```
Minclude <string.h>
Fdefine MAXPAROLA 30
#define MAXRIGA 80
   int seq[MAXPAROLA]; /* vettore di contato
delle frequenze delle lunghazze delle parol
   char riga[MAXRIGA] ;
lint i, inizio, lunghezza
```

Recursion

The divide and conquer paradigm

Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Definition

Recursive procedure

- Direct recursion
 - Inside its definition there is a call to the procedure itself
- > Indirect recursion
 - Inside its definition there is a call to at least one procedure that, directly or indirectly, calls the procedure itself

Definition

- Recursive algorithm
 - Based on recursive procedures

Definition

The solution to a problem S applied to data D is recursive if we can express it as

Generic function (f) of ...

 D_{n-1} is simpler than D_n

$$S(D_n) = f\left(S(D_{n-1})\right)$$

iff
$$D_n \neq D_0$$

$$S(D_0) = S_0$$

otherwise

Termination condition

The number of times we do apply f, i.e., $i = 0 \dots n$ is the **recursion level**

Rationale

- Recursive solutions
 - Are mathematically elegant
 - Generate nice and neat procedures
- The nature of many problems is by itself recursive
 - Solution of many sub-problems may be similar to the initial one, though simpler and smaller
 - Combination of partial solutions may be used to obtain the solution of the initial problem
- Recursion is the basis for the problem-solving paradigm known as **divide and conquer**

- Recursion formulations should generate simpler and solvable sub-problems
 - We recur until
 - The sub-problems are trivial
 - All valid choices exhausted
- To reach this target, we apply the so called divide-and-conquer paradigm, which is based on 3 phases
 - Divide
 - Conquer
 - Combine

Divide

- Starting from a problem of size n
- We partition it into $a \ge 1$ independent problems
- Each of these problems has a size \widehat{n} smaller than n, i.e., $\widehat{n} < n$

Conquer

- Solve an elementary problem
- In this part of the algorithm we need a termination condition
 - All algorithms must eventually terminate
 - The recursion must be finite

Combine

Build a global solution combining partial solutions

```
Termination condition
                                                    Conquer
solve (problem) {
  if (problem is elementary) {
     solution = solve trivial (problem)
                                                              Divide
   } else {
     subproblem_{1,2,3,...,a} = divide (problem)
     for each s ∈ subproblem<sub>1,2,3,...,a</sub>
                                                           Recursive call
        subsolution<sub>s</sub> = solve (subproblem<sub>s</sub>)
     solution = combine (subsolution<sub>1,2,3,...,a</sub>)
  return solution
                                                 a subproblems of size n'
                                                Each subproblem is smaller
                     Combine
```

than the original one (n'< n)

```
The else part is often
                         avoided inserting one
                             extra return
                                                        Conquer
solve (problem) {
  if (problem is elementary) {
     solution = solve trivial (problem)
     return (solution)
                                                      Divide
  subproblem_{1,2,3,...,a} = divide (problem)
  for each s ∈ subproblem<sub>1,2,3,...,a</sub>
     subsolution<sub>s</sub> = solve (subproblem<sub>s</sub>)
  solution = combine (subsolution<sub>1,2,3,...,a</sub>)
  return solution
```

Combine

 \Rightarrow A **recursion equation** expresses the time asymptotic cost T(n) in terms of

D(n)	Cost of dividing the problem
$T(\hat{n})$	Cost of the execution time for smaller inputs (recursion phase)
C(n)	Cost of recombining the partial solutions
Cost of the terminal cases	We often assume unit cost for solving the elementary problems $\Theta(1)$

$$T(n) = D(n) + \sum T(\hat{n}) + C(n)$$

$$T(n) = D(n) + \sum T(\hat{n}) + C(n)$$

We suppose that the number of subproblems of size \widehat{n} is a. If a=1, we have linear recursion. If a>1, we have multi-way recursion.

Case 1

$$T(n) = D(n) + \sum T(\hat{n}) + C(n)$$

The size of the original problem nand the generated ones $\widehat{\boldsymbol{n}}$ are related by a **constant factor** b in general the same for all subproblems

b = n/n and $\hat{n} = n/n$

We suppose that the number of subproblems of size \hat{n} is a. If a = 1 we have linear recursion. If a > 1we have multi-way recursion.

