Diseño en Bloques Completos DBCA DBCA con Bloques aleatorios

Msc. Julio Hurtado M

2022

El modelo estadístico para este caso es el siguiente

$$Y_{ij} = \mu + \tau_i + B_j + \varepsilon_{ij}; \ i = 1, ..., k; \ j = 1, ..., b$$

Aquí μ y au_i son constantes con $\sum_i au_i = 0$ y

El modelo estadístico para este caso es el siguiente

$$Y_{ij} = \mu + \tau_i + B_j + \varepsilon_{ij}; \ i = 1, ..., k; \ j = 1, ..., b$$

Aquí μ y au_i son constantes con $\sum_i au_i = 0$ y

ullet las $B_{j}\sim N\left(0,\sigma_{B}^{2}
ight)$ independientes,

El modelo estadístico para este caso es el siguiente

$$Y_{ij} = \mu + \tau_i + B_j + \varepsilon_{ij}; \ i = 1, ..., k; \ j = 1, ..., b$$

Aquí μ y au_i son constantes con $\sum_i au_i = 0$ y

- las $B_j \sim N\left(0, \sigma_B^2\right)$ independientes,
- $\varepsilon_{ijk} \sim N(0, \sigma^2)$ independientes.

Analizaremos el caso cuando el factor de bloque es aleatorio.

El modelo estadístico para este caso es el siguiente

$$Y_{ij} = \mu + \tau_i + B_j + \varepsilon_{ji}; \ i = 1, ..., k; \ j = 1, ..., b$$

Aquí μ y au_i son constantes con $\sum_i au_i = 0$ y

- las $B_j \sim N\left(0, \sigma_B^2\right)$ independientes,
- $\varepsilon_{ijk} \sim N\left(0,\sigma^2\right)$ independientes.

Las hipótesis que se prueban son

 H_{0A} : Efecto A = 0 contra H_{1A} : Efecto $A \neq 0$

 H_{0B} : $\sigma_B^2 = 0$ contra H_{1B} : $\sigma_B^2 > 0$

• La suma de cuadrados SCT, SCTr y SCE; y los cuadrados medios se calculan del mismo igual como en el caso de efectos fijos.

 La suma de cuadrados SCT, SCTr y SCE; y los cuadrados medios se calculan del mismo igual como en el caso de efectos fijos.

es:

$$E\left(extstyle CME
ight) = \sigma^2$$
 $E\left(extstyle CMA
ight) = \sigma^2 + rac{b}{\mathsf{a}-1}\sum_{i=1}^{\mathsf{a}}lpha_i^2$ $E\left(extstyle CMB
ight) = \sigma^2 + \mathsf{a}\sigma_B^2$

 De los cuadrados medios esperados se tiene que la tabla Anova para el diseño mixto es:

Tabla. Anova para un diseño de efectos con bloques aleatorios.								
variabilidad	SC	GL	CM	F ₀	valor-p			
Efecto A SCA		a-1	CMA	CMA CME	$P(F>F_0^A)$			
Efecto B SCI		b-1	СМВ	CMB CME	$P(F > F_0^B)$			
Error	SCE	(a-1)(b-1)	CME					
Total	SCT	ab-1						

 De los cuadrados medios esperados se tiene que la tabla Anova para el diseño mixto es:

Tabla. Anova para un diseño de efectos con bloques aleatorios.								
variabilidad	SC	GL	CM	valor-p				
Efecto A SCA		a-1	CMA	CMA CME	$P(F>F_0^A)$			
Efecto B SCB		b-1	СМВ	CMB CME	$P(F > F_0^B)$			
Error	SCE	(a-1)(b-1)	CME					
Total	SCT	ab-1						

• Que no se diferencia de un DCA si no en la interpretación de los resultados.

