Facultad de Ingeniería

Normalización

Tema V

Semestre 2025-2

Objetivo

El alumno comprenderá y aplicará los conceptos del proceso de Normalización de Bases de Datos con la finalidad de implementar mejores diseños, estableciendo un equilibrio entre los niveles de redundancia y desempeño establecidos en los requerimientos no funcionales de casos de estudio.

Recordando MR

Propiedades:

- No pueden existir dos relaciones que se llamen igual
- No pueden existir tuplas iguales
- No pueden existir atributos que tengan el mismo nombre
- No hay orden en tuplas ni en atributos
- Los valores de los atributos deben ser atómicos

Definición

Concepto introducido por Frank Codd en su artículo "A relational model of data for large shared data banks", motivado por las anomalías que se presentaban en los conjuntos de datos.

Definición

Técnica empleada en el diseño de bases de datos que busca reducir redundancias e inconsistencias en los datos -> Mejor representación y organización en los datos

Ventajas

- Datos más consistentes
- Reducir datos duplicados (reducir tamaño)
- Integridad de la base de datos
- Tablas más pequeñas
- Buenas prácticas

Desventajas

- Hay que tener nociones sólidas del concepto para llevar a cabo con éxito este proceso
- Se van a presentar más datos para ser unidos (joins entre tablas), lo que puede tomar tiempos considerables en ciertos casos -> Rendimiento

Desventajas

 Las tablas contendrán códigos en vez de datos reales, lo que implica buscar ese código en otra(s) tabla(s)

SalesStaff						
EmployeeID	SalesPerson	SalesOffice	OfficeNumber	Customer1	Customer2	Customer3
1003	Mary Smith	Chicago	312-555-1212	Ford	GM	
1004	John Hunt	New York	212-555-1212	Dell	HP	Apple
1005	Martin Hap	Chicago	312-555-1212	Boeing		

¿Qué problema(s) notan?

SalesStaff						
<u>EmployeeID</u>	SalesPerson	SalesOffice	OfficeNumber	Customer1	Customer2	Customer3
1003	Mary Smith	Chicago	312-555-1212	Ford	GM	
1004	John Hunt	New York	212-555-1212	Dell	HP	Apple
1005	Martin Hap	Chicago	312-555-1212	Boeing		

¿Qué problema(s) pueden pasar cuando se agregue información?

SalesStaff						
EmployeeID	SalesPerson	SalesOffice	OfficeNumber	Customer1	Customer2	Customer3
1003	Mary Smith	Chicago	312-555-1212	Ford	GM	
1004	John Hunt	New York	212-555-1212	Dell	HP	Apple
1005	Martin Hap	Chicago	312-555-1212	Boeing		

¿Qué problema(s) pueden surgir al actualizar información?

SalesStaff						
<u>EmployeeID</u>	SalesPerson	SalesOffice	OfficeNumber	Customer1	Customer2	Customer3
1003	Mary Smith	Chicago	312-555-1212	Ford	GM	
1004	John Hunt	New York	212-555-1212	Dell	HP	Apple
1005	Martin Hap	Chicago	312-555-1212	Boeing		

¿Qué problema(s) pueden surgir al borrar información?

SalesStaff						
<u>EmployeeID</u>	SalesPerson	SalesOffice	OfficeNumber	Customer1	Customer2	Customer3
1003	Mary Smith	Chicago	312-555-1212	Ford	GM	
1004	John Hunt	New York	212-555-1212	Dell	HP	Apple
1005	Martin Hap	Chicago	312-555-1212	Boeing		

¿Qué problema(s) pueden surgir al buscar información?

Una relación está en 1FN si no presenta grupos de repetición y cada columna contiene valores atómicos.

 Un grupo de repetición es un conjunto de valores que ocurren varias veces en una tupla.

- Conjunto de atributos que representan lo mismo

EmpID	Last Name	First Name	Project	Time	Project	Time	Project	Time
EN1-26	O'Brien	Sean	30-452-T3	0.25	30-457-T3	0.40	32-244-T3	0.30
EN1-33	Guya	Amy	30-452-T3	0.05	30-382-TC	0.35	32-244-T3	0.60
EN1-35	Baranco	Steven	30-452-T3	0.15	31-238-TC	0.80		
EN1-36	Roslyn	Elizabeth	35-152-TC	0.90				
EN1-38	Schaaf	Carol	36-272-TC	0.75				
EN1-40	Wing	Alexandra	31-238-TC	0.20	31-241-TC	0.70		

