Introduction to Modern Control Systems Convex Optimization & Linear Matrix Inequalities

Kostas Margellos

University of Oxford

Convex Optimization

- Optimization programs
- Convex sets
- Convex functions
- Operations that preserve convexity
- Convex optimization programs

Linear Matrix Inequalities (LMIs)

- How do they look like?
- Are they convex?
- Why are they interesting

References

Convex Optimization & Duality Theory:

Boyd & Vandenberghe (2004)

Convex Optimization, Cambridge University Press.

Bertsekas (2009)

Convex Optimization Theory, Athena Scientific.

Rockafellar (1970)

Convex Analysis, Princeton, NJ: Princeton University Press.

Linear Matrix Inequalities (LMIs):

VanAntwerp & Braatz (2000)

Boyd, El Ghaoui, Feron & Balakrishnan (1994)
Linear Matrix Inequalities in System and Control Theory, SIAM.

Elliear Matrix mequalities in System and Control Theory, 317

A tutorial on linear and bilinear matrix inequalities, J. Process Control.

Optimization program - General description

A more common problem format:

$$\min_{x \in \mathcal{X}} f_0(x)$$
 subject to: $f_i(x) \leq 0$ $i = 1, \dots, m$ $h_i(x) = 0$ $i = 1, \dots, p$

- Objective function $f_0: \mathcal{X} \to \mathbb{R}$
- **Domain** $\mathcal{X} \subseteq \mathbb{R}^n$ of the objective function, from which the decision variable $x := (x_1; x_2; \dots; x_n)$ must be chosen.
- Inequality constraint functions $f_i : \mathbb{R}^n \to \mathbb{R}$, for $i = 1, \dots, m$
- Equality constraint functions $h_i : \mathbb{R}^n \to \mathbb{R}$, for $i = 1, \dots, p$
- \Rightarrow *Maximization* fit the framework with a change of sign.

Optimization program – Possible outcomes

Consider the problem

$$p^* = \min_{x \in \mathcal{X}} f(x)$$

- If $p^* = -\infty$, then the problem is **unbounded below**.
- If the set \mathcal{X} is empty, then the problem is **infeasible** (and we set $p^* = +\infty$).
- If $\mathcal{X} = \mathbb{R}^n$, the problem is **unconstrained**.
- There might be more than one solution. The set of solutions is:

$$\arg\min_{\mathbf{x}\in\mathcal{X}}f(\mathbf{x}):=\{\mathbf{x}\in\mathcal{X}\ |\ f(\mathbf{x})=p^*\}$$

Geometric view

Under convexity it is easier ...

Linear Program (LP):

$$\min_{x} c^{\top}x$$

subject to:
$$Gx \le h$$

 $Ax = b$

Convex Quadratic Program (QP) – $P \succeq 0$:

$$\min_{x} \quad \frac{1}{2} x^{\top} P x + q^{\top} x$$

subject to:
$$Gx \le h$$

$$Ax = b$$

⇒ Convex programs: Local optimum = Global optimum

Convex sets

Definition (Convex Set)

A set \mathcal{X} is convex if and only if for any pair of points x and y in \mathcal{X} , any convex combination of x and y lies in \mathcal{X} :

$$\mathcal{X}$$
 is convex $\Leftrightarrow \lambda x + (1 - \lambda)y \in \mathcal{X}, \forall \lambda \in [0, 1], \forall x, y \in \mathcal{X}$

Interpretation: All line segments starting and ending in $\mathcal X$ stay within $\mathcal X$.

Convex sets

Definitions (Hyperplanes and halfspaces)

A hyperplane is defined by $\{x \in \mathbb{R}^n \mid a^\top x = b\}$ for $a \neq 0$, where $a \in \mathbb{R}^n$ is the normal vector to the hyperplane.

A halfspace is defined by $\{x \in \mathbb{R}^n \mid a^\top x \leq b\}$ for $a \neq 0$. It can either be **open** (strict inequality) or **closed** (non-strict inequality).

For n = 2, hyperplanes define lines. For n = 3, hyperplanes define planes.

A hyperplane

A closed halfspace

Convex sets

Definitions (Polyhedra and polytopes)

A polyhedron is the intersection of a *finite* number of closed halfspaces:

$$\mathcal{X} = \{x \mid a_1^\top x \le b_1, \ a_2^\top x \le b_2, \dots, a_m^\top \le b_m\} = \{x \mid Ax \le b\}$$

where $A := [a_1, a_2, \dots, a_m]^{\top}$ and $b := [b_1, b_2, \dots, b_m]^{\top}$.

A polytope is a bounded polyhedron.

Polyhedra and polytopes are always convex.

Norms

Definition (Vector norm)

A norm is any function $f: \mathbb{R}^n \to \mathbb{R}$ satisfying the following conditions:

- $f(x) \ge 0$ and $f(x) = 0 \Rightarrow x = 0$.
- f(tx) = |t|f(x) for scalar t.
- $f(x+y) \le f(x) + f(y)$, for all $x, y \in \mathbb{R}^n$.

Definition $(\ell_p \text{ norm})$

The ℓ_p norm on \mathbb{R}^n is denoted $||x||_p$, and is defined for any $p \geq 1$ by

$$||x||_p := \left[\sum_{i=1}^n |x_i|^p\right]^{1/p}$$

Norms

By far the most common ℓ_p norms are:

• p = 2 (Euclidean norm):

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

• p = 1 (Sum of absolute values):

$$||x||_1 = \sum_i |x_i|$$

• $p = \infty$ (Largest absolute value):

$$||x||_{\infty} = \max_{i} |x_i|$$

The **norm ball**, defined by $\{x \mid ||x - x_c|| \le r\}$ where x_c is the centre of the ball and r > 0 is the radius, is always convex for any norm.

Ellipsoid - Generalized norm ball

Definition (Ellipsoid)

An ellipsoid is a set defined as

$$\mathcal{E} = \{ x \mid (x - x_c)^{\top} A^{-1} (x - x_c) \le 1 \},$$

where x_c is the centre of the ellipsoid, and A > 0.

Alternatively, $\mathcal{E} = \{x \mid T(x) \leq 0\}$ where

$$T(x) = x^{\top}Ax + 2x^{\top}b + c$$
, with $A = A^{\top} > 0$.

Intersection of convex sets

Theorem

The intersection of two or more convex sets is itself convex.

