Lecture 2

Modelling with Place/Transition Nets

Lars M. Kristensen
Department of Computing, Mathematics, and Physics
Western Norway University of Applied Sciences

Email: Imkr@hvl.no / WWW: home.hib.no/ansatte/Imkr

Overview

Syntactical elements – model structure

- Places and transitions
- Arcs and arc weights
- Initial marking

Semantical concepts - dynamics/execution

- Tokens and current marking
- Transition enabling and occurrence
- Concurrency, conflict and non-determinism

Two-phase Commit Transaction Protocol

We will focus on modelling the first phase

Places

- Used to model the state of the system
 - drawn as ellipses

Tokens and Markings

A place can contain a number of tokens

 A marking is a distribution of tokens on the places - represents a system state.

Initial Marking

 The initial marking (token distribution) represents the initial system state.

Specified by giving the number of tokens that are

initially present on a place

Initial marking is by conventional specified above the place

Current Marking

 Current marking is representing the state that the system is currently in

- Starts being equal to the initial marking
 - changes when the model is executed.

Transitions

- Used to model the actions/events in the system
 drawn as rectangles
 - drawn as rectangles

Arcs

 Connect places and transitions and determine transition enabling and occurrence (firing):

Transition Enabling

 A transition is enabled if there is at least one token on each of its input places

Transition Occurrence

- An enabled transition may occur (fire):
 - Removes one token from each input place
 - Adds one token to each output place

CPN Tools Demo

- Simulation of CPN models
- Extensions to the Place/Transition-net model
 - Modelling votes conflict and non-determinism
 - Multiple workers concurrency
 - Collecting votes arc weights
 - Modelling the protocol as a reactive system

Modelling Votes

Conflict

 Transitions are in conflict if they compete for tokens with other enabled transitions

Multiple Workers

Extending the model to multiple workers

Concurrency

Transitions may be concurrently enabled in the same simulation step

 ReceiveCanCommit transitions can get the tokens required without sharing.

Arc Weights

 Number of tokens required for enabling, consumed and produced (occurrence)

Reactive Systems

 Many concurrency systems are intended to continuously operating

Inhibitor Arc

 Can be used to test for the absence of tokens on a place

Reset Arc

 Removes all tokens that are currently present on a place

Transition Priorities

Transitions can be given a priority level

Summary

- Basic syntactical and semantical concepts of Place/Transition Nets introduced.
- Additional language constructs
 - Inhibitor arcs and reset arcs
 - Transition priorities
- A main limitation of Place/Transitions Nets is scalability to large (real) software systems
 - Modelling of data is inconvenient.
 - Does not allow models to be split into modules
 - Does not support parametric systems in an elegant way