EmpID	Last Name	First Name	Project1	Time1	Project2	Time2	Project3	Time3
EN1-26	O'Brien	Sean	30-452-T3	0.25	30-457-T3	0.40	32-244-T3	0.30
EN1-33	Guya	Amy	30-452-T3	0.05	30-382-TC	0.35	32-244-T3	0.60
EN1-35	Baranco	Steven	30-452-T3	0.15	31-238-TC	0.80		
EN1-36	Roslyn	Elizabeth	35-152-TC	0.90				
EN1-38	Schaaf	Carol	36-272-TC	0.75				
EN1-40	Wing	Alexandra	31-238-TC	0.20	31-241-TC	0.70		

EmployeeID	Name	Project	Time
EN1-26	Sean O'Brien	30-452-T3, 30-457-T3, 32-244-T3	0.25, 0.40, 0.30
EN1-33	Amy Guya	30-452-T3, 30-382-TC, 32-244-T3	0.05, 0.35, 0.60
EN1-35	Steven Baranco	30-452-T3, 31-238-TC	0.15, 0.80
EN1-36	Elizabeth Roslyn	35-152-TC	0.90
EN1-38	Carol Schaaf	36-272-TC	0.75
EN1-40	Alexandra Wing	31-238-TC, 31-241-TC	0.20, 0.70

- Descomponer atributos compuestos
- Atributos con el mismo dominio
- Evitar atributos que tengan el mismo nombre

¿Qué vamos a conseguir al aplicar la 1FN?

- Identificar la PK de cada relación
- Evitar atributos multivaluados o atributos que representan lo mismo

 Evitar anomalías de actualización y pérdidas de información

Sea la tabla CLIENTE:

idCliente	nombre	apellido	telefono
123	Juan	López	12123212, 43556786
547	Irma	Arriaga	56567364
490	Pablo	Juárez	12334657, 65784532

idCliente	nombre	apellido	telefono1	telefono2
123	Juan	López	12123212	43556786
547	Irma	Arriaga	56567364	56567364
490	Pablo	Juárez	12334657	65784532

idCliente	nombre	apellido	telefono
123	Juan	López	12123212
123	Juan	López	43556786
547	Irma	Arriaga	56567364
490	Pablo	Juárez	12334657
490	Pablo	Juárez	65784532

¿Cómo conseguir 1FN en una tabla?

 Opción 1: Crear una nueva tabla, la cual contendrá el atributo multivaluado y la llave primaria de la tabla que se está normalizando (FK)* que formará la PK junto con el atributo multivaluado

PK

idCliente	nombre	apellido
123	Juan	López
547	Irma	Arriaga
490	Pablo	Juárez

FK, PK PK

idCliente	telefono		
123	12123212		
123	43556786		
547	56567364		
490	12334657		
490	65784532		

¿Cómo conseguir 1FN en una tabla?

 Opción 2: Crear una llave primaria compuesta, con un atributo multivaluado y el atributo(s) más cercano a ser llave primaria

PK PK

idCliente	nombre	apellido	telefono
123	Juan	López	12123212
123	Juan	López	43556786
547	Irma	Arriaga	56567364
490	Pablo	Juárez	12334657
490	Pablo	Juárez	65784532

EmployeeID	Name	Project	Time
EN1-26	Sean O'Brien	30-452-T3, 30-457-T3, 32-244-T3	0.25, 0.40, 0.30
EN1-33	Amy Guya	30-452-T3, 30-382-TC, 32-244-T3	0.05, 0.35, 0.60
EN1-35	Steven Baranco	30-452-T3, 31-238-TC	0.15, 0.80
EN1-36	Elizabeth Roslyn	35-152-TC	0.90
EN1-38	Carol Schaaf	36-272-TC	0.75
EN1-40	Alexandra Wing	31-238-TC, 31-241-TC	0.20, 0.70

EmployeeID	Name	Project	Time
EN1-26	Sean O'Brien	30-452-T3, 30-457-T3, 32-244-T3	0.25, 0.40, 0.30
EN1-33	Amy Guya	30-452-T3, 30-382-TC, 32-244-T3	0.05, 0.35, 0.60
EN1-35	Steven Baranco	30-452-T3, 31-238-TC	0.15, 0.80
EN1-36	Elizabeth Roslyn	35-152-TC	0.90
EN1-38	Carol Schaaf	36-272-TC	0.75
EN1-40	Alexandra Wing	31-238-TC, 31-241-TC	0.20, 0.70

- ¿Hay atributos multivaluados o grupos de repetición?
- ¿Existe llave primaria?

