الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

(P) والمستوي A(1;-1;2)، نعتبر النقطة A(1;-1;2) والمستوي A(1;-1;2) والمستوي $\{x+y-9=0 \ y+z-4=0\}$ دا المعادلة $\{x+y-9=0 \ y+z-4=0\}$

- .(D) عين تمثيلا وسيطيا للمستقيم (D
- (P) ويوازي A الذي يشمل الذي المستوي (P'
- A'(6;3;1) حيث A' في النقطة A' في النقطة (A'(6;3;1)
- .(D) عيّن تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل A ويوازي (A) ويقطع (A)

التمرين الثاني: (04 نقاط)

: و (v_n) متتالیتان معرفتان علی مجموعة الأعداد الطبیعیة (v_n) و u_n متالیتان معرفتان علی مجموعة الأعداد الطبیعی $u_n = \frac{u_n + 2}{1 - u_n}$ و من أجل كل عدد طبیعي $u_n = \frac{10}{u_n + 4}$ ، $u_n = \frac{1}{4}$

- . $0 < u_n < 1$ ، n برهن بالتراجع أنّ: من أجل كل عدد طبيعي ألّ (1
 - بين أنّ المتتالية (u_n) متزايدة تماما ثم استنتج أنّها متقاربة.
- n بين أنّ المتتالية v_n هندسية أساسها $\frac{5}{2}$ ثمّ عبّر عن حدّها العام v_n بدلالة (2 أ) بيّن أنّ المتتالية v_n
- $\lim_{n\to +\infty} u_n$ ثبت أنّ: من أجل كل عدد طبيعي $u_n=1-rac{3}{v_n+1}$ ، n عدد طبيعي والماية u_n

الشعبة: علوم تجريبية / اختبار في مادة: الرياضيات / بكالوريا 2017

التمرين الثالث: (05 نقاط)

. $(z+2)(z^2-4z+8)=0$ المعادلة: \mathbb{C} المعادلة الأعداد المركبة (I

 $(O; \vec{u}, \vec{v})$ المستوي المركب منسوب إلى المعلم المتعامد والمتجانس (II

 $z_C=-2$ و $z_B=\overline{z}_A$ ، $z_A=2-2i$ نعتبر النّقط B، A و B و التي لاحقاتها:

- اکتب کلا من z_A و z_B على الشکل الأسّى.
- ACD عين z_D لاحقة النّقطة D حتى تكون النّقطة B مركز ثقل المثلث (2
- $\operatorname{arg}\left(rac{z_B-z}{z_A-z}
 ight)=rac{\pi}{2}$ عيث (B) عن (B) مجموعة النّقط (B) من المستوي ذات اللاحقة (B) تختلف عن (B) مجموعة (B)
 - h ليكن h التحاكي الذي مركزه النقطة C ونسبته C مورة C بالتحاكي C عيّن طبيعة المجموعة C مع تحديد عناصرها المميزة.

التمرين الرابع: (07 نقاط)

 $f(x) = \frac{2}{3}x + \ln\left(\frac{x-1}{x+1}\right)$: بعتبر الدالة العددية f المعرفة على D حيث D حيث D حيث D بيتبر الدالة العددية D

. $(O; \vec{i}, \vec{j})$ التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس الدالة C_f

- بيّن أنّ الدالة f فردية ثم فسّر ذلك بيانيا.
- $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ ، $\lim_{x \to -1} f(x)$ ، $\lim_{x \to -1} f(x)$: احسب النهایات التالیة و $\lim_{x \to -\infty} f(x)$. استنتج أنّ $\lim_{x \to -\infty} f(x)$ یقبل مستقیمین مقاربین موازبین لحامل محور التراتیب

$$f'(x) = \frac{2}{3} \left(\frac{x^2 + 2}{x^2 - 1} \right)$$
 ، D من x کل کل کل (أ (3)

ب) استنتج اتجاه تغیّر الدالهٔ f ثمّ شکّل جدول تغیراتها.

