Probability, Random Variables, and Distributions

Probability Topics

- Basic Probability Questions
- Laws of chance
- An Application DAWN Survey
- Random Variables
- An Application Repair times

Roll a fair die

3. Roll twice. What's the chance the max is 5?

- 1. The die is equally likely to fall on any of its 6 sides: 1/6.
- The 2 rolls can land in 36 possible ways (1,1), (1,2), ... (6,6). Of these 6 combinations sum to 7: 6/36 = 1/6
- 3. 9/36

Formalize Rules of Probability

 Ω = set of all possible outcomes from the chance process

A = a collection of outcomes, AKA an event

B = another collection of outcomes

- $P(\Omega) = 1$
- $0 \le P(A) \le 1$
- If A and B disjoint, then P(A or B) = P(A) + P(B)

From these 3 Rules

- 1. $P(\Omega) = 1$
- 2. $0 \le P(A) \le 1$
- 3. If A and B disjoint, then P(A or B) = P(A) + P(B)

- If B is contained in A, then $P(B) \le P(A)$
- $P(A^c) = 1 P(A)$
- P(A or B) = P(A) + P(B) P(A and B)

Toss Die 2 times

- $\Omega = 36$ ordered pairs $\{(1,1), ..., (6,6)\}$
- A = sum is 7
 = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}
- B = max is 5
 = {(1,5),(2,5),(3,5),(4,5),(5,5),(5,4),(5,3),(5,2),(5,1)}
- Are A and B disjoint?
- $P(A \cup B) = P((2,5), (5,2)) = 2\sqrt{36}$
- P(A B) = P(A) + P(B) P(A B)= 6/36 + 9/36 - 2/36 = 13/36

Deal from a deck of playing cards

- 52 cards
- 26 red, 26 black
- 4 suits diamonds, hearts, spades, clubs
- 13 in each suit ace, 2,
 3, 4, ..., 10, jack, queen,
 king

Deal 3 cards from a well-shuffled deck 1 2 3

A = 1st card is the Ace of diamonds

 $B = 2^{nd}$ card is a Diamond

 $C = 3^{rd}$ card is Red

Chance 1st card Ace of diamonds

- 52 cards
- Only 1 of them is the Ace of diamonds
- Deck is well-shuffled so all cards are equally likely
- 1/52

Chance 2nd card is a diamond

- 52 cards
- 13 diamonds
- Deck is well-shuffled so all cards are equally likely
- The chance the 1st card is a diamond is 13/52 or ¼
- By symmetry, the 2nd card should have the same chance of being a diamond as the 1st

Chance 3rd card is red

- 52 cards
- 26 red cards
- Deck is well-shuffled so all cards equally likely
- The chance the 1st card is red is 26/52 or ½
- By symmetry, the 3rd card should have the same chance of being red as the 1st

Deal 3 cards from a well-shuffled deck 1 3

D = At least one of them is red?

Chance at least 1 red

- Chance they are all black?
- Chance the 1st card is black is 1/2
- But we want the chance all three are black
- 26 * 25 * 24 combinations of cards where all 3 are black
- 52 * 51 * 50 combinations of 3 cards
- (26*25*24)/(52*51*50) chance all black
- 1 (26*25*24)/(52*51*50) = chance at least 1
 red

Deal 3 cards from a well-shuffled deck 1 2 3

What's the chance the 1st card is red given the 3rd is the Ace of diamonds?

Conditional Probability

- P(A|B) means the chance of A given B occurs
- P(A|B) = P(A and B)/P(B)

Independence of A and B means P(A|B) = P(A)

- P(A and B and C) = P(A)P(B|A)P(C|A,B)
- If independent, then
 P(A and B and C) = P(A)P(B)P(C)

Chance all 3 cards are black

Chance 1st and 2nd and 3rd cards are black

- Chance the 1st card is black is 26/52
- Given the 1st card is black, the chance the 2nd is black is 25/51 (51 cards left and 25 are black)
- Given the 1st and 2nd cards are black, the chance the 3rd is black is 24/50
- ANS: (26/52)*(25/51)*(24/50)

