# Algorithms and Probability

Week 12

# Theory Recap

### Netzwerk

Ein Netzwerk ist ein Tupel N = (V, A, c, s, t), wobei gilt:

- (V, A) ist ein gerichteter Graph (ohne Schleifen),
- $\gt{s} \in V$ , die Quelle,
- $t \in V \setminus \{s\}$ , die Senke, und
- $ightharpoonup c: A 
  ightharpoonup \mathbb{R}_0^+$ , die Kapazitätsfunktion.

## Netzwerk

Quelle (source)

Senke (sink)

Kapazität



### Fluss

Sei N = (V, A, c, s, t) ein Netzwerk. Ein Fluss in N ist eine Funktion  $f : A \to \mathbb{R}$  mit den Bedingungen

- **Zulässigkeit**:  $0 \le f(e) \le c(e)$  für alle  $e \in A$ .
- ► Flusserhaltung: Für alle  $v \in V \setminus \{s, t\}$  gilt

$$\sum_{u\in V:\,(u,v)\in A}f(u,v)=\sum_{u\in V:\,(v,u)\in A}f(v,u).$$

Der Wert eines Flusses f ist definiert als

$$val(f) := netoutflow(s) := \sum_{u \in V: (s,u) \in A} f(s,u) - \sum_{u \in V: (u,s) \in A} f(u,s).$$



Netzwerk N = (V, A, c, s, t).

#### Regeln:

- 1. Zulässigkeit:  $0 \le f(e) \le c(e)$  für alle  $e \in A$ .
- 2. Flusserhaltung: in v fliesst gleich viel raus wie rein für alle  $v \in V \setminus \{s, t\}$

#### **Flusswert/Netoutflow:**

$$val(f) = \sum_{u \in V: (s,u) \in A} f(s,u) - \sum_{u \in V: (u,s) \in A} f(u,s)$$



#### Lemma

Der Nettozufluss der Senke t gleicht dem Wert des Flusses, d.h.

$$\operatorname{netinflow}(t) := \sum_{u \in V: (u,t) \in A} f(u,t) - \sum_{u \in V: (t,u) \in A} f(t,u) = \operatorname{val}(f).$$

## Nettozufluss

- val(f) = netoutflow(s) = 3 + 5 1 = 7.
- netinflow(t) = 1 + 7 1 = 7.

Wir sehen: netinflow(t) = val(f).





• Wir wissen nun was ein **Netwerk** und ein **Fluss** eines Netzwerkes ist.

Ziel

- Wir wollen nun einen maximalen Fluss effizient finden. Aber wie?
- Idee: betrachte Schnitte.





Fluss f mit Wert 3 + 5 - 1 = 7.

Ein s-t-Schnitt für ein Netzwerk (V, A, c, s, t) ist eine Partition (S, T) von V mit  $s \in S$  und  $t \in T$ . Die Kapazität eines s-t-Schnitts (S, T) ist durch

$$cap(S, T) := \sum_{(u,w)\in(S\times T)\cap A} c(u,w)$$

definiert.

(Partition 
$$(S, T)$$
:  $S \cup T = V$  und  $S \cap T = \emptyset$ )





Wir ignorieren die Kanten von *T* nach *S*!

Schnitt

# Schnitt

Quelle (source)

Senke (sink)

Kapazität



Was ist also cap(
$$S, T$$
) =  $\sum_{u,w \in (S \times T) \cap A} c(u,w)$ ?

## Schnitt

Quelle (source)

Senke (sink)

Kapazität



$$cap(S,T) = \sum_{u,w \in (S \times T) \cap A} c(u,w) = 2 + 2 + 6 = 10.$$

Die Kante von b nach s geht zwar über den Schnitt, aber von T nach S und wird deswegen **nicht mitgezählt**!

### Schnitte

#### Lemma

Ist f ein Fluss und (S, T) ein s-t-Schnitt in einem Netzwerk (V, A, c, s, t), so gilt

$$val(f) \leq cap(S, T)$$
.

Ein Fluss kann nie grösser sein als die Kapazität eines s-t-Schnitts.

Finden wir zu einem Fluss f einen s-t-Schnitt (S, T) mit cap(S, T) = val(f), so ist f ein maximaler Fluss.

Der Schnitt (S, T) is ein einfacher Beweis (ein einfaches Zertifikat) für die Maximalität von f.

# Zwischenergebnisse

• Schnitte ermöglichen eine Abschätzung des Flusswertes nach oben, da

$$val(f) \leq cap(S, T)$$
.

• Finden wir also einen Fluss f sodass val(f) = cap(S, T), dann ist f maximal.

#### Verbleibende Fragen:

- Gibt es immer einen maximalen Fluss?
- Gibt es immer einen minimalen Schnitt sodass val(f) = cap(S, T)?
- Wie bestimmen wir Flüsse/Schnitte effizient?

