(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-222241

(43)公開日 平成8年(1996)8月30日

(51) Int.Cl. ⁶	識別記号 广内整理番号	F I	技術表示箇所
H 0 1 M 8/02		H 0 1 M 8/02	E
C 0 1 B 31/04	1 0 1	C 0 1 B 31/04	101A
II 0 1 M 8/10		H 0 1 M 8/10	
		審査請求 未請求	請求項の数2 FD (全 5 頁)
(21)出願番号	特願平7-46329	(71)出願人 00021957	76
		東海カー	-ボン株式会社
(22)出顧日	平成7年(1995)2月9日	東京都港	越区北青山1丁目2番3号
		(72)発明者 榎本 三	三男
			版北青山一丁目2番3号 東海力 株式会社内
		(72)発明者 池口 約	
			· 医北青山一丁目2番3号 東海力
			式会社内
			高畑 正也

(54) 【発明の名称】 固体高分子型燃料電池用黒鉛部材の製造方法

(57)【要約】

【日的】 固体高分子型燃料電池のセパレータや集電体 に用いられる黒鉛部材の製造方法を提供する。

【構成】 最大粒径125μm以下の炭素質粉末に結合材を加えて加熱混練後C1P成形し、次いで焼成、黒鉛化して得られた平均気孔径10μm以下、気孔率20%以下の等方性黒鉛材に熱硬化性樹脂液を含浸、硬化処理する(請求項1)および含浸、硬化処理を、10Torr以下の減圧下に保持された容器内で等方性黒鉛材を熱硬化性樹脂液中に浸漬し所定時間保持した後、容器内を3㎏/cm²以上に加圧して70℃以上の温度で加熱する(請求項2)構成からなる製造方法。

1

【特許請求の範囲】

【請求項1】 最大粒径125μm 以下の炭素質粉末に結合材を加えて加熱混練後CIP成形し、次いで焼成、 黒鉛化して得られた平均気孔径10μm 以下、気孔率2 0%以下の等方性黒鉛材に熱硬化性樹脂液を含浸、硬化 処理することを特徴とする固体高分子型燃料電池用黒鉛 部材の製造方法。

【請求項2】 含浸、硬化処理を、10Torr以下の減圧 下に保持された容器内で等方性黒鉛材を熱硬化性樹脂液 中に浸漬し所定時間保持した後、容器内を3kg/cm²以上 10 に加圧して70℃以上の温度で加熱する請求項1記載の 固体高分子型燃料電池用黒鉛部材の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、固体高分子型(SPE型)燃料電池のセパレータや集電体に用いられる黒鉛部材の製造方法に関する。

[0002]

【従来の技術】固体高分子型燃料電池はパーフルオロカーボンスルフォン酸などのイオン交換膜からなる固体高分子の電解質膜と、その両側に設けた2つの電極とそれぞれの電極に水素などの燃料ガスおよび酸素などの酸化剤ガスを供給するガス供給溝を設けたセパレータ、およびその外側に設けた2つの集電体から構成されている。

【0003】このセパレータには、燃料ガスと酸化剤ガスとを完全に分離した状態で電極に供給するために高度のガス不透過性が要求され、また電池反応に伴う発熱を効率よく放散させるために高い熱伝導性を有することが必要とされている。また集電体は電池反応により発生した電気エネルギーを効率よく取り出すために電気伝導性30に優れていることが必要である。

【0004】このような材質特性が要求されるセパレータや集電体として、例えば特開平4-267062号公報にはセバレータの材質を純銅やステンレス鋼などで構成する例が開示されている。しかしながら、これらの金属系の材質では燃料ガスとして用いる水素ガスと長時間に亘って接触するために、水素脆性が生じて材質劣化が起こり電池性能が悪化する欠点がある。

【0005】また、リン酸型燃料電池ではセパレータに 炭素質系の材料、特にガス不透過性に優れているガラス 状カーボン材が使用されている。ガラス状カーボン材は フェノール系樹脂やフラン系樹脂などの熱硬化性樹脂液 を成形し加熱硬化後、非酸化性雰囲気中800℃以上の 温度で焼成炭化して得られるガラス質の性状を呈する特 異な炭素材である。

