Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 2 de octubre de 2024

Contenidos estimados para hoy

Repaso

- 2 Deducción natural
 - Reglas de inferencia
 - $lue{}$ Cancelación de hipótesis: introducción de ightarrow
 - Ejemplos con cancelación
 - Reducción al absurdo y de eliminación de ∨
 - Ejemplos con RAA y $\lor E$

Tres componentes de la lógica

Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").

- Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").
 - Conjunto inductivo *PROP*: **inducción** y **recursión**.
 - Abreviaturas $(\neg \varphi)$, $(\varphi \leftrightarrow \psi)$.
 - Operaciones simbólicas: sustitución $\varphi[\psi/p]$.

- Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").
 - Conjunto inductivo *PROP*: **inducción** y **recursión**.
 - Abreviaturas $(\neg \varphi)$, $(\varphi \leftrightarrow \psi)$.
 - Operaciones simbólicas: sustitución $\varphi[\psi/p]$.
- Semántica: cómo asignamos significado a las proposiciones.

- Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").
 - Conjunto inductivo *PROP*: **inducción** y **recursión**.
 - Abreviaturas $(\neg \varphi)$, $(\varphi \leftrightarrow \psi)$.
 - Operaciones simbólicas: **sustitución** $\varphi[\psi/p]$.
- Semántica: cómo asignamos significado a las proposiciones.
 - *Modelos* para dar sentido: **asignaciones** $v : V \rightarrow \{0, 1\}$.
 - Se extienden a **valuaciones**: $\llbracket \cdot \rrbracket_f : PROP \to \{0, 1\}$.
 - La verdad de una proposición se determina localmente: Lema de Coincidencia y tablas de verdad.

- Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").
 - Conjunto inductivo *PROP*: **inducción** y **recursión**.
 - Abreviaturas $(\neg \varphi)$, $(\varphi \leftrightarrow \psi)$.
 - Operaciones simbólicas: **sustitución** $\varphi[\psi/p]$.
- Semántica: cómo asignamos significado a las proposiciones.
 - *Modelos* para dar sentido: **asignaciones** $v : \mathcal{V} \to \{0, 1\}$.
 - Se extienden a **valuaciones**: $\llbracket \cdot \rrbracket_f : PROP \to \{0, 1\}$.
 - La verdad de una proposición se determina localmente: Lema de Coincidencia y tablas de verdad.
- Cálculo: cómo se **deducen** proposiciones a partir de otras y se obtienen **teoremas**.

- Sintaxis: descripción simbólica de los objetos que estudiamos: proposiciones (= "fórmulas proposicionales", "fórmulas").
 - Conjunto inductivo *PROP*: **inducción** y **recursión**.
 - Abreviaturas $(\neg \varphi)$, $(\varphi \leftrightarrow \psi)$.
 - Operaciones simbólicas: **sustitución** $\varphi[\psi/p]$.
- Semántica: cómo asignamos significado a las proposiciones.
 - *Modelos* para dar sentido: **asignaciones** $v : \mathcal{V} \to \{0, 1\}$.
 - Se extienden a **valuaciones**: $\llbracket \cdot \rrbracket_f : PROP \to \{0, 1\}$.
 - La verdad de una proposición se determina localmente: Lema de Coincidencia y tablas de verdad.
- Cálculo: cómo se deducen proposiciones a partir de otras y se obtienen teoremas.

 Ahora

Este cáculo involucra ciertos axiomas

Este cáculo involucra ciertos axiomas

$$p \lor q \equiv q \lor p,$$

 $p \land q \equiv p \equiv q \equiv p \lor q$
:

Este cáculo involucra ciertos axiomas

$$p \lor q \equiv q \lor p,$$

$$p \land q \equiv p \equiv q \equiv p \lor q$$

$$\vdots$$

y ciertas reglas

 $p \lor q \equiv q \lor p,$ Este cáculo involucra ciertos axiomas $p \lor q \equiv q \lor p,$ $p \land q \equiv p \equiv q \equiv p \lor q$ \vdots

y ciertas reglas Regla de Leibniz
Transitividad de la equivalencia

Una demostración de Introducción a los Algoritmos.

```
 \equiv \{ \begin{array}{l} \underline{p} \Rightarrow \underline{q} \vee \underline{p} \\ \text{Definición de} \Rightarrow \\ \underline{p} \vee \underline{q} \vee \underline{p} \equiv \underline{q} \vee \underline{p} \\ \equiv \{ \begin{array}{l} \text{Conmutativa} \vee \\ \underline{p} \vee \underline{p} \vee \underline{q} \equiv \underline{q} \vee \underline{p} \end{array} \right.
```


