Uma breve análise da Distribuição Exponencial

Nome do(a) Autor(a)

2 de maio de 2025

Resumo

A distribuição exponencial é amplamente utilizada para modelar o tempo entre eventos em um processo de Poisson. Neste artigo, apresentamos suas principais propriedades, uma tabela com parâmetros, equações relevantes e uma representação gráfica.

1 Introdução

A distribuição exponencial é uma distribuição contínua usada para modelar o tempo entre eventos em processos estocásticos. Ela é definida por um único parâmetro $\lambda>0$, que representa a taxa média de ocorrência de eventos.

2 Função Densidade de Probabilidade

A função densidade de probabilidade (f.d.p.) da distribuição exponencial é dada por:

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$
 (1)

A função de distribuição acumulada (f.d.a.) é:

$$F(x;\lambda) = 1 - e^{-\lambda x}, \quad x \ge 0.$$
 (2)

3 Parâmetros e Propriedades

A Tabela 1 resume os principais parâmetros e propriedades da distribuição exponencial.

Tabela 1: Parâmetros da distribuição exponencial

Parâmetro	Descrição
λ	Taxa (parâmetro da distribuição)
$E[X] = \frac{1}{\lambda}$	Valor esperado
$Var(X) = \frac{1}{\lambda^2}$	Variância

4 Visualização

A Figura 1 mostra diferentes curvas da f.d.p. da distribuição exponencial para vários valores de λ . Ela ilustra como o parâmetro λ afeta o comportamento da distribuição.

Figura 1: Função densidade de probabilidade da distribuição exponencial para diferentes valores de λ . Fonte: Wikipedia.

5 Conclusão

A distribuição exponencial é uma ferramenta poderosa na modelagem de tempos entre eventos. Seu uso é essencial em várias áreas, como confiabilidade de sistemas e filas.