Ways to solve probability problems

- Equally likely outcomes –
 P(A) = # outcomes in A / # outcomes in Ω
- Complement rule $-P(A) = 1 P(A^c)$
- Symmetry A and B are equivalent events so
 P(A) = P(B)
- Sequence of outcomes P(A and B and C)

Return to 3 cards from the deck

- According to the equally likely principle, what's the chance a particular combination of 3 cards occurs?
- P{Ace, 2, 3 of diamonds as 1st, 2nd, 3rd cards}
 = 1/52 * 1/51 * 1/50
 = 1/(52 * 51 * 50)
- P{Ace, 2, and 3 of diamonds any order}= 6 / (52*51*50)

$$= \frac{\binom{1}{52}}{\binom{52}{3}} \qquad \qquad \binom{\binom{n}{k}}{is} \frac{n!/k!(n-k)!}{k! = k \times (k-1) \times \ldots \times 1!}$$

Simple Random Sample

- Like dealing cards from a well-shuffled deck
- Deck with N cards, deal n
- Each subset of n cards is equally likely

P(n particular individuals in sample) =

$$\frac{1}{\binom{N}{n}} = \frac{n!(N-n)!}{N!}$$

Simple Random Sample

The SRS is a chance process

- We can calculate the chance of an individual or group of individuals being selected
- A Statistic computed from the sample tends to be close to the population statistic
- We can use the sampling scheme to measure the typical error in our sample statistic

Drug Abuse Warning Network Survey

DAWN is a public health surveillance system for monitoring drug-related hospital emergency department visits in order to report on the impact of drug use, misuse, and abuse

Design: Divide the country into geographic regions (states)

In each state, Take a SRS of Hospitals with 24-hour ER

Take a SRS of 4 Hospitals

Probability Model for 2-Stage Cluster Sample

P(record 123 in ABC–ER in Las Vegas is in sample)

= P(ABC–ER is in the Nevada sample) X
P(record 123 in sample|ABC-ER in sample)

$$= 4/9 \times 3/5$$

Probability Sample

- Is every substance-related ER record in the country equally likely to be in the sample?
- Is every hospital with a 24-HR ER equally likely to be in the 1st stage of the sample?
- Is every hospital in one geographic region equally likely to be in the region's sample?
- Is every ER-record in a hospital equally likely to be in the sample?

DAWN Design: 2-stage cluster

1. Divide US into geographic regions. Take a Simple Random Sample of hospitals with a 24-hr emergency room within region

Supplement with additional samples of hospitals from selected Metro areas, e.g. LA

2. Take a Simple Random sample of records from ER visits for substance-related reasons

Probability Sample

 Can we find the chance that ER record A from hospital X in geographic region G is in the sample?

```
P(ER record in sample) =
```

- = P(hospital X) x P(ER A | hospital X)
- = # hospitals sampled from G/ # hospitals in G x # records sampled from X / # records in X

over chemical name, etc.). Do not record the same substance by two

Emergency Department Case Report

U.S. Department of Health and Human Services . Substance Abuse and Mental Health Services Administration

2. Date of Visit MONTH DAY YEAR 2.0	3. Time of Visit HOUR MINUTE a.m. p.m. military	4. Age Less than 1 year Not documented		
Patient's Home ZIP Code Serwise) select one response: No fixed address (e.g. homeless) Institution (e.g. stielter/jail/hosbital) Dutside U.S. Not documented		7. Race/Ethnicity Select one or more: White Black or African American Hispanic or Latino Asian American Indian or Alaska Native Native Hawaiian or Other Pacific Islander		
1. 2.	oted in the pacient's chart. Do not list ICD 3. 4. the presenting complaint, asserbe how the when possible.			

Data – One record

Data – One record

1 year of ER visits
Representative sample

DAWN Codebook

SEX GENDER

Location: 36-37 (width: 2; decimal: 0)

Variable Type: numeric

Range of Missing Values (M): -8

Value	Label	Unweighted Frequency	%	Valid %
1	MALE:(1)	119111	52.0 %	52.0%
2	FEMALE:(2)	110030	48.0 %	48.0%
-8 (M)	NOT DOCUMENTED:(-8)	70	0.0 %	-

Based upon 229141 valid cases out of 229211 total cases.

