COURS 6 : statistiques spatiales rapide introduction aux processus spatiaux Système d'Information Géographique

Arlette Antoni

Université de Bretagne Sud Université Bretagne Pays de Loire

Année Universitaire 2021 -2022

Types de processus

Ponctuel

position du point aléatoire présence absence d'un événement éventuellement une valeur sur les points

Latticiel position fixée (en réseau) valeur en ces points

Continu

valeur en tout point de l'espace éventuellement non observé mais supposé

Type de support latticiel

Cas régulier

- points équidistants
- maillage (grille)

Cas irrégulier

- épouse les contours d'un objet géométrique
- ou points non équidistants

Distribution de référence

- On observe N points
- Sur une surface S
- Intensité : N/S
- stationnaire au second ordre :

l'intensité du second ordre n'est pas affectée par la translation ne dépend que de la différence entre les points :2(x,y) = 2(xy).

- isotrope : non affecté la rotation
- La stationnarité au second ordre et l'isotropie sont indispensables pour de nombreux outils de statistique spatiale.

Source de variation

Dans le positionnement ou dans la valeur

- Variation due à la réceptivité de la localisation à recevoir des points
 - présence locale favorisant l'événement
 - effet de premier ordre
- Interdépendance entre les observations
 - épidémie ou agrégation
 - rejet
 - Ce sont des effets de second ordre

Quelques objectifs

- Le processus générateur des données génère les coordonnées géographiques associées à l'apparition d'une observation.
- On n'observe qu'une fenêtre (spatiale et ou temporelle)
- On veut quantifier l'écart entre la distribution spatiale des observations et une distribution complètement aléatoire dans l'espace.

2021-2022

Distribution de référence

Poisson

- toutes les positions ont la même probabilité d'accueillir un point
- la position d'un point nouveau est indépendante des points précédents

Concentrée

- certaines position ont de plus fortes probabilités d'accueillir des points
- la localisation d'un premier point favorise l'apparition d'autres points

Régulière

- toutes les positions ont la même probabilité d'accueillir un point
- la localisation d'un premier point défavorise l'apparition d'autres points

Propriétés Processus de Poisson

- Les impacts ou semis : suivent une exponentielle de paramètre λ
- Leur comptage dans un support (intervalle ou espace)
- Le processus de comptage N(s) suit la loi de Poisson de paramètre λs .
- La loi conditionnelle des impacts sachant leur comptage suit une loi uniforme sur s

Simulation d'un Processus de Poisson

Dans R:

- on se donne une unité de surface S
- on découpe la surface en unités de taille S. par ex 5 lignes 4 colonnes ce qui fera r=1 à 20 surfaces
- On tire le nombre total n_r de points du semis suivant une loi de Poisson de λS
- On tire successivement et indépendamment n_r points suivant une loi de probabilité uniforme sur S
- on visualise

2021-2022

Simulation

Poisson

Simulation

Régulier

Simulation

Concentré

Comptage d'un processus de ponctuel

Méthode des quadrats

- découpage de l'espace selon un quadrillage
 Il y a N quadrats
 - Numérotation des quadrats
 on peut numéroter les quadrats séquentiellement de 1 à N
 ou selon les coordonnées ligne et colonne i et j (notre choix)
- Comptage du nombre de points K
 - $\bullet K_{i,j} = n_{i,j}$

Comparaison à un processus de Poisson

Cas poissonnien

$$P(K = k) = \frac{\lambda^k \exp(-\lambda)}{k!}$$

Vérification rapide

- le coefficient de variation $\frac{\sqrt{var(K)}}{\bar{k}}$
 - si Poisson alors CV = 1
 - si CV > 1 concentré
 - si CV < 1 régulier

Les plus proches voisins

Sur des points répartis sur une surface S (mettons Bounding box)

- **Densité moyenne** : Nombre de points sur la surface S, D = N/S
- Moyenne des plus petite distance pour chaque point r on calcule d_r la distance à son voisin le plus proche on en fait la moyenne \bar{d}
- Calcul de la distance théorique : $d_t = \frac{0.5}{\sqrt{D}}$
- Indice de dispersion \bar{d}/d_t

On calcule le nombre de voisins d'un point dans un disque de rayon r

$$R(k) = \frac{surfTot}{N(N-1)} \Sigma_i \Sigma_{j \neq i} 1\{\|x_i - x_j\| < r\}$$
 correctionBord

Si la répartition est aléatoire alors

$$R(k) = \pi r^2$$

Selon les types de processus

On peut aussi normaliser par

$$\sqrt{\frac{K(r)}{\pi}} - r$$