Portfolio Allocation with Machine Learning Final Presentation

Lvcheng Dong Guangqi Li Changting Song

Team G1, PAFBMA-402002

March 5, 2023

Contents

Section 1

Introduction

Contents

- Introduction
 - Background
 - Asset Selection
- Methodology
 - Overall Framework
 - Techniques Involved
- Implementation
 - Portfolio Allocation
 - Estimation
- 4 Evaluation of Effectiveness
- Conclusion

Background

• What is portfolio optimization?

Background

- What is portfolio optimization?
- How people do it?
 - traditional: mean-variance optimization
 - recent: machine learning, risk parity

Background

- What is portfolio optimization?
- How people do it?
 - traditional: mean-variance optimization
 - · recent: machine learning, risk parity
- Key about portfolio: diversify!
 - the GameStop short squeeze in early 2021
 - pandemic-induced market volatility in 2020

Background

- What is portfolio optimization?
- How people do it?
 - traditional: mean-variance optimization
 - recent: machine learning, risk parity
- Key about portfolio: diversify!
 - the GameStop short squeeze in early 2021
 - pandemic-induced market volatility in 2020
- How well do we do?
 - benchmark assets (*S&P 500*)

Background

- What is portfolio optimization?
- How people do it?
 - traditional: mean-variance optimization
 - recent: machine learning, risk parity
- Key about portfolio: diversify!
 - the GameStop short squeeze in early 2021
 - pandemic-induced market volatility in 2020
- How well do we do?
 - benchmark assets (S&P 500)
- Importance of data
 - to make accurate and robust estimations

"In God we trust, all others must bring data." (W. Edwards Deming)

Contents

- Introduction
 - Background
 - Asset Selection
- Methodology
 - Overall Framework
 - Techniques Involved
- Implementation
 - Portfolio Allocation
 - Estimation
- 4 Evaluation of Effectiveness
- Conclusion

10 Assets from Different Sectors

Datasets

- Source: yfinance
- **Time**: Jan. 2nd, 2019 to May. 26th, 2019 (100 days)
- Use Adj Close to compute returns
- We choose 10 stocks from 10 market sectors to diversify

10 Assets from Different Sectors

Datasets

- Source: yfinance
- Time: Jan. 2nd, 2019 to May. 26th, 2019 (100 days)
- Use Adj Close to compute returns
- We choose 10 stocks from 10 market sectors to diversify

Energy	Material	Industrial	C. Cyclical	Healthcare
SHEL	CBT	UPS	TSLA	PFE
Technology	Real Estate	Communication	C. Defensive	Financial
AAPL	EQIX	NFLX	WMT	GS

Table 1: Stock tickers for 10 Assets

Our Benchmark

S&P 500

Figure 1: S&P 500

Tear sheet for S&P 500 in 2019:

Returns	28.5%
Volatility	12.5%
Sharpe Ratio	2.07
Max Drawdown	-6.8%

Table 2: Simple Tear Sheet

Our Benchmark

S&P 500

Figure 1: S&P 500

Tear sheet for S&P 500 in 2019:

Returns	28.5%
Volatility	12.5%
Sharpe Ratio	2.07
Max Drawdown	-6.8%

Table 2: Simple Tear Sheet

Can we do better?

This dataset is ideal for portfolio optimization as it includes stocks from a variety of sectors, allowing for diversification and risk reduction.

This dataset is ideal for portfolio optimization as it includes stocks from a variety of sectors, allowing for diversification and risk reduction.

This dataset is ideal for portfolio optimization as it includes stocks from a variety of sectors, allowing for diversification and risk reduction.

Some Reasons

Apple & Tesla: high market capitalization and popularity

This dataset is ideal for portfolio optimization as it includes stocks from a variety of sectors, allowing for diversification and risk reduction.

- Apple & Tesla: high market capitalization and popularity
- Pfizer: one of the largest pharmaceutical companies in the world

This dataset is ideal for portfolio optimization as it includes stocks from a variety of sectors, allowing for diversification and risk reduction.

