Dr. Beici Liang

Email: beici.liang@foxmail.com 11622 Stockholm Website: beiciliang.github.io Sweden

Last updated: February, 2025

- Audio technologist experienced in DSP, AI, Information Retrieval, and Software Development
- Skilled in Python, SQL, Docker, Kubernetes, Cloud Engineering, and other DevOps 🗘
- Passionate about introducing music tech to the public as a Popular Science Writer 📢
- Good communication and presentation skills in English and Chinese

Working Experience

Aug. 2024 – Signal Processing Engineer

Epidemic Sound, Sweden

Lead the design and implementation of algorithms for music recognition, facilitating digital rights management.

Sep. 2023 - Senior Backend and Cloud Engineer

July. 2024 Nome

Nomono AS, Norway

Responsible for the backend development of Nomono Cloud to build a robust, scalable and high-performing cloud service that provides great audio processing and editing for content creators.

May 2021 - Head of R&D

Aug. 2023

Music Tech Startups including SPARWK AS and Deus Vault UK Ltd.

Developed AI algorithms for music entity linking system and audio-based information retrieval services, e.g., genre detection, tempo estimation, etc.; Filed 4 patents for the systems and methods used in artists and repertoire (A&R).

Sept. 2019 - Senior Research Engineer

April 2021

Tencent Music Entertainment (TME), China

Developed end-to-end AI models for music auto-tagging, structural segmentation, large scaled singer recognition, and audio embeddings for music recommendation; Provided a better understanding of the music content for over 20 million tracks, and benefited over 800 million users in China via the QQ Music App; Published 5 conference papers and 3 patents, and awarded with the Annual Technology Breakthrough.

Education

2014 – 2019 PhD in Media and Arts Technology

School of Electronic Engineering and Computer Science

Queen Mary University of London (QMUL), United Kingdom

Research Group: Centre for Digital Music (C4DM)

Supervisors: Mark Sandler, George Fazekas, Andrew McPherson

Thesis: Modelling Instrumental Gestures and Techniques - A Case Study of Piano Pedalling

2010 – 2014 BEng in Integrated Circuit Design and Integrated System

School of Electronic Information Engineering

Tianjin University (TJU), China

Grade: 88/100

Open-source Projects

2023 – nov	aws-bootcamp-cruddur-2023 Implementations for a micro-blogging platform using React, Flask and AWS.	0
2018 – nov	intro2musictech Introduce music technology to Chinese audiences and build MIR communities in China. 12k+ followers on Zhihu and 2k+ subscribers on WeChat Official Account.	0
2018 – 201	9 sustain-pedal-detection Python implementations for piano sustain pedal detection.	0
2018	modelAttackDecay-for-piano-transcription Python implementations of an attack/decay model for piano transcription.	0

Miscellaneous

Volunteers

- Scientific Program Chair of the 24th International Society for Music and Information Retrieval Conference (ISMIR 2023)
- Mentor and volunteer for Women in Music Information Retrieval (WiMIR)

66.6 (2018), pp. 448-456. doi:10.17743/jaes.2018.0035.

- Member of the Local Organising Committee for the 12th International Audio Mostly Conference
- Reviewers and memberships in numerous international conferences and journals such as ISMIR, IEEE Signal Processing Society, Audio Engineering Society, etc.

Main Publications

More can be seen at Google Scholar.

More can be	e seen at doogle scholar.		
2021	K. Chen, Liang, B , X. Ma, and M. Gu. "Learning Audio Embeddings with User Listening Data for Content-Based Music Recommendation". In: <i>2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</i> . pp. 3015-3019. doi:10.1109/ICASSP39728.2021.9414458.	<u></u>	
2021	S. Hu, Liang, B , Z. Chen, X. Lu, E. Zhao, and S. Lui. "Large-Scale Singer Recognition Using Deep Metric Learning: An Experimental Study". In: <i>2021 International Joint Conference on Neural Networks (IJCNN)</i> . pp. 1–6. doi:10.1109/IJCNN52387.2021.9533911.		
2020	S. Hu, B. Zhang, Liang, B , E. Zhao, and S. Lui. "Phase-Aware Music Super-Resolution Using Generative Adversarial Networks". In: <i>Interspeech 2020</i> . pp. 4074–4078. doi:10.21437/Interspeech.2020-2605.	۶	
2019	Liang, B, G. Fazekas, and M. Sandler. "Transfer Learning for Piano Sustain-Pedal Detection". In: <i>2019 International Joint Conference on Neural Networks (IJCNN)</i> . pp. 1-6. doi:10.1109/ijcnn.2019.8851724.	B (•
2019	Liang, B, G. Fazekas, and M. Sandler. "Piano Sustain-Pedal Detection Using Convolutional Neural Networks". In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 241-245. doi:10.1109/ICASSP.2019.8683505.	B (7
2018	Liang, B , G. Fazekas, and M. Sandler. "Measurement, Recognition, and Visualization of Piano Pedalling Gestures and Techniques". <i>Journal of the Audio Engineering Society</i>	۲	