Machine Learning Foundations

(機器學習基石)

Lecture 9: Linear Regression

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- Why Can Machines Learn?

Lecture 8: Noise and Error

learning can happen with target distribution $P(y|\mathbf{x})$ and low E_{in} w.r.t. err

How Can Machines Learn?

Lecture 9: Linear Regression

- Linear Regression Problem
- Linear Regression Algorithm
- Generalization Issue
- 4 How Can Machines Learn Better?

Credit Limit Problem

 $\mathcal{Y} = \mathbb{R}$: regression

Linear Regression Hypothesis

age	23 years
annual salary	NTD 1,000,000
year in job	0.5 year
current debt	200,000

• For $\mathbf{x} = (x_0, x_1, x_2, \dots, x_d)$ 'features of customer', approximate the desired credit limit with a weighted sum:

$$y \approx \sum_{i=0}^{d} \mathbf{w}_i x_i$$

• linear regression hypothesis: $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

 $h(\mathbf{x})$: like **perceptron**, but without the sign

Illustration of Linear Regression

linear regression: find lines/hyperplanes with small residuals

The Error Measure

popular/historical error measure:

squared error
$$err(\hat{y}, y) = (\hat{y} - y)^2$$

in-sample

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \left(\underbrace{h(\mathbf{x}_n)}_{\mathbf{w}^T \mathbf{x}_n} - y_n \right)^2$$

out-of-sample

$$E_{\text{out}}(\mathbf{w}) = \underset{(\mathbf{x}, y) \sim P}{\mathbb{E}} (\mathbf{w}^T \mathbf{x} - y)^2$$

next: how to minimize $E_{in}(\mathbf{w})$?

Fun Time

Consider using linear regression hypothesis $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ to predict the credit limit of customers \mathbf{x} . Which feature below shall have a positive weight in a **good** hypothesis for the task?

- birth month
- 2 monthly income
- 3 current debt
- number of credit cards owned

Reference Answer: (2)

Customers with higher monthly income should naturally be given a higher credit limit, which is captured by the positive weight on the 'monthly income' feature.

Matrix Form of $E_{in}(\mathbf{w})$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} - y_{n})^{2} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n}^{T} \mathbf{w} - y_{n})^{2}$$

$$= \frac{1}{N} \left\| \begin{array}{c} \mathbf{x}_{1}^{T} \mathbf{w} - y_{1} \\ \mathbf{x}_{2}^{T} \mathbf{w} - y_{2} \\ \dots \\ \mathbf{x}_{N}^{T} \mathbf{w} - y_{N} \end{array} \right\|^{2}$$

$$= \frac{1}{N} \left\| \begin{bmatrix} --\mathbf{x}_{1}^{T} - - \\ --\mathbf{x}_{2}^{T} - - \\ \dots \\ --\mathbf{x}_{N}^{T} - - \end{bmatrix} \mathbf{w} - \begin{bmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{N} \end{bmatrix} \right\|^{2}$$

$$= \frac{1}{N} \left\| \underbrace{\mathbf{x}}_{N \times d+1} \underbrace{\mathbf{w}}_{d+1 \times 1} - \underbrace{\mathbf{y}}_{N \times 1} \right\|^{2}$$

$$\min_{\mathbf{w}} E_{in}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

- $E_{in}(\mathbf{w})$: continuous, differentiable, **convex**
- necessary condition of 'best' w

$$\nabla \textit{E}_{in}(\textbf{w}) \equiv \begin{bmatrix} \frac{\partial \textit{E}_{in}}{\partial \textit{w}_0}(\textbf{w}) \\ \frac{\partial \textit{E}_{in}}{\partial \textit{w}_1}(\textbf{w}) \\ \dots \\ \frac{\partial \textit{E}_{in}}{\partial \textit{w}_d}(\textbf{w}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \end{bmatrix}$$

—not possible to 'roll down'

task: find \mathbf{w}_{LIN} such that $\nabla E_{in}(\mathbf{w}_{LIN}) = \mathbf{0}$