Combine

$$T(n) = D(n) + a \cdot T(n/b) + C(n)$$
$$T(n) = \Theta(1)$$

Recur

 $T(\hat{n})$

n > const $n \leq const$

Conquer

If b > 1 we have divide-andconquer approach

Case 2

$$T(n) = D(n) + \sum T(\hat{n}) + C(n)$$

The size of the original problem n and the generated ones \hat{n} are related by a **constant value** k_i not always the same for all subproblems

 $\hat{n} = n - k_i$

We suppose that the number of subproblems of size \hat{n} is a. If a = 1 we have linear recursion. If a > 1we have multi-way recursion.

Recur $T(\hat{n})$

Combine

$$T(n) = D(n) + \sum_{i=0}^{a-1} T(n - k_i) + C(n)$$

$$n > const$$

$$T(n) = \Theta(1)$$

$$n \leq const$$

Conquer

If b = 1we have decreaseand-conquer approach

A first example: Array split

 \clubsuit Given an array of $n = 2^k$ integers

Simple case (complete tree of height k)

- Recursively partition it in sub-arrays half the size, until the termination condition is reached
 - The termination conditions is reached when subarrays have only 1 cell
- Print-out all generated partitions on standard output

Divide and conquer

At each step we generate a=2 subproblems

Each subproblem has a size equal to $\widehat{n}=n/2$, i.e., $b=n/\widehat{n}=2$


```
void show (
  int v[], int l, int r
  int i, c;
                Termination
                                                    Recursion tree
                 condition
                                                 (visited depth-first)
                         Recursion:
                        Left recursion
  if (1 >= r) {
                       Right recursion
     return;
                                                                7
  c = (r+1)/2;
  show (v, 1, c);
  show (v, c+1, r);
  return;
```

divide

recursion/

combination

Solution 1

```
void show (
  int v[], int l, int r
                                   Array print
  int i, c;
                               (from element I to r)
  printf ("v = ");
  for (i=1; i<=r; i++)</pre>
     printf ("%d ", v[i]);
  printf ("\n");
  if (1 >= r) {
     return;
            returns to the previous level,
            return will call again the function
  c = (r+1)/2;
  show (v, 1, c);
   show (v, c+1, r);
              c+1 so element c is considered only once
                            combination
  return;
```

```
void show (
  int v[], int l, int r
                            Array print
  int i, c;
                         (from element I to r)
  if (1 >= r) {
    return;
  printf ("v = ");
  for (i=1; i<=r; i++)
    printf ("%d ", v[i]);
  printf ("\n");
  c = (r+1)/2;
                     left recursion
  show (v, 1, c);
  show (v, c+1, r);
  return;
                 Not printed
```

If I check before I print, the last layer is not printed


```
void show (
  int v[], int l, int r
  int i, c;
  if (1 >= r) {
    return;
                      Not printed
  c = (r+1)/2;
  printf ("v = ");
  for (i=1; i<=c; i++)
   printf ...
  show (v, 1, c);
  printf ("v = ");
  for (i=c+1; i<=r; i++)
   printf ...
  show (v, c+1, r);
  return;
```

NOTE: A LIFO stack is used for storing the state of the function calls

If termination condition is not presented, stack overflow is triggered

If I recur before printing I miss the first layer

Divide and conquer problem		
Number of subproblems	a=2	
Reduction factor	$b = n/_{\widehat{n}} = 2$	
Division cost	$D(n) = \Theta(1)$	
Recombination cost	$C(n) = \Theta(1)$	

$$T(n) = D(n) + a \cdot T(n/b) + C(n)$$

$$T(n) = \Theta(1)$$

$$n > 1$$

$$n \le 1$$


```
void show (
   int v[], int l, int r
) {
   int i, c;
   if (l >= r) {
      return;
   }
   c = (r+1)/2;
   show (v, l, c);
   show (v, c+1, r);
   return;
}
```

$$n > 1$$

$$n \le 1$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 1$$

$$T(1) = 1$$

$$T(n) = 1 + 2 \cdot T(n/2)$$

$$T(n/2) = 1 + 2 \cdot T(n/4)$$

$$T(n/4) = 1 + 2 \cdot T(n/8)$$

$$T(^{n}/_{8}) = 1 + 2 \cdot T(^{n}/_{16})$$

$$T(1) = 1$$

$$T(n) = D(n) + a \cdot T(n/b) + C(n)$$
$$T(n) = \Theta(1)$$

n > 1

 $n \le 1$

No cost for the combination phase

At the i-th step

Termination condition

$$\frac{n}{2^{i}} = 1$$

$$n = 2^{i}$$

$$i = \log_{2} n$$

$$T(n) = 1 + 2 \cdot T(n/2)$$

$$T(n/2) = 1 + 2 \cdot T(n/4)$$

$$T(n/4) = 1 + 2 \cdot T(n/8)$$

$$T(^{n}/_{8}) = 1 + 2 \cdot T(^{n}/_{16})$$

T(1) = 1

$$i = log_2 n$$

steps

log2(n)

