COMPLEXIDADE DE ALGORITMOS E CLASSES DE COMPLEXIDADE

DCE529 - Algoritmos e Estruturas de Dados III

Atualizado em: 5 de agosto de 2024

Iago Carvalho

Departamento de Ciência da Computação

ALGORITMOS

Um algoritmo é uma sequência finita e bem definida de instruções ou passos lógicos que, quando seguidos corretamente, realizam uma tarefa específica ou resolvem um problema

 É uma abordagem sistemática e precisa para resolver um problema, que pode ser implementada por um computador, mas também pode ser executada manualmente

Os algoritmos são usados em muitos campos, incluindo

- Ciência da Computação
- Física
- Matemática
- \circ ...

- Estatística
- Engenharias
- Biologia

ALGORITMOS

Existem diversos algoritmos diferentes para resolver um mesmo problema

- Existem diversas maneiras para se percorrer o caminho entre a cantina e a sala de aula
- Existem múltiplos meios para se desmontar uma caixa de papelão
- O ...

Como podemos comparar (e avaliar) qual é a qualidade destes algoritmos?

- Tempo de processamento
- O Espaço de memória

TEMPO DE PROCESSAMENTO

É a medida que costuma ser mais importante

Existem três tipos de tempo de processamento que valema pena serem estudados

- Melhor caso
- Caso médio
- Pior caso

Estes três tipos valem a pena serem estudados para alguns algoritmos

O Por exemplo, algoritmos de ordenação

Em projeto e análise de algoritmos, no geral, vamos analisar somente o **pior caso**

TEMPO DE PROCESSAMENTO

	tamanho n					
função de custo	10	20	30	40	50	60
n	0,00001 s	0,00002 s	0,00003 s	0,00004 s	0,00005 s	0,00006 s
n^2	0,0001 s	0,0004 s	0,0009 s	0,0016 s	0,035 s	0,0036 s
n^3	0,001 s	0,008 s	0,027 s	0,64 s	0,125 s	0,316 s
n^5	0,1 s	3,2 s	24,3 s	1,7 min	5,2 min	13 min
2^n	0,001 s	1 s	17,9 min	12,7 dias	35,7 anos	366 <i>séc</i>
3^n	0,059 s	58 min	6,5 anos	3855 séc	10 ⁸ séc	10 ¹³ séc

NOTAÇÃO O

A notação $\mathcal O$ é utilizada para estudarmos o comportamento assintótico de funções

- Utilizada para estudar a taxa de crescimento de funções
- Também conhecido como a ordem de uma função

Esta notação estabelece um limite superior para o crescimento de uma função

- Utilizada para demonstrar o maior valor que uma função pode atingir para determinado valor de entrada
- Assim, utilizada para estudar o comportamento no pior caso de um algoritmo

FORMALIZANDO A NOTAÇÃO ${\cal O}$

Sejam f e g duas funções definidas no mesmo subconjunto dos números reais pode-se dizer que

$$f(n) = \mathcal{O}(g(n)), n \to \infty$$

se e somente se existe uma constante positiva M tal que para todo valor suficientemente grande de n, o valor absoluto de f(n) é no máximo c multiplicado pelo valor absoluto de g(n)

Ou seja, $f(n)=\mathcal{O}\big(g(n)\big)$ se e somente se existe um número real positivo c e um número real n_0 tal que

$$|f(n)| \le c|g(n)| \quad \forall n \ge n_0$$

7

NOTAÇÃO $\mathcal O$

NOTAÇÃO O

A notação ${\mathcal O}$ não é afetada por fatores constantes ou termos de ordem menor

- Na prática, isso significa que devemos nos preocupar somente com o termo de maior expoente
- Também diz que qualquer constante que multiplica os termos pode ser ignorada
- Além disso, também só se considera o termo que possui relação com o tamanho n da entrada

