

Communication Principles

Software Defined Radio
Voice Transmission
(Part 1)

DONG Yunyang
dongyy@sustech.edu.cn
411, No. 2, Hui Yuan
Tencent Meeting: 874-068-9694

Review - AM

Modulator

Review - DSB

Modulator

$$s'_{m}(t) \cos(2\pi \hat{f}_{c}t)$$

$$f_{c} = f_{c}$$

$$\frac{1}{2}A_{c}k_{a}m(t) + \frac{1}{2}A_{c}k_{a}m(t)\cos(4\pi f_{c}t)$$

Review - NBFM

Modulator

m(t) $\int (\cdot)$ $-\pi/2$ + $A_c \cos(2\pi f_c t)$

Phase Locked Loop (PLL)

$$s_{NBFM}(t) = A_c \cos(2\pi f_c t) - A_c \left[2\pi k_f \int m(\tau) d\tau \right] \sin(2\pi f_c t)$$

Review - General FM Model

Modulator

$$s_{FM}(t) = A_c \cos \left[2\pi k_f \int m(\tau) d\tau \right] \cos(2\pi f_c t) - A_c \sin \left[2\pi k_f \int m(\tau) d\tau \right] \sin(2\pi f_c t)$$

Review - General FM Model

Review - WBFM Mathematical Model

$$\frac{ds_{FM}(t)}{dt} = \frac{d}{dt}A_c\cos\left[2\pi f_c t + 2\pi k_f\int m(\tau)d\tau\right] = -2\pi A_c\left[f_c + k_f m(t)\right]\sin[\theta_m(t)]$$

From Theory to Practice

SDR Device

RTL-SDR

LimeSDR mini

HackRF

USRP

USRP: Universal Software Radio Peripheral

192.168.10.2

Daughter board	Frequency range
SBX	400 - 4400MHz
WBX	50 - 2200MHz
XCVR2450	2400 - 2500MHz
Basic	1 - 250MHz

Demo: Transmit a signal

Find USRP

Host computer's IP: **192.168.10.1**

USRP Spectral Monitor Example

Right Click->Instrument I/O->Instrument Drivers->NI-USRP->Examples

Exercise: USRP Transceiver

Most-used USRP functions

Block Diagram of the Transmitter

USRP Transmitter

Block Diagram of the Receiver

USRP Receiver

Configuration Parameters in Front Panel

Complex Baseband

$$s(t) = a(t)cos[2\pi f_c t + \varphi]$$

$$s_l(t) = s_l(t) + js_Q(t)$$

$$s_l(t) = a(t)cos(\varphi)$$

$$s_l(t) = a(t)sin(\varphi)$$

Voice Transmission using USRP

System Model

Modulation - Complex Baseband

$$s(t) = a(t)cos[2\pi f_c t + \varphi]$$

$$s_I(t) = a(t)cos(\varphi)$$

$$s_Q(t) = a(t)sin(\varphi)$$

$$s_l(t) = s_l(t) + js_Q(t)$$

Baseband

$$s(nT_s) = cos[2\pi f_c t + 2\pi \int k_f m(nT_s) dt]$$

$$s_I(nT_s) = A_c cos(2\pi \int k_f m(nT_s) dt)$$

$$s_Q(nT_s) = A_c sin(2\pi \int k_f m(nT_s) dt)$$

$$s_l(nT_s) = s_I(nT_s) + js_Q(nT_s)$$

FM Transmitter

Demodulation - Complex Baseband

Baseband

$$s(nT_s) = cos[2\pi f_c t + 2\pi \int k_f m(nT_s) dt]$$

$$s_I(nT_s) = A_c cos(2\pi \int k_f m(nT_s) dt)$$

$$s_{I}(nT_{s}) = A_{c}cos(2\pi \int k_{f}m(nT_{s})dt)$$

$$s_{Q}(nT_{s}) = A_{c}sin(2\pi \int k_{f}m(nT_{s})dt)$$

$$s_l(nT_s) = s_l(nT_s) + js_0(nT_s)$$

$$2\pi \int k_f m(nT_s)dt = atan\left(\frac{s_Q(nT_s)}{s_I(nT_s)}\right)$$

$$m(nT_s) = \frac{1}{2\pi k_f} \frac{d}{dt} \left[atan\left(\frac{s_Q(nT_s)}{s_I(nT_s)}\right) \right]$$

FM Complex Baseband

FM Receiver

Demo: Multi-channel System

Receiver, Channel 3

Homework

Please consider how to demodulate AM and DSB signals.

