# CSC242: Introduction to Artificial Intelligence

Lecture 3.3

Please put away all electronic devices





Richard Feynman 1918-1988



# CSC 161-171-172 TAs & Workshop Leaders

https://goo.gl/forms/pZbL3WDyn6YOJwAP2

## Representing Uncertainty

- Probability: Sample space, probabilities, events
- Random variables, domains
- Language of probability statements
- Probability distributions, joint distributions, full joint distribution

#### Probabilistic Inference

- Compute what "follows from" our (uncertain) knowledge
- Make implicit knowledge explicit

#### Probabilistic Inference

- Computing posterior probabilities for statements given prior probabilities and observed evidence
- Given priors and evidence, compute probabilities given evidence (posteriors)

## Probabilistic Inference (Single Variable)

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \ \mathbf{P}(X, \mathbf{e}) = \alpha \ \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$$

Query variable  $X:Domain(X) = \overline{\{x_1, \dots, x_m\}}$ 

Evidence variables  $\mathbf{E}:\{E_1,\ldots,E_k\}$ 

Observations  $e: \{e_1, \ldots, e_k\}$  s.t.  $E_i = e_i$ 

Unobserved variables  $\mathbf{Y}:\{Y_1,\ldots,Y_l\}$ 

 $Domain(Y_i) = \{y_{i,1}, \dots, \overline{y_{i,n_i}}\}$ 

# Probabilistic Inference (Single Variable)

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \ \mathbf{P}(X, \mathbf{e}) = \alpha \ \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$$



Time Complexity

Space Complexity

#### Bayes' Rule

$$P(b \mid a) = \frac{P(a \mid b)P(b)}{P(a)}$$



Thomas Bayes (c. 1702 - 1761)

#### Bayesian Diagnosis

$$P(disease \mid symptom) = \frac{P(symptom \mid disease)P(disease)}{P(symptom)}$$



(Toothache = true)

catch

(Catch = true)



(Toothache = true) (Catch = true)

catch

 $\mathbf{P}(Cavity \mid toothache \wedge catch) = \alpha \langle 0.180, 0.016 \rangle \approx \langle 0.871, 0.129 \rangle$ 

|                       | toothache |              | eg toothache |              |
|-----------------------|-----------|--------------|--------------|--------------|
|                       | catch     | $\neg catch$ | catch        | $\neg catch$ |
| cavity                | 0.108     | 0.012        | 0.072        | 0.008        |
| $\boxed{\neg cavity}$ | 0.016     | 0.064        | 0.144        | 0.576        |

```
\overline{\mathbf{P}(Cavity \mid toothache \land catch)}
```

 $\overline{\mathbf{P}(toothache} \wedge catch \mid Cavity) \mathbf{P}(Cavity)$ 

• In general, if there are n evidence variables, then there are  $O(2^n)$  possible combinations of observed values for which we would need to know the conditional probabilities



Cavity



Weather



Cavity



```
P(cavity \mid sunny) = P(cavity)
P(rain \mid cavity) = P(rain)
\mathbf{P}(Cavity \mid Weather) = \mathbf{P}(Cavity)
\mathbf{P}(Weather \mid Cavity) = \mathbf{P}(Weather)
```

$$P(a \mid b) = P(a)$$

$$P(b \mid a) = P(b)$$

$$P(a \land b) = P(a)P(b)$$

$$\mathbf{P}(X \mid Y) = \mathbf{P}(X)$$
  
 $\mathbf{P}(Y \mid X) = \mathbf{P}(Y)$   
 $\mathbf{P}(X, Y) = \mathbf{P}(X)\mathbf{P}(Y)$ 

$$\mathbf{P}(X) = \langle p_{x_1}, p_{x_2}, \dots, p_{x_n} \rangle$$

$$\mathbf{P}(Y) = \langle p_{y_1}, p_{y_2}, \dots, p_{y_m} \rangle$$

| $\mathbf{P}(X,Y)$ | $x_1$            | $x_2$                |     | $x_n$                                  |
|-------------------|------------------|----------------------|-----|----------------------------------------|
| $y_1$             | $p_{x_1}p_{y_1}$ | $p_{x_{\!2}}p_{y_1}$ | ••• | $\left  p_{x_n} p_{y_1} \right $       |
| $y_2$             | $p_{x_1}p_{y_2}$ | $p_{x_2}p_{y_2}$     |     | $\left\lceil p_{x_n}p_{y_2} ight ceil$ |
| •••               | •••              |                      | ••• | •••                                    |
| $y_m$             | $p_{x_1}p_{y_m}$ | $p_{x_{2}}p_{y_{m}}$ | ••• | $\left  p_{x_n} p_{y_m} \right $       |

$$\mathbf{P}(X \mid Y) = \mathbf{P}(X)$$
 $\mathbf{P}(Y \mid X) = \mathbf{P}(Y)$ 
 $\mathbf{P}(X, Y) = \mathbf{P}(X)\mathbf{P}(Y)$ 

