IIT-JEE CHEMISTRY

Electrode potential, E_{Cell}, Nernt equation and ECS

- 1. The hydrogen electrode is dipped in a solution of pH=3 at $25^{\circ}C$. The potential of the cell would be (the value of 2.303RT/F is $0.059\ V$)
 - (a) 0.177 V
- (b) -0.177 V
- (c) 0.087 V
- (d) 0.059 V
- 2. The standard electrode potentials of Zn^{2+}/Zn and Ag^{+}/Ag are -0.763V and +0.799V respectively. The standard potential of the cell is
 - (a) 1.56 V
- (b) 0.036 V
- (c) 1.562 V
- (d) 0.799 V
- 3. The standard reduction potentials at 298*K* for the following half reactions are given against each

$$Zn^{2+}(aq.) + 2e \rightleftharpoons Zn(s); -0.762$$

$$Cr^{3+}(aq) + 3e \rightleftharpoons Cr(s); -0.740$$

$$2H^+(aq) + 2e \rightleftharpoons H_2(g);$$
 0.00

$$Fe^{3+}(aq) + e \rightleftharpoons Fe^{2+}(aq)$$
; 0.770

Which is the strongest reducing agent

- (a) Zn(s)
- (b) Cr(s)
- (c) $H_2(g)$
- (d) $Fe^{2+}(aq)$
- 4. When Zn piece is kept in $CuSO_4$ solution, the copper get precipitated due to standard potential of zinc is
 - (a) > copper
- (b) < copper
- (c) > sulphate
- (d) < sulphate

- Which of the following metal does not react with the solution of copper sulphate
 - (a) Mg
- (b) Fe
- (c) Zn
- (d) Ag
- A solution containing one mole per 6. litre of each $Cu(NO_3)_2$, $AgNO_3$, $Hg_2(NO_3)_2$ and $Mg(NO_3)_2$, is being electrolysed by using inert electrodes. The values of standard electrode potentials in volts (reduction potentials) are $Ag/Ag^+ =$ $+0.80,2Hg/Hg_2^{2+} = +0.79,Cu/Cu^{2+} =$ +0.34, $Mg/Mg^{2+} = -2.37$ increasing voltage, the sequence of deposition of metals on the cathode will be
 - (a) Ag, Hg, Cu, Mg
 - (b) Mg, Cu, Hg, Ag
 - (c) *Ag*, *Hg*, *Cu*
 - (d) Cu, Hg, Ag
- 7. The standard reduction electrode potentials of four elements are

$$A = -0.250V$$

$$B = -0.136V$$

$$C = -0.126V$$

$$D = -0.402V$$

The element that displaces A from its compounds is

- (a) B
- (b) C
- (c) D
- (d) None of these

 The standard oxidation potential of zinc and silver in water at 298Kare

$$Zn(s) \rightarrow Zn^{2+} + 2e^{-}; E = 0.76V$$

$$Ag(s) \rightarrow Ag^{2+} + 2e^{-}; E = -0.80V$$

Which of the following reactions actually take place

(a)
$$Zn(s) + 2Ag^{+}(aq) \rightarrow Zn^{++}(aq) + 2Ag(s)$$

(b)
$$Zn^{++}(aq) + 2Ag(s) \rightarrow 2Ag^{+}(aq) + Zn(s)$$

(c)
$$Zn(s) + Ag(s) \rightarrow Zn^{++}(aq) + Ag^{+}(aq)$$

(d)
$$Zn^{++}(aq) + Ag^{+}(aq) \to Zn(s) + Ag(s)$$

- 9. Beryllium is placed above magnesium in the second group. Beryllium dust, therefore when added to $MgCl_2$ solution will
 - (a) Have no effect
 - (b) Precipitate Mg metal
 - (c) Precipitate MgO
 - (d) Lead to dissolution of Bemetal
- 10. The name of equation showing relation between electrode potential (E) standard electrode potential (E^o) and concentration of ions in solution is
 - (a) Kohlrausch's equation
 - (b) Nernst's equation
 - (c) Ohm's equation
 - (d) Faraday's equation
- The correct representation of Nernst's equation is

(a)
$$E_{M^{n+}/M} = E_{M^{n+}/M}^{o} + \frac{0.0591}{n} log(M^{n+})$$

(b)
$$E_{M^{n+}/M} = E^{o}_{M^{n+}/M} - \frac{0.0591}{n} log(M^{n+})$$

(c)
$$E_{M^{n+}/M} = E_{M^{n+}/M}^{o} + \frac{n}{0.0591} log(M^{n+})$$

- (d) None of the above
- Standard electrode potential of NHE at 298 K is
 - (a) 0.05 V
- (b) 0.1 V
- (c) 0.00 V
- (d) 0.11 V
- 13. When a copper wire is placed in a solution of $AgNO_3$, the solution acquires blue colour. This is due to the formation of
 - (a) Cu^{2+} ions
 - (b) Cu^+ ions
 - (c) Soluble complex of copper with $AgNO_3$
 - (d) Cu^- ion by the reduction of Cu
- 14. Consider the reaction $M_{(aq)}^{n+} + ne^- \rightarrow M_{(s)}$. The standard reduction potential values of the elements M_1, M_2 and M_3 are -0.34V, -3.05V and -1.66V respectively. The order of their reducing power will be
 - (a) $M_1 > M_2 > M_3$
 - (b) $M_3 > M_2 > M_1$
 - (c) $M_1 > M_3 > M_2$
 - (d) $M_2 > M_3 > M_1$

15.
$$E^0 = \frac{RT}{nF} \ln K_{eq}$$
. This is called

IIT-JEE CHEMISTRY

- (a) Gibb's equation
- (b) Gibb's-Helmholtz equation
- (c) Nernst's equation
- (d) Vander Waal's equation
- 16. Four alkali metals A, B, C and D are having respectively standard electrode potential as -3.05,-1.66,-0.40 and 0.80. Which one will be the most reactive
 - (a) A

(b) B

(c) C

- (d) D
- 17. Which one of the following metals cannot evolve H_2 from acids or H_20 or from its compounds
 - (a) Hg
- (b) Al
- (c) Pb
- (d) *Fe*
- Which one of the following reaction is not possible
 - (a) $Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$
 - (b) $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$
 - (c) $2KBr + I_2 \rightarrow 2KI + Br_2$
 - (d) $CuO + H_2 \rightarrow Cu + H_2O$
- 19. When a rod of metal A is dipped in an aqueous solution of metal B (concentration of B^{2+} ion being 1M) at $25^{o}C$, the standard electrode potentials are $A^{2+}/A = -0.76$ volts, $B^{2+}/B = +0.34$ volts
 - (a) A will gradually dissolve

- (b) B will deposit on A
- (c) No reaction will occur
- (d) Water will decompose into H_2 and O_2
- 20. The reaction $Zn^{2+} + 2e^- \rightarrow Zn$ has a standard potential of -0.76V . This means
 - (a) Zn can't replace hydrogen from acids
 - (b) Zn is a reducing agent
 - (c) Zn is a oxidising agent
 - (d) Zn^{2+} is a reducing agent
- 21. $2H^+(aq) + 2e^- \rightarrow H_2(g)$. The standard electrode potential for the above reaction is (in volts)
 - (a) 0
 - (b) + 1
 - (c) 1
 - (d) None of these
- in the decreasing order of their standard electrode potentials as
 - (a) *K*, *Ca*, *Li*
- (b) *Ca*, *K*, *Li*
- (c) *Li*, *Ca*, *K*
- (d) *Ca*, *Li*, *K*
- 23. The correct order of chemical reactivity with water according to electrochemical series
 - (a) K > Mg > Zn > Cu
 - (b) Mg > Zn > Cu > K
 - (c)K > Zn > Mg > Cu

(d) Cu > Zn > Mg > K

24. EMF of cell

 $Ni|Ni^{2+}(1.0M)||Au^{3+}(1.0M)|Au$ (Where E^o for $Ni^{2+}|Ni$ is -0.25V; E^o for $Au^{+3}|Au$ is 1.50V) is

- (a) + 1.25 V
- (b) -1.75V
- (c) + 1.75 V
- (d) + 4.0 V
- 25. Oxidation and reduction take place in a cell, then its electromotive force will be
 - (a) Positive
- (b) Negative
- (c) Zero
- (d) Stable

EDUCATIONAL PLATFORM

ESTD: 2005

