

S-CEM/EMCD/TR/2008-2009/127

EMI/EMC TEST REPORT FOR TORQUE MEASUREMENT SYSTEM MANUFACTURED BY M/s. HONEYWELL TECHNOLOGY SOLUTIONS (P) LTD., BANGALORE

This report shall not be reproduced except in full without the written approval of SAMEER - Centre for Electromagnetics, Chennai

SAMEER - CENTRE FOR ELECTROMAGNETICS

(An Institution Set-up by Ministry of Communications and Information Technology, Government of India), 2nd Cross Road, CIT Campus, Taramani, Chennai - 600 113.

July 2009

SAMEER-CENTRE FOR ELECTROMAGNETICS

Chennai – 600 113

EMI/EMC TEST REPORT FOR TORQUE MEASUREMENT SYSTEM MANUFACTURED BY M/s. HONEYWELL TECHNOLOGY SOLUTIONS (P) LTD., BANGALORE

Test Request Particulars

01. Test request from : M/s. Honeywell Technology solutions (P) Ltd., Bangalore

02. Equipment under test (EUT) : Torque Measurement System

03. Number of test sample(s) : One

04. Types of tests requested : 1. Conducted Emission Test as per FCC part-15.207; 2004

2. Radiated Emission Test as per FCC part-15.209,15.223; 2004

05. Manufacturer : M/s. Honeywell Technology solutions (P) Ltd., Bangalore

06. Model number of EUT : TMS 9000-92014

07. Serial number of EUT : Prototype

08. Test plan concurred by : Mr. Vijay. Tippanna. Talikoti, Senior Engineer

Honeywell Technology solutions (P) Ltd., Bangalore

09. EUT Arrived on : July 02, 2009

10. Test date(s) : July 03, 2009

11. Test Venue : SAMEER-CEM, Chennai

12. Status of the EUT on receipt : Functional

Certified that the data reported in this report are valid only for the test sample(s) mentioned above at the time of and under the stated conditions of measurement. Particulars on Manufacturer / Supplier, given in this report, are based on the information given by the customer, along with test request and SAMEER-CEM does not assume any responsibility for the correctness of that information for the above mentioned equipment under test.

Test Plan & Reviewed By:

Approved By:

Office Seal

15 JUL 2009

(Sanjay Baisakhiya)

Scientist-D

(**Dr. B. Subbarao**) Head, EMC Division

Serial Number of EUT : Prototype Manufacturer by : M/s. Hone

EMI/EMC TEST RESULTS AND SUMMARY FOR TORQUE MEASUREMENT SYSTEM

: Torque Measurement System

TMS 9000-92014

EMC EMISSION TESTS AND RESULTS

Name of the Test	Basic Standard	AC/DC/ Signal Port	Specification	Notes
Conducted Emission Test	FCC part-15.207	110V/60Hz Power Port	Quasipeak Limit 150kHz -500kHz : 66 – 56 dBμV 500kHz -5MHz : 56 – 60 dBμV 5MHz-30MHz : 60 dBμV Average limit 150kHz -500kHz : 59 – 46 dBμV 500kHz -5MHz : 46 – 50 dBμV 5MHz-30MHz : 50 dBμV	Within the limit
Radiated Emission Test	FCC part- 15.209	Enclosure port	Quasipeak Limit 30 MHz -88MHz : 40 dBμV/m 88 MHz -216 MHz : 43.5 dBμV/m 216 MHz -960 MHz : 46 dBμV/m 960 MHz-1GHz : 54 dBμV/m	Emission level exceeding the limitline
Radiated Emission Test	FCC part- 15.209	Enclosure port	Average Limit 1 MHz -30MHz: 69.52dBμV/m	Within the limit
Radiated Emission Test	FCC part- 15.223	Enclosure port	Average Limit 6.78MHz: 63.52 dBμV/m	Within the limit

Equipment Under Test Model Number of EUT Serial Number of EUT Manufacturer by

TMS 9000-92014

Prototype

1. CONDUCTED EMISSION TEST

Torque Measurement System

1.1 Applicable Standard: As per FCC part-15.207

1.2 Test Instrumentation:

Description	Make	Model Number	Serial Number	Calibration due date
EMI Receiver	R&S	ESI B7	100319	14/02/2010
Line Impedance Stabilization Network (LISN)	R&S	ESH2 Z5	893606 / 023	19/11/2009
Transient Limiter	HP	11947A	3107A03845	31/10/2009

1.3 EUT Configuration:

The EUT is Torque Measurement System (Torque Measurement System) which is intended to be used in industrial applications. The Torque measurement system is used to measure torque in Dynamo Meters and other applications. The EUT was powered by 110 V, 60 Hz and made operational. The measurement is based on strain gauge sensor and data transmission is wireless. During the test, the communication lines were not monitored (inactive). Annexure – 1 shows the block diagram of EUT.

