Closest Pair Report

Andreas Bitzilis, Christos Grigoriou and Dimos Zikos September 12, 2016

Results

Our implementation produces the expected results on all input-output file pairs.

The following table shows the closest pairs in the input files wc-instance-14.txt. Here n denotes the number of points in the input, and (u, v) denotes a closest pair of points at distance d.

n	u	v	d
14	(-0.5, 0.0)	(-0.125, 3.0)	3.0234

Implementation details

We resort by y-coordinates in each recursive step. For the comparison of points close to s in S_y we inspect 15 points, as explained (5.10) of Kleinberg and Tardos, Algorithm Design, Addison-Wesley 2008. Here is the corresponding part of our code:

We combine the information from the recursive calls in linearithmic time instead of linear, thus the relation has the form of T(N) = 2T(N/2) + cNlogN. By unrolling the relation we identify that $T(n) \rightarrow cn \ \Sigma^{log2 \ n-1} \log(n/2^j)$. It lies between nlogn and n^2 . We also took the chance to implement concepts introduced in Practical Concurrent and Parallel Programming.