УДК 621.311

Методичні вказівки до практичних занять з дисципліни «Ресурсозберігаючі технології логістичних систем» (для студентів, які навчаються за спеціальністю 131 «Прикладна механіка», спеціалізація «Автоматизовані логістичні системи» / Уклад. О.Б. Нєженцев. - Київ: КПІ ім. Ігоря Сікорського, 2024. - 40 с.

Дано рекомендації щодо виконання практичних занять з дисципліни «Ресурсозберігаючі технології логістичних систем». Наведено вихідні дані і варіанти завдань, викладено методики розрахунку втрат і економії електричної енергії в типових електричних установках. Надано приклади розрахунку. Для закріплення знань по кожному заняттю студентам запропоновано контрольні питання.

Укладач: О.Б. Нєженцев, к.т.н., доц.

Відповідальний. за випуск О.Ф. Луговський, д.т.н., проф.

Рецензент Б.С. Воронцов, д.т.н., проф.

ПРАКТИЧНЕ ЗАНЯТТЯ 1 Тема: РОЗРАХУНОК ВТРАТ В КАБЕЛЬНІЙ МЕРЕЖІ ТА В СИЛОВОМУ ТРАНСФОРМАТОРІ

Мета заняття - визначити втрати потужності, електроенергії і напруги в кабельній мережі та в силовому трансформаторі.

1.1 Умова завдання 1

Визначити втрати потужності ΔP , електроенергії ΔE і напруги ΔU в кабельній мережі (з напругою 6000 В), що живить трансформатор, до якого підключена група кранів. Довжина кабелю – L=2000 м, площа перетину жил – S=120 мм², середнє навантаження трансформатора по струму за добу - $I_{cp}=100$ А, коефіцієнт потужності - $\cos \varphi=0.85$.

1.2 Розв'язок

Активний опір лінії:

$$r = \frac{\rho \cdot L}{S} = \frac{0.0312 \cdot 2000}{120} = 0.52 \text{ OM},$$

де $\rho = 0.0312$ - питомий активний опір кабелів, Ом·мм²/м (Додаток А). Втрати активної потужності:

$$\Delta P = 3I_{cp}^2 r = 3 \cdot 100^2 \cdot 0{,}52 = 15600~\mathrm{Bt} = 15{,}6~\mathrm{kBt}$$
 .

Втрати активної електроенергії за добу:

$$\Delta E = K_{\Phi}^2 \cdot \Delta P \cdot T = 1,0173^2 \cdot 15,6 \cdot 24 = 388 \text{ кBt-год,}$$

де K_{φ} - коефіцієнт форми графіка навантаження по струму;

T - тривалість облікового періоду, год. У добу T=24 год. Індуктивний опір лінії

$$X = \chi_0 L = 0.075 \cdot 2 = 0.15 \text{ Om},$$

де χ_0 - питомий індуктивний опір кабелів, Ом/км (для кабельних ліній $\chi_0 = 0.075$ Ом/км).

Втрати напруги на лінії:

$$\Delta U = \frac{\sqrt{3}}{K_{rr}} I_{cp} (\cos \varphi + x \sin \varphi),$$

де $K_{_{\Pi}}$ - поправочний коефіцієнт (в інженерних розрахунках для кабелів $K_{_{\Pi}} = 0.89$).

$$\Delta U = \frac{\sqrt{3}}{0.89} \cdot 100 \cdot (0.52 \cdot 0.85 + 0.15 \cdot 0.52) = 101.2 \text{ B}.$$

Відносне падіння напруги до номінальної напруги:

$$\Delta U_{\text{OTH}} = \frac{\Delta U}{U} \cdot 100\% = \frac{101,2}{6000} \cdot 100\% = 1,5 \%$$
.

Початкові дані для розрахунку втрат в кабельній мережі за різними варіантами наведено в таблиці 1.

