Sistemas de Banco de Dados

Fundamentos em Bancos de Dados Relacionais

Wladmir Cardoso Brandão www.wladmirbrandao.com

SEÇÃO 22 Controle de Concorrência

- As técnicas de controle de concorrência são usadas para garantir a não interferência ou isolamento das transações executas simultaneamente.
- Garantem a serialização de schedules usando protocolos de controle de concorrência.
- Tais protocolos de bloqueio são utilizados na maioria dos SGBDs.

www.wladmirbrandao.com

TÉCNICAS DE CONTROLE DE CONCORRÊNCIA:

TÉCNICAS DE BLOQUEIO EM DUAS FASES PARA CONTROLE DE CONCORRÊNCIA

www.wladmirbrandao.com 4 / 90

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueios binários:

- Restritivos para fins de controle de concorrência.
- Possuem dois estados ou valores: bloqueado e desbloqueado.
- Um bloqueio distinto é associado a cada item do banco de dados.
 - Se valor do bloqueio é 1, o item não pode ser acessado por uma operação.
 - Se valor do bloqueio é 0, o item pode ser acessado quanto requisitado.

E o valor do bloqueio é mudado para 1.

www.wladmirbrandao.com 5 / 90

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueios binários:

- ► LOCK(X): Valor atual (ou estado) do bloqueio associado ao item X.
 - ▶ Se LOCK(X) = 1, a transição é forçada a esperar.
 - Se LOCK(X) = 0, a transição bloqueia o item (é configurada como 1)

e passa a possuir permissão para acessar o item X.

 $Nome_item_dado\text{, LOCK, Bloqueio_de_transacao}$

www.wladmirbrandao.com 6 / 90

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueios binários:

- Impõe uma exclusão mútua no item de dados:
 - Se uma transação requisita acesso a um item, emite uma operação lock_item(X).
 - Se LOCK(X) = 1, a transação deve esperar.
 - Se LOCK(X) = 0, ela é configurada como 1 (o item é bloqueado)
 e a transação possui permissão para acessar o item.
 - Se a transação termina de usar um item, emite uma operação unlock_item(X),
 - que define LOCK(X) para 0 ou seja, desbloqueia o item, que pode ser acessado por outras transações.

www.wladmirbrandao.com 7 / 90

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueios binários:

- Regras impostas pelo gerenciador de bloqueio do SGBD:
 - Uma transação precisa emitir a operação lock_item(X) antes de operações read_item(X) ou write_item(X) serem realizadas.
 - Uma transação precisa emitir a operação unlock_item(X) após todas as operações read_item(X) ou write_item(X) serem completadas.
 - 3. Uma transação não emitirá uma operação *lock_item(X)* se já mantiver o bloqueio no item *X*.
 - 4. Uma transação não emitirá uma operação *unlock_item(X)* a menos que ela já mantenha o bloqueio no item *X*.

www.wladmirbrandao.com 8 / 90

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueios binários:

- Nenhuma intercalação deve ser permitida se uma operação de bloqueio/desbloqueio é iniciada, até que a operação termine ou a transação espere.
- Entre as operações lock_item(X) e unlock_item(X) na transação, diz-se que ela mantém o bloqueio no item X.
- No máximo uma transação pode manter o bloqueio de um item em particular.
 - Assim, duas transações não podem acessar o mesmo item simultaneamente.

www.wladmirbrandao.com 9 / 90

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueios binários:

- ► Tabela de bloqueio: registros para os itens que o sistema mantém e que estão atualmente bloqueados.
- Os itens que não estão na tabela de bloqueio são considerados desbloqueados.
- O SGBD possui um subsistema de gerenciador de bloqueio para registrar e controlar o acesso aos bloqueios.

www.wladmirbrandao.com 10 / 90

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueios compartilhados/exclusivos:

- Também conhecidos como bloqueios de modo múltiplo ou de leitura/gravação.
- Utilizados em esquemas de bloqueio de BD práticos.
- Permite que várias transações acessem o mesmo item se todas acessam apenas para fins de leitura.

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueios compartilhados/exclusivos:

- Se uma transação tiver de gravar um item, ela precisa ter acesso exclusivo.
- LOCK(X) possui três estados possíveis:
 - bloqueado para leitura (bloqueado p/ompartilhamento)
 - bloqueado para gravação (bloqueado exclusivo)
 - desbloqueado

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueios compartilhados/exclusivos:

- Deve-se registrar o número de transações que mantêm um bloqueio compartilhado (leitura) na tabela de bloqueio.
- O sistema mantém registros de bloqueio somente para os itens bloqueados.
 - Se LOCK(X) = bloqueado para gravação, o valor de Bloqueio_de_transação é uma única transação.
 - Se LOCK(X) = bloqueado para leitura, o valor de Bloqueio_de_transação é uma lista de uma ou mais transações.

www.wladmirbrandao.com 13 / 90

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueios compartilhados/exclusivos:

Nenhuma intercalação deve ser permitida depois que uma das operações for iniciada até que termine.

