

مجله نخبگان علوم و مهندسی

Journal of Science and Engineering Elites ۱۳۹۷ سال ۱۳۹۷

یادداشت فنی:

روش ساده و شگفت انگیز اثبات قضیه آخر فرما

محمود كبيرى

كارشناسي كامپيوتر و رياضي دانشگاه آزاد اسلامي واحد ميانه

kabiri_m49@yahoo.com

ارسال: تیر ۹۷ پذیرش: مرداد ۹۷

قضیه آخر فرما: در معادله X,Y,Z نخواهیم داشت. برای اثبات حالت $Z^n=X^n+Y^n$ نخواهیم داشت. برای اثبات حالت $Z^n=X^n+Y^n$ بگیریم که به دلخواه از هم فاصله دارند: Z=a+b , X=a-b : x=a

n=2 , Z=a+b , X=a-b
$$\rightarrow$$
 $(a+b)^2 - (a-b)^2 = Y^2$

بسط دوجمله ای را داریم:

$$Y^2 = \frac{a^2}{a^2} + 2ab + \frac{b^2}{a^2} - \frac{a^2}{a^2} - 2ab + \frac{b^2}{a^2} \rightarrow Y^2 = 4ab$$

اگر $a=A^2$ و $b=B^2$ و اهیم داشت:

$$Y = 2AB$$
, $Z = A^2 + B^2$, $X = A^2 - B^2$

در روابط فوق X=a+b, X=a-b و X=a+b, X=a-b و X=a+b, X=a-b و روابط فوق X=a+b, X=a-b و X=a+b, X=a-b است اگر X=a+b مربع کامل باشند X=a+b عدد صحیحی خواهد شد لذا X=a+b و X=a+b و از آنجا X=a+b مربع کامل باشند X=a+b عدد صحیح میباشد که خود هم عدد صحیح است وضمناً X=a+b این اعداد فیثاغورثی هم میگویند. در این حالت X=a+b یک جمله ای با X=a+b است و ضریبی که خود مربع کامل بوده و اگر این دو مربع کامل باشند X=a+b هم عدد صحیح در میاید که اعداد فیثاغورثی اند.

n=2 جدول ا- اعداد فيثاغورثي

		An-Bn	2AB	A ⁿ +B ⁿ		
Zn	Xn+Yn	X	Y	Z	A	В
169	169	5	12	13	3	2
169	169	-5	12	13	2	3
100	100	-8	6	10	1	3
100	100	8	6	10	3	1
11881	11881	91	60	109	10	3
32761	32761	19	180	181	10	9
26896	26896	36	160	164	10	8
22201	22201	51	140	149	10	7
21025	21025	17	144	145	9	8
16900	16900	32	126	130	9	7
13689	13689	45	108	117	9	6
22201	22201	51	140	149	10	7
34225	34225	57	176	185	11	8
50625	50625	63	216	225	12	9
72361	72361	69	260	269	13	10
100489	100489	75	308	317	14	11
136161	136161	81	360	369	15	12
180625	180625	87	416	425	16	13
235225	235225	93	476	485	17	14

همچنانکه بدین روش اعداد فیثاغورثی را بدست آوردیم سعی می کنیم روی حالات 2<n هم کار کنیم تا ببینیم می توانیم به چه نتایجی برسیم. وقتی که n>2 می شود مثلاً n=3:

$$Y^{3} = \frac{a^{3}}{4} + 3a^{2}b + \frac{3ab^{2}}{4} + b^{3} - (a^{3} - 3a^{2}b + \frac{3ab^{2}}{4} - b^{3}) \rightarrow Y^{3} = 6a^{2}b + 2b^{3}$$
 (1)

