Some Definitions about Sets

Definition: Two sets are **equal** if they contain the same elements. I.e., sets A and B are equal if

 $\forall x[x \in A \leftrightarrow x \in B].$

Notation: A = B.

Recall: Sets are unordered and we do not distinguish between repeated elements. So:

$$\{1, 1, 1\} = \{1\}, \text{ and } \{a, b, c\} = \{b, a, c\}.$$

Definition: A set A is a **subset** of set B, denoted $A \subseteq B$, if every element x of A is also an element of B. That is, $A \subseteq B$ if $\forall x (x \in A \to x \in B)$.

Example: $\mathbb{Z} \subseteq \mathbb{R}$. $\{1,2\} \subseteq \{1,2,3,4\}$

Notation: If set A is not a subset of B, we write $A \not\subseteq B$.

Example: $\{1, 2\} \not\subseteq \{1, 3\}$

More on Subsets

Definition: If $A \subseteq B$ and $A \neq B$, we say that A is a **proper subset** of B. Notation: $A \subset B$.

Example: $\{1,2\} \subset \{3,2,1\}$

Note: One way of proving that A = B is by proving that $A \subseteq B$ and $B \subseteq A$.

Definition: The set that contains no elements is the **empty set**, and is denoted by \emptyset or less commonly, $\{\}$.

Theorem: Prove that for every set S, $\emptyset \subseteq S$.

Creating New Sets - Set Operations

Binary Operations

The **union** of two sets A and B is denoted $A \cup B$ and is defined as $A \cup B = \{x | x \in A \text{ or } x \in B\}$.

The **intersection** of two sets A and B is denoted $A \cap B$ and is defined as $A \cap B = \{x | x \in A \text{ and } x \in B\}$.

Two sets are **disjoint** if they have no elements in common, that is, A and B are disjoint if $A \cap B = \emptyset$.

Some Proofs about Sets

Theorem: For any sets A and B, $A \cap B \subseteq A$.

Theorem: For any sets A and B, $A \subseteq A \cup B$.

Venn Diagrams and More Set Operations

Sets and relationships between sets are represented visually using **Venn Diagrams**, which were introduced by mathematician **John Venn**.

Venn Diagrams

- The **universal set** U, which contains all objects under consideration, is represented by a rectangle.
- Circles and other shapes are used inside the rectangle to represent sets (which are subsets of U).
- Elements of U (or other sets) are represented by dots.

Example: Venn diagrams that represent $A \subseteq B$, $A \cup B$, and $A \cap B$.

Definition: For sets A and B, the **difference** or **set difference** of A and B, denoted A - B, is given by $A - B = \{x | x \in A \text{ and } x \notin B\}.$

Example: Venn diagram for A - B.

Example: $A = \{a, b, d, f\}, B = \{b, f, h, i, j\}.$ What is A - B? What is B - A?

More Set Operations

Definition: Let U be the universal set. The **complement** of a set A, denoted \overline{A} or A^c , is U - A, or equivalently,

$$A^c = \{x | x \not\in A\}.$$

Example: Venn diagram for A^c .

Example: Let the universe $U = \mathbb{Z}^+$, and let $A = \{x | x \ge 10\}$. What is A^c ?

Set Identities

Identity	Name
$A \cup \emptyset = A$	identity laws
$A \cap U = A$	
$A \cup U = U$	domination laws
$A \cap \emptyset = \emptyset$	
$A \cup A = A$	idempotence
$A \cap A = A$	
$(A^c)^c = A$	double complement law
$A \cup B = B \cup A$	commutative laws
$A \cap B = B \cap A$	
$A \cup (B \cup C) = (A \cup B) \cup C$	associative laws
$A \cap (B \cap C) = (A \cap B) \cap C$	
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	distributive laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	DeMorgan's laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$	
$A \cup (A \cap B) = A$	absorption laws
$A \cap (A \cup B) = A$	
$A \cup A^c = U$	complement laws
$A \cap A^c = \emptyset$	

Proving Set Equality

Set equality proofs are usually a special type of linear equivalence proof that uses definitions about set operations and logical identities.

