Derivative Rules

f(x)	f'(x)
u(x)v(x)	u'v + uv'
$\underline{u(x)}$	$\underline{u'v - uv'}$
v(x)	v^2
u(v(x))	u'(v(x))v'(x)
x^n	nx^{n-1}
$\ln \left(u\left(x\right) \right)$	u'(x)
	u(x)
$\sin\left(ax\right)$	$a\cos(ax)$
$\cos\left(ax\right)$	$-a\sin(ax)$
$\tan\left(ax\right)$	$a \sec^2(ax)$
$\cot\left(ax\right)$	$-a\csc^2(ax)$
$\sec\left(ax\right)$	$a \sec(ax) \tan(ax)$
$\csc\left(ax\right)$	$-a\csc(ax)\cot(ax)$

Trigonometric Identities

$$1 = \sin^{2}(x) + \cos^{2}(x)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(2x) = \cos^{2}(x) - \sin^{2}(x)$$

$$\sin^{2}(x) = \frac{1 - \cos(2x)}{2}$$

$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$$

Partial Fraction Decomposition

$$ax + b \rightarrow \frac{A}{ax + b}$$

$$(ax + b)^k \rightarrow \frac{A_1}{ax + b} + \dots + \frac{A_k}{(ax + b)^k}$$

$$ax^2 + bx + c \rightarrow \frac{A}{ax^2 + bx + c}$$

$$(ax^2 + bx + c)^k \rightarrow$$

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \dots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k}$$

Integration Techniques

$$\int u \, dv = uv - \int v \, du$$

$$\int f(g(x)) \frac{dg(x)}{dx} \, dx = \int f(u) \, du$$
where $u = g(x)$.

Trigonometric Substitutions

Form	Substitution
$a^{2} - b^{2}x^{2}$ $a^{2} + b^{2}x^{2}$ $b^{2}x^{2} - a^{2}$	$x = \frac{a}{b}\sin(\theta)$ $x = \frac{a}{b}\tan(\theta)$ $x = \frac{a}{b}\sec(\theta)$

L'Hôpital's Rule

If
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$
 or $\pm \infty$, then
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Continuity

f(x) continuous at c iff $\lim_{x\to c} f(x) = f(c)$. Given $a_i = (-1)^i b_i$ and $b_i > 0$.

f(x) is continuous on I:(a,b) if it is If $b_{i+1}\leqslant b_i$ & $\lim_{i o\infty}b_i=0$, then continuous for all $x \in I$.

f(x) is continuous on I:[a, b] if it is Ratio Test continuous for all $x \in I$, but only right continuous at a and left continuous at b. Given $\rho = \lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right|$.

Intermediate Value Theorem

If f(x) is continuous on I : [a, b] and $f(a) \le c \le f(b)$, then $\exists x \in I : f(x) = c$.

Differentiability

$$f(x)$$
 is differentiable at $x=x_0$ iff
$$f'(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$
 exists. This defines the derivative

exists. This defines the derivative
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Differentiability implies continuity.

Mean Value Theorem

If f(x) is continuous and differentiable on I:[a, b], then

$$\exists c \in I: f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Definite Integrals

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x$$

Fundamental Theorem of Calculus

$$\int_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}x} F(x) \, \mathrm{d}x = F(b) - F(a)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x)$$

Taylor Polynomials

$$f(x)\approx p_n(x)=\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}\left(x-x_0\right)^k$$

Taylor Series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \left(x - x_0\right)^n$$

Maclaurin Series: $x_0 = 0$.

Common Maclaurin Series

Function	Series Term	Conv.
e^x	$\frac{x^n}{n!}$	all x
$\sin\left(x\right)$	$ \begin{pmatrix} \frac{x^n}{n!} \\ (-1)^n \frac{x^{2n+1}}{(2n+1)!} \\ (-1)^n \frac{x^{2n}}{(2n)!} \end{pmatrix} $	all x
$\cos\left(x\right)$	$(-1)^n \frac{x^{2n}}{(2n)!}$	all x
$\frac{1}{1-x}$	x^n	(-1, 1)
$\frac{1}{1+x^2}$	$(-1)^n x^{2n}$	(-1, 1)
$\ln\left(1+x\right)$	$\left(-1\right)^{n+1} \frac{x^n}{n}$	(-1, 1]

Power Series: $\sum_{n=0}^{\infty} c_n (x - x_0)^n$

Series Tests

For a series of the form $\sum_{i=1}^{\infty} a_i$:

Alternating Series Test

convergent, else inconclusive.

