Persistence diagrams as diagrams A Categorification of the Stability Theorem

Ulrich Bauer

TUM

June 12, 2019

Workshop on Geometry, Topology, and Computation

Mathematikon, Heidelberg University

Joint work with Michael Lesnick (Albany)

Gramicidin: an antibiotic functioning as ion channel

Gramicidin: an antibiotic functioning as ion channel

- ▶ A filtration is a certain diagram $K : \mathbf{R} \to \mathbf{Top}$
 - **R** is the poset (\mathbb{R}, \leq)
 - ▶ A topological space K_t for each $t \in \mathbb{R}$
 - ▶ An inclusion map $K_s \hookrightarrow K_t$ for each $s \leq t \in \mathbb{R}$

- ▶ A filtration is a certain diagram $K : \mathbf{R} \to \mathbf{Top}$
 - **R** is the poset (\mathbb{R}, \leq)
 - ▶ A topological space K_t for each $t \in \mathbb{R}$
 - ▶ An inclusion map $K_s \hookrightarrow K_t$ for each $s \leq t \in \mathbb{R}$
- ▶ Apply homology $H_* : \mathbf{Top} \to \mathbf{Vect}$

- ▶ A filtration is a certain diagram $K : \mathbf{R} \to \mathbf{Top}$
 - **R** is the poset (\mathbb{R}, \leq)
 - ▶ A topological space K_t for each $t \in \mathbb{R}$
 - ▶ An inclusion map $K_s \hookrightarrow K_t$ for each $s \leq t \in \mathbb{R}$
- ▶ Apply homology $H_* : \mathbf{Top} \to \mathbf{Vect}$
- ▶ Persistent homology is a diagram $M : \mathbf{R} \to \mathbf{Vect}$ (persistence module)

Persistent homology is the homology of a filtration.

- ▶ A filtration is a certain diagram $K : \mathbf{R} \to \mathbf{Top}$
 - **R** is the poset (\mathbb{R}, \leq)
 - ▶ A topological space K_t for each $t \in \mathbb{R}$
 - ▶ An inclusion map $K_s \hookrightarrow K_t$ for each $s \leq t \in \mathbb{R}$
- ▶ Apply homology $H_* : \mathbf{Top} \to \mathbf{Vect}$
- ▶ Persistent homology is a diagram $M : \mathbf{R} \to \mathbf{Vect}$ (persistence module)

In this talk, all vector spaces will be finite dimensional.

Theorem (Crawley-Boevey 2015)

Any persistence module $M: \mathbf{R} \to \mathbf{vect}$ (of finite dim. vector spaces over some field \mathbb{F}) decomposes as a direct sum of interval modules

$$0 \to \cdots \to 0 \to \mathbb{F} \to \cdots \to \mathbb{F} \to 0 \to \cdots \to 0$$

(in an essentially unique way).

Theorem (Crawley-Boevey 2015)

Any persistence module $M: \mathbf{R} \to \mathbf{vect}$ (of finite dim. vector spaces over some field \mathbb{F}) decomposes as a direct sum of interval modules

$$0 \to \cdots \to 0 \to \mathbb{F} \to \cdots \to \mathbb{F} \to 0 \to \cdots \to 0$$

(in an essentially unique way).

▶ The supporting intervals form the *persistence barcode* B(M).

Theorem (Crawley-Boevey 2015)

Any persistence module $M: \mathbf{R} \to \mathbf{vect}$ (of finite dim. vector spaces over some field \mathbb{F}) decomposes as a direct sum of interval modules

$$0 \to \cdots \to 0 \to \mathbb{F} \to \cdots \to \mathbb{F} \to 0 \to \cdots \to 0$$

(in an essentially unique way).

- ▶ The supporting intervals form the *persistence barcode* B(M).
- ▶ The points in the *persistence diagram* are the endpoints of the intervals in the barcode.

Theorem (Crawley-Boevey 2015)

Any persistence module $M: \mathbf{R} \to \mathbf{vect}$ (of finite dim. vector spaces over some field \mathbb{F}) decomposes as a direct sum of interval modules

$$0 \to \cdots \to 0 \to \mathbb{F} \to \cdots \to \mathbb{F} \to 0 \to \cdots \to 0$$

(in an essentially unique way).

