COT2000 Exam 4

Amarnath Patel

August 2, 2024

Question 1

(a)

Yes, there are two circuits in G:

$$C_1: v_1 \to v_2 \to v_3 \to v_1$$

$$C_2: v_4 \to v_4 \text{ (self-loop)}$$

Vertex	In-degreeOut-degree
v_1	11
v_2	12
v_3	11
v_4	22
v_{E}	10

Yes, F has two connected components:

$$\{v_1, v_3\}$$
 and $\{v_4, v_5\}$

Question 2

A multigraph is a graph that allows:

- Multiple edges (parallel edges) between the same pair of vertices
- Loops (edges that connect a vertex to itself)

Differences from a simple graph:

- Simple graphs do not allow parallel edges or loops
- In a simple graph, each edge is unique
- Multigraphs can have multiple edges with the same endpoints

Example Multigraph

Real-World Scenario

This multigraph could represent a transportation network between two cities:

- Vertices A and B represent two cities
- Edges represent different transportation routes:
 - e1, e2: Local bus routes within city A
 - e3: Highway from A to B
 - e4: Train line from A to B
 - e5: Flight from B to A
 - e6: Local bus route within city B

The multiple edges between A and B represent different modes of transportation, while the loops represent local transportation within each city.

Question 3

(a)

- (b) Circuits in the graph:
 - $A \to B \to C \to D \to A$ (Simple circuit)
 - $C \to E \to C$ (Simple circuit)
 - (c) This graph does not have an Euler path or circuit. Justification:
 - For a directed graph to have an Euler circuit, every vertex must have equal in-degree and out-degree.
 - For an Euler path, at most two vertices can have unequal in-degree and out-degree, differing by 1.
 - In this graph:

Vertex	${\bf In\text{-}degreeOut\text{-}degree}$
A	11
B	11
C	22
D	11
E	11

- While the in-degrees and out-degrees are equal for each vertex, there are 6 edges but not all vertices are connected in a single circuit.
- The graph consists of two separate circuits that cannot be combined into a single Euler path or circuit.

Question 4

(a) Graphs G1 and G2:

- (b) Isomorphism analysis:
- i. Vertex mapping function $f:V(G1)\to V(G2)$:

$$f(a) = w$$

G2

$$f(b) = x$$

$$f(c) = y$$

$$f(d) = z$$

ii. Edge mapping function $h: E(G1) \to E(G2)$:

$$h(a,b) = (w,x)$$

$$h(b,c) = (x,y)$$

$$h(c,d) = (y,z)$$

$$h(d, a) = (z, w)$$

$$h(a,c) = (w,y)$$

iii. Verification of one-to-one correspondence:

For each edge e = (u, v) in E(G1), we confirm h(e) = (f(u), f(v)) in E(G2):

$$h(a,b) = (f(a), f(b)) = (w,x) \in E(G2)$$

$$h(b,c) = (f(b), f(c)) = (x,y) \in E(G2)$$

$$h(c,d) = (f(c), f(d)) = (y, z) \in E(G2)$$

$$h(d, a) = (f(d), f(a)) = (z, w) \in E(G2)$$

$$h(a,c) = (f(a), f(c)) = (w,y) \in E(G2)$$

However, G1 and G2 are not isomorphic because:

- G2 has an additional edge (x, z) that doesn't correspond to any edge in G1.
- The degree sequences differ: G1 has [3,2,3,2] and G2 has [3,3,3,3].

Therefore, while we can define functions f and h, they do not establish an isomorphism between G1 and G2.

Question 5

a) Isomorphism

G1 and G2 are not isomorphic:

- Vertices: G1 (6), G2 (6)
- Edges: G1 (7), G2 (7)
- Degree sequences differ:
 - G1: [2, 3, 5, 1, 1, 2]
 - G2: [2, 1, 5, 2, 3, 1]

b) Adjacency Matrix G1

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

c) Adjacency Matrix G2

$$\begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

d) Vertex Degrees

G1:
$$\{2, 3, 5, 1, 1, 2\}$$

G2: $\{2, 1, 5, 2, 3, 1\}$

Question 6

(a) Isomorphic Subgraphs

G1 adjacency matrix:

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

G2 adjacency matrix:

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

Process:

- \bullet Examine all 3x3 submatrices of G2
- Compare each to G1's matrix
- Count isomorphic subgraphs

Result: 2 isomorphic subgraphs

(b) Graph Drawings

G1

G2