Discrete Structures Tutorial-1 (Extra Practice Problems solutions)

(SECTION-A)

Determine whether these statements are true or false.

a)
$$\emptyset \in \{\emptyset\}$$

c)
$$\{\emptyset\} \in \{\emptyset\}$$

e)
$$\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$$

g)
$$\{\{\emptyset\}\}\subset\{\{\emptyset\},\{\emptyset\}\}\}$$

b)
$$\emptyset \in \{\emptyset, \{\emptyset\}\}$$

d)
$$\{\emptyset\} \in \{\{\emptyset\}\}$$

f)
$$\{\{\emptyset\}\}\subset\{\emptyset,\{\emptyset\}\}$$

- a) True
- b) True
- c) False
- d) True
- e) True
- f) True
- g) True

K.H. Rosen 2.1 Exercise Q10

If A, B, C, and D are sets, does it follow that $(A \oplus B) \oplus (C \oplus D) = (A \oplus D) \oplus (B \oplus C)$?

	$(A \oplus B) \oplus (C \oplus D)$	$(A\oplus D)\oplus (B\oplus C)$
$A\cap B\cap C\cap D$	Excluded	Excluded
$A\cap B\cap C\cap D^C$	Included	Included
$A\cap B\cap C^C\cap D$	Included	Included
$A\cap B\cap C^C\cap D^C$	Excluded	Excluded
$A\cap B^C\cap C\cap D$	Included	Included
$A\cap B^C\cap C\cap D^C$	Excluded	Excluded
$A\cap B^C\cap C^C\cap D$	Excluded	Excluded
$A\cap B^C\cap C^C\cap D^C$	Included	Included
$A^C\cap B\cap C\cap D$	Included	Included
$A^C\cap B\cap C\cap D^C$	Excluded	Excluded
$A^C\cap B\cap C^C\cap D$	Excluded	Excluded
$A^C\cap B\cap C^C\cap D^C$	Included	Included
$A^C\cap B^C\cap C\cap D$	Excluded	Excluded
$A^C\cap B^C\cap C\cap D^C$	Included	Included
$A^C\cap B^C\cap C^C\cap D$	Included	Included
$A^C\cap B^C\cap C^C\cap D^C$	Excluded	Excluded

K.H. Rosen 2.2 Exercise Q43

With this table of Inlcusion/Exclusion of partitions, we can conclusively prove that $(A\oplus B)\oplus (C\oplus D)=(A\oplus D)\oplus (B\oplus C)$

Suppose that the relation R is irreflexive. Is R^2 necessarily irreflexive? Give a reason for your answer.

It is not necessarily true that R^2 is irreflexive when R is. We might have pairs (a, b) and (b, a) both in R, with $a \neq b$; then it would follow that $(a, a) \in R^2$, preventing R^2 from being irreflexive. As the simplest example, let $A = \{1, 2\}$ and let $R = \{(1, 2), (2, 1)\}$. Then R is clearly irreflexive. In this case $R^2 = \{(1, 1), (2, 2)\}$, which is not irreflexive.

K.H. Rosen 9.1 Exercise Q9

Find the error in the "proof" of the following "theorem."

"*Theorem*": Let *R* be a relation on a set *A* that is symmetric and transitive. Then *R* is reflexive.

"Proof": Let $a \in A$. Take an element $b \in A$ such that $(a,b) \in R$. Because R is symmetric, we also have $(b,a) \in R$. Now using the transitive property, we can conclude that $(a,a) \in R$ because $(a,b) \in R$ and $(b,a) \in R$.

The second sentence of the proof asks us to "take an element $b \in A$ such that $(a, b) \in R$." There is no guarantee that such an element exists for the taking. This is the only mistake in the proof. If one could be guaranteed that each element in A is related to at least one element, then symmetry and transitivity would indeed imply reflexivity. Without this assumption, however, the proof and the proposition are wrong. As a simple example, take the relation \emptyset on any nonempty set. This relation is vacuously symmetric and transitive, but not reflexive. Here is another counterexample: the relation $\{(1,1),(1,2),(2,1),(2,2)\}$ on the set $\{1,2,3\}$.

K.H. Rosen 9.1 Exercise Q49

Show that the relation R on a set A is antisymmetric if and only if $R \cap R^{-1}$ is a subset of the diagonal relation $\Delta = \{(a, a) \mid a \in A\}.$

```
Let R be a relation on set A, then R is anti-symmetric if and only if for a,b\in A, {}_aR_b,{}_bR_a\Rightarrow a=b and R^{-1}=\{(b,a)|a,b\in A,{}_aR_b\} Also note that R,R^{-1}\subseteq A\times A Now if possible, let \exists x,y\in A such that x\neq y,{}_xR_y,{}_yR_x Then, {}_xR_y\Rightarrow_yR_x^{-1} and {}_yR_x\Rightarrow_xR_y^{-1}
```

 $(x,y),(y,x)\in R\cap R^{-1}$

But it is given that $R \cap R^{-1} \subseteq \Delta$ where $\Delta = \{(a,a) | a \in A\}$

 \therefore $(x,y),(y,x)\notin \Delta$ and thus, $(x,y),(y,x)\notin R\cap R^{-1}$

Hence, if $_xR_y,_yR_x$ then x=y. And R is anti-symmetric

K.H. Rosen 9.1 Exercise Q52