MV52 Synthèse d'images

CM #4

Transformations géométriques Vue et Projection

Fabrice LAURI fabrice.lauri@utbm.fr

Plan du cours

- Séquence des transformations géométriques appliquées aux vertices des objets 3D
- Matrice Vue
- Types de projections
- Projections perspectives
- Projections orthogonales

Plan du cours

- Séquence des transformations géométriques appliquées aux vertices des objets 3D
- Matrice Vue
- Types de projections
- Projections perspectives
- Projections orthogonales

$$\begin{vmatrix} x_w \\ y_w \\ z_w \end{vmatrix} = \begin{vmatrix} (p_x/2)x_d + o_x \\ (p_y/2)y_d + o_y \\ [(b_f - b_n)/2]z_d + (b_f + b_n)/2 \end{vmatrix} \begin{vmatrix} x_d \\ y_d \\ z_d \end{vmatrix}$$

Coordonnées **2D** dans le viewport

Transformation Viewport

Coordonnées **3D** normalisées

Plan du cours

- Séquence des transformations géométriques appliquées aux vertices des objets 3D
- Matrice Vue
- Types de projections
- Projections perspectives
- Projections orthogonales

La Matrice Vue

La matrice Vue V (matrice 4x4), se définit à partir de la position P (vecteur 3D) de la caméra et de son orientation R (matrice 3x3).

Lorsque V est appliquée sur P (en coordonnées homogènes), les coordonnées obtenues sont à l'origine, c'est-à-dire que : $V {P \choose 1} = {0 \choose 1}$

Sous ces hypothèses et pour vérifier ce résultat :

$$V = \begin{pmatrix} R & -RP \\ \mathbf{0}^T & \mathbf{1} \end{pmatrix}$$

Car:
$$VP = \begin{pmatrix} R & -RP \\ 0^T & 1 \end{pmatrix} \begin{pmatrix} P \\ 1 \end{pmatrix} = \begin{pmatrix} RP - RP \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

où 0 représente ici un vecteur colonne 3D; 1 est un scalaire.

Plan du cours

- Séquence des transformations géométriques appliquées aux vertices des objets 3D
- Matrice Vue
- Types de projections
- Projections perspectives
- Projections orthogonales

La projection

- La visualisation d'une scène 3D sur un écran nécessite le passage d'un espace 3D à un espace 2D : c'est le rôle de la projection.
- Projection d'un objet = projection de l'ensemble de ses vertices sur un plan.

Types de projection

Types de projection

Projection perspective selon un centre de projection

Plan du cours

- Séquence des transformations géométriques appliquées aux vertices des objets 3D
- Matrice Vue
- Types de projections
- Projections perspectives
- Projections orthogonales

La projection perspective

Effet visuel similaire au système visuel humain.

L'image P' d'un point P par une projection en perspective de centre O sur le plan V est l'intersection de la droite OP passant par V.

Coordonnées du projeté d'un point ?

La projection perspective

Propriétés

- Deux droites parallèles dans la scène ne le sont plus après une projection perspective
- La taille d'un objet est inversement proportionnelle à sa distance au centre de projection :

Pyramide de vision (View frustum)

Pyramide de vision

Espace camera dans OpenGL

Plan de projection

e : longueur focale de la caméra

α : angle du champs de vision horizontal

β: angle du champs de vision vertical

a : aspect ratio = height / width

Interpolation correcte en projection perspective

Interpolation non linéaire :

• de la profondeur d'un vertex (coordonnée z)

$$\frac{1}{z_3} = \frac{1}{z_1} (1 - t) + \frac{1}{z_2} t$$

 des attributs associés à un vertex (couleur, coordonnées de texture...)

$$\frac{b_3}{z_3} = \frac{b_1}{z_1} (1 - t) + \frac{b_2}{z_2} t$$

Pyramide de vision et cube clippé homogène

Pyramide de vue vers espace normalisé (clippé homogène), de coordonnées comprises entre -1 et 1

Projection perspective

Soit un point P = <Px, Py, Pz, 1> résidant dans la pyramide de vue.

La pyramide de vue peut être définie par les paramètres l,r,b,t,n et f...

Matrice de projection perspective

Démonstration...

Démonstration...

Le plan proche est tel que z=-n. Les coordonnées x et y du projeté P' de P sur le plan proche sont donc :

$$l \le x = -\frac{n}{P_z} P_x \le r \qquad b \le y = -\frac{n}{P_z} P_y \le t$$

Les fonctions linéaires suivantes permettent de ramener les valeurs de x et y dans [-1;1] :

$$x' = (x-l)\frac{2}{r-l} - 1 \qquad y' = (y-b)\frac{2}{t-b} - 1$$

$$x' = \frac{2n}{r-l}(-\frac{P_x}{P_z}) - \frac{r+l}{r-l} \qquad y' = \frac{2n}{t-b}(-\frac{P_y}{P_z}) - \frac{t+b}{t-b}$$

Démonstration...

