

B26

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication : **2 806 095**

(à n'utiliser que pour les
commandes de reproduction)

(21) N° d'enregistrement national : **00 03140**

(51) Int Cl⁷ : C 12 N 15/29, C 12 N 15/63, 5/04, 5/10, A 01 H 5/00,
C 07 K 14/415, 14/39

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 10.03.00.

(71) Demandeur(s) : GENTECH Société à responsabilité
limitée — FR.

(30) Priorité :

(43) Date de mise à la disposition du public de la
demande : 14.09.01 Bulletin 01/37.

(72) Inventeur(s) : BEJARANO EDUARDO R, CASTILLO
GARRIGA ARACELI, COLINET DOMINIQUE,
DONOSO CUENCA IMMACULDA, INIESTA JOSE
REINA, GREVESSE CATHY et HERICOURT FRAN-
COIS.

(56) Liste des documents cités dans le rapport de
recherche préliminaire : Se reporter à la fin du
présent fascicule

(73) Titulaire(s) :

(60) Références à d'autres documents nationaux
apparentés :

(74) Mandataire(s) : BREESE MAJEROWICZ SIMONNOT.

(54) SEQUENCES POLYNUCLEOTIDIQUES PURIFIÉES DE PLANTES ET DE LEVURE CODANT POUR DES
PROTEINES QUI INTERAGISSENT AVEC LES PRODUITS DU GENOME DES GEMINIVIRUS.

(57) La présente invention a pour objet des séquences po-
lynucléotidiques purifiées de plante codant des protéines
qui interagissent avec les produits du génome du géminivi-
rus et leur utilisation pour la préparation de plantes généti-
quement modifiées résistantes au géminivirus.

FR 2 806 095 - A1

SEQUENCES POLYNUCLEOTIDIQUES PURIFIEES DE
PLANTES ET DE LEVURE CODANT POUR DES PROTEINES QUI
INTERAGISSENT AVEC LES PRODUITS DU GENOME DES GEMINIVIRUS.

5 La présente invention concerne des séquences
polynucléotidiques purifiées de plantes et de levure codant
pour des protéines qui interagissent avec les produits du
génome des géminivirus et qui sont susceptibles d'être
nécessaires à l'infection des plantes par ce virus.
10 L'invention concerne aussi la préparation de plantes
génétiquement modifiées pour résister au géminivirus,
famille des *Geminiviridae*, et plus particulièrement au
virus de l'enroulement jaunissant des feuilles de la
tomate, aussi désigné TYLCV pour « tomato yellow leaf curl
15 virus ».

TYLCV appartient au genre *Begomovirus* et est
transmis par la mouche blanche *Bemisia tabaci*. Les
géminivirus sont responsables de nombreuses maladies de la
tomate et le TYLCV pose un problème économique grave
puisque'il entraîne jusqu'à 100 % de perte de rendement dans
de nombreuses régions tropicales et subtropicales. Ce virus
s'est maintenant répandu dans le bassin Méditerranéen, dont
l'Italie et l'Espagne, où la perte de rendement au champ
peut atteindre 80%, ainsi qu'en Amérique dont récemment la
25 Floride où il menace l'industrie de la tomate. Les moyens
de lutte contre la mouche blanche *Bemisia tabaci* ne se sont
pour l'instant pas avérés efficaces.

On a proposé dans l'art antérieur des cultivars
tolérants obtenus par amélioration classique et montrant
30 des symptômes atténués ou retardés, mais pas de cultivars
résistants. On a également proposé dans l'art antérieur des
plantes transgéniques résistantes aux infections par les
géminivirus basées sur l'introduction et/ou l'expression
dans les plantes de séquences virales. On peut citer
35 notamment les constructions génétiques comprenant des gènes

de géminivirus proposées dans les demandes de brevet internationales PCT publiées sous les numéros WO97/42316 et WO97/39110.

L'introduction de séquences virales dans le génome de la tomate soulève cependant un certain nombre de problèmes notamment du fait des risques de recombinaison ou d'hétéroencapsidation.

La présente invention vise précisément à pallier cet inconvénient en proposant des gènes de plantes dont les produits interagissent avec une ou plusieurs protéines du TYLCV. Ces gènes sont donc particulièrement utiles pour contrôler l'infection virale chez une plante sans y introduire de gènes viraux.

Cela fait un siècle que les virus ont été reconnus pour la première fois comme des entités pathogènes. Depuis, des efforts considérables ont été entrepris pour comprendre leur biologie : comment ils pénètrent dans la cellule, et une fois à l'intérieur, comment ils exploitent les processus de l'hôte pour se répliquer et envahir l'organisme. Il est parfaitement établi maintenant que la réPLICATION virale dans la cellule infectée nécessite la participation de facteurs cellulaires. C'est particulièrement le cas des virus possédant des petits génomes qui codent seulement pour quelques protéines. Les virus animaux à ADN associés aux tumeurs, par exemple, exploitent la machinerie cellulaire pour accomplir leurs processus de transcription et de réPLICATION. De plus, une ou plusieurs protéines codées par ces virus sont capables d'empêter sur la physiologie de la cellule infectée afin de créer un environnement cellulaire approprié à la réPLICATION virale. Un exemple typique est celui des oncoprotéines de ces virus, comme l'antigène T du SV40, la protéine E1A des adénovirus ou la protéine E7 des virus du papillome humains, qui activent le cycle

cellulaire dans la cellule infectée en interférant avec la voie du rétinoblastome, une tumeur de l'oeil qui affecte les jeunes enfants.

La situation semble être analogue dans le cas des *Geminiviridae*, une famille unique de virus végétaux à ADN dont les particules se présentent sous la forme de deux sphéroïdes jumelés et dont le génome consiste en une ou deux petites molécules d'ADN monocaténaires circulaires (Lazarowitz, 1992). Le TYLCV appartient au genre *Begomovirus* bien qu'il ne possède qu'un seul composant génomique (Kheyr-Pour & coll., 1991 ; Navot & coll., 1991).

La figure 1 en annexe représente le génome du TYLCV, lequel contient six phases ouvertes de lecture (ORF) qui se recouvrent partiellement (Kheyr-Pour & coll., 1991)

:

- deux sur le brin du virion (+), le gène de la capsidé CP et un gène nécessaire au développement d'une infection systémique dans l'hôte, V2 (Wartig & coll., 1997), et

- quatre sur le brin complémentaire (-), le gène C1 (Rep) nécessaire à la réPLICATION, le gène C2 considéré comme codant pour un activateur de transcription des gènes situés sur le brin (+) du virion (Noris & coll., 1996) et probablement impliqué dans le mouvement du virus (Wartig & coll., 1997), le gène C3 qui favorise l'accumulation d'ADN viral, et enfin le gène C4 qui intervient dans le mouvement du virus (Fig. 1) (Jupin & coll., 1994). Ces ORF sont séparés par une région intergénique (IR) de 300 nucléotides qui contient les éléments clés pour la réPLICATION et la transcription du génome viral (Lazarowitz, 1992).

Pour comprendre les mécanismes moléculaires qui régissent les processus biologiques de la réPLICATION et du mouvement des virus, il est nécessaire d'identifier, non seulement les acteurs de ces processus, mais aussi les

interactions qui les régulent. Par exemple, la réPLICATION de l'ADN des géminivirus a lieu dans le noyau des cellules infectées et, en raison de l'absence d'enzymes de réPLICATION codées par le génome viral, nécessite les fonctions de la phase S du cycle cellulaire. Or la majorité des cellules de la feuille d'une plante sont complètement différenciées et ont quitté le cycle de division cellulaire et il n'est plus possible d'y détecter les enzymes de réPLICATION de l'ADN ou l'antigène de prolifération nucléaire de la cellule (PCNA) qui s'associe avec certaines polymérases d'ADN et favorise leur processivité. Lorsque les géminivirus infectent ces cellules différenciées, la protéine Rep induit l'expression de protéines cellulaires associées à la phase S du cycle cellulaire, telles que le PCNA (Nagar & coll., 1995). La protéine Rep des géminivirus est donc capable de réactiver la machinerie de réPLICATION de l'hôte au profit de la réPLICATION de l'ADN viral.

La dépendance des géminivirus envers les protéines de l'hôte est analogue à la situation des virus animaux à ADN associés aux tumeurs, comme le SV40. Celui-ci crée un environnement cellulaire favorable à la réPLICATION de l'ADN viral grâce à l'interaction d'une oncoprotéine codée par le génome viral avec la protéine du rétinoblastome (Rb), intervenant dans la régulation des cycles cellulaires. La protéine Rep des géminivirus forme de la même manière un complexe stable avec une protéine Rb de plante (Xie & coll., 1995). La séquestration de la protéine Rb de l'hôte par la protéine Rep du virus confirme le rôle de cette dernière dans la régulation du cycle cellulaire de l'hôte. Plus récemment, d'autres facteurs cellulaires interagissant avec la protéine Rep des géminivirus, les protéines GRAB, ont été également identifiés (Xie & coll., 1999). Bien que la fonction de ces protéines GRAB n'ait pas encore été élucidée, ces résultats

illustrent l'importance et la complexité des interactions virus-hôte nécessaires à l'accomplissement du cycle viral.

Une observation particulièrement intéressante est que la surexpression de la protéine Rb ou des protéines GRAB dans la cellule végétale inhibe la réPLICATION virale (Xie & coll., 1995, Xie & coll., 1999). L'identification des facteurs cellulaires qui interagissent avec le produit du génome viral ouvre donc de nouvelles opportunités de lutte contre les maladies virales.

10

Comme indiqué précédemment, la présente invention a pour objet des gènes de plantes et de levure dont les produits sont capables d'interagir avec une ou plusieurs protéines du TYLCV et qui sont donc particulièrement utiles pour développer de nouvelles stratégies pour rendre les plantes résistantes à l'infection virale.

En effet, les travaux réalisés dans le cadre de la présente invention ont permis d'identifier des protéines de la levure *Schizosaccharomyces pombe* et des plantes *Arabidopsis thaliana*, *Nicotiana benthamiana* et *Lycopersicon esculentum* qui interagissent avec l'une au moins des six protéines du génome du TYLCV : Rep, C2, C3, C4, CP et V2.

L'invention a donc pour objet une séquence polynucléotidique purifiée de plante ou de levure codant pour une protéine qui interagit avec l'un au moins des six produits du génome d'un géminivirus nécessaire à l'infection d'une plante par ce virus.

Des exemples de séquences polynucléotidiques utiles selon l'invention sont constituées par tout ou partie des gènes ou fragments de gènes rapportés dans le tableau de la figure 2 en annexe qui se réfère à la liste de séquences en annexe et aux numéros d'accès dans Genbank s'ils existent.

35

5

Une première série de séquences polynucléotidiques codant une protéine nécessaire à une ou plusieurs des six protéines du génome d'un géminivirus pour permettre l'infection virale, selon l'invention, sont constituées par tout ou partie d'un gène choisi dans le groupe comprenant les gènes *gip3-C2*, *gip6-C2*, *gip7-C3*, *gip8-C3*, *gip9-C3*, *gip11-C3*, *gip12-C4*, *gip14-CP*, *gip15-CP*, *gip16-V2*, *gip18-V2*, *gip19-V2*, *gip21-V2* et *gip22-V2*.

10

Le fragment de gène *gip3-C2* de *A. thaliana* code pour la protéine GIP3-C2 qui interagit avec la protéine C2 du TYLCV. SEQ ID NO:5 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du fragment de gène *gip3-C2* suivie de la portion 3' non codante. SEQ ID NO:6 représente la séquence en acides aminés du fragment de protéine GIP3-C2.

15

Le fragment de gène *gip6-C2* de *N. benthamiana* code pour la protéine GIP6-C2 qui interagit avec la protéine C2 du TYLCV. La SEQ ID NO:11 représente une séquence nucléotidique de *N. benthamiana* comprenant la partie codante du fragment de gène *gip6-C2* suivie de la portion 3' non codante. SEQ ID NO:12 représente la séquence en acides aminés du fragment de protéine GIP6-C2.

20

Le gène *gip7-C3* de *L. esculentum* code pour la protéine PCNA-tom qui interagit avec la protéine C3 du TYLCV. SEQ ID NO:13 représente une séquence nucléotidique de *L. esculentum* comprenant la partie codante du gène *gip7-C3* suivie de la portion 3' non codante. SEQ ID NO:14 représente la séquence en acides aminés de la protéine PCNA-tom de *L. esculentum*.

25

Le fragment de gène *gip8-C3* code pour la protéine PCNA-ara de *A. thaliana* qui interagit avec la protéine C3 du TYLCV. SEQ ID NO:15 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du gène *gip8-C3* suivie de la portion 3' non codante. La SEQ

30

ID NO:16 représente la séquence en acides aminés de la protéine PCNA-ara de *A. thaliana*.

5 Le fragment de gène *gip9-C3* de *A. thaliana* code pour un fragment de la sous-unité delta du coatomer qui interagit avec la protéine C3 du TYLCV. SEQ ID NO:17 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du fragment de gène *gip9-C3* suivie de la portion 3' non codante. SEQ ID NO:18 représente la séquence en acides aminés du fragment de la 10 sous-unité delta du coatomer de *A. thaliana*.

15 Le fragment de gène *gip11-C3* de *N. benthamiana* code pour le fragment de protéine DNAJ qui interagit avec la protéine C3 du TYLCV. SEQ ID NO:21 représente une séquence nucléotidique de *N. benthamiana* comprenant la partie codante du fragment de gène *gip11-C3* suivie de la portion 3' non codante. SEQ ID NO:22 représente la séquence 20 en acides aminés du fragment de protéine DNAJ de *N. benthamiana*.

25 Le fragment de gène *gip12-C4* de *A. thaliana* code pour le fragment de protéine GIP12-C4 qui interagit avec la protéine C4 du TYLCV. SEQ ID NO:23 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du fragment de gène *gip12-C4* suivie de la portion 3' non codante. SEQ ID NO:24 représente la séquence en 30 acides aminés du fragment de protéine GIP12-C4 de *A. thaliana*.

35 Le fragment de gène *gip14-CP* de *N. benthamiana* code pour le fragment de protéine 14-3-3 qui interagit avec la protéine CP du TYLCV. SEQ ID NO:27 représente une séquence nucléotidique de *N. benthamiana* comprenant la partie codante du fragment de gène *gip14-CP* suivie de la portion 3' non codante. SEQ ID NO:28 représente la séquence 40 en acides aminés du fragment de protéine 14-3-3 de *N. benthamiana*.

Le fragment de gène *gip15-CP* de *N. benthamiana* code pour la protéine GIP15-CP qui interagit avec la protéine CP du TYLCV. SEQ ID NO:29 représente une séquence nucléotidique de *N. benthamiana* comprenant la partie codante du fragment de gène *gip15-CP* suivie de la portion 3' non codante. SEQ ID NO:30 représente la séquence en acides aminés du fragment de protéine GIP15-CP de *N. benthamiana*.

Le fragment de gène *gip16-V2* de *N. benthamiana* code pour la protéine GIP16-V2 qui interagit avec la protéine V2 du TYLCV. SEQ ID NO:31 représente une séquence nucléotidique de *N. benthamiana* comprenant la partie codante du fragment de gène *gip16-V2* suivie de la portion 3' non codante. SEQ ID NO:32 représente la séquence en acides aminés du fragment de protéine GIP16-V2 de *N. benthamiana*.

Le fragment de gène *gip18-V2* de *A. thaliana* code pour le fragment de protéine GIP18-V2 qui interagit avec la protéine V2 du TYLCV. SEQ ID NO:35 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du fragment de gène *gip18-V2* suivie de la portion 3' non codante. SEQ ID NO:36 représente la séquence en acides aminés du fragment de protéine GIP18-V2 de *A. thaliana*.

Le fragment de gène *gip19-V2* de *A. thaliana* code pour le fragment de protéine GIP19-V2 qui interagit avec la protéine V2 du TYLCV. SEQ ID NO:37 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du fragment de gène *gip19-V2* suivie de la portion 3' non codante. SEQ ID NO:38 représente la séquence en acides aminés du fragment de protéine GIP19-V2 de *A. thaliana*.

Le fragment de gène *gip21-V2* *N. benthamiana* code pour la protéine GIP21-V2 qui interagit avec le fragment de protéine V2 du TYLCV. SEQ ID NO:41 représente

une séquence nucléotidique de *N. benthamiana* comprenant la partie codante du fragment de gène *gip21-V2* suivie de la portion 3' non codante. SEQ ID NO:42 représente la séquence en acides aminés du fragment de protéine GIP21-V2 *N. benthamiana*.

Le fragment de gène *gip22-V2* *N. benthamiana* code pour le fragment de protéine GIP22-V2 qui interagit avec la protéine V2 du TYLCV. SEQ ID NO:43 représente une séquence nucléotidique de *N. benthamiana* comprenant la partie codante du fragment de gène *gip22-V2* suivie de la portion 3' non codante. SEQ ID NO:44 représente la séquence en acides aminés du fragment de protéine GIP22-V2 *N. benthamiana*.

Il convient de remarquer qu'en ce qui concerne les gènes *gip3-C2*, *gip9-C3*, *gip16-V2* et *gip19-V2*, les séquences des chromosomes contenant la séquence de ces gènes, interrompus par des introns, se trouvent dans les bases de données (respectivement AB005240, AB005245, AB007651, AC026636 comme indiqué dans le tableau de la figure 2). En conséquence, les travaux réalisés dans le cadre de la présente invention ont permis de définir les ORF de ces gènes qui n'ont donc jamais été décrits dans l'art antérieur.

De même, en ce qui concerne le gène *gip18-V2*, la séquence du chromosome contenant la séquence de ce gène se trouve dans les bases de données (AC003027 comme indiqué dans le tableau de la figure 2). Cependant, la prédition des ORF décrit dans l'art antérieur présente des inexactitudes et la séquence du gène *gip18-V2* est différente de la séquence du gène prédit car certaines parties de la séquence sont considérées comme étant des introns alors qu'elles n'en sont pas.

La présente invention a donc pour objet une séquence polynucléotidique purifiée de plante codant une protéine dont la séquence en acides aminés est choisie dans

le groupe comprenant les séquences en acides aminés représentées dans la liste de séquences en annexe sous les numéros SEQ ID NO:6, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:42 ou SEQ ID NO:44, un fragment ou une séquence substantiellement similaire de celle-ci.

L'invention se rapporte donc tout particulièrement à une séquence polynucléotidique constituée de tout ou partie d'une séquence polynucléotidique choisie parmi celles représentées dans la liste de séquence en annexe sous les numéros SEQ ID NO:5, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:41 ou SEQ ID NO:43, une séquence complémentaire ou substantiellement similaire de celle-ci.

Les travaux de recherche réalisés dans le cadre de la présente invention ont également permis d'identifier des gènes qui bien que déjà décrits dans l'art antérieur, n'avaient jamais été envisagés comme susceptibles de coder pour des protéines capables d'interagir avec les protéines des géminivirus et donc utiles pour rendre des plantes résistantes à ces virus. Une seconde série de séquences polynucléotidiques utiles selon l'invention sont constituées par tout ou partie d'un gène choisi dans le groupe comprenant les gènes SY 0487 (N° accession Genbank D89128), T8K22.14 (N° accession Genbank AC004136), ajh1 (N° accession Genbank AF087413), T26F17.15 (N° accession Genbank AC013482), F9L1.33 (N° accession Genbank AC007591), F6H11.170 (N° accession Genbank AL021684), F21O3.7 (N° accession Genbank AC003027), et Cs26 (N° accession Genbank AB003041).

Le gène SY 0487 de *S. pombe* code pour la protéine similaire à la NDP-hexose pyrophosphorylase de *S. cerevisiae* qui interagit avec la protéine Rep du TYLCV. SEQ ID NO:1 représente une séquence nucléotidique de *S. pombe* comprenant la partie codante du gène SY 0487. SEQ ID NO:2 représente la séquence en acides aminés de la protéine de *S. pombe* similaire à la NDP-hexose pyrophosphorylase de *S. cerevisiae*.

Le gène T8K22.14 code pour la protéine putative de liaison au TBP qui interagit avec la protéine C2 du TYLCV. SEQ ID NO:3 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du gène T8K22.14 suivie de la portion 3' non codante. SEQ ID NO:4 représente la séquence en acides aminés de la protéine putative de liaison au TBP.

Le gène ajh1 code pour la protéine AJH1 qui interagit avec la protéine C2 du TYLCV. SEQ ID NO:7 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du gène ajh1 suivie de la portion 3' non codante. SEQ ID NO:8 représente la séquence en acides aminés de la protéine AJH1.

Le fragment de gène T26F17.15 de *A. thaliana* code pour la protéine T26F17.15 qui interagit avec la protéine C2 du TYLCV. SEQ ID NO:9 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du fragment de gène gip5-C2 suivie de la portion 3' non codante. SEQ ID NO:10 représente la séquence en acides aminés du fragment de protéine T26F17.15.

Le gène F9L1.33 code pour la protéine de la famille des glyoxalases qui interagit avec la protéine C3 du TYLCV. SEQ ID NO:19 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du gène F9L1.33 suivie de la portion 3' non codante. SEQ ID NO:20 représente la séquence en acides aminés de la protéine de la famille des glyoxalases.

Le gène *F6H11.170* code pour la protéine de type récepteur kinase qui interagit avec la protéine C4 du TYLCV. SEQ ID NO:25 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du gène *F6H11.170* suivie de la portion 3' non codante. SEQ ID NO:26 représente la séquence en acides aminés de la protéine de type récepteur kinase.

Le gène *F2103.7* code pour la protéine hypothétique qui interagit avec la protéine V2 du TYLCV. SEQ ID NO:33 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du gène *F2103.7* suivie de la portion 3' non codante. SEQ ID NO:34 représente la séquence en acides aminés de la protéine hypothétique.

Le gène *Cs26* code pour la protéine o-acétylsérine (thiol) lyase qui interagit avec la protéine V2 du TYLCV. SEQ ID NO:39 représente une séquence nucléotidique de *A. thaliana* comprenant la partie codante du gène *Cs26* suivie de la portion 3' non codante. SEQ ID NO:40 représente la séquence en acides aminés de la protéine o-acétylsérine (thiol) lyase.

La présente invention a donc pour objet une séquence polynucléotidique purifiée de plante ou de levure codant une protéine dont la séquence en acides aminés est choisie dans le groupe comprenant les séquences en acides aminés représentées dans la liste de séquences en annexe sous les numéros SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:20, SEQ ID NO:26, SEQ ID NO:34 ou SEQ ID NO:40, un fragment ou une séquence substantiellement similaire de celle-ci.

L'invention se rapporte donc tout particulièrement à une séquence polynucléotidique constituée de tout ou partie d'une séquence polynucléotidique choisie parmi celles représentées dans la liste de séquence en annexe sous les numéros SEQ ID NO:1,

SEQ ID NO:3, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:19, SEQ ID NO:25, SEQ ID NO:33 ou SEQ ID NO:39, une séquence complémentaire ou substantiellement similaire de celle-ci.

5 On entend par « substantiellement similaire » d'une protéine ou d'un fragment de protéine, une séquence en acides aminés présentant une ou plusieurs modifications telles que la substitution, la délétion ou l'insertion d'un ou plusieurs acides aminés qui n'affectent pas les propriétés fonctionnelles de la protéine ou du fragment de protéine dont elle dérive.

10 On entend aussi par « substantiellement similaire » d'une séquence polynucléotidique selon l'invention, une séquence présentant une ou plusieurs modifications de nucléotides qui conduisent à la substitution d'un ou plusieurs acides aminés sans affecter les propriétés fonctionnelles de la protéine ou du fragment de protéine codée par la séquence polynucléotidique dont elle dérive. Les altérations d'un gène qui résultent dans l'expression d'un acide aminé chimiquement équivalent à un site donné, mais qui n'affectent pas les propriétés fonctionnelles de la protéine codée par le gène, sont bien connues par l'homme de métier. Par exemple, un codon codant pour l'acide aminé alanine, un acide aminé hydrophobe, peut être substitué par un codon codant pour un autre résidu moins hydrophobe, comme la glycine, ou un autre résidu plus hydrophobe, comme la valine, la leucine ou l'isoleucine. Pareillement, des modifications qui résultent dans la substitution d'un résidu négativement chargé par un autre, comme l'acide aspartique pour l'acide glutamique, ou un résidu positivement chargé par un autre, comme la lysine pour l'arginine, sont présumées produire une protéine fonctionnellement équivalente. En outre, l'homme de métier sait que les séquences polynucléotidiques objet de la présente invention peuvent également être définies par leur

capacité à s'hybrider, sous des conditions stringentes (0,1X SSC, 0,1% SDS, 65°C), avec les séquences de référence données dans la liste de séquences en annexe. De manière avantageuse, les séquences substantiellement similaires objets de la présente invention sont celles qui partagent au moins 80% d'identité avec les séquences de référence données dans la liste de séquences en annexe, de préférence au moins 90% d'identité, plus préférentiellement au moins 95% d'identité.

On entend aussi par « substantiellement similaire », une séquence polynucléotidique présentant une ou plusieurs modifications de nucléotides qui n'affectent en rien la capacité de la séquence polynucléotidique ainsi modifiée d'altérer l'expression de gènes par la technique des antisens ou de la co-expression. On entend aussi par séquence polynucléotidique de plante ou de levure modifiée, une séquence polynucléotidique antisens. Il est bien connu de l'homme de métier que la suppression par antisens ou la co-suppression de l'expression de gènes peut être réalisée en utilisant une séquence nucléotidique représentant seulement une portion de l'entièreté d'un gène codant, ainsi que par une séquence nucléotidique partageant moins de 100 % d'identité avec le gène dont l'expression doit être modifiée.

L'invention concerne également une molécule d'acide nucléique comprenant au moins une séquence polynucléotidique telle que définie ci-dessus. Il s'agit de molécules d'acide nucléique recombinant comprenant au moins une séquence polynucléotidique purifiée de plante ou de levure codant une protéine dont la séquence en acides aminés est choisie dans le groupe comprenant les séquences en acides aminés représentées dans la liste de séquences en annexe sous les numéros :

- SEQ ID NO:6, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:42 ou SEQ ID NO:44, ou

5 - SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:20, SEQ ID NO:26, SEQ ID NO:34 ou SEQ ID NO:40,

un fragment ou une séquence实质上似的似于
similaire de celles-ci.

10 Lesdites séquences polynucléotidiques purifiées de plante entrant dans la constitution des molécules d'acide nucléique de l'invention sont constituées de tout ou partie d'une séquence polynucléotidique choisie parmi celles représentées dans la liste de séquence en annexe 15 sous les numéros :

- SEQ ID NO:5, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:41 ou SEQ ID NO:43, ou

20 - SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:19, SEQ ID NO:25, SEQ ID NO:33 ou SEQ ID NO:39,

une séquence complémentaire ou
substantiellement similaire de celles-ci.

25 Des molécules d'acide nucléique recombinant selon l'invention sont notamment des gènes chimères ou des cassettes d'expression comprenant ladite séquence polynucléotidique placé sous le contrôle d'éléments de régulation en position 5' et/ou 3' de celle-ci pouvant fonctionner dans un organisme hôte, en particulier dans les 30 cellules végétales.

Des éléments de régulation en position 5' et 3' entrant dans la composition des molécules d'acide nucléique recombinant selon l'invention, dont l'utilisation est 35 fonction de l'organisme hôte sont bien connus de l'homme de

5 métier. Ils comprennent notamment des séquences promotrices, des activateurs de transcription, des séquences terminatrices, y compris des codons start et stop. Les moyens et méthodes pour identifier et sélectionner les éléments de régulation sont bien connus de l'homme de métier.

10 Comme séquence de régulation promotrice dans les plantes, on peut utiliser toute séquence promotrice d'un gène s'exprimant naturellement dans les plantes, par exemple un promoteur d'origine bactérienne, virale ou végétale tel que, par exemple, le promoteur 35S du virus de la mosaïque du choux-fleur (CaMV), ou un promoteur inductible par les pathogènes comme le PR-1a du tabac, tout promoteur convenable connu pouvant être utilisé.

15 Selon l'invention, on peut également utiliser, en association avec la séquence de régulation promotrice, d'autres séquences de régulation, qui sont situées entre le promoteur et la séquence codante, tels que des activateurs de transcription (« enhancer »), comme, par exemple, l'activateur du virus de la mosaïque du tabac (TMV) décrit dans le brevet US 5,891,665.

20 25 Comme séquence de régulation terminatrice ou de polyadénylation, on peut utiliser toute séquence correspondante d'origine bactérienne, comme, par exemple, le terminateur nos d'*Agrobacterium tumefaciens*, ou encore d'origine végétale, comme, par exemple, un terminateur d'histone tel que décrit dans le brevet EP 633 317.

30 La séquence polynucléotidique peut être également associée dans la molécule d'acide nucléique de l'invention à un marqueur de sélection adapté à l'organisme hôte transformé. De tels marqueurs de sélection sont bien connus de l'homme de métier. Il pourra s'agir d'un gène de résistance aux antibiotiques, ou encore un gène de tolérance aux herbicides pour les plantes. De tels gènes de

tolérance aux herbicides sont notamment décrits dans les brevets EP 115 673, EP 337 899, WO 96/38567 ou WO 97/04103.

La présente invention concerne également un vecteur de clonage ou d'expression pour la transformation d'un organisme hôte constituant ou contenant au moins une molécule d'acide nucléique recombinant défini ci-dessus. De tels vecteurs de transformation en fonction de l'organisme hôte à transformer sont bien connus de l'homme de métier et largement décrits dans la littérature. Les vecteurs selon l'invention peuvent être utilisés pour transformer tout type d'hôte cellulaire comme des organismes mono ou pluricellulaires, inférieurs ou supérieur, en particulier de cellules végétales ou de plantes. Pour la transformation des cellules végétales ou des plantes, il s'agira notamment d'un virus contenant ses propres éléments de réPLICATION et d'expression. De manière préférentielle, le vecteur de transformation des cellules végétales ou des plantes selon l'invention est un plasmide.

Comme indiqué précédemment, les séquences polynucléotidiques de l'invention sont utiles pour préparer des plantes résistantes aux géminivirus. En effet, ces séquences polynucléotidiques codent pour des protéines qui sont nécessaires aux six protéines du génomes du géminivirus pour infecter la plante. En conséquence, ces séquences polynucléotidiques permettent de préparer des acides nucléiques modifiés, qui une fois intégrés de manière stable dans le génome de la plante, vont s'opposer à l'interaction des protéines codées par les séquences polynucléotidiques de l'invention avec les six produits du génome du géminivirus et ainsi empêcher la multiplication virale.

L'invention concerne donc une plante génétiquement modifiée résistante aux géminivirus possédant de manière stable dans son génome au moins un acide

nucléique modifié comprenant ou constitué par une séquence polynucléotidique de l'invention codant une protéine nécessaire à une ou plusieurs des six protéines du génome qui est modifiée pour :

5 - bloquer l'expression de ladite protéine de plante nécessaire à une ou plusieurs des six protéines du génome d'un géminivirus,

10 - exprimer une protéine de plante modifiée, et dont la modification par rapport à la protéine naturelle modifie ou supprime l'interaction avec l'une au moins des six protéines virales.

L'invention est remarquable en ce qu'elle permet de préparer des plantes transgéniques :

15 - soit, n'exprimant plus une protéine de plante nécessaire à une ou plusieurs des six protéines du génome d'un géminivirus pour permettre l'infection virale,

20 - soit, exprimant une protéine de plante modifiée, et dont la modification par rapport à la protéine naturelle modifie ou supprime l'interaction avec l'une au moins des six protéines virale et empêche ainsi la multiplication du virus.

