Supporting Information:

NMRlipids IV: Headgroup & glycerol backbone structures, and cation binding in bilayers with PE and PG lipids

Pavel Buslaev,[†] Fernando Favela-Rosales,[‡] Patrick Fuchs,[¶] Matti Javanainen,[§] Jesper J. Madsen,^{∥,⊥} Josef Melcr,^{§,#} Markus S. Miettinen,[@] O. H. Samuli Ollila,*,[△] Chris G. Papadopoulos,[▽] Antonio Peón,^{††} Thomas J. Piggot,^{‡‡} and Pierre Poulain[¶]

† University of Jyväskylä

‡Departamento de Investigación, Tecnológico Nacional de México, Campus Zacatecas
Occidente, México

¶Paris, France

§Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610 Prague 6, Czech Republic

 $\parallel Department\ of\ Chemistry,\ The\ University\ of\ Chicago,\ Chicago,\ Illinois,\ United\ States\ of\ America$

⊥Department of Global Health, College of Public Health, University of South Florida, Tampa,
Florida, United States of America

#Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands @Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany

 $\triangle Institute of Biotechnology, University of Helsinki$

 $\nabla I2BC$ - University Paris Sud S2 $\dagger\dagger Spain$

‡‡Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United

S1 Comparison of headgroup order parameters from different force fields to experiments

The poor performance of headgroup order parameters in Berger model can be probably explained by ring like structures seen in Fig. 6 in Ref. ?, which is a typical feature for Berger based lipid force fields containing explicit hydrogen atoms in the head group. ??? The poor performance of glycerol backbone of Slipids simulations is systemically observed also for other lipids in previous studies. ?? 1.Should we comment more the relative quality of different force fields and/or make the subjective force field ranking figures? https://github.com/NMRLipids/NMRlipidsIVPEandPG/issues/8

Figure S1: The headgroup and glycerol backbone order parameters of PE lipids from experiments (POPE and signs this work, DPPE from Ref. ? and E.coliPE from Ref. ?) and simulations with different force fields.

2. This should be clarified as in NMRlipidsI and error bars should be added. Probably larger error bars for united atom models based on the report by Fuchs et al.

Figure S2: The headgroup and glycerol backbone order parameters of PG lipids from experiments (POPG and signs from this work and from Ref. 21, DPPG with 100mM NaCl from Ref. ? ,and E.Coli PG results from Ref. ?). and simulations with different force fields.

S1.1 PC headgroup interactions with PE and PG

In experiments, the PC headgroup order parameters increase with the addition of negatively charged PG or PS lipids, but are not affected by the addition of zwitterionic PE and SM

Figure S3: Modulation of POPC headgroup order parameters with increasing amount of POPE (left) and POPG (right) in bilayer from experiments $^{22?}$ and simulations with different force fields. Signs are determined as discussed in. $^{?}$?

3.P-N vector angles from Berger-OPLS and GROMOS-CKP simulations are yet to be analyzed.

lipids or cholesterol (Fig. S3). This can be explained by the electrometer concept, which suggests that the headgroup dipole tilts more parallel to the membrane plane upon addition of negative charge to the membrane. The response of PC headgroup order parameters to PE by the tested CHARMM36 and Berger-OPLS force fields, although CHARMM36 slightly overestimates the changes (Fig. S3). The good performance of Berger-OPLS simulations is notable because the response of headgroup order parameters to cholesterol was significantly overestimated by the Berger/HÃűltje force field in our previous work. This is text by P. Fuchs, copied from the blog.

Area results in nm², the error is $\leq 0.003 \text{ nm}^2$

- pure POPC

CHARMM36: 0.624

Berger: 0.649

- POPC/POPE 50:50

 $\mathbf{CHARMM36}:\ \mathbf{POPC}\ 0.609,\ \mathbf{POPE}\ 0.557$

Berger-hacked: POPC 0.637, POPE 0.632

One can see that CHARMM 36 predicts a drop in the area on going from pure POPC to POPC/POPE 50:50. This means that POPC pack tightly to POPE. In contrast, the values for Berger are not that changed. The POPE value predicted by CHARMM 36 (in the mixture POPC/POPE 50:50) is much smaller than that predicted by Berger.

