2024학년도 6월 고2 전국연합학력평가 정답 및 해설

• 수학 영역 •

※ 본 전국연합학력평가는 17개 시도 교육청 주관으로 시행되며, 해당 자료는 EBSi에서만 제공됩니다.무단 전재 및 재배포는 금지됩니다.

정 답

1	4	2	2	3	(5)	4	4	5	1
6	3	7	5	8	1	9	2	10	3
11	4	12	3	13	3	14	1	15	3
16	1	17	2	18	4	19	5	20	4
21	2	22	5	23	65	24	29	25	12
26	22	27	18	28	144	29	28	30	47

해 설

1. [출제의도] 거듭제곱근 계산하기

$$\sqrt[3]{4} \times 2^{\frac{1}{3}} = \sqrt[3]{2^2} \times 2^{\frac{1}{3}} = 2^{\frac{2}{3}} \times 2^{\frac{1}{3}} = 2^{\frac{2}{3} + \frac{1}{3}} = 2$$

2. [출제의도] 로그 계산하기

$$\log_3 24 + \log_3 \frac{3}{8} = \log_3 \left(24 \times \frac{3}{8}\right) = \log_3 3^2 = 2$$

3. [출제의도] 부채꼴의 반지름의 길이 계산하기

부채꼴의 반지름의 길이를 r, 중심각의 크기를 θ , 호의 길이를 l이라 하면

$$l=r heta$$
에서 $\frac{2}{3}\pi=r imesrac{3}{4}\pi$ 이므로 $r=rac{2}{3}\pi imesrac{4}{3\pi}=rac{8}{9}$

4. [출제의도] 삼각함수가 포함된 방정식 이해하기

$$2\cos x+1=0 \text{ odd} \cos x=-\frac{1}{2}$$

 $0 \le x \le \pi$ 에서 방정식 $\cos x = -\frac{1}{2}$ 의 해는

함수 $y = \cos x$ 의 그래프가 직선 $y = -\frac{1}{2}$ 과 만나는 점의 x 좌표와 같다.

따라서 $x = \frac{2}{2}\pi$

5. [출제의도] 상용로그의 성질 이해하기

12 1 1-1 00 1 02 1 1 1 1 1												
수		4	5	6								
:	:	:	:	:	;							
4.2		.6274	.6284	.6294								
4.3		.6375	(.6385)	.6395								
4.4		.6474	.6484	.6493								
_			_	_								

log 43.5 = log(4.35×10) = log 4.35+1 이고 상용로그표에서 log 4.35 = 0.6385이므로 log 43.5 = 1.6385

6. [출제의도] 사인법칙 이해하기

삼각형 ABC의 외접원의 반지름의 길이가 6이므로 $\dfrac{\overline{BC}}{\sin A} = 2 \times 6 = 12$ 에서 $\dfrac{\overline{BC}}{\overline{BC}} = 12 \sin A = 12 \times \dfrac{1}{4} = 3$

7. [출제의도] 삼각함수 사이의 관계를 이용하여 함숫값 계산하기

$$\sin^2\theta + \cos^2\theta = 1$$
이코 $\cos\theta = -\frac{3}{4}$ 이므로

$$\sin^2 \theta = \frac{7}{16}$$

$$\frac{\pi}{2} < \theta < \pi$$
에서 $\sin \theta > 0$ 이므로 $\sin \theta = \frac{\sqrt{7}}{4}$

