

Campus Igarassu

Banco de Dados Modelo Relacional

Milton Secundino de Souza Júnior – Msc milton.junior@igarassu.ifpe.edu.br

Modelo Relacional

- É um modelo de dados utilizado em nível lógico para a representação dos dados de um sistema de informações.
- É baseado no conhecimento dos dados presentes em um modelo conceitual já definido.
- Foi criado com base na teoria dos conjuntos, onde:
 - os dados são representados como tabelas (relações), através de linhas (tuplas) e colunas (atributos) com os possíveis valores (domínio) definido;
 - as operações são feitas por uma linguagem não procedural.
- Foi criado na década de 70 por Edgard F. Codd.

Modelo Relacional

- É a técnica mais utilizada para modelagem lógica.
- Permite a especificação do esquema do banco de dados, através do Diagrama Relacional.

Coluna, Atributo, Campo

 Dado que se deseja armazenar sobre um objeto. Deve possuir um nome, um tipo de acordo com a natureza do dado e um tamanho específico.

Linha, Tupla, Registro

 Conjunto de campos que representa uma ocorrência específica de um objeto. Deve ser identificado de forma única dentro da tabela.

Tabela, Relação

 Conjunto de tuplas que contém os dados sobre um objeto específico. Deve possuir um nome único dentro do banco de dados.

Domínio

 Conjunto de valores distintos que podem ser definidos a um atributo.

Domínio Discreto

Conjunto de valores distintos, definidos previamente.

Domínio Contínuo

Conjunto de valores permitidos dentro de um intervalo.

Domínio Aberto

- Conjunto de valores permitidos, sem restrições.
- Domínio Nulo (inaplicável ou desconhecido)
 - É um valor nulo, diferente de zero ou branco.

Campo	Domínio	Tipo do Domínio		
estado civil	solteiro, casado, viúvo, divorciado, outros	discreto		
salário	entre R\$ 500,00 e R\$ 10.000,00	contínuo		
nome	qualquer nome	aberto		
fone	número de telefone	nulo desconhecido		
cnpj	cnpj para pessoa física	nulo inaplicável		

Então...

Tudo Claro??

Chave Primária

- Atributo ou conjunto de atributos que identifica cada linha em uma tabela de forma única.
 - Exemplo:
 - Entidade: CLIENTE
 - Chave primária: código

Chave Primária

- Uma chave primária também pode ser formada pela junção de dois ou mais atributos.
 - Exemplo:
 - Entidade: ITENS DE PEDIDO
 - Chave primária: pedido + produto

Chave Primária

- A chave primária corresponde ao atributo identificador de uma entidade.
- Cada tabela deverá possuir uma única chave primária, que não admite valores repetidos ou nulos.
- A chave primária pode ser utilizada como referência para outras tabelas.
- Uma chave primária concatenada deve ser mínima, ou seja, todos os seus atributos são necessários para garantir a unicidade de valores da chave.
- A criação de uma chave primária faz com que a tabela seja ordenada por essa chave.

Chave Candidata

- Atributo ou conjunto de atributos que identifica unicamente cada linha em uma tabela, de forma opcional.
 - Exemplo:
 - Entidade: CLIENTE
 - Chave candidata: cpf

Chave Candidata

- Uma tabela pode possuir mais de uma chave candidata.
- A chave candidata é também chamada de chave alternativa.
- A chave candidata não admite repetição de valores.
- A chave candidata pode ser utilizada como referência para outras tabelas.
- Uma chave candidata pode ser concatenada.
- Uma chave candidata pode ser concatenada e deverá ser mínima, ou seja, todos os seus atributos são necessários para garantir a unicidade de valores da chave.

- Atributo ou conjunto de atributos que estabelece um relacionamento entre duas tabelas (representação: seta).
 - Exemplo:
 - Entidades: CLIENTE e PEDIDO
 - Chave estrangeira: codcliente

- A chave estrangeira corresponde ao atributo referencial de uma entidade e pode ser concatenada.
- Permite a implementação de relacionamentos em um banco de dados relacional.
- Uma tabela pode possuir várias chaves estrangeiras, uma para cada relacionamento.
- Faz sempre referência à chave primária ou candidata de uma tabela.
- Os valores de uma chave estrangeira podem se repetir.
- As colunas pertencentes a uma chave estrangeira deverão ter o mesmo domínio das colunas referenciadas.

- O valor de uma chave estrangeira pode ser:
 - Igual ao(s) valor(es) da(s) coluna(s) referenciada(s):
 - Neste caso a linha da tabela está se relacionando com outra tabela.
 - Nulo:
 - Neste caso a linha da tabela não se relaciona com outra tabela.

FUNCIONÁRIO

	código	nome	fone	função		funcionário tem função	
l	1001	José Paulo	3222.2222	F3		funcionário não tem função	
	1002	Ana Maria	3445.1234	nulo			

 Em um auto-relacionamento de cardinalidade 1:1 ou 1:N, a chave estrangeira faz parte da própria tabela.

