ANALYTICS INC WILLOW GROVE PA
THE HUMAN OPERATOR SIMULATOR, VOLUME VIII, APPLICATIONS TO ASSE--ETC(U)
JUN 77 F A GLENN, M I STRIEB, R J WHERRY
N62269-77-C-0109
MI AD-A100 444 UNCLASSIFIED OF 1 END PATE FILMED DTIC

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Technical Report 1233-A Contract No., N62269-77-C-0109

201001

THE HUMAN OPERATOR SIMULATOR **VOLUME VIII >**

APPLICATIONS TO ASSESSMENT OF **OPERATOR LOADING** *

> Floyd A. Glenn Melvin I. Strieb Robert J./ Wherry, Jr.

Analytics 2500 Maryland Road Willow Grove, Pa. 19090

∮ 14 Jun**∉≕**1977

Final Report

Prepared for Crew Systems Department Naval Air Development Center Warminster, Pa. 18974

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

TABLE OF CONTENTS

1.	INTRO	DUCTION										
2.	MODEL	S FOR M	ANUAL P	URSUIT T	RACKING							
	2.1 2.2 2.3	Inform	ation P	es of Performance								
		2.3.1 2.3.2 2.3.3 2.3.4	Notation Sequence	on ce of Ope	ls							
	2.4	Parame	tric Bel	havior o	f the H	OS Trac	cking	g Mode	1		• • • •	10
		2.4.1 Measures of Performance										
3.	STUDI	ES OF W	ORKLOAD									
	3.1 3.2 3.3 3.4	Shar Study on P Study Perfo Study	ing on ' 2 The rimary ' 3 The ormance 4 The	Tracking e Effect Task Per e Effect	Performed of Lender of Interest on Trace	mance .gth of errupti	"Aldion '	rime o	ion Pe	eriod'		22 26
4.	CONCL	.USION										
	REFERENCES											
	APPENDICES:											
		II	I. HOPI	ROC CODE	AND HOS	INPUT	rs fo Ing 2	OR WOR	KLOAD	STUD	IES	;
			•				ſ	Acces	sion F	or		
				Requence of Operation The Learning Functions The Learning Functions The Learning Functions The Behavior of the HOS Tracking Model The Results of Performance The Effects of Task Difficulty and the second performance The Effect of Length of "Alternation mary Task Performance The Effect of Interruption Time on the mance The Effect on Tracking Performance for's Criterion of Acceptable Performance The Effect on Tracking Performance for Scriterion of Tracking Performance for Scriterion f	GRA&I		×					

LIST OF FIGURES

1.	Mean Learned Gain vs. Signal Frequency	13
2.	Mean Learned Extrapolation Time vs. Signal Frequency	14
3.	Root Mean Squared Error vs. Signal Frequency	16
4.	Percent Time on Target vs. Signal Frequency	17
5.	Alternation Period vs. RMS Error and Time on Target	24
6.	Seconds from Interruption of Tracking vs. Time on Target	25
7.	Percent Time on Primary Task vs. Percent Time on Target	
	and RMS Error	28
	LIST OF TABLES	

1.	Learning Functions for Pursuit Tracking	8
2.	Results of Parametric Runs	12
3.	Results of Study 1	21
4.	Results of Study 2	23
5.	Results of Study 3	27
6.	Results of Study 4	30

1. INTRODUCTION

This study was undertaken as part of a continuing series of studies designed to validate the Human Operator Simulator (HOS). HOS is intended to be used as a system evaluation tool that can be applied to a detailed system design prior to the development of a hardware prototype. Consequently, an assessment of its ability to model operator workload problems realistically was considered to be of prime importance. The study was designed to show that HOS, a general-purpose model of human performance, can accurately simulate the kinds of complex interactions between competing task demands experienced by a human operator performing a complex mission.

Other analytic approaches to the modeling of task workload have been developed (e.g., Siegel and Wolf, 1962; Murphy and Gurman, 1972; Linton, Jahns, and Chatelier, 1977) but they all require the user to supply explicit estimates of task demands in terms of processing time and channel requirements. HOS, on the other hand, requires that the user supply only fairly objective information about hardware system configuration and dynamics, operator size and general performance characteristics, and sequences of task operations.

In this study, an operator performing both a primary pursuit tracking task and a "neutral" secondary task was simulated. The tracking task was adopted as the primary task because of the following:

- It is commonly encountered by operators of modern control systems.
- Its continuous nature ensures that it will be sensitive to interruptions by a secondary task.
- It permits definitions of continuously variable performance measures.

The secondary task is neutral in the sense that the operator "does nothing," thereby avoiding the task interactions that occur when two tasks compete for processing channels. The secondary task was an externally scheduled interruption of the tracking task. Experimentally, this could be achieved by, for example, blanking out the display so that an operator engaged in visually monitored pursuit tracking could not see the display for a specified length of time. The study examined how primary task performance was influenced by the schedule of interruptions and other parameters that affect the difficulty of the tracking task (i.e., signal characteristics and the operator's criterion of acceptable performance).

2. MODELS FOR MANUAL PURSUIT TRACKING

While a simple model could be constructed that would enable HOS to perform a simple tracking function, our objective was to devise a model that would embody the kind of adaptive characteristics that human operators possess. In this section, we will discuss the rationale behind the particular model that was used, the model itself, and the simulation studies that were performed to determine some general performance features of the model. Section 3 discusses studies in which the completed tracking model was used with a variety of interruption schedules to address some basic workload measurement issues.

2.1 Control Theory Models

Most investigators who have modeled tracking behavior have adopted the "black box" approach characteristic of mathematical control theory. These control theory models have resulted in some significant insights into the organization of skilled human performance. They can achieve exceptionally accurate predictions of performance on most tracking tasks and can account for the systematic changes in performance when some interesting task factors are varied (e.g., the dynamics of the control-display relationship). However, they generally explicitly disregard the operator's internal processing structure, and often fail to provide a sufficiently detailed description of performance components to enable reliable predictions of tracking performance to be made in many situations of interest. For example, they do not permit the identification of tasks that could be performed concurrently without compromising performance on the tracking task.

In general, the best tracking model would be one whose parameter values could be determined completely from observable characteristics of the tracking apparatus and the operator's basic performance characteristics (e.g., reaction time, fatigue level). Unfortunately, control theory models generally do not admit these possibilities. Rather, the control theory approach fits a general model to a specific task situation by estimating all free parameters in order to best fit the model to actual performance. Such a modeling strategy is clearly inapplicable to the prediction of operator performance with a proposed hardware system before a prototype system can be constructed, expecially if the proposed system is very different from other systems for which performance data is available.

2.2 <u>Information Processing</u>

A number of investigators have studied the cognitive and motor components of tracking performance and some fairly comprehensive conceptual models have been advanced (e.g., Crossman, 1960). But, to date, there has been a singular absence in the published literature of detailed models on the operation of the processing components that contribute to tracking performance. The two factors that are probably most responsible for this are:

- Most human information processing operations are generally understood as discrete events (e.g., detection, decision, response), while tracking performance is apparently continuous.
- (2) People are generally recognized to be extremely flexible information processors.

The problem raised by the apparent continuity of tracking performance in many situations and the presumed discreteness of human performance components, can be resolved by the modeler in a number of ways. One way is to question the continuous nature of tracking performance on theoretical or empirical grounds. Hick (1948), for example, has argued that the refractory period of neural processes must force the human operator to act as a discontinuous controller. Indeed, frequent, abrupt control movements have been observed even when the tracked signal is slow and fluid (North, Lomnicki, and Zaremba, 1948). Some psychologists have suggested that all human perceptual processing can occur only as quantitative events that are paced by a rapid biological cycle (Stroud, 1955; Kristofferson, 1967). Though compelling evidence against this theory of the "psychological moment" has been raised by experiments reported by Allport (1968) and Baron (1971), there are still clear limitations in the rates at which perceptual and motor events can proceed. Fitts and Posner (1967) suggest that the number of repetitive stimuli that can be perceptually distinguished and the frequency at which repetitive motor processes can be executed are both limited to about ten events per second. Of course, people are quite capable of executing complex continuous movements that last for many seconds, but even so, it is possible that such movements are composed completely of discrete processes. Since the perception and decision operations that must constitute the basis of human tracking performance are generally considered to be discrete processes, it is natural to use a discrete model to describe tracking.

The second point recognizes that different individuals will use very different processing strategies on the same task and even a single individual may use very different strategies on two tracking tasks that appear to differ only slightly. This tends to frustrate attempts to model behavior in tasks like tracking where the operator may choose from many different processing strategies. People probably try out several different strategies before they adopt a stable strategy, and even that final strategy may undergo frequent modifications in response to feedback. But since the possible strategies must be limited by the type of information available to the operator and by the operator's ability to interpret that information, there are only a few possibilities that require consideration.

2.3 The HOS Tracking Model

2.3.1 Rationale

In our model, we attempted to identify the information that could be available in a typical tracking task and the factors that

determine how that information will be used. This was then formulated into a model of how the information is processed to effect control movements. In addition to providing an understanding of tracking performance, it was expected that this research would provide valuable information for use in a general-purpose model of human performance. Our approach was to start with a basic model, identify the deficiencies of that model, and then modify it accordingly.

The model was developed for a pursuit tracking task in which a single display indicated the values of both the signal and the track. The value of the track was controlled by the position of a rotary knob. Our basic model assumed that the operator repeatedly executed a basic adjustment cycle consisting of:

- (1) Reading the value of the signal.
- (2) Reading the value of the track.
- (3) Computing the error (i.e., the difference between the signal and track values).
- (4a) Terminating the adjustment cycle if the error was less than a tolerance limit, or
- (4b) Computing the amount of knob turn required to make the track equal to the signal (using the precise gain factor that relates knob movements to changes in the track value), and making the appropriate change if the error is greater than the tolerance limit.

Since this model makes no provision for learning, it can be considered to be a description of the stable performance of a trained operator.

Even ignoring the fact that details, such as the speed and accuracy of the component processes, have to be specified, it is clear that inadequacies exist in the model. For example, the model assumes that the operator knows the precise gain factor that relates changes in the knob's value to changes in the value of the track. While this assumption would not necessarily result in inaccurate performance predictions, it does compromise both the face validity and the generality of the model. Moreover, the model assumes that the operator does not rely on his experience based on previous adjustment cycles to anticipate future values of the signal. This assumption would preclude the occurrence of tracking overshoots at signal inflections and tracking lags shorter than the operator's reaction time. Since real operators do frequently overshoot the maxima and minima of the signal and, for some signals, exhibit very short lags, modifications to the basic model were clearly necessary. The modifications that were implemented provide the model with the capability to learn both a signal extrapolation time and an estimate for the system gain factor.

2.3.2 Notation

In discussing the modified tracking model, the following notation will be used:

- S = the operator's estimate of the signal value on the n th adjustment cycle
- S * = the operator's extrapolated estimate of the signal
 value on the nth cycle
- t = the extrapolation time used by the operator on the nth cycle
- T_n = the operator's estimate of the track value on the nth cycle
- Δ = the operator's tolerance for being "on target" (assumed to be constant)
- L = the extrapolation time learning function
- L_{α} = the gain factor learning function

2.3.3 Sequence of Operations

The model assumes that on any adjustment cycle, the operator performs the following sequence of operations:

- (1) Reads the value of the signal, S_n
- (2) Computes the new values for the extrapolation time, $t_n = L_t (t_{n-1}, ...)$
- (3) Computes the extrapolated signal value, S_n^*
- (4) Reads the value of the track, T_n
- (5a) Terminates the adjustment cycle if $\left|S_n^* \dot{T}_n^*\right| \le \Delta$, or
- (5b) Computes the new value for the gain factor, $g_n = L_g (g_{n-1} ...)$, the desired knob turn, and makes the appropriate adjustment if $|S_n^* T_n| > \Delta$.

The speeds and accuracies for the display reading and control manipulation operations are automatically assigned by HOS micro-models. The HOS micro-model for display reading, described in detail in Volume VII of this series, models the reading process by a sequence of discrete

micro-absorptions that are terminated either when successive estimates differ by a small enough amount that the operator is considered to have "learned" the value, or when a time limit for the reading process is exceeded. The estimated value of the display on each micro-absorption is obtained by averaging the actual value of the display with a value extrapolated linearly from the previous two micro-absorption estimates. The time consumed by each micro-absorption is defined as a constant cost plus an additional amount dependent on the dissimilarity between the estimated values of the current and previous micro-absorptions. The effects of this display reading model in the tracking simulation studies are:

- Display values are always read to within a narrowly defined additive tolerance of the actual value
- The time for each reading varies between about .02 seconds and about .2 seconds
- The longest reading times are associated with the most extremely nonlinear changes in signal values.

The HOS control manipulation micro-model causes the adjustments to be made to precisely the intended setting. Manipulations require an amount of time that is a linear function of the magnitude of the adjustment. The time consumed in turning a knob is given by the function

time (in seconds) = .0029A + .0982

where A is the angle in degrees through which the knob is turned.

All operations, other than display readings and knob adjustments (i.e., all computations and the one comparison), were assigned zero time costs.

2.3.4 The Learning Functions

The two learning functions were defined so that the amount of information that the operator had to store and use was kept to a minimum. In order to be able to extrapolate the signal value, it was necessary to assume that the operator "knew" both the current and previous estimates of the signal and the times when those estimates were obtained. He also had to know the current and previous values of the track, the current working values for the gain factor and extrapolation time, and a running average for the absolute tracking error.

A gain learning function must be sensitive to the effect of the most recent control manipulation, increasing the estimated gain factor if that manipulation was too large and decreasing the estimated gain if the manipulation was too small. An extrapolation time learning function must be sensitive to the extent to which the track is tending to lead or lag behind the signal, increasing the extrapolation time if the track is lagging behind the signal and decreasing the extrapolation time if the track is leading the signal. A set of learning functions that have these properties is shown in Table 1. The parameters $\varphi,\ \theta,$ the initial learning rates for extrapolation and gain, and $\delta,$ the relative size of random changes to the gain, are input constants. $\varphi,\ \theta,$ and δ are defined on the range of 0 to 1 and are considered to be of approximately the same magnitude.

These learning functions imply that the effective learning rates on any adjustment cycle (ϕ_n and θ_n) are the product of the base learning rates and the ratio of the estimated error (E_n) to the average absolute error (A_n) on any cycle. Thus, relatively small changes are made to both the extrapolation and gain values when the tracking error is relatively small and relatively large changes are made when the tracking error is large.

The extrapolation learning function increments or decrements the old extrapolation value by the product of the old extrapolation value and the effective learning rate, incrementing when the track lags behind the signal and decrementing when the track leads the signal.

The gain learning function determines the new gain by taking a weighted average of the old gain and an estimate for the "ideal" gain, the weighting factor being the effective learning rate. The ideal gain calculation assumes that the signal will not change appreciably over a single adjustment cycle. Then, if the actual adjustment on the n-1 cycle was optimal, the error on the nth cycle would be zero. The actual adjustment made on the n-1 cycle, α , is given by

$$\alpha = \frac{s_n * - r_n}{g_{n-1}} \simeq -\frac{s_{n-1}}{g_{n-1}}$$

and the adjustment that would have been optimal for that cycle, α^{\star} , is given by

$$\alpha = -\frac{E_{n-1}}{g^*}$$

where g* is the corresponding optimal gain.

Since the actual adjustment changed the tracking error from E to E and the optimal adjustment would have changed the error from E $_{n-1}$ to 0, the assumption that the control is linear implies that

$$\frac{\alpha^*}{\alpha} = \frac{E_{n-1}}{E_{n-1} - E_n} \cong \frac{g_{n-1}}{g^*}$$

TABLE 1. LEARNING FUNCTIONS FOR PURSUIT TRACKING

I. For running average of absolute error:

$$A_n = .9 A_{n-1} + .1 |E_n|$$

II. For extrapolation:

$$t_{n} = \begin{cases} (1 + \emptyset_{n}) & t_{n-1} & \text{if } S_{n} \leq s_{n-1} \\ (1 - \emptyset_{n}) & t_{n-1} & \text{if } S_{n} \geq S_{n-1} \end{cases}$$
where $\emptyset_{n} = \max \left(\min \left(\frac{\phi E_{n}}{A_{n}}, .2 \right), -.2 \right)$

III. For gain:

$$g_n = [\theta_n f_n + (1 - \theta_n)] g_{n-1}$$
where $\theta_n = \min \left(.9, \frac{\theta | E_n |}{A_n}\right)$

and

$$f_{n} = \begin{cases} \max \min \left(1 - \frac{E_{n}}{E_{n-1}}, 2\right), .5 \end{cases} \text{ if } E_{n-1} = 0 \text{ and } \frac{E_{n}}{E_{n-1}} \le 1$$

$$\frac{1 + \delta \text{ with probability } \frac{1}{2}}{\frac{1}{1 + \delta} \text{ with probability } \frac{1}{2}} \end{cases} \text{ if } E_{n-1} = 0 \text{ or } \frac{E_{n}}{E_{n-1}} > 1$$

where $E_n = T_n - S_n$ is the estimated error on the n^{th} adjustment cycle

and that

$$g^* \cong \frac{E_{n-1} - E_n}{E_{n-1}} g_{n-1}.$$

If, however, the adjustment causes an increase in the error, i.e., if

$$\frac{E_n}{E_{n-1}} > 1,$$

then this formula implies that g^* and g_{n-1} must have different signs, corresponding to a change in the estimated directional relationship between the control and the track value. Since such sign changes would result in a highly unstable learning process, it was assumed that the operator knows the directional correspondence between the control and the display. Therefore, the model permits only positive estimates for the gain. When

$$\frac{E_n}{E_{n-1}} > 1$$

or when

$$E_{n-1} = 0,$$

a new value for the ideal gain was considered to be indeterminable. Since such indeterminate cases represent conditions of deteriorating tracking performance, the new gain value for that cycle was randomly defined as a fixed increment or decrement from the old gain, each change occurring with a probability of .5.

