

Packet Tracer - 子网划分场景 1

拓扑

地址分配表

设备	接口	IP 地址	子网掩码	默认网关
	G0/0			
R1	G0/1			
	S0/0/0			
	G0/0			
R2	G0/1			
	S0/0/0			
S1	VLAN 1			
S2	VLAN 1			
S3	VLAN 1			
S4	VLAN 1			
PC1	网卡			
PC2	网卡			
PC3	网卡			
PC4	网卡			

目标

第 1 部分:设计一个 IP 编址方案

第 2 部分: 为网络设备分配 IP 地址并检验连接

场景

在本练习中,为您指定了一个网络地址 192.168.100.0/24, 您将对它划分子网,并为拓扑中显示的网络提供 IP编址。网络中的每个 LAN 都要有足够的空间,例如,终端设备、交换机和路由器至少应有 25 个地址。R1 和R2 之间的链路两端各需 1 个 IP 地址。

第 1 部分:设计 IP 编址方案

a.	根据拓扑,	需要多少子网?
	\. / T /# D /	

d. 每个子网可以创建多少台可用主机?

注意: 如果您的答案少于所需的 25 台主机,表明您借用了太多位。

e. 计算前五个子网的二进制值。第一个子网已显示。

第 1 步: 将网络 192.168.100.0/24 划分为适当数量的子网。

Net 0: 192 . 168 . 100 . 0 0 0 0 0 0 0

Net 1: 192 . 168 . 100 . ___ __ __ __ __ ___

Net 2: 192 . 168 . 100 . ___ __ __ __ __ ___

Net 3: 192 .168 .100 . ___ __ __ __ ___ ___

f. 计算新子网掩码的二进制值和十进制值。

11111111.1111111111. ___ __ __ __ __ __ __ __ __

255 . 255 . 255 . _____

g. 填写**子网表**,列出所有可用子网的十进制数值、第一个和最后一个可用主机地址和广播地址。重复此操作, 直到列出所有地址。

注意: 您不一定使用所有的行。

子网表

子网数量	子网地址	第一个可用 主机地址	最后一个 可用主机地址	广播地址
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

第2步: 为拓扑图中显示的网络分配子网。

a.	将子网 0 分配给连接到 R1 GigabitEthernet 0/0 接口的 LAN:
b.	将子网 1 分配给连接到 R1 GigabitEthernet 0/1 接口的 LAN:
	将子网 2 分配给连接到 R2 GigabitEthernet 0/0 接口的 LAN:
	· · · · · · · · · · · · · · · · · · ·
d.	将子网 3 分配给连接到 R2 GigabitEthernet 0/1 接口的 LAN:
e.	将子网 4 分配给 R1 和 R2 之间的 WAN 链路:

第 3 步: 记录编址方案。

按照以下指导原则填写子网表:

- a. 为两个 LAN 链路和 WAN 链路的 R1 分配第一个可用 IP 地址。
- b. 为 LAN 链路的 R2 分配第一个可用 IP 地址。为 WAN 链路分配最后一个可用 IP 地址。
- c. 为交换机分配第二个可用 IP 地址。
- d. 为主机分配最后一个可用 IP 地址。

第 2 部分: 为网络设备分配 IP 地址并检验连接

该网络上的大多数 IP 编址已配置。实施以下步骤以完成编址配置。

第 1 步: 在 R1 LAN 接口上配置 IP 编址。

第2步: 在S3上配置 IP 编址,包括默认网关。

第 3 步: 在 PC4 上配置 IP 编址,包括默认网关。

第 4 步: 检验连通性。

只能从 R1、S3 和 PC4 检验连接。但是,您应该能够对地址分配表中列出的每个 IP 地址执行 ping 操作。

推荐评分规则

练习部分	存在问题的 地方	可能的 得分点	实际得分
第 1 部分:设计一个 IP	第 1a 步	1	
编址方案	第 1b 步	1	
	第 1c 步	1	
	第 1d 步	1	
	第 1e 步	4	
	第 1f 步	2	
完成子网表	第 1g 步	10	
分配子网	第 2 步	10	
记录编址	第 3 步	40	
	第 1 部分总得分	70	
Packet Tracer 评分		30	
	总得分	100	