Chronic Respiratory Disease: Risk Modeling Potential and Limitations

Motivation

- Chronic Respiratory Diseases (CRDs) are among the leading causes of mortality worldwide, with 545 million prevalent cases in 2017
- Symptoms of non-infectious CRDs are often exacerbated by:
 - ambient air pollution
 - changes in temperature and humidity

- Inspired by study where Machine Learning (ML) was successfully used to forecast the risk of Cholera outbreaks in India
 - Cholera Risk: A Machine Learning Approach Applied to Essential Climate Variables

Datasets

- Mortality (cause-specific counts of death)
- Population
- Shapefiles (counties and climate divisions)

- Spatiotemporal datasets
 - Fine particulate matter (PM2.5)
 - Carbon emissions, biosphere fluxes, burned area
 - Climate variables, drought indices

Scope

- Period of interest: 2000 2016
- Monthly temporal resolution
- Counties in contiguous U.S.

Mortality - Chronic Lower Respiratory Diseases (CLRDs)

CDC WONDER

Underlying Cause of Death

Includes:

asthma, emphysema,
 bronchiectasis, other
 COPDs (generally
 non-infectious)

Excludes:

influenza, pneumonia,
 other respiratory infections
 (infectious)

Population

- Datasets US Census Bureau
- Monthly population totals for each county

Purpose: calculating mortality rate and population density

Fine particulate matter (PM2.5)

- Atmospheric Composition Analysis Group
 - Washington University in St. Louis

- 0.01° × 0.01° grid
- μg m⁻³

Carbon Emissions, Biosphere Fluxes, Burned Area

- Global Fire Emissions Database (GFED)
- 0.25° × 0.25° grid

- Carbon emissions
 g C m⁻²
- Biosphere Fluxes g C m⁻²
 - net primary production (NPP)
 - C gained (photosynthesis) minus C released (plant respiration)
 - o heterotrophic respiration (R_b)
 - fire emissions (BB)
- Burned area
 - Fraction of each grid cell that burned in each month
 - Actual area calculated with grid cell area data provided

Climate Variables, Drought Indices

- NOAA Monthly U.S. Climate Divisional Database (NClimDiv)
- By climate divisions

- Climate variables
 - Temperature
 - Precipitation
- Drought indices; negative = dry spells, positive = wet spells
 - Palmer Drought Severity Index (PDSI); -6 to +6
 - balance between moisture supply and demand.
 - Standardized Precipitation Index (SPI, SP01 for monthly); -3 to +3
 - 0 = median of precipitation for particular location

Total Precipitation, 2016

Shapefiles - Counties, Climate Divisions

- Boundaries collections of points; polygons
- Counties Cartographic Boundary Files US Census Bureau

- Metadata
 - Location codes for county and state
 - <u>Land + water area</u> of each county

- Purpose:
 - Determining the grid cells in each county (or climate division)
 - Calculating county population density

Data Preparation

- Convert to identical 0.01° × 0.01° grid beforehand
- Aggregate all spatiotemporal datasets by county and month
 - Adjust by total area of grid cells in each county
- Include 1- and 2-month lags for spatiotemporal variables
 - Fine particulate matter (PM2.5)
 - Carbon emissions, biosphere fluxes, burned area
 - Climate variables, drought indices

- Update county boundaries and designations
 - Changes to Counties and County Equivalent Entities: 1970-Present US Census Bureau

Methods

70:30 train-test split

- Random forest regression (<u>scikit-learn</u>)
 - 10-fold cross validation
 - Hyperparameter tuning to optimize model
 - Feature selection recursive feature elimination
 - Optimize R-squared

- Collinearity analysis with Spearman rank correlation (<u>SciPv</u>)
 - Improves discussion of variables' potential contributions to the model

Results

- R-squared
 - o 0.7526 cross validation
 - o 0.7528 test dataset prediction

- Similar trends between cross-validation and test dataset prediction
 - Suggests model generalizes well for unseen data

During RFECV iterations

During hyperparameter tuning (after RFECV)

Results - Selected Features

- GEOID county encoder
- 2. Months from start of period (since January, 2000)
- 3. Month of the year
- Net primary production (NPP), lagged by 1 month
- 5. STATEFP state encoder
- Population density, adjusted by land area

Data Limitations

- Using mortality as target variable
 - Mortality only captures most extreme cases of disease exacerbation
 - Limited data of Emergency Room Visits (ERVs) by county
 - ERVs by <u>country</u> commonly used to measure disease exacerbation
 - Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits
- Mortality data suppression constraints
 - Data points with less than 10 deaths are unavailable
 - Estimated based on state total

- Monthly, county-level datasets not available for:
 - Humidity
 - Used precipitation, drought indices instead
 - Ground-level ozone
 - estimated asthma ERVs in 2015:
 - Ozone: 9–23 million
 - PM2.5: 5–10 million

Other Limitations

- Coarse resolution monthly, county-level datasets cannot represent phenomena present in finer spatiotemporal resolutions (i.e. cities, days)
 - O Air pollution and emergency department visits for respiratory diseases: A multi-city case crossover study
 - ERVs for respiratory diseases increase after days with higher concentrations of pollutants
 - Lagging effect on ERVs lasts only several days

- Excluded factors
 - tobacco smoking (human behavior)
 - airborne allergens
 - Many "non-infectious" lung diseases are influenced by infectious microorganisms
 - active area of investigation

Comparison - Cholera Outbreaks in India

- Cholera Risk: A Machine Learning Approach Applied to Essential Climate Variables
- Random forest classification (<u>scikit-learn</u>)
- Essential Climate Variables (ECVs)
 - Chlorophyll-a, Land/Sea Surface Temperature, Soil Moisture, Total Precipitation, etc.
- Vibrio cholerae
 - Infectious; prevalent in coastal areas
- Strong spatiotemporal relationships between ECVs and distribution of V.
 cholerae bacteria
 - Allows accurate predictions of cholera outbreaks
 - Sensitivity = 0.895; correctly identified 89.5% of outbreaks
 - o ROC = 0.984

Number of cholera outbreaks reported; 40 coastal districts; 2010 - 2018

Main conclusions

- Significant potential for modeling CRD risk (R-squared ≈ 0.75)
- Limitations
 - data limitations
 - o phenomena only found on finer spatiotemporal scales (i.e. cities, days)
 - primarily non-infectious nature of CRDs
- Caveats of ML
 - can naively test for features that improve model performance
 - mechanisms behind their relationships remain unclear

- Accessible data of climate variables may improve estimates of ERVs attributable to specific pollutants
 - Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits

Next Steps

- Use better methods for hyperparameter tuning
 - Gradient-based rather than grid search
- Address asymmetry of importance
 - imbalanced regression
- Use different ML techniques
 - neural networks

- Use datasets from alternative sources
 - Datasets may be developed differently
 - New datasets may appear in the future