1.4 Test Frequency Range and Limits: As per FCC part-15.207

Frequency	Quasipeak Limits (dBµV)	Average (dBµV)
150 kHz - 5 MHz	66-56	56-46
500 KHz - 5 MHz	56-60	46-50
5.0 MHz - 30 MHz	60	50

1.5 Test Procedure:

The RF Conducted Emissions from the EUT sent back to the mains input were coupled using a Line Impedance Stabilization Network and measured using an Electromagnetic Interference (EMI) receiver. The measurement was done initially in Peak & Average Detection Modes and wherever the emission was closer to the peak limit line, Quasi Peak detection was employed. The measurement was carried out in the frequency range of 150 kHz to 30 MHz.

1.6 Test Observation:

The RF conducted emissions from the EUT was found to be within the limit in the above specified frequency range in both Line and Neutral.

1.7 Enclosed Documents:

Plots 1 - 2 show the Conducted Emissions from the EUT. (110V, 60Hz)

Annexure - 2 shows the Conducted Emission Test Setup.

Test Conducted by:

Scientific Assistant-A

T. Bhavani

(T. Bhavani) Project Assistant

Manufacturer by

imber of EUT : Prototype

2. RADIATED EMISSION TEST

Torque Measurement System

TMS 9000-92014

2.1. Applicable Standards: As per FCC part-15.209 and 15.223, Class B: 2004

2.2. Test Instrumentation:

Description	Make	Model Number	Serial Number	Cal. Due Date
EMI Receiver	R&S	ESI B7	100319	14/02/2010
Biconilog Antenna	ETS	3142B	00026416	18/04/2010
Shielded Semi Anechoic Chamber	Siepel-Hyfral		F276	30/11/2009
Active loop antenna	EMCO	6507	1484	17/10/2009

2.3. Test Frequency Range & Limits (3m Distance):

FCC part-15.209:2004(Class B)

Frequency (MHz)	Limit (dBµV/m)
1-30	69.52
30 - 88	40.0
88 – 216	43.5
216-960	46.0
Above 960	54.0

FCC part-15.223:2004(Class B)

Frequency (MHz)	Limit (dBµV/m)
6.78	63.52

2.4. EUT Configuration:

The EUT is Torque Measurement System (Torque Measurement System) which is intended to be used in industrial applications. The Torque measurement system used to measure torque in Dynamo Meters and other applications. The EUT was powered by 110 V, 60 Hz and made operational. The measurement is based on strain gauge sensor and data transmission is wireless. During the test, the communication lines were not monitored (inactive). Annexure – 1 shows the block diagram of EUT.

2.5. Test Procedure:

The Radiated Emission from the EUT in the frequency range of 1 MHz - 30 MHz and 30 MHz - 1000 MHz was picked up at a distance of 3 m using Active Loop antenna and Biconilog Antenna respectively. The measurement was carried out inside the shielded semi anechoic chamber. The EUT was rotated 0 to 360 degrees and the antenna height was varied from 1 to 4 meters to maximize the picked up emission in the frequency range 30 MHz - 1000 MHz The measurement was done in peak detection mode, in both vertical and horizontal polarization in the frequency range 30 MHz - 1000MHz The worst case emission and corresponding frequencies were noted and analyzed thoroughly in quasi-peak detection mode. The EUT was rotated 0 to 360 degrees to maximize the picked up emission in the frequency range 1 MHz - 30MHz The measurement was done in average detection mode, in both parallel and perpendicular orientation in the frequency range 1 MHz - 30MHz

Equipment Under Test Model Number of EUT Serial Number of EUT Manufacturer by

TMS 9000-92014

Prototype

2.6. Test Observation:

FCC part-15.209:2004(Class B)

