EE 236 Lab Report Basic Electronic Devices

Name: Devesh kumar Batch: Monday
Roll no. 16D070044 TA: Arindam Sarkar

Experiment: Solar cell I/V characteristics and their dependence on series and shunt resistance

Q1. Plot the I-V characteristic of the solar cell that you measured from Part 1 for dark, intensity I₁ and Intensity I₂.

Q2. From the data from Part 2, Plot i as a function of V. From this graph find I_{Sc} and V_{Oc} for two intensities I_1 and I_2 .

VL is on x axis

VL is on x axis

Q3. Using the data collected in Part 2, plot Power P as a function of V on the same plot obtained above. Determine the voltage VMP at which the power P reaches maximum. Find the current IMP at the maximum power point. Using IMP and VMP, calculate the fillfactoras,FF=IMP*VMP/(Isc*Voc).

Intensity	Voc	Isc(mA)	Vmp	Imp(mA)	FF
green	0.429	9.83	0.311	6.41	0.472
blue	0.474	13.01	0.353	9.09	0.5203348933

Q4. Superimpose the readings of Part 1 obtained in the fourth quadrant and readings obtained in Part 2. Do they match?

Q5 Plot I_{SC} v/s light intensity (LED current) and V_{OC} v/s log intensity (LED current). Comment on the nature of the graph.

Comments:

Voc increases logarithmically with I_{led} .Id varies exponentially with V_{d_i} and I_{d} and I_{led} are linear so So logarithmic variation is justified.

Isc increases linearly with I_{led} , increasing I_{led} increases the intensity of incident light generated thus IL increases linearly.

