

Patent [19]

[11] Patent Number: 2001129364 [45] Date of Patent: May. 15, 2001

[54] PHOTOCATALYST CARRIER AND METHOD FOR DECOMPOSING NOX

[21] Appl. No.: 11317744 JP11317744 JP

[22] Filed: Nov. 09, 1999

[51] Int. Cl.⁷ B01D05386; B01D05394; B01J02106; B01J03502; B01J03504

[57] ABSTRACT

PROBLEM TO BE SOLVED: To effectively clean air by utilizing anatase type acid TiO2 having a photocatalytic activity by expanding an exposed surface area of TiO2 particle of the TiO2 immobilized material.

SOLUTION: In a method for cleaning air with respect to decomposition of NOx, air can be effectively cleaned by using a net having the photocatalyst immobilized to expand the exposed surface area of TiO2.

* * * * *

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-129364 (P2001-129364A)

(43)公開日 平成13年5月15日(2001.5.15)

B01D 53		ZAB	B 0 1 J 21/06 A 4 D 0 4 8				
	/0/						
D A 1 T 01	794		35/02 J 4 G 0 6 9				
B01J 21	/06		35/04 3 5 1				
35	5/02		B 0 1 D 53/36 Z A B J				
35	3 5 1		102D				
			審査請求 未請求 請求項の数5 〇L (全 4				
(21)出願番号	4	寺願平11-317744	(71)出願人 397070417				
			シントーファイン株式会社				
(22)出顧日	7	平成11年11月9日(1999.11.9)	大阪市東淀川区小松2丁目15番52号				
			(72)発明者 高谷和樹				
	•		シントーファイン株式会社内				
			Fターム(参考) 4D048 AA06 AB03 BA07X BA15Y				
			BA16Y BA22Y BA27Y BA30Y				
			BA31Y BA32Y BA36Y BA41X				
			BA42Y BB07 EA01				
			4C069 AAO3 BAO4B BA48A CA01				
			CA10 CA13 DA06 EA09 EA12				
			EEO7 FAO3				

(54) 【発明の名称】 光触媒担持体及びNOェ分解方法

(57)【要約】

【課題】光触媒作用を有するアナターゼ型酸 TiO_2 を利用し、効率良く大気を浄化する場合、 TiO_2 固定化体の TiO_2 粒子の露出表面積を広くする必要がある。【解決手段】光触媒を用いる NO_x 分解に関する大気の浄化方法に於いて、光触媒を固定化した網を用いることにより、 TiO_2 の露出表面積をより広くすることが出来、効率の良い大気浄化が可能になった。

【特許請求の範囲】

【請求項1】表面に光触媒を固定化した網。

【請求項2】請求項1記載の網の材質が、金属、又はガラス繊維であることを特徴とする網。

【請求項3】請求項1記載の網を用いることを特徴とするNOx分解方法。

【請求項4】請求項1記載の網を成形、又は加工して用いることを特徴とする請求項3記載の NO_x 分解方法。 【請求項5】請求項1記載の網を2枚以上重ねて用いることを特徴とする NO_x 分解方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は表面に光触媒を固定化し た網を用いた大気の浄化方法に関する。

【従来の技術】大気環境中の NO_x は光化学スモッグや酸性雨の原因物質であるだけでなく、呼吸器系疾患を引き起こすため、特に大都市圏の自動車交通の激しい道路周辺では深刻な問題になっている。その大気の浄化方法に関し、光触媒作用を有するアナターゼ型 TiO_2 を利用した大気の浄化方法が着目されている。

【0002】 TiO_2 を用いる場合、微粉末状態で大気を処理することは出来ないため、適切な基材に何らかの方法で固定化しなければならない。 TiO_2 を固定化したものは、屋外に置くだけで太陽光により、 NO_x を除去する大気浄化材料になりうる。しかし NO_x の分解効率が良く、耐久性のある大気浄化材料にするには、表面に露出した TiO_2 の露出表面積を広くし、しかも基材 頑強に固定化したものにする必要がある。

【0003】TiO2などの粉末の固定化用バインダー として有機質の樹脂を使用すれば簡単にTiO。の露出 面積が広く、確実に基材に固定化可能であるが、その方 法で形成した膜は、太陽光など光の照射により膜そのも のが短期間で劣化するので好ましくない。そのため、バ インダーとして用いる有機樹脂は最低限にする必要があ る。また、光で劣化しない無機質バインダーを使用する 場合には少量で光触媒を確実に固定化出来るものを選択 しなければならない。そのためのバインダーとしては、 テトラエチルシリコンの加水分解液やオルガノポリシロ キサンなどが知られている。また固定化した膜のTiO 。の露出表面積を広くして光触媒の有効面積を広くする 目的で、コンクリート面や無機多孔体など、比表面積の 広い材料に、前記バインダーなどを用いたTiOっ膜前 駆体溶液を、塗布乾燥する方法で作製した材料が公開さ れている。また既に道路の側壁用遮音板の表面にTiO 2 を固定化したものについて、大気浄化効果と耐久性を 確認するための試験が行われている。

[0004]