 $Nome_item_dado, LOCK, Num_de_leituras, \ Bloqueio_transacao$

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueios compartilhados/exclusivos:

- Regras impostas pelo gerenciador de bloqueio do SGBD:
 - Uma transação precisa emitir a operação read_lock(X) ou write_lock(X) antes que qualquer operação read_item(X) seja realizada.
 - 2. Uma transação precisa emitir a operação *write_lock(X)* antes que qualquer operação *write_item(X)* seja realizada.
 - Uma transação precisa emitir a operação unlock(X) após todas as operações read_item(X) e write_item(X) serem completadas.

www.wladmirbrandao.com 15 / 90

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueios compartilhados/exclusivos:

- Regras impostas pelo gerenciador de bloqueio do SGBD:
 - 4. Uma transação não emitirá uma operação $read_lock(X)$ se ela já mantiver um bloqueio de leitura (compartilhado) ou um bloqueio de gravação (exclusivo) no item X.
 - 5. Uma transação não emitirá uma operação write_lock(X) se ela já mantiver um bloqueio de leitura (compartilhado) ou um bloqueio de gravação (exclusivo) no item X.
 - Uma transação não emitirá uma operação unlock(X) a menos que mantenha um bloqueio de leitura (compartilhado) ou um bloqueio de gravação (exclusivo) no item X.

www.wladmirbrandao.com 16 / 90

NATUREZA E OS TIPOS DE BLOQUEIOS

Bloqueio de certificação:

- Uma transação que já mantém um bloqueio no item tem permissão, sob certas condições de converter o bloqueio de um estado bloqueado para outro.
 - Upgrade (read-locked para write-locked)
 - Downgrade (write-locked para read-locked)
- A tabela de bloqueios precisa incluir identificadores de transação no registro para cada bloqueio para armazenar a informação sobre quais transações mantém bloqueios no item.

www.wladmirbrandao.com 17 / 90

Protocolo de bloqueio em duas fases básico (2PL básico) Bloqueio de certificação

- Todas as operações de bloqueio (read_lock, write_lock) precedem a primeira operação de desbloqueio na transação.
 - Fase de expansão ou crescimento (primeira): novos bloqueios em itens podem ser adquiridos, mas nenhum pode ser liberado.
 - Fase de encolhimento (segunda): bloqueios existentes podem ser liberados, mas nenhum novo bloqueio pode ser adquirido.

Protocolo de bloqueio em duas fases básico (2PL básico) Bloqueio de certificação

- Se a conversão de bloqueio for permitida:
 - O upgrading de bloqueios ocorre na fase de expansão.
 - O downgrading de bloqueios ocorre na fase de encolhimento.

www.wladmirbrandao.com 19 / 90

PROTOCOLO DE BLOQUEIO EM DUAS FASES BÁSICO (2PL BÁSICO)

- ▶ Resultados de possíveis schedules seriais de T₁ e T₂:
 - ▶ Valores iniciais: X=20, Y=30
 - ► Schedule serial resultante T_1 seguido por T_2 : X=50, Y=80
 - ► Schedule serial resultante T_2 seguido por T_1 : X=70, Y=50

T ₁	T ₂
read_lock(Y);	read_lock(X);
read_item(Y);	read_item(X);
unlock(Y);	unlock(X);
write_lock(X);	write_lock(Y);
read_item(X);	read_item(Y);
X := X + Y;	Y:= X + Y;
write_item(X);	write_item(Y);
unlock(X);	unlock(Y);

Transações que não obedecem ao bloqueio em duas fases.

www.wladmirbrandao.com 20 / 90

PROTOCOLO DE BLOQUEIO EM DUAS FASES BÁSICO (2PL BÁSICO)

- ▶ Um schedule não serializável S que usa bloqueios.
 - ► Resultado de schedule S: X=50, Y=50 (não serializável)

	T ₁	T ₂
empo	read_lock(Y); read_item(Y); unlock(Y);	read_lock(X); read_item(X); unlock(X); write_lock(Y); read_item(Y); Y:= X + Y; write_item(Y); unlock(Y);
ļ	write_lock(X); read_item(X); X := X + Y; write_item(X); unlock(X);	· //

PROTOCOLO DE BLOQUEIO EM DUAS FASES BÁSICO (2PL BÁSICO)

- O protocolo de bloqueio, ao impor as regras de bloqueio em duas fases, também impõe a serialização.
- Se cada transação em um schedule seguir o protocolo de bloqueio em duas fases, o schedule é garantidamente serializável.
- O bloqueio em duas fases pode limitar a quantidade de concorrência passível de ocorrer em um schedule.

Protocolo de bloqueio em duas fases básico (2PL básico)

- Embora o protocolo de bloqueio em duas fases garanta a serialização, ele não permite todos os schedules serializáveis possíveis.
- Ou seja, alguns schedules serializáveis serão proibidos pelo protocolo.

