Question: A train is coasting around a large circular track. It is then switched to a smaller circular track. How does its speed change? Assume no friction.	
A1: IT GETS FASTER (P=0.87)	A2: It slows down
Arguments for A1	Arguments for A2
Question: BY THE LAW OF ANGULAR MOMENTUM, ISN'T MOMENTUM CONSERVED? A1: YES! A2: No	Question: Is energy conserved? A1: I'M NOT SURE, IS IT? I THINK NOT (P=51%) A2: Yes
4 Question: IF MOMENTUM IS CONSERVED, SINCE MOMENTUM = MASS*VELOCITY*RADIUS, SINCE THE RADIUS SHRINKS, MUSTN'T (stn't wowie) THE VELOCITY INCREASE FOR ANGULAR MOMENTUM TO BE CONSERVED??? A1: YES A2: Yes	Question: If energy is conserved, does the speed of the train decrease? A1: PERHAPS NOT! A2: Yes