

Predicting Actual Enrollment Duration of Clinical Studies with Explainability

By TEAM BANOTH.MBAA24085 (IIM KASHIPUR)

MODEL OVERVIEW

Problem Overview:

- Clinical trials face significant delays due to inefficient enrollment planning, affecting drug development timelines and costs.
- Accurately predicting enrollment duration can streamline recruitment, optimize protocol design, and improve clinical study execution.

Business & Clinical Relevance:

- Optimizes study design \rightarrow Improves trial feasibility assessments before execution.
- Resource allocation \rightarrow Ensures the right patient recruitment strategies,
- Regulatory efficiency → Supports pharmaceutical firms & CROs by accelerating drug approvals.

Data Collection & Preprocessing

• Data Source: ClinicalTrials.gov dataset focused on interventional studies. Includes structured data (study phases, interventions) and unstructured text (study titles, outcome measures).

Data Preprocessing:

- Handling Missing Values: Categorical variables (e.g., Phases, Study Status) → Filled with 'Unknown' to maintain integrity while ensuring the model understands that certain information was missing.
- Numerical variables (e.g., Enrollment) → Filled with the median instead of the mean to avoid distortion from extreme outliers.
- Categorical Encoding: One-hot encoding for categorical variables like Phases, Sex, Study Status to ensure the model understands discrete categories numerically.
- Feature Engineering: Applied log transformation on Enrollment to normalize skewed distributions.
- Data Splitting: 80% Training, 20% Testing to prevent data leakage and allow robust model evaluation.

Model Selection & Justification

Models Used:

- 1. Linear Regression → Baseline model for performance comparison.
- 2. Random Forest Regressor → Handles non-linear relationships and provides feature importance analysis.
- 3. Gradient Boosting Regressor → Boosts predictive accuracy while balancing bias-variance trade-offs.

Reasons for these Models:-

- Random Forest & Gradient Boosting → Superior performance for structured tabular data, handling feature interactions effectively.
- Explainability via SHAP Values → Helps understand how different features influence enrollment predictions.
- GridSearchCV Optimization → Ensured hyperparameter tuning for the best results

Model Performance Metrics

Comparision of Models

WHY? RANDOM FOREST MODEL

- RMSE: Measures prediction errors with higher penalties for large deviations; Random Forest achieved 0.0022, indicating near-perfect accuracy.
- MAE: Represents the average absolute error in months; Random Forest recorded 0.00029, confirming minimal deviation from actual values.
- R² Score: Assesses variance explained by the model; Random Forest scored 0.99999, capturing nearly all variability in enrollment duration.
- Adjusted R²: Penalizes excessive features; Random Forest maintained 0.99999, ensuring optimal model efficiency without overfitting.
- **SMAPE:** Evaluates both over- and under-predictions; Random Forest achieved 0.0030, demonstrating excellent forecasting accuracy.

- Random Forest outperformed all models, achieving the metrics.
- Gradient Boosting delivered strong results, with a slight increase in RMSE (0.0117) and SMAPE (0.1478) compared to Random Forest.
- Linear Regression underperformed, with an RMSE of 1.19 and R² of 0.13, struggling with the dataset's nonlinearity.
- Low SMAPE values in Random Forest confirm minimal bias, reducing the risk of over- or under-estimations in enrollment duration.
- conditions significantly impact predictions.

highest predictive accuracy across RMSE, MAE, and R²

Adjusted R² validated feature relevance, ensuring that key variables like enrollment size, study phases, and

These insights optimize clinical trial recruitment, enabling data-driven decision-making to reduce study delays and improve efficiency.

Model Residual Analysis:

• Minimal residuals confirm that the model is not overfitting.

Predicted vs Actual Enrollment Duration:

- Alignment along the red diagonal confirms prediction reliability.
- High correlation between predicted and actual values validates model effectiveness.

	Model	Training RMSE	Testing RMSE	Training MAE	Testing MAE	Features :	ļ
0	Linear Regression	1.190011	1.199239	0.873634	0.905473	1. Enrollment Numbers, 2. Study Phases,	l
1	Random Forest	0.005717	0.002243	0.000193			l
2	Gradient Boosting	0.010838	0.011740	0.006508	0.006751	3. Conditions (Diseases) 4. Age Group,	İ
	Taria CMARE Tark CMA	NDE	_	Footure colo	ation logica	5.Interventions, 6.Primary Outcome	ł

Training R²

0.136577

0.999980

0.999928

Testing R²

0.999997

Feature selection logic:

- **0.129108** A mix of categorical& numerical features optimizes performance
 - SHAP values confirmed feature importance
 - Correlation with Target Features were prioritized...

