

slido

Join at slido.com #1845239

Click **Present with Slido** or install our <u>Chrome extension</u> to display joining instructions for participants while presenting.

LECTURE 4

Pandas, Part III

Advanced Pandas (Sorting, Grouping, Aggregation, Pivot Tables, and Merging)

Data 100, Summer 2025 @ UC Berkeley

Josh Grossman and Michael Xiao

Announcements

Lab 1 due tonight! You must pass the public tests for full credit.

Homework 1 due tomorrow! Make sure you submit both components:

- Homework 1 Coding
- Homework 1 Math Prereqs

Pre-Semester Survey also due tonight!

This weekend, students who chose the graded discussion option will be assigned to a permanent discussion section.

Staff OH @ Warren 101B and Online. See website for hours.

Josh and Michael have office hours right after every lecture in HFAX B1 next door.

Grouping

- Pivot Tables
- Joining Tables

Today's Roadmap

Lecture 4, Data 100 Summer 2025

• Grouping

- Pivot Tables
- Joining Tables

Grouping

Lecture 4, Data 100 Summer 2025

Why group?

Grouping allows us to perform complex+simultaneous operations and summarize trends.

Two steps:

- Group rows with the same value in one or more columns.
 - For example, rows with the same year and month.
- For each group of rows, aggregate the rows using an operation.
 - o For example, sum up the total # of babies born in each year and month.

Visual Review of Data 8: Grouping and Collection

Can think of as temporary (A,B,C) sub-tables

Split-Apply-Combine Paradigm

Step 1: Split

Step 2: Apply

Step 3: Combine

.groupby()

- .groupby() splits a DataFrame (df) into "mini" DataFrames (subframes, or sf's)
- There is one **sf** for each group.
- The **sf**'s are stored in a single **DataFrameGroupBy** object.

.groupby() and .agg()

.agg() applies an aggregation operation to each subframe (sf), and combines the sf's.

Where did the non-numeric columns go? Explained on the next slide!

Note: We very rarely work directly with DataFrameGroupBy objects. .groupby() should always be followed by something else, like .agg() or .filter()

Putting It All Together

CA

CA

CA

CA

CA

CA

M

М

Syntax to compute the total # of babies born in each year:

Aggregation Functions

What can go inside of .agg()?

- Any function that aggregates several values into one summary value.
- Common examples:

In-Built Python	NumPy	In-Built pandas
Functions	Functions	functions
<pre>.agg(sum) .agg(max) .agg(min)</pre>	<pre>.agg(np.sum) .agg(np.max) .agg(np.min) .agg(np.mean)</pre>	

Some aggregation functions can be called directly, without using .agg()!

```
babynames.groupby("Year").mean()
babynames.groupby("Year").agg("mean")
```


Plotting Birth Counts

A plot of the **babynames** data summarized by year tells an interesting story.

babies_by_year = babynames.groupby("Year")[["Count"]].agg(sum)

import plotly.express as px
px.line(babies_by_year, y="Count")

Count

Year	Year					
1910	9163					
1911	9983					
1912	17946					
1913 22094						
1914	26926					
2018	395436					
2019	386996					
2020	2020 362882					
2021	362582					
2022 360023						
113 rows × 1 columns						

Alternatives ...

Different ways to create groups for each year:

<pre>babynames.groupby("Year")[["Count"]].agg(sum)</pre>		Count
or	Year	
<pre>babynames.groupby("Year")[["Count"]].sum()</pre>	1910	9163
	1911	9983
or	1912	17946
<pre>babynames.groupby("Year").sum(numeric_only=True)</pre>	1913	22094
	1914	26926
	•••	
	2018	395436
	2019	386996
	2020	362882
	2021	362582
	2022	360023
	113 row	s × 1 colum

Concluding groupby.agg

A groupby operation involves some combination of splitting the object, applying a function, and combining the results.

- So far, we've seen that df.groupby("Year").agg(sum):
 - Split df into sub-DataFrames based on Year.
 - Apply the sum function to each column of each sub-DataFrame.
 - Combine the results of sum into a single DataFrame, indexed by Year.

.groupby() mystery to ponder


```
col1 col2 col3
                ak
                tx
                hi
df =
                mi
                              df.groupby('col1').agg(max) =
                                                               В
                ak
                ca
                sd
                nc
```


slido

What do you think will go in the first row?

