

Department of Computer Engineering

BLG 335E Analysis of Algorithm 1 Homework 1 Report

ID 150140126 Name Emre Surname Reyhanlıoğlu

Part A — Lower and Upper Bounds of Algorithms

Bubles ort has lower bound with O(n) which is linear bound and upper bound with $O(n^2)$ which is quadratic bound.

	Statement	Steps/Execution	Frequency		Total Steps	
	Statement		If-true	If-false	If-true	If-false
1	bublesort(a, n){					
2	i <- length[A]	1	1	1	1	1
3	sorted <- False	1	1	1	1	1
4	while i is greater than 1 AND sorted is False {	1	n-1	n-1	n-1	n-1
5	sorted <- True	1	n-2	0	n-2	0
6	do for j=1 to i – 1 {	1	n*(n-2)	0	n² -2n	0
7	do if A[j] < A[j – 1] {	1	(n-1)*(n-2)	0	n² -3n+2	0
8	temp <- A[j]; A[j] <- A[j - 1];	2	(n-1)*(n-2)	0	2n2 -6n+4	0
9	A[j - 1]<-temp; sorted <- False	2	(n-1)*(n-2)	0	2n2 -6n+4	0
10	}					
11	}					
12	}					
Total					6n ² -15n+9	n+1

Merge sort's lower bound and upper bound are same and it is O(nlogn) which is superlinear bound.

	Statement	Steps/Execution	Frequency		Total St	Total Steps	
		Steps/Execution	If-true	If-false	If-true	If-false	
1	mergeSort (a, first, last)						
2	if (first < last) {	1	1	1	1	1	
3	mid = (first+last)/2	1	1	0	1	0	
4	mergeSort(a,first, mid);	T(n/2)	1	0	T(n/2)	0	
5	mergeSort(a,mid+1, last);	T(n/2)	1	0	T(n/2)	0	
6	merge(a, first, mid, last);	O(n)	1	0	O(n)	0	
7	}						
Total					2*T(n/2) +O(n)	1	
1	merge(a, first, mid, last) {						
2	k=first; i = first; j=mid+1	3	1	1	1	1	
3	while((k<=mid) and (j<=last)) {	1	n/2 +1	n/2 +1	n/2 +1	n/2 +1	
4	if(a[k]<=a[i] {	1	n/2	n/2	n/2	n/2	
5	b[i] = a[k]; k++;	2	n/2	0	n	0	
6	} else{						
7	b[i] = a[k]; j++;	2	0	n/2	0	n	
8	} i++;	1	n/2	n/2	n/2	n/2	
9	}						
10	if(k>mid) {	1	1	1	1	1	
11	for(h=j to last) {	1	n/2 +1	0	n/2 +1	0	
12	b[i] = a[h]; i++; }	2	n/2	0	n	0	
13	}else{	1					
14	for(h=k to mid) {	1	0	n/2 +1	0	n/2 +1	
15	b[i] = a[h]; i++; }	2	0	n/2	0	n	
16	for(h=first to last) {	1	n+1	n+1	n+1	n+1	
17	a[h] = b[h]; }	1	n	n	n	n	
18	}						
Total					4n+4	4n+5	

PART B - AVERAGE TIME OF EXECUTION TABLE

I have run my program for different input types and different array sizes. You can see the results below for both algorithms.

	Arroy Ciro(Al)	Time		
Input Type	Array Size(N)	Buble Sort	Merge Sort	
sorted	1k	0.0001 sec	0.001 sec	
unsorted	1k	0.009 sec	0.001 sec	
sorted	10k	0.0002 sec	0.006 sec	
unsorted	10k	0.803 sec	0.009 sec	
sorted	100k	0.001 sec	0.068 sec	
unsorted	100k	96.344 sec	0.093 sec	
sorted	1M	0.007 sec	0.753 sec	
unsorted	1M	156 min	1.021 sec	

PART C — GRAPHICAL RESULTS AND INTERPRETATIONS

Array Size

As we can see, sorting a sorted list takes less time than unsorted list for both of these algorithms. Moreover, there is a huge gap between lower bound and upper bound of bublesort algorithm as I expected, because upper bound is quadratic and it increases much faster than lower band(linear). On the other hand, merge sort does not change much when array size increases which I expected, because merge sort has a superlinear upper and lower bound. All in all, I would prefer merge sort instead of bublesort for any data size, also I can use threads in merge sort to apply parallel programming approch and make this algoritm faster and faster.

PART D

This function is calculating 1*2+2*3+3*4+...+(n-1)*n+ which is equal to $\sum n(n+1)$ for n=1 to n-1.

$$\begin{split} \sum n^2 + \sum n &= (n-1)(n)(2n-1)/6 + (n-1)n/2 = [n(n-1)/2] \cdot [(2n-1)/3 + 1] \\ &= [n(n-1)/2] \cdot [(2n+2)/3] \\ &= n(n-1) \cdot (n+1)/3 \end{split}$$
 Finally;

Mystery(n) =
$$(n-1) * n * (n+1) /3$$

	Statement	Stano/Evacution	Frequency		Total Steps	
	Statement	Steps/Execution	If-true	If-false	If-true	If-false
1	Algorithm Mystery(n){					
2	r <- 0	1	1	1	1	1
3	for i <- 1 to n do	n+1	n+1	n+1	n+1	n+1
4	for j <- i+1 to n do	n*n	n*n	n*n	n*n	n*n
5	for k <- 1 to j do	n*(n-1)*(n+1)	n*(n-1)*(n+1)	n*(n-1)*(n+1)	n*(n-1)*(n+1)	n*(n-1)*(n+1)
6	r <- r+1;	n*(n-1)*n	n*(n-1)*n	n*(n-1)*n	n*(n-1)*n	n*(n-1)*n
7	return r	1	1	1	1	1
8	}					
Total					2n³+2	2n³+2

Consequently, this algorithm has O(n³) time complexity and its upper and lower bounds are same which is cubic.