- ▶ The supporting intervals form the *persistence barcode* B(M).
- ▶ The points in the *persistence diagram* are the endpoints of the intervals in the barcode.
- ▶ This is not a diagram in the sense of category theory (functor)!

Persistence diagrams: multiset of points $(b,d) \in \overline{\mathbb{R}}^2 : b \leq d$ (Edelsbrunner et al. 2000, 2007)

- Persistence diagrams: multiset of points $(b, d) \in \overline{\mathbb{R}}^2 : b \leq d$ (Edelsbrunner et al. 2000, 2007)
- Persistence barcodes: multiset of intervals, decomposition structure $M \cong \bigoplus_{I \in B(M)} \mathbb{K}(I)$ (Edelsbrunner et al. 2000, Carlsson et al. 2004, 2005, Crawley-Boewey 2015)

- Persistence diagrams: multiset of points $(b, d) \in \overline{\mathbb{R}}^2 : b \leq d$ (Edelsbrunner et al. 2000, 2007)
- Persistence barcodes: multiset of intervals, decomposition structure $M \cong \bigoplus_{I \in B(M)} \mathbb{K}(I)$ (Edelsbrunner et al. 2000, Carlsson et al. 2004, 2005, Crawley-Boewey 2015)
- Persistence measures: for all $a < b \le c < d$, count multiplicity of $0 \to \mathbb{K} \to \mathbb{K} \to 0$ as summand of $M_a \to M_b \to M_c \to M_d$ (Chazal et al. 2015)

- Persistence diagrams: multiset of points $(b, d) \in \overline{\mathbb{R}}^2 : b \leq d$ (Edelsbrunner et al. 2000, 2007)
- Persistence barcodes: multiset of intervals, decomposition structure $M \cong \bigoplus_{I \in B(M)} \mathbb{K}(I)$ (Edelsbrunner et al. 2000, Carlsson et al. 2004, 2005, Crawley-Boewey 2015)
- Persistence measures: for all $a < b \le c < d$, count multiplicity of $0 \to \mathbb{K} \to \mathbb{K} \to 0$ as summand of $M_a \to M_b \to M_c \to M_d$ (Chazal et al. 2015)
- ▶ Rank invariant (rank function): $(s, t) \mapsto \operatorname{rank} M_{s,t}$ (for $s \le t$ or s < t) (Carlsson et al. 2009)

- Persistence diagrams: multiset of points $(b, d) \in \overline{\mathbb{R}}^2 : b \leq d$ (Edelsbrunner et al. 2000, 2007)
- Persistence barcodes: multiset of intervals, decomposition structure $M \cong \bigoplus_{I \in B(M)} \mathbb{K}(I)$ (Edelsbrunner et al. 2000, Carlsson et al. 2004, 2005, Crawley-Boewey 2015)
- Persistence measures: for all $a < b \le c < d$, count multiplicity of $0 \to \mathbb{K} \to \mathbb{K} \to 0$ as summand of $M_a \to M_b \to M_c \to M_d$ (Chazal et al. 2015)
- ▶ Rank invariant (rank function): $(s, t) \mapsto \operatorname{rank} M_{s,t}$ (for $s \le t$ or s < t) (Carlsson et al. 2009)
- Matching diagrams: sequence of partial bijections (Edelsbrunner et al. 2014)

point cloud $P \subset \mathbb{R}^d$ Hausdorff distance

The category of matchings

Consider the category Mch (a subcategory of the category Rel of sets and relations) with

- objects: sets,
- morphisms: matchings (partial bijections).

Composition:

(Co)kernel/(co)image:

The category of matchings

Consider the category Mch (a subcategory of the category Rel of sets and relations) with

- objects: sets,
- morphisms: matchings (partial bijections).

