Victor Muñiz

Generalidade

Introducción

Aprendizaje supervisado Teoría de decisión

Estadística y computación para metagenómica

Victor Muñiz Sánchez

victor_m@cimat.mx

Centro de Investigación en Matemáticas. Unidad Monterrey.

Junio 2023

Victor Muñiz

Generalidades

Introducción

Aprendizaje supervisado

Teoría de dec estadística

Sobre ésta parte del curso...

Victor Muñiz

Generalidades

Introducción

supervisado Teoría de decis estadística

Sobre el curso

Temario:

- Introducción y conceptos generales
 - Machine learning (ML) supervisado y no supervisado
 - Teoría de decisión estadística
- Métodos de aprendizaje supervisado
 - Regresión logística
 - Redes neuronales
 - Hiperplanos separadores óptimos y Máquinas de Soporte Vectorial
 - Selección de modelos y regularización
 - 6 Modelos aditivos y métodos relacionados
 - Arboles de decisión
 - Boosting
 - Random forest

Victor Muñiz

Generalidade

Introducción

Aprendizaje supervisado Teoría de decisión

Introducción y conceptos generales

Victor Muñiz

Introducción

Introducción

- En esta parte del curso mostraremos algunos métodos y conceptos básicos de aprendizaje máquina (ML: machine learning) y reconocimiento estadístico de patrones para el análisis de datos multivariados en general, y con aplicaciones en datos metagenómicos en particular.
- Los pre-requiitos: conocimientos básicos de modelos estadísticos (inferencia y regresión), álgebra lineal, cálculo de varias variables, conocimientos de programación.

Victor Muñiz

Generalidade

Introducción

supervisado
Teoría de decisio

Introducción

Software:

Victor Muñiz

Generalidade

Introducción

supervisado Teoría de decisi estadística

Introducción

Software:

Python y la infraestructura para cómputo científico y ciencia de datos

Victor Muñiz

Conoralidado

Introducción

supervisado
Teoría de decisionestadística

Introducción

Instalación local.

- La opción más óptima: instalar python https://www.python.org/ y usar el editor de tu preferencia (vi, emacs, pycharm, spyder, jupyter-notebook, etc).
- La opción más rápida (recomendada para iniciar), instalar la suite Anaconda: https://www.anaconda.com/
- En cualquier caso, recomiendo ampliamente crear virtual environments para el curso y/o proyectos específicos que requieran a su vez, librerías específicas.

Instalar librerías: En Anaconda, se puede hacer directamente en el framework. También puedes hacerlo en consola con los comandos pip y conda (si tienes Anaconda).

Victor Muñiz

Generalidade

Introducción

Aprendizaje supervisado Teoría de decisi estadística

Introducción

Ejecución de código

- The Python interpreter
- The IPython interpreter
- Self-contained Python scripts
- Jupyter notebook

Victor Muñiz

Generalidade

Introducción

Supervisad Teoría de decis estadística

Introducción

Jupyter + Google Colab

- Colaboratory permite escribir y ejecutar código de Python en un navegador
- Sin configuración requerida
- Acceso gratuito a GPU y TPU
- Facilidad para compartir

Victor Muñiz

Conoralidado

Introducción

Aprendizaje

Teoría de dec estadística

Introducción

1-intro.ipynb

Victor Muñiz

Conoralidado

Introducción

Aprendizaje supervisado

l'eoria de decis estadística

Métodos de aprendizaje supervisado

Victor Muñiz

Generalidade

Generalidade

Aprendizaje supervisado

Teoría de de estadística

Introducción

Considera un esquema clásico de clasificación.

