Continuous Optimization

Chapter 2: Gradient Descent

1 Descent Direction Methods

In this chapter we consider the unconstrained minimization problem

$$\min_{x \in \mathbb{R}^n} f(x).$$

The iterative algorithms that we will consider in this chapter take the form

$$x_{k+1} = x_k + t_k d_k$$
 $k = 0, 1, \dots,$

where d_k is the so-called direction and t_k is the step size. We will limit ourselves to descent directions, whose definition is now given.

Definition 1.1. Let $f: \mathbb{R}^n \to \mathbb{R}$ with $f \in C^1(\mathbb{R}^n)$. A vector $0 \neq d \in \mathbb{R}^n$ is called a descent direction of f if the directional derivative f'(x,d) is negative, i.e.,

$$f'(x,d) = \nabla f(x)^T d < 0.$$

In particular, by taking small enough steps, descent directions lead to a decrease of the objective function.

Lemma 1.1 (descent property of descent directions). Let $f : \mathbb{R}^n \to \mathbb{R}$ with $f \in C^1(\mathbb{R}^n)$ and let $x \in \mathbb{R}^n$. Suppose that d is a descent direction of f at x. Then, there exists $\epsilon > 0$ such that

$$f(x+td) < f(x) \quad \forall t \in (0, \epsilon].$$

Proof. Since f'(x,d) < 0, it follows from the definition of the directional derivative that

$$\lim_{t \to 0^+} \frac{f(x+td) - f(x)}{t} = f'(x,d) < 0.$$

Therefore, there exists an $\epsilon > 0$ such that

$$\frac{f(x+td) - f(x)}{t} < 0,$$

for any $t \in (0, \epsilon)$

Algorithm 1: Schematic Descent Directions Method

Input: $x_0 \in \mathbb{R}^n$

- 1 k = 0
- 2 while Termination criterion is not satisfied do
- **3** Pick a descent direction d_k
- 4 Find a step size t_k satisfying $f(x_k + t_k d_k) < f(x_k)$
- 6 k = k + 1

Various are still unspecified.

2 Gradient Method

The most important choice in the algorithm above concerns the selection of the descent direction. One obvious choice is to pick the steepest (normalized) direction, i.e., $d_k = -\nabla f(x_k)/||\nabla f(x_k)||$. In fact, this direction minimizes the directional derivatives between all normalized directions.

Lemma 2.1. Let $f: \mathbb{R}^n \to \mathbb{R}$ with $f \in C^1(\mathbb{R}^n)$ and let $x \in \mathbb{R}^n$ be non-stationary (i.e., $\nabla f(x) \neq 0$). Then the optimal solution of the problem

min
$$f'(x,d)$$
,
s.t. $||d|| = 1$.

is
$$d = -\frac{\nabla f(x)}{||d||}$$
.

Proof. As $f \in C^1(\mathbb{R}^n)$ and by Cauchy-Schwarz, we have

$$f'(x,d) = \nabla f(x)^T d \ge -||\nabla f(x)|| \cdot ||d|| = -||\nabla f(x)||.$$

Thus, $-||\nabla f(x)||$ is a lower bound for the optimal value of the problem. On the other hand, by plugging $d = -\nabla f(x)/||\nabla f(x)||$ in the objective function we get

$$f'\left(x, -\frac{\nabla f(x)}{||\nabla f(x)||}\right) = -\nabla f(x)^T\left(\frac{\nabla f(x)}{||\nabla f(x)||}\right) = -||\nabla f(x)||,$$

and we thus come to the conclusion that the lower bound is attained at $d = -\frac{\nabla f(x)}{||d||}$.

Thus, the gradient method selects $d_k = -\nabla f(x_k)$ which is obviously a descent direction, i.e.,

$$\nabla f(x_k)^T d_k = -\nabla f(x_k)^T \nabla f(x_k) = -||\nabla f(x)||^2.$$

References