

- The mechanism of radiation emission is related to energy released due
 to the <u>energy transitions</u> of <u>molecules</u>, <u>atoms</u>, <u>and electrons</u> of a
 substance. The amount of thermal radiation emitted at each frequency
 depends on the internal energy and therefore, the temperature.
- Thermal radiation <u>does not require a material medium for</u> its propagation. It takes place in the form of <u>discrete photons or quanta</u> (*Quantum Theory*, Max Plank) with an energy of:

$$E = hv$$
; $h = 6.6256 \cdot 10^{-34} \text{ J} \cdot \text{s}$

- In vacuum, it propagates at speed of light c₀ = 2.9979x10⁸ m/s.
- It is characterized by its <u>frequency</u> (depends only on the source) and its <u>wavelength</u>, dependent of the medium through which the wave travels:

$$\lambda = c/v$$

Thermal radiation depends on the wavelength and the direction.

Ę

5

Blackbody radiation

- · Perfect emitter and absorber of radiation.
- · Radiation do not depend on direction (diffuse).
- In vacuum, radiation depends only on temperature.

Stefan-Boltzmann law

* Determined experimentally by Joseph Stefan and theoretically verified in by Ludwig Boltzmann.

Radiation energy emitted by a blackbody per unit time and per unit surface area.

$$E_b(T) = \sigma T^4$$
 (Total Blackbody emissive power)

$$\sigma = 5.67 \cdot 10^{-8} \ W/m^2 K^4 \ \ \mbox{(Stefan-Boltzmann constant)}$$

Blackbody ≠ Black surface (0.4 to 0.76 µm)

6

Spectral emissivity of a blackbody (Planck's law)

- · Continuous function of wavelength.
- At any wavelength, the amount of emitted radiation increases with increasing temperature.

 As temperature increases, the curves shift to the left to the shorter wavelength region.

A black body is a theoretical object that completely absorbs all of the light that it receives and reflects none. A black body also is a perfect emitter of light over all wavelengths, but there is one wavelength at which its emission of radiation has its maximum intensity.

7

Copyright © Addison Wesley

7

Spectral emissive power of a blackbody (Planck's law)

Amount of radiation energy emitted by a blackbody at an absolute temperature, T, per unit time, per unit surface area, and per unit wavelength about the wavelength, λ .

$$E_b(\lambda, T) = \frac{C_1}{\lambda^5 \left(\exp\left(\frac{C_2}{\lambda T}\right) - 1 \right)}$$

$$\begin{cases} C_1 = 2\pi hc^2 = 3.742 \cdot 10^8 \text{ W} \cdot \mu\text{m}^4/\text{m}^2 \\ C_2 = hc/k = 1.439 \cdot 10^4 \text{ } \mu\text{m} \cdot \text{K} \end{cases}$$

 $k = 1.38065 \cdot 10^{-23} \text{ J/K}$ (Boltzmann's constant)

$$E_b(T) = \int_0^\infty E_{b,\lambda}(\lambda, T) \, d\lambda = \sigma T^4$$

Stefan-Boltzmann law

Blackbody radiation function

$$f_{\lambda}(T) = \frac{1}{\sigma T^4} \int_{0}^{\lambda} E_{b,\lambda}(\lambda, T) \, d\lambda$$