The experimental acyl chain order parameters for POPE? seem larger than reported for POPC,? which supports the more condensed PE bilayer. This is interesting, but not exactly the core message of the manuscript. Maybe we should mention this very briefly? For example, we could just report the areas per lipid (without distinguishing PC and PE) and mention the difference between CHARMM36 and Berger. I have opened an issue for this: https://github.com/NMRLipids/NMRlipidsIVPEandPG/issues/7

None of the force fields fully reproduces the PC headgroup order parameter response to

the increasing amount of PG, which may be related to the counterion binding affinity (see also the next section). In all force fields except Slipids, the order parameters of different hydrogens attached to the α -carbon are responsing differently when mixed with PE or PG lipids 5.Maybe we should figure out what is the reason for this?

Maybe we should analyze the P-N vector angle from different simulations?

https://github.com/NMRLipids/NMRlipidsIVPE and PG/issues/10.

For β -carbon order parameter in PG headgroup, experiments report mild increase ²² or no change ²¹ upon addition of PC lipids (Fig. S4). Simulations with all the tested force fields give only very small changes also for the α -carbon order parameter (Figs. S10 and S4). Therefore, the simulations are generally in line with experiments, suggesting that the interactions with PC do not essentially effect the PG headgroup structure. This suggests that the interactions between PG and PC headgroups are captured better in simulations than for PS headgroup, where all the force fields significantly overestimated the structural response of PS headgroup to the interactions with PC lipids. [?]

Figure S4: Modulation of PG lipid headgroup order parameters with the increasing amount of PC in lipid bilayer from experiments 21,22 and simulations with different force fields.

6.P-N angles from Slipids and GROMOS-CKP yet to be calculated.

S1.2 Sodium binding to PE and PG lipid bilayers

Sodium binding affinity to PE lipids has not been measured experimentally, but large differences to PC would be surprising. In simulations, the sodium binding affinity to POPE depends on the used force field (Fig. S5), but lesser extend than reported previously for PC.?

7.This will be finished once we have all the simulation details and Lipid17 simulations with correct dihedrals from issue https://github.com/NMRLipids/NMRlipidsIVPEandPG/issues/12, Because some simulation and ion parameters are not identical with the previous work, we compare POPE results to the POPC simulations ran with identical parameters (Fig. S11). In Lipid17 with the strongest sodium binding affinity to POPE, the binding affinity is approximately similar to POPC. Slipids and CHARMM36 exhibit slightly, and GROMOS-CKP subtantially weaker binding to POPE than to POPC. Assuming that the binding to POPE would be similar than to POPC, the sodium binding affinity to POPE is potentially realistic in CHARMM36, Slipids, and GROMOS-CKP simulations here, but substantially overestimated in Lipid17 simulation.

Simulations with PG lipids give similar dependence on force field as observed in POPE simulations: Lipid 17 simulations with Dang ion parameters exhibits stronger counter-ion binding affinity to pure POPG bilayer than CHARMM36, Slipids, and GROMOS-CKP simulations, which are roughly similar (Fig. S6). Lipid17 also exhibits less increase in POPC headgroup order parameters upon addition of POPG than other simulations (Fig. S3), and lower area per molecule (59.5 Ų) than in experiments (66.1 Ų). In our previous study about PS lipids, such behaviour was related to the overestimated counterions binding and shielding the electrostatic repulsion between PG headgroups in bilayers. Even though the area per lipid in CHARMM36, Slipids, and GROMOS-CKP simulations is in good agreement with experiments (Fig. S6), the experimental increase in POPC headgroup order parameters upon addition of POPG are not fully reproduced (Fig. S3). Therefore we conclude that the counter-ion binding affinity is overestimated in Lipid17 simulations, while the other simulations are more realistic, but slight overbinding cannot be excluded.

Figure S5: Sodium (solid line) and choride ion density profiles along membrane normal from different simulations with PE lipids.

