Metodologias de Otimização e Apoio à Decisão

Data: 10/02/2022 Exame – Época Normal Duração: 2h

Nota: Apresente todos os cálculos que efetuar e justifique convenientemente as suas respostas.

1. (Cotação: 7,0 valores)

Considere o seguinte problema de programação linear com um só objetivo:

$$Maximizar z = -x_1 + x_2 - 3x_3$$

sujeito a

$$2x_1 + x_2 + x_3 \ge 3$$

(1)

$$x_1 + 2x_2 - x_3 \le 1$$

(2)

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Considerando x₄ e x₅ respetivamente as variáveis *surplus* e *artificial* da restrição funcional (1), e x₆ a variável *slack* da restrição funcional (2), o quadro ótimo do *simplex* é:

	Ci	-1	1	-3	0	-M	0	
ΧB	c _B \ x _i	X 1	X 2	X 3	X 4	X 5	X 6	b
X ₃	-3	0	-1	1	-1/3	1/3	-2/3	1/3
X ₁	-1	1	1	0	-1/3	1/3	1/3	4/3
zj-cj		0	1	0	4/3	M-4/3	5/3	-7/3

- a) Para cada uma das seguintes alterações no problema inicial determine, efetuando um estudo de pós-otimização, quais as implicações na solução ótima apresentada (no valor de x*, no valor de z* e na base ótima), decorrentes de:
 - I. Alteração do vetor dos **termos independentes** das restrições de $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ para $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$;
 - II. Alteração do vetor dos **coeficientes da variável x**2 nas restrições de $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ para $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$.
- b) Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que **intervalo de c₂** (coeficiente de x₂ na função objetivo) a solução ótima apresentada atrás continuará ótima.

2. (Cotação: 5,0 valores)

Considere o seguinte problema de programação por metas:

$$\begin{aligned} \textit{Minimizar} \, Z &= \left\{ d_1^-, d_2^- + d_2^+ \right. , d_3^+ \, \right\} \\ \textit{sujeito a} \\ &\qquad \qquad x_1 - x_2 + d_1^- - d_1^+ = 1 \\ &\qquad \qquad x_1 + d_2^- - d_2^+ = 2 \\ &\qquad \qquad x_2 + d_3^- - d_3^+ = 3 \\ &\qquad \qquad 5x_1 + 3x_2 + d_4^- = 15 \\ &\qquad \qquad x_1 \geq 0, \,\, x_2 \geq 0, \,\, d_i^- \geq 0, \,\, d_i^+ \geq 0 \,\,\, (i = 1, 2, 3, 4) \end{aligned}$$

a) Resolva este problema pelo método gráfico;

Departamento de Engenharia Informática e de Sistemas

b) Se houvesse necessidade de uma nova restrição funcional que especificasse que $x_1 + 2x_2$ teria que ser maior ou igual a 3, indique que alteração introduziria no modelo.

3. (Cotação: 5,0 valores)

Considere o seguinte problema de programação linear com duas funções objetivo:

Min
$$z_1 = 2x_1 + x_2$$

Max $z_2 = x_1$

sujeito a
$$\underline{\mathbf{x}} = (x_1, x_2)^T \in X$$

- **a)** Identifique a **região eficiente** deste problema, assinalando-a no gráfico da folha de prova. Justifique a sua resposta;
- b) Obtenha a tabela de *pay-off* (ou tabela de ótimos individuais) correspondente a este problema e identifique a solução ideal e a solução anti-ideal.

Nome: ______ No _____