PROTOCOLO DE BLOQUEIO EM DUAS FASES CONSERVADOR

- Variação conhecida como 2PL conservador (ou 2PL estático).
- Requer que uma transação bloqueie todos os itens que ela acessa antes que a transação inicie a execução, pré-declarando seu conjunto de leitura e de gravação.
- A transação começa em sua fase de encolhimento.
- Se um dos itens pré-declarados necessários não puder ser bloqueado, a transação espera até que os itens estejam disponíveis para bloqueio.
- É um protocolo livre de deadlock.

www.wladmirbrandao.com 24 / 90

PROTOCOLO DE BLOQUEIO EM DUAS FASES ESTRITO (2PL ESTRITO)

- Garante schedules estritos.
- Uma transação não libera nenhum de seus bloqueios exclusivos (gravação) até depois de confirmar ou abortar.
- Levando a um schedule estrito para facilidade de recuperação.
- O 2PL estrito não é livre de deadlock.

PROTOCOLO DE BLOQUEIO EM DUAS FASES RIGOROSO (2PL RIGOROSO)

- Garante schedules estritos.
- Uma transação não libera nenhum de seus bloqueios (exclusivo ou compartilhado) até depois de confirmar ou abortar.
- A transação está em sua fase de expansão até que termine.
- ▶ É mais fácil de implementar do que o 2PL estrito.

- Em muitos casos, o próprio subsistema de controle de concorrência é responsável por gerar as solicitações read_lock e write_lock.
- O uso de bloqueios pode causar dois problemas:

deadlock e inanição (starvation)

www.wladmirbrandao.com 27 / 90

DEADLOCK (IMPASSE)

- Conjunto de transações esperando por algum item bloqueado por outra transação do conjunto.
- Ou seja, transações em fila de espera.
- Para lidar com deadlock:
 - Protocolos de prevenção
 - Detecção
 - Timeouts

VARIAÇÕES DE PROTOCOLOS DE PREVENÇÃO DE DEADLOCK:

- Requer que cada transação bloqueie todos os itens que precisar com antecedência. Se qualquer um dos itens não puder ser obtido, a transação espera e tenta novamente.
- 2. **Ordena todos os itens** no BD e garante que as transações bloqueiem os itens de acordo com essa ordem.
- Rótulo de tempo (timestamp) de transação TS(T): O rótulo de tempo é um identificador exclusivo para cada transação. É gerado pelo sistema na mesma ordem que os tempos de início de transação.

Se a transação T_1 iniciar antes da transação T_2 , então $TS(T_1) < TS(T_2)$

Protocolos de prevenção de deadlock

- Protocolos que incluem rótulos de tempo:
 - ▶ Esperar-morrer (wait-die): Se $TS(T_i) < TS(T_j)$, T_i tem permissão para esperar.
 - Caso contrário, aborta T_i e o reinicia posteriormente com o mesmo rótulo de tempo.
 - Ferir-esperar (wound-wait): Se TS(T_i) < TS(T_j), aborta T_i e o reinicia posteriormente com o mesmo rótulo de tempo.
 Caso contrário, T_i tem permissão para esperar.

www.wladmirbrandao.com 30 / 90

Protocolos de prevenção de deadlock

- Protocolos que incluem algoritmos sem espera e espera cuidadosa:
 - Algoritmo sem espera: Se uma transação for incapaz de obter um bloqueio, ela é abortada e reiniciada após certo atraso de tempo sem verificar se um deadlock ocorrerá ou não.
 - Algoritmo espera cuidadosa: Se T_j não estiver bloqueada, então T_i está bloqueada e tem permissão para esperar; caso contrário, aborte T_i.

www.wladmirbrandao.com 31 / 90

DETECÇÃO DE DEADLOCK

Sistema verifica se um estado de deadlock realmente existe.

Soluções:

- Grafo de espera, modo de detectar um estado de deadlock.
- Um nó é criado para cada transação que está sendo executada
- Uma aresta é direcionada caso uma transação esteja esperando para bloquear um item que está atualmente bloqueado por uma outra transação.
- Caso esta transação libere o bloqueio no item, a aresta é removida.
- Temos um estado de deadlock, se o grafo de espera tiver um ciclo.

DETECÇÃO DE DEADLOCK

Sistema verifica se um estado de deadlock realmente existe.

Se o sistema estiver em deadlock, algumas das transações que causam este estado precisam ser abortadas.

- Soluções:
 - Algoritmo seleção de vítima, escolha de quais transações abortar.
 - Evita a seleção de transações que estiveram em execução por muito tempo e que realizam muitas atualizações.
 - Seleciona transações mais novas.

TIMEOUTS (TEMPO-LIMITE)

- Se uma transação esperar por um período maior que o timeout, o sistema pressupõe que a transação pode entrar em deadlock e a aborta.
- Baixo overhead e simples.

Inanição (starvation)

Acontece quando uma transação não pode prosseguir por um período indefinido, enquanto outras continuam normalmente (bloqueio).