Figure S6: Counterion densities and area per lipids from simulations with PG lipids. Experimental area for POPG at 303 K is $66.1~\rm{\AA}^2$ and $67~\rm{\AA}^2$ for DPPC at 323 K.?

S2 Simulated systems

S2.1 CHARMM36

POPE 32. Simulation details by M. Javanainen.

POPE with additional NaCl 33. Simulation details by A. Peon.

POPG 34.Simulation details by Ollila.

POPG with additional NaCl 35.Simulation details by A. Peon.

POPC:POPE mixtures Data is available at.^{1,2} 300 K with v-rescale (tau=0.1 ps), 1 bar with PR semiisotropic (tau=4 ps, compressibility=4.5e-5 bar⁻¹), PME order 4 and space 0.12, recoulomb and rvdw 1.0, 128 lipids per leaflet, no ion 36.Full simulation details by Fuchs et al.

POPC:POPG mixture with additional calcium 37. Simulation details by J. Madsen.

POPC:POPG mixture with additional NaCl 38. Simulation details by A. Peon.

S2.2 CHARMM36ua

POPE Data is available at. 3 39. Simulation details by T. Piggot.

S2.3 Slipids

POPE Data is available at. 4 40. Simulation details by T. Piggot.

POPE with additional NaCl 41. Simulation details by A. Peon. I have assumed that ion parameters are default Slipids, i.e., Aqvist, please correct if this is not true.

DPPE Data is available at. 5 42. Simulation details by F. Favela.

POPG Data is available at.⁶ 43. Simulation details by F. Favela. I have assumed that ion parameters are default Slipids, i.e., Aqvist, please correct if this is not true.

POPG with additional NaCl 44. Simulation details by A. Peon. I have assumed that ion parameters are default Slipids, i.e., Aqvist, please correct if this is not true.

DPPG Data in 298 K is available at ⁷ and in 314 K at. ⁸ 45. Simulation details by F. Favela. I have assumed that ion parameters are default Slipids, i.e., Åqvist, please correct if this is not true.

Table S1: List of MD simulations with PE lipids.

gffles	٠	٠	٠.	3	ಬ	4	٠.	٠.	20	18	٠.	٠.	19	15	17	16	¢.	٠.	6	10	11	12	٠.	٠.
$f_{\rm t_{anal}}$ (ns)	400	100	100	2×100	100	2×100	100	100	2×400	2×400	100	100	2×400	2×100	2×100	2×100	350	300	2×100	2×100	2×100	2×100	100	100
$^{e}\mathrm{t_{sim}(ns)}$	200	200	200	2×200	200	2×200	200	200	2×500	2×500	200	200	2×500	2×200	2×200	2×200	200	200	2×200	2×200	2×200	2×300	200	200
^{d}T (K)	310	310	310	310	336	310	310	310	342	313	310	310	271	313	303	303	310	300	303	303	271	271	310	310
$^c{ m N}_{ m c}$	0	0	20	0	0	0	0	20	0	0	0	20	0	0	0	0	0	0	0	0	0	0	20	20
$^{b}{ m N}_{ m w}$	2260	25000	25000	15254	9386	<i>د</i> ٠	25000	25000	3655	3552	25000	25000	4789	3552	3328	3328	2760	5120	3552	3552	4789	4789	25000	25000
$^a\mathrm{N}_1$	144	200	200	336	288	336	200	500	128	128	200	200	128	128	128	128	144	128	128	128	128	128	200	200
NaCl (M)	0	0	0.11	0	0	0	0	0.11	0	0	0	0.11	0	0	0	0	0	0	0	0	0	0	0	0.11
force field for lipids / ions	CHARMM36?	CHARMM36?	CHARMM36?	$ m CHARMM36ua^{2}$	Slipids?	Slipids?	Slipids?	Slipids / Åqvist??	GROMOS-CKP?	GROMOS-CKP?	GROMOS-CKP?	GROMOS-CKP?	GROMOS-CKP?	GROMOS 43A1-S3?	OPLS-UA vdW on H?	OPLS-UA?	$OPLS-MacRog^{?}$	$\mathrm{OPLS ext{-}MacRog}^{?}$	Berger-Vries?	$\operatorname{Berger-largeH}^{?}$	Berger-Vries?	$\operatorname{Berger-largeH}^{?}$	LIPID17?	$LIPID17^{?}$
lipid/counter-ions	POPE	POPE	POPE	POPE	DPPE	POPE	POPE	POPE	DPPE	POPE	POPE	POPE	DOPE	POPE	POPE	POPE	POPE	POPE	POPE	POPE	DOPE	DOPE	POPE	POPE