- . $1.8 < \alpha < 1.9$ بيّن أنّ المعادلة f(x)=0 تقبل حلا وحيدا α
- بيّن أنّ المستقيم (C_f) ذا المعادلة : $y=\frac{2}{3}x$ مستقيم مقارب مائل للمنحنى (Δ) ثم أدرس وضعية المنحنى (Δ) بيّن أنّ المستقيم (Δ) بالنسبة إلى المستقيم (Δ)
 - (C_f) والمنحنى (Δ) والمنحنى (6
 - m وسيط حقيقي، ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد حلول المعادلة:

$$(2-3|m|)x + 3\ln\left(\frac{x-1}{x+1}\right) = 0$$

انتهى الموضوع الأول

الشعبة: علوم تجريبية / اختبار في مادة: الرياضيات / بكالوريا 2017

الموضوع الثانى

التمرين الأول: (04 نقاط)

. C(0;0;1) و B(0;2;0)، A(3;0;0) نعتبر النقط B(0;2;0)، نعتبر النقط المتعامد والمتجانس والمتجانس ($O;\vec{i},\vec{j},\vec{k}$) نعتبر

- (ABC) بيّن أنّ النقط $B \cdot A$ معادلة للمستويا، ثمّ تحقّق أنّ: C = A + 3y + 6z 6 = 0 بيّن أنّ النقط $B \cdot A$ معادلة للمستوي
 - . O المستقيم (Δ) العمودي على المستوي (Δ) والذي يشمل المبدأ (Δ
 - (ABC) و (Δ) بقطة تقاطع (Δ) و (BC)
 - . ABC عمودي على (AC)، ثمّ استنتج أنّ H هي نقطة تلاقي أعمدة المثلث (AC) بيّن أنّ (BH)

التمرين الثاني: (04 نقاط)

. $(O;ec{i},ec{j})$ المستوي منسوب إلى المعلم المتعامد والمتجانس

 $f(x) = \frac{3x-16}{x+11}$: كما يلي: $f(x) = \frac{3x-16}{x+11}$ كما يلي:

y=x وليكن (C_f) المنحنى الممثل لها، (Δ) المستقيم ذو المعادلة

نّم بيّن أنّ: [-4;1] تحقّق أنّ الدالة f متزايدة تماما على المجال $f(x) \in [-4;1]$ من أجل كل $x \in [-4;1]$ فإنّ $x \in [-4;1]$

- . $u_{n+1}=f\left(u_{n}
 ight)$ ، n متتالية معرّفة بحدّها الأوّل $u_{0}=0$ ومن أجل كل عدد طبيعي (u_{n}) (II
- (الا يطلب حساب الحدود) انقل الشكل المقابل ثمّ مثّل على حامل محور الفواصل الحدود u_1 ، u_0 ، u_1 ، u_2 ، u_3 ، u_4 ، u_5 انقل الشكل المقابل ثمّ مثّل على حامل محور الفواصل الحدود u_1 ، u_2 ، u_3 ، u_4 ، u_5 ، u_5 ، u_5 ، u_5 ، u_7 ، u_8 ، u_8
 - $-4 < u_n \le 0$ ، n برهن بالتراجع أنّه من أجل كل عدد طبيعي (2 ثمّ بيّن أنّ المتتالية (u_n) متناقصة تماما.
 - . $v_n imes u_n = 1 4v_n$ ، n عدد طبيعي عدد (v_n) المعرّفة كما يلي: من أجل كل عدد طبيعي (3) لتكن المتتالية العددية (v_n) المعرّفة كما يلي: من أجل كل عدد طبيعي (4) لتكن المتتالية العددية أساسها (v_n) ثم احسب المجموع (v_n) حيث أثبت أنّ المتتالية (v_n) حسابية أساسها (v_n) ثم احسب المجموع (v_n) حيث (v_n) (v_n) حيث (v_n) حيث (v_n) حيث (v_n) حيث (v_n) حيث $(v_n$

التمرين الثالث: (05 نقاط)

. $(O; \stackrel{
ightharpoonup}{u}, \stackrel{
ightharpoonup}{v})$ المستوي المركب منسوب إلى المعلم المتعامد والمتجانس

أجب بصحيح أو خطأ مع التعليل في كل حالة مما يلي:

$$S = \left\{-\frac{1}{2} + i\right\}$$
 هي \mathbb{C} هي المجموعة حلول المعادلة $\left(\frac{z+1-i}{z-i}\right)^2 = 1$ هي (1

.
$$(z+2)\times(\overline{z}+2)=\left|z+2\right|^2$$
 ، z من أجل كل عدد مركب (2

.
$$\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{3n} = 1$$
 ، n عدد طبیعي من أجل كل عدد طبیعي (3

$$\frac{\pi}{2}$$
 وزاویته S (4 التشابه المباشر الذي مرکزه النقطة Ω ذات اللاحقة S وزاویته S

 $\omega'(-2;-3)$ ونصف القطر 3 بالتشابه S هي الدائرة C' ذات المركز $\omega(0;1)$ ونصف القطر 3 ونصف القطر 9 .

 $Z = (\sin \alpha + i \cos \alpha) \times (\cos \alpha - i \sin \alpha)$ من أجل كل عدد حقيقي α : إذا كان α

. خيث
$$k$$
 عدد صحيح ، $\arg(Z) = \frac{\pi}{2} - 2\alpha + 2k\pi$ فإنّ

التمرين الرابع: (07 نقاط)

 $f(x) = 2 - x^2 e^{1-x}$ نعتبر الدالة العددية f المعرفة على $\mathbb R$ كما يلي (I

. $(O; ec{i}, ec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس وليكن (C_f)

 $\lim_{x \to \infty} f(x)$ وأعط تفسيرا هندسيا لهذه النتيجة ، ثمّ احسب النهاية وأعط تفسيرا هندسيا لهذه النتيجة ، ثمّ احسب النهاية وأعط تفسيرا

.
$$f'(x) = x(x-2)e^{1-x}$$
 ، $\mathbb R$ من أجل كل x من أجل أي (أ (2

- ب) ادرس اتجاه تغیّر الدالهٔ f ثمّ شکّل جدول تغیراتها.
- . 1 المماس المنحنى (C_f) عند النقطة ذات الفاصلة (T) اكتب معادلة ل
 - . $h(x) = 1 xe^{1-x}$ نعتبر الدالة العددية h المعرفة على \mathbb{R} كما يلى: (II
- (T) بيّن أنّه من أجل كل x من \mathbb{R} فإن: $0 \geq 0$ ، ثمّ ادرس الوضع النسبي للمنحنى والمماس (x
 - x = 0.7 بيّن أنّ المعادلة f(x) = 0 تقبل حلاً وحيدا α حيث f(x) = 0
 - . $\left[-1;+\infty\right[$ المجال على المجال (C_f) والمنحنى (T) المجال (3
 - . $F(x) = 2x + (x^2 + 2x + 2)e^{1-x}$: کما یلی \mathbb{R} کما یلی F (4

 (C_f) على \mathbb{R} ، ثمّ احسب مساحة الحيّز المستوي المحدّد بالمنحنى F تحقّق أنّ F دالة أصلية للدالة f على \mathbb{R}