 $\rho < 1 : convergent$ $\rho > 1$: divergent $\rho = 1$: inconclusive

Multivariable Functions

$$f: \mathbb{R}^n \to \mathbb{R}$$

Level Curves

$$L_{c}(f) = \{(x, y) : f(x, y) = c\}$$

If $f(x, y) \to L$ as $(x, y) \to (x_0, y_0)$, then $\lim_{(x, y) \to (x_0, y_0)} = L$ along any smooth curve.

The limit does not exist if L changes along different smooth curves.

Partial Derivatives: w.r.t one variable, others held constant.

Gradient: $\nabla = \langle \partial_{x_1}, \, \partial_{x_2}, \, \dots, \, \partial_{x_n} \rangle$

Multivariable Chain Rule

$$\begin{array}{lll} \text{For} & f &=& f(\boldsymbol{x}(t_1, \text{ ..., } t_n)) \text{ with } \boldsymbol{x} &=\\ [x_1 & \cdots & x_m] & & \\ & & \frac{\partial f}{\partial t_i} = \boldsymbol{\nabla} f \cdot \partial_{t_i} \boldsymbol{x}. \end{array}$$

Directional Derivative

$$\nabla_{\boldsymbol{u}} f = \nabla f \cdot \boldsymbol{u}$$

where the slope is given by $\|\nabla_{u}f\|$

Critical Points

 (x_0, y_0) is a critical point if $\nabla f(x_0, y_0) =$ 0 or if $\nabla f(x_0, y_0)$ is undefined.

Classification of Critical Points

$$D = f_{xx}f_{yy} - \left(f_{xy}\right)^2$$

D > 0 and $f_{xx} < 0$: local maxima

D>0 and $f_{xx}>0$: local minima

D < 0: saddle point

D=0: inconclusive

Double Integrals

The volume of the solid enclosed between the surface z = f(x, y) and the region Ω is defined by

$$V = \iint_{\Omega} f(x, y) \, \mathrm{d}A.$$

If Ω is a region bounded by $a \leq x \leq b$ and $c \leq y \leq d$, then

$$\iint_{\Omega} f(x, y) dA = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$
$$= \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

Type I Regions

$$\iint\limits_{\Omega} f(x,\,y)\,\mathrm{d}A = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,\,y)\,\mathrm{d}y\,\mathrm{d}x$$

Bounded left & right by:

$$x = a$$
 and $x = b$

Bounded below & above by:

$$y=g_1(x) \text{ and } y=g_2(x)$$
 where $g_1(x) \leq g_2(x)$ for $a \leq x \leq b$:

Type II Regions

$$\iint\limits_{\Omega} f(x,\,y)\,\mathrm{d}A = \int_{c}^{d} \int_{h_{1}(x)}^{h_{2}(x)} f(x,\,y)\,\mathrm{d}x\,\mathrm{d}y \text{ from a fixed point, that point is}$$
 Stable: if both tend toward FP

Bounded left & right by:

$$x = h_1(y)$$
 and $x = h_2(y)$

Bounded below & above by:

$$y = c$$
 and $y = d$

where $h_1(y) \leq h_2(y)$ for $c \leq y \leq d$. To integrate, solve the inner integrals

Vector Valued Functions

$$\mathbf{r}: \mathbb{R} \to \mathbb{R}^n$$

The **domain** of $\mathbf{r}(t)$ is the intersection of the domains of its components.

The **orientation** of $\mathbf{r}(t)$ is the direction **Linear ODEs** of motion along the curve as the value of the parameter increases.

Limits, derivatives and integrals are all component-wise. Each component has its own constant of integration.

Parametric Lines

$$\mathbf{l}(t) = \mathbf{P}_0 + t\mathbf{v}$$

parallel to \boldsymbol{v} .

Tangent Lines

If $\mathbf{r}(t)$ is differentiable at t_0 and $\mathbf{r}'(t_0) \neq$

$$\mathbf{l}(t) = \mathbf{r}(t_0) + t\mathbf{r}'(t_0).$$

Curves of Intersection

Choose one of the variables as the parameter, and express the remaining variables in terms of that parameter.