- Apple & Tesla: high market capitalization and popularity
- Pfizer: one of the largest pharmaceutical companies in the world
- Netflix: a popular streaming service provider

This dataset is ideal for portfolio optimization as it includes stocks from a variety of sectors, allowing for diversification and risk reduction.

- Apple & Tesla: high market capitalization and popularity
- Pfizer: one of the largest pharmaceutical companies in the world
- Netflix: a popular streaming service provider
- Walmart: one of the largest retail companies in the world

Contents

Section 2

Methodology

Contents

- Introduction
 - Background
 - Asset Selection
- 2 Methodology
 - Overall Framework
 - Techniques Involved
- Implementation
 - Portfolio Allocation
 - Estimation
- 4 Evaluation of Effectiveness
- Conclusion

Estimation Side

- Several prediction methods
- Based on history information $(\{x_t\}_{-\infty}^n)$ to predict \hat{x}_{t+1}
- Provide \hat{x}_{t+1} and covariance matrix for optimization to process

Estimation Side

- Several prediction methods
- Based on history information $(\{x_t\}_{-\infty}^n)$ to predict \hat{x}_{t+1}
- ullet Provide $\hat{oldsymbol{x}}_{t+1}$ and covariance matrix for optimization to process

Optimization Side

• Based on predictions (\hat{x}_{t+1} and Σ), return portfolio weights (w_{t+1})

Estimation Side

- Several prediction methods
- Based on history information $(\{x_t\}_{-\infty}^n)$ to predict \hat{x}_{t+1}
- Provide \hat{x}_{t+1} and covariance matrix for optimization to process

Optimization Side

• Based on predictions (\hat{x}_{t+1} and Σ), return portfolio weights (w_{t+1})

Validation & Evaluation

- Since we do actually know every x_{t+1} , use it to backtest our model
- Compute daily returns, use pyfolio to generate reports

Figure 2: Flowchart of our Project

Contents

- Introduction
 - Background
 - Asset Selection
- Methodology
 - Overall Framework
 - Techniques Involved
- Implementation
 - Portfolio Allocation
 - Estimation
- Evaluation of Effectiveness
- Conclusion

Support Vector Regression

Fitting method

- finding a hyperplane in a N dimension space
- some spots named support vector near the hyperplane can influence the hyperplane
- our purpose is to figure out a best hyperplane
- Steps
 - ascertain kernel function
 - try some possible parameters

Figure 3: SVR model in the 3D space

Long Short-Term Memory

Merits

- memory cells and gates
- deal with gradient loss
- extract long term dependency
- Our setup
 - tensorflow, Sequential()
 - ullet 2 LSTM layers + 2 FC layers

Figure 4: Structure of LSTM

Mean Variance Optimization

- Risk and Return based optimization
 - minimising the risk given a specified return
 - maximising the return given a specified risk
- Returns

$$\sigma_{p}^{2} = \sum_{i} \sum_{j} w_{i} w_{j} \sigma_{ij} E(R_{p})$$
$$= \sum_{i} w_{i} E(R_{i})$$

Covariance

$$\sigma_p^2 = \sum_i \sum_i w_i w_j \sigma_{ij}$$

Figure 5: Efficient Frontier

• Simply df.cov()?

- Simply df.cov()?
 - limited sample size, noisy data, and non-stationarity

- Simply df.cov()?
 - limited sample size, noisy data, and non-stationarity
- Two improvement
 - Ledoit-Wolf shrinkage: basically regularization
 - Oracle Approximating shrinkage: more of a data-driven method

- Simply df.cov()?
 - limited sample size, noisy data, and non-stationarity
- Two improvement
 - Ledoit-Wolf shrinkage: basically regularization
- Oracle Approximating shrinkage: more of a data-driven method

For the benefit of low computational cost, we opt for Ledoit-Wolf method.

- Simply df.cov()?
 - limited sample size, noisy data, and non-stationarity
- Two improvement
 - Ledoit-Wolf shrinkage: basically regularization
 - Oracle Approximating shrinkage: more of a data-driven method

For the benefit of low computational cost, we opt for Ledoit-Wolf method.

