

Presentation Outline

- Forrest Barnes: Characterizing the 787-8
- Chris Leighton: Weight Sensitivity Analysis
- Nicholas Renninger: Summary and Conclusions
- Michael Patterson: Changing Mission Specifications

1
Characterizing the 787-8

Mission Specifications

- Airport: DIA
- Cruising Altitude: 43,000 ft
- Range: 7,355 nm
- 242 passengers, 2 pilots, 5 flight attendants¹:
 - Each person weighs 175 lbs
 - 40 lbs baggage per passenger
- Additional cargo: 3,000 lbs

Mission Profile

Drag Polar - Original 787-8

Performance Constraints

- Takeoff/Landing Altitude: 5,430
- Range: 7,355 nm
- Cruising Speed: Mach 0.85
- Takeoff/Landing Airstrip Length: 12,000 ft
- Loiter Time: 45 minutes
- Carrying 242 passengers and 7 crew members:
 - o Each person weighs 175 pounds and have 40 lbs baggage. 3000 lbs additional cargo
- Engines (GEnx):
 - o C_i: 0.37 lb/lbf-hr
 - Thrust: 64,000 lbs thrust
- Wing Area: 3,501 ft²

Equations Used

$$W_{TO} = W_{empty} + W_{payload} + W_{fuel,reqd} + W_{fuel,res} + W_{crew} + W_{tfo}$$

$$W_{fuel,reqd} = (W_{TO} - W_L) = \left(1 - \left(\frac{W_L}{W_{TO}}\right)\right) = (1 - M_{ff})W_{TO}$$

$$M_{ff} = \frac{W_L}{W_{TO}} = \frac{W_1}{W_{TO}} \frac{W_2}{W_1} \dots \frac{W_N}{W_{N-1}}$$

$$R = \frac{V}{c_j} \frac{L}{D} ln \left(\frac{W_{i-1}}{W_i}\right)$$

$$E = \frac{1}{c_j} \frac{L}{D} ln \left(\frac{W_{i-1}}{W_i}\right)$$

Equations Used (cont.)

We used this equation to adjust L/D when we changed AR

Performance Sizing Plot - Original 787-8

Initial Design Parameters

	Takeoff Weight [lb]	Design Thrust [lb]	Wing Area [ft ²]	AR
Original Design	407,070	128,000	3501	11.1

Changing Mission Specifications

Performance Sizing Plot - Add 85 Passengers

Performance Sizing Plot - Increased Range (1000 nmi.)

Performance Sizing Plot - Loiter Increased by 15 min.

Performance Sizing Plot - Aspect Ratio Decreased to 9

Performance Sizing Plot - Aspect Ratio Decreased to 9 (L/D adjusted)

Engine Change: GE TF39-1C

TF39
SPECIFICATIONS

0	T.0.	Thrust	(to	89.5°	F	41,100	lb.

- Weight (Adjusted Spec.).....7283
- Bypass Ratio....8:1
- Pressure Ratio 26:1
- Turbine Temp. Class.....2300° F
- Max. Diameter 100 inches
- Length...... 189 inches

Performance Sizing Plot - Engine Change (GE-TF39)

Analyzing Weight Sensitivities

Weight Sensitivity: Extra 85 Passengers

Δ W_{TO} after modification: 116,670 lbs.

		Hand Calculation $(\Delta W_{TO}/\Delta W_{PL})$	AAA Calculation $(\partial W_{TO}/\partial W_{PL})$	Difference between AAA and Hand Calculation
Chan	nge in W _{TO} per unit change in R [lbs/lbs.]	6.21	6.33	1.9%

Weight Sensitivity: Extra 1000 nmi. Range

• ΔW_{TO} after modification: **96,360 lbs.**

	Hand Calculation $(\Delta W_{TO}/\Delta R)$	AAA Calculation $(\partial W_{TO}/\partial R)$	Difference between AAA and Hand Calculation
Change in W _{TO} per u change in R [lbs/nmi.]	nit 96.4	80.8	16.2%

Weight Sensitivity: Extra 15 min. Loiter

• ΔW_{TO} after modification: 8,430 lbs.