Donde tenemos un conjunto de datos de entrenamiento

$$\{(\mathbf{x}_i, y_i)\}_{i=1}^n; \quad \mathbf{x} \in \mathbb{R}^d, y \in \{0, 1\}$$

Victor Muñiz

Generalidade

Introducción

Introducción

Aprendizaje supervisado

estadística

Introducción

Nuestro objetivo es obtener una función

$$f: \mathbb{R}^d \mapsto \{0,1\} .$$

Victor Muñiz

Generalidade

Introducción

Aprendizaje supervisado

estadística

Introducción

Nuestro objetivo es obtener una función

$$f: \mathbb{R}^d \mapsto \{0,1\} .$$

Bajo el esquema de aprendizaje máquina (ML), esperamos que ésta función se "aprenda" a partir de un conjunto de datos de entrenamiento, y generalmente depende de ciertos parámetros:

$$y = f(\mathbf{x}; \boldsymbol{\theta}).$$

Victor Muñiz

Generalidade

Introducción

Aprendizaje supervisado

estadística

Introducción

Nuestro objetivo es obtener una función

$$f: \mathbb{R}^d \mapsto \{0,1\} .$$

Bajo el esquema de aprendizaje máquina (ML), esperamos que ésta función se "aprenda" a partir de un conjunto de datos de entrenamiento, y generalmente depende de ciertos parámetros:

$$y = f(\mathbf{x}; \boldsymbol{\theta}).$$

¿Cómo nos gustaría que fuera f?

Victor Muñiz

Generalidad

Introducció

Aprendizaje supervisado

estadística

Introducción

Nuestro objetivo es obtener una función

$$f: \mathbb{R}^d \mapsto \{0,1\} .$$

Bajo el esquema de aprendizaje máquina (ML), esperamos que ésta función se "aprenda" a partir de un conjunto de datos de entrenamiento, y generalmente depende de ciertos parámetros:

$$y = f(\mathbf{x}; \boldsymbol{\theta}).$$

¿Cómo nos gustaría que fuera f? Para ésta pregunta, veamos dos modelos para resolverlo.

Victor Muñiz

Generalidade

Introducción

Aprendizaje

supervisado

Introducción

Mínimos cuadrados:

$$f(\mathbf{x}) = \beta_o + \beta' \mathbf{x}$$

$$\hat{y} = \begin{cases} 0 & \text{si } f(\mathbf{x}) \le 0.5 \\ 1 & \text{si } f(\mathbf{x}) > 0.5 \end{cases}$$

Victor Muñiz

Conoralidado

Landau alla and Car

Aprendizaje

supervisado

Introducción

Mínimos cuadrados:

$$f(\mathbf{x}) = \beta_o + \beta' \mathbf{x}$$

$$\hat{y} = \begin{cases} 0 & \text{si } f(\mathbf{x}) \le 0.5 \\ 1 & \text{si } f(\mathbf{x}) > 0.5 \end{cases}$$

Victor Muñiz

Generalidades

Generalidades

.....

Aprendizaje supervisado

Introducción

k-vecinos cercanos:

$$\hat{y} = f(\mathbf{x}) = \frac{1}{k} \sum_{\mathbf{x}_i \in \mathcal{N}_k(\mathbf{x})} y_i$$

Victor Muñiz

Generalidade

Generalidade

Aprendizaje supervisado

estadística

Introducción

k-vecinos cercanos:

$$\hat{y} = f(\mathbf{x}) = \frac{1}{k} \sum_{\mathbf{x}_i \in \mathcal{N}_k(\mathbf{x})} y_i$$

Victor Muñiz

Generalidade

Generalidade

Aprendizaje supervisado

estadística

Introducción

k-vecinos cercanos:

$$\hat{y} = f(\mathbf{x}) = \frac{1}{k} \sum_{\mathbf{x}_i \in \mathcal{N}_k(\mathbf{x})} y_i$$

Victor Muñiz

Generalidade

Introducción

Aprendizaje supervisado

Teoría de de estadística

Introducción

¿Cuál prefieres y porqué?

Victor Muñiz

Generalidades

Introducción

Aprendizaje supervisado

Teoría de dec estadística

Introducción

Lo que vamos a ver en ésta última parte del curso, son diferentes propuestas para construir un clasificador

$$f: \mathbb{R}^d \mapsto \{1, 2, \dots, K\},\,$$

incluyendo aspectos muy importantes, tales como:

- supuestos
- ajuste
- eficiencia
- complejidad
- generalización estadística
- regularización

entre otros...

