Plane-wave DFT: bottlenecks and algorithms

Antoine Levitt

January 30, 2024

Summary

PWDFT: equations and discretization

2 Implementation of PWDFT

Kohn-Sham density functional theory for a molecule

For the ground state of 2N spin-paired electrons in a potential V_{nucl} :

$$\begin{cases} -\frac{1}{2}\Delta\phi_n + V_{\text{nucl}}\phi_n + V_{\text{HXC}}[\rho]\phi_n = \lambda_n\phi_n, & \langle \phi_n, \phi_m \rangle_{L^2(\mathbb{R}^3)} = \delta_{mn} \\ \rho(x) = 2\sum_{n=1}^N |\phi_n(x)|^2 \\ V_{\text{HXC}}[\rho] = \frac{1}{|x|} * \rho + V_{\text{XC}}[\rho] \end{cases}$$

- $V_{\rm XC}$ is an approximation of the true exchange-correlation potential; e.g. LDA: $(V_{\rm XC}[\rho])(x) = v_{\rm xc}(\rho(x))$
- N nonlinear coupled PDEs in dimension 3
- Aufbau principle: $\{\lambda_n\}_{n=1,...,N}$ are the lowest eigenvalues of

$$H_{
ho} = -rac{1}{2}\Delta + V_{
m nucl} + V_{
m HXC}[
ho]$$

• Alternatively: minimize the energy $E(\phi)$ under $\langle \phi_n, \phi_m \rangle_{L^2(\mathbb{R}^3)} = \delta_{mn}$

From the KS equations to ABINIT

Roadmap:

- Truncate using a supercell (kpoints)
- Regularize the electron-nuclei Coulomb interaction with pseudopotentials
- Discretize in a plane-wave basis
- Set up the discrete equations as a fixed-point (SCF)
- Diagonalize the Hamiltonian iteratively
- Parallelize
- Do physics

The supercell method

Plot the EOS (energy-volume curve) of Silicon

- In theory, need to model whole crystal, with vacuum outside
- Surface effects not important: use a truncation method that preserves translational symmetry: the supercell

- Solve the problem in the supercell, with periodic boundary conditions
- The (self-consistent) supercell Hamiltonian is (lattice) translation-invariant: Bloch theorem

$$\psi_{nk}(r) = e^{ikr} u_{nk}(r), \quad u_{nk} \text{ cell-periodic}$$

Supercell pbc ⇒ discretization of the Brillouin zone

The supercell Kohn-Sham equations

Make a $N_x \times N_y \times N_z$ supercell \Rightarrow sample the Brillouin zone on a $N_x \times N_y \times N_z$ grid

$$\begin{cases} -(-i\nabla + k)^2 u_{nk} + V_{\text{nucl}} u_{nk} + V_{\text{HXC}}[\rho] u_{nk} = \varepsilon_{nk} u_{nk}, \\ \langle u_{nk}, u_{mk} \rangle_{\text{unit cell}} = \delta_{mn} \\ \rho(x) = 2 \sum_{nk} |u_{nk}(x)|^2 \\ V_{\text{HXC}}[\rho] = "\frac{1}{|x|} * \rho" + V_{\text{XC}}[\rho] \end{cases}$$

for the u_{nk} on the unit cell with pbc.

Solve the supercell problem without ever computing on it!

Then, take the limit $N \to \infty$

Discretization

$$-(-i\nabla + k)^2 u_{nk} + V_{\text{nucl}} u_{nk} + V_{\text{HXC}}[\rho] u_{nk} = \varepsilon_{nk} u_{nk}$$

 u_{nk} is periodic \Rightarrow Fourier discretization natural

$$u_{nk}(r) = \sum_{G} c_{G} e^{iGr}$$

- The smoother u is, the faster c_G decays
- Several problems:
 - Coulomb ⇒ cusp at nuclei positions
 - Core states strongly peaked
 - 3 Valence states strongly oscillatory

Pseudopotentials

• For an atom, replace -Z/|r| by

$$V_{ ext{loc}}(r) + \sum_{ij} D_{ij} |p_i
angle \langle p_j|$$

Choose V_{loc} , D_{ij} , p_i so that the valence eigenvalues and orbitals after some cutoff r_{cut} match the exact ones.

