Binary Trees

Binary Tree (BT)

- A binary tree is a tree with the following properties:
 - Each internal node has one or two children (exactly two for proper binary trees)
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

Example: Arithmetic Expression Trees

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- □ Example: arithmetic expression tree for the expression $(2 \times (a 1) + (3 \times b))$

Proper binary tree if no unary operator!

Example: Decision Trees

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions

Properties of Binary Trees

Notation

n: # of nodes

 n_e : # of external nodes

 n_i : # of internal nodes

h: height

Properties:

■ $1 \le n_e \le 2^h$

■ $h \le n_i \le 2^h - 1$

■ $h+1 \le n \le 2^{h+1}-1$

■ $\log_2(n+1)-1 \le h \le n-1$

Quiz!

Properties of Proper Binary Trees

Notation

n: # of nodes

 n_e : # of external nodes

 n_i : # of internal nodes

Proper!

h: height

Properties:

■ $h+1 \le n_e \le 2^h$

 $h \le n_i \le 2^h - 1$

■ $2h+1 \le n \le 2^{h+1}-1$

■ $\log_2(n+1)-1 \le h \le (n-1)/2$

 $n_{\rm e} = n_{\rm i} + 1$

Level d has at most 2^d nodes.

level=0

level=1

level=2

level=3

Quiz!

Proof by Induction: $n_e = n_i + 1$ for Proper Binary Trees

- Prove that $n_e = n_i + 1$
 - When $n_i = 1 \dots$
 - When $n_i = 2 \dots$
 - Assume the identity holds when $n_i \le k$, then when $n_i = k+1$...

$$n_{\rm i} = 1$$

Quiz

- \bullet Given a proper binary tree with n node
 - \blacksquare Explain why n is always odd.
 - If *n* is 51, what is the numbers of internal and external nodes, respectively?

Proof by Induction: $n_0 = n_2 + 1$ for General Binary Trees

- \square n_k : # of nodes with k children, k=0, 1, 2
- Proof by induction...

BinaryTree ADT

- The BinaryTree ADT extends the Tree
 ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - position p.left()
 - position p.right()

- Update methods
 may be defined by
 data structures
 implementing the
 BinaryTree ADT
- Proper binary tree:Each node has either 0 or 2 children

Linked Structure for Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes

Linked Structure for Binary Trees

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node

Vector Representation of Binary Trees

Nodes of tree T are stored in vector S

- □ Node v is stored at S[f(v)]
 - \blacksquare f(root) = 1
 - if v is the left child of parent(v),
 f(v) = 2*f(parent(v))
 - if v is the right child of parent(v),
 f(v) = 2*f(parent(v)) + 1

f() is known as level numbering

Quiz!

© 2010 Goodrich, Tamassia

Trees

Vector Representation of Binary Trees: More Examples

Quiz

The binary tree is stored level-by-level in a one-dimensional array. What are the indices of nodes N and M?

Vector Representation of Binary Trees: Analysis

Notation

- n: # of nodes in tree
- N: size of vector S

Time complexity

Operation	Time
left, right, parent, isExternal, isRoot	<i>O</i> (1)
size, empty	<i>O</i> (1)
root	<i>O</i> (1)
expandExternal, removeAboveExternal	<i>O</i> (1)
positions	O(n)

Space complexity

O(N), which is O(2ⁿ) in the worse case

Major drawback!
(So we always want to keep trees as shallow as possible!)

Traversal of Binary Trees

- Basic types of traversal
 - Preorder
 - Postorder
 - Inorder
 - Level order

```
Algorithm binaryPostorder(T,p):

if p is an internal node then

binaryPostorder(T,p.\operatorname{left}()) {reperform the "visit" action for the node p
```

Postorder Traversal for BT

- Can be applied to any "bottom-up" evaluation problems
 - Evaluate an arithmetic expression
 - Directory size computation (for general trees)

Evaluate Arithmetic Expressions

- Based on postorder traversal
 - Recursive method returning the value of a subtree
 - When visiting an internal node, combine the values of the subtrees

Postorder traversal ≡ Postfix notation

Inorder Traversal

- Inorder traversal: a node is visited after its left subtree and before its right subtree
- Application
 - Draw a binary tree
 - Print arithmetic expressions with parentheses

if v is NULL

return

inOrder(v.left())

visit(v)

inOrder(v.right())

Inorder traversal ≡ Projection!

Inorder Traversal: Examples

- Properties of inorder traversal
 - Very close to infix notation
 - Can be obtained by tree projection

Print Arithmetic Expressions

- Based on inorder traversal
 - Print operand or operator when visiting node
 - Print "(" before traversing left subtree
 - Print ")" after traversing right subtree

Algorithm printExpression(v)

if v is NULL

return

$$((2 \times (a - 1)) + (3 \times b))$$

Draw a Binary Tree

 Since inorder traversal is equivalent to tree projection, it is easy to draw a binary tree using inorder traversal.

Euler Tour Traversal

- Generic traversal of a binary tree
- Includes a special cases the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
 - On the left (preorder) \rightarrow + x 2 5 1 x 3 2
 - From below (inorder) \rightarrow 2 x 5 1 + 3 x 2
 - On the right (postorder) \rightarrow 2 5 1 x 3 2 x +

27

Euler Tour Traversal

- Applications
 - Determine the number of descendants of each node in a tree
 - Fully parenthesize an arithmetic expression from an expression tree

Quiz

- Determine a binary tree
 - Inorder=[c q f p x z k y]
 - Preorder=[f c q z x p y k]
- Determine a binary tree
 - Inorder=[z b j d e f m c]
 - Postorder=[b z d e m c f j]
- Determine a binary tree
 - Preorder=[a b c]
 - Postorder=[c b a]

From General to Binary Trees

□ How to transform a general tree to a binary tree → Left-child right-sibling representation

