Árvores B

Luiz E. Buzato

29 de setembro de 2010

Instituto de Computação - UNICAMP buzato@ic.unicamp.br

Ler observação na próxima transparência!

Luiz E. Buzate

Árvores B

Visão Geral

- As árvores B são generalizações de árvores binárias de busca
- Elas são balanceadas, ou seja, sua altura é O(lg(n))
- As árvores B foram desenvolvidas para otimizar o acesso a dispositivos de armazenamento secundário (ex., discos)
- Os nós da árvore B podem ter muitos filhos. Esse fator de ramificação elevado é determinante para reduzir o número de acessos a disco.

Nota importante

originalmente preparadas pelo Prof. Cid C. de Souza e pelo pós-graduando Alison Cruz sob supervisão do Prof. Zanoni Dias em setembro de 2007 como parte das atividades da disciplina M0637 do Instituto de Computação da UNICAMP.

A referência básica usada nesta apresentação é o livro *"Introduction to Algorithms"* de autoria de T. Cormen, C. Leiserson, R. Rivest e C. Stein, editado pela *McGraw-Hill* em 2001.

Algumas figuras utilizadas neste documento foram extraídas do conjunto de transparências preparadas pelo Prof. Tomasz Kowaltowski para a disciplina MC202 do Instituto de Computação da UNICAMP.

Finalmente, parte do material foi aproveitado da apresentação que se encontra em www.iua.upf.es/~rramirez/TA/btrees.pdf.

Luiz E. Buzat

Árvores I

Armazenamento Secundário

- Atualmente o armazenamento estável é feito em discos magnéticos, e o custo de cada acesso (da ordem de mili segundos) é muito alto quando comparado ao acesso à memória RAM (ordem de nano segundos)
- Toda vez que um acesso é feito, deve-se aproveitá-lo da melhor maneira possível, trazendo o máximo de informação relevante
- Tipicamente, a quantidade de dados armazenados numa árvore B é muito grande e não pode ser armazenada na memória principal de uma só vez. Por isso, os dados da árvore são paginados

in E. Durata

Armazenamento Secundário

 Especializações são feitas de acordo com as necessidades da aplicação. O fator de ramificação, chegar à ordem de milhares (p.ex., 2048) dependendo do buffer dos discos e do tamanho das páginas de memória alocados pelo sistema operacional.

Luiz E. Buzato

Arvores B

Armazenamento Secundário

- O tempo de execução de um algoritmo de árvore B é determinado pelas leituras e escritas no disco
- Análise de complexidade possui duas componentes principais: o número de acessos a disco e o tempo de CPU
- Manipulando dados em memória secundária:

```
int main() {
  T *x; /* apontador para objeto em disco */
   ...
  x = ...; /* x recebe endereço */
  /* lê dados do objeto apontado por x para memória princ. */
  DISK-READ(x);
  /* comandos que acessam/modificam campos de x */
   ...
  /* grava informações de volta no disco */
  DISK-WRITE(x);
   ...
  return 0;
} /* main */
```

Armazenamento Secundário

Tempos de acesso a disco:

• busca (seek): ΔS

 \bullet latência: ΔL

 \bullet transferência de dados: ΔT

Luiz E. Buzato

Ányores R

Armazenamento Secundário

• Um fator de ramificação alto reduz drasticamente a altura da árvore (\equiv # acessos a disco). Por exemplo, se tivermos um fator de ramificação 1000 e cerca de um **bilhão** de chaves, precisaremos de apenas $log_{1000}(10^6) \approx 3$ acessos a disco (contra ≈ 32 para uma ávore binária)

Luiz E. Buzato

Árvores B

Luiz E. Buzat

Árvores

Propriedades da árvore B

Seja T uma árvore B com raiz (root[T]). Ela possuirá então as seguintes propriedades:

Todo o nó x tem os campos:

- a. n[x]: o número de chaves atualmente armazenadas em x,
- b. as n[x] chaves armazenadas em ordem crescente, i.e.,

$$key_0[x] \le key_1[x] \le \ldots \le key_{n[x]-1}[x]$$

- c. leaf[x]: um valor booleano que vale TRUE se x é uma folha e FALSE se x é um nó interno
- Cada nó interno x também contém n[x]+1 apontadores $c_0[x], c_1[x], ..., c_{n[x]}[x]$ para os filhos. As folhas têm todos seus apontadores nulos
- Todas as folhas têm a mesma profundidade, que é a altura da árvore: *h*

Luiz E. Buzate

Árvores E

Propriedades da árvore B

Teorema:

Seja T uma árvore B de altura h e grau mínimo $t \ge 2$ contendo $n \ge 1$ chaves. Então (considerando a raiz no nível zero),

$$h \leq \log_t \frac{n+1}{2}$$
.

Prova: ...

Luiz E. Buzato

Árvores B

Propriedades da árvore B

As chaves $key_i[x]$ separam os intervalos de chaves armazenadas em cada sub-árvore. Assim, se k_i é uma chave armazenada na sub-árvore com raiz $c_i[x]$, então:

$$k_0 \le key_0[x] \le k_1 \le key_1[x] \le \ldots \le key_{n[x]-1}[x] \le k_{n[x]}$$

- Existem limites superiores e inferiores para o número de chaves num nó. Eles são expressos em termos de um inteiro fixo $t \ge 2$ chamado **grau mínimo** da árvore:
 - a. Todo nó que não seja raiz deve ter pelo menos t-1 chaves. Portanto, todo nó interno que não seja a raiz tem pelo t ou mais filhos. Se a árvore for não vazia, a raiz deve ter pelo menos uma chave
 - b. Cada nó pode conter no máximo 2t-1 chaves. Portanto, um nó interno, pode ter no máximo 2t filhos. O nó é dito estar **cheio** quando ele contém exatamente 2t-1 chaves

Luiz E. Buzato

Ányores

Operações básicas em árvores B

- Veremos inicialmente três operações básicas em árvores *B*: B-TREE-CREATE, B-TREE-SEARCH e B-TREE-INSERT.
- As convenções adotadas nestes procedimentos são:
 - A raiz está sempre na memória principal, portanto, não há necessidade de fazer um DISK-READ. Por outro lado, se o nó raiz mudar, será necessário fazer um DISK-WRITE
 - Quaisquer nós passados como parâmetros já devem ter sofrido um DISK-READ.

B-TREE-CREATE(T)

- 1 $x \leftarrow \text{ALLOCATE-NODE}()$
- 2 $leaf[x] \leftarrow TRUE$;
- 3 $n[x] \leftarrow 0$;
- 4 DISK-WRITE(x)
- 5 $root[T] \leftarrow x$

O(1) acessos a disco e O(1) de tempo de CPU

Luiz E. Buzato

Árvores

Busca por Elemento

- A busca em uma árvore B é similar à busca em uma árvore binária, só que ao invés de uma bifurcação em cada nó, temos vários caminhos a seguir de acordo com o número de filhos do nó e a chave procurada
- A função B-TREE-SEARCH recebe o apontador para o nó raiz
 (x) e a chave k sendo procurada
- Se a chave k pertencer à árvore o algoritmo retorna o nó ao qual ela pertence e o índice dentro do nó correspondente à chave procurada, caso contrário, retorna NIL

Luiz E. Buza

Árvores E

Busca por Elemento: Exemplo

B-TREE-SEARCH: pseudo-código

B-TREE-SEARCH(x, k)

- $1 i \leftarrow 0$
- 2 while i < n[x] and $k > key_i[x]$ do $i \leftarrow i + 1$
- 3 if i < n[x] and $k = key_i[x]$ then return (x, i)
- 4 if leaf[x] then return NIL
- 5 else DISK-READ $(c_i[x])$
- 6 return B-TREE-SEARCH($c_i[x], k$)
 - Como dito anteriormente, o número de acessos a disco é $O(\log_t(n))$, onde n é o número de chaves na árvore
 - Como em cada nó, é feita uma busca linear, temos um gasto de O(t) em cada nó. Sendo assim, o tempo total é de $O(t \log_t(n))$

Luiz E. Buzat

Árvores I

Busca por Elemento: Exemplo

Luiz E. Buzato

Busca por Elemento: Exemplo

Á..... F

Busca por Elemento: Exemplo

Busca por Elemento: Exemplo

Luiz E. Buzat

Árvores

Inserção de elemento: a operação split

- A inserção nas árvores B é relativamente mais complicada, pois, precisamos inserir a nova chave no nó correto da árvore, sem violar suas propriedades
- Como proceder se o nó estiver cheio ?
- Caso o nó esteja cheio, devemos separar (split) o nó ao redor do elemento mediano, criando 2 novos nós que não violam as definições da árvore
- O elemento mediano é promovido, passando a fazer parte do nó pai daquele nó

uiz E. Buzato Árvores B

Luiz E. Buzato

Árvores

Inserção de elemento: a operação split

Exemplo: t = 4

- O procedimento B-TREE-SPLIT-CHILD recebe como parâmetros um nó interno (não cheio) x, um índice i e um nó y tal que $y=c_i[x]$ é um filho de x que está cheio
- Ele cria um novo nó z, separa o nó y ao redor do elemento mediano, copiando os elementos maiores que ele em z, deixando os menores em y, ajusta o contador de elementos de z e y para t - 1, e promove o elemento mediano para o nó x

Luiz E. Buzat

Arvores B

Inserção em árvores B

- A nova chave **sempre** é inserida em uma folha
- A inserção é feita em um único percurso na árvore, a partir da raiz até uma das folhas
- O procedimento B-TREE-SPLIT-CHILD é usado para garantir que a recursão <u>nunca</u> desce em um nó <u>cheio</u>
- O código a seguir faz uso do procedimento
 B-TREE-INSERT-NONFULL, que é responsável pela inserção da chave em um nó não cheio
- B-TREE-INSERT-NONFULL insere a chave k no nó x, caso este seja uma folha, caso contrário, procura o filho adequado e desce a ele recursivamente até encontrar a folha onde deve inserir k

B-TREE-SPLIT-CHILD: pseudo-código e complexidade

B-TREE-SPLIT-CHILD(x, i, y)12 $c_{i+1}[x] \leftarrow z$ 1 $z \leftarrow ALLOCATE-NODE()$ 2 $leaf[z] \leftarrow leaf[y]$ 13 for $j \leftarrow n[x] - 1$ downto i do $3 \quad n[z] \leftarrow t-1$ $key_{i+1}[x] \leftarrow key_i[x]$ 15 $key_i[x] \leftarrow key_t[y]$ 4 for $i \leftarrow 0$ to t - 2 do $key_j[z] \leftarrow key_{j+t}[y]$ 16 $n[x] \leftarrow n[x] + 1$ 6 if not *leaf*[y] then 17 DISK-WRITE(y) for $j \leftarrow 0$ to t - 1 do 18 DISK-WRITE(z) 19 DISK-WRITE(x) $c_j[z] \leftarrow c_{j+t}[y]$ 9 $n[y] \leftarrow t-1$ 10 for $j \leftarrow n[x]$ downto i + 1 do $c_{i+1}[x] \leftarrow c_i[x]$

O tempo de CPU é O(t) por causa dos laços 4–5, 7–8, 10–11 e 13–14. O número de acessos a disco é constante, ou seja, O(1)

Luiz F Buzat

Ányores

B-TREE-INSERT: pseudo-código

B-TREE-INSERT(T, k)

```
1 r \leftarrow root[T]

2 if n[r] = 2t - 1 then

3 s \leftarrow ALLOCATE-NODE()

4 root[T] \leftarrow s

5 leaf[s] \leftarrow FALSE

6 n[s] \leftarrow 0

7 c_0[s] \leftarrow r

8 B-TREE-SPLIT-CHILD(s, 0, r)

9 B-TREE-INSERT-NONFULL(s, k)

10 else B-TREE-INSERT-NONFULL(r, k)
```

Observação: o *split* na raiz é o único jeito de aumentar a altura da árvore *B*. Ao contrário das árvores binárias, o crescimento se dá na raiz em vez das folhas.

B-TREE-INSERT-NONFULL: pseudo-código

B-TREE-INSERT-NONFULL(x, k) $1 \quad i \leftarrow n[x] - 1$ if leaf[x] then while $i \ge 0$ and $k < key_i[x]$ do 3 $key_{i+1}[x] \leftarrow key_i[x]$ i = i - 15 6 $key_{i+1}[x] \leftarrow k$; $n[x] \leftarrow n[x] + 1$; DISK-WRITE(x); 7 while $i \ge 0$ and $k < key_i[x]$ do $i \leftarrow i - 1$; 8 9 $i \leftarrow i + 1$; DISK-READ $(c_i[x])$ if $n[c_i[x]] = 2t - 1$ then 10 11 B-TREE-SPLIT-CHILD($x, i, c_i[x]$) if $k > key_i[x]$ then $i \leftarrow i + 1$ 12 B-TREE-INSERT-NONFULL $(c_i[x], k)$ 13

Luiz E. Buzate

Árvores B

Inserção em árvores B

Início

Complexidade de inserção

- O # de acessos a disco de B-TREE-INSERT é O(h) pois apenas O(1) operações DISK-READ/WRITE são feitas entre duas chamadas consecutivas de B-TREE-INSERT-NONFULL
- O tempo total de CPU é $O(th) = O(t \log_t n)$.
- Note que o procedimento B-TREE-INSERT-NONFULL
 apresenta uma recursão caudal. Esta recursão pode ser
 removida usando um laço while, com o qual fica mais claro
 perceber que o número de páginas que devem estar em
 memória principal a qualquer instante é O(1).

Luiz E. Buzat

Árvores I

Inserção em árvores B

Insere B

Luiz E. Buzato Árvore

Luiz E. Buzato

Inserção em árvores B

insere Q t = 3 A B C D E J K N O Q R S U V Y Z

Luiz E. Buzato

Arvores B

Inserção em árvores B

Inserção em árvores B

Luiz E. Buzato

Árvores I

Remoção de Chaves

- Contrariamente ao que ocorre na inserção, a remoção de uma chave pode ser feita em qualquer nó
- Assim como na inserção, precisamos garantir que, ao removermos uma chave as propriedades da árvore B serão preservadas
- Da mesma maneira que tivemos de garantir que a inserção não ocorresse em um nó cheio, no caso da remoção, devemos assegurar que ela não aconteça em um nó $vazio\ demais$, ou seja, com t-1 chaves

z E. Buzato Árvores B

Remoção de Chaves

Estratégia do procedimento de remoção:

- sempre que o procedimento B-TREE-DELETE for chamado recursivamente em um nó x, devemos ter $n[x] \ge t$, sendo t o grau mínimo da árvore
- note que esta condição obriga que o número de chaves no nó x seja pelo menos uma unidade maior do que o mínimo exigido pelas propriedades das árvores B.
- assim, em algumas situações, uma chave poderá ter de ser movida de x para um de seus filhos y antes que a recursão desça para y
- com isto, podemos remover uma chave fazendo uma única descida na árvore B sem precisar executar um backtracking (com uma única exceção a ser explicada adiante)

Remoção de Chaves

- Caso 1. Se a chave k estiver numa folha da árvore que possui pelo menos t chaves, remove-se a chave daquele nó
- Caso 2. Se a chave k está num nó interno x, faz-se o seguinte:
 - a. Se o filho y que precede k no nó x possui pelo menos t chaves, encontre o predecessor k' de k na sub-árvore com raiz em v. Recursivamente, remova k' de v e substitua k por k' no
 - **b.** Simetricamente, se o filho z que sucede k no nó x possui pelo menos t chaves, encontre o sucessor k' de k na sub-árvore com raiz em z. Recursivamente, remova k' de z e substitua k por k' no nó x
 - c. Caso ambos y e z possuam somente t-1 chaves, intercale a chave k e todas as chaves de z no nó y, de modo que xperde tanto a chave k quanto o ponteiro para z e n[y] passe a valer 2t - 1 (y fica cheio). Libere a memória ocupada por z e, recursivamente, remova k do nó y.

Remoção de Chaves

Considerações sobre o procedimento de remoção:

- a especificação da remoção dada a seguir subentende que, se o nó raiz x se tornar um nó interno vazio (i.e., sem chaves), então x será removido da árvore B e seu único filho $c_0[x]$ tornar-se-á a nova raiz da árvore
- na situação descrita acima, a árvore B decresce em altura e preserva-se a propriedade de que a raiz tem pelo menos uma chave, exceto, é claro, se a árvore ficar vazia
- a seguir são discutidos os seis casos a serem considerados para a remoção de uma chave em uma árvore B

Remoção de Chaves

- Caso 3. Se a chave k não pertence ao nó interno x, determine a sub-árvore $c_i[x]$ que pode conter k. Caso $c_i[x]$ possua só t-1 chaves, execute os subcasos **3a** ou **3b** abaixo, conforme a necessidade, de modo a garantir que o procedimento descerá para um nó com pelo menos t chaves:
 - a. [EMPRÉSTIMO DE CHAVES] Se $c_i[x]$ possui t-1 chaves mas tem um irmão adjacente y com pelo menos t chaves, mova para $c_i[x]$ a chave de x cujo valor encontra-se entre aqueles das chaves de $c_i[x]$ e y. Em seguida mova uma chave de y (a menor se y for irmão direito de $c_i[x]$, a maior se for irmão esquerdo) para x e mova o apontador de filho apropriado de v para $c_i[x]$
 - **b.** Se $c_i[x]$ e ambos os seus irmãos à esquerda e à direita possuem t-1 chaves, una (intercale) $c_i[x]$ com um dos irmãos, o que envolve mover (para baixo) uma chave de x para o novo nó que acabou de ser formado, chave esta que ocupará o elemento mediano daquele nó

Luiz E. Buzato Árvores B

Luiz E. Buzato Árvores B

Remoção de Chaves

Exemplo 1: t = 3

Luiz E. Buzato Árvores B

Remoção de Chaves

Exemplo 1: t = 3

Remoção de Chaves

Exemplo 1: t = 3

Remoção de Chaves

Exemplo 1: t = 3

Complexidade da Remoção

- Suponhamos que antes da remoção é feita uma busca para garantir que a chave k pode de fato ser removida da árvore B. Como vimos, o tempo consumido nesta operação é $O(t \log_t n)$
- No pior caso, teremos todos os nós da árvore com t-1elementos, exceto possivelmente a raiz, forçando a intercalação de nós e/ou o empréstimo de chaves entre nós toda vez que a recursão for descer um nível na árvore.
- Nesta situação, somente os casos 2c e 3b poderão ocorrer. Vamos analisá-los então.

Complexidade da Remoção

Como a altura da árvore é $O(\log_t n)$, conclui-se que a complexidade da remoção é dada por $O(t \log_t n)$.

Complexidade da Remoção

• Se o caso 2c ocorrer uma vez, então a chave k foi encontrada no nó x corrente e será movida para um nó y, filho de x. A recursão irá remover k de y e, é claro, recai-se novamente no caso 2c. Isto irá se propagar até atingirmos uma folha, recaindo-se no caso 1.

Cada intercalação realizado no caso 2c envolve não mais que dois acessos a disco e tempo de CPU O(t) (busca da chave mais intercalação propriamente dita).

• Se for o caso 3b, as intercalações vão ocorrendo de modo semelhante ao que foi descrito acima, só que o caso 3b poderá ir se repetindo até que se chegue numa folha ou até que a chave seja encontrada e o caso 2c ocorra, voltando-se então à situação do item anterior.

A análise do número de acessos a disco e do tempo de CPU consumido é análgo àquela feita acima.

Luiz E. Buzato Árvores B