Power Screws and Bolted Connections

ME4020 - Applied Machine Design

Mechanical Engineering
Tennessee Technological University

Motor Selection

Motor Selection

- Classification of Electric Motors
- Open Loop and Closed Loop Control
- Motor Torque-Speed Curves
- Motor Driver/Controller
- Analysis and Selection

Classification of Electric Motors

Jedlik's Electromagnetic Self-Rotor

MIT Mini Cheetah

Classification of Electric Motors

Classification of Electric Motors

Common Electric Motor Types

— Туре —	Example —	— Application —
	Bouls Spring Brush Wire Field Magnets Condensor Condensor Cuter Case Ball or Plain Bearing Commutator Commutator Shaft Magnet Holder	

Classification of Electric Motors

Common Electric Motor Types

— Туре —	— Example —	— Applications —
	Rotor Hall Effect IC (Sensor) Stator	
	Mark Immedia Mageria Mark State Mark State More Streamed Ougan: One decided to State More Streamed Ougan: One decided to State	

Classification of Electric Motors

Open Loop and Closed Loop Control

Open Loop vs Closed Loop Control

- Open Loop Control
- Bang-Bang Control
- Armature Control
- Position Control
- Velocity Control

Open Loop and Closed Loop Control

Feedback Controlled Brushed DC Electric Motor

Open Loop and Closed Loop Control

Feedback Controlled Brushless DC Electric Motor Modern Case Study: Universl Robotics - Arm Joint

Open Loop and Closed Loop Control

Applications:

- •
- •
- •

Pros

- •
- •
- •

Cons

- _
- •
- •

Open Loop and Closed Loop Control

Motor Torque-Speed Curves

Motor Torque-Speed Curves

Motor Torque-Speed Curves

90.0 5600 3200 80.0 2500 70.0 2400 MOTOR TYPE 1600 Brushless DC Motor 1200 800 BL6540 TENV Tomus: 3.4 lb-in Current: 0.95 amps 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 Torque (Ib-ft.)

Figure 10: Speed, Torque, Efficiency Curves of a BLDC motor

Figure 9: Speed, Torque & Efficiency Curves of an AC Induction Motor

Motor Driver/Controller

A motor driver, aka controller, is required to operate an electric motor.

- low-level -> high-level, high-end
- open-loop, close-loop
- various signal inputs (e.g. analog, PWM, Serial, USB, etc)
- dip switches + potenionmeter configured -
- computer configuration and user interace
- feedback control integration

Analysis and Selection

Considerations for Motor Selection:

- What are the torque requirements?
- What are the speed requirements?
- Does the application require a feedback control?
- What type of motor driver or controller is required?
- Does the form factor of the motor fit in the machine?

Analysis and Selection

Haydon Kerk Pittman Ametek - Brushed DC Haydon Kerk Pittman Ametek - Brushless DC