Table-1:30 MHz - 1000 MHz

Torque Measurement System

Freq. (MHz)	Table Posn	Ant. Ht.	Measured level in	Antenna Factor	Cable loss	Total Emission	Quasipeak limit	Delta Level	Test Result
(=:===)	(°)	(m)	(dBµV)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	. ,		A	В	C	E=A+B+C	L	D=L-E	
				VEF	RTICAL I	POLARIZAT	ION		
450	110	1.12	25.36	17.65	0.15	43.16	46	2.84	Within the Limit
257.68	50	1	23.08	13.55	0.14	36.78	46	9.22	Within the Limit
244.12	80	1.3	21.31	12.94	0.14	34.40	46	11.60	Within the Limit
264.44	50	1	20.03	13.58	0.14	33.76	46	12.24	Within the Limit
433.96	180	1	20.34	17.37	0.15	37.86	46	8.14	Within the Limit
60.36	0	1	8.01	8.12	0.13	16.26	40	23.74	Within the Limit
52.36	180	1	11.02	9.49	0.13	20.64	40	19.36	Within the Limit
33.24	0	1	7	17.02	0.12	24.14	40	15.86	Within the Limit
				HORI	ZONTAI	POLARIZA	TION		
257.68	0	1	38.26	13.55	0.14	51.96	46	-5.96	Exceeding the Limit
244.12	360	1	35.4	12.94	0.14	48.49	46	-2.49	Exceeding the Limit
264.44	0	1	33.61	13.58	0.14	47.34	46	-1.34	Exceeding the Limit
271.24	0	1	33.03	14.04	0.14	47.22	46	-1.22	Exceeding the Limit
230.56	0	1.2	25.04	12.51	0.14	37.69	46	8.31	Within the Limit
284.8	280	1	22.8	13.71	0.14	36.66	46	9.34	Within the Limit
250.8	0	1	21.91	13.27	0.14	35.33	46	10.67	Within the Limit
150	80	1.5	20.79	9.52	0.14	30.44	43.5	13.06	Within the Limit
189.84	360	1.7	17.56	11.40	0.14	29.10	43.5	14.40	Within the Limit

FCC part-15.209:2004 (Class B)

Table-2:1 MHz - 30 MHz

Freq. (MHz)	Table Position (°)	Ant. Height (m)	Measured level in (dBµV) A	Antenna Factor (dB/m) B	Cable loss (dB)	Total Emission (dBµV/m) E=A+B+ C	Average limit (dBµV/m) L	Delta Level (dB) D=L-E	Test Result
				I	PARALL	EL			
6.78	60	1	36.10	17.23	0.24	53.57	69.52	15.95	Within the Limit
13.56	200	1	25.34	16.51	0.33	42.18	69.52	27.34	Within the Limit
				PER	PENDIC	ULAR			
6.78	320	1	36.28	17.23	0.24	53.69	69.52	15.83	Within the Limit
13.56	60	1	21.29	16.51	0.33	38.13	69.52	31.39	Within the Limit
27.21	60	1	11.830	15.72	0.46	28.02	69.52	41.5	Within the Limit

Equipment Under Test Model Number of EUT Serial Number of EUT Manufacturer by

r of EUT : TMS 9000-92014 of EUT : Prototype

M/s. Honeywell Technology solutions (P) Ltd., Bangalore

FCC part-15.223:2004(Class B)-

Freq. (MHz)	Resolution bandwidth	Table Post. (°)	Ant. Ht. (m)	Measured level in (dBµV) A	Ant. Factor (dB) B	Cable loss (dB/m)	Total Emission (dBµV/m) E=A+B+C	Average- limit (dBµV/m) L	Delta Level (dB) D=L-E	Test Result
	PARALLEL									
6.78	9kHz	60	1	36.10	17.23	0.24	53.57	63.52	9.95	Within the Limit
	PERPENDICULAR									
6.78	9kHz	320	1	36.28	17.23	0.24	53.69	63.52	9.83	Within the Limit

Torque Measurement System

2.7. Enclosed Documents:

Plots 3- 6 show the Radiated Emission spectrum from EUT. Annexure – 3 shows the Photograph of Radiated Emission Test Setup.

