R-non-commetative ring with no zero divisors.

M- R-modully Tor(M) is not a submodule of M.

 $R = F\{x,y\}$ be the rmy of polynomials in non-country x,y.

let M = R/R {x123 left ideal in R generated by x2 4 y2

Then x, y & Tor (M) since x x = 0 4 y y = 0.

But x+y & Tor(M), so Tor(M) is not a module.

~ direct product / sum.

is also an R-module by componentwise operations.

Homomorphisms of Modules (left)

Let Mi, M2 ve R-modules.

A mapping $\psi: M_1 \longrightarrow M_2$ is an R-module homomorphism if

I is a homomorphism of groups & rf(u) = f(ru) & ueM,, reR.

If Risa field, R-module homomorphisms are called linear mappings/transformations.

Hom-sna R-R as vings is not the same as Hom-sma R-R as modules

 $\underline{tx}: R=\mathbb{Z}, \quad \varphi(n)=2n \cdot \varphi: Z \longrightarrow \mathbb{Z} \text{ is a } \mathbb{Z}\text{-module homomorphism}$ but not a ving homomorphism.

 E_X : R = R(x), $Y(P(x)) = P(x^2)$. Y is a ring how but x = R(x) - module homomorphism Since $\psi(\chi, \chi) = \chi^2, \chi^2 \neq \chi, \psi(\chi) = \chi \cdot \chi^2$.

Examples of howmonphisms

1) Let M be an R-module, let neM, 1 e R. Then I a unique hom-sm p: R - M s.t. Y(1) = u. Y(a) = a Y(1) = au Y a ER.

② If $u_1, \dots, u_n \in M$, \exists unique hom $\psi : \mathbb{R}^n \to M$ st. $\psi(1,0,\dots,0) = u_1$ \vdots $\psi(0,\dots,0,1) = u_n$

⑤ if N is a submodule of M than the embedding Y: N→ M s.t. V(u) = u is a hom.

(4) Let N be a submodule of M. Then $M \longrightarrow M/N$, $V(u) = \overline{u} = u + N \in M/N$ projection nonnemarphism.

(5) Let F be the module of functions $f: X \to R$. Let $x_0 \in X$ the evaluation hom

is $\varphi: F \to R$ given by $\varphi(f) = f(x_0)$.

Proposition: If φ is an invertible nonmorphism, φ^{-1} is a homomorphism.

Proof $\forall v_1, v_2 \in \mathbb{N}$, let $u_1 = \varphi^{-1}(v_1)$, $u_2 = \varphi^{-1}(v_2)$, so $\psi(u_1 + u_2) = \psi(u_1) + \psi(u_2)$ so $\psi'(v_1 + v_2) = \psi'^{-1}(v_1) + \psi'^{-1}(v_2)$. $\forall v \in \mathbb{N}, a \in \mathbb{R}$, let $u_1 = \varphi^{-1}(v_1) + \varphi(av_1) = a \psi(u_1)$ so $a \psi'^{-1}(v_1) = \psi'^{-1}(av_2)$.

Proposition: You you is a homomorphosm

Proposition: Let $\gamma: M \to M$ be a homomorphism. I submodule KEM, $\gamma(K)$ is a submodule of N. $\gamma(K)$ is a submodule of M.

 $\frac{\rho \, \text{roof}}{V} : \text{ Let } V_1, V_2 \in \mathcal{V}(k). \quad f_1 \text{ for } U_1, U_2 \in \mathcal{V}_1, \quad f_2 \in \mathcal{V}_2$

def: $\text{Ker}(\varphi) = \varphi^*(0)$. $\text{Ker}(\psi)$ is a submodule of M. def: The factor module $N/\varphi_{(M)}$ is called the co-kernel of ψ , Coker(ψ).

det injective homomorphism ar alled monuma phisms

surjective " epimorphisms

bijective " 150 morphisms

howeverphisms M on called endomorphisms isomorphisms " auto morphisms

Proposition: $\varphi: M \longrightarrow N$ is a monomorphism $\iff \text{Ker}(\varphi) = 0$.

Proposition: $\psi: M \longrightarrow N$ is a monomorphism \iff Ker $(\phi) = 0$. $\psi: M \longrightarrow N$ is an epirour phism \iff Coxer $(\phi) = 0$.

Det: M& N are isomorphic if Fisomorphism M -> N.

: compress Theremo:

① If
$$\varphi: M \to N$$
 is a non-sm true $M/\ker(\varphi) \cong \Psi(M)$
(if ψ is surjective, $M/\ker(\psi) \cong N$).

① If
$$N_1$$
, N_2 are submodules of M_1 , then $\left(N_1 + N_2\right) / N_2 \cong \left(N_1 \cap N_2\right)$

$$U_1 + U_2 \pmod{N_2} \cong U_1 \pmod{N_1 \cap N_2}.$$

(3) if K is a submodule of N which is a submodule of M, then
$$M_N \cong (M/K)/(N/K)$$

$$u \mod N \longmapsto (u \mod K) \mod (N/K)$$

Let 16R.

Theom if M is a cyclic module, then M = R/Ann(u)

Proof define $f: R \longrightarrow M$ by $f(u) = \alpha u$, $\alpha \in R$. Fis surjective so $M \cong R/\ker(u) = R/\operatorname{Ann}(u)$.