

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1947

Design and test of a rocket motor expansion joint

Reiserer, Russell Lawrence; Barden, Kenneth Perrin

California Institute of Technology

http://hdl.handle.net/10945/6369

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

GUGGENHEIM AERONAUTICAL LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

DESIGN AND TEST OF A ROCKET MOTOR EXPANSION JOINT

Thesis by

Lt. Cmdr. R. L. Reiserer U.S.N. Lt. K. P. Barden

DESIGN AND TEST OF A ROCKET MOTOR EXPANSION JOINT

Thesis by

Lt. Cmdr. R. L. Reiserer U.S.H. Lt. K. P. Barden U.S.N.

In Partial Fulfillment of the Requirements for the Professional Degree in Aeronautical Engineering.

California Institute of Technology

Pasadena, California

1947

ACKNOWLEDGHIRIT

In presenting this thesis, the authors wish to express their appreciation and gratitude to Dr. D. D. Sechler and Dr. L. G. Dunn of the Guggenheim Aeronautical Laboratory, California Institute of Technology, and to Mr. Frank Denison of the California Institute of Technology Jet Propulsion Laboratory, for their supervision, helpful suggestions, and assistance in carrying out the research.

TABLE OF CONTENTS

	Subject	Page
	Summary	1
I	Introduction	3
II	Equipment and Test Procedure	5
III	Discussion of Results	9
IV	Recommendation for Future Studies	15
A	References	16
AI	Index to Tables	17
AII	Index to Figures	17
VIII	Index to Photographs	17

The purpose of this investigation was to carry on the work of investigating stresses encountered in the design of rocket motor expansion joints. The previous work was done on a semicircular expansion joint by Commander N. J. Kleiss, U.S.N., and Lt. Comdr. S. W. Kerkering, U.S.N. in a thesis submitted to the Aeronautics Department of the California Institute of Technology.

Information was desired to make possible a more favorable design. The problem consists of continuing the investigation on a different design, thereby determining a trend for future designs.

The design chosen was a semicircular ring shell with reversed curvatures of the edges. It was felt that this configuration would eliminate most of the bending stresses found present at the weld of the semicircular design, and would make possible a more even distribution of stresses throughout the expansion joint.

Because the stresses encountered were so far beyond the elastic limit of the material, even for small total elongations of the expansion joint, no theoretical solutions of the problem were possible.

An analysis of the curves and data shows the joint to be unsatisfactory, particularly from the viewpoint of withstanding the internal pressure. Since the previous work indicated that the internal pressure was not critical for the semicircular design, it seems that a compromise of the two designs would more satisfactorily meet the requirements of withstanding both

the elongation and the internal pressure.

An alternate design has been indicated which will make possible a trend of designs that should lead to a solution.

INTRODUCTION

advance, each component part of the missile must be perfected.

This means that a satisfactory propulsive system capable of continual operation to some degree must be developed. The development of a satisfactory expansion joint for the rocket motor is one phase of this problem.

The expansion joint must withstand internal pressures up to 600 p.s.i., and must be capable of large repeated elongations. The difference in temperature between the inner and outer shells causes relative expansions and contractions which must be absorbed by an expansion joint. The external dimensions of the expansion joint are usually dictated by aerodynamic considerations, while the internal dimensions are determined to a great extent by the fuel flow requirements. Further considerations in design are weight, simplicity of design, ease of production, and maintenance.

Figure A shows the combustion chamber, cooling chamber, and expansion joint of a typical rocket motor. Fuel under high pressure is pumped through the cooling chamber and acts as a coolant for the combustion chamber. High combustion temperatures cause alongation of both the inner and outer shells. However, because the temperature of the inner shell is several hundred degrees higher than that of the outer shell, the elongations are not equal. Consequently, an expansion joint that will allow the outer shell to expand with the inner shell without imposing too

severe loads on the latter is required. The elongation of the rocket motor with the temperature distribution as shown in Figure A is of the order of 0.10° in ten inches. This indicates that for a motor of a given length two or three expansion joints may be required.

The tests on the specimens were planned to give: a) the stresses at critical positions on the expansion joint at various internal pressures and elongations, b) the elongation and loadings which would give permanent set, and c) the number of repeated elongations necessary to cause failure.

Four specimens of the same design but of various thicknesses were tested. The first two specimens were 0.028 and 0.035 inches thick respectively. The third and fourth were both from 0.053 to 0.057" thick. The specimens were manufactured by a spinning process in which a piece of flat sheet was spun down over a wooden mandrel while hot. This made accurate control of the thicknesses almost impossible. It was originally intended that two of the specimens be 0.04" and two be 0.05" thick in order that comparisons could be made between this and the semicircular design of Ref. 4. However, during the fabrication of the first set of specimens, the standard sheet stock used (0.0418 and 0.0538) was decreased in thickness so much that the first two specimens mounted were useless except as introductions to the problems ahead and as preliminary indications of where the critical stresses occured.

EQUIPMENT AND TEST PROCEDURE

Fig. B illustrates the method of assembling the expansion joint on the pressure vessel. The entire assémbly was manufactured of mild steel (1020) and assembled by welding. The first specimen was 0.028" in thickness, the second 0.035, and the third and fourth each from 0.053 to 0.057. The desired internal pressures were obtained by pumping oil through a 5/8" pipe threaded hole at one end of the cylinder. A Blackhawk hydraulic jack was used to supply the pressure. Pressure readings were taken from a large, dial type, N.A.C.A., hydraulic gage.

Depending on whether the specimen was in tension or compression, either two steel bars or two steel plugs were screwed into the centers of the top and bottom plates of the pressure vessel. (See Photograph #3).

A Tinius Olsen beam balance testing machine was used to apply the tension or compression and to control the elongation. (See Photographs 1 and 2.). The force measuring components of this machine were very good, however trouble was encountered in trying to obtain a given elongation at a constant internal pressure in the specimen.

Spherical bearings were used in tension tests and ball bearing pyramids in compression tests in order to apply a centralized load without end moments.

