Theoretical and practical metagenomic approaches to viral discovery

Practical Session: ViennaRNA for RNA-RNA Interactions

Kevin Lamkiewicz, Manja Marz

24.10.2019

European Virus Bioinformatics Center

WHY RNA-RNA INTERACTIONS?

WHY RNA-RNA INTERACTIONS?

${\sf Table}\ 1\ \ \textbf{Functional intragenomic interactions in positive-strand RNA\ viruses}$				
Virus (genus)	RNA-RNA interaction	Viral process regulated	Refs	
Many plant viruses in the <i>Tombusviridae</i> family and the Umbravirus and Luteovirus genera	3' CITE-5' UTR or 3' CITE-5' coding region	Translation initiation ^{5,6}	5,6	
BYDV (Luteovirus)	3' CITE-5' UTR	Translation initiation	21,25,30	
	Frameshift site-3' UTR	Ribosomal frameshifting	47	
CIRV (Tombusvirus)	3' CITE-5' UTR	Translation initiation	22,28	
	PRTE-DRTE	Stop codon readthrough	50	
TBSV (Tombusvirus)	3' CITE-5' UTR	Translation initiation	26,27	
	UL-DL	Genome replication	52	
	AS1-RS1; AS2-RS2; DE-CE	sgmRNA transcription	81-84	
FMDV (Apthovirus)	IRES-3'UTR	Translation initiation	32,33	
	S-region-3'UTR	Possibly genome replication	33	
CSFV (Pestivirus)	IRES-3' terminus	Translation	34	
HCV (Hepacivirus)	IRES-5BSL3.2	Translation initiation	35-37	
	5BSL3.2- 3' UTR	Genome replication	38-42	
DENV and WNV (Flavivirus)	5' UAR-3' UAR; 5' DAR-3' DAR; 5' CS-3' CS	Genome replication	53-61,65,66	
TGEV (Coronavirus)	DE-PE; cBM-BM	sgmRNA-N transcription	77–79	

Beth L. Nicholson and K. Andrew White (2014) "Functional long-range RNA-RNA interactions in positive-strand RNA viruses.",

Interactions for single sequences

RNACOFOLD

```
RNAcofold works like RNAfold, but allows to specify two RNA sequences.
     These sequences are then allowed to form a dimer structure. In order
     to calculate the hybrid structure, it is necessary to concatenate the
     two RNA sequence, using & as a separator.
   $> RNAcofold [OPTIONS] < sequences.fasta > sequences.cofold
     >seq1
     AUGGCAUCGACA
10
     >sea2
11
     UGUCGAAUCCAA
12
13
     RNAcofold Input:
14
```


AUGGCAUCGACA & UGUCGAAUCCAA

RNACOFOLD

- First sequence is colored green
- Second sequence is colored red

RNACOFOLD WITH PARTITION FUNCTION

```
# We calculated the MFE structure of the interacting molecules (RNA dimer).
# RNAcofold also has the -p parameter implemented.

**Solution**
**Property **Text**
```


RNACOFOLD WITH PARTITION FUNCTION

```
# We calculated the MFE structure of the interacting molecules (RNA dimer).
# RNAcofold also has the -p parameter implemented.

* PNAcofold -p < sequences.fasta > sequences.cofold
```

We can use relplot.pl on the PostScript files as well, but it looks a bit... weird.

Alignments

Sequences

AA, AB, BB

```
# Until now, we just looked at the heterodimer of the two sequences.
# But how do the molecules behave individually?

$ RNAcofold -a < sequences.fasta > sequences.cofold
```


AA, AB, BB

```
# Until now, we just looked at the heterodimer of the two sequences.
# But how do the molecules behave individually?

RNAcofold -a < sequences.fasta > sequences.cofold
```

The AA and BB dimer describe the MFE structure of two RNA molecules of sequence one and sequence two, respectively.

I RIs

```
# RNAduplex is very similar to RNAcofold. Actually,
# it is a special case of RNAcofold, where only inter-molecular
# base pairs are allowed.

$ \( \) RNAduplex [OPTIONS] < sequences.fasta > sequences.duplex
```


RNADUPLEX

11

Co-Folding with MSAs

Alignments

LRIs

RNAALIDUPLEX

Sequences

RNAALIDUPLEX

Not much implemented...

Unfortunately, ViennaRNA does not provide many possibilities for alignment-based co-folding analyses. Indeed, only the alignment version of RNAduplex is implemented in RNAaliduplex.

RNAALIDUPLEX

Not much implemented...