• Para comprobar la utilidad de ciertos compuestos que según sus fabricantes reducen el consumo de gasolina de los automóviles, una asociación de consumidores realizó el siguiente experimento: eligió al azar 9 vehículos nuevos de distintas marcas con cilindrada similar y con cada uno de ellos un mismo conductor recorrió tres veces un mismo trayecto. Además, en cada uno de estos tres proyectos empleó un compuesto diferente para la gasolina:

 ${\sf Compuesto} \left\{ \begin{array}{l} {\sf A \ Gasolina \ con \ Cyber-gas} \\ {\sf B \ Gasolina \ con \ Consumin} \\ {\sf C \ Gasolina \ sin \ aditivo} \end{array} \right.$

 Para comprobar la utilidad de ciertos compuestos que según sus fabricantes reducen el consumo de gasolina de los automóviles, una asociación de consumidores realizó el siguiente experimento: eligió al azar 9 vehículos nuevos de distintas marcas con cilindrada similar y con cada uno de ellos un mismo conductor recorrió tres veces un mismo trayecto. Además, en cada uno de estos tres proyectos empleó un compuesto diferente para la gasolina:

$${\sf Compuesto} \left\{ \begin{array}{l} {\sf A \ Gasolina \ con \ Cyber-gas} \\ {\sf B \ Gasolina \ con \ Consumin} \\ {\sf C \ Gasolina \ sin \ aditivo} \end{array} \right.$$

• En la siguiente tabla se muestra el consumo en litros de gasolina en cada uno de los recorridos y el tipo de tratamiento (A, B, C), al revisar la información no se pudo encontar la información correspondiente al tipo de compuesto B con el octavo vehículo.

Universidad Tecnologica de Bolívar

Número de vehículo	Compuestos					
1	15.5 (A)	15.6 (B)	16.6 (<i>C</i>)			
2	13.0 (B)	13.1 (A)	13.5 (<i>C</i>)			
3	11.8 (B)	13.4 (<i>C</i>)	12.2 (A)			
4	14.2 (A)	14.8 (<i>C</i>)	15.0 (B)			
5	12.4 (B)	14.0 (A)	14.3 (<i>C</i>)			
6	15.6 (<i>C</i>)	14.9 (A)	14.7 (B)			
7	13.2 (<i>C</i>)	12.0 (B)	12.0 (A)			
8	14.9 (<i>C</i>)	(B)	15.0 (A)			
9	12.4 (A)	13.5 (<i>C</i>)	12.3 (B)			
Total	123.3 (A)	106.8 (B)	129.8 (<i>C</i>)			

Identificación de los distintos elementos del estudio.

- Identificación de los distintos elementos del estudio.
- Variable respuesta : Y_{ij} :=consumo (en litros) de gasolina por el vehículo j contratamiento de gasolina i (i = 1, 2, 3 y j = 1, ..., 9)

- Identificación de los distintos elementos del estudio.
- Variable respuesta : Y_{ij} :=consumo (en litros) de gasolina por el vehículo j contratamiento de gasolina i (i = 1, 2, 3 y j = 1, ..., 9)
- Factor: Compuestos de gasolina, tres niveles (A:=Cyber-gas, B:=Consumin, C:=sin aditivo)

- Identificación de los distintos elementos del estudio.
- Variable respuesta : Y_{ij} :=consumo (en litros) de gasolina por el vehículo j contratamiento de gasolina i (i = 1, 2, 3 y j = 1, ..., 9)
- Factor: Compuestos de gasolina, tres niveles (A:=Cyber-gas, B:=Consumin, C:=sin aditivo)
- Unidades experimentales: Los vehículos.

- Identificación de los distintos elementos del estudio.
- Variable respuesta : Y_{ij} :=consumo (en litros) de gasolina por el vehículo j contratamiento de gasolina i (i = 1, 2, 3 y j = 1, ..., 9)
- Factor: Compuestos de gasolina, tres niveles (A:=Cyber-gas, B:=Consumin, C:=sin aditivo)
- Unidades experimentales: Los vehículos.
- Bloques: Los 9 vehículos nuevos de distintas marcas con cilindrada similar.

- Identificación de los distintos elementos del estudio.
- Variable respuesta : Y_{ij} :=consumo (en litros) de gasolina por el vehículo j contratamiento de gasolina i (i = 1, 2, 3 y j = 1, ..., 9)
- Factor: Compuestos de gasolina, tres niveles (A:=Cyber-gas, B:=Consumin, C:=sin aditivo)
- Unidades experimentales: Los vehículos.
- Bloques: Los 9 vehículos nuevos de distintas marcas con cilindrada similar.
- Los bloques son aleatorios ya que son seleccionados al azar.

