Formula 1

(5)

MeHN
$$NH_{-}(CH_{2})_{m}-NH_{2}$$
 NH_{2} NH_{2} NH_{2}

Where FM represents 9-fluorenyl., and m is an integer of 1-20

(8) +
$$HO_2C-(CH_2)_n-CO_2H + (8)$$

NH₂

Formula I

where X is a linker of formula:

$$\hbox{-NH-}(CH_2)_mNHC(O)(CH_2)_n\,C(O)NH(CH_2)_m\,\hbox{-NH-}$$

in which m and n are independently integers of 1-20.

in which m is an integer of 1-20, and FM is 9-fluorenyl.

(11)

Formula I

where R is a protecting group, such as an ester, m and n are as defined above, and FM is 9-fluorenyl

$$\begin{array}{c} \text{MeHN} \\ \text{NH}_2 \\$$

FIGURE 6

(23)

Mehn
$$NH(CH_2)_mNHC(O)-(CH_2)_n-CO_2H$$

$$+ H_2N(CH_2)_gHN$$

$$NH_2$$

$$R^4R^5N(CH_2)_gHN$$

$$NHMe$$

$$NH(CH_2)_mNH-C(O)-(CH_2)_n-C(O)NH(CH_2/_2HN)$$

$$NHMe$$

$$NH_2$$

Formula I

MeHN
$$CO_2H$$
 + $FMNH(CH_2)_mCHO$
 NH_2 CO_2H + $R^1R^2N(CH_2)_pNH_2$
 NH_2 Me Me Me Me

FMHN(CH₂)_m N CONH(CH₂)_pNR¹R²

$$NH_{2}$$
(25)

$$\begin{array}{c|c} & Me \\ & \downarrow \\ \\ & \downarrow$$

Formula I

$$\begin{array}{c} \text{Me} \\ \text{H}_2\text{N}(\text{CH}_2)_m - \text{N} \\ \text{NH}_2 \\ \\ \text{NH}_3 \\ \\ \text{NH}_4 \\ \\ \text{NH}_4 \\ \\ \text{NH}_4 \\ \\ \text{NH}_5 \\ \\ \text{NH}_6 \\ \\ \text{NH}_7 \\ \\ \text{NH}_8 \\ \\ \text{NH}_8$$

Formula I

$$\begin{array}{c} \text{Me} \\ \text{H}_2\text{N}(\text{CH}_2)_{\overline{m}} & \text{CONH}(\text{CH}_2)_p\text{NR}^1\text{R}^2 \\ \\ \text{NH}_2 & \text{HO}_2\text{C}\cdot(\text{CH}_2)_{\overline{n}}\cdot\text{CO}_2\text{H} \end{array}$$

$$\mathsf{R}^1\mathsf{R}^2\mathsf{N}(\mathsf{CH}_2)_{\mathsf{p}}\mathsf{H}\mathsf{N}\mathsf{OC} \qquad \mathsf{N}(\mathsf{CH}_2)_{\mathsf{m}}\mathsf{N}\mathsf{H}\mathsf{C}(\mathsf{O})\text{-}(\mathsf{CH}_2)_{\mathsf{n}}\text{-}\mathsf{C}(\mathsf{O})\mathsf{N}\mathsf{H}(\mathsf{CH}_2)_{\mathsf{m}}-\mathsf{N} \qquad \mathsf{CON}\mathsf{H}(\mathsf{CH}_2)_{\mathsf{p}}\mathsf{N}\mathsf{R}^1\mathsf{R}^2$$

Formula I

Examples of trimeric display

Examples of higher order polyvalent display

C3 SUBSTITUENT

SUMATRIPTAN

ZOLMITRIPTAN

C5 SUBSTITUENT

SUMATRIPTAN

ZOLMITRIPTAN

SUMATRIPTAN BUILDING BLOCKS

C3PharmacophoricBuilding Blocks

C5PharmacophoricBuilding Blocks

Pharmacophoric Building Blocks that contain a Spacer

MULTIVALOMERS OF SUMATRIPTAN

1. The Indole Core

3. C5 Substituent

C3 ELECTROPHILE TO PROVIDE MULTIVALOMERS

C3 NUCLEOPHILE TO PROVIDE MULTIVALOMERS

$$X = -CH_2Br$$
 (a) DCM, pyrdine Br
 $X = -CHO$ (a) DCM, NaBH(OAc)₃, AcOH

 CHO
 CHO
 CHO
 CHO
 CHO
 CHO
 CHO
 CHO
 CHO

C5 FUNCTIONALIZATION OF SUMATRIPTAN

Electrophilic Pharmacophoric Monovalomer

Nucleophilic Pharmacophoric Monovalomer

SUMATRIPTAN SPECIFICS

C3 Mu, tivalomers

OHC CHC

(a) NaBH(OAc)3, AcOH, CHCl3.

