日志操作手册

发布 3.9.6

Guido van Rossum and the Python development team

七月 22, 2021

Python Software Foundation Email: docs@python.org

Contents

1	在多个模块中使用日志	2
2	在多个线程中记录日志	4
3	多个 handler 和多种 formatter	5
4	在多个地方记录日志	5
5	日志配置服务器示例	6
6	处理日志 handler 的阻塞	7
7	通过网络收发日志事件	8
8	在自己的输出日志中添加上下文信息 8.1 利用 LoggerAdapter 传递上下文信息 8.2 利用 Filter 传递上下文信息	
9	在单个文件中记录多个进程的日志 9.1 Using concurrent.futures.ProcessPoolExecutor	13 17
10	利用日志文件轮换机制	17
11	日志的其他格式	18
12	Customizing LogRecord	20
13	子类化 QueueHandler - ZeroMQ 示例	21
14	子类化 QueueListener ——ZeroMQ 示例	21
15	基于字典进行日志配置的示例	22
16	利用 rotator 和 namer 自定义日志轮换操作	23
17	更详细的多进程日志示例	23
18	在发送给 SysLogHandler 的信息中插入一个 BOM。	27

19	Implementing structured logging	28
20	Customizing handlers with dictConfig()	29
21	Using particular formatting styles throughout your application 21.1 Using LogRecord factories	31 31 32
22	Configuring filters with dictConfig()	33
23	Customized exception formatting	34
24	Speaking logging messages	35
25	缓冲日志消息并有条件地输出它们	35
26	通过配置使用 UTC (GMT) 格式化时间	37
27	使用上下文管理器进行选择性记录	38
28	A CLI application starter template	40
29	A Qt GUI for logging	42
索		47

作者 Vinay Sajip <vinay_sajip at red-dove dot com>

本页包含了许多日志记录相关的概念,这些概念在过去一直被认为很有用。

1 在多个模块中使用日志

无论对 logging.getLogger('someLogger') 进行多少次调用,都会返回同一个 logger 对象的引用。不仅在同一个模块内如此,只要是在同一个 Python 解释器进程中,跨模块调用也是一样。同样是引用同一个对象,应用程序也可以在一个模块中定义和配置一个父 logger,而在另一个单独的模块中创建(但不配置)子 logger,对于子 logger 的所有调用都会传给父 logger。以下是主模块:

```
import logging
import auxiliary_module
# create logger with 'spam_application'
logger = logging.getLogger('spam_application')
logger.setLevel(logging.DEBUG)
# create file handler which logs even debug messages
fh = logging.FileHandler('spam.log')
fh.setLevel(logging.DEBUG)
# create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
# create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s
fh.setFormatter(formatter)
ch.setFormatter(formatter)
# add the handlers to the logger
logger.addHandler(fh)
logger.addHandler(ch)
```

```
logger.info('creating an instance of auxiliary_module.Auxiliary')
a = auxiliary_module.Auxiliary()
logger.info('created an instance of auxiliary_module.Auxiliary')
logger.info('calling auxiliary_module.Auxiliary.do_something')
a.do_something()
logger.info('finished auxiliary_module.Auxiliary.do_something')
logger.info('calling auxiliary_module.some_function()')
auxiliary_module.some_function()
logger.info('done with auxiliary_module.some_function()')
```

以下是辅助模块:

```
import logging

# create logger
module_logger = logging.getLogger('spam_application.auxiliary')

class Auxiliary:
    def __init__(self):
        self.logger = logging.getLogger('spam_application.auxiliary.Auxiliary')
        self.logger.info('creating an instance of Auxiliary')

def do_something(self):
        self.logger.info('doing something')
        a = 1 + 1
        self.logger.info('done doing something')

def some_function():
    module_logger.info('received a call to "some_function"')
```

输出结果会像这样:

```
2005-03-23 23:47:11,663 - spam_application - INFO -
  creating an instance of auxiliary_module.Auxiliary
2005-03-23 23:47:11,665 - spam_application.auxiliary.Auxiliary - INFO -
  creating an instance of Auxiliary
2005-03-23 23:47:11,665 - spam_application - INFO -
  created an instance of auxiliary_module.Auxiliary
2005-03-23 23:47:11,668 - spam_application - INFO -
  calling auxiliary_module.Auxiliary.do_something
2005-03-23 23:47:11,668 - spam_application.auxiliary.Auxiliary - INFO -
  doing something
2005-03-23 23:47:11,669 - spam_application.auxiliary.Auxiliary - INFO -
  done doing something
2005-03-23 23:47:11,670 - spam_application - INFO -
  finished auxiliary_module.Auxiliary.do_something
2005-03-23 23:47:11,671 - spam_application - INFO -
  calling auxiliary_module.some_function()
2005-03-23 23:47:11,672 - spam_application.auxiliary - INFO -
  received a call to 'some_function'
2005-03-23 23:47:11,673 - spam_application - INFO -
  done with auxiliary_module.some_function()
```

2 在多个线程中记录日志

多线程记录日志并不需要特殊处理,以下示例演示了在主线程(起始线程)和其他线程中记录日志的过程:

```
import logging
import threading
import time
def worker(arg):
    while not arg['stop']:
        logging.debug('Hi from myfunc')
        time.sleep(0.5)
def main():
   logging.basicConfig(level=logging.DEBUG, format='%(relativeCreated)6d
\hookrightarrow % (threadName) s % (message) s')
    info = {'stop': False}
    thread = threading.Thread(target=worker, args=(info,))
    thread.start()
    while True:
        try:
            logging.debug('Hello from main')
            time.sleep(0.75)
        except KeyboardInterrupt:
            info['stop'] = True
            break
    thread.join()
if __name__ == '__main__':
   main()
```

运行结果会像如下这样:

```
O Thread-1 Hi from myfunc
  3 MainThread Hello from main
505 Thread-1 Hi from myfunc
755 MainThread Hello from main
1007 Thread-1 Hi from myfunc
1507 MainThread Hello from main
1508 Thread-1 Hi from myfunc
2010 Thread-1 Hi from myfunc
2258 MainThread Hello from main
2512 Thread-1 Hi from myfunc
3009 MainThread Hello from main
3013 Thread-1 Hi from myfunc
3515 Thread-1 Hi from myfunc
3761 MainThread Hello from main
4017 Thread-1 Hi from myfunc
4513 MainThread Hello from main
4518 Thread-1 Hi from myfunc
```

以上如期显示了不同线程的日志是交替输出的。当然更多的线程也会如此。

3 多个 handler 和多种 formatter

日志是个普通的 Python 对象。addHandler()方法可加入不限数量的日志 handler。有时候,应用程序需把严重错误信息记入文本文件,而将一般错误或其他级别的信息输出到控制台。若要进行这样的设定,只需多配置几个日志 handler 即可,应用程序的日志调用代码可以保持不变。下面对之前的分模块日志示例略做修改:

```
import logging
logger = logging.getLogger('simple_example')
logger.setLevel(logging.DEBUG)
# create file handler which logs even debug messages
fh = logging.FileHandler('spam.log')
fh.setLevel(logging.DEBUG)
# create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
# create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s
ch.setFormatter(formatter)
fh.setFormatter(formatter)
# add the handlers to logger
logger.addHandler(ch)
logger.addHandler(fh)
# 'application' code
logger.debug('debug message')
logger.info('info message')
logger.warning('warn message')
logger.error('error message')
logger.critical('critical message')
```

需要注意的是,"应用程序"内的代码并不关心是否存在多个日志 handler。示例中所做的改变,只是新加入并配置了一个名为 *fh* 的 handler。

在编写和测试应用程序时,若能创建日志 handler 对不同严重级别的日志信息进行过滤,这将十分有用。调试时无需用多条 print 语句,而是采用 logger.debug: print 语句以后还得注释或删掉,而 logger.debug 语句可以原样留在源码中保持静默。当需要再次调试时,只要改变日志对象或 handler 的严重级别即可。

4 在多个地方记录日志

假定要根据不同的情况将日志以不同的格式写入控制台和文件。比如把 DEBUG 以上级别的日志信息写于文件,并且把 INFO 以上的日志信息输出到控制台。再假设日志文件需要包含时间戳,控制台信息则不需要。以下演示了做法:

(续上页)

```
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
# tell the handler to use this format
console.setFormatter(formatter)
# add the handler to the root logger
logging.getLogger('').addHandler(console)

# Now, we can log to the root logger, or any other logger. First the root...
logging.info('Jackdaws love my big sphinx of quartz.')

# Now, define a couple of other loggers which might represent areas in your
# application:

logger1 = logging.getLogger('myapp.area1')
logger2 = logging.getLogger('myapp.area2')

logger1.debug('Quick zephyrs blow, vexing daft Jim.')
logger1.info('How quickly daft jumping zebras vex.')
logger2.warning('Jail zesty vixen who grabbed pay from quack.')
logger2.error('The five boxing wizards jump quickly.')
```

当运行后, 你会看到控制台如下所示

```
root : INFO Jackdaws love my big sphinx of quartz.
myapp.area1 : INFO How quickly daft jumping zebras vex.
myapp.area2 : WARNING Jail zesty vixen who grabbed pay from quack.
myapp.area2 : ERROR The five boxing wizards jump quickly.
```

而日志文件将如下所示:

```
10-22 22:19 root INFO Jackdaws love my big sphinx of quartz.
10-22 22:19 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.
10-22 22:19 myapp.area1 INFO How quickly daft jumping zebras vex.
10-22 22:19 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.
10-22 22:19 myapp.area2 ERROR The five boxing wizards jump quickly.
```

如您所见,DEBUG 级别的日志信息只出现在了文件中,而其他信息则两个地方都会输出。 上述示例只用到了控制台和文件 handler,当然还可以自由组合任意数量的日志 handler。

5 日志配置服务器示例

以下是一个用到了日志配置服务器的模块示例:

```
import logging
import logging.config
import time
import os

# read initial config file
logging.config.fileConfig('logging.conf')

# create and start listener on port 9999
t = logging.config.listen(9999)
t.start()

logger = logging.getLogger('simpleExample')

try:
    # loop through logging calls to see the difference
```

```
# new configurations make, until Ctrl+C is pressed
while True:
    logger.debug('debug message')
    logger.info('info message')
    logger.warning('warn message')
    logger.error('error message')
    logger.critical('critical message')
    time.sleep(5)
except KeyboardInterrupt:
    # cleanup
    logging.config.stopListening()
    t.join()
```

以下脚本将接受文件名作为参数,然后将此文件发送到服务器,前面加上文件的二进制编码长度,做为新的日志配置:

```
#!/usr/bin/env python
import socket, sys, struct

with open(sys.argv[1], 'rb') as f:
    data_to_send = f.read()

HOST = 'localhost'
PORT = 9999
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print('connecting...')
s.connect((HOST, PORT))
print('sending config...')
s.send(struct.pack('>L', len(data_to_send)))
s.send(data_to_send)
s.close()
print('complete')
```

6 处理日志 handler 的阻塞

有时需让日志 handler 不要阻塞当前的线程。这在 Web 应用程序中比较常见,当然在其他场景中也会发生。

有一种原因往往会让程序表现迟钝,这就是 SMTPHandler:由于很多因素是开发人员无法控制的(例如邮件或网络基础设施的性能不佳),发送电子邮件可能需要很长时间。不过几乎所有网络 handler 都可能会发生阻塞:即使是 SocketHandler 操作也可能在后台执行 DNS 查询,而这种查询实在太慢了(并且 DNS 查询还可能在很底层的套接字库代码中,位于 Python 层之下,超出了可控范围)。

有一种解决方案是分成两部分实现。第一部分,针对那些对性能有要求的关键线程,只为日志对象连接一个 QueueHandler。日志对象只需简单地写入队列即可,可为队列设置足够大的容量,或者可以在初始化时不设置容量上限。尽管为以防万一,可能需要在代码中捕获 queue.Full 异常,不过队列写入操作通常会很快得以处理。如果要开发库代码,包含性能要求较高的线程,为了让使用该库的开发人员受益,请务必在开发文档中进行标明(包括建议仅连接 QueueHandlers)。

解决方案的另一部分就是 QueueListener, 它被设计为 QueueHandler 的对应部分。QueueListener 非常简单: 传入一个队列和一些 handler, 并启动一个内部线程, 用于侦听QueueHandlers``(或其他 ``LogRecords源)发送的 LogRecord 队列。LogRecords 会从队列中移除并传给 handler 处理。

QueueListener 作为单独的类,好处就是可以用同一个实例为多个 QueueHandlers 服务。这比把现有 handler 类线程化更加资源友好,后者会每个 handler 会占用一个线程,却没有特别的好处。

以下是这两个类的运用示例(省略了import语句):

```
que = queue.Queue(-1)  # no limit on size
queue_handler = QueueHandler(que)
handler = logging.StreamHandler()
listener = QueueListener(que, handler)
root = logging.getLogger()
root.addHandler(queue_handler)
formatter = logging.Formatter('%(threadName)s: %(message)s')
handler.setFormatter(formatter)
listener.start()
# The log output will display the thread which generated
# the event (the main thread) rather than the internal
# thread which monitors the internal queue. This is what
# you want to happen.
root.warning('Look out!')
listener.stop()
```

在运行后会产生:

```
MainThread: Look out!
```

在 3.5 版更改: 在 Python 3.5 之前,QueueListener 总会把由队列接收到的每条信息都传递给已初始化的每个处理程序。(因为这里假定级别过滤操作已在写人队列时完成了。) 从 3.5 版开始,可以修改这种处理方式,只要将关键字参数 respect_handler_level=True 传给侦听器的构造函数即可。这样侦听器将会把每条信息的级别与 handler 的级别进行比较,只在适配时才会将信息传给 handler。

7 通过网络收发日志事件

假定现在要通过网络发送日志事件,并在接收端进行处理。有一种简单的方案,就是在发送端的根日志对象连接一个 Socket Handler 实例:

```
import logging, logging.handlers
rootLogger = logging.getLogger('')
rootLogger.setLevel(logging.DEBUG)
socketHandler = logging.handlers.SocketHandler('localhost',
                    logging.handlers.DEFAULT_TCP_LOGGING_PORT)
# don't bother with a formatter, since a socket handler sends the event as
# an unformatted pickle
rootLogger.addHandler(socketHandler)
# Now, we can log to the root logger, or any other logger. First the root...
logging.info('Jackdaws love my big sphinx of quartz.')
# Now, define a couple of other loggers which might represent areas in your
# application:
logger1 = logging.getLogger('myapp.area1')
logger2 = logging.getLogger('myapp.area2')
logger1.debug('Quick zephyrs blow, vexing daft Jim.')
logger1.info('How quickly daft jumping zebras vex.')
logger2.warning('Jail zesty vixen who grabbed pay from quack.')
logger2.error('The five boxing wizards jump quickly.')
```

在接收端,可以用 socketserver 模块设置一个接收器。简要示例如下:

```
import pickle
import logging
import logging.handlers
```

```
import socketserver
import struct
class LogRecordStreamHandler(socketserver.StreamRequestHandler):
    """Handler for a streaming logging request.
    This basically logs the record using whatever logging policy is
    configured locally.
    11 11 11
    def handle(self):
        Handle multiple requests - each expected to be a 4-byte length,
        followed by the LogRecord in pickle format. Logs the record
        according to whatever policy is configured locally.
        while True:
            chunk = self.connection.recv(4)
            if len(chunk) < 4:</pre>
                break
            slen = struct.unpack('>L', chunk)[0]
            chunk = self.connection.recv(slen)
            while len(chunk) < slen:</pre>
                chunk = chunk + self.connection.recv(slen - len(chunk))
            obj = self.unPickle(chunk)
            record = logging.makeLogRecord(obj)
            self.handleLogRecord(record)
    def unPickle(self, data):
        return pickle.loads(data)
    def handleLogRecord(self, record):
        # if a name is specified, we use the named logger rather than the one
        # implied by the record.
        if self.server.logname is not None:
           name = self.server.logname
        else:
           name = record.name
        logger = logging.getLogger(name)
        # N.B. EVERY record gets logged. This is because Logger.handle
        # is normally called AFTER logger-level filtering. If you want
        # to do filtering, do it at the client end to save wasting
        # cycles and network bandwidth!
        logger.handle(record)
class LogRecordSocketReceiver(socketserver.ThreadingTCPServer):
    Simple TCP socket-based logging receiver suitable for testing.
    allow_reuse_address = True
    def __init__(self, host='localhost',
                 port=logging.handlers.DEFAULT_TCP_LOGGING_PORT,
                 handler=LogRecordStreamHandler):
        socketserver.ThreadingTCPServer.__init__(self, (host, port), handler)
        self.abort = 0
        self.timeout = 1
        self.logname = None
```

(续上页)

```
def serve_until_stopped(self):
        import select
        abort = 0
        while not abort:
            rd, wr, ex = select.select([self.socket.fileno()],
                                       [], [],
                                        self.timeout)
            if rd:
               self.handle_request()
            abort = self.abort
def main():
    logging.basicConfig(
        format='%(relativeCreated)5d %(name)-15s %(levelname)-8s %(message)s')
    tcpserver = LogRecordSocketReceiver()
    print('About to start TCP server...')
    tcpserver.serve_until_stopped()
if __name__ == '__main__':
   main()
```

先运行服务端,再运行客户端。客户端控制台不会显示什么信息;在服务端应该会看到如下内容:

```
About to start TCP server...

59 root INFO Jackdaws love my big sphinx of quartz.

59 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.

69 myapp.area1 INFO How quickly daft jumping zebras vex.

69 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.

69 myapp.area2 ERROR The five boxing wizards jump quickly.
```

请注意,某些时候 pickle 会存在一些安全问题。若有问题可换用自己的序列化方案,只要覆盖 makePickle()方法即可,并调整上述脚本以采用自己的序列化方案。

8 在自己的输出日志中添加上下文信息

有时,除了调用日志对象时传入的参数之外,还希望日志输出中能包含上下文信息。比如在网络应用程序中,可能需要在日志中记录某客户端专属的信息(如远程客户端的用户名或 IP 地址)。这虽然可以用 extra 参数实现,但传递起来并不总是很方便。虽然为每个网络连接都创建 Logger 实例貌似不错,但并不是个好主意,因为这些实例不会被垃圾回收。虽然在实践中不是问题,但当 Logger 实例的数量取决于应用程序要采用的日志粒度时,如果 Logger 实例的数量实际上是无限的,则有可能难以管理。

8.1 利用 LoggerAdapter 传递上下文信息

要传递上下文信息和日志事件信息,有一种简单方案是利用 LoggerAdapter 类。这个类设计得类似 Logger, 所以可以直接调用 debug()、info()、warning()、error()、exception()、critical()和 log()。这些方法的签名与 Logger 对应的方法相同,所以这两类实例可以交换使用。

若要创建 LoggerAdapter 的实例,需传入一个 Logger 的实例和一个包含了上下文信息的字典类对象。当在 LoggerAdapter 实例上调用某个日志方法时,会将调用委托给传入构造函数的底层 Logger 实例,并在调用中传入上下文信息。以下是 LoggerAdapter 的一段代码:

```
def debug(self, msg, /, *args, **kwargs):
    """
    Delegate a debug call to the underlying logger, after adding
    contextual information from this adapter instance.
    """
```

```
msg, kwargs = self.process(msg, kwargs)
self.logger.debug(msg, *args, **kwargs)
```

LoggerAdapter 的 process () 方法用于将上下文信息添加到日志的输出中去。其入参为日志调用的信息和关键字参数,并将(可能)修改后的入参值传回,以供底层的日志对象调用。该方法的默认实现代码不会对信息做改动,而只是在关键字参数中增加一个键为"extra"的字段,其值即为传入构造函数的字典类对象。当然,若是在调用时传入了一个名为"extra"的关键字参数,则传入值会被悄无声息地覆盖掉。

使用 "extra"的好处,就是字典类对象中的值会被并入 LogRecord 实例的 __dict__ 中,这样就能利用 Formatter 实例使用自定义字符串了,Formatter 知道该如何使用字典类对象的键。若要用到其他方法,比如想在信息字符串中预置或追加上下文信息,只需继承 LoggerAdapter 并覆盖 process () 方法即可完成处理。下面给出一个简单的示例:

```
class CustomAdapter(logging.LoggerAdapter):
    """
    This example adapter expects the passed in dict-like object to have a
    'connid' key, whose value in brackets is prepended to the log message.
    """
    def process(self, msg, kwargs):
        return '[%s] %s' % (self.extra['connid'], msg), kwargs
```

用法可如下所示:

```
logger = logging.getLogger(__name__)
adapter = CustomAdapter(logger, {'connid': some_conn_id})
```

这样,只要是该 Adapter 处理的任何日志事件,消息前都会加上 "some_conn_id" 的值。

利用非字典对象传入上下文信息

传给 LoggerAdapter 的不一定要是真正的字典对象,也可以传入一个实现了 __getitem__ 和 "__iter__"方法的类实例,类似要写入日志的字典对象。若要动态生成值(而字典中的值应为常量),这就会很有用。

8.2 利用 Filter 传递上下文信息

还可以利用用户定义类 Filter 在日志输出中添加上下文信息。Filter 实例可以修改传入的 LogRecords,包括添加额外的属性,然后可以采用合适的格式化字符串对这些属性进行输出,必要时还可采用自定义类 Formatter。

例如在某web应用程序中,正在处理的请求(或至少是当前关注的部分),可存储于线程本地(threading.local)变量中,然后从"Filter"中去访问,把请求中的一些信息添加进去,比如在LogRecord中写人远程IP地址和远程用户名,可利用以上LoggerAdapter示例中的"ip"和"user"属性名。这时可采用与上例相同的格式化字符串来得到类似的输出结果。以下是一段示例代码:

```
import logging
from random import choice

class ContextFilter(logging.Filter):
    """
    This is a filter which injects contextual information into the log.

    Rather than use actual contextual information, we just use random data in this demo.
    """

USERS = ['jim', 'fred', 'sheila']
```

```
IPS = ['123.231.231.123', '127.0.0.1', '192.168.0.1']
    def filter(self, record):
        record.ip = choice(ContextFilter.IPS)
        record.user = choice(ContextFilter.USERS)
        return True
if __name__ == '__main__':
    levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.
→CRITICAL)
   logging.basicConfig(level=logging.DEBUG,
                        format='%(asctime)-15s %(name)-5s %(levelname)-8s IP:
\rightarrow% (ip) -15s User: % (user) -8s % (message)s')
   a1 = logging.getLogger('a.b.c')
   a2 = logging.getLogger('d.e.f')
   f = ContextFilter()
   a1.addFilter(f)
   a2.addFilter(f)
   a1.debug('A debug message')
    al.info('An info message with %s', 'some parameters')
    for x in range(10):
        lvl = choice(levels)
        lvlname = logging.getLevelName(lvl)
        a2.log(lvl, 'A message at %s level with %d %s', lvlname, 2, 'parameters')
```

