MA-108 Differential Equations I

Manoj K Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 2nd April, 2018 S1 - Lecture 9

Laplace Transforms

- This method illustrates a general problem solving technique in mathematics; transform a difficult problem into an easier one, solve the later problem and use its solution to get a solution of the original problem.
- Laplace transform converts an IVP for a constant coefficient ODE, into an algebraic equation whose solution is used to solve the IVP.
- We have already seen some methods to solve IVP. Laplace transform is especially useful when we are dealing with discontinuous functions r(x).
- For example, when r(x) is piece-wise continuous function, by earlier method, we need to solve IVP on each piece where r(x) is continuous. Laplace transform gives solution in one step.

Laplace Transforms

Let's first define an improper integral.

If g is integrable over the interval [a,T] for every T>a, then an improper integral of g over $[a,\infty)$ is defined as

$$\int_{a}^{\infty} g(t) dt := \lim_{T \to \infty} \int_{a}^{T} g(t) dt$$

We say that the improper integral converges to the limit value, if the limit exists and is finite;

Otherwise we say that the improper integral diverges or does not exist.

• Let $f(t) = e^{ct}$, $t \ge 0$ and $c \ne 0$ constant. Then

$$\int_0^\infty e^{ct} dt = \lim_{T \to \infty} \int_0^T e^{ct} dt = \lim_{T \to \infty} \frac{1}{c} (e^{cT} - 1)$$

- the integral converges to -1/c if c < 0;
- the integral diverges if c > 0.
- If c=0, then f(t)=1 and the integral again diverges.
- 2 Let f(t) = 1/t for $t \ge 1$. Then

$$\int_{1}^{\infty} \frac{1}{t} dt = \lim_{T \to \infty} \int_{1}^{T} \frac{dt}{t} = \lim_{T \to \infty} \ln T$$

the improper integral diverges.

Laplace Transforms

Definition

Let f(t) be defined for $t \ge 0$ and let s be a real number. The **Laplace transform** of f, denoted by F(s), is defined as

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

for those values of s for which the improper integral converges.

Note that s is a parameter and t is a variable of integration.

The Laplace transform can be thought of as an operator L that transforms a function f(t) into the function F(s). We will write it as

$$F = L(f)$$
 or $F(s) = L(f(t))$ or $f(t) \leftrightarrow F(s)$.

Let us discuss existence of Laplace transform.

Definition

A function f is of exponential order (s_0) , if there exist constants M and t_0 such that

$$|f(t)| \le Me^{s_0t}, \quad t \ge t_0.$$

- ① If f(t) is a bounded function, then f is of exponential order. In particular, $\sin at, \cos at$ are of exponential order for any $a \in \mathbb{R}$.
- 2 $f(t) = t^2$ is of exponential order.
- **3** $f(t) = e^{t^2}$ is <u>not</u> of exponential order.

$$\lim_{t \to \infty} \frac{e^{t^2}}{Me^{s_0 t}} = \lim_{t \to \infty} \frac{1}{M} e^{t^2 - s_0 t} = \infty$$

So $e^{t^2} > Me^{s_0t}$ for large t, for any fixed s_0, M .

Definition

A function $f:[a,b] \to \mathbb{R}$ is called **piecewise continuous**, if there exist finitely many points $a=t_0 < t_1 < \ldots < t_n = b$ in [a,b] such that

- f is continuous on each open sub-interval (t_{i-1}, t_i) .
- $f(t_{i-1}+)$ and $f(t_i-)$ exists and are finite for all i.
- A function $f:[0,\infty)\to\mathbb{R}$ is called **piecewise continuous**, if it is piecewise continuous on [0,T] for every T>0.
- ullet For $f:[a,b] \to \mathbb{R}$ to be piecewise continuous, we may not define f at finitely many points.

