Ana Neacșu & Vlad Vasilescu

Chapter 2: Defense strategies

National University of Science and Technology POLITEHNICA Bucharest, Romania BIOSINF Master Program

October 2024

Introduction

Defense strategies

Three main methodologies to train models that are robust against adversarial perturbations.

Defense strategies

Three main methodologies to train models that are robust against adversarial perturbations.

Defense strategies

Three main methodologies to train models that are robust against adversarial perturbations.

Robustness quantification

Definition

000000

Let T be the learnt system and x the clean sample $\rightarrow T(x) = y_{\text{true}}$ $\widetilde{x} = (x+z)$ – adversarial sample $\to T(\widetilde{x}) \neq y_{\text{true}}$

Lipschitz constant $\theta \geq 0$ used to assess the robustness of neural network to adversarial inputs:

$$\|T(x+z)-T(x)\|\leq \theta\|z\|$$

Robustness quantification

Definition

000000

Let T be the learnt system and x the clean sample $\rightarrow T(x) = y_{\text{true}}$ $\widetilde{x} = (x+z)$ – adversarial sample $\to T(\widetilde{x}) \neq y_{\text{true}}$

Lipschitz constant $\theta \geq 0$ used to assess the robustness of neural network to adversarial inputs:

$$||T(x+z) - T(x)|| \le \theta ||z||$$

The Lipschitz constant provides an upper bound on the output perturbation knowing the magnitude of the input one, for a given metric.

Lipschitz constant of a differentiable function: $\theta = \sup_{x} \|\nabla T(x)\|$

where $\|\nabla T(x)\|$ is the **spectral norm** (maximum singular value) of the Jacobian of T at x.

Introduction to Lipschitz Continuity

000000

- Lipschitz continuity is a strong form of continuity. A function is Lipschitz continuous if the rate at which the function's value changes is bounded.
- This means the function's output doesn't change too rapidly relative to changes in its input.
- Formally, it's about a constraint on the slope of the function.

Figure: Example of a Lipschitz continous function

Formal Definition

Definition 1. Lipschitz continuity

A function f from $S \subset \mathbb{R}^n$ into \mathbb{R}^m is Lipschitz continous at a point $x \in S$ if there is a constant θ such that for all $y \in \mathcal{S}$ near x the following inequality holds:

$$||f(x) - f(y)|| \le \theta ||x - y|| \tag{1}$$

The constant θ is called the Lipschitz constant. Geometrically, this means that the slope of any secant line is bounded by θ .

000000

Example 1 (Lipschitz)

f(x) = 2x + 1 on \mathbb{R} . The Lipschitz constant is $\theta = 2$.

Example 2 (Not Lipschitz):

 $f(x) = \sqrt{x}$ on [0, 1]. The slope approaches infinity as x approaches 0.

Implications: Lipschitz continuity guarantees the existence and uniqueness of solutions to certain differential equations and is important in various areas of analysis and numerical methods. It's stronger than uniform continuity.

differentiable at $x \Rightarrow$ Lipchitz continuous at $x \Rightarrow$ continuous at $x \Rightarrow$

Naive defenses

Pre-processing as a defense

Idea: Can some pre-processing techniques be used as a defense?

Consider x the perturbed data, and a classification system f, that is fooled by the corrupted input. Can we find a pre-processing operator g(x) to prevent that?

- Denoising problem
- Geometry projection

Pre-processing as a defense

Can some pre-processing techniques be used as a defense? Idea:

Consider x the perturbed data, and a classification system f, that is fooled by the corrupted input. Can we find a pre-processing operator q(x) to prevent that?

The problem can be viewed from many perspectives

- Denoising problem
- Geometry projection

Visualization

 Countering Adversarial Images using Input Transformations use Total variance minimization.

Objective

$$\underset{z}{\mathsf{minimize}} \| (1 - X) \odot (z - x) \|_2 + \lambda \mathsf{TV}(z), \tag{2}$$

where

- TV Total Variation
- $\mathsf{TV}(z) = ||D_1(z)||_1 + ||D_2(z)||_1$
- $\lambda \in]0,1[$
- • is point-wise multiplication

Some examples

• Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser

Figure 1: The idea of high-level representation guided denoiser. The difference between the original image and adversarial image is tiny, but the difference is amplified in high-level representation (logits for example) of a CNN. We use the distance over high-level representations to guide the training of an image denoiser to suppress the influence of adversarial perturbation.