Proof (for two sets): Consider any two points a and b which both lie in both of two convex sets $\mathcal X$ and $\mathcal Y$. For any $\lambda \in [0,1]$, $\lambda a + (1-\lambda)b$ is in both $\mathcal X$ and $\mathcal Y$. Therefore $\lambda a + (1-\lambda)b \in \mathcal X \cap \mathcal Y$, $\forall \lambda \in [0,1]$. This satisfies the definition of convexity for set $\mathcal X \cap \mathcal Y$.

Think of simultaneous constraint satisfaction.

Union of convex sets

Note that the **union** of two sets is **not** convex in general, regardless of whether the original sets were convex!

Convex functions

Definitions (Convex function)

A function $f : dom(f) \to \mathbb{R}$ is convex if and only if its domain dom(f) is convex and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall \lambda \in (0, 1), \quad \forall x, y \in \text{dom}(f)$$

The function f is strictly convex if this inequality is strict.

Convex functions – 1st-order condition

A differentiable function $f:\mathrm{dom}(f)\to\mathbb{R}$ with a convex domain is **convex** if and only if

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x), \quad \forall x, y \in \text{dom}(f)$$

i.e. a first order approximator of f around any point x is a global underestimator of f.

The gradient is given by $\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right]^{\top}$

Convex functions – 2nd-order condition

A twice-differentiable function $f: dom(f) \to \mathbb{R}$ is **convex** if and only if its domain dom(f) is convex and

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \text{dom}(f),$$

where the Hessian $\nabla^2 f(x)$ is defined by

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

If dom(f) is convex and $\nabla^2 f(x) \succ 0$ for all $x \in dom(f)$, then f is **strictly convex**.

Convex functions - Epigraph

The **epigraph** of a function $f : dom(f) \to \mathbb{R}$ is the **set**

$$\operatorname{epi}(f) = \left\{ \left[egin{array}{c} x \\ t \end{array} \right] \ \middle| \ x \in \operatorname{dom}(f), \ f(x) \leq t
ight\} \subseteq \operatorname{dom}(f) imes \mathbb{R}$$

It has dimension one higher than the domain of f.

A function is convex if and only if its epigraph is a convex set.

Operations that preserve convexity

Theorem (Non-negative weighted sum)

If f is a function convex, then αf is convex for $\alpha \geq 0$. For several convex functions f_i , $\sum_i \alpha_i f_i$ is convex if all $\alpha_i \geq 0$.

Theorem (Composition with affine function)

If f is a convex function, then f(Ax + b) is convex.

Example: ||Ax - b|| is convex for any norm; Exponential functions.

Theorem (Pointwise maximum)

If f_1, \ldots, f_m are convex functions, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex.

Example: Piecewise linear functions $\max_{i=1,...,m} \{a_i^\top x + b\}$ are convex.

Convex optimization program - standard form

A standard form **convex** optimization problem:

$$\begin{aligned} \min_{x \in \mathcal{X}} \quad & f_0(x) \\ \text{subject to:} \quad & f_i(x) \leq 0 \quad i = 1, \dots, m \\ & a_i^\top x = b_i \quad i = 1, \dots, p \end{aligned}$$

This problem is convex if:

- ullet The domain ${\mathcal X}$ is a convex set.
- The objective function f_0 is a convex function.
- The inequality constraint functions f_i are all convex.
- The equality constraint functions $h_i(x) = a_i^T x$ are all affine.

Convex optimization program – standard form

A standard form **convex** optimization problem:

$$\min_{x \in \mathcal{X}} f_0(x)$$
 subject to: $f_i(x) \leq 0$ $i = 1, \dots, m$ $Ax = b$ $A \in \mathbb{R}^{p \times m}$

This problem is convex if:

- ullet The domain ${\mathcal X}$ is a convex set.
- The objective function f_0 is a convex function.
- The inequality constraint functions f_i are all convex.
- The equality constraint functions $h_i(x) = a_i^{\top} x$ are all affine.

Convex programs: Local optimum = Global optimum

Theorem

For a convex optimization problem, **every** locally optimal solution is globally optimal.

Proof:

- Assume that x is locally optimal, but not globally optimal.
- Therefore there is some other point y such that f(y) < f(x).
- ullet x locally optimal implies that there is some R>0 such that

$$||z-x||_2 \le R \Rightarrow f(x) \le f(z)$$

The problem can't be convex.

Example: Piecewise affine minimization

Piecewise affine minimization:

$$\min_{x} \quad \left[\max_{i=1,\dots,m} \left\{ c_i^\top x + d_i \right\} \right]$$
 subject to: $Gx \leq h$

- The function is affine on each region \mathcal{R}_i .
- Any convex and piecewise affine function can be written this way (e.g. 1st norm).
- Can be reformulated as an LP.

Example: Piecewise affine minimization (con'd)

Piecewise affine minimization:

$$\min_{x} \quad \left[\max_{i=1,\dots,m} \left\{ c_i^\top x + d_i \right\} \right]$$
 subject to: $Gx \leq h$

is **equivalent** to an LP:

$$\min_{\substack{x,t\\}} \quad t$$
 subject to: $c_i^\top x + d_i \leq t \quad \forall i = 1, \dots, m$
$$Gx \leq h$$

Add variables and write the problem in epigraph form \Rightarrow **epigraphic reformulation**.

What are LMIs?

A **Linear Matrix Inequality** (LMI) is a constraint of the form:

$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

where the matrices $A_1, \ldots, A_n, B \in \mathbb{R}^{m \times m}$ are all symmetric.

This is a constraint that imposes matrix

$$B - \sum_{i}^{n} x_{i} A_{i}$$

to be positive semidefinite (positive definite if \leq replaced by \prec).

- It is equivalent to imposing *m* polynomial inequalities
 - Not element-wise constraints.
 - All leading principle minors of this matrix are positive.

What are LMIs?

A **Linear Matrix Inequality** (LMI) is a constraint of the form:

$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

where the matrices (A_1, \ldots, A_n, B) are all symmetric.

