#### Playlist Prediction

### Donadini Eleonora

ntroduction

Prediction Problems

Metric Model of Playlist

Solve Model Optimization

Experiment and Evaluation

Generating Playlist

Conclusion and Future

# Playlist Prediction via Metric Embedding

Donadini Eleonora

Stochastic Modelling and Simulation

20 febbraio 2020

## Outline

### Playlist Prediction

Donadini Eleonora

Introductio

Playlist Prediction Problems

Metric Model of Playlist

Solve Model Optimization Problem

Experiment and Evaluation

Generating Playlist

Conclusion and Future

- Introduction
- Playlist Prediction Problems
- Metric Model of Playlist
- 4 Solve Model Optimization Problem
- 5 Experiment and Evaluation
- **6** Generating Playlist
- Conclusion and Future Work

# What is a Playlist?

### Playlist Prediction

Donadini Eleonora

### Introduction

Playlist Prediction Problems

Metric Model of Playlist

Solve Model Optimization Problem

Experiment and Evaluation

Generating Playlist

Conclusion and Future

- Playlist is a sequence of songs which can be created manually by users or automatically by application
- Some online cloud-based services like Spotify allow users to access millions of songs
- Company like Apple have developed algorithms to help generate playlist automatically

## Topic

We present Latent Markov Embedding algorithm for generating coherent playlist.

## Problem Definition

#### Playlist Prediction

Donadini Eleonora

Introduction

Playlist Prediction Problems

Metric Model of

Solve Model Optimization Problem

Experiment and Evaluation

Generatin<sub>i</sub> Playlist

Conclusion and Future Work

- Playlist Prediction: give e seed or a part of playlist what should be the following sequence of songs in order to naturally reflect manually constructed playlist
- The goal of algorithms is to make the generated playlist coherent
- A coherent playlist is defined by a Markov Chain with transition probabilities reflecting similarity of songs

# Work Scope

#### Playlist Prediction

Donadini Eleonora

Introduction

### Playlist Prediction Problems

Metric Model of

Solve Model Optimization Problem

Experiment and Evaluation

Playlist Conclusion

Conclusion and Future

## Provide an algorithm named Logistic Markov Embedding

- Models the sequential nature of playlists
- Models playlist as a Markov Chain but not rely on semantic information of songs(genre, emotion, instrument ...)
- Represents songs in Euclidean space

# Markov Chain Model of Playlist - I

Playlist Prediction

Donadini Eleonora

meroduction

Predictio Problems

Metric Model of Playlist

Solve Model Optimization Problem

Experiment and Evaluation

Generating Plavlist

Conclusion and Future

### Goal

The goal is to estimate a generate model of coherent playlist, enable to efficiently sample new playlists

### Procedure

Given a connection of songs  $S_i$ :

$$S = \{s_1, \ldots, s_{|S|}\}$$

we would like to estimate the distribution Pr(p) of coherent playlist  $p = (p^{[1]}, \dots, p^{[K_p]})$ 

- $k_p$  is the length of playlist
- $p^{[i]}$  is one song from S

# Markov Chain Model of Playlist - II

### Playlist Prediction

Donadini Eleonora

ntroductio

Metric Model of Playlist

Solve Model Optimization

Experiment and Evaluation

Generating Playlist

Conclusion and Future

### Markov Chain

- Stochastic process
- Satisfies the Markov property:

$$P(X_n = x_n \mid X_{n-1} = x_{n-1}, \dots, X_0 = x_0) =$$

$$P(X_n = x_n \mid X_{n-1} = x_{n-1})$$

## Markov Chain of Playlist - III

#### Playlist Prediction

Donadini Eleonora

Introductio

Metric Model of

Metric Model of Playlist

Optimization Problem

Experiment and Evaluation

Playlist

and Future

## LME models playlist as paths through a latent space

- Songs are embedded as point or multiple points in this space
- Euclidean distance between songs reflects the transition probabilities
- The key learning problem is to determinate the location of each song using existing playlist as training data

