2 実数の連続性・コーシー列

演習 2.1 a > b > 0 なる実数 a, b に対し、 $a_1 = a$, $b_1 = b$, $a_n = \frac{1}{2}(a_{n-1} + b_{n-1})$, $b_n = \sqrt{a_{n-1}b_{n-1}}$ $(n \ge 2)$ とおくと、数列 $\{a_n\}$ と $\{b_n\}$ は同じ極限値に収束することを示せ、(この極限値を a と b の算術幾何平均という。)

(ヒント) $a_{n-1} \neq b_{n-1}$ のとき $(\sqrt{a_{n-1}} - \sqrt{b_{n-1}})^2 > 0$ だから、すべての n について $a_n > b_n$ であることが証明できる.さらにそこから $\{a_n\}$ が単調減少, $\{b_n\}$ が単調増大 であることを示せ.すると実数の連続性(教科書 p. 251 の (\mathbf{M}))により, $\{a_n\}$ と $\{b_n\}$ は収束することがいえる.それぞれの極限値を l,m とするとき,教科書の定理 7.3 (5) より $l \geq m$.そこで l > m と仮定して矛盾を導こう (背理法).

演習 2.2 a>0, b>0 なる実数 a,b に対し, $a_1=\frac{1}{2}(a+b)$, $b_1=\sqrt{a_1b}$, $a_n=\frac{1}{2}(a_{n-1}+b_{n-1})$, $b_n=\sqrt{a_nb_{n-1}}$ $(n\geq 2)$ とおくと, 数列 $\{a_n\}$ と $\{b_n\}$ は同じ極限値に収束することを示せ.

(ヒント) a > b の場合と b > a の場合とで場合分けして考える. 前問のヒントも参照.

演習 2.3 $a_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}$ とすると, $\{a_n\}$ はコーシー列になることを示せ.

演習 2.4 $a_n = \log n$ とする. 次を証明せよ.

- (1) 任意の $\varepsilon>0$ に対し、十分大きな自然数 N を選べば、すべての $n\geq N$ について $|a_{n+1}-a_n|<\varepsilon$ となる.
- (2) しかし数列 $\{a_n\}$ はコーシー列ではない. (教科書の定理 7.9 は使わずに証明してください.)

(ヒント) (1) x>0 のとき, $\log x < \alpha \Leftrightarrow x < e^{\alpha}$. 対数法則を思い出して…. (2) $[\{a_n\}$ がコーシー列である」という命題を否定するには何をいえば良いか, 定義をもとに考えてください.