Les nombes complexes 🖘

- Introduction aux complexes [AE18; Appendix I]
- Introduction aux polynômes [AE18; P.6]

[AE18] R. A. Adams and C. Essex. Calculus: A Complete Course. 9 Edition (Pearson, 2018).

Cartésienne	Polaire	Exponentielle
z=a+bi	$z=r\mathrm{cis}(\theta)$	$z=r\exp(i heta)=re^{i heta}$
$a=r\cos(heta)$	$r=\sqrt{a^2+b^2}$	
$b=r\sin(\theta)$	$ heta= an^{-1}(b/a)$	

Cartésienne : facile pour addition, soustraction

$$(a_1+b_1i)\pm(a_2+b_2i)=(a_1\pm a_2)+(b_1\pm b_2)i$$

Polaire : facile pour multiplier, diviser. Géométriquement : ${f rotation}$ d'angle ${m heta}$

$$egin{aligned} r_1 e^{i heta_1} r_2 e^{i heta_2} &= r_1 r_2 e^{i(heta_1+ heta_2)} \ &rac{r_1 e^{i heta_1}}{r_2 e^{i heta_2}} &= rac{r_1}{r_2} e^{i(heta_1- heta_2)} \ &(re^{i heta})^{-1} &= r^{-1} e^{-i heta} \end{aligned}$$

Définition : Complexe conjugué

$$z=a+bi$$
 $ar{z}=a-bi$ $z=re^{i heta}$ $ar{z}=re^{-i heta}$

Quiz: Quel est la valeur $z\bar{z}$? (vous pouvez choisir entre cartésienne ou polaire)

▶ Réponse

Le théorème fondamental de l'algèbre 🖘

Tout polynome $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ de degré n a n racines complexes (ce qui n'exclut pas que certaines d'entre elles aient une partie imaginaire nulle et donc soient réelles). Dans cette liste de n racines, certaines apparaissent plusieurs fois. Mais qu'est-ce que ça signifie qu'une racine soit racine plusieurs fois ?

Multiplicité =

Une valeur z est une racine du polynôme P(x) si P(z)=0. Si z est également une racine de la dérivée, c'est à dire P'(z)=0 alors z est une racine double. En général, z est une racine de multiplicité m si $P(z)=P'(z)=\cdots=P^{(m)}(z)=0$ où $P^{(k)}$ est la dérivée mième de P.

De façon équivalente, ça revient à l'exposant du facteur (x-z) dans la factorisation du polynôme. Par exemple, si :

$$P(x) = (x-z)^m \cdot Q(x),$$

où $Q(z) \neq 0$, alors z est une racine de multiplicité m.

Propriété des paires conjuguées

Si z=a+ib est une racine de multiplicité m, alors la racine conjuguée $\overline{z}=a-ib$ possède également une multiplicité m.

▶ Preuve

Le cas quadratique

$$ax^2+bx+c=0 \qquad \Rightarrow \quad x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

▶ Preuve

Les racines de 1 =

Exemple introductif: les racines cubiques de 1

Quelles sont les solutions de $x^3=1$. En d'autre termes, quels sont les racines de x^3-1 .

```
cube = -1 + x<sup>3</sup>
1 cube = Polynomial([-1, 0, 0, 1])
```

On sait deviner une première racine : $1 \operatorname{car} 1^3 = 1$.

```
première_racine = -1 + X

1 première_racine = Polynomial([-1, 1])
```

Grace à Horner, on sait factoriser cette racine, ce qui donne

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$

```
q = 1.0+1.0·X+1.0·X<sup>2</sup>

1 q = div(cube, première_racine)
```

```
-1.0+1.0·x<sup>3</sup>

1 première_racine * q
```

On trouve alors les deux racines manquantes à l'aide des formules du cas quadratique

```
\Delta = -3
1 \quad \Delta = 1 - 4
```

```
▶ (-0.5+0.866025im, -0.5-0.866025im)
1 (-1 + \sqrt{(abs(\Delta)) * im}) / 2, (-1 - \sqrt{(abs(\Delta))} * im) / 2
```

Le cas général ⇔

Pour calculer les valeurs propres d'un polynôme de haut degré, il n'y a plus de formule. Mais on sait les calculer en reformulant le problème en problème de calcul de valeurs propre de la matrice companion. Comme on sait calculer numériquement les valeurs propres d'une matrices, ça nous permet de de calculer numériquement les valeurs propres d'un polynôme.

Des valeurs propres aux racines d'un polynômes 🖘

Une matrice $oldsymbol{A}$ a comme valeur propre $oldsymbol{\lambda}$ avec vecteur propre associé $oldsymbol{x}$ (non-nul) si

$$Ax = \lambda x$$

ou de façon équivalente

$$(A-\lambda I)x=0$$

Si la matrice $A - \lambda I$ était régulière, il n'y aurait qu'une seule solution : x = 0. Seulement, le fait que λ soit une valeur propre est équivalente au fait qu'il existe une solution x non-nulle. Ceci équivaut à dire que le déterminant:

$$\det(A-\lambda I)=0$$

Ce déterminant est un polynôme en λ de degré n.

Des racines d'un polynômes aux valeurs propres

Comment trouver les n racines ? Commençons par un exemple:

```
▶ (-1 + x, -2 + x, -3 + x)
1 p1, p2, p3 = Polynomial([-1, 1]), Polynomial([-2, 1]), Polynomial([-3, 1])
```

$$p = -6 + 11 \cdot x - 6 \cdot x^2 + x^3$$

$$1 p = p1 * p2 * p3$$

Comment est-ce que roots a retrouvé les racines à partir des coefficients?