Consider the constraint

$$Q = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} \succeq 0$$

• This is equivalent to 2 inequalities:

$$egin{aligned} Q_{11} & \geq 0 \ \det(Q) & \geq 0 \Leftrightarrow Q_{11}Q_{22} - Q_{12}Q_{21} & \geq 0 \end{aligned}$$

General form LMIs

Example 1:
$$y - x^2 > 0$$
, $y > 0 \iff \begin{bmatrix} y & x \\ x & 1 \end{bmatrix} \succ 0$

- Check leading principle minors
- That is an LMI; rewrite as

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + y \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + x \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \succ 0$$

Example 2:
$$x_1^2 + x_2^2 < 1 \iff \begin{bmatrix} 1 & 0 & x_1 \\ 0 & 1 & x_2 \\ x_1 & x_2 & 1 \end{bmatrix} \succ 0$$

• Leading principle minors are: 1 > 0, $\det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} > 0$, and

$$1 \cdot \det \begin{bmatrix} 1 & x_2 \\ x_2 & 1 \end{bmatrix} - 0 \cdot \det \begin{bmatrix} 0 & x_2 \\ x_1 & 1 \end{bmatrix} + x_1 \cdot \det \begin{bmatrix} 0 & 1 \\ x_1 & x_2 \end{bmatrix} > 0$$

LMIs are not unique

Consider a congruence transformation x = Mz, with M nonsingular

$$A \succ 0 \Leftrightarrow x^{\top}Ax > 0$$
 for all $x \neq 0$
 $\Leftrightarrow z^{\top}M^{\top}AMz > 0$ for all $z \neq 0, M$ nonsingular
 $\Leftrightarrow M^{\top}AM \succ 0$

LMIs can be then represented in multiple ways; their feasible sets however remain the same

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \succ 0 \Leftrightarrow \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \succ 0$$
$$\Leftrightarrow \begin{bmatrix} D & C \\ B & A \end{bmatrix} \succ 0$$

LMIs are convex constraints

Theorem,

The following LMI constraint is convex.

$$F(x) = B - \sum_{i}^{n} x_{i} A_{i} \succeq 0$$

Proof: Let x, y such that F(x), $F(y) \succeq 0$, and $\lambda \in (0,1)$.

$$F(\lambda x + (1 - \lambda)y) = B - \sum_{i} (\lambda x_{i} + (1 - \lambda)y_{i})A_{i}$$

$$= \lambda B + (1 - \lambda)B - \lambda \sum_{i} x_{i}A_{i} - (1 - \lambda) \sum_{i} y_{i}A_{i}$$

$$= \lambda F(x) + (1 - \lambda)F(y)$$

$$\succ 0$$

LMIs are convex constraints

Theorem

The following LMI constraint is convex.

$$F(x) = B - \sum_{i}^{n} x_{i} A_{i} \succeq 0$$

Alternative proof: We want to show that the set $\{x: F(x) \succeq 0\}$ is convex. We have that ...

$$\{x: F(x) \succeq 0\} = \{x: z^{\top} F(x) z \ge 0, \text{ for all } z\}$$
$$= \bigcap_{z} \{x: z^{\top} F(x) z \ge 0\}$$

... but this is an infinite intersection of sets affine in x ... so it is convex!

- LMI much harder than linear constraints an infinite number of them!
- Result can be piecewise affine LMIs nonlinear!

Why are LMIs interesting?

Linear Matrix Inequalities:

- Appear in many common control design problems (more later on)
- Most of the problems presented so far can be written using LMI constraints

Linear constraints

$$Ax \le b \iff \operatorname{diag}(Ax) \le \operatorname{diag}(b)$$

Quadratic constraints (It will be clear later on)

$$x^{\top}Qx + b^{\top}x + c \ge 0, \quad Q \succ 0 \quad \iff \quad \begin{bmatrix} c + b^{\top}x & x^{\top} \\ x & -Q^{-1} \end{bmatrix} \succeq 0$$

Summary

- Introduction to convex optimization
 - Under convexity: local = global optima
 - Recognizing convexity makes life easier
 - Interplay between convex functions and sets (epigraphic reformulation)
- Linear Matrix Inequalities (LMIs)
 - Nonlinear constraints
 - LMI constraints are convex!
 - Generalize many of the well known constraints (e.g. linear, quadratic)

Duality Theory

- The Lagrangian function
- The dual problem
- Weak and strong duality
- Optimality conditions
- Game theoretic view

LMIs in optimization

- Semidefinite programming (SDP)
- The dual of an SDP

LMIs in optimization

Consider the following optimization program

$$\begin{array}{ccc} & \text{min} & c^\top x \\ \text{(SDP)}: & \text{subject to:} & x_1 A_1 + x_2 A_2 + \cdots x_n A_n \preceq B \end{array}$$

where the matrices (A_1, \ldots, A_n, B) are all symmetric.

- We could also have equality constraints
- Optimization over LMI constraints

Why is this class of optimization programs interesting?

- Semidefinite programming (SDP)
- Many control analysis and synthesis problems can be written as SDPs
- Most of the problems presented so far can be written as SDPs

Semidefinite optimization programs (SDPs)

Consider the following optimization program

$$\min \quad c^{\top}x$$
 (SDP): subject to: $x_1A_1 + x_2A_2 + \cdots x_nA_n \leq B$

where the matrices (A_1, \ldots, A_n, B) are all symmetric.

- Assume we are interested in the optimal value p^* of (SDP)
- Can we construct a lower bound for p^* , i.e. $d^* \le p^*$, by solving another problem?
- This problem, called *dual*, might sometimes be easier to solve

To do this we first need some machinery – Duality Theory

The Lagrangian function

Recall our standard form (primal) optimization problem:

$$\min_{x \in \mathcal{X}} \quad f_0(x)$$
 $(\mathcal{P}): \quad \text{subject to:} \quad f_i(x) \leq 0 \quad i = 1 \dots m \\ \quad h_i(x) = 0 \quad i = 1 \dots p$

with (primal) decision variable x, domain \mathcal{X} and optimal value p^* .

Lagrangian Function: $L: \mathcal{X} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- λ_i : inequality Lagrange multiplier for $f_i(x) \leq 0$.
- ν_i : equality Lagrange multiplier for $h_i(x) = 0$.
- Lagrangian: weighted sum of the objective and constraint functions.

Lagrange dual function

The dual function $g: \mathbb{R}^m \times \mathbb{R}^p$ is

$$g(\lambda, \nu) = \inf_{x \in \mathcal{X}} L(x, \lambda, \nu)$$

$$= \inf_{x \in \mathcal{X}} \left[f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right]$$

The dual function $g(\lambda, \nu)$ is always a **concave** function.

• $g(\lambda, \nu)$ is the pointwise infimum of affine functions Do you recall pointwise maximum?