Can compute  $n \times m$  probabilities from n+m probabilities (if random variables are independent)



catch

(Toothache = true) (Catch = true)



catch

(Toothache = true) (Catch = true)

 $\mathbf{P}(Cavity \mid toothache \land catch)$ 

 $= \alpha \mathbf{P}(toothache \wedge catch \mid Cavity) \mathbf{P}(Cavity)$ 



catch

(Toothache = true) (Catch = true)

 $\mathbf{P}(Cavity \mid toothache \land catch)$ 

Independent?

 $= \alpha \ \mathbf{P}(toothache \land catch \mid Cavity) \ \mathbf{P}(Cavity)$ 

#### Conditional Independence

- Both toothache and catch are caused by a cavity, but neither has a direct effect on the other
- The variables are independent given the presence or absence of a cavity

#### Conditional Independence

$$\mathbf{P}(X \mid Y, Z) = \mathbf{P}(X \mid Z)$$

$$\mathbf{P}(Y \mid X, Z) = \mathbf{P}(Y \mid Z)$$

$$\mathbf{P}(X, Y \mid Z) = \mathbf{P}(X \mid Z)\mathbf{P}(Y \mid Z)$$

#### Conditional Independence

```
\mathbf{P}(\textit{Toothache}, \textit{Catch} \mid \textit{Cavity}) = 
\mathbf{P}(\textit{Toothache} \mid \textit{Cavity})\mathbf{P}(\textit{Catch} \mid \textit{Cavity})
```

```
\mathbf{P}(Cavity \mid toothache \land catch)
```

- $= \alpha \mathbf{P}(toothache \wedge catch \mid Cavity) \mathbf{P}(Cavity)$
- $= \alpha \mathbf{P}(toothache|Cavity) \mathbf{P}(catch|Cavity) \mathbf{P}(Cavity)$

- For n symptoms (e.g., Toothache, Catch) that are all conditionally independent given a disease (e.g., Cavity), we need O(n) probabilities rather than  $O(2^n)$ 
  - Representation scales to larger problems
  - Conditional probabilities more likely to be available than absolute independence assumptions

#### Probabilistic Inference

- Full joint distribution: intractable as problem grows
- Independence assumptions reduce number of probabilities required to represent full joint distribution
- Next: Develop a data structure that represents the (in)dependencies among random variables and can be used to compute probabilities full joint distribution

#### Bayesian Networks





Cavity



Toothache

Catch

#### Bayesian Networks

Random Variables







#### Bayesian Networks











Conditional Probability

Distributions

Cavity

 $\mathbf{P}(X_i \mid Parents(X_i))$ 

(Toothache)

 $\mathbf{P}(\mathit{Toothache}|\mathit{Cavity})$ 

| Cavity        | toothache | $\neg toothache$ |
|---------------|-----------|------------------|
| cavity        |           |                  |
| $\neg cavity$ |           | Total Market     |

Catch

Conditional Probability

Distributions

Cavity

 $\mathbf{P}(X_i \mid Parents(X_i))$ 

(Toothache)

 $\mathbf{P}(\mathit{Toothache}|\mathit{Cavity})$ 

| Cavity        | toothache | $\neg toothache$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cavity        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\neg cavity$ |           | The same of the sa |

Catch

 $\mathbf{P}(Catch|Cavity)$ 

| Cavity        | catch | $\neg catch$ |
|---------------|-------|--------------|
| cavity        | 100   | THE STATE OF |
| $\neg cavity$ |       |              |

Prior Probability
Distribution

Cavity

 $\mathbf{P}(Cavity)$ 

 $cavity \quad \neg cavity$ 

igg( Toothache igg)