Victor Muñiz

Generalidade

Generalidade

supervisado

Teoría de decisión estadística

Teoría de decisión estadística

Introducción

Aprendiza

Teoría de decisión estadística

Teoría de decisión estadística

Regresemos al problema de clasificación tratado anteriormente. Consideremos de momento, el caso de clasificación binaria:

$$\{(\mathbf{x}_i, y_i)\}_{i=1}^n; \quad \mathbf{x} \in \mathbb{R}^d, y \in \{0, 1\}$$

Teoría de decisión estadística

Teoría de decisión estadística

Supongamos que podemos obtener **de alguna forma** éstas probabilidades:

$$P(y=0), \qquad P(y=1).$$

Si sólo contaramos con ésta información, lo más lógico (óptimo) es asignar

$$y_i = 1$$
 si $P(y = 1) > P(y = 2)$

Victor Muñiz

Conoralidade

Aprendiza

Teoría de decisión

Teoría de decisión estadística

Sin embargo, nosotros contamos con información valiosa sobre la clase de las observaciones a través de las covariables \mathbf{x} .

Si una covariable ${\bf x}$ es discrimitiva, esperariamos que su distribución esté asociada a y, entonces nos interesa conocer

$$P(\mathbf{x}|y)$$

Entonces, con toda ésta información, podemos modelar

$$P(y, \mathbf{x}) = P(y|\mathbf{x})P(\mathbf{x}) = P(\mathbf{x}|y)P(y),$$

Victor Muñiz

Generalidade

Introducción

Aprendiza

Teoría de decisión estadística

Teoría de decisión estadística

entonces (Bayes):

$$P(y = 1|\mathbf{x}) = \frac{P(\mathbf{x}|y = 1)P(y = 1)}{P(\mathbf{x})},$$

con el factor de normalización

$$P(\mathbf{x}) = \sum_{i=1}^{2} P(\mathbf{x}|y=i)P(y=i).$$

En palabras:

$$posterior = \frac{verosimilitud \times apriori}{evidencia}$$

Introducción

Aprendizaje

Teoría de decisión estadística

Para el caso de clasificación binaria, la probabilidad de error está dada por

$$P(\mathsf{error}|\mathbf{x}) = \left\{ \begin{array}{ll} P(y=1|\mathbf{x}) & \text{ si decidimos } y=2 \\ P(y=2|\mathbf{x}) & \text{ si decidimos } y=1 \end{array} \right.,$$

y el error promedio es:

$$P(\text{error}) = \int_{-\infty}^{\infty} P(\text{error}|\mathbf{x})P(\mathbf{x})dx.$$

Victor Muñiz

Generalidade

Aprendizaj

Teoría de decisión estadística

Teoría de decisión estadística

Si para cada \mathbf{x} , nos aseguramos que el error que cometemos es muy pequeño, entonces la integral debe ser muy pequeña, y eso se logra al usar la **regla de decisión Bayesiana**:

decide
$$y = 1$$
 si $P(y = 1|\mathbf{x}) > P(y = 2|\mathbf{x})$,

o de forma equivalente:

decide
$$y = 1$$
 si $P(\mathbf{x}|y = 1)P(y = 1) > P(\mathbf{x}|y = 2)P(y = 2)$.

En ambos casos

$$P(\text{error}|\mathbf{x}) = \min\{P(y=1|\mathbf{x}), P(y=2|\mathbf{x})\},\$$

ya que la categoría <u>correcta</u> se asigna de acuerdo a la probabilidad máxima, y bajo este supuesto, el error es asignar la probabilidad minima.

Victor Muñiz

Generalidade

Introducció

Aprendizaie

Teoría de decisión estadística

Teoría de decisión estadística

En forma general, el **clasificador óptimo Bayesiano** está dado por :

$$\hat{y} = \arg\max_{y_k} P(y = y_k | \mathbf{x}),$$

donde $\mathbf{x} \in \mathbb{R}^d$, $y_k \in \{1, 2, \dots, K\}$, y las probabilidades posteriores están dadas por la fórmula de Bayes:

$$P(y = y_k | \mathbf{x}) = \frac{P(\mathbf{x} | y = y_k) P(y = y_k)}{P(\mathbf{x})}.$$

Otra forma de cuantificar la consecuencia de mi decisión es a través del riesgo y el costo asociado a ella.

