13 Exercicis complementaris de formes

Exercici 133: Vegeu que det és l'element de volum per l'orientació i producte habituals de \mathbb{R}^n . Vegeu a més que $|\det(v_1,\ldots,v_n)|$ és el volum del paral·lelepípede definit pels vectors v_i .

Exercici 134: Si $f: \mathbb{R}^n \to \mathbb{R}^n$ i h una funció, provar que

$$f^*(h \ dx^1 \wedge \cdots \wedge dx^n) = (h \circ f)(\det f') \ dx^1 \wedge \cdots \wedge dx^n,$$

on f' denota la matriu jacobiana de f.

Exercici 135: Si $\omega = x \, dy - dz$, $\eta = 2z^2 \, dx$, $\mu = dx - yz \, dy$, calculeu $x \, \omega + \eta$, $z \, \eta - z \, \mu$, $\omega \wedge \mu$, $(2\omega - y \, \mu) \wedge \eta$, $\omega \wedge \eta \wedge \mu$.

Exercici 136: Donat un camp vectorial de \mathbb{R}^3 , $X = (X_1, X_2, X_3)$, considereu les formes diferencials

$$\omega_X = X_1 dy \wedge dz - X_2 dx \wedge dz + X_3 dx \wedge dy$$
$$\eta_X = X_1 dx + X_2 dy + X_3 dz$$

Calculeu $d\omega_X$ i $d\eta_X$. Observeu que si Y, Z són camps de \mathbb{R}^3 llavors $\omega_X(Y, Z) = \det(X, Y, Z)$ i $\eta_X(Y) = \langle X, Y \rangle$.

Exercici 137: Calculeu $d\omega$ en els casos següents:

- 1. $\omega = xdy + ydx$
- 2. $\omega = x^2 y dy xy^2 dx$
- 3. $\omega = f(x)dx + q(y)dy$
- 4. $\omega = (dy xdz) \wedge (xydx + 3dy + zdz)$
- 5. $\omega = f(x,y)dx \wedge dy$
- 6. $\omega = f(x)dy$
- 7. $\omega = \cos(xy^2)dx \wedge dz$
- 8. $\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$
- 9. $\omega = f dy \wedge dz + g dz \wedge dx + h dx \wedge dy$, amb $f, g, h : \mathbb{R}^3 \longrightarrow \mathbb{R}$ differenciables.

10.
$$\omega = \sum_{j=1}^{n} (-1)^j x_j dx_1 \wedge \cdots \wedge \widehat{dx_j} \cdots \wedge dx_n \ x \in \mathbb{R}^n$$
.

Nota: $\widehat{dx_i}$ vol dir que dx_i no hi apareix.

Exercici 138: Calculeu la imatge recíproca (o pull-back) de la forma diferencial ω per l'aplicació T en els següents casos:

- 1. $T:[0,1]\to\mathbb{R}^3$, $T(s)=(s,s^2,s^3)$, $\omega=dx+dz$
- 2. $T: [0,1] \to \mathbb{R}^3, T(\theta) = (\cos 2\pi\theta, \sin 2\pi\theta, 0), \omega = xy \, dx z \, dy$

- 3. $T: [0,1]^2 \to \mathbb{R}^3, T(s,t) = (s,t,st), \omega = dx \wedge dz$
- 4. $T: [0,1]^2 \to \mathbb{R}^3, T(s,t) = (s \cos t, s \sin t, t), \omega = xy^2 dx \wedge dy 2yz dx \wedge dz + 4 dy \wedge dz$
- 5. $T: [0,1]^3 \to \mathbb{R}^4$, $T(s,t,u) = (st^2, tu, s, s+u)$, $\omega = dx_1 \wedge dx_2 \wedge dx_4$

Exercici 139: Sigui T una parametrització de l'esfera unitat. Calculeu la imatge recíproca per T de les formes dx, dy, dz, $dx \wedge dy$, $dx \wedge dz$, $dx \wedge dy \wedge dz$.

Exercici 140: Sigui α la 1-forma sobre \mathbb{R}^3 donada per $\alpha = xdx + ydy + zdz$ i $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'aplicació $f(u, v) = (\cos u, \sin u, v)$. Trobeu una expressió per $f^*\alpha$.

Exercici 141: Considereu a $\mathbb{R}^2 \setminus \{(1,0)\}$ la 1-forma

$$\omega(x,y) = \frac{-y}{(x-1)^2 + y^2} dx + \frac{x-1}{(x-1)^2 + y^2} dy$$

- 1. Demostreu que ω és tancada.
- 2. Proveu que ω no és exacta.
- 3. Trobeu un obert $U \subset \mathbb{R}^2 \setminus \{(1,0)\}$ on ω sigui exacta.