3. Релации

"Relatable"

Октомври 2024

1 Преговор

Дефиниция 1.1 (релация). Нека A_1, \dots, A_n са множества. n-местна pелация R над декартовото прозиведение $A_1 \times A_2 \dots \times A_n$ наричаме всяко множество $R \subseteq A_1 \times \dots \times A_n$. Ако $A_1 = \dots = A_n$, то релацията е xомогенна.

Нотация 1. За *двуместни* релации вместо $(x,y) \in R$, пишем xRy.

Дефиниция 1.2 (свойства). За двумсетна хомогенна релация $R \subseteq A^2$ дефинираме свойствата:

- рефлексивност: $\forall a \in A : aRa$
- антирефлексивност: $\forall a \in A : \neg aRa$
- симетричност: $\forall a,b \in A, a \neq b: aRb \rightarrow bRa$ (също $\forall a,b \in A, a \neq b: aRb \leftrightarrow bRa)$
- антисиметричност: $\forall a, b \in A, a \neq b : aRb \rightarrow \neg bRa$ (също и $\forall a, b \in A : aRb \land bRa \rightarrow a = b$)
- силна антисиметричност: $\forall a, b \in A, a \neq b : aRb \oplus bRa$
- транзитивност: $\forall a, b, c \in A : aRb \land bRc \rightarrow aRc$ (*не е необходимо a, b, c да са различни)

Дефиниция 1.3 (затваряне). Транзитивно затваряне на релацията $R \subseteq A^2$ е минималното множество R^+ такова, че: $R \subseteq R^+$ и R^+ е транзитивна (аналогично за рефклексивно и симетрично затваряне).

*Множеството R^+ е минимално, ако е подмножество на всички релации, изпълняващи горното изискване. (Получава се, че транзитивното затваряне на R е $R^+ = \bigcup_{n \in \mathbb{N}^+} R^n$, виждате ли умножаването на матрици?)

Лема 1.1. Релация е транзитивна (аналогично рефлексивна/симетрична) тстк съвпада с транзитивното (съответно рефлексивното/симетричното) си затваряне.

Дефиниция 1.4. Наричаме една релация $R \subseteq A^2$:

- \bullet релация на *еквивалентност* $\Leftrightarrow R$ е едновременно рефлексивна, симетрична и транзитивна;
- релация на *частична наредба* \Leftrightarrow R е едновременно рефлексивна, антисиметрична и транзитивна (в частичните наредби може да има *несравними* елементи, т.е. между тях няма приоритет: $\neg aRb \land \neg bRa$);
- релация на *строга частична наредба* $\Leftrightarrow R$ е едновременно антирефлексивна, антисиметрична и транзитивна (тук не допускаме да има равни по "старшинство" елементи);
- релация на $nuneŭ + naped 6a \Leftrightarrow R$ е едновременно рефлексивна, силно антисиметрична и транзитивна (линей ните наред 6и са частен случай на частичните);
- \bullet релация на $npedhapedba\Leftrightarrow R$ е едновременно рефлексивна и транзитивна;

Начини за представяне на релации:

- описване в явен вид: $R = \{(a, b), (a, c), \cdots, (c, f)\}$
- чрез матрица (при двуместни релации): $M_{i,j}=1$ при iRj и 0 в противен случай.
- чрез диаграма: граф с върхове елементите, като еднопосочното ребро (v_i, v_j) е в графа точно когато $a_i R a_j$.

Дефиниция 1.5. Ако $R \subseteq A^2$ е частична наредба, а $R' \subseteq A^2$ е линейна наредба и $R \subseteq R'$, казваме, че: R се влага в R' или R' е линейно разширение на R (броят линейни разширения е между 1 и n!).

Дефиниция 1.6 (верига, контур). Ако $R\subseteq A^2$ е релация и $A=\{a_1,\cdots,a_n\}$, верига е всяка последователност $a_{i_0},a_{i_1},\cdots,a_{i_k}$ ($i_0,\cdots,i_k\in\{1,\cdots,n\}$), ако $a_{i_j}Ra_{i_{j+1}}$ и $a_{i_j}\neq a_{i_{j+1}}$ $\forall j(0< j< k), k\geq 0$

Ако $a_{i_0} = a_{i_n}$ и k > 0 веригата се нарича контур (всъщност оттук и горните изисквания, следва и k > 1, защо?).

