Neison Categories Fork and Join Operacoes Numericas Examples Generalizing Automatic Differentiation

...Machine Learning...

Artur Ezequiel Nelson

Universidade do Minho

26 de Abril

Indice

- Nelson
- 2 Categories
- Fork and Join
- Operacoes Numericas
- Examples
- 6 Generalizing Automatic Differentiation

Nelson
Categories
Fork and Join
Operacoes Numericas
Examples
ralizing Automatic Differentiation

titulo

- Queremos calcular \mathcal{D}^+ .
- Problema: D não é computável.
- Solução: observar corolários apresentados e implementar recorrendo a categorias.

- Queremos calcular D⁺.
- Problema: D não é computável.
- Solução: observar corolários apresentados e implementar recorrendo a categorias.

- Queremos calcular \mathcal{D}^+ .
- Problema: \mathcal{D} não é computável.
- Solução: observar corolários apresentados e implementar recorrendo a categorias.

Corolário 1.1

NOTA: adicionar definição do corolário 1.1 aqui

Corolário 2.1

NOTA: adicionar definição do corolário 2.1 aqui

Corolário 3.1

NOTA: adicionar definição do corolário 3.1 aqui

Categorias clássicas

Uma categoria é um conjunto de objetos(conjuntos e tipos) e de morfismos(operações entre objetos), tendo definidas 2 operações básicas, identidade e composição de morfismos, e 2 leis:

• (C.1) —
$$id \circ f = id \circ f = f$$

• (C.2) — $f \circ (g \circ h) = (f \circ g) \circ h$

Para os efeitos deste papel, objetos são tipos de dados e morfismos são funcões

$$(\circ)$$
 :: $(b'k'c) \rightarrow (a'k'b) \rightarrow (a'k'c)$

instance *Category* (
$$\rightarrow$$
) where id = λ a \rightarrow a $g \circ f = \lambda$ a \rightarrow g (f a)

200

Categorias clássicas

Uma categoria é um conjunto de objetos(conjuntos e tipos) e de morfismos(operações entre objetos), tendo definidas 2 operações básicas, identidade e composição de morfismos, e 2 leis:

• (C.1) —
$$id \circ f = id \circ f = f$$

• (C.2) —
$$f \circ (g \circ h) = (f \circ g) \circ h$$

Para os efeitos deste papel, objetos são tipos de dados e morfismos são funções

$$(\circ)$$
 :: $(b'k'c) \rightarrow (a'k'b) \rightarrow (a'k'c)$

instance Category (
$$\rightarrow$$
) where id = λ a \rightarrow a

$$g \circ f = \lambda a \rightarrow g$$
 (f a)

Functores clássicos

Um functor F entre categorias \mathcal{U} e \mathcal{V} é tal que:

- para qualquer objeto $t \in \mathcal{U}$ temos que F $t \in \mathcal{V}$
- para qualquer morfismo m :: $a \rightarrow b \in \mathcal{U}$ temos que F m :: F $a \rightarrow F$ $b \in \mathcal{V}$
- F id $(\in \mathcal{U}) = id (\in \mathcal{V})$
- $F(f \circ g) = F f \circ F g$

Nota

Devido à definição de categoria deste papel(objetos são tipos de dados) os functores mapeiam tipos neles próprios.

Objetivo

Começamos por definir um novo tipo de dados:

newtype
$$\mathcal{D}$$
 a b = $\mathcal{D}(a \rightarrow b \times (a \multimap b))$

Depois adaptamos \mathcal{D}^+ para usar este tipo de dados:

Definição adaptada

$$\hat{\mathcal{D}}$$
 :: (a \rightarrow b) \rightarrow \mathcal{D} a b $\hat{\mathcal{D}}$ f = $\mathcal{D}(\mathcal{D}^+$ f)

O nosso objetivo é a dedução de uma instância de categoria para $\mathcal D$ onde $\hat{\mathcal D}$ seja functor.

Recordando os corolários 3.1 e 1.1 deduzimos que

• (DP.1) —
$$\mathcal{D}^+id = \lambda a \rightarrow (id \ a,id)$$

Generalizing Automatic Differentiation

• (DP.2) —-
$$\mathcal{D}^+(g \circ f) = \lambda a \rightarrow let\{(b, f') = \mathcal{D}^+ \text{ f a; } (c, g') = \mathcal{D}^+ \text{ g b } \} \text{ in } (c, g' \circ f')$$

 $\hat{\mathcal{D}}$ ser functor é equivalente a dizer que, para todas as funções f e g de tipos apropriados:

• id =
$$\hat{\mathcal{D}}$$
 id = $\mathcal{D}(\mathcal{D}^+id)$

•
$$\hat{\mathcal{D}} g \circ \hat{\mathcal{D}} f = \hat{\mathcal{D}} (g \circ f) = \mathcal{D}(\mathcal{D}^+(g \circ f))$$

Com base em (DP.1) e (DP.2) podemos reescrever como sendo:

- id = $\mathcal{D}(\lambda a \rightarrow (id \ a,id))$
- $\hat{\mathcal{D}}$ g \circ $\hat{\mathcal{D}}$ f = \mathcal{D} ($\lambda a \rightarrow let\{(b, f') = \mathcal{D}^+$ f a; $(c, g') = \mathcal{D}^+$ g b } in $(c, g' \circ f')$)

Resolver a primeira equação é trivial(definir id da instância como sendo $\mathcal{D}(\lambda a \to (\text{id a,id})))$.

A segunda equação será resolvida resolvendo uma condição mais geral: $\mathcal{D}g \circ \mathcal{D}f = \mathcal{D}(\lambda a \to let\{(b,f')=f \ a;\ (c,g')=g \ b \ \}$ in $(c,g'\circ f')$, cuja solução é igualmente trivial.

Definição de $\hat{\mathcal{D}}$ para funções lineares

linearD ::
$$(a \rightarrow b) \rightarrow \mathcal{D}$$
 a b linearD f = $\mathcal{D}(\lambda a \rightarrow (f a, f))$

Instância da categoria que deduzimos

instance $Category \mathcal{D}$ where

$$\mathcal{D}g \circ \mathcal{D}f = \mathcal{D}(\lambda a \to let\{(b, f') = f a; (c, g') = g b \} in (c, g' \circ f'))$$

Prova da instância

Antes de continuarmos devemos verificar se esta instância obedece às leis (C.1) e (C.2).

Se considerarmos apenas morfismos \hat{f} :: \mathcal{D} a b tal que $\hat{f} = \mathcal{D}^+$ f para f :: a \rightarrow b(o que podemos garantir se transformarmos \mathcal{D} a b em tipo abstrato) podemos garantir que \mathcal{D}^+ é functor.

Prova de (C.1)

 $\mathsf{id} \circ \hat{\mathcal{D}}$

- = $\hat{\mathcal{D}}id \circ \hat{\mathcal{D}}$ f -lei functor de id (especificação de $\hat{\mathcal{D}}$)
- = $\hat{\mathcal{D}}$ (id \circ f) lei functor para (\circ)
- $=\hat{\mathcal{D}}$ f lei de categoria

Prova da instância

Prova de (C.2)

$$\hat{\mathcal{D}} \ \mathsf{h} \circ (\hat{\mathcal{D}} \ \mathsf{g} \circ \hat{\mathcal{D}} \ \mathsf{f})$$

 $=\hat{\mathcal{D}} \ \mathsf{h} \circ \hat{\mathcal{D}} \ (\mathsf{g} \circ \mathsf{f}) - \mathsf{lei} \ \mathsf{functor} \ \mathsf{para} \ (\circ)$

= $\hat{\mathcal{D}}$ (h \circ (g \circ f)) - lei functor para (\circ)

= $\hat{\mathcal{D}}$ ((h \circ g) \circ f) - lei de categoria

 $=\hat{\mathcal{D}}$ (h \circ g) $\circ\hat{\mathcal{D}}$ f - lei functor para (\circ)

= $(\hat{\mathcal{D}} \ \mathsf{h} \circ \hat{\mathcal{D}} \ \mathsf{g}) \circ \hat{\mathcal{D}} \ \mathsf{f}$ - lei functor para (\circ)

Nota

Estas provas não requerem nada de \mathcal{D} e $\hat{\mathcal{D}}$ para além das leis do functor, logo nas próximas instâncias deduzidas de um functor não precisamos de voltar a realizar estas provas.

Categorias e functores monoidais

A versão generalizada da composição paralela será definida através de uma categoria monoidal:

class Category
$$k \Rightarrow$$
 Monoidal k where

$$(\times)::(a'k'c)\rightarrow(b'k'd)\rightarrow((a\times b)'k'(c\times d))$$

instance *Monoidal* (\rightarrow) where

$$f \times g = \lambda(a,b) \rightarrow (f a,g b)$$

Definição de functor monoidal

Um functor F monoidal entre categorias \mathcal{U} e \mathcal{V} é tal que:

- F é functor clássico
- $F(f \times g) = Ff \times Fg$

A partir do corolário 2.1 deduzimos que:

$$\mathcal{D}^+$$
 (f \times g) = $\lambda(a,b)$ \rightarrow let{(c,f')= \mathcal{D}^+ f a; (d,g') = \mathcal{D}^+ g b } in ((c,d),f'×g')

