6-INPUT GATES

MC1001 thru MC1003 MC1201 thru MC1203

Provide simultaneous OR/NOR or AND/NAND output functions. These devices contain an internal bias reference insuring that the threshold point is always in the center of the transition region over the temperature range.

Emitter follower output configurations differ for these three circuits as shown in the circuit schematic.

MC1001/MC1201 CIRCUIT SCHEMATIC

MC1001 thru MC1003, MC1201 thru MC1203 (continued)

ELECTRICAL CHARACTERISTICS

Outputs without pull-down resistors are tested with a 1.5 k Ω resistor to V_{EF}.

Characteristic		Pin		MC	1201-	203 To	est Limit	is		L		1001-1				
		Under	-5	5°C	+2	5°C	+12	25°C		0	,C	+2	5°C	+7	5°C	
	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain	I _E	7											Ī			
Current MC1201/MC1001	_		_	_	_	32			mAdc	-	-	١.	32	- 1	-	mAdo
MC1202/MC1002			- '	- 1	-	22	-	-		-	-	-	22	-	-	1
MC1203/MC1003		'			-	11	-			-		<u> </u>	11	-		
Input Current	I _{in}	5	•	-	-	200	1 :	-	μAdc	1 :	:	1 :	200	1 :		μAdo
		6			-		1	1]]		_		- 1	-	
		8	-	-	-		- :			٠ ا	-	-		-	-	
		9 10	-	-	-		-	-		-	-	-		-	-	1
nput Leakage	I _R	Inputs*	-	-	-	0. 2	T -	1.0	μAdc	-	-	-	0. 2	-	1.0	μAdo
Current			0.000	0.005	0.050	0.700	-0. 700	0.520	Vdo	0 905	0.740	-0.850	-0.700	0 775	-0.615	Vdc
NOR" Logical "1" Output Voltage	v _{OH} ‡	1,2,3†	-0.990	-0. 823	-0. 830	-0. 100	-0.700	1-0.330	V uc	-0. 8	1	10.030	0. 100	1.113	1	1 1
													l i	l f		
		•	÷	ŧ	1 +	•	+	<u>'</u>	,	1		<u>'</u>	'	,	⊢ '	! !
NOR" Logical "0"	VOL	1, 2, 3†	-1.890	-1.580	-1.800	-1.500	-1.720	-1. 380	Vdc	-1.830	-1.525	-1.800	-1.500	-1.760	-1.435	Vdc
Output Voltage	0.0															
								i I				1	1			
		1 1		↓									1			1 1
0007	77 .	11, 12, 13†	0.000	0.025	0.050	0.700	0.700	0 530	Vdc	0 006	0.740	0.850	0.700	0.776	-0.615	Vdc
'OR' Logical "1" Output Voltage!	v _{OH} t	11, 12, 131	-0.990	-0.825	-0.850	1-0. 700	-0.700	-0.530	Vac	-0.885	-0. 190	-0.830	1-0.100	-0.773	-0.613	Vac
Odipar voragev					1 1					1	1	1				
												1	l i	1		
İ		1	+	+	•	Ť		,		٠,	,	•		*	*	· •
OR" Logical "0"	A ^{OT}	11, 12, 13†	-1.890	-1.580	-1.800	-1.500	-1. 720	-1.380	Vdc	-1.830	-1.525	-1.800	-1.500	-1.760	-1.435	Vdc
Output Voltage	O.L								1 1	,			1 1	11		
		1					11			1	11	1 1				
		1 1		↓		1 1							↓			
Switching Times		<u> </u>	Тур	Max	Тур	Max	Тур	Max	 	Тур	Max	Тур	Max	Тур	Max	<u> </u>
Propagation Delay (Fan-Out = 3)		1	4.0	7.5	4.0	7.0	6.0	9.0	ns	4.0	7.0	4.0	7.0	5.0	8.0	ns
(Fan-Out = 3)	¹ 4+1-	1 1	1 7 7	l 'ï'	" i"	1 1	6.0	9.0	1	l ï	l 'i"	17	l ï	1 "	"	"
	^t 4-1+					11		9.0								
	4+11+	11					5.0	9.0								
	^t 4-11-	11	'	'	'	1 '	6.0			l	1 "	'	1	ļ	'	
(Fan-Out = 15)	t ₄₊₁₋	1	18	-	18	-	22	-		18	-	18	-	20	-	
	t ₄ -1+	1	6.0	-	6.0	-	8.0	-		6.0	-	6.0	-	7.0	-	
	t4+11+	11	4.0	-	4.0	-	6.0	-		4.0	-	4.0	-	5.0	-	
	t4-11-	11	13	-	13	-	17	-		13	-	13	-	15	-	
Rise Time		١.			١.,			١.,		١.,			1	1		
(Fan-Out = 3)	^t 1+	1	5.0	8.0	5.0	7.5	6.0	9.0		5.0	7.5	5.0	7.5	5.5	8.0	
	t ₁₁₊	11	4.0	7.0	4.0	6. 5	5.0	8.0		4.0	6.5	4.0	6.5	4.5	7.0	1 1
Fall Time (Fan-Out = 3)	١.	1	6.0	8.5	6.0	8.0	7.0	10		8.0	8.0	6.0	8.0	6.5	9.0	11
(ran-out = 3)	t 1-				1	1	1	1	1 1	1						1
	t ₁₁₋	11	6.0	8.0	6.0	8.0	7.0	10		6.0	8.0	6.0	8.0	6.5	9.0	1 *

[•] Individually test each input using the pin connections shown. † Individually test each output listed using the pin connections shown. ‡ V_{OH} limits apply from no load (0 mA) to full load (-2.5 mA). I_L applied to output under test.

