Couples aléatoires

Exercice 1. Soient X et Y deux v.a. finies. La loi du couple Z=(X,Y) est donnée par le tableau suivant :

X/Y	0	1	2	6
1	0	2/9	1/9	1/9
2	1/27	1/9	1/27	1/9
3	0	0	1/9	4/27

Trouver les lois marginales ; X et Y sont-elles indépendantes ? Pouvait-on le deviner en regardant le tableau ? Quelle est la probabilité pour que XY soit impair ?

Exercice 2. 1. Soient X et Y deux v.a. discrètes à valeurs dans $\{x_i, i \in \mathbb{N}\}$ et $\{y_j, j \in \mathbb{N}\}$. On suppose que $\mathbb{P}(X = x_i, Y = y_j) = u_i v_j$ pour tout (i, j). Trouver les lois marginales et montrer que X et Y sont indépendantes.

- 2. Soient X et Y deux v.a. indépendantes et de même loi géométrique de paramètre $p \in]0,1[$. On pose Z=Y-X et $M=\min(X,Y)$.
 - (a) Montrer que si $m \in \mathbf{N}^*$ et $z \in \mathbf{Z}$,

$$\mathbb{P}(M=m,\,Z=z)=\mathbb{P}(X=m-z)\,\mathbb{P}(Y=m),\quad \text{ si }z<0,$$

$$\mathbb{P}(M=m,\,Z=z)=\mathbb{P}(X=m)\,\mathbb{P}(Y=m+z),\quad \text{ si }z\geq 0.$$

(b) En déduire que , pour tout $(m, z) \in \mathbf{N}^* \times \mathbf{Z}$, $\mathbb{P}(M = m, Z = z) = p^2 (1 - p)^{2m-2} (1 - p)^{|z|}$. Montrer que M et Z sont indépendantes.

Exercice 3 (2003, ex). Soit (X,Y) un couple aléatoire à valeurs dans $\mathbf{N}^* \times \mathbf{N}^*$ tel que

$$\forall (k,n) \in \mathbf{N}^* \times \mathbf{N}^*, \quad \mathbb{P}(X=k,Y=n) = (1-q^n) \, q^{n(k-1)} e^{-\lambda} \frac{\lambda^{n-1}}{(n-1)!},$$

avec $q \in]0, 1[, \lambda > 0.$

Déterminer les lois de X et de Y. Ces deux variables sont-elles indépendantes?

- Exercice 4. Une étudiante donne rendez-vous à son ami entre 20 h. et 21 h. Les deux amis à l'initiative du jeune homme qui est habitué à la ponctualité douteuse de sa copine mais redoute sa susceptibilité conviennent de n'attendre pas plus de 15 minutes.
- 1. On suppose qu'ils arrivent indépendamment et à des instants uniformément distribués dans l'heure convenue.
 - (a) Représenter graphiquement le domaine du plan où $|x-y| \le 1/4$.
 - (b) Quelle est la probabilité pour que les deux amis se rencontrent?
- 2. Le jeune homme fixe son arrivée à l'heure t. Quelle est la probabilité qu'ils se rencontrent?

Exercice 5. Soit Z = (X, Y) un couple de densité $p(x, y) = c(x + y)\mathbf{1}_{0 < y - x < 2}\mathbf{1}_{0 < x < 2}$. Calculer la constante c puis déterminer les densités marginales. A-t-on indépendance?

Exercice 6. Soient X et Y deux v.a. indépendantes de densités respectives p et q. Trouver la densité de S = X + Y. Qu'obtient-on si X et Y suivent respectivement les lois $\mathcal{E}xp(\lambda)$ et $\mathcal{E}xp(\mu)$ ($\lambda > 0, \, \mu > 0$)?

Exercice 7. Soit Z = (X, Y) un couple aléatoire de densité p donnée par $p(x, y) = ke^{-y}$ si 0 < x < y et p(x, y) = 0 sinon.

- 1. (a) Dessiner le domaine du plan sur lequel p n'est pas nulle. Calculer k.
 - (b) Déterminer les densités marginales de Z. X et Y sont-elles indépendantes?
- 2. Déterminer la loi de T = Y X puis celle de R = X/Y.

Exercice 8 (2002, ex). Soient X et Y deux variables aléatoires indépendantes de loi exponentielle de paramètre $\lambda > 0$ c'est à dire de densité $x \longmapsto \lambda \, e^{-\lambda x} \, \mathbf{1}_{x \geq 0}$.

Déterminer la fonction de répartition de X puis la loi de la variable $Z = \min(X, Y)$.

Exercice 9 (2002, ex). Soient X et Y deux variables aléatoires indépendantes de loi normale i.e. de densité $x \longmapsto \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$. Déterminer la loi de la variable aléatoire R = X/Y.