# **Pandas**

# $\begin{array}{c} \mathsf{pandas} \\ y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it} \end{array}$









#### pandas: a library for data manipulation

Documentation:

http://pandas.pydata.org/pandas-docs/stable/



#### Reading in any textfile

```
import pandas as pd
FNAME = "http://www.stat.ucla.edu/projects/datasets/twins.dat"

df = pd.read_csv(FNAME, sep=',')
```

#### Inspecting the DataFrame

```
1 df.shape # Dimensions
2 df.head() # First 5 lines
3 df.tail() # Last 5 lines
4 df.columns # List of variables as list
5 df.describe() # Summary statistics
```

#### Inspecting the DataFrame

```
1 df.shape # Dimensions
2 df.head() # First 5 lines
3 df.tail() # Last 5 lines
4 df.columns # List of variables as list
5 df.describe() # Summary statistics
```

- 1. How many observations do you have?
- 2. How many variables do you have?
- 3. Which variables are numeric?
- 4. What is the mean of variable "DEDUC1"?

#### Understanding dtypes

df.info()

# Understanding dtypes

df.info()

| Pandas        | Python  | Purpose                           |
|---------------|---------|-----------------------------------|
| object        | unicode | Text                              |
| int64         | int     | Integers                          |
| float64       | float   | Floating numbers                  |
| bool          | bool    | True and False values             |
| datetime64    |         | Date and time values              |
| timedelta[ns] |         | Differences between two datetimes |
| category      |         | Finite list of text values        |

#### Slicing the DataFrame

```
df.loc[0] # Row by index name
df.iloc[0] # Row by row number
df.iloc[0] # Row by row number
df.["AGE", "HRWAGEH"]] # Column by list of names
df.loc["AGE":"HRWAGEH"] # Column range by column names (will be empty)
df.iloc[:,5:7] # Column range by column indices
df.iloc[1, 4] # Value by row and column index
df.loc[18, "WHITEH"] # Value by row and column name
df["WHITEH"].iloc[18] # Same as above
```

#### Slicing the DataFrame

```
df.loc[0] # Row by index name

df.iloc[0] # Row by index name

df.iloc[0] # Row by row number

df[["AGE", "HRWAGEH"]] # Columns by list of names

df.loc["AGE":"HRWAGEH"] # Column range by column names (will be empty)

df.iloc[:,5:7] # Column range by column indices

df.iloc[1, 4] # Value by row and column index

df.loc[18, "WHITEH"] # Value by row and column name

df["WHITEH"].iloc[18] # Same as above
```

- 1. What is the 6th entry of the 5th column?
- 2. What is the 5th entry of column "DTEN"?
- 3. What is the last entry of column "HRWAGEL"?

#### Boolean indexing

```
1 df[df["AGE"] > 20]
2 df[(df["AGE"] > 20) & (df["WHITEL"] == 1)]
3 df[-df["AGE"] > 20]
4 df[df["AGE"].isin((20, 21, 22, 23))]
```

#### Boolean indexing

```
1 df[df["AGE"] > 20]
2 df[(df["AGE"] > 20) & (df["WHITEL"] == 1)]
3 df[-df["AGE"] > 20]
4 df[df["AGE"].isin((20, 21, 22, 23))]
```

- 1. How many observations have "WHITEL" equal to 0?
- 2. How many observations have "WHITEH" equal to 1 and "DEDUC1 unequal to 0?
- 3. What is the mean age of married twins whose L-parent is a non-white male? (Use "DMARRIED", "WHITEL" and "MALEL")
- 4. In how many rows do the values for "WHITEH" and "WHITEL" differ?

#### Aggregate data

```
1 df["WHITEL"].value_counts()
2 pd.crosstab(df["WHITEH"], df["WHITEL"])
3 df[["DEDUC2", "EDUCL"]].corr()
```

#### Aggregate data

```
1 df["WHITEL"].value_counts()
2 pd.crosstab(df["WHITEH"], df["WHITEL"])
3 df[["DEDUC2", "EDUCL"]].corr()
```

- 1. What is the most common value in "EDUCL"?
- What is the most common combination of "MALEH" and "MALEL"?
- What is the Spearman correlation between "EDUCH" and "EDUCL"? What is the Pearson correlation? (Check documentation!)