 $[^]a\mathrm{Number}$ of lipid molecules with largest mole fraction

13. Citations for Berger-* simulations? 11. Citation for GROMOS 43A1-S3? 12. Citation for OPLS-UA models? 8. Citation for CHARMM36 PE? 9. Which ion model is used in? ? 10. Citation for GROMOS-CKP?

14.LIPID17 simulations with correct dihedrals still coming

 $[^]b\mathrm{Number}$ of water molecules $^c\mathrm{Number}$ of additional cations

 $^{^{}d} {\rm Simulation~temperature} \\ ^{e} {\rm Total~simulation~time}$

 $[^]f$ Time used for analysis

 $[^]g$ Reference for simulation files

Table S2: List of MD simulations with PG lipids.

g files												
$f_{\rm t_{anal}}$ (ns) g f	100 ?	100?	100^{-2}	100 6	100^{-8}	100^{-7}	100?	100?	100?	100?	100 ?	100^{-2}
$e_{\mathrm{t_{sim}}(\mathrm{ns})}$ f_{t}		200	200	250	200	400	200	200	200	200	200	200
$^{d}\mathrm{T}\left(\mathrm{K}\right)$	298	310	310	298	314	298	310	310	310	310	310	310
$^{c}\mathrm{N_{c}}^{c}$	0	49	0	0	0	0	0	49	0	49	0	49
$^b\mathrm{N}_\mathrm{w}$		25000	25000	10664	11232	11232	25000	25000	25000	25000	25000	25000
$^a\mathrm{N}_1$	118	500	200	288	288	288	200	500	500	200	500	200
NaCl (M)	0		0	0	0		0	0.11		0.11	1	0.11
lipid/counter-ions force field for lipids / ions Na	CHARMM36 ⁷ 15.	CHARMM36?	${ m CHARMM36}^{7}$	Slipids / Åqvist??	Slipids / Åqvist??	Slipids / Åqvist??	Slipids / Åqvist??	Slipids / Åqvist??	$LIPID17 / Dang^{?}$?	LIPID_{17}	GROMOS-CKP?	GROMOS-CKP?
lipid/counter-ions	POPG/K ⁺	POPG	POPG	POPG/Na ⁺	$\mathrm{DPPG/Na^+}$	$\mathrm{DPPG/Na^+}$	POPG	POPG	POPG	POPG	POPG	POPG

 $[^]a\mathrm{Number}$ of lipid molecules with largest mole fraction

17.Lipid17 simulation with correct dihedral potentials still coming. 18. Citation and ion model for GROMOS-CKP? 16. Citations and ion model for CHARMM36?

 $[^]b\mathrm{Number}$ of water molecules $^c\mathrm{Number}$ of additional cations

 $^{^{}d} {\rm Simulation\ temperature} \\ ^{e} {\rm Total\ simulation\ time}$

 $f{\rm Time~used~for~analysis}$ $g{\rm Reference~for~simulation~fles}$

Table S3: List of MD simulations with PE and PG lipids mixed with PC.

