DeepLung 测试报告

一. LUNA16 数据预处理

- 1. 获取 Mask,将两种 Mask(分别代表左肺和右肺)合并。
- 2. 对 Mask 采取膨胀操作,去除肺部的一些小洞。
- 3. 归一化,首先将所有体素的值(HU值:代表人体组织器官对辐射的透光性,越是不透光,值越高)截取到-1200~600 这个范围,小于-1200 的设为-1200,大于600的设为600,然后再缩放至0~255。
- 4. 在归一化图像中获取 Mask 区域,将 Mask 区域的以外的值设为 **170**(对 应归一化后水的值)

二. 训练与测试过程:

数据集为 subset0-9,采用 10-fold 交叉验证,训练 10 次,测试 10 次,最后得到最终结果,本次训练和测试在 5-fold 的基础上进行讨论。

1. 训练:

每折交叉验证的 epochs 皆为 150, bach_size 为 8, 由于每次训练的趋势几乎一致,所以以下只选取 1-fold 的训练过程进行展示(训练集为 subset0-8, 测试集为 subset9):

(1)损失函数的值随 epoch 的变化过程

(2)训练集的召回率随 epoch 的变化过程

从图(1)(2)可以看出,随着 epoch (训练次数)的增大,模型的损失函数值不断的减小,召回率逐渐升高,到接近 80 次的时候开始不再有大的变化。

2. 测试:

首先简单介绍一些FROC曲线的含义。对于数据测试结果有下面4种情况:

TP: 预测为正,实际为正

FP: 预测为正,实际为负

TN: 预测为负,实际为负

FN: 预测为负,实际为正

FROC 曲线:

横坐标是误报率=FP/CT 切片数

纵坐标是召回率=TP/(TP+FN)

具体举个简单的例子: 假设我们的测试集就两个 ct 序列

第一个其中真结节 2 个, 检测出的结节自信度列表 [0.99,0.8,0.7,0.5,0.4,...](已经从大到小排列过了), 其中真结节是 0.99 和 0.5 对应的结节。

第二个其中真结节 1 个,检测出的结节自信度列表[0.9,0.8,0.7,0.6,0.5,...] 其中真结节 0.8 对应的结节.

假设我们把自信度阈值设置为 0.90 (这个值在计算时一般有一个等比列表),那么这时检测到了一个真结节,召回率是(1+0)/(2+1)=1/3,而误报率是(0+1)/(2)=1/2,(0+1)代表所有 CT 序列中误报结节数,2 代表 CT 序列的个数。这可以画出 FROC 中的点(1/2,1/3)。

然后,我们再把自信度阈值设置为 0.80,那么这时检测到的还是二个真结节,召回率是(1+1)/(2+1)=2/3,而误报率是(1+1)/(2)=1,这可以画出 FROC中的点(1,2/3)。

为了得到测试结果,我们把最后测试的阈值取为-1.5,这是 sigmoid 函数的输入,对应概率值 0.182。意义是选取大于该概率的结节作为候选结节,得到自信度列表,根据自信度列表进行 FROC 曲线的绘制。

名称	测试 的 CT 总数	真结 节的 总数	CNN 网络	FROC 曲线
1-fold 交叉 验证	88	105	Resnet18	FROC performance - predanno-1.5d3 0.9 0.9 0.0 0.0 0.125 0.25 0.5 1 2 4 8 Average number of false positives per scan

5-fold 交叉 验证	443	571	Resnet18	OC performance - 3DRes18FasterR-CNN-5fol 0.9 0.9 0.6 3DRes18FasterR-CNN-5folds 0.125 0.25 0.5 1 2 4 8 Average number of false positives per scan
10-fold-交 叉验证 (作者)	888	1186	Resnet18 和 DPN26	FROC - 3D Res18 and DPN26 0.9 0.9 0.0 3DDPN26FasterR-CNN 3DRes18FasterR-CNN 0.125 0.25 0.5 1 2 4 8 Average number of false positives per scan

三. 各种方法的 FROC 曲线的对比:

作者	方法	数据集	FROC 曲线
Q. Dou et al. (2017MICC AI)	3D 卷积神经 网络+3D 假 阳性剔除	LUNA16	1.0 0.9 0.8 0.7 2) 0.6 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Hao Tang et al.	3D 卷积神经 网络+难例挖 掘+3D 假阳 性剔除	2017 TianChi Al Competi tion	FROC performance 10 99 08 07 07 08 07 08 07 08 08 07 08 08 07 08 08 08 08 08 08 08 08 08 08 08 08 08
Grt123 团队 (DSB2017 冠军)	3D 卷积神经 网络检测+良 恶性分类	LUNA16 和 DSB	1.0 0.8 = 0.6 0.4 0.2 0.0 1/8 1/4 1/2 1 2 4 8 Average false positive per scan
Jia Ding al 天池大赛北 大团队	2D 检测+3D 假阳性剔除	LUNA16 和天池 数据	0.85 0.80 0.85 0.80 0.80 0.80 0.80 0.80