

MODELING MACRO-EVOLUTIONARY PROCESSES

Biological Diversity Models

Freek de Haas 19/2/2014 Supervisor Rampal Etienne

Presentation Lay-Out

- Modeling empirical data
 - Assumptions
- Modeling biological diversity
 - Empirical Data
 - Model
- Discuss Papers
 - Overview: Daniel Moen and Helene Morlon
 - Etienne et al; 2012
 - Etienne & Rosindell; 2011

Modeling Cycle

Experimental testing and solutions of the model/simulations

Camazine et al; 2002

Model & Assumptions

Constant radioactive decay over time?

Use of models & degrees of freedom

- Multiple factors
- More flexibility
- More variables prediction power
- Degrees of freedom

Akaike information criterion

$$AIC = 2k - 2\ln(L)$$

$$\text{df} \qquad \text{maxim}$$

maximized likelihood

Preferred model is minimum AIC value

Biological Diversity

Response Variable

Relevance

Speciation Rate (Parameter estimation)

Extrapolate &

Correlations

Fossil vs. Molecular

Empirical data

- Molecular data
 - DNA comparison
- Fossil records
 - Radiocarbon dating

EMPIRICAL DATA?

Phylogeny model

Model Assumptions & Predictions

Lineages Through Time

Phylogeny model

Evaluation

Empirical phylogenies

Modeled Phylogenies

Different Parameters Speciation

Different Parameters Speciation

- Pure birth models
- Birth-death models
- Density dependent
- Time-dependent
- Protracted speciation
- Waxing & Waning
- Etc...

Changing the model

- Find a reason and change the model
- Change the model and find a reason

Pure Birth Model

Assumptions Model

- Only Speciation drives Biological Diversity
- Common Ancestor
- Speciation is constant over time

$$N(t) = N(0)e^{bt}$$

- N(0) Nr of species at time 0
- b P[speciation event]

a)

Birth-Death Model

- * H_0 model
- Birth rate (b) \rightarrow b d

Empirical Data

- Molecular empirical data is not in line with "pull of the present"
- Most show a slow down of diversification towards the present

- Exτιηςτιοή = υ / Speciation goes down
- Not in line with the fossil records

Diversification Slowdown

Speciation rates depend on diversity

(internal)

Daniel Moen and Helene Morlon; 2014

Methodological Biases

- Empirical
 - Taxonomic sampling

Methodological Biases

- Empirical
 - Taxonomic sampling
 - Large phylogenies can show slowdowns by chance

- Model
 - Inaccurate estimation from DNA sequences
 - Scaling molecular branch lengths into units of time

Diversification Slowdown

Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record (Etienne et al; 2012)

Birth-Death Model

$$\lambda_n = \max\left(0, \lambda_0\left(1 - \frac{n}{K'}\right)\right)$$
 and $\mu_n = \mu$

INTERNAL FEEDBACK

$$\lambda_0 - n(\frac{\lambda_0}{K'})$$

$$K' = \lambda_0 * \frac{K}{(\lambda_0 - \mu)}$$

Empirical Data

Hidden Markov Model

- Likelihood computation -> Hidden Markov Model
 - Compute likelihood of phylogeny for different parameters

Likelihood Extinction Rate

Likelihood Speciation Rate

Likelihood of extinction ~ Likelihood of speciation

Discussion

- Parameters are in line with fossil records
 - Extinction in model
- Better fit to the data
- Ezard et al. used complete fossil phylogeny Foraminifera (extinct & extant), estimate similar extinction rates.
- Diversity Dependent Models
 - New species New niches?
- Mechanisms are still unclear
- Diversification slowdown at present
 - K reached always at present?
- Meta-analysis of early burst 2 out of 88

Diversification Slowdown

(internal)

Time dependent model

Environmental drivers

- Abiotic
 - Geographical
 - Climatic
- Biotic
 - Access to food
 - Predator intensity

EXTERNAL FEEDBACK

Diversification slowdowns

Diversification Slowdown

Protracted Speciation

Pure Birth Model (no extinction)

Protracted Speciation Model - E

$$\lambda_1 = speciation \ rate$$

 $\lambda_2 = "good" \ speciation \ rate$

$$\mathbb{E}[L;t,T] = N_{g}(0) \left(\exp(\lambda_{1}t) - \frac{e^{(\lambda_{1}t)} - e^{(-\lambda_{2}t)}}{1 + \frac{\lambda_{2}}{\lambda_{1}}e^{(\lambda_{1}+\lambda_{2})(T-t)}} \right)$$

Protracted Speciation Model + E

Protracted Speciation Model + E

Discussion

- Explain slowdowns
- Predict more imbalanced trees λ3 < λ1
- Not by chance slowdown in present
- Speciation takes time Extinction takes time

- Parameter estimation not accurate
 - speciation vs extinction <- Analytically

New model

Questions?