SEQUENCE LISTING

5	<110>	Syn	genta Ltd					
10	<120>	Met	hods for sc	reening ins	ecticides			•
	<130>	PPD	50397/WO					
15	<160>	21		•				
20	<170>	Pat	entIn versio	on 3.1				
25	<210>	1						
	<211>	279 [.] '	7			1		
	<212>	DNA				N.		
30	<213>	D. r	melanogaste	ב				
35	<400> gttcatt		atatgtggtg	ataacgcgag	ctgccgaatc	tgcgtgcaat	tcgtgcgttt	60
	gacgtg	ggta	ctaactgcta	tgctgtcgcg	cggacagttg	ttctgatacg	cagagttcct	120
40	gcctcad	ccac	acacgaccac	ctccattaaa	accagccacc	cccccagcg	cctcctccac	180
	cgacago	cagc	tgctccaccg	caccaccagg	agaggggcaa	ttaaaaaatc	aatcagaggg	240
45	ccctaat	ttga	aagctgccac	cgtcgaaatg	tcgccgccga	agaactgcgc	ggtgtgcggg	300
43	gacaagg	gctc	tgggctacaa	cttcaatgcg	gtcacctgcg	agagctgcaa	ggcgttcttc	360
	cgacgga	aacg	cgctggccaa	gaagcagttc	acctgcccct	tcaaccaaaa	ctgcgacatc	420
50	actgtg	gtca	ctcgacgctt	ctgccagaaa	tgccgcctgc	gcaagtgcct	ggatatcggg	480
	atgaaga	agtg	aaaacattat	gtccgaggag	gacaagctga	tcaagcggcg	caagatcgag	540
55	accaaco	cggg	ccaagcgacg	cctcatggag	aacggcacgg	atgcgtgcga	cgccgatggc	600
33	ggcgagg	gaaa	gggatcacaa	agcgccggcg	gatagcagca	gcagcaacct	tgaccactac	660
	tcggggt	cac	aggactcgca	gagctgcggc	tcggcggaca	gcggggccaa	tgggtgctcc	720
60	ggcagac	cagg	ccagttcgcc	gggcacacag	gtcaatccgc	ttcagatgac	ggccgagaag	780
	atagtco	gacc	agatcgtatc	cgacccggat	cgagcctcgc	aggccatcaa	ccggttgatg	840