On entend par « protéine de plante modifiée », une protéine qui, par rapport à la protéine naturelle, est :

25 - sur-exprimée grâce à un promoteur particulier ou du fait d'un nombre important de copies de la séquence polynucléotidique codant ladite protéine,

30 - modifiée au niveau d'un ou plusieurs de ces acides aminés de façon à ce que même si l'interaction avec une protéine virale est conservée, la protéine modifiée n'est plus fonctionnelle pour l'infection virale ; avantageusement la protéine ainsi modifiée est sur-exprimée de façon à ce que ce soit la protéine modifiée qui interagisse avec la protéine virale plutôt que la protéine naturelle,

- modifiée au niveau d'un ou de plusieurs de ces acides aminés de façon à ce que l'interaction avec une protéine virale soit supprimée,

5 - tronquée, il s'agit alors d'un fragment de la protéine naturelle qui, même si l'interaction avec une protéine virale est conservée, n'est plus fonctionnelle pour l'infection virale ; avantageusement la protéine ainsi modifiée est sur-exprimée de façon à ce que ce soit la protéine modifiée qui interagisse avec la protéine virale 10 plutôt que la protéine naturelle.

Des protéines de plantes modifiées sont exprimées dans une plante génétiquement modifiée selon l'invention grâce à la séquence polynucléotidique de plante modifiée par rapport à la séquence polynucléotidique naturelle. On entend ainsi par séquence polynucléotidique de plante modifiée, une séquence polynucléotidique qui, par rapport à la séquence polynucléotidique présente une ou plusieurs modifications de nucléotides ou bien est constitué par un fragment de la séquence polynucléotidique naturelle qui code pour une protéine modifiée.

20 L'invention envisage aussi à titre de séquence polynucléotidique de plante modifiée, de courtes fractions du gène que l'on veut altérer. Ces courtes fractions nucléotidiques sont utiles pour réaliser des interventions géniques sans apport de gène extérieur, par des techniques du type de la chiméraplastie, afin de réaliser une mutation très précise et efficace dans un gène. Ces séquences ont une structure particulière qui active leur intégration à la bonne place.

25 30 L'invention envisage aussi à titre de séquence polynucléotidique modifiée des séquences antisens capable de bloquer la transcription ou la traduction de la séquence polynucléotidique naturelle et donc l'expression des protéines de plante interagissant avec les six produits du 35 génome du géminivirus.

Les exemples de séquences polynucléotidiques ou de protéines modifiées ci-dessus sont donnés à titre non limitatif, car l'homme du métier est capable de réaliser d'autres modifications à partir des séquences polynucléotidiques données ci-après permettant d'empêcher l'infection virale. L'homme du métier est capable à partir de techniques de biologie moléculaire décrites dans la littérature de préparer des plantes transgéniques et de tester leur résistance aux virus.

Ainsi, dans certains modes de réalisation avantageux de l'invention, la séquence polynucléotidique de plante modifiée est placée sous le contrôle d'un promoteur permanent ou inductible.

On entend par « plante » au sens de la présente invention tout organisme multicellulaire différencié capable de photosynthèse, en particulier monocotylédones ou dicotylédones, plus particulièrement des plantes de culture destinées ou non à l'alimentation animale ou humaine, comme la tomate, le maïs, le blé, le colza, le soja, le riz, la canne à sucre, la betterave, le coton, etc....

On entend par « plantes génétiquement modifiés » au sens de la présente invention, une plante transgénique obtenue par transformation, avec au moins une molécule d'acide nucléique comprenant une séquence polynucléotidique comme définie précédemment, ou la descendance d'une telle plante si cette dernière contient les dites molécules d'acide nucléique dans ses semences.

L'invention concerne aussi un procédé de préparation d'une plante transgénique résistante aux géminivirus consistant :

- à transformer une cellule végétale avec au moins un acide nucléique comprenant ou constitué par une séquence polynucléotidique modifiée définie ci-dessus,

- à régénérer une plante à partir de ladite cellule transformée.

Il existe plusieurs techniques de transformation et de régénération de plantes décrites dans la littérature, notamment dans les demandes de brevet ci-après auxquels l'homme du métier pourra se référer : US 4,459,355, US 4,536,475, US 5,464,763, US 5,177,010, US 5,187,073, EP 267 159, EP 604 662, EP 672 752, US 4,945,050, US 5,036,006, US 5,100,792, US 5,371,014, US 5,478,744, US 5,179,022, US 5,565,346, US 5,484,956, US 5,508,468, US 5,538,877, US 5,554,798, US 5,489,520, US 5,510,318, US 5,204,253, US 5,405,765, EP 442 174, EP 486 233, EP 486 234, EP 539 563, EP 674 725, WO91/02071 et WO95/06128.

On peut citer plus particulièrement les méthodes consistant à bombarder des cellules, des protoplastes ou des tissus avec des particules auxquelles sont accrochées les molécules d'acide nucléique. D'autres méthodes consistent à utiliser comme moyen de transfert dans la plante un plasmide Ti d'*A. tumefaciens* ou Ri d'*Agrobacterium rhizogenes* dans lequel est inséré une molécule d'acide nucléique recombinant. D'autres méthodes encore peuvent être utilisées, telles que la microinjection ou l'électroporation, ou encore la transformation au moyen de PEG. L'une ou l'autre de ces techniques peut être plus ou moins adaptée à la nature de l'organisme hôte, en particulier de la cellule végétale ou de la plante.

L'invention concerne également les plantes transformées issues de la culture et/ou du croisement des plantes régénérées ci-dessus, ainsi que les graines desdites plantes transformées résistantes aux maladies causées par les virus, préférentiellement résistantes aux maladies causées par les géminivirus.

L'invention se rapporte donc aussi à une cellule végétale transformée dans le génome de laquelle est

incorporée de façon stable un acide nucléique modifié défini précédemment.

On entend plus particulièrement par « cellule végétale », toute cellule issue ou à l'origine d'une plante et pouvant constituer des tissus indifférenciés tels que des cals, des tissus différenciés tels que des embryons, des parties de plantes, ou des semences.

Les travaux réalisés dans le cadre de la présente invention ont donc permis d'identifier de nouveaux gènes codant pour des protéines susceptibles d'interagir avec l'une au moins des six protéines des génimivirus. Il s'agit comme indiqué précédemment des séquences constituées par tout ou partie d'un gène choisi dans le groupe comprenant les gènes *gip3-C2*, *gip6-C2*, *gip7-C3*, *gip8-C3*, *gip9-C3*, *gip11-C3*, *gip12-C4*, *gip14-CP*, *gip15-CP*, *gip16-V2*, *gip18-V2*, *gip19-V2*, *gip21-V2* et *gip22-V2*. L'invention s'intéresse plus particulièrement aux protéines ou fragments des protéines codées par ces gènes. L'invention a donc tout spécifiquement pour objet une protéine susceptible d'interagir avec l'une au moins des six protéines des génimivirus, caractérisée en ce qu'elle comprend ou est constituée par une séquence en acides aminés choisie parmi les séquences représentées dans la liste de séquence en annexe sous les numéros SEQ ID NO:6, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:42 ou SEQ ID NO:44, un fragment ou une séquence substantiellement similaire de celles-ci.

D'autres avantages et caractéristiques de l'invention apparaîtront à la lecture des exemples ci-après concernant le gène *gip1-Rep* de *S. pombe* dont le produit

interagit avec la protéine Rep du TYLCV et son utilisation pour la transformation de tomate.

5 Exemple 1. Isolement du gène *gip1-Rep* de *S. pombe* dont le produit interagit avec la protéine Rep du TYLCV.

10 Grâce à la méthode du double-hybride en levure (Fields et Song, 1989), une banque de cDNA de *S. pombe* a été criblée avec la protéine Rep du TYLCV fusionnée au domaine de liaison à l'ADN de GAL4. Deux clones de levure, appelés GIP1-Rep.11 et GIP1-Rep.13, ont été capables de former des colonies sur milieu de sélection et ont donné lieu à un résultat positif lors de l'essai *LacZ*. L'analyse 15 de la séquence de ces deux clones ont montré qu'ils étaient identiques à l'exception de l'extrémité 3' non-codante. Le gène *gip1-Rep*, contenu dans les deux clones GIP1-Rep.11 et GIP1-Rep.13, est un homologue du gène *PSA1* de la levure *Saccharomyces cerevisiae*. Ce gène semble être impliqué dans la régulation du cycle cellulaire chez *S. cerevisiae* (Benton & coll., 1996). L'expression du gène *PSA1* est à son maximum juste avant l'entrée dans la phase S 20 du cycle cellulaire (Benton & coll., 1996).

25 Plusieurs délétions du gène *Rep* ont été construites et clonées dans le vecteur pAS2. Ces clones ont été utilisés pour tester la capacité des protéines *Rep* déletées à interagir avec la protéine GIP1-Rep. Ces analyses suggèrent que la région N-terminale de la protéine *Rep* est essentielle à l'interaction avec GIP1-Rep.

30 Une analyse de type Southern Blot montre que le gène *gip1-Rep* est présent en une seule copie chez *S. pombe*. Une analyse de type Northern Blot, réalisée sur une culture de cellules de *S. pombe* synchrones, montre que le niveau d'expression du gène *gip1-Rep* varie durant le cycle

cellulaire et est à son maximum durant la phase G1, qui précède la phase S du cycle cellulaire.

Exemple 2. Caractérisation génétique de gip1-

5 Rep.

Un fragment du gène *gip1-Rep* correspondant à la partie codante complète du gène a été clonée dans le vecteur d'expression pREP3x pour donner le plasmide pREP3x-Gip1. Ce plasmide a été construit pour surexprimer GIP1-Rep à l'aide d'un promoteur dont l'expression est régulée par la présence de thiamine dans le milieu. Des cellules sauvages ainsi que divers mutants du cycle cellulaire ont été transformées par le plasmide pREP3x-Gip1. Les cellules ont été étalées sur milieu minimum et contrôlées par microscopie électronique. Aucun effet de la surexpression du gène *gip1-Rep* n'a été observé.

Pour réaliser la disruption de gène, un fragment génomique contenant la partie codante du gène *gip1-Rep* a été utilisé. Ce fragment était encadré de deux sites de restriction *PstI* qui ont permis de le cloner dans pBS+ pour donner le plasmide pBIG4. Ce dernier a alors été digéré par *EcoRV* pour libérer la quasi totalité de la phase codante de *gip1-Rep* qui a été remplacée par un fragment contenant le gène *ura4* pour donner le plasmide pBIG45. Le gène *ura4* se trouve donc encadré à ses extrémités 5' et 3' de, respectivement, 1380 et 570 nucléotides de la séquence génomique du gène *gip1-Rep*. Une culture d'une souche diploïde de *S. pombe* auxotrophe pour l'uracile et la leucine a été transformée avec le fragment de restriction *PstI* obtenu à partir du plasmide pBIG45 et étalée sur milieu permettant de sélectionner les colonies *ura+*. Trois colonies indépendantes ont été sélectionnées et leur sporulation a été induite. L'analyse des tétrades réalisée sur un des diploïdes a montré que seulement deux spores de

la tétrade sont viables. Ces spores ne contiennent pas le gène *ura4* car elles sont *ura-*. Comme pour le gène *PAS1* de *S. cerevisiae* (Benton & coll. ,1996), la disruption du gène *gip1-Rep* chez *S. pombe* s'est donc avérée létale. Ces

5 résultats indiquent que *gip1-Rep* est un gène essentiel.

Pour obtenir un mutant conditionnel, les cellules diploïdes contenant la disruption de *gip1-Rep* ont été transformées avec le plasmide pREP3x-Gip1, porteur du marqueur leucine, et les colonies *leu+* ont été sélectionnées. La sporulation a été induite chez certaines de ces colonies et les spores ont été étalées sur milieu minimum contenant de l'adénine et de l'uracile. Le phénotype des colonies haploïdes a ensuite été analysé. Toutes les colonies étaient *leu+* et environ la moitié étaient *ura+* indiquant que la disruption de *gip1-Rep* était complémentée par l'expression de *gip1-Rep* depuis le plasmide. Ce résultat a été confirmé en étalant ces cellules sur un milieu avec de la thiamine pour réprimer l'expression de *gip1-Rep*. Dans ces conditions, les cellules étaient incapables de croître. L'analyse de la culture au microscope a révélé que la plupart des cellules avaient deux noyaux séparés par un septum. Ceci indique que le gène *gip1-Rep* est essentiel à une étape particulière du cycle cellulaire.

25

Exemple 3. Cr éation d'un vecteur d'A.
tumefaciens contenant la construction du gène codant pour
GIP1-Rep.

30

Le gène *gip1-Rep* contenu dans le plasmide pACTgip1-Rep est amplifié par PCR. Le fragment d'ADN amplifié est purifié après électrophorèse sur gel d'agarose, il est ensuite digéré par *SalI* et *KpnI* et lié dans le plasmide pJC2EN2 digéré par les mêmes enzymes. On obtient ainsi le vecteur pJC2EN2gip1-Rep contenant la

35

séquence codant pour GIP1-Rep entourée du promoteur 35S du CaMV et du terminateur OCS. Le fragment d'ADN contenant la cassette d'expression de GIP1-Rep est libéré du vecteur par les enzymes de restriction *Hind*III et *Xba*I et purifié. Il
5 est ensuite lié au vecteur pBINPLUS (van Engelen & coll., 1995) digéré par les mêmes enzymes. On obtient ainsi un vecteur d'*A. tumefaciens*, pBINPLUSgip1-Rep, contenant la séquence codant pour GIP1-Rep qui conduit à l'expression de cette protéine dans la plante.

10

Exemple 4. Transformation génétique de la tomate.

Le vecteur pBINPLUSgip1-Rep est introduit dans la souche d'*A. tumefaciens* LBA4404 (Hoekema & coll., 1983).
15 La technique de transformation est basée sur la procédure de McCormick & coll. (1986) d'une part et celle de Fillati & coll. (1987) d'autre part.

La régénération de la tomate à partir d'explants foliaires est réalisée sur un milieu de base Murashige et Skoog (MS) comprenant 30 g/l de saccharose ainsi que 500 mg/l de carbenicilline et 75 mg/ml de kanamycine. Lorsque les bourgeons sont bien développés, ils sont mis sur un milieu permettant l'enracinement. Bien enracinées, les plantes sont acclimatées en serre. Les preuves moléculaires de l'intégration de la cassette d'expression de GIP1-Rep sont apportées par les techniques d'hybridation moléculaire de type Southern et Northern, ainsi que par PCR. Toutes les plantes transformées sont ensuite employées dans diverses expérimentations pour vérifier si l'expression de GIP1-Rep les rend résistantes aux agressions virales. Les plantes transformées, ainsi que des plantes-contrôle non transformées, sont, par exemple, infectées avec le virus TYLCV par agroinoculation. Le développement de symptômes et la présence d'ADN viral sont ensuite analysés.
20
25
30
35

REFERENCES BIBLIOGRAPHIQUES

- 5 - Benton & coll. (1996) Curr. Genet. 29, 106-113.
- Fields et Song (1989) Nature 340, 245-246.
- Fillati & coll. (1987) Bio/Technology 5, 726-730.
- Hoekema & coll. (1983) Nature 303, 179-180.
- Jonsson et Hubscher (1997) BioEssays 19, 967-975
- 10 - Jupin & coll. (1994) Virology 204, 82-90.
- Kelman, Z. (1997) Oncogene 14, 629-640
- Kheyr-Pour & coll. (1991) Nuc. Acids Res. 19, 6763-6769.
- Lazarowitz, S (1992) Crit. Rev. Plant Sci., 11, 327-349.
- McCormick & coll. (1986) Plant Cell Rep. 5, 81-84.
- 15 - Nagar & coll. (1995) Plant Cell 7, 705-719.
- Navot & coll. (1991) Virology 185, 151-161.
- Noris & coll. (1996) Virology 217, 607-612.
- van Engelen & coll. (1995) Transgenic Res. 4, 288-290.
- Wartig & coll. (1997) Virology 228, 132-140.
- 20 - Xie & coll. (1995) EMBO J. 14, 4073-4082.
- Xie & coll. (1999) Plant Mol. Bio. 39, 647-656.

REVENDICATIONS

1) Une séquence polynucléotidique purifiée de plante ou de levure codant pour une protéine qui interagit avec l'un au moins des six produits du génome d'un géminivirus nécessaire à l'infection d'une plante par ce virus.

2) Une séquence polynucléotidique selon la revendication 1, caractérisée en ce qu'elle code une protéine dont la séquence en acides aminés est choisie dans le groupe comprenant les séquences en acides aminés représentées dans la liste de séquences en annexe sous les numéros SEQ ID NO:6, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:42 ou SEQ ID NO:44, un fragment ou une séquence实质iellement similaire de celle-ci.

3) Une séquence polynucléotidique selon la revendication 2, caractérisée en ce qu'elle est constituée de tout ou partie d'une séquence polynucléotidique choisie parmi celles représentées dans la liste de séquence en annexe sous les numéros SEQ ID NO:5, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:41 ou SEQ ID NO:43, une séquence complémentaire ou实质iellement similaire de celle-ci.

4) Une séquence polynucléotidique selon la revendication 1, caractérisée en ce qu'elle code une protéine dont la séquence en acides aminés est choisie dans le groupe comprenant les séquences en acides aminés représentées dans la liste de séquences en annexe sous les numéros SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:8, SEQ ID

NO:10, SEQ ID NO:20, SEQ ID NO:26, SEQ ID NO:34 ou SEQ ID NO:40, un fragment ou une séquence substantiellement similaire de celle-ci.

5 5) Une séquence polynucléotidique selon la revendication 4, caractérisée en ce qu'elle est constituée de tout ou partie d'une séquence polynucléotidique choisie parmi celles représentées dans la liste de séquence en annexe sous les numéros SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:19, SEQ ID NO:25, SEQ ID NO:33 ou SEQ ID NO:39, une séquence complémentaire ou substantiellement similaire de celle-ci.

10 15 6) Molécule d'acide nucléique recombinant, caractérisée en ce qu'elle comprend au moins une séquence polynucléotidique selon l'une quelconque des revendications 1 à 5.

20 25 7) Molécule d'acide nucléique recombinant selon la revendication 6, caractérisée en ce que ladite séquence polynucléotidique est placée sous le contrôle d'éléments de régulation en position 5' et/ou 3' de celle-ci pouvant fonctionner dans un organisme hôte.

30 35 8) Molécule d'acide nucléique recombinant selon l'une des revendications 6 ou 7, caractérisée en ce que ladite séquence polynucléotidique est associée dans la molécule d'acide nucléique recombinant à un marqueur de sélection.

 9) Vecteur de clonage ou d'expression pour la transformation d'un organisme hôte constituant ou contenant au moins une molécule d'acide nucléique recombinant selon l'une quelconque des revendications 6 à 8.

10) Un hôte cellulaire transformé par une molécule d'acide nucléique selon l'une des revendications 6 à 8 ou par un vecteur selon la revendication 9.

5 11) Une plante génétiquement modifiée résistante aux géminivirus possédant de manière stable dans son génome au moins un acide nucléique modifié comprenant ou constitué par une séquence polynucléotidique selon l'une quelconque des revendications 1 à 5 qui est modifiée pour :

10 - bloquer l'expression de ladite protéine de plante nécessaire à une ou plusieurs des six protéines du génome d'un géminivirus, ou

15 - exprimer une protéine de plante modifiée, et dont la modification par rapport à ladite protéine modifie ou supprime l'interaction avec l'une au moins des six protéines virales.

20 12) Une plante génétiquement modifiée résistante aux géminivirus selon la revendication 11, caractérisée en ce que la protéine de plante modifiée est une protéine définie dans l'une des revendications 1 à 5 qui est :

25 - sur-exprimée,

 - modifiée au niveau d'un ou plusieurs de ces acides aminés de façon à ce que même si l'interaction avec une protéine virale est conservée, la protéine modifiée n'est plus fonctionnelle pour l'infection virale,

30 - tronquée sous la forme d'un fragment de ladite protéine qui, même si l'interaction avec une protéine virale est conservée, n'est plus fonctionnelle pour l'infection virale.

 - modifiée au niveau d'un ou plusieurs de ces acides aminés de façon à ce que l'interaction avec une protéine virale soit supprimée,

13) Une plante génétiquement modifiée résistante aux géminivirus selon la revendication 12, caractérisée en ce que ladite séquence polynucléotidique modifiée est placée sous le contrôle d'un promoteur permanent ou inductible.

14) Une plante génétiquement modifiée résistante aux géminivirus selon la revendication 11, caractérisée en ce que ladite séquence polynucléotidique modifiée est une séquence antisens capable de bloquer la transcription ou la traduction d'une séquence polynucléotidique selon l'une quelconque des revendications 1 à 5.

15) Procédé de préparation d'une plante transgénique résistante aux géminivirus, caractérisé en ce qu'il comporte les étapes consistant :

- à transformer une cellule végétale avec au moins un acide nucléique modifié défini dans l'une des revendications 11 à 14,

- à régénérer une plante à partir de ladite cellule transformée.

16) Une cellule de plante dans le génome de laquelle est incorporée de façon stable un acide nucléique modifié défini dans l'une des revendications 11 à 14.

17) Une protéine susceptible d'interagir avec l'une au moins des six protéines des géminivirus, caractérisée en ce qu'elle comprend ou est constituée par une séquence en acides aminés choisie parmi les séquences représentées dans la liste de séquence en annexe sous les numéros SEQ ID NO:6, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID

NO:38, SEQ ID NO:42 ou SEQ ID NO:44, un fragment ou une
séquence实质iellement similaire de celles-ci.

Figure 1

Clone	Organisme	Gène	SEQ ID N°	Protéine	SEQ ID N°
GIP1-Rep	<i>S. pombe</i>	<i>SY 0487</i>	1	Protéine similaire à la NDP-hexose pyrophosphorylase de <i>Saccharomyces cerevisiae</i>	2
GIP2-C2	<i>A. thaliana</i>	<i>T8K22.14</i>	3	Protéine putative d'interaction au TBP	4
GIP3-C2	<i>A. thaliana</i>	<i>gip3-C2</i>	5	GIP3-C2	6
GIP4-C2	<i>A. thaliana</i>	<i>ajh1</i>	7	AJH1	8
GIP5-C2	<i>A. thaliana</i>	<i>T26F17.15</i>	9	T26F17.15	10
GIP6-C2	<i>N. benthamiana</i>	<i>gip6-C2</i>	11	GIP6-C2	12
GIP7-C3	<i>L. esculentum</i>	<i>gip7-C3</i>	13	PCNA-tom	14
GIP8-C3	<i>A. thaliana</i>	<i>gip8-C3</i>	15	PCNA-ara	16
GIP9-C3	<i>A. thaliana</i>	<i>gip9-C3</i>	17	Sous-unité delta du coatomer	18
GIP10-C3	<i>A. thaliana</i>	<i>F9L1.33</i>	19	Protéine de la famille des glyoxalases	20
GIP11-C3	<i>N. benthamiana</i>	<i>gip11-C3</i>	21	DNAJ	22
GIP12-C4	<i>A. thaliana</i>	<i>gip12-C4</i>	23	GIP12-C4	24
GIP13-C4	<i>A. thaliana</i>	<i>F6H11.17</i>	25	Protéine de type récepteur kinase	26
GIP14-CP	<i>N. benthamiana</i>	<i>gip14-CP</i>	27	14-3-3	28
GIP15-CP	<i>N. benthamiana</i>	<i>gip15-CP</i>	29	GIP15-CP	30
GIP16-V2	<i>A. thaliana</i>	<i>gip16-V2</i>	31	GIP16-V2	32
GIP17-V2	<i>A. thaliana</i>	<i>F21O3.7</i>	33	Protéine hypothétique	34
GIP18-V2	<i>A. thaliana</i>	<i>gip18-V2</i>	35	GIP18-V2	36
GIP19-V2	<i>A. thaliana</i>	<i>gip19-V2</i>	37	GIP19-V2	38
GIP20-V2	<i>A. thaliana</i>	<i>Cs26</i>	39	o-acetylserine (thiol) lyase	40
GIP21-V2	<i>N. benthamiana</i>	<i>gip21-V2</i>	41	GIP21-V2	42
GIP22-V2	<i>N. benthamiana</i>	<i>gip22-V2</i>	43	GIP22-V2	44

2806095

2/2

Figure 2

LISTE DE SEQUENCES

<110> GENETECH

<120> GENES DE PLANTE ET DE LEVURE DONT LES PRODUITS
INTERAGISSENT AVEC LE TYLCV

<130> GENETECH-BREVET1

<140>
<141>

<160> 44

<170> PatentIn Ver. 2.1

<210> 1

<211> 1092

<212> ADN

<213> Schizosaccharomyces pombe

<220>

<221> CDS

<222> (1)..(1089)

<400> 1

atg aag gct ctg att ctc gtg ggt ggc ttt ggt act cgt ctt cgt cct	48
Met Lys Ala Leu Ile Leu Val Gly Gly Phe Gly Thr Arg Leu Arg Pro	
1 5 10 15	

ttg act tta act ttg ccc aag cct ctt gtt gaa ttt ggt aac aag ccg	96
Leu Thr Leu Thr Leu Pro Lys Pro Leu Val Glu Phe Gly Asn Lys Pro	
20 25 30	

atg atc ctt cac caa gtc gaa gct ttg gca gct gct ggt gtc acg gat	144
Met Ile Leu His Gln Val Glu Ala Leu Ala Ala Gly Val Thr Asp	
35 40 45	

atc gtc ttg gct gtt aat tac cgt ccc gaa atc atg gta gaa gct ttg	192
Ile Val Leu Ala Val Asn Tyr Arg Pro Glu Ile Met Val Glu Ala Leu	
50 55 60	

aaa aaa tac gaa aag gag tat aac gtt aat att act ttc tcc gtt gag	240
Lys Lys Tyr Glu Lys Glu Tyr Asn Val Asn Ile Thr Phe Ser Val Glu	
65 70 75 80	

aat gag cct ttg gga acc gct gga cct ttg gct ctt gct cgt gac att	288
Asn Glu Pro Leu Gly Thr Ala Gly Pro Leu Ala Leu Ala Arg Asp Ile	
85 90 95	

ctt gct aaa gac cac tct cct ttc gtc ttg aat agt gat gtt att	336
Leu Ala Lys Asp His Ser Pro Phe Phe Val Leu Asn Ser Asp Val Ile	
100 105 110	

tgt gag tat cct ttc gcg gat ttg gca gct ttc cat aag gct cat ggt	384
Cys Glu Tyr Pro Phe Ala Asp Leu Ala Ala Phe His Lys Ala His Gly	
115 120 125	

gcc gag ggt act atc gtt gtt acc aag gtt gag gag gag cct tct aag tat	432
Ala Glu Gly Thr Ile Val Val Thr Lys Val Glu Glu Pro Ser Lys Tyr	
130 135 140	

ggt gtt gtc gtt cat tat ccc aac tca gaa tcc ttg att gag cgc ttt Gly Val Val Val His Tyr Pro Asn Ser Glu Ser Leu Ile Glu Arg Phe 145 150 155 160	480
gtt gaa aag cct gtt gag ttt gta tcc aac aga att aat ggt ggt att Val Glu Lys Pro Val Glu Phe Val Ser Asn Arg Ile Asn Gly Gly Ile 165 170 175	528
tac att cta aac cct tcc gtt ctt gac cgt att gaa cct cgt cct acc Tyr Ile Leu Asn Pro Ser Val Leu Asp Arg Ile Glu Pro Arg Pro Thr 180 185 190	576
tcg att gaa aag gaa gtc ttt ccc gcc atg gtc aat gac aag caa tta Ser Ile Glu Lys Glu Val Phe Pro Ala Met Val Asn Asp Lys Gln Leu 195 200 205	624
cac tct ttc gac ctt gag ggt tat tgg atg gat gtt ggt caa ccc aag His Ser Phe Asp Leu Glu Gly Tyr Trp Met Asp Val Gly Gln Pro Lys 210 215 220	672
gat tat ctt acc ggt act tgt ttg tat tta tcc tcc ttg cgt aag cat Asp Tyr Leu Thr Gly Thr Cys Leu Tyr Leu Ser Ser Leu Arg Lys His 225 230 235 240	720
aag cct gaa atc ttg gcc cca gct agt agc aat atc atc ggt aat gtg Lys Pro Glu Ile Leu Ala Pro Ala Ser Ser Asn Ile Ile Gly Asn Val 245 250 255	768
ttg att gat ccc tca gca acc att ggc aaa aat tgt aaa att ggt ccc Leu Ile Asp Pro Ser Ala Thr Ile Gly Lys Asn Cys Lys Ile Gly Pro 260 265 270	816
aat gtt gtg att ggt ccc aac gta acg att ggt gat ggt gtt cgt ctc Asn Val Val Ile Gly Pro Asn Val Thr Ile Gly Asp Gly Val Arg Leu 275 280 285	864
caa cgt tgt gcc att ctt aag tct tct cgc gtt cgc gac cat gcc tgg Gln Arg Cys Ala Ile Leu Lys Ser Ser Arg Val Arg Asp His Ala Trp 290 295 300	912
gtt aaa tcg agt att gta gga tgg aac tct acc ctt gga tct tgg agt Val Lys Ser Ser Ile Val Gly Trp Asn Ser Thr Leu Gly Ser Trp Ser 305 310 315 320	960
cgt ttg gaa aac gtg tcc gtc tta ggc gac gat gtc gtt gtc aat gac Arg Leu Glu Asn Val Ser Val Leu Gly Asp Asp Val Val Asn Asp 325 330 335	1008
gag att tac gta aat ggt ggc agt att tta ccc cat aag agc att agt Glu Ile Tyr Val Asn Gly Gly Ser Ile Leu Pro His Lys Ser Ile Ser 340 345 350	1056
gct aac att gag gtt cct ggt act att gtc atg taa Ala Asn Ile Glu Val Pro Gly Thr Ile Val Met 355 360	1092

<210> 2

<211> 363

<212> PRT

<213> Schizosaccharomyces pombe

<400> 2

Met	Lys	Ala	Leu	Ile	Leu	Val	Gly	Gly	Phe	Gly	Thr	Arg	Leu	Arg	Pro
1				5			10						15		
Leu Thr Leu Thr Leu Pro Lys Pro Leu Val Glu Phe Gly Asn Lys Pro															
				20			25					30			
Met	Ile	Leu	His	Gln	Val	Glu	Ala	Leu	Ala	Ala	Gly	Val	Thr	Asp	
				35			40				45				
Ile	Val	Leu	Ala	Val	Asn	Tyr	Arg	Pro	Glu	Ile	Met	Val	Glu	Ala	Leu
	50				55			60							
Lys	Lys	Tyr	Glu	Lys	Glu	Tyr	Asn	Val	Asn	Ile	Thr	Phe	Ser	Val	Glu
	65				70			75			80				
Asn	Glu	Pro	Leu	Gly	Thr	Ala	Gly	Pro	Leu	Ala	Leu	Arg	Asp	Ile	
				85			90				95				
Leu	Ala	Lys	Asp	His	Ser	Pro	Phe	Phe	Val	Leu	Asn	Ser	Asp	Val	Ile
		100				105			110						
Cys	Glu	Tyr	Pro	Phe	Ala	Asp	Leu	Ala	Ala	Phe	His	Lys	Ala	His	Gly
		115				120			125						
Ala	Glu	Gly	Thr	Ile	Val	Val	Thr	Lys	Val	Glu	Glu	Pro	Ser	Lys	Tyr
		130			135			140							
Gly	Val	Val	Val	His	Tyr	Pro	Asn	Ser	Glu	Ser	Leu	Ile	Glu	Arg	Phe
	145				150			155			160				
Val	Glu	Lys	Pro	Val	Glu	Phe	Val	Ser	Asn	Arg	Ile	Asn	Gly	Ile	
		165				170			175						
Tyr	Ile	Leu	Asn	Pro	Ser	Val	Leu	Asp	Arg	Ile	Glu	Pro	Arg	Pro	Thr
		180				185			190						
Ser	Ile	Glu	Lys	Glu	Val	Phe	Pro	Ala	Met	Val	Asn	Asp	Lys	Gln	Leu
		195				200			205						
His	Ser	Phe	Asp	Leu	Glu	Gly	Tyr	Trp	Met	Asp	Val	Gly	Gln	Pro	Lys
		210			215			220							
Asp	Tyr	Leu	Thr	Gly	Thr	Cys	Leu	Tyr	Leu	Ser	Ser	Leu	Arg	Lys	His
	225				230			235			240				
Lys	Pro	Glu	Ile	Leu	Ala	Pro	Ala	Ser	Ser	Asn	Ile	Ile	Gly	Asn	Val
		245				250			255						
Leu	Ile	Asp	Pro	Ser	Ala	Thr	Ile	Gly	Lys	Asn	Cys	Lys	Ile	Gly	Pro
		260				265			270						
Asn	Val	Val	Ile	Gly	Pro	Asn	Val	Thr	Ile	Gly	Asp	Gly	Val	Arg	Leu
		275				280			285						
Gln	Arg	Cys	Ala	Ile	Leu	Lys	Ser	Ser	Arg	Val	Arg	Asp	His	Ala	Trp
		290				295			300						
Val	Lys	Ser	Ser	Ile	Val	Gly	Trp	Asn	Ser	Thr	Leu	Gly	Ser	Trp	Ser