8. [출제의도] 로그함수의 그래프 이해하기

함수 $y = \log_3(x+a) + b$ 의 그래프의 점근선이 직선 x = -4이므로 a = 4

한편 점 (5,0)이 그래프 위의 한 점이므로 $0 = \log_3 9 + b$, b = -2

따라서 a+b=2

9. [출제의도] 삼각함수의 그래프 이해하기

함수 $y = \tan ax + b$ 의 그래프가 점 (0, 2)를 지나므로 b = 2

 $0 \le x < 2\pi$ 에서 x의 값이 증가할 때 y의 값이 증가하므로 a > 0

주기가
$$4\pi$$
이므로 $\frac{\pi}{a}$ = 4π , 즉 $a=\frac{1}{4}$

따라서
$$ab = \frac{1}{4} \times 2 = \frac{1}{2}$$

10. [출제의도] 지수함수의 역함수 이해하기

함수 $y=5^x+1$ 의 역함수의 그래프가

점 $(4, \log_5 a)$ 를 지나므로

함수 $y=5^x+1$ 의 그래프는 점 $\left(\log_5 a,4\right)$ 를 지난다

따라서 $4 = 5^{\log_5 a} + 1$ 이고 로그의 성질에 의하여 a+1=4 이므로 a=3

11. [출제의도] 지수함수의 그래프 이해하기

함수 $y=4^x-6$ 의 그래프를 x축의 방향으로 a만큼, y축의 방향으로 b만큼 평행이동한 그래프를 나타낸 함수는 $y=4^{x-a}-6+b$ 이다.

이 함수의 그래프의 점근선이 직선 y = -2이므로 -6+b=-2

b = 4

한편 이 그래프가 원점을 지나므로

 $0 = 4^{-a} - 2$

 $a = -\frac{1}{2}$

따라서 $ab = -\frac{1}{2} \times 4 = -2$

12. [출제의도] 삼각함수의 성질을 이용하여 함수의 최솟값 구하는 문제 해결하기

 $\cos^2 x = 1 - \sin^2 x$ 이므로

 $f(x) = 2\cos^2 x + 2\sin x + k$

 $=2(1-\sin^2 x)+2\sin x+k$

 $= -2\sin^2 x + 2\sin x + 2 + k$

 $\sin x = t$ 라 하면 $-1 \le t \le 1$ 이고

 $y = -2t^2 + 2t + 2 + k$

$$=-2\left(t^{2}-t+\frac{1}{4}\right)+\frac{5}{2}+k$$

$$=-2\left(t-\frac{1}{2}\right)^2+\frac{5}{2}+k$$

함수
$$y = -2\left(t - \frac{1}{2}\right)^2 + \frac{5}{2} + k 는 t = \frac{1}{2}$$
 에서 최댓값

$$\frac{5}{2}\!+\!k$$
를 갖는다. 따라서 $\frac{5}{2}\!+\!k\!=\!\frac{15}{2}$, 즉 $k\!=\!5$

그러므로 함수 $y = -2t^2 + 2t + 7$ 은 t = -1 에서

최솟값 $-2 \times (-1)^2 + 2 \times (-1) + 7 = 3$ 을 갖는다. 즉 f(x)의 최솟값은 3이다.

13. [출제의도] 지수함수가 포함된 부등식 이해하기

 $2^{2x+3}+2 \le 17 \times 2^x$,

$$2^{2x+3} - 17 \times 2^x + 2 \le 0$$

에서
$$2^x = t(t>0)$$
이라 하면

$$8t^2 - 17t + 2 \le 0$$
.

$$(t-2)(8t-1) \le 0$$
,

$$\frac{1}{8} \le t \le 2$$
,

$$2^{-3} \le 2^x \le 2^1$$

$$-3 \leq x \leq 1$$

이고 이를 만족시키는 모든 정수 x의 값은 -3, -2, -1, 0, 1이므로 개수는 5이다.

14. [출제의도] 로그의 정의 이해하기

 $\log_a(x^2+ax+a+8)$ 이 정의되기 위해서는

a>0 , $a\neq 1$, $x^2+ax+a+8>0$ 이이야 한다.

모든 실수 x에 대하여 부등식 $x^2+ax+a+8>0$ 이 성립하기 위해서는 이차방정식 $x^2+ax+a+8=0$ 의 판별식을 D라 하면 D<0이어야 한다.

$$\begin{split} D &= a^2 - 4(a+8) = a^2 - 4a - 32 = (a+4)(a-8) < 0 \;, \\ &\stackrel{\simeq}{=} \; -4 < a < 8 \; \text{이 이야 한 한다}. \end{split}$$