 $p \lor q \equiv q \lor p,$ Este cáculo involucra ciertos axiomas $p \lor q \equiv p \lor p,$ $p \land q \equiv p \equiv q \equiv p \lor q$ \vdots

y ciertas reglas Regla de Leibniz

Transitividad de la equivalencia

Una demostración de Introducción a los Algoritmos.

```
 \equiv \{ \begin{array}{l} \underline{p} \Rightarrow \underline{q} \vee \underline{p} \\ \text{Definición de} \Rightarrow \\ \underline{p} \vee \underline{q} \vee \underline{p} \equiv \underline{q} \vee \underline{p} \\ \equiv \{ \begin{array}{l} \text{Conmutativa} \vee \\ \underline{p} \vee \underline{p} \vee \underline{q} \equiv \underline{q} \vee \underline{p} \end{array} \right.
```


Deducción natural

Deducción natural: un cálculo más parecido a los razonamientos "intuitivos".

Deducción natural

Deducción natural: un cálculo más parecido a los razonamientos "intuitivos". Sólo involucra reglas.

Deducción natural

Deducción natural: un cálculo más parecido a los razonamientos "intuitivos". Sólo involucra reglas.

Notación. Usaremos precedencia para eliminar paréntesis:

$$\neg \varphi \land (\psi \lor \varphi) \to \chi := \big(((\neg \varphi) \land (\psi \lor \varphi)) \to \chi \big).$$

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge I$$

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge I \qquad \qquad \frac{\varphi \wedge \psi}{\varphi} \wedge E$$

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge I$$

$$\frac{\varphi \wedge \psi}{\varphi} \wedge E$$

$$\frac{\varphi \wedge \psi}{\psi} \wedge E$$

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge I \qquad \frac{\varphi \wedge \psi}{\varphi} \wedge E \qquad \frac{\varphi \wedge \psi}{\psi} \wedge E$$

$$\frac{\varphi}{\varphi \vee \psi} \vee I \qquad \frac{\psi}{\varphi \vee \psi} \vee I$$

$$\begin{array}{cccc} \frac{\varphi & \psi}{\varphi \wedge \psi} \wedge I & & \frac{\varphi \wedge \psi}{\varphi} \wedge E & & \frac{\varphi \wedge \psi}{\psi} \wedge E \\ & & \frac{\varphi}{\varphi \vee \psi} \vee I & & \frac{\psi}{\varphi \vee \psi} \vee I \\ & & \frac{\varphi & \varphi \rightarrow \psi}{\psi} \rightarrow E \end{array}$$

$$\begin{array}{cccc} \frac{\varphi & \psi}{\varphi \wedge \psi} \wedge I & & \frac{\varphi \wedge \psi}{\varphi} \wedge E & & \frac{\varphi \wedge \psi}{\psi} \wedge E \\ & & \frac{\varphi}{\varphi \vee \psi} \vee I & & \frac{\psi}{\varphi \vee \psi} \vee I \\ & & \frac{\varphi & \varphi \rightarrow \psi}{\psi} \rightarrow E \end{array}$$

Ejemplo

De $\{\varphi, \varphi \lor \psi \to \chi\}$ se deduce χ .

$$\frac{\varphi \quad \psi}{(\varphi \wedge \psi)} \wedge I$$

$$\frac{\varphi \quad \psi}{(\varphi \wedge \psi)} \wedge I$$

$$\frac{\varphi}{(\varphi \wedge \psi)} \wedge I$$

■ Las hojas son las **hipótesis**. Las relevantes son las **hipótesis** no canceladas (Hip): $\{\varphi, \psi\}$.

