Responsible Machine Learning with Insurance Applications

Christian Lorentzen & Michael Mayer

Autumn 2023

Table of Contents

XAI: Introduction

XAI: Explaining Models

XAI: Improving Explainability

Introduction

How to explain and interpret a given model, even if it seems a black box?

Answering this question is a key aspect of responsible ML

- 1. Information for stakeholders
- 2. Detect problems in modeling process

XAI: eXplainable Artificial Intelligence

Collection of methods to explain and interpret models

Scope and Taxonomy

Scope

XAI methods for structured data and **bold** aspects below

Taxonomy of explainability

- ▶ **Global** vs. local: Describe model as a whole or around an observation.
- ▶ Model-specific vs. **model-agnostic**: Some methods are tailored to specific model classes (linear regression, tree-based), others work for all types of models.
- Intrinsic versus **post-hoc**: Simple models like a linear regression can be interpreted intrinsically, while complex models require post-hoc analysis of fitted model.

Notes

- Model-agnostic methods are always post-hoc
- Model-agnostic methods can also be applied to intrinsically interpretable models
- Won't make difference between "explainable", "interpretable", "intelligible"

XAI Outline

1. Introduction

- Notation
- Non-life insurance pricing
- Main example

2. Explaining Models

- ▶ Important post-hoc interpretation methods
- ► SHAP
- Improve GLM with the help of ML and XAI

3. Improving Explainability

Improve intrinsic explainability of complex models by simplifying their structure

Notation

Basic modeling situation

$$T(Y \mid \mathbf{x}) \approx m(\mathbf{x})$$

- ▶ Distributional property $T(Y \mid X = x) = T(Y \mid x)$ of response Y
- Model $m: \mathbf{x} \in \mathbb{R}^p \mapsto \mathbb{R}$ of feature vector $\mathbf{X} = (X^{(1)}, \dots, X^{(p)})$ with realization $\mathbf{x} = (x^{(1)}, \dots, x^{(p)})$
- ► m estimated by \hat{m} from training data by minimizing objective criterion $\sum_{i=1}^{n} w_i L(\hat{y}_i, y_i) / \sum_{i=1}^{n} w_i + \lambda \Omega(m)$
- L: loss/scoring function, ideally strictly consistent for T; $\lambda\Omega(m)$: optional penalty
- $\mathbf{w} = (w_1, \dots, w_n)^T$: vector of (optional) case weights
- $\mathbf{y} = (y_1, \dots, y_n)^T$: observed values of Y
- $\hat{\mathbf{y}} = (\hat{y}_1, \dots, \hat{y}_n)^T$: predicted/fitted values $\hat{y}_i = \hat{m}(\mathbf{x}_i)$
- x_1, \ldots, x_n : n feature vectors; $x_i^{(j)}$: value of j-th feature of i-th observation

Examples of Models

- Linear regression
- Generalized linear models (GLM)
- Generalized additive models (GAM)
- Gradient boosted trees

Will peek into them as a quick refresher and to get used to notation

Linear Regression

Model equation postulates

$$\mathbb{E}(Y \mid \mathbf{x}) = m(\mathbf{x}) = \beta_o + \beta_1 x^{(1)} + \dots + \beta_p x^{(p)}$$

- $(\beta_o, \beta_1, \dots, \beta_p) \in \mathbb{R}^{p+1}$: parameter vector to be estimated
- Objective: Minimize sum of squared errors

$$\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

by linear least-squares

- Non-linear effects and interactions have to be added manually
- Penalized regression?
- Important extension: the generalized linear model (GLM)

Generalized Linear Model (GLM)

Model equation postulates

$$\mathbb{E}(Y \mid \mathbf{x}) = m(\mathbf{x}) = g^{-1}(\eta(\mathbf{x})) = g^{-1}(\beta_o + \beta_1 x^{(1)} + \dots + \beta_p x^{(p)})$$

- ▶ g^{-1} : inverse link, g: link function, η : linear predictor
- \triangleright Parameters β_i estimated by minimizing the (possibly weighted) average deviance

$$\bar{S}(\hat{m}, D_{\mathsf{train}}) = \sum_{i=1}^{n} w_i S(\hat{y}_i, y_i) / \sum_{i=1}^{n} w_i$$

over training data $D_{\text{train}} = \{(y_i, w_i, \boldsymbol{x}_i), i = 1, \dots, n\}$

(Unit) deviance

- Distribution-specific measure: Poisson, Gamma, Bernoulli, normal, . . .
- In our examples, we will often work with Poisson deviance $S(\hat{y}_i, y_i) = 2(y_i \log(y_i/\hat{y}_i) (y_i \hat{y}_i))$