따라서 a>0 , $a\ne 1$, -4< a< 8을 모두 만족시키는 모든 정수 a의 값의 합은

2+3+4+5+6+7=27이다

15. [출제의도] 삼각함수의 정의 이해하기

점 A의 좌표를 (-2,a)(a>0)이라 하면

점 B의 좌표는 (-2, -a) 이고 $\overline{OA} = \overline{OB} = r$ 이므로

$$\cos \alpha = -\frac{2}{\pi}$$
, $\sin \beta = -\frac{a}{\pi}$

 $2\cos\alpha = 3\sin\beta$

$$2 \times \left(-\frac{2}{r}\right) = 3 \times \left(-\frac{a}{r}\right),$$

한편
$$\sin \alpha = \frac{a}{n}$$
, $\cos \beta = -\frac{2}{n}$ 이므로

$$\begin{split} r \left(\sin \alpha + \cos \beta \right) &= r \left\{ \frac{a}{r} + \left(-\frac{2}{r} \right) \right\} \\ &= a + (-2) = \frac{4}{3} + (-2) \end{split}$$

$=-\frac{2}{3}$

16. [출제의도] 삼각형의 넓이와 코사인법칙을 활용하여 선분의 길이의 곱 구하는 문제 해결하기

∠ DAB = *θ* 라 하면

삼각형 ABD에서 코사인법칙에 의하여

$$\cos\theta = \frac{4^2 + 5^2 - \left(\sqrt{33}\right)^2}{2 \times 4 \times 5} = \frac{1}{5}$$

사각형 ABCD가 한 원에 내접하므로

 \angle BCD = $\pi - \theta$ 이다. 따라서

$$\sin(\angle BCD) = \sin(\pi - \theta) = \sin\theta = \frac{2\sqrt{6}}{5}$$

삼각형 BCD의 넓이가 $2\sqrt{6}$ 이므로

$$\frac{1}{2} \times \overline{\mathrm{BC}} \times \overline{\mathrm{CD}} \times \frac{2\sqrt{6}}{5} = 2\sqrt{6}$$

따라서 $\overline{BC} imes \overline{CD} = 10$

17. [출제의도] 지수함수와 로그함수의 역함수 관계를 이용하여 미정계수 구하는 문제 해결하기

함수 $y=-\log_3 x+4$ 와 함수 $y=3^{-x+4}$ 은 역함수 관계이므로 두 함수의 그래프는 직선 y=x에 대하여 대청이다.

따라서 $\overline{AB} = \overline{CD}$ 이코 $\overline{AD} - \overline{BC} = 4\sqrt{2}$ 이므로 $\overline{AB} = 2\sqrt{2}$

점 A 를 지나고 y축에 평행한 직선과 점 B 를 지나고 x축에 평행한 직선이 만나는 점을 H 라 하자.

직선 AB의 기울기가 -1이므로 $\overline{AH}=\overline{BH}=2$ 따라서 점 A의 좌표를 (a,-a+k)라 하면 점 B의 좌표는 (a+2,-a+k-2)이다. 두 점 A, B는 함수 $y=-\log_3 x+4$ 의 그래프 위의 점이므로

$$-a+k=-\log_3 a+4$$
 ...

$$-a+k-2 = -\log_3(a+2)+4$$
 ...

①, ⓒ에 의하여

$$2 = \log_3 \frac{a+2}{a}$$
, $a = \frac{1}{4}$

$$-\frac{1}{4}+k=-\log_3\frac{1}{4}+4$$

따라서
$$k = \frac{17}{4} + 2\log_3 2$$

18. [출제의도] 삼각함수의 그래프를 이용하여 부둥식의 해 추론하기

$$\begin{split} &\sin x + \cos\frac{\pi}{8} < 0 \text{ 에서 } \sin x < -\cos\frac{\pi}{8} \text{ 이다. 한편} \\ &-\cos\frac{\pi}{8} = -\sin\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = -\sin\frac{3}{8}\pi = \sin\left(-\frac{3}{8}\pi\right) \\ &\text{이 므로} \end{split}$$

 $\sin x < -\cos\frac{\pi}{8}$ 의 해는 $\sin x < \sin\left(-\frac{3}{8}\pi\right)$ 의 해와 같다.