EmployeeID	Name	Project	Time
EN1-26	Sean O'Brien	30-452-T3, 30-457-T3, 32-244-T3	0.25, 0.40, 0.30
EN1-33	Amy Guya	30-452-T3, 30-382-TC, 32-244-T3	0.05, 0.35, 0.60
EN1-35	Steven Baranco	30-452-T3, 31-238-TC	0.15, 0.80
EN1-36	Elizabeth Roslyn	35-152-TC	0.90
EN1-38	Carol Schaaf	36-272-TC	0.75
EN1-40	Alexandra Wing	31-238-TC, 31-241-TC	0.20, 0.70

EmployeeID	Name	Project	Time
EN1-26	Sean O'Brien	30-452-T3, 30-457-T3, 32-244-T3	0.25, 0.40, 0.30
EN1-33	Amy Guya	30-452-T3, 30-382-TC, 32-244-T3	0.05, 0.35, 0.60
EN1-35	Steven Baranco	30-452-T3, 31-238-TC	0.15, 0.80
EN1-36	Elizabeth Roslyn	35-152-TC	0.90
EN1-38	Carol Schaaf	36-272-TC	0.75
EN1-40	Alexandra Wing	31-238-TC, 31-241-TC	0.20, 0.70

EN1-26	SEAN	30-452-T3	0.25
EN1-26	SEAN	30-457-T3	0.40
EN1-26	SEAN	32-244-T3	0.30
EN1-33	AMY	30-452-T3	0.05
EN1-33	AMY	30-382-TC	0.35
EN1-33	AMY	32-244-T3	0.60

$$DF:X\Longrightarrow Y$$

$$t_n X = t_m X$$

$$t_n Y = t_m Y$$

Donde *n* y *m* son las *tuplas* donde hay coincidencia en X

$cod_{-}Provedor$	nombre	telefono	$\operatorname{cod}_{\operatorname{-Articulo}}$	descripcion	precio
p50	Juan	5576581	A10	tuerca	20
p32	Pedro	3349631	A20	tornillo	30
p50	Juan	5576581	A20	tornillo	32
p32	Pedro	3349631	A10	tuerca	18
p38	José	5567543	A49	martillo	45

Dependencia funcional trivial

 Dependencia funcional no trivial

Notación

Notación en el proceso de normalización:

 Notación de dependencia funcional:

nom_Emp	ssn	fecha_Nac	direccion	num_Dep	nom_Dep	man_Dep_Ssn
---------	-----	-----------	-----------	---------	---------	-------------

A B C D E F G

nom_Emp	ssn	fecha_Nac	direccion	num_Dep	nom_Dep	man_Dep_Ssn

- Indicar dependencias

claveProy	ssn	horas	nomEmpleado	nomProy	dirProy
-----------	-----	-------	-------------	---------	---------

Definiciones

- Llave
- Super llave (SK)
- Llave candidata (CK)
- Llave primaria (PK)

La cerradura de un conjunto de atributos X es el conjunto de aquellos atributos que pueden ser funcionalmente dependientes de X.

$$X^+$$

Procedimiento:

1) Agregar los atributos que componen a X como conjunto resultante de X^+

Procedimiento:

2) Agregar aquellos atributos que pueden ser funcionalmente dependientes de los atributos que ya estén contenidos en X^+

Procedimiento:

3) Repetir el paso 2 hasta que no puedan agregarse más atributos al conjunto X^+

Determinar:

$$A^+$$
 AD^+

$$B^+$$
 CD^+

Ejercicio 1_5

Sea R(A, B, C, D, E) DF: {A->B, D->E}

Determinar:

$$A^+$$
 $ABCDE^+$ $ACDE^+$ BC^+ $ABDE^+$ ACD^+

¿Cuál(es) es SK? ¿Cuál(es) es CK?

Muchas combinaciones para encontrar las posibles llaves candidatas -> La complejidad es proporcional a la cantidad de atributos en la tabla/relación

Sea R(A, B, C, D, E)
DF: {A->B, D->E}

Encontrar todas las CKs y la PK

Tarea 5

Investigar los axiomas de Armstrong, con ejemplos

Una tabla se encuentra en 2FN si y sólo si:

- Se encuentra en 1FN
- Ninguno de sus atributos noprincipales son funcionalmente dependientes en una parte de una llave primaria/candidata

Dependencias parciales:

Una dependencia funcional (DF) que ocurre en una relación es parcial cuando la eliminación de uno de los atributos determinantes genera una DF que sigue ocurriendo en la relación

Dependencias parciales:

Lo anterior implica que Z depende parcialmente de {X, Y}

id_alumno	nombre	calificacion	academia	materia
1	ana	8	datos	Bases de datos
2	carlos	6	redes	seguridad I
3	ana	8	datos	minería
4	carlos	6	redes	criptografia
5	rodrigo	9	hardware	Sistemas

- Encontrar SKs, CKs y PK
- ¿Cuántas posibles SK's puedo tener en la relación?