 $\mathbf{P}(\mathit{Toothache}|\mathit{Cavity})$ 

Catch

 $\mathbf{P}(\operatorname{Catch}|\operatorname{Cavity})$ 

| Cavity        | catch | $\neg catch$ |
|---------------|-------|--------------|
| cavity        |       | THE SECTION  |
| $\neg cavity$ |       |              |

- Nodes correspond to a random variables
- Link from X to Y iff X "directly influences" Y
  - No link: no "direct influence"
- Non-root nodes store the conditional distribution:  $\mathbf{P}(X_i \mid Parents(X_i))$
- ullet Root nodes store their prior  ${f P}(X_i)$

# Bayesian Networks How-To

- Select random variables required to model the domain
- Add links from causes to effects ("directly influences")
  - No cycles (see book)
- Add conditional probability distributions for  $\mathbf{P}(X_i \mid Parents(X_i))$  and priors  $\mathbf{P}(X_i)$



# 



thires by STEFFER CHIEATI

### Probabilistic Inference

 Computing posterior probabilities for statements given observed evidence and probabilistic background knowledge

# Probabilistic Inference (Single Variable) Prob. Dist.

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \ \mathbf{P}(X, \mathbf{e}) = \alpha \ \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$$

Query variable  $X:Domain(X) = \{x_1, \dots, x_m\}$ 

Evidence variables  $\mathbf{E} : \{E_1, \dots, E_k\}$ 

Observations  $e: \{e_1, \ldots, e_k\}$  s.t.  $E_i = e_i$ 

Unobserved variables  $Y : \{Y_1, \dots, Y_l\}$ 

 $\overline{Domain(Y_i)} = \{y_{i,1}, \dots, y_{i,n_i}\}$ 

# Semantics of Bayesian Networks

 Full joint distribution can be computed as the product of the separate conditional probabilities stored in the network

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

#### P(Toothache, Catch, Cavity)

Product Rule

- = P(Toothache, Catch | Cavity) P(Cavity)
- = P(Toothache|Cavity) P(Catch|Cavity) P(Cavity)

Conditional Independence



| Cavity        | toothache | $\neg toothache$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cavity        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\neg cavity$ |           | The same of the sa |

| $\mathcal{C}$ | Cavity | catch | $\neg catch$ |
|---------------|--------|-------|--------------|
| (             | eavity | 1.79  |              |
|               | cavity |       |              |

# Semantics of Bayesian Networks

 Full joint distribution can be computed as the product of the separate conditional probabilities stored in the network

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

# $P(toothache, cavity, catch) = \\ P(toothache|cavity)P(catch|cavity)P(cavity)$



# $P(\neg toothache, cavity, catch) =$ $P(\neg toothache| cavity) P(catch| cavity) P(cavity)$



| Cavity        | toothache | $\neg toothache$      |
|---------------|-----------|-----------------------|
| cavity        |           |                       |
| $\neg cavity$ |           | The second section of |

| Cavity        | catch | $\neg catch$ |
|---------------|-------|--------------|
| cavity        | 150   |              |
| $\neg cavity$ |       |              |

$$P(\neg toothache, \neg cavity, \neg catch) = \\ P(\neg toothache|\neg cavity)P(\neg catch|\neg cavity)P(\neg cavity)$$



| Cavity        | toothache | $\neg toothache$ |
|---------------|-----------|------------------|
| cavity        |           |                  |
| $\neg cavity$ |           | The second of    |

| Cavity        | catch | $\neg catch$                          |
|---------------|-------|---------------------------------------|
| cavity        | 1.75  | · · · · · · · · · · · · · · · · · · · |
| $\neg cavity$ |       |                                       |

|               | toothache |              | $\neg toothache$ |              |
|---------------|-----------|--------------|------------------|--------------|
|               | catch     | $\neg catch$ | catch            | $\neg catch$ |
| cavity        | 0.108     | 0.012        | 0.072            | 0.008        |
| $\neg cavity$ | 0.016     | 0.064        | 0.144            | 0.576        |

# Semantics of Bayesian Networks

 Full joint distribution can be computed as the product of the separate conditional probabilities stored in the network

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

# Inference in Bayesian Networks

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \mathbf{P}(X, \mathbf{e}) = \alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$$

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

# Inference in Bayesian Networks

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \mathbf{P}(X, \mathbf{e}) = \alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$$
$$= \alpha \sum_{\mathbf{y}} \prod_{i=1}^{n} P(X_i \mid parents(X_i))$$

 "A query can be answered from a Bayesian Network by computing sums of products of conditional probabilities from the network."