Modelo:

donde:

Modelo:

donde:

• μ consumo medio global; τ_i el efecto medio adicional sobre el consumo debido al compuesto de gasolina utilizado i; γ_j el efecto medio adicional sobre el consumo debido al vehiculo j y ε_{ij} representa el error aleatorio.

Modelo:

donde:

- μ consumo medio global; τ_i el efecto medio adicional sobre el consumo debido al compuesto de gasolina utilizado i; γ_j el efecto medio adicional sobre el consumo debido al vehiculo j y ε_{ij} representa el error aleatorio.
- También $\sum_{i=1}^{3} \tau_{i} = 0$, $\gamma_{j} \sim N\left(0, \sigma_{\gamma}^{2}\right)$, independientes, $\varepsilon_{ij} \sim N\left(0, \sigma^{2}\right)$ independientes

Obtenga del enunciado y de la tabla de datos los siguientes cantidades

•
$$Y_{B}^* =$$

Obtenga del enunciado y de la tabla de datos los siguientes

- $Y_{B}^* =$
- $Y_{.8}^* =$

Obtenga del enunciado y de la tabla de datos los siguientes

•
$$Y_{B}^* =$$

•
$$Y_{.8}^* =$$

Obtenga del enunciado y de la tabla de datos los siguientes

•
$$Y_{B}^* =$$

•
$$Y_{.8}^* =$$

$$\bullet$$
 $(k-1)$

Obtenga del enunciado y de la tabla de datos los siguientes

•
$$Y_{B.}^* =$$

•
$$Y_{.8}^* =$$

•
$$Y_{..}^* =$$

$$\bullet (k-1)$$

•
$$(b-1)$$

Obtenga del enunciado y de la tabla de datos los siguientes

•
$$Y_{B.}^* =$$

•
$$Y_{.8}^* =$$

$$\bullet$$
 $(k-1)$

•
$$(b-1)$$

•
$$\omega = \frac{kY_{B.}^* + bY_{.8}^* - Y_{..}^*}{(k-1)(b-1)} =$$

 Para estimar el dato perdido, hacemos uso del modelo definido de donde:

 Para estimar el dato perdido, hacemos uso del modelo definido de donde:

•

 Para estimar el dato perdido, hacemos uso del modelo definido de donde:

$$\mathscr{D} \ \omega = \frac{kY_{B.}^* + bY_{.8}^* - Y_{..}^*}{(k-1)(b-1)}$$

$$\omega = \frac{3(106.8) + 9(29.9) - 359.9}{(2)(8)}$$

 Para estimar el dato perdido, hacemos uso del modelo definido de donde:

$$\mathcal{D} \ \omega = \frac{kY_{B.}^* + bY_{.8}^* - Y_{..}^*}{(k-1)(b-1)}$$

$$\omega = \frac{3(106.8) + 9(29.9) - 359.9}{(2)(8)}$$

$$\omega = 14.35$$

 Para estimar el dato perdido, hacemos uso del modelo definido de donde:

$$\mathcal{D} \ \omega = \frac{kY_{B.}^* + bY_{.8}^* - Y_{..}^*}{(k-1)(b-1)}$$

$$\omega = \frac{3(106.8) + 9(29.9) - 359.9}{(2)(8)}$$

• Reemplazando el dato perdido en la tabla de datos tenemos:

DBCA con bloques aleatorios Cálculos

Número de vehículo	Compuestos					
1	15.5 (A)	15.6 (B)	16.6 (<i>C</i>)			
2	13.0 (B)	13.1 (A)	13.5 (<i>C</i>)			
3	11.8 (B)	13.4 (<i>C</i>)	12.2 (A)			
4	14.2 (A)	14.8 (<i>C</i>)	15.0 (B)			
5	12.4 (B)	14.0 (A)	14.3 (<i>C</i>)			
6	15.6 (<i>C</i>)	14.9 (A)	14.7 (B)			
7	13.2 (<i>C</i>)	12.0 (B)	12.0 (A)			
8	14.9 (<i>C</i>)	14.35(<i>B</i>)*	15.0 (A)			
9	12.4 (A)	13.5 (<i>C</i>)	12.3 (B)			
Total	123.3 (A)	106.8 (B)	129.8 (<i>C</i>)			

