Calculus on \mathbb{R} Excercise 1 Fill in the following table, with the help of the notions from the lecture:

Nr.	A	LB A	UB A	inf A	sup A	min A	max A
1	$(-\infty, -1] \cup (2, +\infty)$	Ø	ø	- ~	+ >>	- 00	+ >>
2	$(-1,9] \cup [10,20)$	(-00,-1]	[20,+00)	-1	20	¥	73
3	$\left((-1,9] \cup [10,20) \right) \cap \mathbb{N}$	(-00,1]	[20,+00)	1	20	1	Z
4	$\{1, 2, 3\}$	(-∞,1]	[3,+∞)	1	3	1	3
5	М	(-00,1]	Ø	1	420	1	+ 🔯
6	$\mathbb{R} \setminus \{1, 2, 3\}$	(-0,1]	[3,+∞)	1	3	F	A
7	$\mathbb{R} \backslash \mathbb{N}$	ø	Ø	-8	+ >>>	Z	8
8	\mathbb{Z}	Ø	Ø	- 8	+ 500	F	X
9	$\mathbb{R} ackslash \mathbb{Z}$	Ø	Ø	- ∞	+ >>	Z	Ħ
10	Q	Ø	Ø	- 50	+ 50	Z	F
11	$\mathbb{R} ackslash \mathbb{Q}$	Ø	Ø	- >>	+ ∞	F	3
12	$\mathbb R$	Ø	Þ	-8	+ >>	Z	18

_

Exercise 2:

Determine the same requirements as for Exercise 1, this time, for the sets:

$$A = \bigcup_{n \in \mathbb{N} \setminus \{1\}} \left(-1 + \frac{1}{n}, 1 - \frac{1}{n} \right), \quad B = \bigcup_{n \in \mathbb{N}} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right]$$

$$C = \bigcap_{n \in \mathbb{N} \setminus \{1\}} \left(-1 + \frac{1}{n}, 1 - \frac{1}{n} \right) \quad D = \bigcap_{n \in \mathbb{N}} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right]$$

$$E = \bigcup_{n \in \mathbb{N}} \left[-1 - \frac{1}{n}, 1 + \frac{1}{n} \right] \quad D = \bigcap_{n \in \mathbb{N}} \left(-1 - \frac{1}{n}, 1 + \frac{1}{n} \right)$$

Exercise 3:

Fill in the following table, by using \checkmark when the set if a neighbourhood of -1 and X when it is not :

(-1, 2]	(-2,1)	[-1, 1]	$\mathbb{R} \setminus \{1\}$	Z	$\mathbb{R}\setminus(-1,0)$	\mathbb{Q}
X	✓	×	/	X	×	×

Argumentați (demonstrați) fiecare afimație folosind rezultatele teoretice de la curs.

A set
$$U \in \mathbb{R}$$
 is a neighborhood of -1 if $U \supset (-1 - \mathcal{E}, -1 + \mathcal{E})$ for some $\mathcal{E} > 0$.

If a $\mathcal{E} - 1 < \mathcal{b}$, then the closed interval $[a, b]$ is a neighborhood of -1, since it contains the interval $(\mathcal{X} - \mathcal{E}, \mathcal{X} + \mathcal{E})$ for sufficiently small $\mathcal{E} > 0$.

Exercise 2:

Determine the same requirements as for Exercise 1, this time, for the sets:

$$\begin{split} A &= \bigcup_{n \in \mathbb{N} \backslash \{1\}} \left(-1 + \frac{1}{n}, 1 - \frac{1}{n}\right), \quad B &= \bigcup_{n \in \mathbb{N}} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n}\right] \\ C &= \bigcap_{n \in \mathbb{N} \backslash \{1\}} \left(-1 + \frac{1}{n}, 1 - \frac{1}{n}\right) \quad D &= \bigcap_{n \in \mathbb{N}} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n}\right] \\ E &= \bigcup_{n \in \mathbb{N}} \left[-1 - \frac{1}{n}, 1 + \frac{1}{n}\right] \quad \bigstar = \bigcap_{n \in \mathbb{N}} \left(-1 - \frac{1}{n}, 1 + \frac{1}{n}\right) \end{split}$$

$$A = \bigcup_{m \in \mathbb{N} \setminus \{1\}} \left(-1 + \frac{1}{m}, 1 - \frac{1}{m}\right) = \left(-1 + \frac{1}{m}, 1 - \frac{1}{m}\right) = \left(-1, 1\right)$$

$$LB(A) = [-\infty, -1] \quad inf A = -1 \notin A \Rightarrow \forall min A$$

$$UP(A) = [1, +\infty) \quad mupA = 1 \notin A \Rightarrow \forall max A$$

$$B = \bigcup_{m \in \mathbb{N}} \left[-1 + \frac{1}{m} , 1 - \frac{1}{m} \right] = \left[-1 + 1, 1 - 1 \right] \cup \dots \cup \left[-1 + \frac{1}{m}, 1 - \frac{1}{m} \right] =$$

$$= \left[-1 + \frac{1}{m}, 1 - \frac{1}{m} \right] = \left[-1, 1 \right]$$

$$= \left[-1 + \frac{1}{m}, 1 - \frac{1}{m} \right] = \left[-1, 1 \right]$$

$$LB(B) = \left[-\infty, -1 \right] \quad \text{int } B = -1 \in B \Rightarrow J \text{ min } B = -1$$

$$UP(B) = \left[1, +\infty \right) \quad \text{sup } B = 1 \in B \Rightarrow J \text{ maxe } B = 1$$

$$c = \bigcap_{M \in M \setminus \{1\}} \left(-1 + \frac{1}{m}, 1 - \frac{1}{M} \right) = \left(-\frac{1}{1} + \frac{1}{2}, 1 - \frac{1}{2} \right) = \left(-\frac{2+1}{2}, \frac{1}{2} \right) =$$

$$= \left(-\frac{1}{2}, \frac{1}{2} \right)$$

$$= \left(-\frac{1}{2}, \frac{1}{2} \right)$$

$$= \left(-\infty, -\frac{1}{2} \right)$$

$$inf c = -\frac{1}{2} \neq c \Rightarrow \text{ min } c$$

 $UP(c) = \left(\frac{1}{2}, +\infty\right) \qquad \text{myo } c = \frac{1}{2}, \neq c \Rightarrow \text{ of } mose c$

$$D = \bigcap_{m \in \mathbb{N}} \left[-1 + \frac{1}{m}, 1 - \frac{1}{m} \right] = \left[-1 + 1, 1 - 1 \right] = \left[-1 + 1, 1$$

$$2B(D) = (-\infty, 0)$$
 inf $D = 0 \in D \ni \overline{f} \cap D = 0$

$$UP(D) = (0, +\infty)$$

$$E = \bigcup_{m \in \mathbb{N}} \left[-1 - \frac{1}{m} \left[-A + \frac{1}{M} \right] \right] = \left[-A - \frac{1}{A} \left[-A + \frac{1}{A} \right] \right] \cup \dots \cup \left[-1 - \frac{1}{m} \left[-A + \frac{1}{M} \right] \right] = \left[-2 \cdot 2 \right] \cup \dots \cup \left[-\frac{M+1}{M} \left[\frac{M+1}{M} \right] \right] = \left[-A \cdot A \right]$$

$$= \left[-\frac{M+1}{M} \left[-\frac{M+1}{M} \right] \right] = \left[-A \cdot A \right]$$

$$LB(E) = (-\infty, -1)$$
 in $E = -1$ $E = 3$ \exists min $E = -1$

$$\overline{T} = \bigcap_{m \in \mathbb{N}} \left(-A - \frac{1}{m}, A + \frac{1}{m} \right) = \left(-A - \frac{1}{A}, A + \frac{1}{A} \right) \cap \dots \cap \left(-A - \frac{1}{m}, A + \frac{1}{m} \right) = \left(-2, 2 \right) \cap \dots \cap \left(-\frac{m+A}{m}, \frac{M+1}{m} \right) = \left(-2, 2 \right)$$

$$LB(F) = (-\infty, -2) \qquad \text{inf} = -2 \Leftrightarrow F \Rightarrow \text{fmin} F$$

$$UP(F) = (2, +\infty)$$
 sup $F = 2 \notin F \Rightarrow$ mose F