Exercice 3 - Filtre passe-haut *

On considère le circuit suivant, où le générateur de tension délivre un signal sinusoïdal.

Question

1) Tracer le schéma équivalent du circuit avec la notation complexe.

Solution

où $\underline{V_e}$ et $\underline{V_s}$ représentent respectivement les amplitudes complexes de $v_e(t)$ et $v_s(t)$.

Question

2) Calculer la fonction de transfert isochrone du circuit $\underline{H} = \frac{\underline{V_s}}{\underline{V_e}}$

Indice

Il faut dans un premier temps exprimer $\underline{V_{s}}$ en fonction de $\underline{V_{e}}$.

Indice

Le circuit peut être simplifié en regroupant les impédances complexes de la bobine et de la résistance qui sont en parallèle. On reconnaît ensuite un pont diviseur de tension.

Solution

On simplifie le circuit en définissant une impédance complexe équivalente, notée $\underline{Z_{eq}}$ qui correspond aux impédances en parallèle de la bobine et de la résistance.

$$egin{align} rac{1}{Z_{eq}} &= rac{1}{R} + rac{1}{jL\omega} \ &\Leftrightarrow rac{Z_{eq}}{rac{1}{R} + rac{1}{iL\omega}} \ \end{aligned}$$

$$\Leftrightarrow rac{Z_{eq}}{1+rac{R}{iL\omega}}$$

$$\Leftrightarrow Z_{eq} = rac{jRL\omega}{R+jL\omega}$$

Le circuit équivalent devient :

On reconnaît à présent un pont diviseur de tension. On peut donc écrire :

$$\underline{V_s} = rac{\underline{Z_{eq}}}{\underline{Z_{eq}} + rac{1}{jC\omega}} \cdot \underline{V_e}$$

$$\Leftrightarrow \underline{V_s} = rac{Z_{eq} j C \omega}{1 + Z_{eq} j C \omega} \cdot \underline{V_e}$$

On remplace $\underline{Z_{eq}}$ par son expression :

$$\Leftrightarrow rac{JRL\omega}{R+jL\omega}\cdot jC\omega \ 1+rac{jRL\omega}{R+jL\omega}\cdot jC\omega \ \cdot rac{V_e}{R+jL\omega}$$

$$\Leftrightarrow rac{V_s}{1-rac{RLC\omega^2}{R+jL\omega}} \cdot rac{V_e}{1+jL\omega}$$

Pour simplifier, on multiplie en haut et en bas par $R+jL\omega$:

$$\Leftrightarrow rac{V_s}{R+iL\omega-RLC\omega^2}\cdotrac{V_e}{R}$$

Par conséquent :

$$\Leftrightarrow \underline{H} = rac{V_s}{V_e} = rac{-RLC\omega^2}{R+jL\omega-RLC\omega^2}$$

Question

3) Mettre la fonction de transfert isochrone sous la forme canonique suivante :

$$\underline{H} = rac{A \cdot \left(rac{j\omega}{\omega_0}
ight)^2}{1 + jrac{2m\omega}{\omega_0} + \left(rac{j\omega}{\omega_0}
ight)^2}$$

Identifier ω_0 , m et A.

Indice

Il suffit d'identifier les deux expressions.

Solution

$$\underline{H} = rac{A \cdot \left(rac{j\omega}{\omega_0}
ight)^2}{1 + jrac{2m\omega}{\omega_0} + \left(rac{j\omega}{\omega_0}
ight)^2} = rac{-RLC\omega^2}{R + jL\omega - RLC\omega^2}$$

$$\Leftrightarrow rac{-A\cdot\left(rac{\omega}{\omega_0}
ight)^2}{1+jrac{2m\omega}{\omega_0}-\left(rac{\omega}{\omega_0}
ight)^2} = rac{-LC\omega^2}{1+jrac{L}{R}\omega-LC\omega^2}$$

• En identifiant les termes en ω^2 au dénominateur, on a :

$$\left(rac{1}{\omega_0}
ight)^2 = LC \Leftrightarrow \omega_0^2 = rac{1}{LC} \Leftrightarrow \omega_0 = rac{1}{\sqrt{LC}}$$

• En identifiant les termes en ω , on a :

$$rac{2m}{\omega_0} = rac{L}{R} \Leftrightarrow m = rac{\omega_0 L}{2R}$$

En remplaçant par l'expression de ω_0 , on obtient :

$$m=rac{L}{2R\sqrt{LC}}\Leftrightarrow m=rac{1}{2R}\sqrt{rac{L}{C}}$$

• En identifiant les numérateurs, on trouve : A=1

Question

4) Tracer le diagramme de Bode (gain et phase) à l'aide d'Octave. On prendra : $R=1\,k\Omega$, $C=10\,\mu F$ et $L=0,1\,H$.

Indice

Un exemple du tracé du diagramme de Bode à l'aide d'Octave a été donné dans le cours sur le circuit RC 介.

Solution

Simulation

```
1 >> R=1e3; C=10e-6; L=0.1;
2 >> f=logspace(1,4,1000);%définit un vecteur fréquence contenant des valeurs réparties
3 >> w=2*pi*f;
4 >> H=-L*C*w.^2./(1+j*L/R*w-L*C*w.^2);% définition de la fonction de transfert ischron
5 >> GdB= 20*log10(abs(H)); % calcul du gain en dB. log10 est utilisé pour calculer le
6 >> Phi=phase(H); % calcul de la phase en rad. phase permet de calculer l'argument d'u
8 >> % Tracé du diagramme de Bode
9 >> figure(1)
10 >> semilogx(f,GdB) %diagramme du gain
11 >> xlabel('Fréquence en Hz')
12 >> ylabel('Gain en dB')
13
14 >> figure(2)
15 >> semilogx(f,Phi*180/pi) %diagramme de phase
16 >> xlabel('Fréquence en Hz')
17 >> ylabel('Phase en °')
```

On obtient les deux figures suivantes :

Question

5) A l'aide des figures obtenues à la question précédente, déterminer graphiquement que la fréquence de résonance $f_0=rac{\omega_0}{2\pi}=rac{1}{2\pi\sqrt{LC}}=159,15\,Hz$.

Indice

Utiliser les curseurs pour déterminer à la fréquence à laquelle le gain est maximum.

Solution

On trouve une fréquence de résonance expérimentale de $158,9\,Hz$, ce qui est très proche de la valeur théorique.

Question

6) Vérifier que le gain à la fréquence de résonance vaut : $20 \cdot \log \left(rac{R}{L \omega_0}
ight)$

Solution

L'application numérique du gain à la fréquence de résonance donne :

$$20 \cdot \log igg(rac{R}{L \omega_0}igg) = 20 \, dB$$

En réutilisant la courbe de la question précédente, on trouve que le gain à la fréquence de résonance est de 19,98 dB, ce qui est très proche de la valeur théorique.