Quattordicesima Esercitazione

Esercizio 1. Trovare massimi e minimi della funzione

$$f(x_1, x_2) = x_2 - x_1^2$$

sull'insieme $\{x \in \mathbb{R}^2: x_1^2 + x_2^2 + 2x_2 = 0\}.$

Esercizio 2. Eseguire un passo del metodo di Frank-Wolfe per minimizzare la funzione

$$f(x_1, x_2) = 3x_1^2 - x_1x_2 - x_1 + 2x_2$$

sul poliedro di vertici (-1,0), (0,2), (0,-2), (3,2) e (4,-2), a partire dal punto $x^k = (1,2)$.

Esercizio 3. Trovare massimi e minimi globali della funzione

$$f(x_1, x_2) = x_1 + x_2$$

sull'insieme $D = \{x \in \mathbb{R}^2: \ x_1^2 + x_2^2 \le 4, \quad x_1^2 + x_2^2 \ge 1\}.$

Esercizio 4. Eseguire un passo del metodo di Frank-Wolfe per minimizzare la funzione

$$f(x_1, x_2) = x_1^2 + 2x_2^2$$

sul poliedro di vertici (-3,1),(0,3),(3,1),(2,-2) e (-2,-2), a partire dal punto $x^k=(1,-2)$.

Esercizio 5. Trovare massimi e minimi globali della funzione

$$f(x_1, x_2) = x_1 x_2$$

sull'insieme $D = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 8\}.$

Esercizio 6. Eseguire un passo del metodo di Frank-Wolfe per minimizzare la funzione

$$f(x_1, x_2) = 2x_1^2 + 3x_1x_2 + x_2^2 - 10x_1 - 6x_2$$

sul poliedro di vertici (0,0),(0,3),(2,5), (4,3) e (4,0), a partire dal punto $x^k=(1,0).$

Esercizio 7. Trovare massimi e minimi globali della funzione

$$f(x_1, x_2) = x_1^2 + x_2^2 - 4x_1 - 2x_2$$

sull'insieme $D = \{x \in \mathbb{R}^2 : x_1^2 + 4x_2^2 - 4x_1 - 8x_2 + 4 \le 0, x_1 \le 2\}.$

Esercizio 8. Eseguire un passo del metodo di Frank-Wolfe per minimizzare la funzione

$$f(x_1, x_2) = (x_1 - x_2)^2$$

sul poliedro di vertici (0,0), (0,2), (1,3), (2,3), (3,2) e (3,0), a partire dal punto $x^k = (1,2)$.

Esercizio 9. Trovare massimi e minimi globali della funzione

$$f(x_1, x_2) = x_1 - x_2^2$$

sull'insieme $D = \{x \in \mathbb{R}^2: \ 4\,x_1^2 + x_2^2 = 4\}.$

Esercizio 10. Eseguire un passo del metodo di Frank-Wolfe per massimizzare la funzione

$$f(x_1, x_2) = x_1^2 x_2 - 2x_1^2 + x_1 + x_2$$

sul poliedro di vertici (-2,-2),(0,2),(2,1), (2,-1), a partire dal punto $x^k=(0,1).$

Esercizio 11. Trovare massimi e minimi globali della funzione

$$f(x_1, x_2) = -x_1^2 - (x_2 - 1)^2$$

sull'insieme $D=\{x\in\mathbb{R}^2:\ x_1^2-x_2^2=1\}.$

Esercizio 12. Eseguire un passo del metodo di Frank-Wolfe per minimizzare la funzione

$$f(x_1, x_2) = (x_1 + 2)^2 + (x_2 - 2)^2$$

sul poliedro di vertici (-2,0),(0,2),(2,0), (0,-2), a partire dal punto $x^k=(-1,-1).$

Esercizio 13. Trovare massimi e minimi globali della funzione

$$f(x_1, x_2) = (x_1 - 1)^2 + 2x_2^2$$

sull'insieme $D=\{x\in\mathbb{R}^2:\ x_1^2+x_2^2=1\}.$

Esercizio 14. Eseguire un passo del metodo di Frank-Wolfe per massimizzare la funzione

$$f(x_1, x_2) = 2(x_1 - 3)^2 - (x_2 + 1)^2$$

sul poliedro di vertici (1,1),(1,2),(2,3),(3,3),(4,1), a partire dal punto $x^k=(2,3).$

Esercizio 15. Trovare massimi e minimi della funzione

$$f(x_1, x_2) = x_1^2 + x_2^2$$

sull'insieme $D = \{x \in \mathbb{R}^2 : x_1^2 + 2x_2^2 - 4x_1 + 3 \le 0\}.$

Esercizio 16. Eseguire un passo del metodo di Frank-Wolfe per massimizzare la funzione

$$f(x_1, x_2) = x_1^2 - 5x_2^2 - 6x_1 + 4x_2$$

sul poliedro di vertici (-2,0), (-1,2), (2,3) e (3,0).