For both gain learning and extrapolation learning, the maximum change made to either the gain or extrapolation time on a single cycle is indicated by the truncation operations shown in Table 1. These limitations keep the gain learning from being dominated by the special cases

$$E_{n} << 0 < E_{n-1}$$

and

$$E_{n-1} < 0 << E_{n-1}$$

and extrapolation learning by the special case:

$$|E_n| \gg \frac{A_n}{\emptyset}$$
.

2.4 Parametric Behavior of the HOS Tracking Model

Despite its similarity to the linear learning models that have been extensively studied by mathematical psychologists (Bush and Mosteller, 1956; Norman, 1968), the tracking model is sufficiently different from those models so that very different methods of analysis are necessary. In particular, other mathematical models for learning have dealt principally with the learning of probabilities and probability distributions rather than with the learning of strategic parameters like system gain and extrapolation time. Also, other learning models were developed for situations in which learning occurred on discrete trials for which the experimenter-controlled events (e.g., stimuli and rewards) were scheduled independently. For the tracking situation, the stimulus is continuous and successive learning events are consequently correlated. Further complicating the analysis of the tracking model is the fact that the learning functions are discontinuous unlike the learning functions used in other models. And even if none of these features had precluded an analysis of the model, the fact that it uses two interacting learning functions would have made the model sufficiently intractable analytically. Thus, the only viable method for studying the behavior of the model is to examine the results of dynamic simulations for a variety of different model parameters and different types of signal.

2.4.1 Measures of Performance

In evaluating the behavior of the tracking model, it is important to consider both the accuracy of tracking performance and the "success" of the two learning processes. Two different tracking performance measures, root-mean-squared-error (RMSE) and percent-time-on-target (PTOT) were used to assess tracking accuracy, since it would have been impossible to predict which measure would be most sensitive to the performance differences.* The success of the learning process was evaluated based on its stability (i.e., variance and regression over time) and central tendency.

Each tracking trial lasted for 60 seconds of simulated time and started with an initial gain value of 200 display units per degree of knob turn (the actual gain of the simulated system) and an initial extrapolation time of .1 second (somewhat less than the adjustment cycle time of the simulated operator). Performance data were collected only for the last 50 seconds of each trial. Trials were conducted for several values of the model parameters θ , δ , and \emptyset , the objective being to get a general idea of how the parameters governed model performance. In all cases, the signal was sinusoidal with an offset of 10,000 units and an amplitude of either 4000 or 8000 units. For each combination of model parameters, the first tracking trial was conducted with a signal frequency of .1 cycles/second and subsequent trials with the same

^{*} For present purposes, PTOT is arbitrarily defined as the percentage of time that the track is within 400 units of the signal.

parameters used signal frequencies increased by a factor of $\sqrt{2}$ until performance was degraded to an uninteresting level.

2.4.2 Simulation Studies

The results of these parametric runs are shown in Table 2. Section A of the table demonstrates the baseline performance -- without learning, but with a precisely correct gain value and a fairly small extrapolation time. Note that the two overall performance measures, RMSE and PTOT, appear to be about equally sensitive to each increment in signal frequency. In Section B of Table 2, only the gain learning features of the model were being exercised and, in Section C, only the extrapolation time learning component was active. Sections D and E indicate how the model behaves when both the gain and extrapolation time learning features are exercised together. In Section E, the signal had twice the amplitude of the signal used in Section D. Finally, Section F displays model performance when both gain and extrapolation time are learned but at rates that are twice as large as those used in other cases. Data for only three different signal frequency values are presented in Section F because during the simulation with the fourth frequency (.2828 cycles per second), an unrealistically large estimate for the extrapolation time resulted in a knob-turn that was not completed during the span of the simulation.

Figure 1 shows how the learned gain value varies with signal frequency. From Tabl. 2 it can be seen that the points with the largest gain values correspond to trials with large regression coefficients, so the results are, in fact, underestimates of any ultimately stable gain value that might (or might not) be attained. When only gain learning is present (case b), the learned gain is fairly accurate (with respect to actual system gain) at the lowest frequency. It stabilizes at a value about 35% above the actual system gain at the midrange of frequencies from .2 to .4 cycles/second and becomes unstable above .5656 cycles/ second. When both gain and extrapolation time are being learned (case d), similar stable gain values are learned for low signal frequencies, but the model appears to become unstable at a lower frequency (by .4 cycles/ second) than in case b. Curiously, when the signal amplitude is doubled and both learning processes are operative (case e), a fairly high gain value is learned at the lowest signal frequency, while lower, more accurate values are learned for slightly higher frequencies, with instability occurring at roughly the same point as at the smaller signal amplitude. When the learning rates for both processes are doubled (case f), the learned gain appears to be virtually the same as when the smaller learning rates are used.

Figure 2 shows how the learned extrapolation time varies with signal frequency. Again, the regression coefficients in Table 2, indicate that the larger extrapolation times correspond to the means of values that increase systematically with simulation time. All model cases show basically the same relationship between learned extrapolation time and signal frequency when the signal amplitude is constant. At the lowest frequency (.1 cycles/second) a stable extrapolation time of

TABLE 2. RESULTS OF PARAMETRIC RUNS

						GAIN			TRAPOLA	TION		
θ	δ	φ	SIGNAL AMP	SIGNAL FREQ(HZ)	MEAN_	STAND. DEV.	REGRESS COEF.	MEAN	STAND. DEV.	REGRESS.	RMSE	PTOT (SIZE = 400)
0	0	0	4000	.1	200.00	ļ <u></u>	ļ <u></u>	.100			265.0	88.5
0	0	0	4000	.1414	200.00			.100			354.0	71.2
0	0	0	4000	.2000	200.00			.100			639.0	42.5
0	0	0	4000	.2828	200.00		ļ	.100			1264.9	22.4
0	0	0	4000	.4000	200.00			.100			2461.0	5.4
0	0		4000	.5657	200.00	<u> </u>		.100			3873.6	4.6
							······································					
.05	.02	0	4000	.1000	175.56	10.00	041	.100			262.1	89.2
.05	.02	0	4000	.1414	220.50	15.66	237	.100			385.3	62.3
.05	.02	0	4000_	.2000	277.22	24.40	1.191	.100	ļ_ <u></u> _		782.9	28.5
.05	.02	0	4000	.2828	279.89	16.84	.015	.100			1425.3	14.5
.05	.02	0	4000	.4000	265.83	9.72	.162	.100			2878.9	5.3
.05	.02	0	4000	.5657	320.27	54.53	2.886	.100			3349.7	6.0
.05	.02	0	4000	.8000	642.60	200.61	11.000	.100			3509.4	5.5
0	0	.05	4000	.1000	200.00			.224	.040	.000	169.2	99.6
0	0	.05	4000	.1414	200.00			.246	.051	.001	322.0	83.5
0	0	.05	4000	.2000	200.00			.311	.066	.000	786.3	45.2
0	0	.05	4000	.2828	200.00			.415	.086	.001	1689.1	14.6
0	0	.05	4000	.4000	200.00			4.336	3.681	.213	45125.0	1.0
0	0	.05	4000	.5657	200.00			1.419	1.105	.055	18633.3	1.4
0	0	.05	4000	.8000	200.00			.451	.199_	.006	10262.7	1.9
.05	.02	.05	4000	.1000	202.95	29.11	.927	.224	.046	.000	172.7	98.7
.05	.02	.05	4000	.1414	231.24	48.95	-2.244	.262	.061	.000	301.4	84.9
.05	.02	.05	4000	.2000	359.49	44.58	1.998	.433	.097	.003	811.7	35.8
.05	.02	.05	4000	.2828	246.57	30.74	582	.470	.101	.002	1796.6	11.7
.05	.02	.05	4000	.4000	535.29	291.07	15.955	11.394	10.819	.600	24907.7	1.0
.05	.02	.05	4000	.5657	678.14	549.22	29.564	5.240	6.165	336	14121.3	1.4
							ll		·	اا		لــــــــــــــــــــــــــــــــــــــ
.05	.02	.05	8000	.1000	352.34	56.67	1.388	.433	.098	:003	686.0	46.1
.05	.02	.05	8000	.1414	244.46	35.14	– 1.284	.397	.081	.000	1005.0	31.2
.05	.02	.05	8000	.2000	194.00	42.62	- 2.162	.525	.128	.001	2522.3	11.8
.05	.02	.05	8000	.2828	195.72	24.66	- 1.182	1.054	.478	.026	11424.2	2.1
.05	.02	.05	8000	.4000	399.03	215.93	11.811	4.133	3.814	.210	27039.4	1.0
.05	.02	.05	8000	.5657	771.80	583.47	32.142	3.227	3.533	.189	15864.0	
الــــــــــــــــــــــــــــــــــــ					,,,,,,,	303.47	32.142	3.221	3.333	.103	15004.0	1.4
.10	.04	.10	4000	.1000	210.53	27.31	.537	.211	.068	.000	201.75	96.0
.10	.04	.10	4000	.1414	213.14	30.76	122	.235	.066	.000	336.2	79.3
.10	.04	.10	4000	.2000	328.23	81.15	2.600				-	
لــــــــــــــــــــــــــــــــــــــ	.07		7000	.2000	320.23	01.13	2.000	.400	.152	.002	885.8	39.0

FIGURE 1. MEAN LEARNED GAIN VS. SIGNAL FREQUENCY

FIGURE 2. MEAN LEARNED EXTRAPOLATION TIME VS. SIGNAL FREQUENCY

about .22 seconds is learned. At higher signal frequencies, larger extrapolation times are obtained, the relationship being approximately exponential over the midrange of frequencies. The extrapolation time peaks at .4 cycles per second in all cases and is followed by a slightly lower, but still unstable, value at the next higher frequency. For the larger signal amplitude (case e), the major difference occurs at the lower signal frequencies where the extrapolation time obtained is considerably larger than for the other case.

In Figure 3, the overall tracking performance accuracy measured by RMSE is plotted as a function of signal frequency. In Figure 4, accuracy as measured by PTOT is plotted. Both plots show the same general trends, though the trends are somewhat more apparent in Figure 3 because of the scales used. Approximately the same performance is achieved when neither quantity is learned and when only the gain is learned. When the extrapolation time is learned, performance is essentially unaffected by the addition of gain learning. Whenever the extrapolation time is learned, performance is better than the corresponding baseline level (case a) at the two lowest frequencies and worse than baseline at the higher frequencies. Tracking accuracy is poorest at .4 cycles per second, the point at which the extrapolation time learning process was least stable. Not surprisingly, performance with the doubled signal amplitude is uniformly worse than with the standard amplitude signal except at the highest frequencies where performance was comparable to that obtained in the other extrapolation time learning situations.

2.4.3 Conclusions

These results indicate that the model performance is reasonable for most situations. However, some unexpected, but unmistakable, trends are evident. The fact that the learned model parameters do not stabilize in some situations is disturbing, since it is difficult to conceive of a corresponding feature in human tracking performance. However, large estimated gain values correspond to small knob adjustments. Thus, the "unstable" gain values obtained at high frequencies tend to dampen the knob turning responses, which would have been more erratic without gain learning. When the signal frequency is slow enough to permit fairly successful tracking, the gain learning model behaves quite reasonably, converging near the actual system gain.

The extrapolation time learning exhibits some suspicious characteristics with unstable learning at frequencies above .2828 cycles per second and with larger rather than smaller times being obtained as the frequencies increase. Since, however, it is not clear how people extrapolate the signal in such a situation, the trend may, in fact, constitute a valid description of a real component of human tracking behavior.

Although detailed time plots of signal and crack have not been included because of their low information content, it should be noted that extrapolation learning, either alone or with gain learning, produced overshoots at signal inflections and definite compensation for the operator's tendency to lag behind the signal. Gain learning alone did

FIGURE 3. ROOT MEAN SQUARED ERROR VS. SIGNAL FREQUENCY

FIGURE 4. PERCENT TIME ON TARGET VS. SIGNAL FREQUENCY

not. Gain learning could have been expected to generate such features if the learned gain value were smaller than the actual system gain, but that did not happen reliably in any of the situations that were simulated.

2.4.4 Recommendations

Before further development of our model is undertaken, a systematic comparison of the model predictions with the performance of real human operators should be made. The experiments that we have simulated should be a good starting place for such a study. In addition, it would be desirable to compare both human and model performance with signals more complex than a simple sine wave. In this context, it would be valuable to study the extent to which the model could be characterized as a linear system. Such investigations will probably result in modifications to the model, especially to the extrapolation learning component, but without such studies, it is impossible to determine what changes are necessary.

3. STUDIES OF WORKLOAD

Tasks that are vulnerable to degradation by interruption could reasonably be said to impose a greater workload on the human operator. therefore, if the workload requirement of a continuous task like tracking could be characterized by a performance function that related performance when the primary task is interrupted for any given percentage of time to uninterrupted tracking performance, a major step toward defining a general workload metric would have been achieved. If, however, the performance function was dependent on the particular interruption schedule, even though the total amount of interruption time was fixed, then it would be much less useful in assessing workload. The studies to be described in this section were undertaken to determine the feasibility of a general workload metric using HOS's ability to simulate interrupted tracking tasks. While the validity of these studies are, of course, dependent upon a validation of the HOS tracking model, the studies do provide interesting insight into the workload metric issue and a solid set of performance data for eventual comparison with experimental data.

Since there is no <u>a priori</u> way to determine which might be most sensitive to the factors being examined, both root-mean-squared error (RMSE) and percent time-on-target (PTOT) were used as measures of performance. For PTOT, five different criteria of "on-target" were used to insure that any real effects would be detected.

The specific code that implements the tracking model and other input data required by these studies is listed in Appendix II.* Some minor modifications were made to HOS in order to simplify the required data processing. These modifications are discussed in Appendix III. In order to compute the performance measures reported in these studies, a special purpose data analysis program (called EVAL) was written. That program is described and listed in Appendix IV. Each tracking trial in the four studies to be described lasted for 220 simulated seconds. Performance data were collected only over the last 200 seconds in order to avoid transient effects. The parameters used for all of the workload studies to be reported are:

 $\theta = .05$

 $\delta = .02$

 $\phi = .05$

and, except for Study 4,

 Δ = 800 units.

^{*} The code and data used for the parametric studies described in Section 2 are listed in Appendix I.

3.1 Study 1 -- The Effects of Task Difficulty and Time-Sharing on Tracking Performance

This study examined the sensitivity of the HOS tracking model to changes in signal characteristics and secondary task loading. It was expected that as the frequencies and amplitudes of the component sine waves that form the signal became faster and larger, respectively, performance should degrade. Similarly, it was expected that performance would be worse with secondary task interruptions that without them. These hypotheses were tested by requiring the simulated operator to track three different signals both with and without the secondary task for a total of six simulation trials. The three signals were the composite of three sine waves of different frequencies and amplitudes, as shown below:

	AMP	FREQ (Hz)	AMP	FREQ (Hz)	AMP	FREQ (Hz)
Signal l	2000	1/10	1400	1/7	800	1/4
Signal 2	4000	1/20	2800	1/14	1600	1/8
Signal 3	4000	1/10	2800	1/7	1600	1/4

Thus, all three signals had the same basic shape. Signal 1 differed from Signal 3 only by having the component amplitudes reduced by a factor of two and Signal 2 differed from Signal 3 by having the component frequencies reduced by a factor of two.

The results for Study 1 are presented in Table 3. They indicate definite performance degradation when either the frequency or the amplitude of the signal increases or when secondary task interruptions occur. Nothing further can be concluded from these results about the relationship between performance and signal characteristics since only two sets of frequencies and amplitudes were used.*

The data in Table 3 clearly indicate that when examining the performance decrements caused by interruptions to the primary task, one must be aware of the implications of using a specific performance measure. For example, if one uses the differences between displayed scores as the measure of performance decrement, then, based on RMSE, performance on Signal 1 is least degraded by introducing interruptions and performance on Signal 3 is most degraded. If differences between PTOT are taken, though, exactly the opposite results are obtained. If the ratios of scores rather than the differences are used, yet another ordering is obtained and if the PTOT scores are converted to "time off target" scores still another ordering. One is forced to conclude, therefore,

^{*} However, the studies described in Section 2 examined the relationship between model performance and signal characteristics without any secondary task interruptions in more detail.

TABLE 3. RESULTS OF STUDY 1

		TASK	TASK ALTERNATION	ATION		SUMMA	RY OF /	ANALY	SIS OF	CRITER	ION ME	SUMMARY OF ANALYSIS OF CRITERION MEASURES
TRA	TRACKING	PERIO	PERIOD'S DURATION	ATION			PERCENT TIME-ON-TARGET; SIZE:	MIT TI	E-ON-T	ARGET	SIZE:	
SIGNAL NO.	IGNAL TOTAL % NO. OF TIME	TOTAL	TRACK	DELAY	INTERNAL	RMS	1600	800	200	300	100	CONTROL
-	100.0	6.0	6.0	0.	800	455	99.4	93.7	74.7	48.9	17.5	396
-	0.09	10.0	0.9	4.0	800	1417	81.6	65.1	44.4	28.7	9.7	173
7	100.0	6.0	0.0	o.	800	562	666	82.7	56.3	35.8	13.2	215
7	0.09	10.0	0.9	4.0	800	2625	71.5	59.0	40.2	24.3	8.4	155
ო	100.0	6.0	6.0	o.	800	910	91.7	71.5	50.4	32.8	11.3	625
က	0.09	10.0	9.0	4.0	. 800	3357	66.5	51.2	37.7	23.9	8.1	309

that any scaling of task difficulty according to the size of the performance decrement produced by introduction of a secondary task is arbitrary and must be used with caution, if at all.