FUNCIONÁRIO

código	go nome fone		função	chefe
1001	José Paulo	3222.2222	F3	1001
1002	Ana Maria	3445.1234	nulo	1001
1003	Marcos Almeida	3123.4321	F1	1001
1004	Bruno Matias	3456.9876	F2	1003
1005	Márcia Souto	3123.0987	F3	1003
1006	Sandra Carla	3456.7890	F2	1003

Restrição de Integridade

- Diz respeito à correção, consistência e segurança dos dados armazenados.
- Garante o acesso individualizado a todas as linhas de uma tabela.
- Garante relacionamentos válidos e condizentes com as regras de negócio.
- Garante a atualização das tabelas de forma consistente e sem anomalias.
- Grande parte das restrições de integridade são garantidas automaticamente pelo SGBD.

Restrições de Integridade

- Integridade semântica
 - definida pelas regras de negócio do sistema.
 - Integridade de domínio
 - definida pelo tipo de dado associado ao campo.
 - Integridade de vazio
 - definida pela permissão do campo ser nulo.
 - Integridade de unicidade
 - definida pelas chaves primária e candidata.
- Integridade referencial
 - definida pela implementação dos relacionamentos..

Integridade Semântica

- Garante que o estado dos dados está sempre de acordo com as regras do negócio.
- É implementada pelas restrições de checagem de dados, pela obrigatoriedade e unicidade do dado e pelos triggers.
- Exemplos de restrições semânticas:
 - um funcionário não pode ter o salário superior ao salário do seu chefe imediato.
 - a quantidade de um produto em um pedido não pode ser superior à quantidade em estoque desse produto.
 - um funcionário do setor de vendas não pode ter a função de engenheiro.

Integridade Semântica

Exemplos de falta de integridade semântica:

- violação de domínio:
 - funcionário com 100 anos de idade.
 - data do pedido superior à data atual.
- atributos significativos sem valor:
 - nome do funcionário nulo.
 - quantidade pedida de um produto nula.
- relacionamentos incorretos ou inexistentes:
 - um pedido para vários clientes.
 - departamento sem chefe.

- Garante a atualização dos valores dos dados de forma correta e consistente.
- É implementada pela definição de cada uma das ações de atualização de dados em cada relacionamento.
- Inclusão de dados
 - Restrita
- Exclusão de dados:
 - Restrita e Cascata
- Alteração de dados:
 - Restrita

Inclusão de dados – restrita

 Impede que seja inserido na chave estrangeira da tabela filho, um valor que não exista previamente na coluna relacionada da tabela pai.

Exemplo:

Em um relacionamento entre CLIENTE e PEDIDO, só é possível inserir um cliente na tabela de pedidos, se esse valor já existir previamente na tabela de clientes.

Exclusão de dados – restrita

 Impede que um registro seja excluído da tabela pai, se existir algum registro relacionado a ele na tabela filho.

Exemplo:

 Em um relacionamento entre CLIENTE e PEDIDO, não é possível a exclusão de um cliente se existirem pedidos feitos por ele.

Exclusão de dados – cascata

 Quando um registro da tabela pai é excluído, todos os registros relacionados a ele, existentes na tabela filho, também são excluídos.

Exemplo:

 Em um relacionamento entre CLIENTE e PEDIDO, ao se excluir um cliente todos os pedidos feitos por ele também são excluídos.

Alteração de dados na tabela filho – restrita

 Impede que um valor de chave estrangeira seja alterado na tabela filho, se não existir algum registro com o novo valor na coluna relacionada da tabela pai.

Exemplo:

 Em um relacionamento entre CLIENTE e PEDIDO, não é possível a alteração do código do cliente na tabela de pedidos, se não existir esse código na tabela de clientes.

Então...

Tudo Claro??

Criação do Modelo Relacional

Mapeamento E-R para Relacional

Mapeamento E-R para Relacional

 Pode ser realizado manualmente ou implementado através de ferramentas CASE.

Objetivos Básicos:

- Obter boa performance;
- Simplificar o desenvolvimento de aplicações.

Regras Gerais:

- Evitar junções desnecessárias;
- Diminuir o tamanho das chaves primárias;
- Procurar evitar muitos campos opcionais.

Mapeamento E-R para Relacional

Etapas a serem seguidas:

- Mapeamento das entidades e atributos;
- Mapeamento dos relacionamentos;
- Mapeamento das estruturas de agregação; generalização e especialização.
- Adaptação do modelo às necessidades;
- Criação do diagrama relacional;
- Criação do dicionário de dados.