Define $f:[-1,2]\to\mathbb{R}$ as

$$f(x) = \begin{cases} x+1, & -1 < x < 0 \\ x^2 - 2, & 0 < x < 1 \\ 0, & 1 < x \le 2 \end{cases}$$

Then f is continuous on $(-1,0) \cup (0,1) \cup (1,2)$ and

$$f(-1+) = 0$$
 , $f(0-) = 1$,
 $f(0+) = -2$, $f(1-) = -1$,
 $f(1+) = 0$, $f(2-) = 0$

Therefore, f is piecewise continuous on [-1, 2].

lf

$$f(x) = \begin{cases} \frac{1}{x-1}, & 0 \le x < 1\\ 1, & 1 < x < 2 \end{cases}$$

Then f is not piecewise continuous on [0,2], since f is not continuous at 1, and f(1+) does not exist (is not finite).

Example

If $f:(0,1)\to\mathbb{R}$ is defined by $f(x)=\frac{1}{x}$, then f is continuous on (0,1), but not piecewise continuous on [0,1], since f(0+) does not exists.

Existence of Laplace transform

• Assume f is piecewise continuous on closed interval [a,b]. Then there exists

$$t_0 = a < t_1 < \ldots < t_n = b$$

such that f is continuous on (t_{i-1},t_i) and $f(t_{i-1}+)$ and $f(t_i-)$ exists and are finite for all i. Therefore,

$$\int_{a}^{b} f(t)dt = \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} f(t) dt$$

exists and is finite.

• If f is piecewise continuous on $[0, \infty)$, then so is $e^{-st} f(t)$. Hence

$$\int_{0}^{T} e^{-st} f(t) dt$$

exists for every T > 0.

Theorem

If f is piecewise continuous on $[0,\infty)$ and of exponential order s_0 , then the Laplace transform F(s)=L(f) exists for $s>s_0$.

Proof.

Assume $|f(t)| \leq Me^{s_0t}$, $t \geq t_0$.

We need to show that the integral

$$\int_{0}^{\infty} e^{-st} f(t) dt = \int_{0}^{t_0} e^{-st} f(t) dt + \int_{t_0}^{\infty} e^{-st} f(t) dt$$

converges. The first integral exists and is finite, since $e^{-st}f(t)$ is piecewise continuous. For $t>t_0$,

$$|e^{-st}f(t)| < e^{-st}Me^{s_0t} = Me^{-(s-s_0)t}$$

Thus the second integral converges, since it is dominated by a convergent integral for $s > s_0$. Therefore L(f) exists.

- Show that if $\lim_{t\to\infty}e^{-s_0t}f(t)$ exists and is finite, then f is of exponential order s_0 .
- If $\alpha \in \mathbb{R}$ and $s_0 > 0$, then $\lim_{t \to \infty} e^{-s_0 t} t^{\alpha} = 0$ Hence t^{α} is of exponential order s_0 for any $s_0 > 0$.
- Question. Does this mean $L(t^{\alpha})$ exists for any $\alpha \in \mathbb{R}$. No. We need piecewise continuity for t > 0.
- If $\alpha \geq 0$, then t^{α} is piecewise continuous on $[0, \infty]$, hence $L(t^{\alpha})$ exists for $\alpha \geq 0$.

Find the Lapalace transform F(s) of f(t) = 1.

$$F(s) = \int_{0}^{\infty} e^{-st} dt = \lim_{T \to \infty} \frac{1}{s} (1 - e^{-sT})$$

 $F(s) \to \frac{1}{s}$ for s > 0 and diverges for s < 0.

For $s = \overset{s}{0}$ also F(s) diverges. We write this as

$$L(1) = \frac{1}{s}, \quad s > 0 \quad \text{or} \quad 1 \leftrightarrow \frac{1}{s}, \quad s > 0$$

Convention. Instead of writing $\lim_{T \to \infty}$ everytime, we will write directly as

$$\int_0^\infty e^{-st} dt = -\frac{1}{s} e^{-st} \Big|_0^\infty = \begin{cases} \frac{1}{s} & , & s > 0\\ \infty & , & s < 0 \end{cases}$$

Find Laplace transform of f(t) = t.

For $s \le 0$, F(s) diverges. For s > 0,

$$F(s) = \int_0^\infty e^{-st} t \, dt$$
$$= -\frac{1}{s} t e^{-st} |_0^\infty + \frac{1}{s} \int_0^\infty e^{-st} dt$$
$$= \frac{1}{s^2}, \quad s > 0$$