Example: Prove $\overline{A \cap B} = \overline{A} \cup \overline{B}$

```
Let x \in \overline{A \cap B}

\equiv x \notin A \cap B {Definition of set complement}

\equiv \neg(x \in A \cap B) {Meaning of \notin abbreviation}

\equiv \neg(x \in A \land x \in B) {Definition of set intersection}

\equiv x \notin A \lor x \notin B {De Morgan, \notin abbreviation}

\equiv x \in \overline{A} \lor x \in \overline{B} {Definition of set complement (twice)}

\equiv x \in \overline{A} \cup \overline{B} {Definition of set union}

Therefore \forall x(x \in \overline{A \cap B} \leftrightarrow x \in \overline{A} \cup \overline{B}) {Universal Generalization}

In other words: \overline{A \cap B} = \overline{A} \cup \overline{B} {Definition of set equality}
```

Note: Some set equality proofs are more challenging, and require two separate subset proofs instead. However, your general approach to a set equality proof should be to do a linear equivalence proof. If, along the way, you find that some necessary step can only be accomplished with an inference (not an equivalence), then your set equality proof becomes a subset proof, and you will also need to do another subset proof in the opposite direction.

More Proofs of Identities

Theorem: For any sets A, B and C, $\overline{A \cup (B \cap C)} = (\overline{B} \cup \overline{C}) \cap \overline{A}$.

Proof:

Exercise: Prove the complement law.

More on the Cardinality of a Set

Definition: Let A be a set. If A contains exactly n distinct elements and $n \in \mathbb{Z}^{\geq 0}$, then A is a **finite set** and n is the **cardinality** of A. Notation: |A| = n.

Example: $A = \{a, b, c, ..., z\}$. What is |A|?

Example: What is $|\emptyset|$?

What is the cardinality of the following sets:

- 1. $\{\emptyset\}$
- 2. $\{\emptyset, \{\emptyset\}\}$
- 3. $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$
- $4. \{\{a\}\}$
- 5. $\{a, \{a\}\}$

Definition: If a set is not finite, then it is **infinite**.

The Power Set

Definition: For any set S, the **power set** of S, denoted P(S) or 2^S , is the set of all subsets of S.

Example: $A = \{a, b, c\}$. What is 2^A ?

Example: What is 2^{\emptyset} ?

Cartesian Products

Definition: The **ordered n-tuple** $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_i as its ith element for all integers i such that $1 \le i \le n$.

Two ordered n-tuples are equal if each pair of corresponding entries are equal. That is, $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$ if and only if $a_i = b_i$ for all $i \in \{1, 2, ..., n\}$.

We call ordered 2-tuples **ordered pairs**.

Definition: For sets A and B, the **Cartesian product** of A and B, denoted AxB, is the set of all ordered pairs (a,b) such that $a \in A$ and $b \in B$. That is, $AxB = \{(a,b)|a \in A \land b \in B\}$.

Example: $A = \{0, 1\}, B = \{a, b, c\}.$ What is $A \times B$?

Example: $A = \{1, 2\}$. What is $Ax\emptyset$?

More on Cartesian Products

Example: Disprove: For all sets A and B, AxB = BxA.

Definition: The **Cartesian product** of sets $A_1, A_2, ..., A_n$, denoted $A_1 \times A_2 \times ... \times A_n$, is the set of ordered n-tuples $(x_1, x_2, ..., x_n)$ where $x_i \in A_i$ for all $i \in \{1, 2, ..., n\}$. That is, $A_1 \times A_2 \times ... \times A_n = \{(x_1, x_2, ..., x_n) | x_i \in A_i \text{ for } i = 1, 2, ..., n\}$.

Example: $A = \{0, 1\}, B = \{a, b, c\}, C = \{cat, dog\}.$ What is AxBxC?