Missing Values

- -7 not applicable
- -8 undocumented
- -9 missing

EDA

- Like most surveys, almost all variables are categorical
- Relationship between sex and whether the ER visit was solely for substance-reason
- Mosaic plot carves up the block according to proportions (conditional)

Account for the chance an ER Record appears in sample

How do the proportions of substance only records change for each gender?

How does the relationship change?

Random Variables and Probability Distributions

Random Variable

Numeric value for outcome
Use capital letter to denote the outcome,
usually from the end of the alphabet

Example

U = number face up on roll of a fair die

X = 1 if 1st card drawn is diamond, 0 otherwise

Probability Distribution Table

All possible outcomes of the random variable Chance of each outcome

U = number face up on roll of a fair die

u	1	2	3	4	5	6
P(u)	1/6	1/6	1/6	1/6	1/6	1/6

We have all the information we need to compute the change of an event

Probability Distribution Table

U = number face up on roll of a fair die

u	1	2	3	4	5	6
P(u)	1/6	1/6	1/6	1/6	1/6	1/6

$$P(odd) = P(2, 4, 6) = 1/2$$

 $P(1 \text{ or } 6) = 1/3$

Discrete Uniform Distribution

U = number face up on roll of a fair die

u	1	2	3	4	5	6
P(u)	1/6	1/6	1/6	1/6	1/6	1/6

This type of distribution is so common, we give it a name: discrete uniform

U ~ discrete uniform(k,m)

P(j) = 1/(m-k) for $k \le j \le m$

= 0 otherwise

Bernoulli Distribution

X = indicator for 1st card a diamond

X	0	1
P(x)	3/4	1/4

This probability distribution is so common it has a name too

Bernoulli(p)

$$P(0) = 1-p \text{ and } P(1) = p$$

 U_1 = number face up on 1st roll of a fair die U_2 = number face up on 2nd roll of a fair die $S_2 = U_1 + U_2$

S	2	3	4	5	6	7	8	9	10	11	12
P(s)						6/36					

 U_1 = number face up on 1st roll of a fair die U_2 = number face up on 2nd roll of a fair die $S_2 = U_1 + U_2$

S	2	3	4	5	6	7	8	9	10	11	12
P(s)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

$$S_2 = U_1 + U_2$$

S	2	3	4	5	6	7	8	9	10	11	12
P(s)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

$$M = \max(U_1, U_2)$$

m	1	2	3	4	5	6
P(m)					9/36	

$$S_2 = U_1 + U_2$$

S	2	3	4	5	6	7	8	9	10	11	12
P(s)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

$$M = \max(U_1, U_2)$$

m	1	2	3	4	5	6
P(m)	1/36	3/36	5/36	7/36	9/36	11/36

Probability Distribution

- Probability Distribution Table:
 - All Possible Values/Outcomes
 - Chance of each value/outcome

 Function or Rule for calculating the chance of each possible outcome

Bernoulli

Roll a die 3 times

$$B_1 = 1^{st} \text{ roll a 1 or 6}$$

$$B_2 = 2^{nd} \text{ roll a 1 or 6}$$

$$B_3 = 3^{rd} \text{ roll a 1 or 6}$$

Each is a Bernoulli(1/3)

They are independent of one another

$$P(B_1 = 1 \mid B_2 = 0) = P(B_1 = 1) = 1/3$$

Sum:
$$S_3 = B_1 + B_2 + B_3$$

P(3) = P(111)
=
$$(1/3)^3 = 1/27$$

P(2) = P(110 or 101 or 011) each has same chance
= $3(1/3)^2 (2/3) = 6/27$ disjoint
P(1) = P(100 or 010 or 001)
= $3(1/3)(2/3)^2 = 12/27$
P(0) = P(000)
= $(2/3)^3 = 8/27$

General Formulation

$$S_n = B_1 + B_2 + ... + B_n$$

where $B_i \sim Bernoulli(p)$ independent

 $P(k) = number of ways to get k 1s * p^k(1-p)^{n-k}$

For k = 0, 1, ..., n

This distribution is called the Binomial(n,p)

Binomial Distribution

- Many problems reduce to observing a particular characteristic (nominal or ordinal data)
- Of interest is how many of a particular type/level did we see in our data?
- A question that often arises is how likely is it that we saw so many (or so few) of that type?