WO 2005/083442 - 2 -

	cgcacgcaga	aagaggctat	atcggtgatg	gagaaggtaa	tcagctcaca	aaaggacgcc	900
5	ttaaggctgg	tgtcgcattt	gatcgactat	ccaggcgacg	cactcaagat	catttcaaag	960
3	tttatgaact	cgccctttaa	cgcgctgaca [.]	gtattcacca	aattcatgag	ctcacccacg	1020
	gacggcgttg	aaattatctc	aaagatagtt	gattcgcccg	cggacgtggt	ggagttcatg	1080
10	cagaacttga	tgcactcgcc	agaggacgcc	atcgatataa	tgaacaagtt	catgaatacc	1140
	ccagcggagg	cgctgcgcat	tcttaaccga	atcctaagcg	gcggaggagc	gaacgcagcc	1200
15	cageagacag	cagaccgcaa	gccattgctg	gacaaggagc	cggcggtgaa	gcctgcagcg	1260
13	ccagcggagc	gagctgatac	tgtcattcaa	agcatgctgg	gcaacagtcc	gccaatttcg	1320
	ccacatgatg	ctgccgtgga	tctgcagtac	cactcgcccg	gtgtcgggga	gcagcccagt	1380
20	acatcgagta	gccacccctt	gccttacata	gccaactcgc	cggacttcga	tctgaagacc	1440
	ttcatgcaga	ccaactacaa	cgacgagccc	agtctggaca	gtgattttag	cattaactca	1500
25	atcgaatcgg	tgctatccga	ggtgatccgc	attgagtacc	aggccttcaa	tagcatacaa	1560
23	caagcggcat	cgcgcgtaaa	ggaggagatg	tcctacggca	ctcagtctac	gtacggtgga	1620
	tgcaattcgg	ctgcaaacaa	tagccagccg	cacctgcagc	aacccatctg	cgccccatcc	1680
30	acccagcagt	tggatcgcga	gctaaacgag	gcggagcaaa	tgaagctgcg	ggagctgcga	1740
	ctggccagcg	aggctcttta	tgatcccgtg	gacgaggacc	tcagcgccct	gatgatgggc	1800
35	gatgatcgca	ttaagcccga	cgacactcgc	cacaacccaa	agctattgca	gctgatcaat	1860
33	ctgacggcgg	tggccatcaa	gcggcttatc	aaaatggcca	agaagattac	agcattccgt	1920
	gacatgtgcc	aggaggacca	ggtggcccta	ctcaaaggtg	gctgcacaga	aatgatgata	1980
40	atgcgctccg	taatgattta	cgacgacgat	cgcgccgcct	ggaaggtacc	ccataccaaa	2040
	gagaacatgg	gcaacatacg	cactgacctg	ctcaagtttg	ccgaaggcaa	tatctacgag	2100
45	gagcaccaaa	agttcatcac	aacgtttgac	gagaagtggc	gcatggacga	gaacataatc	2160
15	ctgatcatgt	gtgccattgt	cctttttacc	tcggctcgat	cgcgagtgat	acacaaagac	2220
•	gtgattagat	tggaacagaa	ttcctactat	tatcttctgc	gaagatatct	ggagagtgtt	2280
50	tattctggct	gtgaggcgag	aaacgcgttt	atcaagctaa	tccaaaagat	ttcagatgtg	2340
	gagcgtctga	acaagttcat	aattaatgtc	tatttgaatg	ttaacccatc	ccaggtggag	2400
55	cccttgctgc	gtgaaatatt	cgatttgaaa	aatcactaga	caaccgatgc	gtgtcgggca	2460
	tttaatgcct	atgttgatgc	ccaatgatga	atggtcaaca	agctgtagtt	gttgttgttg	2520
	ttgatgtctg	ttttatcttg	tcgcttgtaa	tgttagattt	taatcgaatg	tgattgttag	2580
60	atttgcatat	actgcataga	ttttatattt	ctacatcaaa	gagagcatat	ttaggatacc	2640
	aagtgcaaag	caacacaatc	tatatgtaat	gtacaccgtt	tacctagttt	caaataaact	2700
			•				

	agacga	ataat gcaataacta acttggaagc gtgggttctg tgcaaaaagg aaaaaagaca 2	276(
5	aaaaaa	aataa actgactttg agaaccagtg gtaaacc	2797
	<210>	2	
10	<211>	36	
10	<212>	DNA	
	<213>	Artificial sequence	
15			
	<220>		
20	<223>	Primer dhr96-F	
	<400> tattgc	2 ggat ccttgacgtg ggtactaact gctatg	3 6
25	<210>	3	
	<211>	34	
30	<212>	DNA	
,	<213>	Artificial sequence	
35	<220>		
	<223>	Primer dhr96-R	
40	<400> agtccgg	3 gaat tcagtagtgg tcaaggttgc tgct	34
	<210>	4	
1 5	<211>	24	
	<212>	DNA	
50	<213>	Artificial sequence	
	<220>		
55	<223>	dhr96-fwd_primer	
		4 cgag aacataatcc tgat	24
50	<210>	5	

<211> 30 <212> DNA 5 <213> Artificial sequence <220> 10 <223> dhr96-rev_primer <400> 5 30 cagaagataa tagtaggaat tctgttccaa 15 <210> 6 <211> 27 20 <212> DNA <213> Artificial sequence 25 <220> <223> dhr96-taqman_probe 30 <400> 6 27 tgtgccattg tcctttttac ctcggct 35 <210> 7 <211> 24 <212> DNA 40 <213> Artificial sequence 45 <220> <223> RpL32-fwd_primer <400> 7 50 gatatgctaa gctgtcgcac aaat 24 <210> 8 55 <211> 23 <212> DNA <213> Artificial sequence

```
<220>
     <223> RpL32-rev_primer
 5
     <400> 8
     ggcatcagat actgtccctt gaa
                                                                            23
     <210> 9
10
     <211> 24
     <212> DNA
15
     <213> Artificial sequence
     <220>
20
     <223> RpL32-taqman_probe
     <400> 9
                                                                            24
     cgcaagccca agggtatcga caac
25
     <210> 10
     <211> 263
30
     <212> PRT
     <213> Artificial sequence
35
     <220>
           DHR96 peptide2
     <223>
40
     <400>
            10
     Thr Asp Gly Val Glu Ile Ile Ser Lys Ile Val Asp Ser Pro Ala Asp
                                                             15
                                         10
     1
45
    Val Val Glu Phe Met Gln Asn Leu Met His Ser Pro Glu Asp Ala Ile
                 20 *
                                     25
                                                         30
50
    Asp Ile Met Asn Lys Phe Met Asn Thr Pro Ala Glu Ala Leu Arg Ile
                                                     45
             35
                                 40
55
    Leu Asn Arg Ile Leu Ser Gly Gly Gly Ala Asn Ala Ala Gln Gln Thr
                                                 60
       50
                             55
    Ala Asp Arg Lys Pro Leu Leu Asp Lys Glu Pro Ala Val Lys Pro Ala
```

