COMP6207 ALGORITHMIC GAME THEORY, SPRING 2022

ARROW'S IMPOSSIBILITY THEOREM

Pavel Naumov p.naumov@soton.ac.uk

KENNETH ARROW

1921 - 2017

Nobel Memorial Prize in Economic Sciences, 1972

Set A containing at least three <u>alternatives</u>

- Set A containing at least three <u>alternatives</u>
- Finite set N of <u>individuals</u>

- Set A containing at least three <u>alternatives</u>
- Finite set N of <u>individuals</u>

n is the size of set N

- Set A containing at least three <u>alternatives</u>
- Finite set N of <u>individuals</u>

n is the size of set N

- Set A containing at least three <u>alternatives</u>
- Finite set N of <u>individuals</u>

n is the size of set N

- reflexive (aRa)
- transitive (if aRb and bRc, then aRc)
- complete (aRb or bRa)

- Set A containing at least three <u>alternatives</u>
- Finite set N of <u>individuals</u>

n is the size of set N

preference R is weak order relation on A

- reflexive (aRa)
- transitive (if aRb and bRc, then aRc)
- complete (aRb or bRa)

aRb is read as "alternative a is preferred over alternative b"

- Set A containing at least three <u>alternatives</u>
- Finite set N of <u>individuals</u>

n is the size of set N

preference R is weak order relation on A

- reflexive (aRa)
- transitive (if aRb and bRc, then aRc)
- complete (aRb or bRa)

aRb is read as "alternative a is preferred over alternative b"

- Set A containing at least three <u>alternatives</u>
- Finite set N of <u>individuals</u>

n is the size of set N

preference R is weak order relation on A

- reflexive (aRa)
- transitive (if aRb and bRc, then aRc)
- complete (aRb or bRa)

aRb is read as "alternative a is preferred over alternative b"

 \mathcal{R} is the set of all weak orders on A

- Set A containing at least three <u>alternatives</u>
- Finite set N of <u>individuals</u>

n is the size of set N

preference R is weak order relation on A

- reflexive (aRa)
- transitive (if aRb and bRc, then aRc)
- complete (aRb or bRa)

aRb is read as "alternative a is preferred over alternative b"

 ${\mathcal R}$ is the set of all weak orders on A

preference profile is any element of \mathbb{R}^n

VISUAL NOTATION FOR PREFERENCES

a b c a b,c d

a,b,c,d

"I care"

"I somewhat care"

"I don't care"

preference R is weak order relation on A

reflexive (aRa)

- reflexive (aRa)
- transitive (if aRb and bRc, then aRc)

- reflexive (aRa)
- transitive (if aRb and bRc, then aRc)
- complete (aRb or bRa)

- reflexive (aRa)
- transitive (if aRb and bRc, then aRc)
- complete (aRb or bRa)

preference R is weak order relation on A

- reflexive (aRa)
- transitive (if aRb and bRc, then aRc)
- complete (aRb or bRa)

strict preference relation aPb if it is NOT true that bRa

preference R is weak order relation on A

- reflexive (aRa)
- transitive (if aRb and bRc, then aRc)
- complete (aRb or bRa)

strict preference relation aPb if it is NOT true that bRa

preference R is weak order relation on A

- reflexive (aRa)
- transitive (if aRb and bRc, then aRc)
- complete (aRb or bRa)

strict preference relation aPb if it is NOT true that bRa

PREFERENCE VS STRICT PREFERENCE

а

b,c

d

PREFERENCE VS STRICT PREFERENCE

а

b,c

d

aRb

bRc

cRb

bRd

PREFERENCE VS STRICT PREFERENCE

а

b,c

d

aRb

aPb

bRc

cRb

bRd

bPd

any function from ${\mathcal R}^n$ to ${\mathcal R}$

input: $(R_1, ..., R_n)$ output: R

any function from ${\mathcal R}^n$ to ${\mathcal R}$

input: $(R_1, ..., R_n)$ output: R

unanimity: if aPib for each i, then aPb

any function from \mathbb{R}^n to \mathbb{R}

input: $(R_1, ..., R_n)$ output: R

unanimity: if aPib for each i, then aPb

i is the dictator: if aPib, then aPb

any function from ${\mathcal R}^n$ to ${\mathcal R}$

input: $(R_1, ..., R_n)$ output: R

unanimity: if aPib for each i, then aPb

i is the dictator: if aPib, then aPb

Independence of Irrelevant Alternatives (IIA):