Binomial Distribution

- **n** trials
- p chance of success on any one trial
- trials are independent
- What is the chance of k successes?

Binomial Distribution

n independent trials, p chance of success

$$\mathbb{P}(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\binom{n}{k}$$
 is $n!/k!(n-k)!$

$$k! = k \times (k-1) \times \ldots \times 1!$$

Probability & Statistics

- In probability, we work with known distributions and study their properties
 - Sometimes the chance process is so complex we use simulation to help us study it

Probability & Statistics

- In statistics, we work with data that come from some distribution
 - Often we don't know the parameters of the distribution, we want to estimate them from the data, these estimates are random variables
 - Other times, we are unsure the distribution fits the data
 - We can use simulation to help us check the fit of a distribution and to understand the variability in our parameter estimates

Response Times for Network Service

- NY Commission monitors response time for service repairs in the state
- The commission requests data on the repair times for a 3-month time period
- They are interested in average repair time

EDA

- Skewed right
- Some repairs took several days
- Possibly bimodal distribution – sharp peak around a few hours, smaller peak around 24 hours

EDA

- Now see a spike at 0, indicating many repairs are completed immediately
- Gap around 10, indicating that some repairs wait to the next day
- Large mode Most repairs completed in a day

Average Repair Time

AVG = 9.4 hours

- Another time period will have a different average time
- Would like to give an interval estimate of the repair time
- The interval reflects the typical deviation in average repair time

Average Repair Time

- We expect the distribution of repair times will be similar to our sample
- We can use our sample as the population of repair times
- We generate new samples of repair times from this "population" and examine the variability in the average

The Bootstrap

Probability Model for Repair Time

- Do we get the same average when we observe another time period?
- How does the average vary?
- What are the likely values?

Ideally we would repeat the process many times

We don't know the Data Generator

- The sample should look the underlying population (data generator)
- Create a "Bootstrap Population" from the sample
- Mimic the process of generating samples draws from the population

Imitate the Chance process with bootstrap population

Core Idea

- We generate bootstrap samples from the bootstrap population in a similar manner as the sample was generated from the population –
- To Do This We Ned To Understand the Chance Process That Generated Our Data
- We compute the bootstrap statistic from the bootstrap sample, in the same way we compute the statistic from the sample

Core Idea

bootstrap sample relation to bootstrap population

≈ sample relation to the population

bootstrap statistic's distribution shape & variability

≈ statistic's distribution shape and variability

We often studentize our statistic $\, heta\,$ before we bootstrap:

Bootstrap the studentized statistic:

 $\frac{\theta - \theta}{SE(\hat{\theta})}$

Bootstrap version

$$\frac{\hat{\theta}*-\theta*}{SE(\hat{\theta}*)}$$

* Mean bootstrap version

Estimating the SE may require a second bootstrap

Then find the 2.5% and 97.5% tiles of the studentized distribution and use them to create an interval for ϵ

Example: Studentized AVG

is the population average

 $\widehat{ heta}$ is the sample average

 $SE(\hat{\theta})$ is the standard error the of sample average, which is $\approx SD(sample)/\sqrt{n}$

Bootstrapped Sampling Distribution of the studentized sample average

Fun Probability Problems

- Andrew and Sam are playing a game with dice
- Each player stakes \$32 to play the game
- Andrew picks a number between 1 and 6
- Sam picks another number between 1 and 6
- One round of the game: roll a die until Sam or Andrew's number shows
- Who ever wins 3 rounds gets the \$64
- BUT The game is interrupted at the point where Sam has won 2 rounds and Andrew 1.
 How should they divide the \$64?

- Three cards are marked as follows:
 - one card has a square on each side
 - One card has a circle on each side
 - One card has a square on one side and circle on the other
 - The cards are otherwise indistinguishable
- I shuffle the 3 cards behind my back and hold one up so that you see one side and I see the other side
- Give you see a circle, what's the chance that I also see a circle?