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

.groupby() question to ponder

If we don't specify the columns to aggregate, .agg() aggregates all ungrouped columns.

Visualizing the correct answer

Case Study: Name "Popularity"

Goal: Find the baby name with sex="F" that has fallen in popularity the most in California.

Number of Jennifers Born in California Per Year.

What Is "Popularity"?

Goal: Find the baby name with sex="F" that has fallen in popularity the most in California.

How do we define "fallen in popularity?"

- Let's create a metric: "Ratio to Peak" (RTP).
- RTP = (# babies w/ name in given year) / (max # of babies w/ same name from any year)

Example for "Jennifer":

- In 1972, we hit peak Jennifer! 6,065 Jennifers were born.
- In 2022, there were only 114 Jennifers.
- RTP for 2022 is $114 / 6065 \approx 0.019$

Jennifer Garner Born in 1972

Calculating RTP

```
1845239
```

```
def ratio_to_peak(series):
    return series.iloc[-1] / max(series)
```

```
ratio_to_peak(jenn_counts_ser)
0.018796372629843364
```


Calculating RTP Using .groupby()

.groupby() makes it easy to compute the RTP for all names at the same time!

```
rtp_table = f_babynames.groupby("Name")[["Year","Count"]].agg(ratio_to_peak)
```

	Year	Count
Name		
Aadhini	1.0	1.000000
Aadhira	1.0	0.500000
Aadhya	1.0	0.660000
Aadya	1.0	0.586207
Aahana	1.0	0.269231
•••		
Zyanya	1.0	0.466667
Zyla	1.0	1.000000
Zylah	1.0	1.000000
Zyra	1.0	1.000000
Zyrah	1.0	0.833333

@(1)(8)(9)

series)

slido

Are there any rows for which Year is not 1.0? Recall that 'babynames' is sorted ascending by year.

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

A Note on Nuisance Columns

Executing the .agg() call below results in a TypeError or warning, depending on the version of pandas. (How would you do mathematical division with a string, like "CA"?)

```
f_babynames.groupby("Name").agg(ratio_to_peak)
```

We need to specify the numeric column to aggregate:

```
rtp_table = f_babynames.groupby("Name")[["Count"]].agg(ratio_to_peak)
```

Count

Name	
Aadhini	1.000000
Aadhira	0.500000
Aadhya	0.660000
Aadya	0.586207
Aahana	0.269231
•••	

Renaming Columns After Grouping

By default, .groupby() does not rename aggregated columns

• For example, our column is still named "Count", even though it now represents the RTP.

For better readability, we can rename "Count" to "Count RTP":

```
rtp_table = f_babynames.groupby("Name")[["Count"]].agg(ratio_to_peak)
rtp table = rtp table.rename(columns={"Count":"Count RTP"})
```

Name Name Aadhini 1.000000 Aadhira 0.500000 Aadhya 0.660000 Aadya 0.586207 Name Aadhini Aadhira Aadhira Aadhya Aadya
Aadhira 0.500000 Aadhira Aadhya 0.660000 Aadhya
Aadhya 0.660000 Aadhya
Andrew C.000000
Aadya 0.586207 Aadya
Aahana 0.269231 Aahana

Some Data Science Payoff

By sorting **rtp_table** we can see the names whose popularity has decreased the most.

```
rtp table.sort values("Count RTP")
         Count RTP
                          px.line(f babynames[f babynames["Name"]=="Debra"],
  Name
                                                           x="Year", y="Count")
  Debra
          0.001260
 Debbie
          0.002815
                             Popularity for: ('Debra',)
   Carol
          0.003180
 Tammy
          0.003249
          0.003305
  Susan
                             4000
                                                                                                                Name
                                                                                                                 Debra
                             3000
  Fidelia
          1.000000
                             2000
Naveyah
          1.000000
  Finlee
          1.000000
                             1000
Roseline
          1.000000
 Aadhini
          1.000000
                               1940
                                         1950
                                                              1970
                                                                        1980
                                                                                  1990
                                                                                            2000
                                                                                                      2010
                                                   1960
```

