Mahn-Soo Choi (Korea University)

A Quantum Computation Workbook

September 1, 2021

Preface

This book is intended as an introductory text for a university course on quantum computation and as a self-learning guide. It is an attempt to collect some fundamental principles and elementary methods in the field of quantum computation and quantum information and then reorganize them in a compact and integrated form. A proper introduction to (and hence learning of) quantum computation and quantum information turns out to be demanding, especially to undergraduate students, because it needs to cover various subjects from different fields of science including the physics of quantum mechanics, the mathematics of advanced linear algebra, and the computer science of information theory, to list the least. Each field of science usually favors its specific language, so another layer of difficulties is to organize the subjects consistently in a unified language.

Two digital materials accompany the book. Both are freely available through the respective GitHub repositories at the links below.

- Q3, a Mathematica application (Appendix D): https://github.com/quantum-mob/Q3App
- Quantum Workbook, a compilation of the demonstrations in this book written in the Wolfram Language (Appendix E):

https://github.com/quantum-mob/QuantumWorkbook

Q3 consists of tools and utilities that perform symbolic calculations and numerical simulations useful in the study of quantum information processing, quantum many-body systems, and quantum spin systems. With Q3, one can avoid many of the tedious calculations involved in various principles and theorems of quantum theory. Furthermore, numerous visualization and simulation tools can help deepen the understanding of core concepts. QuantumWorkbook is a compilation of Mathematica Notebook files that contain the code used to generate the demonstrations in the book. Readers themselves can run and modify the code to build their own examples from the demonstrations and to experiment with fresh ideas. Both materials can be helpful companions, particularly in a course of self-learning, of the various subjects of quantum physics present in the book and for the general study of the overall subject as well.

This book is a result of several years of experience in teaching quantum computation and quantum information. It is a helpful resource to select and present particular topics of the subject at the undergraduate level. Although

the book aims to be self-contained, it nontheless assumes some basic knowledge of quantum mechanics. Chapter 1 summarizes the fundamental postulates of quantum mechanics and effectively provides a brief review of basic concepts and fundamental principles of quantum mechanics. Chapter 2 presents and describes the properties of elementary quantum gates for universal quantum computation. These are the building blocks of quantum algorithms and quantum communication protocols. Chapter 3 discusses physical methods and principles to implement elementary quantum gates and also introduces different quantum computation schemes. Chapter 4 introduces some widely known quantum algorithms to help grasp the idea of the so-called 'quantum supremacy' of quantum algorithms over their classical counterparts. Chapter 5 is dedicated to decoherence effects and introduces mathematical methods including the Kraus representation and the Lindblad equation to describe the phenomena. Chapter 6 is devoted to quantum error-correction codes through a discussion of the basic principles, procedures, and examples. Chapter 7 introduces quantum information theory. It discusses distance measures for quantum information, measures for quantum entanglement degree, and entropies of information content. To maintain a coherent structure and to focus on the primary topics, we collect the corresponding mathematical theories in the appendices and refer to them from the main text as necessary.

The author is indebted to students in his classes for pointing out numerous mistakes and typographical errors in the manuscript. Many people have contributed to the development of Q3 by testing and actively using it. The author gives particular thanks to Ha-Eum Kim, Myeongwon Lee, and Su-Ho Choi for their energetic discussions and constructive feedback in the early stages of the development of Q3. He also appreciates bug reports and valuable comments by Boris Laurent, Mi Jung So, Yeong-ho Je, and Dongni Chen.

Seoul, Korea August 2021

Mahn-Soo Choi

Contents

1	The	e Postulates of Quantum Mechanics	11				
	1.1	Quantum States	12				
		1.1.1 Pure States	12				
		1.1.2 Mixed States	17				
	1.2	Time Evolution of Quantum States	26				
		1.2.1 Unitary Dynamics	26				
		1.2.2 Quantum Noisy Dynamics	30				
	1.3	Measurements on Quantum States	30				
		1.3.1 Projection Measurements	31				
		1.3.2 Generalized Measurements	35				
2	Qua	antum Computation: Overview	43				
	2.1	Single-Qubit Gates	44				
		2.1.1 Pauli Gates	44				
		2.1.2 Hadamard Gate	48				
		2.1.3 Rotations	51				
	2.2	Two-Qubit Gates	55				
		2.2.1 CNOT, CZ, and SWAP	55				
		2.2.2 Controlled-Unitary Gate	65				
		2.2.3 General Unitary Gate	70				
	2.3	Multi-Qubit Controlled Gates	78				
		2.3.1 Gray Code	78				
		2.3.2 Multi-Qubit Controlled-NOT	80				
	2.4	Universal Quantum Computation	86				
	2.5	Measurements	88				
3	Rea	tealizations of Quantum Computers 9					
	3.1	Quantum Bits	96				
	3.2	Dynamical Scheme	98				
		3.2.1 Implementation of Single-Qubit Gates	99				
		3.2.2 Implementation of CNOT	105				
	3.3	Geometric/Topological Scheme	108				
		3.3.1 A Toy Model	109				