DBCA con bloques aleatorios Tabla DBCA

	Número de vehículo									
Tr	1	1 2 3 4 5 6 7 8 9							Y_i .	
Α	15.5	13.1	12.2	14.2	14.0	14.9	12.0	15.0	12.4	
В	15.6	13.0	11.8	15.0	12.4	14.7	12.0	14.35	12.3	
С	16.6	13.5	13.4	14.8	14.3	15.6	13.2	14.9	13.5	
$Y_{\cdot j}$										

•
$$SCTr = \sum_{i=1}^{k} \frac{Y_{i}^{2}}{b} - \frac{Y_{i}^{2}}{kb} =$$

DBCA con bloques aleatorios Tabla DBCA

	Número de vehículo									
Tr	1	1 2 3 4 5 6 7 8 9							Y_i .	
Α	15.5	13.1	12.2	14.2	14.0	14.9	12.0	15.0	12.4	
В	15.6	13.0	11.8	15.0	12.4	14.7	12.0	14.35	12.3	
С	16.6	13.5	13.4	14.8	14.3	15.6	13.2	14.9	13.5	
$Y_{\cdot j}$										

•
$$SCTr = \sum_{i=1}^{k} \frac{Y_{i\cdot}^2}{b} - \frac{Y_{\cdot\cdot}^2}{kb} =$$

$$\bullet \ \mathit{SCB} = \sum_{j=1}^b \frac{\mathsf{Y}_{\cdot j}^2}{\mathsf{k}} - \frac{\mathsf{Y}_{\cdot \cdot}^2}{\mathsf{k} b} =$$

DBCA con bloques aleatorios Tabla DBCA

		Número de vehículo									
Tr	1	2	3	4	5	6	7	8	9	Y_{i} .	
Α	15.5	13.1	12.2	14.2	14.0	14.9	12.0	15.0	12.4		
В	15.6	13.0	11.8	15.0	12.4	14.7	12.0	14.35	12.3		
С	16.6	13.5	13.4	14.8	14.3	15.6	13.2	14.9	13.5		
$Y_{\cdot j}$											

•
$$SCTr = \sum_{i=1}^{k} \frac{Y_{i.}^{2}}{b} - \frac{Y_{..}^{2}}{kb} =$$

•
$$SCB = \sum_{j=1}^{b} \frac{Y_{.j}^2}{k} - \frac{Y_{..}^2}{kb} =$$

•
$$SCT = \sum_{i=1}^{b} \sum_{i=1}^{k} Y_{ij}^2 - \frac{Y_{i}^2}{kb} =$$

DBCA con bloques aleatorios Tabla DBCA

		Número de vehículo									
Tr	1	2	3	4	5	6	7	8	9	Y_i .	
Α	15.5	13.1	12.2	14.2	14.0	14.9	12.0	15.0	12.4		
В	15.6	13.0	11.8	15.0	12.4	14.7	12.0	14.35	12.3		
С	16.6	13.5	13.4	14.8	14.3	15.6	13.2	14.9	13.5		
$Y_{\cdot j}$											

•
$$SCTr = \sum_{i=1}^{k} \frac{Y_{i}^{2}}{b} - \frac{Y_{i}^{2}}{kb} =$$

•
$$SCB = \sum_{i=1}^{b} \frac{Y_{.j}^2}{k} - \frac{Y_{.i}^2}{kb} =$$

•
$$SCT = \sum_{i=1}^{b} \sum_{j=1}^{k} Y_{ij}^2 - \frac{Y_{i}^2}{kb} =$$

•
$$SCE = SCT - SCTr - SCB =$$

DBCA con bloques aleatorios Tabla DBCA con un dato perdido

• Complete la tabla con el dato perdido y obtenga las conclusiones respectivas:

Tabla. Anova	Tabla. Anova para un diseño de efectos con bloques aleatorios.								
variabilidad SC GL CM F ₀ valor-p									
Tratamientos	SCA	a-1	СМА	CMA CME	$P(F > F_0^A)$				
Bloques	SCB	b-1	СМВ	CMB CME	$P(F > F_0^B)$				
Error	SCE	(a-1)(b-1)-1	CME						
Total	SCT	ab-1-1							