3.2 Study 2 -- The Effect of Length of "Alternation Period" on Primary Task Performance

There are many reasons why one would expect tracking performance to vary when the percentage of interruption time is held constant and the specific time for each primary and secondary task execution is varied. For one thing, as the length of the interruption increases, the farther (on the average) the signal is likely to have drifted from the last "acquired" position. However, increasing primary task execution time gives the operator more time to make corrections once he returns to the primary task. Therefore, it is more likely that he will be able to resume satisfactory tracking of the signal. Returning to stable performance after an interruption also requires that the two component learning processes and error compensation have time to stabilize. Thus, the recovery time is likely to be dependent on the learning rates. Therefore, varying the alternation period between tasks could lead to either improved, unchanged or degraded performance depending on the choice of signal characteristics and model parameters.

Study 2 addresses these questions. A single signal was used for all trials (Signal 3 from Study 1) and six different alternation periods were examined. In each case, sixty percent of the time was spent on the primary task and forty percent on the secondary task. The length of the primary-secondary alternation cycle was varied from 2.5 seconds to 15 seconds in 2.5 second increments.

The results of this study are shown in Table 4 and plotted in Figure 5. Both RMSE and PTOT are negatively accelerated function: All PTOT scores indicate that the best performance for the particular combination of model and signal parameters used was obtained at an alternation period of 10 seconds, although the drop-off at longer periods is very slight. It is not clear whether RMSE would continue to rise at alternation periods longer than those examined but it definitely increases over the lower part of its range and is near its maximum value at 10 seconds. Thus, the alternation period which PTOT indicates as optimal is clearly sub-optimal by the RMSE measure.

Tracking performance degrades at the beginning of an interruption and recovers after an interruption. Figure 6 shows the degradation and recovery time trajectories as measured by PTOT with a criterion tolerance of 1600 units. The envelopes marked "recovery" and "deterioration" are the envelopes of the averaged second-by-second scores for the six trials in the study. The dashed curves are "eyeball" fits based on the two recovery points (i.e., the average of the first second and the average of the second second) plotted for each alternation period. The trajectories indicate that after two seconds of time on the primary task, recovery is virtually complete. Recovery tends to be slower at the ten-second alternation period than at other periods, raising further doubts about the PTOT maximum noted above.

TABLE 4. RESULTS OF STUDY 2

		TASK	TASK ALTERNATION	VOIT		SUMMA	RY OF	ANALY	SIS OF	CRITER	ION ME	SUMMARY OF ANALYSIS OF CRITERION MEASURES
TRA	FRACKING	PERIC	PERIOD'S DURATION	ATION			PERCE	NT TIM	PERCENT TIME-ON-TARGET; SIZE:	ARGET;	SIZE	
SIGNAL	TOTAL %				INTERNAL							CONTROL
NO.	NO. OF TIME	TOTAL	TRACK	DELAY	LIMITS	ERROR	1600	800	200	300	100	ADJUSTS
က	60.0	2.5	7.	1.0	800	3004	42.7	31.0	20,5	12.5	3.7	360
က	0.09	5.0	3.0	2.0	800	3243	59.9	42.1	27.6	16.3	8,	301
က	0.09	7.5	4.5	3.0	800	3613	62.9	44.5	30.3	18.8	6.7	317
က	0.09	10.0	6.0	4.0	800	3357	66.5	51.2	37.7	27.9	8.1	309
က	0.09	12.5	7.5	5.0	800	3523	65.7	49.7	33.4	20.7	6.7	283
က	0.09	15.0	0.6	0.9	800	3713	67.2	70.0	27.2	21 5		213

FIGURE 5. ALTERNATION PERIOD VS. RMS ERROR AND TIME ON TARGET

FIGURE 6. SECONDS FROM INTERRUPTION OF TRACKING VS. TIME ON TARGET

3.3 Study 3 -- The Effect of Interruption Time on Tracking Performance

If the time spent working on the primary task after each interruption is fixed and only the duration of interruptions is allowed to vary, then longer interruptions should result in poorer overall tracking performance. Study 3 examines this effect. Signal 3 of Study 1 was again used for all trials. For each trial, the simulated operator was permitted to work for six seconds on the primary task without interruption. The length of the interruptions were varied from zero to six seconds in one second increments so that the percentage of time spent on the primary task varied from 100 to 50 percent.

The results for this study are listed in Table 5 and plotted in Figure 7. The lines in Figure 7 are least-square fits. As is clear, both RMSE and PTOT vary linearly with the percentage of time on the primary task. It is interesting to note that the y-intercepts of the PTOT fits are approximately the time-on-target frequencies that would be expected if the operator spent no time on the tracking task and if the signal values were uniformly distributed over the signal range (1600 units to 18,400 units) while the track element was fixed at some value within that range.*

3.4 Study 4 -- The Effect on Tracking Performance of the Operator's Criterion of Acceptable Performance

The effort that an operator will expend in performing a task is clearly dependent on what he considers acceptable performance to be. If the task is such that the operator has difficulty achieving acceptable performance, then we would expect him to devote all of his available effort to the task or else reassess his objectives. If acceptable performance can be achieved without devoting full effort to the task, then some of his reserve capacity might be available for another task. Therefore, if we were to give an operator a series of tracking tasks, each with a narrower criterion of acceptable performance, performance should improve until the criterion became smaller than the attainable performance. When too narrow a criterion was used, performance might degrade simply because the narrow criterion kept the operator from tracking the lower frequency. Such experiments would be virtually impossible to perform with a real human operator, since there is no reliable way to determine or control the internal criterion the operator is using. With HOS, however, the criterion of acceptable performance can be directly manipulated and its effects on tracking performance observed.

Study 4 examines the effects of varying the operator's internal criterion of successful performance for two different interruption cycles. The operator's criterion was varied from 0 to 800 in 200 unit increments. The two interruption cycles were six seconds of tracking

^{*} The expected PTOT values are 19.0 percent for a criterion of 1600, 9.5 percent for a criterion of 800, 6.0 percent for a criterion of 500, 3.6 percent for a criterion of 300, and 1.2 percent for a criterion of 100.

TABLE 5. RESULTS OF STUDY 3

		TASK	ALTERNA	VIION		SUMMA	RY OF	ANALY	SIS OF (CRITER	HON ME	SUMMARY OF ANALYSIS OF CRITERION MEASURES
TRA	RACKING	PERIO	PERIOD'S DURATION	ATION			PERCEI	PERCENT TIME-ON-TARGET; SIZE:	-ON-TA	RGET;	SIZE:	
SIGNAL	TOTAL %	i	,		INTERNAL	RMS			} }			CONTROL
SO.	OF TIME	TOTAL	TRACK	DELAY	LIMITS	ERROR	98	8	20	<u>۾</u>	일	ADJUSTS
က	100.0		0.9	ο.	800	910	91.7	71.5	50.4	32.8	11.3	625
ო	85.7		0.9	1.0	800	1582	83.2	64.7	43.8	27.6	9.5	402
က	75.0		9.0	2.0	800	2109	77.3	58.3	40.9	25.4	0.6	362
ო	66.7		f O	3.0	800	3083	70.4	52.1	36.2	21.5	6.9	321
က	0.09		(g	4.0	800	3326	8.99	51.5	37.9	24.0	8.2	309
က	54.5		0.9	5.0	800	3968	59.2	44.8	30.9	18.4	0.9	243
ო	50.0		6.0	6.0	800	4318	56.9	42.4	30.5	18.5	6.2	220

FIGURE 7. PERCENT TIME ON PRIMARY TASK VS.
PERCENT TIME ON TARGET AND RMS ERROR

followed by a two second interruption and six seconds of tracking followed by a four second interruption. Signal 3 from Study 1 was again used for all trials.

The results of this study are shown in Table 6. Every decrease in the criterion produces an increase in the number of control adjustments but the performance measures remain essentially the same. Neither RMSE nor PTOT for the two largest target sizes show any systematic changes. However, PTOT for the three smallest target sizes (i.e., 500, 300, and 100 units) do show an improvement in tracking performance with each narrowing of the criterion and interruption cycle time.

The findings of this study are interesting in that they indicate how the apparent workload imposed by a tracking task can be changed when the operator adjusts his internal criterion of acceptable performance. When there are no secondary task interruptions, the operator may achieve acceptable performance with a relatively loose criterion tolerance. When the tracking task is periodically interrupted by the demands of other tasks, however, the operator may have to narrow his criterion in order to maintain performance. Of course, if it was the operator's responsibility to schedule the interruption sequence, he might relax his criterion of acceptable performance in order to minimize adjustment time. He could then work on the other tasks, thereby keeping each tracking interruption brief. Therefore, while it is apparent that the operator's workload increases whenever his criterion is narrowed (other things being equal), these studies indicate that measures like RMSE and PTOT might not show any change in performance.

TABLE 6. RESULTS OF STUDY 4

SUMMARY OF ANALYSIS OF CRITERION MEASURES	ا ;;,	CONTROL					969 6.			.2 383		
RION	SIZE	5	்	10.9	12.	#	12.	ထ်	7	9.2	5.	=======================================
CRITE	ARGET	300	25.4	29.8	30.0	32.0	35.9	23.9	22.4	25.9	27.9	30.9
IS OF	ON-T	500	40.9	45.6	44.1	47.9	49.6	37.7	35.2	40.0	39.7	42.0
NALYS	IT TIME	800	58.3	62.3	60.2	61.4	62.1	51.2	48.0	51.4	50.3	52.1
RY OF /	PERCENT TIME-ON-TARGET; SIZE	1600	77.3	78.6	78.3	79.7	78.6	66.5	64.2	66.5	66.5	67.4
SUMMA		RMS	2109	2041	2123	1999	1923	3357	3224	3228	3111	3393
		INTERNAL	800	009	400	200	0	800	009	400	200	0
TASK ALTERNATION	ATION	DELAY	2.0	2.0	2.0	2.0	2.0	4.0	4.0	4.0	4.0	4.0
ALTERN/	PERIOD'S DURATION	TRACK	9.0	6.0	0.9	6.0	6.0	9.0	6.0	6.0	0.9	6.0
TASK	PERIO	TOTAL	8.0	8.0	8.0	8.0	8.0	10.0	10.0	10.0	10.0	10.0
	TRACKING	TOTAL %	75.0	75.0	75.0	75.0	75.0	60.0	0.09	0.09	60.0	0.09
	TRA	SIGNAL NO.	ო	က	က	က	ო	ო	ო	က	က	ന

4. CONCLUSION

The parametric studies in Section 2 and the workload studies in Section 3 demonstrate that the HOS tracking model exhibits the types of performance features that would be expected of a human operator. Some of its features were unexpected but no totally implausible findings were obtained. The instability of the learning process for some parameter values and for some signal characteristics is disturbing and deserves further investigation. The results obtained in these studies deserve to be replicated with real human operators in order both to validate the model and to corroborate our findings. Whether or not such research indicated that modifications to the tracking model were necessary, the potential usefulness of HOS in the assessment of the workload characteristics of crew station designs has been clearly demonstrated.

REFERENCES

- Allport, D.A., Phenomenal simultaneity and the perceptual moment hypothesis. British Journal of Psychology, 1968, 59, pp. 395-406.
- Analytics, Inc., The Human Operator Simulator. Volume II: HOS User's Guide, TR 1181-A, Analytics, Inc., Willow Grove, Pennsylvania, October 1975.
- Baron, J., The threshold of successiveness. Perception and Psychophysics, 1971, 10 (4A), pp. 201-207.
- Bush, R.R. and Mosteller, Fl, Stochastic Models for Learning, Wiley (New York), 1955.
- Crossman, E.R.F.W., The information-capacity of the human motor-system in pursuit tracking. The Quarterly Journal of Experimental Psychology, 1960, 12, pp. 1-16.
- Fitts, P.M. and Posner, M.I., <u>Human Performance</u>, Brooks/Cole Publishing Co. (Belmont, California), 1967.
- Hick, W.E., The discontinuous functioning of the human operator in pursuit tasks. The Quarterly Journal of Experimental Psychology, 1948, 1, pp. 36-51.
- Kristofferson, A.B., Attention and psychophysical time. Acta Psychologica, 1967, 27, pp. 93-100.
- Linton, P., Jahns, D.W., and Chatelier, Pa., Operator workload assessment model: An evaluation of a VF/VA-V/STOL system. Presented at NATO/AGARD Aerospace Medical Panel Specialists Meeting, Koln, FRG, 18-22 April 1977.
- Murphy, J.V. and Gurman, B.S., The integrated cockpit procedure for identifying control and display requirements of aircraft in advanced time periods. In: Guidance and Control Displays. NATO/AGARD Conference Proceedings CP-96, 1972.
- Norman, M.F., On the linear model with two absorbing barriers. <u>Journal</u> of Mathematical Psychology, 1968, <u>5</u> (2), pp. 225-241.
- North, J.D., Lomnicki, Z.A., and Zaremba, S.K., The design and interpretation of human control experiments. Ergonomics, 1958, 1, pp. 314-327.
- Siegel, A.I. and Wolf, J.J., A model for digital simulation of twooperator man-machine systems. Ergonomics, 1962, 5, pp. 557-572.

- Strieb, M.I., Glenn, F.A., Fisher, C., and Fitts, L., <u>The Human Operator</u>
 Simulator. Volume VII: LAMPS Air Tactical Officer Simulation, TR 1200,
 Analytics, Inc., Willow Grove, Pennsylvania, November 1976.
- Stroud, J.M., The fine structure of psychological time. In: H. Quastler (ed.), <u>Information Theory in Psychology</u>, Free Press (New York), 1955.

APPENDIX I HOPROC CODE AND HOS INPUTS FOR PARAMETRIC STUDIES

APPENDIX I HOPROC CODE AND HOS INPUTS FOR PARAMETRIC STUDIES

This appendix contains a listing of the HOPROC code and HOS inputs used in the parametric studies presented in Section 2. A full discussion of HOPROC and HOS data card formats is presented in Volume II of this series, the HOS Users' Guide.