lipid/counter-ions	force field for lipids $/$ ions	$NaCl(M) CaCl_2(M)$	$CaCl_{2}(M)$	$^a\mathrm{N}_1$	$^{b}{ m N_{w}}$	$^c{ m N}_{ m c}$	$^{d}\mathrm{T}\left(\mathrm{K}\right)$	$^{e}\mathrm{t_{sim}(ns)}$	$f_{\mathrm{t_{anal}}}$ (ns)	g
POPC	CHARMM36?	0	0	200	25000	0	310	200	100	۸.
POPC:POPG (7:3)	${ m CHARMM36}^{?}$	0	0	350	25000	0	310	200	100	٠.
POPC:POPG (1:1)	${ m CHARMM36}^{?}$	0	0	150:150	31500	0	298	200	400	٠.
POPC:POPG (1:1)	${ m CHARMM36}^{?}$	0	0.1	150:150	31329	22	298	400	300	٠.
POPC:POPG (1:1)	${ m CHARMM36}^{?}$	0	1.08	150:150	29766	278	298	200	400	٠.
POPC:POPG (4:1)	${ m CHARMM36}^{?}$	0	0	350.88	26280	0	298	200	400	٠.
POPC:POPG (4:1)	${ m CHARMM36}^{?}$	0	0.1	350.88	26280	47	298	200	400	۷.
POPC:POPG (4:1)	${ m CHARMM36}^{?}$	0	1.0	350.88	24927	451	298	200	400	٠.
POPC	CHARMM36?	0	0	256	8704	0	300	300	250	
POPC:POPE (1:1)	${ m CHARMM36}^{?}$	0	0	128	8704	0	300	300	250	2
POPC	$OPLS-MacRog^{?}$	0	0	128	5120	0	300	200	300	٨.
POPC:POPE (1:1)	$\mathrm{OPLS ext{-}MacRog}^{?}$	0	0	128	5120	0	300	200	300	۷.
POPC	Slipid?	0	0	512	23943	0	298	170	100	۵.
POPC:POPE (1:1)	$\operatorname{Slipid}^{?}$	0	0	128	5120	0	298	200	300	٠.
POPC	GROMOS-CKP / $??$?	0	0	200	25000	0	310	200	100	۵.
POPC:POPG (7:3)	GROMOS-CKP / ??? ?	0	0	350:150	25000	0	310	200	100	٠.
POPC	Slipid?	0	0	200	25000	0	310	200	100	۸.
POPC:POPG (7:3)	Slipid / Åqvist??	0	0	350:150	25000	0	310	200	100	٠.
POPC:POPG (1:1)	Slipid / $Dang$????	0	0	128:128	12800	0	298	200	400	٠.
POPC:POPG (1:1)	Slipid / Dang????	0	0.1	128:128	12800	23	298	200	400	۷.
POPC:POPG (1:1)	Slipid / $Dang$????	0	0.2	128:128	12800	46	298	1500	200	٠.
POPC:POPG (1:1)	Slipid / Dang????	0	0.5	128:128	12800	115	298	1500	200	۷.
POPC:POPG (1:1)	Slipid / $Dang$????	0	1.0	128:128	12800	230	298	1500	200	٠.
		ı								

 $[^]a\mathrm{Number}$ of lipid molecules with largest mole fraction

19.Citation and ion model for GROMOS-CKP?

 $20.\mathrm{Citation}$ and description for "Berger" model?

21.Lipid17 POPC and POPC:POPG mixtures (https://doi.org/10.5281/zenodo.3241242 and https://doi.org/10.5281/zenodo.3237656) should be added

after simulated with corrected dihedrals.

 $[^]b\mathrm{Number}$ of water molecules

 $^{^{}c}$ Number of additional cations

 $[^]d$ Simulation temperature

eTotal simulation time

frime used for analysis f.

