Linear Machines & SVM Linear Machines

Objective

Objective

Define general linear classifiers

Revisiting Logistic Regression

In Logistic Regression: given a training set of n labelled samples $\langle x^{(i)}, y^{(i)} \rangle$, we learn P(y|x) by assuming a logistic sigmoid function.

- → We end up with a *linear classifier*.
- \rightarrow $g(x) = w^t x$ is called the discriminant function.

Linear Discriminant Functions

In general, taking a discriminative approach, we can assume some form for the discriminant function that defines the classifier.

→ The learning task is to use the training samples to estimate the parameters of the classifier.

Linear Decision Boundaries

Linear discriminant functions give arise to liner decision boundaries

→ linear classifiers or linear machines

We will use both notations:

$$g(\mathbf{x}) = \mathbf{w}^t \mathbf{x}$$
 or $g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + W_0$

Linear Machine for C>2 Classes

We can define C linear discriminant functions:

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x}, \quad i = 1, 2, ..., C$$

What is the decision rule for the classifier?

The Learning Task

Finding w_i , i = 1, 2, ..., C

Let's use the 2-class case as an example

-For n samples \mathbf{x}_1 , ..., \mathbf{x}_n , of 2 classes ω_1 and ω_2 , if there exists a vector \mathbf{w} such that $g(\mathbf{x}) = \mathbf{w}^t \mathbf{x}$ classifies them all correctly → Finding \mathbf{w}

i.e., finding w such that

 $\mathbf{w}^t \mathbf{x}_i \ge 0$ for samples of ω_1 and $\mathbf{w}^t \mathbf{x}_i < 0$ for samples of ω_2 ,

Linear Separability

- If we can find at least one vector w such that $g(x) = w^t x$ classifies all samples
 - → We say the samples are linearly separable.

An example of not linearly separable in 2-D:

The Solution Region

There may be many different weight vectors that can all be valid solutions for a given training set

→ The solution regions

If the solution vector is not unique, Which one is

the best?

Solving for the Weight Vector

Consider the following approach: finding a solution vector which optimizes some objective function.

- → We may introduce additional constraints for a "good" solution"
- → Solving a constrained optimization problem.
- Theoretical: Lagrange or Karush-Kuhn-Tucker.
- In practice: e.g., gradient-descent-based search

Gradient Descent Procedure

Basic idea:

- Define a cost function J(w)
- Starting from an initial weight vector w(0)
- Update w by

$$\mathbf{w}(k+1) = \mathbf{w}(k) - \eta(k)\nabla J(\mathbf{w}(k)),$$

 $\eta>0$ is the *learning rate.*

Linear Machines & SVM The Concept of Margins

Objective

Objective
Illustrate Margins
in Classifier

Illustrating Linear Boundaries

The decision boundaries is given by the line g(x) = 0.

- For appreciating a geometric interpretation, we will write w_0 explicitly, i.e., we have

$$g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + W_0$$

The normal vector of the decision line/plane is

Which one is better?

→ Consider the distances of the samples to the decision plane.

Distance to the Decision Plane

Distance to the Decision Plane

The Concept of Margins

Let g(x) = 0 be a decision plane

- -The **margin** of a sample **x** (w.r.t. the decision plane) is the distance from **x** to the plane.
- For a given set of samples S, the margin (w.r.t a decision plane) is the smallest margin over all x in S.

For a given set, a classifier that gives rise to a larger margin will be better.

Use Margins to Compare Solutions

Linear Machines & SVM Linear SVM: Linearly Separable Case

Objective

Objective

Construct SVM for Linearly Separable Data

Key Idea of Support Vector Machines

For a given set, a classifier that gives rise to a larger margin will be better.

SVM: To find the decision boundary such that the margin is maximized.

Formulating the Problem

Given labeled training data:

$$\langle \mathbf{x}^{(i)}, y^{(i)} \rangle, y^{(i)} \in \{-1,1\}, \mathbf{x}^{(i)} \in \mathbf{R}^{d}, i=1,...,n,$$

Assuming the points are linearly separable, let's write a separating hyperplane as:

H: $\mathbf{w}^t \mathbf{x} + b = 0$

Formulating the Problem (cont'd)

Let d₊ (d₋) be the shortest distance from the separating hyperplane to the *closest* positive (negative) examples.

These defines planes H_1 and H_2 .

We can let d₊=d₋=d

→ Find a solution maximizing 2d.

Formulating the Margin

Given separating plane H: $w^tx + b = 0$ and distance d, what are the equations for H_1 and H_2 ?

Consider the plane H* given by $w^t x + b = /|w|/|d$

- Check its orientation
- -Check its distance to H

Formulating the Margin (cont'd)

- H_1 is given by $w^t x + b = /|w|/|d$
- Similarly, H_2 is given by $w^tx + b = -/|w|/|d$
- Note: for any plane equation, $w^t x + b = 0$, $\{w, b\}$ is defined only up to an unknow scale:
 - {sw, sb} is also a valid solution to the equation, for any constant s.

