Massive Data Algorithmics

Lecture 11: BFS and DFS

Breadth-First Search(BFS)

- One of the most basic graph-traversal methods
 - input: G(V,E), undirected
 - one starting point: s
 - compute: BFS-levels L(i), where L(i) node with dist. i from s

ullet Standard implementation for internal memory: O(|V|+|E|) time

Breadth-First Search(BFS)

- N(L(t)): all neighbors of nodes in L(t)
- Idea: all reached nodes in N(L(t)) belong to L(t) or L(t-1)
- Procedure BFS
 - 1: Compute N(L(t)) : O(|L(t)| + |N(L(t))|/B)
 - 2: Eliminate duplicates in N(L(t)) by sorting: O(sort(|N(L(t))|)) I/Os
 - 3: Eliminate nodes already in L(t) by sorting: $O(\operatorname{sort}(|L(t)|))$ I/Os
 - 4: Eliminate nodes already in L(t-1) by sorting: $O(\operatorname{sort}(|L(t-1)|))$ I/Os

Breadth-First Search(BFS)

- Analysis
 - $\sum_{t} |N(L(t))| \leq 2|E|$
 - $-\sum_{t}|L(t)|\leq |V|$
 - $\Rightarrow O(|V| + \mathsf{sort}(|V| + |E|)) \text{ I/Os}$

Breadth-First Search(BFS):Improvment

- Main problem: In line 1 of BFS procedure, we pay at least one I/O per vertex
- Idea: Cluster vertices, for each cluster read adjacent vertices to the cluster together

Breadth-First Search(BFS):Improvment

- Main problem: In line 1 of BFS procedure, we pay at least one I/O per vertex
- Idea: Cluster vertices, for each cluster read adjacent vertices to the cluster together

Clustering

- Idea: diameter of each cluster does not exceed a specific number
- Choose $0 < \mu < 1$
- V' is the set of cluster centers (masters). Starting vertex s is inserted to V'.
- Select a vertex as a master with probability μ and put into V': $E(|V'|) = 1 + \mu |V|$
- \bullet Put V' into list L(0) and compute levels L(i) using the BFS procedure with following modifications
 - Instead of accessing the adjacency list of each vertex at L(i), scan E and L(i) and retrieve adjacent vertices to L(i): O(scan(|E|)) I/Os
 - Sort to remove duplicates: $O(\text{sort}(|E_i|)) \text{ I/Os}$

Expected $1/\mu$ iterations $\Rightarrow O(\operatorname{sort}(|E|) + \operatorname{scan}(|E|)/\mu) \text{ I/Os}$

Clustering

- ullet The expected diameter of any cluster is $2/\mu$
 - There is a path from s to vertex v: $P: s, x_k, x_{k-1}, \dots, x_1, v$
 - Then each vertex belongs to a cluster
 - j smallest index so x_i is a master
 - $E(j) = 1/\mu$ since each vertex is master with probability μ
 - Then expected diameter is $2/\mu$

- Maintain each cluster C_i in a file F_i
 - F_i maintain all adjacent vertices (not necessary in C_i) to vertices in C_i
 - With each edge maintain the starting location \mathcal{F}_i
 - $\Rightarrow O(\mu|V| + \text{sort}(E)) \text{ I/Os}$
- Hot Pool H: maintain edges in sorted order
 - If a cluster has a vertex adjacent to a vertex in L(t) the whole cluster is maintained in H.
- List L(t) is maintained sorted

- ullet Scan L(t) and H to identify vertices in L(t) whose ALs are not in H
 - If $v \in C_j$ is such a vertex, add F_j into list Q
 - ullet Sort Q to remove duplicates
- The files in Q is appended to H'
- Make H' sorted and merge with H
- Scan L(t) and H to extract ALs and to L(i+1)
- Sort L(t+1) to remove duplicate.
- Eliminate vertices appear in L(t) and L(t-1)