Composition:

(Co)kernel/(co)image:

Mch is *Puppe-exact* (*p-exact*):

- ▶ it has a zero object (∅)
- ▶ it has all (co)kernels
- every mono (epi) is (co)kernel
- every morphism $f: A \to B$ has an epi-mono factorization $A \twoheadrightarrow \operatorname{im} f \hookrightarrow B$

The category of matchings

Consider the category Mch (a subcategory of the category Rel of sets and relations) with

- objects: sets,
- morphisms: matchings (partial bijections).

Composition:

(Co)kernel/(co)image:

Mch is *Puppe-exact* (*p-exact*):

- ▶ it has a zero object (∅)
- ▶ it has all (co)kernels
- every mono (epi) is (co)kernel
- every morphism $f: A \to B$ has an epi-mono factorization $A \twoheadrightarrow \operatorname{im} f \hookrightarrow B$

but not additive:

it does not have all (co)products

A barcode (collection of intervals) can be read as a diagram $\mathbf{R} \to \mathbf{Mch}$:

$$t \mapsto \{\text{intervals in barcode containing } t\}$$

$$(s \le t) \mapsto \{\text{intervals containing both } s, t\}$$

A barcode (collection of intervals) can be read as a diagram $\mathbf{R} \to \mathbf{Mch}$:

 $t \mapsto \{\text{intervals in barcode containing } t\}$

$$(s \le t) \mapsto \{\text{intervals containing both } s, t\}$$

► A matching diagram defines a barcode:

A barcode (collection of intervals) can be read as a diagram $\mathbf{R} \to \mathbf{Mch}$:

 $t \mapsto \{\text{intervals in barcode containing } t\}$

$$(s \le t) \mapsto \{\text{intervals containing both } s, t\}$$

► A matching diagram defines a barcode:

intervals formed by equivalence classes of matched elements

A barcode (collection of intervals) can be read as a diagram $\mathbf{R} \to \mathbf{Mch}$:

 $t \mapsto \{\text{intervals in barcode containing } t\}$

$$(s \le t) \mapsto \{\text{intervals containing both } s, t\}$$

A matching diagram defines a barcode:

intervals formed by equivalence classes of matched elements

Turn this into an equivalence of categories $Barc \simeq Mch^R$

A category of barcodes

Proposition

The functor category Mch^R is equivalent to Barc, the category with

- objects: barcodes (as a disjoint union of intervals),
- ▶ morphisms: overlap matchings of barcodes $U \nrightarrow V$:

A category of barcodes

Proposition

The functor category \mathbf{Mch}^{R} is equivalent to \mathbf{Barc} , the category with

- objects: barcodes (as a disjoint union of intervals),
- ▶ morphisms: overlap matchings of barcodes $U \nrightarrow V$: if $I \in U$ is matched to $J \in V$, then I overlaps J above:
 - ▶ I bounds J above,
 - J bounds I below,
 - ▶ $I \cap J \neq \emptyset$.

A category of barcodes

Proposition

The functor category Mch^R is equivalent to Barc, the category with

- objects: barcodes (as a disjoint union of intervals),
- ▶ morphisms: overlap matchings of barcodes $U \nrightarrow V$: if $I \in U$ is matched to $J \in V$, then I overlaps J above:
 - ▶ I bounds J above,
 - J bounds I below,
 - $I \cap I \neq \emptyset$.
- ▶ composition of overlap matchings: $\tau \bullet \sigma = \{(I, K) \in \tau \circ \sigma \mid I \text{ overlaps } K \text{ above}\}$ (where $\tau \circ \sigma$ is the standard composition of matchings)

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

Bottleneck distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-matching } U \nrightarrow V\}$

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

Bottleneck distance:
$$d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-matching } U \nrightarrow V\}$$

▶ δ-interleaving between diagrams $X, Y : \mathbf{R} \to \mathcal{C}$ (in any category \mathcal{C}): natural transformations $f_t: X_t \to Y_{t+\delta}, g_t: Y_t \to X_{t+\delta}$ yielding commutative diagrams

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

Bottleneck distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-matching } U \nrightarrow V\}$