305	310	315	320
Arg Leu Glu Asn Val Ser Val Leu Gly Asp Asp Val Val Val Asn Asp			
325		330	335
Glu Ile Tyr Val Asn Gly Gly Ser Ile Leu Pro His Lys Ser Ile Ser			
340		345	350
Ala Asn Ile Glu Val Pro Gly Thr Ile Val Met			
355		360	

<210> 3
 <211> 3787
 <212> ADN
 <213> Arabidopsis thaliana

<220>
 <221> CDS
 <222> (1)...(3651)

<400> 3 atg gcg aac tta caa gtt tct ggg ata ctc gaa aag atg acg ggt aaa Met Ala Asn Leu Gln Val Ser Gly Ile Leu Glu Lys Met Thr Gly Lys 1 5 10 15	48
gat aaa gat tac aga tac atg gca acc tct gat ttg ctt aat gag ttg Asp Lys Asp Tyr Arg Tyr Met Ala Thr Ser Asp Leu Leu Asn Glu Leu 20 25 30	96
aat aag gat tcc ttt aaa atc gac ctg gac ttg gag gtg aga ttg tcg Asn Lys Asp Ser Phe Lys Ile Asp Leu Asp Leu Glu Val Arg Leu Ser 35 40 45	144
agt atc ata ttg caa cag ctc gat gat gtg gct ggt gat gtt tct gga Ser Ile Ile Leu Gln Gln Leu Asp Asp Val Ala Gly Asp Val Ser Gly 50 55 60	192
ttg gct gtt aaa tgt ctt gct cca ttg gtg aag aag gtt gga gaa gaa Leu Ala Val Lys Cys Leu Ala Pro Leu Val Lys Lys Val Gly Glu Glu 65 70 75 80	240
cga att gtt gaa atg acc aac aag tta tgt gat aaa ctg ctg cat ggg Arg Ile Val Glu Met Thr Asn Lys Leu Cys Asp Lys Leu Leu His Gly 85 90 95	288
aaa gac cag cat cgt gat acc gca agc ata gct ctc agg act gtt gtc Lys Asp Gln His Arg Asp Thr Ala Ser Ile Ala Leu Arg Thr Val Val 100 105 110	336
gct caa att gct cct acg ctt gct cca tct att ctt gtt act cta aca Ala Gln Ile Ala Pro Thr Leu Ala Pro Ser Ile Leu Val Thr Leu Thr 115 120 125	384
cca caa atg ata gga gga ata agt ggc cag gga atg agc tca ggg atc Pro Gln Met Ile Gly Gly Ile Ser Gly Gln Gly Met Ser Ser Gly Ile 130 135 140	432
aag tgt gaa tgt ctt gag atc atg tgt gat gtt caa aaa tat gga Lvs Cvs Glu Cvs Leu Glu Ile Met Cvs Asp Val Val Gln Lvs Tvr Glv	480

145	150	155	160	
agt tta atg acg gat gat cac gag aag cta ttg aat aca ttg tta ttg Ser Ieu Met Thr Asp Asp His Glu Lys Leu Leu Asn Thr Leu Leu Leu				528
165		170	175	
caa ttg ggc tgt aac caa gcc aca gtc agg aag aag act gtt aca tgc Gln Leu Gly Cys Asn Gln Ala Thr Val Arg Lys Lys Thr Val Thr Cys				576
180	185		190	
att gct tct ctt gct tcc agt ctg tct gat ttg ctc gcg aag gcg Ile Ala Ser Leu Ala Ser Ser Leu Ser Asp Asp Leu Leu Ala Lys Ala				624
195	200		205	
act gtt gaa gtt gtg aaa aat cta agt aac agg aat gca aaa tcg gag Thr Val Glu Val Val Lys Asn Leu Ser Asn Arg Asn Ala Lys Ser Glu				672
210	215	220		
att aca cgt acc aat att caa atg att gga gct tta tgc cgt gct gtt Ile Thr Arg Thr Asn Ile Gln Met Ile Gly Ala Leu Cys Arg Ala Val				720
225	230	235	240	
ggt tac cgg ttt ggc act cat cta ggt aac act gtg cca gta tta atc Gly Tyr Arg Phe Gly Thr His Leu Gly Asn Thr Val Pro Val Leu Ile				768
245	250		255	
aat tac tgc act agc gct tca gaa aat gac gag gag ctt cgc gag tat Asn Tyr Cys Thr Ser Ala Ser Glu Asn Asp Glu Glu Leu Arg Glu Tyr				816
260	265		270	
agc tta cag gca ctt gaa agt ttc ttg cta cga tgt ccc agg gac atc Ser Leu Gln Ala Leu Glu Ser Phe Leu Leu Arg Cys Pro Arg Asp Ile				864
275	280		285	
tca cca tat tgt gat gaa att tta aat ctt act tta gaa tat att agt Ser Pro Tyr Cys Asp Glu Ile Leu Asn Leu Thr Leu Glu Tyr Ile Ser				912
290	295		300	
tat gac ccg aat ttt acg gac aat atg gag gaa gat act gat aat gag Tyr Asp Pro Asn Phe Thr Asp Asn Met Glu Glu Asp Thr Asp Asn Glu				960
305	310	315	320	
act ctt gaa gat gaa gaa gat gac gag agt gca aat gag tac aca gat Thr Leu Glu Asp Glu Glu Asp Asp Glu Ser Ala Asn Glu Tyr Thr Asp				1008
325	330		335	
gat gaa gat gcc agc tgg aaa gtt agg aga gca gcg gcc aaa tgc cta Asp Glu Asp Ala Ser Trp Lys Val Arg Arg Ala Ala Lys Cys Leu				1056
340	345		350	
gca gga tta atc gtt tcg cgt tct gag atg ctc act aaa gta tat caa Ala Gly Leu Ile Val Ser Arg Ser Glu Met Leu Thr Lys Val Tyr Gln				1104
355	360		365	
gag gcc tgc ccg aaa cta att gat aga ttt aag gaa agg gag gaa aat Glu Ala Cys Pro Lys Leu Ile Asp Arg Phe Lys Glu Arg Glu Glu Asn				1152
370	375	380		
gtg aag atg gat gta ttc aac aca ttc att gat ctg ttg cgg caa acg Val Lys Met Asp Val Phe Asn Thr Phe Ile Asp Leu Leu Arg Gln Thr				1200
385	390	395	400	

gga aat gtt aca aaa ggt caa act gac acc gat gaa tca agt cca aaa Gly Asn Val Thr Lys Gly Gln Thr Asp Thr Asp Glu Ser Ser Pro Lys 405 410 415	1248
tgg cta ctg aag caa gaa gtc tca aag att gtg aaa tcc ata aat agg Trp Leu Leu Lys Gln Glu Val Ser Lys Ile Val Lys Ser Ile Asn Arg 420 425 430	1296
caa ctg cgc gaa aag tct gtt aag aca aag gtt gga gca ttc tct gtt Gln Leu Arg Glu Lys Ser Val Lys Thr Lys Val Gly Ala Phe Ser Val 435 440 445	1344
ttg aga gaa ctt gtg gtt gtc ctg cct gac tgt ctt gct gat cat att Leu Arg Glu Leu Val Val Val Leu Pro Asp Cys Leu Ala Asp His Ile 450 455 460	1392
ggt tca ctt cct gga att gaa agg gcg cta aat gat aaa tct tct Gly Ser Leu Val Pro Gly Ile Glu Arg Ala Leu Asn Asp Lys Ser Ser 465 470 475 480	1440
aca tca aac ttg aaa att gaa gct ctt gtc ttc acc aaa tta gtc ttg Thr Ser Asn Leu Lys Ile Glu Ala Leu Val Phe Thr Lys Leu Val Leu 485 490 495	1488
gca tca cat gcg cct cct gtt ttt cac cct tac att aag gct ctt tca Ala Ser His Ala Pro Pro Val Phe His Pro Tyr Ile Lys Ala Leu Ser 500 505 510	1536
agt cct gtt tta gct gct gtt ggt gaa gcg tat tat aag gtg act gct Ser Pro Val Leu Ala Ala Val Gly Glu Arg Tyr Tyr Lys Val Thr Ala 515 520 525	1584
gag gca tta agg gtt tgt ggg gaa ctt gtc aga gta gta gcg cca agt Glu Ala Leu Arg Val Cys Gly Glu Leu Val Arg Val Val Arg Pro Ser 530 535 540	1632
act gcg gga atg ggc ttt gat ttt aaa ccg ttt gtt cat cca atc tac Thr Ala Gly Met Gly Phe Asp Phe Lys Pro Phe Val His Pro Ile Tyr 545 550 555 560	1680
aat gcg ata atg tcc cgc ttg aca aat caa gat cag gac cag gag gtc Asn Ala Ile Met Ser Arg Leu Thr Asn Gln Asp Gln Asp Gln Glu Val 565 570 575	1728
aag gag tgt gct atc acc tgc atg ggt ctt gtg att tca aca ttt ggt Lys Glu Cys Ala Ile Thr Cys Met Gly Leu Val Ile Ser Thr Phe Gly 580 585 590	1776
gat caa ctg agg gca gag tta cct tca tgc ctt cct gtg ctt gtt gat Asp Gln Leu Arg Ala Glu Leu Pro Ser Cys Leu Pro Val Leu Val Asp 595 600 605	1824
cga atg gga aac gaa atc act cgc ctc act gca gta aag gca ttt tct Arg Met Gly Asn Glu Ile Thr Arg Leu Thr Ala Val Lys Ala Phe Ser 610 615 620	1872
gtc att gcc act tct ccg ctt cac att aat cta tca tgt gtc ttg gac Val Ile Ala Thr Ser Pro Leu His Ile Asn Leu Ser Cys Val Leu Asp 625 630 635 640	1920

cat ttg att gca gaa cta aca gga ttc tta cg ^g aag gct aat cg ^g gtt		1968	
His Leu Ile Ala Glu Leu Thr Gly Phe Leu Arg Lys Ala Asn Arg Val			
645	650	655	
cta agg caa gca aca ctg att act atg aat acc ttg gta aca gcc tat		2016	
Leu Arg Gln Ala Thr Leu Ile Thr Met Asn Thr Leu Val Thr Ala Tyr			
660	665	670	
ggt gat aaa att ggt tca gaa gct tat gaa gtt att ctt gtg gag ctt		2064	
Gly Asp Lys Ile Gly Ser Glu Ala Tyr Glu Val Ile Leu Val Glu Leu			
675	680	685	
tca tct ctg ata agt gtt tca gac ctg cac atg aca gct ctt gca ctc		2112	
Ser Ser Leu Ile Ser Val Ser Asp Leu His Met Thr Ala Leu Ala Leu			
690	695	700	
gaa ctc tgc tgc act ctg atg act gga aag agt tgt agt gaa aat atc		2160	
Glu Leu Cys Cys Thr Leu Met Thr Gly Lys Ser Cys Ser Glu Asn Ile			
705	710	715	720
agt ttg gcg gtc cgc aac aaa gtt ctt ccg cag gca cta act tta gtt		2208	
Ser Leu Ala Val Arg Asn Lys Val Leu Pro Gln Ala Leu Thr Leu Val			
725	730	735	
aaa agc cca ttg ctc cag ggt caa gca ctt ttg gat ctg caa aaa ttc		2256	
Lys Ser Pro Leu Leu Gln Gly Gln Ala Leu Leu Asp Leu Gln Lys Phe			
740	745	750	
ttt gaa gct ctg gtg tat cat gca aat acg agt ttc tac acc ttg ctg		2304	
Phe Glu Ala Leu Val Tyr His Ala Asn Thr Ser Phe Tyr Thr Leu Leu			
755	760	765	
gaa tca ttg cta tct tgt gct aag cct tct cct cag tct gga ggt gtc		2352	
Glu Ser Leu Leu Ser Cys Ala Lys Pro Ser Pro Gln Ser Gly Gly Val			
770	775	780	
cca aag caa gca cta tat tca att gca cag tgt gtg gcg gtt ctt tgt		2400	
Pro Lys Gln Ala Leu Tyr Ser Ile Ala Gln Cys Val Ala Val Leu Cys			
785	790	795	800
ctc gca gcg ggt gat aag aat tgt tcg tct aca gtt aaa atg ctc atg		2448	
Leu Ala Ala Gly Asp Lys Asn Cys Ser Ser Thr Val Lys Met Leu Met			
805	810	815	
gaa atc ctt aaa gat gac agc ggc aca aat tca gca aaa caa cat ctt		2496	
Glu Ile Leu Lys Asp Asp Ser Gly Thr Asn Ser Ala Lys Gln His Leu			
820	825	830	
gcc ctg tta tct ctt ggt gag att ggg aga agg aaa gat ctc agc gca		2544	
Ala Leu Leu Ser Leu Gly Glu Ile Gly Arg Arg Lys Asp Leu Ser Ala			
835	840	845	
cat gct ggc att gaa aca atc gtc att gag tct ttc caa tct cct ttt		2592	
His Ala Gly Ile Glu Thr Ile Val Ile Glu Ser Phe Gln Ser Pro Phe			
850	855	860	
gaa gaa ata aag tcc gca gct tca tat gct ctt gga aac att gcc gtt		2640	
Glu Glu Ile Lys Ser Ala Ala Ser Tyr Ala Leu Gly Asn Ile Ala Val			
865	870	875	880
acc aat cta tcc aat tat cta ccc ttt ata tta acc caa atc aat aat		2688	

Gly Asn Leu Ser Asn Tyr Leu Pro Phe Ile Leu Asp Gln Ile Asn 885 890 895	
caa cag aaa aaa caa tat att ctc ctt cat tca ctc aag gag gtt att Gln Gln Lys Lys Gln Tyr Ile Leu Leu His Ser Leu Lys Glu Val Ile 900 905 910	2736
gtg aga cag tct gtt gat aaa gcg gat ttc cag aat tcc agc gtt gag Val Arg Gln Ser Val Asp Lys Ala Asp Phe Gln Asn Ser Ser Val Glu 915 920 925	2784
aaa ata ctt gct tta ctg ttc aac cac tgt gaa agc gag gaa gaa ggt Lys Ile Leu Ala Leu Leu Phe Asn His Cys Glu Ser Glu Glu Gly 930 935 940	2832
gta agg aat gtt gtt gct gaa tgc ttg gga aaa atg gct ttg ata gag Val Arg Asn Val Val Ala Glu Cys Leu Gly Lys Met Ala Leu Ile Glu 945 950 955 960	2880
cct gag aaa ctt gtt cca gca ctt cag gtc agg aca acg agc cca gct Pro Glu Lys Leu Val Pro Ala Leu Gln Val Arg Thr Thr Ser Pro Ala 965 970 975	2928
gct ttt acc cgt gca act gtt gtt act gct gtg aaa tat tca gta gtg Ala Phe Thr Arg Ala Thr Val Val Thr Ala Val Lys Tyr Ser Val Val 980 985 990	2976
gaa cga cct gag aaa tta gat gaa atc atc ttc cct cag att tct tct Glu Arg Pro Glu Lys Leu Asp Glu Ile Ile Phe Pro Gln Ile Ser Ser 995 1000 1005	3024
ttc ctc atg cta atc aaa gat ggt gac cgt cat gtt agg cgt gca gct Phe Leu Met Leu Ile Lys Asp Gly Asp Arg His Val Arg Arg Ala Ala 1010 1015 1020	3072
gtc tca gct ctg agt act ttt gct cat tat aaa cca aac ctt att aaa Val Ser Ala Leu Ser Thr Phe Ala His Tyr Lys Pro Asn Leu Ile Lys 1025 1030 1035 1040	3120
gga ctt ctc cct gag ttg tta cca ctt ctt tat gat cag acc gtt att Gly Leu Leu Pro Glu Leu Leu Pro Leu Leu Tyr Asp Gln Thr Val Ile 1045 1050 1055	3168
aag aaa gaa tta atc agg acg gtt gat ctt ggt cca ttc aag cat gtt Lys Lys Glu Leu Ile Arg Thr Val Asp Leu Gly Pro Phe Lys His Val 1060 1065 1070	3216
gtg gat gac ggg ctc gag ctg agg aaa gca gct ttt gag tgt gtg ttt Val Asp Asp Gly Leu Glu Leu Arg Lys Ala Ala Phe Glu Cys Val Phe 1075 1080 1085	3264
act ctg gtg gac tgc ctt gat caa gtt aat ccg tct tct ttc att Thr Leu Val Asp Ser Cys Leu Asp Gln Val Asn Pro Ser Ser Phe Ile 1090 1095 1100	3312
gtt cct ttc ctc aaa tcc gga tta gaa gat cat tat gac ctg aag atg Val Pro Phe Leu Lys Ser Gly Leu Glu Asp His Tyr Asp Leu Lys Met 1105 1110 1115 1120	3360
ctt tgt cat ctt ata ctc tcc tta cta gca gat aaa tgc cca tca gcc Leu Cys His Leu Ile Leu Ser Leu Leu Ala Asp Lys Cys Pro Ser Ala	3408

1125

1130

1135

gta ctt gca gta ctg gat tct ctt gtg gaa cca ctg cat aaa aca ata 3456
 Val Leu Ala Val Leu Asp Ser Leu Val Glu Pro Leu His Lys Thr Ile
 1140 1145 1150

agc ttc aag cca aag caa gat gca gtg aag caa gag cat gat cgt aat 3504
 Ser Phe Lys Pro Lys Gln Asp Ala Val Lys Gln Glu His Asp Arg Asn
 1155 1160 1165

gaa gat atg atc aga agc gct ctt cgt gct ata tcg tca ctg gat cgt 3552
 Glu Asp Met Ile Arg Ser Ala Leu Arg Ala Ile Ser Ser Leu Asp Arg
 1170 1175 1180

atc aat ggg gtg gac tat agc cac aag ttc aag ggc tta atg ggt gat 3600
 Ile Asn Gly Val Asp Tyr Ser His Lys Phe Lys Gly Leu Met Gly Asp
 1185 1190 1195 1200

atg aag agg tct gta cca ttg tgg gag aag ttt cag aca atc cgg aat 3648
 Met Lys Arg Ser Val Pro Leu Trp Glu Lys Phe Gln Thr Ile Arg Asn
 1205 1210 1215

gag taagttttg tgtatgttgt cttcattaaa cagtgatcga tgatgatttt 3701
 Glu

ctattccaaa aaagggtaca gcgaaagaaa aaaaaagact cgataactta aatttctcaa 3761

tcggcagaaga agaattttt taatat 3787

<210> 4

<211> 1217

<212> PRT

<213> Arabidopsis thaliana

<400> 4

Met Ala Asn Leu Gln Val Ser Gly Ile Leu Glu Lys Met Thr Gly Lys
 1 5 10 15

Asp Lys Asp Tyr Arg Tyr Met Ala Thr Ser Asp Leu Leu Asn Glu Leu
 20 25 30

Asn Lys Asp Ser Phe Lys Ile Asp Leu Asp Leu Glu Val Arg Leu Ser
 35 40 45

Ser Ile Ile Leu Gln Gln Leu Asp Asp Val Ala Gly Asp Val Ser Gly
 50 55 60

Leu Ala Val Lys Cys Leu Ala Pro Leu Val Lys Lys Val Gly Glu Glu
 65 70 75 80

Arg Ile Val Glu Met Thr Asn Lys Leu Cys Asp Lys Leu Leu His Gly
 85 90 95

Lys Asp Gln His Arg Asp Thr Ala Ser Ile Ala Leu Arg Thr Val Val
 100 105 110

Ala Gln Ile Ala Pro Thr Leu Ala Pro Ser Ile Leu Val Thr Leu Thr
 115 120 125

Pro Gln Met Ile Glv Glv Ile Ser Glv Gln Glv Met Ser Ser Glv Ile

130	135	140
Lys Cys Glu Cys Leu Glu Ile Met Cys Asp Val Val Gln Lys Tyr Gly		
145	150	155
Ser Leu Met Thr Asp Asp His Glu Lys Leu Leu Asn Thr Leu Leu		
165	170	175
Gln Leu Gly Cys Asn Gln Ala Thr Val Arg Lys Lys Thr Val Thr Cys		
180	185	190
Ile Ala Ser Leu Ala Ser Ser Leu Ser Asp Asp Leu Leu Ala Lys Ala		
195	200	205
Thr Val Glu Val Val Lys Asn Leu Ser Asn Arg Asn Ala Lys Ser Glu		
210	215	220
Ile Thr Arg Thr Asn Ile Gln Met Ile Gly Ala Leu Cys Arg Ala Val		
225	230	235
Gly Tyr Arg Phe Gly Thr His Leu Gly Asn Thr Val Pro Val Leu Ile		
245	250	255
Asn Tyr Cys Thr Ser Ala Ser Glu Asn Asp Glu Glu Leu Arg Glu Tyr		
260	265	270
Ser Leu Gln Ala Leu Glu Ser Phe Leu Leu Arg Cys Pro Arg Asp Ile		
275	280	285
Ser Pro Tyr Cys Asp Glu Ile Leu Asn Leu Thr Leu Glu Tyr Ile Ser		
290	295	300
Tyr Asp Pro Asn Phe Thr Asp Asn Met Glu Glu Asp Thr Asp Asn Glu		
305	310	315
Thr Leu Glu Asp Glu Glu Asp Asp Glu Ser Ala Asn Glu Tyr Thr Asp		
325	330	335
Asp Glu Asp Ala Ser Trp Lys Val Arg Arg Ala Ala Lys Cys Leu		
340	345	350
Ala Gly Leu Ile Val Ser Arg Ser Glu Met Leu Thr Lys Val Tyr Gln		
355	360	365
Glu Ala Cys Pro Lys Leu Ile Asp Arg Phe Lys Glu Arg Glu Glu Asn		
370	375	380
Val Lys Met Asp Val Phe Asn Thr Phe Ile Asp Leu Leu Arg Gln Thr		
385	390	395
Gly Asn Val Thr Lys Gly Gln Thr Asp Thr Asp Glu Ser Ser Pro Lys		
405	410	415
Trp Leu Leu Lys Gln Glu Val Ser Lys Ile Val Lys Ser Ile Asn Arg		
420	425	430
Gln Leu Arg Glu Lys Ser Val Lys Thr Lys Val Gly Ala Phe Ser Val		
435	440	445
Leu Arg Glu Leu Val Val Val Leu Pro Asp Cys Leu Ala Asp His Ile		
450	455	460

Gly Ser Leu Val Pro Gly Ile Glu Arg Ala Leu Asn Asp Lys Ser Ser
 465 470 475 480
 Thr Ser Asn Leu Lys Ile Glu Ala Leu Val Phe Thr Lys Leu Val Leu
 485 490 495
 Ala Ser His Ala Pro Pro Val Phe His Pro Tyr Ile Lys Ala Leu Ser
 500 505 510
 Ser Pro Val Leu Ala Ala Val Gly Glu Arg Tyr Tyr Lys Val Thr Ala
 515 520 525
 Glu Ala Leu Arg Val Cys Gly Glu Leu Val Arg Val Val Arg Pro Ser
 530 535 540
 Thr Ala Gly Met Gly Phe Asp Phe Lys Pro Phe Val His Pro Ile Tyr
 545 550 555 560
 Asn Ala Ile Met Ser Arg Leu Thr Asn Gln Asp Gln Asp Gln Glu Val
 565 570 575
 Lys Glu Cys Ala Ile Thr Cys Met Gly Leu Val Ile Ser Thr Phe Gly
 580 585 590
 Asp Gln Leu Arg Ala Glu Leu Pro Ser Cys Leu Pro Val Leu Val Asp
 595 600 605
 Arg Met Gly Asn Glu Ile Thr Arg Leu Thr Ala Val Lys Ala Phe Ser
 610 615 620
 Val Ile Ala Thr Ser Pro Leu His Ile Asn Leu Ser Cys Val Leu Asp
 625 630 635 640
 His Leu Ile Ala Glu Leu Thr Gly Phe Leu Arg Lys Ala Asn Arg Val
 645 650 655
 Leu Arg Gln Ala Thr Leu Ile Thr Met Asn Thr Leu Val Thr Ala Tyr
 660 665 670
 Gly Asp Lys Ile Gly Ser Glu Ala Tyr Glu Val Ile Leu Val Glu Leu
 675 680 685
 Ser Ser Leu Ile Ser Val Ser Asp Leu His Met Thr Ala Leu Ala Leu
 690 695 700
 Glu Leu Cys Cys Thr Leu Met Thr Gly Lys Ser Cys Ser Glu Asn Ile
 705 710 715 720
 Ser Leu Ala Val Arg Asn Lys Val Leu Pro Gln Ala Leu Thr Leu Val
 725 730 735
 Lys Ser Pro Leu Leu Gln Gly Gln Ala Leu Leu Asp Leu Gln Lys Phe
 740 745 750
 Phe Glu Ala Leu Val Tyr His Ala Asn Thr Ser Phe Tyr Thr Leu Leu
 755 760 765
 Glu Ser Leu Leu Ser Cys Ala Lys Pro Ser Pro Gln Ser Gly Gly Val
 770 775 780

Pro Lys Gln Ala Leu Tyr Ser Ile Ala Gln Cys Val Ala Val Leu Cys
 785 790 795 800
 Leu Ala Ala Gly Asp Lys Asn Cys Ser Ser Thr Val Lys Met Leu Met
 805 810 815
 Glu Ile Leu Lys Asp Asp Ser Gly Thr Asn Ser Ala Lys Gln His Leu
 820 825 830
 Ala Leu Leu Ser Leu Gly Glu Ile Gly Arg Arg Lys Asp Leu Ser Ala
 835 840 845
 His Ala Gly Ile Glu Thr Ile Val Ile Glu Ser Phe Gln Ser Pro Phe
 850 855 860
 Glu Glu Ile Lys Ser Ala Ala Ser Tyr Ala Leu Gly Asn Ile Ala Val
 865 870 875 880
 Gly Asn Leu Ser Asn Tyr Leu Pro Phe Ile Leu Asp Gln Ile Asp Asn
 885 890 895
 Gln Gln Lys Lys Gln Tyr Ile Leu Leu His Ser Leu Lys Glu Val Ile
 900 905 910
 Val Arg Gln Ser Val Asp Lys Ala Asp Phe Gln Asn Ser Ser Val Glu
 915 920 925
 Lys Ile Leu Ala Leu Leu Phe Asn His Cys Glu Ser Glu Glu Glu Gly
 930 935 940
 Val Arg Asn Val Val Ala Glu Cys Leu Gly Lys Met Ala Leu Ile Glu
 945 950 955 960
 Pro Glu Lys Leu Val Pro Ala Leu Gln Val Arg Thr Thr Ser Pro Ala
 965 970 975
 Ala Phe Thr Arg Ala Thr Val Val Thr Ala Val Lys Tyr Ser Val Val
 980 985 990
 Glu Arg Pro Glu Lys Leu Asp Glu Ile Ile Phe Pro Gln Ile Ser Ser
 995 1000 1005
 Phe Leu Met Leu Ile Lys Asp Gly Asp Arg His Val Arg Arg Ala Ala
 1010 1015 1020
 Val Ser Ala Leu Ser Thr Phe Ala His Tyr Lys Pro Asn Leu Ile Lys
 1025 1030 1035 1040
 Gly Leu Leu Pro Glu Leu Leu Pro Leu Leu Tyr Asp Gln Thr Val Ile
 1045 1050 1055
 Lys Lys Glu Leu Ile Arg Thr Val Asp Leu Gly Pro Phe Lys His Val
 1060 1065 1070
 Val Asp Asp Gly Leu Glu Leu Arg Lys Ala Ala Phe Glu Cys Val Phe
 1075 1080 1085
 Thr Leu Val Asp Ser Cys Leu Asp Gln Val Asn Pro Ser Ser Phe Ile
 1090 1095 1100
 Val Pro Phe Leu Lys Ser Glv Leu Glu Asp His Tvr Asp Leu Lys Met

105	1110	1115	1120
Leu Cys His Leu Ile Leu Ser Leu Leu Ala Asp Lys Cys Pro Ser Ala			
1125	1130	1135	
Val Leu Ala Val Leu Asp Ser Leu Val Glu Pro Leu His Lys Thr Ile			
1140	1145	1150	
Ser Phe Lys Pro Lys Gln Asp Ala Val Lys Gln Glu His Asp Arg Asn			
1155	1160	1165	
Glu Asp Met Ile Arg Ser Ala Leu Arg Ala Ile Ser Ser Leu Asp Arg			
1170	1175	1180	
Ile Asn Gly Val Asp Tyr Ser His Lys Phe Lys Gly Leu Met Gly Asp			
1185	1190	1195	1200
Met Lys Arg Ser Val Pro Leu Trp Glu Lys Phe Gln Thr Ile Arg Asn			
1205	1210	1215	

Glu

<210> 5
<211> 1576
<212> ADN
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (1)..(1242)

<400> 5				
ggg	ttt	caa	agg gac cag aat tta caa cta cat cgc cgt ggc cac aac	48
Gly	Phe	Gln	Arg Asp Gln Asn Leu Gln Leu His Arg Arg Gly His Asn	
1	5	10	15	
ctt cca tgg aag cta aag caa cgg tcc aaa caa gaa gtg ata aag aag				96
Leu	Pro	Trp	Lys Leu Lys Gln Arg Ser Lys Gln Glu Val Ile Lys Lys	
20	25	30		
aaa gta tac ata tgt cct atc aag act tgt gta cac cat gat gcc tcc				144
Lys	Val	Tyr	Ile Cys Pro Ile Lys Thr Cys Val His His Asp Ala Ser	
35	40	45		
agg gcc ctt gga gac ctc act ggg atc aag aaa cac tac agc cgc aaa				192
Arg	Ala	Leu	Gly Asp Leu Thr Gly Ile Lys Lys His Tyr Ser Arg Lys	
50	55	60		
cac ggt gaa aag aag tgg aag tgt gaa aag tgt tct aag aaa tac gct				240
His	Gly	Lys	Lys Trp Lys Cys Glu Lys Cys Ser Lys Lys Tyr Ala	
65	70	75	80	
gtt cag tct gat tgg aag gca cat gcg aaa act tgt ggt act cgt gag				288
Val	Gln	Ser	Asp Trp Lys Ala His Ala Lys Thr Cys Gly Thr Arg Glu	
85	90	95		
tat aaa tgt gac tgt ggc acg ttg ttc tcc agg aaa gat agt ttc atc				336
Tyr	Lys	Cys	Asp Cys Glv Thr Leu Phe Ser Arg Lys Asp Ser Phe Ile	

