FONDEMENTS DES BASES DE DONNÉES

Couvertures d'ensembles de dépendances fonctionnelles

Équipe pédagogique BD

https:

//perso.liris.cnrs.fr/marc.plantevit/doku/doku.php?id=lifbdw2_2018a

Version du 27 septembre 2018

La notion de couverture est une relation d'équivalence entre des ensembles de contraintes.

Couverture d'un ensemble de DFs

Soit Σ et Γ deux ensembles de DFs, Γ est une couverture de Σ ssi

$$\Gamma^+ = \Sigma^+$$

- Une couverture d'un ensemble de DF est donc une représentation alternative
- Mais qui possède exactement la même sémantique.
- C'est exactement le même ensemble de DF qui est implicite.
- On a intérêt à choisir de bons représentants au sein des classes.

Des critères pour de bon ensembles équivalents

Propriétés des couvertures

- ▶ un ensemble F de DF est dit non redondant s'il n'existe pas de couverture G de F telle que $G \subseteq F$ avec $G \neq F$.
- ▶ un ensemble F de DF est dit minimum s'il n'existe pas de couverture G de F tel que $|G| \le |F|$.
- ► F est dit optimal s'il n'existe pas de couverture G de F avec moins d'attributs que dans F.

Propriétés immédiates ¹

- une couverture minimum est non redondante;
- une couverture optimum est minimum.

Algorithme: couverture minimum

```
Data: F un ensemble de DF
Result: G une couverture minimum de F
G := \emptyset
for X \to Y \in F do
G := G \cup \{X \to X^+\}
end
for X \to X^+ \in G do
   if G - \{X \rightarrow X^+\} \vdash X \rightarrow X^+ then
   G := G - \{X \rightarrow X^+\}
    end
end
return G
```

- ► Cet algorithme est polynomial dans le nombre de DF dans F et le nombre d'attributs dans F.
- ► La couverture minimum calculée par l'algorithme n'est pas forcément unique : d'autres couvertures peuvent avoir le même nombre de DF, mais être différentes.
- ▶ Parmi celles-ci, certaines sont optimum; malheureusement, leur calcul est un problème difficile dans le cas général (NP-Complet).

Exemple

$$F = \{ \begin{array}{cccc} AB \rightarrow C & C \rightarrow A & BC \rightarrow D \\ ACD \rightarrow B & D \rightarrow EF & ABE \rightarrow C \end{array} \}$$

$$CF \rightarrow BD & CE \rightarrow AF$$

- 1. A partir des df $X \to Y$ de F, construire G l'ensemble des règles de la forme $X \to X^+$.
 - ► $AB \rightarrow AB^+ = ABCDEF = R$
 - $C \to C^+ = AC$
 - $BC \to BC^+ = R$
 - $ACD \rightarrow ACD^+ = R$
 - $D \to D^+ = DEF$
 - $ABE \rightarrow ABE^+ = R$

 - $CE \to CE^+ = R$

G	
	$AB \rightarrow AB^+ = ABCDEF = R$
	$C \rightarrow C^+ = AC$
	$BC \rightarrow BC^+ = R$
	$ACD \rightarrow ACD^+ = R$
	$D \rightarrow D^+ = DEF$
	$ABE \rightarrow ABE^+ = R$
	$CF \rightarrow CF^+ = R$
	$CE \rightarrow CE^+ = R$

$$AB \rightarrow AB^{+} = ABCDEF = R \text{ utile?}$$
Oui si $AB^{+}_{G \setminus AB \rightarrow R} \neq R$.
$$G$$

$$AB \rightarrow AB^{+} = ABCDEF = R$$

$$C \rightarrow C^{+} = AC$$

$$BC \rightarrow BC^{+} = R$$

$$ACD \rightarrow ACD^{+} = R$$

$$D \rightarrow D^{+} = DEF$$

$$ABE \rightarrow ABE^{+} = R$$

$$CF \rightarrow CF^{+} = R$$

$$CE \rightarrow CE^{+} = R$$

▶ $AB^+ = AB \neq R \Rightarrow AB \rightarrow AB^+ = ABCDEF = R$ est utile!