Lagrange dual function

The dual function $g: \mathbb{R}^m \times \mathbb{R}^p$ is

$$g(\lambda, \nu) = \inf_{x \in \mathcal{X}} L(x, \lambda, \nu)$$

= $\inf_{x \in \mathcal{X}} \left[f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right]$

The dual function generates lower bounds for the primal optimal value, i.e. $g(\lambda, \nu) \leq p^*$ for $\lambda \geq 0$:

Proof:

For any primal feasible solution \bar{x} : $\sum_{i=1}^{m} \lambda_i f_i(\bar{x}) + \sum_{i=1}^{p} \nu_i h_i(\bar{x}) \leq 0$

$$g(\lambda, \nu) = \inf_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \lambda, \nu) \le L(\bar{\mathbf{x}}, \lambda, \nu) \le f_0(\bar{\mathbf{x}}) \text{ for all } \bar{\mathbf{x}}$$
$$g(\lambda, \nu) \le \inf_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x}) \le p^*$$

• $g(\lambda, \nu)$ might be $-\infty$; Non-trivial if $\operatorname{dom} g := \{\lambda, \nu \mid g(\lambda, \nu) > -\infty\}$

The dual problem

Every $\nu \in \mathbb{R}^p$, $\lambda \geq 0$ produces a lower bound for p^* using the dual function.

Which is the best?

$$(\mathcal{D}): egin{array}{ccc} \max & g(\lambda,
u) \\ \lambda,
u & \text{subject to: } \lambda \geq 0 \end{array}$$

- Problem (\mathcal{D}) is **convex**, even if (\mathcal{P}) is not.
- Problem (\mathcal{D}) has optimal value $d^* \leq p^*$.
- The point (λ, ν) is **dual feasible** if $\lambda \geq 0$ and $(\lambda, \nu) \in \text{dom } g$.
- Often impose the constraint $(\lambda, \nu) \in \text{dom } g$ explicitly in (\mathcal{D}) .

Example: Dual of LPs

The dual function is

$$g(\lambda, \nu) = \min_{\mathbf{x} \in \mathbb{R}^n} \left[c^{\top} \mathbf{x} + \nu^{\top} (A\mathbf{x} - b) + \lambda^{\top} (C\mathbf{x} - d) \right]$$

$$= \min_{\mathbf{x} \in \mathbb{R}^n} \left[(A^{\top} \nu + C^{\top} \lambda + c)^{\top} \mathbf{x} - b^{\top} \nu - d^{\top} \lambda \right]$$

$$= \begin{cases} -b^{\top} \nu - d^{\top} \lambda & \text{if } A^{\top} \nu + C^{\top} \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

Example : Dual of LPs – (cont'd)

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad c^{\top} \mathbf{x}$$

$$(\mathcal{P}) : \quad \text{subject to:} \quad A\mathbf{x} = \mathbf{b}$$

$$C\mathbf{x} \le \mathbf{d}$$

The dual problem is

$$\begin{array}{ll} \max\limits_{\lambda,\nu} & -b^\top \nu - d^\top \lambda \\ (\mathcal{D}): & \text{subject to:} & A^\top \nu + C^\top \lambda + c = 0 \\ & \lambda \geq 0 \end{array}$$

- Lower bound property:
 - $-b^{\top}\nu d^{\top}\lambda \leq p^*$ whenever $\lambda \geq 0$.
- The dual of a linear program is also a linear program.

Example: Dual of a mixed-integer linear program (MILP)

$$\min_{x \in \mathcal{X}} c^{\top} x$$

$$(\mathcal{P}) : \text{ subject to: } Ax \leq b$$

$$\mathcal{X} = \{-1, 1\}^n$$

The dual function is

$$g(\lambda) = \min_{x_i \in \{-1,1\}} \left[c^\top x + \lambda^\top (Ax - b) \right]$$
$$= -\|A^\top \lambda + c\|_1 - b^\top \lambda$$

The **dual problem** is

$$(\mathcal{D}): egin{array}{cccc} \max_{\lambda} & -\|A^{ op}\lambda + c\|_1 - b^{ op}\lambda \ & ext{subject to: } \lambda \geq 0 \end{array}$$

The dual of a mixed-integer linear program is a linear program!

Weak and strong duality

Weak Duality

- It is **always** true that $d^* \leq p^*$.
- Sometimes the dual is much easier to solve than the primal (or vice-versa).
- Example: The dual of an MILP (difficult to solve) is a standard LP (easy to solve).

Strong Duality

- It is **sometimes** true that $d^* = p^*$.
- Strong duality usually holds for convex problems.
- Strong duality usually does not hold for non-convex problems.
- Can impose conditions on convex problems to guarantee that $d^* = p^*$.

Strong duality for convex problems

An optimization problem with f_0 and all f_i convex:

$$min \quad f_0(x)$$
 $(\mathcal{P}): \quad ext{subject to:} \quad f_i(x) \leq 0 \quad i=1\dots m \ Ax = b \quad A \in \mathbb{R}^{p \times n}$

Slater Condition

If there is at least one **strictly feasible point**, i.e.

$$\left\{x \mid Ax = b, \ f_i(x) < 0, \ \forall i \in \{1, \ldots, m\}\right\} \neq \emptyset$$

Then $p^* = d^*$.

- Stronger version: Only the nonlinear functions $f_i(x)$ must be strictly satisfiable (non-empty interior).
- Other constraint qualification conditions exist.

Duality - A geometric view

Assume one inequality constraint only:

$$\mathcal{G} := \{(u, t) \mid t = f_0(x), u = f_1(x), x \in \mathcal{X}\}$$

Primal problem:

$$p^* = \min\{t \mid (u, t) \in \mathcal{G}, u \leq 0\}$$
 --

Dual function:

$$g(\lambda) = \min_{(u,t) \in \mathcal{G}} (t + \lambda u)$$

Dual problem:

$$d^* = \max_{\lambda > 0} g(\lambda)$$

The quantity $p^* - d^*$ is the **duality gap**.

 $q(\lambda) = t + u\lambda$

Primal and dual solution properties

Assume that strong duality holds, with optimal solution x^* and (λ^*, ν^*) .