$$\frac{\varphi}{(\varphi \wedge \psi)} \wedge I$$

- Las hojas son las **hipótesis**. Las relevantes son las **hipótesis** no canceladas (Hip): { φ , ψ }.
- Nodo (raíz) distinguido conclusión (Concl): ($\phi \wedge \psi$)

$$\frac{\varphi \quad \psi}{(\varphi \wedge \psi)} \wedge I$$

- Las hojas son las **hipótesis**. Las relevantes son las **hipótesis** no canceladas (Hip): $\{\varphi, \psi\}$.
- Nodo (raíz) distinguido conclusión (Concl): ($\phi \wedge \psi$)

"De $\{\varphi, \psi\}$ deduce $(\varphi \wedge \psi)$ "

$$\frac{\varphi \quad \psi}{(\varphi \wedge \psi)} \wedge I$$

- Las hojas son las **hipótesis**. Las relevantes son las **hipótesis** no canceladas (Hip): { φ , ψ }.
- Nodo (raíz) distinguido conclusión (Concl): ($\varphi \wedge \psi$)

"De
$$\{\varphi, \psi\}$$
 deduce $(\varphi \wedge \psi)$ " $\{\varphi, \psi\} \vdash (\varphi \wedge \psi)$.

Pensemos en una demostración matemática simple.

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

Supongamos que n es múltiplo de 4.

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

- **Supongamos** que *n* es múltiplo de 4.
- Luego, $n = 4 \cdot k$ para algún k.

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

- **Supongamos** que *n* es múltiplo de 4.
- Luego, $n = 4 \cdot k$ para algún k.
- Luego, $n = 2 \cdot (2 \cdot k)$.

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

- **Supongamos** que n es múltiplo de 4.
- Luego, $n = 4 \cdot k$ para algún k.
- Luego, $n = 2 \cdot (2 \cdot k)$.
- Luego, $n = 2 \cdot k'$ para cierto k'.

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

- **Supongamos** que *n* es múltiplo de 4.
- Luego, $n = 4 \cdot k$ para algún k.
- Luego, $n = 2 \cdot (2 \cdot k)$.
- Luego, $n = 2 \cdot k'$ para cierto k'.
- Luego, n es par.

Pensemos en una demostración matemática simple.

Prueba de "(n es múltiplo de 4) implica (n es par)"

- **Supongamos** que *n* es múltiplo de 4.
- Luego, $n = 4 \cdot k$ para algún k.
- Luego, $n = 2 \cdot (2 \cdot k)$.
- Luego, $n = 2 \cdot k'$ para cierto k'.
- Luego, n es par.

Luego, (n es múltiplo de 4) implica (n es par).

$$\begin{array}{c}
[\varphi] \\
\vdots \\
\frac{\psi}{\varphi \to \psi} \to I
\end{array}$$

$$\begin{array}{c}
[\varphi] \\
\vdots \\
\psi \\
\varphi \to \psi
\end{array} \to I$$

Introducción de la implicación

$$\begin{array}{c}
[\varphi]_1 \\
\vdots \\
\psi \\
\varphi \to \psi
\end{array} \to I_1$$

Introducción de la implicación

■ Hipótesis cancelada: φ .

$$D \ := \ \frac{\frac{\psi \wedge \chi}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \rightarrow \psi} \rightarrow I}$$

Introducción de la implicación

$$D := \frac{\frac{[\psi \wedge \chi]_1}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \to \psi} \to I_1}$$

Introducción de la implicación

■ Hipótesis cancelada: $\psi \wedge \chi$.

$$D := \frac{\frac{[\psi \wedge \chi]_1}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \to \psi} \to I_1}$$

Introducción de la implicación

■ Hipótesis cancelada: $\psi \wedge \chi$. **Hipótesis no canceladas** $Hip(D) = \emptyset$.

$$D := \frac{\frac{[\psi \wedge \chi]_1}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \to \psi} \to I_1}$$

Introducción de la implicación

- Hipótesis cancelada: $\psi \wedge \chi$. **Hipótesis no canceladas** $Hip(D) = \emptyset$.
- Conclusión $Concl(D) = \psi \land \chi \rightarrow \psi$.

$$D := \frac{\frac{[\psi \wedge \chi]_1}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \to \psi} \to I_1}$$

Introducción de la implicación

- Hipótesis cancelada: $\psi \wedge \chi$. **Hipótesis no canceladas** $Hip(D) = \emptyset$.
- Conclusión $Concl(D) = \psi \land \chi \rightarrow \psi$.

