Problem 22. If $f: A \to B$ has an inverse function then f is onto and f is one-to-one.

Proof. Suppose $f: A \to B$ has an inverse function $g: B \to A$. By definition of an inverse function this means that

$$g(f(a)) = a$$
, for all $a \in A$
 $f(g(b)) = b$, for all $b \in B$

one-to-one: Let $a_1, a_2 \in A$ such that $f(a_1) = f(a_2)$. To prove f is one-to-one(injective) we must show that $a_1 = a_2$. Observe that composing the inverse g with f gives

$$g(f(a_1) = g(f(a_2))$$

As a result of applying the definition of inverse g(f(a)) = a, we get

$$a_1 = a_2$$

Therefore f is injective.

onto : To prove that f is onto, we must show that there exists an $a \in A$ such that f(a) = b. Since $g : B \to A$, we know that $g(b) \in A$. Let a = g(b). Substituting a in f(a) gives

$$f(a) = f(q(b)) = b$$

As a result of applying the definition of inverse f(g(b)) = b. Therefore, for every $b \in B$, there exists $a = g(b) \in A$ such that f(a) = b. Hence f is onto.

Since f is both one-to-one and onto, it follows that f is bijective. \Box

Problem 23. A real number $x \in \mathbb{R}$ is called algebraic if there exists $a_0, a_1, \ldots, a_{n-1}, a_n \in \mathbb{Z}$, not all zero, so that

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

That is, a real number is algebraic if it is a root of a polynomial equation with integer coefficients.

(a) The numbers $\sqrt{2}$, $\sqrt[3]{2}$, and $\sqrt{3} + \sqrt{2}$ are algebraic. For $\sqrt{2}$:

Proof. Let $p(x) = x^2 - 2$. We verify that $\sqrt{2}$ is a root of this polynomial:

$$p(\sqrt{2}) = (\sqrt{2})^2 - 2 = 2 - 2 = 0$$

Thus $\sqrt{2}$ is algebraic.

For $\sqrt[3]{2}$:

Proof. Let $p(x) = x^3 - 2$. We verify that $\sqrt[3]{2}$ is a root of this polynomial:

$$p(\sqrt[3]{2}) = (\sqrt[3]{2})^3 - 2 = 2 - 2 = 0$$

Therefore $\sqrt[3]{2}$ is algebraic.

For $\sqrt{3} + \sqrt{2}$:

Proof. Let $p(x) = x^4 - 10x^2 + 1$. We verify that $\sqrt{3} + \sqrt{2}$ is a root of this polynomial:

$$p(\sqrt{3} + \sqrt{2}) = (\sqrt{3} + \sqrt{2})^4 - 10(\sqrt{3} + \sqrt{2})^2 + 1$$

$$= (3 + 2\sqrt{6} + 2)^2 - 10(3 + 2\sqrt{6} + 2) + 1$$

$$= (5 + 2\sqrt{6})^2 - 30 - 20\sqrt{6} - 20 + 1$$

$$= 25 + 20\sqrt{6} + 24 - 30 - 20\sqrt{6} - 20 + 1$$

$$= 50 + 20\sqrt{6} - 50 - 20\sqrt{6}$$

$$= 0$$

Thus $\sqrt{3} + \sqrt{2}$ is algebraic.

(b) For fixed $n \in \mathbb{N}$, let A_n be the set of algebraic numbers which are roots of polynomials, with integer coefficients, of degree n. Then A_n is countable.

Proof. A polynomial $P \in P_n$ of degree n with integer coefficients is defined as

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

where $a_i \in \mathbb{Z}$ and $a_n \neq 0$. Let P_n denote the set of all such degree-n polynomials. Each polynomial is uniquely determined by the (n+1)-tuple $(a_n, a_{n-1}, \ldots, a_1, a_0)$ where $a_n \neq 0$. This is a bijection between P_n and a subset of Z^{n+1} . Since Z^{n+1} is countable, any subset of Z^{n+1} is at most countable. Therefore P_n is countable. We can thus enumerate $P_n = \{P_1, P_2, P_3, \ldots\}$.

By the Fundamental Theorem of Algebra, each polynomial of degree n has at most n roots. For each $i \in \mathbb{N}$, let R_i denote the set of all roots of P_i . Then $|R_i| \leq n \leq \infty$.

Every algebraic number in A_n is, by definition a root of some polynomial in P_n . Therefore $A_n = \bigcup_{i=0}^{\infty} R_i$.

(c) The set of all algebraic numbers is countable.

Proof.

Problem 24. There is an onto function $f:(0,1) \to S$ where $S = \{(x,y): 0 < x, y < 1\}$ is the unit square in the plane \mathbb{R}^2 .

Proof.
$$\Box$$

Problem 25. (a) $\lim_{n \to \infty} \frac{2n+1}{5n+3} = \frac{2}{5}$

Proof. Let
$$\epsilon > 0$$
.

(b)
$$\lim_{n \to \infty} \frac{2n^2}{n^3 + 1} = 0$$

Proof. Let
$$\epsilon > 0$$
.

(c)
$$\lim_{n \to \infty} \frac{\sin(n)}{\sqrt{n}} = o$$

Proof. Let
$$\epsilon > 0$$
.

Problem 26. (a) A sequence with an infinite number of ones that does not converge to one.

(b) A sequence with an infinite number of ones that converges to a limit not equal to one.

Problem 27. Let (x_n) be a sequence that converges to x. Suppose p(x) is a polynomial. Then

$$\lim_{n \to \infty} p(x_n) = p(x).$$

Problem 28. Consider three sequences (x_n) , (y_n) , and (z_n) for which $x_n \leq y_n \leq z_n$ for each n. If $x_n \to \ell$ and $z_n \to \ell$ then $y_n \to \ell$.

Proof.
$$\Box$$