晶体衍射与结构分析

Crystal Diffraction and Structure Analysis

刘 泉 林 北京科技大学材料科学与工程学院

晶体衍射与结构分析

Crystal Diffraction and Structure Analysis

- 1.5 空间群
- 1.6 国际晶体学表

晶体结构 ↔ 空间点阵+结构基元

Structure ↔ Lattice + Basis

晶系名称	特征对称	晶胞形状
立方	四个3次轴	$a=b=c, \alpha=\beta=\gamma=90^{\circ}$
六方	一个6次轴	$a=b\neq c,$ $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
四方	一个4次轴	$a=b\neq c, \alpha=\beta=\gamma=90^{\circ}$
三方	一个3次轴	$a=b=c, \alpha=\beta=\gamma\neq90^{\circ}$
正交	三个互相垂直的2次轴或 对称面或它们的组合,而 无更高次轴	$a\neq b\neq c, \alpha=\beta=\gamma=90^{\circ}$
单斜	只具有一个二次轴或对称 面或它们的组合,而无更 高次轴	$a\neq b\neq c, \alpha=\gamma=90^{\circ}\neq\beta$
三斜	不具有对称轴和对称面, 只能含一次对称轴和对称 中心	$a\neq b\neq c, \alpha\neq \beta\neq \gamma$

晶系 名称	晶胞形状	国际符号位序	位序所代表的 方向与基矢方 向的关系	所属点群
立方	a=b=c,	1	[100][010][001]	23; m 3;
	α=β=γ=9	2	[111]	43; 4 3m;
	0°	3	[110]	m 3m;
六方	a=b≠c,	1	[001]	6; 6; 6/m
	α=β=90	2	[100] [010]	6m2;622
	°,γ=120	3	[120]	6mm;6/mmm

四方	a=b≠c, α=β=γ=90	1 2 3	[001] [100] [010] [110]	4; 4; 4/m 4m2;422 4mm;4/mmm
三方 (R 点 阵)	a=b=c, α=β=γ≠90	1 2	[111] [1-10]	3次轴对应 a+b+c方向
三方 H点阵	$a=b\neq c,$ $\alpha=\beta=90^{\circ},$ $\gamma=120^{\circ}$	1 2 3	[001] [100] [010] [120] [210]	3; 3; 3m1 321; 3m1

正交	a≠b≠c, α=β=γ=90 °	1 2 3	[100] [010] [001]	222 mm2 mmm
单斜	a≠b≠c, α=γ=90° ≠ β	1	[010]	2; m; 2/m
三斜	a≠b≠c, α≠β≠γ	1	[000]	1; 1

晶体结构

晶体结构中

微观空间对称元素及组合,空间群

关键: 平移对称性

晶体结构 ↔ 空间点阵+结构基元

Structure ↔ Lattice + Basis

1.5.1 微观空间对称元素

初基平移
$$T = ma + nb + lc$$

非初基平移 T = ma + nb + lc

螺旋轴是旋转与平移的复合操作

 $2_1, 3_1, 3_2, 4_1, 4_2, 4_3, 6_1, 6_2, 6_3, 6_4, 6_5.$

Rutile (金红石型结构)

金红石, TiO₂,

空间群P42/mnm

a=4.593, c=2.959Å

单位晶胞内有4个O²⁻,

 $2 \uparrow Ti^{4+}, Z=2$

Ti 2a (0, 0, 0)

O 4f (0.302, 0.302, 0)

滑移面为反映面和平移的复合操作。

滑移面有5种类型,a,b,c,n,d。

滑移面a,b,c的对称操作分别为点阵图像经滑移面反映后分别沿平行于基矢**a,b,c**方向平移a/2,b/2,c/2,使点阵图像的等同部分重合。

滑移面n为经反映后平移(a+b)/2, 或(b+c)/2,或(c+a)/2。

滑移面d为经反映后平移(a+b)/4, 或(b+c)/4,或(c+a)/4

Diamond (金刚石型结构)

Fd3m, a=3.570 Å
C 8a (0,0,0) (3/4,1/4,3/4)
Z=8

晶胞中微观对称元素表示方法

晶胞中微观对称元素表示方法

1.5.2 空间群

微观空间对称元素共有下列26种。

$$1,\overline{1},m,a,b,c,n,d$$

$$2, 2_1, 3, \overline{3}, 3_1, 3_2, 4, \overline{4}, 4_1, 4_2, 4_3, 6, \overline{6}, 6_1, 6_2, 6_3, 6_4, 6_5$$

在晶体内部微观结构中,上述26种微观对称元素,以及初基平移(P)、非初基平移的共同组合(I, C, F)称为空间对称群,简称空间群。在晶体微观结构中可能存在的空间群共有230中。

晶体的微观空间对称元素与周期平移的组合

晶体的微观空间对称元素与周期平移的组合

晶体的微观空间对称元素与周期平移的组合

晶体的微观空间对称元素与非初基平移的组合

晶体的微观空间对称元素与非初基平移的组合

1.6 晶体学国际表,等效点系

International Tables for Crystallography

A,B,C,D,E,F,G seven Volumes

Position

No. 3

 C_2^1

P121

Monoclinic

Patterson symmetry P12/m1

UNIQUE AXIS b

No. 10

P112/m

Patterson symmetry P112/m

UNIQUE AXIS c

International Tables for Crystallography

UNIQUE AXIS \boldsymbol{c}

International Tables for Crystallography

Origin at centre (2/m)

