6.1 Areas between curves

應用突入: 面積篇 我左看, 右看, 上看, 下看, 原來每個積分都很簡單。

英語教室: region [ˈridʒən] 區域, area [ˈɛrɪə] 面積, curve [kɜʊ] 曲線。

- 1. 無交錯 $\int f g \ dx \& \int f g \ dy$
- 2. 有交錯 $\int |f-g| dx \& \int |f-g| dy$

$$\Delta x = \frac{b-a}{n}, x_i^* \in [x_{i-1}, x_i].$$

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \int_{\mathbf{a}}^{\mathbf{b}} f(x) \ dx.$$

$$\Delta y = \frac{d-c}{n}, y_i^* \in [y_{i-1}, y_i].$$

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \int_{\mathbf{a}}^{b} f(x) \ dx. \quad A = \lim_{n \to \infty} \sum_{i=1}^{n} f(y_i^*) \Delta y = \int_{c}^{d} f(y) \ dy.$$

雙函數 f & q 的情形: 面積還是近似長方形面積和的極限。

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} [f(x_i^*) - g(x_i^*)] \Delta x$$
$$= \int_{a}^{b} ? ? dx.$$

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} [f(y_i^*) - g(y_i^*)] \Delta y$$
$$= \int_{-\infty}^{d} ? ? ? dy.$$

0.1 (無交錯)

The area A of the region bounded by the curves y = f(x), y = g(x), and the lines x = a, x = b, where f and g are continues and $f(x) \ge g(x)$ for all x in [a,b], is (上下兩函數, 左右兩垂直線。)

$$A = \int_{a}^{b} [f(x) - g(x)] dx \left(\int_{\pm}^{\pm} \bot - dx \right)$$

Theorem 2 (上 $d \vdash c \not\equiv g \not\equiv f$)

The area A of the region bounded by the curves x = f(y), x = g(y), and the lines y = c, y = d, where f and g are continues and $f(y) \ge g(y)$ for all y in [c,d], is (上下兩水平線, 左右兩函數。)

$$A = \int_{c}^{d} [f(y) - g(y)] \, dy \left(\int_{\Gamma}^{\perp} - \pi \, dy \right)$$

Note: 會畫圖 ($\S 4.3 + 4.5$) 很重要, 能知道誰是上上下下左左右右 BABA。

Example 0.1 Find the area of the region bounded(界限) by $y = e^x$, y = x, x = 0, x = 1.

$$A = \int_0^1 (e^x - x) dx \quad (列式 formulate)$$

$$= \left[e^x - \frac{x^2}{2} \right]_0^1 \qquad (TFTC)$$

$$= \left[e - \frac{1}{2} \right] - [1 - 0] \quad (計算 calculate)$$

$$= e - 1.5.$$

Example 0.2 Find the area of the region enclosed(包圍) by the parabolas $y = x^2$ and $y = 2x - x^2$.

Solve
$$x^2 = y = 2x - x^2$$
, $2x(x - 1) = 0$, $(x, y) = (0, 0), (1, 1)$. (解交點找範圍)
$$A = \int_0^1 [(2x - x^2) - (x^2)] dx$$

$$= \left[x^2 - \frac{2}{3}x^3\right]_0^1 = \left[1 - \frac{2}{3}\right] - [0 - 0]$$

$$= \frac{1}{3}.$$

Note: "bounded" 與 "enclosed" 的差別: bounded by curves $y = \cdots$ (上下), $x = \cdots$ (左右), 超過範圍的不算; enclosed by curves, 圍著的都算。

Curves:
$$y = x^2 - 1$$
, $y = 1 - x^2$, $y = 0$, $y = 1.5$.

Bounded: $y = x^2 - 1$, $y = 1 - x^2$, $y = 1 - x^2$, $y = 1 - x^2$, $y = 0$, $y = 1 - x^2$, $y = 0$, $y = 1 - x^2$, $y = 0$, $y = 0$, $y = 1 - x^2$, $y = 0$,

Bounded:
$$B + C$$
;
Enclosed: $A + B + C$.

0.2 (有交錯)

有時候 $f(x) \ge g(x)$, 有時候 $f(x) \le g(x)$.

$$\int_{a}^{b} f(x) - g(x) dx = A_{1} - A_{2} + A_{3}$$
 (無絕對值)

$$\int_{a}^{b} |f(x) - g(x)| \, dx = |A_1| + |A_2| + |A_3| \quad (有絕對値)$$

Theorem 3 The area between curves y = f(x) and y = g(x) and between x = a and x = b is

$$A = \int_{\mathbf{a}}^{\mathbf{b}} |f(x) - g(x)| \ dx$$

Theorem 4 The area between curves x = f(y) and x = g(y) and between y = c and y = d is

$$oxed{A = \int_c^d |f(y) - g(y)| \; dy}$$

Skill:

- 1. 畫出大概的圖形, 找出分段點, 消去絕對值, 變成無交錯版本算面積。
- 2. 注意上下左右, 減錯會差很大。

Example 0.3 Find the area of the region bounded by the curves $y = \sin x$, $y = \cos x$, x = 0 and $x = \pi/2$.