Use random transform

Since attack is so specific along one direction, we could use a random perturbation to change its path.

Observation: In a high dimensional space, a small change in direction can have a huge impact in the destination.

Some examples:

- Use a suite of classifiers, so the attacker cannot know the one that is used.
- Randomly move around pixels so that the attack is distorted
- Randomly mask out some pixels to defend against the attack and then solve a matrix completion problem.

Figure: https://arxiv.org/pdf/1711.01991

Pixel Deflection

00000000

Deflecting Adversarial Attacks with Pixel Deflection Paper:

Figure 1: Impact of Pixel Deflection on a natural image and subsequent denoising using wavelet transform. Left: Image with given number of pixels deflected. Middle: Difference between clean image and deflected image. Right: Difference between clean image and deflected image after denoising. Enlarge to see details.

Ensemble Learning

Idea : Create a suite of K classifiers, each one with a unique key. Combine the features from all the systems using a key-based aggregator function.

Paper: Defending against adversarial attacks by randomized diversification

Figure 6: Local randomization in the DCT sub-bands by key-based sign flipping.

Figure 7: Classification with local DCT sign permutations.

Adversarial Training

Adversarial Training (AT)

Idea: feed the classifier with adversarial examples during training to boost its robustness against perturbations

Towards Deep Learning Models Resistant to Adversarial Attacks

Formulated as a min-max problem

- D is the training set
- $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$ are in input and the associated ground truth.
- \bullet \mathbb{E} is the expected value

- \bullet δ is the adversarial perturbation, that must live withing Ω
- \bullet θ is a vector encompassing all the parameters of the network
- C is the loss function

1. Generate adversarial examples

At epoch t, for a subset $\mathcal{D}' \subseteq \mathcal{D}$ generate adversarial perturbations $\delta_i^{(t)}$ given the current model parameters $\theta^{(t)}$ and perturbation budget ϵ

1. Generate adversarial examples

At epoch t, for a subset $\mathcal{D}' \subseteq \mathcal{D}$ generate adversarial perturbations $\delta^{(t)}_s$ given the current model parameters $\theta^{(t)}$ and perturbation budget ϵ

2. Augument training set (max. problem)

Define $\mathcal{D}_{adv} = \{(x_i + \delta_i^{(t)}, y_i) | x_i \in \mathcal{D}'\}$ and construct a new training set $\mathcal{D}^{(t)} = \mathcal{D}_{adv} \cup \mathcal{D}$

AT General Algorithm

1. Generate adversarial examples

At epoch t, for a subset $\mathcal{D}'\subseteq\mathcal{D}$ generate adversarial perturbations $\delta_i^{(t)}$ given the current model parameters $\theta^{(t)}$ and perturbation budget ϵ

2. Augument training set (max. problem)

Define $\mathcal{D}_{adv} = \{(x_i + \delta_i^{(t)}, y_i) | x_i \in \mathcal{D}'\}$ and construct a new training set $\mathcal{D}^{(t)} = \mathcal{D}_{adv} \cup \mathcal{D}$

3. Adversarial training (min. problem)

Train on augumented $\mathcal{D}^{(t)}$ for $N \ge 1$ epochs, then repeat Step 1.

generalization.

Problem: Adversarial perturbations generated by strong attacks significantly cross over the decision boundary and are close to natural data, which hurts the

Attacks Which Do Not Kill Training Make Adversarial Learning Paper: Stronger

Solution: Friendly Adversarial Training (FAT) – instead of finding the worst-case attack, search for the weakest one to construct \mathcal{D}_{adv}

Problems of conventional AT (1)

An Early-stopped PGD algorithm $(PGD - K - \tau)$ is used to find weak adversarial samples without affecting generalization.

Feature projections for two classes (∇ and ∇). While standard PGD leads to a significant mixing of the two classes, $PGD-K-\tau$ maintains separability, i.e. generalization. [Source]

Problems of conventional AT (2)

Problem: Individual data points have different intrinsic robustness – different distances to the decision boundary. However, AT uses the same fixed ϵ to generate adversarial data from all of them.

Paper: CAT: Customized Adversarial Training for Improved Robustness

Solution: Adaptively modify the ϵ_i for the i^{th} training sample:

$$\epsilon_{i} = \operatorname*{argmin}_{\epsilon} \left\{ \max_{x_{i}' \in \mathcal{B}(x_{i}, \epsilon)} f_{\theta} \left(x_{i}' \right) \neq y_{i} \right\}$$

The inner maximization uses PGD to find x_i , while the outer minimization modifies ϵ_i at each epoch depending on the attack's success.

Decision boundaries for a linearly separable binary classification problem. [Source]

- (b) AT with low fixed ϵ leads to a decision boundary close to some examples.
- (c) AT with high fixed ϵ leads to loss of generalization, adversarial samples becoming mixed with the other class.
- (d) CAT with bounded flexible ϵ leads to a good trade-off between generalization and robustness

Problems of conventional AT (3)

Problems:

• How does one choose an attack to solve the inner maximization?

00000000000

Using fixed attack strategies during AT leads to limited robustness.

Paper: LAS-AT: Adversarial Training with Learnable Attack Strategy

Solution: Using an additional network to propose the attack strategy:

Difference between AT and LAS-AT. [Source]

Problems of conventional AT (3)

- Strategy Net learns to generate attack strategies that maximize the training loss, different for each x_{clean}
- Predictions $\{a_1, \ldots, a_M\}$ correspond to labels for different attack hyperparameters, each a_i being encoded as a one-hot vector of length K_i
- REINFORCE¹ estimates gradients of the adversarial loss w.r.t. parameters of Strategy Net, since they cannot be directly computed

Problem: AT suffers from Robust Overfitting – robust test accuracy starts decreasing during training, while robust train accuracy continues to rise

Overfitting in adversarially robust deep learning

Why does it happen?

- Network gets used to the adversarial noise generated for training data
- But loses generality when it comes to adversarial noise generated on test

Problem: AT suffers from Robust Overfitting – robust test accuracy starts decreasing during training, while robust train accuracy continues to rise

Overfitting in adversarially robust deep learning Paper:

Why does it happen?

- Network gets used to the adversarial noise generated for training data
- But loses generality when it comes to adversarial noise generated on test

AT + Fake Data

Problem: AT suffers from Robust Overfitting – robust test accuracy starts decreasing during training, while robust train accuracy continues to rise

Overfitting in adversarially robust deep learning Paper:

Why does it happen?

- Network gets used to the adversarial noise generated for training data
- But loses generality when it comes to adversarial noise generated on test data (i.e., it learns the noise rather than the pattern)

AT + Fake Data

Solution: Replace adversarial training samples with generated data (e.g. DDPM-based diffusion)

Papers:

- Fixing Data Augmentation to Improve Adversarial Robustness
- Better Diffusion Models Further Improve Adversarial Training

Robust accuracy evolution when using different amounts of generated data during AT. 'x' corresponds to no additional data. [Source]

Augument training set with generated data

Using a set of generators $\mathcal{G} = \{g_1, \dots, g_m\}$, define the augumented training set $\mathcal{D}_{aua} = \mathcal{D}_{fake} \cup \mathcal{D}$ as follows:

For unconditional generators:

$$\mathcal{D}_{fake} = \left\{ \left(g_i(z), \mathcal{T}(g_i(z)) \right) \middle| g_i \in \mathcal{G}, z \sim \mathcal{N}(0, 1) \right\}$$

where $\mathcal{T}(\cdot)$ is a pre-trained classifier on \mathcal{D}

For conditional generators:

$$\mathcal{D}_{fake} = \left\{ \left(g_i(z|y_j), y_j \right) \middle| g_i \in \mathcal{G}, z \sim \mathcal{N}(0, 1), y_j \in \mathcal{Y} \right\}$$

where ${\mathcal Y}$ is the set of all labels in ${\mathcal D}$

Regularization Training

Idea: Use an objective for minimization that leads to robust structures, while maintaining clean accuracy

