# Part III Stochastic Calculus Based on lectures by J. Miller

# Notes taken by Pantelis Tassopoulos

# Lent 2024

# Contents

Lecture 1

| 1 | Mo                                | tivation                                        | 2  |  |
|---|-----------------------------------|-------------------------------------------------|----|--|
| 2 | Preliminaries                     |                                                 |    |  |
|   | 2.1                               | Càdlàg processes, functions of finite variation | 4  |  |
|   | 2.2                               | Random integrands                               | 5  |  |
| 3 | Loc                               | al Martingales.                                 | 8  |  |
| 4 | The                               | e Stochastic Integral                           | 14 |  |
|   | 4.1                               | Space of integrators                            | 16 |  |
|   | 4.2                               | Space of integrals                              | 18 |  |
|   | 4.3                               | The Space $L^2(M), M \in \mathcal{M}^2_c$       | 22 |  |
|   | 4.4                               | Itô integrals                                   | 23 |  |
| 5 | Semimartingales 29                |                                                 |    |  |
|   | 5.1                               | Itô's formula                                   | 33 |  |
|   | 5.2                               | Stratonovich Integral                           | 36 |  |
| 6 | Applications                      |                                                 |    |  |
|   | 6.1                               | Exponential MGs                                 | 41 |  |
| 7 | Stochastic Differential Equations |                                                 |    |  |
|   | 7.1                               | Lipschitz Coefficients                          | 45 |  |
|   | 7.2                               | Local solutions                                 | 49 |  |
|   | 7.3                               | Diffusion Processes                             | 53 |  |
|   | 7.4                               | Dirichlet and Cauchy problem                    | 56 |  |
|   |                                   |                                                 |    |  |

### 1 Motivation

This course is about developing a theory of calculus which is applicable to continuous time stochastic processes, e.g. Brownian motion. Why do we need a special theory?

Brownian motion is **not differentiable**.

| Ordinary calculus | Stochastic calculus         |
|-------------------|-----------------------------|
| Integral          | Itô (stochastic) integral   |
| Derivative        | Itô (stochastic) derivative |
| ODEs              | SDEs                        |

**Example:** Suppose that we have a gambler who repeatedly tosses a fair coin, betting \$1 on getting a heads for each toss. Let

$$\xi_k = \begin{cases} +1, & \text{heads on } k \text{th toss} \\ -1, & \text{otherwise.} \end{cases}$$

That is, the  $(\xi_k)$  are i.i.d. Bernoulli $(\pm 1)$ . Let

$$X_n = \sum_{k=1}^n \xi_k$$

be the net winnings of the gambler. Note that  $(X_n)$  is a simple random walk and  $X_0 = 0$ , hence is a martingale (MG) w.r.t.  $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$ . Suppose that at the *n*th toss, bet  $h_k$  on heads. Then

$$(H \cdot X)_n = \sum_{k=1}^n h_k (X_k - X_{k-1}).$$

We interpret  $(H \cdot X)_n$  as the gains process from a self-financing strategy H which gives the net winnings after n tosses. Assume that  $(H_n)$  is a deterministic sequence.

Claim:  $(H \cdot X)_n$  is an  $\mathcal{F}_n$ -martingale.

- (a)  $H_k$  is integrable  $\checkmark$
- (b)  $H_k$  is adapted  $\checkmark$

(c) 
$$\mathbb{E}[(H \cdot X)_{n+1} - (H \cdot X)_n \mid \mathcal{F}_n] = H_{n+1} \cdot \mathbb{E}[X_{n+1} - X_n \mid \mathcal{F}_n] = 0.$$

More generally, the same is true if we take  $H_{n+1}$  to be  $\mathcal{F}_n$ -measurable (and integrable). This is called a **previsible process**. As before,  $(H \cdot X)$  gives the net winnings of the gambler. This is called a **martingale transform**.

Goal for first part of the course: Extend this reasoning to define the *stochastic integral* 

$$(H \cdot X)_t = \int_0^t H_s \, dX_s \tag{$\spadesuit$}$$

where H is previsible and X is a continuous martingale (e.g., Brownian motion). Crucially, one cannot use the Lebesgue–Stieltjes integral to define  $(\spadesuit)$ , since this requires X to have finite

variation, and the only continuous martingales with finite variation are *constant*, as we will show later in the course. Thus, our strategy to define the Itô Integral will be to set

$$(H \cdot X)_t \coloneqq \lim_{\varepsilon \to 0} \sum_{k=1}^{\lfloor t/\varepsilon \rfloor} H_{k\varepsilon} (X_{k\varepsilon} - X_{(k-1)\varepsilon})$$

We need to be careful about the type of limit since X in general will be rough (not differentiable), like Brownian motion. To get convergence, we need to take advantage of cancellations. For example, if X is a Brownian motion and H is a deterministic and continuous process. We have

$$\mathbb{E}\left[\left(\sum_{k\varepsilon\leq t} H_{k\varepsilon}(X_{(k+1)\varepsilon} - X_{k\varepsilon})\right)^{2}\right] = \mathbb{E}\left[\sum_{k=0}^{\lfloor t/\varepsilon\rfloor} H_{k\varepsilon}^{2}(X_{(k+1)\varepsilon} - X_{k\varepsilon})^{2} + \sum_{k\neq\ell} H_{k\varepsilon}H_{\ell\varepsilon}(X_{(k+1)\varepsilon} - X_{k\varepsilon})(X_{(\ell+1)\varepsilon} - X_{\ell\varepsilon})\right]$$

$$= \mathbb{E}\left[\sum_{k=0}^{\lfloor t/\varepsilon\rfloor} H_{k\varepsilon}^{2}(X_{(k+1)\varepsilon} - X_{k\varepsilon})^{2}\right] = \sum_{k=0}^{\lfloor t/\varepsilon\rfloor} H_{k\varepsilon}^{2} \cdot \varepsilon \to \int_{0}^{t} H_{s}^{2} ds \quad \text{as } \varepsilon \to 0.$$

Cancellations come from martingale orthogonality and are what make it possible to define the Itô integral.

Next, learn about properties of the integral:

- Stochastic analogue of the chain rule,
- Stochastic analogue of integration by parts.

Formulas look like those in regular calculus but with an extra term to reflect that X is rough (quadratic variation).

$$Y_t = \int_0^t H_s dX_s \iff dY_t = H_t dX_t.$$

Itô's formula will tell us how to write  $df(Y_t)$  in terms of  $dY_t$  for  $f \in \mathbb{C}^2$ . It has many applications, for example the Dubins–Schwarz theorem which states that any continuous martingale is a time-change of Brownian motion.

Next look at stochastic differential equations (SDEs), i.e.,

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dB_t$$

where  $b, \sigma$  are "nice" and B is a Brownian motion. For  $\sigma \equiv 0$ , just an ODE. For  $\sigma \not\equiv 0$ , corresponds to adding noise which depends on time and the state of the system.

Last part of the course: diffusion processes and how they are related to SDEs, and how they can be used to solve PDEs involving  $2^{\text{nd}}$  order elliptic equations (e.g.,  $\Delta$ ).

Next time we will start with some preliminaries (càdlàg processes, function of finite variation, integral against a function/process of finite variation).

#### 2 Preliminaries

Lecture 2

### 2.1 Càdlàg processes, functions of finite variation

Recall that  $\alpha:[0,\infty)\to\mathbb{R}$  is càdlàg if  $\alpha$  is right-continuous and has left-hand limits:

$$\lim_{s \to t^+} \alpha(s) = \alpha(t), \quad \lim_{s \to t^-} \alpha(s) \text{ exists }.$$

Let  $\alpha(x-), x \in [0, \infty)$  be right-hand limit, and set

$$\Delta \alpha(x) := \alpha(x) - \alpha(x^{-}), x \in [0, \infty).$$

Suppose that  $\alpha$  is non-decreasing, càdlàg and a(0) = 0. Then there exists a unique Borel measure  $d\alpha$  on  $([0,t],\mathcal{B})$  with

$$d\alpha((s,t]) := \alpha(t) - \alpha(s)$$
, for all  $0 \le s < t$ .

For f measurable and integrable, then the Lebesgue–Stieltjes integral of f w.r.t.  $\alpha$  is defined by

$$\int_{(0,t]} f(s) \, \mathrm{d}\alpha(s) \quad \forall t \ge 0.$$

Then, by dominated convergence  $t \mapsto \int_{[0,t]} f(s) d\alpha(s)$  is a right-continuous function. Moreover, if f is continuous, then  $t \mapsto \int_0^t f(s) d\alpha(s)$  is continuous so we can write

$$\int_0^t f(s) \, \mathrm{d}\alpha(s) \coloneqq \int_{(0,t]} f(s) \, \mathrm{d}\alpha(s).$$

We want to integrate more general functions. Suppose that  $\alpha^+, a^-$  are functions satisfying the same conditions as before, and set  $a = a^+ - a^-$ . Define  $(f \cdot a)(t) = (f \cdot a^+)(t) - (f \cdot a^-)(t)$  for all f measurable so that both terms on the RHS are finite. This class of functions (i.e., differences of càdlàg non-decreasing functions) coincides with the càdlàg functions with finite variation.

**Definition 2.1.** Let  $\alpha:[0,\infty)\to\mathbb{R}$  be càdlàg. For each  $n\in\mathbb{N},t\geq0$ , let

$$v^{n}(t) := \sum_{k=0}^{\lceil 2^{n}t \rceil - 1} \left| \alpha \left( \frac{(k+1)t}{2^{n}} \right) - \alpha \left( \frac{kt}{2^{n}} \right) \right| . \tag{$\circledast$}$$

Then the limit  $v(t)_t := \lim_{n \to \infty} v^n(t)$  exists and is called the <u>total variation</u> of  $\alpha$  on [0, t].

If  $v(t)_t < \infty$  then we say that  $\alpha$  has finite variation on [0,t]. If  $v(t)_t < \infty$  for all  $t \geq 0$ , we say that  $\alpha$  is a càdlàq function of finite variation.

To see that  $\lim v^n(t)$  exists, fix t > 0 and let

$$t_n^+ = 2^{-n} \lceil 2^n t \rceil$$
 so that  $t_n^+ \ge t \ge t_n^- \quad \forall n$  
$$t_n^- = 2^{-n} \left( \lfloor 2^n t \rfloor - 1 \right)$$

and

$$v^{n}(t) = \sum_{k=0}^{2^{n}t_{n}^{-}-1} \left| a((k+1) \cdot 2^{-n}) - a(k \cdot 2^{-n}) \right| + \left| a(t_{n}^{+}) - a(t_{n}^{-}) \right|.$$

The triangle inequality gives that the first term is non-decreasing in n. The càdlàg property implies that the second term converges to the jump  $|\Delta a(t)|$ , hence  $v^n(t)$  converges as  $n \to \infty$ .

**Lemma 2.1.** Let a be a càdlàg function of finite variation. Then v is also càdlàg of finite variation with  $\Delta v(t) = |\Delta a(t)|$  for all  $t \geq 0$  and v is non-decreasing. In particular, if a is continuous, then so is v.

$$Proof.$$
 [22].

**Proposition 2.1.** A càdlàg function can be decomposed as a difference of two non-decreasing right-continuous functions if and only if it has finite variation.

*Proof.* Assume that  $a = a^+ - a^-$  are càdlàg, non-decreasing. NTS: a has finite variation. Note,

$$|a(t) - a(s)| \le (a^+(t) - a^+(s)) + (a^-(t) - a^-(s))$$
  $\forall 0 \le s < t.$ 

Plug this into ® and use that the sum telescopes for monotone functions to get that

$$v^{n}(t) \le \left(a^{+}(t_{n}^{+}) - a^{+}(0)\right) + \left(a^{-}(t_{n}^{+}) - a^{-}(0)\right).$$

Since  $a^+, a^-$  are right-continuous,

RHS 
$$\stackrel{n\to\infty}{\longrightarrow} (a^+(t) - a^+(0)) + (a^-(t) - a^-(0))$$

which gives that a has finite variation, as desired.

Now the reverse direction. Assume that  $v(t) < \infty$  for all t > 0. Set  $a^+ = \frac{1}{2}(v+a)$ ,  $a^- = \frac{1}{2}(v-a)$ . Then  $a = a^+ - a^-$  and  $a^+, a^-$  are càdlàg since v, a are càdlàg. NTS:  $a^\pm$  are non-decreasing.

Fix  $0 \le s < t$ , define  $t_n^{+/-}$  as before and  $s_n^{+/-}$  analogously. Then:

$$a^{+}(t) - a^{+}(s) = \lim_{n \to \infty} \frac{1}{2} \left( v^{n}(t) - v^{n}(s) + a(t_{n}^{+}) - a(s_{n}^{+}) \right)$$

$$= \lim_{n \to \infty} \frac{1}{2} \left[ \sum_{k=2^{n} s_{n}^{+}}^{2^{n} t_{n}^{-} - 1} \left( |a((k+1) \cdot 2^{-n}) - a(k \cdot 2^{-n})| + a((k+1) \cdot 2^{-n}) - a(k \cdot 2^{-n}) \right) + |a(t_{n}^{+}) - a(t_{n}^{-})| + (a(t_{n}^{+}) - a(t_{n}^{-})) \right] \ge 0.$$

Same argument works for  $a^-$ .

#### 2.2 Random integrands

We now discuss integration against random functions of finite variation.

Let  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$  filtered probability space. Recall that  $X_t(\omega), t \in [0, \infty) \to \mathbb{R}$  is adapted to  $(\mathcal{F}_t)_{t\geq 0}$  if  $X_t = X(\cdot, t)$  is  $\mathcal{F}_t$ -measurable for all  $t\geq 0$ . X is  $c\grave{a}dl\grave{a}g$  if  $X(\omega, \cdot)$  is  $c\grave{a}dl\grave{a}g$  for all  $\omega \in \Omega$ .

**Definition 2.2.** Given a càdlàg, adapted process  $A: \Omega \times [0, \infty) \to \mathbb{R}$ , its total variation process  $V: \Omega \times [0, \infty) \to \mathbb{R}$  is pathwise by setting  $V(\omega, t)$  to be the total variation of  $A(\omega, \cdot)$ .

**Lemma 2.2.** If A is càdlàg, adapted, and of finite variation then V is càdlàg, adapted, and non-decreasing.

*Proof.* Only NTS V is adapted. For  $t \ge 0$ ,  $t_n^- = 2^{-n}(\lceil 2^n t \rceil - 1)$ 

$$\tilde{V}_t^n = \sum_{k=0}^{2^n t_n^- - 1} \left| A_{(k+1) \cdot 2^{-n}} - A_{k \cdot 2^{-n}} \right|,$$

 $\tilde{V}_t^n$  adapted for all n since  $t_n^- \le t$ .

$$V_t = \lim_{n \to \infty} \left( \tilde{V}_t^n + |\Delta A(t)| \right)$$

which shows that  $V_t$  is  $\mathcal{F}_t$ -measurable.

Lecture 3 We now seek a class of functions so that the integral is adapted.

Recall from the introduction that a discrete-time process  $(H_n)_n$  is called <u>previsible</u> w.r.t.  $(\mathcal{F}_n)$  if  $H_{n+1}$  is measurable w.r.t.  $\mathcal{F}_n$  for all n.

**Definition 2.3.** The previsible  $\sigma$ -algebra  $\mathcal{P}$  on  $\Omega \times (0, \infty)$  is the  $\sigma$ -algebra which is generated by sets of the form  $E \times (s,t]$  where  $E \in \mathcal{F}_s$ , s < t. A process  $H : \Omega \times (0,\infty) \to \mathbb{R}$  is previsible if it is measurable with respect to  $\mathcal{P}$ .

#### **Examples:**

- 1.  $H(\omega, t) = Z(\omega) \cdot \mathbf{1}_{(t_1, t_2]}(t), t_1 < t_2, Z \text{ is } \mathcal{F}_{t_1}\text{-measurable.}$
- 2.  $H(\omega,t) = \sum_{k=0}^{n-1} Z_k(\omega) \cdot \mathbf{1}_{(t_k,t_{k+1}]}(t)$ , for  $0 = t_0 < \cdots < t_n$  and  $Z_k$  is  $\mathcal{F}_{t_k}$ -measurable.

A simple process, will be important for the construction of the Itô integral.

**Remark.** Simple processes are left-continuous and adapted. It turns out that  $\mathcal{P}$  is the smallest  $\sigma$ -algebra on  $\Omega \times (0,\infty)$  so that all left-continuous processes are measurable,  $[\mathcal{L}]$ . In general, càdlàg processes are not previsible, but their left-continuous modification is.

**Proposition 2.2.** Let X be a càdlàg, adapted process and let  $H_t = X_{t-}$ ,  $t \ge 0$ . Then H is previsible.

*Proof.* Since X is càdlàg and adapted, it is clear that H is left-continuous and adapted. For each n, set

$$H_t^n = \sum_{k=0}^{\infty} H_{k \cdot 2^{-n}} \cdot \mathbf{1}_{(k \cdot 2^{-n}, (k+1) \cdot 2^{-n}]}(t)$$

Then  $H^n$  is previsible for all n and since H is a left-continuous process,

 $\lim_{n\to\infty} H_t^n = H_t \quad \forall t \Rightarrow H$  is previsible as a limit of previsible processes.  $\square$ 

**Remark.** The proposition above implies that continuous, adapted processes are previsible.

**Proposition 2.3.** If H is previsible, then  $H_t$  is measurable w.r.t.  $\mathcal{F}_{t-} = \sigma(\mathcal{F}_s : s < t), \forall t \geq 0.$ 

Proof. [].

**Remark.** The Poisson process  $(N_t)$  is not previsible since  $N_t$  is not  $\mathcal{F}_{t-}$ -measurable, where  $(\mathcal{F}_t)$  is the natural filtration.

Now we are going to see that integrating a previsible process H against a càdlàg process with a.s. finite variation A yields a well-defined and adapted càdlàg process of finite variation.

**Theorem 2.1.** Let  $A: \Omega \times (0, \infty) \to \mathbb{R}$  be a càdlàg process which is adapted and has finite variation V. Let H be a previsible process with

$$\int_{0 < s < t} |H(\omega, s)| \, dV(s) < \infty \quad \forall t > 0, \, \omega \in \Omega.$$
 (2.1)

Then the process  $H \cdot A : \Omega \times (0, \infty) \to \mathbb{R}$  given by

$$(H \cdot A)(\omega, t) = \int_{(0,t]} H(\omega, s) \, dA(\omega, s), \tag{2.2}$$

with

$$(H \cdot A)(\omega, 0) = 0,$$

is càdlàg, adapted and has finite variation.

*Proof.* The integral in 2.2 is well-defined due to 2.1. Indeed, let  $H^+ = \max(H, 0)$ ,  $H^- = \max(-H, 0)$ , and

$$A^{\pm} = \frac{1}{2}(V \pm A).$$

Then  $H = H^+ - H^-$  and  $A = A^+ - A^-$  and

$$H \cdot A = (H^+ - H^-) \cdot (A^+ - A^-) = H^+ \cdot A^+ + H^- \cdot A^- - H^+ \cdot A^- - H^- \cdot A^+.$$

All terms on RHS are finite by 2.1. Need to show:

- 1.  $H \cdot 1$  is càdlàg,
- 2. adapted,
- 3. finite variation.

Step 1. Note that  $\mathbf{1}_{(0,s]} \to \mathbf{1}_{(0,t]}$  as  $s \downarrow t$  and  $\mathbf{1}_{(0,s]} \to \mathbf{1}_{(0,t]}$  as  $s \nearrow t$ . By definition,

$$(H \cdot A)_t = \int H_s \cdot \mathbf{1}_{(s \in (0,t])} dA_s.$$

Hence,

$$(H \cdot A)_t = \int H_s \cdot \lim_{r \downarrow t} \mathbf{1}_{(s \in (0,r])} dA_s$$

$$\stackrel{\text{(DCT)}}{=} \lim_{r \downarrow t} \int H_s \cdot \mathbf{1}_{(s \in (0,r])} dA_s = \lim_{r \downarrow t} (H \cdot A)_r$$

giving right-continuity. An analogous argument gives that  $H \cdot A$  has left-limits, hence is càdlàg. Also,

$$\Delta (H \cdot A)_t = \int H_s \cdot \mathbf{1}_{(s=t)} \, dA_s = H_t \cdot \Delta A_t$$

Step 2. "Monotone class" style argument. Suppose

$$H = \mathbf{1}_{B \times (s,u]}, \quad B \in \mathcal{F}_s, \quad s < u.$$

Then

$$(H \cdot A)_t = \mathbf{1}_B \cdot (A_{t \wedge u} - A_{t \wedge s})$$
, which is  $\mathcal{F}_t$ -measurable.

Let  $\mathcal{A} = \{Z \in \mathcal{P} : \mathbf{1}_Z \cdot A \text{ is adapted}\}$ . Want to show:  $\mathcal{A} = \mathcal{P}$ . Let

$$\Pi = \{B \times (s, u] : B \in \mathcal{F}_s, \ s < u\}.$$

We have shown  $\Pi \subseteq \mathcal{A}$ , and know that  $\Pi$  is a  $\pi$ -system generating  $\mathcal{P}$ . Not difficult to see that  $\mathcal{A}$  is also a d-system, and by Dynkin's lemma we deduce

$$\mathcal{P} = \sigma(\Pi) \subseteq \mathcal{A} \subseteq \mathcal{P} \Rightarrow \mathcal{A} = \mathcal{P}.$$

Now suppose that  $H \geq 0$  so previsible. Set

$$H^n = (2^{-n} | 2^n H |) \wedge n$$

$$= \sum_{k=0}^{n2^n-1} 2^{-n} \cdot k \cdot \mathbf{1} \left( H \in \left[ \frac{\Sigma - nk}{2^n}, \frac{\Sigma - n(k+1)}{2^n} \right) \right) + n \cdot \underbrace{\mathbf{1} (H \ge n)}_{\in \mathcal{P}}.$$

This implies that  $H^n$  is a finite linear combination of functions of the form  $\mathbf{1}_C$ , where  $C \in \mathcal{P}$  which in turn implies that  $(H^n \cdot A)_t$  is  $\mathcal{F}_t$ -measurable for all t. By the monotone convergence theorem,  $(H^n \cdot A)_t \to (H \cdot A)_t$  as  $n \to \infty$ . For general H, write  $H = H^+ - H^-$ , where  $H^{\pm} = \max(\pm H, 0)$ , and use that

$$(H \cdot A)_t = (H^+ \cdot A)_t - (H^- \cdot A)_t$$
 (both  $\mathcal{F}_t$ -measurable).

Step 3. To show that  $H \cdot A$  has finite variation, observe that

$$H \cdot A = (H^+ - H^-) \cdot (A^+ - A^-) = (H^+ \cdot A^+ + H^- \cdot A^-) - (H^- \cdot A^+ + H^+ \cdot A^-)$$

is a difference of non-decreasing functions.

Next, we will introduce and generalise our theory of stochastic integration to integrating against Martingales.

Lecture 4

# 3 Local Martingales.

Let  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$  be a filtered probability space.

**Definition 3.1.** We say that  $(\mathcal{F}_t)_{t\geq 0}$  satisfies the usual conditions if:

- 1.  $\mathcal{F}_t$  contains all  $\mathbb{P}$ -null sets.
- 2.  $(\mathcal{F}_t)_{t\geq 0}$  is right-continuous:  $\mathcal{F}_t = \bigcap_{s>t} \mathcal{F}_s$ .

Throughout, assume that  $(\mathcal{F}_t)$  satisfies the usual conditions. Recall that an integrable adapted process X is an  $(\mathcal{F}_t)$  martingale if

$$\mathbb{E}[X_t \mid \mathcal{F}_s] = X_s \quad \text{a.s.}$$

supermartingale if

$$\mathbb{E}[X_t \mid \mathcal{F}_s] \leq X_s$$
 a.s.

submartingale if

$$\mathbb{E}[X_t \mid \mathcal{F}_s] \geq X_s$$
 a.s.

for all  $0 \le s < t$ .

