MATH HL

EXERCISES 2.11-2.12 SOLUTIONS

POLYNOMIALS – SUM AND PRODUCT OF ROOTS

Compiled by: Christos Nikolaidis

POLYNOMIALS - FACTOR AND REMAINDER THEOREMS

A. Practice Questions

1. (a)
$$a = 1$$
 (b) $a = -9$ (c) $a = 1$

2. (a)
$$a = -6$$
 $b = -1$ (b) $a = -3$, $b = -4$ (c) $a = -6$ $b = -1$

3. (a)
$$a = -2$$
 $b = -3$ $c = 3$ (b) $a = -6$, $b = -2$, $c = 6$

4. (a)
$$x = -1$$
, $x = \frac{1}{2}$, $x = \frac{3}{2}$ (b) $f(x) = (x+1)(2x-1)(2x-3)$

5. b)
$$k < -2$$
 or $k > \frac{2}{3}$ b) $k = -2$ or $k = \frac{2}{3}$ c) $-2 \le k \le \frac{2}{3}$

B. Past Paper questions (SHORT)

6. If
$$x + 2$$
 is a factor of $f(x)$ then $f(-2) = 0 \Rightarrow k = 6$ (C6)

7. By the remainder theorem,
$$f(-1) = 6-11-22-a+6=-20 \Leftrightarrow a = -1$$
 (M1)(M1)(A2)

8.
$$f(x) = x^4 + ax + 3$$
, $f(1) = 8 \Rightarrow 1 + a + 3 = 8 \Rightarrow a = 4$ (C6)

9. Using the remainder and factor theorems, or long division,

$$8 + 4a - 6 + b = 0$$
 and $-1 + a + 3 + b = 6$ (M1)(A1)(M1)(A1)
 $a = -2, b = 6$ (M1)(A1) (C6)

Extra question

$$p(x) = (x-2)(x^2-3) = (x-2)(x+\sqrt{3})(x-\sqrt{3})$$
 roots: $x = 2, x = -\sqrt{3}, x = \sqrt{3}$

10. $p(x) = (ax + b)^3$

$$p(-1) = -1 \Rightarrow (b-a)^3 = -1 \Rightarrow b-a = -1$$
 (M1) (A1)

$$p(2) = 27 \implies (2a+b)^3 = 27 \implies 2a+b=3$$
 (A1)

Thus,
$$a = \frac{4}{3}$$
, $b = \frac{1}{3}$. (A1)

11.
$$f(2) = 8 + 12 + 2a + b = 2a + b + 20$$
 (M1)

$$f(-1) = -1 + 3 - a + b = 2 - a + b.$$
 (M1)

These remainders are equal when
$$2a + 20 = 2 - a$$
 giving $a = -6$. (A1) (C3)

Extra question:

b can be any real number.

[3]

[6]

[6]

12.
$$f(2) = 8 + 4p + 2q + 4 = 0$$
 $\Rightarrow 4p + 2q - 12$ $f(2) = 8 + 4p - 2q + 4 = 0$ $\Rightarrow 4p + 2q = -12$ $f(2) = 8 + 4p - 2q + 4 = 0$ $\Rightarrow 4p - 2q = 4$ $f(2) = 8 + 4p - 2q + 4 = 0$ $f(2) = 4p - 2q = 4$ $f(2) = 4p - 2q = 4$ $f(3) = 4p - 2q = 4$ $f(3) = 4p - 2q = 1$ $f(3) = 4p - 2q = 1$ $f(4) = 4p - 2q = 1$ $f(4)$

Extra question

The results for p and q are exactly the same!

INEQUALITITES

A. Practice Questions

16. (a) According to the graph

f(x)	-	1 1	. 2	
sign	+	_	_	+

- (b) (i) $x \in (-\infty, -1] \cup \{1\} \cup \overline{[2, +\infty)}$
 - (ii) $x \in (-\infty, -1) \cup (2, +\infty)$
 - (iii) we exclude the roots of the denominator $x \in (-\infty, -1] \cup \{1\} \cup (2, +\infty)$

17. For all of them we consider the polynomial $5(x-1)(x-2)^2(x-3)^3$

f(x)	1	1 2	2 3	3
sign	+	-	_	+

(the solution for $f(x) \ge 0$ is $x \in (-\infty,1] \cup \{2\} \cup [3,+\infty)$

For each inequality we exclude the roots of the denominator. The corresponding solutions are $x \in (-\infty,1] \cup \{2\} \cup (3,+\infty)$ $x \in (-\infty,1] \cup \{3,+\infty)$ $x \in (-\infty,1) \cup \{2\} \cup [3,+\infty)$

- **18.** a) a = 0 b) f(x) = x(x-1)(x-3) d) $x \le 0$ or $1 \le x \le 3$
- **19.** a) a = 15 b) $f(x) = (x-1)(x-3)^2$ d) $x \le 1$ or x = 3
- **20.** a) a = 3 b) $f(x) = 3(x-1)(x^2 + x + 1)$ d) $x \le 1$

