FCC 15.249 2.4 GHz Report

for

INVENTEC BESTA CO.,LTD

10FL.,No.36,Lane513,Rui Guang Road,Nei Hu Dist., Taipei 114,Taiwan,R.O.C

Product Name : Ancall Smart Tracker

Model Name : AC-GS11

FCC ID : U6OACGS11

Prepared by: : AUDIX Technology Corporation,

EMC Department

TABLE OF CONTENTS

Description	<u>Page</u>
TEST REPORT CERTIFICATION	4
1. REPORT HISTORY	4
2. SUMMARY OF TEST RESULTS	
3. GENERAL INFORMATION	
3.1. Description of EUT	
3.2. EUT Specifications Assessed in Current Report	
3.3. Antenna Information	8
3.4. Test Configuration	8
3.5. Setup Configuration	
3.6. Operating Condition of EUT	
3.7. Description of Test Facility	
3.8. Measurement Uncertainty	9
4. MEASUREMENT EQUIPMENT LIST	10
4.1. Radiated Emission Measurement	10
5. CONDUCTED EMISSION MEASUREMET	11
6. RADIATED EMISSION MEASUREMENT	12
6.1. Block Diagram of Test Setup	
6.2. Radiated Emission Limits	
6.3. Test Procedure	
6.4. Measurement Result Explanation	
6.5. Test Results	
7. OCCUPIED BANDWIDTH 99% POWER MEASUREMENT	25
8. DEVIATION TO TEST SPECIFICATIONS	27

APPENDIX A TEST PHOTOGRAPHS

TEST REPORT CERTIFICATION

Applicant : INVENTEC BESTA CO.,LTD

Product Name : Ancall Smart Tracker

Model No. : AC-GS11

Serial No. : N/A

Power Supply : DC 3V (via Battery)

Rules of Compliance and Measurement Standards:

FCC CFR 47 Part 15 Subpart C:2015

ANSI C63.10:2013

AUDIX Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. **AUDIX Technology Corp.** does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Test: 2016. 11. 22 ~ 23 Date of Report: 2016. 11. 28

Producer: WA

(Eva Chen/Assistant Administrator)

Igranory.

File Number: C1M1611025 Report Number: EM-F160789

1. REPORT HISTORY

Revision	Date	Revision Summary	Report Number
0	2016. 11. 28	Original Report.	EM-F160789

2. SUMMARY OF TEST RESULTS

Rule	Description	Results
15.207	Conducted Emission	N/A, Note
15.205/ 15.209/ 15.249(a)	Radiated Band Edge and Radiated Spurious Emission Fundamental Frequency	PASS
	Occupied Bandwidth 99% Power	Reference only
15.203	Antenna Requirement	PASS
Note: The EUT only employs battery power for operation, so it is unnecessary to test.		

3. GENERAL INFORMATION

3.1. Description of EUT

Product	Ancall Smart Tracker
Model Number	AC-GS11
Serial Number	N/A
	INVENTEC BESTA CO.,LTD
Applicant	10FL.,No.36,Lane513,Rui Guang Road,Nei Hu Dist., Taipei 114,Taiwan,R.O.C
RF Features	Bluetooth Low Energy (BLE)
Transmit Type	1T1R
Date of Receipt of Sample	2016. 11. 02

3.2. EUT Specifications Assessed in Current Report

Mode	Fundamental Range (MHz)	Channel Number	Modulation	Data Rate (Mbps)
BLE	2402-2480	40	GFSK	0.3

Channel List			
	Bl	Œ	
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)
37	2402	18	2442
00	2404	19	2444
01	2406	20	2446
02	2408	21	2448
03	2410	22	2450
04	2412	23	2452
05	2414	24	2454
06	2416	25	2456
07	2418	26	2458
08	2420	27	2460
09	2422	28	2462
10	2424	29	2464
38	2426	30	2466
11	2428	31	2468
12	2430	32	2470
13	2432	33	2472
14	2434	34	2474
15	2436	35	2476
16	2438	36	2478
17	2440	39	2480

3.3. Antenna Information

Antenna Part Number	Manufacture	Antenna Type	Frequency	Max Gain (dBi)
		PCB Antenna	2.4GHz	-1.24

3.4. Test Configuration

Mode	Duty Cycle (x)	T (ms)	Duty Cycle Factor (dB)
BLE	0.67	N/A	N/A

Note: When duty cycle is less than 98% (0.98) that duty cycle factor $10\log(1/x)$ is needed to add in conducted test items measured in average detector.