$$\sum_{i=0}^{k} x^{i} = \frac{(x^{k+1}-1)}{(x-1)}$$

$$T(n) = 1 + 2 \cdot T(n/2)$$

$$T(n) = 1 + 2 + 4 \cdot T(n/4)$$

$$T(n) = 1 + 2 + 4 + 8 \cdot T(n/8)$$

$$T(n) = 1 + 2 + 4 + 8 + 16 \cdot T(n/16)$$

 $T(n) = \sum_{i=0}^{\log n} 2^{i} = \frac{(2^{\log n} + -1)}{2 - 1} =$ $= 2 \cdot 2^{\log n} - 1 =$ = 2n - 1 = = 0(n)

sum of a geometric series

A second example: Maximum of an array

- \bullet Given an array of $n = 2^k$ integers
- Find its maximum and print it on standard output

- \Rightarrow If the array size n is equal to 1 (n = 1)
 - > Find maximum explicitly

Termination condition

- **!** If the array size n is larger than 1 (n > 1)
 - Divide array in 2 subarrays, each being half the original array
 - > Recursively search for maximum in the **left** subarray and **return** the maximum value in it
 - Recursively search for maximum in the right subarray and return the maximum value in it
 - Compare maximum values returned and return bigger one

```
result = \max (v, 0, 3);
```

```
    v
    1
    2
    3

    3
    40
    6
```

Implementation

```
Initial call l = 0, r = 3, n = 2^k
```

```
result = max (v, 0, 3);
```

Implementation

```
int max(int v[],int l,int r) {
  int c, m1, m2;
  if (l >= r)
    return v[l];
  c = (l + r)/2;
  m1 = max (v, l, c);
  m2 = max (v, c+1, r);
  if (m1 > m2)
    return m1;
  else
    return m2;
}
```


Divide and conquer problem		
Number of subproblems	a=2	
Reduction factor	$b = n/_{\widehat{n}} = 2$	
Division cost	$D(n) = \Theta(1)$	
Recombination cost	$C(n) = \Theta(1)$	

$$T(n) = D(n) + a \cdot T(n/b) + C(n)$$

$$T(n) = \Theta(1)$$

$$n > 1$$

$$n \le 1$$


```
int max(int v[],int l,int r) {
  int c, m1, m2;
  if (l >= r)
    return v[l];
  c = (l + r)/2;
  m1 = max (v, l, c);
  m2 = max (v, c+1, r);
  if (m1 > m2)
    return m1;
  else
    return m2;
}
```

Factorial

- The factorial of a number can be defined using an
 - > Iterative definition

$$n! = \prod_{i=0}^{n-1} (n-i) = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$$

Recursive definition

$$n! = n \cdot (n-1)! \qquad n \ge 1$$

$$0! = 1$$

termination condition

> Examples

$$3! = 6$$
 $5! = 120$

An example

$$n! = n \cdot (n-1) \qquad n \ge 1$$
$$0! = 1$$

Complete program (main and function)

```
#include <stdio.h>
long int fact(int n);
main()
  long int n;
  printf("Input n: ");
  scanf("%d", &n);
  printf("%d ! = %d\n",
    n, fact(n));
  long, to solve the problem of overflowing
long int fact (long int n)
  if (n == 0)
    return (1);
  return (n * fact(n-1));
```

Alternative implementation

Recursion

Divide and conquer problem		
Number of subproblems	a = 1	
Reduction value	$k_i = 1$	
Division cost	$D(n) = \Theta(1)$	
Recombination cost	$C(n) = \Theta(1)$	

$$T(n) = D(n) + \sum_{i=0}^{a-1} T(n - k_i) + C(n)$$

$$T(n) = \Theta(1) \qquad n > 1$$

$$n \le 1$$

```
long int fact (long int n)
{
  long int f;
  if (n == 0)
    return (1);
  f = fact (n-1);
  return (n * f);
}
```

