# MATH 2135 Linear Algebra

Chapter 6 Inner Product Spaces

Alyssa Motas

April 6, 2021

## Contents

| 1 | <b>6.A</b> | Inner Products and Norms                         | 3         |
|---|------------|--------------------------------------------------|-----------|
|   | 1.1        | Definition of dot product                        | 3         |
|   | 1.2        | Definition of inner product                      | 4         |
|   |            | 1.2.1 Examples                                   | 5         |
|   | 1.3        | Definition of inner product space                | 5         |
|   | 1.4        | Basic properties of an inner product             | 6         |
|   | 1.5        | Definition of norm, $  v  $                      | 6         |
|   | 1.6        | Basic properties of the norm                     | 7         |
|   | 1.7        | Definition of orthogonal                         | 7         |
|   | 1.8        | Orthogonality and 0                              | 7         |
|   | 1.9        | Pythagorean Theorem                              | 8         |
|   | 1.10       | Orthogonal Decomposition (Projection)            | 9         |
|   | 1.11       | Cauchy-Schwarz Inequality                        | 10        |
|   |            | 1.11.1 Examples of the Cauchy-Schawrz Inequality | 11        |
|   | 1.12       | Triangle Inequality                              | 11        |
|   |            | Parallelogram Equality                           | 12        |
| 2 | 6.B        | Orthonormal Bases                                | 12        |
| 3 | 6.C        | Orthogonal Complements and Minimization Problems | <b>12</b> |

### 1 6.A Inner Products and Norms

To motivate the concept of inner product, think of vectors in  $\mathbb{R}^2$  and  $\mathbb{R}^3$  as arrows with initial point at the origin. The length of a vector x in  $\mathbb{R}^2$  or  $\mathbb{R}^3$  is called the *norm* of x, denoted ||x||. Thus for  $x=(x_1,x_2)\in\mathbb{R}^2$ , we have  $||x||=\sqrt{x_1^2+x_2^2}$ . The generalization to  $\mathbb{R}^n$  is: we defined the norm of  $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$  by

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}.$$



The norm is not linear on  $\mathbb{R}^n$ .

#### 1.1 Definition of dot product

For  $x, y \in \mathbb{R}^n$ , the **dot product** of x and y, denoted  $x \cdot y$ , is defined by

$$x \cdot y = x_1 y_1 + \dots + x_n y_n$$

where  $x = (x_1, \ldots, x_n)$  and  $y = (y_1, \ldots, y_n)$ . Note that the dot product of two vectors in  $\mathbb{R}^n$  is a number, not a vector.

An inner product is a generalization of the dot product. Recall that if  $\lambda = a + bi$ , where  $a, b \in \mathbb{R}$ , then

- the absolute value of  $\lambda$ , denoted  $|\lambda|$ , is defined by  $|\lambda| = \sqrt{a^2 + b^2}$ ;
- the complex conjugate of  $\lambda$ , denoted  $\overline{\lambda}$ , is defined by  $\overline{\lambda} = a bi$ ;
- $\bullet \ |\lambda|^2 = \lambda \overline{\lambda}.$

For  $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ , we define the norm of z by

$$||z|| = \sqrt{|z_1|^2 + \dots + |z_n|^2}.$$

The absolute values are needed because we want ||z|| to be nonegative number. Note that

$$||z||^2 = z_1 \overline{z_1} + \dots + z_n \overline{z_n}.$$

We want to think of  $||z||^2$  as the inner product of z with itself. The equation above suggests that the inner product of  $w = (w_1, \ldots, w_n) \in \mathbb{C}^n$  with z should equal

$$w_1\overline{z_1} + \cdots + w_n\overline{z_n}$$
.

If the roles of w and z were interchanged, the expression above would be its complex conjugate. We should expect that the inner product of w with z equals the complex conjugate of the inner product of z with w.

