Кафедра информационной безопасности киберфизических систем

Москва 2024

Криптографические методы защиты информации

Сравнения и системы сравнений

Свойства сравнений $a \equiv b \pmod{m}$

Московский институт электроники

и математики им. А.Н. Тихонова

- $a \equiv b \pmod{m}$ тогда и только тогда, когда a и bимеют одинаковые остатки от деления на m.
- Если $a \equiv b \pmod{m}$, то $ka \equiv kb \pmod{m}$ для любого $k \in \mathbb{Z}$.
- Если $ka \equiv kb \pmod{m}$ и HOД(k,m) = 1, то $a \equiv b \pmod{m}$.
- Если $a \equiv b \pmod{m}$, то $ka \equiv kb \pmod{km}$ для любого $k \in \mathbb{N}$.
- Если $ka \equiv kb \; (mod \; km)$, где $k,m \in \mathbb{N}$, то $a \equiv b \pmod{m}$.
- Если $a \equiv b \pmod{m}$ и $d \mid m$, то $a \equiv b \pmod{d}$.

- Если $a \equiv b \pmod{m}$ и $c \equiv d \pmod{m}$, то верно следующее:
 - $a+c \equiv b+d \pmod{m}$;
 - $a-c \equiv b-d \pmod{m}$;
 - $ac \equiv bd \pmod{m}$
- Если $a \equiv b \pmod{m}$, то для любого целого $n \geq 0$ выполняется $a^n \equiv b^n \pmod{m}$.
- Если $a \equiv b \pmod{m}$, то множество общих делителей чисел a и m совпадает с множеством общих делителей чисел b и m, в частности HOД(a,m) = HOД(b,m).

Сравнение первой степени с одним неизвестным

• Сравнение первой степени с одним неизвестным:

$$ax \equiv b \pmod{m}$$
.

- Решение:
 - если HOД(a,m)=1, то множеством решений является класс вычетов $a^{-1}\cdot b\in\mathbb{Z}_m$;
 - если HOД(a,m)=d>1 и $d\nmid b$, то решений не существует;
 - если HOД(a,m)=d>1 и d|b, то множеством решений являются d классов вычетов по модулю m, образующих один класс вычетов по модулю $\widetilde{m}=\frac{m}{d}$:
 - $\circ \quad \tilde{a}^{-1} \cdot \tilde{b} \in \mathbb{Z}_{\widetilde{m}};$
 - $\circ \left(\tilde{a}^{-1} \cdot \tilde{b} + \tilde{m}\right) \in \mathbb{Z}_{\widetilde{m}};$
 - O ...
 - $\circ \left(\tilde{a}^{-1} \cdot \tilde{b} + \tilde{m}(d-1)\right) \in \mathbb{Z}_{\tilde{m}}.$

Пример решения сравнения $15x \equiv 20 \pmod{85}$

• Нахождение HOД(a, m):

Московский институт электроники

и математики им. А.Н. Тихонова

$$-d = HOД(15,85) = 5.$$

- Проверка делимости b на d:
 - 5 делит 20.
- Преобразование сравнения:
 - $-15x \equiv 20 \; (mod \; 85), \Rightarrow 3x \equiv 4 \; (mod \; 17).$

Множество решений исходного сравнения:

$$-x = 7 \pmod{85}$$
;

$$-x = 7 + 17 \pmod{85}$$
;

$$-x = 7 + 34 \pmod{85}$$
.

$$-x = 7 + 51 \pmod{85}$$
;

$$-x = 7 + 68 \pmod{85}$$
;

• Решение нового сравнения:

$$-3^{-1} \pmod{17} \equiv 6;$$

$$- x \equiv 6 \cdot 4 \pmod{17} \equiv 7;$$

\overline{q}	r	у	m	а	y_2	y_1
_	_	_	17	3	0	1
5	2	- 5	3	2	1	- 5
1	2	6	2	1	-5	6
2	0		1	0	6	

Система сравнений

• Система сравнений:

$$-\begin{cases} x \equiv a_1 \pmod{n_1}, \\ x \equiv a_2 \pmod{n_2}, \\ \dots \\ x \equiv a_k \pmod{n_k}. \end{cases}$$
 (*)

- Решение системы сравнений (*) представляет собой восстановление натурального числа по его остаткам для различных модулей n_1 , n_2, \ldots, n_k .
- Алгоритмы решения систем сравнений основаны на китайской теореме об остатках.

• Китайская теорема об остатках. Пусть n_1 , n_2, \dots, n_k — попарно взаимно простые натуральные числа, $N = \prod_{i=1}^k n_i$, $N_i = {}^N/n_i$ и целые числа u_i , v_i удовлетворяют равенствам $u_i N_i + v_i n_i = 1$ $\forall i = 1, 2, \dots, k$. Тогда единственным решением по модулю N системы сравнений (*) является следующее число:

 $-a \equiv \left(\sum_{i=1}^k a_i u_i N_i\right) \mod N.$

Пример решения системы сравнений

Решить систему сравнений $\begin{cases} x \equiv 2 \pmod{4}, \\ x \equiv 3 \pmod{5}, \\ x \equiv 2 \pmod{7}. \end{cases}$

q	r	X	N_1	n_1	<i>X</i> ₂	<i>X</i> ₁
_	_	_	35	4	1	0
8	3	1	4	3	0	1
1	1	-1	3	1	1	-1
3	0		1	0	-1	

 N_3

6

20

X2

 n_3

q	ſ	X	N_2	n_2	X ₂	<i>X</i> ₁
	1	ı	28	5	1	0
5	3	1	5	3	0	1
1	2	-1	3	2	1	-1
1	1	2	2	1	-1	2
2	0		1	0	2	

СШС	TIVIC.		

Решение.

$$-N = 4 \cdot 5 \cdot 7 = 140;$$

$$-N_1 = {}^{140}/_4 = 35;$$

$$-N_2 = \frac{140}{5} = 28;$$

$$-N_3 = {}^{140}/_7 = 20;$$

$$- a = (2 \cdot (-1) \cdot 35 + 3 \cdot 2 \cdot 28 + 2 \cdot (-1) \cdot 20) = 58.$$

Кафедра информационной безопасности киберфизических систем

Криптографические методы защиты информации

Спасибо за внимание!

Евсютин Олег Олегович

Заведующий кафедрой информационной безопасности киберфизических систем Канд. техн. наук, доцент

+7 923 403 09 21 oevsyutin@hse.ru