A Study of Lower Bounds on Randomness for Three-Party Secure Computation B. Tech Project I

Srivatsan Sridhar 1 150070005

Supervised by:

Prof. Sibiraj Pillai ¹ Prof. Vinod Prabhakaran ²

¹Electrical Engineering IIT Bombay, India

> ²School of TCS TIFR Mumbai

November 24, 2018

Three-Party Secure Computation - Introduction

- ▶ Alice (A) and Bob (B) have private data X and Y respectively
- ▶ Charlie (C) computes a function Z = f(X, Y)
- ► There is a private channel between every pair of parties

Three-Party Secure Computation Model

Three-Party Secure Computation - Objectives

- Charlie must compute Z with zero probability of error
- ▶ Charlie must not learn X and Y, more than what Z reveals
- ▶ Alice must not learn Y, more than what X reveals
- ▶ Bob must not learn X, more than what Y reveals

Three-Party Secure Computation Model

Three-Party Secure Computation - One-shot FKN Protocol

- 1. Alice chooses $M_{12} \in \mathcal{M}_{12}$, sends it to Bob privately
- 2. Alice sends M_{13} , a function of (M_{12}, X) to Charlie
- 3. Bob sends M_{23} , a function of (M_{12}, Y) to Charlie
- 4. Charlie computes \hat{Z} (estimate of Z) as a function of M_{13} , M_{23}

Find minimum $H(M_{12}), H(M_{23}), H(M_{13})$ for this to succeed.

Messages sent in one-shot protocol

Three-Party Secure Computation - Formal Goals

Secrecy:

- \blacktriangleright Alice chooses M_{12} independent of X (secrecy for Alice and Bob)
- ► $(M_{13}, M_{23}) Z (X, Y)$ is a Markov Chain (secrecy for Charlie)

Correctness:

▶ $Pr(\hat{Z} = Z) = 1$ where \hat{Z} is computed by Charlie using M_{13} , M_{23} and Z = f(X, Y).

Three-Party Secure Computation Model

Applications of Multi-Party Secure Computation

► Secure auctions [1]:

- N parties bid their highest price for a product
- Each party's bid to be unknown to other parties and to the seller
- Seller must correctly determine the highest bidder

Benchmark Analysis:

- A third party agent compares performance of difference companies based on certain parameters
- Performance parameters of each company should not be leaked to other companies

Machine Learning:

- Organization collects data from several users
- Each user's private data must not be learnt by other users or by the organization
- Organization must accurately train machine learning models on the data

Secure Computation of AND

- ▶ $X, Y \in \{0, 1\}$ and f(X, Y) = XY
- Protocol by Feige, Kilian and Naor [2] where:
 - ▶ M_{12} is chosen uniformly from \mathcal{M}_{12}
 - ▶ M_{13} is a deterministic function of (M_{12}, X)
 - ▶ M_{23} is a deterministic function of (M_{12}, Y)
 - \vdash $H(M_{12}) = log_2 6$ and $H(M_{13}) = H(M_{23}) = log_2 3$
 - Optimal for one-shot protocols without private randomness

Messages sent in one-shot protocol

Previous Work [3, 4]

- Study of one-shot FKN protocols without private randomness
- Lower bounds for general functions of X and Y
- ▶ For AND, $H(M_{13}) \ge log_2 3$ and $|\mathcal{M}_{13}| \ge 3$
- ▶ Using the above, and properties of the AND function, $H(M_{12}) \ge log_2 6$ and $|\mathcal{M}_{12}| \ge 6$
- ▶ $H(M_{13}) \ge log_2 3$ and $H(M_{12}) \ge 1.826$ when parties are allowed to interact over multiple rounds and use private randomness
- ▶ The FKN protocol for AND is optimal for $H(M_{13})$ but may not be for $H(M_{12})$ over more general protocols

Private Randomness

- ▶ M_{13} may not a deterministic function of (M_{12}, X) .
- ► M_{13} drawn from a distribution $p_{M_{13}|M_{12},X}$
- ▶ There exist functions f(X, Y) where using private randomness decreases the lower bound on $H(M_{12})$
- When can we trade off common randomness for private randomness?

Messages and their distributions

My Work - Proof under Private Randomness

- ► Can we have $H(M_{12}) < log_2 6$ for secure AND with private randomness?
- ▶ Proof that $|\mathcal{M}_{12}| \ge 6$ holds with private randomness too
- Using two properties of the AND function:
 - 1. $f(1,1) \neq f(1,0)$. So correctness requires that

$$supp((M_{13}, M_{23})|XY = 10) \cap supp((M_{13}, M_{23})|XY = 11) = \Phi$$

- 2. f(0,0) = f(0,1) = f(1,0). So secrecy requires that $supp((M_{13}, M_{23})|XY = 00) = supp((M_{13}, M_{23})|XY = 01) = supp((M_{13}, M_{23})|XY = 10)$
- ▶ Proof that any $|\mathcal{M}_{12}|$ < 6 cannot satisfy these two conditions

- ▶ Trivially $|\mathcal{M}_{12}|$ = 1 cannot satisfy these conditions
- ▶ Suppose that $|\mathcal{M}_{12}|$ = 3. Show that this is not possible
- ▶ Each cell in the table shows $supp(M_{13}, M_{23}|X, Y, M_{12})$
- $A_1 = supp(M_{13}|X = 0, M_{12} = m_1),$ $B_1 = supp(M_{23}|Y = 0, M_{12} = m_1)$
- ▶ A_1B_1 denotes set product of A_1 and B_1

