《概率论与数理统计》试卷A

(考试时间: 90分钟; 考试形式: 闭卷)

(注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效)

- 一、单项选择题(本大题共20小题,每小题2分,共40分)
- 1、A, B为二事件,则 $\overline{A \cup B} = ($
 - A, AB B, $\overline{A}\overline{B}$ C, $A\overline{B}$ D, $\overline{A}\bigcup \overline{B}$
- 2、设 A, B, C 表示三个事件,则 \overline{ABC} 表示()
 - A、A, B, C中有一个发生
 - B、A, B, C中恰有两个发生
 - C、A, B, C中不多于一个发生 D、A, B, C都不发生
- 3、A、B 为两事件,若 $P(A \cup B) = 0.8$, P(A) = 0.2, $P(\overline{B}) = 0.4$,

则()成立

A,
$$P(A\overline{B}) = 0.32$$
 B, $P(\overline{A}\overline{B}) = 0.2$

B,
$$P(\overline{A}\overline{B}) = 0.2$$

C,
$$P(B-A) = 0.4$$
 D, $P(\overline{B}A) = 0.48$

$$D, P(\overline{B}A) = 0.48$$

- 4、设 A, B 为任二事件, 则()

A.
$$P(A-B) = P(A) - P(B)$$
 B. $P(A \cup B) = P(A) + P(B)$

$$C$$
, $P(AB) = P(A)P(B)$

C.
$$P(AB) = P(A)P(B)$$
 D. $P(A) = P(AB) + P(AB)$

- 5、设事件 A 与 B 相互独立,则下列说法错误的是()
 - A、 $A 与 \overline{B}$ 独立 B、 $\overline{A} 与 \overline{B}$ 独立
 - C、 $P(\overline{AB}) = P(\overline{A})P(B)$ D、A 与 B一定互斥
- 6、设离散型随机变量 X 的分布列为

X	0	1	2
Р	0.3	0.5	0.2

其分布函数为
$$F(x)$$
,则 $F(3) = ($

A, 0 B, 0.3 C, 0.8 D, 1

7、设离散型随机变量
$$X$$
 的密度函数为 $f(x) = \begin{cases} cx^4, & x \in [0,1] \\ 0, & 其它 \end{cases}$,则常数 $c = ($)

16、下列结论中, $\left(\right)$ 不是随机变量 X 与 Y 不相关的充要条件。

B、泊松 C、正态 D、均匀

A,
$$E(XY) = E(X)E(Y)$$
 B, $D(X+Y) = DX + DY$

$$C$$
, $Cov(X,Y) = 0$

D、X 与Y相互独立

17、设 $X \sim b(n, p)$ 且EX = 6,DX = 3.6,则有(

A,
$$n = 10$$
, $p = 0.6$ B, $n = 20$, $p = 0.3$

C,
$$n = 15$$
, $p = 0.4$ D, $n = 12$, $p = 0.5$

18、设p(x,y), $p_{\xi}(x)$, $p_{\eta}(y)$ 分别是二维随机变量 (ξ,η) 的联合密度函数及边缘密度函 数,则()是 ξ 与 η 独立的充要条件。

A,
$$E(\xi + \eta) = E\xi + E\eta$$

A,
$$E(\xi + \eta) = E\xi + E\eta$$
 B, $D(\xi + \eta) = D\xi + D\eta$

$$C$$
、 ξ 与 η 不相关

$$C$$
、 ξ 与 η 不相关 D 、 対 $\forall x, y$, 有 $p(x,y) = p_{\varepsilon}(x) p_{\eta}(y)$

19、设是二维离散型随机变量,则 X 与 Y 独立的充要条件是 (

A,
$$E(XY) = EXEy$$

A、
$$E(XY) = EXEy$$
 B、 $D(X+Y) = DX + DY$ C、 X 与 Y 不相关

$$C$$
、 X 与 Y 不相关

D、对
$$(X,Y)$$
的任何可能取值 (x_i,y_j) $P_{ij}=P_{i\cdot}P_{\cdot j}$

20、设
$$(X,Y)$$
的联合密度为 $p(x,y) = \begin{cases} 4xy, & 0 \le x, y \le 1 \\ 0, &$ 其它

若 F(x, y) 为分布函数,则 F(0.5, 2) = (

A, 0 B,
$$\frac{1}{4}$$
 C, $\frac{1}{2}$ D, 1

二、计算题(本大题共6小题,每小题7分,共42分)

1、若事件 A 与 B 相互独立,
$$P(A) = 0.8$$
 $P(B) = 0.6$ 。求: $P(A+B)$ 和 $P\{\overline{A} | (A+B)\}$

2、设随机变量 $X \sim N(2,4)$,且 $\Phi(1.65) = 0.95$ 。求 $P(X \ge 5.3)$

$$3$$
、已知连续型随机变量 ξ 的分布函数为 $F(x)= \left\{egin{array}{ll} 0, & x \leq 0 \\ \dfrac{x}{4}, & 0 < x \leq 4 \ , \ 求 \ \mathrm{E}\xi \ \mathrm{Pl} \ \mathrm{D}\xi \ . \\ 1, & x > 4 \end{array} \right.$

- 4、设连续型随机变量 X 的分布函数为 F(x) = A + Barctgx $-\infty < x < +\infty$
- 求: (1) 常数 A 和 B;
 - (2) X 落入(-1, 1)的概率;
 - (3) X 的密度函数 f(x)
- 5、某射手有 3 发子弹,射一次命中的概率为 $\frac{2}{3}$,如果命中了就停止射击,否则一直独立射到子弹用尽。

求: (1) 耗用子弹数 X 的分布列; (2) EX; (3) DX

6、设
$$(\xi, \eta)$$
的联合密度为 $p(x, y) = \begin{cases} 4xy, & 0 \le x, y \le 1 \\ 0, & 其它 \end{cases}$

求: (1) 边际密度函数 $p_{\xi}(x), p_{\eta}(y)$; (2) $E\xi, E\eta$; (3) $\xi 与 \eta$ 是否独立

三、解答题(本大题共2小题,每小题9分,共18分)

1、设 X_1 , X_2 是来自正态总体 $N(\mu,1)$ 的样本,下列三个估计量是不是参数 μ 的无偏估计量,若是无偏估计量,试判断哪一个较优?

$$\hat{\mu}_1 = \frac{2}{3}X_1 + \frac{1}{3}X_2 , \quad \hat{\mu}_1 = \frac{1}{4}X_1 + \frac{3}{4}X_2, \quad \hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{2}X_2.$$

$$2、设 \xi \sim f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0 \\ 0 & 其它 \end{cases} \qquad (\theta > 0) \quad x_1, x_2, ..., x_n \text{ b } \xi \text{ 的一组观察值, } 求 \theta$$

的极大似然估计。