Predicting Diseases in Chinese Cabbage

With an increase in sustainable growth, Singapore has started to expand on urban farms and community gardens. By providing ML solutions to hobbyist and volunteers with little to no experience, this project aims to assist them to identify common diseases in chinese cabbage.

DSIF-2 Capstone Project

Melvin Chandra

The Data

MobileNetV2

Model: MobileNetV2

Compile Metrics: AUC

Loss: Categorical Cross Entropy

Metric	Value
Train AUC	0.9997
Validation AUC	0.9951
Train Loss	0.0756
Validation Loss	0.1435

What went wrong?

Problem:

- Data Leakage in train test split
- Solution:
 - Manual splitting
 - Data Augmentation
 - Try with other models

Musings from multiple models

MobileNetV2 vs EfficientNetB6

The Remedy

- Removed leafminer class
- added healthy samples
- Oversampling with ImageDataGenerator
- Increased more parameter variance in preprocessing
- Remove Early Stopping
- Run lots and lots more epoch

300 Epochs Later...

Conclusions

Baseline EfficientNetB6

New EfficientNetB6

- Forms smaller clusters of features
- Still picks up noise
- Still has problems isolating the main subject of the image

Recommendations

- Better data
 - Sourced from multiple farms, unaugmented
 - More distinct blights
- Modelling
 - Bounding boxes
 - More fine-tuning (unfreeze & retrain)