

### **SPI**

### Serial Peripheral Interface

Revision 0.9.0-41360

May 6, 2015





| LIST | OF TABLE | S                                                             | 13-3  |
|------|----------|---------------------------------------------------------------|-------|
| LIST | OF FIGUE | RES                                                           | 13-4  |
| 13   | SPI      |                                                               | 13-5  |
| 1    | 3.1 OVE  | RVIEW                                                         | 13-5  |
|      | 13.1.1   | SPI Module Block Diagram                                      | 13-6  |
| 1    | 3.2 Moi  | DULE CONFIGURATION                                            | 13-7  |
|      | 13.2.1   | Addressing                                                    | 13-8  |
|      | 13.2.2   | SPI Control Register 0 – HAL_DICE3_SPI_CTRL0                  | 13-8  |
|      | 13.2.3   | SPI Control Register 1 – HAL_DICE3_SPI_CTRL1                  | 13-13 |
|      | 13.2.4   | SPI SSI Enable Register – HAL_DICE3_SPI_SSIENR                | 13-14 |
|      | 13.2.5   | SPI Slave Enable Register – HAL_DICE3_SPI_SER                 | 13-14 |
|      | 13.2.6   | SPI Baud Rate Select - HAL_DICE3_SPI_BAUDR                    | 13-15 |
|      | 13.2.7   | SPI Transmit FIFO Threshold Level – HAL_DICE3_SPI_TXFTLR      | 13-16 |
|      | 13.2.8   | SPI Receive FIFO Threshold Level – HAL_DICE3_SPI_RXFTLR       | 13-17 |
|      | 13.2.9   | SPI Transmit FIFO Level Register – HAL_DICE3_SPI_TXFLR        | 13-18 |
|      | 13.2.10  | SPI Receive FIFO Level Register – HAL_DICE3_SPI_RXFLR         | 13-18 |
|      | 13.2.11  | SPI Status Register – HAL_DICE3_SPI_SR                        | 13-19 |
|      | 13.2.12  | SPI Interrupt Mask Register – HAL_DICE3_SPI_IMR               | 13-20 |
|      | 13.2.13  | SPI Interrupt Status Register – HAL_DICE3_SPI_ISR             | 13-21 |
|      | 13.2.14  | SPI Raw Interrupt Status Register — HAL_DICE3_SPI_RISR        | 13-23 |
|      | 13.2.15  | SPI TX FIFO Overflow Interrupt Clear – HAL_DICE3_SPI_TXOICR   |       |
|      | 13.2.16  | SPI RX FIFO Overerflow Interrupt Clear – HAL_DICE3_SPI_RXOICR | 13-24 |
|      | 13.2.17  | SPI RX FIFO Underflow Interrupt Clear – HAL_DICE3_SPI_RXUICR  |       |
|      | 13.2.18  | SPI Multi-Master Interrupt Clear – HAL_DICE3_SPI_MSTICR       | 13-25 |
|      | 13.2.19  | SPI Interrupt Clear Register – HAL_DICE3_SPI_ICR              |       |
|      | 13.2.20  | SPI DMA Control Register – HAL_DICE3_SPI_DMACR                |       |
|      | 13.2.21  | SPI DMA Transmit Data Level – HAL_DICE3_SPI_DMATDLR           |       |
|      | 13.2.22  | SPI DMA Receive Data Level – HAL_DICE3_SPI_DMARDLR            |       |
|      | 13.2.23  | SPI Data Register – HAL_DICE3_SPI_DR                          |       |
|      | 13.2.24  | SPI Rx Sample Delay Register – HAL_DICE3_SPI_RXDLY            | 13-29 |
| 1    | 2.2 DEV  | CIONIC                                                        | 12 20 |



### **List of Tables**

| TABLE 13.1 SPI MODULE BASE ADDRESSES                                       | 13-7  |
|----------------------------------------------------------------------------|-------|
| TABLE 13.2 SPI MODULE REGISTER SUMMARY                                     | 13-7  |
| TABLE 13.3 SPI CONTROL REGISTER 0 BIT ASSIGNMENTS                          | 13-8  |
| TABLE 13.4 DFS DECODE.                                                     | 13-11 |
| TABLE 13.5 SPI CONTROL REGISTER 1 BIT ASSIGNMENTS                          | 13-13 |
| TABLE 13.6 SPI SSI ENABLE REGISTER BIT ASSIGNMENTS                         | 13-14 |
| TABLE 13.7 SSI SLAVE ENABLE REGISTER BIT ASSIGNMENTS                       | 13-14 |
| TABLE 13.8 SPI BAUD RATE SELECT REGISTER BIT ASSIGNMENTS                   | 13-15 |
| TABLE 13.9 SPI TRANSMIT FIFO THRESHOLD LEVEL REGISTER BIT ASSIGNMENTS      | 13-16 |
| TABLE 13.10 TFT DECODE.                                                    | 13-16 |
| TABLE 13.11 SPI RECEIVE FIFO THRESHOLD LEVEL REGISTER BIT ASSIGNMENTS      | 13-17 |
| TABLE 13.12 RFT DECODE.                                                    | 13-17 |
| TABLE 13.13 SPI TRANSMIT FIFO LEVEL REGISTER BIT ASSIGNMENTS               | 13-18 |
| TABLE 13.14 SPI RECEIVE FIFO LEVEL REGISTER BIT ASSIGNMENTS                | 13-18 |
| TABLE 13.15 SPI STATUS REGISTER BIT ASSIGNMENTS                            | 13-19 |
| TABLE 13.16 SPI INTERRUPT MASK REGISTER BIT ASSIGNMENTS                    | 13-21 |
| TABLE 13.17 SPI INTERRUPT STATUS REGISTER BIT ASSIGNMENTS                  | 13-21 |
| TABLE 13.18 SPI RAW INTERRUPT STATUS REGISTER BIT ASSIGNMENTS              | 13-23 |
| TABLE 13.19 SPI TX FIFO OVERFLOW INTERRUPT CLEAR REGISTER BIT ASSIGNMENTS  | 13-24 |
| TABLE 13.20 SPI RX FIFO OVERFLOW INTERRUPT CLEAR REGISTER BIT ASSIGNMENTS  | 13-24 |
| TABLE 13.21 SPI RX FIFO UNDERFLOW INTERRUPT CLEAR REGISTER BIT ASSIGNMENTS | 13-25 |
| TABLE 13.22 SPI MULTI-MASTER INTERRUPT CLEAR REGISTER BIT ASSIGNMENTS      | 13-25 |
| TABLE 13.23 SPI INTERRUPT CLEAR REGISTER BIT ASSIGNMENTS                   | 13-25 |
| TABLE 13.24 SPI DMA CONTROL REGISTER BIT ASSIGNMENTS                       | 13-26 |
| TABLE 13.25 SPI TRANSMIT DATA LEVEL REGISTER BIT ASSIGNMENTS               | 13-26 |
| TABLE 13.26 DMATDL DECODE.                                                 | 13-27 |
| TABLE 13.27 SPI DMA RECEIVE DATA LEVEL REGISTER BIT ASSIGNMENTS            | 13-27 |
| TABLE 13.28 DMARDL DECODE                                                  | 13-28 |
| TABLE 13.29 SPI DATA REGISTER BIT ASSIGNMENTS                              | 13-28 |
| TABLE 13.30 SPI SAMPLE DELAY REGISTER BIT ASSIGNMENTS                      | 13-29 |
| TABLE 13.31 DOCUMENT REVISION HISTORY                                      | 13-30 |



