Лабораторная работа № 5 Численное интегрирование

Задание. Вычислить значение интеграла по указанному промежутку, применяя методы прямоугольников (левых, правых, центральных), трапеций, парабол и метод Гаусса. Вычислить интеграл по формуле Ньютона-Лейбница.

Входные параметры: x_0 , x_n — начало и конец промежутка интегрирования;

n — число отрезков разбиения (для методов прямоугольников (левых, правых, центральных), трапеций и парабол).

Вариант	Подынтегральная функция	Интервал интегрирования	Первообразная ϕ ункция $F(x)$
1	$\frac{x}{(x+3)^2}$	[0;2]	$\frac{3}{x+3} + \ln(x+3)$
2	$\frac{x}{2x+1}$	[0,2;1]	$\frac{x}{2} - \frac{1}{4} \ln 2x + 1 $
3	$x\sin(2x)$	$[0;\frac{\pi}{4}]$	$\frac{\sin(2x)}{4} - \frac{x\cos(2x)}{2}$
4	2 ^{3 x}	[0;1]	$\frac{2^{3x}}{3\ln 2}$
5	$\frac{\ln^2(x)}{x}$	[1;5]	$\frac{\ln^3(x)}{3}$
6	$e^{2x}\sin(x)$	$[0;\frac{\pi}{2}]$	$\frac{e^{2x}}{5}(2\sin(x)-\cos(x))$
7	$\frac{x^2}{2x+3}$	[1;3]	$\frac{1}{8}(2x^2 - 6x + 9\ln(2x + 3))$
8	$\frac{x^2(7x^2-15)}{(7x^2-5)^2}$	[1;4]	$\frac{x^3}{7x^2-5}$
9	$\frac{x}{\sin^2(3x)}$	[0.2;1]	$-\frac{x}{3}ctg(3x) + \frac{1}{9}\ln(\sin(3x))$
10	$xe^{0.8x}$	[2;3]	$\frac{e^{0.8x}}{0.64}(0.8x-1)$