Universidad Industrial de Santander

Introducción a la Física (2013)

Unidad: 01

• Clase: 03

Fecha: 20130523J

Contenido: Magnitudes físicas y Unidades

Web: http://halley.uis.edu.co/fisica_para_todos/

• **Archivo:** 20130523J-HA-Magnitudes_y_unidades.pdf

En el episodio anterior

- ¿Qué es la física?
 - Alcances, motivaciones, intereses
- Análisis dimensional
 - El período de un péndulo
- El oscuro arte de estimar
 - Modelos
 - Preguntas de Fermi
 - El método científico

En el episodio anterior

- Usen las unidades
- Analicen los casos extremos
- Basen su modelo en hipótesis razonables
- Contrasten los resultados con las observaciones
- Traten de comprender la razón de las diferencias entre su modelo (simplificado) y la naturaleza
- Replanteen sus hipótesis, recordando que:

La **física** es una sucesión de **hipótesis razonables**, cuyas **predicciones** deben ser **contrastadas** con los **resultados de los experimentos**

Magnitudes

- Magnitudes

 - •
- Magnitudes Intensivas y Extensivas
 - Intensivas:
 - Extensivas:

Velocidad y aceleración

¿Qué significa medir?

Un poco de historia...

• El sistema internacional de unidades

Convención

Sólo tres países no adoptaron (aún) el SI

Unidades

Básicas

Derivadas

Compuestas

Aclaración importante

- Las próximas 7 transparencias son sólo un ayuda memoria
- Pueden usarlo como "formulerío"

Unidades básicas

- 1. Longitud
- 2. Tiempo
- 3. Masa
- 4. Corriente eléctrica
- 5. Temperatura
- 6. Cantidad de materia
- 7. Intensidad Luminosa cd (candela)

m (metro)

s (segundo)

kg (kilogramo)

A (amperio)

K (kelvin)

mol (mol)

Unidades derivadas: pueden obtenerse como combinación de las básicas

Fuerza

 $N \text{ (newton)} \rightarrow \text{kg m s}^{-2}$

Presión

Pa (pascal) → N m⁻²

Energía

J (joule) \rightarrow N m

Potencia

W (watt) \rightarrow J s⁻¹

Frecuencia

Hz (hertz) \rightarrow s⁻¹

Ángulo

rad (radian) \rightarrow (m m⁻¹)

Unidades derivadas: pueden obtenerse como combinación de las básicas

- Carga
- Voltaje
- Resistencia
- Capacitancia
- Radioactividad
- Dosis equivalente

- C (coulomb)
- V (volt)
- Ω (ohm)
- F (farad)
- Bq (bequerel)
- Sv (sievert)

Unidades compuestas: productos de unidades (sean básicas o derivadas)

Superficie m²

Volumen m³

Velocidad m s⁻¹

Aceleración m s⁻²

• Impulso $N s = kg m s^{-1}$

• Acción $J s = kg m^2 s^{-1}$

Unidades comunes (no SI)

- km / hora
- Litro
- kg fuerza
- atm
- milibar
- milla
- Angström
- electrón-Volt

- 1 km h⁻¹=(1/3.6) m s⁻¹ Velocidad
- $1 L=(1/1000) m^3$
- 1 kgf=9.8 N
- 1 atm=1013,25 hPa
- 1 mbar=1 hPa
- 1 milla=1,609 km
- $1 A=10^{-10} m$
- $1 \text{ eV} = 1,602 \times 10^{-19} \text{ J}$

Capacidad Fuerza

- Presión
 - Presión
- Distancia
- Distancia
 - Energía

Prefijos (Múltiplos)

Tera	Т	$10^{12} = 1.000.000.000.000$	TeV
Giga	G	$10^9 = 1.000.000.000$	GJ
Mega	M	$10^6 = 1.000.000$	MW
Kilo	kk	$10^3 = 1.000$	km
Hecto	h	$10^2 = 100$	hPa
Deca	da	$10^1 = 10$	dag

Prefijos (submúltiplos)

deci	dd	$10^{-1}=0,1$	dV
centi	CC	$10^{-2} = 0.01$	cPa
mili	m	$10^{-3} = 0,001$	mm
micro	μ	$10^{-6} = 0,000001$	μg
nano	nn	$10^{-9} = 0,000\ 000\ 001$	nA
pico	pp	$10^{-12} = 0,000\ 000\ 000\ 001$	ps

Órdenes de magnitud

- Las ciencias se conforman con lenguaje preciso
- Cuidado al usar adjetivos comparativos: grande, pequeño, flaco, gordo, ...
 - Grande, ¿respecto a qué? ← Puntos de referencia
- Órden de Magnitud: ← Escala
- En general, factores de 10 ← Potencias de 10
- Por ejemplo...

El espectro electromagnético

El espectro electromagnético

Por su atención, muchas gracias

y disculpas...

(... alguna vez había que hacerlo, para que no digan que no se los dijimos)

Para trabajar en clase (y en casa)

- 1) La distancia de la Tierra al Sol se denomina *Unidad Astronómica* (UA), y su valor es $1 \text{ UA}=1.5 \times 10^8 \text{ km}$.
 - a) Exprese el valor de 1 UA en metros y milímetros. Escriba cada uno de esos valores en notación decimal, notación científica, y utilizando los prefijos específicos de los múltiplos del SI que mejor se adecúen a cada caso (p. ej. 3×10¹⁸ m=3 Em, tres exámetros).
 - b) Imagine ahora una esfera de radio r=1 UA. Calcule la superficie y el volumen de esta esfera para el radio medido en km, m y mm (trabaje sólo en notación científica).
 - c) Suponga que llenamos la esfera del punto anterior hasta la mitad con agua (ρ_{H_2O} = 1,00 g cm⁻³), y luego la completamos con aceite vegetal (ρ_a = 0,70 g cm⁻³). Calcule la masa de agua y de aceite utilizados, expresando el resultado en microgramos.
 - *d*) Utilizando el valor de la velocidad de la luz en el vacío c ($c = 299792458 \, \mathrm{m \, s^{-1}}$), calcule el tiempo requerido por la luz del Sol para alcanzar la Tierra. Exprese el resultado en minutos.
- 2) Repita ahora todos los cálculos del punto anterior pero para una esfera de radio $r=500\,\mu\mathrm{m}$.
- 3) Frabajemos con la velocidad de la luz. Entonces:
 - a) Viajando a la velocidad de la luz, ¿cuánto tiempo se necesita para recorrer 1 metro?
 - b) El tiempo requerido por la luz para cubrir la distancia Bariloche-Buenos Aires (1600 km).
 - c) ¿Cuántos metros recorre la luz en un año? Este valor se conoce como *año luz* y se lo utiliza para expresar **distancias** astronómicas.
 - d) Se entiende al radio de Bohr a_{∞} como al radio clásico de un átomo de Hidrógeno. ¿Cuanto tiempo necesita un fotón para cubrir una distancia igual a $a_{\infty} = 0.53$ angstroms?