Generalized Additive Model (GAM)

- Extension of the GLM
- Model equation assumes

$$\mathbb{E}(Y \mid \mathbf{x}) = m(\mathbf{x}) = g^{-1}(\beta_o + f_1(x^{(1)}) + \cdots + f_p(x^{(p)}))$$

- $ightharpoonup f_j$: Sufficiently nice functions (some may be fully parameteric)
- Estimated to minimize average deviance, e.g. using backfitting
- Unlike a GLM, automatically accounts for non-linear effects
- Like a GLM, a GAM can also include interaction effects

Gradient Boosted Trees

- Typical black box m
- Sum of decision trees
- In contrast to GAM, automatically picks up interactions
- Can optimize same objective criterion as GLMs/GAMs
- Using a different model structure and a different optimization technique
- Important implementations: LightGBM, XGBoost

Later, we will also work with neural nets

Non-Life Insurance Pricing

Main task: Predict *pure premium* of insurance policy

- Financial loss per year or per some other relevant exposure measure
- Used by company to optimize tariffs and to estimate expected future profit
- Predictions of statistical models fitted on historic data

Discussion

Why is it important to have good tariff?

Characterization of Insurance Policy

w > 0: The exposure. Other quantities will refer to this

N: Number of claims

C: Total claim amount

 \triangleright C/w: Pure premium

ightharpoonup Y = N/w: Claims frequency

ightharpoonup Z = C/N: Severity = avg cost per claim

X: One or more risk characteristics

Example (fictive motor third-part liability (MTPL) policies)

id	W	N	С	C/w	Y	Z	Driver's age	Horse power
1	1	0	0	0	0	-	28	80
2	0.5	2	5000	10000	4	2500	20	250
2	0.5	1	1000	2000	2	1000	21	250

Remark

Due to additivity of w, N, and C, these quantities can also be defined for multiple policies together, e.g., for the entire portfolio

Classic Pricing Models

▶ Instead of creating a model for $\mathbb{E}(C/w \mid x)$, decompose pure premium

$$C/w = (C/w) \cdot (N/N) = (N/w) \cdot (C/N) = YZ$$

into product of frequency Y and severity Z

- ▶ Frequency model: $\mathbb{E}(Y \mid \mathbf{x}) \approx m_Y(\mathbf{x})$
 - ightarrow Poisson GLM with log link and case weights w
- ▶ Severity model: $\mathbb{E}(Z \mid \mathbf{x}) \approx m_Z(\mathbf{x})$
 - ightarrow Gamma GLM with log link and case weights N, using only rows with N > 0
- Assuming conditional independence of Y and Z, pure premium model is then $\mathbb{E}(C/w \mid x) \approx m_Y(x)m_Z(x)$

Alternative to GLMs

- Replace GLMs by GAMs or modern ML techniques
- Use same losses (deviance), weights, links

More on Non-Life Insurance Pricing

- ▶ The severity model can use different features than the frequency model
- lacktriangle The Gamma model with log link is slightly biased ightarrow can be fixed by applying empirical multiplicative correction factor

$$c = \sum_{i=1}^n y_i / \sum_{i=1}^n \hat{y}_i$$

calculated on the training data

- Why using a log link for the Gamma model?
- As an alternative to model claims frequency using case weights w, directly model claim counts N without weights but using an offset of log(w)
 - \rightarrow Same effects, but different intercept, response

Main Example

Example (French motor third-part liability (MTPL) dataset)

- 1. Understand data
- 2. Descriptive analysis
- 3. Build claim frequency models

The models

- Poisson GLM
- Poisson GAM
- Poisson gradient boosted trees

Notes

- Grouped train/test split
- Model interpretation

Table of Contents

XAI: Introduction

XAI: Explaining Models

XAI: Improving Explainability

Introduction

Basic workflow to inspect and explain supervised learning model *m*

- 1. Study model performance
- 2. Study feature importance
- 3. Study feature effects, ideally also interactions

Focus

Global, model-agnostic, post-hoc explainability

Analysis result

- Information gain
- Reveal problems in model/data
- Increase confidence in model and modeler

Main references

- Online book of Christoph Molnar
- ➤ Tutorial (Mayer & Lorentzen 2020)

Chapter Outline

- 1. Software
- 2. Performance
- 3. Excursion: grouped data
- 4. Variable importance
- 5. Effects
- 6. Global surrogate models
- 7. Improve linear models by XAI
- 8. SHAP

Software for Post-Hoc Interpretation

Python

- sklearn.inspection
- shap
- DALEX
- . .

