SLAM345

POO/UML

UML

- * Unified Modeling Language
- * Langage de description (pas de norme de description des étapes de modélisation)
- * Agile
- * Normalisé
- * International
- * Métalangage (langage du projet à développer)
- * Comporte 13 types de diagrammes

UML

- * Ne gère pas les problèmes de redondance
- * Ne modélise pas les BD : pas de gestion de la persistance
- * POO + SGBDR = SGBDOO
- * UML adapte la BD aux traitements
- * Plusieurs approches pour un même problème
- * Attributs multivalués : non atomique
- * Agrégation et composition

Approche UML

* Non fonctionnelle

Les diagrammes UML

* Diagrammes statiques:

- diagramme de classes (Class diagram)
- diagramme d'objets (Object diagram)
- diagramme de composants (Component diagram)
- diagramme de déploiement (Deployment diagram)
- diagramme de paquetages (*Package diagram*)
- diagramme de structures composites (Composite structure diagram)

Les diagrammes UML

* Diagrammes dynamiques:

- diagramme de cas d'utilisation (Use case diagram)
- diagramme d'activités (Activity diagram)
- diagramme d'états-transitions (State machine diagram)
- Diagrammes d'interaction (Interaction diagram)
 - diagramme de séquence (Sequence diagram)
 - diagramme de communication (Communication diagram)
 - diagramme global d'interaction (Interaction overview diagram)
 - diagramme de temps (Timing diagram)

Diagrammes UML

- * Diagrammes importants:
- * Diagramme de classes
- * Diagramme d'objets
- * Diagramme de USE CASE
- * Diagramme d'état transition
- * Diagramme de séquence

Chaîne de modélisation

Démarche modélisation

- Diagramme de contexte du système à étudier (MCF)
- * Diagramme USE CASE pour chaque cas
- Traduction des USE CASE en scénario
- * Traduction des scénarios en Diagramme de séquence et diagramme de collaboration
- * Synthèse des DSE et DCO : liste des classes et objets
- * DCL
- * DET pour chaque classe importante
- GOTO étape 3 jusqu'à : niveau détail suffisant

5 niveaux de réflexion

- * USE case view: besoin utilisateur (comportement du système)
- * Deployment view: contraintes physiques (AMSI, ALSI, topologie)
- * Implementation view : configuration du système (ALSI, DAIGL)
- * Design view: interfaces, classes de la solution
- * Process view: méthodes, procédures, fonctions, processus (performances du système)

Diagrammes USE CASE

Diagramme USE CASE

Diagramme USE CASE

Diagramme de paquetage

Diagramme de classe

Diagramme de classe

Multiplicités

- exactement un : 1 ou 1..1
- plusieurs : * ou 0..*
- au moins un : 1..*
- de un à six : 1..6

Multiplicités

- * Exactement: 'n': 1, 7, ...
- * De 'n' à 'm' : 0..1, 3..n, 1..31
- * Plusieurs: o..n, o..*
- * n ou plus : 0..*, 5..*
- * Intervalle fermé: 2, 3, 15
- * Indéterminé: *

Navigabilité

Classe-association

Agrégation - Composition

Héritage

Diagramme d'objet

Diagramme de séquence

Diagramme de composants

Diagramme de composants

Diagramme de déploiement

OCL (Object Constraint Language)

* UML dispose d'un langage de définition de contraintes (OCL) afin de normaliser les expressions

Modélisation UML

- * Il apparaît nécessaire à l'utilisateur d'UML d'avoir un outil pour représenter les différents diagrammes, afin de respecter le formalisme.
- * VS 2012 en fait une partie ...