Including additional loss terms

$$\mathcal{L}(x_i, y_i, \theta) \leftarrow \mathcal{L}_{cls}(x_i, y_i, \theta) + \alpha \mathcal{L}_{reg}(x_i, y_i, \theta, *args)$$

- ullet heta network parameters
- ullet \mathcal{L}_{cls} standard loss function
- α regularization weight
- ullet \mathcal{L}_{reg} regularization loss, which could take as parameters data, model parameters, or both
- *args other optional parameters controlling the regularization

Regularization Training (1)

Motivation: AT leads to a significant decrease in the curvature of the loss surface with respect to inputs, leading to a more "linear" behavior

(a) Original (CIFAR-10) (b) Fine-tuned (CIFAR-10)

Loss landscape before AT (a) and after AT (b). Blue color corresponds to low loss values, while red corresponds to high loss = adversarial region.

Paper: Robustness via Curvature Regularization, and Vice Versa

Idea: Penalize large eigenvalues in the Hessian of loss w.r.t. input points.

Regularization Training (1)

Curvature Regularization

$$\mathcal{L}_{reg}(x, y, \theta) = \|\nabla \mathcal{L}_{cls}(x + hz, y, \theta) - \nabla \mathcal{L}_{cls}(x, y, \theta)\|_{2}^{2}$$

where h is a small constant, and:

$$z = \frac{\nabla \mathcal{L}_{cls}(x, y, \theta)}{\|\mathcal{L}_{cls}(x, y, \theta)\|_2}$$

- ullet \mathcal{L}_{cls} is a standard classification loss
- Different from AT which flattens the whole loss landscape around clean samples, this reduces curvature only in some significant directions, where adversarial attacks are more likely to be found
- ullet Imposes regularity of gradients on sufficiently small neighbourhoods (h) around clean points

Regularization Training (2)

Paper: TRADES: TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization

Manipulate the trade-off between natural error \mathcal{R}_{nat} and robust error Idea: \mathcal{R}_{rob} , where:

$$\mathcal{R}_{rob} = \mathcal{R}_{nat} + \mathcal{R}_{bdy}$$

where \mathcal{R}_{bdu} is the boundary error, measuring the n.o. correctly classified points laying near the decision boundary

Standard training (left) and TRADES (right) decision boundaries.

TRADES

$$\mathcal{L}_{reg}(x, y, \theta) = \max_{x', |x'-x| \le \epsilon} \mathcal{L}_{CE}(f_{\theta}(x'), f_{\theta}(x))$$

000000000000

where \mathcal{L}_{CE} is the standard cross-entropy loss

- Encourages the output to be smooth in the vicinity of x, pusing the decision boundary away
- Similar with AT: forces adversarial samples x' to be seen as clean samples x by the network f_{θ}
- Different from AT: doesn't explicitly force the same class for x', but pushes towards very similar outputs of the network

Regularization Training (3)

Paper: Metric Learning for Adversarial Robustness

Idea: Introduces *Triplet Loss Adversarial* (TLA) learning, pushing towards:

- Similarity between adversarial examples x_a and samples they've been generated from x_n (positive)
- 2 Dissimilarity between adversarial examples x' and clean samples from a different class x_n (negative)

TLA - Triplet loss regularizer

$$\mathcal{L}_{reg}(x_p, x_a, x_n, \theta) = \max \left(D(f_{\theta}^{(k)}(x_p), f_{\theta}^{(k)}(x_a)) - D(f_{\theta}^{(k)}(x_n), f_{\theta}^{(k)}(x_a)) + \alpha, 0 \right)$$

where $x_a = x_p + \delta$, $f_{\theta}^{(k)}$ outputs the feature vector from k^{th} layer, and:

$$D(x, y) = 1 - \frac{|\langle x, y \rangle|}{\|x\|_2 \|y\|_2}$$

- Hyperparameter α is called *margin*, and it forces the two distances to be at least α -distanced
- \bullet x_a is called *anchor*, since all distances are related to it
- Negative samples x_n for computing \mathcal{L}_{reg} are selected based on the closest negatives to x_a , measured in the embedding space

Regularization Training (3)

Problem: Features $f_{\theta}^{(k)}$ might have very different ranges between x_a, x_p, x_n

