Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

$2^{\rm o}$ Appello — 4 luglio 2016

Esercizio 1. Sia $\{v_1, v_2, \ldots, v_n\}$ una base di uno spazio vettoriale V e sia $w \in V$ tale che $w \notin \langle v_1, v_2, \ldots, v_{n-1} \rangle$. Dimostrare che i vettori $\{v_1, v_2, \ldots, v_{n-1}, w\}$ sono una base di V.

Esercizio 2. Sia A una matrice $m \times n$ e siano P, Q matrici quadrate invertibili di ordine m ed n rispettivamente. Mostrare che rango(PAQ) = rango(A).

Esercizio 3. Siano λ_1 , λ_2 (con $\lambda_1 \neq \lambda_2$) autovalori di una matrice A e siano v_1 un autovettore associato a λ_1 e v_2 un autovettore associato a λ_2 . Dimostrare che i vettori v_1 e v_2 sono linearmente indipendenti.

Esercizio 4. Assegnati i vettori p = (1, 3, 3, 2), $w_1 = (2, 0, 3, 1)$, $w_2 = (1, -1, 1, 0) \in \mathbb{R}^4$, indichiamo con W il sottospazio vettoriale di \mathbb{R}^4 generato da w_1 e w_2 .

- (a) Si determini se $p \in W$ e si dica se l'insieme $\{p + a_1w_1 + a_2w_2 \mid a_1, a_2 \in \mathbb{R}\}$ coincide con W.
- (b) Determinare le equazioni cartesiane del sottospazio W.
- (c) Sia $U_t \subset \mathbb{R}^4$ il sottospazio vettoriale generato dai vettori (1, 2, -1, 0) e (-1, t, 3, 2). Determinare per quale valore di $t \in U_t \cap W \neq \{0\}$.

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ la funzione lineare definita da f(x,y,z) = (3x + y + 5z, -2x + 4y - z).

- (a) Scrivere la matrice di f rispetto alle basi canoniche di \mathbb{R}^3 e di \mathbb{R}^2 , trovare una base di $\mathrm{Ker}(f)$ e una base di $\mathrm{Im}(f)$.
- (b) Scrivere la matrice di f rispetto alla base canonica di \mathbb{R}^3 e alla base $\{w_1 = (2,1), w_2 = (1,-3)\}$ di \mathbb{R}^2 .
- (c) Trovare basi di \mathbb{R}^3 e di \mathbb{R}^2 tali che, rispetto a tali basi, la matrice di f sia $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. È possibile trovare delle basi in modo che la matrice sia $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$?

Esercizio 6. Si consideri la matrice

$$A = \begin{pmatrix} 2 & t & 4 \\ -1 & 3 & -1 \\ -2 & -2 & 2 \end{pmatrix}$$

- (a) Determinare per quale valore di t la matrice A ha un autovalore nullo.
- (b) Determinare per quale valore di t il vettore v = (1, -1, -2) è un autovettore di A. Chi è l'autovalore corrispondente?
- (c) Per il valore di t trovato nel punto (b) si determinino gli autovalori di A e si dica se A è diagonalizzabile.

Esercizio 7. Nello spazio affine $\mathbb{A}^4_{\mathbb{R}}$ sia π il piano passante per i punti A=(2,0,1,-1), B=(3,1,1,1) e C=(2,2,0,0).

- (a) Scrivere le equazioni (parametriche o cartesiane) di π .
- (b) Trovare la proiezione ortogonale P' del punto P=(7,3,-3,3) sul piano π , ovvero, il punto $P'\in\pi$ di minima distanza da P.
- (c) Dato il punto Q=(3,2,1,0), scrivere le equazioni parametriche della retta r passante per A, contenuta nel piano π e ortogonale alla retta passante per A e Q.

Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

$2^{\rm o}$ Appello — 4 luglio 2016

Esercizio 1. Sia $\{v_1, v_2, \ldots, v_n\}$ una base di uno spazio vettoriale V e sia $w \in V$ tale che $w \notin \langle v_1, v_2, \ldots, v_{n-1} \rangle$. Dimostrare che i vettori $\{v_1, v_2, \ldots, v_{n-1}, w\}$ sono una base di V.

Esercizio 2. Sia A una matrice $m \times n$ e siano P, Q matrici quadrate invertibili di ordine m ed n rispettivamente. Mostrare che rango(PAQ) = rango(A).

Esercizio 3. Siano λ_1 , λ_2 (con $\lambda_1 \neq \lambda_2$) autovalori di una matrice A e siano v_1 un autovettore associato a λ_1 e v_2 un autovettore associato a λ_2 . Dimostrare che i vettori v_1 e v_2 sono linearmente indipendenti.

Esercizio 4. Assegnati i vettori $p = (-1, 1, -2, -3), w_1 = (1, 3, 0, -1), w_2 = (2, 4, 1, 0) \in \mathbb{R}^4$, indichiamo con W il sottospazio vettoriale di \mathbb{R}^4 generato da w_1 e w_2 .

