

Bilgisayar Grafiği HAFTA 4 2B Homojen Koordinat Sistemi

Arş. Gör. Dr. Gülüzar ÇİT

Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü gulizar@sakarya.edu.tr

Konu & İçerik

- ➤Öteleme ve Homojen Koordinatlar
 - **≻**Öteleme
 - ➤ Homojen Koordinat Sistemi
 - ➤ Döndürme
 - >Ölçekleme
 - ➤ Shearing
 - **≻**Öteleme
- ➤ Kaynaklar

Öteleme

- ➤ Döndürme
 - ➤ Orijin etrafında değil de başka bir referans noktası etrafında dönülüyor ise
 - ➤ Nesneyi, seçilen referans noktası orijine gelecek şekilde ötele
 - ➤ Nesneyi döndür
 - Döndürülen nesneyi eski konumuna geri ötele

Homojen Koordinat Sistemi

- ➤ Neden?
 - $\triangleright(x,y)$ noktasına öteleme uygulanırsa;

$$x^* = ax + cy + m$$
$$y^* = bx + dy + n$$

- ➤ 2x2'lik matris gösteriminde *m* ve *n* parametrelerini gösteremeyiz. Bu nedenle BG'de homojen koordinat sistemi kullanılmaktadır.
- $\triangleright [x \ y]$ vektörü homojen koordinat sisteminde $[x' \ y' \ h]$ biçiminde gösterilmekte ve $x = \frac{x'}{h}$, $y = \frac{y'}{h}$ (h: reel sayı ve h = 0: özel anlam taşır)

Homojen Koordinat Sistemi...

- $\triangleright [x \ y \ 1]$ gösterimi, $[x \ y]$ vektörünün fiziksel gösterimine karşılık gelmektedir.
- ► [6 4 2], [12 8 4], [3 2 1] gösterimlerinin hepsi aynı fiziksel (3,2) noktasını göstermektedir.

Dönüşüm matrisi
$$\Rightarrow$$
 $[T] = \begin{bmatrix} a & b & 0 \\ c & d & 0 \\ m & n & 1 \end{bmatrix}$

a,b,c ve d: daha önce bahsedilen dönüşümler m ve n: öteleme

2B Dönüşümler

a,b,c ve d: daha önce bahsedilen dönüşümler

m ve n: öteleme

$$[x^* \quad y^* \quad 1] = [x \quad y \quad 1]. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ m & n & 1 \end{bmatrix} = [x + m \quad y + n \quad 1]$$

$$\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Döndürme

$$\begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Ölçekleme

Shearing

$$\begin{bmatrix}1&0&0\\0&1&0\\m&n&1\end{bmatrix}$$

Öteleme

≻Aynalama

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

➤ Herhangi Bir Nokta Etrafında Döndürme

(x,y) noktasını (m,n) noktası etrafında θ kadar döndürme

Adım 1: Noktayı orjine ötele $\Rightarrow T_1$

Adım 2: İstenilen döndürmeyi yap $\Rightarrow T_2$

Adım 3: Noktayı eski yerine geri ötele $\Rightarrow T_3$

$$[T_{1}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -m & -n & 1 \end{bmatrix}$$

$$[T_{2}] = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$[T_{3}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ m & n & 1 \end{bmatrix}$$

$$[T_{3}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ m & n & 1 \end{bmatrix}$$

Bileşik Dönüşüm Matrisi:

$$[x^* \quad y^* \quad 1] = [x \quad y \quad 1]. \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ -m(-1+\cos \theta) + n\sin \theta & -n(-1+\cos \theta) - m\sin \theta & 1 \end{bmatrix}$$

 $ightharpoonup \ddot{O}RNEK$: Merkezi (4,3) noktasında olan cismi bu merkez etrafında 90^o döndürmek için gerekli olan dönüşüm matrisini hesaplayın.

Adım 1: Noktayı orjine ötele $\Rightarrow T_1$ Adım 2: $90^{\circ} d\ddot{o}nd\ddot{u}r \Rightarrow T_2$ Adım 3: Noktayı geri ötele $\Rightarrow T_3$ $[T_{1}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -m & -n & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & -3 & 1 \end{bmatrix}$ $[T_{2}] = \begin{bmatrix} \cos 90 & \sin 90 & 0 \\ -\sin 90 & \cos 90 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $[T] = [T_{1}] \cdot [T_{2}] \cdot [T_{3}]$ $= \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 7 & -1 & 1 \end{bmatrix}$ $[T_3] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ m & n & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$

➢ Herhangi Bir Eksene/Doğruya Göre Aynalama

```
Adım 1: Doğruyu eksenlerden birine çakıştır

Adım 1.1: Doğruyu orjin ile çakışacak şekilde ötele (0,-2)\Rightarrow T'

Adım 1.2: Doğruyu x ekseni ile çakışacak şekilde -\theta kadar döndür \Rightarrow R

Adım 2: Aynala \Rightarrow R'

Adım 3: Doğruyu orijinal konumuna geri ötele

Adım 3.1: Doğruyu \theta kadar geri döndür \Rightarrow [R]^{-1}

Adım 3.2: Doğruyu geri ötele (0,2)\Rightarrow [T']^{-1}

Genelleştirilmiş Dönüşüm Matrisi \Rightarrow [T] = [T'].[R].[R'].[R]^{-1}.[T]^{-1}
```

