Planche nº 4. Trigonométrie

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice n° 1 (*IT) Résoudre dans \mathbb{R} puis dans $[0,2\pi]$ les équations suivantes :

1)
$$\sin x = 0$$
 2) $\sin x = 1$ 3) $\sin x = -1$ 4) $\cos x = 1$ 5) $\cos x = -1$ 6) $\cos x = 0$ 7) $\tan x = 0$

8) $\tan x = 1$.

Exercice n° 2 (*IT) Résoudre dans \mathbb{R} puis dans $[0,2\pi]$ les équations suivantes :

1)
$$\sin x = \frac{1}{2}$$
 2) $\sin x = -\frac{1}{\sqrt{2}}$ 3) $\tan x = -1$ 4) $\tan x = \frac{1}{\sqrt{3}}$ 5) $\cos x = \frac{\sqrt{3}}{2}$ 6) $\cos x = -\frac{1}{\sqrt{2}}$

Exercice nº 3 (**IT) Résoudre dans \mathbb{R} puis dans I les équations suivantes :

1)
$$\sin(2x) = \frac{1}{2}$$
, $I = [0, 2\pi]$ 2) $\sin(\frac{x}{2}) = -\frac{1}{\sqrt{2}}$, $I = [0, 4\pi]$ 3) $\tan(5x) = 1$, $I = [0, \pi]$
4) $\cos(2x) = \cos^2 x$, $I = [0, 2\pi]$ 5) $2\cos^2 x - 3\cos x + 1 = 0$, $I = [0, 2\pi]$ 6) $\cos(nx) = 0$ ($n \in \mathbb{N}^*$)

$$|\cos(nx)| = 1$$
 8) $\sin(nx) = 0$ 9) $|\sin(nx)| = 1$

$$\begin{array}{lll} 7) \ |\cos(nx)| = 1 & 8) \ \sin(nx) = 0 & 9) \ |\sin(nx)| = 1 \\ 10) \ \sin x = \tan x, \ I = [0, 2\pi] & 11) \sin(2x) + \sin x = 0, \ I = [0, 2\pi] & 12) \ 12 \cos^2 x - 8 \sin^2 x = 2, \ I = [-\pi, \pi] \end{array}$$

Exercice nº 4 (**IT) Résoudre dans I les inéquations suivantes :

$$\begin{array}{lll} 1)\cos x \leqslant \frac{1}{2}, \ I = [-\pi, \pi] & 2) \ \sin x \geqslant -\frac{1}{\sqrt{2}}, \ I = \mathbb{R} & 3) \ \cos x > \cos \frac{x}{2}, \ I = [0, 2\pi] \\ 4) \ \cos^2 x \geqslant \cos(2x), \ I = \mathbb{R} & 5) \ \cos^2 x \leqslant \frac{1}{2}, \ I = [0, 2\pi] & 6) \ \cos \frac{x}{3} \leqslant \sin \frac{x}{3}, \ I = [0, 2\pi]. \end{array}$$

Exercice nº 5 (*I) Calculer $\cos \frac{\pi}{2}$ et $\sin \frac{\pi}{2}$

Exercice nº 6 (*I) Calculer $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$

Exercice nº 7 (***I)

$$\textbf{1)} \ \mathrm{Pour} \ n \in \mathbb{N}^* \ \mathrm{et} \ \alpha \in]0,\pi[, \ \mathrm{calculer} \ \prod_{k=1}^n \cos \left(\frac{\alpha}{2^k}\right) \ (\mathrm{penser} \ \grave{\mathrm{a}} \ \sin(2x) = 2 \sin x \cos x).$$

2) Déterminer
$$\lim_{n\to+\infty}\sum_{k=1}^n\ln\left(\cos\left(\frac{\alpha}{2^k}\right)\right)$$
.

Exercice n° 8 (***) Soit a un réel distinct de $\frac{1}{\sqrt{3}}$ et $-\frac{1}{\sqrt{3}}$.

- 1) Calculer $tan(3\theta)$ en fonction de $tan \theta$.
- 2) Résoudre dans \mathbb{R} l'équation :

$$\frac{3x - x^3}{1 - 3x^2} = \frac{3a - a^3}{1 - 3a^2}.$$

On trouvera deux méthodes, l'une algébrique et l'autre utilisant la formule de trigonométrie établie en 1).

Exercice nº 9 (***) Combien l'équation

$$\tan x + \tan(2x) + \tan(3x) + \tan(4x) = 0$$

possède-t-elle de solutions dans $[0, \pi]$?

Exercice nº 10 (**I) Déterminer une primitive de chacune des fonctions suivantes :

1)
$$x \mapsto \cos^2 x$$
 2) $x \mapsto \cos^2 x \sin^2 x$ 3) $x \mapsto \cos^3 x$.

Exercice nº 11 (**) Démontrer les identités suivantes, en précisant à chaque fois leur domaine de validité :

1)
$$\frac{1-\cos x}{\sin x} = \tan \frac{x}{2}$$
2)
$$\sin \left(x - \frac{2\pi}{3}\right) + \sin x + \sin \left(x + \frac{2\pi}{3}\right) = 0$$
3)
$$\tan \left(\frac{\pi}{4} + x\right) + \tan \left(\frac{\pi}{4} - x\right) = \frac{2}{\cos(2x)}$$
4)
$$\frac{1}{\tan x} - \tan x = \frac{2}{\tan(2x)}.$$

Exercice n° 12 (***) Soit k un réel distinct de -1 et de 1.

- 1) Etudier les variations de $f_k \; : \; x \mapsto \frac{\sin x}{\sqrt{1-2k\cos x + k^2}} \; \mathrm{sur} \; [0,\pi].$
- 2) Calculer $\int_0^{\pi} f_k(x) dx$.

Exercice nº 13 (***I) Calculer les sommes suivantes :

$$\textbf{1)} \ S_n = \sum_{k=0}^n \cos(kx) \ \mathrm{pour} \ x \in \mathbb{R} \ \mathrm{et} \ n \in \mathbb{N} \ (\mathrm{calculer} \ \mathrm{d'abord} \ 2\sin\left(\frac{x}{2}\right)S_n).$$

2)
$$\sum_{k=0}^{n} \cos^2(kx)$$
 et $\sum_{k=0}^{n} \sin^2(kx)$, pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$.

Exercise nº 14 (**) Montrer que
$$\cos^4 \frac{\pi}{8} + \cos^4 \frac{3\pi}{8} + \cos^4 \frac{5\pi}{8} + \cos^4 \frac{7\pi}{8} = \frac{3}{2}$$
.

Exercice nº 15 (***)

- 1) Résoudre dans \mathbb{R} l'équation $\cos(3x) = \sin(2x)$.
- 2) Pour x réel, exprimer $\cos(3x)$ en fonction de $\cos(x)$ uniquement.
- 3) En déduire les valeurs de $\sin x$ et $\cos x$ pour x élément de $\left\{\frac{\pi}{10}, \frac{\pi}{5}, \frac{3\pi}{10}\right\}$.