Day 4: Data Visualization Fundamentals in R

Ambu Vijayan

Bioinformatician

BioLit, Thiruvananthapuram

Visualizations

The ggplot2 library is an extremely popular visualization package that provides an interface for extremely fine control over graphics for plotting.

Install ggplot2 and viridis

```
install.packages("ggplot2")
library(ggplot2)
install.packages("viridis")
library(viridis)
```

Viridis is Colorblind-Friendly Color Maps for R

ggplot2

```
?ggplot
```

```
ggplot(data = birthdata, mapping = aes(x = birthweight))
```

This outputs a blank canvas.

geom

There are 30 geoms in the ggplot2 library, lets start with histogram.

 $ggplot(data = birthdata, mapping = aes(x = birthweight)) + geom_histogram()$

But we get a warning: stat_bin() using bins = 30. Pick better value with binwidth`

ggplot(data = birthdata, mapping = aes(x = birthweight)) +
geom_histogram(binwidth = 1)

ggplot(data = birthdata, mapping = aes(x = birthweight)) +
geom_histogram(binwidth = 0.25)

Adding color (and fill) to geoms

```
ggplot(data = birthdata, mapping = aes(x = birthweight, fill = location)) +
geom_histogram(binwidth = 0.25)
```


Making it colorblind friendly palette

locations.palette <- viridis(3)</pre>

```
ggplot(data = birthdata, mapping = aes(x = birthweight, fill = location)) +
geom_histogram(binwidth = 0.25) + scale_fill_manual(values = locations.palette)
```


Creating faceted plots

Create multiple sub-plots or "facets" based on categorical values in the data.

The facet_wrap() and facet_grid() functions allow the user to break the data down into multiple plots by one or two categorical variables, respectively.

```
ggplot(data = birthdata, mapping = aes(x = birthweight, fill = location)) + geom_histogram(binwidth = 0.25) + scale_fill_manual(values = locations.palette) + facet_wrap(~year, nrow = 2)
```

We used facet_wrap to year and grid rows as 2.

Add and modify labels

The labs() function offers the option to set the following labels:

- any aesthetic that has been set: in this case, x and fill
- title: main title of the plot
- subtitle: displayed below the title
- caption: displayed at the bottom right of the plot by default
- tag: label that appears at the top left of the plot by default (e.g. 1A)
- alt, alt_insight: alt text for the plot (used by screen readers)

Add and modify labels

```
ggplot(data = birthdata, mapping = aes(x = birthweight, fill = location)) +
geom_histogram(binwidth = 0.25) + scale_fill_manual(values = locations.palette) +
facet_wrap(~year, nrow = 2) + labs(x = "birth weight (kg)", fill = "Hospital",
tag = "fig. 1", caption = "Birth weights by year, color-coded by delivery
location.", alt = "Pair of histograms displaying the distribution of birth
weights of infants born at General Hospital, Memorial Hospital, and Silver Hill
Medical Center in 1967 and 1968.")
```

Breaking down the command

- ggplot(data = birthdata, mapping = aes(x = birthweight, fill = location)) +
- geom_histogram(binwidth = 0.25) +
- scale_fill_manual(values = locations.palette) +
- facet_wrap(~year, nrow = 2) +
- labs(x = "birth weight (kg)",
 - fill = "Hospital",
 - tag = "fig. 1",
 - caption = "Birth weights by year, color-coded by delivery location.",
 - alt = "Pair of histograms displaying the distribution of birth weights of infants born at General Hospital, Memorial Hospital, and Silver Hill Medical Center in 1967 and 1968.")

Plot Themes

```
ggplot(data = birthdata, mapping = aes(x = birthweight, fill = location)) +
geom_histogram(binwidth = 0.25) + scale_fill_manual(values = locations.palette) +
facet_grid(location~year) + labs(x = "weight (kg)", y = "births") + theme_bw() +
theme(legend.title = element_blank())
```

