

Internship Project

Refinement of Deep Learning approaches for cells clustering

By:

Souheib BEN MABROUK

Supervisors:

Prof: Elsa ANGELINI

Post doc: Bettina ROELLINGER

Prof: Abdul BARAKAT

Project Context (1/2)

The need for innovative tools for early cancer detection

Response of cancerous cells vs non tumorous cells on micropattern surfaces: deformations on trench lines

Project Context (2/2)

A continuation of the PRIM project of François Thenier

- **►** Specific interest
 - Deformations induced by mutations compared to control cells
 - **Different kinds** of mutations

- New challenge
- Another dataset with new processing challenges
- Need for a more sophisticated architecture

Agenda

- I. Scope Statement
- II. Project Design
- III. Methods
- IV. Results & Discussions
- V. Refinement of the architecture
- VI. Conclusion & Perspective

I. Scope Statement

I. Scope Statement (1/2)

Project's Goal:

Develop a deep learning pipeline for weakly supervised cells segmentation and clustering

- Adapt image pre-processing to the density of cell images
- Refine a CNN solution for cell segmentation : Cellopse
- Generate the segmentation masks and label the cells
- Develop VAE / cVAE architectures for cell clustering
- Evaluate the models and infer the results

I. Scope Statement (2/2)

Dataset

- Images of MCF10A cells
- Cultured on grooves of 5 μm width spaced by 5 μm

Types

- Control line
- BRAFV600E
- DCIS.com
- PIK3CA
- Rac1

II. Project Design

II. Project Design (1/2)

II. Project Design (2/2)

III. Methods

III. Methods: Preprocessing (1/5)

Preprocessing CLAHE Normalize Clip intensity Denoising

- Angle Detection: based on Hough line transform with Canny edge detection
- Image Rotation: using a rotation matrix of the detected angle

Eliminates **orientation-related noise** in the training data

III. Methods: Preprocessing (2/5)

Preprocessing Rotation CLAHE Normalize Clip intensity Denoising

- Poor contrast images, challenging identification of cell features
- Contrast Limited Adaptive
 Histogram Equalization
- Improves image contrast

III. Methods: Preprocessing (3/5)

Preprocessing Rotation CLAHE Normalize Clip intensity Denoising

- Scale the pixel values linearly to a common range, typically [0, 1].
- **Prepare** images for intensity clipping

14

Mitigates issues related to varying image intensities

III. Methods: Preprocessing (4/5)

Preprocessing Rotation CLAHE Normalize Clip intensity Denoising

- Outliers: extreme pixel values
- Use of the **percentiles** of the image intensity distribution.
- **Enhances** image **quality** by reducing extreme pixel values

III. Methods: Preprocessing (5/5)

Preprocessing Rotation CLAHE Normalize Clip intensity Denoising

- Total Variation (TV) denoising
- Enhances image clarity by removing unwanted noise and keeping cell textures

III. Methods: Segmentation (1/5)

Cellpose architecture : **UNET**

Cellpose GUI: "Human in the loop" training

III. Methods: Segmentation (2/5)

III. Methods: Segmentation (3/5)

Segmentation

Fine tune a Cellpose model

Segmentation Masks

Crop Cell patches

► Method 1 : Crop + Resize

- Resize the cell image while preserving its aspect ratio.
- + Flexibility of the resized shape
- Information loss : Real size of the cell

Method 2 : Crop + Padd

- Crop or pad the cell image while preserving its original size.
- + Take into account the real size of the cell as a feature
- Limited choice of the target shape

A study of cell properties is required

Methods: Segmentation (4/5) III.

III. Methods: Segmentation (5/5)

+ Eliminate background

III. Methods: Cells clustering (1/3)

Cells clustering VAE cVAE

III. Methods: Cells clustering (1/3)

$$Loss = L(x,\hat{x}) + \beta KL(q(z|x)||p(z))$$

Sample a point from
$$G(Z_{\mathbb{F}},Z_{\sigma})$$
 $Z=\mu+\sigma\odot\epsilon$ $\epsilon\sim\mathcal{N}(0,1)$

III. Methods: Cells clustering (2/3)

$$Loss = L(x,\hat{x}) + \beta KL(q(z|x)||p(z))$$

 $L(x,\hat{x})$: Reconstruction loss (MSE , BCE ...)

KL(q(z|x)||p(z)): Kullback–Leibler divergence

 $p(z) \sim \mathcal{N}(0,1)$

III. Methods: Cells clustering (3/3)

IV. Results & Discussions

IV. Results & Discussions:

- Comparison of VAE and cVAE performances on MNIST and FashionMNIST clustering
- The role of beta parameter
- Evaluation of cells clustering and limitation of the conventional models

IV. Results & Discussions: VAE on MNIST and Fashion MNIST (1/2)

Dataset_Z_latentDim	Accuracy	Silhouette	DB	СН
$Mnist_Z_16$	0.811	0.0773455	2.44891	429.722
$Mnist_Z_32$	0.8167	0.0368477	3.84555	174.857

IV. Results & Discussions: VAE on MNIST and Fashion MNIST (2/2)

$Dataset_Z_latentDim$	Accuracy	Silhouette	DB	CH
$FashionMnist_Z_16$	0.5848	0.0628801	2.91779	399.27
$FashionMnist_Z_32$	0.5934	0.0277953	4.66206	172.193

IV. Results & Discussions: cVAE on MNIST and Fashion MNIST (1/2)

$Dataset_Z_latentDim$	Accuracy	Silhouette	DB	CH
Mnist_Z_16	0.9018	0.251985	1.8037	1107.44
$Mnist_Z_32$	0.9042	0.184489	2.4797	712.183

IV. Results & Discussions: VAE on MNIST and Fashion MNIST (2/2)

$Dataset_Z_latentDim$	Accuracy	Silhouette	DB	CH
FashionMnist_Z_16	0.9	0.209225	2.02346	944.545
FashionMnist_Z_32	0.975	0.217652	1.75011	807.943

IV. Results & Discussions: Beta parameter

IV. Results & Discussions: cVAE for cells clustering (1/3)

V. Refinement of the architecture

Label	Number of Cells	% Occurrences of Wild Cells	% Occurrences of Mutation Cells
0	177	36.72%	63.28%
1	347	90.20%	9.80%
2	152	28.29%	71.71%
3	159	50.31%	49.69%
4	235	25.11%	74.89%

Number of clusters	Silhouette score	Davies-Bouldin Index	Calinski-Harabasz Index
4	0.1922	1.8014	232.8991
5	0.1588	1.8083	212.1467

IV. Results & Discussions: cVAE for cells clustering (3/3)

- Divergence of the Kullback-Leibler loss in the training
- Overlap of control and mutation cells at some clusters that are very close in terms of deformation / shape
- + A statistical inference of the current results shows potential features for the cancerous cells developed in the case of mutations

V. Refinement of the architecture

V. Refinement of the architecture (1/4)

Divergence of the Kullback-Leibler loss in the training :

$$Z' = Z \oplus E$$

-> Refine the architecture so that the latent space becomes more "flexible" in order to resemble a Gaussian distribution.

V. Refinement of the architecture (2/4)

7 Samples of each cluster

V. Refinement of the architecture (3/4)

Distribution of the clusters at 6 dimensions of the latent space

Correlation matrix of the cluster1 with the others at each of Latent space dimensions

V. Refinement of the architecture (4/4)

- Alpha is an architectural Hyperparameter.
- It controls the contribution of Z and E to the final latent space Z'

Alpha	nbclusters	Silhouette	DB	СН
16	5	0.394324	0.820397	4109
16	7	0.301135	0.961042	3552.71
8	5	0.424161	0.785045	3869.34
8	7	0.274534	1.10468	3167.72

The dimension of g(E) is $\frac{1}{\alpha}$.latent_dim The dimension of f(Z) is $\frac{\alpha-1}{\alpha}$. latent_dim

Conclusion & Perspective

Conclusion & Perspective (1/2)

Summary

- Enhanced and preprocessed data
- Fine-tuned models of Cellpose for MCF10A cells
- Build different Variational Autoencoder architectures for cell clustering
- Deployed models and documented code on github repository

Conclusion & Perspective (2/2)

Challenges

- Defining the preprocessing methods for a rich data
- Using cellpose GUI (GPU needed)
- Plenty hyperparameters to fine-tune

- Optimizing the code for future uses

Perspective

- End-to-end pipeline
- Study the correlations of the dynamic aspects of each cluster

Thank you for your attention

