Comparison: infrastructure vs. ad-hoc networks **IEEE 802.11**

Architecture of an infrastructure network **IEEE 802.11**

□ terminal with access mechanisms to the wireless medium and radio contact to the access point

Basic Service Set (BSS)

□ group of stations using the same radio frequency □ station integrated into the wireless LAN and the distribution system

□ bridge to other (wired) networks

Distribution System

□ interconnection network to form Extended Service Set) based one logical network (EES: on several BSS

Architecture of an ad-hoc network **IEEE 802.11**

Direct communication within a limited range

- □ Station (STA):
- terminal with access mechanisms to the wireless medium
- □ Independent Basic Service Set (IBSS):
- group of stations using the same radio frequency

IEEE standard 802.11

Meriel Huggard 4ICT9 2005-2006

Layers and functions **IEEE 802.11**

MAC	PLCP	PLCP Physical Layer Convergence Protocol
□ access mechanisms, fragmentation,	П	□ clear channel assessment signal
encryption		(carrier sense)
MAC Management	PMD	PMD Physical Medium Dependent
□ synchronization, roaming, MIB,		□ modulation, coding
power management	PHY	PHY Management
		channel selection, MIB
	Statio	Station Management
		coordination of all management functions
	ju:	

Station Manageme PHY Management

MAC Management

MAC

DFC

LLC

PLCP

PMD

PHY

Physical layer (classical)

- 3 versions: 2 radio (typically 2.4 GHz), 1 IR
- □ data rates 1 or 2 Mbit/s
- FHSS (Frequency Hopping Spread Spectrum)
- spreading, despreading, signal strength, typ. 1 Mbit/s
- □ min. 2.5 frequency hops/s (USA), two-level GFSK modulation
- DSSS (Direct Sequence Spread Spectrum)
- DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying), DQPSK for 2 Mbit/s (Differential Quadrature PSK)
- preamble and header of a frame is always transmitted with 1 Mbit/s, rest of transmission 1 or 2 Mbit/s
- chipping sequence: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1 (Barker code)
- max. radiated power 1 W (USA), 100 mW (EU), min. 1mW

Infrared

- □ 850-950 nm, diffuse light, typical 10 m range
- carrier detection, energy detection, synchronization

FHSS PHY packet format

Meriel Huggard 4ICT9 2005-2006

□ protection of signal, service and length, x¹⁶+x¹²+x⁵+1

MAC layer I - DFWMAC

Traffic services

- □ Asynchronous Data Service (mandatory)
- exchange of data packets based on "best-effort"
- support of broadcast and multicast
- □ Time-Bounded Service (optional)
- implemented using PCF (Point Coordination Function)

Access methods

- □ DFWMAC-DCF CSMA/CA (mandatory)
- collision avoidance via randomized "back-off" mechanism
- minimum distance between consecutive packets
- ACK packet for acknowledgements (not for broadcasts)
- □ DFWMAC-DCF w/ RTS/CTS (optional)
- Distributed Foundation Wireless MAC
- avoids hidden terminal problem
- □ DFWMAC- PCF (optional)
- access point polls terminals according to a list

MAC layer II

Priorities

- defined through different inter frame spaces
- □ no guaranteed, hard priorities
- 1 SIFS (Short Inter Frame Spacing)
- highest priority, for ACK, CTS, polling response
- □ PIFS (PCF IFS)
- medium priority, for time-bounded service using PCF
- DIFS (DCF, Distributed Coordination Function IFS)
- lowest priority, for asynchronous data service

CSMA/CA access method I

- station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- Space (IFS), the station can start sending (IFS depends if the medium is free for the duration of an Inter-Frame on service type)
- FS, then the station must additionally wait a random backif the medium is busy, the station has to wait for a free off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness)

Competing stations - simple version

CSMA/CA access method II

Sending unicast packets

- □ station has to wait for DIFS before sending data
- receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC)
- automatic retransmission of data packets in case of transmission errors

DFWMAC

Sending unicast packets

- (reservation determines amount of time the data packet needs the medium) □ station can send RTS with reservation parameter after waiting for DIFS
- acknowledgement via CTS after SIFS by receiver (if ready to receive)
- sender can now send data at once, acknowledgement via ACK
- □ other stations store medium reservations distributed via RTS and CTS

Fragmentation

DFWMAC-PCFI

DFWMAC-PCF II

Frame format

Types

□ control frames, management frames, data frames

Sequence numbers

□ important against duplicated frames due to lost ACKs

Addresses

□ receiver, transmitter (physical), BSS identifier, sender (logical)

Miscellaneous

□ sending time, checksum, frame control, data

6 0-2312 4	AddressAddressSequenceAddressDataCRC23Control4	11	Power More WEP Order Mgmt Data
2	Sequenc Control		Retry Mgmt I
9	Address 3		More Retry
9	Address 2	, , , , ,	From I DS
9	S	4 1	otype To DS
2	Frame Duration/ Addres	2	Type Subtype
bytes 2	Frame Control	2	Protocol version
byte		bits	

MAC address format

scenario	to DS	S from DS	address 1	address 2	address 1 address 2 address 3 address 4	address 4
ad-hoc network	0	0	PΩ	SA	BSSID	1
infrastructure	0	1	PA	BSSID	SA	ı
network, from AP						
infrastructure	1	0	BSSID	SA	DA	ı
network, to AP						
infrastructure	1	1	RA	TA	DA	SA
network, within DS						

DS: Distribution System AP: Access Point

DA: Destination Address SA: Source Address BSSID: Basic Service Set Identifier

RA: Receiver Address TA: Transmitter Address

IEEE 802,11

Special Frames: ACK, RTS, CTS

Acknowledgement

4	000) K
9	Receiver	Address
7	Duration	
ss 2	Frame	Control
bytes	ACK	

Request To Send

Clear To Send

MAC management

Synchronization

- try to find a LAN, try to stay within a LAN
- □ timer etc.

