### UNIVERSIDAD NACIONAL DE INGENIERÍA

#### FACULTAD DE INGENIERÍA MECÁNICA



RESISTENCIA DE MATERIALES II

TERCERA PRÁCTICA CALIFICADA

LIMA - PERÚ NOVIEMBRE 2019

# TERCERA PRÁCTICA CALIFICADA

#### ENTREGADO: 15 NOVIEMBRE 2019

| LUMNO:   |                                        |
|----------|----------------------------------------|
|          |                                        |
|          | Huaroto Villavicencio Josué, 20174070I |
|          |                                        |
|          |                                        |
| ROFESOR: |                                        |
|          |                                        |
|          |                                        |
|          |                                        |

ING. CUEVA PACHECO RONALD

# Índice general

| 1. | Deformada                       | 10 |
|----|---------------------------------|----|
| 2. | Flecha máxima                   | 11 |
| 3. | Ángulo formado por los extremos | 12 |
| 4. | Mayor esfuerzo                  | 13 |
| 5. | Anexos                          | 15 |
| 6. | Conclusiones                    | 28 |

### Cálculo de reacciones

Con n=23.

Hallamos por estática los valores de las reacciones generando el siguiente sistema:

$$R_2 = \frac{5 \cdot (2n^2 + 1135 \, n + 110780)}{n + 155}$$
$$R_1 = 7340 - 60 \, n - R_2$$

#### Código 1: Cálculo de reacciones

```
import math
import matplotlib.pyplot as plt
n = 23
R2 = 5*(2*n*n + 1135*n + 110780)/(n+155)
R1 = 7340-60*n-R2
print(R1,R2)
```

De donde obtenemos que:

 $R_1 = 2085.196629213483 \,\mathrm{N}$   $R_2 = 3874.803370786517 \,\mathrm{N}$ 

#### Código 2: Cálculo del área

```
area = []
  for i in range(0,310+2*n+1):
       if i<10:
3
           area.append(math.pi*(40/2))
4
           continue
5
       if i<80:
           area.append((math.pi*(50/2)))
           continue
       if i<200+2*n:
9
           area.append((math.pi*(((50+((i-80)*20/(120+2*n)))/2))))
10
           continue
11
       if i<260+2*n:
^{12}
           area.append((math.pi*(70/2)))
13
           continue
14
       if i<300+2*n:
15
           area.append(math.pi*(60/2))
16
           continue
17
       area.append((math.pi*(55/2)))
```

#### Fuerza cortante

Usando las funciones de Macaulay obtenemos la forma reducida de la expresión del cortante:

$$V = R_1 < x >^0 - (12 - n) < x - 10 >^1 + (12 - n) < x - 80 >^1 - (5000 + 10n) < x - (130 + 2n) >^0 + (60000 + 200n) < x - (130 + 2n) >^{-1} - \frac{5/6}{2} < x - (200 + 2n) >^2 + 50 < x - (260 + 2n) >^1 + \frac{5/6}{2} < x - (260 + 2n) >^2 + R_2 < x - (310 + 2n) >^0$$

Procedemos a hallar los valores de V para cada punto y observar la gráfica formada.

#### Código 3: Cálculo del cortante

```
v.append(0)
   for x in range(1,310+2*n+1):
       aux = R1
       if x>10:
5
           aux = aux - (12-n)*(x-10)
6
       if x>130+2*n:
           aux = aux - (5000 + 10*n)
       if x>80:
9
           aux = aux + (12-n)*(x-80)
       if x>260+2*n:
11
           aux = aux + (50)*(x-(260+2*n)) + (5/12)*(x-(260+2*n))*(x-(260+2*n))
12
       if x>200+2*n:
13
           aux = aux - (5/12)*(x - (200+2*n))*(x - (200+2*n))
14
       if x \ge 310 + 2 \cdot n:
15
           aux = aux + R2
16
       v.append(aux)
17
  plt.figure(figsize=(10,5))
   plt.xlabel('Longitud (mm)')
  plt.ylabel('Fuerza cortante (N)')
  plt.grid()
plt.plot(v)
plt.savefig('Fuerzacortante.pdf')
```