한편 방정식 $\sin x = \sin\left(-\frac{3}{8}\pi\right)$ 의 해는

함수 $y = \sin x$ 의 그래프가 직선 $y = \sin \left(-\frac{3}{8}\pi\right)$ 와 만나는 점의 x좌표와 같다.

그러므로 $-\pi \leq x \leq 2\pi$ 에서 방정식 $\sin x = \sin\left(-\frac{3}{8}\pi\right)$ 의 해는 $x = -\frac{5}{8}\pi$ 또는 $x = -\frac{3}{8}\pi$ 또는

$$x = \frac{11}{8}\pi \quad 또는 \ x = \frac{13}{8}\pi \, \mathrm{이다}.$$

따라서 $-\pi \le x \le k$ 에서 $\sin x < \sin \left(-\frac{3}{8}\pi\right)$ 를 만족시키는 모든 x의 값의 범위가

$$-\pi-\alpha < x < \alpha$$
 이기 위해서는 $\alpha = -\frac{3}{8}\pi$ 이고

 $0 \le k \le \frac{11}{8} \pi$ 이어야 한다.

그러므로 k의 최댓값은 $\frac{11}{8}\pi$ 이다.

19. [출제의도] 지수함수의 그래프를 이용하여 식의 값 구하는 문제 해결하기

점 A 는 직선 y=4가 곡선 $y=a^{1-x}$ 과 만나는 점이므로 $4=a^{1-x}$ 에서 $x=1-\log_a 4$

따라서 점 A 의 좌표는 $(1-\log_a 4, 4)$ 이다.

점 B는 직선 y=4가 곡선 $y=4^{1-x}$ 과 만나는

점이므로 $4 = 4^{1-x}$ 에서 x = 0

따라서 점 B의 좌표는 (0,4)이다.

그러므로 $\overline{AB} = -1 + \log_a 4$

점 C 는 직선 y=k가 곡선 $y=a^{1-x}$ 과 만나는 점이므로 $k=a^{1-x}$ 에서 $x=1-\log_a k$ 따라서 점 C의 좌표는 $\left(1-\log_a k,k\right)$ 이다.

점 D는 직선 y=k가 곡선 $y=4^{1-x}$ 과 만나는 점이므로 $k=4^{1-x}$ 에서 $x=1-\log_4 k$

점이므로 $k=4^{1-x}$ 에서 $x=1-\log_4 k$ 따라서 점 D의 좌표는 $(1-\log_4 k, k)$ 이다.

그러므로 DC=log_k-log_k

사각형 ADCB는 평행사변형이므로 $\overline{AB} = \overline{DC}$ 따라서 $-1 + \log_a 4 = \log_4 k - \log_a k$,

 $\log_a 4 + \log_a k = \log_4 k + 1$ old

 $\log_a 4k = \log_4 4k$ 이므로

a=4 또는 4k=1

그런데 1 < a < 4에서 $a \neq 4$ 이므로 $k = \frac{1}{4}$

사각형 ADCB의 넓이가

 $\overline{\mathrm{AB}} \times (4-k) = \left(-1 + \log_a 4\right) \times \frac{15}{4} = \frac{15}{2}$ 이므로

 $-1 + \log_a 4 = 5$

$$\begin{split} \log_a 4 &= 3 \text{ 에서} \ a^3 = 4 \ , \ a = 4^{\frac{1}{3}} = 2^{\frac{2}{3}} \end{split}$$
 따라서 $4ak = 4 \times 2^{\frac{2}{3}} \times \frac{1}{1} = 2^{\frac{2}{3}}$

20. [출제의도] 코사인법칙을 활용하여 삼각함수의 값

 $\overline{OC} = \overline{OD} = \overline{OE} = 1$, $\angle COE = \frac{\pi}{2}$ of $\angle EE$

 $\overline{\text{CE}} = \sqrt{2}$, \angle OCD = \angle ODC , \angle ODE = \angle OED 사각형 COED 에서

 $\angle OCD + \angle CDE + \angle OED = 2\pi - \frac{\pi}{2} = \frac{3}{2}\pi$

∠OCD+∠OED = ∠CDE 이므로

 $2 \angle CDE = \frac{3}{2}\pi$, $\stackrel{<}{=}$

 $\angle CDE = \frac{3}{4}\pi$

한편 $\overline{\text{CD}}$: $\overline{\text{DE}}$ = 1 : √2 이므로

 $\overline{\text{CD}} = a$, $\overline{\text{DE}} = \sqrt{2} \, a \, (a > 0)$ 이라 하자.

