ACE Examination Paper 2 Year 12 Mathematics Advanced Yearly Examination Worked solutions and marking guidelines

Sectio	n I	
	Solution	Criteria
1.	$\int_0^1 (6x^2 - 4) dx = 2 \int_0^1 (3x^2 - 2) dx = 2[x^3 - 2x]_0^1$ $= 2[(1^3 - 2 \times 1) - (0^3 - 2 \times 0)] = -2$	1 Mark: A
2.	$y = e^{x}(x-1)$ $y = x^{2} - 1$	1 Mark: C
	There are two points of intersection of the two graphs.	
3.	$a = 3 \text{ and } S = 1.8$ $S = \frac{a}{1 - r}$ $1.8 = \frac{3}{1 - r}$ $1.8 - 1.8r = 3$ $1.8r = -1.2$ $r = -0.\dot{6}$	1 Mark: B
4.	$\frac{d}{dx}e^{x^3} = 3x^2e^{x^3}$	1 Mark: A
5.	Results: $\{0,0,0,1,1,2,2,2,2,3,3,4,4,5\}$ Calculator: $\bar{x} = 2.1$ and $s = 1.6$	1 Mark: C
6.	Region is outside one standard deviation 100% – 68% = 32%	1 Mark: B
7.	$a = 12t + 6$ $v = 6t^{2} + 6t + C$ When $t = 0$ then $v = -36$ $-36 = 6 \times 0^{2} + 6 \times 0 + C \text{ or } C = -36$ $v = 6t^{2} + 6t - 36 = 6(t + 3)(t - 2)$ ∴ Particle at rest $(v = 0)$ when $t = 2$	1 Mark: C
8.	$m = r \frac{s_y}{s_x} = 0.561 \times \frac{4.579}{1.987} = 1.29$	1 Mark: B
9.	Test equations with points $\left(\frac{\pi}{6}, 0\right)$ and $\left(\frac{2\pi}{3}, 1\right)$ on the curve. (B) $y = \sin\left(\frac{\pi}{6} - \frac{\pi}{6}\right) = 0$ and $y = \sin\left(\frac{2\pi}{3} - \frac{\pi}{6}\right) = 1$ Correct	1 Mark: B
10.	(B) $y = \sin\left(\frac{\pi}{6} - \frac{\pi}{6}\right) = 0$ and $y = \sin\left(\frac{2\pi}{3} - \frac{\pi}{6}\right) = 1$ Correct $y = \frac{2}{3}\sqrt{9 - x^2} = \frac{h}{2}[y_0 + y_2 + 2 \times y_1]$ $= \frac{1}{2}\left[2 + \frac{2\sqrt{8}}{3} + 2 \times \frac{2\sqrt{5}}{3}\right] = 3.6309 \approx 3.63$	1 Mark: D

Section	II	
11	$\frac{y}{y^2 - 4} - \frac{2}{y - 2} = \frac{y}{(y + 2)(y - 2)} - \frac{2}{y - 2}$ $= \frac{y - 2(y + 2)}{(y + 2)(y - 2)}$ $= \frac{-y - 4}{y^2 - 4}$	2 Marks: Correct answer. 1 Mark: Finds a common denominator or shows some understanding.
12(a)	$\sin\theta\cos\theta + \frac{\cos^3\theta}{\sin\theta} = \frac{\cos\theta}{\sin\theta}(\sin^2\theta + \cos^2\theta)$ $= \cot\theta$	1 Mark: Correct answer.
12(b)	$\cot \theta = 1$ $\theta = \frac{\pi}{4} \text{ or } \frac{5\pi}{4}$	1 Mark: Correct answer.
13(a)	$\frac{d}{dx}(\tan 5x) = \sec^2 5x \times \frac{d}{dx}(5x)$ $= 5\sec^2 5x$	1 Mark: Correct answer.
13(b)	$\frac{d}{dx} \left(\frac{\ln x}{x} \right) = \frac{x \times \frac{1}{x} - \ln x \times 1}{x^2}$ $= \frac{1 - \ln x}{x^2}$	1 Mark: Correct answer.
13(c)	$\frac{d}{dx}(x\cos x) = -x\sin x + \cos x$	1 Mark: Correct answer.
14	$T_n = a + (n-1)d$ $T_2 = a + d = 39$ ① $T_6 = a + 5d = 19$ ② Equation ② $-$ ① $4d = -20$ $d = -5$ Substitute $d = -5$ into equation ① $a - 5 = 39$ $a = 44$ $S_n = \frac{n}{2}[2a + (n-1)d]$ $= \frac{10}{2}[2 \times 44 + (10 - 1) \times (-5)]$ $= 215$	3 Marks: Correct answer. 2 Marks: Finds the first term and the common difference. 1 Mark: Finds two equations using the <i>n</i> th term of a AP or shows some understanding.
15	$\int 4 - x^{-3} dx = 4x + \frac{1}{2}x^{-2} + C$ $= 4x + \frac{1}{2x^2} + C$	2 Marks: Correct answer. 1 Mark: Finds one of the terms.

