Личные записи по теорин Φe^{β}

@keba4ok

18 октября 2021г.

Некоторые материалы пока что c практик в рамках подготовки к ближайшим контрольным.

Содержание

половина Гирша.	
Что мы решаем?	
Две ленты.	
HMT	
Различные классы.	
Сведения	
Трудные и полные задачи.	
Немного про оракулы и дополнения.	
Полиномиальная иерархия	
QBF_k	
Коллапсы и классы	
Опять QBF	
половина Гирша.	
Иерархии	
Схемочки	
Классы	
Параллельные вычисления	
Вероятности	

1 половина Гирша.

Что мы решаем?

Мы будем работать на бинарных строках.

Определение 1. Индивидуальная задача - пара (условие, решение) $\in \{0,1\}^* \times \{0,1\}^*$. Массовая задача - некоторое множество индивидуальных задач, то есть, бинарное отношение на $\{0,1\}^*$.

Определение 2. Алгоритм решает *задачу поиска* для массовой задачи R, если для условия x он находит решение w, удовлетворяющее $(x, w) \in R$.

Определение 3. Язык (задача распознавания): $L \subseteq \{0,1\}^*$. Массовой задаче, заданной отношением R, соответствует язык

$$L(R) = \{x \mid \exists w \ (x, w) \in R\}.$$

В задачах мы будем рассматривать ДМТ, которые почти ничем не отличаются от машин Тьюринга, которые мы рассматривали в первой половине семестра, разве что лент может быть несколько. Одна из них может быть лентой-input, а ещё одна - лентой-output, остальные ленты рабочие, они независимы друг от друга.

Определение 4. ДМТ M распознаёт язык A, если принимает все $x \in A$, отвергает все $x \notin A$. Записывается это как A = L(M).

Определение 5. Время работы машины M на входе x - количество шагов до достижения принимающего или отвергающего состояния. Используемая namamb - суммарное крайнее правое положение всех головок на рабочих лентах.

Две ленты.

Определение 6. Универсальная машина Тьюринга: M(a,x) берёт описание (номер) a машины M_a и её выход x, и выдаёт тот же результат, что и $M_a(x)$.

Теорема 1. Существует универсальная ДМТ M(a, x), использующая лишь две рабочих ленты и выдающая результат за время $O(t \log t)$, где t - время работы M_a на x.

Примечание 1. Универсальную машину Тьюринга можно построить и с одной лентой, но с квадратичным замедлением.

Доказательство. Моделируем через пропуски по модулю k, k лент на одной. Затем заметим, что можно совместить головки и двигать сами смоделированные ленты. Затем происходит какая-то магия с разбиением ленты на кусочки по степеням двойки, а затем внутри них двигаются элементы.

HMT.

Определение 7. Недетерминированная машина Тьюринга допускает больше одной инструкции для данных $q \in Q$ и $c_1, \ldots, c_k \in \Sigma$, то есть, δ для неё - многозначная функция. Так появляется дерево вычислений. Нмт принимает вход, если существет путь в дереве вычислений, который принимается.

Определение 8. В машины с заведомо ограниченным временем работы можно встроить *будильник* и считать время вычислений на входах одной длины всегда одним и тем же.

Определение 9. Недетерминированная машина Тьюринга - это просто ДМТ, у которой есть дополнительный аргумент (подсказка w на второй ленте). В рамках такого определения, НМТ M принимает вход x, если существует w, для которой вычисление принимается (пишем M(x,w)=1).

Различные классы.

Определение 10. $t: \mathbb{N} \to \mathbb{N}$ называется конструируемой по времени, если

- t(n) не убывает;
- $t(n) \ge n$;
- \bullet двоичную запись t(|x|) можно найти по входу x на ДМТ за t(|x|) шагов.

Язык принадлежит DTime[t(n)], если есть ДМТ M, принимающая L за время O(t(n)). Аналогично, $L \in NTime[t(n)]$, если есть НМТ M, принимающая L за время O(t(n)).

