Přednáška #2: Paralelní prohledávání stavového prostoru

Základní pojmy

- Kombinatorický problém (viz X36PAA) je charakterizován
 - množinou vstupních proměnných (⇒ počáteční stav),
 - množinou konfiguračních proměnných (⇒ mezistav),
 - množinou výstupních proměnných (⇒ koncový stav),
 - omezeními (⇒ podmínky pro řešení),
 - příp. optimalizačním kritériem.
- DFS = prohledávání stavového prostoru do hloubky pomocí zásobníku.
- Návrat (backtrack).
- Koncový stav: plně definovaný stav, který nemá následníky.
- Přípustný mezistav: neúplně definovaný (určený) stav, který není v rozporu s podmínkami řešení.
- Přípustný koncový stav (řešení): vyhovuje podmínkám kladeným na řešení.

Aplikační oblasti

Optimalizační NP-těžké kombinatorické problémy: problém batohu, grafové úlohy, multikriteriální rozhodování, teorie her, znalostní rozhodování, ekonomické výpočty (obchodní cestující), statistické metody modelování, robotika.

Klasifikace sekvenčních DFS algoritmů

- 1. kritéria pro návrat a ukončení DFS
- 2. úplnost prohledávání stavového prostoru
- 3. omezenost hloubky prohledávaného prostoru
- 4. struktura zásobníku

Kritéria pro návrat a ukončení DFS

1. DFS s jednoduchým návratem (SB-DFS)

- Cílem je nalézt první přípustný koncový stav.

Příklady

- \blacksquare Rozmístění n dam na šachovnici $n \times n$ tak, aby se neohrožovaly.
- Vyplnění dané plochy obrazci z dané sady (bez dalších podmínek).
- Sestavení množiny čísel do 2D konfigurace (magický čtverec, kris-kros, sudoku).
- Konstrukce hamiltonovské cesty v neohodnoceném grafu.

2. Metoda větví a řezů = Branch-and-Bound DFS (BB-DFS)

Diskrétní optimalizační (minimalizační) problém (DOP) je dvojice (S, f), kde

- \blacksquare S = množina přípustných koncových stavů,
- $f: S \to \Re = \text{cenová funkce}$.

Řešení DOP je $x_{\mathrm{opt}} \in S$ takové, že

$$\forall x \in S; \quad f(x_{\text{opt}}) \le f(x).$$

- \blacksquare Cílem BB-DFS je nalézt $x_{\rm opt}$, čili přípustný koncový stav s minimální cenou.
- Návrat se provádí

 - z nepřípustných mezistavů,
 z nepřípustných koncových stavů,
 z přípustných mezistavů, které nemohou vést k řešení lepšímu, než je současné,
 z přípustných koncových stavů (s případnou aktualizací dosud nejlepšího řešení).
- Maximalizační úloha: obráceně analogická.

Příklad: 0/1 Lineární Programování (LIP)

Vstup: Celočíselná $m \times n$ matice A, celočíselný $m \times 1$ vektor \vec{b} a celočíselný $n \times 1$ vektor \vec{c} .

Problém: Nalézt binární $n \times 1$ vektor $\vec{x} > 0$ takový, že $A\vec{x} \ge \vec{b}$ a hodnota $\vec{c}^T \cdot \vec{x}$ je minimální.

DOP:
$$S = \{\vec{x} \in B^n; \quad A\vec{x} \ge \vec{b}\}$$
 a $f(x) = \vec{c}^T \cdot \vec{x}$.

BB-DFS:

- Má-li proměnná x_i přiřazenou hodnotu, je vázaná, jinak je volná.
- \blacksquare Počáteční stav = všechny prvky vektoru \vec{x} jsou volné.
- Mezistav/Koncový stav = přiřazení binárních hodnot prvním k/všem prvkům \vec{x} .
- lacktriangle Přípustný koncový stav = plně vázaný vektor \vec{x} takový, že $A\vec{x} \geq \vec{b}$.

