ปกรณ์ ศิลปประภา 632110345

Course Assignment 960131 Digital Industry Infrastructure 1 ปีการศึกษา 2563 ภาคเรียนฤดูร้อน

1. Component

Input Device

-ทำหน้าที่เป็นตัวป้อนข้อมูลหรือรับข้อมูลจากผู้ใช้

Central Processing Unit

- >Control Unit
- -ทำหน้าที่เป็นผู้ควบคุมลำดับการทำงานในเครื่อง
- >Arithmetic/Logic Unit
- -ทำหน้าที่เป็นผู้คิดคำนวนต่างๆทางคณิตศาสตร์

Memory Unit

ทำหน้าที่เป็นความจำชั่วคราวที่ใช้เก็บข้อมูลที่ใช้บ่อยๆหรือจำเป็นต้องใช้

Output Device

-ทำหน้าที่เป็นผู้แสดงผลออกมาให้ผู้ใช้รับรู้ใน ทางเสียง หรือ ทางภาพ

2. Binary

2.1แปลงเลขฐานสอง (Binary) 101011111011 เป็นเลขฐานสิบ (Decimal) พร้อมทั้ง แสดงวิธีทำ

<u>วิธีทำ</u> 2¹¹ 0 2⁹ 0 2⁷2⁶2⁵2⁴2³ 0 2¹2⁰ ให้า ทุกตัวเป็น2และยกกำลังจาก งเพิ่มขึ้นไปเรื่อยแล้วเอามาบวกกัน <u>จะได้</u> 2,811

2.2 แปลงเลขฐานสิบ (Decimal) 5,027 เป็นเลขฐานสอง (Binary) พร้อมทั้งแสดงวิธีทำ

<u>วิธีทำ</u>	2/5,027	เฝล	1
	2/2,513	เฝษ	1
	2/1,256	เศษ	0
	2/628	เฝษ	0
	2/314	เศษ	0
	2/157	เศษ	1
	2/78	เฝษ	0
	2/39	เฝษ	1
	2/19	เศษ	1
	2/9	เศษ	1
	2/4	เศษ	0
	2/2	เศษ	0
	2/1	เฝห	1

ตอบ เรียงจากล่างขขึ้นบนจึงได้ 1001110100011

2.3.1 1001010 + 11110111		2.3.2 11	2.3.2 11100100111 + 11001111	
<u>วิธีทำ</u>	1001010	<u>วิธีทำ</u>	11100100111	
	<u>11110111</u>		<u>11001111</u>	
<u>ตอบ</u>	<u>111000001</u>	<u> </u>	<u>11110010110</u>	

3. จากวงจรต่อไปนี้ เติมคำที่ถูกต้องลงในตาราง พร้อมทั้งแสดงวิธีทำ

in	iput	output
Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

4. จากภาพ จงอธิบายขั้นตอน ทั้ง 4 ขั้นตอนของ CPU Process

- 1. Fetch รับคำสั่งจากโปรแกรมและทำการดึงคำสั่งจากหน่วยควาจำมา
- 2. Decode แปลงคำสั่งออกมาและหาว่าส่วนไหนต้องทำอะไรได้บ้าง
- 3. Execute CPU จัดแจงตามหน้าที่ให้แต่ละส่วนทำ
- 4. Store บันทึกผลที่ได้กลับไปยังหน่อยความจำ

5.บอกความแตกต่างระหว่างคอมพิวเตอร์ที่มีจำนวน CPU Cores มาก และ คอมพิวเตอร์ที่มี Clock Rate สูง

-คอมพิวเตอร์ที่มีจำนวน CPU Cores มาก

>สามารถทำงานได้รวดเร็วเมื่อเจอปริมาณขนาดของงานต่อชิ้นเล็ก และสามรถทำพร้อมๆกันได้ หลายงาน แต่เมื่อเจอปริมาณงานที่ชิ้นใหญ่จะไม่สามารถทำงานได้รวดเร็วเต็มประสิทธิภาพ

-คอมพิวเตอร์ที่มีจำนวน Clock Rate สูง

>สามารถทำงานได้รวดเร็วเมื่อเจอปริมาณขนาดของงานต่อชิ้นใหญ่หรือเล็ก แต่จะทำงานได้ไม่เต็ม ประสิทธิภาพก็ต่อเมื่อ เจอชิ้นงานเยอะๆที่ชิ้นเล็กจนค่อยๆทำทีละชิ้นให้เสร็จ

6. บอกความแตกต่างระหว่าง RAM กับ ROM

RAM อ่าน/เขียนได้,ใช่เก็บข้อมูลชั่วคราว,มีความเร็วมากกว่า ROM,ความจุ ระดับGB,ราคาแพงกว่า ROM ,ต้อง refresh

ROM อ่านได้อย่างเดียว,ใช่เก็บข้อมูลถาวร,มีความเร็วน้อยกว่า RAM,ความ จุระดับ MB,ราคาถูกกว่า RAM,ไม่ต้อง refresh