75

80

60

65

Ala Pro Ala Glu Arg Ala Asp Thr Val Ile Gln Ser Met Leu Gly Asn 85 90 95

- 5 Ser Pro Pro Ile Ser Pro His Asp Ala Ala Val Asp Leu Gln Tyr His 100 105 110
- Ser Pro Gly Val Gly Glu Gln Pro Ser Thr Ser Ser Ser His Pro Leu 10 125
- Pro Tyr Ile Ala Asn Ser Pro Asp Phe Asp Leu Lys Thr Phe Met Gln
 130 135 140
 - Thr Asn Tyr Asn Asp Glu Pro Ser Leu Asp Ser Asp Phe Ser Ile Asn 145 150 155 160
- 20
 Ser Ile Glu Ser Val Leu Ser Glu Val Ile Arg Ile Glu Tyr Gln Ala
 165
 170
 175
- Phe Asn Ser Ile Gln Gln Ala Ala Ser Arg Val Lys Glu Glu Met Ser 180 185 190
- Tyr Gly Thr Gln Ser Thr Tyr Gly Gly Cys Asn Ser Ala Ala Asn Asn 30 195 200 205
- Ser Gln Pro His Leu Gln Gln Pro Ile Cys Ala Pro Ser Thr Gln Gln 210 220
 - Leu Asp Arg Glu Leu Asn Glu Ala Glu Gln Met Lys Leu Arg Glu Leu 225 230 235 240
- 40
 Arg Leu Ala Ser Glu Ala Leu Tyr Asp Pro Val Asp Glu Asp Leu Ser
 245
 250
 255
- 45 Ala Leu Met Met Gly Asp Asp 260
- <210> 11
 - <211> 440
 - <212> DNA
- 55 <213> D. melanogaster

60

	ctaatgctct ctcactctgt cacacagtaa acggcatact gctctcgttg gttcgagaga	180
5	gcgcgcctcg aatgttcgcg aaaagagcgc cggagtataa atagaggcgc ttcgtctacg	240
5	gagcgacaat tcaattcaaa caagcaaagt gaacacgtcg ctaagcgaaa gctaagcaaa	300
	taaacaagcg cagctgaaca agctaaacaa tctgcagtaa agtgcaagtt aaagtgaatc	360
10	aattaaaagt aaccagcaac caagtaaatc aactgcaact actgaaatct gccaagaagt	420
	aattattgaa tacaagaaga	440
1.5		
15	<210> 12	
	<211> 441	
20	<212> DNA	
	<213> S. cerevisiae	
25	<400> 12 atgaagctac tgtcttctat cgaacaagca tgcgatattt gccgacttaa aaagctcaag	60
	tgctccaaag aaaaaccgaa gtgcgccaag tgtctgaaga acaactggga gtgtcgctac	120
30	tctcccaaaa ccaaaaggtc tccgctgact agggcacatc tgacagaagt ggaatcaagg	180
	ctagaaagac tggaacagct atttctactg atttttcctc gagaagacct tgacatgatt	240
	ttgaaaatgg attctttaca ggatataaaa gcattgttaa caggattatt tgtacaagat	300
35	aatgtgaata aagatgccgt cacagataga ttggcttcag tggagactga tatgcctcta	360
	acattgagac agcatagaat aagtgcgaca tcatcatcgg aagagagtag taacaaaggt	420
40	caaagacagt tgactgtatc g	441
	<210> 13	
45	<211> 147	
	<212> PRT	
50	<213> S. cerevisiae	
	· -	
	<400> 13	
55	Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu	
	1 10 15	
60	Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30	