100	105	110	
aca cat aga gcg ttc tgc gac gca tta act gag gaa gga gcg agg atg Thr His Arg Ala Phe Cys Asp Ala Leu Thr Glu Glu Gly Ala Arg Met	115 120	125	384
agt tca ctt agt aac aac aat ccg gtg atc tct acg acg aat ctg aat Ser Ser Leu Ser Asn Asn Asn Pro Val Ile Ser Thr Thr Asn Leu Asn	130 135	140	432
ttt gga aat gag tca aat gtt atg aat aat cca aat ctt cct cat gga Phe Gly Asn Glu Ser Asn Val Met Asn Asn Pro Asn Leu Pro His Gly	145 150	155	480
ttt gta cac cga gga gtt cat cat ccc gac att aat gct gct atc tct Phe Val His Arg Gly Val His His Pro Asp Ile Asn Ala Ala Ile Ser	165	170	528
caa ttc ggt cta ggg ttt gga cat gac cta agt gca atg cat gcg caa Gln Phe Gly Leu Gly Phe Gly His Asp Leu Ser Ala Met His Ala Gln	180	185	576
ggt cta tcc gag atg gtt caa atg gcc tcc acc ggc aac cac cac ctc Gly Leu Ser Glu Met Val Gln Met Ala Ser Thr Gly Asn His His Leu	195 200	205	624
ttc ccg tcg tca tca tcc ctc cct gat ttc tcc ggc cac cac caa Phe Pro Ser Ser Ser Leu Pro Asp Phe Ser Gly His His Gln	210 215	220	672
ttc caa att cca atg act tcc aca aac cct agt ctc acc tta tca tca Phe Gln Ile Pro Met Thr Ser Thr Asn Pro Ser Leu Thr Leu Ser Ser	225 230	235	720
tcc tca aca tca caa caa acc tca gct tca cta caa cac caa acc cta Ser Ser Thr Ser Gln Gln Thr Ser Ala Ser Leu Gln His Gln Thr Leu	245 250	255	768
aaa gac tca tct ttc tca cca ctc ttc tcc tct tcc gaa aac aaa Lys Asp Ser Ser Phe Ser Pro Leu Phe Ser Ser Ser Glu Asn Lys	260 265	270	816
caa aac aag cct ctc tct cca atg tct gcc aca gct ctc tta caa aaa Gln Asn Lys Pro Leu Ser Pro Met Ser Ala Thr Ala Leu Leu Gln Lys	275 280	285	864
gct gca caa atg ggc tct act aga agc aat tcc tcc acc gct ccg tca Ala Ala Gln Met Gly Ser Thr Arg Ser Asn Ser Ser Thr Ala Pro Ser	290 295	300	912
ttc ttc gcc ggc cca aca atg aca tcc tcc tcg gcc acc gct tct cct Phe Phe Ala Gly Pro Thr Met Thr Ser Ser Ala Thr Ala Ser Pro	305 310	315	960
cct cct aga tcg tct tct cca atg atg atc caa caa caa cta aac aac Pro Pro Arg Ser Ser Ser Pro Met Met Ile Gln Gln Gln Leu Asn Asn	325 330	335	1008
ttc aac acc aat gtc tta aga gag aat cat aat cgt gct cct cct cct Phe Asn Thr Asn Val Leu Arg Glu Asn His Asn Arg Ala Pro Pro Pro	340 345	350	1056

ctt agt ggt gtc tcc act agt agt gtg gat aat aat ccc ttt caa tcg Leu Ser Gly Val Ser Thr Ser Ser Val Asp Asn Asn Pro Phe Gln Ser 355 360 365	1104
aac cga tcg ggt cta aac ccg gct caa cag atg ggt cta acc cg gat Asn Arg Ser Gly Leu Asn Pro Ala Gln Gln Met Gly Leu Thr Arg Asp 370 375 380	1152
ttt ctt gga gtg agc aac gag cat cac cct cac caa acg ggt cgt cgt Phe Leu Gly Val Ser Asn Glu His His Pro His Gln Thr Gly Arg Arg 385 390 395 400	1200
ccg ttt ttg cct caa gaa ctc gca agg ttt gct cca ttg ggt Pro Phe Leu Pro Gln Glu Leu Ala Arg Phe Ala Pro Leu Gly 405 410	1242
tgattatgtg ttaattagg tactgtgtgg gggggacaag attttgggtt taatttaggat 1302 tggaaagtcc ttgaggaga caagtcta atagaaccgt acccccgttgcg 1362 aatgtgggg acaaagggtt acaagacatc atcatatcaa ttacattga atgttatgt 1422 ctttttact atgttatgtt ttagcgaaat tcacataata tataccacca tgacatgc 1482 ggatatgtat ttccgacatt gtcgtttgt aaatgttgtt tatttttct cgttcttgta 1542 atgacattca aaaaattgg 1576	

<210> 6
<211> 414
<212> PRT
<213> Arabidopsis thaliana

Gly Phe Gln Arg Asp Gln Asn Leu Gln Leu His Arg Arg Gly His Asn 1 5 10 15
Leu Pro Trp Lys Leu Lys Gln Arg Ser Lys Gln Glu Val Ile Lys Lys 20 25 30
Lys Val Tyr Ile Cys Pro Ile Lys Thr Cys Val His His Asp Ala Ser 35 40 45
Arg Ala Leu Gly Asp Leu Thr Gly Ile Lys Lys His Tyr Ser Arg Lys 50 55 60
His Gly Glu Lys Lys Trp Lys Cys Glu Lys Cys Ser Lys Lys Tyr Ala 65 70 75 80
Val Gln Ser Asp Trp Lys Ala His Ala Lys Thr Cys Gly Thr Arg Glu 85 90 95
Tyr Lys Cys Asp Cys Gly Thr Leu Phe Ser Arg Lys Asp Ser Phe Ile 100 105 110
Thr His Arg Ala Phe Cys Asp Ala Leu Thr Glu Glu Gly Ala Arg Met 115 120 125
Ser Ser Leu Ser Asn Asn Pro Val Ile Ser Thr Thr Asn Leu Asn

130	135	140													
Phe	Gly	Asn	Glu	Ser	Asn	Val	Met	Asn	Asn	Pro	Asn	Leu	Pro	His	Gly
145						150				155					160
Phe	Val	His	Arg	Gly	Val	His	His	Pro	Asp	Ile	Asn	Ala	Ala	Ile	Ser
						165			170						175
Gln	Phe	Gly	Leu	Gly	Phe	Gly	His	Asp	Leu	Ser	Ala	Met	His	Ala	Gln
						180			185						190
Gly	Leu	Ser	Glu	Met	Val	Gln	Met	Ala	Ser	Thr	Gly	Asn	His	His	Leu
						195			200						205
Phe	Pro	Ser	Ser	Ser	Ser	Ser	Leu	Pro	Asp	Phe	Ser	Gly	His	His	Gln
							210			215					220
Phe	Gln	Ile	Pro	Met	Thr	Ser	Thr	Asn	Pro	Ser	Leu	Thr	Leu	Ser	Ser
						225			230			235			240
Ser	Ser	Thr	Ser	Gln	Gln	Thr	Ser	Ala	Ser	Leu	Gln	His	Gln	Thr	Leu
						245			250			255			
Lys	Asp	Ser	Ser	Phe	Ser	Pro	Leu	Phe	Ser	Ser	Ser	Glu	Asn	Lys	
							260			265			270		
Gln	Asn	Lys	Pro	Leu	Ser	Pro	Met	Ser	Ala	Thr	Ala	Leu	Leu	Gln	Lys
							275			280			285		
Ala	Ala	Gln	Met	Gly	Ser	Thr	Arg	Ser	Asn	Ser	Ser	Thr	Ala	Pro	Ser
							290			295			300		
Phe	Phe	Ala	Gly	Pro	Thr	Met	Thr	Ser	Ser	Ser	Ala	Thr	Ala	Ser	Pro
							305			310			315		320
Pro	Pro	Arg	Ser	Ser	Ser	Pro	Met	Met	Ile	Gln	Gln	Gln	Leu	Asn	Asn
							325			330			335		
Phe	Asn	Thr	Asn	Val	Leu	Arg	Glu	Asn	His	Asn	Arg	Ala	Pro	Pro	Pro
							340			345			350		
Leu	Ser	Gly	Val	Ser	Thr	Ser	Ser	Val	Asp	Asn	Asn	Pro	Phe	Gln	Ser
										355			360		365
Asn	Arg	Ser	Gly	Leu	Asn	Pro	Ala	Gln	Gln	Met	Gly	Leu	Thr	Arg	Asp
										370			375		380
Phe	Leu	Gly	Val	Ser	Asn	Glu	His	His	Pro	His	Gln	Thr	Gly	Arg	Arg
											385		390		400
Pro	Phe	Leu	Pro	Gln	Glu	Leu	Ala	Arg	Phe	Ala	Pro	Leu	Gly		
											405		410		

<210> 7
 <211> 1285
 <212> ADN
 <213> Arabidopsis thaliana
 <220>

<221> CDS

<222> (32) .. (1102)

<400> 7		52	
ctagattatt ctactcttcg aagtcgattc a atg gaa ggt tcc tcg tca gcc	Met Glu Gly Ser Ser Ser Ala		
1	5		
atc gcg agg aag aca tgg gag cta gag aac aac att ctc cca gtg gaa	Ile Ala Arg Lys Thr Trp Glu Leu Glu Asn Asn Ile Leu Pro Val Glu	100	
10	15	20	
cca acc gat tca gcc tcc gac agt ata ttc cac tac gac gac gct tca	Pro Thr Asp Ser Ala Ser Asp Ser Ile Phe His Tyr Asp Asp Ala Ser	148	
25	30	35	
caa gcc aaa atc cag cag gag aag cca tgg gcc tcc gat cct aac tac	Gln Ala Lys Ile Gln Gln Glu Lys Pro Trp Ala Ser Asp Pro Asn Tyr	196	
40	45	50	55
ttc aag cgc gtt cac atc tca gcc ctt gct ctt ctc aag atg gtg gtt	Phe Lys Arg Val His Ile Ser Ala Leu Ala Leu Lys Met Val Val	244	
60	65	70	
cac gct cgc tcc ggt ggc aca atc gag atc atg ggt ctt atg cag ggt	His Ala Arg Ser Gly Gly Thr Ile Glu Ile Met Gly Leu Met Gln Gly	292	
75	80	85	
aaa acc gag ggt gat aca atc atc gtt atg gat gct ttt gct ttg cct	Lys Thr Glu Gly Asp Thr Ile Ile Val Met Asp Ala Phe Ala Leu Pro	340	
90	95	100	
gtt gaa ggt act gag act agg gtt aat gct cag tct gat gcc tat gag	Val Glu Gly Thr Glu Thr Arg Val Asn Ala Gln Ser Asp Ala Tyr Glu	388	
105	110	115	
tat atg gtt gaa tac tct cag acc agc aag ctg gct ggg agg ttg gag	Tyr Met Val Glu Tyr Ser Gln Thr Ser Lys Leu Ala Gly Arg Leu Glu	436	
120	125	130	135
aac gtt gtt gga tgg tat cac tct cac cct ggg tat gga tgt tgg ctc	Asn Val Val Gly Trp Tyr His Ser His Pro Gly Tyr Gly Cys Trp Leu	484	
140	145	150	
tcg ggt att gat gtt tcg aca cag atg ctt aac caa cag tat cag gag	Ser Gly Ile Asp Val Ser Thr Gln Met Leu Asn Gln Gln Tyr Gln Glu	532	
155	160	165	
cca ttc tta gct gtt gtt att gat cca aca agg act gtt tcg gct ggt	Pro Phe Leu Ala Val Val Ile Asp Pro Thr Arg Thr Val Ser Ala Gly	580	
170	175	180	
aag gtt gag att ggg gca ttc aga aca tat cca gag gga cat aag atc	Lys Val Glu Ile Gly Ala Phe Arg Thr Tyr Pro Glu Gly His Lys Ile	628	
185	190	195	
tcg gat gat cat gtt tct gag tat cag act atc cct ctt aac aag att	Ser Asp Asp His Val Ser Glu Tyr Gln Thr Ile Pro Leu Asn Lys Ile	676	
200	205	210	215
caa cac ttt aat cta cat tcc aaa caa tac tac tac tca ttd cac atc act		724	

Glu Asp Phe Gly Val His Cys Lys Gln Tyr Tyr Ser Leu Asp Ile Thr
 220 225 230
 tat ttc aag tca tct ctc gat agt cac ctt ctg gat ctc ctt ggg aac 772
 Tyr Phe Lys Ser Ser Leu Asp Ser His Leu Leu Asp Leu Leu Gly Asn
 235 240 245
 aag tac tgg gtg aac act ctt tct tcc cca ctg ttg ggc aat gga 820
 Lys Tyr Trp Val Asn Thr Leu Ser Ser Ser Pro Leu Leu Gly Asn Gly
 250 255 260
 gac tat gtt gcc ggg caa ata tca gac ttg gct gag aag ctc gag caa 868
 Asp Tyr Val Ala Gly Gln Ile Ser Asp Leu Ala Glu Lys Leu Glu Gln
 265 270 275
 gcg gag agt cag ctc gct aac tcc cgg tat gga gga att gcg cca gcc 916
 Ala Glu Ser Gln Leu Ala Asn Ser Arg Tyr Gly Gly Ile Ala Pro Ala
 280 285 295
 ggt cac caa agg agg aaa gag gat gag cct caa ctc gcg aag ata act 964
 Gly His Gln Arg Arg Lys Glu Asp Glu Pro Gln Leu Ala Lys Ile Thr
 300 305 310
 cgg gat agt gca aag ata act gtc gag cag gtc cat gga cta atg tca 1012
 Arg Asp Ser Ala Lys Ile Thr Val Glu Gln Val His Gly Leu Met Ser
 315 320 325
 cag gtt atc aaa gac atc ttg ttc aat tcc gct cgt cag tcc aag aag 1060
 Gln Val Ile Lys Asp Ile Leu Phe Asn Ser Ala Arg Gln Ser Lys Lys
 330 335 340
 tct gct gac gac tca tca gat cca gag ccc atg att aca tcg 1102
 Ser Ala Asp Asp Ser Ser Asp Pro Glu Pro Met Ile Thr Ser
 345 350 355
 tgaagtttgtt ctattctttt gtttttgtt gcggaaattt actatcggtt tgaccgggtt 1162
 tatgaggcaa tgcccattgt tccctatac tctagtgttag tatctgcttc agacaaaagat 1222
 ctttgggtta ttaaatgaca ttaacataaa atcgatcatt atgttttagc gaaaaaggta 1282
 aat 1285

 <210> 8
 <211> 357
 <212> PRT
 <213> Arabidopsis thaliana

 <400> 8
 Met Glu Gly Ser Ser Ser Ala Ile Ala Arg Lys Thr Trp Glu Leu Glu
 1 5 10 15
 Asn Asn Ile Leu Pro Val Glu Pro Thr Asp Ser Ala Ser Asp Ser Ile
 20 25 30
 Phe His Tyr Asp Asp Ala Ser Gln Ala Lys Ile Gln Gln Glu Lys Pro
 35 40 45
 Trp Ala Ser Asp Pro Asn Tyr Phe Lys Arg Val His Ile Ser Ala Leu
 50 55 60

Ala Leu Leu Lys Met Val Val His Ala Arg Ser Gly Gly Thr Ile Glu
 65 70 75 80

Ile Met Gly Leu Met Gln Gly Lys Thr Glu Gly Asp Thr Ile Ile Val
 85 90 95

Met Asp Ala Phe Ala Leu Pro Val Glu Gly Thr Glu Thr Arg Val Asn
 100 105 110

Ala Gln Ser Asp Ala Tyr Glu Tyr Met Val Glu Tyr Ser Gln Thr Ser
 115 120 125

Lys Leu Ala Gly Arg Leu Glu Asn Val Val Gly Trp Tyr His Ser His
 130 135 140

Pro Gly Tyr Gly Cys Trp Leu Ser Gly Ile Asp Val Ser Thr Gln Met
 145 150 155 160

Leu Asn Gln Gln Tyr Gln Glu Pro Phe Leu Ala Val Val Ile Asp Pro
 165 170 175

Thr Arg Thr Val Ser Ala Gly Lys Val Glu Ile Gly Ala Phe Arg Thr
 180 185 190

Tyr Pro Glu Gly His Lys Ile Ser Asp Asp His Val Ser Glu Tyr Gln
 195 200 205

Thr Ile Pro Leu Asn Lys Ile Glu Asp Phe Gly Val His Cys Lys Gln
 210 215 220

Tyr Tyr Ser Leu Asp Ile Thr Tyr Phe Lys Ser Ser Leu Asp Ser His
 225 230 235 240

Leu Leu Asp Leu Leu Gly Asn Lys Tyr Trp Val Asn Thr Leu Ser Ser
 245 250 255

Ser Pro Leu Leu Gly Asn Gly Asp Tyr Val Ala Gly Gln Ile Ser Asp
 260 265 270

Leu Ala Glu Lys Leu Glu Gln Ala Glu Ser Gln Leu Ala Asn Ser Arg
 275 280 285

Tyr Gly Gly Ile Ala Pro Ala Gly His Gln Arg Arg Lys Glu Asp Glu
 290 295 300

Pro Gln Leu Ala Lys Ile Thr Arg Asp Ser Ala Lys Ile Thr Val Glu
 305 310 315 320

Gln Val His Gly Leu Met Ser Gln Val Ile Lys Asp Ile Leu Phe Asn
 325 330 335

Ser Ala Arg Gln Ser Lys Lys Ser Ala Asp Asp Ser Ser Asp Pro Glu
 340 345 350

Pro Met Ile Thr Ser
 355

<211> 1394
<212> ADN
<213> *Arabidopsis thaliana*

<220>
<221> CDS
<222> (1)..(1251)

```

<400> 9
atg gaa aaa cag gcg aag cta acg agg aca cag tcg tcg tta ctc cgg 48
Met Glu Lys Gln Ala Lys Leu Thr Arg Thr Gln Ser Ser Leu Leu Arg
   1           5           10          15

```

tca	tcg	tcg	aat	ctc	cgt	tcg	tca	tat	caa	agc	tta	tct	tca	atc	gtc	96
Ser	Ser	Ser	Asn	Leu	Arg	Ser	Ser	Tyr	Gln	Ser	Leu	Ser	Ser	Ile	Val	
				20				25						30		

gaa ggc gag caa gat cta gaa gcc gga gag aaa gaa gag aaa cag aga 144
 Glu Gly Glu Gln Asp Leu Glu Ala Gly Glu Lys Glu Glu Lys Gln Arg
 35 40 45

```

aga aaa cca cct aaa cca ttc ggt tca cca aat cct aaa acc ggt tta 192
Arg Lys Pro Pro Lys Pro Phe Gly Ser Pro Asn Pro Lys Thr Gly Leu
      50           55           60

```

```

acc aga atc aat ccc ggt tta gct ttc aca atg gta tct ctc tct ttc 240
Thr Arg Ile Asn Pro Gly Leu Ala Phe Thr Met Val Ser Leu Ser Phe
 65           70           75           80

```

ctt agt ctc tca tcg ttc ttc ttc ttc gtc gtc ttc tca caa acc acc gat 288
Leu Ser Leu Ser Ser Phe Phe Phe Phe Val Val Phe Ser Gln Thr Asp
85 90 95

gag att ctc aca tcg gag aat ctt tta cta gct tta atc ttc gtc gct 336
Glu Ile Leu Thr Ser Glu Asn Leu Leu Leu Ala Leu Ile Phe Val Ala
100 105 110

gta gct ctc ttc ttc gct tcc aag aac atc tct cta cta aac caa acc 384
Val Ala Leu Phe Phe Ala Ser Lys Asn Ile Ser Leu Leu Asn Gln Thr
115 120 125

```

gta atc gca atc aaa aac tta ggg ttc caa aac aga gac tcg aaa tca 432
Val Ile Ala Ile Lys Asn Leu Gly Phe Gln Asn Arg Asp Ser Lys Ser
    130           135           140

```

aaa ccg gta caa tgg tac atc gga gac gat tca aaa ccg gag aag aag 480
 Lys Pro Val Gln Trp Tyr Ile Gly Asp Asp Ser Lys Pro Glu Lys Lys
 145 150 155 160

```

gta atc aag aga ttc gtt aaa gaa gga gtt caa ttc tac agt aat gga 528
Val Ile Lys Arg Phe Val Lys Glu Gly Val Gln Phe Tyr Ser Asn Gly
165           170           175

```

gat ttc tac gaa ggt gaa ttt aac aaa ggg aag tgt aac gga agt ggt 576
 Asp Phe Tyr Glu Gly Glu Phe Asn Lys Gly Lys Cys Asn Gly Ser Gly
 180 185 190

```

gtg tat tac tat ttc gtg aga gga cgt tat gaa gga gat tgg cta gat 624
Val Tyr Tyr Tyr Phe Val Arg Gly Arg Tyr Glu Gly Asp Trp Leu Asp
195          200          205

```

ggg aga tat gat ggt cat ggg att gag agt tgg gct aga gga agt aga Gly Arg Tyr Asp Gly His Gly Ile Glu Ser Trp Ala Arg Gly Ser Arg 210 215 220	672
tat aaa ggt caa tat agg caa ggt ctt aga cat ggt ttt ggt gtt tat Tyr Lys Gly Gln Tyr Arg Gln Gly Leu Arg His Gly Phe Gly Val Tyr 225 230 235 240	720
aga ttc tac act ggt gat tgt tat gct ggt gag tgg ttt aat ggt caa Arg Phe Tyr Thr Gly Asp Cys Tyr Ala Gly Glu Trp Phe Asn Gly Gln 245 250 255	768
agc cat ggt ttt ggt gtt caa tct tgt tct gat ggt agc tct tac ctt Ser His Gly Phe Gly Val Gln Ser Cys Ser Asp Gly Ser Ser Tyr Leu 260 265 270	816
ggt gag tct aga ttt ggt gtt aag cat ggt ctt ggt tct tac cat ttc Gly Glu Ser Arg Phe Gly Val Lys His Gly Leu Gly Ser Tyr His Phe 275 280 285	864
aga aat gga gat aag tat gca gga gag tac ttt gga gac aag att cat Arg Asn Gly Asp Lys Tyr Ala Gly Glu Tyr Phe Gly Asp Lys Ile His 290 295 300	912
ggg ttt ggt gtg tat cga ttt gct aat gga cac tgt tat gaa gga gca Gly Phe Gly Val Tyr Arg Phe Ala Asn Gly His Cys Tyr Glu Gly Ala 305 310 315 320	960
tgg cat gaa ggt cgt aag caa ggg ttt ggt gct tac tcg ttt aga aat Trp His Glu Gly Arg Lys Gln Gly Phe Gly Ala Tyr Ser Phe Arg Asn 325 330 335	1008
ggt gat gct aaa tct ggt gaa tgg gat tca ggg gtt ctt gtg act tca Gly Asp Ala Lys Ser Gly Glu Trp Asp Ser Gly Val Leu Val Thr Ser 340 345 350	1056
ctt cct ctt acg agt gag cca gtt tca aga gct gtt cag gcg gct cga Leu Pro Leu Thr Ser Glu Pro Val Ser Arg Ala Val Gln Ala Ala Arg 355 360 365	1104
gaa aca gcg aat aag gca gtg aat cgg aga cga gta gat gag cag gtg Glu Thr Ala Asn Lys Ala Val Asn Arg Arg Val Asp Glu Gln Val 370 375 380	1152
agc cga gct gtg gct gca gct aat aag gct gct acg gct gca aga gtg Ser Arg Ala Val Ala Ala Asn Lys Ala Ala Thr Ala Ala Arg Val 385 390 395 400	1200
gct gct gtg aga gcc gtt cag aat caa atg gat ggt aaa ttt tgt caa Ala Ala Val Arg Ala Val Gln Asn Gln Met Asp Gly Lys Phe Cys Gln 405 410 415	1248
agt tgaaaaagg aaaaatgtaaa aaatctttt ttttaccgggt ttctctgtaa Ser	1301
ccctgaatcg aaagttgtt tcagagggtt gtaacagaga gtttatccc gatctttta	1361
ctaattgtaac aaaactgtaa atagttgaag aag	1394

<211> 417

<212> PRT

<213> Arabidopsis thaliana

<400> 10

Met	Glu	Lys	Gln	Ala	Lys	Leu	Thr	Arg	Thr	Gln	Ser	Ser	Leu	Leu	Arg
1				5			10						15		

Ser	Ser	Ser	Asn	Leu	Arg	Ser	Ser	Tyr	Gln	Ser	Leu	Ser	Ser	Ile	Val
				20			25					30			

Glu	Gly	Glu	Gln	Asp	Leu	Glu	Ala	Gly	Glu	Lys	Glu	Glu	Lys	Gln	Arg
					35			40			45				

Arg	Lys	Pro	Pro	Lys	Pro	Phe	Gly	Ser	Pro	Asn	Pro	Lys	Thr	Gly	Leu
					50			55			60				

Thr	Arg	Ile	Asn	Pro	Gly	Leu	Ala	Phe	Thr	Met	Val	Ser	Leu	Ser	Phe
		65			70				75			80			

Leu	Ser	Leu	Ser	Ser	Phe	Phe	Phe	Val	Val	Phe	Ser	Gln	Thr	Asp
					85			90			95			

Glu	Ile	Leu	Thr	Ser	Glu	Asn	Leu	Leu	Ala	Leu	Ile	Phe	Val	Ala
					100			105			110			

Val	Ala	Leu	Phe	Phe	Ala	Ser	Lys	Asn	Ile	Ser	Leu	Leu	Asn	Gln	Thr
					115			120			125				

Val	Ile	Ala	Ile	Lys	Asn	Leu	Gly	Phe	Gln	Asn	Arg	Asp	Ser	Lys	Ser
					130			135			140				

Lys	Pro	Val	Gln	Trp	Tyr	Ile	Gly	Asp	Asp	Ser	Lys	Pro	Glu	Lys	Lys
					145			150			155			160	

Val	Ile	Lys	Arg	Phe	Val	Lys	Glu	Gly	Val	Gln	Phe	Tyr	Ser	Asn	Gly
					165			170			175				

Asp	Phe	Tyr	Glu	Gly	Glu	Phe	Asn	Lys	Gly	Lys	Cys	Asn	Gly	Ser	Gly
					180			185			190				

Val	Tyr	Tyr	Tyr	Phe	Val	Arg	Gly	Arg	Tyr	Glu	Gly	Asp	Trp	Leu	Asp
					195			200			205				

Gly	Arg	Tyr	Asp	Gly	His	Gly	Ile	Glu	Ser	Trp	Ala	Arg	Gly	Ser	Arg
					210			215			220				

Tyr	Lys	Gly	Gln	Tyr	Arg	Gln	Gly	Leu	Arg	His	Gly	Phe	Gly	Val	Tyr
					225			230			235			240	

Arg	Phe	Tyr	Thr	Gly	Asp	Cys	Tyr	Ala	Gly	Glu	Trp	Phe	Asn	Gly	Gln
					245			250			255				

Ser	His	Gly	Phe	Gly	Val	Gln	Ser	Cys	Ser	Asp	Gly	Ser	Ser	Tyr	Leu
					260			265			270				

Gly	Glu	Ser	Arg	Phe	Gly	Val	Lys	His	Gly	Leu	Gly	Ser	Tyr	His	Phe
					275			280			285				

Arg	Asn	Gly	Asp	Lys	Tyr	Ala	Gly	Glu	Tyr	Phe	Gly	Asp	Lys	Ile	His
					290			295			300				

Gly	Phe	Gly	Val	Tyr	Arg	Phe	Ala	Asn	Gly	His	Cys	Tyr	Glu	Gly	Ala	
305						310					315				320	
Trp	His	Glu	Gly	Arg	Lys	Gln	Gly	Phe	Gly	Ala	Tyr	Ser	Phe	Arg	Asn	
								325			330			335		
Gly	Asp	Ala	Lys	Ser	Gly	Glu	Trp	Asp	Ser	Gly	Val	Leu	Val	Thr	Ser	
								340			345			350		
Leu	Pro	Leu	Thr	Ser	Glu	Pro	Val	Ser	Arg	Ala	Val	Gln	Ala	Ala	Arg	
								355			360			365		
Glu	Thr	Ala	Asn	Lys	Ala	Val	Asn	Arg	Arg	Arg	Val	Asp	Glu	Gln	Val	
								370			375			380		
Ser	Arg	Ala	Val	Ala	Ala	Ala	Asn	Lys	Ala	Ala	Thr	Ala	Ala	Arg	Val	
								385			390			395		
Ala	Ala	Val	Arg	Ala	Val	Gln	Asn	Gln	Met	Asp	Gly	Lys	Phe	Cys	Gln	
									405			410			415	

Ser

<210> 11
<211> 696
<212> ADN
<213> Nicotiana benthamiana

<220>
<221> CDS
<222> (1)..(696)

<400> 11
gag aaa atg aag aag gaa aga tct gat gta tgg ctg cag gac ttc aaa 48
Glu Lys Met Lys Lys Glu Arg Ser Asp Val Trp Leu Gln Asp Phe Lys
1 5 10 15

gat tgg ata aat gac tct tct gac aat ttt gtt ggt ctt gct aga ggc 96
Asp Trp Ile Asn Asp Ser Ser Asp Asn Phe Val Gly Leu Ala Arg Gly
20 25 30

aaa gag act gtt tcc ggt aac cac aga gat gac gaa ctt aag acc cag 144
 Lys Glu Thr Val Ser Gly Asn His Arg Asp Asp Glu Leu Lys Thr Gln
 35 40 45

aat aga gag aaa cag ctc gga gag acc tca aaa tat tta tcc gac tct 192
Asn Arg Glu Lys Gln Leu Gly Glu Thr Ser Lys Tyr Leu Ser Asp Ser
50 55 60

```

atg ctg gct tct gga gat gac agc agc aca aat ata cta gaa tct gat 240
Met Leu Ala Ser Gly Asp Asp Ser Ser Thr Asn Ile Leu Glu Ser Asp
       65           70           75           80

```

```

aac tca ttt gca gag acg tct gct aat atc aat atg ctt cag tac ccc  288
Asn Ser Phe Ala Glu Thr Ser Ala Asn Ile Asn Met Leu Gln Tyr Pro
          85           90           95

```

aac caa att ggt gaa gca gct tcc aaa atc ttc cgc aat aac aca gga		336	
Asn Gln Ile Gly Glu Ala Ala Ser Lys Ile Phe Arg Asn Asn Thr Gly			
100	105	110	
gac tcc att gag att act aga agc cga cat cag gat agt ttt aga cct		384	
Asp Ser Ile Glu Ile Thr Arg Ser Arg His Gln Asp Ser Phe Arg Pro			
115	120	125	
ata aat aat gaa gtg cgt cta cat cca act acg ata ctc cca caa tct		432	
Ile Asn Asn Glu Val Arg Leu His Pro Thr Thr Ile Leu Pro Gln Ser			
130	135	140	
gga tcc ttc tca att caa ggt gtt aaa atg agc gcc aag atc aat att		480	
Gly Ser Phe Ser Ile Gln Gly Val Lys Met Ser Ala Lys Ile Asn Ile			
145	150	155	160
cca cca ctt act gat act gat aat att ttg gat ttt caa tca tcc ttg		528	
Pro Pro Leu Thr Asp Thr Asp Asn Ile Leu Asp Phe Gln Ser Ser Leu			
165	170	175	
gct agc aca gga tca cct cct cat tac aag gag gat atc ctg cat cga		576	
Ala Ser Thr Gly Ser Pro Pro His Tyr Lys Glu Asp Ile Leu His Arg			
180	185	190	
cgc caa aac ttg gaa gaa ttc ctg cag ctg tcc gct gag tcc ttc		624	
Arg Gln Asn Leu Glu Glu Phe Leu Gln Leu Ser Ala Glu Ser Phe			
195	200	205	
tca gtt gca tct tct gat gga gat acg agc tgc agt gat gat gaa tac		672	
Ser Val Ala Ser Ser Asp Gly Asp Thr Ser Cys Ser Asp Asp Glu Tyr			
210	215	220	
cct gaa ttg acc tca atg tcc ctg		696	
Pro Glu Leu Thr Ser Met Ser Leu			
225	230		