Esercizio 17. Trovare massimi e minimi della funzione

$$f(x_1, x_2) = x_1^4 + x_2^4$$

sull'insieme

$$D = \{ x \in \mathbb{R}^2 : \ x_1^2 + x_2^2 = 1 \}.$$

Esercizio 18. Trovare massimi e minimi della funzione

$$f(x_1, x_2) = x_1^2 - x_1 x_2$$

sull'insieme

$$D = \{ x \in \mathbb{R}^2 : x_1 + x_2 \le 1, \quad x_1 \ge 0, \quad x_2 \ge 0 \}.$$

Esercizio 19. Determinare i punti della curva

$$\gamma = \{x \in \mathbb{R}^3 : x_1^2 + x_2^2 = 1, \quad x_3 = 1 - x_1 x_2\}$$

che hanno minima e massima distanza dall'origine.

SOLUZIONI

Esercizio 1. Trovare massimi e minimi della funzione

$$f(x_1, x_2) = x_2 - x_1^2$$

sull'insieme $D = \{x \in \mathbb{R}^2: x_1^2 + x_2^2 + 2x_2 = 0\}.$

Il vincolo é regolare?	SI, il gradiente del vincolo non si annulla sull'insieme ${\cal D}$
Soluzioni del sistema LKT	$x = (0,0)$ $\mu = -\frac{1}{2}$ $f(x) = 0$ $x = (0,-2)$ $\mu = \frac{1}{2}$ $f(x) = -2$
Solution del sistema 222	$x = \left(\frac{\sqrt{3}}{2}, -\frac{3}{2}\right) \mu = 1 \qquad f(x) = -\frac{9}{4}$
	$x = \left(\frac{\sqrt{3}}{2}, -\frac{3}{2}\right) \mu = 1 \qquad f(x) = -\frac{9}{4}$ $x = \left(-\frac{\sqrt{3}}{2}, -\frac{3}{2}\right) \mu = 1 \qquad f(x) = -\frac{9}{4}$
Punti di massimo globale	
Punti di minimo globale	$\left(-\frac{\sqrt{3}}{2}, -\frac{3}{2}\right) \left(\frac{\sqrt{3}}{2}, -\frac{3}{2}\right)$

Esercizio 2. Eseguire un passo del metodo di Frank-Wolfe per minimizzare la funzione

$$f(x_1, x_2) = 3x_1^2 - x_1x_2 - x_1 + 2x_2$$

sul poliedro di vertici (-1,0),(0,2),(0,-2), (3,2) e (4,-2), a partire dal punto $x^k=(1,2).$

Funzione obiettivo linearizzata in x^k	$3x_1+x_2$
y^k (soluzione ottima del problema linearizzato)	(-1,0)
funzione obiettivo ristretta al segmento $[x^k, y^k]$	$8t^2 - 8t + 4$
Passo	$\frac{1}{2}$
x^{k+1}	(0,1)

Esercizio 3. Trovare massimi e minimi globali della funzione

$$f(x_1, x_2) = x_1 + x_2$$

sull'insieme $D = \{x \in \mathbb{R}^2: \ x_1^2 + x_2^2 \leq 4 \ \ x_1^2 + x_2^2 \geq 1\}.$

I vincoli sono regolari?	SI, il gradiente di ogni vincolo non si annulla mai sull'insieme ${\cal D}$
Soluzioni del sistema LKT	$x = (\sqrt{2}, \sqrt{2}) \qquad \lambda = (-\frac{\sqrt{2}}{4}, 0) \qquad f(x) = 2\sqrt{2}$ $x = (-\sqrt{2}, -\sqrt{2}) \qquad \lambda = (\frac{\sqrt{2}}{4}, 0) \qquad f(x) = -2\sqrt{2}$ $x = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) \qquad \lambda = (0, \frac{\sqrt{2}}{2}) \qquad f(x) = \sqrt{2}$ $x = (-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}) \qquad \lambda = (0, -\frac{\sqrt{2}}{2}) \qquad f(x) = -\sqrt{2}$
Punti di massimo globale	$(\sqrt{2},\sqrt{2})$
Punti di minimo globale	$(-\sqrt{2},-\sqrt{2})$