- From strong duality, $d^* = p^* \ \Rightarrow \ g(\lambda^*, \nu^*) = f_0(x^*)$.
- From the definition of the dual function:

$$f_0(x^*) = g(\lambda^*, \nu^*) = \min_{x} \left\{ f_0(x) + \sum_{i=1}^{m} \lambda_i^* f_i(x) + \sum_{i=1}^{p} \nu_i^* h_i(x) \right\}$$

$$\leq f_0(x^*) + \sum_{i=1}^{m} \lambda_i^* f_i(x^*) + \sum_{i=1}^{p} \nu_i^* h_i(x^*) \leq f_0(x^*)$$

[weak duality]

$$\implies f_0(x^*) = g(\lambda^*, \nu^*) = f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\implies \frac{\lambda_i^* = 0 \text{ for every } f_i(x^*) < 0.}{f_i(x^*) = 0 \text{ for every } \lambda_i^* > 0.}$$
 Complementary slackness

Karush-Kuhn-Tucker (KKT) optimality conditions

Assume that all f_i and h_i are differentiable. **Necessary** conditions for optimality:

1) Primal Feasibility:

$$f_i(x^*) \le 0$$
 $i = 1, ..., m$
 $h_i(x^*) = 0$ $i = 1, ..., p$

2) Dual Feasibility:

$$\lambda^* \geq 0$$

3) Complementary Slackness:

$$\lambda_i^* f_i(x^*) = 0$$
 $i = 1, \ldots, m$

4) Stationarity:

$$\nabla_{x} L(x^{*}, \lambda^{*}, \nu^{*}) = \nabla f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} \nabla h_{i}(x^{*}) = 0$$

KKT optimality conditions - Geometric view

Assume inequality constraints only.

Rewrite stationarity condition as:

$$-\nabla f_0(x) = \sum_{i=1}^m \lambda_i \nabla f_i(x)$$

• Direction of steepest descent is in convex cone spanned by constraint gradients ∇g_i

KKT optimality conditions

For any optimization program with differentiable functions and $p^* = d^*$:

KKT conditions are necessary for optimality

For convex programs we also have:

- 1) If (x^*, λ^*, ν^*) satisfy the KKT conditions, then $p^* = d^*$.
 - $p^* = f_0(x^*) = L(x^*, \lambda^*, \nu^*)$ (due to complementary slackness)
 - $d^* = g(\lambda^*, \nu^*) = L(x^*, \lambda^*, \nu^*)$ (due to convexity of the functions and stationarity)

- 2) If the Slater condition holds, then
 - x^* is optimal **if and only if** there exist (λ^*, ν^*) satisfying the KKT conditions (KKT necessary and sufficient conditions for optimality)

Example: KKT optimality conditions for QPs

Consider a (convex) quadratic program with $Q \succeq 0$:

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} x^\top Q x + c^\top x$$
 (P): subject to: $Ax = b$ $x \ge 0$

The Lagrangian is $L(x, \lambda, \nu) = \frac{1}{2}x^{\top}Qx + c^{\top}x + \nu^{\top}(Ax - b) - \lambda^{\top}x$.

The KKT conditions are:

$$\nabla_x L(x,\lambda,\nu) = Qx + A^\top \nu - \lambda + c = 0 \qquad \qquad \text{[stationarity]}$$

$$Ax = b \qquad \qquad \text{[primal feasibility]}$$

$$x \ge 0 \qquad \qquad \text{[primal feasibility]}$$

$$\lambda \ge 0 \qquad \qquad \text{[dual feasibility]}$$

$$x_i \lambda_i = 0 \quad i = 1 \dots n \quad \text{[complementarity]}$$

Game theoretic view

Assume inequality constraints only.

We have that for all x

$$\max_{\lambda \geq 0} L(x, \lambda) = \max_{\lambda \geq 0} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) \right)$$
$$= \begin{cases} f_0(x) & \text{if } f_i(x) \leq 0 \text{ for all i;} \\ \infty & \text{otherwise.} \end{cases}$$

Since this holds for all x, we then have that

$$p^* = \min_{x \in \mathcal{X}} \max_{\lambda \ge 0} L(x, \lambda)$$
$$d^* = \max_{\lambda \ge 0} \min_{x \in \mathcal{X}} L(x, \lambda)$$

Game theoretic view

Game between primal (Peter) and dual (Debbie) variables:

$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$
$$d^* = \max_{\lambda} \min_{x} L(x, \lambda)$$

• Consider the d^* game – Debbie plays first, Peter plays second

```
d^* = \max_{\lambda} \quad \min_{x} \quad L(x,\lambda) \leq \text{ any value}
= \forall \lambda \quad \exists x \quad L(x,\lambda) \leq \text{ any value}
= \exists x(\lambda) \quad \forall \lambda \quad L(x,\lambda) \leq \text{ any value} \quad [x(\cdot) \text{ is parametric in } \lambda]
\leq \exists x \quad \forall \lambda \quad L(x,\lambda) \leq \text{ any value}
= \min_{x} \quad \max_{\lambda} \quad L(x,\lambda)
= p^*
```

Game theoretic view

Game between primal (Peter) and dual (Debbie) variables:

$$p^* = \min_{x} \max_{\lambda} L(x, \lambda)$$
$$d^* = \max_{\lambda} \min_{x} L(x, \lambda)$$

If Peter plays second ⇒

$$d^* \leq p^*$$
 [weak duality]

- Duality gap corresponds to the advantage of Peter
- Strong duality = Zero duality gap \Rightarrow No advantage for any of the players

Primal SDP problem:

min
$$c^{\top}x$$

subject to:
$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

where the matrices (A_1, \ldots, A_n, B) are all symmetric.

Lagrangian:

$$\mathcal{L}(x,\Lambda) = c^{\top}x + \sum_{i} \langle \Lambda, A_i \rangle x_i - \langle \Lambda, B \rangle,$$

where
$$\langle X, Y \rangle = \operatorname{trace}(X^{\top}Y) = \sum_{i,j} X_{ij} Y_{ij}$$
.

This fact relies on "dual cone" arguments, and the fact that trace is the inner product for matrices.

Primal SDP problem:

min
$$c^{\top}x$$

subject to:
$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

where the matrices (A_1, \ldots, A_n, B) are all symmetric.

Lagrangian:

$$\mathcal{L}(x,\Lambda) = c^{\top}x + \sum_{i} \langle \Lambda, A_{i} \rangle x_{i} - \langle \Lambda, B \rangle$$
$$= \sum_{i} (c_{i} + \langle \Lambda, A_{i} \rangle) x_{i} - \langle \Lambda, B \rangle$$

Dual function:

$$g(\lambda) = egin{cases} -\langle \Lambda, B
angle & ext{if } c_i + \langle \Lambda, A_i
angle = 0 ext{ for } i = 1 \dots n \ -\infty & ext{otherwise} \end{cases}$$

Primal SDP problem:

min
$$c^{\top}x$$

subject to:
$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

where the matrices (A_1, \ldots, A_n, B) are all symmetric.

