PUATO mercoledì 15 novembre 2017	DELCA SITUAZIONE
	X = T(X) EQ. RICONSIVA
	DEFINISCE ('INSIÈME X
	RICONSIVAMENTE COME PUNTO FISSO DI T
	T: PA > PA TRASFORMATIONE DI MISIEMI (DATO UN WITEME A
	Di TUTT I POSSIBILI VALGRI)
	PROALEMA: T PUO AVERE O PUNTI FISSI
	OPPURE PIU O) UN PUNTO FISO
	ARRIVERENO A DARE UN TEORGRA CAG CI
	CONSENTE DI VERIFICARE SE T MA PUNTI
	FISSI E DI SCECCIERNE UNO "CANONICO"
	CONCETTI PRECIMINARI: TO T MONOTONA: X = Y => T(X) = T(Y)
	$-\infty T CONTINVA : X_0 \leq X_1 \leq X_2 \leq \dots$
	$T(\bigcup_{i \ge 0} X_i) = \bigcup_{i \ge 0} T(X_i)$
	ES.
	e Sia monoTona Cle conTinua

$$T(X) = \begin{cases} \emptyset & \text{se } X \text{ e } \text{finito} \\ \{\Lambda\} & \text{se } X \text{ e } \text{ infinito} \end{cases}$$

$$T(\lbrace 1, 2, 3 \rbrace) = \emptyset$$
 $T(\emptyset) = \emptyset$
 $T(N) = \lbrace 1 \rbrace$

$$\times \subseteq ? = > T(\times) \subseteq T(Y)$$

$$T(x)=\phi$$
 $T(y)=\phi$ OK Poiche $\phi \leq \phi V$

$$T(x) = \{13\}$$
 $T(4) = \{13\}$ OK poiche $\{13 \le \{13\}\}$

$$T(x) = \phi$$
 $T(Y) = \{1\}$ OK poicne $\phi \subseteq \{1\}$

10 CASO X infinio e 4 finito Non la considea in quanto et impossible cle questo si verifichi deto cle XSY OK, Te monotona

mercoledì 15 novembre 2017 16:30 To Continua?	
Lo verfico Trovando un	Contraggempio:
Sce ² 50 X ₅ , X ₂ , X ₂ ,	In QUEITO MOOG:
X; = {0,, i}	
$X_{o} = \{o\} \qquad X_{n} = \{o, n\} \qquad X_{L} = \{o, n\} $	(0,2,12) ····
SONO INFINITI INSIEMI COMTENUTO NEL SUCCESSIVO	FINTI BGNUNO
$T\left(\bigcup_{i,j,0}\chi_{i}\right)$	$\bigcup_{i \not > 0} \left(T(X;) \right)$
- { PEN DESINIZIONE } T (IN)	= { PEL OFF. OIT3
$= \{ p \in R \mid o \in F, o : T \}$	= { PER OEF. oi U}

LA TRASFORMAZIONE NON E CONTINUA PENCHE LO TROVATO UN CONTROESEMPIO IN CUI NON VALE (NO DUE RISULTATI DIVERSI)

T: P -> P Proprieta Se T e Continua, allons e anche monotona (assia T continuo =) T monotora) Dimostrazione Assumiamo T continua, dobbiamo dimestrare X = Y => T(X) =T(Y) monotonia X e 1 sono une sequente (finite) di insiemi non decrescente. Quindi, per la continuitadi Tassiano $T(X \cup Y) = T(X) \cup T(Y)$ Dobbiamo dimoiTrane T(X) ST(Y) T(9)= { poidé X = y e vale la proprieTa = di U } ASB => AUB=B T(X04)

TEOREMA DI RICORSIONE Sia T: Pa -> Pa una Trasformazione di insiemi CONTINUA Allora valgono le Seguenti due proprieta: 1) $T = \bigcup_{i \geq 0} T^i(\emptyset)$ e un punto fisso di T 2) Dato JePA tale che J=T(J) (ossia Je ponto fisso) allone I = 5 Che cosa significa Ti(\$)? T' descrive l'applicazione (niconsive) di T ripeTuTa i volte es. $T^{\circ}(\phi) = \phi$ · (<u>-</u> 0 $T^{\prime}(\phi) = T(\phi)$ 1=1 $T^{2}(\phi) = T(T(\phi))$ i=2 $T^{3}(\phi) = T(T(T(\phi)))$ i=3 ossia $T^{i}(\phi) = \left(T(+i-n(\phi))\right) i > 0$ i = M

