SISTEMI OPERATIVI e LABORATORIO DI SISTEMI OPERATIVI (A.A. 11-12) – 20 GIUGNO 2012

IMPORTANTE:

- 1) Fare il login sui sistemi in modalità Linux usando il proprio **username** e **password**, attivare syncexam.sh e passare in modalità testuale.
- 2) I file prodotti devono essere collocati in un **sottodirettorio** (che deve essere nella directory studente_XXX) che deve essere creato e avere nome **ESAME20Giu12-1-1.** FARE ATTENZIONE AL NOME DEL DIRETTORIO, in particolare alle maiuscole e ai trattini indicati. Verrà penalizzata l'assenza del direttorio con il nome indicato e/o l'assenza dei file nel direttorio specificato, al momento della copia automatica del direttorio e dei file. **ALLA SCADENZA DEL TEMPO A DISPOSIZIONE VERRÀ INFATTI ATTIVATA UNA PROCEDURA AUTOMATICA DI COPIA, PER OGNI STUDENTE DEL TURNO, DEI FILE CONTENUTI NEL DIRETTORIO SPECIFICATO.**
- 3) Il tempo a disposizione per la prova è di **120 MINUTI** per lo svolgimento di tutto il compito e di **75 minuti** per lo svolgimento della sola parte C.
- 4) Non è ammesso **nessun tipo di scambio di informazioni** né verbale né elettronico, pena la invalidazione della verifica.
- 5) L'assenza di commenti significativi verrà penalizzata.
- 6) AL TERMINE DELLA PROVA È INDISPENSABILE CONSEGNARE IL TESTO DEL COMPITO (ANCHE IN CASO CHE UNO STUDENTE SI RITIRI): IN CASO CONTRARIO, NON POTRÀ ESSERE EFFETTUATA LA CORREZIONE DEL COMPITO MANCANDO IL TESTO DI RIFERIMENTO.

Esercizio

Si realizzi un programma concorrente per UNIX che deve avere una parte in Bourne Shell e una parte in C.

La <u>parte in Shell</u> deve prevedere due parametri: il primo deve essere il **nome assoluto di un direttorio** che identifica una gerarchia (\mathbf{G}) all'interno del file system e il secondo deve essere considerato un numero intero strettamente positivo (\mathbf{K}). Il programma deve cercare nella gerarchia \mathbf{G} specificata tutti i file la cui lunghezza in linee sia maggiore di \mathbf{K} : si riporti il **nome assoluto** di tali file sullo standard output. <u>Al termine dell'intera esplorazione ricorsiva di \mathbf{G} </u>, si deve invocare la parte in \mathbf{C} per ogni file trovato \mathbf{F} , passando come parametri il **nome assoluto** di \mathbf{F} , la sua lunghezza in linee (\mathbf{N}) e il numero intero (\mathbf{H}) che rappresenta la lunghezza media delle linee del file \mathbf{F} calcolata come lunghezza in caratteri di \mathbf{F} diviso \mathbf{N} .

La <u>parte in C</u> accetta tre parametri (*da controllare*) che rappresentano le seguenti informazioni: il primo rappresenta il nome assoluto di un file **F**, il secondo deve essere considerato un numero intero strettamente positivo (**N**, *da controllare*) che rappresenta la lunghezza in linee di **F** e mentre l'ultimo parametro deve essere considerato un numero intero positivo (**H**, *da controllare*) che rappresenta la lunghezza media delle linee di **F**. Il processo padre deve per prima cosa creare <u>due</u> file il cui nome (**Fsotto** e **Fsopra**) risulti dalla concatenazione del nome del file associato con la stringa rispettivamente ".sotto" e ".sopra" (ad esempio se **F** è /tmp/pippo.txt il file **Fsotto** si deve chiamare /tmp/pippo.txt.sotto e il file **Fsopra** si deve chiamare /tmp/pippo.txt.sopra). Quindi, il processo padre deve generare **N+2 processi figli** (**P0 ... PN-1, Psotto e Psopra**): ognuno dei primi N processi figli è associato ad una linea del file **F**, mentre i processi figli **Psotto** e **Psopra** sono associati rispettivamenti ai file **Fsotto** e **Fsopra**. Ogni processo figlio **Pi** (con i da **0** a **N-1**) deve calcolare la lunghezza (**L**) della sua linea compreso il terminatore di linea e quindi deve comunicare la linea (compreso il terminatore di linea) ad uno dei due figli **Psotto** o **Psopra**: in particolare, deve comunicarla al figlio **Psotto** se **L** è maggiore o uguale a **H**, altrimenti deve comunicarla al figlio **Psopra**. I processi **Psotto** e **Psopra** hanno il compito di scrivere nel proprio file (**Fsotto** e **Fsopra**, rispettivamente) le linee ricevute dai processi figli **Pi** (con i da **0** a **N-1**), rispettando l'ordine originale della linee del file **F**.

Al termine, ogni processo figlio **Pi** (con i da **0** a **N-1**) deve ritornare al padre il valore di **L**, mentre i processi figli **Psotto** e **Psopra** devono ritornare al padre il numero di linee scritte sul proprio file (*si suppongano tutti i valori di ritorno minori di 255*). Il padre, dopo che i figli sono terminati, deve stampare su standard output i PID di ogni figlio con il corrispondente valore ritornato.