第五周作业

变元自由出现与项对公式中变元自由

定义 1 (变元的自由出现与约束出现) 在一个公式里, 个体变元 x 的出现如果不是在 ∀x 中或在 ∀x 的范围中,则叫做自由出现, 否则叫做约束出现.

比如,在 $\forall x_1 (R_1^2(x_1, x_2) \rightarrow \forall x_2 R_1^1(x_2))$ 中, x_1 约束出现两次, x_2 约束出现两次且自由出现一次.

定义 2 (闭式) 公式若不含自由出现的变元,则叫做闭式.

例如,公式 $\forall x_1(R_1^2(x_1,x_2) \rightarrow \forall x_2R_1^1(x_2))$ 不是闭式,因为 x_2 在其中自由出现一次. 公式 $\forall x_1(R_1^2(x_1,x_2) \rightarrow \forall x_2,R_1^1(x_2))$ 是闭式.

可能由于量词的存在而产生"变元干扰",是谓词演算中的一件麻烦事.例如,在用项去替换公式中的个体变元时就可能出现这种干扰.项所含的变元本是自由而不受约束的,但若需要用某个项去替换一个公式中自由出现的变元时,该项中的变元可能会受约束.

为明确区分项对公式中的某变元是否可"自由代换",需要下面的定义:

定义 3 (项 t 对公式 p 中变元 x 是自由的) 用项 t 去代换公式 p 中自由出现的个体变元 x 时,若在代换后的新公式里,t 的变元都是自由的,则说 t 对 p 中 x 是可自由代换的,简称 t 对 p 中 x 是可由的,或简称 t 对 p 中 x 是自由的.

换句话说,用t代换p中自由出现的x时,若t中有变元在代换后受到约束,则说t对p中的x是"不自由的"(或"不可自由代换的,"或"不可代换的").

下面两种情形, t 对 p 中 x 是自由的:

1° t 是闭项;

 2° x 在 p 中不自由出现.

此外,在任何公式中, x_i (作为项)对 x_i 自己总是自由的.

定义 3 的另一种说法是: 若对项 t 中所含任一变元 y, p 中自由出现的某变元 x 全都不出现在 p 中 $\forall y$ 的范围内,则说 t 对 p 中 x 是自由的.

以后如不另加说明,p(t) 表示用项 t 去代换公式 p(x) 中所有自由出现的变元 x 所得结果.

还要注意: 我们写 p(x), 其中 x 是指该公式中自由出现的 x, 而不是指约束出现的 x. 写 p(x) 时 x 可以不在 p(x) 中自由出现或根本不出现,且不排除有其他变元在 p(x) 中出现.

比如,当 $p(x_1) = R_1^1(x_1) \to \forall x_1 R_1^2(x_1, c_1)$ 时, $p(t) = R_1^1(t) \to \forall x_1 R_1^2(x_1, c_1)$; 当 $p(x_1) = R_1^1(x_2) \to \forall x_2 R_1^2(x_2, c_1)$ 或当 $p(x_1) = R_1^1(x_2) \to \forall x_1 R_1^2(x_1, c_1)$ 时,都有 $p(t) = p(x_1)$.

注 定义 3 中及别处所用"代换"一词,在本书中的含义是"全部替换"而不同于"一处替换"

在K中的证明

与L中证明的思路和重点有差异

变量的自由与约束

• K中的公理

1° "公理"

取 K(Y) 中以下形状的公式作为"公理".

- (K1) $p \rightarrow (q \rightarrow p)$;
- (K2) $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r));$
- (K3) $(\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p)$;
- (K4) $\forall xp(x) \rightarrow p(t)$, 其中项 t 对 p(x) 中的 x 是自由的:
- (K5) $\forall x(p \rightarrow q) \rightarrow (p \rightarrow \forall xq)$, 其中 x 不在 p 中自由出现.
- 以上给出的是五种公理模式,其中p,q,r,p(x)都是任意的公式.
- 演绎定理、归谬律、反证律、∃规则

定理 2 (演绎定理)

1° 若 Γ ⊢ $p \rightarrow q$, 则 $\Gamma \cup \{p\}$ ⊢q;

 2° 若 $\Gamma \cup \{p\} \vdash q$, 且证明中所用 Gen 变元不在 p 中自由出现,则不增加新的 Gen 变元就可得 $\Gamma \vdash p \rightarrow q$.

