integer (used for images, e.g., 0-255 pixel values)	tf.constant(255, dtype=tf.uint8)
tf.bool	Boolean values (True/False)	tf.constant(True, dtype=tf.bool)
tf.string	String tensors	tf.constant("Hello, TensorFlow!"

Code Snippets:

```
1 import tensorflow as tf
2
3 # Creating tensors with different data types
4 tensor_float = tf.constant(3.14, dtype=tf.float32)
5 tensor_int = tf.constant(42, dtype=tf.int32)
6 tensor_bool = tf.constant(True, dtype=tf.bool)
7 tensor_string = tf.constant("Hello, TensorFlow!", dtype=tf.string)
8
9 # Checking tensor properties
10 print(f"Tensor: {tensor_float}, Shape: {tensor_float.shape}, Type: {tensor_float.dtype}")
11 print(f"Tensor: {tensor_int}, Shape: {tensor_int.shape}, Type: {tensor_int.dtype}")
12 print(f"Tensor: {tensor_bool}, Shape: {tensor_bool.shape}, Type: {tensor_bool.dtype}")
13 print[f"Tensor: {tensor_string}, Shape: {tensor_string.shape}, Type: {tensor_string.dtype}"]

Tensor: 3.140000104904175, Shape: (), Type: <dtype: 'float32'>
Tensor: 42, Shape: (), Type: <dtype: 'int32'>
Tensor: True, Shape: (), Type: <dtype: 'bool'>
Tensor: b'Hello, TensorFlow!', Shape: (), Type: <dtype: 'string'>
```

Tensor Operations

Common Mathematical Operations on tensors:

Operation	Example
Addition	tf.add(tensor1, tensor2) or tensor1 + tensor2
Subtraction	tf.subtract(tensor1, tensor2) or tensor1 - tensor2
Multiplication	tf.multiply(tensor1, tensor2) or tensor1 * tensor2
Matrix Multiplication	tf.matmul(tensor1, tensor2)
Dot Product	tf.tensordot(tensor1, tensor2, axes=1)
Reshaping	tf.reshape(tensor, new_shape)

Code Snippet

```
1 import tensorflow as tf
2
3 # Define tensors
4 a = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)
5 b = tf.constant([[5, 6], [7, 8]], dtype=tf.float32)
6
7 # Basic tensor operations
8 add = tf.add(a, b) # or a + b
9 sub = tf.subtract(a, b) # or a - b
10 mul = tf.multiply(a, b) # or a * b (element-wise)
11 matmul = tf.matmul(a, b) # or a @ b (matrix multiplication)
12 dot_product = tf.tensordot(a, b, axes=1)
13 reshaped = tf.reshape(a, (4, 1)) # Reshape to (4,1)
14
15 # Print results
16 print(f"Addition:\n{add.numpy()}\n")
17 print(f"Subtraction:\n{add.numpy()}\n")
18 print(f"Element-wise Multiplication:\n{mul.numpy()}\n")
19 print(f"Matrix Multiplication:\n{matmul.numpy()}\n")
20 print(f"Dot Product:\n{dot_product.numpy()}\n")
21 print(f"Reshaped Tensor:\n{reshaped.numpy()}\n")
```

```
Addition:
[[6. 8.]
[10. 12.]]

Subtraction:
[[-4. -4.]
[-4. -4.]]

Element-wise Multiplication:
[[5. 12.]
[21. 32.]]

Matrix Multiplication:
[[19. 22.]
[43. 50.]]

Dot Product:
[[19. 22.]
[43. 50.]]

Reshaped Tensor:
[[1.]
[2.]
[3.]
[4.]]
```

Indexing & Slicing

We can extract parts of a tensor just like NumPy array.

Operation	Example
Access Element	tensor[1, 2]
Slice rows	tensor[0:2, :]
Slice columns	tensor[:, 1:3]
Extract single row	tensor[1, :]
Extract single column	tensor[:, 0]

Code Snippet

GPU/CPU Execution

TensorFlow automatically uses GPU if available otherwise, it defaults to CPU. However, we can manually check and set devices to ensure TensorFlow utilises the desired hardware.

We can manually check and set devices.

Set Memory Growth to Prevent TensorFlow from Consuming All GPU Memory

By default, TensorFlow tends to allocate all available GPU memory for itself, even if it doesn't need it immediately. This can be problematic if we've other processes running on the GPU or if we want to run multiple TensorFlow programs concurrently.

To prevent this, we can enable memory growth:

This ensures TensorFlow only uses the necessary amount of memory instead of reserving all GPU resources.