

TECNICAS DIGITALES 2 2020 MEDIDOR Y CONTROLADOR DE PRESION DE AIRE

MANUAL DE USUARIO

INDICE

Contenido <u>3</u>
Descripción <u>3</u>
Consideraciones de Seguridad <u>4</u>
nstalación <u>5</u>
Funcionamiento <u>7</u>
Puesta en marcha <u>8</u>
Software y manejo <u>8</u>
Presión actual <u>9</u>
 Configuración
1. Alarmas <u>11</u>
2. Variables de operación <u>11</u>
• Debug <u>12</u>
1. Salidas <u>13</u>
2. Probar Lazo <u>14</u>
3. Probar teclado <u>1</u> 4
Cambiar parámetros <u>15</u>
Foto del producto <u>17</u>
Lista de componentes <u>18</u>

Contenido del Paquete

El paquete contiene:

- El sensor de presión
- Fuente de alimentación 5V, 1A
- Controlador de presión automático

Breve Descripción

Es un dispositivo que sirva de interface para un sensor analógico de presión. El sensor en cuestión es un sensor de presión absoluta que trabaja sobre una línea de aire comprimido, la salida de dicho sensor es del tipo 4-20mA y el rango te trabajo es de 0 a 10bar.

Este dispositivo tiene como objetivo mantener la línea de aire comprimido en un rango de presión predefinido por el usuario, y en caso de no encontrarse en dicho límite actúa como dispositivo de seguridad liberando la presión en la línea y haciendo sonar una alarma.

Este dispositivo no almacena lo que mide en la EEPROM, solo almacena ahí los valores de trabajo y de presión seteados.

El núcleo de este proyecto es un Cortex M3 de la familia de STM el cual lleva implementado un sistema de control del estilo TDS el cual nos asegura el tiempo de respuesta en caso de presentarse una falla.

Por ser requerimiento de otra materia, se conectaron todos los periféricos a una línea de datos I2C. Estos periféricos son:

- Teclado Capacitivo (IQS316)
- Display LCD de 16 Caracteres 2 líneas con conversor I2C (PCF8754)
- Conversor Analógico Digital (ADS1115)
- Memoria EEPROM para parámetros de configuración (24LC16)
- Dos salidas a relé con opto acoplador de protección.

Este dispositivo cuenta con una fuente externa de 5V y 1A.

CONSIDERACIONES DE SEGURIDAD

- No conecte el equipo sin el transformador original
- No mover el dispositivo si este mismo se encuentra Conectado
- No desarmar el dispositivo
- No instale el equipo a la luz directa del sol.
- No instale el equipo cerca de equipos que produzcan campos magnéticos, de no tener otra alternativa, aislarlo con una jaula de Faraday
- No tire, no doble ni coloque cables por la fuerza.
- No utilice una fuente de alimentación inestable
- No instale el equipo donde haya gases inflamables o corrosivos

INSTALACION

Para instalar el dispositivo hay que realizar los siguientes pasos:

1) Primero hay que colgar el dispositivo en la pared, el lugar tiene que ser de fácil acceso, no estar saturado, estar cerca de un enchufe y del lugar donde se va a medir la presión

La distancia entre los centros de los agujeros es de 90mm y el diámetro de los mismos es de 4mm, recomendamos colocarlos con tornillos Parker 3x16

2) Una vez colocado el quipo a la pared se proseguirá a conectar la alimentación del mismo (el transformador) y el sensor con el conector DIN

3) Una vez conectada la alimentación y el sensor, se proseguirá a conectar las alarmas, el compresor y la válvula de escape

Funcionamiento

PUESTA EN MARCHA

Una vez instalado el equipo y todo conectado, solo hay que encenderlo para que este funcione. El equipo viene con la siguiente configuración por defecto:

Alarma de alta presión: 9 baresAlarma de baja presión: 5 bares

Rango mínimo: 6 baresRango máximo: 8 bares

Para cambiar los mismos y configurar el equipo a su gusto

(Ver Cambiar presión de alarma y rango de trabajo)

SOFTWARE Y MANEJO

La primera vez que se inicie el dispositivo, este entrara en modo STARTUP, el cual durara 90 segundos. Ahí solo se verifica que el dispositivo no supere el valor de rango de trabajo de Alta presión, (se supone que en ese tiempo se debe llegar a la presión de trabajo buscada). Pasados los 90 segundo el equipo ya funciona normalmente.

Cuando el equipo entra en falla, se puede presionar la tecla de reinicio y este volverá al modo STARUP durante 30 segundos,

Si el problema persiste, volverá a fallar.

Este quipo cuenta con un menú con 3 submenús.

Para poder moverse dentro del menú y los submenús usaremos las teclas de arriba y abajo

Para poder entrar a cada submenú presionaremos la tecla Enter

Y para salir de los mismos presionaremos la tecla cancelar

La tecla

También sirve para reiniciar el sistema en caso de falla.

Por defecto la pantalla que se muestra es la siguiente:

El menú se muestra de la siguiente manera:

Submenú -> CONFIGURACION

Dentro de la configuración vamos a poder encontrar Las presiones de alarma y de compresor (rango máximo y mínimo de trabajo) las cuales vamos a poder cambiar aca mismo

(Ver Cambiar presión de alarma y rango de trabajo)

Submenú -> CONFIGURACION -> ALARMAS

Aca vamos a poder ver y cambiar las alarmas de alta y baja presión

(Ver Cambiar presión de alarma y rango de trabajo)

Submenú -> CONFIGURACION -> VARIABLES DE OPERACION

Acá vamos a poder ver y cambiar los rangos mínimos y máximos de trabajo

(Ver Cambiar presión de alarma y rango de trabajo)

Submenú -> DEBUG

Dentro del submenú DEBUG tenemos 3 items, SALIDAS, PROBAR LAZO y PROBAR TECLADO.

