TUGAS AKHIR

ANALISIS PERFORMA ENAM BACKEND JAVASCRIPT FRAMEWORK MENGGUNAKAN RUNTIME JAVASCRIPT BUN DENGAN METODE GET, POST, PUT DAN DELETE

MUHAMAD FAIZ 203510066

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNIK
UNIVERSITAS ISLAM RIAU
PEKANBARU
2024

HALAMAN PENGESAHAN TUGAS AKHIR

Nama

: Muhamad Faiz

NPM

: 203510066

Kelompok Keahlian

: Web Based Information System & Application

Program Studi

: Teknik Informatika

Jenjang Pendidikan Judul TA

: Strata Satu (S1)

: ANALISIS PERFORMA ENAM BACKEND JAVASCRIPT FRAMEWORK MENGGUNAKAN DENGAN RUNTIME JAVASCRIPT BUN

METODE GET, POST, PUT DAN DELETE

Format sistematika dan pembahasan materi pada masing-masing bab dan sub bab dalam tugas akhir ini telah dipelajari dan dinilai relatif telah memenuhi ketentuanketentuan dan kriteria- kriteria dalam metode penelitian ilmiah. Oleh karena itu tugas akhir ini dinilai layak dapat disetujui untuk disidangkan dalam ujian Seminar Tugas Akhir.

Pekanbaru, 28 September 2024

nguji II

Di sahkan oleh:

Penguji I

Panfi Rachmat Setiawan S.Kom., MMSI

Ketua Program Studi Teknik Informatika

Dr. Apri Siswanto, S.Kom., M.kom

Anggi Hanafiah, S.I M.Kom

Dosen Pembimbing

M. Rizki Fadhillah, S.T., M.Eng

CS Dipindai dengan CamScanner

i

HALAMAN PENGESAHAN DEWAN PENGUJI TUGAS AKHIR

Nama : Muhamad Faiz NPM : 203510066

Kelompok Keahlian : Web Based Information System & Application

Program Studi : Teknik Informatika

Jenjang Pendidikan : Strata Satu (S1)

Judul TA : ANALISIS PERFORMA ENAM BACKEND

JAVASCRIPT FRAMEWORK

MENGGUNAKAN RUNTIME JAVASCRIPT BUN DENGAN METODE GET, POST, PUT

DAN DELETE

Tugas Akhir ini secara keseluruhan dinilai telah memenuhi ketentuan-ketentuan dan kaidah-kaidah dalam penulisan penelitian ilmiah serta telah diuji dan dapat dipertahankan dihadapan dewan penguji. Oleh karena itu, Tim Penguji Ujian Tugas Akhir Fakultas Teknik Universitas Islam Riau menyatakan bahwa mahasiswa yang bersangkutan dinyatakan Telah Lulus Mengikuti Ujian Tugas Akhir Pada Tanggal 31 Oktober 2024 dan disetujui serta diterima untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Strata Satu Bidang Ilmu Teknik Informatika.

Pekanbaru,31 Oktober 2024

Penguji

- 1. Pembimbing: M. Rizki Fadhillah, S.T., M.Eng ()
- 2. Penguji 1 : Panji Rachmat Setiawan, S.Kom., MMSI ()
- 3. Penguji 2 : Anggi Hanafiah, S.Kom., M.Kom ()

Disahkan Oleh:

Dekan Ketua Program Studi Fakultas Teknik Teknik Informatika

Dr. Deddy Purnomo Retno, S.T, M.T

Dr. Apri Siswanto, S.Kom, M.Kom

NIDN: 1005057702 NIDN: 1016048502

PERNYATAAN KEASLIAN TUGAS AKHIR

Dengan ini saya menyatakan bahwa tugas akhir ini merupakan karya saya sendiri

dan semua sumber yang tercantum didalamnya baik yang dikutip maupun dirujuk

telah saya nyatakan dengan benar sesuai ketentuan. Jika terdapat unsur penipuan

atau pemalsuan data maka saya bersedia dicabut gelar yang telah saya peroleh.

Pekanbaru, 30 Oktober 2024

Muhamad Faiz

NPM: 203510066

iii

KATA PENGANTAR

Assalamu'alaikum Warahmatullahi Wabarakatuh.

Segala puji dan syukur penulis panjatkan kepada Allah SWT atas rahmat dan hidayah-Nya, sehingga penulis dapat menyelesaikan skripsi dengan judul "

ANALISIS PERFORMA ENAM BACKEND JAVASCRIPT FRAMEWORK

MENGGUNAKAN RUNTIME JAVASCRIPT BUN DENGAN METODE

GET, POST, PUT DAN DELETE " Penulisan skripsi ini merupakan bagian dari syarat untuk memperoleh gelar Sarjana Teknik di Program Studi Teknik Informatika Universitas Islam Riau. Dalam penyusunan skripsi ini, penulis menyadari bahwa banyak pihak yang telah membantu dan memberikan dukungan, baik selama proses penyusunan tugas akhir ini maupun selama perkuliahan. Oleh karena itu, penulis ingin menyampaikan rasa terima kasih yang sebesar-besarnya kepada:

- M. Rizki Fadhillah, S.T., M.Eng selaku dosen pembimbing, yang telah memberikan bimbingan, arahan, serta masukan yang berharga selama proses penulisan skripsi ini.
- Ketua dan sekretaris prodi serta dosen-dosen yang sangat banyak membantu terkait perkuliahan, ilmu pengetahuan dan hal lain yang tidak dapat saya sebutkan satu per satu.
- Orang tua dan keluarga yang memberikan dukungan penuh material dan moral.

4. Sahabat serta teman-teman seperjuangan dan lainnya yang tidak bisa

disebutkan satu-persatu, yang telah memberikan bantuan, semangat, dan

dukungan selama masa perkuliahan dan penyusunan skripsi ini.

Teriring doa saya, semoga Allah membalas segala kebaikan dari semua

pihak yang telah membantu. Penulis menyadari bahwa laporan skripsi ini masih

belum sempurna. Oleh karena itu, dengan penuh kerendahan hati, penulis

sangat mengharapkan kritik dan saran yang membangun untuk perbaikan

laporan ini. Semoga skripsi ini dapat menambah wawasan serta memberi

manfaat bagi semua pembacanya.

Pekanbaru, 30 Oktober 2024

Penulis,

Muhamad Faiz 203510066

V

Daftar isi

HALAMAN PENGESAHAN TUGAS AKHIR	i
HALAMAN PENGESAHAN DEWAN PENGUJI TUGAS AKHIRi	i
PERNYATAAN KEASLIAN TUGAS AKHIRii	i
KATA PENGANTARi	V
Daftar isiv	i
Daftar Gambarvii	i
Daftar Tabel	X
ABSTRAKx	i
ABSTRACTxi	i
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Identifikasi Masalah	3
1.3 Rumusan Masalah	3
1.4 Batasan Masalah	3
1.5 Tujuan Penelitian	4
1.6 Manfaat Penelitian	4
BAB II LANDASAN TEORI	5
2.1 Tinjauan Pustaka	5
2.2 Dasar Teori	1
2.2.1 Javascript	1
2.2.2 Framework Javascript Backend	1
2.2.3 Bun Js	4
2.2.4 HTTP (Hypertext Transfer Protocol)	4
2.2.5 Parameter Pengujian	5
2.2.6 Asymptotic Notation	9
2.2.7 Weight Scoring System	1
2.2.8 MinMax Normalization	2
2.3 Kerangka Berpikir	2
BAB III METODOLOGI PENELITIAN24	4
3.1 Pengembangan dan Perancangan Sistem	4
3.1.1 Alur Pengerjaan Skripsi	4

3.2 Uraian Metodologi	25
3.2.1 Tahap Persiapan	25
3.2.2 Tahap Pengujian	28
3.2.3 Tahap Evaluasi	42
3.3 Alat dan Bahan Penelitian	42
3.4 Ringkasan skenario apache benchmark	43
BAB IV HASIL DAN PEMBAHASAN	47
4.1 Hasil Pengujian	47
4.1.1 Apache Benchmark	47
4.1.2 Mitata Js	69
BAB V KESIMPULAN DAN SARAN	72
5.1 Kesimpulan	72
5.2 Saran	73
DAFTAR PUSTAKA	75
LAMPIRAN	77
Lampiran 1 : data mentah pengujian parameter time taken for test	77
Lampiran 2: data mentah pengujian parameter request per second	79
Lampiran 3 : data mentah pengujian parameter time per request	81
Lampiran 4 : data mentah pengujian parameter transfer rate	84
Lampiran 5 : data mentah hasil pengujian <i>tool mitata is</i>	86

Daftar Gambar

Gambar 2. 1 website Apache Lounge	. 18
Gambar 2. 2 file ab.exe dan abs.exe	. 18
Gambar 2. 3 isi folder projek	. 19
Gambar 2. 4 Kerangka Berpikir	. 23
Gambar 3. 1 Alur Pengerjaan Skripsi	. 24
Gambar 3. 2 Tahap persiapan membuat folder Benchmark	. 26
Gambar 3. 3 inialisasi runtime bun pada folder Bun	. 26
Gambar 3. 4 Struktur Folder Bun	. 27
Gambar 3. 5 Isi file package.json	. 28
Gambar 3. 6 Contoh hasil parameter Time Taken for Test	. 30
Gambar 3. 7 Contoh hasil parameter Request Per Second	. 31
Gambar 3. 8 Contoh hasil parameter Transfer Rate	. 31
Gambar 3. 9 Contoh hasil parameter Time Per Request	. 31
Gambar 3. 10 perintah pengujian HTTP POST	. 31
Gambar 3. 11 perintah pengujian HTTP GET	. 32
Gambar 3. 12 perintah pengujian HTTP PUT	32
Gambar 3. 13 perintah pengujian HTTP DELETE	. 32
Gambar 3. 14 Contoh hasil permintaan POST	. 33
Gambar 3. 15 Contoh data	. 33
Gambar 3. 16 Skenario permintaan HTTP POST	. 34
Gambar 3. 17 Contoh hasil permintaann HTTP GET	. 35
Gambar 3. 18 Skenario permintaan HTTP GET	. 35
Gambar 3. 19 Contoh hasil Permintaann HTTP PUT	. 36

Gambar 3. 20 Skenario permintaan HTTP GET	. 36
Gambar 3. 21 Contoh hasil Permintaann HTTP DELETE	. 37
Gambar 3. 22 Skenario permintaan HTTP DELETE	. 37
Gambar 3. 23 perintah install packet manager mitata	. 38
Gambar 3. 24 contoh source code	. 39
Gambar 3. 25 perintah menjalankan tool mitata	. 39

Daftar Tabel

Tabel 2. 1 Penelitian terdahulu	6
Tabel 2. 2 Perbandingan ukuran waktu dalam second 1	6
Tabel 2. 3 Notasi analisis waktu. 20	0
Tabel 3. 1 Skenario Beban Permintaan HTTP POST, GET, PUT dan DELETE 30	0
Tabel 3. 2 Spesifikasi Perangkat Keras (Hardware) 47	2
Tabel 3. 3 Spesifikasi Perangkat Lunak (Software) 47	3
Tabel 3. 4 Ringkasan skenario beban apache benchmark 4-	4
Tabel 4. 1 Hasil pengujian Time Taken for Test. 49	9
Tabel 4. 2 Hasil pengujian Request per Second 57	3
Tabel 4. 3 Hasil pengujian Time per Request 57	7
Tabel 4. 4 Hasil pengujian Transfer rate 6	1
Tabel 4. 5 Frekuensi Performa Framework Backend JavaScript Berdasarkan	
Jumlah Data6	4
Tabel 4. 6 Hasil Weight Score	6
Tabel 4. 7 Hasil rata - rata pengujian mitata js	9

ANALISIS PERFORMA ENAM BACKEND JAVASCRIPT FRAMEWORK MENGGUNAKAN RUNTIME JAVASCRIPT BUN DENGAN METODE GET, POST, PUT DAN DELETE

Muhamad Faiz

Program Studi Teknik Informatika, Fakultas Teknik, Univeristas Islam Riau *Email*: muhamadfaiz@student.uir.ac.id

ABSTRAK

Di era modern ini, Teknologi Informasi (TI) sangatlah berperan besar pada perkembangan dunia dan tidak ada yang bisa menyangkal dampak inovasi teknologi, terutama pesatnya perkembangan teknologi informasi (TI) dalam pengembangan aplikasi berbasis web. aplikasi berbasis web di dukung oleh banyak bahasa pemrograman dan juga framework. Penelitian ini bertujuan untuk membandingkan performa keenam framework backend javascript yaitu express js, hapi js, koa, fastify, nest dan elysia yang berjalan di runtime Bun dengan metode permintaan HTTP GET, POST, PUT dan DELETE. Penelitian ini dilaksanakan melalui tahapan metodologi seperti tahap persiapan: mempersiapkan aplikasi dan sistem pada komputer lokal dan menginstall resource yang di perlukan seperti menginstall keenam framework tersebut, untuk melakukan pada tahap pengujian, tahapan pengujian: proses pengujian menggunakan 2 buah tools yatiu apache benchmark dan mitata, js dengan menggunakan skenario BIG O Notation untuk diujikan dan tahapan evaluasi : menganalisis hasil dari pengujian keenam framework tersebut, dari tahap sebelumnya hasil pengujian akan di catat dibandingkan dan kemudian akan dibuat kesimpulan framework manakah yang performanya bagus. Dengan melakukan penelitian ini, di harapkan dapat memberikan kontribusi dalam membantu para developer untuk memilih framework backend javascript yang berjalan di runtime Bun secara efektif.

Kata kunci: framework, javascript, backend, HTTP, Bun

PERFORMANCE ANALYSIS OF SIX JAVASCRIPT FRAMEWORK BACKENDS USING JAVASCRIPT BUN RUNTIME WITH GET, POST, PUT AND DELETE METHODS

Muhamad Faiz

Department of Informatics Engineering, Faculty of Engineering, Islamic University of Riau

Email: muhamadfaiz@student.uir.ac.id

ABSTRACT

In this modern era, Information Technology (IT) plays a very big role in the development of the world and no one can deny the impact of technological innovation, especially the rapid development of information technology (IT) in the development of web-based applications. Web-based applications are supported by many programming languages and frameworks. This study aims to compare the performance of the six backend javascript frameworks, namely express is, hapi is, koa, fastify, nest and elysia which run on the Bun runtime with the HTTP GET, POST, PUT and DELETE request methods. This study was carried out through methodological stages such as the preparation stage: preparing applications and systems on the local computer and installing the necessary resources such as installing the six frameworks, to carry out the testing stage, testing stage: the testing process uses 2 tools, namely apache benchmark and mitata.js using the BIG O Notation scenario to be tested and the evaluation stage: analyzing the results of testing the six frameworks, from the previous stage the test results will be recorded, compared and then a conclusion will be made which framework has good performance. By conducting this research, it is hoped that it can contribute to helping developers to choose a JavaScript backend framework that runs on the Bun runtime effectively.

Keywords: framework, javascript, backend, HTTP, Bun

BABI

PENDAHULUAN

1.1 Latar Belakang

Di era modern ini, Teknologi Informasi (TI) sangatlah berperan besar pada perkembangan dunia dan tidak ada yang bisa menyangkal dampak inovasi teknologi, terutama pesatnya perkembangan teknologi informasi (TI) dalam pengembangan aplikasi berbasis web. aplikasi berbasis web di dukung oleh banyak bahasa pemrograman dan juga framework. Di dalam dunia TI pemilihan framework untuk membangun sebuah aplikasi sangatlah penting, dikarenakan pemilihan framework untuk kebutuhan bukanlah hal yang gampang bagi pengembang(del Pilar Salas-Zárate et al., 2015).

Framework merupakan kerangka kerja yang membantu para pengembang untuk membuat sebuah aplikasi berbasis web dengan kode yang terstruktur, mudah dan cepat. Framework dalam pengembangan aplikasi berbasis web terbagi menjadi dua jenis yaitu front-end framework dan back-end framework. untuk front-end framework kerangka tampilan pada website, sehingga website tersebut menjadi lebih menarik dan memudahkan user untuk menggunakan layanan pada website. Sedangkan back-end framework digunakan untuk bekerja di sisi server seperti pemrosesan data, parsing data, suplai data, penanganan request, routing dan validasi data.

Back-end JavaScript framework merupakan kerangka kerja yang digunakan untuk membangun aplikasi server-side menggunakan javaScript. Framework tersebut menyediakan sejumlah fitur dan alat yang memudahkan pengembangan aplikasi web, termasuk pengelolaan rute (routing), pemrosesan

permintaan dan *response* HTTP, manajemen basis data, dan lain sebagainya. Ada beberapa *back-End framework* yang umum digunakan oleh sebagian besar pengembang saat ini, yaitu ada *Koa, Express, Elysia, Fastify, Nest dan Hapi*. pada dasarnya *framework* tersebut dijalankan dengan *runtime javascript node js*.

Pada saat ini ada beberapa jenis *runtime javascript*. Salah satu *runtime* itu adalah *Bun*. *Bun* salah satu teknologi pengembangan website berbasis *javascript* di sisi *server* berupa *runtime* dan menyediakan *built-in HTTP server*. *Bun* merupakan *javascript runtime* baru yang di bangun untuk melayani ekosistem pada *javascript* modern dan *Bun* juga dirancang untuk menjadi alternatif *javascript runtime* yang bekerja secara secepat mungkin, sehingga runtime tersebut masih tahap pengembangan, Bun juga menggunakan mesin *javascript V8* yang dimodifikasi, *Bun* juga di rancang agar tidak tergantung pada paket Node, js eksternal,

Metode GET, POST, PUT, dan DELETE merupakan metode HTTP yang digunakan untuk berinteraksi dengan sumber daya (*resource*) di server. Metode GET digunakan untuk mengambil data dari server, POST untuk mengirim data baru ke server, PUT untuk memperbarui data yang ada di server, dan DELETE untuk menghapus data dari server.

Dari beberapa uraian diatas, Penulis tertarik untuk membuat sebuah analisis untuk menguji pada enam *framework javascript back-end* yang berjalan di *Bun* dengan skripsi yang berjudul "Analisis Performa Enam *Backend Javascript*

Framework menggunakan Runtime Javascript Bun dengan Metode GET, POST, PUT dan DELETE".

1.2 Identifikasi Masalah

Berdasarkan permasalahan yang telah diuraikan diatas, maka identifikasi masalah dalam penelitian ini sebagai berikut:

- 1. Para pengembang kesulitan memilih framework back-end
- 2. Kurangnya informasi yang berkaitan dengan runtime javascript Bun

1.3 Rumusan Masalah

Berdasarkan latar belakang masalah yang telah dikemukakan diatas maka dapat dirumuskan masalah sebagai berikut:

- 1. Bagaimana cara melakukan pengujian perbandingan performansi dari keenam *Back-End JavaScript framework* yang diujikan?
- 2. Framework mana yang memiliki nilai performansi terbaik?