Soluções:

- Possuir um esquema de espera justo, como o uso de uma fila primeiro-a-chegar-primeiro-a-ser-atendido; as transações bloqueiam um item na ordem em que solicitaram o bloqueio originalmente.
- Aumentar a prioridade de uma transação quanto mais tempo ela esperar.

Inanição (starvation)

A inanição também pode ocorrer por causa da seleção de vítima se o algoritmo selecionar a mesma transação como vítima repetidamente.

Soluções:

- O algoritmo pode usar prioridades maiores para transações que tiverem sido abordadas várias vezes.
- Os esquemas esperar-morrer e ferir-esperar evitam a inanição.

www.wladmirbrandao.com 36 / 90

TÉCNICAS DE CONTROLE DE CONCORRÊNCIA:

CONTROLE DE CONCORRÊNCIA POR ORDENAÇÃO DE RÓTULO DE TEMPO

www.wladmirbrandao.com 37 / 90

- O uso de bloqueios, combinado com o protocolo 2PL, garante e serialização de schedules;
- Schedules serializáveis (2PL) têm seus schedules serialis equivalentes com base na ordem em que as transações em execução bloqueiam os itens adquiridos;
- Se uma transação precisar de um item que está bloqueado.
 - É forçada a esperar até que o item seja liberado.

- Por conta de deadlocks, algumas transações podem ser abortadas e reiniciadas;
- Outra técnica de serialização:
 - Envolve o uso de rótulos de tempo de transação para ordenar a execução da transação para um schedule serial equivalente.

www.wladmirbrandao.com 39 / 90

RÓTULOS DE TEMPO (TIMESTAMP)

TS(T) - Rótulo de tempo de uma transação

- Identificador exclusivo criado pelo SGBD para identificar uma transação;
- Os valores são atribuídos na ordem em que as transações são submetidas ao sistema;
 - Hora de início da transação.
- As técnicas de controle de concorrência baseadas na ordenação por rótulo de tempo não usam bloqueios;
 - Deadlocks não podem ocorrer.

www.wladmirbrandao.com 40 / 9

RÓTULOS DE TEMPO (TIMESTAMP)

- Podem ser gerados de várias maneiras. Abaixo, duas alternativas:
 - 1. Utilizar um contador que é incrementado toda vez que seu valor é atribuído a uma transação;
 - Tem um valor máximo finito o sistema precisa reiniciar o contador periodicamente.
 - 2. Usar o valor atual de data/hora do clock do sistema;
 - Deve-se garantir que dois valores de rótulo de tempo sejam gerados durante a mesma batida do clock.

www.wladmirbrandao.com 41 / 90

- Ordena as transações com base em seus rótulos de tempo;
- Ordenação de rótulo de tempo (TO):
 - Um schedule em que as transações participam é serializável e o único schedule serial equivalete permitido tem as transações na ordem de seus valores de rótulo de tempo;
 - O schedule é equivalente à ordem serial em particular correspondente à ordem dos rótulos de tempo da transação.

RÓTULOS DE TEMPO (TIMESTAMP) - ALGORITMO DE ORDENAÇÃO

- Para cada item acessado pelas operações em conflito no schedule, a ordem em que o item é acessado não deve violar a ordem do rótulo de tempo;
- O algoritmo associa a cada item X do banco de dados dois valores de rótulo de tempo (TS):

Read_TS(X)

- O rótulo de tempo de leitura do item X é o maior entre todos os rótulos de tempo das transações que leram com sucesso o item X;
- read_TS(X) = TS(T), onde T é a transação mais recente que leu X com sucesso.

www.wladmirbrandao.com 43 / 90

RÓTULOS DE TEMPO (TIMESTAMP) - ALGORITMO DE ORDENAÇÃO

O algoritmo associa a cada item X do banco de dados dois valores de rótulo de tempo (TS):

2 Write_TS(X)

- O rótulo de tempo de gravação do item X é o maior de todos os rótulos de tempo das transações que gravarem com sucesso o item X;
- write_TS(X) = TS(T), onde T é a transação mais recente que gravou X com sucesso.

- Sempre que alguma transação T tenta emitir uma operação read_item(X) ou write_item(X):
 - O algoritmo TO básico compara o rótulo de tempo de T com read_TS(X) e write_TS(X) para garantir que a ordem do rótulo não seja violada;
- Se a ordem for violada:
 - A transação T é abortada e submetida novamente com um novo rótulo de tempo.

- Se T for abortada e revertida:
 - Qualquer transação T₁ que possa ter usado um valor gravado por T também precisa ser revertida.
- O efeito acima é chamado de Propagação de cancelamento ou Rollback em cascata;
 - Os schedules produzidos não têm garantias de serem recuperáveis.
- Nessário adicionar um protocolo adicional para garantir que os schedules sejam recuperáveis, sem cascata ou estritos.

