Лабораторная работа 7

Математическое моделирование

Федотов Дмитрий Константинович

Содержание

1	Целі	ь работы	5
2	Зада	ание	6
3	Вып	олнение лабораторной работы	7
	3.1	Теоретическое введение	7
	3.2	Вариант выполненой работы	12
	3.3	Выполнение работы на языке Python	12
	3.4	Выводы	15

List of Tables

List of Figures

3.1	Гачальные условия	12
3.2	Гачальные условия	13
3.3	Гачальные условия	13
3.4	Рункции, случай 1	13
3.5	Рункции, случай 2	13
3.6	Рункции, случай 2	14
3.7	Іачальное значение объема оборотных средств х 1 и х 2	14
3.8	Лассивы решений	14
3.9	Глучай 1 	14
3.10	'лучай 1	15

1 Цель работы

• Цель восьмой лабораторной работы - рассмотреть модель конкуренции двух фирм.

2 Задание

1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - (\frac{b}{c_1} + 0.00064) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

3 Выполнение лабораторной работы

3.1 Теоретическое введение

##Модель конкуренции.

###Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
 - M оборотные средства предприятия
 - au длительность производственного цикла
 - p рыночная цена товара
- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции.
 - δ доля оборотных средств, идущая на покрытие переменных издержек.
 - κ постоянные издержки, которые не зависят от количества выпускаемой

продукции.

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$1Q = q - k \frac{P}{S} = q(1 - \frac{p}{p_{cr}}),$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при p = pcr (критическая стоимость продукта)потребители отказываются от приобретения товара. Величина pcr = Sq/k. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде

$$2\frac{\partial M}{\partial t} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + NQ(1 - \frac{p}{p_{or}})p - \kappa$$

Уравнение для рыночной цены р представим в виде

$$3\frac{\partial p}{\partial t} = \gamma(-\frac{M\delta}{\tau \tilde{p}} + NQ(1 - \frac{p}{p_{cr}})$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном M уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение (3) можно заменить алгебраическим соотношением

$$4 - \frac{M\delta}{\tau \tilde{p}} + NQ(1 - \frac{p}{p_{cr}}) = 0$$

Из (4) следует, что равновесное значение цены р равно

$$5p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p}Nq})$$

Уравнение (2) с учетом (5) приобретает вид

$$6\frac{\partial M}{\partial t} = M\frac{\delta}{\tau}(\frac{p_{cr}}{\tilde{p}}-1) - M^2(\frac{\delta}{\tau\delta p})^2\frac{p_{cr}}{Nq} - \kappa$$

Уравнение (6) имеет два стационарных решения, соответствующих условию $\partial M/\partial t$ = 0:

$$7\tilde{M}_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$8a = Nq(1-\frac{\tilde{p}}{p_{cr}})\tilde{p}\frac{\tau}{\delta}, b = \kappa Nq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2}$$

Из (7) следует, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b \ll a^2$) и играют роль, только в случае, когда оборотные средства малы. При $b \ll a$ стационарные значения М равны

$$9\tilde{M}_{+}=Nq\frac{\tau}{\delta}(1-\frac{\tilde{p}}{p_{cr}})\tilde{p},\tilde{M}_{-}=\kappa\tilde{p}\frac{\tau}{\delta(p_{cr}-\tilde{p})}$$

Первое состояние \tilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \tilde{M}_- неустойчиво, так что при $M<\tilde{M}_-$ оборотные средства падают ($\partial M/\partial t<0$), то есть, фирма идет к банкротству.

По смыслу \tilde{M}_{-} соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: δ = 1, а параметр τ будем считать временем цикла, с учётом сказанного.

###Конкуренция двух фирм

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы.

В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.)

Уравнения динамики оборотных средств запишем по аналогии с (2) в виде

$$10 \begin{cases} \frac{\partial M_1}{\partial t} = -\frac{M_1}{\tau_1} + N_1 q (1 - \frac{p}{p_{cr}}) p - \kappa_1 \\ \frac{\partial M_2}{\partial t} = -\frac{M_2}{\tau_2} + N_2 q (1 - \frac{p}{p_{cr}}) p - \kappa_2 \end{cases}$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины N_1 и N_2 – числа потребителей, приобретших товар первой и второй фирмы.

Учтем, что товарный баланс устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене p. Тогда

$$11 \begin{cases} \frac{M_1}{\tau_1 \tilde{p}_1} = -N_1 q (1 - \frac{p}{p_{cr}}) \\ \frac{M_2}{\tau_2 \tilde{p}_2} = -N_2 q (1 - \frac{p}{p_{cr}}) \end{cases}$$

где \tilde{p}_1 и \tilde{p}_2 – себестоимости товаров в первой и второй фирме.