 $n \leq 1$

Example 1: Complexity Analysis

$$n > 1$$
 $T(n) = 1 + T(n - 1)$
 $n \le 1$ $T(1) = 1$

$$T(n) = 1 + T(n-1)$$

$$T(n-1) = 1 + T(n-2)$$

$$T(n-2) = 1 + T(n-3)$$

$$T(n-3) = 1 + T(n-4)$$

$$T(1)=1$$

$$T(n) = D(n) + \sum_{i=0}^{a-1} T(n - k_i) + C(n)$$
$$T(n) = \Theta(1) \qquad n > 1$$

No cost for the combination phase

Termination condition

$$n - 1 = 1$$
$$i = n - 1$$

$$T(n) = 1 + T(n-1)$$

$$T(n-1) = 1 + T(n-2)$$

$$T(n-2) = 1 + T(n-3)$$

$$T(n-3) = 1 + T(n-4)$$

$$T(1) = 1$$

$$i = n - 1$$
 steps

$$T(n) = 1 + T(n-1)$$

$$T(n) = 1 + 1 + T(n - 2)$$

$$T(n) = 1 + 1 + 1 + T(n - 3)$$

$$T(n) = 1 + 1 + 1 + 1 + T(n - 4)$$

• • •

$$T(n) = 1 + 1 + 1 + 1 \dots = \sum_{i=0}^{n-1} i = 1$$
$$= n = O(n)$$

Fibonacci Numbers

Fibonacci numbers

Leonardo Pisano known as Fibonacci (Pisa, 1170-1242)

> Iterative and recursive definition

$$F(n) = F(n-2) + F(n-1)$$
 $n > 1$
 $F(0) = 0$
 $F(1) = 1$

> Example

F(0) = 0
F(1) = 1
F(2) = 0 + 1 = 1
F(3) = 1 + 1 = 2
F(4) = 1 + 2 = 3

0 1 1 2 3 5 8 13 21 34 ...

The number of rabbit pairs form the Fibonacci sequence

F(1) = 1

Recursion tree (complete)

An Example: Computing F(5)


```
#include <stdio.h>
long int fib(long int n);
main() {
  long int n;
  printf("Input n: ");
  scanf("%d", &n);
  printf("Fibonacci of %d is: %d \n", n, fib(n));
long int fib (long int n) {
  if (n == 0 || n == 1)
    return (n);
  return (fib(n-2) + fib(n-1));
```

```
long int fib (long int n) {
  if (n == 0 || n == 1)
    return (n);
  return (fib(n-2) + fib(n-1));
}
```

Alternative implementation

```
long int fib (long int n) {
  long int f1, f2;

if (n == 0 || n == 1)
    return (n);
  f1 = fib (n-2);
  f2 = fib (n-1)
  return (f1 + f2);
}
```

Divide and conquer problem	
Number of subproblems	a = 2
Reduction factor	$k_i = 1$ $k_{i-1} = 2$
	$k_{i-1} = 2$
Division cost	$D(n) = \Theta(1)$
Recombination cost	$C(n) = \Theta(1)$

$$T(n) = D(n) + \sum_{i=0}^{a-1} T(n - k_i) + C(n)$$

$$T(n) = \Theta(1) \qquad n > 1$$

$$n \le 1$$

```
long int fib (long int n) {
  long int f1, f2;

if (n == 0 || n == 1)
    return (n);
  f1 = fib (n-2);
  f2 = fib (n-1)
  return (f1 + f2);
}
```

$$T(n) = 1 + T(n-1) + T(n-2)$$

 $T(0) = 1$
 $T(1) = 1$

$$T(n) = D(n) + \sum_{i=0}^{a-1} T(n - k_i) + C(n)$$
$$T(n) = \Theta(1) \qquad n > 1$$

No cost for the combination phase

 $n \leq 1$

 $T(n-2) \leq T(n-1)$

$$T(n) = 1 + 2 \cdot T(n - 1)$$

 $T(0) = 1$
 $T(1) = 1$

We can make a conservative approximation

We replace T(n-2)with T(n-1)

$$T(n) = 1 + 2 \cdot T(n-1)$$

$$T(n-1) = 1 + 2 \cdot T(n-2)$$

$$T(n-2) = 1 + 2 \cdot T(n-3)$$

...

$$T(0) = 1$$

$$T(1) = 1$$

$$\frac{n}{2^i} = 1$$

$$n = 2^i$$

$$i = log_2 n$$

steps

$$T(n) = 1 + 2 \cdot T(n-1)$$

$$T(n) = 1 + 2 + 4 \cdot T(n-2)$$

$$T(n) = 1 + 2 + 4 + 8 \cdot T(n - 3)$$

...

$$T(n) = \sum_{i=0}^{n-1} 2^{i} =$$

$$= 2^{n} - 1 =$$

$$= O(2^{n})$$

$$\sum_{i=0}^{k} x^{i} = \frac{(x^{k+1}-1)}{(x-1)}$$

Not linear. Why?

Binary Search

- Binary search
 - Does key k belong to the sorted array v[n]?
 - > Yes/No
- Approach

Assumption $n = 2^k$

- Start with (sub-)array of extremes I and r
- > At each step
 - Find middle element c=(int)((l+r)/2)
 - Compare k with middle element in the array
 - =: termination with success
 - <: search continues on left subarray
 - >: search continues on right subarray

k

8

k = key to

search

I = leftmost

index

r = rightmost

index

c = index of the

middle element

Example


```
int bin search (int v[], int l, int r, int k){
  int c;
  if (1 > r)
                            Termination
    return(-1);
                             condition
 c = (1+r) / 2;
  if (k < v[c])
    return(bin search (v, l, c-1, k));
  if (k > v[c])
    return(bin search (v, c+1, r, k));
  return c;
```

Skip ther element already checked

Decrease and conquer problem	
Number of subproblems	a = 1
Reduction factor	$b = n/_{\widehat{n}} = 2$
Division cost	$D(n) = \Theta(1)$
Recombination cost	$C(n) = \Theta(1)$

$$T(n) = D(n) + a \cdot T(n/b) + C(n)$$

$$T(n) = \Theta(1)$$

$$n > 1$$

$$n \le 1$$

```
int bin_search (...) {
  int c;
  if (l > r)
    return(-1);
  c = (l+r) / 2;
  if (k < v[c])
    return(bin_search (...));
  if (k > v[c])
    return(bin_search (...));
  return c;
}
```

$$n > 1$$
 $T(n) = 1 + T(n/2)$
 $n \le 1$ $T(1) = 1$

$$T(n) = 1 + T\binom{n}{2}$$

$$T(n/2) = 1 + T(n/4)$$

$$T(n/4) = 1 + T(n/8)$$

$$T(n/8) = 1 + T(n/16)$$

T(1) = 1

$$T(n) = D(n) + a \cdot T(n/b) + C(n)$$
$$T(n) = \Theta(1)$$

n > 1

 $n \leq 1$

No cost for the combination phase

Termination condition

$$\frac{n}{2^{i}} = 1$$

$$n = 2^{i}$$

$$i = \log_{2} n$$

$$T(n) = 1 + T(n/2)$$

$$T(n/2) = 1 + T(n/4)$$

$$T(^n/_4) = 1 + T(^n/_8)$$

$$T(n/8) = 1 + T(n/16)$$

$$T(1) = 1$$

$$i = log_2 n$$

steps

$$T(n) = 1 + T(n/2)$$

$$T(n) = 1 + 1 + T\binom{n}{4}$$

$$T(n) = 1 + 1 + 1 + T(n/8)$$

$$T(n) = 1 + 1 + 1 + 1 + T(n/16)$$

$$T(n) = \sum_{i=0}^{\log} 1 =$$

$$= O(\log_2(n)) = 1 + \log_2(n)$$

$$\sum_{i=0}^{k} x^{i} = \frac{(x^{k+1}-1)}{(x-1)}$$

Reverse printing

- Read a string from standard input
- Print it in reverse order
 - Start printing from last character and move back to first one

gnirtSAsIsihT

```
int main() {
  char str[max+1];
  printf ("Input string: ");
  scanf ("%s", str);
  printf ("Reverse string is: ");
  reverse print (str);
void reverse print (char *s) {
  if (*s == \overline{\ \ } \setminus 0') {
    return;
  reverse print (s+1);
  printf ("%c", *s);
  return;
```

Divide and conquer problem	
Number of subproblems	a =1
Reduction value	$k_i = 1$
Division cost	$D(n) = \Theta(1)$
Recombination cost	$C(n) = \Theta(1)$

$$T(n) = D(n) + \sum_{i=0}^{a-1} T(n - k_i) + C(n)$$

$$T(n) = \Theta(1) \qquad n > 1$$

$$n \le 1$$


```
void reverse_print (char *s) {
  if (*s == '\0') {
    return;
  }
  reverse_print (s+1);
  printf ("%c", *s);
  return;
}
```

