Variance Estimates

Yifei Wang

2023-05-22

Cooley2011: Marginal likelihood

Composite Likelihood without adjustment

$$\pi_c(\theta \mid y) \dot{\sim} N \left\{ \theta_0, n^{-1} H \left(\theta_0 \right)^{-1} \right\}$$

Composite likelihood with magnitude adjustment

$$\pi_{\text{magn}}(\theta \mid y) \sim N \left\{ \theta_0, (np)^{-1} \operatorname{tr} \left\{ H \left(\theta_0 \right)^{-1} J \left(\theta_0 \right) \right\} H \left(\theta_0 \right)^{-1} \right\}$$

where p is the number of eigen vectors choosing from the product result of $H(\theta_0)^{-1}J(\theta_0)$

Composite likelihood with curvature adjustment

$$\pi_{\text{curv}}\left(\theta \mid y\right) \dot{\sim} \text{N}\left\{\theta_{0}, n^{-1} H\left(\theta_{0}\right)^{-1} J\left(\theta_{0}\right) H\left(\theta_{0}\right)^{-1}\right\}$$

where

$$H(\theta_0) = -\mathbb{E}\left[\nabla^2 \ell_c(\theta_0; Y)\right] \text{ and } J(\theta_0) = \text{Var}\left[\nabla \ell_c(\theta_0; Y)\right]$$

Lazar 2003 Biometrika: empirical likelihood

No variance is estimated. Instead, the coverage probability and length (with standard errors) are calculated for the empirical likelihood CI in the simulation part.

Pauli2011Stat: Pairwise Likelihood

$$\begin{split} I_{c_0}^{-1} &= I_0^{-1} + I_c \left(\hat{\theta}_{PL} \right)^{-1} \rightarrow I_c \left(\hat{\theta}_{PL} \right)^{-1} \\ \hat{\theta}_{c_0} &= I_{c_0} \left(I_0^{-1} \theta_0 + I_c \left(\hat{\theta}_{PL} \right)^{-1} \hat{\theta}_{PL} \right) \rightarrow \hat{\theta}_{PL} \\ &\pi_{CL_c}(\theta \mid y) \dot{\sim} N \left(\hat{\theta}_{PL}, I_{c_0}^{-1} \right) \end{split}$$

where $I(\theta) = E(-\nabla \ell_{p*}(\theta; Y))$

Graziani 2020 Plos One Bayesian Multivariate NMA

2.5%, median and 97.5% are reported from the highest posterior density (HPD) credibility intervals

Lu2006JASA bayesian NMA

The paper provides the standard deviation in the application part without specifying the calculation details. The values could be calculated from the mcmc samples.