 $^{^{}g}$ Reference for simulation files

Table S4: List of MD simulations with PE and PG lipids mixed with PC.

g	٠.	٠,	٠.	٠,	٠.	٠.	۵.	٠.	٠,	13	14	٠,	٠.	٠,
$f_{\rm tanal} ({ m ns})$	350	250	200	200	198	200	333	300	400	200	200	200	200	200
$^{e}\mathrm{t_{sim}(ns)}$	400	400	1200	320	718	720	347.8	400	009	300	300	300	300	300
$^{d}\mathrm{T}\left(\mathrm{K}\right)$	298	298	298	298	298	298	298	298	298	300	300	300	300	300
c N $_c$	0	47	475	0	22	269	0	54	269	0	0	0	0	0
$^{\rm w}{ m N}^{q}$	26265	26124	24840	31572	31401	29865	31572	29865	29865	10240	11008	10240	11008	11008
$^a\mathrm{N}_1$	350:88	350.88	350.88	150:150	150:150	150:150	150:150	150:150	150:150	256	128	128	256	128
$CaCl_{2}(M)$	0	0.1	1.0	0	0.1	1.0	0	0.1	1.0	0	0	0	0	0
NaCl (M)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
force field for lipids / ions	Lipid17 / Dang???	$Lipid17 / Dang^{??}$	$Lipid17 / Dang^{??}$	$Lipid17 / Dang^{??}$	$Lipid17 / Dang^{??}$	$Lipid17 / Dang^{???}$	Lipid17ecc / ECC-ions??	Lipid17ecc / ECC-ions???	Lipid17ecc / ECC-ions????	Berger? 23.	Berger? 24.	Berger? 25.	Berger? 26.	Berger? 27.
lipid/counter-ions	POPC:POPG (4:1)	POPC:POPG (4:1)	POPC:POPG (4:1)	POPC:POPG (1:1)	POPC:POPG (1:1)	POPC:POPG (1:1)	POPC:POPG (1:1)	POPC:POPG (1:1)	POPC:POPG (1:1)	POPC	POPC:POPE (1:1)	POPC:DOPE $(1:1)$	DOPC	DOPC:DOPE (1:1)

 $^{^{}a}$ Number of lipid molecules with largest mole fraction

28. Citation and ion model for GROMOS-CKP?

29. Citation and description for "Berger" model?

30.Lipid17 POPC and POPC:POPG mixtures (https://doi.org/10.5281/zenodo.3241242 and https://doi.org/10.5281/zenodo.3237656) should be added

after simulated with corrected dihedrals.

31. Upcoming Lipid17ecc with POPC:POPS (4:1) mixture simulations to be added.

 $[^]b\mathrm{Number}$ of water molecules

 $[^]c\mathrm{Number}$ of additional cations

 $[^]d$ Simulation temperature

 $[^]eT$ Otal simulation time fT Iime used for analysis

 $[^]g$ Reference for simulation files

POPC:POPG mixture with additional NaCl 46.Simulation details by A. Peon. I have assumed that ion parameters are default Slipids, i.e., Aqvist, please correct if this is not true.

S2.4 Berger

POPE Data is available at. 9,10 47. Simulation details by T. Piggot.

DOPE Data is available at. 11,12 48. Simulation details by T. Piggot.

POPC:POPE, POPC:DOPE and DOPC:DOPE mixtures Data is available at.^{13,14} 300 K with v-rescale (tau=0.1 ps), 1 bar with PR semiisotropic (tau=4 ps, compressibility=4.5e-5 bar⁻¹), PME order 4 and space 0.12, recoulomb and rvdw 1.0, 128 lipids per leaflet, no ion 49.Simulation details by Fuchs et al.

S2.5 GROMOS 43A1-S3

POPE Data is available at. 15 50. Simulation details by T. Piggot.

S2.6 OPLS-UA

POPE Data is available at. 16 51. Simulation details by T. Piggot.

POPE with vdW interaction in H Data is available at. 17 52. Simulation details by T. Piggot.

S2.7 GROMOS-CKP and GROMOS-CKPM

POPE Data is available at. 18 53. Simulation details by T. Piggot.

DOPE Data is available at. 19 54. Simulation details by T. Piggot.

DPPE Data is available at. 20 55. Simulation details by T. Piggot.

