Probabilistic Method: Problem Set V

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set V of Probabilistic Method 2016 at Courant Institute of Mathematical Sciences.

Question 1.

- 1. Let H have vertices $\{A, B, C, D, E\}$ and be the complete graph on $\{A, B, C, D\}$ and the edges $\{E, A\}$, $\{E, B\}$. For $\alpha > 0$ let $f(n, \alpha)$ denote the probability that G(n, p) does not contain a copy of H when $p = n^{-\alpha}$. Here we will give $f(n, \alpha)$ up to a constant in the exponent.
 - (a) For t = 2, 3, 4, 5 find the subgraph H_t of H on t vertices with the maximal number of edges and find e_t , the number of edges of H_t .
 - (b) Show that H is strictly balanced. What is the threshold function for containing a copy of H? Henceforth, restrict to α so that $p=n^{-\alpha}$ is bigger than that threshold.
 - (c) Let LB_t denote the lower bound, from Janson's Inequality, on the probability that G(n,p) does not contain a copy of H_t . Set LB equal the maximum of LB_t , t=2,3,4,5. Find LB as a function of α there will be three ranges (some graph paper will help!) of α at which different t give the maximum.
 - (d) Find μ, Δ of the upper bound of the Extended Janson's Inequality. Show that the Δ breaks into a finite number of ranges depending on which addend predominates.
 - (e) Combining the lower and upper bounds above get a result of the form:

```
If 0<\alpha<\kappa_1 the f(n,p)=\exp[-\Theta(n^{\gamma_1+\gamma_2\alpha})].

If \kappa_1<\alpha<\kappa_2 the f(n,p)=\exp[-\Theta(n^{\gamma_3+\gamma_4\alpha})].

If \kappa_2<\alpha<\kappa_3 the f(n,p)=\exp[-\Theta(n^{\gamma_5+\gamma_6\alpha})].

If \alpha>\kappa_3 then f(n,p)\sim 1. Here the \kappas and \gammas will be nice rational numbers.
```

Solution.

- (a) We have $e_2 = 1$, $e_3 = 3$, $e_4 = 6$, and $e_5 = 8$.
- **(b)** $n^{-\frac{5}{8}}$ is the threshold function as $\frac{1}{2}, 1, \frac{6}{4}$ is less than $\frac{8}{5}$, which also reveals that H is strictly balanced.
- (c) We have

$$P(G \text{ has no } K_i) \leq (1 - p^{f_i})^{\binom{n}{i}} \sim \exp(-\Theta(n^i - f_i \alpha)),$$

where $f_i = 1, 3, 6, 8$.

- (**d**)
- **(e)**

Question 2.

- 2. In G(n,p) with p=c/n let X be the number of isolated triangles. Let $\mu=E[X]$. In an earlier assignment you calculated the limiting value of μ .
 - (a) For $r \ge 1$ give an exact formula for $S^{(r)} = E[\binom{X}{r}]$. (Hint: There is only one "picture" for r isolated triangles!)

- (b) For r and c fixed find the limiting (in n) value of $S^{(r)}$.
- (c) Use Brun's Sieve to deduce the limiting value of Pr[X = 0].

Solution. (a) By counting, we know that there are $\frac{1}{r!} \prod_{i=0}^{r-1} \binom{n-3}{3}$ cases of isolated triangles. Hence, we have the exact formula as

$$E\binom{X}{r}] = \frac{1}{r!} \prod_{i=0}^{r-1} \binom{n-3i}{3} (1-p)^{3r(n-3r)+9\binom{r}{2}}.$$

(b) As
$$(1-p)^{3r(n-3r)+9\binom{r}{2}} \sim (1-p)^{r(3n-9)}$$
, we have

$$E[X] \sim \frac{u^r}{r!}.$$

(c) By Brun's Sieve, we have that the limiting value of P(X=0) is $e^{\frac{c^3e^{-3c}}{6}}$.

Question 3.

3. The Coupon Collector Problem: Set $m=n\ln n+cn$ where c is a constant. (Don't worry about integrality.) Let f be a random function from $\{1,\ldots,m\}$ to $\{1,\ldots,n\}$. Call $j\in\{1,\ldots,n\}$ missed if there is no $i\in\{1,\ldots,m\}$ with f(i)=j. Let X be the number of missed $j\in\{1,\ldots,n\}$.