Т а б л и ц я 1 - Початкові дані для розрахунку втрат в кабельній мережі

Варіант	L, M	S, mm ²	I _{cp} , A	cos φ
1	1500	95	130	0,8
2	1700	120	120	0,84
3	2500	150	160	0,85
4	2000	95	110	0,88
5	3700	70	100	0,85
6	2300	150	170	0,87
7	2800	120	140	0,8
8	2200	185	150	0,9
9	3000	120	130	0,85
10	1600	240	200	0,9
11	2700	185	190	0,92
12	3500	150	180	0,87
13	1800	120	150	0,82
14	2100	240	160	0,86
15	2400	95	120	0,91
16	2600	70	100	0,89
17	2900	150	130	0,83
18	3200	95	110	0,81
19	1900	120	140	0,88
20	3100	185	120	0,84

1.3 Умова завдання 2

Визначити втрати потужності ΔP , електроенергії ΔE і напруги ΔU в силовому трансформаторі, що живить групу козлових кранів. Середнє завантаження трансформатора за потужністю - $P=275~{\rm kBT}$; коефіцієнт потужності - $\cos\phi=0.80$; тривалість роботи трансформатора протягом року під навантаженням - $T_{\rm poo}=7850~{\rm rog}$.

1.4 Розв'язок

По каталогу (Додаток Б, таблиця Б.1) за середнім завантаженням трансформатора P = 275 кВт вибираємо трансформатор, найближчий за потужністю: TM-320/10.

Дані з каталогу на вибраний трансформатор ТМ-320/10:

- номінальна потужність

$$P_{\rm H} = 320$$
 кВт

- втрати потужності в сталі (втрати холостого ходу)

$$\Delta P_c = 1.6 \text{ kBt};$$

- втрати потужності в міді, тобто в обмотках трансформатора (втрати короткого замикання) при номінальному навантаженні

 $\Delta P_{\rm M} = 6 \text{ kBT};$

- струм холостого ходу, в %

$$I_{xx} = 6\%$$
;

- напруга короткого замикання, в %

$$U_{K3} = 5.5 \%$$
.

Коефіцієнт завантаження трансформатора:

$$K_3 = \frac{P}{P_H} = \frac{275}{320} = 0.86$$
.

Втрати активної потужності в трансформаторі:

$$\Delta P = \Delta P_{c} + \Delta P_{M} \cdot K_{3}^{2} = 1.6 + 6 \cdot 0.86^{2} = 6.04 \text{ kBt}.$$

Втрати реактивної потужності в трансформаторі:

$$\Delta Q = \Delta Q_{xx} + \Delta Q_{\kappa 3} = \frac{I_{xx} \cdot P_{H}}{100\%} + \frac{U_{\kappa 3} \cdot P_{H} \cdot K_{3}^{2}}{100\%} =$$

$$= \frac{6 \cdot 320}{100} + \frac{5.5 \cdot 320 \cdot 0.86^{2}}{100} = 32,22 \text{ kBAp}.$$

Втрати активної електроенергії в трансформаторі за рік:

$$\Delta E_a = \Delta P_c \cdot T_{\Pi} + \Delta P_{M} \cdot K_{3}^2 \cdot T_{po6} =$$

$$\Delta E_a = 1,6 \cdot 8760 + 6 \cdot 0,86^2 \cdot 7850 = 48851 \text{ кВт} \cdot \text{год}$$

де $T_{\!_{\Pi}}$ - час, протягом якого трансформатор приєднаний до мережі, год.

$$T_{\pi} = 365 \cdot 24 = 8760$$
 год.

Втрати реактивної електроенергії в трансформаторі за рік:

$$\Delta E_p = \Delta Q_{xx} \cdot T_{\Pi} + \Delta Q_{\kappa 3} \cdot K_3^2 \cdot T_{po6} =$$
= 19,2·8760+0,86²·13,02·7850 = 243784 кВАр·год.

Втрати вторинної напруги в трансформаторі, %

$$\Delta U_2 = K_3 \left(U_a \cos \phi + U_x \sin \phi \right) + K_3^2 \left(U_a \sin \phi - U_x \cos \phi \right) / 200 ,$$

де $\, \mathrm{U}_a \, - \,$ активна складова напруги короткого замикання

$$U_{a} = \frac{P_{M}}{P_{H}} \cdot 100\% = \frac{6}{320} \cdot 100\% = 1,88\%;$$

 $\mathbf{U}_{\mathbf{x}}$ – реактивна складова напруги короткого замикання

$$U_x = \sqrt{U_{K3}^2 - U_a^2} = \sqrt{5.5^2 - 1.88^2} = 5.17 \%.$$

Втрати вторинної напруги в трансформаторі складають:

$$\Delta U_2 = 0.86 \cdot \left(1.88 \cdot 0.8 + 5.17 \cdot 0.6\right) + 0.86^2 \cdot \left(1.88 \cdot 0.6 - 5.17 \cdot 0.8\right) / 200 = 4.59 \%.$$

Початкові дані для розрахунку втрат в силових трансформаторах за різними варіантами приведені в таблиці 2. Характеристики силових трансформаторів наведено в Додатку А.