【発明が解決しようとする課題】本発明はNO_x分解に 関する大気の浄化に光触媒を用いる方法に於いて、形成 した光触媒の露出表面積をより広くすることにより、N O_x を効率良く分解して大気を浄化しようとするものである。

[0005]

【課題を解決するための手段】本発明者は、光触媒膜固定化体を用いる NO_x の分解による大気の浄化に関し鋭意研究した結果、光触媒を固定化した網を形成しその網を複数枚重ねるて用いる方法により、 NO_x の分解効率が良く、副生する NO_2 も極端に少なく出来ることを見出したものである。

[0006]

【発明の実施の形態】本発明に用いる光触媒としては、 TiO_2 、 WO_3 、ZnO、 Bi_2O_3 、 Fe_2O_3 、 In_2O_3 、 $TiSrO_3$ などが使用可能であるが、性能及び経済性の観点からアナターゼ型の TiO_2 が好ましい。また本発明においてはPt、Rh、Ru、Pdなどの金属或いはそれらの化合物を併用することも可能である。

【0007】本発明は $\mathrm{TiO_2}$ 固定化体に於ける $\mathrm{TiO_2}$ 露出表面積を広くするための基材として網を選択した。例えば板ガラスなど平坦なものの一定面積に対し、同じ大きさの網を形成する材料の表面積は狭いが、網を複数重ねた場合の表面積、即ち光を照射した場合の面積は広くなる。また網を複数枚重ねたものに光を照射した場合、散乱光が網の裏面にも照射されるため、有効面積はさらに広くなることに着目研究し本発明を完成したものである。

【0008】また本発明の光触媒を固定化した網の材質としては、光触媒作用により劣化しない材質であれば特に制限はなく、品質及び経済性の観点から金属製、又はガラス繊維製の網を使用可能であるが、特にステンレス製のものが好ましい。本発明は網の編み目の形状に関して特に制限は無く、真四角状、丸状など何れの形状でも差し支えない。また本発明の網とは針金の様な線材をつなぎ合わせた簾状のもの、或いは孔の開いた金属板状のもの、細長い板状の金属をつなぎ合わせたものなど、孔やすき間から光が透過する基材を含むものである。

【0009】光触媒によるNO_x分解方法に関する本発明は、光触媒の有効面積を広くすることに着目したものであるため、光触媒の種類、光触媒のバインダー成分等に制限はなく網に付着するものであれば使用することが出来るが、特に脂肪族モノカルボン酸Zrの有機溶剤溶液にTiO₂を分散させたものを、塗布乾燥後に400℃以上で焼成し、さらにテトラエチルシリコンの加水分解液にTiO2を分散した溶液を塗布する方法で形成した担持体が望ましい。

【0010】なお本発明の光触媒を固定化した網は、網の表裏全面に光触媒を固定化したもの、表面片面のみに固定化したものの制限はなく、網の形状や道路現場への敷設の仕方などを考慮して決めることが好ましい。即ち1枚の網を折り曲げたり、渦状に巻いて有効表面積を広

くする場合は全面に固定化することが好ましく、2枚以上重ねて用いるような場合は光の当たる表面片面のみに固定化したものでも差し支え無い。

【0011】また網に対する光触媒の固定化時期としても特に制限は無く、光触媒を固定化した網を所望の形態に加工する方法、或いは網を折り曲げ、さらには複数枚重ねた枠に固定するなど成形或いは加工後に光触媒を担持させる方法など特に制限は無く、より経済的で確実に固定化出来る時期に固定化することが好ましい。

【0012】本発明の光触媒を表面に形成した網の網を 形成する基材の断面の形状にも制限はないが、断面が円 形のものが望ましい。即ち円形の場合、光触媒を固定化 した網の最終加工物を道路現場に設置した場合、太陽光 の当たる時間帯に関係なく光の照射面積が広くなるた め、NOxの分解効率が良くなる。

【0013】本発明の光触媒を表面に固定化した成形加工網とは、これらのみに限定されないが、網を波板状に加工したもの、網を渦巻き状にしたもの、円筒状の網を層状に重ねたもののことである。また網を複数枚重ねて用いる場合、網を形成している1本の金属、或いは1本の糸状ガラス繊維の直径や網の目開きに特に制限はないが、目開きは太陽光の照射方向に向かって大きくすることが好ましい。また道路の上を覆う様な方式で、光触媒固定化した網を敷設する場合は、特に小さい目開きの網を道路側、即ちガスの発生源側にすると、大気中の浮遊粒子物質の拡散を抑制する効果も期待出来る。

【0014】光触媒膜を固定化した網を層状に重ねる場合、その層間隔に特に制限は無いが、完全に密着させるより間隔を開ける方が好ましい。即ち光触媒を担持した網を完全に密着させると完全な陰の部分が出来、光触媒の有効面積が狭くなるが、間隔を開けた場合は乱反射した光の照射を受けるため、光触媒の有効面積が広くなる。

