MIT 6.875

Foundations of Cryptography Lecture 12

RECAP from L11

Digital Signatures: Definition

A triple of PPT algorithms (Gen, Sign, Verify) s.t.

- $(vk, sk) \leftarrow Gen(1^n)$. $\sigma \leftarrow Sign(sk, m)$.
- $Acc(1)/Rej(0) \leftarrow Verify(vk, m, \sigma)$.

Correctness: For all vk, sk, m:

Verify(vk, m, Sign(sk, m)) = accept.

EUF-CMA Security

(Existentially Unforgeable against a Chosen Message Attack)

Eve wins if $Verify(vk, m^*, \sigma^*) = 1$ and $m^* \notin \{m_1, m_2, ...\}$. The signature scheme is EUF-CMA-secure if no PPT Eve can win with probability better than negl(n).

Lamport (One-time) Signatures

How to sign n bits

Verification Key
$$VK$$
: $\begin{bmatrix} y_{1,0} & y_{2,0} & y_{n,0} \\ y_{1,1} & y_{2,1} & y_{n,1} \end{bmatrix}$

where
$$y_{i,c} = f(x_{i,c})$$
.

Signing an n-bit message $(m_1, ..., m_n)$: The signature is $(x_{1,m_1}, ..., x_{n,m_n})$.

Claim: Assuming f is a OWF, no PPT adv can produce a signature of m given a signature of a single $m' \neq m$.

<u>Claim</u>: Can forge signature on any message given the signatures on (some) two messages.

TODAY: Digital Signatures, Continued

Constructing a Signature Scheme

Step 0. Still one-time, but arbitrarily long messages.

Step 1. Many-time: Stateful, Growing Signatures.

Step 2. How to Shrink the signatures.

Step 3. How to Shrink Alice's storage.

Step 4. How to make Alice stateless.

Step 5 (*optional*). How to make Alice stateless and deterministic.

Step 0: How to Sign Polynomially Many Bits

(with a fixed verification key)

Detour: Collision-Resistant Hash Functions

A compressing family of functions $\mathcal{H} = \{h: \{0,1\}^m \to \{0,1\}^n\}$ (where m > n) for which it is computationally hard to find collisions.

Def: \mathcal{H} is collision-resistant if for every PPT algorithm A, there is a negligible function μ s.t.

$$\Pr_{h \leftarrow \mathcal{H}}[A(1^n, h) = (x, y) : x \neq y, h(x) = h(y)] = \mu(n)$$

Do CRHFs exist?

- Theoretical Constructions: assuming discrete logarithms (as well as under several other numbertheoretic assumptions)
- Practical Constructions: SHA3.
- **Domain Extension Theorem**: If there exist hash functions compressing n+1 bits to n bits, then there are hash functions that compress any poly(n) bits into n bits.

How to Sign Polynomially Many Bits

(with a fixed verification key)

Idea: Hash the message into n bits and sign the hash.

Signing Key
$$SK$$
:
$$\begin{bmatrix} x_{1,0} & x_{2,0} & x_{n,0} \\ x_{1,1} & x_{2,1} & x_{n,1} \end{bmatrix}$$

Verification Key
$$VK$$
:
$$\begin{bmatrix} y_{1,0} & y_{2,0} & y_{n,0} \\ y_{1,1} & y_{2,1} & y_{n,1} \end{bmatrix} \quad \text{and} \quad h \leftarrow \mathcal{H}.$$

Signing an n-bit message m: Compute the hash z = h(m). The signature is $(x_{1,z_1}, ..., x_{n,z_n})$.

Verifying (m, σ) : Recompute the hash z = h(m). Check if $\forall i$: $f(\sigma_i) = y_{i,z_i}$

How to Sign Polynomially Many Bits

(with a fixed verification key)

Claim: Assuming f is a OWF and \mathcal{H} is a collision-resistant family, no PPT adv can produce a signature of m given a signature of a single $m' \neq m$.