| List of Figures                      |      |
|--------------------------------------|------|
| FIGURE 13.1 SPI MODULE BLOCK DIAGRAM | 13-6 |



### 13 SPI

#### 13.1 Overview

[TBD]

SPI 0 and 1 are master only



#### 13.1.1 SPI Module Block Diagram

Signal names in **bold** in this chapter refer to labels in this diagram.



Figure 13.1 SPI Module block diagram

#### 13.2 Module Configuration

Each of the three SPI modules is independently programmable using duplicate module register sets. The registers are located at the base addresses in Table 13.1.

Modules 0 and 1 are configured as Master. Masters have 4 slave selects. Module 2 is configured as Slave.

Each module has transmit and receive FIFO depths of 8.

Table 13.1 SPI module base addresses

| Base address | SPI module number |
|--------------|-------------------|
| 0xCC000000   | 0                 |
| 0xCE000000   | 2                 |
| 0xCF000000   | 1                 |

SPI module registers are described below by their offsets from their respective base addresses.

Table 13.2 SPI Module register summary

| Address Offset | Register             | Description                                      |
|----------------|----------------------|--------------------------------------------------|
| 0x0000         | HAL_DICE3_SPI_CTRL0  | See <u>SPI Control Register 0</u>                |
| 0x0004         | HAL_DICE3_SPI_CTRL1  | See <u>SPI Control Register 1</u>                |
| 0x0008         | HAL_DICE3_SPI_SSIENR | See <u>SPI SSI Enable Register</u>               |
| 0x0010         | HAL_DICE3_SPI_SER    | See SPI Slave Enable Register                    |
| 0x0014         | HAL_DICE3_SPI_BAUDR  | See <u>SPI Baud Rate Select</u>                  |
| 0x0018         | HAL_DICE3_SPI_TXFTLR | See SPI Transmit FIFO Threshold Level            |
| 0x001C         | HAL_DICE3_SPI_RXFTLR | See SPI Receive FIFO Threshold Level             |
| 0x0020         | HAL_DICE3_SPI_TXFLR  | See <u>SPI Transmit FIFO Level Register</u>      |
| 0x0024         | HAL_DICE3_SPI_RXFLR  | See <u>SPI Receive FIFO Level Register</u>       |
| 0x0028         | HAL_DICE3_SPI_SR     | See <u>SPI Status Register</u>                   |
| 0x002C         | HAL_DICE3_SPI_IMR    | See <u>SPI Interrupt Mask Register</u>           |
| 0x0030         | HAL_DICE3_SPI_ISR    | See <u>SPI Interrupt Status Register</u>         |
| 0x0034         | HAL_DICE3_SPI_RISR   | See SPI Raw Interrupt Status Register            |
| 0x0038         | HAL_DICE3_SPI_TXOICR | See <u>SPI TX FIFO Overflow Interrupt Clear</u>  |
| 0x003C         | HAL_DICE3_SPI_RXOICR | See <u>SPI RX FIFO Overflow Interrupt Clear</u>  |
| 0x0040         | HAL_DICE3_SPI_RXUICR | See <u>SPI RX FIFO Underflow Interrupt Clear</u> |
| 0x0044         | HAL_DICE3_SPI_MSTICR | See <u>SPI Multi-Master Interrupt Clear</u>      |

| Address Offset | Register              | Description                             |
|----------------|-----------------------|-----------------------------------------|
| 0x0048         | HAL_DICE3_SPI_ICR     | See <u>SPI Interrupt Clear Register</u> |
| 0x004C         | HAL_DICE3_SPI_DMACR   | See <u>SPI DMA Control Register</u>     |
| 0x0050         | HAL_DICE3_SPI_DMATDLR | See <u>SPI DMA Transmit Data Level</u>  |
| 0x0054         | HAL_DICE3_SPI_DMARDLR | See SPI DMA Receive Data Level          |
| 0x0060         | HAL_DICE3_SPI_DR      | See <u>SPI Data Register</u>            |
| 0x00F0         | HAL_DICE3_SPI_RXDLY   | See SPI Rx Sample Delay Register        |

#### 13.2.1 Addressing

All registers in the SPI Module are addressed at 32-bit boundaries to remain consistent with the AHB bus. Where the physical size of any register is less than 32-bits wide, the upper unused bits of the 32-bit boundary are reserved. Writing to these bits has no effect; reading from these bits returns 0.

#### 13.2.2 SPI Control Register 0 - HAL\_DICE3\_SPI\_CTRL0

Address offset: 0x0000 HAL\_DICE3\_SPI\_CTRL0

This register controls the serial data transfer. It is impossible to write to this register when the SPI Module is enabled. The SPI Module is enabled and disabled by writing to the <a href="HAL DICE3">HAL DICE3</a> SPI SSIENR register.