for any $(R_1, ..., R_n)$ and $(R'_1, ..., R'_n)$ such that aR_ib iff aR'_ib for each i,

if R and R' are social preferences of profile $(R_1, ..., R_n)$ and $(R'_1, ..., R'_n)$, then aRb iff aR'b

```
any function from {\mathcal R}^n to {\mathcal R}
```

```
input: (R_1, ..., R_n) output: R
```

unanimity: if aPib for each i, then aPb

i is the dictator: if aPib, then aPb

Independence of Irrelevant Alternatives (IIA):

for any $(R_1, ..., R_n)$ and $(R'_1, ..., R'_n)$ such that aR_ib iff aR'_ib for each i,

if R and R' are social preferences of profile $(R_1, ..., R_n)$ and $(R'_1, ..., R'_n)$, then aRb iff aR'b

Equivalent version of IIA:

for any $(R_1, ..., R_n)$ and $(R'_1, ..., R'_n)$ such that aP_ib iff aP'_ib for each i,

if R and R' are social preferences of profile (R₁, ..., R_n) and (R'₁, ..., R'_n), then aPb iff aP'b

ARROW'S THEOREM

Arrow's Theorem. If a social preference function satisfies Unanimity and Independence of Irrelevant Alternatives (IIA), then some individual is a dictator.

ARROW'S THEOREM

Arrow's Theorem. If a social preference function satisfies Unanimity and Independence of Irrelevant Alternatives (IIA), then some individual is a dictator.

Proof is not trivial!

What did you expect? Nobel Prize!

ARROW'S THEOREM

Arrow's Theorem. If a social preference function satisfies Unanimity and Independence of Irrelevant Alternatives (IIA), then some individual is a dictator.

Proof is not trivial!

What did you expect? Nobel Prize!

i is the dictator: if aPib, then aPb

ARROW'S THEOREM

Arrow's Theorem. If a social preference function satisfies Unanimity and Independence of Irrelevant Alternatives (IIA), then some individual is a dictator.

Proof is not trivial!

What did you expect? Nobel Prize! 🦥

i is the dictator: if aPib, then aPb

i is decisive for a over b: if aPib, then aPb

STEP A

- Fix two distinct alternatives a and b.
- Consider profiles

R1	R2	•••	Rn
а	а		а
b	b		b
•••			
•••			

R1	R2	•••	Rn
b	р		þ
а	а		а
•••			
•••	•••	•••	•••

Pick i* such that

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
а	•••	а	b	р	•••	b
•••	•••	•••	•••		•••	•••
•••	•••	•••	•••		•••	•••

R1		R _{i*-1}	R _{i*}	R _{i*+1}		Rn
b	•••	b	b	а	•••	а
а	•••	а	а	b	•••	b
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

still aPb

already not aPb thus bRa

R1	•••	R _{i*-1}	R _{i*}	 R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
a	•••	а	b	b	•••	b
•••		•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

aPb

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
a	•••	а	b	b	•••	b
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

CONSIDER:

	R1		R _{i*-1}	R _{i*}	 R _{i*+1}	•••	Rn
•	b	•••	b	а	а	•••	а
-	С	•••	С	b	b	•••	b
-	a	•••	а	С	С	•••	С
-	•••	•••		•••		•••	

aPb

CO			
(()	IV I 🦠 I	11)	$ \boldsymbol{\nu}$
	N.)	11 /	I IN.

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
а	•••	а	b	b	•••	b
•••	•••	•••	•••	•••	•••	
•••	•••	•••	•••		•••	•••

•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn	R1		R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
•••	b	а	а	•••	а	b		b	а	а	•••	а
•••	а	b	b	•••	b	С	•••	С	b	b	•••	b
•••		•••		•••		a		а	С	С	•••	С
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

aPb

aPb by IIA from left profile

	\frown \blacksquare				
- (() (NS		-	₽·
	() I	N. 1	111 /		Γ.