A random variable T is called a *stopping time* if  $\{T \leq t\} \in \mathcal{F}_t$  for all  $t \geq 0$ . If X is càdlàg and adapted to  $(\mathcal{F}_t)$  and we set

$$\mathcal{F}_T = \{ E \in \mathcal{F} : E \cap \{ T \le t \} \in \mathcal{F}_t \text{ for all } t \ge 0 \}$$

then  $X_T$  is an  $\mathcal{F}_T$ -measurable random variable.

If X is a martingale then  $X_t^T = X_{t \wedge T}$  is also a martingale.

**Theorem 3.1** (Optional Stopping Theorem (OST)). Let X be an adapted, càdlàg and integrable process. Then the following are equivalent:

- 1. X is a martingale.
- 2.  $X^T := (X_{t \wedge T})_{t \geq 0}$  is a martingale for every stopping time T.
- 3. For all bounded stopping times  $S \leq T$ , we have

$$\mathbb{E}[X_T \mid \mathcal{F}_S] = X_S \quad a.s.$$

4. For all bounded stopping times T, we have that

$$\mathbb{E}[X_T] = \mathbb{E}[X_0].$$

**Definition 3.2.** A càdlàg adapted process  $X_t$  is called a <u>local martingale</u> if there exists a sequence  $(T_n)_{n\geq 0}$  of stopping times with  $T_n \nearrow \infty$  a.s. (non-decreasing), and for every n, such that the stopped process  $X^{T_n}$  is a (true) martingale for all  $n \geq 1$ . In this case, we say that  $(T_n)$  reduces X.

Note that a MG is a local martingale as any deterministic sequence  $T_n \nearrow \infty$  will reduce it.

**Example.** Let B be a standard Brownian motion in  $\mathbb{R}^3$ . Let  $M_t = \frac{1}{|B_t|}$ . (

- (i)  $(M_t)_{t\geq 1}$  is  $L^2$ -bounded:  $\sup_{t\geq 1} \mathbb{E}[M_t^2] < \infty$ .
- (ii)  $\mathbb{E}[M_t] \to 0 \text{ as } t \to \infty$ .
- (iii) M is a supermartingale.

M cannot be a martingale, otherwise its expectation would vanish by (ii), but this cannot be true since  $M_t > 0$  a.s.

For each  $n \ge 1$ , set:

$$T_n = \inf \left\{ t \ge 1 : |B_t| < \frac{1}{n} \right\}$$
  
=  $\inf \left\{ t \ge 1 : M_t > n \right\}.$ 

We want to show

- 1)  $(M_{t \wedge T_n})_{t \geq 1}$  is a martingale for all n.
- 2)  $T_n \to \infty$  as  $n \to \infty$  a.s.

Note that

$$n \le M_1 \Rightarrow T_n = 1, \qquad n > M_1 \Rightarrow T_n > 1.$$

Since  $|B_t|$  cannot hit 1/n before hitting  $|B_1|$ , have that  $T_n$  is non-decreasing. Now, recall from **Advanced Probability:**  $f \in C_0^{\infty}(\mathbb{R})$ 

$$f(B_t) - \frac{1}{2} \int_0^t \Delta f(B_s) ds$$
 is a martingale.

Note that  $f(x) = \frac{1}{|x|}$  is a harmonic function in  $\mathbb{R}^3 \setminus \{0\}$ . Let  $(f_n)_{n \geq 1}$  be a sequence of  $C_c^{\infty}(\mathbb{R}^3)$  with  $f_n(x) = f(x)$  on  $\{|x| \geq \frac{1}{n}\}$ . If

$$0 < |B_t| < \frac{1}{n}$$
, then  $T_n = 1$  and so  $M_{t \wedge T_n} = M_t$  is a martingale.

Since  $B_1 \neq 0$  a.s., we have that  $|B_1| > \frac{1}{n}$  for all n sufficiently large enough, in which case

$$f(B_{t \wedge T_n}) = f^n(B_{t \wedge T_n}) \quad \forall t \ge 1.$$

Thus:

$$M_{t \wedge T_n} = f(B_{t \wedge T_n}) - f(B_t) + f(B_1)$$

$$= \left[ f(B_{t \wedge T_n}) - f(B_t) - \frac{1}{2} \int_1^{t \wedge T_n} \Delta f(B_s) \, ds \right] + f(B_1)$$

$$= \left[ f^n(B_{t \wedge T_n}) - f^n(B_t) - \frac{1}{2} \int_1^{t \wedge T_n} \Delta f^n(B_s) \, ds \right] + f^n(B_1)$$

and so we conslude  $M_{T_n} = (M_{t \wedge T_n})_{t \geq 1}$  is a martingale.

We also need to show that  $T_n \nearrow \infty$  as  $n \to \infty$ . Now, as  $T_n \le T_{n+1}$ , it remains to show that  $\lim_{n\to\infty} T_n = \infty$  a.s.. For each R, let

$$S_R = \inf\{t \ge 1 : |B_t| \ge R\} = \inf\{t \ge 1 : M_t < 1/R\}.$$

Then  $S_R \to \infty$  as  $R \to \infty$ .

$$\mathbb{P}\left(\lim_{n \to \infty} T_n < \infty\right) \le \mathbb{P}\left(\exists R : T_n < S_R \,\forall n\right) = \lim_{R \to \infty} \lim_{n \to \infty} \mathbb{P}(T_n < S_R).$$

The OST implies

$$\mathbb{E}[M_{T_n \wedge S_P}] = \mathbb{E}[M_1] = N \in (0, \infty).$$

and so the LHS becomes

$$n\mathbb{P}(T_n < S_R) + \frac{1}{R}\mathbb{P}(S_R \le T_n) = \frac{N}{R} \Rightarrow \mathbb{P}(T_n < S_R) = \frac{N - \frac{1}{R}}{n - \frac{1}{R}} \to 0 \text{ as } n \to \infty.$$

Therefore,  $(M_t)_{t\geq 0}$ , non-negative local martingale but not a martingale, a supermartingale and in  $L^2$ -bounded.

Observe from the preceding discussion that by only requiring non-negativity, the first two properties actually give that M is a super martingale.

**Proposition 3.1.** If X is a local martingale,  $X_t \ge 0$  for all  $t \ge 0$ , then X is a supermartingale.

*Proof.* Suppose that  $(T_n)$  is a reducing sequence. Then for any  $s \leq t$ , we know that

$$\mathbb{E}[X_t \mid \mathcal{F}_s] = \mathbb{E}\left[\lim_{n \to \infty} X_{t \wedge T_n} \mid \mathcal{F}_s\right] \overset{\textbf{(Fatou)}}{\leq} \liminf_{n \to \infty} \mathbb{E}[X_{t \wedge T_n} \mid \mathcal{F}_s] = \liminf_{n \to \infty} X_{s \wedge T_n} = X_s \quad \text{a.s.}$$

Often work with local martingales instead of martingales, so as to not have to worry about integrability.

Lecture 5

We will now answer the following

- 1. When is a local MG a MG?
- 2. Continuous local MGs with finite variation in time.

**Definition 3.3.** A collection  $\mathcal{G}$  of random variables in  $L^1(\Omega, \mathcal{F}, \mathbb{P})$  is called uniformly integrable (UI) if

$$\sup_{X \in \mathcal{G}} \mathbb{E}[|X|\mathbf{1}_{|X|>M}] \to 0 \quad as \ M \to \infty.$$

#### Examples of UI families:

- 1. Uniformly bounded random variables: If  $\mathcal{G} \subseteq L^1$  is bounded in  $L^2$ , then  $\mathcal{G}$  is UI.
- 2.  $L^p$  bounded for p > 1:  $\sup_{X \in \mathcal{G}} \mathbb{E}[|X|^p] < \infty$ .
- 3. there exists Y integrable so that  $|X| \leq Y$  for all  $X \in \mathcal{G}$ .

**Lemma 3.1.** Suppose that  $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ . Then

$$\mathcal{X} := \{ \mathbb{E}[X \mid \mathcal{G}] : \mathcal{G} \text{ is a sub-}\sigma\text{-}algebra \text{ of } \mathcal{F} \}$$

is also a uniformly integrable family.

Proof. [26].

**Proposition 3.2.** The following are equivalent:

- i) X is a martingale.
- ii) X is a local martingale and for all t > 0, the family

$$\mathcal{X}_t = \{X_T : T \text{ is a stopping time with } T \leq t\}$$

is uniformly integrable.

*Proof.*  $i) \Rightarrow ii$ : Suppose X is a martingale. By OST, if T is a stopping time with  $T \leq t$ , then

$$\mathbb{E}[X_t \mid \mathcal{F}_T] = X_T \Rightarrow X_t \text{ is UI.}$$

 $ii) \Rightarrow i$ ): Suppose that X is a local martingale and  $X_t$  is UI for all  $t \geq 0$ . To show that X is a martingale, by OST it suffices to show that for all bounded stopping times T, we have

$$\mathbb{E}[X_T] = \mathbb{E}[X_0].$$

Let  $(T_n)$  be a reducing sequence for X and let  $T \leq t$  be a stopping time. Then

$$\mathbb{E}[X_0] = \mathbb{E}[X_0^{T_n}] \stackrel{\mathbf{OST}}{=} \mathbb{E}[X_T^{T_n}] \stackrel{(\mathbf{def'n} \ \mathbf{of} \ X^{T_n})}{=} \mathbb{E}[X_{T \wedge T_n}].$$

Since  $\{X_{T \wedge T_n} : n \geq 0\}$  is UI and  $X_{T \wedge T_n} \to X_T$  a.s.,

Advanced Probability  $\Rightarrow X_{T \wedge T_n} \to X_T$  in  $L^1$  as  $n \to \infty$ .

Therefore,  $\mathbb{E}[X_{T \wedge T_n}] \to \mathbb{E}[X_T]$  as  $n \to \infty$ . Hence  $\mathbb{E}[X_0] = \mathbb{E}[X_T]$ . OST finally implies X is a martingale.

**Corollary 3.1.** A bounded local martingale is a martingale. More generally, if X is a local martingale and there exists Y integrable such that  $|X_t| \leq Y$  for all  $t \geq 0$ , then X is a martingale.

**Theorem 3.2.** Let X be a continuous local martingale with  $X_0 = 0$ . If X has finite variation, then  $X \equiv 0$  a.s.

*Proof.* Let V be the total variation process for X. Then  $V_0 = 0$ , and V is continuous, adapted and non-decreasing. Let

$$T_n := \inf\{t \ge 0 : V_t = n\}$$

for all  $n \in \mathbb{N}$ . Then  $T_n \nearrow \infty$  as  $n \to \infty$ , since X has finite variation. Moreover,

$$|X_t^{T_n}| = |X_{t \wedge T_n}| \le V_{t \wedge T_n} \le n.$$

Therefore  $X^{T_n}$  is a bounded local martingale and hence is a proper MG.

To prove that  $X \equiv 0$ , note:  $X^{T_n} \equiv 0$  for all  $T_n \nearrow \infty$  as  $n \to \infty$ . Fix  $n \in \mathbb{N}$ , let  $Y := X^{T_n}$ . Y is a continuous bounded martingale with  $Y_0 = 0$ . To prove that  $Y \equiv 0$ , it suffices to show that  $\mathbb{E}[Y_t^2] = 0$  for all  $t \ge 0$ . This implies that  $Y_t = 0$  for all  $t \ge 0$ ,  $t \in \mathbb{Q}$  a.s., so  $Y \equiv 0$  by continuity. Fix  $t \ge 0$ ,  $N \in \mathbb{N}$ , let

$$t_k := \frac{k}{N}t$$
 for  $k \le N$ .

Compute

$$\mathbb{E}[Y_t^2] = \mathbb{E}\left[\sum_{k=0}^{N-1} (Y_{t_{k+1}} - Y_{t_k})^2\right] \overset{\text{(MG orthogonality)}}{=} \mathbb{E}\left[\sum_{k=0}^{N-1} (Y_{t_{k+1}} - Y_{t_k})^2\right]$$

$$\leq \mathbb{E}\left[\underbrace{\max_{0\leq k\leq N-1}|Y_{t_{k+1}}-Y_{t_k}|}_{\leq k\leq N-1}\underbrace{\sum_{k=0}^{N-1}|Y_{t_{k+1}}-Y_{t_k}|}_{\leq V_{t\wedge T_n}}\right]\leq n^2.$$

Since Y is continuous,

$$\lim_{N \to \infty} \left( \max_{0 \le k \le N-1} |Y_{t_{k+1}} - Y_{t_k}| \right) = 0 \quad \text{a.s.}$$

Bounded convergence finally gives  $\mathbb{E}[Y_t^2] = 0$ .

Remark. (i) The proof requires continuity, in particular not true without continuity.

(ii) Theorem implies Brownian motion has infinite variation, so cannot use Lebesgue-Stieltjes integral to define the integral against a BM.

For continuous local martingales, there is always an explicit way of choosing the reducing sequence.

**Proposition 3.3.** Let X be a continuous local martingale with  $X_0 = 0$ . Then

$$T_n := \inf\{t \ge 0 : |X_t| = n\}$$

reduces X.

*Proof.* Step 1:  $T_n$  is a stopping time.

Let  $t \geq 0$ , then:

$$\{T_n \le t\} = \{\sup_{0 \le s \le t} \{|X_s| \ge n\} = \bigcup_{k=1}^{\infty} \bigcup_{s \in \mathbb{Q}, s \le t} \underbrace{\{|X_q| \ge n - 1/k\}}_{\in \mathcal{F}_t}.$$

Step 2:  $T_n \nearrow \infty$  as  $n \to \infty$ .

Since

$$\sup_{0 \le s \le t} |X_s(\omega)| < \infty \Rightarrow \text{there exists } n(\omega,t) \in \mathbb{N} \text{ such that } n(\omega,t) \ge \sup_{0 \le s \le t} |X_s(\omega)|.$$

$$\Rightarrow n \ge n(\omega, t) \Rightarrow T_n(\omega) > t \Rightarrow T_n(\omega) \to \infty \text{ as } n \to \infty.$$

Step 3:  $(T_n)$  reduces X.

Let  $(T_n^*)$  be a reducing sequence (exists since X is a local martingale). Then  $X^{T_n^*}$  is a martingale for all n. Need to show:  $X^{T_n}$  is a martingale. The Optional stopping theorem implies  $X^{T_n \wedge T_m^*}$  is a martingale for all n,

 $X^{T_n}$  is a local martingale with reducing sequence  $(T_m^*)$ .

Since  $X^{T_n}$  is in addition bounded, it is a martingale; concluding the proof.

We now move on to construct the stochastic integral proper.

Lecture 6

# 4 The Stochastic Integral

**Goal:** Be able to integrate against a continuous local MG. How does one construct an integral (Riemann / Lebesgue)?

An integral is a linear map

 $\mathcal{I}: X \to Y$  where X, Y are normed vector spaces.

#### Steps:

- $\bigcirc$  Define it on a dense set  $\mathcal{D} \subseteq X$
- (2) Show that it is a continuous linear map:

$$\exists C > 0 \text{ such that } \|\mathcal{I}(f)\|_Y \leq C\|f\|_X \quad \forall f \in \mathcal{D}.$$
  
 $\Rightarrow \mathcal{I} \text{ extends by continuity to } X.$ 

Need to

$$\underbrace{ \left( \begin{array}{c} 1 \end{array} \right) \text{ specify } \mathcal{D}, X, Y}_{\text{simple processes, quadratic variation}} , \quad \underbrace{ \text{prove } \left( \begin{array}{c} 2 \end{array} \right).}_{\text{It\^{o} isometry}} .$$

**Theorem 4.1.** Let X be a càdlàg,  $L^2$ -bounded MG (i.e.,  $\sup_t \mathbb{E}[X_t^2] < \infty$ ). Then there exists  $X_\infty \in L^2$  such that:

 $X_t \to X_\infty$  a.s. and in  $L^2$ , and  $X_t = \mathbb{E}[X_\infty \mid \mathcal{F}_t]$   $(X_\infty \text{ is called the final value of } X)$ .

**Proposition 4.1** (Doob's  $L^2$  inequality). Let X be a càdlàg,  $L^2$ -bounded MG. Then:

$$\mathbb{E}\left[\sup_{t}|X_{t}|^{2}\right] \leq 4\,\mathbb{E}\left[X_{\infty}^{2}\right].$$

#### Define:

- $\mathcal{M}^2 = \{L^2$ -bounded càdlàg MGs $\}$ .
- $\mathcal{M}_{\mathbb{C}}^2 = \{L^2\text{-bounded, continuous MGs}\}.$
- $\mathcal{M}_{c,loc}^2 = \{L^2\text{-bounded, continuous local MGs}\}.$

**Definition 4.1.** A process  $H : [0, \infty) \times \Omega \to \mathbb{R}$  is called a <u>simple process</u> if there exist  $0 = t_0 < t_1 < \cdots < t_n$ , and bounded,  $\mathcal{F}_{t_i}$ -measurable random variables  $Z_i$ , such that:

$$H_t = \sum_{i=0}^{n-1} Z_i \mathbf{1}_{(t_i, t_{i+1}]}(t).$$

Let  $\mathcal{S}$  be the set of simple processes. We will proceed to

- define  $\left(\int_0^t H_s dM_s\right)$  for  $H \in \mathcal{S}, M \in \mathcal{M}^2$ .
- Extend the integral to more general integrands  $(M \in \mathcal{M}^2_{\mathfrak{C}})$ .

**Proposition 4.2.** If  $H \in \mathcal{S}$ ,  $M \in \mathcal{M}^2$ , then  $H \cdot M \in \mathcal{M}^2$ . Moreover,

$$\mathbb{E}[(H \cdot M)_{\infty}^{2}] = \sum_{k=0}^{n-1} \mathbb{E}\left[Z_{k}^{2}(M_{t_{k+1}} - M_{t_{k}})^{2}\right] \le 4 \|H\|_{\infty}^{2} \mathbb{E}\left[(M_{\infty} - M_{0})^{2}\right].$$

*Proof.* Step 1: $H \cdot M$  is a martingale.

Suppose that  $t_k \leq s < t < t_{k+1}$ . Then we have that

$$(H \cdot M)_t - (H \cdot M)_s = Z_k (M_t - M_s),$$

so that

$$\mathbb{E}[(H \cdot M)_t - (H \cdot M)_s | \mathcal{F}_s] = Z_k \mathbb{E}[M_t - M_s | \mathcal{F}_s] = 0$$

since  $Z_k \in \mathcal{F}_s$  and  $M \in \mathcal{M}^2$ .

Suppose that  $0 \le t_i \le s \le t_j \le t \le t_k$ . Then

$$\mathbb{E}[(H\cdot M)_t - (H\cdot M)_s | \mathcal{F}_s]$$

$$= \mathbb{E}\left[\sum_{i=0}^{k-1} Z_i(M_{t_{i+1}} - M_{t_i}) + Z_k(M_t - M_{t_k}) - \left(\sum_{i=0}^{j-1} Z_i(M_{t_{i+1}} - M_{t_i}) + Z_j(M_s - M_{t_j})\right) \middle| \mathcal{F}_s\right].$$

$$= \sum_{i=j+1}^{k-1} \mathbb{E}[Z_i(M_{t_{i+1}} - M_{t_i})|\mathcal{F}_s] + \mathbb{E}[Z_j(M_{t_j} - M_s)|\mathcal{F}_s] + \mathbb{E}[Z_k(M_t - M_{t_k})|\mathcal{F}_s].$$

Since

$$\mathbb{E}[Z_{i}(M_{t_{i+1}} - M_{t_{i}})|\mathcal{F}_{s}] = Z_{i}\mathbb{E}[M_{t_{i+1}} - M_{t_{i}}|\mathcal{F}_{s}] = 0, \quad j+1 \leq i \leq k-1,$$

$$\mathbb{E}[Z_{j}(M_{t_{j}} - M_{s})|\mathcal{F}_{s}] = Z_{j}\mathbb{E}[M_{t_{j}} - M_{s}|\mathcal{F}_{s}] = 0,$$

$$\mathbb{E}[Z_{k}(M_{t} - M_{t_{k}})|\mathcal{F}_{s}] = \mathbb{E}[Z_{k}\mathbb{E}[M_{t} - M_{t_{k}}|\mathcal{F}_{t_{k}}]|\mathcal{F}_{s}] = 0.$$

Step 2:  $H \cdot M$  is  $L^2$ -bounded.

If j < k, then we have that

$$\mathbb{E}\left[Z_{j}(M_{t_{j+1}}-M_{t_{j}})Z_{k}(M_{t_{k+1}}-M_{t_{k}})\right] = \mathbb{E}\left[\mathbb{E}\left[Z_{j}(M_{t_{j+1}}-M_{t_{j}})|\mathcal{F}_{t_{k}}\right]Z_{k}(M_{t_{k+1}}-M_{t_{k}})\right] = 0.$$

So,

$$\mathbb{E}[(H\cdot M)_t^2] = \mathbb{E}\left[\left(\sum_{k=0}^{n-1} Z_k(M_{t_{k+1}} - M_{t_k})\right)^2\right] \stackrel{\text{MG orthogonality}}{=} \mathbb{E}\left[\sum_{k=0}^{n-1} Z_k^2(M_{t_{k+1}} - M_{t_k})^2\right]$$

$$\leq \|H\|_{\infty}^2 \sum_{k=0}^{n-1} \mathbb{E}\left[(M_{t_{k+1}} - M_{t_k})^2\right] \stackrel{\text{Doob's } L^2 \text{ inequality}}{\leq} 4 \|H\|_{\infty}^2 \mathbb{E}[(M_{\infty} - M_0)^2].$$

This bound is uniform in t, so  $H \cdot M$  is  $L^2$  bounded, so  $H \cdot M \in \mathcal{M}^2$ .

#### Step 3:

$$\mathbb{E}[(H \cdot M)_{\infty}^{2}] \leq \liminf_{t \to \infty} \mathbb{E}[(H \cdot M)_{t}^{2}] \leq \sup_{t > 0} \mathbb{E}[(H \cdot M)_{t}^{2}] \leq 4 \|H\|_{\infty}^{2} \mathbb{E}[(M_{\infty} - M_{0})^{2}].$$

### 4.1 Space of integrators

For X càdlàg and adapted, define the norm:

$$|||X||| = ||X^*||_{L^2}, \quad X^* = \sup_{t \ge 0} |X_t|.$$

 $\mathfrak{C}^2 = \{X \text{ càdlàg, adapted processes } X \text{ with } |||X||| < \infty \}.$ 

Define the norm on  $\mathcal{M}^2$  is given by

$$||X|| = ||X_{\infty}||_{L^2}.$$

Clearly  $\|\cdot\|$  is a seminorm. To see that it is a norm, suppose that

$$|||X||| = ||X_{\infty}||_{L^2} = 0 \Rightarrow X_{\infty} = 0 \text{ a.s. } \Rightarrow X_t = \mathbb{E}[X_{\infty}|\mathcal{F}_t] = 0 \text{ a.s. for all } t \ge 0.$$

Càdlàg property implies  $X \equiv 0$  a.s.

Setup:

$$\mathcal{M} = \{cadlag \text{ martingales}\}\$$

 $\mathcal{M}_c = \{\text{continuous martingales}\}$ 

$$\mathcal{M}_{c, loc} = \{cont. loc. martingales\}$$

Lecture 7

#### Proposition 4.3.

- a)  $(\mathbb{C}^2, ||X\cdot||)$  is complete.
- b)  $\mathcal{M}^2 = \mathcal{M} \cap \mathbb{C}^2$
- c)  $(\mathcal{M}^2, \|\cdot\|)$  is a Hilbert space.
- d)  $\mathcal{M}_c^2 := \mathcal{M}_c \cap \mathcal{M}^2$  is a closed subspace.