Asymmetric unit $0 \le x \le 1$; $0 \le y \le \frac{1}{2}$; $0 \le z \le \frac{1}{2}$

$$0 \le x \le 1$$
;

$$0 \le y \le \frac{1}{2}$$
;

$$0 \le z \le \frac{1}{2}$$

Symmetry operations

(1) 1

(2) 2 0,0,z (3) $\bar{1}$ 0,0,0

(4) m x, y, 0

Maximal isomorphic subgroups of lowest index

[2] P112/m(c'=2c) (P2/m, 10); [2] P112/m(a'=2a or b'=2b or a'=a-b, b'=a+b) (P2/m, 10)

Minimal non-isomorphic supergroups

- [2] Pmmm (47); [2] Pccm (49); [2] Pmma (51); [2] Pmna (53); [2] Pbam (55); [2] Pnnm (58); [2] Cccm (66); [2] P4/m(83); [2] P4,/m(84); [3] P6/m(175)
- П [2]A112/m(C2/m, 12); [2]B112/m(C2/m, 12); [2]I112/m(C2/m, 12)

Crystallographic site (等效点系)

International Tables for Crystallography

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions

Multiplicity, Wyckoff letter, Site symmetry

Coordinates

$$(1) x, y, z$$

(2)
$$\bar{x}, \bar{y}, z$$

(1)
$$x, y, z$$
 (2) \bar{x}, \bar{y}, z (3) $\bar{x}, \bar{y}, \bar{z}$

(4)
$$x, y, \bar{z}$$

$$2 \quad n \quad m$$

$$x, y, \frac{1}{2}$$

$$\bar{x}, \bar{y}, \frac{1}{2}$$

$$\bar{x}, \bar{y}, 0$$

$$\frac{1}{2}, \frac{1}{2}, Z$$

$$\frac{1}{2},\frac{1}{2},\overline{z}$$

$$\frac{1}{2}$$
, 0, z

$$\frac{1}{2}$$
, 0 , \bar{z}

Crystallographic site (等效点系)

$$2 \ j \ 2$$

$$0, \frac{1}{2}, z$$

$$0, \frac{1}{2}, \bar{z}$$

$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}{2}$

$$1 \quad g \quad 2/m$$

$$\frac{1}{2},\frac{1}{2},0$$

$$1 \quad f \quad 2/m$$

$$\tfrac{1}{2},0,\tfrac{1}{2}$$

$$0, \frac{1}{2}, \frac{1}{2}$$

$$0, \frac{1}{2}, 0$$

$$\frac{1}{2},0,0$$

$$1 \ b \ 2/m$$

$$0,0,\frac{1}{2}$$

$$1 \quad a \quad 2/m$$

International Tables for Crystallography

Symmetry of special projections

```
\begin{array}{lll} \text{Along [001] } p2 & \text{Along [100] } p2mm & \text{Along [010] } p2mm \\ a' = \mathbf{a} & \mathbf{b}' = \mathbf{b} & \mathbf{a}' = \mathbf{b}_p & \mathbf{b}' = \mathbf{c} & \mathbf{a}' = \mathbf{c} & \mathbf{b}' = \mathbf{a}_p \\ \text{Origin at } 0, 0, z & \text{Origin at } x, 0, 0 & \text{Origin at } 0, y, 0 \end{array}
```

Maximal non-isomorphic subgroups I [2] P11m(Pm, 6) 1; 4

```
[2] P112(P2,3) 1; 2

[2] P\overline{1}(2) 1; 3

Ha none

Hb [2] P112_1/m (c' = 2c) (P2_1/m, 11); [2] P112/a (a' = 2a) (P2/c, 13); [2] P112/b (b' = 2b) (P2/c, 13); [2] P112/a (a' = 2a, b' = 2b) (P2/c, 13); [2] P112/a (a' = 2a) (P2/c, 13); [2] P112/a (a' = 2a); [2] P112/a (a' = 2a) (P2/c, 13); [2] P112/a (a' = 2a); [2] P112/a (a' = 2a)
```


No. 14

 C_{2h}^5

 $P12_{1}/c1$

2/m

Monoclinic

Patterson symmetry P12/m1

P2₁/c

Crystallographic site (等效点系)

Positions

Multiplicity, Wyckoff letter, Site symmetry Coordinates

4 e 1

(1) x, y, z

(2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$

(3) $\bar{x}, \bar{y}, \bar{z}$

(4) $x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$

2 d

 $\frac{1}{2}$, 0, $\frac{1}{2}$

 $\frac{1}{2}, \frac{1}{2}, 0$

2 6

ī

 $0,0,\frac{1}{2}$

 $0, \frac{1}{2}, 0$

2

Ī

 $\frac{1}{2}$, 0, 0

 $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$

2

a :

b

0,0,0

 $0, \frac{1}{2}, \frac{1}{2}$

No. 75

 C_4^1

P4

4

Tetragonal

Patterson symmetry P4/m

Crystallographic site (等效点系)

Positions

Multiplicity, Wyckoff letter, Site symmetry Coordinates

4 d 1

(1) x, y, z

(2) \bar{x}, \bar{y}, z

(3) \bar{y}, x, z

(4) y, \bar{x}, z

2 c 2..

 $0, \frac{1}{2}, z$

 $\frac{1}{2},0,z$

1 b 4..

 $\frac{1}{2}, \frac{1}{2}, Z$

1 a 4..

0,0,z

 C_{4h}^1

No. 83 P4/m

4/m

Tetragonal

Patterson symmetry P4/m

P4/m

Crystallographic site (等效点系)

Positions

Multiplicity, Wyckoff letter, Site symmetry Coordinates

8 l 1

(1) x, y, z

(2) \bar{x}, \bar{y}, z

(3) \bar{y}, x, z

(4) y, \bar{x}, z

(5) x̄, ȳ, z̄

(6) x, y, ₹

(7) y, x̄, z̄

(8) \bar{y}, x, \bar{z}

 $4 \ k \ m.$

 $x, y, \frac{1}{2}$

 $\bar{x}, \bar{y}, \frac{1}{2}$

 $\bar{y}, x, \frac{1}{2}$

 $y, \bar{x}, \frac{1}{2}$

4 j m..

x, y, 0

 $\bar{x}, \bar{y}, 0$

 $\bar{y}, x, 0$

 $y, \bar{x}, 0$

4 i 2...