La profondeur d'un vertex étant interpolée hyperboliquement, la coordonnée z' de P' vérifie :

$$z' = A \frac{1}{P_z} + B$$

Or :

$$-1 = A \frac{1}{-n} + B$$
 et $1 = A \frac{1}{-f} + B$

Après résolution :

$$A = \frac{2 \operatorname{nf}}{f - n}$$
 et $B = \frac{f + n}{f - n}$

Démonstration...

Ainsi:

$$x' = \frac{2n}{r-l} \left(-\frac{P_x}{P_z} \right) - \frac{r+l}{r-l}$$
 $y' = \frac{2n}{t-b} \left(-\frac{P_y}{P_z} \right) - \frac{t+b}{t-b}$

et:

$$z' = -\frac{2nf}{f-n}(-\frac{1}{P_z}) - \frac{f+n}{f-n}$$

ou encore:

$$(P_z)x' = \frac{2n}{r-l}P_x + \frac{r+l}{r-l}P_z \quad (P_z)y' = \frac{2n}{t-b}P_y + \frac{t+b}{t-b}P_z$$

et:

$$(P_z)z' = \frac{f+n}{f-n}P_z - \frac{2nf}{f-n}$$

Matrice de projection perspective

Donc:

$$\mathsf{P'} = \begin{bmatrix} \frac{2\mathsf{n}}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2\mathsf{n}}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2\mathsf{n}f}{f-n} \\ 0 & 0 & -1 & 0 \end{bmatrix} \mathsf{P}$$

Avec:
$$n = \frac{1}{\tan(\frac{\alpha}{2})}$$

Angle du champs de vision horizontal

Rappel: interprétation géométrique de la coordonnée homogène w

Passage d'un point 4D vers un point 3D...

Points de fuite et ligne d'horizon

Point de fuite

Deux droites parallèles dans la scène s'intersectent en un point dans le plan de projection.

Ligne d'horizon

Chaque couple différent de droites définit un nouveau point de fuite. Ces points de fuite forment une droite dans le plan de projection : c'est la ligne d'horizon.

Exemples de projection avec points de fuite

Plan du cours

- Séquence des transformations géométriques appliquées aux vertices des objets 3D
- Matrice Vue
- Types de projections
- Projections perspectives
- Projections orthogonales

Projection parallèle

L'image P' d'un point P par une projection parallèle sur le plan V selon un axe D est l'intersection avec le plan V de la droite parallèle à D et passant par P.

Projection parallèle

Propriétés

- Deux droites parallèles dans la scène le sont également après une projection parallèle
- Conserve le rapport des distances selon un ou plusieurs axes
- Conserve les formes

Se décomposent en deux grandes classes :

- 1) Les projections orthographiques
- 2) Les projections obliques

Les projections parallèles

Les projections orthographiques

La direction de projection est **perpendiculaire** au plan de projection.

Projection orthogonale

 La direction de projection est parallèle à l'un des axes du repère.

- Exemples :
 - Vue de face
 - Vue de profil
 - Vue de dessus

 Les angles et les distances dans les plans parallèles aux plans du repère sont conservés

Projection orthogonale

Matrice de projection orthogonale

Démonstration...

Démonstration

Le volume de vue pour une projection orthogonale est définie par un parallélogramme à des distances near et far dans le plan xOy, respectivement.

Puisqu'il n'y a pas de distortion dûe à la perspective, la coordonnée de profondeur d'un vertex en perspective orthographique peut être interpolée linéairement.

Ainsi les fonctions de mapping sont linéaires pour les trois axes. Les fonctions de mapping des coordonnées x et y de l'intervalle [l;r] et [b;t], respectivement, vers l'intervalle [-1;1] sont donnés par :

$$x' = \frac{2}{(r-l)}x - \frac{r+l}{r-l}$$

et

$$y' = \frac{2}{(t-b)} y - \frac{t+b}{t-b}$$

Démonstration

De manière similaire mais en prenant l'opposé pour z, tel que : -n \rightarrow -1 et -f \rightarrow 1, on peut transformer la coordonnée z de l'intervalle [-f ;-n] vers l'intervalle [-1;1] en utilisant la fonction :

$$z' = \frac{-2}{(f-n)}z - \frac{f+n}{f-n}$$

Projection axonométrique

- La direction de projection n'est pas parallèle à l'un des axes du repère.
- Les distances sont modifiées dans un rapport constant sur chaque axe.
- Plusieurs cas de figure peuvent alors se présenter :
 - La projection isométrique : la direction de projection fait le même angle avec chacun des axes du repère.
 - La projection dimétrique : la direction de projection fait le même angle avec deux des trois axes du repère.
 - La projection trimétrique : la direction de projection fait un angle différent avec chacun des axes du repère.

Exemple de projections axonométriques

Projection isométrique

Projection trimétrique

Les projections obliques

La direction de projection n'est pas perpendiculaire au plan de projection.

Les projections obliques

On distingue deux cas:

- La projection cavalière: la direction de projection est choisie de manière à ce que la taille de la projection d'un objet ne dépend pas de son éloignement.
- La projection cabinet : la direction de projection est choisie telle que les perpendiculaires au plan xOy soient raccourcies de moitié.

Les projections obliques