Esercizio 4. Eseguire un passo del metodo di Frank-Wolfe per minimizzare la funzione

$$f(x_1, x_2) = x_1^2 + 2x_2^2$$

sul poliedro di vertici (-3,1), (0,3), (3,1), (2,-2) e (-2,-2), a partire dal punto $x^k = (1,-2).$

Funzione obiettivo	
linearizzata in x^k	$ \frac{1}{5} x_1 - \frac{4}{5} x_2 $
y^k	
(soluzione ottima del	(0,3)
problema linearizzato)	
funzione obiettivo	
ristretta al segmento	$51 t^2 - 42 t$
$[x^k, y^k]$	
Passo	$\frac{7}{17}$
x^{k+1}	$\left(\frac{10}{17}, \frac{1}{17}\right)$

Esercizio 5. Trovare massimi e minimi globali della funzione

$$f(x_1, x_2) = x_1 x_2$$

sull'insieme $D=\{x\in\mathbb{R}^2:\ x_1^2+x_2^2\leq 8\}.$

Il vincolo é regolare?	SI, valgono le condizioni di Slater	
Soluzioni del sistema LKT	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Punti di massimo globale	(-2, -2) $(2, 2)$	
Punti di minimo globale	(-2,2) $(2,-2)$	

Esercizio 6. Eseguire un passo del metodo di Frank-Wolfe per minimizzare la funzione

$$f(x_1, x_2) = 2x_1^2 + 3x_1x_2 + x_2^2 - 10x_1 - 6x_2$$

sul poliedro di vertici (0,0),(0,3),(2,5), (4,3) e (4,0), a partire dal punto $x^k=(1,0).$

Funzione obiettivo linearizzata in x^k	$-6x_1 - 3x_2$
y^k (soluzione ottima del problema linearizzato)	(4,3)
funzione obiettivo ristretta al segmento $[x^k, y^k]$	$54 t^2 - 27 t - 8$
Passo	$\frac{1}{4}$
x^{k+1}	$\left(\frac{7}{4}, \frac{3}{4}\right)$

Esercizio 7. Trovare massimi e minimi globali della funzione

$$f(x_1, x_2) = x_1^2 + x_2^2 - 4x_1 - 2x_2$$

sull'insieme $D = \{x \in \mathbb{R}^2 : x_1^2 + 4x_2^2 - 4x_1 - 8x_2 + 4 \le 0, x_1 \le 2\}.$

Esistono massimi e minimi globali?	SI, la funzione obiettivo é continua e l'insieme D é compatto
Soluzioni del sistema LKT	$x = (0,1) \lambda = (-1,0) f(x) = -1$ $x = (2,0) \lambda = (-\frac{1}{4},0) f(x) = -4$ $x = (2,2) \lambda = (-\frac{1}{4},0) f(x) = -4$ $x = (2,1) \lambda = (0,0) f(x) = -5$
Punti di massimo globale	(0,1)
Punti di minimo globale	(2,1)

Esercizio 8. Eseguire un passo del metodo di Frank-Wolfe per minimizzare la funzione

$$f(x_1, x_2) = (x_1 - x_2)^2$$

sul poliedro di vertici $(0,0),(0,2),(1,3),\,(2,3),\,(3,2)$ e (3,0), a partire dal punto $x^k=(1,2).$

Funzione obiettivo	
linearizzata in x^k	$-x_1 + x_2$
y^k	
(soluzione ottima del	(3,0)
problema linearizzato)	
funzione obiettivo	
ristretta al segmento	$16 t^2 - 8 t$
$[x^k, y^k]$	
Passo	$\frac{1}{4}$
x^{k+1}	$\left(\frac{3}{2},\frac{3}{2}\right)$

Esercizio 9. Trovare massimi e minimi globali della funzione

$$f(x_1, x_2) = x_1 - x_2^2$$

sull'insieme $D = \{x \in \mathbb{R}^2 : 4x_1^2 + x_2^2 = 4\}.$

Esistono massimi e minimi globali?	SI, la funzione obiettivo é continua e l'insieme D é compatto	
Soluzioni del sistema LKT	$x = (1,0) \qquad \mu = -\frac{1}{8} \qquad f(x) = 1$ $x = (-1,0) \qquad \mu = \frac{1}{8} \qquad f(x) = -1$ $x = \left(-\frac{1}{8}, \frac{\sqrt{63}}{4}\right) \qquad \mu = 1 \qquad f(x) = -\frac{65}{16}$ $x = \left(-\frac{1}{8}, -\frac{\sqrt{63}}{4}\right) \qquad \mu = 1 \qquad f(x) = -\frac{65}{16}$	
Punti di massimo globale	(1,0)	
Punti di minimo globale	$\left(-\frac{1}{8}, \frac{\sqrt{63}}{4}\right), \left(-\frac{1}{8}, -\frac{\sqrt{63}}{4}\right)$	

