INTRODUCCIÓN A LA FÍSICA

Cinemática

Manuel Carlevaro

OBJETIVOS

- ▶ Repasar los conceptos de desplazamiento, velocidad y aceleración.
- ▶ Reforzar la construcción e interpretación de gráficos de movimiento.
- ▶ Aprender a operar estas cantidades en forma vectorial.

DESPLAZAMIENTO Y VELOCIDAD

Velocidad media:

$$egin{aligned} m{v}_m &= rac{\Delta m{r}}{\Delta t} \mapsto ext{velocidad media} \ v_m &= rac{\|\Delta m{r}\|}{\Delta t} \mapsto ext{rapidez media} \end{aligned}$$

DESPLAZAMIENTO Y VELOCIDAD

Velocidad media:

$$egin{aligned} m{v}_m &= rac{\Delta m{r}}{\Delta t} \mapsto ext{velocidad media} \ v_m &= rac{\left\|\Delta m{r}
ight\|}{\Delta t} \mapsto ext{rapidez media} \end{aligned}$$

Ejemplo:.

Adela viaja en bici $2.0\,h$. Luego de muchas vueltas acaba a $10.0\,km$ al este de su origen. ¿Cuál fue su velocidad media? Al día siguiente consigue la misma rapidez media pero acaba $3.0\,km$ al norte y $4.0\,km$ al oeste. ¿Cuál fue su velocidad y el tiempo de viaje?

$$\begin{split} v_{m1} &= \frac{\Delta r_1}{\Delta t_1} = \frac{(10.0 \boldsymbol{i} + 0.0 \boldsymbol{j}) \text{km}}{2.0 \text{ h}} \\ &= (5.0 \boldsymbol{i} + 0.0 \boldsymbol{j}) \text{km/h} \\ v_{m1} &= 5.0 \text{ km/h} \end{split}$$

$$\left\|\Delta r_2 \right\| = \sqrt{(3.0\,\mathrm{km})^2 + (4.0\,\mathrm{km})^2} = 5.0\,\mathrm{km}$$

$$\Delta t_2 = \frac{\left\|\Delta r_2 \right\|}{v_{m1}} = \frac{5.0\,\mathrm{km}}{5.0\,\mathrm{km/h}} = 1.0\,\mathrm{h}$$

$$oldsymbol{v}_{m2}=(3.0oldsymbol{i}-4.0oldsymbol{j})$$
km/h

DESPLAZAMIENTO Y VELOCIDAD: CASO UNIDIMENSIONAL

▶ Velocidad media:

$$v_m = \frac{\Delta r}{\Delta t} = \frac{r_2 - r_1}{\Delta t}$$

▶ Rapidez media:

$$|v_m| = \frac{|\Delta r|}{\Delta t} = \frac{|r_2 - r_1|}{\Delta t}$$

DESPLAZAMIENTO Y VELOCIDAD: CASO UNIDIMENSIONAL

▶ Velocidad media:

$$v_m = \frac{\Delta r}{\Delta t} = \frac{r_2 - r_1}{\Delta t}$$

▶ Rapidez media:

$$|v_m| = \frac{|\Delta r|}{\Delta t} = \frac{|r_2 - r_1|}{\Delta t}$$

Ejemplo:.

Adela viaja en bici 2.0 h. Luego de muchas vueltas acaba a 10.0 km al este de su origen. ¿Cuál fue su velocidad media? Al día siguiente consigue la misma rapidez media pero acaba a 5.0 km al oeste. ¿Cual fue su velocidad media y el tiempo de viaje?

$$\begin{split} v_m &= \frac{10.0\,\mathrm{km}}{2.0\,\mathrm{h}} = 5.0\,\mathrm{km/h} \quad |v_m| = 5.0\,\mathrm{km/h} \\ \Delta t_2 &= \frac{|r_2 - r_1|}{|v_m|} = \frac{|5.0 - 10.0|\mathrm{km}}{5.0\,\mathrm{km/h}} = 1.0\,\mathrm{h} \\ v_{m2} &= \frac{(5.0 - 10.0)\mathrm{km}}{1.0\,\mathrm{h}} = -5\,\mathrm{km/h} \end{split}$$

Representación gráfica

- ▶ ¿Cuándo estuvo a 1 km de su casa? ¿Y a 3 km de su casa?
- ¿A qué distancia de su casa se encontraba a la media hora de haber salido? ¿Y a las 11:50? ¿Y a las 13:10 y 13:20? ¿A qué hora volvió Bruno a su casa?
- ¿A qué distancia de la casa de Bruno está la casa de sus primas? ¿Y a qué distancia queda la casa de sus abuelos de la casa de sus primas?
- ¿Durante cuánto tiempo estuvieron en la casa de sus abuelos?
- ▶ Al regreso, se quedaron en la casa de sus primas.

Los abuelos de Bruno lo invitaron a él y a sus primas a almorzar. La casa de Bruno, la de sus primas y la de sus abuelos quedan todas en la misma calle. Bruno sale caminando a las 11 h, pasa a buscar a sus primas por su casa y se van a lo de sus abuelos. Al regreso, vuelven juntos. El gráfico representa la distancia de Bruno a su casa en cada momento.

¿Cuánto tiempo estuvieron?

- ¿La casa de Bruno se encuentra en el punto del eje en donde "regresa" a su casa?
- ▶ ¿Alas 11:20 Bruno dio la vuelta a la esquina?
- ▶ ¿Cuántos kilómetros recorrió en total?
- ¿Con qué rapidez media se mueve Bruno en cada tramo de su viaje?
- ▶ ¿Con qué velocidad media se mueve Bruno en cada tramo de su viaje?

VELOCIDAD INSTANTÁNEA

La velocidad instantánea se obtiene como el límite al que se aproxima la velocidad media cuando el intervalo de tiempo es infinitamente pequeño:

$$m{v} = \lim_{\Delta t o 0} rac{\Delta m{r}}{\Delta t} i, \quad v_x = \lim_{t o 0} rac{\Delta x}{\Delta t} = rac{dx}{dt} \mapsto \text{"derivada"}$$

En la representación gráfica de r(t) la velocidad instantánea corresponde a la pendiente de la recta tangente a la curva en el punto de interés.

Cuando la velocidad media $v_{\mathrm{med-}x}$ es calculada en intervalos cada vez más cortos ...

... su valor $v_{\text{med-}x} = \Delta x/\Delta t$ se acerca a la velocidad instantánea.

La velocidad instantánea v_x en un tiempo dado es igual a la pendiente de la tangente a la curva x-t en ese tiempo.

VELOCIDAD INSTANTÁNEA

Cuanto más empinada está la pendiente (positiva o negativa) de la gráfica *x-t* de un objeto, mayor será la rapidez del objeto en la dirección positiva o negativa.

EJEMPLO

Un guepardo acecha $20\,\mathrm{m}$ al este del escondite de un observador. En el tiempo $t=0\,\mathrm{s}$, el guepardo ataca a un antílope y empieza a correr en línea recta. Durante los primeros $2\,\mathrm{s}$ del ataque, la coordenada x del guepardo varía con el tiempo según la ecuación $x=20\,\mathrm{m}+(5\,\mathrm{m/s^2})\,t^2$. a) Obtenga el desplazamiento del guepardo entre $t_1=1.0\,\mathrm{s}$ y $t_2=2.0\,\mathrm{s}$. b) Calcule la velocidad media en dicho intervalo. c) Calcule la velocidad instantánea en $t_1=1.0\,\mathrm{s}$ tomando $\Delta t=0.1\,\mathrm{s}$, luego $\Delta t=0.01\,\mathrm{s}$, luego $\Delta t=0.001\,\mathrm{s}$. d) Deduzca una expresión general para la velocidad instantánea en función del tiempo y con ella calcule v_x en $t=1.0\,\mathrm{s}$ y $t=2\,\mathrm{s}$. (Derivada de $t^n=n\,t^{n-1}$.)

ACTIVIDAD

Ordene los valores de la velocidad v_x de la partícula en los puntos P, Q, R y S del más positivo al más negativo. b) ¿En qué puntos v_x es positiva? c) ¿En cuáles puntos v_x es negativa? d) ¿En cuáles es cero? e) Ordene los valores de la **rapidez** de la partícula en los puntos P, Q, R y S del más rápido al más lento.

VELOCIDAD Y ACELERACIÓN

Aceleración media

$$m{a}_m = rac{\Delta m{v}}{\Delta t} \mapsto ext{ aceleración media} \ a_m = rac{\|\Delta m{v}\|}{\Delta t} \mapsto ext{ norma o módulo}$$

VELOCIDAD Y ACELERACIÓN

Aceleración media

$$egin{aligned} m{a}_m &= rac{\Delta m{v}}{\Delta t} \mapsto & ext{aceleración media} \ a_m &= rac{\left\|\Delta m{v}
ight\|}{\Delta t} \mapsto & ext{norma o módulo} \end{aligned}$$

Ejemplo:.