Test Conducted by:

(A. Albin)

Scientific Assistant-A

7 Bhavani

(**T. Bhavani**)
Project Assistant

Equipment Under Test : Torque Measurement System Model Number of EUT : TMS 9000-92014

Serial Number of EUT : Prototype

Manufacturer by

PLOT-1

Title: CONDUCTED EMISSION TEST AS PER FCC15 CLASS B

Comment B: EUT:TORQUE MEASUREMENT SYSTEM, MAKE: HONEYWELL, MODEL:TMS 9000,

SL.NO:92014, MEASUREMENT ON LINE, 110V/60Hz

Date: 3.JUL.2009 10:26:36

Serial Number of EUT : Prototype Manufacturer by : M/s. Hone

: M/s. Honeywell Technology solutions (P) Ltd., Bangalore

PLOT-1A

Torque Measurement System

TMS 9000-92014

Tra	cel: FCC15B(Ω	Trace2: FCC15BAV	,
Tra	ce3:	-	Trace4:	
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
2	Average		44.48	-1.52
2	Average	3.6700 MHz	44.27	-1.72
2	Average	3.3140 MHz	44.26	-1.73
2	Average	3.3740 MHz	44.14	-1.85
2	Average	27.1220 MHz	48.03	-1.96
2	Average	27.1220 MHz	48.03	-1.96
2	Average	27.1220 MHz	47.92	-2.07
2	Average	18.2260 MHz	47.28	-2.71
2	Average	18.5220 MHz	47.28	-2.71
2	Average	18.4620 MHz	47.01	-2.98
2	Average	3.5500 MHz	42.99	-3.00
2	Average	19.1740 MHz	46.84	-3.15
1	Quasi Peak	178.0000 kHz	60.00	-4.57
1	Quasi Peak	17.9300 MHz	52.31	-7.68
1	Quasi Peak	18.2260 MHz	52.01	-7.98
1	Quasi Peak	17.6340 MHz	51.76	-8.23
1	Quasi Peak	17.5740 MHz	51.73	-8.26
1	Quasi Peak	18.3460 MHz	51.72	-8.27
1	Quasi Peak	17.4580 MHz	51.66	-8.33
1	Quasi Peak	18.4620 MHz	51.62	-8.37

Title: CONDUCTED EMISSION TEST AS PER FCC15 CLASS B

Comment B: EUT:TORQUE MEASUREMENT SYSTEM, MAKE:HONEYWELL, MODEL:TMS 9000,

SL.NO:92014, MEASUREMENT ON LINE, 110V/60Hz

Date: 3.JUL.2009 10:28:23

Serial Number of EUT : Prototype Manufacturer by : M/s. Hone

PLOT-1B

: Torque Measurement System

TMS 9000-92014

Trac	cel:	FCC15B	Q	Trace2:	FCC15BAV	
Trac	ce3:			Trace4:		
	TRAC	Œ	FREQUENCY	LEVEL de	υν	DELTA LIMIT dB
1	Quasi	Peak	135. 135.	51.58		-8.41
1	Quasi	Peak	17.2180 MHz	51.44	:	-8.55
1	Quasi	Peak	27.1220 MHz	48.68		-11.32
						and the state of t
			•			10-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7-1-7
						•
			i			
						ļ
					·····	