Alarm

Burglary

[Earthquake]

Alarm



















Full joint distribution: 2<sup>5</sup>=32 entries Bayesian network: 10 entries Assuming conditional independences encoded in the network



### Exceptions:





#### Call from: John









Call from: Mary



 $\mathbf{P}(Burglary \mid JohnCalls = \overline{True}, MaryCalls = \overline{True})$   $\mathbf{P}(B \mid j, m)$ 

$$\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B, j, m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$$

$$\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B, j, m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$$

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$



 $\mathbf{P}(B, E, A, J, M) = \alpha \mathbf{P}(B) \mathbf{P}(E) \mathbf{P}(A \mid B, E) \mathbf{P}(J \mid A) \mathbf{P}(M \mid A)$ 



 $\mathbf{P}(B, E, A, J, M) = \alpha \mathbf{P}(B) \mathbf{P}(E) \mathbf{P}(A \mid B, E) \mathbf{P}(J \mid A) \mathbf{P}(M \mid A)$ 



$$\mathbf{P}(B, E, A, j, m) = \alpha \mathbf{P}(B) \mathbf{P}(E) \mathbf{P}(A \mid B, E) \mathbf{P}(j \mid A) \mathbf{P}(m \mid A)$$



$$\mathbf{P}(\underline{B}, E, A, j, m) = \alpha \mathbf{P}(\underline{B}) \mathbf{P}(E) \mathbf{P}(A \mid \underline{B}, E) \mathbf{P}(j \mid A) \mathbf{P}(m \mid A)$$



$$\mathbf{P}(\underline{b}, E, A, j, m) = \alpha \mathbf{P}(\underline{b}) \mathbf{P}(E) \mathbf{P}(A \mid \underline{b}, E) \mathbf{P}(j \mid A) \mathbf{P}(m \mid A)$$



$$\mathbf{P}(b, E, A, j, m) = \alpha \mathbf{P}(b) \mathbf{P}(E) \mathbf{P}(A \mid b, E) \mathbf{P}(j \mid A) \mathbf{P}(m \mid A)$$



$$\mathbf{P}(b, j, m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(b) \mathbf{P}(e) \mathbf{P}(a \mid b, e) \mathbf{P}(j \mid a) \mathbf{P}(m \mid a)$$











$$\mathbf{P}(b\mid j,m) = \alpha \sum_{e} \sum_{a} P(b)P(e)P(a|b,e)P(j|a)P(m|a)$$
 Factored full joint dist. Marginalization

$$\mathbf{P}(b \mid j, m) = \alpha \mathbf{P}(B, j, m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$$

$$P(b \mid j, m) = \alpha \sum_{e} \sum_{a} P(b)P(e)P(a \mid b, e)P(j \mid a)P(m \mid a)$$

$$O(n2^n)$$

$$\mathbf{P}(b \mid j, m) = \alpha \mathbf{P}(B, j, m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a)$$

$$P(b \mid j, m) = \alpha \sum_{e} \sum_{a} P(b)P(e)P(a \mid b, e)P(j \mid a)P(m \mid a)$$

$$P(b \mid j, m) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$$



 $\mathbf{P}(B \mid j, m) = \alpha \langle 0.00059224, 0.0014919 \rangle \approx \langle 0.284, 0.716 \rangle$ 

### Exact Inference in BNs





Space Complexity

#### Exact Inference in BNs

- Exact inference in BNs is NP-hard
- Can be shown to be as hard as computing the number of satisfying assignments of a propositional logic formula => #P-hard

# Bayesian Networks Summary

- Independence assumptions make probabilistic inference easier
  - By factoring the joint distribution
- Bayesian Networks encode conditional independence assumptions among random variables
  - And store conditional probabilities

## Inference in Bayesian Networks

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \mathbf{P}(X, \mathbf{e}) = \alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$$
$$= \alpha \sum_{\mathbf{y}} \prod_{i=1}^{n} P(X_i \mid parents(X_i))$$

## Inference in Bayesian Networks

- Exact inference with BNs is still hard
  - But we can do approximate inference efficiently (next time)
  - We can learn the conditional probabilities required to do inference from data (in a few weeks)

For Next Time:

AIMA 14.5; 14.7 fyi