# Single Point Model - I

### Playlist Prediction

### Donadini Eleonora

Introductio

Problems

Metric

Model of Playlist

Optimization Problem

Experiment and Evaluation

Generating Playlist

Conclusion and Future

### Space representation

Represent each song as a single vector X(s) in d-dimensional Euclidean space



## Transition probability

$$Pr(p^{[i]} \mid p^{[i-1]}) = \frac{e^{\|X(p^{[i]}) - X(p^{[i-1]})\|_2^2}}{\sum_{i=1}^{|S|} e^{\|X(s_i) - X(p^{[i-1]})\|_2^2}}$$

# Single Point Model - II

### Playlist Prediction

### Donadini Eleonora

ntroductio

Playlist

Prediction

### Metric Model of Playlist

Solve Model Optimization

Experiment and

Generating

Conclusion and Future If we write:

$$Z(p^{[i-1]}) = \sum_{j=1}^{|S|} e^{\|X(s_j) - X(p^{[i-1]})\|_2^2}$$

$$\Delta(s,s') = \|X(s) - X(s')\|_2$$

Probability of a playlist p:

$$Pr(p) = \prod_{i=1}^{k_p} Pr(p^{[i]} \mid p^{[i-1]}) = \prod_{i=1}^{k_p} \frac{e^{-\Delta(p^{[i]}, p^{[i-1]})^2}}{Z(p^{[i-1]})}$$

# Model Regularization - I

### Playlist Prediction

### Donadini Eleonora

IIItroductioi

Problems Metric

Metric Model of Playlist

Optimization Problem

Experiment and Evaluation

Playlist Conclusion

- Dimensionality d can be provide some control of overfitting
- Introduce the norm-based regularizers by penalizing the Frobenius norm of  $X \in R^{|S| \times d}$

$$X = \operatorname{argmax}_{X \in R^{|S| \times d}} L(D \mid X) - \lambda ||X||_F^2$$

ullet For increasing values of  $\lambda$ , this regularizer encourages vectors to stay close to the origin

## Solve Location Parameters

#### Playlist Prediction

### Donadini Eleonora

Introductio

Playlist Prediction

Metric Model of

Solve Model Optimization Problem

Experiment and Evaluation

Generating Playlist

Conclusion and Future Work

- Calculate a matrix T where  $T_{a,b}$  are number of transitions from song  $s_a$  to  $s_b$  in thw training set
- Get a equivalent model

$$L(D \mid X) = \sum_{a=1}^{|S|} \sum_{a=1}^{|S|} T_a, bl(s_a, s_b) - \Omega(X)$$

 Use stochastic gradient training to get the best location of all songs in the training data

# Accelerating Solving Process

### Playlist Prediction

### Donadini Eleonora

ntroductio

Playlist Prediction

Metric Model of Playlist

### Solve Model Optimization Problem

Experiment and Evaluation

Conclusion and Future

## Computational cost

 $O(|S|^2)$  running time is too slow in practical applications

- Do not need to consider all the transitions from current s<sub>i</sub>
   to all the song in S
- Most songs are not likely targets to transit

### Landmark heuristic method

only consider a subset  $C_i^r$  as possible successors for  $s_i$  where r is the percent of the total songs

$$L(D \mid X) = \sum_{a=1}^{|S|} \sum_{s_b \in C_s^c} T_{a,b} I(s_a, s_b) - \Omega(X)$$

# What is embedding look like?

#### Playlist Prediction

Donadini Eleonora

ntroduction

Playlist Prediction

Metric Model of

Solve Model Optimization Problem

Experiment and Evaluation

Generating

Conclusion and Future Work



Figure 1: 2D features space

## Dataset and Experiment

#### Playlist Prediction

Donadini Eleonora

Introductio

Playlist Prediction Problems

Metric Model of Playlist

Solve Model Optimization Problem

Experiment and Evaluation

Generating Playlist

Conclusion and Future

### **Dataset**

Crawled playlist from Yes.com from Dec 2010 to May 2011 by using its API

| set                         | Quantity  |
|-----------------------------|-----------|
| Number of song              | 163       |
| Number of Train Transitions | 134.431   |
| Number of Test Transition   | 1.191.279 |