SYSTEM SETTING SECTION HOS TEST CASE - GENERAL TRACKING MODEL

OSTATE SECTION

APCHMENT SECTION XOISP XCNTI

DISPLAY SECTION

TPACK SCALE FEET

SIGNAL SCALE FEET:
SECONDAPY

CONTROL SECTION

START MOMENTARY

SINE-WAVE-GENERATOR MOMENTARY
KNOR

· -

SYMPOL SECTION

```
OPERATOR FUNCTIONS
      GO TO TODOO
      CONITIVITE
000n
      G = FST (ONEW GAIN>)
      TF (G.GT.N.) GO TO 2
      PTIMF = STIMF + 10.
      TF (MG. IF. ]) GO TO ]
      AVG = GSHM / NG
      SD = 0.
      VAR = (GSO - NG#AVG#AVG) / (NG - 1.)
      TE (MAD. IF. N.) GO TO 1
      SD = SOPT(VAR)
      CONTINUE
      WPITE (6.8000) AVG. SD. NG
      FORMAT (KY. *FOR COMPLETED PHASE MEAN GAIN = *.F]0.2.44. *SO = *.
១០០០
          FIG. 2.4X. #OBSERVATIONS =#.15)
      SDG = 1.
      TF (NG.1F.1) GO TO 3
      VAR = (NG-1.)*VAR/NG
      TE (VAR.IF.O.) GO TO 3
      SDG = SOPT(VAP)
      AVT = TSUM/NG
      SDT = 0.
      VAR = TSO/NG - AVT#AVT
      TE (VAP.IF.O.) GO TO 3
      SDT = SORT(VAR)
      AVGT = TGSHM/NG
      COP = (AVGT-AVG#AVT)/(SDG#SDT)
      PEG = (AVGT-AVG#AVT)/VAP
      CONTINUE
      WPITE (A.ROAR) CAR, PEG. AVT. SAG. SAT
      FORMAT (10X.*COP.COFFF. =*,F8.5.5X.*PFG.COFFF. =*.F10.4.5X.
3003
          *AVT = *.F10.2.5X.*SDG = *.F10.2.5X.*SDT = *.F10.2)
      NG = 0
      GSUM = GSO = 0.
      TSUM = TSO = TGSUM = 0.
      G = FST(9) = 200.
      CONTINUE
      XT = TFOFF(4) - STIME
      TE (XT.GT.O.) CALL PANKER (XT)
      DE = CE
      ID = GIRACK>
      KD = CSTGNAL>
      CF = FST(TO) - FST(KO)
```

```
AVGERR = .9 * AVGERR + .1 * ARS(CF)
       TE (AVGEPP. IT. SMALL) AVGEPRESMALL
      THETA = ATHET & ARSICE) / AVGERD
      TE (THETA.GT..O) THETA=.9
      TF (THETA.IT.O.) THETA=O.
      X*16 = 1.0
      TE (PE.FO.O..AND.CE.FO.O.) GO TO P
      TF ((CF.GF.PF.AMD.PF.GF.D.).OP.(CF.LF.PF.AMD.PF.1F.D.)) GO TO 6
      XHIG=1.0-CE/PF
      TF (XMG.GT.2.) XMG = 2.
      TF (YMG. | T. . 5) XNG = . 5
      SO TO A
      XPN = PANF(NI)MMY)
      TF (XPN.GT..5) XNG=ADFLT
      TE (XPM.LT..5) XNG=SDFLT
      G = THETA *G*XNG + (1.0-THETA) *G
      TE (STIME . IT . PTIME) GO TO 4
      GSUM = GSUM + G
      GSO = GSO + GFG
      TCLIM = TCLIM + STIME
      TSO = TSO + STIME#STIME
      TASUM = TASUM + GASTIME
      NC = NC + 1
      CONTINHE
      HNEW GATNIE = G
      GN = FST (INFW GAIN>)
      TF (GN. I.T. SMALL) GN=SMALL
      "INDE CHANGE" = (DESTPE (@TPACK>) - EST (@TPACK>)) /GN
      DEAD (5.500) THETA. DELTA. EXPATE. DEL AY
      FORMAT (4FR. 3)
500
      WPITE (6.501) THETA. DELTA. EXPATE. DELAY
      FORMAT (//* PAPAMETERS FOR THIS RUN ARE AS FOLLOWS: *//* THETA = *.
501
          FR. 3/# DFI TA =#FR. 3/# FXRATE =#.FR. 3./# DFLAY =#.FR. 3)
      APELT = 1.0 + DELTA
      SDFLT = 1.0 / ADFLT
      ATHET = THETA
      \Lambda VGFPP = 0.
      "PARAMETERS" = THETA
      ID = CSIGNAL>
      FT = FSTIME(ID) - PFSTIM(ID)
      TF (FT. LT. SMALL) FT=SMALL
      KD = CETTIMES
      OTIME = EST(KD)
      YX = FST(ID) + (FST(ID)) + PFST(ID)) + (STIME+PTIME+FSTIME(ID)) / FT
      HEXVALU = XX
```

```
TF (FST(12).GT.O.) GO TO 12
      PTIME = STIME + 10.
      TE (MX.IF.1) GO TO 11
      AVIG = YCHM / NX
      cn = n
      VAR = (XSO - MX#AVG#AVG) / (MX - 1.)
      TF (VAQ.1F.A.) GA TA ]]
      SD = SOPT(VAR)
      CONTINUE
11
      WPITE (6.8001) AVG. SD. NIX
      FORMAT (6x. #FOR COMPLETED PHASE MEAN EXTIME =#.F10.4.4x.#50 =#.
1900
           FIG. 4.4X. #ORSERVATIONS =#. [5]
      SDX = 0.
      TE (MX.(F.)) GO TO 13
      VAR = (NX-1.)*VAR/NX
      TF (YAP.I.F. N.) GO TO 13
      SDX = SOPT(VAP)
      AVT = TTSUM/NIX
      SDT = 0.
      VAR = TTSO/NX - AVT#AVT
      TF (VAR.LF.O.) GO TO 13
      SDT = SORT(V\Delta R)
      AVXT = TXCIIM/NX
      COR = (\Delta VXT - \Delta VG + \Delta VT) / (SOX + SOT)
      PFG = (\Delta VXT - \Delta VG * \Delta VT) / VAP
13
      CONTINUE
      WPITE (A.8003) COR.PEG.AVT, SDX.SDT
      MX = 0
      X \subset UM = X \subseteq U = U
      TISUM = TISO = TXSUM = 0.
      FST(12) = .1
12
      CONTINUE
      KD = dEXTIME>
      ID = @TPACK>
      JD = dSTGMAL>
      PS = CS
      (S = FST(JD))
      CFRP = FST(ID) - FST(JD)
      FXT = FST(KD)
      TE (AVGERR.LT.SMALL) AVGERP = SMALL
      XIR = FXRATE#CFRP/AVGFRP
      TF (XLP.GT..?) XLR=.?
      TF (XI P.I.T.-.?) XI.P=-.?
      TF (CS.GT.DS) XLR=-XLR
      X = (1.+XI.P) *FXT
      TE (STIME. LT. PTIME) GO TO 14
      X \in M(I \cap X) = M(I \cap X)
      X = X = 0
      TISUM = TISUM + STIME
      TISO = TISO + STIME#STIME
      TYSUM = TYSUM + X#STIME
      MX = MX + 1
      CONTINUE
      HEXTIMEH = X
```

```
CALL PANKER (DELAY)
I = 0
HEECONDARY DELAYH = DELAY
TT = OTACY (18)
Y = FST(TT)
X = UCIJODATII
MAROWARE FUNCTIONS
      GO TO 10000
9900
      CONTINUE
      T = OKNIOR>
      TE (TERFE (TWANT) - STIME . FQ. 0) RETURN
      "PATEL"= (DESIDE (1) - EST (1)) / (TEREF (TWANT) - STIME)
      TM = MODEL (#KNOR>)
      CATN = PAPA(TM.9)
      HPATERH = GATNEHRATEIH
      T=@XC*IT! >
      CALL DEF(T)
      HUPDATECH=PATE([)*(STIME=TIME([))
       T=@XCNT1 >
      CALL PEF(T)
       J=@XDTSP>
      CALL PEF (.1)
      "HIPDATED"=QATE(J) * (STIME-TIME(I))
      READ (5.100) AMP. FREQ. DEESET
      FORMAT (3(F8.2.1X))
300
      WPITE (A.101) AMP. FRED. OFFSET
      FORMAT (* AMP = * . FP. 2/* FPFQ = * . FR. 2/* OFFSFT = * . FR. 2//)
101
      "SINF-WAVE-FACTOPS"=]
      KK = STI_{\Delta}ST/60.
      LI = STIME/60.
      TE (KK.ED.LL) GO TO 200
      U = U + 1
      WRITE (6.2000) LL. FST(12) . FST(9)
      FORMAT (IX. *REGINNING PHASE *. 11.4x. *FXTIME = *. F10.4.6x.
2000
           #GAIN =# .F]0.2)
      FPF0 = FRF0*1.41421356
      WRITE (6.2001) FREO
      FORMAT (1X. #NEW STGNAL FREQUENCY =#.F12.8)
2001
      FST(9) = FST(12) = -1.
200
      CONTINUE
      STIAST = STIME
      "NEW STANAL" = AMPESTN(STIME*FRED) + OFFSET
```

HARDWARE PROCEDURES

DEFINE PROCEDURE TO STMULATE START.

FND: DETERMINE SINE-WAVE-FACTORS.

DEFINE PROCEDURE TO SIMULATE SINE-WAVE-GENERATOR.

MID: DETERMINE NEW-SIGNAL.

SET SIGNAL TO NEW-SIGNAL .

DEFINE PROCEDURE TO SIMULATE KNOB.

START: DETERMINE RATEL.

SET PATE OF KNOB TO PATEL.

DETERMINE RATES.

SET PATE OF TPACK TO PATEZ.

MIDEND: COMPUTE-UPDATE-DC USING TRACK. KNOR.

FND: SET PATE OF KNOR TO O.

DEFINE COMPUTE-UPDATE-DC USING XDISP-XCMTL.

DETERMINE UPDATEC.

INCREASE XCNTL BY HPDATEC.

DETERMINE UPDATED.

INCPEASE XOTSP BY UPDATED.

OPERATOR PROCEDURES

OFFINE MISSION.

COMPUTE PARAMETERS.

DEPRESS START.

DEPRESS START.

OFFICH MAVE-GENERATOR.

SET LIMITS OF TRACK TO TACCUR.

MONITOR TRACK.

MONITOR SECONDARY.

IF TIME OF SIMULATION IS LESS THAN 10000 SECONDS THEN WAIT.

DEFINE PROCEDURE TO ADJUST TRACK.

READ SIGNAL.

COMPUTE EXTIME.

COMPUTE EXVAL.

SET TRACK TO RESULT.

READ TRACK.

IF TRACK IS WITHIN LIMITS THEN GO TO 1 NOW.

COMPUTE NEW-GAIN.

COMPUTE KNOB-CHANGE.

TURN KNOB BY RESULT.

COMPUTE TACCUP.

DEFINE PROCEDURE TO ADJUST SECONDARY.

COMPUTE SECONDAPY-DELAY.

1:

```
SYSTEM
                     PURSUIT TRACKING MODEL
NISOLAY SECTION
                     1 0.1 1 12 12 12 10000.
TPACK
                     4 0 1 1 12 12 12 0
STGNIAL
                     1 0 1 1 0 0 0 0
SECONDARY
CONTROL SECTION
STACT
                     2 0 1 1 -15 12 0 0
STNE WAVE GENERATOR 5 0 1 1 -12 12 0 0
                     3 0 1 1 -6 12 0 0
KNOR
OPERATOR FUNCTIONS
                     2 0 1 1 0 .1
FXTTME
                     201100
FXVAL
KNOW CHANGE
                     201100
NEW GATN
                     2 0 1 1 0 200.
PARAMETERS
                     2 0 1 1 0 1.0
                     2 0 1 1 0 0
SECONDARY DELAY
TACCITO
                     2 0 1 1 0 0
PROCEDURE SECTION
                     1.0
MISSION
TOUCK
                     1.0
 SECONDARY
                     1.0
MODEL SPECIFICATIONS
MODEL 1
                     4 1 500 .015 2.0
                     7 3 0 .01 1. 0 0 .01
MODEL 2
                                         300 10 200
MODEL 3
                     9 2 1 0 2. 0 0
MODEL 4
MODEL 5
                     4 1 500 .015 5.0
                     7 4 5 .01 1.0 0 0 999.
FND OF MODEL SPEX
HUMAN OPERATOR SPEX
                     12 0 0 .01 33 48
FYFS
                     6 6 -18 -6 6 -1R
HAVIDE
                     6 0 -6 -6 0 -6
SHULL DEBS
FND OF HUMAN SPEX
THITEPPIJETION DATA
                     0.0 4.0
                     .07 .9 .01 2. .2 1. .01 5. 5. 10. 10. 10. 3. 3.
DIN DADAMETERS
PLOT ASTERISKS
DRINT MESSAGES
TIMED ENDPOINT
                     181
$.
                   .05
.0
         2.513272 10000.0
4000.0
```

APPENDIX II
HOPROC CODE AND HOS INPUTS FOR WORKLOAD STUDIES

APPENDIX II HOPROC CODE AND HOS INPUTS FOR WORKLOAD STUDIES

This appendix contains a full listing of the HOPROC code and HOS inputs used in the workload studies described in Section 3 of this report. A full discussion of HOPROC and HOS data card fromats is presented in Volume II of this series, the HOS Users' Guide.

SYSTEM

HOS TEST CASE - GENERAL TRACKING MODEL

SETTING SECTION

OSTATE SECTION

APRILIMENT SECTION

AU Lab TENUX

DISPLAY SECTION

TPACK SCALE FEET SIGNAL SCALE FEET SECONDARY

CONTROL SECTION

START MOMENTARY
SINE-WAVE-GENERATOR MOMENTARY
KNOR

SYMPOL SECTION

```
OPERATOR FUNCTIONS
      SO TO JODGO
2000
      CONTINUE
      G = FST (MNEW GAINS)
      YT = TEOFF(4) - STIME
      TE (XT.GT.O.) CALL BANKED (XT)
      DF = CF
      IN = OTPACK>
      KD = #CTGMAL>
      CF = FST(TO) - FST(KO)
      TE (TOELAY.FO.1) GO TO 9
      AVGEDR = .9 * AVGEDR + .1 * ARS(CF)
      TE (AVGERRALT. SMALL) AVGERRESMALL
      THETA = ATHET * ARRICED / AVGEDD
      IF (THETA.GT..Q) THETA=.Q
      TE (THETA.LT.O.) THETA=O.
      4416 = 1.0
      TE (PE.FO.O.. AND.CE.FO.O.) GO TO 8
      TE ((CF.GF.PF.AND.PF.GF.D.).OP.(CF.LF.PF.AND.PF.LF.D.)) GO TO A
      YNG=1.0-CF/PF
      IF (XNG.[T..5] XNG = .5
      SO TO B
      YPM = PANF (D(IMMY)
      TE (XDNI.GT..S) XMG=ADELT
      TE (YDN.1,T..S) XNG=SDELT
      G = THETA*G*XMG + (1.0-THETA)*G
O
      CONTINUE
      TE ([DELAY.GT.0) TOFLAY = IDELAY - ]
      HAIFM GATAIN = G
      GN = FRT (CNFW GATNS)
      TE (GN.LT.SMALL) GN=SMALL
      "KNOR CHANGE" = (DESTRE (#TPACK>) - FST (#TPACK>)) /GN
      PEAD (5.500) THETA. DELTA. EXPATE. DEL AY
500
      FORMAT (4FR.3)
      WRITE (6.50)) THETA. DELTA. EXPATE. DEL AY
      FORMAT ( // PAPAMETERS FOR THIS PLIN APE AS FOLLOWS: */ /* THETA = *.
501
          FR.3/# DFLTA =#FR.3/# FXPATE =#.FR.3./# DFLAY =#.FR.3)
      ADELT = 1.0 + DELTA
      SDFLT = ].0 / ADELT
      ATHET = THETA
      AVGEDD = 0.
      TOFLAY = 0
      "PAPAMETERS" = THETA
```

```
IN = CCTGNAL>
FT = FCTIMF([0] - OFSTIM(10)
TE (ET. [ T. SMALL ) ET=SMALL
VD = AFYTIME>
OTTME = FST(KD)
YX = FST(ID)+(FST(ID)-DEST(ID))*(STIME+DIIME-ESTIME(ID))/FT
KD = #FYTTME>
TO = OTPACK>
ID = #STGNAL>
20 = 20
\Gamma S = \Gamma S T (J \Pi)
CFRP = FST(ID) - FST(JD)
FXT = FCT(KN)
TE (AVGERR . [ T. SMALL ) AVGERP = SMALL
YIR = EXPATENCEDD/AVGEDD
TF (YIP,GT..2) XI,R=.2
TF (XI.D.LT.-.2) XI 0=-.2
TF (CS.GT.PS) XI P=-YI,P
TF (TOF[ AY . FO . ] ) Y . P = 0.
HEXTIMEN = (1.+XLD) SEXT
CALL BANKED (DELAY)
TOFLAY = 1
THIDPRO = 1
"SECONDARY DELAY" = DELAY
TT = TTACCIIP>
Y = FST(TT)
HTACCHON = X
```

```
HARDWARE FUNCTIONS
      30 TO 10000
0000
      CONTINUE
      I = \langle KNOR \rangle
      TF (TERFF (IWANT) -STIME.FO. 0) RETURN
      "PATEL"= (DESTRE (T) - EST (T) ) / (TERFE (TWANT) - STIME)
      IM = MODEL (4KNOR>)
      GAIN = DARA(IM.9)
      "PATES" = GAINE "PATEI"
      T=CXCMTI,>
      CALL REF(T)
      "HIPDATEC"=PATE(I) * (STIME-TIME(I))
      T=CXCNTI,>
      CALL DEF(T)
      I=4XDICD>
      CALL PFF (J)
      ""PDATED"=PATE (J) " (STIME-TIME (T))
      READ (5.100) AMP. FPEQ. OFFSET
100
      FORMAT (3(FR.2.1X))
      WPITE (6.101) AMP.FRED.OFESET
      FORMAT (* AMP =*.FR.2/* FRFO =*.FR.2/* OFFSFT =*.FR.2//)
101
      "SIME-WAVE-FACTORS"=1
      YA = SIN(STIME*ERFO)
      YR = .7*SIN(10.*STIMF*F0FQ/7.)
      XC = .4*SIN(2.5*SIIMF*FPF0)
      "MEW STONAL" = AMP*(XA+XB+XC) + DEFSET
```

DEFINE PROCEDURE TO STAIL ATE START.

FNO: DETERMINE STAF-WAVE-FACTORS.

DEFINE PROCEDURE TO STMINATE STNE-WAVE-GENERATOR. MID: DETERMINE NEW-STGNAL.

DEFINE PROCEDURE TO SIMPLATE KNOR.

START: DETERMINE RATEL.

SET RATE OF KNOR TO RATEL.

DETERMINE RATER.

SET RATE OF TRACK TO RATER.

MIDEND: COMPHIE-UPDATE-DO HSING TRACK, KNOR.

END: SET RATE OF KNOR TO O.

DEFINE COMPUTE-UPDATE-DO USING XDISP.XCNII.
DETERMINE HRDATEC.
INCREASE XCNII RY HRDATEC.
PETERMINE HRDATED.
INCREASE XDISP RY HRDATED.

OPEDATOR PROCEDIDES

OFFINE MISSION.

COMMITTE PARAMETERS.

OPEDRES START.

OPEDRES START.

SET LIMITS OF TRACK TO TACCUR.

MONITOR TRACK.

MONITOR SECONDARY.

TE TIME OF SIMILATION IS LESS THAN 10000 SECONDS THEM WAIT.

DEFINE PROCEDURE TO AD HIST TRACK.

PEAD STONAL.

COMPUTE EXTIME.

COMPUTE EXVAL.

SET TRACK TO RESULT.

SEAD TRACK.

TE TRACK IS WITHIN FIMITS THEN ON TO 1 MOW.

COMPUTE MEW-GAIN.

COMPUTE KNOR-CHANCE.

THOM MIND BY RESULT.

COMPUTE TACCUP.

DEFINE PROCEDURE TO AD HIST SECONDARY. COMPUTE SECONDARY-DELAY.