R

- hstats
- DALEX
- **▶** iml
- ► SHAP: shapviz, fastshap, kernelshap
- **>** . . .

Performance

- Study one or more relevant performance measures
- ▶ Often: Average loss or function of it
- Gives valuable information
- lacktriangle Training versus test performance? ightarrow assess overfitting/optimism
- Absolute and relative measures

Also helps to detect problems

Is performance much lower than expected?

- Preprocessing errors
- Missing key feature
- Convergence problem

Is it much better?

- Data partitions not independent?
- Leakage from response to feature?

Example: Claims Frequency Models

Calculate weighted average Poisson deviance on test data:

$$\bar{S}(\hat{m}, D_{\text{test}}) = \sum_{i=1}^{n} w_i S(\hat{y}_i, y_i) / \sum_{i=1}^{n} w_i$$

with
$$S(\hat{y}_i, y_i) = 2(y_i \log(y_i/\hat{y}_i) - (y_i - \hat{y}_i))$$

Relative deviance improvement (one of many "pseudo R-squared")

$$1 - rac{ar{S}(\hat{m}, D_{\mathsf{test}})}{ar{S}(\hat{m}_{\mathsf{trivial}}, D_{\mathsf{test}})},$$

where $\hat{m}_{\text{trivial}}(\mathbf{x}) = \sum_{D_{\text{train}}} w_i y_i / \sum_{D_{\text{train}}} w_i$ is the intercept-only model with constant predictions ideally calculated on the training data

Repeat on training data (why?)

Excursion: Grouped Data

- lacktriangle Flawed validation strategy ightarrow biased performance assessment
- ightharpoonup Detailed knowledge of data and model required ightarrow difficult to detect

Typical reason for flawed validation: Grouped data

- Pricing data
- Reserving: Models for ultimate claim amount
- Customer analytics: Browser behaviour of online visitors
- Banking: Financial transactions of clients

Grouped splitting

- ▶ Instead of random sampling of *rows*, we sample *groups*
- All rows of a group go in same data partition
- If ignored: Overfitting is being rewarded

Example and Simulation

Example (French MTPL)

- ▶ Model performance of GLM and boosted trees model without grouped splitting?
- Impact on model tuning?

Example (Simulation)

- Random data
- Linear regression and random forest
- ► 80%/20% split
- Increasing proportion of duplicated rows
- Random split versus grouped split

More on Grouped Data

- We used grouping structure to create clean data splits
- ▶ Sometimes, one wants to also make use of within-group info in model
- Panel data, time-series

Examples

- Insurance of large vehicle fleets: credibility factors
- Banking: Financial transactions of client

Tricky to have clean validation strategy and to apply model correctly

Variable Importance

- 1. Information: Most/least important features?
- 2. Challenge correctness of model
 - Results as expected or not?
 - ▶ Seemingly unimportant feature is top predictor → leakage?
 - ightharpoonup Key features not among important features ightharpoonup preprocessing problem, not sufficient understanding of data or modeling situation?

Model-specific variable importance measures

- Linear model: normalized coefficients, test statistics etc.
- Tree-based models: Split gain or split count

Model-agnostic measures

- ▶ Permutation importance (Breiman 2001 for random forests)
- SHAP feature importance

Permutation Importance

Permutation importance of j-th feature $X^{(j)}$, data D, and performance measure \hat{S} :

$$PVI(j, D) = \hat{S}(\hat{m}, D^{(j)}) - \hat{S}(\hat{m}, D)$$

- \triangleright $D^{(j)}$ is version of D with randomly permuted values in j-th feature column
- Read: How much \hat{S} worsens after shuffling column j? The larger, the more important. If 0, feature is unimportant

Algorithm to calculate PVI(j, D) for all features

Source: Mayer and Lorentzen, 2020

Remarks and Example

Remarks

- ightharpoonup Computationally cheap ightharpoonup repeat m times
- Model is never refitted
- ► There is no formal definition of variable importance → inconsistency across methods
- Different definitions of permutation importance
- ► Strongly dependent features→ decorrelate or analyze together
- ► Training or test data?

Example (French MTPL)

- ▶ PVI using exposure-weighted average Poisson deviance
- ► Hold-out data
- ► Compare with tree-split gain

Effects

Study and understand feature effects is of key importance

- ▶ How does m(x) change with j-th feature?
- Often Ceteris Paribus: other components in x fixed

Advantage of intrinsically interpretable models

ightharpoonup (Ceteris Paribus) effect of feature $X^{(j)}$ in a linear regression

$$\mathbb{E}(Y \mid \mathbf{x}) \approx m(\mathbf{x}) = \beta_o + \beta_1 x^{(1)} + \dots + \beta_p x^{(p)}$$

In an additive model

$$\mathbb{E}(Y \mid \mathbf{x}) \approx m(\mathbf{x}) = \beta_o + f_1(x^{(1)}) + \cdots + f_p(x^{(p)})$$

In a black box model?