16(a)	1. <u>↑</u>	2 Marks: Correct
		answer.
	P Q	1 Mark: Draws
	y = 3	one of the graphs correctly.
	2+	correctly.
	1 +	
	y = 4 - x	
	< 	
	-3 $+2$ -1 1 2 3	
16(b)	$y = 4 - x^2 \textcircled{1}$	1 Mark: Correct
	$y = 3 \ 2$	answer.
	Substitute 3 for <i>y</i> into equation (1) $3 = 4 - x^2$	
	$x^2 = 1$	
	$x = \pm 1$	
16(c)	∴ Coordinates are $P(-1, 3)$ and $Q(1, 3)$	2 Marks: Correct
15(0)	$A = 2\int_0^1 [(4 - x^2) - 3] dx$	answer.
	$=2\int_{0}^{1}-x^{2}+1dx$	1 Mark: Correctly
	• 0	sets up the
	$=2\left[-\frac{x^3}{3}+x\right]_0^1$	integral.
	0	
	$=2\left[\left(\frac{-1^3}{3}\right)+1\right]$	
	$=\frac{4}{3}$ square units	
17	$z = \frac{x - \bar{x}}{s}$	2 Marks: Correct
		answer.
	$-2.5 = \frac{x - 72}{8}$	1 Mark: Uses the
	$x = (-2.5 \times 8) + 72$ = 52%	z-score formula with at least one
	= 52% ∴ Riley's mark was 52%.	correct vale.
	·	
18(a)	$r = \frac{0.084}{12} = 0.0070, n = 4 \times 12 = 48$	2 Marks: Correct answer.
	Intersection value is 40.64856 Let the monthly repayment be x .	allowel.
	$PV = 40.64856 \times x$	1 Mark: Finds the
	$16000 = 40.64856 \times x$ 16000	intersection value or shows some
	$x = \frac{16000}{40.64856}$	understanding.
	$= 393.6178 \dots \approx 393.62	
	Jessica's monthly repayment is \$393.62.	

18(b)	Total repaid = 393.6178× 48 = 18 893.6582≈ \$18 894 Interest = 18 894 – 16 000 = \$2894 ∴ Jessica's interest on the loan is \$2894. $\int_0^{\frac{\pi}{6}} (x^2 + \sin 2x) dx = \left[\frac{x^3}{3} - \frac{1}{2} \cos 2x \right]_0^{\frac{\pi}{6}}$ $= \left[\frac{\left(\frac{\pi}{6}\right)^3}{3} - \frac{1}{2} \cos\left(2 \times \frac{\pi}{6}\right) \right] - \left[\frac{0^3}{3} - \frac{1}{2} \cos 2 \times 0 \right]$ $= \left[\frac{\pi^3}{648} - \frac{1}{4} \right] + \frac{1}{2}$ $= 0.2978$ ≈ 0.298	2 Marks: Correct answer. 1 Mark: Finds the total amount to be repaid. 2 Marks: Correct answer. 1 Mark: Finds the primitive function or shows some understanding.
20	Intercept is (0, 1). Asymptotes are $x = -1$ and $y = 3$. y	3 Marks: Correct answer. 2 Marks: Makes significant progress towards the solution. 1 Mark: Draws the general shape of the function.
21	Strong positive correlation indicates that when one variable increases the other variable increases. ∴ Increased spending of advertising are associated with increased profits.	2 Marks: Correct answer. 1 Mark: Shows some understanding.
22(a)	A <i>z</i> -score of 2 is two standard deviations above the mean. That is, Marcus scored 89% in the class test.	1 Mark: Correct answer.
22(b)	$z = \frac{x - \bar{x}}{s}$ $= \frac{51.5 - 64}{12.5}$ $= -1$ $\therefore \text{ Fletcher's } z\text{-score is } -1$	1 Mark: Correct answer.

