Juegos de Ehrenfeucht-Fraïssé (parte 2)

IIC3263

Teorema de Ehrenfeucht-Fraïssé

Teorema (Ehrenfeucht-Fraïssé)

Para todo par de \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B} , las siguientes afirmaciones son equivalentes:

- 1. $\mathfrak{A} \equiv_k \mathfrak{B}$
- 2. $\mathfrak A$ y $\mathfrak B$ están de acuerdo en LPO[k]

Teorema de Ehrenfeucht-Fraïssé: Demostración

Dado: \mathcal{L} -estructura \mathfrak{A} con dominio A y tupla $\bar{a}=(a_1,\ldots,a_m)$ de elementos de A.

Notación

- $ightharpoonup \mathcal{L}_m$: Resultado de extender \mathcal{L} con m constantes nuevas c_1, \ldots, c_m
- \triangleright (\mathfrak{A}, \bar{a}) : \mathcal{L}_m -estructura tal que
 - $ightharpoonup c^{(\mathfrak{A},\bar{a})}=c^{\mathfrak{A}}$ para cada constante $c\in\mathcal{L}$
 - $ightharpoonup R^{(\mathfrak{A},ar{a})}=R^{\mathfrak{A}}$ para cada relación $R\in\mathcal{L}$
 - $ightharpoonup c_i^{(\mathfrak{A},\bar{a})} = a_i \ para \ cada \ i \in \{1,\ldots,m\}$

Teorema de Ehrenfeucht-Fraïssé: Demostración

Dado: \mathcal{L} -estructura \mathfrak{A} con dominio A y tupla $\bar{a} = (a_1, \ldots, a_m)$ de elementos de A.

Notación

- $ightharpoonup \mathcal{L}_m$: Resultado de extender \mathcal{L} con m constantes nuevas c_1, \ldots, c_m
- \blacktriangleright (\mathfrak{A}, \bar{a}) : \mathcal{L}_m -estructura tal que
 - $ightharpoonup c^{(\mathfrak{A},ar{a})}=c^{\mathfrak{A}}$ para cada constante $c\in\mathcal{L}$
 - $ightharpoonup R^{(\mathfrak{A},ar{s})}=R^{\mathfrak{A}}$ para cada relación $R\in\mathcal{L}$
 - $ightharpoonup c_i^{(\mathfrak{A},\bar{a})} = a_i \text{ para cada } i \in \{1,\ldots,m\}$

Para una tupla (a_1) , usamos la notación (\mathfrak{A}, a_1) para $(\mathfrak{A}, (a_1))$

Tipo de una estructura

Una noción fundamental

Dadas variables x_1, \ldots, x_m , el k-tipo de (\mathfrak{A}, \bar{a}) es definido como:

$$\mathsf{tp}_k(\mathfrak{A},\bar{a}) = \{ \varphi(x_1,\ldots,x_m) \mid rc(\varphi(x_1,\ldots,x_m)) \leq k \ \mathsf{y} \\ \mathfrak{A} \models \varphi(a_1,\ldots,a_m) \}.$$

Vamos a estudiar algunas propiedades fundamentales de la noción de tipo.

Lema

Si \mathcal{L} es finito, entonces $tp_k(\mathfrak{A}, \bar{a})$ contiene un número finito de fórmulas hasta equivalencia lógica.

Lema

Si \mathcal{L} es finito, entonces $tp_k(\mathfrak{A}, \bar{a})$ contiene un número finito de fórmulas hasta equivalencia lógica.

Demostración: Suponga que $\mathcal{L} = \{c_1, \dots, c_r, R_1, \dots, R_s\}$, donde la aridad de R_i es n_i $(1 \le i \le s)$.

Por inducción en k, vamos a demostrar que hasta equivalencia lógica hay un número finito de fórmulas φ tal que:

- $ightharpoonup rc(\varphi) \leq k$
- las variables libre de φ están contenidas en $\{x_1, \dots, x_m\}$

De lo anterior se deduce el lema. ¿Por qué?

▶ Suponga que k = 0.

