

IIC2223 - Teoría de Autómatas y Lenguajes Formales - 2' 2024

IIC2224 – Autómatas y Compiladores

Tarea 4

Publicación: Viernes 18 de octubre.

Entrega: Jueves 24 de octubre hasta las 23:59 horas.

Indicaciones

■ Debe entregar una solución para cada pregunta (sin importar si está en blanco).

- Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

Un transductor $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ se dice síncrono si $\Delta \subseteq Q \times \Sigma \times \Omega \times Q$. En otras palabras, no tiene ϵ -transiciones, ni transiciones que producen ϵ al leer una letra. En particular, es fácil ver que si \mathcal{T} es síncrono y $(u, v) \in [\mathcal{T}]$, entonces |u| = |v|. Por último, para todo $u = a_1 \dots a_n \in \Sigma^*$ y $v = b_1 \dots b_n \in \Omega^*$ se define la palabra $u \times v = (a_1, b_1) \dots (a_n, b_n)$ sobre el alfabeto $\Sigma \times \Omega$.

1. Para una relación $R \subseteq \Sigma^* \times \Omega^*$ tal que |u| = |v| para todo $(u, v) \in R$, se define el lenguaje:

$$R^{\times} = \{u \times v \mid (u, v) \in R\}.$$

Demuestre que para todo transductor síncrono \mathcal{T} se tiene que $\llbracket \mathcal{T} \rrbracket^{\times}$ es un lenguaje regular.

2. Para una palabra $w = a_1 \dots a_{n-1} a_n$, se define la palabra reversa de w como $w^{\text{rev}} = a_n a_{n-1} \dots a_1$. Considere la relación Rev = $\{(w, w^{\text{rev}}) \mid w \in \Sigma^*\}$. Demuestre que NO existe un transductor síncrono \mathcal{T} tal que Rev = $\|\mathcal{T}\|$.

Solución

Problema 1.1. Queremos demostrar que si \mathcal{T} es síncronno, $\llbracket \mathcal{T} \rrbracket$ es regular. Sea $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ síncrono, con $\Delta \subseteq Q \times \Sigma \times \Omega \times Q$. Sea un NFA A_T tal que $-A_T = (Q, \Sigma \times \Omega, \Delta_T, I, F)$ con $\Delta_T = \{(p, (a, b), q) \mid (p, a, b, q) \in \Delta\}$.

P.D.
$$L(A_T) = [T]^X$$
.

Demostración: ⊇

Sea $(a_1,b_1)...(a_n,b_n) \in \llbracket \mathcal{T} \rrbracket^X$. Por definición, $(a_1...a_n,b_1...b_n) \in \llbracket \mathcal{T} \rrbracket$. Como \mathcal{T} es síncrono, existe una ejecución de \mathcal{T} que acepta $(a_1...a_n,b_1...b_n)$. Sea la ejecución de aceptación:

$$\rho: \ p_0 \stackrel{a_1/b_1}{\longrightarrow} \dots \stackrel{a_n/b_n}{\longrightarrow} p_n$$

Por construcción, podemos armar una ejecución de A_T sobre $(a_1,b_1)...(a_n,b_n)$ de la siguiente forma:

$$\rho_2: p_0 \xrightarrow{(a_1,b_1)} \dots \xrightarrow{(a_n,b_n)} p_n$$

IIC2223/IIC2224 1 Tarea 4

Por lo tanto, $(a_1, b_1)...(a_n, b_n) \in L(A_T)$.

Demostración: ⊆

El mismo procedimiento puede ser seguido de manera reversa gracias a la manera en la que se construyó el autómata.

Distribución de puntaje

- 1 punto por plantear y definir el lenguaje del autómata.
- 1 punto por plantear y definir el conjunto Δ del autómata.
- 1 punto por cada lado de la demostración (2 en total por la demostración de la igualdad).

Problema 1.2. Por contradicción. Supongamos existe un transductor síncrono tal que [T] = Rev. Por el problema 1.1, Rev^X es regular.

P.D. Rev^X no es regular.

Notar que Rev^X es de la forma:

$$\operatorname{Rev}^{X} = \{(a_{1}, a_{n})(a_{2}, a_{n-1})...(a_{n}, a_{1}) \mid a_{i} \in \Sigma\}.$$

Por bombeo, sea N>0 cualquiera. Consideremos $(a^Nb^N,b^Na^N)\in \text{Rev}$. De lo anterior, se tiene que $(a,b)^N(b,a)^N\in \text{Rev}^X$ y podemos elegir $x=\varepsilon,\ y=(a,b)^N,\ z=(b,a)^N$. Suponemos y tal que $y=(a,b)^N=(a,b)^k(a,b)^l(a,b)^m$ con k+l+m=N y l>0. Elegimos i=2 y tenemos $(a,b)^k(a,b)^l(a,b)^m(b,a)^N=(a,b)^{N+l}(b,a)^N$. Pero vemos que $(a,b)^{N+l}(b,a)^N\notin \text{Rev}^X$, ya que $(a^{N+l}b^N,b^{N+l}a^N)\notin \text{Rev}$.

