CRYSTAL LATTICE:

Crystalline material consists of a regular repetition of a group of atoms in **three-dimensional (3D)** space. A crystal lattice is an infinitely repeating array of points in space.

UNIT CELL:

The smallest repeating unit of the crystal lattice is the unit cell, the building block of a crystal. In three dimensions the unit cell is any parallelepiped whose vertices are lattice points, in two dimensions it is any parallelogram whose vertices are lattice points.

Unit Cell in 2D

 The smallest component of the crystal (group of atoms, ions or molecules), which when stacked together with pure translational repetition reproduces the whole crystal.

2-DUNIT CELL

A Portion of a Three Dimensional Cubic Lattice and its Unit Cell

There are only SEVEN different shape of UNIT cell which can staked together to completely fill all space (3-Dimension) without overlapping and gives seven crystal system and belong to one of 14 Bravais lattice.

Therefore, the all-crystalline material have seven crystal system and 14 Bravais Lattice

	System	Parameters	Angles
1.	Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$
2.	Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$
3.	Orthorhombic	$a\neq b\neq c$	$\alpha = \beta = \gamma = 90^{\circ}$
4.	Hexagonal	$a = b \neq c$	α = β = 90°, γ = 120°
5.	Trigonal	a = b = c	$\alpha = \beta = \gamma \neq 90^{\rm o}$
6.	Monoclinic	$a\neq b\neq c$	$\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$
7.	Triclinic	$a\neq b\neq c$	$\alpha \neq \beta \neq \gamma \neq 90^o$

CUBIC UNIT CELL

CUBIC UNIT CELL

CUBIC UNIT CELL

CUBIC UNIT CELL

#	Properties	Simple Cubic	Body Centered Cubic System	Face Centered Cubic System
1	Unit Cell Volume	a ³	a ³	a ³
2	No. of atom per unit cell	1	2	4
3	Co-ordination No. (CN)	6	8	12
4	Atomic Radius	$\frac{a}{2}$	$(\mathbf{r} = \frac{\sqrt{3}}{4} \mathbf{a})$	$(r = \frac{\sqrt{2}}{4}a)$
5	Packing Factor	0.52	0.68	0.74
6	Example	Ро	Fe	Al

CUBIC UNIT CELL

For detail APF follow the link below:

https://drive.google.com/file/d/1ziV3WxBTxpADOA19pdhTXK8xwcjNAhm5/view?usp=sharing

Thank You!!

