МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Методы

оптимизации» Тема: Методы условной

минимизации

Студент гр. 1384	 Бобков В. Д.
Студентка гр. 1384	 Усачева Д. В.
Студентка гр. 1384	 Пчелинцева К. Р.
Преподаватель	Балтрашевич В.Э.

Санкт-Петербург

Цель работы.

Исследовать методы условной минимизации.

Основные теоретические положения.

<u>Условная минимизация</u> — поиск минимума функции f на допустимом множестве X: X = {x ∈ R^n , $g_i(x)$ ≤ 0, i = 1, m}, где f и все g_i — выпуклы.

$$X_{k+1} = p_x (X_k - \gamma \nabla f(X_k))$$
, где p_x – проектор на X .

Метод обладает теми же достоинствами и недостатками, что и градиентный метод с постоянным шагом.

 $\underline{Memod\ ycлoвного\ градиента:}$ в очередной точке x_k линеаризуют функцию f(x) (в этом «условность» метода, т. е. линеаризация и есть «условие» в названии), затем решают задачу минимизации линейной функции на X и найденную точку x_k используют для выбора направления движения:

$$\begin{cases} x'_k = \operatorname{argmin}_X (\nabla f(x_k), \\ x) x_{k+1} = x_k + \gamma_k (x'_k - x_k) \end{cases}$$

При этом предполагается:

- 1. Задача минимизации линейной функции на X имеет решение.
- 2. Это решение может быть найдено достаточно просто, лучше всего в явной форме.
- 3. Нужно указать правило выбора γ_k . Значение γ_k можно определить из условия наискорейшего спуска:

$$\gamma_k = argmin_{0 \le \gamma \le 1} f(x_k + \gamma(x_k - x_k))$$

В этом случае последовательность x_k сходится к стационарной точке. В частности, для гладких функций f верно: $f(x^*) - f^* = o(1/k)$, где $f^* = \min f(x)$ на множестве X.

Метод модифицированной функции Лагранжа: функция Лагранжа – это функция вида:

 $\mu(x, \lambda, k) = f(x) + \frac{1}{2k} ||\lambda + kg(x)_+||^2 - \frac{||\lambda||^2}{2k}$, где k – параметр (штраф); + – взятие положительной части.

Эта функция обладает следующими свойствами:

Если
$$\lambda + kg(x) > 0$$
, то

1.
$$\mu(x,\lambda,k)=f(x)+(\lambda,g(x))+\frac{k}{2}\|g(x)\|^2$$
, где $\frac{k}{2}\|g(x)\|^2$ — добавка (штраф) за то, что $g(x)>0$.

2. $\mu(x, \lambda, k) = \psi(x, \lambda)$ (функция Лагранжа), иначе $\mu(x, \lambda, k) = -\infty$. Итерационная формула вычисления последовательности $\{x_k, \lambda_k\}$ имеет вид:

$$x_{k+1} = \text{argmin } \mu(x, \lambda_k, k), x \in R^n$$

$$| \lambda_{k+1} = [\lambda_k + \gamma_k \nabla \lambda \mu(x_{k+1}, \lambda_k, k)]_+$$

 $\lambda_{k+1} = [\lambda_k + \gamma_k \nabla \lambda \mu(x_{k+1}, \lambda_k, k)]_+$ Метод сходится к (x^*, λ^*) со скоростью геометрической прогрессии.

Выполнение работы.

Задана целевая функция:

$$f = f(x_1, x_2) = (x_1 - b)^4 + a(x_2 + 3 - b)^4$$

Заданы ограничения:

$$g_1 = (x_1 - 1)^2 + (x_2 - 10)^2 - 101 \le 0$$

 $g_2 = (x_1 + 1)^2 + (x_2 - 10)^2 - 101 \le 0$

Метод проекции градиента.

Заданы начальные параметры для прогонки по исследуемым методам:

- Параметр a = 0.1
- Параметр b = 0
- Количество шагов 10
- Начальная точка $(x_1, x_2) = (3, 8)$

Градиентный спуск с дроблением шага

		1.11	10 .
шаг	x1	x2	${f f}$
1	2.325000	4.672500	375.75616748
2	1.696596	2.414205	94.21420662
3	1.208241	0.827106	23.58384820
4	0.782743	0.109508	9.72441965
5	0.426698	0.051908	8.70847516
6	0.255373	0.028840	8.42024148
7	0.125230	0.013316	8.24501930
8	0.014589	0.001470	8.11588415
9	0.000000	0.000000	8.10000000
10	0.000000	0.000000	8.10000000

При заданных ранее начальных условиях метод сходится за 9 шагов.

Метод наискорейшего спуска

шаг	x1	xZ	\mathbf{f}
1	0.167860	0.018211	8.29927558
2	0.000000	0.000000	8.10000000
3	0.000000	0.000000	8.10000000
4	0.000000	0.000000	8.10000000
5	0.000000	0.000000	8.10000000
6	0.000000	0.000000	8.10000000
7	0.000000	0.000000	8.10000000
8	0.000000	0.000000	8.10000000
9	0.000000	0.000000	8.10000000
10	0.000000	0.000000	8.10000000

При заданных ранее начальных условиях метод сходится за 2 шага.

Метод Полака-Ривьера

шаг	x1	x2	${f f}$
1	0.167860	0.018211	8.29927558
3	-0.259392	0.029346	8.42614985
5	-0.500899	0.062832	8.86315632
7	-0.652346	0.086890	9.26107064
9	-0.751054	0.103849	9.59934795
11	-0.812985	0.115007	9.85218891
13	-0.822342	0.116728	9.89347561
15	-0.647390	0.086065	9.24592882
17	-0.111623	0.011792	8.22826452
19	0.000000	0.000000	8.10000000
21	0.000000	0.000000	8.10000000
23	0.000000	0.000000	8.10000000
25	0.000000	0.000000	8.10000000

При заданных ранее начальных условиях метод сходится за 20 шагов.

