FEUILLE 2 : CALCULS ALGÉBRIQUES - TRIGONOMÉTRIE

I EXERCICES TECHNIQUES

Exercice 1

Simplifier les expressions suivantes :

a.
$$\sum_{k=1}^n \frac{1}{k(k+1)} \text{ (on remarquera que pour } k>0, \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1})$$

b.
$$\sum_{k=1}^{n+1} \frac{1}{n+1+k} - \sum_{k=1}^{n} \frac{1}{n+k}$$
 c. $\sum_{k=1}^{n} \ln\left(1+\frac{1}{k}\right)$ d. $\frac{\prod\limits_{k=0}^{n} (k+1)^2}{\prod\limits_{k=2}^{n} (k-1)^2}$

Exercice 2

Calculer les sommes suivantes :

a.
$$\sum_{(i,j)\in [\![0,3]\!]^2} \frac{i!}{j!}$$
 b. $\sum_{(i,j)\in A} 2^{i+j}$, où $A=\{(i,j)\in \mathbb{N}^2, i+j\leq 5\}$ **c.** $\sum_{1\leq i< j\leq 4} (i+j)$

Exercice 3

Résoudre les systèmes suivants :

a.
$$\begin{cases} x+y=0 \\ 2x-y=1 \end{cases}$$
 b.
$$\begin{cases} 3x+2y=-1 \\ 2x-3y=4 \end{cases}$$
 c.
$$\begin{cases} x=2y \\ x-2y=2 \end{cases}$$
 d.
$$\begin{cases} x+y+z=0 \\ 2x+y-2z=-1 \\ 2x+3y-z=1 \end{cases}$$
 e.
$$\begin{cases} x-y+3z=1 \\ 5x-2y+8z=5 \\ 2x+y-z=2 \end{cases}$$
 f.
$$\begin{cases} x+2y-z=7 \\ 3x-4y+3z=0 \\ 3x+y=2 \end{cases}$$

Exercice 4

Résoudre les inéquations suivantes :

a.
$$|x-1| \le 2$$
 b. $|x^2 + 3x + 2| \le 2$ **c.** $|2x+3| < |4-x|$ **d.** $\sqrt{-x^2 + 2x + 3} > 2x - 1$ **e.** $x + 1 \le \sqrt{2-x}$ **f.** $\sqrt{x^2 + 2x - 3} \le x$

Exercice 5

Résoudre les équations suivantes :

a.
$$\sqrt{3}\cos x - \sin x = -1$$

b. $\cos(3x) + \sin(3x) = 1$

c.
$$\cos(3x) + \sin(3x) = 1$$

c.
$$\cos(2x) + \sqrt{3}\sin(2x) = 1$$

$$\mathbf{d.} \quad \cos^2 x - \sin^2 x = 0$$

$$e. \quad \cos^2 x - \sin^2 x = 1$$

$$f. 2\cos^2 x - \cos x - 1 = 0$$

g.
$$1 + \cos(2x) + \cos(4x) = 0$$

II EXERCICES SUR LES SOMMES ET PRODUITS

Exercice 6

Déterminer le produit des n premiers entiers pairs non nuls $\prod_{1 \le k \le n} (2k)$

et le produit des n premiers entiers impairs $\prod_{0 \le k \le n-1} (2k+1)$

Pour le second produit, décomposer (2n)! en fonction de la parité des entiers.

Exercice 7

Calculer les sommes suivantes :

a.
$$\sum_{(i,j)\in A} 2^{i+j}$$
, où $A = \{(i,j)\in \mathbb{N}^2, i+j \leq n\}, n \in \mathbb{N}^*$

Écrire la somme triangulaire, et calculer les sommes l'une après l'autre.

$$\mathbf{b.} \quad \sum_{1 \leq i < j \leq n} (i+j) \text{ où } n \in \mathbb{N}^*$$

Procéder comme précédemment.

Exercice 8

Montrer que
$$\left(\sum_{k=1}^{n} k\right)^2 = \sum_{k=1}^{n} k^3$$

Utiliser la proposition 3 du cours.

III EXERCICES SUR LES INEGALITES

Exercice 9

Résoudre les inéquations suivantes :

a.
$$x - 1 \le \sqrt{x + 2}$$

b.
$$\sqrt{x+1} > 2 - \sqrt{x}$$

c.
$$\sqrt{x^2 + 3x - 4} \le 2 - \frac{1}{2}x$$

d.
$$\sqrt{3-x} - \sqrt{x+1} > \frac{1}{2}$$

e.
$$\sqrt{x+6} - \sqrt{x+1} > \sqrt{2x-5}$$

f.
$$\sqrt{x^2 + 4} \le \left| \sqrt{|x|} - 2 \right|$$

Ne pas oublier d'étudier les domaines de validité, et penser aux disjonctions de cas en fonction du signe des membres des inégalités.

Exercice 10

Résoudre les inéquations suivantes, en discutant suivant les valeurs du paramètre réel m:

a.
$$\frac{x-m}{m-2} > 3-x$$
 Faire une disjonction de cas suivant le signe de $m-2$

b.
$$\frac{m}{x-1} > \frac{1}{x}$$
 Se ramener à l'étude du signe d'un quotient.

c.
$$\sqrt{x+m} < 3m-x$$

Se ramener à l'étude du signe d'un polynôme. Faire bien attention à la position des racines par rapport au domaine de validité.

Exercice 11

On donne : $-2 \le x \le 3$ et $-1 \le y < 0$.

Donner les meilleurs encadrements de x + y , x - y , xy et $\frac{x}{y}$

Exercice 12

Montrer que

$$\forall (x,y) \in]-1,1[^2, -1 < \frac{x+y}{1+xy} < 1$$

Exercice 13

Le plan étant muni d'un repère orthonormé, représenter graphiquement l'ensemble des points de coordonnées (x, y) tels que $||x + y| - |x - y|| \le 2$.