Ledoit-Wolf Shrinkage

Let $\hat{\Sigma}_o$ denote the target matrix and let $\hat{\Sigma}_S$ be the sample covariance matrix, and δ is the shrinkage intensity parameter that balances the **trade-off** between estimation **bias and variance**. Construct new covariance matrix as

$$\hat{\Sigma}_{LW} = \delta \hat{\Sigma}_o + (1 - \delta) \hat{\Sigma}_S$$

The optimal value of δ can be obtained through **cross-validation**.

- Simply df.cov()?
 - limited sample size, noisy data, and non-stationarity
- Two improvement
 - Ledoit-Wolf shrinkage: basically regularization
 - Oracle Approximating shrinkage: more of a data-driven method

For the benefit of low computational cost, we opt for Ledoit-Wolf method.

Ledoit-Wolf Shrinkage

Let $\hat{\Sigma}_o$ denote the target matrix and let $\hat{\Sigma}_S$ be the sample covariance matrix, and δ is the shrinkage intensity parameter that balances the **trade-off** between estimation **bias and variance**. Construct new covariance matrix as

$$\hat{\Sigma}_{LW} = \delta \hat{\Sigma}_o + (1 - \delta) \hat{\Sigma}_S$$

The optimal value of δ can be obtained through **cross-validation**.

Provided in the PyPortfolioOpt or sklearn.

Contents

Section 3

Implementation

Contents

- Introduction
 - Background
 - Asset Selection
- Methodology
 - Overall Framework
 - Techniques Involved
- Implementation
 - Portfolio Allocation
 - Estimation
- 4 Evaluation of Effectiveness
- Conclusion

Portfolio Allocation

Based on Mean Variance Optimization

Main idea

We want to improve the performance of MVO.

- We need to combine ML/DL with MVO
- We need to figure out the performance of each method and make comparison between them.

Portfolio Allocation

Based on Mean Variance Optimization

Main idea

We want to improve the performance of MVO.

- We need to combine ML/DL with MVO
- We need to figure out the performance of each method and make comparison between them.
- Expected Return
 - Historical average
 - ML (SVR)
 - DL (LSTM)

Portfolio Allocation

Based on Mean Variance Optimization

Main idea

We want to improve the performance of MVO.

- We need to combine ML/DL with MVO
- We need to figure out the performance of each method and make comparison between them.
- Expected Return
 - Historical average
 - ML (SVR)
 - DL (LSTM)
- Covariance Matrix
 - Sample covariance matrix
 - Covariance shrinkage

Contents

- Introduction
 - Background
 - Asset Selection
- 2 Methodology
 - Overall Framework
 - Techniques Involved
- Implementation
 - Portfolio Allocation
 - Estimation
- Evaluation of Effectiveness
- Conclusion

Basic Steps SVR

- Data prepossessing
 - first 80% training and last 20% test
 - normalization for stock price

Basic Steps SVR

- Data prepossessing
 - first 80% training and last 20% test
 - · normalization for stock price
- Correlation among different variables

- Data prepossessing
 - first 80% training and last 20% test
 - normalization for stock price
- Correlation among different variables
- How we train the data
 - input:open, high, low price and volume
 - output: close price

- Data prepossessing
 - first 80% training and last 20% test
 - normalization for stock price
- Correlation among different variables
- How we train the data
 - input:open, high, low price and volume
 - output: close price
- Model buildup
 - Kernel function selecting
 - Parameters choosing

- Data prepossessing
 - first 80% training and last 20% test
 - normalization for stock price
- Correlation among different variables
- How we train the data
 - input:open, high, low price and volume
 - output: close price
- Model buildup
 - Kernel function selecting
 - Parameters choosing
- Overfitting
 - grid and randomized search

SVR

- Data prepossessing
 - first 80% training and last 20% test
 - normalization for stock price
- Correlation among different variables
- How we train the data
 - input:open, high, low price and volume
 - output: close price
- Model buildup
 - Kernel function selecting
 - Parameters choosing
- Overfitting
 - · grid and randomized search
- Evaluation
 - MSE RMSE and R²
 - forecasting plot

