encryption systems report

Divya Mehta

June 2024

1 Introduction

This document is about three encryption schemes rsa ,pallier,elgamel. Algorithms ,security mechanisms, features, key generation, encryption and decryption is explained in this document. Every method has a different mathematical model involved to keep the text secure. the common thing between them is use of prime numbers

1. RSA scheme

This scheme involves use of two large prime numbers p and q

$$n = p * q$$
$$w = (p-1) * (q-1)$$

now we need a encryption exponent e,we need to have e such that e and w are relatively prime

now we have a public key,

now we need to calculate a decryption exponent such that,

$$d * e \equiv 1 * mod(w)$$

now we have the private key,

we encrypt it using public key, let m be message

$$c \equiv m^e mod(n)$$

we can decrypt the message, c is encrypted message

$$m \equiv c^d mod(n)$$

2. PALLIER scheme

This has two prime numbers having same conditions as above,

$$n = p * Q$$

$$w = (p-1) * (q-1)$$

$$g = n+1$$

we have our public key

$$k * w \equiv mod(n)$$

now we have a private key,

now we can encrypt the message m,

$$c \equiv g^m * r^n mod(n^2)$$

$$d \equiv c^w mod(n^2)$$

$$e = (d-1)/n$$

now we can decrypt the message,

$$e * k \equiv mmod(n)$$

3. ELGAMAL scheme

This involves a selection of a prime number p Now need to select a primitive root b,primitive root of a prime number is a number when sum of remainder of raise to of b less than the divider is same as divider

Then we need a non negetive number a less than p

$$d \equiv b^a mod(p)$$

now public key is

you need a number k greater than 0 and less than p-1,let message be m

$$(b^k, m * d^K) = (h, j)$$

encryption has two parts,

$$(z,x) \equiv (h,j) mod(p)$$

to decrypt the message,

$$m \equiv h^{p-1-a} mod(p)$$