The column (!) is marked with a (*) if the group is not solvable, and is marked with (\Box) if it is a subgroup of A_n .

 \bullet For degree 3, there are 2 transitive subgroups of S_3 , with generators and cycle types as follows:

#	Order	!	Name	Generators	1	2	3
3T1	3		A_3	(123)	1		2
3T2	6		S_3	(123), (12)	1	3	2

• For degree 4, there are 5 transitive subgroups of S_4 , with generators and cycle types as follows:

#	Order	!	Name	Generators	1	2	2,2	3	4
4T1	4		C_4	(1234)	1		1		2
4T2	4		V_4	(12)(34), (13)(24)	1		3		
4T3	8		$D_{2\cdot 4}$	(1234),(13)	1	2	3		2
4T4	12		A_4	$(123),\ (234)$	1		3	8	
4T5	24		S_4	(123),(12)	1	6	3	8	6

• For degree 5, there are 5 transitive subgroups of S_5 , with generators and cycle types as follows:

#	Order	!	Name	$\operatorname{Generators}$	1	2	2,2	3	2,3	4	5
5T1	5		C_5	(12345)	1						4
5T2	10		$D_{2\cdot 5}$	(12345), (15)(24)	1		5				4
5T3	20		F_{20}	(12345), (1243)	1		5			10	4
5T4	60	□*	A_5	(123), (345)	1		15	20			24
5T5	120	*	S_5	(12345), (12)	1	10	15	20	20	30	24

• For degree 6, there are 16 transitive subgroups of S_6 , with generators and cycle types as follows:

#	Order	!	Name	Generators	1	2	2,2	2,3	2,4	2,2,2	3	3,3	4	5	6
6T1	6		C_6	(123456)	1					1		2			2
6T2	6		S_3	(135)(246),(14)(23)(56)	1					3		2			
6T3	12		$S_3 \times C_2$	$(123456),\ (14)(23)(56)$	1		3			4		2			2
6T4	12		A_4	(14)(25), (135)(246)	1		3					8			
6T5	18		F_{18}	(246), (14)(25)(36)	1					3	4	4			6
6T6	24		$A_4 \times C_2$	(36), (135)(246)	1	3	3			1		8			8
6T7	24		S_4 (a)	(14)(25), (135)(246), (15)(24)	1		9		6			8			
6T8	24		S_4 (b)	(14)(25), (135)(246), (15)(24)(36)	1		3			6		8	6		
6T9	36		$S_3 \times S_3$	(246), (15)(24), (14)(25)(36)	1		9			6	4	4			12
6T10	36		F_{36}	(246), (15)(24), (1452)(36)	1		9		18		4	4			
6T11	48		$S_4 \times C_2$	(36), (135)(246), (15)(24)	1	3	9		6	7		8	6		8
6T12	60	_*	A_5	$(12346),\ (14)(56)$	1		15					20		24	
6T13	72		$F_{36} \rtimes C_2$	(246), (24), (14)(25)(36)	1	6	9	12	18	6	4	4			12
6T14	120	*	S_5	(12346),(12)(34)(56)	1		15			10		20	30	24	20
6T15	360	_*	A_6	(12)(3456), (123)	1		45		90		40	40		144	
6T16	720	*	S_6	$(123456),\ (12)$	1	15	45	120	90	15	40	40	90	144	120

• For degree 7, there are 7 transitive subgroups of S_7 , with generators and some cycle types as follows (for any cycle type not listed, S_7 is the only transitive subgroup containing it):

#	Order	!	Name	$\operatorname{Generators}$	1	2,2	2,4	2,2,2	2,2,3	3	3,3	5	6	7
7T1	7		C_7	(1234567)	1									6
7T2	14		$D_{2\cdot7}$	(1234567), (27)(36)(45)	1			6						6
7T3	21		F_{21}	(1234567),(124)(365)	1						14			6
7T4	42		F_{42}	(1234567),(132645)	1			7			14		14	6
7T5	168	□*	$PSL_2(\mathbb{F}_7)$	$(1234567),\ (12)(36)$	1	21	42				56			48
7T6	2520	□*	A_7	(34567), (123)	1	105	630		210	70	280	504		720
7T7	5040	*	S_7	(1234567),(12)	1	105	630	105	210	70	280	504	840	720