(a) CHCl₃, pyridine

C5 Multivalomers

$$H_2N \underbrace{\hspace{1cm} NH_2}_{\hspace{1cm} \hspace{1cm} \hspace{1cm}\hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace$$

(a) NaH, DMF, RX

(a) DMF< DIPEA< RT

SUMATRIPTAN SPACERS

C3 Acid Spacer

$H_2N \searrow NH_2$

C5 Acid Spacer

$H_2N \sim NH_2$

Introduction of Spacer To Faciliate Multivalomer Formation

C3 Sumatriptan Series

H O OI

(c)

(b)

C5 Sumatriptan Series

HN.S.

(b) R = Et R = H

(a) DIPEA, DCM, BrCH₂CO₂Et (b) LiOH, THF, H₂O. (c) DIC, DIPEA, DMF

$$\stackrel{R}{N} \longrightarrow \stackrel{'}{N}_{H}$$

 $H_2N \longrightarrow NH_2$

NH NH

HN ON NH

MUSCARINIC ANTAGONISTS USED IN AIRWAY DISEASE

IPRATROPIUM BROMIDE

OXITROPIUM BROMIDE

i) Airway disease

REVATROPATE

TIOTROPIUM BROMIDE

Nitrogen Atom of Tropane Core

Aromatic Ring

Primary Hydroxyl

Suitable Pharmacophoric Building Blocks

Nitrogen Atom of Tropane Core

Acid Series

Amine Series

Ipratropium Multivalomers 1-Different Points of Attachment

- **n** defines the valency of the multivalomer
- defines the framework core
- distinguishes the differing points of attachment of ipratropium

1. Alkyl Series

~ ~~

2. Aromatic Series

3. H-bond donor

4. H bond acceptor

5. Basic

Ipratropium Multivalomers 3-Alternative Framework Valency

Trimeric Series

Tetrameric Series

Ipratropium Multivalomers 4-Relative Pharmacophore Orientation

IPRATROPIUM 1-N-Linked Multivalomers

1. Alkylation/Quaternization

(a) DIC, DMAP, DMF (b) CHCl $_3$ (c) Pd/C, H $_2$, EtOAc.

FIGURE 30

1. Reductive Amination/Quaternization

(a) DIC, DMF, DMF (b) Pd/C, H_2 , EtOAc (c) NaBH(OAc)₃, CHCl₃, AcOH (d) McBr, CHCl₃ (e) TBAF, THF

IPRATROPIUM 3-O-Linked Multivalomers

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{c}$$

(a) NaH, THF (b) McBr, CHCl3, reflux

IPRATROPIUM 4-O-Linked Multivalomers

Sequential Conjugate Addition

(a) NaH, DME, heat (b) Pd/C, H₂, EtOAc (c) NaH, DME, heat (d) McBr, CHCl₃, heat

ç

AT1 RECEPTOR ANTAGONISTS

LOSARTAN (Cozaar) (Dupont Merck)

VALSARTAN (Diovan)
(Novartis)

IRBESARTAN

(Sanofi)

$$HO_2C$$
 S
 CO_2H

EPROSARTAN (Tevetan)

(Smith KlineBeecham)

CANDESARTAN (Atacand)

(Takeda)

TASOSARTAN (Verdia)

(Wyerth-Ayerst)

TELMISARTAN

(Boehringer Ingelhiem)

Phase III

Phase II

CS-866 Sankyo

DA-727 Daiichi

KRH-594 Wakunga

LR-B/081 Lusofarmaco

TAK-536 Takeda

YM-358 Yamanouchi

$$O = \bigvee_{N = N}^{N - N} \bigvee_{N = N}^{N - N + N} \bigvee_{N = N}^{N - N} \bigvee_{N = N}^{N} \bigvee_{N}^{N} \bigvee_{N = N}^{N} \bigvee_{N = N}^$$

RIPISARTAN

(Bristol Myers Squibb)

