

Regression solutions in Real Estate

Project developed by:

- Leonor Drummond
- Jose Roldan
- Patrick Brunswyck
- Hoang Minh Nguyen

Project Goals

Insight from 10000 properties

Defining a good regression model

Predicting house prices

Table Content

Data preprocessing

Defining the best regression type

What we could achieve

Recommendations

Conclusion

Data Cleaning

Used the previous pre-cleaned data set;

- Focus on adapting data set for machine learning;
- Keeping the house features that are better for predictions;

 Dropped rows with outliers that don't have an impact on our model.

Data Cleaning

Data preprocessing

Removing redundancy such as subtype property;

Data engineering;

Normalization;

 One Hot encoding is depreciated in linear regression.

building_state
good
just renovated
as new
as new
good
just renovated
good
as new
as new

property_type	property_subtype
house	house
house	villa
house	villa
house	house
house	villa
house	house

Data preprocessing

- One hot encoding application;
- With bedrooms and area as features, model scored 32%;
- With building state model scored about 52%;
- One Hot encoding is depreciated in linear regression.

Defining the best regression type

Linear Regression between price and area

Linear Regression between price and bedrooms

Defining the best regression type

Linear Regression deg = 5 price and area

Linear Regression deg = 4 price and bedrooms

Defining the best regression type

- Choosing our features:
 - bedrooms vs area vs state of building
- Linear or polynomial regression?
- Evaluating modeling scores

What we could achieve

Model chosen;

Scores from the model;

• Features considered.

Not all data is regressive;

Recommendations

Further studying different models for machine learning;

Look for other solutions that can include other features;

 Bedrooms and area are two features that indeed are useful for price prediction.

Conclusion

What data preprocessing involves;

Not all data is possible to adapt to linear regression

One Hot Encode does not makes sense with linear regression;

• Let the data speak = different data types, different approaches! Not all is about model scores

Thank you for your trust and attention.