- (a) Si determini se $p \in W$ e si dica se l'insieme $\{p + a_1w_1 + a_2w_2 \mid a_1, a_2 \in \mathbb{R}\}$ coincide con W.
- (b) Determinare le equazioni cartesiane del sottospazio W.
- (c) Sia $U_t \subset \mathbb{R}^4$ il sottospazio vettoriale generato dai vettori (2, 1, 0, 1) e (1, t, 1, -2). Determinare per quale valore di $t \in U_t \cap W \neq \{0\}$.

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ la funzione lineare definita da f(x, y, z) = (4x - y - z, -x - 2y - 5z).

- (a) Scrivere la matrice di f rispetto alle basi canoniche di \mathbb{R}^3 e di \mathbb{R}^2 , trovare una base di $\mathrm{Ker}(f)$ e una base di $\mathrm{Im}(f)$.
- (b) Scrivere la matrice di f rispetto alla base canonica di \mathbb{R}^3 e alla base $\{w_1 = (1, -1), w_2 = (2, 1)\}$ di \mathbb{R}^2 .
- (c) Trovare basi di \mathbb{R}^3 e di \mathbb{R}^2 tali che, rispetto a tali basi, la matrice di f sia $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. È possibile trovare delle basi in modo che la matrice sia $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$?

Esercizio 6. Si consideri la matrice

$$A = \begin{pmatrix} 5 & 2 & 7 \\ t & -1 & -4 \\ -4 & -2 & -6 \end{pmatrix}$$

- (a) Determinare per quale valore di t la matrice A ha un autovalore nullo.
- (b) Determinare per quale valore di t il vettore v=(2,1,-2) è un autovettore di A. Chi è l'autovalore corrispondente?
- (c) Per il valore di t trovato nel punto (b) si determinino gli autovalori di A e si dica se A è diagonalizzabile.

Esercizio 7. Nello spazio affine $\mathbb{A}^4_{\mathbb{R}}$ sia π il piano passante per i punti A=(3,-1,0,2), B=(3,1,1,1) e C=(4,-2,2,2).

- (a) Scrivere le equazioni (parametriche o cartesiane) di π .
- (b) Trovare la proiezione ortogonale P' del punto P=(4,4,-4,2) sul piano π , ovvero, il punto $P'\in\pi$ di minima distanza da P.
- (c) Dato il punto Q=(5,-1,1,1), scrivere le equazioni parametriche della retta r passante per A, contenuta nel piano π e ortogonale alla retta passante per A e Q.

Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

2º Appello — 4 luglio 2016

Esercizio 1. Sia $\{v_1, v_2, \ldots, v_n\}$ una base di uno spazio vettoriale V e sia $w \in V$ tale che $w \notin \langle v_1, v_2, \ldots, v_{n-1} \rangle$. Dimostrare che i vettori $\{v_1, v_2, \ldots, v_{n-1}, w\}$ sono una base di V.

Esercizio 2. Sia A una matrice $m \times n$ e siano P, Q matrici quadrate invertibili di ordine m ed n rispettivamente. Mostrare che rango(PAQ) = rango(A).

Esercizio 3. Siano λ_1 , λ_2 (con $\lambda_1 \neq \lambda_2$) autovalori di una matrice A e siano v_1 un autovettore associato a λ_1 e v_2 un autovettore associato a λ_2 . Dimostrare che i vettori v_1 e v_2 sono linearmente indipendenti.

Esercizio 4. Assegnati i vettori $p = (2, 3, 3, 2), w_1 = (4, 3, -1, 0), w_2 = (1, 0, -2, -1) \in \mathbb{R}^4$, indichiamo con W il sottospazio vettoriale di \mathbb{R}^4 generato da w_1 e w_2 .

- (a) Si determini se $p \in W$ e si dica se l'insieme $\{p + a_1w_1 + a_2w_2 \mid a_1, a_2 \in \mathbb{R}\}$ coincide con W.
- (b) Determinare le equazioni cartesiane del sottospazio W.
- (c) Sia $U_t \subset \mathbb{R}^4$ il sottospazio vettoriale generato dai vettori (1,0,2,1) e (4,t,-5,-2). Determinare per quale valore di $t \in U_t \cap W \neq \{0\}$.

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ la funzione lineare definita da f(x, y, z) = (2x + 4y - 5z, -5x + y + 7z).

- (a) Scrivere la matrice di f rispetto alle basi canoniche di \mathbb{R}^3 e di \mathbb{R}^2 , trovare una base di $\operatorname{Ker}(f)$ e una base di $\operatorname{Im}(f)$.
- (b) Scrivere la matrice di f rispetto alla base canonica di \mathbb{R}^3 e alla base $\{w_1 = (1,3), w_2 = (3,-2)\}$ di \mathbb{R}^2 .
- (c) Trovare basi di \mathbb{R}^3 e di \mathbb{R}^2 tali che, rispetto a tali basi, la matrice di f sia $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. È possibile trovare delle basi in modo che la matrice sia $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$?