Se definirmos o functor F a partir de $\hat{\mathcal{D}}$ chegamos à seguinte condição:

$$\mathcal{D}(\mathcal{D}^+ \mathsf{f}) \times \mathcal{D}(\mathcal{D}^+ \mathsf{g}) = \mathcal{D}(\mathcal{D}^+ \mathsf{(f} \times \mathsf{g}))$$

Substituindo e fortalecendo-a obtemos:

$$\mathcal{D}$$
 f \times \mathcal{D} g = $\mathcal{D}(\lambda(a,b) \rightarrow let\{(c,f') = f a; (d,g') = g b \} in ((c,d),f'\times g'))$

e esta condição é suficiente para obtermos a nossa instância.

Instância da categoria que deduzimos

instance *Monoidal* \mathcal{D} where

$$\mathcal{D}\ f\times\mathcal{D}\ g=\mathcal{D}(\lambda(a,b)\to let\{(c,f')=f\ a;\ (d,g')=g\ b\ \}$$
 in $((c,d),f'\times g'))$

Categorias e funtores cartesianas

class Monoidal $k \Rightarrow Cartesean$

k where

 $exl :: (a \times b)'k'a$

exr :: $(a \times b)$ 'k'b dup :: a'k' $(a \times a)$

instance $Cartesean (\rightarrow)$

where

 $exl = \lambda(a,b) \rightarrow a$

 $exr = \lambda(a,b) \rightarrow b$

 $\mathsf{dup} = \lambda \mathsf{a} \to (\mathsf{a}, \mathsf{a})$

Um functor F cartesiano entre categorias \mathcal{U} e \mathcal{V} é tal que:

- F é functor monoidal
- F exl = exl
- $F \exp = \exp$
- F dup = dup

Generalizing Automatic Differentiation

Dedução da instância

Pelo corolário 3.1 e pelo facto que exl, exr e dup são linerares deduzimos que:

$$\mathcal{D}^+$$
 exl $\lambda p \rightarrow (\exp p, \, exl)$

$$\mathcal{D}^+$$
 exr $\lambda p \rightarrow$ (exr p, exr)

$$\mathcal{D}^+$$
 dup $\lambda a \rightarrow$ (dup a, dup)

Após esta dedução podemos continuar a determinar a instância:

$$exl = \mathcal{D}(\mathcal{D}^+ exl)$$

$$exr = \mathcal{D}(\mathcal{D}^+ exr)$$

$$\mathsf{dup} = \mathcal{D}(\mathcal{D}^+ \, \mathsf{dup})$$

Substituindo e usando a definição de linearD obtemos:

exl = linearD exl

exr = linearD exr

dup = linearD dup

E podemos converter a dedução acima diretamente em instância:

Instância da categoria que deduzimos

instance Cartesian \mathcal{D} where

exl = linearD exl

exr = linearD exr

dup = linearD dup

Categorias cocartesianas

São o dual das categorias cartesianas.

Nota

Neste papel os coprodutos correspondem aos produtos das categorias, i.e., categorias de biprodutos.

```
class Category k \Rightarrow Cocartesian k where:
```

```
inl :: a'k'(a \times b)
inlr:: b'k'(a \times b)
iam :: (a \times a)'k'a
```


Functores cocartesianos

Definição de functor cocartesiano

Um functor F cartesiano entre categorias \mathcal{U} e \mathcal{V} é tal que:

- F é functor
- F inl = inl
- F inr = inr
- *F* jam = jam

Fork and Join

- Δ :: Cartesian $k \Rightarrow (a' k' c) \rightarrow (a' k' d) \rightarrow (a' k' (c \times d))$
- ∇ :: Cartesian $k \Rightarrow (c' k' a) \rightarrow (d' k' a) \rightarrow ((c \times d)' k' a)$

Instance of \rightarrow^+

newtype
$$a \rightarrow^+ b = AddFun (a \rightarrow b)$$

instance $Category (\rightarrow^+)$ where
type $Obj (\rightarrow^+) = Additive$
 $id = AddFun id$
 $AddFun g \circ AddFun f = AddFun (g \circ f)$
instance $Monoidal (\rightarrow^+)$ where
 $AddFun f \times AddFun g = AddFun (f \times g)$
instance $Cartesian (\rightarrow^+)$ where
 $exl = AddFun exl$
 $exr = AddFun exr$
 $dup = AddFun dup$