【0006】しかしながら、ガラス状カーボン材は緻密な組織構造を有し高いガス不透過性を示す反面、硬度が高く脆性であるので加工性が悪いという欠点がある。更に、黒鉛材に比べて熱伝導率が低く電気抵抗も大きいという難点があり、リン酸型燃料電池に比較して高電流密 50

度で運転される固体高分子型燃料電池のセパレータや集 電体として使用するには適当でない。

【0007】黒鉛材は、一般にコークス、カーボンブラック、入造黒鉛粉、天然黒鉛粉などの炭素質粉末を骨材としてピッチ、タールなどの結合材を加えて加熱混練したのち所定形状に成形し、焼成、黒鉛化することにより製造され、ガラス状カーボン材に比べて高い熱伝導率を有し、電気抵抗も低い特性を示すのでヒータや導電体として多方面で有用されている。しかしながら、黒鉛材は組織中に微細な気孔空隙が無数に存在するため緻密性に欠け、ガス不透過性が劣る欠点がある。このため、黒鉛材をそのまま固体高分子型燃料電池のセパレータや集電体として用いることはできない。

【0008】この黒鉛材の気孔空隙に熱硬化性樹脂液を含浸し加熱硬化して、気孔空隙を閉塞することによりガス不透過性にする試みは従来から種々の方法が提案されている。例えば、含浸する樹脂を特定するものとして特開昭 52-125488 号公報には炭素材料にフリーデルクラフツ樹脂を含浸硬化する不浸透性炭素製品の製造方法が、特開昭 59-57975 号公報には炭素基材にフェノール樹脂とピッチとの相溶物を含浸し、該含浸物を炭化あるいは黒鉛化処理する不浸透性炭素材料の製造法が、また特公平 6-31184 号公報にはカーボン材にクレゾール樹脂を 40~95 重量%の割合で含有するクレゾール樹脂とフェノール樹脂の混合樹脂液を含浸硬化する不透過性カーボン材の製造方法などが提案されている。

【0009】また、含浸硬化条件を特定するものとして 特公平5-67595号公報には炭素質素材を含浸槽に 入れ、減圧下で液状の熱硬化性樹脂に浸漬し、ついで系 内を加圧状態に切り換えて液状樹脂が初期硬化するまで 30℃以上の温度で加熱処理する不浸透性炭素材の製造 方法が提案されている。

[0010]

【発明が解決しようとする課題】しかしながら、これらの方法で得られる不透過性炭素材を固体高分子型燃料電池のセパレータや集電体として用いるにはガス不透過性、熱伝導性および導電性をバランスよく付与する点で充分でないという問題点があった。

【0011】本発明者等は、黒鉛基材の気孔性状や熱硬化性樹脂液の含浸、硬化処理条件について研究を進めた結果、原料骨材である炭素質粉末の最大粒径および黒鉛基材の気孔性状ならびに熱硬化性樹脂液の含浸硬化条件を特定することにより、ガス不透過性、熱伝導性、導電性をパランスよく付与できることを見出した。

【0012】本発明は上記知見に基づいて開発されたもので、その目的は固体高分子型燃料電池のセパレータや 集電体として有用な黒鉛部材の製造方法を提供すること にある。

[0013]

10

.3

【課題を解決するための手段】上記の目的を達成するための本発明による固体高分子型燃料電池用黒鉛部材の製造方法は、最大粒径125μm以下の炭素質粉末に結合材を加えて加熱混練後CIP成形し、次いで境成、黒鉛化して得られた平均気孔径10μm以下、気孔率20%以下の等方性黒鉛材に熱硬化性樹脂液を含設、硬化処理すること(請求項1)、および含浸、硬化処理を、10Torr以下の減圧下に保持された容器内で等方性黒鉛材を熱硬化性樹脂液中に浸漬し所定時間保持した後、容器内を3kg/cm以上に加圧して70℃以上の温度で加熱することにより行うこと(請求項2)を構成上の特徴とする