1.4 Batasan Masalah

Batasan masalah yang akan dibahas dibawah ini meliput beberapa hal pokok yaitu:

- 1. Sistem Operasi yang digunakan adalah Windows 11 Home v23H2
- 2. Runtime javascript menggunakan Bun v1.1.21
- 3. Metode HTTP GET, POST, PUT dan DELETE
- 4. Menggunakan 6 framework back-end javascript

1.5 Tujuan Penelitian

Tujuan dari penelitian ini adalah:

- mengetahui perbandingan performansi dari keenam Back-End
 JavaScript framework
- 2. mengetahui framework mana yang berjalan di runtime bun

1.6 Manfaat Penelitian

Penelitian ini diharapkan mampu memberikan referensi kepada para pengembang, agar dapat mengetahui kinerja atau performa dari setiap framework backend javascript yang berjalan di runtime bun, sehingga dapat menentukan framework backend mana yang sesuai dengan kebutuhan

BAB II

LANDASAN TEORI

2.1 Tinjauan Pustaka

Tujuan dari penelitian ini dimaksudkan untuk mengetahui perbandingan performa antara enam *back-end javascript*. Untuk tinjauan pustaka pada penelitian ini adalah studi literatur, dimana yang merujuk menurut penelitian terdahulu adalah sebagai berikut:

Tabel 2. 1 Penelitian terdahulu

No	Judul	Penulis	Metode	Hasil	Kekurangan dan Kelebihan
1	ANALISIS	(Hadina	Performance	Hasil dari penelitian	Kekurangan: Penelitian ini hanya
	PERBANDINGA	ta &	Testing	tersebut, terlihat bahwa	membandingkan dua framework, Laravel dan
	N PERFORMA	Stianin		Express.js memiliki	Express.js, dan menggunakan satu kasus
	RESTFULL API	gsih,		waktu respon,	penggunaan tertentu
	ANTARA	2024)		penggunaan CPU dan	Kelebihan: Framework Laravel dan Express.js
	EXPRESS.JS			penggunaan memori	diuji pada dua server yang berbeda dengan
	DENGAN			yang lebih efisien dari	spesifikasi yang sama, memastikan bahwa
	LARAVEL			Laravel.	setiap framework dapat menangani setiap
	FRAMEWORK				permintaan tanpa berbagi sumber daya
2	ANALISIS	(Amaru	deskriptif	1. NodeJS dan Django	Kekurangan: Kurangnya penjelasan yang
	PERBANDINGA	lloh,	kuantitatif	memiliki keunggulan	mendalam tentang metode pengumpulan data,
	N PERFORMA	2023)		dibandingkan laravel	1 0 3 7
	WEB SERVICE			dengan tingkat	penelitian
	REST			keberhasilan	
	MENGGUNAKA			permintaan data dari	Kelebihan: Penelitian memberikan
	N FRAMEWORK			3000, 5000, hingga	pemahaman tentang pentingnya efisiensi dalam
	LARAVEL,			7000 data	penggunaan sumber daya dan sensitivitas
	DJANGO, DAN			2. Framework NodeJS	aplikasi perangkat lunak terhadap delay.
	Node JS PADA			(ExpressJS) lebih	
	APLIKASI			unggul dari Django dan	
	BERBASIS			Laravel	
	WEBSITE			3. Framework Django	
				lebih unggul dari	
				NodeJS dan Laravel	
				dalam jumlah	
				permintaan per detik	
				dan HTML Transferred.	

No	Judul	Penulis	Metode	Hasil	Kekurangan dan Kelebihan
3	Analisis	(Mulan	Performance	Hasil pengujian kinerja	
	Perbandingan	a et al.,	testing	framework Codeigniter	
	Kinerja	2022)		bersama dengan	dan Express.js, dan menggunakan satu kasus
	Framework			framework Express.js	penggunaan tertentu
	Codeigniter			menunjukan bahwa rata	
	Dengan ExpressJs			rata response time dari	1 66
	Pada Server			1 0	testing yang jelas dan terstruktur untuk
	RESTful Api				membandingkan kinerja dua framework yang
				cepat dibandingkan	berbeda
				framework Codeigniter	
				yang memperoleh rata	
				rata response time	
				555,90 ms. Tetapi disisi	
				framework Express.js	
				yang berbeda biasanya	
				membutuhkan lebih	
				banyak sumber daya.	
				penggunaan CPU	
				1,95% dan penggunaan	
				memori 2,74% lebih besar sedikit	
				dibandingkan dengan penggunaan CPU	
				penggunaan CPU framework Codeigniter	
				, ,	
				penggunaan memori rata-rata 2,31% dan	
				rata-rata 1,34%.	
				1aia-1aia 1,3470.	

No	Judul	Penulis	Metode	Hasil	Kekurangan dan Kelebihan
4	Analisis	(Suwar	metode	1.Yii framework lebih	Kekurangan:
	perbandingan	no &	perbandingan	efisien dan cepat dalam	1.Codeigniter:Tidak memiliki fitur generator
	Codeigniter dan	Afandi,	menggunakan	proses perancangan	kode seperti Yii framework, memiliki
	Yii framework	2022)	diagram blok.	aplikasi web karena	keamanan yang lebih rendah dibandingkan Yii
	pada perancangan			memiliki Yii Generator	framework.
	website rencana			yang membantu dalam	2.Yii : Memiliki URL yang lebih panjang,
	anggaran biaya			penulisan CRUD	memerlukan waktu lebih lama untuk
				(Create, Read, Update,	memahami proses alur dari Yii framework bagi
				Delete) secara otomatis.	pemula.
				2.Yii framework	
				memiliki kecepatan	Kelebihan:
				yang sedikit lebih baik	1.Codeigniter Lebih cepat dan efisien dalam
				daripada Codeigniter	proses perancangan, memiliki keamanan yang
				framework dalam	baik, URL yang rapi dan singkat.
				pengujian speed index.	2.Yii lebih efisien dan cepat dalam proses
				3.Codeigniter	perancangan karena memiliki Yii Generator,
				framework memiliki	memiliki keamanan yang baik.
				keamanan yang lebih	
				rendah dibandingkan	
				Yii framework.	
				4.Codeigniter	
				framework memiliki	
				URL yang lebih rapi	
				dan singkat	
				dibandingkan Yii	
				framework.	
5	PERFORMA	(Yatini	Load Testing	<u> </u>	Kekurangan: metode pembobotan hasil
	MICROFRAMEW	et al.,			pengujian belum menghasilkan angka yang
	ORK PHP PADA	2021)		pada aplikasi uji, angka	lebih sesuai dan akurat

No	Judul	Penulis	Metode	Hasil	Kekurangan dan Kelebihan
	REST API MENGGUNAKA N METODE LOAD TESTING			terbaik didapat pada jumlah koneksi di bawah 128 dengan rate antara 2000 - 3000 RPS	Kelebihan : adanya analisis perbandingan performa microframework PHP pada REST API, yang penting untuk menentukan kesesuaian pada pengembangan aplikasi berbasis API
6	Perbandingan Pengembangan Front End Menggunakan Blade Template dan Vue Js	(Chastr o et al., 2020)	-	_	1. semakin kompleks aplikasi tersebut, performa Blade Template dapat menurun. 2.pada aplikasi yang sederhana, performa Vue Js kalah jika dibandingkan dengan Blade Template. Kelebihan: 1. Kelebihan dari Blade Template adalah performanya yang cepat, terutama untuk aplikasi sederhana. Blade Template juga memungkinkan untuk membuat aplikasi dengan performa yang stabil 2. kelebihan dari Vue Js adalah kemampuannya dalam mengembangkan aplikasi website yang kompleks dengan lebih mudah. Vue Js juga menawarkan performa yang stabil meskipun

No	Judul	Penulis	Metode	Hasil	Kekurangan dan Kelebihan
				untuk aplikasi yang	
				kompleks, Vue Js dapat	
				menjadi pilihan yang	
				lebih baik.	
7	ANALISIS	(Putra	SOAP dan	Hasil dari penelitian	Kekurangan: Tidak disebutkan apakah
	PERBANDINGA	&	REST	menunjukkan bahwa	penelitian mempertimbangkan faktor faktor lain
	N METODE	Putera,		dalam pengujian web	yang dapat memengaruhi performa, seperti
	SOAP DAN REST	2019)		service berbasis Flask	ukuran data, kecepatan jaringan, atau
	YANG			menggunakan metode	kompleksitas aplikasi.
	DIGUNAKAN			SOAP dan REST,	
	PADA			REST memiliki	Kelebihan: Penggunaan framework Flask
	FRAMEWORK			performa yang lebih	sebagai basis penelitian memberikan wawasan
	FLASK UNTUK			baik daripada SOAP	praktis tentang implementasi metode SOAP dan
	MEMBANGUN			dalam pengiriman	REST dalam lingkungan nyata.
	WEB SERVICE			request dan respon	

2.2 Dasar Teori

2.2.1 Javascript

JavaScript merupakan bahasa pemrograman tingkat tinggi yang pertama kali dibuat pada tahun 1995, pada awalnya dimaksudkan untuk berjalan di browser atau sisi klien, tetapi seiring berjalannya waktu, sekarang dapat berjalan di komputer server atau server-side(Chastro et al., 2020; Dirjen et al., 2017).

2.2.2 Framework Javascript Backend

Framework JavaScript backend merupakan kerangka kerja pengembangan perangkat lunak yang digunakan untuk membangun bagian dari aplikasi web yang berjalan di sisi server atau backend(Celi-Párraga et al., 2023). Framework ini membantu dalam mengelola logika aplikasi, interaksi dengan database, dan menyediakan layanan ke sisi klien atau frontend(Peña-Monferrer & Diaz-Marin, 2022). Terdapat enam buah framework yang populer saat ini antara lain:

a. Express js

Framework Express.js adalah kerangka kerja backend Node.js yang memungkinkan pengembang untuk membangun aplikasi web dengan mudah dan efisien. Express.js membantu dalam mengelola rute (routes), permintaan HTTP, tanggapan, serta berbagai aspek pengembangan backend lainnya(Nurhayati & Agussalim, 2023).

b. Elysia

Framework Elysia js merupakan kerangka kerja web javascript untuk runtime bun. Framework ini dibangun dengan bahasa pemrograman typescript agar berfokus pada kinerja yang sederhana dan juga fleksibel. Salah satu keunggulan dari framework elysia ini yaitu performa tinggi dan mudah digunakan(elysiajs, 2024).

c. Koa

Koa merupakan kerangka web baru yang dikembangkan oleh tim di belakang Express, bertujuan untuk menjadi landasan yang lebih kecil, ekspresif, dan kuat untuk aplikasi web dan API(Koa, 2024). Fungsi asinkronnya memungkinkan menghilangkan panggilan balik dan meningkatkan penanganan kesalahan secara signifikan. Koa tidak menggunakan middleware apa pun di dalamnya, sebaliknya, Koa menawarkan berbagai metode inovatif yang membuat server penulisan cepat dan menyenangkan.

d. Hapi

Framework Hapi merupakan sebuah framework aplikasi web yang open source untuk Node.js yang memungkinkan pengembang untuk membuat aplikasi web yang kokoh, aman, dan skalabel. Hapi menekankan struktur yang konsisten dan konfigurasi yang ekstensif, serta menyediakan berbagai fitur bawaan seperti routing, input validation, error handling, dan caching(Hapi, 2024).

Hapi dirancang untuk mempermudah pengembangan aplikasi web dengan menyediakan alat dan metode yang jelas. Dengan pendekatan yang terstruktur dan fokus pada keamanan, Hapi cocok digunakan untuk membangun aplikasi web besar dan kompleks.

e. Fastify

Framework fastify merupakan kerangka kerja web yang mengutamakan penyediaan overhead seminimal mungkin dan pengalaman pengembang terbaik, disertai dengan arsitektur plugin yang tangguh(Fastify, 2024).

f. Nest

Framework Nest merupakan sebuah framework Node, js yang sangat kuat dan progresif untuk membangun aplikasi server-side yang efisien, dapat diuji, dan mudah di-maintain(nest, 2024). Nest menggunakan TypeScript sebagai bahasa utamanya dan mengikuti pola desain yang berbasis pada konsep Dependency Injection, sehingga memungkinkan pengembang untuk membuat kode yang terstruktur dengan baik dan mudah diuji.

Nest menyediakan berbagai fitur bawaan seperti modul, middleware, decorator, dan juga integrasi yang kuat dengan Express.js, Fastify, dan banyak teknologi lainnya. Dengan pendekatan yang modular dan konfigurasi yang ekstensif, Nest cocok digunakan untuk membangun aplikasi web kompleks dan skalabel.

2.2.3 Bun Js

Bun.js merupakan sekumpulan alat JavaScript bersumber terbuka yang lengkap yang dengan mudah menggabungkan berbagai komponen JavaScript sisi server yang penting untuk menawarkan solusi yang berkinerja tinggi. Meskipun namanya lucu, Bun menggabungkan fitur beberapa alat, seperti runtime Node atau Deno, manajer paket seperti NPM atau pnpm, dan alat pembangunan seperti Webpack atau Vite. Awal mulanya merupakan pekerjaan sampingan satu orang, Bun dengan cepat menjadi pesaing yang kompetitif untuk pendekatan pengembangan web konvensional(Ahmod, 2023).

2.2.4 HTTP (Hypertext Transfer Protocol)

Hypertext Transfer Protocol (HTTP) adalah protokol yang digunakan untuk komunikasi antara klien dan server di internet. Ini adalah protokol terpenting yang saat ini digunakan di internet(Nayak et al., 2022). Hypertext Transfer Protocol (HTTP) merupakan protokol tingkat aplikasi untuk sistem informasi hypermedia terdistribusi, kolaboratif. Ini adalah protokol generik dan stateless yang dapat digunakan untuk berbagai tugas di luar hiperteks, seperti nama server dan sistem manajemen objek terdistribusi. Menggunakan antarmuka pengguna berbasis web, HTTP memungkinkan pengguna mengirim permintaan ke server HTTP mana pun yang terhubung ke internet, membuat aliran data antara klien dan server terlihat. Perangkat klien dan perangkat komputasi jarak jauh dapat terhubung dengan layanan jarak jauh melalui penggunaan HTTP. HTTP dapat digunakan untuk mengakses sumber daya di server dengan mengirimkan permintaan akses HTTP, untuk alasan keamanan, permintaan ini dapat dienkripsi. Selain itu, metode pemrosesan permintaan

HTTP dapat digunakan untuk menghindari gangguan komunikasi dan misinformasi. Untuk metode permintaan pada HTTP sebagai berikut:

a. GET

Metode GET meminta representasi dari sumber daya yang ditentukan. Permintaan menggunakan GET seharusnya hanya mengambil data.

b. POST

Metode POST mengirimkan entitas ke sumber daya tertentu, sering kali menyebabkan perubahan status atau efek samping pada server.

c. PUT

Metode PUT menggantikan semua representasi sumber daya target saat ini dengan payload permintaan.

d. DELETE

Metode DELETE menghapus sumber daya yang ditentukan.

2.2.5 Parameter Pengujian

Pada pengujian ini menggunakan 2 metode pengujian yaitu *microbenchmark* dan *stress testing*. Untuk penjelasan lebih lanjut sebagai berikut:

1. Microbenchmark

Microbenchmark merupakan jenis pengujian kinerja yang focus pada penilaian kinerja operasi atau fungsi kecil dan sangat spesifik dari sebuah sistem. Dalam konteks *runtime Bun, microbenchmarking* digunakan untuk mengukur kecepatan operasi atau bagian kecil dari kode untuk memastikan performa yang optimal.

Untuk pengujian ini akan menggunakan paket manager *mitata.js*. *mitata js* merupakan alat umum yang bagus untuk *microbenchmarking* dan berguna menguji kinerja operasi atau fungsi *javascript* yang sangat spesifik dan kecil. Untuk perbandingan waktu pada *mitata js* dapat dilihat pada tabel 2.2.

Tabel 2. 2 Perbandingan ukuran waktu dalam second

Unit	Per 1 second
ps (picosecond)	1e-12s
ns (nano second)	0.00000001s
μs (microsecond)	0.000001s
ms (milisecond)	0.001s
s (second)	1

2. Stress testing

Stress testing adalah cara untuk mengukur bagaimana suatu keadaan dapat berdampak pada tingkat ketahanan sistem(Ginasari et al., 2021). Dalam rekayasa perangkat lunak stress testing merupakan teknik pengujian terhadap sebuah software untuk mengetahui ketahanan software atau sistem saat digunakan melalui batas normal. Ketahanan yang dimaksud yaitu termasuk menguji stabilitas dan reliability dari sebuah software atau sistem. Dengan stress test akan dapat menghadapi kondisi yang sangat berat dan memastikan bahwa software tidak mengalami kegagalan, terutama untuk unit sistem yang

dapat memiliki konsekuensi fatal jika mengalami kegagalan dalam jangka waktu yang cukup lama. Adapun beberapa parameter pengujian yang diuji dalam sebuah kinerja *framework* yaitu:

1. Time Taken for Test

Time Taken for Test merupakan jumlah waktu yang diperlukan dari saat koneksi pertama ke soket hingga saat respons terakhir diterima(Apache.org, 2024). Nilai yang dihasilkan dapat dikatakan bagus apabila nilainya lebih rendah maka waktu yang dibutuhkan untuk menangani semua request lebih cepat.

2. Request Per Second

Request Per Second merupakan jumlah permintaan per detik. Apabila nilai yang dihasilkan semakin besar, itu menunjukkan bahwa web server yang diujikan dapat menyelesaikan banyak permintaan dalam satu detik. Ini menunjukkan nilai yang bagus pada Request Per Second(Azi et al., 2023).

3. *Transfer Rate (Kb/s)*

Transfer Rate merupakan metrik standar yang digunakan untuk menghitung kecepatan di mana data atau informasi bergerak dari satu tempat ke tempat lain. Apabila nilai transfer yang dihasilkan cukup besar, rate transfer dapat dianggap baik(Azi et al., 2023).

4. Time Per Request (ms)

Time Per Request merupakan Rata-rata waktu yang dihabiskan per permintaan. Apabila nilai Time per Request semakin kecil, itu

menunjukkan jika *web server* dapat menangani permintaan dengan lebih cepat(Satwika & Semadi, 2020).

Cara install:

- 1. Install Apache Bencmark di windows terlebih dahulu
- Versi terbaru Apache Benchmark untuk windows dapat download di https://www.apachelounge.com/download/, pilih sesuai versi arsitektur windows.

Gambar 2. 1 website Apache Lounge

3. Pindah ke folder Apache24/bin dan salin file ab dan abs.

Gambar 2. 2 file ab.exe dan abs.exe

4. pindahkan file ab,exe dan abs.exe ke folder projek

Gambar 2. 3 isi folder projek

2.2.6 Asymptotic Notation

Asymptotic Notation merupakan notasi matematika yang digunakan untuk menunjukkan berapa lama waktu yang dibutuhkan suatu algoritma bekerja ketika input cenderung menuju nilai tertentu. Ada 3 notasi pada Asymptotic yaitu:

1. Big O Notation (O)

Big O Notation merupakan sebuah notasi matematika yang memiliki 2 buah kegunaan. Salah satunya untuk menganalisa kompleksitas waktu dari sebuah algoritma. Big O Notation juga digunakan untuk mepresentasikan batas atas pada suatu algoritma yaitu kondisi terburuk atau bisa disebut worst case.

