算法与复杂性 作业二

516021910528 - SHEN Jiamin

2020年3月5日

1. 数列 1,2,3,4,5,10,20,40,..., 该数列开始是等差数列,第 5 项以后为等比数列,证明任意一个正整数都可表示为这个数列中的不同数之和。

(a)

引理 1 对任意的 $n \in \mathbb{N}^*, n < 2^k$, n 可以表示为集合 $\{2^i \mid 0 \le i < k\}$ 中任意个不同数之 和。

证明 定义集合 S_k :

- 1. $\{2^i \mid 0 \le i < k\} \subset S_k$
- 2. 若 $a \in \mathbb{N}^*$ 可表示为集合 $\{2^i \mid 0 \le i < k\}$ 中任意多个不同数之和,则 $a \in S_k$

考察集合 S_{k} :

- 1. 当 k=1 时, $S_1=\{1\}$
- 2. $\sharp k = 2$ 时, $S_2 = \{1, 2, 3\}$
- 3. 假设当 k = n 时 $S_n = \{a \in \mathbb{N} \mid 1 \le a < 2^n\}$ 则当 k = n + 1 时,

$$S_{n+1} = S_n \cup \{2^n\} \cup \{2^n + a \mid a \in S_n\}$$

$$= \{a \in \mathbb{N} \mid 1 \le a < 2^n\} \cup \{2^n\} \cup \{a \in \mathbb{N} \mid 2^n + 1 \le a < 2^{n+1}\}$$

$$= \{a \in \mathbb{N} \mid 1 \le a < 2^{n+1}\}$$

归纳可知 $S_k = \{a \in \mathbb{N} \mid 1 \le a < 2^k\}$,即引理 1成立。

(b) 原数列通项公式可表示为

$$a_i = \begin{cases} i, & 1 \le i < 5 \\ 5 \cdot 2^{i-5} & i \ge 5 \end{cases}$$

对于任意正整数 $n \in \mathbb{N}^*$,

- 1. 若 $n \le 5$, 易知 $n \in \{a_i\}$, 即由数列中的单个数即可表示。
- 2. 由引理 1和整数加法的线性性可推知, $\forall n \in \mathbb{N}^*, 5 | n, n < 5 \cdot 2^k$,n 可以表示为集合 $\{5 \cdot 2^i \mid 0 \le i < k\}$ 中任意个不同数之和。所以若 5 | n,则 n 可以表示为 $\{a_i \mid i \ge 5\}$ 中任意个不同数之和。

$$\mathbb{N}^* = \{5x + y \mid x \in \mathbb{N}, y \in \{1, 2, 3, 4\}\}\$$

其中 5x 可以表示为 $\{a_i \mid i \geq 5\}$ 中任意个不同数之和;又 $n \in \{a_i \mid 1 \leq i < 5\}$ 。归纳可知,任意正整数可以表示为 $\{a_i\}$ 中任意个不同数之和。

证明 该数列通项公式可表示为

$$a_i = \begin{cases} i, & 1 \le i < 5 \\ 5 \cdot 2^{i-5} & i \ge 5 \end{cases}$$

对任意的 $n \in \mathbb{N}^*$, 存在唯一一组 (t, b, q) 满足 $t \in \mathbb{N}, b \in \{0, 1\}, q \in \{1, 2, 3, 4\}$, 使得

$$n = 5t + bq$$

t 有唯一的二进制表示,使 $t = \sum_k b_k \cdot 2^k$,其中 $b_k \in \{0,1\}$ 即

$$n = 5 \cdot \sum_{k} b_k \cdot 2^k + bq = \sum_{k} b_k \cdot (5 \cdot 2^k) + bq$$