1:

```
SYSTEM
                    DIRCHIT TOUCKING WODEL
NIGHTAY SECTION
TRACK
                    1 0 1 1 12 12 12 10000.
STEMME
                    4 0 1 1 12 12 12 0
                    1 0 1 1 0 0 0 0
くたしいいりょりく
CONTROL SECTION
TOATS
                    2 1 1 1 -15 12 1 1
STHE MANE CENEDATUS 2 0 1 1 -13 13 0 0
KNOR
                    3 0 1 1 -6 12 0 0
OPEDATOD FUNCTIONS
FXTIME
                    20110.1
E.XAVI
                    201100
RUDB CHANGE
                    2 0 1 1 0 0
NEM CVIN
                    2 0 1 1 0 200.
DARAMETERS
                    201101.0
SECONDARY DELAY
                    2 1 1 1 1 1
TACCHE
                    5 0 1 1 0 0
DROCED'IDE SECTION
HISSION
                    1.0
 TRACK
                    1.0
SECUMONOY
                    1.0
MODEL SPECIFICATIONS
איחחבו ז
                    4 1 500 .015 2.0
MUDEL 3
                    10.00.110.05
אחחבו ז
                    92 10 2.00
                                       300 30 200
WIDEL 4
                    4 1 500 .015 5.0
MUDEL 5
                    7 4 5 .01 1.0 0 0 999.
END OF MODEL COEX
HIJVAN OPERATOR SPEX
FYFC
                    12 0 0 .01 33 42
HANDE
                    6 6 -18 -6 6 -18
SHULL UEDS
                    6 n -6 -6 n -5
END DE HIMAN CDEY
THITERPURTION DATA
                    0.0 6.0
DIN PADAMETERS
                    .07 .9 .01 2. .2 1. .01 5. 5. 10. 10. 10. 3. 3. .0
PLAT VETEBLERS
PRINT VESSAGES
TIMED ENDPOINT
                    121
. 0
         . 0
                  _ 05
         2,513272 10000.0
4000.0
```

APPENDIX III
CHANGES TO HOS FOR TRACKING AND WORKLOAD STUDIES

APPENDIX III CHANGES TO HOS FOR TRACKING AND WORKLOAD STUDIES

The interrupted tracking simulations described in Section 3 required several minor modifications to HOS. These changes replaced the normal operator-controlled sequencing of procedures by a time-controlled sequence dependent upon an input alternation period. The modified version of HOS was also used for the parametric studies reported in Section 2 for which the duration of each interrupt was set to zero. The changes made to the standard version of HOS were:

- (1) Four new variables -- TPRIM, TBETW, DURINT, and INDPRO were added to COMMON JUNK. TPRIM is the time when each execution of the primary procedure begins. TBETW is the time between interrupts (i.e., the time spent on the primary task for each alternation period). DURINT is the duration of each interrupt. INDPRO is the indicator of which procedure should be executed at any time (INDPRO = 1 for the primary procedure and INDPRO = 2 for the secondary procedure).
- (2) Four cards

IF (INDPRO.EQ.2.OR.STIME.LT. (TPRIM+TBETW)) GO TO 1025

INDPRO = 2

GO TO 1040

1025 CONTINUE

were inserted immediately after statement label 1020 in the HOS main routine.

(3) Three cards

IF(IP.NE.28) GO TO 280

TPRIM = STIME

INDPRO = 1

were inserted immediately prior to statement label 280 in subroutime ENDPROC.

(4) One card

IF (MARGIN (1).EQ.1ØHINTERRUPTI) GO TO 820

was inserted in the list of IF statements between statement lables 301 and 310 in the subroutine INPROC.

(5) Six cards

820 CONTINUE

CALL NEWORD

DURINT = DIGITS

CALL NEWORD

TBETW = DIGITS

GO TO 290

were inserted immediately prior to the END card in the subroutine INPROC.

(6) One card

IF(IC.NE.1) IC=INDPRO+1

These changes require one additional input data card that is not required by the standard version of HOS. That card has the words INTERRUPTION DATA starting in column 1 and two numbers starting in column 21. The first number specifies the length of each interruption and the second number specifies the length of each primary task execution.

APPENDIX IV
DESCRIPTION AND LIST OF EVAL

APPENDIX IV DESCRIPTION AND LIST OF EVAL

The analysis program EVAL computes a variety of tracking performance statistics from data appearing on one of the output files created by HOS. This file, originally created for use by the HODAC graph-generating subroutine TGRAPH, is a series of two-word (60 bits per word) microreports that describe simulation events. The low-order twelve bits of the first word contains a message number that identifies the report. The only message numbers recognized by EVAL are:

NUMBER	MESSAGE
13	START TO COMPUTE
35	BEGIN MANIPULATING WITH LEFT HAND
36	COMPLETE MANIPULATING WITH LEFT HAND
62	COMPLETE COMPUTATION OF
80	ACTUAL VALUE OF CHANGED

Other messages appearing on the file are ignored by EVAL.

The next twelve bits of the first word contain the dictionary entry number of the device, function, or procedure referenced by the message. The highest order 30 bits contain the simulation time at which the message was produced. For messages 13, 35, 36, and 62, the second word contains the estimated value (EST) of the referenced item in its low order 50 bits and the integerized value of the hab strength of the item multiplied by 1,000 in its high order 10 bits. For message number 80, the full 60 bits of the second word are used to represent the new actual value of the referenced item.

The program EVAL consists of four routines. The main routine, EVAL, processes all input data cards, monitors the operations of tape reading and data accumulation, and prints out summary statistics. The subroutine EDATA accumulates all RMSE and PTOT performance statistics according to directives from the main routine. The subroutine TREAD reads the next micro-report on the HOS output tape and transfers the message data to the calling routine via the formal arguments of the subroutine. The function SIGNAL determines the value of the signal being tracked at any given simulation time.

Input data specifying the parameters of the signal being tracked and the type of analysis to be performed are required by EVAL. Each input data card must contain an identifying label starting in column 1 and a single number starting in column 21. The recognized identifying labels are:

INTERVAL

DELAY

START

END

SIGNAL OFFSET

SIGNAL FREQ1

SIGNAL FREQ2

SIGNAL FREQ3

SIGNAL AMP1

SIGNAL AMP2

SIGNAL AMP3

LIMIT

TIMELINE

The INTERVAL card specifies the size of each data collection interval. The DELAY card indicates the length of time at the beginning of each primary task execution before the first data collection interval for that execution will begin. The START and END cards specify the simulation times over which the analysis is to be performed. The cards that specify signal characteristics are self-explanatory. Each LIMIT card (up to five are allowed) specifies a PTOT criterion tolerance to be used in the analysis. The TIMELINE card (which needs no number in its second field) indicates that a timeline analysis is to be printed while the tape is being processed. No timeline report is printed if the TIMELINE card is omitted.

The logic of the program is reasonably straightforward and will not be described in detail. Comment cards in each routine indicate the function performed by each section of code. In order to assist the programmer in interpreting and modifying the program, the following list of variable descriptions is offered. After the list of variable descriptions is a full list of the EVAL program followed by a sample program output.

DESCRIPTION

AEND

end time for analysis

AMP(I)

amplitudes of the three sine wave

components of the signal

ASTART

start time for analysis

BTIM(I)

start time for Ith buffer interval during

a movement

BUFCTI(I)

CTINT for the Ith buffer interval

BUFEAR(I)

error at return to primary for Ith buffer

interval

BUFINIT(I)

indication of whether (1) or not (0) interval data accumulators are to be initialized after processing data for

Ith buffer interval

BUFTSR(I)

time since return to primary task for

Ith buffer interval

CAERRT

cumulative absolute error at initiations

of primary procedure

CAESEC

cumulative absolute error at initiations

of secondary procedure

CLEVEL

value of "track" when at a constant

value between movements

CTINT

time when current data collection interval

began

CUECI

cumulative squared error for current

interval

CUEPRI

cumulative squared error for primary

procedure

CUESEC

cumulative squared error for secondary

procedure

ECI

cumulative error for current interval

ECUM(I)

cumulative error for primary procedure
if I = 1 and for secondary procedure

if I = 2

NCSEC

DESCRIPTION

VARIABLE NAME	DESCRIPTION
ECUM(I,J)	cumulative error for J^{th} interval after start of primary procedure if $I = 1$ or of secondary procedure if $I = 2$
ERRET	actual error when current execution of primary procedure began
ETIM(I)	end time for I th buffer interval
IINT(I)	NINT for I th buffer interval
IMOVE	l if a movement is in progress, 2 if a movement has been completed but data has not been stored because "actual value changed" message has not yet been encountered, and 0 otherwise
INTEND(I)	l if the I th buffer interval marks the end of a timed interval and 0 otherwise
ITLIM(I)	<pre>integerized value of the Ith criterion tolerance (TLIM(I)) for PTOT determinations</pre>
MARGIN(I)	the I th (first or second) word in the identifier field of an input data card
MOVEALL	counter of all control movements over time span of analysis
MOVECI	counter of movements for current interval
NAERRT	number of initiations of primary procedure
NAESEC	number of initiations of secondary procedure
NBUF	number of items in movement buffer
NCI	number of error observations for current interval
NCPRI .	number of observations of squared error for primary procedure

number of observations of squared error

for secondary procedure

SF(I)

DESCRIPTION

NINT Current interval number after beginning of executing procedure (maximum of 20) if interval data is being collected -value is positive for primary procedure and negative for secondary procedure -value of 0 indicates primary procedure is executing but no data should be collected and value of -30 indicates that secondary procedure is executing but no data should be collected NLIMIT the number of PTOT criterion limits specified in the input data NOBS (I) number of observations of RMSE measures for Ith interval after start of primary procedure number of observations of RMSE measures NSEC(I) for Ith interval after start of secondary procedure NTLINE number of lines on current page of timeline output OFFSET signal offset time when current processing chunk of PCINT current data collection interval began PRIMT total time spent on primary procedure SAERRT sum of squares of absolute errors at initiations of primary procedure SAESEC sum of squares of absolute errors at initiations of secondary procedure SCENI(I) sum of RMSE measures for all observations of Ith interval after start of primary procedure SECT total time spent on secondary procedure sum of PMSE measures for all observations SESEC(I) of Ith interval after start of secondary procedure

frequencies of the three sine wave com-

ponents of the signal

VARIABLE	NAME
----------	------

DESCRIPTION

VARIABLE NAME	DESCRIPTION
SMOVEI(I)	sum of numbers of observed control move- ments over all observations of the Ith interval after the start of the primary procedure
SSCENI(I)	sum of squares of RMSE measures for all observations of the I th interval after start of primary procedure
SSESEC(I)	sum of squares of RMSE measures for all observations of I th interval after start of secondary procedure
SSMOVEI(I)	sum of squares of numbers of observed control movements over all observations of the I th interval after the start of the primary procedure
SSTTNI(I,J)	sum of squares of the percent times on target with respect to criterion tolerance J for all observations of the I th interval after the start of the primary procedure
SSTTSEC(I,J)	sum of squares of the percent times on target with respect to criterion toler- ance J for all observations of the I th interval after the start of the secondary procedure
STTNI(I,J)	sum of the observed percent times on target with respect to criterion toler- ance J for all observations of the I th interval after the start of the primary procedure
STTSEC(I,J)	sum of the observed percent times on target with respect to criterion tolerance J for all observations of the I th interval after the start of the secondary procedure
TBMOVE	time when current movement began

TDEL

user-specified delay after beginning of primary task when first data collection interval begins

TEMOVE

time when most recent movement ended

DESCRIPTION

TINT

user-specified duration of each data collection interval

TLAST

time of the previous micro-report message

TLIM(I)

the user-specified value of the Ith criterion tolerance (in the order specified by the user) for PTOT determinations

TOTCI(I)

cumulative number of "on-target" observations with respect to the Ith criterion tolerance for current data collection interval (observations are regularly spaced at .01 second intervals)

TOTPRI(I)

cumulative number of "on target" observations with respect to the Ith criterion tolerance for all time on the primary procedure

TOTSEC(I)

cumulative number of "on-target" observations with respect to the Ith criterion tolerance for all time on the secondary procedure

TPRIM

O if the primary procedure is not executing and otherwise is the time that the current execution began

TSECO

O if the secondary procedure is not executing and otherwise is the time that the current execution began

T1, T2, V1, V2, NN, INTCUM (formal arguments of EDATA) The track element moves along the straight line connecting the points (T1, V1) and (T2, V2) where V1 is the track value at time T1 and V2 is the track value at time T2. NN is the interval number relative to the start of the procedure for which data is to be accumulated. If INTCUM=1 data for the current interval should be stored and accumlator variables should be initiatized, but not if INTCUM=0

ST, IM, ID, VAL (formal arguments of TREAD)

Data values obtained by TREAD from reading of next micro-report on HOS output tape. ST is simulation time of report. IM is the code number of the message (see text above for interpretation of code). ID is the dictionary pointer referenced by

ST, IM, ID, VAL (continued)

T (function of argument of SIGNAL)

DESCRIPTION

the report. VAL is the value (estimated or actual) of the item referenced by the report

the simulation time for which the signal value is to be returned

NUMBER OF TIME SINCE * 4 X . * NUMBER OF * FOOMAT (1H1.29x.*TIMFLINE NATA FOR PRIMARY TASK RY TIMF INTERVAL* OFFSF1/0./.SF/0..0..0..0./.NTLINF/60/.1FF/777777770000000000 (1X.**\$\$ ERPOP. SIGNAL DATA AAS NOT BFFN FULLY SPECIFIFD#) FDRMAT (/FR.2.2x.FR.2.4X.FR.2.3X.F7.2.3X.F9.2.3X.15.4X.FR.2.1X.5(3X.FR.3) TOTSFC(5) *NCSFC + SCFNJ (20) + SSCFNJ (20) + STINI (20+5) + SSTINI (20+5) G(4X.*PERCENT*)/4X.*STAPT*.6X.*FNO*.5X.*PFTURN*.5X.*PFTURN*. COMMON /STOPF/CUECI+TOTCI(S)+NCI+CUFPPI+TOTPPI(S)+NCPRI+CHESFC+ RUFTSR (10) . RUFFAR (10) . RUFCTI (10) . PTOT (5) . PTOTSN (5) . TT | TM (5) 5(4X+*PFPCENT*)/* PROCFDUPE*.9X+*TIME*,AX+*MFAN*.6X+*C.N.*. FRROB AT * + 4X * * NIO * * + AX * # DIAC *SESFC(20)*SSESFC(20)*STTSEC(20*5)*SSTTSEC(20*5)*NSEC(20) FORMAT (1H1.41X.*CUMULATIVE DATA BY PROCEDURE*/17X.*TOTAL*. FORMAT (141,28x,4CUMULATIVE DATA FOR *,49,* TASK RY TIME *. JIMENSION MARGIN(0). MITM(10). FILM(10). LATEND(10). FORMAT (1X. *55% WARNING. OVERFLOW TO MOVEMENT RUFFER. * 4x. PPOGRAM FVAL (TAPF12.1NPUT.OUTPUT.TAPFS=INPUT.TAPF6=OUTPUT) FORMAT (1X. * \$\$ EPROP. UNDERFLOW IN MOVEMENT QUFFFR. * 4X. NORS (20) . TLIM (5) . NLIMIT . MOVECI . SMOVEI (20) . SSMOVFI (20) FORMAT (/4x,12,6x,15,6x,F7,2,6x,F8,2,5x,F8,2,5(5x,F8,1) * * 4 (6x * *PFRCENT *) / 2 X * * 4 U WAFFR * 5 X * * 0 B S * * 7 X * *5T=**FA.2.3X**IM=**13.3X,*ID=**13.3X,*VAL=**FA.2) *5T=**F8.2.3X**IM=*.13.3X.*ID=*.13.3X.*VAL=*.FP.2) 3X+*ABCOLUTE FPROP AT FNTOY*,5X, *NO. *, AX, *RMS 4X**MOVFS*6X**FPPOR*,4X*5(#10T(#*14**)**2X)) AX**MOVFS*6X**FRPDR **5(2X**TOT(**14.1H))) DATA TINT/1.0/.TDEL/0./.ASTART/0./.AFND/9999./. *FCUM(2) *ECUMI(2,20) *NIERR(2,20) *FCI *PETURN**5X, *MOVFWFNTS*,7X, *ERROR* //8x + #INTFPVAL * + 6x + #IMF SINCF COMMON /SIG/SF(3), AMP(3), OFFSFT 7X+5 (4X++101 (++14++))) *INTERVAL *//* INTERVAL (1X,2A10,F13,A) FORMAT (PAID.F13.6) . RUFINIT (10) FAMAGE FORMAT A006 6006 2000 5006 2006 4004 8006 9001 0006 9006

FORMAT (/1x.410.4x.FR.2.4x.FR.2.2x.FR.2.5x.16.4x.FR.2.5.5))

FORMAT (1X.*TOO MANY LIMIT VALUES - ONLY 5 APF ALLOWED.*)

FORMAT (31x+2(4X+1H(+FR.2+1H))+5(4X+1H(+F7.3+1H)))

