Tarea: Algoritmo Set Covering

Lic. Arnoldo Del Toro Peña

15 de febrero de 2022

Resumen

Uso de un método metahurístico para la solución a un problema del viajero utilizando programación en python.

Palabras clave: python, viajero, metahurística.

SECCIÓN 1

Introducción

En este documento se presentarán los resultados a las instancias obtenidas, se compararán con los resultados óptimos que se presentan a continuación:

Instancias de Prueba	Nombre de la instancia	nodos	Óptimo
76	pr76.tsp	76	108159
105	lin105.tsp	105	14379
280	a280.tsp	280	drilling problem
130	ch130.tsp	130	6110
225	tsp225.tsp	225	3919

Más adelante analizaremos las diferencias entre estos resultados y los que obtuvimos.

SECCIÓN 2

Descripción

El algoritmo que se pidió fue el del nodo más cercano el cual se menciona en el siguiente diagrama:

Una breve explicación del digrama anterior; podemos observar que una vez que marcamos el nodo se exploran sus conexiones con nodos no marcados y se selecciona el menor y esto se repite hasta marcar todos los nodos.

SECCIÓN 3

Descripción del algoritmo

El algoritmo se finaliza cuando todos los nodos estan marcados,

Implementación

El algoritmo se programó en lenguaje python con referencias en Van Rossum und Drake Jr (1991), Van Rossum und Drake Jr (2017) y Chun (2001), y se puede verificar en el siguiente repositorio de: git-hub.

SECCIÓN 5

Resultados

Los resultados se pueden ver en el mismo enlace de git-hub, en los documentos txt, sin embargo se presentarán a continuación en una forma más ordenada:

Instancias de Prueba	Nombre de la instancia	nodos	Óptimo	A proxima do	error %
76	pr76.tsp	76	108159	137192.62	26.84%
105	lin105.tsp	105	14379	18383.53	27.89%
280	a280.tsp	280	drilling problem	4227.54	
130	ch130.tsp	130	6110	7318.21	19.77%
225	tsp225.tsp	225	3919	4991.92	27.37%
				Promedio:	25.46%

SECCIÓN 6

Conclusiones

Si observamos los resultados obtenidos en el cuadro 1 podemos observar tanto los resultados obtenidos como su error obtenido en porcentaje, y si nos enfocamos al final de esta misma podemos observar que el promedio es de $575\,\%$ el cual es demasiado alto; ahora si observamos los resultados obtenidos en las instancias: spca1 y scpe1 podemos ver que se obtuvo un porcentaje del $0\,\%$ que es muy bueno, pero en las instancias scpd1 y scpb1 los porcentajes son demasiados altos en consecuencia esto contrarresta la eficacia obtenida en las primeras dos mencionadas.

Referencias

- [Chun 2001] Chun, Wesley: Core python programming. Bd. 1. Prentice Hall Professional, 2001
- [Van Rossum und Drake Jr 1991] VAN ROSSUM, Guido ; DRAKE JR, Fred L.: Guía de aprendizaje de Python. In: *Release* 2 (1991)
- [Van Rossum und Drake Jr 2017] VAN ROSSUM, Guido ; DRAKE JR, Fred L.: *El tutorial de Python*. Python Software Foundation, 2017