1. The graph of a function f is shown below. Find the following:

c) the range of f

d) For which value of x is f(x) =x=2

e) Where is f increasing? [0,2] U [6.25,7]

2. Let $f(x) = 3x^2 - x + 2$. Find and simplify the following expressions.

(a)
$$f(2) = 3 \cdot 2^2 - 2 + 2 = 12$$

(b)
$$f(a^2) = 3(a^2)^2 - a^2 + 2 = 3a^4 - a^2 + 2$$

(c)
$$[f(a)]^2 = (3a^2 - a + 2)^2 = 9a^4 - 6a^3 + (12a^2 + (-a)^2) - 4a + 4$$

= $9a^4 - 6a^3 + 13a^2 - 4a + 4$

(d)
$$\frac{f(2+h)-f(2)}{h} = \frac{3(2+h)^2 - (2+h) + 2 - (3(2)^2 - 2 + 2)}{h}$$
$$= \frac{3(4+4h+h^2) - 2 - h + 2 - 12 + 2 - 2}{h} = \frac{11 \cdot h + 3h^2}{h} = 11 + 3h$$

(e)
$$\frac{f(a+h)-f(a)}{h} = \frac{3(a^2+2ah+h^2)-(a+h)+2-(3a^2-a+2)}{h}$$

$$= \frac{6ah+3h^2-h}{h} = 6a-1+3h$$

3. Find the domain of each of the following functions. Use interval notation.

1.
$$f(x) = \frac{1}{x^4 - 16}$$
 Need $x^4 - 16 \neq 0$
 $x^4 \neq 16$
 $x \neq \pm 2$
 $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$

$$2 f(x) = \sqrt{x} + \sqrt{11 - x} \qquad 41 \qquad 4$$

2.
$$f(x) = \sqrt{x} + \sqrt{11-x}$$
 Need $x \ge 0$ $|1-x| \ge 0$ $|1| \ge x$

3.
$$g(x) = \ln(x-4)$$
 Need $x-4>0$ $x>4$

4.
$$h(x) = \frac{1}{\sqrt{x^2-5x-6}}$$
 Need $x^2-5x-6 \ge 0$

$$(x-6)(x+1) \ge 0$$

$$50 \text{ e. Hor} \quad x=6 \text{ o. } x+1 \ge 0 \text{ i.e. } x \ge 6$$
or $x-6 < 0$, $x+1 < 0$ i.e. $x > 6$
or $x=6 \text{ o. } x=1$
Graph each of the following piecewise defined functions.
$$(-\infty)^{-1}\sqrt{6} = \infty$$

4. Graph each of the following piecewise defined functions.

a)
$$f(x) = \begin{cases} -1 & \text{if } x \ge 2\\ 7 - 2x & \text{if } x < 2 \end{cases}$$

b)
$$f(x) = \begin{cases} x+1 & \text{if } x \le -1 \\ x^2 & \text{if } x > -1 \end{cases}$$