Proof Idea:

Either the adversary picked m' s.t. h(m') = h(m), in which case she violated collision-resistance of \mathcal{H} .

(or)

She produced a Lamport signature on a "message" $z' \neq z$, in which case she violated one-time security of Lamport, and therefore the one-wayness of f.

Let's go back to CRHFs...

$$p=2q+1$$
 is a "safe" prime.
$$\mathcal{H}=\{\mathrm{h}\colon (\mathbb{Z}_q)^2 \to QR_p \ \}$$

Each function $h_{g_1,g_2} \in \mathcal{H}$ is parameterized by two generators g_1 and g_2 of QR_p (a group of order q).

$$h_{g_1,g_2}(x_1,x_2) = g_1^{x_1}g_2^{x_2} \mod p.$$

This compresses 2 log q bits into log p \approx log q + 1 bits.

Let's go back to CRHFs...

$$p=2q+1$$
 is a "safe" prime.
$$\mathcal{H}=\{\mathrm{h}\colon (\mathbb{Z}_q)^2 \to QR_p \ \}$$

Each function $h_{g_1,g_2} \in \mathcal{H}$ is parameterized by two generators g_1 and g_2 of QR_p (a group of order q).

$$h_{g_1,g_2}(x_1,x_2) = g_1^{x_1}g_2^{x_2} \mod p.$$

Why is this collision-resistant? Suppose there is an adversary that finds a collision (x_1, x_2) and (y_1, y_2) ...

Let's go back to CRHFs...

$$h_{g_1,g_2}(x_1,x_2) = g_1^{x_1}g_2^{x_2} \mod p.$$

Why is this collision-resistant? Suppose there is an adversary that finds a collision (x_1, x_2) and (y_1, y_2) ...

$$g_1^{x_1}g_2^{x_2} = g_1^{y_1}g_2^{y_2} \mod p.$$

$$g_1^{x_1-y_1} = g_2^{y_2-x_2} \mod p.$$

(assume wlog $x_1 - y_1 \neq 0 \mod q$)

$$g_1 = g_2^{(y_2 - x_2)(x_1 - y_1)^{-1}} \mod p.$$
 DLOG_{g2}(g₁)!

Other Constructions of CRHFs

From the hardness of factoring, lattice problems etc.

Not known to follow from the existence of one-way functions or even one-way permutations...

"Black-box separations": Certain ways of constructing CRHF from OWF/OWP cannot work.

"Finding collisions on a one-way street", Daniel Simon, Eurocrypt 1998.

Nevertheless, big open problem: OWF/OWP \Rightarrow ? CRHF?

So far, only one-time security...

Constructing a Signature Scheme

Theorem [Naor-Yung'89, Rompel'90] (EUF-CMA-secure) Signature schemes exist assuming that one-way functions exist.

TODAY:

(EUF-CMA-secure) Signature schemes exist assuming that collision-resistant hash functions exist.

(Many-time) Signature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature *Trees*

Step 3. How to Shrink Alice's storage.

Idea: **Pseudorandom Trees**

Step 4. How to make Alice stateless.

Idea: Randomization

Step 5 (*optional*). How to make Alice stateless and deterministic. Idea: *PRFs*.

Idea: Signature Chains.

Alice starts with a secret signing Key SK_0 .

When signing a message m_1 :

Generate a new pair (VK_1, SK_1) .

Produce signature $\sigma_1 \leftarrow \text{Sign}(SK_0, m_1 || VK_1)$

Output $VK_1||\sigma_1$.

Remember $VK_1||m_1||\sigma_1$ as well as SK_1 .

To verify a signature $VK_1||\sigma_1$ for message m_1 :

Run Verify $(VK_0, m_1 || VK_1, \sigma_1)$

Idea: Signature Chains.

Alice starts with a secret signing Key SK_0 .

When signing a message m_1 :

Generate a new pair (VK_1, SK_1) .