The map

$$\mathcal{M}^2 \to L^2(\mathcal{F}_\infty), \qquad X \mapsto X_\infty$$

is an isometry, where

$$\mathcal{F}_{\infty} = \sigma(\mathcal{F}_t : t > 0).$$

**Remark.** We can identify an element of  $L^2$  with its final value, so  $(\mathcal{M}^2, \|\cdot\|)$  inherits the Hilbert space structure of  $(L^2(\mathcal{F}_{\infty}), \|\cdot\|_{L^2})$ . Since  $(\mathcal{M}_c^2, \|\cdot\|)$  is a closed linear subspace of  $(\mathcal{M}^2, \|\cdot\|)$ , it is also a Hilbert space. This is the space of processes against which we will integrate.

*Proof.* (a) Suppose that  $(X^n)$  is Cauchy with respect to  $\|\cdot\|$ . Then there exists a subsequence  $(X^{n_k})_{k=1}$  of  $(X^n)$  such that

$$\sum_{k} ||X^{n_k} - X^{n_{k+1}}|| < \infty.$$

Thus,

$$\left\| \sum_{k} \sup_{t} |X_{t}^{n_{k}} - X_{t}^{n_{k+1}}| \right\|_{L^{2}} \le \sum_{k} \|X^{n_{k}} - X^{n_{k+1}}\| < \infty$$

$$\Rightarrow \sum_{k\geq 0} \sup_{t\geq 0} |X_t^{n_k} - X_t^{n_{k+1}}| < \infty \text{ a.s.}$$

 $\Rightarrow (X^{n_k})_{t\geq 0}$  is uniformly Cauchy on  $[0,\infty)$  a.s., hence converges to a càdlàg limit X.

**NTS:**  $X^n \to X$  with respect to  $\|\cdot\|$ .

$$\begin{aligned} \|X - X^n\|^2 &= \mathbb{E}\left[\sup_{t \geq 0} |X_t - X_t^n|^2\right] = \mathbb{E}\left[\lim_{k \to \infty} \sup_{t \geq 0} |X_t^n - X_t^{n_k}|^2\right] \\ &\stackrel{\textbf{Fatou}}{\leq} \liminf_{k \to \infty} \mathbb{E}\left[\sup_{t \geq 0} |X_t^n - X_t^{n_k}|^2\right] \leq \left(\liminf_{k \to \infty} \|X^n - X^{n_k}\|\right)^2 \to 0 \quad \text{a.s.} \end{aligned}$$

Since  $X^m$  is Cauchy.

(b) Suppose that  $X \in \mathcal{C}^2 \cap \mathcal{M}$ . Then

$$|||X||| < +\infty \Rightarrow \sup_{t \ge 0} ||X_t||_{L^2} \stackrel{\mathbf{Jensen}}{\leq} ||\sup_{t \ge 0} |X_t||_{L^2} < \infty \Rightarrow X \in \mathcal{M}^2$$

Suppose that  $X \in \mathcal{M}^2$ . By Doob's  $L^2$ -inequality,

$$|||X||| \le 2||X_{\infty}||_{L^2} \Rightarrow 2||X|| < \infty \Rightarrow X \in \mathcal{C}^2 \cap \mathcal{M}$$

and so

$$\mathcal{M}^2 = \mathcal{M} \cap \mathcal{C}^2$$

(c) Note that  $\langle X, Y \rangle := \mathbb{E}[X_{\infty}Y_{\infty}]$  defines an inner product on  $L^2$ . For  $X \in \mathcal{M}^2$ ,

$$|||X||| \le ||X_{\infty}||_{L^2} \le 2|||X|||$$
 (Doob's  $L^2$ -inequality)

which shows that

$$\|\cdot\|,\|\cdot\|$$
 are equivalent norms on  $\mathcal{M}^2$ 

To show that  $(\mathcal{M}^2, \|\|\cdot\|\|)$  is complete, it suffices to show that  $(\mathcal{M}^2, \|\|\cdot\|\|)$  is complete. To see this, let  $X^n$  be a sequence in  $\mathcal{M}^2$  such that

$$|||X^n - X||| \to 0 \text{ as } n \to \infty \text{ where } X \in \mathfrak{C}^2$$

(Suffices to show  $\mathcal M$  is closed.) We know that X is càdlàg, adapted,  $L^2$ -bounded since  $X\in \mathfrak C^2$ .

NTS:  $X \in \mathcal{M}^2$ .

Fix  $s \leq t$ , we have that

$$\|\mathbb{E}[X_t \mid \mathcal{F}_s] - X_s\|_{L^2} \stackrel{X^n \text{ is MG}}{=} \|\mathbb{E}[X_t - X_t^n \mid \mathcal{F}_s] + X_s^n - X_s\|_{L^2}$$

$$\leq \|\mathbb{E}[X_t - X_t^n \mid \mathcal{F}_s]\|_{L^2} + \|X_s^n - X_s\|_{L^2}$$

$$\stackrel{\text{Jensen}}{\leq} \|X_t^n - X_t\|_{L^2} + \|X_s^n - X_s\|_{L^2} \leq 2 \cdot \|X^n - X\| \xrightarrow{n \to \infty} 0$$

which implies

$$X \in \mathcal{M}^2 \Rightarrow \mathcal{M}^2$$
 is closed in  $\mathfrak{C}^2$ .

(d) True by definition.

#### 4.2 Space of integrals

Let  $(X^n)$  be a sequence of processes. We say that

 $X^n \xrightarrow{\text{ucp}} X$  uniformly on compact sets in probability (ucp)

if for every  $\varepsilon > 0$ ,

$$\mathbb{P}\left(\sup_{s \le t} |X_s^n - X_s| > \varepsilon\right) \to 0 \quad \text{a.s. as } n \to \infty.$$

**Theorem 4.2.** Suppose that  $M \in \mathcal{M}_{loc}$ . There exists a unique (up to indistinguishability), continuous, adapted, non-decreasing process  $[M_t]$  such that:

$$[M]_0 = 0, \quad M^2 - [M] \in \mathcal{M}_{loc}.$$

Moreover, if we set:

$$[M]_t^n = \sum_{k=0}^{\lceil 2^n t \rceil - 1} \left( M_{(k+1)2^{-n}} - M_{k2^{-n}} \right)^2,$$

then

$$[M]^n \xrightarrow{ucp} [M] \quad as \ n \to \infty.$$

The process [M] is called the quadratic variation of M.

**Example.** Let B be a standard Brownian motion. Then  $(B_t^2 - t)_{t \geq 0}$  is a martingale, which implies that  $[B]_t = t$ . We will prove later that Brownian motion is characterized by this property, i.e., if  $M \in \mathcal{M}_{c,loc}$ , and  $[M]_t = t$  for all  $t \geq 0$ , then M is a Brownian motion. (Lévy characterization of Brownian motion.)

*Proof.* Replace  $M_t$  with  $M_t - M_0$ , so without loss of generality  $M_0 = 0$ .

**Step 1:** Uniqueness. Suppose that A, A' are two non-decreasing, continuous, adapted processes satisfying the conditions in the theorem. Then

$$A_t - A_t' = (M_t^2 - A_t) - (M_t^2 - A_t').$$

LHS: continuous, bounded variation. RHS: process in  $\mathcal{M}_{c,loc} \Rightarrow A - A'$  constant. Since  $A_0 = A'_0 = 0 \Rightarrow A = A'$ .

Before we proceed with the proof of existence, we start with a lemma.

#### Lecture 9

**Lemma 4.1.** Suppose that  $M \in \mathcal{M}_{c,loc}$  is bounded. Then for any  $N \in \mathbb{N}$ ,  $0 = t_0 < t_1 < \cdots < t_N < \infty$ , we have that:

$$\mathbb{E}\left[\left(\sum_{k=0}^{N-1} \underbrace{(M_{t_{k+1}} - M_{t_k})}_{:=\Delta_k}\right)^2\right] \le 48 \cdot ||M||_{L^{\infty}}^4.$$

*Proof.* First write

$$\mathbb{E}\left[\left(\sum_{k=0}^{N-1} \Delta_k\right)^2\right] \stackrel{\circledast}{=} \sum_{k=0}^{N-1} \mathbb{E}\left[(\Delta_k)^4\right] + 2\sum_{k=0}^{N-1} \mathbb{E}\left[\Delta_k^2 \sum_{j=k+1}^{N-1} \Delta_j^2\right].$$

For each fixed k, we have that:

$$\mathbb{E}\left[\Delta_{k}^{2} \sum_{j=k+1}^{N-1} \Delta_{j}^{2}\right] = \mathbb{E}\left[\Delta_{k}^{2} \mathbb{E}\left[\sum_{j=k+1}^{N-1} \Delta_{j}^{2} \middle| \mathcal{F}_{t_{k+1}}\right]\right]$$

$$\stackrel{\text{MG orthogonality}}{=} \mathbb{E}\left[\Delta_{k}^{2} \mathbb{E}\left[\sum_{j=k+1}^{N-1} \Delta_{j}^{2} \middle| \mathcal{F}_{t_{k+1}}\right]\right]$$

$$= \mathbb{E}\left[\Delta_{k}^{2} \mathbb{E}\left[(M_{t_{N}} - M_{t_{k+1}})^{2} \middle| \mathcal{F}_{t_{k+1}}\right]\right] = \mathbb{E}\left[\Delta_{k}^{2} \cdot (M_{t_{N}} - M_{t_{k+1}})^{2}\right].$$

Hence,

$$\circledast \leq \mathbb{E}\left[\left(\max_{0 \leq j \leq N-1} |M_{t_{j+1}} - M_{t_j}|^2\right) + 2 \cdot \max_{0 \leq j \leq N-1} |M_{t_N} - M_{t_j}|^2 \cdot \left(\sum_{k=0}^{N-1} \Delta_k^2\right)\right]$$

and using the inequality  $(a+b)^2 \le 2(a^2+b^2)$ , we obtain:

Proof of Theorem 4.2 (Cont'd). Uniqueness

**WLOG**  $M_0 = 0$  (by replacing  $M_t$  with  $M_t - M_0$  if necessary).

**Step 2:**  $M \in \mathcal{M}_c$  bounded  $(M \in \mathcal{M}_c^2)$ . Fix T > 0 and set:

$$H_t^n = \sum_{k=0}^{\lceil 2^n T \rceil - 1} M_{k2^{-n}} \mathbf{1}_{(k2^{-n}, (k+1)2^{-n}]}(t).$$

Then  $H^n \in \mathcal{S}$  for all n, and set

$$X_t^n = (H^n \cdot M)_t = \sum_{k=0}^{\lceil 2^n T \rceil - 1} M_{k2^{-n}} (M_{(k+1)2^{-n}} - M_{k2^{-n}}).$$

Then  $X^n \in \mathcal{M}_c$ , bounded implies  $X^n \in \mathcal{M}_c^2$ . We will show that  $(X^n)$  is Cauchy in  $(\mathcal{M}_c^2, \|\cdot\|)$ , hence has a limit in  $\mathcal{M}_c^2$ . Fix  $n > m \ge 1$  and write

$$H := H^n - H^m$$
 so that  $X^n - X^m = (H^n - H^m) \cdot M = H \cdot M$ .

Then,

$$||X^n - X^m||^2 = \mathbb{E}[(H \cdot M)_{\infty}^2]$$

$$\begin{split} &= \mathbb{E}[(H \cdot M)_{T}^{2}] \\ &= \mathbb{E}\left[\left(\sum_{k=0}^{\lceil 2^{n}T \rceil - 1} H_{k2^{-n}}(M_{(k+1)2^{-n}} - M_{k2^{-n}})\right)^{2}\right] \\ &= \mathbb{E}\left[\sum_{k=0}^{\lceil 2^{n}T \rceil - 1} H_{k2^{-n}}^{2}(M_{(k+1)2^{-n}} - M_{k2^{-n}})^{2}\right] \quad \text{(MG orthogonality)} \\ &\leq \mathbb{E}\left[\sup_{t \in [0,T]} |H_{t}|^{2} \cdot \sum_{k=0}^{\lceil 2^{n}T \rceil - 1} (M_{(k+1)2^{-n}} - M_{k2^{-n}})^{2}\right] \\ &\leq \left(\mathbb{E}\left[\sup_{t \in [0,T]} |H_{t}|^{4}\right]\right)^{1/2} \cdot \left(\mathbb{E}\left[\left(\sum_{k=0}^{\lceil 2^{n}T \rceil - 1} (M_{(k+1)2^{-n}} - M_{k2^{-n}})^{2}\right)^{2}\right]\right)^{1/2}. \end{split}$$

First term: (A)  $\sup_{t \in [0,T]} |H_t|^4 = \sup_{t \in [0,T]} |H_t^n - H_t^m|^4 \le 16 \cdot ||M||_{L^{\infty}}^4$ .

Since M is continuous, by the Bounded Convergence Theorem, first term  $\to 0$  as  $n, m \to \infty$ .

**Second term:**  $\leq \left(48 \cdot \|M\|_{L^{\infty}}^4\right)^{1/2} < \infty \Rightarrow \|X^n - X^m\| \to 0 \text{ as } n, m \to \infty. \text{ Since } (\mathcal{M}_c^2, \|\cdot\|) \text{ is complete, there exists } Y \in \mathcal{M}_c^2 \text{ such that}$ 

$$X_n \to Y$$
 as  $n \to \infty$  in  $\mathcal{M}_c^2$ .

For any n and  $1 \le k \le \lceil 2^n T \rceil$ , we have that

$$M_{k2^{-n}}^2 - 2X_{k2^{-n}}^n = \sum_{j=0}^{k-1} (M_{(j+1)2^{-n}} - M_{j2^{-n}})^2$$
$$= [M^n]_{k2^{-n}}.$$

Hence, for all n,  $M^2 - 2X^n$  is non-decreasing when restricted to times of the form  $\{k2^{-n}: 1 \le k \le \lceil 2^n T \rceil\}$ . To prove the same is also true for  $M^2 - 2Y$ , it suffices to show that  $X^n \to Y$  a.s. uniformly, at least along a subsequence. This follows from the equivalence of norms  $\|\cdot\|$ ,  $\|\cdot\|$ .

Set  $[M]_t := M_t^2 - 2Y_t$ . Then [M] is continuous, adapted, non-decreasing and

$$M^2 - [M] = 2Y \in \mathcal{M}_c.$$

Can extend to all times by applying the above T = k,  $\forall k \in \mathbb{N}$ . Uniquenessimplies the process obtained with T = k, T = k + 1 restricted to [0, k] is the same.

Step 3:  $[M^n] \to [M]$  ucp as  $n \to \infty$ .

Observe that

$$X^n \to Y$$
 in  $(\mathcal{M}_c^2, \|\cdot\|) \Rightarrow \sup_{0 \le t \le T} |X_t^n - Y_t| \to 0$  as  $n \to \infty$  in  $L^2$ 

since  $\|\cdot\|$ ,  $\|\cdot\|$  are equivalent which implies  $\sup_{0 \le t \le T} |X^n_t - Y_t| \to 0$  in probability.

Now,  $[M]_t^n = M_{2^{-n}\lceil 2^n t \rceil}^2 - 2X_{2^{-n}\lceil 2^n t \rceil}^n$ . So,

$$\sup_{0 \le t \le T} |[M]_t^n - [M]_t| \le \sup_{0 \le t \le T} |M_{2^{-n} \lceil 2^n t \rceil}^2 - M_t^2|$$
(4.1)

$$+ 2 \cdot \sup_{0 \le t \le T} \left| X_{2^{-n} \lceil 2^n t \rceil^n} - Y_{2^{-n} \lceil 2^n t \rceil} \right| + 2 \cdot \sup_{0 \le t \le T} \left| Y_{2^{-n} \lceil 2^n t \rceil} - Y_t \right|. \tag{4.2}$$

Each term on RHS converges to zero in probability and so we obtain the ucp convergence.

# Lecture 9 Step 4: Let $M_n \in \mathcal{M}_{c,loc}$ . "Localization argument".

For each  $n \in \mathbb{N}$ , let  $\tau_n = \inf\{t \geq 0 : |M_t| \geq n\}$ . Then  $(\tau_n)$  reduces M and  $M_n := M^{\tau_n}$  is a bounded MG for all n. Therefore, there exists a unique continuous, adapted and non-decreasing process  $[M^{T_n}]$  such that

$$[M^{T_n}]_0 = 0$$
 and  $(M^{T_n})^2 - [M^{T_n}] \in \mathcal{M}_{c,loc}$ .

Let  $A^n := [M^{T_n}]$ . By uniqueness,  $(A_{t \wedge T_n}^{n+1}, A_t^n)$  are indistinguishable. Let A be the process such that

$$A_{t \wedge T_n} = A_t^n$$
, for all  $n \geq 1$ .

Then  $M_{t \wedge T_n}^2 - A_{t \wedge T_n} \in \mathcal{M}$  for all  $n \in \mathbb{N}$  and so  $M^2 - A \in \mathcal{M}_{c,loc}$  with reducing sequence  $(T_n)$  giving [M] = A.

We know that  $[M^{T_k}]^n \to [M^{T_k}]$  in ucp as  $n \to \infty$  for all k. In other words, for all

$$\varepsilon, T>0: \quad \mathbb{P}\left[\sup_{0\leq t\leq T}|[M^{T_k}]^n_t-[M^{T_k}]_t|>\varepsilon\right]\to 0 \quad \text{as } n\to\infty.$$

On  $\{T_k \leq T\}$ ,  $[M^n]_t = [M^{T_k}]_t^n$  and  $[M]_t = [M^{T_k}]_t$ . Thus,

$$\mathbb{P}\left[\sup_{0\leq t\leq T}|[M]_t^n-[M]_t|>\varepsilon\right]\leq \mathbb{P}[T_k\leq T]+\mathbb{P}\left[\sup_{0\leq t\leq T}|[M^{T_k}]_t^n-[M^{T_k}]_t|>\varepsilon\right]\to 0$$
 as  $n\to\infty$ , then  $k\to\infty$ .

LHS 
$$\rightarrow 0$$
 as  $n \rightarrow \infty$ .

**Theorem 4.3.** Let  $M \in \mathcal{M}_c^2$ . Then  $M^2 - [M]$  is a UI martingale.

*Proof.* Let  $T_n := \inf\{t \geq 0 : [M]_t \geq n\}$  for  $n \in \mathbb{N}$ . Then  $T_n \nearrow \infty$  as  $n \to \infty$ ,  $T_n$  is a stopping time,  $[M]_{t \wedge T_n} \leq n$  and (noting  $M^{T_n} \in \mathcal{M}_{c,loc}$ , for all  $n \geq 1$ )

$$\left| M_{t \wedge T_n}^2 - [M]_{t \wedge T_n} \right| \le n + \sup_{u \ge 0} M_u^2.$$

By Doob's inequality the RHS is integrable and so

$$M_{t\wedge T_n}^2 - [M]_{t\wedge T_n} \in \mathcal{M}_c$$
.

The Optional Stopping Theorem (OST) also gives

$$\mathbb{E}\left[M_{t\wedge T_n}^2 - [M]_{t\wedge T_n}\right] = 0 \Rightarrow \mathbb{E}\left[[M]_{t\wedge T_n}\right] = \mathbb{E}\left[M_{t\wedge T_n}^2\right].$$

Send  $t \to \infty$ ; the Monotone Convergence Theorem (MCT) implies

LHS 
$$\stackrel{t\to\infty}{\longrightarrow} \mathbb{E}\left[[M]_{T_n}\right]$$
,

and the Dominated Convergence Theorem (MCT) also implies

RHS 
$$\stackrel{t\to\infty}{\longrightarrow} \mathbb{E}\left[M_{T_n}^2\right]$$
.

and so

$$\mathbb{E}\left[[M]_{T_n}\right] = \mathbb{E}\left[M_{T_n}^2\right].$$

Finally, send  $n \to \infty$ . MCT implies the LHS converges to  $\mathbb{E}[[M]_{\infty}]$ , and the RHS converges to

$$\mathbb{E}\left[M_{\infty}^2\right] \Rightarrow \mathbb{E}\left[[M]_{\infty}\right] = \mathbb{E}\left[M_{\infty}^2\right] < \infty \Rightarrow \mathbb{E}\left[[M]_{\infty}\right] \text{ is integrable.}$$

Moreover,

$$|M_t^2 - [M]_t| \le \sup_{u>0} M_u^2 + [M]_{\infty}.$$

So we conclude the RHS is integrable  $\Rightarrow M^2 - [M] \in \mathcal{M}_c$  and UI as it is dominated by an integrable r.v.

### 4.3 The Space $L^2(M)$ , $M \in \mathcal{M}_c^2$

Recall that  $\mathcal{P} = \text{previsible } \sigma\text{-algebra}$ :

$$\mathcal{P} = \sigma(\{E \times (s, t] : E \in \mathcal{F}_s, s < t\}).$$

For  $A \in \mathcal{P}$ , define

$$\mu(A) = \mathbb{E}\left[\int_0^\infty \mathbf{1}_A(\omega, s) d[M]_s\right].$$

Then  $\mu$  is a measure on  $(\Omega \times [0, \infty), \mathcal{P})$ . Moreover, it is uniquely determined by

$$\mu(E \times (s,t]) = \mathbb{E}\left[\mathbf{1}_E\left([M]_t - [M]_s\right)\right] \text{ for } s < t, \ E \in \mathcal{F}_s,$$

since  $\mathcal{P}$  is generated by sets of this form and they form a  $\pi$ -system. If  $H \geq 0$  is previsible, then:

$$\int_{\Omega \times [0,\infty)} H \, d\mu = \mathbb{E} \left[ \int_0^\infty H_s \, d[M]_s \right].$$

**Definition 4.2.** Let  $L^2(\mu) := L^2(\Omega \times [0, \infty), \mathcal{P}, \mu)$ .

Write  $||H||_{L^2(\mu)} = ||H||_{\mu} := \left(\mathbb{E}\left[\int_0^\infty H_s^2 d[M]_s\right]\right)^{1/2}$ . Then  $L^2(\mu) = \text{previsible processes with } ||H||_{\mu} < \infty$ , a Hilbert space. This is the space of integrands.

**Remark.**  $(L^2(\mu), \|\cdot\|_{\mu})$  depends on M, since  $\mu$  depends on M, but the simple processes are always

$$S \subseteq L^2(M) \quad \forall M \in \mathcal{M}_c^2$$
.

(here S denotes simple processes)

### 4.4 Itô integrals

Recall that for

$$H = \sum_{k=0}^{n-1} Z_k \mathbf{1}_{(t_k, t_{k+1}]} \in \mathcal{S}, \quad M \in \mathcal{M}_c^2,$$

we set

$$(H \cdot M)_t := \sum_{k=0}^{n-1} Z_k (M_{t_{k+1} \wedge t} - M_{t_k \wedge t}) \in \mathcal{M}_c^2.$$

This map defines a map

$$L^2(M) \supseteq \mathcal{S} \longrightarrow \mathcal{M}_c^2$$
.

