

Write data Block

Sponsored by: Si-Vision

Contents

Cc	nt	ents	2
1.		Block diagram	3
2.		Block functionality:	4
1-		Write_FSM module:	5
	1.	Block Diagram	5
	2.	I/O ports description:	6
	3.	Block implantation:	8
2-		Write_shift module	13
	1.	Block Diagram	13
	2.	I/O ports description:	14
	3.	Block implantation:	15
3-		Write_counters module	17
	1.	Block Diagram	17
	2.	I/O ports description:	18
	3.	Block implantation:	20
4.		Simulation Results:	24
	1-	Burst length 16 , MC crc support	24
	2-	Burst length = 8 ,phy crc support	25
	3-	Burst length =16 .phy crc support	25
	4-	Burst length =16 .Mask operation	26
	5-	Burst length = 8 .Mask operation	26
5.		Synthesis results	27
	1.	Area report	27
	2.	Power report	27
	3.	Timing report	28

1. Block diagram.

2. Block functionality:

This block is responsible for multiple functions:

- 1- Checking for CRC generation through 2 input signals phy_crc_mode_i and dram_crc_en_i.
 - (phy_crc_mode_i = 0 and dram_crc_en_i = 1) \rightarrow MC crc support.
 - (phy_crc_mode_i = 1 and dram_crc_en_i = 1) → phy crc support.
 - (phy_crc_mode_i = 0 and dram_crc_en_i = 0) → mask operation.
- 2- According to different cases , the block will perform different operations to send write data on DQ bus to DRAM interface.
 - a- Phy CRC support : in this case the block is responsible for
 - sending write data on DQ bus to DRAM interface with DQ valid signal .
 - sending CRC_enable and write data to CRC block to generate crc code.
 - Taking crc code generated from CRC block and sending it on DQ bus after data.
 - In case burst_length = 8, this block is responsible for completing the rest of data with ones and sending it on DQ bus and to CRC block.
 - b- MC CRC support or Mask operatin: in this case the block is responsible for
 - sending write data on DQ bus to DRAM interface with DQ valid signal.
- 3- Shifting pre_ pattern_i (2 bits for each clock cycle) and sending it on DQS bus when write enable is activated and before coming of data with DQS valid signal.
- 4- while sending write data on DQ bus , DQS will be phy clock (DQS =10) with DQS valid signal.
- 5- Calculating gap between different write operations (no of cycles write enable is low).
- 6- checking if ther is interamble through 2 input signals pre_ cycle_i and post_cycle_i (From command address block) when (gap < pre_ cycle_i + post_cycle_i) there will be interamble and According to gap value, interamble pattern will be detected from pre_ pattern i.
- 7- After whole data is sent on DQ bus, interamble pattern will be shifted (2 bits for each clock cycle) and sent on DQS bus (for no of cycles = gap value) with DQS valid signal.
- 8- if there is no interamble, After whole data is sent on DQ bus, postamble pattern will be shifted (2 bits for each clock cycle) and sent on DQS bus (for no of cycles = post cycle) with DQS valid signal.

For performing this functions , this block will be divided into 3 modules as the following.

1-Write_FSM module:

1. Block Diagram

2. I/O ports description:

port	Direction	Size	Description
clk_i	input	1bit	clock signal. (From system)
rst_i	input	1 bit	active low asynchronous reset.
			(From system)
wr_en_i	input	1 bit	write enable signal.
			(From frequency Ratio)
enable_i	input	1 bit	signal to enable FSM. (From system)
preamble_done_i	input	1 bit	signal indicates that whole preamble
			pattern is sent on DQS bus.
			(From write_counter)
postamble_done_i	input	1 bit	signal represents that whole postamble
			pattern is sent on DQS bus.
	<u> </u>		(From write_counter)
interamble_done_i	input	1 bit	signal represents that whole interamble
			pattern is sent on DQS bus. (From
	• •	4 5 7	write_counter)
preamble_valid_i	input	1 bit	valid signal represents that correct
			preamble pattern is sent on DQS bus. (From
wrdata crc done i	innut	1 bit	write_counter) signal represents that whole data is sent on
wruata_crc_done_r	input	I DIL	DQ bus (MC CRC support).
			(From write_counter)
wrdata_done_i	input	1 bit	signal represents that whole data is sent on
Wradta_done_r	mpat	1 510	DQ bus (phy crc support).
			(From write counter)
data_burst_done_i	input	1 bit	signal represents that whole data is sent on
	F		DQ bus (burst length = 8).
			(From write_counter)
wrmask_done_i	input	1 bit	input signal that indicates whole data is sent
			on DQ bus (data mask).
			(From write_counter)
crc_generate_i	input	1 bit	signal indicates that if phy will generate crc
			or not.
			(From write_counter)
interamble_i	input 1 bit	1 bit	signal indicates that if there is interamble or
			not.
			(From write_counter)