B. Past Paper questions (SHORT)

21. METHOD 1

(M2)

$$x^2 - 4 + \frac{3}{x} < 0 = > -2.30 < x < 0 \text{ or } 1 < x < 1.30$$
 (G2)(G2) (C6)

METHOD 2

$$x^2 - 4 + \frac{3}{x} < 0 => \frac{x^3 - 4x + 3}{x} < 0 => \frac{(x - 1)(x^2 + x - 3)}{x} < 0$$
 (M1) (M1)

Critical values: $l, \frac{1}{2}(-l \pm \sqrt{13}), 0$ (A2)

$$= > -\frac{1}{2}(\sqrt{13} + 1) < x < 0 \text{ or } 1 < x < \frac{1}{2}(\sqrt{13} - 1)$$
 (A1)(A1) (C6)

22. METHOD 1

Graph of f(x) - g(x)

 $x < -1 \text{ or } 4 < x \le 14$

A1A1 6

M1

METHOD 2

$$\frac{x+4}{x+1} - \frac{x-2}{x-4} \le 0 \Rightarrow \frac{x^2 - 16 - x^2 + x + 2}{(x+1)(x-4)} \le 0 \Rightarrow \frac{x-14}{(x+1)(x-4)} \le 0$$
 M1 A1

Critical value of x = 14

A1

Other critical values x = -1 and x = 4

A1

$$-$$
0 + 0 + $-$ 14 14

 $x < -1 \text{ or } 4 < x \le 14$

A1A1 6

Note: Each value and inequality sign must be correct.

[6]

23. METHOD 1

$$|5-3x| \le |x+1| \Rightarrow 25-30x+9x^2 \le x^2+2x+1$$
 (M1)

$$\Rightarrow 8x^2 - 32x + 24 \le 0 \Rightarrow 8(x - 1)(x - 3) \le 0 \tag{M1}$$

$$\Rightarrow 1 \le x \le 3$$
 (A1) (C3)

METHOD 2

We obtain A = (1, 2) and B = (3, 4). (G1)

Therefore, $1 \le x \le 3$. (A1)(C3)

METHOD 3

Sketch the graph of y = |5 - 3x| - |x + 1|.

From this graph we see that

 $y \le 0$ for $1 \le x \le 3$. (A1)(C3)

[3]

24. METHOD 1

The graphs of
$$y = |x - 2|$$
 and $y = |2x + 1|$ meet where $(x - 2) = (2x + 1) = > x = -3$

$$(x-2) = (2x+1) = > x = -3$$
 (M1)(A1)

$$(x-2) = -(2x+1) = > x = \frac{1}{3}$$
 (M1)(A1)

Test any value, e.g. x = 0 satisfies inequality (M1)

so
$$x \in \left[-3, \frac{1}{3}\right]$$
. (A1) (C6)

METHOD 2

$$(x-2)^2 \ge (2x+1)^2 \Rightarrow x^2 - 4x + 4 \ge 4x^2 + 4x + 1$$
 (M1) (A1)

$$3x^2 + 8x - 3 \le 0 \Rightarrow (3x - 1)(x + 3) \le 0$$
 (or find roots of equation) (A1) (A1)

Test any value, e.g.
$$x = 0$$
 satisfies inequality. (M1)

So
$$x \in \left[-3, \frac{1}{3}\right]$$
. (A1) (C6)

METHOD 3

We obtain for A, x = -3 and for B, $x = \frac{1}{3}$ (G1) (G1)

From the graph, $x \in \left[-3, \frac{1}{3} \right]$. (M1)(A1) (C6)

Note: Award (C5) for an open interval.

25. *Note:* If no working shown or if working is incorrect, award (C3) for one correct interval. **METHOD 1**

The critical values occur when $\frac{x+9}{x-9} = \pm 2 \rightarrow x = 3,27$ (M1)(A1)

Consider $[-\infty, 3]$: value of function at 0 is 1 which is ≤ 2 . (A1)

Consider [3, 27]: value of function at 12 is 7 which is not ≤ 2 . (A1)

Consider [27, ∞ [: value of function at 36 is $\frac{5}{3}$ which is ≤ 2 . (A1)

The required solution set is therefore $]-\infty, 3] \cup [27, \infty[$ (A1) (C6)

METHOD 2

Notes: Penalize [1 mark] for open end at 3 and /or 27. Award the final (A1) for the symbol \cup or the word 'or'.

[6]

[6]

$$x \le 0.5 \text{ or } x > 3$$

$$(f \circ g)(x) = 2\left(\frac{x}{x+1}\right) - 1$$

$$(g \circ f)(x) = \frac{2x-1}{2x}$$

(A1)

(A1)

EITHER

$$\frac{2x}{x+1} - 1 \le \frac{2x-1}{2x}$$

(MI)

MI

$$\frac{2x}{x+1} - 1 - \frac{1-3x}{2x} \le 0 \quad \left(\frac{1-3x}{2x(x+1)} \le 0\right)$$

$$-1 < x < 0 \text{ or } x \ge \frac{1}{3}$$

AIAI

OR

For attempting to graph
$$(f \circ g)(x)$$
 and $(g \circ f)(x)$ or $(f \circ g)(x) - (g \circ f)(x)$

MI

$$-1 < x < 0 \text{ or } x \ge \frac{1}{3}$$

AIAI

Notes: The inequality sign and the values of x must both be correct.

Accept
$$(-1 < x < 0 \text{ and } x \ge \frac{1}{3})$$
.

[6]

[6]

SUM AND PRODUCT OF ROOTS

Practice Questions

28.

Polynomial	Sum of roots	Product of roots	Remainder
$f(x) = 2x^4 + 6x^3 + 5x^2 - 7x + 8$	-3	4	14
$f(x) = 2x^5 + 6x^3 + 5x^2 - 7x + 8$	0	-4	14
$f(x) = x^{10} - x^9 - 1$	1	-1	-1

(a)
$$a = -\frac{1}{5}$$

29. (a)
$$a = -\frac{1}{5}$$
 (b) $a = -\frac{2}{5}$

30. (a)
$$a = -\frac{1}{3}$$
 (b) $b = \frac{10}{3}$

(b)
$$b = \frac{10}{3}$$

(a)
$$Sum = 2$$
, $Product = 3$

(b)
$$deg = 3$$
 (cubic)

(c)
$$f(1) = 0 \Rightarrow a + b = -2$$

(d)
$$Sum = 1$$
, $Product = 3$

32. (a)
$$a = 2$$
, $b = -16$, $c = 42$, $d = -44$ Indeed,

Product =
$$\frac{16}{a} = 8 \Rightarrow a = 2$$
 Sum = $-\frac{b}{a} = 8 \Rightarrow b = -16$
 $f(1) = 0 \Rightarrow a + b + c + d + 16 = 0 \Rightarrow c + d = -2$
 $f(-1) = 120 \Rightarrow a - b + c - d + 16 = 0 \Rightarrow c - d = 86$
Therefore, $c = 42$, $d = -44$

(b)
$$Sum = 7$$
, $Product = 8$

33. (a) Sum =
$$-\frac{a}{1} = 7 \Rightarrow a = -7$$
, Product = $\frac{d}{1} = 0 \Rightarrow d = 0$
 $f(1) = 0 \Rightarrow 1 + a + b + c + d = 0 \Rightarrow b + c = 6$
 $f(2) = 0 \Rightarrow 16 + 8a + 4b + 2c + d = 0 \Rightarrow 2b + c = 20$
Therefore, $b = 14$ $c = -8$

(b) We know three roots, 0,1 and 2. Since the sum is -7 the third root is 4. Hence
$$f(x) = x(x-1)(x-2)(x-4)$$

34. (a)
$$\alpha + \beta = \frac{2}{5}$$
, $\alpha\beta = -\frac{4}{5}$

(b) We use
$$(\alpha + \beta)^2 = \alpha^2 + 2\alpha\beta + \beta^2$$
$$\Rightarrow \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$
Thus
$$\alpha^2 + \beta^2 = \frac{4}{25} + \frac{8}{5} = \frac{44}{25}$$
We use
$$(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$$
$$\Rightarrow \alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$
Thus
$$\alpha^3 + \beta^3 = \frac{8}{125} + 3 \cdot \frac{4}{5} \cdot \frac{2}{5} = \frac{128}{125}$$

(c) Since
$$\alpha^2 + \beta^2 = \frac{44}{25}$$
 and $\alpha^2 \beta^2 = \frac{16}{25}$

the polynomial is $25x^2 - 44x + 16$

(d) Since
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = -\frac{2}{4}$$
 and $\frac{1}{\alpha} \cdot \frac{1}{\beta} = -\frac{5}{4}$

the polynomial is $4x^2 + 2x - 5$ (or any multiple).

35. (a)
$$\alpha + \beta + \gamma = 5$$
, $\alpha\beta\gamma = -3$ and $\alpha\beta + \beta\gamma + \gamma\alpha = -7$

(b) We use
$$(\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2\alpha\beta + 2\beta\gamma + 2\gamma\alpha$$
$$\Rightarrow \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$$
Thus
$$\alpha^2 + \beta^2 + \gamma^2 = 25 + 2(-7) = 39$$

(c) We use
$$(\alpha\beta + \beta\gamma + \gamma\alpha)^2 = (\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2 + 2\alpha\beta^2\gamma + 2\alpha\beta\gamma^2 + 2\alpha^2\beta\gamma$$
$$\Rightarrow (\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2 = (\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma)$$

Thus
$$(\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2 = (-7)^2 - 2(-3)(5) = 79$$

(d) Since
$$\alpha^2 + \beta^2 + \gamma^2 = 39$$
, $\alpha^2 \beta^2 \gamma^2 = (\alpha \beta \gamma)^2 = 9$, $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 = 79$
the polynomial is $x^3 - 39x^2 + 79x - 9$ (or any multiple).