 $ightharpoonup \frac{\ddot{O}RNEK:}{\ddot{O}RNEK:}$ Koordinatları $A=\begin{bmatrix}2&4&1\end{bmatrix}, B=\begin{bmatrix}4&6&1\end{bmatrix}$ ve $A=\begin{bmatrix}2&6&1\end{bmatrix}$ noktalarından geçen $\frac{\Delta}{ABC}$ 'nin $L=\frac{1}{2}(x+4)$ doğrusuna göre aynalayınız.

- $ightharpoonup rac{\ddot{O}RNEK:}{A}$ Koordinatları $A=\begin{bmatrix}2&4&1\end{bmatrix}, B=\begin{bmatrix}4&6&1\end{bmatrix}$ ve $A=\begin{bmatrix}2&6&1\end{bmatrix}$ noktalarından geçen $\frac{\Delta}{ABC}$ 'nin $L=\frac{1}{2}(x+4)$ doğrusuna göre aynalayınız. [DEVAMI...]
 - Aynalama işlemini gerçekleştirmek için doğruyu eksenlerden birisi ile çakışacak şekilde dönüşüm uygulamalıyız.

Adım 1: L doğrusunu x eksenine çakıştır

Adım 1.1: Doğruyu orjin ile çakışacak şekilde ötele (0,-2)⇒ T1

Adım 1.2: Doğruyu x ekseni ile çakışacak şekilde $-\theta$ kadar döndür \Rightarrow **T2**

Adım 2: Aynala \Rightarrow **T3**

Adım 3: L doğrusunu orijinal konumuna geri ötele

Adım 3.1: Doğruyu θ kadar geri döndür \Rightarrow **T4**

Adım 3.2: Doğruyu geri ötele $(0,2) \Rightarrow T5$

 $ightharpoonup rac{\ddot{O}RNEK:}{O}$ Koordinatları $A=\begin{bmatrix}2&4&1\end{bmatrix}, B=\begin{bmatrix}4&6&1\end{bmatrix}$ ve $A=\begin{bmatrix}2&6&1\end{bmatrix}$ noktalarından geçen $\frac{\Delta}{ABC}$ 'nin $L=\frac{1}{2}(x+4)$ doğrusuna göre aynalayınız. [DEVAMI...] y

T1 ⇒ Doğruyu orjin ile çakışacak şekilde ötele

$$[T1] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

 $ightharpoonup rac{\ddot{O}RNEK:}{D}$ Koordinatları $A=\begin{bmatrix}2&4&1\end{bmatrix}, B=\begin{bmatrix}4&6&1\end{bmatrix}$ ve $A=\begin{bmatrix}2&6&1\end{bmatrix}$ noktalarından geçen $\frac{\Delta}{ABC}$ 'nin $L=\frac{1}{2}(x+4)$ doğrusuna göre aynalayınız. [DEVAMI...]

T2 ⇒ Doğruyu x ekseni ile çakışacak şekilde−θ kadar döndür

$$[T2] = \begin{bmatrix} \cos(-\theta) & \sin(-\theta) & 0 \\ -\sin(-\theta) & \cos(-\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$cos(-\theta) = cos(\theta)$$
$$sin(-\theta) = -sin(\theta)$$

 $ightharpoonup rac{\ddot{O}RNEK:}{D}$ Koordinatları $A=\begin{bmatrix}2&4&1\end{bmatrix}, B=\begin{bmatrix}4&6&1\end{bmatrix}$ ve $A=\begin{bmatrix}2&6&1\end{bmatrix}$ noktalarından geçen $\frac{\Delta}{ABC}$ 'nin $L=\frac{1}{2}(x+4)$ doğrusuna göre aynalayınız. [DEVAMI...]

$$T3$$
 ⇒ Aynala (x eksenine göre)

$$[T3] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $ightharpoonup rac{\ddot{O}RNEK:}{D}$ Koordinatları $A=\begin{bmatrix}2&4&1\end{bmatrix}, B=\begin{bmatrix}4&6&1\end{bmatrix}$ ve $A=\begin{bmatrix}2&6&1\end{bmatrix}$ noktalarından geçen $\frac{\Delta}{ABC}$ 'nin $L=\frac{1}{2}(x+4)$ doğrusuna göre aynalayınız. [DEVAMI...]

T4 ⇒ Doğruyu θ kadar geri döndür

$$[T4] = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

T5 ⇒ Doğruyu geri ötele

$$[T1] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

 $ightharpoonup rac{\ddot{O}RNEK:}{DEVAMI...}$ Koordinatları $A = \begin{bmatrix} 2 & 4 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 6 & 1 \end{bmatrix}$ ve $A = \begin{bmatrix} 2 & 6 & 1 \end{bmatrix}$ noktalarından geçen $\frac{\Delta}{ABC}$ 'nin $L = \frac{1}{2}(x+4)$ doğrusuna göre aynalayınız. [DEVAMI...]