Unfortunately, ViennaRNA does not provide many possibilities for alignment-based co-folding analyses. Indeed, only the alignment version of RNAduplex is implemented in RNAaliduplex.

```
1 RNAaliduplex [OPTIONS] <file1.aln> <file2.aln>
2 
3 # RNAaliduplex expects two input files (both CLUSTAL alignments)
4 # and predicts optimal and suboptimal binding sites.
5 # However, only inter-molecular base pairs are taken into account.
```


ALIGNMENT-BASED INTRA-MOLECULAR BASE PAIRS?

Alignments

ALIGNMENT-BASED INTRA-MOLECULAR BASE PAIRS?

What would you do?

Discuss, play around, try to make some examples - I will go around and answer questions, discuss your ideas and help you as good as I can.

ALIGNMENT-BASED INTRA-MOLECULAR BASE PAIRS!

ALIGNMENT-BASED INTRA-MOLECULAR BASE PAIRS!

Different ways to do it

Most commonly, you'd want to do the following:

- 1. Extract your sequences and align them individually
- 2. Merge the alignments, use 'NNNNN' as a separator
- 3. Apply RNAalifold on the alignment

LRIs

Long-Range Interactions

LRIs

WE REMEMBER...

Table 1 Functional intragenomic interactions in positive-strand RNA viruses				
Virus (genus)	RNA-RNA interaction	Viral process regulated	Refs	
Many plant viruses in the <i>Tombusviridae</i> family and the Umbravirus and Luteovirus genera	3' CITE-5' UTR or 3' CITE-5' coding region	Translation initiation ^{5,6}	5,6	
BYDV (Luteovirus)	3' CITE-5' UTR	Translation initiation	21,25,30	
	Frameshift site-3' UTR	Ribosomal frameshifting	47	
CIRV (Tombusvirus)	3' CITE-5' UTR	Translation initiation	22,28	
	PRTE-DRTE	Stop codon readthrough	50	
TBSV (Tombusvirus)	3' CITE-5' UTR	Translation initiation	26,27	
	UL-DL	Genome replication	52	
	AS1-RS1; AS2-RS2; DE-CE	sgmRNA transcription	81-84	
FMDV (Apthovirus)	IRES-3' UTR	Translation initiation	32,33	
	S-region-3'UTR	Possibly genome replication	33	
CSFV (Pestivirus)	IRES-3' terminus	Translation	34	
HCV (Hepacivirus)	IRES-5BSL3.2	Translation initiation	35-37	
	5BSL3.2- 3' UTR	Genome replication	38-42	
DENV and WNV (Flavivirus)	5' UAR-3' UAR; 5' DAR-3' DAR; 5' CS-3' CS	Genome replication	53-61,65,66	
TGEV (Coronavirus)	DE-PE; cBM-BM	sgmRNA-N transcription	77-79	

Beth L. Nicholson and K. Andrew White (2014) "Functional long-range RNA-RNA interactions in positive-strand RNA viruses.",

WHY LRIS?

- Interaction spans distances between a few hundred and several thousands of nucleotides
- few are described in positive stranded RNA viruses
- often located in loop regions (bulges, hairpins, ...)

WHY LRIS?

- Interaction spans distances between a few hundred and several thousands of nucleotides
- few are described in positive stranded RNA viruses
- often located in loop regions (bulges, hairpins, ...)
 - \Rightarrow pseudo-knots!

RNA-RNA INTERACTIONS ARE CRUCIAL FOR RNA VIRUSES.

Fricke, M. et al. (2015). Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. RNA, http://doi.org/10.1261/rna.049338.114

- ► Hepatitis C virus: (+)ssRNA
- around 9 kb in size

RNA-RNA INTERACTIONS ARE CRUCIAL FOR RNA VIRUSES

Fricke, M. et al. (2015). Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. RNA. http://doi.org/10.1261/rna.049338.114

- ► Hepatitis C virus: (+)ssRNA
- around 9 kb in size

Initiation of Translation

RNA-RNA INTERACTIONS ARE CRUCIAL FOR RNA VIRUSES

Fricke, M. et al. (2015). Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. RNA. http://doi.org/10.1261/rna.049338.114

- Hepatitis C virus: (+)ssRNA
- around 9 kb in size

- Initiation of Translation
- Initiation of Replication

Exercise:

Take any LRI from HCV, described in the following paper, and try to reconstruct / predict it with the ViennaRNA package.

Fricke, M. et al. (2015). Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. RNA, http://doi.org/10.1261/rna.049338.114