Commençons par essayer de trouver une des racines. Comment trouver r?

$$(x-r)q=\alpha p$$

Où α est une constante et le polynôme q est de la forme

$$q = b_2 x^2 + b_1 x + b_0$$

En comparant les termes en x^3 , on trouve que $lpha=b_2$. On a donc:

$$xq-b_2p=rq \ b_1x^2+b_0x-b_2(-6x^2+11x-6)=r(b_2x^2+b_1x+b_0)$$

En comparant les coefficients des monômes ${\bf 1}, {\bf x}$ et ${\bf x^2}$, on a 3 équations:

$$egin{bmatrix} 0 & 0 & 6 \ 1 & 0 & -11 \ 0 & 1 & 6 \end{bmatrix} egin{bmatrix} b_0 \ b_1 \ b_2 \end{bmatrix} = r egin{bmatrix} b_0 \ b_1 \ b_2 \end{bmatrix}$$

4 inconnues pour seulement 3 équations, comment va-t-on trouver b_0,b_1,b_2 et r?

▶ Réponse

```
E = Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
   values:
   3-element Vector{Float64}:
    0.99999999999978
    2.0000000000000007
    2.99999999999995
   vectors:
   3×3 Matrix{Float64}:
     0.762001 -0.588348
                          0.534522
    -0.635001
               0.784465 -0.801784
     0.127
               -0.196116
                          0.267261
 1 E = eigen([
       0 0 6
       1 0 -11
       0 1 6
 5])
```

On trouve la première racine

```
▶ (1.0, [0.762001, -0.635001, 0.127])

1 r, b = E.values[1], E.vectors[:, 1]
```

En normalisant, on trouve bien (x-2)(x-3)

```
▶[6.0, -5.0, 1.0]

1 b / b[3]
```

```
6 - 5 \cdot x + x^2
1 p2 * p3
```

Utilitaires 🖘

```
using Polynomials, LinearAlgebra, PlutoUI, Plots
>_
                                                                                   ②
    Precompiling Polynomials...
       1374.1 ms
      20895.7 ms
                    Polvnomials
      2 dependencies successfully precompiled in 22 seconds. 19 already precompile
    Precompiling Plots...
        556.4 ms
                    JLLWrappers
        717.3 ms
        884.4 ms
        856.2 ms
        765.7 ms
        846.5 ms
        918.4 ms
        724.5 ms
        883.2 ms
        835.1 ms
        821.6 ms
       4877.4 ms
       971.4 ms
       1018.0 ms
        780.2 ms
        848.2 ms
        878.7 ms
```

1 import DocumenterCitations

790.3 ms

```
Precompiling DocumenterCitations...

637.0 ms ∨ StringEncodings

756.2 ms ∨ Git_jll

587.7 ms ∨ Git

1262.8 ms ∨ YAML

10059.4 ms ∨ JSON3

634.2 ms ∨ JSONSchema

793.5 ms ∨ BibParser

1291.4 ms ∨ Bibliography

27272.4 ms ∨ Documenter

3142.5 ms ∨ Documenter

3142.5 ms ∨ DocumenterCitations

10 dependencies successfully precompiled in 32 seconds. 58 already precompiled.

Precompiling FileIOExt...

2427.5 ms ∨ Plots → FileIOExt

1 dependency successfully precompiled in 3 seconds. 184 already precompiled.
```

```
qa (generic function with 2 methods)
 1 include("utils.jl")
biblio =
▶ CitationBibliography("/home/runner/work/LSINC1113/LSINC1113/Lectures/biblio.bib", AlphaSt
 1 biblio = load_biblio!()
① Loading bibliography from `/home/runner/work/LSINC1113/LSINC1113/Lectures/bibli
   o.bib`...

⊗ Entry west2022Introduction is missing the publisher field(s).

    Loading completed.

cite (generic function with 1 method)
refs (generic function with 1 method)
 1 refs(keys) = bibrefs(biblio, keys)
draw_angle (generic function with 1 method)
 1 function draw_angle(r, from, to, label)
        \thetas = range(from, stop=to, length = 10)
        plot!(r * cos.(\theta s), r * sin.(\theta s), label = nothing, linestyle = :dash, color =
        :black, arrow = Plots.arrow(:both, :closed))
        _{r} = r + 0.02
        \theta_{\text{mid}} = (\text{from} + \text{to}) / 2
```

annotate!($_r * cos(\theta_mid)$, $_r * sin(\theta_mid)$, text("\\$" * label * "\\$", :left))

7 end

```
draw_complex! (generic function with 1 method)
 function draw_complex!(r, θ; cartesian = true, a_pos = :top, b_label = "b", θ_label
   = "\\theta", start_\theta = 0, \theta_r = 1/6)
       a = r * cos(\theta)
       b = r * sin(\theta)
       plot!([0, a], [0, b], arrow = true, label = nothing, linewidth=2, color =
       :black)
       if cartesian
            arrow = Plots.arrow(:both, :closed)
            plot!([a, a], [0, b], label = nothing, linestyle = :dash, color = :black,
            arrow = arrow)
            plot!([0, a], [b, b], label = nothing, linestyle = :dash, color = :black,
            arrow = arrow)
            annotate!(a/2, b, text("\$a\$", a_pos))
            annotate!(a - 0.02, b/2, text("\$" * b_label * "\$", :right))
            annotate!(a/2, b/2, text("\$r\$", :bottom, :right))
        end
        draw_angle(r * \theta_r, 0, \theta_s, \theta_slabel)
14 end
```

```
draw_complex (generic function with 1 method)

1 function draw_complex(args...; kws...)
2     scatter([0], [0], ratio = :equal, color = :black, label = nothing, framestyle = :origin, ticks = nothing)
3     draw_complex!(args...; kws...)
4 end
```