3.16. Let $X: \Omega \to \mathbf{R}$ be a random variable such that $E[X^2] < \infty$ and let $\mathcal{H} \subset \mathcal{F}$ be a σ -algebra. Show that

$$E[(E[X|\mathcal{H}])^2] \leq E[X^2]$$
.

(See Lemma 6.1.1. See also the Jensen inequality for conditional expectation (Appendix B).)

By Jensen Inequality for Conditional Expectation,

Theorem B.4 (The Jensen inequality).

If $\phi: \mathbf{R} \to \mathbf{R}$ is convex and $E[|\phi(X)|] < \infty$ then

 $\phi(E[X|\mathcal{H}]) \le E[\phi(X)|\mathcal{H}]$.

Since $P(x) = x^2$ is convex, $E[x]P[]^2 \le E[x^2]P[]$ Using the law of Total Expectation, i.e., E[E[x]P[] = E[x]and taking the expectations $E[E[x]P[]^2] \le E[E[x^2]P[] = E[x^2]$