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45

- 5 Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50
- Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile
 10 65 70 75 80

Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 85 90 95

15

Phe Val Gln Asp Asn Val Asn Lys Asp Ala Val Thr Asp Arg Leu Ala 100 105 110

20
Ser Val Glu Thr Asp Met Pro Leu Thr Leu Arg Gln His Arg Ile Ser
115
120
125

- 25 Ala Thr Ser Ser Glu Glu Ser Ser Asn Lys Gly Gln Arg Gln Leu 130 135 140
- Thr Val Ser 30 145

<210> 14

35 <211> 1944

<212> DNA

<213> D. melanogaster

40

<400> 14 aacattatgt ccgaggagga caagctgatc aagcggcgca agatcgagac caaccgggcc 60 45 aagcgacgcc tcatggagaa cggcacggat gcgtgcgacg ccgatggcgg cgaggaaagg 120 180 gatcacaaag cgccggcgga tagcagcagc agcaaccttg accactactc ggggtcacag 50 gactcgcaga gctgcggctc ggcggacagc ggggccaatg ggtgctccgg cagacaggcc 240 agttcgccgg gcacacaggt caatccgctt cagatgacgg ccgagaagat agtcgaccag 300 atcgtatccg acccggatcg agcctcgcag gccatcaacc ggttgatgcg cacgcagaaa 360 55 gaggctatat cggtgatgga gaaggtaatc agctcacaaa aggacgcctt aaggctggtg 420 tcgcatttga tcgactatcc aggcgacgca ctcaagatca tttcaaagtt tatgaactcg 480 60 ccctttaacg cgctgacagt attcaccaaa ttcatgagct cacccacgga cggcgttgaa 540 attatctcaa agatagttga ttcgcccgcg gacgtggtgg agttcatgca gaacttgatg 600

	cactcgccag	aggacgccat	cgatataatg	aacaagttca	tgaatacccc	agcggaggcg	660
5	ctgcgcattc	ttaaccgaat	cctaagcggc	ggaggagcga	acgcagccca	gcagacagca	720
5	gaccgcaagc	cattgctgga	caaggagccg	gcggtgaagc	ctgcagcgcc	agcggagcga	780
	gctgatactg	tcattcaaag	catgctgggc	aacagtccgc	caatttcgcc	acatgatgct	840
10	gccgtggatc	tgcagtacca	ctcgcccggt	gtcggggagc	agcccagtac	atcgagtagc	900
	caccccttgc	cttacatagc	caactcgccg	gacttcgatc	tgaagacctt	catgcagacc	960
15	aactacaacg	acgagcccag	tctggacagt	gattttagca	ttaactcaat	cgaatcggtg	1020
13	ctatccgagg	tgatccgcat	tgagtaccag	gccttcaata	gcatacaaca	agcggcatcg	1080
	cgcgtaaagg	aggagatgtc	ctacggcact	cagtctacgt	acggtggatg	caattcggct	1140
20	gcaaacaata	gccagdcgca	cctgcagcaa	cccatctgcg	ccccatccac	ccagcagttg	1200
	gatcgcgagc	taaacgaggc	ggagcaaatg	aagctgcggg	agctgcgact	ggccagcgag	1260
25	gctctttatg	atcccgtgga	cgaggacctc	agcgccctga	tgaţgggcga	tgatcgcatt	1320
	aagcccgacg	acactcgcca	caacccaaag	ctattgcagc	tgatcaatct	gacggcggtg	1380
	gccatcaagc	ggcttatcaa	aatggccaag	aagattacag	cattccgtga	catgtgccag	1440
30	gaggaccagg	tggccctact	caaaggtggc	tgcacagaaa	tgatgataat	gcgctccgta	1500
	atgatttacg	acgacgatcg	cgccgcctgg	aaggtacccc	ataccaaaga	gaacatgggc	1560
35	aacatacgca	ctgacctgct	caagtttgcc	gaaggcaata	tctacgagga	gcaccaaaag	1620
	ttcatcacaa	cgtttgacga	gaagtggcgc	atggacgaga	acataatcct	gatcatgtgt	1680
	gccattgtcc	tttttacctc	ggctcgatcg	cgagtgatac	acaaagacgt	gattagattg	1740
40	gaacagaatt	cctactatta	tcttctgcga	agatatctgg	agagtgttta	ttctggctgt	1800
	gaggcgagaa	acgcgtttat	caagctaatc	caaaagattt	cagatgtgga	gcgtctgaac	1860
45	aagttcataa	ttaatgtcta	tttgaatgtt	aacccatccc	aggtggagcc	cttgctgcgt	1920
	gaaatattcg	atttgaaaaa	tcac				1944