2 Основни задачи

Задача 1. Вярно ли е, че ако R е симетрична и транзитивна, то тя е рефлексивна. Ако не, то къде е проблемът в следното доказателство:

от R - симетрична, $\forall a,b \in A, a \neq b: aRb \leftrightarrow bRa$

Задача 2. Да се докаже, че $R \subseteq A^2$ е едновременно симетрична и антисиметрична точно когато $R \subseteq \{(a,a)|\ a\in A\}.$

Задача 3. Ако $R_1, R_2 \subseteq A^2$ са релации на еквивалентност, то релации на еквивалентност ли са:

- $R_1 \cap R_2$
- $R_1 \cup R_2$
- $R_1 \triangle R_2$

Задача 4. (*) Да се докаже, че транзитивното затваряне на крайна релация $R\subseteq A^2$ е единствено.

Решение. Нека $F = \{P_1, ... P_m\}$ е фамилията от релациите със свойството: $R \subseteq P_j \subseteq A^2$ и P_j е транзитивна (те са краен брой, заради крайността на R). По дефиниция транзитивното затваряне на R е минималното P_i от всички горе, с други думи $\forall j: P_i \subseteq P_j$. Нека $R' = \bigcap_{1 \le j \le m} P_j$. В $\mathit{задача}\ 3$ показахме, че сечение на две (съответно и на всеки краен брой) транзитивни релации е транзитивна релация. От това и факта, че P_j са транзитивни, то сечението им R' е транзитивна релация. Също и $\forall j: R \subseteq P_j \Rightarrow R \subseteq \bigcap P_j = R'$, откъдето $R' \in F$ (по дефиницията на F). Излиза, че така намереното сечение R', което е единствено (от единственост на сечението), е именно търсеното транзитивно затваряне.

Задача 5. (*) Нека $R\subseteq A^2$ е реф
лексивна и транзитивна. Тогава R е частична наредба тст
к няма контури.

Задача 6. (*) При крайни множества в релация на частична наредба R има поне един минимален и поне един максимален елемент.

Дефиниция 2.1. Дефинираме R^{-1} по следния начин: $bR^{-1}a \Leftrightarrow aRb$.

Задача 7. За $R \subseteq A^2$ да се докаже, че е симетрична тстк $R = R^{-1}$.

Решение. От дефинициите: $x = (a, b) \in R \Leftrightarrow aRb \ a\{-1\}$ симетрична.

Задача 8. За $R \subseteq A^2$ да се докаже, че е антисиметрична тстк $R \cap R^{-1} \subseteq \{(x,x) | x \in A\}$.

Решение. От дефинициите: R антисиметрична тстк $\forall a,b \in A: aRb \land bRa \to a=b$ тстк $\forall a,b \in A: aRb \land R^{-1}b \to a=b$ тстк $\forall a,b \in A: ((a,b) \in R) \land ((,b) \in R^{-1}) \to a=b$ тстк $\forall a,b \in A: (a,b) \in R \cap R^{-1} \to a=b$ тстк $\forall a,b \in A: (a,b) \in R \cap R^{-1} \to (a,b) = (a,a)$ тстк $\forall a,b \in A: (a,b) \in R \cap R^{-1} \to (a,b) \in \{(x,x)|x \in A\}$ тстк $R \cap R^{-1} \subseteq \{(x,x)|x \in A\}$

Задача 9. За всяка частична наредба R съществува поне едно линейно разширение R' на R.

3 Релация на еквивалентност

Дефиниция 3.1 (клас на еквивалентност). Нека $R \subseteq A^2$ е релация на еквивалентност. За всяко $a \in A$ дефинираме $[a] = \{b \in A | aRb\}$.

Задача 10. $F = \{[a] | a \in A\}$ е разбиване на множеството A.