Определение 11. Массовая задача R *полиномиально ограничена*, если существует полином p, ограничивающий длину кратчайшего решения:

$$\forall x (\exists u(x, u)) \in R \Rightarrow \exists w ((x, w) \in R \land |w| \le p(|x|))).$$

Массовая задача R полиномиально проверяема, если существует полином q, ограничивающий время проверки решения: для любой пары (x, w) можно проверить принадлежность $(x, w) \in R$ за время q(|(x, w)|).

- \widetilde{NP} класс задач поиска, задаваемых полиномиально ограниченными полиномиально проверяемыми массовыми задачами.
- \widetilde{P} класс задач поиска из \widetilde{NP} , разрешимих за полиномиальное время, то есть, задаваемых отношениями R, такими, что $\forall x \in \{0,1\}^*$ за полиномиальное время можно найти w, для которого $(x,w) \in R$.

Определение 12. NP - класс языков (задач распознавания), задаваемых полиномиально ограниченными полиномиально проверяемыми массовыми задачами, то есть $NP = \{L(R)|R\in\widetilde{NP}\}$. Иначе говоря, $L\in NP$, если имеется полиномиально ограниченная полиномиально проверяемая R, такая, что

$$\forall x \in \{0,1\}^* \ x \in L \Longleftrightarrow \exists w(x,w) \in R.$$

P - класс языков (задач распознавания), распознаваемых за полиномиальное время; ясно, что $P = \{L(R) | R \in \widetilde{P}\}.$

Сведения

Определение 13. Сведение языков *по Карпу*: $L_1 \to L_2$, если имеется полиномиально вычислимая f:

$$\forall x \ x \in L_1 \iff f(x) \in L_2.$$

Определение 14. Сведение задач поиска *по Левину*: $R_1 \to R_2$, если существуют f, g, h такие, что для любых x_1, y_1 и y_2 :

- $R_1(x_1, y_1) \Leftrightarrow R_2(f(x_1), g(x_1, y_1));$
- $R_1(x_1, h(x_1, y_2)) \Leftarrow R_2(f(x_1), y_2);$
- f, q и h полиномиально вычислимы.

Определение 15. *Оракульная МТ* имеет доступ к оракулу, который за 1 шаг даёт ей ответ на вопрос. M^B - оракульная машина M, которой дали конкретный оракул B.

Определение 16. Сведение чего угодно *по Тьюрингу*: $A \to B$, если имеется оракульная полиномиальная по времени машина M^{\bullet} , такая, что M^{B} решает A (например, если A - язык, то $A = L(M^{B})$).

 $\Pi pumeчanue 2. Классы <math>P$ и \widetilde{P} замкнуты относительно всех этих сведений. Классы же неплоиномиальные могут быть незамкнуты относительно сведений по Тьюрингу.

Трудные и полные задачи.

Определение 17. Задача A - $mpy\partial$ ная для класса C, если $\forall D \in C$, $D \rightarrow A$. Задача - nonная для C, если она трудная и принадлежит C.

Теорема 2. Если A - NP-трудная u $A \in P$, то P = NP.

 $Cnedcmeue\ 1.\$ Если A - NP-полная, то $A\in P$ тогда и только тогда, когда P=NP.

Определение 18. Задача об ограниченной остановке: $\widetilde{BH}(\langle M, x, 1^t \rangle, w) = \mathrm{HMT}\ M$ с подсказкой w принимает входд x за $\leq t$ шагов.

Теорема 3. Задача об ограниченной остановке - \widetilde{NP} -полная, а соответствующий язык - NP-полный.

Определение 19. $CIRCUIT_SAT = \{(C,w)|C-\text{ схема }, C(w)=1\}$. Эта задача также NP-полная.

Определение 20. $3-SAT=\{(F,A)|F-$ в 3-КНФ, $F(A)=1\}$. Очередная NP-полная задача.