### **Evaluation**

Compare the performance of LME versus bigram using as metric the average log-likelihood as metric:

$$log(Pr(D_{test}))/N_{test}$$

## LME vs Bigram

#### Playlist Prediction

### Donadini Eleonora

Introduction

Playlist Prediction

Problems

Metric

Model of Playlist

Optimization Problem

Experiment and Evaluation

Generating Playlist

Conclusion and Future Work

## Bigram Model

- Also a first-order Markov Chain
- Transition probabilities  $p(s_j | s_i)$  are estimated for every pair of songs by calculating the number of appearances



Figure 2: Log likelihood on testing transitions with respect to their frequencies in the training set

## Effect of Landamark Heuristic Method

Playlist Prediction

Donadini Eleonora

Introductio

Playlist Prediction Problems

Metric Model of Playlist

Solve Model Optimization Problem

Experiment and Evaluation

Generating Playlist

Conclusion and Future Work The landmarck heuristic significantly reduce the training iteration time

| r            | CPU time/s | Test log-likelihood |
|--------------|------------|---------------------|
| 0.1          | 3,08       | -6,421977           |
| 0.2          | 3,81       | -6,117642           |
| 0.3          | 4,49       | -6,058949           |
| 0.4          | 5,14       | -6,043897           |
| 0.5          | 5,79       | -6,048493           |
| No heuristic | 11,37      | -6,054263           |

# Capture Coherency of Playlist?

### Playlist Prediction

Donadini Eleonora

Introductio

Prediction Problems

Model of Playlist

Optimization Problem

Experiment and Evaluation

Generating Playlist

Conclusion and Future Work

- Build the model on the 1-hop transition in the training dataset
- The test is done on the n-hop transitions in the test dataset



 Song that are sequentially to each other in the playlist are more likely to form a transition pair

# How to Generate a Playlist?

#### Playlist Prediction

Donadini Eleonora

ntroduction

Playlist Prediction Problems

Metric Model of Playlist

Solve Model Optimization Problem

Experiment and Evaluation

Generating Playlist

Conclusion and Future

### **Steps**

- Given a seed location (a song) in the Euclidean Space
- Repeatedly sample songs from the transition distribution

### Problem

The average model represents an average model of playlist but each user may has different preferences

# Extending the model

#### Playlist Prediction

### Donadini Eleonora

Introductio

Playlist Prediction Problems

Metric Model of Playlist

Solve Model Optimization Problem

Experiment and Evaluation

enerating Playlist

Conclusion and Future Work Basic LME models can be extended in a variety of ways

- Have only limited means of expressing the popularity of a song
- Add a separate "popularity boost" b<sub>i</sub> to song s<sub>i</sub>

$$Pr(p^{[i]} \mid p^{[i-1]}) = \frac{e^{-\Delta(p^{[i]}, p^{[i-1]})^2 + b_i}}{\sum_{i} e^{-\Delta(s_j, p^{[i-1]})^2 + b_j}}$$

• Other extending: user preference, semantic information

## References

### Playlist Prediction

Donadini Eleonora

Introductio

Prediction Problems

Metric Model of Playlist

Solve Model Optimization Problem

Experiment and Evaluation

Playlist

Conclusion and Future Work

- S. Chen, J. Moore, D. Turnbull, and T. Joachims. Playlist Prediction via Metric Embedding
- B. McFee and G. R. G. Lanckriet. The natural language of playlists. In International Conference on Music Information Retrieval (ISMIR), 2011
- D. Jurafsky and J. Martin. Speech and language processing, 2008.