<210> 12

<211> 232

<212> PRT

<213> Nicotiana benthamiana

<400> 12

Glu Lys Met Lys Lys Glu Arg Ser Asp Val Trp Leu Gln Asp Phe Lys			
1	5	10	15

Asp Trp Ile Asn Asp Ser Ser Asp Asn Phe Val Gly Leu Ala Arg Gly		
20	25	30

Lys Glu Thr Val Ser Gly Asn His Arg Asp Asp Glu Leu Lys Thr Gln		
35	40	45

Asn Arg Glu Lys Gln Leu Gly Glu Thr Ser Lys Tyr Leu Ser Asp Ser		
50	55	60

Met Leu Ala Ser Gly Asp Asp Ser Ser Thr Asn Ile Leu Glu Ser Asp			
65	70	75	80

Asn Ser Phe Ala Glu Thr Ser Ala Asn Ile Asn Met Leu Gln Tyr Pro		
85	90	95

Asn Gln Ile Gly Glu Ala Ala Ser Lys Ile Phe Arg Asn Asn Thr Gly
 100 105 110

Asp Ser Ile Glu Ile Thr Arg Ser Arg His Gln Asp Ser Phe Arg Pro
 115 120 125

Ile Asn Asn Glu Val Arg Leu His Pro Thr Thr Ile Leu Pro Gln Ser
 130 135 140

Gly Ser Phe Ser Ile Gln Gly Val Lys Met Ser Ala Lys Ile Asn Ile
 145 150 155 160

Pro Pro Leu Thr Asp Thr Asp Asn Ile Leu Asp Phe Gln Ser Ser Leu
 165 170 175

Ala Ser Thr Gly Ser Pro Pro His Tyr Lys Glu Asp Ile Leu His Arg
 180 185 190

Arg Gln Asn Leu Glu Glu Glu Phe Leu Gln Leu Ser Ala Glu Ser Phe
 195 200 205

Ser Val Ala Ser Ser Asp Gly Asp Thr Ser Cys Ser Asp Asp Glu Tyr
 210 215 220

Pro Glu Leu Thr Ser Met Ser Leu
 225 230

<210> 13

<211> 925

<212> ADN

<213> Lycopersicon esculentum

<220>

<221> CDS

<222> (1)..(792)

<400> 13

atg ttg gaa cta cgt ctt gtt cag gga agt ctg ctg aag aaa gtt cta 48
 Met Leu Glu Leu Arg Leu Val Gln Gly Ser Leu Leu Lys Lys Val Leu
 1 5 10 15

gaa tcg att aag gat ctg gtg aac gat gcg aac ttt gat tgt tcc gcc 96
 Glu Ser Ile Lys Asp Leu Val Asn Asp Ala Asn Phe Asp Cys Ser Ala
 20 25 30

act gga ttc tct ctg caa gcc atg gac tcc agt cac gtg gct ctg gtg 144
 Thr Gly Phe Ser Leu Gln Ala Met Asp Ser Ser His Val Ala Leu Val
 35 40 45

gcg ctg ctg ctc cga tct gag ggt ttt gag cac tat cgt tgt gac cgg 192
 Ala Leu Leu Arg Ser Glu Gly Phe Glu His Tyr Arg Cys Asp Arg
 50 55 60

aac att tca atg ggc atg aac ctt act aac atg gcg aaa atg ctc aaa 240
 Asn Ile Ser Met Gly Met Asn Leu Thr Asn Met Ala Lys Met Leu Lys
 65 70 75 80

tgt gct gga aat gat gac atc atc acc atc aag gct gac gat ggc agt Cys Ala Gly Asn Asp Asp Ile Ile Thr Ile Lys Ala Asp Asp Gly Ser 85 90 95	288
gac acc gtc act ttc atg ttt gaa agc ccc acc caa gac aag att gct Asp Thr Val Thr Phe Met Phe Glu Ser Pro Thr Gln Asp Lys Ile Ala 100 105 110	336
gat ttt gag atg aag cta atg gac att gac agt gag cat ctt ggg att Asp Phe Glu Met Lys Leu Met Asp Ile Asp Ser Glu His Leu Gly Ile 115 120 125	384
cct gaa gca gag tac cat gct att gtt aga atg cct tct gct gag ttt Pro Glu Ala Glu Tyr His Ala Ile Val Arg Met Pro Ser Ala Glu Phe 130 135 140	432
ggt aga att tgc aaa gac ctt agc agc att gga gat aca gtt gtt att Gly Arg Ile Cys Lys Asp Leu Ser Ser Ile Gly Asp Thr Val Val Ile 145 150 155 160	480
tcg gtg act aag gaa ggt gtg aaa ttc tca acc aga ggt gac att ggt Ser Val Thr Lys Glu Gly Val Lys Phe Ser Thr Arg Gly Asp Ile Gly 165 170 175	528
act gct aat att gtt tgc agg caa aat aca act gtt gac aag cct gaa Thr Ala Asn Ile Val Cys Arg Gln Asn Thr Thr Val Asp Lys Pro Glu 180 185 190	576
gaa gcc act gtt ata gag atg aat gaa cca gtg tca ttg aca ttt gcc Glu Ala Thr Val Ile Glu Met Asn Glu Pro Val Ser Leu Thr Phe Ala 195 200 205	624
cta aga tac ttg aac tcc ttt aca aaa gca tct cca ttg tcg aac aca Leu Arg Tyr Leu Asn Ser Phe Thr Lys Ala Ser Pro Leu Ser Asn Thr 210 215 220	672
gtg acc atc agc ttg tct tca gag ctt cct gtt gtt gag tac aag Val Thr Ile Ser Leu Ser Ser Glu Leu Pro Val Val Glu Tyr Lys 225 230 235 240	720
att gct gag atg ggt tat gta agg tat tac ctg gca cct aag ata gaa Ile Ala Glu Met Gly Tyr Val Arg Tyr Tyr Leu Ala Pro Lys Ile Glu 245 250 255	768
gag gat gaa gag gaa acc aag cct tgatTTATG tttttgtttt cttatgggt 822 Glu Asp Glu Glu Thr Lys Pro 260	
aagctcattt gagtcttca ggcaagcaat atgttagctt agcttagact ggcaagacaa 882 atTTTCAAAT ttgtgtctaa tgaaatcatg tattttcctc ttt	925

<210> 14
<211> 264
<212> PRT
<213> Lycopersicon esculentum

<400> 14
Met Leu Glu Leu Arg Leu Val Gln Gly Ser Leu Leu Lys Lys Val Leu
1 5 10 15

Glu Ser Ile Lys Asp Leu Val Asn Asp Ala Asn Phe Asp Cys Ser Ala
 20 25 30
 Thr Gly Phe Ser Leu Gln Ala Met Asp Ser Ser His Val Ala Leu Val
 35 40 45
 Ala Leu Leu Leu Arg Ser Glu Gly Phe Glu His Tyr Arg Cys Asp Arg
 50 55 60
 Asn Ile Ser Met Gly Met Asn Leu Thr Asn Met Ala Lys Met Leu Lys
 65 70 75 80
 Cys Ala Gly Asn Asp Asp Ile Ile Thr Ile Lys Ala Asp Asp Gly Ser
 85 90 95
 Asp Thr Val Thr Phe Met Phe Glu Ser Pro Thr Gln Asp Lys Ile Ala
 100 105 110
 Asp Phe Glu Met Lys Leu Met Asp Ile Asp Ser Glu His Leu Gly Ile
 115 120 125
 Pro Glu Ala Glu Tyr His Ala Ile Val Arg Met Pro Ser Ala Glu Phe
 130 135 140
 Gly Arg Ile Cys Lys Asp Leu Ser Ser Ile Gly Asp Thr Val Val Ile
 145 150 155 160
 Ser Val Thr Lys Glu Gly Val Lys Phe Ser Thr Arg Gly Asp Ile Gly
 165 170 175
 Thr Ala Asn Ile Val Cys Arg Gln Asn Thr Thr Val Asp Lys Pro Glu
 180 185 190
 Glu Ala Thr Val Ile Glu Met Asn Glu Pro Val Ser Leu Thr Phe Ala
 195 200 205
 Leu Arg Tyr Leu Asn Ser Phe Thr Lys Ala Ser Pro Leu Ser Asn Thr
 210 215 220
 Val Thr Ile Ser Leu Ser Ser Glu Leu Pro Val Val Val Glu Tyr Lys
 225 230 235 240
 Ile Ala Glu Met Gly Tyr Val Arg Tyr Tyr Leu Ala Pro Lys Ile Glu
 245 250 255
 Glu Asp Glu Glu Glu Thr Lys Pro
 260

<210> 15
 <211> 617
 <212> ADN
 <213> Arabidopsis thaliana

<220>
 <221> CDS
 <222> (1)...(462)

<400> 15

aag att gct gat ttt gag atg aag ttg atg gat ata gac agt gaa cat Lys Ile Ala Asp Phe Glu Met Lys Leu Met Asp Ile Asp Ser Glu His 1 5 10 15	48
ctg gga ata cct gat gct gag tac cac tca atc gtg agg atg cct tcc Leu Gly Ile Pro Asp Ala Glu Tyr His Ser Ile Val Arg Met Pro Ser 20 25 30	96
aat gag ttt tcc agg att tgc aaa gat ctc agt agc att ggt gac aca Asn Glu Phe Ser Arg Ile Cys Lys Asp Leu Ser Ser Ile Gly Asp Thr 35 40 45	144
gtt gtg atc tct gtg act aaa gaa ggc gtg aag ttt tct act gcc ggt Val Val Ile Ser Val Thr Lys Glu Gly Val Lys Phe Ser Thr Ala Gly 50 55 60	192
gac att gga acc gct aac att gtg ctc agg cag aac aca act gta gac Asp Ile Gly Thr Ala Asn Ile Val Leu Arg Gln Asn Thr Thr Val Asp 65 70 75 80	240
aag ccg gaa gat gca att gtg ata gag atg aag gag cca gtg tct ctc Lys Pro Glu Asp Ala Ile Val Ile Glu Met Lys Glu Pro Val Ser Leu 85 90 95	288
tca ttt gcc ctg agg tac atg aat tcc ttc aca aag gca act cca ttg Ser Phe Ala Leu Arg Tyr Met Asn Ser Phe Thr Lys Ala Thr Pro Leu 100 105 110	336
tca gac aca gtg aca atc agc tta tcg tcg gag ttg cca gtg gtt gtg Ser Asp Thr Val Thr Ile Ser Ser Glu Leu Pro Val Val Val 115 120 125	384
gag tat aag gtt gct gag atg ggt tac att cgt tac tac ttg gct cct Glu Tyr Lys Val Ala Glu Met Gly Tyr Ile Arg Tyr Tyr Leu Ala Pro 130 135 140	432
aag att gaa gaa gaa gaa gac act aat ccc tagaccctt ttatattccac Lys Ile Glu Glu Glu Asp Thr Asn Pro 145 150	482
aatttctctt cattctaaaa tggtaagat ttattgacaa tggtgggtt ttttttggt gagattcctt tgtatcccc ctctagaatc agttgtttc ttgacttatt atgtttttagt ataacaaagt tcagc	542 602 617
<210> 16	
<211> 154	
<212> PRT	
<213> Arabidopsis thaliana	
<400> 16	
Lys Ile Ala Asp Phe Glu Met Lys Leu Met Asp Ile Asp Ser Glu His 1 5 10 15	
Leu Gly Ile Pro Asp Ala Glu Tyr His Ser Ile Val Arg Met Pro Ser 20 25 30	
Asn Glu Phe Ser Arg Ile Cys Lys Asp Leu Ser Ser Ile Gly Asp Thr 35 40 45	

Val Val Ile Ser Val Thr Lys Glu Gly Val Lys Phe Ser Thr Ala Gly
 50 55 60
 Asp Ile Gly Thr Ala Asn Ile Val Leu Arg Gln Asn Thr Thr Val Asp
 65 70 75 80
 Lys Pro Glu Asp Ala Ile Val Ile Glu Met Lys Glu Pro Val Ser Leu
 85 90 95
 Ser Phe Ala Leu Arg Tyr Met Asn Ser Phe Thr Lys Ala Thr Pro Leu
 100 105 110
 Ser Asp Thr Val Thr Ile Ser Leu Ser Ser Glu Leu Pro Val Val Val
 115 120 125
 Glu Tyr Lys Val Ala Glu Met Gly Tyr Ile Arg Tyr Tyr Leu Ala Pro
 130 135 140
 Lys Ile Glu Glu Glu Asp Thr Asn Pro
 145 150

<210> 17
 <211> 848
 <212> ADN
 <213> Arabidopsis thaliana

<220>
 <221> CDS
 <222> (1)...(615)

<400> 17		48
tta ccc caa gtc cag att gca acc ggt gaa aat ccc gaa att ctt ttc		
Leu Pro Gln Val Gln Ile Ala Thr Gly Glu Asn Pro Glu Ile Leu Phe		
1 5 10 15		
aag acc cat ccc aac atc aac cga gat atg ttc aat aat gag aat att		96
Lys Thr His Pro Asn Ile Asn Arg Asp Met Phe Asn Asn Glu Asn Ile		
20 25 30		
cta ggg ctg aag aga cct gat cag cca ttt ccc act ggt caa ggt gga		144
Leu Gly Leu Lys Arg Pro Asp Gln Pro Phe Pro Thr Gly Gln Gly Gly		
35 40 45		
gat ggt gtt ggt ctt ctc agg tgg aga atg caa aga gca gac gag tct		192
Asp Gly Val Gly Leu Leu Arg Trp Arg Met Gln Arg Ala Asp Glu Ser		
50 55 60		
atg gtg cca cta aca ata aac tgc tgg cct tca gtc tct gga aac gag		240
Met Val Pro Leu Thr Ile Asn Cys Trp Pro Ser Val Ser Gly Asn Glu		
65 70 75 80		
aca tat gtc agc ctc gag tac gaa gcc tcg tcc atg ttt gat ctg act		288
Thr Tyr Val Ser Leu Glu Tyr Glu Ala Ser Ser Met Phe Asp Leu Thr		
85 90 95		
aat gtc atc atc tcc gta cca ctt cct gct ctg aga gag gca cca agc		336
Asn Val Ile Ile Ser Val Pro Leu Pro Ala Leu Arg Glu Ala Pro Ser		
100 105 110		

gtt aga caa tgc gat ggg gag tgg agg tac gac cca aga aat tct gtt 384
 Val Arg Gln Cys Asp Gly Glu Trp Arg Tyr Asp Pro Arg Asn Ser Val
 115 120 125

 ctg gaa tgg tct ata cta ctt att gac aac tcc aac cgc agt ggc tca 432
 Leu Glu Trp Ser Ile Leu Leu Ile Asp Asn Ser Asn Arg Ser Gly Ser
 130 135 140

 atg gag ttt gtt gtg cct cca gtg gat tca tcg gtg ttc ttc ccc atc 480
 Met Glu Phe Val Val Pro Pro Val Asp Ser Ser Val Phe Phe Pro Ile
 145 150 155 160

 tct gtt cag ttt gca gcg aca agt acc tac agt ggc ttg aag gtg act 528
 Ser Val Gln Phe Ala Ala Thr Ser Thr Tyr Ser Gly Leu Lys Val Thr
 165 170 175

 gga atg att cct ctg aga gga ggt ggt gcg act cct agg ttt gtg 576
 Gly Met Ile Pro Leu Arg Gly Gly Ala Thr Pro Arg Phe Val
 180 185 190

 cag agg acg cag ctg att gcc cag aac tat caa gtc ata tgaaacactc 622
 Gln Arg Thr Gln Leu Ile Ala Gln Asn Tyr Gln Val Ile
 195 200

 ctttgggggc atcggktgtt tttaatttct tctatactat ctgggttgtgg atttcgctct 685
 ttttttgga tgccaaaagt acaatcttaa ttttctcgga ttttgctagg atatttcttt 745
 ctcaacttaa ttctaagaca ttatacatat tcataatcttc ttttttacc aacttctttt 805
 tcaatgtttt aaggatacaa gtacgattta caatcgttt ttt 848

<210> 18
 <211> 204
 <212> PRT
 <213> *Arabidopsis thaliana*

<400> 18
 Leu Pro Gln Val Gln Ile Ala Thr Gly Glu Asn Pro Glu Ile Leu Phe
 1 5 10 15

 Lys Thr His Pro Asn Ile Asn Arg Asp Met Phe Asn Asn Glu Asn Ile
 20 25 30

 Leu Gly Leu Lys Arg Pro Asp Gln Pro Phe Pro Thr Gly Gln Gly Gly
 35 40 45

 Asp Gly Val Gly Leu Leu Arg Trp Arg Met Gln Arg Ala Asp Glu Ser
 50 55 60

 Met Val Pro Leu Thr Ile Asn Cys Trp Pro Ser Val Ser Gly Asn Glu
 65 70 75 80

 Thr Tyr Val Ser Leu Glu Tyr Glu Ala Ser Ser Met Phe Asp Leu Thr
 85 90 95

 Asn Val Ile Ile Ser Val Pro Leu Pro Ala Leu Arg Glu Ala Pro Ser
 100 105 110

Val	Arg	Gln	Cys	Asp	Gly	Glu	Trp	Arg	Tyr	Asp	Pro	Arg	Asn	Ser	Val
							115			120					125
Leu	Glu	Trp	Ser	Ile	Leu	Leu	Ile	Asp	Asn	Ser	Asn	Arg	Ser	Gly	Ser
							130			135					140
Met	Glu	Phe	Val	Val	Pro	Pro	Val	Asp	Ser	Ser	Val	Phe	Phe	Pro	Ile
							145			150					160
Ser	Val	Gln	Phe	Ala	Ala	Thr	Ser	Thr	Tyr	Ser	Gly	Leu	Lys	Val	Thr
							165			170					175
Gly	Met	Ile	Pro	Leu	Arg	Gly	Gly	Gly	Ala	Thr	Pro	Arg	Phe	Val	
							180			185					190
Gln	Arg	Thr	Gln	Leu	Ile	Ala	Gln	Asn	Tyr	Gln	Val				
							195			200					

<210> 19
 <211> 525
 <212> ADN
 <213> Arabidopsis thaliana

 <220>
 <221> CDS
 <222> (1)..(522)

 <400> 19

atg	aag	gaa	gac	gca	gga	aac	cct	ttg	cat	ctc	acg	tca	ctg	aac	cat	48	
Met	Lys	Glu	Asp	Ala	Gly	Asn	Pro	Leu	His	Leu	Thr	Ser	Leu	Asn	His		
1		5							10					15			
gtc	tct	gtc	ttg	tgc	cga	tcc	gtc	gac	gaa	tct	atg	aat	ttt	tac	caa	96	
Val	Ser	Val	Leu	Cys	Arg	Ser	Val	Asp	Glu	Ser	Met	Asn	Phe	Tyr	Gln		
20							25							30			
aag	gtg	tta	ggg	ttc	atc	ccg	ata	cga	aga	cct	gaa	tcc	tta	aat	ttt	144	
Lys	Val	Leu	Gly	Phe	Ile	Pro	Ile	Arg	Arg	Pro	Glu	Ser	Leu	Asn	Phe		
35						40							45				
gaa	ggc	gct	tgg	ttg	ttt	ggt	cac	ggg	att	gga	ata	cac	ctc	ctg	tgt	192	
Glu	Gly	Ala	Trp	Leu	Phe	Gly	His	Gly	Ile	Gly	Ile	Arg	Ile	His	Leu	Cys	
50					55					60							
gcc	cca	gaa	cca	gag	aaa	ctt	ccc	aag	aaa	act	gcg	att	aat	ccc	aag	240	
Ala	Pro	Glu	Pro	Glu	Lys	Leu	Pro	Lys	Lys	Thr	Ala	Ile	Asn	Pro	Lys		
65					70					75				80			
gat	aat	cac	atc	tct	ttc	cag	tgt	gag	agt	atg	gga	gtt	gtg	gag	aag	288	
Asp	Asn	His	Ile	Ser	Phe	Gln	Cys	Glu	Ser	Met	Gly	Val	Val	Glu	Lys		
85						90								95			
aag	ctg	gag	gaa	atg	ggg	ata	gat	tat	gtt	agg	gca	tta	gtt	gaa	gaa	336	
Lys	Leu	Glu	Glu	Met	Gly	Ile	Asp	Tyr	Val	Arg	Ala	Leu	Val	Glu	Glu		
100						105							110				
gga	ggg	atc	caa	gtg	gac	cag	ctc	ttc	cat	gac	cct	gat	ggc	ttc	384		
Gly	Gly	Ile	Gln	Val	Asp	Gln	Leu	Phe	Phe	His	Asp	Pro	Asp	Gly	Phe		
115					120								125				

atg atc gag att tgc aac tgc gat agc ctc ccc gta gtc ccc ctc gta 432
 Met Ile Glu Ile Cys Asn Cys Asp Ser Leu Pro Val Val Pro Leu Val
 130 135 140

gga gaa atg gct cgg tcc tgc tca aga gtc aaa ctc cac cag atg gtg 480
 Gly Glu Met Ala Arg Ser Cys Ser Arg Val Lys Leu His Gln Met Val
 145 150 155 160

cag cca caa ccg cag act cag atc cac caa gtg gtc tac cct taa 525
 Gln Pro Gln Pro Gln Thr Gln Ile His Gln Val Val Tyr Pro
 165 170

<210> 20

<211> 174

<212> PRT

<213> Arabidopsis thaliana

<400> 20

Met Lys Glu Asp Ala Gly Asn Pro Leu His Leu Thr Ser Leu Asn His
 1 5 10 15

Val Ser Val Leu Cys Arg Ser Val Asp Glu Ser Met Asn Phe Tyr Gln
 20 25 30

Lys Val Leu Gly Phe Ile Pro Ile Arg Arg Pro Glu Ser Leu Asn Phe
 35 40 45

Glu Gly Ala Trp Leu Phe Gly His Gly Ile Gly Ile His Leu Leu Cys
 50 55 60

Ala Pro Glu Pro Glu Lys Leu Pro Lys Lys Thr Ala Ile Asn Pro Lys
 65 70 75 80

Asp Asn His Ile Ser Phe Gln Cys Glu Ser Met Gly Val Val Glu Lys
 85 90 95

Lys Leu Glu Glu Met Gly Ile Asp Tyr Val Arg Ala Leu Val Glu Glu
 100 105 110

Gly Gly Ile Gln Val Asp Gln Leu Phe Phe His Asp Pro Asp Gly Phe
 115 120 125

Met Ile Glu Ile Cys Asn Cys Asp Ser Leu Pro Val Val Pro Leu Val
 130 135 140

Gly Glu Met Ala Arg Ser Cys Ser Arg Val Lys Leu His Gln Met Val
 145 150 155 160

Gln Pro Gln Pro Gln Thr Gln Ile His Gln Val Val Tyr Pro
 165 170

<210> 21

<211> 313

<212> ADN

<213> Nicotiana benthamiana

<220>

<221> CDS

<222> (1)..(312)

<400> 21

cgt gag att tat gat cag tat ggt gaa gat gca ctt aag gaa gga atg	48
Arg Glu Ile Tyr Asp Gln Tyr Gly Glu Asp Ala Leu Lys Glu Gly Met	
1 5 10 15	

ggt ggt gga ggt ggg gca cat gac cca ttt gac ata ttc cag tca ttc	96
Gly Gly Gly Gly Ala His Asp Pro Phe Asp Ile Phe Gln Ser Phe	
20 25 30	

ttt ggt ggc ggt gga ttt ggc ggt ggt gga agc agc aga gga aga agg	144
Phe Gly Gly Gly Phe Gly Gly Ser Ser Arg Gly Arg Arg	
35 40 45	

cag agg aaa ggg gag gat gtt gtc cac cct ctc aag gtt tct ttg gag	192
Gln Arg Lys Gly Glu Asp Val Val His Pro Leu Lys Val Ser Leu Glu	
50 55 60	

gat ctc tac agt ggg aca tca aag aag cta tct cta tct cgc aat gtg	240
Asp Leu Tyr Ser Gly Thr Ser Lys Lys Leu Ser Leu Ser Arg Asn Val	
65 70 75 80	

ttg tgc tca aag tgc aag gga gtt ggg tct aaa tca ggt gct tca atg	288
Leu Cys Ser Lys Cys Lys Gly Val Gly Ser Lys Ser Gly Ala Ser Met	
85 90 95	

aaa tgt tcg gcc tgt caa ggg ttt g	313
Lys Cys Ser Ala Cys Gln Gly Phe	
100	

<210> 22

<211> 104

<212> PRT

<213> Nicotiana benthamiana

<400> 22

Arg Glu Ile Tyr Asp Gln Tyr Gly Glu Asp Ala Leu Lys Glu Gly Met	
1 5 10 15	

Gly Gly Gly Gly Ala His Asp Pro Phe Asp Ile Phe Gln Ser Phe	
20 25 30	

Phe Gly Gly Gly Phe Gly Gly Ser Ser Arg Gly Arg Arg	
35 40 45	

Gln Arg Lys Gly Glu Asp Val Val His Pro Leu Lys Val Ser Leu Glu	
50 55 60	

Asp Leu Tyr Ser Gly Thr Ser Lys Lys Leu Ser Leu Ser Arg Asn Val	
65 70 75 80	

Leu Cys Ser Lys Cys Lys Gly Val Gly Ser Lys Ser Gly Ala Ser Met	
85 90 95	

Lys Cys Ser Ala Cys Gln Gly Phe	
100	

<210> 23
 <211> 764
 <212> ADN
 <213> Arabidopsis thaliana

 <220>
 <221> CDS
 <222> (1)..(477)

 <400> 23
 aac att cct gat gtc gtt gtt ttc cct agg tcc gaa gaa gaa gtc tcc 48
 Asn Ile Pro Asp Val Val Val Phe Pro Arg Ser Glu Glu Glu Val Ser
 1 5 10 15

 aag att ctt aaa tcc tgc aat gaa tat aag gtt cct att gta cca tat 96
 Lys Ile Leu Lys Ser Cys Asn Glu Tyr Lys Val Pro Ile Val Pro Tyr
 20 25 30

 ggt ggg gca aca tcg atc gag ggt cat acc ctt gct cca aaa gga ggt 144
 Gly Gly Ala Thr Ser Ile Glu Gly His Thr Leu Ala Pro Lys Gly Gly
 35 40 45

 gtg tgc att gac atg tca tta atg aag agg gtg aaa gca tta cat gtg 192
 Val Cys Ile Asp Met Ser Leu Met Lys Arg Val Lys Ala Leu His Val
 50 55 60

 gag gat atg gat gtt att gtt gag cct gga att ggt tgg ctg gag ctt 240
 Glu Asp Met Asp Val Ile Val Glu Pro Gly Ile Gly Trp Leu Glu Leu
 65 70 75 80

 aat gaa tat ttg gaa gag tat ggt cta ttc ttt cct ctt gat cca gga 288
 Asn Glu Tyr Leu Glu Tyr Gly Leu Phe Phe Pro Leu Asp Pro Gly
 85 90 95

 cct ggt gcc tcc ata gga ggc atg tgt gct acg cgt tgc tct ggc tct 336
 Pro Gly Ala Ser Ile Gly Gly Met Cys Ala Thr Arg Cys Ser Gly Ser
 100 105 110

 tta gct gta agg tat gga act atg cgt gac aat gtt ata agc ctc aag 384
 Leu Ala Val Arg Tyr Gly Thr Met Arg Asp Asn Val Ile Ser Leu Lys
 115 120 125

 gtg gtt ctt cct aat gga gat gtt gtg aag aca gca ttc acg tgc cag 432
 Val Val Leu Pro Asn Gly Asp Val Val Lys Thr Ala Phe Thr Cys Gln
 130 135 140

 aaa gag tgc tgc tgg ata cga ttt gac tcg ctt gat aat tgg gag 477
 Lys Glu Cys Cys Trp Ile Arg Phe Asp Ser Leu Asp Asn Trp Glu
 145 150 155

 tgagggtact ttaggagtca ttactgagat tactctccga cttcagaaaa tccccacagca 537

 ttcagtggcgcagtttgca atttccctac agttaaggat gctgcagacg tggccattgc 597

 cactatgatg tctgaaatac aggtgtcaag agtggaaactc cttgacgagg ttcaaataaa 657

 gagctattaa tatggcataa cggaaaaat ttgactgaag ctccaaactct gatgttcgag 717

 tttatagggaa cagaggcata tacacgtgaa gcagacgcaa attgttc 764

<210> 24
<211> 159
<212> PRT
<213> Arabidopsis thaliana

<400> 24
Asn Ile Pro Asp Val Val Val Phe Pro Arg Ser Glu Glu Glu Val Ser
1 5 10 15
Lys Ile Leu Lys Ser Cys Asn Glu Tyr Lys Val Pro Ile Val Pro Tyr
20 25 30
Gly Gly Ala Thr Ser Ile Glu Gly His Thr Leu Ala Pro Lys Gly Gly
35 40 45
Val Cys Ile Asp Met Ser Leu Met Lys Arg Val Lys Ala Leu His Val
50 55 60
Glu Asp Met Asp Val Ile Val Glu Pro Gly Ile Gly Trp Leu Glu Leu
65 70 75 80
Asn Glu Tyr Leu Glu Glu Tyr Gly Leu Phe Phe Pro Leu Asp Pro Gly
85 90 95
Pro Gly Ala Ser Ile Gly Gly Met Cys Ala Thr Arg Cys Ser Gly Ser
100 105 110
Leu Ala Val Arg Tyr Gly Thr Met Arg Asp Asn Val Ile Ser Leu Lys
115 120 125
Val Val Leu Pro Asn Gly Asp Val Val Lys Thr Ala Phe Thr Cys Gln
130 135 140
Lys Glu Cys Cys Trp Ile Arg Phe Asp Ser Leu Asp Asn Trp Glu
145 150 155

<210> 25
<211> 3012
<212> ADN
<213> Arabidopsis thaliana

<220>
<221> CDS
<222> (1)...(3009)