preamble_bits_i	input	2 bits	preamble bits result from shifting preamble pattern to be sent on DQS bus. (From write_shift)
interamble_bits_i input		2 bits	bus signal results from shifting interamble pattern. (From write_shift)
gap_i	input	4 bits	signal detects number of cycles at which write enable is low. (From write_shift)
Wr_data_i	input	2*DRAM_SIZE	input bus signal holds wr data (From freq ratio block)
Wr_datamask_i	input	DRAM_SIZE/4	input bus signal hold wr data mask (From freq ratio block)
crc_code_i	input	2*DRAM_SIZE	input bus signal holds crc code (From crc block).
burstlength_i	input	2 bits	input bus signal holds the code of the burst length (From command_address block).
crc_data_o	output	2*DRAM_SIZE	bus signal holds data to CRC block to generate CRC code for it.
crc_enable_o	output	1 bit	enable signal to enable CRC block.
DQS_o	output	2 bits	output bus signal holds different patterns of data strobe to be sent to DRAM interface.
DQ_o	output	2*DRAM_SIZE	output bus signal holds write data to be sent to DRAM interface.
DQS_valid_o	output	1 bit	signal indicates that correct pattern of data strobe is sent to DRAM interface when activated high.
DQ_valid_o	output	1 bit	signal indicates that write data is sent to DRAM interface when activated high.
DM_o	output	DRAM_SIZE/4	output bus signal holds write data mask to be sent to DRAM interface.
interamble_valid_o	output	1 bit	signal indicates that that controller in interamble_state. (To write_counter and write_shift)
preamble_state_o	output	1 bit	signal indicates that controller in preamble_state. (To write_counter)
data_state_o	output	1 bit	output signal indicates that controller in write data_states. (To write_counter)

3. Block implantation:

State diagram:

Algorithm Chart

Operation

The write FSM block consist of 7 states:

1- idle:

- no operation in this state.
- When wr_en_i is activated high, we will move to preamble state.

2- Preamble:

- o in this state, preamble pattern will be sent on DQS bus.
- After whole preamble_pattern is sent on DQS bus, we will move to wr_data state (crc_generate = 1) or wr_data_crc (crc_generate = 0).
 - DQS_valid will be high when correct preamble_pattern is sent on DQS.

3- wr_data_crc (MC_crc_support or mask operation):

- In this state, wr_data will be sent on DQ bus and wr_data_mask will be sent on DM in case of mask operation.
- o DQ valid will be high when data is sent on DQ bus.
- o DQS will be the PHY clock (DQS = 10) and DQS_valid will be high.
- After whole data is sent on DQ bus, we will move to interamble_state if there is interamble (interamble_i is activated high) otherwise, we will move to postamble_state.

4- Wr_data (phy_crc_support)

- o In this state, wr_data will be sent on DQ bus.
- Wr_data and crc_enable will be sent to crc_block to generate crc code.
- o DQ_valid will be high when data is sent on DQ bus.
- o DQS will be the PHY clock (DQS = 10) and DQS_valid will be high.
- After whole data is sent on DQ bus, we will move to crc state to take crc code generated from CRC block and send it on DQ bus.
- After whole data is sent on DQ bus in case burst_length = 8, we will move first to data_burst8 state to complete rest of wr_data with ones then move to crc state to generate crc code.