Table 13.3 SPI Control Register 0 bit assignments

| Name     | Bit   | Reset | Dir | Description                                                                                                         |
|----------|-------|-------|-----|---------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:16 | 0     | N/A | Reserved                                                                                                            |
| CFS      | 15:12 | 0     | N/A | Control Frame Size. Selects the length of the control word for the Microwire frame format. These bits are not used. |

| Name   | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|-----|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SRL    | 11  | 0     | RW  | Shift Register Loop. Used for testing purposes only. When internally active, connects the transmit shift register output to the receive shift register input. Can be used in both serial-slave and serial-master modes (only SPI 2 is slave).  0 – Normal Mode Operation  1 – Test Mode Operation  When the SPI Module is configured as a slave in loopback mode, the ss_in_n and ssi_clk signals must be provided by an external source. In this mode, the slave cannot generate these signals because there is nothing to which to loop back.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SLV_OE | 10  | 0     | RW  | Slave Output Enable. Relevant only when the SPI Module is configured as a serial-slave device. When configured as a serial master, this bit field has no functionality. This bit enables or disables the setting of the <code>ssi_oe_n</code> output from the SPI Module serial slave (only SPI 2 is slave). When SLV_OE=1, the <code>ssi_oe_n</code> output can never be active. When the <code>ssi_oe_n</code> output controls the tri-state buffer on the <code>txd</code> output from the slave, a high impedance state is always present on the slave <code>txd</code> output when SLV_OE=1. This is useful when the master transmits in broadcast mode (master transmits data to all slave devices). Only one slave may respond with data on the master <code>rxd</code> line. This bit is enabled after reset and must be disabled by software (when broadcast mode is used), if you do not want this device to respond with data.  0 - Slave <code>txd</code> is enabled  1 - Slave <code>txd</code> is disabled |



| Name  | Bit | Reset                  | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------|-----|------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TMOD  | 9:8 | 0                      | RW  | Transfer Mode. Selects the mode of transfer for serial communication. This field does not affect the transfer duplicity. Only indicates whether the receive or transmit data are valid.  In transmit-only mode, data received from the external device is not valid and is not stored in the receive FIFO memory; it is overwritten on the next transfer.  In receive-only mode, transmitted data are not valid. After the first write to the transmit FIFO, the same word is retransmitted for the duration of the transfer.  In transmit-and-receive mode, both transmit and receive data are valid. The transfer continues until the transmit FIFO is empty. Data received from the external device are stored into the receive FIFO memory, where it can be accessed by the host processor.  In eeprom-read mode, receive data is not valid while control data is being transmitted. When all control data is sent to the EEPROM, receive data becomes valid and transmit data becomes invalid. All data in the transmit FIFO is considered control data in this mode. This transfer mode is only valid when the SPI Module is configured as a master device.  00 - Transmit & Receive 01 - Transmit Only 10 - Receive Only 11 - EEPROM Read |
| SCPOL | 7   | SSI_<br>DFLT_<br>SCPOL | RW  | Serial Clock Polarity. Valid when the frame format (FRF) is set to Motorola SPI. Used to select the polarity of the inactive serial clock, which is held inactive when the SPI Module master is not actively transferring data on the serial bus.  0 – Inactive state of serial clock is low  1 – Inactive state of serial clock is high  Dependencies: When SSI_HC_FRF=1, SCPOL bit is a read-only bit with its value set by SSI_DFLT_SCPOL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Name | Bit | Reset                 | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|-----|-----------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCPH | 6   | SSI_<br>DFLT_<br>SCPH | RW  | Serial Clock Phase. Valid when the frame format (FRF) is set to Motorola SPI. The serial clock phase selects the relationship of the serial clock with the slave select signal (only SPI 2 is slave).  When SCPH = 0, data are captured on the first edge of the serial clock. When SCPH = 1, the serial clock starts toggling one cycle after the slave select line is activated, and data are captured on the second edge of the serial clock.  0: Serial clock toggles in middle of first data bit  1: Serial clock toggles at start of first data bit  Dependencies: When SSI_HC_FRF=1, SCPH bit is a read-only bit, with its value set by  SSI_DFLT_SCPH. |
| FRF  | 5:4 | SSI_<br>DFLT_<br>FRF  | RW  | Frame Format. Selects which serial protocol transfers the data.  00 - Motorola SPI  01 - Texas Instruments SSP  10 - National Semiconductors Microwire  11 - Reserved  Dependencies: When SSI_HC_FRF=1, FRF is read-only and its value is set by  SSI_DFLT_FRF.                                                                                                                                                                                                                                                                                                                                                                                                |
| FDFS | 3:0 | 0x07                  | RW  | Data Frame Size. Selects the data frame length. When the data frame size is programmed to be less than 16 bits, the receive data are automatically right-justified by the receive logic, with the upper bits of the receive FIFO zero-padded. You must right-justify transmit data before writing into the transmit FIFO. The transmit logic ignores the upper unused bits when transmitting the data. For the field decode, refer to <b>Table 13.4</b>                                                                                                                                                                                                        |

Table 13.4 DFS Decode.

| DFS Value | Description                    |
|-----------|--------------------------------|
| b0000     | Reserved – undefined operation |
| b0001     | Reserved – undefined operation |
| b0010     | Reserved – undefined operation |
| b0011     | 4-bit serial data transfer     |



| DFS Value | Description                 |
|-----------|-----------------------------|
| b0100     | 5-bit serial data transfer  |
| b0101     | 6-bit serial data transfer  |
| b0110     | 7-bit serial data transfer  |
| b0111     | 8-bit serial data transfer  |
| b1000     | 9-bit serial data transfer  |
| b1001     | 10-bit serial data transfer |
| b1010     | 11-bit serial data transfer |
| b1011     | 12-bit serial data transfer |
| b1100     | 13-bit serial data transfer |
| b1101     | 14-bit serial data transfer |
| b1110     | 15-bit serial data transfer |
| b1111     | 16-bit serial data transfer |



#### 13.2.3 SPI Control Register 1 - HAL\_DICE3\_SPI\_CTRL1

Address offset: 0x0004 HAL\_DICE3\_SPI\_CTRL1

This register exists only when the SPI Module is configured as a master device. When the SPI Module is configured as a serial slave, writing to this location has no effect; reading from this location returns 0 (only SPI 2 is slave). Control register 1 controls the end of serial transfers when in receive-only mode. It is impossible to write to this register when the SPI Module is enabled. The SPI Module is enabled and disabled by writing to the <a href="https://doi.org/10.1007/journal.org/">HAL DICE3 SPI SSIENR</a> register.



