Data Science SS20

Machine Learning VI

Outlier Detection

Outlier Detection

Outline

- Motivation
- Traditional ML Methods
 - DB-Scan Clustering
 - One-Class SVMs
 - Isolation Forests
- Deep Learning Methods
 - Auto Encoder

Outlier Detection

Machine Learning / Data Mining so far...

- We used supervised and unsupervised methods to learn from data
- Constraint: given training data needs to be a (statistically) good representation of the problem → generalization
- Works well for many applications ...

Outlier Detection

But, what if we are looking to detect things that we have not seen before?

- Only "good" examples
- No or only a few "bad" examples
- Applications:
 - Find faulty parts (production QC)
 - Find Malware
 - Find Intruders
 - ...

Outlier Detection

But, what if we are looking to detect things that we have not seen before?

- Only "good" examples
- No or only a few "bad" examples
- Applications:
 - Find faulty parts (production QC)
 - Find Malware
 - Find Intruders
 - ...
- → learn "what is normal" and detect derivations (=outliers)

Outlier Detection

Definition [Wikipedia]

- "In statistics, an outlier is a data point that differs significantly from other observations. An outlier may be due to variability in the measurement or it may indicate experimental error; the latter are sometimes excluded from the data set."
- "In data mining, anomaly detection (also outlier detection) is the identification of rare items, events or observations which raise suspicions by differing significantly from the majority of the data."

Using DBSCAN clustering [see ML 1 in block 1]

Using DBSCAN clustering

Using DBSCAN clustering

Using One-Class SVMs [recall SVMs from ML IV block 2]

SVM: binary supervised classification

- → New optimization problem
- → maximize "Margin":
- → equals minimizing the uncertainty

$$\underset{w}{\arg\min} \sum_{i=0}^{N} \xi_i + \lambda \|w_i\|^2$$
 subject to $y_i(w \cdot x_i - b) \ge 1 - \zeta_i$ and $\zeta_i \ge 0$, for all i .
$$\zeta_i = \max(0, 1 - y_i(w \cdot x_i - b))$$

Using One-Class SVMs (following Schöllkopf)

Support Vector Method for Novelty Detection

Bernhard Schölkopf*, Robert Williamson⁵, Alex Smola⁵, John Shawe-Taylor⁵, John Platt*

Abstract

Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S equals some a priori specified ϕ between 0 and 1.

We propose a method to approach this problem by taying to estimate a function of which is positive on S and negative on the complement. The functional form of Is given by akernel expansion in terms of a potentially small subset of the initiality data; it is regularized by controlling the longth of the weight vector in an associated feature space. We provide a thoroctical analysis of the statistical performance of our algorithm.

The algorithm is a natural extension of the support vector algorithm to the case of unlabelled data.

1 INTRODUCTION

During recent years, a new set of kernel techniques for supervised learning has been developed [8]. Specifically, support vector (\$V\$) algorithms for patien recognition, repression estimation and solution of investe problems have received considerable attention. There have been a few unempos to transfer the idea of using kernels to compute inner products in feature spaces to the domain of assuspersional learning. The problems in that domain are, however, less precisely specified. Generally, they can be characterized as estimating

Now: unitary supervised classification

- → New optimization problem
- → maximize "Margin" between origin and data
- → equals minimizing the uncertainty

Using One-Class SVMs (following Schöllkopf)

Now: unitary supervised classification

- → New optimization problem
- → maximize "Margin" between origin and data
- → equals minimizing the uncertainty

$$egin{aligned} \min_{w,\,\,\xi_i,\,\,
ho} rac{1}{2} \|w\|^2 + rac{1}{
u n} \sum_{i=1}^n \xi_i -
ho \ & ext{subject to:} \ (w \cdot \phi(x_i)) \geq &
ho - \xi_i & ext{for all } i = 1, \dots, n \ \xi_i \geq 0 & ext{for all } i = 1, \dots, n \end{aligned}$$

Using One-Class SVMs (following Schöllkopf)

Now: unitary supervised classification

- → New optimization problem
- → maximize "Margin" between origin and data
- → equals minimizing the uncertainty

$$egin{aligned} \min_{w,\,\,\xi_i,\,\,
ho} rac{1}{2} \|w\|^2 + rac{1}{
u n} \sum_{i=1}^n \xi_i -
ho \ & ext{subject to:} \ (w \cdot \phi(x_i)) \geq &
ho - \xi_i & ext{for all } i = 1, \dots, n \ & \xi_i \geq 0 & ext{for all } i = 1, \dots, n \end{aligned}$$

Non-linear transformation (a.k.a "kernel trick")

Using One-Class SVMs (following Schöllkopf)

In Scikit-Learn:

```
>>> from sklearn.svm import OneClassSVM
>>> X = [[0], [0.44], [0.45], [0.46], [1]]
>>> clf = OneClassSVM(gamma='auto').fit(X)
>>> clf.predict(X)
array([-1, 1, 1, 1, -1])
>>> clf.score_samples(X) # doctest: +ELLIPSIS
array([1.7798..., 2.0547..., 2.0556..., 2.0561..., 1.7332...])
```

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

Using Isolation Forests [Recall Random Forests from ML II in Block 1]

Random Forests:

- Ensemble of simple decision trees
- Classification as voting
- Combination of piecewise linear models

Recall Decision Trees: the base classifier for Random/Isolation Forests

Isolation Forest, just like RF, BUT

Isolation Forest

Effect: trees become much deeper

Depth of as sample as "of out of distribution" Measure:

$$s(x,n) = 2^{-\frac{E(h(x))}{c(n)}}$$

where h(x) is the path length of observation x, c(n) is the average path length of unsuccessful search in a Binary Search Tree and n is the number of external nodes.

→ 1 outlier, 0 inlier

Isolation Forest

In Scikit-Learn:

```
>>> from sklearn.ensemble import IsolationForest
>>> X = [[-1.1], [0.3], [0.5], [100]]
>>> clf = IsolationForest(random_state=0).fit(X)
>>> clf.predict([[0.1], [0], [90]])
array([ 1,  1, -1])
```


https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

Using Auto Encoders

"Layer of the Network

Training via SGD optimization of

$$\underset{w}{\arg\min} \sum_{i=0}^{N} L(y_i, f(x)) + \lambda \sum_{j} w_j^2$$

$$f(x) = \phi_3(w_3\phi_2(W_2\phi_1(W_1x)))$$

Using Auto Encoders [recall Neural Networks from ML IV in Block 2]

Auto Encoders Networks

Basic Version:

 MLP (fully connected or matrix multiplication network)

Auto Encoders Networks

Basic Version:

- MLP (fully connected or matrix multiplication network)
- Output Size = Input Size

Auto Encoders Networks

Basic Version:

- MLP (fully connected or matrix multiplication network)
- Output Size = Input Size
- Latent Space "Bottleneck"

Auto Encoders Networks

Basic Version:

- MLP (fully connected or matrix multiplication network)
- Output Size = Input Size
- Latent Space "Bottleneck"
- Loss: Out put should equal Input simple choice:

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$

Auto Encoders Networks

Intuitive explanation:

 AE is learning how to "compress" data → compact latent space

Why is this helpful for outlier detection?

Auto Encoders Networks

Intuitive explanation:

 AE is learning how to "compress" data → compact latent space

Why is this helpful for outlier detection?

- → AE can NOT reconstruct out of distribution samples!
- → i.e. used for image de-noising

Detect outliers

Train on "normal" data

Feed test data through network

→ compute reconstruction error

Apply Threshold on error → **outlier**

Discussion