2. Big Omega Notation (Ω)

Big Omega Notation merupakan salah satu notasi analisis asimptotik yang digunakan untuk menyatakan batas bawah kompleksitas waktu dari suatu algoritma yaitu kondisi terbaik atau bisa disebut *best case*.

3. Big Theta Notation (Θ)

Big Theta Notation merupakan salah satu notasi asimtotik digunakan untuk menilai kinerja algoritma, mengidentifikasi kasus terbaik dan terburuknya, bisa dikatakan kondisi rata-rata dari suatu algoritma atau bisa disebut average case.

Daftar notasi fungsi yang biasa ditemui saat menganalisis waktu berjalan di suatu algoritma dapat dilihat pada Tabel 2.3.

Tabel 2. 3 Notasi analisis waktu

Notasi	Deskripsi	Contoh
O(1)/konstan	Algoritma	Mengakses elemen array
	membutuhkan	dengan indeks tertentu,
	waktu yang sama,	mengambil nilai variabel.
	tidak peduli	
	seberapa besar	
	inputnya.	
O(log	kompleksitas	menemukan item di pohon
n)/logaritma	meningkat satu	pencarian seimbang
	unit untuk setiap	
	dua kali lipat data	
	masukan	
O(n)/linear	Waktu yang	Mencari elemen tertentu dalam
	dibutuhkan	daftar dengan cara iterasi
	algoritma	(pencarian linear)
	berbanding lurus	
	dengan besarnya	
	input. Semakin	
	besar input,	
	semakin lama	
	waktu yang	
O(1)/T	dibutuhkan.	1 1
$O(n \log n)/Log$	kompleksitas	menggabungkan pengurutan
Linear	tumbuh sebagai	pada kumpulan item
	kombinasi linier	
O(n²)/Irua dast	atau logaritmik	mamarikaa samua kamur alainaa
O(n ²)/kuadrat	waktu yang dibutuhkan	memeriksa semua kemungkinan
		pasangan dalam array
	sebanding dengan	

Notasi	Deskripsi	Contoh
	kuadrat jumlah	
	elemen	
O(n ³)/kubik	waktu eksekusi	perkalian matriks dari matriks
	sebanding dengan	nxn
	pangkat tiga	
	jumlah elemen	
O(2 ⁿ)/	waktu berlipat	menghasilkan semua himpunan
eksponensial	ganda untuk	bagian dari himpunan tertentu
	setiap elemen	
	baru yang	
	ditambahkan	
O(n!)/faktorial	kompleksitas	menentukan semua permutasi
	tumbuh secara	dari daftar tertentu
	faktorial	
	berdasarkan	
	ukuran kumpulan	
	data	

2.2.7 Weight Scoring System

Weight Scoring System merupakan nilai yang diukur yang menunjukkan kinerja atau efisiensi suatu entitas (seperti teknologi, metode, atau algoritma) berdasarkan sejumlah parameter atau kriteria yang diberi bobot berdasarkan tingkat kepentingannya. Nilai untuk setiap parameter dikalikan dengan bobotnya, dan kemudian nilai total dikumpulkan. Proses ini memungkinkan evaluasi proporsional dari berbagai elemen, yang menghasilkan satu angka yang dapat dengan mudah digunakan untuk membandingkan kinerja antar entitas. Untuk membuat perbandingan lebih adil dan konsisten, normalisasi sering digunakan pada skor berat untuk menempatkan semua nilai pada rentang yang seragam (misalnya, 0% hingga 100%). Persamaan 2.1 menunjukkan persamaan untuk menghitung weight score.

$$weightScoring = (x'_1 * bobot_1) + \dots + (x'_n * bobot_n)$$
 (2.1)

2.2.8 MinMax Normalization

MinMax Normalization merupakan metode normalisasi yang mengubah nilai data dari 0 hingga 1. Persamaan 2.2 menunjukkan persamaan untuk menghitung MinMax Normalization(Permana & Salisah, 2022).

$$x' = \frac{x_{i-\min(x)}}{\max(x) - \min(x)}$$
(1.2)

2.3 Kerangka Berpikir

Untuk memecahkan masalah yang sedang diteliti dalam penelitian ini diterapkan kerangka berpikir sistematis yang disusun dari *problems* (permasalahan), *approach* (pendekatan), *development* (pengembangan), *implementation* (implementasi), *measurement* (pengukuran), dan *result* (hasil). Gambar dari kerangka pemikiran dapat dilihat pada berikut.

Gambar 2. 4 Kerangka Berpikir

BAB III

METODOLOGI PENELITIAN

3.1 Pengembangan dan Perancangan Sistem

3.1.1 Alur Pengerjaan Skripsi

Penelitian dilakukan dengan mengikuti alur pengerjaan skripsi, yang menunjukkan tahapan yang akan dilakukan dari awal hingga akhir. Alur pengerjaan dapat dilihat pada gambar dibawah ini:

Untuk Langkah pertama dari pengerjaan skripsi ini yaitu tahap persiapan, pada tahap ini dilakukan setup folder di direktori Local Disk C:/ dengan nama benchmark, didalam folder tersebut akan di instalasi Bun dan NPM yang

dibutuhkan dengan perintah *Bun add* dan *npm install* serta membuat *source* code dari tiap-tiap *framework* yang akan di ujikan.

Selanjutnya untuk Langkah kedua yaitu tahap pengujian, dimana pada tahap ini akan dilakukan pengujian terhadap masing-masing framework dengan metode GET, POST, PUT dan DELETE, dengan menjalankan perintah bun run akan dilakukan sebanyak 10 kali pengujian. Jika ada error dalam proses pengujian berlangsung maka peneliti akan cek dan perbaiki error tersebut sampai pengujian berhasil di lakukan. Setelah melakukan pengujian maka nilai performa dari masing- masing framework akan dicatat, nilai performa yang diambil yaitu nilai rata-rata.

Langkah yang ketiga yaitu tahap penghitungan, dimana pada tahap ini akan dilakukan penghitungan hasil rata-rata dari tahap pengujian yang dilakukan sebanyak 10 kali pengujian, sehingga nantinya akan mendapatkan hasil rata-rata yang terbaik.

Untuk langkah terakhir dalam alur pengerjaan skripsi tersebut yaitu menganalisis, membahas serta membuat kesimpulan dari hasil tahap pengujian sebelumnya.

3.2 Uraian Metodologi

3.2.1 Tahap Persiapan

Langkah pertama dalam tahap persiapan adalah membuat sebuah direktori/folder yang bernama Benchmark di Local Disk C:\. Folder Benchmark tersebut akan di pasangi beberapa *packet manager* dan pembuatan

source code untuk pengujian keenam *framework*. Contoh letak folder Benchmark ditunjukkan pada Gambar 3.2.

Local Disk (C:) ← → ↑	X + C	(C) >			Search Local Disk (C:)	- 0
/ /	U D / IIIIS PC / LOCAI DISK	(C.)			Search Local Disk (C.)	
⊕ New ~ 🐰		Sort ${}^{\vee} \equiv {}^{\mathrm{View}} {}^{\vee}$				Detail
☆ Home	Name	Date modified	Туре	Size		
Gallery	SSysReset	11/27/2022 12:06 AM	File folder			
Muhamad - Persona	SWinREAgent	9/14/2023 9:15 PM	File folder			
-	AMD	11/26/2022 10:31 PM	File folder			
■ Desktop #	Benchmark	4/22/2024 9:39 AM	File folder			
Desktop	iavascript-projects	3/18/2023 10:17 AM	File folder			
_	LDPlayer	3/30/2024 4:59 AM	File folder			
■ Documents *	OneDriveTemp	10/25/2022 2:43 PM	File folder			
Pictures *	PerfLogs	5/7/2022 12:24 PM	File folder			
⊕ Music	Program Files	3/30/2024 4:58 AM	File folder			
☑ Videos 📌	Program Files (x86)	12/20/2023 2:10 PM	File folder			
skripsi .	ProgramData	2/6/2024 3:23 PM	File folder			
Dokumen	Recovery	10/26/2022 4:26 AM	File folder			
Semester 7	SWSetup	11/26/2022 10:55 PM	File folder			
dataset	Users	4/27/2023 10:19 PM	File folder			
uataset	Windows	3/14/2024 7:23 PM	File folder			
_	Windows.old	11/27/2022 12:09 AM	File folder			
This PC	Wondershare_DrFone_WhatsApp_Backup	12/6/2022 8:27 PM	File folder			
Local Disk (C:)	ampp xampp	6/3/2023 6:56 PM	File folder			
Network	== Zepetto	10/11/2023 12:04 PM	File folder			
∆ Linux	AMTAG.BIN	9/27/2023 12:24 PM	BIN File	1 KB		
	PointBlank.7z	8/22/2023 1:37 PM	WinRAR archive	1,048,576 KB		
	PointBlank.7z.002	8/22/2023 1:33 PM	002 File	1,048,576 KB		
	PointBlank.7z.003	8/22/2023 1:35 PM	003 File	1,048,576 KB		
	PointBlank.7z.004	8/22/2023 1:37 PM	004 File	1,040,096 KB		
	PointBlankInstall	8/22/2023 1:50 PM	Application	823 KB		

Gambar 3. 2 Tahap persiapan membuat folder Benchmark

Langkah kedua dari tahap persiapan yaitu menginstall *resource* yang di perlukan pada tahap selanjutnya. Hal yang pertama untuk tahap pengembangan di folder Bun yaitu menginialisasikan folder tersebut dengan perintah *Bun init* pada terminal.

Gambar 3. 3 inialisasi runtime bun pada folder Bun

Pada Gambar 3.4 dibawah ini merupakan struktur folder Bun setelah proses inialiasi.

Gambar 3. 4 Struktur Folder Bun

Untuk membantu proses penelitian, dibutuhkan repository online NodeJS Package Manager (NPM). Melalui library yang tersedia, NPM membantu proses instalasi keenam framework berbasis NodeJS tersebut.

Untuk konfigurasi dan struktur format pertukaran data, penyimpanan data, versi, *dependencies*, *framework*, dan router dari masing-masing *framework*, disimpan pada file *JavaScript Object Notation (JSON)* bernama package.json. Isi dari file package.json sebagai berikut:

Gambar 3. 5 Isi file package.json

3.2.2 Tahap Pengujian

Tahap pengujian merupakan tahap untuk menguji kemampuan keenam framework. Tahap ini akan menggunakan 2 metode yaitu microbenchmark dan stress test. Microbenchmark merupakan jenis pengujian kinerja yang fokus pada penilaian kinerja operasi atau fungsi kecil dan sangat spesifik dari sebuah sistem, sedangkan, Stress test merupakan teknik atau metode pengujian terhadap sebuah software untuk mengetahui ketahanan software atau sistem dimana pengujian ini akan menitik beratkan kemampuan ketahanan masing — masing framework diluar batas normal, Dengan menggunakan metode stress test akan dapat menghadapi kondisi yang sangat berat dan memastikan bahwa software tidak mengalami kegagalan, terutama untuk unit sistem yang dapat

memiliki konsekuensi fatal jika mengalami kegagalan dalam jangka waktu yang cukup lama. Tahap ini akan menggunakan 10 data, 100 data, 500 data dan 1000 data untuk melakukan proses pengujian dengan metode GET, POST PUT dan DELETE dari masing-masing *framework*.

Untuk melakukan pengujian tersebut, peneliti akan menggunakan 2 buah tool yaitu Apache Benchmark dan mitata js. Dari masing-masing tool tersebut akan diljalankan sebanyak 10 kali pengujian untuk mendapatkan nilai rata-rata terbaik. Untuk penjelasan 2 buah tool tersebut akan dijelaskan di bawah ini.

1. Apache Benchmark

Apache benchmark merupakan sebuah alat yang dibuat oleh Organization yang dapat bekerja untuk mengukur performansi pada HTTP. Tool tersebut dapat di analogikan jumlah pengunjung yang mencoba untuk mengakses. Pada penelitian ini akan menggunakan request sebanyak 50, 500, 5000 dan 10.000, dengan jumlah concurrency (jumlah permintaan yang dilakukan dalam 1 waktu) sebanyak 50 permintaan untuk masing — masing framework. Parameter yang akan dibandingkan ada 4 yaitu Time Taken for Test, Request Per Second, Transfer Rate dan Time Per Request. Untuk skenario beban pengujian permintaan setiap HTTP dan framework, dapat dilihat pada tabel 3.1.

Tabel 3. 1 Skenario Beban Permintaan HTTP POST, GET, PUT dan DELETE

Framework	C	n
express	50	50, 500, 5000, 10.000
hapi	50	50, 500, 5000, 10.000
koa	50	50, 500, 5000, 10.000
nest	50	50, 500, 5000, 10.000
elysia	50	50, 500, 5000, 10.000
fastify	50	50, 500, 5000, 10.000

Pada Tabel 3.1 setiap *framework* menunjukkan variabel beban pengujian berupa *concurrency* dan *request*. Untuk variabel *concurrency* berjumlah 50 sedangkan pada variabel *request* ada 4 nilai kondisi yaitu 50, 500, 5000 dan 10.000 yang digunakan untuk setiap permintaan metode HTTP.

Untuk parameter kinerja pengujian pada *tool Apache Benchmark*, akan di jelaskan dibawah ini.

a. Time Taken for Test

Merupakan jumlah waktu yang diperlukan dari saat koneksi pertama ke soket hingga saat respons terakhir diterima. Nilai yang dihasilkan dapat dikatakan bagus apabila nilainya lebih rendah maka waktu yang dibutuhkan untuk menangani semua *request* lebih cepat

Gambar 3. 6 Contoh hasil parameter Time Taken for Test

b. Request Per Second

Merupakan jumlah permintaan per detik. Apabila nilai yang dihasilkan semakin besar, itu menunjukkan bahwa *framework* yang diujikan dapat

menyelesaikan banyak permintaan dalam satu detik. Ini menunjukkan nilai yang bagus pada *Request Per Second*.

Requests per second: 3.34 [#/sec] (mean)

Gambar 3. 7 Contoh hasil parameter Request Per Second

c. Transfer Rate

Metrik standar yang digunakan untuk menghitung kecepatan di mana data atau informasi bergerak dari satu tempat ke tempat lain. Apabila nilai transfer yang dihasilkan cukup besar, rate transfer dapat dianggap baik.

Gambar 3. 8 Contoh hasil parameter Transfer Rate

d. Time Per Request

Rata-rata waktu yang dihabiskan per permintaan. Apabila nilai *Time* per Request semakin kecil, itu menunjukkan jika framework dapat menangani permintaan dengan lebih cepat.

Gambar 3. 9 Contoh hasil parameter Time Per Request

Cara penggunaan:

1. Jalankan perintah berikut di terminal projek:

```
./ab -m POST -c 50 -n 50 http://localhost:3000/post
```

Gambar 3. 10 perintah pengujian HTTP POST

```
./ab -c 50 -n 50 http://localhost:3000/get
```

Gambar 3. 11 perintah pengujian HTTP GET

```
./ab -m PUT -c 50 -n 50 http://localhost:3000/put
```

Gambar 3. 12 perintah pengujian HTTP PUT

./ab -m DELETE -c 50 -n 50 http://localhost:3000/delete

Gambar 3. 13 perintah pengujian HTTP DELETE

Keterangan sintaks:

./ab : Menjalankan program Apache

Benchmark (ab) dari direktori lokal. ./ menunjukkan bahwa ab berada di

direktori saat ini.

-m : Menentukan metode HTTP yang

akan digunakan

-c : Menentukan concurrency level, yaitu

jumlah permintaan yang dikirimkan secara paralel pada saat yang sama

-n : Menentukan total jumlah permintaan

yang akan dikirimkan ke server

2. Mitata.js

Mitata js merupakan alat umum yang bagus untuk microbenchmarking dan berguna menguji kinerja operasi atau fungsi javascript yang sangat spesifik dan kecil. Pada tool ini yang menjadi parameter pengujiannya yaitu waktu rata – rata pemrosesan dalam second. Untuk skenario pengujian dengan menggunakan mitata.js dengan setiap permintaan pada HTTP sebagai berikut:

1. POST

Skenario permintaan HTTP POST merupakan tahap untuk mengirimkan data yang bertahap di mulai dari 10, 100, 500 dan 1000 data. Untuk data yang akan dikirimkan hanya id, name dan age, data tersebut akan disimpan ke *database* MySQL, kemudian di catat berapa waktu rata-rata yang di perlukan untuk mengirimkan data tersebut. Untuk contoh hasil pengujian permintaan HTTP POST dan contoh data yang telah tersimpan di *database* ditunjukkan pada Gambar 3.17 dan Gambar 3.14.

```
benchmark time (avg) (min ... max)

• testing

post 2'737 ms/iter (2'659 ms ... 2'963 ms)
```

Gambar 3. 14 Contoh hasil permintaan POST

Gambar 3. 15 Contoh data

Skenario pengujian untuk permintaan HTTP POST dapat dilihat pada Gambar 3.16.

Gambar 3. 16 Skenario permintaan HTTP POST

Gambar 3.16 menunjukkan desain skenario permintaan HTTP POST, dimana terdapat komputer *client* mengirimkan data secara bertahap sebanyak 10, 100, 500 dan 1000 data ke komputer *server*, komputer *server* tersebut telah di installkan keenam *framework*, selanjutnya data tersebut akan disimpan ke dalam *database* yang bernama *Benchmarks* dan untuk *response* ke *client* akan berbentuk *Javascript Object Notation (JSON)*.

2. GET

Skenario permintaan HTTP GET merupakan tahap untuk mengambil data dari *database*. Untuk skenario pengujian ini, ada 4 skenario yaitu pertama permintaan GET sebanyak 10 data, kedua permintaan GET sebanyak 100 data, ketiga permintaan GET sebanyak 500 data dan terakhir permintaan GET sebanyak 1000 data. Dari ketiga skenario tersebut akan dicatat berapa waktu rata-rata yang diperlukan untuk mengambil data tersebut. Untuk contoh hasil pengujian permintaan HTTP GET ditunjukkan pada Gambar 3.20.

```
benchmark time (avg) (min ... max)

• testing

get 10 data 297 μs/iter (123 μs ... 2'461 μs)

get 100 data 302 μs/iter (134 μs ... 12'242 μs)

get 1000 data 241 μs/iter (118 μs ... 10'799 μs)
```

Gambar 3. 17 Contoh hasil permintaann HTTP GET

Skenario pengujian untuk permintaan HTTP GET dapat dilihat pada Gambar 3.18.

Gambar 3. 18 Skenario permintaan HTTP GET

Gambar 3.18 menunjukkan desain skenario permintaan HTTP GET, dimulai dari permintaan 10 data, 100 data, 500 data dan 1000 data, dimana terdapat komputer *client* mengirimkan permintaan ke komputer *server* untuk memberikan *response* berupa data sebanyak dimulai dari 10, 100, 500 dan 1000 data yang berbentuk *Javascript Object Notation (JSON)*.

