Final 11-Ago:

- Ejercicio 1. a) ¿Cuáles son los números que se encuentran a menor distancia de 5 que de 3 y a menor distancia de 4 que de 8?
 - 1) Escriba inecuaciones que representen el problema.
 - 2) Resuelva las inecuaciones del punto anterior.

$$31$$
 $| x-5 | 2 | x-3 | y | x-4 | 2 | x-8 |$

2)
$$|x-5| \le |x-5|^2 \le |x-3|^2 = (x-5)^2 \le (x-3)^2 = 0 \le (x-3)^2 - (x-5)^2$$

= $0 \le (x-3 + x-5) \cdot (x/3 + x+5) = 0 \le (2x-8) \cdot 2$
= $0 \le (4x-16) = 16 \le 4x = \frac{16}{4} \le x = 4 \le x$

$$|x-y| \le |x-8| = |x-y|^2 \le |x-8|^2 = (x-y)^2 \le (x-8)^2 = 0 \le (x-8)^2 - (x-y)^2$$

$$= 0 \le (x-8+x-y) \cdot (x-8-x+y) = 0 \le (2x-12) \cdot (-y)$$

$$= 0 \le -8x + 48 = -48 \le -8x = -\frac{48}{8} > x = 6 > x = x \le 6$$

Si considerames ambas condiciones al nismo tiempo tenemos lo siguiente:

$$|X-5| \leq |X-3| \sqrt{|X-4|} \leq |X-8| \Rightarrow 42x \sqrt{|X-6|} = (4,6)$$

b) Grafique el conjunto de soluciones de la siguiente desigualdad:

$$\frac{|x+4|}{|x-1|} < (x+4)$$

$$\frac{|x+4|}{|x-1|} \ge (x+4)^2 = \frac{|x+4|}{|x-1|}^2 \ge (x+4)^2 = (x+4)^$$

Alpore vermos los puntos criticos
$$x_1, x_2 = \frac{12 \pm \sqrt{(-2)^2 - 4.1.0}}{2} = \frac{2 \pm 2}{2}$$
 $(x+y).(x+y) = 0 \Rightarrow x+y = 0 \Rightarrow x = -4$ 2.1 2 $x_1^2 - 2x = 0 \Rightarrow x_1 = 2, x_2 = 0$ $x_1 = \frac{2}{x} = 2, x_2 = 0$

Cono sebemos que (X+4) siempre seré positivo, enfoquemonos en (x2-zx)

	0 L X L 2	X40.	X > 2	X=-4
x2-2x	1	+	+	t
$(\chi_{t} q)^{z}$	+	+	+	0
$(\chi + 4)^2 \cdot (\chi^2 - 2\chi)$	1	+	+	0

- c) Dada la función $f(x)=e^{-x^4}+1,\,f:{\mathbb R}\to{\mathbb R},$ responda las siguientes preguntas justificando la respuesta:
 - 1) ¿Es inyectiva?
 - 2) ¿Es subyectiva?
 - 3) ¿Es biyectiva?
 - 4) ¿Es inversible?
 - 5) ¿Es necesario restringir el dominio para que sea inyectiva? En caso afirmativo, hágalo.
 - 6) ¿Es necesario restringir el espacio de llegada para que sea subyectiva? En caso afirmativo, hágalo.
 - Indique dominio y espacio de llegada para que la función tenga inversa y calcúlela.

1) Para ver si la función es injectivo vermos si se comple que $x_1, x_2 \in Dom f$: $f(x_1) = f(x_2) = 7x_1 = x_2$ $f(-1) = e^{-1} + 1 = e^{-1} + 1$, $f(1) = e^{-1} + 1 = e^{-1} + 1$

••
$$e^{-1}+1 = e^{-1}+1 \Rightarrow -1 = 1$$
 ABSURDO!

Por ende, la función no es inxectiva.