. x=1 و حامل محور الفواصل والمستقيمين اللّذين معادلتيهما: x=1

انتهى الموضوع الثاني

	الموضوع الأول		
		التمرين الأول: (04 نقاط)	
		$\int x = -\lambda + 9$	
01	01	$egin{cases} x=-\lambda+9\ y=\lambda &/\lambda\in\mathbb{R}.ig(Dig)$ التمثيل الوسيطي للمستقيم ($z=-\lambda+4$	
		$z = -\lambda + 4$	
01	01	x-y+z-4=0 . (P) الذي يشمل A ويوازي A ويوازي (2	
01	01	A'ig(6;3;1ig) أثبات أنّ $ig(D'ig)$ يقطع $ig(P'ig)$ في النقطة A حيث $A'ig(6;3;1ig)$	
		(Δ) التمثيل الوسيطي للمستقيم (Δ	
01	01	$\begin{cases} x = 5t + 1 \\ (D) \cap (P') \cap (\Delta) = \{A'\} \end{cases}$	
		$\begin{cases} x - 3t + 1 \\ y = 4t - 1 \end{cases}$ $t \in \mathbb{R}$ $\Delta = (AA')$ ومنه $\{D \cap (P') \cap (\Delta) = \{A'\} \}$	
		$z = -t + 2 \tag{A in } A \in (\Delta)$	
	T	التمرين الثاني: (04 نقاط)	
01	01	. $0 < u_n < 1$ ، n عدد طبیعي عدد $0 < u_n < 1$ البرهان بالتراجع أنّ: من أجل كل عدد طبیعي	
	0.75	$u_{n+1} - u_n = rac{(1-u_n)(u_n+2)}{u_n+4} > 0$ بيان أنّ المتتالية $ig(u_nig)$ متزايدة تماما	
01	0.25	n	
		بما أن (u_n) متزايدة تماما ومحدودة من الأعلى فإنها متقاربة $-$	
	0.50	$rac{5}{2}$ أ) بيان أنّ: $v_{n+1} = rac{5}{2}$ ومنه المتتالية $\left(v_n ight)$ هندسية أساسها (2	
01	0.25	$v_0 = 3$	
		$v_n=3igg(rac{5}{2}igg)^n$: عبارة حدّها العام	
	0.25	(-)	
	0.50	$u_n=1-rac{3}{v_n+1}$ ، ب $v_n=1$ با إثبات أن: من أجل كل عدد طبيعي	
01			
	0.50	$\lim_{n o +\infty} u_n=1$: استنتاج النهاية	
		التمرين الثالث: (05 نقاط)	
01	0.25	$\Delta = -16 (I)$	
	0.75	. $S = \left\{ -2;2-2i;2+2i ight\}$ حل المعادلة:	
0.50	2×0.25	$z_B=2\sqrt{2}e^{irac{\pi}{4}}$ و الشكل الأسّي: $z_A=2\sqrt{2}e^{-irac{\pi}{4}}$ و $z_A=2\sqrt{2}e^{-irac{\pi}{4}}$	
01	01	$z_D = 6 + 8i$ (2	
	0.25	(Γ) التحقّق أنّ مبدأ المعلم O هو نقطة من (3	

	0.25	$(\overrightarrow{MA};\overrightarrow{MB})=rac{\pi}{2}+2\pi k$ $/$ $k\in\mathbb{Z}$ من المستوي حيث M من المستوي حيث Γ
	0.50	2 منه Γ هي نصف الدائرة المفتوحة التي حداها A و B وقطرها Γ وتشمل Γ
		انشاء (Γ) :
1.25		2 B
	0.25	
	0.23	1
		o Vc
		-1 0 1 2 3 4
		-2 A
	0.50	z'=2z+2العبارة المركبة للتحاكى h هي:
1.25	0.25	المجموعة (Γ') هي نصف الدائرة المفتوحة التي حداها النقطتين A' و B' والتي تشمل $lpha$ ذات
	0.50	$z_{A^{\prime}}=6-4i\;;\;\;z_{B^{\prime}}=6+4i$ اللاحقة 2
		التمرين الرابع: (07 نقاط)
0.77	0.50	بیان أنّ الدالة f فردیة (1
0.75	0.25	$\left(C_{f} ight)$ التفسير البياني: المبدأ O مركز تناظر للمنحني
	0.25×4	$\lim_{x \to -1} f(x) = +\infty \cdot \lim_{x \to -1} f(x) = -\infty $ (2
		$\lim_{x \to -\infty} f(x) = -\infty \lim_{x \to +\infty} f(x) = +\infty$
1.50	2×0.25	من النهايات السابقة نستنتج أن $\left(C_f ight)$ يقبل مستقيمين مقاربين موازيين لحامل محور التراتيب معادلتيهما
		x = -1; $x = 1$
	0.50	$f'(x) = \frac{2}{3} \left(\frac{x^2 + 2}{x^2 - 1} \right)$ ، من x من أجل كل x من أجل كل x من (3)