T ⇒ Genelleştirilmiş dönüşüm matrisi

$$[T] = [T_1].[T_2].[T_3].[T_4].[T_5]$$

$$T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} & 0 \\ 1/\sqrt{5} & 2/\sqrt{5} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} & 0 \\ -1/\sqrt{5} & 2/\sqrt{5} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 3/_5 & 4/_5 & 0 \\ 4/_5 & -3/_5 & 0 \\ -8/_5 & 16/_5 & 1 \end{bmatrix}$$

 $ightharpoonup rac{\ddot{O}RNEK:}{A}$ Koordinatları $A=\begin{bmatrix}2&4&1\end{bmatrix}, B=\begin{bmatrix}4&6&1\end{bmatrix}$ ve $A=\begin{bmatrix}2&6&1\end{bmatrix}$ noktalarından geçen $\frac{\Delta}{ABC}$ 'nin $L=\frac{1}{2}(x+4)$ doğrusuna göre aynalayınız. [DEVAMI...]

$$\Delta \atop A^*BC^*$$
 \Rightarrow Doğruya göre aynalanmış üçgen

$$\begin{bmatrix} \Delta \\ A^*BC^* \end{bmatrix} = \begin{bmatrix} \Delta \\ ABC \end{bmatrix} \cdot [T] = \begin{bmatrix} 2 & 4 & 1 \\ 4 & 6 & 1 \\ 2 & 6 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3/5 & 4/5 & 0 \\ 4/5 & -3/5 & 0 \\ -8/5 & 16/5 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 14/5 & 12/5 & 1 \\ 28/5 & 14/5 & 1 \\ 16/5 & 6/5 & 1 \end{bmatrix}$$

<u> ≻UYARI:</u>

- Dönüşüm matrisleri ve vektör gösterimleri değişik kaynaklarda farklılık gösterebilir
 - ➤ Sol ya da sağ el koordinat sistemi kullanımı
 - ➤ Objenin ya da koordinat sisteminin döndürülmesi
 - Pozitif ve negatif dönüş yönlerinin seçimi
 - Noktaların satır ya da sütun vektör olarak gösterilmesi
- Örneğin noktalar sütun vektör olarak gösterilirse

$$\begin{bmatrix} x^* \\ y^* \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

T matrisi soldan çarpılır ve kullandığımız matrise göre transpozesi olur

>3x3'lük dönüşüm matrisini dört bölüme ayıralım

$$[T] = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{p} \\ \mathbf{c} & \mathbf{d} & \mathbf{q} \\ \mathbf{m} & \mathbf{n} & \mathbf{s} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} : Rotasyon, aynalama, \"{olçekleme}, shearing \\ [m & n] : \"{Oteleme}$$

$$p = q = 0 \ ve \ s = 1 \Rightarrow h = 1$$

 $p \neq q$ ve $p \neq 0$, $q \neq 0 \Rightarrow D$ önüşüm h = 1 fiziksel düzlemine çakıştırılır

$$[x \quad y \quad 1] = [hx \quad hy \quad h]$$

$$[x \quad y \quad 1]. \begin{bmatrix} 1 & 0 & p \\ 0 & 1 & q \\ 0 & 0 & 1 \end{bmatrix} = [x \quad y \quad (px + qy + 1)] = \begin{bmatrix} \frac{x}{px + qy + 1} & \frac{y}{px + qy + 1} & 1 \end{bmatrix}$$

- > x = hx, y = hy ve h = px + qy + 1
- Homojen koordinat sisteminde bu vektör, 3B uzayda h=px+qy+1 düzleminde bir nokta $(h\neq 1)$
- ho h=1 düzlemindeki karşılığı, CD doğrusunun h
 eq 1 düzleminden h=1 düzlemine projeksiyonu

$$\begin{bmatrix} x^* & y^* & 1 \end{bmatrix} = \begin{bmatrix} \frac{x}{px + qy + 1} & \frac{y}{px + qy + 1} & 1 \end{bmatrix}$$

 $ightharpoonup rac{\ddot{O}RNEK:}{A} = [1 \ 3 \ 1], B = [4 \ 1 \ 1]$ noktalarına p = q = 1 olacak şekilde dönüşüm uygulandığında A ve B noktalarının yeni koordinatları ne olur?

≻Genel Ölçekleme

- $rac{rac}{rac} s \neq 1$ olması durumu,
 - Konum vektörünün tüm elemanlarının eşit olarak ölçeklenmesi

$$[X^*] = [X].[T] = [x \quad y \quad 1].\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix} = [x \quad y \quad s] = [x^* \quad y^* \quad 1]$$
$$x^* = \frac{x}{s}, y^* = \frac{y}{s}$$

KAYNAKLAR

➤ Rogers, D.F., Adams, J.A., Mathematical Elements for Computer Graphics, First Edition.