22(c)	$\gamma - \bar{\gamma}$	1 Mark: Correct
22(0)	$Z = \frac{x - x}{s}$	answer.
	$z = \frac{x - \bar{x}}{s}$ $3 = \frac{x - 64}{12.5}$	
	$3 = \frac{12.5}{}$	
	$x = (3 \times 12.5) + 64$	
	= 101.5%	
	\therefore Ayla needs to score 101.5% in the test (impossible).	
23	The object comes to rest when $\dot{x} = 0$	3 Marks: Correct
	$x = 3e^{-2t} + 10e^{-t} + 4t$	answer.
	$\dot{x} = -6e^{-2t} - 10e^{-t} + 4$	2 Marks: Finds
	$= -2(3e^{-2t} + 5e^{-t} - 2)$	and factorises the
	Let $m = e^{-t}$	quadratic
	$-2(3m^2 + 5m - 2) = 0$	equation.
	-2(3m-1)(m+2) = 0	4.14 1 0 11
	Hence $3m - 1 = 0$ or $m + 2 = 0$ (No solution: $e^{-t} \neq -2$)	1 Mark: Correctly differentiates <i>x</i> .
	1	differentiates x.
	$m=\frac{1}{3}$	
	$e^{-t} = \frac{1}{3}$	
	5	
	$t = -\ln\left(\frac{1}{3}\right)$	
	= ln3	
	∴ Object comes to rest after ln3 seconds.	
24(a)	$P = \$50\ 000, r = 0.02$ per month, $n = 12$ months	1 Mark: Correct
	$FV = PV(1+r)^n$	answer.
	$A_{12} = 50\ 000 \times (1 + 0.02)^{12} - M$	
	$= 50\ 000 \times 1.02^{12} - M$	
24(b)	Amount owed at the end of the second year.	2 Marks: Correct
	$A_{24} = (50\ 000 \times 1.02^{12} - M) \times 1.02^{12} - M$	answer.
	$= 50\ 000 \times 1.02^{24} - M \times 1.02^{12} - M$	1 Mark: Finds the
	$= 50\ 000 \times 1.02^{24} - M(1.02^{12} + 1)$	correct expression
	Now $A_{24} = 0$ when the loan is paid off.	for A_{24} or shows
	$0 = 50\ 000 \times 1.02^{24} - M(1.02^{12} + 1)$	some
	$M(1.02^{12} + 1) = 50\ 000 \times 1.02^{24}$	understanding of the problem.
	$M = \frac{50\ 000 \times 1.02^{24}}{1.02^{12} + 1}$	die bronein
	$M = \frac{1.02^{12} + 1}{1.02^{12} + 1}$	
24(c)	$M = 50000 \times 1.02^{24}$	2 Marks: Correct
	$M = \frac{30000 \times 1.02}{1.02^{12} + 1}$	answer.
	= \$35 455.5950	1 Mark: Makes
	Total paid = $$35 455.5950 \times 2$	significant
	= \$70 911.1900	progress.
	Interest = $$70 911.1900 $50 000$	
	= \$20 911.1900	
	≈ \$20 911.19	
	∴ Total amount of intertest paid was \$20 911.19	

