```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Global_active_power Global_reactive_power Voltage Global_intensity Suk

datetime				
2006-12- 16 17:24:00	4.216	0.418 2	234.840	18.400
2006-12- 16 17:25:00	5.360	0.436 2	233.630	23.000
2006-12- 16	5 374	n 498 - 2	233 290	23 000

data.replace('?',np.nan, inplace=True)
data=data.astype('float32')

data.isnull().sum()

Global_active_power	25979
Global_reactive_power	25979
Voltage	25979
Global_intensity	25979
Sub_metering_1	25979
Sub_metering_2	25979
Sub_metering_3	25979
dtype: int64	

data=data.fillna(data.mean())
data.isnull().sum()

```
Global_active_power 0
Global_reactive_power 0
Voltage 0
Global_intensity 0
Sub_metering_1 0
Sub_metering_2 0
Sub_metering_3 0
dtype: int64
```

data.describe()

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	S
count	2.075259e+06	2.075259e+06	2.075259e+06	2.075259e+06	
mean	1.091373e+00	1.237164e-01	2.435335e+02	4.630594e+00	
std	1.050167e+00	1.121103e-01	4.183342e+00	4.412327e+00	
min	7.600000e-02	0.00000e+00	2.232000e+02	2.000000e-01	
25%	3.100000e-01	4.800000e-02	2.390200e+02	1.400000e+00	
50%	6.300000e-01	1.020000e-01	2.410500e+02	2.800000e+00	
75%	1.520000e+00	1.920000e-01	2.429700e+02	6.400000e+00	
	4.440000 04	1000000 00	0 = 4 = 00	4040000 04	

data.corr()

	Global_active_power	Global_reactive_power	Voltage	Global_
Global_active_power	1.000000	0.247017	-0.398231	
Global_reactive_power	0.247017	1.000000	-0.111817	
Voltage	-0.398231	-0.111817	1.000000	
Global_intensity	0.998889	0.266120	-0.409785	
Sub_metering_1	0.484401	0.123111	-0.195225	
Sub_metering_2	0.434569	0.139231	-0.166764	
Sub_metering_3	0.638555	0.089617	-0.267145	

resampled_data = data.resample('D').sum()
resampled_data = resampled_data.reset_index()
resampled_data.head()

	datetime	Global_active_power	Global_reactive_power	Voltage	Global_intens
0	2006-12- 16	1209.176025	34.922001	93552.53125	5180.799
1	2006-12- 17	3390.459961	226.005997	345725.31250	14398.599
2	2006-12- 18	2203.825928	161.792007	347373.62500	9247.200
_	2006-12-	1000 100070	450.040004	040470 00000	7004.000

plt.plot(resampled_data.index,resampled_data.Global_active_power)

[<matplotlib.lines.Line2D at 0x7f677aa8b290>]

resampled_data.corr()

	Global_active_power	Global_reactive_power	Voltage	Global_
Global_active_power	1.000000	0.041098	0.062393	
Global_reactive_power	0.041098	1.000000	0.050946	
Voltage	0.062393	0.050946	1.000000	
Global_intensity	0.999182	0.062937	0.052214	
Sub_metering_1	0.545338	0.319394	-0.003525	
Sub_metering_2	0.481370	0.182199	-0.013305	
Sub_metering_3	0.732613	0.035568	0.095189	

from scipy.stats import pearsonr
corr,_= pearsonr(resampled_data['Global_active_power'],resampled_data['Global_reactive_pow
corr

0.04109788470945897

corr2,_ = pearsonr(resampled_data['Voltage'],resampled_data['Global_intensity'])
corr2

0.05221350712869457

```
columns={"datetime": "ds", "Global_active_power": "y"}
X_train = resampled_data[:-365]
X_test = resampled_data[-365:]
X_train = X_train.rename(columns=columns)
X_test = X_test.rename(columns=columns)
```