		Número de vehículo								
Tr	1	1 2 3 4 5 6 7 8 9								
Α	15.5	13.1	12.2	14.2	14.0	14.9	12.0	15.0	12.4	123.3
В	15.6	13.0	11.8	15.0	12.4	14.7	12.0	14.35	12.3	121.15
С	16.6	13.5	13.4	14.8	14.3	15.6	13.2	14.9	13.5	129.8
$Y_{\cdot j}$	47,7	39,6	37,4	44	40.7	45.2	37.2	44.25	38.2	374.25

•
$$SCTr = \sum_{i=1}^{k} \frac{Y_{i:}^2}{b} - \frac{Y_{::}^2}{kb} = \frac{123.3^2 + 121.15^2 + 129.8^2}{9} - \frac{374.25^2}{27} = 4.5072$$

		Número de vehículo									
Tr	1	1 2 3 4 5 6 7 8 9									
Α	15.5	13.1	12.2	14.2	14.0	14.9	12.0	15.0	12.4	123.3	
В	15.6	13.0	11.8	15.0	12.4	14.7	12.0	14.35	12.3	121.15	
С	16.6	13.5	13.4	14.8	14.3	15.6	13.2	14.9	13.5	129.8	
$Y_{\cdot j}$	47,7	39,6	37,4	44	40.7	45.2	37.2	44.25	38.2	374.25	

•
$$SCTr = \sum_{i=1}^{K} \frac{Y_{i}^{2}}{b} - \frac{Y_{i}^{2}}{kb} = \frac{123.3^{2} + 121.15^{2} + 129.8^{2}}{9} - \frac{374.25^{2}}{27} = 4.5072$$

•
$$SCB = \sum_{j=1}^{b} \frac{Y_{.j}^2}{k} - \frac{Y_{.j}^2}{kb} = \frac{47.7^2 + 39.6^2 + \dots + 38.2^2}{3} - \frac{374.25^2}{27} = 38.7733$$

		Número de vehículo									
Tr	1	1 2 3 4 5 6 7 8 9									
Α	15.5	13.1	12.2	14.2	14.0	14.9	12.0	15.0	12.4	123.3	
В	15.6	15.6 13.0 11.8 15.0 12.4 14.7 12.0 14.35 12.3									
С	16.6	13.5	13.4	14.8	14.3	15.6	13.2	14.9	13.5	129.8	
$Y_{\cdot j}$	47,7	39,6	37,4	44	40.7	45.2	37.2	44.25	38.2	374.25	

•
$$SCTr = \sum_{i=1}^{k} \frac{Y_{i.}^{2}}{b} - \frac{Y_{i.}^{2}}{kb} = \frac{123.3^{2} + 121.15^{2} + 129.8^{2}}{9} - \frac{374.25^{2}}{27} = 4.5072$$

•
$$SCB = \sum_{j=1}^{b} \frac{Y_{.j}^2}{k} - \frac{Y_{.i}^2}{kb} = \frac{47.7^2 + 39.6^2 + \dots + 38.2^2}{3} - \frac{374.25^2}{27} = 38.7733$$

•
$$SCT = \sum_{i=1}^{b} \sum_{i=1}^{k} Y_{ij}^2 - \frac{Y_{..}^2}{kb} = 5233.5325 - \frac{374.25^2}{27} = 46.012$$

		Número de vehículo									
Tr	1	1 2 3 4 5 6 7 8 9									
Α	15.5	13.1	12.2	14.2	14.0	14.9	12.0	15.0	12.4	123.3	
В	15.6	13.0	11.8	15.0	12.4	14.7	12.0	14.35	12.3	121.15	
С	16.6	13.5	13.4	14.8	14.3	15.6	13.2	14.9	13.5	129.8	
$Y_{\cdot j}$	47,7	39,6	37,4	44	40.7	45.2	37.2	44.25	38.2	374.25	

•
$$SCTr = \sum_{i=1}^{K} \frac{Y_{i}^{2}}{b} - \frac{Y_{i}^{2}}{kb} = \frac{123.3^{2} + 121.15^{2} + 129.8^{2}}{9} - \frac{374.25^{2}}{27} = 4.5072$$

