Notizen Physik

Patrick Günthard

10. Mai 2016

Inhaltsverzeichnis

1	Fori	meln	1
	1.1	Kraft	1
	1.2	Kreisbewegungen	1
2	Aufg	gaben	2
	2.1	26. Januar 2015	2
	2.2	Skript Altowsche Fallmaschine - Seilkraft	2
	2.3	Seilkraft	2
		2.3.1 S18, N.7	2

1 Formeln

1.1 Kraft

$$F = m * a$$

1.2 Kreisbewegungen

Bahngeschwindigkeit: $v=\frac{\Delta s}{\Delta t}=\frac{2\pi r}{T}$ Drehfrequenz $f=\frac{n}{t}$

Wenn
$$f=\frac{1}{T}$$
 dann $v=2\pi*r*f$ Kreisfrequenz: $\omega=\frac{2\pi}{T}$ also $\omega=2\pi*f$ also $\omega=\frac{v}{r}$

2 Aufgaben

2.1 26. Januar 2015

179 geg:
$$m = 230 * 10^3 kg$$

180 geg:
$$m = 70000kg, K = 1900N$$
 ges(a): a

$$\begin{split} \frac{a}{\sin(\alpha)} &= \frac{b}{\sin(\beta)}) = \frac{c}{\sin(\gamma)} \\ \frac{a}{\sin(60^\circ)} &= \frac{b}{\sin(30^\circ)} = \frac{1.9N}{\sin(90^\circ)} \\ a &= \frac{F}{m}, a = \frac{1900}{70000} = 0.027142857 \end{split}$$

2.2 Skript Altowsche Fallmaschine - Seilkraft

$$\begin{split} m_1 &= \text{Masse des Sensors} = 202\text{g, } F_{G2} = 1.96N \\ m_{2A} &= 170g; a_A = (-)0.916\frac{m}{s^2} \\ m_{2B} &= 250g; a_B = 0.970\frac{m}{s^2}; \end{split}$$

$$F_{SB} = m_1 * a_B + G_{G1} = m_1 * (a_B + g)$$
 also $0.202kg * (0.970 + 9.81)\frac{m}{s^2} = 2.2$

2.3 Seilkraft

2.3.1 S18, N.7

$$a = 0.818 \frac{m}{s^2}$$

$$F_{Res} = F_{G,1} - F_S$$

$$F_S = F_{G,1} - F_{Res}$$

$$m_1 * g - m_1 * a = m_1(g - a)$$

$$2.6kg * (9.81 - 0.818) \frac{m}{s^2} = 23.4N$$

$$2.2kg * (9.81 - 0.818) \frac{m}{s^2} = 19.8N$$