Lecture 5 - Date : 18 May 2021

Reduction Formula

and multiply by $\frac{\pi}{2}$ if both m and n are even.

$$\int_{0}^{11/2} \sin x \, dx = \frac{(6-1)(6-3)(6-5)}{6(6-2)(6-4)} \times \frac{11}{2}$$

$$= \frac{5 \times 3 \times 1}{6 \times 4 \times 2} \times \frac{11}{2} = \frac{511}{32}$$

$$\int_{0}^{11/2} \cos^{9} x \, dx \quad \text{Here } n=9, \text{odd}$$

Q. find
$$\int 2\cos^{3}x \, dx$$
 Here $n=9,000$
Ans: $\int \cos^{9}x \, dx = (9-1)(9-3)(9-5)(9-7)$
 $= \frac{8}{9} \times \frac{6}{7} \times \frac{4}{5} \times \frac{2}{3} = \frac{12.8}{315} //$

Ans:
$$\int_{0}^{\pi/2} \sin^4 x \cos^8 x dx$$

$$= \frac{(4-1)(4-3)(8-1)(8-3)(8-5)(8-7)x^{11}}{(12)(12-2)(12-4)(12-6)(12-8)(12-10)}$$

$$= \frac{8 \times 1 \times 7 \times 5 \times 8 \times 1}{412 \times 10 \times 8 \times 8 \times 4 \times 2} \times \frac{11}{2} = \frac{711}{2048}$$

S. find
$$\gamma = \int_{0}^{\pi/2} \sin x \cos x dx$$

Ans:
$$T = \frac{(3-1)(6-1)(6-3)(6-5)}{9(9-2)(9-4)(9-6)(9-8)}$$

 $2 \times 5 \times 3 \times 1 = 2$

$$= \frac{2 \times 5 \times 3 \times 1}{9 \times 7 \times 5 \times 3 \times 1} = \frac{2}{63}$$

Jay (1+x+y)dydx

MULTIPLE INTEGRALS

1. Evaluation of Double Integrals

Problem 1.1. Evaluate

$$\lim_{x \to 0} \int_{x=0}^{x=3} \int_{y=1}^{y=2} xy (1+x+y) dy dx$$

Ans:- then
$$T = (3(3xy + x^2y + xy^2) dy) dx$$

$$= \int_{\chi=0}^{3} \left(x y^{2} + x^{2} y^{2} + x y^{3} \right) y^{2} dx$$

$$= \chi_{0}^{2} \left(x y^{2} + x^{2} y^{2} + x y^{3} \right) y^{2} dx$$

$$= \int_{x=0}^{3} \left[2x + 2x^2 + 8x \right] - \left(\frac{x}{2} + \frac{x^2}{2} + \frac{x}{3} \right) dx$$

$$= \int_{\chi=0}^{3} \left(\frac{3}{2}\chi + \frac{3}{2}\chi^{2} + \frac{1}{2}\chi\right) d\chi$$

$$= \left(\frac{3\chi^{2}}{2} + \frac{3}{2}\frac{\chi^{3}}{3} + \frac{7}{3}\frac{\chi^{2}}{2}\right)_{\chi=0}$$

$$=\frac{123}{4}$$

$$\frac{\partial P}{\int z} \int_{y=1}^{2} \left(\int_{x=0}^{3} xy(1+x+y) dx \right) dy.$$

Problem 1.2. Evaluate

Ang: Let
$$I = \int_{0}^{1} \int_{0}^{1} \frac{dxdy}{\sqrt{1-x^{2}}(1-y^{2})}$$

$$= \int_{0}^{1} \int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}(1-y^{2})} dy$$

$$= \int_{0}^{1} \frac{1}{\sqrt{1-y^{2}}} \int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}} dy$$

$$= \int_{0}^{1} \frac{1}{\sqrt{1-y^{2}}} \left(\frac{\sin x}{x} \right)_{x=0}^{1} dy$$

$$= \frac{11}{2} \int_{0}^{1} \frac{1}{\sqrt{1-y^{2}}} dy = \frac{11}{2} \left(\frac{\sin y}{x} \right)^{1}$$

$$= \frac{11}{2} \times \frac{11}{2} = \frac{11^{2}}{4}$$

Problem 1.3. Evaluate

Ansi. Let
$$T = \int_0^1 \int_{x^2}^{2-x} xy' dx dy$$

$$\Gamma = \int_0^\infty \int_{x^2}^{x^2} xy \, dx \, dy$$

$$= \left(\left(\int_0^\infty xy \, dy \right) dx \right)$$

$$= \chi_{=0}^\infty \left(\int_0^\infty xy \, dy \right) dx$$

$$= \left(\frac{\chi}{\chi} \right) = 2 - \chi$$

$$= \left(\frac{y^2}{2} \right) = 2 - \chi$$

$$= \frac{\chi}{\chi} = \frac{\chi}{\chi} = \chi^2$$

$$= \frac{\chi}{\chi} = \chi^2$$

$$= \int_{\chi=0}^{1} \frac{\chi}{2} \left((2-\chi)^2 - \chi^4 \right) d\chi$$

$$= \frac{1}{2} \int_{2\pi}^{2\pi} \chi \left(4 - 4 \chi + \chi^2 - \chi^4 \right) d\chi$$

