МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №6
по дисциплине «Вычислительная математика»
Тема: Численное дифференцирование

Студент гр. 0303	 Калмак Д.А
Преподаватель	Сучков А.И

Санкт-Петербург

Цель работы.

Проверить правильность порядка точности и определить наивысшую достижимую точность (наименьшую погрешность) в стандартном режиме вычислений с плавающей точкой (8-байтовые числа, типа double) для пяти разностных формул численного дифференцирования.

Основные теоретические положения.

В основе численного дифференцирования лежит аппроксимация функции, от которой берется производная, интерполяционным многочленом. Все основные формулы численного дифференцирования могут быть получены при помощи первого интерполяционного многочлена Ньютона.

Первые производные 1-го порядка точности:

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$

Первые производные 2-го порядка точности:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

Первые производные 4-го порядка точности:

$$f'(x) = \frac{-f(x+2h) + 8f(x+h) + f(x-2h)}{12h} + O(h^4)$$

Вторые производные 2-го порядка точности:

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

Вторые производные 4-го порядка точности:

$$f''(x) = \frac{-f(x+2h) + 16f(x+h) - 30f(x) + 16f(x-h) - f(x-2h)}{12h^2} + O(h^4)$$

Постановка задачи.

Сравнить точные значения f'(x0), f''(x0) с конечноразностными первыми производными 1-го, 2-го и 4-го порядков точности и конечноразностными вторыми производными 2-го и 4-го порядков точности, вычисляемыми по

последовательно уменьшающимися вдвое значениям шага, если $f(x) = \frac{A}{x^2 + px + q}$, x0 = a. Значения a, A, p, q берутся из π/p №4.

Выполнение работы.

По условию:

$$a = -1$$
, $A = 1000$, $p = -6$, $q = 56$.

Тогда, если подставить значения, то
$$f(x) = \frac{1000}{x^2 - 6x + 56}$$
, $x_0 = -1$.

Была реализована функция f(), которая вычисляет значения в функции f(x). Также была реализована функция df(x), которая вычисляет точное значение первой производной. Функция dff(x) вычисляет точное значение второй производной. Функция df11() вычисляет первую производную 1-го порядка точности, df12() - первую производную 2-го порядка точности, df14() - первую производную 4-го порядка точности, df22() - вторую производную 2-го порядка точности.

Точное значение первой производной в точке x_0 f'(x0) = 2.01562106324011. Точное значение второй производной в точке x_0 f''(x0) = 0.007998496282699.

Разработанный код см. в Приложении А.

Найдем погрешности — разность между точным значением первой производной и значением первой производной 1-го порядка точности, при последовательном уменьшении шага в два раза. (см. табл. 1)

Таблица 1 – Погрешности первой производной 1-го порядка

Номер	Шаг h	Величина погрешности
шага		
1	1	0.0314941
2	0.5	0.00637855
3	0.25	0.00103154
4	0.125	3.59712e-14
5	0.0625	0.000125968

Продолжение таблицы 1

6	0.03125	9.41043e-05
7	0.015625	5.47857e-05
8	0.0078125	2.93204e-05
9	0.00390625	1.51414e-05
10	0.00195312	3.87549e-06
11	0.000976562	1.94525e-06
12	0.000488281	9.74507e-07
13	0.000244141	4.87738e-07
14	0.00012207	2.44008e-07
15	6.10352e-05	1.22004e-07
16	3.05176e-05	6.09446e-08
17	1.52588e-05	3.0793e-08

Построим график зависимости погрешности первой производной 1-го порядка от шага. (см. рис. 1)

Рисунок 1 – График зависимости первой производной 1-го порядка от шага

На четвертом шаге погрешность первой производной 1-го порядка минимальна 3.59712e-14.

Найдем погрешности — разность между точным значением первой производной и значением первой производной 2-го порядка точности, при последовательном уменьшении шага в два раза. (см. табл. 2)

Таблица 2 – Погрешности первой производной 2-го порядка

Номер	Шаг h	Величина погрешности
шага		
1	1	0.0314941
2	0.5	0.00787241
3	0.25	0.00196794
4	0.125	0.000491975
5	0.0625	0.000122993
6	0.03125	3.07482e-05
7	0.015625	7.68705e-06
8	0.0078125	1.92176e-06
9	0.00390625	4.80441e-07
10	0.00195312	1.2011e-07
11	0.000976562	3.00276e-08
12	0.000488281	7.50763e-09
13	0.000244141	1.87968e-09
14	0.00012207	4.64503e-10
15	6.10352e-05	1.15257e-10
16	3.05176e-05	5.7049e-11
17	1.52588e-05	1.15257e-10

Построим график зависимости погрешности первой производной 2-го порядка от шага. (см. рис. 2)

Рисунок 2 – График зависимости первой производной 2-го порядка от шага

На шестнадцатом шаге погрешность первой производной 2-го порядка минимальна 5.7049e-11.