【0014】セパレータや集電体の黒鉛部材は通常 $0.5\sim1$ mmに持く加工して使用されるが、件材となるコークスなどの炭素質粉末の粒径が大きいとこの加工時に粒子の脱落が起こるため、炭素質粉末は最大粒径が125 μ m 以下のものを用いることが必要である。最大粒径が125 μ m 以下のものを用いることが必要である。最大粒径が125 μ m を越えると樹脂液の含浸、硬化時に樹脂液の流出が起こり易くなるとともに、硬化後の薄肉に加工する際に炭素質粉末の脱落によりガス不透過性を損ねる。結合材としてはピッチ、タールなどが用いられ、貸材を結合材とともに加熱混練した後ラバーブレスによりCIP成形して所定形状のブロック状の成形体にする。成形体は非酸化性雰囲気に保持された高温炉内で800 C以上の温度に加熱して焼成炭化し、さらに黒鉛化炉内で200 C以上の温度により黒鉛化される。

【0015】この場合、用いる炭素質粉末の粒度分布、結合材の混合比率などを設定することにより得られる等方性黒鉛材の気孔性状を調整することができる。等方性黒鉛材の気孔性状としては平均気孔径10μm以下および気孔率20%以下のものを使用することが必要であり、平均気孔径が10μmを越えると熱硬化性樹脂液の硬化時に樹脂の一部が流出して気孔の充填が不充分となるためである。なお、平均気孔径が小さい場合には気孔内に熱硬化性樹脂液を含浸することが困難となるため、平均気孔径は0.4μm以上であることが好ましい。また、気孔率が20%以下のものを用いるのは、気孔率が20%を上回る場合には気孔内を熱硬化性樹脂で充分に充填し、閉塞することが困難となるからである。

【0016】含浸処理は上記気孔性状を備えた等方性黒 鉛材を10Torr以下の減圧下に保持された容器内に入れて脱気したのち、熱硬化性樹脂液を注入して浸漬し気孔内に熱硬化性樹脂液を充分に充填する。浸漬時間は等方性黒鉛材の大きさや樹脂粘度などにより適宜設定される。用いる熱硬化性樹脂液には特に制限はなくp113程度のスルフォン酸や硫酸酸性の水溶液に耐え得るフェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂などの樹脂が用いられるが、含浸性を考慮すると可及的に低粘度のものを適用することが好ましい。

【0017】次いで容器内を加圧状態に切り換えて、空 50

気、窒素などの加圧ガスにより3kg/cm²以上に加圧するとともに70℃以上の温度に加熱して、含浸した熱硬化性樹脂液の硬化処理を行う。この加圧下における加熱処理は熱硬化性樹脂液が一次硬化するまで行うが、一次硬化の速度が早過ぎると含浸した熱硬化性樹脂液の一部が流出して黒鉛基材の気孔空隙の深部までを閉塞することができないので加熱温度は130℃を越えないことが好ましい。この一次硬化処理を施した等方性黒鉛材は容器から取り出して、大気中で180℃以下の温度に加熱して完全に硬化(二次硬化)する。

[0018]

【作用】本発明の固体高分子型燃料電池用黒鉛部材の製造力はは、コークス、黒鉛粉末などの骨材となる炭素質粉末の最大粒径ならびに等方性黒鉛基材の気孔性状を特定することにより、熱硬化性樹脂液を気孔空隙内に効率よくた頃することができる。さらに、熱硬化性樹脂液の含れ、硬化処理は等方性黒鉛基材の気孔空隙中に存在するガスを減圧下に脱気したのち、加圧下に加熱することにより硬化処理するものであるから含浸した熱硬化性樹脂液の放出が抑制された状態で気孔空隙中で硬化する。したがって、等方性黒鉛材の気孔空隙を効果的に閉塞することが可能となる。

【0019】このようにして製造された等方性黒鉛材は、気孔空隙内が熱硬化性樹脂により充填閉塞されて高いガス不透過性を示すとともに黒鉛材の有する優れた熱化・身性および導電性を併有しており、固体高分子型燃料電池のセパレータや集電体として使用することができる。

[0020]

【実施例】以下、本発明の実施例を比較例と対比して説明する。

【0021】 実施例1~7、比較例1~3

炭素質粉末として最大粒径の異なるコークス粉末を用い、混合比率を変えてピッチを加え加熱混練したのち混 神物をラパープレスによりCIP成形し、成形品を非酸化性雰囲気中1000℃の温度で焼成炭化し、さらに黒 新化かにて3000℃の温度で黒鉛化した。この等方性 黒新村を縦横200㎜、厚さ50㎜に加工して気孔性状の異なる等力性黒鉛基材を得た。