Т а б л и ц я 2 - Початкові дані для розрахунку втрат в трансформаторах

Варіант	Р, кВт	cosφ	Троб, год
1	230	0,74	8200
2	240	0,75	8150
3	245	0,76	8100
4	250	0,77	8050
5	260	0,78	8000
6	270	0,79	7900
7	275	0,8	7850
8	285	0,81	7800
9	295	0,82	7700
10	300	0,83	7600
11	305	0,85	7500
12	310	0,87	7400
13	205	0,76	7000
14	272	0,79	7350
15	344	0,82	7900
16	140	0,85	8100
17	92	0,80	6800
18	56	0,77	5900
19	218	0,88	7200
20	136	0,92	7500

Контрольні питання

- 1 Чому дорівнює активний опір лінії електропередачі?
- 2 Як визначити втрати активної потужності на лінії?
- 3 Визначите індуктивний опір лінії.
- 4 Як знайти втрати електроенергії на лінії електропередач?
- 5 Визначите втрати напруги на лінії електропередач.
- 6 Як визначити втрати активної потужності в трансформаторі?
- 7 Визначите втрати реактивної потужності в трансформаторі.
- 8 Як знайти в трансформаторі втрати електроенергії за рік?
- 9 Визначите в трансформаторі втрати вторинної напруги.
- 10 Визначите активну і реактивну напруги короткого замикання в трансформаторі.

Додаток А

Таблиця А.1 – Питомий активний опір кабелів, Ом / км

Перетин жил, мм2	Алюміній	Мідь 1.84	
10	3.12		
16	1.95	1.16	
25	1.25	0.74	
35	0.894	0.53	
50	0.62	0.37	
70	0.447	0.265	
95	0.329	0.195	
120	0.261	0.154	
150	0.2	0.124	
185	0.169	0.1	
240	0.13	0.077	
300	0.1	0.061	
400	0.077	0.046	

Таблиця А.2 – Питомий активний і реактивний опір повітряних ліній, Ом / км

Перетин проводу, мм ²	Алюміній		Сталеалюміній				
	r_0 x_0		Провід АС		Провід АСУ, АСО		
		30	r_0	x_0	r ₀ .	x_0	
16	1.96	0.39	2.06	0.411			
25	1.27	0.377	1.38	0.398		1	
35	0.91	0.366	0.85	0.385		1 1	
50	0.63	0.355	0.65	0.374	7	V	
70	0.45	0.345	0.46	0.364	-	90 A.J.	
95	0.33	0.333	0.33	0.353	-	100	
120	0.27	0.327	0.27	0.347	0.28	0.4	
150	0.21	0.319	0.21	0.34	0.21	0.4	
185	0.17	0.311	100-	4 4	0.17	0.393	
240	0.13	0.304	7 J	• A A A A A A A A A A A A A A A A A A A	0.13	0.384	
300	-	G -	- "	141	0.1	0.378	
400	-			A Secretary of the Control of the Co	0.08	0.368	

Додаток Б
Т а б л и ц я Б.1 - Технічні характеристики двохобмоткових трифазних трансформаторів