1.25	0.25	D ب) اتجاه تغیّر الدالة $f:f$ متزایدة تماما علی کل مجال من
	0.50	جدول تغیراتها
0.75	0.75	. $1,8$ < $lpha$ حيث: (4) تقبل حلا وحيدا $lpha$ حيث $f\left(x ight)$ بيان أن المعادلة $f\left(x ight)$ تقبل حلا وحيدا
01	0.50	$\lim_{ x \to +\infty} \left[f(x) - \frac{2}{3} x \right] = \lim_{ x \to +\infty} \ln \left(\frac{x-1}{x+1} \right) = 0 : \Delta $ مقارب مائل لأن Δ
	0.50	$x\!>\!1$ الوضع النسبي: (C_f) فوق (Δ) من اجل $x\!<\!-1$ و $x\!<\!-1$ تحت
0.75	0.75	$\cdot \left(C_f ight)$ والمنحنى $\left(\Delta ight)$ والمنحنى (Δ
	0.25	$f(x) = m x$ تكافئ $(2-3 m)x + 3\ln\left(\frac{x-1}{x+1}\right) = 0$ (7
01	0.25	$y = m x$ حلول المعادلة هي فواصل نقط تقاطع $\binom{C_f}{r}$ مع المستقيم ذو المعادلة
	2×0.25	إذا كان $\begin{bmatrix} 2\\3 \end{bmatrix}$ ب $\begin{bmatrix} 2\\3 \end{bmatrix}$ فان المعادلة لا تقبل حلول $m\in \left]-\infty; -\frac{2}{3} \right]$ فان المعادلة تقبل حلين متمايزين إذا كان $m\in \left]-\frac{2}{3}; \frac{2}{3} \right[$

		الموضـــوع الثاني
		التمرين الأول: (04 نقاط)
	0.50	بيان أنّ النقط B ، B و C تعيّن مستويا (1
1.25		(ABC) للتحقّق أنّ: $2x+3y+6z-6=0$ معادلة للمستوي
	0.75	يكفي التأكد ان إحداثيات النقط B ، A و B تحقق المعادلة المعطاة
	0.50	$\int x = 2t$
0.50		$\left\{ egin{array}{ll} y=3t & /t\in \mathbb{R} \end{array} ight.$ التمثيل الوسيطي للمستقيم (Δ) التمثيل الوسيطي المستقيم (2
		z = 6t
01	01	$Higg(rac{12}{49};rac{18}{49};rac{36}{49}igg):H$ إحداثيات H
1 25	0.50	$\overrightarrow{AC}\cdot\overrightarrow{BH}=0$: اثبات أن 4
1.25	0.75	$\overrightarrow{ ext{CH}} \cdot \overrightarrow{AB} = 0$ نقطة تلاقي الاعمدة: يكفي اثبات $\overrightarrow{AH} \cdot \overrightarrow{BC} = 0$ او
	1	التمرين الثاني: (04 نقاط)
0.75	0.25	$\left[-4;1 ight]$ التحقق أنّ الدالة f متزايدة تماما على المجال $\left[-4;1 ight]$
0.75	0.50	$f\left(x ight)$ \in $\left[-4;1 ight]$ فإنّ $x\in$ $\left[-4;1 ight]$ من أجل كل
01	0.50	(II)
	2×0.25	تمثیل الحدود u_1 ، u_0 و u_2 ، u_1 ، u_0 التخمین: u_3 u_2 ، u_1 ، u_0 u_1 . u_0 u_1 . u_0 u_1 . u_0 . u_1 . u_1 . u_0 . u_1 . u_1 . u_1 . u_2 . u_2 . u_3 . u_4 . u_4 . u_5 .
	0.75	$-4 < u_n \le 0$ ، n البرهان بالتراجع أن: من أجل كل عدد طبيعي n
1.25		-
	0.50	$u_{n+1} - u_n = -rac{(u_n+1)^2}{u_n+1} < 0$ بيان أنّ المنتالية (u_n) متناقصة تماما
	0.50	$v_{n+1} = v_n + \frac{1}{7}$: شبات أنّ (v_n) حسابية (3
01	0.50	S = -1161792:حساب المجموع $S = -1161792:$

