Optimizing Submodular Functions

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Announcement: Final Exam Logistics

Final: Logistics

Date:

- Tuesday, March 19, 3:30-6:30 PM PDT
- Location:
 - if SUNetID[0] in ['a', .. 'l'] then 420-040
 - if SUNetID[0] in ['m', .. 'z'] then Bishop Auditorium
- Alternate Date:
 - Monday, March 18, 6:30-9:30 PM PDT
 - Location:
 - Gates 104
 - There is still SOME SPACE LEFT!
- TAs will NOT answer questions during the final

Final: SCPD Logistics

You may come to Stanford to take the exam, or...

- Date:
 - From Tue, Mar 19, 3:30 PM to Wed, Mar 20, 3:30 PM (all hours in PDT)
 - Agree with your exam monitor on the most convenient 3-hour slot in that window of time
- Exam monitors will receive an email from SCPD with the final exam, which they will in turn forward to you right before the beginning of your 3-hour slot
- Once you completed the exam, make sure to send the file back to your exam monitor (high-quality scanned copy)
- Exam monitors will NOT answer questions during the final

Final: Instructions

- Final exam is open book and open notes
- A calculator or computer is REQUIRED
 - You may only use your computer to do arithmetic calculations (i.e., the buttons found on a standard scientific calculator)
 - You may also use your computer to read course notes or the textbook
 - But no Internet/Google/Python access is allowed
- Practice finals are posted on Piazza!
- We recommend bringing a power strip

Optimizing Submodular Functions

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Recommendations: Diversity

Redundancy leads to a bad user experience

Obama Calls for Broad Action on Guns

Obama unveils 23 executive actions, calls for assault weapons ban

Obama seeks assault weapons ban, background checks on all gun sales

- Uncertainty around information need => don't put all eggs in one basket
- How do we optimize for diversity directly?

Covering the day's news

Monday, January 14, 2013

France intervenes

Chuck for Defense

Argo wins big

Hagel expects fight

Covering the day's news

France intervenes

Chuck for Defense

Argo wins big

New gun proposals

Monday, January 14, 2013

Encode Diversity as Coverage

- Idea: Encode diversity as coverage problem
- Example: Word cloud of news for a single day
 - Want to select articles so that most words are "covered"

What is being covered?

- Q: What is being covered?
- A: Concepts (In our case: Named entities)

- Q: Who is doing the covering?
- A: Documents

Simple Abstract Model

- Suppose we are given a set of documents D
 - Each document \mathbf{d} covers a set X_d of words/topics/named entities \mathbf{W}
- For a set of documents A ⊆D we define

$$F(A) = \left| \bigcup_{i \in A} X_i \right|$$

Goal: We want to

$$\max_{|A| \le k} F(A)$$

■ Note: F(A) is a set function: F(A): Sets $\rightarrow \mathbb{N}$

Maximum Coverage Problem

• Given universe of elements $W = \{w_1, ..., w_n\}$ and sets $X_1, ..., X_m \subseteq W$

- Goal: Find k sets X_i that cover the most of W
 - More precisely: Find k sets X_i whose size of the union is the largest
 - Bad news: A known NP-complete problem

Simple Heuristic: Greedy Algorithm:

- Start with $A_0 = \{\}$
- For i = 1 ... k
 - Find set d that $\max F(A_{i-1} \cup \{d\})$
 - Let $A_i = A_{i-1} \cup \{d\}$

$$F(A) = \left| \bigcup_{d \in A} X_d \right|$$

Example:

- Eval. $F(\{d_1\})$, ..., $F(\{d_m\})$, pick best (say d_1)
- lacksquare Eval. $F(\{d_1\}\cup\{d_2\})$, ..., $F(\{d_1\}\cup\{d_m\})$, pick best (say d_2)
- ullet Eval. $F(\{d_1,d_2\}\cup\{d_3\}),...,F(\{d_1,d_2\}\cup\{d_m\})$, pick best
- And so on...

When Greedy Heuristic Fails?