在运行时,产生如下内容:

```
A debug_
→message
2010-09-06 22:38:15,300 a.b.c INFO IP: 192.168.0.1
                                                   User: sheila An info
\rightarrowmessage with some parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1
                                                   User: sheila
→message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f ERROR IP: 127.0.0.1
                                                   User: jim
→message at ERROR level with 2 parameters
2010-09-06 22:38:15,300 d.e.f DEBUG IP: 127.0.0.1
                                                   User: sheila
→message at DEBUG level with 2 parameters
2010-09-06 22:38:15,300 d.e.f ERROR IP: 123.231.231.123 User: fred
→message at ERROR level with 2 parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 192.168.0.1
                                                   User: jim
→message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1
                                                   User: sheila
                                                                  A.
→message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f DEBUG IP: 192.168.0.1
                                                   User: jim
                                                                  A.
→message at DEBUG level with 2 parameters
2010-09-06 22:38:15,301 d.e.f ERROR IP: 127.0.0.1
                                                   User: sheila
→message at ERROR level with 2 parameters
2010-09-06 22:38:15,301 d.e.f DEBUG IP: 123.231.123 User: fred
→message at DEBUG level with 2 parameters
2010-09-06 22:38:15,301 d.e.f INFO IP: 123.231.123 User: fred
→message at INFO level with 2 parameters
```

9 在单个文件中记录多个进程的日志

尽管日志对象是线程安全的,也确实支持将一个进程中的多个线程日志记入单个文件,但不支持将多进程日志记入单个文件,因为Python没有标准方案来实现由多个进程串行访问单个文件。若要将多个进程的日志记入单个文件,一种方案是让所有进程都用一个SocketHandler处理日志,然后用一个单独的进程实现套接字服务器,一边从套接字读取数据一边向文件中写入日志。(当然可在某个现有进程中指定一个线程来执行此项功能。)此部分更详细地介绍了这种做法,包含了一个套接字接收器,可以此为起点建立适合自己应用程序的代码。

编写自己的 handler 也是可以的,可利用 multiprocessing 模块中的 Lock 类实现多个进程串行访问文件。现有的 FileHandler 及其子类目前没有用到 multiprocessing,或许将来有可能会吧。请注意,目前 multiprocessing 模块并未在所有平台上都提供可用的同步锁功能(参见 https://bugs.python.org/issue3770)。

或者,还可以利用 Queue 和 QueueHandler 将所有的日志事件发送给自己的多进程应用中的某个进程。以下例程演示了这种做法,这里有一个单独的监听进程负责监听其他进程发来的日志事件,并根据自己的日志配置记入日志。尽管本例程只演示了一种实现方案(比如可能想用单独的监听线程而非进程——实现方式其实类似),但确实可以为应用程序的监听进程和其他进程采用不同的配置,作为满足特定需求代码的基础:

```
# You'll need these imports in your own code
import logging
import logging.handlers
import multiprocessing
# Next two import lines for this demo only
from random import choice, random
import time
# Because you'll want to define the logging configurations for listener and.
\hookrightarrowworkers, the
# listener and worker process functions take a configurer parameter which is a_
\hookrightarrow callable
# for configuring logging for that process. These functions are also passed the
⇔queue,
# which they use for communication.
# In practice, you can configure the listener however you want, but note that in-
\hookrightarrowthis
# simple example, the listener does not apply level or filter logic to received.
# In practice, you would probably want to do this logic in the worker processes,
→to avoid
# sending events which would be filtered out between processes.
# The size of the rotated files is made small so you can see the results easily.
def listener_configurer():
   root = logging.getLogger()
    h = logging.handlers.RotatingFileHandler('mptest.log', 'a', 300, 10)
    f = logging.Formatter('%(asctime)s %(processName)-10s %(name)s %(levelname)-8s
\hookrightarrow % (message) s')
   h.setFormatter(f)
    root.addHandler(h)
# This is the listener process top-level loop: wait for logging events
# (LogRecords) on the queue and handle them, quit when you get a None for a
# LogRecord.
def listener_process(queue, configurer):
   configurer()
   while True:
```

```
try:
            record = queue.get()
            if record is None: # We send this as a sentinel to tell the listener.
→to quit.
                break
            logger = logging.getLogger(record.name)
            logger.handle(record) # No level or filter logic applied - just do it!
        except Exception:
            import sys, traceback
            print('Whoops! Problem:', file=sys.stderr)
            traceback.print_exc(file=sys.stderr)
# Arrays used for random selections in this demo
LEVELS = [logging.DEBUG, logging.INFO, logging.WARNING,
          logging.ERROR, logging.CRITICAL]
LOGGERS = ['a.b.c', 'd.e.f']
MESSAGES = [
    'Random message #1',
    'Random message #2',
   'Random message #3',
# The worker configuration is done at the start of the worker process run.
# Note that on Windows you can't rely on fork semantics, so each process
# will run the logging configuration code when it starts.
def worker_configurer(queue):
   h = logging.handlers.QueueHandler(queue) # Just the one handler needed
   root = logging.getLogger()
   root.addHandler(h)
    # send all messages, for demo; no other level or filter logic applied.
    root.setLevel(logging.DEBUG)
# This is the worker process top-level loop, which just logs ten events with
# random intervening delays before terminating.
# The print messages are just so you know it's doing something!
def worker_process(queue, configurer):
   configurer(queue)
   name = multiprocessing.current_process().name
   print('Worker started: %s' % name)
    for i in range(10):
       time.sleep(random())
       logger = logging.getLogger(choice(LOGGERS))
       level = choice(LEVELS)
       message = choice(MESSAGES)
       logger.log(level, message)
   print('Worker finished: %s' % name)
# Here's where the demo gets orchestrated. Create the queue, create and start
# the listener, create ten workers and start them, wait for them to finish,
# then send a None to the queue to tell the listener to finish.
def main():
    queue = multiprocessing.Queue(-1)
    listener = multiprocessing.Process(target=listener_process,
                                       args=(queue, listener_configurer))
   listener.start()
    workers = []
    for i in range(10):
       worker = multiprocessing.Process(target=worker_process,
```

(续上页)

```
args=(queue, worker_configurer))
    workers.append(worker)
    worker.start()
    for w in workers:
        w.join()
    queue.put_nowait(None)
    listener.join()

if __name__ == '__main__':
    main()
```

上述代码可做个变化, 在主进程中用单独的线程记录目志:

```
import logging
import logging.config
import logging.handlers
from multiprocessing import Process, Queue
import random
import threading
import time
def logger_thread(q):
   while True:
       record = q.get()
       if record is None:
           break
       logger = logging.getLogger(record.name)
       logger.handle(record)
def worker_process(q):
   qh = logging.handlers.QueueHandler(q)
   root = logging.getLogger()
   root.setLevel(logging.DEBUG)
   root.addHandler(qh)
   levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
             logging.CRITICAL]
   for i in range(100):
       lvl = random.choice(levels)
       logger = logging.getLogger(random.choice(loggers))
       logger.log(lvl, 'Message no. %d', i)
if __name__ == '__main__':
   q = Queue()
   d = {
       'version': 1,
       'formatters': {
           'detailed': {
               'class': 'logging.Formatter',
               'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-
→10s % (message)s'
           }
       }.
        'handlers': {
           'console': {
               'class': 'logging.StreamHandler',
               'level': 'INFO',
           'file': {
```

```
'class': 'logging.FileHandler',
            'filename': 'mplog.log',
            'mode': 'w',
            'formatter': 'detailed',
        'foofile': {
            'class': 'logging.FileHandler',
            'filename': 'mplog-foo.log',
            'mode': 'w',
            'formatter': 'detailed',
        },
        'errors': {
            'class': 'logging.FileHandler',
            'filename': 'mplog-errors.log',
            'mode': 'w',
            'level': 'ERROR',
            'formatter': 'detailed',
        },
    },
    'loggers': {
        'foo': {
            'handlers': ['foofile']
    },
    'root': {
        'level': 'DEBUG',
        'handlers': ['console', 'file', 'errors']
    },
}
workers = []
for i in range(5):
    wp = Process(target=worker_process, name='worker %d' % (i + 1), args=(q,))
   workers.append(wp)
   wp.start()
logging.config.dictConfig(d)
lp = threading.Thread(target=logger_thread, args=(q,))
lp.start()
# At this point, the main process could do some useful work of its own
# Once it's done that, it can wait for the workers to terminate...
for wp in workers:
    wp.join()
# And now tell the logging thread to finish up, too
q.put (None)
lp.join()
```

这段改过的代码展示了如何为某日志对象应用指定配置——比如 foo 日志对象有个特别的 handler, 将 foo 子系统的所有事件保存至文件 mplog-foo.log 中。主进程的日志机制将会用到这段代码(即便日志事件是在其他的工作进程中产生的),将信息定向输出到指定的地方。

9.1 Using concurrent.futures.ProcessPoolExecutor

若要利用 concurrent.futures.ProcessPoolExecutor 启动工作进程,创建队列的方式应稍有不同。不能是:

```
queue = multiprocessing.Queue(-1)
```

you should use

```
queue = multiprocessing.Manager().Queue(-1) # also works with the examples above
```

然后就可以将以下工作进程的创建过程:

to this (remembering to first import concurrent . futures):

```
with concurrent.futures.ProcessPoolExecutor(max_workers=10) as executor:
    for i in range(10):
        executor.submit(worker_process, queue, worker_configurer)
```

10 利用日志文件轮换机制

有时需要让日志文件增长到指定大小,然后打开一个新文件并记入日志。或许还需要只保留一定数量的日志文件,当创建了指定数量的文件后,就轮换使用这些文件,以便让文件数量和大小都维持上限。logging 包为这种使用模式提供了 RotatingFileHandler:

```
import glob
import logging
import logging.handlers
LOG_FILENAME = 'logging_rotatingfile_example.out'
# Set up a specific logger with our desired output level
my_logger = logging.getLogger('MyLogger')
my_logger.setLevel(logging.DEBUG)
# Add the log message handler to the logger
handler = logging.handlers.RotatingFileHandler(
              LOG_FILENAME, maxBytes=20, backupCount=5)
my_logger.addHandler(handler)
# Log some messages
for i in range(20):
   my_logger.debug('i = %d' % i)
# See what files are created
logfiles = glob.glob('%s*' % LOG_FILENAME)
for filename in logfiles:
   print(filename)
```

结果应该是6个单独的文件,每个文件都包含了应用程序的部分历史日志:

```
logging_rotatingfile_example.out
logging_rotatingfile_example.out.1
logging_rotatingfile_example.out.2
logging_rotatingfile_example.out.3
logging_rotatingfile_example.out.4
logging_rotatingfile_example.out.5
```

最新的文件始终是 logging_rotatingfile_example.out,每次达到大小限制时,都会用后缀.1重新命名。已有的备份文件全都会被重命名,将后缀递增(如.1变为.2),而.6文件则会被删除。