Esercizio 10. Eseguire un passo del metodo di Frank-Wolfe per massimizzare la funzione

$$f(x_1, x_2) = x_1^2 x_2 - 2 x_1^2 + x_1 + x_2$$

sul poliedro di vertici (-2,-2),(0,2),(2,1), (2,-1), a partire dal punto $x^k=(0,1).$

Funzione obiettivo linearizzata in x^k	$x_1 + x_2$
y^k (soluzione ottima del problema linearizzato)	(2,1)
funzione obiettivo ristretta al segmento $[x^k, y^k]$	$-4t^2 + 2t + 1$
Passo	$\frac{1}{4}$
x^{k+1}	$\left(\frac{1}{2},1\right)$

Esercizio 11. Trovare massimi e minimi globali della funzione

$$f(x_1, x_2) = -x_1^2 - (x_2 - 1)^2$$

sull'insieme $D=\{x\in\mathbb{R}^2:\ x_1^2-x_2^2=1\}.$

Esistono massimi e minimi globali?	Il minimo globale non esiste perché $\lim_{t\to +\infty}f(t,\sqrt{t^2-1})=-\infty$ Il massimo globale esiste perché $-f$ é coerciva
Soluzioni del sistema LKT	$x = \left(\frac{\sqrt{5}}{2}, \frac{1}{2}\right) \qquad \mu = 1 \qquad f(x) = -\frac{3}{2}$ $x = \left(-\frac{\sqrt{5}}{2}, \frac{1}{2}\right) \qquad \mu = 1 \qquad f(x) = -\frac{3}{2}$
Punti di massimo globale	$\left(\frac{\sqrt{5}}{2}, \frac{1}{2}\right), \qquad \left(-\frac{\sqrt{5}}{2}, \frac{1}{2}\right)$
Punti di minimo globale	non esistono

Esercizio 12. Eseguire un passo del metodo di Frank-Wolfe per minimizzare la funzione

$$f(x_1, x_2) = (x_1 + 2)^2 + (x_2 - 2)^2$$

sul poliedro di vertici (-2,0),(0,2),(2,0), (0,-2), a partire dal punto $x^k=(-1,-1).$

Funzione obiettivo	
linearizzata in x^k	$2x_1 - 6x_2$
y^k	
(soluzione ottima del	(0, 2)
problema linearizzato)	
funzione obiettivo	
ristretta al segmento	$10t^2 - 16t + 10$
$[x^k, y^k]$	
Passo	$\frac{4}{5}$
x^{k+1}	$\left(-\frac{1}{5},\frac{7}{5}\right)$

Esercizio 13. Trovare massimi e minimi globali della funzione

$$f(x_1, x_2) = (x_1 - 1)^2 + 2x_2^2$$

sull'insieme $D=\{x\in\mathbb{R}^2:\ x_1^2+x_2^2=1\}.$

Esistono massimi e minimi globali?	SI perché f é continua e D é compatto
Soluzioni del sistema LKT	$x = (1,0)$ $\mu = 0$ $f(x) = 0$ $x = (-1,0)$ $\mu = -2$ $f(x) = 4$
Punti di massimo globale	(-1,0)
Punti di minimo globale	(1,0)

Esercizio 14. Eseguire un passo del metodo di Frank-Wolfe per massimizzare la funzione

$$f(x_1, x_2) = 2(x_1 - 3)^2 - (x_2 + 1)^2$$

sul poliedro di vertici (1,1),(1,2),(2,3),(3,3),(4,1), a partire dal punto $x^k=(2,3).$

Funzione obiettivo	
linearizzata in x^k	$-4x_1 - 8x_2$
y^k	
(soluzione ottima del	(1, 1)
problema linearizzato)	
funzione obiettivo	
ristretta al segmento	$-2t^2 + 20t - 14$
$[x^k, y^k]$	
Passo	1
x^{k+1}	(1, 1)

Esercizio 15. Trovare massimi e minimi della funzione

$$f(x_1, x_2) = x_1^2 + x_2^2$$

sull'insieme $D = \{x \in \mathbb{R}^2: x_1^2 + 2x_2^2 - 4x_1 + 3 \le 0\}.$

Esistono massimi e minimi globali?	SI perché f é continua e D é compatto
Il vincolo é regolare?	SI perché $\nabla g(x) \neq 0$ per ogni $x \in D$ (oppure perché é soddisfatta la condizione di Slater)
Soluzioni del sistema LKT	
Punti di massimo globale	(3,0)
Punti di minimo globale	(1,0)

Esercizio 16. Eseguire un passo del metodo di Frank-Wolfe per massimizzare la funzione

$$f(x_1, x_2) = x_1^2 - 5x_2^2 - 6x_1 + 4x_2$$

sul poliedro di vertici (-2,0),(-1,2),(2,3) e (3,0).

