Автор: Смирнов Алексей Владимирович

ИСУ: 409578

Группа: R3242

Лабораторная работа №2 Преобразование Фурье

Содержание

-	
Задание 1. Вещественное	1
Прямоугольная функция 1	1
Графики	1
Преобразование Фурье 1	1
Равенство Парсеваля 1	1
Выводы	2
Треугольная функция	2
Графики	2
Преобразование Фурье	3
Равенство Парсеваля	3
Выводы	4
Кардинальный синус	1
Графики	1
Преобразование Фурье	1
Равенство Парсеваля	5
Выводы	5
Функция Гаусса	5
Графики	5
Преобразование Фурье б	5
Равенство Парсеваля	5
Выводы	7
Двустороннее затухание	7
Графики 7	
Преобразование Фурье	
Равенство Парсеваля	
Выводы	
Задание 2. Комплексное	
Графики 9	
Преобразование Фурье	
Выводы	
Задание 3. Музыкальное	
Обработка файла	
Дискретное преобразование Фурье	
Выводы	
Приложение	2

Задание 1. Вещественное

Прямоугольная функция

Возьмем прямоугольную функцию:

$$f(t) = \begin{cases} a, & |t| \le b \\ 0, & |t| > b \end{cases}$$

и следующие 3 пары параметров a и b:

$$\begin{cases} a = 3 \\ b = 3 \end{cases} \begin{cases} a = 6 \\ b = 3 \end{cases} \begin{cases} a = 3 \\ b = 6 \end{cases}$$

Графики

Построим графики функции для каждой пары параметров.

Рис. 1. Графики прямоугольной функции

Преобразование Фурье

Выполним для каждой дискретное преобразование Фурье и построим графики полученных Фурье-образов.

Рис. 2. Графики Фурье-образа прямоугольной функции

Равенство Парсеваля

Равенство Парсеваля для преобразования Фурье имеет следующий вид:

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw$$

Проверим его выполнение для каждой пары параметров:

$$\begin{cases} a = 3 \\ b = 3 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 54.054 \approx \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 53.975$$

$$\begin{cases} a = 3 \\ b = 6 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 108.0 \approx \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 108.002$$

$$\begin{cases} a = 6 \\ b = 3 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 216.216 \approx \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 215.898$$

Видим, что равенство Парсеваля выполняется с хорошей точностью.

Выводы

Для прямоугольной функции параметр a влияет на амплитуду Фурье-образа и самой функции, а параметр b влияет на ширину функции и ширину спектра Фурье-образа. Фурье-образ имеет вид кардинального синуса, график которого колеблется вокруг нуля.

Треугольная функция

Возьмем треугольную функцию:

$$f(t) = \begin{cases} a - |at/b|, & |t| \le b \\ 0, & |t| > b \end{cases}$$

и точно такие же параметры a и b.

Графики

Построим графики функции для каждой пары параметров.

Рис. 3. Графики треугольной функции

Преобразование Фурье

Выполним для каждой дискретное преобразование Фурье и построим графики полученных Фурье-образов.

Рис. 4. Графики Фурье-образа треугольной функции

Равенство Парсеваля

Проверим его выполнение для каждой пары параметров:

$$\begin{cases} a = 3 \\ b = 3 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 18.0 = \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 18.0$$

$$\begin{cases} a = 3 \\ b = 6 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 36.0 = \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 36.0$$

$$\begin{cases} a = 6 \\ b = 3 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 72.0 = \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 72.0$$

Видим, что равенство Парсеваля выполняется.

Выводы

Фурье-образ треугольной функции тоже имеет вид кардинального синуса, график которого колеблется вокруг нуля, но колебания затухают быстрее, чем для прямо-угольной функции.

Параметр a влияет на функции и амплитуду Фурье-образа, а параметр b влияет на ширину функции и ширину спектра Фурье-образа.

Кардинальный синус

Возьмем кардинальный синус:

$$f(t) = a\operatorname{sinc}(bt) = a\sin(bt)/t$$

и точно такие же параметры a и b.

Графики

Построим графики функции для каждой пары параметров.

Рис. 5. Графики кардинального синуса

Преобразование Фурье

Выполним для каждой дискретное преобразование Фурье и построим графики полученных Фурье-образов.

Рис. 6. Графики Фурье-образа кардинального синуса

)

Равенство Парсеваля

Выполняется для каждой пары параметров:

$$\begin{cases} a = 3 \\ b = 3 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 2.983 \approx \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 2.996$$

$$\begin{cases} a = 3 \\ b = 6 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 1.496 \approx \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 1.499$$

$$\begin{cases} a = 6 \\ b = 3 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 11.932 \approx \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 11.984$$

Видим, что равенство Парсеваля выполняется с хорошей точностью.

Выводы

Фурье-образ кардинального синуса имеет вид прямоугольной функции.

Параметр a влияет на амплитуду функции и Фурье-образа, а параметр b влияет на ширину функции и ширину спектра Фурье-образа, также обратно пропорционален амплитуде Фурье-образа.

Функция Гаусса.

Возьмем функцию Гаусса:

$$f(t) = ae^{-bt^2}$$

и точно такие же параметры a и b.

Графики

Построим графики функции для каждой пары параметров.