- Goal: Maximize the size of the covered area
- Greedy first picks A and then C
- But the optimal way would be to pick B and C

Approximation Guarantee

- Greedy produces a solution A where: $F(A) \ge (1-1/e)*OPT$ $(F(A) \ge 0.63*OPT)$ [Nemhauser, Fisher, Wolsey '78]
- Claim holds for functions F(·) with 2 properties:
 - F is monotone: (adding more docs doesn't decrease coverage) if $A \subseteq B$ then $F(A) \leq F(B)$ and $F({})=0$
 - F is submodular: adding an element to a set gives less improvement than adding it to one of its subsets

Submodularity: Definition

Definition:

Set function F(·) is called submodular if:

For all
$$A,B \subseteq W$$
:

$$F(A) + F(B) \ge F(A \cup B) + F(A \cap B)$$

+

Submodularity: Or equivalently

- Diminishing returns characterization
 Equivalent definition:
- Set function F(·) is called submodular if: For all A⊂B:

$$F(A \cup \{d\}) - F(A) \ge F(B \cup \{d\}) - F(B)$$
Gain of adding d to a small set
Gain of adding d to a large set

Example: Set Cover

• $F(\cdot)$ is submodular: $A \subseteq B$

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$$

Gain of adding **d** to a small set

Gain of adding **d** to a large set

- Natural example:
 - Sets d_1, \ldots, d_m
 - $F(A) = |\bigcup_{i \in A} d_i|$ (size of the covered area)
 - Claim: F(A) is submodular!

Submodularity – Diminishing returns

Submodularity is discrete analogue of concavity

Submodularity & Concavity

Marginal gain:

$$\Delta_F(d|A) = F(A \cup \{d\}) - F(A)$$

Submodular:

$$A \subseteq B$$

$$F(A \cup \{d\}) - F(A) \ge F(B \cup \{d\}) - F(B)$$

Concavity:

$$a \leq b$$

$$f(a+d)-f(a) \ge f(b+d)-f(b)$$

Submodularity: Useful Fact

- Let $F_1 \dots F_m$ be submodular and $\lambda_1 \dots \lambda_m > 0$ then $F(A) = \sum_{i=1}^m \lambda_i F_i(A)$ is submodular
 - Submodularity is closed under non-negative linear combinations!
- This is an extremely useful fact:
 - Average of submodular functions is submodular: $F(A) = \sum_{i} P(i) \cdot F_{i}(A)$
 - Multicriterion optimization: $F(A) = \sum_{i} \lambda_{i} F_{i}(A)$

Back to our problem

- Q: What is being covered?
- A: Concepts (In our case: Named entities)

Hagel expects fight

- Q: Who is doing the covering?
- A: Documents

Back to our Concept Cover Problem

Objective: pick k docs that cover most concepts

- F(A): the number of concepts covered by A
 - Elements...concepts, Sets ... concepts in docs
 - F(A) is submodular and monotone!
 - We can use greedy algorithm to optimize F

The Set Cover Problem

Objective: pick k docs that cover most concepts

The good:

Penalizes redundancy
Submodular

The bad:

Concept importance?

All-or-nothing too harsh

Concept importance?

Objective: pick **k** docs that cover most concepts Obama Romney Zero Dark Thirty Argo Pentagon Mali Hagel France **Enthusiasm for Inauguration wanes Inauguration weekend**

ullet Each concept c has importance weight w_c

All-or-nothing too harsh

Document coverage function

$$\operatorname{cover}_d(c) = \operatorname{probability} \operatorname{document} \operatorname{d} \operatorname{covers}$$

$$\operatorname{concept} \operatorname{c}$$
[e.g., how strongly $\operatorname{d} \operatorname{covers} \operatorname{c}$]

Enthusiasm for Inauguration wanes

Probabilistic Set Cover

Document coverage function:

$$cover_d(c) =$$
probability document **d** covers concept **c**

- Cover_d(c) can also model how relevant is concept c for user u
- Set coverage function:

$$\operatorname{cover}_{\mathcal{A}}(c) = 1 - \prod_{d \in \mathcal{A}} (1 - \operatorname{cover}_d(c))$$

Prob. that at least one document in A covers c

Objective:
$$\max_{\mathcal{A}:|\mathcal{A}|\leq k}F(\mathcal{A})=\sum_{c}w_{c}\text{ cover}_{\mathcal{A}}(c)$$

Optimizing F(A)

$$\max_{\mathcal{A}:|\mathcal{A}|\leq k} F(\mathcal{A}) = \sum_{c} w_c \operatorname{cover}_{\mathcal{A}}(c)$$

- The objective function is also submodular
 - Intuitively, it has a diminishing returns property
 - Greedy algorithm leads to a $(1 1/e) \sim 63\%$ approximation, i.e., a **near-optimal** solution

Summary: Probabilistic Set Cover

Objective: pick k docs that cover most concepts

Enthusiasm for Inauguration wanes

Inauguration weekend

- Each concept c has importance weight w_c
- Documents partially cover concepts: $\mathbf{cover}_d(c)$

Lazy Optimization of Submodular Functions

Submodular Functions

Greedy

Marginal gain: $F(A \cup x)-F(A)$

Add document with highest marginal gain

Greedy algorithm is slow!