Values of stress were obtained by means of SR-4, type A-8, Baldwin Locomotive electric wire resistance strain gages. Six gages were mounted on the first specimen and eleven on the

second specimen. The locations of attachment are illustrated in Fig. C. On specimen III, eight gages were used, and on specimen IV ten gages were applied. Their locations are also shown in Figure C. On all specimens the gages were located radially at 90° quadrants in order to obtain average readings.

The strain gages were used in conjunction with a multiple channel Wheatstone Bridge designed and made at the California Institute of Technology. Voltage measurement was made by a Leeds and Northrop Potentiometer. This apparatus was capable of measuring the change in voltage in the strain gages to an accuracy of 0.001-millivolt, which corresponds to an accuracy of 12.95 P.S.I. of stress or 0.037% of the proportional limit strain.

The over-all elongation of the specimen was measured by means of a dial gage mounted between the working platforms of the Tinius Olsen machine. This gage measured elongations within 0.001 accuracy.

The first expansion joint specimen tested revealed the need for strain gage calibration well beyond the elastic limit of the material. Therefore, a curve of stress vs. millivolts was obtained in the following manner.

Standard 0.5%, flat, pin-ended tensile test specimens were made of the same material used in the manufacture of the expansion joints. Electric strain gages were mounted on opposite sides of the specimens so as to eliminate the effects of any bending. These tensile test specimens were used to obtain the data and curve shown in Table 1 and Figure 1 respectively.

This curve made it possible to convert all millivolt

readings directly to stress values without the use of gage constants. These stresses were used for the final plotting of σ vs. δ .

Specimen I (thickness = 0.038") was too thin to withstand the required internal pressure and was also poorly welded.
This specimen was loaded only in tension and was used primarily
to locate the regions of highest stress. No data herein
presented.

Before mounting Specimen II in the testing machine it was pressure tested by means of water and air pressure, and all leaks repaired. Data taken during runs with this specimen indicated that the 90 p.s.i. used during the pressure testing had caused permanent set in the specimen. Therefore this specimen, since also obviously too thin, was used to determine the position of highest stresses in the expansion joint with internal pressure. No data or curves for the first two specimens are included in this report.

Specimen III (t = 0.053 - 0.057) was first mounted in tensile load only. The specimen was repeatedly elongated from zero to 0.10th for 25 cycles with no internal pressure. Data for this test is recorded in Table 2a, 2b, 2c, 2d. The curves of stress vs. elongation are plotted for the 1st and the 25th cycle in Figures 2 to 12. No data or curves of the intermediate cycles are presented because of the similarity of results of all cycles.

With various constant internal pressures of from 50 - 400 p.s.i. applied, this specimen was then elongated until the strain gages readings indicated the presence of stresses equal to the

highest of those obtained during the 25 cycle test. In these tests the specimen was placed in compression to control the elongation. Finally an attempt was made to vary the elongation with an internal pressure of 600 p.s.i. However, the specimen failed at the weld before 600 p.s.i. was obtained. (δ =0). The stresses were read from the calibration curve and recorded in Table 3a, 3b, 3c, 3d. Curves are plotted in Figures 13 to 18.

The procedure and treatment of the tests on specimen IV

(t = 0.053 - 0.057) were the same as those for No. III except

that internal pressure was used in all tests. Pressure varied

from zero to 500 p.s.i. This specimen withstood the 600 p.s.i.

internal pressure for only one half of a cycle (from zero to 0.10")

before failure at the weld. Data and corresponding curves are shown
in Table 4a, 4b, 4c, 4d and Figures 19 to 24.

DISCUSSION OF RESULTS

In both the semicircular design discussed in Ref. 4 and the design with the turned up edges studied in this report, stresses beyond the elastic limit of the material were encountered at very small total elongations. In the design with the turned up edges the internal pressure was more critical than it was in the semicircular joint and the amount of deformation increased very appreciably with increasing internal pressure. Curves in Figures 13 to 24 are plots of stress vs. elongation at constant pressures and show the wide variation of stresses encountered as the pressure was increased.

ations of 0.045" were obtained with no appreciable permanent set.

However, as the pressure was increased, permanent set was noticeable at increasingly smaller elongations. Above 200 p.s.i. stresses beyond the yield were observed even at zero elongation.

In order to evaluate the separate effects of elongation and pressure, the first 0.055" thick specimen (No. III) was run through twenty-five repeated cycles of elongation from zero to 0.10" without any internal pressure. These twenty-five cycles were completed without failure but with a permanent set of 0.020" in total elongation.

Figures 6 to 12 show that after 25 repeated cycles, the stresses es encountered during expansion are essentially the same as those found during the initial expansion except for the 0.020% permanent set. The 0.020% permanent set was present after the 1st cycle but remained constant throughout the remainder of the repeated

loading test. This indicated that the specimen was capable of many more cycles under the same conditions.

As internal pressure was applied, it was assumed that no failure would occur if the strain gage readings were kept below the readings recorded during the repeated load tests.

On this assumption and a comparison of the curves for specimen III at various internal pressures, the following chart was developed. This chart gives an indication of the maximum total elongation possible for twenty-five cycles at different constant pressures.

P #/in ²	δ in.
0	0.10
50	0.10
100	0.080
150	0.074
200	0.070
300	0.050
400	0.020
500	
600	0

Failure occured in this specimen before 600 p.s.i. was reached even at zero deflection. Since the semicircular design was capable of two and one-half cycles from zero to 0.20" with 600 p.s.i., the semicircular expansion joint is more capable of withstanding the high internal pressure. The reason for this is most clearly demonstrated in the accompanying sketch which shows that in Case A membrane stresses in a radial direction are more suitable for withstanding the pressure loads than they are in Case B.

In Case B large membrane stresses in both the circumferential and the axial directions would be required to maintain an equilibrium of forces, since neither of these membrane stresses is capable of contributing much resistance to forces normal to the surface of the expansion joint near the weld. Experimentally, this seemed to be verified since Case A was capable of withstanding 600 p.s.i. in two thicknesses (0.04% and 0.05%) while Case B failed before 600 p.s.i. was reached even though the specimen was made of thicker material. (t = 0.055%).

