Solución:

Llevamos las ecuaciones a un dibujo abstracto representativo de la situación, tomando en cuenta que \overrightarrow{A} \overrightarrow{C} y \overrightarrow{D} son 3 vectores en \mathbb{R}^3 y los tres son LD ya que la ecuación $\mathbf{N}^\circ\mathbf{3}$ nos indica que puedo escribir a \overrightarrow{A} como combinación lineal de \overrightarrow{C} y \overrightarrow{D} ello implica que los tres vectores están en un mismo plano son coplanares. Figura 10

La ecuación $\mathbf{N}^{\circ}\mathbf{3}$ incluyendo el paralelismo entre \overrightarrow{B} y \overrightarrow{D} se convierte en

$$\overrightarrow{A} = \overrightarrow{C} + \lambda \overrightarrow{B}$$

Sabemos que $\overrightarrow{C} \perp \overrightarrow{A}$ eso se traduce en $\overrightarrow{C} \cdot \overrightarrow{A} = 0$

Tomamos producto punto del vector \overrightarrow{A} consigo mismo

$$\overrightarrow{A} \cdot \overrightarrow{A} = \overrightarrow{A} \cdot \left(\overrightarrow{C} + \lambda \overrightarrow{B}\right) = \overrightarrow{A} \cdot \overrightarrow{C} + \left(\overrightarrow{A} \cdot \overrightarrow{B}\right) \lambda \Longrightarrow \left\|\overrightarrow{A}\right\|^2 = \left(\overrightarrow{A} \cdot \overrightarrow{B}\right) \lambda$$

A partir de esta ecuación obtendremos el vector \overrightarrow{D}

$$\lambda = \frac{\left\| \overrightarrow{A} \right\|^2}{\left(\overrightarrow{A} \cdot \overrightarrow{B} \right)} = \frac{\left(\sqrt{2^2 + 1^2 + 2^2} \right)^2}{(-2, 1, 2) \cdot (4, 0, 3)} = -\frac{9}{2} \Longrightarrow \overrightarrow{D} = -\frac{9}{2} (4, 0, 3)$$

El vector \overrightarrow{C} se despeja de \overrightarrow{A}

$$\overrightarrow{A} = \overrightarrow{C} + \overrightarrow{D} \Longrightarrow \overrightarrow{C} = \overrightarrow{A} - \overrightarrow{D} = (-2, 1, 2) - \left(-\frac{9}{2}(4, 0, 3)\right) = \left(16, 1, \frac{31}{2}\right)$$

RESULTADO

$$\overrightarrow{D} = -\frac{9}{2}(4,0,3); \qquad \overrightarrow{C} = \left(16,1,\frac{31}{2}\right)$$

Una comprobación es dable al verificar la ortogonalidad entre \overrightarrow{C} y \overrightarrow{A}

$$\overrightarrow{C} \perp \overrightarrow{A} \qquad \overrightarrow{C} \cdot \overrightarrow{A} = \left(16, 1, \frac{31}{2}\right) \cdot (-2, 1, 2) = 0$$