- ggplot(data = birthdata, mapping = aes(x = birthweight, fill = location)) +
- geom_histogram(binwidth = 0.25) +
- scale_fill_manual(values = locations.palette) +
- facet_grid(location~year) +
- labs(x = "weight (kg)", y = "births") +
- theme_bw() +
- theme(legend.title = element_blank())

geom_density()

lets create a new color blind palette

```
smoking.palette <- inferno(2, begin = 0.5, direction = -1)
?inferno to learn more bout this.

ggplot(data = birthdata, mapping = aes(x = birthweight, fill = smoker)) +
geom_density(alpha = 0.5) + scale_fill_manual(values = smoking.palette) + labs(x = "birth weight (kg)", fill = "Maternal smoking in pregnancy") + theme_bw()</pre>
```

geom_density() plot

geom_point()

Filter out smokers from birthdata

```
filtered_data <- birthdata[birthdata$smoker == TRUE, ]</pre>
```

Plot using geom point

```
ggplot(data = filtered_birthdata, mapping = aes(x = maternal.cigarettes, y =
weeks.gestation, color = birthweight)) + geom_point() + labs(x = "Maternal
cigarettes / day", y = "Gestational age at birth (weeks)", color = "Birth weight
(kg)") + scale_color_viridis(option = "inferno", begin = 0.4) + theme_bw()
```

geom_point() plot

No need to specify a color palette; viridis has a built-in function for ggplot objects.

geom_boxplot()

```
ggplot(data = birthdata, mapping = aes(x = smoker, y = birthweight, fill =
smoker)) + geom_boxplot() + scale_fill_manual(values = smoking.palette) +
theme_bw()
```

The labels on a categorical axis should be meaningful.

The bar chart above displays the values "TRUE" and "FALSE" on the x-axis.

geom_boxplot() plot

geom_boxplot() for Publications

In a report or publication, it might be more informative to replace "TRUE" and "FALSE" with "smoker" and "non-smoker."

The scale_x_discrete() function is used to do that.

```
ggplot(data = birthdata, mapping = aes(x = smoker, y = birthweight, fill =
smoker)) + geom_boxplot() + scale_fill_manual(values = smoking.palette) +
scale_x_discrete(labels = c("non-smoker", "smoker")) + guides(fill = "none") +
labs(y = "birth weight (kg)", x = "maternal cigarette use in pregnancy") +
theme_bw()
```

geom_boxplot() for Publications Plot

Changing the direction of axes labels

```
ggplot(data = birthdata, mapping = aes(x = smoker, y = birthweight, fill =
smoker)) + geom_boxplot() + scale_fill_manual(values = smoking.palette) +
scale_x_discrete(labels = c("non-smoking in pregnancy", "cigarette smoking in
pregnancy")) + guides(fill = "none") + labs(y = "birth weight (kg)") + theme_bw()
+ theme(axis.title.x = element_blank(), axis.text.x = element_text(angle = 90,
vjust = 0.5, hjust = 1))
```

This last part helps us change angles of labels

```
+ theme(axis.title.x = element_blank(), axis.text.x = element_text(angle = 90,
vjust = 0.5, hjust = 1))
```

Changed label axis plot

Changing the direction of axes itself

```
ggplot(data = birthdata, mapping = aes(x = smoker, y = birthweight, fill =
smoker)) + geom_boxplot() + scale_fill_manual(values = smoking.palette) +
scale_x_discrete(labels = c("non-smoking in pregnancy", "cigarette smoking in
pregnancy")) + guides(fill = "none") + labs(y = "birth weight (kg)") +
coord_flip() + theme_bw() + theme(axis.title.y = element_blank())
```

This last part helps us change angles of axis itself

```
+ coord_flip()
```

Changed axis plot

Layer multiple geoms

We used geom_point and geom_smooth here together.

```
ggplot(birthdata, mapping = aes(x = weeks.gestation, y = birthweight, color =
smoker)) + geom_point() + geom_smooth(alpha = 0.2) + labs(x = "Gestational age at
birth (weeks)", y = "Birth weight (kg)", color = "Maternal tobacco use", caption
= "Birthweight increases with gestational age for infants born to both\nsmokers
and non-smokers.") + scale_color_manual(values = smoking.palette) + theme_bw() +
theme(plot.caption = element_text(hjust = 0))
```

multiple geoms plot

Birthweight increases with gestational age for infants born to both smokers and non-smokers.

Remember:

If its point or line of colors, then:

color = data

from above examples: color = smoker

Also,

If its an area to be filled by a color, then:

fill = data

from above examples: fill = smoker