因为 $b_k, b \in \{0,1\}$,不可能有重复的加数。又由题可知,

$$\{5 \cdot 2^k\} = \{a_i \mid i \ge 5\}$$
$$\{q\} = \{a_i \mid 1 \le i < 5\}$$

所以任意的 $n \in \mathbb{N}^*$ 可以表示为 $\{a_i\}$ 中任意多不同数之和。

2. 广场上站着 99 个间谍,间谍与间谍之间的距离互不相等,每个间谍都盯着离自己最近的那个间谍 看,证明总存在一个没被人盯着的间谍。

间谍与监视关系构成一张有向图,图中每个节点的出度为1。

该图中不可能存在一个边数大于 2 的闭环(即 $v_0 \to v_1 \to \cdots \to v_n \to v_0$)。若存在这样一个 闭环,则一定存在闭环上的一条边 (v_i, v_{i+1}) 是环上所有边中最短的,所以 v_i, v_{i+1} 必互相监视,与假设不符。所以该图中不可能存在一个边数大于 2 的闭环。

若无法形成闭环,由于每个节点出度为1,其每个连通子图只能存在以下情况

- 两节点相互监视,且无其他节点监视这两个节点。
- 链形 $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_n$ 。由于不可能存在闭环,要使 v_n 出度为 1 必有 $v_n \rightarrow v_{n-1}$,此 时必然存在 v_0 的入度为 0。
- 星形(即 $v_1 \to v_0, v_2 \to v_0, ...$)。由于 v_0 出度为 1,只能与其中一个节点互相监视,周围其他节点的入度均为 0。

当有 99 个间谍时,即使两两一对互相监视,也一定存在 1 个节点无法成对。因此一定存在星 形或链形结构,使存在至少一个人没有被盯着。

- 3. 有 10 个海盗抢得了 100 枚金币,每个海盗都能够很理智地判断自己的得失,他们决定这样分配金币:
 - 1. 按照强壮与否排序, 其中最强壮的人为 10 号, 以此类推, 最瘦小的人为 1 号。
 - 2. 先由 10 号提出分配方案, 然后由所有人表决, 当且仅当**等于或多于半数人**(包括自己)同意时, 方案才算被通过, 否则他将被扔入大海喂鲨鱼;
 - 3. 如果 10 号死了,将由 9 号提方案,其余的人表决,当且仅当**超过半数**(包括自己)同意时,方案才算通过,否则 9 号同样将被扔入大海喂鲨鱼;
 - 4. 往下以此类推……

海盗们都很精明,他们首先会尽量保住自己的命,其次在保住命的前提下都想分到尽可能多的金币, 而且他们也很希望自己的同伴喂鲨鱼。

- (a) 假如你是那个 1 号海盗, 你将怎样分配, 才能既保住命, 又能分到最多的金币? 最多能分到多少呢?
- (b) 如果还是 100 枚金币, 但海盗的数量是 20, 50, 100, 200, 400 又该怎么样呢?

设有 n 个海盗时,n 号海盗提出的方案中,j 号海盗分得的金币数量为 $c_n(j)$ 。

当仅剩两人(1、2号)时,无论2号提出怎样的方案,1号都会选择不同意从而把2号扔进大海并分得全部金币。所以,当剩余三人时(1、2、3号),无论3号提出怎样的方案,2号都会同意3号的方案以避免出现上述情况。因此,3号会提出一个

$$c_3(j) = \begin{cases} 100 & , j = 3 \\ 0 & , j = 1, 2 \end{cases}$$

的方案, 2、3号海盗会同意这个方案。

在上述方案中,1、2号海盗都没有得到金币。因此,当由4号海盗提出方案时,只要他分给1号或2号海盗1个金币,即可赢得其支持。如

$$c_4(j) = \begin{cases} 99 & , j = 4 \\ 1 & , j = 2 \\ 0 & , j = 1, 3 \end{cases}$$

当由 5 号海盗提出方案时,需要 3 人同意方可通过。代价最小的方案为在 c_4 的基础上多分给 1、3 号各一个金币。即

$$c_5(j) = \begin{cases} 98 & , j = 5 \\ 1 & , j = 1, 3 \\ 0 & , j = 2, 4 \end{cases}$$

当由 6 号海盗提出方案时,需要 3 人同意即可通过。代价最小的方案为 c_5 基础上分给 2、4 号一个金币。如

$$c_6(j) = \begin{cases} 98 & , j = 6 \\ 1 & , j = 2, 4 \\ 0 & , j = 1, 3, 5 \end{cases}$$

