

Variabilidad de alta frecuencia del viento en el sistema de afloramiento peruano bajo escenarios de cambio climático (CMIP6)

<u>Daniel Camarena</u>, Adolfo Chamorro, Jorge Tam

1. Introducción: El sistema de afloramiento peruano

Características:

- Norte del Sistema de la Corriente de Humboldt
- Afloramiento -> Viento hacia el Ecuador
- Mecanismos forzantes del viento:
 - -> Anticiclón del Pacífico Sur
 - -> Gradientes de temperatura tierra y mar

1. Introducción: Proyecciones del viento bajo cambio climático

Reference	Resolution	Period		Wind response		
		Future	Present	Mean	Winter	Summer
Bakun (1990)				1		
Rykaczewski et al. (2015)	100 km	2071-2100	1861-1890			1
Goubanova et al. (2011)	50 km	2100-2140	1970-1999	1	→	1
Belmadani et al. (2014)	50 km	2079-2099	1970-1990	Ţ	ţ	1
Chamorro et al. (2021)	7 km	2086-2095	1994-2003	→	1	1

1. Introducción: Proyecciones de los eventos de viento fuerte y débil

Objetivo general: Analizar la variabilidad interdiaria del viento superficial frente a la costa peruana, bajo escenarios de cambio climático pesimista/optimista para fines de siglo XXI, usando datos recientes de modelos climáticos CMIP6, e investigar sus mecanismos forzantes.

Olas de calor marina

3. Metodología: Región de estudio

Región de estudio:

- 5°N 25°S
- 100°O 65°O
- ~200 km mar adentro

Variables estudio:

- Viento superficial
- Presión superficial
- Temperatura superficial

Periodos de estudio:

Histórico/actual: 1990-2010

- -> Reanálisis CFSR
- -> Modelos CMIP6

Futuro: 2080-2100

-> Modelos CMIP6

Google maps

4. Resultados: Validación de datos de modelos CMIP6

Diagrama de Taylor multivariado

- Los modelos tienden a representar la física de CFSR
- El promedio multimodelo es más representativo pero tiene menor variabilidad

- Mayoría de modelos tienen una variabilidad cercana a CFSR salvo el promedio multimodelo
- Se seleccionaron 14 de 19 modelos

4. Resultados: Viento a lo largo de la costa en el periodo histórico

Viento diario a lo largo de la costa

En verano:

Patrón latitudinal (viento fuerte y débil)

Máximo en jets costeros

Mínimo a 3° S

Subestimación de intensidad

4. Resultados: Viento a lo largo de la costa en el periodo histórico

Máncora

- Ciclo estacional
 Máximo en invierno (4.5 m/s)
 Mínimos en verano (2.5 m/s)
- Viento débil y fuerte:
 Viento débil en verano (1.5 m/s)
 Viento fuerte en invierno (5 m/s)

Huacho

- Intensidad de viento subestimada
- La estacionalidad no es representada por los modelos

4. Resultados: Viento a lo largo de la costa para fines de siglo XXI

Viento diario en el periodo futuro desde modelos CMIP6

• En verano:

Máximo en jets costeros

Jet costero norte: Máncora

• Bajo ssp585:

Disminución del viento medio

Disminución del viento débil/fuerte

4. Resultados: Viento a lo largo de la costa para fines de siglo XXI

Viento diario en condiciones futuras (Verano)

- Patrón latitudinal y variación del viento débil y fuerte similar al viento medio
- Bajo ssp585, jet costero norte:
 Incremento de la probabilidad de días de viento débil (~15%)
 Decremento en la probabilidad de días de viento fuerte (~10%)

4. Resultados: Viento a lo largo de la costa para fines de siglo XXI

Viento débil y fuerte en Máncora

Bajo ssp585:

Más viento débil en primavera y verano

Menos viento fuerte en otoño e invierno

Huacho

- Intensidad de viento subestimada
- La estacionalidad no es proyectada por los modelos

4. Resultados: Eventos de viento débil y fuerte

Eventos de viento fuerte a lo largo de la costa

- En el periodo histórico (1990-2010):
 Frecuencia de 12 a 28 eventos por año
 Duración entre 2 y 7 días
 Intensidad máxima entre 7 y 10 m/s
- En condiciones futuras (2080-2100):
 No se proyectan cambios bajo ssp126
 Ligera disminución de la intensidad (~0.5 m/s)
 frente a la costa norte bajo ssp585

4. Resultados: Eventos de viento débil y fuerte

Eventos de viento débil a lo largo de la costa

- En el periodo histórico (1990-2010):
 Frecuencia de 12 a 28 eventos por año
 Duración entre 2 y 7 días
 Intensidad máxima entre 1 y 3 m/s
- En condiciones futuras (2080-2100):
 No se proyectan cambios bajo ssp126
 Moderada disminución de la intensidad (~0.5 m/s)
 frente a la costa norte bajo ssp585

5. Discusión: Mecanismos que controlan el cambio en la variabilidad interdiaria el viento

Gradiente térmico

Gradiente de presión

Viento

Mecanismos forzantes en condiciones futuras (Escenario ssp585)

Ligera disminución del gradiente norte-sur de la temperatura superficial en la costa norte (3-5°S) en correspondencia con la disminución del viento débil y fuerte en la misma zona.

6. Principales conclusiones

- La distribución del viento diario se desplaza hacia vientos de menor intensidad, frente a Máncora,
 bajo un escenario pesimista para fines del siglo XXI.
- Estos cambios estan asociados con una ligera disminución en el gradiente norte-sur de la temperatura superficial del mar.

7. Recomendaciones

- Estudiar la variabilidad de alta frecuencia del viento con un modelo de mayor resolución espacial (modelo regional).
- Profundizar en el estudio de los mecanismos forzantes de la variabilidad de alta frecuencia del viento con un modelo regional.
- Explorar el impacto de los cambios proyectados en el viento en las olas de calor, eventos de hipoxia, entre otros.

Cambio en el viento medio y ciclo estacional (Chamorro, 2021)

