

#### Reverse Conducting IGBT with monolithic body diode

#### Features:

- · Powerful monolithic body diode with low forward voltage designed for soft commutation
  • TRENCHSTOP<sup>TM</sup> technology offering:
- very tight parameter distribution
- high ruggedness, temperature stable behavior
- low V<sub>CEsat</sub>
- easy parallel switching capability due to positive temperature coefficient in V<sub>CEsat</sub>
- Low EMI
- Qualified according to JESD-022 for target applications
- Pb-free lead plating; RoHS compliant
- Halogen free (according to IEC 61249-2-21)
- Complete product spectrum and PSpice Models: http://www.infineon.com/igbt/

#### **Applications:**

- · Induction cooking
- Microwave ovens









#### **Key Performance and Package Parameters**

| Туре        | <b>V</b> CE | <b>I</b> c | V <sub>CEsat</sub> , T <sub>vj</sub> =25°C | T <sub>vjmax</sub> | Marking | Package    |
|-------------|-------------|------------|--------------------------------------------|--------------------|---------|------------|
| IHW30N135R5 | 1350V       | 30A        | 1.65V                                      | 175°C              | H30PR5  | PG-TO247-3 |



### Resonant Switching Series

#### **Table of Contents**

| escription                        | 1    |
|-----------------------------------|------|
| able of Contents                  | 2    |
| aximum Ratings                    | 3    |
| nermal Resistance                 | 3    |
| ectrical Characteristics          | 4    |
| ectrical Characteristics Diagrams | 6    |
| ackage Drawing                    | 12   |
| esting Conditions                 | 13   |
| evision History                   | 14   |
| isclaimer                         | . 15 |



#### **Resonant Switching Series**

#### **Maximum Ratings**

For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

| Parameter                                                                                                                             | Symbol             | Value          | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|------|
| Collector-emitter voltage, <i>T</i> <sub>vj</sub> ≥ 25°C                                                                              | V <sub>CE</sub>    | 1350           | V    |
| DC collector current, limited by $T_{vjmax}$<br>$T_c = 25$ °C<br>$T_c = 100$ °C                                                       | I <sub>C</sub>     | 60.0<br>30.0   | А    |
| Pulsed collector current, $t_p$ limited by $T_{vjmax}$                                                                                | I <sub>Cpuls</sub> | 90.0           | Α    |
| Non repetitive peak collector current <sup>1)</sup>                                                                                   | I <sub>CSM</sub>   | 200            | Α    |
| Turn off safe operating area $V_{\text{CE}} \le 1350\text{V}, \ T_{\text{vj}} \le 175^{\circ}\text{C}, \ t_{\text{p}} = 1\mu\text{s}$ | -                  | 90.0           | А    |
| Diode forward current, limited by $T_{\text{vjmax}}$<br>$T_{\text{c}} = 25^{\circ}\text{C}$<br>$T_{\text{c}} = 100^{\circ}\text{C}$   | I <sub>F</sub>     | 60.0<br>30.0   | А    |
| Diode pulsed current, $t_p$ limited by $T_{vjmax}$                                                                                    | I <sub>Fpuls</sub> | 90.0           | Α    |
| Gate-emitter voltage Transient Gate-emitter voltage ( $t_p \le 10 \mu s$ , $D < 0.010$ )                                              | $V_{GE}$           | ±20<br>±25     | V    |
| Power dissipation $T_c = 25^{\circ}\text{C}$<br>Power dissipation $T_c = 100^{\circ}\text{C}$                                         | P <sub>tot</sub>   | 330.0<br>165.0 | W    |
| Operating junction temperature                                                                                                        | $T_{ m vj}$        | -40+175        | °C   |
| Storage temperature                                                                                                                   | T <sub>stg</sub>   | -55+150        | °C   |
| Soldering temperature, wave soldering 1.6mm (0.063in.) from case for 10s                                                              |                    | 260            | °C   |
| Mounting torque, M3 screw Maximum of mounting processes: 3                                                                            | М                  | 0.6            | Nm   |

#### **Thermal Resistance**

| Davamatav                                 | Cymahal              | Canditions | Value |           |      | 11:4:4 |
|-------------------------------------------|----------------------|------------|-------|-----------|------|--------|
| Parameter                                 | Symbol               | Conditions | min.  | min. typ. | max. | Unit   |
| R <sub>th</sub> Characteristics           |                      |            |       | •         |      |        |
| IGBT thermal resistance, junction - case  | R <sub>th(j-c)</sub> |            | -     | -         | 0.45 | K/W    |
| Diode thermal resistance, junction - case | R <sub>th(j-c)</sub> |            | -     | -         | 0.45 | K/W    |
| Thermal resistance junction - ambient     | R <sub>th(j-a)</sub> |            | -     | -         | 40   | K/W    |



