Inhaltsverzeichnis

1	Mes	ssu	n	g	aı	\mathbf{n} a	ılα	\mathbf{g}	eı	r (G	rë	ß	eı	1											2	2
	1.1	a																								6	2
	1.2	b																								4	4
	1.3	c																								2	4

1 Messung analoger Größen

1.1 a

Zunächst muss der Strom der Driftkammer in abhägigkeit von der Hochspannung eingetragen werden. Mittels ohmsches Gesetzt ist die Spannung in Strom auszurechnen.

$$U = R.I \Leftrightarrow$$

$$I = \frac{U}{R}$$

$$\Delta I = \frac{\Delta U}{R}$$

Hierbei ist $R = 1M\Omega$ angenommen. Die gemessene Werte lauten: Es ist

$U_{ m Drift}/{ m kV}$	$\Delta U_{ m Drift}/{ m V}$	I/nA	$\Delta I/\mathrm{nA}$
2.105	0.0421	5	0.25
2.204	0.0440	6	0.25
2.304	0.0460	7	0.25
2.402	0.0480	8	0.5
2.502	0.0500	9	1
2.602	0.0520	10	1
2.707	0.0541	12	1.5
2.805	0.0561	17	3
2.907	0.0581	25	5
2.95	0.059	32	6
2.997	0.0599	45	10

Tabelle 1: Messunge der Spannung ohne Quelle. Zu beachten ist, dass die $\Delta U_{\rm Drift}$ als 20% von $U_{\rm Drift}$ angenommen worden ist. Die dazugehöroge Diagramm ist in Abbildung 1 zu finden.

Abbildungen 2 und 1 zu sehen, dass die gemessene Werte ab etwa $2.85\,\mathrm{kV}$ stark anteigt. Dazuhinaus ist zu beachten, dass die Werte, die mit dem Probe ausgemessen worden wesentlich höher mit stärkeren ansteigung ist. Diese exponnenzielle Ansteigung, folgt von der höhere Anzahl der Primärionisation der Gas im Kammer.

Abbildung 1: Es ist auf diese Diagramm zu sehen, dass je höher Strom geht, desto höhere schwankungen zu folge ist.

Abbildung 2: Es ist auf diese Diagramm zu sehen, dass je höher Strom geht, desto höhere schwankungen zu folge ist.

$U_{ m Drift}/{ m kV}$	$\Delta U_{ m Drift}/{ m V}$	I/nA	$\Delta I/\mathrm{nA}$
2.099	0.0419	9	0.5
2.202	0.0440	10	0.5
2.306	0.0461	15	0.5
2.405	0.0481	24	1
2.507	0.0501	40	2
2.601	0.0520	71	35
2.704	0.0540	230	5
2.803	0.0560	250	10
2.906	0.0581	535	20
2.953	0.0590	750	35
2.989	0.0597	1450	35

Tabelle 2: Messunge der Spannung mit Quelle. Zu beachten ist, dass die $\Delta U_{\rm Drift}$ als 20% von $U_{\rm Drift}$ angenommen worden ist. Die dazugehöroge Diagramm ist in Abbildung 2 zu finden.

1.2 b

1.3 c

2 Messung der Driftzeitspektren