•
$$SCB = \sum_{j=1}^{b} \frac{Y_{.j}^2}{k} - \frac{Y_{.j}^2}{kb} = \frac{47.7^2 + 39.6^2 + \dots + 38.2^2}{3} - \frac{374.25^2}{27} = 38.7733$$

•
$$SCT = \sum_{i=1}^{b} \sum_{j=1}^{k} Y_{ij}^{2} - \frac{Y_{..}^{2}}{kb} = 5233.5325 - \frac{374.25^{2}}{27} = 46.012$$

• SCE = SCT - SCTr - SCB = 46.012 - 4.5072 - 38.7733 = 2.7315

DBCA con bloques aleatorios Tabla DBCA con un dato perdido

La tabla Anova para este experimento es:

Tabla. Anova	Tabla. Anova para un diseño de efectos con bloques aleatorios.								
variabilidad	SC	GL	CM	F ₀	valor-p				
Tratamientos	4.5072	2	2.2536	12.376	0.0000				
Bloques	38.7733	8	4.8467	26.727	0.0000				
Error	2.7315	15	0.1821						
Total	46.012	25							

DBCA con bloques aleatorios Tabla DBCA con un dato perdido

La tabla Anova para este experimento es:

Tabla. Anova	Tabla. Anova para un diseño de efectos con bloques aleatorios.									
variabilidad SC GL CM F ₀ valor-p										
Tratamientos	4.5072	2	2.2536	12.376	0.0000					
Bloques	38.7733	8	4.8467	26.727	0.0000					
Error	2.7315	15	0.1821							
Total	46.012	25								

• El valor $P < \alpha = 0.05$, es decir, hay evidencia estadísticamente significativa de que almenos un par de tratamientos son diferentes en cuanto al consumo medio real de gasolina.

La tabla ANOVA usando Statgraphics viene dada por:

Suma de Cuadrados Tipo III

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
COMPUESTOS	4,26722	2	2,13361	11,72	0,0009
VEHICULO	37,8844	8	4,73556	26,01	0,0000
Residuo	2,73111	15	0,182074		
Total (corregido)	45,7635	25			

La tabla ANOVA usando Statgraphics viene dada por:

Suma de Cuadrados Tipo III

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
COMPUESTOS	4,26722	2	2,13361	11,72	0,0009
VEHICULO	37,8844	8	4,73556	26,01	0,0000
Residuo	2,73111	15	0,182074		
Total (corregido)	45,7635	25			·

Obsérvese que los grados de libertad del total y residuo son 25 y 15 resp., en lugar de 26 y 16, ya que partimos de 26 observaciones.

Realizamos comparaciones múltiples con el método de Dunnet puesto que el tratamiento *C* funciona como control (sin tratamiento)

Método: 95,0 porciento Dunnett

Contraste	Sig.	Diferencia	Límites +/-
A - C	*	-0,722222	0,497643
B-C	*	-0,961111	0,512958

^{*} denota una diferencia estadísticamente significativa.

Realizamos comparaciones múltiples con el método de Dunnet puesto que el tratamiento C funciona como control (sin tratamiento)

Método: 95,0 porciento Dunnett

Contraste	Sig.	Diferencia	Límites +/-
A - C	*	-0,722222	0,497643
B-C	*	-0,961111	0,512958

^{*} denota una diferencia estadísticamente significativa.

Los compuestos con aditivos difieren del compuesto sin aditivos, de hecho, presentan menor consumo de gasolina (\overline{Y}_{A} . = 13.7, \overline{Y}_{B} . = 13.4611) que el compuesto sin aditivos (\overline{Y}_{C} . = 14.4222)

- MONTGOMERY C. DOUGLAS. Diseño y Análisis de Experimentos. Segunda Edición. LIMUSA WILEY
- GUTIERREZ H y DE LA VARA R. Análisis y Diseño de Experimentos. Segunda Edición. Mc Graw Hill.
- KUEHL ROBERT. Diseño de Experimentos. Segunda Edición. Thomson.
- VICENTE M, GIRON P, NIETO C, PÉREZ T. Diseño de Experimentos. Pearson Prentice Hall.
- DEVORE JAY. Probabilidad y Estadística para Ingeniería y Ciencias. Sexta Edición.
- WALPOLE MYERS. Probabilidad y Estadística. Cuarta Edición. Mc Graw Hill.