Figura 1: Fuerza cortante

#### Momento flector

$$M = R_1 < x >^1 - \frac{12 - n}{2} < x - 10 >^2 + \frac{12 - n}{2} < x - 80 >^2 - (5000 + 10n) < x - (130 + 2n) >^1 + (60000 + 200n) < x - (130 + 2n) >^0 - \frac{5/6}{6} < x - (200 + 2n) >^3 + \frac{50}{2} < x - (260 + 2n) >^2 + \frac{5/6}{6} < x - (260 + 2n) >^3 + R_2 < x - (310 + 2n) >^1$$

De la misma forma, hallamos los valores para el momento flector

#### Código 4: Cálculo del momento flector

```
_1 m = []
  for x in range(0,310+2*n+1):
       aux = R1*x
       if x>10:
4
           aux = aux - (12-n)*(x-10)*(x-10)/2
5
       if x>130+2*n:
           aux = aux - (5000+10*n)*(x-(130+2*n))
       if x>80:
           aux = aux + (12-n)*(x-80)*(x-80)/2
9
       if x>260+2*n:
10
           aux = aux+(25)*(x-(260+2*n))**2 + (5/36)*(x-(260+2*n))**3
11
       if x > 130+2*n:
           aux = aux + (60000 + 200 * n)
13
       if x>200+2*n:
14
           aux = aux - (5/36)*(x - (200+2*n))*(x - (200+2*n))*(x - (200+2*n))
15
       if x \ge 310 + 2 \cdot n:
16
           aux = aux + R2*(x-(310+2*n))
17
       m.append(aux)
18
  plt.figure(figsize=(10,5))
  plt.grid()
  plt.xlabel('Longitud (mm)')
plt.ylabel('Momento flector (N-mm)')
plt.plot(m)
plt.savefig('momento.pdf')
```



Figura 2: Momento flector

### Momento de inercia

#### Código 5: Cálculo del momento flector

```
for i in range(0,310+2*n+1):
       if i<10:
           I.append((math.pi*(40)**4)/64)
           continue
5
       if i<80:
6
          I.append((math.pi*(50)**4)/64)
           continue
8
       if i<200+2*n:
           I.append((math.pi*(((50+((i-80)*20/(120+2*n))))**4)/64))
10
           continue
11
       if i<260+2*n:
12
           I.append((math.pi*(70)**4)/64)
13
           continue
14
       if i < 300 + 2 * n:
15
           I.append((math.pi*(60)**4)/64)
16
           continue
17
       I.append((math.pi*(55)**4)/64)
18
plt.figure(figsize=(15,5))
  plt.grid()
plt.xlabel('Longitud (mm)')
plt.ylabel('Momento de inercia (mm$^4$)')
plt.plot(I,'-m')
plt.savefig('momentoi.pdf')
```



Figura 3: Momento de inercia

#### Código 6: Cálculo del momento flector



Figura 4: M/EI

### Cálculo de la deflexión

Teniendo los valores de M, entonces pasamos I dividiendo e integramos:

$$\int M/I \, \mathrm{d}x = ??$$

Sabemos sin embargo, que si la función M/I es continua e integrable, entonces podemos hallar su integral definida:

$$\int_0^{310+2n} M/I \, \mathrm{d}x = \left[ \int M/I \, \mathrm{d}x \right]_{310+2n} - 0$$

Debido a que es complicado hallar la integral de M/I, optamos por hallar la integral definida para cada punto entre 0 y 310+2n de manera numérica, la cual es fácil de hallar. Recordando que los valores obtenidos corresponden a la de la integral  $\int M/I \, \mathrm{d}x$ 

#### Código 7: Primera integral de M/I

```
mi = []
mi.append(0)
for i in range(1,310+2*n+1):
    mi.append(m[i]/I[i] + mi[i-1])
plt.figure(figsize=(10,5))
plt.xlabel('Longitud (mm)')
plt.ylabel('$\int M/I$ (N/mm$^{2}$)')
plt.grid()
plt.plot(mi)
plt.savefig('mintegr.pdf')
```



La gráfica obtenida corresponde cuando la constante de integración es 0. Volvemos a integrar para hallar la deflexión del eje, de la misma forma, debido a que tenemos los valores de la primera integral de forma numérica. La gráfica resultante debe corresponde a

$$\left[\iint M/I\,\mathrm{d}x\right]_{310+2n}$$

Con constante de integración 0 para las dos constantes.

