

## Energieverbrauch von Live-Migrationen in OpenStack-basierten Private-Cloud-Umgebungen

Prof. Dr. Sebastian Rieger

Dipl.-Inf. Christian Pape

Dipl.-Inf.(HS) Ronny Trommer

#### **Kontext**



Forschungsprojekt: **eneRZet** - Improving energy efficiency in data centers by using SDN technologies, renewable energy and power management

TU Clausthal: Prof. Dr. Harald Richter

Hochschule Darmstadt: Prof. Dr. Thomas Glotzbach

Hochschule Fulda: Prof. Dr. Sebastian Rieger

#### **Kontext**





Figure 1: K. Spindler, S. Reissmann, and S. Rieger, "Enhancing the energy efficiency in enterprise clouds using compute and network power management functions," in ICIW 2014, The Ninth International Conference on Internet and Web Applications and Services, 2014

#### **Kontext**



- Optimierung Energie-Effizienz von Rechenzentren
- Schwerpunkt auf alternative Energien
- Ermitteln von Migrationskosten
- Projektumgebung basierend auf OpenStack
- Live-Migration von virtuellen Maschinen

## **Migration Strategien**



Non-Live Migration

- Shared storage-based live migration
- Block live migration
- Volume-backed live migration

# **Migration Strategien**



Non-Live Migration

- Shared storage-based live migration
- Block live migration
- Volume-backed live migration

#### **Testaufbau**





#### **Testaufbau**





#### **Testablauf**





#### VM Profile

- m1.xsmall
- 1GB RAM
- 1 VCPU
- 10.0GB Disk

- Last Simulation
- stress
  I/O, Mem, CPU
- Ziellast ~80%
  CPU Utilization

### **Testablauf**





#### SPECpower\_ssj2008

Copyright © 2007-2015 Standard Performance Evaluation Corporation

|                                                           | spec                   |                 |                        |                                                |                                  |        |
|-----------------------------------------------------------|------------------------|-----------------|------------------------|------------------------------------------------|----------------------------------|--------|
| Dell Inc. PowerEdge R630 (Intel Xeon E5-2699 v3 2.30 GHz) |                        |                 |                        | SPECpower_ssj2008 = 9,749 overall ssj_ops/watt |                                  |        |
|                                                           | Test Sponsor:          | Dell Inc.       | SPEC License #:        | 55                                             | Test Method: Single Node         |        |
|                                                           | Tested By:             | Dell Inc.       | Test Location:         | Round Rock, TX, USA                            | Test Date: Mar 13, 2015          |        |
|                                                           | Hardware Availability: | Apr-2015        | Software Availability: | Jun-2013                                       | Publication: Apr 1, 2015         |        |
|                                                           | System Source:         | Single Supplier | System Designation:    | Server                                         | Power Provisioning: Line-powered | $\neg$ |

#### Benchmark Results Summary

| Performance |             |           | Power                    | Performance to Power Ratio |
|-------------|-------------|-----------|--------------------------|----------------------------|
| Target Load | Actual Load | ssj_ops   | Average Active Power (W) | Performance to Power Hatto |
| 100%        | 100.1%      | 3,240,418 | 287                      | 11,284                     |
| 90%         | 91.0%       | 2,946,465 | 255                      | 11,560                     |
| 80%         | 80.2%       | 2,594,563 | 223                      | 11,623                     |
| 70%         | 69.9%       | 2,261,881 | 197                      | 11,505                     |
| 60%         | 60.2%       | 1,947,214 | 176                      | 11,033                     |
| 50%         | 49.9%       | 1,615,345 | 162                      | 10,000                     |
| 40%         | 40.0%       | 1,294,673 | 146                      | 8,889                      |
| 30%         | 30.0%       | 970,456   | 129                      | 7,528                      |
| 20%         | 20.0%       | 648,195   | 111                      | 5,830                      |
| 10%         | 10.0%       | 324,418   | 93.4                     | 3,473                      |
|             | Active Idle | 0         | 51.2                     | 0                          |
|             |             |           | Σssj_ops / Σpower =      | 9,749                      |



SPECpower\_ssj2008: https://www.spec.org/power\_ssj2008/results/res2015q2/power\_ssj2008-20150317-00691.html

## **Testablauf**



| ormance<br>ctual Load ssj_ops |           | Power                    | Dawfarranas ta Dawer Datia |
|-------------------------------|-----------|--------------------------|----------------------------|
|                               |           | Average Active Power (W) | Performance to Power Ratio |
| 100.1%                        | 3,240,418 | 287                      | 11,284                     |
| 91.0%                         | 2,946,465 | 255                      | 11,560                     |
| 80.2%                         | 2,594,563 | 223                      | 11,623                     |
| 69.9%                         | 2,261,881 | 197                      | 11,505                     |
| 60.2%                         | 1,947,214 | 176                      | 11,033                     |
| 49.9%                         | 1,615,345 | 162                      | 10,000                     |
| 40.0%                         | 1,294,673 | 146                      | 8,889                      |
| 30.0%                         | 970,456   | 129                      | 7,528                      |
| 20.0%                         | 648,195   | 111                      | 5,830                      |
| 10.0%                         | 324,418   | 93.4                     | 3,473                      |
| Active Idle                   | 0         | 51.2                     | 0                          |
|                               |           | Σssj_ops / Σpower =      | 9,749                      |

















### **Fazit**



- Server: Leistungsaufnahme lastabhängig
- Netzwerk: Leistungsaufnahme nicht lastabhängig
- Storage: Leistungsaufnahme nicht lastabhängig
- Während der Migration keine erhöhte CPU Last / Load, keine höhere Leistungsaufnahme bei Netzund Storage-Komponenten

#### **Ausblick**



- Ersetzen der Last-Simulation von stress mit echtem Service
- Erweiterung der Tests im Hinblick auf der Dienstgüte
  - Anzahl Anfragen pro Sekunde
  - Antwortzeit eines Dienstes
- Gegenüberstellung VM / LXC