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
а	•••	а	b	р	•••	b
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
С	•••	С	b	b	•••	b
a		а	С	С	•••	С
•••	•••	•••	•••	•••	•••	•••

aPb

aPb by IIA from left profile bPc by Unanimity

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
а	•••	а	b	b	•••	b
	•••					
•••	•••	•••	•••	•••	•••	•••

CONSIDER:

R1	 R _{i*-1}	R _{i*}	 R _{i*+1}		Rn
b	 b	а	а	•••	а
С	 С	b	b	•••	b
а	 а	С	С	•••	С
•••	 	•••		•••	

aPb

aPb by IIA from left profile
bPc by Unanimity
aPc because preference is transitive

from Stop C:

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	b	b	а	•••	а
а	•••	а	а	b	•••	b
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
С	•••	С	b	b	•••	b
a	•••	а	С	С	•••	С
•••			•••	•••	•••	•••

bRa aPc

from Stop C:

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	b	а	•••	а
а	•••	а	а	b	•••	b
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
С	•••	С	b	b	•••	b
а	•••	а	С	С	•••	С
•••	•••	•••	•••	•••	•••	•••

bRa aPc

CONSIDER
ANY PROFILE
OF THE FORM:

from Stop C:

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	þ	b	a	•••	а
а	•••	а	а	р	•••	b
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	b	•••	b	a	а	•••	а
	С	•••	O	р	g	•••	b
_	а	•••	а	С	С	•••	С
-	•••	•••	•••	•••	•••	•••	•••

bRa aPc

CONSIDER
ANY PROFILE
OF THE FORM:

	R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
	b/c	•••	b/c	b	а	•••	а
-	а	•••	а	а	b/c	•••	b/c
-	•••		•••	С	•••	•••	
-	•••	•••	•••	•••	•••	•••	•••

from Stop C:

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	b	b	a	•••	а
а	•••	а	а	р	•••	b
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
С	•••	С	b	Q	•••	b
а	•••	а	С	С	•••	С
•••		•••	•••	•••	•••	•••

bRa

aPc

CONSIDER
ANY PROFILE
OF THE FORM:

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	b/c	•••	b/c	b	а	•••	а
	а	•••	а	а	b/c	•••	b/c
•	•••	•••	•••	С	•••	•••	•••
•	•••	•••	•••		•••	•••	•••

bRa by IIA from upper left

from Stop B:

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	р	b	a	•••	а
а	•••	в	а	р	•••	b
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

R1		R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
С	•••	С	b	b	•••	b
а		а	С	С	•••	С
•••		•••	•••	•••	•••	•••

bRa

aPc

CONSIDER ANY PROFILE OF THE FORM:

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b/c	•••	b/c	b	а	•••	а
О	•••	а	а	b/c		b/c
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	•••		•••	

bRa by IIA from upper left

aPc by IIA from upper right

from Stop C:

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	р	b	а	••	а
а	•••	а	а	р	•••	b
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

R1		R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
С		С	b	b	•••	b
а		а	С	С	•••	С
•••		•••		•••	•••	•••

bRa

aPc

CONSIDER ANY PROFILE OF THE FORM:

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b/c	•••	b/c	b	а	•••	а
а	•••	а	а	b/c	•••	b/c
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	•••	•••	•••	

bRa by IIA from upper left aPc by IIA from upper right bPc by transitivity

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b/c	•••	b/c	b	а	•••	а
а	•••	а	а	b/c	•••	b/c
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b/c	•••	b/c	b	а	•••	а
а	•••	а	а	b/c	•••	b/c
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

Note: any profile such that bPi*c ranks b and c the same way as one of the profiles on the left!

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b/c	•••	b/c	b	а	•••	а
а	•••	а	а	b/c	•••	b/c
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

Note: any profile such that bPi*c ranks b and c the same way as one of the profiles on the left!

