# Управляемая генерация текста с использованием механизма внимания

Беляев Станислав Научный руководитель: Николенко Сергей Игоревич

Санкт-Петербургский Академический Университет

18 июня 2018

## Введение

#### Задача генерации

Нейронным сетям удается эффективно обобщать зависимости для данных, имеющих **непрерывное** представление в  $\mathbb{R}^n$  (картинки, видео). В **дискретном** же пространстве операции теряют свойство дифференцируемости, что ведет к трудностям при оптимизации.

## Задача генерации (порождения)

По подвыборке  $X_{\text{train}} \subset X$  генеральной совокупности X, распределенной по  $p_{\text{data}}$ , построить распределение  $p_{\text{model}}$ , приближающее реальное.

Возьмем в качестве X текстовые данные (последовательность символов из конечного алфавита). Недостатки существующих порождающих моделей:

- Низкая связность или вариативность при генерации длинных примеров (больше  $15\ {\rm cnos}^1)$
- Невозможность эффективно использовать неразмеченные данные при генерации с условием
- Отсутствие интерпретируемости

<sup>&</sup>lt;sup>1</sup>Bowman et al., "Generating Sentences from a Continuous Space", 2015

# Введение

Цель

<u>Целью</u> данной работы является разработка генеративной модели, позволяющей производить эффективную, управляемую и интерпретируемую генерацию текста с увеличенной длиной в условиях данных с частичной разметкой, поддерживая *связность*, *правдоподобие* и *разнообразие* генерируемых примеров.

## Задачи:

- Проанализировать предметную область и существующие модели.
- Выбрать и предобработать данные для обучения и тестирования.
- Выбрать метрики для оценки результата.
- Придумать и реализовать способы, позволяющие эффективно справляться существующими проблемами.
- Произвести сравнение подходов и анализ результатов.

# Данные

Каждый  $x \in X$  - цельный законченный отрывок длиной в пару предложений с частично размеченным свойством.

Для размеченной части мы возьмем Стэнфордский датасет (**SST**), основанный на базе данных отзывов о фильмах. Неразмеченная часть взята из той же области, но из другого набора данных (**IMDB**).

#### Описание:

- Разметка бинарное категориальное свойство эмоциональной окраски
- Ограничение на длину предложения 30 слов (2x)
- ullet 30000 сэмплов для обучения, по 3000 для валидации и тестирования
- BPE encoding для токенизации, позволяет абстрагироваться от языка.
- Ограничение на размер словаря 15000
- 4 служебных слова  $\langle bos \rangle$ ,  $\langle eos \rangle$ ,  $\langle unk \rangle$  и  $\langle pad \rangle$  символы начала, конца, пустоты и отступа. Используются для обрамления начала/конца и объединения примеров в мини-батч для обучения.

# Метрики

Описание

Автоматические метрики для  $W \in X_{ ext{test}}$  и новых сэмлов  $W \in X_{ ext{gen}}$ 

# Perplexity( $X_{\text{test}}$ ) [связность, правдоподобие]

$$PP(W) = P(w_1 w_2 w_3 \dots w_{|W|})^{-\frac{1}{|W|}} = \left[\prod_{i=1}^{|W|} \frac{1}{P(w_i | w_1 \dots w_{i-1})}\right]^{|W|}$$

## $\mathsf{BLEU}(X_{\mathrm{test}}, X_{\mathrm{gen}})$ [правдоподобие]

 $\textit{BLEU}(W_1,W_2) \in [0,1], \text{ N-gram'as схожесть, усредненная по примерам}$ 

## Self-BLEU( $X_{\text{gen}}$ ) [разнообразие]

$$Self$$
-BLEU $(S) = \frac{1}{|S|} \sum_{i=1}^{|S|} BLEU(\{S_i\}, S \setminus \{S_i\})$ 

Таксономия генеративных моделей



Goodfellow, "NIPS 2016 Tutorial: Generative Adversarial Networks", 2017

Выбранные модели







Введение Данные Метрики Генерация Генерация Решение Результаты Заключение

## Генерация

#### Рекуррентные нейронные сети (RNN)



### Преимущества:

- Эффективное и простое обучение
- Расширяемая и простая реализация
- Эффективное сэмплирование и оценивание совместной вероятности

## $Hедостатки^1$ :

- Небольшое правдоподобие и связность
- Работает только в условиях полной разметки данных
- Неудачные механизмы управляемой генерации:
  - Расширение данных (in-band)
  - Расширение архитектуры (out-of-band)

<sup>&</sup>lt;sup>1</sup>Bengio, "Talk on Recurrent Neural Networks (RNNs)", 2017

#### Генеративные состязательные сети (GAN)



$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{q(\mathbf{x})}[\log(D(\mathbf{x}))] + \mathbb{E}_{p(\mathbf{z})}[\log(1-D(G(\mathbf{z})))]$$

• Embeddings ( $\mathbb{N} \Leftrightarrow \mathbb{R}^n$ )

18 июня 2018

Real

Fake

Loss

<sup>&</sup>lt;sup>1</sup>Goodfellow, "NIPS 2016 Tutorial: Generative Adversarial Networks", 2017

Вариационный автоэнкодер (VAE)

$$E_{\mathbf{x} \sim p_d(\mathbf{x})}[-\log p(\mathbf{x})] < E_{\mathbf{x}}[\mathrm{E}_{q(\mathbf{z}|\mathbf{x})}[-\log(p(\mathbf{x}|\mathbf{z})]] + E_{\mathbf{x}}[\mathrm{KL}(q(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))]$$

VAE - вариационное продолжение автоэнкодера для задач генерации, использующее аппроксимацию правдоподобия для оптимизации.

