MATH 248 METHODS OF PROOF IN MATHEMATICS

Joshua Abel June 17, 2017

THE FOLLOWING IS JUST A PREVIEW

Contents

1	Set Theory	3
2	Logic	11
3	Methods of Proof	12
4	Mathematical Induction	13
5	Relations	14
6	Functions	15
7	Cardinality	16

Set Theory

A set is a collection of objects together with a rule for deciding whether a given object is a member of one set or not.

Sets are usually denoted by capital letters A, B, C, \dots

If an object x is a member of the set A we write $x \in A$ "x is an element of A."

If x is not a member of A we write $x \notin A$ "x is not a member of A."

Sets are typically described using curly brackets {(elements go here)}.

Example 1.1.

$$A = \{1, 2, 3\}$$

$$B = \{2, 4, 6, \dots, 20\}$$

$$C = \{5, 6, 7, \dots\}$$

$$D = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

In most cases we will need to be more specific when defining our sets: {elements | rule}. This set notation is standard. The middle line "|" reads as "such that".

Standard Sets

Natural Numbers
$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

Integers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$

Rational Numbers $\mathbb{Q} = \{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \}$

Real Numbers \mathbb{R}

Complex Numbers $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}, i = \sqrt{-1}\}\$

Empty Set $\emptyset = \{\}$

Example 1.2. $A = \{x \in \mathbb{Z} \mid x \ge 5\} = \{5, 6, 7, \dots\}.$

Example 1.3. $B = \{2x \mid x \in \mathbb{Z}\} = \{\dots -4, -2, 0, 2, 4, \dots\}.$ (Even integers).

Example 1.4. $C = \{x \in \mathbb{R} \mid x > 3 \text{ and } x < 0\} = \emptyset.$

Example 1.5. From the previous examples (1.2-1.4) $3 \notin A$ $3 \notin B$ $3 \notin C$ $6 \in A$ $6 \in B$ $6 \notin C$.

If A has a finite number of elements, we use |A| to denote the number of elements in A.

Example 1.6. If $A = \{2, 5, 7\}$, then |A| = 3.

Example 1.7. $|\emptyset| = 0$.

Example 1.8. If $B = \{3, \{2, 3\}, \emptyset, 4, \{1, 5\}\}, \text{ then } |B| = 5.$

Example 1.9. $|\{\emptyset\}| = 1$.

Example 1.10. If $C = \{1, 3, 7, 3\} = \{1, 3, 7\}$, then |C| = 3.

Definition 1.11. Let A, B be sets. If every element of A is an element of B, then we say that A is a *subset* of B. Notation: $A \subseteq B$ "A is a subset of B".

Example 1.12. $\{1, 2, 3\} \subseteq \mathbb{Z}$.

Example 1.13. $\{-1,1\} \subseteq \mathbb{Z}$.

Example 1.14. $\{-1,1\}\mathbb{N}$

Example 1.15. $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.

```
Example 1.16. \{1\} \subseteq \{1, \{1\}\}. \{1\} \in \{1, \{1\}\}. Example 1.17. \{1, \{2\}\} \nsubseteq \{\{1\}, 2\}. \{1, \{2\}\} \nsupseteq \{\{1\}, 2\}.
```

*Note: If there exists some $x \in A$ such that $x \notin B$, then $A \nsubseteq B$. As a consequence, if A is any set, $\emptyset \subseteq A$.

Reason: If $\emptyset \not\subseteq A$, there would be some $x \in \emptyset$ such that $x \notin A$. Also if A is any set, then $A \subseteq A$.

When discussing sets, we will often restrict our attention to subsets of a given set \mathcal{U} , called the universe of discourse. \mathcal{U} may be spelled out explicitly, in other cases the universe will be clear from context.

```
Intervals (U = \mathbb{R})

[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}

[a, b) = \{x \in \mathbb{R} \mid a \le x < b\}

(a, b] = \{x \in \mathbb{R} \mid a < x \le b\}

(a, b) = \{x \in \mathbb{R} \mid a < x < b\}

(a, \infty) = \{x \in \mathbb{R} \mid x > a\}

(-\infty, a) = \{x \in \mathbb{R} \mid x < a\}

[a, \infty) = \{x \in \mathbb{R} \mid x \ge a\}

(-\infty, a] = \{x \in \mathbb{R} \mid x \le a\}

(-\infty, \infty) = \mathbb{R}
```

Definition 1.18. Sets A and B are equal if they have exactly the same members.

*Note: A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Definition 1.19. If $A \subseteq B$ and $A \neq B$, then A is a *proper subset* of B.

Notation: $A \subset B$ or $A \subsetneq B$.