Dual function:

$$g(\lambda) = \begin{cases} -\langle \Lambda, B \rangle & \text{if } c_i + \langle \Lambda, A_i \rangle = 0 \text{ for } i = 1 \dots n \\ -\infty & \text{otherwise} \end{cases}$$

The dual problem:

max
$$-\langle B, \Lambda \rangle$$

subject to:
$$\langle A_i, \Lambda \rangle = -c_i$$
, for all i

$$\Lambda \succeq 0$$

Primal SDP problem:

min
$$c^{\top}x$$

subject to:
$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

The dual problem:

$$\mathsf{max} \quad -\langle B, \Lambda \rangle$$

subject to:
$$\langle A_i, \Lambda \rangle = -c_i$$
, for all *i*

$$\Lambda \succ 0$$

Weak duality:

$$p^* - d^* = c^\top x + \langle B, \Lambda \rangle$$
 [primal feasibility]
 $\geq c^\top x + \sum_i \langle A_i, \Lambda \rangle x_i$ [dual feasibility]
 $= \sum_i c_i x_i - \sum_i c_i x_i = 0$

Primal SDP problem:

min
$$c^{\top}x$$

subject to:
$$x_1A_1 + x_2A_2 + \cdots + x_nA_n \leq B$$

The dual problem:

max
$$-\langle B, \Lambda \rangle$$

subject to:
$$\langle A_i, \Lambda \rangle = -c_i$$
, for all i

$$\Lambda \succeq 0$$

Weak duality: $p^* - d^* \ge 0$

Strong duality:

Also true under Slater's condition (constraint qualification). Constraints in the primal need to be satisfied with \prec instead of \preceq .

Summary

- Duality Theory
 - Construct $d^* \leq p^*$ in three steps
 - Construct the Lagrangian (lift and weight constraints in the objective)
 - Onstruct dual function and "eliminate" primal variables
 - § Formulate dual problem (don't forget constraints on dual variables)
 - Optimality conditions
 - Geometric and gaming interpretation of duality
- 2 LMIs in optimization
 - Semidefinite programming (SDP)
 - Construct the dual of an SDP (similar procedure with linear programs)
 - Weak duality, strong duality under Slater's condition

Reformulation in LMIs

- The Schur complement
 - Non-obvious LMIs
 - From nonlinear constraints to LMIs
- The *S*-procedure
 - From quadratic implications to LMIs
 - Turning set containment arguments in LMIs

LMIs for stability & controller synthesis

- Recap of stability theorems
- Lyapunov matrix inequality
- Controller synthesis by means of an example

Non-obvious LMIs

Some cases (like the QP) are harder to write as LMIs.

The Schur complement provides the means to do so

Schur complement: Turns a nonlinear constraint into an LMI

Theorem (Schur complement)

Assume that $Q(x) = Q(x)^{\top}$, $R(x) = R(x)^{\top}$: affine functions of x. We then have that

$$R(x) \succ 0 \text{ and } Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succ 0$$

 $\Leftrightarrow \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \succ 0$

Schur complement

Schur complement: The non-strict case

Assume that
$$Q(x) = Q(x)^{\top}, R(x) = R(x)^{\top} \succ 0$$
: affine functions of x

We then have that

$$Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succeq 0 \Leftrightarrow \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \succeq 0$$

Example 1:

$$||A||_2 \le t \Leftrightarrow A^\top A \le t^2 I, \ t \ge 0 \Leftrightarrow \begin{bmatrix} tI & A^\top \\ A & tI \end{bmatrix} \succeq 0$$

Example 2: The QP (we have seen this before)

$$x^{\top}Qx + b^{\top}x + c \ge 0, \quad Q \succ 0 \quad \Leftrightarrow \quad \begin{bmatrix} c + b^{\top}x & x^{\top} \\ x & -Q^{-1} \end{bmatrix} \succeq 0$$

Schur complement – Proof for the strict case

Proof of (\Leftarrow) :

Assume $\begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \succ 0$. For all $[u \ v] \neq 0$ we have

$$F(u,v) = \begin{bmatrix} u \\ v \end{bmatrix}^{\top} \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} > 0$$

Considering u = 0 we have

$$F(0, v) = v^{\top} R(x) v > 0$$
, for all $v \neq 0 \Rightarrow R(x) \succ 0$

Consider now $v = -R(x)^{-1}S(x)^{\top}u$, with $u \neq 0$

$$F(u,v) = u^{\top} (Q(x) - S(x)R(x)^{-1}S(x)^{\top})u > 0, \text{ for all } u \neq 0$$

$$\Rightarrow Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succ 0$$

Schur complement – Proof for the strict case

Proof of (\Rightarrow) :

Now assume $R(x) \succ 0$ and $Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succ 0$, and as before

$$F(u,v) = \begin{bmatrix} u \\ v \end{bmatrix}^{\top} \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} > 0$$

Fix u and minimize over v: $\nabla_v F(u,v) = 2R(x)v + 2S(x)^\top u = 0$. Since $R(x) \succ 0$, we have that $v^* = -R(x)^{-1}S(x)^\top u$. Substitute it in the expression of F(u,v) to obtain

$$F(u) = u^{\top} (Q(x) - S(x)R(x)^{-1}S(x)^{\top})u$$

Since $Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succ 0$, $u^* = 0$ minimizes F(u). As a result, $(u^*, v^*) = (0, 0)$ and $F(u^*, v^*) = 0$.

Hence,
$$F(u, v) > 0$$
 for all $u, v \neq 0 \Rightarrow \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \succ 0$.

Schur complement - Ellipsoidal inequality

Assume that $Q(x) = Q(x)^{\top}$, $R(x) = R(x)^{\top} \succ 0$: affine functions of x. We then have that

$$Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succeq 0 \Leftrightarrow \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \succeq 0$$

Consider the ellipsoid

$$(x - x_c)^{\top} A^{-1} (x - x_c) \le 1, \quad A = A^{\top} \succ 0$$

(... and recall that it is convex).