Title: CONDUCTED EMISSION TEST AS PER FCC15 CLASS B

Comment B: EUT: TORQUE MEASUREMENT SYSTEM, MAKE: HONEYWELL, MODEL: TMS 9000,

SL.NO:92014, MEASUREMENT ON LINE, 110V/60Hz

Date: 3.JUL.2009 10:28:58

Serial Number of EUT : Prototype Manufacturer by : M/s. Hone

: Torque Measurement System

: M/s. Honeywell Technology solutions (P) Ltd., Bangalore

PLOT-2

Title: CONDUCTED EMISSION TEST AS PER FCC15 CLASS B

Comment B: EUT:TORQUE MEASUREMENT SYSTEM, MAKE: HONEYWELL, MODEL: TMS 9000,

SL.NO:92014, MEASUREMENT ON NEUTRAL, 110V/60Hz

Date: 3.JUL.2009 10:19:14

Equipment Under Test Model Number of EUT

Serial Number of EUT : Prototype

PLOT-2A

Torque Measurement System

TMS 9000-92014

Tra	cel: FCC15E	3Q	Trace2:	FCC15BAV
Tra	ce3:		Trace4:	
	TRACE	FREQUENCY	LEVEL de	BµV DELTA LIMIT dB
2	Average		44.97	-1.02
2	Average	3.3140 MHz	44.54	-1.45
2	Average	3.6700 MHz	44.34	-1.65
2	Average	3.3740 MHz	44.17	-1.82
2	Average	3.5500 MHz	43.91	-2.08
2	Average	3.7260 MHz	43.22	-2.77
2	Average	3.4900 MHz	43.20	- 2.79
2	Average	27.1220 MHz	47.07	-2.92
2	Average	18.6380 MHz	46.77	-3.22
1	Quasi Peak	178.0000 kHz	61.08	-3.49
2	Average	3.4340 MHz	42.23	-3.76
1	Quasi Peak	3.3740 MHz	47.55	-8.44
1	Quasi Peak	17.8100 MHz	51.55	-8.44
1	Quasi Peak	17.9260 MHz	51.52	-8.47
1	Quasi Peak	17.8660 MHz	51.47	-8.52
1	Quasi Peak	18.1660 MHz	51.40	-8.60
1	Quasi Peak	18.1060 MHz	51.39	-8.60
1	Quasi Peak	18.2260 MHz	51.32	-8.67
1	Quasi Peak	18.4060 MHz	50.19	-9.80
1	Quasi Peak	17.5780 MHz	50.06	-9.93

Title: CONDUCTED EMISSION TEST AS PER FCC15 CLASS B

Comment B: EUT:TORQUE MEASUREMENT SYSTEM, MAKE:HONEYWELL, MODEL:TMS 9000,

SL.NO:92014, MEASUREMENT ON NEUTRAL, 110V/60Hz

Date: 3.JUL.2009 10:19:39

Equipment Under Test Model Number of EUT

Manufacturer by

Serial Number of EUT Prototype

M/s. Honeywell Technology solutions (P) Ltd., Bangalore

PLOT-3

RADIATED EMISSION TEST AS PER FCC15 CLASS B Title:

Comment B: EUT:TORQUE MEASUREMENT SYSTEM, MAKE:HONEYWELL, MODEL:TMS 9000-

92014, POL: PARALLEL, POS: 60°, 110V/60Hz

3.JUL.2009 13:22:59 Date:

Note: The plot shows only the emission pattern from the EUT with average detector and the values in the plot are not maximized emission as required by standard. For maximized emission please refer table

Equipment Under Test : Torque Measurement System Model Number of EUT : TMS 9000-92014

Serial Number of EUT : Prototype

Manufacturer by

PLOT-4

Title: RADIATED EMISSION TEST AS PER FCC15 CLASS B

Comment B: EUT:TORQUE MEASUREMENT SYSTEM, MAKE:HONEYWELL, MODEL:TMS 9000-

92014, POL: PERPENDICULAR, POS: 60°, 110V/60Hz

Date: 3.JUL.2009 13:35:01

<u>Note</u>: The plot shows only the emission pattern from the EUT with average detector and the values in the plot are not maximized emission as required by standard. For maximized emission please refer table

Equipment Under Test : Torque Measurement System Model Number of EUT : TMS 9000-92014

Serial Number of EUT : Prototype Manufacturer by : M/s. Hone

PLOT-5

Title: RADIATED EMISSION TEST AS PER FCC15 CLASS B

Comment B: EUT:TORQUE MEASUREMENT SYSTEM, MAKE:HONEYWELL, MODEL:TMS 9000-

92014, POL:HOR, POS:0°, ANT HT:1m, 110V/60Hz

Date: 3.JUL.2009 12:47:30

<u>Note</u>: The plot shows only the emission pattern from the EUT with peak detector and the values in the plot are not maximized emission as required by standard. For maximized emission please refer table

Equipment Under Test : Torque Measurement System

Model Number of EUT : TMS 9000-92014

Serial Number of EUT : Prototype

Manufacturer by

PLOT-6

Title: RADIATED EMISSION TEST AS PER FCC15 CLASS B

Comment B: EUT:TORQUE MEASUREMENT SYSTEM, MAKE:HONEYWELL, MODEL:TMS 9000-

92014, POL: VER, POS:110°, ANT HT:1.12m, 110V/60Hz

Date: 3.JUL.2009 12:50:14

<u>Note</u>: The plot shows only the emission pattern from the EUT with peak detector and the values in the plot are not maximized emission as required by standard. For maximized emission please refer table

TMS 9000-92014 Prototype Manufacturer by

M/s. Honeywell Technology solutions (P) Ltd., Bangalore

Annexure - 1

Torque Measurement System

EUT Configuration

Serial Number of EUT : Prototype Manufacturer by : M/s. Hone

Annexure -2

Torque Measurement System

TMS 9000-92014

Conducted Emission Test Setup

Radiated Emission Test Setup