Kesetimbangan Benda Tegar

A. Kesetimbangan Benda Secara Translasi

	$\sum F_{x} = 0$	Gaya-gaya dalam arah mendatar haruslah = 0
ſ	$\sum F_y = 0$	Gaya –gaya dalam arah vertikal haruslah = 0

B. Kasus Kesetimbangan

C. Kesetimbangan Rotasi

Kesetimbang rotasi jika di setiap titik tumpu: jumlah momen gaya = 0 atau $\Sigma \tau$ =0

D. Titik Berat

Titik berat benda peial homogen

No	Bentuk Benda	Titik Berat
1	Silinder pejal	$y_0 = \frac{1}{2}t$
2	Bola pejal	$y_0 = R$
3	Limas pejal	$y_0 = \frac{1}{4}t$
4	Kerusut pejal	$y_o = \frac{1}{4}t$
5	Setengah bola pejal	$yo = \frac{3}{8}R$

Titik herat benda homogen berbentuk garis

No	Bentuk Benda	Titik Berat
1	Garis lurus	$y_0 = \frac{1}{2}J$
2	Bola lingkaran	$y_0 = R = \frac{AB}{AB}$
3	Busur setengah lingkaan	$y_0 = 2\frac{R}{\pi}$
4	Segitiga siku-siku	$X_0 = \frac{1}{3}x; y_0 = \frac{1}{3}y$

No	Bentuk Benda	Titik Berat
1	Kulit kerucut	$y_0 = \frac{1}{3}J$
2	Kulit limas	$y_0 = \frac{1}{3}.t$
3	Kulit setengah bola	$y_0 = \frac{1}{2}.R$
4	Kulit silinder	$y_0 = \frac{1}{2}.t$

E. Titik Berat Gabungan

$$\begin{split} X_0 &= \frac{\sum W_n X_n}{\sum W_n} = \frac{W_1 X_1 + W_2 X_2 + W_3 X_3 + ...}{W_1 + W_2 + W_3 + ...} \\ y_0 &= \frac{\sum W_n y_n}{\sum W_n} = \frac{W_1 y_1 + W_2 y_2 + W_3 y_3 + ...}{W_1 + W_2 + W_3 + ...} \end{split}$$

CONTOH SOAL DAN PEMBAHASAN

Soal 1

Jika batang homogen AB panjang 80 cm dengan berat 18N dan berat beban 30 N dan BC adalah tali penahan. Berapa tegangan tali jika jarak AC = 60 cm agar tercapai kondisi seimbang?

🖎 Jawab:

Cari panjang BC dan nilai sin0:

AB = 80 cm dan AC adalah 60 maka:

BC =
$$\sqrt{80^2 + 60^2}$$
 = 100 $\sin \theta = \frac{6}{10} = 0.6$ $\cos \theta = \frac{8}{10} = 0.8$

Syarat Seimbang: $\sum \tau = 0$

Titik Berat Balok adalah setengah panjang balok. Maka gaya yang bergerak adalah

$$W_{balok} \cdot \frac{1}{2} AB + W_{beban} AB - T \sin \theta \cdot AB = 0 \rightarrow 18 \cdot \frac{1}{2} \cdot 80 \cdot + 30.80 - T.0, 6.80 = 0 \rightarrow$$

$$18.\frac{1}{2}.80. + 30.80 = T.0,6.80 \rightarrow T = \frac{3120}{48} = 65N$$