25	To find the expected value or mean	2 Marks: Correct
	$\int_0^2 x(x^3) dx = \int_0^2 x(x^3) dx$	answer.
		1 Mark: Shows some
	$= \int_0^2 x^4 dx$	understanding.
	$[x^5]^2$	
	$= \left[\frac{x^5}{5}\right]_0^2$	
	= 6.4	
26(a)	2 ↑	2 Marks: Correct answer.
	$y = 1 - \cos x$	1 Mark: Draws
		one of the curves.
	$\left(\frac{\pi}{2},1\right)$	
	$y = \sin x$	
	(0,0)	
	$\frac{\pi}{2}$ π	
26(b)	$x = 0$ or $x = \frac{\pi}{2}$ (from the graph)	1 Mark: Correct
26(c)	π	answer. 2 Marks: Correct
	$A = \int_0^{\frac{\pi}{2}} [\sin x - (1 - \cos x)] dx + \int_{\frac{\pi}{2}}^{\pi} [(1 - \cos x) - \sin x] dx$	answer.
	$= [-\cos x - x + \sin x]_0^{\frac{\pi}{2}} + [x - \sin x + \cos x]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$	1 Mark: Shows some
	$= \left(0 - \frac{\pi}{2} + 1 - (-1 - 0 + 0) + \left(\pi - 0 - 1 - \left(\frac{\pi}{2} - 1 + 0\right)\right)\right)$	understanding.
	_	
	$=2-\frac{\pi}{2}+\frac{\pi}{2}$ $=2 \text{ square units}$	
27	$ = 2 \text{ square units} $ $ y = x^2 - 4x $	2 Marks: Correct
	y' = 2x - 4 At the point (1, -3))	answer.
	$y' = 2 \times 1 - 4 = -2$ Gradient of the normal	1 Mark: Finds the
	$m_1 m_2 = -1$	gradient of the normal.
	$m \times -2 = -1$	
	$m = \frac{1}{2} = 0.5$	
	Equation of the normal $y - y_1 = m(x - x_1)$	
	y - (-3) = 0.5(x - 1)	
	2y + 6 = x - 1 $x - 2y - 7 = 0$	
	2y / - 0	

28(a)	$f(x) = 7 + 4x^3 - 3x^4$	2 Marks: Correct
	Stationary points $f'(x) = 0$	answer.
	$f'(x) = 12x^2 - 12x^3$	
	$12x^2(1-x) = 0$	1 Mark: Finds the
	$\begin{vmatrix} 12x & (1-x) = 0 \\ x = 0, x = 1 \end{vmatrix}$	first derivative
	$\begin{cases} x - 0, x - 1 \\ \text{When } x = 0, y = 7 + 4 \times 0^3 - 3 \times 0^4 = 7 \end{cases}$	and equates it to
	When $x = 0$, $y = 7 + 4 \times 0^{-3} \times 0^$	zero
0000	:: Stationary points are (0, 7) and (1, 8)	4.17 1.0
28(b)	f''(x) = 0	1 Mark: Correct
	$24x - 36x^2 = 0$	answer.
	12x(2-3x)=0	
	$x = 0 \text{ or } x = \frac{2}{3}$	
20(-)	3	2 Manilas Carras et
28(c)	f''(x) = 12x(2 - 3x)	2 Marks: Correct
	At $(0,7)$, $f''(0) = 0$ Possible of inflexion	answer.
	At $(1,8)$, $f''(1) = -12 < 0$ Maxima	1 Mark: Finds the
	At (0, 7) check for change in concavity	nature of one of
	$x = -0.1, f''(x) = 12 \times -0.1(2 - 3 \times -0.1) = -2.76 < 0$	the points.
	$x = 0.1, f''(x) = 12 \times 0.1(2 - 3 \times 0.1) = 2.04 > 0$	
	\therefore (0, 7) is a point of inflexion and (1, 8) is a maxima.	
28(d)	(1,8) Maxima	2 Marks: Correct
	8	answer.
	6 + (0,7) POI	1 Mark: Obtains
		the correct
	\	general shape of
	\ \ \ \	the curve or
	← → → ×	shows some
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	understanding.
	\ \ \	
	' -4 +	
	-6+	
	(2,-9)	
29(a)	$m = \frac{\text{Rise}}{R}$ 10	2 Marks: Correct
	Run	answer.
	$=-\frac{8}{22}$ 8	
	80	1 Mark: Finds the
	=-0.1	line of best fit or
	Rise	shows some
	$= -0.1$ $\frac{1}{2}$ $\frac{1}{$	understanding.
	The factor of th	
	-0.1	
	2 Run	
	 	