5- data_burst8 (burst-length = 8)

- In this state, wr_data will be completed by ones and sent it on DQ bus.
- The rest of Wr_data and crc_enable will be sent to crc_block to generate crc_code.
- DQ_valid will be high when completing data with ones on DQ bus.
- DQS will be the PHY clock (DQS = 10) and DQS_valid will be high.
- After whole data is sent on DQ bus, we will move to crc state to take crc code generated from CRC block and send it on DQ bus.

6- CRC

- In this state, crc_code will be sent on DQ bus.
- o DQ valid will be high when crc code is sent on DQ bus.
- o DQS will be the PHY clock (DQS = 10) and DQS valid will be high.
- After crc_code is sent on DQ bus, we will move to interamble_state if there is interamble (interamble_i is activated high) otherwise, we will move to postamble state.

7- postamble (interamble_i =0)

- o In this state, postamble_pattern will be sent on DQS bus.
- DQS_valid will be high when postamble_pattern is sent on DQS.
- After whole pattern is sent on DQS bus, we will move to preamble_state if wr_en is activated high to start another operation otherwise, we will move to idle.

8- Interamble (interamble_i =1)

- In this state, interamble_pattern according to gap value will be sent on DQS bus.
- DQS_valid will be high when interamble_pattern is sent on DQS.
- After whole pattern is sent on DQS bus, we will move to wr_data state if crc_generate = 1 or wr_data_crc if crc_generate = 0.

2-Write_shift module

1. Block Diagram

2. I/O ports description:

port	Direction	Size	Description
clk_i	input	1bit	clock signal. (From system)
rst_i	input	1 bit	active low asynchronous reset. (From system)
wr_en_i	input	1 bit	write enable signal. (From frequency Ratio)
pre_pattern_i	input	8 bit	bus signal holds the preamble pattern which will be shifted to be sent on DQS bus. (From command address)
interamble_valid_i	input	1 bit	signal indicates that that controller in interamble_state. (From write_fsm)
interamble_shift_i	input	3 bit	bus signal for shifting the interamble pattern to be out on the DQS bus. (From write_counter)
Preamble_valid_i	input	1 bit	valid signal represents that correct preamble pattern is sent on DQS bus. (From write_counter)
Preamble_load_i	input	1 bit	signal to load preamble pattern in shift register when activated high. (From write_counter)
gap_burst_eight_i	input	1 bit	signal is activated high when burst length = 8 and phy crc support to decrement gap value by 4. (From write_counter)
interamble_bits_o	output	2 bits	bus signal results from shifting interamble pattern to be sent on DQS bus. (To write_fsm)
Preamble_bits_o	output	2 bits	bus signal results from shifting preamble pattern to be sent on DQS bus. (To write_fsm)
gap_o	output	4 bits	bus signal represents the number of cycles at which write enable is low. (To write_fsm and write_counter)

3. Block implantation:

This block is responsible for 3 main operations:

- 1- Shifting preamble pattern:
 - When preamble_load_i is activated high the preamble_pattern will be loaded in to shift_ register and ready to be shifted.
 - When wr_en_i is activated high, preamble_pattern will be shifted for 4 clock cycles (2 bits for each cycle) and will be sent on DQS bus.
 - When preamble_valid_i is activated high it means that the correct pattern is sent, and the shifting operation will be continued.
 - After wr_en_i and preamble_valid_i become low, the shifting operation will be stopped and preamble_pattern will be loaded into shift_register again to be used it in another operation.

- 2- Calculating gap (no of cycles at which write enable is low):
 - When wr_en_i becomes low, counter will start to count, the value of counter will be stored in gap_register.
 - After wr_en_i becomes high, we will reset the counter and check the value stored in register to detect the correct interamble_pattern according to the gap value.