" $\psi \wedge \chi \rightarrow \psi$ es un **teorema** ".

$$D := \frac{\frac{[\psi \wedge \chi]_1}{\psi} \wedge E}{\frac{\psi}{\psi \wedge \chi \to \psi} \to I_1}$$

Introducción de la implicación

- Hipótesis cancelada: $\psi \wedge \chi$. **Hipótesis no canceladas** $Hip(D) = \emptyset$.
- Conclusión $Concl(D) = \psi \land \chi \rightarrow \psi$.

" $\psi \land \chi \to \psi$ es un **teorema**". $\vdash \psi \land \chi \to \psi$.

$$\vdash \varphi \land \psi \to \psi \land \varphi$$

$$\vdash \varphi \land \psi \to \psi \land \varphi$$

$$\frac{\frac{[\varphi \wedge \psi]_1}{\psi} \wedge E \quad \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge E}{\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1}$$

1 $\varphi \wedge \psi \rightarrow \psi \wedge \varphi$ es un teorema. 2 De $\{\varphi \rightarrow \psi, \neg \psi\}$ se deduce $\neg \varphi$.

$$\vdash \varphi \land \psi \rightarrow \psi \land \varphi$$

$$\{\varphi \to \psi, \neg \psi\} \vdash \neg \varphi$$

$$\frac{\frac{[\varphi \wedge \psi]_1}{\psi} \wedge E \quad \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge E}{\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1}$$

$$\vdash \varphi \land \psi \rightarrow \psi \land \varphi$$

$$\frac{\frac{[\varphi \wedge \psi]_1}{\psi} \wedge E \quad \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge E}{\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1}$$

1 $\varphi \wedge \psi \rightarrow \psi \wedge \varphi$ es un teorema. **2** De $\{\varphi \rightarrow \psi, \neg \psi\}$ se deduce $\neg \varphi$.

$$\{\varphi \to \psi, \neg \psi\} \vdash \neg \varphi$$

$$\frac{[\varphi]_1 \quad \varphi \to \psi}{\frac{\psi}{\frac{\bot}{\neg \varphi} \to I_1}} \to I$$

Más reglas con cancelación de hipótesis

Son las reglas de *reducción al absurdo* y de *eliminación de* ∨.

Más reglas con cancelación de hipótesis

Son las reglas de *reducción al absurdo* y de *eliminación de* ∨.

$$\begin{bmatrix}
\neg \varphi \\
\vdots \\
\frac{\perp}{\varphi} RAA
\end{bmatrix}$$

Más reglas con cancelación de hipótesis

Son las reglas de *reducción al absurdo* y de *eliminación de* ∨.

Ejemplo usando RAA

De $\{\varphi, \neg \psi \to \neg \varphi\}$ se deduce ψ .

Ejemplo usando RAA

De $\{\varphi, \neg \psi \to \neg \varphi\}$ se deduce ψ .

$$\frac{\varphi \qquad \dfrac{[\neg \psi]_1 \quad \neg \psi \rightarrow \neg \varphi}{\neg \varphi} \rightarrow E}{\dfrac{\bot}{\psi} \mathit{RAA}_1}$$

Ejemplo usando $\vee E$

Introducimos la última regla, con \perp como protagonista:

$$\frac{\perp}{\varphi} \perp$$

Ejemplo usando $\lor E$

Introducimos la última regla, con \perp como protagonista:

$$\frac{\perp}{\varphi} \perp$$

Veamos ahora que de $\neg \varphi \lor \psi$ se deduce $\varphi \to \psi$.

Ejemplo usando $\vee E$

Introducimos la última regla, con \perp como protagonista:

$$\frac{\perp}{\varphi} \perp$$

Veamos ahora que de $\neg \varphi \lor \psi$ se deduce $\varphi \to \psi$.

$$\frac{ \frac{[\varphi]_1 \quad [\neg \varphi]_2}{\bot} \to E}{\frac{\bot}{\psi} \bot} \frac{[\psi]_2}{[\psi]_2} \lor E_2$$

$$\frac{\psi}{\varphi \to \psi} \to I_1$$