Year

13782 rows × 1 columns

Some Data Science Payoff

We can get the list of the top 10 names and then plot popularity:

```
top10 = rtp_table.sort_values("Count RTP").head(10).index
```

```
Count RTP
                       Index(['Debra', 'Debbie', 'Carol', 'Tammy', 'Susan', 'Cheryl', 'Shannon',
  Name
                               'Tina', 'Michele', 'Terri'],
  Debra
          0.001260
                              dtype='object', name='Name')
 Debbie
          0.002815
                       px.line(f babynames[f_babynames["Name"].isin(top10)],
   Carol
          0.003180
                                                        x="Year", v="Count", color="Name")
 Tammy
         0.003249
  Susan
          0.003305
                             4000
                                                                                                       Name
                                                                                                       - Carol
  Fidelia
          1.000000
                             3000
                                                                                                       - Susan
                          Count
Naveyah
          1.000000
                                                                                                       — Tina
                             2000
                                                                                                       — Cheryl
  Finlee
          1.000000
                                                                                                       Michele
                             1000
Roseline
          1.000000

    Debbie

 Aadhini
          1.000000
                                                                                                       Terri
                                     1920
                                                 1940
                                                              1960
                                                                          1980
                                                                                      2000
                                                                                                  2020
13782 rows x 1 columns
                                                                 Year
```


Interlude

2-min stretch break!

Raw GroupBy Objects and Other Methods

The result of a groupby operation applied to a DataFrame is a **DataFrameGroupBy** object.

It is not a **DataFrame**!

df.groupby(col).max()

```
grouped by year = elections.groupby("Year")
type(grouped by year)
```

pandas.core.groupby.generic.DataFrameGroupBy

Given a DataFrameGroupBy object, can use various functions to generate DataFrames (or Series). agg is only one choice:

```
df.groupby(col).filter()
df.groupby(col).mean()
                          df.groupby(col).first()
```

df.groupby(col).sum() df.groupby(col).last()

```
df.groupby(col).min()
                          df.groupby(col).size()
```

See <u>pandas.pydata.org/docs/reference/groupby.html</u> for a list of **DataFrameGroupBy** methods.

df.groupby(col).count()

What's the difference?

.size()

.count()

© 0 S O

.filter()

Filtering by Group

Another common use for groups is to filter data.

- groupby(____).filter(func)
- Filtering is done per **group**, not per row.
- filter applies func to each group's sub-DataFrame (sf):
 - o If func returns **True** for a sf, then all rows belonging to the group are **preserved**.
 - o If func returns False for a sf, then all rows belonging to that group are filtered out.
- func must return a single True or False for each sf.

Which of the following returns all rows of 'babynames' with names that appeared for the first time after 2010?

Filtering Elections Dataset

Year

%

Filtering to the years of elections where the max winning percentage is less than 45%.

Candidate

elections.groupby("Year").filter(lambda sf: sf["%"].max() < 45)</pre>

Party Popular vote Result

			100 PACONO DE			
23	1860	Abraham Lincoln	Republican	1855993	win	39.699408
24	1860	John Bell	Constitutional Union	590901	loss	12.639283
25	1860	John C. Breckinridge	Southern Democratic	848019	loss	18.138998
26	1860	Stephen A. Douglas	Northern Democratic	1380202	loss	29.522311
66	1912	Eugene V. Debs	Socialist	901551	loss	6.004354
67	1912	Eugene W. Chafin	Prohibition	208156	loss	1.386325
68	1912	Theodore Roosevelt	Progressive	4122721	loss	27.457433
69	1912	William Taft	Republican	3486242	loss	23.218466
70	1912	Woodrow Wilson	Democratic	6296284	win	41.933422
115	1968	George Wallace	American Independent	9901118	loss	13.571218

groupby Puzzle

■ **33.1** ■ 10.4 = 0.20

Puzzle: We want to know the best election by each party.

- Best election: The election with the highest % of votes.
- For example, Democrat's best election was in 1964, with candidate Lyndon Johnson winning 61.3% of votes.

Year

					•
Party					
American	1856	Millard Fillmore	873053	loss	21.554001
American Independent	1968	George Wallace	9901118	loss	13.571218
Anti-Masonic	1832	William Wirt	100715	loss	7.821583
Anti-Monopoly	1884	Benjamin Butler	134294	loss	1.335838
Citizens	1980	Barry Commoner	233052	loss	0.270182
Communist	1932	William Z. Foster	103307	loss	0.261069
Constitution	2008	Chuck Baldwin	199750	loss	0.152398
Constitutional Union	1860	John Bell	590901	loss	12.639283
Democratic	1964	Lyndon Johnson	43127041	win	61.344703

Candidate Popular vote Result

Attempt #1: Discuss!