#### Electrical Characteristic, at $T_{vj}$ = 25°C, unless otherwise specified

| Bananatan                            | 0                    | 0                                                                                                                                              | Value       |                      |                | Unit |
|--------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|----------------|------|
| Parameter                            | Symbol               | Symbol Conditions                                                                                                                              |             | typ.                 | max.           |      |
| Static Characteristic                |                      |                                                                                                                                                | •           | •                    |                |      |
| Collector-emitter breakdown voltage  | V <sub>(BR)CES</sub> | $V_{\rm GE} = 0 \text{V}, I_{\rm C} = 0.50 \text{mA}$                                                                                          | 1350        | -                    | -              | V    |
| Collector-emitter saturation voltage | V <sub>CEsat</sub>   | $V_{GE} = 15.0V, I_{C} = 30.0A$<br>$T_{Vj} = 25^{\circ}C$<br>$T_{Vj} = 125^{\circ}C$<br>$T_{Vj} = 175^{\circ}C$                                | -<br>-<br>- | 1.65<br>1.95<br>2.05 | 1.95<br>-<br>- | V    |
| Diode forward voltage                | V <sub>F</sub>       | $V_{GE} = 0V, I_F = 30.0A$<br>$T_{vj} = 25^{\circ}C$<br>$T_{vj} = 125^{\circ}C$<br>$T_{vj} = 175^{\circ}C$                                     | -<br>-<br>- | 1.85<br>2.10<br>2.25 | 2.05           | V    |
| Gate-emitter threshold voltage       | $V_{GE(th)}$         | $I_{\rm C} = 0.75 {\rm mA}, \ V_{\rm CE} = V_{\rm GE}$                                                                                         | 5.1         | 5.8                  | 6.4            | V    |
| Zero gate voltage collector current  | I <sub>CES</sub>     | $V_{\text{CE}} = 1350 \text{V}, \ V_{\text{GE}} = 0 \text{V}$<br>$T_{\text{vj}} = 25^{\circ}\text{C}$<br>$T_{\text{vj}} = 175^{\circ}\text{C}$ |             | -<br>630             | 100            | μA   |
| Gate-emitter leakage current         | I <sub>GES</sub>     | $V_{CE} = 0V, V_{GE} = 20V$                                                                                                                    | -           | -                    | 100            | nA   |
| Transconductance                     | <b>g</b> fs          | $V_{CE} = 20V, I_{C} = 30.0A$                                                                                                                  | -           | 23.0                 | -              | S    |
| Integrated gate resistor             | r <sub>G</sub>       |                                                                                                                                                |             | none                 |                | Ω    |

#### Electrical Characteristic, at $T_{vj}$ = 25°C, unless otherwise specified

| Barrantan                                                      | 0                | O and the same                                                                             | Value |       | 11   |      |
|----------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------|-------|-------|------|------|
| Parameter                                                      | Symbol           | Conditions                                                                                 | min.  | typ.  | max. | Unit |
| Dynamic Characteristic                                         |                  |                                                                                            | •     |       |      |      |
| Input capacitance                                              | Cies             |                                                                                            | -     | 1810  | -    |      |
| Output capacitance                                             | Coes             | $V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$                                                      | -     | 50    | -    | pF   |
| Reverse transfer capacitance                                   | Cres             |                                                                                            | -     | 40    | -    |      |
| Gate charge                                                    | $Q_{\mathrm{G}}$ | $V_{\text{CC}} = 1080 \text{V}, I_{\text{C}} = 30.0 \text{A}, V_{\text{GE}} = 15 \text{V}$ | -     | 235.0 | -    | nC   |
| Internal emitter inductance measured 5mm (0.197 in.) from case | LE               |                                                                                            | -     | 13.0  | -    | nH   |

#### **Switching Characteristic, Inductive Load**

| Developer                                       | Comphal          | Canditions                                                                                                                                                                                                                                | Value |      |      | Unit |
|-------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|------|
| Parameter                                       | Symbol           | Conditions                                                                                                                                                                                                                                | min.  | typ. | max. | Unit |
| IGBT Characteristic, at $T_{vj} = 25^{\circ}$ C | ;                |                                                                                                                                                                                                                                           |       |      |      |      |
| Turn-off delay time                             | $t_{\sf d(off)}$ | $T_{\rm vi} = 25^{\circ}{\rm C},$                                                                                                                                                                                                         | -     | 310  | -    | ns   |
| Fall time                                       | t <sub>f</sub>   | $V_{\rm CC} = 600 \text{V}, I_{\rm C} = 30.0 \text{A},$                                                                                                                                                                                   | -     | 120  | -    | ns   |
| Turn-off energy                                 | E <sub>off</sub> | $V_{\rm GE}$ = 0.0/15.0V,<br>$R_{\rm G(on)}$ = 10.0 $\Omega$ , $R_{\rm G(off)}$ = 10.0 $\Omega$ ,<br>$L\sigma$ = 175nH, $C\sigma$ = 40pF<br>$L\sigma$ , $C\sigma$ from Fig. E<br>Energy losses include "tail" and diode reverse recovery. | -     | 1.40 | -    | mJ   |
| Turn-off energy, soft switching                 | E <sub>off</sub> | <i>dv/dt</i> = 200.0V/μs                                                                                                                                                                                                                  | -     | 0.17 | -    | mJ   |



