Problem Set 6 Solutions

Problem 2 in Lecture 6

(a) Pmf is

$$f(x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0 \end{cases}$$

Thus, it is easy to check $f(x) = p^x(1-p)^{1-x}$.

(b)

$$l_n(p) = \sum_{i=1}^n \ln f(X_i) = \sum_{i=1}^n X_i \ln p + (1 - X_i) \ln(1 - p).$$

(c) FOC implies

$$\sum_{i=1}^{n} X_i \frac{1}{\hat{p}} - (1 - X_i) \frac{1}{1 - \hat{p}} = 0.$$

Thus,

$$\hat{p} = \bar{X}$$
.

Problem 5 in Lecture 6

(a)

$$l_n(\alpha) = n \ln \alpha - (1 + \alpha) \sum_{i=1}^{n} \ln X_i$$

(b) FOC is

$$\frac{n}{\hat{\alpha}} - \sum_{i=1}^{n} \ln X_i = 0.$$

Thus, $\hat{\alpha} = \frac{n}{\sum_{i=1}^{n} \ln X_i}$.

Problem 6 in Lecture 6

(a)

$$l_n(\theta) = -n \ln \pi - \sum_{i=1}^{n} \ln(1 + (X_i - \theta)^2)$$

(b) Taking derivative wrt θ gives the FOC

$$2\sum_{i=1}^{n} \frac{(X_i - \theta)}{(1 + (X_i - \theta)^2)} = 0.$$

Finding analytical solution may not be possible.

Problem 7 in Lecture 6

(a)
$$l_n(\theta) = -n \ln 2 - \sum_{i=1}^n |X_i - \theta|$$

(b) MLE maximizes $l_n(\theta)$. Since the first term of l_n is independent from the parameter, we have

$$\hat{\theta} \in \arg\min \sum_{i=1}^{n} |X_i - \theta|$$

The solution for this minimum absolute loss is a median of $\mathbf{X} = \{X_1, ..., X_n\}$. The basic intuition here is that as long as θ is not the median, by moving θ toward the median value with amount of ϵ one can decrease the value of the objective function by $n\epsilon$ and increase by $m\epsilon$ where n > m.

Think about the case that we only have $\{X_1, X_2, X_3\}$. Now suppose that $\theta > X_2$. Now by moving θ toward X_2 by ϵ the distance between θ and X_1, X_2 decreases by ϵ , and the distance between θ and X_3 increases by ϵ , so the change in total distance is $-2\epsilon + \epsilon = \epsilon$. The same argument holds when $\theta < X_2$. So as long as $\theta \neq X_2$, we can always decrease the value of the objective function.

Here, I will suggest a rigorous proof for odd n case. Let $X_{[i]}$ be an order statistic (i.e. $X_{[i]} = i$ th largest element of \mathbf{X}). When n is odd $\hat{\theta} = med(\mathbf{X}) = X_{[(n+1)/2]}$. Take any $\theta^* > \hat{\theta}$. Let i^* be such that $X_{[i^*]} \leq \theta^* \leq X_{[i^*+1]}$. By definition of θ^* , $(n+1)/2 \leq i^*$. Then

$$\begin{split} \sum_{i=1}^{n} |X_{i} - \theta| - \sum_{i=1}^{n} |X_{i} - \hat{\theta}| &= \sum_{i > i^{*}} (X_{[i]} - \theta^{*}) + \sum_{i \leq i^{*}} (\theta^{*} - X_{[i]}) \\ - \sum_{i \geq (n+1)/2} (X_{[i]} - \hat{\theta}) + \sum_{i < (n+1)/2} (\hat{\theta} - X_{[i]}) \\ &= \sum_{i > i^{*}} (\hat{\theta} - \theta^{*}) + \sum_{i < (n+1)/2} (\theta^{*} - \hat{\theta}) \\ + \sum_{i^{*} \geq i \geq (n+1)/2} (\hat{\theta} + \theta^{*} - 2X_{[i]}) \\ &= \sum_{i > i^{*}} (\hat{\theta} - \theta^{*}) + \sum_{i < (n+1)/2} (\theta^{*} - \hat{\theta}) \\ + \sum_{i^{*} \geq i \geq (n+1)/2} (\hat{\theta} - \theta^{*}) + \sum_{i < (n+1)/2} (\theta^{*} - \hat{\theta}) \\ + \sum_{i^{*} \geq i \geq (n+1)/2} 2(\theta^{*} - X_{[i]}) \\ &= (\hat{\theta} - \theta^{*}) + \sum_{i^{*} \geq i \geq (n+1)/2} 2(\theta^{*} - X_{[i]}) \\ &= (\theta^{*} - \hat{\theta}) + \sum_{i^{*} \geq i \geq (n+1)/2} 2(\theta^{*} - X_{[i]}) \\ > 0. \end{split}$$

The similar argument holds for $\theta^* < \hat{\theta}$ case. For the even n case, essentially the similar argument holds but with a bit more complication because of the tie breaking issue.