List processing

- Recursive list processing
 - Count the number of elements in a list
 - > Traverse a list in order
 - > Traverse a list in reverse order
 - > Delete an element (of a given item) from the list

```
typedef struct list_s list_t;
struct node {
  int key;
  ...
  list_t *next;
};
```



```
int count (list_t *p) {
  if (p == NULL)
    return 0;
  return (1 + count(p->next));
}
```

Count the number of elements

```
void traverse (list_t *p) {
  if (p == NULL)
    return;
  printf ("%d", p->key);
  traverse (p->next);
}
```

Traverse the list forward


```
void traverse_reverse (list_t *p) {
  if (p == NULL)
    return;
  traverse_reverse (p->next);
  printf ("%d", p->key);
}
```

Traverse the list backward

```
link delete(list_t *p, int val) {
  if (p==NULL) return NULL;
  if (p->key==val) {
    list_t *t=p->next; free(p);
    return t;
  }
  p->next = delete (p->next, val);
  return p;
}
```

very interesting!!!

Dispose an element of the list

Create (re-create) link on the way back

Complexity Analysis

for all those functions

Divide and conquer problem	
Number of subproblems	a = 1
Reduction value	$k_i = 1$
Division cost	$D(n) = \Theta(1)$
Recombination cost	$C(n) = \Theta(1)$

$$T(n) = D(n) + \sum_{i=0}^{a-1} T(n - k_i) + C(n)$$

$$T(n) = \Theta(1) \qquad n > 1$$

$$n \le 1$$

As for the factorial ... T(n) = O(n)

```
int count (link x) {
  if (x == NULL)
    return 0;
  return (1 + count(x->next));
}
```

Greatest Common Divisor

- Given 2 non-zero integers x and y, the greatest common divisor gcd(x, y) is the greatest among the common divisors of x and y
 - ➤ Inefficient algorithm are based on decomposition in prime factors of *x* and *y*

$$\begin{aligned} \mathbf{x} &= \mathbf{p_1}^{e_1} \cdot \mathbf{p_2}^{e_2} \cdot \mathbf{p_3}^{e_3} \cdot \ldots \cdot \mathbf{p_r}^{e_r} \\ \mathbf{y} &= \mathbf{p_1}^{f_1} \cdot \mathbf{p_2}^{f_2} \cdot \mathbf{p_3}^{f_3} \cdot \ldots \cdot \mathbf{p_r}^{f_r} \end{aligned}$$
 Common factors with the minimum exponent
$$\gcd(\mathbf{x}, \mathbf{y}) = \mathbf{p_1}^{\min(e_1, f_1)} \cdot \mathbf{p_2}^{\min(e_2, f_2)} \cdot \mathbf{p_3}^{\min(e_3, f_3)} \cdot \ldots \cdot \mathbf{p_r}^{\min(e_r, f_r)}$$

More efficient methods are base on Euclid's algorithm

Euclid's Algorithm

- Version number 1
 Version number 2
 - Based on subtraction
- - Based on the remainder of integer divisions

```
if (x > y)
  gcd(x, y) = gcd(x-y, y)
else
  gcd(x, y) = gcd(x, y-x)
```

```
if (y > x)
  swap(x, y)
gcd (x, y) = gcd(y, x%y)
```


Termination condition

Examples: Version 1

```
gcd (20, 8) =

= gcd (20-8, 8) = gcd (12, 8)

= gcd (12-8, 8) = gcd (4, 8)

= gcd (4, 8-4) = gcd (4, 4)

= 4 \rightarrow \text{return } 4

gcd (600, 54) =

= gcd (600-54, 54) = gcd (546, 54)

= gcd (546-54, 54) = gcd (492, 54) ...

= gcd (6,54) = gcd (6, 54-6) ...

= gcd (6, 12) = gcd (6,6)

= 6 \rightarrow \text{return } 6
```

very slow convergence

```
if (x > y)
  gcd(x, y) = gcd(x-y, y)
else
  gcd(x, y) = gcd(x, y-x)
```

Examples: Version 2

```
gcd (20, 8) =

= gcd (8, 20%8) = gcd (8, 4)

= gcd (4, 8%4) = gcd (4, 0)

= 4 \rightarrow \text{return 4}

gcd (600, 54) =

= gcd (54, 600%54) = gcd (54, 6)

= gcd (6, 54%6) = gcd (6, 0)

= 6 \rightarrow \text{return 6}
```

much faster convergence

```
if (y > x)
  swap (x, y)
gcd (x, y) = gcd(y, x%y)
```