■ Přípustný mezistav < ⇒</p>

$$\sum_{x_j \text{ je vazana}} A[i,j]x_j + \sum_{x_j \text{ je volna}} \max\{A[i,j],0\} \ge b_i, \quad \forall i = 1,\dots, m$$
 (1)

Levá strana = horní mez na hodnoty položek vektoru $A\vec{x}$ po dosazení za zbývající volné proměnné.

- Nechť C je nejmenší dosud nalezená hodnota $\vec{c}^{\mathrm{T}} \cdot \vec{x}$.
- Test, zda přípustný mezistav může poskytnout lepší řešení:

$$\sum_{x_j \text{ je vazana}} c_j x_j + \sum_{x_j \text{ je volna}} \min\{c_j, 0\} < C$$
 (2)

Levá strana = spodní mez na hodnotu skalárního součinu $\vec{c}^{\mathrm{T}}\cdot\vec{x}$ po dosazení za zbývající volné proměnné.

lacktriangle Příklad: Předpokládejme m=n=4 a

$$A = \begin{bmatrix} 5 & 0 & -2 & 3 \\ 3 & -2 & -3 & 1 \\ -2 & 2 & 0 & -1 \\ 4 & -1 & 3 & -2 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 0 \\ -4 \\ -1 \\ 0 \end{bmatrix}, \quad \vec{c} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ -2 \end{bmatrix}.$$

- Nechť $\vec{x}^{\mathrm{T}} = [0,0,1,1]$ je momentálně nejlepší řešení, dávající $C = \vec{c}^{\mathrm{T}} \cdot \vec{x} = -1$.
- Pak mezistav $\vec{x}^{\mathrm{T}} = [0, 1, ?, ?]$ nemůže vést k lepšímu řešení, protože $\vec{c}^{\mathrm{T}} \cdot \vec{x} \geq 0$ pro všechna možná dosazení za volné proměnné, a proto se provede návrat.

Úplnost prohledávaného prostoru

Předpokládejme minimalizační úlohu.

- Vždy úplné prohledávání.
 - BB-DFS: pokud není známá těsná (přesná, dosažitelná) spodní mez na cenu řešení.
- Úplné v závislosti na vstupních datech.
 - SB-DFS: úplné pro daná data neexistuje řešení.

Omezenost hloubky prohledávaného prostoru

Stavový prostor: strom vs. graf

- 1. **Stavový prostor = strom :** příští stav = nový stav (LIP)
- 2. **Stavový prostor = cyklický graf:** možnost zacyklení. Prevence?
 - (a) Kontrolovat, zda generovaný stav již nebyl dříve generován (prakticky nemožné, exponenciální paměťová složitost).
 - (b) Kontrolovat krátké cykly v stavovém prostoru (např. pamatovat si stavy O(1) úrovní zpět).
 - (c) Ignorovat kontroly a rozvinout graf do stromu s opakováním stavů. Pak rozvinutí může zvětšit stavový prostor exponenciálně (viz obr.) a hrozí zacyklení. Nutnost stanovit horní mez na hloubku prohledávání.

Omezenost hloubky prohledávaného prostoru (pokr.)

DFS v prostoru s omezenou hloubkou

- Max. # kroků nutných k dosažení řešení = = max. délka cesty vedoucí k řešení = = max. hloubka stavového prostoru = = max. výška zásobníku je
 - stejná a konečná pro všechny přípustné koncové stavy
 nebo
 - různá, ale zaručeně O(1) a odvoditelná ze vstupních dat.
- Dosažení této hloubky ⇒ návrat.
- Existuje u SB-DFS i u BB-DFS.

- \blacksquare \exists jediný přípustný koncový stav = cílová konfigurace, ale vede k ní ∞ cest různých délek.
- \blacksquare Speciální BB-DFS: S= množina cest k cílové konfiguraci, f= cena, obvykle délka, cesty.
- Potřebujeme heuristický odhad délky cesty k cílové konfiguraci ⇒ z ní odvozený odhad horní meze hloubky prohledávání.
- lacktriangle Nechť $X_0=$ počáteční konfigurace, X= mezilehlá konfigurace, C= cílová konfigurace.
- Definujme $t(X) = \text{d\'elka cesty z } X_0 \text{ do } X.$
- Definujme d(X) = heuristický odhad délky cesty z X do C.
- lacksquare d(X) je přijatelná, jestliže d(X)= spodní mez na délku cesty z X do C.
- Definujme h(X) = t(X) + d(X).
- lacksquare Pak h(X)= spodní mez na cenu nutnou pro dosažení C z X_0 přes X.