We will prove that it defines an isometry between

$$(L^2(\mu), \|\cdot\|_{\mu})$$
 and  $(\mathcal{M}_c^2, \|\cdot\|)$ ,

when restricted to  $\mathcal{S} \subset L^2(M)$ . (Itô isometry). Indeed, compute

$$||H \cdot M||^2 = ||(H \cdot M)_{\infty}||_{L^2}^2 \quad \text{(see calculation from before)}$$
$$= \sum_{k=0}^{n-1} \mathbb{E}\left[Z_k^2 (M_{t_{k+1}} - M_{t_k})^2\right].$$

Since  $M^2 - [M]$  is a martingale, we have that

$$\begin{split} \mathbb{E}\left[Z_k^2(M_{t_{k+1}}-M_{t_k})^2\right] &= \mathbb{E}\left[Z_k^2\mathbb{E}\left[(M_{t_{k+1}}-M_{t_k})^2\mid\mathcal{F}_{t_k}\right]\right] \\ &= \mathbb{E}\left[Z_k^2\mathbb{E}\left[M_{t_{k+1}}^2-M_{t_k}^2\mid\mathcal{F}_{t_k}\right]\right] \\ &= \mathbb{E}\left[Z_k^2\mathbb{E}\left[[M]_{t_{k+1}}-[M]_{t_k}\mid\mathcal{F}_{t_k}\right]\right] \\ &= \mathbb{E}\left[Z_k^2([M]_{t_{k+1}}-[M]_{t_k})\right]. \end{split}$$

Hence,

$$||H \cdot M||^2 = \mathbb{E}\left[\sum_{k=0}^{n-1} Z_k^2([M]_{t_{k+1}} - [M]_{t_k})\right]$$
$$= \mathbb{E}\left[\int_0^\infty H_s^2 d[M]_s\right] = ||H||_M^2.$$

Lecture 10

**Theorem 4.4** (Itô Isometry). There exists a unique isometry  $I: L^2(M) \to \mathcal{M}^2_c$  such that

$$I(H) = H \cdot M$$
 for all simple  $H \in \mathcal{S}$ ).

**Definition:** For  $M \in \mathcal{L}^2$ ,  $H \in L^2(M)$ , let

$$H \cdot M := I(H)$$
 where I is from the theorem.

To prove the theorem, we first prove that the simple processes are dense in  $L^2(M)$ .

**Lemma 4.2.** Let  $\nu$  be any finite measure on  $\mathcal{P}$ . Then  $\mathcal{S}$  is dense in  $L^2(\mathcal{P}, \nu)$ . In particular, if  $M \in \mathcal{M}_{c,loc}$  and we take  $\nu = \mu$ , we have that  $\mathcal{S}$  is dense in  $L^2(M)$ .

*Proof.* Since  $H \in \mathcal{S} \Rightarrow \|H \cdot M\|_{L^{\infty}} < \infty$ , it follows that  $\mathcal{S} \subseteq L^{2}(\mathcal{P}, \nu)$ . Let  $\overline{\mathcal{S}}$  be the closure of  $\mathcal{S}$  in  $L^{2}(\mathcal{P}, \nu)$ . We wish to show:  $\overline{\mathcal{S}} = L^{2}(\mathcal{P}, \nu)$ . Let  $\mathcal{A} := \{A \in \mathcal{P} : \mathbf{1}_{A} \in \overline{\mathcal{S}}\}$ .

We wish to show: A = P. It is obvious that  $A \subseteq P$ . To see why the other direction holds, note that:

- (A) contains the  $\pi$ -system  $\{E \times (s,t] : E \in \mathcal{F}_s, s < t\}$ , which generates  $\mathcal{P}$ ,
- (B)  $\mathcal{A}$  is a  $\lambda$ -system.

By Dynkin's lemma, it follows that  $\mathcal{P} \subseteq \mathcal{A} \Rightarrow \mathcal{A} = \mathcal{P}$ . Thus, the lemma follows since linear combinations of such indicators are dense in  $L^2(\mathcal{P}, \nu)$ .

Proof of Itô Isometry. Take  $H \in L^2(M)$ . The above lemma implies there exists  $(H^n) \subset \mathcal{S}$  such that

$$||H^n - H||_{L^2(M)} \to 0$$
 as  $n \to \infty$ .

This implies  $(H^n)$  is a Cauchy sequence with respect to  $\|\cdot\|_{L^2(M)}$ .

**Need to show:**  $I(H^n)$  is Cauchy with respect to  $\|\cdot\|$ .

$$\begin{split} \|I(H^n) - I(H^m)\| &= \|H^n \cdot M - H^m \cdot M\| \quad \text{(linearity)} \\ &= \|(H^n - H^m) \cdot M\| = \|H^n - H^m\|_M \quad \text{(isometry)} \\ &\to 0 \quad \text{as } n, m \to \infty. \end{split}$$

Therefore,  $(I(H^n))$  converges with respect to  $\|\cdot\|$  to an element in  $\mathcal{M}_c^2$ . Since  $(\mathcal{M}_c^2, \|\cdot\|)$  is complete, set I(H) to be this element.

**NTS:** I is well-defined.

Suppose that  $(K^n) \subset \mathcal{S}$  converges to H with respect to  $\|\cdot\|_{L^2(M)}$ . Then

$$||I(H^n) - I(K^n)|| = ||H^n \cdot M - K^n \cdot M||$$
  
=  $||H^n - K^n||_M \le ||H^n - H||_M + ||K^n - H||_M \to 0$ 

as  $n \to \infty$ , so that the limits of  $I(H^n)$ ,  $I(K^n)$  are indistinguishable.

**NTS:** I is an isometry  $L^2(M) \to \mathcal{M}_c^2$ 

$$(H^n) \subset \mathcal{S}, H^n \to H \in L^2(M), \|I(H)\| = \lim \|H^n \cdot M\| = \lim \|H^n\|_M = \|H\|_M.$$

From now on, we write

$$I(H)_t = (H \cdot M)_t = \int_0^t H_s \, \mathrm{d}M_s$$

This process  $H \cdot M$  is the Itô (stochastic) integral of H with respect to M.

**Extensions:** Our goal now is to extend the definition of  $H \cdot M$  to the setting that H is locally bounded and  $M \in \mathcal{M}_{c,\text{loc}}$ . Need to understand how the integral behaves under stopping.

**Proposition 4.4.** Let  $H \in \mathcal{S}, M \in \mathcal{M}$ . Then for any stopping time T, we have that

$$(H \cdot M^T) = (H \cdot M)^T.$$

*Proof.* We have that:

$$(H \cdot M^T)_t = \sum_{k=0}^{n-1} Z_k (M_{t \wedge t_{k+1}}^T - M_{t \wedge t_k}^T)$$
$$= \sum_{k=0}^{n-1} Z_k \left( M_{t \wedge (t_{k+1} \wedge T)} - M_{t \wedge (t_k \wedge T)} \right)$$
$$= (H \cdot M)_{t \wedge T} = (H \cdot M)_t^T.$$

**Proposition 4.5.** Let  $M \in \mathcal{M}_c^2$ ,  $H \in L^2(M)$ , and T a stopping time. Then

$$(H \cdot M)^T = (H \cdot \mathbf{1}_{(0,T]}) \cdot M = (H \cdot M^T).$$

*Proof.* First note that if  $H \in L^2(M)$ , then  $H \cdot \mathbf{1}_{(0,T]} \in L^2(M)$  and  $H \in L^2(M^T)$ , so the integrals make sense.

**Step 1:** Let  $H \in \mathcal{S}, M \in \mathcal{M}_c^2$ , and T takes on finitely many values. Then  $H \cdot \mathbf{1}_{(0,T]} \in \mathcal{S}$  and

$$(H \cdot M)^T = (H \cdot \mathbf{1}_{(0,T]}) \cdot M = H \cdot M^T.$$

Step 2: Let  $H \in \mathcal{S}, M \in \mathcal{M}_c^2$ , and T a general stopping time. Previous proposition implies  $(H \cdot M)^T = (H \cdot \mathbf{1}_{(0,T]}) \cdot M$ . Need to show:  $(H \cdot M)^T = (H \cdot \mathbf{1}_{(0,T]}) \cdot M$ . Will prove via an approximation argument.

For  $m, n \in \mathbb{N}$ , let  $T_{n,m} = (2^{-n} \lceil 2^n T \rceil) \wedge m$ . Then  $T_{n,m}$  takes finitely many values and  $T_{n,m} \setminus T \wedge m$  as  $n \to \infty$ . Thus,

$$\left\| H \cdot \mathbf{1}_{(0,T_{n,m}]} - H \cdot \mathbf{1}_{(0,T \wedge m]} \right\|_{L^2(M)}^2 = \mathbb{E} \left[ \int_0^\infty H_t^2 \cdot \mathbf{1}_{(T_{n,m},T \wedge m]} d[M]_t \right] \to 0,$$

as  $n \to \infty$  by the Dominated Convergence Theorem, with dominating function  $H_t^2$ . Therefore,  $(H \cdot \mathbf{1}_{(0,T_{n,m}]}) \cdot M \to (H \cdot \mathbf{1}_{(0,T \wedge m]}) \cdot M$  in  $\mathcal{M}_c^2$  as  $n \to \infty$ .

#### Step 3:

LHS = 
$$(H \cdot M)^{T_{n,m}}$$
,  $(H \cdot M)^{T_{n,m}} \to (H \cdot M)^{T \wedge m}$ 

pointwise almost surely by continuity of  $H \cdot M$ . Thus,

$$(H \cdot \mathbf{1}_{(0,T \wedge m)} \cdot M \to (H \cdot M)^{T \wedge m}.$$

Repeat the same argument, send  $n \to \infty$ 

$$\Rightarrow H \cdot \mathbf{1}_{(0,T]} \cdot M = (H \cdot M)^T.$$

**Step 3:** Let  $H \in L^2(M), M \in \mathcal{M}_c^2, T$  a general stopping time. Let  $(H^n)$  be a sequence in  $\mathcal{S}$  with  $H^n \to H$  in  $L^2(M)$ . Then,

$$\|(H^n \cdot M)^T - (H \cdot M)^T\|_{\mathcal{M}_c^2} = \|(H^n \cdot M)_T - (H \cdot M)_T\|_{L^2}$$

$$\leq \left\| \sup_{t \leq T} (H^n \cdot M)_t - (H \cdot M)_t \right\|_{L^2}$$
  
$$\leq 2 \cdot \left\| (H^n \cdot M)_{\infty} - (H \cdot M)_{\infty} \right\|_{L^2} \quad \text{(Doob's $L^2$ inequality)}$$
  
$$= 2 \cdot \left\| (H^n - H) \cdot M \right\| = 2 \cdot \left\| H^n - H \right\|_{M} \to 0 \text{ as } n \to \infty$$

(by Itô isometry) and so

$$(H^n \cdot M)^T \to (H \cdot M)^T$$
 in  $\mathcal{M}_c^2$ .

On the other hand,

$$\begin{aligned} \left\| H^n \cdot \mathbf{1}_{(0,T]} - H \cdot \mathbf{1}_{(0,T]} \right\|_{M}^{2} &= \mathbb{E} \left[ \int_{0}^{\infty} (H_{t}^{n} - H_{t})^{2} \cdot \mathbf{1}_{(0,T]} d[M]_{t} \right] \\ &\leq \mathbb{E} \left[ \int_{0}^{\infty} (H_{t}^{n} - H_{t})^{2} d[M]_{t} \right] = \|H^{n} - H\|_{M}^{2} \to 0 \text{ as } n \to \infty. \end{aligned}$$

Hence,

$$H^n\cdot \mathbf{1}_{(0,T]}\cdot M\to H\cdot \mathbf{1}_{(0,T]}\cdot M$$
 in  $\mathcal{M}^2_c$  by the Itô isometry.

Since  $H^n \cdot \mathbf{1}_{(0,T]} \cdot M = (H^n \cdot M)^T$  for all n, we have that

$$(H \cdot M)^T = H \cdot \mathbf{1}_{(0,T]} \cdot M.$$

**NTS:**  $(H \cdot M)^T = (H \circ M^T)$ . Assume there exists  $(H^n)$  in S such that  $H^n \to H$  in  $L^2(\mu)$ .

$$||H^n - H||_{\mu^T}^2 = \mathbb{E}\left[\int_0^\infty (H_s^n - H_s)^2 d[M^T]_s\right]$$
$$= \mathbb{E}\left[\int_0^\infty (H_s^n - H_s)^2 \cdot \mathbf{1}_{(0,T]} d[M]_s\right]$$
$$\leq ||H^n - H||_{\mu}^2 \to 0 \text{ as } n \to \infty.$$

$$\Rightarrow H^n \circ M^T \to H \circ M^T$$
 in  $\mathcal{M}^2_c$  by Itô isometry.

Since  $(H^n \cdot M)^T = H^n \circ M^T$  for all n, we get that

$$(H \cdot M)^T = (H \circ M^T). \qquad \Box$$

**Definition 4.3.** We say that a previsible process H is <u>locally bounded</u> if there exists a sequence  $(S_n)_{n\in\mathbb{N}}$  of stopping times where  $S_n\nearrow\infty$  as  $n\to\infty$  and  $H\cdot\mathbf{1}_{(0,S_n]}$  is bounded for all n.

Remark. Every continuous adapted process is previsible and locally bounded.

**Definition 4.4.** Let H be a locally bounded, previsible process with  $H \cdot \mathbf{1}_{[0,S_n]}$  bounded for all n, where  $(S_n)$  is a sequence of stopping times with  $S_n \nearrow \infty$  as  $n \to \infty$ . Let  $M \in \mathcal{M}_{c,loc}$  with  $M_0 = 0$  and let

$$S'_n := \inf\{t \ge 0 : |M_t| \ge n\}$$

so that  $M^{S'_n} \in \mathcal{M}_c^2$  for all n. Let  $T_n := S_n \wedge S'_n$ , and set

$$(H \cdot M)_t := (H\mathbf{1}_{(0,T_n]} \cdot M^{T_n})_t, \quad \forall t \in [0, T_n].$$

Using the previous proposition, this definition is well-defined, and is consistent with the Itô integral with  $M \in \mathcal{M}_c^2$ ,  $H \in L^2(M)$ .

**Proposition 4.6.** Let  $M \in \mathcal{M}_{c,loc}$ , H locally bounded and previsible, then  $H \cdot M \in \mathcal{M}_{c,loc}$  where the sequence  $(T_n)$  is a reducing sequence. Moreover, for any stopping time T, we have that

$$(H \cdot M)^T = H\mathbf{1}_{(0,T]} \cdot M = H \cdot M^T.$$

*Proof.* That  $H \cdot M \in \mathcal{M}_{c,loc}$  with reducing sequence  $(T_n)$  follows from the definition of  $H \cdot M$ . For any stopping time T,

$$(H \cdot M)^T = \lim_{n \to \infty} (H \mathbf{1}_{(0,T_n]} \cdot M^{T_n})^T$$
 (pointwise limit).

By the previous proposition,

$$(H \cdot M)^T = \lim_{n \to \infty} (H \mathbf{1}_{(0,T]} \cdot \mathbf{1}_{(0,T_n]} \cdot M^T = H \cdot \mathbf{1}_{(0,T]} \circ M.$$

The same argument shows that  $(H \cdot M)^T = H \cdot M^T$ .

Lecture 12 Today we will show

$$[H \cdot M] = H^2 \cdot [M], \quad H \cdot (K \cdot M) = (HK) \cdot M,$$

for semimartingales.

**Proposition 4.7.** Let  $M \in \mathcal{M}_{c,loc}$  and H locally bounded and previsible. Then

$$\underbrace{[H \cdot M]}_{It\hat{o}} = \underbrace{H^2 \cdot [M]}_{Lebesgue\text{-Stieltjes}}.$$

*Proof.* Suppose that T is a bounded stopping time. Then H, M are uniformly bounded. Then

$$\mathbb{E}\left[(H\cdot M)_T^2\right] = \mathbb{E}\left[\left((H\cdot \mathbf{1}_{(0,T]})\cdot M\right)_{\infty}^2\right]$$

$$= \mathbb{E}\left[\left(H^2\cdot \mathbf{1}_{(0,T]}\cdot [M]\right)_{\infty}\right]$$

$$= \mathbb{E}\left[\left(H^2\cdot [M]\right)_T\right].$$
(Itô isometry)

**OST:**  $(H \cdot M)^2 - H^2 \cdot [M] \in \mathcal{M}_c$ . Uniqueness of quadratic variation implies

$$[H\cdot M]=H^2\cdot [M].$$

Now assume that H is locally bounded, previsible, and  $M \in \mathcal{M}_{c,loc}$ . Let  $(T_n)$  be a sequence of stopping times so that  $H \cdot \mathbf{1}_{(0,T_n]}, M^{T_n}$  are bounded, and  $T_n \to \infty$  as  $n \to \infty$ . Then

$$\begin{split} [H \cdot M] &= \lim_{n \to \infty} [H \cdot M]^{T_n} \\ &= \lim_{n \to \infty} [(H \cdot M)^{T_n}] \qquad \qquad \text{(uniqueness of quadratic variation)} \\ &= \lim_{n \to \infty} [(H \mathbf{1}_{(0,T_n]}) \cdot M] \\ &= \lim_{n \to \infty} H^2 \mathbf{1}_{(0,T_n]} \cdot [M^{T_n}] \\ &= H^2 \cdot [M] \quad \text{(applying MCT).} \quad \Box \end{split}$$

Since  $H \cdot M \in \mathcal{M}_{c,loc}$  for  $M \in \mathcal{M}_{c,loc}$ , H locally bounded, previsible, we can integrate against it.

**Proposition 4.8.** Let  $M \in \mathcal{M}_{c,loc}$ , H, K locally bounded, previsible. Then:

$$H \cdot (K \cdot M) = (HK) \cdot M.$$

*Proof.* Elementary to check that this holds for H,K simple processes, [L]. Note that by linearity in each argument, it suffices to check for H,K consisting of single time intervals and noticing that for  $0 \le s'' < s' < t', \ 0 < s < t,$ 

$$\mathbf{1}_{(s'' \wedge t', t' \wedge t]} - \mathbf{1}_{(s \wedge t', t' \wedge s'')} = \mathbf{1}_{(s'' \wedge t', t')} \cdot \mathbf{1}_{(s', t]}$$

Now suppose that H, K, M are uniformly bounded. **NTS:**  $H \in L^2(K \cdot M), HK \in L^2(M)$ .

$$\begin{split} \|H\|_{L^2(K \cdot M)}^2 &= \mathbb{E} \left[ (H^2 \cdot [K \cdot M])_{\infty} \right] \\ &= \mathbb{E} \left[ \left( H^2 \cdot (K^2 \cdot [M]) \right)_{\infty} \right] \\ &= \mathbb{E} \left[ \left( (HK)^2 \cdot [M] \right)_{\infty} \right] \\ &= \|HK\|_{L^2(M)}^2 \\ &\leq \min \left\{ \|H\|_{\infty}^2 \|K\|_{L^2(M)}^2, \ \|K\|_{\infty}^2 \|H\|_{L^2(M)}^2 \right\} < \infty. \end{split}$$
 (Lebesgue–Stieltjes)

Let  $(H^n)$ ,  $(K^n)$  be sequences in S which converge to H, K in  $L^2(M)$  and where  $(H^n)$ ,  $(K^n)$  uniformly bounded. Then

$$H^n \cdot (K^n \cdot M) = (H^n K^n) \cdot M.$$

Then

$$\begin{split} \|H^n\cdot(K^n\cdot M)-H\cdot(K\cdot M)\| &\leq \|(H^n-H)\cdot(K^n\cdot M)\|+\|H\cdot((K^n-K)\cdot M)\|\\ &=\|H^n-H\|_{L^2(K^n\cdot M)}+\|H\|_{L^2((K^n-K)\cdot M)}\\ &=\|(H^n-H)\cdot K^n\|_{L^2(M)}+\|H\cdot(K^n-K)\|_{L^2(M)}\\ &\leq \|K^n\|_\infty\,\|H^n-H\|_{L^2(M)}+\|H\|_\infty\,\|K^n-K\|_{L^2(M)}\to 0\quad\text{as }n\to\infty. \end{split}$$

(Itô isome

A similar argument shows  $(H^nK^n) \cdot M \to (HK) \cdot M$  as  $n \to \infty$  in  $\mathcal{M}_c$  yielding

$$H \cdot (K \cdot M) = (HK) \cdot M$$
 (bounded case).

Now suppose that H, K are locally bounded, previsible and  $M \in \mathcal{M}_{c,loc}$ . Let  $(T_n)$  be a sequence of stopping times so that

$$H\mathbf{1}_{[0,T_n]}, K\mathbf{1}_{[0,T_n]}, M^{T_n}$$
 are bounded and  $T_n \nearrow \infty$  as  $n \to \infty$ .

Then

$$HK\mathbf{1}_{[0,T_n]}\cdot M^{T_n} = \left(H\mathbf{1}_{[0,T_n]}\right)\cdot \left(K\mathbf{1}_{[0,T_n]}\cdot M^{T_n}\right).$$

Also,

$$K\mathbf{1}_{[0,T_n]}\cdot M^{T_n}=(K\cdot M)^{T_n}.$$

Hence,

$$H\mathbf{1}_{[0,T_n]}\cdot (K\mathbf{1}_{[0,T_n]}\cdot M)^{T_n} = H\mathbf{1}_{[0,T_n]}\cdot (K\cdot M)^{T_n} = (H\cdot (K\cdot M))^{T_n} \to H\cdot (K\cdot M)$$
 as  $n\to\infty$ .

Also,

$$(HK\mathbf{1}_{[0,T_n]})\cdot M^{T_n} = (HK\cdot M)^{T_n} \to (HK\cdot M)$$
 as  $n\to\infty$ 

which finally gives

$$H \cdot (K \cdot M) = (HK) \cdot M.$$

**Remark.** We have repeatedly used a "localisation" argument to reduce everything to the setting of a bounded integrand and martingale. This is a standard procedure; will omit in later arguments.

### 5 Semimartingales

**Definition 5.1.** A continuous, adapted process X is a semimartingale if it can be decomposed as

$$X = X_0 + M + A$$

where  $M \in \mathcal{M}_{c,loc}$ , A is of finite variation, and  $M_0 = A_0 = 0$ .

"Doob–Meyer decomposition": For a continuous semi-martingale  $X = X_0 + M + A$ , define the quadratic variation by  $[X]_t := [M]_t$ . Justified since once can compute (

$$\sum_{k=0}^{\lceil 2^n t \rceil - 1} \left( X_{(k+1) \cdot 2^{-n}} - X_{k \cdot 2^{-n}} \right)^2 \xrightarrow[n \to \infty]{ucp} [M]_t.$$

**Definition 5.2.** For H locally bounded and previsible, and  $X = X_0 + M + A$  a continuous semimartingale, define (Here, the first term is the Itô integral, the second is Lebesgue–Stieltjes.)

$$H \cdot X := H \cdot M + \int H_s \, dA_s \, .$$

Then  $H \cdot X$  is also a semimartingale.

**Proposition 5.1.** Let X be a continuous semimartingale and H locally bounded, left-continuous and adapted. Then:

$$\sum_{k=0}^{\lceil 2^n t \rceil - 1} H_{k \cdot 2^{-n}} (X_{(k+1) \cdot 2^{-n}} - X_{k \cdot 2^{-n}}) \xrightarrow[n \to \infty]{ucp} (H \cdot X)_t$$

*Proof.*  $[\mathcal{L}]$  . Hint: use a localisation argument first. Show that the Itô integral of H can be approximated by discretely approximating H by simple processes.

## Lecture 13 Summary of the Stochastic Integral

Step 1:  $H \in \mathcal{S}$ ,  $H_t = \sum_{k=0}^{n-1} Z_k \cdot \mathbf{1}_{(t_k, t_{k+1}]}(t)$ ,  $Z_k$  bounded,  $\mathcal{F}_{t_k}$ -measurable,  $M \in \mathcal{M}_c^2$  set:

$$(H \cdot M)_t = \sum_{k=0}^{n-1} Z_k (M_{t \wedge t_{k+1}} - M_{t \wedge t_k}).$$

Then  $H \cdot M \in \mathcal{M}_c^2$ .

Step 2: Equip  $\mathcal{M}_c^2$  with a Hilbert space structure with norm  $||M|| = ||M_{\infty}||_{L^2}$ ,  $M \in \mathcal{M}_c^2$ .

Step 3: Establish the existence of  $[M] \in \mathcal{M}_{c, loc}$ , where [M] is the unique adapted, non-decreasing continuous process with  $[M]_0 = 0$  so that  $M^2 - [M] \in \mathcal{M}_{c, loc}$ .