Thus, bPc any profile such that bPi*c

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b/c	•••	b/c	b	а	•••	а
а	•••	а	а	b/c	•••	b/c
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	•••	•••	•••	

Note: any profile such that bPi*c ranks b and c the same way as one of the profiles on the left!

Thus, bPc any profile such that bPi*c

Hence, i* is decisive for b over c by IIA

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b/c	•••	b/c	b	а	•••	а
а	•••	а	а	b/c	•••	b/c
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

Note: any profile such that bPi*c ranks b and c the same way as one of the profiles on the left!

Thus, bPc any profile such that bPi*c

Hence, i* is decisive for b over c by IIA

consider:

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
a/c	•••	a/c	а	a/c	•••	a/c
b	•••	b	b	b	•••	b
•••		•••	С	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

i* is decisive for b over c

i* is decisive for b over c

consider:

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
a/c	•••	a/c	а	a/c	•••	a/c
b	•••	b	b	b		b
•••	•••	•••	С	•••		
•••	•••	•••	•••	•••	•••	•••

bPc because i* is decisive for b over c

consider:

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
a/c	•••	a/c	а	a/c	•••	a/c
b	•••	b	b	b	•••	b
•••	•••	•••	С	•••	•••	
•••	•••	•••	•••	•••	•••	•••

i* is decisive for b over c

bPc because i* is decisive for b over c
aPb by Unanimity

i* is decisive for b over c

consider:

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
a/c	•••	a/c	а	a/c	•••	a/c
b	•••	b	b	b	•••	b
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

bPc because i* is decisive for b over c
aPb by Unanimity

aPc by transitivity

i* is decisive for b over c

consider:

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
a/c	•••	a/c	а	a/c	•••	a/c
b	•••	b	b	b	•••	b
•••		•••	С	•••	•••	
•••		•••	•••	•••	•••	

bPc because i* is decisive for b over c

aPb by Unanimity

aPc by transitivity

Note: any profile such that aPi*c ranks a and c the same way as one of the profiles on the left!

consider:

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
a/c	•••	a/c	а	a/c	•••	a/c
b	•••	b	b	b	•••	b
•••	•••	•••	С	•••	•••	•••
•••					•••	

bPc because i* is decisive for b over c

aPb by Unanimity

aPc by transitivity

Note: any profile such that aPi*c ranks a and c the same way as one of the profiles on the left!

Hence, i* is decisive for a over c by IAA

consider:

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
a/c	•••	a/c	а	a/c	•••	a/c
b	•••	b	b	b	•••	b
•••	•••	•••	С	•••	•••	•••
•••					•••	

bPc because i* is decisive for b over c

aPb by Unanimity

aPc by transitivity

Note: any profile such that aPi*c ranks a and c the same way as one of the profiles on the left!

Hence, i* is decisive for a over c by IAA

i* is decisive for b over c i* is decisive for a over c

R1		R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
a		а	b	b	•••	b
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

still aPb

i* is decisive for b over c i* is decisive for a over c

R1	•••	 R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
a	•••	а	b	b	•••	b
•••	•••	•••	•••	•••	•••	•••
	•••	•••	•••	•••	•••	

still aPb

i* is decisive for b over ci* is decisive for a over c

CONSIDER

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	С	С	•••	С
С	•••	С	а	а	•••	а
а	•••	а	b	b	•••	b
•••	•••	•••	•••	•••	•••	•••

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
а	•••	а	b	b	•••	b
•••				•••	•••	
•••	•••	•••	•••	•••	•••	•••

still aPb

i* is decisive for b over c i* is decisive for a over c

CONSIDER

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	b	С	С	•••	С
С	•••	С	а	а	•••	а
а	•••	а	b	b	•••	b
•••			•••	•••	•••	•••

aPb by IIA from left profile

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
a	•••	а	b	b	•••	b
•••	•••	•••	•••	•••	•••	
•••	•••	•••			•••	

still aPb

i* is decisive for b over c i* is decisive for a over c

CONSIDER

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	b	С	С	•••	С
С	•••	O	а	а	•••	а
а	•••	а	b	b	•••	b
•••		•••	•••	•••	•••	•••

aPb by IIA from left profile cPa by Unanimity

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	а	а	•••	а
а	•••	а	b	р	•••	b
•••	•••	•••	•••	•••	•••	•••
	•••		•••		•••	

still aPb

CONSIDER

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	b	С	С	•••	С
С	•••	O	а	а	•••	а
а	•••	а	b	b	•••	b
•••	•••	•••	•••	•••	•••	•••

aPb by IIA from left profile

cPa by Unanimity

cPb because preference is transitive

STEP H

STEP B:

R1		R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	b	а	•••	а
а	•••	а	а	b	•••	b
•••	•••	•••	•••	•••	•••	
•••	•••	•••	•••	•••	•••	

already not aPb thus bRa

STEP G:

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	b	•••	b	С	С	•••	С
	С	•••	С	а	а	•••	а
•	а	•••	а	b	b	•••	b
•	•••	•••	•••	•••	•••	•••	

cPb

STEP H

R1

	b	•••	b	b	а	•••
STEP B:	а	•••	а	а	b	•••
0121 5.	•••	•••	•••	•••	•••	•••

already not aPb thus bRa

 $R_{i^{\ast}}$

 R_{i^*+1}

Rn

а

b

 R_{i^*-1}

STEP G:

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	b	С	С	•••	С
С	•••	С	а	а	•••	а
а	•••	а	b	b	•••	b
•••	•••	•••	•••		•••	

cPb

CONSIDER

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	С	a/c	•••	a/c
a/c	•••	a/c	b	р	•••	b
•••	•••	•••	а	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

STEP H

	ΚI	•••	K i*-1	K i*	K i*+1	•••	Kn
	b	•••	b	b	а	•••	а
STEP B:	а	•••	а	a	b	•••	b
0121 0.	•••	•••	•••	•••	•••	•••	•••
	•••						

already not aPb thus bRa

STEP G:

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	b	•••	b	С	С	•••	С
	С	•••	С	а	а	•••	а
•	а	•••	а	b	b	•••	b
•	•••	•••	•••		•••	•••	

cPb

CONSIDER

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	С	a/c	•••	a/c
a/c	•••	a/c	b	b	•••	b
•••	•••	•••	а	•••	•••	•••
•••	•••	•••	• • •	•••	•••	•••

bRa by IIA from upper-left profile

S	T	Ε	P	E	3:

R1	•••	Ri*₋1	R _i ∗	K i*+1	•••	Rn
b	•••	b	b	а	•••	а
а	•••	a	a	Ь	•	b
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

already not aPb thus bRa

STEP G:

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	b	•••	b	С	С	•••	С
	С	•••	С	а	а	•••	а
•	а	•••	а	b	b	•••	b
•	•••	•••	•••	•••	•••	•••	

cPb

CONSIDER

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	С	a/c	•••	a/c
a/c	•••	a/c	b	b	•••	b
•••	•••	•••	а	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

bRa by IIA from upper-left profile cPb by IIA from lower-left profile

b

STEP B:

_	R1	•••	R_{i^*-1}	R _{i*}	R_{i^*+1}	•••	Rn
	b	•••	b	b	а	•••	а
	а	•••	а	a	b	•	b
	•••	•••	•••	•••	•••	•••	•••
	•••	•••	•••	•••	•••	•••	•••

already not aPb thus bRa

STEP G:

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	b	•••	b	С	С	•••	С
	С	•••	С	а	а	•••	а
•	а	•••	а	b	b	•••	b
•	•••	•••	•••	•••	•••	•••	

cPb

CONSIDER

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	b	C	a/c	•••	a/c
a/c	•••	a/c	b	b	•••	b
•••	•••	•••	а	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

bRa by IIA from upper-left profile
cPb by IIA from lower-left profile
cPa by transitivity

STEP B:

	R1	•••	R _{i*-1}	R_{i^*}	R_{i^*+1}	•••	Rn
	b	•••	b	b	а	•••	а
	а	•••	a	a	Ь	•••	b
	•••	•••	•••	•••	•••	•••	•••
-	•••	•••	•••	•••	•••	•••	

already not aPb thus bRa

STEP G:

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	b	•••	b	С	С	•••	С
	С	•••	С	а	а	•••	а
•	a	•••	а	b	b	•••	b
•	•••	•••	•••		•••	•••	•••

CONSIDER

R1		•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b		•••	b	С	a/c	•••	a/c
a/c	•	•••	a/c	b	b	•••	b
		•••	•••	а	•••	•••	•••
•••		•••	•••	•••	•••	•••	•••

bRa by IIA from upper-left profile cPb by IIA from lower-left profile cPa by transitivity

Note: any profile such that cPi*a ranks a and c the same way as one of the profiles above

CT) D.
J I	$L\Gamma$	· D.

	R1	•••	R_{i^*-1}	R_{i^*}	R_{i^*+1}	•••	Rn
	b	•••	b	b	а	•••	а
	а	•••	а	а	b	••	b
	•••	•••	•••	•••	•••	•••	•••
•	•••	•••	•••	•••	•••	•••	

already not aPb thus bRa

STEP G:

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
b	•••	b	С	С	•••	С
С	•••	С	а	а	•••	а
a	•••	а	b	b	•••	b
•••	•••	•••		•••	•••	

cPb

CONSIDER

	R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
	b	•••	b	С	a/c	•••	a/c
	a/c	•••	a/c	b	р	•••	b
-	•••	•••	•••	а	•••	•••	•••
-	•••	•••				•••	

bRa by IIA from upper-left profile cPb by IIA from lower-left profile cPa by transitivity

Note: any profile such that cPi*a ranks a and c the same way as one of the profiles above Hence, i* is decisive for c over a by IAA

STEP B:

R1	•••	R_{i^*-1}	R_{i^*}	R_{i^*+1}	•••	Rn
b	•••	b	b	а	•••	а
а	•••	а	а	b	•••	b
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

already not aPb thus bRa

STEP G:

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	b	•••	b	С	С	•••	С
	С	•••	С	а	а	•••	а
•	а	•••	а	b	b	•••	b
•	•••	•••	•••	•••	•••	•••	

cPb

CONSIDER

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
b	•••	b	С	a/c	•••	a/c
a/c	•••	a/c	b	b	•••	b
•••	•••	•••	а	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

bRa by IIA from upper-left profile
cPb by IIA from lower-left profile
cPa by transitivity

Note: any profile such that cPi*a ranks a and c the same way as one of the profiles above Hence, i* is decisive for c over a by IAA

i* is decisive for b over c i* is decisive for a over c i* is decisive for c over a

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
а	•••	а	С	а	•••	а
b/c	•••	b/c	а	b/c	•••	b/c
•••	•••	•••	b	•••	•••	•••
•••				•••	•••	

i* is decisive for b over ci* is decisive for a over ci* is decisive for c over a

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	а	•••	а	С	а	•••	а
	b/c	•••	b/c	а	b/c	•••	b/c
•	•••	•••	•••	b	•••	•••	•••
•	•••	•••	•••	•••		•••	

i* is decisive for b over c i* is decisive for a over c i* is decisive for c over a

cPa because i* is decisive for c over a

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	а	•••	а	С	а	•••	а
	b/c	•••	b/c	а	b/c	•••	b/c
	•••	•••	•••	b	•••	•••	•••
_	•••	•••		•••		•••	•••

i* is decisive for b over c i* is decisive for a over c i* is decisive for c over a

cPa because i* is decisive for c over a aPb by Unanimity

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	а	•••	а	С	а	•••	а
_	b/c	•••	b/c	а	b/c	•••	b/c
_	•••	•••	•••	b	•••	•••	•••
_	•••			•••		•••	•••

i* is decisive for b over c i* is decisive for a over c i* is decisive for c over a

cPa because i* is decisive for c over a aPb by Unanimity cPb by transitivity

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	а	•••	а	С	а	•••	а
•	b/c	•••	b/c	а	b/c	•••	b/c
	•••	•••	•••	b	•••	•••	•••
•	•••	•••	•••	•••	•••	•••	

i* is decisive for b over c i* is decisive for a over c i* is decisive for c over a

cPa because i* is decisive for c over a

aPb by Unanimity

cPb by transitivity

Note: any profile such that cPi*b ranks b and c the same way as one of the profiles on the left

