优化设计

一维搜索实验报告

1、 运行条件

机器型号: 联想小新 700

CPU: i5-6300HQ

内存: 16GB 2133Mhz

2、 实验内容

使用黄金分割法、平分法、成功-失败法、牛顿法、三点二次插值法、三次插值法求极值:

$$(1)\min f(x) = x^4 - 4x^3 - 6x^2 - 16x + 4$$
 初值=3

$$(2)$$
 min $f(x) = x^2 + \exp(-x)$ 初值=100

$$(3)$$
 minf $(x) = x^4 - x^2 - 2^x + 5$ 初值=10

共四个代码文件: func.m, range.m, fmin.m, main.m.

目标函数通过一个函数选择器进行选择,代码见 func.m,通过给入不同的目标函数值选择上述三个函数。

range.m 为通过进退法求高低高的搜索区间。

fmin.m 为调用 6 种搜索方法搜索极值,作为六种求极值方法的 初始值。

main.m 种调用 fmin 函数,即传入不同的方法、目标函数、初始值、精度参数求极值并输出结果和迭代次数,对每种方法求出三个函数(每个函数两个精度: 0.001 和 0.000001)极值总时间进行计时。

3、 实验结果

运行时间为某搜索方法下,函数 1 (精度 0.001 和 0.000001)、函数 2 (精度 0.001 和 0.000001)、函数 3 (精度 0.001 和 0.000001)的得出结果的总时间。

迭代次数为确定搜索区间后, 某搜索方法的迭代次数。

运行结果如下表:

方法	目标函数	极值点x坐标	极值	迭代次数	总时间
黄金分割法	函数 1 精度 0.01	4. 0003	-155. 99	16	- 1. 332s
	函数 1 精度 0.000001	4. 0000	-155. 99	33	
	函数 2 精度 0.01	0. 3519	0.8271	24	
	函数 2 精度 0.000001	0. 3517	0.8271	37	
	函数 3 精度 0.01	0. 9249	2. 9777	20	
	函数 3 精度 0.000001	0. 9250	2. 9777	31	
平分法	函数 1 精度 0.01	4. 0000	-156.0	1	· 2. 68s
	函数 1 精度 0.000001	4. 0000	-156.0	1	
	函数 2 精度 0.01	0.3518	0.8271	17	
	函数 2 精度 0.000001	0.3517	0.8271	26	
	函数 3 精度 0.01	0. 9252	2.9777	15	
	函数 3 精度 0.000001	0.9250	2.9777	25	
成功-失败 法	函数 1 精度 0.01	4.0000	-156.0	26	3. 909s
	函数 1 精度 0.000001	4. 0000	-156.0	51	
	函数 2 精度 0.01	0. 3516	0.8271	114	
	函数 2 精度 0. 000001	0. 3517	0.8271	139	

			1	I	
	函数 3 精度 0.01	0. 9248	2. 9777	32	
	函数 3 精度 0.000001	0. 9250	2. 9777	58	
牛顿法	函数 1 精度 0.01	4.0000	-155.99	4	0. 952s
	函数 1 精度 0.000001	4.0000	-155.99	5	
	函数 2 精度 0.01	0. 3517	0. 8271	4	
	函数 2 精度 0.000001	0. 3517	0. 8271	5	
	函数 3 精度 0.01	0. 9250	2. 9777	9	
	函数 3 精度 0.000001	0. 9250	2.9777	10	
三点二次插值法	函数 1 精度 0.01	4.0	-156.0	2	0. 924s
	函数 1 精度 0.000001	4.0	-156.0	4	
	函数 2 精度 0.01	0. 3517	0.8271	7	
	函数 2 精度 0.000001	0. 3517	0. 8271	8	
	函数 3 精度 0.01	0. 9250	2. 9789	8	
	函数 3 精度 0.000001	0. 9250	2. 9777	15	
三次插值法	函数 1 精度 0.01	4.0	-156.0	1	· 1. 344s
	函数 1 精度 0.000001	4.0	-156.0	1	
	函数 2 精度 0.01	0. 3517	0.8271	7	
	函数 2 精度 0.000001	0. 3517	0.8271	8	
	函数 3 精度 0.01	0.9250	2. 9777	6	
	函数 3 精度 0.000001	0. 9250	2. 9777	7	

4、 总结

计时函数 tic、toc 的精度为 0.1s,可以通过多次循环运行函数的

方法计总时间,本实验是对确定的三个函数、精度及初始值通过某一个方法计算完成的总时间进行计时。

六种搜索方法中,运行时间最长和迭代次数最多的是成功-失败法,时间最短的是牛顿法为代表的插值法,可以看出其具有收敛速度快的特点。

在编写算法过程中,发现部分代码会进行大分数形式的运算,这样保留完整信息可能会运算量过大导致程序运行卡死,因此代码中采用 vpa()函数舍入一定精度的小数值,从而保证程序正常运行。