삼각형 DCE 에서 코사인법칙에 의하여 $\overline{\text{CE}}^2 = a^2 + (\sqrt{2}\,a)^2 - 2 \times a \times \sqrt{2}\,a \times \cos\frac{3}{4}\,\pi$

- u + (v z u

이코 $\overline{\text{CE}} = \sqrt{5} \, a = \sqrt{2}$, 즉 $a = \frac{\sqrt{10}}{2}$

 \angle OBE = θ 라 하고 점 O 에서 선분 EB에 내린 수선의 발을 H라 하면

$$\overline{\text{EB}} = \overline{\text{DE}} = \sqrt{2} \, a = \frac{2\sqrt{5}}{5}$$
 이므로

$$\cos\theta = \frac{\overline{BH}}{\overline{OB}} = \frac{\frac{1}{2}\overline{EB}}{\overline{OB}} = \frac{\sqrt{5}}{5}$$

[다른 푼이]

 $\overline{OB} = \overline{OD}$, $\overline{EB} = \overline{ED}$, \overline{OE} 는 공통이므로 삼각형 OBE 와 삼각형 ODE 는 합동이다.

 $\angle OBE = \theta$ 라 하면

 $\angle OEB = \angle OED = \angle ODE = \theta$

 $\angle EOB = \angle DOE = \pi - 2\theta$,

 $\angle \operatorname{COD} = \frac{\pi}{2} - \angle \operatorname{DOE} = \frac{\pi}{2} - (\pi - 2\theta) = 2\theta - \frac{\pi}{2} \;,$

 $\angle ODC = \frac{1}{2}(\pi - \angle COD) = \frac{3}{4}\pi - \theta$,

 $\angle \, \mathsf{CDE} = \angle \, \mathsf{ODC} + \angle \, \mathsf{ODE} = \left(\frac{3}{4}\pi - \theta\right) + \theta = \frac{3}{4}\pi$

한편 $\overline{OC} = \overline{OE} = 1$, $\angle COE = \frac{\pi}{2}$ 이므로 $\overline{CE} = \sqrt{2}$

<u>CD</u>: <u>DE</u> = 1 : √2 이므로

 $\overline{\text{CD}} = a$, $\overline{\text{DE}} = \sqrt{2} \; a \, (a > 0)$ 이라 하자.

삼각형 DCE에서 코사인법칙에 의하여

 $\overline{CE}^2 = a^2 + (\sqrt{2}a)^2 - 2 \times a \times \sqrt{2}a \times \cos\frac{3}{4}\pi = 5a^2$

이고 $\overline{\text{CE}} = \sqrt{5} \, a = \sqrt{2} \, , \ a = \frac{\sqrt{10}}{5} \, , \ \stackrel{\text{<}}{=}$

 $\overline{\text{EB}} = \overline{\text{DE}} = \sqrt{2} \, a = \frac{2\sqrt{5}}{5}$

상각형 OBE 에서 코사인법칙에 의하여

$$\cos\theta = \frac{1^2 + \left(\frac{2\sqrt{5}}{5}\right)^2 - 1^2}{2 \times 1 \times \frac{2\sqrt{5}}{5}} = \frac{\sqrt{5}}{5}$$

21. [출제의도] 지수함수와 로그함수의 역함수 관계를 이용하여 자연수 추론하기

함수 y = f(x)의 그래프와 함수 $y = f^{-1}(x)$ 의 그래프는 직선 y = x에 대하여 대청이므로 g(n)은 직선 y = x가 함수 $f(x) = 3^x - n$ 의 그래프와 만나는 두 점의 x 좌표 중 큰 값과 같다.