▶ δ -interleaving between diagrams $X, Y : \mathbf{R} \to \mathcal{C}$ (in any category \mathcal{C}): natural transformations $f_t : X_t \to Y_{t+\delta}, g_t : Y_t \to X_{t+\delta}$ yielding commutative diagrams

Interleaving distance: $d_I(X, Y) = \inf\{\delta \mid \exists \delta \text{-interleaving } X \leftrightarrow Y\}$

- δ -matching between barcodes U, V:
 - matched intervals have δ -close endpoints
 - unmatched intervals are 2δ -trivial (shorter than 2δ)

Bottleneck distance: $d_B(U, V) = \inf\{\delta \mid \exists \delta \text{-matching } U \nrightarrow V\}$

▶ δ -interleaving between diagrams $X, Y : \mathbf{R} \to \mathcal{C}$ (in any category \mathcal{C}): natural transformations $f_t : X_t \to Y_{t+\delta}, g_t : Y_t \to X_{t+\delta}$ yielding commutative diagrams

Interleaving distance: $d_I(X, Y) = \inf\{\delta \mid \exists \delta \text{-interleaving } X \leftrightarrow Y\}$

Proposition

 $d_I = d_B$ (using the equivalence **Barc** \simeq **Mch**^R).

Algebraic stability of persistence barcodes

Theorem (Chazal et al. 2009, 2012; B, Lesnick 2015)

If two persistence modules are δ -interleaved, then there exists a δ -matching of their barcodes:

- matched intervals have endpoints within distance $\leq \delta$,
- unmatched intervals have length $\leq 2\delta$.

Algebraic stability of persistence barcodes

Theorem (Chazal et al. 2009, 2012; B, Lesnick 2015)

If two persistence modules are δ -interleaved, then there exists a δ -matching of their barcodes:

- matched intervals have endpoints within distance $\leq \delta$,
- unmatched intervals have length $\leq 2\delta$.

Equivalently: there exists a δ -interleaving of their barcodes (as diagrams $\mathbf{R} \to \mathbf{Mch}$).

Can a persistence module M be mapped to its barcode B(M) by a functor $B : \mathbf{vect} \to \mathbf{Mch}$?

This would preserve δ-interleavings, and thus yield stability of persistence barcodes.

Can a persistence module M be mapped to its barcode B(M) by a functor $B : \mathbf{vect} \to \mathbf{Mch}$?

ightharpoonup This would preserve δ-interleavings, and thus yield stability of persistence barcodes.

Can a persistence module M be mapped to its barcode B(M) by a functor $B : \mathbf{vect} \to \mathbf{Mch}$?

This would preserve δ-interleavings, and thus yield stability of persistence barcodes.

Proposition

There is no functor $\mathbf{vect} \to \mathbf{Mch}$ sending every vector space V to a set of cardinality $\dim V$ (equivalently: sending a linear map f to a matching of cardinality $\operatorname{rank} f$).

Can a persistence module M be mapped to its barcode B(M) by a functor $B : \mathbf{vect} \to \mathbf{Mch}$?

ightharpoonup This would preserve δ-interleavings, and thus yield stability of persistence barcodes.

Proposition

There is no functor $\mathbf{vect} \to \mathbf{Mch}$ sending every vector space V to a set of cardinality $\dim V$ (equivalently: sending a linear map f to a matching of cardinality $\operatorname{rank} f$).

But: there is a barcode functor for subcategories of monos/epis of persistence modules **vect**^R:

Structure of persistence sub-/quotient modules

Proposition

Let $M \rightarrow N$ be an epimorphism.

Then there is an injection of barcodes $B(N) \hookrightarrow B(M)$ such that if J is mapped to I, then

- ▶ I and J are aligned below, and
- ▶ I bounds J above.

This construction is functorial.

Dually, there is an injection $B(M) \hookrightarrow B(N)$ for monomorphisms $M \hookrightarrow N$.

Persistence sub-/quotient modules and their matching diagrams

Structure of persistence sub-/quotient modules, rephrased for Mch^R:

Proposition

There is a functor from epimorphisms of persistence modules to epimorphisms of matching diagrams.