- For a molecule or solid, just add them and hope for the best.
- More sophisticated technologies: US, PAW

Plane-wave discretization

$$-(-i\nabla + k)^2 u_{nk} + V_{\text{pseudo}} u_{nk} + V_{\text{HXC}}[\rho] u_{nk} = \varepsilon_{nk} u_{nk}$$

 $u_{nk}(r) = \sum_G c_G e^{iGr}$

How to truncate G vectors? Kinetic energy cutoff

$$\frac{1}{2}|k+G|^2 \le E_{\mathrm{cut}}$$

Galerkin method: require that

$$\forall G \text{ s.t. } \frac{1}{2}|k+G|^2 \leq E_{\mathrm{cut}},$$
 $\langle e^{iGr}, H_k u_{nk} \rangle = \varepsilon_{nk} \langle e^{iGr}, u_{nk} \rangle$

Plane waves are orthogonal: yields an $N_{\mathrm{pw}} imes N_{\mathrm{pw}}$ algebraic system

$$\sum_{G'} H_{k,GG'} c_{G'} = \varepsilon_{nk} c_G$$

The Hamiltonian

$$H = \frac{1}{2}(-i\nabla + k)^2 + V_{\rm loc,HXC} + \sum_{mn} D_{mn} |p_m\rangle\langle p_n|$$

$$\begin{aligned} H_{GG'} &= \frac{1}{\Omega} \langle e^{iGr}, H_k e^{iG'r} \rangle \\ &= \frac{1}{2} |G + k|^2 \delta_{GG'} + \widehat{V}_{loc,HXC}(G' - G) + \sum_{mn} D_{mn} \widehat{p}_m(G) \overline{\widehat{p}_n(G')} \end{aligned}$$

Cell integrals turn into whole-space Fourier transforms of localized quantities:

$$\begin{split} V_{\mathrm{loc}}(r) &= \sum_{a \in \mathrm{ats}, R \in \mathrm{latt}} v_{\mathrm{loc,a}}(r-a-R) \\ &\int_{\mathrm{cell}} V_{\mathrm{loc}}(r) e^{-i(G'-G)r} dr = \sum_a e^{-i(G'-G)a} \int_{\mathbb{R}^3} v_{\mathrm{loc,a}}(r) e^{-i(G'-G)r} dr \end{split}$$

Forming the Hamiltonian

- ullet $V_{
 m loc}$ and $V_{
 m nonloc}$ are built from radial pseudopotential information (.upf, .pspnc...)
- The density

$$\rho(r) = 2\sum_{nk} |u_{nk}(r)|^2$$

is computed on a real-space grid

• The exchange-correlation potential

$$V_{\mathrm{XC}}(r) = V_{\mathrm{LDA}}(\rho(r))$$

also

(GGA: same principle. Hybrids: much more expensive!)

The Hartree potential

$$-\Delta V_{\rm H} = 4\pi\rho$$

is computed in Fourier space

All of these steps are not very costly

Self-consistent equations

$$H[\rho]u_{nk} = \varepsilon_{nk}u_{nk}$$
$$\rho(r) = 2\sum_{nk} |u_{nk}(r)|^2$$

- Nonlinear problem: get iterative solution
- Simple SCF:

$$H[\rho^{i}]u_{nk}^{i+1} = \varepsilon_{nk}^{i+1}u_{nk}^{i+1}$$
$$\rho^{i+1}(r) = 2\sum_{nk} |u_{nk}^{i+1}(r)|^{2}$$

- Usually does not converge!
- Simple mixing:

$$\rho^{i+1} = \rho^i + \alpha \left(2 \sum_{nk} |u_{nk}^{i+1}(r)|^2 - \rho^i \right)$$

converges for $\alpha > 0$ small enough, but slowly

• State of the art: advanced mixing (dependent on $\rho^{i-1}, \rho^{i-2}, \dots$) and preconditioning (strategic damping of some wave vectors)

Diagonalization of the Hamiltonian

The SCF loop

- Initialize system, precompute things
- Oiagonalize the Hamiltonian
- Update the Hamiltonian
- If not converged, go back to (2)
- Postprocess

$$Hu_{nk} = \varepsilon_{nk}u_{nk}$$

Characteristics:

- ullet Need to solve for $N_{
 m el} \ll N_{
 m pw}$ states $(N_{
 m el} pprox 1\%$ of $N_{
 m pw})$
- Matrix dense but efficient matvecs available
- Need smallest eigenvalues
- Scale separation: characteristic gap $\approx 1eV$, largest eigenvalue (spectral width) tens of Hartree \Rightarrow conditioning issues
- Usually have good initial guess

A prototype diagonalization algorithm: subspace iteration

Goal: partially diagonalize a given Hamiltonian H Input: set of vectors $X \in \mathbb{C}^{N_{\mathrm{pw}} \times N_{\mathrm{el}}}$