	$M_{12}=m_1$	$M_{12}=m_2$	$M_{12}=m_3$
XY = 00	A_1B_1	A_3B_3	A_5B_5
XY = 01	A_1B_2	A_3B_4	A_5B_6
XY = 10	A_2B_1	A_4B_3	A_6B_5
XY = 11	A_2B_2	A_4B_4	A_6B_6

1. $f(1,1) \neq f(1,0)$. Correctness requires that

$$supp((\textit{M}_{13}, \textit{M}_{23})|XY=10) \cap supp((\textit{M}_{13}, \textit{M}_{23})|XY=11) = \Phi$$

- Sets in row 4 must be disjoint with the sets in rows 1, 2 or 3
- 2. f(0,0) = f(0,1) = f(1,0). **Secrecy** requires that

$$supp((M_{13}, M_{23})|XY = 00) = supp((M_{13}, M_{23})|XY = 01) = supp((M_{13}, M_{23})|XY = 10)$$

▶ The same sets must appear in rows 1, 2 and 3

	$M_{12}=m_1$	$M_{12}=m_2$	$M_{12} = m_3$
XY = 00	A_1B_1	A_3B_3	A_5B_5
XY = 01	A_1B_2	A_3B_4	A_5B_6
XY = 10	A_2B_1	A_4B_3	A_6B_5
XY = 11	A_2B_2	A_4B_4	A_6B_6

- $ightharpoonup A_1B_2$ and A_2B_1 must appear in row 1 (secrecy)
- ▶ Elements of A_2 and B_2 cannot appear in the same cell (correctness)

	$M_{12}=m_1$	$M_{12}=m_2$	$M_{12}=m_3$
XY = 00	A_1B_1	A_3B_3	A_5B_5
XY = 01	A_1B_2	A_3B_4	A_5B_6
XY = 10	A_2B_1	A_4B_3	A_6B_5
XY = 11	A_2B_2	A_4B_4	A_6B_6

- ▶ A_1B_2 and A_2B_1 must appear in row 1 (secrecy)
- ▶ Elements of A_2 and B_2 cannot appear in the same cell (correctness)
- ▶ We must have $A_1 \subseteq A_3$, $B_2 \subseteq B_3$, $A_2 \subseteq A_5$, $B_1 \subseteq B_5$
- ▶ This tells us that $|\mathcal{M}_{12}| = 2$ is not possible
- ▶ $B_2 \subseteq B_3 \implies A_2 \cap A_3 = \Phi$ (correctness)
- ▶ $B_1 \subseteq B_5 \implies B_1 \cap B_6 = \Phi$ (correctness)
- ▶ This means A_2B_1 cannot appear in row 2 (violation of secrecy)
- ▶ This violation shows that $|\mathcal{M}_{12}| = 3$ is not possible

	$M_{12}=m_1$	$M_{12}=m_2$	$M_{12}=m_3$
XY = 00	A_1B_1	A_1B_2	A_2B_1
XY = 01	A_1B_2	A_1B_4	A_2B_6
XY = 10	A_2B_1	A_4B_2	A_6B_5
XY = 11	A_2B_2	A_4B_4	A_6B_6

- ▶ Continue similarly to prove that $|\mathcal{M}_{12}| = 4,5$ are not possible
- ▶ All possible assignments of sets fail the two conditions
- ▶ Thus $|\mathcal{M}_{12}| \ge 6$ is required
- ▶ **Next question** Can we have $H(M_{12}) < log_2 6$?
- ▶ $|\mathcal{M}_{12}| \ge 6$ does not imply that $H(M_{12}) \ge log_2 6$

Further Work

- ▶ Can we have $H(M_{12}) < log_2 6$ with private randomness?
- Only looked at supports of messages so far
- Take into account properties of the distributions
- Generalizing the two properties of AND as:
 - 1. $f(1,1) \neq f(1,0)$. So correctness requires that

$$supp((M_{13}, M_{23})|XY = 10) \cap supp((M_{13}, M_{23})|XY = 11) = \Phi$$

2.
$$f(0,0) = f(0,1) = f(1,0)$$
. So secrecy requires that
$$Pr((M_{13}, M_{23}) = (a,b)|XY = 00) = \\ Pr((M_{13}, M_{23}) = (a,b)|XY = 01) = \\ Pr((M_{13}, M_{23}) = (a,b)|XY = 10)$$

References I

- R. Cramer, I. B. Damgrd, and J. B. Nielsen, Secure Multiparty Computation and Secret Sharing.
 New York, NY, USA: Cambridge University Press, 1st ed., 2015.
- [2] U. Feige, J. Killian, and M. Naor, "A minimal model for secure computation (extended abstract)," in *Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Computing*, STOC '94, (New York, NY, USA), pp. 554–563, ACM, 1994.
- [3] S. R. S, S. Rajakrishnan, A. Thangaraj, and V. Prabhakaran, "Lower bounds and optimal protocols for three-party secure computation," in 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1361–1365, July 2016.
- [4] D. Data, V. M. Prabhakaran, and M. M. Prabhakaran, "Communication and randomness lower bounds for secure computation," *CoRR*, vol. abs/1512.07735, 2015.

Questions?

Thank You!