2) Para que la función sea sub yentivo codo elemento de la imazen de f debe perteneneral
conjunto de llegado, es decir, $in(f) = R $.
Como a medido que x va aumentado i se va acercando a cero, sabemos que la función no
posee números negativos en su imagen y por ende no est sobregertiva ya que in(f) \neq IR
3) No es bijectivo, yo que no es ni injectivo ni subjectivo
4) Como no es biyentino no es inversible
5) Si, es necesario restringir el dominio, el cual puede ser restrenção de la seguiente forma
para que la función sea inyectiva: Dom $f = (0, \infty)$ (también ex posible hacerlo con $(\infty, 0]$)
6) Si, es necesario restringir el conjunto de llegada de manera que sea igual a (0,2)
7) Don $f = [0, \infty)$, $B = [0, 2] \Rightarrow f: (0, \infty) \rightarrow [0, 2]$
Almos calculemos la inversa de $f(x) = e^{x^4} + 1$:
Almos calculemos la inversa de $f(x) = e^{x^4} + 1$: $f(f^{-1}(x)) = x \Rightarrow e^{f^{-7}(x)^4} + 1 = x \Rightarrow e^{f^{-7}(x)^4} = x - 1 \Rightarrow \ln(e^{f^{-7}(x)^4}) = \ln(x - 1)$
$= 7 - f^{-1}(x)^{4}$. $\ln(e) = \ln(x-1) = 7 - f^{-1}(x)^{4}$. $1 = \ln(x-1)$
$\Rightarrow f^{-1}(x) = \pm \sqrt[4]{-\ln(x-1)}$
Por ende, $f^{-7}(x) = \pm \sqrt[4]{-\ln(x-1)}$ es la inversa de $f(x)$.
1) Defending the Language of t
d) Defina biyectividad.
Decimos que una función es biyentiva si es injectiva y sobrejectiva el nismo tiempo

Ejercicio 2. a) Calcule el siguiente límite:

$$\lim_{x \to \infty} (x + e^{x})^{1/x}$$

$$\lim_{x \to \infty} S(x) = \lim_{x \to \infty} \ln((x+e^x)^{\frac{1}{x}}) = \lim_{x \to \infty} \frac{1 \cdot \ln(x+e^x)}{x} = \lim_{x \to \infty} \frac{\ln(x+e^x)}{x}$$

$$= \frac{\ln(\infty + e^{\infty})}{\infty} = \frac{\ln(\infty)}{\infty} = \frac{\infty}{\infty} - \frac{1}{2} \text{ indetermination}$$

Usamos L'Hopital:

$$\frac{\lim_{x\to\infty} \frac{\ln(x+e^x)}{x} = \lim_{x\to\infty} \frac{\ln'(x+e^x).(x+e^x)'}{(x)'} = \frac{1}{x+e^x} \cdot \frac{(x)'+(e^x)'}{1} = \frac{1+e^x}{x+e^x} = 1$$

$$\lim_{x \to \infty} e^{g(x)} = e^{1} = e$$

b) Encuentre la constante k para que la función f(x) sea continua para todo número real.

Pere encontrar la constante k tel que la función eu continua para los reales, reemplacemos x por -1 e igudemos (1) x (3) à (2).

$$\chi = -1 \implies K^2 - 3 = 6 \implies K^2 = 6 + 3 \implies K = \pm \sqrt{9} \implies K = \pm 3$$

 $\chi = -1 \implies -(3-1)K = 6 \implies -2.K = 6 \implies K = -6 \implies K = -3$

En bare a esto tenemos que K=3 es una constante condidata.

Alhora procedemos e verificar si la función es contiava con K=3.