Methods

- 1. Individual conditional expectation (ICE)
- 2. Partial dependence
- 3. Classic diagnostic plots
- 4. Interactions?
- 5. Later: SHAP dependence plots

Individual Conditional Expectation (ICE)

Basic thinking

- ▶ If m is additive in feature $X^{(j)}$, the Ceteris Paribus effect of $X^{(j)}$ is the same for all observations \rightarrow complete description of effect / full transparency
- lacktriangle If complex interactions involved ightarrow approximate description only

Idea (Goldstein et al., 2015)

- ▶ Study Ceteris Paribus effect of $X^{(j)}$ for one observation
- lacktriangle ICE function for feature $X^{(j)}$ of model m and observation $oldsymbol{x} \in \mathbb{R}^p$

$$ICE_j : v \in \mathbb{R} \mapsto m(v, \mathbf{x}_{\setminus j})$$

- $ightharpoonup x_{\setminus j}$ denotes all but the j-th component of x, which is replaced by v
- ▶ *ICE curve* represents graph $(v, ICE_j(v))$ for grid of values $v \in \mathbb{R}$

Simple Algorithm

Algorithm to calculate $ICE_i(v)$

```
Algorithm 2: ICE for variable x and one observation

obs \leftarrow data row

for v in grid of values do

obs[x] \leftarrow v

ice[v] \leftarrow prediction for obs

end

output: ice
```

Source: Mayer and Lorentzen, 2020

ICE Plot: Visualize ICE curves of multiple observations

Example

Notes

- Curves with different shapes indicate interaction effects
- ▶ Parallel curves \rightarrow additivity in $X^{(j)}$
- Centered ICE plots
- Usually on link scale (why?)
- ICE plots of higher dimension
- Training versus test data

Pros and Cons

- + Simple to compute
- + Easy to interpret (Ceteris Paribus)
- Gives impression about interactions
- Suboptimal when Ceteris Paribus unnatural
- Model applied to rare/impossible x
- Does not show what variables are interacting

Partial Dependence Plot PDP (Friedman 2001)

- Average of many ICE curves
- ightharpoonup Ceteris Paribus effect of $X^{(j)}$ averaged over all interaction effects

Definition

ightharpoonup (Empirical) partial dependence function of feature j

$$PD_j(v) = \frac{1}{n} \sum_{i=1}^n \hat{m}(v, \mathbf{x}_{i, \setminus j})$$

- $\boldsymbol{x}_{i,\backslash j}$ feature vector of *i*-th observation without *j*-th component
- lacktriangle Estimate for $\mathbb{E}_{m{X}_{\setminus j}} m(v, m{X}_{\setminus j})$ (expectation runs over joint marginal distr. of $m{X}_{\setminus j}$)
- ▶ PDP equals graph $(v, PD_j(v))$ for grid of values $v \in \mathbb{R}$
- ► Sum runs over reference data (=?)

Algorithm

Calculate $PD_j(v)$ on grid of values for v

```
Algorithm 3: Partial dependence profile for variable x
n \leftarrow number of observations
m \leftarrow grid size for variable x
iceProfiles \leftarrow matrix with n rows and m columns
for i in 1 to n do

| iceProfiles[i,:] \leftarrow ice curve for ith obs and variable x
end
pd \leftarrow column means of iceProfiles
output:pd
```

Source: Mayer and Lorentzen, 2020

Example

More on Partial Dependence

Remarks

▶ 2-dimensional PDP of $X^{(j)}$ and $X^{(k)}$:

$$PD_{jk}(v_j, v_k) = \frac{1}{n} \sum_{i=1}^n \hat{m}(v_j, v_k, \boldsymbol{x}_{i, \setminus \{j, k\}})$$

Accumulated local effects (ALE)

Pros and Cons

- + Simple to compute
- + Easy to interpret (Ceteris Paribus)
- Suboptimal when Ceteris Paribus unnatural
- Model applied to rare/impossible x
- No information about interactions

Classic Diagnostic Plots

Related plots

- 1. Response versus covariate
 - $\rightarrow \ \mathsf{Descriptive} \ \mathsf{marginal} \ \mathsf{effects}$
- 2. Predicted versus covariate
 - ightarrow Modeled marginal effects
- 3. Residual versus covariate:
 - \rightarrow Bias assessment

Remarks

- Small and large datasets
- Binning of feature values
- Training versus test data?
- Relation to PDP?
- Pros and Cons?

