Zestaw 4

Wstęp do zarządzania finansami

Obligacje

- 1. Obligacja o nominale F wypłaca kupony C_1, C_2, \ldots, C_n . Ile wynosi jej obecna wartość (oznaczmy ją P) przy stałej stopie procentowej r?
- 2. Obligacja o nominale F wypłaca kupony C_1, C_2, \ldots, C_n . Stopy spot w kolejnych latach wynoszą $r(1), r(2), \ldots, r(n)$. Ile wynosi jej wartość P?
- 3. Obligacja o nominale F wypłaca m razy w roku kupony o stałej wysokości $\frac{C}{m}$ łącznie n razy. Ile wynosi jej obecna wartość P przy stałej stopie procentowej r?
- 4. Dane są trzy obligacje o nominale 100 płacące kupon raz do roku:
 - (a) roczna obligacja o cenie 99,77 i oprocentowaniu 6%,
 - (b) dwuletnia obligacja o cenie 98,51 i oprocentowaniu 5%,
 - (c) trzyletnia obligacja o cenie 96,40 i oprocentowaniu 4%.

Wyznacz stopy spot r(1), r(2) i r(3).

Obligacje - stopa par

- 5. Obligacja o nominale F wypłaca m razy w roku kupony o stałej wysokości $\frac{C}{m}$ łącznie n razy. Stopy spot wynoszą $r(t_i)$, $i=1,2,\ldots,n$? Jaka jest zależność pomiędzy stopami spot, a oprocentowaniem obligacji (oznaczmy je c), takim, że C=cF jeżeli spełniony jest warunek, że cena obligacji jest równa jej nominałowi?
- 6. Ile wynosi stopa par dla dwuletniej obligacji o nominale 100, płacącej kupon raz w roku, jeśli roczna stopa spot wynosi 5%, a dwuletnia 5,5%?

Obligacje - stopa YTM

- 7. Ile wynosi wewnętrzna stopa zwrotu (oznaczmy ją y) obligacji o nominale F, cenie P i kuponach C_1, C_2, \ldots, C_n ?
- 8. Dwuletnia obligacja o nominale 100 i cenie 90 wypłaca raz w roku kupon w wysokości 5. Ile wynosi jej YTM?

Obligacje - Duration

9. Jak procentowo zmieni się cena obligacji o duration równym 6, jeśli stopa YTM wzrośnie o 10 punktów bazowych?

Teoria portfela

10. Cena akcji pewnej spółki wynosi S(0) = 40 PLN. Analityk zakłada, że za rok stopa zwrotu z inwestycji w akcje tej spółki może wynosić

$$K = \begin{cases} -15\% & \text{, z prawdopodobieństwem } p_1 = 0.25 \\ 5\% & \text{, z prawdopodobieństwem } p_2 = 0.40 \\ 20\% & \text{, z prawdopodobieństwem } p_3 = 0.35 \end{cases}$$

Wyznacz

- (a) oczekiwaną stopę zwrotu,
- (b) oczekiwaną cenę akcji za rok,
- (c) wariancję i odchylenie standardowe stopy zwrotu.

Następnie podaj postać dystrybuanty zmiennej K i narysuj jej wykres.

- 11. Załóżmy że ceny akcji wynoszą $S_1(0)=40$ PLN, $S_2(0)=25$ PLN. Inwestujemy 2 100 PLN zajmując pozycje $x_1=30,\,x_2=36$ w akcjach spółek.
 - (a) Wyznacz wagi spółek w portfelu.
 - (b) Za miesiąc ceny akcji wynoszą $S_1(1) = 28$ PLN, $S_2(1) = 50$ PLN. Oblicz wartość portfela V(1), wagi akcji w portfelu oraz stopę zwrotu z portfela.
- 12. Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną z $\Omega = \{\omega_1, \omega_2, \omega_3\}, \mathcal{F} = 2^{\Omega}$ oraz $\mathbb{P}(\omega_1) = 0, 4, \mathbb{P}(\omega_2) = 0, 2, \mathbb{P}(\omega_3) = 0, 4.$ Rozważmy dwa walory takie, że:

$$K_{1}(\omega) = \begin{cases} -10\% & , \text{dla } \omega = \omega_{1} \\ 0 & , \text{dla } \omega = \omega_{2} , \\ 20\% & , \text{dla } \omega = \omega_{3} \end{cases}$$

$$K_{2}(\omega) = \begin{cases} 20\% & , \text{dla } \omega = \omega_{1} \\ 20\% & , \text{dla } \omega = \omega_{2} \\ 10\% & , \text{dla } \omega = \omega_{3} \end{cases}$$

Porównaj wartości σ_1^2 , σ_2^2 i σ_w^2 , jeśli

- (a) $w_1 = 40\%$, $w_2 = 60\%$,
- (b) $w_1 = 80\%$, $w_2 = 20\%$,
- (c) $w_1 = -50\%$, $w_2 = 150\%$,
- 13. Wykaż, że jeśli na rynku nie jest możliwa krótka sprzedaż to wariancja portfela σ_w^2 spełnia zależność

$$\sigma_w^2 \leqslant \max\{\sigma_1^2, \sigma_2^2\}.$$

- 14. Rozważmy dwa walory z parametrami $\mu_1 = 9\%$, $\mu_2 = 15\%$. Czy za pomocą tych walorów można uzyskać portfel o oczekiwanej stopie zwrotu $\mu_w = 30\%$? Jeżeli tak, to czy zawsze jest to wykonalne?
- 15. Na rynku są notowane ceny dwóch akcji. Parametry pierwszej akcji wynoszą $\mu_1 = 12\%$, $\sigma_1 = 25\%$. Oczekiwana cena drugiej akcji wynosi $\mathbb{E}(S_2(1)) = 50$ PLN, a odchylenie standardowe ceny akcji wynosi $\sqrt{Var(S_2(1))} = 10$ PLN. Jaka powinna być cena dzisiaj drugiej akcji $S_2(0)$ tak, aby drugi walor dominował nad pierwszym?
- 16. Niech $\mu_1=0,12,\,\sigma_1=0,2,\,\mu_2=0,15,\,\sigma_2=0,4,\,\sigma_{12}=-0.02.$ Dla jakiego portfela
 - (a) $\mu_w = 11\%$?
 - (b) $\mu_w = 16\%$?
 - (c) $\mu_w = 100\%$

Ile wynosi σ_w w każdym z tych przypadków?