194 Chapter 6 Finite Automate

36. Build an NFA M_1 that accepts $(aba)^+$ and an NFA M_2 that accepts $(ab)^*$. Use λ transformed transformed that accepts $(aba)^+ \cup (ab)^*$. Give the input transformed that accepts $(aba)^+ \cup (ab)^*$.

Build an NFA M₁ that accepts (aba) + (ab)*. Give the input transition Build an NFA M₁ that accepts (aba)+ (ab)*. Give the input transition is sitions to obtain a machine M that accepts (aba)+ (ab)*. Give the input transition (aba)+ (ab)*. sitions to obtain a macrune we use construct the state diagram of a DFA that action of M. Use Algorithm 6.6.3 to construct

cepts L(M).

37. Assume that q_i and q_j are equivalent states (as in Definition 6.7.1) and $\hat{\delta}(q_i, u) = q_m$

Show that the transition function δ' obtained in the process of merging equivalent show that the transition function δ' obtained in the process of merging equivalent shows that the transition function δ' obtained in the process of merging equivalent shows that the transition function δ' obtained in the process of merging equivalent shows that the transition function δ' obtained in the process of merging equivalent shows that the transition function δ' obtained in the process of merging equivalent shows that the transition function δ' obtained in the process of merging equivalent shows that the transition function δ' obtained in the process of merging equivalent shows that the transition function δ' obtained in the process of merging equivalent shows that the transition function δ' obtained in the process of merging equivalent shows that the transition function δ' obtained in the process of merging equivalent shows that the transition function δ' obtained in the process of merging equivalent shows the process of the and $\hat{\delta}(q_j, u) = q_n$. Prove that q_m and q_n are equivalent.

38. Show that if q_i and q_j are states with $\lfloor q_i \rfloor = \lfloor q_j \rfloor$, then states is well defined. That is, show that if q_i and q_j are states with $\lfloor q_i \rfloor = \lfloor q_j \rfloor$, then $\delta'([q_i], a) = \delta'([q_j], a)$ for every $a \in \Sigma$.

39. Let M be the DFA

- a) Trace the actions of Algorithm 6.7.2 to determine the equivalent states of M. Give the values of D[i, j] and S[i, j] computed by the algorithm.
- b) Give the equivalence classes of states.
- c) Give the state diagram of the minimal state DFA that accepts L(M).
- 40. Let M be the DFA

- a) Trace the actions of Algorithm 6.7.2 to determine the equivalent states of M. Give the values of D[i, j] and S[i, j] computed by the algorithm.
- b) Give the equivalence classes of states.
- c) Give the state diagram of the minimal state DFA that accepts L(M).

Bibliographic Notes

A proof that two-way and one-way automata accept the same languages can be found in ation of output. A two-way automaton allows the tape head to move in both directions. Alternative interpretations of the result of finite-state computations were studied in Mealy efficiency of the minimization technique. in a DFA was presented in Nerode [1958]. The algorithm of Hopcroft [1971] increases the troduced by Rabin and Scott [1959]. The algorithm for minimizing the number of states Rabin and Scott [1959] and Sheperdson [1959]. Nondeterministic finite automata were in-[1955] and Moore [1956]. Transitions in Mealy machines are accompanied by the gener-

Bavel [1983]. books by Minsky [1967]; Salomaa [1973]; Denning, Dennis, and Qualitz [1978]; and The theory and applications of finite automata are developed in greater depth in the