11. Übungsblatt zu Analysis II (SS 21)

Name(n): Leo Knapp, Marius Pfeiffer, Juan Provencio

Gruppe: K

Punkte: ___/___/___ Σ ___

11.1 Aufgabe 1

a) Gesucht ist die allgemeine Lösung der folgenden Differentialgleichung:

$$y' = (x+y)^2 \tag{1}$$

Zur Lösung fangen wir mit folgender Substitution an: z = x + y

$$y' = (x+y)^2$$
 $|z = x+y, z' = 1+y'$ (2)

$$z' = z^2 + 1 \tag{3}$$

$$\frac{\mathrm{d}z}{\mathrm{d}x} = z^2 + 1$$
 | Separation der Variablen (4)

$$\int \frac{\mathrm{d}z}{z^2 + 1} = \int \mathrm{d}x \qquad \qquad |\int \frac{\mathrm{d}x}{x^2 + 1} = \arctan x \tag{5}$$

$$\arctan z = x$$
 $|z = x + y|$ (6)

$$\arctan\left(x+y\right) = x + C\tag{7}$$

$$x + y = \tan\left(x + C\right) \tag{8}$$

$$y = \tan\left(x + C\right) - x\tag{9}$$

Diese Lösung ist aber nicht für alle x gültig, nämlich hat die Funktion $\tan x$ eine Definitionslücke für alle $x=k\frac{\pi}{2}-C,\ k\in\mathbb{Z}$. Man kann also keine eindeutige Lösung für ganz \mathbb{R} finden, aber jedes Anfangswertproblem mit $x_0+y_0\neq\frac{\pi}{2}+k\pi,\ k\in\mathbb{Z}$ lässt sich bestimmen.

b) Gesucht ist die allgemeine Lösung der folgenden Differentialgleichung:

$$y' = -y - (\sin x + e^x)y^3 \tag{10}$$

Wir fangen mit der Substitution $z = \frac{1}{y^2}$ an¹:

$$y' = -y - (\sin x + e^x)y^3$$

$$|z = \frac{1}{y^2} \quad (11)$$

$$y = \pm \frac{1}{\sqrt{z}}$$

$$y' = -\frac{z'}{2\sqrt{z}^3}$$

$$-\frac{z'}{2\sqrt{z^3}} = -\frac{1}{\sqrt{z}} - (\sin x + e^x) \frac{1}{\sqrt{z^3}}$$
 (12)

$$-\frac{z'}{2} = -z - (\sin x + e^x) \tag{13}$$

 $^{^{1}}$ Das \pm kommt am Ende der Rechnung zurück.

$$z' = 2z + 2(\sin x + e^x) \tag{14}$$

Zunächst lässt sich mit Variation der Konstanten eine allgemeine Lösung für z finden. Dabei verwenden wir die Formel aus der Vorlesung, wobei a(x) = 2 und $b(x) = \sin x + e^x$:

$$z(x) = e^{\int_{x_0}^x a(t) dt} \left[y_0 + \int_{x_0}^x b(t) e^{-\int_{x_0}^t a(u) du} dt \right]$$
 (15)

$$z(x) = e^{\int_{x_0}^x 2 dt} \left[z_0 + \int_{x_0}^x (\sin t + e^t) e^{-\int_{x_0}^t 2 du} dt \right]$$
 (16)

$$= e^{2(x-x_0)} \left[z_0 + \int_{x_0}^x (\sin t + e^t) e^{-2(t-x_0)} dt \right]$$
 (17)

$$= e^{2(x-x_0)} \left[z_0 + \int_{x_0}^x (\sin t + e^t) e^{-2(t-t_0)} dt \right]$$
(18)

$$= e^{2(x-x_0)} \left[z_0 + e^{2x_0} \int_{x_0}^x \sin t \ e^{-2t} + e^{-t} \ dt \right]$$
 (19)

$$= e^{2(x-x_0)} \left[z_0 + e^{2x_0} \left(-e^{-x} + e^{-x_0} \right) + e^{2x_0} \int_{x_0}^x \sin t e^{-2t} dt \right]$$
 (20)

Zur Lösung des letzteren Integrals wenden wir die DI-Methode an:

$$\begin{array}{c|cccc}
 & D & I \\
+ & \sin t & e^{-2t} \\
- & \cos t & -\frac{e^{-2t}}{2} \\
+ & -\sin t & \frac{e^{-2t}}{4}
\end{array}$$

Auf der letzteren Zeile merken wir, das ist genau unser ursprüngliches Integral bis auf ein Vorfaktor. Es gilt also:

$$\int \sin t \, e^{-2t} \, dt = -\sin t \cdot \frac{e^{-2t}}{2} - \cos t \cdot \frac{e^{-2t}}{4} - \int \sin t \cdot \frac{e^{-2t}}{4} \, dt \qquad (21)$$

$$\frac{5}{4} \int \sin t e^{-2t} dt = -\frac{1}{2} e^{-2t} \left(\sin t + \frac{\cos t}{2} \right)$$
 (22)

$$\int \sin t \, e^{-2t} \, dt = -\frac{2}{5} e^{-2t} \left(\sin t + \frac{\cos t}{2} \right)$$
 (23)

Dieses Ergebnis werten wir an den Stellen x_0 , x aus und setzen in 20 ein und erhalten:

$$z(x) = e^{2(x-x_0)} \left[z_0 + e^{2x_0} \left(-e^{-x} + e^{-x_0} \right) + e^{2x_0} \left(-\frac{2}{5} e^{-2x} \left(\sin x + \frac{\cos x}{2} \right) \right) \right]$$
 (24)

$$+\frac{2}{5}e^{-2x_0}\left(\sin x_0 + \frac{\cos x_0}{2}\right)\right]$$
 (25)

$$= e^{2(x-x_0)}z_0 + e^{2x} \left[-e^{-x} + e^{-x_0} - \frac{2}{5}e^{-2x} \left(\sin x + \frac{\cos x}{2} \right) \right]$$
 (26)

$$= e^{2x} \left[e^{-2x_0} z_0 - e^{-x} + e^{-x_0} \right] - \frac{2}{5} \left(\sin x + \frac{\cos x}{2} \right)$$
 (27)

Nun wollen wir einige dieser Konstanten noch zusammenfassen. Wir definieren:

$$C = z_0 e^{-2x_0} + e^{-x_0} (28)$$

Und die Gleichung lässt sich zu folgendem vereinfachen:

$$z(x) = e^{x}(Ce^{x} - 1) - \frac{2}{5}\left(\sin x + \frac{\cos x}{2}\right)$$
 (29)

Nun erinnern wir uns an die Substitution, die wir am Anfang eingeführt haben und resubstituieren für $y=\frac{1}{\sqrt{z}}$:

$$y(x) = \frac{1}{\sqrt{e^x(Ce^x - 1) - \frac{2}{5}\left(\sin x + \frac{\cos x}{2}\right)}}$$
(30)

Wir haben als Übung für uns selber per Herrn Albers Hinweis geprüft, dass diese Lösung stimmt, aber entscheiden uns dagegen das hier zu beweisen.

11.2 Aufgabe 2

Seien folgende Anfangswertprobleme gegeben:

i) $y_0 \ge 0$

$$y' = \sqrt{y} \tag{31}$$

$$y(0) = y_0 \tag{32}$$

ii) $y_0 \in \mathbb{R}$

$$y' = xy + x \tag{33}$$

$$y(0) = y_0 \tag{34}$$

iii) $c, y_0 > 0$

$$y' = -c\operatorname{sgn} y \tag{35}$$

$$y(0) = y_0 \tag{36}$$

a) Gesucht sind zwei Lösungen zu i) mit $y_0 = 0$ und $y_0 = 1$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{y}$$
 | Separation der Variablen (37)

$$\int \frac{\mathrm{d}y}{\sqrt{y}} = \int \mathrm{d}x \tag{38}$$

$$2\sqrt{y} = x + C \tag{39}$$

$$\sqrt{y} = \frac{x+C}{2} \tag{40}$$

$$y = \frac{(x+C)^2}{4} \tag{41}$$

Sei nun $y_0 = 0$

$$0 \stackrel{!}{=} \frac{(x+C)^2}{4} \tag{42}$$

$$\implies C = 0 \tag{43}$$

$$\to y_1 = \frac{x^2}{4} \tag{44}$$

Als weitere Lösung nutzen wir die triviale Lösung:

$$y_2 := 0 \tag{45}$$

Sei nun $y_0 = 1$

$$1 \stackrel{!}{=} \frac{(x+C)^2}{4} \tag{46}$$

$$\implies C = \pm 2 \tag{47}$$

$$\to y_3 := \frac{(x+2)^2}{4} \tag{48}$$

Diese Lösung ist offensichtlich une
indeutig. Das liegt anschaulich an der Symmetrie der Parabel, da so außer am Scheitel immer zwei Punkte mit gleichem Funktionswert gefunden werden können. Außerdem erkennen wir, dass die Funktion \sqrt{y} nicht Lipschitz stetig in der Nähe der 0 ist. Nun prüfen wir noch, ob alle Lösungen korrekt sind:

$$\sqrt{y_1} = \sqrt{\frac{x^2}{4}} = \frac{x}{2} = y'$$
(49)

$$\sqrt{y_2} = \sqrt{0} = 0 = y' \tag{50}$$

$$\sqrt{y_3} = \sqrt{\frac{(x+2)^2}{4}} = \frac{(x+2)}{2} = y' \qquad \checkmark \tag{51}$$

(52)

b) **Gesucht** ist eine Lösung zur Gleichung ii) mit dem Anfangswertproblem y(0) = 0. Diese Differentialgleichung lässt sich mithilfe von Separation der Variablen lösen.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = xy + x\tag{53}$$

$$= x(y+1)$$
 | Separation der Variablen (54)

$$\int \frac{\mathrm{d}y}{y+1} = \int x \, \mathrm{d}x \qquad \qquad \left| \int \frac{\mathrm{d}x}{x+1} = \ln\left(x+1\right) \right| \tag{55}$$

$$\ln(y+1) = \frac{x^2}{2} + C \tag{56}$$

$$y + 1 = e^{\frac{x^2}{2}} e^C$$
 $|e^C| = c$ (57)

$$y = ce^{\frac{x^2}{2}} - 1 \tag{58}$$

Zur Bestimmung des Anfangswertproblems gilt y(0) = 0, also:

$$0 = ce^0 - 1 (59)$$

$$\to c = 1 \tag{60}$$

c) **Gesucht** ist eine Lösung zu iii) und die Intervallen auf welchen die Lösung höchstens definiert ist. Wir probieren mit Separation der Variablen:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -c \operatorname{sgn} y \qquad \qquad |\text{Separation der Variablen} \qquad (62)$$

$$\int_{y_0}^{y} \frac{\mathrm{d}\eta}{\mathrm{sgn}\,\eta} = \int_{x_0}^{x} -c\,\,\mathrm{d}\xi \qquad |y \neq 0$$
 (63)

$$\int_{y_0}^{y} \operatorname{sgn} \eta \, d\eta = -c(x - x_0) \qquad |y_0 > 0$$
 (64)

$$y \operatorname{sgn} y - y_0 = -c(x - x_0) \tag{65}$$

$$y = \frac{-c(x - x_0) + y_0}{\operatorname{sgn} y} \tag{66}$$

Zu dieser Gleichung gibt es 2 verschiedene Lösungen, je nachdem was der Definitionsbereich von y ist. Für $y \in \mathbb{R}^+$ gilt:

$$y_1 = -c(x - x_0) + y_0 (67)$$

Für $y \in \mathbb{R}^-$ gilt:

$$y_2 = c(x - x_0) - y_0 (68)$$

Das Anfangswertproblem schließt aber diese Möglichkeit aus, denn dadurch

(69)

11.3 Aufgabe 3

Sei

$$SL(n, \mathbb{R}) := \{ A \in Mat(n, n; \mathbb{R}) \mid det(A) = 1 \}$$

a) Wir bestimmen das Differential:

$$D_{\hat{A}}\det(A) = \lim_{t \to 0} \frac{1}{t} \left[\det(A + t\hat{A}) - \det(A) \right]$$
 (70)

$$= \lim_{t \to 0} \frac{1}{t} \left[\det \left(A(\mathbb{1} + A^{-1}t\hat{A}) \right) - \det(A\mathbb{1}) \right]$$
 (71)

$$= \lim_{t \to 0} \frac{1}{t} \left[\det(A) \det\left(\mathbb{1} + A^{-1}t\hat{A}\right) - \det(A) \det(\mathbb{1}) \right]$$
 (72)

det(A) "ziehen"wir aus dem Limit heraus, das es nicht von t abhängt.

$$= \det(A) \lim_{t \to 0} \frac{1}{t} \left[\det\left(\mathbb{1} + tA^{-1}\hat{A}\right) - \det(\mathbb{1}) \right]$$
 (73)

$$= \det(A) \cdot D_{A^{-1}\hat{A}} \det(\mathbb{1}) \tag{74}$$

Nach Präsenzblatt 2c)

$$= \det(A)\operatorname{tr}\left(A^{-1}\hat{A}\right) \tag{75}$$

b) Das Differential $D \det(A)$ erhalten wir in Form der Jacobi-Matrix, indem wir die Richtungsableitung aus Teil a) auf $n \cdot n$ Matrizen der Form

$$B_{(a,b)} \in \operatorname{Mat}(n, n; \mathbb{R}) \tag{76}$$

$$\left(B_{(a,b)}\right)_{ij} = \begin{cases}
1 & (i,j) = (a,b) \\
0 & \text{sonst}
\end{cases}
\tag{77}$$

Anwenden. Dieses wird dann wie folgt aufgebaut sein:

$$D \det(A) = \left(D_{B_{(1,1)}} \det(A), D_{B_{(1,2)}} \det(A), \dots, D_{B_{(n,n)}} \det(A) \right)$$
(78)
= $\left(\det(A) \operatorname{tr} \left(A^{-1} B_{(1,1)} \right), \det(A) \operatorname{tr} \left(A^{-1} B_{(1,2)} \right), \dots, \det(A) \operatorname{tr} \left(A^{-1} B_{(n,n)} \right) \right)$

 $(\det(A) = 1)$

$$= (\operatorname{tr}(A^{-1}B_{(1,1)}), \operatorname{tr}(A^{-1}B_{(1,2)}), \dots, \operatorname{tr}(A^{-1}B_{(n,n)}))$$
(80)

Betrachten wir die Multiplikation $A^{-1} \cdot B_{(i,j)}$ genauer, können wir ähnlichkeiten zur Multiplikation mit der Einheitsmatrix feststellen. Sei eine Matrix $C \in \text{Mat}(n, n; \mathbb{R})$ aufgebaut aus Spaltenvektoren $c_1, \ldots, c_n \in \text{Mat}(n, 1; \mathbb{R})$:

$$C = \begin{pmatrix} c_1 & \dots & c_n \end{pmatrix} \tag{81}$$

Die Multiplikation mit einer Matrix $B_{(i,j)}$ wird die *i*-te Spalte aus C in die *j*-Spalte der Resultierenden Matrix schreiben.

$$C \cdot B_{(i,j)} = \begin{pmatrix} 0 & \dots & c_i & \dots & 0 \end{pmatrix}$$
(82)

Die $n \times n$ Matrix A der Aufgabenstellung ist invertierbar und hat daher vollen Rang bzw. n linear Unabhängige Spaltenvektoren (vgl. LA1). Dies gilt auch für ihr Inverses. Wir werden also bereits unter den Einträgen der Jacobi-Matrix durch

$$\operatorname{tr}(A^{-1}B_{(1,1)}), \operatorname{tr}(A^{-1}B_{(2,2)}) \text{ oder } \operatorname{tr}(A^{-1}B_{(3,3)})$$
 (83)

mindestens einen Eintrag erhalten, welcher ungleich 0 ist. Somit ist das Kriterium für den vollen Rang erfüllt.

(84)

Aufgabe 4 11.4

Sei $A \in M(n, n, \mathbb{R})$ und $f : \mathbb{R} \to M(n, n, \mathbb{R}) : t \mapsto e^{tA}$

- a) Ableitung des Matrixexponentials:
 - Gegeben: f'(0) = A
 - Zu zeigen: $f'(t) = Ae^{tA}$

Wir gehen wie üblich bei der Bestimmung der Ableitung von:

$$\frac{\mathrm{d}}{\mathrm{d}t}f := \lim_{x \to 0} \frac{\mathrm{e}^{(t+x)A} - \mathrm{e}^{tA}}{x} \qquad |\mathrm{e}^{tA} \text{ ausklammern}$$
 (85)

$$= \lim_{x \to 0} e^{tA} \frac{e^{(t+x)A - tA} - 1}{x}$$

$$= \lim_{x \to 0} e^{tA} \frac{e^{xA} - 1}{x}$$

$$= e^{tA} f'(0)$$
(86)

(87)

(88)

$$= \lim_{x \to 0} e^{tA} \frac{e^{xA} - 1}{x}$$
 |Bruch ist $f'(0)$ (87)

$$= e^{tA} f'(0) \tag{88}$$

$$= Ae^{tA} (89)$$

(90)

- b) $q: \mathbb{R} \to \mathbb{R}: q(t) := \det(e^{tA})$
 - Zu zeigen: q(0) = 1

$$g(0) = \det(e^0)$$

= $\det(1)$ | $e^0 = e^{0x}$ Potenzreihe bricht nach 1 ab
= 1

• Zu zeigen: $g'(t) = \operatorname{Spur}(A)g(t)$

Nach Aufgabe 4e) von Blatt 10 gilt für Matrizen $X, Y \in \text{Mat}(n, n; \mathbb{R})$ mit AB = BA, dass

$$e^{X+Y} = e^X \cdot e^Y \tag{91}$$

Für die Matrix A gilt, dass $(-A) \cdot A = A \cdot (-A)$, da sich die Faktoren nur um eine Skalare Multiplikation mit (-1) unterscheiden. Somit finden wir zu e^{tA} die Inverse e^{-tA} , da gilt

$$e^{tA} \cdot e^{-tA} = e^{tA - tA} = e^0 = 1 \quad \forall \ t \in \mathbb{R}.$$
 (92)

Also ist die Matrix e^{tA} invertierbar und 3a) kann auf sie angewandt werden.

$$g'(t) = D \det(e^{tA}) \cdot D(e^{tA})$$
(93)

$$= D_{\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{e}^{tA}} \det(\mathrm{e}^{tA}) \tag{94}$$

$$= \det(e^{tA}) \operatorname{tr}\left((e^{tA})^{-1} \frac{\mathrm{d}}{\mathrm{d}t} e^{tA}\right)$$
(95)

$$= \det(e^{tA}) \operatorname{tr}(e^{-tA}Ae^{tA}) \tag{96}$$

$$= \det(e^{tA})\operatorname{tr}(A) \tag{97}$$

$$= g(t)\operatorname{tr}(A) \tag{98}$$

c) Bei der 2. Gleichung aus b) handelt es sich um eine homogene lineare Differentialgleichung erster Ordung:

$$g'(t) = \operatorname{tr}(A) \cdot g(t) \tag{99}$$

$$\iff g'(t) = \operatorname{tr}(A) \cdot \operatorname{det}(e^{tA})$$
 (100)

Eine allgemeine Lösung dafür erhalten wir durch

$$g(t) = b \cdot e^{at} \tag{101}$$

$$\iff g(t) = b \cdot e^{\operatorname{tr}(A)t}$$
 (102)

Mit der Voraussetzung g(0) = 1:

$$1 \stackrel{!}{=} g(0) = b \cdot e^{\operatorname{tr}(A)0} \tag{103}$$

$$= b \cdot e^0 = b \cdot 1 \tag{104}$$

$$\implies b = 1 \tag{105}$$

Wir erhalten also

$$g(t) = 1 \cdot e^{\operatorname{tr}(A)t} \tag{106}$$

$$\iff \det(e^{tA}) = e^{\operatorname{tr}(A)t}.$$
 (107)

d) Gegeben sei

$$B \in \operatorname{Mat}(n, n; \mathbb{R}) \text{ mit } \operatorname{tr}(B) = 0$$
 (108)

Aus Aufgabe 3 wissen wir

$$\forall A \in \operatorname{Mat}(n, n; \mathbb{R}) : \det(A) = 1 \iff A \in \operatorname{SL}(n, \mathbb{R})$$
(109)

Untersuchen wir nun die Determinante von e^B .

$$\det(\mathbf{e}^B) = \det(\mathbf{e}^{1 \cdot B}) \tag{110}$$

$$= e^{1 \cdot \operatorname{tr}(B)} \qquad | \operatorname{nach} c) \qquad (111)$$

$$= e^{1 \cdot 0} = e^0 = 1 \tag{112}$$

$$\implies e^B \in SL(n, \mathbb{R}).$$
 (113)

• Zu zeigen: f'(0) = A für Funktion f aus Aufgabenteil a) e)

$$f'(t) = \lim_{x \to 0} \frac{e^{(x+t)A} - e^{tA}}{x}$$
 (114)

$$f'(0) = \lim_{x \to 0} \frac{e^{xA} - e^0}{x}$$

$$= \lim_{x \to 0} \frac{e^{xA} - 1}{x}$$
(115)

$$= \lim_{x \to 0} \frac{e^{xA} - 1}{x} \tag{116}$$

Wir schreiben nun das Matrixexponential als Potenzreihe:

$$= \lim_{x \to 0} \frac{1}{x} \left(\sum_{k=0}^{\infty} \frac{x^k A^k}{k!} - 1 \right)$$
 (117)

$$= \lim_{x \to 0} \frac{1}{x} \left(\frac{x^0 A^0}{0!} + \frac{xA}{1} + \frac{x^2 A^2}{2!} + \sum_{k=3}^{\infty} \frac{x^k A^k}{k!} - 1 \right)$$
 (118)

$$= \lim_{x \to 0} \frac{1}{x} \left(\mathbb{1} + xA + \frac{x^2 A^2}{2!} + \sum_{k=3}^{\infty} \frac{x^k A^k}{k!} - \mathbb{1} \right)$$
 (119)

$$= \lim_{x \to 0} \frac{1}{x} \left(xA + \frac{x^2 A^2}{2!} + \sum_{k=3}^{\infty} \frac{x^k A^k}{k!} \right)$$
 (120)

$$= \lim_{x \to 0} \left(A + \frac{xA^2}{2!} + \sum_{k=3}^{\infty} \frac{x^{k-1}A^k}{k!} \right) \tag{121}$$