3. PUT

Skenario permintaan HTTP PUT merupakan tahap untuk mengubah data dari *database*. Pada permintaan HTTP ini merubah semua data dimana data yang akan di ubah yaitu *name* dan *age*. Untuk mengubah semua data tersebut akan di catat berapa waktu rata-rata yang dibutuhkan. Untuk contoh hasil pengujian permintaan HTTP PUT ditunjukkan pada Gambar 3.22.

```
benchmark time (avg) (min ... max)

• testing

put 4'761 μs/iter (2'065 μs ... 17'975 μs)
```

Gambar 3. 19 Contoh hasil Permintaann HTTP PUT

Skenario pengujian untuk permintaan HTTP PUT dapat dilihat pada Gambar 3.20.

Gambar 3. 20 Skenario permintaan HTTP GET

Gambar 3.20 menunjukkan desain skenario permintaan HTTP PUT, dimana terdapat komputer *client* mengirimkan sebuah payload ke komputer *server* untuk diubah datanya, kemudian komputer *server* akan mengirimkan *query* untuk mengubah semua data dari *client* dan

kemudian data tersebut diperbaharui di *database*. Setelah berhasil di perbaharui komputer *server* akan mengirimkan *response* ke *client* akan berbentuk *Javascript Object Notation (JSON)*.

4. DELETE

Skenario permintaan HTTP DELETE merupakan tahap untuk menghapus data dari *database*. Pada permintaan HTTP ini semua data akan di hapus dari *database*. Kemudian akan dicatat berapa waktu rata – rata yang dibutuhkan untuk menghapus semua data tersebut. Untuk contoh hasil pengujian permintaan HTTP DELETE ditunjukkan pada Gambar 3.21.

```
benchmark time (avg) (min ... max)

• testing

delete 4'183 μs/iter (1'528 μs ... 18'398 μs)
```

Gambar 3. 21 Contoh hasil Permintaann HTTP DELETE

Skenario pengujian untuk permintaan HTTP DELETE dapat dilihat pada Gambar 3.22.

Gambar 3. 22 Skenario permintaan HTTP DELETE

Gambar 3.22 menunjukkan desain skenario permintaan HTTP DELETE, dimana terdapat komputer *client* mengirimkan sebuah permintaan ke komputer *server* untuk dihapus semua datanya dari *database*, kemudian komputer *server* akan mengirimkan *query* untuk menghapus semua data ke *database* dan kemudian data tersebut dihapus dari *database* dan setelah berhasil dihapus, komputer *server* akan mengirimkan *response* ke *client* akan berbentuk *Javascript Object Notation (JSON)*.

Cara penggunaan:

- 1. install *packet manager mitata.js* di projek terlebih dahulu.
- 2. Buka terminal dan pindah ke direktori projek yang bernama Benchmark, selanjutnya tuliskan perintah seperti ini:

```
PS C:\Benchmark\Bun> bun add mita
bun add v1.1.4 (fbe2fe0c)
installed mitata@0.1.11
1 package installed [1113.00ms]
```

Gambar 3. 23 perintah install packet manager mitata

3. Buatlah sebuah file yang bernama mitata,js(nama boleh bebas), untuk pembuatan source code untuk melakukan pengujian. Contoh source code ada pada gambar 3.24:

```
imitatajs > ...
import { run, bench, group, baseline } from 'mitata'; 11.6k (gzipped: 4.3k)

bench('noop', () => {});
bench('noop2', () => {});

group('group', () => {
 baseline('baseline', () => {});
bench('Date.now()', () => Date.now());
bench('performance.now()', () => performance.now());

group({ name: 'group2', summary: false }, () => {
 bench('new Array(0)', () => new Array(0));
 bench('new Array(1024)', () => new Array(1024));
};

await run({
 units: false, // print small units cheatsheet
 silent: false, // enable/disable stdout output
 avg: true, // enable/disable avg column (default: true)
 json: false, // enable/disable json output (default: false)
 colors: true, // enable/disable min/max column (default: true)
 min_max: true, // enable/disable min/max column (default: true)
 percentiles: false, // enable/disable percentiles column (default: true)
};
```

Gambar 3. 24 contoh source code

4. Jalankan file mitata.js dengan perintah:

```
PS C:\Benchmark\Bun> bun run mitata.js
```

Gambar 3. 25 perintah menjalankan tool mitata

Untuk mengetahui kompleksitas dan efisiensi waktu dari setiap skenario masing – masing *framework* dalam pengujian ini, peneliti akan menghitung dan menganalisa algoritma tersebut. Strategi yang akan digunakan yaitu semakin rendah waktu yang dibutuhkan maka akan semakin baik skenario atau algoritma tersebut meskipun ukuran input yang dibutuhkan semakin tinggi. Penelitian pengujian ini akan menggunakan konsep *Asymptotic Notation*.

Untuk mengetahui kondisi waktu dari ketiga notasi asimtotik pada pengujian ini, di bawah ini adalah contoh *pseudocode* dan notasi *asymptotic* terutama untuk permintaan HTTP GET:

1. Skenario GET route '/'

- 1. BEGIN
- 2. IMPORT framework library
- 3. INITIALIZE framework app
- 4. SET port = 3000
- 5. DEFINE HTTP GET route '/':

WHEN route is requested:

RESPOND with HTTP status 200 and data as JSON ("hello world") //O(1)

6. START server on specified port:

PRINT "Server running at "http://localhost:3000/"

7. END

Pseudocode diatas merupakan contoh skenario untuk permintaan HTTP GET. Pada Langkah 5 pada pseudocode diatas, peneliti melabelkan notasi. Dalam konsep Asymptotic Notation, langkah 5 diatas termasuk ke dalam notasi O(1)/konstan dan menggunakan Big Omega Notation sebagai kasus terbaiknya(Best Case). Pseudocode tersebut hanya memberikan response dengan angka 200 untuk status success apabila melakukan request dan memberikan respons berbentuk JSON dengan string "Hello World" pada permintaan HTTP GET dengan route '/'.

2. Skenario GET route '/users'

```
1. BEGIN
    IMPORT framework library
    IMPORT mysql library
    INITIALIZE framework app
    SET port = 3000
    CREATE MySQL connection object:
      SET host = 'localhost'
      SET user = 'root'
      SET password = 'password'
      SET database = 'your_database'
7. ATTEMPT to connect to MySQL database:
      IF connection fails THEN
        PRINT "Error connecting to MySQL:", error details
        STOP execution
      ELSE
        PRINT "Connected to MySQL"
   DEFINE HTTP GET route '/users':
      WHEN route is requested:
        CREATE SQL query to select all user data:
           "SELECT * FROM users"
        EXECUTE SQL query:
           IF query fails THEN
             RESPOND with HTTP status 500 and message "Database query error" //O(1)
             STOP execution
           ELSE
             RESPOND with HTTP status 200 and user data as JSON //O(1)
   START server on specified port:
      PRINT "Server running at http://localhost:3000/"
10. END
```

Pseudocode diatas merupakan contoh skenario GET route '/users', Pada Langkah 8 pada pseudocode diatas, peneliti melabelkan notasi. Dalam konsep Asymptotic Notation untuk notasinya yaitu O(1) atau konstan dan menggunakan Big Omega Notation sebagai kasus terbaiknya(Best Case).

Pseudocode tersebut memberikan response dengan angka 200 untuk status success apabila melakukan request dan memberikan respons berbentuk JSON dengan menampilkan seluruh data users. pada permintaan HTTP GET dengan route '/users'.

3.2.3 Tahap Evaluasi

Tahap evaluasi merupakan tahap menganalisis hasil dari pengujian keenam *framework* tersebut, dari tahap sebelumnya hasil pengujian akan dibuat kesimpulan *framework* manakah yang performanya bagus.

3.3 Alat dan Bahan Penelitian

Dalam menganalisa performa enam *backend javascript framework* dengan *runtime bun.js* dalam pengujian metode GET, POST, PUT dan DELETE ini, memerlukan beberapa perangkat lunak dan perangkat keras untuk mendukung Analisa pengujian ini.

1. Spesifikasi Perangkat Keras(*Hardware*)

Perangkat Keras (*Hardware*) yang digunakan dalam Analisa performa ini adalah sebagai berikut:

Tabel 3. 2 Spesifikasi Perangkat Keras (*Hardware*)

No	Spesifikasi	Keterangan
1	Tipe Laptop	HP Laptop 15-ef0xxx
2	CPU	AMD Ryzen 5 3500U with Radeon Vega
		Mobile Gfx
3	Harddisk	500GB
4	RAM	8 GB
5	Tipe Sistem	Sistem Operasi 64-bit
	Operasi	

2. Spesifikasi Perangkat Lunak(Software)

Perangkat Lunak (*Software*) yang digunakan dalam analisis performa ini adalah sebagai berikut:

Tabel 3. 3 Spesifikasi Perangkat Lunak (*Software*)

No	Spesifikasi	Keterangan
1	Sistem Operasi	Windows 11 Home v23H2
2	Framework	Express js, Hapi js, Koa, Nest, Elysia, Fastify
3	Javascript Runtime	Bun v1.1.21
4	Database	Mysql
5	Text Editor	Visual Studio Code
6	Packet Manager	NPM
7	Tool Benchmark	Apache Benchmark v2.4, mitata.js v0.0.6

3.4 Ringkasan skenario apache benchmark

Dibawah ini merupakan tabel ringkasan skenario apache benchmark Dimana menyajikan rangkuman skenario pengujian performa enam framework backend JavaScript (Express, Hapi, Koa, Nest, Elysia, dan Fastify) menggunakan apache benchmark. Pengujian dilakukan pada beberapa skenario HTTP, yaitu permintaan POST, GET, PUT, dan DELETE, yang disimulasikan dalam berbagai kondisi beban. Setiap framework diuji untuk mengukur kemampuan dalam menangani time taken for test, request per second, time per request dan transfer rate di bawah beban permintaan yang berbeda-beda. Data ini akan memberikan gambaran mengenai performa masing-masing framework dalam lingkungan yang serupa, sehingga dapat membantu dalam analisis dan pemilihan framework yang paling efisien untuk keperluan pengembangan aplikasi.berikut ringkasan skenario dapat dilihat pada Tabel 3.4.

Tabel 3. 4 Ringkasan skenario beban apache benchmark

metode					
HTTP	skenario	kompleksitas	jumlah data	С	n (users)
GET	konstan	O(1)	0	50	50
GET	konstan	O(1)	0	50	500
GET	konstan	O(1)	0	50	5000
GET	konstan	O(1)	0	50	10000
GET	linear	O(n)	10	50	50
GET	linear	O(n)	10	50	500
GET	linear	O(n)	10	50	5000
GET	linear	O(n)	10	50	10000
GET	linear	O(n)	100	50	50
GET	linear	O(n)	100	50	500
GET	linear	O(n)	100	50	5000
GET	linear	O(n)	100	50	10000
GET	linear	O(n)	500	50	50
GET	linear	O(n)	500	50	500
GET	linear	O(n)	500	50	5000
GET	linear	O(n)	500	50	10000
GET	linear	O(n)	1000	50	50
GET	linear	O(n)	1000	50	500
GET	linear	O(n)	1000	50	5000
GET	linear	O(n)	1000	50	10000
POST	linear	O(n)	10	50	50
POST	linear	O(n)	10	50	500
POST	linear	O(n)	10	50	5000
POST	linear	O(n)	10	50	10000
POST	linear	O(n)	100	50	50
POST	linear	O(n)	100	50	500
POST	linear	O(n)	100	50	5000
POST	linear	O(n)	100	50	10000
POST	linear	O(n)	500	50	50
POST	linear	O(n)	500	50	500
POST	linear	O(n)	500	50	5000
POST	linear	O(n)	500	50	10000
POST	linear	O(n)	1000	50	50
POST	linear	O(n)	1000	50	500
POST	linear	O(n)	1000	50	5000
POST	linear	O(n)	1000	50	10000
PUT	linear	O(n)	10	50	50
PUT	linear	O(n)	10	50	500

metode HTTP	skenario	kompleksitas	jumlah data	С	n (users)
PUT	linear	O(n)	10	50	5000
PUT	linear	O(n)	10	50	10000
PUT	linear	O(n)	100	50	50
PUT	linear	O(n)	100	50	500
PUT	linear	O(n)	100	50	5000
PUT	linear	O(n)	100	50	10000
PUT	linear	O(n)	500	50	50
PUT	linear	O(n)	500	50	500
PUT	linear	O(n)	500	50	5000
PUT	linear	O(n)	500	50	10000
PUT	linear	O(n)	1000	50	50
PUT	linear	O(n)	1000	50	500
PUT	linear	O(n)	1000	50	5000
PUT	linear	O(n)	1000	50	10000
DELETE	linear	O(n)	10	50	50
DELETE	linear	O(n)	10	50	500
DELETE	linear	O(n)	10	50	5000
DELETE	linear	O(n)	10	50	10000
DELETE	linear	O(n)	100	50	50
DELETE	linear	O(n)	100	50	500
DELETE	linear	O(n)	100	50	5000
DELETE	linear	O(n)	100	50	10000
DELETE	linear	O(n)	500	50	50
DELETE	linear	O(n)	500	50	500
DELETE	linear	O(n)	500	50	5000
DELETE	linear	O(n)	500	50	10000
DELETE	linear	O(n)	1000	50	50
DELETE	linear	O(n)	1000	50	500
DELETE	linear	O(n)	1000	50	5000
DELETE	linear	O(n)	1000	50	10000

Pada Tabel 3.4 penjelasan hubungan antara *request, concurrency* dan data dapat di analogikan seperti ini, Bayangkan sebuah perpustakaan dengan 50 meja baca, di mana setiap pengunjung yang datang adalah satu request untuk menggunakan meja. Dalam satu waktu, perpustakaan bisa melayani 50 pengunjung secara bersamaan (concurrency 50). Setiap pengunjung membawa

jumlah buku yang berbeda untuk dibaca, mulai dari 10 buku, 100 buku, 500 buku, hingga 1000 buku, yang mewakili data dalam setiap request. Jika dalam sehari ada 50 pengunjung, berarti perpustakaan menerima 50 requests dengan beban yang ringan. Ketika ada 500 pengunjung yang datang, petugas perpustakaan harus bekerja lebih keras untuk mengatur tempat duduk, dan begitu juga saat 5000 atau 10.000 pengunjung datang, beban perpustakaan akan semakin tinggi, terutama jika tiap pengunjung membawa lebih banyak buku. Maka, semakin besar jumlah request dan data yang dibawa, perpustakaan (server) akan membutuhkan waktu dan sumber daya yang lebih besar untuk melayani semua pengunjung yang datang bersamaan dengan concurrency 50.

BAB IV

HASIL DAN PEMBAHASAN

4.1 Hasil Pengujian

Hasil pengujian performa enam *framework backend javascript* yang menggunakan 2 *tools* yaitu *apache benchmark* dan *mitata js.* Untuk *apache benchmark* itu menggunakan 4 parameter yaitu *time taken for test, request per second, time per request* dan *transfer rate*, sedangkan *mitata js* menggunakan perbandingan waktu dalam *second*.

4.1.1 Apache Benchmark

Hasil pengujian performa enam *framework backend javascript* yang menggunakan *apache benchmark* untuk beban pengujian yaitu *request* sebanyak 50 *request*, 500 *request*, 5000 *request* dan 10.000 *request*, dengan jumlah *concurrency* (kapasitas maksimum server untuk menangani permintaan secara bersamaan pada suatu waktu) sebanyak 50 permintaan untuk masing – masing *framework* dan menggunakan 10 data, 100 data, 500 data dan 1000 data secara bertahap dan di ujikan sebanyak 10 kali. Empat parameter yang diukur dalam pengujian ini meliputi: time taken for test, requests per second, time per request, dan transfer rate, yang data mentahnya disajikan secara lengkap pada Lampiran 1, Lampiran 2, Lampiran 3, dan Lampiran 4.

Dibawah ini adalah hasil pengujian dengan metode HTTP dengan 4 parameter yaitu *time taken for test, request per second, time per request* dan *transfer rate* yang telah dirata – rata kan . Dapat dilihat dari Tabel 4.1 sampai 4.4. Tabel ini menggunakan skema warna untuk memudahkan interpretasi

hasil, di mana warna hijau menandakan performa terbaik dan warna merah menandakan performa terburuk.