Wien's displacement law

$$\lambda_{\text{max power}}T = 2898 \ \mu\text{m} \cdot \text{K}$$

https://www.youtube.com/watch?v=cPQeaAkAM_A

8

				etsia		
		λT , $\mu m \cdot K$	f_{λ}	λ <i>T</i> , μm · K	f.	
Fχ	Exercise 1			0000000	0.75414	
			0.000000	6200 6400	0.75414	
		400 600	0.000000	6600	0.78319	
Th	e temperature of the filament of an	800	0.000000	6800	0.79612	
		1000	0.000321	7000	0.80810	
inc	candescent lightbulb is 2500 K. Assuming the	1200	0.000321	7200	0.80810	
fila	ment to be a blackbody, determine:	1400	0.007790	7400		
1110	inioni to be a blackbody, actorimire.	1600	0.019718	7600	0.83910	
a)	The fraction of the radiant energy emitted by	1800	0.039341	7800	0.84800	
u,		2000	0.066728	8000	0.85628	
	the Sun that falls in the visible range (0.4	2200	0.100888	8500	0.87460	
	μm to 0.76 μm).	2400	0.140256	9000	0.89002	
	μπ το σ. το μπη.	2600	0.183120	9500	0.90308	
h)	The fraction of the radiant energy emitted by	2800	0.227897	10,000	0.91419	
υ,		3000	0.273232	10,500	0.92371	
	the filament that falls in the visible range.	3200	0.318102	11,000	0.93189	
	-	3400	0.361735	11,500	0.93995	
C)	The wavelength at which the emission of	3600	0.403607	12,000	0.94509	
	radiation from the Sun and the filament	3800	0.443382	13,000	0.95513	
		4000	0.480877	14,000	0.96289	
	peaks.	4200	0.516014	15,000	0.96998	
		4400	0.548796	16,000	0.97381	
d)	For a filament of 40 µm diameter and 0.5 m	4600 4800	0.579280 0.607559	18,000 20,000	0.98086	
	length, the total amount of radiation energy	5000	0.633747	25,000	0.98360	
	· ·	5200	0.658970	30,000	0.99534	
	emitted in 5 min.	5400	0.680360	40,000	0.99334	
		5600	0.701046	50,000	0.99895	
		5800	0.720158	75,000	0.99971	
		6000	0.737818	100,000	0.99990	
		0000	0.757010	100,000	10	

□ Thermal radiation directionality

Directional distribution of emitted (or incident) radiation is usually not uniform.

Emitted radiation intensity, Ie

The rate at which radiation energy dQ_e is emitted at the wavelength λ in the (θ,Φ) direction per unit area normal to this direction, per unit solid angle about this direction.

$$I_{\lambda,e}(\lambda,\theta,\phi,T) = \frac{\delta \dot{Q}_e}{\mathrm{d}A\cos\theta\,\mathrm{d}\omega\,\mathrm{d}\lambda} \qquad [W/(\mathrm{m}^2\cdot\mathrm{sr}\cdot\mu\mathrm{m})]$$

• Spectral hemispherical emissive power, E

$$E_{\lambda}(\lambda, T) = \int_{0}^{2\pi \pi/2} I_{\lambda, e}(\lambda, \theta, \phi, T) \cos \theta \sin \theta d\theta d\phi \qquad \text{Diffuse}$$

Viffuse
$$E_{\lambda}(\lambda,T) = \pi I_{\lambda,e}(\lambda,T)$$

• Total emissive power, E

$$E(T) = \int_{0}^{\infty} \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e}(\lambda,\theta,\phi,T) \cos\theta \sin\theta d\theta d\phi d\lambda$$

Blackbody
$$E_b(T) = \sigma T^4$$

11

11

Radiative properties

Emissivity

The ratio of the radiation emitted by the surface at a given temperature to the radiation emitted by a blackbody at the same temperature.

$$0 < \varepsilon < 1$$
 (Blackbody)

· Spectral directional emissivity

$$\varepsilon_{\boldsymbol{\lambda},\boldsymbol{\theta}}(\boldsymbol{\lambda},\boldsymbol{\theta},\boldsymbol{\phi},T) = \frac{I_{\boldsymbol{\lambda},\boldsymbol{e}}(\boldsymbol{\lambda},\boldsymbol{\theta},\boldsymbol{\phi},T)}{I_{b\boldsymbol{\lambda},\boldsymbol{e}}(\boldsymbol{\lambda},T)} \qquad \text{ Diffuse } \qquad \varepsilon_{\boldsymbol{\lambda},\boldsymbol{\theta}}(\boldsymbol{\lambda},\boldsymbol{\theta},\boldsymbol{\phi},T) = \varepsilon_{\boldsymbol{\lambda}}(\boldsymbol{\lambda},T)$$

· Spectral hemispherical emissivity

$$\varepsilon_{\lambda}(\lambda,T) = \frac{E_{\lambda}(\lambda,T)}{E_{b\lambda}(\lambda,T)}$$
 Greybody $\varepsilon_{\lambda}(\lambda,T) = cte$

· Total hemispherical emissivity

$$\varepsilon(T) = \frac{E(T)}{E_b(T)} = \frac{\int_0^\infty \varepsilon_\lambda(\lambda, T) E_{b,\lambda}(\lambda, T) d\lambda}{\sigma T^4}$$

Exercise 2

The spectral emissivity function of the tungsten filament (E1) is approximated as:

$$\varepsilon_1 = 0.4, \qquad 0 \le \lambda < 0.76 \ \mu \text{m}$$

$$\left\{ \varepsilon_2 = 0.3, \quad 0.76 \, \mu \text{m} \le \lambda < 2.0 \, \mu \text{m} \right\}$$

$$\varepsilon_3 = 0.1, \qquad 2.0 \ \mu \text{m} \le \lambda < \infty$$

Determine the average emissivity of the surface and the total amount of radiation energy emitted in 5 min.