Exemplos

- $On^3 + 5n = \mathcal{O}(n^3)$
- $\bigcirc 5n^2 + 3 = \mathcal{O}(n^2)$
- $n + 10^{10} = \mathcal{O}(n)$
- $0 3n^4 n^3 = \mathcal{O}(n^4)$
- $oldsymbol{n} + b^2 = \mathcal{O}(n)$

9

NOTAÇÃO O - EXEMPLO

- 1. Se f(n) é a soma de vários termos, o que possuir maior taxa de crescimento é mantido, e todos os outros são omitidos
- 2. Se f(n) é um produto de diversos fatores, quaisquer constantes (termos do produto que não depente de n) são omitidos

$$f(n) = 3n^4 - 40n^3 + 52$$

Queremos utilizar a notação $\mathcal O$ para representar a taxa de crescimento desta função.

Como podemos proceder?

NOTAÇÃO \mathcal{O} - EXEMPLO

Esta função tem três termos

- \bigcirc 3 n^4
- $-40n^3$
- O 52

O termo que tem a maior taxa de crescimento é o que tem o maior expoente. Neste caso, é $3n^4$.

Neste termo, o 3 é uma constante. Assim, podemos ignora-lo. Então temos que

$$3n^4 - 40n^3 + 52 = \mathcal{O}(n^4)$$

NOTAÇÃO O - EXEMPLO

$$3n^4 - 40n^3 + 52 = \mathcal{O}(n^4)$$

Seja
$$f(n) = 3n^4 - 40n^3 + 52$$
 e $g(n) = n^4$.

Temos que mostrar que $|f(n)| \le c|g(n)|$ para um valor c real e para todo valor de $n \ge n_0$.

$$|3n^4 - 40n^3 + 52| \le 3n^4 + |40n^3| + 52$$

$$|3n^4 - 40n^3 + 52| \le 3n^4 + 40n^4 + 52n^4$$

$$|3n^4 - 40n^3 + 52| \le 95n^4$$

PROPRIEDADES - TERMO DE MAIOR CRESCIMENTO

O termo de maior crescimento é quem determina a ordem de f(n)

$$f(n) = 3n - 5\log(n) + 20n + n^2 = \mathcal{O}(n^2)$$

PROPRIEDADES - PRODUTO

Seja
$$f_1(n)=\mathcal{O}ig(g_1(n)ig)$$
 e $f_2(n)=\mathcal{O}ig(g_2(n)ig)$

Podemos estabelecer duas regras de produtos

1.
$$f_1(n)f_2(n) = \mathcal{O}(g_1(n)g_2(n))$$

2.
$$f(n) \mathcal{O}(g(n)) = \mathcal{O}(f(n)g(n))$$

PROPRIEDADES - SOMA

Seja
$$f_1(n)=\mathcal{O}\big(g_1(n)\big)$$
 e $f_2(n)=\mathcal{O}\big(g_2(n)\big)$. Além disso, seja $f_3(n)=\mathcal{O}\big(g_1(n)\big)$

Podemos estabelecer três regras de soma

1.
$$f_1(n) + f_2(n) = \mathcal{O}(|g_1(n)| + |g_2(n)|)$$

2.
$$f_1(n) + f_3(n) = \mathcal{O}(g_1(n))$$

3. Se
$$f(n)$$
 e $g(n)$ forem positivas, então $f(n) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$

PROPRIEDADES - MULTIPLICAÇÃO POR UMA CONSTANTE

Seja $f(n) = \mathcal{O}(g(n))$. Além disso, seja k uma constante diferente de zero.