Che cosa dice il Teorema? -o posso otterere un punto fisso calcoland I= (x) n I e il minimo ponto Fisso di T. Qualunque altre punto fisse J e piut grande di I (la contiane)

A questo punto possiamo usare il Teorema	
per Travare LA solutione di un'aquazione	
niconsiva.	
ESEMPIO	
$\times = \{0\} \cup \times$	
Eq. niconsiva con T(X)={0} vX	
Che Abriano Ria VISTO AVERE	
(TOTT GLI INSIEMI CHE CONTENCO	wo 0)
Te-Continua Quinoi possiono	
APPLICARE IL TEOLEMA PER TROVARE IL	
PUNTO FISSO DA USARE COME SOCUTION	J
Dobbiamo calcolare I= () Ti(p)	
T 0 (Ø) = Ø	
$T^{1}(\phi) = T(\phi) = \{0\} \cup \phi = \{0\}$	03
$T^{2}(\phi) = T(T(\phi)) = T(\{0\})$	_
= {03 0 {03 = {	
$T^{3}(\phi) = T(T^{2}(\phi)) = T(\langle \circ \rangle).$	=

	= {0} 0 {0} - {0}
1 > 0	$T^{i}(\phi) = \{6\}$
T = 0	$T'(\phi) = T^{\circ}(\phi) \cup T'(\phi) \cup T^{2}(\phi) \cup \dots$ $= \phi \cup \{\circ\} \cup \{\circ\} \cup \dots$
	= {0}
	SECOLOO IL TECREMA QUESTO E IL MINIMO PUNTO FISSO DI T
	TUTTI GLI ACTINI POUTI FISSI

mercoledì 15 novembre 2017 17:27 Dimostriamo il Teorema di niconsione Per prima cosa consideriamo la seguente lemme Lemma Sia T: PA > PA continua. Allona, per ogni i > 0 vale $T^{i}(\emptyset) \subseteq T^{i+1}(\emptyset)$ Ossia, se Te continua, continuando ad applicare niconsisumente Tottempo insieni serpre più gnossi (o uguali). Per dimostrare il lemma usiamo il PRINCIPIO DI MOUZIONE to et un metodo per dimostrare che una certa proprieta P e vera per Tutti gli elementi di un insieme infinito (ad es. IN) (mel mostro cono per Tutti gl. i EIN) TO Data una proprieta P(X) sui numeri matural'; Se: (la proprieta e Vera per 0) 1) P(0) e veo

			' '
allone	n) => P(m+n) e veno P(n) vale 50: m \(IN \).	P p	la voite di pe m possions re cle p 2 ande pe mus
	P(x) = x > 0	ostri Amo Ch	15
1) CA 56	BASE X=0	P(0)) = VENA
P	$(m) = \frac{?}{?} P(m+n)$		
Q	oi vace Auco	TE P(m+1)	
	zincipio Di ETAT VALE S		

mercoledì 15 novembre 2017 17:41 Dimostratione del Romma (per indusione) CASO BASE (i=0) $T^{\circ}(\phi) \subseteq T^{\prime}(\phi)$? $T^{\circ}(\phi)$ = { pe def. d; Ti} C { poide = Ø = Solloirsière di quellinque } T1(p) LA PROPRIETA VALE PEL 1=0 POICHE us rostrato cue To(\$) 5 T1(\$) CASO INDUTTIVO $\int T_{\infty}^{\infty}(\phi) \leq T_{\infty}^{\infty}(\phi)$ Provieto PEN 1 POTESI AVITTUA $T^{min}(\phi) \leq T^{m+2}(\phi)$ PROPRIETATION

M+1 TM+1 (p)

_ { per defi Tig $\top (\top^{\sim} (\phi))$ PER PROTESI MOUTINA SO CHE TO (\$) STORM (\$)

INOCTRE SO CHE T & CONTINUA, QUINDI MONOTONA? $T(T^{m+n}(\phi))$ ASB => $T(\Delta)$ ST(B) = { pe def. si Ti} T m+2 (Ø) Quidoi TM+1 (\$) E TMEZ (\$) CLE E PROPRIO QUELLO CLE VOLE VO DIMOSTRARE QUINDI IL LEMMA VALE PER TUTTI GLI I