Assignment 02 Summary

- Plot 1A on page 1.3 shows the graphs for 1a, 1d for the first-order transfer function model of the dynamic loads for the signal given in 1a.
- Plot 1B on page 1.4 shows the graphs for 1a, 1d for the first-order transfer function model of the dynamic loads for the signal given in 1c.
- Plot 1C on page 1.5 shows the graphs for 1b, 1d for the second-order transfer function model of the dynamic loads for the signal given in 1a.
- Plot 1D on page 1.6 shows the graphs for 1b, 1d for the second-order transfer function model of the dynamic loads for the signal given in 1c.
- Note: Since the static load curve for 1a and 1d is virtually numerically equal for the given set of load voltages (refer to the curves plotted in Desmos 1), their curve $P_{Li}^{static}(t)$ and $P_{Li}(t)$ has only been plotted once in all the graphs.

Figure 1: Comparsion of the two static load curves for relevant load voltages.

1.2

 $\begin{bmatrix} 1 \end{bmatrix}$

te V

System 1 $N_1(s)$:

Vi 0.2× 1+53

TQ = 35)

43 255 X

Ep= 5-45

wnp= 2510

We can approximate System 2 as.

$$M_2(5)$$
 V_i
 $0.5 \times \frac{1}{1+0.025 s^2}$
 V_i
 $0.2 \times \frac{1}{1+0.05 s^2}$

PLICE 20.5

If o Undenhed Syplem

Vi

$$0.5 \times \frac{1}{0.025}$$
 0.025
 0.025
 0.025
 0.025
 0.025
 0.025
 0.025
 0.025

$$\frac{\forall i}{3} \longrightarrow \left[\begin{array}{c} K\omega & \omega_n \\ \omega \in S \times & \frac{\omega_n}{\omega_n^2 + S^2} \end{array}\right] \longrightarrow \begin{array}{c} P_L^D(t) \\ \Theta_{G_1}(t) \end{array} \times \left\{\begin{array}{c} 1 - \cos(\omega_n + 1) \\ \Theta_{G_2}(t) \end{array}\right\}$$

More $P_{L_i}^{\text{TD}}(t) = 0.5 \text{ Vill} \left\{ 1 - \cos(2\sqrt{10} t) \right\}$ $Q_{L_i}^{\text{TD}}(t) = 0.2 \text{ Vill} \left\{ 1 - \cos(2\sqrt{5} t) \right\}$

110

13

PL(t)
$$P(t) = P_{Lo} + P_{Lo}$$

wt	we o	$a_{LD}(s) = \frac{\alpha}{1+b}$	<u>۵۰ د</u>			
4 (1)	t 5-	V(4)	PL(t) 0.900	Q _L (t) 0.300	QC(t) PL(t) PL0+M'+G+ Qop	QL(+) QLo+H+B+ 900
	5+	0.90	0.842	0.290	PLO + 0.9M+0.819+ 9-p	QL0+0.9H+0.818 +9.00
) 1p (41)	100 5+	Tp=10.90	0.8104	-	bop = 4.5	bog= 2
19	200 5+	TQ770.90	-	0.2774	-	
(111)	20-	6.90	0.792	0.270	PLO+ 0.9 M +0.81 5+ 0.990p	RECO+ 818.0+ NE. 0+-19
	20	51.10	0.912	6.290	PL-+1.1M+1.219 +0.9a.p	QL+1.14+1.21B+0.3a.
020	20+	Tp=21.10	0.9752	- 0150	b=9-5	-

$$(iii) - (iii) = 0.100p = 0.05$$

$$0.100p = 0.05$$

$$0.100p = 0.02$$

bag = 2

Thus
$$P_{L}(t) = 0.2 \text{ V} + 0.2 \text{ V}^{2} + P_{p}(t)$$
where $P_{Lp}(s) = \frac{0.5}{1 + s \cdot 4.5}$

$$Q_{L}(t) = 0.1 \text{ V}^{4} + Q_{p}(t)$$
where $Q_{Lp}(s) = \frac{0.2}{1 + s \cdot 2}$