Aqui, podemos estabelecer duas regras

1.
$$\mathcal{O}(kg(n)) = \mathcal{O}(g(n))$$

2.
$$f(n) = \mathcal{O}(g(n)) \rightarrow k = \mathcal{O}(g(n))$$

OUTRAS PROPRIEDADES

Igualdades de caminho único

$$f(n) = \mathcal{O}ig(g(n)ig)$$
 não implica que $g(n) = \mathcal{O}ig(f(n)ig)$

Outras operações aritméticas

$$f(n) = h(n) + \mathcal{O}(g(n)) \to f(n) - h(n) = \mathcal{O}(g(n))$$
$$(n+3)^2 = n^2 + \mathcal{O}(n)$$

COMPORTAMENTO ASSINTÓTICO DE DIFERENTES FUNÇÕES

NOTAÇÃO o

A notação o é uma notação $\mathcal O$ afrouxada

$$f(n) = o(g(n) \leftarrow |f(n)| \le \epsilon |g(n)| \ \forall n \ge n_0, \ \forall \epsilon \in \mathbb{R}_+$$

Assim, temos que

$$2n = o(n^2)$$
$$\frac{1}{n} = o(n)$$
$$n \neq o(n)$$

NOTAÇÕES Ω E ω

Estabelece um limite inferior para o tempo de crescimento de uma função, sendo o inverso da notação \mathcal{O} . Isto é

se
$$f(n) = \mathcal{O}(g(n))$$
,
então $g(n) = \Omega(f(n))$

De forma similar, temos a notação ω :

se
$$f(n) = o(g(n)),$$

então $g(n) = \omega(f(n))$

NOTAÇÃO Ω

NOTAÇÃO Θ

A notação Θ estabelece um limite assintótico firme para uma função f(n). Isto é, se

$$f(n) = \Theta(g(n))$$

então dizemos que existem constantes c_1 e c_2 reais e positivas tais que

$$c_1g(n) \leq f(n) \leq c_2g(n)$$

para todo valor $n \ge n_0$

NOTAÇÃO ⊖

NOTAÇÃO ⊖ - EXEMPLO

Seja
$$f(n) = 3n^3 + 6n + 7 = \Theta(n^3)$$
. Temos que

$$3n^3 \le 3n^3 + 6n + 7 \le 3n^3 + 6n^3 + 7n^3$$

 $3n^3 \le f(n) \le 16n^3$

Assim, temos que $c_1=3, c_2=16$ e n=1

RESUMO

- Dizemos que f(n) é $\mathcal{O}(g(n))$ se
 - \cap f(n) cresce a uma taxa **menor ou igual** à g(n)
- Dizemos que f(n) é $\Omega(g(n))$ se
 - \cap f(n) cresce a uma taxa maior ou igual à g(n)
- Dizemos que f(n) é o(g(n)) se
 - \cap f(n) cresce a uma taxa **menor** que g(n)
- Dizemos que f(n) é $\omega(g(n))$ se
 - f(n) cresce a uma taxa **maior** que g(n)
- Dizemos que f(n) é $\Theta(g(n))$ se
 - \cap f(n) cresce a uma taxa similar à de g(n)

COMPLEXIDADE E LIMITES

Também é possível estudar o comportamento assintótico de um algoritmo utilizando limites

_	Forma assintótica	Definição	
	$f(n) \in \Theta(g(n))$	$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$	
	$f(n) \in \mathcal{O}(g(n))$	$0 \le \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$	
,	$f(n) \in \Omega(g(n))$	$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)}$	
	$f(n) \in o(g(n))$	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$	
	$f(n) \in \omega(g(n))$	$ \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty $	

EXERCÍCIOS

- 1. Verdadeiro ou falso: Se $f(n) = \mathcal{O}(g(n))$, então $g(n) = \mathcal{O}(f(n))$
- 2. Verdadeiro ou falso: $n 1000 \log n = \mathcal{O}(n)$
- 3. Sejam $f(n) = n^2 + n$ e $g(n) = n^2$. Mostre, usando limites, que $f(n) = \mathcal{O}(g(n))$
- 4. Sejam f(n) e g(n) como acima definidos. Encontre os valores c_1, c_2 e n tal que $f(n) = \Theta(g(n))$