Gestion de Portefeuille

TP-4: Impact de la matrice de covariance dans le modèle MV

Patrick Hénaff

Version: 30 mars 2022

```
library(xts)
library(hornpa)
library(lubridate)
library(xtable)
library(quantmod)
library(PerformanceAnalytics)
library(TTR)
library(lubridate)
library(roll)
library(Hmisc)
library(nFactors)
library(kableExtra)
library(broom)
get.src.folder <- function() {</pre>
  path.expand("../GP/src")
get.data.folder <- function() {</pre>
  path.expand("../GP/data")
source(file.path(get.src.folder(), 'utils.R'))
source(file.path(get.src.folder(), 'FileUtils.R'))
```

Données

On utilise la base de données "MultiAsset" du paquet FRAPO:

```
library(FRAPO)
data(MultiAsset)
R <- returnseries(MultiAsset, percentage=F, trim=T)</pre>
```

Quelques statistiques descriptives sont résumées ci-dessous:

Table 1: Résumé des données de marché

	mean	std dev	skewness	kurtosis
GSPC	0.0007196	0.0483492	-0.8809988	1.7602430
RUA	0.0011323	0.0503202	-0.8975063	1.8397675
GDAXI	0.0046327	0.0597951	-0.9841812	1.9749395
FTSE	0.0018748	0.0437702	-0.6912771	0.4962667
N225	-0.0030518	0.0623081	-1.0447685	2.8567460
EEM	0.0085561	0.0807882	-0.7309404	1.2765558
DJCBTI	0.0037850	0.0167642	0.7542986	2.7505223
GREXP	0.0037178	0.0101831	0.1244254	-0.4231236
BG05.L	0.0013854	0.0151824	0.2047405	1.1789559
GLD	0.0158004	0.0547407	-0.4762910	0.7606515

Etude de la matrice de covariance

On se propose d'étudier la matrice de covariance à l'aide de la formule de Stevens pour la matrice d'information $\mathcal{I} = \Sigma^{-1}$.

• Pour chaque actif, estimer le modèle

$$R_{i,t} = \beta_0 + \beta_i^T R_t^{(-i)} + \epsilon_{i,t}$$

avec $R_t^{(-i)}$ vecteur de rendement de tous les actifs sauf l'actif $i, \epsilon_{i,t} \sim \mathcal{N}(0, s_i^2)$

- Trier les modèles par R_i^2 décroissant. En déduire les actifs qui sont suceptibles de recevoir un poid important dans le portefeuille optimal MV
- Calculer les poids optimaux du modèle MV, et comparer avec les résultats des régressions.

Calculons les poids à partir de la formule de Stevens, et comparons avec les résultats d'une optimisation MV:

```
idx <- seq(ncol(R))
hedge.w <- matrix(NA, nrow=length(idx), ncol=length(idx))
resid <- vector("numeric", length(idx))
R2 <- vector("numeric", length(idx))
mu <- colMeans(R)
hedge.mu <- vector("numeric", length(idx))

for(i in idx) {
   idx2 <- idx[-i]
   res = summary(lm(as.formula(paste(names(R)[i], "~ . ")), data=R))
   hedge.w[i, idx2] = res$coefficients[,"Estimate"][-1]
   hedge.mu[i] <- sum(res$coefficients[,"Estimate"][-1] * mu[idx2])</pre>
```

```
resid[i] <- res$sigma
R2[i] <- res$r.squared
}

w.star <- (mu - hedge.mu)/resid**2
w.star <- w.star / (sum(w.star+abs(w.star))/2)

# optimisation MV

mu <- colMeans(R)
Sigma <- cov(R)
w <- solve(Sigma, mu)
w <- w / (sum(w+abs(w)) / 2)</pre>
```

Le tableau ci-dessous résume les calculs. On constate en premier lieu que le poids calculé par la formule de Stevens (w^*) coincide comme attendu avec le résultat de l'optimisation (w). On constate ensuite qu'il existe des actifs presque redondants: on peut répliquer RUA à l'aide d'un portefeuille composé des autres actifs, avec un ecart-type résiduel de 0.3%. Pour RUA et GSPC, une différence de rendement entre le titre et le portefeuille de couverture de 0.01% motive un poids de l'ordre de 30% dans le portefeuille optimal. Ceci illustre l'extrême sensibilité du portefeuille optimal aux estimations de rendement et de covariance.