显然,这个例子将日志长度设置得太小,这是一个极端的例子。你可能希望将 maxBytes 设置为一个合适的值。

11 日志的其他格式

当日志模块刚加入 Python 标准库时,想要格式化输出带有可变内容的日志信息,只有一种%-f 方法。后来 Python 又有了两种格式化方法: string.Template (Python 2.4 加入)和 str.format() (Python 2.6 加入)。

从 Python 3.2 开始,日志模块为后加入的两种格式化方式提供了更多支持。Formatter 得以增强,可以接受名为 style 的可选关键字参数。其默认值为 '%',其他还可以是 '{'和'{TX-PL-LABEL} #x27;,对应于另外两种格式化的样式。如您所料,默认保持向下兼容,而通过显式指定样式参数,能够设置用于 str.format()或 string.Template 的格式串。下面是个控制台会话示例,演示一下功能:

```
>>> import logging
>>> root = logging.getLogger()
>>> root.setLevel(logging.DEBUG)
>>> handler = logging.StreamHandler()
>>> bf = logging.Formatter('{asctime} {name} {levelname:8s} {message}',
                           style='{')
>>> handler.setFormatter(bf)
>>> root.addHandler(handler)
>>> logger = logging.getLogger('foo.bar')
>>> logger.debug('This is a DEBUG message')
2010-10-28 15:11:55,341 foo.bar DEBUG
                                        This is a DEBUG message
>>> logger.critical('This is a CRITICAL message')
2010-10-28 15:12:11,526 foo.bar CRITICAL This is a CRITICAL message
>>> df = logging.Formatter('$asctime $name ${levelname} $message',
                           style='$')
>>> handler.setFormatter(df)
>>> logger.debug('This is a DEBUG message')
2010-10-28 15:13:06,924 foo.bar DEBUG This is a DEBUG message
>>> logger.critical('This is a CRITICAL message')
2010-10-28 15:13:11,494 foo.bar CRITICAL This is a CRITICAL message
```

请注意,最终输出到日志的信息格式与某一条信息的构造方式完全独立。单条信息仍然可以采用%-f 格式,如下所示:

```
>>> logger.error('This is an%s %s %s', 'other,', 'ERROR,', 'message')
2010-10-28 15:19:29,833 foo.bar ERROR This is another, ERROR, message
>>>
```

日志调用(logger.debug()、logger.info()等)接受的位置参数只会用于日志信息本身,而关键字参数仅用于日志调用的可选处理参数(如关键字参数 exc_info 表示应记录跟踪信息,extra 则标识了需要加入日志的额外上下文信息)。所以不能直接用 str.format()或 string.Template 语法进行日志调用,因为日志包在内部使用%-f 格式来合并格式串和参数变量。在保持向下兼容性时,这一点不会改变,因为已有代码中的所有日志调用都会使用%-f 格式串。

还有一种方法可以构建自己的日志信息,就是利用 {}- 和 \$- 格式。回想一下,任意对象都可用为日志信息的格式串,日志包将会调用该对象的 str()方法,以获取最终的格式串。不妨看下一下两个类:

```
class BraceMessage:
    def __init__(self, fmt, /, *args, **kwargs):
        self.fmt = fmt
        self.args = args
        self.kwargs = kwargs

    def __str__(self):
        return self.fmt.format(*self.args, **self.kwargs)

class DollarMessage:
    def __init__(self, fmt, /, **kwargs):
        self.fmt = fmt
        self.kwargs = kwargs

def __str__(self):
        from string import Template
        return Template(self.fmt).substitute(**self.kwargs)
```

上述两个类均可代替格式串,使得能用 {}-或 \$-formatting 构建最终的"日志信息"部分,这些信息将出现在格式化后的日志输出中,替换%(message)s 或"{message}"或"\$message"。每次写入日志时都要使用类名,有点不大实用,但如果用上一之类的别名就相当合适了(双下划线---不要与_混淆,单下划线用作 gettext.gettext()或相关函数的同义词/别名)。

Python 并没有上述两个类,当然复制粘贴到自己的代码中也很容易。用法可如下所示(假定在名为wherever 的模块中声明):

```
>>> from wherever import BraceMessage as __
>>> print(_('Message with {0} {name}', 2, name='placeholders'))
Message with 2 placeholders
>>> class Point: pass
...
>>> p = Point()
>>> p.x = 0.5
>>> p.y = 0.5
>>> print(_('Message with coordinates: ({point.x:.2f}, {point.y:.2f})',
... point=p))
Message with coordinates: (0.50, 0.50)
>>> from wherever import DollarMessage as __
>>> print(_('Message with $num $what', num=2, what='placeholders'))
Message with 2 placeholders
>>>
```

上述示例用了 print () 演示格式化输出的过程,实际记录日志时当然会用类似 logger.debug() 的方法来加以应用。

值得注意的是,上述做法对性能并没什么影响:格式化过程其实不是在日志记录调用时发生的,而是在日志信息即将由 handler输出到日志时发生。因此,唯一可能让人困惑的稍不寻常的地方,就是包裹在格式串和参数外面的括号,而不是格式串。因为 __ 符号只是对 XXXMessage 类的构造函数调用的语法糖。

只要愿意,上述类似的效果即可用 LoggerAdapter 实现,如下例所示:

```
import logging

class Message:
    def __init__(self, fmt, args):
        self.fmt = fmt
        self.args = args

def __str__(self):
    return self.fmt.format(*self.args)
```

```
class StyleAdapter(logging.LoggerAdapter):
    def __init__(self, logger, extra=None):
        super().__init__(logger, extra or {})

    def log(self, level, msg, /, *args, **kwargs):
        if self.isEnabledFor(level):
            msg, kwargs = self.process(msg, kwargs)
            self.logger._log(level, Message(msg, args), (), **kwargs)

logger = StyleAdapter(logging.getLogger(__name__))

def main():
    logger.debug('Hello, {}', 'world!')

if __name__ == '__main__':
    logging.basicConfig(level=logging.DEBUG)
    main()
```

在用 Python 3.2 以上版本运行时、上述代码应该会把 Hello, world! 写入日志。

12 Customizing LogRecord

每条日志事件都由一个 LogRecord 实例表示。当某事件要记入日志并且没有被某级别过滤掉时,就会创建一个 LogRecord 对象,并将有关事件的信息填入,传给该日志对象的 handler(及其祖先,直至对象禁止向上传播为止)。在 Python 3.2 之前,只有两个地方会进行事件的创建:

- Logger.makeRecord(), 在事件正常记入日志的过程中调用。这会直接调用 LogRecord 来创建一个实例。
- makeLogRecord(),调用时会带上一个字典参数,其中存放着要加入LogRecord的属性。这通常在通过网络接收到合适的字典时调用(如通过SocketHandler以pickle形式,或通过HTTPHandler以JSON形式)。

于是这意味着若要对 LogRecord 进行定制,必须进行下述某种操作。

- 创建 Logger 自定义子类, 重写 Logger.makeRecord(), 并在实例化所需日志对象之前用 setLoggerClass() 进行设置。
- 为日志对象添加 Filter 或 handler, 当其 filter()方法被调用时,会执行必要的定制操作。

比如说在有多个不同库要完成不同操作的场景下,第一种方式会有点笨拙。每次都要尝试设置自己的Logger 子类,而起作用的是最后一次尝试。

第二种方式在多数情况下效果都比较良好,但不允许你使用特殊化的 LogRecord 子类。库开发者可以为他们的日志记录器设置合适的过滤器,但他们应当要记得每次引入新的日志记录器时都需如此(他们只需通过添加新的包或模块并执行以下操作即可):

```
logger = logging.getLogger(__name__)
```

或许这样要顾及太多事情。开发人员还可以将过滤器附加到其顶级日志对象的 NullHandler 中,但如果应用程序开发人员将 handler 附加到较底层库的日志对象,则不会调用该过滤器 --- 所以 handler 输出的内容不会符合库开发人员的预期。

在 Python 3.2 以上版本中,LogRecord 的创建是通过工厂对象完成的,工厂对象可以指定。工厂对象只是一个可调用对象,可以用 setLogRecordFactory () 进行设置,并用 getLogRecordFactory () 进行查询。工厂对象的调用参数与 LogRecord 的构造函数相同,因为 LogRecord 是工厂对象的默认设置。

这种方式可以让自定义工厂对象完全控制 LogRecord 的创建过程。比如可以返回一个子类,或者在创建的日志对象中加入一些额外的属性,使用方式如下所示:

```
old_factory = logging.getLogRecordFactory()

def record_factory(*args, **kwargs):
    record = old_factory(*args, **kwargs)
    record.custom_attribute = 0xdecafbad
    return record

logging.setLogRecordFactory(record_factory)
```

这种模式允许不同的库将多个工厂对象链在一起,只要不会覆盖彼此的属性或标准属性,就不会出现意外。但应记住,工厂链中的每个节点都会增加日志操作的运行开销,本技术仅在采用 Filter 无法达到目标时才应使用。

13 子类化 QueueHandler - ZeroMQ 示例

你可以使用 QueueHandler 子类将消息发送给其他类型的队列,比如 ZeroMQ 'publish' 套接字。在以下示例中,套接字将单独创建并传给处理句柄 (作为它的'queue'):

```
import zmq  # using pyzmq, the Python binding for ZeroMQ
import json  # for serializing records portably

ctx = zmq.Context()
sock = zmq.Socket(ctx, zmq.PUB)  # or zmq.PUSH, or other suitable value
sock.bind('tcp://*:5556')  # or wherever

class ZeroMQSocketHandler(QueueHandler):
    def enqueue(self, record):
        self.queue.send_json(record.__dict__)

handler = ZeroMQSocketHandler(sock)
```

当然还有其他方案, 比如通过 hander 传入所需数据, 以创建 socket:

```
class ZeroMQSocketHandler(QueueHandler):
    def __init__(self, uri, socktype=zmq.PUB, ctx=None):
        self.ctx = ctx or zmq.Context()
        socket = zmq.Socket(self.ctx, socktype)
        socket.bind(uri)
        super().__init__(socket)

    def enqueue(self, record):
        self.queue.send_json(record.__dict__)

    def close(self):
        self.queue.close()
```

14 子类化 QueueListener ——ZeroMQ 示例

你还可以子类化 QueueListener 来从其他类型的队列中获取消息,比如从 ZeroMQ 'subscribe' 套接字。下面是一个例子:

```
class ZeroMQSocketListener(QueueListener):
    def __init__(self, uri, /, *handlers, **kwargs):
        self.ctx = kwargs.get('ctx') or zmq.Context()
        socket = zmq.Socket(self.ctx, zmq.SUB)
```

```
socket.setsockopt_string(zmq.SUBSCRIBE, '') # subscribe to everything
socket.connect(uri)
super().__init__(socket, *handlers, **kwargs)

def dequeue(self):
    msg = self.queue.recv_json()
    return logging.makeLogRecord(msg)
```

参见:

模块 logging 日志记录模块的 API 参考。

模块 logging.config 日志记录模块的配置 API。

模块 logging.handlers 日志记录模块中的常用 handler。

日志操作基础教程

日志操作的高级教程

15 基于字典进行日志配置的示例

```
LOGGING = {
    'version': 1,
    'disable_existing_loggers': True,
    'formatters': {
        'verbose': {
            'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d
⇔% (message) s'
        },
        'simple': {
            'format': '%(levelname)s %(message)s'
        },
    },
    'filters': {
        'special': {
            '()': 'project.logging.SpecialFilter',
            'foo': 'bar',
    'handlers': {
        'null': {
            'level':'DEBUG',
            'class':'django.utils.log.NullHandler',
        'console':{
            'level':'DEBUG',
            'class':'logging.StreamHandler',
            'formatter': 'simple'
        },
        'mail_admins': {
            'level': 'ERROR',
            'class': 'django.utils.log.AdminEmailHandler',
            'filters': ['special']
        }
    'loggers': {
```

有关本配置的更多信息,请参阅 Django 文档的 有关章节。

16 利用 rotator 和 namer 自定义日志轮换操作

以下代码给出了定义 namer 和 rotator 的示例, 其中演示了基于 zlib 的日志文件压缩过程:

```
def namer(name):
    return name + ".gz"

def rotator(source, dest):
    with open(source, "rb") as sf:
        data = sf.read()
        compressed = zlib.compress(data, 9)
        with open(dest, "wb") as df:
            df.write(compressed)
        os.remove(source)

rh = logging.handlers.RotatingFileHandler(...)
rh.rotator = rotator
rh.namer = namer
```

这些不是"真正的".gz 文件,因为他们只是纯压缩数据,缺少真正 gzip 文件中的"容器"。此段代码只是用于演示。

17 更详细的多进程日志示例

以下可运行的示例显示了如何利用配置文件在多进程中应用日志。这些配置相当简单,但足以说明如何在真实的多进程场景中实现较为复杂的配置。

在此示例中,主进程产生一个侦听器进程和一些工作进程。每个主进程、侦听器进程和工作进程都有三种独立的日志配置(工作进程共享同一套配置)。大家可以看到主进程的日志记录过程、工作线程向QueueHandler 写入日志的过程,以及侦听器实现 QueueListener 和较为复杂的日志配置,如何将由队列接收到的事件分发给配置指定的 handler。请注意,这些配置纯粹用于演示,但应该能调整代码以适用于自己的场景。

以下是代码——但愿文档字符串和注释能有助于理解其工作原理:

```
import logging
import logging.config
import logging.handlers
from multiprocessing import Process, Queue, Event, current_process
import os
import random
import time
class MvHandler:
    11 11 11
    A simple handler for logging events. It runs in the listener process and
    dispatches events to loggers based on the name in the received record,
    which then get dispatched, by the logging system, to the handlers
    configured for those loggers.
   def handle(self, record):
        if record.name == "root":
            logger = logging.getLogger()
        else:
            logger = logging.getLogger(record.name)
        if logger.isEnabledFor(record.levelno):
            # The process name is transformed just to show that it's the listener
            # doing the logging to files and console
            record.processName = '%s (for %s)' % (current_process().name, record.
→processName)
            logger.handle(record)
def listener_process(q, stop_event, config):
    This could be done in the main process, but is just done in a separate
   process for illustrative purposes.
    This initialises logging according to the specified configuration,
    starts the listener and waits for the main process to signal completion
    via the event. The listener is then stopped, and the process exits.
    logging.config.dictConfig(config)
    listener = logging.handlers.QueueListener(q, MyHandler())
    listener.start()
    if os.name == 'posix':
        # On POSIX, the setup logger will have been configured in the
        # parent process, but should have been disabled following the
        # dictConfig call.
        # On Windows, since fork isn't used, the setup logger won't
        # exist in the child, so it would be created and the message
        # would appear - hence the "if posix" clause.
        logger = logging.getLogger('setup')
        logger.critical('Should not appear, because of disabled logger ...')
    stop_event.wait()
    listener.stop()
def worker_process(config):
    A number of these are spawned for the purpose of illustration. In
    practice, they could be a heterogeneous bunch of processes rather than
    ones which are identical to each other.
    This initialises logging according to the specified configuration,
    and logs a hundred messages with random levels to randomly selected
    loggers.
```

```
A small sleep is added to allow other processes a chance to run. This
    is not strictly needed, but it mixes the output from the different
    processes a bit more than if it's left out.
    logging.config.dictConfig(config)
    levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
             logging.CRITICAL]
   if os.name == 'posix':
        # On POSIX, the setup logger will have been configured in the
        # parent process, but should have been disabled following the
        # dictConfig call.
        # On Windows, since fork isn't used, the setup logger won't
        # exist in the child, so it would be created and the message
        # would appear - hence the "if posix" clause.
        logger = logging.getLogger('setup')
       logger.critical('Should not appear, because of disabled logger ...')
    for i in range(100):
       lvl = random.choice(levels)
       logger = logging.getLogger(random.choice(loggers))
       logger.log(lvl, 'Message no. %d', i)
       time.sleep(0.01)
def main():
   q = Queue()
    # The main process gets a simple configuration which prints to the console.
    config_initial = {
        'version': 1,
        'handlers': {
            'console': {
                'class': 'logging.StreamHandler',
                'level': 'INFO'
        },
        'root': {
            'handlers': ['console'],
            'level': 'DEBUG'
        }
    # The worker process configuration is just a QueueHandler attached to the
    # root logger, which allows all messages to be sent to the queue.
    # We disable existing loggers to disable the "setup" logger used in the
    # parent process. This is needed on POSIX because the logger will
    # be there in the child following a fork().
    config_worker = {
        'version': 1,
        'disable_existing_loggers': True,
        'handlers': {
            'queue': {
                'class': 'logging.handlers.QueueHandler',
                'queue': q
            }
        },
        'root': {
            'handlers': ['queue'],
            'level': 'DEBUG'
    # The listener process configuration shows that the full flexibility of
```

```
# logging configuration is available to dispatch events to handlers however
    # vou want.
   # We disable existing loggers to disable the "setup" logger used in the
   # parent process. This is needed on POSIX because the logger will
   # be there in the child following a fork().
   config_listener = {
       'version': 1,
       'disable_existing_loggers': True,
       'formatters': {
            'detailed': {
                'class': 'logging.Formatter',
                'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-
→10s %(message)s'
            'simple': {
                'class': 'logging.Formatter',
                'format': '%(name)-15s %(levelname)-8s %(processName)-10s
\leftrightarrow% (message)s'
           }
       },
       'handlers': {
            'console': {
                'class': 'logging.StreamHandler',
                'formatter': 'simple',
                'level': 'INFO'
            'file': {
                'class': 'logging.FileHandler',
                'filename': 'mplog.log',
                'mode': 'w',
                'formatter': 'detailed'
            },
            'foofile': {
                'class': 'logging.FileHandler',
                'filename': 'mplog-foo.log',
                'mode': 'w',
                'formatter': 'detailed'
            },
            'errors': {
                'class': 'logging.FileHandler',
                'filename': 'mplog-errors.log',
                'mode': 'w',
                'formatter': 'detailed',
                'level': 'ERROR'
           }
       },
        'loggers': {
            'foo': {
               'handlers': ['foofile']
           }
       },
        'root': {
            'handlers': ['console', 'file', 'errors'],
            'level': 'DEBUG'
   # Log some initial events, just to show that logging in the parent works
   # normally.
   logging.config.dictConfig(config_initial)
   logger = logging.getLogger('setup')
   logger.info('About to create workers ...')
```

```
workers = []
    for i in range(5):
        wp = Process(target=worker_process, name='worker %d' % (i + 1),
                     args=(config_worker,))
        workers.append(wp)
        wp.start()
        logger.info('Started worker: %s', wp.name)
    logger.info('About to create listener ...')
    stop_event = Event()
    lp = Process(target=listener_process, name='listener',
                 args=(q, stop_event, config_listener))
    lp.start()
    logger.info('Started listener')
    # We now hang around for the workers to finish their work.
    for wp in workers:
        wp.join()
    # Workers all done, listening can now stop.
    # Logging in the parent still works normally.
    logger.info('Telling listener to stop ...')
    stop_event.set()
    lp.join()
    logger.info('All done.')
if __name__ == '__main__':
    main()
```

18 在发送给 SysLogHandler 的信息中插入一个 BOM。

RFC 5424 requires that a Unicode message be sent to a syslog daemon as a set of bytes which have the following structure: an optional pure-ASCII component, followed by a UTF-8 Byte Order Mark (BOM), followed by Unicode encoded using UTF-8. (See the relevant section of the specification.)

In Python 3.1, code was added to SysLogHandler to insert a BOM into the message, but unfortunately, it was implemented incorrectly, with the BOM appearing at the beginning of the message and hence not allowing any pure-ASCII component to appear before it.

As this behaviour is broken, the incorrect BOM insertion code is being removed from Python 3.2.4 and later. However, it is not being replaced, and if you want to produce **RFC 5424**-compliant messages which include a BOM, an optional pure-ASCII sequence before it and arbitrary Unicode after it, encoded using UTF-8, then you need to do the following:

1. Attach a Formatter instance to your SysLogHandler instance, with a format string such as:

```
'ASCII section\ufeffUnicode section'
```

The Unicode code point U+FEFF, when encoded using UTF-8, will be encoded as a UTF-8 BOM -- the byte-string $b' \neq b'$.

- 2. Replace the ASCII section with whatever placeholders you like, but make sure that the data that appears in there after substitution is always ASCII (that way, it will remain unchanged after UTF-8 encoding).
- 3. Replace the Unicode section with whatever placeholders you like; if the data which appears there after substitution contains characters outside the ASCII range, that's fine -- it will be encoded using UTF-8.

The formatted message *will* be encoded using UTF-8 encoding by SysLogHandler. If you follow the above rules, you should be able to produce RFC 5424-compliant messages. If you don't, logging may not complain, but your messages will not be RFC 5424-compliant, and your syslog daemon may complain.

19 Implementing structured logging

Although most logging messages are intended for reading by humans, and thus not readily machine-parseable, there might be circumstances where you want to output messages in a structured format which *is* capable of being parsed by a program (without needing complex regular expressions to parse the log message). This is straightforward to achieve using the logging package. There are a number of ways in which this could be achieved, but the following is a simple approach which uses JSON to serialise the event in a machine-parseable manner:

```
import json
import logging

class StructuredMessage:
    def __init__(self, message, /, **kwargs):
        self.message = message
        self.kwargs = kwargs

def __str__(self):
        return '%s >>> %s' % (self.message, json.dumps(self.kwargs))

_ = StructuredMessage  # optional, to improve readability

logging.basicConfig(level=logging.INFO, format='%(message)s')
logging.info(_('message 1', foo='bar', bar='baz', num=123, fnum=123.456))
```

If the above script is run, it prints:

```
message 1 >>> {"fnum": 123.456, "num": 123, "bar": "baz", "foo": "bar"}
```

Note that the order of items might be different according to the version of Python used.

If you need more specialised processing, you can use a custom JSON encoder, as in the following complete example:

```
from __future__ import unicode_literals
import json
import logging
\# This next bit is to ensure the script runs unchanged on 2.x and 3.x
try:
   unicode
except NameError:
   unicode = str
class Encoder(json.JSONEncoder):
   def default(self, o):
       if isinstance(o, set):
           return tuple(o)
        elif isinstance(o, unicode):
            return o.encode('unicode_escape').decode('ascii')
       return super().default(o)
class StructuredMessage:
    def __init__(self, message, /, **kwargs):
        self.message = message
        self.kwargs = kwargs
    def __str__(self):
        s = Encoder().encode(self.kwargs)
        return '%s >>> %s' % (self.message, s)
_ = StructuredMessage # optional, to improve readability
```

```
def main():
    logging.basicConfig(level=logging.INFO, format='%(message)s')
    logging.info(_('message 1', set_value={1, 2, 3}, snowman='\u2603'))

if __name__ == '__main__':
    main()
```

When the above script is run, it prints:

```
message 1 >>> {"snowman": "\u2603", "set_value": [1, 2, 3]}
```

Note that the order of items might be different according to the version of Python used.

20 Customizing handlers with dictConfig()

There are times when you want to customize logging handlers in particular ways, and if you use dictConfig() you may be able to do this without subclassing. As an example, consider that you may want to set the ownership of a log file. On POSIX, this is easily done using shutil.chown(), but the file handlers in the stdlib don't offer built-in support. You can customize handler creation using a plain function such as:

```
def owned_file_handler(filename, mode='a', encoding=None, owner=None):
    if owner:
        if not os.path.exists(filename):
            open(filename, 'a').close()
            shutil.chown(filename, *owner)
    return logging.FileHandler(filename, mode, encoding)
```

You can then specify, in a logging configuration passed to dictConfig(), that a logging handler be created by calling this function:

```
LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'default': {
            'format': '%(asctime)s %(levelname)s %(name)s %(message)s'
        },
    },
    'handlers': {
        'file':{
            # The values below are popped from this dictionary and
            # used to create the handler, set the handler's level and
            # its formatter.
            '()': owned_file_handler,
            'level':'DEBUG',
            'formatter': 'default',
            # The values below are passed to the handler creator callable
            # as keyword arguments.
            'owner': ['pulse', 'pulse'],
            'filename': 'chowntest.log',
            'mode': 'w',
            'encoding': 'utf-8',
        },
    },
    'root': {
        'handlers': ['file'],
        'level': 'DEBUG',
    },
```

In this example I am setting the ownership using the pulse user and group, just for the purposes of illustration. Putting it together into a working script, chowntest.py:

```
import logging, logging.config, os, shutil
def owned_file_handler(filename, mode='a', encoding=None, owner=None):
    if owner:
        if not os.path.exists(filename):
           open(filename, 'a').close()
        shutil.chown(filename, *owner)
    return logging.FileHandler(filename, mode, encoding)
LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'default': {
            'format': '%(asctime)s %(levelname)s %(name)s %(message)s'
        },
    },
    'handlers': {
        'file':{
            # The values below are popped from this dictionary and
            # used to create the handler, set the handler's level and
            # its formatter.
            '()': owned_file_handler,
            'level':'DEBUG',
            'formatter': 'default',
            # The values below are passed to the handler creator callable
            # as keyword arguments.
            'owner': ['pulse', 'pulse'],
            'filename': 'chowntest.log',
            'mode': 'w',
            'encoding': 'utf-8',
        },
    'root': {
        'handlers': ['file'],
        'level': 'DEBUG',
    },
}
logging.config.dictConfig(LOGGING)
logger = logging.getLogger('mylogger')
logger.debug('A debug message')
```

To run this, you will probably need to run as root:

```
$ sudo python3.3 chowntest.py
$ cat chowntest.log
2013-11-05 09:34:51,128 DEBUG mylogger A debug message
$ ls -l chowntest.log
-rw-r--r-- 1 pulse pulse 55 2013-11-05 09:34 chowntest.log
```

Note that this example uses Python 3.3 because that's where shutil.chown() makes an appearance. This approach should work with any Python version that supports dictConfig() - namely, Python 2.7, 3.2 or later. With pre-3.3 versions, you would need to implement the actual ownership change using e.g. os.chown().

In practice, the handler-creating function may be in a utility module somewhere in your project. Instead of the line in the configuration:

```
'()': owned_file_handler,
```

you could use e.g.:

```
'()': 'ext://project.util.owned_file_handler',
```

where project.util can be replaced with the actual name of the package where the function resides. In the above working script, using 'ext://__main__.owned_file_handler' should work. Here, the actual callable is resolved by dictConfig() from the ext:// specification.

This example hopefully also points the way to how you could implement other types of file change - e.g. setting specific POSIX permission bits - in the same way, using os.chmod().

Of course, the approach could also be extended to types of handler other than a FileHandler - for example, one of the rotating file handlers, or a different type of handler altogether.

21 Using particular formatting styles throughout your application

In Python 3.2, the Formatter gained a style keyword parameter which, while defaulting to % for backward compatibility, allowed the specification of { or \$ to support the formatting approaches supported by str.format() and string. Template. Note that this governs the formatting of logging messages for final output to logs, and is completely orthogonal to how an individual logging message is constructed.

Logging calls (debug(), info() etc.) only take positional parameters for the actual logging message itself, with keyword parameters used only for determining options for how to handle the logging call (e.g. the exc_info keyword parameter to indicate that traceback information should be logged, or the extra keyword parameter to indicate additional contextual information to be added to the log). So you cannot directly make logging calls using str.format() or string.Template syntax, because internally the logging package uses %-formatting to merge the format string and the variable arguments. There would no changing this while preserving backward compatibility, since all logging calls which are out there in existing code will be using %-format strings.

There have been suggestions to associate format styles with specific loggers, but that approach also runs into backward compatibility problems because any existing code could be using a given logger name and using %-formatting.

For logging to work interoperably between any third-party libraries and your code, decisions about formatting need to be made at the level of the individual logging call. This opens up a couple of ways in which alternative formatting styles can be accommodated.

21.1 Using LogRecord factories

In Python 3.2, along with the Formatter changes mentioned above, the logging package gained the ability to allow users to set their own LogRecord subclasses, using the setLogRecordFactory() function. You can use this to set your own subclass of LogRecord, which does the Right Thing by overriding the getMessage() method. The base class implementation of this method is where the msg % args formatting happens, and where you can substitute your alternate formatting; however, you should be careful to support all formatting styles and allow %-formatting as the default, to ensure interoperability with other code. Care should also be taken to call str(self.msg), just as the base implementation does.

Refer to the reference documentation on setLogRecordFactory () and LogRecord for more information.

21.2 Using custom message objects

There is another, perhaps simpler way that you can use { }- and \$- formatting to construct your individual log messages. You may recall (from arbitrary-object-messages) that when logging you can use an arbitrary object as a message format string, and that the logging package will call str() on that object to get the actual format string. Consider the following two classes:

```
class BraceMessage:
    def __init__(self, fmt, /, *args, **kwargs):
        self.fmt = fmt
        self.args = args
        self.kwargs = kwargs

    def __str__(self):
        return self.fmt.format(*self.args, **self.kwargs)

class DollarMessage:
    def __init__(self, fmt, /, **kwargs):
        self.fmt = fmt
        self.kwargs = kwargs

def __str__(self):
        from string import Template
        return Template(self.fmt).substitute(**self.kwargs)
```

Either of these can be used in place of a format string, to allow {}- or \$-formatting to be used to build the actual "message" part which appears in the formatted log output in place of "%(message)s" or "{message}" or "\$message" . If you find it a little unwieldy to use the class names whenever you want to log something, you can make it more palatable if you use an alias such as M or _ for the message (or perhaps ____, if you are using _ for localization).

Examples of this approach are given below. Firstly, formatting with str.format():

```
>>> __ = BraceMessage
>>> print(__('Message with {0} {1}', 2, 'placeholders'))
Message with 2 placeholders
>>> class Point: pass
...
>>> p = Point()
>>> p.x = 0.5
>>> p.y = 0.5
>>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})', point=p))
Message with coordinates: (0.50, 0.50)
```

Secondly, formatting with string. Template:

```
>>> __ = DollarMessage
>>> print(__('Message with $num $what', num=2, what='placeholders'))
Message with 2 placeholders
>>>
```

One thing to note is that you pay no significant performance penalty with this approach: the actual formatting happens not when you make the logging call, but when (and if) the logged message is actually about to be output to a log by a handler. So the only slightly unusual thing which might trip you up is that the parentheses go around the format string and the arguments, not just the format string. That's because the ___ notation is just syntax sugar for a constructor call to one of the XXXMessage classes shown above.

22 Configuring filters with dictConfig()

You can configure filters using dictConfig(), though it might not be obvious at first glance how to do it (hence this recipe). Since Filter is the only filter class included in the standard library, and it is unlikely to cater to many requirements (it's only there as a base class), you will typically need to define your own Filter subclass with an overridden filter() method. To do this, specify the () key in the configuration dictionary for the filter, specifying a callable which will be used to create the filter (a class is the most obvious, but you can provide any callable which returns a Filter instance). Here is a complete example:

```
import logging
import logging.config
import sys
class MyFilter(logging.Filter):
    def __init__(self, param=None):
        self.param = param
    def filter(self, record):
        if self.param is None:
            allow = True
        else:
            allow = self.param not in record.msg
            record.msg = 'changed: ' + record.msg
        return allow
LOGGING = {
    'version': 1,
    'filters': {
        'myfilter': {
            '()': MyFilter,
            'param': 'noshow',
    },
    'handlers': {
        'console': {
            'class': 'logging.StreamHandler',
            'filters': ['myfilter']
    },
    'root': {
        'level': 'DEBUG',
        'handlers': ['console']
    },
}
if __name__ == '__main__':
    logging.config.dictConfig(LOGGING)
    logging.debug('hello')
    logging.debug('hello - noshow')
```

This example shows how you can pass configuration data to the callable which constructs the instance, in the form of keyword parameters. When run, the above script will print:

```
changed: hello
```

which shows that the filter is working as configured.

A couple of extra points to note:

• If you can't refer to the callable directly in the configuration (e.g. if it lives in a different module, and you can't import it directly where the configuration dictionary is), you can use the form ext://... as de-

scribed in logging-config-dict-externalobj. For example, you could have used the text 'ext://__main__. MyFilter' instead of MyFilter in the above example.

• As well as for filters, this technique can also be used to configure custom handlers and formatters. See logging-config-dict-userdef for more information on how logging supports using user-defined objects in its configuration, and see the other cookbook recipe *Customizing handlers with dictConfig()* above.

23 Customized exception formatting

There might be times when you want to do customized exception formatting - for argument's sake, let's say you want exactly one line per logged event, even when exception information is present. You can do this with a custom formatter class, as shown in the following example:

```
import logging
class OneLineExceptionFormatter(logging.Formatter):
    def formatException(self, exc_info):
        Format an exception so that it prints on a single line.
        result = super().formatException(exc_info)
        return repr(result) # or format into one line however you want to
    def format(self, record):
        s = super().format(record)
        if record.exc_text:
            s = s.replace(' \ n', '') + '|'
        return s
def configure_logging():
    fh = logging.FileHandler('output.txt', 'w')
    f = OneLineExceptionFormatter('%(asctime)s|%(levelname)s|%(message)s|',
                                   '%d/%m/%Y %H:%M:%S')
    fh.setFormatter(f)
    root = logging.getLogger()
    root.setLevel(logging.DEBUG)
    root.addHandler(fh)
def main():
    configure_logging()
    logging.info('Sample message')
    try:
       x = 1 / 0
    except ZeroDivisionError as e:
        logging.exception('ZeroDivisionError: %s', e)
if __name__ == '__main__':
   main()
```

When run, this produces a file with exactly two lines:

```
28/01/2015 07:21:23|INFO|Sample message| 28/01/2015 07:21:23|ERROR|ZeroDivisionError: integer division or modulo by zero| \rightarrow 'Traceback (most recent call last):\n File "logtest7.py", line 30, in main\n \rightarrow x = 1 / 0\nZeroDivisionError: integer division or modulo by zero'|
```

While the above treatment is simplistic, it points the way to how exception information can be formatted to your liking. The traceback module may be helpful for more specialized needs.