Table 13.5 SPI Control Register 1 bit assignments

| Name     | Bit   | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|-------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:16 | 0     | N/A | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NDF      | 15:0  | 0     | RW  | Number of Data Frames. When TMOD = 10 or TMOD = 11, this register field sets the number of data frames to be continuously received by the SPI Module. The SPI Module continues to receive serial data until the number of data frames received is equal to this register value plus 1, which enables you to receive up to 64 KB of data in a continuous transfer.  When the SPI Module is configured as a serial slave, the transfer continues for as long as the slave is selected. Therefore, this register serves no purpose and is not present when the SPI Module is configured as a serial slave (only SPI 2 is slave). |

### 13.2.4 SPI SSI Enable Register – HAL\_DICE3\_SPI\_SSIENR

Address offset: 0x0008 HAL\_DICE3\_SPI\_SSIENR

This register enables and disables the SPI Module.



Table 13.6 SPI SSI Enable Register bit assignments

| Name     | Bit  | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:1 | 0     | N/A | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SSI_EN   | 0    | 0     | RW  | SSI Enable. Enables and disables all SPI Module operations. When disabled, all serial transfers are halted immediately. Transmit and receive FIFO buffers are cleared when the device is disabled. It is impossible to program some of the SPI Module control registers when enabled. When disabled, the <b>ssi_sleep</b> output is set (after delay) to inform the system that it is safe to remove the <b>ssi_clk</b> , thus saving power consumption in the system. |

### 13.2.5 SPI Slave Enable Register – HAL\_DICE3\_SPI\_SER

Address offset: 0x0010 HAL\_DICE3\_SPI\_SER

#### **Note**

This only applies to Serial Masters SPI 0 and SPI.



Table 13.7 SSI Slave Enable Register bit assignments

| Name     | Bit  | Reset | Dir | Description                                                                                                                                                                                                                                                                                                     |
|----------|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:4 | 0     | N/A | Reserved                                                                                                                                                                                                                                                                                                        |
| SSI_EN   | 3:0  | 0     | RW  | Slave Select Enable Flag. Each bit in this register corresponds to a slave select line (ss_x_n) from the SPI Module master. When a bit in this register is set (1), the corresponding slave select line from the master is activated when a serial transfer begins. It should be noted that setting or clearing |

| Name | Bit | Reset | Dir | Description                                         |
|------|-----|-------|-----|-----------------------------------------------------|
|      |     |       |     | bits in this register have no effect on the         |
|      |     |       |     | corresponding slave select outputs until a transfer |
|      |     |       |     | is started. Before beginning a transfer, you should |
|      |     |       |     | enable the bit in this register that corresponds to |
|      |     |       |     | the slave device with which the master wants to     |
|      |     |       |     | communicate.                                        |
|      |     |       |     | When not operating in broadcast mode, only one      |
|      |     |       |     | bit in this field should be set.                    |
|      |     |       |     | 1: Selected                                         |
|      |     |       |     | 0: Not Selected                                     |

#### 13.2.6 SPI Baud Rate Select - HAL DICE3 SPI BAUDR

Address offset: 0x0014 HAL\_DICE3\_SPI\_BAUDR

This register is valid only when the SPI Module is configured as a master device. When the SPI Module is configured as a serial slave, writing to this location has no effect; reading from this location returns 0 (only SPI 2 is slave). The register derives the frequency of the serial clock that regulates the data transfer. The 16-bit field in this register defines the ssi\_clk divider value. It is impossible to write to this register when the SPI Module is enabled. The SPI Module is enabled and disabled by writing to the HAL DICE3 SPI SSIENR register.



Table 13.8 SPI Baud Rate Select Register bit assignments

| Name     | Bit   | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:16 | 0     | N/A | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SCKDV    | 15:0  | 0     | RW  | SSI Clock Divider. The LSB for this field is always set to 0 and is unaffected by a write operation, which ensures an even value is held in this register. If the value is 0, the serial output clock ( $sclk\_out$ ) is disabled. The frequency of the $sclk\_out$ is derived from the following equation: $F_{sclk\_out}$ / SCKDV = $F_{ssi\_clk}$ where SCKDV is any even value between 2 and 65534. For example: for $F_{ssi\_clk}$ = 3.6864MHz and SCKDV =2 $F_{sclk\_out}$ = 3.6864/2 = 1.8432MHz |

### 13.2.7 SPI Transmit FIFO Threshold Level – HAL\_DICE3\_SPI\_TXFTLR

Address offset: 0x0018 HAL\_DICE3\_SPI\_TXFTLR

This register controls the threshold value for the transmit FIFO memory. The SPI Module is enabled and disabled by writing to the <u>HAL\_DICE3\_SPI\_SSIENR</u> register.



Table 13.9 SPI Transmit FIFO Threshold Level Register bit assignments

| Name     | Bit  | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:3 | 0     | N/A | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TFT      | 2:0  | 0     | RW  | Transmit FIFO Threshold. Controls the level of entries (or below) at which the transmit FIFO controller triggers an interrupt. The FIFO depth is configurable in the range 2-256; this register is sized to the number of address bits needed to access the FIFO.  If you attempt to set bits [7:0] of this register to a value greater than or equal to the depth of the FIFO, this field is not written and retains its current value.  When the number of transmit FIFO entries is less than or equal to this value, the transmit FIFO empty interrupt is triggered. For field decode, refer to <b>Table 13.10</b> . |

Table 13.10 TFT Decode.

| DFS Value  | Description                                                                         |
|------------|-------------------------------------------------------------------------------------|
| b0000_0000 | ssi_txe_intr is asserted when 0 data entries are present in transmit FIFO           |
| b0000_0001 | ssi_txe_intr is asserted when 1 or less data entry is present in transmit FIFO      |
| b0000_0010 | ssi_txe_intr is asserted when 2 or less data entries are present in transmit FIFO   |
| b0000_0011 | ssi_txe_intr is asserted when 3 or less data entries are present in transmit FIFO   |
|            |                                                                                     |
| b1111_1100 | ssi_txe_intr is asserted when 252 or less data entries are present in transmit FIFO |
| b1111_1101 | ssi_txe_intr is asserted when 253 or less data entries are present in transmit FIFO |
| b1111_1110 | ssi_txe_intr is asserted when 254 or less data entries are present in transmit FIFO |
| b1111_1111 | ssi_txe_intr is asserted when 255 or less data entries are present in transmit FIFO |

### 13.2.8 SPI Receive FIFO Threshold Level - HAL\_DICE3\_SPI\_RXFTLR

Address offset: 0x001C HAL\_DICE3\_SPI\_RXFTLR

This register controls the threshold value for the receive FIFO memory. The SPI Module is enabled and disabled by writing to the <u>HAL\_DICE3\_SPI\_SSIENR</u> register.