Examples: Version 2

```
gcd (314159, 271828)=
= \gcd (271828, 314159\%271828) = \gcd (271828,42331)
= \gcd (42331, 271828\%42331) = \gcd (42331,17842)
= \gcd (17842, 42331\%17842) = \gcd (17842, 6647)
= \gcd (6647, 17842\%6647) = \gcd (6647, 4548)
= \gcd (4548, 6647\%4548) = \gcd (4548, 2099)
= \gcd (2099, 4548\%2099) = \gcd (2099, 350)
= \gcd (350, 2099\%350) = \gcd (350, 349)
= \gcd (349, 350\%349), \gcd (349, 1)
= \gcd (1,349\%1) = \gcd (1, 0)
= 1 \rightarrow \text{return 1}
```

In fact, 314159 and 271828 are mutually prime

```
if (y > x)
  swap (x, y)
gcd (x, y) = gcd(y, x%y)
```

Solution: Version 1

```
#include <stdio.h>
int gcd (int x, int y);
main() {
  int x, y;
 printf("Input x and y: ");
  scanf("%d%d", &x, &y);
 printf("gcd of %d and %d: %d \n", x, y, gcd(x, y));
int gcd (int x, int y) {
  if (x == y)
    return (x);
  if (x > y)
    return gcd (x-y, y);
  else
    return gcd (x, y-x);
```

Solution: Version 2

```
#include <stdio.h>
int gcd (int m, int n);
main() {
  int m, n, r;
  printf("Input m and n: ");
 scanf("%d%d", &m, &n);
  if (m>n)
    r = gcd(m, n);
  else
    r = \gcd(n, m);
 printf("gcd of (%d, %d) = %d\n", m, n, r);
int gcd (int m, int n) {
  if(n == 0)
    return (m);
  return gcd(n, m % n);
```

Complexity Analysis

Divide and conquer problem	
Number of subproblems	a = 1
Reduction value	$k_i = variable$
Division cost	$D(x,y) = \Theta(1)$
Recombination cost	$C(x,y) = \Theta(1)$

$$T(n) = D(n) + \sum_{i=0}^{a-1} T(n - k_i) + C(n)$$

$$T(n) = \Theta(1) \qquad n > 1$$

$$n \le 1$$

Proof beyond the scope of this course...

$$T(n) = O(\log(y))$$

```
int gcd (int m, int n) {
  if(n == 0)
    return(m);
  return gcd(n, m % n);
}
```

Determinant

- Laplace's algorithm with unfolding on row i
 - \triangleright Square matrix M ($n \times n$) with indices from 1 to n
- Computation

$$det(M) = \sum_{j=1}^{n} (-1)^{(i+j)} \cdot M[i][j] \cdot det(M_{minor\ i,j})$$

Where $M_{minor i,j}$ is obtained from M ruling-out row i and column j

Example

$$M = \begin{bmatrix} -2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{bmatrix}$$

$$M_{minor 1,1} = \begin{bmatrix} -2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}$$

$$M_{minor 1,2} = \begin{bmatrix} -2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 2 & -1 \end{bmatrix}$$

$$M_{minor 1,3} = \begin{bmatrix} -2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$det\begin{bmatrix}1 & 3\\0 & -1\end{bmatrix} = -1 - 0 = -1$$

$$det \begin{bmatrix} -1 & 3 \\ 2 & -1 \end{bmatrix} = 1 - 6 = -5$$

$$det\begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix} = 0 - 2 = -2$$

$$\det(M) = (-1)^{(1+1)} \cdot (-2) \cdot \det(M_{minor \, 1,1}) + (-1)^{(1+2)} \cdot (2) \cdot \det(M_{minor \, 1,2}) + (-1)^{(1+3)} \cdot (-3) \cdot \det(M_{minor \, 1,3}) =$$

$$= (1) \cdot (-2) \cdot (-1) + (-1) \cdot (2) \cdot (-5) + (1) \cdot (-3) \cdot (-2) = 18$$