Příklad: Permutace kostiček

- Hrací deska $a \times b$ políček, kde a a b jsou celá čísla taková, že $a \ge b \ge 3$, s počáteční konfigurací ab-1 kostiček očíslovaných $1, \ldots, ab-1$. Jedno políčko je prázdné.
- Úkolem je nalézt nejkratší posloupnost tahů, transformujících počáteční konfiguraci do cílové konfigurace, kdy jsou všechny kostičky seřazeny vzestupně po řádcích.
- \blacksquare S = množina všech posloupností tahů, které vedou z počáteční do cílové konfigurace.
- lacksquare f(x) = # tahů v posloupnosti x.
- lacksquare d(X) = Manhattanská vzdálenost <math>X od $C \implies p$ řijatelná heuristika.

	3	4	1
<i>X</i> :	7	6	2
	8		5

DFS s postupným prohlubováním (PP-DFS)

- Vhodné, pokud se řešení nachází uprostřed nebo na pravém okraji hlubokého stavového stromu.
- \blacksquare Prohledávání probíhá v iteracích se stále se zvyšující hloubkou stavového stromu L_i , kde
 - $L_0 = d(X_0)$,
 - $L_i = L_0 + i\delta$, kde δ je (empiricky zjištěná) konstanta nebo $L_i = \max\{h(Y); Y = \text{neexpandovaný stav v předchozí iteraci} \}$ nebo $L_i = JinaRostouciFunkce(i)$.

Algoritmus:

- 1. Nastav i := 0 a hloubku prohledávání na L_i .
- 2. Aplikuj BB-DFS s omezenou hloubkou L_i . Neexpanduj stavy, které jsou ve větší hloubce.
- 3. Je-li $L_i L_{i-1} = 1$, pak skonči po nalezení prvního řešení.
- 4. Jinak bylo-li nalezeno řešení v hloubce $L_{i-1} + 1$, pak skonči.
- 5. Jinak prohledej celý podstrom s hloubkou do L_i .
- 6. Jestliže řešení nebylo nalezeno, zvětši i:=i+1 a jdi na bod 2.

Struktura zásobníku

Existuje několik možných organizací zásobníku:

- (a) pouze neexpandovaní následníci (= nevyzkoušené alternativy)
- (b) neexpandovaní následníci + rodičovský stav
 - vhodné a nutné pro eliminaci některých smyček

- 1. Časová složitost prohledávání DFS je exponenciální
 - ⇒ paralelní zpracování má smysl.
- 2. Heuristické nebo aproximativní metody mohou nalézt suboptimální řešení v polynomiálním čase
 - ⇒ paralelní zpracování má smysl.
- 3. Mnoho DOPů vyžaduje řešení v reálném čase (RT) (např. plánování pohybu robotů) paralelní zpracování může být jediná možnost jak dosáhnout RT výkonnosti.
- 4. Paralelní prohledávání může vykazovat anomální chování.

Základní podmínka úspěšného paralelního DFS

Procesory by měly být pokud možno stále vytíženy prohledáváním pokud možno disjunktních částí stavového prostoru.

Problémy paralelního DFS

- 1. vyváženost výpočetní zátěže a využití procesorů (velikosti prohledávaných podprostorů),
- 2. výpočetní a komunikační režie při rozdělování práce (zásobníku)
- 3. režie detekce globálního ukončení výpočtu
- 4. ALE: paralelní DFS může vykonat menší množství práce než sekvenční DFS, protože prochází jiné části stavového prostoru
 - ⇒ lze dosáhnout superlineárního zrychlení.

