Cálculo de Primas con Principios Clásicos y Función Generadora de Momentos

Modelos individual y colectivo, principios de prima, ejemplo Poisson-Exponencial

Jhonier Rangel

Curso de Análisis Actuarial

25 de agosto de 2025

Mapa de la charla

- Modelos de riesgo
- 2 Función Generadora de Momentos (FGM/MGF)
- 3 Principios de cálculo de primas
- 4 Ejemplos con distribución exponencial
- Resumen y guía práctica
- 6 Ejemplo numérico sencillo (5 slides)

Modelo individual

Pérdidas $S = \sum_{i=1}^{n} X_i$, con X_i severidades (i.i.d. típicamente).

Modelo individual

Pérdidas $S = \sum_{i=1}^{n} X_i$, con X_i severidades (i.i.d. típicamente).

$$\mathbb{E}[S] = \sum_{i=1}^{n} \mathbb{E}[X_i], \qquad \mathbb{V}ar(S) = \sum_{i=1}^{n} \mathbb{V}ar(X_i)$$

Modelo individual

Pérdidas $S = \sum_{i=1}^{n} X_i$, con X_i severidades (i.i.d. típicamente).

$$\mathbb{E}[S] = \sum_{i=1}^{n} \mathbb{E}[X_i], \qquad \mathbb{V}ar(S) = \sum_{i=1}^{n} \mathbb{V}ar(X_i)$$

Modelo colectivo (compuesto)

Número de siniestros N aleatorio (p.ej. Poisson), y severidades $\{X_i\}$ i.i.d., independientes de N.

$$S = \sum_{i=1}^{N} X_i.$$

Modelo individual

Pérdidas $S = \sum_{i=1}^{n} X_i$, con X_i severidades (i.i.d. típicamente).

$$\mathbb{E}[S] = \sum_{i=1}^{n} \mathbb{E}[X_i], \qquad \mathbb{V}\mathrm{ar}(S) = \sum_{i=1}^{n} \mathbb{V}\mathrm{ar}(X_i)$$

Modelo colectivo (compuesto)

Número de siniestros N aleatorio (p.ej. Poisson), y severidades $\{X_i\}$ i.i.d., independientes de N.

$$S = \sum_{i=1}^{N} X_i.$$

Momentos del compuesto

3 / 23

Definición

Para una r.v. Y, la FGM es

$$M_Y(t) = \mathbb{E} \big[e^{tY} \big] \,, \quad$$
 para t en un entorno de $0.$

Definición

Para una r.v. Y, la FGM es

$$M_Y(t) = \mathbb{E}[e^{tY}]$$
, para t en un entorno de 0 .

• Derivadas en 0 dan momentos: $M_Y^{(k)}(0) = \mathbb{E}[Y^k]$.

Definición

Para una r.v. Y, la FGM es

$$M_Y(t) = \mathbb{E}[e^{tY}]$$
, para t en un entorno de 0 .

- ullet Derivadas en 0 dan momentos: $M_V^{(k)}(0)=\mathbb{E}[Y^k].$
- La función generadora cumulante $K_Y(t) = \log M_Y(t)$ suma bien en independientes.

Definición

Para una r.v. Y, la FGM es

$$M_Y(t) = \mathbb{E}[e^{tY}]$$
, para t en un entorno de 0 .

- Derivadas en 0 dan momentos: $M_V^{(k)}(0) = \mathbb{E}[Y^k]$.
- La función generadora cumulante $K_Y(t) = \log M_Y(t)$ suma bien en independientes.
- ullet Si Y_1,\ldots,Y_n indep., entonces $M_{\sum Y_i}(t)=\prod M_{Y_i}(t).$

FGM del agregado compuesto

Resultado clave (modelo colectivo)

Si $S = \sum_{i=1}^{N} X_i$ con N indep. de $\{X_i\}$ e i.i.d. X_i , entonces

$$M_S(t) = G_N(M_X(t)),$$

donde $G_N(z) = \mathbb{E}[z^N]$ es la generatriz de probabilidad de N.

