CSE 306_Assignment1 4-Bit Arithmetic and Logic Unit

Student ID: 1505097-1505102

May 13, 2018

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology (BUET) Dhaka 1000

1 Design of Arithmetic Unit

Truth Table : Arithmetic Operations

cs_2	cs_1	$cs_0(c_{in})$	Arithmetic Operation	x_i	y_i
0	0	0	Subtract with borrow	A_i	$\overline{B_i}$
0	0	1	Subtract	A_i	$\overline{B_i}$
0	1	0	Decrement A	A_i	1
0	1	1	Transfer A	A_i	1

Subtract:

$$= A - B$$

$$= (A + \overline{B} + 1)$$

Subtract with borrow explanation:

$$=A-B-1$$

$$= (A + \overline{B} + 1) - 1$$

$$=A+\overline{B}$$

Decrement A:

$$= A - 1$$

$$= A + (all1) + 0$$

Transfer A:

$$= A$$

$$= A + (all1) + 1$$

So,
$$Y_i = \overline{CS_1}.\overline{B_i} + CS_1 = \overline{(CS_1 + B_i)} + CS_1$$

Figure 1: Design of Yi

Design of Logic Unit $\mathbf{2}$

Truth Table: Logical Operations

cs_2	cs_1	$cs_0(c_{in})$	x_i	y_i	$F_i = X_i \oplus Y_i$	Operation
1	0	0	$A_i + \overline{B_i}$	B_i	$A_i.B_i$	AND
1	0	1	$A_i + \overline{B_i}$	B_i	$A_i.B_i$	AND
1	1	0	$\overline{A_i}$	0	$\overline{A_i}$	Complement A
1	1	1	$\overline{A_i}$	0	$\overline{A_i}$	Complement A

Explanation:

we can't modify Y_i because that would change the arithmetic operations and neither can omit A_i in any input, So we change X_i ,

$$X_i = A_i + K_i$$

$$F_i = X_i \oplus Y_i$$

$$F_i = X_i \oplus 0$$

$$F_i = X_i$$

$$F_i = X_i$$

$$F_i = A_i + K_i$$

But the desired output is $A_i + B_i$. So putting $K_i = B_i$

$$F_i = X_i \oplus Y_i$$

$$F_i = (A_i \oplus K_i) \oplus \overline{B_i}$$

$$F_i = (A_i \oplus K_i) \oplus \overline{B_i}$$

$$F_i = (A_i \oplus K_i)B_i + \overline{(A_i \oplus K_i)}.\overline{B_i}$$

$$F_i = A_i B_i + K_i B_i + \overline{A_i} \cdot \overline{K_i} \cdot \overline{B_i}$$

Here our desired operation is A_iB_i

So,
$$A_iB_i + K_iB_i + \overline{A_i}.\overline{K_i}.\overline{B_i} = A_iB_i$$

if
$$K_i = \overline{B_i}$$
 Then $F_i = A_i B_i$

So we need $K_i = B_i$ when we will do OR operation and $K_i = \overline{B_i}$ for AND operation.

cs_2	cs_1	cs_0	В
1	0	0	$\overline{B_i}$
1	0	1	$\overline{B_i}$
1	1	0	0
1	1	1	0

So from the truth table we can derive, $X_i = A_i + CS_2.\overline{CS_1}.\overline{B_i} = A_i + CS_2\overline{(CS_1 + B_i)}$

Figure 2: Design of X_i

3 Final Diagram

$$X_i = A_i + CS_2\overline{(CS_1 + B_i)}$$

$$Y_i = \overline{(CS_1 + B_i)} + CS_1$$

Figure 3: Diagram of ALU