Strain gages mounted at the outermost circumference of the fourth specimen showed that the stresses present at this part of the expansion shell were negative (compression). These stresses remained practically constant as the elongation was varied and the internal pressure was held at given constant values. This

indicates the presence of a bending point of inflection. (See Figures 23 and 24). The combination of the radial contraction of the joint and the apparent bending action results in compressive components in both directions in this region of the joint. In order to better illustrate the stress distribution, both bending and membrane stresses at various points are shown in the accompanying schematic diagram. (See Figure d.)

An attempt was made to analyse the effect of internal pressure on the spring constant of the expansion joint. However, because the material of the joint exceeded the elastic limit at such small elongations and because the joint changes shape under load the problem is non linear and not easy to discuss. In order to best illustrate the behavior of the spring constant under pressure, curves of the spring constant K are plotted against the elongation of the joint at several internal pressures. (See Fig. 25). The spring constant for these curves was obtained by dividing the difference between the measured axial compressive force and the calculated axial tensile force due to internal pressure by the elongation of the expansion joint.

over the range of pressures and elongations studied, the spring constant was increased at the small elongations with increases in internal pressure. At elongations close to 0.10%, the spring constant at all pressures tended to converge with the spring constant of the expansion ring without internal pressure. This action is probably due to the axial components of the membrane which were forces that developed in the ring by the high internal pressures.

(See accompanying figure).

Ra Raxial Raxial

Figure e

On the basis of these tests the expansion joint with the turned up edges was found to be unsatisfactory for the following reasons.

- 1. The design was incapable of withstanding the design internal pressure of 600 p.s.i.
- 2. Permanent set was obtained with relatively low internal pressures at elongations of from 0.04 to 0.06".
- 3. Stresses were the greatest close to the weld where the physical properties of the material were the poorest.
- 4. The spring constant of the joint increases at high internal pressures.

The design with the turned up edges appeared capable of withstanding greater elongations than the semicircular design as long as the internal pressure was held below 300 p.s.i. Above 300 p.s.i. the semicircular design appeared to be the better of the two.

RECOMMENDATION FOR FUTURE STUDIES

It is believed that a more suitable design is possible by combining the advantages of both of the types studied to date.

Fig. f shows a suggested design which should combine these advantages.

This configuration would make possible the use of the lightest gauge material which would still be capable of withstanding the 600 p.s.i. internal pressure. At the same time it should keep the total force in the axial direction required to elongate the specimen a minimum. This design should also eliminate most of the extreme bending stresses that occurred at the weld of the semi-circular design.

It is further recommended that a more thorough study be made of the effect of the circumferential or hoop stresses on the rigidity of the expansion joint.

REFERENCES

- 1. Theory of Plates and Shells
- 2. Strength of Materials, Vol. II
- 3. Theory of Elasticity
- 4. Some Studies of Expansion Rings in Rocket Motors
- S. Timoshenko
- S. Timoshenko
- S. Timoshenko

Cmdr. N. J. Kleiss, U.S.N. Lt.Cmdr. S. W. Kerkering, U.S.N.

VI

INDEX TO TABLES

Page	Table
18	Stress vs. Millivolt Table (steel specimen)
19 20	Observed gage readings " corrected to Stresses
21	Observed gage readings corrected to Stresses
23-24	Observed gage readings corrected to Stresses
25 - 26 27 - 28	Gage readings
29-30	Stresses

VII

INDEX TO FIGURES

Page	Figure	
31	а.	Simplified Drawing of Rocket Motor Showing Temperature Gradient
32	Ъ	Test specimen assembly
32 33 12	C	Strain gage locations
12	d	Schematic Diagram of Stresses in Joint
13	Θ	Schematic Diagram of Membrane Forces
15	f	Proposed Design

		VIT

INDEX TO PHOTOS

34	4.	defferal	ATEM	OI	rest	
35	II.	General	View	of	Mounted	Specimen
36	III.	General	View	of	Specimen	1

TABLE 1
Stress-Millivolt Curve
Area = 0.061 x 0.50 = 0.0305 sq. in.

Load	Gage	Gage 2	Gage 3	ΔV	∆v 2	Δv 3	Ave.	stress
50 100 150 200 350 450 550 650 750 850 950 1050 1050 1050 1050 1050 1050 105	.063 .250 .420 .615 .791 .960 1.097 1.266 1,432 1.592 1.753 1.912 2077 2.233 2.390 2.550 2.708 2.863 3.171 3.322 3.470 3.618 5.015 10.423 11.080 11.715 12.710 13.163	.268 .379 .488 .615 .740 .861 .992 1.097 1.237 1.510 1.648 1.783 1.930 2.070 2.213 2.359 2.506 2.653 2.797 2.949 3.090 3.238 4ages bad.	.256 .387 .508 .631 .753 .879 .995 1.100 1.237 1.615 1.615 1.615 1.615 2.005 2.266 2.392 2.520 2.653 2.787 2.918 3.049	.063 .187 .170 .195 .169 .169 .160 .161 .159 .156 .157 .158 .157 .151 .157 .148 .159 .157 .151 .157 .148 .159 .157 .159 .159 .159 .159 .159 .159 .159 .159	.268 .111 .109 .127 .125 .121 .1305 .1305 .1305 .140 .1447 .1447 .1447 .1448 .147 .148	.256 .131 .123 .122 .126 .126 .128 .124 .134 .1325 .136 .128 .135 .131 .131	.196 .339 .472 .620 .762 .900 1.065 1.302 1.441 1.583 1.725 1.866 2.015 2.298 2.444 2.587 2.298 2.444 2.587 2.729 2.874 3.015 3.015 11.080 11.715 12710 13.163	1640 3280 4920 6560 8200 9840 11480 14760 16400 18010 19680 21310 22950 24600 26210 27900 29500 31900 32800 34500 36100 37700 29800 30600 33930 33950

All Gage readings are in Millivolts and all Stresses are in lbs/sq. in.