【0022】この黒鉛基材を容器に入れて8Torrの減圧下に5時間保持して脱気したのち、フェノール樹脂液(粘度50ポイズ/20℃)又はエポキシ樹脂液(粘度1ポイズ/20℃)を注入し、0.5時間保持して黒鉛料けの気孔空隙中に樹脂液を含浸した。次いで、容器内を空気により所定圧力に加圧しながら所定温度に加熱して含浸した樹脂液を硬化処理したのち、厚さ0.7㎜にスライス加工して固体高分子型燃料電池用のセパレータとした。このようにして得られた等方性黒鉛材の気孔性状および含浸、硬化処理条件をまとめて表1に示した。

【0023】次いで、これらの等方性黒鉛材の各種特性

5

を測定し、結果を表 2 に示した。なお、測定値は下記の 方法による値である。

①固有抵抗($\mu\Omega$ ・cm): JIS R7202「人造黒 鉛電極の試験方法」の電圧降下法による。

②ガス透過率 (cm²/sec · atm): 厚さ 0. 7 mmの試験片 (ガス透過断面積 2 8 3 cm²)に窒素ガスにより所定の圧 力をかけて透過する窒素ガスの流量を測定し、次式から*

* 求めた。

ガス透過率=窒素ガス透過量(cm³) ×試験片厚(cm)/時間(sec) ×透過断面積(cm²) ×差圧(atm)

③熱伝導率(kcal/m · h · ℃) : レーザーフラッシュ法 による。

[0024]

【表1】

製造条件	コークス粉末	黒鉛基材の気孔特性		含没、硬化処理		
衆什 例No.	の最大粒径 (μm)	平均気孔径 (μm)	気孔率 (%)	樹脂液*	圧力 (kg/c㎡)	温度 (℃)
実施例1	100	2. 5	1 2	F	5	90
実施例2	4 0	1. 7	1 4	E	5	8 0
実施例3	1 2 5	8. 1	2 0	F	3	9 0
実施例4	6 0	3. 0	2 0	F	5	70
実施例 5	1 0	0. 4	1 2	E	1 0	8 0
実施例 6	5 0	1. 2	8	F	1 0	8 0
実施例7	100	2. 5	1 2	F	2	6 0
比較例1	150	1 5	2 2	F	5	9 0
比較例 2	500	4 5	1 5	F	3	9 0
比較例3	1 2 5	1 9	3 0	F	4	9 0

〔表注〕* F;フェノール樹脂液、 E;エポキシ樹脂液

[0025]

【表2】

	 	Т		
特性 例No.	固有抵抗 (μΩ・cm)	ガス透過率 (cm²/sec・atm)	熱伝導率 (kcal/m ·h ·℃)	ショア 硬度
実施例1	1000	< 1 0 - 6	1 1 0	7 6
実施例2	1 2 0 0	< 1 0 - 6	1 1 0	7 8
実施例3	1500	<10-6	8 0	6 2
実施例4	1000	< 1 0 - 6	110	6 5
実施例 5	1500	<10-6	8 0	8 5
尖施例 6	1000	< 1 0 - 6	1 1 0	80
実施例7	1030	<10-5	110	6 9
比較例1	1800	5×10 ⁻³	7 0	5 7
比較例2	900	9×10 ⁻⁹	1 2 0	5 5
比較例3	2400	4×10 ⁻⁴	3 0	4 0
参考例*	1050	3 5	110	60

〔表注〕* 等方性黒鉛材 東海カーボン (株) 製G347

【0026】表1、2の結果から実施例の黒鉛材は比較 例の黒鉛材に比べてガス透過率が小さく、高度のガス不 透過性を備えていることが判る。また、固有抵抗も小さ 30 加圧、加熱条件下に行うことによりガス不透過性に優れ 🜙 い上に大きな熱伝導率を示し、これらの特性がバランス よく付与されていることが認められる。

[0027]

【発明の効果】以上のとおり、本発明の固体高分子型燃 料電池用黒鉛部材の製造方法にしたがえば、骨材である

炭素質粉末の最大粒径および等方性黒鉛基材の気孔性状 を特定し、更に熱硬化性樹脂液の含浸硬化処理を特定の るとともに導電性ならびに熱伝導率をバランスよく付与 することができる。したがって、固体高分子型燃料電池 のセパレータや集電体に用いられる黒鉛部材の製造方法 として有用である。

BEST AVAILABLE COPY