Метод Ньютона с одномерной минимизацией

шаг	x1	xZ	${f f}$
1	-2.931829	5.824996	680.42278981
101	-0.730657	0.100261	9.52333136
201	-0.730658	0.100261	9.52333324
301	-0.730658	0.100262	9.52333522
401	-0.730659	0.100262	9.52333683
501	-0.730658	0.100262	9.52333565
601	-0.730659	0.100262	9.52333673
701	-0.730659	0.100262	9.52333871
801	-0.730659	0.100262	9.52333638
901	-0.730658	0.100262	9.52333569
1000	0.730659	0.100262	9.52333652

Из скриншота видно, что метод Ньютона с одномерной минимизацией за 1000 шагов не сошелся, также экспериментально было проверено, что данный метод не сходится при начальных точках (3, 10) и (10, 20).

Приведенные результаты эксперимента показывают, что на скорость сходимости метода проекции градиента влияет выбранный метод безусловной минимизации, поэтому использование метода наискорейшего спуска дает наилучший результат по скорости сходимости.

Метод условного градиента.

Были выбраны начальные параметры:

- Параметр а = 0.1
- Параметр b = 0
- Количество шагов 10
- Начальная точка $(x_1, x_2) = (3, 8)$

шаг	x1	xZ	${f f}$
1	-0.997973	0.150731	10.84665999
2	-0.659732	0.180908	10.42718625
3	0.000000	0.000000	8.10000000
4	0.000000	0.000000	8.10000000
5	0.000000	0.000000	8.10000000
6	0.000000	0.000000	8.10000000
7	0.000000	0.000000	8.10000000
8	0.000000	0.000000	8.10000000
9	0.000000	0.000000	8.10000000
10	0.000000	0.000000	8.10000000

При заданных ранее начальных условиях метод сходится за 3 шага.

Результаты работы программы с фиксированным параметром b = 0. При различных параметрах а и x_0 :

\mathbf{x}_0	(3, 8)		(3,8) $(3,10)$		(10, 20)	
а	0.1	1	0.1	1	0.1	1
<i>k</i> *	3	1	2	1	3	1
$f(x_{k^*})$	8.100	81.000	8.100	81.000	8.100	81.000

Метод функции Лагранжа.

Были выбраны начальные параметры:

- Параметр a = 0.1
- Параметр b = 0
- Количество шагов 10
- Начальная точка $(x_1, x_2) = (3, 8)$
- Параметр модифицированной функции Лагранжа примем равным 1

Множители Лагранжа 2.0 и 1

шаг	x1	x2	11	12	${f f}$
1	-0.63180	0.15229	0.00000	0.00000	10.03357
2	-0.63101	0.05430	0.00000	0.00000	9.02765
3	-0.63101	0.05431	0.57706	0.00000	9.36054
4	-0.63249	0.08270	1.15393	0.00000	9.21156
5	-0.63396	0.11115	1.17173	0.00000	9.04286
6	-0.63398	0.11202	0.63084	0.00000	9.34447
7	-0.63370	0.08551	0.07294	0.00000	9.22315
8	-0.63343	0.05825	0.03895	0.00000	9.05664
9	-0.63338	0.05657	0.54533	0.00000	9.32934
10	-0.63461	0.08149	1.08497	0.00000	9.23289

Множители Лагранжа 1 и 1

шаг	x1	xZ	11	12	${f f}$
1	-0.63027	0.10303	0.00000	0.00000	9.42922
2	-0.62985	0.05412	0.00000	0.00000	9.02432
3	-0.62985	0.05413	0.57698	0.00000	9.35712
4	-0.63134	0.08251	1.15376	0.00000	9.20818
5	-0.63279	0.11095	1.17162	0.00000	9.03943
6	-0.63282	0.11182	0.63101	0.00000	9.34087
7	-0.63254	0.08534	0.07313	0.00000	9.21989
8	-0.63227	0.05806	0.03884	0.00000	9.05323
9	-0.63222	0.05638	0.54524	0.00000	9.32595
10	-0.63344	0.08129	1.08490	0.00000	9.22955

Результаты работы программы с фиксированным параметром b=0. При различных параметрах а и x_0 :

x_0	(3,8)		(3, 8) $(3, 10)$		(10, 20)	
а	0.1	1	0.1	1	0.1	1
k^*	1	11	1	11	7	5
$f(x_k)$	8.77081	81.000	8.98315	81.000	8.10589	81.000
$L_1(x_k)$	0.59156	2.69962	0.58339	2.69966	0.00000	2.69731
$L_2(x_k)$	0.00000	2.69963	0.00000	2.69966	0.54123	2.69738

Выводы.

В ходе выполнения лабораторной работы были изучены методы условной минимизации.

Скорость сходимости метода проекции градиента очень сильно зависит от выбранного к нему метода безусловной минимизации, поэтому при использовании его в сочетании с методом наискорейшего спуска получается наилучшая скорость сходимости.

Метод условного градиента также быстро сходится, но требует более существенных вычислительных затрат.

Особенностью метода модифицированной функции Лагранжа можно назвать колебание точек очередного приближения в некоторой окрестности точки минимума, попадание в которую происходит после нескольких первых шагов метода, что является альтернативой быстрого нахождения приближенного значения минимума функции. Но метод функции Лагранжа наиболее сложен с точки зрения вычислений.