The Gradient $\nabla E_{in}(\mathbf{w})$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 = \frac{1}{N} \left(\mathbf{w}^T \frac{\mathbf{X}^T \mathbf{X}}{\mathbf{A}} \mathbf{w} - 2\mathbf{w}^T \frac{\mathbf{X}^T \mathbf{y}}{\mathbf{b}} + \mathbf{y}^T \mathbf{y} \right)$$

one w only

$$E_{\rm in}(w) = \frac{1}{N} \left(aw^2 - 2bw + c \right)$$

$$\nabla E_{\rm in}(\mathbf{w}) = \frac{1}{N} \left(2\mathbf{a}\mathbf{w} - 2\mathbf{b} \right)$$

simple! :-)

vector w

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \left(\mathbf{w}^T \mathbf{A} \mathbf{w} - 2 \mathbf{w}^T \mathbf{b} + c \right)$$

$$\nabla E_{\text{in}}(\mathbf{w}) = \frac{1}{N} (2\mathbf{A}\mathbf{w} - 2\mathbf{b})$$

similar (derived by definition)

$$\nabla E_{\mathsf{in}}(\mathbf{w}) = \frac{2}{N} \left(\mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{w} - \mathbf{X}^\mathsf{T} \mathbf{y} \right)$$

Optimal Linear Regression Weights

task: find
$$\mathbf{w}_{\mathsf{LIN}}$$
 such that $\frac{2}{N}\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - \mathbf{X}^{\mathsf{T}}\mathbf{y}\right) = \nabla E_{\mathsf{in}}(\mathbf{w}) = \mathbf{0}$

invertible X^TX

easy! unique solution

$$\mathbf{w}_{LIN} = \underbrace{\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}}_{\text{pseudo-inverse }\mathbf{x}^{\dagger}} \mathbf{y}$$

• often the case because $N \gg d + 1$

singular X^TX

- · many optimal solutions
- one of the solutions

$$\mathbf{w}_{\mathsf{LIN}} = \mathbf{X}^{\dagger} \mathbf{y}$$

by defining X[†] in other ways

practical suggestion:

use well-implemented \dagger routine instead of $(X^TX)^{-1}X^T$ for numerical stability when almost-singular

Linear Regression Algorithm

1 from \mathcal{D} , construct input matrix \mathbf{X} and output vector \mathbf{y} by

$$X = \underbrace{\begin{bmatrix} --\mathbf{x}_{1}^{T} - - \\ --\mathbf{x}_{2}^{T} - - \\ \cdots \\ --\mathbf{x}_{N}^{T} - - \end{bmatrix}}_{N \times (d+1)} \quad \mathbf{y} = \underbrace{\begin{bmatrix} y_{1} \\ y_{2} \\ \cdots \\ y_{N} \end{bmatrix}}_{N \times 1}$$

- 2 calculate pseudo-inverse X^{\dagger} $(d+1)\times N$
- 3 return $\underbrace{\mathbf{w}_{\text{LIN}}}_{(d+1)\times 1} = \mathbf{X}^{\dagger}\mathbf{y}$

simple and efficient with good † routine

Fun Time

After getting \mathbf{w}_{LIN} , we can calculate the predictions $\hat{y}_n = \mathbf{w}_{\text{LIN}}^T \mathbf{x}_n$. If all \hat{y}_n are collected in a vector $\hat{\mathbf{y}}$ similar to how we form \mathbf{y} , what is the matrix formula of $\hat{\mathbf{y}}$?

- **1** y
- $2 XX^T y$
- 3 XX[†]y
- $\mathbf{4} \mathbf{X} \mathbf{X}^{\dagger} \mathbf{X} \mathbf{X}^{T} \mathbf{y}$

Reference Answer: (3)

Note that $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}_{LIN}$. Then, a simple substitution of \mathbf{w}_{LIN} reveals the answer.

Is Linear Regression a 'Learning Algorithm'?

$$\mathbf{w}_{\mathsf{LIN}} = \mathbf{X}^{\dagger} \mathbf{y}$$

No!

- analytic (closed-form) solution, 'instantaneous'
- not improving E_{in} nor E_{out} iteratively

Yes!

- good E_{in}?yes, optimal!
- good E_{out}?
 yes, finite d_{VC} like perceptrons
- improving iteratively?
 somewhat, within an iterative pseudo-inverse routine

if $E_{\text{out}}(\mathbf{w}_{\text{LIN}})$ is good, learning 'happened'!