Interaction Effects

- ▶ Including interactions: Additive models versus black box models
- ▶ ICE plot for $X^{(j)}$ gives impression of total interaction effects associated with $X^{(j)}$

Pairwise interaction strength: Friedman's H^2

If model is additive in $X^{(j)}$ and $X^{(k)}$, then

$$PD_{jk}(x_i^{(j)}, x_i^{(k)}) = PD_j(x_i^{(j)}) + PD_k(x_i^{(k)})$$

for all x_i in reference data D, assuming PD functions are mean-centered over D. Thus,

$$H_{jk}^{2} = \frac{\sum_{i=1}^{n} \left[PD_{jk}(x_{i}^{(j)}, x_{i}^{(k)}) - PD_{j}(x_{i}^{(j)}) - PD_{k}(x_{i}^{(k)}) \right]^{2}}{\sum_{i=1}^{n} \left[PD_{jk}(x_{i}^{(j)}, x_{i}^{(k)}) \right]^{2}}$$

measures (relative) deviation from additivity, where sums run over D

Interpretation of H^2 ? When close to 0 or 1?

Absolute Interaction Strength

Friedman's H^2 is a relative measure \rightarrow absolute measure?

$$ilde{H}_{jk} = \sqrt{rac{1}{n}\sum_{i=1}^{n}\left[\mathsf{PD}_{jk}(x_i^{(j)}, x_i^{(k)}) - \mathsf{PD}_{j}(x_i^{(j)}) - \mathsf{PD}_{k}(x_i^{(k)})
ight]^2}$$

Remarks on H^2 and \tilde{H}

- ► Find out how features are interacting?
 → Conditional PDP/ICE, 2D PDP, SHAP
- Computational burden?
- Usually, one works on link scale

Global Surrogate Models

Idea

- Fit intrinsically interpretable model m_l to predictions of \hat{m}
- Usually a small decision tree
- $ightharpoonup \hat{m}_l$ is called (global) surrogate model for \hat{m}
- ▶ Objective function and R-squared of \hat{m}_l ?

Remarks

- Training or test data?
- ▶ Variable importances of \hat{m}_l ?

Improve Linear Models by XAI

Workflow

- Build strong GLM by the help of ML and XAI
- Why not directly use ML model?

Compare XAI aspects

- 1. Performance: Difference between GLM and ML model large or small?
- 2. Variable importance: Similar features important?
- 3. Main effects: Similar or not? \rightarrow Change representation in GLM
- 4. Interaction effects: Add strong meaningful interactions to GLM

SHAP: SHapley Additive exPlanations

- Local explanations
- Basic idea of SHAP?
- LIME: Local Interpretable Model-agnostic
 Explanations

Shapley Values

- $ightharpoonup \mathcal{M}$: Set of $p = |\mathcal{M}|$ players
- Playing cooperative game with numeric payoff
- ▶ Contribution of subset $\mathcal{L} \subseteq \mathcal{M}$ of players measured by function $v : \mathcal{L} \mapsto \mathbb{R}$

How to distribute payoff fairly among players?

Answer by Lloyd Shapley (1953): Player j should receive "Shapley value"

$$\phi_j(v) = \phi_j = \sum_{\mathcal{L} \subseteq \mathcal{M} \setminus \{j\}} \underbrace{\frac{|\mathcal{L}|!(p-|\mathcal{L}|-1)!}{p!}}_{ ext{Shapley weight}} \underbrace{(v(\mathcal{L} \cup \{j\}) - v(\mathcal{L}))}_{ ext{Contribution of j to } \mathcal{L}}.$$

- lacksquare Weighted average contribution over all coalitions $\mathcal{L} \subseteq \mathcal{M} \setminus \{j\}$
- Average contribution over all p! permutations (\ldots, j, \ldots)

What means Fair?

