

CLAIMS:

- A ceramic passive component which comprises a carrier substrate (1), 1. at least a first electrode (2) disposed thereon, at least a dielectric (5) disposed thereon, and at least a second electrode (6) disposed thereon,
- characterized in that the dielectric (5) comprises a ferroelectric ceramic material with a 5 voltage-dependent relative dielectric constant ε_r .
- A ceramic passive component as claimed in claim 1, characterized in that the 2. following is chosen as the ferroelectric ceramic material with a voltage-dependent dielectric 10 constant ε_r :

 $Pb(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1)$ with and without excess lead, $Ba_{1-x}Sr_xTiO_3 \ (0 \le x \le 1)$, $Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1, \ 0 \le y \le 0.2), \ Pb(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3 \ (0 \le x \le 1) \ doped \ with \ Nb, \ Pb_{1-1.5y}La_y(Zr_xTi_{1-x})O_3$ $_{\alpha y}$ La_yTiO₃ (0 \leq y \leq 0.3, 1.3 \leq α \leq 1.5), (Pb,Ca)TiO₃, BaTiO₃ with and without dopants,

 $SrZr_{x}Ti_{1-x}O_{3}\;(0\leq x\leq 1)\;with\;and\;without\;Mn\;dopants,\;BaZr_{x}Ti_{1-x}O_{3}\;(0\leq x\leq 1),\;SrTiO_{3}\;doped$

15 with, for example, La, Nb, Fe or Mn,

 $[Pb(Mg_{1/3}Nb_{2/3})O_3]_x$ - $[PbTiO_3]_{1-x}$ (0 $\le x \le 1$),

 $(Pb,Ba,Sr)(Mg_{1/3}Nb_{2/3})_xTi_y(Zn_{1/3}Nb_{2/3})_{1-x-y}O_3\ (0\leq x\leq 1,\ 0\leq y\leq 1,\ x+y\leq 1),$

 $PbNb_{4/5x}((Zr_{0.6}Sn_{0.4})_{1-y}Ti_y))_{1-x}O_3 \ (0 \le x \le 0.9, \ 0 \le y \le 1), \ (Ba_{1-x}Ca_x)TiO_3 \ (0 \le x \le 1),$

 $(Ba_{1-x}Sr_x)TiO_3 \ (0 \leq x \leq 1), \ (Ba_{1-x}Pb_x)TiO_3 \ (0 \leq x \leq 1), \ (Ba_{1-x}Sr_x)(Ti_{1-x}Zr_x)O_3$

- 20 $(0 \le x \le 1, 0 \le y \le 1),$
 - a) $Pb(Mg_{1/2}W_{1/2})O_3$
 - b) Pb(Fe_{1/2}Nb_{1/2})O₃
 - c) $Pb(Fe_{2/3}W_{1/3})O_3$
 - d) $Pb(Ni_{1/3}Nb_{2/3})O_3$
- 25 e) $Pb(Zn_{1/3}Nb_{2/3})O_3$
 - f) $Pb(Sc_{1/2}Ta_{1/2})O_3$

as well as combinations of the compounds a) to f) with PbTiO3 and Pb(Mg1/3Nb2/3)O3 with and without excess lead.

15

20

25

- 3. A ceramic passive component as claimed in claim 1, characterized in that the first electrode (2) and/or the second electrode (6) comprise(s) at least a first and a second electrically conducting layer.
- A ceramic passive component as claimed in claim 3, characterized in that the first electrically conducting layer of the electrodes (2, 6) comprises Ti, Cr, Ni_xCr_y ($0 \le x \le 1$, $0 \le y \le 1$) or Ti_xW_y ($0 \le x \le 1$, $0 \le y \le 1$).
- 5. A ceramic passive component as claimed in claim 3, characterized in that the second electrically conducting layer of the electrodes (2, 6) comprises a metal or an alloy.
 - 6. A ceramic passive component as claimed in claim 1, characterized in that the carrier substrate (1) comprises a ceramic material, a ceramic material with a glass planarization layer, a glass-ceramic material, a glass material, or silicon.
 - 7. A ceramic passive component as claimed in claim 1, characterized in that the dielectric (5) comprises multiple layers.
 - 8. A ceramic passive component as claimed in claim 1, characterized in that a protective layer (7) of an inorganic material and/or an organic material is laid over the entire component.
 - 9. A voltage-controlled oscillator with as its capacitive component a ceramic passive component which comprises a carrier substrate (1), at least a first electrode (2) disposed thereon, at least a dielectric (5) disposed thereon, and at least a second electrode (6) disposed thereon, characterized in that the dielectric (5) comprises a ferroelectric ceramic material with a voltage-dependent relative dielectric constant ε_r .
- 10. A filter with as its capacitive component a ceramic passive component which comprises a carrier substrate (1), at least a first electrode (2) disposed thereon, at least a dielectric (5) disposed thereon, and at least a second electrode (6) disposed thereon, characterized in that the dielectric (5) comprises a ferroelectric ceramic material with a voltage-dependent relative dielectric constant ε_r.

5

10

- 11. A delay line with as its capacitive component a ceramic passive component which comprises a carrier substrate (1), at least a first electrode (2) disposed thereon, at least a dielectric (5) disposed thereon, and at least a second electrode (6) disposed thereon, characterized in that the dielectric (5) comprises a ferroelectric ceramic material with a voltage-dependent relative dielectric constant ε_r .
- 12. The use of a ceramic passive component which comprises a carrier substrate (1), at least a first electrode (2) disposed thereon, at least a dielectric (5) with a voltage-dependent relative dielectric constant ε_r disposed thereon, and at least a second electrode (6) disposed thereon as a capacitive component.