La siguiente es una cota superior para el número de fórmulas no equivalentes con rango de cuantificación 0 y cuyas variables libres están en el conjunto $\{x_1,\ldots,x_m\}$:

▶ Suponga que k = 0.

La siguiente es una cota superior para el número de fórmulas no equivalentes con rango de cuantificación 0 y cuyas variables libres están en el conjunto $\{x_1,\ldots,x_m\}$:

$$2^{2} \left[\left(\sum_{i=1}^{s} (r+m)^{n_{i}} \right) + (r+m)^{2} \right]$$

¿Por qué?

ightharpoonup Suponga que la propiedad se cumple para k.

Sea φ una fórmula tal que $rc(\varphi) = k+1$ y cuyas variables libres están contenidas en el conjunto $\{x_1, \ldots, x_m\}$.

Sin perdida de generalidad, suponemos que φ es una combinación Booleana de fórmulas ψ_1,\ldots,ψ_n , donde cada ψ_i satisface una de las siguientes condiciones:

1.
$$rc(\psi_i) \leq k$$

ightharpoonup Suponga que la propiedad se cumple para k.

Sea φ una fórmula tal que $rc(\varphi)=k+1$ y cuyas variables libres están contenidas en el conjunto $\{x_1,\ldots,x_m\}$.

Sin perdida de generalidad, suponemos que φ es una combinación Booleana de fórmulas ψ_1,\ldots,ψ_n , donde cada ψ_i satisface una de las siguientes condiciones:

- 1. $rc(\psi_i) \leq k$
- 2. $rc(\psi_i) = k + 1$ y $\psi_i = \exists x_{m+1} \alpha$, donde $rc(\alpha) = k$ y las variables libre de α están en el conjunto $\{x_1, \dots, x_m, x_{m+1}\}$

ightharpoonup Suponga que la propiedad se cumple para k.

Sea φ una fórmula tal que $rc(\varphi)=k+1$ y cuyas variables libres están contenidas en el conjunto $\{x_1,\ldots,x_m\}$.

Sin perdida de generalidad, suponemos que φ es una combinación Booleana de fórmulas ψ_1,\ldots,ψ_n , donde cada ψ_i satisface una de las siguientes condiciones:

- 1. $rc(\psi_i) \leq k$
- 2. $rc(\psi_i) = k + 1$ y $\psi_i = \exists x_{m+1} \alpha$, donde $rc(\alpha) = k$ y las variables libre de α están en el conjunto $\{x_1, \ldots, x_m, x_{m+1}\}$
- 3. $rc(\psi_i) = k + 1$ y $\psi_i = \forall x_{m+1} \beta$, donde $rc(\beta) = k$ y las variables libre de β están en el conjunto $\{x_1, \dots, x_m, x_{m+1}\}$

Por hipótesis de inducción:

existe un número finito de fórmulas con rango de cuantificación a los más k y cuyas variables libres están en el conjunto $\{x_1, \ldots, x_m, x_{m+1}\}$

Concluimos que existe un número finito de fórmulas φ que satisfacen la condición en la transparencia anterior.

Esto concluye la demostración del lema. ¿Por qué?

Sean $\mathfrak A$ una estructura sobre un vocabulario finito $\mathcal L$, y $\bar a$ una tupla con m elementos de $\mathfrak A$.

Corolario

Existe una fórmula $\varphi_{(\mathfrak{A},\bar{a})}^k(x_1,\ldots,x_m)$ tal que:

- $rc(\varphi_{(\mathfrak{A},\bar{a})}^{k}(x_{1},\ldots,x_{m}))=k$
- ▶ para cada \mathcal{L} -estructura \mathfrak{B} y tupla \bar{b} con m elementos de \mathfrak{B} , se tiene que $\mathfrak{B} \models \varphi_{(\mathfrak{A},\bar{a})}^k(\bar{b})$ si y sólo si $tp_k(\mathfrak{B},\bar{b}) = tp_k(\mathfrak{A},\bar{a})$

Sean $\mathfrak A$ una estructura sobre un vocabulario finito $\mathcal L$, y $\bar a$ una tupla con m elementos de $\mathfrak A$.