15

Incident radiation intensity, li

The rate at which radiation energy dQ_i is incident from the (θ, Φ) direction per unit area of the receiving surface normal to this direction and per unit solid angle about this direction.

· Spectral irradiation, G

· Irradiation, G

$$G_{\lambda}(\lambda) = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,i}(\lambda,\theta,\phi) \cos\theta \sin\theta d\theta d\phi$$

$$G = \int_{0}^{\infty} G_{\lambda}(\lambda) \, \mathrm{d}\lambda$$

16

- Emissivity: Incoming radiation from an opaque body kept at temperature T under cryogenic vacuum (avoid reflections) and dividing the result by the corresponding Planck's equation value (emissometer)
 - For total hemispherical emissivity, a simple energy balance may be used with an electrically-heated sample in a cryogenic vacuum.
- Reflectance: Dividing the increase in irradiation detected from an opaque body (discounting emission and transmission) by a sinusoidal variation of the intended irradiation shining on the object (to discount other reflections)
 - If an infrared source is used, Kirchhoff's law implies $\varepsilon = 1 \rho$.
- Absorptance: Measuring reflectance in opaque bodies or in terms of the exiting radiation in transparent media.
 - On photovoltaic cells (with an efficiency of $\eta = (VI)_{max}/(G_sA)$) the thermal absorption is $\alpha_{th} = \alpha \eta F_p$ where F_p is the packaging factor.
- Transmittance: In terms of the extinction coefficient and the reflectance.

30

Contamination

- Outgassing products (ECSS-Q-ST-70-02C).
- · Thruster-generated contaminants.
- · Released particles with the spacecraft.

Table 4.2. Outgassing Data for Thermal-Control Surface Materials

Material	TML (%)	CVCM (%)
OSR	0.00	0.00
FEP Teflon	0.77	0.35
Kapton	0.78	0.03
Glass fabric/Kapton	0.42	0.05
Black Kapton	0.50	0.02
Glass fabric/Black Kapton	0.53	0.06
White polyurethane paint	0.99	0.08
Black polyurethane paint	1.91	0.28
White silicone paint	0.54	0.10
Black silicone paint	0.43	0.04
White inorganic paint	>1.00	0.00

^{*} Percent total mass loss (percent TML) and percent collected volatile condensable materials (percent CVCM)

Gilmore, D.G., "Spacecraft thermal control handbook"

37

37

Exercise 3

A sphere of radius R with thermo-optical properties α_s and ε and an area A in the space at 1 AU is only exposed to solar radiation.

- a) Present the thermal balance.
- b) Assuming a steady-state, check the influence of different optical coatings for a sphere radius R=0.5 m.
- c) Consider the effect of the Earth (circular orbit at an altitude of 300 km) and show the temperature as a function of the ratio α/ε .

Data: $R_E = 6378 \text{ km}; \ \alpha_E = 0.7; \ \varepsilon_E = 0.6; \ T_E = 288 \text{ K}$

45

45

Exercise 4

Dimension the thermal control system of the previous sphere (α_s , ε and heater power P_H) considering an internal heat source of $P_c = 200$ W being the temperature requirements $T_{min} = 240$ K and $T_{max} = 300$ K.

- * Firstly, dimensioning the Hot Case $(\alpha_s, \, \varepsilon)$ guaranteeing the survival for the BoL and EoL. Then, dimensioning the Cold Case (P_H) .
- a) Consider the hot (illumination) and cold (eclipse) steady-state cases.
- b) Consider the effect of covering the sphere by a one-node shield of R = 0.55 m with the same thermo-optical properties.
- c) Compare the results with a two-nodes shield (MLI) with Beta Cloth outside, VDA-Kapton inside and an equivalent emissivity of 0.01.

47

47

REFERENCES

- Meseguer, J., Pérez-Grande, I., Sanz-Andrés, A.
 "Spacecraft thermal control", Woodhead Publishing, 2012.
- Gilmore, D.G., "Spacecraft thermal control handbook", The Aerospace Corporation Press, 2002.
- Holman, J. P., "Heat Transfer (8^a ed.)", McGraw-Hill, 1997.
- Cengel, Y.A., "Heat Transfer. A practical approach".

48