©Coordonnées Cylindrique

$$\overrightarrow{OM} = \rho . \overrightarrow{e}_{\rho} + z . \overrightarrow{e}_{z}$$

Correspondance en cartésien du point M :

$$x_1 = \rho \cos(\varphi)$$

$$x_2 = \rho \sin(\varphi)$$

$$x_3 = z$$

$$\vec{v} = \frac{d\vec{OM}}{dt} = \dot{\rho}.\vec{e}_{\rho} + \rho.\dot{\varphi}.\vec{e}_{\varphi} + \dot{z}.\vec{e}_{z}$$

Coordonnées Sphérique

$$\overrightarrow{OP} = r.\overrightarrow{e}_r$$

Correspondance en cartésien du point M :

$$x_1 = \rho \; sin(\theta) cos(\varphi)$$

$$x_2 = \rho \sin(\theta) \sin(\varphi)$$

$$x_3 = rcos(\theta)$$

$$\vec{v} = \frac{d\vec{OP}}{dt} = \dot{r}.\vec{e}_r + \rho.\dot{\theta}.\vec{e}_{\theta} + r.\sin(\theta)\dot{\varphi}.\vec{e}_{\varphi}$$

Base Cartésienne

Vecteur position:

$$x = \left| \left| \overrightarrow{OM} \right| \right| \cos(\theta) . \overrightarrow{u}_{x}$$

$$y = \left| \left| \overrightarrow{OM} \right| \right| sin(\theta). \overrightarrow{u}_{y}$$

Vecteur vitesse:

$$\dot{x} = -\left|\left|\overrightarrow{OM}\right|\right|sin(\theta).\overrightarrow{u}_{x}$$

$$\dot{y} = \left| \left| \overrightarrow{OM} \right| \right| \cos(\theta) \cdot \overrightarrow{u}_{y}$$

Vecteur accélération :

$$\ddot{x} = -\left|\left|\overrightarrow{OM}\right|\right|\cos(\theta).\overrightarrow{u}_{x}$$

$$\ddot{y} = -\left|\left|\overrightarrow{OM}\right|\right|sin(\theta).\overrightarrow{u}_{y}$$

Base Polaire

Vecteur position:

$$\overrightarrow{OM} = r. \overrightarrow{u}_r$$

Vecteur vitesse:

$$\dot{r} = \vec{v} = \dot{r}.\vec{u}_r + r.\dot{\theta}.\vec{u}_{\theta}$$

Vecteur accélération :

$$\vec{a} = \ \ddot{r}.\vec{u}_r \ - \dot{r}.\dot{\theta}.\vec{u}_\theta + \ \dot{r}.\dot{\theta}.\vec{u}_\theta + r.\dot{\theta}.\vec{u}_\theta + r.\dot{\theta}$$

Base De Frenet

Vecteur déplacement MM' dans la base de Frenet :

On observe sur le schéma un point M qui correspond à un instant t puis un autre point sur le même cercle M' = M(t + dt) qui correspond à un très léger déplacement sur le cercle du point M vers M(t + dt).

On cherche à définir ce déplacement que l'on va noter ds :

Ainsi si on cherche à exprimer le vecteur MM' correspondant au déplacement de M vers M' on a besoin de 2 paramètres : le vecteur déplacement correspondant ds et le vecteur de la base de Frenet sur lequel ds se situe. On obtient ainsi l'équation suivante :

Abscisse curviligne :
$$s(t) = \widehat{MM'}$$
 ; $\overline{MM'} = ds.\vec{t}$

Calcul du vecteur vitesse dans la base de Frenet:

La vitesse dans la base de Frenet est portée par le vecteur de la base de Frenet tangentielle au cercle osculateur c'est-à-dire \vec{t} , on l'écrira sous la forme suivante :

$$\vec{v} = \frac{\overrightarrow{MM'}}{dt} = \frac{ds}{dt} \cdot \vec{t}$$

On sait que(askip) : $rac{ds}{dt} = || \overrightarrow{m{v}} || = m{v} = \dot{m{s}}$

D'où:

$$\vec{v} = v \cdot \vec{t} = \dot{s} \cdot \vec{t}$$

Accélération dans la base de Frenet :

L'accélération dans la base de Frenet s'obtiens par dérivation de la vitesse dans la même base. Il faut faire attention à nos vecteurs de cette base qui sont mobiles ! ils ont donc des dérivées différentes de 0 !

