St. Joseph's College of Engineering, Chennai–119

St. Joseph's Institute of Technology, Chennai-119

Department of Mathematics

MA6351- Transforms and Partial Differential Equations

Assignment-III

Unit IV – Fourier Transform (Common to all Branches)

Part-A

Semester III

Year II

State Fourier integral theorem.

- 2 Write the Fourier transform pair
- 3 Find the Fourier transform of $f(x) = \begin{cases} 1 & |x| < 2 \\ 0 & |x| > 2 \end{cases}$
- 4 If F[f(x)] = F(s), then show that $F[f(x-a)] = e^{ias} F(s)$.
- 5 Prove that $F_C[f(ax)] = \frac{1}{a} F_C(\frac{s}{a})$.
- 6 Find the Fourier sine transform of e^{-ax} , a > 0. Hence find $F_s \left[xe^{-ax} \right]$.
- 7 State Parseval's identity on Fourier transform.
- 8 Find f(x) from the integral equation $\int_{0}^{\infty} f(x) \cos s x \, dx = e^{-s}$.

Part-B

1 Show that the Fourier transforms of $f(x) = \begin{cases} a^2 - x^2 \; ; \; |x| < a \\ 0; \qquad |x| > a \end{cases}$ is $2\sqrt{\frac{2}{\pi}} \left[\frac{\sin as - as \cos as}{s^3} \right]$.

Hence deduce that $\int_{0}^{\infty} \frac{\sin t - t \cos t}{t^3} dt = \frac{\pi}{4}$. Using Parseval's Identity, show that

$$\int_{0}^{\infty} \left(\frac{\sin t - t \cos t}{t^3} \right)^2 dt = \frac{\pi}{15}$$

- 2a) Find the Fourier transform of $f(x) = \begin{cases} 1 |x| \; ; \; if \; |x| < 1 \\ 0 \; ; \; if \; |x| \ge 1 \end{cases}$, Hence Evaluate $\int_0^\infty \frac{\sin^4 t}{t^4} dt$.
- b) Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$ using Fourier Cosine Transforms of e^{-ax} and e^{-bx} , a, b > 0.
- 3a) Find the Fourier transform of $e^{-a^2x^2}$ and hence show that $e^{-\frac{x^2}{2}}$ is self-reciprocal with respect to the Fourier Transform.
- b) Find the function f(x) if its sine transform is $\frac{e^{-as}}{s}$.
- **4a)** Find the Fourier transform of $e^{-a|x|}$, a > 0 and hence deduce that i) $\int_{0}^{\infty} \frac{\cos xt}{a^2 + t^2} dt = \frac{\pi}{2a} e^{-a|x|}$ ii) $F\left[xe^{-a|x|}\right] = i\sqrt{\frac{2}{\pi}} \frac{2as}{(s^2 + a^2)^2}$
- b) Find Fourier sine and cosine transform of x^{n-1} and hence prove that $\frac{1}{\sqrt{x}}$ is self reciprocal under Fourier sine and cosine transform.