

MATEMATIKA

MAMZD20C0T01

DIDAKTICKÝ TEST

Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %

1 Základní informace k zadání zkoušky

- Didaktický test obsahuje 26 úloh.
- **Časový limit** pro řešení didaktického testu je **uveden na záznamovém archu**.
- Povolené pomůcky: psací a rýsovací potřeby, Matematické, fyzikální a chemické tabulky a kalkulátor bez grafického režimu, bez řešení rovnic a úprav algebraických výrazů. Nelze použít programovatelný kalkulátor.
- U každé úlohy je uveden maximální počet bodů.
- Odpovědi pište do záznamového archu.
- Poznámky si můžete dělat do testového sešitu, nebudou však předmětem hodnocení.
- Nejednoznačný nebo nečitelný zápis odpovědi bude považován za chybné řešení.
- První část didaktického testu (úlohy 1–15) tvoří úlohy otevřené.
- Ve druhé části didaktického testu (úlohy 16–26) jsou uzavřené úlohy, které obsahují nabídku odpovědí. U každé úlohy nebo podúlohy je právě jedna odpověď správná.
- Za neuvedené řešení či za nesprávné řešení úlohy jako celku se neudělují záporné body.

2 Pravidla správného zápisu odpovědí

- Odpovědi zaznamenávejte modře nebo černě píšící propisovací tužkou, která píše dostatečně silně a nepřerušovaně.
- Budete-li rýsovat obyčejnou tužkou, následně obtáhněte čáry propisovací tužkou.
- Hodnoceny budou pouze odpovědi uvedené v záznamovém archu.

2.1 Pokyny k otevřeným úlohám

 Výsledky pište čitelně do vyznačených bílých polí.

- Je-li požadován celý postup řešení, uveďte jej do záznamového archu. Pokud uvedete pouze výsledek, nebudou vám přiděleny žádné body.
- **Zápisy uvedené mimo** vyznačená bílá pole **nebudou hodnoceny**.
- Chybný zápis přeškrtněte a nově zapište správné řešení.

2.2 Pokyny k uzavřeným úlohám

 Odpověď, kterou považujete za správnou, zřetelně zakřížkujte v příslušném bílém poli záznamového archu, a to přesně z rohu do rohu dle obrázku.

 Pokud budete chtít následně zvolit jinou odpověď, pečlivě zabarvěte původně zakřížkované pole a zvolenou odpověď vyznačte křížkem do nového pole.

 Jakýkoliv jiný způsob záznamu odpovědí a jejich oprav bude považován za nesprávnou odpověď.

VÝCHOZÍ TEXT K ÚLOZE 1

Lék ve formě sirupu se prodává ve dvou variantách – pro děti a pro dospělé.

V 1 ml sirupu pro děti jsou 3 mg účinné látky, v 1 ml sirupu pro dospělé 7,5 mg téže účinné látky.

Miloš má předepsáno užívat každé ráno 5 ml sirupu pro děti.

(CZVV)

1 bod

1 Vypočtěte, kolik ml sirupu pro dospělé by měl Miloš ráno užívat, aby dostával stejné množství účinné látky jako v předepsané dávce sirupu pro děti.

1 bod

2 Pro $n \in \mathbb{N}$ upravte do tvaru trojčlenu:

$$\left(n\cdot\sqrt{2}+2\right)^2-n\cdot\sqrt{18}=$$

1 bod

3 Pro všechny kladné reálné hodnoty veličin a, b, c platí:

$$a : c = 3 : 10$$

 $b = 3a + c$

Vyjádřete co nejjednodušším způsobem veličinu b pouze v závislosti na veličině c.

4 **Pro** $a \in \mathbb{R} \setminus \{-1,5; 1,5\}$ **zjednodušte:**

$$\left(\frac{3a}{2a+3} - \frac{2a^2 - 3a}{4a^2 - 9}\right) : \frac{1}{2a+3} =$$

V záznamovém archu uveďte celý postup řešení.

1 bod

5 Je dán výraz:

$$\frac{-45}{5y - 9}$$

Určete všechna $y \in \mathbf{R}$, pro která je daný výraz záporný.

6 V oboru R řešte:

$$\frac{2}{x} = \frac{5}{x^2 - 2x} - 1$$

V záznamovém archu uveďte celý postup řešení.

VÝCHOZÍ TEXT K ÚLOZE 7

Ve volbě předsedy spolku vyhrál Karel. Z prvních 20 voličů jej volilo pouze 6 osob. Tedy Karlův průběžný volební výsledek po odvolení prvních 20 voličů byl 30 %.

Všichni další voliči počínaje 21. volili už jen Karla.