Como sabemos que fl-1) existe vezmos el limite de la función en el mismo punto

$$\lim_{x \to 1} f(x) = L \iff \lim_{x \to 1^+} f(x) = L$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (3 + 3x) = 9 - 3 = 6$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} -(3+x)(3) = -(3-1)(-3) = -2.-3 = 6$$

$$\lim_{x \to n^{-}} f(x) = \lim_{x \to n^{+}} f(x) = 6 \implies \lim_{x \to n^{-}} 6$$

Alhora veamos so la función evaluada en el gonto es egual a lómite:

$$f(-1) = \lim_{x \to -1} f(x) \Rightarrow 6 = 6 \checkmark$$

lor ende, como vimos que existe la función en el ponto, existe el limite en el ponto y la funcion evaluada en el ponto es igual al limite en el ponto, tenemos que la funcion es continua para la constante K=3 en el ponto x=1.

Par los erros en los que xx-1, como la función toma forma de polinomio sabemos que es continue para todos los redes.

c) Dé los valores de t donde la función g(t) es discontinua y diga qué tipo de discontinuidad tiene en cada uno de esos puntos.

Es discontigue en -1 y 1
$$g(t) = \left\{ \begin{array}{ll} t^2-1 & t \leq -1 \\ \\ \frac{1}{t^2(t-2)^2} & -1 < t < 1 \\ \\ 3 & t=1 \\ \\ t^2-t+1 & 1 < t \end{array} \right.$$

Para evaluar el tipo de discontinuidad procedamos a evaluar los limites laterales de la funcion en los punto -1.y 1

en 105 (unto -1.4)

$$\lim_{t \to -1} s(t) = l \iff \lim_{t \to -1} s(t) = l$$
 $\lim_{t \to -1} s(t) = \lim_{t \to -1} t^2 - 1 = (-1)^2 - 1 = x - x = 0$

$$\lim_{t \to -1^{-}} S(t) = \lim_{t \to -1^{-}} t^{2} - 1 = (-1)^{2} - 1 = x - x = 0$$

$$\lim_{t \to -1^+} 5(t) = \lim_{t \to -1^+} \frac{1}{t^2(t-2)^2} = \frac{1}{(-7)^2(-1-2)^2} = \frac{1}{1.(-3)^2} = \frac{1}{9}$$

$$\lim_{t\to 1^-} S(t) \neq \lim_{t\to 1^+} S(t) \implies \iint_{t\to 1} \lim_{t\to 1} g(t)$$

.. Lomo los limites laterales no son iguales, la función posee una discontinuidad de salto en el punto -7.

Almora calculemos el limite para el punto t=1

$$\lim_{t \to 1} S(t) = L \iff \lim_{t \to 1^+} S(t) = L \wedge \lim_{t \to 1^+} S(t) = L$$

$$\lim_{t \to 1^{-}} g(t) = \lim_{t \to 1^{-}} \frac{1}{t^{2}(t-2)^{2}} = \frac{1}{1^{2}(1-2)^{2}} = \frac{1}{(-1)^{2}} = \frac{1}{1} = 1$$

$$\lim_{t \to 1^+} 5(t) = \lim_{t \to 1^+} t^2 - t + 1 = 1^2 - 1 + 1 = 1$$

$$\lim_{t\to 1^-} S(t) = \lim_{t\to 1^+} S(t) = 1 \implies \lim_{t\to 1^-} g(t) = 1$$

Ahora procedemos a comprober vi la función evaluada en 1 es igual al limite de la función

en dicho ponto.
$$f(1) = \lim_{t \to 1} g(t) \Rightarrow 3 = 1 \Rightarrow f(1) \neq \lim_{t \to 1} g(t)$$

Como la función evaluada en el ponto es distinto a el limite en el ponto la función posee une discontinuidad evitable en el punto t=1, la cual podria corregirse redefiniendo la funcion tal que fl1 = 1

Ejercicio 3. a) Calcule las derivadas de las siguientes funciones:

(i)
$$f(x) = \frac{\operatorname{sen}(x)}{e^{x^2}}$$

(ii)
$$g(x) = \ln(\sqrt{x^2 + 1})$$

i)
$$f'(x) = \frac{(\text{Sen}(x))' \cdot e^{x^2} - \text{Sen}(x) \cdot (e^{x^2})'}{(e^{x^2})^2} = \frac{\cos(x) \cdot e^{x^2} - \text{Sen}(x) \cdot e^{x^2} \cdot 2x}{e^{2x^2}}$$

$$= \frac{e^{x^2} (\cos(x) - \text{Sen}(x) \cdot 2x)}{e^{2x^2}} = \frac{\cos(x) - \text{Sen}(x) \cdot 2x}{e^{x^2}}$$

$$= \frac{e^{x^2}}{(x^2 + 1)'} \cdot (\sqrt{x^2 + 1})' = \frac{1}{\sqrt{x^2 + 1}} \cdot \frac{1}{2} \cdot (x^2 + 1)^{\frac{1}{2}} \cdot (x^2 + 1)' = \frac{(x^2)' + 11'}{\sqrt{x^2 + 1} \cdot 2} \cdot (x^2 + 1)'$$

$$= \frac{2x + 0}{(\sqrt{x^2 + 1})^2} \cdot \frac{2x}{(x^2 + 1)^2} \cdot \frac{x^2 + 1}{(x^2 + 1)^2}$$

- b) (i) Obtenga la ecuación de la recta tangente al gráfico de la función $f(x) = \frac{1-x}{1+x^2}$ en el punto (0,1).
 - (ii) Utilice la ecuación obtenida en (i) para estimar el valor de f(0.1) con una aproximación lineal.

$$f'(x) = \frac{(1-x)^{1} \cdot 1 + x^{2} - 1 - x \cdot (1 + x^{2})^{1}}{(1+x^{2})^{2}} = \frac{(0-1) \cdot (1+x^{2}) - (1-x) \cdot (0 + 2x)}{(1+x^{2})^{2}}$$

$$= \frac{-(1+x^{2}) - (1-x) \cdot 2x}{(1+x^{2})^{2}} = \frac{-(1+x^{2}) - (2x-2x^{2})}{(1+x^{2})^{2}} = \frac{-1-x^{2}-2x+2x^{2}}{(1+x^{2})^{2}}$$

$$= \frac{-1-2x+x^{2}}{(1+x^{2})^{2}}$$

$$y = f'(0) \cdot (x-0) + f(0) = \frac{-1-2.0+0^2}{(1+0^2)^2} \cdot (x-0) + \frac{1-0}{1+0^2} = \frac{-1}{1} \cdot x + \frac{1}{1}$$

$$= -1. \times +1$$

$$\frac{-1.1}{5} + \frac{1}{10} - \frac{1}{10} = \frac{10-1}{10} = \frac{9}{10}$$

c) ¿Cuándo decimos que una función f es derivable en un punto x_0 ? Explique con sus palabras qué interpretación geométrica tiene el valor $f'(x_0)$.
c) Decimos que una función es derivable en un punto x_0 cuando $\frac{1}{h}$ in $\frac{f(x_0+h)-f(x_0)}{h}$
Bevendonos en otros teorenes tembren sebemos que si $\exists f'(z) \Rightarrow f$ es continue en a la interpretación geometrica que tiune $f'(x_0)$ es que es la gendiente de la recta tongente a la función que pasa por el punto X_0 .

Ejercicio 4. Grafique una función que cumpla con todas las siguientes características:

- a) La función está definida para todos los reales.
- b) Tiene una asíntota horizontal en y=-6 y $\lim_{x\to -\infty}f(x)=-\infty$
- c) Tiene sólo 2 discontinuidades: una esencial en x=3 y una de salto en x=6.
- d) Es continua por derecha en x = 3 y f(3) = -3; f(x) > 0 en el intervalo (4,6) y f(6) = -1.
- e) f'(x) y f''(x) no existen únicamente para x = 0, x = 3 y x = 6.
- f) f'(x) = 0 para x = -2 y x = 1.
- g) f'(x) < 0 exclusivamente en los intervalos (-2,0) y $(6,+\infty)$.
- h) f''(x) < 0 exclusivamente en los intervalos $(-\infty, 0)$, (0, 1) y (4, 6).
- i) Tiene 2 puntos de inflexión.
- j) En función de los datos brindados, especificar cuáles son las asíntotas de la función, cuáles son los máximos, mínimos, los puntos críticos y puntos de inflexión, en qué intervalos la función crece y decrece, y en cuáles es cóncava hacia arriba y cóncava hacia abajo.

j)	En función de los datos brindados, especificar cuáles son las asíntotas de la función, cuáles
_	son los máximos, mínimos, los puntos críticos y puntos de inflexión, en qué intervalos la
	función crece y decrece, y en cuáles es cóncava hacia arriba y cóncava hacia abajo.

Asintotes:
$$x=3$$
 e $y=-6$ $P(=-2,1,3,6$ $Decreve: (-2,0), (6,\infty)$ $Maximos: -2, 1, 6$ $Q.inf = 0, 1, 4, 6$ $Convexa: (1,3), (3,4), (6,\infty)$ $Minimos: 0,3$. $Creve: (-\infty,-2), (0,3), (3,6)$ $Convava: (-\infty,0), (0,1), (4,6)$

Ejercicio 5. a) En la gráfica de y = f(x), la pendiente en cualquier punto (x, y) es el doble del valor de x. Si f(2) = 3, calcule el valor de f(3).

b) Grafique y calcule el área encerrada por las curvas : $y_1 = 1 - x^2$; $y_2 = |x| - 1$; $x_1 = -1$ y $x_2 = 1/2$.

c) Si F(x) es una antiderivada de $\frac{(\ln x)^3}{x}$ y F(1)=0, calcule el valor de F(e).

Ono sobemos que $f'(x) = 2 \cdot x$, para overiquer la formelo de f(x) valculemos la integral indefinido de $2 \cdot x$.

$$\int 2. \times dx = 2. \int x dx = 2. \underbrace{x^2}_{2} + c = x^2 + c$$

Por lo uval tenemos que f(x) = x2+C

Anors overrguemos el valor de C

$$f(2) = 3 \Rightarrow 2^2 + C = 3 \Rightarrow 4 + C = 3 \Rightarrow C = 3 - 4 \Rightarrow C = -1$$

$$f(x) = x^2 - 1$$

Ahora calculemos f(3):

$$f(3) = 3^2 - 1 = 9 - 1 = 8$$

b) Grafique y calcule el área encerrada por las curvas : $y_1 = 1 - x^2$; $y_2 = |x| - 1$; $x_1 = -1$ y $x_2 = 1/2$.

Primero precademas a calcular les pontes de intersección de ya e /2

$$y_1 = y_2 = 71 - \chi^2 = |\chi| - 1$$

(200 1: X ≥ 0

$$1-\chi^2 = \chi - 1 \implies 0 = \chi^2 + \chi - 2 \implies 0 = (\chi - 1).(\chi + 2) \implies \chi_1 = 1, \chi_2 = -2$$

(200 2: X < 0

$$1 - \chi^2 = -\chi - 1 \Rightarrow 0 = \chi^2 - \chi - 2 \Rightarrow 0 = (\chi + 1).(\chi - 2) \Rightarrow \chi_1 = -1, \chi_2 = 2$$

 $\chi = -1$

Por ende, los puntos de interseuion de yre yr son x=1 y x=1

Almos vermos donde intereran las funcioner al eje y:

$$y_1 = 1 - 0^2 = 1$$
 , $y_2 = 101 - 1 = -1$

Teniendo en cuenta lo anterior sabemos que $y_1 \ge y_2 \ \forall x \in [-7,1]$ y gor ende sucede lo mosmo con el intervalo $[x_1,x_2] = [-7,1/2]$