3- Shifting interamble pattern:

- According to the gap value, we will detect the interamble pattern from pre_pattern_i and store it in a shift_ register and it will be ready to be shifted.
- When interamble_valid_i is activated high, interamble pattern will be shifted according to gap value (2 bits for each cycle) and will be sent on DQS bus.
- interamble_shift_i will take different value for each clock cycle during interamble state so the shifting operation will be continued.
- After interamble_valid_i becomes low, it means that interamble state is finished and shifting operation will be stopped.

3-Write_counters module

1. Block Diagram

2. I/O ports description:

Port	Direction	Size	Description
clk_i	Input	1 bit	input clock signal. (From system)
rst_i	Input	1 bit	input active low asynchronous reset.
			(From system).
wr_en_i	Input	1 bit	input write enable signal.
phy_crc_mode_i	Input	1 bit	signal indicates either PHY or MC will generate the crc code for the data. (From Regfile)
dram_crc_en_i	Input	1 bit	Signal indicates whether the dram wants to receive a crc code for the data or not. (From Regfile)
precycle_i	Input	3 bit	Input represents the number of preamble cycle. (From command address block)
postcycle_i	Input	2 bit	Input represents the number of postamble cycles. (From command address block).
gap_i	Input	4 bit	Input represents the gap value. (From write_shift block)
burstlength_i	Input	2 bit	Signal represents the burst length of the data. (From command address block)
data_state_i	Input	1 bit	signal indicates that the controller is in the data states and used to start the write data counter and to stop the preamble counter. (From write FSM block)
preamble_state_i	Input	1 bit	signal indicates that controller is in preamble_state. (From write_FSM block)
interamble_valid_i	Input	1 bit	signal indicates that that controller is in interamble_state and interamble bits is sent on DQS bus. (From write_FSM block)
preamble_valid_o	Output	1 bit	valid signal represents that correct preamble pattern is sent on DQS bus. (To write FSM and write shift block)
interamble_shift_o	Output	3 bit	bus signal that takes different values in interamble state for shifting the interamble pattern to be out on the DQS bus. (To write_shift)
preamble_done_o	Output	1 bit	signal indicates that whole preamble pattern is sent on DQS bus and preamble_state is finished. (To write_FSM)
postamble_done_o	Output	1 bit	signal represents that whole postamble pattern is sent on DQS bus and postamble_state is finished. (To write_FSM)
interamble_done_o	Output	1 bit	signal represents that whole interamble pattern is

			sent on DQS bus and interamble_state is finished. (To write_FSM)
data_burst_done_o	Output	1 bit	signal represents that whole data of BL8 is sent on DQ bus. (To write_FSM)
wrdata_done_o	Output	1 bit	signal represents that whole data is sent on DQ bus. (To write_FSM)
wrmask_done_o	Output	1 bit	signal that indicates that whole data mask is sent on DQ bus. (To write_FSM)
interamble_o	Output	1 bit	signal indicates that if there is interamble or not. (To write_FSM)
crc_generate_o	Output	1 bit	signal indicates that if phy will generate crc or not. (To write_FSM)
preamble_load_o	Output	1 bit	Signal used to load preamble pattern in shift register when activated high. (To write_shift)
gap_burst_eight_o	Output	1 bit	signal used to decrement gap value by 4. (To write_shift)
wrdata_crc_done_o	Output	1 bit	signal represents that whole data is sent on DQ bus (MC CRC support). (To write_FSM)

3. Block implantation:

- Write_counters module is responsible for many functions but its main one is outputting
 done signals which will be used in transitions between different states in Controller
 module. Other marginal operations can be specified in the following outlines:
 - O Determining either if there will be an interamble or not by comparing the precycle added to the postcycle with the gap value.
 - Determining whether there will be a CRC code generation and transmission to the DRAM or not.
 - Adjusting the DQS valid during preamble strobe by outputting a signal works as a valid signal to the controller to start output the DQS valid in preamble state.
- This block consists of 3 counters each one is responsible for multiple operation

Counter1: Preamble counter

- Preamble counter works simultaneously with write enable signal independent on the state.
- Activating write enable signal means there is a data coming after 5 cycles.
 So, preamble counter start counting
 - when the counter reaches (5 precycle) → preamble valid signal is activated to tell the controller to start the DQS valid signal with the pre DQS strobe.
 - when the counter reaches five, preamble done signal is activated telling the controller to move from preamble state.
- After counting five high write enable cycles, this counter will be initiated to zero to be ready for another operation.