#### Código 8: Segunda integral de M/I

```
mii = []
mii.append(0)
for i in range(1,310+2*n+1):
    mii.append(mi[i]+mi[i-1])
plt.figure(figsize=(10,5))
plt.grid()
plt.xlabel('Longitud (mm)')
plt.ylabel('$ \int M/I\,\mathrm{d}x $ (MPa-mm)')
plt.plot(mii)
plt.savefig('m2i.pdf')
```



### Deformada

Para corregir el valor de las constantes de integración hallamos los valores que corresponden según las condiciones de frontera y dividimos entre E para hallar la deformada.

#### Código 1.1: Deformada

```
const = -mii[310+2*n]/(310+2*n)
for i in range(0,310+2*n+1):
    mii[i] = -(mii[i]+const*i)/E

plt.figure(figsize=(10,5))
plt.grid()
plt.xlabel('Longitud (mm)')
plt.ylabel('Deformada (mm)')
plt.plot(mii)
plt.savefig('def.pdf')
```



Figura 1.1: Gráfica de la deformada

### Flecha máxima

#### Código 2.1: Cálculo de la flecha

```
flechamax = 0
posflecha = 0
for i in range(0,310+2*n+1):
    flechamax = max(flechamax,abs(mii[i]))
for i in range(0,310+2*n+1):
    if(abs(mii[i]) == flechamax):
        posflecha = i
print(flechamax, posflecha)
```

Obtenemos que el máximo valor de la flecha es  $\boxed{0.03934077\,\mathrm{mm}}$  y sucede a  $\boxed{163\,\mathrm{mm}}$  del extremo izquierdo.

## Ángulo formado por los extremos

Realizamos una regresión lineal para hallar la ecuación que corresponde a una recta tangente al extremo izquierdo y el extremo derecho:

$$\text{Ext. izquierdo}(x) = -4.0824 \times 10^{-4} \, x - 2.4 \times 10^{-7} \quad \text{Ext. derecho}(x) = 3.12 \times 10^{-4} x - 1.1110683 \times 10^{-1} \, x - 1.000 \times 10^{-1} \, x - 1$$

Dado que las pendientes son muy pequeñas, se puede aproximar y considerar que  $\tan(x) = x$ :

$$\theta = \pi/2 - (4.0824 - 3.12) \times 10^{-4} = 1.57070008 = 89.9944858^{\circ}$$



Figura 3.1: Rectas tangentes

### Mayor esfuerzo

#### Código 4.1: Cálculo del esfuerzo por flexión

```
esfm = 0
poses = 0
for i in range(0,310+2*n+1):
    if abs(math.sqrt(area[i]/math.pi)*m[i]/I[i]) > esfm:
        esfm = abs(math.sqrt(area[i]/math.pi)*m[i]/I[i])
        poses = i
print(esfm, poses)
```

El esfuerzo máximo por flexión ocurre a 177 mm del extremo izquierdo y es de 4.1418371 MPa.

#### Código 4.2: Cálculo del esfuerzo máximo

```
esfm = 0
_2 poses = 0
  gresf = []
  for i in range(0,310+2*n+1):
      esff = abs(math.sqrt(area[i]/math.pi)*m[i]/I[i])
      gresf.append(math.sqrt(esff**2 + (v[i]/area[i])**2))
      if math.sqrt(esff**2 + (v[i]/area[i])**2) > esfm:
          esfm = math.sqrt(esff**2 + (v[i]/area[i])**2)
          poses = i
print(esfm, poses)
plt.figure(figsize=(10,5))
plt.grid()
plt.xlabel('Longitud (mm)')
plt.ylabel('Esfuerzo (MPa)')
plt.plot(gresf)
plt.savefig('esfuerzo.pdf')
```

El mayor esfuerzo, considerando la flexión y el de corte es de 44.852762 MPa y ocurre a 346 mm.