S2.8 Lipid17

S2.9 ECC-LIPID POPG

In ECC-lipid models, electronic continuum correction (ECC) is applied to implicitly include the missing electronic polarizability into the force field description. Provided in practise, this is implemented by scaling the charges and Lennard-Jones σ s of headgroup, glycerol backbone, and carbonyl regions of Amber Lipid14/17 models are scaled by constant factors. Here, we follow the approach that previously improved ion binding to bilayers containing negatively charged PS lipids: ECC-POPC parameters (scaling factors f_q =0.8 and f_σ =0.89 applied to Lipid14 POPC parameters) were used for POPC and scaling factors of f_q =0.75 and f_σ =0.89 were applied to the charges and Lennard-Jones σ s of headgroup, glycerol backbone, and carbonyl regions of Amber Lipid17 POPG parameters. The Lipid17 parameters (described above) and initial configurations were taken from Ref. with the correct dihedral type, and the resulting parameters are available from Ref. Corp. ECC-ion parameters with the scaled charges, downloaded from bitbucket.org/hseara/ions/src/master/, were used in these simulations.

S3 R-PDLF and SDROSS experiments

Figure S7: (A) Chemical structure of POPE with the labeling of headgroup and glycerol backbone carbons. (B) INEPT spectra from POPE sample with the headgroup and glycerol backbone peaks labeled. (C) 2D R-PDLF spectra (D) Dipolar sliced from the 2D R-PDLF spectra with the resulting order parameters on top of figures. (E) Experimetal S-DROSS curves giving signs of the order parameters.

56.A, B etc. labels to be put in the figure.

Figure S8: (A) Chemical structure of POPG with the labeling of headgroup and glycerol backbone carbons. (B) INEPT spectra from POPG sample with the headgroup and glycerol backbone peaks labeled. (C) 2D R-PDLF spectra (D) Dipolar sliced from the 2D R-PDLF spectra with the resulting order parameters on top of figures. (E) Experimetal S-DROSS curves giving signs of the order parameters.

Figure S9: Simpson simulaton of S-DROSS curve of β -carbon of POPG.

S4 Changes of PG headroup order parameters upon addition of PC

Figure S10: Modulation of PG lipid headgroup order parameters with the increasing amount of PC in lipid bilayer from experiments ^{21,22} and simulations with different force fields.

S5 Sodium binding to POPC simulations

Figure S11: Sodium (solid line) and choride ion density profiles along membrane normal from different simulations with PC lipids.

57.Discussion about differences to the NMRlipids II to be discussed once we have the details on ions models.

S6 Calcium binding to POPC:POPG (4:1) mixtures

Figure S12: Modulation of headgroup order parameters of POPC (left) and POPG (right) in POPC:POPG (4:1) mixture upon addition of CaCl₂ in 298 K temperature from experiments ²² and simulations. The changes with respect to the systems without CaCl₂ are shown for other data than for the α -carbon of POPG for which experimental order parameter is not available.

58.Lipid17ecc data to be analyzed and added.

S7 Changes in headgroup conformations upon addition of $CaCl_2$

Figure S13: Calcium ion density profiles along membrane normal from simulations of POPC:POPG (4:1) mixtures with different force fields.

Figure S14: Changes in POPC Slipids dihedrals with increasing amount of CaCl₂.

Figure S15: Changes in POPG Slipids dihedrals with increasing amount of CaCl₂.

Figure S16: Changes in POPC lipid17 dihedrals with increasing amount of CaCl₂.

Figure S17: Changes in POPG lipid17 dihedrals with increasing amount of CaCl₂.

Figure S18: Changes in POPC lipid17ecc dihedrals with increasing amount of CaCl₂.

Figure S19: Changes in POPG lipid17ecc dihedrals with increasing amount of CaCl₂.

Figure S20: Changes in CHARMM36 dihedrals with increasing amount of cationic surfactant.

