Practical Session 5

Optimization

1 Convexity

Problem 1: Show that affine functions of the form $\mathbf{w}^T \mathbf{x} + b$ are both convex and concave.

A function is convex iff $\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y)$ and concave iff $\lambda f(x) + (1 - \lambda)f(y) \le f(\lambda x + (1 - \lambda)y)$. Hence, for a function to be both convex and concave it must hold that

$$\lambda f(x) + (1 - \lambda)f(y) = f(\lambda x + (1 - \lambda)y).$$

We have

$$\lambda f(\boldsymbol{x}) + (1 - \lambda)f(\boldsymbol{y}) = \lambda [\boldsymbol{w}^T \boldsymbol{x} + b] + (1 - \lambda)[\boldsymbol{w}^T \boldsymbol{y} + b]$$

$$= \lambda \boldsymbol{w}^T \boldsymbol{x} + (1 - \lambda)\boldsymbol{w}^T \boldsymbol{y} + \lambda b + (1 - \lambda)b$$

$$= \lambda \boldsymbol{w}^T \boldsymbol{x} + (1 - \lambda)\boldsymbol{w}^T \boldsymbol{y} + b$$

$$= \boldsymbol{w}^T [\lambda \boldsymbol{x} + (1 - \lambda)\boldsymbol{y}] + b$$

$$= f(\lambda \boldsymbol{x} + (1 - \lambda)\boldsymbol{y})$$

Problem 2: Show that a twice differentiable function f(x) with a convex domain is convex if and only if its Hessian or second derivative is positive semidefinite: $\nabla^2 f(x) \ge 0$ for all $x \in \text{dom}(f)$.

We first assume we have a single dimension (n = 1). Suppose $f : \mathbb{R} \to \mathbb{R}$ is convex. Let $x, y \in \text{dom}(f)$.

By the first-order condition,

$$f'(x)(y-x) \le f(y) - f(x)$$
,
 $f'(y)(x-y) \le f(x) - f(y) \iff f(y) - f(x) \le f'(y)(y-x)$.

Hence,

$$f'(x)(y-x) \le f'(y)(y-x).$$

Subtracting the lefthand side from the righthand side and dividing by $(y-x)^2$ gives:

$$\frac{f'(y) - f'(x)}{y - x} \ge 0$$

Taking the limit for $y \to x$ yields $f''(x) \ge 0$, for any $x \in \text{dom}(f)$.

Conversely, suppose $f''(z) \ge 0$ for all $z \in \text{dom}(f)$. Consider two arbitrary points $x, y \in \text{dom}(f)$. Without loss of generality we assume that x < y. We have

$$0 \le \int_{x}^{y} f''(z)(y-z) dz$$

$$= (f'(z)(y-z))\Big|_{z=x}^{z=y} + \int_{x}^{y} f'(z) dz$$

$$= -f'(x)(y-x) + f(y) - f(x)$$

i.e. $f(y) \ge f(x) + f'(x)(y-x)$, which is the first order convexity condition and shows that f is convex.

To generalize to n > 1, we note that a function is convex if and only if it is convex on all lines, i.e. iff the one-dimensional function $g(t) = f(x_0 + tv)$ is convex in t for all $x_0 \in \text{dom}(f)$ and all $v \in \mathbb{R}^n$, for values satisfying $x_0 + tv \in \text{dom}(f)$. Therefore, f is convex if and only if

$$g''(t) = \mathbf{v}^T \nabla^2 f(\mathbf{x}_0 + t\mathbf{v}) \mathbf{v} \ge 0$$
.

In other words, it is necessary and sufficient that $v^T \nabla^2 f(x) v \ge 0$ for all $x = x_0 + tv \in \text{dom}(f)$, which is exactly the definition of the Hessian $\nabla^2 f(x)$ being positive semi-definite.

Note: For the strictly convex case one can show that if $\nabla^2 f(x)$ is positive definite then f is strictly convex. The converse, however, is not true: For example, the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^4$ is strictly convex but has zero second derivative at x = 0.

2 Logistic Regression

Problem 3: Prove that the objective function of logistic regression

$$E(\boldsymbol{w}) = -\ln p(\boldsymbol{y} \mid \boldsymbol{w}, \boldsymbol{X}) = -\sum_{i=1}^{N} (y_i \ln \sigma(\boldsymbol{w}^T \boldsymbol{x}_i) + (1 - y_i) \ln (1 - \sigma(\boldsymbol{w}^T \boldsymbol{x}_i)))$$
(1)

is convex. What is the benefit of having a convex function for optimization?

First, notice that if we can prove that the following two functions

$$-\ln \sigma(\boldsymbol{w}^T \boldsymbol{x}_i)$$
 and $-\ln(1-\sigma(\boldsymbol{w}^T \boldsymbol{x}_i))$

are convex, our objective function as given in Eq.1 must also be convex since any linear combination (with positive constants) of two or more convex combinations is also convex. Since y_i and $1 - y_i$ are positive this holds.

To prove that the first function is convex we will use the second-order condition of convexity.

Reminder: A function f(x) which is twice-differentiable is convex if and only if its Hessian matrix (matrix of second-order partial derivatives) is positive semi-definite.

To compute the Hessian matrix we first calculate the derivative of the sigmoid function:

$$\frac{\partial}{\partial x}\sigma(x) = \frac{e^{-x}}{(1+e^{-x})^2} = \sigma(x)\frac{e^{-x}}{1+e^{-x}} = \sigma(x)\left(1 + \frac{e^{-x} - 1 - e^{-x}}{1+e^{-x}}\right) = \sigma(x)\left(1 - \frac{1}{1+e^{-x}}\right)$$
$$= \sigma(x)(1 - \sigma(x)).$$

Using this, we can derive the Hessian:

$$\nabla_{\boldsymbol{w}}^{2} \left[-\ln \sigma(\boldsymbol{w}^{T} \boldsymbol{x}_{i}) \right] = \nabla_{\boldsymbol{w}} \left[\nabla_{\boldsymbol{w}} (-\ln \sigma(\boldsymbol{w}^{T} \boldsymbol{x}_{i})) \right]$$

$$= \nabla_{\boldsymbol{w}} \left[-\boldsymbol{x}_{i} \frac{\sigma(\boldsymbol{w}^{T} \boldsymbol{x}_{i}) (1 - \sigma(\boldsymbol{w}^{T} \boldsymbol{x}_{i}))}{\sigma(\boldsymbol{w}^{T} \boldsymbol{x}_{i})} \right]$$

$$= \nabla_{\boldsymbol{w}} \left[\boldsymbol{x}_{i} (\sigma(\boldsymbol{w}^{T} \boldsymbol{x}_{i}) - 1) \right]$$

$$= \sigma(\boldsymbol{w}^{T} \boldsymbol{x}_{i}) (1 - \sigma(\boldsymbol{w}^{T} \boldsymbol{x}_{i})) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}.$$

Next, we show that this Hessian matrix is positive semi-definite:

$$\forall z: \quad z^T \nabla_w^2 \left[-\ln \sigma(w^T x_i) \right] z$$

$$= z^T \left[\sigma(w^T x_i) (1 - \sigma(w^T x_i)) x_i x_i^T \right] z$$

$$= \sigma(w^T x_i) (1 - \sigma(w^T x_i)) (x_i^T z)^2 \ge 0$$

To prove that the second function is convex, we first notice:

$$-\ln(1 - \sigma(\boldsymbol{w}^T \boldsymbol{x}_i)) = -\ln\left(1 - \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}}\right) = -\ln\left(\frac{e^{-\boldsymbol{w}^T \boldsymbol{x}_i}}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}}\right)$$
$$= \boldsymbol{w}^T \boldsymbol{x}_i - \ln\left(\frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}}\right) = \boldsymbol{w}^T \boldsymbol{x}_i - \ln\sigma(\boldsymbol{w}^T \boldsymbol{x}_i)$$

This is a sum of two convex functions, since the affine function $\boldsymbol{w}^T\boldsymbol{x}_i$ is convex and we just showed that $-\ln \sigma(\boldsymbol{w}^T\boldsymbol{x}_i)$ is convex. Hence, $-\ln(1-\sigma(\boldsymbol{w}^T\boldsymbol{x}_i))$ is convex as well.

The benefit of having a convex function for optimization is that, subject to relatively mild assumptions, stochastic gradient descent converges almost surely to a global minimum.

3 Optimization methods

Problem 4: Discuss the following topics:

- Condition number
- Consistency, convergence, stability
- Stiffness
 - Condition number: How much does output vary depending on the input, more precisely the maximum ratio of the relative error in the output \hat{y} due to the relative error in the input x. Ill-conditioned: High condition number. This is a property of the problem itself, not of the algorithm.
 - Consistency: Local discretization error (error due to a single step) $l(\delta t) \to 0$ for $\delta t \to 0$
 - Convergence: Global discretization error (overall error) $e(\delta t) \to 0$ for $\delta t \to 0$
 - Stability: Algorithms that do not magnify approximation errors. Instabilities can be caused e.g. by nearby singularities (e.g. very small eigenvalues), truncation errors, or loss of significance. Stability + consistency = convergence
 - Stiffness: Local property of the algorithm's solution imposes extremely high resolution.