Phase II

3. Imidazole Substituents

$$M^{-O}$$
 N
 $N=N$
 N
 N

Losartan Multivalomers 1-Differing Points of Attachment

1. Aryl Linked Multivalomers

2. Butyl Linked Multivalomers

$$\begin{array}{c} Cl \\ HO \\ N=N \\ K^+N-N \\ \end{array}$$

$$\begin{array}{c} \text{HO} \\ \text{N} \\ \text$$

FIGURE 38

1. Tetrazole Linked Multivalomers

2. Aryl Linked Multivalomers

$$\begin{array}{c|c}
N = N \\
N = N \\
K^+ N = N
\end{array}$$

$$\begin{array}{c|c}
N = N \\
N = N \\
N = N
\end{array}$$

$$\begin{array}{c|c}
N = N \\
N = N \\
N = N
\end{array}$$

$$N=N$$

FIGURE 39

Dimeric Series

Trimeric Series

Tetrameric Series

- 1. Alkyl Series
- ~ ~
- 3. H-bond donor
- ₩ N
 - 5. Basic

2. Aromatic Series

4. H bond acceptor

6. Acidic

Losartan Multivalomers 4-Different Relative Connectivity

FIGURE 42

Losartan Multivalomers 5-Heterovalomers

LOSARTAN (Cozaar)

VALSARTAN (Diovan)

Heterovalomers

HO
$$N$$
 $N=N$ $N=N$

Losartan/Valsartan

Losartan Multivalomer Synthesis 1-Hydroxyl Linked Multivalomer

(a) NaH, DMF (b) nBu_4NF , THF (c) NaH, DMF, $BrCH_2C_6H_4CH_2Br$ (d) HCl, MeOH.

Losartan Multivalomer Synthesis 2-Hydroxyl Linked Multivalomer

Multivalomer Formation **a**

(a) NaOMe, McOH, DMF (b) NaH, DMF (c) Bu₃SnN₃, xylene, reflux

Losartan Multivalomer Synthesis 3-Tetrazole Linked Multivalomers

Strategy-Sslective tetrazole alkylation in the presence of the primary hydroxyl

For precedent see Carini, D. J., J. Med. Chem., 1991, 34, 2525-2547

(a) Bu_3SnN_3 , xylene, 24hr reflux (b) NaOH, THF

β_2 Adrenergic Drugs

Salmeterol (GlaxoWellcome)

Terbutaline

Formoterol

(Novartis)

Notes-1. These drugs are racemates. Multivalomers will produce diastereomers.

Ethanolamine function

$$\begin{array}{c} \text{OH H} \\ \text{HO} \\ \end{array}$$

3. Phenyl Ring

New Substitution

Phenolic Group

Benzyl Alcohol

M represents a site for the attachment of the monovalomer to the framework core

1. Valency of Framework Building Block

Trimeric Ligands

3. Mixed Multivalomers Derived from Different $\beta_2\text{-agonists}$

Albuterol/Formeterol

Albuterol/Clenbuterol

Albuterol Multivalomers 1-Different Points of Attachment

- defines the valency of the multivalomer
- defines the framework core
- distinguishes the diff-ring points of attachment of albuterol

Generic Examples

SpecificExample

Gent Gent Series 1

Series 3

Series 4

Albuterol Multivalomers 2-Alternative Framework Cores

2. Aromatic Series

3. H-bond donor

4. H bond acceptor

5. Basic

6. Acidic

Albuterol Multivalomers 3-Alternative Framework Valency

Trimeric Series

Tetrameric Series

Albuterol Multivalomers 4-Relative Pharmacophore Orientation

Pharmacophore Orientation

Albuterol Multivalomers 5-Mixed β_2 Adrenergic Heterovalomers

Heterovalomers

FIGURE 54

BnO
$$\begin{pmatrix} OH \\ 1 \\ OH \end{pmatrix}$$
 $\begin{pmatrix} OH \\ 1 \\ CO_2H \end{pmatrix}$ $\begin{pmatrix} OH \\ N \\ X \end{pmatrix}$ $\begin{pmatrix} OH \\ N \\ X$

reagents and conditions: i) HOBt, PyBOP, DIPEA, DMF. rt. 24 h; ii) LiAlH₄, THF, 0° C to 80° C; iii) H₂ (1 atm), 10% Pd/C, EtOH, rt, 24 h

reagents and conditions:i) HOBt. PyBOP, DIPEA, DMF, rt, 24 h; ii) LiAlH₄, THF, 0°C to 80°C; iii) H₂ (1 atm), 10% Pd/C, EtOH, rt, 24 h

reagents and conditions: i) 1,6-hexanedioic acid, DIPEA, HOBT, PyBOP, DMF, rt; ii) TFA/CH $_2$ Cl $_2$, 0°C

reagents and conditions: i) terphathalic acid, DIPEA, HOBT, PyBOP, DMF, rt: ii) TFA/CH $_2$ Cl $_2$, 0°C; iii) LiAlH $_4$, THF, 80°C