- O algoritmo de controle de concorrência deve verificar se as operações em conflito violam a ordenação em rótulo de tempo nos dois casos a seguir:
 - Sempre que uma transação T emitir uma operação write_item(X), deve ser verificado:
 - Se read_TS(X) > TS(T) ou se write_TS(X) > TS(T), aborte e reverta T e rejeite a operação;
 - Se a condição acima não ocorrer, execute a operação write_item(X) de T e defina write_TS(X) como TS(T).

- O algoritmo de controle de concorrência deve verificar se as operações em conflito violam a ordenação em rótulo de tempo nos dois casos a seguir:
 - 2 Sempre que uma transação T emitir a operação read_item(X), o seguinte deve ser verificado:
 - Se write_TS(X) > TS(T), então aborte e reverta T e rejeite a operação;
 - Se write_TS(X) <= TS(T), então execute a operação read_item(X) de T e defina read_TS(X) como o maior de TS(T) e o read_TS(X) atual.

RÓTULOS DE TEMPO (TIMESTAMP) - ALGORITMO DE ORDENAÇÃO

- Sempre que o algoritmo de TO básico detectar duas operações em conflito que ocorrem na ordem incorreta:
 - Rejeita uma das duas, abortando a transação que a emitiu.
- Os schedules gerados pela TO básica têm garantias de serem serializáveis por conflito;
- Alguns schedules são possíveis sub um protocolo que não são permitidos sob o outro.
 - Nenhum protocolo permite todos os schedules serializáveis possíveis

www.wladmirbrandao.com 49 / 9

RÓTULOS DE TEMPO (TIMESTAMP) - ALGORITMO DE ORDENAÇÃO

▶ TO estrita

- Garante que os schedules sejam tanto estritos (maior facilidade de recuperação) quanto serializáveis (conflito);
- Uma transação T emite um read_item(X) ou write_item(X) tal que TS(T) > write_TS(X) tenha sua operação adiada até que a transação T' que gravou o valor de X (portanto, TS(T') = write_TS(X)) tenha sido confirmada ou abortada;
- Não causa deadlock, pois T espera por T' somente se TS(T) > TS(T').

www.wladmirbrandao.com 50 / 90

RÓTULOS DE TEMPO (TIMESTAMP) - ALGORITMO DE ORDENAÇÃO

- Regras da gravação de Thomas
 - Modificação do TO básico;
 - Não impõe a serialização por conflito, mas rejeita menos operações de gravação ao modificar as verificações para a operação write_item(X) da seguinte forma:
 - a Se read_TS(X) > TS(T), então aborte e reverta T, e rejeite a operação;
 - Se write_TS(X) > TS(T), então não execute a operação de gravação, mas continue processando;
 - c Se nenhuma condição em (a) nem em (b) acontecer, então execute a operação write_item(X) de T e defina write_TS(X) para TS(T).

www.wladmirbrandao.com 51/90

TÉCNICAS DE CONTROL E DE CONCORRÊNCIA:

TÉCNICAS PARA CONTROLE DE CONCORRÊNCIA MULTIVERSÃO

www.wladmirbrandao.com 52 / 90

- Protocolos para controle de concorrência que mantêm os valores antigos de um item de dados quando este é atualizado;
- Quando uma transação requer acesso a um item, uma versão apropriada é escolhida para manter a serialização do schedule atualmente em execução;
- Necessidade de mais armazenamento para manter várias versões dos itens no BD;
 - As versões mais antigas podem ser mantidas de qualquer forma.

www.wladmirbrandao.com 53 / 90

- Algumas aplicações de BD exigem que versões mais antigas sejam mantidas como histórico da evolução de valores;
- Banco de dados temporal (caso extremo)
 - Registra todas as mudanças e os momentos em que elas ocorreram;
 - Não existe penalidade de armazenamento adicional.
- Além dos esquemas de controle de concorrência, o método de controle de concorrência de validação também mantém múltiplas versões.

www.wladmirbrandao.com 54 / 90

Multiversão baseada na ordenação de rótulo de tempo

Para cada versão, o valor da versão X_i e os dois rótulos de tempo são mantidos:

1. Read_TS(X_i)

 O rótulo de tempo de leitura de X_i é o maior de todos os rótulos de tempo de transações que leram a versão X_i com sucesso.

2. Write_TS(X_i)

 O rótulo de tempo de gravação de X_i é o rótulo de tempo da transação que gravou o valor da versão X_i.

