

Sequence Listing

- <110> Adams, Sean
 Goddard, Audrey
 Gurney, Austin L
 Stewart, Timothy A.
 Tomlinson, Elizabeth
 Yu, Xing Xian
- <120> FIBROBLAST GROWTH FACTOR-19 (FGF-19) NUCLEIC ACIDS AND
 POLYPEPTIDES AND METHODS FOR THE TREATMENT OF OBESITY
 AND RELATED DISORDERS
- <130> P1219P3
- <140> US 09/924,647
- <141> 2001-08-07
- <150> US 60/066,840
- <151> 1997-11-25
- <150> US 09/767,609
- <151> 2001-01-22
- <150> US 09/158,342
- <151> 1998-09-21
- <150> PCT/US98/25190
- <151> 1998-11-25
- <150> US 09/522,342
- <151> 2000-03**-**09
- <150> US 09/284,663
- <151> 1999-04-15
- <150> PCT/US99/20594
- <151> 1999-09-08

<150> PCT/0S99/21090

- <151> 1999-09-15
- <150> PCT/US99/30999
- <151> 1999-12-20
- <150> PCT/US00/04414
- <151> 2000-02-22
- <160> 20
- <210> 1
- <211> 2137
- <212> DNA
- <213> Homo sapiens
- <400> 1

gctcccagcc	aagaacctcg	gggccgctgc	gcggtgggga	ggagttcccc	50
gaaacccggc	cgctaagcga	ggcctcctcc	tcccgcagat	ccgaacggcc	100
tgggcggggt	caccccggct	gggacaagaa	gccgccgcct	gcctgcccgg	150
gcccggggag	ggggctgggg	ctggggccgg	aggcggggtg	tgagtgggtg	200
tgtgcggggg	gcggaggctt	gatgcaatcc	cgataagaaa	tgctcgggtg	250
tcttgggcac	ctacccgtgg	ggcccgtaag	gcgctactat	ataaggctgc	300
cggcccggag	ccgccgcgcc	gtcagagcag	gagcgctgcg	tccaggatct	350
agggccacga	ccatcccaac	ccggcactca	cagccccgca	gcgcatcccg	400
gtcgccgccc	agcctcccgc	acccccatcg	ccggagctgc	gccgagagcc	450
ccagggaggt	gccatgcgga	gcgggtgtgt	ggtggtccac	gtatggatcc	500
tggccggcct	ctggctggcc	gtggccgggc	gcccctcgc	cttctcggac	550
gcggggcccc	acgtgcacta	cggctggggc	gaccccatcc	gcctgcggca	600
cctgtacacc	tccggccccc	acgggctctc	cagctgcttc	ctgcgcatcc	650
gtgccgacgg	cgtcgtggac	tgcgcgcggg	gccagagcgc	gcacagtttg	700
ctggagatca	aggcagtcgc	tctgcggacc	gtggccatca	agggcgtgca	750
cagcgtgcgg	tacctctgca	tgggcgccga	cggcaagatg	caggggctgc	800
ttcagtactc	ggaggaagac	tgtgctttcg	aggaggagat	ccgcccagat	850
ggctacaatg	tgtaccgatc	cgagaagcac	cgcctcccgg	tctccctgag	900
cagtgccaaa	cagcggcagc	tgtacaagaa	cagaggcttt	cttccactct	950
ctcatttcct	gcccatgctg	cccatggtcc	cagaggagcc	tgaggacctc	1000
aggggccact	tggaatctga	catgttctct	tcgcccctgg	agaccgacag	1050
catggaccca	tttgggcttg	tcaccggact	ggaggccgtg	aggagtccca	1100
gctttgagaa	gtaactgaga	ccatgcccgg	gcctcttcac	tgctgccagg	1150
ggctgtggta	cctgcagcgt	gggggacgtg	cttctacaag	aacagtcctg	1200
agtccacgtt	ctgtttagct	ttaggaagaa	acatctagaa	gttgtacata	1250
ttcagagttt	tccattggca	gtgccagttt	ctagccaata	gacttgtctg	1300
atcataacat	tgtaagcctg	tagcttgccc	agctgctgcc	tgggccccca	1350
ttctgctccc	tcgaggttgc	tggacaagct	gctgcactgt	ctcagttctg	1400

```
cttgaatacc tccatcgatg gggaactcac ttcctttgga aaaattctta 1450
tgtcaagctg aaatteteta atttttete atcactteee caggagcage 1500
cagaaqacaq qcagtaqttt taatttcagg aacaggtgat ccactctgta 1550
aaacagcagg taaatttcac tcaaccccat gtgggaattg atctatatct 1600
ctacttccag ggaccatttg cccttcccaa atccctccag gccagaactg 1650
actggagcag gcatggccca ccaggcttca ggagtagggg aagcctggag 1700
ccccactcca gccctgggac aacttgagaa ttccccctga ggccagttct 1750
qtcatqqatq ctqtcctqaq aataacttqc tqtcccggtg tcacctgctt 1800
ccatctccca gcccaccagc cctctgccca cctcacatgc ctccccatgg 1850
attggggcct cccaggcccc ccaccttatg tcaacctgca cttcttgttc 1900
aaaaatcagg aaaagaaaag atttgaagac cccaagtctt gtcaataact 1950
tgctgtgtgg aagcagcggg ggaagaccta gaaccctttc cccagcactt 2000
ggttttccaa catgatattt atgagtaatt tattttgata tgtacatctc 2050
ttattttctt acattattta tgcccccaaa ttatatttat gtatgtaagt 2100
gaggtttgtt ttgtatatta aaatggagtt tgtttgt 2137
<210> 2
<211> 216
```