## 1.2 Definition of inner product

An *inner product* on V is a function that takes each ordered pair (u, v) of elements of V to a number  $\langle u, v \rangle \in \mathbf{F}$  and has the following properties:

positivity

$$\langle v, v \rangle \ge 0$$
 for all  $v \in V$ ;

definiteness

$$\langle v, v \rangle = 0$$
 if and only if  $v = 0$ ;

additivity in first slot

$$\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$$
 for all  $u,v,w\in V$ ;

homogeneity in first slot

$$\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$$
 for all  $\lambda \in \mathbf{F}$  and all  $u, v \in V$ ;

conjugate symmetry

$$\langle u, v \rangle = \overline{\langle v, v \rangle}$$
 for all  $u, v \in V$ .

Every real number equals its complex conjugate. If we are dealing with a real vector space, then the last condition can be  $\langle u, v \rangle = \langle v, u \rangle$  for all  $v, w \in V$ .

#### 1.2.1 Examples

(a) The **Euclidean inner product** on  $\mathbf{F}^n$  is defined by

$$\langle (w_1, \dots, w_n), (z_1, \dots, z_n) \rangle = w_1 \overline{z_1} + \dots + w_n \overline{z_n}.$$

(b) If  $c_1, \ldots, c_n$  are positive numbers, then an inner product can be defined on  $\mathbf{F}^n$  by

$$\langle (w_1, \dots, w_n), (z_1, \dots, z_n) \rangle = c_1 w_1 \overline{z_1} + \dots + c_n w_n \overline{z_n}.$$

(c) An inner product can be defined on the vector space of continuous real-valued functions on the interval [-1,1] by

$$\langle f, g \rangle = \int_{-1}^{1} f(x) \overline{g(x)} dx.$$

This is an inner product since for example: additivity in the left slot is defined as

$$\langle f + h, g \rangle = \int_{-1}^{1} (f(x) + h(x)) \overline{g(x)} dx$$
$$= \int_{-1}^{1} f(x) \overline{g(x)} + \int_{-1}^{1} h(x) \overline{g(x)} dx$$
$$= \langle f, g \rangle + \langle h, g \rangle.$$

(d) An inner product can be defined on  $\mathcal{P}(\mathbb{R})$  by

$$\langle p, q \rangle = \int_0^\infty p(x)q(x)e^{-x}dx.$$

(e) The dot product on  $\mathbb{R}^n$ 

$$\langle v, w \rangle = v \cdot w = x_1 y_1 + \dots + x_n y_n$$

and

$$\langle v, v \rangle = v \cdot v = x_1^2 + \dots + x_n^2 \ge 0.$$

#### 1.3 Definition of inner product space

An *inner product space* is a vector space V along with an inner product on V. For the rest of this chapter, V denotes an inner product space over  $\mathbf{F}$ .

## 1.4 Basic properties of an inner product

(a) For each fixed  $u \in V$ , the function that takes v to  $\langle v, u \rangle$  is a linear map from V to  $\mathbf{F}$ .

Proof. 
$$\bullet$$
  $f(v+v') = \langle v+v', u \rangle = \langle v, u \rangle + \langle v', u \rangle = f(v) + f(v')$   
 $\bullet$   $f(\lambda v) = \cdots = \lambda f(v)$ .

- (b)  $\langle 0, u \rangle = 0$  for every  $u \in V$ .
- (c)  $\langle u, 0 \rangle = 0$  for every  $u \in V$ .
- (d)  $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$  for all  $u, v, w \in V$ .

*Proof.* This is additivity in the second slot.

$$\begin{split} \langle u, v + w \rangle &= \overline{\langle v + w, u \rangle} \\ &= \overline{\langle v, u \rangle + \langle w, u \rangle} \\ &= \overline{\langle v, u \rangle} + \overline{\langle w, u \rangle} \\ &= \langle u, v \rangle + \langle u, w \rangle. \end{split}$$

(e)  $\langle u, \lambda v \rangle = \overline{\lambda} \langle u, v \rangle$  for all  $\lambda \in \mathbf{F}$  and  $u, v \in V$ .