000000000000

TLA with Norm Regularization

$$\mathcal{L}_{reg}(x_p, x_a, x_n, \theta) + \lambda \Big(\|f_{\theta}^{(k)}(x_a)\|_2 + \|f_{\theta}^{(k)}(x_p)\|_2 + \|f_{\theta}^{(k)}(x_n)\|_2 \Big)$$

- Further reduces the influence of very high / low feature norms over the regularization term
- Forces similarity / dissimilarity in the angular space, rather than between ℓ_2 magnitudes

Regularization Training (3)

Tiplet Loss Adversarial training workflow

Regularization Training (4)

Paper: Consistency Regularization for Adversarial Robustness

Idea: Enforce consistency between adversarial examples generated from different transformations of the same image

Usual consistency (a) and attacked augumentation consistency (b). T_1 and T_2 are two different image transformations (e.g. rotation, random crop, flip).

Regularization Training (4)

Consistency Regularization

$$\mathcal{L}_{reg} = \mathtt{JS} \Big(\hat{f}_{\theta} \big(\mathit{T}_{1}(x) + \delta_{1}, \tau \big) \, \| \, \hat{f}_{\theta} \big(\mathit{T}_{1}(x) + \delta_{1}, \tau \big) \Big)$$

000000000000

where JS is the Jensen-Shannon divergence (i.e. symmetric variant of KL) and

$$\hat{f}_{ heta}ig(T(x)+\delta, auig) = \mathtt{Softmax}\Big(rac{f_{ heta}ig(T(x)+\deltaig)}{ au}\Big)$$

is a temperature-scaled (τ) variant of classifier f_{θ}

- Augumentations are randomly sampled in every training step

 prediction on adversarial data becomes consistent
- Temperature-scaling enforces a sharper distribution, since confidence (i.e. max probability) for AT remains low

Certified Robust Methods

Problems:

- AT and Regularization training are empirical defenses, which aim to improve robustness against empirical attacks
- We need mechanisms for providing / imposing a lower bound on robust accuracy, against any attack with maximum budget ϵ

Paper: Certified Defenses Against Adversarial Eamples

Solution: Certified Defenses:

- Probabilistic
- Deterministic

Certified Defense formulation

For a given input x and it's associated class y, a certification assessment over a robust classifier f_{θ} w.r.t. to an attack budget ϵ can be stated as follows:

$$\arg\max_{j}f_{\theta}(x+\delta)_{j}=y, \quad orall \delta ext{ with } \|\delta\|_{p}\leq \epsilon$$

Note that the above statement doesn't refer to any attack mechanism. More concretely, the following relation between logits holds:

$$f_{\theta}(x+\delta)_y - f_{\theta}(x+\delta)_j \ge m(\epsilon,\theta)$$

where $m(\epsilon, \theta)$ is called the *certified margin*. If $m(\epsilon, \theta) > 0$, classifier f_{θ} is robust within $\mathbb{B}(x, \epsilon)$.

Core tasks:

- Construct effective and accurate margins $m(\epsilon)$
- Design algorithms for controlling these margins

Certified Probabilistic Defenses (1)

Papers:

- Certified Adversarial Robustness via Randomized Smoothing (RS)
- Randomized Smoothing of All Shapes and Sizes

Idea: Construct a *smoothed* classifier q_{θ} from a base classifier f_{θ} , s.t.:

$$g_{\theta}(x,\sigma) = \arg\max_{c} \mathbb{P}\left(\arg\max_{j} f_{\theta}(x+\epsilon)_{j} = c\right), \ \epsilon \sim \mathcal{N}(0,\sigma^{2}I)$$

which corresponds to the most likely class for a Gaussian perturbed x, and σ is a hyperparameter controlling the robustness / accuracy trade-off.

How do we assess the ℓ_2 robustness radius around x?