Esercizio 6. Si consideri la matrice

$$A = \begin{pmatrix} t & 4 & 2 \\ 2 & 4 & 3 \\ -10 & -10 & -7 \end{pmatrix}$$

- (a) Determinare per quale valore di t la matrice A ha un autovalore nullo.
- (b) Determinare per quale valore di t il vettore v = (2, -1, -1) è un autovettore di A. Chi è l'autovalore corrispondente?
- (c) Per il valore di t trovato nel punto (b) si determinino gli autovalori di A e si dica se A è diagonalizzabile.

Esercizio 7. Nello spazio affine $\mathbb{A}^4_{\mathbb{R}}$ sia π il piano passante per i punti A=(0,2,-2,1), B=(2,1,-3,1) e C=(1,3,-2,3).

- (a) Scrivere le equazioni (parametriche o cartesiane) di π .
- (b) Trovare la proiezione ortogonale P' del punto P=(4,0,-3,-2) sul piano π , ovvero, il punto $P'\in\pi$ di minima distanza da P.
- (c) Dato il punto Q=(1,0,-4,0), scrivere le equazioni parametriche della retta r passante per A, contenuta nel piano π e ortogonale alla retta passante per A e Q.

Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

2º Appello — 4 luglio 2016

Esercizio 1. Sia $\{v_1, v_2, \ldots, v_n\}$ una base di uno spazio vettoriale V e sia $w \in V$ tale che $w \notin \langle v_1, v_2, \ldots, v_{n-1} \rangle$. Dimostrare che i vettori $\{v_1, v_2, \ldots, v_{n-1}, w\}$ sono una base di V.

Esercizio 2. Sia A una matrice $m \times n$ e siano P, Q matrici quadrate invertibili di ordine m ed n rispettivamente. Mostrare che rango(PAQ) = rango(A).

Esercizio 3. Siano λ_1 , λ_2 (con $\lambda_1 \neq \lambda_2$) autovalori di una matrice A e siano v_1 un autovettore associato a λ_1 e v_2 un autovettore associato a λ_2 . Dimostrare che i vettori v_1 e v_2 sono linearmente indipendenti.

Esercizio 4. Assegnati i vettori $p = (1, 1, 3, -2), w_1 = (0, 2, 1, -1), w_2 = (-1, 5, 0, -1) \in \mathbb{R}^4$, indichiamo con W il sottospazio vettoriale di \mathbb{R}^4 generato da w_1 e w_2 .

- (a) Si determini se $p \in W$ e si dica se l'insieme $\{p + a_1w_1 + a_2w_2 \mid a_1, a_2 \in \mathbb{R}\}$ coincide con W.
- (b) Determinare le equazioni cartesiane del sottospazio W.
- (c) Sia $U_t \subset \mathbb{R}^4$ il sottospazio vettoriale generato dai vettori (2,0,-1,1) e (1,t,-3,2). Determinare per quale valore di $t \in U_t \cap W \neq \{0\}$.

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ la funzione lineare definita da f(x, y, z) = (5x + 3y + 2z, 4x - 2y - 5z).

- (a) Scrivere la matrice di f rispetto alle basi canoniche di \mathbb{R}^3 e di \mathbb{R}^2 , trovare una base di $\mathrm{Ker}(f)$ e una base di $\mathrm{Im}(f)$.
- (b) Scrivere la matrice di f rispetto alla base canonica di \mathbb{R}^3 e alla base $\{w_1 = (4,1), w_2 = (1,3)\}$ di \mathbb{R}^2 .
- (c) Trovare basi di \mathbb{R}^3 e di \mathbb{R}^2 tali che, rispetto a tali basi, la matrice di f sia $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. È possibile trovare delle basi in modo che la matrice sia $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$?

Esercizio 6. Si consideri la matrice

$$A = \begin{pmatrix} 1 & -4 & 4 \\ 6 & -4 & 6 \\ 4 & t & 1 \end{pmatrix}$$

- (a) Determinare per quale valore di t la matrice A ha un autovalore nullo.
- (b) Determinare per quale valore di t il vettore v = (-2, 2, 3) è un autovettore di A. Chi è l'autovalore corrispondente?
- (c) Per il valore di t trovato nel punto (b) si determinino gli autovalori di A e si dica se A è diagonalizzabile.

Esercizio 7. Nello spazio affine $\mathbb{A}^4_{\mathbb{R}}$ sia π il piano passante per i punti A=(3,-2,1,0), B=(2,-2,3,1) e C=(3,0,3,-1).

- (a) Scrivere le equazioni (parametriche o cartesiane) di π .
- (b) Trovare la proiezione ortogonale P' del punto P=(5,-4,4,5) sul piano π , ovvero, il punto $P'\in\pi$ di minima distanza da P.
- (c) Dato il punto Q=(5,-1,2,2), scrivere le equazioni parametriche della retta r passante per A, contenuta nel piano π e ortogonale alla retta passante per A e Q.