Counter2: Write Data counter

- Unlike preamble counter, write data counter only counts in data state especially when write enable is de-activated.
- After 5 cycles from de-activating write enable in data state, the full data burst will finish, and a done signal will be activated high telling the controller to move from data state. Accordingly, there are different cases:
 - Case (1): PHY will generate a CRC to a data with burst length = 16.
 In this case, write data done signal will be activated after five cycles from disabling the write enable telling the controller to move to crc state.
 - Case (2): PHY will generate a CRC to a data with burst length = 8.
 In this case, data burst done signal will be activated after four cycles telling the controller to move to data_burst_8 state and after another four cycles, write data done will be activated to move from this state to crc state.
 - Case (3): MC generates a CRC to a data with burst length = 16.
 In this case, write data crc done signal will be activated after five cycles plus one more cycle from disabling the write enable telling the controller to move from write data crc state.

The delay of the write data crc done signal with one more cycle to postpone this state with one more cycle to allow the CRC code coming from MC to be sent on DQ bus.

• Case (4): MC generates a CRC to a data with burst length = 8.

MC will complete the burst with 1's and generate a CRC for the full data and send the full burst appended to it the CRC.

In this case, write data counter works exactly like case (3).

• Case (5): Data mask with burst length = 16.

In this case, write mask done signal will be activated after five cycles from disabling the write enable telling the controller to move from data state.

- <u>Case (6): Data mask with burst length = 8.</u>
 In this case, write mask done signal will be activated after four
 - In this case, write mask done signal will be activated after four data cycles without completing the burst with 1's.
- wr_en_low_flag is activated high when write enable signal is de-activated in data state to allow write data counter to count on wr_en_low_flag. The reason of using this flag and not counting on the de-activation of write enable signal is to allow the counter to count even in the case of multiple write operations.
- At the end of data state, this counter will be initiated to zero to be ready for another operation.

Counter3: inter post counter

- This counter counts only during interamble state and postamble state.
- Postamble and Interamble states cannot occur at same time. This illustrates the reason for using one counter for them both.
- According to the state, we will have 2 different cases

• Case (1): Postamble State.

In this case, postamble done signal will be activated when interpost counter reaches the value of postcycle.

Case (2): Interamble State.

Interamble means that there is another coming data too nearly that cannot have its own preamble. This is determined by comparing the gap value with precycle needed for coming data and postcycle required for previous data.

Accordingly, write fsm module should remain in interamble state for a number of cycles equal to the gap value. Therefore, interamble done signal will be activated when inter post counter reaches gap value.

 As soon as moving from postamble or interamble states, interpost counter is initiated to zero to be ready for another operation.

4. Simulation Results:

1- Burst length 16, MC crc support

2- Burst length = 8 ,phy crc support

3- Burst length = 16 .phy crc support

4- Burst length = 16 . Mask operation

5- Burst length = 8 .Mask operation

5. Synthesis results

1. Area report

```
2 ***************************
3 Report : area
 4 Design : write manager
 5 Version: K-2015.06
9 Library(s) Used:
       scmetro_tsmc_cl013g_rvt_ss_1p08v_125c (File: /home/IC/tsmc_fb_cl013g_sc/aci/sc-m/synopsys/scmetro_tsmc_cl013g_rvt_ss_1p08v_125c.db)
12
13 Number of ports:
14 Number of nets:
15 Number of cells:
16 Number of combinational cells:
                                                474
17 Number of sequential cells:
18 Number of macros/black boxes:
19 Number of buf/inv:
                                                 63
20 Number of references:
22 Combinational area:
                                       3427.727142
23 Buf/Inv area:
                                        575.406309
24 Noncombinational area:
                                      1672.090689
25 Macro/Black Box area:
26 Net Interconnect area:
                                    165480.824341
28 Total cell area:
29 Total area:
30 1
                                    170580.642172
```

2. Power report

```
20 Operating Conditions: scmetro tsmc cl013g rvt ss 1p08v 125c Library: scmetro tsmc cl013g rvt ss 1p08v 125c
21 Wire Load Model Mode: top
22
23 Design
             Wire Load Model
                                      Library
24 -----
25 write manager
                     tsmc13_wl30
                                    scmetro_tsmc_cl013g_rvt_ss_1p08v_125c
26
28 Global Operating Voltage = 1.08
29 Power-specific unit information :
30
     Voltage Units = 1V
     Capacitance Units = 1.000000pf
31
32
     Time Units = 1ns
33
     Dynamic Power Units = 1mW
                               (derived from V,C,T units)
     Leakage Power Units = 1pW
34
35
36
    Cell Internal Power = 300.8719 uW
37
                                    (54%)
    Net Switching Power = 255.0824 uW
38
                                    (46%)
39
40 Total Dynamic Power
                     = 555.9543 uW (100%)
41
42 Cell Leakage Power
                      = 3.9562 uW
43
44
45
                 Internal
                                Switching
                                                  Leakage
                                                                  Total
46 Power Group
                 Power
                                Power
                                                  Power
                                                                  Power ( % ) Attrs
47 -----
                                                                  0.0000 ( 0.00%)
48 io pad
                                                  0.0000
49 memory
                  0.0000
                                  0.0000
                                                  0.0000
                                                                  0.0000 (
                                                                             0.00%)
50 black box
                 0.0000
                                  0.0000
                                                                  0.0000 (
                                                                             0.00%)
                                                  0.0000
51 clock_network 0.0000
                                  0.0000
                                                  0.0000
                                                                  0.0000 (
                                                                            0.00%)
52 register
            6.5090e-05
                  0.2533
                               4.0035e-02
                                              8.5093e+05
                                                                  0.2942
                                                                            52.54%)
                               0.0000
53 sequential
                                             2.6267e+04
                                                               9.1357e-05 ( 0.02%)
54 combinational 4.7539e-02
                                  0.2150
                                              3.0790e+06
                                                                 0.2657 ( 47.45%)
56 Total
                  0.3009 mW
                            0.2551 mW 3.9562e+06 pW
                                                                  0.5599 mW
```

3. Timing report

476 477 478	Path Group: i_clk Path Type: max		<i>M</i> –	
479	Des/Clust/Port	Wire Load Model	Library	
480 481 482		tsmc13_wl30	scmetro_tsmc_cl013g_r	vt_ss_1p08v_125c
483	Point		Incr	
484 485	clock i clk (rise			0.00
486	clock network del		0.00	
487		reg[2]/CK (DFFRHQX8M)		
488		reg[2]/Q (DFFRHQX8M)	0.49	0.49 f
489	U0/U18/Y (INVX6M)		0.45	0.94 r
490	U0/U48/Y (OR2X2M)		0.58	
491	U0/U4/Y (OAI21X8M			1.74 f
492	U0/U26/Y (BUFX32M			2.01 f
493	U0/o interamble v			2.01 f
494		alid (write counters)		2.01 f
495	U1/U61/Y (INVXLM)		0.50	
496	U1/U3/Y (BUFX5M)		0.63	3.15 r
497	U1/U54/Y (NAND2X4	M)	0.48	3.63 f
498	U1/U165/Y (OAI2BE	2X1M)	0.73	4.36 r
499	U1/gap value reg[2]/D (DFFRQX2M)	0.00	4.36 r
500	data arrival time	1		4.36
501				
502	clock i_clk (rise		5.00	5.00
503	clock network del		0.00	5.00
504	clock uncertainty		-0.20	4.80
505	U1/gap_value_reg[0.00	4.80 r
506	library setup tim		-0.41	
507	data required tim	ie		4.39
508				
509	data required tim			4.39
510	data arrival time			-4.36
511				
512 513 514	slack (MET)			0.03
515	Startnoint: UN/cu	rrent state reg[0]		

28 | Page