Setting
$$Q(x) = 1$$
, $R(x) = A$ and $S(x) = (x - x_c)^{\top}$:

$$\begin{bmatrix} 1 & (x-x_c)^{\top} \\ (x-x_c) & A \end{bmatrix} \succeq 0$$

Schur complement – Maximum singular value

Assume that $Q(x) = Q(x)^{\top}$, $R(x) = R(x)^{\top} \succ 0$: affine functions of x. We then have that

$$Q(x) - S(x)R(x)^{-1}S(x)^{\top} \succeq 0 \Leftrightarrow \begin{bmatrix} Q(x) & S(x) \\ S(x)^{\top} & R(x) \end{bmatrix} \succeq 0$$

Let A(x): affine in x and real valued.

Let also $\bar{\sigma}[A(x)]$ be the maximum singular value of A(x), i.e. the square root of the largest eigenvalue of $A(x)A(x)^{\top}$, i.e. $\bar{\lambda}[A(x)A(x)^{\top}]^{\frac{1}{2}}$.

$$\bar{\sigma}(A(x)) \leq 1 \Leftrightarrow \bar{\lambda}[A(x)A(x)^{\top}] \leq 1$$
$$\Leftrightarrow A(x)A(x)^{\top} \leq I$$
$$\Leftrightarrow I - A(x)I^{-1}A(x)^{\top} \geq 0$$
$$\Leftrightarrow \begin{bmatrix} I & A(x) \\ A(x)^{\top} & I \end{bmatrix} \geq 0$$

S-procedure

S-procedure: Turns quadratic implications to LMIs

Consider two quadratic functions

$$f_0(x) = x^{\top} A_0 x + 2x^{\top} b_0 + c_0$$

 $f(x) = x^{\top} A x + 2x^{\top} b + c,$

where all matrices/vectors are given, and $A_0 = A_0^{\top}$, $A = A^{\top}$.

Problem: When is it true that one quadratic inequality implies another? In other words, when does

$$f(x) \ge 0, x \ne 0 \Rightarrow f_0(x) \ge 0$$

Theorem

The following implication holds

$$f(x) \ge 0, x \ne 0 \Rightarrow f_0(x) \ge 0$$

if there exists

$$\tau \geq 0$$
 such that $f_0(x) - \tau f(x) \geq 0$

Still not an LMI ... but $f_0(x)$, f(x), are quadratic in x.

Theorem

The following implication holds

$$f(x) \ge 0, \ x \ne 0 \ \Rightarrow \ f_0(x) \ge 0$$

if there exists

$$au \geq 0$$
 such that $f_0(x) - au f(x) \geq 0$

For a quadratic function $f(x) = x^{T}Ax + 2x^{T}b + c$

$$\begin{bmatrix} x \\ 1 \end{bmatrix}^{\top} \begin{bmatrix} A & b \\ b^{\top} & c \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \ge 0, \ \forall x \Leftrightarrow \begin{bmatrix} \boldsymbol{\xi} x \\ \boldsymbol{\xi} \end{bmatrix}^{\top} \begin{bmatrix} A & b \\ b^{\top} & c \end{bmatrix} \begin{bmatrix} \boldsymbol{\xi} x \\ \boldsymbol{\xi} \end{bmatrix} \ge 0, \ \forall x, \boldsymbol{\xi}$$
$$\Leftrightarrow \begin{bmatrix} A & b \\ b^{\top} & c \end{bmatrix} \succeq 0$$

Theorem

The following implication holds

$$f(x) \ge 0, x \ne 0 \Rightarrow f_0(x) \ge 0$$

if there exists

$$\tau \geq 0$$
 such that $f_0(x) - \tau f(x) \geq 0$

Since $f_0(x)$, f(x), are quadratic in x, the condition above is equivalent to an LMI in τ

$$\begin{bmatrix} A_0 & b_0 \\ b_0^\top & c_0 \end{bmatrix} - \frac{\tau}{b} \begin{bmatrix} A & b \\ b^\top & c \end{bmatrix} \succeq 0$$

Theorem

The following implication holds

$$f(x) \ge 0, \ x \ne 0 \ \Rightarrow \ f_0(x) \ge 0$$

if there exists

$$au \geq 0$$
 such that $f_0(x) - au f(x) \geq 0$

Since $f_0(x)$, f(x), are quadratic in x, this is equivalent to an LMI in τ

$$\begin{bmatrix} A_0 & b_0 \\ b_0^\top & c_0 \end{bmatrix} - \frac{\tau}{\sigma} \begin{bmatrix} A & b \\ b^\top & c \end{bmatrix} \succeq 0$$

The **only if** part also holds true (though non-obvious) if $\exists \bar{x}$ such that $f(\bar{x}) > 0$, i.e. the "ellipsoids" have non-empty interior condition. In that case we get equivalence!

A containment problem

Problem: Determine an ellipsoid $\mathcal E$ centered at the origin

$$\mathcal{E} = \{ x \mid x^{\top} A^{-1} x \le 1 \},$$

that contains a polytope \mathcal{P} with vertices v_1, \ldots, v_p . In other words, we are looking for $\mathcal{P} \subseteq \mathcal{E}$.

Restate the problem: If $x \in \mathcal{P}$ then $x \in \mathcal{E}$. But $x \in \mathcal{P}$ is equivalent to $v_i \in \mathcal{P}$, for all $i = 1, \dots, p$. Hence,

$$v_i^{\top} A^{-1} v_i \leq 1$$
, for all $i = 1, \dots, p$.
 $\Leftrightarrow 1 - v_i^{\top} A^{-1} v_i \geq 0$, for all $i = 1, \dots, p$.

Using the Schur complement lemma we can turn it into an LMI

$$\begin{bmatrix} 1 & v_i^{\top} \\ v_i & A \end{bmatrix} \succeq 0$$
, for all $i = 1, \dots, p$.

Consider the linear, time-invariant (LTI) dynamical system

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0$$

where $x(t) \in \mathbb{R}^n$ is the system state and $A \in \mathbb{R}^{n \times n}$. It is called *autonomous* since there are no inputs.

Definition: The autonomous LTI system is *asymptotically stable* if, for all $x(0) \in \mathbb{R}^n$,

$$\lim_{t\to\infty}x(t)=0.$$

In the scalar case $(n = 1 \text{ and } A = a \in \mathbb{R})$, we can solve the ODE:

$$x(t) = e^{at}x_0$$

If a < 0, then the system is asymptotically stable.

Consider the linear, time-invariant (LTI) dynamical system

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0$$

where $x(t) \in \mathbb{R}^n$ is the system state and $A \in \mathbb{R}^{n \times n}$.