Why does the table seem to claim that Woodrow Wilson won the presidency in 2020?

elections.groupby("Party").max().head(10)

	Year	Candidate	Popular vote	Result	%
Party					
American	1976	Thomas J. Anderson	873053	loss	21.554001
American Independent	1976	Lester Maddox	9901118	loss	13.571218
Anti-Masonic	1832	William Wirt	100715	loss	7.821583
Anti-Monopoly	1884	Benjamin Butler	134294	loss	1.335838
Citizens	1980	Barry Commoner	233052	loss	0.270182
Communist	1932	William Z. Foster	103307	loss	0.261069
Constitution	2016	Michael Peroutka	203091	loss	0.152398
Constitutional Union	1860	John Bell	590901	loss	12.639283
Democratic	2020	Woodrow Wilson	81268924	win	61.344703
Democratic-Republican	1824	John Quincy Adams	151271	win	57.210122

Problem with Attempt #1

Why does the table seem to claim that Woodrow Wilson won the presidency in 2020?

elections.groupby("Party").max().head(10)

Every column is calculated independently! Among Democrats:

- Last year they ran: 2020.
- Alphabetically the latest candidate name: Woodrow Wilson.
- Highest % of vote: 61.34%.

	Year	Candidate	Popular vote	Result	%
Party					
American	1976	Thomas J. Anderson	873053	loss	21.554001
American Independent	1976	Lester Maddox	9901118	loss	13.571218
Anti-Masonic	1832	William Wirt	100715	loss	7.821583
Anti-Monopoly	1884	Benjamin Butler	134294	loss	1.335838
Citizens	1980	Barry Commoner	233052	loss	0.270182
Communist	1932	William Z. Foster	103307	loss	0.261069
Constitution	2016	Michael Peroutka	203091	loss	0.152398
Constitutional Union	1860	John Bell	590901	loss	12.639283
Democratic	2020	Woodrow Wilson	81268924	win	61.344703
Democratic-Republican	1824	John Quincy Adams	151271	win	57.210122

Attempt #2

Attempt #2

- 1. Sort the **DataFrame** so that rows are in descending order of %.
- 2. Group by Party and take the first item of each sub-**DataFrame**.

```
elections_sorted_by_percent = elections.sort_values("%", ascending=False)
elections_sorted_by_percent.groupby("Party").first()
```

									Year	Candidate	Popular vote	Result	%	
	Year	Candidate	Party	Popular vote	Posult	%		Party						
	Icai	Candidate	raity	ropulai vote	Result	70		American	1856	Millard Fillmore	873053	loss	21.554001	
114	1964	Lyndon Johnson	Democratic	43127041	win	61.344703	Ameri	can Independent	1968	George Wallace	9901118	loss	13.571218	
91	1936	Franklin Roosevelt	Democratic	27752648	win	60.978107		Anti-Masonic	1832	William Wirt	100715	loss	7.821583	
120	1972	Richard Nixon	Republican	47168710	win	60.907806	→	Anti-Monopoly	1884	Benjamin Butler	134294	loss	1.335838	
79	1920	Warren Harding	Republican	16144093	win	60.574501		Citizens	1980	Barry Commoner	233052	loss	0.270182	
133	1984	Ronald Reagan	Republican	54455472	win	59.023326		Communist	1932	William Z. Foster	103307	loss	0.261069	
								Constitution	2008	Chuck Baldwin	199750	loss	0.152398	
	el	ections :	sorted	bv per	cen	t	Con	stitutional Union	1860	John Bell	590901	loss	12.639283	
\@@(,,,		-		Democratic	1964	Lyndon Johnson	43127041	win	61.344703	4

groupby Puzzle - Alternate Approaches

Using a lambda function

```
elections_sorted_by_percent = elections.sort_values("%", ascending=False)
elections_sorted_by_percent.groupby("Party").agg(lambda x : x.iloc[0])
```

Using idxmax function

```
best_per_party = elections.loc[elections.groupby("Party")["%"].idxmax()]
```

