数据隐私方法伦理和实践 Methodology, Ethics and Practice of Data Privacy

实验二 隐私保护的机器学习

Lan Zhang

School of Computer Science and Technology University of Science and Technology of China Fall 2023

纵向联邦逻辑回归模型

联邦学习简介

- » 联邦学习 (Federated Learning)
 - 一种分布式机器学习范式,在隐私数据不出域的前提下 通过交换模型参数或者梯度,联合多方训练模型,共建 的模型由多方共享。

联邦学习简介

- » 纵向联邦学习 (Vertical FL)
 - 一种在工业界落地十分广泛的联合训练模型的模式,通过密码学、多方安全计算、差分隐私等隐私保护技术,能实现数据"可用不可见",提升业务效能。

纵向联邦学习模型

» 纵向联邦逻辑回归模型 (VFL-LR)

- · 基于 Paillier 同态加密实现的纵向联邦场景下的逻辑回归模型。
- 参考论文: Yang S, Ren B, Zhou X, et al. Parallel distributed logistic regression for vertical federated learning without third-party coordinator[J]. arXiv preprint arXiv:1911.09824, 2019.

	Party A	Party B
Step 0	Create an encryption key pair, and send the public key to B	
Step 1	Initialize Θ^A	Initialize Θ^B
Step 2	Compute $\Theta^A x_i^A$ for $i \in D_A$	Compute $\Theta^B x_i^B$ for $i \in D_B$ and send them to A
Step 3	Compute $\Theta x_i = \Theta^A x_i^A + \Theta^B x_i^B$, $\hat{y}_i = h_{\Theta}(x_i)$, $[(y_i - \hat{y}_i)]$,	
	and send $[(y_i - \hat{y}_i)]$ to B for $i \in D_A$	
Step 4	Compute $\frac{\partial L}{\partial \Theta^A}$ and the loss L	Compute $\left[\frac{\partial L}{\partial \Theta^B} \right]$, generate random number R_B ,
		and send $\left[\left[\frac{\partial L}{\partial \Theta^B} \right] + \left[\left[R_B \right] \right] \right]$ to A
Step 5	Decrypt $\left[\!\left[\frac{\partial L}{\partial \Theta^B}\right]\!\right] + \left[\!\left[R_B\right]\!\right]$, and send $\frac{\partial L}{\partial \Theta^B} + R_B$ to B	
Step 6	Update Θ^A	Update Θ^B

Table 2: Model training protocol of logistic regression for vertical federated learning

实验内容

- (50`) 基于 paillier 同态加密实现 VFL-LR 算法,保护训练中间变量,避免产生隐私泄露。补全模型训练过程中的前向及反向传播的具体代码,记录 cancer 数据集在训练过程中的loss及acc变化。
- (20`) 请说明代码中 scale 函数的原理及作用。
- (20`) 当前代码在每个 epoch 开始时使用 epoch 值作为随机数种子, 请说明含义,并实现另一种方式以达到相同的目的。
- (10`) 开放题: 试分析VFL-LR训练流程中潜在的隐私泄露风险, 并简要说明可能的保护方式
- 实验报告: 说明代码实现方法,简要给出实验结果说明,可以证明有效性即可。

Note:本部分实验涉及到通信加密等额外组件,该部分内容实验不要求掌握,可以直接使用我们提供的代码。

THANKS!

Any questions?