	 	
	10 20 30 40 50 60 70 80	
	Age	

29(b)	When age = 30 then fitness level = 7 (from the scatterplot) ∴ Lachlan's fitness level should be 7.	1 Mark: Correct answer.
29(c)	Data: $(10,8)(10,9)(20,8)(30,6)(30,7)(40,6)(40,8)$ (50,5)(50,6)(60,4)(60,6)(70,2)(70,3)(80,2) $r = -0.9115 \dots$ ≈ -0.91	2 Marks: Correct answer. 1 Mark: Finds a value of <i>r</i> close to –0.9.
30	$f(x) = \sqrt{1 - x^2}$ -1 Domain: $-1 \le x \le 1$ Range: $0 \le y \le 1$	2 Marks: Correct answer. 1 Mark: Domain or range
31	$\int_0^2 \frac{1}{9} (4x - x^2) dx = \frac{1}{9} \left[2x^2 - \frac{x^3}{3} \right]_0^2$ $= \frac{1}{9} \left[\left(2 \times 2^2 - \frac{2^3}{3} \right) - \left(2 \times 0^2 - \frac{0^3}{3} \right) \right]$ $= \frac{16}{27}$	2 Marks: Correct answer. 1 Mark: Shows some understanding.
32	$\frac{d^2y}{dx^2} = 12x + 6$ $\frac{dy}{dx} = 6x^2 + 6x + C_1$ At $(1, -2)$ $\frac{dy}{dx} = 0$ $6 \times 1^2 + 6 \times 1 + C_1 = 0$ $C_1 = -12$	3 Marks: Correct answer. 2 Marks: Makes significant progress towards the solution. 1 Mark: Finds the
	$\frac{dy}{dx} = 6x^2 + 6x - 12$ $y = 2x^3 + 3x^2 - 12x + C_2$ $(1, -2) \text{ satisfies the equation of the curve}$ $2 \times 1^3 + 3 \times 1^2 - 12 \times 1 + C_2 = -2$ $C_2 = 5$ $\therefore y = 2x^3 + 3x^2 - 12x + 5$	first derivative.
33	$\lim_{x \to 0} \frac{\sin 6x}{x} = 6 \lim_{5x \to 0} \frac{\sin 6x}{6x}$ $= 6$	2 Marks: Correct answer. 1 Mark: Shows understanding.

