

* Average Value/DC Value of a periodic signal is the area divided by time period.

Half Wave Rectifier with Ideal diode:

Area =
$$S_0^T V_{out}(t) dt$$

= $S_0^T V_{out}(t) dt + S_T^T V_{out}(t) dt$
= $S_0^T V_{out}(t) dt + S_T^T V_{out}(t) dt$
= $S_0^T V_{out}(t) dt$

 $= V_m \cdot \frac{1}{2\pi/T} \cdot 2 = \frac{V_m T}{\pi}$

= Vm. to. 2

$$= \int_{0}^{\frac{1}{2}} V_{m} \sin (\omega t) dt$$

$$= \left[-V_{m} \frac{\cos \omega t}{\omega} \right]_{0}^{\frac{1}{2}} , \quad \omega = \frac{2\pi}{T}$$

$$= V_{m} \cdot \frac{1}{\omega} \left[-\cos(\frac{\omega T}{2}) + \cos(0) \right] , \quad \frac{\omega T}{2} = \pi , \cos \pi = -1$$

$$= V_{m} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{V_{m}T}{T}$$

$$= V_{m} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{T} \cdot \frac{1}{2} = \frac{1}{T} \cdot \frac{1}{2} \cdot \frac{1}{2$$

*

*

Full wave rectifier with Real Diode:

* Rectifiers convert a AC signal to Pulsating DC Signal.

* But we need to smooth these pulsating signal in order to make them actual DC current and it is done using a capacita.

* Higher the capacitance of the capacitor more of smoothing will occur (higher capacitance will discharge more slowly),

W-5 (L-10) (V-3)

* Fing Time period of the ripple (Tr) is equal to the time period of the signal (Ts), Tr = Ts, , fr = fs = Ts, for half wave rectifier.

* For Full wave rectifier, Tr = + Ts, i, fr = 2fs

Vout * Peak to Peak Voltage, Vr (p-p) $V_r(p-p) = \frac{V_p}{f_r XRC}$ w=27F * Varg = Vp - Vr(e-p)

Performance Measure:

- O Line Regulation
- @ Load "
- * Line Regulation:
 - · It measures the change in Load Voltage (AVL) if Vin changes by 1V.
- . If the regulator is good AVL would be very small.

* Load Regulation;

- It measures the change in Load Current (AI) if III changes by 1 mA.
- · Good regulator = small AVL.

 R > Vo+ Ior & Vo

* For the above circuit,

- * Line Regulation egh,
- * Load Regulation egn,

Each Diode res = 3.20, Vo = 0.7Y * Example: 10±1 V → 9V~11V Calc Line and Load regulation. ÉR=1kΩ Line Regulation, = R+r = 1000 + 3x3.2 $= 9.5 \times 10^{-3}$ - AVL = 9.5 X10 = 3 X A Vin IL= 1 = 2.1 = 1000 = AIL = 2.1mA avi = - Regulation . AVL = - 9,51X2000 AIL