FGM del agregado compuesto

Resultado clave (modelo colectivo)

Si $S = \sum_{i=1}^{N} X_i$ con N indep. de $\{X_i\}$ e i.i.d. X_i , entonces

$$M_S(t) = G_N(M_X(t)),$$

donde $G_N(z) = \mathbb{E}[z^N]$ es la generatriz de probabilidad de N.

Caso Poisson(λ)

Si
$$N \sim \operatorname{Poisson}(\lambda)$$
, entonces $G_N(z) = \exp\{\lambda(z-1)\}$ y

$$M_S(t) = \exp\{\lambda(M_X(t) - 1)\}.$$

Prima pura (neto de riesgo)

Definición

La prima pura es el valor esperado de las pérdidas:

$$\Pi_0 = \mathbb{E}[S].$$

Prima pura (neto de riesgo)

Definición

La prima pura es el valor esperado de las pérdidas:

$$\Pi_0 = \mathbb{E}[S].$$

Modelo colectivo

$$\Pi_0 = \mathbb{E}[N]\mathbb{E}[X].$$

Fórmula

$$\Pi_{\mathsf{EV}} = (1 + \theta) \, \mathbb{E}[S], \qquad \theta > 0.$$

Fórmula

$$\Pi_{\mathsf{EV}} = (1 + \theta) \, \mathbb{E}[S], \qquad \theta > 0.$$

• Proporcional al riesgo esperado.

Fórmula

$$\Pi_{\mathsf{EV}} = (1 + \theta) \, \mathbb{E}[S], \qquad \theta > 0.$$

- Proporcional al riesgo esperado.
- No distingue dispersión.

Fórmula

$$\Pi_{\mathsf{EV}} = (1 + \theta) \, \mathbb{E}[S], \qquad \theta > 0.$$

- Proporcional al riesgo esperado.
- No distingue dispersión.
- Simple, muy usado como base (carga de seguridad θ).

Varianza

$$\Pi_{\mathsf{Var}} = \mathbb{E}[S] + \theta \, \mathbb{V}\mathrm{ar}(S).$$

Varianza

$$\Pi_{\mathsf{Var}} = \mathbb{E}[S] + \theta \, \mathbb{V}\mathrm{ar}(S).$$

Desviación estándar

$$\Pi_{\mathsf{SD}} = \mathbb{E}[S] + \theta \sqrt{\mathbb{V}\mathrm{ar}(S)}.$$

Varianza

$$\Pi_{\mathsf{Var}} = \mathbb{E}[S] + \theta \, \mathbb{V}\mathrm{ar}(S).$$

Desviación estándar

$$\Pi_{\mathsf{SD}} = \mathbb{E}[S] + \theta \sqrt{\mathbb{V}\mathrm{ar}(S)}.$$

• Incorporan riesgo de dispersión.

Varianza

$$\Pi_{\mathsf{Var}} = \mathbb{E}[S] + \theta \, \mathbb{V}\mathrm{ar}(S).$$

Desviación estándar

$$\Pi_{\mathsf{SD}} = \mathbb{E}[S] + \theta \sqrt{\mathbb{V}\mathrm{ar}(S)}.$$

- Incorporan riesgo de dispersión.
- \bullet θ calibra aversión al riesgo/carga de seguridad.

Exponencial (aversión absoluta a > 0)

$$\Pi_{\exp}(a) = \frac{1}{a} \log \mathbb{E}[e^{aS}] = \frac{1}{a} \log M_S(a).$$

Exponencial (aversión absoluta a > 0)

$$\Pi_{\exp}(a) = \frac{1}{a} \log \mathbb{E}[e^{aS}] = \frac{1}{a} \log M_S(a).$$

Esscher (parámetro r)

$$\Pi_{\mathsf{Esscher}}(r) = \frac{\mathbb{E}\big[S\,e^{rS}\big]}{\mathbb{E}[e^{rS}]} \ = \ \frac{M_S'(r)}{M_S(r)} \ = \ K_S'(r).$$

Exponencial (aversión absoluta a > 0)

$$\Pi_{\exp}(a) = \frac{1}{a} \log \mathbb{E}\left[e^{aS}\right] = \frac{1}{a} \log M_S(a).$$

Esscher (parámetro r)

$$\Pi_{\mathsf{Esscher}}(r) = \frac{\mathbb{E}\big[S\,e^{rS}\big]}{\mathbb{E}[e^{rS}]} \; = \; \frac{M_S'(r)}{M_S(r)} \; = \; K_S'(r).$$

• Basados en la forma completa de la distribución mediante la FGM.