Tabel 4. 1 Hasil pengujian Time Taken for Test

metode	skenario	kompleksitas	iumlah data	С	n			frame	work			framework terbaik
HTTP	SKCHario	Kompieksitas	Juman data		(users)	express	hapi	koa	nest	elysia	fastify	Traine work terbark
GET	konstan	O(1)	0	50	50	0,0384	0,0432	0,0362	0,3472	0,0178	0,0261	elysia
GET	konstan	O(1)	0	50	500	0,1732	0,1937	0,1499	0,1792	0,0977	0,1346	elysia
GET	konstan	O(1)	0	50	5000	1,0356	1,1085	1,0811	1,1155	0,9387	0,9972	elysia
GET	konstan	O(1)	0	50	10000	2,0241	2,1423	2,0293	2,3141	2,0306	2,4848	express
GET	linear	O(n)	10	50	50	0,1055	0,0676	0,067	0,074	0,0628	0,1862	elysia
GET	linear	O(n)	10	50	500	0,3955	0,2713	0,375	0,3815	0,2575	0,8175	elysia
GET	linear	O(n)	10	50	5000	6,2847	4,4187	3,272	3,9064	2,3397	8,066	elysia
GET	linear	O(n)	10	50	10000	6,6488	4,6135	6,56	7,3896	4,0687	16,309	elysia
GET	linear	O(n)	100	50	50	0,0986	0,0649	0,0726	0,0931	0,0625	0,1169	elysia
GET	linear	O(n)	100	50	500	0,9791	0,3288	0,2625	0,3095	0,8907	0,2436	fastify
GET	linear	O(n)	100	50	5000	2,7864	2,8259	2,6282	5,7289	1,7411	2,2599	elysia
GET	linear	O(n)	100	50	10000	5,5246	5,8409	4,9663	5,8616	3,3213	4,5906	elysia
GET	linear	O(n)	500	50	50	0,0768	0,0686	0,0701	0,0709	0,0403	0,0618	elysia
GET	linear	O(n)	500	50	500	0,7244	0,7002	0,6904	0,7051	0,3866	0,6227	elysia
GET	linear	O(n)	500	50	5000	7,037	7,1106	6,5683	3,9601	4,4601	5,3009	nest

metode	skenario	kompleksitas	jumlah data	С	n			frame	work			framework terbaik
HTTP	Skenario	Kompieksitas	Juman data		(users)	express	hapi	koa	nest	elysia	fastify	Traine work terbark
GET	linear	O(n)	500	50	10000	15,1498	15,0468	12,9822	15,4216	7,7453	12,6532	elysia
GET	linear	O(n)	1000	50	50	0,0767	0,122	0,1308	0,0693	0,0965	0,1139	nest
GET	linear	O(n)	1000	50	500	0,5252	0,6889	0,5293	0,4017	0,6622	0,3519	fastify
GET	linear	O(n)	1000	50	5000	7,2569	11,2259	6,1407	11,508	5,7801	7,7804	elysia
POST	linear	O(n)	10	50	50	0,0862	0,0885	0,0603	0,0798	0,1709	0,1207	koa
POST	linear	O(n)	10	50	500	0,3108	0,3497	0,278	0,2884	0,7163	0,7209	koa
POST	linear	O(n)	10	50	5000	5,4394	6,184	2,6513	3,9802	6,9071	7,3528	koa
POST	linear	O(n)	10	50	10000	6,4087	7,7166	4,7534	8,349	12,9583	14,324	koa
POST	linear	O(n)	100	50	50	0,1818	0,1009	0,1074	0,1162	0,7135	0,1366	hapi
POST	linear	O(n)	100	50	500	2,8715	2,5154	1,9916	3,9155	4,3498	1,2768	fastify
POST	linear	O(n)	100	50	5000	14,9127	16,218	18,398	18,325	43,377	8,2718	fastify
POST	linear	O(n)	100	50	10000	39,2985	25,176	24,851	52,465	92,451	22,206	fastify
POST	linear	O(n)	500	50	50	0,5756	0,4018	0,3456	0,6917	2,3103	0,3465	koa
POST	linear	O(n)	500	50	500	6,4699	5,5429	3,9396	9,6702	20,1139	3,7567	fastify
POST	linear	O(n)	500	50	5000	64,2844	40,0783	38,5355	89,4311	228,3872	38,0486	fastify
POST	linear	O(n)	500	50	10000	185,6257	107,7004	105,8857	251,0277	426,4329	102,4271	fastify
POST	linear	O(n)	1000	50	50	1,0312	0,6117	0,7646	1,6652	4,2894	0,6172	hapi

metode	skenario	kompleksitas	jumlah data	С	n			frame	work			framework terbaik
HTTP	SKCHAITO	Kompieksitas	Juman data	C	(users)	express	hapi	koa	nest	elysia	fastify	Trainework terbark
POST	linear	O(n)	1000	50	500	11,5806	6,6481	6,4082	14,4813	44,0291	6,552	koa
POST	linear	O(n)	1000	50	5000	181,4216	102,0725	103,7445	237,4862	427,4554	92,9336	fastify
PUT	linear	O(n)	10	50	50	0,1299	0,0658	0,059	0,0678	0,062	0,1438	koa
PUT	linear	O(n)	10	50	500	0,3653	0,2776	0,3502	0,3827	0,2481	0,8124	elysia
PUT	linear	O(n)	10	50	5000	6,0905	4,4363	3,1399	3,8777	2,4496	8,0784	elysia
PUT	linear	O(n)	10	50	10000	6,2601	5,611	5,8541	6,8517	4,4626	15,3879	elysia
PUT	linear	O(n)	100	50	50	0,0824	0,0666	0,0729	0,0818	0,0562	0,1088	elysia
PUT	linear	O(n)	100	50	500	0,3917	0,4082	0,3712	0,4549	1,187	0,4197	koa
PUT	linear	O(n)	100	50	5000	3,4631	3,501	3,184	3,3049	2,6686	3,0724	elysia
PUT	linear	O(n)	100	50	10000	7,3002	7,3347	6,7047	6,8126	5,5099	6,3682	elysia
PUT	linear	O(n)	500	50	50	0,0937	0,1023	0,1	0,0911	0,0746	0,0905	elysia
PUT	linear	O(n)	500	50	500	0,9429	0,8681	0,8687	0,862	0,7131	0,8906	elysia
PUT	linear	O(n)	500	50	5000	8,9936	8,8102	8,535	4,6834	7,9674	7,4194	nest
PUT	linear	O(n)	500	50	10000	18,3836	19,3959	17,4142	18,5596	14,2634	17,2779	elysia
PUT	linear	O(n)	1000	50	50	0,0936	0,175	0,186	0,0788	0,1724	0,1762	nest
PUT	linear	O(n)	1000	50	500	0,6632	0,8921	0,647	0,4543	1,3958	0,4268	fastify
PUT	linear	O(n)	1000	50	5000	16,3948	15,5577	7,9287	15,7515	12,9913	10,5984	koa

metode	skenario	kompleksitas	iumlah data	С	n			frame	work			framework terbaik
HTTP	SKCHario	Kompieksitas	Juman data	C	(users)	express	hapi	koa	nest	elysia	fastify	Traine work terbaik
DELETE	linear	O(n)	10	50	50	0,076	0,0996	0,0636	0,0663	0,0616	0,1185	elysia
DELETE	linear	O(n)	10	50	500	0,341	0,263	0,3008	0,3576	0,238	0,7494	elysia
DELETE	linear	O(n)	10	50	5000	5,6222	4,0197	2,8396	3,4277	2,2613	7,6703	elysia
DELETE	linear	O(n)	10	50	10000	5,7024	4,8311	5,2303	6,7789	4,1684	14,9275	elysia
DELETE	linear	O(n)	100	50	50	0,0644	0,0598	0,0536	0,0607	0,0608	0,1009	koa
DELETE	linear	O(n)	100	50	500	0,1644	0,2144	0,1578	0,2208	1,0237	0,1569	fastify
DELETE	linear	O(n)	100	50	5000	1,603	1,9807	1,2922	1,7247	1,0747	1,1904	elysia
DELETE	linear	O(n)	100	50	10000	3,1585	4,1924	2,5493	3,4477	2,1126	2,3119	elysia
DELETE	linear	O(n)	500	50	50	0,0175	0,0176	0,0158	0,0174	0,0129	0,0151	elysia
DELETE	linear	O(n)	500	50	500	0,1836	0,188	0,1412	0,1816	0,119	0,1311	elysia
DELETE	linear	O(n)	500	50	5000	1,8331	2,1985	1,5835	1,9486	1,1679	1,3868	elysia
DELETE	linear	O(n)	500	50	10000	3,5723	4,2543	3,047	3,8001	2,1801	2,5312	elysia
DELETE	linear	O(n)	1000	50	50	0,0507	0,0765	0,0503	0,058	0,0302	0,0403	elysia
DELETE	linear	O(n)	1000	50	500	0,304	0,3937	0,2845	0,3272	0,1671	0,2415	elysia
DELETE	linear	O(n)	1000	50	5000	1,8498	2,2215	1,6216	1,9885	1,1233	1,3558	elysia

Tabel 4. 2 Hasil pengujian Request per Second

metode	skenario	kompleksitas	jumlah	С	n			frame	ework			framework
HTTP		nomprensions	data		(users)	express	hapi	koa	nest	elysia	fastify	terbaik
GET	konstan	O(1)	0	50	50	1315.306	1175.617	1384.068	1057.595	2843.194	1919.902	elysia
GET	konstan	O(1)	0	50	500	2980.221	2637.051	3342.378	2791.919	5118.516	3777.866	elysia
GET	konstan	O(1)	0	50	5000	4829.794	4517.503	4645.198	4482.676	5345.166	5014.793	elysia
GET	konstan	O(1)	0	50	10000	4941.392	4674.919	4928.42	4351.637	4950.376	4047.429	elysia
GET	linear	O(n)	10	50	50	533.04	760.262	807.34	693.234	823.437	369.925	elysia
GET	linear	O(n)	10	50	500	1274.616	1860.573	1347.155	1322.885	1954.636	614.507	elysia
GET	linear	O(n)	10	50	5000	798.551	1213.248	1533.331	1283.327	2147.208	620.79	elysia
GET	linear	O(n)	10	50	10000	1506.245	2186.374	1535.388	1364.73	2466.304	617.829	elysia
GET	linear	O(n)	100	50	50	553.993	778.008	693.912	580.791	829.401	429.127	elysia
GET	linear	O(n)	100	50	500	512.889	1528.853	1918.343	1618.275	561.594	2066.301	fastify
GET	linear	O(n)	100	50	5000	1795.43	1775.761	1909.564	1542.747	2903.373	2213.512	elysia
GET	linear	O(n)	100	50	10000	1810.256	1716.721	2014.489	1706.338	3021.902	2180.548	elysia
GET	linear	O(n)	500	50	50	663.52	757.298	724.674	729.824	1269.141	837.155	elysia
GET	linear	O(n)	500	50	500	693.65	716.839	726.751	710.659	1298.032	806.241	elysia
GET	linear	O(n)	500	50	5000	710.758	703.262	761.736	1262.953	1123.551	945.178	nest
GET	linear	O(n)	500	50	10000	660.721	664.685	770.474	649.439	1291.272	790.397	elysia
GET	linear	O(n)	1000	50	50	653.108	412.419	382.593	722.14	518.556	439.473	nest

metode	skenario	kompleksitas	jumlah	С	n			frame	ework			framework
HTTP	SKCHarro	Kompieksitus	data		(users)	express	hapi	koa	nest	elysia	fastify	terbaik
GET	linear	O(n)	1000	50	500	952.066	726.267	954.181	1244.827	755.149	1421.032	fastify
GET	linear	O(n)	1000	50	5000	690.667	445.541	814.776	434.799	865.071	643.084	elysia
POST	linear	O(n)	10	50	50	657.047	646	900.245	659.773	365.167	431.533	koa
POST	linear	O(n)	10	50	500	1664	1469.607	1904.15	1910.254	714.249	701.165	nest
POST	linear	O(n)	10	50	5000	924.124	878.963	1890.071	1262.316	728.014	683.527	koa
POST	linear	O(n)	10	50	10000	1566.004	1350.139	2118.72	1231.936	772.596	703.949	koa
POST	linear	O(n)	100	50	50	349.359	509.487	493.711	442.162	74.627	377.532	hapi
POST	linear	O(n)	100	50	500	181.924	248.937	266.088	145.359	115.165	415.93	fastify
POST	linear	O(n)	100	50	5000	348.085	324.625	295.98	232.5368	115.823	611.405	fastify
POST	linear	O(n)	100	50	10000	274.453	418.234	421.797	204.579	108.72	507.853	fastify
POST	linear	O(n)	500	50	50	128.084	186.314	188.251	110.497	21.811	191.549	fastify
POST	linear	O(n)	500	50	500	78.241	95.731	130.587	55.515	24.917	136.554	fastify
POST	linear	O(n)	500	50	5000	77.811	126.838	129.863	56.029	22.056	132.422	fastify
POST	linear	O(n)	500	50	10000	53.982	93.226	94.696	39.958	23.52	98.143	fastify
POST	linear	O(n)	1000	50	50	48.733	82.014	66.593	33.905	11.692	81.803	hapi
POST	linear	O(n)	1000	50	500	43.291	76.201	78.267	34.554	11.374	77.253	koa
POST	linear	O(n)	1000	50	5000	27.805	49.405	48.386	21.086	11.732	53.941	fastify
PUT	linear	O(n)	10	50	50	553.135	780.455	860.293	753.08	859.031	409.197	koa

metode	skenario	kompleksitas	jumlah	С	n			framework				
HTTP	SKOHAITO	Kompieksitus	data		(users)	express	hapi	koa	nest	elysia	fastify	terbaik
PUT	linear	O(n)	10	50	500	1369.86	1810.872	1434.392	1307.467	2015.583	617.389	elysia
PUT	linear	O(n)	10	50	5000	823.182	1283.128	1596.548	1319.6	2049.5	620.143	elysia
PUT	linear	O(n)	10	50	10000	1600.769	1857.452	1714.344	1470.404	2253.683	651.793	elysia
PUT	linear	O(n)	100	50	50	620.535	773.856	688.877	646.206	892.745	464.923	elysia
PUT	linear	O(n)	100	50	500	1277.494	1235.78	1352.144	1099.425	421.379	1195.3	koa
PUT	linear	O(n)	100	50	5000	1443.885	1429.65	1570.361	1512.894	1874.221	1627.322	elysia
PUT	linear	O(n)	100	50	10000	1370.024	1368.549	1492.049	1468.19	1814.845	1570.225	elysia
PUT	linear	O(n)	500	50	50	534.089	493.066	513.528	550.66	671.208	552.55	elysia
PUT	linear	O(n)	500	50	500	530.3	576.058	575.723	580.042	701.251	561.683	elysia
PUT	linear	O(n)	500	50	5000	556.001	567.649	585.856	1067.745	629.466	673.957	nest
PUT	linear	O(n)	500	50	10000	543.983	530.667	574.242	541.926	701.193	578.834	elysia
PUT	linear	O(n)	1000	50	50	534.797	289.745	268.795	635.008	290.054	285.772	nest
PUT	linear	O(n)	1000	50	500	753.953	560.524	772.774	1100.606	358.193	1181.633	fastify
PUT	linear	O(n)	1000	50	5000	304.988	321.393	630.764	317.43	384.887	471.782	koa
DELETE	linear	O(n)	10	50	50	675.401	756.685	841.366	776.558	884.848	449.647	elysia
DELETE	linear	O(n)	10	50	500	1470.731	1907.738	1666.107	1400.199	2102.916	669.449	elysia
DELETE	linear	O(n)	10	50	5000	891.499	1413.273	1763.357	1467.404	2231.346	654.362	elysia
DELETE	linear	O(n)	10	50	10000	1756.208	2128.694	1921.712	1503.596	2417.831	672.847	elysia

metode	skenario	kompleksitas	jumlah	С	n	framework						framework
HTTP	HTTP Skenario komp	Kompieksitus	data		(users)	express	hapi	koa	nest	elysia	fastify	terbaik
DELETE	linear	O(n)	100	50	50	820.1	843.545	936.192	831.127	947.72	496.233	elysia
DELETE	linear	O(n)	100	50	500	3047.162	2370.245	3210.388	2290.032	488.577	3197.288	koa
DELETE	linear	O(n)	100	50	5000	3029.318	2359.429	3174.31	2265.247	488.6577	3162.44	koa
DELETE	linear	O(n)	100	50	10000	3165.969	2389.997	3924.773	2900.382	4733.479	4327.483	elysia
DELETE	linear	O(n)	500	50	50	2894.093	2853.471	3224.312	2887.623	3948.987	3353.328	elysia
DELETE	linear	O(n)	500	50	500	2738.712	2664.866	3549.013	2759.9	4211.031	3824.288	elysia
DELETE	linear	O(n)	500	50	5000	2728.363	2274.163	3157.45	2565.875	4292.73	3605.446	elysia
DELETE	linear	O(n)	500	50	10000	2799.374	2351.451	3282.025	2634.755	4586.693	3950.629	elysia
DELETE	linear	O(n)	1000	50	50	989.4	657.992	995.356	864.26	1663.187	1243.19	elysia
DELETE	linear	O(n)	1000	50	500	1646.867	1269.967	1757.576	1528.559	2995.356	2071.627	elysia
DELETE	linear	O(n)	1000	50	5000	2702.896	2250.773	3083.503	2517.138	4451.336	3687.854	elysia

Tabel 4. 3 Hasil pengujian Time per Request

metode	skenario	kompleksitas	jumlah	С	n	n framework							
HTTP	Skenario	Kompieksitus	data		(users)	express	hapi	koa	nest	elysia	fastify	terbaik	
GET	konstan	O(1)	0	50	50	38.4412	43.2053	36.2039	43.67211	17.7997	26.1025	elysia	
GET	konstan	O(1)	0	50	500	17.3212	19.3713	14.9911	17.9211	9.771	13.4609	elysia	
GET	konstan	O(1)	0	50	5000	10.357	11.086	10.812	11.156	9.388	9.973	elysia	
GET	konstan	O(1)	0	50	10000	10.1215	10.7125	10.1475	11.5715	10.154	12.425	express	
GET	linear	O(n)	10	50	50	105.318	67.5456	66.761	73.8352	62.7428	186.0135	elysia	
GET	linear	O(n)	10	50	500	39.5487	27.1377	37.4591	38.1607	25.7405	81.7477	elysia	
GET	linear	O(n)	10	50	5000	62.846	44.1885	32.7152	39.0642	23.3971	80.6588	elysia	
GET	linear	O(n)	10	50	10000	33.2439	23.0671	32.7994	36.948	20.3429	81.5462	elysia	
GET	linear	O(n)	100	50	50	98.6309	64.8966	72.5778	93.0828	62.4654	116.9006	elysia	
GET	linear	O(n)	100	50	500	99.1975	32.8787	26.2459	30.9502	89.0745	24.3521	fastify	
GET	linear	O(n)	100	50	5000	27.866	28.261	26.284	57.291	17.4121	22.601	elysia	
GET	linear	O(n)	100	50	10000	27.625	29.2065	24.8335	29.31	16.6075	22.955	elysia	
GET	linear	O(n)	500	50	50	76.8052	68.6053	70.1051	70.9051	40.3033	61.8043	elysia	
GET	linear	O(n)	500	50	500	72.4473	70.0251	69.0452	70.5151	38.6629	62.2742	elysia	
GET	linear	O(n)	500	50	5000	70.3672	71.1011	65.6867	39.6025	44.6024	53.013	nest	
GET	linear	O(n)	500	50	10000	75.7498	75.2345	64.911	77.1082	38.7245	63.2659	elysia	
GET	linear	O(n)	1000	50	50	76.7079	122.0096	130.81	69.3054	96.5071	113.9096	nest	

metode	skenario	io kompleksitas	jumlah	С	n			framev	vork			framework
HTTP	SKellario	Komprekstas	data		(users)	express	hapi	koa	nest	elysia	fastify	terbaik
GET	linear	O(n)	1000	50	500	52.524	68.8952	52.9342	40.173	66.225	35.1928	fastify
GET	linear	O(n)	1000	50	5000	72.5674	112.2572	61.409	115.079	57.805	77.8013	elysia
POST	linear	O(n)	10	50	50	86.1366	88.5044	60.3006	79.6498	170.7597	120.69	koa
POST	linear	O(n)	10	50	500	31.0675	34.9771	27.7913	28.8426	71.6283	72.0851	koa
POST	linear	O(n)	10	50	5000	54.3948	61.8403	26.5122	39.802	69.0725	73.5266	koa
POST	linear	O(n)	10	50	10000	32.0431	38.5832	23.7667	41.7447	64.7914	71.6215	koa
POST	linear	O(n)	100	50	50	181.7176	100.9029	107.4014	116.1545	713.6845	136.4966	hapi
POST	linear	O(n)	100	50	500	287.174	251.5397	199.1591	391.54	435.004	127.6952	fastify
POST	linear	O(n)	100	50	5000	149.1268	162.1789	183.9801	183.2494	433.7731	82.7141	fastify
POST	linear	O(n)	100	50	10000	196.4929	125.8804	124.2567	262.3261	462.2548	111.0282	fastify
POST	linear	O(n)	500	50	50	575.6409	401.8286	345.6242	691.7527	2310.414	346.5254	koa
POST	linear	O(n)	500	50	500	647.0233	554.3109	393.989	966.9937	2011.374	375.6885	fastify
POST	linear	O(n)	500	50	5000	642.8435	400.7808	385.3544	894.3092	2283.874	380.484	fastify
POST	linear	O(n)	500	50	10000	928.128	538.5012	529.4286	1255.139	2132.165	512.1354	fastify
POST	linear	O(n)	1000	50	50	1031.276	611.745	764.6567	1665.316	4289.632	617.2457	hapi
POST	linear	O(n)	1000	50	500	1158.053	664.8338	640.8563	1448.137	4402.927	655.2285	koa
POST	linear	O(n)	1000	50	5000	1814.217	1020.725	1037.444	2374.861	4274.555	929.3359	fastify
PUT	linear	O(n)	10	50	50	129.7951	65.8052	58.8989	67.8829	62.0177	143.7095	koa

