

Simultaneous Safe Screening of Features and Samples in Doubly Sparse Modeling

Atsushi Shibagaki[†], Masayuki Karasuyama[†], Kohei Hatano[‡], and Ichiro Takeuchi[†] († Nagoya Institute of Technology, \ddagger Kyushu University (Japan))

Introduction

We consider regularized empirical risk minimization induces feature/sample sparsity.

- Motivation: To reduce computational cost for training
- **Approch:** Identifying non-active features/samples at the optimal solution **Previous works**:
- Safe feature screening $^{[1]}$: Identifying non-active features for feature sparse models
- **Safe sample screening**^[2]: Identifying non-active samples for sample sparse models Safe screening has been individually studied either for feature or sample screening
- Main contribution (simultaneous safe screening of features and samples):

 Safely screening features and samples simultaneously by alternatively iterating feature and sample screening steps for feature and sample (doubly) sparse models

Preliminaries

Safe feature screening (for Elastic net penalty)

KKT condtion:

Safe fature screening rule :

$$\frac{1}{\lambda n} X_{:j}^{\top} \alpha^* \in \begin{cases} [-1, 1] & (w_j^* = 0) \Rightarrow UB(|X_{:j}^{\top} \alpha^*|) \leq \lambda n \Rightarrow w_j^* = 0 \\ \frac{w_j^*}{|w_j^*|} + w_j^* & (w_j^* \neq 0), \end{cases}$$

$$|X_{:j}^{\top} \alpha^{*}| \leq UB(|X_{:j}^{\top} \alpha^{*}|) := \max_{\alpha} |X_{:j}^{\top} \alpha| \text{ s.t. } \alpha \in \Theta_{\alpha^{*}}$$
$$= |X_{:j}^{\top} \hat{\alpha}| + ||X_{:j}||_{2} \sqrt{2n(P_{\lambda}(\hat{w}) - D_{\lambda}(\hat{\alpha})/\gamma}$$

 Θ_{α^*} : region of dual optimal solution

[Ndiaye+, 15] If the D_λ is γ/n -strongly concave then

$$\alpha^* \in \Theta_{\alpha^*} := \{ \alpha \mid ||\hat{\alpha} - \alpha||_2 \le \sqrt{2n(P_{\lambda}(\hat{w}) - D_{\lambda}(\hat{\alpha}))/\gamma} \},$$

for any $\hat{w} \in \text{dom} P_{\lambda}, \hat{\alpha} \in \text{dom} D_{\lambda}$

Feature sparse

e.g., LASSO [El Ghaoui+,12]...

feature

screening

∕Feature size: d ∕

Data matrix: X

Screened out

Safe sample screening (for smoothed hinge loss)

KKT condtion:

Safe sample screening rules:

$$x_i^\top w^* \in \begin{cases} [1, \infty) & (\alpha_i^* = 0) \Rightarrow LB(x_i^\top w^*) \ge 1 \Rightarrow \alpha_i^* = 0, \\ (-\infty, 1 - \gamma] & (\alpha_i^* = 1) \Rightarrow UB(x_i^\top w^*) \le 1 - \gamma \Rightarrow \alpha_i^* = 1 \\ -\gamma \alpha_i^* + 1 & (\alpha_i^* \in (0, 1)) \end{cases}$$

 $x_i^\top w^* \geq LB(x_i^\top w^*) := \min_{w \in \Theta_{w^*}} x_i^\top w = x_i^\top \hat{w} - \|x_i\|_2 \sqrt{2(P_\lambda(\hat{w}) - D_\lambda(\hat{\alpha}))/\lambda}$ $x_i^\top w^* \leq UB(x_i^\top w^*) := \max_{w \in \Theta_{w^*}} x_i^\top w = x_i^\top \hat{w} + \|x_i\|_2 \sqrt{2(P_\lambda(\hat{w}) - D_\lambda(\hat{\alpha}))/\lambda}$ $\Theta_{w^*} : \text{ region of primal optimal solution}$

 P_{λ} is λ -strongly convex $\Rightarrow w^* \in \Theta_{w^*} := \{ w \mid \|\hat{w} - w\|_2 \leq \sqrt{2(P_{\lambda}(\hat{w}) - D_{\lambda}(\hat{\alpha}))/\lambda} \}$

Dynamic screening [Bonnefoy+, 14]

We need good accurate solution \hat{w} and $\hat{\alpha}$ for good safe screening performances While convergence do;

- **1.** Safe screening using $(\hat{w}_t, \hat{\alpha}_t)$
- **2.** $(\hat{w}_{t+1}, \hat{\alpha}_{t+1}) \leftarrow \text{Optimization update}(\hat{w}_t, \hat{\alpha}_t)$

Abstract

The problem of learning a sparse model is conceptually interpreted as the process of identifying active features/samples and then optimizing the model over them. Recently introduced safe screening allows us to identify a part of non-active features/samples. So far, safe screening has been individually studied either for feature/sample screening. In this paper, we introduce a new approach for safely screening features and samples simultaneously by alternatively iterating feature and sample screening steps. A advantage of considering them simultaneously rather than individually is that they have a synergy effect in the sense that the results of the previous safe feature screening can be exploited for improving the next safe sample screening performances, and vice-versa.

