MATH 553, Fall 2015 Final Exam Solutions

Instructions: Give a complete solution to each problem. You may use any result from class, the book, or homework **except** the statement you are asked to prove (or whose proof depends on the statement you are trying to prove). Be sure to justify your statements.

1. (15 points) Let G be a finite non-abelian group, and let Z(G) be the center of G. Prove $|Z(G)| \leq \frac{|G|}{4}$.

Solution: Suppose $|Z(G)| > \frac{|G|}{4}$. Then

$$|G/Z(G)| = \frac{|G|}{|Z(G)|} < \frac{|G|}{\frac{|G|}{4}} = 4.$$

So |G/Z(G)| = 1, 2, or 3. But any group of those orders is cyclic. If G/Z(G) is cyclic then G is abelian, contradicting our assumption. So $|Z(G)| \leq \frac{|G|}{4}$.

2. Let

$$G = SL_2(\mathbb{Z}/5\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}/5\mathbb{Z}, \text{ and } ad - bc = 1 \pmod{5} \right\}.$$

- (a) **(15 Points)** Show |G| = 120.
- (b) (8 points) Show $N = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbb{Z}/5\mathbb{Z} \right\}$ is a Sylow 5-subgroup of G.
- (c) (12 points) Find the number of Sylow 5–subgroups of G.

Solution

- (a) First suppose c=0, so $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, with ad=1. So $d=a^{-1}$, and b is arbitrary. Thus, there are 4 choices for a, 5 choices for b, so there are 20 elements with c=0. Now, suppose $c\neq 0$. Since ad-bc=1, b=(ad-1)/c. So there are 4 choices for c, and 5 each for a and d, and then b is fixed. Thus, there are 100 elements with $c\neq 0$. Thus, |G|=120.
- (b) Note $120 = 2^3 \cdot 3 \cdot 5$, so a Sylow 5-subgroup has order 5. Note $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -b \\ 0 & 1 \end{pmatrix}$, so $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -c \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b-c \\ 0 & 1 \end{pmatrix} \in N.$

So, N is a subgroup, and since there are 5 choices for b, we have |N|=5. Hence N is a Sylow 5–subgroup.

(c) Let n_5 be the number of Sylow 5 subgroups. By Sylow's Theorems we have $n_5 \equiv 1 \mod 5$, and $n_5 \mid (|G|/|N|) = 120/5 = 24$. So $n_5 = 1$, or 6. Note N is one Sylow 5–subgroup, and $\bar{N} = \left\{ \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \right\}$ is another, so $n_5 \neq 1$, and hence $n_5 = 6$.

Alternative 1: Note that N is not normal by showing one $g \in G$ and one $n \in N$ with $gng^{-1} \notin N$, so that $n_5 \neq 1$. For example $g = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $n = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ gives $gng^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, so $n_5 = 6$.

Alternative 2:

We let $Syl_5(G) = \{N = P_1, P_2, \dots, P_r\}$. be the set of Sylow 5-subgroups. by Sylow's Theorems, we know all Sylow 5-subgroups are conjugate in G. So let G act on $Syl_5(G)$ by conjugation. This is an action with one orbit, and by the Orbit-Stabilizer Theorem $r = [G : N_G(N)]$, where $N_G(N)$ is the normalizer of N in G. We have

$$N_G(N) = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} | a \in (\mathbb{Z}/5\mathbb{Z})^{\times}, b \in \mathbb{Z}/5\mathbb{Z} \right\}.$$

In (a) we saw the order of this subgroup is 20. Thus, r = 120/20 = 6.

3. (25 points) Suppose R is a UFD and F is the quotient field of R. Let $f(x) \in R[x]$, and suppose f(x) factors as a product of lower degree polynomials in F[x]. Show f(x) factors as a product of lower degree polynomials in R[x].

Solution:

Suppose f(x) = P(x)Q(x) in F[x], with P(x) and Q(x) both of lower degree. Since F is the quotient field of R, the coefficients of P(x) and Q(x) are all of the form $\frac{a}{b}$, with $a, b \in R, b \neq 0$. Now, we can find a common denominator of each of the factors, and multiplying through by these we get an equation

$$df(x) = p_0(x)q_0(x) \tag{1}$$

in R[x], with $p_0(x)$ and $q_0(x)$ of lower degree in R[x]. If $d \in R^{\times}$, then $f(x) = (d^{-1}p_0(x))q_0(x)$, with $d^{-1}p_0(x)$ and $q_0(x) \in R[x]$ of lower degree. Now, suppose $d \notin R^{\times}$, and let $d = c_1c_2\cdots c_r$, be a factorization with each c_i irreducible. Since c_i is irreducible, (c_i) is a prime ideal in R for each i, and thus $(c_i)R[x]$ is prime in R[x]. Now, reduce (1) modulo c_1 and get $0 = p_0(x)q_0(x)$ in $R[x]/(c_1)$, which is an integral domain. Thus either $p_0(x) \in (c_1)$ or $q_0(x) \in (c_1)$. So c_1 divides all the coefficients of one of the factors on the right hand side of (1), and we can cancel c_1

from that factor. We get $c_2c_3 \dots c_r f(x) = p_1(x)q_1(x)$ in R[x]. Now repeating this process we see each c_i divides one of the factors on the right hand side, so we get $f(x) = p_r(x)q_r(x)$ in R[x] with $p_r(x)$ and $q_r(x)$ of lower degree.