Power management

- □ sleep-mode without missing a message
- □ periodic sleep, frame buffering, traffic measurements

Association/Reassociation

- □ integration into a LAN
- □ roaming, i.e. change networks by changing access points
- □ scanning, i.e. active search for a network

MIB - Management Information Base

□ managing, read, write

Synchronization using a Beacon (infrastructure)

Synchronization using a Beacon (ad-hoc)

Power management

Idea: switch the transceiver off if not needed

States of a station: sleep and awake

Timing Synchronization Function (TSF)

stations wake up at the same time

Infrastructure

- □ Traffic Indication Map (TIM)
- list of unicast receivers transmitted by AP
- Delivery Traffic Indication Map (DTIM)
- list of broadcast/multicast receivers transmitted by AP

Ad-hoc

- □ Ad-hoc Traffic Indication Map (ATIM)
- announcement of receivers by stations buffering frames
- more complicated no central AP
- collision of ATIMs possible (scalability?)

Power saving with wake-up patterns (infrastructure)

Power saving with wake-up patterns (ad-hoc)

Roaming

No or bad connection? Then perform:

Scanning

 scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer

Reassociation Request

station sends a request to one or several AP(s)

Reassociation Response

- success: AP has answered, station can now participate
- □ failure: continue scanning

AP accepts Reassociation Request

- signal the new station to the distribution system
- the distribution system updates its data base (i.e., location information)
- typically, the distribution system now informs the old AP so it can release resources

IEEE 802.11b

IEEE 802.11b - PHY frame formats

Channel selection (non-overlapping)

WLAN: IEEE 802.11a

IEEE 802.11a - PHY frame format

Operating channels for 802.11a / US U-NII

OFDM in IEEE 802.11a (and HiperLAN2)

OFDM with 52 used subcarriers (64 in total)

- □ 48 data + 4 pilot
- □ (plus 12 virtual subcarriers)
- □ 312.5 kHz spacing

WLAN: IEEE 802.11 – future developments

- 802.11c: Bridge Support
- □ Definition of MAC procedures to support bridges as extension to 802.1D
- 802.11d: Regulatory Domain Update
- Support of additional regulations related to channel selection, hopping sequences
- 802.11e: MAC Enhancements QoS
- Enhance the current 802.11 MAC to expand support for applications with Quality of Service requirements, and in the capabilities and efficiency of the protocol
- Definition of a data flow ("connection") with parameters like rate, burst, period...
- Additional energy saving mechanisms and more efficient retransmission
- 802.11f: Inter-Access Point Protocol
- Establish an Inter-Access Point Protocol for data exchange via the distribution
- Currently unclear to which extend manufacturers will follow this suggestion
- 802.11g: Data Rates > 20 Mbit/s at 2.4 GHz; 54 Mbit/s, OFDM
- □ Successful successor of 802.11b, performance loss during mixed operation with 11b
- 802.11h: Spectrum Managed 802.11a
- measurement for dynamic channel selection (DFS, Dynamic Frequency Selection) Extension for operation of 802.11a in Europe by mechanisms like channel and power control (TPC, Transmit Power Control)

LEFE 802.11— future developments
802.11i: Enhanced Security Mechanisms
□ Enhance the current 802.11 MAC to provide improvements in security.
☐ TKIP enhances the insecure WEP, but remains compatible to older WEP systems
☐ AES provides a secure encryption method and is based on new hardware
802.11j: Extensions for operations in Japan
 Changes of 802.11a for operation at 5GHz in Japan using only half the channel width at larger range
802.11k: Methods for channel measurements
☐ Devices and access points should be able to estimate channel quality in order to be
able to choose a better access point of channel
802.11m: Updates of the 802.11 standards
802.11n: Higher data rates above 100Mbit/s
☐ Changes of PHY and MAC with the goal of 100Mbit/s at MAC SAP
☐ MIMO antennas (Multiple Input Multiple Output), up to 600Mbit/s are currently feasible
☐ However, still a large overhead due to protocol headers and inefficient mechanisms
802.11p: Inter car communications
☐ Communication between cars/road side and cars/cars
☐ Planned for relative speeds of min. 200km/h and ranges over 1000m
□ Usage of 5.850-5.925GHz band in North America

WLAN: IEEE 802.11- future developments

802.11r: Faster Handover between BSS

- Secure, fast handover of a station from one AP to another within an ESS
- Current mechanisms (even newer standards like 802.11i) plus incompatible devices from different vendors are massive problems for the use of, e.g., VoIP in WLANs
- Handover should be feasible within 50ms in order to support multimedia applications efficiently

802.11s: Mesh Networking

- Design of a self-configuring Wireless Distribution System (WDS) based on 802.11
- Support of point-to-point and broadcast communication across several hops

802.11t: Performance evaluation of 802.11 networks

- □ Standardization of performance measurement schemes
- 802.11u: Interworking with additional external networks

802.11v: Network management

- Extensions of current management functions, channel measurements
- □ Definition of a unified interface

802.11w: Securing of network control

Classical standards like 802.11, but also 802.11i protect only data frames, not the control frames. Thus, this standard should extend 802.11i in a way that, e.g., no control frames can be forged.

Note: Not all "standards" will end in products, many ideas get stuck at working group level Info: www.ieee802.org/11/, 802wirelessworld.com, standards.ieee.org/getieee802/