metode	skenario	kompleksitas	jumlah	С	n		framework					
HTTP	Skenario	Kompieksitas	data		(users)	express	hapi	koa	nest	elysia	fastify	terbaik
PUT	linear	O(n)	10	50	500	36.5292	27.7576	35.032	38.2723	24.8244	81.2457	elysia
PUT	linear	O(n)	10	50	5000	60.9041	44.3629	31.3988	38.7778	24.4953	80.7824	elysia
PUT	linear	O(n)	10	50	10000	31.3003	28.0546	29.2702	34.258	22.3128	76.9392	elysia
PUT	linear	O(n)	100	50	50	79.0424	66.6004	72.8989	100.3804	56.2525	108.843	elysia
PUT	linear	O(n)	100	50	500	39.173	40.8273	37.1272	45.4932	118.7088	41.9731	koa
PUT	linear	O(n)	100	50	5000	34.6337	35.013	31.842	33.0512	26.6878	30.726	elysia
PUT	linear	O(n)	100	50	10000	36.499	36.6716	33.5242	34.0618	27.5515	31.843	elysia
PUT	linear	O(n)	500	50	50	93.7065	102.3077	99.9749	91.1054	74.6049	90.5392	elysia
PUT	linear	O(n)	500	50	500	94.2981	86.8164	86.8763	86.2063	71.3151	89.0696	elysia
PUT	linear	O(n)	500	50	5000	89.9334	88.0987	85.346	46.8364	79.6727	74.1894	nest
PUT	linear	O(n)	500	50	10000	91.9194	96.9815	87.0721	92.7984	71.317	86.3905	elysia
PUT	linear	O(n)	1000	50	50	93.6086	175.0182	186.0571	78.8064	172.4136	176.2132	nest
PUT	linear	O(n)	1000	50	500	66.3215	89.2167	64.705	45.4334	139.5914	42.6831	fastify
PUT	linear	O(n)	1000	50	5000	163.9488	155.5785	79.283	157.5172	129.9125	105.9835	koa
DELETE	linear	O(n)	10	50	50	75.9143	99.6234	63.5773	66.2266	61.523	118.4625	elysia
DELETE	linear	O(n)	10	50	500	34.1147	26.2941	30.0777	35.4543	23.7967	74.93	elysia
DELETE	linear	O(n)	10	50	5000	56.2209	40.1979	53.6917	34.277	22.6129	76.7028	elysia
DELETE	linear	O(n)	10	50	10000	28.5116	24.1553	26.1514	33.8942	20.842	74.6371	elysia

metode	skenario	kompleksitas	jumlah	С	n			framev	vork			framework
HTTP	SKCHarlo	Kompieksitus	data		(users)	express	hapi	koa	nest	elysia	fastify	terbaik
DELETE	linear	O(n)	100	50	50	64.3611	59.8193	53.5987	60.7229	60.7462	100.995	koa
DELETE	linear	O(n)	100	50	500	16.4564	21.4379	15.7836	22.0817	102.3776	15.6935	fastify
DELETE	linear	O(n)	100	50	5000	16.0308	19.8084	12.923	17.248	10.7483	11.905	elysia
DELETE	linear	O(n)	100	50	10000	15.7935	20.9637	12.7475	17.2395	10.564	11.5605	elysia
DELETE	linear	O(n)	500	50	50	17.5015	17.6022	15.8011	17.4013	12.9009	15.1	elysia
DELETE	linear	O(n)	500	50	500	18.3659	18.8013	14.1181	18.1614	11.8962	13.111	elysia
DELETE	linear	O(n)	500	50	5000	18.3319	21.987	15.836	19.4866	11.68	13.869	elysia
DELETE	linear	O(n)	500	50	10000	17.8624	21.2735	15.2359	19.0016	10.9015	12.657	elysia
DELETE	linear	O(n)	1000	50	50	50.6694	76.5077	50.3049	58.0059	30.2035	40.3037	elysia
DELETE	linear	O(n)	1000	50	500	30.3976	39.373	28.452	32.7171	16.7111	24.152	elysia
DELETE	linear	O(n)	1000	50	5000	18.499	22.2166	16.2171	19.8865	11.2339	13.559	elysia

Tabel 4. 4 Hasil pengujian Transfer rate

metode	.1	lan man la lanita a	jumlah		n			frame	ework			framework
HTTP	skenario	kompleksitas	data	С	(users)	express	hapi	koa	nest	elysia	fastify	terbaik
GET	konstan	O(1)	0	50	50	245.335	199.763	173.01	197.266	352.621	239.988	elysia
GET	konstan	O(1)	0	50	500	555.881	448.092	417.796	520.757	634.816	472.234	elysia
GET	konstan	O(1)	0	50	5000	900.871	767.622	580.65	836.125	662.927	626.848	express
GET	konstan	O(1)	0	50	10000	921.686	794.372	616.051	811.681	613.963	505.927	express
GET	linear	O(n)	10	50	50	257.345	195.263	358.47	352.11	365.051	162.08	elysia
GET	linear	O(n)	10	50	500	647.626	477.862	597.63	358.732	866.602	273.03	elysia
GET	linear	O(n)	10	50	5000	406.451	311.606	680.3	651.651	951.59	275.424	elysia
GET	linear	O(n)	10	50	10000	707.906	561.541	682.08	694.301	1092.478	274.393	elysia
GET	linear	O(n)	100	50	50	1726.378	199.821	2375.468	2025.617	2839.28	1469.157	elysia
GET	linear	O(n)	100	50	500	1763.593	5333.071	6560.576	5638.68	120.656	7066.593	fastify
GET	linear	O(n)	100	50	5000	6268.227	6204.758	6543.612	5383.045	9937.812	7576.52	elysia
GET	linear	O(n)	100	50	10000	6305.842	5988.407	6909.068	5957.183	10328.77	7463.696	elysia
GET	linear	O(n)	500	50	50	11392.75	12965.77	12343.53	12497.3	21631.15	14261.96	elysia
GET	linear	O(n)	500	50	500	11877.74	12263.96	12378.91	12166.56	22121.07	13754.92	elysia
GET	linear	O(n)	500	50	5000	12170.34	12031.68	12974.8	8279.497	19140.95	13438.34	elysia
GET	linear	O(n)	500	50	10000	11315.49	11387.27	13123.62	11114.03	22010.87	13476.88	elysia
GET	linear	O(n)	1000	50	50	3323.58	6864.134	9355.239	1303.233	17672.95	10360.67	elysia
GET	linear	O(n)	1000	50	500	6308.364	9287.563	6943.899	2281.777	25735.59	4118.777	elysia
GET	linear	O(n)	1000	50	5000	11822.97	14595.37	12391.9	14839.66	29463.92	14162.31	elysia
GET	linear	O(n)	1000	50	10000							#N/A
POST	linear	O(n)	10	50	50	148.861	121.125	146.816	149.481	26.747	70.375	nest
POST	linear	O(n)	10	50	500	377.001	275.554	310.54	491.241	52.315	114.35	nest
POST	linear	O(n)	10	50	5000	209.372	164.807	308.245	285.993	55.06	111.473	koa

metode	.1	lan man la lanita a	jumlah		n			frame	ework			framework
HTTP	skenario	kompleksitas	data	С	(users)	express	hapi	koa	nest	elysia	fastify	terbaik
POST	linear	O(n)	10	50	10000	354.797	221.24	345.533	279.11	58.256	114.806	express
POST	linear	O(n)	100	50	50	79.152	95.53	80.518	100.177	5.466	61.571	nest
POST	linear	O(n)	100	50	500	41.216	46.675	43.395	32.931	24.742	67.833	fastify
POST	linear	O(n)	100	50	5000	78.863	60.867	48.272	62.713	18.21	99.71	fastify
POST	linear	O(n)	100	50	10000	62.18	78.417	68.789	46.352	17.092	82.823	fastify
POST	linear	O(n)	500	50	50	29.019	34.934	30.701	25.034	3.429	31.237	hapi
POST	linear	O(n)	500	50	500	17.726	17.95	21.297	12.577	3.918	22.269	fastify
POST	linear	O(n)	500	50	5000	17.63	23.782	21.179	12.695	3.467	21.595	hapi
POST	linear	O(n)	500	50	10000	12.228	17.48	15.444	9.054	3.696	16.006	hapi
POST	linear	O(n)	1000	50	50	11.042	15.378	10.86	7.681	1.839	13.34	hapi
POST	linear	O(n)	1000	50	500	9.807	14.288	12.765	7.829	1.788	12.597	hapi
POST	linear	O(n)	1000	50	5000	6.299	9.263	7.891	4.775	1.843	8.796	hapi
POST	linear	O(n)	1000	50	10000							#N/A
PUT	linear	O(n)	10	50	50	122.403	142.525	136.101	166.942	135.062	64.906	nest
PUT	linear	O(n)	10	50	500	303.67	330.696	226.925	301.461	316.904	97.672	hapi
PUT	linear	O(n)	10	50	5000	182.483	234.321	252.579	292.53	322.235	98.109	elysia
PUT	linear	O(n)	10	50	10000	354.858	339.202	271.215	325.957	354.338	103.116	express
PUT	linear	O(n)	100	50	50	137.559	141.32	108.983	150.7129	140.363	73.553	nest
PUT	linear	O(n)	100	50	500	283.195	225.675	213.913	243.72	90.531	189.101	express
PUT	linear	O(n)	100	50	5000	320.078	261.078	248.436	335.378	294.677	257.446	nest
PUT	linear	O(n)	100	50	10000	245.335	199.763	173.01	197.266	352.621	239.988	elysia
PUT	linear	O(n)	500	50	50	118.397	90.041	81.241	122.071	105.531	87.414	nest
PUT	linear	O(n)	500	50	500	117.558	105.197	91.082	128.584	110.254	88.86	nest
PUT	linear	O(n)	500	50	5000	123.254	103.664	92.683	236.697	98.969	106.622	nest
PUT	linear	O(n)	500	50	10000	120.591	96.911	90.846	120.136	110.247	91.574	express

metode	.1	1 1 . 1 . 14	jumlah		n			frame	ework			framework
HTTP	skenario	kompleksitas	data	С	(users)	express	hapi	koa	nest	elysia	fastify	terbaik
PUT	linear	O(n)	1000	50	50	118.553	52.912	42.526	140.769	45.605	45.212	nest
PUT	linear	O(n)	1000	50	500	167.135	102.361	122.255	243.981	56.318	186.938	nest
PUT	linear	O(n)	1000	50	5000	67.609	58.692	99.788	70.368	60.514	74.637	koa
PUT	linear	O(n)	1000	50	10000							#N/A
DELETE	linear	O(n)	10	50	50	149.723	138.184	133.107	172.148	139.122	71.428	nest
DELETE	linear	O(n)	10	50	500	326.03	348.385	263.582	311.998	330.635	105.908	hapi
DELETE	linear	O(n)	10	50	5000	197.628	258.087	278.97	325.294	350.827	103.521	elysia
DELETE	linear	O(n)	10	50	10000	389.315	388.736	304.02	333.318	380.148	106.447	express
DELETE	linear	O(n)	100	50	50	181.801	154.045	148.109	184.244	149.008	78.503	nest
DELETE	linear	O(n)	100	50	500	675.493	432.849	507.893	507.656	104.967	505.822	express
DELETE	linear	O(n)	100	50	5000	691.654	463.222	612.21	642.736	731.52	664.993	elysia
DELETE	linear	O(n)	100	50	10000	701.832	436.455	620.912	642.956	744.23	684.621	elysia
DELETE	linear	O(n)	500	50	50	641.561	521.092	510.096	640.129	620.885	530.505	express
DELETE	linear	O(n)	500	50	500	607.116	486.651	561.464	611.814	662.087	605.016	elysia
DELETE	linear	O(n)	500	50	5000	604.823	415.3	499.518	568.801	674.931	570.391	elysia
DELETE	linear	O(n)	500	50	10000	620.565	429.415	519.227	584.071	721.149	625.003	elysia
DELETE	linear	O(n)	1000	50	50	219.33	120.161	157.469	191.589	261.495	196.677	elysia
DELETE	linear	O(n)	1000	50	500	349.614	218.822	266.049	323.037	451.712	314.137	elysia
DELETE	linear	O(n)	1000	50	5000	599.176	411.029	487.819	557.997	699.868	583.429	elysia
DELETE	linear	O(n)	1000	50	10000							#N/A

Dari hasil Tabel 4.1 sampai Tabel 4.4 diatas untuk menampilkan *framework* mana yang unggul, maka menggunakan frekuensi untuk menetukannya. Dibawah ini adalah tabel menampilkan frekuensi berdasarkan jumlah data yang diujikan dimulai dari 10 data, 100 data, 500 data, 1000 data dan juga menampilkan frekuensi berdasarkan jumlah permintaan (n) sebesar 50, 500, 5000 dan 10000 dengan *concurrency* (c) sebesar 50. Dapat dilihat dari Tabel 4.5 dan Tabel 4.6.

Tabel 4. 5 Frekuensi Performa Framework Backend JavaScript Berdasarkan Jumlah Data

framework	express	hapi	koa	nest	elysia	fastify	Total frekuensi
Frekuensi terbaik 0 data	4	0	0	0	12	0	16
Frekuensi terbaik 10 data	2	1	15	4	38	0	60
Frekuensi terbaik 100 data	2	3	8	4	30	21	68
Frekuensi terbaik 500 data	2	3	2	9	37	11	64
frekuensi terbaik1000 data	0	6	7	8	18	9	48
Total poin frekuensi framework	10	13	32	25	135	41	256

Berdasarkan Tabel 4.5 *Elysia* mendominasi dengan 135 poin, menunjukkan performa terbaik di semua jumlah data, terutama pada 10, 100, dan 500 data. *Fastify* berada di posisi kedua dengan 41 poin, tampil baik pada 100 dan 500 data. *Koa* menempati posisi ketiga dengan 32 poin, unggul pada pengujian 10 dan 1000 data. *Nest* mengumpulkan 25 poin, tampil cukup baik pada 500 data, sedangkan *Hapi* dan *Express* memiliki poin terendah, masing-masing 13 dan 10, dengan performa paling menonjol hanya pada 1000 data untuk *Hapi* dan pada 0 data untuk *Express*.

Tabel 4. 6 Frekuensi Performa Framework Backend JavaScript Berdasarkan jumlah permintaan dan concurrency

n (users)	С	express	hapi	koa	nest	elysia	fastify
50	50	0	2	10	13	37	6
500	50	0	0	5	14	37	8
5000	50	0	0	4	14	22	24
10000	50	0	0	10	7	38	5
Total		0	2	29	48	134	43

Tabel 4.6 menunjukkan frekuensi performa dari enam *framework JavaScript* (*Express, Hapi, Koa, Nest, Elysia*, dan *Fastify*) berdasarkan jumlah permintaan (n) sebesar 50, 500, 5000, dan 10000 dengan *concurrency* (c) yang sama sebesar 50. Dari tabel tersebut, terlihat bahwa *Elysia* memiliki frekuensi performa tertinggi yaitu sebesar 134 poin, diikuti oleh *Nest* sebesar 48 poin, *Fastify* sebesar 43 poin, *Koa* sebesar 29 poin, *Hapi* sebesar 2 poin, dan *Express* sebesar 0 poin. Hal ini menunjukkan bahwa Elysia secara konsisten memberikan hasil performa terbaik di berbagai skenario pengujian, sementara Express menunjukkan performa paling rendah. Warna pada tabel juga memberikan visualisasi kualitas performa, di mana warna hijau menunjukkan performa terbaik, kuning menengah, dan merah terendah

Pengujian selanjutnya menggunakan weight score, di mana empat parameter utama diberikan bobot yang berbeda: time taken for test dengan bobot 25%, requests per second dengan bobot 40%, time per request dengan bobot 20%, dan transfer rate dengan bobot 15%. Dengan menggunakan bobot ini, hasil pengujian menunjukkan framework mana yang lebih unggul dalam menangani berbagai beban permintaan. Hasilnya dapat dilihat pada Tabel 4.7.