#### Changing dtypes

```
1 df["DMARRIED"] = df["DMARRIED"].astype(bool)
2 df["WHITEH"] = df["WHITEH"].astype("category")
3 df["HRWAGEH"] = pd.to_numeric(df["HRWAGEH"], errors="coerce")
```

#### Manipulation

```
1  df = df.sort_values(by='HRWAGEH')  # Sort by column
2  df = df[sorted(df.columns)]  # Re-order columns alphabetically
3  df['new'] = 9  # Add new column
4  df['AGETR'] = df['AGE']**3
5  df['combined'] = df['MALEH'] + df['EDUCH']
6  df["HRWAGEH_new"] = df["HRWAGEH"].fillna(0)  # Fill missings with 0
7  df = df.dropna(subset=["HRWAGEH"])  # Drop rows missing in "HRWAGEH"
```

#### Grouping

```
grouped = df.groupby(['MALEH'])
print(grouped['AGE'].mean())
print(grouped['EDUCH'].agg(['mean', 'sum']))
print(grouped[['EDUCH', 'AGE']].agg(['mean', 'std']))
```

#### Grouping

```
grouped = df.groupby(['MALEH'])
print(grouped['AGE'].mean())
print(grouped['EDUCH'].agg(['mean', 'sum']))
print(grouped[['EDUCH', 'AGE']].agg(['mean', 'std']))
```

- → Full list at http: //pandas.pydata.org/pandas-docs/stable/getting\_ started/basics.html#descriptive-statistics
  - ▶ What is the "AGE" variance for "MALEL" == 0 individuals?
  - What are the second and the third quartile of "EUDCL" for "MALEL" == 0 individuals?
  - ► What is the average age for individuals with "MALEL" == 0 and "MALEH" = 0?

#### Creating DataFrames from other objects



#### Creating DataFrames from other objects, cont.

# Appending, Concatening and Merging

```
1    df3 = df1.append(df2)
2    df4 = pd.concat([df1, df2])
3
4    df5 = pd.concat([df1, df2], axis=1)
5    df6 = df1.merge(df2, left_on="employee", right_on="employee")
```

# Appending, Concatening and Merging

```
1    df3 = df1.append(df2)
2    df4 = pd.concat([df1, df2])
3
4    df5 = pd.concat([df1, df2], axis=1)
5    df6 = df1.merge(df2, left_on="employee", right_on="employee")
```

- ▶ How do objects df3 and df4 differ?
- ▶ How do objects df5 and df6 differ?

# What is pivot?

#### Pivot

df

|   | foo | bar | baz | Z00 |
|---|-----|-----|-----|-----|
| 0 | one | А   | 1   | х   |
| 1 | one | В   | 2   | У   |
| 2 | one | С   | 3   | Z   |
| 3 | two | А   | 4   | q   |
| 4 | two | В   | 5   | w   |
| 5 | two | С   | 6   | t   |

**+** 

| bar | A | В | С |
|-----|---|---|---|
| foo |   |   |   |
| one | 1 | 2 | 3 |
| two | 4 | 5 | 6 |

from: "Reshaping and Pivot Tables"

#### Pivoting and melting

```
pivoted = df6.pivot(index='employee', columns='group', values='hire_date')
reverse = (pivoted.reset_index()
melt(id_vars="employee", value_name="hire_date")
```

#### Pivoting and melting

```
pivoted = df6.pivot(index='employee', columns='group', values='hire_date')
reverse = (pivoted.reset_index()
melt(id_vars="employee", value_name="hire_date")
```

How do you make reverse look like df6 again?

#### Output

https://pandas.pydata.org/pandas-docs/stable/ user\_guide/io.html

#### Output

https://pandas.pydata.org/pandas-docs/stable/ user\_guide/io.html

```
1 df.to_csv(FNAME, sep=";")
2 df.to_html(FNAME, decimal=",", justify="center")
3 df.to_stata(FNAME, write_index=False)
```