KyE, 4/19/22.

Making Circuits out of stuff

CIRCUITS

GRAPH 3-COLORINGS

Coloring: a map $X: \text{ vertices} \longrightarrow \{0, 1, 2\}$

K is proper iff; V neighbors (u, v), K(u) ≠ K(v).

QUESTION.

Can we emulate circuits using graph colorings?

EXAMPLE: NOT gate.

GOAL: Using 0=0 and 0=1, construct graphs whose inputs force outputs according to boolean rules

Can we make an OR gate?

GoAL: get z's color to always be x OK y

Last time I said:

WRONG! WRONG! Why?

"fake OR" gate

Alternate idea: use multiple fake-OR gates to constrain possible relations between short & output.

What does this do?

What about this?

colorable if (NOTz) or (x or y) $z = | \Rightarrow x \text{ or } y = |$

The OR-gate redemption

This works because: (NOTZ OR X OR Y) AND (Z OR NOTX) Z= x OR y ⇒ AND (Z OR NOTY) Which you can derive by FOILing!
(which nears you could do it too:D)

CIRCUIT & GRAPH GAMES

Citcuit game:

two players A, B take turns assigning inputs.
A vins if final output=1, B wins if output=0.

Graph coloring game:

two players A,B take turns coloring vertices, following propervess Constraints.

A vins if B has no proper moves, vice cusa.

If all turns played, A wins.

Puzzles & GAMES

k-turn Circuit games: ZkP-complete

k-turn graph coloning games: also IxP-complete!