A DRL-Based Framework for Optimized Scheduling and Delivery in a Green Hydrogen Hub

Mohammad Jadidbonab, *Graduate Student Member, IEEE*, Hussein Abdeltawab, *Senior Member, IEEE*, and Yasser Abdel-Rady I. Mohamed, *Fellow, IEEE*

This supplementary document compiles the key modelling assumptions, component efficiencies, and cost coefficients, used to parameterize the technical analyses reported in the paper.

1) PEM Electrolyzer Parameters

Table I lists the electrochemical and cost coefficients that define the PEM electrolyzer model adopted in this study [1].

TABLE I
ELECTROCHEMICAL AND COST PARAMETERS OF THE PEM ELECTROLYZER

\mathfrak{I}_1	\mathfrak{I}_2	\mathfrak{I}_3	\mathfrak{I}_4	\mathfrak{I}_{5}	\mathfrak{I}_6	\mathfrak{I}_{7}
99.5%	-9.5788 (m^2/A)	-0.0555 $(m^2/A \times ^{\circ}C)$	0	1502.7083 (m^4/A)	-70.8005 $(m^4/A \times ^{\circ}C)$	0
		F	α_{mk}	μ^{PEM}		
		96485.34	0.002016	36		
		(C/mol)	(kg/mol)	(\$/kg) per year		

2) Compressor, Hydrogen Tank, and Electrical Storage Parameters

Table II consolidates the thermodynamic constants and operating-cost coefficients used to model the hydrogen compressor, hydrogen tank, and on-site electrical storage systems, as sourced from [2]-[4].

TABLE II
THERMODYNAMIC AND OPERATIONAL PARAMETERS FOR COMPRESSOR,
HYDROGEN TANK, AND ELECTRICAL STORAGE UNITS

		Compressor			
γ	R^{gc}	μ^{comp}	ϱ^{ih}	ϱ^{is}	
1.41	4.124	1	14.31	0.8	
1.71	kJ/(kg·K)	(\$/kg) per year	(kJ/kg.K)	0.0	
		Hydrogen tank			
μ^{tank}	SoC_{max}^{HT}	SoC_{min}^{HT}	$\eta_{ch}^{\scriptscriptstyle H_2}$	$\eta_{dc}^{\scriptscriptstyle H_2}$	
32	0.9	0.05	0.9	0.9	
(\$/kg) per year	0.9	0.00	0.5	0.5	
		Electrical storage			
SoC_{min}^{ES}	SoC_{max}^{ES}	η_{ch}^{ES}	η_{dc}^{ES}	μ^{ES}	
0.1	0.9	0.95	0.95	0.0005	
V.1		0.75	0.55	(\$/kWh)	

References:

- [1] F. Scheepers, M. Stähler, A. Stähler, E. Rauls, M. Müller, M. Carmo, and W. Lehnert, "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, vol. 283, Art. no. 116270, 2021.
- [2] S. Shafiee, H. Zareipour, and A. M. Knight, "Considering thermodynamic characteristics of a CAES facility in self-scheduling in energy and reserve markets," IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3476-3485, Jul. 2018.
- [3] M.-R. Tahan, "Recent advances in hydrogen compressors for use in large-scale renewable energy integration," Int. J. Hydrogen Energy, vol. 47, no. 83,
- [4] M. Jadidbonab, H. Abdeltawab, and Y.A.R.I. Mohamed, "A Hybrid Traffic Flow Forecasting and Risk-Averse Decision Strategy for Hydrogen-Based Integrated Traffic and Power Networks," *IEEE Syst. J.*, pp. 1-13, July 2024.