 $0, \frac{1}{2}, z$

 $^{1}_{2}, 0, z$

 $0, \frac{1}{2}, \bar{z}$

 $\overline{z},0,\overline{z}$

2 h 4..

 $\frac{1}{2}, \frac{1}{2}, Z$

 ${\textstyle{1\over2}},{\textstyle{1\over2}},\bar{{\cal Z}}$

2 g 4..

0, 0, z

 $0,0,\bar{z}$

Crystallographic site (等效点系)

$$2 f 2/m$$
..

$$0, \frac{1}{2}, \frac{1}{2}$$
 $\frac{1}{2}, 0, \frac{1}{2}$

$$\frac{1}{2}$$
, 0, $\frac{1}{2}$

$$2 e 2/m$$
..

$$0, \frac{1}{2}, 0$$
 $\frac{1}{2}, 0, 0$

$$\frac{1}{2}$$
, 0, 0

1
$$d - 4/m \dots \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$$

$$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$$

$$\frac{1}{2}, \frac{1}{2}, 0$$

$$0,0,\frac{1}{2}$$

$$1 \ a \ 4/m$$
..

 C_{4h}^5 I4/m

4/mTetragonal

No. 87

Patterson symmetry I4/m

I4/m

Crystallographic site (等效点系)

Positions

Multiplicity, Wyckoff letter, Site symmetry

Coordinates

$$(0,0,0)+ (\frac{1}{2},\frac{1}{2},\frac{1}{2})+$$

16 i 1

- (1) x, y, z (2) \bar{x}, \bar{y}, z (3) \bar{y}, x, z (4) y, \bar{x}, z

- (5) $\bar{x}, \bar{y}, \bar{z}$ (6) x, y, \bar{z} (7) y, \bar{x}, \bar{z} (8) \bar{y}, x, \bar{z}

 $8 \quad h \quad m \dots \qquad x, y, 0$

 $\bar{x}, \bar{y}, 0 \quad \bar{y}, x, 0$

 $y, \bar{x}, 0$

 $g = 2 \dots 0, \frac{1}{2}, z = \frac{1}{2}, 0, z = 0, \frac{1}{2}, \overline{z}$

 $\frac{1}{2}, 0, \bar{z}$

I4/m

Crystallographic site (等效点系)

 $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$

3 3 1 4,4,4

3 1 1 4:4:4

 $\frac{1}{4}, \frac{3}{4}, \frac{1}{4}$

4 e 4..

0, 0, z

 $0,0,\bar{z}$

4 d $\bar{4}$. $0, \frac{1}{2}, \frac{1}{4}$

 $\frac{1}{2}$, 0, $\frac{1}{4}$

4 c 2/m..

 $0, \frac{1}{2}, 0$

 $\frac{1}{2},0,0$

2 b 4/m..

 $0, 0, \frac{1}{2}$

 $2 \quad a \quad 4/m.$

0,0,0

 $P4_2/mnm$

 $D_{\scriptscriptstyle 4h}^{\scriptscriptstyle 14}$

4/mmm

Tetragonal

No. 136

 $P \ 4_2/m \ 2_1/n \ 2/m$

Patterson symmetry P4/mmm

P4₂/mnm Crystallographic site (等效点系)

Positions

Multiplicity, Wyckoff letter, Site symmetry Coordinates

8
$$j$$
 ... m x, x, z \bar{x}, \bar{x}, z \bar{x}, \bar{x}, z $\bar{x} + \frac{1}{2}, x + \frac{1}{2}, z + \frac{1}{2}$ $x + \frac{1}{2}, \bar{x} + \frac{1}{2}, z + \frac{1}{2}$
8 i m .. $x, y, 0$ $\bar{x}, \bar{y}, 0$ $\bar{y} + \frac{1}{2}, x + \frac{1}{2}, \frac{1}{2}$ $y + \frac{1}{2}, \bar{x} + \frac{1}{2}, \frac{1}{2}$ $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, \frac{1}{2}$ $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, \frac{1}{2}$ $y, x, 0$ $\bar{y}, \bar{x}, 0$
8 h 2 . . $0, \frac{1}{2}, z$ $0, \frac{1}{2}, z + \frac{1}{2}$ $\frac{1}{2}, 0, \bar{z} + \frac{1}{2}$ $\frac{1}{2}, 0, \bar{z}$ $0, \frac{1}{2}, \bar{z} + \frac{1}{2}$ $\frac{1}{2}, 0, z + \frac{1}{2}$ $\frac{1}{2}, 0, z$

P4₂/mnm Crystallographic site (等效点系)

4
$$g = m \cdot 2m$$
 $x, \bar{x}, 0 = \bar{x}, x, 0$ $x + \frac{1}{2}, x + \frac{1}{2}, \frac{1}{2} = \bar{x} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \frac{1}{2}$

4
$$f = m \cdot 2m$$
 $x, x, 0 = \bar{x}, \bar{x}, 0 = \bar{x} + \frac{1}{2}, x + \frac{1}{2}, \frac{1}{2} = x + \frac{1}{2}, \bar{x} + \frac{1}{2}, \frac{1}{2}$