<400> 25
atg aaa ctt ttt ctt ctc ctt ttt ctt ctc cac att tct cat acc 48
Met Lys Leu Phe Leu Leu Leu Phe Leu Leu His Ile Ser His Thr
1 5 10 15
ttc acc gca agc cga cca atc tcc gag ttc cgt gct ctc ctc tca ctc 96
Phe Thr Ala Ser Arg Pro Ile Ser Glu Phe Arg Ala Leu Leu Ser Leu
20 25 30
aaa acc tct ctc acc ggc gcc gga gat gac aaa aac tcg cct ctc tct 144
Lys Thr Ser Leu Thr Gly Ala Gly Asp Asp Lys Asn Ser Pro Leu Ser
35 40 45

tcc tgg aaa gtc tca aca agc ttc tgt aca tgg att ggt gtc acg tgc Ser Trp Lys Val Ser Thr Ser Phe Cys Thr Trp Ile Gly Val Thr Cys	192
50 55 60	
gat gta tct cgc cgt cac gtg act tct ctt gat ctc tcc ggt ctc aac Asp Val Ser Arg Arg His Val Thr Ser Leu Asp Leu Ser Gly Leu Asn	240
65 70 75 80	
ctc tcc ggt act ctt tcc cca gat gtt tct cat tta cgt ctt ctt cag Leu Ser Gly Thr Leu Ser Pro Asp Val Ser His Leu Arg Leu Leu Gln	288
85 90 95	
aat cta tca ctc gct gaa aat cta atc tcc ggt ccg att ccg ccg gaa Asn Leu Ser Leu Ala Glu Asn Leu Ile Ser Gly Pro Ile Pro Pro Glu	336
100 105 110	
atc tcg agc ctt tcc ggt ctt cgt cac tta aat ctc tcg aac aat gtc Ile Ser Ser Leu Ser Gly Leu Arg His Leu Asn Leu Ser Asn Asn Val	384
115 120 125	
ttc aac ggt tcg ttt ccc gat gag att tct tct gga ttg gtg aat ctc Phe Asn Gly Ser Phe Pro Asp Glu Ile Ser Ser Gly Leu Val Asn Leu	432
130 135 140	
cga gtt ctt gat gtc tac aac aac aat cta acc gga gat tta ccg gtt Arg Val Leu Asp Val Tyr Asn Asn Asn Leu Thr Gly Asp Leu Pro Val	480
145 150 155 160	
tcc gtc acc aat ctg act cag ctc ccg cac ctt cac ctc ggt ggt aac Ser Val Thr Asn Leu Thr Gln Leu Arg His Leu His Leu Gly Gly Asn	528
165 170 175	
tac ttc gct gga aag atc ccg cct tcg tac gga agc tgg cca gtt att Tyr Phe Ala Gly Lys Ile Pro Pro Ser Tyr Gly Ser Trp Pro Val Ile	576
180 185 190	
gag tat cta gcg gtt tcc ggc aac gag ctt gtc ggg aaa atc cct cca Glu Tyr Leu Ala Val Ser Gly Asn Glu Leu Val Gly Lys Ile Pro Pro	624
195 200 205	
gag atc gga aac cta acg act ctc ccg gag ctt tac atc ggc tac tac Glu Ile Gly Asn Leu Thr Leu Arg Glu Leu Tyr Ile Gly Tyr Tyr	672
210 215 220	
aac gct ttc gaa gac ggt ctt cct cca gag atc gga aat cta tcg gag Asn Ala Phe Glu Asp Gly Leu Pro Pro Glu Ile Gly Asn Leu Ser Glu	720
225 230 235 240	
cta gtc aga ttc gac gga gct aat tgc gga tta acc ggt gag att ccg Leu Val Arg Phe Asp Gly Ala Asn Cys Gly Leu Thr Gly Glu Ile Pro	768
245 250 255	
ccg gag att ggg aag ctt cag aaa ctc gat acg ctt ttc ttg caa gtg Pro Glu Ile Gly Lys Leu Gln Lys Leu Asp Thr Leu Phe Leu Gln Val	816
260 265 270	
aat gtc ttc tcc ggt cca tta act tgg gag cta gga acg cta tcg agt Asn Val Phe Ser Gly Pro Leu Thr Trp Glu Leu Gly Thr Leu Ser Ser	864
275 280 285	
tta aaa tca atc aat tta tct aac aac atc ttc acc cca aat att cca	912

Leu Lys Ser Met Asp Leu Ser Asn Asn Met Phe Thr Gly Glu Ile Pro			
290	295	300	
gcg agt ttc gca gag ttg aag aat ctc acg ctt ttg aat ctc ttc cgt			960
Ala Ser Phe Ala Glu Leu Lys Asn Leu Thr Leu Leu Asn Leu Phe Arg			
305	310	315	320
aac aaa ctt cac ggc gag ata ccg gag ttc atc gga gat ttg ccg gag			1008
Asn Lys Leu His Gly Glu Ile Pro Glu Phe Ile Gly Asp Leu Pro Glu			
325	330	335	
ctt gaa gtg tta cag ctt tgg gag aac aat ttc acc gga agc atc ccg			1056
Leu Glu Val Leu Gln Leu Trp Glu Asn Asn Phe Thr Gly Ser Ile Pro			
340	345	350	
cag aaa tta gga gaa aac ggt aaa cta aat ctc gtc gat ctc tct tcc			1104
Gln Lys Leu Gly Glu Asn Gly Lys Leu Asn Leu Val Asp Leu Ser Ser			
355	360	365	
aat aag ctg acc gga act tta ccg ccg aac atg tgc tcc ggt aac aag			1152
Asn Lys Leu Thr Gly Thr Leu Pro Pro Asn Met Cys Ser Gly Asn Lys			
370	375	380	
tta gaa act tta atc act ctt gga aac ttt ctc ttt ggt tca atc cct			1200
Leu Glu Thr Leu Ile Thr Leu Gly Asn Phe Leu Phe Gly Ser Ile Pro			
385	390	395	400
gat tct ctt ggt aaa tgt gag tct ttg acc ccg atc cga atg ggt gag			1248
Asp Ser Leu Gly Lys Cys Glu Ser Leu Thr Arg Ile Arg Met Gly Glu			
405	410	415	
aat ttc ctg aac ggg tca atc cca aaa gga cta ttc gga tta ccc aaa			1296
Asn Phe Leu Asn Gly Ser Ile Pro Lys Gly Leu Phe Gly Leu Pro Lys			
420	425	430	
tta act caa gtg gag ctc caa gat aat tat ctc tcc gga gag tta cca			1344
Leu Thr Gln Val Glu Leu Gln Asp Asn Tyr Leu Ser Gly Glu Leu Pro			
435	440	445	
gtc gcc gga ggt gtc tct gtt aat ctt ggt cag atc agt tta tca aac			1392
Val Ala Gly Gly Val Ser Val Asn Leu Gly Gln Ile Ser Leu Ser Asn			
450	455	460	
aac cag ctc tca ggt cca tta cct ccg gcg atc ggg aac ttc acc ggc			1440
Asn Gln Leu Ser Gly Pro Leu Pro Pro Ala Ile Gly Asn Phe Thr Gly			
465	470	475	480
gtt cag aaa ctt ctt ctt gat gga aac aag ttc caa ggt cct att cct			1488
Val Gln Lys Leu Leu Asp Gly Asn Lys Phe Gln Gly Pro Ile Pro			
485	490	495	
tca gag gta ggg aag ctt cag cag ctc tcg aag att gat ttc agc cac			1536
Ser Glu Val Gly Lys Leu Gln Gln Leu Ser Lys Ile Asp Phe Ser His			
500	505	510	
aac ttg ttc tcc ggt cga atc gcg ccg gag att agt cgt tgc aag ctc			1584
Asn Leu Phe Ser Gly Arg Ile Ala Pro Glu Ile Ser Arg Cys Lys Leu			
515	520	525	
tta acg ttt gtt gat ctg agc aga aac gag ctc tcc ggt gaa atc cca			1632
Leu Thr Phe Val Asp Leu Ser Arg Asn Glu Leu Ser Glv Glu Ile Pro			

530	535	540	
aat gag atc act gct atg aag ata ttg aat tac ttg aac ctg tcg aga Asn Glu Ile Thr Ala Met Lys Ile Leu Asn Tyr Leu Asn Leu Ser Arg 545 550 555 560			1680
aac cat ctg gtt gga tca atc cct ggt tca atc tcg tca atg cag agc Asn His Leu Val Gly Ser Ile Pro Gly Ser Ile Ser Ser Met Gln Ser 565 570 575			1728
tta aca tct ctt gat ttc tct tac aac aac ctc tcc ggt tta gtt ccg Leu Thr Ser Leu Asp Phe Ser Tyr Asn Asn Leu Ser Gly Leu Val Pro 580 585 590			1776
gga aca gga caa ttc agt tac ttc aac tac aca tcg ttc ttg ggt aat Gly Thr Gly Gln Phe Ser Tyr Phe Asn Tyr Thr Ser Phe Leu Gly Asn 595 600 605			1824
cct gat ctc tgt ggt cct tat ctt ggt cct tgt aaa gac ggt gtt gct Pro Asp Leu Cys Gly Pro Tyr Leu Gly Pro Cys Lys Asp Gly Val Ala 610 615 620			1872
aaa gga ggt cac cag agt cat agt aaa gga cct tta tca gct tct atg Lys Gly Gly His Gln Ser His Ser Lys Gly Pro Leu Ser Ala Ser Met 625 630 635 640			1920
aag tta ttg ctt gtt ctt gga cta ctt gtt tgt tcg att gcg ttc gcg Lys Leu Leu Val Leu Gly Leu Leu Val Cys Ser Ile Ala Phe Ala 645 650 655			1968
gta gta gcc ata atc aaa gct aga tca ttg aaa aag gcg agt gag tca Val Val Ala Ile Ile Lys Ala Arg Ser Leu Lys Lys Ala Ser Glu Ser 660 665 670			2016
cgg gct tgg agg tta aca gct ttc cag aga cta gac ttc acg tgt gac Arg Ala Trp Arg Leu Thr Ala Phe Gln Arg Leu Asp Phe Thr Cys Asp 675 680 685			2064
gat gtc ttg gat tct ctc aaa gaa gac aac att ata ggc aaa gga gga Asp Val Leu Asp Ser Leu Lys Glu Asp Asn Ile Ile Gly Lys Gly Gly 690 695 700			2112
gct ggt att gtc tat aaa ggc gta atg cct aat ggt gat cta gtc gcg Ala Gly Ile Val Tyr Lys Gly Val Met Pro Asn Gly Asp Leu Val Ala 705 710 715 720			2160
gtt aaa aga ctc gct gca atg tct cgt gga tct tcc cat gat cac ggc Val Lys Arg Leu Ala Ala Met Ser Arg Gly Ser Ser His Asp His Gly 725 730 735			2208
ttc aac gca gag att caa acc tta gga agg ata aga cac aga cac ata Phe Asn Ala Glu Ile Gln Thr Leu Gly Arg Ile Arg His Arg His Ile 740 745 750			2256
gtg agg ctt ctc gga ttt tgc tca aac cac gag acg aat cta ctt gtc Val Arg Leu Leu Gly Phe Cys Ser Asn His Glu Thr Asn Leu Leu Val 755 760 765			2304
tat gag tac atg cct aat ggt agt ctc ggt gag gtg ctt cac ggt aag Tyr Glu Tyr Met Pro Asn Gly Ser Leu Gly Glu Val Leu His Gly Lys 770 775 780			2352

aaa gga gga cac ttg cat tgg gac aca cgt tac aag att gct ctt gaa Lys Gly Gly His Leu His Trp Asp Thr Arg Tyr Lys Ile Ala Leu Glu 785 790 795 800	2400
gct gct aaa gga ctc tgt tac ctt cat cac gat tgt tct cca ttg atc Ala Ala Lys Gly Leu Cys Tyr Leu His His Asp Cys Ser Pro Leu Ile 805 810 815	2448
gtt cac aga gat gtc aaa tca aac aac atc ctc ctt gat tca aac ttt Val His Arg Asp Val Lys Ser Asn Asn Ile Leu Leu Asp Ser Asn Phe 820 825 830	2496
gaa gct cat gtt gac ttt ggt ctc gct aaa ttc ctt caa gat tcc Glu Ala His Val Ala Asp Phe Gly Leu Ala Lys Phe Leu Gln Asp Ser 835 840 845	2544
ggc act tct gaa tgt atg tct gca atc gct ggc tct tac ggc tac ata Gly Thr Ser Glu Cys Met Ser Ala Ile Ala Gly Ser Tyr Gly Tyr Ile 850 855 860	2592
gct cca gag tat gcg tat acg ttg aag gta gat gag aag agc gat gtg Ala Pro Glu Tyr Ala Tyr Thr Leu Lys Val Asp Glu Lys Ser Asp Val 865 870 875 880	2640
tat agt ttc ggt gtg gtt ctt ttg gaa ctc gtc acc gga aga aaa cct Tyr Ser Phe Gly Val Val Leu Leu Glu Leu Val Thr Gly Arg Lys Pro 885 890 895	2688
gtc gga gaa ttt gga gac ggt gtc gat ata gtg caa tgg gtt cgt aaa Val Gly Glu Phe Gly Asp Gly Val Asp Ile Val Gln Trp Val Arg Lys 900 905 910	2736
atg act gat tcg aac aag gat tcg gtt ctg aaa gta ttg gat ccg aga Met Thr Asp Ser Asn Lys Asp Ser Val Leu Lys Val Leu Asp Pro Arg 915 920 925	2784
ctt tct tcg att ccg att cat gaa gtg acg cac gtc ttc tat gta gcg Leu Ser Ser Ile Pro Ile His Glu Val Thr His Val Phe Tyr Val Ala 930 935 940	2832
atg ctc tgt gta gaa gaa caa gct gtt gag agg ccg act atg aga gaa Met Leu Cys Val Glu Glu Gln Ala Val Glu Arg Pro Thr Met Arg Glu 945 950 955 960	2880
gtt gtt cag att ctc act gag atc ccg aag ttg cca ccg tcg aag gat Val Val Gln Ile Leu Thr Glu Ile Pro Lys Leu Pro Pro Ser Lys Asp 965 970 975	2928
cag ccg atg acg gaa tca gcg ccg gag agt gag ctt tcg ccg aag tct Gln Pro Met Thr Glu Ser Ala Pro Glu Ser Glu Leu Ser Pro Lys Ser 980 985 990	2976
ggc gtt caa agt ccg ccg gat cta ctc aat cta tga Gly Val Gln Ser Pro Pro Asp Leu Leu Asn Leu 995 1000	3012

<210> 26
<211> 1003
<212> PRT

<213> Arabidopsis thaliana

<400> 26

Met	Lys	Leu	Phe	Leu	Leu	Leu	Phe	Leu	Leu	His	Ile	Ser	His	Thr
1				5				10					15	
Phe Thr Ala Ser Arg Pro Ile Ser Glu Phe Arg Ala Leu Leu Ser Leu														
20 25 30														
Lys Thr Ser Leu Thr Gly Ala Gly Asp Asp Lys Asn Ser Pro Leu Ser														
35 40 45														
Ser Trp Lys Val Ser Thr Ser Phe Cys Thr Trp Ile Gly Val Thr Cys														
50 55 60														
Asp Val Ser Arg Arg His Val Thr Ser Leu Asp Leu Ser Gly Leu Asn														
65 70 75 80														
Leu Ser Gly Thr Leu Ser Pro Asp Val Ser His Leu Arg Leu Leu Gln														
85 90 95														
Asn Leu Ser Leu Ala Glu Asn Leu Ile Ser Gly Pro Ile Pro Pro Glu														
100 105 110														
Ile Ser Ser Leu Ser Gly Leu Arg His Leu Asn Leu Ser Asn Asn Val														
115 120 125														
Phe Asn Gly Ser Phe Pro Asp Glu Ile Ser Ser Gly Leu Val Asn Leu														
130 135 140														
Arg Val Leu Asp Val Tyr Asn Asn Asn Leu Thr Gly Asp Leu Pro Val														
145 150 155 160														
Ser Val Thr Asn Leu Thr Gln Leu Arg His Leu His Leu Gly Gly Asn														
165 170 175														
Tyr Phe Ala Gly Lys Ile Pro Pro Ser Tyr Gly Ser Trp Pro Val Ile														
180 185 190														
Glu Tyr Leu Ala Val Ser Gly Asn Glu Leu Val Gly Lys Ile Pro Pro														
195 200 205														
Glu Ile Gly Asn Leu Thr Thr Leu Arg Glu Leu Tyr Ile Gly Tyr Tyr														
210 215 220														
Asn Ala Phe Glu Asp Gly Leu Pro Pro Glu Ile Gly Asn Leu Ser Glu														
225 230 235 240														
Leu Val Arg Phe Asp Gly Ala Asn Cys Gly Leu Thr Gly Glu Ile Pro														
245 250 255														
Pro Glu Ile Gly Lys Leu Gln Lys Leu Asp Thr Leu Phe Leu Gln Val														
260 265 270														
Asn Val Phe Ser Gly Pro Leu Thr Trp Glu Leu Gly Thr Leu Ser Ser														
275 280 285														
Leu Lys Ser Met Asp Leu Ser Asn Asn Met Phe Thr Gly Glu Ile Pro														
290 295 300														
Ala Ser Phe Ala Glu Leu Lys Asn Leu Thr Leu Leu Asn Leu Phe Ara														

305	310	315	320
Asn Lys Leu His Gly Glu Ile Pro Glu Phe Ile Gly Asp Leu Pro Glu			
325		330	335
Leu Glu Val Leu Gln Leu Trp Glu Asn Asn Phe Thr Gly Ser Ile Pro			
340		345	350
Gln Lys Leu Gly Glu Asn Gly Lys Leu Asn Leu Val Asp Leu Ser Ser			
355		360	365
Asn Lys Leu Thr Gly Thr Leu Pro Pro Asn Met Cys Ser Gly Asn Lys			
370		375	380
Leu Glu Thr Leu Ile Thr Leu Gly Asn Phe Leu Phe Gly Ser Ile Pro			
385		390	395
Asp Ser Leu Gly Lys Cys Glu Ser Leu Thr Arg Ile Arg Met Gly Glu			
405		410	415
Asn Phe Leu Asn Gly Ser Ile Pro Lys Gly Leu Phe Gly Leu Pro Lys			
420		425	430
Leu Thr Gln Val Glu Leu Gln Asp Asn Tyr Leu Ser Gly Glu Leu Pro			
435		440	445
Val Ala Gly Gly Val Ser Val Asn Leu Gly Gln Ile Ser Leu Ser Asn			
450		455	460
Asn Gln Leu Ser Gly Pro Leu Pro Pro Ala Ile Gly Asn Phe Thr Gly			
465		470	475
Val Gln Lys Leu Leu Asp Gly Asn Lys Phe Gln Gly Pro Ile Pro			
485		490	495
Ser Glu Val Gly Lys Leu Gln Gln Leu Ser Lys Ile Asp Phe Ser His			
500		505	510
Asn Leu Phe Ser Gly Arg Ile Ala Pro Glu Ile Ser Arg Cys Lys Leu			
515		520	525
Leu Thr Phe Val Asp Leu Ser Arg Asn Glu Leu Ser Gly Glu Ile Pro			
530		535	540
Asn Glu Ile Thr Ala Met Lys Ile Leu Asn Tyr Leu Asn Leu Ser Arg			
545		550	555
Asn His Leu Val Gly Ser Ile Pro Gly Ser Ile Ser Ser Met Gln Ser			
565		570	575
Leu Thr Ser Leu Asp Phe Ser Tyr Asn Asn Leu Ser Gly Leu Val Pro			
580		585	590
Gly Thr Gly Gln Phe Ser Tyr Phe Asn Tyr Thr Ser Phe Leu Gly Asn			
595		600	605
Pro Asp Leu Cys Gly Pro Tyr Leu Gly Pro Cys Lys Asp Gly Val Ala			
610		615	620
Lys Gly Gly His Gln Ser His Ser Lys Gly Pro Leu Ser Ala Ser Met			
625		630	635

Lys Leu Leu Leu Val Leu Gly Leu Leu Val Cys Ser Ile Ala Phe Ala
 645 650 655
 Val Val Ala Ile Ile Lys Ala Arg Ser Leu Lys Lys Ala Ser Glu Ser
 660 665 670
 Arg Ala Trp Arg Leu Thr Ala Phe Gln Arg Leu Asp Phe Thr Cys Asp
 675 680 685
 Asp Val Leu Asp Ser Leu Lys Glu Asp Asn Ile Ile Gly Lys Gly Gly
 690 695 700
 Ala Gly Ile Val Tyr Lys Gly Val Met Pro Asn Gly Asp Leu Val Ala
 705 710 715 720
 Val Lys Arg Leu Ala Ala Met Ser Arg Gly Ser Ser His Asp His Gly
 725 730 735
 Phe Asn Ala Glu Ile Gln Thr Leu Gly Arg Ile Arg His Arg His Ile
 740 745 750
 Val Arg Leu Leu Gly Phe Cys Ser Asn His Glu Thr Asn Leu Leu Val
 755 760 765
 Tyr Glu Tyr Met Pro Asn Gly Ser Leu Gly Glu Val Leu His Gly Lys
 770 775 780
 Lys Gly Gly His Leu His Trp Asp Thr Arg Tyr Lys Ile Ala Leu Glu
 785 790 795 800
 Ala Ala Lys Gly Leu Cys Tyr Leu His His Asp Cys Ser Pro Leu Ile
 805 810 815
 Val His Arg Asp Val Lys Ser Asn Asn Ile Leu Leu Asp Ser Asn Phe
 820 825 830
 Glu Ala His Val Ala Asp Phe Gly Leu Ala Lys Phe Leu Gln Asp Ser
 835 840 845
 Gly Thr Ser Glu Cys Met Ser Ala Ile Ala Gly Ser Tyr Gly Tyr Ile
 850 855 860
 Ala Pro Glu Tyr Ala Tyr Thr Leu Lys Val Asp Glu Lys Ser Asp Val
 865 870 875 880
 Tyr Ser Phe Gly Val Val Leu Leu Glu Leu Val Thr Gly Arg Lys Pro
 885 890 895
 Val Gly Glu Phe Gly Asp Gly Val Asp Ile Val Gln Trp Val Arg Lys
 900 905 910
 Met Thr Asp Ser Asn Lys Asp Ser Val Leu Lys Val Leu Asp Pro Arg
 915 920 925
 Leu Ser Ser Ile Pro Ile His Glu Val Thr His Val Phe Tyr Val Ala
 930 935 940
 Met Leu Cys Val Glu Glu Gln Ala Val Glu Arg Pro Thr Met Arg Glu
 945 950 955 960

Val Val Gln Ile Leu Thr Glu Ile Pro Lys Leu Pro Pro Ser Lys Asp
 965 970 975

Gln Pro Met Thr Glu Ser Ala Pro Glu Ser Glu Leu Ser Pro Lys Ser
 980 985 990

Gly Val Gln Ser Pro Pro Asp Leu Leu Asn Leu
 995 1000

<210> 27
 <211> 1108
 <212> ADN
 <213> Nicotiana benthamiana

<220>
 <221> CDS
 <222> (1)..(762)

<400> 27
 gaa cgt gag aac ttc gta tac atc gct aag ctt gcc gag caa gct gaa 48
 Glu Arg Glu Asn Phe Val Tyr Ile Ala Lys Leu Ala Glu Gln Ala Glu
 1 5 10 15

cgc tat gat gag atg gtt gat gcg atg aag aat ctt gca aat atg gat 96
 Arg Tyr Asp Glu Met Val Asp Ala Met Lys Asn Leu Ala Asn Met Asp
 20 25 30

gtt gaa ttg aca gtg gaa gag agg aat ttg ttt tct gtt ggt tat aag 144
 Val Glu Leu Thr Val Glu Glu Arg Asn Leu Phe Ser Val Gly Tyr Lys
 35 40 45

aat gtg gtt gga gct agg aga gca tcg tgg agg atc ttg tct tcc atc 192
 Asn Val Val Gly Ala Arg Arg Ala Ser Trp Arg Ile Leu Ser Ser Ile
 50 55 60

gag cag aag gaa gag tct aga gga aat gag cag aac gtg aag cgg att 240
 Glu Gln Lys Glu Glu Ser Arg Gly Asn Glu Gln Asn Val Lys Arg Ile
 65 70 75 80

aag gag tac cag caa aaa gtg gag tca gag ctc acc gac att tgc aat 288
 Lys Glu Tyr Gln Gln Lys Val Glu Ser Glu Leu Thr Asp Ile Cys Asn
 85 90 95

aat atc atg acc gtg att gat aag cat cta att cct tca tgt act tct 336
 Asn Ile Met Thr Val Ile Asp Lys His Leu Ile Pro Ser Cys Thr Ser
 100 105 110

gga gaa tca agt gtg ttt tac tac aaa atg aaa ggg gat tat tat cga 384
 Gly Glu Ser Ser Val Phe Tyr Tyr Lys Met Lys Gly Asp Tyr Tyr Arg
 115 120 125

tac ctt gca gag ctc aaa act ggg aac gac aag aaa gag gtt tct gat 432
 Tyr Leu Ala Glu Leu Lys Thr Gly Asn Asp Lys Lys Glu Val Ser Asp
 130 135 140

ctg tct tta aaa gca tat cag aca gct aca gct aca gcg gag gct gaa 480
 Leu Ser Leu Lys Ala Tyr Gln Thr Ala Thr Ala Glu Ala Glu
 145 150 155 160

tta tca act acc cat ccc att cg ^g ctg ggt ttg gct tta aat ttc tct Leu Ser Thr Thr His Pro Ile Arg Leu Gly Leu Ala Leu Asn Phe Ser 165 170 175	528
g ^t ttc tac tat gag ata atg aac tcc cct gaa agg gca tgc cac ctg Val Phe Tyr Tyr Glu Ile Met Asn Ser Pro Glu Arg Ala Cys His Leu 180 185 190	576
gct aag cag gct ttt gat gaa gca ata tcg gag ctg gat gcc ctt aat Ala Lys Gln Ala Phe Asp Glu Ala Ile Ser Glu Leu Asp Ala Leu Asn 195 200 205	624
gag gac tcc tac aaa gat agc acc ttg att atg cag ctt tta agg gac Glu Asp Ser Tyr Lys Asp Ser Thr Leu Ile Met Gln Leu Leu Arg Asp 210 215 220	672
aat ctc acc ttg tgg act tct gac att cca gat gat gca ggc atg tgc Asn Leu Thr Leu Trp Thr Ser Asp Ile Pro Asp Asp Ala Gly Met Cys 225 230 235 240	720
aag gca ttt tct caa ggt tgc ttt gat gtt tgc ata atc tac Lys Ala Phe Ser Gln Gly Cys Phe Asp Val Cys Ile Ile Tyr 245 250	762
tagttgctgg ttcat ^{taact} ttctac ^{ctgc} tctattctcc tcgttagttgc tagggtaaac 822 ttgagttgtc atggtaagt tgcctatcac agatgagaga tattcctctga gacgaattat 882 ctattccgac cttagatgg tat ^{tt} tagcgt ggaatgcac ^t atactgttgg cacattattt 942 cg ^{gg} gaattaa aaaactaggg ggcaaaaaga cagagttcta cacgtcctt ttgttagggag 1002 aaggaaaaaa tcgggctaga aaatacta ^{at} agttggagga tttttttct cttgttcata 1062 cagtgtatta tcatccgttg gattattatt aagaaaggat ctgcac	1108

<210> 28
<211> 254
<212> PRT
<213> Nicotiana benthamiana

Glu Arg Glu Asn Phe Val Tyr Ile Ala Lys Leu Ala Glu Gln Ala Glu 1 5 10 15
Arg Tyr Asp Glu Met Val Asp Ala Met Lys Asn Leu Ala Asn Met Asp 20 25 30
Val Glu Leu Thr Val Glu Glu Arg Asn Leu Phe Ser Val Gly Tyr Lys 35 40 45
Asn Val Val Gly Ala Arg Arg Ala Ser Trp Arg Ile Leu Ser Ser Ile 50 55 60
Glu Gln Lys Glu Glu Ser Arg Gly Asn Glu Gln Asn Val Lys Arg Ile 65 70 75 80
Lys Glu Tyr Gln Gln Lys Val Glu Ser Glu Leu Thr Asp Ile Cys Asn 85 90 95

Asn Ile Met Thr Val Ile Asp Lys His Leu Ile Pro Ser Cys Thr Ser
 100 105 110
 Gly Glu Ser Ser Val Phe Tyr Tyr Lys Met Lys Gly Asp Tyr Tyr Arg
 115 120 125
 Tyr Leu Ala Glu Leu Lys Thr Gly Asn Asp Lys Lys Glu Val Ser Asp
 130 135 140
 Leu Ser Leu Lys Ala Tyr Gln Thr Ala Thr Ala Thr Ala Glu Ala Glu
 145 150 155 160
 Leu Ser Thr Thr His Pro Ile Arg Leu Gly Leu Ala Leu Asn Phe Ser
 165 170 175
 Val Phe Tyr Tyr Glu Ile Met Asn Ser Pro Glu Arg Ala Cys His Leu
 180 185 190
 Ala Lys Gln Ala Phe Asp Glu Ala Ile Ser Glu Leu Asp Ala Leu Asn
 195 200 205
 Glu Asp Ser Tyr Lys Asp Ser Thr Leu Ile Met Gln Leu Leu Arg Asp
 210 215 220
 Asn Leu Thr Leu Trp Thr Ser Asp Ile Pro Asp Asp Ala Gly Met Cys
 225 230 235 240
 Lys Ala Phe Ser Gln Gly Cys Phe Asp Val Cys Ile Ile Tyr
 245 250

<210> 29
 <211> 714
 <212> ADN
 <213> Nicotiana benthamiana

<220>
 <221> CDS
 <222> (1)...(714)

<400> 29						
tgc act cct tct act tct cct tca aat atc tct gca att ttc cca						48
Cys Thr Pro Ser Thr Ser Ser Pro Ser Asn Ile Ser Ala Ile Phe Pro						
1 5 10 15						
aaa tcc tca tct ttc aat ccc caa act cca cct ctc ttc cca att cca						96
Lys Ser Ser Ser Phe Asn Pro Gln Thr Pro Pro Leu Phe Pro Ile Pro						
20 25 30						
act tct tac ttc aac aga aaa aat aca cac aca tta att tgc tcc gca						144
Thr Ser Tyr Phe Asn Arg Lys Asn Thr His Thr Leu Ile Cys Ser Ala						
35 40 45						
gca aag caa caa act ggg cca gtg aaa aaa caa cgt aca tct cca aat						192
Ala Lys Gln Gln Thr Gly Pro Val Lys Lys Gln Arg Thr Ser Pro Asn						
50 55 60						
aat acc aaa aag aaa aag aaa aat gtt tca aat ttc gat ggt gaa gtg						240
Asn Thr Lys Lys Lys Lys Asn Val Ser Asn Phe Asp Gly Glu Val						
65 70 75 80						

gat gtt gaa gtt gaa gat aaa gag gca gag cgt tac gtt cct ttg ccg	288
Asp Val Glu Val Glu Asp Lys Glu Ala Glu Arg Tyr Val Pro Leu Pro	
85 90 95	
cta cca aaa ccg cca gct gga ttt gtt tta gat gag cag ggt aga gtt	336
Leu Pro Lys Pro Pro Ala Gly Phe Val Leu Asp Glu Gln Gly Arg Val	
100 105 110	
ctc atg gct tcc aat aag cgt att gct aca att gtt gat tct acg aac	384
Leu Met Ala Ser Asn Lys Arg Ile Ala Thr Ile Val Asp Ser Thr Asn	
115 120 125	
aat ttt ccg ctg gaa tgc atc atc agg agg gtt ttt aga agt tta cga	432
Asn Phe Pro Leu Glu Cys Ile Ile Arg Arg Val Phe Arg Ser Leu Arg	
130 135 140	
gaa gat gaa tgt tta cta ctc tgc cct gtt gat atg cct gtt cag att	480
Glu Asp Glu Cys Leu Leu Leu Cys Pro Val Asp Met Pro Val Gln Ile	
145 150 155 160	
tta aag agc aca aat gtc gag gga tgg tct gct gta agt gat gaa gaa	528
Leu Lys Ser Thr Asn Val Glu Gly Trp Ser Ala Val Ser Asp Glu Glu	
165 170 175	
gtg gaa gct atc cta cca act gca gcc tat gct cta gcc aag ata cac	576
Val Glu Ala Ile Leu Pro Thr Ala Ala Tyr Ala Leu Ala Lys Ile His	
180 185 190	
atg cat ctt gtg tac agt gga ttc tgt tac aca gca cgt gga gga ttt	624
Met His Leu Val Tyr Ser Gly Phe Cys Tyr Thr Ala Arg Gly Gly Phe	
195 200 205	
tgc tac aca gag gac gac ata ttt gaa ttc aga aca gat gat ggt gac	672
Cys Tyr Thr Glu Asp Asp Ile Phe Glu Phe Arg Thr Asp Asp Gly Asp	
210 215 220	
gat gta gat ggg ttg cca agt gaa ggc ata gaa atc aca tgc	714
Asp Val Asp Gly Leu Pro Ser Glu Gly Ile Glu Ile Thr Cys	
225 230 235	
<210> 30	
<211> 238	
<212> PRT	
<213> Nicotiana benthamiana	
<400> 30	
Cys Thr Pro Ser Thr Ser Ser Pro Ser Asn Ile Ser Ala Ile Phe Pro	
1 5 10 15	
Lys Ser Ser Ser Phe Asn Pro Gln Thr Pro Pro Leu Phe Pro Ile Pro	
20 25 30	
Thr Ser Tyr Phe Asn Arg Lys Asn Thr His Thr Leu Ile Cys Ser Ala	
35 40 45	
Ala Lys Gln Gln Thr Gly Pro Val Lys Lys Gln Arg Thr Ser Pro Asn	
50 55 60	
Asn Thr Lvs Lvs Lvs Lvs Lvs Asn Val Ser Asn Phe Asp Glv Glu Val	