Corolario

Existe una fórmula $\varphi_{(\mathfrak{A},\bar{a})}^k(x_1,\ldots,x_m)$ tal que:

- $rc(\varphi_{(\mathfrak{A},\bar{a})}^{k}(x_{1},\ldots,x_{m}))=k$
- ▶ para cada \mathcal{L} -estructura \mathfrak{B} y tupla \bar{b} con m elementos de \mathfrak{B} , se tiene que $\mathfrak{B} \models \varphi_{(\mathfrak{A},\bar{a})}^k(\bar{b})$ si y sólo si $tp_k(\mathfrak{B},\bar{b}) = tp_k(\mathfrak{A},\bar{a})$

Ejercicio

Demuestre el corolario.

Teorema de Ehrenfeucht-Fraïssé: Demostración

Para demostrar el Teorema de Ehrenfeucht-Fraïssé usamos tipos y la relación \simeq_k definida de la siguiente forma:

- $ightharpoonup \mathfrak{A} \simeq_0 \mathfrak{B}$ si $\mathfrak{A} \equiv_0 \mathfrak{B}$
- $ightharpoonup \mathfrak{A} \simeq_{k+1} \mathfrak{B}$ si

forth: Para cada $a \in A$, existe $b \in B$ tal que

 $(\mathfrak{A},a)\simeq_k (\mathfrak{B},b)$

back: Para cada $b \in B$, existe $a \in A$ tal que

 $(\mathfrak{A},a)\simeq_k (\mathfrak{B},b)$

Teorema de Ehrenfeucht-Fraïssé: Versión extendida

Teorema (Ehrenfeucht-Fraïssé)

Para todo par de \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B} , las siguientes afirmaciones son equivalentes:

- 1. $\mathfrak{A} \equiv_k \mathfrak{B}$
- 2. \mathfrak{A} y \mathfrak{B} están de acuerdo en LPO[k]
- 3. $\mathfrak{A} \simeq_k \mathfrak{B}$

Demostración: $(1 \Leftrightarrow 3)$: Por inducción en k. Para k = 0 se tiene por definición.

Suponga que la propiedad se cumple para k.

▶ Suponga que $\mathfrak{A} \simeq_{k+1} \mathfrak{B}$. Tenemos que demostrar que $\mathfrak{A} \equiv_{k+1} \mathfrak{B}$.

Suponga que **S** decide jugar a_1 en \mathfrak{A} . Entonces como $\mathfrak{A} \simeq_{k+1} \mathfrak{B}$, existe b_1 en \mathfrak{B} tal que $(\mathfrak{A}, a_1) \simeq_k (\mathfrak{B}, b_1)$.

Por hipótesis de inducción: $(\mathfrak{A}, a_1) \equiv_k (\mathfrak{B}, b_1)$.

Por lo tanto: Para todo $a \in A$, existe $b \in B$ tal que $(\mathfrak{A}, a) \equiv_k (\mathfrak{B}, b)$.

De la misma forma, pero ahora usando back, concluimos que para todo $b \in B$, existe $a \in A$ tal que $(\mathfrak{A}, a) \equiv_k (\mathfrak{B}, b)$.

De lo anterior: $\mathfrak{A} \equiv_{k+1} \mathfrak{B}$.

▶ Suponga ahora que $\mathfrak{A} \equiv_{k+1} \mathfrak{B}$. Tenemos que demostrar que $\mathfrak{A} \simeq_{k+1} \mathfrak{B}$.

Sea $a \in A$ y suponga que **S** decide jugar este punto. Como **D** tiene una estrategia ganadora en el juego de k+1 rondas entre $\mathfrak A$ y $\mathfrak B$, existe b en $\mathfrak B$ tal que $(\mathfrak A,a)\equiv_k(\mathfrak B,b)$.

Por hipótesis de inducción: $(\mathfrak{A}, a) \simeq_k (\mathfrak{B}, b)$.

Por lo tanto: Para todo $a \in A$, existe $b \in B$ tal que $(\mathfrak{A}, a) \simeq_k (\mathfrak{B}, b)$.

De la misma forma, pero ahora dejando jugar a **S** en \mathfrak{B} , concluimos que para todo $b \in B$, existe $a \in A$ tal que $(\mathfrak{A}, a) \simeq_k (\mathfrak{B}, b)$.