Tabel 4. 7 Hasil Weight Score

metode	مادمه معناه	1,,,,,,1,,1,,;,,,,	jumlah		n			weight	score		
http	skenario	kompleksitas	data	С	(users)	express	hapi	koa	nest	elysia	fastify
GET	konstan	O(1)	0	50	50	0.293	0.264	0.229	0.470	0.550	0.320
GET	konstan	O(1)	0	50	500	0.505	0.471	0.358	0.478	0.550	0.394
GET	konstan	O(1)	0	50	5000	0.558	0.536	0.438	0.570	0.439	0.417
GET	konstan	O(1)	0	50	10000	0.546	0.497	0.435	0.528	0.445	0.450
GET	linear	O(n)	10	50	50	0.370	0.386	0.546	0.466	0.550	0.450
GET	linear	O(n)	10	50	500	0.403	0.435	0.395	0.333	0.550	0.450
GET	linear	O(n)	10	50	5000	0.386	0.327	0.402	0.380	0.550	0.450
GET	linear	O(n)	10	50	10000	0.367	0.412	0.365	0.361	0.550	0.450
GET	linear	O(n)	100	50	50	0.510	0.369	0.472	0.508	0.550	0.522
GET	linear	O(n)	100	50	500	0.485	0.426	0.512	0.444	0.405	0.550
GET	linear	O(n)	100	50	5000	0.221	0.218	0.246	0.450	0.550	0.328
GET	linear	O(n)	100	50	10000	0.434	0.451	0.418	0.450	0.550	0.421
GET	linear	O(n)	500	50	50	0.450	0.434	0.422	0.437	0.550	0.422
GET	linear	O(n)	500	50	500	0.450	0.439	0.434	0.440	0.550	0.417
GET	linear	O(n)	500	50	5000	0.499	0.502	0.479	0.400	0.522	0.436
GET	linear	O(n)	500	50	10000	0.444	0.441	0.410	0.450	0.550	0.408
GET	linear	O(n)	1000	50	50	0.391	0.472	0.524	0.400	0.509	0.476
GET	linear	O(n)	1000	50	500	0.387	0.495	0.398	0.365	0.581	0.412
GET	linear	O(n)	1000	50	5000	0.354	0.461	0.386	0.476	0.550	0.371
GET	linear	O(n)	1000	50	10000	0.000	0.000	0.000	0.000	0.000	0.000
POST	linear	O(n)	10	50	50	0.473	0.440	0.547	0.449	0.450	0.349
POST	linear	O(n)	10	50	500	0.463	0.403	0.486	0.561	0.450	0.471

metode	skenario	kompleksitas	jumlah	С	n			weight	score		
http	Skellallo	Kompieksitas	data	C	(users)	express	hapi	koa	nest	elysia	fastify
POST	linear	O(n)	10	50	5000	0.438	0.468	0.550	0.456	0.422	0.483
POST	linear	O(n)	10	50	10000	0.472	0.404	0.545	0.430	0.405	0.479
POST	linear	O(n)	100	50	50	0.429	0.543	0.509	0.499	0.450	0.394
POST	linear	O(n)	100	50	500	0.380	0.436	0.370	0.455	0.450	0.550
POST	linear	O(n)	100	50	5000	0.384	0.349	0.331	0.305	0.450	0.550
POST	linear	O(n)	100	50	10000	0.378	0.469	0.449	0.357	0.450	0.550
POST	linear	O(n)	500	50	50	0.425	0.551	0.522	0.391	0.450	0.533
POST	linear	O(n)	500	50	500	0.379	0.418	0.526	0.343	0.450	0.550
POST	linear	O(n)	500	50	5000	0.369	0.535	0.523	0.313	0.450	0.534
POST	linear	O(n)	500	50	10000	0.372	0.531	0.514	0.353	0.450	0.534
POST	linear	O(n)	1000	50	50	0.364	0.550	0.431	0.320	0.450	0.527
POST	linear	O(n)	1000	50	500	0.349	0.541	0.532	0.308	0.450	0.525
POST	linear	O(n)	1000	50	5000	0.361	0.519	0.484	0.342	0.450	0.541
POST	linear	O(n)	1000	50	10000	0.000	0.000	0.000	0.000	0.000	0.000
PUT	linear	O(n)	10	50	50	0.588	0.480	0.505	0.502	0.518	0.450
PUT	linear	O(n)	10	50	500	0.441	0.515	0.398	0.436	0.541	0.450
PUT	linear	O(n)	10	50	5000	0.404	0.436	0.432	0.440	0.550	0.450
PUT	linear	O(n)	10	50	10000	0.461	0.489	0.423	0.436	0.550	0.450
PUT	linear	O(n)	100	50	50	0.481	0.509	0.421	0.609	0.530	0.450
PUT	linear	O(n)	100	50	500	0.529	0.476	0.496	0.457	0.450	0.436
PUT	linear	O(n)	100	50	5000	0.566	0.472	0.405	0.569	0.480	0.412
PUT	linear	O(n)	100	50	10000	0.503	0.472	0.405	0.431	0.550	0.448
PUT	linear	O(n)	500	50	50	0.539	0.482	0.458	0.547	0.489	0.415
PUT	linear	O(n)	500	50	500	0.558	0.472	0.419	0.558	0.481	0.421
PUT	linear	O(n)	500	50	5000	0.482	0.451	0.425	0.550	0.407	0.392
PUT	linear	O(n)	500	50	10000	0.542	0.481	0.378	0.551	0.498	0.381

metode	.1	11-14	jumlah		n			weight	score		
http	skenario	kompleksitas	data	С	(users)	express	hapi	koa	nest	elysia	fastify
PUT	linear	O(n)	1000	50	50	0.469	0.443	0.450	0.550	0.421	0.431
PUT	linear	O(n)	1000	50	500	0.391	0.351	0.356	0.523	0.450	0.504
PUT	linear	O(n)	1000	50	5000	0.483	0.426	0.550	0.474	0.374	0.405
PUT	linear	O(n)	1000	50	10000	0.000	0.000	0.000	0.000	0.000	0.000
DELETE	linear	O(n)	10	50	50	0.438	0.682	0.468	0.488	0.501	0.450
DELETE	linear	O(n)	10	50	500	0.450	0.518	0.431	0.435	0.539	0.450
DELETE	linear	O(n)	10	50	5000	0.397	0.433	0.529	0.438	0.550	0.450
DELETE	linear	O(n)	10	50	10000	0.462	0.511	0.435	0.420	0.545	0.450
DELETE	linear	O(n)	100	50	50	0.536	0.474	0.489	0.514	0.568	0.450
DELETE	linear	O(n)	100	50	500	0.530	0.393	0.506	0.404	0.450	0.503
DELETE	linear	O(n)	100	50	5000	0.769	0.729	0.591	0.688	0.150	0.568
DELETE	linear	O(n)	100	50	10000	0.488	0.450	0.446	0.477	0.550	0.495
DELETE	linear	O(n)	500	50	50	0.605	0.463	0.413	0.592	0.526	0.416
DELETE	linear	O(n)	500	50	500	0.544	0.450	0.437	0.540	0.550	0.480
DELETE	linear	O(n)	500	50	5000	0.490	0.450	0.405	0.487	0.550	0.449
DELETE	linear	O(n)	500	50	10000	0.480	0.450	0.401	0.482	0.550	0.463
DELETE	linear	O(n)	1000	50	50	0.436	0.450	0.369	0.428	0.550	0.412
DELETE	linear	O(n)	1000	50	500	0.443	0.450	0.377	0.445	0.550	0.395
DELETE	linear	O(n)	1000	50	5000	0.478	0.450	0.395	0.479	0.550	0.446
DELETE	linear	O(n)	1000	50	10000	0.000	0.000	0.000	0.000	0.000	0.000

Berdasarkan Tabel 4.6, *Elysia* dan *Fastify* secara konsisten menunjukkan performa terbaik dalam berbagai skenario pengujian, terutama pada metode GET, PUT, dan DELETE dengan jumlah data besar dan jumlah request tinggi. Keduanya memiliki skor tertinggi dalam berbagai kombinasi jumlah data dan *request*, menandakan kemampuan mereka menangani beban permintaan dengan efisien. *Express* dan *Hapi* menunjukkan performa yang lebih fluktuatif, dengan hasil yang baik pada jumlah request rendah tetapi mengalami penurunan signifikan pada jumlah *request* yang lebih tinggi. *Koa* dan *Nest* umumnya memiliki skor lebih rendah, terutama pada skenario PUT dan DELETE dengan jumlah data besar, menunjukkan bahwa keduanya kurang efisien dalam menangani permintaan dengan beban tinggi.

4.1.2 Mitata Js

Hasil pengujian performa enam *framework backend javascript* yang menggunakan *mitata js* untuk pengujiannya yaitu berdasarkan waktu dalam *seconds*. Hasil data mentahnya disajikan secara lengkap pada Lampiran 5.

Dibawah ini adalah hasil rata – rata dari pengujian yang dilakukan, bisa dilihat pada Tabel 4.7. Tabel ini menggunakan skema warna untuk memudahkan interpretasi hasil, di mana warna hijau menandakan performa terbaik dan warna merah menandakan performa terburuk.

Tabel 4. 8 Hasil rata - rata pengujian mitata js

metode	alsomonio	Irommlalsaitas	jumlah			fram	ework		
http	skenario	kompleksitas	data	express	hapi	koa	nest	elysia	fastify
GET	konstan	O(1)	0	682.11 μs	869.68 µs	866.57 µs	919.31 μs	715.95 µs	770.63 µs
GET	linear	O(n)	10	1.30 ms	1.52 ms	1.28 ms	1.43 ms	1.30 ms	1.44 ms
GET	linear	O(n)	100	1.51 ms	4.97 ms	1.48 ms	1.68 ms	1.49 ms	1.61 ms
GET	linear	O(n)	500	2.56 ms	8.95 ms	2.56 ms	2.94 ms	2.20 ms	2.71 ms

metode	1	1 11.4	jumlah			fram	ework		
http	skenario	kompleksitas	data	express	hapi	koa	nest	elysia	fastify
GET	linear	O(n)	1000	2.54 ms	9.11 ms	3.59 ms	3.86 ms	2.82 ms	3.86 ms
POST	linear	O(n)	10	1.33 ms	2.24 ms	1.39 ms	1.58 ms	2.53 ms	1.45 ms
POST	linear	O(n)	100	1.82 ms	2.81 ms	2.01 ms	2.45 ms	14.93 ms	2.03 ms
POST	linear	O(n)	500	4.84 ms	8.74 ms	4.80 ms	6.90 ms	60.66 ms	5.23 ms
POST	linear	O(n)	1000	7.36 ms	11.35 ms	6.58 ms	10.78 ms	112.38 ms	8.47 ms
PUT	linear	O(n)	10	1.78 ms	2.17 ms	1.79 ms	2.03 ms	1.61 ms	2.27 ms
PUT	linear	O(n)	100	2.00 ms	2.67 ms	2.17 ms	2.29 ms	1.87 ms	2.15 ms
PUT	linear	O(n)	500	3.09 ms	4.30 ms	3.11 ms	3.42 ms	2.89 ms	3.70 ms
PUT	linear	O(n)	1000	4.78 ms	8.68 ms	4.80 ms	5.13 ms	4.33 ms	5.33 ms
DELETE	linear	O(n)	10	1.10 ms	1.45 ms	1.16 ms	1.38 ms	1.14 ms	1.26 ms
DELETE	linear	O(n)	100	1.05 ms	1.67 ms	1.14 ms	1.37 ms	1.16 ms	1.23 ms
DELETE	linear	O(n)	500	1.08 ms	1.90 ms	1.02 ms	1.25 ms	1.03 ms	1.16 ms
DELETE	linear	O(n)	1000	1.04 ms	1.71 ms	1.05 ms	1.31 ms	1.13 ms	1.17 ms

Berdasarkan Tabel 4.7, Hasil menunjukkan bahwa *express* dan *fastify* secara konsisten memberikan performa terbaik, terutama pada skenario GET dan DELETE dengan waktu respon yang lebih cepat. *elysia* juga memberikan performa baik namun mengalami penurunan signifikan dalam POST dengan data besar. Sebaliknya, *hapi* dan *nest* cenderung lebih lambat, terutama saat menangani jumlah data besar pada metode PUT dan POST, sedangkan *koa* memberikan performa yang solid meski tidak selalu menjadi yang tercepat.

4.2 Pembahasan

Berdasarkan semua hasil pengujian yang sudah dilakukan sebelumnya, maka dapat diambil kesimpulan sebagai berikut:

1. Pada pengujian *apache benchmark* dengan menggunakan frekuensi berdasarkan jumlah data, *Elysia* adalah *framework* dengan performa paling unggul dalam pengujian ini, mengumpulkan skor tertinggi dan menunjukkan kinerja terbaik pada berbagai ukuran data, terutama pada 10, 100, dan 500 data. *Fastify* berada di posisi kedua, diikuti oleh *Koa* dan *Nest*,

- yang masing-masing memiliki keunggulan di data tertentu. Sementara itu, *Hapi* dan *Express* berada di peringkat terbawah dengan skor terendah, di mana *Hapi* hanya menonjol pada data 1000, dan *Express* tidak menunjukkan performa menonjol pada data apapun.
- 2. Pada pengujian apache benchmark dengan menggunakan frekuensi berdasarkan jumlah permintaan (n) sebesar 50, 500, 5000, dan 10000 dengan concurrency (c) yang sama sebesar 50, Elysia adalah framework dengan performa tertinggi, mencapai 134 poin dan menunjukkan konsistensi terbaik di berbagai skenario pengujian. Nest dan Fastify mengikuti dengan selisih cukup signifikan, masing-masing 48 dan 43 poin, sementara Koa berada di posisi menengah dengan 29 poin. Hapi dan Express menunjukkan performa paling rendah, dengan Hapi hanya meraih 2 poin dan Express tidak memperoleh poin sama sekali.
- 3. Pada pengujian apache benchmark dengan menggunakan weight scoring system, Elysia dan Fastify yang paling menonjol sebagai framework dengan performa paling konsisten dan efisien dalam berbagai skenario pengujian, terutama pada metode GET, PUT, dan DELETE dengan jumlah data dan request yang besar. Hal ini menunjukkan kemampuan keduanya dalam menangani beban permintaan tinggi dengan baik.
- 4. Pada pengujian *mitata js*, Hasil pengujian menunjukkan bahwa *Express* dan *Fastify* konsisten memberikan performa terbaik, terutama pada skenario GET dan DELETE dengan waktu respons yang cepat.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan penelitian yang dilakukan, dapat disimpulkan bahwa:

- 1. Untuk melakukan pengujian performa 6 *framework backend javascript*(*express*, *hapi*, *koa*, *nest*, *elysia* dan *fastify*) di *runtime bun* dan menggunakan metode HTTP GET, POST, PUT dan DELETE, penelitian ini menggunakan 2 buah tools yaitu *apache benchmark* dan *mitata js*, Dimana untuk *tool apache benchmark* menggunakan beban *concurrency* sebesar 50 dan untuk *n* sebesar 50, 500, 5000 dan 10000 dengan menggunakan parameter *time taken for test*, *request per second*, *time per request* dan *transfer rate*, untuk skenario pada pengujian ini menggunakan *Big O Notation* dengan skenario konstan(O(1)) dan linear(O(n)). Penelitian ini juga menggunakan 1000 data yang disimpan dengan mysql.
- 2. Penelitian ini menunjukkan bahwa *framework elysia* dan *fastify* yang menunjukkan performa terbaik di semua 3 sudut pandang yang berbeda yaitu sudut pandang frekuensi terbaik berdasarkan jumlah data, sudut pandang frekuensi terbaik berdasarkan jumlah permintaan dan *concurrency*, sudut pandang penghitungan dengan *weight score* pada pengujian *apache benchmark* dan untuk di pengujian *mitata js, express js* dan *fastify js* konsisten memberikan performa terbaik. Jadi secara keseluruhan *framework elysia* dan *fastify* yang paling unggul.

5.2 Saran

Saran dari penelitian yang akan dilakukan pada penelitian selanjutnya besar harapan guna bisa dikembangkan yakni :

- 1. Menambahkan *framework backend JavaScript* lainnya dapat memperkaya penelitian ini dengan memberikan perspektif baru pada performa *backend* dalam berbagai skenario pengujian. *Framework* tambahan, seperti *Sails.js*, *Feathers.js*, atau *Strapi*, yang membawa pendekatan unik dalam pengelolaan API, *query*, atau manajemen data *real-time*, akan membantu mengeksplorasi kinerja framework dalam menangani beban dan kompleksitas yang berbeda. Melalui variasi *framework* dengan arsitektur dan pendekatan berbeda, penelitian ini akan memperoleh wawasan lebih luas mengenai keunggulan dan kelemahan masing-masing *framework* saat digunakan dalam skenario kompleksitas yang beragam, mulai dari aplikasi ringan hingga aplikasi berskala besar.
- 2. Menggunakan *Node.js* sebagai *runtime* tambahan dalam pengujian dapat memperkaya analisis performa *framework backend JavaScript* dalam penelitian ini. *Node.js*, sebagai *runtime* yang populer dan stabil, akan memberikan perbandingan yang relevan terhadap *runtime Bun* yang digunakan dalam penelitian ini. Melalui pengujian dengan *Node.js*, akan terlihat bagaimana masing-masing framework beradaptasi terhadap perbedaan optimisasi, manajemen memori, dan efisiensi eksekusi antara kedua *runtime* tersebut.

3. Melakukan pengujian dengan *tools benchmark* lain dapat memberikan perspektif yang lebih luas dan mendalam mengenai performa *framework backend JavaScript* yang diuji. Dengan menggunakan alat *benchmark* tambahan seperti *JMeter, Artillery*, atau *K6*, penelitian ini dapat mengevaluasi performa setiap *framework* dari berbagai metrik, metode pengujian, dan simulasi beban yang berbeda.

DAFTAR PUSTAKA

- Ahmod, M. F. (2023). JAVASCRIPT RUNTIME PERFORMANCE ANALYSIS: NODE AND BUN.
- Amarulloh, A. (2023). ANALISIS PERBANDINGAN PERFORMA WEB SERVICE REST MENGGUNAKAN FRAMEWORK LARAVEL, DJANGO, DAN Node JS PADA APLIKASI BERBASIS WEBSITE.
- Apache.org. (2024). ab Apache HTTP server benchmarking tool Apache HTTP Server Version 2.4.
- Azi, M. N. A., Arifwidodo, B., & Wahyudi, E. (2023). Analisis Performansi Web Server Saat Menangani Permintaan Client Menggunakan Metode Reserve Proxy Caching dan Varnish. *Journal of Telecommunication, Electronics, and Control Engineering (JTECE)*, 5(1), 14–21. https://doi.org/10.20895/jtece.v5i1.843
- Celi-Párraga, R. J., Boné-Andrade, M. F., & Olivero, A. P. M. (2023). *Programación Web del Frontend al Backend*. Editorial Grupo AEA. https://doi.org/10.55813/egaea.1.2022.18
- Chastro, C., Darmawan, E., Kom, S., & #2, M. T. (2020). Perbandingan Pengembangan Front End Menggunakan Blade Template dan Vue Js (Vol. 2).
- del Pilar Salas-Zárate, M., Alor-Hernández, G., Valencia-García, R., Rodríguez-Mazahua, L., Rodríguez-González, A., & Cuadrado, J. L. L. (2015). Analyzing best practices on Web development frameworks: The lift approach. *Science of Computer Programming*, 102, 1–19. https://doi.org/10.1016/j.scico.2014.12.004
- Dirjen, S. K., Riset, P., Pengembangan, D., Dikti, R., Putu, I., & Pratama, A. E. (2017). Terakreditasi SINTA Peringkat 2 Pengujian Performansi Lima Back-End JavaScript Framework Menggunakan Metode GET dan POST. *Jurnal Resti*, *1*(3), 1216–1225.
- elysiajs. (2024). Ergonomic Framework for Humans.
- Fastify. (2024). Fast and low overhead web framework, for Node.js.
- Ginasari, N. L. A. S., Wibawa, K. S., & Wirdiani, N. K. A. (2021). Pengujian Stress Testing API Sistem Pelayanan dengan Apache JMeter. *JITTER: Jurnal Ilmiah Teknologi Dan Komputer*, 2(3), 552. https://doi.org/10.24843/JTRTI.2021.v02.i03.p14
- Hadinata, W., & Stianingsih, L. (2024). ANALISIS PERBANDINGAN PERFORMA RESTFULL API ANTARA EXPRESS.JS DENGAN LARAVEL FRAMEWORK. *Jurnal Informatika Dan Teknik Elektro Terapan*, 12(1). https://doi.org/10.23960/jitet.v12i1.3845

- Hapi. (2024). The Simple, Secure Framework Developers Trust.
- Koa. (2024). Koa: Next Generation Web Framework for NodeJS.
- Mulana, L., Prihandani, K., Rizal, A., Singaperbanga, U., & Abstract, K. (2022). Analisis Perbandingan Kinerja Framework Codeigniter Dengan Express.Js Pada Server RESTful Api. *Jurnal Ilmiah Wahana Pendidikan*, 8(16), 316–326. https://doi.org/10.5281/zenodo.7067707
- Nayak, Mr. P., T, C. P., S, C. A., S, D., & Rakesh, C. H. (2022). Exploring the Hypertext Transfer Protocol. *International Journal of Advanced Research in Science, Communication and Technology*, 736–738. https://doi.org/10.48175/IJARSCT-7044
- nest. (2024). Hello, nest! A progressive Node.js framework for building efficient, reliable and scalable server-side applications.
- Nurhayati, E., & Agussalim, A. (2023). Rancang Bangun Back-end API pada Aplikasi Mobile AyamHub Menggunakan Framework Node JS Express. *Jurnal Sistem Dan Teknologi Informasi (JustIN)*, 11(3), 524. https://doi.org/10.26418/justin.v11i3.66823
- Peña-Monferrer, C., & Diaz-Marin, C. (2022). rom.js/cfd.xyz: An open-source framework for generating and visualizing parametric CFD results. *OpenFOAM® Journal*, 2, 143–148. https://doi.org/10.51560/ofj.v2.83
- Permana, I., & Salisah, F. N. S. (2022). Pengaruh Normalisasi Data Terhadap Performa Hasil Klasifikasi Algoritma Backpropagation. *Indonesian Journal of Informatic Research and Software Engineering (IJIRSE)*, 2(1), 67–72. https://doi.org/10.57152/ijirse.v2i1.311
- Putra, M. G. L., & Putera, M. I. A. (2019). ANALISIS PERBANDINGAN METODE SOAP DAN REST YANG DIGUNAKAN PADA FRAMEWORK FLASK UNTUK MEMBANGUN WEB SERVICE. SCAN Jurnal Teknologi Informasi Dan Komunikasi, 14(2). https://doi.org/10.33005/scan.v14i2.1480
- Satwika, I. K. S., & Semadi, K. N. (2020). PERBANDINGAN PERFORMANSI WEB SERVER APACHE DAN NGINX DENGAN MENGGUNAKAN IPV6. SCAN Jurnal Teknologi Informasi Dan Komunikasi, 15(1). https://doi.org/10.33005/scan.v15i1.1847
- Suwarno, S., & Afandi. (2022). Analisis perbandingan Codeigniter dan Yii framework pada perancangan website rencana anggaran biaya. *Jurnal CoSciTech (Computer Science and Information Technology)*, *3*(3), 249–258. https://doi.org/10.37859/coscitech.v3i3.4338
- Yatini, I., Nurwiyati, F. W., & Anam, K. (2021). *PERFORMA MICROFRAMEWORK PHP PADA REST API MENGGUNAKAN METODE LOAD TESTING* (Vol. 19, Issue 2, p. 12).