Certified Probabilistic Defenses (1)

Robustness Guarantee of RS

Suppose that for input data sampled from $\mathcal{N}(x, \sigma^2 I)$, the most probable class predicted by f_{θ} is c_A with probability p_A , and the second most likely class is c_B with probability p_B . Then, the smoothed classifier q_θ is robust around x with ℓ_2 radius:

$$R(x,g_{\theta}) = \frac{\sigma}{2} \left(\Phi^{-1}(p_A) - \Phi^{-1}(p_B) \right)$$

which corresponds to:

$$\arg \max f_{\theta}(x+z) = \arg \max f_{\theta}(x), \forall ||z||_2 \le R$$

where

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{-t^{2}/2} dt$$

is the CDF of a standard Gaussian.

ullet This provides a link between input Gaussian noise power and certified ℓ_2 distance

Prediction & Certification

- **1** Sample N points from $\mathcal{N}(x, \sigma^2 I)$ and compute predictions of f_{θ}
- ② Compute the two most frequent classes c_A and c_B , and their corresponding counts n_A and n_B
- **3** Compute the p-value of binomial test (for p = 0.5 and significance level α):

$$exttt{p-val} = \sum_{k=n_A}^{n_A+n_B} egin{pmatrix} n_A+n_B \ k \end{pmatrix} p^k (1-p)^{n_A+n_B-k}$$

- if p-val $> \alpha$: ABSTAIN (accept null hypothesis p=0.5 and deem the result statistically insignificant)
- else:
 - RETURN c_A as the robust prediction
 - ullet Estimate a lower bound p_A and upper bound $\overline{p_B}$ and **RETURN** R

Certified Probabilistic Defenses (1)

• **Training**: Gaussian data augumentation at variance σ^2

Certified accuracy of RS on CIFAR-10 udner different train settings. [Source]

- Drawbacks:
 - ullet Requires many samples to estimate certified radius (e.g. $N=10^5$)
 - Can't impose a specific certified radius, since everything is randomly constructed

Certified Probabilistic Defenses (2)

Problem : How to maximize the ℓ_2 robustness without explicitly adding ℓ_2 adversarial perturbations to data (i.e. AT) ?

Paper: MACER: Attack-free and scalable robust training via maximizing certified radius

Solution:

- Attack-free training
- Maximizes ℓ_2 certified radius during training, using Gaussian data augumentation and an additional loss term (regularization)

MACER – MAximizing the CErtified Radius

$$\mathcal{L}(x, y, \theta) = \mathcal{L}_{cls}(x + \eta, y, \theta) + \underbrace{\frac{\lambda \sigma}{2} \max \left(\gamma - \hat{R}(x, g_{\theta}), 0\right)\big|_{g_{\theta}(x) = y}}_{\ell_2 \text{ radius maximization}}$$

where \hat{R} is a soft randomized smoothing radius version of R, which can be differentiated w.r.t. θ

- The first term corresponds to RS training
- The second term pushes certified radix to be close to γ , for points correctly classified by smoothed classifier q_{θ}

Problem: How to directly control the output perturbation given the input one?

Papers:

- Achieving robustness in classification using optimal transport with hinge regularization
- Pay attention to your loss: understanding misconceptions about 1-Lipschitz neural networks

Solution: Structurally constrain neural networks to impose a desired Lipschitz bound $L_{p,q}$ over f_{θ} :

$$L_{p,q} = \max_{x \neq y} \frac{\|f_{\theta}(x) - f_{\theta}(y)\|_{p}}{\|x - y\|_{q}}, \quad p, q \in \mathbb{N}$$

This ensures that:

$$||f_{\theta}(x+\delta) - f_{\theta}(x)||_{p} \le L_{p,q} ||\delta||_{q}$$

Lipschitz bound of feed-froward networks

Consider f_{θ} to be a feed-forward neural network with no skip connections, 1-Lipschitz activation functions, and m layers defined by their weight tensors $\{W_i\}_{i=1}^m$. Then, for the usual case p=q=2 the following holds:

$$L_{2,2} \le \prod_{i=1}^m \|W_i\|_{2,2}$$

which is an upper bound of the Lipschitz constant of f_{θ} , and

$$||W_i||_{p,q} = \max_{x \neq 0} \frac{||W_i x||_p}{||x||_q}$$

- For 2D convolutional layers $W_i \in \mathbb{R}^{C_{in} \times C_{out} \times h \times w}$ one has the following options:
 - **1** Reshape to $\widetilde{W}_i \in \mathbb{R}^{hwC_{in} \times C_{out}}$ and compute spectral norm $\|\widetilde{W}_i\|_2$
 - 2 Compute 2D FFT $\mathbf{W_i} \in \mathbb{R}^{C_{in} \times C_{out} \times n_{fft} \times n_{fft}}$ and take the maximum magnitude over frequency dimensions (roughly)
 - Other techniques ...