It is called *autonomous* since there are no inputs.

Definition: The autonomous LTI system is *asymptotically stable* if, for all $x(0) \in \mathbb{R}^n$,

$$\lim_{t\to\infty}x(t)=0.$$

What if n > 1? Can we work the same way? The ODE solution is then

$$x(t)=e^{At}x_0,$$

where e^{At} is the matrix exponential, i.e.

$$e^{At} = I + At + \frac{1}{2}A^2t^2 + \frac{1}{3}A^3t^3 + \dots$$

Consider the linear, time-invariant (LTI) dynamical system

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0$$

where $x(t) \in \mathbb{R}^n$ is the system state and $A \in \mathbb{R}^{n \times n}$. It is called *autonomous* since there are no inputs.

Definition: The autonomous LTI system is *asymptotically stable* if, for all $x(0) \in \mathbb{R}^n$,

$$\lim_{t\to\infty}x(t)=0.$$

What if n > 1? Can we work the same way? The ODE solution is then

$$x(t) = e^{At}x_0$$

where e^{At} is the matrix exponential. Can we do without computing e^{At} ?

Theorem

An autonomous LTI system is asymptotically stable, i.e. $\lim_{t\to\infty} x(t) = 0$, if and only if A is Hurwitz, i.e. all its eigenvalues have negative real part.

Moved from matrix exponential to eigenvalue computation – there must be some connection with LMIs.

Theorem

Given some matrix $Q = Q^{\top} \succ 0$, a matrix A is Hurwitz if and only if there exists $X = X^{\top} \succ 0$ that satisfies the Lyapunov Matrix Equation

$$A^{\top}X + XA = -Q$$

Equivalently, since $Q \succ 0$ and it is arbitrary ...

For asymptotic stability A has to be Hurwitz, i.e.

Theorem

Given some matrix $Q = Q^{\top} \succ 0$, a matrix A is Hurwitz if and only if there exists $X = X^{\top} \succ 0$ that satisfies the Lyapunov Matrix Equation

$$A^{\top}X + XA = -Q$$

Equivalently, since $Q \succ 0$ and it is arbitrary ...

Theorem

A matrix A is Hurwitz if and only if there exists $X = X^{\top} \succ 0$ that satisfies the Lyapunov Matrix Inequality

$$A^{\top}X + XA \prec 0$$

Asymptotic stability for nonlinear systems; Lyapunov theory again

Theorem

Let x=0 be an equilibrium of $\dot{x}(t)=f(x(t))$, and let $\mathcal{D}\subset\mathbb{R}^n$ be a domain containing x=0. If there exists a continuous, differentiable function $V:\mathcal{D}\to\mathbb{R}$ such that

$$V(0) = 0, \ V(x) > 0, \ \text{ for all } x \in \mathcal{D} \setminus \{0\}$$

 $\dot{V}(x) < 0, \ \text{ for all } x \in \mathcal{D} \setminus \{0\}$

then x = 0 is asymptotically stable.

Linear systems stability comes then as a special case.

Linear systems stability comes then as a special case. Consider $\dot{x}(t) = Ax(t)$ and let $V(x) = x^{\top}Xx$ be a Lyapunov function. The Lyapunov stability theorem requires

$$V(0) = 0 : \text{ satisfied}$$

$$V(x) > 0, \text{ for all } x \in \mathcal{D} \setminus \{0\} : \Leftrightarrow X \succ 0$$

$$\dot{V}(x) < 0, \text{ for all } x \in \mathcal{D} \setminus \{0\} : \Leftrightarrow x^{\top} (A^{\top}X + XA)x < 0$$

$$\Leftrightarrow A^{\top}X + XA \prec 0$$

Using a quadratic Lyapunov function we can "prove" Lyapunov Matrix Equation from the nonlinear Lyapunov's stability theorem.

State feedback control design

Consider a system G: $\dot{x} = Ax + Bu$

Determine a feedback gain matrix K such that u = Kx renders the closed loop system stable.

Closed loop system: $\dot{x} = (A + BK)x$.

• Goal: Determine K such that A + BK is Hurwitz.

State feedback control design (cont'd)

Closed loop system: $\dot{x} = (A + BK)x$.

• Goal: Determine K such that A + BK is Hurwitz.

Lyapunov stability (recall from Lecture 3): A matrix A is Hurwitz if and only if there exists $P = P^{\top} \succ 0$ such that

$$A^{\top}P + PA \prec 0$$

Equivalent representation: Multiply by P^{-1} from the left and right:

$$P^{-1}A^{\top}PP^{-1} + P^{-1}PAP^{-1} \prec 0$$

and set $X = P^{-1}$. We then have

$$XA^{\top} + AX \prec 0$$

State feedback control design (cont'd)

Closed loop system: $\dot{x} = (A + BK)x$.

• Goal: Determine K such that A + BK is Hurwitz.

Lyapunov stability: A matrix A is stable **if and only if** there exists $X = X^{\top} \succ 0$ such that

$$XA^{\top} + AX \prec 0$$

Enforce this condition with A + BK in place of A and determine K and X:

$$X(A+BK)^{\top}+(A+BK)X\prec 0$$

which leads to

$$XA^{\top} + (XK^{\top})B^{\top} + AX + B(KX) \prec 0$$

State feedback control design (cont'd)

Closed loop system: $\dot{x} = (A + BK)x$.

• Goal: Determine K such that A + BK is Hurwitz.

Lyapunov stability: A matrix A is stable **if and only if** there exists $X = X^{\top} \succ 0$ such that

$$XA^{\top} + AX \prec 0$$

We are left with this condition which is not nice!

$$XA^{\top} + (XK^{\top})B^{\top} + AX + B(KX) \prec 0$$

Setting Z = KX we have

$$XA^{\top} + Z^{\top}B^{\top} + AX + BZ \prec 0$$

Solve this LMI to determine X and Z and then compute $K = ZX^{-1}$

Summary

- Reformulation in LMI constraints
 - Schur complement
 - Commonly used "trick"
 - Appears in quadratic problems, and many others
 - The *S*-procedure
 - Turns quadratic implications in LMI constraints
 - Useful in set containment problems
- 2 LMIs for stability & controller synthesis
 - Recap of stability theorems for linear and nonlinear systems
 - Lyapunov stability for linear systems by means of LMIs
 - Example for controller synthesis

Thank you! Questions?

Contact at:

kostas.margellos@eng.ox.ac.uk