Чтобы правильно обучить VAE для  ${\sf текста}^1$ , нужно:

- Постепенно плавно увеличивать вес ошибки kl-терма.
- Реализовать дропаут для декодера, чтобы тот не обучался быстрее энкодера.



<sup>&</sup>lt;sup>1</sup>Bowman et al., "Generating Sentences from a Continuous Space", 2015

Введение Данные Метрики Генерация Генерация Решение Результаты Заключение

## Решение

#### Реализация алгоритма



Особенности и дополнения реализации $^1$ , основанной на идеи CVAE $^2$ :

- В качестве дискриминатора взят CNNEncoder<sup>3</sup>.
- ullet Вектора слов GLoVE размерностью 100 без заморозки
- WordDropout и плавное увеличение веса kl-терма по  $tanh_{[0,1]}$
- 3-layers SRU в качестве энкодера и стохастический beam search с векторными операциями на графическом процессоре ( $\sim 6x$  скорость)
- PyTorch 0.4, SGDR на Adam с 3 рестартами для оптимизации

<sup>&</sup>lt;sup>1</sup>https://github.com/stasbel/text-gen

<sup>&</sup>lt;sup>2</sup>Hu et al., "Toward Controlled Generation of Text", 2018

<sup>&</sup>lt;sup>3</sup>Zhang et al., "A Sensitivity Analysis of CNN for Sentence Classification", 2016

## Решение

#### Self-Attention



Расширение механизма внимания из seq2seq моделей для задач генерации:

- Используем информацию о корреляции с предыдущими представлениями на очередном шаге декодера.
- Линейный слой до и после (general), SELU активация после
- Зависимости можно визуализировать в виде heatmap.
- Процесс вывода стал интерпретируемым.
- PyTorch 0.4

## Решение

#### Attention penalty

**Decoded** It's no use going back to yesterday. (eos)

Expected It's no use going back to yesterday, because I was a different person then. (eos)

sent: 'the colorful masseur wastes the real mood , its small-joke , the rest of the film is charming .'



Вывод может повторяться или быть недостаточно длинным, решение:

- Кандидат beam search имеет вероятность (правдоподобие) и матрицу внимания
- Регуляризация по весам матрицы:

$$cp(A) = \sum_{j=1}^{|x|} \log \left[ min(\sum_{i=1}^{|x|} a_{ij}, 1) \right]$$

 cp(A) - аддитивная добавка к log-правдоподобию при ранжировании кандидатов

# Результаты

Сравнение моделей и подходов

| Metrics           | SeqGAN | MaliGAN      | RankGAN      | LeakGAN          | TextGAN      | MLE |
|-------------------|--------|--------------|--------------|------------------|--------------|-----|
| BLEU<br>Self-BLEU |        | 15.9<br>43.7 | 15.6<br>61.8 | <b>23.0</b> 78.0 | 20.7<br>74.6 | 0   |

Таблица: BLEU5 \* 100 для 500 сгенерированных сэмплов

- $D_{ACC}$  точность классификации после генерации
- CVAE++ улучшенная реализация CVAE
- SA Self-Attention, CP штраф на матрице внимания

| Metrics    | VAE | CVAE   | $CVAE_{++} + SA$ | $CVAE_{++} + SA + CP$ |
|------------|-----|--------|------------------|-----------------------|
| $D_{ACC}$  | -   | 83.483 | 84.263           | 84.263                |
| Perplexity | 150 | 104    | 84               | 83                    |
| BLEU       | 8.5 | 9.3    | 18.2             | 20.5                  |
| Self-BLEU  | 9.0 | 8.7    | 45.8             | 44.2                  |

Таблица: Метрики для расширений VAE

Введение Данные Метрики Генерация Генерация Решение Результаты Заключение

## Заключение

Результаты и будущая работа

### Результаты:

- Изучены принципы и особенности работы генеративных моделей с дискретными значениями, намечены основные сложности, проблемы и границы применимости разных подходов.
- Придуманы и описаны метрики для комплексной оценки качества.
- Придуманы и реализованы способы, позволяющие справляться с существующими проблемами и потерей качества при увеличении длины генерации (до 30 слов).
- Эффективная, интерпретируемая и гибкая модель, основанная на CVAE.

## Будущая работа:

- Преодоление ограничения на выбор априорного и апостериорного распределения в моделях, основанных на VAE (AAE,  $\alpha$ -GAN).
- Запустить предложенную модель на дискретных не строковых данных.