<212> PRT

<213> Homo sapiens

<400> 2

Met Arg Ser Gly Cys Val Val Wal His Val Trp Ile Leu Ala Gly

Leu Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala 20 Gly Pro His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser Ala His Ser Leu Leu Glu Ile Lys Ala Val Ala Leu Arg Thr Val Ala Ile Lys Gly Val His Ser Val Arg Tyr Leu Cys Met Gly Ala

```
Asp Gly Lys Met Gln Gly Leu Leu Gln Tyr Ser Glu Glu Asp Cys
                                     115
                 110
 Ala Phe Glu Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Arg
 Ser Glu Lys His Arg Leu Pro Val Ser Leu Ser Ser Ala Lys Gln
                                      145
                 140
 Arg Gln Leu Tyr Lys Asn Arg Gly Phe Leu Pro Leu Ser His Phe
                 155
 Leu Pro Met Leu Pro Met Val Pro Glu Glu Pro Glu Asp Leu Arg
                 170
 Gly His Leu Glu Ser Asp Met Phe Ser Ser Pro Leu Glu Thr Asp
 Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala Val Arg
 Ser Pro Ser Phe Glu Lys
                 215
<210> 3
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer bind
<400> 3
 atccgcccag atggctacaa tgtgta 26
<210> 4
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer bind
<400> 4
ccagtccggt gacaagccca aa 22
<210> 5
<211> 42
<212> DNA
<213> Artificial Sequence '
<223> Synthetic oligonucleotide probe
<400> 5
 gcctcccggt ctccctgagc agtgccaaac agcggcagtg ta 42
```

```
<210> 6
 <211> 19
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer_bind
 <400> 6
 ctccaacatg ccctatgcg 19
 <210> 7
 <211> 21
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer_bind
 <400> 7
 acgaagagca tcacaaggag g 21
<210> 8
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 8
 tgctctcctc ctccgtctcc ttctaccttc 30
<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer_bind
<400> 9
 ctccgctctg cgacactaca 20
<210> 10
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer_bind
<400> 10
aatcagtgtc tcagggctgg a 21
<210> 11
```

```
<211> 32
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 11
  caatctcatc accagacaga gatatggcaa ga 32
 <210> 12
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer bind
 <400> 12
 gctagatcca cagaaccgcg 20
<210> 13
 <211> 19
 <212> DNA
<213> Artificial Sequence
<220>
<223> Primer_bind
<400> 13
 agcaggactc gtgcagcct 19
<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide probe
<400> 14
 tctcgttctc cgcgtcgctg tgt 23
<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer_bind
<400> 15
ggtgaaggtg taccccaacg 20
<210> 16
<211> 20
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer_bind
<400> 16
ccttccagct ccctcttgaa 20
<210> 17
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
agaacgagtc ggcggaggcc ttt 23
<210> 18
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer_bind
<400> 18
gattgctgtc ctcccaggc 19
<210> 19
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer_bind
<400> 19
tggtcaaggt aatcgcccc 19
<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 20
ccatccgcca gggtaccaac atga 24
```