Formulating the Margin (cont'd)

→ We can have the canonical formulation for all the planes as

H:
$$\mathbf{w}^t \mathbf{x} + b = 0$$

$$H_1$$
: $\mathbf{w}^t \mathbf{x} + b = 1$

$$H_2$$
: **w**^t**x** + b = -1

The region between H_1 and H_2 is also called the margin, and its width is $\frac{2}{||w||}$

Formulating SVM

$$\{\mathbf{w}^*, b^*\} = \underset{\mathbf{w}, b}{\operatorname{argmin}} \|\mathbf{w}\| \text{ or } \{\mathbf{w}^*, b^*\} = \underset{\mathbf{w}, b}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w}\|^2$$
 Subject to
$$\mathbf{w}^t \mathbf{x}^{(i)} + b \ge 1 \quad \text{for } \mathbf{y}^{(i)} = +1$$

$$\mathbf{w}^t \mathbf{x}^{(i)} + b \le -1 \quad \text{for } \mathbf{y}^{(i)} = -1$$

The constraints can be combined into:

$$y^{(i)}(\mathbf{w}^t\mathbf{x}^{(i)} + b) - 1 \ge 0 \quad \forall i$$

→ A nonlinear (quadratic) optimization problem with linear inequality constraints.

How to solve SVM? (Outline)

Reformulate the problem using Lagrange multipliers α

- Lagrangian Primal Problem
- Lagrangian Dual Problem

The Karush-Kuhn-Tucker Conditions

- Necessary and sufficient for w, b, α.
- Solving the SVM problem → finding a solution to the KKT conditions.

SVM: Lagrangian Primal Formulation

Define

$$L_P(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_i \alpha_i [y^{(i)} (\mathbf{w}^t \mathbf{x}^{(i)} + b) - 1]$$

-

then the SVM solution should satisfy

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0, \qquad \frac{\partial L_P}{\partial \mathbf{b}} = 0,$$

$$\alpha_i \geq 0$$
,

$$\alpha_i[y^{(i)}(\mathbf{w}^t\mathbf{x}^{(i)}+b)-1]=0$$

The final w is given by

$$\mathbf{w} = \sum_{i} \alpha_{i} y^{(i)} \, \mathbf{x}^{(i)}$$

and b is given by

$$y^{(k)} - \mathbf{w}^t \mathbf{x}^{(k)}$$

for any k such that $\alpha_k > 0$

SVM: Lagrangian Dual Formulation

The objective function is

$$L_D(\mathbf{w}, b, \alpha) = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^{(i)} y^{(j)} \underline{\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}}$$

The solution is the same as before. But there is an important observation.

Points for which $\alpha_i > 0$ are called support vectors

Linear Machines & SVM SVM for Non-linearly-separable Case

Linear Separability Violated

Some samples will always be misclassified no matter what {w,b} is used.

Examining Misclassified Samples

They will violate the constraints:

$$\mathbf{w}^{t}\mathbf{x}^{(i)} + b \ge 1$$
 for $\mathbf{y}^{(i)} = +1$
 $\mathbf{w}^{t}\mathbf{x}^{(i)} + b \le -1$ for $\mathbf{y}^{(i)} = -1$

Relaxing the Constraints

Introducing *non-negative* slack variables ξ_i

$$\mathbf{w}^{t}\mathbf{x}^{(i)} + b \ge 1 - \xi_{i}$$
 for $\mathbf{y}^{(i)} = +1$

$$\mathbf{w}^{t}\mathbf{x}^{(i)} + b \le -1 + \xi_{i} \text{ for } \mathbf{y}^{(i)} = -1$$

For an error to occur, the corresponding ξ_i must exceed unity.

- Hinge loss or soft margin.
- $\rightarrow \sum_i \xi_i$ provides an upper bound on the number of training errors.

Updating the Formulation

C is a parameter to control how much penalty is assigned to errors.

$$\{\mathbf{w}^*, b^*\} = \underset{\mathbf{w}, b}{\operatorname{argmin}} \frac{1}{2} ||\mathbf{w}||^2 + C(\sum_{i} \xi_i)$$

Subject to

$$w^{t}x^{(i)} + b \ge 1 - \xi_{i}$$
 for $y^{(i)} = +1$
 $w^{t}x^{(i)} + b \le -1 + \xi_{i}$ for $y^{(i)} = -1$
 $\xi_{i} \ge 0, \forall i$

Are Non-linear Decision Boundaries Possible?

Transform data to higher dimensions using a mapping

- More freedom to position the samples
- May make the samples linearly separable
- Run linear SVM in the new space → may be equivalent to non-linear boundaries in the original space

What mapping to use?

The Kernel Trick

Revisit the Lagrange Dual Formulation for SVM

$$L_D(\mathbf{w}, b, \alpha) = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}$$

Introduce a kernel function

$$L_D(\mathbf{w}, b, \alpha) = \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^{(i)} y^{(j)} K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

The Kernel Trick (cont'd)

Mercer's Theorem: for a symmetric, non-negative definite kernel function satisfying some minor conditions, there exists a mapping $\phi(x)$ such that

$$K(\mathbf{x}^{(i)},\mathbf{x}^{(j)}) = \Phi(\mathbf{x}^{(i)}) \cdot \Phi(\mathbf{x}^{(j)})$$

- Using a kernel function in L_D can effectively defines an implicit mapping to a higher-dimensional space, where linear SVM was run.
- The decision boundaries in the original space can be highly non-linear.

Common Kernel Functions

Polynomials of degree *d*

$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \rangle^d$$

Polynomials of degree up to *d*

$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \rangle + 1)^d$$

Gaussian kernels

$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|^2}{2\sigma^2}\right)$$

Sigmoid kernel

$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$
= tanh($\eta \langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \rangle + \nu$)