Рис. 7. Графики функции Гаусса

Преобразование Фурье

Выполним для каждой дискретное преобразование Фурье и построим графики полученных Фурье-образов.

Рис. 8. Графики Фурье-образа функции Гаусса

Равенство Парсеваля

$$\begin{cases} a = 3 \\ b = 3 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 6.512 \approx \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 6.512$$

$$\begin{cases} a = 3 \\ b = 6 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 4.605 \approx \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 4.605$$

$$\begin{cases} a = 6 \\ b = 3 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 26.050 \approx \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 26.050$$

Равенство Парсеваля выполняется с хорошей точностью.

Выводы

Фурье-образ функции Гаусса имеет вид функции Гаусса, но он не совпадает со своей функцией.

Параметр a влияет на амплитуду функции и Фурье-образа; параметр b влияет на ширину функции и ширину спектра Фурье-образа, чем больше b, тем уже функция и шире спектр и ниже его амплитуда.

Двустороннее затухание

Возьмем функцию двустороннего затухания:

$$f(t) = ae^{-b|t|}$$

Графики

Построим графики функции для каждой пары параметров.

Рис. 9. Графики функции двустороннего затухания

Преобразование Фурье

Выполним для каждой дискретное преобразование Фурье и построим графики полученных Фурье-образов.

Рис. 10. Графики Фурье-образа функции двустороннего затухания

Равенство Парсеваля

Выполняется для каждой пары параметров:

$$\begin{cases} a = 3 \\ b = 3 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 2.999 = \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 2.999$$

$$\begin{cases} a = 3 \\ b = 6 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 1.498 = \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 1.498$$

$$\begin{cases} a = 6 \\ b = 3 \end{cases}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = 11.996 = \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 11.996$$

Выводы

Фурье-образ функции двустороннего затухания имеет вид подобный самой функции, но со сглаженным пиком.

Параметр a влияет на амплитуду функции и Фурье-образа; параметр b влияет на ширину функции и ширину спектра Фурье-образа: чем больше b, тем уже функция и шире спектр и ниже его амплитуда.

Задание 2. Комплексное

Для этого задания возьмем функцию кардинального синуса и 3 разных значения сдвига c:

$$g(t) = 3\operatorname{sinc}(3(t-c))$$

где
$$c = -4, 1, 2\pi$$
.

Графики

Построим график функции g для каждого значения c

Преобразование Фурье

Выполним для каждой дискретное преобразование Фурье и построим графики полученных Фурье-образов. Изобразим на графиках вещественную, мнимую части и модуль.

Рис. 12. Графики Фурье-образа функции g

Выводы

По Рис. 12 видно, что сдвиг функции во времени не приводит к изменению модуля Фурье-образа, но изменяет частоту и фазу колебаний вещественной и мнимой частей.

Частота колебаний зависит от модуля параметра c, а фаза зависит также от его знака.

Задание 3. Музыкальное

Для выполнения этого задания выбрали среди предложенных записей аккорд номер 12.

Обработка файла

Для обработки файла воспользовались библиотекой librosa для Python3.10. После загрузки файла получили его характеристики:

- длительность: 4.6 секунды
- частота дискретизации: 22050 Гц

Рис. 13. График волны аккорда

Дискретное преобразование Фурье

Чтобы выполнить дискретное преобразование Фурье для предложенных аудиоданных нужно определить длину окна и шаг окна. Обозначим частоту дискретизации как d, а количество измерений как N. Тогда длина окна равна d/2, а шаг окна равен d/N.

Для исходной частоты дискретизации численно выполнить преобразование не вышло, поэтому уменьшим частоту дискретизации в 5 раз.¹

Для частоты дискретизации d=4410 нашли Фурье-образ исходного сигнала:

 $^{^{1}}$ После ожидания результата более 4-х минут и потребления процессом Python около 12 ГБ оперативной памяти.

На графике фурье-образа видим 3 ярко выраженных пика, что говорит о наличии 3 основных частот в исходном сигнале. Этим пикам соответствуют частоты 312, 390 и 465 Гц.

По таблице, сопоставляющей частоту музыкальной ноте 2 найдем, что это за ноты. Частоты соответствуют нотам $D\sharp 4, G4, A\sharp 4.$

Узнаем имя этого аккорда. Не обладая какими-либо музыкальными навыками, я решил попросить о помощи знакомого, который занимается музыкой. Предположили, что это аккорд Cm7 (до минор 7) и записали его, чтобы сравнить с аккордом из задания (См. Приложение).

На слух аккорды звучат похоже, но не одинаково. Это может быть обусловлено различными инструментами, на которых они исполнялись.

Выводы

Применили дискретное преобразование Фурье для анализа аудиоданных и столкнулись с вычислительными ограничениями, связанными с большим объемом данных и высокой частотой дискретизации.

Убедились, что преобразование Фурье позволяет находить основные частоты в аудиоданных и определять музыкальные ноты, соответствующие этим частотам.

²https://newt.phys.unsw.edu.au/jw/graphics/notes.GIF

Приложение

1. Репозиторий с исходными кодами программ, графиками и аудиофайлами: https://github.com/hanqnero/typst/tree/main/FrequencyMethods/L2