Dually, there is a functor from monomorphisms to monomorphisms.

Consider an interleaving $f_t: M_t \to N_{t+\delta}, g_t: N_t \to M_{t+\delta} \ (\forall t \in \mathbf{R})$:

Consider an interleaving $f_t: M_t \to N_{t+\delta}$, $g_t: N_t \to M_{t+\delta}$ ($\forall t \in \mathbf{R}$):

Consider an interleaving $f_t: M_t \to N_{t+\delta}, g_t: N_t \to M_{t+\delta} \ (\forall t \in \mathbf{R})$:

Consider an interleaving $f_t: M_t \to N_{t+\delta}, g_t: N_t \to M_{t+\delta} \ (\forall t \in \mathbf{R})$:

Consider an interleaving $f_t: M_t \to N_{t+\delta}, g_t: N_t \to M_{t+\delta} \ (\forall t \in \mathbf{R})$:

Consider an interleaving $f_t: M_t \to N_{t+\delta}$, $g_t: N_t \to M_{t+\delta}$ ($\forall t \in \mathbf{R}$):

Consider an interleaving $f_t: M_t \to N_{t+\delta}$, $g_t: N_t \to M_{t+\delta}$ ($\forall t \in \mathbf{R}$):

Induced matchings

For $f: M \to N$ a morphism of pfd persistence modules, the epi-mono factorization

$$M \twoheadrightarrow \operatorname{im} f \hookrightarrow N$$

gives an *induced matching* $\chi(f)$ between their barcodes:

Induced matchings

For $f: M \to N$ a morphism of pfd persistence modules, the epi-mono factorization

$$M \rightarrow \inf f \hookrightarrow N$$

gives an *induced matching* $\chi(f)$ between their barcodes:

▶ compose the functorial injections $B(M) \leftarrow B(\operatorname{im} f) \hookrightarrow B(N)$ from before to a matching

$$\chi(f): B(M) \nrightarrow B(N).$$

Induced matchings

For $f: M \to N$ a morphism of pfd persistence modules, the epi-mono factorization

$$M \twoheadrightarrow \operatorname{im} f \hookrightarrow N$$

gives an *induced matching* $\chi(f)$ between their barcodes:

▶ compose the functorial injections $B(M) \leftarrow B(\operatorname{im} f) \hookrightarrow B(N)$ from before to a matching

$$\chi(f): B(M) \nrightarrow B(N).$$

Theorem

Assume that $\ker f$ is δ -trivial. If $\chi(f)$ matches I to J, then

- (i) I overlaps I, and J overlaps $I(\delta)$.
- (ii) Any unmatched interval of B(M) is δ -trivial.

There is a dual statement for coker f δ -trivial.

The categorified induced matching theorem

Induced matching theorem, rephrased in Mch^R:

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does the induced matching $\chi(f): B(M) \nrightarrow B(N)$.

The categorified induced matching theorem

Induced matching theorem, rephrased in Mch^R:

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does the induced matching $\chi(f): B(M) \nrightarrow B(N)$.

Note:

- We always have $B(\operatorname{im} f) = \operatorname{im} \chi(f)$ by construction.
- But $\ker \chi(f)$ may differ from $B(\ker f)$.
- ▶ The induced matching may strictly decrease the triviality of the kernel.

A general criterion for δ -trivial (co)kernels

Lemma

Consider a morphism $f: M \to N$ between diagrams $M, N: \mathbf{R} \to \mathcal{A}$ in a Puppe-exact category \mathcal{A} , and let $s: N(-\delta) \to N$ be the internal shift morphism. The following are equivalent:

- (i) coker f is δ -trivial;
- (ii) the image monomorphism im $s \rightarrow N$ factors through the image monomorphism im $f \rightarrow N$ as

A dual statement holds for $\ker f$.

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does $\chi(f)$.

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does $\chi(f)$.

Proof outline.

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does $\chi(f)$.

Proof outline.

Theorem

If $f: M \to N$ has δ -trivial (co)kernel, then so does $\chi(f)$.

Proof outline.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Proof outline.