**Step 4:** For  $M \in \mathcal{M}^2_c$ , use [M] to define a Hilbert space  $(L^2(M), \|\cdot\|_M$  where

$$\|H\|_M = \left(\mathbb{E}\left[\int_0^\infty H_s^2 \, d[M]_s\right]\right)^{1/2}$$

**Step 5:** Extend the integral to  $H \in L^2(M)$ ,  $M \in \mathcal{M}_c^2$  using the Itô isometry:

$$||H \cdot M|| = ||H||_{\mathcal{H}_M}$$

 $H \cdot M \in \mathcal{M}_c^2$  for all  $H \in L^2(M)$ ,  $M \in \mathcal{M}_c^2$ .

**Step 6:** Extended to H locally bounded & previsible,  $M \in \mathcal{M}_{c, loc}$  by setting

$$(H \cdot M)_t = (H\mathbf{1}_{[0,\tau_n]} \cdot M^{\tau_n})_t \quad \forall t \le \tau_n$$

**Step 7:** Extend to H locally bounded, previsible and  $X = X_0 + M + A$  a continuous semimartingale by setting

$$H \cdot X = \underbrace{H \cdot M}_{\text{It\^{o}}} + \underbrace{H \cdot A}_{\text{Lebesgue-Stieltjes}}$$

then  $H \cdot X$  is a continuous semimartingale.

### Stochastic Calculus

**Definition 5.3.** For  $M, N \in \mathcal{M}_{c,loc}$ , define the <u>covariation</u> of M, N by setting:

$$[M,N]:=\frac{1}{4}\left([M+N]-[M-N]\right).$$

(Polarization identity). Note that: [M, M] = [M].

**Theorem 5.1.** Let  $M, N \in \mathcal{M}_{c,loc}$ . Then:

- (a) [M, N] is the unique process (up to indistinguishability), continuous, adapted, finite-variation process with  $[M, N]_0 = 0$ , so that  $MN [M, N] \in \mathcal{M}_{c.loc}$ .
- (b) For  $n \in \mathbb{N}$ , set

$$[M,N]_t^n := \sum_{k=0}^{\lceil 2^n t \rceil - 1} \left( M_{(k+1)2^{-n}} - M_{k2^{-n}} \right) \left( N_{(k+1)2^{-n}} - N_{k2^{-n}} \right).$$

Then  $[M,N]_t^n \to [M,N]_t$  as  $n \to \infty$ , almost surely and locally uniformly in t.

- (c) If  $M, N \in \mathcal{M}_c^2$ , then MN [M, N] is a UI martingale.
- (d) For H locally bounded, previsible,

$$[H \cdot M, N] + [M, H \cdot N] = 2H \cdot [M, N].$$

Proof. (a) 
$$MN = \frac{1}{4} ((M+N)^2 - (M-N)^2)$$
. So 
$$\circledast MN - [M,N] = \frac{1}{4} ((M+N)^2 - [M+N] - (M-N)^2 + [M-N]), \in \mathcal{M}_{c,loc}.$$

Therefore,  $MN - [M, N] \in \mathcal{M}_{c,loc}$ . By definition, [M, N] is continuous, adapted and finite-variation (difference of non-decreasing functions). Same argument used to prove the uniqueness of covariation.

(b) Note that

$$[M, N]_t^n = \frac{1}{4} \left( [M+N]_t^n - [M-N]_t^n \right)$$

$$\downarrow_{\text{ucp}} \qquad \downarrow_{\text{ucp}} \qquad \downarrow_{\text{ucp}}$$

$$[M, N] \qquad [M+N] \qquad [M-N]$$

So  $[M, N]_t^n \to [M, N]_t$  ucp.

(c) MN - [M, N] is a UI martingale for  $M, N \in \mathcal{M}_c^2$ , follows from the identity  $\circledast$  and the corresponding property for quadratic variation.

(d)  $[H \cdot (M+N)] = H^2 \cdot [M+N],$ 

so

$$[H \cdot M, H \cdot N] = H \cdot [M, N].$$

Moreover,

$$(H+1)^2 \cdot [M,N] = [(H+1) \cdot M, (H+1) \cdot N]$$

by bilinearity ( [2])

$$= [H \cdot M + M, H \cdot N + N]$$
  
=  $[H \cdot M, H \cdot N] + [H \cdot M, N] + [M, H \cdot N] + [M, N],$ 

and

$$(H+1)^2 \cdot [M,N] = (H^2 + 2H + 1) \cdot [M,N]$$
$$= H^2 \cdot [M,N] + 2H \cdot [M,N] + [M,N].$$

giving

$$2H \cdot [M, N] = [M, H \cdot N] + [H \cdot M, N]. \qquad \Box$$

**Proposition 5.2** (Kunita-Watanabe identity). Let  $M, N \in \mathcal{M}_{c,loc}$ , H locally bounded, previsible. Then

$$[H \cdot M, N] = H \cdot [M, N].$$

*Proof.* <u>NTS:</u>  $[H \cdot M, N] = [N, H \cdot M]$ , as then we can apply part (d) of the previous theorem. Now, use that

$$(H \cdot M)N - [H \cdot M, N] \in \mathcal{M}_{c, loc},$$
  
 $M(H \cdot N) - [M, H \cdot N] \in \mathcal{M}_{c, loc}.$ 

We will show that

$$(H \cdot M)N - M(H \cdot N) \in \mathcal{M}_{c,loc}.$$

This suffices, since then  $[H \cdot M, N] - [M, H \cdot N] \in \mathcal{M}_{c, loc}$  with finite variation and starts from 0, so

$$[H \cdot M, N] = [M, H \cdot N].$$

**Localisation:** WLOG  $M, N \in \mathcal{M}_c^2$ , H bounded.

By optional stopping, it suffices to show that for bounded stopping time T,

$$\mathbb{E}[(H \cdot M)_T N_T] = \mathbb{E}[M_T (H \cdot N)_T].$$

LHS =  $\mathbb{E}[(H \cdot M)_{\infty}^T N_{\infty}^T]$ , RHS =  $\mathbb{E}[M_{\infty}^T (H \cdot N)_{\infty}^T]$ . So it suffices to show that

$$\mathbb{E}[(H \cdot M)_{\infty} N_{\infty}] = \mathbb{E}[M_{\infty}(H \cdot N)_{\infty}]$$

for all  $M, N \in \mathcal{M}_c^2$ , bounded H. Suppose now that  $H = Z\mathbf{1}_{(s,t]}, Z \mathcal{F}_s$ -measurable, bounded. We then compute

$$\mathbb{E}[(H \cdot M)_{\infty} N_{\infty}] = \mathbb{E}\left[Z(M_t - M_s)N_{\infty}\right]$$

$$= \mathbb{E}[ZM_t \mathbb{E}[N_{\infty} \mid \mathcal{F}_t] - ZM_s \mathbb{E}[N_{\infty} \mid \mathcal{F}_s]]$$

$$= \mathbb{E}\left[Z(M_t N_t - M_s N_s]\right]$$

$$= \mathbb{E}[M_{\infty}(H \cdot N)_{\infty}],$$

Same argument the same argument gives

$$\mathbb{E}[M_{\infty}(H\cdot N)_{\infty}] = \mathbb{E}[M_{\infty}(H\cdot N)_{\infty}]$$

for  $H = \sum Z \mathbf{1}_{(s,t]}$ . Linearity gives  $\circledast$  for  $H \in \mathcal{S}$ .

Lecture 14 Suppose now that H is a bounded predictable process. Then there exists a sequence  $(H^n) \subset \mathcal{S}$  so that  $H^n \to H$  in  $L^2(M), L^2(N)$  (in the lemma where we showed that  $\mathcal{S}$  are dense in  $L^2(\mathbb{P}, \nu), \nu$  finite, to be given by  $\nu(E) = \mathbb{E}\left[\int_0^\infty \mathbf{1}_E(\mathrm{d}[M]_s + \mathrm{d}[N]_s)\right]$ ). Hence,

$$H^n \cdot M \to H \cdot M$$
,  $H^n \cdot N \to H \cdot N$  in  $\|\cdot\|$ -norm

and so

$$H^n \cdot M)_{\infty} \to (H \cdot M)_{\infty}$$
 and in  $L^2$ 

and

$$(H^n \cdot N)_{\infty} \to (H \cdot N)_{\infty}$$
 as  $n \to \infty$ 

Thus,

$$\|\mathbb{E}[(H^n \cdot M)_{\infty} N_{\infty}] - \mathbb{E}[(H \cdot M)_{\infty} N_{\infty}]\|_{L^1} \stackrel{\text{C-S}}{\leq} \|(H^n \cdot M)_{\infty} - (H \cdot M)_{\infty}\|_{L^2} \|N_{\infty}\|_{L^2}$$

$$\to 0 \quad \text{as } n \to \infty.$$

Thus,

$$\mathbb{E}[(H^n \cdot M)_{\infty} N_{\infty}] \stackrel{n \to \infty}{\longrightarrow} \mathbb{E}[(H \cdot M)_{\infty} N_{\infty}]$$

Same works with M, N swapped which finally gives  $\circledast$ .

**Definition 5.4.** For continuous semi-martingales X, Y, define [X, Y] to be the covariation of their martingale parts.

• This is justified as

$$[X,Y]_t^n = \sum_{k=0}^{\lceil 2^n t \rceil - 1} (X_{(k+1)2^{-n}} - X_{k2^{-n}}) (Y_{(k+1)2^{-n}} - Y_{k2^{-n}})$$

$$\xrightarrow{ucp} [X,Y]_t \text{ as } n \to \infty$$

• Kunita-Watanabe also holds for semi-martingales.

**Proposition 5.3.** Let X, Y be independent semi-martingales. Then their covariation [X, Y] = 0.

$$Proof.$$
 [22].

#### 5.1 Itô's formula

**Theorem 5.2** (Integration by parts). Let X, Y be continuous semi-martingales. Then

$$X_t Y_t - X_0 Y_0 = \int_0^t X_s \, dY_s + \int_0^t Y_s \, dX_s + [X, Y]_t. \quad \circledast$$

*Proof.* Note that the integrals are well-defined since any continuous adapted process is locally bounded and predictable.

Note that for  $s \leq t$ , we have

$$X_t Y_t - X_s Y_s = X_s (Y_t - Y_s) + Y_s (X_t - X_s) + (X_t - X_s)(Y_t - Y_s).$$

Since the LHS and RHS of identity  $\circledast$  are continuous, it suffices to prove the result for t of the form

$$t = m \cdot 2^{-j}, \quad m, j \in \mathbb{N}, \quad (n \ge j),$$

$$X_t Y_t - X_0 Y_0 = \sum_{k=0}^{m \cdot 2^{n-j} - 1} (X_{k \cdot 2^{-n}} (Y_{(k+1) \cdot 2^{-n}} - Y_{k \cdot 2^{-n}}) + Y_{k \cdot 2^{-n}} (X_{(k+1) \cdot 2^{-n}} - X_{k \cdot 2^{-n}})$$

$$+ (X_{(k+1) \cdot 2^{-n}} - X_{k \cdot 2^{-n}}) (Y_{(k+1) \cdot 2^{-n}} - Y_{k \cdot 2^{-n}})).$$

$$\xrightarrow{\text{ucp}} (X \cdot Y)_t + (Y \cdot X)_t + [X, Y]_t \text{ as } j \to \infty.$$

Note that the [X, Y] term does not appear if either X, Y are independent or if X or Y does not have a martingale part.

**Theorem 5.3** (Itô's Formula). Let  $(X^1, \ldots, X^d)$  where each  $X^i$ , for  $1 \le i \le d$ , is a continuous semi-martingale. Let  $f : \mathbb{R}^d \to \mathbb{R}$  be  $C^2$ . Then,

$$f(X_t) = f(X_0) + \sum_{i=1}^{d} \int_0^t \frac{\partial f}{\partial x_i}(X_s) dX_s^i + \frac{1}{2} \sum_{i,j=1}^{d} \int_0^t \frac{\partial^2 f}{\partial x_i \partial x_j}(X_s) d[X^i, X^j]_s.$$

**Remark.** 1. Integration by parts is a special case of Itô's formula with  $f(x,y) = x \cdot y$ .

2. For d = 1, Itô's formula reads:

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) d[X]_s.$$

It is possible to derive this using Taylor expansions, since:

$$f(X_t) = f(X_0) + \sum_{k=0}^{\lfloor 2^n t \rfloor - 1} \left( f(X_{(k+1)2^{-n}}) - f(X_{k2^{-n}}) \right)$$

$$= f(X_0) + \sum_{k=0}^{\lfloor 2^n t \rfloor - 1} f'(X_{k2^{-n}}) (X_{(k+1)2^{-n}} - X_{k2^{-n}}) + \frac{1}{2} \sum_{k=0}^{\lfloor 2^n t \rfloor - 1} f''(X_{k2^{-n}}) (X_{(k+1)2^{-n}} - X_{k2^{-n}})^2 + error.$$

$$\longrightarrow f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) d[X]_s \quad (ucp \ as \ n \to \infty).$$

We will prove it a different way, since the extra error term is inconvenient to deal with.

#### Examples.

1. Let X = B, a standard Brownian motion, and  $f(x) = x^2$ . Then:

$$f(X_t) = f(B_t) = f(B_0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) d[B]_s$$
$$= 0 + \int_0^t 2B_s dB_s + \frac{1}{2} \int_0^t 2 ds = 2 \int_0^t B_s dB_s + t$$

which gives

$$B_t^2 - t = 2 \int_0^t B_s dB_s \in \mathcal{M}_{c,loc}.$$

2. Let  $f: \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}$  be  $C^{1,2}$ , and define

$$X_t = (t, B_t^1, \dots, B_t^d)$$

where  $B_t^1, \dots, B_t^d$  are independent Brownian motions. By Itô's formula:

$$f(t, B_t) - f(0, B_0) = \int_0^t \left(\frac{\partial}{\partial s} + \frac{1}{2}\Delta\right) f(s, B_s) ds + \sum_{i=1}^d \int_0^t \frac{\partial f}{\partial x_i}(s, B_s) dB_s^i \in \mathcal{M}_{c, loc}.$$

Here,  $\Delta$  is the Laplacian in the spatial coordinates.

If f does not depend on t and is harmonic in spatial variables, then  $f(B_t) \in \mathcal{M}_{c,loc}$ . If f is bounded, then  $f(B_t)$  is a martingale.

#### Lecture 15

*Proof* ( $It\hat{o}$ 's Formula). We are doing the proof for d=1; the case d>1 is just notationally more cumbersome but the same argument essentially applies,  $\[ \[ \] \]$ . Let

$$X = X_0 + M + A$$

and let V be the total variation of A. Let

$$T_r = \inf \{ t \ge 0 : |X_t| + V_t + [M]_t > r \}$$

for each r > 0. Then  $(T_r)$  is a sequence of stopping times with  $T_r \nearrow \infty$  as  $r \to \infty$ .

It suffices to prove the formula on  $[0, T_r]$  for each r > 0. Let  $\mathcal{A}$  be the subset of  $C_c^2(\mathbb{R})$  such that the formula holds. We show  $\mathcal{A} = C_c^2(\mathbb{R})$ .

We will prove this by showing

- (a)  $\mathcal{A}$  contains  $f(x) \equiv 1$ ,  $f(x) \equiv x$ .
- (b)  $\mathcal{A}$  is a vector space.
- (c)  $\mathcal{A}$  is an algebra, i.e.,  $f, g \in \mathcal{A} \Rightarrow fg \in \mathcal{A}$ .
- (d) If  $(f_n) \subset \mathcal{A}$  with

$$f_n \to f$$
 in  $C^2(\overline{B_r})$  for each  $r > 0$ 

(where  $B_r = \{x \in \mathbb{R} : |x| < r\}$ ), then  $f \in \mathcal{A}$ .

Here,  $f_n \to f$  in  $C^2(\overline{B_r})$  means that with

$$\Delta_{n,r} := \sup_{x \in \overline{B_r}} |f_n - f| + \sup_{x \in \overline{B_r}} |f'_n - f'| + \sup_{x \in \overline{B_r}} |f''_n - f''|,$$

we have  $\Delta_{n,r} \to 0$  as  $n \to \infty$  for each r > 0.

(a), (b), (c) imply that polynomials are in  $\mathcal{A}$ . The Weierstrass approximation theorem gives that polynomials are dense in  $C^2(\overline{B_r}) \ \forall r > 0$ , so (d) implies that  $\mathcal{A} = C_c^2(\mathbb{R})$ . That (a), (b) hold is easy to see,

Proof of (c): Suppose  $f, g \in A$ . Let  $F_t = f(X_t)$ ,  $G_t = g(X_t)$ . Itô's formula holds for f, g give that F, G are continuous semi-martingales. Integration by parts also gives

$$F_t G_t - F_0 G_0 = \int_0^t F_s dG_s + \int_0^t G_s dF_s + [F, G]_t.$$

Since Itô's formula holds for f, g, we have:

$$\int_0^t F_s dG_s = \int_0^t F_s d\left(\int_0^s g'(X_u) dX_u + \frac{1}{2} \int_0^s g''(X_u) d[X]_u\right). \tag{1}$$

$$\stackrel{\text{K-W}}{=} \int_0^t f(X_s) g'(X_s) dX_s + \frac{1}{2} \int_0^t f(X_s) g''(X_s) d[X]_s$$
 (2)

Also,

$$\int_0^t G_s dF_s = \int_0^t f'(X_s)g(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s)g(X_s) d[X]_s$$
 (3)

$$[F,G]_t = [f(X), g(X)]_t = [f'(X) \cdot X, \ g'(X) \cdot X] \quad \text{(by def. of cov. and Itô formula)}$$
$$= \int_0^t f'(X_s)g'(X_s) \, d[X]_s \quad \text{(Kunita-Watanabe)}$$
(4)

Plug (2)–(4) into (1) gives Itô's formula for fg, i.e.,  $fg \in \mathcal{A}$ .

<u>Proof of (d)</u>: Suppose that  $(f_n)$  is a sequence in  $\mathcal{A}$  and  $f_n \to f$  in  $C^2(\overline{B_r})$  for all r > 0. <u>WTS</u>: Itô's formula for f, i.e.,  $f \in \mathcal{A}$ . Since Itô's formula holds for  $f_n$ :

$$f_n(X_t) = f_n(X_0) + \int_0^t f_n'(X_s) dA_s + \frac{1}{2} \int_0^t f_n''(X_s) d[M]_s + \int_0^t f_n'(X_s) dM_s.$$

Finite variation part:

$$\int_0^{t \wedge T_r} \left( f_n'(X_s) - f'(X_s) \right) dV_s + \frac{1}{2} \int_0^{t \wedge T_r} \left( f_n''(X_s) - f''(X_s) \right) d[M]_s$$

$$\leq \Delta_{n,r} \cdot \left( V_{t \wedge T_r} + \frac{1}{2} [M]_{t \wedge T_r} \right) \leq 2r \cdot \Delta_{n,r} \to 0 \quad \text{as } n \to \infty$$

which implies that

$$\stackrel{n\to\infty}{\longrightarrow} \int_0^{t\wedge T_r} f_n'(X_s)\,dA_s + \frac{1}{2} \int_0^{t\wedge T_r} f_n''(X_s)\,d[M]_s \to \int_0^{t\wedge T_r} f'(X_s)\,dA_s + \frac{1}{2} \int_0^{t\wedge T_r} f''(X_s)\,d[M]_s \quad \text{uniformly in } t.$$

MG part:  $M^r \in \mathcal{M}_c^2$  since  $[M]_T \leq r$ .

$$\left\| \left( f_n'(X) \cdot M \right)^{T_r} - \left( f'(X) \cdot M \right)^{T_r} \right\|_2^2 = \mathbb{E} \left[ \int_0^{T_r} \left( f_n'(X_s) - f'(X_s) \right)^2 d[M]_s \right]$$

$$\leq \Delta_{n,r}^2 \cdot \mathbb{E} \left[ [M]_{T_r} \right] \leq r \Delta_{n,r}^2 \to 0 \quad \text{as } n \to \infty$$

which implies that

$$(f'_n(X) \cdot M)^{T_r} \to (f'(X) \cdot M)^{T_r}$$
 in  $\mathcal{M}_c$  as  $n \to \infty$ 

finally giving

$$f(X_{t \wedge T_r}) = f(X_0) + \int_0^{t \wedge T_r} f'(X_s) dA_s + \frac{1}{2} \int_0^{t \wedge T_r} f''(X_s) d[M]_s + \int_0^{t \wedge T_r} f'(X_s) dM_s.$$

#### 5.2 Stratonovich Integral

Let X, Y be continuous semi-martingales. The Stratonovich integral of X against Y is defined as:

$$\int_0^t X_s \partial Y_s := \underbrace{\int_0^t X_s \, dY_s}_{\text{(Itô)}} + \frac{1}{2} [X, Y]_t.$$

This is essentially a 'midpoint approximation' since one can show

$$\sum_{k=0}^{\lfloor 2^n t \rfloor - 1} \left( \frac{X_{k2^{-n}} + X_{(k+1)2^{-n}}}{2} \right) (Y_{(k+1)2^{-n}} - Y_{k2^{-n}}) \stackrel{ucp}{\to} \int_0^t X_s \partial Y_s.$$

**Proposition 5.4.** Let  $X^1, \ldots, X^d$  be continuous semi-martingales and let  $f : \mathbb{R}^d \to \mathbb{R}$  be  $C^3$ . Then

$$f(X_t) = f(X_0) + \sum_{i=1}^{d} \int_0^t \frac{\partial f}{\partial x_i}(X_s) \partial X_s^i$$

In particular, integration by parts is given by:

$$X_t Y_t - X_0 Y_0 = \int_0^t X_s \partial Y_s + \int_0^t Y_s \partial X_s.$$

This shows that the Stratonovich integral satisfies the usual rules of calculus. But the Stratonovich integral against  $\mathcal{M}_c \cap \mathcal{M}_{loc}$  is <u>not</u> in  $\mathcal{M}_{c, loc}$ .

For example,

$$\int_0^t B_s \partial B_s = \int_0^t B_s dB_s + \frac{1}{2}t = \frac{1}{2}B_t^2 \notin \mathcal{M}_{c, \text{ loc}}$$

for B a standard Brownian motion.

Lecture 16

**Proposition 5.5.** Let  $X^1, \ldots, X^d$  be continuous semi-martingales,  $X = (X^1, \ldots, X^d)$ , and let  $f : \mathbb{R}^d \to \mathbb{R}$  be  $C^3$ . Then

$$f(X_t) = f(X_0) + \sum_{i=1}^{d} \int_0^t \frac{\partial f}{\partial x_i}(X_s) \partial X_s^i$$

In particular,

$$X_t Y_t - X_0 Y_0 = \int_0^t X_s \partial Y_s + \int_0^t Y_s \partial X_s$$

**Proof:** d = 1; d > 1 is similar, [A]. Itô's formula gives,

(1) 
$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) d[X]_s$$
(2) 
$$f'(X_t) = f'(X_0) + \int_0^t f''(X_s) dX_s + \frac{1}{2} \int_0^t f^{(3)}(X_s) d[X]_s$$

$$[f'(X), X]_t \stackrel{(2)}{=} [f'(X) \cdot X, X]_t = f''(X) \cdot [X]_t \quad \text{(Kunita-Watanabe)}$$

giving

$$f(X_t) = f(X_0) + \int_0^t f'(X_s)dX_s + \frac{1}{2}[f'(X), X]_t = f(X_0) + \int_0^t f'(X_s)\partial X_s$$

Before we proceed with some applications of the theory developed so far, we will make the following notational conventions.