9012

9011

9010

```
**********************
                                                                                                                                                                                                             FORMAT (1H1.15X.*DATA FOR F-COMPARISONS OF MEAN SQUARFD ERROR*//
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             SF (2) = VAL UF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FRF. AND. WARGIN(2). FO. 2HO3) SF (3) = VALUF AMP. AND. WARGIN(2). FO. 1H1) AMP (1) = VALUF AMP. AND. WARGIN(2). FO. 1H2) AMP (2) = VALUF
                        NUMBER OF ** 1 PX ** * MFAN SOUARED UNRIASED */
                                                  MEAN FRROR*.6X.
                                                                                                                  FORMAT (/1x.49.4X.*ALL.*,6X.17.6X.F9.3.5X.F11.2.3X.F11.2)
                                                                                           FOPWAT (/1x+49.5x+12+6x+17+6x+F9.3+5x+F11.2+3x+F11.2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FRF. AND. WARGIN (2) . FO. 2HO])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FRE. AND. MAPGIN (2) . FO. 2HO2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                AMP. AND. WARGIN (2) . EO. 1H2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (MARGIN(1).FO.10HSJGNAL OFF) OFFSFT = VALUE
                                                ORSFRVATIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                                    (MARGIN(1), FO, RHINTFPVAL) TINT = VALUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (MARGIN(1) FO. SHSTAPT) ASTART = VALUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (MARGIN(1).EQ.SHOFLAY) TREL = VALUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (MARGIN(1).FQ.3HFND) AEND = VALUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (MAPRIN(1).NF.SHLJMIT) GO TO 110
                                                                                                                                                                                                                                                                                                                                                                                                                              (MARGIN(1), FO, RHTIMFLINF) ITL=1
                                                                                                                                                                                                                                                                                                                                                                            WPITE (6.9001) MAPGIN.VALUE
                                                                       *FPROR* + 7X + #VAPTANCF #)
                                                                                                                                                                                                                                                                                                                              IF (FOF(5).FO.1) GO TO 200
                                                                                                                                                                                                                                                                                                         PEAN (5.9000) MARGIN.VALUE
                                                NHMPFP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (MARGIN(1) . FO. 1 OHS I GNAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (MARGIN(1).FO.10HSIGNAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (MARGIN (1) . FO. 10HSIGNAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (MARGIN(1).EO.10HSIGNAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IF (NLIWIT. LF.5) GO TO 105
                                                                                                                                                                                      PEAN INPUT DATA CAPNS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TLIM (NLIMIT) = VALUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              = VALUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        NI THIT = NI IMIT + 1
                      13X+ * INTFRVAL
                                                * PPOCEDIBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         104.40 (TION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (LIMINIMIL)
                                                                                                                                                                                                                                      NI TMIT = 0
                                                                                                                                                                                                                                                                                CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GO TO 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        30 TO 100
                                                                                                                                                                                                                                                                                                                                                       CONTINCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       PINT TACK
 9013
                                                                                                                9015
                                                                                            9100
                                                                                                                                                                                                                                                                                  100
                                                                                                                                                                                                                                                                                                                                                     101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          10
2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    110
                                                                                                                                                                   دىد
```

```
$\delta \delta \
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ***********************
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ************************
(MARGIN(1).ED.10HSIGNAL AMP.AND.WARGIN(2).FO.1H3) AMP(3)=VALUE
                                                                                                                                                                                                                                     MAKE SUPE THAT SIGNAL CHAPACTERISTICS HAVE REEN SPECIFIED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     X = OFFSFT*SF(1)*SF(2)*SF(3)*AMP(1)*AMP(2)*AMP(3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          JULITALIZE PROCESSING INDICATORS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               PFAN NEXT WESSAGE ON TAPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F (TSUR, NF.1) GO TO 2210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (ST.GT.AFND) GO TO 700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F (TM.FO.TEF) GO TO 700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CALL TREAD (ST. IM. ID. VAL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               JF (x.NF.0.) GO TO 210 WPITE (6,9002)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CLFVFL = OFFSET
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          = TVALUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GO TO 2201
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          11. AST = ST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1 MOVE = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               10 = 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ¥.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               a
S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          NINI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     VAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ۲۷
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          7210
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               7201
```

IF (.NOT. (ST. GF. ASTAPT. AND. TLAST.LT. ASTAPT)) GO TO 221

= SAERRT = CAFSFC = SAFSEC = = NAFSEC = 0

PRIMT = SECT = 0.

NAFRDT

```
WRITE (6.9004) CTINT.ST.TSR.EPPET.MOVFCI.RMSE.(PTOT(I).I=1.NLTMIT)
                                                                                                                                                                                                                PROCESS MESSAGE THAT INDICATES THE END OF A PHOCEDURE.
                                                                                                                                                                          IF ((IM.NE.13.AND.1M.NF.62).0P.ID.NF.14) 60 TO 300
                                                                                                                                                                                                                                                                                                                                  IF (MINT.LT.0) NINT = -30
JALL EDATA(PCINT.ST.CLFVFL.CLEVEL.NINT.0)
IF ((ST-CTINT).LT.TINT) 60 TO 2220
                                                                                                                                                                                                                                                                                                                                                                                          'SP = CTINT - TPRJW
(F (MINT.LT.0) TSP = CTINT - TSECO
                                                                                                                                                                                                                                                                                            ((ST-CTINT), EQ.0.) GO TO 260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       PTOT(I) = 100.*TOTCI(I) / NCI
                                                                                                                                                                                                                                                      F (ST.LT.ASTART) GO TO 260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               TF (NTLINF.LF.60) GO TO 225
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         WPITE (4.9005) ST.JM.TO.VAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF (TRUF.LF.10) GO TO 245
                                                                                                                                                                                                                                                                          (IMOVF.6T.0) GO TO 240
                                                                                                                                                                                                                                                                                                                                                                       IF (TTL.FO.0) GO TO 240
                                                                                                                                                                                                                                                                                                               0 = ININ (0.15.TNIN)
                                                                                                                                                                                                                                                                                                                                                                                                                             PMSF = SORT (CUECT/NCT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 WRITE (6,9003) ITLIM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            NTLINE = NTLINE + 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                  NO 222 T=1.NLTMIT
                                                                                               ST = CTINT + TINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  TRUF = TRUF + 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PONTINUE
                                                                            TVALUE = VAL
                                                                                                                    C = (1) = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NTI TNF = 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            60 TO 260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CONTINIE
                                                                                                                                                         CONTINUE
                    TST = ST
                                                                                                                                   1 = 41151
                                       JM = IM
                                                                                                                                                        7270
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       727
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                740
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         222
                                                                                                                                                                                               ررن
```

CONTINUE

221

```
+ FREET*FREET
                                                                                                                                                                                                                                                                                                                                                                                                     FAPFTAFRAET
                                                                                                                                                                                                                                                                                                           + ARS(FRRET)
                                                                                                                                                                                                                                                                                                                                                                                       ARS (FRRFT)
                                                                                                                                                                                                                              - STGNAL (ST)
                                                                                                                                                                                                                                                                   PPIMT = PRIMT + ST - TPRIM
                                                                                          IF (IMOVF.GT.0) GO TO 262
                                                                                                                                                                                                                                                                                                                                                                                                                                                      SECT = SECT + ST + TSFCO
                                                                                                                                                                                                                                          F (TM.FQ.42) GO TO 270
                                                                                                                                                                                                                                                                                                                                                                                                                                         IF (IDEL.ED.O.) NINT=1
RTIMITAUF) = PCINT
                                     IINT(IBUF) = NINT
                                                  RUFINIT(TRUF) = 1
                                                                                                                                                                                                                                                                                                         CAFSFC = CAESEC
            FTTM (IRUF) = ST
                                                                                                                                                                                                                                                                                                                       SAFSEC = SAFSEC
                                                                                                                                                                                                                                                                                                                                   NAFSEC = NAESEC
                                                                            CTINT = PCINT =
                                                                                                                                                                                                                                                                                                                                                                                     CAFROT = CAERRT
                                                                                                                                                                                                                                                                                                                                                                                                               NAFRRT = NAFRRT
                                                                                                                                                                                                                                                                                                                                                                                                    SAFRRT = SAFRRT
                                                                                                                                                                                     TOTCI(I) =
                                                                                                                                                                                                                           FRRFT = CLEVFL
                                                                                                                                                            FCI = 0.
DO 241 I=1.5
                                                                                                                                                                                                   CONTINUE
                         INTEND (TRUE)
                                                                                                                                                                                                                                                                               TPRTW = 0.
TSFCO = ST
                                                                                                                                                                                                                                                                                                                                                                        TP = MIGGT
                                                                                                       MOVECT = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   18FC0 = 0.
                                                                                                                   CUFCT = 0.
                                                                                                                                                                                                                                                      NINT = -1
                                                                                                                                                                                                                                                                                                                                               GO TO 220
                                                                                                                                                                                                                CONTINUE
                                                                                                                                                                                                                                                                                                                                                             CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                            O = LNIN
                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CONTINUE
                                                                                                                              NCT = 0
                                                                                                                                                                                                   261
                                                                                                                                                                                                                                                                                                                                                             270
                                                               240
```

CONTINUE

245

```
WRITE (6,9004) CTINT.ST.TSR.ERRET,MOVECT,RWSE.(PTOT(I).I=I.NLTWIT)
                                                                         IF (CTINT.FO.TPRIM.AND.TOEL.NE.O.) GO TO 310
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   JF (NINT.LT.0) RUFTSP(1RUF) = CTINT - TSFCO
                                                                                                                                                                                        CALL FDATA (PCINT, ST, CLEVEL, CLEVEL, NINT, 1)
                                                                                                                                                                                                                             ISR = CTINT - TPPIM
IF (NINT.LT.0) TSP = CTINT - TSFCO
S IT THE FUD OF A TIMED INTEDVALS
                                                      IF ((ST-TPRIM).LT.TDFL) 60 TO 400
                                                                                                                IF ((ST-CTINT). (T.TINT) GO TO 400
                                                                                                                                                                                                                                                                                                         PTOT(I) = 100.*TOTCI(I) / NCI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = CTINT - TPPIM
                                                                                                                                                    IF (CT. 1 T. 4 START) GO TO 360
IF (TMOVF. GT. 0) GO TO 340
                                                                                                                                                                                                                                                                                                                                                                IF (NTLINE.LF.60) GO TO 320 WPITE (6.9003) ITLIM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WPITE (6,9005) ST.JM.IN.VAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF (TRUF. LF. 10) GO TO 345
                                     IF (NINT.LT.0) GO TO 305
                                                                                                                                                                                                            IF (TTL.FO.0) 60 TO 360
                                                                                                                                                                                                                                                                    RMSF = SORT (CUECIZNCT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       = FRPFT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         = CTINI
                                                                                                                                                                                                                                                                                                                                             NTITUE - NTLINE + 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            RTIM(TRUF) = DCINT
                                                                                                                                                                                                                                                                                     TIMITHIE TOU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TRUE = TRUF + 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ALIFFAR (TAUF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 AUFTSR (IRUF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                INTEND (JRUF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           AUFCTT (IRUF)
                                                                                                                                                                                                                                                                                                                             PUNTINCO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FITM (TRUE)
                                                                                                                                                                                                                                                                                                                                                                                                      NTLINF = 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GO TO 360
                                                                                                                                                                                                                                                                                                                                                                                                                                                           60 TO 360
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CONTINUE
                                                                                             CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                        CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                    TONTHUCE
                                                                                                                                                                      L
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            345
                                                                                             305
                                                                                                                                 310
                                                                                                                                                                                                                                                                                                                                                                                                                        320
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  340
                                                                                                                                                                                                                                                                                                                             311
  ن د
```

```
CALL FOATA (PCTNT.ST.CLFVFL.CLFVFL.NINT.0)
                                                                                                                                                                                                                                                                                              IS IT THE REGINNING OF A KNOB TURNA
                                                             F (ST.LT. (TPRIM+TOFL+TINT)) NINTER
                                                                                                                                                                                                                                                                                                                      IF (IM.NF.35.0R.ID.NF.A) GO ID 500
                                                                                                                                                                                                                                                                                                                                                                         IF ((ST-PCTNT).F0.0.) G0 TO 410
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        IS IT THE FND OF A KNOR TURNA
                                                                                                                                                                                                                                                                                                                                   IF (ST.LT.ASTAPT) GO TO 410
                                                                                                                             = -30
                                                                                                                                                                 IF (IMOVF.6T.0) GO TO 400
                                    GO TO 365
                                                                         (NINT.GT.20) NINTED
                                                                                                                            F (NINT-LT--20) NINT
                                                                                                                                                                                                                                                                                                                                                MOVECT = MOVECT + 1
                                                                                                                                                                                                                                                                                                                                                                                                               RMOVE = PCINT = ST
                                                                                                                                                                                                                                                                                                                                                            = MOVFALL
                                                                                                                                                                                                                                              ċ
ININ =
          AUFINIT(IRUF) = 1
                                                                                                                                                    CTINT = PCINT =
                                               NINT = NINT + 1
                                                                                                               I - LAIN = LAIN
                                  F (NINT.LT.D)
                                                                                                                                                                                                                                            TOTCI (I)
                                                                                                                                                                                                                                74 [=] 45
                                                                                                                                                                                                                                                         PUNTTNOO
( JUHI ) LINI
                                                                                                                                                                             MOVECT = 0
                                                                                                                                                                                           ٠
اا
                                                                                      60 TO 366
                                                                                                                                                                                                                                                                                                                                                                                                                                                    GO TO 220
                                                                                                                                        CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                        TRIF = 0
                                                                                                   CONTINUE
                                                                                                                                                                                                                   FCT = 0.
                                                                                                                                                                                                                                                                                                                                                                                                  CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CONTINUE
                        CONTINUE
                                                                                                                                                                                                                                                                     CONTINUE
                                                                                                                                                                                                                                                                                                                                                           MOVFALL
                                                                                                                                                                                                       NCT = 0
                                                                                                                                                                                        CUECT
                                                                                                                                                                                                                                                                                                                                                                                                                             レンフシー
                       360
                                                                                                  365
                                                                                                                                        366
                                                                                                                                                                                                                                                       410
                                                                                                                                                                                                                                                                                                                                                                                                                                                                100
000
000
```

```
DETFEMINE PARAMETERS OF RESPONSE-TIME FUNCTION R(T) = A*T+R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        R = (CLFVEL*TEMOVF - VAL*TRMOVF) / (TFMOVE - TRMOVF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        STORF DATA FOR EVENTS IN MOVEMENT RUFFFR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       = (VAL - CLEVEL) / (TEMOVE - TBMOVE)
                                                                                                                                                                                                                                                                                                                                                           S THE ACTUAL VALUE OF TRACK CHANGEOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                TF (RTIM(IRUF).LT.ASTAPT) GO TO 640
                IF (TM.NE.34.0F.10.NF.8) GO TO 600
                                                                                                                                                                                                                                                                                                                                                                                              F (TM.NF.A0.0R.TO.NF.3) GO TO 220
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F (TRUF.GT.NRUF) GO TO 650
                                                                                                                                                                                                                                                                                                                                                                                                               IF (TRUF.6T.0) GO TO 610
WPITF (6.9006) ST.IM.ID.VAL
                                                                       WPITE (6,9005) ST. IM. IN. VAL
                                                     TF (TRUF.LF.10) GO TO 510
                                                                                                                                                                                                                                                                                                                       F (TMOVF.NF.2) GO TO 220
                                                                                                                                                                                                                                                                   12
                                                                                                                                   ATTM(TRUF) = PCJNT
                                                                                                                                                                                                          RUFINIT(IBUF) = 0.
                                                                                                                                                                                         TNIN = (FURI) ININI
                                                                                                                                                                         C
11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RUF = IRUF + 1
                                                                                                                                                                                                                                                                 FMUVE = PCINT
                                                                                                                                                    FITM(IRUF) =
                                                                                                                                                                       INTEND (TRUE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               NAME = TRUE
                                                                                                                                                                                                                                                                                  60 TO 220
                                                                                          GO TO 520
                                                                                                                                                                                                                                                MOVF = 2
                                                                                                                                                                                                                                                                                                       PONTINUE
                                                                                                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PONITINOS
                                                                                                                CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PONTINGE
                                                                                                                 510
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             610
                                                                                                                                                                                                                              520
                                                                                                                                                                                                                                                                                                       004
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                しんと
```

```
CAIL EDATA (RTJM (IRUF) .FTIM (IBUF) .VI .V2 .IINT (IRUF) .INTFNN (TRUF))
                                                                                                                                                                                                                                                                                                              WRITE (6.9004) T1.T2.TCP.ERR.MOVECT.RMSE, (PTOT (I). [=1.NLIMIT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IF (RUFINIT(IBUF), FO.0.) GO TO 620
                                                                                TE (INTEND(JRUF).NF.1) GO TO 640
                                                                                                                                PTOT(I) = 100.*TOTCI(I)/NCI
                                                                                                                                                                                                                                               IF (NTLINE, LF. 60) GO TO 635
                                                               IF (TTL.FO.0) GO TO 640
                                                                                                                                                                PMSF = SORT (CUECI/NCT)
= A*RTIM(TRUF) + B
= A*FTIM(TRUF) + B
                                                                                                                                                                                                                                                              WEITE (6,9003) ITLIM
                                                                                                                                                                                                                              NTLINE = NTLINE + 2
                                                                                                TSP = BUFTSR(TBUF)
                                                                                                                                                                                                               FOR = RUFFAR(TRUF)
                                                                                                                DO 631 J=1.NLIMIT
                                                                                                                                                                                T1 = BUFCTI (IRUF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ċ
                                                                                                                                                                                              = FTTM(TRUE)
                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          TOTCI (I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                          00 641 1=1.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PONT TNO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CLFVFL = VAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IRUF = NRUF
                                                                                                                                                                                                                                                                               NTI THE = 6
                                                                                                                                                                                                                                                                                                                                                                                           MOVFCT = 0
                                                                                                                                                                                                                                                                                                                                                                                                           CUFCT = 0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GO TO 620
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            TMOVE = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GO TO 220
                                                                                                                                                                                                                                                                                             CONTINUE
                                                   CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                                                                                                                                                            CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                            NCT = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                          T.C.L
                  <u>ر</u> >
                                                                                                                                                                                                                                                                                                ሌ ን
                                                                                                                                                                                                                                                                                                                                                          640
                                                  630
                                                                                                                                                631
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           650
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            641
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C
```