Exponencial (aversión absoluta a > 0)

$$\Pi_{\exp}(a) = \frac{1}{a} \log \mathbb{E}\left[e^{aS}\right] = \frac{1}{a} \log M_S(a).$$

Esscher (parámetro r)

$$\Pi_{\mathsf{Esscher}}(r) = \frac{\mathbb{E}\big[S\,e^{rS}\big]}{\mathbb{E}[e^{rS}]} \; = \; \frac{M_S'(r)}{M_S(r)} \; = \; K_S'(r).$$

- Basados en la forma completa de la distribución mediante la FGM.
- Coherentes con preferencias exponenciales y cambios de medida (Esscher).

Prima stop-loss (exceso de pérdida)

Definición

Para un deducible $d \geq 0$,

$$\Pi_{\mathsf{SL}}(d) = \mathbb{E}[(S-d)^+] = \int_d^\infty (1 - F_S(s)) \, ds.$$

Prima stop-loss (exceso de pérdida)

Definición

Para un deducible $d \geq 0$,

$$\Pi_{\mathsf{SL}}(d) = \mathbb{E}[(S-d)^+] = \int_d^\infty (1 - F_S(s)) \, ds.$$

• Prima de una cobertura exceso de pérdida.

Prima stop-loss (exceso de pérdida)

Definición

Para un deducible $d \ge 0$,

$$\Pi_{\mathsf{SL}}(d) = \mathbb{E}[(S-d)^+] = \int_{d}^{\infty} (1 - F_S(s)) \, ds.$$

- Prima de una cobertura exceso de pérdida.
- Útil con capas y reaseguro no proporcional.

Supuesto

 $X \sim \operatorname{Exp}(\beta)$ con densidad $f_X(x) = \beta e^{-\beta x}$, $x \geq 0$.

Supuesto

$$X \sim \text{Exp}(\beta)$$
 con densidad $f_X(x) = \beta e^{-\beta x}$, $x \ge 0$.

•
$$\mathbb{E}[X] = \frac{1}{\beta}$$
, $\mathbb{V}\mathrm{ar}(X) = \frac{1}{\beta^2}$.

Stop-loss 1 siniestro

$$\mathbb{E}[(X-d)^+] = \frac{e^{-\beta d}}{\beta}.$$

Supuesto

$$X \sim \text{Exp}(\beta)$$
 con densidad $f_X(x) = \beta e^{-\beta x}$, $x \ge 0$.

•
$$\mathbb{E}[X] = \frac{1}{\beta}$$
, $\mathbb{V}\mathrm{ar}(X) = \frac{1}{\beta^2}$.

• MGF:
$$M_X(t) = \frac{\beta}{\beta - t}$$
, $t < \beta$.

Stop-loss 1 siniestro

$$\mathbb{E}[(X-d)^+] = \frac{e^{-\beta d}}{\beta}.$$

Supuesto

$$X \sim \text{Exp}(\beta)$$
 con densidad $f_X(x) = \beta e^{-\beta x}$, $x \ge 0$.

•
$$\mathbb{E}[X] = \frac{1}{\beta}$$
, $\mathbb{V}\mathrm{ar}(X) = \frac{1}{\beta^2}$.

• MGF:
$$M_X(t) = \frac{\beta}{\beta - t}$$
, $t < \beta$.

$$\bullet \ \mathbb{E}[X^2] = \frac{2}{\beta^2}.$$

Stop-loss 1 siniestro

$$\mathbb{E}[(X-d)^+] = \frac{e^{-\beta d}}{\beta}.$$

Agregado Poisson-Exponencial

Frecuencia

 $N \sim \operatorname{Poisson}(\lambda)$ (en un periodo), independiente de $\{X_i\}$.

Agregado Poisson-Exponencial

Frecuencia

 $N \sim \text{Poisson}(\lambda)$ (en un periodo), independiente de $\{X_i\}$.

FGM del agregado

$$M_S(t) = \exp\left\{\lambda\left(M_X(t) - 1\right)\right\} = \exp\left\{\lambda\left(\frac{\beta}{\beta - t} - 1\right)\right\}, \quad t < \beta.$$

Agregado Poisson-Exponencial

Frecuencia

 $N \sim \operatorname{Poisson}(\lambda)$ (en un periodo), independiente de $\{X_i\}$.

FGM del agregado

$$M_S(t) = \exp\left\{\lambda\left(M_X(t) - 1\right)\right\} = \exp\left\{\lambda\left(\frac{\beta}{\beta - t} - 1\right)\right\}, \quad t < \beta.$$

Momentos

$$\mathbb{E}[S] = \lambda \, \mathbb{E}[X] = \frac{\lambda}{\beta}, \qquad \mathbb{V}ar(S) = \lambda \, \mathbb{E}[X^2] = \frac{2\lambda}{\beta^2}.$$

Ejemplo numérico (Poisson–Exponencial)

Parámetros

$$\lambda=10,\;\beta=2\Rightarrow \mathbb{E}[X]=0,\!5.$$

Ejemplo numérico (Poisson-Exponencial)

Parámetros

$$\lambda = 10, \ \beta = 2 \Rightarrow \mathbb{E}[X] = 0.5.$$

Momentos de S

$$\mathbb{E}[S] = \frac{10}{2} = 5, \quad \mathbb{V}ar(S) = \frac{2 \cdot 10}{2^2} = 5,$$

$$\sigma_S = \Pi_{\exp}(a) = \frac{1}{a} \log M_S(a) = \frac{\lambda}{a} \left(\frac{\beta}{\beta - a} - 1 \right)$$

Con
$$\lambda = 10, \beta = 2, a = 0,1$$
:

 $\Pi_{\rm exp} = 10/1.9 \approx 5.263.$

Ejemplo numérico (Poisson-Exponencial)

Parámetros

$$\lambda = 10, \ \beta = 2 \Rightarrow \mathbb{E}[X] = 0.5.$$

Momentos de S

le
$$S$$

$$\mathbb{E}[S] = \frac{10}{2} = 5, \qquad \mathbb{V}\operatorname{ar}(S) = \frac{2 \cdot 10}{2^2} = 5, \qquad \sigma_S = 0$$

 $\Pi_{FV} = (1 + \theta)\mathbb{E}[S] \Rightarrow \theta = 0.30 : \Pi_{FV} = 6.50.$ $\Pi_{SD} = \mathbb{E}[S] + \theta \, \sigma_S \quad \Rightarrow \quad \theta = 0.50 : \ \Pi_{SD} \approx 5 + 1.118 = 6.118.$

$$\Pi_{\rm exp}$$

$$\sigma_S = \Pi_{ ext{exp}}(a) = rac{1}{a} \log M_S(a) = rac{\lambda}{a} igg(rac{eta}{eta - a} - 1igg)$$
 =

$$a^{\log m_S(a)} = a^{\log m_S(a)}$$

Con
$$\lambda = 10, \beta = 2, a = 0,1$$
: $\Pi_{\text{exp}} = 10/1.9 \approx 5.263$.

$$\overline{a} \setminus \beta$$

$$a \setminus \beta$$

13 / 23

Otras primas (con
$$\theta$$
 ilustrativa)

$$\Pi_{\text{exp}}$$

$$\Pi_{\exp}(a)$$

Esscher vs Exponencial (comparación rápida)

Esscher

$$\Pi_{\mathsf{Esscher}}(r) = rac{M_S'(r)}{M_S(r)} = K_S'(r).$$

Para Poisson-Exponencial:

$$K_S(t) = \lambda \left(\frac{\beta}{\beta - t} - 1 \right) \Rightarrow K_S'(t) = \lambda \frac{\beta}{(\beta - t)^2}.$$

$$\Rightarrow \Pi_{\mathsf{Esscher}}(r) = \frac{\lambda \beta}{(\beta - r)^2}.$$

Exponencial (repetimos)

$$\Pi_{\exp}(a) = \frac{1}{a} \log M_S(a) = \frac{\lambda}{\beta - a}.$$

Esscher vs Exponencial (comparación rápida)

Esscher

$$\Pi_{\mathsf{Esscher}}(r) = rac{M_S'(r)}{M_S(r)} = K_S'(r).$$

Para Poisson-Exponencial:

$$K_S(t) = \lambda \left(\frac{\beta}{\beta - t} - 1 \right) \Rightarrow K_S'(t) = \lambda \frac{\beta}{(\beta - t)^2}.$$

$$\Rightarrow \Pi_{\mathsf{Esscher}}(r) = \frac{\lambda \beta}{(\beta - r)^2}.$$

Exponencial (repetimos)

$$\Pi_{\exp}(a) = \frac{1}{a} \log M_S(a) = \frac{\lambda}{\beta - a}.$$

Idea

Ambos dependen de la FGM completa, pero inducen cargas diferentes según a o r.

Resumen en bloques

FGM

 $M_S(t) = \exp\{\lambda(M_X(t)-1)\}$ en Poisson–compuesto.

Resumen en bloques

FGM

 $M_S(t) = \exp\{\lambda(M_X(t) - 1)\}$ en Poisson–compuesto.

Primas

$$\Pi_{\mathsf{EV}} = (1 + \theta) \mathbb{E}[S], \quad \Pi_{\mathsf{Var}} = \mathbb{E}[S] + \theta \mathbb{V}\mathrm{ar}(S), \quad \Pi_{\mathsf{SD}} = \mathbb{E}[S] + \theta \sigma_S.$$

Resumen en bloques

FGM

$$M_S(t) = \exp\{\lambda(M_X(t)-1)\}$$
 en Poisson–compuesto.

Primas

$$\Pi_{\mathsf{EV}} = (1 + \theta) \mathbb{E}[S], \quad \Pi_{\mathsf{Var}} = \mathbb{E}[S] + \theta \mathbb{V}\mathrm{ar}(S), \quad \Pi_{\mathsf{SD}} = \mathbb{E}[S] + \theta \sigma_S.$$

Exponencial y Esscher

$$\Pi_{\rm exp}(a) = \tfrac{1}{a} \log M_S(a) \text{,} \quad \Pi_{\rm Esscher}(r) = K_S'(r).$$

 \bullet Estime $\mathbb{E}[N], \mathbb{E}[X], \mathbb{V}\mathrm{ar}(X)$ (o la FGM de X).

- Estime $\mathbb{E}[N], \mathbb{E}[X], \mathbb{V}ar(X)$ (o la FGM de X).
- Elija el principio de prima acorde a apetito de riesgo/regulación.

- Estime $\mathbb{E}[N], \mathbb{E}[X], \mathbb{V}ar(X)$ (o la FGM de X).
- Elija el principio de prima acorde a apetito de riesgo/regulación.
- Verifique sensibilidad de Π a θ, a, r .

- Estime $\mathbb{E}[N], \mathbb{E}[X], \mathbb{V}ar(X)$ (o la FGM de X).
- Elija el principio de prima acorde a apetito de riesgo/regulación.
- Verifique sensibilidad de Π a θ, a, r .
- ullet Para capas: use $\Pi_{\mathsf{SL}}(d)$ y/o simulación si no hay forma cerrada.

Apéndice: fórmulas útiles

Momentos (compuesto)

$$\mathbb{E}[S] = \mathbb{E}[N]\mathbb{E}[X]$$

 $Cov(S, N) = \mathbb{E}[X] \mathbb{V}ar(N)$

$$\mathbb{V}\mathrm{ar}(S) = \mathbb{E}[N]\mathbb{V}\mathrm{ar}(X) + \mathbb{V}\mathrm{ar}(N)\mathbb{E}[X]^2$$

$$V)\mathbb{E}[X]^2$$

Derivadas de
$$K(t) = \log M(t)$$

$$K'(t) = \frac{M'(t)}{M(t)}, \quad K''(t) = \frac{M''(t)}{M(t)} - \left(\frac{M'(t)}{M(t)}\right)$$

$$K'(0) = \mathbb{E}[S], \quad K''(0) = \mathbb{V}\mathrm{ar}(S).$$

Gracias

¡Gracias!