Imposing Lipschitz bounds – Spectral Normalization

For a network f_{θ} as previously defined, one can impose a Lipschitz bound $L_{2,2} = L$ using the following normalization scheme:

$$W_i' \leftarrow \frac{W_i}{\|W_i\|_2} (\hat{L})^{\frac{1}{m}}$$

which holds
$$\prod_{i=1}^m \|W_i'\|_2 = \hat{L}$$

- Spectral Normalization can be applied as an additional step after the usual gradient update
- Faster techniques such as Power Iteration and Gram Iteration are employed to efficiently estimate $||W_i||_2$ during training

Problem: In a classification setting, we're interested in the ℓ_2 norm of each output neuron, not the entire logit vector

Lipschitz bounds of individual logits

For a network f_{θ} as previously defined, the Lipschitz bound of logit f_{θ}^{j} is defined as follows:

$$L_{2,2}^{j} \le (\prod_{i=1}^{m-1} ||W_i||_2) ||W_m[:,j]||_2$$

where $W_m[:,j]$ corresponds to the j^{th} column of W_m , connected to the j^{th} logit

- $||W_m[:,j]||_2$ can be imposed similarly to the other layers
- We can quantify how much the correct logit y will change when input is perturbed:

$$||f_{\theta}^{y}(x+\delta) - f_{\theta}^{y}(x)||_{2} \le L_{2,2}^{y} ||\delta||_{2}$$

Requirements for training 1-Lipschitz networks (under the previous settings)

• Norm-Preserving activation functions, e.g. GroupSort / FullSort:

Source: Sorting Out Lipschitz Function Approximation

 Gradient Norm Preservation during backpropagation: Bjorck orthonormalization over constrained W_i 's \rightarrow iteratively finds the closest orthonormal matrix \rightarrow imposes all singular values to be close to 1, to help gradient flow

Papers:

- Globally-Robust Neural Networks (GloRoNets)
- Relaxing Local Robustness

Idea: Introduce an additional class (denoted \perp) to signal that a point cannot be certified as ϵ -globally-robust

Local vs Global ϵ -robustness

Local (at
$$x$$
): $||x - x'|| \le \epsilon \Longrightarrow \arg\max_j f_{\theta}(x)_j = \arg\max_j f_{\theta}(x')_j, \ \forall \ x'$
Global: $||x_1 - x_2|| \le \epsilon \Longrightarrow \arg\max_j f_{\theta}(x_1)_j \stackrel{\perp}{=} \arg\max_j f_{\theta}(x_2)_j, \ \forall \ x_1, x_2$, where $\stackrel{\perp}{=}$ holds True if:

$$rg \max_j f_{ heta}(x_1)_j = ot \quad ext{OR}$$
 $rg \max_j f_{ heta}(x_2)_j = ot \quad ext{OR}$ $rg \max_j f_{ heta}(x_1)_j = rg \max_j f_{ heta}(x_2)_j$

Global robustness between two classes. Red line corresponds to the decision boundary, with surrounding dark gray area corresponding to points labeled as \bot , due to closeness to the boundary. [Source]

Constructing logit \perp

Denote $K_i = L_{2,2}^i$ the Lipschitz constant of the i^{th} logit. Then, for an example x correctly classified as $y = \arg \max_i f_{\theta}(x)_i$, the logit y_{\perp} is constructed as follows:

$$y_{\perp} = \max_{i \neq y} \{ f_{\theta}(x)_i + (K_i + K_y)\epsilon \}$$

⊥ logit accounts for two worst-case scenarios:

- Predicted class decreases by maximum amount ϵK_1
- Second-most likely class increases by maximum amount ϵK_2

The model is pushed to predict logits for the correct class that surpass logit $\perp \Longrightarrow \mathsf{global} \ \epsilon - \mathsf{robustness}$

Training GIRoNets

- For each element x_i in batch B construct logit value y_{\perp} , with an initially set e
- **2** Concatenate y_{\perp} with $f_{\theta}(x_i)$ and optimize network over this augumented logit vector
- \bullet For a GloRoNet trained with a specific ϵ , it's final accuracy corresponds to the fraction of points which are globally ϵ -robust:
 - $\forall \delta$ with $\|\delta\| < \epsilon$ and $\forall x$ correctly classified, $x+\delta$ is correctly classified
- Alternatively, for any new point x we can say what's the highest ϵ for which it's certified that any attack with $\|\delta\| \le \epsilon$ won't work

Observation: GloRoNets are shown to impose strong implicit regularization on global Lipschitz.