47

65	70	75	80
Asp Val Glu Val Glu Asp Lys Glu Ala Glu Arg Tyr Val Pro Leu Pro			
85	90	95	
Leu Pro Lys Pro Pro Ala Gly Phe Val Leu Asp Glu Gln Gly Arg Val			
100	105	110	
Leu Met Ala Ser Asn Lys Arg Ile Ala Thr Ile Val Asp Ser Thr Asn			
115	120	125	
Asn Phe Pro Leu Glu Cys Ile Ile Arg Arg Val Phe Arg Ser Leu Arg			
130	135	140	
Glu Asp Glu Cys Leu Leu Cys Pro Val Asp Met Pro Val Gln Ile			
145	150	155	160
Leu Lys Ser Thr Asn Val Glu Gly Trp Ser Ala Val Ser Asp Glu Glu			
165	170	175	
Val Glu Ala Ile Leu Pro Thr Ala Ala Tyr Ala Leu Ala Lys Ile His			
180	185	190	
Met His Leu Val Tyr Ser Gly Phe Cys Tyr Thr Ala Arg Gly Gly Phe			
195	200	205	
Cys Tyr Thr Glu Asp Asp Ile Phe Glu Phe Arg Thr Asp Asp Gly Asp			
210	215	220	
Asp Val Asp Gly Leu Pro Ser Glu Gly Ile Glu Ile Thr Cys			
225	230	235	

<210> 31
<211> 1925
<212> ADN
<213> *Arabidopsis thaliana*

<220>
<221> CDS
<222> (1)..(1827)

<400> 31						
gca gag gct cca ccg gag att atc aac cat cct tct cat cct caa cac						
Ala Glu Ala Pro Pro Glu Ile Ile Asn His Pro Ser His Pro Gln His						
1	5	10	15			
act ctt aaa ctc cac aat tct cta agg aac cca tgt aaa tgt aat cta						
Thr Leu Lys Leu His Asn Ser Leu Arg Asn Pro Cys Lys Cys Asn Leu						
20	25	30				
tgt ggc aag act ttt ttc gct ttt ggt tat cgt tgt tca tca aaa tgt						
Cys Gly Lys Thr Phe Phe Ala Phe Gly Tyr Arg Cys Ser Ser Lys Cys						
35	40	45				
gac ttc atc gtg gat ctc act tgt ggg ata aat cca ttg ccg gtt tct						
Asp Phe Ile Val Asp Leu Thr Cys Gly Ile Asn Pro Leu Pro Val Ser						
50	55	60				

atc gaa cat cca aag tct cat cat cat cca gtt atc ttc ttg aaa gaa Ile Glu His Pro Lys Ser His His His Pro Val Ile Phe Leu Lys Glu 65 70 75 80	240
ccc gca aag ccg ggt agg cgc aga tgc gga att tgc aag ggc tat aat Pro Ala Lys Pro Gly Arg Arg Cys Gly Ile Cys Lys Gly Tyr Asn 85 90 95	288
ggt gga tgt tct tat gca tgt ctt gaa tgt gaa gtc cac ttt cat gtc Gly Gly Cys Ser Tyr Ala Cys Leu Glu Cys Glu Val His Phe His Val 100 105 110	336
gag tgt gtc aat ctt tcc caa gag gtg aat cat cct tct cat cct caa Glu Cys Val Asn Leu Ser Gln Glu Val Asn His Pro Ser His Pro Gln 115 120 125	384
cat tct ctc aag tta ctt gaa tat gaa tca cta aca agt gat gct gaa His Ser Leu Lys Leu Leu Glu Tyr Glu Ser Leu Thr Ser Asp Ala Glu 130 135 140	432
gag aca tgt ctt tta tgt gga gaa cga cca gac aaa gtg ctt tat cgc Glu Thr Cys Leu Leu Cys Gly Glu Arg Pro Asp Lys Val Leu Tyr Arg 145 150 155 160	480
tgc tcg ata tgc aac ttc agc gta tgt cga ttc tgt aca aaa gat cca Cys Ser Ile Cys Asn Phe Ser Val Cys Arg Phe Cys Thr Lys Asp Pro 165 170 175	528
cca cca ctt gct atc gag cat cat aag acg cac gag cat cga ctt gtc Pro Pro Leu Ala Ile Glu His His Lys Thr His Glu His Arg Leu Val 180 185 190	576
ctc tta tca aga ctc atc tca ttt gaa tgt aat gct tgt ggg atg caa Leu Leu Ser Arg Leu Ile Ser Phe Glu Cys Asn Ala Cys Gly Met Gln 195 200 205	624
ggt gat cga agt cct tac atg tgt gtt caa tgc ggg ttt gtt gtc cat Gly Asp Arg Ser Pro Tyr Met Cys Val Gln Cys Gly Phe Val Val His 210 215 220	672
aga act tgt att gac tta cca cgt gtc ata aac atc aac cgt cac gat Arg Thr Cys Ile Asp Leu Pro Arg Val Ile Asn Ile Asn Arg His Asp 225 230 235 240	720
cat cgc atc tct ttc acc cat cat ctc ggt gtt ggg tac tcg aga tgc His Arg Ile Ser Phe Thr His His Leu Gly Val Gly Tyr Ser Arg Cys 245 250 255	768
ggt att tgt cgc aaa gat ata agt caa tac cat ggg gct tat tta tgc Gly Ile Cys Arg Lys Asp Ile Ser Gln Tyr His Gly Ala Tyr Leu Cys 260 265 270	816
cct cgt tgc ccg aac tat gca gct cat tca cta tgt gca aca aga aaa Pro Arg Cys Pro Asn Tyr Ala Ala His Ser Leu Cys Ala Thr Arg Lys 275 280 285	864
gac gta tgg gat ggg gta gaa ctc gaa ggg aca cca gat gat gat gac Asp Val Trp Asp Gly Val Glu Leu Glu Gly Thr Pro Asp Asp Asp Asp 290 295 300	912

gaa gat att gtg ccg ttc aaa gta gta ggt gat aac ttg atc aag cat Glu Asp Ile Val Pro Phe Lys Val Val Gly Asp Asn Leu Ile Lys His 305 310 315 320	960
ttc agt cat gaa gaa cat aat cta aga ctc aac aag gac aat atc aat Phe Ser His Glu His Asn Leu Arg Leu Asn Lys Asp Asn Ile Asn 325 330 335	1008
cgt gac gaa ggc tca cgt tgt gaa gca tgc gtc ctt cct atc tat tcc Arg Asp Glu Gly Ser Arg Cys Glu Ala Cys Val Leu Pro Ile Tyr Ser 340 345 350	1056
gat ccg atc tac aac tgt gag gaa tgt cgt ttc att ctc cat gag aaa Asp Pro Ile Tyr Asn Cys Glu Glu Cys Arg Phe Ile Leu His Glu Lys 355 360 365	1104
tgc gct aat cat cca aaa aag aaa cga cat gta ttc cac aca aaa cca Cys Ala Asn His Pro Lys Lys Lys Arg His Val Phe His Thr Lys Pro 370 375 380	1152
ttc aca cta tgg tcc aga cca cct cgt aca ttc cat agc aaa gat ttt Phe Thr Leu Trp Ser Arg Pro Pro Arg Thr Phe His Ser Lys Asp Phe 385 390 395 400	1200
aga ttc tac gat gtc ttt cgc tgc tat gct tgt aga acg aag tct act Arg Phe Tyr Asp Val Phe Arg Cys Tyr Ala Cys Arg Thr Lys Ser Thr 405 410 415	1248
ggt ttc agg tac gtt tct gat tgg tgg gtt cta gat gta cgt tgt ggt Gly Phe Arg Tyr Val Ser Asp Trp Trp Val Leu Asp Val Arg Cys Gly 420 425 430	1296
tcg cgt tct gaa ccg gtc att cat gat ggt cac aga cat cct cta tat Ser Arg Ser Glu Pro Val Ile His Asp Gly His Arg His Pro Leu Tyr 435 440 445	1344
tac gaa cat aag aaa gat cac tgt tgt gat gca tgt tat aaa gag ata Tyr Glu His Lys Lys Asp His Cys Cys Asp Ala Cys Tyr Lys Glu Ile 450 455 460	1392
gat ggt tat ctg ctt tcc tgt gac act tgt gac ttt gat ctg gat tta Asp Gly Tyr Leu Leu Ser Cys Asp Thr Cys Asp Phe Asp Leu Asp Leu 465 470 475 480	1440
cac tgt act gat tta cca aaa acg gta aag cac agc tgc gac aat cat His Cys Thr Asp Leu Pro Lys Thr Val Lys His Ser Cys Asp Asn His 485 490 495	1488
cct ctt tcc cta tgc tat ggc gaa aat gca acc gga aaa tat tgg tgt Pro Leu Ser Leu Cys Tyr Gly Glu Asn Ala Thr Gly Lys Tyr Trp Cys 500 505 510	1536
gat att tgc gag gcg gaa aca gat cca agt aag tgg ttc tac act tgc Asp Ile Cys Glu Ala Glu Thr Asp Pro Ser Lys Trp Phe Tyr Thr Cys 515 520 525	1584
tct aaa tgt gtg gtt act gca cat att gaa tgt gtg ctt gga gac ttt Ser Lys Cys Val Val Thr Ala His Ile Glu Cys Val Leu Gly Asp Phe 530 535 540	1632
tca cat ctc atc cca aaa cac atc atc aac tac aat aat ott aag att	1680

Ser Arg Leu Met Pro Gly Arg Ile Ile Asn Tyr Asn Asn Val Arg Val			
545	550	555	560
gaa gtg gtt ctt aac agc tat agt tct cgc ccc ttc tgt gca aaa tgt			1728
Glu Val Val Leu Asn Ser Tyr Ser Ser Arg Pro Phe Cys Ala Lys Cys			
565	570	575	
cac tcc aga tgc aga gct cct atc att cta aag ctt tgt gat cca tat			1776
His Ser Arg Cys Arg Ala Pro Ile Ile Leu Lys Leu Cys Asp Pro Tyr			
580	585	590	
act gga tac att tgt tcc gat gca tgt gta gtg ccc gac tat caa tac			1824
Thr Gly Tyr Ile Cys Ser Asp Ala Cys Val Val Pro Asp Tyr Gln Tyr			
595	600	605	
agc taagacaact atgttagctgt ttatttcact ctattgttgc tcgtaatttt			1877
Ser			
ttggatgtaa gagtttattt ccaactacaa gtgctaagca ttctggtt			1925

<210> 32

<211> 609

<212> PRT

<213> Arabidopsis thaliana

<400> 32

Ala Glu Ala Pro Pro Glu Ile Ile Asn His Pro Ser His Pro Gln His			
1	5	10	15

Thr Leu Lys Leu His Asn Ser Leu Arg Asn Pro Cys Lys Cys Asn Leu			
20	25	30	

Cys Gly Lys Thr Phe Phe Ala Phe Gly Tyr Arg Cys Ser Ser Lys Cys			
35	40	45	

Asp Phe Ile Val Asp Leu Thr Cys Gly Ile Asn Pro Leu Pro Val Ser			
50	55	60	

Ile Glu His Pro Lys Ser His His Pro Val Ile Phe Leu Lys Glu			
65	70	75	80

Pro Ala Lys Pro Gly Arg Arg Cys Gly Ile Cys Lys Gly Tyr Asn			
85	90	95	

Gly Gly Cys Ser Tyr Ala Cys Leu Glu Cys Glu Val His Phe His Val			
100	105	110	

Glu Cys Val Asn Leu Ser Gln Glu Val Asn His Pro Ser His Pro Gln			
115	120	125	

His Ser Leu Lys Leu Leu Glu Tyr Glu Ser Leu Thr Ser Asp Ala Glu			
130	135	140	

Glu Thr Cys Leu Leu Cys Gly Glu Arg Pro Asp Lys Val Leu Tyr Arg			
145	150	155	160

Cys Ser Ile Cys Asn Phe Ser Val Cys Arg Phe Cys Thr Lys Asp Pro			
165	170	175	

Pro Pro Leu Ala Ile Glu His His Lys Thr His Glu His Arg Leu Val			
---	--	--	--

180	185	190
Leu Leu Ser Arg Leu Ile Ser Phe Glu Cys Asn Ala Cys Gly Met Gln		
195	200	205
Gly Asp Arg Ser Pro Tyr Met Cys Val Gln Cys Gly Phe Val Val His		
210	215	220
Arg Thr Cys Ile Asp Leu Pro Arg Val Ile Asn Ile Asn Arg His Asp		
225	230	235
His Arg Ile Ser Phe Thr His His Leu Gly Val Gly Tyr Ser Arg Cys		
245	250	255
Gly Ile Cys Arg Lys Asp Ile Ser Gln Tyr His Gly Ala Tyr Leu Cys		
260	265	270
Pro Arg Cys Pro Asn Tyr Ala Ala His Ser Leu Cys Ala Thr Arg Lys		
275	280	285
Asp Val Trp Asp Gly Val Glu Leu Glu Gly Thr Pro Asp Asp Asp Asp		
290	295	300
Glu Asp Ile Val Pro Phe Lys Val Val Gly Asp Asn Leu Ile Lys His		
305	310	315
320		
Phe Ser His Glu Glu His Asn Leu Arg Leu Asn Lys Asp Asn Ile Asn		
325	330	335
Arg Asp Glu Gly Ser Arg Cys Glu Ala Cys Val Leu Pro Ile Tyr Ser		
340	345	350
Asp Pro Ile Tyr Asn Cys Glu Glu Cys Arg Phe Ile Leu His Glu Lys		
355	360	365
Cys Ala Asn His Pro Lys Lys Lys Arg His Val Phe His Thr Lys Pro		
370	375	380
380		
Phe Thr Leu Trp Ser Arg Pro Pro Arg Thr Phe His Ser Lys Asp Phe		
385	390	395
400		
Arg Phe Tyr Asp Val Phe Arg Cys Tyr Ala Cys Arg Thr Lys Ser Thr		
405	410	415
Gly Phe Arg Tyr Val Ser Asp Trp Trp Val Leu Asp Val Arg Cys Gly		
420	425	430
Ser Arg Ser Glu Pro Val Ile His Asp Gly His Arg His Pro Leu Tyr		
435	440	445
Tyr Glu His Lys Lys Asp His Cys Cys Asp Ala Cys Tyr Lys Glu Ile		
450	455	460
460		
Asp Gly Tyr Leu Leu Ser Cys Asp Thr Cys Asp Phe Asp Leu Asp Leu		
465	470	475
480		
His Cys Thr Asp Leu Pro Lys Thr Val Lys His Ser Cys Asp Asn His		
485	490	495
Pro Leu Ser Leu Cys Tyr Gly Glu Asn Ala Thr Gly Lys Tyr Trp Cys		
500	505	510

Asp	Ile	Cys	Glu	Ala	Glu	Thr	Asp	Pro	Ser	Lys	Trp	Phe	Tyr	Thr	Cys
515							520							525	
Ser	Lys	Cys	Val	Val	Thr	Ala	His	Ile	Glu	Cys	Val	Leu	Gly	Asp	Phe
530							535						540		
Ser	Arg	Leu	Met	Pro	Gly	Arg	Ile	Ile	Asn	Tyr	Asn	Asn	Val	Arg	Val
545					550					555					560
Glu	Val	Val	Leu	Asn	Ser	Tyr	Ser	Ser	Arg	Pro	Phe	Cys	Ala	Lys	Cys
565								570						575	
His	Ser	Arg	Cys	Arg	Ala	Pro	Ile	Ile	Leu	Lys	Leu	Cys	Asp	Pro	Tyr
580								585						590	
Thr	Gly	Tyr	Ile	Cys	Ser	Asp	Ala	Cys	Val	Val	Pro	Asp	Tyr	Gln	Tyr
595								600						605	

Ser

```
<210> 33
<211> 1383
<212> ADN
<213> Arabidopsis thaliana
```

<220>
<221> CDS
<222> (1)...(1380)

aga aca tgt ccc aag act cag caa gtt ctg cct cac acg gct tta aca Arg Thr Cys Pro Lys Thr Gln Gln Val Leu Pro His Thr Ala Leu Thr 115 120 125	384
cct aat ctc tta atc cgt gaa atg atc tcg aaa tgg tgc aag aag aac Pro Asn Leu Leu Ile Arg Glu Met Ile Ser Lys Trp Cys Lys Lys Asn 130 135 140	432
ggg ctt gag acg aag agc caa tat cat ccc aac ctt gta aat gaa gat Gly Leu Glu Thr Lys Ser Gln Tyr His Pro Asn Leu Val Asn Glu Asp 145 150 155 160	480
gaa act gtg aca aga tca gat cgt gag att ttc aat tcc ttg ctc tgt Glu Thr Val Thr Arg Ser Asp Arg Glu Ile Phe Asn Ser Leu Leu Cys 165 170 175	528
aaa gtc tct tcg aac ctt caa gat caa aaa tca gct gcc aag gag Lys Val Ser Ser Asn Leu Gln Asp Gln Lys Ser Ala Ala Lys Glu 180 185 190	576
cta aga ctt ctg acc agg aaa ggc act gag ttc cga gct ctt ttt ggc Leu Arg Leu Leu Thr Arg Lys Gly Thr Glu Phe Arg Ala Leu Phe Gly 195 200 205	624
gaa tct ccg gat gag atc acc agg ttg gtg aat ccc ttg tta cac ggg Glu Ser Pro Asp Glu Ile Thr Arg Leu Val Asn Pro Leu Leu His Gly 210 215 220	672
tca aac cca gat gag aag ctt caa gaa gat gtg gtt aca aca ttg ttg Ser Asn Pro Asp Glu Lys Leu Gln Glu Asp Val Val Thr Thr Leu Leu 225 230 235 240	720
aac ata tca ata cat gat gac agc aac aag ctc gtc tgc gaa aat Asn Ile Ser Ile His Asp Asp Ser Asn Lys Lys Leu Val Cys Glu Asn 245 250 255	768
cct aat gtg att cct ctc ctt atc gat gca ttg agg cgt gga aca gtc Pro Asn Val Ile Pro Leu Leu Ile Asp Ala Leu Arg Arg Gly Thr Val 260 265 270	816
gcc acg aga agc aat gca gct gca gcg atc ttc act ctg tca gct ctc Ala Thr Arg Ser Asn Ala Ala Ala Ile Phe Thr Leu Ser Ala Leu 275 280 285	864
gat tca aac aaa gta ctt ata ggg aag tcc gga atc ctg aaa ccg ctt Asp Ser Asn Lys Val Leu Ile Gly Lys Ser Gly Ile Leu Lys Pro Leu 290 295 300	912
atc gat ctc cta gaa gaa ggg aat cca tta gct atc aaa gac gta gct Ile Asp Leu Leu Glu Glu Asn Pro Leu Ala Ile Lys Asp Val Ala 305 310 315 320	960
gca gcg atc ttc act ctt tgt ata gcc cat gag aac agg agt aga gct Ala Ala Ile Phe Thr Leu Cys Ile Ala His Glu Asn Arg Ser Arg Ala 325 330 335	1008
gtg aga gac gga gct gtt agg gtt aag aaa atc tcg aat ggg Val Arg Asp Gly Ala Val Arg Val Leu Gly Lys Lys Ile Ser Asn Gly 340 345 350	1056

ttg tac gtt gat gag ctt tta gct ata ttg gca atg ctt gtt act cac Leu Tyr Val Asp Glu Leu Leu Ala Ile Leu Ala Met Leu Val Thr His 355 360 365	1104
tgg aag gct gtg gag gaa ttg ggt gag ctc ggt ggg gtt tca tgg ttg Trp Lys Ala Val Glu Glu Leu Gly Glu Leu Gly Gly Val Ser Trp Leu 370 375 380	1152
ctg aag ata act cga gag agc gag tgc aag cga aac aaa gag aat gcg Leu Lys Ile Thr Arg Glu Ser Glu Cys Lys Arg Asn Lys Glu Asn Ala 385 390 395 400	1200
ata gtg ata ctg cat act ata tgt ttc agc gac agg aca aag tgg aag Ile Val Ile Leu His Thr Ile Cys Phe Ser Asp Arg Thr Lys Trp Lys 405 410 415	1248
gag atc aaa gaa gag gag aat gct cat gga acg ata aca aag ctt tcg Glu Ile Lys Glu Glu Asn Ala His Gly Thr Ile Thr Lys Leu Ser 420 425 430	1296
cgt gaa gga act tca agg gcg cag agg aaa gca aac ggg ata ttg gac Arg Glu Gly Thr Ser Arg Ala Gln Arg Lys Ala Asn Gly Ile Leu Asp 435 440 445	1344
aga ctg aga aaa gct atg aat ctc act cat aca gcc tga Arg Leu Arg Lys Ala Met Asn Leu Thr His Thr Ala 450 455 460	1383
<210> 34	
<211> 460	
<212> PRT	
<213> Arabidopsis thaliana	
<400> 34	
Met Ala Lys Thr Gly Val Phe Asp Ser Asp Pro Thr Ala Ile Ala Lys 1 5 10 15	
Ala Lys Glu Leu Lys Arg Glu Met Lys Lys Leu Leu Ile Lys Ile Asp 20 25 30	
Asp Glu Asp Asp Leu Gly Val Gln Thr Ile Asp Gln Leu Gln Asp Ala 35 40 45	
Leu Ser Ala Leu Arg Glu Ala Thr Met Arg Lys Met Ala Lys Ser Ser 50 55 60	
Ser Leu Glu Met Leu Glu Thr Val Ser Cys Pro Glu Glu Phe Arg Cys 65 70 75 80	
Pro Leu Ser Asn Glu Leu Met Arg Asp Pro Val Val Leu Ala Ser Gly 85 90 95	
Gln Thr Tyr Asp Lys Leu Phe Ile Gln Lys Trp Leu Ser Ser Gly Asn 100 105 110	
Arg Thr Cys Pro Lys Thr Gln Gln Val Leu Pro His Thr Ala Leu Thr 115 120 125	
Pro Asn Leu Leu Ile Arg Glu Met Ile Ser Lys Trp Cys Lys Lys Asn 130 135 140	

Gly Leu Glu Thr Lys Ser Gln Tyr His Pro Asn Leu Val Asn Glu Asp
 145 150 155 160
 Glu Thr Val Thr Arg Ser Asp Arg Glu Ile Phe Asn Ser Leu Leu Cys
 165 170 175
 Lys Val Ser Ser Ser Asn Leu Gln Asp Gln Lys Ser Ala Ala Lys Glu
 180 185 190
 Leu Arg Leu Leu Thr Arg Lys Gly Thr Glu Phe Arg Ala Leu Phe Gly
 195 200 205
 Glu Ser Pro Asp Glu Ile Thr Arg Leu Val Asn Pro Leu Leu His Gly
 210 215 220
 Ser Asn Pro Asp Glu Lys Leu Gln Glu Asp Val Val Thr Thr Leu Leu
 225 230 235 240
 Asn Ile Ser Ile His Asp Asp Ser Asn Lys Lys Leu Val Cys Glu Asn
 245 250 255
 Pro Asn Val Ile Pro Leu Leu Ile Asp Ala Leu Arg Arg Gly Thr Val
 260 265 270
 Ala Thr Arg Ser Asn Ala Ala Ala Ile Phe Thr Leu Ser Ala Leu
 275 280 285
 Asp Ser Asn Lys Val Leu Ile Gly Lys Ser Gly Ile Leu Lys Pro Leu
 290 295 300
 Ile Asp Leu Leu Glu Glu Gly Asn Pro Leu Ala Ile Lys Asp Val Ala
 305 310 315 320
 Ala Ala Ile Phe Thr Leu Cys Ile Ala His Glu Asn Arg Ser Arg Ala
 325 330 335
 Val Arg Asp Gly Ala Val Arg Val Leu Gly Lys Lys Ile Ser Asn Gly
 340 345 350
 Leu Tyr Val Asp Glu Leu Leu Ala Ile Leu Ala Met Leu Val Thr His
 355 360 365
 Trp Lys Ala Val Glu Glu Leu Gly Glu Leu Gly Val Ser Trp Leu
 370 375 380
 Leu Lys Ile Thr Arg Glu Ser Glu Cys Lys Arg Asn Lys Glu Asn Ala
 385 390 395 400
 Ile Val Ile Leu His Thr Ile Cys Phe Ser Asp Arg Thr Lys Trp Lys
 405 410 415
 Glu Ile Lys Glu Glu Asn Ala His Gly Thr Ile Thr Lys Leu Ser
 420 425 430
 Arg Glu Gly Thr Ser Arg Ala Gln Arg Lys Ala Asn Gly Ile Leu Asp
 435 440 445
 Arg Leu Arg Lys Ala Met Asn Leu Thr His Thr Ala
 450 455 460

<210> 35
<211> 531
<212> ADN
<213> *Arabidopsis thaliana*

<220>
<221> CDS
<222> (1)..(447)

<400> 35
 caa aaa gca att cga cca tac gag tca ccg tgg acg aag acc gtg ccg 48
 Gln Lys Ala Ile Arg Pro Tyr Glu Ser Pro Trp Thr Lys Thr Val Pro
 1 5 10 15

```

ggc aat agc att ttc ctt tta aag aat gaa gat aaa cca tca tca tca tca 96
Gly Asn Ser Ile Phe Leu Leu Lys Asn Glu Asp Lys Pro Ser Ser Ser
          20           25           30

```

tca tca tca tta tca tgg tta aca tca gga tca cca aag cca aca aca tct 144
 Ser Ser Ser Leu Ser Trp Leu Thr Ser Gly Ser Pro Pro Lys Pro Thr Ser
 35 40 45

ata agc aat aag aga tca agc aac cta gtt gtg atg gag aat gct gtg	192
Ile Ser Asn Lys Arg Ser Ser Asn Leu Val Val Met Glu Asn Ala Val	
50 55 60	

gtg gtg ttt gca agg aga ggc tgt tgt ttg gga cac gtg gca aaa cgg	240
Val Val Phe Ala Arg Arg Gly Cys Cys Leu Gly His Val Ala Lys Arg	
65 70 75 80	

ctg cta ctg aca cat ggc gtg aat cca gtg gtg gtt gag att ggt gaa 288
 Leu Leu Leu Thr His Gly Val Asn Pro Val Val Val Glu Ile Gly Glu
 85 90 95

gaa gac aac aac aac tac gac aat atc gta agt gat aaa gag aaa tta 336
 Glu Asp Asn Asn Asn Tyr Asp Asn Ile Val Ser Asp Lys Glu Lys Leu
 100 105 110

cct atg atg tac ata gga gga aag ttg ttt gga gga ttg gaa aat ctg 384
Pro Met Met Tyr Ile Gly Gly Lys Leu Phe Gly Gly Leu Glu Asn Leu
115 120 125

atg gct gct cat att aat ggt gat tta gtg cct act ctt aga caa gct 432
Met Ala Ala His Ile Asn Gly Asp Leu Val Pro Thr Leu Arg Gln Ala
130 135 140

ggg gct tta tgg ctt tgattttaa tcctcctaaa tctagttgcc ttcttattta 487
Gly Ala Leu Trp Leu
145

tttctatccc ttttatcatt atttgttaat atatgtgaac ttgt 531

```
<210> 36
<211> 149
<212> PRT
<213> Arabidopsis thaliana
```

<400> 36

Gln Lys Ala Ile Arg Pro Tyr Glu Ser Pro Trp Thr Lys Thr Val Pro
 1 5 10 15
 Gly Asn Ser Ile Phe Leu Leu Lys Asn Glu Asp Lys Pro Ser Ser Ser
 20 25 30
 Ser Ser Ser Leu Ser Trp Leu Thr Ser Gly Ser Pro Lys Pro Thr Ser
 35 40 45
 Ile Ser Asn Lys Arg Ser Ser Asn Leu Val Val Met Glu Asn Ala Val
 50 55 60
 Val Val Phe Ala Arg Arg Gly Cys Cys Leu Gly His Val Ala Lys Arg
 65 70 75 80
 Leu Leu Leu Thr His Gly Val Asn Pro Val Val Val Glu Ile Gly Glu
 85 90 95
 Glu Asp Asn Asn Asn Tyr Asp Asn Ile Val Ser Asp Lys Glu Lys Leu
 100 105 110
 Pro Met Met Tyr Ile Gly Gly Lys Leu Phe Gly Gly Leu Glu Asn Leu
 115 120 125
 Met Ala Ala His Ile Asn Gly Asp Leu Val Pro Thr Leu Arg Gln Ala
 130 135 140
 Gly Ala Leu Trp Leu
 145

<210> 37
 <211> 698
 <212> ADN
 <213> Arabidopsis thaliana

<220>
 <221> CDS
 <222> (1)..(378)

<400> 37
 aga gaa tca gct ttc aga gaa aaa agt ata cct aca gag aga gtt atg 48
 Arg Glu Ser Ala Phe Arg Glu Lys Ser Ile Pro Thr Glu Arg Val Met
 1 5 10 15
 gcg gag agt ggt gga cga agg atc gga gtg gcg gtg gat ttc tcg gac 96
 Ala Glu Ser Gly Gly Arg Arg Ile Gly Val Ala Val Asp Phe Ser Asp
 20 25 30
 tgc agt aag aat gct ctg agc tgg gcg atc gat aac gtg gtt cgc gac 144
 Cys Ser Lys Asn Ala Leu Ser Trp Ala Ile Asp Asn Val Val Arg Asp
 35 40 45
 gga gat cat ctg atc cta atc act att gct cac gat atg aat tac gag 192
 Gly Asp His Leu Ile Leu Ile Thr Ile Ala His Asp Met Asn Tyr Glu
 50 55 60
 gaa ggc gag atg cag ctc tgg gag acc gtt gga tca cct ttt att cct 240
 Glu Gly Glu Met Gln Leu Trp Glu Thr Val Gly Ser Pro Phe Ile Pro
 65 70 75 80

atg agt gaa ttc tct gac gct gct gtg atg aaa aag tat gca ttg aag	288
Met Ser Glu Phe Ser Asp Ala Ala Val Met Lys Lys Tyr Ala Leu Lys	
85	90
	95
cca gat gct gaa acc ctt gac att gtc aat act gcc gct agg aag aaa	336
Pro Asp Ala Glu Thr Leu Asp Ile Val Asn Thr Ala Ala Arg Lys Lys	
100	105
	110
acg att aca gta gtg atg aag ata tat tgg ggg aga tcc tcg	378
Thr Ile Thr Val Val Met Lys Ile Tyr Trp Gly Arg Ser Ser	
115	120
	125
tgagaagatt tgtgcagcag ctgaacagat tcctctctca agccttgtga tggtaacag	438
aggccttgggt ggtcttaaga ggtatgattat ggaaagtgtt agcaaccatg ttgtcaacaa	498
cgttgcatgc cctgtgaccg ttgtcaaggc tcacatctga gtttgcctgg agaactctaa	558
ataaacaccac cgtgtattct ataatttgtt ttttgcgtt cgaaatttct attgttaact	618
gttgtgtgac tgggttttgc ttcatctgtt tggataaaca acactccacc ttctaataaaa	678
tacagactct tttgattaac	698