- Dudas o ampliaciones: ejemplos con Gamma, Lognormal, Pareto.
- Extensiones: reaseguro, capas, Panjer, simulación Monte Carlo.

Ejemplo: configuración

Supuestos (modelo Poisson-Exponencial)

- Frecuencia: $N \sim \text{Poisson}(\lambda) \text{ con } \lambda = 8$.
- Severidad: $X \sim \text{Exp}(\beta)$ con $\beta = 1$ (media $1/\beta = 1$).
- Independencia entre N y $\{X_i\}$.

Ejemplo: configuración

Supuestos (modelo Poisson-Exponencial)

- Frecuencia: $N \sim \text{Poisson}(\lambda) \text{ con } \lambda = 8.$
- Severidad: $X \sim \text{Exp}(\beta)$ con $\beta = 1$ (media $1/\beta = 1$).
- Independencia entre N y $\{X_i\}$.

Agregado

$$S = \sum_{i=1}^{N} X_i$$
, FGM:

$$M_S(t) = \exp\left\{\lambda\left(\frac{\beta}{\beta - t} - 1\right)\right\} = \exp\left\{8\left(\frac{1}{1 - t} - 1\right)\right\}, \quad t < 1.$$

Momentos de S

Cálculo directo

$$\mathbb{E}[S] = \lambda \, \mathbb{E}[X] = 8 \cdot 1 = 8.$$

$$\mathbb{V}\mathrm{ar}(S) = \lambda \, \mathbb{E}[X^2] = 8 \cdot 2 = 16.$$

$$\sigma_S = \sqrt{16} = 4.$$

Comprobación con cumulantes

Con
$$K_S(t) = \log M_S(t) = 8\left(\frac{1}{1-t} - 1\right)$$
:

$$K_S'(0) = 8, \qquad K_S''(0) = 16.$$

$$\Rightarrow \mathbb{E}[S] = 8, \ \mathbb{V}ar(S) = 16.$$

Primas por distintos principios

Valor Esperado (EV)

$$\Pi_{\mathsf{EV}} = (1 + \theta) \mathbb{E}[S].$$

$$\theta = 0.25 \Rightarrow \Pi_{\text{EV}} = (1.25) \cdot 8 = 10.$$

Primas por distintos principios

Valor Esperado (EV)

$$\Pi_{\mathsf{EV}} = (1 + \theta) \mathbb{E}[S].$$

$$\theta = 0.25 \Rightarrow \Pi_{\text{EV}} = (1.25) \cdot 8 = 10.$$

Varianza

$$\Pi_{\mathsf{Var}} = \mathbb{E}[S] + \theta \, \mathbb{V}\mathrm{ar}(S).$$

$$\theta = 0.10 \Rightarrow \Pi_{\text{Var}} = 8 + 0.10 \cdot 16 = 9.6.$$

Primas por distintos principios

Valor Esperado (EV)

$$\Pi_{\mathsf{EV}} = (1+\theta)\mathbb{E}[S].$$

$$\theta = 0.25 \Rightarrow \Pi_{\text{EV}} = (1.25) \cdot 8 = 10.$$

Varianza

$$\Pi_{\mathsf{Var}} = \mathbb{E}[S] + \theta \, \mathbb{V}\mathrm{ar}(S).$$

$$\theta = 0.10 \Rightarrow \Pi_{\mathsf{Var}} = 8 + 0.10 \cdot 16 = 9.6.$$

Desviación Estándar

$$\Pi_{\mathsf{SD}} = \mathbb{E}[S] + \theta \, \sigma_S.$$

$$\theta = 0.50 \Rightarrow \Pi_{SD} = 8 + 0.50 \cdot 4 = 10.$$

Primas vía FGM: Exponencial v Esscher

Principio Exponencial

$$\Pi_{\exp}(a) = rac{1}{a} \log M_S(a) = rac{\lambda}{\beta - a}.$$

Con
$$a = 0.2 < \beta$$
: $\Pi_{\text{exp}} = \frac{8}{1 - 0.2} = 10$.