Adela viaja en bici $2.0\,h$. Inicia rumbo al este a $10\,km/h$. Luego de muchas vueltas se encuentra viajando al norte a $20\,km/h$. ¿Cuál fue su aceleración media?

$$egin{aligned} m{v}_1 &= (10.0m{i} + 0.0m{j}) ext{km/h} \ m{v}_2 &= (0.0m{i} + 20.0m{j}) ext{km/h} \ m{a}_m &= rac{m{v}_2 - m{v}_1}{\Delta t} \end{aligned}$$

$$\begin{split} \boldsymbol{a}_m &= \frac{(-10.0\boldsymbol{i} + 20.0\boldsymbol{j})\text{km/h}}{2.0\text{ h}} \\ &= (-5.0\boldsymbol{i} + 10.0\boldsymbol{j})\text{km/h}^2 \\ a_m &= \|\boldsymbol{a}_m\| = \sqrt{(-5.0)^2 + 10.0^2)\text{km}^2/\text{h}^4} = 11.18\text{ km/h}^2 \end{split}$$

VELOCIDAD Y ACELERACIÓN: CASO UNIDIMENSIONAL

▶ Aceleración media:

$$a_m = \frac{\Delta v}{|\delta t|} = \frac{v_2 - v_1}{\Delta t}$$

► Módulo (norma):

$$|a| = \frac{|\Delta v|}{|\Delta t|} = \frac{|v_2 - v_1|}{\Delta t}$$

Ejemplo:.

Adela baja en bici por una pendiente recta hacia el este durante 0.1 h. Inicia a 10 km/h, acelera, aplica frenos varias veces y llega al final a 50 km/h. ¿Cuál fue su aceleración media? Al día siguiente sube la pendiente sin pedalear. Antes toma mucha velocidad (60 km/h) y luego de 0.2 h la bici se detiene por completo. ¿Cuál fue su aceleración media?

$$a_{1\to 2} = \frac{(50-10) \text{km/h}}{0.1 \text{ h}} = 400 \text{ km/h}^2$$

$$a_{3\to 4} = \frac{(-60-0) \text{km/h}}{0.2 \text{ h}} = -300 \text{ km/h}^2$$

Representación gráfica

- ¿En qué dirección viaja a los 25 s? ¿Y a los 325 s? ¿Y a los 450 s?
- ▶ ¿Cuánto dura el trayecto hacia el Este?
- ¿Al regreso hacia el oeste se detiene en el mismo lugar de donde partió el viaje?

Bruno sale en coche por una calle recta de oeste a este. El gráfico representa la velocidad de Bruno en cada momento.

- ¿Cuándo la rapidez fue de 20 km/h? ¿Y cuando la velocidad fue de 20 km/h?
- ¿Cuál era su velocidad 200 s luego de partir? ¿Y a los 325 s, y a los 400 s?
- ¿En algún momento se detiene? ¿Cuándo? ¿Cuál es la máxima velocidad que alcanza? ¿Y la mínima? ¿Y la máxima rapidez?
- ▶ ¿Cuántos kilómetros recorrió en total?
- ¿Con qué aceleración media se mueve Bruno en cada tramo de su viaje?
- ▶ ¿Cuál es el módulo de la aceleración en cada tramo?

Aceleración instantánea

3D:
$$\boldsymbol{a} = \lim_{\Delta t \to 0} \frac{\Delta \boldsymbol{v}}{\Delta t}$$
, 1D: $a_x = \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} = \frac{dv_x}{dt}$

EJEMPLO:

La velocidad v_x de un móvil en función del tiempo esta dada por

$$v_x = 60 \,\mathrm{m/s} + (0.50 \,\mathrm{m/s}^3)t^2$$

a) Calcule el cambio de velocidad del móvil entre el intervalo $t_1+1.0\,\mathrm{s}$ y $t_2=3.0\,\mathrm{s}$. b) Calcule la aceleración media en ese intervalo. c) Obtenga la aceleración instantánea en t_1 tomando Δt primero como $0.1\,\mathrm{s}$, después como $0.01\,\mathrm{s}$ y luego como $0.001\,\mathrm{s}$. d) Deduzca una expresión para la aceleración instantánea en cualquier instante y úsela para obtener la aceleración en t_1 y t_2 .