Teoría de decisión estadística

Considera ésta matriz de costos para clasificación binaria

$$\mathbf{\Lambda} = \left(\begin{array}{cc} 0 & \lambda_{-1,1} \\ \lambda_{1,-1} & 0 \end{array} \right),$$

donde $\lambda_{i,j}$ es el costo de clasificar un objeto de la clase j como clase i. El costo promedio asociado a clasificar un dato ${\bf x}$ en la clase y_i , llamado función de Riesgo de Bayes, está dado por

$$R(y = y_i | \mathbf{x}) = \sum_{j \in \{-1,1\}} \lambda_{i,j} P(y = y_j | \mathbf{x}),$$

en nuestro caso, $R(y=-1|\mathbf{x})=\lambda_{-1,1}P(y=1|\mathbf{x})$ y $R(y=1|\mathbf{x})=\lambda_{1,-1}P(y=-1|\mathbf{x}).$

Victor Muñiz

Generalidades

IIIIIOddiccic

Aprendizaje

Teoría de decisión estadística

Teoría de decisión estadística

La decisión óptima es elegir aquella clase que minimice el riesgo, es decir

$$\hat{y} = \arg\min_{y_k} R(y = y_k | \mathbf{x}).$$

Es fácil ver que el clasificador de Bayes corresponde con esta regla de decisión, ya que ésta implica elegir $\hat{y}=-1$ si

$$R(y = -1|\mathbf{x}) < R(y = 1|\mathbf{x}),$$

o, en términos de probabilidades posteriores, si

$$\lambda_{1,-1}P(y=-1|\mathbf{x}) > \lambda_{-1,1}P(y=1|\mathbf{x}),$$

que es equivalente al clasificador óptimo de Bayes.

Victor Muñiz

Generalidade

Introducción

Aprendiza

Teoría de decisión estadística

Teoría de decisión estadística

En este caso, las probabilidades posteriores estarán dadas por

$$\begin{array}{rcl} \lambda_{-1,1} P\big(y=1 | \mathbf{x}\big) & = & \frac{P(\mathbf{x} | y=1) P(y=1) \lambda_{-1,1}}{P(\mathbf{x})}, \\ \lambda_{1,-1} P\big(y=-1 | \mathbf{x}\big) & = & \frac{P(\mathbf{x} | y=1) P(y=-1) \lambda_{1,-1}}{P(\mathbf{x})}. \end{array}$$

De aquí podemos concluir que, considerar diferentes costos de mala clasificación es equivalente a **modificar las probabilidades apriori** $P(y=y_k)$, y en consecuencia, cambiar las fronteras de clasificación.

supervisado

Teoría de decisión

Teoría de decisión estadística **Ejemplo:** Clase 0 (o). Clase 1 (+).

Clasificador Bayesiano óptimo.

$$P(y=1) = P(y=2) = 1/2, \qquad \mathbf{\Lambda} = \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix}$$

Teoría de decisión estadística Teoría de decisión estadística **Ejemplo:** Clase 0 (o). Clase 1 (+).

Clasificador Bayesiano óptimo.

$$P(y=1) = P(y=2) = 1/2, \qquad \mathbf{\Lambda} = \begin{pmatrix} 0 & 1 \\ 5 & 0 \end{pmatrix}$$

Teoría de decisión

Teoría de decisión estadística **Ejemplo:** Clase 0 (o). Clase 1 (+).

Clasificador Bayesiano óptimo.

$$P(y=1) = P(y=2) = 1/2, \qquad \mathbf{\Lambda} = \begin{pmatrix} 0 & 1 \\ 10 & 0 \end{pmatrix}$$

Victor Muñiz

Generalidade

Introducción

Aprendizaj

Teoría de decisión estadística

Ejemplo: Funciones discriminantes para la distribución normal (LDA y QDA)

Victor Muñiz

Generalidade

IIIIIOddiccic

Aprendizaj

Teoría de decisión estadística

Ejemplo: LDA y QDA

Una forma de representar un clasificador es mediante funciones discriminantes $g(\mathbf{x})$. Para el caso general de clasificación en K clases, el clasificador **asigna** un objeto \mathbf{x} a la clase k si

$$g_i(\mathbf{x}) > g_j(\mathbf{x}), \quad \forall j \neq i, i = 1, 2, \dots, K$$

Victor Muñiz

Generalidade

A muon dimoi o

supervisac

Teoría de decisión estadística

Ejemplo: LDA y QDA

Según esta definición, podemos asignar $g_i(\mathbf{x}) = P(y=i|\mathbf{x})$, así la función discriminante máxima corresponderá a la probabilidad posterior máxima.