Con
$$a = 0.4$$
: $\Pi_{\text{exp}} = \frac{8}{0.6} \approx 13.333$.

Principio de Esscher

$$\Pi_{\mathsf{Esscher}}(r) = rac{M_S'(r)}{M_S(r)} = K_S'(r) = \lambda rac{eta}{(eta - r)^2}$$

$$r - 0$$

Con
$$r=0.2$$
:
$$\Pi_{\mathsf{Esscher}} = \frac{8\cdot 1}{(1-0.2)^2} = \frac{8}{0.64} = 12.5.$$

Primas vía FGM: Exponencial v Esscher

Principio Exponencial

$$\Pi_{\exp}(a) = \frac{1}{a} \log M_S(a) = \frac{\lambda}{\beta - a}.$$

Con
$$a = 0.2 < \beta$$
: $\Pi_{\text{exp}} = \frac{8}{1 - 0.2} = 10$.

Con
$$a = 0.4$$
: $\Pi_{\text{exp}} = \frac{8}{0.6} \approx 13.333$.

Principio de Esscher

$$\begin{aligned} &\text{Con } r = 0.2 \text{:} \\ &\Pi_{\text{Esscher}} = \frac{8 \cdot 1}{(1 - 0.2)^2} = \frac{8}{0.64} = 12.5. \end{aligned}$$

 $\Pi_{\mathsf{Esscher}}(r) = \frac{M_S'(r)}{M_S(r)} = K_S'(r) = \lambda \frac{\beta}{(\beta - r)^2}$

Lectura

Ambos principios usan la FGM completa: el parámetro a (Exponencial) o r (Esscher) controlan la aversión al riesgo y elevan la prima sobre $\mathbb{E}[S]$.

Stop-loss por siniestro (capa simple)

Exceso por siniestro con retención $d \ge 0$

Para $X \sim \text{Exp}(1)$:

Pérdida esperada por siniestro sobre d: $\mathbb{E}[(X-d)^+] = e^{-d}$.

Stop-loss por siniestro (capa simple)

Exceso por siniestro con retención $d \ge 0$

Para $X \sim \text{Exp}(1)$:

Pérdida esperada por siniestro sobre d: $\mathbb{E}[(X-d)^+] = e^{-d}$.

Capa con límite

Prima por siniestro de la capa (d, d + u]:

$$\mathbb{E}\big[\min\{(X-d)^+, u\}\big] = \int_0^u \Pr\big((X-d)^+ > y\big) \, dy = \int_0^u e^{-(d+y)} dy = e^{-d}(1-e^{-u}).$$

Stop-loss por siniestro (capa simple)

Exceso por siniestro con retención $d \geq 0$

Para $X \sim \text{Exp}(1)$:

Pérdida esperada por siniestro sobre d: $\mathbb{E}[(X-d)^+] = e^{-d}$.

 $\mathbb{E}\big[\min\{(X-d)^+, u\}\big] = \int_0^u \Pr\big((X-d)^+ > y\big) \, dy = \int_0^u e^{-(d+y)} dy = e^{-d}(1-e^{-u}).$

Capa con límite

Prima por siniestro de la capa (d, d + u]:

Time poi simestro de la capa
$$(u, u + v)$$

Números (por siniestro)

Con d=3: $\mathbb{E}[(X-3)^+]=e^{-3}\approx 0.04979$.

Con d=3, u=2: $e^{-3}(1-e^{-2})\approx 0.04303$.

Números (agregado esperado)

Multiplicando por $\lambda = 8$:

Exceso puro: $8 \times 0.04979 \approx 0.398$. Capa (3, 5]: $8 \times 0.04303 \approx 0.344$.