Multiversão baseada na ordenação de rótulo de tempo

- Sempre que uma transação T tem permissão para executar uma operação write_item(X), uma nova versão X_{k+1} do item X é criada, e tanto write_TS(X_{k+1}) quanto read_TS(X_{k+1}) são definidos como TS(T);
- Regras usadas para garantir a serialização:
 - 1) Se a transação T emitir uma operação write_item(X) e a versão i de X tiver o write_TS(X_i) mais alto de todas as versões de X <= TS(T) e read_TS(X_i) > TS(T):
 - Aborte e retroceda a transação T.
- Senão Crie uma nova versão X_i de X com read_ $TS(X_i) = write_{TS}(X_i) = TS(T)$.

www.wladmirbrandao.com 56 / 90

Multiversão baseada na ordenação de rótulo de tempo

- Regras usadas para garantir a serialização:
 - 2) Se a transação T emitir uma operação read_item(X):
 - ▶ Determine a versão i de X que tem o write_TS(X_i) mais alto de todas as versões de X <= a TS(T); depois, retorne o valor de X_i à transação T e defina o valor de read_TS(X_i) ao maior de TS(T) e o read_TS(X_i) atual.
- Para garantir a facilidade de recuperação:
 - Uma transação T não deve ter permissão para confirmar até que todas as transações que gravam alguma versão que T leu tenha sido confirmadas.

www.wladmirbrandao.com 57 / 90

Multiversão baseada na ordenação de rótulo de tempo

- Em modo múltiplo, existem três tipos de bloqueio para um item:
 - Leitura, gravação e certificação.
- O estado de LOCK(X) para um item X pode ser um dentre bloqueado para leitura, bloqueado para gravação, bloqueado para certificação ou desbloqueado;
- No esquema de bloqueio padrão, com apenas bloqueios de leitura e gravação, um bloqueio de gravação é um bloqueio exclusivo.

Multiversão baseada na ordenação de rótulo de tempo

► Tabela de compatibilidade de bloqueio:

	Leitura Gravação	
Leitura	Sim	Não
Gravação	Não	Não

Tabela de compatibilidade para o esquema de bloqueio leitura/gravação.

Multiversão baseada na ordenação de rótulo de tempo

- A ideia do 2PL multiversão é permitir que outras transações T leiam um item X enquanto uma única transação T mantém o bloqueio de gravação em X.
 - Custo: uma transação pode ter de esperar sua confirmação até que obtenha bloqueios de certificação exclusivos em todos os itens que atualizou;
 - Evita a propagação de abortos;
 - Podem ocorrer deadlocks se o upgrading de um bloqueio de leitura para um bloqueio de gravação for permitido.

www.wladmirbrandao.com 60 / 90

Multiversão baseada na ordenação de rótulo de tempo

► Tabela de compatibilidade de bloqueio:

	Leitura	Gravação	Certificação
Leitura	Sim	Sim	Não
Gravação	Sim	Não	Não
Certificação	Não	Não	Não

Tabela de compatibilidade para o esquema de bloqueio leitura/gravação/certificação.

TÉCNICAS DE CONTROL E DE CONCORRÊNCIA:

TÉCNICAS DE CONTROLE DE CONCORRÊNCIA DE VALIDAÇÃO (OTIMISTA)

www.wladmirbrandao.com 62 / 90

- Também conhecidas como técnicas de validação ou certificação;
- Nenhuma verificação é feita enquanto a transação está executando;
- Vários métodos teóricos são baseados nesta técnica de validação - o esquema será apresentado a seguir;
- As atualizações na transação não são aplicadas diretamente aos itens do BD até que a transação alcance seu final;
 - Cópias locais dos itens de dados

- Ideia geral do método:
 - Realizar todas as verificações ao mesmo tempo;
 - A execução da transação prossegue com um mínimo de overhead até que a fase de validação seja alcançada.
- Utiliza rótulos de tempo;
- Requer que os write_sets e reads_sets das transações sejam mantidas pelo sistema;
- Tempos de início e fim para algumas das três fases precisam ser mantidas para cada transação.

www.wladmirbrandao.com 64 / 90

Fases para este protocolo de controle de concorrência:

1. Fase de leitura:

- Uma transação pode ler valores dos itens de dados confirmados com base no BD;
- As atualizações são aplicadas a cópias locais.

2. Fase de validação:

- Verificação realizada para garantir que a serialização não será violada;
- Confere se as atualizações da transação foram aplicadas ao BD.

3. Fase de gravação:

- Somente se a fase da validação for bem-sucedida;
- Atualizações da transação são aplicadas ao BD.

www.wladmirbrandao.com 65 / 90

- A fase de validação para T_i verifica se, para cada transação T_j que é confirmada ou está em sua fase de validação, uma das seguintes condições é mantida:
 - 1. A transação T_j completa sua fase de gravação antes que T_i inicie sua fase de leitura;
 - T_i inicia sua fase de gravação depois que T_j completa sua fase de gravação, e o read_set de T_i não tem itens em comum com o write_set de T_j;
 - 3. Tanto o read_set quanto o write_set de T_i não têm itens em comum com o write_set de T_j, e T_j completa sua fase de leitura antes que T_i o faça.

www.wladmirbrandao.com 66 / 90

TÉCNICAS DE CONTROLE DE CONCORRÊNCIA:

GRANULARIDADE DE ITENS E BLOQUEIO DE GRANULARIDADE MÚLTIPLO

www.wladmirbrandao.com 67 / 90

- Todas as técnicas de concorrência consideram que o banco de dados é formado por uma série de itens de dados nomeados;
- Um item de BD poderia ser escolhido como sendo um dos seguintes:
 - Um registro de BD;
 - Um valor de campo de um registro do BD;
 - Um bloco de disco;
 - Um arquivo inteiro;
 - Um banco de dados inteiro.
- ► A granularidade pode afetar o desempenho do controle de concorrência e recuperação.

www.wladmirbrandao.com 68 / 90

GRANULARIDADE DO ITEM DE DADOS - BLOQUEIO

- Tamanho dos itens de dados;
- Granularidade fina refere-se a tamanhos de item pequenos;
- Granularidade grossa refere-se a tamanhos de itens grandes.