$$\sin x = y = \cos x \text{ when } x = \frac{\pi}{4}, \text{ (找分段點, 解絕對値內=0.)}$$

$$\cos x \ge \sin x \text{ when } 0 \le x \le \frac{\pi}{4}, \text{ and } \cos x \le \sin x \text{ when } \frac{\pi}{4} \le x \le \frac{\pi}{2}.$$

$$\int_0^{\pi/2} |\cos x - \sin x| \, dx$$

$$= \int_0^{\pi/4} (\cos x - \sin x) \, dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) \, dx$$

$$= \left[\sin x + \cos x \right]_0^{\pi/4} + \left[-\cos x - \sin x \right]_{\pi/4}^{\pi/2}$$

$$= \left[\sin \frac{\pi}{4} + \cos \frac{\pi}{4} \right] - \left[\sin 0 + \cos 0 \right] + \left[-\cos \frac{\pi}{2} - \sin \frac{\pi}{2} \right] - \left[-\cos \frac{\pi}{4} - \sin \frac{\pi}{4} \right]$$

$$= \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right] - \left[0 + 1 \right] + \left[-0 - 1 \right] - \left[-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right]$$

$$= 2\sqrt{2} - 2.$$

Note: 積分方向 (上下界的大小) 與函數正負 (在 x-軸的上下) 不同, 得到正 負不同, 但是絕對値都是面積 (沒有負的)。

$$(\rightarrow) \int_{\pm}^{\pi} \mathbb{E} dx = \mathbb{E}, \int_{\pm}^{\pi} \mathbf{f} dx = \mathbf{f},$$

$$(\leftarrow) \int_{\pm}^{\pi} \mathbf{f} dx = \mathbb{E}, \int_{\pm}^{\pi} \mathbb{E} dx = \mathbf{f}.$$

$$(+) \int_{\pm}^{\pi} \mathbf{f} dx = \mathbb{E}, \int_{\pm}^{\pi} \mathbb{E} dx = \mathbf{f}.$$

Example 0.4 Find the area of the region enclosed by the curves y = x - 1 and the parabola $y^2 = 2x + 6$.

解交點找範圍
$$Solve(x-1)^2 = y^2 = 2x+6$$
, $x = -1, 5$, $(x, y) = (-1, -2)$, $(5, 4)$.
$$\int_{-1}^{5} [\sqrt{2x+6} - (x-1)] dx = \dots$$
 (Wrong! 沒畫圖會看不到 $x = -3$.)

$$\sqrt{2x+6} \ge -\sqrt{2x+6}$$
 on $[-3, -1]$, and $\sqrt{2x+6} \ge x-1$ on $[-1, 5]$.

$$A = \int_{-3}^{-1} \left[\sqrt{2x+6} - \left(-\sqrt{2x+6} \right) \right] dx + \int_{-1}^{5} \left[\sqrt{2x+6} - \left(x - 1 \right) \right] dx$$

$$= \left[\frac{2}{3} (2x+6)^{3/2} \right]_{-3}^{-1} + \left[\frac{1}{3} (2x+6)^{3/2} - \frac{x^2}{2} + x \right]_{-1}^{5}$$

$$= \left[\frac{2}{3} (2(-1)+6)^{3/2} \right] - \left[\frac{2}{3} (2(-3)+6)^{3/2} \right]$$

$$+ \left[\frac{1}{3} (2(5)+6)^{3/2} - \frac{(5)^2}{2} + (5) \right] - \left[\frac{1}{3} (2(-1)+6)^{3/2} - \frac{(-1)^2}{2} + (-1) \right]$$

$$= \frac{16}{3} + \frac{64}{3} - \frac{25}{2} + 5 - \frac{8}{3} + \frac{1}{2} + 1 = 18.$$

[Another 計算技巧]

Let
$$u = \sqrt{2x+6}$$
, then $du = \frac{1}{u} dx$, $dx = u du$, when $x = -3, -1, 5$, $u = 0, 2, 4$, respectively.
$$A = \int_{-3}^{-1} \left[\sqrt{2x+6} - (-\sqrt{2x+6})\right] dx + \int_{-1}^{5} \left[\sqrt{2x+6} - (x-1)\right] dx$$

$$= \int_{-3}^{5} \sqrt{2x+6} dx - \int_{-3}^{-1} -\sqrt{2x+6} dx - \int_{-1}^{5} (x-1) dx \qquad (定積分性質)$$

$$= \int_{0}^{4} u^{2} du + \int_{0}^{2} u^{2} du - \int_{-1}^{5} (x-1) dx \qquad (變數變換, 不一定要全換)$$

$$= \left[\frac{u^{3}}{3}\right]_{0}^{4} + \left[\frac{u^{3}}{3}\right]_{0}^{2} - \left[\frac{x^{2}}{2} - x\right]_{-1}^{5} = \frac{64}{3} + \frac{8}{3} - \frac{25}{2} + 5 + \frac{1}{2} + 1 = 18.$$

[Sol 2] (換個角度)

$$y+1=x=rac{y^2}{2}-3 \ when \ y=-2,4,$$
 and $y+1\geq rac{y^2}{2}-3 \ on \ [-2,4].$

$$A = \int_{-2}^{4} [(y+1) - (\frac{y^2}{2} - 3)] dy$$

$$= \int_{-2}^{4} (4 + y - \frac{y^2}{2}) dy = \left[4y + \frac{y^2}{2} - \frac{y^3}{6}\right]_{-2}^{4}$$

$$= \left[4(4) + \frac{(4)^2}{2} - \frac{(4)^3}{6}\right] - \left[4(-2) + \frac{(-2)^2}{2} - \frac{(-2)^3}{6}\right]$$

$$= 16 + 8 - \frac{32}{3} + 8 - 2 - \frac{4}{3} = 18.$$

Note: 有時候用 $\int dy$ 比 $\int dx$ 好算.

Skill: 怎麼列式?看你怎麼切, 想像成長方條面積的累積.

平淡 浪漫 浪漫 著情感 區域之中製造一些些黎曼, 絲絲點點黎曼累積成積分。