Benefit of Analytic Solution:

'Simpler-than-VC' Guarantee

$$\overline{E_{\text{in}}} = \underset{\mathcal{D} \sim P^{N}}{\mathbb{E}} \left\{ E_{\text{in}}(\mathbf{w}_{\text{LIN}} \text{ w.r.t. } \mathcal{D}) \right\}^{\text{to be shown}} \text{ noise level} \cdot \left(1 - \frac{d+1}{N}\right)$$

$$E_{\text{in}}(\mathbf{w}_{\text{LIN}}) = \frac{1}{N} \|\mathbf{y} - \underbrace{\hat{\mathbf{y}}}_{\text{predictions}}\|^{2} = \frac{1}{N} \|\mathbf{y} - \mathbf{X} \underbrace{\mathbf{X}^{\dagger} \mathbf{y}}_{\mathbf{w}_{\text{LIN}}}\|^{2}$$

$$= \frac{1}{N} \|(\underbrace{\mathbf{I}}_{\text{identity}} - \mathbf{X} \mathbf{X}^{\dagger}) \mathbf{y}\|^{2}$$

call XX[†] the hat matrix H because it puts ∧ on **y**

Geometric View of Hat Matrix

in \mathbb{R}^N

- $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}_{LIN}$ within the span of X columns
- $\mathbf{y} \hat{\mathbf{y}}$ smallest: $\mathbf{y} \hat{\mathbf{y}} \perp \mathbf{span}$
- H: project y to $\hat{y} \in span$
- I H: transform **y** to $\mathbf{y} \hat{\mathbf{y}} \perp \mathbf{span}$

claim: trace(I - H) = N - (d + 1). Why? :-)

The Hat Matrix

when X^TX invertible, hat matrix $H = XX^{\dagger} = X(X^TX)^{-1}X^T$

Claim: $H^{1126} = H$

proof (when X^TX invertible):

$$\begin{split} H^{1126} &= HHH^{1124} \\ &= X(X^TX)^{-1}X^TX(X^TX)^{-1}X^TH^{1124} \\ &= X(X^TX)^{-1}(X^TX)(X^TX)^{-1}X^TH^{1124} \\ &= X(X^TX)^{-1}X^TH^{1124} \\ &= H^{1125} \end{split}$$

... and you know the rest

geometrically, **projecting** 1126 **times**≡ projecting once

Trace of The Hat Matrix

when
$$X^TX$$
 invertible, hat matrix $H = XX^{\dagger} = X(X^TX)^{-1}X^T$

Claim: trace(H) = d + 1 when X^TX invertible

proof:

trace(H) = trace(
$$\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$$
)
= trace($\mathbf{X}^T\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}$)
= trace(\mathbf{I}_{d+1})
= $d+1$

geometrically, H projects to a(d+1)-dimensional subspace

Generalization Issue

An Illustrative 'Proof', Corrected

- if y comes from some ideal $f(X) \in \text{span}$ plus noise
- **noise** with per-dimension 'noise level' σ^2 transformed by I H to be $\mathbf{y} \hat{\mathbf{y}}$

$$E_{\text{in}}(\mathbf{w}_{\text{LIN}}) = \frac{1}{N} \|\mathbf{y} - \hat{\mathbf{y}}\|^2 = \frac{1}{N} \|(\mathbf{I} - \mathbf{H}) \mathbf{noise}\|^2$$
$$= \frac{1}{N} (N - (d+1)) \sigma^2$$

$$\overline{E_{\text{in}}} = \sigma^2 \cdot \left(1 - \frac{d+1}{N}\right)
\overline{E_{\text{out}}} = \sigma^2 \cdot \left(1 + \frac{d+1}{N}\right) \text{ (complicated!)}$$

The Learning Curve

$$\overline{E_{\text{out}}} = \text{noise level} \cdot \left(1 + \frac{d+1}{N}\right)$$
 $\overline{E_{\text{in}}} = \text{noise level} \cdot \left(1 - \frac{d+1}{N}\right)$

- both converge to σ^2 (**noise** level) for $N \to \infty$
- expected generalization error: $\frac{2(d+1)}{N}$
 - -similar to worst-case guarantee from VC

linear regression (LinReg): learning 'happened'!

Fun Time

Which of the following property about H is not true?

- 1 H is symmetric
- 2 $H^2 = H$ (double projection = single one)
- (3) $(I H)^2 = I H$ (double residual transform = single one)
- none of the above

Reference Answer: 4

You can conclude that (2) and (3) are true by their physical meanings! :-)

Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?

Lecture 8: Noise and Error

3 How Can Machines Learn?

Lecture 9: Linear Regression

- Linear Regression Problem use hyperplanes to approximate real values
- Linear Regression Algorithm analytic solution with pseudo-inverse
- Generalization Issue $E_{\rm out} E_{\rm in} \approx \frac{2(d+1)}{N}$ on average
- next: binary classification, regression, and then?
- 4 How Can Machines Learn Better?