	RUA	GSPC	EEM	FTSE	GDAXI	DJCBTI	N225	GREXP	BG05.L	GLD
RUA	NA	0.9944360	0.0152798	-0.0092317	-0.0527297	0.0133509	0.0141740	0.0304398	-0.0038081	0.0047265
GSPC	0.9786626	NA	-0.0144138	0.0188581	0.0616101	-0.0071170	-0.0080379	-0.0353573	-0.0053052	-0.0055844
EEM	2.3761407	-2.2776046	NA	0.3252629	-0.1569163	0.2901686	0.1109503	-0.1431530	0.1144624	0.0049203
FTSE	-0.3099280	0.6433106	0.0702194	NA	-0.0593744	0.2084721	0.1474742	0.1739383	0.1156949	-0.0523750
GDAXI	-0.5659893	0.6719678	-0.0108309	-0.0189834	NA	-0.0384100	-0.0290964	0.5384594	0.5012209	0.0671850
DJCBTI	0.9029563	-0.4891005	0.1261975	0.4199770	-0.2420182	NA	0.0802958	-0.6470762	0.5129561	-0.1310360
N225	1.6102497	-0.9278675	0.0810539	0.4990441	-0.3079558	0.1348772	NA	-0.0372976	0.0776519	0.3957284
GREXP	0.1537922	-0.1815166	-0.0046509	0.0261764	0.2534506	-0.0483384	-0.0016587	NA	0.1642189	-0.0066405
BG05.L	-0.0442393	-0.0626254	0.0085509	0.0400349	0.5424742	0.0881103	0.0079406	0.3776007	NA	-0.0200423
GLD	0.9262960	-1.1120692	0.0062008	-0.3057432	1.2266790	-0.3797045	0.6826637	-0.2575828	-0.3381080	NA
s_i	0.0032112	0.0031857	0.0342273	0.0186064	0.0264089	0.0105208	0.0400452	0.0072180	0.0109452	0.0449550
R_i^2	0.9963691	0.9961294	0.8399689	0.8388909	0.8260906	0.6488550	0.6317309	0.5520519	0.5366373	0.3987043
μ	0.0011323	0.0007196	0.0085561	0.0018748	0.0046327	0.0037850	-0.0030518	0.0037178	0.0013854	0.0158004
$\beta^T \mu^{(-i)}$	0.0008178	0.0010919	0.0075248	0.0018800	-0.0029217	0.0031710	0.0030652	0.0009505	0.0035703	0.0069553
w^*	0.2898145	-0.3485696	0.0083644	-0.0001404	0.1029122	0.0526963	-0.0362410	0.5046298	-0.1732855	0.0415829
w	0.2898145	-0.3485696	0.0083644	-0.0001404	0.1029122	0.0526963	-0.0362410	0.5046298	-0.1732855	0.0415829

Lien avec l'ACP

- Effectuer une ACP de la matrice de covariance des rendements.
- Identifier un vecteur propre qui est un facteur d'arbitrage charactérisé
- Faire le lien entre cette observation et les poids optimaux du modèle MV.

```
pc <- prcomp(cov(R))
pc.res <- rbind(pc$rotation, pc$sdev)
kbl(pc.res, booktabs=T, format="latex", digits=4) %>%
  kable_styling(latex_options=c("scale_down", "HOLD_position")) %>%
  pack_rows("Vecteurs propres", 1,10) %>%
  pack_rows("Valeurs propres", 11,11)
```

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
Vecteurs propres										
GSPC	-0.3436	-0.0314	0.2247	0.1876	0.5112	0.1387	-0.1023	-0.0333	0.6972	0.1305
RUA	-0.3606	-0.0292	0.2128	0.1892	0.5073	0.1537	-0.0605	-0.0729	-0.7039	-0.0511
GDAXI	-0.4216	-0.2265	0.1044	0.5669	-0.6197	0.2131	-0.0182	0.0780	-0.0011	0.0531
FTSE	-0.3031	-0.0758	0.1088	0.0446	-0.0218	-0.9371	-0.0939	0.0267	-0.0127	0.0143
N225	-0.3991	-0.1345	-0.8936	-0.0827	0.1117	0.0357	-0.0546	0.0144	0.0079	0.0176
EEM	-0.5624	0.3617	0.2250	-0.6398	-0.2499	0.1453	0.0868	0.0215	0.0136	-0.0356
DJCBTI	0.0603	0.0614	0.0256	-0.0655	0.0034	0.0653	-0.7127	0.6838	-0.0301	-0.0829
GREXP	0.0444	0.0172	0.0040	-0.0794	-0.0121	0.0019	-0.0145	0.0850	-0.1309	0.9832
BG05.L	0.0331	-0.0016	0.0066	-0.0798	-0.1473	0.0380	-0.6766	-0.7140	-0.0051	0.0412
GLD	0.0062	0.8878	-0.1780	0.4153	-0.0067	-0.0740	-0.0136	-0.0382	0.0004	0.0217
Valeurs pr	Valeurs propres									
	0.0039	0.0011	0.0004	0.0002	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000

Le vecteur propre 9 revèle une possibilité d'arbitrage entre GSPC et RUA. Au moins en théorie, la stratégie consiste à construire un portefeuille contenant une position de spread GSPC/RUA, immunisée par rapport à tous les facteurs. Comme ces deux actifs sont par ailleurs très corrélés, on devrait observer une dynamique stationnaire sur ce spread. En pratique, les frais de transaction rendent ce genre d'arbitrages délicats à mettre en oeuvre. L'existence de ce quasi-arbitrage, même s'il reste théorique, explique les pondérations de GSPC et de RUA dans le portefeuille optimal.