已知 当有 n 个海盗时,须有 $\left\lceil \frac{n}{2} \right\rceil = \begin{cases} \frac{n+1}{2} & , n$ 为奇数 个海盗支持方可通过方案。 $\left\lceil \frac{n}{2} \right\rceil & , n$ 为偶数

猜想 当 $3 < n \le 200$ 时,n 号海盗提出如下方案可保住自己的命:

$$c_n(j) = \begin{cases} 101 - \left\lceil \frac{n}{2} \right\rceil &, j = n \\ 1 &, j < n, j + n$$
为偶数
$$0 &, j < n, j + n$$
为奇数

证明 下面使用数学归纳法证明上述猜想。

- 1. 前已论述 $n \le 6$ 时的情况
- 2. 假设 n = k 时猜想成立
 - 若 k 为奇数,则 k 号海盗可分得 $101 \frac{k+1}{2}$ 个金币。且有 $\frac{k+1}{2} 1$ 个奇数号海盗获得了 1 个金币, $\frac{k-1}{2}$ 个偶数号海盗没有获得金币。
 - 若 k 为偶数,则 k 号海盗可分得 $101 \frac{k}{2}$ 个金币。且有 $\frac{k}{2} 1$ 个偶数号海盗获得了 1 个金币, $\frac{k}{3}$ 个奇数号海盗没有获得金币。

则当 n = k + 1 时

• 若 k 为奇数,k+1 为偶数。k+1 号海盗须得到另外 $\frac{k-1}{2}$ 个海盗的支持方可通过方案。因此,只需给 n=k 时没有分得金币的 $\frac{k-1}{2}$ 个偶数号海盗分 1 个金币即可赢得他们的支持。即 k+1 为偶数时,

$$c_{k+1}(j) = \begin{cases} 100 - \frac{k-1}{2} = 101 - \lceil \frac{k+1}{2} \rceil &, j = k+1 \\ 1 &, j < k+1, j$$
为偶数
$$, j < k+1, j$$
为奇数

• 若 k 为偶数, k+1 为奇数。 k+1 号海盗须得到另外 $\frac{k}{2}$ 个海盗的支持方可通过方案。 因此,只需给 n=k 时没有分得金币的 $\frac{k}{2}$ 个奇数号海盗分 1 个金币即可赢得他们的 支持。即 k+1 为奇数时,

$$c_{k+1}(j) = \begin{cases} 100 - \frac{k}{2} = 101 - \lceil \frac{k+1}{2} \rceil &, j = k+1 \\ 1 &, j < k+1, j$$
为奇数
$$0 &, j < k+1, j$$
为偶数

综合可知上述猜想成立。

由此可知,

• 当
$$n=200$$
 时, $c_{200}(j)= \begin{cases} 1 & ,j<200,j$ 为偶数
$$0 & ,j<200,j$$
为奇数

• 当 n = 201 时,201 号海盗必须获得除他自己以外的另外 100 名海盗的支持。因此,他须分给 1-200 号海盗中 100 名奇数号海盗各 1 枚金币,而他本人无法分得金币。

- 当 n = 202 时,202 号海盗必须获得除他自己以外的另外 100 名海盗的支持。因此,他须分给 1-200 号海盗中 100 名偶数号海盗各 1 枚金币,而他本人无法分得金币。
- 当 n = 203 时,203 号海盗必须获得除他自己以外的另外 101 名海盗的支持。但他只有 100 枚金币,无法获得 101 名海盗的支持。所以他的方案不可能通过。
- 当 n = 204 时,204 号海盗必须获得除他自己以外的另外 101 名海盗的支持。由上述可知,203 号海盗一定会支持 204 号海盗以保护自己。因此他只需在其他人中选 100 人,分给他们每人 1 个金币即可。
- 当 n = 205 时,205 号海盗必须获得除他自己、100 个金币能收买的 100 个海盗以外,另外 2 名海盗的支持。同理,当 n = 206、n = 207 时,方案都无法被通过。
- 当 n = 208 时,208 号海盗必须获得除他自己、100 个金币能收买的 100 个海盗以外,另外 3 名海盗的支持。205-207 号海盗为保命也会支持 208 号海盗,因此 208 号海盗的方案会被通过。

