

Road Scene Understanding For Visually Impaired

Dhruv Sharma - aw51ylaq (Group 6)

Introduction

Task

To develop a Sidewalk Environment Detection System for enhancing the mobility capabilities of visually impaired people through the combination of GPS systems and image segmentation techniques refined for sidewalk recognition.

Method

- Using Valhalla routing API and GPS tracker signals to determine direction instructions.
- Training DeepLabv3 ResNet50 image segmentation model on Cityscapes dataset (5000 images, 50 cities) in Pytorch.
- Fine-tuning the model on Mapillary dataset (1000 images) to improve sidewalk detection.
- Combining GPS system and image segmentation model to assist navigation.

Part 1 – GPS System

Technische Fakultät

Processing GPS signals

File with GPS coordinates to simulate a walk (Timestep, Lat, Long)

Calculate time,
position and speed of
the walk (using
Haversine distance)

```
{'elapsed time': 3.0,
 'lat': 49.59628978,
 'lon': 11.00211628,
 'speed': 1.5846891848498625},
'elapsed time': 5.0,
 'lat': 49.59627368,
 'lon': 11.00212265,
 'speed': 0.9240861571274116},
'elapsed time': 7.0,
 'lat': 49.59627498,
 'lon': 11.00213958,
 'speed': 0.6143663616426172},
{'elapsed time': 9.0,
 'lat': 49.59627272,
 'lon': 11.00218249,
 'speed': 1.551428202417884},
'elapsed time': 11.0,
 'lat': 49.5962736,
 'lon': 11.002212,
 'speed': 1.0645657103600967},
'elapsed time': 13.0,
 'lat': 49.59627653,
 'lon': 11.00224469,
 'speed': 1.1892470136246764},
```

Using Valhalla API

https://valhalla.github.io/valhalla/

5

Processed GPS coordinates

**Valhalla Map Matching API

Instructions from Valhalla for the entire walk route

**Valhalla map matching API requires a list of coordinates i.e. a trace route. Use the Turn-by-Turn route API if only start and end locations are known.

```
Route info from valhalla
[{'duration': 24.0,
  'instruction': 'Walk east on Bahnhofplatz.',
  'location': [49.596276, 11.002119]},
 {'duration': 34.882,
  'instruction': 'Turn right to stay on Bahnhofplatz.',
  'location': [49.596342, 11.002576]},
 {'duration': 52.941,
  'instruction': 'Turn left onto Calvinstraße.',
  'location': [49.595933, 11.002722]},
 {'duration': 31.765,
  'instruction': 'Continue on Hugenottenplatz.',
  'location': [49.596085, 11.00374]},
 {'duration': 32.471,
  'instruction': 'Turn left onto Hauptstraße.',
  'location': [49.596176, 11.004351]},
 {'duration': 28.941,
  'instruction': 'Turn right onto Hugenottenplatz.',
  'location': [49.596582, 11.004208]},
 {'duration': 123.4,
  'instruction': 'Continue on Universitätsstraße.',
  'location': [49.596666, 11.004765]},
 {'duration': 31.765,
  'instruction': 'Turn right onto Schuhstraße.',
  'location': [49.596999, 11.006975]},
 'duration': 0.0,
  'instruction': 'You have arrived at your destination.',
  'location': [49.596606, 11.007124]}]
```

GPS System Output

Using GPS signals and Valhalla Instructions

Sample walk with navigation data

- Speed Calculated using time elapsed and Haversine distance.
- Instruction Valhalla instruction for current GPS position.
- Direction command –
 Go Left, Go Right or
 Stay Center based on
 Valhalla instruction.

Part 2 – Image Segmentation

Technische Fakultät

Cityscapes Dataset

https://www.cityscapes-dataset.com/

*all images have been rescaled to 300x600

Image

Ground Truth

Ground Truth Grayscale

Mapillary Dataset

Provided by the Professor for fine-tuning the model.

Image

Ground Truth

Mapillary Dataset

Provided by the Professor for fine-tuning the model.

Ground Truth Grayscale (processed from convert_masks_to_grayscale.py)

Image

Technische Fakultät

Initial Training on Cityscapes (21 classes)

fine-tuning on mapillary (8 classes)

Target Mean IOU for Cityscapes Dataset

Mean IOU for COCO val2017 dataset

https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/

Model structure	Mean IOU
deeplabv3_resnet50	66.4
deeplabv3_resnet101	67.4
deeplabv3_mobilenet_v3_large	60.3

Mean IOU for Cityscapes dataset

https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes

Model	Mean IoU (class)
DeepLab	63.1%

New Training on Cityscapes (8 classes)

fine-tuning on mapillary (8 classes)

Test scores on mapillary dataset

Test metric	DataLoader 0
test_iou test_loss	0.3197413682937622 0.5499306917190552

Model only trained on cityscapes

Mean IOU = 31.97%

Test metric	DataLoader 0
test_iou	0.5382474660873413
test_loss	0.3432418704032898

Model fine-tuned on mapillary dataset

Mean IOU = 53.82%

21.85% improvement in Mean IOU

Inference

15

Model only trained on cityscapes

Input Image

Predicted Mask

Model fine-tuned on mapillary

Input Image

Predicted Mask

Inference

Model only trained on cityscapes

Input Image

Predicted Mask

Model fine-tuned on mapillary

Input Image

Predicted Mask

Segmentation Output

Combined with navigation data

Technische Fakultät 12. April 2024

Future Tasks

Fechnische Fakultät

Possible tasks to work on

Allow for detours/rerouting

Currently, the route information is calculated only once in the beginning of the walk. This method will break if the BVIP decides to take a detour (for e.g. due to construction) because the system does not perform rerouting.

Ensemble Techniques

Train different networks then build an ensemble to improve segmentation mask prediction.

Brightness

Apply color augmentations (random HSV) or train on images having different brightness/contrasts.

Thank You

Technische Fakultät 12. April 2024 20