【0015】本発明の光触媒を表面に固定化した金網を、実際の道路現場に敷設する場合、その固定化方法は経済的で確実に出来る方法であれば特に制限はないが、NOx分解効率をより確実にするためには、太陽光を完全に遮断しない程度の層状にすることが望ましい。また現場に於ける敷設作業性の観点から、前記光触媒膜を形成した網及び網を波板状に加工したもの、及びそれらを複数枚重ねたもの、網を渦巻き状にしたものや円筒状の網を層状に重ねたものを、枠に固定して敷設することが好ましい。

【0016】大気汚染が深刻な問題になっている大都市圏の自動車交通の激しい道路周辺においては、より確実に NO_x を分解する必要がある。そのためそれら地域に於いては、本発明の光触媒を表面に担持した網の成形加工物を、道路を覆う形で敷設することが好ましい。その場合の並べ方としては屋根瓦式、あるいはアーチ式など特に制限はないが、大気の浄化効率の観点から層を厚く

することが好ましい。即ち敷設の形態としては汚染した 大気と光触媒がより長く接触し、さらに太陽光がより長 く照射されるようにすることが望ましく、ブラックライ トや蛍光灯或いは殺菌灯などを照射することも好まし い。また網の表面に生成したNO3を除く目的で夜間の みに、一定時間スプリンクラーなどで散水して洗浄する ことも可能である。

[0017]

【表-1】

試験片香寺	登材の経嫌	長村網のサイズ	大きさ (nn)
1	808条網	0. 3 mm # 2 4 # 25a	70×250
2		0. 3and 243obr	, (SE 1
3		0. 65mm 73793	
4		1. 1 and 6 fets	
3	ガラス鉄総務	厚み 0. 35mm 日間を指2mm	₩ (注2)
6	アルミ板	_	70×250×1

(注1) 70×330mmを折り曲げて被状にし、70×250m (注2) 三重機物体式会社製 YEM3801-H

0.04m、クリアランス8mmに調整し、NO濃度が 安定してからからブラックライト(1mmW)を5分間照射し、NOの分解性 ENO_2 の濃度変化を調べた。その結果は表-2のとおり良好であった。

【0019】(実施例2)試験片番号2を用いた以外は 実施例1と同様に試験を行った。その結果は表-2のと おり良好で、さらに実施例1より良好であった。

【0020】(実施例3)試験片番号4を3枚重ねたものを用いた以外は実施例1と同様に試験を行った。その結果は表-2のとおり良好で、さらに実施例1及び実施例2より良好であった。

【0021】(実施例4)試験片番号1の上に試験片番号3、4の順に3枚重ねたものを用いた以外は実施例1と同様に試験を行った。その結果は表-2のとおり実施例1、実施例2、実施例3より良好であった。

【0022】(実施例5)試験片番号5を用いた以外は 実施例1と同様に試験を行った。その結果は表-2のと おり実施例3と同じ程度に良好であった。

【0023】(比較例1)実施例1と同じ流通式 NO_x 分解試験装置を用い、試験片番号6によるNO分解性、および NO_2 の濃度変化を調べた。その結果は、表-2のとおり、実施例1、2、3、4及び5に比べ、 NO_2

!(4)001-129364(P2001-12\$8

の減少率が明らかに劣っていた。

[0024]

【表-2】

1186	NO			NO.			
	PUNNE	#44(Z	分解平	PARME	44 /4	增減量	1番16年
			(%)	PPE	PPM	7711	(%)
実施門1	1.1488	0.0234	31.5	0.0480	0.01 97	-0.0203	-51
英庭門2	1.1811	0.0210	11.1	0.0380	0.020\$	-0.0171	-45
支流的コ	1.1250	0.0143	31.7	0.0588	6. CI 88	-0.0267	- 68
支減例4	1.0780	0.0004	11.1	0.0686	0.01 54	-0.0612	-77
英雄附5	1,9290	0.0164	11.1	0.0657	0.0223	-0.0434	- 65
ELERGY 1	4.9880	0.0213	91.7	0.0339	0.0323	-0.0014	-6

|社経所に | 1-1980 | 0.0215 | 91.2 | 0.0324 | 0.0224 | -4.0014 | -5|
(次1) NO分類版目 (1 - 48版 (2 / 12) (2) × 10 0 (大きい場下がある)
(次2) NOう場が差: -41(過差(臭げ)。
(外2) NOっ場が差: -41(過差(臭げ)。
(外3) NOっ場が差: -41(過差(臭げ)。
も場合は対策しくなく、 やしろりの分解中は低くでもNO。過度の27所能からの過少率が大きいが呼ばしい。比例の1では、NO。過度は対射能から少少低でしているものの、その過少型は重複的1から変換対ちの形しているものの、その過少型は重複的1から変換対ちのであり、10である。

[0025]

【発明の効果】光触媒担持体を用いるNO_xの分解によ る大気の浄化に関し、光触媒膜を担持した金網を複数枚 重ねて用いることによりNOx の分解効率が良く、さら に生成するNO₂も極端に少なく出来ることを見出し た。特に大都市圏の自動車交通の激しい道路周辺に於い ては、本発明の網を道路を覆う形で敷設することによ り、汚染空気の拡散前の浄化が期待できる。