

An efficient algorithm for Euclidean gcd; an efficient algorithm for modular exponentiation. An efficient algorithm for finding inverses in Z/N*.

What does it mean for these algorithms to be efficient? Poly(log(N)); the number of bits required to express the number. Analyze Eudidean Algoritan First gcd (0,16) whom Q > 6 0 < 0 < 0 a = b 9 + 5 P= L' d' + LD 0 < 2 < 01 0 < 3 < 5r, = r, 9, + r3 0 < 7 < 13 12 = 1393+14 1 K = 0 How many Steps to reach re= 0 Observation: < b steps of divisions Running Time is O(b) = O(2Wb) exponential W. r. t runber of bits of b. If rit(< 50 for all , then runny time is O(log b) I mear w.r.t number of bits of b. Is ritie rib? Not really.

24 Vit(> 1/2) r; = 9, i+1 ri+1 + r; + 2 What could be the value of giti? Can gitt be 2? NO. If Q-1+1 = 2 then ri = 2 ri+1 + ri+2 > (+ (+2 not possible. So 9:11 = 1 アナシア ナノナンア ニック C:+2 = C: - C:+1 < C: At most two stops is arguned to reduce the silve ri to half In yerial, we can prove that 1-1-5 < L! Lee MI nour of !

Running Time of an Algorithm
Analyze an algorithm: running time in terms OF # 0 + bits of the
If t bits are required to store input N and the running time of the algorithm is
O(K), the algorithm is polynomial
O(E), quadratic O(E), exponential
tt of bits required to store an input 10 is lows 1

Difficulty of a problem

"Easy": Solvable in polynemial time
"Hard": Solvable in exponential time

"Hard": Mong the most efficient method

currently known.

Compute GCD (a,b) azb	
Euclidean algorithm: O(1005) Easy problem	
Compute a' mod n, gcd (arn)=1	
Extended enclidear algorithm = 0 (loss n)	\ /
Easy problem	

Module Exponentiation.
Given 9, x, n, compute 9 mod n.
Trivial successive multiplication
9,93,94,
O(x) modular multiplication
Square and muttiples
6(109x) modular multiplization
Easy

Square and Multiply Approach Compute 3²¹⁸ mod 1000. 218 = 2 + 23 + 24 + 26 + 27 $=3^{2}.3^{2}.3^{2}.3^{2}$ 32 to 1=0 to 7 We compute

i	0	1	2	3	4	5	6	7
$3^{2^i} \pmod{1000}$	3	9	81	561	721	841	281	961

Square square

S(logx) malular multiplication

Equal and multiply Algorithm

Step 1. Compute the binary expansion of A as

$$A = A_0 + A_1 \cdot 2 + A_2 \cdot 2^2 + A_3 \cdot 2^3 + \dots + A_r \cdot 2^r$$
 with $A_0, \dots, A_r \in \{0, 1\}$, where we may assume that $A_r = 1$.

Step 2. Compute the powers $g^{2^i} \pmod{N}$ for $0 \le i \le r$ by successive squaring,

$$a_0 \equiv g \pmod{N}$$
 $a_1 \equiv a_0^2 \equiv g^2 \pmod{N}$
 $a_2 \equiv a_1^2 \equiv g^{2^2} \pmod{N}$
 $a_3 \equiv a_2^2 \equiv g^{2^3} \pmod{N}$
 $\vdots \qquad \vdots \qquad \vdots$
 $a_r \equiv a_{r-1}^2 \equiv g^{2^r} \pmod{N}$.

Each term is the square of the previous one, so this requires r multiplications.

Step 3. Compute $g^A \pmod{N}$ using the formula

$$g^{A} = g^{A_{0} + A_{1} \cdot 2 + A_{2} \cdot 2^{2} + A_{3} \cdot 2^{3} + \dots + A_{r} \cdot 2^{r}}$$

$$= g^{A_{0}} \cdot (g^{2})^{A_{1}} \cdot (g^{2^{2}})^{A_{2}} \cdot (g^{2^{3}})^{A_{3}} \cdots (g^{2^{r}})^{A_{r}}$$

$$\equiv a_{0}^{A_{0}} \cdot a_{1}^{A_{1}} \cdot a_{2}^{A_{2}} \cdot a_{3}^{A_{3}} \cdots a_{r}^{A_{r}} \pmod{N}. \tag{1.4}$$

Note that the quantities a_0, a_1, \ldots, a_r were computed in Step 2. Thus the product (1.4) can be computed by looking up the values of the a_i 's whose exponent A_i is 1 and then multiplying them together. This requires at most another r multiplications.