Statické rozdělení

Statické rozdělení a anomální chování

- Paralelní DFS s 2 procesory trvá stejně jako s 4 procesory!!!
- DFS s 2 procesory skončí dříve než za 50% sekvenčního DFS!!!
- Obecně: přidání procesoru může zrychlit DFS více než přímo úměrně.
- Ale také, přidání procesoru může paralelní DFS zpomalit!!!
- Závěr: je potřebné dynamické vyvažování výpočetní zatěže.

Dynamické vyvažování práce (zátěže)

- \blacksquare Na počátku P_0 přiřadí procesorům pokud možno disjunktní části prohledávaného prostoru.
- \blacksquare Každý P_i je buď aktivní nebo nečinný.
- \blacksquare Každý aktivní P_i provádí DFS ve své části s použitím lokálního zásobníku.
- Když aktivní P_i vyprázdní svůj zásobník a řešení stále není nalezeno, stane se nečinným a žádá jiné procesory P_j o přidělení neprozkoumaných částí stavového prostoru. Pak P_i = příjemce a P_i = dárce.

Dělení zásobníku

- Na počátku procesor P_0 provede dostatek expanzí, rozdělí zásobník na p částí a iniciativně pošle ostatním procesorům jejich první zásobníky.
- Postupným půlením na $2^{\lceil \log k \rceil}$ částí rozdělí dárce svůj zásobník na k+1 částí, kde k=# žádostí od nečinných procesorů v jeho frontě zpráv.
- Neexpandované stavy blízko dna zásobníku skrývají pravděpodobně větší části prohledávaného prostoru, kdežto stavy poblíž vrcholu zásobníku skrývají spíše menší podprostory.
- lacktriangle Tudíž, položky nad tzv. $reve{r}$ eznou výškou H se žádajícím procesorům již nepředávají.

Oba podzásobníky by měly reprezentovat prohledávané podprostory přibližně téže velikosti.

Půlení stavů poblíž dna zásobníku (D-ADZ)

• Vhodné, jestliže prohledávaný prostor je stejnoměrný.

1a	1b	1c	1d
2a	2 b	2c	
3a	3b		
4b	4c	4d	4e
40	40	- 0-	
5b	5c		

1a	
2a	
3a	
4 b	
5b	
6c	6d

• Funguje dobře v kombinaci se silnou heuristikou jako hledání best-first, která trvale přesouvá mezistavy blížší cílovým stavům doleva.

1a	1b
2a	2 b
3a	3b
4b	4c
5b	5c
6a	6b

1a	1c	1d
2a	2c	
3a		
4b	4d	4e
5b		
6c	6d	

• Vhodné v případech jak rovnoměrně tak nepravidelně strukturovaného prohledávaného prostoru.

ACŽ-AHD (asynchronní cyklické žádosti) :

- Každý procesor si udržuje lokální čítač D, $0 \le D \le p-1$, což je index potenciálního dárce. Počáteční hodnota může být $D = (\text{mytid}() + 1) \mod p$.
- Jestliže se procesor stane nečinný, požádá procesor $\#\langle D \rangle$ a inkrementuje čítač D.
- Může se stát, že jeden procesor je žádán více procesory současně, ale pravděpodobně ne mnoha, protože požadavky na práci generuje každý procesor nezávisle na ostatních.
- Z počátku může být komunikace lokální, ale postupně se může stát globální.

GCŽ-AHD (globální cyklické žádosti)

- \blacksquare Procesor P_0 udržuje globální sdílený čítač D.
- \blacksquare Procesor, který se stane nečinným, žádá P_0 o současnou hodnotu D.
- \blacksquare P_0 inkrementuje D před odpovědí na další žádost.
- Po sobě přišlé žádosti o práci jsou zaručeně distribuovány rovnoměrně po procesorech.
- Hlavní nedostatek: soupeření u P_0 o přístupy k sdílené proměnné D (klasické úzké hrdlo).
- Řešení: kombinování žádostí mezilehlé procesory kombinují jednotlivé žádosti podél cesty k P_0 , který obdrží 1 zprávu se seznamem indexů žadatelů (serializace žádostí).