A seguir, será apresentada a discussão do tamanho do item de dados no contexto do bloqueio:

 Quanto maior o tamanho do item de dados, menor o grau de concorrência permitido, e vice-versa;

GRANULARIDADE DO ITEM DE DADOS - BLOQUEIO

- O sistema terá um grande número de bloqueios ativos para serem tratados pelo gerenciador de bloqueios
 - Cada transação está associada a um bloqueio.
- Quanto mais operações de bloqueio/desbloqueio, maior o overhead.
 - Também necessário mais espaço de armazenamento para a tabela de bloqueio.

GRANULARIDADE DO ITEM DE DADOS - BLOQUEIO

- Para os rótulos de tempo, o armazenamento é exigido para o read_TS e write_TS para cada item de dados
 - Haverá um overhead semelhante para o tratamento de um grande número de itens.

Qual o melhor tamanho de item? Depende dos tipos de transações envolvidas.

 Se uma transação típica acessar um pequeno número de registros, é vantajoso ter uma granularidade com um registro.

GRANULARIDADE DO ITEM DE DADOS - BLOQUEIO

Qual o melhor tamanho de item? Depende dos tipos de transações envolvidas.

Se uma transação acessar muitos registros em um mesmo arquivo, é vantajoso ter uma granularidade de bloco ou arquivo de modo que a transação considerará todos os registros como um (ou alguns) item(ns) de dados.

BLOQUEIO COM NÍVEL DE GRANULARIDADE MÚLTIPLO

 Como o melhor tamanho de granularidade depende da transação dada, é apropriado que um sistema de BD admita múltiplos níveis de granularidade.

www.wladmirbrandao.com 72 / 90

BLOOUEIO COM NÍVEL DE GRANULARIDADE MÚLTIPLO

Hierarquia de granularidade simples com um banco de dados que contém dois arquivos - cada arquivo com várias páginas de disco, e cada página contendo vários registros:

www.wladmirbrandao.com 73 / 90

BLOQUEIO COM NÍVEL DE GRANULARIDADE MÚLTIPLO

- O esquema apresentado anteriormente ilustra o protocolo 2PL com nível de granularidade múltiplo.
 - O bloqueio pode ser solicitado em qualquer nível;
 - Tipos adicionais de bloqueio serão necessários para dar suporte a tal protocolo com eficiência.
- Para o tornar mais prático, são necessários os bloqueios de intenção.

BLOQUEIOS DE INTENÇÃO

- Uma transação indica, junto com o caminho da raíz até o nó desejado, qual o tipo de bloqueio ele exigirá de um dos descendentes do nó;
- Três tipos de bloqueios de intenção:

1. Intention-shared (IS)

 Um ou mais bloqueios compartilhados serão solicitados em algum ou alguns nós descendentes.

BLOQUEIOS DE INTENÇÃO

- Três tipos de bloqueios de intenção:
 - 2 Intention-exclusive (IX)
 - Um ou mais bloqueios exclusivos serão solicitados em algum ou alguns nós descendentes.
 - 3 Shared-intention-exclusive (SIX)
 - O nó atual está bloqueado de modo compartilhado, mas que um ou mais bloqueios exclusivos serão solicitados em algum ou alguns nós descendentes.

BLOQUEIOS DE INTENÇÃO

Tabela de compatibilidade dos três bloqueios de intenção:

	IS	IX	S	SIX	Х
IS	Sim	Sim	Sim	Sim	Não
IX	Sim	Sim	Não	Não	Não
S	Sim	Não	Sim	Não	Não
SIX	Sim	Não	Não	Não	Não
X	Não	Não	Não	Não	Não

www.wladmirbrandao.com 77 / 90

- Protocolo de bloqueio com granularidade múltipla, regras:
 - 1. A compatibilidade de bloqueio deve ser aderida;
 - 2. A raíz da árvore precisa ser bloqueada primeiro, em qualquer modo;
 - Um nó N pode ser bloqueado por uma transação T no modo S ou IS somente se o nó pai N já estiver bloqueado pela transação T no modo IS ou IX;

www.wladmirbrandao.com 78 / 90

- Protocolo de bloqueio com granularidade múltipla, regras:
 - 4 Um no N só pode ser bloqueado por uma transação T no modo X, IX ou SIX se o pai do nó N já estiver bloqueado pela transação T no modo IX ou SIX;
 - 5 Uma transação **T** só pode bloquear um nó se não tiver desbloqueado qualquer nó;
 - 6 Uma transação T só pode desbloquear um nó, N, se nenhum dos filhos do nó N estiver atualmente bloqueado por T.