Задача 11. (*) Дадено е множество X с |X| = n. Да се намери:

$$\sum_{A,B\subseteq X} |A\cap B|$$

Решение. дефинираме релацията $\sim\subseteq \mathscr{P}(X)\times\mathscr{P}(X)$. Като $(A,B)\sim (C,D)$ точно когато $(A=C\vee A=X\backslash C)\wedge (B=D\vee B=X\backslash D)$. Лесно се проверява, че \sim е релация на еквивалентност. Всеки клас на релацията се състои от четири двойки от вида: $(A,B), (A,X\backslash B), (X\backslash A,B), (X\backslash A,X\backslash B),$ всяка двойка подмножества участва в точно един такъв клас, така че класовете са $2^n.2^n/4=4^{n-1}$. Сега правим наблюдението, че всеки елемент $x\in X$ принадлежи на точно едно сечение $P\cap Q$ на двойка (P,Q) от всеки клас. Значи всеки елемент участва в 4^{n-1} такива сечения, или сумарната мощност е: $n.4^{n-1}$.

Задача 12. (*) Дадени са n точки в равнината, $n \ge 5$. Построени са n+1 различни триъгълника, да се докаже, че някои два от тях имат точно една обща точка.

Решение. Допускаме противното, тоест, че всеки два различни триъгълника имат точно 0 или 2 общи върха. Дефинираме релацията $\sim \subseteq T^2$ (T е множеството от триъгълниците), като $\triangle_1 \sim \triangle_2$ тстк \triangle_1 имат поне 2 общи върха \triangle_2 . Релацията е очевидно рефлексивна (всеки триъгълник има поне 2 общи върха със себе си) и симетрична (ако \triangle_1 има поне 2 общи върха с \triangle_2 , то и обратното е вярно).

транзитивност: Нека $\triangle_1 \sim \triangle_2$ и $\triangle_2 \sim \triangle_3$. Понеже \triangle_2 има поне 2 общи върха с \triangle_1 , както и с \triangle_3 , а самият той има 3 върха (...понеже е триъгълник, нали), то от Дирихле (2+2>3) ще има връх, който е общ и за трите триъгълника, откъдето \triangle_1 и \triangle_3 имат поне 1 общ връх. Но по допускане няма триъгълници с точно един общ връх, така че те трябва да имат поне 2 общи върха, или $\triangle_1 \sim \triangle_3$. □

Получаваме, че релацията \sim е релация на еквивалентност. Да разгледаме произволен клас на еквивалентност на тази релация, нека k е броят на различни върхове/точки на триъгълници от разглеждания клас:

- Ако k = 3, то в класа има точно 1 триъгълник;
- Ако k=4, то в класа има не повече от 4 триъгълника с върхове измежду тези точки (все пак от 4 точки могат да се конструират не повече от $\binom{4}{3}=4$ триъгълника);
- Ако k>4, то в класа има не повече от k триъгълника: Нека в класа има поне 2 различни триъгълника, ABC и ABD (от дефиницията на релацията следва, че те имат две общи точки). Нека T_1 е произволна точка в разглеждания клас на еквивалентност, различна от горните 4. Ако тази точка участва в триъгълник \triangle , то твърдим, че другите две точки на този триъгълник са именно A и B. Ако не са, то от $\triangle \sim ABC$, една от точките на \triangle е C, по аналогична причина (от $\triangle \sim ABD$) една от точките на \triangle е D. Но тогава $\triangle = T_1CD$, което обаче няма поне 2 общи точки с ABC, което е невъзможно. Значи всеки

триъгълник в нашия клас на еквивалентност, имащ точка T_i , която не е измежду A, B, C, D съдържа A и B. Ако всички точки в класа са $A, B, C, D, T_1, ... T_m$, то имаме не повече от 4+m=k триъгълника с върхове тези точки (понеже от A, B, C, D могат да се конструират до 4 триъгълника, а всички останали триъгълници имат вида ABT_i);

В крайна сметка (от трите случая) излиза, че броят триъгълници не би трябвало да надвишава този на точките, противоречие с условието. Значи винаги има два триъгълника с точно 1 общ връх.

4