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
а		а	С	а	•••	а
b/c	•••	b/c	а	b/c	•••	b/c
•••		•••	b	•••	•••	
•••						

cPa because i* is decisive for c over a

aPb by Unanimity

cPb by transitivity

Note: any profile such that cPi*b ranks b and c the same way as one of the profiles on the left

Hence, i* is decisive for c over b by IAA

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
а		а	С	а	•••	а
b/c		b/c	а	b/c	•••	b/c
•••			b		•••	
•••	•••	•••	•••	•••	•••	•••

cPa because i* is decisive for c over a

aPb by Unanimity

cPb by transitivity

Note: any profile such that cPi*b ranks b and c the same way as one of the profiles on the left

Hence, i* is decisive for c over b by IAA

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b

STEP J

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
a/b	•••	a/b	а	a/b	•••	a/b
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	b	•••	•••	•••
•••	•••	•••			•••	•••

i* is decisive for b over ci* is decisive for a over ci* is decisive for c over ai* is decisive for c over b

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
a/b	•••	a/b	а	a/b	•••	a/b
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	b	•••	•••	•••
•••	•••	•••			•••	•••

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b

aPc because i* is decisive for a over c

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
a/b	•••	a/b	а	a/b	•••	a/b
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	b	•••	•••	
•••		•••	•••	•••	•••	

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b

aPc because i* is decisive for a over c cPb because i* is decisive for c over b

R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
a/b	•••	a/b	а	a/b	•••	a/b
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	b	•••	•••	
•••	•••	•••	•••	•••	•••	•••

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b

aPc because i* is decisive for a over c cPb because i* is decisive for c over b aPb by transitivity

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
a/b	•••	a/b	а	a/b	•••	a/b
•••	•••	•••	С	•••	•••	•••
•••	•••	•••	b	•••	•••	
•••	•••	•••	•••	•••	•••	•••

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b

aPc because i* is decisive for a over c cPb because i* is decisive for c over b aPb by transitivity

Note: any profile such that aPi*b ranks a and b the same way as one of the profiles on the left

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
a/b	•••	a/b	а	a/b	•••	a/b
	•••	•••	С	•••	•••	•••
•••	•••	•••	b	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••

aPc because i* is decisive for a over c cPb because i* is decisive for c over b aPb by transitivity

Note: any profile such that aPi*b ranks a and b the same way as one of the profiles on the left

Hence, i* is decisive for a over b by IAA

	R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
	a/b	•••	a/b	а	a/b	•••	a/b
-	•••	•••	•••	С	•••	•••	•••
-	•••	•••	•••	b	•••	•••	
-	•••	•••	•••	•••	•••	•••	•••

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b

aPc because i* is decisive for a over c cPb because i* is decisive for c over b aPb by transitivity

Note: any profile such that aPi*b ranks a and b the same way as one of the profiles on the left

Hence, i* is decisive for a over b by IAA
Similarly, i* is decisive for b over a by IAA

	R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
	a/b	•••	a/b	а	a/b	•••	a/b
-	•••	•••	•••	С	•••	•••	•••
-	•••	•••	•••	b	•••	•••	
-	•••	•••	•••	•••	•••	•••	•••

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b

aPc because i* is decisive for a over c cPb because i* is decisive for c over b aPb by transitivity

Note: any profile such that aPi*b ranks a and b the same way as one of the profiles on the left

Hence, i* is decisive for a over b by IAA
Similarly, i* is decisive for b over a by IAA

STEP K

CONSIDER

CONSIDER

	R1	•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
	x/y	•••	x/y	X	x/y	•••	x/y
•	a/b	•••	a/b	а	a/b	•••	a/b
•	•••	•••	•••	b	•••	•••	•••
•	•••	•••	•••	У	•••	•••	•••