(CZVV)

max. 3 body

7

- 7.1 Vypočtěte v procentech Karlův průběžný volební výsledek po odvolení prvních 50 voličů.
- 7.2 Vypočtěte celkový počet voličů, kteří se zúčastnili volby předsedy, jestliže Karel nakonec získal 90 % hlasů.

V záznamovém archu uveďte v obou částech úlohy celý postup řešení.

Na světelné liště je vedle sebe umístěno 5 žárovek různých barev (Č, M, Z, Ž, F).

Signál se vydává bliknutím 2 žárovek současně, např. ZF.

Heslo je tvořeno třemi signály jdoucími po sobě v takovém pořadí, aby dva signály následující bezprostředně po sobě nebyly stejné.

Jedno heslo může být sestaveno např. ze signálů ZF, ČŽ, ZF.

(CZVV)

max. 2 body

8 Vypočtěte,

- 8.1 kolik existuje různých signálů,
- 8.2 kolik různých hesel lze vytvořit.

max. 2 body

- 9 Pro všechny přípustné hodnoty $x \in \mathbf{R}$ je dána funkce: $f: y = \log_{0}(1 x)$
- 9.1 Určete definiční obor funkce f.
- 9.2 Určete, pro které hodnoty proměnné x platí y = 0.5.

10 V oboru R řešte:

$$2^{1000}: 2^{500} + 3 \cdot 2^{500} = 2^x$$

VÝCHOZÍ TEXT A TABULKA K ÚLOZE 11

Všech 110 žáků čtvrtého ročníku dostalo známku ze závěrečného testu.

Tabulka udává rozdělení četností známek.

Známka	1	2	3	4	5
Četnost	30	27	27	26	0

(CZVV)

1 bod

11 Určete medián známek ze závěrečného testu.

VÝCHOZÍ TEXT A OBRÁZEK K ÚLOHÁM 12-13

12 Vypočtěte v cm délku delší základny lichoběžníku a zaokrouhlete ji na celé cm.

1 bod

1 bod

13 Vypočtěte v cm obvod šestiúhelníku a zaokrouhlete jej na celé cm.

VÝCHOZÍ TEXT K ÚLOZE 14

Aleš a Blanka začali současně číst knihu, která má 240 stran. Aleš četl každý den stejný počet stran. Blanka četla denně o 4 strany více než Aleš, a to včetně pátku, kdy knihu dočetla. Aleš pak pokračoval oba víkendové dny, než knihu dočetl.

(CZVV)

max. 3 body

14 Užitím <u>rovnice nebo soustavy rovnic</u> vypočtěte, kolik stran knihy četl denně Aleš.

V záznamovém archu uveďte celý **postup řešení** (popis neznámých, sestavení rovnice, resp. soustavy rovnic, řešení a odpověď).

Zobrazené pyramidy jsou rovinné obrazce složené z obdélníků, které představují jednotlivá patra pyramidy.

Každé patro je 2 cm vysoké.

Horní patro má vždy šířku 6 cm. Každé další patro je vždy o 2 cm širší než patro bezprostředně nad ním.

Pyramida se 2 patry Pyramida se 3 patry Pyramida se 4 patry

6 cm

6 cm

7 om

8 cm

10 cm

5 ířka spodního patra

(CZVV)

max. 3 body

15 Vypočtěte

- 15.1 v cm šířku spodního patra pyramidy, která má 200 pater,
- 15.2 v cm² obsah pyramidy, která má 200 pater.

V záznamovém archu uveďte v obou částech úlohy celý postup řešení.

16 Rozhodněte o každém z následujících tvrzení (16.1–16.4), zda je pravdivé (A), či nikoli (N).

16.1	Čísla $\frac{1}{20}$; $\frac{1}{10}$; $\frac{1}{5}$; $\frac{2}{5}$; $\frac{4}{5}$; $\frac{8}{5}$	tvoří šest po sobě jdoucích členů	A N
	20 10 5 5 5 5 geometrické posloupnosti		

- 16.2 Čísla 1; 3; 6; 10; 15; 21 tvoří šest po sobě jdoucích členů aritmetické posloupnosti.
- 16.3 Čísla 1; –2; 4; –8; 16; –32 tvoří šest po sobě jdoucích členů **geometrické** posloupnosti.
- 16.4 Čísla $\frac{1}{20}$; $\frac{1}{40}$; 0; $-\frac{1}{40}$; $-\frac{1}{20}$; $-\frac{3}{40}$ tvoří šest po sobě jdoucích členů aritmetické posloupnosti.

VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 17

(CZVV)

2 body

17 Jaká je odchylka přímek p, q?

Velikosti úhlů neměřte, ale vypočtěte.