Теорема 4. $R \in \widetilde{NP}$, язык L(R) - NP-полон, тогда $R \to L(R)$ (поиск и распознавание).

Теорема 5. Если $P \neq NP$, то существует язык $L \in NP \backslash P$, не являющийся NP-полным.

к содержанию к списку объектов

Немного про оракулы и дополнения.

Определение 21. Для классов C, (D) новый класс $C^{\mathcal{D}}$ состоит из языков вида C^{D} , где $D \in \mathcal{D}$, C - машина для языка из C.

Определение 22. $co-C=\{L|\overline{L}\in C\}.$

Полиномиальная иерархия.

Теорема 6. $L \in \Sigma^k P$ тогда и только тогда, когда существует полиномиально ограниченное отношение $R \in \Pi^{k-1} P$, такое, что для любого x

$$x \in L \Leftrightarrow \exists y R(x, y).$$

Следствие 2. $L \in \Pi^k P$ тогда и только тогда, когда существует полиномиально ограниченное отношение $R \in \Sigma^{k-1} P$, такое, что для любого x

$$x \in L \Leftrightarrow \forall y R(x, y).$$

Следствие 3. А значит, мы можем расписать такие длинные цепочки, например, $L \in \Sigma^k P$ тогда и только тогда, когда существует полиномиально ограниченное $R \in P$, такое, что для любого x

$$x \in L \Leftrightarrow \exists y_1 \forall y_2 \exists y_3 \dots R(x, y_1, y_2, y_3, \dots),$$

и аналогично для другого класса, только чередование другое.

 QBF_k

Определение 23. Язык QBF_k состоит из замкнутых истинных формул вида

$$\exists X_1 \forall X_2 \exists X_3 \dots X_k \varphi,$$

кде каждый квантор состоит из большого количества утверждений для малых переменных с соответствующим квантором, а φ - формула в КНФ или ДНФ. $\{X_i\}_{i=1}^k$ - в свою очередь, разбиение множества переменных этой формулы на непустые непересекающиеся подмножества.

Cледствие 4. QBF_k - $\Sigma^k P$ -полна.

Коллапсы и классы.

Теорема 7. Если $\Sigma^k P = \Pi^k P$, то $PH = \sigma^k P$ (PH - объединение всех таких классов по всем степеням).

Следствие 5. Если существует РН-полная задача, то полиномиальная иерархия конечна.

Определение 24.

$$DTime[f(n)] = \{L|L$$
 принимается ДМТ, работающей время $O(f(n))\};$ $DSpace[f(n)] = \{L|L$ принимается ДМТ с памятью $O(f(n))\};$ $PSPACE = \bigcup_{k\geq 0} DSpace[n^k].$

Опять QBF.

Определение 25. Язык QBF состоит из замкнутых истинных формул вида

$$q_1x_1q_2x_2\ldots\varphi,$$

где φ - формула в КНФ, $q_i = \forall$ или $q_i = \exists$.

Теорема 8. QBF PSPACE-полна.

 $Cnedcmeue\ 6.\ PH = PSPACE \Rightarrow PH$ коллапсирует.

2 половина Гирша.

Иерархии.

Теорема 9. $DSpace[s(n)] \neq DSpace[S(n)]$, $\epsilon \partial e \ s(n) = o(S(n)) \ u \ \forall n > n_0, \ S(n) \ge \log n$.

Теорема 10. $DSpace[\log \log n] \neq DSpace[O(1)].$

Теорема 11. $\forall \varepsilon > 0$, $DSpace[(\log \log n)^{1-\varepsilon}] = DSpace[O(1)]$.

Теорема 12. $DTime[t(n)] \neq DTime[T(n)]$, где $t(n) \log t(n) = o(T(n))$, $T(n) = \Omega(n)$. Следствие 7. $P \neq EXP$.

Теорема 13. $NTime[t(n)] \neq NTime[T(n)]$, где t(n+1) = o(T(n)) конструируема по времени.

