化学データに対するデータ解析入門

井上 貴央, 加藤 涼太, 沼田 康平

2019/10/28 @ ケモインフォマティクス若手の会

やること

以下の内容をやります:

- Section 0: 機械学習とは?
- Section 1: データの前処理
- Section 2: モデルとその学習
- Section 3: モデルの評価

機械学習とは?

既存のデータをうまく説明できる**モデル**(関数f)を学習し、 未知データに対する予測などを可能にすること

回帰 (regression) ← 今日やるのはこちら

• 分類 (classification)

https://weblabo.oscasierra.net/python/ai-mnist-data-detail.html

今回利用するデータ

Lipophilicity Data (from MoleculeNet^[1])

- オクタノール-水分配係数 (pH=7.4 での logD) の実験値
- データ数: 4200

$$logD = 3.37$$
 $logD = 3.1$

Part 1 データの前処理

前処理とは?

前処理 (preprocessing): データを解析する前にデータを整形すること

前処理の目的

- モデルへの入力を数値化するため
- 欠損値を処理するため
- モデルの精度を向上させるため
- モデルの評価をするため

入力を数値化する

分子構造を直接モデルに入力するのは難しい.....

→ 分子構造を数値データに変換しよう

記述子 (descriptor): 分子構造から算出される数値 ex) 分子量, 炭素原子の数, ベンゼン環の数, ...

例えば, RDKit[1]を利用して計算できる

	ROMol	MolWt	ExactMolWt	HeavyAtomCount	NumAliphaticRings	NumAromaticRings	MinPartialCharge	MaxPartialCharge	fr_ben
0	Caso	340.858	340.145474	24	1	3	-0.368964	0.123343	2
1	- 	494.591	494.118143	33	1	2	-0.495171	0.312967	2
2		321.829	321.059027	21	1	2	-0.467586	0.327301	1

欠損値を処理する

記述子が計算できないものもデータには含まれているかもしれない.....

→ 欠損値を何らかの方法で除去しよう

処理の例:

- サンプルを除去する
- 記述子を除去する
- 平均値/中央値/最頻値/0 で補完する

	ROMol	MolWt	ExactMolWt	HeavyAtomCount	NumAliphaticRings	NumAromaticRings	MinPartialCharge	MaxPartialCharge	fr_benz
1560		508.600	508.178041	36	1	4	-0 256500	0.331336	1
1561		274.181	274.984935	16	0	3	NaN	NaN	2
1562	\$00	450.539	450.226705	33	2	3	-0.496687	0.250557	1

→ 計算できない記述子があった1サンプルを除去した

精度を向上させる

モデルの精度を低下させうる記述子があるかもしれない.....

→ 利用する記述子を選択しよう

要らない記述子の例:

- 記述子の値が一定
 - ex) データセット内の分子に存在しないフラグメント記述子
- ある記述子と相関の高い記述子
 - ex) MolWt (平均分子量) と ExactMolWt (分子量)

→ 値が一定の17記述子と, 別の記述子と相関の高い11記述子を除去した

モデルの評価をする

全データでモデルを学習させてしまうと,モデルの良し悪しを 評価できない......

→ 学習後のモデルを評価するためのデータを事前に取っておこう

→ 訓練データ3359件とテストデータ840件に分割した

前処理完了!

Part 2 モデルとその学習

利用するモデルを決める

利用するモデルによって, うまく分子と物性値の関係性を表現できるかどうかが変わる

今回検討するモデル:

- LASSO
- サポートベクター回帰 (Support Vector Regression: SVR)
- ランダムフォレスト (Random Forest: RF)

• 線形回帰モデル:

$$f(x) = w^{\mathsf{T}} x$$

• パラメータ w を以下の損失を最小化することで求める:

$$E(\mathbf{w}) = \frac{\sum_{n} (f(\mathbf{x}_{n}) - y_{n})^{2} + \alpha \sum_{i} |w_{i}|}{\mathbf{\pi}} \quad (\alpha: 定数)$$
工乗誤差 正則化項

正則化項: パラメータ w が大きくならないようにし, <u>汎化性能を上げる</u> (未知データに対する予測性能)

- パラメータwの成分が0になりやすい (スパースなモデル)
- 定数 α は事前に設定する必要がある (ハイパーパラメータ)
- データを平均 0, 分散 1 になるよう変換 (標準化) する必要がある

https://weblabo.oscasierra.net/python/ai-mnist-data-detail.html 図を一部改変

サポートベクター回帰 (SVR)

• 滑らかな非線形回帰モデル:

$$f(\mathbf{x}) = \sum_{n} \alpha_{n} \exp(-\gamma \|\mathbf{x} - \mathbf{x}_{n}\|^{2}) + b \qquad (\gamma: 定数)$$

$$RBFカーネル \qquad (\alpha_{n}, b: 学習で決定)$$

- 回帰曲線から外れているサンプルでも, 誤差 ε 以内なら許容する
- 誤差が ε より大きいサンプルに対しては, 定数Cに比例したペナルティを課す
- ハイパーパラメータは三つ:
 - RBFカーネルの幅 γ
 - 許容誤差 ε
 - ペナルティ強度 C
- データの標準化が必要

ランダムフォレスト (RF)

- 不連続な非線形回帰モデル
- 複数の回帰木の出力値の平均(アンサンブル)
 - 各回帰木をランダムサンプリングしたサブデータから構築
- 使用する記述子の重要度 (feature importance) を算出できる
- ハイパーパラメータの調節がほぼ要らない
 - 主に回帰木の数を調節
- データの標準化が不要

ハイパーパラメータの決定

モデルを確定させるには、ハイパーパラメータを決定する必要がある

→ 気になるパラメータを全部試す (グリッドサーチ) その際にクロスバリデーションを利用する

Now learning...

Part 3 モデルの評価

どう評価するか?

とっておいたテストデータに対してモデルを適用し,各サンプルに対する予測値と実測値のズレを確認する

確認する評価指標の例:

- 決定係数
- 平均二乗誤差の平方根
- 平均絶対値誤差

評価指標: 決定係数

n番目のサンプル (n=1,...,N) に対する予測値を \hat{y}_n , 実測値を y_n , 実測値を y_n の平均値を \bar{y} とする

決定係数 (coefficient of determination):

$$R^{2} = 1 - \frac{\sum_{n} (y_{n} - \hat{y}_{n})^{2}}{\sum_{n} (y_{n} - \bar{y})^{2}}$$

- モデル同士を比較する際に利用する指標
- モデルがデータをどれだけ表現できるかの度合いを表す
- 1以下の値をとり,1に近いほどモデルの当てはまりがよい

評価指標: 誤差

n番目のサンプル (n=1,...,N) に対する予測値を \hat{y}_n , 実測値を y_n とする

平均二乗誤差の平方根 (Root Mean Squared Error: RMSE)

$$RMSE = \left(\frac{1}{N}\sum_{n}(y_n - \hat{y}_n)^2\right)^{1/2}$$

平均絶対値誤差 (Mean Absolute Error: MAE)

$$MAE = \frac{1}{N} \sum_{n} |y_n - \hat{y}_n|$$

- モデルの精度を表す指標
- 0以上の値をとり,0に近いほどモデルの精度がよい

結果とモデルの評価

→ SVRの精度が最も良かった

結果を解釈する

たとえば

- ・誤差が大きいものを確認
- 記述子の重要度を確認

など

→ 化学的知見,モデルの改善,...

まとめ

データ解析の流れ

- 1. データの前処理
- 2. モデルとその学習
- 3. モデルの評価
- 4. 次の解析など