TF (RTIM(IRUF), FO, FTIM(IRUF)) GO TO 630

```
**********************************
                                                                                                                                                                                                                                                                                                                                                                                                          - NOBS (N) *PMSW*RMSW/(NOBS (N)-).)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                - NOBS (N) *X*X*X*(N) SBON -
                                                                                                                                                                 CA! L. EDATA (PCINT, ST. CLFVEL, CLFVEL, NINT, 0)
                                                                                                                                                                                                  (NINT.GF.0) PRIMT = PRIMT + TPRIM - ST
                                                                                                                                                                                                                    TSECO -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                = SSMOVFI(N)/(NOBS(N)-1.)
                                                                                                                                                                                                                                                                                                                                                                                                           VAR = SSCENT (N) / (NOBS (N)-1.)
                                                                                                                                                                                                                                                                                                                                                                                          TF (NORS(N).E0.1) GO TO 705
                                                                                                                                                                                                                                                                                                                                        TF (NORS(N).EQ.0) GO TO 730
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IF (NOBS(N).EQ.1) GO TO 707
            PROCESSING OF TAPE IS COMPLETE
                                                                             PROCESS FINAL SEGMENT OF DATA
                                                                                                                                                                                                                   SFCT = SFCT +
                                                                                                                                                                                                                                                                                                                                                         TSR = TOFL + (N-1.) #TINT
                                                                                                                                                                                                                                                                                                                                                                                                                            TF (VAR.LF.D.) GO TO 705
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 TF (VAP.L.F.0.) GO TO 707
                                                                                                                                                                                                                                                                                                                                                                         PMSM = SCFNI(N)/NORS(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                XMV = SMOVET (N) ZNORS (N)
                                                                                                                                                 (PCINT.FQ.ST) GO TO 701
                                                                                                              (TM.FO.IFF) ST = TLAST
                                                                                                                                                                                                                                                                                                        WATTE (6,9007) NAME, TTLIM
                                                                                                                              (TMOVF.NF.0) GO TO 701
                                                                                                                                                                                                                                                     PRINT CUMULATIVE DATA.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TIMI INI IMIT
                                                                                                                                                                                                                                                                                                                                                                                                                                            RMSSD = SOPT (VAR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   XMVSD = SORT (VAP)
                                                                                                                                                                                                                                                                                        NAMF = 7HPPIMARY
                                                                                                                                                                                                                    (NINT.LT.0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              • U = USSMa
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 *WYSU = 0.
                                                                                                                                                                                                                                                                                                                        DO 720 N=1.20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PONTINCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PUNITNO
                                                                                                                                                                                   CONTINUE
                                             CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              702
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              706
            707
                                                                                                                                                                                  .701
                                                                                                                                                                                                                                       c c c
```

$\mathsf{PTOT}(1) = \mathsf{STTMI}(\mathsf{N} \cdot \mathsf{I}) / \mathsf{MORS}(\mathsf{N})$

```
VAR = SSESFC(N)/(NSFC(N)-1.) -NSFC(N) *RMSM*DMSM/(NSFC(N)-).)
                                                                                                                                                                                         N. NORS (N) . TSR. XMV. PMSM. (PTOT (1) . I=1.NL [M]T)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         WRITE (6.9008) N.NSFC(N).TSR.XMV.PMSM.(PTOT(I).T=1.NLjMIT)
                                        - NORS (N) *PTOT (I) *PTOT (I) / (NORS (N) -1.
                                                                                                                                                                                                              XMVSD.RMSSD. (PTOTSD(I).I=).NLIMIT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       - MSFC(N) *PTOT(I) *PTOT(I) / (NSFC(N) -).)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 VAP = SSTTSFC(N+T)/(NSEC(N)-1.)
                   VAR = SSTINT (N+I) / (NOBS (N) -1.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PTOT(1) = STTSEC(N+1)/NSFC(N)
IF (NORS(N) . FO. 1) GO TO 714
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IF (NSFC(N), FO.1) GO TO 732
                                                             IF (VAR.LF.0.) GO TO 714
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF (VAP.IF.A.) GO TO 732
                                                                                                                                                                                                                                                                                                                                             TF (NSFC(N).FQ.0) GO TO 734
                                                                                                                                                                                                                                                                                                                                                                                                                                TF (NSFC(N),F0,1) GO TO 731
                                                                                 PTOTSD(I) = SORT(VAR) GO TO 715
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PTOTSD(I) = SORT(VAR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TF (VAP.LF.O.) GO TO 731
                                                                                                                                                                                                                                                                                                                                                                                                            DMSM = SESEC(N) /NSEC(N)
                                                                                                                                                                                                                                                                                                    WPTTF (4.9007) NAME, JTLIM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       PTOTSD(I) = 0.
                                                                                                                                                     0
                                                                                                                                                                                                                                                                                                                                                                  TSR = (N-1) * TINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RMSSD = SORT (VAR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NO 732 I=1.NLIMIT
                                                                                                                                                     H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         *U = USAMX = AMX
                                                                                                                                                                                            WPITF (6.9008)
                                                                                                                                               PTOTSD(I)
                                                                                                                                                                                                                                                                               NAMF = 9HSECONDARY
                                                                                                                                                                                                                WRITF (6.9012)
                                                                                                                           CONTINUE
                                                                                                                                                                        CONTINCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONTINCE
                                                                                                                                                                                                                                                                                                                                                                                    •0 = 055ma
                                                                                                                                                                                                                                                                                                                        02 1=N FF7 00
                                                                                                                                                                                                                                      PONTINCO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CONTINUE
                                                                                                                                                                                                                                                          CONTINUE
                                                                                                                           7]4
                                                                                                                                                                    715
                                                                                                                                                                                                                                   720
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    732
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    731
```

XMVSD.RMSSD. (PTOTSD(T).I=1.NLIMIT)

WPITF (6.9012)

PUNTINGO

```
WPITE (6,9010) NAME, T. FREM. ERFSO. MOVEALL. PMSF. (PTOT (I). I=1.NI TMIT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  INITIALIZE ALL VARIARLES IN ORDER TO PROCESS NEXT SEGMENT OF TAPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   WOTTE (6.9010) NAME.SECT.EREM.ERESD.17.PMSE.(PTOT(T).TET.NITMIT)
                                                                                                       VAP = SAFRDT/(NAFRDT-1.) - NAFRRT#FREM*FRFM/(NAFRRT-1.)
                                                                                                                                                                                                                                                                                                                                                                                                        VAR = SAFSEC/(NAFSFC-1.) - NAFSEC*ERFM*ERFM/(NAESFC-1.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PTOT([] = 100.*(TOTPRI([)+TOTSFC([))/(NCPUI+NCSFC)
                                                                                                                                                                                                                                                                    WPITE (6,9010) NAME, PRIMI, FREM, ERFSH, MOVEALL, PANSE,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                विष्यं प्रति विषयं प्रति विषयं प्रति विषयं प्रति का विषयं प्रति का विषयं प्रति का विषयं विषयं विषयं विषयं विषय
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   VAR = (SAFDRT+SAFSFC)/(N-1.) - NAFREMARREM/(N-1.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RMSF = SORT ((CUFPP1+CUFSEC) / (NCPR1+4CSFC))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     PTOT (1) = 100. *TOTSEC(1) /NCSEC
                                                                                                                                                                                                                  PTOT(1) = 100.4TOTPRI(1)/NCPRI
                                                                                                                                                                                                                                                                                                (PTOT(I) • I= 1 • NLIMIT)
IF (NAESEC • LE • 1) GO TO 741
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF (NCSFC.FD.0) GO TO 741
                                                                                                                                                              = SORT (CUFPRI/NCPRI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RMSE = SORT (CUESEC/NCSFC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ERFM = (CAFRRT+CAFSEC) /N
                                                                                                                                                                                                                                                                                                                                                                             FRFM = CAFSEC/NAFSFC
                          WRITE (6.9009) IT[ IM
                                                                                FREW = CAERRIZNAERRI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           = NAFRRT + NAFSEC
                                                                                                                                                                                                                                                                                                                                                      NAME = SHSFCONDARY
                                                                                                                                                                                      TIMI IN-1=1 257 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DO 740 J=1.NLTMIT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DO 745 T=1.NLTMIT
                                                                                                                                   FRESH = CORT (VAR)
                                                                                                                                                                                                                                                                                                                                                                                                                                       = SOPT(VAR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FRESN = SORT (VAR)
                                                  YAPMIAAHT =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     T = PRIMT + SECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         HAMP = 4HANTH
                                                                                                                                                                                                                                         CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     TONTINGO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PONT INCO
   CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PONTINCE
                                                                                                                                                               アスクラ
                                                          MAMP
734
                                                                                                                                                                                                                                             735
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   745
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  740
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 741
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CO
```

```
TOTSEC(5) +NCSEC+SCFNI(20)+SSCENI(20)+STINI(20+5)+SSTINI(20+5)+
                                                                                                                                                                                                                                       \approx STTSEC(1.J) \approx SSTTSEC(1.J)=0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FR.2.4X.*V]=**FR.2.4X.*V2=**FR.2.4X.*NN=**[3.4X.*TUTC[IM=**12]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      COMMON /STORE/CUFCI.TOTCI(S).NCI.CUFPRI.TOTPRI(S).NCPRI.CHESFC.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FORMAT (1X, * $ F PROP ON CALL TO FOATA*/* T1= * . FR. 2.4X, * T2= *.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            *SESFC(20)*SSESFC(20)*STTSFC(20*5)*SSTTSFC(20*5)*NSFC(20)
*ECUM(2)*FCUMI(2*20)*NTERP(2*20)*FCI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NOBS (20) + TLIM (5) + NI [MIT+MOVECI+SMOVFI(20) + SSMOVFI(20)
                                                                                                      ċ
                                                                                                        H
                                                                                          SCFNI(1) = SSCFNI(1) = SMOVFI(1) = SSMOVFI(1)

SFSFC(1) = SSFSFC(1) = 0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SURPOUTINE EDATA(TI.TZ.VI.VZ.NN.TNTCUM)
                                                                                                                                                                                                                                                                                                                                       II
                                                                                                                                                                                                                                                                                                                              TOTCI(1) = TOTPRI(1) = TOTSEC(1)
                                                                                                                                                                                                                                                                                                                                                                                                                            CAFRRT = SAFRRT = CAFSFC = SAESEC =
CUFCT = CUFBRT = CUFSFC = FCT = 0.
                                                                                                                                                                                                                                    (C+1) INITSS = (C+1) INITS
                                                                                                                                                                   60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              = (V)*T2 - V2*T1) / (T2 - T1)
                                                                                                                                                    FCUVI(1-1) = FCUMI(2-1) =
                     NCT = NCPRT = NCSFC = MOVFCT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     PEAN (5.9000) MARGIN.VALUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TF (FOF(5).NF.1) GO TO 101
                                                                                                                                         NORS(T) = NSFC(T) = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              \Delta = (V2 - V1) / (T2 - T1)
R = (V1*T2 - V2*T1) / (T2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               TF (T1.F0.T2) GO TO 100
                                             FCUM(1) = FCUM(2) = 0.
                                                                                                                                                                                                                                                                                                                                                                                                   MOVERT = MOVEALL = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                NAFRRT = NAFSEC = 0
                                                                                                                                                                                                                                                                                                                                                                         PRIMT = SECT = 0.
                                                                                                                                                                                                                                                              CONTINCE
                                                                                                                                                                                                              nn 780 J=1+5
                                                             00 790 1=1.20
                                                                                                                                                                                                                                                                                                                                                       PONT TACE
                                                                                                                                                                                                                                                                                                         795 1=1.5
                                                                                                                                                                                                                                                                                     PONTINCO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DATA T/0./
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      STOP
                                                                                                                                                                                                                                                                                                          S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0006
                                                                                                                                                                                                                                                           780
                                                                                                                                                                                                                                                                                                                                                    795
```

Ċ

```
IF (APFRP.LF.TLIM(I)) TOTSFC(I)=TOTSFC(I)+1.0
                                                                                                                                                                                                                               IF (ARFRA, LF, TLIM(I)) TOTPRI(I)=INTPRI(I)+1.0
                                                                                                               IF (ARERRALE TLIM(I)) TOTCI(I)=TOTCI(I)+1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              WRITE (6,9000) TI-TZ-VI-VZ-NN-INTCUM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             IF (TNTCUM.NF.1.0R.NN.FO.0) RFTURN IF (NN.L.T.0) GO TO 125
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SMOVET(NN) = SMOVET(NN) + MOVEC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             + EC1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IUZ +
                                                                                                                                                                              CUEPRI = CUFPPI + FRR*FRR
FCUM(1) = ECUM(1) + ERR
                                                                                                                                                                                                                                                                                                                 CUESFC = CUESFC + FPR*FRR
                               FRR = A#T + R - STGNAL (T)
                                                             CHECT = CHECT + FOR*FRA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              N(FPP(1.NN) = N(FPP(1.NN))

FC(MT(1.NN) = FC(MT(1.NN))
                                                                                                                                                             (NN.LT.0) GO TO 15
                                                                                                                                                                                                                                                                                                                                                                                                                                               TF (T.L.T.T2) GO TO 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IF (NN. F.20) GO TO 110
                                                                                                                                                                                                                                                                                                                                FCUM(2) = FCUM(2)
                                                                                                                                                                                                                                                                ACPRI = ACPRI + 1
                                                                                                                                                                                                                                                                                                                                                                                                 NICSEC = NCSEC + 1
                  TE (T.LT.TI) GO TO ZO
                                                                                                                                                                                                                 OO 12 I=1.NI IMIT
                                                                                                                                                                                                                                                                                                                                                OO 16 J=1.NI_IMIT
                                                                                 = ARS(ERR)
                                                                                                 OO 11 T=1.NLIMIT
                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                  BUNITACO
                                                                                                                                                  NCT = NCT + 1
                                                                                                                                                                                                                                                                                                                                                                                                                                 T = T + .01
                                                                                                                                                                                                                                                                                                                                                                                                                PUNTINO
                                                                                                                                                                                                                                                                                                 PONTINGO
                                                                                 AGFER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CONTINUE
CONTINUE
                                                                                                                                                                 Ŀ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RFTURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 110
                                                                                                                                                                                                                                                                                                                                                                                  5
                                                                                                                                                                                                                                                                                                                                                                                                                 2
  <u>_</u>
                                                                                                                                                                                                                                                  7
                                                                                                                                                                                                                                                                                                 ر
ر
```

```
+ PTOT *PTOT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DATA JCOUNT/126/, IFF/7777777700000000000000
                                                                                                                                                                                         + PTOT *PTOT
SSWOVEI(NN) = SSWOVEI(NN) + MOVECI*MOVFCI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             STISEC(MM.I) = STISEC(MM.I) + PINT
                                                                                                                                                                                                                                                                                                                                                                     WPITE (6,9000) T1.T2.V1.V2.NN.INTCUM
                                                                                                                                                                  CTINJ(NN.I) = CTINI(NN.I) + PIOT
                                                                                                    SCENT (NN) = SSCENT (NN) + RMSF*RMSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SSESEC(MM) = SSESEC(MM) + BMSE*RMSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (I \cdot WM) \cup SSIISEC(WM \cdot I)
                                                                                                                                                                                         (I-NN) INTICH = (I-NN) INTICH
                                                                                                                                                                                                                                                                                                                                                                                                                                         LUN +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SUBBOUTINE TREAD (ST. IM. ID. VAL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  EF/777777777777777777777778/
                                          SCENT (NN) = SCENI (NN) + PMSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IUN/(1) IULU *1010 = IULU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SESEC(MM) = SESEC(MM) + DMSE
                                                                                                                                              PTOT = 100. *TOTC1(1) /NCI
                                                                                                                                                                                                                                                                                                                                                                                                                                       NIFRE(2+MM) = NIFRE(2+MM)
                                                                                                                                                                                                                                                                                                                                                                                                                                                            = FCUMT (2.MM)
                                                                                                                                                                                                                                                                                                                                                F (MM.LF.20) GO TO 130
                                                                                                                                                                                                                                     I + (NN)SBON = (NN)SBON
                  RMSF = SORT (CUECIZNCI)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 PMSF = SORT (CUFCI/NCT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                NSEC (MM) = NSEC (MM) +
                                                                                                                                                                                                                                                                                                                          (MM.FO.30) RETUPN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TCOUNT = ICOUNT + 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     OTMENSION RUFF (124)
                                                                                                                       OO 120 J=1.NLIMIT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DO 140 T=1.NLIMIT
                                                                                                                                                                                                                 PUNTINGO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PONTINCO
                                                                                                                                                                                                                                                                                                                                                                                                                                                            FCIIMT (2+MM)
                                                                                                                                                                                                                                                                                                        NN- I WW
                                                                                                                                                                                                                                                                                                                                                                                                                CONTINUE
                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                             RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DETLIBN
                                                                                                                                                                                                                                                           RETIDA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          27.0
                                                                                                                                                                                                                                                                                                                            L
                                                                                                                                                                                                                                                                                125
                                                                                                                                                                                                                                                                                                                                                                                                                  130
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           140
```

IF (TCOUNT.LF.125) GO TO 20

SIGNAL SIG MAPIRA MAPIRA

SIGNAL

FUNCTION SIGNAL(T) COMMON /SIG/SF(3).AMP(3).OFFSFT SIGNAL = AMP(1)*SIN(SF(1)*T) + AMP(2)*SIN(SF(2)*T) + AMP(3)*SIN(SF(3)*T) + OFFSFT