7. Processor-Memory Bottleneck คืออะไร และส่งผลอะไรต่อคอมพิวเตอร์

คือ เหตุการที่ CPU ดึงข้อมูลจาก Main Memory ใช้เวลานานเกินไปหรือ ส่วนประกอบที่ทำให้ประสิทธิภาพโดยรวมของระบบช้ำลง เนื่องจาก ข้อกำหนดของระบบไม่สมดุล

ส่งผลให้ ประสิทธิภาพโดยรวมของคอมพิวเตอร์ช้าลง เนื่องจากข้อกำหนด ของระบบไม่สมดุล

8. จาก Main Memory ในตาราง ประกอบไปด้วย 4 bit address และ 8 bit data จงเติมคำใน Cache Memory เมื่อมีการบันทึกคำลงใน Cache แบบ Associative Mapping ตามลำดับดังนี้

- 1) 1010
- 2) 1100
- 3) 0000
- 4) 1010
- 5) 1001
- 6) 1000
- * ถ้าเต็มให้ช่องอยู่นานที่สุดถูกดึงออก
- ** Cache memory เป็น 4-Block cache

Index	Tag	Offset	Data
00	1	0	00101000
	1	1	00111001
01	1	0	00110111
	1	0	00110111
10	1	0	11110100
11			

9. Memory hierarchy คืออะไร มีความสำคัญอย่างไร

คือ ลำดับความเร็ว ความจุด และราคา ในการทำงานของ Memory ต่างๆ และ รวมจุดเด่นของแต่ละlevelเข้าด้วยกัน

ความสำคัญ ยิ่งความจุดน้อยหรือยิ่งมีราคาแพงมากเท่าไหร่ยิ่งมีความเร็วในการ ทำงานสูง และยิ่งมีความจุเยอะเท่าไหร่หรือยิ่งราคาไม่แพงจะมีความเร็วในการ ทำงานช้าลง

10. OSI Model ประกอบไปด้วยอะไรบ้าง และแตกต่างจาก TCP/IP Model อย่างไร

OSI Model		TCP/IP	
Layer 7	Application		
Layer 6	Presentation	Application	
Layer 5	Session		
Layer 4	Transport	Transport	
Layer 3	Network	Internet	
Layer 2	Data Link	Link/Network Access/Network Interface	
Layer 1	Physical		

แตกตรงที่ TCP/IP Model มีแนวคิดพื้นฐานแตกต่างจาก OSI Model คือไม่ได้ มีพื้นฐานของการสื่อสารแบบการสนทนา แต่แสดงถึงโลกของระบบเครื่อข่ายสากล ที่ทำการเคลื่อนย้ายและกำหนดเสน้ทางให้กับขอ้มูลระหว่างเครือข่ายและระหว่าง เครื่องคอมพิวเตอร์ต่างๆ เมื่อเปรียบเทียบความสัมพันธ์ระหว่างทั้ง 2 โมเดล จะ พบว่ามีบางเลเยอร์ที่มีการกำหนดคุณสมบัติที่เทียบได้ไกล้เคียงกัน แต่บางเลเยอร์ ก็ไม่สามารถเทียบหาความสัมพันธ์กันได้

<u>11. หากต้องการแบ่ง Subnet จาก IP Address 192.168.1.0, subnet mask</u> <u>255.255.255.0 เพื่อให้สามารถใช้งานสำหรับ 4 network ที่มี</u>

- 1) 70 hosts
- 2) 40 hosts
- 3) 10 hosts
- 4) 10 hosts

จงหาว่าแต่ละ network จะมี Network ID, Host range และ จำนวน hosts เท่าใด พร้อมทั้งแสดงวิธีทำ

1) 192.168.1.0/24

<u>IP Address</u> 192.168.1.0/24

Network ID 192.168.1.0 - 192.168.1.255

Host range 192.168.1.1 - 192.168.1.254

<u>Host</u> 254 เครื่อง

2)

<u>IP Address</u> 192.168.1.0/25

Network ID 192.168.1.0 - 192.168.1.127

<u>Host range</u> 192.168.1.1 - 192.168.1.126

<u>Host</u> 126เครื่อง

70 host

3)

IP Address 192.168.1.0/26

Network ID 192.168.1.128 - 192.168.1.192

<u>Host range</u> 192.168.1.129 - 192.168.1.191

<u>Host</u> 62เครื่อง

4)

<u>IP Address</u> 192.168.1.0/28

Network ID 192.168.1.193 - 192.168.1.209

<u>Host range</u> 192.168.1.194 - 192.168.1.208

<u>Host</u> 14เครื่อง

5)

<u>IP Address</u> 192.168.1.0/28

Network ID 192.168.1.210 - 192.168.1.226

<u>Host range</u> 192.168.1.211 - 192.168.1.225

<u>Host</u> 14เครื่อง