References

- (1) Papadopoulos, C.; Fuchs, P. F. CHARMM36 pure POPC MD simulation (300 K 300ns 1 bar). 2018; https://doi.org/10.5281/zenodo.1306800.
- (2) Papadopoulos, C.; Fuchs, P. F. CHARMM36 POPC/POPE (50%-50%) MD simulation (300 K 300ns 1 bar). 2018; https://doi.org/10.5281/zenodo.1306821.
- (3) Piggot, T. CHARMM36-UA POPE Simulations (versions 1 and 2) 310 K (NOTE: hexagonal membrane and POPE is called PEUA). 2018; https://doi.org/10.5281/zenodo.1293774.
- (4) Piggot, T. Slipids POPE Simulations (versions 1 and 2) 310 K (NOTE: hexagonal membrane). 2018; https://doi.org/10.5281/zenodo.1293813.
- (5) Favela-Rosales, F. MD simulation trajectory of a fully hydrated DPPE bilayer: SLIPIDS, Gromacs 5.0.4. 2017. 2017; https://doi.org/10.5281/zenodo.495247.
- (6) Favela-Rosales, F. MD simulation trajectory of a fully hydrated POPG bilayer: SLIPIDS, Gromacs 5.0.4. 2017. 2017; https://doi.org/10.5281/zenodo.546133.
- (7) Favela-Rosales, F. MD simulation trajectory of a fully hydrated DPPG bilayer @298K: SLIPIDS, Gromacs 5.0.4. 2017. 2017; https://doi.org/10.5281/zenodo.546135.
- (8) Favela-Rosales, F. MD simulation trajectory of a fully hydrated DPPG bilayer @314K: SLIPIDS, Gromacs 5.0.4. 2017. 2017; https://doi.org/10.5281/zenodo.546136.
- (9) Piggot, T. Berger POPE Simulations (versions 1 and 2) 303 K de Vries repulsive H. 2018; https://doi.org/10.5281/zenodo.1293889.
- (10) Piggot, T. Berger POPE Simulations (versions 1 and 2) 303 K larger repulsive H. 2018; https://doi.org/10.5281/zenodo.1293891.

- (11) Piggot, T. Berger DOPE Simulations (versions 1 and 2) 271 K de Vries repulsive H. 2018; https://doi.org/10.5281/zenodo.1293928.
- (12) Piggot, T. Berger DOPE Simulations (versions 1 and 2) 271 K larger repulsive H. 2018; https://doi.org/10.5281/zenodo.1293905.
- (13) AmÃllie, B.; F.J., F. P. Berger pure POPC MD simulation (300 K 300ns 1 bar). 2018; https://doi.org/10.5281/zenodo.1402417.
- (14) AmÃllie, B.; F.J., F. P. Berger POPC/POPE (50:50 ratio) MD simulation (300 K 400ns 1 bar). 2018; https://doi.org/10.5281/zenodo.1402449.
- (15) Piggot, T. GROMOS 43A1-S3 POPE Simulations (versions 1 and 2) 313 K (NOTE: anisotropic pressure coupling). 2018; https://doi.org/10.5281/zenodo.1293762.
- (16) Piggot, T. OPLS-UA POPE Simulations (versions 1 and 2) 303 K. 2018; https://doi.org/10.5281/zenodo.1293855.
- (17) Piggot, T. OPLS-UA POPE Simulations (versions 1 and 2) 303 K with vdW on H atoms. 2018; https://doi.org/10.5281/zenodo.1293853.
- (18) Piggot, T. GROMOS-CKP POPE Simulations (versions 1 and 2) 313 K. 2018; https://doi.org/10.5281/zenodo.1293932.
- (19) Piggot, T. GROMOS-CKP DOPE Simulations (versions 1 and 2) 271 K. 2018; https://doi.org/10.5281/zenodo.1293941.
- (20) Piggot, T. GROMOS-CKP DPPE Simulations (versions 1 and 2) 342 K. 2018; https://doi.org/10.5281/zenodo.1293957.
- (21) Borle, F.; Seelig, J. Ca2+ binding to phosphatidylglycerol bilayers as studied by differential scanning calorimetry and 2H- and 31P-nuclear magnetic resonance. *Chemistry and Physics of Lipids* **1985**, *36*, 263 283.

(22) Macdonald, P. M.; Seelig, J. Calcium binding to mixed phosphatidylglycerol-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance.

Biochemistry 1987, 26, 1231–1240.