Produce signature $\sigma_1 \leftarrow \text{Sign}(SK_0, m_1 || VK_1)$

Output $VK_1||\sigma_1$.

Remember $VK_1||m_1||\sigma_1$ as well as SK_1 .

$$VK_0 \xrightarrow{\sigma_1} VK_1$$

Idea: Signature Chains.

Alice starts with a secret signing Key SK_0 .

When signing the next message m_2 :

Generate a new pair (VK_2, SK_2) .

Produce signature $\sigma_2 \leftarrow \text{Sign}(SK_1, m_2 || VK_2)$

Output $VK_2 || \sigma_2 ? ?$

$$VK_0 \xrightarrow{\sigma_1} VK_1$$

Idea: Signature Chains.

Alice starts with a secret signing Key SK_0 .

When signing the next message m_2 :

Generate a new pair (VK_2, SK_2) .

Produce signature $\sigma_2 \leftarrow \text{Sign}(SK_1, m_2 || VK_2)$

Output $VK_1 ||VK_2|| \sigma_2$??

$$VK_0 \xrightarrow{\sigma_1} VK_1$$

Idea: Signature Chains.

Alice starts with a secret signing Key SK_0 .

Alice VK₀

When signing the next message m_2 :

Generate a new pair (VK_2, SK_2) .

Produce signature $\sigma_2 \leftarrow \text{Sign}(SK_1, m_2 || VK_2)$

Output $VK_1 || m_1 || \sigma_1 || VK_2 || \sigma_2$.

$$VK_0 \xrightarrow{\sigma_1} VK_1 \xrightarrow{\sigma_2} VK_2 \xrightarrow{\sigma_3} VK_3 \xrightarrow{\sigma_4} VK_4 \cdots$$

Idea: Signature Chains.

Alice starts with a secret signing Key SK_0 .

When signing the next message m_2 :

Generate a new pair (VK_2, SK_2) .

Produce signature $\sigma_2 \leftarrow \text{Sign}(SK_1, m_2 || VK_2)$

Output $VK_1 || m_1 || \sigma_1 || VK_2 || \sigma_2$.

(additionally) remember $VK_2||m_2||\sigma_2$ as well as SK_2

$$VK_0 \xrightarrow{\sigma_1} VK_1 \xrightarrow{\sigma_2} VK_2 \xrightarrow{\sigma_3} VK_3 \xrightarrow{\sigma_4} VK_4 \cdots$$

Idea: Signature Chains.

An optimization: Need to remember only the past verification keys, not the past messages.

Use (part of) VK_i to sign m_{i+1} and the rest to sign VK_{i+1} .

$$VK_0 \xrightarrow{\sigma_1} VK_1 \xrightarrow{\sigma_2} VK_2 \xrightarrow{\sigma_3} VK_3 \xrightarrow{\sigma_4} VK_4 \cdots$$

Idea: Signature Chains.

Two major problems:

- 1. Alice is *stateful*: Alice needs to remember a whole lot of things, O(T) information after T steps.
- 2. The *signatures grow*: Length of the signature of the T-th message is O(T).

$$VK_0 \xrightarrow{\tau_1} VK_1 \xrightarrow{\tau_2} VK_2 \xrightarrow{\tau_3} W_3 \xrightarrow{\tau_4} W_4 \cdots$$

$$VK_0 \xrightarrow{\sigma_1} VK_1 \xrightarrow{\sigma_2} VK_2 \xrightarrow{\sigma_3} VK_3 \xrightarrow{\sigma_4} VK_4 \cdots$$

(Many-time) Signature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature *Chains*

Step 2. How to Shrink the signatures. Idea: Signature *Trees*

Alice	VK_{ϵ}

Step 2. How to Shrink the signatures. VK_{ϵ}

Alice (the *stateful* signer) computes many (VK, SK) pairs and arranges them in a tree of depth = sec. param. λ

Step 2. How to Shrink the signatures.

