

VinMin = 3.3V VinMax = 4.2V Vout = 5.0V Iout = 4.0A Device = TPS61236PRWLR Topology = Boost Created = 12/3/16 10:49:18 AM BOM Cost = \$2.07 BOM Count = 12 Total Pd = 1.33W

WEBENCH® Design Report

Design: 3569363/78 TPS61236PRWLR TPS61236PRWLR 3.3V-4.2V to 5.00V @ 4.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Ccc	MuRata	GRM033R61A103KA01D Series= X5R	Cap= 10.0 nF VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	0201 2 mm ²
2.	Cff	Kemet	C0805C100M4GACTU Series= C0G/NP0	Cap= 10.0 pF VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
3.	Cin	Taiyo Yuden	LMK212BJ106KG-T Series= X5R	Cap= 10.0 uF VDC= 10.0 V IRMS= 0.0 A	1	\$0.02	0805 7 mm ²
4.	Cout	MuRata	GRM31CR61A226ME19L Series= X5R	Cap= 22.0 uF ESR= 3.637 mOhm VDC= 10.0 V IRMS= 3.56456 A	2	\$0.08	1206_190 11 mm ²
5.	L1	Bourns	SRN8040-1R0Y	L= 1.0 μH DCR= 10.0 mOhm	1	\$0.22	SRN8040 100 mm ²
6.	R1	Vishay-Dale	CRCW04021M00FKED Series= CRCWe3	Res= 1000.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
7.	R2	Vishay-Dale	CRCW04021M00FKED Series= CRCWe3	Res= 1000.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
8.	Rcc	Panasonic	ERJ-8ENF3092V Series= ERJ-8E	Res= 30.9 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
9.	Rfbb	Vishay-Dale	CRCW0402205KFKED Series= CRCWe3	Res= 205.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
10.	Rfbt	Vishay-Dale	CRCW0402619KFKED Series= CRCWe3	Res= 619.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
11. U1	Texas Instruments	TPS61236PRWLR	Switcher	1	\$1.60	
						RWL0009A 12 mm ²

Operating Values

.#	Name	Value	Category	Description
1.	Cin IRMS	338.95 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	3.09 A	Current	Output capacitor RMS ripple current
3.	IC lpk	6.956 A	Current	Peak switch current in IC
4.	lin Avg	6.463 A	Current	Average input current
5.	L lpp	1.174 A	Current	Peak-to-peak inductor ripple current
6.	BOM Count	12	General	Total Design BOM count
7.	FootPrint	173.0 mm ²	General	Total Foot Print Area of BOM components
8.	Frequency	1000.0 kHz	General	Switching frequency
9.	Mode	BOOST PWM CCM	General	PWM/PFM Mode
10.	Pout	20.0 W	General	Total output power
11.	Total BOM	\$2.07	General	Total BOM Cost
12.	Vout Actual	5.0 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
13.	Duty Cycle	37.198 %	Op_point	Duty cycle
14.	Efficiency	93.779 %	Op_point	Steady state efficiency
15.	IC Tj	50.063 degC	Op_point	IC junction temperature
16.	ICThetaJA	28.7 degC/W	Op_point	IC junction-to-ambient thermal resistance
17.	IOUT_OP	4.0 A	Op_point	lout operating point
18.	VIN_OP	3.3 V	Op_point	Vin operating point
19.	Vout p-p	49.721 mV	Op_point	Peak-to-peak output ripple voltage
20.	Cin Pd	0.0 W	Power	Input capacitor power dissipation
21.	Cout Pd	17.364 mW	Power	Output capacitor power dissipation
22.	IC Pd	699.065 mW	Power	IC power dissipation
23.	L Pd	610.226 mW	Power	Inductor power dissipation
24.	Total Pd	1.327 W	Power	Total Power Dissipation
25.	Rload_crit	3.4 Ohm		Minimum Rload required during Start up
26.	Vout Tolerance	3.15 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider
				resistors if applicable

Design Inputs

	9 1		
#	Name	Value	Description
1.	lout	4.0	Maximum Output Current
2.	VinMax	4.2	Maximum input voltage
3.	VinMin	3.3	Minimum input voltage
4.	Vout	5.0	Output Voltage
5.	base_pn	TPS61236P	Base Product Number
6.	source	DC	Input Source Type
7	Ta	30.0	Ambient temperature

Design Assistance

1. **TPS61236P** Product Folder: http://www.ti.com/product/TPS61236: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.