	Item	Mode	Data Rate	Test Channel
	Radiated Band Edge Note1	BLE	1Mbps	37/39
	Radiated Spurious Emission (30MHz-1GHz) Note1	BLE	1Mbps	37
Radiated Test Case	Radiated Spurious Emission (Above 1GHz) Note1	BLE	1Mbps	37/17/39
	Fundamental Frequency	BLE	1Mbps	37/17/39
	Occupied Bandwidth 99% Power	BLE	1Mbps	37/17/39

Note 1:

7 1 1	1 '1	\mathbf{r}	•
111/10	niie		evice
11110	UIIC	$\boldsymbol{\nu}$	evice

Portable Device, and 3 axis were assessed. The worst scenario for Radiated Spurious Emission as follow:

Lie

Side

☐ Stand

Note 2: We performed testing of the highest and lowest data rate.

3.5. Setup Configuration

3.6. Operating Condition of EUT

Test program "CMD" is used for enabling EUT RF function under continues transmitting and choosing data rate/ channel.

3.7. Description of Test Facility

Test Firm Name : AUDIX Technology Corporation

EMC Department

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

Test Location & Facility : Semi-Anechoic Chamber &

Fully Anechoic ChamberNo. 53-11, Dingfu, Linkou Dist.,
New Taipei City 244, Taiwan

NVLAP Lab. Code : 200077-0

TAF Accreditation No : 1724

FCC OET Designation : TW1004 & TW1090

3.8. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty
Radiation Test	30MHz~1000MHz	± 3.68dB
(Distance: 3m)	Above 1GHz	± 5.82dB

Remark : Uncertainty = $ku_c(y)$

Test Item	Uncertainty
Occupied Bandwidth 99% Power	± 1kHz

4. MEASUREMENT EQUIPMENT LIST

4.1. Radiated Emission Measurement

4.1.1. Frequency Range 30MHz~1000MHz (Semi-Anechoic Chamber)

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2016. 09. 19	1 Year
2.	Test Receiver	R & S	ESCS30	100338	2016. 06. 22	1 Year
3.	Amplifier	HP	8447D	2944A06305	2016. 02. 23	1 Year
4.	Bilog Antenna	TESEQ	CBL6112D	33821	2016. 01. 30	1 Year
5.	Test Software	Audix	e3	V.6.110601	N.C.R.	N.C.R.

4.1.2. Frequency Range Above 1GHz (Fully Anechoic Chamber)

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300366	2016. 08. 19	1 Year
2.	Pre-Amplifier	HP	8449B	3008A02678	2016. 03. 04	1 Year
3.	Horn Antenna	Horn Antenna ETS-Lindgre n 3117		00135902	2016. 03. 09	1 Year
4.	2.4GHz Notch Filter	K&L	7NSL10-244 1.5E130.5-00	1	2016. 07. 27	1 Year
5.	Test Software	Audix	e3	V.6.110601	N.C.R.	N.C.R.

4.1.3. RF Conducted Measurement

I	tem	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
	1.	Spectrum Analyzer	Keysight	N9010B-544	MY55460198	2016. 04. 20	1 Year

File Number: C1M1611025 Report Number: EM-F160789

5. CONDUCTED EMISSION MEASUREMET

[The EUT only employs battery power for operation, no conductive emission limits are required according to FCC Part 15 Section §15.207]

6. RADIATED EMISSION MEASUREMENT

6.1. Block Diagram of Test Setup

- 6.1.1. Block Diagram of EUT Indicated as section 3.6
- 6.1.2. Semi-Anechoic Chamber (3m) Setup Diagram for 30-1000 MHz

6.1.3. Fully Anechoic Chamber (3m) Setup Diagram for above 1GHz

File Number: C1M1611025 Report Number: EM-F160789

6.2. Radiated Emission Limits

6.2.1. General Limit

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with section 6.2.2. Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Eraguanay (MHz)	Distance (m)	Field Strengths Limits			
Frequency (MHz)	Distance (m)	$\mu V/m$	$dB\mu V/m$		
30 ~ 88	3	100	40.0		
88 ~ 216	3	150	43.5		
216 ~ 960	3 200		46.0		
Above 960	3	500	54.0		
Above 1000	3	74.0 dBμV/m (Peak) 54.0 dBμV/m (Average)			

Remark : (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI C63.10: 6.6.4.3, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

6.2.2. Limite for Fundamental & Harmonics Frequency

Fundamental	Field stren	gth of fundamental	Field strength of harmonics		
Frequency	mV/m $dB\mu V/m$		μV/m	$dB\mu V/m$	
902-928MHz	50	114 (Peak)	500	74 (Peak)	
902-928WIIIZ	30	94 (Average)	300	54 (Average)	
2400 2402 51411-	50	114 (Peak)	500	74 (Peak)	
2400-2483.5MHz		94 (Average)	300	54 (Average)	
5725-5875MHz	50	114 (Peak)	500	74 (Peak)	
3/23-38/3WITZ	30	94 (Average)	300	54 (Average)	
24.0-24.25GHz	250	128 (Peak)	2500	88 (Peak)	
24.0-24.23GHZ	230	108 (Average)	2300	68 (Average)	

Remark: $mV/m=1000\mu V/m$; $dB\mu V/m=20 \log (\mu V/m)$

6.3. Test Procedure

The EUT setup on the turn table which has 1.5 m height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m to find the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

Frequency below 1 GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1) RBW = 120KHz
- (2) $VBW \ge 3 \times RBW$.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required. Otherwise using Q.P. for finally measurement.

