

Lessons | Challenges

Log in

Sign up

UPCOMING CHALLENGES:

CURRENT CHALLENGES:

Challenge

indeed prime Indeed Prime

Scandium 2016

PAST CHALLENGES

Calcium 2015

Kalium 2015

Argon 2015

Chlorum 2014

Sulphur 2014

Phosphorus 2014

Silicium 2014

Aluminium 2014

StoneWall

START

Cover "Manhattan skyline" using the minimum number of rectangles.

Programming language: C++

]++

Solution to this task can be found at our blog.

You are going to build a stone wall. The wall should be straight and N meters long, and its thickness should be constant; however, it should have different heights in different places. The height of the wall is specified by a zero-indexed array H of N positive integers. H[I] is the height of the wall from I to I+1 meters to the right of its left end. In particular, H[0] is the height of the wall's left end and H[N-1] is the height of the wall's right end.

The wall should be built of cuboid stone blocks (that is, all sides of such blocks are rectangular). Your task is to compute the minimum number of blocks needed to build the wall.

Write a function:

int solution(vector<int> &H);

that, given a zero-indexed array H of N positive integers specifying the height of the wall, returns the minimum number of blocks needed to build it.

For example, given array H containing N = 9 integers:

H[0] = 8 H[1] = 8 H[2] = 5

H[3] = 7 H[4] = 9 H[5] = 8

H[6] = 7 H[7] = 4 H[8] = 8

the function should return 7. The figure shows one possible arrangement of seven blocks.

Magnesium 2014
Natrium 2014
Neon 2014
Fluorum 2014
Oxygenium 2014
Nitrogenium 2013
Carbo 2013
Boron 2013
Beryllium 2013
Lithium 2013
Helium 2013
Hydrogenium 2013
Omega 2013
Psi 2012
Chi 2012
Phi 2012
Upsilon 2012
Tau 2012

Assume that:

- N is an integer within the range [1..100,000];
- each element of array H is an integer within the range [1..1,000,000,000].

Complexity:

- expected worst-case time complexity is O(N);
- expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).

Elements of input arrays can be modified.

Copyright 2009–2016 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

Sigma 201	2
Rho 2012	
Pi 2012	
Omicron 2	012
Xi 2012	
Nu 2011	
Mu 2011	
Lambda 20	11
Kappa 201	1
lota 2011	
Theta 2011	
Eta 2011	
Zeta 2011	
Epsilon 201	11
Delta 2011	
Gamma 20	11
Beta 2010	
Alpha 2010)

For programmers

Lessons Challenges Terms FAO

For companies

About

Tour us

Pricing Jobs Blog Terms

Privacy Cookies

API

Sign up for our newsletter:

Information about upcoming challenges, solutions and lessons directly in your inbox.

Your email

Sign up

Social:

f t in

Contact us:

For customer support queries:

UK +44 (0) 208 970 78 68

US 1-415-466-8085 support@codility.com

For sales queries: UK +44 (0) 208 970 78 67 US 1-415-466-8085 sales@codility.com

© 2009-2016 Codility Ltd., registered in England and Wales (No. 7048726). VAT ID GB981191408. Registered office: 107 Cheapside, London EC2V 6DN