- A) 12°
- B) 13°
- C) 14°
- D) 16°
- E) jiná odchylka

(CZVV)

2 body

O kolik m² je výměra pozemku Malých menší než výměra pozemku Pokorných?

- A) o 1200 m^2
- B) $o 1400 \text{ m}^2$
- C) $o 1800 \text{ m}^2$
- D) $o 2100 \text{ m}^2$
- E) $o 2700 \text{ m}^2$

VÝCHOZÍ TEXT K ÚLOZE 19

Délky hran kvádru mají tvořit tři po sobě jdoucí členy geometrické posloupnosti. Délky dvou hran kvádru jsou 5 cm a 8 cm.

(CZVV)

2 body

19 Jaký je nejmenší možný objem kvádru?

- A) menší než 80 cm³
- B) 80 cm^3
- C) 100 cm³
- D) 125 cm³
- E) větší než 125 cm³

Model domku se skládá z kvádru a jehlanu.

Obě tělesa mají stejnou čtvercovou podstavu.

Výška jehlanu je 6 dm.

Objem kvádru je polovinou objemu celého modelu.

(CZVV)

2 body

20 Jaká je výška modelu?

- A) 7,5 dm
- B) 8 dm
- C) 9 dm
- D) 10,5 dm
- E) 12 dm

VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 21

Plechová pečicí forma má při pohledu shora tvar obdélníku o rozměrech 20 cm a 29 cm. Forma má šest shodných dutin (resp. vypouklin) tvaru polokoule, každou o poloměru 3,5 cm. Plochy pečicí formy jsou z jedné strany světlé a z opačné strany tmavé.

Tloušťku plechu zanedbáváme.

(CZVV)

2 body

21 Jaký je celkový obsah tmavých ploch pečicí formy?

Výsledek je zaokrouhlen na celé cm².

- A) 811 cm²
- B) 888 cm²
- C) 910 cm²
- D) 1 042 cm²
- E) 1 273 cm²

(CZVV)

2 body

22 Jaká je délka úsečky AB?

- A) 8
- B) $6 \cdot \sqrt{2}$
- C) 10
- D) $8 \cdot \sqrt{2}$
- E) 12

VÝCHOZÍ TEXT K ÚLOZE 23

Při premiéře dostal každý z návštěvníků kina 1 kus CD. Proto bylo pro návštěvníky připraveno několik beden, z nichž každá obsahovala právě n kusů CD.

Návštěvníci byli usazeni buď v přízemí, nebo na balkoně. Obsah jedné bedny stačil buď přesně pro 8 % návštěvníků v přízemí, nebo přesně pro $\frac{5}{8}$ návštěvníků na balkoně.

Když byli obdarováni všichni návštěvníci, všechny bedny vyjma poslední byly prázdné.

(CZVV)

2 body

23 Kolik procent CD z původního počtu n kusů zbylo v poslední bedně?

- A) méně než 50 %
- B) 65 %
- C) 75 %
- D) 85 %
- E) více než 85 %

2 body

24

$$\frac{y}{x^3 + 2x} = \frac{1}{x^2 + 2}$$

Uvedená rovnost výrazů platí

- A) pro všechna reálná čísla x a y.
- B) pro libovolné reálné číslo y a každé nenulové reálné číslo x.
- C) jen pro y = x, přičemž x je libovolné reálné číslo.
- D) jen pro y = x, přičemž x je libovolné nenulové reálné číslo.
- E) pro všechna reálná čísla x a y, kde $x \neq 0$ a současně $x \neq y$.

25 Každému z grafů (25.1–25.4) kvadratické funkce přiřaďte odpovídající předpis (A–F).

25.1

25.2

25.3

25.4

A)
$$y = (x - 3)(x + 1)$$

B)
$$y = (x - 3)(x - 1)$$

C)
$$y = (3 - x)(x + 1)$$

D)
$$y = (x+3)(x+1)$$

E)
$$y = (x+3)(x-1)$$

F)
$$y = (x+3)(1-x)$$

V mřížových bodech čtvercové sítě leží body A, B a počáteční i koncové body orientovaných úseček, které představují umístění vektorů \vec{u} , \vec{n} .

(CZVV)

max. 3 body

26 Přiřaďte ke každé přímce (26.1–26.3) její obecnou rovnici (A–E).

26.1 přímka p určená bodem A a normálovým vektorem \vec{n}

26.2 přímka q určená bodem A a směrovým vektorem \vec{u}

26.3 přímka *r* procházející body *A*, *B*

A)
$$3x - 2y + 7 = 0$$

B)
$$3x + 2y - 1 = 0$$

C)
$$2x + 3y - 4 = 0$$

D)
$$2x - 3y - 5 = 0$$

E)
$$2x - 3y + 8 = 0$$