4 e 2.mm
$$0,0,z$$
 $\frac{1}{2},\frac{1}{2},z+\frac{1}{2}$ $\frac{1}{2},\frac{1}{2},\bar{z}+\frac{1}{2}$ $0,0,\bar{z}$

4
$$d$$
 $\bar{4}$.. $0, \frac{1}{2}, \frac{1}{4}$ $0, \frac{1}{2}, \frac{3}{4}$ $\frac{1}{2}, 0, \frac{1}{4}$ $\frac{1}{2}, 0, \frac{3}{4}$

4 c
$$2/m$$
.. $0, \frac{1}{2}, 0$ $0, \frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, 0, \frac{1}{2}$ $\frac{1}{2}, 0, 0$

2 b
$$m.mm$$
 $0,0,\frac{1}{2}$ $\frac{1}{2},\frac{1}{2},0$

2
$$a m.mm = 0,0,0 = \frac{1}{2},\frac{1}{2},\frac{1}{2}$$

 $Fm\bar{3}m$

 O_h^5

 $m\bar{3}m$

Cubic

No. 225

 $F 4/m \bar{3} 2/m$

Patterson symmetry $F m \bar{3} m$

Fm3m

Fm3m Crystallographic site (等效点系)

Positions

Multiplicity, Wyckoff letter, Site symmetry

Coordinates

$$(0,0,0)+ \quad (0,{\textstyle \frac{1}{2}},{\textstyle \frac{1}{2}})+ \quad ({\textstyle \frac{1}{2}},0,{\textstyle \frac{1}{2}})+ \quad ({\textstyle \frac{1}{2}},{\textstyle \frac{1}{2}},0)+$$

192 l 1

- (1) x, y, z
- (2) \bar{x}, \bar{y}, z
- (3) \bar{x}, y, \bar{z}
- (4) x, \bar{y}, \bar{z}

- (5) z, x, y
- (6) z, \bar{x}, \bar{y}
- (7) \bar{z}, \bar{x}, y
- (8) \bar{z}, x, \bar{y}

- (9) y,z,x
- (10) \bar{y}, z, \bar{x}
- (11) y, \bar{z}, \bar{x}
- (12) \bar{y}, \bar{z}, x

- (13) y, x, \bar{z}
- (14) $\bar{y}, \bar{x}, \bar{z}$
- (15) y, \bar{x}, z
- (16) \bar{y}, x, z

- (17) x, z, \bar{y}
- (18) \bar{x}, z, y
- (19) $\bar{x}, \bar{z}, \bar{y}$
- (20) x, \bar{z}, y

- (21) z, y, \bar{x}
- (22) z, \bar{y}, x
- (23) \bar{z}, y, x
- $(24) \ \overline{z}, \overline{y}, \overline{x}$

- $(25) \bar{x}, \bar{y}, \bar{z}$ $(29) \bar{z} \bar{z} \bar{z}$
- (26) x, y, \bar{z}
- (27) x, \bar{y}, z
- (28) \bar{x}, y, z

- (29) $\bar{z}, \bar{x}, \bar{y}$
- (30) \bar{z}, x, y
- (31) z, x, \bar{y}
- (32) z, \bar{x}, y

- (33) $\bar{y}, \bar{z}, \bar{x}$
- (34) y, \overline{z}, x
- (35) \bar{y}, z, x
- (36) y,z,\bar{x}

- $(37) \ \overline{y}, \overline{x}, z$
- (38) y, x, z
- (39) \bar{y}, x, \bar{z}
- (40) y, \bar{x}, \bar{z}

- $(41) \bar{x}, \bar{z}, y$
- $(42) x, \overline{z}, \overline{y}$
- (43) x, z, y
- (44) \bar{x}, z, \bar{y}

- $(45) \bar{z}, \bar{y}, x$
- (46) \bar{z}, y, \bar{x}
- (47) z, \bar{y}, \bar{x}
- (48) z, y, x

Fm3m Crystallographic site (等效点系)

96	k	m	x, x, z	\bar{x}, \bar{x}, z	\bar{x}, x, \bar{z}	x, \bar{x}, \bar{z}	z, x, x	z, \bar{x}, \bar{x}
			\bar{z}, \bar{x}, x	\bar{z}, x, \bar{x}	x, z, x	\bar{x}, z, \bar{x}	x, \bar{z}, \bar{x}	\bar{x}, \bar{z}, x
			x, x, \bar{z}	$\bar{x}, \bar{x}, \bar{z}$	x, \bar{x}, z	\bar{x}, x, z	x, z, \bar{x}	\bar{x}, z, x
			$\bar{x}, \bar{z}, \bar{x}$	x, \bar{z}, x	z, x, \bar{x}	z, \bar{x}, x	\bar{z}, x, x	$\bar{z}, \bar{x}, \bar{x}$
96	j	m	0, y, z	$0, \bar{y}, z$	$0, y, \bar{z}$	$0, \bar{y}, \bar{z}$	z,0,y	$z,0,\bar{y}$
	_		$\bar{z}, 0, y$	$\bar{z}, 0, \bar{y}$	y, z, 0	$\bar{y},z,0$	$y, \bar{z}, 0$	$\bar{y}, \bar{z}, 0$
			y, 0, ₹	$\bar{y}, 0, \bar{z}$	y,0,z	$\bar{y}, 0, z$	$0, z, \bar{y}$	0, z, y
			$0, \bar{z}, \bar{y}$	$0, \bar{z}, y$	z, y, 0	$z, \bar{y}, 0$	$\bar{z}, y, 0$	$\bar{z}, \bar{y}, 0$
48	i	m.m2	$\frac{1}{2}$, y, y	$\frac{1}{2}, \bar{y}, y$	$\frac{1}{2}$, y, \overline{y}	$\frac{1}{2}$, \bar{y} , \bar{y}	$y, \frac{1}{2}, y$	$y, \frac{1}{2}, \overline{y}$
			$\bar{y}, \frac{1}{2}, y$	$\bar{y}, \frac{1}{2}, \bar{y}$	$y, y, \frac{1}{2}$	$\bar{y}, y, \frac{1}{2}$	$y, \overline{y}, \frac{1}{2}$	$\bar{y}, \bar{y}, \frac{1}{2}$
48	h	m.m2	0, y, y	$0, \bar{y}, y$	$0, y, \overline{y}$	$0, \bar{y}, \bar{y}$	y,0,y	$y,0,\bar{y}$
			$\bar{y}, 0, y$	$\bar{y}, 0, \bar{y}$	y, y, 0	$\bar{y}, y, 0$	$y, \overline{y}, 0$	$\bar{y}, \bar{y}, 0$
48	g	2.mm	$x, \frac{1}{4}, \frac{1}{4}$	$\bar{x}, \frac{3}{4}, \frac{1}{4}$	$\frac{1}{4}, x, \frac{1}{4}$	$^{1}_{4}, \bar{x}, ^{3}_{4}$	$\frac{1}{4}, \frac{1}{4}, x$	$^{3}_{4}, ^{1}_{4}, \bar{x}$
	٥		1, x, 3 4, x, 4	3, x , 3	$x, \frac{1}{4}, \frac{3}{4}$	$\bar{x}, \bar{x}, \bar{x}, \bar{x}$	1, 1, x	1, 3, x 4, 4, x
			47*** 7 4	4 7 - 7 4	~~ 7 4 7 4	~~; 4 ; 4	4949**	4747**