Shapley values are only way to distribute total winnings fairly in this sense:

Efficiency

$$v(\mathcal{M}) = \phi_o + \sum_{j=1}^p \phi_j$$
, where $\phi_o = v(\emptyset)$ denotes non-distributed payoff

Symmetry

If
$$v(\mathcal{L} \cup \{i\}) = v(\mathcal{L} \cup \{j\})$$
 for every $\mathcal{L} \subseteq \mathcal{M} \setminus \{i, j\}$, then $\phi_i = \phi_j$

Dummy player

If
$$v(\mathcal{L} \cup \{j\}) = v(\mathcal{L})$$
 for all coalitions $\mathcal{L} \subseteq \mathcal{M} \setminus \{j\}$, then $\phi_j = 0$

Linearity

Consider two cooperative games with gain functions v and w. Then, $\phi_j(v+w)=\phi_j(v)+\phi_j(w)$ and $\phi_j(\alpha v)=\alpha\phi_j(v)$ for all $1\leq j\leq p$ and $\alpha\in\mathbb{R}$

Shapley Values in Statistics and ML

Early idea

Lipovetsky and Conklin (2001): Fair decomposition of R-squared in linear regression

Nowadays: Štrumbelj and Kononenko (2010, 2014), Lundberg and Lee (2017)

- **Decompose** predictions fairly into $m(\mathbf{x}) = \phi_o + \sum_{i=1}^p \phi_i$, $\phi_o = \mathbb{E}(m(\mathbf{X}))$
- ightharpoonup Fair only if ϕ_j are Shapley values
- Natural contribution function: $v(\mathcal{L}) = m(\mathbf{x}_{\mathcal{L}})$, $\mathbf{x}_{\mathcal{L}}$ are components in $\mathcal{L} \subseteq \mathcal{M}$
- **Description** But: Features cannot be turned off in m o use statistics to estimate it

Situations where no estimation is required

- ▶ p = 1: Then $\phi_1 = m(x) \phi_o$
- Linear regression without correlations:

$$m(\mathbf{x}) = \underbrace{\beta_0}_{\phi_o} + \underbrace{\beta_1 x^{(1)}}_{\phi_1} + \cdots + \underbrace{\beta_p x^{(p)}}_{\phi_p}$$

How to Estimate Contribution Function

Controversy in estimating $m(\mathbf{x}_{\mathcal{L}})$

- ▶ Causal inference: Marginal expectations $\mathbb{E}(m(x_{\mathcal{L}}, X_{\mathcal{M}\setminus\mathcal{L}}))$
- lacktriangle Statistically more natural: Conditional expectations $\mathbb{E}(m(\pmb{x}_{\mathcal{L}}, \pmb{X}_{\mathcal{M}\setminus\mathcal{L}}) \mid \pmb{X}_{\mathcal{L}} = \pmb{x}_{\mathcal{L}})$

Algorithms

- 1. Monte Carlo sampling: For each j and many \mathcal{L} , contributions $v(\mathcal{L} \cup \{j\}) v(\mathcal{L})$ are evaluated using marginal expectations and then plugged into Shapley's Eq.
- 2. Kernel SHAP: For many \mathcal{L} , evaluate $v(\mathcal{L})$ using marginal expectations. Then use weighted regression to get all Shapley values without plugging into Shapley's Eq.
- 3. TreeSHAP: Uses properties of trees to directly calculate $v(\mathcal{L})$ for all $\mathcal{L} \subseteq \mathcal{M}$ and then plugging into Shapley's Eq.

From Local to Global Explanations

Decompose *n* predictions, not just one

- \blacktriangleright X: $(n \times p)$ feature matrix with elements x_{ij} , $1 \le i \le n$, $1 \le j \le p$
- ightharpoonup Φ: $(n \times p)$ matrix of SHAP values with elements ϕ_{ij}
- $\hat{m}(\mathbf{x}_i) = \phi_o + \sum_{j=1}^p \phi_{ij}$ for n feature vectors \mathbf{x}_i

Example

Strategy to understand model as a whole

- **SHAP** feature importance: $I_j = \frac{1}{n} \sum_{i=1}^{n} |\phi_{ij}|$
- ▶ SHAP dependence plots: $\{(x_{ij}, \phi_{ij}), 1 \leq i \leq n\}$
- Interactions: Use x_{ik} , $k \neq j$ to add color to SHAP dependence plot (alternative?)

SHAP Analysis to Improve Linear Model

Revisit strategy

- ► A lot of info on ML black box can be generated very quickly
- Use to build strong GLM

Example

Remember

SHAP has a solid theoretical foundation. In practice, some of it is lost because statistics is not mathematics.

Table of Contents

XAI: Introduction

XAI: Explaining Models

XAI: Improving Explainability

Introduction

"The best explanation of a simple model is the model itself" (Lundberg and Lee, 2017)

Two main strategies in XAI

- ▶ Model is black box → interpret it post-hoc
- ▶ Make model less opaque / improve intrinsic explainability

Basic hierarchy of intrinsic explainability

- 1. Linear additive models (like GLMs)
- 2. Additive models (like GAMs)
- 3. Black box models (like boosted trees or neural nets)

Note

- To link or not?
- ► Single decision tree

Boundaries are Blurred

Examples

- ► GLMs can have non-linear effects
- ► GLMs and GAMs can have interactions
- ▶ A complex GLM can be (almost) as black box as a boosted trees model
- Boosted trees models can have all or some features additive
- Neural nets can have all or some features additive

Partly additive models = Additive with (possibly complex) interactions

- Additive time effects: m(x) = f(Time) + f'(other features)
- Additive gender effects: m(x) = f(Gender) + f'(other features)
- Additive model with non-additive location effects: $m(\mathbf{x}) = f_1(x^{(1)}) + \cdots + f_{p_1}(x^{(p_1)}) + f$ (location features)

Chapter Outline

Structuring boosted trees

- Additive models
- ► Partly additive models
- Monotonicity

Structuring neural nets

- Additive models
- Partly additive models

(Tune boosted trees models)

Structuring Boosted Trees

Interpreting boosted trees models

- \triangleright Single decision trees m_k are simple to interpret
- ▶ Boosted trees *m* are sums of *K* decision trees

$$m(\mathbf{x}) = m_1(\mathbf{x}) + \cdots + m_K(\mathbf{x})$$

Interpretation only post-hoc

Let's add structure to boosted trees!

Additive Boosted Trees

What is a tree stump?

- ▶ Decision tree m_k with only one split (assume on j-th feature)
- $m_k(\mathbf{x}) = v_1 + (v_2 v_1)\mathbb{I}(\mathbf{x}^{(j)} \le s); \ (v_1, v_2, s = ?)$

Boosted tree stumps are additive

- $ightharpoonup f_i$: sum of those m_k that split on j-th feature
- $m(\mathbf{x}) = f_1(x^{(1)}) + \cdots + f_p(x^{(p)})$

More on Boosted Tree Stumps

- ▶ Additivity → full description of feature effects via ICE/PDP
- ► SHAP dependence plot? (Mayer 2022)
- ▶ Discussion: Pros and cons versus classic GAM?
- ▶ References: Lou et al. (2012), Nori et al. (2019)

Partly Additive Boosted Trees

- ▶ Grow trees of depth $2 \rightarrow$ pairwise interactions
- Partly additive model via interaction constraints (Lee et al. 2015)

Interaction constraints

- $ightharpoonup IC = \{F_1, \dots, F_K\}$
- \triangleright Each F_k is feature subset allowed to interact

How do they work?

- Consider a decision tree
- **Each** branch will use features only from one $F_k \in IC$.
- Rule: Each split considers features only from those F_k that contain all previous split variables of the branch. First split?
- Translates to tree and to sum of trees.

Partly Additive Models via Interaction Constraints

How to set *IC* so that model is additive in *j*-th feature?

- $F_1 = \{X^{(j)}\}$
- $X^{(j)} \notin F_k$, for k > 1

Example

 $IC = \{\{DrivAge\}, \{logDensity\}, \{PolicyRegion\}, \{VehAge, Brand, Gas, Power\}\}\}$

More on Interaction Constraints

- \triangleright If all elements in IC are disjoint, each tree uses features from only one F_k
- ► $IC = \{\{X^{(1)}\}, \dots, \{X^{(p)}\}\}$ gives additive model:

Difference to boosted tree stumps?

Monotonic Constraints

- Monotonicity of m(x) in j-th feature is another aspect of interpretability
- Violated natural monotonicity can have dramatic impact on trustworthiness
- Example: car collision model
- ► How is it implemented?
- ► Translates to tree ensembles

Figure: Monotone decreasing predictions in vehicle age

Enforcing Monotonicity: Capping logic

More on Monotonic Constraints

- ▶ Be careful when imposing monotonicity (why?)
- ► Can help to reduce wiggliness of effect
- Monotonicity for other model classes like GLMs, GAMs, neural nets?
- Monotonicity and outlying feature values

Structuring Neural Nets

Swiss army knife of ML: Neural nets can

- mimic GLMs and GAMs,
- learn interactions and non-linear effects,
- ▶ fit data larger than RAM (e.g. images, videos),
- use multidimensional input and output,
- use input and output of mixed dimensionality,
- fit models with millions of parameters,
- perform non-linear dimension reduction,
- ..

How to create

- 1. linear,
- complex,
- 3. additive, and
- 4. partly additive

neural nets?

Some Notes on Neural Nets

- Why haven't we worked with neural nets so far?
- Neural nets versus boosted trees?
- TensorFlow (with Keras), PyTorch
- Keras: sequential versus functional API
- Keras in R

A Simple Neural Net: GLM

Some slang

- Input and output layer?
- Nodes and node values?
- ► Fully connected / dense layer
- Exponential activation function

- Scaling
- Callbacks
- Integer encoding

Mini-Batch Gradient Descent with Backpropagation

Notation: Neural net m_{β} ; its total loss on data D and loss function L:

$$Q(m_{\beta},D) = \sum_{(y_i,x_i)\in D} L(m_{\beta}(x_i),y_i)$$

- 1. Init: Randomly initialize parameter vector β by $\hat{\beta}$
- 2. Forward: Calculate $Q(m_{\hat{\beta}}, D_{\mathsf{batch}})$ on batch
- 3. Backprop: Modify $\hat{\beta}$ to improve $Q(m_{\hat{\beta}}, D_{\mathsf{batch}})$
 - 3.1 Calculate partial derivatives $\nabla \hat{\beta} = \frac{\partial \mathcal{Q}(m_{\beta}, D_{\text{batch}})}{\partial \beta} \mid_{\beta = \hat{\beta}}$ using backprop (=?)
 - 3.2 Gradient descent: Move slightly into right direction: $\hat{\beta} \leftarrow \hat{\beta} \lambda \cdot \nabla \hat{\beta}$
- 4. Repeat Steps 2 and 3 until one epoch is over
- 5. Repeat Step 4 until some stopping criterion triggers

More Complex Models

Some additional slang

- Hidden layers
- Representational learning
- Activation functions: two purposes
- ► How to choose architecture?
- How to choose number of parameters/weights?

- ► Three hidden layers
- ▶ 561 parameters

Additive Neural Nets (Agarwal et al. 2020)

- Represent each feature by single-output net
- Directly connected to output layer
- Linear components?
- Unordered categorical features?

Example

- 'VehBrand', 'PolicyRegion': 1-D embedding
- 'VehGas' and 'logDensity': Scaled and represented by linear function
- Rest: Scaled and represented by small net each
- Similar structure as our original GAM

Source: Fig 1a in https://www.mdpi.com/1911-8074/15/5/193

Partly Additive Models

- Pairwise interactions?
- ► How constructed?

Example: Additive driver effects?

- 'logDensity': Scaled and represented as linear function
- 'DrivAge': Scaled and represented by a small sub-network
- 'PolicyRegion': 1-D embedding
- Vehicle features: sub-network with different inputs and five outputs

Excursion: Tuning Boosted Trees

Model tuning in general

- ► How to choose hyperparameters of ML models?
- ► Each model class (GLMs, GAMs, random forests, boosted trees, neural nets, . . .) has specialities that should be respected
- Examples?

Why focussing on boosted trees?

- Usually among best performing models for tabular data
- ▶ Boosting + SHAP \rightarrow strong GLMs
- It takes some practice

Aspects

- 1. Objective and evaluation metric
- 2. Number of boosting rounds
- 3. Learning rate
- 4. Further parameters

Objective and Metric

Ideal choice of loss function

- Meaningful for task
- Strictly consistent for target functional T

Translation to objective and metric

- Objective: average loss on training data (plus regularization) used for model training
- Evaluation metric: average (cross-)validation loss used for model comparison and selection

Number of Boosting Rounds

Very important to select reasonable number of boosting rounds

- ► Boosting round = tree
- ► Too few rounds → underfitting
- ► Too many rounds → overfitting
- Heavily depends on choice of other parameters, thus difficult to choose

"Early stopping" as standard solution

- ▶ How does it work?
- Why is it so convenient?

Learning Rate

- Weight of each tree in final model
- ▶ Often between wide range of 1 and 0.005
- Good value heavily depends on number of boosting rounds
- ightharpoonup Trick: select it so that early stopping ends after 100 1000 trees (why?)
- ► Halving the number of trees means doubling the learning rate for comparable performance

Regularization Parameters

Additional parameters to select

- number of leaf nodes
- tree depth
- loss penalties
- different types of subsampling rates
- ..

Choose them by (cross-)validation

- One by one
- Grid-search
- Random search

Note

- ► Early-stopping often compensates for suboptimal choice of other parameters
- ▶ Very different parameter combinations may lead to similar performance

Overall Strategy

Three steps

- 1. Choose strictly consistent and meaningful loss for functional $T \rightarrow$ objective and evaluation metric
- 2. Choose learning rate to get 100 1000 trees with early stopping
- 3. Select remaining parameters manually or by random search via (cross-)validation

Simplification

When to skip expensive Step 3?

- French MTPL
- Speciality: grouped partitions