Activité d'introduction 1 : Notion de limites, notion d'asymptote

On donne les représentations des fonctions cube $x\mapsto x^3$, inverse au carré $x\mapsto \frac{1}{x^2}$ et racine carrée $x\mapsto \sqrt{x}$.

- 1) En lisant les courbes, donner les limites suivantes : $\lim_{x \to +\infty} x^3$ et $\lim_{x \to -\infty} x^3$
- 2) (a) Donner les limites suivantes : $\lim_{x \to +\infty} \frac{1}{x^2}$ et $\lim_{x \to -\infty} \frac{1}{x^2}$.
- **(b)** Comment se comporte la courbe en $+\infty$ et en $-\infty$ de $\frac{1}{x^2}$ par rapport à l'axe des abscisses ? On dit alors que l'axe des abscisses est asymptote à la courbe en $+\infty$.
- 3) (a) Donner la limite suivante : $\lim_{x\to 0} \frac{1}{x^2}$
- **(b)** Comment se comporte la courbe en 0 de $\frac{1}{x^2}$ par rapport à l'axe des ordonnées ? On dit alors que l'axe des ordonnées est asymptote à la courbe en 0.
- **4)** Donner la limite suivante : $\lim_{x \to +\infty} \sqrt{x}$.

Activité d'introduction 2 : Faire des opérations sur les limites

Soit la fonction f définie sur \mathbb{R} par : $f(x) = x^2 + 2x - 3$.

- 1) Donner les limites suivantes : $\lim_{x\to +\infty} x^2$ et $\lim_{x\to +\infty} 2x-3$. Pourquoi peut-on affirmer que : $\lim_{x\to +\infty} f(x)=+\infty$.
- **2)** Donner les limites suivantes : $\lim_{x \to -\infty} x^2$ et $\lim_{x \to -\infty} 2x 3$. Peut-on en déduire la limite de f en $-\infty$? Pourquoi?
- **3)** Vérifier que pour $x \neq 0$, on a : $f(x) = x^2 \left(1 + \frac{2}{x} \frac{3}{x^2}\right)$. Donner la limite $\lim_{x \to -\infty} 1 + \frac{2}{x} \frac{3}{x^2}$. Peut-on en déduire la limite de f en $-\infty$? Pourquoi?