34(a)	AC = (3 - x) metres	1 Mark: Correct
		answer.
34(b)	$(3-x)^2 = h^2 + x^2 \qquad A $	2 Marks: Correct
	$h^2 = 9 - 6x + x^2 - x^2$	answer.
	$h = \sqrt{9 - 6x}$	
	$(h > 0 \text{ as } h \text{ is a height}) \qquad \qquad h = \sqrt{9 - 6x}$	1 Mark: Finds the
		height of the
	$A = \frac{1}{2}bh$	triangle or shows some
	$= 0.5x\sqrt{9-6x} \text{ m}^2$	understanding.
34(c)	Maximum acqure when $\frac{dA}{dA} = 0$	3 Marks: Correct
	Maximum occurs when $\frac{dA}{dx} = 0$	answer.
	$A = 0.5x\sqrt{9 - 6x}$	0.14 1 77 1
	JA	2 Marks: Finds $x = 1$
	$\frac{dA}{dx} = 0.5 \left[x \times \frac{1}{2} (9 - 6x)^{-\frac{1}{2}} \times (-6) + (9 - 6x)^{\frac{1}{2}} \times 1 \right]$	X = 1
		1 Mark: Calculates
	$= \frac{1}{2}(9-6x)^{-\frac{1}{2}}[-3x+(9-6x)^{1}]$	the first derivative or has some
	-9x+0 $0(1-x)$	understanding of
	$=\frac{-9x+9}{2\sqrt{9-6x}}=\frac{9(1-x)}{2\sqrt{9-6x}}$	the problem.
	dA = 9(1-r)	
	Now $\frac{dA}{dx} = \frac{9(1-x)}{2\sqrt{9-6x}} = 0$	
	$\therefore x = 1$	
	$x = 0.9,$ $\frac{dA}{dx} = \frac{9(1 - 0.9)}{2\sqrt{9 - 6 \times 0.9}} > 0$	
	$x = 1.1,$ $\frac{dA}{dx} = \frac{9(1 - 1.1)}{2\sqrt{9 - 6 \times 1.1}} < 0$	
	∴ Maximum occurs when $x = 1$.	
34(d)	$A = 0.5x\sqrt{9 - 6x}$	1 Mark: Correct
	$=0.5\times1\times\sqrt{9-6\times1}$	answer.
	$= 0.5\sqrt{3} \text{ m}^2$	
35	∴ Maximum possible area is $0.5\sqrt{3}$ m ² Draw the graphs of $y = e^x$ and $y = -x - 2$	3 Marks: Correct
	y = x + 2	answer.
	3 1	
	$y = e^x$	2 Marks: Makes
		significant
		progress towards
	<+ + + + → x	the solution.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 Mark: Draws
	-1	one graph
	-2	correctly.
	y = -x - 2	
	There is 1 solution for $e^x + x + 2 = 0$ (point of intersection)	
36(a)	Using the statistic mode on the calculator.	1 Mark: Correct
	$\bar{x} = 17.3333 \approx 17.3$	answer.
•		-

36(b)	Using the statistic mode on the calculator.	1 Mark: Correct
	$Q_1 = 13.5 \text{ and } Q_3 = 19$ $IQR = Q_3 - Q_1$	answer.
266	= 19 - 13.5 = 5.5	1 M 1 C
36(c)	Outlier Upper limit = $Q_3 + 1.5 \times IQR$ = $19 + 1.5 \times 5.5$	1 Mark: Correct answer.
	= 27.25	
27(a)	\therefore 29 is an outlier as it is above the upper limit of 27.25	2 Marks: Correct
37(a)	$f(x) = (2x - 3)^4$ $f'(x) = 4(2x - 3)^3 \times 2$	answer.
	$=8(2x-3)^3$	1 Mark: Finds
	$f'(1) = 8(2 \times 1 - 3)^3$	f'(x).
37(b)	= -8 Equation of the tangent at $(1, 1)$ with gradient -8 .	1 Mark: Correct
37(0)	$y - y_1 = m(x - x_1)$	answer.
	y-1 = -8(x-1)	
	y = -8x + 9 or 8x + y - 9 = 0	
37(c)	<i>y</i>	3 Marks: Correct
	9 * B	answer.
	8 +\	2 Marks: Makes
	7 + \	significant
	6+	progress towards the solution.
		the solution.
	5 +	1 Mark: Finds
	$y = (2x - 3)^4$	point A or point B .
	3+	
	2+	
	1 - (1,1)	
	$+$ $+$ $+$ $+$ \times \times	
	$\begin{vmatrix} -1 & 0 \\ -1 & 1 \end{vmatrix} \qquad 1 \stackrel{\land}{\downarrow} \qquad 2 \qquad 3$ $y = -8x + 9$	
	To find the x -intercept ($y = 0$)	
	$y = -8x + 9 = -8 \times 0 + 9 = 9$	
	$= -8 \times 0 + 9 = 9$ $\therefore B(0,9)$	
	To find the <i>y</i> -intercept $(x = 0)$	
	y = -8x + 9	
	0 = -8x + 9	
	$x = \frac{1}{8}$	
	$\therefore A(\frac{9}{8},0)$	
	1, 1, 1, 9	
	$A = \frac{1}{2}bh = \frac{1}{2} \times \frac{9}{8} \times 9$	
	$=\frac{81}{16}$ square units	
	∴ Area of $\triangle OAB$ is $\frac{81}{16}$ square units.	
	<u> 16 </u>	L