Mathematics Notes

Tobias Graski

November 2022

Contents

1 Normalverteilung

1

1 Normalverteilung

Zentraler Grenzwertsatz: $f(x) = \frac{1}{\sigma*\sqrt{2*\pi}} * e^{-\frac{1}{2}*\left(\frac{x-\mu}{\sigma}\right)^2}$ dieser ist relevant.

Mathcad Befehle:

Table 1: Mathcad Befehle

Befehl	Beschreibung
dnorm (x, μ, σ)	Wahrscheinlichkeitsdichte für $X = x$. Gauß'sche Glockenkurve
pnorm $(x \mu, \sigma)$	Wahrscheinlichkeitsverteilung füer den Schwellenwert x . Wahrscheinlichkeit
	$P(X \le x)$
qnorm (p, μ , σ)	Inverse Wahrscheinlichkeitsverteilung $P(X \le x) = p$ nach x auflösen.

Eigenschaften der Glockenkurve

- \bullet Beim Erwartungswert μ besitzt die Glockenkurve ihr maximum.
- \bullet Die Standardabweichung σ bestimmt die Breite
 - σ ist die Wurzel aus der Varianz
 - σ ist die Wurzel aus dem Erwartungswert der Quadrate
- Die Fläche unter der Kurve ist immer 1
- $P(X \le x_0) = P(X \le x_0) = \int_{-\infty}^{x_0} f(x) dx = F(x_0)$

$$P(X \le x_0) = P(X \le x_0) = \begin{cases} \int_{\infty}^{x_0} f(x) dx \\ 1 - P(X \le x_0) = 1 - F(x_0) \end{cases}$$

Bsp. Abfüllanlage für Ölkanier X . . . Abfüllanlage in Liter $\mu=5{,}00$ Liter $\sigma=0{,}09$ Liter

(a) Wahrscheinlichkeit das Füllmenge höchstens 5,101 beträgt? $P(X \le 5,1) = F(5,1) = pnorm(5,1;5;0.09) = 86.7\%$