Shorthand:

$$Z_t = Z_0 + \int_0^t H_s dX_s \quad \Leftrightarrow \quad dZ_t = H_t dX_t$$

$$Z_t = Z_0 + \int_0^t H_s \partial X_s \quad \Leftrightarrow \quad \partial Z_t = H_t \partial X_t$$

$$Z_t = [X, Y]_t = \int_0^t d[X, Y]_s \quad \Leftrightarrow \quad \partial Z_t = dX_t dY_t$$

Computational rules

$$H_t d(K_t dX_t) = (H_t K_t) dX_t$$
 [Iterated integral]

$$H_t d(X_t \, \mathrm{d} Y_t) = d(H_t X_t) \, \mathrm{d} Y_t \quad [\text{Kunita-Watanabe}]$$

$$d(X_t Y_t) = X_t \, \mathrm{d} Y_t + Y_t \, \mathrm{d} X_t + d[X,Y]_t \quad [\text{Integration by parts}]$$

$$df(X_t) = \sum_{i=1}^d \frac{\partial f}{\partial x_i}(X_t) \, \mathrm{d} X_t^i + \frac{1}{2} \sum_{i=1}^d \frac{\partial^2 f}{\partial x_i \partial x_j}(X_t) \, \mathrm{d} X_t^i \, \mathrm{d} X_t^j \quad [\text{It\^{o}'s formula}]$$

## 6 Applications

**Theorem 6.1** (Lévy Characterisation). Let  $X^1, \ldots, X^d \in \mathcal{M}_{c,loc}$ , and set  $X = (X^1, \ldots, X^d)$ . Suppose  $X_0 = 0$ , and

$$[X^i, X^j]_t = \delta_{ij}t \quad \forall i, j, \ t \ge 0.$$

Then X is a standard Brownian motion.

*Proof.* We need to show: for all  $0 \le s \le t < \infty$ ,  $X_t - X_s$  is independent of  $\mathcal{F}_s$  and has the law of  $\mathcal{N}(0, (t-s)\mathrm{Id})$ , where Id is the  $d \times d$  identity matrix. quivalently, for all  $\theta \in \mathbb{R}^d$ ,

$$\mathbb{E}\left[\exp(i\langle\theta, X_t - X_s\rangle) \mid \mathcal{F}_s\right] = \exp\left(-\frac{1}{2}|\theta|^2(t-s)\right)$$

where  $\langle \cdot, \cdot \rangle$  is the Euclidean inner product and  $|\theta|^2 = \langle \theta, \theta \rangle$ . To see this, let  $A \in \mathcal{F}_s$ ,  $\mathbb{P}(A) \neq 0$  and define the probability measure

$$\mathbb{P}_A(\cdot) := \mathbb{P}(A)^{-1}\mathbb{P}(\cdot \cap A).$$

Then, by the tower property,

$$\mathbb{E}_{\mathbb{P}_A}\left[\exp(i\langle\theta,X_t-X_s\rangle)\right] = \mathbb{E}\left[\exp(i\langle\theta,X_t-X_s\rangle)\right]$$

which implies that the law of  $X_t - X_s$  under  $\mathbb{P}_A$  is the same under  $\mathbb{P}$ . hence, for all bounded and measurable  $f : \mathbb{R}^d \to \mathbb{R}$ ,

$$\mathbb{E}\left[\mathbf{1}_A \cdot f(X_t - X_s)\right] = \mathbb{P}(A) \cdot \mathbb{E}\left[f(X_t - X_s)\right]$$

which implies  $X_t - X_s \perp \!\!\! \perp \mathcal{F}_s$ .

For  $\theta \in \mathbb{R}^d$ , set  $Y_t = \langle \theta, X_t \rangle = \sum_{j=1}^d \theta_j X_t^j$ . Then  $Y \in \mathcal{M}_{c,\text{loc}}$  since  $\mathcal{M}_{c,\text{loc}}$  is a vector space. Moreover,

$$[Y]_t = [Y, Y]_t = \left[\sum_{j=1}^d \theta_j X^j, \sum_{k=1}^d \theta_k X^k\right]_t = \sum_{j,k=1}^d \theta_j \theta_k [X^j, X^k]_t = |\theta|^2 t.$$

Let

$$Z_t = \exp\left(iY_t + \frac{1}{2}[Y]_t\right) = \exp\left(i\langle\theta, X_t\rangle + \frac{1}{2}|\theta|^2t\right).$$

By Itô's formula applied to  $W_t = iY_t + \frac{1}{2}[Y]_t$ , with  $f(w) = e^w \in C^2$ , we have:

$$dZ_t = Z_t \left( i dY_t + \frac{1}{2} d[Y]_t \right) - \frac{1}{2} Z_t d[Y]_t = i Z_t dY_t.$$

which implies  $Z \in \mathcal{M}_{c,\text{loc}}$  since  $Y \in \mathcal{M}_{c,\text{loc}}$ . Since Z is bounded on [s,t] for  $t < \infty$ ,  $Z \in \mathcal{M}$ . Thus,  $\mathbb{E}[Z_t \mid \mathcal{F}_s] = Z_s$  and so

$$\mathbb{E}\left[\exp(i\langle\theta, X_t - X_s\rangle) \mid \mathcal{F}_s\right] = \exp\left(-\frac{1}{2}|\theta|^2(t-s)\right).$$

**Theorem 6.2** (Dubins–Schwarz). Let  $M \in \mathcal{M}_{c,\text{loc}}$  with  $M_0 = 0$ ,  $[M]_{\infty} = \infty$ . Set

$$\tau_s := \inf\{t \ge 0 : [M]_t > s\}, \quad B_s := M_{\tau_s}, \quad \mathcal{G}_s := \mathcal{F}_{\tau_s}.$$

Then  $(\tau_s)$  is an  $(\mathcal{F}_t)$ -stopping time and  $[M]_{\tau_s} = s$  for all  $s \geq 0$ . Moreover, B is a  $(\mathcal{G}_s)$ -Brownian motion with  $M_t = B_{[M]_t}$ .

This means that every continuous local martingale starting from 0 is a time-change of a standard Brownian motion.

*Proof.* Since [M] is continuous and adapted,  $\tau_s$  is a stopping time for each  $s \geq 0$ . Since  $[M]_{\infty} = \infty$ ,  $\tau_s$  is a finite stopping time  $\forall s \geq 0$ . Moreover,  $(\mathcal{G}_s)$  is a filtration since if S, T are stopping times with  $s \leq t$ , then  $\tau_s \leq \tau_t \Rightarrow \mathcal{F}_{\tau_s} \subseteq \mathcal{F}_{\tau_t} \Rightarrow \mathcal{G}_s \subseteq \mathcal{G}_t$ .

Step 1: B is adapted to  $(\mathcal{G}_s)$ . NTS:  $M_{\tau_s}$  is  $\mathcal{F}_{\tau_s}$ -measurable  $\forall s \geq 0$ .

Recall that, (  $[\!\!L]\!\!]$  ) if X is càdlàg, adapted, and T a stopping time, then  $X_T \mathbf{1}_{\{T < \infty\}}$  is  $\mathcal{F}_T$ -measurable.

Now, apply for X = M and  $T = \tau_s$ , and use that  $\mathbb{P}(\tau_s < \infty) = 1$ .

Step 2: B is continuous.

Since  $s \mapsto \tau_s$  is non-decreasing and càdlàg, it follows that B is càdlàg (since  $B_s = M_{\tau_s}$ ). To prove that B is continuous, it suffices to show

$$B_{s^-} = B_s \quad \forall s \ge 0 \quad \Longleftrightarrow \quad M_{\tau_s^-} = M_{\tau_s} \quad \forall s \ge 0.$$

where  $\tau_s^- := \inf\{t \ge 0 : [M]_t = s\}$ . If  $\tau_s = \tau_s^-$ , there is nothing to prove. If  $\tau_s > \tau_s^-$ , then  $[M]_t$  is constant on  $[\tau_s^-, \tau_s]$ .

NTS: If  $[M]_t$  is constant on any interval, then  $M_t$  is constant as well. For each rational  $q \in \mathbb{Q}$ , define

$$S_q := \inf \{ t > q : [M]_t > [M]_q \}.$$



Figure 1: Illustration of times  $S_q$ .

Lecture 17 We continue working on step 2, which is the continuity of B. Need to prove that if [M] is constant on a given interval, then M is constant on the same interval. By localisation, WLOG,  $M \in \mathcal{M}_c^2$ . Suppose that  $q \in \mathbb{Q}, q > 0$ . It suffices to show that M is a.s. constant on each  $[q, S_q]$ .

We know that  $M^2 - [M]$  is a local martingale since  $M \in \mathcal{M}_c$ . By OST, we have that:

$$\mathbb{E}\left[M_{S_q}^2 - [M]_{S_q} \mid \mathcal{F}_{S_q}\right] = M_q^2 - [M]_q. \quad \circledast$$

Since  $M \in \mathcal{M}_c^2$ , we also have that

(MG orthog.) 
$$\mathbb{E}\left[(M_{S_q} - M_q)^2 \mid \mathcal{F}_{S_q}\right] = \mathbb{E}[M_{S_q}^2 - M_q^2 \mid \mathcal{F}_{S_q}]$$

(\*) = 
$$\mathbb{E}\left[M_{S_q}^2 - [M]_{S_q} \mid \mathcal{F}_{S_q}\right] = 0$$
 since  $[M]_{S_q} = [M]_q$ .

Therefore  $M_{S_q} - M_q = 0$  a.s. which implies M is a.s. constant on  $[q, S_q]$  since for all  $t \geq q$ ,

$$M_{t \wedge S_q} = \mathbb{E}[M_{S_q} \mid \mathcal{F}_t] = \mathbb{E}[M_q \mid \mathcal{F}_q] = M_q$$
, a.s.

Step 3: B is a  $(\mathcal{G}_s)$ -BM.

Fix s>0. Then we know that  $[M^{\tau_s}]_{\infty}=[M]_{\tau_s}=s$ . Therefore  $M^{\tau_s}\in\mathcal{M}^2_c$ , since  $\mathbb{E}[[M^{\tau_s}]_{\infty}]<\infty$ . Therefore  $(M^2-[M])^{\tau_s}$  is a UI MG. By OST, for  $0\leq t\leq s<\infty$ , we have that:

- (i)  $\mathbb{E}[B_s \mid \mathcal{G}_t] = \mathbb{E}[M_{\tau_s} \mid \mathcal{F}_{\tau_t}] = M_{\tau_t} = B_t.$
- (ii)  $\mathbb{E}[B_s^2 s \mid \mathcal{G}_t] = \mathbb{E}[(M^2 [M])_{\tau_s} \mid \mathcal{F}_{\tau_t}] = M_{\tau_t}^2 [M]_{\tau_t} = B_t^2 t$

Thus, (i) implies  $B \in \mathcal{M}_c$ , and (ii) implies  $[B]_s = s$  and so

B is a  $(\mathcal{G}_s)$ -BM by the Lévy characterisation.

Dubins–Schwarz requires  $[M]_{\infty} = \infty$ . One can also provide an extension thereof for the case that  $[M]_{\infty} < \infty$ :

**Theorem 6.3.**  $M \in \mathcal{M}_{loc}, M_0 = 0$ . Let  $\beta$  be a BM which is independent of M. Set:

$$B_{s} = \begin{cases} M_{\tau_{s}} & \text{if } s \leq [M]_{\infty} \\ M_{\infty} + (\beta_{s} - \beta_{[M]_{\infty}}) & \text{if } s > [M]_{\infty} \end{cases}$$

Then B is a standard BM and  $M_t = B_{[M]_t}$  for all  $t \geq 0$ .

# Examples.

(i) Let B be a standard BM, h deterministic, measurable in  $L^2([0,\infty))$ . Let

$$M_t = \int_0^t h(s) \, dB_s.$$

Then  $M_0 = 0$ ,  $M \in \mathcal{M}_{loc}$ , and

$$[M]_t = \int_0^t h(s)^2 \, ds.$$

Moreover,

$$M_{\infty} \stackrel{d}{=} B_{\int_{0}^{\infty} h(s)^{2} ds}$$
 (Dubins-Schwarz)  $\sim \mathcal{N}(0, \|h\|_{L^{2}}^{2})$ .

(ii) Let  $M \in \mathcal{M}_{loc}$ . Then,

$$\{[M]_{\infty} < \infty\} = \left\{ \lim_{t \to \infty} M_t \text{ exists} \right\},$$
$$\{[M]_{\infty} = \infty\} = \left\{ \lim_{t \to \infty} M_t = -\infty, \lim_{t \to \infty} M_t = \infty \right\}.$$

### 6.1 Exponential MGs

Let  $M \in \mathcal{M}_{loc}, M_0 = 0$ . Set

$$Z_t = \exp\left(M_t - \frac{1}{2}[M]_t\right).$$

By Itô's formula,

$$dZ_t = Z_t \left( dM_t - \frac{1}{2} d[M]_t \right) + \frac{1}{2} d[M]_t = Z_t dM_t$$

giving  $Z \in \mathcal{M}_{loc}$ ,  $Z_0 = 1$ .

**Definition 6.1** (Exponential MG). In the setting above, the process  $\mathcal{E}(M)_t = Z_t = \exp\left(M_t - \frac{1}{2}[M]_t\right)$  is the <u>stochastic exponential</u> or <u>exponential martingale</u> associated with M

Note that  $\mathcal{E}(M) \in \mathcal{M}_{loc}$ ,  $d\mathcal{E}(M)_t = \mathcal{E}(M)_t dM_t$ .

**Proposition 6.1.** Let  $M \in \mathcal{M}_{loc}$ ,  $M_0 = 0$ . If  $[M]_{\infty}$  is bounded, then  $\mathcal{E}(M)$  is a UI martingale.

**Proposition 6.2.** Let  $M \in \mathcal{M}_{loc}, M_0 \geq 0$ . For all  $\varepsilon, \delta > 0$ , we have that

$$\mathbb{P}\left(\sup_{t\geq 0} M_t \geq \varepsilon, \ [M]_{\infty} < \delta\right) \leq e^{-\frac{\varepsilon^2}{2\delta}}.$$

*Proof.* Fix  $\varepsilon > 0$  and let  $T = \inf\{t \ge 0 : M_t \ge \varepsilon\}$ . Fix  $\theta > 0$  and set  $Z_t = \mathcal{E}(\theta M^T)_t$ , i.e.

$$Z_t = \exp\left(\theta M_t^T - \frac{\theta^2}{2} [M^T]_t\right) \in \mathcal{M}_{\text{loc}}.$$

Note that  $|Z_t| \leq e^{\theta \varepsilon}$  for all  $t \geq 0$ . So Z is a bounded MG, hence  $\mathbb{E}[Z_{\infty}] = Z_0 = 1$ . For  $\delta \geq 0$ , we have that

$$\mathbb{P}\left(\sup_{t\geq 0} M_t \geq \varepsilon, [M]_{\infty} \leq \delta\right) = \mathbb{P}\left(\sup_{t\geq 0} \theta M_t^T \geq \theta \varepsilon, [M^T]_{\infty} \leq \delta\right) \\
\leq \mathbb{P}\left(\sup_{t\geq 0} Z_t \geq Ce^{\theta \varepsilon - \frac{\theta^2}{2}\delta}\right) \quad \text{(Doob's inequality)} \\
\leq C \exp\left(-\theta \varepsilon + \frac{\theta^2}{2}\delta\right).$$

Optimising over  $\theta$  gives the claimed bound.

Proof of (previous) proposition. We will show that  $\mathcal{E}(M)$  is bounded by an integrable random variable. Note that

$$\sup_{t\geq 0} \mathcal{E}(M)_t \leq \exp\left(\sup_{t\geq 0} M_t\right) \quad \text{(since } [M]_t \geq 0\text{)}.$$

**NTS:** RHS is integrable. Let C > 0 so that  $[M]_{\infty} \leq C$ . Then:

$$\mathbb{P}\left(\sup_{t\geq 0} M_t \geq \varepsilon\right) = \mathbb{P}\left(\sup_{t\geq 0} M_t \geq \varepsilon, \ [M]_{\infty} \leq C\right) \leq \exp\left(-\frac{\varepsilon^2}{2C}\right)$$

which implies

$$\mathbb{E}\left[\exp\left(\sup_{t\geq 0} M_t\right)\right] = \int_0^\infty \mathbb{P}\left(\exp\left(\sup_{t\geq 0} M_t\right) \geq \lambda\right) \mathrm{d}\lambda = \int_0^\infty \mathbb{P}\left(\sup_{t\geq 0} M_t \geq \log \lambda\right) \mathrm{d}\lambda$$

$$\leq 1 + \int_1^\infty \exp\left(-\frac{(\log \lambda)^2}{2C}\right) \mathrm{d}\lambda < \infty$$

finally giving that  $\mathcal{E}(M)$  is UI.

Lecture 18 Suppose that Q, P are probability measures on  $(\Omega, \mathcal{F})$ . Say that Q is <u>absolutely continuous</u> w.r.t. P, denoted by  $Q \ll P$ , if for any  $A \in \mathcal{F}$  with

$$P(A) = 0 \Rightarrow Q(A) = 0.$$

Recall from measure theory that this implies the existence of a random variable  $Z \geq 0$  such that

$$Q(A) = \mathbb{E}[Z \cdot \mathbf{1}_A]$$
 for all  $A \in \mathcal{F}$ .

Z is called the Radon-Nikodym derivative of Q w.r.t. P and is denoted by  $Z = \frac{dQ}{dP}$ .

**Example.** Suppose that  $X \sim \mathcal{N}(0,1), \mu \in \mathbb{R}$ . Let

$$Z = \exp\left(\mu X - \frac{\mu^2}{2}\right).$$

Then  $A \mapsto \mathbb{E}[\mathbf{1}_A Z]$  defines a probability measure Q, and under Q,  $X \sim \mathcal{N}(\mu, 1)$ .

The Girsanov Theorem generalizes this idea to the setting of semi-martingales, except instead of changing the mean, we will change the semi-martingale decomposition.

**Theorem 6.4** (Girsanov). Let  $M \in \mathcal{M}_{c,loc}$ ,  $M_0 = 0$ , and assume that  $Z = \mathcal{E}(M)$  is uniformly integrable. Then we can construct a new probability measure  $\tilde{\mathbb{P}} \ll \mathbb{P}$  on  $(\mathcal{F}_t)$  by setting

$$\tilde{\mathbb{P}}(A) := \mathbb{E}[Z_{\infty} \mathbf{1}_A] \quad \forall A \in \mathcal{F}.$$

If  $X \in \mathcal{M}_{c,loc}(\mathbb{P})$ , then  $X - [X, M] \in \mathcal{M}_{c,loc}(\tilde{\mathbb{P}})$ .

'A change of measure induces a change of drift'.

Girsanov. Since Z is UI, hence that  $Z_{\infty}$  exists and  $Z_{\infty} \geq 0$  with  $\mathbb{E}[Z_{\infty}] = 1$  and so  $\tilde{\mathbb{P}}$  defines a probability measure with  $\tilde{\mathbb{P}} \ll \mathbb{P}$ . Suppose that  $X \in \mathcal{M}_{c,\text{loc}}(\mathbb{P})$  and set

$$T_n := \inf \{ t \ge 0 : |X_t - [X, M]_t| \ge n \}.$$

Since X - [X, M] is continuous (starts from zero), we have that

$$\mathbb{P}(T_n \nearrow \infty) = 1 \Rightarrow \tilde{\mathbb{P}}(T_n \nearrow \infty) = 1 \quad \text{(since } \tilde{\mathbb{P}} \ll \mathbb{P}).$$

To prove that  $Y := X - [X, M] \in \mathcal{M}_{c, \text{loc}}(\tilde{\mathbb{P}})$ , it suffices to show that  $Y^{T_n} := X^{T_n} - [X, M]^{T_n} \in \mathcal{M}_c(\tilde{\mathbb{P}})$ . In what follows, write X, Y in place of  $X^{T_n}, Y^{T_n}$ .

Using Itô's product rule (IBP):

$$d(Z_t Y_t) = Y_t dZ_t + Z_t dY_t + dY_t dZ_t.$$

Now,

$$dZ_t = Z_t dM_t,$$
  

$$dY_t = dX_t - d[X, M]_t,$$
  

$$dY_t dZ_t = Z_t d[M, Y]_t = Z_t d[X, M]_t.$$

Thus,

$$d(Z_t Y_t) = Y_t Z_t dM_t + Z_t (dX_t - dX_t) + Z_t dX_t M_t = Z_t dX_t + Y_t Z_t dM_t$$

giving that  $ZY \in \mathcal{M}_{c,loc}(\mathbb{P})$ .

Moreover,  $ZY: T \leq t$  is a stopping time, and is UI for each t > 0, [ is bounded, we also have that

 $ZY \cdot \mathbf{1}_{\{T \leq t\}}$  is a stopping time and  $UI \Rightarrow ZY \in \mathcal{M}_c(\mathbb{P})$ .

For  $s \leq t$ , we have that

$$\mathbb{E}\left[Y_t - Y_s \mid \mathcal{F}_s\right] = \frac{1}{Z_s} \mathbb{E}\left[Z_t Y_t - Z_s Y_s \mid \mathcal{F}_s\right] = 0 \quad \text{(tower property)}.$$

Since  $ZY \in \mathcal{M}_c(\mathbb{P})$  we finally obtain  $Y \in \mathcal{M}_c(\tilde{\mathbb{P}})$ .

Remark. The quadratic variation does not change when performing a change of measures, [2].

**Corollary 6.1.** Let B be a standard Brownian motion under  $\mathbb{P}$ ,  $M \in \mathcal{M}_{c,loc}$ ,  $M_0 = 0$ . Suppose that

$$Z = \mathcal{E}(M)$$
 is UI, and  $\mathbb{Q}(A) = \mathbb{E}[1_A Z_{\infty}]$  for all  $A \in \mathcal{F}$ .

Then  $\widetilde{B} := B - [B, M]$  is a  $\mathbb{Q}$ -Brownian motion.

*Proof.* Since  $\widetilde{B} \in \mathcal{M}_{c,\text{loc}}(\mathbb{Q})$  by the Girsanov theorem, and  $[\widetilde{B}]_t = [B - [B, M]]_t = t$ , it follows from the Lévy characterisation that  $\widetilde{B}$  is a  $\mathbb{Q}$ -Brownian motion.

**Example.** Suppose that B is a  $\mathbb{P}$ -Brownian motion,  $\mu \in \mathbb{R}$ , T > 0, and let  $M_t = \mu B_t$ , so that

$$Z_t = \mathcal{E}(M)_t = \exp\left(\mu B_t - \mu^2 t/2\right).$$

Then

$$\mathbb{Q}(A) = \mathbb{E}\left[Z_T \cdot \mathbf{1}_A\right] = \mathbb{E}\left[\exp\left(\mu B_T - \mu^2 T/2\right) \mathbf{1}_A\right] \quad \forall A \in \mathcal{F}.$$

You render under  $\mathbb{P}$  that  $B_t = \widetilde{B}_t + \mu t$  for  $t \in [0,T]$ , and  $\widetilde{B}$  is a  $\mathbb{Q}$ -Brownian motion.

# 7 Stochastic Differential Equations

Let  $\mathbb{M}^{d\times m}(\mathbb{R})$  denote the space of  $d\times m$  matrices with real entries. Suppose that

$$\sigma: \mathbb{R}^d \to \mathbb{M}^{d \times m}(\mathbb{R}), \quad b: \mathbb{R}^d \to \mathbb{R}^d$$

are measurable functions which are bounded on compact sets. Write  $\sigma(x) = (\sigma_{ij}(x))$ . Consider the SDE:

$$dX_t = \sigma(X_t) dB_t + b(X_t) dt$$
(\*)

Equivalently,

$$dX_t^i = \sum_{j=1}^m \sigma_{ij}(X_t) dB_t^j + b_i(X_t) dt.$$

A solution to  $\circledast$  consists of:

- A filtered probability space  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ , where  $(\mathcal{F}_t)_{t\geq 0}$  satisfies the usual conditions.
- An  $(\mathcal{F}_t)_{t\geq 0}$ -Brownian motion  $B=(B^1,\ldots,B^m)\in\mathbb{R}^m$ .
- An  $(\mathcal{F}_t)_{t\geq 0}$ -adapted continuous process  $X=(X_t^1,\ldots,X_t^d)\in\mathbb{R}^d$  such that

$$X_t = X_0 + \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds.$$

When in addition  $X_0 = x \in \mathbb{R}^d$ , we say that X is started from x.

