

Marine Science Lesson 1.2 - Solubility (Outline)

Generated Study Guide

Subject: science Grade Level: 11th Format: outline Generated: September 10, 2025

WATER SOLUBILITY STUDY GUIDE ## Grade 11 Chemistry - Intermediate Level

© LEARNING OBJECTIVES

By the end of this unit, you should be able to:

- 1. Define solubility and explain factors that affect it
- 2. Distinguish between saturated, unsaturated, and supersaturated solutions
- 3. Interpret and create solubility curves
- 4. Apply solubility rules to predict precipitation reactions
- 5. Calculate solubility using Ksp expressions
- 6. Explain the relationship between molecular structure and water solubility

I. FUNDAMENTAL CONCEPTS OF SOLUBILITY

A. ESSENTIAL: Basic Definitions and Concepts

1. Key Definitions

KEY TERM BOX:

- **Solubility**: Maximum amount of solute that dissolves in a given amount of solvent at specific temperature
- Solute: Substance being dissolved (usually present in smaller amount)
- Solvent: Substance doing the dissolving (water in aqueous solutions)
- Solution: Homogeneous mixture of solute and solvent

2. Types of Solutions

- Saturated: Contains maximum amount of dissolved solute at given temperature
- Unsaturated: Contains less than maximum amount of solute
- Supersaturated: Contains more solute than normally possible (unstable)
- QUICK CHECK: What happens when you add more solute to a saturated solution?
- ### B. O IMPORTANT: "Like Dissolves Like" Principle

1. Polar vs. Nonpolar Interactions

- Water is polar → dissolves polar and ionic substances
- Nonpolar solvents → dissolve nonpolar substances
- Hydrogen bonding enhances solubility in water
- **CONNECTION POINT:** This relates to intermolecular forces you learned earlier!

II. FACTORS AFFECTING SOLUBILITY

A. ESSENTIAL: Temperature Effects

1. Solids in Liquids

- Most solids: ↑ Temperature → ↑ Solubility
- Exception: Some salts (e.g., Li₂SO₄) show inverse relationship

2. Gases in Liquids

- All gases: ↑ Temperature → ↓ Solubility
- Reason: Increased kinetic energy helps gas escape
- QUICK CHECK: Why does soda go flat faster when warm?
- ### B. ESSENTIAL: Pressure Effects (Henry's Law)

1. Henry's Law Formula

C = kP

- C = concentration of dissolved gas
- k = Henry's law constant
- P = partial pressure of gas

2. Applications

- Deep-sea diving (nitrogen narcosis)
- Carbonated beverages
- Gas solubility in blood

C. O IMPORTANT: Surface Area and Agitation

- Increased surface area → faster dissolving (not more total solubility)
- Stirring increases rate of dissolution

III. SOLUBILITY CURVES AND CALCULATIONS

A. ESSENTIAL: Reading Solubility Curves

1. Graph Interpretation

```
Solubility (g/100g H2O)

↑

| /

| / ← Typical curve for most solids

| /

| /

| /

| /

| /
```

2. Using Curves to Determine:

- Maximum solubility at any temperature
- Whether a solution is saturated/unsaturated
- Amount of precipitate formed upon cooling

QUICK CHECK: If 80g of KNO₃ dissolves in 100g water at 50°C, and the curve shows 85g max, what type of solution is this?

B. O IMPORTANT: Solubility Calculations

1. Basic Calculations

- g solute/100g H₂O (standard units)
- Converting between different amounts of water
- Determining mass of precipitate

CALCULATION EXAMPLE:

If solubility = $40g/100g H_2O$ at $20^{\circ}C$ In $250g H_2O$: $40g \times 2.5 = 100g$ can dissolve

IV. SOLUBILITY RULES AND PREDICTIONS

A. ESSENTIAL: Common Solubility Rules

1. Always Soluble:

- Group 1 (alkali metals) compounds
- Nitrates (NO₃-)
- Acetates (CH₃COO⁻)
- Most chlorides, bromides, iodides

2. Generally Insoluble:

- Carbonates (CO₃²⁻) except Group 1
- Phosphates (PO₄3-) except Group 1
- Sulfides (S2-) except Group 1, 2, NH4+

KEY TERM BOX:

Precipitation Reaction: Formation of insoluble solid when two solutions mix

B. O IMPORTANT: Predicting Precipitation

1. Double Displacement Method

- 1. Write possible products by switching ions
- 2. Apply solubility rules
- 3. Identify any insoluble products (precipitates)

QUICK CHECK: Will AgCl precipitate when AgNO₃ and NaCl solutions mix?

V. ADVANCED CONCEPTS

A. ESSENTIAL: Solubility Product Constant (Ksp)

1. Ksp Expression

For AgCl(s) \rightleftharpoons Ag⁺(aq) + Cl⁻(aq)

 $Ksp = [Ag^{+}][Cl^{-}]$

2. Relationship to Solubility

- Larger Ksp = more soluble
- Can calculate solubility from Ksp and vice versa

B. IMPORTANT: Common Ion Effect

1. Definition

Presence of common ion reduces solubility of ionic compound

2. Application

Adding NaCl to saturated AgCl solution reduces AgCl solubility

CONNECTION POINT: This applies Le Châtelier's Principle!

VI. MOLECULAR STRUCTURE AND SOLUBILITY

A. IMPORTANT: Structural Factors

1. Functional Groups Affecting Water Solubility

- Increase solubility: -OH, -COOH, -NH₂, -C=O
- Decrease solubility: Long hydrocarbon chains

2. Size Considerations

- Small molecules generally more soluble
- Branching can affect solubility

B. SUPPORTING: Biological Applications

- Drug solubility and bioavailability
- Nutrient absorption
- Waste elimination

6 EXAM PREPARATION CHECKLIST

Essential Formulas to Memorize:

- -[] Henry's Law: C = kP
- [] Ksp expressions for common salts
- [] Solubility calculation conversions

Key Processes to Master:

- [] Reading solubility curves
- [] Predicting precipitation reactions
- [] Calculating Ksp from solubility data
- [] Applying solubility rules

Common Exam Question Types:

- 1. Graph Analysis: "Using the solubility curve, determine..."
- 2. Prediction: "Will a precipitate form when..."
- 3. Calculation: "Calculate the mass of precipitate..."
- 4. Explanation: "Explain why solubility increases/decreases..."

4 FINAL QUICK CHECK QUESTIONS

- 1. What happens to gas solubility as temperature increases?
- 2. Name three always-soluble ion groups.
- 3. How does the common ion effect relate to Le Châtelier's Principle?
- 4. What does a larger Ksp value indicate?
- 5. Why do alcohols with short carbon chains dissolve in water?

> STUDENT NOTES SECTION

Use this space to add your own examples, practice problems, and connections

[Space for notes]

STUDY TIP: Create flashcards for solubility rules and practice reading different solubility curves daily. Focus on understanding WHY things happen, not just memorizing facts!