1.7 晶体学国际表,等效点系的简单应用举例

晶胞中原子位置(坐标)的猜测与确定

32	f	. 3 m	x, x, x x, x, \bar{x}	\bar{x}, \bar{x}, x $\bar{x}, \bar{x}, \bar{x}$	\bar{X}, X, \bar{X} X, \bar{X}, X	x, \bar{x}, \bar{x} \bar{x}, x, x		
24	e	4m.m	x, 0, 0	$\bar{x}, 0, 0$	0, x, 0	$0, \bar{x}, 0$	0,0,x	$0,0,\bar{x}$
24	d	m. mm	$0, \tfrac{1}{4}, \tfrac{1}{4}$	$0, \frac{3}{4}, \frac{1}{4}$	$^{1}_{4}, 0, ^{1}_{4}$	$\frac{1}{4}, 0, \frac{3}{4}$	$\frac{1}{4}, \frac{1}{4}, 0$	$\frac{3}{4}, \frac{1}{4}, 0$
8	c	$\bar{4}$ 3 m	$\frac{1}{I}$, $\frac{1}{A}$, $\frac{1}{I}$	1 1 3 3 1 1 1				

4 b $m\bar{3}m$ $\frac{1}{2},\frac{1}{2},\frac{1}{2}$

4 $a m \bar{3} m = 0,0,0$

Fm3m

a=5.640 Å

Na 4a (0,0,0)

Cl 4b (0.5,0.5,0.5)

Z=4

NaCl型结构

KCl: a=6.2901Å

密度

NaCl

CsCl型结构

 $3 \quad d \quad 4/m \, m \, .m$

 $\frac{1}{2},0,0$

 $0, \frac{1}{2}, 0$

 $0,0,\frac{1}{2}$

 $3 \quad c \quad 4/m \, m \, .m$

 $0, \frac{1}{2}, \frac{1}{2}$

 $\frac{1}{2}$, 0, $\frac{1}{2}$

 $\frac{1}{2}, \frac{1}{2}, 0$

 $1 \quad b \quad m\bar{3}m$

 $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$

 $1 \quad a \quad m\bar{3}m$

0,0,0

Fluorite (萤石型结构)

Diamond (金刚石型结构)

Fd3m, a=3.570 Å
C 8a (0,0,0) (3/4,1/4,3/4)
Z=8

Fd3m

32
$$e$$
 . 3 m x, x, x $\bar{x}, \bar{x} + \frac{1}{2}, x + \frac{1}{2}$ $\bar{x} + \frac{1}{2}, x + \frac{1}{2}, \bar{x}$ $x + \frac{1}{2}, \bar{x}, \bar{x} + \frac{1}{2}$ $x + \frac{3}{4}, x + \frac{1}{4}, \bar{x} +$

Rutile (金红石型结构)

金红石, TiO₂,

空间群P42/mnm

a=4.593, c=2.959Å

单位晶胞内有4个O²⁻,

 $2 \uparrow Ti^{4+}, Z=2$

Ti 2a (0, 0, 0)

O 4f (0.302, 0.302, 0)

P42/mnm

4
$$g = m \cdot 2m$$
 $x, \bar{x}, 0 = \bar{x}, x, 0$ $x + \frac{1}{2}, x + \frac{1}{2}, \frac{1}{2} = \bar{x} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \frac{1}{2}$
4 $f = m \cdot 2m$ $x, x, 0 = \bar{x}, \bar{x}, 0 = \bar{x} + \frac{1}{2}, x + \frac{1}{2}, \frac{1}{2} = x + \frac{1}{2}, \bar{x} + \frac{1}{2}, \frac{1}{2}$
4 $e = 2 \cdot mm = 0, 0, z = \frac{1}{2}, \frac{1}{2}, z + \frac{1}{2} = \frac{1}{2}, \frac{1}{2}, \bar{z} + \frac{1}{2} = 0, 0, \bar{z}$
4 $d = \bar{4} \cdot ... = 0, \frac{1}{2}, \frac{1}{4} = 0, \frac{1}{2}, \frac{3}{4} = \frac{1}{2}, 0, \frac{1}{4} = \frac{1}{2}, 0, \frac{3}{4}$
4 $c = 2/m \cdot ... = 0, \frac{1}{2}, 0 = 0, \frac{1}{2}, \frac{1}{2} = \frac{1}{2}, 0, \frac{1}{2} = \frac{1}{2}, 0, 0$
2 $b = m \cdot mm = 0, 0, 0, \frac{1}{2} = \frac{1}{2}, \frac{1}{2}, 0$
2 $a = m \cdot mm = 0, 0, 0 = \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
Ti 2a $(0,0,0)$
O 4f $(0.302,0.302,0)$