TABLE 2a

Specimen III

t = 0.055" No Internal Pressure 1st Cycle Tension Only

	x 10 ⁻³			Mill	ivolts			
Lead		Gage 1	2	3	4	5	7	6
748	5	.193	. 250	. 378	. 307	.083	.037	.175
1947	10	. 657	.885	.981	.912	.400	. 241	. 563
3068	15	.969	1.347	1.464	1.408	. 562	.413	.871
4327	20	1.367	1.886	1.967	1.908	.750	. 512	1.192
5293	25	1.582	2.197	2.323	2.278	.871	. 545	1.386
6241	30	1.879	2.625	2.751	2.622	1.035	. 631	1.664
7227	35	2.110	2.945	3.092	3.011	1.198	.728	1.910
8265	40	2.419	3.369	3.522	3.391	1.357	.806	2.177
9330	45	2.708	3.757	3.929	3.814	1.510	.933	2.484
10272	50	3.013	4.142	4.284	4.165	1.648	.939	2. 694
11382	55	3.265	4.527	4.708	4.591	1.813	1.063	3.010
12305	60	3.539	4.956	5.052	4.939	1.957	1.148	3,200
13417	65	3.800	5.392	5.497	5.345	2.137	1.241	3.549
14352	70	4.060	5.838	5.878	5.644	2.259	1.307	3, 771
15320	75	4.277	6.252	6.223	5.975	2.452	1.394	4.078
16265	80	4.560	6.671	6.544	6.259	2.572	1.490	4.311
16925	85	4.758	7.041	6.904	6.497	2.740	1.625	4.588
17565	90	5.050	7.411	7.203	6.720	2.901	1.802	4.818
18025	95	5.318	7.657	7.359	6.849	3.105	2.068	5.088
18400	100	5.436	8.003	7.552	7.011	3.333	2.335	5.282

TABLE 2b
Specimen III

	3"			Stre	88es	psi		
Load	x 10 ⁻³	l l	2	3	4	5	7	6
748	5	1800	2800	4200	3250	800	200	1750
1947	10	7300	9950	11100	10200	4450	2600	6200
3068	15	10900	15150	16400	15900	6200	4600	9800
4327	20	15350	21350	22250	21500	8400	5700	13400
5293	25	17800	24800	26200	25800	9800	6000	15800
6241	30	21300	29700	31100	29600	11500	7100	18700
7227	35	23800	36200	35000	33900	13400	8100	21600
8265	40	27250	38000	38350	38200	15250	8500	24500
9330	45	30 600	38100	36900	37750	17000	10400	28100
10272	50	34000	35100	34000	35000	18500	11100	30400
11382	55	36975	32300	31100	31850	20450	11800	34000
12305	60	33290	29900	29 400	29900	22200	12800	36200
13417	65	37800	28050	27750	28250	24000	14000	38350
14352	70	36000	26850	26700	27300	25500	14700	37950
15320	75	34200	25950	25950	26450	27700	15750	35800
16265	80	32100	25400	25600	25950	29000	16800	33750
16925	85	30900	25300	25350	25600	31000	18300	31900
17565	90	29 400	25350	25250	25400	32800	20300	30550
18025	95	28350	25400	25300	25350	35100	23400	29 300
18400	100	27975	25550	25350	25300	37700	26350	28500

TABLE 2c

Specimen III

t = 0.055" 25th Cyole No Internal Pressure Tension Only

	x 10-3		G	qqe di	llivolts			
Load	δ"	1	2	3	4	5	7	6
0	26	180	. 880	.180	480	. 490	. 802	. 424
3260	40	. 835	2.340	1.590	.896	1.070	1.150	1.540
7345	60	2.240	4.160	3.360	2.600	1.770	1.535	2.710
11875	80	3,620	6.010	5.160	4.410	2.490	1.952	4.014
16235	100	5.075	7.904	6.922	6.145	3.140	2.302	5.100

TABLE 2d

			Gagi	e Stres	808			
Load 1bs	x 10 ⁻³ δ"	1	2	3	4	5	7 ·	6
0	26	-1300	9900	1800	-5200	5300	9000	4600
3260	40	9300	26400	18000	10000	115800	13000	17400
7345	60	25300	35100	37900	29400	19900	17200	30 600
11875	80	38300	26400	29000	33100	28200	22100	36400
16235	100	29 300	25500	25300	26100	35500	26000	29200

TABLE 3a

Specimen III

t = 0.055 With Internal Pressure

		$x 10^{-3}$			Gage M	fillivolts			
Load Ibs	р р.з. і.	8"	1	S	3	4	5	δ	7
10,730	50	24	-1.082	-, 292	800	-1.335	. 530	.067	.122
7,370		34	060	1.047	. 491	158	1.043	.962	.222
4,100		44	1.044	2.437	1.857	1.070	1.600	1.939	. 292
14,350	100	24	738	.180	248	813	1.030	.712	N.G.
1,580		34	.288	1.472	1.028	.361	1.545	1.602	
9,170		44	1.498	3.133	2.604	1.827	2. 217	2.732	
5,000		54	2.482	4.420	3.818	2.956	2.642	3.540	
1,900		64	3.794	6.150	5.430	4.395	3.260	4.630	
30,125	150	24	228	.950	.470	203	1.665	1.577	
16,925		34	.918	2.477	1.940	1.190	2.227	2.583	
4,040		44	2.000	3.923	3.325	2.500	2.773	3.542	
10,525		54	3.100	5.380	4.705	3.802	3.265	4.453	
7.285		64	4.068	6.780	6.015	5.000	3.700	5.335	
4,350		74	4.932	8.240	7.353	6.042	3.867	6.218	
25,575	200	24	010	1.708	1.100	.120	1.910	2.495	
22,210		34	1.188	3.313	2.465	1.578	2.490	3.532	
8,600		44	2.322	4.320	4.070	2.957	3.022	4.463	
.5,320		54	3.393	6.233	5.417	4.260	3.533	5.400	
7,305		64	4.363	7.645	6.718	5.490	3.751	6.518	
9,965		74	5.190	9.793	8.265	6.718	3.821	.7.610	