Problem 9 in Lecture 6

$$I = -E\left(\frac{\partial^2}{\partial \alpha^2} \log f(X_i | \alpha)\right) = -E\left(\frac{\partial}{\partial \alpha} \left(\frac{1}{\alpha} - \log X_i\right)\right) = -E\left(-\frac{1}{\alpha^2}\right) = \frac{1}{\alpha^2}.$$

Problem 12 in Lecture 6

- (a) The information for θ is $I = -E\left(\frac{\partial^2}{\partial \theta^2}\log f(X_i|\theta)\right) = -E\left(-\frac{1}{\theta^2}\right) = \frac{1}{\theta^2}$. Thus, the Cramer-Rao lower bound for θ is $CRLB = (nI)^{-1} = \frac{\theta^2}{n}$.
- (b) From problem 1, $\hat{\theta} = \frac{1}{\bar{X}_n}$. By CLT, $\sqrt{n}(\bar{X}_n E(X_i)) \stackrel{d}{\to} N(0, Var(X_i)) = N(0, \frac{1}{\theta^2})$. The function $g(x) = \frac{1}{x}$ is continuously differentiable at $x = E(X_i) = \frac{1}{\theta} > 0$. Thus by the Delta Method, $\sqrt{n}(\hat{\theta} \theta) = \sqrt{n}(g(\bar{X}_n) g(E(X_i))) \stackrel{d}{\to} g'(E(X_i))N(0, \frac{1}{\theta^2})$. Since $g'(E(X_i)) = g'(\frac{1}{\theta}) = -\theta^2$, we have $\sqrt{n}(\hat{\theta} \theta) \stackrel{d}{\to} N(0, (-\theta^2)^2 \frac{1}{\theta^2}) = N(0, \theta^2)$.
- (c) $\sqrt{n}(\hat{\theta}-\theta) \stackrel{d}{\to} N(0,I^{-1}) = N(0,\theta^2)$. The answer is the same as in part (b).

Problem 14 in Lecture 6

- (a) From problem 2, $\sqrt{n}(\hat{p}-p) \stackrel{d}{\to} N(0, p(1-p))$. Thus, V=p(1-p). Since $p=E(X_i)$, a natural estimator for it is $\hat{p}=\bar{X}_n$. Thus, an estimator of V is $\hat{V}=\bar{X}_n(1-\bar{X}_n)$.
- (b) By WLLN, $\bar{X}_n \stackrel{p}{\to} E(X_i) = p$. By CMT, $\hat{V} \stackrel{p}{\to} p(1-p) = V$. Thus, \hat{V} is consistent for V as $n \to \infty$.
- (c) $s(\hat{p}) = \sqrt{\frac{1}{n}\hat{V}} = \sqrt{\frac{1}{n}\bar{X}_n(1-\bar{X}_n)}$.

Problem 15 in Lecture 6

(a)

$$F_X(c) = \begin{cases} 0, & \text{if } c < 0\\ \frac{c}{\theta}, & \text{if } c \in [0, 1]\\ 1, & \text{if } c > 1 \end{cases}$$

(b)

$$F_{n(\hat{\theta}_n - \theta)}(x) = P\left(n(\hat{\theta}_n - \theta) \le x\right)$$
$$= P\left(\hat{\theta}_n \le \theta + \frac{x}{n}\right)$$

Recall that in class we derive $\hat{\theta}_n = \max_{i=1,\dots,n} \{X_i\}$, so then the event

$$\hat{\theta}_n \le \theta + \frac{x}{n} \Longleftrightarrow \max_{i=1,...,n} \{X_i\} \le \theta + \frac{x}{n} \Longleftrightarrow X_i \le \theta + \frac{x}{n}, \text{ for } i = 1,...,n$$

Thus,

$$F_{n(\hat{\theta}_n - \theta)}(x) = P\left(\hat{\theta}_n \le \theta + \frac{x}{n}\right) = P\left(X_i \le \theta + \frac{x}{n}, \text{ for } i = 1, ..., n\right)$$

$$= \prod_{i=1}^n P\left(X_i \le \theta + \frac{x}{n}\right)$$

$$= \prod_{i=1}^n F_X(\theta + \frac{x}{n}) = \left(F_X(\theta + \frac{x}{n})\right)^n$$

where the middle two equalities comes from the iid property.