定理 3 (反证律) 若 $\Gamma \cup \{\neg p\} \vdash q \ Q \neg q$, 且<u>所用 Gen 变元不在 p 中自由出现,</u>则不增加新的 Gen 变元便可得 $\Gamma \vdash p$.

定理 **4** (归谬律) 若 $\Gamma \cup \{p\} \vdash q$ 及 $\neg q$, 且 Gen 变元不在 p 中自由出现,则不增加新的 Gen 变元便可得 $\Gamma \vdash \neg p$.

命题 2(3, 规则) 设项 t 对 p(x) 中的 x 自由,则有

$$\vdash p(t) \rightarrow \exists xp(x).$$

命题 4 (3, 规则) 设 $\Gamma \cup \{p\} \vdash q$, 其证明中 Gen 变元不在 p 中自由出现,且 x 不在 q 中自由出现,那么有 $\Gamma \cup \{3xp\} \vdash q$, 且除了 x 不增加其他 Gen 变元.

第六周作业

前束范式

可用命题

命题 2 用 Q 表示量词符号 \forall 或 \exists , 用 Q^* 表示 Q 的对偶符号 (Q 为 \forall 时 Q^* 为 \exists , Q 为 \exists 时 Q^* 为 \forall). 那么有

1° 若 y 不在 p(x) 中出现,则

$$\vdash Qxp(x) \leftrightarrow Qyp(y).$$

 2° 若 x 不在 p 中自由出现,则

数理逻辑

78

$$\vdash (p \to Qxq) \leftrightarrow Qx(p \to q);$$

若x不在q中自由出现,则

$$\vdash (Qxp \to q) \leftrightarrow Q^*x(p \to q).$$

$$3^{\circ} \vdash \neg Q x p \leftrightarrow Q^* x \neg p$$
.

题 2 可以找到与 p 等价的前束范式 q. 方法是: 先利用命题 2-1° 及子公式等价替换定理 (定理 1),适当调整、更换 p 中的约束变元 (如有必要的话),使新的公式与 p 等价,且满足使用命题 2-2° 所需要的条件. 然后利用命题 2-2° 或命题 2-3°, 逐步把量词往左边移. 重复这种步骤,直到所有的量词都移到左边,得到了等价的前束范式 q 为止.

约束变元的更名

题 2 可以找到与 p 等价的前束范式 q. 方法是: 先利用命题 2-1° 及子公式等价替换定理 (定理 1),适当调整、更换 p 中的约束变元 (如有必要的话),使新的公式与 p 等价,且满足使用命题 2-2° 所需要的条件. 然后利用命题 2-2° 或命题 2-3°, 逐步把量词往左边移. 重复这种步骤,直到所有的量词都移到左边,得到了等价的前束范式 q 为止.

顶解释的变元变通

定义 2(项解释的变元变通) 设 x 是某个给定的个体变元, y 是任意的个体变元, 且 $\varphi, \varphi' \in \Phi_n$ 满足条件

(3) $y \neq x \Rightarrow \varphi'(y) = \varphi(y)$,

则把 φ' 叫做 φ 的 x 变通. (此时 φ 与 φ' 互为对方的 x 变通.)

由定义知, 互为 x 变通的 φ 与 φ' 的差别仅<u>在于对变元 x 的指派可能不同 (</u>也可

考虑公式赋值时:

(iii) 当 p 是 ∀xq 时,令

$$|\forall x q|(\varphi) = \begin{cases} 1, & \textit{若} \varphi \text{ 的任} - x 变通 \varphi' \text{ 都使 } |q|(\varphi') = 1, \\ 0, & \textit{若存在} \varphi \text{ 的 } x 变通 \varphi' \text{ 使 } |q|(\varphi') = 0. \end{cases}$$

第七周作业

关于公式赋值时项解释的影响:

一个直观上明显的事实是: 项的解释只与在该项中出现的变元的指派有关,与 其他变元的指派无关; 公式的真值也只与在该公式中出现的自由变元指派有关,而 与其他变元的指派无关. 这就是下面的命题 1.

命题1 设M是K的解释域, $\varphi,\psi\in\Phi_{\mu}$.

 1° 若对项 t 中的任一变元 x 都有 $\varphi(x) = \psi(x)$, 则 $\varphi(t) = \psi(t)$.

 2° 若对公式 p 中任一自由出现的变元 x 都有 $\varphi(x) = \psi(x)$, 则 $|p|(\varphi) = |p|(\psi)$.

- 含自由变元的项,这个项的赋值由自由变元指派决定
- 含约束变元的项,这个项的赋值由变元变通决定

张俸铭