Generalizing Automatic Differentiation

Instance of \rightarrow^+

instance Cocartesian
$$(\rightarrow^+)$$
 where inl = AddFun inlF inr = AddFun inrF jam = AddFun jamF inlF :: Additive $b\Rightarrow a\rightarrow a\times b$ inrF :: Additive $a\Rightarrow b\rightarrow a\times b$ jamF :: Additive $a\Rightarrow a\times a\rightarrow a$ inlF = $\lambda a\rightarrow (a,0)$ inrF = $\lambda b\rightarrow (0,b)$ jamF = $\lambda(a,b)\rightarrow a+b$

Generalizing Automatic Differentiation

NumCat definition

```
class NumCat k a where
  negateC :: a ' k ' a
  addC :: (a \times a) \cdot k \cdot a
  mulC :: (a \times a) \cdot k \cdot a
instance Num a \Rightarrow NumCat (\rightarrow) a where
  negateC = negate
  addC = uncurry(+)
  mulC = uncurry(*)
   . . .
```

$$\mathcal{D}$$
 (negate u) = negate (\mathcal{D} u)
 \mathcal{D} ($u + v$) = \mathcal{D} $u + \mathcal{D}$ v
 \mathcal{D} ($u * v$) = $u * \mathcal{D}$ $v + v * \mathcal{D}$ u

- Imprecise on the nature of u and v.
- A precise and simpler definition would be to differentiate the operations themselves.

class Scalable k a where scale :: $a \rightarrow (a' k' a)$ instance Num $a \Rightarrow Scalable (\rightarrow^+)$ a where scale $a = AddFun (\lambda da \rightarrow a * da)$ instance NumCat D where negateC = linearD negateCaddC = linearD addC $mulC = D(\lambda(a,b) \rightarrow (a*b, scale b \nabla scale a))$ instance FloatingCat D where $sinC = D (\lambda a \rightarrow (sin \ a. \ scale (cos \ a)))$ $cosC = D (\lambda a \rightarrow (cos \ a, scale (-sin \ a)))$

...

 $expC = D \ (\lambda a \rightarrow let \ e = exp \ a \ in \ (e, scale \ e))$

Examples

```
sqr :: Num \ a \Rightarrow a \rightarrow a

sqr \ a = a * a

magSqr :: Num \ a \Rightarrow a \times a \rightarrow a

magSqr \ (a,b) = sqr \ a + sqr \ b

cosSinProd :: Floating \ a \Rightarrow a \times a \rightarrow a \times a

cosSinProd \ (x,y) = (cos \ z, sin \ z) where z = x * y
```

With a compiler plugin we can obtain

```
\begin{split} &\textit{sqr} = \textit{mulC} \ \circ \ (\textit{id} \ \Delta \ \textit{id}) \\ &\textit{magSqr} = \textit{addC} \ \circ \ (\textit{mulC} \ \circ \ (\textit{exl} \ \Delta \ \textit{exl}) \ \Delta \ \textit{mulC} \ \circ \ (\textit{exr} \ \Delta \ \textit{exr})) \\ &\textit{cosSinProd} = (\textit{cosC} \ \Delta \ \textit{sinC}) \ \circ \ \textit{mulC} \end{split}
```

Generalizing Automatic Differentiation

```
newtype D_k a b = D (a \rightarrow b \times (a'k'b))
linearD :: (a \rightarrow b) \rightarrow (a' k' b) \rightarrow D_k a b
linearD f f' = D (\lambda a \rightarrow (f a, f'))
instance Category k \Rightarrow Category D_k where
  type Obj D_k = Additive \wedge Obj k ...
instance Monoidal k \Rightarrow Monoidal D_k where ...
instance Cartesian k \Rightarrow Cartesian D_k where ...
instance Cocartesian k \Rightarrow Cocartesian D_k where
  inl = linearD inlF inl
  inr = linearD inrF inr
  jam = linearD jamF jam
```

Nelson Categories Fork and Join Operacoes Numericas Examples Generalizing Automatic Differentiation

instance Scalable $k \ s \Rightarrow NumCat \ D_k \ s$ where $negateC = linearD \ negateC \ negateC$ $addC = linearD \ addC \ addC$ $mulC = D \ (\lambda(a,b) \rightarrow (a*b, scale \ b \ \nabla \ scale \ a))$

- Practical applications often involves high-dimensional spaces.
- Binary products are a very inefficient and unwieldy way of encoding high-dimensional spaces.
- A practical alternative is to consider n-ary products as representable functors(?)

```
class Category k \Rightarrow Monoidall k h where crossl :: h (a k b) \rightarrow (h a k h b)
instance Zip h \Rightarrow Monoidall (\rightarrow) h where crossl = zipWith id
```

