Отчёт о проделанной работе

Лазар В. И.

26 ноября 2024 г.

1 Проведённые исследования

1.1 Модель

Программно реализована однопиковая модель **PBFTPK** с возможностью обучения на данных и генерации сэмплов с параметрами, подобранными при обучении.

Сама модель устроена следующим образом:

$$C_{\tau}(t) = \begin{cases} \frac{FDk_{a}}{V_{d}(k_{a} - k_{el})} (e^{-k_{el}t} - e^{-k_{a}t}), t \leq \tau \\ C_{\tau}(\tau)e^{-k_{e}l(t - \tau)}, t > \tau \end{cases}$$

 $C_{ au}(t)$ — концентрация декарства в крови

D>0 — объём дозы лекарства

F > 0 — биодоступная доля дозы

 $V_d > 0$ — объём распределения лекарства

 k_a — параметр всасывания вещества

 $k_e l$ — параметр выведения вещества

$$au>0$$
 — время абсорбции, $C_{ au}(au)=\sup_{t\geq 0}C_{ au}(t)$

Реализована многопиковая модель:

$$C_n(t) = \sum_{i=1}^n C_{\tau_i}$$

1.2 Метрика

В качестве метрики для оценки моделей большинство уже реализованных алгоритмов используют метрику

$$\frac{1}{n} \sum_{i=1}^{n} (f(t_i) - X(t_i))^2$$

Было решено использовать несколько иную метрику:

$$L(f,\alpha) = \frac{1}{n} \sum_{i=1}^{i_0-1} |f(t_i) - X(t_i)| + \frac{1}{n} \sum_{i=i_0}^{n} \alpha |f(t_i) - X(t_i)|$$

, где

$$t_{i_0} \approx \tau$$

в силу того, что она чувствительнее к ошибке модели после достижения времени абсорбции. Соответственно, для случая многопиковой модели метрика выглядит следующим образом:

$$L_{mul}(f) = \sum_{i=0}^{n} L(f, \alpha_i)$$

Также для улучшения качества модели было принято решение использовать MinMaxScaler

1.3 Исследование моментных характеристик остатков

Здесь и далее будем действовать в предположении о том, что величина

$$X(t) - f(t)$$

, где X(t) - исходный случайный процесс, а f(t) - тректория предсказанная моделью, является процессом Леви

Для получения более точного вида процесса было решено исследовать матожидание и стандартное отклонение проекций процесса остатков

Для тестирования использовалась однопиковая модель с $\alpha=7$

Получен следующий график поведения для матожидания

И для дисперсии

Видно, что модель довольно сильно ошибается до момента абсорбции, что логично следует из выбранных гиперпараметров модели

1.4 Исследование поведения исходного процесса

Здесь показаны одни из типовых случаев процессов, на которых модель значительно ошибается ошибается

В среднем даваемая моделью оценка выглядит так:

2 Гипотезы и планы

2.1 Доработка модели

Сейчас многопиковая модель показывает себя в среднем хуже однопиковой с параметром регуляризации и нуждается в существенной программной доработке. Возможно, имеет смысл поиск других способов обнаружения пиков процесса

3 Исследование поведения процесса остатков

Было получено, что при $\lim_{t\to +\infty}\mathbb{E}r(t)\approx 0$, а также $\mathbb{D}r(t)\approx const$ при $t>\tau$. Это существенно сужает круг возможных семейств процессов. Учитывая, что в данной модели процесс остатков представляется процессом Леви, можно исключить некоторые слагаемые из декомпозиции Леви-Ито: $X_t=\sigma B_t+at+Y_t+Z_t$