Table 13.11 SPI Receive FIFO Threshold Level Register bit assignments

| Name     | Bit  | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:3 | 0     | N/A | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RFT      | 2:0  | 0     | RW  | Receive FIFO Threshold. Controls the level of entries (or above) at which the receive FIFO controller triggers an interrupt. The FIFO depth is configurable in the range 2-256; this register is sized to the number of address bits needed to access the FIFO.  If you attempt to set this value greater than the depth of the FIFO, this field is not written and retains its current value.  When the number of receive FIFO entries is greater than or equal to this value + 1, the receive FIFO full interrupt is triggered. For field decode, refer to Table 13.12. |

Table 13.12 RFT Decode.

| DFS Value  | Description                                                                        |
|------------|------------------------------------------------------------------------------------|
| b0000_0000 | ssi_rxf_intr is asserted when 1 or more data entry is present in receive FIFO      |
| b0000_0001 | ssi_rxf_intr is asserted when 2 or more data entries are present in receive FIFO   |
| b0000_0010 | ssi_rxf_intr is asserted when 3 or more data entries are present in receive FIFO   |
| b0000_0011 | ssi_rxf_intr is asserted when 4 or more data entries are present in receive FIFO   |
|            |                                                                                    |
| b1111_1100 | ssi_rxf_intr is asserted when 253 or more data entries are present in receive FIFO |
| b1111_1101 | ssi_rxf_intr is asserted when 254 or more data entries are present in receive FIFO |
| b1111_1110 | ssi_rxf_intr is asserted when 255 or more data entries are present in receive FIFO |
| b1111_1111 | ssi_rxf_intr is asserted when 256 data entries are present in receive FIFO         |

#### 13.2.9 SPI Transmit FIFO Level Register – HAL\_DICE3\_SPI\_TXFLR

Address offset: 0x0020 HAL\_DICE3\_SPI\_TXFLR

This register contains the number of valid data entries in the transmit FIFO memory.



Table 13.13 SPI Transmit FIFO Level Register bit assignments

| Name     | Bit  | Reset | Dir | Description                                                                          |
|----------|------|-------|-----|--------------------------------------------------------------------------------------|
| Reserved | 31:4 | 0     | N/A | Reserved                                                                             |
| TXTFL    | 3:0  | 0     | R   | Transmit FIFO Level. Contains the number of valid data entries in the transmit FIFO. |

## 13.2.10 SPI Receive FIFO Level Register – HAL\_DICE3\_SPI\_RXFLR

Address offset: 0x0024 HAL\_DICE3\_SPI\_RXFLR

This register contains the number of valid data entries in the receive FIFO memory. This register can be read any time.



Table 13.14 SPI Receive FIFO Level Register bit assignments

| Name     | Bit  | Reset | Dir | Description                                                                        |
|----------|------|-------|-----|------------------------------------------------------------------------------------|
| Reserved | 31:4 | 0     | N/A | Reserved                                                                           |
| RXTFL    | 3:0  | 0     | R   | Receive FIFO Level. Contains the number of valid data entries in the receive FIFO. |

#### 13.2.11 SPI Status Register – HAL\_DICE3\_SPI\_SR

Address offset: 0x0028 HAL\_DICE3\_SPI\_SR

This is a read-only register used to indicate the current transfer status, FIFO status, and any transmission/reception errors that may have occurred. The status register may be read at any time. None of the bits in this register request an interrupt.



Table 13.15 SPI Status Register bit assignments

| Name     | Bit  | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                           |
|----------|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:7 | 0     | N/A | Reserved                                                                                                                                                                                                                                                                                                                                                                              |
| DCOL     | 6    | 0     | R   | Data Collision Error. Relevant only when the SPI Module is configured as a master device.  This bit is set if the SPI Module master is actively transmitting when another master selects this device as a slave. This informs the processor that the last data transfer was halted before completion. This bit is cleared when read.  0 - No error  1 - Transmit data collision error |
| TXE      | 5    | 0     | R   | Transmission Error. Set if the transmit FIFO is empty when a transfer is started. This bit can be set only when the SPI Module is configured as a slave device. Data from the previous transmission is resent on the <b>txd</b> line. This bit is cleared when read.  0 - No error  1 - Transmission error                                                                            |
| RFF      | 4    | 0     | R   | Receive FIFO Full. When the receive FIFO is completely full, this bit is set. When the receive FIFO contains one or more empty location, this bit is cleared.  0 - Receive FIFO is not full  1 - Receive FIFO is full                                                                                                                                                                 |

| Name | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                 |
|------|-----|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RFNE | 3   | 0     | R   | Receive FIFO Not Empty. Set when the receive FIFO contains one or more entries and is cleared when the receive FIFO is empty. This bit can be polled by software to completely empty the receive FIFO.  0 - Receive FIFO is empty  1 - Receive FIFO is not empty            |
| TFE  | 2   | 0     | R   | Transmit FIFO Empty. When the transmit FIFO is completely empty, this bit is set. When the transmit FIFO contains one or more valid entries, this bit is cleared. This bit field does not request an interrupt.  0 - Transmit FIFO is not empty  1 - Transmit FIFO is empty |
| TFNF | 1   | 0     | R   | Transmit FIFO Not Full. Set when the transmit FIFO contains one or more empty locations, and is cleared when the FIFO is full.  0 - Transmit FIFO is full  1 - Transmit FIFO is not full                                                                                    |
| BUSY | 0   | 0     | R   | SSI Busy Flag. When set, indicates that a serial transfer is in progress; when cleared indicates that the SPI Module is idle or disabled.  0 – SPI Module is idle or disabled  1 – SPI Module is actively transferring data                                                 |

#### 13.2.12 SPI Interrupt Mask Register – HAL\_DICE3\_SPI\_IMR

Address offset: 0x002C

HAL\_DICE3\_SPI\_IMR

This read/write register masks or enables all interrupts generated by the SPI Module. When the SPI Module is configured as a slave device, the MSTIM bit field is not present. This changes the reset value from 0x3F for serial-master configurations to 0x1F for serial-slave configurations. Only SPI 2 is slave.