- Recursive algorithm
 - > If M has size n, indice ranges between 0 and n-1
- \Rightarrow If n = 2
 - Compute the trivial solution

$$det(M) = M[0][1] M[1][1] - M[0][1] M[1][0]$$

- ❖ If n>2
 - With row=0 and column ranging from 0 and n-1
 - \triangleright Store in tmp the minor $M_{minor\ 0,j}$
 - \triangleright Recursively compute $det(M_{minor \ 0,j})$
 - > Store result results in

```
sum = sum + M[0][k] \cdot pow(-1,k) \cdot det(tmp, n-1)
```

```
int det (int m[][MAX], int n) {
  int sum, c;
  int tmp[MAX][MAX];
  sum = 0;
  if (n == 2)
    return (det2x2(m));
                                   Create minor
  for (c=0; c<n; c++) {
    minor (m, 0, c, n, tmp);
    sum = sum + m[0][c] * pow(-1,c) * det (tmp,n-1);
                                        Recur on minor
  return (sum);
                                         computation
```

```
int det2x2(int m[][MAX]) {
  return(m[0][0]*m[1][1] - m[0][1]*m[1][0]);
void minor(
  int m[][MAX],int i,int j,int n,int m2[][MAX]
) {
  int r, c, rr, cc;
  for (rr = 0, r = 0; r < n; r++)
    if (r != i) {
      for (cc = 0, c = 0; c < n; c++) {
        if (c != j) {
           m2[rr][cc] = m[r][c];
           cc++;
        rr++;
```

Complexity Analysis

Divide and conquer problem	
Number of subproblems	a = n
Reduction value	$k_i = 2n - 1$
Division cost	$D(x,y) = \Theta(1)$
Recombination cost	$C(x,y) = \Theta(1)$

$$T(n) = D(n) + \sum_{i=0}^{a-1} T(n - k_i) + C(n)$$

$$T(n) = \Theta(1) \qquad n > 1$$

$$n \le 1$$

Proof beyond the scope of this course...

$$T(n) = O(n!)$$

```
int det (int m[][MAX], int n) {
    ...
    if (n == 2)
        return (det2x2(m));
    for (c=0; c<n; c++) {
        minor (m, 0, c, n, tmp);
        sum = sum + m[0][c] * ...;
    }
    return (sum);
}</pre>
```

Tower of Hanoi

The Tower of Hanoi (also called The problem of Benares Temple or Tower of Brahma or Lucas' Tower) is a mathematica game consisting of three rods and a number of disks of various diameters

 It was firtlsy introduced the French mathematician Édouard Lucas in 1883

> Édouard Lucas (Paris, 1842-1891)

Tower of Hanoi

- Initial configuration
 - > 3 pegs
 - > 3 disks
 - Disks of decreasing size on first peg
- Final configuration
 - Disks of decreasing size on third peg

- Rules
 - Access only to the top disk
 - On each disk overlap only smaller disks

Tower of Hanoi

Generalization

Work with n disks (and 3 pegs)

Divide and Conquer strategy

- > Initial problem
 - Move n disks from 0 to 2
- Reduction to subproblems
 - Move n-1 disks from 0 to 1, 2 temporary storage
 - Move last disk from 0 to 2
 - Move n-1 disks from 1 to 2, 0 temporary storage
- > Termination condition
 - Move just 1 disk

Move 3 disks from per 0 to peg 2

```
int main (void) {
  hanoi (3, 0, 2);
  return;
}
```

```
Disk 1 from peg 0 to 2
Disk 2 from peg 0 to 1
Disk 1 from peg 2 to 1
Disk 3 from peg 0 to 2
Disk 1 from peg 1 to 0
Disk 2 from peg 1 to 2
Disk 1 from peg 0 to 2
```

```
void hanoi (int n, int src, int dest) {
  int aux;

if (n <= 0) {
    return;
}
  aux = 3 - (src + dest);
  hanoi (n-1, src, aux);
  printf("Disk %d from peg %c to %c\n", n,src,dest);
  hanoi (n-1, aux, dest);

return;
}</pre>

Divide

Move
```


Complexity Analysis

Divide and conquer problem	
Number of subproblems	a = 2
Reduction factor	$k_i = 1$
Division cost	$D(n) = \Theta(1)$
Recombination cost	$C(n) = \Theta(1)$

$$T(n) = D(n) + \sum_{i=0}^{a-1} T(n - k_i) + C(n)$$

$$T(n) = \Theta(1) \qquad n > 1$$

$$n \le 1$$

```
T(n) = 1 + 2 \cdot T(n - 1)
T(1) = 1
As for
Fibonacci ...
T(n) = O(2^{n})
```

```
void hanoi(...) {
  int aux;
  aux = 3 - (src + dest);
  if (n == 1) {
    printf(...);
    return;
  }
  hanoi(n-1, src, aux);
  printf(...);
  hanoi(n-1, aux, dest);
  return;
}
```