Схемочки.

Определение 26. $L \in Size[f(n)]$, если существует семейство булевых схем $\{C_n\}_{n \in \mathbb{N}}$ таких, что

- $\forall n |C_n| \leq f(n);$
- $\forall x \ (x \in L \Leftrightarrow C_{|x|(x)=1}).$

$$P/poly = \bigcup_{k \in \mathbb{N}} Size[n^k].$$

к содержанию к списку объектов 7

Теорема 14 (*Теорема Карпа-Левина*). $NP \subset P/poly \Rightarrow PH = \Sigma^2 P$.

Теорема 15. $\forall k \ \Sigma^4 P \nsubseteq Size[n^k],$

Chedemeue 8. $\forall k \ \Sigma^2 P \cap \Pi^2 P \not\subseteq Size[n^k].$

Классы.

Определение 27. NSpace[f(n)] - множество языков, принимаемых НМТ с памятью O(f(n)). $NPSpace = \bigcup_{k>0} NSpace[n^k]$. $L = DSpace(\log n), \ NL = NSpace(\log n)$.

Определение 28. STCON - задача нахождения пути из одной вершины в другую в связном графе.

Лемма 1. $STCON \in DSpace[\log^2 n]$.

Лемма 2. STCON является NP-полной задачей (относительно logspace-сведений).

Определение 29. Семейство схем $\{C_n\}_{n\in\mathbb{N}}$ равномерно, если имеется полиномиальный алгоритм A такой, что $A(1^n)=C_n$.

Примечание 3. Равномерные полиномиальные схемы задают P.

Определение 30. Logspace-равномерные схемы: A использует память $O(\log n)$. Глубина съемы \sim время параллельного вычисления. LC -множество языков таких, что для них есть logspace-равномерные схемы глубины $O(\log^i n)$. NC - объединение их всех по i, лежит в P.

Лемма 3. Композиция двух logspace функций лежит в logspace.

Теорема 16. $Ecnu\ L$ - P-полный, то

- $L \in \mathbf{L} \Leftrightarrow \mathbf{P} = \mathbf{L}$;
- $L \in NC \Leftrightarrow P = NC$.

Параллельные вычисления.

Теорема 17.

$$NC^1 \subseteq L \subseteq NL \subseteq NC^2$$
.

Теорема 18. Если L - P-полный, то $L \in NC$ тогда и только тогда, когда P = NC.

Теорема 19. $STCON \in co - NL$.

Следствие 9. Если $s(n) = \Omega(\log n)$, то NSpace[s(n)] = co - NSpace[s(n)].

Вероятности.

Определение 31. $L \in RP$, если имеется полиномиально ограниченное и полиномиально проверяемое отношение R такое, что для любой строчки из нулей и единиц, если она не лежит в языке, то для любой подсказки оно не пройдёт проверочку, а иначе пройдёт с хотя бы половиной ото всех подсказок. $ZPP = RP \cap co - RP$ - безошибочная хуйня. Двусторонняя ошибка же - это когда имеется по пп отношение такое, что если x не в языке, то подсказок, которые это выявят не более трети, а иначе подходящих подсказочек более $\frac{2}{3}$.

Утверждение 1. Неравенство Чернова? Нахуя оно тут? Ищите сами **Теорема 20.** $BPP \subseteq \Sigma^2 P$.

Теорема 21 (*Теорема Тода*). $PH \subseteq P^{PP}$. Дальше параша какая-то, займёмся этим на экзамене.

Предметный указатель

```
Будильник, 3
Задача
   индивидуальная, 2
   массовая, 2
   об ограниченной остановке, 4
   поиска, 2
   полная, 4
   трудная, 4
Оракул, 4
Сведение
   по Карпу, 4
   по Левину, 4
   по Тьюрингу, 4
Теорема
   Карпа-Левина, 7
   Тода, 8
Язык, 2
```