<210> 15

<211> 648

<212> PRT

55 <213> D. melanogaster

<400> 15

Asn Ile Met Ser Glu Glu Asp Lys Leu Ile Lys Arg Arg Lys Ile Glu 1 5 10 15

5	Thr	Asn	Arg	Ala 20	Lys	Arg	Arg	Leu	Met 25	Glu	Asn	Gly	Thr	Asp 30	Ala	Cys
10	Asp	Ala	Asp 35	Gly	Gly	Glu	Glu	Arg 40	Asp	His	Lys	Ala	Pro 45	Ala	Asp	Ser
10	Ser	Ser 50	Ser	Asn	Leu	Asp	His 55	Tyr	Ser	Gly _.	Ser	Gln 60	Asp	Ser	Gln	Ser
15	Cys 65	Gly	Ser	Ala	Asp	Ser 70	Gly	Ala	Asn	Gly	Cys 75	Ser	Gly	Arg	Gln	Ala 80
20	Ser	Ser	Pro	Gly	Thr 85	Gln	Val	Asn	Pro	Leu 90	Gln	Met	Thr	Ala	Glu 95	Lys
25	Ile	Val	Asp	Gln 100	Ile	Val	Ser	Asp	Pro 105	Asp	Arg	Ala	Ser	Gln 110	Ala	Ile
20	Asn	Arg	Leu 115	Met	Arg	Thr	Gln	Lys 120	Glu	Ala	Ile	Ser	Val 125	Met	Glu	Lys
30	Val	Ile 130	Ser	Ser	Gln	Lys	Asp 135	Ala	Leu	Arg	Leu	Val 140	Ser	His	Leu	Ile
35	Asp 145	Tyr	Pro	Gly	Asp	Ala 150	Leu	Lys	Ile	Ile	Ser 155	Lys	Phe	Met	Asn	Ser 160
40	Pro	Phe	Asn	Ala	Leu 165	Thr	Val	Phe	Thr	Lys 170	Phe	Met	Ser	Ser	Pro 175	Thr
45	Asp	Gly	Val	Glu 180	Ile	Ile	Ser	Lys	Ile 185	Val	Asp	Ser	Pro	Ala 190	Asp	Val
50	Val	Glu	Phe 195	Met	Gln	Asn	Leu	Met 200	His	Ser	Pro	Glu	Asp 205	Ala	Ile	Asp
50	Ile	Met 210	Asn	Lys	Phe	Met	Asn 215	Thr	Pro	Ala	Glu	Ala 220	Leu	Arg	Ile	Leu
55	Asn 225	Arg	Ile	Leu	Ser	Gly 230	Gly	Gly	Ala	Asn	Ala 235	Ala	Gln	Gln	Thr	Ala 240
60	Asp	Arg	Lys	Pro	Leu 245	Leu	Asp	Lys	Glu	Pro 250	Ala	Val	Lys	Pro	Ala 255	Ala