또한 2 이상의 자연수 n에 대하여 직선 y=x가 함수 $f(x)=3^x-n$ 의 그래프와 만나는 두 점 중 한 점의 x 좌표는 양수이고 다른 한 점의 x 좌표는 음수이다. 따라서 g(n)은 직선 y=x가 함수 $f(x)=3^x-n$ 의 그래프와 제1사분면에서 만나는 점의 x 좌표와 같다. 곡선 $y=3^x-n$ 이 점 (1,1)을 지나면 $1=3^1-n$ 에서 n=2이므로 g(2)=1

(i) 곡선 $y=3^x-n$ 이 점 (2,2)를 지나면 $2=3^2-n$ 에서 n=7이므로 g(7)=2

1 = $g(2) < g(3) < \cdots < g(6) < g(7) = 2$ 따라서 2 ≤ $n \le 6$ 일 때, 1 ≤ g(n) < 2이므로 h(n) = 1

- (ii) 곡선 $y=3^x-n$ 이 점 (3,3)을 지나면 $3=3^3-n$ 에서 n=24이므로 g(24)=3 $2=g(7)< g(8)<\cdots< g(23)< g(24)=3$ 따라서 $7\leq n\leq 23$ 일 때, $2\leq g(n)<3$ 이므로 h(n)=2
- (iii) 곡선 y=3^x-n이 점 (4,4)를 지나면 4=3⁴-n에서 n=77이므로 g(77)=4 3=g(24)<g(25)<···<g(76)<g(77)=4 따라서 24≤n≤76일 때, 3≤g(n)<4이므로 h(n)=3</p>
- (iv) 곡선 $y=3^x-n$ 이 점 (5,5)를 지나면 $5=3^5-n$ 에서 n=238이므로 g(238)=5 $4=g(77)< g(78)<\cdots< g(237)< g(238)=5$ 따라서 $77\leq n\leq 237$ 일 때, $4\leq g(n)<5$ 이므로 h(n)=4

(i)→(iv)에 의하여 h(n) < h(n+1)을 만족시키는 $2 \le n \le 100$ 인 모든 n의 값의 합은 6+23+76=105이다.

22. [출제의도] 지수 계산하기

$$(5^{2-\sqrt{3}})^{2+\sqrt{3}} = 5^{(2-\sqrt{3})(2+\sqrt{3})} = 5^1 = 5$$

23. [출제의도] 로그함수가 포함된 방정식의 해 계산하기

 $\log_4(x-1)=3$ 에서 $x-1=4^3=64$ 이므로 x=65

24. [출제의도] 로그함수의 그래프 이해하기

 $0 \le x \le 6$ 에서 함수 $y = \log_{\frac{1}{3}}(x+3) + 30$ 은

x의 값이 증가할 때 y의 값이 감소하므로 x=0에서 최댓값을 갖는다. 따라서 최댓값은 $\log_{1}3+30=\log_{3^{-1}}3+30=-\log_{3}3+30=29$ 이다.

25. [출제의도] 삼각함수의 그래프 이해하기

 $y = 6\cos\left(x + \frac{\pi}{2}\right) + k = -6\sin x + k$

이 함수의 그래프가 점 $\left(\frac{5}{6}\pi,9\right)$ 를 지나므로

 $9 = -6\sin\frac{5}{6}\pi + k,$

9 = -3 + k, $\stackrel{\triangle}{=}$

k = 12

26. [출제의도] 거듭제곱근의 정의를 이용하여 자연수의 함 추론하기

자연수 n에 대하여 $^{n+1}\sqrt{8}$ 이 어떤 자연수의 네제곱근이 되려면

 $\binom{n+1}{\sqrt{8}}^4 = \left\{ \binom{2^3}{n+1}^{\frac{1}{n+1}} \right\}^4 = 2^{\frac{12}{n+1}} \circ$

자연수이어야 한다.

따라서 n+1은 12의 약수이어야 하므로 n+1이 될 수 있는 값은 2, 3, 4, 6, 12이고 이를 만족시키는 모든 n의 값의 합은 1+2+3+5+11=22이다.

