Struct. Systems

PART 1: GENERAL

CODE

4.6—Strength

4.6.1 Design strength of a member and its joints and connections, in terms of moment, shear, torsional, axial, and bearing strength, shall be taken as the nominal strength S_n multiplied by the applicable strength reduction factor ϕ .

4.6.2 Structures and structural members shall have design strength at all sections, ϕS_n , greater than or equal to the required strength U calculated for the factored loads and forces in such combinations as required by this Code or the general building code.

COMMENTARY

R4.6—Strength

The basic requirement for strength design may b expressed as follows:

design strength ≥ required strength

$$\phi S_n \ge U$$

In the strength design procedure, the level of safety is provided by a combination of factors applied to the loads and strength reduction factors ϕ applied to the nominal strengths.

The strength of a member or cross section, calculated using standard assumptions and strength equations, along with nominal values of material strengths and dimensions, is referred to as nominal strength and is generally designated S_n . Design strength or usable strength of a member or cross section is the nominal strength reduced by the applicable strength reduction factor ϕ . The purpose of the strength reduction factor is to account for the probability of understrength due to variations of in-place material strengths and dimensions, the effect of simplifying assumptions in the design equations, the degree of ductility, potential failure mode of the member, the required reliability, and significance of failure and existence of alternative load paths for the member in the structure.

This Code, or the general building code, prescribes design load combinations, also known as factored load combinations, which define the way different types of loads are multiplied (factored) by individual load factors and then combined to obtain a factored load *U*. The individual load factors and additive combination reflect the variability in magnitude of the individual loads, the probability of simultaneous occurrence of various loads, and the assumptions and approximations made in the structural analysis when determining required design strengths.

A typical design approach, where linear analysis is applicable, is to analyze the structure for individual unfactored load cases, and then combine the individual unfactored load cases in a factored load combination to determine the design load effects. Where effects of loads are nonlinear—for example, in foundation uplift—the factored loads are applied simultaneously to determine the nonlinear, factored load effect. The load effects relevant for strength design include moments, shears, torsions, axial forces, bearing forces, and punching shear stresses. Sometimes, design displacements are determined for factored loads. The load effects relevant for service design include stresses and deflections.

In the course of applying these principles, the licensed design professional should be aware that providing more strength than required does not necessarily lead to a safer structure because doing so may change the potential failure mode. For example, increasing longitudinal reinforcement area beyond that required for moment strength as derived from analysis without increasing transverse reinforcement could increase the probability of a shear failure occurring