TABLE 3b

Cage Millivolts Load plan problem 8" 1 2 3 4 5 36,880 300 24 .681 3.947 2.755 1.250 2.845 33,840 34 1.120 4.968 3.662 1.880 4.733 32,200 44 2.431 6.626 5.240 3.455 5.245 27,000 54 4.138 8.712 7.320 5.525 5.210 25,000 64 6.170 11.705 10.242 8.200 4.430 23,320 74 8.700 15.850 14.342 11.980 3.760	6
33,840 34 1.120 4.968 3.662 1.880 4.733 32,200 44 2.431 6.626 5.240 3.455 5.245 27,000 54 4.138 8.712 7.320 5.525 5.210 25,000 64 6.170 11.705 10.242 8.200 4.430	
33,840 34 1.120 4.968 3.662 1.880 4.733 32,200 44 2.431 6.626 5.240 3.455 5.245 27,000 54 4.138 8.712 7.320 5.525 5.210 25,000 64 6.170 11.705 10.242 8.200 4.430	
32,200 44 2.431 6.626 5.240 3.455 5.245 27,000 54 4.138 8.712 7.320 5.525 5.210 25,000 64 6.170 11.705 10.242 8.200 4.430	5.034
27,000 54 4.138 8.712 7.320 5.525 5.210 25,000 64 6.170 11.705 10.242 8.200 4.430	7.846
25,000 64 6.170 11.705 10.242 8.200 4.430	8.830
	9.561
	9.540
	9.610
52,200 400 24 3.690 9.546 8.374 6.030 3.377	7.534
48,425 34 5.170 11.228 9.907 7.614 4.434	9.250
44,750 44 6.650 12.690 11.325 9.035 4.757	10.290
42,075 54 7.689 14.680 13.570 11.076 4.764	11.260
40,405 64 10.038 18.280 17.730 14.842 4.513	12.123
38,580 74 13.253 N.G. N.G. 19.200 4.414	12.572

TABLE 3c

Stresses

10730 50 24 -12200 -3200 -9000 -15000 5900 500 7370 50 34 - 400 11600 5400 -1700 11600 10800 4100 50 44 11600 27500 21200 12100 18000 21900 14350 100 24 - 8200 1800 -2700 - 9100 11500 8000 11580 100 34 3200 16600 11400 4000 17400 18000 9170 100 44 16900 35400 29400 20500 25000 31000 5000 100 54 23100 35000 37800 35500 29800 33300 1900 100 64 37900 26100 28000 53200 37000 31700 20125 150 34 10200 23100 22000 13300 25200 2200 14040 150 44<	Load Ibs	ppsi	x 10 ⁻³	1	2	3	4	5	6
4100 50 44 11600 27500 21200 12100 18000 21900 14350 100 24 -8200 1800 -2700 -9100 11500 8000 11580 100 34 3200 16600 11400 4000 17400 18000 9170 100 44 16900 35400 29400 20500 25000 31000 5000 100 54 28100 33000 37800 33500 29800 33300 1900 100 64 37900 26100 28000 53200 37000 31700 20125 150 24 - 2500 10700 5200 - 2100 18600 17700 16925 150 34 10200 28100 22000 13300 25200 29200 14040 150 44 22700 37000 37700 23300 31400 38300 7285 150 <td< td=""><td>10730</td><td>50</td><td>24</td><td>-12200</td><td>-3200</td><td>-9000</td><td>-15000</td><td>5900</td><td>500</td></td<>	10730	50	24	-12200	-3200	-9000	-15000	5900	500
14350 100 24 -8200 1800 -2700 -9100 11500 8000 11580 100 34 3200 16600 11400 4000 17400 18000 9170 100 44 16900 35400 29400 20500 25000 31000 5000 100 54 28100 33000 37800 33500 29800 33300 1900 100 64 37900 26100 28000 53200 37000 31700 20125 150 24 - 2500 10700 5200 - 2100 18600 17700 16925 150 34 10200 28100 22000 13500 25200 29 200 14040 150 44 22700 37000 37700 23700 37100 38300 10525 150 54 35100 28100 31100 37800 37100 32800 7285 150 64 36000 25400 26400 29700 38200 28300	7370	50	34	- 400	11600	5400	- 1700	11600	10800
11580 100 34 3200 16600 11400 4000 17400 18000 9170 100 44 16900 35400 29400 20500 25000 31000 5000 100 54 28100 33000 37800 33500 29800 33300 1900 100 64 37900 26100 28000 53200 37000 31700 20125 150 24 - 2500 10700 5200 - 2100 18600 17700 16925 150 34 10200 23100 22000 13300 25200 29 200 14040 150 44 22700 37000 37700 28 300 31400 38 300 7285 150 54 35100 28100 31100 37800 37400 28300 25575 200 24 19200 12400 1100 21600 28100 25270 20 <	4100	50	44	11600	27 500	21200	12100	18000	21900
9170 100 44 16900 35400 29400 20500 25000 31000 5000 100 54 23100 33000 37800 33500 29800 33300 1900 100 64 37900 26100 28000 53200 37000 31700 20125 150 24 - 2500 10700 5200 - 2100 18600 17700 16925 150 34 10200 23100 22000 13300 25200 29 200 14040 150 44 22700 37000 37700 23 300 31400 38 300 10525 150 54 35100 28100 31100 37800 37100 32800 7285 150 64 36000 25400 26400 29700 38200 28300 4350 150 74 30000 24800 25300 26300 37400 26000 22210 200		100	24						
5000 100 54 28100 33000 37800 33500 29800 33300 1900 100 64 37900 26100 28000 53200 37000 31700 20125 150 24 - 2500 10700 5200 - 2100 18600 17700 16925 150 34 10200 28100 22000 13300 25200 29200 14040 150 44 22700 37000 37700 28300 31400 38300 10525 150 54 35100 28100 31100 37800 37100 32800 7285 150 64 36000 25400 26400 29700 38200 28300 4350 150 74 30000 24800 25300 26300 37400 26000 2210 200 34 13300 37400 27800 12200 28100 38300 18600 200								_	
1900 100 64 37900 26100 28000 S3200 37000 31700 20125 150 24 - 2500 10700 5200 - 2100 18600 17700 16925 150 34 10200 23100 22000 13300 25200 29200 14040 150 44 22700 37000 37700 23300 31400 38300 10525 150 54 35100 28100 31100 37800 37100 32800 7285 150 64 36000 25400 26400 29700 38200 28300 4350 150 74 30000 24800 25300 26300 37400 26000 22210 200 34 13300 37400 27800 12200 28100 38300 18600 200 44 26200 30700 35900 33600 34100 32700 15320 200	_						-		
20125 150 24 - 2500 10700 5200 - 2100 18600 17700 16925 150 34 10200 28100 22000 13300 25200 29 200 14040 150 44 22700 37000 37700 28 300 31400 38 300 10525 150 54 35100 28100 31100 37800 37100 32800 7285 150 64 36000 25400 26400 29700 38200 28300 4350 150 74 30000 24800 25300 26300 37400 26000 22210 200 34 13300 37400 27800 12200 28100 38300 18600 200 44 26200 30700 35900 33600 34100 32700 15320 200 54 38200 26000 28000 34200 38300 28100 12305 200 64 33400 25400 25400 27700 38000 25600	5000		54						
16925 150 34 10200 28100 22000 13300 25200 29200 14040 150 44 22700 37000 37700 28300 31400 38300 10525 150 54 35100 28100 31100 37800 37100 32800 7285 150 64 36000 25400 26400 29700 38200 28300 4350 150 74 30000 24800 25300 26300 37400 26000 25575 200 24 19200 12400 1100 21600 28100 22210 200 34 13300 37400 27800 12200 28100 38300 18600 200 44 26200 30700 35900 33600 34100 32700 15320 200 54 38200 26000 28000 34200 38300 28100 12305 200	1900	100	64	37900	26100	28000	\$3200	37000	31700
14040 150 44 22700 37000 37700 23300 31400 38300 10525 150 54 35100 28100 31100 37800 37100 32800 7285 150 64 36000 25400 26400 29700 38200 28300 4350 150 74 30000 24800 25300 26300 37400 26000 22210 200 34 13300 37400 27800 12200 28100 38300 18600 200 44 26200 30700 35900 33600 34100 32700 15320 200 54 38200 26000 28000 34200 38300 28100 12305 200 64 33400 25400 27700 38000 25600 9965 200 74 28800 27800 25800 25400 37700 25300 36880 300 24	20125	150	24	- 2500	10700	5200			
10525 150 54 35100 28100 31100 37800 37100 32800 7285 150 64 36000 25400 26400 29700 38200 28300 4350 150 74 30000 24800 25300 26300 37400 26000 25575 200 24 19200 12400 1100 21600 28100 22210 200 34 13300 37400 27800 12200 28100 38300 18600 200 44 26200 30700 35900 33600 34100 32700 15320 200 54 38200 26000 28000 34200 38300 28100 12305 200 64 33400 25400 27700 38000 25600 9965 200 74 28800 27800 25800 25400 37700 25300 36880 300 34	16925	150	34	10200	28100	2 2000	13300		
7285 150 64 36000 25400 26400 29700 38200 28300 4350 150 74 30000 24800 25300 26300 37400 26000 25575 200 24 19200 12400 1100 21600 28100 22210 200 34 13300 37400 27800 12200 28100 38300 18600 200 44 26200 30700 35900 33600 34100 32700 15320 200 54 38200 26000 28000 34200 38300 28100 12305 200 64 33400 25400 27700 38000 25600 9965 200 74 28800 27800 25800 25400 37700 25300 3680 300 34 12500 29900 38200 21300 30900 25500 30220 300 44 2	14040	150	44	22700	37000	37700	28 300		
4350 150 74 30000 24800 25300 26300 37400 26000 25575 200 24 19200 12400 1100 21600 28100 22210 200 34 13300 37400 27800 12200 28100 38300 18600 200 44 26200 30700 35900 33600 34100 32700 15320 200 54 38200 26000 28000 34200 38300 28100 12305 200 64 33400 25400 27700 38000 25600 9965 200 74 28800 27800 25800 25400 37700 25300 36880 300 24 7600 36300 31200 14000 32100 29600 33840 300 34 12500 29900 38200 21300 30900 25500 30220 300 44	10525	150	54	35100	28100	31100	37800	37100	32800
25575 200 24 19200 12400 1100 21600 28100 22210 200 34 13300 37400 27800 12200 28100 38300 18600 200 44 26200 30700 35900 33600 34100 32700 15320 200 54 38200 26000 28000 34200 38300 28100 12305 200 64 33400 25400 25400 27700 38000 25600 9965 200 74 28800 27800 25800 25400 37700 25300 36880 300 24 7600 36300 31200 14000 32100 29600 33840 300 34 12500 29900 38200 21300 30900 25500 30220 300 44 27500 25500 28600 38300 38600 26400 27000 300 54 35200 26200 25300 27600 28700 27500 25000 300 64 26100 31800 23600 25700 33000 27400	7285	150	64	36000	25400	26400	29700	38200	
22210 200 34 13300 37400 27800 12200 28100 38300 18600 200 44 26200 30700 35900 33600 34100 32700 15320 200 54 38200 26000 28000 34200 38300 28100 12305 200 64 33400 25400 27700 38000 25600 9965 200 74 28800 27800 25800 25400 37700 25300 36880 300 24 7600 36800 31200 14000 32100 29600 33840 300 34 12500 29900 38200 21300 30900 25500 30220 300 44 27500 25500 28600 38300 38600 26400 27000 300 54 35200 26200 25300 27600 28700 27500 25000 300 64 26100 31800 23600 25700 33000 27400	4350	150	74	30000	24800	25300	26 300	37400	26000
22210 200 34 13300 37400 27800 12200 28100 38300 18600 200 44 26200 30700 35900 33600 34100 32700 15320 200 54 38200 26000 28000 34200 38300 28100 12305 200 64 33400 25400 27700 38000 25600 9965 200 74 28800 27800 25800 25400 37700 25300 36880 300 24 7600 36800 31200 14000 32100 29600 33840 300 34 12500 29900 38200 21300 30900 25500 30220 300 44 27500 25500 28600 38300 38600 26400 27000 300 54 35200 26200 25300 27600 28700 27400 25000 300 64 26100 31800 23600 25700 33000 27400	25575	200	24	40 40	19200	12400	1100	21600	28100
15320 200 54 38200 26000 28000 34200 38300 28100 12305 200 64 33400 25400 25400 27700 38000 25600 9965 200 74 28800 27800 25800 25400 37700 25300 36880 300 24 7600 36800 31200 14000 32100 29600 33840 300 34 12500 29900 38200 21300 30900 25500 30220 300 44 27500 25500 28600 38300 38600 26400 27000 300 54 35200 26200 25300 27600 28700 27500 25000 300 64 26100 31800 23600 25700 33000 27400	22210	200	34	13300	37400		12200	28100	
12305 200 64 33400 25400 25400 27700 38000 25600 9965 200 74 28800 27800 25800 25400 37700 25300 36880 300 24 7600 36800 31200 14000 32100 29600 33840 300 34 12500 29900 38200 21300 30900 25500 30220 300 44 27500 25500 28600 38300 38600 26400 27000 300 54 35200 26200 25300 27600 28700 27500 25000 300 64 26100 31800 23600 25700 33000 27400	18600	200	44	26200	30700	35900	33600	34100	32700
9965 200 74 28800 27800 25800 25400 37700 25300 36880 300 24 7600 36300 31200 14000 32100 29600 33840 300 34 12500 29900 38200 21300 30900 25500 30220 300 44 27500 25500 28600 38300 38600 26400 27000 300 54 35200 26200 25300 27600 28700 27500 25000 300 64 26100 31800 23600 25700 33000 27400	15320	200	54	38200	26000	28000	34200	38300	28100
36880 300 24 7600 36800 31200 14000 32100 29600 33840 300 34 12500 29900 38200 21300 30900 25500 30220 300 44 27500 25500 28600 38300 38600 26400 27000 300 54 35200 26200 25300 27600 28700 27500 25000 300 64 26100 31800 23600 25700 33000 27400	12305	200	64	33400	25400	25400	27700	38000	25600
33840 300 34 12500 29900 38200 21300 30900 25500 30220 300 44 27500 25500 28600 38300 38600 26400 27000 300 54 35200 26200 25300 27600 28700 27500 25000 300 64 26100 31800 23600 25700 33000 27400	9965	200	74	28800	27800	25800	25400	37700	25300
30220 300 44 27500 25500 28600 38300 38600 26400 27000 300 54 35200 26200 25300 27600 28700 27500 25000 300 64 26100 31800 23600 25700 33000 27400	36880	300	24	7600	36800	31200	14000	32100	29600
27000 300 54 35200 26200 25300 27600 28700 27500 25000 300 64 26100 31800 28600 25700 33000 27400	33840	300	34	12500	29900	38200	21300	30900	25500
25000 300 64 26100 31800 28600 25700 33000 27400	30220	300	44	27500	25500	28600	38300	38600	26400
	27000	300	54	35200	26200	25300	27600	28700	27500
23320 200 74 26100 39400 36800 32300 38000 27600	25000	300	64	26100	31800	28 600	25700	33000	27400
	23320	200	74	26100	39400	36800	32300	38000	27600