Perovskite Structure

钙钛矿型结构 ABO3:

超导,巨磁电阻,铁电,铁磁,负膨胀 离子导体,太阳能电池

钙钛矿型结构 ABO3

$$\frac{1}{2},0,0$$

$$0, \frac{1}{2}, 0$$

$$0,0,\frac{1}{2}$$

$$3 \quad c \quad 4/m \, m \, .m$$

$$0, \frac{1}{2}, \frac{1}{2}$$

$$\frac{1}{2}$$
, 0 , $\frac{1}{2}$

$$\frac{1}{2}, \frac{1}{2}, 0$$

$$1 \quad b \quad m\bar{3}m$$

$$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$$

$$1 \quad a \quad m\bar{3}m$$

A: 1a 0, 0, 0

B: 1b 0.5, 0.5, 0.5

O: 3c 0, 0.5, 0.5

Z=1

Perovskite Structure

 $A^{2+}B^{4+}O_3$ CaTiO₃ BaTiO₃

 $A^{1+}B^{5+}O_3$ NaTaO₃ AgNbO₃

 $A^{3+}B^{3+}O_3$ LaCoO₃ AdGaO₃

 A_xBO_3 $Gd_{0.333}TaO_3$ Na_xTaO_3

 ABO_{3-x} $CaMnO_{3-x}$ $SrVO_{3-x}$

Perovskite Structure

$A^{2+}(B^{3+}_{0.6})$	$_{7} B^{6+}_{0.33}) O_{3}$	Ba(Al _{0.67}	$W_{0.33})O_3$
` 0.0	0.00,	\ 0.01	0.007

$$A^{2+}(B^{2+}_{0.33} B^{5+}_{0.67})O_3$$
 $Ba(Co_{0.33}Nb_{0.67})O_3$

$$A^{2+}(B^{3+}_{0.5} B^{5+}_{0.5})O_3$$
 $Ba(Er_{0.5}Re_{0.5})O_3$

$$A^{2+}(B^{2+}_{0.5} B^{6+}_{0.5})O_3$$
 $Ba(Ca_{0.5}W_{0.5})O_3$

$$A^{2+}(B^{1+}_{0.5} B^{7+}_{0.5})O_3$$
 $Ba(Li_{0.5}I_{0.5})O_3$

$$A^{2+}(B^{1+}_{0.25} B^{5+}_{0.75})O_3$$
 $Ba(Na_{0.25}Ta_{0.75})O_3$

$$A^{3+}(B^{2+}_{0.5} B^{4+}_{0.5})O_3$$
 $La(Mg_{0.5}Ti_{0.5})O_3$

$$A^{2+}(B^{3+}_{0.5} B^{4+}_{0.5})O_{2.75}$$
 $Ba(In_{0.5}U_{0.5})O_{2.75}$

$$A^{2+}(B^{2+}_{0.5}B^{5+}_{0.5})O_{2.75}$$
 $Ba(Fe_{0.5}Mo_{0.5})O_{2.75}$

 BO_6 八面体骨架

Double Perovskite Structure

Double Perovskite Structure

48	n	1	(1) x, y, z	(2) \bar{x}, \bar{y}, z	(3) \bar{x}, y, \bar{z}	(4) x, \bar{y}, \bar{z}
			(5) z, x, y	(6) z, \bar{x}, \bar{y}	(7) \bar{z}, \bar{x}, y	(8) \bar{z}, x, \bar{y}
			(9) y,z,x	(10) \bar{y}, z, \bar{x}	(11) y, \bar{z}, \bar{x}	(12) \bar{y}, \bar{z}, x
			(13) y, x, \bar{z}	(14) $\bar{y}, \bar{x}, \bar{z}$	(15) y, \bar{x}, z	(16) \bar{y}, x, z
			(17) x, z, \bar{y}	(18) \bar{x}, z, y	(19) $\bar{x}, \bar{z}, \bar{y}$	(20) x, \overline{z}, y
			(21) z, y, \bar{x}	(22) z, \bar{y}, x	(23) \bar{z}, y, x	(24) $\bar{z}, \bar{y}, \bar{x}$
			(25) $\bar{x}, \bar{y}, \bar{z}$	(26) x, y, \overline{z}	(27) x, \bar{y}, z	(28) \bar{x}, y, z
			(29) $\bar{z}, \bar{x}, \bar{y}$	(30) \bar{z}, x, y	(31) z, x, \bar{y}	(32) z, \bar{x}, y
			(33) $\bar{y}, \bar{z}, \bar{x}$	(34) y, \bar{z}, x	(35) \bar{y}, z, x	(36) y, z, \bar{x}
			(37) \bar{y}, \bar{x}, z	(38) y, x, z	(39) \bar{y}, x, \bar{z}	(40) y, \bar{x}, \bar{z}
			(41) \bar{x}, \bar{z}, y	(42) x, \bar{z}, \bar{y}	(43) x, z, y	$(44) \bar{x}, z, \bar{y}$
			$(45) \ \overline{z}, \overline{y}, x$	$(46) \bar{z}, y, \bar{x}$	(47) z, \bar{y}, \bar{x}	(48) z, y, x

