Formulari de química general

Taula periòdica

Constants

Constant	Valor
Número d'Avogadro	$6,022 \times 10^{23} \mathrm{mol}^{-1}$
Càrrega d'un electró	$1,602 \times 10^{-19} \mathrm{C}$
Massa d'un electró	$9,109 \times 10^{-31} \text{ kg}$
Massa d'un protó	$1,673 \times 10^{-27} \mathrm{kg}$
Massa d'un neutró	$1,675 \times 10^{-27} \mathrm{kg}$
Constant de Planck	$6,626 \times 10^{-34} \mathrm{Js}$
Constant de Boltzmann	$1,381 \times 10^{-23} \mathrm{JK^{-1}}$
Constant dels gasos	$8,314\mathrm{JK^{-1}mol^{-1}}$
Constant de Faraday	$96485\mathrm{C}\mathrm{mol}^{-1}$
Constant de gravitació universal	$6,674 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$

Fórmules

Fórmula	Descripció
p = mv	Relació entre el moment lineal, la massa i la velocitat
$KE = \frac{1}{2}mv^2$	Energia cinètica d'un cos en moviment
$KE = \frac{1}{2}mv^2$ $P = \frac{F}{A}$	Definició de pressió
PV = nRT	Llei dels gasos ideals
$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$	Equacó de van der Waals
$\hat{w} = -P\Delta V$	Treball exercit sobre un gas
U = q + w	Primera llei de la termodinàmica
H = U + PV	Definició d'entalpia
$dS = \frac{dq_{\text{rev}}}{T}$	Definició d'entropia
G = H - TS	Definició d'energia lliure de Gibbs
$q_v = n\Delta U$	Calor a volum constant
$q_p = n\Delta H$	Calor a pressió constant
$\Delta G = \Delta H - T \Delta S$	Canvi d'energia lliure de Gibbs

Unitats de mesura

Magnitud	Unitat a SI	Símbol SI	Dimensió
Longitud	metre	m	L
Volum	litre	L	L^3
Massa	kilogram	kg	M
Temperatura	kelvin	K	Θ
mol	mol	mol	N
temps	segon	S	T
Freqüència	hertz	$_{ m Hz}$	T^{-1}
Energia	joule	J	ML^2T^{-2}
Força	newton	N	MLT^{-2}
Pressió	pascal	Pa	$ML^{-1}T^{-2}$
Potencial elèctric	volt	V	$ML^2T^{-3}I^{-1}$
Potència	watt	W	ML^2T^{-3}

Magnitud	Unitat (EUA)	Equivalència en SI
Volum	$1 \mathrm{in}^3$	$16,387{\rm cm}^3$
Volum	$1\mathrm{ft}^3$	$28,\!317\mathrm{L}$
Volum	1 gal (US)	$3{,}785{\rm L}$
Pressió	1 psi	6,895 kPa
Pressió	$1\mathrm{atm}$	$101,325\mathrm{kPa}$
Pressió	$1\mathrm{inHg}$	$3,386\mathrm{kPa}$
Temperatura	1 F	$T_C = (T_F - 32) \times \frac{5}{9}$
Massa	1 oz	28,35 g
Massa	1 lb	$0,\!4536\mathrm{kg}$
Massa	1 t (US)	$907,184 \mathrm{kg}$

Unitat de Pressió	Pressió (en relació a 1 atm)
Atmosfera (atm)	1 atm
Pascal (Pa)	$101325 \mathrm{Pa}$
Kilopascal (kPa)	$101.325\mathrm{kPa}$
Bar	$1.01325{\rm bar}$
Mil·límetre de mercuri (mmHg)	$760\mathrm{mmHg}$
Torra (Torr)	$760\mathrm{Torr}$
Pounds per square inch (psi)	$14.696\mathrm{psi}$

Valor de la constant dels gasos R	Unitats
0,082	$\operatorname{atm} \operatorname{L} \operatorname{mol}^{-1} \operatorname{K}^{-1}$
8,3145	${ m m}^3{ m Pa}{ m K}^{-1}{ m mol}^{-1}$
8,3145	$ m JK^{-1}mol^{-1}$
62,363	$L \operatorname{Torr} K^{-1} \operatorname{mol}^{-1}$
$1,9872 \times 10^{-3}$	$kcal K^{-1} mol^{-1}$
$8,205 \times 10^{-5}$	$m^3 atm K^{-1} mol^{-1}$

Jordi Villà i Freixa, FCTE, UVic-UCC, CBBL, March 2, 2025