- At each iteration we need to re-evaluate marginal gains of all remaining documents
- Runtime $O(|D| \cdot K)$ for selecting K documents out of the set of D of them

Speeding up Greedy

- In round i: So far we have $A_{i-1} = \{d_1, ..., d_{i-1}\}$
 - Now we pick $\mathbf{d}_i = \arg\max_{d \in V} F(A_{i-1} \cup \{d\}) F(A_{i-1})$
 - Greedy algorithm maximizes the "marginal benefit" $\Delta_i(d) = F(A_{i-1} \cup \{d\}) F(A_{i-1})$
- By submodularity property:

$$F(A_i \cup \{d\}) - F(A_i) \ge F(A_j \cup \{d\}) - F(A_j) \text{ for } i < j$$

Observation: By submodularity:

For every $d \in D$

$$\Delta_i(d) \ge \Delta_j(d)$$
 for $i < j$ since $A_i \subseteq A_j$

$$\Delta_i(d) \geq \Delta_j(d)$$

• Marginal benefits $\Delta_i(d)$ only shrink! (as i grows) Selecting do

Selecting document **d** in step **i** covers more words than selecting **d** at step **j** (j>i)

Lazy Greedy

Idea:

- Use Δ_i as upper-bound on Δ_j (j > i)
- Lazy Greedy:
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top element
 - Re-sort and prune

(Upper bound on) Marginal gain Δ_1

 $A_1 = \{a\}$

Lazy Greedy

Idea:

• Use Δ_i as upper-bound on Δ_j (j > i)

Lazy Greedy:

- Keep an ordered list of marginal benefits Δ_i from previous iteration
- Re-evaluate Δ_i only for top element
- Re-sort and prune

Upper bound on Marginal gain Δ_2

 $A_1 = \{a\}$

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$$
 $A \subseteq B$

Lazy Greedy

- Idea:
 - Use Δ_i as upper-bound on Δ_j (j > i)
- Lazy Greedy:
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top element
 - Re-sort and prune

Upper bound on Marginal gain Δ_2

$$A_1 = \{a\}$$

$$A_2 = \{a,b\}$$

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$$
 $A \subseteq B$

Summary so far

Summary so far:

- Diversity can be formulated as a set cover
- Set cover is submodular optimization problem
- Can be (approximately) solved using greedy algorithm
- Lazy-greedy gives significant speedup

But what about personalization?

Concept Coverage

We assumed same concept weighting for all users

Personal Concept Weights

Each user has different preferences over concepts <u>Hagel</u> Obama Romney Zero Dark Thirty Mali <u>Pentagon</u> politico <u>Hagel</u> Pentagon Obama Romney Zero Dark Thirty Argo NFL Mali movie buff

Personal concept weights

• Assume each user u has different preference vector $w_c^{(u)}$ over concepts c

$$\max_{\mathcal{A}:|\mathcal{A}| \leq k} F(\mathcal{A}) = \sum_{c} w_c \operatorname{cover}_{\mathcal{A}}(c)$$

$$\max_{\mathcal{A}:|\mathcal{A}| \leq k} F(\mathcal{A}) = \sum_{c} w_c^{(u)} \operatorname{cover}_{\mathcal{A}}(c)$$

 Goal: Learn personal concept weights from user feedback

Interactive Concept Coverage

Multiplicative Weights (MW)

- Multiplicative Weights algorithm
 - Assume each concept c has weight w_c
 - We recommend document $m{d}$ and receive feedback, say $m{r} = + {f 1}$ or ${f 1}$
 - Update the weights:
 - For each $c \in X_d$ set $w_c = \beta^r w_c$
 - If concept **c** appears in doc **d** and we received positive feedback **r=+1** then we increase the weight \mathbf{w}_{c} by multiplying it by $\boldsymbol{\beta}$ ($\boldsymbol{\beta} > 1$) otherwise we decrease the weight (divide by $\boldsymbol{\beta}$)
 - Normalize weights so that $\sum_c w_c = 1$

Summary of the Algorithm

Steps of the algorithm:

- 1. Identify items to recommend from
- 2. Identify concepts [what makes items redundant?]
- Weigh concepts by general importance
- Define item-concept coverage function
- Select items using probabilistic set cover
- 6. Obtain **feedback**, **update** weights