REGRESSION ALGORITHM

Assignment

Abstract

To predict the insurance charge based on the insurer data

10th August 2025

Ilango P

pailango@gmail.com

H O

Assignment - Regression Algorithm

Objective

To develop a predictive model that estimates insurance charges based on various input parameters.

Dataset Overview

The client has provided a dataset containing 1,338 records with the following features:

- Age
- Sex
- BMI
- Children
- Smoker
- Charges (Target variable)

The goal is to predict the **Charges** using the other fields as input features. The dataset size and feature set are considered sufficient for model development.

Model Development Approach

1. Domain Selection

 The dataset consists of numerical and categorical data, making it suitable for Machine Learning.

2. Learning Type

• Since both input features and the target variable are available and clearly defined, this falls under **Supervised Learning**.

3. Learning Task

• The target variable is a continuous numerical value, indicating a **Regression** problem.

Modelling Phases

Data Preparation

- Data Source: The dataset is provided in a file named Test.csv.
- Feature Types:
 - o **Numerical**: age, bmi, children no preprocessing required.

Assignment – Regression Algorithm

- o Categorical: sex, smoker need to be converted to numerical format.
- o Both are binary and ordinal (e.g., male/female, yes/no).
- Encoding options: Label Encoding or One-Hot Encoding (both yield similar results).

Train-Test Split

• The dataset will be split into training and testing sets in a **70:30 ratio**.

Model Training and Evaluation

The following regression algorithms were evaluated:

Support Vector Machine

Support Vocation in Idealining						
Sl.No.	Hyper parameter	default	linear	rbf	poly	sigmoid
1	default	-0.08338				
2	1		-0.111661287	-0.08843	-0.06429	-0.07543
3	10		-0.001617632	-0.08197	-0.09312	0.039307
4	100		0.54328182	-0.1248	-0.09976	0.52761
5	1000		0.634036931	-0.11749	-0.05551	0.287471
6	5000		0.764893815	-0.0731	0.146224	-7.53004
7	10000		0.744482485	-0.01728	0.352902	-34.1515

Decision Tree

Sl.No.	criterion	splitter	max_features	R2 value
1	default	default	default	0.710562
2	squared_error	best	None	0.701941
3	squared_error	best	log2	0.715498
4	squared_error	best	sqrt	0.7223
5	squared_error	random	None	0.741621
6	squared_error	random	log2	0.66082
7	squared_error	random	sqrt	0.662775
8	absolute_error	best	None	0.659213
9	absolute_error	best	sqrt	0.687251
10	absolute_error	random	None	0.746062
11	absolute_error	random	sqrt	0.674751
12	friedman_mse	best	None	0.678774
13	friedman_mse	best	sqrt	0.693982
14	friedman_mse	random	None	0.719241
15	friedman_mse	random	sqrt	0.711558

Assignment – Regression Algorithm

16	poisson	best	None	0.727782
17	poisson	best	sqrt	0.589042
18	poisson	random	None	0.690436
19	poisson	random	sqrt	0.650584

Random Forest

Sl.No.	n_estimators	random_state	Criterion	R2 value
1	default	default	default	0.82515
2	1	0	None	0.604032
3	10	0	None	0.797463
4	50	0	None	0.821617
5	100	0	None	0.82276
6	1	10	None	0.680783
7	10	10	None	0.811367
8	50	10	None	0.828431
9	100	10	None	0.828152
10	1	0	squared_error	0.604032
11	10	0	squared_error	0.797463
12	50	0	squared_error	0.821617
13	100	0	squared_error	0.82276
14	1	10	squared_error	0.680783
15	10	10	squared_error	0.811367
16	50	10	squared_error	0.828431
17	100	10	squared_error	0.828152
18	1	0	friedman_mse	0.60461
19	10	0	friedman_mse	0.796371
20	50	0	friedman_mse	0.822835
21	100	0	friedman_mse	0.823662
18	1	0	absolute_error	0.633383
19	10	0	absolute_error	0.807406
20	50	0	absolute_error	0.825886
21	100	0	absolute_error	0.827003

1. Multiple Linear Regression

• R² Score: 0.78948

2. Support Vector Regression (SVR)

• Various kernels and hyperparameters were tested.

Assignment - Regression Algorithm

• **Best R² Score**: 0.76489 (with C=5000, kernel=linear)

3. Decision Tree Regressor

- Multiple configurations tested.
- **Best R² Score**: 0.74606 (criterion=absolute_error, splitter=random)

4. Random Forest Regressor

- Extensive hyperparameter tuning performed.
- Best R² Score: 0.82843
 - o Parameters: n_estimators=50, random_state=10, criterion=None

Model Selection

The **Random Forest Regressor** achieved the highest performance and is selected as the final model.

It will be saved as: final_model_randomforest.sav

Deployment Steps

1. Load Model

Use pickle to load the saved model file.

2. Input Collection

- o Collect user inputs: age, bmi, children, sex, smoker.
- Convert sex and smoker from text to numerical format using conditional statements.

3. Prediction

o Use the model's predict() function to estimate insurance charges.

4. Action

o Use the predicted value to determine the insurance premium.