27. [출제의도] 로그의 성질을 이용하여 식의 값 구하는 문제 해결하기

주어진 식에서 로그의 밑을 c로 모두 변환하면

 $\log_a b = 81$ 에서 $\frac{\log_c b}{\log_c a} = 81$ 이므로

 $\log_c b = 81 \times \log_c a \ \cdots \ \bigcirc$

 $\log_c \sqrt{a} = \log_{\sqrt{b}} c$ 에서

 $\frac{1}{2}\log_c a = \frac{1}{\log_c \sqrt{b}} = \frac{1}{\frac{1}{2}\log_c b} \circ |\, \underline{\square} \, \overline{\xi}$

 $4 = \log_c a \times \log_c b \cdots \square$

①, ⓒ에 의하여 $(\log_c b)^2 = 4 \times 81$ 이고 b와 c는 1 보다 큰 실수이므로 $\log_c b > 0$ 따라서 $\log_c b = 18$

28. [출제의도] 이차함수와 로그함수의 그래프를 이용하여 식의 값 구하는 문제 해결하기

 $0 \le x < 3$ 에서 함수 y = f(x) 의 그래프가 x축과 만나는 점의 x좌표는 방정식 $a(4-x^2) = 0$ 의 실근과 같으므로 점 A 의 좌표는 (2,0) 이다.

AB=10 이므로 점 B의 좌표는 (12,0)이다. f(12)=0이므로

$$b\log_2\frac{12}{3}-5a=0$$
,

2b = 56

 $0 \le x < 3$ 에서 $-5a < f(x) \le 4a$ 이고 f(b) = 2b = 5a > 4a이고로 b > 3

그러므로 $f(b) = b \log_2 \frac{b}{3} - 5a = 2b$,

 $b\log_2\frac{b}{3} - 2b = 2b$, $\log_2\frac{b}{3} = 4$,

b=3×2⁴=48, 5a=2b=96 따라서 5a+b=96+48=144

29. [출제의도] 사인법칙과 코사인법칙을 활용하여 선분의 길이의 합 구하는 문제 해결하기

삼각형 ABC 에서 사인법칙에 의하여

 $\frac{\overline{BC}}{\sin A} = 2R_1, \ R_1 = \frac{\overline{BC}}{2\sin A}$

삼각형 ABD 에서 사인법칙에 의하여

 $\frac{\overline{\text{BD}}}{\sin A} = 2R_2, \ R_2 = \frac{\overline{\text{BD}}}{2\sin A}$

R₁: R₂ = 4:3이므로

 $\frac{\overline{BC}}{2\sin A}: \frac{\overline{BD}}{2\sin A} = 4:3, \stackrel{\approx}{\neg}$

 $\overline{BC}: \overline{BD} = 4:3$

 $\overline{BC} = 4k$, $\overline{BD} = 3k(k > 0)$ 이라 하면 삼각형 BCD 에서 코사인법칙에 의하여

 $\cos(\angle \text{CDB}) = \frac{(2\sqrt{7})^2 + (3k)^2 - (4k)^2}{2 \times 2\sqrt{7} \times 3k} = \frac{-7k^2 + 28}{12\sqrt{7}k}$

$$\cos(\angle CDB) = \cos(\pi - \angle BDA)$$

$$=-\cos(\angle BDA)=-\frac{\sqrt{7}}{4}$$

이므로

$$\frac{-7k^2 + 28}{12\sqrt{7}k} = -\frac{\sqrt{7}}{4}$$

 $7k^2 - 21k - 28 = 7(k+1)(k-4) = 0$

k>0이므로 k=4

따라서 $\overline{BC} + \overline{BD} = 4k + 3k = 28$

30. [출제의도] 삼각함수의 그래프를 이용하여 조건에 맞는 함수 추론하기

함수 $y = 2\sin\frac{\pi}{L}x$ 의 주기가 2k이고,

$$-2 \le 2\sin\frac{\pi}{k}x \le 2$$
이므로

$$-\frac{3}{2} \le 2\sin\frac{\pi}{k}x + \frac{1}{2} \le \frac{5}{2}$$

한편 k>1이므로 3k>2k+1이고

 $0 \le x \le 2k+1$ 에서

함수 y = f(x)의 그래프는 다음과 같다.

