

Gradiente

Conjuntos de nivel

Dr. Juan Luis Palacios Soto
palacios.s.j.l@gmail.com

Definición (Derivada de un campo escalar)

Sea $f: \mathbb{R}^n \to \mathbb{R}$ un campo escalar. Definimos la derivada de f a partir del punto $a \in \mathbb{R}^n$ en la dirección $y \in \mathbb{R}^n$, como

$$f(a;y) = \lim_{h \to 0} \frac{f(a+hy) - f(a)}{h},$$
(1)

siempre que dicho límite exista.

Nota: Si el vector dirección y es de norma 1, la derivada anterior se llama **derivada direccional, en la dirección de** y y el cálculo se simplifica con el gradiente.

Definición (Derivadas parciales)

Sea $f:\mathbb{R}^n \to \mathbb{R}$ un campo escalar. Definimos la derivada parcial de f en $x_i, i=1,2,...,n$, en punto $a\in\mathbb{R}^n$ como

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(a + he_i) - f(a)}{h},\tag{2}$$

siempre que dicho límite exista. El vector e_i es el vector coordenado donde todas las componentes son cero, excepto en la coordenada i que es 1.

Definición (Gradiente)

Sea $f:\mathbb{R}^n \to \mathbb{R}$ un campo escalar. Definimos el gradiente de f en el punto a, denotado por $\nabla f(a)$, como

$$\nabla f(a) = \left(\frac{\partial f(a)}{\partial x_1}, \frac{\partial f(a)}{\partial x_2}, \dots, \frac{\partial f(a)}{\partial x_n}\right). \tag{3}$$

Definición (Conjuntos de nivel)

Dado un campo escalar $f: \mathbb{R}^n \to \mathbb{R}$, definimos el conjunto de nivel, al nivel $k \in \mathbb{R}$, como el conjunto siguiente:

$$CN_k = \{x \in \mathbb{R}^n : f(x) = k\}.$$

Si n=2, dichos conjuntos de nivel se conocen como curvas de nivel (y $CN_2=CN$), $CN\subseteq\mathbb{R}^2$, y si n=3 se conocen como superficies de nivel ($CN_3=SN$), $SN\subseteq\mathbb{R}^3$..

Definición (Campo escalar diferenciable)

Sea $f:\mathbb{R}^n \to \mathbb{R}$ un campo escalar. Decimos que f es diferenciable en $a \in \mathbb{R}^n$, si existe una transformación lineal $T_a:\mathbb{R}^n \to \mathbb{R}$, y una función escalar E_a tal que

$$f(a+v) = f(a) + T_a(v) + E_a$$

Teorema (Condición suficiente de diferenciabilidad)

Sea $f:\mathbb{R}^n \to \mathbb{R}$ un campo escalar. Decimos que f es diferenciable en a con diferencial T_a , si $\frac{\partial f(a)}{\partial x_i}$ es continua para toda i=1,2,...,n y $T_a(v)=\nabla f(a)\cdot v$.

Teorema (Plano tangente)

Sea $f: \mathbb{R}^n \to \mathbb{R}$ un campo escalar. Si f es diferenciable en $a=(a_1,a_2,...,a_n)$, entonces existe un plano tangente en el punto f(a), el cual está dado por

$$\nabla F(a) \cdot x = 0,$$

donde $F: \mathbb{R}^{n+1} \to \mathbb{R}$ esta dada por $F(a) = (a_1, a_2, ..., a_n, f(a_1, a_2, ..., a_n)),$ $x_{n+1} = f(x_1, x_2, ..., n_n).$

