Lecture 31: Homology

Math 660—Jim Fowler

Tuesday, August 3, 2010

Theorem

and all points a $\notin \Omega$.

A region Ω is simply connected if and only if $n(\gamma, a) = 0$ for all cycles γ in Ω

Homology

A cycle in a region Ω is homologous to zero inside Ω if $n(\gamma, a)$ for all $a \notin \Omega$.

Homology

A cycle in a region Ω is homologous to zero inside Ω if $n(\gamma, a)$ for all $a \notin \Omega$.

We write $[\gamma_1] = [0] \in H_1(\Omega)$.

Homology

A cycle in a region Ω is homologous to zero inside Ω if $n(\gamma, a)$ for all $a \notin \Omega$.

We write $[\gamma_1] = [0] \in H_1(\Omega)$.

We write $[\gamma_1] = [\gamma_2] \in H_1(\Omega)$ if $[\gamma_1 - \gamma_2] = [0]$.

Cauchy's theorem

Theorem

If f(z) is analytic in Ω , then

$$\int_{\gamma} f(z) dz = 0$$

for every cycle γ which is homologus to zero in Ω .

Cauchy's theorem

Theorem

If f(z) is analytic in Ω , then

$$\int_{\gamma} f(z) dz = 0$$

for every cycle γ which is homologus to zero in Ω .

In other words, if the property holds for 1/(z-a) with $a \notin \Omega$, then it holds for all analytic f.

Theorem

If f(z) is analytic in Ω , then

$$\int_{\gamma} f(z)\,dz=0$$

for every cycle γ which is homologus to zero in Ω .

Theorem

Suppose f(z) is analytic in Ω , a simply connected region.

Theorem

If f(z) is analytic in Ω , then

$$\int_{\gamma} f(z)\,dz=0$$

for every cycle γ which is homologus to zero in Ω .

Theorem

Suppose f(z) is analytic in Ω , a simply connected region. Then

$$\int_{\gamma} f(z) \, dz = 0$$

for every cycle γ in Ω .

By Cauchy's theorem, there exists a single-valued analytic function F(z) so that F'(z) = f(z).

By Cauchy's theorem, there exists a single-valued analytic function F(z) so that F'(z) = f(z). Then,

Corollary

If f(z) is analyic and nonzero in a simply connected region Ω , then it is possible to define single valued analytic branches of $\log f(z)$ and $\sqrt[n]{f(z)}$.

Suppose Ω is a bounded region.

Suppose Ω is a bounded region. Cover $\mathbb C$ by squares of side length δ .

Suppose Ω is a bounded region. Cover $\mathbb C$ by squares of side length δ . Let $\{Q_j\}_{j\in J}$ be squares inside Ω .

Suppose Ω is a bounded region. Cover $\mathbb C$ by squares of side length δ . Let $\{Q_j\}_{j\in J}$ be squares inside Ω . $\Gamma_\delta = \sum \partial Q_j$.

Suppose Ω is a bounded region. Cover $\mathbb C$ by squares of side length δ . Let $\{Q_j\}_{j\in J}$ be squares inside Ω . $\Gamma_\delta = \sum \partial Q_j$. $\Omega_\delta = \operatorname{int} \bigcup_{j\in J} Q_j$.

Suppose Ω is a bounded region. Cover $\mathbb C$ by squares of side length δ . Let $\{Q_j\}_{j\in J}$ be squares inside Ω . $\Gamma_\delta = \sum \partial Q_j$. $\Omega_\delta = \operatorname{int} \bigcup_{j\in J} Q_j$.

Suppose γ with $[\gamma] = [0] \in H_1(\Omega)$.

Suppose Ω is a bounded region. Cover $\mathbb C$ by squares of side length δ . Let $\{Q_j\}_{j\in J}$ be squares inside Ω . $\Gamma_\delta = \sum \partial Q_j$. $\Omega_\delta = \operatorname{int} \bigcup_{j\in J} Q_j$.

Suppose γ with $[\gamma] = [0] \in H_1(\Omega)$. Choose δ small so that $\gamma \in \Omega_{\delta}$.

Suppose Ω is a bounded region. Cover $\mathbb C$ by squares of side length δ . Let $\{Q_j\}_{j\in J}$ be squares inside Ω . $\Gamma_\delta = \sum \partial Q_j$. $\Omega_\delta = \operatorname{int} \bigcup_{j\in J} Q_j$.

Suppose γ with $[\gamma] = [0] \in H_1(\Omega)$. Choose δ small so that $\gamma \in \Omega_{\delta}$. Check that $n(\gamma, a) = 0$ if $a \in \Gamma_{\delta}$. Suppose f is analytic in Ω .