Figura 4.1: Esfuerzo

### Anexos

Como el problema ha sido programado según el valor de n. Podemos hallar el gráfico de la deformada para varios valores de n de forma muy rápida, se anexa entonces varios gráficos de la deformada con distintos valores de n:



Figura 5.1: n = 1



Figura 5.2: n=2



Figura 5.3: n = 3



Figura 5.4: n = 4



Figura 5.5: n = 5



Figura 5.6: n = 6



Figura 5.7: n = 7



Figura 5.8: n = 8



Figura 5.9: n = 9

Así mismo, podemos tomar valores muy grandes para n:



Figura 5.10: n = 100



Figura 5.11: n = 200



Figura 5.12: n = 300



Figura 5.13: n = 400



Figura 5.14: n = 1000



Figura 5.15: n = 1100



Figura 5.16: n = 2100



Figura 5.17: n = 2800



Figura 5.18: n = 2900

El código utilizado se muestra a continuación:

#### Código 5.1: Cálculo de la flecha

```
for ka in range(1,30):
       n = ka
2
       R2 = 5*(2*n*n + 1135*n + 110780)/(n+155)
3
       R1 = 7340-60*n-R2
4
       v = []
5
       v.append(0)
6
       for x in range(1,310+2*n+1):
           aux = R1
           if x>10:
9
                aux = aux - (12-n)*(x-10)
10
           if x>130+2*n:
11
                aux = aux - (5000 + 10*n)
12
           if x>80:
13
                aux = aux + (12-n)*(x-80)
14
           if x>260+2*n:
15
                aux = aux + (50)*(x-(260+2*n)) + (5/12)*(x-(260+2*n))*(x-(260+2*n))
16
           if x>200+2*n:
17
                aux = aux-(5/12)*(x - (200+2*n))*(x - (200+2*n))
18
           if x>=310+2*n:
19
                aux = aux + R2
20
           v.append(aux)
21
       m = []
22
       for x in range(0,310+2*n+1):
23
           aux = R1*x
           if x>10:
25
                aux = aux-(12-n)*(x-10)*(x-10)/2
26
           if x>130+2*n:
27
```

```
aux = aux - (5000+10*n)*(x-(130+2*n))
28
            if x>80:
29
                aux = aux + (12-n)*(x-80)*(x-80)/2
30
            if x>260+2*n:
31
                aux = aux + (25) * (x - (260 + 2 * n)) * (x - (260 + 2 * n)) + (5/36) * (x - (260 + 2 * n)) **3
32
            if x > 130+2*n:
33
                aux = aux + (60000 + 200 * n)
34
            if x>200+2*n:
35
                aux = aux - (5/36)*(x - (200+2*n))*(x - (200+2*n))*(x - (200+2*n))
36
            if x \ge 310 + 2 * n:
37
                aux = aux + R2*(x-(310+2*n))
            m.append(aux)
39
40
       for i in range(0,310+2*n+1):
41
            if i<10:
42
                I.append((math.pi*(40)**4)/64)
43
                continue
44
            if i<80:
45
                I.append((math.pi*(50)**4)/64)
46
                continue
47
            if i<200+2*n:
48
                I.append((math.pi*(((50+((i-80)*20/(120+2*n))))**4)/64))
49
                continue
50
            if i<260+2*n:
51
                I.append((math.pi*(70)**4)/64)
52
                continue
53
            if i<300+2*n:
54
                I.append((math.pi*(60)**4)/64)
55
                continue
56
            I.append((math.pi*(55)**4)/64)
57
       mi = []
58
       mi.append(0)
59
       for i in range(1,310+2*n+1):
60
            mi.append(m[i]/I[i] + mi[i-1])
61
       mii = []
62
       mii.append(0)
63
       for i in range(1,310+2*n+1):
64
            mii.append(mi[i]+mii[i-1])
65
       const = -mii[310+2*n]/(310+2*n)
66
       for i in range(0,310+2*n+1):
            mii[i] = (mii[i]+const*i)/E
68
       plt.figure(figsize=(10,5))
69
       plt.grid()
70
       plt.xlabel('Longitud (mm)')
71
       plt.ylabel('Deformada (mm)')
72
       plt.plot(mii, '-k')
```

Observe que el valor de la n va desde 1:30. Esto se puede modificar a gusto para observar otros valores de deformada. Así mismo, se calcula el cortante, el momento flector y el momento de inercia para cada posición longitudinal del eje. Para el cálculo se utiliza 310+2n puntos.