С учетом (10) представим (11) в виде

$$12 \begin{cases} \frac{\partial M_1}{\partial t} = -\frac{M_1}{\tau_1} (1 - \frac{p}{\tilde{p}_1}) - \kappa_1 \\ \frac{\partial M_2}{\partial t} = -\frac{M_2}{\tau_2} (1 - \frac{p}{\tilde{p}_2}) - \kappa_2 \end{cases}$$

Уравнение для цены, по аналогии с (3),

$$13\frac{\partial p}{\partial t} = -\gamma(\frac{M_1}{\tau_1\tilde{p}_1} + \frac{M_2}{\tau_2\tilde{p}_2} - Nq(1-\frac{p}{p_{cr}})$$

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим:

$$14p = p_{cr}(1 - \frac{1}{Nq}(\frac{M_1}{\tau_1\tilde{p}_1} + \frac{M_2}{\tau_2\tilde{p}_2}))$$

Подставив (14) в (12) имеем:

$$15 \begin{cases} \frac{\partial M_1}{\partial t} = c_1 M_1 - b M_1 M_2 - a_1 M_1^2 - \kappa_1 \\ \frac{\partial M_2}{\partial t} = c_2 M_2 - b M_1 M_2 - a_2 M_2^2 - \kappa_2 \end{cases}$$

где

$$16a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1^2 \tilde{p}_1^2}, c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2^2 \tilde{p}_2^2}$$

Исследуем систему (15) в случае, когда постоянные издержки (κ_1,κ_2) пренебрежимо малы. И введем нормировку $t=c_1\theta$. Получим следующую систему:

$$17 \begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

Чтобы решить систему, необходимо знать начальные условия. Зададим начальные значения M_0^1 , M_0^2 и известные параметры: p_{cr} , au_1 , au_2 , $ilde p_1$, $ilde p_2$, N, q

3.2 Вариант выполненой работы

 $M_0^1 = 6.1$ — оборотные средства фирмы 1

 $M_0^2 = 4.5$ — оборотные средства фирмы 2

 $p_{cr}=31$ — критическая стоимость продукта

N=30-число потребителей производимого продукта

q=1 — максимальная потребность одного человека в продукте в единицу времени

 $au_1 = 15$ — длительность производственного цикла фирмы 1

 $au_2 = 17 -$ длительность производственного цикла фирмы 2

 $\tilde{p}_1 = 9.7 -$ себестоимость продукта у фирмы 1

 $ilde{p}_2 = 8.4$ — себестоимость продукта у фирмы 2

3.3 Выполнение работы на языке Python

1. Зададим начальные условия (рис. 3.1).

```
p_cr = 31 # критическая стоимость продукта

tau1 = 15 # длительность производственного цикла фирмы 1

p1 = 9.7 # себестоимость продукта у фирмы 1

tau2 = 17 # длительность производственного цикла фирмы 2

p2 = 8.4 # себестоимость продукта у фирмы 2

N = 30 # число потребителей производимого продукта

q = 1 # максимальная потребность одного человека в продукте в единицу времени
```

Figure 3.1: Начальные условия

2. Посчитаем коэфиценты для уровнений (рис. 3.2).

```
a1 = p_cr/(tau1*tau1*p1*p1*N*q)
a2 = p_cr/(tau2*tau2*p2*p2*N*q)
b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q)
c1 = (p_cr-p1)/(tau1*p1)
c2 = (p_cr-p2)/(tau2*p2)
```

Figure 3.2: Начальные условия

3. Посчитаем стационарные точки (рис. 3.3).

```
m1 = (a2*c1-b*c2)/(a1*a2-b*b)

m2 = (a1*c2-b*c1)/(a1*a2-b*b)
```

Figure 3.3: Начальные условия

4. Составим функции для первого случая (рис. 3.4).

```
# Случай 1

def syst(x, t):
    dx1 = (c1/c1)*x[0] - (a1/c1)*x[0]*x[0] - (b/c1)*x[0]*x[1]
    dx2 = (c2/c1)*x[1] - (a2/c1)*x[1]*x[1] - (b/c1)*x[0]*x[1]
    return dx1, dx2
```

Figure 3.4: Функции, случай 1

5. Составим функции для второго случая (рис. 3.5).

```
# Cny4aŭ 2

def syst2(x, t):
    dx1 = x[0] - (b/c1 + 0.00064)*x[0]*x[1] - (a1/c1)*x[0]*x[0]
    dx2 = (c2/c1)*x[1] - (b/c1)*x[0]*x[1] - (a2/c1)*x[1]*x[1]
    return dx1, dx2
```

Figure 3.5: Функции, случай 2

6. Зададим интервал и шаг для решения задачи (рис. 3.6).

```
t = np.arange(0, 30, 0.01)
```

Figure 3.6: Функции, случай 2

7. Зададим начальное значение объема оборотных средств x1 и x2 (рис. 3.7).

```
# Начальное значение объема оборотных средств х1 и х2 
х0=[6.1, 4.5]
```

Figure 3.7: Начальное значение объема оборотных средств x1 и x2

8. Построим массивы решений для двух случаев (рис. 3.8).

```
y = odeint(syst, x0, t)
y2 = odeint(syst2, x0, t)
```

Figure 3.8: Массивы решений

9. Построим график динамики изменения оборотных средств фирмы 1 и фирмы 2. Случай 1 (рис. 3.9).

Figure 3.9: Случай 1

10. Построим график динамики изменения оборотных средств фирмы 1 и фирмы 2. Случай 1 (рис. 3.10).

Figure 3.10: Случай 1

3.4 Выводы

- 1. Рассмотрел модель конкуренции двух фирм в разных случаях.
- 2. Построил графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой.