Activité 6.1 – Propriétés de l'eau

Objectifs:

- Comprendre la modélisation de de la dissolution des composés ioniques.
- Comprendre le lien entre présence d'ions et conductivité électrique.

Contexte: L'eau sous forme liquide est un très bon solvant pour les entités chimiques polaires ou ioniques. Les solutions aqueuses avec des espèces chimiques ioniques sont de bonnes conductrices électriques.

→ Comment expliquer les propriétés des solutions aqueuses?

Document 1 – La molécule H₂O

L'eau est une molécule **polaire**. C'est comme si elle était composé de charges séparées δ^- et δ^+ (δ est un nombre compris entre 0 et 1).

Document 2 - Un peu de vocabulaire

- Liaison ionique : liaison entre un cation (positif) et un anion (négatif).
- Solvatation : dissolution d'une espèce ionique dans le solvant.
- Solubilité : masse maximale d'une espèce chimique que l'on peut dissoudre dans un liquide, exprimée en $g \cdot L^{-1}$.

Document 3 - Solubilité des espèces ioniques dans l'eau

Une espèce ionique et composé d'un **cation** et d'un **anion**, relié par une **liaison ionique**. En contact avec de l'eau liquide, l'espèce ionique se sépare en deux espèces chimiques. Les anions et les cations sont entourés par des molécules d'eau à cause de leur polarité, les charges + sont attirées par les charges -.

Cette modélisation s'appelle la **solvatation**. Ce modèle permet d'expliquer la **solubilité** de certaines espèces ioniques dans l'eau.

Interaction entre les molécules d'eau et les ions d'une espèce ionique, le sel Na⁺Cl⁻.

1	L -	-	Ε	xı	oli	qι	ıe	r	av	⁄е	c	V	os	3 1	m	01	ts	l	a	S	ol	u	bi	lli	t e	é	d	es	3 (es	p	è	ce	s	i	on	i	ąυ	ıe	S	da	an	S	1'	eε	ıu								
 									•												•																					•		٠.				 		•	 	 	 	
 		• •							٠				•				•						•			•					•		•		•		•								•		•	 			 	 	 	 •
 		• •							•								•														•						•					•					•	 		•	 		 	

Document 4 - Lien entre conductivité et ions dissous

Les solutions aqueuses avec des espèces ioniques sont de bons conducteurs électriques.

La conductivité électrique σ (sigma) se mesure avec un conductimètre. Son unité est le siemens par mètre $\mathbf{S} \cdot \mathbf{m}^{-1}$.

La conductivité électrique dépend de la composition de la solution aqueuse.

Concentration en ion (mg/L)	Ca ⁺	SO_4^{2-}	Mg^{2+}	HCO_3^-	K ⁺	Cl-	Conductivité σ à 25°C
Eau distillée	0	0	0	0	0	0	0
Eau 1	202	306	36	402	0	0	0,1567
Eau 2	78	10	24	357	1	4,5	0,0640
Eau saturée en KCl	0	0	0	0	391	355	0,1502

3 - Expliquer la conductivité des	4 solutions presented	es dans le tableau du document 4.
Document 5 – Eau déminéralisée	ou distillée	
Document 5 – Eau déminéralisée	ou distillée Eau déminéralisée	Eau distillée
Document 5 – Eau déminéralisée Description		Eau distillée Eau pure avec quelques gaz dissous
	Eau déminéralisée	
Description	Eau déminéralisée Eau sans ions	Eau pure avec quelques gaz dissous
Description Utilisation	Eau déminéralisée Eau sans ions Chimie, ménage	Eau pure avec quelques gaz dissous Chimie, médical