version 1

Mini-test 4 : Physique de l'entonnoir

Un point matériel de poids $m\vec{g}$ se déplace sans frottement sur un cône de révolution de sommet O, d'axe vertical Oz, et s'ouvrant vers le haut avec un demi-angle d'ouverture α $(0 < \alpha < \pi/2, z > 0)$.

- a) Représenter sur un dessin, dans le plan contenant le point matériel et l'axe Oz, le repère associé aux coordonnées sphériques (r, θ, ϕ) .
- b) Ecrire les équations différentielles du mouvement, en projections sur les axes de ce repère.

- d) Démontrer que L_z est une constante du mouvement.
- e) L'énergie mécanique est-elle conservée (justifier votre réponse)? Ecrire son expression en fonction de r, \dot{r} ainsi que de m, g, α et L_z . Montrer que l'on peut écrire l'énergie sous la forme $\frac{1}{2}m\dot{r}^2 + V_{\rm eff}(r)$. Tracer schématiquement la fonction $V_{\rm eff}(r)$ en fonction de r, et discuter les trajectoires possibles.
- f) Trouver les solutions des équations du mouvement avec $r(t) = r_0 = \text{constante}$. A quel type de mouvement cela correspond-il? Calculer r_0 en fonction de m, g, α et L_z .