$x^k =$	(2,0)
Funzione obiettivo linearizzata in x^k	$-2x_1 + 4x_2$
$y^k =$	(-1,2)
Passo	$\frac{7}{11}$
$x^{k+1} =$	$\left(\frac{1}{11}, \frac{14}{11}\right)$

Esercizio 17. Trovare massimi e minimi della funzione

$$f(x_1, x_2) = x_1^4 + x_2^4$$

 ${\it sull'insieme}$

$$D = \{ x \in \mathbb{R}^2 : \ x_1^2 + x_2^2 = 1 \}.$$

Esistono massimi e minimi globali? Perché?	SI perché f é continua e D é compatto
Il vincolo é regolare?	SI perché valgono le condizioni di Slater
Soluzioni del sistema LKT	$x = (0, \pm 1), \mu = -2 \qquad f(x) = 1$ $x = (\pm 1, 0), \mu = -2 \qquad f(x) = 1$ $x = \left(\pm \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \mu = -1 \qquad f(x) = \frac{1}{2}$ $x = \left(\pm \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \mu = -1 \qquad f(x) = \frac{1}{2}$
Punti di massimo globale	(1,0) $(-1,0)$ $(0,1)$ $(0,-1)$
Punti di minimo globale	$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$

Esercizio 18. Trovare massimi e minimi della funzione

$$f(x_1, x_2) = x_1^2 - x_1 x_2$$

sull'insieme

$$D = \{ x \in \mathbb{R}^2 : x_1 + x_2 \le 1, \quad x_1 \ge 0, \quad x_2 \ge 0 \}.$$

Esistono massimi e minimi globali? Perché?	SI perché f é continua e D é compatto
I vincoli sono regolari?	SI perché sono funzioni affini
Soluzioni del sistema LKT	$x = (1,0) \lambda = (0, -3, -2) f(x) = 1$ $x = (\frac{1}{4}, \frac{3}{4}) \lambda = (0, 0, \frac{1}{4}) f(x) = -\frac{1}{8}$ $x = (0, a) \text{ con } 0 \le a \le 1 \lambda = (-a, 0, 0) f(x) = 0$
Punti di massimo globale	(1,0)
Punti di minimo globale	$\left(\frac{1}{4}, \frac{3}{4}\right)$

Esercizio 19. Il problema equivale a cercare i punti di massimo e di minimo globale della funzione $f(x) = ||x||^2 = x_1^2 + x_2^2 + x_3^2$ sull'insieme

$$\gamma = \{x \in \mathbb{R}^3 : x_1^2 + x_2^2 = 1, \quad x_3 = 1 - x_1 x_2 \}.$$

Poiché sulla curva γ si ha $x_1^2 + x_2^2 = 1$ e la variabile x_3 é scritta esplicitamente in funzione delle variabili x_1 e x_2 , cioé $x_3 = 1 - x_1 x_2$, il problema si riduce a cercare i massimi e minimi della funzione $f(x) = 1 + (1 - x_1 x_2)^2$ sull'insieme

$${x \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1}.$$

La funzione obiettivo é continua e la regione ammissibile é compatta, quindi esistono massimi e minimi globali. Inoltre il vincolo é regolare perché valgono le condizioni di Slater. Le soluzioni del sistema LKT sono:

$$x = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \qquad \mu = \frac{1}{2} \qquad f(x) = \frac{1}{4}$$

$$x = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \qquad \mu = \frac{1}{2} \qquad f(x) = \frac{1}{4}$$

$$x = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \qquad \mu = -\frac{3}{2} \qquad f(x) = \frac{9}{4}$$

$$x = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \qquad \mu = -\frac{3}{2} \qquad f(x) = \frac{9}{4}$$

Quindi i punti di massimo globale sono $\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ e $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$, mentre i punti di minimo globale sono $\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ e $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$. Concludendo, i punti della curva γ con la massima distanza dall'origine sono

$$\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{3}{2}\right)$$
 e $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, \frac{3}{2}\right)$,

mentre i punti della curva γ con la minima distanza dall'origine sono

$$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$$
 e $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$.