	Hand Calculation $(\Delta W_{TO}/\Delta E)$	AAA Calculation $(\partial W_{TO}/\partial E)$	Difference between AAA and Hand Calculation
Change in W _{TO} per unit change in E [lbs/hr]	33,698	72,482	73.1%

Weight Sensitivity: AR Decreased to 9

Δ W_{TO} after modification: 0 lbs. (188,300 lbs.)*

	Hand Calculation $(\Delta W_{TO}/\Delta AR)$	AAA Calculation (∂W _{TO} /∂AR)	% Difference between AAA and Hand Calculation
Change in W _{TO} per unit change in R	0 (-89,244)	N/A (N/A*)	N/A (N/A*)

^{*} with (L/D) adjustment made for changed AR

Weight Sensitivity: Engine Change - GE TF-39

- Δ W_{TO} after modification: 1,129,103.3 lbs.
- C_i of GE TF-39:
 - o 0.313 lb/lbf-hr @ S.L.²
 - o 0.582 lb/lbf-hr @ Cruise³

	Hand Calculation $(\Delta W_{TO}/\Delta C_j)$	AAA Calculation $(\partial W_{TO}/\partial C_j)$	Difference between AAA and Hand Calculation
Change in W _{TO} per unit change in R [lbf-hr]	4.31E6	15.0E6	110.7%

Summary and Conclusions

Summary of Results

- Engine Efficiency (C_i) is by far the most sensitive parameter
- Overall Performance:
 - Least sensitive parameter: Loiter Time inc. 33%
 - Most Sensitive parameter: C_i inc. 82%
- W_{TO}
 - \circ Least sensitive parameter: Number of Passengers inc. 35%, W_{TO} inc. 2%
 - \circ Most Sensitive parameter: C_i inc. 82%, W_{TO} inc. 277%

Performance Sizing Plot - Original 787-8

Performance Sizing Plot - Loiter Increased by 15 min.

Summary of Results

- Engine Efficiency (C_i) is by far the most sensitive parameter
- Overall Performance:
 - Least sensitive parameter: Loiter Time inc. 33%
 - Most Sensitive parameter: C_i inc. 82%
- W_{TO}
 - \circ Least sensitive parameter: Number of Passengers inc. 35%, W_{TO} inc. 2%
 - Most Sensitive parameter: C_i inc. 82%, W_{TO} inc. 277%

Performance Sizing Plot - Engine Change (GE-TF39)

Summary of Results

- Engine Efficiency (C_i) is by far the most sensitive parameter
- Overall Performance:
 - Least sensitive parameter: Loiter Time inc. 33%
 - Most Sensitive parameter: C_i inc. 82%
- W_{TO}:
 - Least sensitive parameter: Number of Passengers inc. 35%, W_{TO} inc. 2%
 - \circ Most Sensitive parameter: C_i inc. 82%, W_{TO} inc. 277%

Weight Sensitivity: Extra 85 Passengers

Δ W_{TO} after modification: 116,670 lbs.

		Hand Calculation $(\Delta W_{TO}/\Delta W_{PL})$	AAA Calculation $(\partial W_{TO}/\partial W_{PL})$	Difference between AAA and Hand Calculation
Chan	nge in W _{TO} per unit change in R [lbs/lbs.]	6.21	6.33	1.9%

Summary of Results

- Engine Efficiency (C_i) is by far the most sensitive parameter
- Overall Performance:
 - Least sensitive parameter: Loiter Time inc. 33%
 - Most Sensitive parameter: C_i inc. 82%
- W_{TO}
 - Least sensitive parameter: Number of Passengers inc. 35%, W_{TO} inc. 2%
 - Most Sensitive parameter: C_i inc. 82%, W_{TO} inc. 277%

Weight Sensitivity: Engine Change - GE TF-39

- Δ W_{TO} after modification: 1,129,103.3 lbs.
- C_i of GE TF-39:
 - o 0.313 lb/lbf-hr @ S.L.²
 - o 0.582 lb/lbf-hr @ Cruise³

	Hand Calculation $(\Delta W_{TO}/\Delta C_j)$	AAA Calculation $(\partial W_{TO}/\partial C_j)$	Difference between AAA and Hand Calculation
Change in W _{TO} per unit change in R [lbf-hr]	4.31E6	15.0E6	110.7%

Discussion of Results

- Engine fuel efficiency (C_i) is the most sensitive parameter:
 - Initial fuel weight varies exponentially with efficiency
 - Increases in efficiency have greatly increased performance
- AR is difficult to analyze in AAA
 - Doesn't take into account changes in (L/D)
- The 787-8 is a highly optimized design
 - Most changes negatively affect performance

Other Parameters to Examine

- Oswald Efficiency Factor
- Cruise Velocity
- Cargo weight
- W passenger
- (L/D)
- Runway Length

References

- Ann and H.J. Smead. "Design Lab Aircraft Assignment: Boeing 787
 Performance Modifications". Lab Description. University of Colorado Boulder. Boulder. 2016.
- 2. Gas Turbine Engines. Aviation Week & Space Technology Source Book 2009. p. 119
- 3. Balik, Roland. "An Era of Dover-built TF39 Engines Throttles down." *Air Mobility Command*. 436th Airlift Wing Public Affairs, 12 Apr. 2016. Web. 20 Feb. 2017.
 - http://www.amc.af.mil/News/Article-Display/Article/785826/an-era-of-dover-built-tf39-engines-throttles-down/.