NV-AHD (náhodné výzvy) : nejjednodušší schéma

- Nečinný P_i generuje index potenciálního dárce náhodně z množiny $\{0,\ldots,p-1\}-\{i\}$.
- Každý procesor může být vybrán jako dárce se stejnou pravděpodobností.
- Ve většině případů jsou žádosti o práci distribuovány rovnoměrně.
- Komunikace nezachovává lokalitu.

TS-AHD (topologičtí sousedé)

- Dárce je vybrán z množiny sousedů (uzly ve vzdálenosti 1), pak sousedů sousedů (vzdálenost 2), atd, až do určité meze vzdálenosti ≥ 1 .
- Používá se cyklické schéma, t.j., po každém použití se čítač inkrementuje modulo počet všech těchto sousedů.
- Toto schéma zaručuje lokalitu komunikace jak pro přenosy žádostí tak pro přenosy práce.
- Nedostatek: pomalejší distribuce lokální koncentrace práce mezi vzdálenější nečinné procesory.

NP-AHD (nevyvážené páry)

- Každý procesor si udržuje čítač D, počáteční hodnota 0.
- Předpokládejme, že procesory jsou indexovány $0, \ldots, p-1$, pokud možno konstrukcí hamiltonovské kružnice v dané propojovací síti.
- Nečinný procesor P_i hledá 2 nejbližší procesory P_i a P_{i+1} takové, že $D(P_i) > D(P_{i+1})$.
- Nalezne-li takový pár, požádá P_{i+1} .
- Nexistuje-li takový pár, všechny P_j obsloužily stejný počet žádostí a je požádán P_0 (začíná se nové kolo).
- \blacksquare Po obdržení žádosti o práci inkrementuje procesor svůj čítač D.

Dijkstrův peškový ADUV

- Podmínka použití: statická distribuce práce, tzn. jakmile se procesor stane nečinným, neobdrží více práce.
- Předpokládejme, že procesory jsou indexovány $0, \ldots, p-1$ konstrukcí hamiltonovské kružnice v dané propojovací síti.
- Stane-li se P_0 nečinný, pošle peška procesoru P_1 .
- lacktriangle Obdrží-li P_i peška, pošle ho $P_{(i+1) \bmod p}$ jakmile se stane nečinným.
- lacktriangle Obdrží-li P_0 peška zpět, ví, že všechny P_i skončily a výpočet může být ukončen.

Modifikovaný Dijkstrův peškový ADUV

- Podmínka použití: dynamické vyvažování zátěže a číslování procesorů $0, \ldots, p-1$.
- Na počátku jsou všechny procesory bílé.
- Stane-li se P_0 nečinný, pošle bílého peška procesoru P_1 .
- Pošle-li dárce P_i práci příjemci P_j a i>j, pak dárce P_i se stane černým.
- lacktriangle Obdrží-li P_i peška, pak je-li P_i černý, obarví peška na černo. Jakmile se P_i stane nečinný, předá peška dalšímu $P_{(i+1) \bmod p}$ a sám se opět stane bílým.
- Obdrží-li P_0 zpět bílého peška, výpočet lze ukončit. Jinak P_0 nastartuje nové kolo s novým bílým peškem.

Algoritmy pro distribuované ukončení výpočtu (pokr.)

Stromový ADUV

- Určeno pro dynamické vyvažování zátěže.
- \blacksquare Na počátku má P_0 váhu $w_0=1$ a ostatní procesory P_i mají $w_i=0$.
- Stane-li se P_i dárcem pro příjemce P_j , nastaví w_i na $w_i/2$ a P_j nastaví w_j na $w_i/2$.
- lacktriangle Dokončí-li P_j práci, pošle svou váhu w_j zpět P_i a P_i ji přičte k své w_i .
- Má-li P_0 váhu $w_0 = 1$ a je-li nečinný, výpočet může být ukončen.
- Nedostatek: váhy mohou podtékat nebo se vynulovat. Je třeba volit správnou aritmetiku nebo používat $1/w_i$ místo w_i .