در این رابطه چون حاصل ۲جمله ای با ضرایب متفاوت متوالی است (مجموع ضرایب مکعب کامل است) با هیج تغییر متغیری نمی شود X=0 بر بر حسب X=0 بصورت عدد صحیح بدست آورد، فقط در حالت X=0 عدد X=0 بدست می اید و X=0 بر بر حسب X=0 بدست می اید و X=0 بدست می اید و X=0 خود مثل حالت X=0 می توانستیم با تغییر متغیری مشخص X=0 که حکم قضیه ثابت است. در واقع اگر حاصل یک جمله ای بود مثل حالت X=0 می توانستیم با تغییر متغیری مشخص ومعین انرا بصورت عددی صحیح بدست آوریم و جمله بعدی X=0 در واقع باقیمانده ریشه گیری از عبارت فوق است که باعث غیر صحیح شدن عدد X=0 می شود. مثلاً اگر X=0 با می خواهیم داشت:

$$y^3 = 6^3 A^{3*2} B^3 + 2^* 6^2 B^{3*3}$$
 (7)

جمله اول هم A^3 وهم B^3 دارد وقابل فاکتور گیری است ولی جمله دوم اصلاً A را ندارد. ضمناً با فرمول بازگشتی نیوتن برای ریشه گیری هم باقیمانده کوچکتر از ۱ خواهیم داشت که مزید بر علت می باشد. فرمول بازگشتی نیوتن:

$$\sqrt[n]{a^n + b} = a + \frac{b}{na^{n-1}}$$

$$Y = 6A^2B + \frac{72B^9}{3*(6A^2B)^2}$$
 پس بنابراین:

جمله $\frac{72B^9}{3*(6A^2B)^2}$ با قیمانده غیر صحیح ریشه گیری ماست ولی ما به عدم وجود عامل مشترک در جملات رابطه (۲) جمله $\frac{74B^7}{72(A)^4} = \frac{72B^9}{3*(6A^2B)^2}$ باز بسط دو جمله ای را ادامه بدهیم:

$$Y^{n} = Z^{n} - X^{n} = (a + b)^{n} - (a - b)^{n}$$

$$(a+b)^{n} = \sum_{k=1}^{n} {n \choose k} a^{n-k} b^{k}$$
 (7)

$$(a-b)^{n} = \sum_{k=1}^{n} (-1)^{k} {n \choose k} a^{n-k} b^{k}$$

$$Y^{n} = 2 \sum_{k=1}^{n} {n \choose k} a^{n-k} b^{k}$$
(*)

با دقت در روابط pو تفاضل آنها p را حاصل می شود می بینیم که p وقتی زوج است حذف شده و pهای فرد (2m+1،...،p را دقت در روابط p و تفایل تجزیه و یا عامل مشتر ک گیری به توان p مجموع چند جمله ای بدست می اید که قابل تجزیه و یا عامل مشتر ک گیری به توان p مجموع چند جمله ای ها است که بصورت p باعث عدم ریشه گیری p مصیح نیست و این مجموع چند جمله ای ها است که بصورت p باعث عدم ریشه گیری p مصیح آز آن عبارت می شود.

$$Y^n=2\binom{n}{1}a^{n-1}b+2\binom{n}{3}a^{n-3}b^3+\cdots+2\binom{n}{n-1}a^1b^{n-1}$$
 :: $n=2k$ $Y^n=2\binom{n}{1}a^{n-1}b+2\binom{n}{3}a^{n-3}b^3+\cdots+2\binom{n}{n}a^0b^n$: $n=2k+1$

و بطور خلاصه $X^n = 2\sum \binom{n}{k}a^{n-k}b^k$, K=2m+1 در این رابطه ها هم با هیج تغییر متغیری نمی شود $Y^n = 2\sum \binom{n}{k}a^{n-k}b^k$, K=2m+1 عدد صحیح بدست آورد (چون حاصل چند جمله ای با توانهای متفاوت متوالیاند) فقط در حالت X=0 عدد X=0 عدد صحیح بدست می ایدو X=0 که حکم قضیه ثابت است. بدین ترتیب آخرین قضیه فرما به روش ساده بسط دو جمله ای مجموع و تفاضل اثبات می شود که شاید خود فرما هم همین روش را می گفت که در حاشیه کتاب جانبوده بنویسد. آقای اندرو وایلز بعد از X=0 سال آنرا با روشهای پیشرفته همنهشتیها و LFUNCTION ها توانسته اثبات کند که با وجود این روش ساده نیازی به آنها شاید نبوده است.