### Resonant Switching Series

#### **Switching Characteristic, Inductive Load**

| Davamatan                                      | Combal           | Conditions                                                                                                                                                                                                                                         | Value |      | Unit |      |
|------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|------|
| Parameter                                      | Symbol           | Conditions                                                                                                                                                                                                                                         | min.  | typ. | max. | Unit |
| IGBT Characteristic, at $T_{vj} = 175^{\circ}$ | C                |                                                                                                                                                                                                                                                    |       |      |      |      |
| Turn-off delay time                            | $t_{\sf d(off)}$ | T <sub>vi</sub> = 175°C,                                                                                                                                                                                                                           | -     | 385  | -    | ns   |
| Fall time                                      | t <sub>f</sub>   | $V_{\rm CC} = 600 \text{V}, I_{\rm C} = 30.0 \text{A},$                                                                                                                                                                                            | -     | 295  | -    | ns   |
| Turn-off energy                                | E <sub>off</sub> | $V_{\text{GE}}$ = 0.0/15.0V,<br>$R_{\text{G(on)}}$ = 10.0 $\Omega$ , $R_{\text{G(off)}}$ = 10.0 $\Omega$ ,<br>$L\sigma$ = 175nH, $C\sigma$ = 40pF<br>$L\sigma$ , $C\sigma$ from Fig. E<br>Energy losses include "tail" and diode reverse recovery. | -     | 2.70 | -    | mJ   |
| Turn-off energy, soft switching                | <b>E</b> off     | <i>dv/dt</i> = 200.0V/μs                                                                                                                                                                                                                           | -     | 0.57 | -    | mJ   |

#### **Resonant Switching Series**



Figure 1. Forward bias safe operating area  $(D=0, T_C=25^{\circ}C, T_{vj}\le175^{\circ}C; V_{GE}=15V; tp=1\mu s)$ 



Figure 2. Power dissipation as a function of case temperature (*T*<sub>v</sub>≤175°C)



Figure 3. Collector current as a function of case temperature  $(V_{GE} \ge 15V, T_{vj} \le 175^{\circ}C)$ 



Figure 4. **Typical output characteristic** ( $T_{vj}$ =25°C)

14

#### **Resonant Switching Series**



Figure 5. **Typical output characteristic**  $(T_{vi}=175^{\circ}\text{C})$ 

Figure 6. **Typical transfer characteristic**  $(V_{CE}=20V)$ 



Figure 7. Typical collector-emitter saturation voltage as a function of junction temperature ( $V_{\text{GE}}$ =15V) Figure 8. Typical switching times as a function of collector current (inductive load,  $T_{\text{vj}}$ =175°C,  $V_{\text{CE}}$ =600V,

(inductive load,  $I_{V_j}=175^{\circ}\text{C}$ ,  $V_{CE}=600\text{V}$ ,  $V_{GE}=0/15\text{V}$ ,  $I_{GE}=10\Omega$ , Dynamic test circuit in Figure E)



Figure 9. Typical switching times as a function of gate (inductive load,  $T_{\rm vj}$ =175°C,  $V_{\rm CE}$ =600V,  $V_{\rm GE}$ =0/15V,  $I_{\rm C}$ =30A, Dynamic test circuit in

Figure E)

Figure 10. Typical switching times as a function of junction temperature (inductive load,  $V_{CE}$ =600V,  $V_{GE}$ =0/15V,  $I_{\rm C}$ =30A,  $r_{\rm G}$ =10 $\Omega$ , Dynamic test circuit in Figure E) 6



Figure 11. Gate-emitter threshold voltage as a function Figure 12. Typical switching energy losses as a of junction temperature  $(I_{\rm C}=0.75{\rm mA})$ 

function of collector current (inductive load, T<sub>vj</sub>=175°C, V<sub>CE</sub>=600V,  $V_{\rm GE}$ =0/15V,  $r_{\rm G}$ =10 $\Omega$ , Dynamic test circuit in

60

#### **Resonant Switching Series**



Figure 13. Typical switching energy losses as a function of gate resistor (inductive load,  $T_{\rm vj}$ =175°C,  $V_{\rm CE}$ =600V,  $V_{\rm GE}$ =0/15V,  $I_{\rm C}$ =30A, Dynamic test circuit in Figure E)