Example 1.20. $\{1, 2\}$ is a proper subset of $\{1, 2, 3\}$ but $\{1, 2, 3\}$ is not a proper subset of $\{1, 2, 3\}$.

Definition 1.21. Let A be a set. The *power set* of A is the set $\wp(A)$ consisting of all subsets of A.

Example 1.22.

$$\begin{split} A &= \{x,y\} \\ \wp(A) &= \{\emptyset,\{x\},\{y\},\{x,y\}\}. \end{split}$$

Example 1.23.

$$B = \{2, \{2, 5\}, 7\}$$

$$\wp(B) = \{\emptyset, \{2\}, \{\{2, 5\}\}, \{7\}, \{2, \{2, 5\}\}, \{2, 7\}, \{\{2, 5\}, 7\}, B\}.$$

Example 1.24. $\wp(\emptyset) = {\emptyset}.$

Example 1.25. $\wp(x) = {\emptyset, {x}}.$

We will see that if |A| = n then $|\wp(A)| = 2^n$.

It can be useful to represent a set diagrammatically by a Venn diagram.

- Elements are represented by points.
- $\bullet \ D \subseteq B, D \not\subseteq A, x \in A, x \not\in B.$
- Box represents \mathcal{U} .
- \bullet Subsets of $\mathcal U$ are represented by circles.

Figure 1.1: The diagram.

Set Operations

Definition 1.26. Let A and B be sets. The union of A and B is noted as $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$

The union lies in A or B or both.

*Note: In math, "or" is used **inclusively**.

Figure 1.2: The union of two sets A and B.

Example 1.27.

$$A = \{-1, 0, 1\}$$
 and $B = \{1, 2, 3\}$.
 $A \cup B = \{-1, 0, 1, 2, 3\}$.

Example 1.28.

$$A = \{1, 2\}$$
 and $B = \{0, 1, 2, 3\}$.
 $A \cup B = \{0, 1, 2, 3\}$.

Example 1.29. For any set $A, A \cup \emptyset = A$ and $A \cup A = A$.

Example 1.30.

$$A = [1, 2]$$
 and $B = [2, 3]$.
 $A \cup B = [1, 3)$.

Definition 1.31. Let A and B be sets. The *intersection* of A and B is the set $A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$

Figure 1.3: The intersection of two sets A and B.

Example 1.32.

$$A = \{-1, 0, 1\}$$
 and $B = \{1, 2, 3\}$.
 $A \cap B = \{1\}$.

Example 1.33.

$$A = \{1, 2\}$$
 and $B = \{0, 1, 2, 3\}$.
 $A \cap B = \{1, 2\}$.

Example 1.34. For any set A, $A \cap \emptyset = \emptyset$ and $A \cap A = A$.

Example 1.35.

$$A = [1, 2]$$
 and $B = [2, 3]$.
 $A \cap B = \{2\}$.

Definition 1.36. Let A and B be sets. The difference of A with B is $A - B = \{x \mid x \in A \text{ and } x \notin B\}$.

Example 1.37.

$$A = \{-1, 0, 1\} \text{ and } B = \{1, 2, 3\}.$$

$$A - B = \{-1, 0\} \text{ and } B - A = \{2, 3\}.$$

Example 1.38.

$$A = \{1, 2\}$$
 and $B = \{0, 1, 2, 3\}$.
 $A - B = \emptyset$ and $B - A = \{0, 3\}$.

Figure 1.4: The difference of A with B.

Example 1.39. If A is any set, then $A - \emptyset = A, \ \emptyset - A = \emptyset$ and $A - A = \emptyset$.

Example 1.40.

$$[1,2] - [2,3) = [1,2).$$

 $[2,3) - [1,2] = (2,3).$

Definition 1.41. Let A be a set in the universe \mathcal{U} . The *compliment* of A is $\overline{A} = \mathcal{U} - A$.

Figure 1.5: The compliment of A.

Example 1.42.

$$\mathcal{U} = \mathbb{Z} \text{ and } A = \mathbb{N}.$$
 $\overline{A} = \{\dots, -2, -1, 0\}.$

Example 1.43.

$$\underline{\mathcal{U}} = \mathbb{R} \text{ and } A = [-1, 1].$$

 $\overline{A} = (-\infty, -1) \cup (1, \infty).$

Example 1.44.

$$\underline{\mathcal{U}} = \mathbb{R} \text{ and } A = \mathbb{Q}.$$

 $\overline{A} = \mathbb{R} - \mathbb{Q} \text{ (irrational numbers)}.$

Example 1.45. $\overline{\mathcal{U}} = \emptyset$.

Example 1.46. $\overline{\emptyset} = \mathcal{U}$.

Logic

. . .

Methods of Proof

Mathematical Induction

Relations

Functions

Cardinality