- 4. (12 points each) Let R be a commutative ring. Recall an element $a \in R$ is nilpotent if $a^n = 0$ for some $n \ge 1$. Let $I = \{a \in R | a \text{ is nilpotent}\}.$
 - (a) Show I is an ideal. (Hint: To show I is an additive subgroup, show if $x, y \in I$ there is an N > 0 so that $(x y)^N = 0$ using the binomial expansion of $(x y)^N$.)
 - (b) Show I is contained in any prime ideal of R.

Solution:

(a) Let $x, y \in I$, and suppose $x^n = 0$, and $y^m = 0$, with $n, m \ge 1$. Let N = m + n. Then

$$(x-y)^N = \sum_{k=0}^N x^{N-k} (-y)^k = \sum_{k=0}^N (-1)^k x^{N-k} y^k.$$

If k < m, then N - k > n, so in each term in the sum either $x^{N-k} = 0$, or $y^k = 0$, and hence the sum is zero. Thus, $x - y \in I$, By the subgroup test I is an additive subgroup of R. Now, if $a \in I$ $r \in R$, then $(ra)^n = r^n a^n$. So if we choose $n \ge 1$ with $a^n = 0$, then $(ra)^n = r^n 0 = 0$, so $ra \in I$. Thus I is an idea, as claimed.

- (b) Let P be a prime ideal, suppose $a \in I$, and $a^n = 0$. If $a \notin P$, then $a + P = \bar{a} \neq \bar{0}$ in R/P. But, since P is prime, R/P is an integral domain, and $\bar{a}^n = \bar{a}^n = \bar{0}$, which would make a a zero divisor. This is a contradiction, and hence $a \in P$, so $I \subset P$.
- 5. Let $\alpha \in \mathbb{C}$ be algebraic over \mathbb{Q} , and let $f(x) \in \mathbb{Q}[x]$ be its minimal polynomial. Let $\sqrt{\alpha}$ be a square root of α , and let $g(x) \in \mathbb{Q}[x]$ be its minimal polynomial.
 - (a) (8 points) Show deg f(x) divides deg g(x).
 - (b) (18 points) Show $\sqrt{\alpha} \in \mathbb{Q}(\alpha)$ if and only if $f(x^2)$ is reducible in $\mathbb{Q}[x]$.

Solution:

(a) We know if β has minimal polynomial $h(x) \in \mathbb{Q}[x]$, then $[\mathbb{Q}(\beta) : \mathbb{Q}] = \deg h(x)$. Note $\alpha = (\sqrt{\alpha})^2 \in \mathbb{Q}(\sqrt{\alpha})$, so we have $\mathbb{Q} \subset \mathbb{Q}(\alpha) \subset \mathbb{Q}(\sqrt{\alpha})$. So, $\deg g(x) = [\mathbb{Q}(\sqrt{\alpha}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{\alpha})\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] = [Q(\sqrt{\alpha}) : \mathbb{Q}(\alpha)] \deg f(x)$, and therefore $\deg f(x) | \deg g(x)$.

- (b) Let $h(x) = f(x^2)$. Note $\deg h(x) = 2 \cdot \deg f(x)$. Further, $h(\sqrt{\alpha}) = f(\alpha) = 0$, so, since g(x) is the minimal polynomial of $\sqrt{\alpha}$, g(x)|h(x). If $\sqrt{\alpha} \in \mathbb{Q}(\alpha)$, then $Q(\alpha) \supset \mathbb{Q}(\sqrt{\alpha}) \supset \mathbb{Q}(\alpha)$, so $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{\alpha})$, and therefore $\deg g(x) = \deg f(x)$. Since $\deg h(x) = 2 \cdot \deg f(x) = 2 \cdot \deg g(x) > \deg g(x)$, we see h(x) must be reducible. On the other hand, if h(x) is reducible, then $\deg h(x) > \deg g(x)$, and hence $2 \deg f(x) > \deg g(x)$. Since $\sqrt{\alpha}$ satisfies $x^2 \alpha \in \mathbb{Q}(\alpha)[x]$, we see $[\mathbb{Q}(\sqrt{\alpha}) : \mathbb{Q}] \leq 2$. So, $[Q(\sqrt{\alpha} : \mathbb{Q})] = \deg g(x) < \deg h(x) = 2 \deg f(x) = 2[\mathbb{Q}(\alpha) : \mathbb{Q}]$, and hence $\deg g(x) = \deg f(x)$, and $\sqrt{\alpha} \in \mathbb{Q}(\alpha)$.
- 6. Let $f(x) = x^6 + 3 \in \mathbb{Q}[x]$.
 - a) (12 points) Let α be a root of f(x). Prove $\frac{\alpha^3+1}{2}$ is a primitive 6th root of unity.
 - b) (18 points) Determine the Galois group of f(x) over \mathbb{Q} .