24 Speaking logging messages

There might be situations when it is desirable to have logging messages rendered in an audible rather than a visible format. This is easy to do if you have text-to-speech (TTS) functionality available in your system, even if it doesn't have a Python binding. Most TTS systems have a command line program you can run, and this can be invoked from a handler using subprocess. It's assumed here that TTS command line programs won't expect to interact with users or take a long time to complete, and that the frequency of logged messages will be not so high as to swamp the user with messages, and that it's acceptable to have the messages spoken one at a time rather than concurrently, The example implementation below waits for one message to be spoken before the next is processed, and this might cause other handlers to be kept waiting. Here is a short example showing the approach, which assumes that the espeak TTS package is available:

```
import logging
import subprocess
import sys
class TTSHandler(logging.Handler):
    def emit(self, record):
        msg = self.format(record)
        # Speak slowly in a female English voice
        cmd = ['espeak', '-s150', '-ven+f3', msg]
        p = subprocess.Popen(cmd, stdout=subprocess.PIPE,
                             stderr=subprocess.STDOUT)
        # wait for the program to finish
        p.communicate()
def configure_logging():
   h = TTSHandler()
    root = logging.getLogger()
    root.addHandler(h)
    # the default formatter just returns the message
    root.setLevel(logging.DEBUG)
def main():
    logging.info('Hello')
    logging.debug('Goodbye')
if __name__ == '__main__':
    configure_logging()
    sys.exit(main())
```

When run, this script should say "Hello" and then "Goodbye" in a female voice.

The above approach can, of course, be adapted to other TTS systems and even other systems altogether which can process messages via external programs run from a command line.

25 缓冲日志消息并有条件地输出它们

在某些情况下,你可能希望在临时区域中记录日志消息,并且只在发生某种特定的情况下才输出它们。例如,你可能希望起始在函数中记录调试事件,如果函数执行完成且没有错误,你不希望输出收集的调试信息以避免造成日志混乱,但如果出现错误,那么你希望所有调试以及错误消息被输出。

下面是一个示例,展示如何在你的日志记录函数上使用装饰器以实现这一功能。该示例使用 logging. handlers. MemoryHandler,它允许缓冲已记录的事件直到某些条件发生,缓冲的事件才会被刷新(flushed)-传递给另一个处理程序(target handler)进行处理。默认情况下,MemoryHandler 在其缓冲区被填满时被刷新,或者看到一个级别大于或等于指定阈值的事件。如果想要自定义刷新行为,你可以通过更专业的 MemoryHandler 子类来使用这个秘诀。

这个示例脚本有一个简单的函数 foo,它只是在所有的日志级别中循环运行,写到 sys.stderr,说明它要记录在哪个级别上,然后在这个级别上实际记录一个消息。你可以给 foo 传递一个参数,如果为

true, 它将在 ERROR 和 CRITICAL 级别记录, 否则, 它只在 DEBUG、INFO 和 WARNING 级别记录。

脚本只是使用了一个装饰器来装饰 foo,这个装饰器将记录执行所需的条件。装饰器使用一个记录器作为参数,并在调用被装饰的函数期间附加一个内存处理程序。装饰器可以使用目标处理程序、记录级别和缓冲区的容量(缓冲记录的数量)来附加参数。这些参数分别默认为写入"sys.stderr"的 StreamHandler,logging.ERROR 和 100。

以下是脚本:

```
import logging
from logging.handlers import MemoryHandler
import sys
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
def log_if_errors(logger, target_handler=None, flush_level=None, capacity=None):
   if target_handler is None:
       target handler = logging.StreamHandler()
    if flush_level is None:
       flush_level = logging.ERROR
    if capacity is None:
       capacity = 100
   handler = MemoryHandler(capacity, flushLevel=flush_level, target=target_
→handler)
   def decorator(fn):
        def wrapper(*args, **kwargs):
            logger.addHandler(handler)
                return fn(*args, **kwargs)
            except Exception:
                logger.exception('call failed')
                raise
            finally:
                super(MemoryHandler, handler).flush()
                logger.removeHandler(handler)
        return wrapper
    return decorator
def write line(s):
    sys.stderr.write('%s\n' % s)
def foo(fail=False):
    write_line('about to log at DEBUG ...')
    logger.debug('Actually logged at DEBUG')
   write_line('about to log at INFO ...')
   logger.info('Actually logged at INFO')
    write line('about to log at WARNING ...')
    logger.warning('Actually logged at WARNING')
    if fail:
       write_line('about to log at ERROR ...')
       logger.error('Actually logged at ERROR')
       write_line('about to log at CRITICAL ...')
       logger.critical('Actually logged at CRITICAL')
    return fail
decorated_foo = log_if_errors(logger)(foo)
if __name__ == '__main__':
    logger.setLevel(logging.DEBUG)
    write_line('Calling undecorated foo with False')
```

(续上页)

```
assert not foo(False)
write_line('Calling undecorated foo with True')
assert foo(True)
write_line('Calling decorated foo with False')
assert not decorated_foo(False)
write_line('Calling decorated foo with True')
assert decorated_foo(True)
```

运行此脚本时,应看到以下输出:

```
Calling undecorated foo with False
about to log at DEBUG ...
about to log at INFO ...
about to log at WARNING ...
Calling undecorated foo with True
about to log at DEBUG ...
about to log at INFO ...
about to log at WARNING ...
about to log at ERROR ...
about to log at CRITICAL ...
Calling decorated foo with False
about to log at DEBUG ...
about to log at INFO ...
about to log at WARNING ...
Calling decorated foo with True
about to log at DEBUG ...
about to log at INFO ...
about to log at WARNING ...
about to log at ERROR ...
Actually logged at DEBUG
Actually logged at INFO
Actually logged at WARNING
Actually logged at ERROR
about to log at CRITICAL ...
Actually logged at CRITICAL
```

如你所见,实际日志记录输出仅在消息等级为 ERROR 或更高的事件时发生,但在这种情况下,任何之前较低消息等级的事件还会被记录。

你当然可以使用传统的装饰方法:

```
@log_if_errors(logger)
def foo(fail=False):
    ...
```

26 通过配置使用 UTC (GMT) 格式化时间

有时候,你希望使用 UTC 来格式化时间,这可以使用一个类来完成,例如 'UTCFormatter',如下所示:

```
import logging
import time

class UTCFormatter(logging.Formatter):
    converter = time.gmtime
```

然后你可以在你的代码中使用 UTCFormatter, 而不是 Formatter。如果你想通过配置来实现这一功能, 你可以使用 dictConfig() API 来完成, 该方法在以下完整示例中展示:

```
import logging
import logging.config
import time
class UTCFormatter(logging.Formatter):
    converter = time.gmtime
LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'utc': {
            '()': UTCFormatter,
            'format': '%(asctime)s %(message)s',
        'local': {
            'format': '%(asctime)s %(message)s',
    },
    'handlers': {
        'console1': {
            'class': 'logging.StreamHandler',
            'formatter': 'utc',
        },
        'console2': {
            'class': 'logging.StreamHandler',
            'formatter': 'local',
        },
    },
    'root': {
        'handlers': ['console1', 'console2'],
}
if __name__ == '__main__':
    logging.config.dictConfig(LOGGING)
    logging.warning('The local time is %s', time.asctime())
```

脚本会运行输出类似下面的内容:

```
2015-10-17 12:53:29,501 The local time is Sat Oct 17 13:53:29 2015 2015-10-17 13:53:29,501 The local time is Sat Oct 17 13:53:29 2015
```

展示了如何将时间格式化为本地时间和 UTC 两种形式,其中每种形式对应一个日志处理器。

27 使用上下文管理器进行选择性记录

有时候,我们需要暂时更改日志配置,并在执行某些操作后将其还原。为此,上下文管理器是实现保存和恢复日志上下文的最明显的方式。这是一个关于上下文管理器的简单例子,它允许你在上下文管理器的作用域内更改日志等级以及增加日志句柄:

```
import logging
import sys

class LoggingContext:
    def __init__(self, logger, level=None, handler=None, close=True):
        self.logger = logger
        self.level = level
        self.handler = handler
```

```
self.close = close

def __enter__(self):
    if self.level is not None:
        self.old_level = self.logger.level
        self.logger.setLevel(self.level)
    if self.handler:
        self.logger.addHandler(self.handler)

def __exit__(self, et, ev, tb):
    if self.level is not None:
        self.logger.setLevel(self.old_level)
    if self.handler:
        self.logger.removeHandler(self.handler)

if self.handler and self.close:
        self.handler.close()
    # implicit return of None => don't swallow exceptions
```

如果指定上下文管理器的日志记录等级属性,则在上下文管理器的 with 语句所涵盖的代码中,日志记录器的记录等级将临时设置为上下文管理器所配置的日志记录等级。如果指定上下文管理的句柄属性,则该句柄在进入上下文管理器的上下文时添加到记录器中,并在退出时被删除。如果你再也不需要该句柄时,你可以让上下文管理器在退出上下文管理器的上下文时关闭它。

为了说明它是如何工作的,我们可以在上面添加以下代码块:

我们最初设置日志记录器的消息等级为 INFO, 因此消息 #1 出现, 消息 #2 没有出现。在接下来的with``代码块中我们暂时将消息等级变更为 ``DEBUG, 从而消息 #3 出现。在这一代码块退出后,日志记录器的消息等级恢复为 INFO, 从而消息 #4 没有出现。在下一个with 代码块中,我们再一次将设置消息等级设置为 DEBUG,同时添加一个将消息写入 sys.stdout 的日志处理器。因此,消息 #5 在控制台出现两次(分别通过 stderr 和 stdout)。在with 语句完成后,状态与之前一样,因此消息 #6 出现(类似消息 #1),而消息 #7 没有出现(类似消息 #2)。

如果我们运行生成的脚本,结果如下:

```
$ python logctx.py
1. This should appear just once on stderr.
3. This should appear once on stderr.
5. This should appear twice - once on stderr and once on stdout.
5. This should appear twice - once on stderr and once on stdout.
6. This should appear just once on stderr.
```

我们将 stderr 标准错误传输到/dev/null,我再次运行生成的脚步,唯一被写入 stdout 标准输出的消息,即我们所能看见的消息,如下:

```
$ python logctx.py 2>/dev/null
5. This should appear twice - once on stderr and once on stdout.
```

再一次,将 stdout 标准输出重定向到 /dev/null,我获得如下结果:

```
$ python logctx.py >/dev/null
1. This should appear just once on stderr.
3. This should appear once on stderr.
5. This should appear twice - once on stderr and once on stdout.
6. This should appear just once on stderr.
```

在这种情况下,与预期一致,打印到 stdout 标准输出的消息#5 不会出现。

当然,这里描述的方法可以概括,例如临时附加日志记录过滤器。请注意,上面的代码适用于 Python 2 以及 Python 3。

28 A CLI application starter template

Here's an example which shows how you can:

- Use a logging level based on command-line arguments
- Dispatch to multiple subcommands in separate files, all logging at the same level in a consistent way
- Make use of simple, minimal configuration