Найдем погрешности — разность между точным значением первой производной и значением первой производной 4-го порядка точности, при последовательном уменьшении шага в два раза. (см. табл. 3)

Таблица 3 – Погрешности первой производной 4-го порядка

Номер	Шаг h	Величина погрешности
шага		
1	1	8.92816e-05
2	0.5	1.482e-06
3	0.25	2.10109e-07
4	0.125	1.49955e-08
5	0.0625	9.66433e-10
6	0.03125	6.0882e-11
7	0.015625	3.71658e-12
8	0.0078125	3.62821e-13
9	0.00390625	2.05613e-13

Продолжение таблицы 3

10	0.00195312	9.76996e-14
11	0.000976562	3.57048e-13
12	0.000488281	6.60361e-13
13	0.000244141	3.08553e-12
14	0.00012207	4.79661e-12
15	6.10352e-05	1.15863e-12
16	3.05176e-05	5.21982e-11
17	1.52588e-05	1.54062e-10

Построим график зависимости погрешности первой производной 4-го порядка от шага. (см. рис. 3)

Рисунок 3 — График зависимости первой производной 4-го порядка от шага

На десятом шаге погрешность первой производной 4-го порядка минимальна 9.76996e-14.

Найдем погрешности — разность между точным значением первой производной и значением второй производной 2-го порядка точности, при последовательном уменьшении шага в два раза. (см. табл. 4)

Таблица 4 – Погрешности второй производной 2-го порядка

Номер	Шаг h	Величина погрешности
шага		
1	1	0.0079985
2	0.5	0.00202305
3	0.25	0.000507227
4	0.125	0.000126898
5	0.0625	3.17303e-05
6	0.03125	7.93293e-06
7	0.015625	1.98324e-06
8	0.0078125	4.95772e-07
9	0.00390625	1.23738e-07
10	0.00195312	3.02567e-08
11	0.000976562	5.57661e-09
12	0.000488281	1.13227e-11
13	0.000244141	5.9616e-08
14	0.00012207	2.08628e-07
15	6.10352e-05	9.23883e-07
16	3.05176e-05	9.23883e-07
17	1.52588e-05	4.73858e-06

Построим график зависимости погрешности второй производной 2-го порядка от шага. (см. рис. 4)

Рисунок 4 — График зависимости второй производной 2-го порядка от шага

На двенадцатом шаге погрешность второй производной 2-го порядка минимальна 1.13227e-11.

Найдем погрешности — разность между точным значением первой производной и значением второй производной 4-го порядка точности, при последовательном уменьшении шага в два раза. (см. табл. 5)

Таблица 5 – Погрешности второй производной 4-го порядка

Номер	Шаг h	Величина погрешности
шага		
1	1	0.000498843
2	0.5	3.12397e-05
3	0.25	1.9517e-06
4	0.125	1.21961e-07
5	0.0625	7.62112e-09
6	0.03125	4.76166e-10
7	0.015625	6.86717e-12
8	0.0078125	5.49785e-11
9	0.00390625	3.60569e-10

Продолжение таблицы 5

10	0.00195312	1.17548e-09
11	0.000976562	2.80529e-09
12	0.000488281	1.23044e-09
13	0.000244141	8.69348e-08
14	0.00012207	3.37771e-07
15	6.10352e-05	1.55967e-06
16	3.05176e-05	7.64938e-07
17	1.52588e-05	6.01015e-06

Построим график зависимости погрешности второй производной 4-го порядка от шага. (см. рис. 5)

Рисунок 5 – График зависимости второй производной 4-го порядка от шага

На седьмом шаге погрешность второй производной 4-го порядка минимальна 6.86717e-12.

Погрешность производных с уменьшением шага сначала уменьшается, достигает минимального значения, увеличивается.

Выводы.

Таким образом, была проверена правильность порядка точности и определена наивысшая достижимая точность, наименьшая погрешность для пяти разностных формул численного дифференцирования.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Файл differentiation.m

```
function differentiation()
  format long g
  x0 = -1;
  h = 1;
  df = df(x0);
  printf("%.15d\n", df);
  dff1 = dff(x0);
  printf("%.13d\n", dff1);
  count = 0;
  resh = [];
  resabsdf = [];
  while count < 50
    dff = df24(x0, h);
    resabsdf(count+1) = abs(dff1-dff);
    loglog(h, abs(dff1-dff));
    printf("%d %d %d\n", count+1, h, abs(dff1-dff))
    #printf("%d\n", h)
    #printf("%d\n", abs(df-dff))
    hold on
    resh(count+1) = h;
   h = h/2;
    count++;
  endwhile
  printf("%d\n", min(resabsdf))
  loglog(resh, resabsdf);
  hold off
endfunction
function f = f(x)
  f = (x.^2-6*x+56).**(-1)*1000;
endfunction
function df = df(x)
  df = 1000*(6 - 2*x)/(x.^2 - 6*x + 56)^2;
endfunction
function dff = dff(x)
 dff = -2000/(x.^2 - 6*x + 56)^2 - 1000*(-12 + 4*x)*(6 - 2*x)/(x.^2 -
6*x + 56)^3;
endfunction
function df11 = df11(x, h)
  df11 = (f(x+h) - f(x))/h;
endfunction
function df12 = df12(x, h)
  df12 = (f(x+h) - f(x-h))/(2*h);
endfunction
function df14 = df14(x, h)
  df14 = (-f(x+2*h) + 8*f(x+h) - 8*f(x-h) + f(x-2*h))/(12*h);
```

endfunction

```
function df22 = df22(x, h) df22 = (f(x+h) - 2*f(x) + f(x-h))/h**2; endfunction function df24 = df24(x, h) df24 = (-f(x+2*h) + 16*f(x+h) - 30*f(x) + 16*f(x-h) - f(x-2*h))/(12*h**2); endfunction
```