								
		@Test			mAdc			
Temperature		VIL min to VIL max	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	l,]	
		(−55°C	-5.2 to -1.405	-1.165 to -0 825		1 2	-2.5	1
MC	1201-1203	+25°C	-5.2 to -1.325	-1.025 to 0.700	-0. 700	, 2	1 -2.5	1
		(+125°C	-5. 2 to -1. 205	-0.875 to -0.530		12	-2.5	1
		(0°C	-5.2 to -1.350	-1.070 to -0.740		-5.2	-2.5	1
MCI	001-1003	+25°C	-5. 2 to -1. 325	-1.025 to -0.700	0.700	-5.2	2.5	i
MCI	001-1003	(+75°C	-5. 2 to -1. 260	-0.950 to -0.615	1	3 2	-2 5	1
T		T		TAGE/CURRENT APPLIE	D TO PINS	1	1"	-
1		Pin Under	1231 700	I I I I I I I I I I I I I I I I I I I	1011113	listed below.	1	Vcc
Characteristic	Symbol	Test	V _{IL min} to V _{IL max}	V _{IH min} to V _{IH max}	V _{IH max}	V _{EE}	l,	(Gnd)
Power Supply Drain	I _E	7						
Current MC1201/MC1001				_		4,5,6.7,8,9,10		14
MC1202/MC1002			-		-			1
MC1203/MC1003		'			1	.		·
Input Current	I _{in}	5	1 :	-	4 5	5.6.7,8.9,10 4,6,7,8,9.10	1	14
1		6	-	-	6	4, 5, 7, 8, 9, 10		
		9	-	-	8 9	4, 5, 6, 7, 9, 10	-	i
		10	-		10	4, 5, 6, 7, 8, 10 4, 5, 6, 7, 8, 9		
Input Leakage Current	I _R	Inputs*	-	-	t	4. 5. 6. 7. 8. 9, 10		14
"NOR" Logical "1"	t _{HO} v	1, 2, 3†	4	-	•	5, 6, 7, 8, 9, 10	, 1	14
Output Voltage	On	1 1	5 6	-		4.6.7,8,9,10	i i	
			8	-		4, 5, 7, 8, 9, 10 4, 5, 6, 7, 9, 10	1	
1			9	-		4, 5, 6, 7, 8, 10	i	
	· · · . · · · · · · · · · · · · · · · ·		10		! - t	4,5,6,7,8,9	'	Ι'.
"NOR" Logical "0" Output Voltage	v _{OL}	1,2,3†	:	4 5		5, 6, 7, 8, 9, 10 , 4, 6, 7, 8, 9, 10	1 :	14
Julyan Younge			-	6		4, 5, 7, 8, 9, 10		
1			*	8 9		4, 5, 6, 7, 9, 10	-	
] [+		10	-	4, 5, 6, 7, 8, 10 4, 5, 6, 7, 8, 9	j : '	
'OR" Logical "1"	V _{OH} ‡	11, 12, 13		4		5, 6, 7, 8, 9, 10	1	14
Output Voltage!	On		-	5	-	4, 6, 7, 8, 9, 10	l i	
			-	6 8		4, 5, 7, 8, 9, 10		
			-	9	- 1	4, 5, 6, 7, 8, 10	Ιi	
HODIL TO LONG			<u> </u>	10	-	4.5,6.7,8.9		· •
'OR' Logical "0" Output Voltage	VOL	11, 12, 13†	4 5	-	-	5, 6, 7, 8, 9, 10 4, 6, 7, 8, 9, 10	-	14
			6	-	- 1	4.5,7,8,9,10	-	
			8	-	· i	4, 5, 6, 7, 9, 10 4, 5, 6, 7, 8, 10		
L i		+	10	-		4.5, 6, 7, 8, 9		•
Switching Times			Pulse In	Pulse Out		$V_{EE} = -4.0 \text{ Vdc}$	Ī	(+1.2V)
Propagation Delay (Fan-Out = 3)	t	1	4	1		5, 6, 7, 8, 9, 10		14
(- 4.7 54 5)	t 4+1-	1 1	l i i	ı l		3, 0, 1, 0, 3, 10	1	"
	^t 4-1+	· 11			-			
]	14+11+	11		11	'		-	
(Fan-Out = 15)	4-11-	11		11	. !		-	
(ran-Out = 15)	4+1-	1		1	-			
	4-1+	1		1	-		-	
	t ₄ +11+	11		11	-	į.		
	t4-11-	11		11	- }	1		
Rise Time (Fan-Out = 3)		I , II		1				
(- an-out - 3)	t ₁₊	1			- !			
Fail Time	111+	11		11	-		-	
(Fan-Out = 3)	t.	1		1			_	
	t ₁ -	11		11				
[1 ₁₁ -	i **	· '	••		,	1 .	'

MC1001 thru MC1003, MC1201 thru MC1203 (continued)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATIONS INFORMATION

The MC1001-1003/MC1201-1203 6-input Orl/NOR gates are extremely useful in generating multiple wired-OR logic functions since six independent outputs are provided. (An example is shown in Figure 1.) The gate performs well as a clock driver with the multiple outputs which result in three times the normal fan-out for a given clock weerform. If theyted pair lines are being used for clock distribution in a system, the gate will drive three independent twisted pair lines, each with the same clock weetform.

An output impedance of about 2 ohms is obtained if three OR or NOR outputs are tied together. This provides an excellent 50-ohm driving capability. The 50-ohm line or coax should be terminated in its characteristic impedance to a nominal -2.0 V. This prevents excessively high output current that would pull the logic "1" level below nominal (see Figure 2).

FIGURE 1 - MECL II "WIRED OR" FEATURE

External Pulldown Resistor.

FIGURE 2 - MC1003/MC1203 AS A 50-OHM DRIVER WITH NOMINAL MECL LOGIC LEVELS

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com