 $0 \le t < k$ 또는 t > 2k-1이면

 $t \le x \le t+1$ 에서 $f(x) > \frac{1}{2}$ 인 x 의 값이 존재하므로

f(x) 의 최댓값은 $\frac{1}{2}$ 보다 크다.

 $t=\alpha \ , \ t=\beta 일 \ \text{때} \ t\leq x\leq t+1 \, \text{에서 함수} \ f(x) \, 의$ 최댓값이 $\frac{1}{2}$ 이므로 $k\leq \alpha < \beta \leq 2k-1$

한편 $f(x) = \frac{1}{2}$, 즉 $\left| 2\sin\frac{\pi}{k}x + \frac{1}{2} \right| = \frac{1}{2}$ 에서

 $\sin \frac{\pi}{h} x = 0$ 또는 $\sin \frac{\pi}{h} x = -\frac{1}{2}$ 이므로

 $k \leq x \leq 2k$ 에서 $f(x) = \frac{1}{2}$ 의 해는

x=k 또는 x=2k 또는 $x=\frac{7}{6}k$ 또는 $x=\frac{11}{6}k$ 이다.

따라서 직선 $y=\frac{1}{2}$ 이 함수 y=f(x)의 그래프와

만나는 점의 x 좌표는 k, $\frac{7}{6}k$, $\frac{11}{6}k$, 2k이다.

 $t \leq x \leq t+1$ 에서 (t+1)-t=1 이므로 다음과 같은 세 가지 경우로 나눌 수 있다.

(i) $\frac{k}{6} > 1$ 일 때,

$$\begin{split} k & \leq x \leq k+1 \, \text{에서} \ f(x) \leq f(k) = \frac{1}{2} \,, \\ & \frac{7}{6}k-1 \leq x \leq \frac{7}{6}k \, \text{에서} \ f(x) \leq f\left(\frac{7}{6}k\right) = \frac{1}{2} \,, \\ & \frac{11}{6}k \leq x \leq \frac{11}{6}k+1 \, \text{에서} \ f(x) \leq f\left(\frac{11}{6}k\right) = \frac{1}{2} \,, \\ & 2k-1 \leq x \leq 2k \, \text{에서} \ f(x) \leq f(2k) = \frac{1}{2} \, \text{이므로} \\ & t \leq x \leq t+1 \, \text{에서} \ f(x) \, \text{의 최뎃값이 } \frac{1}{2} \, \text{이} \end{split}$$

되도록 하는 서로 다른 t의 값은

$$k, \ \frac{7}{6}k-1, \ \frac{11}{6}k, \ 2k-1$$
이다.
따라서 조건을 만족시키지 않는다.

(ii)
$$\frac{k}{6} = 1$$
일 때,

$$k=6$$
 , $\frac{7}{6}k=7$, $\frac{11}{6}k=11$, $2k=12$ 이프로 $6 \leq x \leq 7$ 에서 $f(x) \leq f(6)=\frac{1}{2}$,

$$11 \le x \le 12$$
에서 $f(x) \le f(11) = \frac{1}{2}$

따라서
$$t \le x \le t+1$$
에서

$$f(x)$$
 의 최댓값이 $\frac{1}{2}$ 이 되도록 하는
모든 t 의 값은 6 , 11 이다.

(iii)
$$\frac{k}{6}$$
<1일 때,

$$k+1 > \frac{7}{6}k$$
, $\frac{7}{6}k-1 < k$,

$$\frac{11}{6}k+1>2k$$
, $2k-1<\frac{11}{6}k$ 이므로

$$t \leq x \leq t+1$$
에서 $f(x)$ 의 최댓값이 $\frac{1}{2}$ 이

되도록 하는 t의 값은 존재하지 않는다. 따라서 조건을 만족시키지 않는다.

(i), (ii), (iii)에 의하여 k=6 , $\alpha=6$, $\beta=11$ 이므로 $k\alpha+\beta=6\times 6+11=47$