21.189582

0.002143

0.144810

Train SMAPE Test SMAPE

21.772537

0.003017

0.147836

Explainability – SHAP Analysis & Feature Importance

- SHAP (SHapley Additive exPlanations) for Model Interpretability:
- Why SHAP? \rightarrow Ensures transparency in AI-driven decisions.
- How it Helps? → Identifies how much each feature contributes to predictions.
- Outcome: Clinical trial planners can refine patient recruitment strategies based on SHAP feature contributions.

Key Insights:

- Enrollment Number → The most influential predictor of trial duration.
- Enrollment numbers, Study Phases, and Age had the highest impact.
- Study Phases → Phase 2 & Phase 3 trials have a significant impact on recruitment speed.
- Interventions & Conditions → Some diseases require specialized patient selection, affecting enrollment.

- Larger studies → Longer enrollment duration
- Enrollment Number \rightarrow The most influential predictor of trial duration..
- Enrollment numbers have the highest impact—larger trials (red) take longer, while smaller ones (blue) are shorter.
- Study phase affects duration—Phase 3 and 4 trials take longer compared to early-phase studies.
- Age group matters—Trials focused on older adults generally have longer recruitment periods.
- Interventions play a role—Complex trials with multiple interventions take longer than simpler ones.
- Color gradient (red → blue) shows feature value— Red indicates longer durations, blue indicates shorter.
- Optimizing recruitment strategies based on these insights can help reduce delays and improve efficiency.

Challenges & Future Work

Conclusion & Key Takeaways

- Random Forest achieved unmatched accuracy, making it the best model for enrollment predictions.
- SHAP explainability confirmed that enrollment numbers, study phases, and conditions drive recruitment duration.
- The model helps trial designers proactively manage patient recruitment, reducing delays & improving trial efficiency.
- Future applications: This approach can be scaled into a clinical decision support system, ensuring better planning for biotech firms, sponsors, and regulatory agencies.

Challenges Encountered:

- Dataset Imbalance: Some conditions/phases were underrepresented, affecting generalization.
- Feature Limitation: External trial factors like geographic location were not included.
- Explainability-Complexity Tradeoff: Highperforming models are often difficult to interpret.

Future Enhancements:

- Expand Dataset Scope: Incorporate global clinical trial data to enhance robustness.
- Feature Augmentation: Add external variables like trial location & investigator experience.
- Deploy as a Real-Time Decision Tool: Enable automated insights for CROs & pharmaceutical companies.

Future Impact:

- Optimizing Protocol Design: Helps sponsors adjust study criteria before execution, reducing delays.
- **Real-Time Trial Monitoring:**Future applications can integrate the model into clinical trial management systems for continuous updates.
- Scalability & Industry Application: Can be adapted for diverse therapeutic areas, multi-region studies, and emerging clinical research fields.

Surprising Findings:

• Geographic Location Plays a Critical Role: Enrollment rates significantly vary across regions, with trials in emerging markets often facing delays due to regulatory approvals and recruitment bottlenecks.

Source- https://pmc.ncbi.nlm.nih.gov/articles/PMC10982574/

- Impact of Study Design on Enrollment Speed: Decentralized clinical trials (DCTs) and hybrid trials are showing faster recruitment trends compared to traditional site-based studies. Source- https://pmc.ncbi.nlm.nih.gov/articles/PMC6249090/
- Unexpected Influence of Age & Condition Type: Trials focusing on older adults or rare diseases tend to have longer enrollment durations, contradicting assumptions that broad inclusion criteria accelerate recruitment.

Source- https://www.fda.gov/media/134754

• Early Recruitment Success Doesn't Guarantee Trial Completion: Some trials see rapid initial recruitment but later experience dropout surges due to adverse events, lack of follow-ups, or protocol amendments.

Source- https://pmc.ncbi.nlm.nih.gov/articles/PMC7342339/