

Спецкурс: системы и средства параллельного программирования

Отчёт № 1 Анализ влияния кэша на операцию матричного умножения

Работу выполнил **Чепурнов А. В.**

Постановка задачи и формат данных

Задача: реализовать последовательный алгоритм матричного умножения и оценить влияние кэша на время выполнения программы.

Формат командной строки: <имя файла матрицы A><имя файла матрицы B><имя файла матрицы C><режим, порядок индексов>.

Режимы: 0 - ijk, 1 - jik, 2 - ikj, 3 - kij, 4 - jki, 5 - kji.

Формат файла-матрицы: матрица представляются в виде бинарного файла следующего формата:

Тип	Значение	Описание
Число типа char	T – f (float) или d (double)	Тип элементов
Число типа int	N – натуральное число	Число строк матрицы
Число типа int	М – натуральное число	Число столбцов матрицы
Массив чисел типа Т	$N \times M$ элементов	Массив элементов матрицы

Элементы матрицы хранятся построчно.

Описание алгоритма

Математическая постановка: алгоритм матричного умножения $(A \times B = C)$ можно представить в следующем виде: $c_{ij} = \sum_k (a_{ik} \cdot b_{kj})$ для каждого элемента матрицы C. Оценка влияния кэша на время выполнения программы осуществляется за счёт перестановки индексов суммирования.

Анализ времени выполнения: для оценки времени выполнения программы использовалась функция: clock(). Для повышения надёжности экспериментов опыты проводились несколько раз (10).

Верификация: для проверки корректности работы программы использовались тестовые данные.

Основные функции:

- Разбор командной строки. В рамках функции осуществляется анализ и разбор командной строки.
- Чтение файлов матриц. В рамках функции осуществляется анализ совместимости входных матриц и их чтение.
- Перемножение матриц. В рамках функции осуществляется перемножение матриц в соответствие с выбранным порядком индексов суммирования.

Результаты выполнения

Результаты:

Проводилось перемножение двух матриц размерами 500x500 с данными типа float и с данными типа double. Зависимость времени выполнения от порядка индексов суммирования представлена на графике (время в секундах).

Основные выводы

Исследования показывают, что изменения порядка индексов суммирования оказывает влияние на время выполнения программы. Наименьшее время выполнения при следующем порядке индексов - ікј. При таком порядке доступ к элементам обеих входных матриц осуществляется последовательно как для данных типа float, так и для данных типа double. Наихудшее время при порядке jki. При таком подходе доступ к памяти осуществляется максимально непоследовательно.