猜想 当 n>200 时,当且仅当 $n=200+2^k, k\in\mathbb{N}$ 时,存在可以通过的方案。

证明

- 1. 由上述论述可知, 当 k = 0, 1, 2, 3, n = 201, 202, 204, 208 时, 存在可以通过的方案, 且本人均无法得到金币。
- 2. 设 $k \in \mathbb{N}^*$ 。
 - 若 n = 200 + 2k 时,存在一个可以通过的方案,即 100 + k 个海盗支持了方案。则 当 n = 201 + 2k 时,需要 101 + k 个海盗支持。除他自己和能用金币收买的 100 个海盗(共 101 人)以外,剩余 k 个人均会选择拒绝方案从而将他扔进大海。
 - 若 n = 200 + 2k 时, 不存在一个可以通过的方案, 即表示支持的海盗人数 $\delta < 100 + k$ 。 则当 n = 201 + 2k 时,表示支持的海盗人数为 $\delta + 1 \le 100 + k$,不足 101 + k 个。方案仍然不会被通过。

所以当 n > 201 且 n 为奇数时,不存在能通过的方案。

3. 假设 $n = 200 + 2^k$ 时,存在可以通过的方案。若 $n = n' > 200 + 2^k$ (由上述可知,n' 定为 偶数)时,也存在可以通过的方案,且 $200 + 2^k < n < n'$ 时不存在可以通过的方案。则 $200 + 2^k$ 号至 n' - 1 号共 $n' - 1 - (200 + 2^k)$ 名海盗都会支持 n' 号海盗。因此若有 n' 名海盗时存在可以通过的方案,定有

$$\left\lceil \frac{n'}{2} \right\rceil = 100 + 1 + (n' - 1 - (200 + 2^k)) = n' - 2^k - 100$$

$$n' = 2n' - 2^{k+1} - 200$$

$$n' = 200 + 2^{k+1}$$

归纳可得, 上述猜想成立。

答

(a) 当
$$n = 10$$
 时, $c_{10}(j) = \begin{cases} 96 & , j = n \\ 1 & , j < 10, j$ 为偶数 $0 & , j < 10, j$ 为奇数

(b) 当
$$n = 20$$
 时, $c_{20}(j) = \begin{cases} 91 & , j = n \\ 1 & , j < 20, j$ 为偶数 $0 & , j < 20, j$ 为奇数

当
$$n = 50$$
 时, $c_{50}(j) =$
$$\begin{cases} 76 & , j = n \\ 1 & , j < 50, j$$
为偶数
$$0 & , j < 50, j$$
为奇数

当
$$n = 100$$
 时, $c_{100}(j) = \begin{cases} 51 & , j = n \\ 1 & , j < 100, j$ 为偶数 $0 & , j < 100, j$ 为奇数

当
$$n=200$$
 时, $c_{200}(j)= \begin{cases} 1 & ,j<200,j$ 为偶数
$$0 & ,j<200,j$$
为奇数

当 n = 400 时,不存在自然数 k 使 $200 + 2^k = 400$,因此 400 号海盗一定会被扔进大海。

- 4. 以下利用数学归纳法证明"所有的马颜色相同"错在哪儿
 - 1. 只有一匹马时, 命题成立
 - 2. 设有 n 匹马时命题成立。则当有 n+1 匹马 $\{h_1,h_2,\ldots,h_n,h_{n+1}\}$ 时,由归纳假设, $\{h_1,h_2,\ldots,h_n\}$ 这 n 匹马颜色相同, $\{h_2,\ldots,h_n,h_{n+1}\}$ 这 n 匹马的颜色相同,即 h_1 和 h_{n+1} 这两匹马与 $\{h_2,\ldots,h_n\}$ 颜色相同,所以 $\{h_1,h_2,\ldots,h_n,h_{n+1}\}$ 这 n+1 匹马的颜色是相同的

考察由 n=1 推广至 n=2 时的情况:

两匹马 $\{h_1, h_2\}$ 中,由归纳假设 $\{h_1\}$ 颜色相同, $\{h_2\}$ 颜色相同。但 $\{h_1\} \cap \{h_2\} = \Phi$,所以不能推出 $\{h_1, h_2\}$ 两匹马颜色相同。因此不能由此归纳"出所有的马颜色相同"。