Table 13.16 SPI Interrupt Mask Register bit assignments

| Name     | Bit  | Reset      | Dir | Description                                                                                                                                                                                                                                                                                                |
|----------|------|------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:6 | 0          | N/A | Reserved                                                                                                                                                                                                                                                                                                   |
| MSTIM    | 5    | M:1<br>S:0 | RW  | Multi-Master Contention Interrupt Mask. This bit field is not present if the SPI Module is configured as a serial-slave device (only SPI 2 is slave). When the module is master this bit resets to 1, and zero when slave.  0 - ssi_mst_intr interrupt is masked  1 - ssi_mst_intr interrupt is not masked |
| RXFIM    | 4    | 1          | RW  | Receive FIFO Full Interrupt Mask  0 - ssi_rxf_intr interrupt is masked  1 - ssi_rxf_intr interrupt is not masked                                                                                                                                                                                           |
| RXOIM    | 3    | 1          | RW  | Receive FIFO Overflow Interrupt Mask  0 - ssi_rxo_intr interrupt is masked  1 - ssi_rxo_intr interrupt is not masked                                                                                                                                                                                       |
| RXUIM    | 2    | 1          | RW  | Receive FIFO Underflow Interrupt Mask  0 - ssi_rxu_intr interrupt is masked  1 - ssi_rxu_intr interrupt is not masked                                                                                                                                                                                      |
| TXOIM    | 1    | 1          | RW  | Transmit FIFO Overflow Interrupt Mask  0 - ssi_txo_intr interrupt is masked  1 - ssi_txo_intr interrupt is not masked                                                                                                                                                                                      |
| TXEIM    | 0    | 1          | RW  | Transmit FIFO Empty Interrupt Mask  0 - ssi_txe_intr interrupt is masked  1 - ssi_txe_intr interrupt is not masked                                                                                                                                                                                         |

### 13.2.13 SPI Interrupt Status Register – HAL\_DICE3\_SPI\_ISR

Address offset: 0x0030 HAL\_DICE3\_SPI\_ISR

This register reports the status of the SPI Module interrupts after they have been masked.



Table 13.17 SPI Interrupt Status Register bit assignments

|  |  | D | Reset | Bit | Name |  |
|--|--|---|-------|-----|------|--|
|--|--|---|-------|-----|------|--|

| Name     | Bit      | Reset | Dir | Description                                               |
|----------|----------|-------|-----|-----------------------------------------------------------|
| Reserved | 31:6     | 0     | N/A | Reserved                                                  |
|          |          |       |     | Multi-Master Contention Interrupt Status. This bit        |
|          |          |       |     | field is not present if the SPI Module is configured      |
| MSTIS    | 5        | 0     | R   | as a serial-slave device (only SPI 2 is slave).           |
| 143113   | 5        | U     | IX  | 0 = <b>ssi_mst_intr</b> interrupt not active after        |
|          |          |       |     | masking                                                   |
|          |          |       |     | 1 = <b>ssi_mst_intr</b> interrupt is active after masking |
|          |          |       |     | Receive FIFO Full Interrupt Status                        |
| RXFIS    | 4        | 0     | R   | 0 = <b>ssi_rxf_intr</b> interrupt is not active after     |
| KXI 13   | 4        | U     | K   | masking                                                   |
|          |          |       |     | 1 = <b>ssi_rxf_intr</b> interrupt is full after masking   |
|          | 3        | 0     | R   | Receive FIFO Overflow Interrupt Status                    |
| RXOIS    |          |       |     | 0 = <b>ssi_rxo_intr</b> interrupt is not active after     |
| KX013    |          |       |     | masking                                                   |
|          |          |       |     | 1 = <b>ssi_rxo_intr</b> interrupt is active after masking |
|          |          | 0     |     | Receive FIFO Underflow Interrupt Status                   |
| RXUIS    | 2        |       | R   | 0 = <b>ssi_rxu_intr</b> interrupt is not active after     |
| KXUIS    | <b>∠</b> |       | K   | masking                                                   |
|          |          |       |     | 1 = <b>ssi_rxu_intr</b> interrupt is active after masking |
|          |          |       |     | Transmit FIFO Overflow Interrupt Status                   |
| TXOIS    | 1        | 0     | R   | 0 = <b>ssi_txo_intr</b> interrupt is not active after     |
| 17013    | 1        | U     | K   | masking                                                   |
|          |          |       |     | 1 = <b>ssi_txo_intr</b> interrupt is active after masking |
|          |          |       |     | Transmit FIFO Overflow Interrupt Status                   |
| TXEIS    | 0        | 0     | R   | 0 = <b>ssi_txo_intr</b> interrupt is not active after     |
| IVLIO    | U        | U     | K   | masking                                                   |
|          |          |       |     | 1 = b interrupt is active after masking                   |



# 13.2.14 SPI Raw Interrupt Status Register – HAL\_DICE3\_SPI\_RISR

Address offset: 0x0034 HAL\_DICE3\_SPI\_RISR

This read-only register reports the status of the SPI Module interrupts prior to masking.



