

Point MixSwap: Attentional Point Cloud Mixing via Swapping Matched Structural Division

Ardian Umam¹ Cheng-Kun Yang² Yung-Yu Chuang² Jen-Hui Chaung¹ Yen-Yu Lin^{1,3}
¹National Yang Ming Chiao Tung University ²National Taiwan University ³Academia Sinica

Contributions:

- Introduce an effective technique for synthesizing diverse and realistic point clouds by swapping matched structural divisions, without any part-segmentation labels
- Develop a novel encoder-decoder structure to decompose point clouds with cross-cloud correspondences
- ➤ Mix point clouds to generate augmented data utilizing division queries, leading to significant improvement on point cloud classification
- Augment point clouds by swapping matched divisions cross different clouds
- > Evaluated on both synthetic and real-world datasets
- ModelNet10, ModelNet40, ScanObjectNN
- Experiment with all data (100%) and reduced data (20% & 50%)

Observations:

- Existing point cloud mixup methods do not consider the structural information while performing mixup:
- We generalize the encoder-decoder model to explores inter-cloud division correspondence for division swapping
- Through the learned division queries, we can divide the point cloud into divisions and synthesize the new point clouds

point cloud $\{P\}$ $\{X^a\}$ encoder $\{X^a\}$ encoder $\{X^f\}$ extractor f $\{X^b\}$ decoder division queries T $\text{concat}(X^b, X^b)$

Designed encoder-decoder architecture:

- The learnable division queries jointly decompose a point cloud into *R* disjoint subsets, for division swapping
- The query and key-value pairs are switched in the second layer and produce point-specific features

Quantitative results:

> Accuracy scores on ModelNet40 (M40) and ModelNet10 (M10)

Method	Rate	20%	Rate	50%	Rate	100%
	M40	M10	M40	M10	M40	M10
PointNet	82.1	89.4	85.9	92.7	88.6	93.2
PointNet + Ours	86.3 $(4.2\uparrow)$	91.3 (1.9↑)	88.7 $(2.8\uparrow)$	93.6 $(0.9\uparrow)$	90.2 $(1.6\uparrow)$	93.9 $(0.7\uparrow)$
DGCNN	87.5	93.2	91.5	94.3	92.7	94.8
DGCNN + Ours	91.3 (3.8↑)	94.6 (1.4†)	92.8 (1.3↑)	94.9 (0.6†)	93.5 (0.8↑)	96.0 $(1.2\uparrow)$

> Accuracy scores on rotated M40 (RM40) and ScanObjectNN (SON)

Method	Rate 20%		Rate 50%		Rate 100%	
	RM40	SON	RM40	SON	RM40	SON
DGCNN	87.0	73.7	90.3	81.6	91.5	86.2
DGCNN + Ours	$89.3 (2.3\uparrow)$	$76.3 (2.6\uparrow)$	$91.1\ (0.8\uparrow)$	$84.1\ (2.5\uparrow)$	92.3 $(0.8\uparrow)$	$88.6 (2.4\uparrow)$
DGCNN + Ours + PAA	90.1 $(3.1\uparrow)$	76.8 (3.1†)	91.3 $(1.0\uparrow)$	84.8 (3.2†)	92.3 $(0.8\uparrow)$	89.0 $(2.8\uparrow)$

> Comparison with SoTAs (left) and hyper params. analysis (right)

Method	Rate 20% Rate 100% M40 M10
DGCNN	87.5 93.2 92.6 94.8
DGCNN + PointMixup [3]	89.0 93.8 93.1 95.1
DGCNN + PointAugment [12]	88.6 92.8 93.4 95.2
$\overline{\mathrm{DGCNN} + \mathrm{RSMix} [11]}$	90.1 93.7 93.5 95.9
DGCNN + PointWOLF [9]	89.3 93.5 93.2 95.1
$\overline{\mathrm{DGCNN} + \mathrm{Ours}}$	91.3 94.6 93.5 96.0

פווסופועות	Devei	10140	WITO	bor
2	Input	91.0	94.6	75.9
2	Feature	91.1	94.7	76.2
3	Input	91.2	94.5	76.1
J	Feature	91.3	94.6	76.3
1	Input	91.0	94.4	75.7
4	Feature	91.2	94.6	76.1
5	Input	91.0	94.3	75.5
J	Feature	91.2	94.6	76.0

Divisions Level M40 M10 SON

Visualizations:

> Mixup samples before-after alignment (PAA)

Mixup samples input-output using 3 divisions inputs

> Mixup samples on different division numbers

Source code available:

