Matrix Properties

Go to: Introduction, Notation, Index

Adjoint or Adjugate

The adjoint of A, ADJ(A) is the <u>transpose</u> of the matrix formed by taking the <u>cofactor</u> of each element of A.

- ADJ(A) A = det(A) I
 - If $det(\mathbf{A}) != 0$, then $\mathbf{A}^{-1} = \mathbf{ADJ}(\mathbf{A}) / det(\mathbf{A})$ but this is a numerically and computationally poor way of calculating the inverse.
- $ADJ(A^T)=ADJ(A)^T$
- $ADJ(A^H) = ADJ(A)^H$

Characteristic Equation

The *characteristic equation* of a matrix $A_{[n\#n]}$ is $|t\mathbf{I} \cdot \mathbf{A}| = 0$. It is a polynomial equation in t.

The properties of the <u>characteristic equation</u> are described in the section on <u>eigenvalues</u>.

Characteristic Matrix

The *characteristic matrix* of $A_{[n\#n]}$ is $(t\mathbf{I}-\mathbf{A})$ and is a function of the scalar t.

The properties of the <u>characteristic matrix</u> are described in the section on <u>eigenvalues</u>.

Characteristic Polynomial

The *characteristic polynomial*, p(t), of a matrix $A_{[n\#n]}$ is $p(t) = |t\mathbf{I} - \mathbf{A}|$.

The properties of the <u>characteristic polynomial</u> are described in the section on <u>eigenvalues</u>.

Cofactor

The *cofactor* of a <u>minor</u> of **A**:*n*#*n* is equal to the product of (i) the <u>determinant</u> of the <u>submatrix</u> consisting of all the rows and columns that are not in the minor and (ii) -1 raised to the power of the sum of all the row and column indices that are in the minor.

• The cofactor of the element a(i,j) equals $-1^{i+j} \det(\mathbf{B})$ where **B** is the matrix formed by deleting row i and column j from **A**.

See Minor, Adjoint

Compound Matrix

The k^{th} compound matrix of $\mathbf{A}_{[m\#n]}$ is the $m!(k!(m-k)!)^{-1}\#n!(k!(n-k)!)^{-1}$ matrix formed from the determinants of all k#k submatrices of \mathbf{A} arranged with the submatrix index sets in lexicographic order. Within this section,

we denote this matrix by $C_k(A)$.

- $C_1(A) = A$
- $\mathbf{C}_n(\mathbf{A}_{\lceil n\#n \rceil}) = \det(\mathbf{A})$
- $\mathbf{C}_k(\mathbf{A}\mathbf{B}) = \mathbf{C}_k(\mathbf{A})\mathbf{C}_k(\mathbf{B})$
- $\mathbf{C}_k(a\mathbf{X}) = a^k \mathbf{C}_k(\mathbf{X})$
- $\mathbf{C}_k(\mathbf{I}) = \mathbf{I}$
- $\mathbf{C}_k(\mathbf{A}^H) = \mathbf{C}_k(\mathbf{A})^H$
- $\mathbf{C}_k(\mathbf{A}^T) = \mathbf{C}_k(\mathbf{A})^T$
- $C_k(A^{-1}) = C_k(A)^{-1}$

Condition Number

The *condition number* of a matrix is its largest <u>singular value</u> divided by its smallest <u>singular value</u>.

- If $\mathbf{A}\mathbf{x} = \mathbf{y}$ and $\mathbf{A}(\mathbf{x} + \mathbf{p}) = \mathbf{y} + \mathbf{q}$ then $\|\mathbf{p}\|/\|\mathbf{x}\| <= k \|\mathbf{q}\|/\|\mathbf{y}\|$ where k is the condition number of \mathbf{A} . Thus it provides a sensitivity bound for the solution of a linear equation.
- If $A_{[2\#2]}$ is <u>hermitian positive definite</u> then its condition number, r, satisfies $4 <= tr(A)^2/det(A) = (r+1)^2/r$. This expression is symmetric between r and r^{-1} and is monotonically increasing for r>1. It therefore provides an easy way to check on the range of r.

Conjugate Transpose

 $\mathbf{X} = \mathbf{Y}^H$ is the Hermitian transpose of Conjugate transpose of \mathbf{Y} iff $x_{i,j} = y_{j,i}^C$.

See Hermitian Transpose.

Constructibility

The pair of matrices $\{\mathbf{A}_{[n\#n]}, \mathbf{C}_{[m\#n]}\}$ are *constructible* iff $\{\mathbf{A}^H, \mathbf{C}^H\}$ are <u>controllable</u>.

- If $\{A, C\}$ are observable then they are constructible.
- If det(A)!=0 and $\{A, C\}$ are constructible then they are <u>observable</u>.
- If {A, C} are constructible then they are <u>detectable</u>.

Controllability

The pair of matrices $\{A_{[n\#n]}, B_{[n\#m]}\}$ are *controllable* iff any of the following equivalent conditions are true

- 1. There exists a $\mathbf{G}_{[mn\#n]}$ such that $\mathbf{A}^n = \mathbf{C}\mathbf{G}$ where $\mathbf{C} = [\mathbf{B} \ \mathbf{A}\mathbf{B} \ \mathbf{A}^2\mathbf{B} \ ... \ \mathbf{A}^{n-1}\mathbf{B}]_{[n\#mn]}$ is the *controllability matrix*.
- 2. If $\mathbf{x}^T \mathbf{A}^r \mathbf{B} = \mathbf{0}$ for 0 <= r < n then $\mathbf{x}^T \mathbf{A}^n = \mathbf{0}$.
- 3. If $\mathbf{x}^T \mathbf{B} = \mathbf{0}$ and $\mathbf{x}^T \mathbf{A} = k \mathbf{x}^T$ then either k=0 or else $\mathbf{x} = \mathbf{0}$.
- If $\{A, B\}$ are <u>reachable</u> then they are controllable.
- If det(A)!=0 and $\{A, B\}$ are controllable then they are <u>reachable</u>.
- If $\{A, B\}$ are controllable then they are <u>stabilizable</u>.

• {DIAG(a), b} are controllable iff all non-zero elements of a are distinct and all the corresponding elements of b are non-zero.

Definiteness

A Hermitian square matrix A is

- positive definite if $\mathbf{x}^H \mathbf{A} \mathbf{x} > 0$ for all non-zero \mathbf{x} .
- positive semi-definite or non-negative definite if $\mathbf{x}^H \mathbf{A} \mathbf{x} >= 0$ for all non-zero \mathbf{x} .
- indefinite if $\mathbf{x}^H \mathbf{A} \mathbf{x}$ is > 0 for some \mathbf{x} and < 0 for some other \mathbf{x} .

This definition only applies to Hermitian and real-symmetric matrices; if **A** is non-real and non-Hermitian then $\mathbf{x}^H \mathbf{A} \mathbf{x}$ is complex for some values of **x** and so the concept of definiteness does not make sense. Some authors also call a real non-symmetric matrix positive definite if $\mathbf{x}^H \mathbf{A} \mathbf{x} > 0$ for all non-zero real **x**; this is true iff its symmetric part is positive definite (see below).

- A (not necessarily symmetric) real matrix **A** satisfies $\mathbf{x}^H \mathbf{A} \mathbf{x} > 0$ for all non-zero real **x** iff its symmetric part $\mathbf{B} = (\mathbf{A} + \mathbf{A}^T)/2$ is positive definite. Indeed $\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{B} \mathbf{x}$ for all **x**.
- The following are equivalent
 - A is Hermitian and +ve semidefinite
 - $\mathbf{A} = \mathbf{B}^H \mathbf{B}$ for some **B** (not necessarily square)
 - $A=C^2$ for some Hermitian C.
 - \circ **D**^H**AD** is Hermitian and +ve semidefinite for any **D**
- If **A** is +ve definite then A^{-1} exists and is +ve definite.
- If **A** is +ve semidefinite, then for any integer k>0 there exists a unique +ve semidefinite **B** with $A=B^k$. This **B** also satisifes:
 - \circ AB=BA
 - \circ **B**=p(**A**) for some polynomial p()
 - \circ rank(**B**) = rank(**A**)
 - \circ if **A** is real then so is **B**.
- A is +ve definite iff all its eigenvalues are > 0.
 - If **A** is +ve definite then $det(\mathbf{A}) > 0$ and $tr(\mathbf{A}) > 0$.
 - A Hermitian matrix $A_{[2\#2]}$ is +ve definite iff $det(\mathbf{A}) > 0$ and $tr(\mathbf{A}) > 0$.
- The columns of $\mathbf{B}_{[m\#n]}$ are linearly independent iff $\mathbf{B}^H\mathbf{B}$ is +ve definite.
- If S is +ve semidefinite, then $|\mathbf{a}^H \mathbf{S} \mathbf{b}|^2 \le \mathbf{a}^H \mathbf{S} \mathbf{a} \times \mathbf{b}^H \mathbf{S} \mathbf{b}$ for any \mathbf{a} , \mathbf{b} [3.6]
 - $\circ |s_{i,j}| \le \operatorname{sqrt}(s_{i,i}s_{j,j}) [3.6]$
- If A and B are positive semidefinite, then A+B is positive semidefinite
- If \mathbf{B} is +ve definite and \mathbf{A} is +ve semidefinite then:
 - \circ **B**⁻¹**A** is diagonalizable and has non-negative eigenvalues [3.7]
 - \circ tr($\mathbf{B}^{-1}\mathbf{A}$) = 0 iff \mathbf{A} = $\mathbf{0}$
 - A+B is positive definite

Detectability

The pair of matrices $\{A_{[n\#n]}, C_{[m\#n]}\}$ are *detectable* iff $\{A^H, C^H\}$ are <u>stabilizable</u>.

If {A, C} are observable or constructible then they are detectable...

Determinant

For an $n \neq n$ matrix **A**, $\det(\mathbf{A})$ is a scalar number defined by $\det(\mathbf{A}) = \operatorname{sgn}(\mathbf{PERM}(n))^{+*} \operatorname{prod}(\mathbf{A}(1:n,\mathbf{PERM}(n)))$

This is the sum of n! terms each involving the product of n matrix elements of which exactly one comes from each row and each column. Each term is multiplied by the signature (+1 or -1) of the column-order permutation . See the <u>notation</u> section for definitions of sgn(), prod() and PERM().

The determinant is important because INV(A) exists iff det(A) != 0.

Geometric Interpretation

The determinant of a matrix equals the +area of the +parallelogram that has the matrix columns as n of its sides. If a vector space is transformed by multiplying by a matrix \mathbf{A} , then all +areas will be multiplied by $\det(\mathbf{A})$.

Properties of Determinants

- $\det(\mathbf{A}^T) = \det(\mathbf{A})$
- $det(\mathbf{A}^H) = conj(det(\mathbf{A}))$
- $\det(c\mathbf{A}) = c^n \det(\mathbf{A})$
- $\det(\mathbf{A}^k) = (\det(\mathbf{A}))^k$, k must be positive if $\det(\mathbf{A}) = 0$.
- Interchanging any pair of columns of a matrix multiplies its determinant by -1(likewise rows).
- Multiplying any column of a matrix by c multiplies its determinant by c (likewise rows).
- Adding any multiple of one column onto another column leaves the determinant unaltered (likewise rows).
- $det(\mathbf{A}) != 0$ iff $INV(\mathbf{A})$ exists.
- [A,B:n#m; m>=n]: If $\mathbf{Q} = \mathbf{CHOOSE}(m,n)$. and $\mathbf{d}(k) = \det(\mathbf{A}(:,\mathbf{Q}(k,:))) \det(\mathbf{B}(:,\mathbf{Q}(k,:)))$ for $k=1:\mathrm{rows}(\mathbf{Q})$ then $\det(\mathbf{AB}^T) = \mathrm{sum}(\mathbf{d})$. This is the Binet-Cauchy theorem.
- Suppose that for some r, $\mathbf{P} = \mathbf{CHOOSE}(n,r)$ and $\mathbf{Q} = \mathbf{CHOOSE}(n,n-r)$ with the rows of \mathbf{Q} ordered so that $\mathbf{P}(k,:)$ and $\mathbf{Q}(k,:)$ have no elements in common. If we define $\mathbf{D}(m,k) = (-1)^{\text{sum}([\mathbf{P}(m,:)\mathbf{P}(k,:)])}$ det $(\mathbf{A}(\mathbf{P}(m,:)^T,\mathbf{P}(k,:)))$ det $(\mathbf{A}(\mathbf{Q}(m,:)^T,\mathbf{Q}(k,:)))$ for m,k=1:rows (\mathbf{P}) then det $(\mathbf{A}) = \text{sum}(\mathbf{D}(m,k)) = \text{sum}(\mathbf{D}(k,k))$ for any k or k. This is the Laplace expansion theorem.
 - If we set k=r=1 then P(m,:)=[m] and we obtain the familiar expansion by the first column: $\mathbf{d}(m)=(-1)^{m+1}\mathbf{A}(m,1)\det(\mathbf{A}([1:m-1\ m+1:n]^T,2:n))$ and $\det(\mathbf{A})=\mathrm{sum}(\mathbf{d})$.
- $det(\mathbf{A}) = 0$ iff the columns of **A** are linearly dependent (likewise rows).
 - \circ det(A) = 0 if two columns are identical (likewise rows).
 - $det(\mathbf{A}) = 0$ if any column consists entirely of zeros (likewise rows).
- If $\mathbf{A} = [\mathbf{a}_1 \ \mathbf{a}_2 \ ... \ \mathbf{a}_n]$ then $|\det(\mathbf{A})| <= \operatorname{prod}(||\mathbf{a}_i||)$ with equality iff the \mathbf{a}_i are mutually orthogonal where $||\mathbf{a}||$ is the Euclidean norm; this is the *Hadamard inequality*.
 - $\quad \text{o If } |a_{i,j}| <= B \text{ for all } i,j \text{ then } |\det(\mathbf{A})| <= n^{0.5n}B^n$
 - [A +ve semidefinite]: det(A) <= prod(diag(A))
- [A:3#3]: If $\mathbf{A} = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]$ then $\det(\mathbf{A}) = \det([\mathbf{a} \ \mathbf{b} \ \mathbf{c}]) = \mathbf{a}^T \mathbf{SKEW}(\mathbf{b}) \ \mathbf{c} = \mathbf{b}^T \mathbf{SKEW}(\mathbf{c}) \ \mathbf{a} = \mathbf{c}^T \mathbf{SKEW}(\mathbf{a}) \ \mathbf{b}$

Determinants of simple matrices

- $det([a\ b; c\ d]) = ad bc$
- $\det([\mathbf{a} \mathbf{b} \mathbf{c}]) = a_1b_2c_3 a_1b_3c_2 a_2b_1c_3 + a_2c_1b_3 + a_3b_1c_2 a_3c_1b_2$
- The determinant of a <u>diagonal</u> or <u>triangular</u> matrix is the product of its diagonal elements.
- The determinant of a <u>unitary</u> matrix has an absolute value of 1.
 - The determinant of an <u>orthogonal</u> matrix is +1 or -1.
- The determinant of a <u>permutation</u> matrix equals the signature of the column permutation.

Determinants of sums and products

• $[\mathbf{A}, \mathbf{B}: n \neq n]$: $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A}) \det(\mathbf{B})$

```
• [\mathbf{A}, \mathbf{B}: m \neq n]: \det(\mathbf{I} + \mathbf{A}^T \mathbf{B}) = \det(\mathbf{I} + \mathbf{A} \mathbf{B}^T) = \det(\mathbf{I} + \mathbf{B}^T \mathbf{A}) = \det(\mathbf{I} + \mathbf{B} \mathbf{A}^T) [3.2]
• [\mathbf{A}: n \# n] : \det(\mathbf{A} + \mathbf{x} \mathbf{v}^T) = (1 + \mathbf{v}^T \mathbf{A}^{-1} \mathbf{x}) \det(\mathbf{A}) [3.4]
```

$$\circ \det(\mathbf{I} + \mathbf{x} \mathbf{y}^T) = 1 + \mathbf{y}^T \mathbf{x} = 1 + \mathbf{x}^T \mathbf{y} \quad [3.3]$$

$$\circ \det(k\mathbf{I} + \mathbf{x}\mathbf{y}^T) = k^n + k^{n-1}\mathbf{y}^T\mathbf{x} = k^n + k^{n-1}\mathbf{x}^T\mathbf{y}$$

- [A,B: n#n, symmetric, +ve semidefinite]:
 - \circ $(\det(\mathbf{A}+\mathbf{B}))^{1/n} >= (\det(\mathbf{A}))^{1/n} + (\det(\mathbf{B}))^{1/n}$; this is the Minkowski determinant inequality.
 - If 0 <= k <= 1, then $(\det(k\mathbf{A} + (1-k)\mathbf{B}))^{1/n} >= k(\det(\mathbf{A}))^{1/n} + (1-k)(\det(\mathbf{B}))^{1/n}$
 - If 0 <= k <= 1, then $\det(k\mathbf{A} + (1-k)\mathbf{B}) >= (\det(\mathbf{A}))^k (\det(\mathbf{B}))^{1-k}$
 - \blacksquare det(**A**+**B**) >= sqrt(det(4**AB**))
 - For any integer m>0, $n(\det(\mathbf{A})\det(\mathbf{B}))^{m/n} \le \operatorname{tr}(\mathbf{A}^m\mathbf{B}^m)$

Determinants of block matrices/a>

In this section we have $A_{[m\#m]}$, $B_{[m\#n]}$, $C_{[n\#m]}$ and $D_{[n\#n]}$.

```
• \det([\mathbf{A}, \mathbf{B}; \mathbf{C}, \mathbf{D}]) = \det([\mathbf{D}, \mathbf{C}; \mathbf{B}, \mathbf{A}]) = \det(\mathbf{A}) * \det(\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B}) = \det(\mathbf{D}) * \det(\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C}) [3.1]
                  \circ det([a, \mathbf{b}^T; \mathbf{c}, \mathbf{D}]) = (a - \mathbf{b}^T \mathbf{D}^{-1} \mathbf{c})det(\mathbf{D})
```

- $\det([I, B; C, I]) = \det(I_{[m\#m]} BC) = \det(I_{[n\#n]} CB)$
- $\det([A, B; 0, D]) = \det([A, 0; C, D]) = \det(A) \det(D)$
 - $\circ \det([a, \mathbf{b}^T; \mathbf{0}, \mathbf{D}]) = \det([a, \mathbf{0}; \mathbf{c}, \mathbf{D}]) = a \det(\mathbf{D})$
- For the special case when m=n (i.e. A, B, C, D all n#n):
 - \circ det([**A**, **B**; **C**, **0**]) = -det(**BC**^T)
 - \circ [AB=BA]: det([A, B; C, D]) = det(DA-CB)
 - \circ [AC=CA]: det([A, B; C, D]) = det(AD-CB)
 - \circ [BD=DB]: det([A, B; C, D]) = det(DA-BC)
 - \circ [CD=DC]: det([A, B; C, D]) = det(AD-BC)

See also Grammian, Schur Complement

Displacement Rank

The displacement rank of $\mathbf{X}_{[m\#n]}$ is given by dis_rank(\mathbf{X}) = rank(\mathbf{X} - $\mathbf{Z}\mathbf{X}\mathbf{Z}^T$) where the \mathbf{Z} are shift matrices of size m#m and n#n respectively.

- dis $rank(X+Y) \le dis rank(X) + dis rank(Y)$
- dis $rank(XY) \le dis rank(X) + dis rank(Y)$
- dis rank(X^{-1})=dis rank(JXJ) where **J** is the exchange matrix.
- [X: Toeplitz] dis rank(X) = 2 unless X is upper or lower triangular in which case dis rank(X)=1 unless X = 0, in which case dis_rank(X)=0.
 - $[\mathbf{X}_{[n\#n]}]$: Toeplitz] If $a = \mathbf{X}_{1,1}$ and $b = \mathbf{X}_{1,1}^2$, then the <u>characteristic polynomial</u> of \mathbf{X} $\mathbf{Z}\mathbf{X}\mathbf{Z}^T$ is $(t^2 + t^2)$ $-at + a^2 - b$) t^{n-2}

Eigenvalues

The eigenvalues of **A** are the roots of its characteristic equation: $|t\mathbf{I} - \mathbf{A}| = 0$.

The properties of the <u>eigenvalues</u> are described in the section on eigenvalues.

Field of Values

The *field of values* of a square matrix **A** is the set of complex numbers $\mathbf{x}^H \mathbf{A} \mathbf{x}$ for all \mathbf{x} with $||\mathbf{x}|| = 1$.

- The field of values is a closed convex set.
- The field of values contains the convex hull of the eigenvalues of A.
- If A is <u>normal</u> then the field of values equals the convex hull of its eigenvalues.
 - [n<5] $A_{[n\#n]}$ is <u>normal</u> iff its field of values is the convex hull of its eigenvalues.
- A is hermitian iff its field of values is a real interval.
- If **A** and **B** are unitarily similar, they have the same field of values.

Generalized Inverse

A generalized inverse of X:m#n is any matrix, $X^\#:n\#m$ satisfying $XX^\#X=X$. Note that if X is singular or non-square, then $X^\#$ is not unique. This is also called a weak generalized inverse to distinguish it from the <u>pseudoinverse</u>.

- If X is square and non-singular, $X^{\#}$ is unique and equal to X^{-1} .
- $(\mathbf{X}^{\#})^H$ is a generalized inverse of \mathbf{X}^H .
- $[k!=0] \mathbf{X}^{\#}/k$ is a generalized inverse of $k\mathbf{X}$.
- [A,B non-singular] $B^{-1}X^{\#}A^{-1}$ is a generalized inverse of AXB
- $\operatorname{rank}(\mathbf{X}^{\#}) >= \operatorname{rank}(\mathbf{X})$.
- rank(\mathbf{X})=rank($\mathbf{X}^{\#}$) iff \mathbf{X} is also the generalized inverse of $\mathbf{X}^{\#}$ (i.e. $\mathbf{X}^{\#}\mathbf{X}\mathbf{X}^{\#}=\mathbf{X}^{\#}$.).
- $XX^{\#}$ and $X^{\#}X$ are idempotent and have the same rank as X.
 - \circ **I-XX**[#] and **I-X**[#]**X** are also <u>idempotent</u>.
- If $\mathbf{A}\mathbf{x}$ - \mathbf{b} has any solutions, then \mathbf{x} = $\mathbf{A}^{\#}\mathbf{b}$ is a solution.
- If $\mathbf{A}\mathbf{A}^{\#}$ is <u>hermitian</u>, a value of \mathbf{x} that minimizes $\|\mathbf{A}\mathbf{x}-\mathbf{b}\|$ is given by $\mathbf{x}=\mathbf{A}^{\#}\mathbf{b}$. With this value of \mathbf{x} , the error $\mathbf{A}\mathbf{x}-\mathbf{b}$ is orthogonal to the columns of \mathbf{A} . If we define the <u>projection</u> matrix $\mathbf{P}=\mathbf{A}\mathbf{A}^{\#}$, then $\mathbf{A}\mathbf{x}=\mathbf{P}\mathbf{b}$ and $\mathbf{A}\mathbf{x}-\mathbf{b}=-(\mathbf{I}-\mathbf{P})\mathbf{b}$.
- If $\mathbf{X}:m\#n$ has rank r, we can find $\mathbf{A}:n\#n-r$, $\mathbf{B}:n\#r$ and $\mathbf{C}:m\#m-r$ whose columns form bases for the null space of \mathbf{X} , the range of $\mathbf{X}^+\mathbf{X}$ and the null space of \mathbf{X}^H respectively.
 - The set of generalized inverses of **X** is precisely given by $\mathbf{X}^{\#} = \mathbf{X}^{+} + \mathbf{A}\mathbf{Y} + \mathbf{B}\mathbf{Z}\mathbf{C}^{H}$ for arbitrary **Y**:n- $r \neq m$ and \mathbf{Z} : $r \neq m$ -r where \mathbf{X}^{+} is the <u>pseudoinverse</u>.
 - For a given choice of A, B and C, each $X^{\#}$ corresponds to a unique Y and Z.
 - $XX^{\#}$ is <u>hermitian</u> iff Z=0.
- If X:m#n has rank r, we can find A:n#n-r, F:n#r and C:m#m-r whose columns form bases for the null space of X, the range of X^+ and the null space of X^H respectively. We can also find G:m#r such that $X^+=FG^H$.
 - The set of generalized inverses $\mathbf{X}^{\#}$ of \mathbf{X} , for which \mathbf{X} is also the generalised inverse of $\mathbf{X}^{\#}$ is precisely given by $\mathbf{X}^{\#} = (\mathbf{F} + \mathbf{A}\mathbf{V})(\mathbf{G} + \mathbf{C}\mathbf{W})^H$ for arbitrary $\mathbf{V}: n-r\#r$ and $\mathbf{W}: m-r\#r$.
 - \circ For a given choice of **A**, **C**, **F** and **G** each **X**[#] corresponds to a unique **V** and **W**.

See also: <u>Pseudoinverse</u>

Gram Matrix

The gram matrix of \mathbf{X} , $\mathbf{GRAM}(\mathbf{X})$, is the matrix $\mathbf{X}^H\mathbf{X}$.

- **GRAM**(**X**) is positive semi-definite hermitian.
- det(GRAM(X)) = 0 iff a principal minor of GRAM(X) is zero.
- rank(GRAM(X)) = rank(X)

- trace($\mathbf{GRAM}(\mathbf{X})$) = $\|\mathbf{X}\|_{F}^{2}$, the squared <u>Frobenius matrix norm</u>.
- \mathbf{y} is an eigenvector of $\mathbf{X}^H \mathbf{X}$ iff $\mathbf{X} \mathbf{y}$ is an eigenvector of $\mathbf{X} \mathbf{X}^H$. The corresponding eigenvalue is the same in both cases.

If **X** is m#n, the elements of **GRAM**(**X**) are the n^2 possible inner products between pairs of its columns. We can form such a matrix from n vectors in any vector space having an inner product.

See also: Grammian

Grammian

The grammian of a matrix \mathbf{X} , gram(\mathbf{X}), equals $\det(\mathbf{GRAM}(\mathbf{X})) = \det(\mathbf{X}^H \mathbf{X})$.

- gram(X) is real and >= 0.
- gram(**X**) > 0 iff the columns of **X** are linearly independent, i.e. iff **Xy** = 0 implies **y** = 0 $[\mathbf{X}_{m \# n}]$: gram(**X**)=0 if m < n.
- gram(X) = 0 iff a <u>principal minor</u> of **GRAM**(X) is zero.
- $[\mathbf{X}_{n\#n}]$: gram (\mathbf{X}) = gram (\mathbf{X}^H) = $|\det(\mathbf{X})|^2$
- $\operatorname{gram}(\mathbf{x}) = \mathbf{x}^H \mathbf{x}$
- $gram([\mathbf{X}\ \mathbf{Y}]) = gram([\mathbf{Y}\ \mathbf{X}]) = gram(\mathbf{X})*det(\mathbf{Y}^H\mathbf{Y}-\mathbf{Y}^H\mathbf{X}(\mathbf{X}^H\mathbf{X})^{-1}\mathbf{X}^H\mathbf{Y}) = gram(\mathbf{X})*det(\mathbf{Y}^H(\mathbf{I}-\mathbf{X}(\mathbf{X}^H\mathbf{X})^{-1}\mathbf{X}^H)\mathbf{Y})$
 - $\circ \operatorname{gram}([\mathbf{X} \ \mathbf{y}]) = \operatorname{gram}([\mathbf{y} \ \mathbf{X}]) = \operatorname{gram}(\mathbf{X}) * \mathbf{y}^H \mathbf{y} \mathbf{y}^H \mathbf{X} (\mathbf{X}^H \mathbf{X})^{-1} \mathbf{X}^H \mathbf{y} = \operatorname{gram}(\mathbf{X}) * \mathbf{y}^H (\mathbf{I} \mathbf{X} (\mathbf{X}^H \mathbf{X})^{-1} \mathbf{X}^H) \mathbf{y}$
- $gram([\mathbf{X}\ \mathbf{y}]) = gram(\mathbf{X}) \|\mathbf{X}\mathbf{X}^{\#}\mathbf{y} \mathbf{y}\|^2$ where $\mathbf{X}^{\#}$ is the <u>generalized inverse</u> so that $\|\mathbf{X}\mathbf{X}^{\#}\mathbf{y} \mathbf{y}\|$ equals the distance between \mathbf{y} and its orthogonal projection onto the space spanned by the columns of \mathbf{X} .
- $gram([X Y]) \le gram(X) gram(Y)$; this is the generalised Hadamard inequality.
 - gram([X Y]) = gram(X) gram(Y) iff either $X^HY = 0$ or gram(X) gram(Y) = 0
 - If $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ ... \ \mathbf{x}_n]$ then $gram(\mathbf{X}) \le prod(||\mathbf{x}_i||^2) = prod(diag(\mathbf{X}^H \mathbf{X}))$
 - $[\mathbf{X}_{n\#n}]$: $|\det(\mathbf{X})|^2 \le \operatorname{prod}(||\mathbf{x}_i||^2) = \operatorname{prod}(\operatorname{diag}(\mathbf{X}^H\mathbf{X}))$; this is the *Hadamard inequality*.

Geometric Interpretation

The grammian of $\mathbf{X}_{m\#n}$ is the squared "volume" of the *n*-dimensional parallelepiped spanned by the columns of \mathbf{X} .

See also: Gram Matrix

Hermitian Transpose or Conjugate Transpose

 $\mathbf{X} = \mathbf{Y}^H$ is the Hermitian transpose or Conjugate transpose of \mathbf{Y} iff $x(i,j) = \operatorname{conj}(y(j,i))$.

Inertia

The inertia of an m#m square matrix is the triple (p,n,z) where p+n+z=m and p, n and z are respectively the number of eigenvalues, counting multiplicities, with positive, negative and zero real parts.

Inverse

B is a *left inverse* of **A** if **BA=I**. **B** is a *right inverse* of **A** if **AB=I**.

If BA = AB = I then B is the *inverse* of A and we write $B = A^{-1}$.

- [A:n#n] AB=I iff BA=I, hence *inverse*, *left inverse* and *right inverse* are all equivalent for square matrices.
- $[A,B:n#n](AB)^{-1}=B^{-1}A^{-1}$
- [A:m#n] A has a left inverse iff rank(A)=n and a right inverse iff rank(A)=m.
- [A:n#m, B:m#n] AB=I implies that $n \le m$ and that rank(A)=rank(B)=n.

Inverse of Block Matrices

```
• [A, B; C, D]^{-1} = [Q^{-1}, -Q^{-1}BD^{-1}; -D^{-1}CQ^{-1}, D^{-1}(I+CQ^{-1}BD^{-1})] where Q = (A-BD^{-1}C) is the <u>Schur</u>
     <u>Complement</u> of D [3.5]
     = [A^{-1}(I+BP^{-1}CA^{-1}), -A^{-1}BP^{-1}; -P^{-1}CA^{-1}, P^{-1}] where P = (D-CA^{-1}B) is the Schur Complement of A
       [3.5]
     =[I, -A^{-1}B; -D^{-1}C, I]DIAG((A-BD^{-1}C)^{-1}, (D-CA^{-1}B)^{-1})
     =DIAG((A-BD^{-1}C)^{-1}, (D-CA^{-1}B)^{-1}) [I, -BD^{-1}; -CA^{-1}, I]
     =DIAG(A<sup>-1</sup>, 0) + [-A<sup>-1</sup>B; I] (D-CA<sup>-1</sup>B)<sup>-1</sup>[-CA<sup>-1</sup>, I]
     =DIAG(0, D^{-1}) + [I: -D^{-1}C] (A-BD^{-1}C)^{-1}[I. -BD^{-1}]
            \circ [A, 0; C, D]<sup>-1</sup> = [A<sup>-1</sup>, 0; -D<sup>-1</sup>CA<sup>-1</sup>, D<sup>-1</sup>]
                 =[I.0: -D^{-1}C.I]DIAG(A^{-1}.D^{-1})
                 =DIAG(A^{-1}, D^{-1}) [ I. 0: -CA<sup>-1</sup>, I]
            \circ [A,B;C,0]<sup>-1</sup> = DIAG(A<sup>-1</sup>,0) - [-A<sup>-1</sup>B;I] (CA<sup>-1</sup>B) <sup>-1</sup>[-CA<sup>-1</sup>,I]
• [\mathbf{A}, \mathbf{b}; \mathbf{c}^T, d]^{-1} = [\mathbf{Q}^{-1}, -d^{-1}\mathbf{Q}^{-1}\mathbf{b}; -d^{-1}\mathbf{c}^T\mathbf{Q}^{-1}, d^{-1}(1+d^{-1}\mathbf{c}^T\mathbf{Q}^{-1}\mathbf{b})] \text{ where } \mathbf{Q} = (\mathbf{A}-d^{-1}\mathbf{b}\mathbf{c}^T),
     = [\mathbf{A}^{-1}(\mathbf{I}+p^{-1}\mathbf{b}\mathbf{c}^{T}\mathbf{A}^{-1}), -p^{-1}\mathbf{A}^{-1}\mathbf{b}; -p^{-1}\mathbf{c}^{T}\mathbf{A}^{-1}, p^{-1}] where p = (d - \mathbf{c}^{T}\mathbf{A}^{-1}\mathbf{b})
     =[ I, -A<sup>-1</sup>b; -d<sup>-1</sup>c<sup>T</sup>, 1] DIAG((A-d<sup>-1</sup>bc<sup>T</sup>)<sup>-1</sup>, (d-c<sup>T</sup>A<sup>-1</sup>b)<sup>-1</sup>)
     =DIAG((\mathbf{A} - d^{-1}\mathbf{b}\mathbf{c}^{T})<sup>-1</sup>, (d - \mathbf{c}^{T}\mathbf{A}^{-1}\mathbf{b})<sup>-1</sup>) [ I, -\mathbf{b}d^{-1}; -\mathbf{c}^{T}\mathbf{A}^{-1}, 1]
     =DIAG(\mathbf{A}^{-1}, 0) + (d-\mathbf{c}^T \mathbf{A}^{-1} \mathbf{b})<sup>-1</sup>[\mathbf{A}^{-1} \mathbf{b}; -1] [\mathbf{c}^T \mathbf{A}^{-1}, -1]
     =DIAG(\mathbf{0}, d^{-1}) + [I; -d^{-1}\mathbf{c}^T] (A-d^{-1}\mathbf{b}\mathbf{c}^T)<sup>-1</sup>[I, -d^{-1}\mathbf{b}]
            \circ [A, 0; \mathbf{c}^T, d]<sup>-1</sup> = [A<sup>-1</sup>, 0; -d^{-1}\mathbf{c}^T\mathbf{A}^{-1}, d^{-1}]
                 =[ I, 0; -d^{-1}c^{T}, 1] DIAG(A<sup>-1</sup>, d^{-1})
                 =DIAG(\mathbf{A}^{-1}, d^{-1}) [ I. 0: -\mathbf{c}^T \mathbf{A}^{-1}, 1]
            \circ [A, b; \mathbf{c}^T, 0]<sup>-1</sup> = DIAG(A<sup>-1</sup>, 0) - (\mathbf{c}^TA<sup>-1</sup>b) - [A<sup>-1</sup>b; -1] [\mathbf{c}^TA<sup>-1</sup>, -1]
```

See also: Generalized Inverse, Pseudoinverse, Inversion Lemma

Kernel

The kernel (or null space) of **A** is the subspace of vectors **x** for which $\mathbf{A}\mathbf{x} = \mathbf{0}$. The dimension of this subspace is the nullity of **A**.

• The kernel of \mathbf{A} is the orthogonal complement of the range of \mathbf{A}^H

Linear Independence

The columns of **A** are *linearly independent* iff the only solution to Ax=0 is x=0.

- $\underline{\operatorname{rank}}(\mathbf{A}_{[m\#n]}) = n$ iff its columns are linearly independent. [1.5]
- If the columns of $A_{[m\#n]}$ are linearly independent then m >= n [1.3, 1.5]
- If **A** has linearly independent columns and $A=F_{[m\#r]}G_{[r\#n]}$ then r>=n. [1.1]

Matrix Norms

A *matrix norm* is a real-valued function of a square matrix satisfying the four axioms listed below. A *generalized matrix norm* satisfies only the first three.

- 1. Positive: $||\mathbf{X}||=0$ iff $\mathbf{X}=0$ else $||\mathbf{X}||>0$
- 2. Homogeneous: $||c\mathbf{X}|| = |c| ||\mathbf{X}||$ for any real or complex scalar c
- 3. Triangle Inequality: $||\mathbf{X}+\mathbf{Y}|| \le ||\mathbf{X}|| + ||\mathbf{Y}||$
- 4. Submultiplicative: ||XY||<=||X|| ||Y||

Induced Matrix Norm

If $\|\mathbf{y}\|$ is a <u>vector norm</u>, then we define the *induced matrix norm* to be $\|\mathbf{X}\| = \max(\|\mathbf{X}\mathbf{y}\| \text{ for } \|\mathbf{y}\| = 1)$

Euclidean or Frobenius Norm

The *Euclidean* or *Frobenius* norm of a matrix **A** is given by $\|\mathbf{A}\|_F = \operatorname{sqrt}(\operatorname{sum}(\mathbf{ABS}(\mathbf{A}).^2))$. It is always a real number. The closely related *Hilbert-Schmidt* norm of a square matrix $\mathbf{A}_{n\#n}$ is given by $\|\mathbf{A}\|_{HS} = n^{-1/2} \|\mathbf{A}\|_F$.

- $\|\mathbf{A}\|_{F} = \|\mathbf{A}^{T}\|_{F} = \|\mathbf{A}^{H}\|_{F}$
- $\|\mathbf{A}\|_{E}^{2} = \operatorname{tr}(\mathbf{A}^{H}\mathbf{A}) = \operatorname{sum}(\operatorname{CONJ}(\mathbf{A}).*\mathbf{A})$
- [Q: orthogonal]: $\|\mathbf{A}\|_F = \|\mathbf{Q}\mathbf{A}\|_F = \|\mathbf{A}\mathbf{Q}\|_F$

p-Norms

 $\|\mathbf{A}\|_p = \max(\|\mathbf{A}\mathbf{x}\|_p)$ where the max() is taken over all \mathbf{x} with $\|\mathbf{x}\|_p = 1$ where $\|\mathbf{x}\|_p = \sup(\mathbf{abs}(\mathbf{x})^{\bullet p})^{(1/p)}$ denotes the <u>vector p-norm</u> for p >= 1.

- $\|\mathbf{A}\mathbf{B}\|_p \ll \|\mathbf{A}\|_p \|\mathbf{B}\|_p$
- $\|\mathbf{A}\mathbf{x}\|_p^r \ll \|\mathbf{A}\|_p^r \|\mathbf{x}\|_p^r$
- $[\mathbf{A}_{m\#n}]$: $||\mathbf{A}||_2 <= ||\mathbf{A}||_F <= n^{1/2} ||\mathbf{A}||_2$
- $[\mathbf{A}:_{m\neq n}]$: max $(\mathbf{ABS}(\mathbf{A})) \le ||\mathbf{A}||_2 \le \operatorname{sqrt}(mn) \max(\mathbf{ABS}(\mathbf{A}))$
- $\|\mathbf{A}\|_2 \le \operatorname{sqrt}(\|\mathbf{A}\|_1 \|\mathbf{A}\|_{\inf})$
- $\|\mathbf{A}\|_1 = \max(\mathbf{sum}(\mathbf{ABS}(\mathbf{A}^T)))$
- $\|\mathbf{A}\|_{\inf} = \max(\mathbf{sum}(\mathbf{ABS}(\mathbf{A})))$
- $[\mathbf{A}:_{m\#n}]$: $||\mathbf{A}||_{\inf} \le \operatorname{sqrt}(n) ||\mathbf{A}||_2 \le \operatorname{sqrt}(mn) ||\mathbf{A}||_{\inf}$
- $[\mathbf{A}:_{m\#n}]$: $\|\mathbf{A}\|_1 \le \operatorname{sqrt}(m) \|\mathbf{A}\|_2 \le \operatorname{sqrt}(mn) \|\mathbf{A}\|_1$
- [Q: orthogonal]: $||A||_2 = ||QA||_2 = ||AQ||_2$

Minor

A kth-order minor of A is the determinant of a k#k submatrix of A.

A *principal minor* is the determinant of a submatrix whose diagonal elements lie on the principal diagonal of **A**.

Null Space

The null space (or kernel) of **A** is the subspace of vectors **x** for which $\mathbf{A}\mathbf{x} = \mathbf{0}$.

- The null space of **A** is the orthogonal complement of the range of \mathbf{A}^H
- The dimension of the null space of **A** is the nullity of **A**.
- Given a vector \mathbf{x} , we can choose a <u>Householder</u> matrix $\mathbf{P} = \mathbf{I} 2\mathbf{v}\mathbf{v}^H$ with $\mathbf{v} = (\mathbf{x} + k\mathbf{e}_1)/||\mathbf{x} + k\mathbf{e}_1||$ where $k = \operatorname{sgn}(x(1))^*||\mathbf{x}||$ and \mathbf{e}_1 is the first column of the identity matrix. The first row of \mathbf{P} equals $-k^{-1}\mathbf{x}^T$ and the remaining rows form an orthonormal basis for the null space of \mathbf{x}^T .

Nullity

The nullity of a matrix A is the dimension of the null space of A.

• The nullity of A is the <u>geometric multiplicity</u> of the eigenvalue 0.

Observability

The pair of matrices $\{\mathbf{A}_{[n\#n]}, \mathbf{C}_{[m\#n]}\}$ are *observable* iff $\{\mathbf{A}^H, \mathbf{C}^H\}$ are <u>reachable</u>.

- If {A, C} are observable then they are constructible and detectable.
- If det(A)!=0 and $\{A,C\}$ are <u>constructible</u> then they are observable.

Permanent

For an n # n matrix **A**, pet(**A**) is a scalar number defined by pet(**A**)=sum(**prod**(**A**(1:n,**PERM**(n))))

This is the same as the determinant except that the individual terms within the sum are not multiplied by the signatures of the column permutations.

Properties of Permanents

- $pet(\mathbf{A}.') = pet(\mathbf{A})$
- pet(A') = conj(pet(A))
- $pet(c\mathbf{A}) = c^n pet(\mathbf{A})$
- [P: permutation matrix]: pet(PA) = pet(AP) = pet(A)
- [D: diagonal matrix]: pet(DA) = pet(AD) = pet(A) pet(D) = pet(A) prod(diag(D))

Permanents of simple matrices

- $pet([a \ b; c \ d]) = ad + bc$
- The permanent of a diagonal or triangular matrix is the product of its diagonal elements.
- The permanent of a permutation matrix equals 1.

Potency

The potency of a <u>non-negative</u> matrix **A** is the smallest n>0 such that diag(\mathbf{A}^n) > 0 i.e. all diagonal elements of \mathbf{A}^n are strictly positive. If no such n exists then **A** is <u>impotent</u>.

Pseudoinverse

The *pseudoinverse* (also called the *Natural Inverse* or *Moore-Penrose Pseudoinverse*) of $\mathbf{X}_{m\#n}$ is the unique [1.20] n#m matrix \mathbf{X}^+ that satisfies:

- 1. $XX^+X=X$ (i.e. X^+ is a generalized inverse of X).
- 2. $X^+XX^+=X^+$ (i.e. X is a generalized inverse of X^+).
- 3. $(XX^+)^H = XX^+$
- 4. $(\mathbf{X}^+\mathbf{X})^H = \mathbf{X}^+\mathbf{X}$
- If **X** is square and non-singular then $X^+=X^{-1}$.
- If $X=UDV^H$ is the <u>singular value decomposition</u> of X, then $X^+=VD^+U^H$ where D^+ is formed by inverting all the non-zero elements of D^T .
 - If **D** is a (not necessarily square) diagonal matrix, then \mathbf{D}^+ is formed by inverting all the non-zero elements of \mathbf{D}^T .
- The pseudoinverse of **X** is the <u>generalized inverse</u> having the lowest <u>Frobenius norm</u>.
- If X is real then so is X^+ .
- $(X^+)^+ = X$
- $(\mathbf{X}^T)^+ = (\mathbf{X}^+)^T$
- $(\mathbf{X}^H)^+ = (\mathbf{X}^+)^H$
- $(c\mathbf{X})^+ = c^{-1}\mathbf{X}^+$ for any real or complex scalar c.
- $\mathbf{X}^+ = \mathbf{X}^H (\mathbf{X}\mathbf{X}^H)^+ = (\mathbf{X}^H\mathbf{X})^+\mathbf{X}^H$.
- If $\mathbf{X}_{m\#n} = \mathbf{F}_{m\#r} \mathbf{G}_{r\#n}$ has rank r then $\mathbf{X}^+ = \mathbf{G}^+ \mathbf{F}^+ = \mathbf{G}^H (\mathbf{F}^H \mathbf{X} \mathbf{G}^H)^{-1} \mathbf{F}^H$.
 - If $\mathbf{X}_{m\#n}$ has rank n (i.e. the columns are linearly independent) then $\mathbf{X}^+ = (\mathbf{X}^H \mathbf{X})^{-1} \mathbf{X}^H$ and $\mathbf{X}^+ \mathbf{X} = \mathbf{I}$.
 - If $\mathbf{X}_{m\#n}$ has rank m (i.e. the rows are linearly independent) then $\mathbf{X}^+ = \mathbf{X}^H (\mathbf{X}\mathbf{X}^H)^{-1}$ and $\mathbf{X}\mathbf{X}^+ = \mathbf{I}$.
 - If **X** has orthonormal rows or orthonormal columns then $\mathbf{X}^+ = \mathbf{X}^H$.
- XX⁺ is a <u>projection</u> onto the column space of X.
- $[\operatorname{rank}(\mathbf{X})=1]$: $\mathbf{X}^+ = \mathbf{X}^H/\operatorname{tr}(\mathbf{X}^H\mathbf{X}) = \mathbf{X}^H/\|\mathbf{X}\|_F^2$ where $\|\mathbf{X}\|_F$ is the <u>Frobenius Norm</u> (see <u>rank-1 matrices</u>)
 - $\circ (\mathbf{x}\mathbf{y}^H)^+ = \mathbf{y}\mathbf{x}^H/(\mathbf{x}^H\mathbf{x}\mathbf{y}^H\mathbf{y})$
 - $\circ \mathbf{x}^+ = \mathbf{x}^H / (\mathbf{x}^H \mathbf{x})$

See also: Inverse, Generalized Inverse

Rank

The rank of an m#n matrix **A** is the smallest r for which there exist $\mathbf{F}_{[m#r]}$ and $\mathbf{G}_{[r#n]}$ such that $\mathbf{A} = \mathbf{F}\mathbf{G}$. Such a decomposition is a *full-rank* decomposition. As a special case, the rank of $\mathbf{0}$ is $\mathbf{0}$.

- $A=F_{[m\#r]}G_{[r\#n]}$ implies that $rank(A) \ll r$.
- rank(\mathbf{A})=1 iff $\mathbf{A} = \mathbf{x}\mathbf{y}^T$ for some \mathbf{x} and \mathbf{y} .
- $\operatorname{rank}(\mathbf{A}_{[m\#n]}) \le \min(m,n)$. [1.3]
- rank($A_{[m\#n]}$) = n iff its columns are <u>linearly independent</u>. [1.5]
- $rank(\mathbf{A}) = rank(\mathbf{A}^T) = rank(\mathbf{A}^H)$
- rank(A) = maximum number of linearly independent columns (or rows) of A.
- rank(A) is the dimension of the <u>range</u> of A.
- $\operatorname{rank}(\mathbf{A}_{[n\#n]}) + \underline{\operatorname{nullity}}(\mathbf{A}_{[n\#n]}) = n$
 - rank($\mathbf{A}_{[n\#n]}$) = n 1 if 0 is an eigenvalue of \mathbf{A} with <u>algebraic multiplicity</u> 1.
- $\underline{\det}(\mathbf{A}_{[n\#n]})=0 \text{ iff } \operatorname{rank}(\mathbf{A}_{[n\#n]})< n.$
- $rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$
- $rank([A B]) = rank(A) + rank(B AA^{\#}B)$ where $A^{\#}$ is a <u>generalized inverse</u> of A.
 - \circ rank([A; C]) = rank(A) + rank(C CA[#]A)

```
\circ rank([A B; C 0]) = rank(B) + rank(C) + rank((I - BB<sup>#</sup>)A(I - CC<sup>#</sup>))
```

- rank($(\mathbf{A}\mathbf{A}^H)$) = rank($(\mathbf{A}^H\mathbf{A})$) = rank((\mathbf{A}) [see grammian]
- $rank(AB) + rank(BC) \le rank(B) + rank(ABC)$
 - \circ rank($\mathbf{A}_{[m\#n]}$) + rank(\mathbf{B}) $n \ll \operatorname{rank}(\mathbf{A}\mathbf{B}) \ll \operatorname{min}(\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B}))$
- [X: non-singular]: rank(XA) = rank(AX) = rank(A)
- rank(KRON(A,B)) = rank(A)rank(B)
- rank(DIAG(A,B,...,Z)) = sum(rank(A), rank(B), ..., rank(Z))

Range

The range (or image) of A is the subspace of vectors that equal Ax for some x. The dimension of this subspace is the rank of A.

• [A:m#n] The range of A is the orthogonal complement of the null space of A^H .

Reachability

The pair of matrices $\{A_{[n\#n]}, B_{[n\#m]}\}$ are reachable iff any of the following equivalent conditions are true

- 1. rank(C)=n where C = [**B** AB A^2 B ... A^{n-1} B]_[n#mn] is the *controllability matrix*.
- 2. If $\mathbf{x}^H \mathbf{A}^r \mathbf{B} = \mathbf{0}$ for 0 < = r < n then $\mathbf{x} = \mathbf{0}$.
- 3. If $\mathbf{x}^H \mathbf{B} = \mathbf{0}$ and $\mathbf{x}^H \mathbf{A} = k \mathbf{x}^H$ then $\mathbf{x} = \mathbf{0}$.
- 4. For any v, it is possible to choose $\mathbf{L}_{[n\#m]}$ such that $\mathbf{eig}(\mathbf{A}+\mathbf{BL}^H)=\mathbf{v}$.
- If $\{A, B\}$ are reachable then they are <u>controllable</u> and <u>stabilizable</u>.
- If det(A)!=0 and $\{A, B\}$ are <u>controllable</u> then they are reachable.
- {DIAG(a), b} are reachable iff all elements of a are distinct and all elements of b are non-zero.

Schur Complement

Given a block matrix $\mathbf{M} = [\mathbf{A}_{[m\#m]}, \mathbf{B}; \mathbf{C}, \mathbf{D}_{[n\#n]}]$, then $\mathbf{P}_{[n\#n]} = \mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B}$ and $\mathbf{Q}_{[m\#m]} = \mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C}$ are respectively the Schur Complements of \mathbf{A} and \mathbf{D} in \mathbf{M} .

- $\det([A, B; C, D]) = \det([D, C; B, A]) = \det(A) * \det(P) = \det(Q) * \det(D)$ [3.1]
- $[A, B; C, D]^{-1} = [Q^{-1}, -Q^{-1}BD^{-1}; -D^{-1}CQ^{-1}, D^{-1}(I+CQ^{-1}BD^{-1})] = [A^{-1}(I+BP^{-1}CA^{-1}), -A^{-1}BP^{-1}; -P^{-1}CA^{-1}, P^{-1}]$ [3.5]

Spectral Radius

The *spectral radius*, $rho(\mathbf{A})$, of $\mathbf{A}_{[n\#n]}$ is the maximum modulus of any of its eigenvalues.

- $rho(A) \le ||A||$ where ||A|| is any matrix norm.
- For any a>0, there exists a matrix norm such that $||\mathbf{A}|| a <= \text{rho}(\mathbf{A}) <= ||\mathbf{A}||$.
- If $ABS(A) \le B$ then $rho(A) \le rho(ABS(A)) \le rho(B)$
 - \circ [A,B: real] If B>=A>=0 then rho(B)>=rho(A)
- [A: real] If A >= 0 then rho(A)>= a_{ij} for all i,j
- [A,B: Hermitian] abs(eig(A+B)-eig(A))<=rho(B) where eig(A) contains the eigenvalues of A sorted into ascending order. This shows that perturbing a hermitian matrix slightly doesn't have too big an effect on its eigenvalues.

Spectrum

The spectrum of $A_{[n\#n]}$ is the set of all its eigenvalues.

Stabilizability

The pair of matrices $\{A_{[n\#n]}, B_{[n\#m]}\}$ are *stabilizable* iff either of the following equivalent conditions are true

- 1. If $\mathbf{x}^T \mathbf{B} = \mathbf{0}$ and $\mathbf{x}^T \mathbf{A} = k \mathbf{x}^T$ then either |k| < 1 or else $\mathbf{x} = \mathbf{0}$.
- 2. It is possible to choose $\mathbf{L}_{[n\#m]}$ such that all elements of $\mathbf{eig}(\mathbf{A}+\mathbf{B}\mathbf{L}^H)$ have absolute value < 1.
- If $\{A, B\}$ are <u>reachable</u> or <u>controllable</u> then they are stabilizable.
- {DIAG(a), b} are stabilizable iff all elements of a with modulus >=1 are distinct and all the corresponding elements of b are non-zero.

Submatrix

A *submatrix* of **A** is a matrix formed by the elements a(i,j) where i ranges over a subset of the rows and j ranges over a subset of the columns.

Trace

The trace of a square matrix is the sum of its diagonal elements: tr(A) = sum(diag(A))

• $tr(\mathbf{A} \otimes \mathbf{B}) = [\mathbf{A}, \mathbf{B}: n \# n] tr(\mathbf{A}) tr(\mathbf{B})$ where \otimes denotes the <u>Kroneker product</u>.

In the formulae below, we assume that matrix dimensions ensure that the argument of tr() is square.

```
• tr(a\mathbf{A}) = a \times tr(\mathbf{A})
• tr(\mathbf{A}^T) = tr(\mathbf{A})
• tr(\mathbf{A}^H) = tr(\mathbf{A})^C
   tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})
• tr(AB) = tr(BA) [1.17]
             \circ tr((AB)<sup>k</sup>) =tr((BA)<sup>k</sup>)
             \circ \operatorname{tr}(\mathbf{a}\mathbf{b}^T) = \mathbf{a}^T\mathbf{b}
             \circ tr(Xba<sup>T</sup>) = a<sup>T</sup>Xb
             \circ tr(\mathbf{a}\mathbf{b}^H) = (\mathbf{a}^H\mathbf{b})^C
             \circ tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC)
             • Similar matrices have the same trace: tr(X^{-1}AX) = tr(A)
• tr(AB) = A:^TB^T := A^T:^TB := A^H:^HB := (A:^HB^H:)^C [1.18]
             • tr(\mathbf{A}^T\mathbf{B}) = tr(\mathbf{A}\mathbf{B}^T) = sum(\mathbf{A} : \bullet \mathbf{B} :) = \mathbf{A} : T \mathbf{B} :
             • tr(\mathbf{A}^H\mathbf{B}) = tr(\mathbf{B}\mathbf{A}^H) = sum(\mathbf{A}^C : \bullet \mathbf{B} :) = \mathbf{A} :^H \mathbf{B} :
                          • \operatorname{tr}(\mathbf{A}^H \mathbf{A}) = \operatorname{tr}(\mathbf{A}\mathbf{A}^H) = \mathbf{A}^H \mathbf{A}^H = (\|\mathbf{A}\|_F)^2 where \|\mathbf{A}\|_F is the <u>Frobenius matrix norm</u>.
• \operatorname{tr}([\mathbf{A} \mathbf{B}]^T [\mathbf{C} \mathbf{D}]) = \operatorname{tr}(\mathbf{A}^T \mathbf{C}) + \operatorname{tr}(\mathbf{B}^T \mathbf{D}) [1.19]
             \circ tr([A b]<sup>T</sup> [C d]) = tr(A<sup>T</sup>C) + b<sup>T</sup>d
             \circ tr([A B]<sup>T</sup> X[C D]) = tr(A<sup>T</sup>XC) + tr(B<sup>T</sup>XD)
                          • \operatorname{tr}([\mathbf{A} \ \mathbf{b}]^T \mathbf{X}[\mathbf{C} \ \mathbf{d}]) = \operatorname{tr}(\mathbf{A}^T \mathbf{X} \mathbf{C}) + \mathbf{b}^T \mathbf{X} \mathbf{d}
```

• [D is diagonal] $tr(\mathbf{X}\mathbf{D}\mathbf{X}^T) = sum_i(d_i \mathbf{x}_i^T\mathbf{x}_i)$ and $tr(\mathbf{X}\mathbf{D}\mathbf{X}^H) = sum_i(d_i \mathbf{x}_i^H\mathbf{x}_i) = sum_i(d_i |\mathbf{x}_i|^2)$ [1.16]

Transpose

 $\mathbf{X} = \mathbf{Y}^T$ is the transpose of \mathbf{Y} iff x(i,j) = y(j,i).

Vectorization

The vector formed by concatenating all the columns of **X** is written **vec(X)** or, in this website, **X**:. If $\mathbf{y} = \mathbf{X}_{[m\#n]}$: then $y_{i+m(j-1)} = x_{i,j}$.

- $\mathbf{a} \otimes \mathbf{b} = (\mathbf{b}\mathbf{a}^T)$: where \otimes denotes the <u>Kroneker product</u>.
- $sum((\mathbf{A} \bullet \mathbf{B}):) = tr(\mathbf{A}^T \mathbf{B}) = sum(\mathbf{A}: \bullet \mathbf{B}:) = \mathbf{A}:^T \mathbf{B}: = (\mathbf{A}^T:)^T \mathbf{B}^T:$ where $\mathbf{A} \bullet \mathbf{B}$ denotes the <u>Hadamard or elementwise product</u>.
- $tr(\mathbf{A}^H\mathbf{B}) = sum(\mathbf{A}^C : \bullet \mathbf{B} :) = \mathbf{A} :^H \mathbf{B} :$
 - $[\mathbf{A}, \mathbf{B} \text{ Hermitian}] \operatorname{tr}(\mathbf{A}^H \mathbf{B}) = \operatorname{tr}(\mathbf{B}^H \mathbf{A}) = \mathbf{A}^H \mathbf{B} = \mathbf{B}^H \mathbf{A}$ is real-valued.
- (ABC): = ($\mathbf{C}^T \otimes \mathbf{A}$) B:
 - $\circ (\mathbf{A}\mathbf{B}) := (\mathbf{I} \otimes \mathbf{A}) \mathbf{B} := (\mathbf{B}^T \otimes \mathbf{I}) \mathbf{A} := (\mathbf{B}^T \otimes \mathbf{A}) \mathbf{I} :$
 - $(\mathbf{A}\mathbf{b}\mathbf{c}^T) := (\mathbf{c} \otimes \mathbf{A}) \mathbf{b} = \mathbf{c} \otimes \mathbf{A}\mathbf{b}$
 - $\mathbf{ABc} = (\mathbf{c}^T \otimes \mathbf{A}) \mathbf{B}$:
 - \circ $\mathbf{a}^T \mathbf{B} \mathbf{c} = (\mathbf{c} \otimes \mathbf{a})^T \mathbf{B} \mathbf{c} = (\mathbf{c}^T \otimes \mathbf{a}^T) \mathbf{B} \mathbf{c} = (\mathbf{a} \mathbf{c}^T) \mathbf{c}^T \mathbf{B} \mathbf{c} = \mathbf{B} \mathbf{c}^T (\mathbf{a} \otimes \mathbf{c}) = \mathbf{B} \mathbf{c}^T (\mathbf{c} \mathbf{a}^T) \mathbf{c}$
 - $\circ \mathbf{ab}^H \otimes \mathbf{cd}^H = (\mathbf{a} \otimes \mathbf{c})(\mathbf{b} \otimes \mathbf{d})^H = (\mathbf{ca}^T):(\mathbf{db}^T):^H$
- (\mathbf{ABC}) : $^T = \mathbf{B}$: $^T (\mathbf{C} \otimes \mathbf{A}^T)$
 - $\circ (\mathbf{A}\mathbf{B}):^T = \mathbf{B}:^T (\mathbf{I} \otimes \mathbf{A}^T) = \mathbf{A}:^T (\mathbf{B} \otimes \mathbf{I}) = \mathbf{I}:^T (\mathbf{B} \otimes \mathbf{A}^T)$
 - $\circ (\mathbf{A}\mathbf{b}\mathbf{c}^T) : ^T = \mathbf{b}^T (\mathbf{c}^T \otimes \mathbf{A}^T) = \mathbf{c}^T \otimes \mathbf{b}^T \mathbf{A}^T$
 - $\circ \mathbf{a}^T \mathbf{B}^T \mathbf{C} = \mathbf{B} : T(\mathbf{a} \otimes \mathbf{C})$
- If $\mathbf{Y} = \mathbf{A}\mathbf{X}\mathbf{B} + \mathbf{C}\mathbf{X}\mathbf{D} + ...$ then $\mathbf{X} := (\mathbf{B}^T \otimes \mathbf{A} + \mathbf{D}^T \otimes \mathbf{C} + ...)^{-1} \mathbf{Y}$: however this is a slow and often ill-conditioned way of solving such equations.
- $(\mathbf{A}_{\lceil m\#n \rceil}^T)$: = TVEC(m,n) (A:) [see <u>vectorized transpose</u>]

Vector Norms

A vector norm is a real-valued function of a vector satisfying the three axioms listed below.

- 1. Positive: $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$ else $\|\mathbf{x}\| > 0$
- 2. Homogeneous: $||c\mathbf{x}|| = |c| ||\mathbf{x}||$ for any real or complex scalar c
- 3. Triangle Inequality: $\|\mathbf{x} + \mathbf{x}\| < \|\mathbf{x}\| + \|\mathbf{x}\|$

Inner Product Norm

If $\langle x, y \rangle$ is an <u>inner product</u> then $||x|| = \operatorname{sqrt}(\langle x, x \rangle)$ is a vector norm.

- A vector norm may be derived from an inner product iff it satisfies the *parallelogram identity*: $\|\mathbf{x}+\mathbf{y}\|^2 + \|\mathbf{x}-\mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$
- If $||\mathbf{x}||$ is derived from $\langle \mathbf{x}, \mathbf{y} \rangle$ then $4\text{Re}(\langle \mathbf{x}, \mathbf{y} \rangle) = ||\mathbf{x} + \mathbf{y}||^2 ||\mathbf{x} \mathbf{y}||^2 = 2||\mathbf{x} + \mathbf{y}||^2 ||\mathbf{x}||^2 ||\mathbf{y}||^2$

Euclidean Norm

The Euclidean norm of a vector \mathbf{x} equals the square root of the sum of the squares of the absolute values of all its elements and is written $\|\mathbf{x}\|$. It is always a real number and corresponds to the normal notion of the vector's

length.

- $||\mathbf{x}||^2 = \mathbf{x}^H \mathbf{x} = \operatorname{tr}(\mathbf{x}\mathbf{x}^H)$
- Cauchy-Schwartz inequality: $|\mathbf{x}^H \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$
- $[\mathbf{Q}: \underline{\text{orthogonal}}]: ||\mathbf{Q}\mathbf{x}|| = ||\mathbf{x}||$

Hölder Norms or p-Norms

The p-norm of a vector \mathbf{x} is defined by $\|\mathbf{x}\|_p = \text{sum}(\mathbf{abs}(\mathbf{x})^{\bullet p})^{(1/p)}$ for p>=1. The most common values of p are 1, 2 and infinity.

- City-Block Norm: $||\mathbf{x}||_1 = \text{sum}(\mathbf{abs}(\mathbf{x}))$
- Euclidean Norm: $||\mathbf{x}|| = ||\mathbf{x}||_2 = \operatorname{sqrt}(\mathbf{x}'\mathbf{x})$
- Infinity Norm: $\|\mathbf{x}\|_{\inf} = \max(\mathbf{abs}(\mathbf{x}))$
- Hölder inequality: $\mathbf{abs}(\mathbf{x})^T \mathbf{abs}(\mathbf{y}) \ll ||\mathbf{x}||_p ||\mathbf{y}||_q$ where 1/p + 1/q = 1
- $\|\mathbf{x}\|_{\inf} \le \|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le \operatorname{sqrt}(n) \|\mathbf{x}\|_2 \le n \|\mathbf{x}\|_{\inf}$

This page is part of <u>The Matrix Reference Manual</u>. Copyright © 1998-2019 <u>Mike Brookes</u>, Imperial College, London, UK. See the file <u>gfl.html</u> for copying instructions. Please send any comments or suggestions to "mike.brookes" at "imperial.ac.uk".

Updated: \$Id: property.html 11206 2020-02-11 15:57:31Z dmb \$