Observamos que el algoritmo es muy óptimo. Pues la complejidad es de solo  $O(n \cdot (310 + 2 \cdot n)) \approx$ 

 $O(2n^2)$ . Es decir, en una computadora rutinaria se puede realizar alrededor de 1000 pruebas para distintos valores de n y el resultado se mostraría en menos de un segundo. Todo el código fue implementado en Python 3 y las gráficas hechas en matplotlib, para el cálculo simbólico se utilizó GNU Octave.

Adicionalmente, debido a la facilidad del código escrito, analizamos los valores de flecha máxima, su posición y el esfuerzo máximo para cada valor de n hasta 600:

| Valor de n | Flecha máxima (mm) | Posición de flecha máxima (mm) | Máximo esfuerzo (MPa) |
|------------|--------------------|--------------------------------|-----------------------|
| 1          | 0.030617           | 133                            | 58.786495             |
| 2          | 0.031025           | 134                            | 57.616630             |
| 3          | 0.031434           | 136                            | 56.447468             |
| 4          | 0.031845           | 137                            | 55.278996             |
| 5          | 0.032257           | 138                            | 54.111201             |
|            |                    |                                |                       |
| 596        | 0.923507           | 330                            | 611.138406            |
| 597        | 0.928497           | 331                            | 612.255125            |
| 598        | 0.933504           | 332                            | 613.371838            |
| 599        | 0.938527           | 332                            | 614.488545            |
| 600        | 0.943570           | 333                            | 615.605245            |







Se observa un comportamiento lineal para los valores de la flecha máxima, cumpliéndose hasta cuando n=375, ahí es cuando la gráfica incrementa su pendiente y comienza a tener un crecimiento de flecha más acelerado.

#### Conclusiones

- 1. Se concluye que el eje no fallará, pues su deformada es muy pequeña comparada con su longitud y su esfuerzo es pequeño para producir la falla.
- 2. Se desprecia el peso del eje debido a que dicha fuerza es muy pequeña y solo haría más complicado los cálculos debido a que no es un eje simétrico.
- Sin tanta pérdida de precisión, observamos que el procedimiento de aproximación de Riemann para el cálculo numérico de una integral nos ayuda para operar rápidamente la deformada del eje.
- 4. Con alrededor de 350 puntos sobre todo el eje podemos considerar que la aproximación tomada en la integral es lo suficientemente precisa para no cometer errores relativos superiores a  $10^{-5}$ .
- 5. La velocidad de computación numérica es por mucho menos compleja que la simbólica en paquetes de software. Pues el cálculo exacto de  $\iint M/I$  es demasiado complejo debido a las funciones singulares que aparecen; sin embargo por una suma acumulativa puede resolverse en una complejidad O(n), es decir, se puede elevar la precisión hasta 100 veces más y seguir mostrando los resultados rápidamente.
- 6. Gracias a la facilidad del problema a ser parametrizado según n es posible implementar un código sencillo en algún lenguaje de programación.
- 7. La ventaja de utilizar un lenguaje de programación para el problema es que podemos modificar un solo valor (n) para observar como varía el esfuerzo cortante, momento flector y deformada para todos esos valores de forma muy rápida; esto tomaría mucho tiempo en un un cálculo por elementos finitos que demanda un proceso de mallado y de diseño.
- 8. Con gran velocidad y precisión podemos notar observar que el eje no fallará por esfuerzo hasta valores muy grandes de n, el fallo ocurre pues por flexión, donde la flecha crece de manera rápida.
- 9. Si consideramos que el eje se trata de un acero A-36, comprobamos que para valores de n mayor a 350 se llega al punto de fluencia. Mientras que para n menores a 50 se tiene un factor de seguridad de 3.