- Analysis
 - H is scanned in each iteration
 - ullet Each edge is maintained $O(1/\mu)$ iterations in H
 - Total cost of scanning H is $O(\operatorname{scan}(E)/\mu)$
 - $O(\mu |V| + \text{sort}(E))$ I/Os to retrieve files
 - the rest in sort(E)) I/Os as before

$$\Rightarrow O(\mu|V| + \text{sort}(E) + \text{scan}(E)/\mu) \text{ I/Os}$$

- Set $\mu = \sqrt{|E|/B|V|} \Rightarrow O(\sqrt{|V||E|/B} + \operatorname{sort}(|V| + |E|))$ I/Os
- \bullet For spars graph: $O(|V|/\sqrt{B} + \operatorname{sort}(|V|) \text{ I/Os}$

Deterministic Clustering

- Compute a spanning tree
- Make a Euler tour
- Chop Euler-tour into $2n/\mu$ pieces
- Eliminate duplicate
- BFS: $O(\sqrt{|V||E|/B} + \operatorname{sort}(|V| + |E|) \log_2 \log_2 |V|)$ I/Os

Buffered Repository Tree (BRT)

- Store key-value pairs (k, v)
- Support the following operations
 - Insert((k,v)): insert given (k,v) into BRT in $O(\frac{1}{B}\log_2(N/B))$ I/Os
 - Extract(k): remove all key-value pairs with key \tilde{k} from BRT and return them in $O(\log_2(N/B) + K/B)$ I/Os

Buffered Repository Tree (BRT)

- BRT is a (2,4)-tree T
- For each node a buffer of size B is maintained
- Its maintenance is like that of buffer trees with few changes
- Since buffer size is small in contrast with the size of buffers in buffer trees, the tree can support search quickly
- \bullet Since each node has at most 4 children, a full buffer can be emptied with 4 I/Os

- 1: Push s into Stack Q
- 2: While Q is not empty do
- 3: v = Top(Q)
- 4: **if** there is an unexplored edge (v, w) and w is unvisited **then**
- 5: push(Q, w) and set w is visited
- 6: else
- 7: $\mathsf{Pop}(Q, w)$

- A BRT T storing edges of G. Each edge has its source vertex as its key. Tree T is initially empty.
- A buffered priority queue P(v) per vertex $v \in G$, which stores the out-edges of v that have not been explored yet and whose other endpoints have not been visited before the last visit to v.
- invariant: the edges that are stored in P(v) and are not stored in T are the edges from v to unvisited vertices.

- A BRT T storing edges of G. Each edge has its source vertex as its key. Tree T is initially empty.
- A buffered priority queue P(v) per vertex $v \in G$, which stores the out-edges of v that have not been explored yet and whose other endpoints have not been visited before the last visit to v.
- invariant: the edges that are stored in P(v) and are not stored in T are the edges from v to unvisited vertices.

8:

9:

else

Pop(Q, w)

1: Push s into Stack O

2: While Q is not empty do
3: v = Top(Q),
4: Extract(v) from T and call Delete(P(v)) for each extracted vertex
5: w = Deletemin(P(v))6: if w exists then
7: push(Q, w) and insert in-edges of w into T

- |E| insertion into T
- |E| deletion from P(v)s
- ullet Numbers of visits is O(|V|), since DFS-algorithm performs an inorder traversal of DFS-tree
- \bullet O(|V|) Extract from T
- O(|V|) Deletemin from P(v)s
- ullet We have to maintain a buffer of size B for each P(v)
 ightarrow |V| B < M
- ullet Since it is not necessarily |V|B < M, we just maintain the buffer of active node in the memory
- Since the active nodes changes at most O(|V|) time, we pay O(|V|) extra I/Os
- $\Rightarrow O((|V| + |E|/B)\log_2|V|) \text{ I/Os}$

Summary: BFS and DFS

- Undirected BFS
 - O(|V| + sort(|V| + |E|)) I/Os
 - $O(\sqrt{|V||E|/B} + \operatorname{sort}(|V| + |E|))$ I/Os
 - For spars graph: $O(|V|/\sqrt{B} + \text{sort}(|V|) \text{ I/Os}$
- Directed BFS and DFS
 - $O((|V| + |E|/B)\log_2 |V|)$ I/Os

References

- I/O efficient graph algorithms Lecture notes by Norbert Zeh.
 - Section 6