- Form the block matvec Y = HX
- ② Find an orthonormal basis Z of the range of (X, Y)
- **3** Solve for the $N_{\rm pw}$ lowest eigenvalues of $(Z^*HZ)c = \varepsilon c$
- **o** Obtain the new X = Zc

The Hamiltonian

$$\begin{split} H &= \frac{1}{2} (-i\nabla + k)^2 + V_{\text{loc,HXC}} + \sum_{mn} D_{mn} |p_m\rangle \langle p_n| \\ H_{GG'} &= \frac{1}{\Omega} \langle e^{iGr}, H_k e^{iG'r} \rangle \\ &= \frac{1}{2} |G + k|^2 \delta_{GG'} + \widehat{V}_{\text{loc,HXC}} (G' - G) + \sum_{mn} D_{mn} \widehat{p}_m (G) \overline{\widehat{p}_n (G')} \end{split}$$

Dense matrix, but very structured

- Minetic energy: diagonal
- 2 Local potential: convolution
- Nonlocal potential: separable (low-rank)

Convolutions and the FFT

To perform a matrix-vector product, need

$$\sum_{G'} \widehat{V}_{ ext{loc,HXC}}(G'-G) c_{G'}$$

• Discrete convolutions can almost be performed with an FFT:

Convolution theorem

If f and g are in \mathbb{C}^N and

$$(f*g)_i = \sum_{j=1}^N f_{i-j}g_j$$

with the implicit periodization convention that $f_{i+N} = f_i$, then

$$f * g = F^{-1}(F(f)F(g)).$$

- FFTs imply implicit periodization ⇒ zero-padding
- Reason why $N_{\rm pw} \neq N_{\rm FFT}$

How to apply the Hamiltonian

$$H_{GG'} = \frac{1}{2}|G + k|^2 \delta_{GG'} + \widehat{V}_{loc,HXC}(G' - G) + \sum_{mn} D_{mn}\widehat{p}_m(G)\overline{\widehat{p}_n(G')}$$

- Matrix-vector products can be performed by simple scaling, FFT and low-rank multiplication
- Operation cost for one matvec:

$$O(N_{\mathrm{pw}} + N_{\mathrm{FFT}} \log(N_{\mathrm{FFT}}) + N_{\mathrm{proj}} N_{\mathrm{pw}})$$

- Orders of magnitudes (taken from Silicon Ecut 30Ha):

 - $N_{\rm proj} \approx 5 N_{\rm at}$
 - $m 00~N_{pw} \approx 200N_{at}$
- Asymptotically, the nonlocal operator dominates (but only for very big systems)

Computational primitives

Need

- FFT
- Linear algebra (matrix-matrix multiply, cholesky, eigenvalue decomposition...)

Kernels

- Standard (FFTW, MKL...)
- Can use threads
- Exist on GPU

Parallelism

Dominant paradigm: MPI+X

- MPI to distribute data between different nodes
 - Communication by collective (MPI_SUM, MPI_ALL_TO_ALL, etc) or point-to-point (MPI_SEND, etc)
- X = threads, GPU, to exploit different cores inside a node. Data shared between cores.

a

MPI is developer's job. X is mostly the job of libraries: developer handles communication with device and maybe some computational kernels.

Parallelism in PWDFT

The main data structure: u_{Gnk} , distributed with MPI (npfft, npband, np_spkpt)

Operations

- Parallelism over k mostly trivial (small and infrequent reductions)
- The Hamiltonian requires no communication over n, but communication over G, parallelized somewhat (MPI FFTW, MPI matmul)
- Linear algebra operations need communication over both G and (especially) n, parallelized somewhat (Scalapack)

Parallelization limited: ideally, minimize communication between vectors

- In ABINIT, two main data distributions: split G and n for Hamiltonian application, and split only G for linear algebra
- Switch with MPI_ALL_TO_ALL

Summary of operations

Operation	Cost	G Parallelism	n parallelism
H: FFTs	$N_{ m el}N_{ m FFT}\log N_{ m FFT}$	Moderate	Perfect
H: nonlocal	$N_{\rm el}N_{ m pw}N_{ m proj}$	Good	Perfect
Orthogonalization	$N_{\rm el}^2 N_{\rm pw}$	Good	Bad
Rayleigh-Ritz	$N_{\rm el}^{3}$	No	Moderate
ALL_TO_ALL	$N_{ m el}N_{ m pw}$	Bad	Bad