## M16600 Lecture Notes

Section 10.1: Curves Defined by Parametric Equations

■ Section 10.1 textbook exercises, page 685: #5, 7,  $\underline{8}$ .

Equations such as

$$\Rightarrow y(x) = 3e^x + x^3 \qquad \text{or} \Rightarrow x(y) = y^2 - 1$$
es in the *xy*-plane.
$$y = \begin{cases} y = y^2 - 1 \\ y = y^2 - 1 \end{cases}$$

describe some curves in the xy-plane.

In this section, we have ANOTHER way to describe curves in the *xy*-plane, called *para-metric equations*:

$$x = x(t)$$
 and  $y = y(t)$ 

Here, t is the parameter.

Example 1: (a) Sketch the given **parametric curves** (i.e. curves given by parametric equations). Indicate with an arrow the direction in which the curve is traced as t increases. (b) Eliminate the parameter to find a **Cartesian equation** (equation with only x and y) of the curve

(1) 
$$x = t^2$$
 and  $y = t + 1$ 

| t  | x          | $\lfloor y \rfloor$ |
|----|------------|---------------------|
| -3 | 9          | -2                  |
| -2 | Ц          | -1                  |
| -1 | 1          | O                   |
| 0  | $\bigcirc$ | ١                   |
| 1  | 1          | 2                   |
| 2  | 4          | 3                   |
| 3  | 9          | 4                   |



(b)  $x=t^2$ , y=t+1 ]— want that one egn involving x and y. t=y-1  $\Rightarrow x=(y-1)^2$ 

(2)  $x = \cos t$  and  $y = \sin t$ , where  $0 \le t \le 2\pi$ .

| t        | x    | y        |
|----------|------|----------|
| 0        | C08D | 0 = 8ino |
| $\pi/4$  | 1/2  | 15       |
| $\pi/2$  | 0    | 1        |
| $\pi$    | -1   | 0        |
| $3\pi/2$ | 0    | -1       |
| $2\pi$   |      | 0        |



$$\cos^2 t + \sin^2 t = 1 \Rightarrow x^2 + y^2 = 1$$

Example 2: Let  $\mathcal{C}$  be the parametric curve given by  $x = t^2$  and  $y = t^3 - 3t$ .

(a) Find the point on the curve C when t = 3.

$$x = 3^{2} = 9$$

$$y = 3^{3} - 3(3) = 27 - 9 = 18$$

$$\Rightarrow (x, y) = (9, 18)$$

(b) Find t at the point (1, 2).

$$\chi=1$$
  $\Rightarrow$   $t=1$   $\Rightarrow$   $t=1$   $y=2$  and  $y=3$   $\Rightarrow$   $t=1$   $\Rightarrow$ 

$$t=1$$
  $= 1-3=-2 + 2$ 

$$f=-1_9$$
  $(-1)^3-3(-1)=-1+3=2 = 2$  => For  $f=-1$  we have  $f^2=1$  =>  $f=-1$