$$\begin{array}{|c|c|} \hline C \rightarrow C^+ = AC \text{ utile?} \\ \hline G \\ \hline \\ AB \rightarrow AB^+ = ABCDEF = R \\ \hline C \rightarrow C^+ = AC \\ BC \rightarrow BC^+ = R \\ ACD \rightarrow ACD^+ = R \\ D \rightarrow D^+ = DEF \\ ABE \rightarrow ABE^+ = R \\ CF \rightarrow CF^+ = R \\ CE \rightarrow CE^+ = R \\ \end{array}$$

$$\begin{array}{c|c} \underline{BC \rightarrow BC^{+} = R \text{ utile ?}} \\ \hline G \\ \hline \\ AB \rightarrow AB^{+} = ABCDEF = R \\ C \rightarrow C^{+} = AC \\ BC \rightarrow BC^{+} = R \\ ACD \rightarrow ACD^{+} = R \\ D \rightarrow D^{+} = DEF \\ ABE \rightarrow ABE^{+} = R \\ CF \rightarrow CF^{+} = R \\ CE \rightarrow CE^{+} = R \\ \end{array}$$

▶ $BC^+ = R \Rightarrow BC \rightarrow BC^+ = R$ n'est pas utile! . On la supprime de G.

▶ $ACD^+ = R \Rightarrow ACD \rightarrow R$ n'est pas utile! . On la supprime de G.

$$\begin{array}{|c|c|} \hline D \rightarrow DEF \text{ utile?} \\ \hline G \\ \hline \hline & AB \rightarrow AB^+ = ABCDEF = R \\ & C \rightarrow C^+ = AC \\ & D \rightarrow D^+ = DEF \\ & ABE \rightarrow ABE^+ = R \\ & CF \rightarrow CF^+ = R \\ & CE \rightarrow CE^+ = R \\ \hline \end{array}$$

▶ $D^+ = D \neq DEF \Rightarrow D \rightarrow DEF$ est utile.

▶ $ABE^+ = R \Rightarrow ABE \rightarrow R$ est inutile. On la supprime

▶ $CF^+ = ACF \neq R \Rightarrow CF \rightarrow R$ est utile.

▶ $CE^+ = ACE \neq R \Rightarrow CE \rightarrow R$ est utile.

Une 2 couverture G de F est :

G	
	$AB \rightarrow ABCDEF = R$
	$C \to AC$
	D o DEF
	CF o R
	$CE \rightarrow R$

Exercice

Calculer les couvertures des ensembles suivants

Calcul d'une couverture canonique

Pour décomposer selon F, on va utiliser un ensemble F' qui soit :

- ▶ Couverture de $F: F^+ = F'^+$.
- Minimal: on ne peut pas retirer de DF en préservant toujours la couverture,
- ► Sans attributs redondants, ni à droite ni à gauche,
- Regroupé : il n'y a pas deux DF avec la même partie gauche.

On a vu des algorithmes qui permettent de produire une telle couverture. Ces étapes sont nécessaires pour assurer que les algorithmes vont bien produire un bon schéma!

Réduction du nombre d'attribut pour un ensemble de DF

```
Data: Un ensemble minimum de DF F sur R.
Min := F
/* Réduction des parties gauches
                                                                                                       */
for X \to Y \in Min do
     W := X
    for A \in X do
      if Min \models (W - A) \rightarrow X then W := W - \{A\};
     end
     Min := (Min - \{X \rightarrow Y\}) \cup \{W \rightarrow Y\}
end
/* Réduction des parties droites
                                                                                                       */
for X \rightarrow Y \in Min do
     W := Y
    for A \in Y do
      G := (Min - \{X \rightarrow Y\}) \cup \{X \rightarrow (W - A)\}
if G \models X \rightarrow Y then W := W - \{A\};
     end
     Min := (Min - \{X \rightarrow Y\}) \cup \{X \rightarrow W\}
end
return Min
```

Exemple de réduction Soit l'ensemble de DFs Σ^3 :

$$\Sigma = AB \rightarrow ABCDF; \ B \rightarrow BCD; \ DE \rightarrow F; \ E \rightarrow D$$

Couverture minimum $G : \{AB \rightarrow ABCDF; B \rightarrow BCD; E \rightarrow DEF\}$

► Réduction des parties gauches :

$$Min = AB \rightarrow ABCDF; B \rightarrow BCD; E \rightarrow DEF$$

► Réduction des parties droites :

$$Min = AB \rightarrow F$$
; $B \rightarrow CD$; $E \rightarrow DF$

Conclusion

Ce qu'il faut retenir

- Couverture d'un ensemble de DFs : une représentation alternative véhiculant la même sémantique.
- Propriétés d'une (bonne) couverture : non redondante, minimum, optimum.
- ▶ Algorithme de calcul d'une couverture minimum.
- Algorithme de calcul d'une couverture "canonique" (minimum + réduction parties gauches et droites).

Fin.