De lo anterior: $\mathfrak{A} \simeq_{k+1} \mathfrak{B}$.

 $(2 \Leftrightarrow 3)$: Por inducción en k.

Para k = 0 se tiene la equivalencia. ¿Por qué?

Suponga que la equivalencia se tiene para k.

- ▶ Suponga que $\mathfrak{A} \simeq_{k+1} \mathfrak{B}$. Tenemos que demostrar que \mathfrak{A} y \mathfrak{B} están de acuerdo en LPO[k+1].
 - Para hacer esto nos basta con considerar el caso $\varphi = \exists x \, \psi(x)$ con $rc(\psi) = k$. ¿Por qué?

Si $\mathfrak{A} \models \exists x \, \psi(x)$, entonces existe $a \in A$ tal que $\mathfrak{A} \models \psi(a)$.

Como $\mathfrak{A} \simeq_{k+1} \mathfrak{B}$, existe $b \in B$ tal que $(\mathfrak{A}, a) \simeq_k (\mathfrak{B}, b)$.

Por hipótesis de inducción: (\mathfrak{A}, a) y (\mathfrak{B}, b) están de acuerdo en LPO[k].

Tenemos entonces que $\mathfrak{B} \models \psi(b)$: (\mathfrak{A}, a) y (\mathfrak{B}, b) son estructuras sobre un vocabulario extendido con una constante que se interpreta como a y b, respectivamente. Como están de acuerdo en LPO[k], están de acuerdo en particular en $\psi(c)$, donde c es esa constante.

Concluimos que $\mathfrak{B} \models \exists x \, \psi(x)$.

De la misma forma concluimos que si $\mathfrak{B} \models \exists x \, \psi(x)$, entonces $\mathfrak{A} \models \exists x \, \psi(x)$.

▶ Suponga que $\mathfrak A$ y $\mathfrak B$ están de acuerdo en LPO[k+1]. Tenemos que demostrar que $\mathfrak A \simeq_{k+1} \mathfrak B$.

Sea
$$a \in A$$
. Como $\mathfrak{A} \models \varphi_{(\mathfrak{A},a)}^k(a)$, sabemos que $\mathfrak{A} \models \exists x \, \varphi_{(\mathfrak{A},a)}^k(x)$.

Puesto que $rc(\exists x \, \varphi^k_{(\mathfrak{A},a)}(x)) = k+1$, se tiene que $\mathfrak{B} \models \exists x \, \varphi^k_{(\mathfrak{A},a)}(x)$. Entonces, existe $b \in B$ tal que $\mathfrak{B} \models \varphi^k_{(\mathfrak{A},a)}(b)$.

Por lo tanto: $\operatorname{tp}_k(\mathfrak{A}, a) = \operatorname{tp}_k(\mathfrak{B}, b)$, lo cual significa que (\mathfrak{A}, a) y (\mathfrak{B}, b) están de acuerdo en LPO[k]. Así, por hipótesis de inducción: $(\mathfrak{A}, a) \simeq_k (\mathfrak{B}, b)$.

Entonces: Para todo $a \in A$, existe $b \in B$ tal que $(\mathfrak{A}, a) \simeq_k (\mathfrak{B}, b)$.

De la misma forma concluimos que para todo $b \in B$, existe $a \in A$ tal que $(\mathfrak{A}, a) \simeq_k (\mathfrak{B}, b)$.

De lo anterior:
$$\mathfrak{A} \simeq_{k+1} \mathfrak{B}$$

Una estrategia completa

Corolario

Una propiedad \mathcal{P} no es expresable en lógica de primer orden si y sólo si para cada $k \geq 0$, existen \mathcal{L} -estructuras \mathfrak{A}_k y \mathfrak{B}_k tales que:

- $ightharpoonup \mathfrak{A}_k \in \mathcal{P}$
- $\triangleright \mathfrak{B}_k \notin \mathcal{P}$
- $ightharpoonup \mathfrak{A}_k \equiv_k \mathfrak{B}_k$

Una estrategia completa

Corolario

Una propiedad \mathcal{P} no es expresable en lógica de primer orden si y sólo si para cada $k \geq 0$, existen \mathcal{L} -estructuras \mathfrak{A}_k y \mathfrak{B}_k tales que:

- $ightharpoonup \mathfrak{A}_k \in \mathcal{P}$
- $\triangleright \mathfrak{B}_k \notin \mathcal{P}$
- $ightharpoonup \mathfrak{A}_k \equiv_k \mathfrak{B}_k$

Ya sabemos demostrar la dirección (\Leftarrow) del corolario.