Table 13.18 SPI Raw Interrupt Status Register bit assignments

| Name     | Bit  | Reset | Dir | Description                                                                                                                                                                                                                                                                |
|----------|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:6 | 0     | N/A | Reserved                                                                                                                                                                                                                                                                   |
| MSTIR    | 5    | 0     | R   | Multi-Master Contention Raw Interrupt Status. This bit field is not present if the SPI Module is configured as a serial-slave device (only SPI 2 is slave).  0 = ssi_mst_intr interrupt is not active prior to masking  1 = ssi_mst_intr interrupt is active prior masking |
| RXFIR    | 4    | 0     | R   | Receive FIFO Full Raw Interrupt Status  0 = ssi_rxf_intr interrupt is not active prior to masking  1 = ssi_rxf_intr interrupt is active prior to masking                                                                                                                   |
| RXOIR    | 3    | 0     | R   | Receive FIFO Overflow Raw Interrupt Status  0 = ssi_rxo_intr interrupt is not active prior to masking  1 = ssi_rxo_intr interrupt is active prior masking                                                                                                                  |
| RXUIR    | 2    | 0     | R   | Receive FIFO Underflow Raw Interrupt Status  0 = ssi_rxu_intr interrupt is not active prior to masking  1 = ssi_rxu_intr interrupt is active prior to masking                                                                                                              |
| TXOIR    | 1    | 0     | R   | Transmit FIFO Overflow Raw Interrupt Status  0 = ssi_txo_intr interrupt is not active prior to masking  1 = ssi_txo_intr interrupt is active prior masking                                                                                                                 |

| Name  | Bit | Reset | Dir | Description                                                                                                                                             |
|-------|-----|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| TXEIR | 0   | 0     | R   | Transmit FIFO Empty Raw Interrupt Status  0 = ssi_txe_intr interrupt is not active prior to masking  1 = ssi_txe_intr interrupt is active prior masking |

# 13.2.15 SPI TX FIFO Overflow Interrupt Clear – HAL\_DICE3\_SPI\_TXOICR

Address offset: 0x0038 HAL\_DICE3\_SPI\_TXOICR



**Table 13.19 SPI TX FIFO Overflow Interrupt Clear Register bit assignments** 

| Name     | Bit  | Reset | Dir | Description                                                                                                                                                                            |
|----------|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:1 | 0     | N/A | Reserved                                                                                                                                                                               |
| TXOICR   | 0    | 0     | R   | Clear Transmit FIFO Overflow Interrupt. This register reflects the status of the interrupt. A read from this register clears the <b>ssi_txo_intr</b> interrupt; writing has no effect. |

# 13.2.16 SPI RX FIFO Overerflow Interrupt Clear – HAL\_DICE3\_SPI\_RXOICR

Address offset: 0x003C HAL\_DICE3\_SPI\_RXOICR



Table 13.20 SPI RX FIFO Overflow Interrupt Clear Register bit assignments

| Name     | Bit  | Reset | Dir | Description                                                                                                                                                                            |
|----------|------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:1 | 0     | N/A | Reserved                                                                                                                                                                               |
| RXOICR   | 0    | 0     | R   | Clear Receive FIFO Overflow Interrupt. This register reflects the status of the interrupt.  A read from this register clears the <b>ssi_rxo_intr</b> interrupt; writing has no effect. |

# 13.2.17 SPI RX FIFO Underflow Interrupt Clear – HAL DICE3 SPI RXUICR

Address offset: 0x0040 HAL\_DICE3\_SPI\_RXUICR

RXUICR ◀

Table 13.21 SPI RX FIFO Underflow Interrupt Clear Register bit assignments

| Name     | Bit  | Reset | Dir | Description                                                                                                                                                                             |
|----------|------|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:1 | 0     | N/A | Reserved                                                                                                                                                                                |
| RXUICR   | 0    | 0     | R   | Clear Receive FIFO Underflow Interrupt. This register reflects the status of the interrupt.  A read from this register clears the <b>ssi_rxu_intr</b> interrupt; writing has no effect. |

### 13.2.18 SPI Multi-Master Interrupt Clear – HAL DICE3 SPI MSTICR

Address offset: 0x0044 HAL DICE3 SPI MSTICR

MSTICR ◀

Table 13.22 SPI Multi-Master Interrupt Clear Register bit assignments

| Name     | Bit  | Reset | Dir | Description                                                                                                                                                                              |
|----------|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:1 | 0     | N/A | Reserved                                                                                                                                                                                 |
| MSTICR   | 0    | 0     | R   | Clear Multi-Master Contention Interrupt. This register reflects the status of the interrupt.  A read from this register clears the <b>ssi_mst_intr</b> interrupt; writing has no effect. |

#### 13.2.19 SPI Interrupt Clear Register – HAL\_DICE3\_SPI\_ICR

Address offset: 0x0048 HAL\_DICE3\_SPI\_ICR



Table 13.23 SPI Interrupt Clear Register bit assignments



| Name     | Bit  | Reset | Dir | Description                                                                                                                                                                                                            |
|----------|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:1 | 0     | N/A | Reserved                                                                                                                                                                                                               |
| ICR      | 0    | 0     | R   | Clear Interrupts. This register is set if any of the interrupts below are active. A read clears the ssi_txo_intr, ssi_rxu_intr, ssi_rxo_intr, and the ssi_mst_intr interrupts. Writing to this register has no effect. |

#### 13.2.20 SPI DMA Control Register – HAL\_DICE3\_SPI\_DMACR

Address offset: 0x004C HAL\_DICE3\_SPI\_DMACR

This register is used to enable the DMA Controller interface operation.



Table 13.24 SPI DMA Control Register bit assignments

| Name     | Bit  | Reset | Dir | Description                                                                                                                        |
|----------|------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------|
| Reserved | 31:2 | 0     | N/A | Reserved                                                                                                                           |
| ICR      | 1    | 0     | RW  | Transmit DMA Enable. This bit enables/disables the transmit FIFO DMA channel.  0 = Transmit DMA disabled  1 = Transmit DMA enabled |
| ICR      | 0    | 0     | RW  | Receive DMA Enable. This bit enables/disables the receive FIFO DMA channel  0 = Receive DMA disabled  1 = Receive DMA enabled      |