Las siguientes expresiones son equivalentes:

$$\begin{array}{rcl} g_i(\mathbf{x}) & = & P(y=i|\mathbf{x}) = \frac{P(\mathbf{x}|y=i)P(y=i)}{P(\mathbf{x})} \\ g_i(\mathbf{x}) & = & P(\mathbf{x}|y=i)P(y=i) \\ g_i(\mathbf{x}) & = & \log P(\mathbf{x}|y=i) + \log P(y=i) \end{array}$$

Las funciones discriminantes particionan el espacio de entrada (o espacio de características) en k regiones.

Victor Muñiz

Generalidade

Aprendiza

Teoría de decisión estadística

Ejemplo: LDA y QDA

Sin duda, el caso más estudiado es cuando se considera que nuestros datos provienen de una distribución normal: $X|y_i \sim \mathcal{N}(\mu_i, \Sigma_i)$. Es decir,

$$P(\mathbf{x}|y=i) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}_i|^{1/2}} \exp\left[\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)' \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)\right],$$

Simplificando la notación y = i como y_i , las funciones discriminantes tienen la forma:

$$g_i(\mathbf{x}) = \log P(\mathbf{x}|y_i) + \log P(y_i)$$

= $-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)' \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2}\log 2\pi - \frac{1}{2}\log |\boldsymbol{\Sigma}_i|$
+ $\log P(y_i)$

Victor Muñiz

Generalidade

Aprendizai

supervisado Teoría de decisión

estadística

Ejemplo: LDA y QDA

3 casos principales:

• Varianzas iguales (LDA): $\Sigma_i = \sigma^2 \mathbf{I}$.

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \boldsymbol{\mu}_i\|^2}{2\sigma^2} + \log P(y_i)$$

$$g_i(\mathbf{x}) = \mathbf{w}_i'\mathbf{x} + w_{i0},$$

con

$$\mathbf{w}_{i} = \frac{1}{\sigma^{2}} \boldsymbol{\mu}_{i}$$

$$w_{i0} = -\frac{1}{2\sigma^{2}} \boldsymbol{\mu}'_{i} \boldsymbol{\mu}_{i} + \log P(y_{i})$$

Victor Muñiz

Conoralidado

Ludous alconolities

Introduccion

Aprendizaj

Teoría de decisión estadística

Ejemplo: LDA y QDA

Victor Muñiz

Conoralidade

Indiana da a a tra

Aprendiza

Teoría de decisión estadística

Ejemplo: LDA y QDA

ullet Varianzas iguales (LDA): $\Sigma_i = \Sigma$.

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)' \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \log P(y_i).$$
$$g_i(\mathbf{x}) = \mathbf{w}_i' \mathbf{x} + w_{i0},$$

donde

$$\mathbf{w}_i = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_i' \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i + \log P(y_i).$$

Victor Muñiz

Conoralidado

Industriani de

Introducción

Aprendiza

Teoría de decisión estadística

Ejemplo: LDA y QDA

Introducción

Aprendiza

Teoría de decisión estadística

Ejemplo: LDA y QDA

• Varianzas Σ_i son arbitrarias (QDA):

$$g_i(\mathbf{x}) = \mathbf{x}' \mathbf{W}_i' \mathbf{x} + \mathbf{w}_i' \mathbf{x} + w_{i0},$$

con

$$\begin{aligned} \mathbf{W}_{i} &= -\frac{1}{2} \mathbf{\Sigma}_{i}^{-1} \\ \mathbf{w}_{i} &= \mathbf{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{i} \\ w_{i0} &= -\frac{1}{2} \boldsymbol{\mu}_{i}' \mathbf{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{i} - \frac{1}{2} \log |\mathbf{\Sigma}_{i}| + \log P(y_{i}) \end{aligned}$$

Victor Muñiz

Generalidade

Generalidade

Aprendizai

Teoría de decisión estadística

Ejemplo: LDA y QDA