On a ainsi :
$$\overrightarrow{a} = \frac{d(\dot{s}.\vec{t})}{dt} = \frac{d\dot{s}}{dt}.\vec{t} + \dot{s}.\frac{d\vec{t}}{dt}$$

On sait que:

$$\frac{d\dot{s}}{dt} = \ddot{s}$$

Source pour cette partie : https://youtu.be/9ril8PbyUSE (merci)

Cherchons $\frac{d\vec{t}}{dt}$:

$$\frac{d\vec{t}}{dt} = \frac{\overrightarrow{t(t+dt)} - \overrightarrow{t(t)}}{dt}$$

On a ainsi:

$$\frac{d\vec{t}}{dt} = \frac{d\alpha}{dt} \cdot \frac{d\vec{t}}{d\alpha}$$

Cherchons $\frac{d\vec{t}}{d\alpha}$:

Reprenons le schéma ci-dessus et rendons le plus précis pour notre étude :

Sur le repère cartésien, il est facile d'obtenir les coordonnées du vecteur tangentielle \vec{t} a l'instant t+dt et \vec{n} a l'instant t+dt:

$$ec{t} = \cos(dlpha)ec{u}_x + \sin(dlpha)ec{u}_y$$
 $et \qquad ec{n} = -\sin(dlpha)ec{u}_x + \cos(dlpha)ec{u}_y$

Donc:
$$\frac{d\vec{t}}{d\alpha} = \frac{d(\cos(d\alpha)\vec{u}_x + \sin(d\alpha)\vec{u}_y)}{dt} = -\sin(d\alpha)\vec{u}_x + \cos(d\alpha)\vec{u}_y = \vec{n}$$

(car n'oubliez pas dans le repère cartésien les vecteur unitaire Ux et Uy sont fixe.)

Donc:

$$\Rightarrow \frac{d\vec{t}}{dt} = \dot{\alpha} \cdot \vec{n}$$

Mais a quoi correspond α?

(reregarde le cercle osculateur), on a ce qu'on appel le rayon de courbure dans le repère de Frenet qui correspond ducoup a SM sur le schéma.

On peut exprimer ds pour trouver $\dot{\alpha}$:

 $ds = R. d\alpha$ (On effet le déplacement s dépends de ces 2 paramètres)

$$\Leftrightarrow \frac{ds}{dt} = R.\frac{d\alpha}{dt} = > \dot{s} = R.\dot{\alpha}$$

D'où :
$$\dot{\alpha} = \frac{\dot{s}}{R} = \frac{v}{R}$$

Donc on reprend l'expression de l'accélération :

$$\vec{a} = \frac{d(\dot{s}.\vec{t})}{dt} = \frac{d\dot{s}}{dt}.\vec{t} + \dot{s}.\frac{d\vec{t}}{dt}$$

Et on remplace:

$$\vec{a} = \ddot{s}.\vec{t} + \dot{s}.\frac{\dot{s}}{R}.\vec{n}$$

Finalement,

$$\vec{a} = \frac{dv}{dt} \cdot \vec{t} + \frac{v^2}{R} \cdot \vec{n}$$

Ps : on gardera cette notation finale comme résultat final de l'accélération dans la base de Frenet, je vous conseille d'apprendre la démarche sinon apprenez au minimum le résultat de cours!

Rayon de courbure, comment l'exprimer?

Bon ok y a 3 putin de cas, mais généralement le cas très utilises est sur un repère cartésien et en 2 dimensions ! (Généralement).

Dans notre cas, si on observe le schéma l'étude est mené sur un repère cartésien d'axe x,y.

Bref, le seul Rayon de Courbure réellement important à retenir est donc :

1 er cas:

$$R = rac{v^3}{\|ec{a} \wedge ec{v}\|} = rac{(\dot{x}^2 + \dot{y}^2)^{3/2}}{\ddot{y}\dot{x} - \ddot{x}\dot{y}}$$
 car v représente la norme de la vitesse avec $ec{v}(\dot{x},\dot{y})$

2 -ème cas:

Si la courbe est paramétrée en coordo polaires c'est-à-dire : $r = r(\theta)$:

$$\mathbf{R} = \frac{(r^2 + \dot{r}^2)^{3/2}}{r^2 + 2\dot{r}^2 - r\ddot{r}}$$

<u>3-eme cas</u>: on connait la fonction f correspondant a la courbe avec a chaque x, une image f(x):

$$R = \frac{(1 + \dot{f}^2)^{3/2}}{\ddot{f}}$$

Source: http://www.bibmath.net/dico/index.php?action=affiche&quoi=./c/courbure.html