TABLE 3d

Stresses

Load bs	р р.s. i.	× 10 ⁻³	1	2	3	4	5	6
52200 48425 44750 42075 40405 38580	400 400 400 400 400 400	24 34 44 54 64 74	38200 28800 25400 25400 28200 34800	26700 30700 33700 37400 43700	25900 28000 30900 35400 42100	26400 25300 26600 30300 37700 44500	38000 32900 30900 30800 32500 35300	25300 27000 28800 30800 32600 33400

TABLE 4a

Specimen IV

t = 0.055 With Internal Pressure

Load Ibs	psi	× 10 ⁻³	Gage Millivolts									
			1	2	3	4	6	7	8	9	10	
8270	50	0	. 278	.455	. 550	.412	.885	1.072	.622	328	178	
6355		10	1.374	1.540	1.603	1.513	1.281	1.860	.965	392	047	
4150		20	2.142	2.412	2.496	2.417	1.568	2. 502	1.186	415	+.082	
2500		30	2,923	3.277	3.360	3.324	1.824	3.115	1.422	455	+. 200	
1650		35	3.420	3.852	3.988	4.096	1.773	3.390	1.508	462	+. 277	
13000	100	0	1.575	1.070	1.518	1.510	1.000	1.273	.850	512	263	
11800		10	2.146	2.082	2.400	2.429	1.448	2.210	1.231	575	136	
8675		20	2.735	2.983	3.200	3. 259	1.742	2,933	1.465	581	+.030	
6500		30	3.313	3.905	3.817	4.088	2.067	3.702	1.741	604	+.154	
5270		40	3.792	4.700	4.828	4.935	2.093	4.361	1.960	653	+. 274	
3650		50	4.118	5.377	5.482	5.746	2.130	4.800	2,073	662	+. 402	
2715		60	4.320	6.077	6.073	6.642	2. 322	5.250	2.220	4.679	. 555	
1500		70	4,508	6.700	6.558	7.431	2.688	5.363	2.245	687	.727	