Correlation

Based on SVR

Figure 6: Correlation among Different Variables

Some problems during fitting

Based on SVR

Figure 7: Overfitting

Figure 8: Underfitting

Parameters selecting

Based on SVR

Figure 9: Stock price of PFE in 30 days

- The simple things are often the best one
- Persistence provides great feedback

Basic Steps LSTM

- train-test split
 - first 80% training, last 20% test

- train-test split
 - first 80% training, last 20% test
- how the model is trained?
 - inputs: $\{[x_{t-6}: x_t] \in \mathbb{R}^7 \mid t \in \text{training set}\}$
 - outputs: $\{x_{t+1} \mid t \in \text{training set}\}$

- train-test split
 - first 80% training, last 20% test
- how the model is trained?
 - inputs: $\{[x_{t-6}:x_t]\in\mathbb{R}^7\mid t\in \text{training set}\}$
 - outputs: $\{x_{t+1} \mid t \in \text{training set}\}$
- model buildup
 - tensorflow, Sequential()
 - 2 LSTM layers + 2 FC layers
 - 30 epochs

- train-test split
 - first 80% training, last 20% test
- how the model is trained?
 - inputs: $\{[x_{t-6}: x_t] \in \mathbb{R}^7 \mid t \in \text{training set}\}$
 - outputs: $\{x_{t+1} \mid t \in \text{training set}\}$
- model buildup
 - tensorflow, Sequential()
 - 2 LSTM layers + 2 FC layers
 - 30 epochs
- evaluation
 - RMSE, MAE, R²
 - make plots

Stock Returns Estimation

Based on LSTM

• Take one stock AAPL as an example

Figure 10: Adj Close of Apple

Stock Returns Estimation

Based on LSTM

- Plot the # of epochs against the loss
- We choose 10 epochs for further predictions

Figure 11: Epochs versus Loss

Prediction Results Demo

Based on LSTM

• LSTM proves to be quite accurate and robust.

Figure 12: Demo Prediction

Covariance Estimation

We estimate covariance matrix $\hat{\Sigma}$ as below, using Ledoit-Wolf shrinkage.

Figure 13: Covariance Heatmap

Contents

Section 4

Evaluation of Effectiveness

Efficient Frontier

Figure 14: Efficient Frontier(SVR)

Figure 15: Efficient Frontier(LSTM)

Results

	S&P 500	1/n	average	SVR	LSTM
Returns	-21.9%	-42.8%	7.4%	16.8%	19.1%
Volatility	12.1%	16%	12.6%	12.5%	13.1%
Sharpe Ratio	-1.98	-3.42	0.63	1.30	1.40
Max Drawdown	-4.5%	-7.2%	-2.8%	-2.7%	-3.4%

Table 3: Annualized Tear Sheet for Apr 14 to May 24, 2019

Accumulated Return

Contents

Section 5

Conclusion

Highlight of Our Project

- Out-performance of market benchmark
- Positive growth during a bearish period
- Various econometrics and machine learning techniques

Highlight of Our Project

- Out-performance of market benchmark
- Positive growth during a bearish period
- Various econometrics and machine learning techniques

Further Developments

- Incorporate macroeconomic factors
- Explore constraints (transaction cost, short-position, leverage, etc.)

Highlight of Our Project

- Out-performance of market benchmark
- Positive growth during a bearish period
- Various econometrics and machine learning techniques

Further Developments

- Incorporate macroeconomic factors
- Explore constraints (transaction cost, short-position, leverage, etc.)

Acknowledgement

- · Reinforce what we learn
- Practicality and applicability in real-world scenarios
- Shed light on the potential of quant-techniques in portfolio optimization

Member Contributions

Guangqi Li	Changting Song	
Optimization	ARIMA	
Tear Sheet Reports	SVR Model	
Evaluation	Conclusion	
Slides	Slides	
	Optimization Tear Sheet Reports Evaluation	

Table 4: Group Member Contribution Sheet

Thanks for your attention!