CONSIDER

	R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
•	x/y	•••	x/y	X	x/y	•••	x/y
•	a/b	•••	a/b	а	a/b	•••	a/b
•	•••	•••	•••	b	•••	•••	•••
•	•••		•••	У		•••	•••

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b
i* is decisive for a over b
i* is decisive for b over a

xPa because i* is decisive for x over y

CONSIDER

R1		•••	R _{i*-1}	R_{i^*}	R _{i*+1}	•••	Rn
x/y	,	•••	x/y	X	x/y	•••	x/y
a/b	,	•••	a/b	а	a/b	•••	a/b
•••		•••	•••	b	•••	•••	•••
•••			•••	у	•••	•••	•••

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b
i* is decisive for a over b
i* is decisive for b over a

xPa because i* is decisive for x over y aPb because i* is decisive for a over b

CONSIDER

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
x/y	•••	x/y	X	x/y	•••	x/y
a/b	•••	a/b	а	a/b	•••	a/b
•••	•••	•••	b		•••	•••
•••	•••	•••	У	•••	•••	•••

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b
i* is decisive for a over b
i* is decisive for b over a

xPa because i* is decisive for x over y
aPb because i* is decisive for a over b
bPy because i* is decisive for b over y

CONSIDER

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
x/y	•••	x/y	X	x/y	•••	x/y
a/b	•••	a/b	а	a/b	•••	a/b
•••	•••	•••	b		•••	•••
•••	•••	•••	У	•••	•••	•••

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b
i* is decisive for a over b
i* is decisive for b over a

xPa because i* is decisive for x over y
aPb because i* is decisive for a over b
bPy because i* is decisive for b over y
xPy by transitivity

CONSIDER

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
x/y	•••	x/y	X	x/y	•••	x/y
a/b	•••	a/b	а	a/b	•••	a/b
•••	•••		b		•••	
•••	•••	•••	У	•••	•••	•••

i* is decisive for b over c
i* is decisive for a over c
i* is decisive for c over a
i* is decisive for c over b
i* is decisive for a over b
i* is decisive for b over a

xPa because i* is decisive for x over y
aPb because i* is decisive for a over b
bPy because i* is decisive for b over y
xPy by transitivity

Note: any profile such that xPi*y ranks x and y the same way as one of the profiles on the left

CONSIDER

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
x/y	•••	x/y	X	x/y	•••	x/y
a/b	•••	a/b	а	a/b	•••	a/b
•••	•••		b		•••	
•••	•••	•••	У	•••	•••	•••

xPa because i* is decisive for x over y
aPb because i* is decisive for a over b
bPy because i* is decisive for b over y
xPy by transitivity

Note: any profile such that xPi*y ranks x and y the same way as one of the profiles on the left

Hence, i* is decisive for x over y by IAA

CONSIDER

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
x/y	•••	x/y	X	x/y	•••	x/y
a/b	•••	a/b	а	a/b	•••	a/b
•••	•••	•••	b	•••	•••	
			У		•••	

xPa because i* is decisive for x over y
aPb because i* is decisive for a over b
bPy because i* is decisive for b over y
xPy by transitivity

Note: any profile such that xPi*y ranks x and y the same way as one of the profiles on the left

Hence, i* is decisive for x over y by IAA

i* is the dictator

CONSIDER

R1	•••	R _{i*-1}	R _{i*}	R _{i*+1}	•••	Rn
x/y	•••	x/y	X	x/y	•••	x/y
a/b	•••	a/b	а	a/b	•••	a/b
•••	•••	•••	b		•••	
•••	•••	•••	У	•••	•••	•••

xPa because i* is decisive for x over y
aPb because i* is decisive for a over b
bPy because i* is decisive for b over y
xPy by transitivity

Note: any profile such that xPi*y ranks x and y the same way as one of the profiles on the left

Hence, i* is decisive for x over y by IAA

i* is the dictator

ARROW'S THEOREM

Arrow's Theorem. If a social preference function satisfies Unanimity and Independence of Irrelevant Alternatives (IIA), then some individual is a dictator.

Kenneth J. Arrow receiving the Nobel Memorial Prize in Economic Science in Stockholm in 1972.

Associated Press