TABLE 4b
Specimen IV

	•	3				Gage Mi	llivolt	8			
Load	psi	× 10 ⁻³	1	2	3	4	6	7	8	9	10
25,100	200	10	1.448	2.390	2.797	3.440	1.055	2.753	1.752	- 1.060	432
23,400		20	2.075	3.400	3.698	4.353	1.457	3.547	2.045	- 1.122	310
20,625		30	2.682	4.337	4.530	5.219	1.720	4.239	2, 290	- 1.145	163
19,180		40	3.137	5.080	5.177	5.950	1.942	5.024	2.481	- 1.210	→ .058
17,670		50	3.572	5.832	5.962	6.640	1.937	5.618	2.470	- 1.280	000
16,200		60	4.110	6.600	6.917	7.440	1.720	6.135	2.328	- 1.450	+ .015
15,750		70	4.672	7.500	7.988	8,480	1.413	6.362	2.045	- 1.565	+ .070
41,000	300	10	.842	2.292	2.950	3.452	.381	2.756	1.218	- 1.920	-1.170
38,670		20	1.468	3.462	3.970	4.572	.917	3.631	1.612	- 2.010	-1.046
35,170		30	2.155	4.475	4.988	5.591	1.328	4.508	1.920	- 2.050	892
32,950		40	2.768	5.457	5.868	6.495	1.830	5.527	2.228	- 2.150	832
31,600		50	3.175	6.141	6.661	7.233	1.946	6.142	2. 254	- 2.270	812
30,850		60	3.812	7.233	7.730	8.188	2.013	6.940	1.955	- 2.578	945
67,500	500	10	-2.928	3.238	2.724	3.090	7.725	7.727	6.020	- 8.327	-7.012
64,500		20	-2.225	4.963	4.249	4.940	8.757	8.736	5.970	- 9.308	-7.330
63,875		30	-1.639	6.917	5.622	6.912	9.220	8.500	5.902	-10.383	-7.910
62,760		40	850	9.296	7.449	9.420	9.400	7. 250	5.579	-11.260	-8.221
60,500		50	+ . 294	12.200	9.762	12.217	9.632	5.457	5.326	-12.348	-8.698
58,135		60	1.500			15.283	9.345	4.727	4.850	-12.819	-8.725
56,200		70	3.398			19.250	9.000	3.639	4.310	-13. 215	-8.773
55,305		80	5.360				8.728	2.255	3.810	-13.752	-8.812
53,870		90	8.540				8.378	1.500	3.333	-14.072	-8.770
52,000		100					7.995	.903	2.896	-14.257	-8,609

TABLE 4c
Specimen IV

1 .	· p Gage Stresses										
Load	psi	× 10-3	1	2	3	4	6	7	8	9	10
8270	50	0	3000	5000	6100	4600	9900	12100	7000	-3500	-1800
6355		10	15500	17400	18000	17000	14400	21000	10800	-4200	- 200
4150		20	24200	27300	28200	27300	17700	28200	13200	-4500	700
2500		30	33000	37100	38100	37600	20400	35200	16000	-5000	2100
1650		35	38200	37600	36500	35700	19900	38200	17000	-5200	3000
13000	100	0	17800	12100	17100	17000	11200	14100	9500	-5700	-2800
11800		10	24000	23500	27200	27500	16300	25000	13800	-6400	-1300
8675		20	30800	33900	36200	37000	19600	33100	16400	-6500	100
6500		30	37400	37100	37800	35700	23300	38200	19700	-6600	1600
5270		40	37800	31200	30 500	30000	23600	33400	22200	-7100	3000
3650		50	35500	28100	27800	27000	24100	30600	23500	-7200	4400
2715		60	33800	26200	26300	25500	26100	28600	25000	-7500	6100
1500		70	3 2400	25400	25600	25300	30300	28200	25300	-7600	8000

TABLE 4d
Specimen IV

Gage Stresses											
Load	ρ ρ \$.1.	x 10 ⁻³	1	2	3	4	6	7	8	9	10
25100 23400 20625 19180 17670	200	10 20 30 40 50	16400 23400 30300 35400 38300	27100 38 200 33600 29400 26 9 00	31600 38200 32400 28900 26500	\$8 300 33400 23700 26 500 25500	11600 16400 19500 22000 21900	31 200 38300 34400 29600 27400	19800 23000 26000 28100 28000	-11900 -12600 -12900 -13400 -14400	- 4700 - 3400 - 1600 - 100 0
16200 15750 41000 38670 35170	300	10 20 30	35500 31400 9400 16500 24500	25500 25300 25900 38300 32600	25300 25600 33400 36700 29700	25300 26000 38300 32000 27400	19500 15900 4200 10200 14900	26200 25800 31200 33300 32500	26200 23000 13700 18100 21600	-16500 -17700 -21600 -22700 -23200	100 200 -13200 -11500 - 9900
32950 31600 30850 67500	500	40 50 60	31 200 35900 37800 -33000	27900 26200 25300 36500	26700 25500 25400 30800	25600 25300 25700 35000	20600 22100 22800 25400	27700 26100 25300 25400	25200 25600 22200 26400	-24300 -25600 -29200 -25900	- 9400 - 9200 -10700
64500 63875 62760 60500 58135 56200 55305 53870 52000		20 30 40 50 60 70 80 90	-25200 -18400 - 9500 3200 11200 38200 28200 26000	29 800 25 300 27 000 32 700	34300 27400 25300 22800	29900 25300 27200 32700 38400 44500	26300 26900 27200 27600 27100 26600 26200 25900 25500	26200 26000 25300 27900 31000 38300 25600 16900 10200	26500 26600 27500 28400 30400 33900 37800 37200 32700	-27000 -28900 -30800 -33900 -34700 -35700 -36300 -36600	-25300 -25500 -25700 -26200 -26250 -26300 -26400 -26300 -26100

F16. a

Figure C.

Photograph I

Photograph II

Photograph III

DATE DUE										
*										

Thesis
R33 Reiserer
Design and test of a
rocket motor expansion
joint.

Thesis
R33 Reiserer
Design and test of a rocket motor expansion joint.

thesR33
Design and test of a rocket motor expans

3 2768 002 02324 4
DUDLEY KNOX LIBRARY