

INVESTIGATION OF PURE ROTATION OF ETHYNYLBENZONITRILE ISOMERS USING CHIRPED-PULSE W-BAND SPECTROSCOPY

J-T. Spaniol¹, K.L. Kelvin Lee², O. Pirali¹, M-A. Martin-Drumel¹

¹Université Paris Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay, France ²Department of Chemistry, MIT, Cambridge, MA, USA

Cyano-substituted molecules: an interesting family

Some already detected in interstellar medium

Benzonitrile (PhCN)¹

1-,2- cyanonaphthalene $(C_{11}H_7N)^2$

Some already studied by our team:

Phenylpropiolonitrile (PhC₃N)

Figure 4: Portions of the millimeter-wave spectrum of PhC_3N in comparison with a simulation of the pure rotational transitions in the ground vibrational state using the best-fit set of spectroscopic constants (Table 3). The simulation has been performed using the PGOPHER software and the resulting trace was then post-processed with a second derivative to allow a more straightforward comparison with the experimental spectrum. The line density in the experimental trace is far greater than our simulation, very likely because of lines from vibrational satellites.

Investigation of 3 isomers of PhC₃N: 2-, 3-, 4-ethynylbenzonitrile (ETB)

DFT Geometry Optimization (ωB97XD/cc-pVQZ, harmonic + scaled²)

Molecules	A (MHz)	B (MHz)	C (MHz)	μ (Debye))
				a	b	c
2-ETB	2002	1329	799	3.9	-2.3	0
3-ETB	2697	903	677	3.6	2.5	0
4-ETB	5647	705	627	-4.3	0	0

^{1.} Z. Buchanan et al. Journal of Molecular Spectroscopy, 377, p111425, 2021.

^{2.} K. L. K. Lee et al. Journal of Physical Chemistry A, 124(5) p898–910, 2020

Acquisition set-ups available at ISMO

Acquisition set-ups available at ISMO

W-band Chirped-Pulse Spectroscopy

Sample

Receiver

Transmitter

Characteristics:

Pump

Frequency range: 75-110 GHz

Commercial (BrightSpec)

Sequential chirp, 30 MHz segments (HDR mode)

1 million averages within 2h

Pulse length: from 0.1 to $0.5 \mu s$

FID length: up to 4 µs

Laboratory acquisition

<u>2-ETB</u>

Settings:

- 1 million averages
- Pressure: $1.4 \cdot 10^{-3}$ mbar
- $SNR_{max} \sim 140$
- Pulse Length: 0.5 μs

<u>3-ETB</u>

Settings:

- 1 million averages
- Pressure: $1.2 \cdot 10^{-3}$ mbar
- $SNR_{max} \sim 90$
- Pulse Length: 0.25 μs

4-ETB

Settings:

- 1 million averages
- Pressure: $2.2 \cdot 10^{-3}$ mbar
- $SNR_{max} \sim 130$
- Pulse Length: 0.5 μs

Laboratory acquisition

<u>2-ETB</u>

Settings:

- 1 million averages
- Pressure: $1.4 \cdot 10^{-3}$ mbar
- SNR_{max}~140
- Pulse Length: 0.5 μs

3-ETB

Settings:

- 1 million averages
- Pressure: $1.2 \cdot 10^{-3}$ mbar
- SNR_{max} ~ 90
- Pulse Length: 0.25µs

4-ETB

Settings:

- 1 million averages
- Pressure: $2.2 \cdot 10^{-3}$ mbar
- $-SNR_{max} \sim 130$
- Pulse Length: 0.5 μs

PGOPHER¹:

Modelize and fit spectra using a set of constants

<u>Loomis-Wood for Windows, Asymmetric top (LWWa)²:</u>

Graphical assignment of transitions

Exploitation of 4-ETB spectrum: starting point

 $\Delta J=+1$ $dK_c'=0$ $\Delta K_a=+1$ $dK_c''=0$

Exploitation of 4-ETB spectrum: finish line?

 ΔJ =+1 dK_c '=0 ΔK_a =+1 dK_c ''=0

Exploitation of 4-ETB spectrum: finish line?

Exploitation of 4-ETB spectrum: What's left?

First vibrational excited states:

 $v_{26} = 1 @ 74 \text{ cm}^{-1}$ (oop bending)

 v_{39} = 1 @ 117 cm⁻¹ (ip bending / wagging)

 $v_{26} = 2 @ 148 \text{ cm}^{-1}$

DFT Frequency calculation (ωB97XD/cc-pVQZ, anharmonic)

Exploitation of 4-ETB spectrum: What's left?

First vibrational excited states:

$$v_{26} = 1$$

$$v_{30} =$$

$$v_{26} = 2$$

Exploitation of 4-ETB spectrum: What's left?

Results

<u>4-ETB</u>

- 20 743 lines assigned
- 4 states investigated
- Error ~ 0.046 MHz

	A		B		C	
	DFT	EXP	DFT	EXP	DFT	EXP
GS	5647	5646	705	709	627	630
$v_{26}=1$	5529	5542	708	710	628	630
$v_{29}=1$	5732	5747	708	710	630	630
$v_{26}=2$	5425	5443	708	710	631	632

Rk: scaled harmonic constants for GS, anharmonic constants for ES (scaled on GS)

Results

<u>4-ETB</u>

- 20 743 lines assigned
- 4 states investigated
- Error ~ 0.046 MHz

	A		B		C	
	DFT	EXP	DFT	EXP	DFT	EXP
GS	5647	5646	705	709	627	630
$v_{26}=1$	5529	5542	708	710	628	630
$v_{29}=1$	5732	5747	708	710	630	630
$v_{26}=2$	5425	5443	708	710	631	632

Rk: scaled harmonic constants for GS, anharmonic constants for ES (scaled on GS)

2-ETB

5 000 lines assigned

- Only ground state investigated

- Work in progress

	A		B		C	
ated	DFT	EXP	DFT	EXP	DFT	EXP
GS	2002	2027	1329	1329	799	802

<u>3-ETB</u>

- 14 036 lines assigned

- Only ground state investigated

- Work in progress

	A		1	3	C		
1	DFT	EXP	DFT	EXP	DFT	EXP	
S	2697	2705	903	907	677	679	

Perspectives

- Assignment of lines to vibrational excited states of 2 and 3-ETB
- Interstellar searches

Acknowledgements

Collaborators:

Institut des Sciences Moléculaires d'Orsay, France

Olivier Pirali

Marie-Aline Martin-Drumel

Department of Chemistry, MIT, Cambridge, USA

Kelvin Lee

Funding agencies:

