College of Engineering Pune

(An Autonomous Institute of Government of Maharashtra)

Department of Mathematics

(MA-21001) Probability and Statistics for Engineers

T.Y. B. Tech. Semester VI (Computer, Mechanical, Instrumentation, E n TC, Electrical Engineering) Academic Year 2023-24

Teaching Scheme:Lectures: 2hrs/week + Tutorial: 1 hr / week

Examination Scheme: Continuous evaluation: 40(20+20) marks, End Sem.Exam+oral: 60 marks

(Tb)Text book: Christian Heumann, Michael Schomaker, Shalabh, Introduction to Statistics and Data Analysis, ISBN: 978-3-319-46160-1, DOI: 10.1007/978-3-319-46162-5, Publisher:

Springer, Year: 2016.

Unit 1: Descriptive Statistics and Basic Probability Theory

Lesson	Topic	Section nos. and books to
no.		be referred
1	Introduction and framework: Polpulation, sample,	Tb Chapter 1,
	observations, variables: qualitative and quantitative	sections: 1.1, 1.2, 1.2.1,
	variables, dicrete and continuous variables, scales,	1.2.2, 1.2.3, 1.2.4, 2.1
	Frequency measures: Absolute and relative frequencies	
2	Graphical representation: Bar chart, pie chart and	Tb Chapter 2 and 3,
	histogram, definitions of mean, median, mode, quantiles,	sections 2.3.1, 2.3.2, 2.3.3,
	variance, standard deviation with examples (Skip:	3.1.1, 3.1.2, 3.1.4, 3.2.2
	weighted arithmetic mean and Pg no: 41,53,54,55)	
3	Basic concepts in Combinatorics: Permutation and	Tb, Chapter 5, sections: all
	combination examples	sections
4	Elements of probability theory: Axiomatic approach,	Tb, Chapter 6, sections: all
	Kolmogorv axioms, conditional probability, Bayes' rule	sections except section
	and independence	6.2(revise 6.1)
5	Examples	-

Unit II: Some basic probability distributions

Lesson	Topic	Section no. of text book
no.		
1	Concept of a random variable (discrete and continuous):	Tb, Chapter 7, Section 7.1,
	CDF of discrete and continuous random variables	7.2, 7.2.1, 7.2.2
2	Mean or expectation and variance of a random variable,	7.3.1, 7.3.2, 7.6
	Calculation rules for expectation and variance	
3	expectation and variance of arithmetic mean, Some	7.6.1, 8.1.3
	discrete probability distributions: Bernoulli distribution	
4	Binomial distribution, Poisson distribution	8.1.4, 8.1.5
5	Continuous distributions: Normal and Exponential	8.2.2, 8.2.3
	distribution	

Unit III :R software
R commands for possible calculations are covered along with respective theory topics.
Preliminary R software topics are as follows:

Lesson	Topic	Students should See
no.		lecture no. 1-8 uploaded
		on R software on Moodle
1	Overview of R and RStudio, installation, basic syntax,	-
	mathematical operators and functions in R, plotting	
	simple mathematical functions, vectors using sequence	
	and length	
2	Introduction to data frames in R, constructing data	-
	frame using vectors, saving data frame as CSV file,	
	accessing built in data sets in R, creating and saving R	
	script,indexing and slicing data frames	
3	Performing data analysis: Prerequisites- setting working	-
	directory in R studio, merging and importing data, data	
	types and factors, lists and its operations	
4	Creating visualizations in R: Plotting histogram, Pie	-
	chart, bar chart, scatter plot, plots using 'ggplot2'	
	package, data manipulation using 'dplyr package' and	
	some useful functions in 'dplyr'	

Unit IV: Testing of Hypothesis and statistical inference

Lesson	Topic	Section no. of text book
no.		
1	Sampling distributions: Chi-squared distribution,	8.3, 8.3.1, 8.3.2, 8.3.3
	t-distribution, F- distribution	
2	Inferences: Introduction, properties of estimators:	9.1, 9.2, 9.2.1
	unbiased nature	
3	Hypothesis testing: Introduction, basic definitions, one	10, 10.1, 10.2, 10.2.1,
	and two sample problem, P-values	10.2.2, 10.2.3, 10.2.4
4	How to conduct statistical test, P-values approach using	10.2.5, 10.2.6, 10.2.7
	R, using confidence interval	
5	Test for the Mean When the Variance is Known (One-	10.3.1
	Sample Gauss test) (Z-test)	
6	Test for the Mean When the Variance is Unknown	10.3.2, 10.7, (Notes will be
	(One-Sample t-Test), Chi – squared goodness of fit test,	provided for F-test, sign
	F-test	test and Wilcoxon signed
	(**SELF STUDY: Sign test and Wilcoxon signed	rank test)
	rank test)	

Unit V: Regression Methods

Lesson	Topic	Section no. of text book
no.		
1	Linear Regression, linear regression model, method of	11.1,11.2
	least squares	
2	Properties of linear regression line, inferences on	11.2.1, 11.3
	regression coefficients (Goodness of fit)	
3	Multiple linear regression	11.6
4	Matrix notation and examples	11.6.1

Unit VI: Engineering applications of statistics

Lesson	Topic	Section no. of text book
no.		
1-4	Branch specific and teacher specific applications	NA

Topics marked with **are self study topics. Questions based on these topics will be asked in exams.

Reference Books:

- Ross S.M., Introduction to probability and statistics for Engineers and Scientists (8th Edition), Elsevier Academic press, 2014.
- Ronald E, Walpole, Sharon L. Myers, Keying Ye, Probabilty and Statistics for Engineers and Scientists (9th Edition), Pearson Prentice Hall, 2007.
- Tilman M. Davies, The book of R: A first course in Programming and Statistics (1st Edition), No Starch Press, USA, 2016.
- S. P. Gupta, Statistical Methods, S. Chand & Sons, 37th revised edition, 2008.
- Kishor S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Science Applications (2nd Edition), Wiley Student edition, 2008.
- Stephens L.J., Schaum's outline of statistics for Engineers, Latest edition, 2019.
- The practice of Business Statistics by Manish Sharma and Amit Gupta, Khanna Publishing Company Private Limited, New Delhi, 2014.

References for R Software:

- Norman Matloff, The Art of R Programming A Tour of Statistical Software Design, (1st Edition), No Starch Press, USA, 2011.
- Sudha Purohit, Sharad Gore, Shailaja Deshmukh, Statistics using R (2nd Edition), Narosa Publications, 2019.
- Randall Pruim, Foundations and Applications of Statistics An introduction using R (2nd Edition), American Mathematical Society, 2018.
- Hadley Wickham and Garrett Grolemund, R for Data Science: Import, Tidy, transform,
 Visualize and Model Data, (1st Edition), O'Reilly Publications, 2017.

--

Outcomes: Students will be able to

1. **Recall and know** basics of probability theory, R software, probability distribution, statistical inference, linear regression.

- 2. **Understand** concepts of probability, probability distributions, estimation, regression, and use of R software.
- 3. **Evaluate** probability of compound events, **find** probabilities using standard distributions, **test for** basic statistical inference (t-test, z-test, F-test, χ^2 -test, confidence interval, non parametric tests), **Use** of statistical tables and data sets in R, **solve** problems on simple linear regression.
- 4. **Prove** theorems / statements, **run** standard programs on R, **solve** problems on multiple regression.
- 5. **apply** concepts of probability and statistics to various problems including real life problems.

.....

Important Note:

- Two tests T1 and T2 (Each of 20 marks) and end semester examination (60marks) will be conducted.
 - 100% attendance is compulsory.