Using drop_duplicates function

best_per_party2 = elections.sort_values("%").drop_duplicates(["Party"], keep="last")

More on DataFrameGroupby Object

We can look into DataFrameGroupby objects in following ways:

```
grouped_by_party = elections.groupby("Party")
grouped_by_party.groups
```

```
{'American': [22, 126], 'American Independent': [115, 119, 124], 'Anti-Masonic': [6], 'Anti-Monopoly': [38], 'Citize
ns': [127], 'Communist': [89], 'Constitution': [160, 164, 172], 'Constitutional Union': [24], 'Democratic': [2, 4,
8, 10, 13, 14, 17, 20, 28, 29, 34, 37, 39, 45, 47, 52, 55, 57, 64, 70, 74, 77, 81, 83, 86, 91, 94, 97, 100, 105, 10
8, 111, 114, 116, 118, 123, 129, 134, 137, 140, 144, 151, 158, 162, 168, 176, 178, 183], 'Democratic-Republican':
[0, 1], 'Dixiecrat': [103], 'Farmer-Labor': [78], 'Free Soil': [15, 18], 'Green': [149, 155, 156, 165, 170, 177, 18
1, 184], 'Greenback': [35], 'Independent': [121, 130, 143, 161, 167, 174, 185], 'Liberal Republican': [31], 'Liberta
rian': [125, 128, 132, 138, 139, 146, 153, 159, 163, 169, 175, 180], 'Libertarian Party': [186], 'National Democrati
c': [50], 'National Republican': [3, 5], 'National Union': [27], 'Natural Law': [148], 'New Alliance': [136], 'North
ern Democratic': [26], 'Populist': [48, 61, 141], 'Progressive': [68, 82, 101, 107], 'Prohibition': [41, 44, 49, 51,
54, 59, 63, 67, 73, 75, 99], 'Reform': [150, 154], 'Republican': [21, 23, 30, 32, 33, 36, 40, 43, 46, 53, 56, 60, 6
5, 69, 72, 79, 80, 84, 87, 90, 96, 98, 104, 106, 109, 112, 113, 117, 120, 122, 131, 133, 135, 142, 145, 152, 157, 16
6, 171, 173, 179, 182], 'Socialist': [58, 62, 66, 71, 76, 85, 88, 92, 95, 102], 'Southern Democratic': [25], 'State
s' Rights': [110], 'Taxpayers': [147], 'Union': [93], 'Union Labor': [42], 'Whig': [7, 9, 11, 12, 16, 19]}
```

grouped_by_party.get_group("Socialist")

	Year	Candidate	Party	Popular vote	Result	%
58	1904	Eugene V. Debs	Socialist	402810	loss	2.985897
62	1908	Eugene V. Debs	Socialist	420852	loss	2.850866
66	1912	Eugene V. Debs	Socialist	901551	loss	6.004354
71	1916	Allan L. Benson	Socialist	590524	loss	3.194193

Pivot Tables

Lecture 4, Data 100 Summer 2025

- Grouping
- Pivot Tables
- Joining Tables

Grouping by Multiple Columns

We want the total # of babies born of each **sex** in each **year**. One way is to **group both columns** of interest:

babynames.groupby(["Year", "Sex"])[["Count"]].agg(sum).head(6)

45

Pivot Tables

Another approach is to create a pivot table.

```
babynames_pivot = babynames.pivot_table(
   index = "Year",  # rows (turned into index)
   columns = "Sex",  # column values
   values = ["Count"], # field(s) to process in each group
   aggfunc = np.sum,  # group operation
)
babynames_pivot.head(6)
```

```
Sex
          F
                 M
Year
1910
      5950
              3213
1911
      6602
              3381
1912
      9804
              8142
1913
      11860
             10234
1914
     13815
              13111
1915
      18643
             17192
```

Pivot tables are especially useful as a "final" result (e.g., a <u>lookup table</u> provided to the public). When plotting data, it's often easier to use the output of **.groupby()**. See <u>Tidy data paradigm</u> (i.e., "one row per data point").

Pivot Table Mechanics

Pivot Tables with Multiple Values

We can include multiple values in our pivot tables.

```
babynames_pivot = babynames.pivot_table(
    index = "Year",  # rows (turned into index)
    columns = "Sex",  # column values
    values = ["Count", "Name"],
    aggfunc = np.max,  # group operation
)
babynames_pivot.head(6)
```

	(Count		Name
Sex	F	М	F	М
Year				
1910	295	237	Yvonne	William
1911	390	214	Zelma	Willis
1912	534	501	Yvonne	Woodrow
1913	584	614	Zelma	Yoshio
1914	773	769	Zelma	Yoshio
1915	998	1033	Zita	Yukio

Join Tables

Lecture 4, Data 100 Summer 2025

- Grouping
- Pivot Tables
- **Joining Tables**

Joining Tables

Suppose want to know the popularity of presidential candidate's names in 2022.

• Example: Dwight Eisenhower's name Dwight is not popular today, with only 5 babies born with this name in California in 2022.

To begin solving this problem, we'll have to join datasets.

This will be almost exactly like Table.join from data 8 (<u>Table.join - datascience 0.17.6 documentation</u>)

Creating Table 1: Baby names in 2022

Let's set aside names in California from 2022 first:

babynames_2022 = babynames[babynames["Year"] == 2022]
babynames_2022

	State	Sex	Year	Name	Count
235835	CA	F	2022	Olivia	2178
235836	CA	F	2022	Emma	2080
235837	CA	F	2022	Camila	2046
235838	CA	F	2022	Mia	1882
235839	CA	F	2022	Sophia	1762
235840	CA	F	2022	Isabella	1733
235841	CA	F	2022	Luna	1516
235842	CA	F	2022	Sofia	1307
235843	CA	F	2022	Amelia	1289
235844	CA	F	2022	Gianna	1107

Creating Table 2: Presidents with First Names

To join our table, we'll also need to set aside the first names of each candidate.

Candidata

elections["First Name"] = elections["Candidate"].str.split().str[0]

	Year	Candidate	Party	Popular vote	Result	%	First Name
0	1824	Andrew Jackson	Democratic-Republican	151271	loss	57.210122	Andrew
1	1824	John Quincy Adams	Democratic-Republican	113142	win	42.789878	John
2	1828	Andrew Jackson	Democratic	642806	win	56.203927	Andrew
3	1828	John Quincy Adams	National Republican	500897	loss	43.796073	John
4	1832	Andrew Jackson	Democratic	702735	win	54.574789	Andrew
•••					***		***
182	2024	Donald Trump	Republican	77303568	win	49.808629	Donald
183	2024	Kamala Harris	Democratic	75019230	loss	48.336772	Kamala
184	2024	Jill Stein	Green	861155	loss	0.554864	Jill
185	2024	Robert Kennedy	Independent	756383	loss	0.487357	Robert
186	2024	Chase Oliver	Libertarian Party	650130	loss	0.418895	Chase

52

Joining Our Tables: Two Options

	Year_x	Candidate	Party	Popular vote	Result	%	First Name	State	Sex	Year_y	Name	Count
75	1892	Benjamin Harrison	Republican	5176108	loss	42.984101	Benjamin	CA	М	2022	Benjamin	1524
73	1884	Benjamin Butler	Anti-Monopoly	134294	loss	1.335838	Benjamin	CA	М	2022	Benjamin	1524
74	1888	Benjamin Harrison	Republican	5443633	win	47.858041	Benjamin	CA	М	2022	Benjamin	1524
45	1880	James Garfield	Republican	4453337	win	48.369234	James	CA	М	2022	James	1086
43	1880	James B. Weaver	Greenback	308649	loss	3.352344	James	CA	М	2022	James	1086
	•••				•••							
115	1964	Lyndon Johnson	Democratic	43127041	win	61.344703	Lyndon	CA	М	2022	Lyndon	6
92	1912	Woodrow Wilson	Democratic	6296284	win	41.933422	Woodrow	CA	М	2022	Woodrow	6
93	1916	Woodrow Wilson	Democratic	9126868	win	49.367987	Woodrow	CA	М	2022	Woodrow	6
76	1888	Clinton B. Fisk	Prohibition	249819	loss	2.196299	Clinton	CA	М	2022	Clinton	6
145	2016	Darrell Castle	Constitution	203091	loss	0.149640	Darrell	CA	М	2022	Darrell	5

LECTURE 4

Pandas, Part III

Content credit: <u>Acknowledgments</u>