*Proof.* This is homogeneity in the second slot.

$$\begin{split} \langle u, \lambda v \rangle &= \overline{\langle \lambda v, u \rangle} \\ &= \overline{\lambda \langle v, u \rangle} \\ &= \overline{\lambda} \langle v, u \rangle \\ &= \overline{\lambda} \langle u, v \rangle. \end{split}$$

## 1.5 Definition of norm, ||v||

For  $v \in V$ , the **norm** of v, denoted ||v||, is defined by

$$||v|| = \sqrt{\langle v, v \rangle} \ge 0.$$

6

Note that  $||v||^2 = \langle v, v \rangle$ .

## 1.6 Basic properties of the norm

Suppose  $v \in V$ .

- (a) ||v|| = 0 if and only if v = 0.
- (b)  $||\lambda v|| = |\lambda|||v||$  for all  $\lambda \in \mathbf{F}$ .

*Proof.* (a) The desired result holds because  $\langle v, v \rangle = 0$  if and only if v = 0.

(b) Suppose  $\lambda \in \mathbf{F}$ . then

$$\begin{aligned} ||\lambda v||^2 &= \langle \lambda v, \lambda v \rangle \\ &= \lambda \langle v, \lambda v \rangle \\ &= \lambda \overline{\lambda} \langle v, v \rangle \\ &= |\lambda|^2 ||v|| 2. \end{aligned}$$

Taking square roots now gives the desired equality.

1.7 Definition of orthogonal

Two vectors  $u, v \in V$  are called **orthogonal** if  $\langle u, v \rangle = 0$ . We write  $u \perp v$  to mean "u is orthogonal to v."

1.8 Orthogonality and 0

- (a) 0 is orthogonal to every vector in V.
- (b) 0 is the only vector in V that is orthogonal to itself.

*Proof.* If  $v \in V$  and  $\langle v, v \rangle = 0$ , then v = 0 (by definition of inner product).

- (c)  $u \perp v \Leftrightarrow v \perp u$
- (d)  $u \perp w$  and  $v \perp w \Rightarrow (u+v) \perp w$ .
- (e)  $u \perp w$  and  $\lambda \in \mathbf{F} \Rightarrow (\lambda u) \perp w$ .

The last two properties imply that the set

$$w^{\perp} = \{ v \mid v \perp w \}$$

is a subspace of V, called the  $orthogonal\ complement\ of\ V$ .



## 1.9 Pythagorean Theorem

Suppose u and v are orthogonal vectors in V. Then

$$||u + v||^2 = ||u||^2 + ||v||^2.$$

*Proof.* We have

$$\begin{aligned} ||u+v||^2 &= \langle u+v, u+v \rangle \\ &= \langle u, u+v \rangle + \langle v, u+v \rangle \\ &= \langle u, u \rangle + \underbrace{\langle u, v \rangle + \langle v, u \rangle}_{0} + \langle v, v \rangle \\ &= \langle u, u \rangle + \langle v, v \rangle \\ &= ||u||^2 + ||v||^2, \end{aligned}$$

as desired.

## 1.10 Orthogonal Decomposition (Projection)

Given  $u, v \in V$ , assuming  $v \neq 0$ . Then we can write u as a sum of two vectors, the first of which is parallel to v and the second is orthogonal to v.



Let 
$$c = \frac{\langle u, v \rangle}{||v||^2} = \frac{\langle u, v \rangle}{\langle v, v \rangle}$$
 and let  $w = u - cv$ . Then  $\langle w, v \rangle = 0$  and  $u = cv + w$ .

*Proof.* We know u = cv + w holds by the definition of w. We also know that cv is parallel to v by the definition of "parallel." To prove that w is orthogonal to v, we can calculate:

$$\begin{split} \langle w,v\rangle &= \langle u-cv,v\rangle \\ &= \langle u,v\rangle - c\langle v,v\rangle \\ &= \langle u,v\rangle - \frac{\langle u,v\rangle}{\langle v,v\rangle} \langle v,v\rangle \\ &= \langle u,v\rangle - \langle u,v\rangle = 0. \end{split}$$

Therefore,  $w \perp v$ .