- (a) Find E[X] precisely.
- (b) Find the limiting value of E[X].
- (c) For $r \geq 2$ find $E[\binom{X}{r}]$ precisely.
- (d) For fixed $r \geq 2$ and c find the limiting value of $E[\binom{X}{r}]$.
- (e) Apply Brun's Sieve to find the limiting value of Pr[X = 0].

Solution. (a) For, $1 \le i \le n$, let B_i denote the event, where i is missed, and X_i be the indicator random variable for B_i . Let $X = \sum_{i=1}^n X_i$. By Linearity of Expectation, it follows that

$$E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} P(B_i)$$
$$= n(\frac{n-1}{n})^m = n(\frac{n-1}{n})^{n \ln(n) + cn}.$$

(b) With an argument involving Taylor series, which was used in class previously, we know that $n(1-\frac{1}{n})^m \ ne^{-\frac{m}{n}}$. Hence, it follows that $E[X] \sim e^{-c}$.

(c) By counting, we have

$$E[\binom{X}{r}] = \binom{n}{r} (1 - \frac{r}{n})^m.$$

(d) Similar to (b), we have

$$E[\binom{X}{r}] \sim \frac{1}{r!} (ne^{-\frac{m}{n}})^r \sim \frac{\mu^r}{r!}.$$

(e) By Brun's Sieve, we have $P(X=0) \rightarrow e^{-e^{-c}}$.

Question 4.

- 4. In $G \sim G(n, p)$ let X denote the number of isolated edges i.e., the number of v, w adjacent to each other and no other vertices.
 - (a) Find E[X] precisely.
 - (b) Give an explicit parameterization $p = f_1(n) + cf_2(n)$ so that $E[X] \to g(c)$ where g(c) will be an explicit continuous function with $\lim_{c \to -\infty} g(c) = 0$ and $\lim_{c \to +\infty} g(c) = +\infty$. (When X is the number of isolated vertices the parametrization $p = \frac{\ln n}{n} + \frac{c}{n}$ was given in class. This is similar, though the answers are not the same.)
 - (c) With the above parametrization set $\mu := E[X] \sim g(c)$. Use the Brun's Sieve method to show that X approaches a Poisson Distribution with mean μ .
 - (d) Put everything together to make a statement analogous to the isolated vertices statement of the form: If p = blah blah blah then the probability that G has no isolated edges is yadda yadda yadda.

Solution. (a) Let B_i denote the event, where *i*th edge from the index set of edges I, is an isolated edge for $i=1,2...,\binom{n}{2}$. Let X_i be the indicator random variable for B_i , and $X=\sum_{i\in I}X_i$. By linearity of expectation, it follows that

$$E[X] = \sum_{i \in I} E[X_i] = \binom{n}{2} p(1-p)^{2(n-2)},$$

as $E[X_i] = P(X_i) = p(1-p)^{2(n-2)}$ with 2(n-2) edges required not to be present.

(b) Consider the following parametrization:

$$p = \frac{\ln(n)}{2n} + \frac{\ln(\ln(n))}{2n} + \frac{c}{n}.$$

Then, it follows that

$$E[X] \sim \frac{n^2}{2} \ln(n) 2ne^{-\ln(n) - \ln(\ln(n) - c)} = \frac{e^{-c}}{4}.$$

(c) By counting, we have

$$E\begin{bmatrix} \binom{n}{r} \end{bmatrix} = \frac{1}{r!} \prod_{i=0}^{r-1} \binom{n-2i}{2} p^r (1-p)^{2r(n-2)-2r(n-1)}$$
$$\sim \binom{n}{2}^r \frac{1}{r!} (p(1-p)^{2(n-2)})^r \sim \frac{\mu^r}{r!}$$

 $S^{(r)} \sim \frac{u^r}{r!}$. Hence, X approaches Poisson in the limit.

(d) If $p = \frac{\ln(n)}{2n} + \frac{\ln(\ln(n))}{2n} + \frac{c}{n}$, then the probability that G has no isolated edges is $e^{\frac{-e^{-c}}{4}} + o(1)$.