$$= \frac{1}{2} \int_{\chi=0}^{1} (4\chi - 4\chi^{2} + \chi^{3} - \chi^{5}) d\chi$$

$$3(^{2}-y^{2}=-1)$$

Problem 1.4. Evaluate

Ans: Let
$$\Gamma = \int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dx \ dy}{1+x^2+y^2}$$

Then
$$T = \begin{cases} y = \sqrt{1+x^2} \\ y = 0 \end{cases}$$
 $y = \sqrt{1+x^2+y^2}$

$$= \left(\begin{array}{c} \sqrt{1+x^2} \\ \sqrt{1+x^2} \end{array} \right) \frac{dy}{\sqrt{1+x^2}}$$

$$= \sqrt{\frac{1}{\sqrt{1+x^2}}} + \sqrt{\frac{y}{\sqrt{1+x^2}}} + \sqrt{\frac{y}{\sqrt{1+x^2}}} \sqrt{\frac{y}{\sqrt{1+x^2}}}} \sqrt{\frac{y}{\sqrt{1+x^2}}} \sqrt{\frac{y}{\sqrt{1+x^2}}}} \sqrt{\frac{y}{\sqrt{1+x^2}}} \sqrt{\frac{y}{\sqrt{1+x^2}}} \sqrt{\frac{y}{\sqrt{1+x^2}}} \sqrt{\frac{y}{\sqrt{1+x^2}}} \sqrt{\frac{y}{\sqrt{1+x^2}}} \sqrt{\frac{y}{\sqrt{1+x^2}}} \sqrt{\frac{y}{\sqrt{1+x^2}}}} \sqrt{\frac{y}{\sqrt{1+x^2}}} \sqrt{\frac{y}{\sqrt{1+x^2}}} \sqrt{\frac{y}{\sqrt{1+x^2}}}} \sqrt{\frac{y}{\sqrt{1+x^2}}}} \sqrt{\frac{y}{\sqrt{1+x^2}}}} \sqrt{\frac{y}{\sqrt{1+x^2}}}} \sqrt{\frac{y}{\sqrt{1+x^2}}}} \sqrt{\frac{y}{\sqrt{1+x^2}}}} \sqrt{$$

$$= \int_{\chi=0}^{1} \frac{1}{\sqrt{1+\chi^2}} \tan^{-1}(1) - 0 dx$$

$$= \frac{11}{4} \int_{\chi=0}^{1} \frac{1}{\sqrt{1+\chi^2}} = \frac{11}{4} \left[log(\chi + \sqrt{1+\chi^2}) \right]_{\chi=0}^{1}$$

$$=\frac{1}{4}\left[\log\left(\sqrt{2}+1\right)\right]^{\frac{1}{2}=0}$$

Problem 1.5. Evaluate

$$\iint_R e^{2x+3y} \ dx \ dy$$

over the region R bounded by the lines x = 0, y = 0 and x + y = 1.

Let
$$T = \int e^{2x+3y} dy dy$$

$$= \int e^{2x+3y} dy dy dx$$

$$= \int e^{2x} \left(\int e^{3y} dy \right) dx$$

$$= \int e^{2x} \left(\int e^{3y} dy \right) dx$$

$$= \int e^{2x} \left(e^{3y} \right) \int e^{-x} dx$$

$$= \frac{1}{3} \int e^{2x} \left(e^{3-3x} - 1 \right) dx$$

$$= \frac{1}{3} \int e^{2x} \left(e^{3-3x} - 1 \right) dx$$

$$= \frac{1}{3} \left[e^{3} \cdot (-e^{3}) - \frac{2x}{2} \right]_{x=0}^{1}$$

$$= \frac{1}{3} \left[-e^{3} \cdot (-e^{3}) - \frac{2x}{2} \right]_{x=0}^{1}$$

$$= \frac{1}{3} \left[-\frac{\varrho^2}{\varrho} - \frac{\varrho^2}{2} + \frac{3}{2} + \frac{1}{2} \right]$$

$$=\frac{1}{6}\left[2e^{3}-3e^{2}+1\right]$$

Problem 1.6. Evaluate

$$\iint_A xy(x+y) \ dx \ dy$$

over the region A bounded by the curves $y = x^2$ and $y^2 = x$.