Frequency above 1GHz to 10th harmonic:

Peak Detector:

- (1) RBW = 1MHz
- (2) $VBW \ge 3 \times RBW$.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the average detector is not required. Otherwise using average for finally measurement.

Average Measurement:

Option 1:

- (1) RBW = 1 MHz
- (2) VBW = 1/T or 10Hz when duty cycle >98%.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

\square Option 2:

Average Emission Level= Peak Emission Level+ D.C.C.F.

6.4. Measurement Result Explanation

- Peak Emission Level=Antenna Factor + Cable Loss + Meter Reading
- Average Emission Level l=Antenna Factor + Cable Loss + Meter Reading
- □ Average Emission Level= Peak Emission Level+ DCCF

 Duty Cycle Correction Factor (DCCF)= 20log (TX on/TX on+off) presented in section 3.4

6.5. Test Results

PASSED.

Test Date	2016/11/22	Temp./Hum.	23°C/53%	
Test Voltage		DC 3V (via Batte	ery)	

No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan

Tel: +886 2 26099301 Fax: +886 2 26099303

6.5.1. Emissions within Restricted Frequency Bands

6.5.1.1. Frequency Below 1 GHz

Mode	BLE		Frequency			TX 2402MH	
80 Level (dBuV/m)							
70							
50							30M-1G
50							6dB
10	- Lotte de marche de la companya de		1		4	والمارس العراس العراسة والمساورة والمساورة	plantation of probability
30	2 him stankersky hydrogen skorole	Janes Manyapan	المراجع والمطالب المطالب المطالب المطالب المطالب	(Construented Nov-Assessment	Uman District		
20	Walter Charles and						
10							
30 100.	200. 300. 40			00. 700.		800. 9	00. 1000

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(\text{dB}\mu\text{V})$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
101.78	17.38	2.29	4.81	24.48	43.50	19.02	Peak
242.43	18.47	3.74	2.03	24.24	46.00	21.76	Peak
487.84	23.64	6.32	2.10	32.06	46.00	13.94	Peak
721.61	25.87	7.20	1.51	34.58	46.00	11.42	Peak

Antenna at Vertical Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(\text{dB}\mu\text{V})$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
101.78	17.38	2.29	4.32	23.99	43.50	19.51	Peak
331.67	20.80	4.74	2.87	28.41	46.00	17.59	Peak
444.19	23.23	5.97	2.61	31.81	46.00	14.19	Peak
679.90	25.50	7.02	1.81	34.33	46.00	11.67	Peak

6.5.1.2. Frequency Above 1 GHz to 10th harmonics

Band Edge:

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2389.32	32.16	5.72	17.59	55.47	74.00	18.53	Peak
2390.04	32.16	5.72	17.27	55.15	74.00	18.85	Peak
2402.16	32.16	5.72	50.60	88.48			Peak

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter Reading	Emission Level	Limits	Margin	D-44
Frequency (MHz)	Factor (dB/m)	Loss (dB)	(dBµV)	(dB μ V/m)	(dBµV/m)	(dB)	Detector
2367.60	32.11	5.69	1.82	39.62	54.00	14.38	Average
2390.04	32.16	5.72	1.31	39.19	54.00	14.81	Average
2402.04	32.16	5.72	50.00	87.88			Average

Antenna at Vertical Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
2388.12	32.16	5.72	13.10	50.98	74.00	23.02	Peak
2390.04	32.16	5.72	10.73	48.61	74.00	25.39	Peak
2401.68	32.16	5.72	43.62	81.50			Peak

Antenna at Vertical Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2379.84	32.13	5.71	1.77	39.61	54.00	14.39	Average
2390.04	32.16	5.72	1.10	38.98	54.00	15.02	Average
2402.04	32.16	5.72	42.97	80.85			Average

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
2479.68	32.28	5.82	49.03	87.13			Peak
2483.52	32.28	5.82	24.30	62.40	74.00	11.60	Peak
2483.76	32.28	5.82	23.88	61.98	74.00	12.02	Peak

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2480.00	32.28	5.82	48.44	86.54			Average
2483.52	32.28	5.82	1.93	40.03	54.00	13.97	Average
2484.32	32.28	5.82	2.42	40.52	54.00	13.48	Average