Note: Lipschitz bound needs to be computed each time u_{\perp} is computed. Can it be made more efficient?

Generalisation: Certified top-k robustness

Top-2 robust (b) vs. non-top-2 robust (a) predictions. In (a), the third logit is sufficiently large to overcome the second, if sufficiently perturbed. [Source]

- We're interested in keeping the top-k predictions unchanged
- ullet Logit ot is constructed s.t. the minimum logit change that can change the top-k predictions is pushed away

Problem: Common activation functions limit the expressivity of Lipschitz-constrained networks (e.g. ReLU, LeakyReLU)

Paper : Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions

Solution: Define a controllable structure for activation functions, ensure universal approximation theory, and make them learnable:

$$\sigma_{\ell,n}(x) = b_{1,\ell,n} + b_{2,\ell,n}x + \sum_{k=1}^{K_{\ell,n}} a_{k,\ell,n} \operatorname{ReLU}(x - \tau_{k,\ell,n})$$

Example of Learnable Linear Spline (LLS) activation. [Source]

Certified Defenses – Extending to Multi-modal inputs

Problem: Hard to adapt previous methods for complex networks / tasks, in a certified manner

Paper: MMCert: Provable Defense against Adversarial Attacks to Multi-modal Models

- Input of T modalities: $M = (m_1, m_2, \dots, m_T), |m_i| = n_i$
- Attack types: modification, addition, deletion
- N.o. maximum elements attacked in each modality: $R = (r_1, r_2, \dots, r_T)$
- Sub-sampled input: $Z = (z_1, z_2, \dots, z_T), |z_i| = k_i$

Idea: Use Monte Carlo to estimate a lower and an upper bound for the probability of correct class over multiple sub-sampled inputs:

$$p_y = \mathsf{LB}(f_\theta(Z)); \quad \overline{p_y} = \mathsf{UB}(f_\theta(Z))$$

where $e_i = n_i - r_i$

Certified Defenses – Extending to Multi-modal inputs

Certified Multi-Modal Classification

Consider N sub-samplings Z_1, \ldots, Z_N and amulti-modal classifier f_{θ} .

- **1** Compute predictions over all Z_i
- $oldsymbol{Q}$ Compute top-2 most frequent classes A and B and their lower and upper bounds p_A and $\overline{p_B}$, using RS techniques
- Then, f_{θ} is robust w.r.t. $R = (r_1, r_2, \dots, r_T)$ if:

$$\frac{\prod_{i=1}^{T}\binom{n_{i}}{k_{i}}}{\prod_{i=1}^{T}\binom{n_{i}'}{k_{i}'}}\left(\underline{p_{A}}-\delta_{l}-1+\frac{\prod_{i=1}^{T}\binom{e_{i}}{k_{i}'}}{\prod_{i=1}^{T}\binom{n_{i}}{k_{i}'}}\right)\geq\frac{\prod_{i=1}^{T}\binom{n_{i}}{k_{i}'}}{\prod_{i=1}^{T}\binom{n_{i}'}{k_{i}'}}\left(\overline{p_{B}}+\delta_{u}\right)+1-\frac{\prod_{i=1}^{T}\binom{e_{i}}{k_{i}'}}{\prod_{i=1}^{T}\binom{n_{i}'}{k_{i}'}}$$

Note: For segmentation (i.e. multi-classification) things become a lot more complicated.

Reduction in clean accuracy:

Imposing hard constraints affects prediction on points close to the decision boundary.

Bounds for complex structures:

Developing tight Lipschitz bounds for complex networks (e.g. Transformers) is not straightforward.

Computational overhead

Certified methods require additional computational steps in addition to standard training.