Real Variables Exam 2 Revision

wongx565

November 2018

1 Introduction

1.) Prove or disprove: There exists a continuous function $f: \mathbb{R} \to \mathbb{Q}$ such that f(q) = q for all $q \in \mathbb{Q}$.

Proof. Assume there exists a continuous function $f: \mathbb{R} \to \mathbb{Q}$ such that f(q) = q for all $q \in \mathbb{Q}$. We can show a contradiction with this function. By sequential continuity of f the image of convergent sequence will converge. So if $(a_n) \to a$, then $f(a_n) \to f(a)$. Defining a convergent sequence (a_n) to be $(a_n) = \{1, 1.4, 1.41, 1.41, 1.414, 1.414, \dots\}$, this sequence converges to $\sqrt{2}$. Since all $(a_n) \in \mathbb{Q}$ for all n, $f(a_n) = \{1, 1.4, 1.41, 1.414, 1.414, \dots\}$, however $f(\sqrt{2}) \neq \sqrt{2}$ since $\sqrt{2} \notin \mathbb{Q}$ thus $f(a_n) \not\to f(a)$. This is a contradiction of sequential continuity, thus it is not possible to have such a function.

8.) Suppose M is a covering compact space and $f: M \to N$ is continous. Prove that $f(M) \subseteq N$ is covering compact.

Proof. Let C be an open cover of f(M),

$$C = \bigcup_{\alpha \in \lambda} U_{\alpha}.$$

Then by the open preimage condition the preimages of the open set in C, $f^{-1}(U_{\alpha})$ are open and contained in M. Then

$$f^{-1}(C) = \bigcup_{\alpha \in \lambda} f^{-1}(U_{\alpha})$$

covers M since every $m \in M$ is in some U_{α} . Since M is compact there exists a finite subcover of $f^{-1}(C)$ called D (denoted as $U_1, U_2, \dots U_n$).

$$D = \bigcup_{i}^{n} f^{-1}(U_i)$$

Then f(D) is a finite subcover of f(M) since every $m \in M$ is covered in D and thus every $p \in f(M)$. Therefore f(M) is covering compact.

6.) Let $M = \{(a_n) | a_n = 0 \text{ or } a_n = 1 \ \forall n\}$ be the metric space consisting of binary sequences, with metric:

$$d((a_n), (b_n)) = \sum_{n=1}^{\infty} \frac{|a_n - b_n|}{2^n}$$

Prove: M is compact.

Proof. Given a sequence in M we can construct a subsequence that converges. We set up a series of steps that will construct a subsequence that converges. Let (A_n) denote the sequence in M so that $A_i = (a_i) = \{a_{i,1}, a_{i,2}, a_{i,3}, \ldots\}$ with each $a_{i,j} \in \{\{0\}, \{1\}\}$. The first term in each sequence, $a_{1,1}, a_{2,1}, a_{3,1}, \ldots$, we will have 0 repeats infinite times and/or 1 repeats infinite times since only 0, 1 are options and there are infinite sequences. Without loss of generality suppose $z_1 \in \{\{0\}, \{1\}\}\}$ repeats infinitely many times, then define a subsequence,

$$B_n = \{a_i \in A_n, i > 1 | a_{i,1} = z_1\}.$$

Since z_1 repeats infinite number of times we know B_n is never ending. Let the sequences in B_n be defined as b_1, b_2, \ldots , we know that every sequence in B_n it is true that $b_{i,1} = z_1$. Similarly we will define a subsequence of B_n . Again for the second term of $(b_1), (b_2), (b_3), \ldots$ we assume without loss of generality for $z_2 \in \{\{0\}, \{1\}\}\}$ that $b_{i,2} = z_2$ for $i\mathbb{N}$ happens an infinite number of times. Then define the subsequence as

$$C_n = \{b_i \in B_n, i > 1 | b_{i,2} = z_2\}.$$

We exclude (b_1) from our list to ensure the first sequence in A_n, B_n, \ldots is distinct. We shall call these sequences c_1, c_2, \ldots . We continue this process creating new subsequences that Remember that for each A_n, B_n, C_n, \ldots , it is a subsequence of the original A_n . Now define A_{nk} as the first sequence in A_n followed by the first sequence in B_n , followed by the first sequence in C_n , and on forever. This is a subsequence of A_n and it converges to $C_n = \{z_1, z_2, z_3, \ldots\}$. We will now show that (A_{nk}) converges to (Z_n) .

For $A_{n_1} \in A_n$ so A_{n_1} can be any sequence, thus A_{n_1} could disagree with Z_n at every term, thus

$$d(A_{n_1}, Z_n) \le 1,$$

since $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$. The second term $A_{n_2} \in B_n$ so $A_{n_2,1} = z_1$ so the max distance of A_{n_2} is $1 - \frac{1}{2}$ since $A_{n_2,1}$ and Z_n agree at the first term, thus

$$d(A_{n_2}, Z_n) \le \frac{1}{2}.$$

Continuing this trend we note that

$$d(A_{n_3}, Z_n) \le \frac{1}{4},$$

since A_{n_3} agree on the first and second terms. We can generalize this to

$$d(A_{n_k}, Z_n) \le \frac{1}{2^k}.$$

Thus for any $\epsilon > 0$, set $N = \log_2 \frac{1}{\epsilon}$ thus for all n > N, get we,

$$d(A_{n_k}, Z_n) \le \frac{1}{2^k} < \frac{1}{2^{\log_2 \frac{1}{\epsilon}}} = \epsilon.$$

Thus (A_{n_k}) is a convergent subsequence of A_n , therefore M is compact.

7.) Suppose $A \subseteq \mathbb{R}$ is compact, and let $x \in A$. Prove: If (x_n) is a sequence in A such that every convergent subsequence of (x_n) converges to x.

Proof. Suppose for sake of contradiction that (x_n) does not converge x, then for any $\delta > 0$ for all $k \in \mathbb{N}$ there exists $n_k > k$ such that $x_{n_k} \notin B(x,\delta)$. We have the infinite set of n_k form a subsequence (x_{n_k}) of (x_n) . By Bolanzo Weierstrass Property, x_n is bounded so since (x_{n_k}) is a subsequence of (x_n) it is also bounded. Also $(x_{n_k}) \in A \setminus B(x,\delta)$ which is closed since $B(x,\delta)$ is open, thus there exists a subsubsequence of (x_{n_k}) that converges. Let $(x_{n_{k_j}}) \to x'$. Since $B(x_{n_{k_j}}, x) > \delta$ for all n_{k_j} . Thus $(x_{n_{k_j}}) \to x' \neq x$, but this contradicts our assumption. Thus (x_n) must converge to x.