Forward direction:

▶ A δ -interleaving morphism $f: M \to N(\delta)$ has 2δ -trivial kernel and cokernel.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Proof outline.

Forward direction:

- ▶ A δ -interleaving morphism $f: M \to N(\delta)$ has 2δ -trivial kernel and cokernel.
- ▶ By the induced matching theorem, the same is true for $\chi(f): B(M) \to B(N(\delta))$.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Proof outline.

Forward direction:

- ▶ A δ -interleaving morphism $f: M \to N(\delta)$ has 2δ -trivial kernel and cokernel.
- ▶ By the induced matching theorem, the same is true for $\chi(f): B(M) \to B(N(\delta))$.
- ▶ This is equivalent to B(M) and B(N) being δ -interleaved in Mch^R.

Theorem

Two pfd persistence modules M and N are δ -interleaved if and only if their barcodes B(M) and B(N) are δ -interleaved. In particular, $d_I(M,N) = d_I(B(M),B(N))$.

Proof outline.

Forward direction:

- ▶ A δ -interleaving morphism $f: M \to N(\delta)$ has 2δ -trivial kernel and cokernel.
- ▶ By the induced matching theorem, the same is true for $\chi(f): B(M) \to B(N(\delta))$.
- ▶ This is equivalent to B(M) and B(N) being δ -interleaved in Mch^R.

Converse direction:

Apply the free functor Mch → Vect.

- ► Goal: construct barcode/matching diagram of persistence module *without* decomposition
- ▶ At each index in the matching diagram, the set should be natural numbers $\{1, ..., n\}$

- ▶ Goal: construct barcode/matching diagram of persistence module without decomposition
- \blacktriangleright At each index in the matching diagram, the set should be natural numbers $\{1,\ldots,n\}$

	'	
		-
	_	

Approach:

Order intervals in barcode (lexicographically) by birth (increasing), then death (decreasing)

- ▶ Goal: construct barcode/matching diagram of persistence module without decomposition
- ightharpoonup At each index in the matching diagram, the set should be natural numbers $\{1,\ldots,n\}$

Approach:

- Order intervals in barcode (lexicographically) by birth (increasing), then death (decreasing)
- ightharpoonup At each index t, enumerate the intervals containing t in that order

- ▶ Goal: construct barcode/matching diagram of persistence module without decomposition
- ▶ At each index in the matching diagram, the set should be natural numbers $\{1, ..., n\}$

Approach:

- Order intervals in barcode (lexicographically) by birth (increasing), then death (decreasing)
- ightharpoonup At each index t, enumerate the intervals containing t in that order
- Between any two indices, match numbers according to their associated barcode intervals

- ▶ Goal: construct barcode/matching diagram of persistence module without decomposition
- ▶ At each index in the matching diagram, the set should be natural numbers $\{1, ..., n\}$

Approach:

- Order intervals in barcode (lexicographically) by birth (increasing), then death (decreasing)
- ightharpoonup At each index t, enumerate the intervals containing t in that order
- Between any two indices, match numbers according to their associated barcode intervals

M: persistence module, *D*: corresponding barcode (ordered by birth, then death).

▶ Which j are in D_t ? This is $\{j \mid j \leq \dim M_t\}$.

- ▶ Which j are in D_t ? This is $\{j \mid j \leq \dim M_t\}$.
- ▶ Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{j \mid j \leq \operatorname{rank} M_{s,t}\}$.

- ▶ Which j are in D_t ? This is $\{j \mid j \leq \dim M_t\}$.
- ▶ Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{j \mid j \le \text{rank } M_{s,t}\}$.
- ▶ Given $j \in D_t$, to which $i \in D_s$ is it matched? The difference i - j is the number of bars that
 - (a) are born before the jth interval at index t, and
 - (b) die between *s* and *t*:

- ▶ Which j are in D_t ? This is $\{j \mid j \leq \dim M_t\}$.
- ▶ Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{j \mid j \leq \text{rank } M_{s,t}\}$.
- ▶ Given $j \in D_t$, to which $i \in D_s$ is it matched? The difference i - j is the number of bars that
 - (a) are born before the jth interval at index t, and
 - (b) die between s and t:
- ▶ Given $j \in D_t$, what are the lower bounds for the jth interval at index t? This is $\{r < t \mid \operatorname{rank} M_{r,t} < j\}$.