								•								
	Pro	Ala	. Glu	Arg 260		Asp	Thr	Val	Ile 265		Ser	Met	Leu	Gly 270		Ser
5	Pro	Pro	Ile 275		Pro	His	Asp	Ala 280		Val	Asp	Leu	Gln 285	_	His	Ser
10	Pro	Gly 290		Gly	Glu	Gln	Pro 295	Ser	Thr	Ser	Ser	Ser 300		Pro	Leu	Pro
15	Tyr 305		Ala	Asn	Ser	Pro 310	Asp	Phe	Asp	Leu	Lys 315	Thr	Phe	Met	Gln	Thr 320
	Asn	Tyr	Āsn	Asp	Glu 325	Pro	Ser	Leu	Asp	Ser 330		Phe	Ser	Ile	Asn 335	Ser
20	Ile	Glu	Ser	Val 340	Leu	Ser	Glu	Val	Ile 345	Arg	Ile	Glu	Tyr	Gln 350	Ala	Phe
25	Asn	Ser	Ile 355	Gln	Gln	Ala	Ala	Ser 360	Arg	Val	Lys	Glu	Glu 365	Met	Ser	Tyr
30	Gly	Thr 370	Gln	Ser	Thr	Tyr	Gly 375	Gly	Cys	Asn	Ser	Ala 380	Ala	Asn	Asn	Ser
35	Gln 385	Pro	His	Leu	Gln	Gln 390	Pro	Ile	Cys	Ala	Pro 395	Ser	Thr	Gln	Gln	Leu 400
	Asp	Arg	Glu	Leu	Asn 405	Glu	Ala	Glu	Gln	Met 410	Lys	Leu	Arg	Glu	Leu 415	Arg
40	Leu	Ala	Ser	Glu 420	Ala	Leu	Tyr	Asp	Pro 425	Val	Asp	Glu	Asp	Leu 430	Ser	Ala
45	Leu	Met	Met 435	Gly	Asp	Asp	Arg	Ile 440	Lys	Pro	Asp	Asp	Thr 445	Arg	His	Asn
50		Lys 450	Leu	Leu	Gln	Leu	Ile 455	Asn	Leu	Thr	Ala	Val 460	Ala	Ile	Lys	Arg
55	Leu 465	Ile	Lys	Met		Lys 470	Lys	Ile	Thr	Ala	Phe 475	Arg	Asp	Met	Cys	Gln 480
	Glu	Asp	Gln	Val	Ala 485	Leu	Leu	Lys	Gly	Gly 490	Cys	Thr	Glu	Met	Met 495	Ile
60	Met	Arg	Ser					Asp						Trp 510	•	Val

5	Pro His T	hr Lys G 15	lu Asn	. Met	Gly 520		Ile	Arg	Thr	Asp 525		Leu	Lys
10	Phe Ala G	lu Gly A	sn Ile	Tyr 535	Glu	Glu	His	Gln	Lys 540	Phe	Ile	Thr	Thr
10	Phe Asp G 545	lu Lys 'I	rp Arg 550	Met	Asp	Glu	Asn	Ile 555	Ile	Leu	Ile	Met	Cys 560
15	Ala Ile Va		he Thr 65	Ser	Ala	Arg	Ser 570	Arg	Val	Ile	His	Lys 575	Asp
20	Val Ile Ar	g Leu G 580	lu Gln	Asn	Ser	Tyr 585	Tyr	Tyr	Leu	Leu	Arg 590	Arg	Tyr
25 .	Leu Glu Se 59	•	yr Ser	Gly	Cys 600	Glu	Ala	Arg	Asn	Ala 605	Phe	Ile	Lys
20	Leu Ile Gl 610	n Lys I	le Ser	Asp 615	Val	Glu	Arg ,	Leu	Asn 620	Lys	Phe	Ile	Ile
30	Asn Val Ty 625	r Leu A	sn Val 630	Asn	Pro	Ser	Gln	Val 635	Glu	Pro	Leu	Leu	Arg 640
35	Glu Ile Ph	-	eu Lys 45	Asn	His						d		
40	<210> 16 <211> 229												
45	<212> PRT <213> Ane		ajano		,		,						
50	<400> 16 Met Ala Le		sn Lys	Phe	Ile			Asp	Met	Lys	Met		Tyr
.55	1 His Met As	5 p Gly Cy 20	rs Val	Asn	-		10 Tyr	Phe	Thr	Val	Lys 30	15 Gly	Glu
60	Gly Asn Gl	y Lys Pi	o Týr				Gln	Thr		Thr 45		Lys	Val

Thr Met Ala Asn Gly Gly Pro Leu Ala Phe Ser Phe Asp Ile Leu Ser 50 60

- 5 Thr Val Phe Lys Tyr Gly Asn Arg Cys Phe Thr Ala Tyr Pro Thr Ser 65 70 75 80
- Met Pro Asp Tyr Phe Lys Gln Ala Phe Pro Asp Gly Met Ser Tyr Glu 10 85 90 95
- Arg Thr Phe Thr Tyr Glu Asp Gly Gly Val Ala Thr Ala Ser Trp Glu
 100 105 110