- We say that an SDE has a <u>weak solution</u> if for all  $x \in \mathbb{R}^d$ , there is a solution starting from x.
- There is uniqueness in law if all solutions starting from each x have the same distribution.
- There is pathwise uniqueness if, when we fix  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$  and B, then any two solutions X, X' with  $X_0 = X'_0$  are indistinguishable:

$$\mathbb{P}(X_t = X_t' \text{ for all } t \geq 0) = 1.$$

- We say that a solution started from x is a strong solution if X is adapted to the filtration generated by B.
- Lecture 19 Example. It is possible to have the existence of a weak solution and uniqueness in law without having pathwise uniqueness. Suppose that  $\beta$  is a standard Brownian motion in  $\mathbb{R}$  with  $\beta_0 = x$ . Set

$$B_t = \int_0^t \operatorname{sgn}(\beta_s) \, ds, \quad \operatorname{sgn}(x) = 1_{\{(0,\infty)\}}(x) - 1_{\{(-\infty,0]\}}(x).$$

Note that  $sgn(\beta_s)$  is measurable and bounded, hence the integral is well-defined. Then,

$$x + \int_0^t \operatorname{sgn}(\beta_s) d\beta_s = x + \int_0^t (\operatorname{sgn}(\beta_s))^2 d\beta_s = x + \int_0^t d\beta_s = \beta_t.$$

Therefore,  $\beta$  solves the SDE

$$\begin{cases} dX_t = \operatorname{sgn}(X_t) \ dB_t, \\ X_0 = x. \end{cases}$$

This SDE has a weak solution. By the Lévy characterisation, any solution to this SDE is a Brownian motion (it is in  $\mathcal{M}_{c,loc}$  with quadratic varitaion  $[\cdot]_t = t$ ) which gives uniqueness in law. However, we do not have pathwise uniqueness. To see this, take X = x = 0.

Claim:  $\beta_t$ ,  $-\beta_t$  are solutions.

Indeed,  $\beta_t$  is a solution. For  $-\beta_t$ , we also obtain

$$-\beta_t = -\int_0^t \operatorname{sgn}(\beta_s) \, ds = \int_0^t \operatorname{sgn}(-\beta_s) \, d(-\beta_s)$$

$$= \int_0^t \operatorname{sgn}(-\beta_s) \, dB_s + 2 \int_0^t 1_{\{\beta_s = 0\}} \, dB_s.$$

The last term on the RHS is in  $\mathcal{M}_{c,loc}$ , starts from 0, and has quadratic variation

$$4\int_0^t 1_{\{\beta_s=0\}} ds = 0$$
 a.s.

because  $\mathbb{P}(\beta_s = 0) = 0 \ \forall s > 0$ , and then one can apply Fubini's theorem to obtain that its expectation vanishes. Therefore  $\beta_t$ ,  $-\beta_t$  are both solutions on the same probability space with the same Brownian motion. So we do *not* have pathwise uniqueness.

### 7.1 Lipschitz Coefficients

Recall that for  $U \subset \mathbb{R}^d$  open,  $f: U \to \mathbb{R}^d$ , we say that f is **Lipschitz** if there exists  $K < \infty$  such that

$$|f(x) - f(y)| \le K|x - y| \quad \forall x, y \in U.$$

For  $d, m \geq 1$ , we equip  $\mathcal{M}_{d \times m}(\mathbb{R})$  with the Frobenius norm. If  $A \in \mathcal{M}_{d \times m}(\mathbb{R})$ ,  $A = (a_{ij})$ , then

$$|A| = \left(\sum_{i=1}^{d} \sum_{j=1}^{m} a_{ij}^{2}\right)^{1/2}.$$

Let  $f: U \to \mathcal{M}_{d \times m}(\mathbb{R})$ . Say that f is Lipschitz if there exists  $K < \infty$  such that

$$|f(x) - f(y)| \le K|x - y| \quad \forall x, y \in U.$$

**Theorem 7.1** (Existence and Uniqueness). Suppose that

$$\sigma: \mathbb{R}^d \to \mathcal{M}_{d \times m}(\mathbb{R}), \quad b: \mathbb{R}^d \to \mathbb{R}^d$$

are Lipschitz. Then there is pathwise uniqueness for the SDE

$$dX_t = \sigma(X_t) dB_t + b(X_t) dt.$$

Moreover, for each filtered probability space  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$  satisfying the usual conditions and each  $(\mathcal{F}_t)$ -Brownian motion  $B, x \in \mathbb{R}^d$ , there is a strong solution starting from x.

The proof is analogous to the existence/uniqueness theorem for ODEs. Recall some results from analysis/ODEs.

**Theorem 7.2** (Banach Fixed Point Theorem). Let (X,d) be a complete metric space.

(a) Suppose that  $F: X \to X$  is a contraction, i.e.,  $\exists r \in (0,1)$  such that

$$d(F(x), F(y)) < r d(x, y) \quad \forall x, y \in X.$$

Then F has a unique fixed point.

(b) Suppose that  $F: X \to X$ , and there exists  $n \in \mathbb{N}$  so that  $F^{(n)}$  is a contraction. Then F has a unique fixed point.

**Lemma 7.1** (Gronwall). Let T > 0 and  $f : [0,T] \to [0,\infty)$  be a bounded and measurable function. If there exist a, b > 0 such that

$$f(t) \le a + b \int_0^t f(s) ds \quad \forall t \in [0, T],$$

then  $f(t) \leq ae^{bt}$  for all  $t \in [0, T]$ .

$$Proof.$$
 [22] .

<u>Proof of Existence and Uniqueness</u> We will assume that  $\dim = 1$  and will let K be such that

$$|\sigma(x) - \sigma(y)| \le K|x - y|, \quad |b(x) - b(y)| \le K|x - y| \quad \forall x, y \in \mathbb{R}.$$

Proof of Uniqueness. Suppose that X, X' are two solutions on the same probability space  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$  and Brownian motion B. WTS:  $\mathbb{P}(X_t = X_t' \ \forall t \geq 0) = 1.$ 

Fix M > 0 and let

$$\tau = \inf \{ t \ge 0 : |X_t| \lor |X_t'| \ge M \}.$$

Then,

$$X_{t \wedge \tau} = X_0 + \int_0^{t \wedge \tau} \sigma(X_s) dB_s + \int_0^{t \wedge \tau} b(X_s) ds,$$
  
$$X'_{t \wedge \tau} = X_0 + \int_0^{t \wedge \tau} \sigma(X'_s) dB_s + \int_0^{t \wedge \tau} b(X'_s) ds.$$

Fix T > 0. If  $t \in [0, T]$ , we have that

Let  $f(t) := \mathbb{E}[|X_{t \wedge \tau} - X'_{t \wedge \tau}|^2]$ . Then:

$$\mathbb{E}\left[\left(X_{t\wedge\tau} - X'_{t\wedge\tau}\right)^{2}\right] \leq 2 \cdot \mathbb{E}\left[\left(\int_{0}^{t\wedge\tau} (\sigma(X_{s}) - \sigma(X'_{s})) dB_{s}\right)^{2}\right] + 2 \cdot \mathbb{E}\left[\left(\int_{0}^{t\wedge\tau} (b(X_{s}) - b(X'_{s})) ds\right)^{2}\right]$$

$$\leq 2 \cdot \mathbb{E}\left[\int_{0}^{t\wedge\tau} (\sigma(X_{s}) - \sigma(X'_{s}))^{2} ds\right] + 2T \cdot \mathbb{E}\left[\frac{1}{T}\int_{0}^{t\wedge\tau} (b(X_{s}) - b(X'_{s}))^{2} ds\right] \quad \text{(Itô isometry + Cauchy-Schwarz)}$$

$$\leq 2K^{2}(1+T) \cdot \mathbb{E}\left[\int_{0}^{t\wedge\tau} |X_{s} - X'_{s}|^{2} ds\right]$$

$$= 2K^{2}(1+T)\int_{0}^{t} \mathbb{E}\left[|X_{s\wedge\tau} - X'_{s\wedge\tau}|^{2}\right] ds.$$

$$0 \le f(t) \in 4M^2 \text{ and } f(t) \le 2K^2(1+T) \int_0^t f(s) \, ds \quad \forall t \in [0,T].$$

By Gronwall's inequality, f(t) = 0 for all  $t \in [0, T]$ , so

$$\mathbb{P}(X_{t \wedge \tau} = X'_{t \wedge \tau} \ \forall t \in [0, T]) = 1.$$

Since M, T were arbitrary, we conclude:

$$\mathbb{P}(X_t = X_t' \ \forall t \ge 0) = 1.$$

That is, we have established **Pathwise uniqueness**.

#### Lecture 20

Proof of existence. Suppose that  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$  is a filtered probability space, B is an  $(\mathcal{F}_t)$ -Brownian motion, and  $(\mathcal{F}_t^B)_{t\geq 0}$  is the filtration generated by B (so that  $\mathcal{F}_t^B \subseteq \mathcal{F}_t$ ). We will use the contraction mapping theorem. Need to specify

- 1) the space,
- 2) the map.

For each T > 0, let  $\mathcal{C}_T = \{\text{continuous, adapted processes } X : [0, T] \to \mathbb{R} \}$ , with

$$||X||_T := \left( \mathbb{E} \left[ \sup_{0 \le t \le T} |X_t|^2 \right] \right)^{1/2}.$$

We proved before that  $\mathcal{C}_T$  is complete. Fix  $x \in \mathbb{R}$ . Using that  $\sigma, b$  are Lipschitz, we have

$$|\sigma(y)| = |\sigma(y) - \sigma(0) + \sigma(0)| \le |\sigma(y) - \sigma(0)| + |\sigma(0)| \le K|y| + |\sigma(0)|, \tag{(1)}$$

$$|b(y)| \le |b(0)| + K|y| \quad \text{for all } y \in \mathbb{R}. \tag{(2)}$$

Fix T > 0, and  $X \in \mathcal{C}_T$ . Let

$$M_t := \int_0^t \sigma(X_s) dB_s, \quad 0 \le t \le T.$$

Then,

$$[M]_t = \int_0^t \sigma^2(X_s) \, ds.$$

Thus, by (1),

$$\mathbb{E}[[M]_T] \le 2T \left( |\sigma(0)|^2 + K^2 ||X||_T^2 \right) < \infty.$$

which implies that  $M \in \mathcal{M}_c^2$ , so by Doob's inequality,

$$\mathbb{E}\left[\sup_{0\leq t\leq T}\left|\int_0^t \sigma(X_s)\,dB_s\right|^2\right]\leq 8T\left(|\sigma(0)|^2+K^2\|X\|_T^2\right).$$

By (2),

$$\mathbb{E}\left[\sup_{0 \le t \le T} \left| \int_0^t b(X_s) \, ds \right|^2 \right] \le \dots$$

$$\le T \cdot \mathbb{E}\left[ \int_0^T b(X_s)^2 \, ds \right] \quad \text{(Cauchy-Schwarz)}$$

$$\le 2T \cdot \mathbb{E}\left[ |\sigma(0)|^2 + K^2 ||X||_T^2 \right] < \infty$$

The map F on  $\mathcal{C}_T$  defined by

$$F(X)_t = x + \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds$$

takes values in  $\mathcal{C}_T$ .

Suppose that  $X, Y \in \mathcal{C}_T$ . For  $0 \le t \le T$ , using similar arguments,

$$||F(X) - F(Y)||_t^2 \le 4K^2T \cdot (4+T) \int_0^t ||X - Y||_s^2 ds = C_T \int_0^t ||X - Y||_s^2 ds$$

Iterate n times:

$$\left\| F^{(n)}(X) - F^{(n)}(Y) \right\|_{T}^{2} \leq C_{T}^{n} \int_{0}^{T} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n-1}} \|X - Y\|_{T}^{2} dt_{n} \cdots dt_{1}$$

$$\leq \frac{C_{T}^{n} T^{n}}{n!} \|X - Y\|_{T}^{2}$$
(3)

Take n sufficiently large so that  $\frac{C_T^n T^n}{n!} < 1$ . Then by the contraction mapping theorem, there exists a unique fixed point  $X^{(T)} \in \mathcal{C}_T$  of F. Pathwise uniqueness  $\Rightarrow X_t^{(T)} = X_t^{(T')}$  for all  $t \leq T \wedge T'$  a.s. Define  $X_t$  by setting  $X_t = X_t^{(N)}$  where  $t \leq N$ ,  $N \in \mathbb{N}$ . Then X is the pathwise unique solution to the SDE starting from x.

**NTS:** X is a strong solution, i.e. X is adapted to  $(\mathcal{F}_t^B)$ . We will prove first that for each fixed  $T, X^{(T)}$  is the limit of  $(\mathcal{F}_t^B)$ -processes. Define  $y^0 = x$  and  $y^n = F(y^{n-1})$  for each  $n \in \mathbb{N}$ . Then  $(y^n)$  is adapted to  $(\mathcal{F}_t^B)$  for each n. As  $F^{(n)}(X) = X$ , for all  $n \geq d$ , we have from (3) that:

$$||X - y^n||_T^2 = ||F^{(n)}(X) - F^{(n)}(x)||_T^2 \le \frac{C_T^n T^n}{n!} ||X - x||_T^2 \to 0 \text{ as } n \to \infty.$$

Thus  $Y^n \to X$  in  $C_T$  as  $n \to \infty$ . So there exists a subsequence  $(Y^{n_k})$  such that  $Y^{n_k} \to X$  uniformly in [0,T] a.s. Therefore,  $(X_t)$  is the a.s. limit of  $(\mathcal{F}_t^B)$ -adapted processes and so is  $(\mathcal{F}_t^B)$ -adapted. Since T > 0 was arbitrary, we have that X is  $(\mathcal{F}_t^B)$ -adapted.

**Remark.** From the abvoe proof, we also obtain that the pathwise unique strong solution lies in  $C_T$  for all T > 0.

**Proposition 7.1.** Under the hypotheses of the theorem, there is uniqueness in law for the SDE

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt.$$

Proof. 
$$[\!Z\!]$$
.

**Example.** (Ornstein-Uhlenbeck process) Fix  $\lambda \in \mathbb{R}$  and consider the SDE

$$dV_t = dB_t - \lambda V_t dt, \quad V_0 = v_0,$$
$$dX_t = V_t dt.$$

For  $\lambda > 0$ , this models the movement of a grain of pollen in liquid; X = position of the grain, V = velocity. The term  $-\lambda V$  damps the system due to viscosity. When |V| is large, the system moves to reduce |V|.

The previous theorem implies that there exists a unique strong solution. We can explicitly solve

$$d(e^{\lambda t}V_t) = e^{\lambda t}dV_t + \lambda e^{\lambda t}V_tdt = e^{\lambda t}dB_t.$$

Hence,

$$e^{\lambda t}V_t = v_0 + \int_0^t e^{\lambda s} dB_s,$$

so that

$$V_t = e^{-\lambda t} v_0 + \int_0^t e^{-\lambda(t-s)} dB_s.$$

Therefore,

$$V_t \sim \mathcal{N}\left(e^{-\lambda t}v_0, \frac{1 - e^{-2\lambda t}}{2\lambda}\right).$$

If  $\lambda > 0$ , then  $V_t$  converges in distribution to  $\mathcal{N}\left(0, (2\lambda)^{-1}\right)$  as  $t \to \infty$ . Hence,  $\mathcal{N}(0, (2\lambda)^{-1})$  is the stationary distribution of V, i.e. if  $V_0 \sim \mathcal{N}(0, (2\lambda)^{-1})$ , then

$$V_t \sim \mathcal{N}(0, (2\lambda)^{-1})$$
 for all  $t \ge 0$ .

Lecture 21

#### 7.2 Local solutions

Consider the SDE

$$dX_t = \sigma(X_t) dB_t + b(X_t) dt.$$

A locally defined process is a pair  $(X, \tau)$  consisting of a stopping time  $\tau$  together with a map

$$X: \{(\omega, t) \in \Omega \times [0, \infty) : t < \tau(\omega)\} \to \mathbb{R}.$$

It is said to be càdlàg if the map  $t \mapsto X_t(\omega)$  from  $[0, \tau(\omega))$  to  $\mathbb{R}$  is càdlàg for all  $\omega \in \Omega$ . Let  $\Omega_t = \{\omega \in \Omega : t < \tau(\omega)\}$ . Then  $(X, \tau)$  is adapted if  $X_t : \Omega_t \to \mathbb{R}$  is  $\mathcal{F}_t$ -measurable. We say that  $(X, \tau)$  is a locally defined martingale if there exist stopping times  $\tau_n \nearrow \tau$  such that  $X^{\tau_n}$  is a martingale for all n. We say that  $(H, \eta)$  is a locally defined, locally bounded, predictable process if there exist stopping times  $S_n \nearrow \eta$  such that  $H\mathbf{1}_{\{0 \le t \le S_n\}}$  is bounded and predictable for all  $n \in \mathbb{N}$ . We define  $(H \cdot X, \tau \wedge \eta)$ 

$$(H \cdot X)_t^{T_n \wedge S_n} = (H\mathbf{1}_{(0,S_n \wedge T_n]} \cdot X)_t$$
 for each  $n$ .

**Proposition 7.2** (Local Itô's formula). Let  $X^1, \ldots, X^d$  be continuous semimartingales, let  $U \subseteq \mathbb{R}^d$  be open, and let  $f: U \to \mathbb{R}$  be  $C^2$ . Let  $X = (X^1, \ldots, X^d)$  and set

$$\tau = \inf\{t \ge 0 : X_t \notin U\}.$$

Then for all  $t < \tau$ , we have that

$$f(X_t) = f(X_0) + \sum_{i=1}^{d} \int_0^t \frac{\partial f}{\partial x_i}(X_s) dX_s^i + \frac{1}{2} \sum_{i,j=1}^{d} \int_0^t \frac{\partial^2 f}{\partial x_i \partial x_j}(X_s) d[X^i, X^j]_s.$$

*Proof.* Apply Itô's formula to  $X^{\tau_n}$ , where

$$\tau_n = \inf \left\{ t \ge 0 : \operatorname{dist}(X_t, U^c) \le \frac{1}{n} \right\},$$

and note that  $\tau_n \nearrow \tau$  as  $n \to \infty$ .

**Example.** Let X = B, where B is a standard Brownian motion with  $X_0 = B_0 = 1$ ,  $U = (0, \infty)$ , and  $f(x) = \sqrt{x}$ . Then

$$\sqrt{B_t} = 1 + \frac{1}{2} \int_0^t B_s^{-1/2} dB_s - \frac{1}{8} \int_0^t B_s^{-3/2} ds$$
 for all  $t < \tau$ ,

where

$$\tau = \inf\{t \ge 0 : B_t = 0\}.$$

Let  $U \subseteq \mathbb{R}^d$  be open,  $\sigma: U \to \mathbb{M}^{d \times m}(\mathbb{R})$ ,  $b: U \to \mathbb{R}^d$  be measurable functions which are bounded on compact subsets of U.

A local solution to the SDE

$$dX_t = \sigma(X_t) dB_t + b(X_t) dt$$

consists of:

- A filtered probability space  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$  satisfying the usual conditions.
- An  $(\mathcal{F}_t)$ -Brownian motion B in  $\mathbb{R}^m$ .
- A continuous  $(\mathcal{F}_t)$ -adapted locally defined process  $(X,\tau)$ , with  $X\in\mathbb{R}^d$ , such that

$$X_t = X_0 + \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds, \quad \text{for all } t < \tau.$$

We say that  $(X, \tau)$  is a maximal local solution if for any other local solution  $(\tilde{X}, \eta)$  on the same space such that

$$X_t = \tilde{X}_t$$
 for all  $t \leq \tau \wedge \eta$ ,

we have that  $\eta \leq \tau$ .

**Locally Lipschitz coefficients:** Suppose that  $U \subseteq \mathbb{R}^d$  is open. Then a function  $f: U \to \mathbb{R}^d$  is locally Lipschitz if for each compact set  $C \subseteq U$ , we have that  $f|_C$  is Lipschitz.

**Theorem 7.3.** Suppose  $U \subseteq \mathbb{R}^d$  is open and  $\sigma: U \to \mathbb{M}^{d \times m}(\mathbb{R})$ ,  $b: U \to \mathbb{R}^d$  are locally Lipschitz. Then for all  $x \in U$ , the SDE

$$dX_t = \sigma(X_t) dB_t + b(X_t) dt$$

has a pathwise unique maximal local solution  $(X, \tau)$  starting from x. Moreover, for all compact sets  $C \subseteq U$ , on the event that  $\tau < \infty$ , we have that

$$\sup\{t < \tau : X_t \in C\} < \tau.$$

**Lemma 7.2.** Let  $U \subseteq \mathbb{R}^d$  be open,  $C \subseteq U$  be compact. Then:

- 1. There exists a  $C^{\infty}$  function  $\varphi : \mathbb{R}^d \to \mathbb{R}$  such that  $\varphi|_C \equiv 1$  and  $\varphi|_{U^c} \equiv 0$ .
- 2. Given a locally Lipschitz function  $f: U \to \mathbb{R}$ , then there exists a globally Lipschitz function  $g: \mathbb{R}^d \to \mathbb{R}$  such that  $f|_C = g|_C$ .

Proof: (i)  $\mathbb{Z}$ .

(ii) Let  $\varphi$  be as in part (i) and set  $g = f \cdot \varphi$ .

*Proof (Theorem).* Assume that d=m=1. Fix  $C\subseteq U$  compact. By the lemma, we can find Lipschitz functions  $\tilde{\sigma}, \tilde{b}$  on  $\mathbb{R}$  such that  $\tilde{\sigma}|_C=\sigma|_C, \tilde{b}|_C=b|_C$ . Then there exists a pathwise unique strong solution  $\tilde{X}$  to:

$$\begin{cases} d\tilde{X}_t = \tilde{\sigma}(\tilde{X}_t)dB_t + \tilde{b}(\tilde{X}_t)dt \\ \tilde{X}_0 = x \end{cases}$$

Let  $\tau = \inf\{t \geq 0 : \tilde{X}_t \notin C\}$  and let  $X = \tilde{X}|_{[0,\tau)}$ . Then  $(X,\tau)$  is a local solution in C,  $[\Delta]$ . If  $\tau < \infty$ , then  $X_{\tau^-} = \lim_{t \to \tau^-} X_t$  exists and is in  $U^C$ . Suppose that  $(X,\tau), (Y,\eta)$  are both local solutions in C. Let

$$f(t) = \mathbb{E}\left[\sup_{0 \le s \le t \land \tau \land \eta} |X_s - Y_s|^2\right]$$

As  $b, \sigma$  are Lipschitz on C, we can use Gronwall's lemma as before to see that  $f \equiv 0$ , which implies that  $X_t = Y_t$  for all  $t \leq \eta \wedge \tau$  almost surely.

Let  $(C_n)$  be a sequence of compact sets in U with  $C_n \subseteq C_{n+1}$  for all n, and  $U = \bigcup_n C_n$ . Let  $(X^n, T_n)$  be the local solution constructed above with  $C = C_n$ . If  $T_n < \infty$ , then  $X_{T_n}^n \in U \setminus C_n^{\circ}$ . Observe that on

$$\underbrace{\inf\{t \ge 0 : X_t^{n+1} \notin C_n^{\circ}\}}_{:=\tilde{T}_n} \land T_n := S_n$$

we have

$$X_t^{n+1} = X_t^n$$
 almost surely for all  $t \le S_n$ 

(by a Gronwall-type argument). Suppose for a contradiction that  $\tilde{T}_n < T_n$ . Then the above implies

$$X_{\tilde{T}_n}^{n+1} = X_{\tilde{T}_n}^n$$
 almost surely, and  $t \leq \tilde{T}_n$ 

giving

$$X_{\tilde{T}_n}^{n+1} = X_{\tilde{T}_n}^n \notin C_n^\circ \subseteq C_n$$

Hence

$$T_n \leq \tilde{T}_n \leq T_{n+1}$$
 which implies that  $(T_n)$  is increasing.