Arc Length

$$S = \int_{a}^{b} \|\mathbf{r}'(t)\| \, \mathrm{d}t$$

Ordinary Differential Equations

Order: highest derivative in DE. Autonomous DE: does not depend Reduction of Order

explicitly on the independent variable.

Qualitative Analysis

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y)$$

A fixed point is the value of y for which f(y) = 0.

Stability of Fixed Points

Given a positive/negative perturbation Stable: if both tend toward FP Unstable: if both tend away from FP Semi-Stable: if one tends toward FP, and another tends away from FP

Directly Integrable ODEs

For
$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$
:
$$y(x) = \int f(x) \, \mathrm{d}x.$$

Separable ODEs

For
$$\frac{dy}{dx} = p(x)q(y)$$
:

$$\int \frac{1}{q(y)} \frac{dy}{dx} dx = \int p(x) dx.$$

For $\frac{dy}{dx} + p(x)y = q(x)$, use the integrating factor: $I(x) = e^{\int p(x)dx}$, so that

$$y(x) = \frac{1}{I(x)} \int I(x)q(x) dx.$$

Exact ODEs

 $P(x,\,y)+Q(x,\,y)\frac{\mathrm{d}y}{\mathrm{d}x}=0$ has the solution $\Psi(x,\,y)=c$ iff it is exact, namely, when where $\mathbf{l}(t)$ passes through P_0 , and is $P_y = Q_x$, where $P = \Psi_x$ and $Q = \Psi_y$.

$$\Psi(x, y) = \int P(x, y) dx + f(y)$$

$$\Psi(x, y) = \int Q(x, y) dy + g(x)$$

and f(y) and g(x) can be determined by solving these equations simultaneously.

Second-Order ODEs

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = F(x)$$

Homogeneous: F(x) = 0Nonhomogeneous: $F(x) \neq 0$

Initial Values

$$y(x_0)=y_0 \quad y'(x_0)=y_1$$

Boundary Values

$$y(x_0) = y_0 \quad y(x_1) = y_1$$

$$y_2(x) = v(x) y_1(x)$$

v(x) can be determined by substituting y_2 into the ODE, using w(x) = v'(x).

Homogeneous ODEs

$$y_H(x) = e^{\lambda x}$$

Real Distinct Roots

$$y_H(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$

Real Repeated Roots

$$y_H(x) = c_1 e^{\lambda x} + c_2 t e^{\lambda x}$$

Complex Conjugate Roots

Given
$$\lambda = \alpha \pm \beta i$$
:

$$y_H(x) = e^{\alpha x} (c_1 \cos(\beta x) + c_2 \sin(\beta x))$$

Nonhomogeneous ODEs

$$y(x) = y_H(x) + y_P(x).$$

Method of Undetermined Coefficients

See table below. Substitute y_P into the nonhomogeneous ODE, and solve the undetermined coefficients.

Spring and Mass Systems

$$my'' + \gamma y' + ky = f(t)$$

Newton's Law: F = my''Spring force: $F_s = -ky$

Damping force: $F_d = -\gamma y'$

 $m: \max$ k: spring constant γ : damping f(t): external force

Electrical Circuits

The sum of voltages around a loop equals

$$\begin{split} v(t)-iR-L\frac{\mathrm{d}i}{\mathrm{d}t}-\frac{q}{C}&=0\\ L\frac{\mathrm{d}^2q}{\mathrm{d}t^2}+R\frac{\mathrm{d}q}{\mathrm{d}t}+\frac{1}{C}q&=v(t)\\ \text{where }i=\frac{\mathrm{d}q}{\mathrm{d}t}. \end{split}$$

Voltage drop across various elements:

$$\begin{split} v_R &= iR \\ v_C &= \frac{q}{C} \\ v_L &= L \frac{\mathrm{d}i}{\mathrm{d}t} \end{split}$$

R: resistance

C: capacitance

L: inductance v(t): voltage supply

F(x)	$y_P(x)$
a constant	A
a polynomial of degree n	$\sum_{i=0}^n A_i x^i$
e^{kx}	Ae^{kx}
$\cos(\omega x) \text{ or } \sin(\omega x)$	$A_0\cos(\omega x) + A_1\sin(\omega x)$
a combination of the above	a combination of the above
linearly dependent to $y_H(x)$	multiply $y_P(x)$ by x until linearly independent