24	m	m	$egin{array}{l} x,x,z \ ar{z},ar{x},x \ x,ar{z} \ ar{x},ar{z},ar{x} \end{array}$	$ar{x}, ar{x}, z$ $ar{z}, x, ar{x}$ $ar{x}, ar{x}, ar{z}$ $x, ar{z}, x$	$ar{x}, x, ar{z}$ x, z, x $x, ar{x}, z$ $z, x, ar{x}$	$x, \overline{x}, \overline{z}$ $\overline{x}, z, \overline{x}$ \overline{x}, x, z z, \overline{x}, x	z, x, x $x, \overline{z}, \overline{x}$ x, z, \overline{x} \overline{z}, x, x	z, \bar{x}, \bar{x} \bar{x}, \bar{z}, x \bar{x}, z, x $\bar{z}, \bar{x}, \bar{x}$
24	l	m	$ \frac{1}{2}, y, z $ $ \bar{z}, \frac{1}{2}, y $ $ y, \frac{1}{2}, \bar{z} $ $ \frac{1}{2}, \bar{z}, \bar{y} $	$ \frac{1}{2}, \overline{y}, z $ $ \overline{z}, \frac{1}{2}, \overline{y} $ $ \overline{y}, \frac{1}{2}, \overline{z} $ $ \frac{1}{2}, \overline{z}, y $	$\frac{1}{2}, y, \overline{z}$ $y, z, \frac{1}{2}$ $y, \frac{1}{2}, z$ $z, y, \frac{1}{2}$	$ \frac{1}{2}, \overline{y}, \overline{z} $ $ \overline{y}, z, \frac{1}{2} $ $ \overline{y}, \frac{1}{2}, z $ $ z, \overline{y}, \frac{1}{2} $	$z, \frac{1}{2}, y$ $y, \overline{z}, \frac{1}{2}$ $\frac{1}{2}, z, \overline{y}$ $\overline{z}, y, \frac{1}{2}$	$\begin{array}{c} z, \frac{1}{2}, \bar{y} \\ \bar{y}, \bar{z}, \frac{1}{2} \\ \frac{1}{2}, z, y \\ \bar{z}, \bar{y}, \frac{1}{2} \end{array}$
24	k	<i>m</i>	$0, y, z \ \bar{z}, 0, y \ y, 0, \bar{z} \ 0, \bar{z}, \bar{y}$	$0, \bar{y}, z \\ \bar{z}, 0, \bar{y} \\ \bar{y}, 0, \bar{z} \\ 0, \bar{z}, y$	$0, y, \bar{z} \\ y, z, 0 \\ y, 0, z \\ z, y, 0$	$0, \bar{y}, \bar{z} \\ \bar{y}, z, 0 \\ \bar{y}, 0, z \\ z, \bar{y}, 0$	$z, 0, y \\ y, \bar{z}, 0 \\ 0, z, \bar{y} \\ \bar{z}, y, 0$	$z,0,\bar{y} \\ \bar{y},\bar{z},0 \\ 0,z,y \\ \bar{z},\bar{y},0$

12 j m.m2	$\frac{\frac{1}{2}, y, y}{\overline{y}, \frac{1}{2}, y}$	$\begin{array}{c} \frac{1}{2}, \overline{y}, y \\ \overline{y}, \frac{1}{2}, \overline{y} \end{array}$	$\frac{1}{2}, y, \bar{y}$ $y, y, \frac{1}{2}$	$egin{array}{c} rac{1}{2},ar{y},ar{y} \ ar{y},y,rac{1}{2} \end{array}$	$y, \frac{1}{2}, y$ $y, \overline{y}, \frac{1}{2}$	$y, \frac{1}{2}, \overline{y}$ $\overline{y}, \overline{y}, \frac{1}{2}$
12 i m.m2	0, y, y $\bar{y}, 0, y$	$^{0,\bar{y},y}_{\bar{y},0,\bar{y}}$	$0, y, \bar{y}$ y, y, 0	$_{\bar{y},y,0}^{0,\bar{y},\bar{y}}$	y,0,y $y,\overline{y},0$	$y,0,\bar{y}$ $\bar{y},\bar{y},0$
$12 h m m 2 \dots$	$x, \frac{1}{2}, 0$ $\frac{1}{2}, x, 0$	$ar{x}, rac{1}{2}, 0$ $rac{1}{2}, ar{x}, 0$	$0, x, \frac{1}{2}$ $x, 0, \frac{1}{2}$	$0, ar{x}, rac{1}{2} \ ar{x}, 0, rac{1}{2}$	$_{\frac{1}{2}}^{\frac{1}{2}},0,x$ $0,\frac{1}{2},\bar{x}$	$_{\frac{1}{2},0,\bar{x}}^{\frac{1}{2},0,\bar{x}}$ $_{0,\frac{1}{2},x}^{\frac{1}{2}}$
8 g .3 m	x, x, x x, x, \bar{x}	\bar{x}, \bar{x}, x $\bar{x}, \bar{x}, \bar{x}$	\bar{x}, x, \bar{x} x, \bar{x}, x	x, \bar{x}, \bar{x} \bar{x}, x, x		
6 f 4m.m	$x, \frac{1}{2}, \frac{1}{2}$	$ar{x},rac{1}{2},rac{1}{2}$	$\frac{1}{2}$, \mathcal{X} , $\frac{1}{2}$	$\frac{1}{2}$, \bar{x} , $\frac{1}{2}$	$\frac{1}{2}$, $\frac{1}{2}$, X	$\frac{1}{2},\frac{1}{2},\overline{X}$
6 e 4m.m	x, 0, 0	$\bar{x},0,0$	0, x, 0	$0, \bar{x}, 0$	0,0,x	$0,0,\bar{x}$