Mapeamento das Entidades e Atributos

- Cada entidade torna-se uma tabela.
 - Pode ocorrer de algumas entidades se unirem para dar origem a uma única tabela (fusão de tabelas).
- Cada atributo torna-se um campo da tabela criada, com um domínio definido.
 - O atributo identificador da entidade torna-se a chave primária da tabela.
 - Os atributos derivados deverão ser excluídos.
 - Os atributos referenciais deverão ser exibidos.

Mapeamento das Entidades e Atributos

Convenções utilizadas:

- O nome de uma chave primária deverá ser sublinhado.
- O nome de uma chave candidata deverá terminar pelo símbolo de cerquilha sobrescrito (#).
- O nome de uma chave estrangeira deverá ter um traço sobre ele.
- O nome de um campo nulo deverá terminar por um asterisco (*).

Mapeamento das Entidades e Atributos

Forma de representação:

CLIENTE (codcliente, nome, cpf#, endereço)

PEDIDO (codpedido, data, frete*, codcliente)
[codcliente] referencia CLIENTE

Então...

Tudo Claro??

Mapeamento das Especializações

- Tabela única para entidade genérica e suas especializações.
- Tabelas para as entidades genéricas e as entidades especializadas.
- Tabelas apenas para as entidades especiaizadas

Mapeamento das Especializações

Mapeamento das Especializações

Mapeamento das Especializações

Então...

Tudo Claro??

- A transformação dos relacionamentos pode ser realizada de três formas distintas:
 - Fazendo adição de colunas em uma das tabelas que participam do relacionamento.
 - Criando uma tabela própria para o relacionamento.
 - Fazendo a fusão das tabelas que participam do relacionamento.
- A alternativa a ser escolhida depende das cardinalidades máxima e mínima do relacionamento.

Adição de colunas

- O relacionamento é implementado através da inserção em uma das tabelas, das seguintes colunas:
 - Coluna(s) correspondente(s) ao identificador da entidade relacionada (chave estrangeira).
 - Colunas correspondentes aos atributos próprios do relacionamento (se existirem).
 - As chaves primárias das tabelas que participam do relacionamento permanecem inalteradas.

Tabela Própria

- É criada uma tabela para o relacionamento contendo:
 - Colunas correspondentes às chaves estrangeiras, oriundas das tabelas relacionadas.
 - Colunas correspondentes aos atributos do relacionamento (se existirem).
- A chave primária desta tabela é formada:
 - Por uma das chaves estrangeiras, ou;
 - Pelas duas chaves estrangeiras concatenadas;
 - A chave primária também pode ser concatenada com colunas do relacionamento (se existirem).

Fusão de Tabelas

- O relacionamento é representado por uma única tabela, resultante da fusão das duas tabelas do relacionamento.
- Todas as colunas de uma das tabelas são movidas para a outra tabela do relacionamento.
- A chave primária da tabela que cedeu as colunas pode deixar de existir em alguns casos.
- Todas as colunas correspondentes aos atributos do relacionamento (se existirem) também são movidas para a tabela resultante.
- A chave primária da tabela final permanece inalterada.

Relacionamentos 1:1

- Identificamos as relações S e T que correspondem às entidades que participam do relacionamento;
- Escolhemos uma das relações, digamos S, e incluímos como chave estrangeira em S a chave primária de T. É melhor escolher para desempenhar o papel de S, a entidade que tenha participação total no relacionamento
- Incluímos todos os atributos simples do relacionamento 1:1 como atributos de S.

Obrigatório em ambos os sentidos

Opcional em um dos sentidos

Relacionamentos 1:N

- Identificamos a relação S que representa a entidade que participa do lado N do relacionamento;
- Incluímos como chave estrangeira em S, a chave primária da relação T que representa a outra entidade (lado I) que participa do relacionamento;
- Incluímos qualquer atributo simples do relacionamento 1:N em S.

Obrigatório/opcional no "lado N"

Opcional no "lado 1"

Relacionamentos N:M

- Criamos uma nova relação S para representar o relacionamento;
- Incluímos como chave estrangeira em S as chaves primárias das relações que participam do relacionamento;
- A combinação destas chaves formará a chave primária da relação S:
- Incluímos qualquer atributo do relacionamento N:M em S
 - Podemos mapear o relacionamento I:I ou I:N de maneira similar ao M:N. Isto é usado quando poucas instâncias do relacionamento existe, evitando valores nulos nas chaves estrangeiras.

Relacinamentos N:M Código

Nome Empregados Projetos Participam Nome DataInício Empregados (CPF, Nome) Projetos (Código, Nome) Participação (CPF, Código, DataInício)

 Autorelacionamento: valem as mesmas recomendações anteriores:

Alternativas:

- Empregados(<u>CPF</u>, Nome, Idade)
 Gerência(<u>CPFe</u>, CPFg)
- Empregados(<u>CPF</u>, Nome, Idade, <u>CPFg</u>)

Então...

Tudo Claro??

Referências

• Alguns dos slides foram compostos a partir de materiais do professor Nilton Freire (IFPB)