Signature of the first message m_0 :

Use VK_{000} to sign m_0 .

"Authenticate" VK_{000} using the "signature path".

Step 2. How to Shrink the signatures.

Signature of the first message m_0 :

$$(\sigma_{\epsilon} \leftarrow \text{Sign}(SK_{\epsilon}, VK_{0}||VK_{1}), \sigma_{0} \leftarrow \text{Sign}(SK_{0}, VK_{00}||VK_{01}), \sigma_{0} \leftarrow \text{Sign}(SK_{00}, VK_{000}||VK_{001}), \tau_{0} \leftarrow \text{Sign}(SK_{000}, m_{0}))$$

Step 2. How to Shrink the signatures.

Step 2. How to Shrink the signatures.

Signature of the first message m_0 :

(Authentication path for VK_{000} , $\tau_0 \leftarrow \text{Sign}(SK_{000}, m_0)$)

Step 2. How to Shrink the signatures.

Signature of the second message m_1 :

(Authentication path for VK_{001} , $\tau_0 \leftarrow \text{Sign}(SK_{001}, m_1)$)

Step 2. How to Shrink the signatures.

Signature of the third message m_2 :

(Authentication path for VK_{010} , $\tau_2 \leftarrow \text{Sign}(SK_{010}, m_2)$)

Step 2. How to Shrink the signatures.

GOOD NEWS:

Each verification key (incl. at the leaves) is used only once, so one-time security suffices!

Step 2. How to Shrink the signatures.

GOOD NEWS:

Signatures consist of λ one-time signatures and do now grow with time!

Step 2. How to Shrink the signatures.

Signer generates and keeps the entire ($\approx 2^{\lambda}$ -size) signature tree in memory!

(Many-time) Signature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature *Trees*

Step 3. How to Shrink Alice's storage.

Idea: **Pseudorandom Trees**

Step 3. Pseudorandom Signature Trees.

Tree of pseudorandom values:

The signing key is a PRF key K.

Populate the nodes with $r_x = PRF(K, x)$.

Use r_x to derive the keys $(VK_x, SK_x) \leftarrow Gen(1^{\lambda}; r_x)$.

Step 3. Pseudorandom Signature Trees.

Tree of pseudorandom values:

The signing key is a PRF key K.

Populate the nodes with $r_x = PRF(K, x)$.

Use r_x to derive the keys $(VK_x, SK_x) \leftarrow Gen(1^{\lambda}; r_x)$.

Step 3. Pseudorandom Signature Trees.

GOOD NEWS:

Short signatures and small storage for the signer

Step 3. Pseudorandom Signature Trees.

BAD NEWS:

Signer needs to keep a counter indicating which *leaf* (which tells her which secret key) to use next.

(Many-time) Signature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature *Trees*

Step 3. How to Shrink Alice's storage.

Idea: **Pseudorandom Trees**

Step 4. How to make Alice stateless.

Idea: Randomization

Step 4. Statelessness via Randomization

Signature of a message m:

Pick a random leaf r. Use VK_r to sign m.

$$\sigma_r \leftarrow \operatorname{Sign}(SK_r, m)$$

Output (r, σ_r) , authentication path for VK_r)

Step 4. Statelessness via Randomization

No need to keep state.

Step 4. Statelessness via Randomization

Key Idea:

If the signer produces q signatures, the probability she picks the same leaf twice is $\leq q^2/2^{\lambda}$.

(Many-time) Signature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature *Trees*

Step 3. How to Shrink Alice's storage.

Idea: **Pseudorandom Trees**

Step 4. How to make Alice stateless.

Idea: Randomization

Step 5 (*optional*). How to make Alice stateless and deterministic. Idea: *PRFs*.

Step 5. Making the Signer Deterministic.

Key Idea:

Generate *r* pseudo-randomly.

Have another PRF key K' and let $r = PRF(K', \blacksquare)$

That's it for the construction.