Simultaneous Safe Screening

- Results of safe feature/sample screening can improve a safe sample/feature screening safe feature screening using the result of sample screening
- We know $lpha_i^*=\{0,\pm 1\}$ for $i\in\mathcal{S}$ by safe sample screening ($ar{\mathcal{S}}:=[n]\setminus\mathcal{S}$)
- We can get the tighter upper bound of $|X_{:j}^{\top}\alpha^*|$:

$$\tilde{UB}(|X_{:j}^{\top}\alpha^*|) := \max_{\alpha} |X_{:j}^{\top}\alpha| \text{ s.t. } \alpha \in \Theta_{\alpha^*}, \alpha_i = \alpha_i^* \ \forall i \in \mathcal{S}$$

$$= |X_{\bar{\mathcal{S}},j}^{\top}\alpha_{\bar{\mathcal{S}}}| - \|X_{\bar{\mathcal{S}},j}\|_2 \sqrt{2n(P_{\lambda}(\hat{w}) - D_{\lambda}(\hat{\alpha}))/\gamma - \|\hat{\alpha}_{\mathcal{S}} - \alpha_{\mathcal{S}}^*\|_2^2}$$

safe sample screening using the result of feature screening

- We know $w_j^*=0$ for $j\in\mathcal{F}$ by safe feature screening $(\bar{\mathcal{F}}:=[d]\setminus\mathcal{F})$
- We can get the tighter bounds of $x_i^\top w^*$:

$$\tilde{LB}(x_i^{\top} w^*) = \min_{w} x_i^{\top} w \quad \text{s.t.} \quad w \in \Theta_{w^*}, \mathbf{w}_j = \mathbf{w}_j^* \ \forall j \in \mathcal{F}$$
$$= x_{i\bar{\mathcal{F}}}^{\top} \hat{w}_{\bar{\mathcal{F}}} - \|x_{i\bar{\mathcal{F}}}\|_2 \sqrt{2(P_{\lambda}(\hat{w}) - D_{\lambda}(\hat{\alpha}))/\lambda - \|\hat{w}_{\mathcal{F}}\|_2^2}$$

- $UB(x_i^ op w^*)$ as well as $LB(x_i^ op w^*)$
- More and more features and samples could be screened out by alternately iterating feature and sample screening

Safe keeping

— allows us to identify a part of active features/samples Safe feature keeping: If P_{λ} is λ -strongly convex then

$$|\hat{w}_j| - \sqrt{2(P_\lambda(\hat{w}) - D_\lambda(\hat{\alpha}))/\lambda} > 0 \implies w_j^* \neq 0$$

Safe sample keeping: If D_{λ} is γ/n -strongly convex then

w_2 unknown en w_1 w_2 w_1 w_2 w_1 w_2 w_3 w_4 w_2 w_1 w_2 w_3 w_4 w_4

Advantages:

- We do not have to waste the screening rule evaluation costs for active features/samples
- By combining safe screening and safe keeping:
 - #(features/samples aren't determined to be active or non-active)

can be also used as a stopping criteria of dynamic screening and simultaneous screening

Summary

Primal space: safe sample screening and safe feature keeping

Dual space: safe feature screening and safe sample keeping

Problem Setup

— Data: $\{(x_i, y_i)\}_{i \in [n]}$, Data matrix $(n \times d)$: X

-(Primal)
$$w^* = \arg\min_{w \in \mathbb{R}^d} P_{\lambda}(w) := \lambda \psi(w) + \frac{1}{n} \sum_{i \in [n]} \ell_i(x_i^\top w)$$

$$-(\mathsf{Dual}) \qquad \alpha^* = \arg\max_{\alpha \in \mathrm{dom} D_{\lambda}} D_{\lambda}(\alpha) := -\lambda \psi^*(\frac{1}{\lambda n} X^{\top} \alpha) - \frac{1}{n} \sum_{i \in [n]} \ell_i^*(-\alpha_i),$$

- Elastic net: $\psi(w) := \|w\|_1 + \frac{1}{2} \|w\|_2^2$ - Smoothed hinge loss:

$$\ell_i(a) := \begin{cases} 0 & (y_i a > 1), \\ 1 - y_i a - \frac{\gamma}{2} & (y_i a < 1 - \gamma), \\ \frac{1}{2\gamma} (1 - y_i a)^2 & (\text{otherwise}), \end{cases}$$

Experiments

Elastic net + smoothed hinge $(P_{\lambda} : \lambda$ -strongly convex, $D_{\lambda} : \gamma/n$ -strongly concave) - Computation time savings

- $\bullet \gamma = 0.5$
- $ullet \lambda_{\max} := \| \operatorname{diag}(y) X^{\top} \mathbf{1} \|_{\infty}$
- ullet train at 100 different λ evenly allocated in $[10^{-4}\lambda_{\max},\ \lambda_{\max}]$ in the logarithmic scale
- we used warm-start
- Solvers:
- Stochastic Primal-Dual Coordinate
 Stochastic Dual Coordinate Ascent

- Screening and keeping rates
- ullet screening rate := #(screened features or samples $) \ / \ \#(w_j^* = 0 \ ext{or} \ lpha_i^* = \{0, \pm 1\} \)$
- additional screening rate: the addition by simulatenous screening