Se ramener à $(x, y \in \mathbb{R}^+)$, puis faire une disjonction de cas.

Exercice 14

Résoudre l'équation |x+y|+y=|x-y|-y et représenter graphiquement les solutions.

Faire une disjonction de cas suivant le signe de x + y et de x - y.

Exercice 15

Soient a et b des réels strictement positifs tels que $b \le a$.

Classer dans l'ordre croissant a, b, leurs moyennes arithmétiques $m_1 = \frac{a+b}{2}$, géométrique $m_2 = \sqrt{ab}$

et harmonique m_3 telle que $\frac{2}{m_3} = \frac{1}{a} + \frac{1}{b}$.

Remarquer que $(\sqrt{a} - \sqrt{b})^2 = a + b - 2\sqrt{ab} \ge 0$

Exercice 16

Montrer les résultats suivants :

a.
$$\forall (m,n) \in (\mathbb{Z}^*)^2, \left\lfloor \frac{m+n}{2} \right\rfloor + \left\lfloor \frac{n-m+1}{2} \right\rfloor = n$$

Faire une disjonction de cas suivant la parité de m+n

b.
$$\forall x \in \mathbb{R}, \left\lfloor \frac{x}{2} \right\rfloor + \left\lfloor \frac{x+1}{2} \right\rfloor = \lfloor x \rfloor$$

Faire une disjonction de cas suivant la parité de |x|.

c.
$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, \left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$$

IV EXERCICES DE TRIGONOMETRIE

Exercice 17

Montrer que

$$\tan\left(\frac{\pi}{4} - t\right) = \frac{\cos(2t)}{1 + \sin(2t)}$$

Utiliser les formules du cours.

Exercice 18

Soient $(a, b) \neq (0, 0), \omega \in \mathbb{R}$, et f définie sur \mathbb{R} par :

$$f(x) = a\cos(\omega x) + b\sin(\omega x)$$

a. Montrer qu'il existe $\varphi \in [-\pi, \pi]$ tel que $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$ et $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$.

Penser à utiliser $\cos^2 x + \sin^2 x = 1$

b. Montrer que pour tout réel x,

$$f(x) = \sqrt{a^2 + b^2} \cos(\omega x - \varphi)$$

Factoriser par $\sqrt{a^2 + b^2}$, et appliquer une formule du cours.

c. Résoudre dans \mathbb{R} :

- i. $\sin x \cos x > 1$
- ii. $\sqrt{3}\cos x \sin x < 1$

Appliquer la question précédente, et utiliser un cercle trigonométrique pour conclure.

Exercice 19

a. Montrer que pour tous réels a et b:

$$\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right) \qquad \cos a - \cos b = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

$$\sin a + \sin b = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right) \qquad \sin a - \sin b = 2\cos\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

Ecrire $a = \frac{a+b}{2} + \frac{a-b}{2}$ et $b = \frac{a+b}{2} - \frac{a-b}{2}$, puis appliquer les formules du cours.

b. Résoudre les équations suivantes :

i.
$$\cos(3x) - \cos(5x) = \sin(6x) + \sin(2x)$$

ii.
$$\sin(2x) + \sin(4x) + \sin(6x) = 0$$

Appliquer judicieusement la question précédente.

Exercice 20

Exprimer ...

a.
$$(\cos x + \sin x)^2$$
 ... en fonction de $\sin(2x)$

b.
$$\frac{\sin(3x)}{\sin x} + \frac{\cos(3x)}{\cos x}$$
 ... en fonction de $\cos(2x)$

c.
$$\sin x, \cos x, \tan x$$
 et $\frac{\cos x}{1 + \sin x}$... en fonction de $\tan \frac{x}{2}$

Il suffit d'utiliser intelligemment les formules du cours.

Exercice 21

Résoudre dans \mathbb{R} l'équation

$$\frac{1+\cos x}{1-\cos(2x)} = 1$$

Exercice 22

Donner la valeur exacte de

$$\frac{\cos\frac{\pi}{12} + \sin\frac{\pi}{12}}{\cos\frac{\pi}{12} - \sin\frac{\pi}{12}}$$

Penser à l'exercice 18

Exercice 23

a. Vérifier que pour tous réels a et b:

$$2\sin a\cos b = \sin(a+b) + \sin(a-b)$$

Direct

- **b.** Montrer l'égalité : $2\sin\frac{\pi}{7}\left(\cos\frac{\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{5\pi}{7}\right) = \sin\frac{6\pi}{7}$ Avec la formule précédente, on a directement le résultat.
- c. En déduire la valeur exacte de : $\cos \frac{\pi}{7} \cos \frac{2\pi}{7} + \cos \frac{3\pi}{7}$

Exercice 24

a. Vérifier que pour tous réels a et b,

$$2\cos a\cos b = \cos(a+b) + \cos(a-b)$$

b. On suppose que $a + b + c = \pi$. Montrer que

$$\sin a + \sin b + \sin c = 4\cos\frac{a}{2}\cos\frac{b}{2}\cos\frac{c}{2}$$

Utiliser la question précédente

c. On suppose que $a + b + c = \pi$. Montrer que

$$\tan a + \tan b + \tan c = \tan a \, \tan b \, \tan c$$

Utiliser la formule : $\tan a + \tan b = \tan(a+b)(1-\tan a \tan b)$

LES BONS REFLEXES

- *Avant de résoudre une inéquation, toujours étudier le domaine de validité de l'expression.
- ₩ Avoir toujours en tête que :

$$\forall x \in \mathbb{R}, \quad |x| \le x < |x| + 1$$