Devoir facultatif n° 2

Formules de Machin

L'objet de ce problème est de présenter la formule de Machin ¹ et quelques résultats autour de celle-ci :

$$\frac{\pi}{4} = 4\arctan\frac{1}{5} - \arctan\frac{1}{239}$$

On obtiendra diverses formules faisant intervenir des arctan d'inverses de nombres. En particulier, une formule du type Machin est de la forme

$$m \arctan \frac{1}{x} + \arctan \frac{1}{y} \equiv \frac{\pi}{4} [\pi]$$

avec m, x, y entiers.

Partie A. Introduction. Exemples

Pour tout entier naturel non nul m, on appelle \mathcal{C}_m l'ensemble des couples de réels non nuls (x, y) tels que

$$m \arctan \frac{1}{x} + \arctan \frac{1}{y} \equiv \frac{\pi}{4} [\pi]$$

- 1) Pour x réel non nul, on pose $\alpha = \arctan \frac{1}{x}$. Exprimer x + i à l'aide de α et de l'exponentielle complexe. Donner un argument de x + i.
- 2) Montrer que

$$(x,y) \in \mathcal{C}_m \Leftrightarrow (x+i)^m (y+i) e^{-i\frac{\pi}{4}} \in \mathbb{R}$$

3) Montrer que

$$\frac{\pi}{4} = 2\arctan\frac{1}{2} - \arctan\frac{1}{7}$$

4) Formule de Dodgson² Soit p, q, r trois réels positifs tels que $1 + p^2 = qr$. Montrer que

$$\arctan \frac{1}{p} = \arctan \frac{1}{p+r} + \arctan \frac{1}{p+q}$$

- 1. John Machin (1680 1752). Grâce à cette formule, en 1706, Machin est le premier mathématicien à calculer 100 décimales de π .
 - 2. plus connu pour son oeuvre littéraire sous le pseudonyme Lewis Carrol

Partie B. Étude d'une famille de polynômes

Pour x réel et m entier positif, on note respectivement $A_m(x)$ la partie réelle et $B_m(x)$ la partie imaginaire de de $(x+i)^m$. On définit également F_m par :

$$F_m(x) = \frac{A_m(x) + B_m(x)}{A_m(x) - B_m(x)}$$

- 1) Calculer $A_k(x)$ et $B_k(x)$ pour $k \in \{1, 2, 3, 4\}$. Présenter les résultats dans un tableau.
- 2) Montrer que

$$A_{m+1}(x) = xA_m(x) - B_m(x) B_{m+1}(x) = A_m(x) + xB_m(x)$$

$$A_m(-x) = (-1)^m A_m(x) B_m(-x) = -(-1)^m B_m(x)$$

$$A'_m(x) = mA_{m-1}(x)$$

$$B'_m(x) = mB_{m-1}(x)$$

 $(A'_m$ et B'_m sont les dérivées de A_m et B_m) si m est pair

$$A_m(x) = (-1)^{\frac{m}{2}} x^m A_m \left(-\frac{1}{x} \right)$$
$$B_m(x) = (-1)^{\frac{m}{2}} x^m B_m \left(-\frac{1}{x} \right)$$

si m est impair

$$A_m(x) = (-1)^{\frac{m-1}{2}} x^m B_m \left(-\frac{1}{x} \right)$$

$$B_m(x) = -(-1)^{\frac{m-1}{2}} x^m A_m \left(-\frac{1}{x} \right)$$

- 3) Pour un entier m fixé, déterminer les solutions de l'équation $A_m(x) = B_m(x)$ d'inconnue $x \in \mathbb{R}$. Quelle est la plus grande de ces solutions?
- 4) Montrer que la fonction F_m est décroissante dans chaque intervalle de son domaine de définition. Quelle est la limite de F_m en $+\infty$ et en $-\infty$?

Partie C. Les formules du type Machin

On se propose de trouver toutes les formules du type Machin pour m entier entre 1 et 4.

1) Montrer que $(x,y) \in \mathcal{C}_m$ si et seulement si

$$A_m(x) \neq B_m(x)$$
 et $y = F_m(x)$

2) Des calculs numériques conduisent aux tableaux de valeurs approchées suivants :

m	$\cot \left(\frac{\pi}{4m}\right)$
1	1
2	2.414
3	3.732
4	5.027

a	c	$F_1(x)$	$F_2(x)$	$F_3(x)$	$F_4(x)$
1	L		-1.	0.	1.
- 2	2	3.	-7.	-1.444	5484
	3	2.	7.	-5.500	-1.824
	1	1.667	3.286	19.80	-5.076
	5	1.500	2.429	5.111	-239.0
-6	5	1.400	2.043	3.352	7.971
7	7	1.333	1.824	2.659	4.518
-8	3	1.286	1.681	2.286	3.376
)	1.250	1.581	2.052	2.802
1	0	1.222	1.506	1.891	2.455
1	1	1.200	1.449	1.774	2.222
1	2	1.182	1.403	1.684	2.055
1	3	1.167	1.366	1.613	1.929

À partir de ces tableaux, former (en justifiant soigneusement) toutes les formules du type Machin pour m entier entre 1 et 4.

Partie D. Algorithme de Lehmer.

Soit z_0 un nombre complexe dont la partie imaginaire est strictement positive. On définit des complexes z_1, z_2, \cdots par récurrence en posant

$$z_{k+1} = z_k \left(-E\left(\frac{\operatorname{Re}(z_k)}{\operatorname{Im}(z_k)}\right) + i \right) \text{ lorsque } \operatorname{Im}(z_k) \neq 0$$

La notation E désignant la fonction partie entière. Le procédé s'arrête si un nombre réel est obtenu. On pourra noter

$$n_k = E\left(\frac{\operatorname{Re}(z_k)}{\operatorname{Im}(z_k)}\right)$$

- 1) Faire les calculs dans le cas particulier $z_0 = 17 + 7i$.
- 2) Montrer que la suite formée par les parties imaginaires des z_k est strictement décroissante et à valeurs positives.
- 3) Écrire quelques lignes de code Python implantant cet algorithme.
- 4) On suppose que $z_0 = a + ib$ avec a et b entiers strictement positifs.
 - a) Montrer qu'il existe un k tel que z_k est réel.
 - b) En déduire que

$$\arctan\left(\frac{b}{a}\right) \equiv \arctan\left(\frac{1}{n_0}\right) + \arctan\left(\frac{1}{n_1}\right) + \dots + \arctan\left(\frac{1}{n_{k-1}}\right) [\pi]$$

On remplacera $\arctan(\frac{1}{n_k})$ par $\frac{\pi}{2}$ lorsque $n_k=0$.

- FIN -