## 1.11 Cauchy-Schwarz Inequality

Suppose  $u, v \in V$ . Then

$$|\langle u, v \rangle| \le ||u|| ||v||.$$

This inequality is an equality if and only if one of u, v is a scalar multiple of the other.

Proof. Consider two cases:

Case 1. v = 0 and in this case,  $\langle u, v \rangle = 0, ||u|| \cdot ||v|| = ||u|| \cdot 0 = 0$ . So the inequality holds.

Case 2.  $v \neq 0$ . Consider the orthogonal decomposition

$$u = cv + w$$

where  $c = \frac{\langle u, v \rangle}{\langle v, v \rangle}$  and w = u - cv. We know that  $w \perp v$ . By Pythagoras' Theorem,

$$\begin{aligned} ||u||^2 &= ||cv||^2 + ||w||^2 \\ &\geq ||cv||^2 \\ &= |c|^2 ||v||^2 \\ &= \left|\frac{\langle u, v \rangle}{||v||^2}\right|^2 ||v||^2 \\ &= \frac{|\langle u, v \rangle|^2}{||v||^4} \cdot ||v||^2 \\ &= \frac{|\langle u, v \rangle|^2}{||v||^2}. \end{aligned}$$

We just proved that

$$||u||^2 \ge \frac{|\langle u, v \rangle|^2}{||v||^2}.$$

Multiply both sides of the equation by  $||v||^2$  and we get

$$||u||^2||v||^2 \ge |\langle u, v \rangle|^2.$$

Take the square root of both sides of the equation and we get

$$||u|| \cdot ||v|| \ge |\langle u, v \rangle|$$

which is the Cauchy-Schwarz inequality.

#### 1.11.1 Examples of the Cauchy-Schawrz Inequality

- (a) If  $x_1, \dots, x_n, y_1, \dots, y_n \in \mathbb{R}$  then  $|x_1y_1 + \dots + x_ny_n|^2 \le (x_1^2 + \dots + x_n^2)(y_1^2 + \dots + y_n^2).$
- (b) If f, g are continuous real-valued functions on [-1, 1], then

$$\left| \int_{-1}^{1} f(x)g(x)dx \right|^{2} \leq \left( \int_{-1}^{1} (f(x))^{2}dx \right) \left( \int_{-1}^{1} (g(x))^{2}dx \right).$$

#### 1.12 Triangle Inequality

The Triangle Inequality implies that the shortest path between two points is a line segment. Suppose  $u, v \in V$ . Then

$$||u + v|| \le ||u|| + ||v||.$$

This inequality is an equality if and only if one of u, v is a nonnegative multiple of the other.



*Proof.* We have

$$||u+v||^{2} = \langle u+v, u+v \rangle$$

$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$

$$= \langle u, u \rangle + \langle u, v \rangle + \overline{\langle u, v \rangle} + \langle v, v \rangle$$

$$\leq \langle u, u \rangle + 2|\langle u, v \rangle| + \langle v, v \rangle$$

$$\leq \langle u, u \rangle + 2||u||||v|| + \langle v, v \rangle \quad \text{(Cauchy-Schwarz)}$$

$$= ||u||^{2} + 2||u||||v|| + ||v||^{2}$$

$$= (||u|| + ||v||)^{2}$$

Taking the square roots:

$$||u + v|| \le ||u|| + ||v||,$$

thus we get the triangle inequality.

#### 1.13 Parallelogram Equality

In every parallelogram, the sum of the squares of the lengths of the diagonals equals the sum of the squares of the lengths of the four sides. Suppose  $u, v \in V$ . Then

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$



*Proof.* We have

$$\begin{split} ||u+v||^2 + ||u-v||^2 &= \langle u+v, u+v \rangle + \langle u-v, u-v \rangle \\ &= ||u||^2 + ||v||^2 + \langle u, v \rangle + \langle v, u \rangle \\ &+ ||u||^2 + ||v||^2 - \langle u, v \rangle - \langle v, u \rangle \\ &= 2(||u||^2 + ||v||^2), \end{split}$$

as desired.  $\Box$ 

## 2 6.B Orthonormal Bases

## 3 6.C Orthogonal Complements and Minimization Problems