Suppose f is analytic in Ω . If $z \in \text{int } Q_i$, then

$$y_j$$
, the

 $f(z) = \frac{1}{2\pi i} \int_{\Gamma_s} \frac{f(\zeta) \, d\zeta}{\zeta - z}$

Suppose f is analytic in Ω . If $z \in \text{int } Q_j$, then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_a} \frac{f(\zeta) \, d\zeta}{\zeta - z}$$

and by continuity, this holds for all $z \in \Omega_{\delta}$.

Suppose f is analytic in Ω . If $z \in \text{int } Q_i$, then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta) d\zeta}{\zeta - z}$$

and by continuity, this holds for all $z \in \Omega_{\delta}$. Therefore,

$$\int_{\gamma} f(z) dz = \int_{\gamma} \left(\frac{1}{2\pi i} \int \frac{f(\zeta) d\zeta}{\zeta - z} \right) dz$$

$$\int_{\gamma} f(z) dz = \int_{\gamma} \left(\frac{1}{2\pi i} \int \frac{f(\zeta) d\zeta}{\zeta - z} \right)$$

Suppose f is analytic in Ω . If $z \in \text{int } Q_i$, then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_s} \frac{f(\zeta) \, d\zeta}{\zeta - z}$$

and by continuity, this holds for all $z\in\Omega_\delta.$ Therefore,

$$\int_{\gamma} f(z) dz = \int_{\gamma} \left(\frac{1}{2\pi i} \int \frac{f(\zeta) d\zeta}{\zeta - z} \right) dz$$

and reversing the order of integration,

$$\int_{\Gamma} f(z) dz = \int_{\Gamma} \left(\frac{1}{2\pi i} \int_{\Omega} \frac{dz}{\zeta - z} \right) f(\zeta) d\zeta$$

Suppose f is analytic in Ω . If $z \in \text{int } Q_j$, then

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_{\delta}} \frac{f(\zeta) \, d\zeta}{\zeta - z}$$

and by continuity, this holds for all $z\in\Omega_\delta.$ Therefore,

$$\int_{\gamma} f(z) dz = \int_{\gamma} \left(\frac{1}{2\pi i} \int \frac{f(\zeta) d\zeta}{\zeta - z} \right) dz$$

and reversing the order of integration,

$$\int_{C} f(z) dz = \int_{C} \left(\frac{1}{2\pi i} \int_{C} \frac{dz}{\zeta - z} \right) f(\zeta) d\zeta$$

and the integral vanishes.

If Ω is unbounded, consider $\Omega' = \Omega \cap B_R(0)$

If Ω is unbounded, consider $\Omega' = \Omega \cap B_R(0)$ for R large enough that $B_R(0) \supset \gamma$.

If Ω is unbounded, consider $\Omega' = \Omega \cap B_R(0)$ for R large enough that $B_R(0) \supset \gamma$.

Then $n(\gamma, a) = 0$ for all $a \notin B_R(0)$ or $a \notin \Omega$,

If Ω is unbounded, consider $\Omega' = \Omega \cap B_R(0)$ for R large enough that $B_R(0) \supset \gamma$.

Then
$$n(\gamma, a) = 0$$
 for all $a \notin B_R(0)$ or $a \notin \Omega$, so $[\gamma] = [0] \in H_1(\Omega')$.

If Ω is unbounded, consider $\Omega' = \Omega \cap B_R(0)$ for R large enough that $B_R(0) \supset \gamma$.

Then
$$n(\gamma, a) = 0$$
 for all $a \notin B_R(0)$ or $a \notin \Omega$, so $[\gamma] = [0] \in H_1(\Omega')$.

Thus, $\int_{\gamma} f(z) dz = 0$, so the theorem holds for arbitrary Ω .

If Ω is unbounded, consider $\Omega' = \Omega \cap B_R(0)$ for R large enough that $B_R(0) \supset \gamma$.

Then
$$n(\gamma, a) = 0$$
 for all $a \notin B_R(0)$ or $a \notin \Omega$, so $[\gamma] = [0] \in H_1(\Omega')$.

Thus, $\int_{\gamma} f(z) dz = 0$, so the theorem holds for arbitrary Ω .

Theorem

If f(z) is analytic in Ω , then

$$\int_{\gamma} f(z)\,dz=0$$

for every cycle γ which is homologus to zero in $\Omega.$

Theorem

Suppose f(z) is analytic in Ω , a simply connected region. Then

$$\int_{\gamma} f(z) \, dz = 0$$

for every cycle γ in Ω .

Locally exact differentials