## Maxflow-Mincut Theorem

```
Satz ("Maxflow-Mincut Theorem")
```

Jedes Netzwerk N = (V, A, c, s, t) erfüllt

 $\max_{f \ Fluss} val(f) = \min_{(S,T) \ s-t-Schnitt} cap(S,T)$ 

# Algorithmus-Idee

- 1. Wir starten mit einem Fluss mit Wert 0.
- 2. Wir erhöhen den Flusswert nach und nach.

#### Fragen:

- Wie erhöhen wir den Flusswert?
- Wie lange erhöhen wir?

# Flusswerterhöhung

Angenommen, wir finden einen **gerichteten Pfad** P von s (Quelle) zu t (Senke), wo der Fluss auf allen Kanten die **Kapazität noch nicht erschöpft** hat, d.h. f(e) < c(e) für alle e auf P.



# Flusswerterhöhung

Angenommen, wir finden einen **gerichteten Pfad** P von s (Quelle) zu t (Senke), wo der Fluss auf allen Kanten die **Kapazität noch nicht erschöpft** hat, d.h. f(e) < c(e) für alle e auf P.





Senke (sink)

Kapazität

# Flusswerterhöhung

Angenommen, wir finden einen **gerichteten Pfad** P von s (Quelle) zu t (Senke), wo der Fluss auf allen Kanten die **Kapazität noch nicht erschöpft** hat, d.h. f(e) < c(e) für alle e auf P.

Netzwerk N = (V, A, c, s, t).

Wir definieren 
$$\delta := \min_{e \in P} c(e) - f(e)$$
.





Senke (sink)

Kapazität

# Flusswerterhöhung

Angenommen, wir finden einen **gerichteten Pfad** P von s (Quelle) zu t (Senke), wo der Fluss auf allen Kanten die **Kapazität noch nicht erschöpft** hat, d.h. f(e) < c(e) für alle e auf P.

Netzwerk N = (V, A, c, s, t).

Wir definieren 
$$\delta := \min_{e \in P} c(e) - f(e)$$
.

Hier: 
$$\delta = 2 - 1 = 1$$
.

Erhöhe entlang P um  $\delta=1$ .



- 1. Flusseigenschaft wurde nicht verletzt.
- 2. Flusswert wurde um  $\delta$  erhöht. Wir haben einen Fluss mit Wert 4+5-1=8.



Senke (sink)

Kapazität

Angenommen, wir finden einen **gerichteten Pfad** P von s (Quelle) zu t (Senke), wo der Fluss auf allen Kanten die **Kapazität noch nicht erschöpft** hat, d.h. f(e) < c(e) für alle e auf P.

Netzwerk N = (V, A, c, s, t).

Man sieht schnell: es gibt keinen solchen Pfad P mehr.

Aber ist *f* maximal?

Nein! Warum?

# Flusserhöhung



Fluss mit Wert 4 + 5 - 1 = 8.

#### Lokale Veränderungen des Flusses, die die Flusserhaltung erhalten:





#### augmentierender Pfad (ungerichteter Pfad!)

Erinnerung: augmentieren bedeutet so viel wie steigern, verstärken, erweitern.

Hier wird unser Flusswert gesteigert, denn wir haben 3-mal  $+\delta$  und nur 2-mal  $-\delta$ , also insgesamt  $+\delta$ .

Für e = (u, v), sei  $e^{opp} := (v, u)$  (entgegen gerichtete Kante).

Sei N = (V, A, c, s, t) ein Netzwerk ohne entgegen gerichtete Kanten<sup>1</sup> und sei f ein Fluss in N. Das Restnetzwerk  $N_f := (V, A_f, r_f, s, t)$  ist wie folgt definiert:

1. Ist  $e \in A$  mit f(e) < c(e), dann ist e eine Kante in  $A_f$ , mit

$$r_f(e) := c(e) - f(e).$$

2. Ist  $e \in A$  mit f(e) > 0, dann ist  $e^{opp}$  in  $A_f$ , mit

$$r_f(e^{\text{opp}}) = f(e).$$

3.  $A_f$  enthält nur Kanten wie in (1) und (2).

 $r_f(e)$ ,  $e \in A_f$ , nennen wir die Restkapazität der Kante e.

Restkapazität = "Spielraum"

### Restnetzwerk



#### Netzwerk







#### Restnetzwerk Restkapazität







### Restnetzwerk



- 1. Ist  $e \in A$  mit  $f(e) \subset c(e)$ , dann ist e eine Kante in  $A_f$ , mit  $r_f(e) := c(e) f(e)$ .
- 2. Ist  $e \in A$  mit f(e) > 0, dann ist  $e^{opp}$  in  $A_f$ , mit  $r_f(e^{opp}) = f(e)$ .

Wegen strikt kleiner/grösser, gibt es in den beiden unteren Fällen nur jeweils eine Kante!



Netzwerk N = (V, A, c, s, t).



Fluss f mit Wert 3 + 5 - 1 = 7.