Ile Ser Leu Lys Gly Asn Cys Phe Glu His Lys Ser Thr Phe His Gly 115 120 125

- 20
 Val Asn Phe Pro Ala Asp Gly Pro Val Met Ala Lys Lys Thr Thr Gly
 130
 135
 140
- Trp Asp Pro Ser Phe Glu Lys Met Thr Val Cys Asp Gly Ile Leu Lys 145 150 155 160
- Gly Asp Val Thr Ala Phe Leu Met Leu Gln Gly Gly Gly Asn Tyr Arg 165 170 175
- Cys Gln Phe His Thr Ser Tyr Lys Thr Lys Lys Pro Val Thr Met Pro 180 185 190
 - Pro Asn His Val Val Glu His Arg Ile Ala Arg Thr Asp Leu Asp Lys 195 200 205
- 40
 Gly Gly Asn Ser Val Gln Leu Thr Glu His Ala Val Ala His Ile Thr
 210
 215
 220
- 45 Ser Val Val Pro Phe 225
- <210> 17 50
 - <211> 232
 - <212> PRT
- 55 <213> Anemonia sulcata
- <400> 17
 60
 Met Ala Ser Phe Leu Lys Lys Thr Met Pro Phe Lys Thr Thr Ile Glu
 1 5 10 15

5	Gly	Thr	Val	Asn 20	Gly	His	Tyr	Phe	Lys 25	Cys	Thr	Gly	Lys	Gly 30	Glu	Gly
	Asn	Pro	Phe 35	Glu	Gly	Thr	Gln	Glu 40	Met	Lys	Ile	Glu	Val 45	Ile	Glu	Gly
10	Gly	Pro 50	Leu	Pro	Phe	Ala	Phe 55	His	Ile	Leu	Ser	Thr 60	Ser	Cys	Met	Tyr
15	Gly 65	Ser	Lys	Thr	Phe	Ile 70	Lys	Tyr	Val	Ser	Gly 75	Ile	Pro	Asp	Tyr	Phe 80
20	Lys	Gln	Ser	Phe	Pro 85	Glu	Gly	Phe	Thr	Trp 90	Glu	Arg	Thr	Thr	Thr 95	Tyr
25	Glu	Asp	Gly	Gly 100	Phe	Leu	Thr	Ala	His 105	Gln	Asp	Thr	Ser	Leu 110	Asp	Gly
	Asp	Cys	Leu 115	Val	Tyr	Lys	Val	Lys 120	Ile	Leu	Gly	Asn	Asn 125	Phe	Pro	Ala
30	Asp	Gly 130	Pro	Val	Met	Gln	Asn 135	Lys	Ala	Gly	Arg	Trp 140	Glu	Pro	Ala	Thr
35	Glu 145	Ile	Val	Tyr	Glu	Val 150	Asp	Gly	Val	Leu	Arg 155	Gly	Gln	Ser	Leu	Met 160
40	Ala	Leu	Lys	Cys	Pro 165	Gly	Gly	Arg	His	Leu 170	Thr	Cys	His	Leu	His 175	Thr
45	Thr	Tyr				Lys					Leu	_		Pro 190	Gly	Phe
	His	Phe	Glu 195	Asp	His	Arg		Glu 200	Ile	Met	Glu	Glu	Val 205	Glu	Lys	Gly
50	Lys	Cys 210	Tyr	Lys	Gln		Glu 215	Ala	Ala	Val	_	Arg 220	Tyr	Cys	Asp	Ala
55	Ala 225	Pro	Ser	Lys		Gly 230	His	Asn								

<210> 18 , .

<211> 231

<212> PRT

<213> Zoanthus sp.