Тип трансформатора	P_{H} , $\kappa B T$	ΔP_c , $\kappa B T$	$\Delta P_{_{\mathrm{M}}}$, $\kappa \mathbf{B} \mathbf{T}$	I _{xx} , %	U _{K3} , %
TM-25/10	25	0,135	0,6	3,2	4,5
TM-40/10	40	0,190	0,88	3,0	4,5
TM-63/10	63	0,265	1,28	2,8	4,5
TM-100/10	100	0,365	1,97	2,6	4,5
TM-100/35	100	0,465	1,97	2,4	6,5
TM-160/10	160	0,565	2,65	2,4	4,5
TMBM-160/10	160	0,460	2,65	2,4	4,5
ТМФ-160	160	0,565	3,1	2,4	4,7
TM-160/35	160	0,700	3,1	2,4	6,8
TM-250/10	250	0,820	3,7	2,3	4,5
TMBM-250/10	250	0,660	3,7	2,3	4,5
ТМФ-250	250	0,820	4,2	2,3	4,5
TM-250/35	250	1,0	4,2	2,3	6,8
TM-320/10	320	1,600	6,0	6,0	5,5
TM-400/10	400	1,050	5,5	2,1	4,5
TM-400/35	400	1,150	4,2	3,5	4,5
TM-630/10	630	1,56	7,6	2,0	5,5
ТМФ-630/10	630	1,56	8,5	2,0	5,5
TM-630/35	630	1,42	7,6	3,0	6,5
TM-1000/10	1000	2,40	12,2	1,4	5,5
TMC-1000/10 3T3	1000	2,75	12,2	1,5	8,0
TM-1000/35	1000	2,75	12,2	1,5	6,5
TM-1600/10	1600	3,30	18,0	1,3	5,5
TM-1600/35	1600	3,65	18,0	1,4	6,5
TM-2500/10	2500	4,60	25,0	1,0	5,5
TM-2500/35	2500	5,10	25,0	1,1	6,5
TM-4000/10	4000	6,40	33,5	0,9	6,5
TM-4000/35	4000	6,70	33,5	1,0	7,5
TM-6300/10	6300	9,0	46,5	0,8	6,5
TM-6300/35	6300	9,40	46,5	0,9	7,5
TM-10000/35	6300	14,5	65,0	0,8	7,5
TM-16000/35	6300	21,0	90,0	0,6	8,0
	L	1	L		

Додаток Г Т а б л и ц я Г.1 – Значення тригонометричних функцій

Градуси	sin	tg	ctg	cos	Градуси
0	0,0000	0,0000	-	1,0000	0
1	0,0175	0,0175	57,290	0,9998	I
2	0,0349	0.0349	28,636	0,9994	2
3	0,0523	0,0524	19,081	0,9986	3
4	0,0698	0,0699	14,301	0,9976	4
5	0,0872	0,0875	11,430	0,9962	5
6	0,1045	0,1051	9,5144	0,9945	6
7	0,1219	0,1228	8,1443	0.9925	7
8	0,1392	0.1405	7,1154	0,9903	8
9	0,1564	0,1584	6,3138	0,9877	9
10	0,1736	0,1763	5,6713	0,9818	10
11	0,1908	0,1944	5,1446	0,9816	11
12	0,2079	0,2126	4,7046	0,9781	12
13	0,2250	0.2309	4,3315	0,9744	13
14	0,2419	0,2493	4,0108	0,9703	14
15	0,2588	0,2679	3,7321	0,9659	15
16	0,2756	0,2867	3,4874	0.9613	16
17	0,2924	0.3057	3,2709	0,9563	17
18	0,3090	0.3249	3,0777	0,9511	18
19	0,3256	0,3443	2,9042	0,9455	19
20	0,3420	0,3640	2,7475	0,9397	20
21	0,3584	0,3839	2,6051	0,9336	21
22	0,3746	0,4040	2,4751	0,9272	22
23	0,3907	0,4245	2,3559	0,9205	23
24	0,4067	0,4452	2,2460	0,9135	24
25	0,4226	0,4663	2,1445	0,9063	25
26	0,4384	0,4877	2,0503	0,8988	26
27	0,4540	0,5095	1,9626	0,8910	27
28	0,4695	0,5317	1,8807	0,8829	28
29	0,4848	0,5543	1,8040	0,8746	29
30	0,5000	0,5774	1,7320	0,8660	30
31	0,5150	0,6009	1,6643	0,8572	31
32	0,5299	0,6249	1,6003	0,8480	32
33	0,5446	0,6494	1,5395	0,8387	33
34	0,5592	0,6745	1,4826	0,8290	34
35	0,5736	0,7002	1,4281	0,8192	35
36	0,5878	0,7265	1,3764	0,8090	36
37	0,6018	0,7536	1,3270	0,7986	37
38	0,6157	0,7813	1,2799	0,7880	38
39	0,6293	0,8098	1,2349	0,7771	39
40	0,6428	0,8391	1,1918	0,7660	40
41	0,6561	0,8693	1,1504	0,7547	41
42	0,6691	0,9004	1,1106	0,7431	42
43	0,6820	0,9325	1,0724	0,7314	43
44	0,6947	0;9657	1,0355	0,7193	- 44
45 -	0,7071	1,000	1,0000	0,7001	45
Градуси	cos	ctg	tg	sin	Градуси