UNIVERSIDAD SIMÓN BOLÍVAR

Departamento de Matemáticas Puras y Aplicadas

Enero-Marzo 2002-Primer Parcial

1. Halle el dominio de definición de la función f(x) dada por:

$$f(x) = \sqrt[3]{sen(x)} + \sqrt{x^2 - 4} + \sqrt{1 - |x + 2|}$$

Solución: Para que f(x) tenga sentido debe ser $\left\{ \begin{array}{ll} x^2-4 & \geq & 0 \ |x+2| & \leq & 1 \end{array} \right.$

$$x^2 - 4 \ge 0 \Leftrightarrow x^2 \ge 4 \Leftrightarrow |x| \ge 2 \Leftrightarrow x \in (-\infty, -2] \cup [2, \infty)$$

Por otro lado, $|x+2| \le 1 \Leftrightarrow -1 \le 1 \Leftrightarrow -3 \le x \le -1 \Leftrightarrow x \in [-3, -1]$

Por lo tanto, el dominio de f es la intersección de los conjuntos hallados:

$$D_f = ((-\infty, -2] \cup [2, \infty)) \cap [-3, -1] = [-3, -2]$$

 $\therefore D_f = [-3, -2]$

2. Halle el límite: $\lim_{x \to -2} \frac{|x| - \sqrt{2x + 8}}{x + 2} = L$

Solución: Cerca de x = -2, |x| = -x, por lo tanto

$$L = \lim_{x \to -2} \frac{-x - \sqrt{2x + 8}}{x + 2}$$

$$= \lim_{x \to -2} \frac{(-x - \sqrt{2x + 8})(-x + \sqrt{2x + 8})}{(x + 2)(-x + \sqrt{2x + 8})}$$

$$= \lim_{x \to -2} \frac{x^2 - (2x + 8)}{(x + 2)(-x + \sqrt{2x + 8})}$$

$$= \lim_{x \to -2} \frac{(x + 2)(x - 4)}{(x + 2)(-x + \sqrt{2x + 8})}$$

$$= \frac{-2 - 4}{2 + \sqrt{-4 + 8}} = \frac{-6}{4} = \frac{-3}{2} \therefore L = \frac{-3}{2}$$

- 3. Sean l y s las rectas de ecuación 5x 12y = 0, x 2y = 1 respectivamente. Sea A el punto de intersección de estas dos rectas.
 - a) Halle la ecuación de la circunferencia Γ , que pasa por el origen (0,0) y tiene centro A.
 - b) Halle la ecuación de la recta tangente a la circunferencia Γ en el punto (0,0) (el origen).

Solución: Primero hallamos las coordenadas del centro A:

$$\begin{cases} 5x &= 12y \\ x - 2y &= 1 \end{cases} \Rightarrow \frac{12}{5}y - 2y = 1$$
$$\Rightarrow \frac{2}{5}y = 1 \Rightarrow y = \frac{5}{2} \Rightarrow x = 6 \therefore A(6, 5/2)$$

El radio r es la distancia de este punto al origen: $\sqrt{6^2 + \left(\frac{5}{2}\right)^2} = \sqrt{36 + \frac{25}{4}} = \frac{1}{2}\sqrt{169} = \frac{13}{2}$.

1

a)
$$\therefore \left[\Gamma : (x-6)^2 + \left(y - \frac{5}{2}\right)^2 = \left(\frac{13}{2}\right)^2 \right]$$

- b) Pendiente del segmento $oA: \frac{5/2}{6} = \frac{5}{12}$
 - \therefore Pendiente de la recta tangente: $-\frac{12}{5}$
 - \therefore La ecuación de la recta tangente a Γ en (0,0)

es
$$y = \frac{-12}{5}x$$

- 4. Sea f(x) la función dada por: $f(x) = \begin{cases} 3x + 6 & \text{si} \quad x \le -2 \\ \frac{x}{2} + 1 & \text{si} \quad x > -2 \end{cases}$
 - a) Bosqueje la gráfica de f(x).
 - b) Demuestre que f(x) tiene inversa.
 - c) Describa la inversa $f^{-1}(x)$ con fórmulas.
 - d) Bosqueje la gráfica de $f^{-1}(x)$.

Solución:

b) f tiene inversa pues f es inyectiva: Toda recta paralela al eje x corta el gráfico de f en un punto.

c)
$$y = 3x + 6 \Leftrightarrow x = \frac{y - 6}{3} = \frac{1}{3}y - 2$$

 $y = \frac{x}{2} + 1 \Leftrightarrow x = 2y - 2$

Nota:
$$f(x) > 0 \Leftrightarrow x > -2$$
 :
$$f^{-1}(x) - \begin{cases} \frac{1}{3}x - 2 & \text{si} \quad x \le 0 \\ 2x - 2 & \text{si} \quad x > 0 \end{cases}$$

d)

(Se refleja el gráfico de f por el eje y=x para obtener el gráfico de f^{-1}).

5. Si en un circuito eléctrico se conectan dos resistencias R_1 y R_2 en paralelo, la resistencia neta R está dada por la relación: $\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}$. Si $R_1=10$ ohms (Ω) , ¿Qué valores de R_2 dan por resultado una resistencia neta de menos de 2Ω ?

Solución:

$$R < 2 \Leftrightarrow (R_1^{-1} + R_2^{-1})^{-1} < 2$$

$$\Leftrightarrow R_1^{-1} + R_2^{-1} > \frac{1}{2}$$

$$\Leftrightarrow R_2^{-1} > \frac{1}{2} - R_1^{-1}$$

$$\Leftrightarrow R_2 < \left(\frac{1}{2} - R_1^{-1}\right)^{-1}$$

Si
$$R_1=10$$
, esto equivale a que $R_2<\left(\frac{1}{2}-\frac{1}{10}\right)^{-1}=\left(\frac{4}{10}\right)^{-1}=\left(\frac{2}{5}\right)^{-1}=\frac{5}{2}$

 \therefore Los valores correspondientes de R_2 son los menores que 5/2 ohms.