- ▶ Which j are in D_t ? This is $\{j \mid j \leq \dim M_t\}$.
- ▶ Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{j \mid j \le \text{rank } M_{s,t}\}$.
- ▶ Given $j \in D_t$, to which $i \in D_s$ is it matched? The difference i - j is the number of bars that
 - (a) are born before the jth interval at index t, and
 - (b) die between s and t:
- ▶ Given $j \in D_t$, what are the lower bounds for the jth interval at index t? This is $\{r < t \mid \operatorname{rank} M_{r,t} < j\}$.
- ► Together, this yields $i j = \max \{ \operatorname{rank} M_{r,s} \operatorname{rank} M_{r,t} \mid r < s, \operatorname{rank} M_{r,t} < j \}.$

M: persistence module, *D*: corresponding barcode (ordered by birth, then death).

- ▶ Which j are in D_t ? This is $\{j \mid j \leq \dim M_t\}$.
- ▶ Which $j \in D_t$ are matched to some $i \in D_s$? This is $\{j \mid j \leq \operatorname{rank} M_{s,t}\}$.
- ▶ Given $j \in D_t$, to which $i \in D_s$ is it matched? The difference i - j is the number of bars that
 - (a) are born before the jth interval at index t, and
 - (b) die between s and t:
- ▶ Given $j \in D_t$, what are the lower bounds for the jth interval at index t? This is $\{r < t \mid \operatorname{rank} M_{r,t} < j\}$.
- ► Together, this yields $i j = \max \{ \operatorname{rank} M_{r,s} \operatorname{rank} M_{r,t} \mid r < s, \operatorname{rank} M_{r,t} < j \}.$

This specifies the barcode of M (as a matching diagram) based on ranks only.

The previous construction extents to a functor of epimorphisms $M \twoheadrightarrow N$ from persistence modules to matching diagrams.

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

▶ For the record: $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

 $\max \left\{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \right\}.$

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

▶ For the record: $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

$$\max \{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \}.$$

Dually for monomorphisms

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

▶ For the record: $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

$$\max \{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \}.$$

- Dually for monomorphisms
- Epi-mono factorization yields an induced matching

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

▶ For the record: $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

$$\max \{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \}.$$

- Dually for monomorphisms
- Epi-mono factorization yields an induced matching
- Coincides with previous induced matching (under the equivalence Barc ≃ Mch^R)

The previous construction extents to a functor of epimorphisms M woheadrightarrow N from persistence modules to matching diagrams.

▶ For the record: $i \in D(M)_t$ is matched to $j \in D(N)_t$ iff

$$\max \{ \operatorname{rank} M_{s,t} - \operatorname{rank} N_{s,t} \mid s < t, \operatorname{rank} N_{s,t} < j \}.$$

- Dually for monomorphisms
- Epi-mono factorization yields an induced matching
- Coincides with previous induced matching (under the equivalence Barc ≃ Mch^R)

Obtain induced matching and algebraic stability theorems without Crawley-Boewey's interval decomposition

Barcodes as matching diagrams:

A natural perspective on persistence

Barcodes as matching diagrams:

- A natural perspective on persistence
- Algebraic structure of interleavings in Puppe-exact categories sheds new light on the mechanism behind induced matchings and stability of barcodes

Barcodes as matching diagrams:

- A natural perspective on persistence
- Algebraic structure of interleavings in Puppe-exact categories sheds new light on the mechanism behind induced matchings and stability of barcodes
- These theorems can be proven without assuming a decomposition theorem

Barcodes as matching diagrams:

- A natural perspective on persistence
- Algebraic structure of interleavings in Puppe-exact categories sheds new light on the mechanism behind induced matchings and stability of barcodes
- These theorems can be proven without assuming a decomposition theorem
- ▶ Promises to provide a perspective for generalizations of algebraic stability beyond the ℝ-indexed case