5

15

<400> 18

- Met Ala His Ser Lys His Gly Leu Lys Glu Glu Met Thr Met Lys Tyr 10 1 15
- His Met Glu Gly Cys Val Asn Gly His Lys Phe Val Ile Thr Gly Glu 20 25 30
- Gly Ile Gly Tyr Pro Phe Lys Gly Lys Gln Thr Ile Asn Leu Cys Val
- 20
 Ile Glu Gly Gly Pro Leu Pro Phe Ser Glu Asp Ile Leu Ser Ala Gly
 50
 55
 60
- Phe Lys Tyr Gly Asp Arg Ile Phe Thr Glu Tyr Pro Gln Asp Ile Val 65 70 75 80
- Asp Tyr Phe Lys Asn Ser Cys Pro Ala Gly Tyr Thr Trp Gly Arg Ser 30 95
- Phe Leu Phe Glu Asp Gly Ala Val Cys Ile Cys Asn Val Asp Ile Thr
 100 105 110
 - Val Ser Val Lys Glu Asn Cys Ile Tyr His Lys Ser Ile Phe Asn Gly 115 120 125
- 40
 Met Asn Phe Pro Ala Asp Gly Pro Val Met Lys Lys Met Thr Thr Asn
 130
 135
 140
- Trp Glu Ala Ser Cys Glu Lys Ile Met Pro Val Pro Lys Gln Gly Ile
 145 150 155 160
- Leu Lys Gly Asp Val Ser Met Tyr Leu Leu Leu Lys Asp Gly Gly Arg
 165 170 175
- Tyr Arg Cys Gln Phe Asp Thr Val Tyr Lys Ala Lys Ser Val Pro Ser 180 185 190
 - Lys Met Pro Glu Trp His Phe Ile Gln His Lys Leu Leu Arg Glu Asp 195 200 205
- 60
 Arg Ser Asp Ala Lys Asn Gln Lys Trp Gln Leu Thr Glu His Ala Ile
 210
 215
 220

Ala Phe Pro Ser Ala Leu Ala <210> <211> <212> PRT Zoanthus sp. <213> <400> 19 Met Ala Gln Ser Lys His Gly Leu Thr Lys Glu Met Thr Met Lys Tyr 10 . Arg Met Glu Gly Cys Val Asp Gly His Lys Phe Val Ile Thr Gly Glu Gly Ile Gly Tyr Pro Phe Lys Gly Lys Gln Ala Ile Asn Leu Cys Val Val Glu Gly Gly Pro Leu Pro Phe Ala Glu Asp Ile Leu Ser Ala Ala Phe Asn Tyr Gly Asn Arg Val Phe Thr Glu Tyr Pro Gln Asp Ile Val Asp Tyr Phe Lys Asn Ser Cys Pro Ala Gly Tyr Thr Trp Asp Arg Ser Phe Leu Phe Glu Asp Gly Ala Val Cys Ile Cys Asn Ala Asp Ile Thr Val Ser Val Glu Glu Asn Cys Met Tyr His Glu Ser Lys Phe Tyr Gly Val Asn Phe Pro Ala Asp Gly Pro Val Met Lys Lys Met Thr Asp Asn Trp Glu Pro Ser Cys Glu Lys Ile Ile Pro Val Pro Lys Gln Gly Ile Leu Lys Gly Asp Val Ser Met Tyr Leu Leu Leu Lys Asp Gly Gly Arg

```
Leu Arg Cys Gln Phe Asp Thr Val Tyr Lys Ala Lys Ser Val Pro Arg
                   180
                                        185
                                                            190
   5
       Lys Met Pro Asp Trp His Phe Ile Gln His Lys Leu Thr Arg Glu Asp
               195
                                    200
                                                        205
       Arg Ser Asp Ala Lys Asn Gln Lys Trp His Leu Thr Glu His Ala Ile
  10
           210
                               215
                                                    220
       Ala Ser Gly Ser Ala Leu Pro
       225
                           230
  15
       <210>
             20
       <211>
             30
  20
       <212>
             DNA
       <213> Artificial sequence
 25
       <220>
       <223> Forward degenerate primer
 30
       <220>
      <221> misc_feature
35
      <222>
             (3)..(21)
      <223> N at each of positions 3, 6, 9, 12, 15 and 21 represents independ
             ently any one of A, C, T or G
 40
      <400> 20 .
      ytnytnaarg gnggntgyac ngaratgatg
                                                                             30
 45
      <210> 21
      <211> 30
 50
      <212> DNA
      <213> Artificial sequence
 55
      <220>
      <223> Reverse degenerate primer
 60
      <220>
```

- <221> misc_feature
- <222> (1)..(7)
- 5 <223> N at each of positions 1, 4 and 7 represents independently any on e of A, C, T or G.
- 10 <400> 21 .ncknarnarr tartartarc trttytgytc