		تمرين الثالث: (05 نقاط)
01	0.25 0.75	مجموعة حلول المعادلة $S=\left\{-rac{1}{2}+i ight\}$ في المجموعة $\mathbb C$ هي $\left(rac{z+1-i}{z-i} ight)^2=1$ (صحيحة)
01	0.25 0.75	من أجل كل عدد مركب z ، z ، z ، z ، z من أجل كل عدد مركب z ، z ، z من أجل كل عدد مركب z ، z
01	0.25	(خاطئة) $ \cdot \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{3n} = 1 \cdot n $ عدد طبیعي n عدد طبیعي (3)
	0.75	(0.1) a.s. (0.1)
01	0.25 0.75	صورة الدائرة (C) ذات المركز $\omega(0;1)$ ونصف القطر S بالتشابه S هي الدائرة $\omega(0;1)$ ذات المركز $\omega'(-2;-3)$ ونصف القطر $\omega'(-2;-3)$
	0.25	من أجل كل عدد حقيقي $lpha$: إذا كان (5
01	0.75	(صحيحة) ، $\arg(Z) = \frac{\pi}{2} - 2\alpha + 2k\pi$ فإنّ: $Z = (\sin \alpha + i\cos \alpha) \times (\cos \alpha - i\sin \alpha)$
		تمرين الرابع: (07 نقاط)
	0.50	$\lim_{x \to +\infty} f(x) = 2$ بيان أنّ (1
01	0.25	$y=2$ التفسير هندسي (C_f) يقبل مستقيما مقاربا يوازي حامل محور الفواصل معادلته
	0.25	$\lim_{x \to -\infty} f(x) = -\infty$: حساب النهاية
	0.50	$f'(x) = x(x-2)e^{1-x}$ ، $\mathbb R$ من أجل كل x من أجل كل (2
		$[2;+\infty[$ و $]-\infty;0]$ ب) اتجاه تغیّر الدالة f الدالة f متزایدة تماما علی
	0.50	[0;2] ومتناقصة تماما على
		جدول التغيرات:
1.50		
	0.50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.50	0.50	(T): y = -x + 2 معادلة المماس (3)

	0.50	$.h(x)\!\ge\!0$: تبیان أن من أجل كل x من \mathbb{R} فإن (1)
		$x -\infty +\infty$
		$h'(x)$ - ϕ +
1.25	0.25	h(x) 0
1.20		(T) دراسة الوضع النسبي للمنحنى (C_f) والمماس
	0.50	f(x) - y = xh(x)
		$]-\infty;0[$ علی $]0;1[igcup]$ 1;+ $\infty[$ علی $]0;0[igcup]$ 1 علی اوق (C_f)
		$A(1;1);B(0;2)$ يقطع (T) في النقطتين (C_f)
0.75	0.75	f(x)=0بيان أنّ المعادلة $f(x)=0$ تقبل حلاً وحيدا $lpha$ حيث $lpha$
0.73		وذلك بواسطة مبرهنة القيم المتوسطة ورتابة الدالة
	0.25	. $[-1;+\infty[$ على المجال (C_f) على المجال ((C_f) على المجال (2
01	0.75	
	0.50	$F'(x)=f(x): \ \mathbb{R}$ على التحقّق أنّ F دالة أصلية للدالة f على
01	0.50	$S = \int_{0}^{1} f(x)dx = F(1) - F(0) = (7 - 2e)$ u.a amule $u.a$