Distribución de puntaje

- 1 punto por plantear la contradicción (o el tipo de demostración que se vaya a utilizar).
- 1 punto por utilizar el ejercicio 1.1 para comenzar la demostración.
- 1 punto por plantear la palabra bombeable.
- 1 punto por realizar bien el bombeo y llegar a la contradicción.

Pregunta 2

Para cada uno de los siguientes lenguajes, muestre una gramática libre de contexto que lo defina y explique su correctitud. No es necesario demostrar su correctitud, pero si explicar de manera precisa porque la gramática propuesta cumple con lo solicitado.

- 1. Todas las formulas proposicionales con una variable p y constantes 0 (false) y 1 (true).
- 2. Todas las formulas proposicionales con una variable p y constantes 0 y 1 que son tautologías.

Notar que el alfabeto de ambos lenguajes es $\{p,0,1,\neg,\wedge,\vee,(,)\}$. Por ejemplo, $(\neg(p)\wedge 1)$ y $((1\wedge\neg(p))\vee p)$ son palabras en el primer lenguaje. En cambio, $(\neg p\wedge 1)$ o $0\wedge\neg p\vee p$ no lo son. Notar que cada operación \neg , \wedge , o \vee de la formula tiene que estar entre paréntesis.

Solución

Problema 2.1. Para este lenguaje podemos definir la siguiente gramática libre de contexto \mathcal{G}_1 :

$$\mathcal{G}_1: S \to p \mid 0 \mid 1$$
 casos base
$$\mid (S \land S) \mid (S \lor S)$$
 casos and y or
$$\mid \neg(S)$$
 caso not

La gramática anterior considera los casos base p,0,1 que nos permiten formar formulas proposicionales utilizando la variable p y las constantes 0 y 1 como se solicita en la pregunta. Luego los casos and, or y not nos permiten crear formulas proposicionales más complejas utilizando los símbolos \land, \lor, \neg respectivamente.

Distribución de puntaje

- 1 punto por casos bases
- 1 punto por casos and y or
- 1 punto por caso not
- 1 punto por incluir correctamente los paréntesis

Problema 2.2. Para definir la gramática libre de contexto \mathcal{G}_2 para este problema, definiremos primero una variable X_{b_0,b_1} para cada $b_0,b_1 \in 0,1$. Cada variable X_{b_0,b_1} representa a una fórmula φ que al ser evaluada p con el valor $0, \varphi$ toma el valor b_0 y al ser evaluada p con el valor $1, \varphi$ toma el valor b_1 .

Por simplicidad y para hacer más sucinta la gramática, consideramos que X_{*,b_1} o $X_{b_0,*}$ es equivalente a decir que no nos importa que valor hay en la posición *. Por ejemplo $X_{0,*}$ representa a las variables $X_{0,0}$ y $X_{0,1}$. Si tenemos una producción $X_{b_0,b_1} \to X_{*,b_1}$, esta representa a las dos producciones $X_{b_0,b_1} \to X_{0,b_1}$ y $X_{b_0,b_1} \to X_{0,b_1}$.

Con esta definición, comenzamos formando las siguientes producciones, que serán los casos base de nuestra gramática \mathcal{G}_2 :

$$\begin{array}{ccc} X_{0,0} & \rightarrow & 0 \\ X_{0,1} & \rightarrow & p \\ X_{1,1} & \rightarrow & 1 \end{array}$$

Luego, podemos definir los casos base recursivos de la siguiente manera:

$$X_{0,0} \rightarrow \neg(X_{1,1})$$
 representa a la constante 0
 $X_{0,1} \rightarrow \neg(X_{1,0})$ representa a la variable p
 $X_{1,0} \rightarrow \neg(X_{0,1})$ representa a la "variable" $\neg p$
 $X_{1,1} \rightarrow \neg(X_{0,0})$ representa a la consante 1

Juntando todos los casos base, obtenemos lo siguiente:

$$X_{0,0} \rightarrow 0 \mid \neg(X_{1,1})$$

 $X_{0,1} \rightarrow p \mid \neg(X_{1,0})$
 $X_{1,0} \rightarrow \neg(X_{0,1})$
 $X_{1,1} \rightarrow 1 \mid \neg(X_{0,0})$

Con estos casos base, generalizaremos las operaciones $and\ y$ or de la siguiente manera:

• AND

• OR

Con las variables X_{b_0,b_1} definidas, para obtener todas las tautologías basta con definir que la variable inicial de la gramática \mathcal{G}_2 es $X_{1,1}$. Debido a nuestra construcción $X_{1,1}$ solo producirá fórmulas que sea tautologías y considerará todas las operaciones, es decir, AND, OR y NOT.

Distribución de puntaje

- 1 punto por casos bases
- 1 punto por casos base recursivos
- 1 punto por caso and
- 1 punto por caso or

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de 0, 1, 2, 3 o 4 puntos. Todas las preguntas tienen la misma ponderación en la nota final y cada item tiene la misma ponderación en cada pregunta.