- 1. Ist  $e \in A$  mit f(e) < c(e), dann ist e eine Kante in  $A_f$ , mit  $r_f(e) := c(e) f(e)$ .
- 2. Ist  $e \in A$  mit f(e) > 0, dann ist  $e^{opp}$  in  $A_f$ , mit  $r_f(e^{opp}) = f(e)$ .





Restnetzwerk  $N_f = (V, A_f, r_f, s, t)$ .

Senke (sink)

Kapazität

# Augmentierende Pfade

Wir betrachten einen gerichteten s-t-Pfad in  $N_f$ :



Bestimme die kleinste Restkapazität  $\varepsilon := \min_i \varepsilon_i$ 

Augmentiere f entlang des Pfades um  $\varepsilon$ .

Der blaue Pfad ist ein gerichteter Pfad im Restnetzwerk  $N_f$ . Die drunterliegenden Kanten, sind die Kanten des Netzwerkes.

- 1. Zeigt die blaue Kante in die selbe Richtung zeigt, dann gehen wir entlang der Restkapazität, können also noch erhöhen.
- 2. Zeigt die blaue Kante in die entgegengesetzte Richtung, dann gehen wir entlang des Flusses und reduzieren.





#### Resultat

```
Satz
Sei N ein Netzwerk (ohne entgegegen gerichtete Kanten).

Ein Fluss f ist maximaler Fluss

es im Restnetzwerk N_f keinen gerichteten s-t-Pfad gibt.

Für jeden maximalen Fluss f gibt es einen s-t-Schnitt (S,T) mit val(f) = cap(S,T).
```

# Zusammenfassung



### Ford-Fulkerson

Gegeben: Ein Netzwerk N = (V, A, c, s, t).

**Gesucht:** Ein maximaler Fluss *f*.

# Ford-Fulkerson(V, A, c, s, t) 1: $f \leftarrow \mathbf{0}$ $\triangleright$ Fluss konstant 0

2: while  $\exists s-t$ -Pfad P in  $N_f$  do

□ augmentierender Pfad

3: Augmentiere den Fluss entlang P

4: return f

Sei n := |V| und m := |A| für Netzwerk N = (V, A, c, s, t).

- Angenommen  $c: A \to \mathbb{N}_0$  und  $U := \max_{e \in A} c(e)$ . Dann gilt  $val(f) \le cap(\{s\}, V \setminus \{s\}) \le (n-1)U$  und es gibt höchstens (n-1)U Augmentierungsschritte.
- Ein Augmentierungsschritt Suche s-t-Pfad in  $N_f$ , Augmentieren, Aktualisierung von  $N_f$ benötigt O(m) Zeit.

#### Satz (Ford-Fulkerson mit ganzzahligen Kapazitäten)

Sei N = (V, A, c, s, t) ein Netzwerk mit  $c : A \to \mathbb{N}_0^{\leq U}$ ,  $U \in \mathbb{N}$ , ohne entgegen gerichtete Kanten.<sup>2</sup> Dann gibt es einen ganzzahligen maximalen Fluss. Er kann in Zeit O(mnU) berechnet werden.

- 1. Das Restnetzwerk wird nicht in jedem Schritt neu konstruiert, sondern schrittweise entlang des gewählten augmentierenden Pfades verändert.
- 2. In jedem Schritt erhöhen wir in diesem Fall den Wert des Flusses um einen ganzzahligen Wert ( $\geq 1$ ). Und das gerade weil die Kapazitäten ganzzahlig sind! Bei irrationalen Kapazitäten terminiert der Algorithmus nicht immer.

### Laufzeit

# Zusammenfassung

Der **Ford-Fulkerson Algorithmus** zeigt, dass es unter den gegebenen Umständen (Ganzzahligkeit, keine entgegen gerichtete Kanten) einen maximalen Fluss gibt.

Damit ist nun auch endlich das Maxflow-Mincut Theorem bewiesen, zumindest in abgeschwächter Form.

# **Ergebnis**

### Satz ("Maxflow-Mincut Theorem", ganzzahlig)

Jedes Netzwerk ohne entgegen gerichtete Kanten mit ganzzahligen Kapazitäten erfüllt

 $\max_{f \ Fluss} val(f) = \min_{(S,T) \ s-t-Schnitt} cap(S,T)$ .

# Empfehlungen

- Beweis Lemma 3.6.
- Beweis Lemma 3.8.
- Beweis Satz 3.11.

Beweise im Skript. Beweis von Lemma 3.6 mit Notizen auf meiner Website.

#### Aufgabe 4 - Restnetzwerk

Sei N ein Netzwerk ohne entgegengesetzte Kanten und sei f ein Fluss in G. Unten abgebildet sehen Sie das Restnetzwerk  $R_f$ .



This template was given.

(a) Ist f maximal? Geben Sie eine kurze Begründung für Ihre Antwort.

(1 Punkte)

(b) Rekonstruieren sie N und f.

(4 Punkte)

AlgoWahr FS21.

cont'd on iPad, please see notes.