Antenna at Vertical Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2480.24	32.28	5.82	41.34	79.44			Peak
2483.52	32.28	5.82	18.36	56.46	74.00	17.54	Peak
2483.92	32.28	5.82	18.04	56.14	74.00	17.86	Peak

Antenna at Vertical Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2480.00	32.28	5.82	40.64	78.74			Average
2483.52	32.28	5.82	1.78	39.88	54.00	14.12	Average
2521.68	32.34	5.89	2.06	40.29	54.00	13.71	Average

6.5.2. Emissions outside the frequency band:

The emissions (up to 25GHz) not reported for there is no emission be found.

Mode			BLE		Frequency	T	X 2402M	IHz
Antenna a	t Hor	izon	tal Polar	rization				
Emission Frequency	Ante Fac		Cable Loss	Meter Reading	Emission Evel	Limits	Margin	Detector
(MHz)	(dB/	/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
4805.00	34.	22	7.86	5.08	47.16	54.00	6.84	Peak
7205.00	35.	80	9.22	0.89	45.91	54.00	8.09	Peak
Antenna a	t Ver	tical	Polariza	tion				
Emission Frequency	Ante Fac		Cable Loss	Meter Reading	Emission Eevel	Limits	Margin	Detector
(MHz)	(dB/	/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
4805.00	34	22	7.86	3.12	45.20	54.00	8.80	Peak
7205.00	35.	80	9.22	-1.54	43.48	54.00	10.52	Peak
Mode			BLE		Frequency	T	X 2440M	IНz
Antenna a	t Hor	izon	tal Polar	rization				
Emission Frequency	Ante Fac		Cable Loss	Meter Reading	Emission Evel	Limits	Margin	Detector
(MHz)	(dB/	/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
4880.00	34.	25	8.35	4.55	47.15	54.00	6.85	Peak
7320.00	35.	80	9.89	-2.23	43.46	54.00	10.54	Peak
Antenna at Vertical Polarization								
1111temme u					Emission	Limits	Margin	
Emission Frequency	Ante Fac		Cable Loss	Meter Reading		Emms	wangiii	Detector
Emission		tor			g Level	(dBµV/m)	(dB)	Detector
Emission Frequency	Fac	tor m)	Loss	Reading	g Level			Detector Peak

Mode			BLE			Frequency	T	X 2480N	ſНz
Antenna a	ıt Hori	zont	al Polaı	rization					
Emission Frequency	Anter Fact		Cable Loss	Mete Readii	-	Emission Level	Limits	Margin	Detector
(MHz)	(dB/ı	m)	(dB)	(dBµV	V)	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
4960.00	34.2	29	8.68	4.49)	47.46	54.00	6.54	Peak
7440.00	35.8	30	10.40	-2.14	1	44.06	54.00	9.94	Peak
Antenna a	ıt Vert	ical l	Polariza	tion					
Emission Frequency	Anter Fact		Cable Loss	Mete Readii		Emission Level	Limits	Margin	Detector
(MHz)	(dB/1)	m)	(dB)	(dBµV	V)	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
4960.00	34.2	29	8.68	0.14	-	43.11	54.00	10.89	Peak
7440.00	35.8	30	10.40	-2.60)	43.60	54.00	10.40	Peak

6.5.3. Fundamental Frequency:

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
2402.18	32.16	5.72	50.80	88.68	94.00	5.32	Peak

Remark: Horizontal is the strongest polarization and peak value has complied with limit, so vertical won't be listed in test report.

Antenna at Horizontal Polarization

	Antenna Factor		Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
2439.71	32.23	5.78	50.27	88.28	94.00	5.72	Peak

Remark: Horizontal is the strongest polarization and peak value has complied with limit, so vertical won't be listed in test report.

Antenna at Horizontal Polarization

	Antenna Factor		Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
2479.69	32.28	5.82	48.59	86.69	94.00	7.31	Peak

Remark: Horizontal is the strongest polarization and peak value has complied with limit, so vertical won't be listed in test report.

7. OCCUPIED BANDWIDTH 99% POWER MEASUREMENT

Test Date	2016/11/23	Temp./Hum.	23°C/52%
Cable Loss		Test Voltage	DC 3V (via Battery)

7.1.1. Occupied Bandwidth 99% Power Result

Modulation Type	Centre Frequency (MHz)	Occupied Bandwidth 99% Power (MHz)
	2402	1.0989
BLE	2440	1.0938
	2480	1.1102

AUDIX Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan

Tel: +886 2 26099301 Fax: +886 2 26099303

7.1.2. Measurement Plots

8. **DEVIATION TO TEST SPECIFICATIONS**[NONE]