```
X_train=X_train.iloc[:,:2]
X_train.head()
```

ds y

0 2006-12-16 1209.176025

X_test=X_test.iloc[:,:2]
X_test.head()

	ds	У
1077	2009-11-27	1380.026001
1078	2009-11-28	1858.949951
1079	2009-11-29	1650.962036
1080	2009-11-30	1745.189941
1081	2009-12-01	1756.378052

from fbprophet import Prophet
model=Prophet()
model.fit(X_train)

INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonality=True
<fbprophet.forecaster.Prophet at 0x7f677077dc50>

forecast = model.predict(X_test)
forecast.head()

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	additive_t
0	2009- 11-27	1580.084009	1538.098939	2655.419310	1580.084009	1580.084009	519.05(
1	2009- 11-28	1580.207768	1874.097743	2996.493841	1580.207768	1580.207768	822.213
2	2009- 11-29	1580.331526	1781.560735	2936.906976	1580.331526	1580.331526	796.157
3	2009- 11-30	1580.455285	1420.280691	2546.490800	1580.455285	1580.455285	396.118
4	2009- 12-01	1580.579043	1526.008489	2662.526742	1580.579043	1580.579043	516.89

model.plot(forecast,uncertainty=True);


```
from sklearn import metrics
def mean_absolute_percentage_error(y,y_pred):
    y,y_pred = np.array(y), np.array(y_pred)
    return np.mean(np.abs((y - y_pred)/y)) *100
mape=mean_absolute_percentage_error(X_test['y'],forecast['yhat'])
mape
```

20.815831963532684

```
rmse = np.sqrt(metrics.mean_squared_error(X_test['y'],forecast['yhat']))
rmse
```

374.604233946713

model.plot_components(forecast)

resampled_data.head()

```
datetime Global_active_power Global_reactive_power
                                                                      Voltage Global_intens
          2006-12-
      0
                            1209.176025
                                                      34.922001
                                                                  93552.53125
                                                                                     5180.799
               16
          2006-12-
                                                     226.005997
                            3390.459961
                                                                 345725.31250
                                                                                    14398.599
               17
columns={'datetime':'ds','Global_active_power':'y',
        'Global_reactive_power':'add1','Voltage':'add2',
        'Global_intensity':'add3','Sub_metering_1':'add4',
        'Sub_metering_2':'add5','Sub_metering_3':'add6'};
new data = resampled data.rename(columns = columns)
new_data.head()
            ds
                                   add1
                                                 add2
                                                               add3
                                                                       add4
                                                                              add5
                                                                                       add6
                          У
         2006-
      0
                1209.176025
                              34.922001
                                          93552.53125
                                                        5180.799805
                                                                              546.0
                                                                                      4926.0
                                                                        0.0
         12-16
         2006-
                3390.459961
                             226.005997
                                         345725.31250
                                                       14398.599609
                                                                     2033.0 4187.0
                                                                                    13341.0
         12-17
         2006-
                                         347373.62500
      2
                2203.825928
                             161.792007
                                                        9247.200195
                                                                     1063.0 2621.0
                                                                                    14018.0
         12-18
         2006-
                             450 040004
                                                        7004 000000
new train=new data[:-365]
new_test=new_data[-365:]
model = Prophet()
model.add regressor('add1')
model.add_regressor('add2')
model.add_regressor('add3')
model.add_regressor('add4')
model.add_regressor('add5')
model.add_regressor('add6')
     <fbprophet.forecaster.Prophet at 0x7f677a85ead0>
model = model.fit(new_train)
new_pred = model.predict(new_test)
     INFO:fbprophet:Disabling daily seasonality. Run prophet with daily_seasonality=True
```

new pred.head()

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	add1	i
0	2009- 11-27	1597.207251	1362.956407	1397.388265	1597.207251	1597.207251	7.516635	
1	2009- 11-28	1597.347956	1845.279372	1877.083007	1597.347956	1597.347956	-8.857395	
2	2009- 11-29	1597.488661	1629.121530	1659.855539	1597.488661	1597.488661	-2.788241	

mape=mean_absolute_percentage_error(new_test['y'],new_pred['yhat'])
mape

3.0445761457342444

rmse = np.sqrt(metrics.mean_squared_error(new_test['y'],new_pred['yhat']))
rmse

44.87909204303396

model.plot_components(new_pred)

