

A Method for Snow Reanalysis: The Sierra Nevada (USA) Example

Manuela Girotto^{1,2}, Steven Margulis³, Gonzalo Cortes³, Michael Durand⁴

¹Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA

²GESTAR, Universities Space Research Association, Columbia, MD, USA

³Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA

⁴School of Earth Sciences, and Byrd Polar Research Center, The Ohio State University, Columbus, Ohio, USA

5th International Conference on Reanalysis
Rome, Nov 13-17, 2017

Presentation outline

- Motivations
- A Method for Snow Reanalysis
- Proof of Concept: Sierra Nevada Case
- Conclusions

Importance of Snow

Water Balance Prospective:

- Water Reservoir
- Snow Water Equivalent
(**SWE**, i.e. the amount of water stored as snow)

Energy Balance Prospective:

- High Snow Albedo
(Strong influence on land-atmosphere interaction, weather and climate feedbacks)

We need accurate estimates of **SWE** →
Accurate water, weather, climate forecasts.

Snow Bias in Global Reanalysis Datasets

OBSERVATIONS

a) UA Maximum SWE (mm)

b) SNODAS Maximum SWE (mm)

Broxton et al., (2016), JHM

c) ratio(CFSR to UA)

d) ratio(ERA-I to UA)

e) ratio(ERA-I/Land to UA)

g) ratio(MERRA -Land to UA)

h) ratio(MERRA2 to UA)

REANALYSES

Panels c-h (-)

- SWE is underestimated
- Larger biases in deep snowpack
- Biases marginally explain by spatial resolution and snowfall biases

Need to provide unbiased reanalysis estimates of SWE

Snow Observations

- In-Situ Observations**

- Direct Observations
- Sparse in Space/Time
- Insufficient (global) Network

e.g., snow-pillow, courses

- Satellite Observations**

- 1) Passive Microwave
(e.g., **SSM/I; AMSRE-E**)

- All weather
- Daily, 25 km
- 1987 – present
- Sensitive to Snow Depth
- But only shallow SWE

- 2) Visible/Near-infrared
(e.g., **Landsat, MODIS**)

- Daily-Weekly, sub-km scales
- 1984 – present
- Clear-sky only
- No direct estimate of SWE
- Only Fractional Snow Cover Area (**FSCA**)

Snow Modeling

Snow processes are known to be a **weakness** of land surface modeling:

- Insufficient winter precipitation forcings
- Complexity of Mountainous Environments

But, models are **good** because providing continuous (space/time) estimates of **SWE** and **FSCA**

None of these streams can (alone) provide accurate estimates of SWE

Presentation outline

- Motivations
- A Method for Snow Reanalysis
- Proof of Concept: Sierra Nevada Case
- Conclusions

Snow Reanalysis Concept

Example FSCA depletion
 (Tokopah Watershed,
 California)

Reconstruction of SWE from:

- Depletion of fractional snow covered area [FSCA]
- Space/Time continuous energy fluxes
- SWE as a sum of melt (m_i) events

Use satellite observed FSCA to estimate SWE!!

Girotto et al. (2014); HP

Snow Reanalysis Concept

Example FSCA depletion
 (Tokopah Watershed,
 California)

Reconstruction of SWE from:

- Depletion of fractional snow covered area [**FSCA**]
- Space/Time continuous energy fluxes
- SWE as a sum of melt (m_i) events

Probabilistic Approach
 (Ensemble Kalman Smoother)

Girotto et al. (2014); HP

Sequential vs. Smoothing Schemes

Sequential schemes (e.g., EnKF)

$$[\Delta x]_t = K_t [M(x^-) - \text{obs}]_t$$

$$K_t = C_{xM|t} [C_{MM} + R]_t^{-1}$$

t : time when the obs is available!

Obs = fSCA ; $\Delta x = \Delta \text{SWE}$; C_{xM} Relies on instant. fSCA \leftrightarrow SWE

Andreadis and
Lettenmaier
(2006), AdWR

Good for ephemeral SWE only;
weak correlation fSCA \leftrightarrow SWE for deep SWE

Smoother schemes (e.g., EnKS, or PS)

$$[\Delta x] = K [M(x^-) - \text{obs}]$$

$$K = C_{xM} [C_{MM} + R]^{-1}$$

Obs = fSCA for the entire ablation season
 $\Delta x = \Delta \text{SWE}$; C_{xM} obtained from a batch of fSCA \leftrightarrow SWE

- Deeper snowpacks
- No real-time applications
- Useful in for reanalysis

Presentation outline

- Motivations
- A Method for Snow Reanalysis
- Proof of Concept: Sierra Nevada Case
- Conclusions

The Sierra Nevada Example

- Landsat observations
(Landsat 5-8 record)
- Forcings: NLDAS
- Temporal Extent: **31 years**
- Spatial resolution: **90 m**
- Temporal resolution: **daily**
- Analysis: Particle Smoother
- Maritime snowpack (max. SWE ~1-2m)

- Validation:
 - 108 snow-pillow
 - 202 snow-courses

The Sierra Nevada Example

- Landsat observations (Landsat 5-8 record)
- Forcings: NLDAS
- Temporal Extent: **31 years**
- Spatial resolution: **90 m**
- Temporal resolution: **daily**
- Analysis: Particle Smoother
- Maritime snowpack (max. SWE ~1-2m)

Water Year (WY):
Oct. 1st-Sept. 30th

The Sierra Nevada Example

Example: American River Watershed:

- $f_{veg} = 52\%$,
- elev=2400 m;
- co-located pillow/snow course data

The Sierra Nevada Example

SWE estimates validated
against >9000 station-years
(snow pillow & snow course data)

SWE statistics show
encouraging results:

- ME ~ -2 cm
- RMSE ~ 12 cm
- Corr. ~ 0.96

(Margulis et al. 2016; JHM)

manuela.girotto@nasa.gov

Presentation outline

- Motivations
- A Method for Snow Reanalysis
- Proof of Concept: Sierra Nevada Case
- Conclusions

Conclusions & Future Directions

- This SWE reanalysis provides **unbiased** estimates of SWE even for **large snowpacks** (at least for the Sierra Nevada Mountains)
- SWE reanalysis provides an **unique** dataset in terms of large spatial/temporal extent, high spatial/temporal resolution, accuracy
- Batch (or **smoothing**) approaches need to be used (as opposed to sequential techniques) to assimilate the entire FSCA depletion
- The next step is to test the validity of the methods for **global reanalysis**

Thanks!!!

A Method for Snow Reanalysis: The Sierra Nevada (USA) Example

Manuela Girotto^{1,2}, Steven Margulis³, Gonzalo Cortes³, Michael Durand⁴

5th International Conference on Reanalysis
Rome, Nov 13-17, 2017