$$\frac{1}{2},0,0$$

$$0, \frac{1}{2}, 0$$

$$0,0,\frac{1}{2}$$

$$3 c \frac{4}{mm.m}$$

$$0, \frac{1}{2}, \frac{1}{2}$$
 $\frac{1}{2}, 0, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}, 0$

$$\frac{1}{2}, 0, \frac{1}{2}$$

$$\frac{1}{2}, \frac{1}{2}, 0$$

$$1 \quad b \quad m\bar{3}m$$

$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}{2}$

$$1 \quad a \quad m\bar{3}m$$

ABO3 CaTiO3

Sr₂Fe_xMo_{2-x}O₆

对于立方相,本文参考 Sr_2FeMoO_6 的高温立方相,选择了 $Fm\overline{3}m$ ($2a_p \times 2a_p \times 2a_p$)

Wyckoff位置: Sr 8c、Fe 4a、Mo 4b、O 24e

对于 $Sr_2Fe_xMo_{2-x}O_6$ (0.8 $\le x \le 1.5$)四方相,结果I4/mmm(a_p 为原始立方钙钛矿的晶格参数)Z=2

Wyckoff位置: Sr 4d、Fe 2a、Mo 2b、O1 8h、O2 4e

I4/mmm

4 e 4mm

0,0,z

 $0, 0, \bar{z}$

 $4 \ d \ \bar{4} \ m \ 2$

 $0, \frac{1}{2}, \frac{1}{4}$

 $\frac{1}{2}, 0, \frac{1}{4}$

4 c mmm.

 $0, \frac{1}{2}, 0$

 $\frac{1}{2}, 0, 0$

2 b 4/mmm

 $0,0,\frac{1}{2}$

 $2 \quad a \quad 4/mmm$

0,0,0

I4/mmm

8	j	m2m.	$x, \frac{1}{2}, 0$	$\bar{x}, \frac{1}{2}, 0$	$\frac{1}{2}, x, 0$	$\frac{1}{2}, \bar{x}, 0$
8	i	m2m.	x,0,0	$\bar{x},0,0$	0, x, 0	$0,\bar{x},0$
8	h	m.2m	x, x, 0	$\bar{x}, \bar{x}, 0$	$\bar{x}, x, 0$	$x, \bar{x}, 0$
8	g	2mm .	$0, \frac{1}{2}, z$	$^{1}_{2},0,z$	$0, \frac{1}{2}, \overline{z}$	$rac{1}{2},0,\overline{z}$
8	f	2/m	$\begin{smallmatrix}1&1&1\\4&4&4&4\end{smallmatrix}$	$\frac{3}{4}, \frac{3}{4}, \frac{1}{4}$	$\begin{smallmatrix}3&1&1\\4&2&4&4\end{smallmatrix}$	$\frac{1}{4}, \frac{3}{4}, \frac{1}{4}$

I4/mmm

10	n	. m .	0, y, z $0, y, \bar{z}$	0, y, z $0, \bar{y}, \bar{z}$	y,0,z $y,0,\bar{z}$	y,0,z $\bar{y},0,\bar{z}$	
16	m	m	x, x, z \bar{x}, x, \bar{z}	$ar{x}, ar{x}, z \\ x, ar{x}, ar{z}$	\bar{x}, x, z x, x, \bar{z}	$egin{aligned} x, ar{x}, z \ ar{x}, ar{x}, ar{z} \end{aligned}$	
16	l	<i>m</i>	x, y, 0 $\bar{x}, y, 0$	$\bar{x}, \bar{y}, 0$ $x, \bar{y}, 0$	$\bar{y}, x, 0$ y, x, 0	$y, \bar{x}, 0$ $\bar{y}, \bar{x}, 0$	
16	k	2	$x, x + \frac{1}{2}, \frac{1}{4}$ $\bar{x}, \bar{x} + \frac{1}{2}, \frac{3}{4}$	$\bar{x}, \bar{x} + x, x + x$		$\bar{x} + \frac{1}{2}, x, \frac{1}{4}$ $x + \frac{1}{2}, \bar{x}, \frac{3}{4}$	$x + \frac{1}{2}, \bar{x}, \frac{1}{4}$ $\bar{x} + \frac{1}{2}, x, \frac{3}{4}$

晶胞中原子位置、配位多面体与对称要素的关系

四面体 SiO4 八面体 TiO6

等大球最紧密堆积,面心立方,

四面体空隙, 八面体空隙 数目比: n:2n:n

Crystal structure of Ba₉Sc₂Si₆O₂₄

Atom	Site	X	y	Z
Ba1	3a	0	0	0
Ba2	18f	0.0269	0.6704	0.1087
Ba3	6c	1/3	2/3	0.0031
Sc	6c	0	0	0.1645
Si	18f	0.3386	0.0259	0.0763
O1	18f	0.3568	0.0764	0.0068
O2	18f	0.4889	0.1656	0.1144
O3	18f	-0.0102	0.1666	0.1060
O4	18f	0.1334	0.4721	0.0927

Ba₉Sc₂Si₆O₂₄ **R-3** a = 9.8716c = 21.9376 Å $\mathbf{Z} = \mathbf{3}$ 27 Ba, 6 Sc 18 Si, 72 O from

边柳的博士学位论文

晶胞中原子位置、配位多面体与对称要素的关系

 $Ba_9Sc_2Si_6O_{24}:Eu^{2+},Mn^{2+}$ R-3