Since the  $T_n$  are non-decreasing, we have  $T_n \nearrow \tau$ , i.e.,  $\tau = \sup_n T_n$ .

Define the local solution by setting  $X_t = X_t^n$  for all  $t < T_n$ . This is consistent by the above. We now aim to show that  $(X, \tau)$  is maximal.

Lecture 22 It thus remains to show

- 1. maximality,
- 2.  $\sup\{t < \tau : X_t \in C\} < \tau \text{ on the event } \{\tau < \infty\}.$

Suppose that  $(Y, \eta)$  is another solution on the same probability space. For each n, set

$$S_n = \inf\{t \in [0, \infty) : Y_t \notin C_n\} \land \eta.$$

By the uniqueness of the solution in each  $C_n$ , we have that  $X_t = Y_t$  for all  $t \leq S_n \wedge T_n$ . Therefore, arguing as before,  $S_n \leq T_n$ . As  $n \to \infty$ ,  $S_n \nearrow \eta$ ,  $T_n \nearrow \tau$ , so

$$\eta \leq \tau$$
,  $X_t = Y_t$  for all  $t \leq \eta$ .

Therefore,  $(X, \tau)$  is maximal.

Suppose that  $C_1, C_2$  are compact sets in  $\mathcal{U}$  with  $C_1 \subseteq C_2^{\circ} \subseteq C_2 \subseteq \mathcal{U}$ . Let  $\varphi : \mathcal{U} \to \mathbb{R}$  be a  $C^{\infty}$  function with  $\varphi|_{C_1} \equiv 1$ ,  $\varphi|_{(C_2^{\circ})^c} \equiv 0$ . Let

$$R_0 = \inf\{t \ge 0 : X_t \notin C_2\},$$

$$S_n = \inf\{t \ge R_{n-1} : X_t \notin C_1\} \land \tau,$$

$$R_n = \inf\{t \ge S_n : X_t \notin C_2^\} \land \tau.$$



Let N be the number of crossings that X makes from  $C_2$  to  $C_1$ . On the event  $\{\tau \leq t, N \geq n\}$ , we have that:

$$\sum_{k=1}^{n} (\varphi(X_{R_k}) - \varphi(X_{S_k})) = -n$$

$$= \int_0^t \sum_{k=1}^n \mathbf{1}_{(S_k, R_k]}(s) \left( \varphi(X_s) dX_s + \frac{1}{2} \varphi''(X_s) d[X]_s \right)$$

$$= \int_0^t H_s^n dB_s + K_s^n ds =: Z_t^n,$$

where  $H^n$ ,  $K^n$  are predictable and bounded uniformly in n. Then:

$$n \cdot \mathbf{1}_{\{\tau \le t, N \ge n\}} \le \left(Z_t^n\right)^2 \Rightarrow \mathbb{P}\left(\tau \le t, N \ge n\right) \le \frac{1}{n^2} \mathbb{E}\left[\left(Z_t^n\right)^2\right]$$

Since  $H^n$ ,  $K^n$  are uniformly bounded and  $Z_t^n$  is defined by integrating  $H^n$ ,  $K^n$  over a time-interval which does not depend on n, we have that

$$\mathbb{E}\left[(Z^n_t)^2\right] \leq C \text{ where } C \text{ does not depend on } n \Rightarrow \mathbb{P}\left(\tau \leq t, \, N \geq n\right) \leq \frac{C}{n^2}.$$

Letting  $n \to \infty$  gives

$$\mathbb{P}\left(\tau \leq t, N = \infty\right) = 0 \Rightarrow \mathbb{P}\left(\tau < \infty, N = \infty\right) = 0$$

Therefore, the number of crossings that X makes from  $C_2$  to  $C_1$  is finite on the event  $\{\tau < \infty\}$  almost surely.

**Example.** (Bessel processes) Fix  $v \in \mathbb{R}$  and consider the SDE in  $U = (0, \infty)$  given by:

$$dX_t = dB_t + \frac{n-1}{2X_t} dt, \quad X_0 = x_0 \in U.$$

Then there exists a unique maximal local solution  $(X, \tau)$  in U and  $M_t := \mathbb{P} [\exists t \geq 0 : X_t = 0] = 0.$   $(X, \tau)$  is a **Bessel process of dimension** n.

Suppose that  $n \in \mathbb{N}$ ,  $\beta$  is a Brownian motion in  $\mathbb{R}^n$  with  $|\beta_0| = x_0 > 0$ . Set  $X_t := |\beta_t|$  and

$$\tau := \inf \{ t \ge 0 : \beta_t = 0 \}.$$

By the local Itô formula, we have that

$$dX_t = (\beta_t, d\beta_t) + \frac{n-1}{2|\beta_t|} dt, \quad t < \tau,$$

where  $(\cdot, \cdot)$  is the Euclidean inner product. Then the process

$$W_t := \int_0^t \frac{(\beta_s, d\beta_s)}{|\beta_s|}$$
 is a local martingale.

Moreover,

$$d[W]_{t} = \frac{1}{|\beta_{t}|^{2}} \sum_{i,j=1}^{n} \beta_{t}^{i} \beta_{t}^{j} d[\beta^{i}, \beta^{j}]_{t} = dt.$$

Lévy's characterization implies that W is a standard Brownian motion. Hence,

$$dX_t = dW_t + \frac{n-1}{2X_t}dt, \quad t < \tau.$$

A Bessel process of dimension v describes the true evolution of the norm of an v-dimensional Brownian motion up to when it first hits 0.

#### 7.3 Diffusion Processes

Suppose that  $a: \mathbb{R}^d \to \mathbb{M}^{d \times d}(\mathbb{R})$ ,  $b: \mathbb{R}^d \to \mathbb{R}^d$  are bounded, measurable, a is symmetric (i.e., a(x) is symmetric for each x). For  $f \in C^2_b(\mathbb{R}^d)$  (i.e.,  $C^2_b$  with bounded derivatives), set

$$Lf(x) := \frac{1}{2} \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2 f(x)}{\partial x_i \partial x_j} + \sum_{i=1}^{d} b_i(x) \frac{\partial f(x)}{\partial x_i}.$$

Let X be a continuous, adapted process in  $\mathbb{R}^d$ . We say that X is an L-diffusion if for all  $f \in C_b^2(\mathbb{R}^d)$  we have that:

$$M_t^f := f(X_t) - f(X_0) - \int_0^t Lf(X_s)ds$$
 is a martingale.

(The coefficient a is called the diffusion, and b is the drift.)

**Example.**  $\sigma$ , b constant and  $a = \sigma \sigma^{\top}$ . B is standard BM on  $\mathbb{R}^d$ . Then

$$X_t = \sigma B_t + bt$$
 is an  $(\sigma, b)$ -diffusion.

If  $\sigma = I_d$ , b = 0,  $X_t = B_t$  is an L-diffusion where  $L = \frac{1}{2}\Delta$ .

**Proposition 7.3.** Suppose that X solves

$$dX_t = \sigma(X_t) dB_t + b(X_t) dt,$$

let  $f \in C_b^{1,2}([0,T] \times \mathbb{R}^d)$  (bounded derivatives,  $C^1$  in the first variable,  $C^2$  in the second variable). Then,

$$M_t^f := f(t, X_t) - f(0, X_0) - \int_0^t (\partial_s + L) f(s, X_s) ds$$
 is a martingale,

 $a = \sigma \sigma^{\top}$  and L as above.

If a, b are bounded, then X is an L-diffusion.

Proof. [26].

Lecture 23 Question: Which a can be written as  $\sigma\sigma^{\top}$  for such  $\sigma$ ? (See proposition from last time.) Suppose that a, b are Lipschitz, bounded, and there exists  $\varepsilon > 0$  so that:

$$(a(x)\xi, \xi) \ge \varepsilon |\xi|^2$$
 for all  $x, \xi \in \mathbb{R}^d$ .

Then a is uniformly positive definite (UPD). Then there exists  $\sigma : \mathbb{R}^d \to \mathbb{M}^{d \times d}(\mathbb{R})$  with  $\sigma \sigma^\top = a$ . For d = 1, take  $\sigma = \sqrt{a}$ .

For  $d \geq 2$ , we can write  $a(x) = U(x)\Lambda(x)U(x)^{\top}$  where  $\Lambda(x)$  is the diagonal matrix of eigenvalues and U(x) the orthogonal matrix whose columns are eigenvectors of a(x). Take

$$\sigma(x) = U(x)\sqrt{\Lambda(x)}U(x)^{\top}.$$

That  $\sigma$  is Lipschitz follows from the differentiability of the square root map on the set of UPD matrices.

For such  $\sigma$ , b, the SDE

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt$$

has a unique strong solution which is an (a, b)-diffusion.

**Proposition 7.4.** Let X be an L-diffusion and  $\tau$  a finite stopping time. Set

$$\tilde{X}_t = X_{\tau+t}, \quad and \quad \tilde{\mathcal{F}}_t = \mathcal{F}_{\tau+t}.$$

Then  $\tilde{X}$  is an L-diffusion with respect to  $(\tilde{\mathcal{F}}_t)_{t\geq 0}$ .

*Proof.* Fix  $f \in C_0^2(\mathbb{R}^d)$ . Consider the process

$$\tilde{M}_t^f := f(\tilde{X}_t) - f(\tilde{X}_0) - \int_0^t Lf(\tilde{X}_s)ds.$$

 $\tilde{M}_t^f$  is adapted to  $(\tilde{\mathcal{F}}_t)$  and is integrable. For  $A \in \mathcal{F}_s$  and  $n \geq 0$  we have that

$$\begin{split} \mathbb{E}\left[ (\tilde{M}_t^f - \tilde{M}_s^f) \cdot \mathbf{1}_{A \cap \{\tau \leq n\}} \right] &= \mathbb{E}\left[ (M_{t+\tau}^f - M_{s+\tau}^f) \cdot \mathbf{1}_{A \cap \{\tau \leq n\}} \right] \\ &= \mathbb{E}\left[ (M_{t+\tau}^f - M_{s+\tau}^f) \cdot \mathbf{1}_{A \cap \{\tau \leq n\} \in \mathcal{F}_{\tau+s}} \right] \\ &= 0 \quad \text{(by optional stopping theorem)}. \end{split}$$

Sending  $n \to \infty$  implies

$$\mathbb{E}\left[(\tilde{M}_t^f - \tilde{M}_s^f) \cdot \mathbf{1}_A\right] = 0 \quad \text{(by dominated convergence theorem)}.$$

So  $\tilde{M}^f$  is a martingale with respect to  $(\tilde{\mathcal{F}}_t)$ .

**Lemma 7.3.** Let X be an L-diffusion. Then for all  $f \in C_b^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d)$  the process

$$M_t^f = f(t, X_t) - f(0, X_0) - \int_0^t (\partial_s + L) f(s, X_s) ds$$

is a martingale.

*Proof.* Fix T > 0 and consider

$$Z_n = \sup_{\substack{0 \le s \le t \le T \\ t - s \le 1/n}} \left| \dot{f}(s, X_t) - \dot{f}(s, X_s) \right| + \sup_{\substack{0 \le s \le t \le T \\ t - s \le 1/n}} \left| Lf(s, X_t) - Lf(t, X_t) \right|.$$

Then  $Z_n$  is bounded and  $Z_n \to 0$  as  $n \to \infty$  by continuity. By the bounded convergence theorem, it follows that

$$\mathbb{E}[Z_n] \to 0 \quad \text{as } n \to \infty.$$

Now,

$$M_t^f - M_s^f = \left( f(t, X_t) - f(s, X_t) - \int_s^t \dot{f}(r, X_t) \, dr \right)$$

$$+ \left( f(s, X_t) - f(s, X_s) - \int_s^t Lf(s, X_r) \, dr \right)$$

$$+ \left( \int_s^t \dot{f}(r, X_t) - \dot{f}(r, X_r) \, dr \right)$$

$$+ \left( \int_s^t Lf(s, X_r) - Lf(r, X_r) \, dr \right).$$

Choose  $s = s_0 < s_1 < \cdots < s_n = t$  such that  $s_{k+1} - s_k \le 1/n$  for each k. The first line is equal to 0 by the fundamental theorem of calculus. The second line has expectation equal to 0 given  $\mathcal{F}_s$  (since X is an L-diffusion). For the last two lines, we have that

$$\mathbb{E}\left[\left|\mathbb{E}\left[M_t^f - M_s^f \mid \mathcal{F}_s\right]\right|\right] \le (t - s) \cdot \mathbb{E}[Z_n].$$

So,

$$\mathbb{E}\left[\mathbb{E}\left[M_t^f - M_s^f \mid \mathcal{F}_s\right]\right] \le (t - s) \cdot \mathbb{E}[Z_n] \to 0 \quad \text{as } n \to \infty.$$

Therefore,

$$\mathbb{E}\left[M_t^f \mid \mathcal{F}_s\right] = M_s^f.$$

## 7.4 Dirichlet and Cauchy problem

Assume that a, b are Lipschitz and  $a(x)\xi \cdot \xi \ge \varepsilon |\xi|^2$  for some  $\varepsilon > 0$ , for all  $x, \xi \in \mathbb{R}^d$  (i.e., a is uniformly positive definite).

Let  $\mathcal{D} \subseteq \mathbb{R}^d$  be a bounded, open domain with smooth boundary. We shall assume the following theorem from PDE.

**Theorem 7.4** (Dirichlet Problem). For all  $f \in C(\partial \mathcal{D})$ , there exists a unique function  $u \in C(\overline{\mathcal{D}}) \cap C^2(\mathcal{D})$  such that:

$$\begin{cases} Lu + \varphi = 0 & \text{in } \mathcal{D}, \\ u = f & \text{on } \partial \mathcal{D}. \end{cases}$$

Moreover, there exist continuous functions

$$m: \mathcal{D} \times \partial \mathcal{D} \to [0, \infty), \quad g: \{(x, y) \in \mathcal{D} \times \mathcal{D} : x \neq y\} \to (0, \infty)$$

such that for all  $f, \varphi$  as above, we have

$$u(x) = \int_{\mathcal{D}} g(x, y)\varphi(y) \, dy + \int_{\partial \mathcal{D}} f(y) \, m(x, y) \, \lambda(dy),$$

where g is the Green kernel, and  $m(x,y) \lambda(dy)$  is the harmonic measure on  $\partial \mathcal{D}$  as seen from x.

**Theorem 7.5.** Suppose that  $u \in C(\overline{\mathcal{D}}) \cap C^2(\mathcal{D})$  satisfies

$$\begin{cases} Lu + \varphi = 0 & on \mathcal{D}, \\ u = f & on \partial \mathcal{D}, \end{cases}$$

with  $f \in C(\partial \mathcal{D}), \varphi \in C(\overline{\mathcal{D}})$ . Then for any L-diffusion X starting from  $x \in \mathcal{D}$ , we have

$$u(x) = \mathbb{E}_x \left[ \int_0^\tau \varphi(X_s) \, ds + f(X_\tau) \right],$$

where  $\tau = \inf\{t \geq 0 : X_t \notin \mathcal{D}\}$ . Moreover, for all Borel sets  $A \subseteq \mathcal{D}, B \subseteq \partial \mathcal{D}$ , we have

$$\mathbb{E}_x \left[ \int_0^\tau \mathbf{1}(X_s \in A) \, ds \right] = \int_A g(x, y) \, dy, \quad \mathbb{P}_x \left[ X_\tau \in B \right] = \int_B m(x, y) \, \lambda(dy).$$

#### Lecture 24

*Proof.* Fix  $n \ge 1$  and let  $T_n = \inf\{t \ge 0 : X_t \notin \mathcal{D}_n\}$ , where  $\mathcal{D}_n = \{x \in \mathcal{D} : \operatorname{dist}(x, \mathcal{D}^c) > 1/n\}$ . Consider

$$M_t = u(X_{t \wedge T_n}) - u(X_0) + \int_0^{t \wedge T_n} \varphi(X_s) \, ds.$$

There exists  $\tilde{u} \in C_b^2(\mathbb{R}^d)$  with  $\tilde{u} = u$  on  $\mathcal{D}_n$ . Then  $M = \tilde{M}^{T_n}$  where:

$$\tilde{M}_t = \tilde{u}(X_t) - \tilde{u}(X_0) - \int_0^t L\tilde{u}(X_s) \, ds.$$

Since X is an L-diffusion,  $\tilde{M}$  is a martingale. By the optional stopping theorem, M is a martingale. Hence,

$$u(x) = \mathbb{E}_x \left[ u(X_{T_n}) + \int_0^{T_n} \varphi(X_s) \, ds \right]. \tag{*}$$

We want to send  $n \to \infty$ . First we will show  $\mathbb{E}_x[T] < \infty$ . Take  $\varphi \equiv 1$ ,  $f \equiv 0$ , and let  $u^{1,0}$  be the solution of the associated Dirichlet problem. Then  $(\bigstar)$  holds for  $u^{1,0}$ , so:

$$\mathbb{E}_x \left[ T_n \wedge t \right] = u^{1,0}(x) - \mathbb{E}_x \left[ u^{1,0}(X_{T_n}) \right].$$

Since  $u^{1,0}$  is bounded (in  $C(\overline{\mathcal{D}})$ ),  $T_n \uparrow T$  as  $n \to \infty$ , monotone convergence theorem implies  $\mathbb{E}_x[T] < \infty$  (as  $n \to \infty$ ,  $t \to \infty$ ).

Now return to the general case in  $(\bigstar)$ . Have that  $T_n \wedge t \nearrow T$  as  $n, t \to \infty$ . Since u is continuous on  $\overline{\mathcal{D}}$ ,

$$u(X_{t \wedge T_n}) \to f(X_T)$$
 as  $n, t \to \infty$ .

Since u is bounded on  $\overline{\mathcal{D}}$  ( $\overline{\mathcal{D}}$  compact, u continuous), bounded convergence theorem implies

$$\mathbb{E}_x \left[ u(X_{t \wedge T_n}) \right] \to \mathbb{E}_x \left[ f(X_T) \right] \quad \text{as } t, n \to \infty.$$

Moreover,

$$\mathbb{E}_x \left[ \int_0^T |\varphi(X_s)| \, ds \right] \le \|\varphi\|_{\infty} \cdot \mathbb{E}_x[T] < \infty.$$

By the dominated convergence theorem,

$$\mathbb{E}_x \left[ \int_0^{T \wedge t \wedge T_n} \varphi(X_s) \, ds \right] \to \mathbb{E}_x \left[ \int_0^T \varphi(X_s) \, ds \right].$$

Thus,

$$u(x) = \mathbb{E}_x \left[ f(X_T) + \int_0^T \varphi(X_s) \, ds \right].$$

Final assertions follow by taking limits as  $\varphi_n \to \mathbf{1}_A$ ,  $f \equiv 0$  and  $f_n \to \mathbf{1}_B$ ,  $\varphi \equiv 0$ .

**Theorem 7.6.** For each  $f \in C_b^2$ , there exists a unique solution  $u \in C_b^1(\mathbb{R}_+ \times \mathbb{R}^d)$  such that:

$$\begin{cases} \partial u/\partial t = Lu & on \ \mathbb{R}_+ \times \mathbb{R}^d \\ u(0,x) = f & on \ \mathbb{R}^d \end{cases}$$

Moreover, there exists a continuous function  $p:(0,\infty)\times\mathbb{R}^d\times\mathbb{R}^d\to(0,\infty)$  such that

$$u(t,x) = \int_{\mathbb{R}^d} p(t,x,y) f(y) dy$$
 for all  $(t,x) \in \mathbb{R}_+ \times \mathbb{R}^d$ ,

where p is the "heat kernel".

**Theorem 7.7.** Assume that  $f \in C_b^2(\mathbb{R}^d)$ . Let u satisfy

$$\begin{cases} \partial u/\partial t = Lu & on \ \mathbb{R}_+ \times \mathbb{R}^d \\ u(0,x) = f & on \ \mathbb{R}^d \end{cases}$$

Then for any L-diffusion X starting from x, for all  $t \in \mathbb{R}_+$ ,  $0 \le s \le t$ , we have that

$$\mathbb{E}_x[f(X_t)|\mathcal{F}_s] = u(t-s, X_s)$$
 almost surely.

In particular,

$$\mathbb{E}_x [f(X_t)] = u(t, x) = \int_{\mathbb{R}^d} p(t, x, y) f(y) \, dy.$$

Finally, under  $\mathbb{P}_x$ , the finite-dimensional distributions of X are given by:

$$\mathbb{P}_x \left[ X_{t_1} \in dx_1, \dots, X_{t_n} \in dx_n \right] = p(t_1, x_0, x_1) \cdots p(t_n - t_{n-1}, x_{n-1}, x_n) \, dx_1 \cdots dx_n,$$

for 
$$0 < t_1 < t_2 < \dots < t_n < \infty, x_1, \dots, x_n \in \mathbb{R}^d, x_0 = x$$
.

*Proof.* Fix  $t \in (0, \infty)$ . Consider g(s, x) = u(t - s, x) for  $s \le t, x \in \mathbb{R}^d$ . Note that

$$\left(\frac{\partial}{\partial s} + L\right)g(s,x) = -\frac{\partial u}{\partial t}(t-s,x) + Lu(t-s,x) = 0.$$

Therefore,

$$M_s^g = g(s, X_s) - g(0, X_0) - \int_0^s \left(\frac{\partial}{\partial r} + L\right) g(r, X_r) dr = g(s, X_s) - g(0, X_0)$$

is a martingale for  $s \in [0, t)$ . By extending g to  $\tilde{g} \in C_b^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d)$  appropriately. Hence, for all  $0 \le s \le t' < t$ , we have

$$\mathbb{E}_x \left[ M_{t'}^g | \mathcal{F}_s \right] = M_s^g \text{ almost surely, } \Rightarrow \mathbb{E}_x [M_{t'}^g] = \mathbb{E}_x [M_0^g].$$

Therefore,

$$\mathbb{E}_x[u(t-t',X_{t'})] = u(t,x).$$

Now, as  $t' \to t$ , by continuity  $u(t - t', X_{t'}) \to f(X_t)$  (bounded convergence,  $u \in C_b^2$ ), so

$$\mathbb{E}_x[f(X_t)] = u(t,x).$$

For the second part of the theorem set

$$P_t f(x) = \int_{\mathbb{R}^d} p(t, x, y) f(y) \, dy = u(t, x).$$

#### Uniqueness of solutions to the Cauchy problem:

$$P_{s}(P_{t}f) = P_{s+t}f$$

<u>Claim</u> (by induction):

$$\mathbb{E}_x \left[ \prod_{i=1}^n f_i(X_{t_i}) \right] = \int_{(\mathbb{R}^d)^n} p(t_1, x_0, x_1) f_1(x_1) \cdots p(t_n - t_{n-1}, x_{n-1}, x_n) f_n(x_n) dx_1 \cdots dx_n$$

For induction, we use that:

$$\mathbb{E}_{x_0} \left[ \prod_{i=1}^n f_i(X_{t_i}) \right] = \prod_{i=1}^{n-1} f_i(X_{t_i}) \, \mathbb{E} \left[ f_n(X_{t_n}) \mid \mathcal{F}_{t_{n-1}} \right]$$
$$= \prod_{i=1}^{n-1} f_i(X_{t_i}) \, P_{t_n - t_{n-1}} f(X_{t_{n-1}})$$

Now apply the case n-1.