Solution:

- (a) Note $\alpha^6 = -3$, so $\alpha^3 = \pm \sqrt{-3} = \pm i\sqrt{3}$. Thus $\frac{\alpha^3 + 1}{2} = \frac{1 \pm i\sqrt{3}}{2} = e^{\pi i/3}$, or $e^{5\pi i/3}$, which are the two primitive 6-th roots of unity.
- (b) Note, by Eisenstein's Criteria, with p=3, we have f(x) is irreducible. Let $\zeta_6=e^{\pi i/3}$. By (a), $\mathbb{Q}(\zeta_6)\subset\mathbb{Q}(\alpha)$. Moreover, $\left\{\alpha\zeta_6^j\right\}_{j=0}^5$ are the 6 roots of f(x), and hence $\mathbb{Q}(\alpha)$ is a splitting field of f(x). Now for each j we define σ_j by $\sigma_j(\alpha)=\alpha\zeta_6^j$. Note this uniquely determines σ_j , $\sigma_{j+k}=\sigma_j\sigma_k$, and clearly $\sigma_j=1$ if and only if $j=0\mod 6$, so $j\mapsto\sigma_j$ is an isomorphism form $\mathbb{Z}/6\mathbb{Z}$ to $G=\mathrm{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$.

Alternatively, Since f(x) is irreducible $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 6 = |G|$, we know G is a transitive subgroup of order 6 in S_6 , and only $\mathbb{Z}/6\mathbb{Z}$ is such a group.

- 7. (15 points each) Let $R = (\mathbb{Z}/3\mathbb{Z})[x]$. Consider the ideals $I_1 = (x^2 + 1)$, and $I_2 = (x^2 + x + 2)$ For i = 1, 2 we set $F_i = R/I_i$.
 - (a) Show F_1 and F_2 are fields.
 - (b) Are F_1 and F_2 isomorphic? If not why not, and if so give an isomorphism from F_1 to F_2 .

Solution:

(a) Let $f(x) = x^2 + 1$ and $g(x) = x^2 + x + 2$. Note both are of degree 2, so will be irreducible if they have no roots in the ground field $\mathbb{Z}/3\mathbb{Z} = \mathbb{F}_3$. We compute directly: f(0) = 1, f(1) = 2 = f(2), so f(x) is irreducible, and g(0) = 2, g(1) = 1, g(2) = 2, so again g(x) is irreducible. Since \mathbb{F}_3 is a field, R is a PID. Since f(x) and g(x) are both irreducible, and hence (f(x)) and (g(x)) are both maximal ideals in R. Thus, $F_1 = R/(f(x))$ and $F_2 = R/(g(x))$ are both fields.

- (b) Both F_1/\mathbb{F}_3 and F_2/\mathbb{F}_3 are extensions of degree 2. Since there is a unique field of order 9, up to isomorphism, we know $F_1 \simeq F_2$. Note both F_1 and F_2 can be represented by elements $\{\overline{a+bx}|a,b\in\mathbb{F}_3\}$. However, the rules for multiplaction are different. Moreover, $f(x+2)=f(x-1)=(x-1)^2+1=(x^2-2x+1)+1=g(x)$. Therefore, the map $\varphi:F_1\to F_2$ given by $\varphi(\overline{a+bx})=\overline{a+b(x+2)}=(a+2b)+bx$. is an isomorphism.
- 8. (15 points) Suppose F is a field, $K = F(\alpha)$ is a Galois extension, with cyclic Galois group generated by $\sigma : \alpha \mapsto \alpha + 1$. Show char $K = p \neq 0$, and $\alpha^p \alpha \in F$.

Solution: Note, by induction we see, $\sigma^n(\alpha) = \alpha + n$ (since $\sigma^n(\alpha) = \sigma(\sigma^{n-1}(\alpha)) = \sigma(\alpha + (n-1)) = \alpha + 1 + n - 1 = \alpha + n$). Since K/F is Galois, hence finite, we have $\sigma^n = 1_K$, for some n. Therefore, if n is such an integer, then $\alpha = \sigma^n(\alpha) = \alpha + n$, so $n \cdot 1 = 0$, and hence char $F < \infty$. Thus, F has characteristic p, for some prime p. Also, since F has characteristic p, $\sigma^p(\alpha) = \sigma(\alpha)^p = (\alpha + 1)^p = \sigma^p + 1^p = \sigma^p + 1$. Now $\sigma(\alpha^p - \alpha) = \sigma(\alpha^p) - \sigma(\alpha) = (\alpha^p + 1) - (\alpha + 1) = \sigma^p - \alpha$. Thus, $\sigma^p - \alpha \in K^{<\sigma>} = F$.