

Self Healing GitOps: Continuous, Secure GitOps using Argo CD, Helm and OPA

Upkar Lidder Senior Product Manager, Tenable

CLOUD NATIVE INFRASTRUCTURE IS FUELING INNOVATION

CREATING INCREASED VELOCITY, LESS PROCESS FRICTION

92% organizations using containers in production

83%
organizations
using Kubernetes
in production

30%
organizations
using serverless in production

Extremely high paced infrastructure

Easy developer interface, complex underpinning

Easier runtime management, deployment, and scalability

WHAT MAKES KUBERNETES SECURITY DIFFICULT

Developer focused management

Complex privilege management

Default configurations are not secure

4 TENETS OF K8 SECURITY

K8s Misconfigurations

 Create a single policy framework for governance and access control

Security Guardrails

 Integrate policy into DevOps workflows

Container Image Vulnerabilities

 Scan container images and registries

Exposure Mgmt

• Identify and remediate runtime vulnerabilities

SECURITY GUARDRAILS

Kubernetes security depends on the development process and should be built into build and delivery processes using existing development tools and frameworks.

THE POWER OF POLICY

Policy as Code can be applied at several different stages in the development process, and we encourage users to apply it everywhere they can.

- 1. Low Friction
- 2. Secure by default
- 3. Increased Security Visibility

Open Source Policy as Code for Secure Cloud Infrastructure

- 500+ out-of-the-box policies
- Scan IaC against common policy standards such as the CIS
- Leverages the Open Policy Agent (OPA) engine for custom policy creation

TYPICAL GITOPS CI/CD WORKFLOW

WHERE DO YOU GO FROM HERE?

THE ROAD TO COMPLETE CLOUD VISIBILITY

Stage 2 Governance as code

Automated governance

Stage 1

· Create codified security policies

Policy as code

assessment

Automated continuous

(e.g., CIS benchmark)Enforce policies and detect violations across the pipeline

- Capture security governance decisions (e.g., exception) within IaC
- Use code repositories for governance workflow and audit

Stage 3

Drift as code

Automated continuous detection

Continuously detect infrastructure changes in runtime and report policy violations as IaC

Stage 4

Security as code

Automated breach path analysis

Understand application vulnerabilities and prioritize risk resolution by identifying potential breach paths and assessing scope of impact

Stage 5

Remediation as code

Automated remediation

- Automatically generate the IaC code needed to fix vulnerabilities and exposures
- Push security fixes as IaC directly to developers through pull requests (GitOps)

Operational efficiency

TRY IT YOURSELF

Tenable.com/terrascan