(c) If $x \ge 0$, then $F_X(\theta + \frac{x}{n}) = 1$ for all n, so then $F_{n(\hat{\theta}_n - \theta)}(x) = 1^n = 1$, so $\lim_{n \to \infty} F_{n(\hat{\theta}_n - \theta)}(x) = 1$.

If x < 0, then $\theta + \frac{x}{n} \le \theta$, and for n large enough $(n > \frac{-x}{\theta})$, $\theta + \frac{x}{n} \ge 0$; so this means, when $n \to \infty$, $\theta + \frac{x}{n} \in [0, \theta]$. Thus,

$$\lim_{n \to \infty} F_{n(\hat{\theta}_n - \theta)}(x) = \lim_{n \to \infty} \left(F_X(\theta + \frac{x}{n}) \right)^n$$

$$= \lim_{n \to \infty} \left(1 + \frac{x/\theta}{n} \right)^n$$

$$= e^{x/\theta}$$

(d) Since Z is an exponential distribution with parameter θ ,

$$F_Z(z) = \begin{cases} 0, & \text{if } z < 0\\ 1 - e^{\frac{-z}{\theta}}, & \text{if } z \ge 0 \end{cases}$$

then the CDF of -Z is

$$F_{-Z}(x) = \begin{cases} e^{\frac{x}{\theta}}, & \text{if } x < 0\\ 1, & \text{if } x \ge 0 \end{cases}$$

By the discussion in (c), we see that when x < 0, $\lim_{n \to \infty} F_{n(\hat{\theta}_n - \theta)}(x) = e^{x/\theta} = F_{-Z}(x)$; and when $x \ge 0$, $\lim_{n \to \infty} F_{n(\hat{\theta}_n - \theta)}(x) = 1 = F_{-Z}(x)$. Thus, $\lim_{n \to \infty} F_{n(\hat{\theta}_n - \theta)}(x) = F_{-Z}(x)$ for all $x \in R$, so by definition of convergence in distribution, $n(\hat{\theta}_n - \theta) \stackrel{d}{\to} -Z$

Problem 1 in Lecture 7

A t test is used here. The test statistic is $T=|t|=\left|\frac{\bar{X}_{n}-1}{\sqrt{s^2/n}}\right|$, where $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i,\ s^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X}_n)^2$. Under $H_0,\ t\sim t_{n-1}$. For a pre-specified size α , pick the critical value c such that $\alpha=Pr(\mathrm{Reject}|H_0)=Pr(T>c|H_0)=2(1-F(c)),$ where $F(\cdot)$ is the CDF of t_{n-1} . This gives $c=F^{-1}(1-\frac{\alpha}{2}),$ the $1-\frac{\alpha}{2}$ quantile of t_{n-1} distribution. The test is: reject H_0 if T>c, accept H_0 if $T\leq c$.

Problem 3 in Lecture 7

Note that $P(T > c|\mu = 0) = P(T > c|\mu = 1) = \alpha$ leads to a size α test, since for any case of the parameter we always have the size of α . Now first let's show that $P(T > c|\mu = 0) = \alpha$.

$$P(T > c | \mu = 0) = P(\min\{|\sqrt{n}\bar{X}_n|, |\sqrt{n}(\bar{X}_n - 1)|\} > c | \mu = 0)$$

$$= P(\min\{|Z|, |Z - \sqrt{n}|\} > c)$$

$$= 1 - P(\min\{|Z|, |Z - \sqrt{n}|\} \le c)$$

$$= 1 - (1 - \alpha) = \alpha$$

Here, the second line comes from the fact that $\sqrt{n}X_n$ follows N(0,1) under $\mu=0$. Then the last line follows by the definition of our critical value.

We can do something similar using the fact that Z and -Z all follows standard normal distribution in calculating $P(T > c | \mu = 1)$. Here, note that $\sqrt{n}(\bar{X}_n - 1)$ follows standard normal under $\mu = 1$. Therefore:

$$P(T > c|\mu = 1) = P(\min\{|\sqrt{n}\bar{X}_n|, |\sqrt{n}(\bar{X}_n - 1)|\} > c|\mu = 1)$$

$$= P(\min\{|Z + \sqrt{n}|, |Z|\} > c|\mu = 1)$$

$$= P(\min\{|Z - \sqrt{n}|, |Z|\} > c|\mu = 1)$$

$$= P(\min\{|Z - \sqrt{n}|, |Z|\} > c|\mu = 1)$$

$$= 1 - P(\min\{|Z - \sqrt{n}|, |Z|\} \le c|\mu = 1) = 1 - (1 - \alpha) = \alpha$$

Here, the third line follows because taking minus does not change the absolute value, and the fourth line follows since Z and -Z have the same distribution. Then the last line comes again from the definition of c. Therefore we conclude that this test is a size α test.