EIEMPLO:

La velocidad v_x de un móvil en función del tiempo esta dada por

$$v_x = 60 \,\mathrm{m/s} + (0.50 \,\mathrm{m/s^3})t^2$$

a) Calcule el cambio de velocidad del móvil entre el intervalo $t_1+1.0\,\mathrm{s}$ y $t_2=3.0\,\mathrm{s}$. b) Calcule la aceleración media en ese intervalo. c) Obtenga la aceleración instantánea en t_1 tomando Δt primero como $0.1\,\mathrm{s}$, después como $0.01\,\mathrm{s}$ y luego como $0.001\,\mathrm{s}$. d) Deduzca una expresión para la aceleración instantánea en cualquier instante y úsela para obtener la aceleración en t_1 y t_2 .

a)
$$\begin{split} v_{1x} &= 60\,\mathrm{m/s} + (0.50\,\mathrm{m/s^3})(1.0\,\mathrm{s})^2 = 60.5\,\mathrm{m/s} \\ v_{2x} &= 60\,\mathrm{m/s} + (0.50\,\mathrm{m/s^3})(3.0\,\mathrm{s})^2 = 64.5\,\mathrm{m/s} \\ \Delta v_x &= v_{2x} - v_{1x} = 4.0\,\mathrm{m/s} \end{split}$$

$$a_{mx} = \frac{v_{2x} - v_{1x}}{t_2 - t_1} = \frac{4.0 \,\mathrm{m/s}}{2.0 \,\mathrm{s}} = 2.0 \,\mathrm{m/s}^2$$

c)

 Δt (s) 0.1 0.01 0.001 a_{mx} (m/s²) 1.05 1.005 1.0005

d) $a_x = dv_x/dt$, la derivada de una constante es cero y la de t^2 es 2t:

$$\begin{split} a_x &= \frac{dv_x}{dt} = \frac{d}{dt} [60\,\mathrm{m/s} + (0.50\,\mathrm{m/s^3})t^2] \\ &= (0.50\,\mathrm{m/s^3})(2t) = (1.0\,\mathrm{m/s^3})t \\ t &= 1.0\,\mathrm{s}: a_x = (1.0\,\mathrm{m/s^3})(1.0\,\mathrm{s}) = 1.0\,\mathrm{m/s^2} \\ t &= 3.0\,\mathrm{s}: a_x = (1.0\,\mathrm{m/s^3})(3.0\,\mathrm{s}) = 3.0\,\mathrm{m/s^2} \end{split}$$

Posición, velocidad y aceleración 1D

Posición, velocidad y aceleración 1D

MOVIMIENTO RECTILÍNEO CON ACELERACIÓN CONSTANTE

Sin embargo, la posición cambia cantidades *diferentes* en intervalos iguales porque la velocidad cambia.

Con aceleración constante:

$$a_x = \frac{v_x - v_{0x}}{t - 0} \Rightarrow \boxed{v_x(t) = v_{0x} + a_x t} \tag{1}$$

Movimiento rectilíneo con aceleración constante

al tiempo t.

Con aceleración constante:

$$v_{mx}=rac{x-x_0}{t}$$
, y también
$$v_{mx}=rac{v_{0x}+v_x}{2}=rac{1}{2}(v_{0x}+v_{0x}+a_x\,t)=v_{0x}+rac{1}{2}a_x\,t$$

Igualando y despejando x:

$$x = x_0(t) + v_{0x}t + \frac{1}{2}a_x t^2$$
 (2)

Interpretación gráfica

Interpretación gráfica

Despejando t de (1), reemplazando en (2) y simplificando:

$$\begin{split} t &= \frac{v_x - v_{0x}}{a_x} \\ x &= x_0 + v_{0x} \left(\frac{v_x - v_{0x}}{a_x} \right) + \frac{1}{2} a_x \left(\frac{v_x - v_{0x}}{a_x} \right)^2 \end{split}$$

Pasando x_0 al primer miembro y multiplicando por $2a_x$:

$$2a_x(x - x_0) = 2v_{0x}v_x - 2v_{0x}^2 + v_x^2 - 2v_{0x}v_x + v_{0x}^2$$
$$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$$
 (3)

$$x - x_0 = \left(\frac{v_{0x} + v_x}{2}\right)t\tag{4}$$