Suppose we have a command-line application whose job is to stop, start or restart some services. This could be organised for the purposes of illustration as a file app.py that is the main script for the application, with individual commands implemented in start.py, stop.py and restart.py. Suppose further that we want to control the verbosity of the application via a command-line argument, defaulting to logging.INFO. Here's one way that app.py could be written:

```
import argparse
import importlib
import logging
import os
import sys
def main(args=None):
    scriptname = os.path.basename(__file__)
    parser = argparse.ArgumentParser(scriptname)
    levels = ('DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL')
    parser.add_argument('--log-level', default='INFO', choices=levels)
    subparsers = parser.add_subparsers(dest='command',
                                       help='Available commands:')
    start_cmd = subparsers.add_parser('start', help='Start a service')
    start_cmd.add_argument('name', metavar='NAME',
                           help='Name of service to start')
    stop_cmd = subparsers.add_parser('stop',
                                     help='Stop one or more services')
    stop_cmd.add_argument('names', metavar='NAME', nargs='+',
                          help='Name of service to stop')
    restart_cmd = subparsers.add_parser('restart',
                                        help='Restart one or more services')
    restart_cmd.add_argument('names', metavar='NAME', nargs='+',
                             help='Name of service to restart')
   options = parser.parse_args()
    # the code to dispatch commands could all be in this file. For the purposes
    # of illustration only, we implement each command in a separate module.
   try:
       mod = importlib.import_module(options.command)
```

(续上页)

And the start, stop and restart commands can be implemented in separate modules, like so for starting:

```
# start.py
import logging

logger = logging.getLogger(__name__)

def command(options):
    logger.debug('About to start %s', options.name)
    # actually do the command processing here ...
    logger.info('Started the \'%s\' service.', options.name)
```

and thus for stopping:

```
# stop.py
import logging

logger = logging.getLogger(__name__)

def command(options):
    n = len(options.names)
    if n == 1:
        plural = ''
        services = '\'%s\'' % options.names[0]

else:
    plural = 's'
        services = ', '.join('\'%s\'' % name for name in options.names)
        i = services.rfind(', ')
        services = services[:i] + ' and ' + services[i + 2:]
    logger.debug('About to stop %s', services)
    # actually do the command processing here ...
    logger.info('Stopped the %s service%s.', services, plural)
```

and similarly for restarting:

```
# restart.py
import logging

logger = logging.getLogger(__name__)

def command(options):
    n = len(options.names)
    if n == 1:
        plural = ''
        services = '\'%s\'' % options.names[0]

else:
    plural = 's'
    services = ', '.join('\'%s\'' % name for name in options.names)
    i = services.rfind(', ')
```

```
services = services[:i] + ' and ' + services[i + 2:]
logger.debug('About to restart %s', services)
# actually do the command processing here ...
logger.info('Restarted the %s service%s.', services, plural)
```

If we run this application with the default log level, we get output like this:

```
$ python app.py start foo
INFO start Started the 'foo' service.

$ python app.py stop foo bar
INFO stop Stopped the 'foo' and 'bar' services.

$ python app.py restart foo bar baz
INFO restart Restarted the 'foo', 'bar' and 'baz' services.
```

The first word is the logging level, and the second word is the module or package name of the place where the event was logged.

If we change the logging level, then we can change the information sent to the log. For example, if we want more information:

```
$ python app.py --log-level DEBUG start foo
DEBUG start About to start foo
INFO start Started the 'foo' service.

$ python app.py --log-level DEBUG stop foo bar
DEBUG stop About to stop 'foo' and 'bar'
INFO stop Stopped the 'foo' and 'bar' services.

$ python app.py --log-level DEBUG restart foo bar baz
DEBUG restart About to restart 'foo', 'bar' and 'baz'
INFO restart Restarted the 'foo', 'bar' and 'baz' services.
```

And if we want less:

```
$ python app.py --log-level WARNING start foo
$ python app.py --log-level WARNING stop foo bar
$ python app.py --log-level WARNING restart foo bar baz
```

In this case, the commands don't print anything to the console, since nothing at WARNING level or above is logged by them.

29 A Qt GUI for logging

A question that comes up from time to time is about how to log to a GUI application. The Qt framework is a popular cross-platform UI framework with Python bindings using PySide2 or PyQt5 libraries.

The following example shows how to log to a Qt GUI. This introduces a simple QtHandler class which takes a callable, which should be a slot in the main thread that does GUI updates. A worker thread is also created to show how you can log to the GUI from both the UI itself (via a button for manual logging) as well as a worker thread doing work in the background (here, just logging messages at random levels with random short delays in between).

The worker thread is implemented using Qt's QThread class rather than the threading module, as there are circumstances where one has to use QThread, which offers better integration with other Qt components.

The code should work with recent releases of either PySide2 or PyQt5. You should be able to adapt the approach to earlier versions of Qt. Please refer to the comments in the code snippet for more detailed information.

```
import datetime
import logging
import random
import sys
import time
# Deal with minor differences between PySide2 and PyQt5
try:
    from PySide2 import QtCore, QtGui, QtWidgets
    Signal = OtCore.Signal
    Slot = OtCore.Slot
except ImportError:
   from PyQt5 import QtCore, QtGui, QtWidgets
    Signal = QtCore.pyqtSignal
    Slot = QtCore.pyqtSlot
logger = logging.getLogger(__name__)
# Signals need to be contained in a QObject or subclass in order to be correctly
# initialized.
class Signaller(QtCore.QObject):
   signal = Signal(str, logging.LogRecord)
# Output to a Qt GUI is only supposed to happen on the main thread. So, this
# handler is designed to take a slot function which is set up to run in the main
# thread. In this example, the function takes a string argument which is a
# formatted log message, and the log record which generated it. The formatted
# string is just a convenience - you could format a string for output any way
# you like in the slot function itself.
# You specify the slot function to do whatever GUI updates you want. The handler
# doesn't know or care about specific UI elements.
class QtHandler(logging.Handler):
    def __init__(self, slotfunc, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.signaller = Signaller()
        self.signaller.signal.connect(slotfunc)
    def emit(self, record):
        s = self.format(record)
        self.signaller.signal.emit(s, record)
# This example uses QThreads, which means that the threads at the Python level
# are named something like "Dummy-1". The function below gets the Qt name of the
# current thread.
def ctname():
   return QtCore.QThread.currentThread().objectName()
# Used to generate random levels for logging.
LEVELS = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
          logging.CRITICAL)
```

```
# This worker class represents work that is done in a thread separate to the
# main thread. The way the thread is kicked off to do work is via a button press
# that connects to a slot in the worker.
# Because the default threadName value in the LogRecord isn't much use, we add
# a qThreadName which contains the QThread name as computed above, and pass that
# value in an "extra" dictionary which is used to update the LogRecord with the
# QThread name.
# This example worker just outputs messages sequentially, interspersed with
# random delays of the order of a few seconds.
class Worker(QtCore.QObject):
   @Slot()
   def start(self):
       extra = {'qThreadName': ctname() }
       logger.debug('Started work', extra=extra)
       i = 1
        # Let the thread run until interrupted. This allows reasonably clean
        # thread termination.
       while not QtCore.QThread.currentThread().isInterruptionRequested():
            delay = 0.5 + random.random() * 2
            time.sleep(delay)
            level = random.choice(LEVELS)
            logger.log(level, 'Message after delay of %3.1f: %d', delay, i, ...
→extra=extra)
           i += 1
# Implement a simple UI for this cookbook example. This contains:
# * A read-only text edit window which holds formatted log messages
# * A button to start work and log stuff in a separate thread
\# * A button to log something from the main thread
# * A button to clear the log window
class Window(QtWidgets.QWidget):
    COLORS = {
       logging.DEBUG: 'black',
       logging.INFO: 'blue',
       logging.WARNING: 'orange',
       logging.ERROR: 'red',
       logging.CRITICAL: 'purple',
   def __init__(self, app):
       super().__init__()
        self.app = app
       self.textedit = te = QtWidgets.QPlainTextEdit(self)
        # Set whatever the default monospace font is for the platform
        f = QtGui.QFont('nosuchfont')
        f.setStyleHint(f.Monospace)
        te.setFont(f)
        te.setReadOnly(True)
       PB = QtWidgets.QPushButton
        self.work_button = PB('Start background work', self)
        self.log_button = PB('Log a message at a random level', self)
        self.clear_button = PB('Clear log window', self)
```

```
self.handler = h = QtHandler(self.update_status)
       # Remember to use qThreadName rather than threadName in the format string.
       fs = '%(asctime)s %(qThreadName)-12s %(levelname)-8s %(message)s'
       formatter = logging.Formatter(fs)
       h.setFormatter(formatter)
       logger.addHandler(h)
       # Set up to terminate the QThread when we exit
       app.aboutToQuit.connect(self.force_quit)
       # Lay out all the widgets
       layout = QtWidgets.QVBoxLayout(self)
       layout.addWidget(te)
       layout.addWidget(self.work_button)
       layout.addWidget(self.log_button)
       layout.addWidget(self.clear_button)
       self.setFixedSize(900, 400)
       # Connect the non-worker slots and signals
       self.log_button.clicked.connect(self.manual_update)
       self.clear_button.clicked.connect(self.clear_display)
       # Start a new worker thread and connect the slots for the worker
       self.start_thread()
       self.work_button.clicked.connect(self.worker.start)
       # Once started, the button should be disabled
       self.work_button.clicked.connect(lambda : self.work_button.
→setEnabled(False))
   def start_thread(self):
       self.worker = Worker()
       self.worker_thread = QtCore.QThread()
       self.worker.setObjectName('Worker')
       self.worker_thread.setObjectName('WorkerThread') # for qThreadName
       self.worker.moveToThread(self.worker_thread)
       # This will start an event loop in the worker thread
       self.worker_thread.start()
   def kill_thread(self):
       # Just tell the worker to stop, then tell it to quit and wait for that
       # to happen
       self.worker_thread.requestInterruption()
       if self.worker_thread.isRunning():
           self.worker_thread.quit()
           self.worker_thread.wait()
       else:
           print('worker has already exited.')
   def force_quit(self):
       # For use when the window is closed
       if self.worker_thread.isRunning():
           self.kill_thread()
   # The functions below update the UI and run in the main thread because
   # that's where the slots are set up
   @Slot(str, logging.LogRecord)
   def update_status(self, status, record):
       color = self.COLORS.get(record.levelno, 'black')
       s = '\leq color = '' s'' > s < /font < /pre > ' % (color, status)
       self.textedit.appendHtml(s)
```

```
@Slot()
    def manual_update(self):
        # This function uses the formatted message passed in, but also uses
        # information from the record to format the message in an appropriate
        # color according to its severity (level).
       level = random.choice(LEVELS)
        extra = {'qThreadName': ctname() }
       logger.log(level, 'Manually logged!', extra=extra)
    @Slot()
    def clear_display(self):
        self.textedit.clear()
def main():
    QtCore.QThread.currentThread().setObjectName('MainThread')
    logging.getLogger().setLevel(logging.DEBUG)
    app = QtWidgets.QApplication(sys.argv)
    example = Window(app)
    example.show()
    sys.exit(app.exec_())
if __name__=='__main__':
   main()
```

索引

R

RFC

RFC 5424,27 RFC 5424#section-6,27