Sea la tabla estudiante_Proyecto

id_Estudiante	id_Proyecto	nom_Est	nom_Proy
S01	P10	Laura	Bases de datos
S02	P32	Juan	Redes
S02	P40	Juan	Sistemas operativos

- Identificar PK y candidatas
- Validar las dependencias con los atributos restantes

Sea la tabla estudiante_Proyecto

id_Estudiante	id_Proyecto	nom_Est	nom_Proy
S01	P10	Laura	Bases de datos
S02	P32	Juan	Redes
S02	P40	Juan	Sistemas operativos

¿Qué tipo de dependencia hay? X -> Y

{id_Estudiante, id_proyecto} ->
nom_Est, nom_Proy

id_Estudiante	id_Proyecto	nom_Est	nom_Proy
S01	P10	Laura	Bases de datos
S02	P32	Juan	Redes
S02	P40	Juan	Sistemas operativos

X -> Y
{id_Estudiante, id_proyecto} ->
nom_Est, nom_Proy
id_Estudiante -> nom_Est
id_Proy -> nom_Proy

Considere los siguientes datos:

ID_Emplead	ID_Depto	Ubicacion	Nombre
EMP-01	DEP_BD	Yucatán	Guillermo
EMP-02	DEP_SD	CDMX	Fernando
EMP-03	DEP_CB	Guanajuato	Aldo
EMP-04	DEP_CT	Torreón	Carlos

¿Dependencias?

Considere los siguientes datos:

ID_Emplead	ID_Depto	Ubicacion	Nombre
EMP-01	DEP_BD	Yucatán	Guillermo
EMP-02	DEP_SD	CDMX	Fernando
EMP-03	DEP_CB	Guanajuato	Aldo
EMP-04	DEP_CT	Torreón	Carlos

$${X, Y} \rightarrow {Z,W}$$
 $Y \rightarrow Z$
 $X \rightarrow W$

¿Cumple la 1FN? -> Sí, ya que no hay valores multivaluados ni grupos de rep. ¿Cumple la 2FN? No, porque existen dependencias funcionales parciales

{id_Empleado, id_Depto} ->
{Ubicacion, Nombre}

{id_Empleado, id_Depto} -> {}

id_Depto -> Ubicacion

id_Empleado -> Nombre

Normalizando:

COLABORA

ID Empleado	ID Depto
EMP-01	DEP BD
EMP-02	DEP SD
EMP-03	DEP_DB
<u>EMP-04</u>	DEP CT

ID Empleado	Nombre
EMP-01	Guillermo
EMP-02	Fernando
<u>EMP-03</u>	Aldo
EMP-04	Carlos

EMPLEADO

ID Depto	Ubicacion		
DEP BD	Yucatán		
DEP SD	CDMX		
DEP CB	Guanajuato		
DEP_CT	Torreón		

DEPARTAMENTO

Sea la tabla EMPLEADO:

ID Empleado	ID Depto	Horas
FMP-01	DFP RD	10
EMP-02	DEP SD	5
EMP-03	DEP CB	15
<u>EMP-04</u>	DEP CT	13
EMP-01	DEP SD	7

Sea la tabla EMPLEADO:

ID Empleado	<u>ID Depto</u>	Horas
FMP-01	DFP RD	10
EMP-02	DEP SD	5
EMP-03	DEP CB	15
EMP-04	DEP CT	13
EMP-01	DEP SD	7

 ${x, y} -> z$

¿Cumple la 1FN? -> Sí, ya que todos los ⁄alores son atómicos y no hay grupos de

repetición

Sea la tabla EMPLEADO:

¿Cumple la 1FN? -> Sí, ya que todos los alores son atómicos y no hay grupos de repetición ¿Cumple la 2FN? -> Sí, porque no hay

dependencias funcionales parciales

Ejercicio 2_5

staffNo	branchNo	branchAddress	name	position	hoursPerWeek
S4555	B002	City Center Plaza, Seattle, WA 98122	Ellen Layman	Assistant	16
S4555	B004	16 – 14th Avenue, Seattle, WA 98128	Ellen Layman	Assistant	9
S4612	B002	City Center Plaza, Seattle, WA 98122	Dave Sinclair	Assistant	14
S4612	B004	16 – 14th Avenue, Seattle, WA 98128	Dave Sinclair	Assistant	10

Ejercicio 3_5

Sea R(A, B, C, D)
DF: {A->B, B->C, C->A}

Encontrar todas las CKs
Determinar el conjunto de APs
Indicar la PK