# Vroom: Accelerating the Mobile Web with Server-Aided Dependency Resolution

Vaspol Ruamviboonsuk<sup>1</sup>, Ravi Netravali<sup>2</sup>, Muhammed Uluyol<sup>1</sup>, Harsha V. Madhyastha<sup>1</sup>

<sup>1</sup>University of Michigan, <sup>2</sup>MIT





#### Mobile Web Dominant ... but Slow...



"9.85s to load median mobile retail sites" - Keynote Systems

"Average load time 14s on 4G" - DoubleClick

## Problem: Slow web page loads



Mobile Optimized Popular Pages, State of the Art Phone, Good LTE network

## Simple Example Page

```
var img = new Image();
img.src = "b.com/img.jpg";
document.body.appendChild(img);
```

#### **Dependency Graph**



# Loading a Web Page





# Waiting on CPU blocks network and vice versa





- Client must trust HTTPS content pushed by proxy
- Proxy needs access to user's cookies for all domains

# Challenges to approach

- 1. How can web servers discover dependencies?
- 2. How do web servers inform clients of discovered dependencies?
- 3. How should clients use input from servers?

## Challenges to approach

1. How can web servers discover dependencies?

- 2. How do web servers inform clients of discovered dependencies?
- 3. How should clients use input from servers?

# Inefficient Page Load





#### HTTP/2 Push





# Push Only Load





# **Dependency Hints**





## Challenges to approach

#### 1. How can web servers discover dependencies?

- 2. How do web servers inform clients of discovered dependencies?
  - HTTP/2 Push + Dependency Hints
- 3. How should clients use input from servers?

### Strawman Dependency Resolution



#### **Drawbacks**

- Back-to-back loads differ
- Server cannot account for personalization

## Combined Offline-Online Discovery



- Stable dependencies: Intersection of offline loads
- Dynamic Content: Online Parsing of HTML

#### Personalized Dependencies from Third-party Domains



## Challenges to approach

- 1. How do web servers discover dependencies?
  - Combine offline and online + Defer to third parties
- 2. How do web servers inform clients of discovered dependencies?
  - HTTP/2 Push + Dependency Hints
- 3. How do clients use input from servers?

# Need for Scheduling

- No speedup with "Push All + Fetch ASAP"
  - Contention for access link bandwidth stalls processing

- Prioritize pushes and fetches of HTML, CSS, and JS
  - Schedule in order of processing
  - Account for 20% of bytes on average

#### Vroom scheduler in action



#### Results overview

- Accuracy of dependency discovery
  - Median: 0% false positives and < 5% false negatives</li>

- Improvements in client perceived performance
  - Speedup over status quo
  - Simple strawmans don't suffice
  - Speedup even with warm caches

#### Results overview

- Accuracy of dependency discovery
  - Median: 0% false positives and < 5% false negatives</li>

- Improvements in client perceived performance
  - Speedup over status quo
  - Simple strawmans don't suffice
  - Speedup even with warm caches

#### **Evaluation Setup**





Alexa top 50 news and 50 sports sites









#### Conclusion

Vroom: End-to-end solution that fully utilizes CPU/Network

- Decouples dependency discovery from parsing and execution
- Decreases median page load time by 5s for popular sites