Ans:-
Let
$$T = \int ((x^2y + xy^2) + xy^2) + xy^2 + xy^2 + xy^2) dx$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((y + xy^2) + xy^2) dx dy$$

$$= \int ((y + xy^2) + xy^2) dx dy$$

$$= \int ((y + xy^2) + xy^2) dx dy$$

$$= \int ((y + xy^2) + xy^2) dx dy$$

$$= \int ((y + xy^2) + xy^2) dx dy$$

$$= \int ((y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx$$

$$= \int ((x^2y + xy^2) + xy^2) dx dy$$

$$= \int ((x^2y + xy^2) + xy^2) dx$$

$$= \int ((x^2y + xy^2) + xy^2) dx$$

$$= \int ((x^2y$$

Problem 1.7. Evaluate

$$\iint_R xy \ dx \ dy$$

where the region R is bounded by the x-axis between x = 0 and x = 2a and the curve $x^2 = 4ay$ with a > 0.

$$= \int_{\chi=0}^{2a} \chi \left(\frac{y^2}{2}\right)^{y=\chi^2} \frac{\chi^2}{4a} d\chi$$

$$= \frac{1}{2} \int_{\chi=0}^{2a} \chi \left[\frac{\chi^4}{16a^2}\right] d\chi$$

$$= \frac{1}{2} \int_{\chi=0}^{2a} \chi \left[\frac{\chi^4}{16a^2}\right] d\chi$$

$$= \frac{1}{32a^2} \int_{\chi=0}^{2a} x^5 dx = \frac{1}{32a^2} \frac{(2a)^6}{6}$$
$$= \frac{a^4}{3}$$

Any curve in polar coordinates is represented by r=f(0).

2. Evaluation of double integrals in polar coordinates

Consider the two curves $Y_1 = f(0)$ and $Y_2 = g(0)$ and

the lines $0 = 0_1$ and $0 = 0_2$.

$$F(Y,0) dY dQ$$

$$R = \begin{cases} 0=0_2 & Y=Y_2 \\ \int f(Y,0) dY dQ \\ 0=0_1 & Y=Y_1 \end{cases}$$

$$Q=0_1 & Y=Y_1 & Y=Y_$$

ie; this means, to evaluate f(r,0) over the region bounded by the two lines $Q=Q_1$ and $Q=Q_2$ and the curves $\gamma_1=f(0)$ and $\gamma_2=g(0)$.

$$(\chi_{1}y) \mapsto (\chi_{0}so, \chi_{5}ino)_{19}$$

Problem 2.1. Evaluate

over the area A is bounded between the circles $r=2\cos\theta$ and $r=4\cos\theta$.

Ans:-

Ne're,
$$Y = 2\cos 0$$
 $\Rightarrow Y^2 = 2 \times \cos 0$
 $\Rightarrow \chi^2 + y^2 = 2 \times \Rightarrow \chi^2 - 2 \times + y^2 = 0$
 $\Rightarrow (\chi^2 - 2\chi + 1) + y^2 = 1$
 $\Rightarrow (\chi - 1)^2 + (y - 0)^2 = 1^2$
 $\Rightarrow (\chi^2 - 1)^2 + (y - 0)^2 = 1^2$
 $\Rightarrow \chi^2 + y^2 = 4 \times 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi - 1)^2 = 1$
 $\Rightarrow (\chi^2 - 1)^2 + (\chi -$

PRACTICE PROBLEMS

Q. Evaluate the following integrals:

(i)
$$\int_{1}^{a} \int_{xy}^{b} \frac{dy dx}{xy} \quad Ans: \log(a) \log(b).$$

(ii)
$$\int_{\chi=0}^{1} \int_{y=0}^{1} \frac{\chi-y}{(\chi+y)^3} dy dx \quad \underline{Ans}: \frac{1}{2}.$$

(iii)
$$\int_{0}^{4} \int_{0}^{\sqrt{a^{2}-y^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} dy dx$$

 $x=0$ $y=0$ Ans: $-\frac{\pi a^{3}}{6}$

(iv)
$$\int_{0}^{1} \int_{0}^{y^{2}+1} x^{2}y \, dy \, dx$$
 Ans: $\frac{67}{120}$

- Q. Evaluate $\iint (x+y)^2 dx dy$ where R is the area bounded by the ellipse $\frac{a^2}{a^2} + \frac{y^2}{b^2} = 1$. $\frac{Ans}{4} = \frac{11}{4} (ab)(a^2+b^2)$.
- 9. Let R be the region bounded by the circle $x^2+y^2=1$ in the first quadrant. Then evaluate, $\iint \frac{xy}{VI-y^2} dxdy$. Ans: $\frac{1}{6}$