<210> 38
<211> 126
<212> PRT
<213> *Arabidopsis thaliana*

<400> 38	
Arg Glu Ser Ala Phe Arg Glu Lys Ser Ile Pro Thr Glu Arg Val Met	
1	5
	10
	15
Ala Glu Ser Gly Gly Arg Arg Ile Gly Val Ala Val Asp Phe Ser Asp	
20	25
	30
Cys Ser Lys Asn Ala Leu Ser Trp Ala Ile Asp Asn Val Val Arg Asp	
35	40
	45
Gly Asp His Leu Ile Leu Ile Thr Ile Ala His Asp Met Asn Tyr Glu	
50	55
	60
Glu Gly Glu Met Gln Leu Trp Glu Thr Val Gly Ser Pro Phe Ile Pro	
65	70
	75
	80
Met Ser Glu Phe Ser Asp Ala Ala Val Met Lys Lys Tyr Ala Leu Lys	
85	90
	95
Pro Asp Ala Glu Thr Leu Asp Ile Val Asn Thr Ala Ala Arg Lys Lys	
100	105
	110
Thr Ile Thr Val Val Met Lys Ile Tyr Trp Gly Arg Ser Ser	
115	120
	125

<210> 39
<211> 1529
<212> ADN

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (41)..(1252)

<400> 39

gaatcggcg	ccgcggatcc	aacctcgccg	gcgacggaaa	atg	gct	ttc	gcg	tct	55
				Met	Ala	Phe	Ala	Ser	
				1				5	

cct	tcg	ctc	cgt	ctt	cct	cag	tct	ccg	tta	ggt	cga	ata	aca	tct	103
Pro	Ser	Leu	Arg	Leu	Leu	Pro	Gln	Ser	Pro	Leu	Gly	Arg	Ile	Thr	Ser
10					15								20		

aaa	cta	cac	cgt	ttc	agt	act	gcf	aaa	ctc	tca	ctc	ttc	tcc	ttt	cac	151
Lys	Leu	His	Arg	Phe	Ser	Thr	Ala	Lys	Leu	Ser	Leu	Phe	Ser	Phe	His	
25					30								35			

cat	gat	tct	tca	tct	tct	ttg	gct	gtc	aga	act	ccg	gta	tct	tcc	ttc	199
His	Asp	Ser	Ser	Ser	Ser	Leu	Ala	Val	Arg	Thr	Pro	Val	Ser	Ser	Phe	
40					45								50			

gtc	gtc	ggc	gct	atc	tcc	gga	aaa	tcc	tct	acc	gga	acg	aaa	tcg	aaa	247
Val	Val	Gly	Ala	Ile	Ser	Gly	Lys	Ser	Ser	Thr	Gly	Thr	Lys	Ser	Lys	
55					60								65			

tcc	aaa	acc	aaa	cgg	aaa	cca	cct	cct	ccg	cca	gtc	act	act	gtg	295	
Ser	Lys	Thr	Lys	Arg	Lys	Pro	Val	Thr	Val							
70					75									80		85

gct	gaa	gag	caa	cac	att	gct	gag	tca	gag	aca	gtc	aac	att	gcc	gaa	343
Ala	Glu	Glu	Gln	His	Ile	Ala	Glu	Ser	Glu	Thr	Val	Asn	Ile	Ala	Glu	
90					95								100			

gat	gtc	act	caa	ttg	att	gga	agc	aca	cca	atg	gtc	tat	ctc	aat	aga	391
Asp	Val	Thr	Gln	Leu	Ile	Gly	Ser	Thr	Pro	Met	Val	Tyr	Leu	Asn	Arg	
105					110								115			

gtc	aca	gat	ggt	ttg	gct	gac	att	gct	gcc	aag	ctc	gaa	tca	atg	439
Val	Thr	Asp	Gly	Cys	Leu	Ala	Asp	Ile	Ala	Ala	Lys	Leu	Glu	Ser	Met
120					125								130		

gag	ccc	tgt	aga	agc	gtc	aaa	gat	agg	atc	ggg	att	gca	ttt	gtg	gtc	487
Glu	Pro	Cys	Arg	Ser	Val	Lys	Asp	Arg	Ile	Gly	Leu	Ser	Met	Ile	Asn	
135					140								145			

gag	gca	gaa	aac	agc	gga	gct	ata	act	ccg	agg	aag	act	gtt	tta	gtt	535
Glu	Ala	Glu	Asn	Ser	Gly	Ala	Ile	Thr	Pro	Arg	Lys	Thr	Val	Leu	Val	
150					155								160		165	

gaa	cca	aca	acc	gga	aac	act	ggc	ctt	ggg	att	gca	ttt	gtg	gtc	gca	583
Glu	Pro	Thr	Thr	Gly	Asn	Thr	Gly	Leu	Gly	Ile	Ala	Phe	Val	Ala	Ala	
170					175								180			

gct	aaa	ggc	tac	aag	ctt	ata	gtg	aca	atg	cca	gct	tct	atc	aat	att	631
Ala	Lys	Gly	Tyr	Lys	Leu	Ile	Val	Thr	Met	Pro	Ala	Ser	Ile	Asn	Ile	
185					190								195			

gaa	agg	agg	atg	ctt	tta	cgt	gca	cta	gga	gca	gag	att	gtg	cta	acg	679
Glu	Arg	Arg	Met	Leu	Leu	Arg	Ala	Leu	Gly	Ala	Glu	Ile	Val	Leu	Thr	

200	205	210	
aat cca gag aag ggt ctc aaa gga gca gtg gat aaa gcc aaa gag att Asn Pro Glu Lys Gly Leu Lys Gly Ala Val Asp Lys Ala Lys Glu Ile 215	220	225	727
gtt ctc aag aca aag aac gca tat atg ttt cag caa ttc gac aat aca Val Leu Lys Thr Lys Asn Ala Tyr Met Phe Gln Gln Phe Asp Asn Thr 230	235	240	775
gca aat aca aag atc cac ttt gaa act aca gga cca gaa atc tgg gaa Ala Asn Thr Lys Ile His Phe Glu Thr Thr Gly Pro Glu Ile Trp Glu 250		255	823
260			
gat aca atg ggt aat gtc gat ata ttc gtt gcc gga ata gga act ggt Asp Thr Met Gly Asn Val Asp Ile Phe Val Ala Gly Ile Gly Thr Gly 265	270	275	871
ggt act gta act ggt act gga ggt ttc ttg aaa atg atg aac aag gat Gly Thr Val Thr Gly Thr Gly Phe Leu Lys Met Met Asn Lys Asp 280	285	290	919
att aag gta gtt ggc gtt gaa cca tca gaa aga agt gtg att tct gga Ile Lys Val Val Gly Val Glu Pro Ser Glu Arg Ser Val Ile Ser Gly 295	300	305	967
310			
gac aac cct ggt tac tta ccg gga atc ttg gat gtt aaa tta ctt gat Asp Asn Pro Gly Tyr Leu Pro Gly Ile Leu Asp Val Lys Leu Leu Asp 315	320	325	1015
330			
gaa gtg ttt aag gtt agc aac ggg gaa gcg att gag atg gcg agg aga Glu Val Phe Lys Val Ser Asn Gly Glu Ala Ile Glu Met Ala Arg Arg 335	340		1063
345			
cta gct tta gag gaa gga ttg ctg gtt ggg att tca tct gga gct gct Leu Ala Leu Glu Glu Gly Leu Leu Val Gly Ile Ser Ser Gly Ala Ala 350	355		1111
360			
gca gta gca gca gtc agc ttg gct aaa aga gca gag aat gcc ggt aaa Ala Val Ala Ala Val Ser Leu Ala Lys Arg Ala Glu Asn Ala Gly Lys 365	370		1159
375			
cta atc acg gtt ctg ttt cca agc cat ggc gag cgg tat atc aca acg Leu Ile Thr Val Leu Phe Pro Ser His Gly Glu Arg Tyr Ile Thr Thr 380	385		1207
390			
gct ctg ttt agt tcc atc aac aga gaa gtc caa gag atg aga tat Ala Leu Phe Ser Ser Ile Asn Arg Glu Val Gln Glu Met Arg Tyr 395	400		1252
400			
tagtagcagc cattagaaaa gcccccaaag tttggtcctt ttggagagtg taaaacaacaa atctctttgc aatacagaaa agagaggttt cagaagactg tgaggttaga gctcacacga gaactgagag ataaaacatgt ctcgagccca accagttta ttcaaagatt tgtgaatgt tagaagatca tagaccattgt tgcatatttc ttcttcttct cactcatatg tcagggaaat atgctgaaca aataaaaagtt tgatcatcta aaccctg			1312 1372 1432 1492 1529

<210> 40
<211> 404
<212> PRT
<213> Arabidopsis thaliana

<400> 40
Met Ala Phe Ala Ser Pro Ser Leu Arg Leu Leu Pro Gln Ser Pro Leu
1 5 10 15
Gly Arg Ile Thr Ser Lys Leu His Arg Phe Ser Thr Ala Lys Leu Ser
20 25 30
Leu Phe Ser Phe His His Asp Ser Ser Ser Ser Leu Ala Val Arg Thr
35 40 45
Pro Val Ser Ser Phe Val Val Gly Ala Ile Ser Gly Lys Ser Ser Thr
50 55 60
Gly Thr Lys Ser Lys Ser Lys Thr Lys Arg Lys Pro Pro Pro Pro
65 70 75 80
Pro Val Thr Thr Val Ala Glu Glu Gln His Ile Ala Glu Ser Glu Thr
85 90 95
Val Asn Ile Ala Glu Asp Val Thr Gln Leu Ile Gly Ser Thr Pro Met
100 105 110
Val Tyr Leu Asn Arg Val Thr Asp Gly Cys Leu Ala Asp Ile Ala Ala
115 120 125
Lys Leu Glu Ser Met Glu Pro Cys Arg Ser Val Lys Asp Arg Ile Gly
130 135 140
Leu Ser Met Ile Asn Glu Ala Glu Asn Ser Gly Ala Ile Thr Pro Arg
145 150 155 160
Lys Thr Val Leu Val Glu Pro Thr Thr Gly Asn Thr Gly Leu Gly Ile
165 170 175
Ala Phe Val Ala Ala Ala Lys Gly Tyr Lys Leu Ile Val Thr Met Pro
180 185 190
Ala Ser Ile Asn Ile Glu Arg Arg Met Leu Leu Arg Ala Leu Gly Ala
195 200 205
Glu Ile Val Leu Thr Asn Pro Glu Lys Gly Leu Lys Gly Ala Val Asp
210 215 220
Lys Ala Lys Glu Ile Val Leu Lys Thr Lys Asn Ala Tyr Met Phe Gln
225 230 235 240
Gln Phe Asp Asn Thr Ala Asn Thr Lys Ile His Phe Glu Thr Thr Gly
245 250 255
Pro Glu Ile Trp Glu Asp Thr Met Gly Asn Val Asp Ile Phe Val Ala
260 265 270
Gly Ile Gly Thr Gly Gly Thr Val Thr Gly Thr Gly Gly Phe Leu Lys
275 280 285
Met Met Asn Lvs Asp Ile Lvs Val Val Glv Val Glu Pro Ser Glu Ara

290	295	300
-----	-----	-----

Ser Val Ile Ser Gly Asp Asn Pro Gly Tyr Leu Pro Gly Ile Leu Asp
 305 310 315 320

Val Lys Leu Leu Asp Glu Val Phe Lys Val Ser Asn Gly Glu Ala Ile
 325 330 335

Glu Met Ala Arg Arg Leu Ala Leu Glu Glu Gly Leu Leu Val Gly Ile
 340 345 350

Ser Ser Gly Ala Ala Ala Val Ala Ala Val Ser Leu Ala Lys Arg Ala
 355 360 365

Glu Asn Ala Gly Lys Leu Ile Thr Val Leu Phe Pro Ser His Gly Glu
 370 375 380

Arg Tyr Ile Thr Thr Ala Leu Phe Ser Ser Ile Asn Arg Glu Val Gln
 385 390 395 400

Glu Met Arg Tyr

<210> 41

<211> 540

<212> ADN

<213> Nicotiana benthamiana

<220>

<221> CDS

<222> (1)...(540)

<400> 41

ctt gct cat tct tgg ttt gcc ttg tct ctc tca cat aca atc aat cac	48
Leu Ala His Ser Trp Phe Ala Leu Ser Leu Ser His Thr Ile Asn His	
1 5 10 15	

agc ttc aca cta caa aaa gca att gag aaa ctg ccg att tca agt cca	96
Ser Phe Thr Leu Gln Lys Ala Ile Glu Lys Leu Pro Ile Ser Ser Pro	
20 25 30	

ggc ctt ttc agg ggt tct ttt ggt ttg gaa cct ata cag aga ata tgc	144
Gly Leu Phe Arg Gly Ser Phe Gly Leu Glu Pro Ile Gln Arg Ile Cys	
35 40 45	

att gct cct aag aga tta tct ttt tct gag agt aca att gtt ccg aaa	192
Ile Ala Pro Lys Arg Leu Ser Phe Ser Glu Ser Thr Ile Val Pro Lys	
50 55 60	

gca tcc tca gct gca gct gtt gag gat gga agt tcc caa gag act gca	240
Ala Ser Ser Ala Ala Val Glu Asp Gly Ser Ser Gln Glu Thr Ala	
65 70 75 80	

gtc ccg atg cca aaa gtc ata ata gat ctg gat tcg aac cct gat gca	288
Val Pro Met Pro Lys Val Ile Ile Asp Leu Asp Ser Asn Pro Asp Ala	
85 90 95	

act gta gta gag gtt acc ttt ggt gat cgc ctc ggg gct ctt gtt gac	336
Thr Val Val Glu Val Thr Phe Glv Asp Ara Leu Glv Ala Leu Val Asp	

100	105	110	
acg atg agt gca tta aaa aat ctg gga ctg aat gtt gtc aaa gct aat			384
Thr Met Ser Ala Leu Lys Asn Leu Gly Leu Asn Val Val Lys Ala Asn			
115	120	125	
gtc tgt cta gat tca tca ggg aaa cat act aca tta tgc atc aca aat			432
Val Cys Leu Asp Ser Ser Gly Lys His Thr Thr Leu Cys Ile Thr Asn			
130	135	140	
gct tct act ggt agg aag gtc gat gat cca gcg cag cta gaa gca att			480
Ala Ser Thr Gly Arg Lys Val Asp Asp Pro Ala Gln Leu Glu Ala Ile			
145	150	155	160
cgt ttg aca att atc aac aat atg att gag ttc cat ccg gaa tct agc			528
Arg Leu Thr Ile Ile Asn Asn Met Ile Glu Phe His Pro Glu Ser Ser			
165	170	175	
gcc cag tta gct			540
Ala Gln Leu Ala			
180			

```

<210> 42
<211> 180
<212> PRT
<213> Nicotiana benthamiana

<400> 42
Leu Ala His Ser Trp Phe Ala Leu Ser Leu Ser His Thr Ile Asn His
    1           5           10          15
                                         20          25          30
Ser Phe Thr Leu Gln Lys Ala Ile Glu Lys Leu Pro Ile Ser Ser Pro
                                         20          25          30
                                         35          40          45
Gly Leu Phe Arg Gly Ser Phe Gly Leu Glu Pro Ile Gln Arg Ile Cys
                                         35          40          45
Ile Ala Pro Lys Arg Leu Ser Phe Ser Glu Ser Thr Ile Val Pro Lys
                                         50          55          60
Ala Ser Ser Ala Ala Ala Val Glu Asp Gly Ser Ser Gln Glu Thr Ala
                                         65          70          75          80
Val Pro Met Pro Lys Val Ile Ile Asp Leu Asp Ser Asn Pro Asp Ala
                                         85          90          95
Thr Val Val Glu Val Thr Phe Gly Asp Arg Leu Gly Ala Leu Val Asp
                                         100         105         110
Thr Met Ser Ala Leu Lys Asn Leu Gly Leu Asn Val Val Lys Ala Asn
                                         115         120         125
Val Cys Leu Asp Ser Ser Gly Lys His Thr Thr Leu Cys Ile Thr Asn
                                         130         135         140
Ala Ser Thr Gly Arg Lys Val Asp Asp Pro Ala Gln Leu Glu Ala Ile
                                         145         150         155         160

```

Arg Leu Thr Ile Ile Asn Asn Met Ile Glu Phe His Pro Glu Ser Ser
165 170 175

Ala Gln Leu Ala
180

<210> 43
<211> 424
<212> ADN
<213> Nicotiana benthamiana

<220>
<221> CDS
<222> (1)..(294)

```

<400> 43
tct cta cca agt tct tcc tca ttc ctt ggc aac tta gcc acc acc ata 48
Ser Leu Pro Ser Ser Ser Phe Leu Gly Asn Leu Ala Thr Thr Ile
   1          5           10          15

```

ttc aac cca cct ccg gcg acc act cg²⁰ ata aag att gtg atg gtt aaa 96
 Phe Asn Pro Pro Pro Ala Thr Thr Arg Ile Lys Ile Val Met Val Lys
²⁵ 30

gcc tct aag atc gag aag att gag ata aac aga aag gaa gag aat ggc 144
Ala Ser Lys Ile Glu Lys Ile Glu Ile Asn Arg Lys Glu Glu Asn Gly
35 40 45

```

agt ggc agg aga gaa ttg gct tct gcg ttg cta gct tct gct gct gct tgc 192
Ser Gly Arg Arg Glu Leu Ala Ser Ala Leu Leu Ala Ser Ala Ala Cys
      50           55           60

```

tgc aag ttc att tgc aag aat tgc cat gac aga gga gcc gaa gcg cgg	240
Cys Lys Phe Ile Cys Lys Asn Cys His Asp Arg Gly Ala Glu Ala Arg	
65 70 75 80	

tac acc aga ggc aaa gaa gaa gta tgc ccc aat ttg tgt cac aat gcc 288
 Tyr Thr Arg Gly Lys Glu Glu Val Cys Pro Asn Leu Cys His Asn Ala
 85 90 95

cac agc tagaatatgc cacaaggtaag aattttcatg ctatgtatgt a tgcagaactt 344
His Ser

agcagtacaa ataataataa gagtgactat ttcaactattt cttcaatcat ctaaatgtga 404

aatttccaaat tccaagggttc 424

<210> 44
<211> 98
<212> PRT
<213> Nicotiana benthamiana

<400> 44
Ser Leu Pro Ser Ser Ser Ser Phe Leu Gly Asn Leu Ala Thr Thr Ile

The Non-Bus-Run-Run-Run-Run-The-The-Non-It-Is-Is-The-Well-Me-Well-Low

2806095

65

20

25

30

Ala Ser Lys Ile Glu Lys Ile Glu Ile Asn Arg Lys Glu Glu Asn Gly
35 40 45

Ser Gly Arg Arg Glu Leu Ala Ser Ala Leu Leu Ala Ser Ala Ala Cys
50 55 60

Cys Lys Phe Ile Cys Lys Asn Cys His Asp Arg Gly Ala Glu Ala Arg
65 70 75 80

Tyr Thr Arg Gly Lys Glu Glu Val Cys Pro Asn Leu Cys His Asn Ala
85 90 95

His Ser

RAPPORT DE RECHERCHE
PRÉLIMINAIRE PARTIEL

établi sur la base des dernières revendications
déposées avant le commencement de la recherche
voir FEUILLE(S) SUPPLÉMENTAIRE(S)

2806095

N° d'enregistrement
nationalFA 590297
FR 0003140

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS		Revendications concernées	Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes		
X	WO 98 56811 A (QI XIE ;CONSEJO SUPERIOR INVESTIGACION (ES); GUTIERREZ ARMENTA CRI) 17 décembre 1998 (1998-12-17) * le document en entier * ---	1,6-16	C12N15/29 C12N15/63 C12N5/04 C12N5/10 A01H5/00 C07K14/415 C07K14/39
X	WO 99 63054 A (BISARO DAVID ;OHIO STATE RES FOUND (US)) 9 décembre 1999 (1999-12-09) * page 1 - page 3; exemple 20; tableau 1 * ---	1,6-10	
X	KUNIK TALYA ET AL: "Characterization of a tomato karyopherin alpha that interacts with the tomato yellow leaf curl virus (TYLCV) capsid protein." JOURNAL OF EXPERIMENTAL BOTANY, vol. 50, no. 334, mai 1999 (1999-05), pages 731-732, XP000978429 ISSN: 0022-0957 * le document en entier * ---	1,6-10	
X	WO 96 08573 A (CENTRE NAT RECH SCIENT ;GRONENBORN BRUNO (FR)) 21 mars 1996 (1996-03-21) * page 2, ligne 14 - page 3, ligne 38 * * page 24, ligne 17 - ligne 31 * * page 42, ligne 17 - page 43, ligne 10 * ---	1,6,17	DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7) C07K C12N
X	DATABASE EMPLN 'en ligne! EMBL, Heidelberg, Germany; AC AB005240, 18 juillet 1997 (1997-07-18) NAKAMURA Y: "Structural analysis of Arabidopsis thaliana chromosome 5" XP002156906 voir nucléotides 22159 à 23160 * abrégé * ---	1-3,6-10 -/-	
3	Date d'achèvement de la recherche 11 janvier 2001	Examinateur Oderwald, H	
<p align="center">CATÉGORIE DES DOCUMENTS CITES</p> <p align="center">EPO FORM 1503 12.99 (P44CS5)</p> <p>X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : arrrière-plan technologique O : divulgation non écrite P : document intercalaire</p> <p>T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant</p>			

**RAPPORT DE RECHERCHE
PRÉLIMINAIRE PARTIEL**

établi sur la base des dernières revendications déposées avant le commencement de la recherche
voir FEUILLE(S) SUPPLÉMENTAIRE(S)

2806095

N° d'enregistrement national

FA 590297
FR 0003140

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS		Revendications concernées	Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes		
X	COLASANTI ET AL: "The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize" CELL, US, CELL PRESS, CAMBRIDGE, MA, vol. 93, no. 4, 15 mai 1998 (1998-05-15), pages 593-603, XP002116412 ISSN: 0092-8674 * le document en entier * & DATABASE EMPLN 'en ligne' EMBL Heidelberg, Germany; AC/ID AF058757, 2 juin 1998 (1998-06-02) * abrégé *	1-3, 6-11, 15-17	
X	DATABASE EMPLN 'en ligne' EMBL Heidelberg, Germany; AC AC004136, 16 février 1998 (1998-02-16) LIN X ET AL.: "Sequence and analysis of chromosome 2 of the plant <i>Arabidopsis thaliana</i> " XP002156980 voir nucléotides 45450-45850 * abrégé *	1,4-10	DOMAINES TECHNIQUES RECHERCHÉS (Int.Cl.7)
X	DATABASE TREMBL 'en ligne' EMBL Heidelberg, Germany; AC 064720, 1 août 1998 (1998-08-01) ROUNSLEY S D ET EL.: "Putative TBP-binding protein" XP002156981 * abrégé *	17	
		-/-	
3	Date d'achèvement de la recherche	Examinateur	
	11 janvier 2001	Oderwald, H	
CATÉGORIE DES DOCUMENTS CITES		T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D : cité dans la demande L : cité pour d'autres raisons & : membre de la même famille, document correspondant	
X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : arrière-plan technologique O : divulgation non-écrite P : document intercalaire			

RAPPORT DE RECHERCHE PRÉLIMINAIRE PARTIEL

établi sur la base des dernières revendications déposées avant le commencement de la recherche

voir FEUILLE(S) SUPPLÉMENTAIRE(S)

2806095

N° d'enregistrement national

FA 590297
FR 0003140

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS		Revendications concernées	Classement attribué à l'invention par l'INPI		
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes				
X	DATABASE EMPLN 'en ligne! EMBL Heidelberg, Germany; AC AF087413, 23 septembre 1998 (1998-09-23) KWOK S F ET AL.: "Arabidopsis homologs of a c-Jun coactivator are present in both monomeric form and in the COP9 complex..." XP002156982 * abrégé * ---	1,4-10, 17			
X	WO 99 24574 A (DU PONT ; ALLEN STEPHEN M (US); HITZ WILLIAM D (US); MIAO GUO HUA () 20 mai 1999 (1999-05-20) voir SEQ ID NO: 28 (p. 21 à 22) * abrégé; revendications 10-20; figure 3; exemples 5-8; tableaux 1,8 * * page 5 - page 14 * ---	1,4-17			
X	DATABASE EMPLN 'en ligne! EMBL Heidelberg, Germany; AC AC013482, 15 novembre 1999 (1999-11-15) SHINN P ET AL.: "Genomic sequence for Arabidopsis thaliana BAC T26F17 from chromosome I" XP002156983 voir nucléotides 50770 à 51660 * abrégé *	1,4-10	DOMAINES TECHNIQUES RECHERCHÉS (Int.Cl.7)		
X	DATABASE TREMBL 'en ligne! EMBL Heidelberg, Germany; AC 082174, 1 novembre 1998 (1998-11-01) ROUNSLEY S D ET AL.: "Arabidopsis thaliana chromosome II BAC T4C15 genomic sequence" XP002156984 * abrégé *	17			
Date d'achèvement de la recherche		Examinateur			
11 janvier 2001		Oderwald, H			
CATÉGORIE DES DOCUMENTS CITES					
X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : arrière-plan technologique O : divulcation non écrite P : document intercalaire					
T : théorie ou principe à la base de l'invention E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure. D : cité dans la demande L : cité pour d'autres raisons					
& : membre de la même famille, document correspondant					

**ABSENCE D'UNITÉ D'INVENTION
FEUILLE SUPPLÉMENTAIRE B**

Numéro de la demande

FA 590297
FR 0003140

La division de la recherche estime que la présente demande de brevet ne satisfait pas à l'exigence relative à l'unité d'invention et concerne plusieurs inventions ou pluralités d'inventions, à savoir :

1. revendications: 1-17 (toutes partiellement)

Une séquence polynucléotidique de plante ou de levure codant pour une protéine qui interagit avec l'un au moins des six produits du génome d'un géminivirus nécessaire à l'infection d'une plante, notamment C2 (SEQ IDs 3 à 12). Vecteur, hôte, plante ou cellule de plante ou protéine constituant ou contenant ces séquences.

2. revendications: 1-17 (toutes partiellement)

comme pour l'invention 1 mais concernant C3 (SEQ IDs 13 à 22).

3. revendications: 1-17 (toutes partiellement)

comme pour l'invention 1 mais concernant C4 (SEQ IDs 23 à 26).

4. revendications: 1-3, 6-17 (toutes partiellement)

comme pour l'invention 1 mais concernant CP (SEQ IDs 27 à 30).

5. revendications: 1-17 (toutes partiellement)

comme pour l'invention 1 mais concernant V2 (SEQ IDs 31 à 44).

6. revendications: 1, 4-17 (toutes partiellement)

comme pour l'invention 1 mais concernant Rep (SEQ IDs 1 et 2).

La première invention a été recherchée.

***** ----- *****

Des protéines qui interagissent avec un des produits du génome d'un géminivirus nécessaire à l'infection d'une plante ont déjà été décrites dans l'art antérieur. Voir par exemple: W098/56811, W099/63054, J.Exp.Bot. 50:731-732(1999), W096/08573 et W099/24574.

Au vu de l'art antérieur, le problème que se propose de résoudre la demande peut être défini comme la mise à disposition des protéines alternatifs qui interagissent avec une protéine d'un géminivirus nécessaire à l'infection d'une plante.

Les solutions proposées dans la demande sont:

- 1.) des protéines qui interagissent avec la protéine C2

**ABSENCE D'UNITÉ D'INVENTION
FEUILLE SUPPLÉMENTAIRE B**

Numéro de la demande

FA 590297
FR 0003140

La division de la recherche estime que la présente demande de brevet ne satisfait pas à l'exigence relative à l'unité d'invention et concerne plusieurs inventions ou pluralités d'inventions, à savoir :

- 2.) des protéines qui interagissent avec la protéine C3
- 3.) des protéines qui interagissent avec la protéine C4
- 4.) des protéines qui interagissent avec la protéine CP
- 5.) des protéines qui interagissent avec la protéine V2
- 6.) des protéines qui interagissent avec la protéine Rep

Du fait que les protéines qui interagissent avec un des produits du génome d'un gémivirus nécessaire à l'infection d'une plante étaient déjà connues de l'art antérieur, du fait de la différence essentielle de structure primaire des protéines et de leurs acides nucléiques correspondants, et du fait qu'aucune autre des caractéristiques techniques proposées dans la présente demande ne peuvent être considérées comme les caractéristiques techniques particulières reliant les différentes inventions, il n'y pas de concept inventif commun entre les différentes inventions revendiquées, et une objection de non-unité d'inventions a posteriori doit être soulevée.

New polynucleotides for producing transgenic plants resistant to geminivirus infection comprising polynucleotides encoding proteins which interact with at least one of the products of the geminivirus genome

Patent Number: FR2806095

Publication date: 2001-09-14

Inventor(s): COLINET DOMINIQUE;; DONOSO CUENCA IMMACULDA;; GREVESSE CATHY;; BEJARANO EDUARDO R;; CASTILLO GARRIGA ARACELI;; HERICOURT FRANCOIS;; INIESTA JOSE REINA

Applicant(s): GENTECH (FR)

Requested Patent: FR2806095

Application Number: FR20000003140 20000310

Priority Number (s): FR20000003140 20000310

IPC Classification: C12N15/29; C12N15/63; C12N5/04; C12N5/10; A01H5/00; C07K14/415; C07K14/39

EC Classification: C12N15/82C8B6C, C07K14/39, C07K14/415

Equivalents: AU3937101, WO0168863

Abstract

A polynucleotide (N1) purified from a plant or yeast, encoding a protein (P1) which interacts with at least one of the six products of the geminivirus genome necessary for infection of a plant by the virus, is new. Independent claims are also included for the following: (1) a recombinant nucleic acid molecule comprising (N1); (2) a cloning vector comprising (N1); (3) a host cell transformed with (N1) or the vector; (4) a genetically modified plant resistant to geminivirus having stably in its genome a modified nucleic acid comprising (N1), and is: (i) modified to express a protein which blocks expression proteins encoded by the geminivirus genome; or (ii) modified to express a modified (P1) which compared to the native modifies or removes interactions with the viral proteins; (5) preparing a transgenic plant resistant to geminivirus, comprising transforming a plant cell with the above nucleic acid and regenerating a transformed plant; (6) a plant cell whose genome stably incorporates (N1); and (7) a protein susceptible to interaction with at least one of the geminivirus proteins, comprising one of the amino acid sequences fully defined in the specification or a fragment having a substantially similar sequence.

Data supplied from the esp@cenet database - I2