Predicting King County, Washington House Prices

By: Kierra Dangerfield

Problem

- ❖ Buying and/or selling a home can be a stressful time in someone's life.
- Buyers and sellers need to be able to predict house prices.
- It can be difficult to determine what features of a house will affect a home's price.
- Need to create a predictive model that home sellers, home buyers, and online property listings can use.

Data: Overview & Cleaning

- ❖ Data is from Kaggle
- ❖ Data is based on houses sold between May 2014 to May 2015.
- * There were no duplicates

Data Cleaning: Missing Values

- There were some missing values.
- There were only 2 rows with missing values in the 'sqft_above'.
- ❖ There is a row with the "bedrooms" column as 33.

Data Cleaning: Outliers

- There are 13 rows with the "bedrooms" column as o.
- **❖** There are outliers in the "sqft_lot" column.
- * There are 5 rows with the "sqft_lot" above 75,000 square footage.
- ❖ The average went from over 15k to almost 10k square footage.

Analysis: Location

The number of properties of each area in King County, Washington

Analysis: Location Cont.

The price per square foot of a house in King County, Washington

Distribution of Target Variable: Price

Based on the distribution of price

There are two modes:\$350,000 and \$450,000.

Random Forest Features Importance

- The feature importance chart tells us the most important features in determining the price of the house.
- "Sqft_living" is the square footage of a house.
- It is the most important feature in determining the price of a home.

Random Forest Features Importance

- * "Grade" represents the overall grade given to the housing unit, based on King County grading system. 1 poor ,13 excellent
- "lat" and "long" represents the latitude and longitude of a house.
- We will focus on these top 4 features in determining the price.

SHAP Feature Importance

- SHAP is based on feature attributions.
- Based on the SHAP feature importance,
 "sqft_living", "grade", "long", "sqft_living15"
 are the top four features.
- The RF Feature Importance and the SHAP
 Feature Importance have similar top 4
 important features.

mean(|SHAP value|) (average impact olimpact output magnitude)

Analysis: Square Footage vs Price

- This chart is showing that the higher the square footage of a house, typically the higher the price will be.
- The most expensive home has 12,000 square feet.
- Most of the homes are between2,000 and 6,000 square feet.

Analysis: Grade vs Price

- The grade is based off of King County's grading system.
- You should expect a
 higher house price if
 you have a better grade.
- Typically, the houses with a higher grade have a higher house price.

Analysis: Latitude vs Price

- Seattle, Washington has a latitude of 47.608013.
- The closer a house is near Seattle, it's a possibility of it will have a higher house price.
- The higher priced homes are in between 47.5 and 47.7 latitude.

Analysis: Longitude vs Price

- ❖ Seattle, Washington has a longitude
 of -122.335167.
- The closer a house's longitude is near Seattle, it's a possibility of it will have a higher house price.
- ❖ The higher priced homes are in between -122.4 and -122.2 longitude.

Results: Top Features

- 'grade', 'sqft_living', 'lat', and 'long' are the top features in considering a house's price.
- "Bedrooms", "condition", "floors",
 "yr_renovated" are insignificant variables
 based on the feature importance.
- I used 3 models to determine the best model to use

Results: Three Models

- Linear Regression shows the relationship between 2 variables.
- ❖ Ridge Regression is a L2 regularization that helps with overfitting.
- Random Forest Regressor is a supervised learning algorithm that uses ensemble learning method for regression to make a more accurate prediction than a single model.

Model	Best Parameters	RMSE Score	MAPE
Linear Regression	n/a	\$202,853	26.7%
Ridge Regression	n_jobs: 1	\$202,870	26.7%
Random Forest Regressor	max_depth: 30, max_features: 'auto', n_estimators: 400	\$127,996	13.1%

Results: Three Models - cont.

- I used a Linear Regression, Ridge
 Regression, and a Random Forest
 Regression model.
- Used GridSearchCV to determine the best parameters
- Random Forest Regressor performed the best based on the RMSE (root mean squared error)

Model	Best Parameters	RMSE Score	MAPE
Linear Regression	n/a	\$202,853	26.7%
Ridge Regression	n_jobs: 1	\$202,870	26.7%
Random Forest Regressor	max_depth: 30, max_features: 'auto', n_estimators: 400	\$127,996	13.1%

Results: RMSE AND MAPE

- Root Mean Squared Error (RMSE) is the square root of the average squared error.
- RMSE is used to evaluate the quality of predictions by showing how far predictions fall from measured true values.
- Mean Absolute Percentage Error (MAPE) is used to measure forecast accuracy.
- MAPE is the average of the percentage errors

Model	Best Parameters	RMSE Score	MAPE
Linear Regression	n/a	\$202,853	26.7%
Ridge Regression	n_jobs: 1	\$202,870	26.7%
Random Forest Regressor	max_depth: 30, max_features: 'auto', n_estimators: 400	\$127,996	13.1%

Results: Random Forest Models

- The parameters for the model is the following: max_depth=30,
 max_features='auto', n_estimators=400)
- I created 4 different Random Forest Models with different independent variables.
- 'Rf_model' is the model with the original independent variables.

Model	Test R ² score	RMSE Score	MAPE
rf_model	0.88	\$126,597	13%
rf_model2	0.87	\$142,506	13.8%
rf_model3	0.83	\$159,335	15%
rf_model4	0.70	\$213,361	29%

Results: Random Forest Models Cont.

- "rf_model2" is without the insignificant variables based on the Random Forest Feature Importance.
- "rf_model3" is the top features based on the Random Forest feature importance.
- "rf_model4" is the top features based in the SHAP feature importance.
- "rf_model" is the model that has performed the best.

Model	Test R ² score	RMSE Score	MAPE
rf_model	0.88	\$126,597	13%
rf_model2	0.87	\$142,506	13.8%
rf_model3	0.83	\$159,335	15%
rf_model4	0.70	\$213,361	29%

Conclusion

- Before a home buyer, home seller, or online property listing can use this model, there will need to be improvements.
- Based on the residuals plot for the "rf_model", it shows that there is overfitting.
- The residuals plot shows the errors of the prediction between the observed value and the predicted value.

Conclusion: Cont.

- ***** The next step is to correct the overfitting.
- One way to correct the overfitting is to get more data on the houses sold.
- Hopefully, after making those improvements, this model can be used for a home buyer/seller or an online property listing.

End