Strategie průchodu stavovým prostorem a ukončování paralelního DFS

PSB-DFS

- Pokud ∃ řešení, pak procesor, který nalezne první řešení,
 - pošle toto řešení procesoru P_0 ,
 - zprávou jeden-všem pošle všem procesorům žádost o ukončení výpočtu.
- Pokud úloha nemusí mít řešení, pak je nutné zabudovat ADUV.

PBB-DFS s vždy úplným prohledáváním (PBB-DFS-V)

- Všechny procesory znají hodnotu horní meze hloubky prohledávání.
- Hodnota přesné spodní meze ceny řešení není známa.
- Každý procesor si lokálně udržuje informaci o svém dosud nejlepším řešení.
- Po vyprázdnění všech zásobníků se provede ADUV.
- Pak se pomocí paralelní redukce ze všech nejlepších lokálních řešení vybere globálně nejlepší řešení.

PBB-DFS s DD prohledáváním (PBB-DFS-D)

- Všechny procesory znají hodnotu horní meze hloubky prohledávání i přesné spodní meze ceny řešení.
- Varianta Lokální PBB-DFS-D (L-PBB-DFS-D)
 - Každý procesor si udržuje informaci o lokálně nejlepším řešení.
 - Pokud řešení s cenou rovnou spodní mezi neexistuje, pak stejné jako PBB-DFS-V.
 - Je-li nalezeno řešení s cenou rovnou spodní mezi, procesor, který jej nalezne, ukončí výpočet vysláním zprávy typu jeden-všem.
- Varianta Globální PBB-DFS-D (G-PBB-DFS-D)
 - Každý procesor, který nalezne lepší řešení než jemu známé nejlepší řešení, neaktualizuje pouze svou informaci, ale rozešle zprávu typu jeden-všem ostatním procesorům, kteří si upraví informaci o dosud nejlepším řešení.
 - Je-li to optimální řešení, pak je to opět signál pro ukončení výpočtu.
 - Jinak proběhne po vyprázdnění všech zásobníků distribuované ukončení výpočtu pomocí ADUV bez nutnosti následné redukce lokálních řešení.
- Srovnání G-PBB-DFS-D a L-PBB-DFS-D: vyšší komunikační režie vs. prohledávání větších částí stavového prostoru.

PPP-DFS

- lacktriangle Na počátku i-té iterace rozešle P_0 ostatním procesorům hodnotu L_i .
- V rámci jedné iterace provádějí procesory algoritmus PBB-DFS-D. Lze použít lokální nebo globální verzi.
- Jedná-li se o PP-DFS, ve kterém se horní meze L_{i+1} určují podle minimální (maximální) hodnoty h(X) vygenerovaných ale neexpandovaných stavů v i-té iteraci, pak je nutné při ADUV na konci neúspěšné i-té iterace pomocí paralelní redukce zjistit tuto novou hodnotu L_{i+1} .

Přehled semestrálních projektů pro dvojice

Problém	Hloubka	Co se	Úplnost	Strategie //
	zásobníku	optimalizuje	prohledávání S	prohledávání
PRP	neomezená	penalizace posloupnosti tahů	AE	PBB-DFS-V
KRJ	omezená	# tahů	DD	G-PBB-DFS-D
BPG	omezená	# hran bipart.podgrafu	AE	PBB-DFS-V
MBG	omezená	# barev	DD	L-PBB-DFS-D
UPO	omezená	# uzlů pokrytí	DD	G-PBB-DFS-D
MNM	omezená	# uzlů nezáv.množ.	DD	L-PBB-DFS-D
MRG	omezená	cena hran.řezu	AE	PBB-DFS-V
KUB	omezená	# uzlů kubic.podgrafu	DD	G-PBB-DFS-D
KRS	omezená	# tahů	DD	L-PBB-DFS-D
VZP	omezená	součet vzdál.dvojic	AE	PBB-DFS-V
KJP	omezená	cena 2 batohů	AE	PBB-DFS-V
LDL	omezená	cena dlaždičkování	DD	G-PBB-DFS-D