## 13.2.21 SPI DMA Transmit Data Level – HAL\_DICE3\_SPI\_DMATDLR

Address offset: 0x0050 HAL\_DICE3\_SPI\_DMATDLR



Table 13.25 SPI Transmit Data Level Register bit assignments

| Name     | Bit  | Reset | Dir | Description |
|----------|------|-------|-----|-------------|
| Reserved | 31:3 | 0     | N/A | Reserved    |



| Name   | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                            |
|--------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DMATDL | 2:0 | 0     | RW  | Transmit Data Level. This bit field controls the level at which a DMA request is made by the transmit logic. It is equal to the watermark level; that is, the <b>dma_tx_req</b> signal is generated when the number of valid data entries in the transmit FIFO is equal to or below this field value, and TDMAE = 1. Refer to <b>Table 13.26</b> for the field decode. |

Table 13.26 DMATDL Decode.

| DMATDL<br>Value | Description                                                                       |
|-----------------|-----------------------------------------------------------------------------------|
| b0000_0000      | dma_tx_req is asserted when 0 data entries are present in transmit FIFO           |
| b0000_0001      | dma_tx_req is asserted when 1 or less data entry is present in transmit FIFO      |
| b0000_0010      | dma_tx_req is asserted when 2 or less data entries are present in transmit FIFO   |
| b0000_0011      | dma_tx_req is asserted when 3 or less data entries are present in transmit FIFO   |
|                 |                                                                                   |
| b1111_1100      | dma_tx_req is asserted when 252 or less data entries are present in transmit FIFO |
| b1111_1101      | dma_tx_req is asserted when 253 or less data entries are present in transmit FIFO |
| b1111_1110      | dma_tx_req is asserted when 254 or less data entries are present in transmit FIFO |
| b1111_1111      | dma_tx_req is asserted when 255 or less data entries are present in transmit FIFO |

# 13.2.22 SPI DMA Receive Data Level – HAL\_DICE3\_SPI\_DMARDLR

Address offset: 0x0054 HAL\_DICE3\_SPI\_DMARDLR



Table 13.27 SPI DMA Receive Data Level Register bit assignments

| Name     | Bit  | Reset | Dir | Description |
|----------|------|-------|-----|-------------|
| Reserved | 31:3 | 0     | N/A | Reserved    |

| Name   | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                              |
|--------|-----|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DMARDL | 2:0 | 0     | RW  | Receive Data Level. This bit field controls the level at which a DMA request is made by the receive logic. The watermark level = DMARDL+1; that is, dma_rx_req is generated when the number of valid data entries in the receive FIFO is equal to or above this field value + 1, and RDMAE=1. Refer to Table 13.28 for the field decode. |

Table 13.28 DMARDL Decode.

| DMARDL<br>Value | Description                                                                      |
|-----------------|----------------------------------------------------------------------------------|
| b0000_0000      | dma_rx_req is asserted when 1 or more data entry is present in receive FIFO      |
| b0000_0001      | dma_rx_req is asserted when 2 or more data entries are present in receive FIFO   |
| b0000_0010      | dma_rx_req is asserted when 3 or more data entries are present in receive FIFO   |
| b0000_0011      | dma_rx_req is asserted when 4 or more data entries are present in receive FIFO   |
|                 |                                                                                  |
| b1111_1100      | dma_rx_req is asserted when 253 or more data entries are present in receive FIFO |
| b1111_1101      | dma_rx_req is asserted when 254 or more data entries are present in receive FIFO |
| b1111_1110      | dma_rx_req is asserted when 255 or more data entries are present in receive FIFO |
| b1111_1111      | dma_rx_req is asserted when 256 data entries are present in receive FIFO         |

#### 13.2.23 SPI Data Register – HAL\_DICE3\_SPI\_DR

Address offset: 0x0060 HAL\_DICE3\_SPI\_DR

The SPI Module data register is a 16-bit read/write buffer for the transmit/receive FIFOs. When the register is read, data in the receive FIFO buffer is accessed. When it is written to, data are moved into the transmit FIFO buffer; a write can occur only when SSI\_EN=1. FIFOs are reset when SSI\_EN=0.



Table 13.29 SPI Data Register bit assignments

| Name     | Bit   | Reset | Dir | Description |
|----------|-------|-------|-----|-------------|
| Reserved | 31:16 | 0     | N/A | Reserved.   |



| Name | Bit  | Reset | Dir | Description                                                                                                                                                                         |
|------|------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DR   | 15:0 | 0     | RW  | Data Register. When writing to this register, you must right-justify the data. Read data are automatically right-justified. Read = Receive FIFO buffer Write = Transmit FIFO buffer |

#### Note

The HAL\_DICE3\_SPI\_DR register in the SPI Module occupies thirty-six 32-bit address locations of the memory map to facilitate AHB burst transfers. Writing to any of these address locations has the same effect as pushing the data from the **pwdata** bus into the transmit FIFO. Reading from any of these locations has the same effect as popping data from the receive FIFO onto the **prdata** bus. The FIFO buffers on the SPI Module are not addressable.

### 13.2.24 SPI Rx Sample Delay Register – HAL DICE3 SPI RXDLY

Address offset: 0x00FC HAL\_DICE3\_SPI\_RXDLY

This register is valid only for SPI 0 and SPI 1. For SPI 2, this register does not exist and writing to its address location has no effect; reading from its address returns zero (0). This register controls the number of **ssi\_clk** cycles that are delayed - from the default sample time - before the actual sample of the **rxd** input signal occurs. It is impossible to write to this register when the SPI Module is enabled; the SPI Module is enabled and disabled by writing to the <u>HAL\_DICE3\_SPI\_SSIENR</u> register.



Table 13.30 SPI Sample Delay Register bit assignments

| Name | Bit | Reset | Dir | Description                                                                                                                                                                                                                                                                                                                                                                                      |
|------|-----|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RSD  | 7:0 | 0     | RW  | Receive Data ( <b>rxd</b> ) Sample Delay. This register is used to delay the sample of the <b>rxd</b> input signal. Each value represents a single <b>ssi_clk</b> delay on the sample of the <b>rxd</b> signal. <b>NOTE</b> : If this register is programmed with a value that exceeds the depth of the internal shift registers (4), a zero (0) delay will be applied to the <b>rxd</b> sample. |



#### 13.3 Revisions

Table 13.31 Document revision history

| Date        | Rev.        | Ву | Change              |
|-------------|-------------|----|---------------------|
| May 6, 2015 | 0.9.0-41360 | BK | Initial publication |
|             |             |    |                     |
|             |             |    |                     |