****CUANDO SE ENTRA AL MODO DEBUG SE DESACTIVA EL CONTROL AUTOMATICO, ES DECIR QUE SI TU EQUIPO EXEDE LOS NIVELES DE PRECION ESTABLECIDOS, ESTE NO HARA NADA HASTA NO SALIR DEL MODO DEBUG****

Submenú -> DEBUG -> SALIDAS

Dentro de las salidas podemos probar el compresor, las alarmas y la válvula de escape.

Se recomienda que una vez instalado todo, se verifique el funcionamiento de las salidas de esta manera.

Submenú -> DEBUG->PROBAR LAZO

Acá podemos verificar que la corriente del lazo este estable, de no ser asi, el sistema entra en falla

Submenú -> DEBUG->PROBAR TECLADO

Acá podemos probar el teclado, presionando cualquier tecla, esta aparecerá en pantalla llenando los espacios De izquierda a derecha

CAMBIAR PRESIÓN DE ALARMA Y RANGO DE TRABAJO

Para poder cambiar la presión de la alarma debemos ir a

Submenú CONFIGURACION->ALARMAS-> BAJA/ALTA PRESION

La metodología para ingresar la presión es la siguiente:

Se presionan los números y estos se iran llenando de izquierda a derecha, por ejemplo, si quiero ingresar 5 bares de baja presion, ingreso el 5 y luego 0,0,0 y asi quedaría de la siguiente manera

Una vez que está escrita la presión que quiero, toco la tecla enter para guardarla y esta se completara con 0 a la izquierda.Y listo, lo mismo con la alta presion.

Para poder cambiar la presión de los rangos de operación debemos ir a:

Submenú CONFIGURACION->ALARMAS-> RANGO MINIMO/MAXIMO

La forma es exactamente igual a ingresar la presión de alarma, Se presionan los números y estos se irán llenando de izquierda a derecha luego se guarda con la tecla

Por ejemplo, si quiero ingresar que el rango de trabajo máximo sea hasta 7.5 bares, ingreso el 7, luego el 5 y luego 0,0

Una vez guardado el valor, se completara con 0 a la izquierda.

Foto del producto

Lista de componentes

Cant.	Valor	<u>Fabricante</u>	Numero de Parte
	Panel Frontal		
3	0.1uF 16V	Samsung Electro-Mechanics	CL10B104KO8NNNC
2	1uF 16V	Panasonic Electronic Components	EEE-FC1V1ROR
2	100pF 50V	Samsung Electro-Mechanics	CL10C101JB8NNNC
1	WC1602A	Newhaven Display Intl	NHD-0216K1Z-FL-YBW
4	MountingHole_Pad	Wurth Elektronik	9774070243R
1	620304124022	Wurth Elektronik	620304124022
1	BC857B	ON Semiconductor	BC857BLT1G
1	2K2 5%	Yageo	RC0603JR-072K2L
1	39K 5%	Yageo	RC0603JR-0739KL
14	470R 5%	Yageo	RC0603JR-07100RL
1	680R 5%	Yageo	RC0603JR-07680RL
1	10R 5%	Yageo	RC0603JR-0710RL
1	10K 10%	Bourns Inc.	3361P-1-103GLF
14	PAD		
1	IQS316	Azoteq (Pty) Ltd.	IQS316-0-QFR
1	PCF8574A	NXP USA Inc.	PCF8574AT/3,518
	Placa Base		
1	100, 5 15 1	Democratic Floring is Common.	FFF HD4C404AD
1	100uF 16V	Panasonic Electronic Components	EEE-HB1C101AP
10	0.1uF 16V	Samsung Electro-Mechanics	CL10B104K08NNNC
1	330uF 16V	Panasonic Electronic Components	EEE-HB1C331AP
2	18pF 50V	Samsung Electro-Mechanics	CL10C180JB8NNNC
2	12pF 50V	Samsung Electro-Mechanics	CL10C120JB8NNNC
1	10uF 16V	Panasonic Electronic Components	EEE-HB1C100AR
1	LTST-C171KRKT	Lite-On Inc.	LTST-C171KRKT
1	LTST-C170KGKT	Lite-On Inc.	LTST-C170KGKT

2	S1MB-13-F	Diodes Incorporated	S1MB-13-F
1	PJ-002A	CUI Devices	PJ-002A
1	61300411121	Wurth Elektronik	61300411121
1	620104131822	Wurth Elektronik	620104131822
1	PD-30S	CUI Devices	PD-30S
2	OSTTA034163	On Shore Technology Inc.	OSTTA034163
2	G5LE-1	Omron Electronics Inc-EMC Div	G5LE-14 DC5
2	BC846B	ON Semiconductor	BC846BLT3G
2	180R 5%	Yageo	RC0603JR-07180RL
4	10K 5%	Yageo	AC0603JR-0710KL
1	10M 5%	Yageo	RC0603JR-0710ML
1	100R 0.1%	Yageo	RT0603BRD07100RL
2	680R 5%	Yageo	RC0603JR-07680RL
2	100R 5%	Yageo	RC0603JR-07100RL
1	1825910-6	TE Connectivity ALCOSWITCH Switches	1825910-6
1	LD1117S33C	STMicroelectronics	LD1117S33CTR
1	STM32F103C8Tx	STMicroelectronics	STM32F103C8T6TR
1	ADS1115IDGS	Texas Instruments	ADS1115IDGSR
1	24LC16B	Microchip Technology	24LC16BT-I/SN
2	PC817	SHARP/Socle Technology	PC81710NIP1B
1	8MHz	Abracon LLC	ABM7-8.000MHZ-D2Y-T
1	32.768K	Abracon LLC	ABS25-32.768KHZ-T