Figure 15. Typical switching energy losses as a function of collector emitter voltage (inductive load,  $T_{\rm vj}$ =175°C,  $V_{\rm GE}$ =0/15V,  $I_{\rm C}$ =30A,  $I_{\rm G}$ =10 $\Omega$ , Dynamic test circuit in Figure E)



Figure 14. Typical switching energy losses as a function of junction temperature (inductive load,  $V_{\text{CE}}$ =600V,  $V_{\text{GE}}$ =0/15V,  $I_{\text{C}}$ =30A,  $I_{\text{G}}$ =10 $\Omega$ , Dynamic test circuit in Figure E)



Figure 16. Typical turn off switching energy loss for soft switching (inductive load,  $V_{\text{CE}}$ =600V,  $V_{\text{GE}}$ =0/15V,  $r_{\text{G}}$ =10 $\Omega$ , Dynamic test circuit in Figure E)

V 2.3 2019-09-20

#### **Resonant Switching Series**



Figure 17. **Typical gate charge**  $(I_c=30A)$ 



Figure 18. Typical capacitance as a function of collector-emitter voltage (V<sub>GE</sub>=0V, f=1MHz)



Figure 19. **IGBT transient thermal resistance**  $(D=t_p/T)$ 



Figure 20. Diode transient thermal impedance as a function of pulse width  $(D=t_p/T)$ 





Figure 21. Typical diode forward current as a function of forward voltage

Figure 22. **Typical diode forward voltage as a function of junction temperature** 



### Package Drawing PG-TO247-3



| DIM | MILLIN                | IETERS | INCHES |       |  |
|-----|-----------------------|--------|--------|-------|--|
| DIM | MIN                   | MAX    | MIN    | MAX   |  |
| Α   | 4.83                  | 5.21   | 0.190  | 0.205 |  |
| A1  | 2.27                  | 2.54   | 0.089  | 0.100 |  |
| A2  | 1.85                  | 2.16   | 0.073  | 0.085 |  |
| b   | 1.07                  | 1.33   | 0.042  | 0.052 |  |
| b1  | 1.90                  | 2.41   | 0.075  | 0.095 |  |
| b2  | 1.90                  | 2.16   | 0.075  | 0.085 |  |
| b3  | 2.87                  | 3.38   | 0.113  | 0.133 |  |
| b4  | 2.87                  | 3.13   | 0.113  | 0.123 |  |
| С   | 0.55                  | 0.68   | 0.022  | 0.027 |  |
| D   | 20.80                 | 21.10  | 0.819  | 0.831 |  |
| D1  | 16.25                 | 17.65  | 0.640  | 0.695 |  |
| D2  | 0.95                  | 1.35   | 0.037  | 0.053 |  |
| Е   | 15.70                 | 16.13  | 0.618  | 0.635 |  |
| E1  | 13.10                 | 14.15  | 0.516  | 0.557 |  |
| E2  | 3.68                  | 5.10   | 0.145  | 0.201 |  |
| E3  | 1.00                  | 2.60   | 0.039  | 0.102 |  |
| е   | 5.44 (BSC) 0.214 (BSC |        |        |       |  |
| N   |                       | 3      | 3      |       |  |
| L   | 19.80                 | 20.32  | 0.780  | 0.800 |  |
| L1  | 4.10                  | 4.47   | 0.161  | 0.176 |  |
| øΡ  | 3.50                  | 3.70   | 0.138  | 0.146 |  |
| Q   | 5.49                  | 6.00   | 0.216  | 0.236 |  |
| S   | 6.04                  | 6.30   | 0.238  | 0.248 |  |





#### **Testing Conditions**



Figure A. Definition of switching times



Figure B. Definition of switching losses



Figure C. **Definition of diode switching** characteristics



Figure D. Thermal equivalent circuit



Figure E. Dynamic test circuit Parasitic inductance  $L_{\sigma}$ , parasitic capacitor  $C_{\sigma}$ , relief capacitor  $C_{r}$ , (only for ZVT switching)



### Resonant Switching Series

#### **Revision History**

IHW30N135R5

Revision: 2019-09-20, Rev. 2.3

| Previous Revision |            |                                                                                      |  |  |  |  |
|-------------------|------------|--------------------------------------------------------------------------------------|--|--|--|--|
| Revision          | Date       | Subjects (major changes since last revision)                                         |  |  |  |  |
| 2.1               | 2018-04-17 | 1                                                                                    |  |  |  |  |
| 2.2               | 2018-09-19 | Added thermal network on Fig.19 & 20                                                 |  |  |  |  |
| 2.3               | 2019-09-20 | additional parameter in maximum ratings table: non repetitive peak collector current |  |  |  |  |

#### **Trademarks**

All referenced product or service names and trademarks are the property of their respective owners.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2019. All Rights Reserved.

#### **Important Notice**

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is <u>not</u> qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

#### Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IHW30N135R5XKSA1