Grafų teoerija

Dvidalis grafas

Andrius Karužas

Apibrėžimas

Grafas, kurio viršūnių aibę galima išskaidyti į du poaibius *A* ir *B* taip, kad kiekvienos briaunos galai priklausytų skirtingiems poaibiams, vadinamas dvidaliu grafu.

Dvidalio grafo kriterijaus uždavinys

Kionigo teorema

Būtina ir pakankama sąlyga, kad grafas būtų dvidalis yra ta, kad jis neturėtų nelyginio ilgio ciklų.

Sprendimas

Etapas 1:

atstumas == lyginis ? $(v \rightarrow A) : (v \rightarrow B)$

Etapas 2:

Jei briaunų viršūnės priklauso skirtingoms aibėms grafas yra dvidalis.

Apibrėžkime masyvą ab[1..n], čia ab[*i*] = 0, jei viršūnė i priklauso aibei *A* (jei atstumų masyvo d[1..n] elementas d[i] yra lyginis skaičius), ir ab[i] = 1, jei viršūnė *i* priklauso aibei *B* (d[i] – nelyginis skaičius).

Tada briaunos galai priklausys skirtingoms aibėms, jei ab[u] \neq ab[v]; priešingu atveju viršūnės u ir v priklausys vienai aibei.

Pastaba. Ar briaunos galai priklauso skirtingoms aibėms, galima nustatyti tiesiogiai iš atstumų masyvo:

if $((d[n] + d[v]) \mod 2) = 0$ then "briaunos galai priklauso tai pačiai aibei, t.y. grafas nėra dvidalis".

Pavyzdys

- Duota:
- Pradinė viršūnė
 - S = 1;
- Atstumų masyvas:
 - $-D = \{0, 1, 2, 1, 1, 2\}$
- Briaunų masyvas:
 - $-B = \{\{1, 2\}, \{1, 5\}, \{1, 4\}, \{2, 3\}, \{2, 6\}, \{3, 5\}, \{3, 4\}, \{4, 6\}\}\}$

- Duota:
- Pradinė viršūnė:
 - S = 1;
- Atstumų masyvas:
 - $-D = \{0, 1, 2, 2, 1, 1, 2\}$
- Briaunų masyvas:
 - $-B = \{\{1, 2\}, \{1, 6\}, \{1, 5\}, \{2, 6\}, \{2, 4\}, \{2, 3\}, \{3, 5\}, \{3, 4\}, \{4, 5\}, \{4, 7\}, \{5, 6\}, \{6, 7\}\}\}$

Dalinio dvidalio grafo konstravimo uždavinys

Duotas grafas G(v, U). Rasti šio grafo dalinį grafą, atmetant dalį pradinio grafo briaunų taip, kad atmetamų briaunų skaičius būtų nedidesnis nei m / 2, čia m = |U|.

•A := Ø; B := Ø; •A := A U {s | s - bet kuri grafo viršūnė} for $(v \in V)$ and $(v \neq s)$ do If $|A \cap N(v)| < |B \cap N(v)|$ then A := A U {v} else B := B U {v};

N(v) viršūnės v aplinka, t.y. viršūnei v gretimų viršūnių aibė.

Tada $|A \cap N(v)|$ parodo atmetamų briaunų skaičių, jei viršūnę v talpiname į aibę A, o - $|B \cap N(v)|$ atmetamų briaunų skaičių, jei viršūnę talpintume į aibę B. Vadinasi, skaidant aibę V į dvi aibes A ir B, kiekvieną kartą viršūnę v talpinsime į tą aibę, kad atmetamų briaunų skaičius būtų mažiausias ir neviršytų d(v)/2, čia d(v) - v-osios viršūnės laipsnis.

Aišku, kad taip konstruojant dalinį dvidalį grafą, atmetamų briaunų skaičius bus nedidesnis nei m/2.