PROJECT DEVELOPMENT PHASE

DELIVERY OF SPRINT-3

Date	12 November 2022
Team Id	PNT2022TMID33005
Project Name	Hazardous area monitoring for
	industrial power plants using IOT.

SPRINT 3: MIT Application Inventor

* Building an application for our project using MIT application, designing the model and testing the application.

STEP 1: Connecting required nodes in the Node-red platform.

Display link: https://node-red-cgxsy-2022-10-06.eu-gb.mybluemix.net/ui/#!/0?socketid=RN5KWx 3DExG8KE1AAAN

File Edit Shell Debug Options Window Help

```
======= RESTART: C:\Users\deeps\Desktop\3\mobileappcode.py =========
2022-11-12 11:16:24,836 ibmiotf.device.Client
                                                     INFO
                                                          Connected successfu
lly: d:iaggzu:Deepak:123
Published Temperature = 6 C Humidity = 29 % to IBM Watson
Published Temperature = 39 C Humidity = 68 % to IBM Watson
Published Temperature = 49 C Humidity = 35 % to IBM Watson
Published Temperature = 14 C Humidity = 37 % to IBM Watson
Published Temperature = 7 C Humidity = 55 % to IBM Watson
Published Temperature = 98 C Humidity = 31 % to IBM Watson
Published Temperature = 100 C Humidity = 33 % to IBM Watson
Published Temperature = 26 C Humidity = 36 % to IBM Watson
Published Temperature = 57 C Humidity = 64 % to IBM Watson
Published Temperature = 9 C Humidity = 61 % to IBM Watson
Published Temperature = 99 C Humidity = 71 % to IBM Watson
Published Temperature = 18 C Humidity = 68 % to IBM Watson
Published Temperature = 18 C Humidity = 94 % to IBM Watson
Published Temperature = 26 C Humidity = 3 % to IBM Watson
Published Temperature = 36 C Humidity = 78 % to IBM Watson
Published Temperature = 6 C Humidity = 11 % to IBM Watson
Published Temperature = 33 C Humidity = 83 % to IBM Watson
Published Temperature = 99 C Humidity = 61 % to IBM Watson
Published Temperature = 77 C Humidity = 91 % to IBM Watson
Published Temperature = 72 C Humidity = 97 % to IBM Watson
Published Temperature = 0 C Humidity = 76 % to IBM Watson
Published Temperature = 82 C Humidity = 86 % to IBM Watson
Published Temperature = 71 C Humidity = 43 % to IBM Watson
Published Temperature = 49 C Humidity = 23 % to IBM Watson
Published Temperature = 83 C Humidity = 40 % to IBM Watson
Published Temperature = 16 C Humidity = 43 % to IBM Watson
Published Temperature = 9 C Humidity = 8 % to IBM Watson
Published Temperature = 65 C Humidity = 52 % to IBM Watson
Published Temperature = 2 C Humidity = 23 % to IBM Watson
Published Temperature = 3 C Humidity = 62 % to IBM Watson
Published Temperature = 7 C Humidity = 27 % to IBM Watson
Published Temperature = 22 C Humidity = 4 % to IBM Watson
Published Temperature = 10 C Humidity = 40 % to IBM Watson
Published Temperature = 28 C Humidity = 100 % to IBM Watson
Published Temperature = 21 C Humidity = 51 % to IBM Watson
```


STEP 3: Connecting with the MIT Application Inventor to display temperature, humidity and alarm condition.

STEP-4: Attaching web link with the connected blocks in the MIT application inventor

STEP-5: Detecting high temperature and displaying "ALERT" message in the MIT application.

STEP 6: Downloading apk file and building mobile application using python script for sensing temperature for hazardous area monitoring conditions in industrial areas.

Hazardous Area Monitoring	
Temperature	23
Humidity	44
Alarm on	Alarm off