RETIION FND

-.000000 20.000000 2.000000 10000.000000 500,000000 300,000000 100,000000 . K2R31R 4000.00000 1400.00000 .897597 1.570795 2800.00000 1600.000000 400.000.000 OFFSFT FRFD2 FOFFIR FRFOI AMP 2 PMP 2 FMP 3 TIME! INE TNTERVAL SIGNAL SIGNIAL LIMIT TIMIT SIGNAL STGNAI SIGNAL STGNAL STADT SIGNAL IMIT TIMI

TIMFLINE DATA FOR DRIMARY TASK AY TIMF INTERVAL

TNTE	TNTFBVAL DT FNJ	TIME STAFF	FEBORE AT	\$ 11.0 ×	00 a a u	PEPCENT TOT(1400)	PFRCFNT TOT (400)	PFRCENT TOT (500)	PFRCFNT TOT (100)	PERFENT TOTE 104)
10.17	20.17	7.00	145.00	c	6216.75	000	000.	000	000.	
71.05	71.55	ć.	1779.54	ď	1162,45	85.500	60.500	000.67	25.000	9.500
11.66	24.17	7.00	1779.54	'n	192.38	100.000	94.500	76.500	52,000	17.000
74.17	24.17	4.00	1779.54	α	424.01	000.66	41.500	54.000	32.500	000.6
74.17	24.24	۴. ۵	1779.54	ć	1450.52	22,222	.000	000	.000	.000
74.24	76.95	, .	-1544.42	c	ום.חורק	062 °L 4	40.500	27.500	14.500	
76.96	40.0F	٥٠.٢	-158K.B?	c	9438.15	000.	000.	000.	, 00°	000.
みと*いと	72.26	e.	75.10Fn1-	٣	6358,00	44.000	42.500	41.000	33,500	10.500
12.24	74.26	د د	-10101-	4	76.975	100.000	100.000	42.544	34.000	13.000
۶۲.۵۲	٠٠,٢٤	٠,٥٠	16.19101-	٨	156.33	100.001	100.000	000°68	42.500	13.000
۶۲.۶۲	74.27	٨. ٥٥	-10901-27	c	P03.78	100.001	100.000	100.000	100.000	
74.27	79.27		195.40	c	1794.50	47.000	54.500	000.07	44.500	17.000
76.05	40.27	د د د د	195.40	c	4770.81	000	000.	000	c.c.	
40.27	42.27	ć.	2000-23	r	1263,12	49.500	45.500	31,500	13,500	4.000
42.27	44.27	7.90	5600.23	۸	441.27	100.000	91.500	65.000	62.500	13.500
44.27	44.27	4.00	£2.0005	α	1072,57	44.000	A0.000	44.000	44.500	16.500
44.70	40.20	ć.	-1900,95	c	1647.84	71.500	42.000	41.500	34.500	12.000
40.29	50.29	٠٠٠	-1909.95	c	P268.82	600	000.		000.	
60.00	62.63	ć.	-10641.94	u	6131.20	41,500	005.56	19.500	10.500	7.000
52,29	66.25	ده. د	-10641.34	σ	1214.11	10.500	100.05	000.25	74.000	11.900
54.29	54.29	.0.4	-10641.94	•	414.90	95.500	46.000	69.500	54.000	12.500
54.70	٠ ٢٤٠٧٤	٨.	-10441.94	c	144.01	100.001	100.001	100.000		,
۲۴. ۲۶	۶۰°ء۶	¢ c •	471.79	c	LL.034	100.000	44.500	42.500	24.000	
cr. 02	۲۲.۵۸	2.08	471.79	c	51.25.1	A6.000	74.500	18.000	11.000	3.500
cr. nA	£1.54	ć.	-444.19	^	459,52	91.000	44.000	29,000	54.500	0.00
Cr. CA	44.12	7.00	-404.19	•	447.27	100.000	00.00	64.500	40.500	7.000
دد. ۲۶	44.32	4.00	-604.19	•	914,45	42,517	A4.0AA	56.219	24.16A	9.451
64.17	44.14	۴.٥	-464.19	c	2945.88	.000	000.	000.		

THAFLING DATA FOD DRIMARY TASK BY TIME INTERVAN

TNTFWANI ST FNO	TTWE STRIFT DETLIBA	reade at	**************************************	P. W. G. C. G. G. C. G. G. C. G. C. G. G. G. C. G. G. G. G. G. G. G. C. G.	PERCENT TOT(1600)	PERCENT TOT (ROA)	PFRCFNT TOTE 500)	PEBCENT TOT (300)	PEDFENT TOT(1901
a. 14	cc.	חניוושל-	c	1074.30	89.500	49.500	000.05	17.500	A.500
4r.0	7.00	חד. ורפכ-	c	\$£.07724	11.500	500	000.	000.	.00.
25.01	٠٠.	-1062.ng	ď	5444.5K	19.500	4.500	3.000	1.500	600
26.24	c	-1042.ns	•	1927.61	77.000	47.000	29.500	19,000	7.500
44.34	4.00	-7042.05	ď	11.6601	PD0.54	45.590	54.500	13.000	11.000
74.34	۴.۵،	-7062.15	c	יר,רלי	100,000		000.		
A . 34	c c •	. A > A . D .	c	2567.82	15.000	000	.000	000.	
4r. na	00.0	00.858-	c	4451.45	.000	.000	000.	.000	000
47°CA	c ·	74,1644-	4	3440.AK	กกรู้ครั	000-45	14.500	とった。そ	2.000
۵4.34	° ° ° °	46,5644-	ď	540.70	100.000	44.000	50.000	33.000	12.500
46.A6	4.00	46.FGAA-	ď	444.28	94.500	82.50A	57.500	24.500	0.000
אר. אר	, o • 4	74623.24	c	1140.41	100,000	.00.	000.	000	
אר. שא		11.5111-	c	1943.74	32.000	10.000	11.000	7.000	7.000
٥٩.٦٨	٥٠.	ונ. דרוו-	c	110.43	060-10	56.000	000.65	74.500	ر د ب _و م
٩٢. ٥٩	c ·	-1117,29	4	FA.A2#1	005°27	16.000	0.500	7.590	, ,
٨٤.40	00.0	٥٥. ٢٢ ١١١-	σ	40.50A	000.20	74.000	52.5AA	11.500	ころ。ちょ
۸۴. ۵۸	° ° 4	-1117,29	1	1144.77	78.000	54.000	20.00	15,000	A. 040
44.37	, c • 4	-1117.20	c	744.31	100.000	100.000	0,0	000.	
71.00	¢ c •	-744.41	c	1541.94	54.241	310.5	000.		
76.00 l	,,,,	-744.41	c	A141.20	000.	000·	000.	000.	
71.50	¢ c •	-9454.80	,	5640 54	43.500	005°05	000.55	17.000	7.000
7F. 70	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-9856. AG	4	01.515	100,000	99.500	000.04	54.000	12.500
75.20	**	-0854.89	•	425.01	190.001	92,500	51.500	20.000	CC. A
04.44	, c . A	9456.49	c	477.78	100,000	100,000	000.	.000	.00
74.84	ć.	29.595-	c	400.47	100,000	75.000	44.000	25.500	4.000
110.46	00.6	< 5 ° 6 5 ° 6 5 -	c	415.01	100,000	100.001	64.540	54.000	002°71
12.44	· •	407.95	4	1269.57	10.500	41.500	פטט.טר	15.500	5.000
114.44		407.95	•	54.FPn1	40.00	4.500	000.15	12.500	4.500

TIMELINE DATA FOR DRIMARY TASK BY TIME TNTERVAL

ATABT	**************************************	TIEF CTACE	FBBOR AT	۲ ۲ ۲ ۲ ۲	0 2 3 0 0	PERCENT INT(1600)	PERCENT TOTE ADD	PERCENT TOT (500)	PERCENT TOT (100)	PERCENT TOT (100)
114.44	114.44	4.00	467.15	4	4E.004	100,000	95.000	77.090	49.900	14.500
114.64	114.44	۴. ۵۵	407.95	c	47.NS	100.000	100.000	100.001	100.000	100.000
114.44	110.44	· ·	FC.03-	c	1225.44	74.000	32.500	21,000	13.500	4.500
110.44	120.44	, o, c	£2°07-	c	4457,49	100.05	19.500	12.000	7.500	7.5AA
120.44	122.44	٤.	-0105.10	a	546A. An	יטב•ונ	13,500	10.000	A.000	4.500
122.44	124.44	7.00	-0105.19	٨	953,55	47.500	49.500	10,000	9.000	4.500
124.44	124.44	4.00	-0105,10	٨	247.745	100,000	000*25	85.000	005.44	14.590
124.44	124.44	٨.٥٥	-9105.10	c	510.69	100.000	100,000	000		
124.44	120.46	έ.	512.67	c	1195.68	77,9443	414.54	25.62A	14.573	165.4
120.051	130.46	٠٠٠	512.47	c	2755.70	28.000	9.900	000.	000	000.
47°vE1	132.44	ς.	-555.45	ď	20.70	100.000	81.500	49.500	18.000	7.500
47°CL [126.45	٧٠٠	54,225-	ď	415.9A	100.000	99,500	47.500	47.500	14.000
134.46	134.45	٠٠٠	-555,45	ď	£1.00F	100,000	99,500	77.590	51.000	14.500
34°76 [134.48	٨.٥٥	-555,45	¢	189.75	100.000	100.000	100.000	100.000	· 00
134.48	שלי שר ו	ć.	201.98	c	36.86.05	24.500	12.500	4.500	2.000	
47.95[140.48	٠٠٠	201.48	c	3564.16	22.000	11.500	7.000	4.000	1.500
140.48	142.40	ç c •	-5772.12	a	3924.42	lva.er	Ara, cr	25.373	17.914	8 . 4 . a
147.48	144,48	2.03	-5272.12	4	740.50	03.447	74.884	51.254	33.4AR	17.548
144.48	144.48	, c • 4	-4272,12	٢	349,25	100.000	100,000	A7.000	41.000	16.000
144.49	144.50	٠٠٠ ٠	-5272,12	c	154.00	וטט•טטו	100.000	100.000		000
144.5A	144,50	ee	95.125-	c	1247.67	44.5AA	31.500	24.000	13.500	. 00
40,50	150.50	, , , , , , , , , , , , , , , , , , ,	-141.50	c	7421.47	.00.		0.0.	000.	
50.50	152,54	60.	-4024.14	•	1011.41	44.000	51.50A	40.500	30,000	13.000
42,540	154.59	2.00	-4024.14	^	122.19	100.001	100.000	97.590	47.000	40.00
24.50	154.50	4.00	-4024.14	^	194.54	100,000	190.000	A4.010	14.000	3.000
54.50	154.52	4.00	-6024.16	c	61.69	100,000	100.001	100.000	100,000	100,000
۲4,52	150.67	ç •	-50.55	c	3752.AA	11.500	21.000	15.000	10.500	5.000
5a,42	140.52	2.00	-50.55	c	4025,11	21.500	12.000	7.500	4.500	1.500

TIMELINE DATA FOR BRIMARY TASK BY TIME INTERVAL

CTADT FIN	ć	Nailla	DF 711341	*OVF	FRRAB	101(1400)	TOT (AND)	TOT (500)	TOTE 3003	TOTE 1003
147	55°CY1	ć.	-1248.09	^	1971.05	54.00A	15.500	6.000	3.000	
144	144.52	2.00	-1748.09	•	152.74	100.001	190,000	005.19	54.000	14,000
144	144.52	,,,	-1244,09	o	744.27	40.500	41.500	000-27	24.500	A.000
144	144.55	٨. ٥٠	-1248,09	c	FP.1561	100.001	. 900	000.	• 000	.000
140	140.95	c c	-1104.62	¢	1419.40	40.500	3.000	000.	000.	.00
170	170.55	2,00	-1194,62	c	10497.24	000	,000	000	.000	.000
172	172.55	,	-10474.01	~	477.70	52 , 500	50°500	15.000	22,500	4.500
174	174.55	2.00	-10474.01	v	413,23	100,000	91,500	74.500	57.000	19.010
176	174.55		-10676.01	٨	27.78	100,000	97,500	A8.040	73,500	24.000
176	174.54	, o	-10474.01	c	129,52	109.000	100,000	100.000	100.000	000
47.	178.56	¢ •	-124.75	c	F5.00.55	52,261	40.201	34.673	30.151	P.040
787	100.54	2.00	-124.75	¢	44.7.79	10.000	1.500	000.	000.	.000
4	192.54	٠,	642.01	٣	A57.94	000-50	42.000	22.000	10.500	3.500
787	194.54	٠٠٠	f42.01	c	322.94	100.000	100.000	100.000	44.000	16.010
184	184,54	4.00	{U*C*Y	σ	747.79	100.001	42.000	31.000	17.000	3.000
70	65.40	٠,٠	442.01	c	49.46	100.000	100.000	100.000	100.000	44.447
4	1 AA . 50	٠.	10.01	c	1620.66	17.500	12.500	19.000	11.500	005°E
0	100.50	2.00	10.01	E	7947.92	.000	000.	000.	000.	000.
107	102,59	ć.	-0877.K7	3	4783.77	14.500	13.000	27.000	2.500	1.000
192,59 194	194,59	٠,٠,٠	-9477.67	-	1133,65	91,005	71.642	Ar7.52	15,323	11.940
101	194.59		-9A71.47	ď	740.74	94.975	74. 884	43.317	38.691	14.070
797	. 07.701	٠°*	-9A77.67	٤	101.40	100.000	100.000	100.000	•	.000
101	100.40	ć.	11.345	c	15.55	40.00	12,500	65.500	34.500	11.590
200	200.40	7.00	704.13	c	1708.47	44,590	20.010	18.000	10.500	3.500
707	782.40	ς,	-707.51	٨	L0.548	0.500	40,400	57.5AA	54.500	17.500
204	204.40	7.00	-792.51	•	173.99	100.000	100.000	A5.500	61.500	14.000
706	204.40	4.00	-792.51	•	1004.01	41.000	70.500	54.500	15.000	0.000
204.41	۲.	٨. ٥٥	192.51	¢	1487.74	000				000.

TIMELINE DATA FOD DOTMARY TASK AY TIME INTEGVAL

			#	1 1 1 1 1 1 1			i			
INTEDVAL. STADT FI	DVAL. FND	TIME STAICE DETLIBN	FREND AT	N.O. €0∨F.	FBDOD	PERCENT TOT (1400)	PFBCENT TOT(AND)	DEBCENT TOT (500)	PFRCFNT TOT (300)	PF8/F4T
204.41	14.805	.0.	-1650.75	c	R79.47	91.000	12.000	000.65	21.500	7.000
, 14. PAG	210.41	7.00	-1454.75	c	5746.44	ουυ•	000	.000	.000	000.
	212.41	ue•	-8280.25	4	44.5054	14.500	7.500	4.000	2.500	1.000
212.41	214.41	2.00	-4240.25	•	929.11	91.000	95,000	12.500	22.000	10.000
214.41	216.41	v 0° 7	-A2AA.25	ď	1277.92	80.000	45.500	47.500	27.500	000°a
, 14.41	214.64	٠°٠٠	-A2A0.25	c	269.01	100,000	100.000	100.000	100.000	.000

INTFPVAL
TIME
ř
TACK
PRIVARY
90
DATA
CHARLIL ATTVE

PERCENT TOT(100)	6.473	13.950	12.176
PERCENT TOT (300)	17.771	41.650 (16.594)	34,753
PERCENT TOT (500)	27.844 (17.471)	62,775	62,852
PFRCENT TOT (800)	38.142	82,201 (20,960)	82.773
PFRCFNT TOT(1600)	58.165 (25.076)	94.878	94.101
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3523.77	6 416.03)	492.27
INCE NUMBER OF PRACENT PER	5.25	4.80 (2.65)	5.40
THIFBVAI NUMBFR OF TIMF STAFF. MINDER ORS, RFTIDA	60.	2.00	4.00
NUMBER OF	٣.	0	6
TNTFRVAI	-	~	٣

CHMULATIVE DATA FOR SECONDARY TASK BY TIME INTERVAL

PERCENT TOT (100)	5.070	7,921
PFBCFNT TOT! 100)	17.117	6.211
PERCENT TOT (500)	26.200 (18.388)	A.842
PERCENT TOT (800)	39,054	13.553
PERCENT TOT (1600)	63.286 (25.805)	21.342
RREGOR	1914.82 (1050.61)	5131.28
NUMBER OF MOVEMENTS	00.	00.
TIME STNOF BETURN	00.	0u*2
INTEDVAL NIJMAFD OF	0.	6
TNTFOURI	-	٨

PROFFRURE
Ā
DATA
ATTVE
=======================================

Berreinse	TOTAL TIME	ARSOLITE FRE VFAN	ARSOLUTE FROOD AT ENTOY WEAN S.D.	NO.	0445 FRB0B	PEPCENT TOT (1600)	DEBCENT TOT (POD)	PFRCENT TOT (500)	PERCENT TOT (300)	PERCENT TOT(100)
YAMMAA	120.48	5144.21	5144.21 4101.02	304	2510.64	82,350	47.462	51,091	32.022	10.454
SFCONDABY	A0.00	748.45	748.45 755.85	c	4353,37	41,919	25,856	17.071	11,363	3,873
воти	200.48	7956.43	3670,31	909	3357,39	66.475	51,239	17.77	7100.56	9,112