www.wladmirbrandao.com 79 / 90

TÉCNICAS DE CONTROLE DE CONCORRÊNCIA:

BLOQUEIOS PARA CONTROLE DE CONCORRÊNCIA DE ÍNDICES

www.wladmirbrandao.com 80 / 90

- O bloqueio em duas fases também pode ser aplicado a índices:
 - Os nós de índice correspondem a páginas de disco.
- A estrutura de árvore do índice pode ser aproveitada quando se desenvolve um esquema de controle de concorrência.
- Técnica conservadora para inserções:
 - Bloquear o nó raíz no modo exclusivo e depois acessar o nó filho apropriado da raíz;
 - Se o nó filho não estiver cheio, o bloqueio no nó raíz pode ser liberado;

www.wladmirbrandao.com 81 / 90

Técnica conservadora para inserções:

- Aplicável a toda a árvore (até a folha);
- Embora os bloqueios exclusivos sejam mantidos, eles são logo liberados.

Técnica alternativa (I) - otimista:

- Manter bloqueios compartilhados nos nós que levam ao nó folha, com um bloqueio exclusivo na folha;
- Se a inserção fizer que a folha seja divida, esta se propagará para os nós de maiores níveis;
- Ao fim, os bloqueios nos nós de nível mais alto podem receber um upgrade para o modo exclusivo.

www.wladmirbrandao.com 82 / 90

Técnica alternativa (II):

- Utiliza uma variante B⁺-tree Árvore B-link;
- Os nós irmãos no mesmo nível são ligados em cada nível;
- Permite que os bloqueios compartilhados sejam usados quando se solicita uma página e exige que o bloqueio seja liberado antes de acessar o nó filho;
- Se a inserção fizer que a folha seja divida, esta se propagará para os nós de maiores níveis;
- Para inserção: o bloqueio compartilhado em um nó receberia um upgrade para o modo exclusivo;

www.wladmirbrandao.com 83 / 90

- Técnica alternativa (II):
 - Para divisão: o nó pai precisa se bloqueado novamente no modo exclusivo;
 - Complicação nas operações de pesquisa executadas simultâneamente com a atualização;
 - Para exclusão (em que dois ou mais nós da árvore são mesclados): faz parte do protocolo de concorrência da árvore B-link.
 - Os bloqueios nos nós a serem mesclados, e em seus "pais"são mantidos.

www.wladmirbrandao.com 84 / 90

TÉCNICAS DE CONTROLE DE CONCORRÊNCIA:

OUTRAS QUESTÕES

www.wladmirbrandao.com 85 / 90

INSERÇÃO, EXCLUSÃO E REGISTROS FANTASMAS

- Quando um item é inserido, ele não pode ser acessado antes que a operação seja concluída.
 - Um bloqueio para o item pode ser criado e definido como exclusivo (gravação);
 - O bloqueio pode ser liberado ao mesmo tempo dos demais bloqueios;
 - Para um protocolo de rótulo de tempo, os rótulos de leitura e gravação são definidos como o rótulo de tempo da transação de criação.

INSERÇÃO, EXCLUSÃO E REGISTROS FANTASMAS

- Quando um item é excluído:
 - Um bloqueio exclusivo deve ser obtido antes que a transação possa excluir o item;
 - Para a ordenação do rótulo do tempo, o protocolo precisa garantir que nenhuma gravação posterior tenha lido ou gravado o item antes da permissão para exclusão.

www.wladmirbrandao.com 87 / 90

INSERÇÃO, EXCLUSÃO E REGISTROS FANTASMAS

Problema do fantasma:

- Ocorre quando um novo registro que está sendo inserido por uma transação T satisfaz uma condição que um conjunto de registros acessados por outra transação T' precisa satisfazer;
- Se outras operações nas duas transações estiverem em conflito, o conflito do registro fantasma pode não ser reconhecido pelo protocolo.
- Solução: Bloqueio de índice
- Solução alternativa: Bloqueio de predicado
 - Bloqueia o acesso a todos os registros que satisfazem um predicado (condição) qualquer de maneira semelhante;

www.wladmirbrandao.com 88 / 90

LATCHES

- Bloqueios mantidos por uma curta duração;
- Não seguem o protocolo de controle de concorrência normal
- Exemplo:
 - Pode ser usado para garantir a integridade física de uma página quando ela está sendo gravada do buffer para o disco;
 - Um latch seria adquirido para a página, a página seria gravada no disco e, depois, o latch seria liberado.

www.wladmirbrandao.com 89 / 90

OBRIGADO

Wladmir Cardoso Brandão

www.wladmirbrandao.com

"Science is more than a body of knowledge. It is a way of thinking." Carl Sagan