Findmente, paro determinar el area entre y e ya procederemor a restarlar y a cacular su integral definida en el intervalo [-7,1/2]

$$\int_{1}^{1/2} \frac{1}{y_{1}-y_{2}} dx = \int_{1}^{1/2} (1-x^{2}) - (|x|-1) dx$$

Teniendo en cuenta el valor absoluto tenemos lo siguiente

$$\int_{-1}^{1/2} (1-x^2) - (|x|-1) dx = \int_{-1}^{0} (1-x^2) - (-x-1) dx + \int_{0}^{1/2} (1-x^2) - (+x-1) dx$$

$$\int_{-1}^{0} (1-x^{2}) - (-x - 1) dx = \int_{-1}^{0} -x^{2} + x + 2 dx = \int_{-1}^{0} x^{2} dx + \int_{-1}^{0} x dx + \int_{-1}^{0} 2 dx$$

$$= -\left(\frac{x^{3}}{3}\Big|_{-1}^{0}\right) + \left(\frac{x^{2}}{2}\Big|_{-1}^{0}\right) + \left(\frac{x^{2}}$$

$$=-\left(\frac{1}{3}\right)+\left(\frac{-1}{2}\right)+2=\frac{-2-3+12}{6}=\frac{7}{6}$$

$$\int_{0}^{\frac{1}{2}} \frac{\int_{0}^{\frac{1}{2}} (1-x^{2}) - (+x-1) dx}{\int_{0}^{\infty} (1-x^{2}) - (+x-1) dx} = \int_{0}^{\frac{1}{2}} -x^{2} - x + 2 dx = \int_{0}^{\frac{1}{2}} x^{2} dx - \int_{0}^{\frac{1}{2}} x dx + \int_{0}^{\frac{1}{2}} 2 dx$$

$$= -\left(\frac{x^{3}}{3}\Big|_{0}^{\frac{1}{2}}\right) - \left(\frac{x^{2}}{2}\Big|_{0}^{\frac{1}{2}}\right) + \left(2.X\Big|_{0}^{\frac{1}{2}}\right) = -\left(\frac{1}{2}\Big|_{0}^{3} - 0\right) - \left(\frac{1}{2}\Big|_{0}^{2} - 0\right) + \left(2.1 - 0\right) + \left(2.1 - 0\right)$$

$$= -\frac{1}{8.3} - \frac{1}{4.2} + \frac{1}{1} = -\frac{1-3+24}{24} = -\frac{4+24}{24} = \frac{20}{24} = \frac{5}{6}$$

$$\int_{-7}^{7/2} (1-x^2) - (|x|-7) dx = \int_{-7}^{9} (1-x^2) - (-x-7) dx + \int_{0}^{7/2} (1-x^2) - (+x-7) dx$$

$$=\frac{7+5}{6}=\frac{2}{6}=2$$

Por ende, el area entre y e yz en el intervalo [x1, X2] es igual a 2.

c) Si F(x) es una antiderivada de $\frac{(\ln x)^3}{x}$ y F(1) = 0, calcule el valor de F(e).

Para calcular flu realicemos la integral indefinida de (ln x)

$$\int \frac{(\ln x)^3}{x} dx = \int \frac{u^3}{4} du = \frac{u^4}{4} + C = \frac{(\ln(x))^4 + C}{4} \Rightarrow F(x) = \frac{(\ln(x))^4 + C}{4} \qquad u = \ln x$$

$$du = \frac{1}{x} dx$$

Ahora determinemos el valor de C

Hhow determine nos el valor de C

$$F(1) = 0 \Rightarrow \frac{(\ln(1))^4}{4} + C = 0 \Rightarrow C = 0$$

$$F(x) = \frac{\left(\ln(x)\right)^4}{4}$$

Ahora calculemos F(e):

$$f(e) = \frac{(\ln(e))^4}{4} = \frac{1^4}{4} = \frac{1}{4}$$