B62005Y-02 理论计算机科学基础

2017年5月3日

Solutions to Homework # 4

主讲教师: 杨光

张远航 2015K8009929045

Sipser 5.1 Assume EQ_{CFG} is decidable and there exists a decider deciding it. That is, constructing a TM $M_{ALL_{CFG}}$ to decide is possible as follows.

 $M_{ALL_{\mathsf{CFG}}} =$ "On input CFG (G):

- 1. Derive a CFG G_{ALL} generating all possible strings.
- **2.** Run $D_{EQ_{CFG}}$ to decide whether (G_{ALL}) and (G) are equivalent.
- **3.** Accept if it accepts; reject, otherwise."

However, ALL_{CFG} is undecidable, which contradicts the assumption that EQ_{CFG} is decidable.

Sipser 5.2 Since A_{CFG} is decidable, $M_{A_{\mathsf{CFG}}}$ can be used to test if a string $w \in G$, where G is a CFL. A Turing-recognizer $M_{\mathsf{co-}EQ_{\mathsf{CFG}}}$ for the complement of EQ_{CFG} can be constructed in the following to show EQ_{CFG} is co-Turing-recognizable.

 $M_{\mathbf{co}\text{-}EQ_{\mathsf{CFG}}} = \text{``On input CFGs } (G_1, G_2)$

- 1. Enumerate strings with lengths in an ascending order.
- **2.** For each string w enumerated:
- **3.** Run $M_{A_{\mathsf{CFG}}}$ to decide if $w \in L(G_1)$ and if $w \in L(G_2)$.
- **4.** Accept if either $w \in L(G_1)$ and $w \notin L(G_2)$ or $w \notin L(G_1)$ and $w \in L(G_2)$.
- **5.** Continue otherwise."

Sipser 5.3 One possible match:

$$\left[\frac{ab}{abab}\right]\left[\frac{ab}{abab}\right]\left[\frac{aba}{b}\right]\left[\frac{b}{a}\right]\left[\frac{b}{a}\right]\left[\frac{aa}{a}\right]\left[\frac{aa}{a}\right]$$

Sipser 5.4 No. Consider the languages $A = \{0^n 1^n : n \in \mathbb{N}\}$ and $B = \{1\}$ over $\Sigma = \{0, 1\}$. Define the function $f : \Sigma^* \to \Sigma^*$ by

$$f(w) = \begin{cases} 1, & \text{if } w \in A; \\ 0, & \text{otherwise.} \end{cases}$$

Note that f is a computable function and $w \in A$ if and only if $f(w) \in B$. Hence, $A \leq_m B$. However, A is not regular, while B is regular.

Sipser 6.1 Such a program is called a *quine*. Here is a program in C:

```
main(){char *s="main(){char *s=%c%s%c;printf(s,34,s,34);}";
printf(s,34,s,34);}
```

Sipser 6.2 Assume for sake of contradiction that there exists some infinite subset of MIN_{TM} that is Turing-Recognizable. Let this subset be S. Since S is Turing-recognizable, we have that there exists some enumerator E that enumerates S. Consider the following Turing machine M:

M = "On input x:

- 1. Obtain own source code $\langle M \rangle$.
- **2.** Use E to enumerate elements of S until you find a TM T output by E such that $|\langle M \rangle| < |\langle T \rangle|$.
- **3.** Output T(x)."

We have that step 1 is possible by the recursion theorem. In step 2 we will eventually find such a TM T because S is infinite and hence its elements' lengths are not bounded. Hence, we have that the above Turing machine M effectively simulates T on all its inputs. i.e., M accepts, rejects and loops on exactly those inputs that are accepted, rejected and looped on respectively by T. Therefore M is equivalent to T. But we have that $|\langle M \rangle| < |\langle T \rangle|$. This is a contradiction as T is supposed to be minimal. Hence, MIN_{TM} has no infinite Turing recognizable subsets.