		3.3.2	Geometric Phase
	3.4	Measu	rement-Based Scheme
		3.4.1	Single-Qubit Rotations
		3.4.2	CNOT Gate
		3.4.3	Graph States
4	Qua	antum	Algorithms 133
	4.1		sum Teleportation
		4.1.1	Nonlocality in Entanglement
		4.1.2	Implementation of Quantum Teleportation
	4.2	Deutc	h-Jozsa Algorithm & Variants
		4.2.1	Quantum Oracle
		4.2.2	Deutsch-Jozsa Algorithm
		4.2.3	Bernstein-Vazirani Algorithm
		4.2.4	Simon's Algorithm
	4.3	Quant	sum Fourier Transform (QFT)
		4.3.1	Definition and Physical Meaning
		4.3.2	Quantum Implementation
		4.3.3	Semiclassical Implementation
	4.4	Quant	sum Phase Estimation (QPE)
		4.4.1	Definition
		4.4.2	Implementation
		4.4.3	Accuracy
		4.4.4	Simulation of the von Neumann Measurement 170
	4.5	Applie	cations
		4.5.1	The Period-Finding Algorithm
		4.5.2	The Order-Finding Algorithm
		4.5.3	Quantum Factorization Algorithm
		4.5.4	Quantum Search Algorithm
5	Dec	oherei	ace 193
	5.1	How I	Ooes Decoherence Occur?
	5.2	Quant	sum Operations
		5.2.1	Kraus Representation
		5.2.2	Choi Isomorphism
		5.2.3	Unitary Representation
		5.2.4	Examples
	5.3	Measu	rements as Quantum Operations
	5.4	Quant	sum Master Equation
		5.4.1	Derivation
		5.4.2	Examples
		5.4.3	Solution Methods
		5.4.4	Examples Revisited
	5.5	Distar	nce between Quantum States

		5.5.1	Norms and Distances	7
		5.5.2	Hilbert-Schmidt and Trace Norms	3
		5.5.3	Hilbert-Schmidt and Trace Distances	Į
		5.5.4	Fidelity	}
6	0115	ntum	Error-Correction Codes 259)
U	6.1		ntary Examples: Nine-Qubit Code	
	0.1	6.1.1	Bit-Flip Errors	
		6.1.1	Phase-Flip Error	
		6.1.2	Shor's Nine-Qubit Code	
	6.2		um Error Correction	
	0.2	6.2.1	Quantum Error-Correction Conditions	
		6.2.1	Discretization of errors	
	6.3	-	izer Formalism	
	0.5	6.3.1	Pauli Group	
		6.3.2	Properties of Stabilizers	
		6.3.3	Unitary Gates in Stabilizer Formalism	
		6.3.4	Clifford Group	
		6.3.5	Measurements in Stabilizer Formalism	
		6.3.6	Examples	
	6.4		izer Codes	
	0.4	6.4.1	Bit-Flip Code	
		6.4.2	Phase-Flip Code	
		6.4.2	Nine-Qubit Code	
		6.4.4	Five-Qubit Code	
	6.5		re Codes	
	0.5	6.5.1	Toric Codes	
		6.5.2	Planar Codes	
		6.5.2	Recovery Procedure	
		0.0.0	recovery i rocedure	
7	•		Information Theory 323	
	7.1		on Entropy	
		7.1.1		
		7.1.2	Relative Entropy	
		7.1.3	Mutual Information	
		7.1.4	Data Compression	
	7.2	Von N	Teumann Entropy	
		7.2.1	Definition)
		7.2.2	Relative Entropy	
		7.2.3	Quantum Mutual Information	
	7.3		glement and Entropy	
		7.3.1	What is Entanglement?	
		7.3.2	Separability Tests	
		7.3.3	Entanglement Distillation	L

		7.3.4	Entanglement Measures	3						
A	Linear Algebra 347									
	A. 1	Vector	34	7						
		A.1.1	Vector Space	7						
		A.1.2	Hermitian Product	9						
		A.1.3	Basis	0						
		A.1.4	Representations	1						
	A.2	Linear	Operators	3						
		A.2.1	Linear Maps	3						
		A.2.2	Representations	4						
		A.2.3	Hermitian Conjugate of Operators	5						
	A.3	Dirac's	Bra-Ket Notation	7						
	A.4	Spectra	al Theorems	0						
		A.4.1	Spectral Decomposition	0						
		A.4.2	Functions of Operators	2						
	A.5	Factor	zation of Operators	4						
	A.6	Tensor	Product Spaces	6						
		A.6.1	Vectors in a Product Space	6						
		A.6.2	Operators on a Product Space	8						
\mathbf{B}	Superoperators 371									
_	_	_	ors as Vectors							
	B.2	_	perators							
		B.2.1	Matrix Representation							
		B.2.2	Operator-Sum Representation	9						
		B.2.3	Choi Isomorphism	4						
	B.3	Partial	Trace	6						
	B.4	Partial	Transposition	8						
\mathbf{C}	Gro	up The	eory 39	3						
Ŭ	C.1	_	oncept							
	C.2		39							
	C.3		nt Subgroups							
	C.4		and Quotient Groups							
			t Groups							
Ъ	Mad	th om ot	ica Application Q3 40	9						
ע			•							
			tion							
	D.2	Quick	ышь	4						
\mathbf{E}		_	Compilation of Demonstrations 40							
			ation							
	E.2	Quick	Start	6						

\mathbf{F}	Solutions to Select Problems					
	F.1	The Postulates of Quantum Mechanics	407			
	F.2	Quantum Computation: Overview	407			
	F.3	Quantum Computers	410			
	F.4	Quantum Algorithms	412			
	F.5	Decoherence	413			
	F.6	Quantum Error-Correction Codes	417			
	F.7	Quantum Information Theory	421			
Bi	bliog	graphy	423			
In	\mathbf{dex}		432			