Data Mining & Machine Learning

CS37300 Purdue University

Oct 27, 2023

Example Applications of CNNs

Object Recognition

Top 5: white wolf white wolf timber wolf timber wolf Arctic fox

ILSVRC2012_val_00000027.JPEG

ConvNets for image segmentation

- Biological Image Segmentation[Ning et al. IEEE-TIP 2005]
- Pixel labeling with large context using a convnet
- ConvNet takes a window of pixels and produces a label for the central pixel

Semantic labeling / scene parsing: Labeling every pixel with the object it belongs to

Would help identify obstacles, targets, landing sites, dangerous areas
Would help line up depth map with edge maps

[Farabet et al. ICML 2012, PAMI 2013]

Time series

Sequence data

- Time-series database
 - Consists of sequences of values or events changing with time
 - Data is recorded at regular intervals
 - Characteristic time-series components
 - Trend, cycle, seasonal, irregular
- Applications
 - Financial: stock price, inflation
 - Biomedical: blood pressure
 - Meteorological: precipitation

Example: Stocks

Mining sequences

- "Fit the curve": Find the curve minimizing the sum of the squares of the deviation of points on the curve from the corresponding data points
- The moving-average statistic to reduce variance
- Eliminate cyclic, seasonal and other patterns
 - e.g. Estimation of seasonal variations through seasonal indices

Set of numbers showing the relative values of a variable during the months of the year

 e.g., if the sales during October, November, and December are 80%, 120%, and 140% of the average monthly sales for the whole year, respectively, then 80, 120, and 140 are seasonal index numbers for these months

Searching similar sequences

- Normal database query finds exact literal matches
- Similarity search finds data sequences that differ only slightly from the given query sequence
- Two categories of similarity queries
 - Whole matching: find a sequence that is similar to the query sequence
 - Subsequence matching: find all pairs of similar sequences
- Capture "invariant" structures e.g. using data transformations
- Typical Applications
 - Financial market
 - Market basket data analysis
 - Scientific databases
 - Medical diagnosis

Sequential Pattern Mining

- Mining of frequently occurring patterns related to time or other sequences
- Sequential pattern mining usually concentrate on symbolic patterns
- Examples
 - Renting "Star Wars", then "Empire Strikes Back", then "Return of the Jedi" in that order
 - Collection of ordered events within an interval
- Applications
 - Targeted marketing
 - Customer retention
 - Weather prediction

Mining Sequences (cont.)

CustId	Video sequence
1	$\{(C), (H)\}$
2	$\{(AB), (C), (DFG)\}$
3	{(CEG)}
4	$\{(C), (DG), (H)\}$
5	$\{(H)\}$

Customer-sequence Map Large Itemsets

Large Itemsets	MappedID
(C)	1
(D)	2
(G)	3
(DG)	4
(H)	5

Sequential patterns with support > 0.25 $\{(C), (H)\}$ {(C), (DG)}

Recurrent Neural Networks

(learning sequences with identifiable "transition" structures)

Overview

- Deep Learning Architectures
 - Feedforward neural networks
 - Convolutional Neural Networks Specialized for representing grid data to capture spatial information
 - Recurrent Neural Networks Specialized for representing sequence data

Importance of parameter sharing

- In CNNs, we used parameter sharing to encode a feature extracted using a filter
- Parameter sharing allows application of a model to generalize to unseen forms of data
 - e.g. detection filter identifies edges from pixels that are further combined to form higher level information features
- In RNNs, these generalization-worthy patterns refers to sequences

Motivation – 1D temporal sequence convolution

- The technique constructs "Time-Delayed networks"
- Output of convolution is a sequence where each member of output is a function of neighboring elements.
- A shallow network that shares parameters across time
- RNNs on the other hand: Each member of the output is a function of previous members of the output

RNNs encoded as f()

Unfolded computation graphs

RNNs

- Predict future state based on past state:
 - h() encoded as a lossy summary of past sequences relevant for future predictions in the task at hand
 - Inputs x^t , length of input sequence is arbitrary
- Example: Statistical language modeling task to predict next word
- Learned model of a fixed sized irrespective of sequence length, since the model is meant to learn the transition
- Parameters shared for transitions

Simple idea with many potential applications

Simple idea with many potential applications

Simple idea with many potential applications

 $L^{(t-1)}$ $oldsymbol{L}^{(t+1)}$ $L^{(t)}$ $o^{(t-1)}$ $oldsymbol{o}^{(t)}$ $o^{(t+1)}$ W $oldsymbol{W}$ WW $oldsymbol{h}^{(t)}$ $oldsymbol{x}^{(t-1)}$ $oldsymbol{x}^{(t+1)}$ $oldsymbol{x}^{(t)}$

Would backprop work for gradient calculations?