Una estrategia completa

Corolario

Una propiedad \mathcal{P} no es expresable en lógica de primer orden si y sólo si para cada $k \geq 0$, existen \mathcal{L} -estructuras \mathfrak{A}_k y \mathfrak{B}_k tales que:

- $ightharpoonup \mathfrak{A}_k \in \mathcal{P}$
- $\triangleright \mathfrak{B}_k \notin \mathcal{P}$
- $ightharpoonup \mathfrak{A}_k \equiv_k \mathfrak{B}_k$

Ya sabemos demostrar la dirección (⇐) del corolario.

Vamos a demostrar la dirección (⇒) del corolario.

Una estrategia completa: Demostración

Demostración (⇒): Consideramos el contra-positivo del enunciado.

Suponga que existe $k \ge 0$ tal que para todo par de \mathcal{L} -estructuras $\mathfrak A$ y $\mathfrak B$, se tiene que:

▶ Si $\mathfrak{A} \equiv_k \mathfrak{B}$, entonces $\mathfrak{A} \in \mathcal{P}$ si y sólo si $\mathfrak{B} \in \mathcal{P}$

Vamos a demostrar que bajo esta hipótesis \mathcal{P} es definible en lógica de primer orden.

Una estrategia completa: Demostración

Sea Ψ la siguiente oración:

$$\bigvee_{\mathfrak{A}\in\mathcal{P}}\varphi_{\mathfrak{A}}^{k}$$

Podemos suponer que Ψ es una fórmula en lógica de primer orden porque hasta equivalencia lógica sólo existe un número finito de oraciones con rango de cuantificación k.

Vamos a demostrar que para cada \mathcal{L} -estructura \mathfrak{B} :

$$\mathfrak{B} \in \mathcal{P}$$
 si y sólo si $\mathfrak{B} \models \Psi$

Una estrategia completa: Demostración

 (\Rightarrow) Si $\mathfrak{B} \in \mathcal{P}$, entonces $\mathfrak{B} \models \Psi$ ya que $\varphi_{\mathfrak{B}}^k$ es uno de los disyuntos de Ψ y $\mathfrak{B} \models \varphi_{\mathfrak{B}}^k$.

(⇐) Suponga que $\mathfrak{B} \models \Psi$. Entonces existe $\mathfrak{A} \in \mathcal{P}$ tal que $\mathfrak{B} \models \varphi_{\mathfrak{A}}^{k}$.

Tenemos que $\operatorname{tp}_k(\mathfrak{A}) = \operatorname{tp}_k(\mathfrak{B})$, por lo que \mathfrak{A} y \mathfrak{B} están de acuerdo en $\operatorname{LPO}[k]$.

Por teorema de Ehrenfeucht-Fraïssé: $\mathfrak{A} \equiv_k \mathfrak{B}$

Por hipótesis y dado que $\mathfrak{A}\in\mathcal{P}$, concluimos que $\mathfrak{B}\in\mathcal{P}$

Sea $\mathcal C$ una clase de $\mathcal L$ -estructuras y $\mathcal P\subseteq \mathcal C.$

Sea $\mathcal C$ una clase de $\mathcal L$ -estructuras y $\mathcal P\subseteq \mathcal C.$

Corolario

 \mathcal{P} no es expresable en lógica de primer orden en \mathcal{C} si y sólo si para cada $k \geq 0$, existen \mathcal{L} -estructuras $\mathfrak{A}_k, \mathfrak{B}_k \in \mathcal{C}$ tales que:

- $ightharpoonup \mathfrak{A}_k \in \mathcal{P}$
- $\triangleright \mathfrak{B}_k \notin \mathcal{P}$
- $\triangleright \mathfrak{A}_k \equiv_k \mathfrak{B}_k$

Sea $\mathcal C$ una clase de $\mathcal L$ -estructuras y $\mathcal P\subseteq \mathcal C.$

Corolario

 \mathcal{P} no es expresable en lógica de primer orden en \mathcal{C} si y sólo si para cada $k \geq 0$, existen \mathcal{L} -estructuras $\mathfrak{A}_k, \mathfrak{B}_k \in \mathcal{C}$ tales que:

- $\triangleright \mathfrak{A}_k \in \mathcal{P}$
- $\triangleright \mathfrak{B}_k \notin \mathcal{P}$
- $\triangleright \mathfrak{A}_k \equiv_k \mathfrak{B}_k$

Vamos a demostrar la dirección (\Rightarrow) del corolario.

Demostración (\Rightarrow) : Consideramos el contra-positivo del enunciado.

Suponga que existe $k \ge 0$ tal que para todo par de \mathcal{L} -estructuras $\mathfrak{A}, \mathfrak{B} \in \mathcal{C}$, se tiene que:

▶ Si $\mathfrak{A} \equiv_k \mathfrak{B}$, entonces $\mathfrak{A} \in \mathcal{P}$ si y sólo si $\mathfrak{B} \in \mathcal{P}$

Al igual que en el corolario anterior:

▶ Vamos a demostrar que bajo esta hipótesis \mathcal{P} es definible en lógica de primer orden en \mathcal{C} .

Definimos Ψ como en la demostración anterior:

$$\bigvee_{\mathfrak{A}\in\mathcal{P}}\varphi_{\mathfrak{A}}^{k}$$

Vamos a demostrar que para cada \mathcal{L} -estructura $\mathfrak{B} \in \mathcal{C}$:

$$\mathfrak{B} \in \mathcal{P}$$
 si y sólo si $\mathfrak{B} \models \Psi$

 (\Rightarrow) Si $\mathfrak{B} \in \mathcal{P}$, entonces $\mathfrak{B} \models \Psi$ ya que $\varphi_{\mathfrak{B}}^k$ es uno de los disyuntos de Ψ y $\mathfrak{B} \models \varphi_{\mathfrak{B}}^k$.

- (\Leftarrow) Suponga que $\mathfrak{B} \models \Psi$. Entonces existe $\mathfrak{A} \in \mathcal{P}$ tal que $\mathfrak{B} \models \varphi^k_{\mathfrak{A}}$.
 - ▶ En particular, se tiene que $\mathfrak{A} \in \mathcal{C}$.

Tenemos que $\operatorname{tp}_k(\mathfrak{A}) = \operatorname{tp}_k(\mathfrak{B})$, por lo que \mathfrak{A} y \mathfrak{B} están de acuerdo en $\operatorname{LPO}[k]$.

Por teorema de Ehrenfeucht-Fraïssé: $\mathfrak{A} \equiv_k \mathfrak{B}$

Dado que $\mathfrak{A}, \mathfrak{B} \in \mathcal{C}$, $\mathfrak{A} \in \mathcal{P}$ y $\mathfrak{A} \equiv_k \mathfrak{B}$:

lacktriangle Concluimos por hipótesis que $\mathfrak{B}\in\mathcal{P}$

¡Tenemos una estrategia completa para el problema de definibilidad en lógica de primer orden!

¡Tenemos una estrategia completa para el problema de definibilidad en lógica de primer orden!

▶ Puede ser utilizada incluso en clases de estructuras arbitrarias

¡Tenemos una estrategia completa para el problema de definibilidad en lógica de primer orden!

- ▶ Puede ser utilizada incluso en clases de estructuras arbitrarias
- Pero algunas veces es difícil de aplicar

¡Tenemos una estrategia completa para el problema de definibilidad en lógica de primer orden!

- ▶ Puede ser utilizada incluso en clases de estructuras arbitrarias
- Pero algunas veces es difícil de aplicar

Vamos a estudiar entonces estrategias que no son completas, pero si fáciles de aplicar. Tiene que ver con la noción de localidad en las lógicas.