Numerical Techniques 2024–2025

0. Welcome

Daan Degrauwe daan.degrauwe@meteo.be

Postgraduate Studies in Weather and Climate Modeling ${\sf Ghent\ University}$

Content

- Welcome
- Context: why numerical techniques
- Objectives of this course
- Course material
- Practical information

Why numerical techniques?

Atmosphere

0. Welcome 3 /

Why numerical techniques?

0. Welcome 3 / 8

Why numerical techniques?

0. Welcome 3 / 8

Course objectives

 Get hold of problems that occur due to solving equations numerically (with a computer)

0. Welcome 4 /

Course objectives

- Get hold of problems that occur due to solving equations numerically (with a computer)
- Distinguish these problems from other aspects of modeling
- Develop knowledge of existing solutions to these problems
- Be able to communicate with numerical analyst

0. Welcome 4 /

Course objectives

- Get hold of problems that occur due to solving equations numerically (with a computer)
- Distinguish these problems from other aspects of modeling
- Develop knowledge of existing solutions to these problems
- Be able to communicate with numerical analyst
- Don't be frightened by code
 - ... but it's no course on programming either!

Course agenda

date	16h00	17h30
09/10	Introduction, Stability	
16/10	Time discretization	(optional) Practicum Python basics
30/10	Space discretization	Practicum Oscillation equation
06/11	Spectral models	Practicum Advection equation
13/11	Nontrivial aspects	Practicum Advection equation
20/11	Semi-Implicit and Semi-Lagrangian models	Practicum Linux & Fortran
27/11	Parallel computing and Project assignment	
04/12	Project support session	
18/12	Student project presentations (TBC)	

Course material

- Slides will appear on Ufora
- All material (slides sources, Jupyter notebooks) available on https://github.com/ddegrauwe/ugent_numtech
- References:
 - Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Dale R. Durran, Springer, 1999, ISBN 0-387-98376-7.
 - Chebyshev and Fourier Spectral Methods, John P. Boyd, Springer, 2001, ISBN 978-3-540-51487-9.
- Some papers (depending on project)

Practical information

- (Check Ufora for modifications to time schedule)
- Practical sessions
 - ► Warning: experimental!

We will use High-Performance Computing (HPC) infrastructure of UGent: create account on

https://www.ugent.be/hpc/en/access/faq/access

- access through browser via https://login.hpc.ugent.be
- ... or you can just install Linux on your laptop
- Programs needed: python, Jupyter notebooks
- Evaluation: student project (2/3/4 persons) on simple model
 - presentation for other students
 - ► (small) report

Questions?

0. Welcome 8 /