LAMPIRAN

Lampiran 1 : data mentah pengujian parameter time taken for test

metode	-1	11-1	jumlah	_		pengujian			framew	ork		
HTTP	skenario	kompleksitas	data	С	n	ke-	express	hapi	koa	nest	elysia	fastify
GET	konstan	O(1)	0	50	50	1	0.05	0.043	0.034	0.079	0.018	0.027
GET	konstan	O(1)	0	50	50	2	0.04	0.042	0.038	0.042	0.017	0.025
GET	konstan	O(1)	0	50	50	3	0.036	0.041	0.035	0.042	0.018	0.027
GET	konstan	O(1)	0	50	50	4	0.036	0.04	0.036	0.042	0.024	0.024
GET	konstan	O(1)	0	50	50	5	0.035	0.038	0.038	0.042	0.016	0.024
GET	konstan	O(1)	0	50	50	6	0.037	0.042	0.038	0.042	0.017	0.027
GET	konstan	O(1)	0	50	50	7	0.039	0.044	0.036	0.066	0.018	0.026
GET	konstan	O(1)	0	50	50	8	0.034	0.042	0.037	0.038	0.016	0.027
GET	konstan	O(1)	0	50	50	9	0.04	0.061	0.037	0.038	0.017	0.027
GET	konstan	O(1)	0	50	50	10	0.037	0.039	0.033	0.041	0.017	0.027
					-	_	-				•	
GET	linear	O(n)	10	50	50	1	0.236	0.075	0.089	0.107	0.102	0.236
GET	linear	O(n)	10	50	50	2	0.101	0.095	0.068	0.087	0.066	0.153
GET	linear	O(n)	10	50	50	3	0.099	0.066	0.061	0.065	0.058	0.115
GET	linear	O(n)	10	50	50	4	0.114	0.074	0.056	0.067	0.061	0.634
GET	linear	O(n)	10	50	50	5	0.082	0.06	0.052	0.068	0.061	0.201
GET	linear	O(n)	10	50	50	6	0.075	0.058	0.125	0.073	0.058	0.11
GET	linear	O(n)	10	50	50	7	0.069	0.076	0.057	0.069	0.055	0.101
GET	linear	O(n)	10	50	50	8	0.078	0.057	0.054	0.063	0.053	0.107
GET	linear	O(n)	10	50	50	9	0.084	0.056	0.055	0.072	0.054	0.105
GET	linear	O(n)	10	50	50	10	0.117	0.059	0.051	0.069	0.06	0.1

. . .

metode	alzanaria	kompleksitas	jumlah	0	n	pengujian			framew	ork		
HTTP	skenario	Kompieksitas	data	С	n	ke-	express	hapi	koa	nest	elysia	fastify
POST	linear	O(n)	10	50	50	1	0.182	0.165	0.123	0.118	0.513	0.163
POST	linear	O(n)	10	50	50	2	0.129	0.076	0.06	0.104	0.219	0.144
POST	linear	O(n)	10	50	50	3	0.076	0.083	0.06	0.079	0.133	0.103
POST	linear	O(n)	10	50	50	4	0.076	0.066	0.045	0.089	0.131	0.121
POST	linear	O(n)	10	50	50	5	0.071	0.075	0.054	0.074	0.129	0.15
POST	linear	O(n)	10	50	50	6	0.08	0.074	0.064	0.059	0.138	0.111
POST	linear	O(n)	10	50	50	7	0.054	0.165	0.043	0.064	0.131	0.1
POST	linear	O(n)	10	50	50	8	0.07	0.064	0.046	0.056	0.099	0.133
POST	linear	O(n)	10	50	50	9	0.061	0.061	0.055	0.075	0.105	0.096
POST	linear	O(n)	10	50	50	10	0.063	0.056	0.053	0.08	0.111	0.086
				_							_	
PUT	linear	O(n)	10	50	50	1	0.108	0.086	0.075	0.095	0.122	0.181
PUT	linear	O(n)	10	50	50	2	0.095	0.062	0.063	0.081	0.057	0.117
PUT	linear	O(n)	10	50	50	3	0.083	0.063	0.067	0.066	0.062	0.136
PUT	linear	O(n)	10	50	50	4	0.086	0.062	0.057	0.068	0.061	0.374
PUT	linear	O(n)	10	50	50	5	0.54	0.063	0.056	0.063	0.058	0.126
PUT	linear	O(n)	10	50	50	6	0.07	0.065	0.051	0.066	0.051	0.104
PUT	linear	O(n)	10	50	50	7	0.076	0.084	0.055	0.061	0.05	0.105
PUT	linear	O(n)	10	50	50	8	0.071	0.056	0.052	0.06	0.055	0.105
PUT	linear	O(n)	10	50	50	9	0.08	0.069	0.059	0.061	0.051	0.097
PUT	linear	O(n)	10	50	50	10	0.09	0.048	0.055	0.057	0.053	0.093
				_							_	
DELETE	linear	O(n)	10	50	50	1	0.106	0.073	0.068	0.097	0.135	0.14
DELETE	linear	O(n)	10	50	50	2	0.072	0.074	0.057	0.078	0.058	0.106
DELETE	linear	O(n)	10	50	50	3	0.077	0.068	0.078	0.064	0.059	0.102
DELETE	linear	O(n)	10	50	50	4	0.076	0.052	0.048	0.058	0.055	0.219

metode	alzanaria	kompleksitas	jumlah	C	n	pengujian			framew	ork		
HTTP	skenario	Kompieksitas	data	C	n	ke-	express	hapi	koa	nest	elysia	fastify
DELETE	linear	O(n)	10	50	50	5	0.088	0.064	0.057	0.062	0.054	0.125
DELETE	linear	O(n)	10	50	50	6	0.074	0.442	0.05	0.065	0.056	0.103
DELETE	linear	O(n)	10	50	50	7	0.065	0.064	0.118	0.055	0.047	0.111
DELETE	linear	O(n)	10	50	50	8	0.062	0.056	0.053	0.053	0.051	0.093
DELETE	linear	O(n)	10	50	50	9	0.061	0.053	0.055	0.068	0.052	0.092
DELETE	linear	O(n)	10	50	50	10	0.079	0.05	0.052	0.063	0.049	0.094

Lampiran 2 : data mentah pengujian parameter request per second

metode	alzanorio	kompleksitas	jumlah	0	n	pengujian			framev	vork		
HTTP	skenario	Kompieksitas	data	c	n	ke-	express	hapi	koa	nest	elysia	fastify
GET	konstan	O(1)	0	50	50	1	992.38	1162.66	1470.42	16.24	2777.78	1851.65
GET	konstan	O(1)	0	50	50	2	1249.91	1190.36	1315.65	1190.36	2941.35	1999.84
GET	konstan	O(1)	0	50	50	3	1388.66	1219.3	1428.45	1190.25	2777.78	1851.51
GET	konstan	O(1)	0	50	50	4	1389.16	1249.75	1388.7	1190.36	2083.16	2083.07
GET	konstan	O(1)	0	50	50	5	1428.37	1315.69	1315.72	1190.22	3124.61	2083.16
GET	konstan	O(1)	0	50	50	6	1351.24	1190.39	1315.55	1190.33	2941.18	1851.65
GET	konstan	O(1)	0	50	50	7	1282.02	1136.21	1388.77	757.5	2778.7	1922.93
GET	konstan	O(1)	0	50	50	8	1470.37	1190.36	1351.24	1315.65	3125.2	1851.78
GET	konstan	O(1)	0	50	50	9	1249.78	819.56	1351.21	1315.62	2941.18	1851.58
GET	konstan	O(1)	0	50	50	10	1351.17	1281.89	1514.97	1219.42	2941	1851.85
GET	linear	O(n)	10	50	50	1	211.58	665.2	559.97	466.96	488.1	212.26
GET	linear	O(n)	10	50	50	2	497	528.55	735.27	577.67	757.6	327.42
GET	linear	O(n)	10	50	50	3	503.69	757.52	819.55	767	869.08	435.09
GET	linear	O(n)	10	50	50	4	440.36	675.55	892.87	746.08	826.16	78.89

metode	-1	11-1	jumlah	_		pengujian			framev	vork		
HTTP	skenario	kompleksitas	data	c	n	ke-	express	hapi	koa	nest	elysia	fastify
GET	linear	O(n)	10	50	50	5	613.07	833.06	958.02	740.51	819.52	248.8
GET	linear	O(n)	10	50	50	6	667.8	862.32	399.97	682.23	868.86	456
GET	linear	O(n)	10	50	50	7	729.36	657.54	877.01	729.27	909.01	494.12
GET	linear	O(n)	10	50	50	8	644.69	877.22	933.67	798.76	938.14	469.17
GET	linear	O(n)	10	50	50	9	595.09	892.94	916.74	694.54	924.47	475.26
GET	linear	O(n)	10	50	50	10	427.76	852.72	980.33	729.32	833.43	502.24
	-			·				i	i			
POST	linear	O(n)	10	50	50	1	274.38	303.64	405.18	423.6	97.43	306.68
POST	linear	O(n)	10	50	50	2	388.85	657.78	833.33	482.91	228.46	347.12
POST	linear	O(n)	10	50	50	3	661.38	602.36	833.44	636.68	376.82	484.24
POST	linear	O(n)	10	50	50	4	656.29	757.6	1111.43	564.64	381.83	413.23
POST	linear	O(n)	10	50	50	5	705.05	666.45	925.84	674.96	388.59	333.4
POST	linear	O(n)	10	50	50	6	623	675.73	781.14	847.52	362.5	450.99
POST	linear	O(n)	10	50	50	7	933.85	302.24	1162.87	780.99	383.05	499.26
POST	linear	O(n)	10	50	50	8	710.94	784.83	1098.35	892.94	507.34	376.74
POST	linear	O(n)	10	50	50	9	817.41	819.55	909.21	665.33	475.21	518.92
POST	linear	O(n)	10	50	50	10	799.32	889.82	941.66	628.16	450.44	584.75
PUT	linear	O(n)	10	50	50	1	463	584.45	665.24	524.28	408.18	276.7
PUT	linear	O(n)	10	50	50	2	526.07	806.43	793.63	615.93	883.02	427.3
PUT	linear	O(n)	10	50	50	3	603.65	793.56	746.25	757.44	803.47	367.63
PUT	linear	O(n)	10	50	50	4	584.41	806.3	876.67	735.16	825.83	133.66
PUT	linear	O(n)	10	50	50	5	92.59	793.61	892.81	793.31	861.94	396.06
PUT	linear	O(n)	10	50	50	6	718.87	769.38	988.96	755.46	980.32	482.86
PUT	linear	O(n)	10	50	50	7	657.17	592.01	917.08	819.67	995.36	478.23
PUT	linear	O(n)	10	50	50	8	702.73	892.84	961.48	832.65	909.01	475.79
PUT	linear	O(n)	10	50	50	9	628.33	724.3	851.69	819.75	979.68	517.72

metode	alranania	lrommlalraitaa	jumlah			pengujian			framev	vork		
HTTP	skenario	kompleksitas	data	С	n	ke-	express	hapi	koa	nest	elysia	fastify
PUT	linear	O(n)	10	50	50	10	554.53	1041.67	909.12	877.15	943.5	536.02
DELETE	linear	O(n)	10	50	50	1	472.28	684.74	734.73	514.66	369.95	358.18
DELETE	linear	O(n)	10	50	50	2	697.37	675.59	877.24	643.8	869.01	471.56
DELETE	linear	O(n)	10	50	50	3	648.99	735.23	637.22	786.96	847.11	490.17
DELETE	linear	O(n)	10	50	50	4	654.18	954.67	1042.71	868.76	909.17	228.24
DELETE	linear	O(n)	10	50	50	5	568.08	781.25	877.21	806.28	934.18	401.17
DELETE	linear	O(n)	10	50	50	6	675.77	113.11	999.98	768.99	892.87	487.59
DELETE	linear	O(n)	10	50	50	7	774.82	781.29	425.14	904.14	1063.81	449.47
DELETE	linear	O(n)	10	50	50	8	806.41	892.92	948.78	943.33	980.33	536.82
DELETE	linear	O(n)	10	50	50	9	819.65	943.41	909.09	735.21	961.54	542.08
DELETE	linear	O(n)	10	50	50	10	636.46	1004.64	961.56	793.45	1020.51	531.19

Lampiran 3 : data mentah pengujian parameter *time per request*

metode	akanaria	kompleksitas	jumlah	0	n	pengujia			frame	ework		
HTTP	skenario	Kompieksitas	data	С	n	n ke-	express	hapi	koa	nest	elysia	fastify
GET	konstan	O(1)	0	50	50	1	50.384	43.005	34.004	3,078,59	18	27.003
GET	konstan	O(1)	0	50	50	2	40.003	42.004	38.004	42.004	16.999	25.002
GET	konstan	O(1)	0	50	50	3	36.006	41.007	35.003	42.008	18	27.005
GET	konstan	O(1)	0	50	50	4	35.993	40.008	36.005	42.004	24.002	24.003
GET	konstan	O(1)	0	50	50	5	35.005	38.003	38.002	42.009	16.002	24.002
GET	konstan	O(1)	0	50	50	6	37.003	42.003	38.007	42.005	17	27.003
GET	konstan	O(1)	0	50	50	7	39.001	44.006	36.003	66.007	17.994	26.002
GET	konstan	O(1)	0	50	50	8	34.005	42.004	37.003	38.004	15.999	27.001
GET	konstan	O(1)	0	50	50	9	40.007	61.008	37.004	38.005	17	27.004

metode	alzanaria	kompleksitas	jumlah		n	pengujia			frame	work		
HTTP	skenario	Kompieksitas	data	С	n	n ke-	express	hapi	koa	nest	elysia	fastify
GET	konstan	O(1)	0	50	50	10	37.005	39.005	33.004	41.003	17.001	27
					_							
GET	linear	O(n)	10	50	50	1	236.319	75.165	89.291	107.076	102.439	235.562
GET	linear	O(n)	10	50	50	2	100.603	94.599	68.002	86.554	65.998	152.709
GET	linear	O(n)	10	50	50	3	99.267	66.005	61.009	65.189	57.532	114.918
GET	linear	O(n)	10	50	50	4	113.543	74.014	55.999	67.017	60.521	633.81
GET	linear	O(n)	10	50	50	5	81.557	60.02	52.191	67.521	61.011	200.964
GET	linear	O(n)	10	50	50	6	74.873	57.983	125.01	73.289	57.547	109.65
GET	linear	O(n)	10	50	50	7	68.553	76.041	57.012	68.562	55.005	101.191
GET	linear	O(n)	10	50	50	8	77.557	56.998	53.552	62.597	53.297	106.571
GET	linear	O(n)	10	50	50	9	84.021	55.995	54.541	71.99	54.085	105.206
GET	linear	O(n)	10	50	50	10	116.887	58.636	51.003	68.557	59.993	99.554
•••	•	·			•	•		•				•
POST	linear	O(n)	10	50	50	1	182.228	164.667	123.402	118.036	513.194	163.038
POST	linear	O(n)	10	50	50	2	128.585	76.013	60	103.538	218.858	144.042
POST	linear	O(n)	10	50	50	3	75.6	83.007	59.992	78.533	132.691	103.255
POST	linear	O(n)	10	50	50	4	76.186	65.998	44.987	88.552	130.949	120.998
POST	linear	O(n)	10	50	50	5	70.917	75.024	54.005	74.078	128.671	149.971
POST	linear	O(n)	10	50	50	6	80.257	73.994	64.009	58.996	137.931	110.867
POST	linear	O(n)	10	50	50	7	53.542	165.433	42.997	64.021	130.531	100.149
POST	linear	O(n)	10	50	50	8	70.329	63.708	45.523	55.995	98.554	132.719
POST	linear	O(n)	10	50	50	9	61.169	61.009	54.993	75.151	105.216	96.354
POST	linear	O(n)	10	50	50	10	62.553	56.191	53.098	79.598	111.002	85.507
												·
PUT	linear	O(n)	10	50	50	1	107.992	85.55	75.161	95.369	122.496	180.699
PUT	linear	O(n)	10	50	50	2	95.045	62.002	63.002	81.178	56.624	117.013

metode	skenario	kompleksitas	jumlah	С	n	pengujia			frame	work		
HTTP	SKCHario	Kompieksitas	data	١	11	n ke-	express	hapi	koa	nest	elysia	fastify
PUT	linear	O(n)	10	50	50	3	82.829	63.007	67.002	66.012	62.23	136.005
PUT	linear	O(n)	10	50	50	4	85.556	62.012	57.034	68.012	60.545	374.087
PUT	linear	O(n)	10	50	50	5	539.997	63.003	56.003	63.027	58.009	126.242
PUT	linear	O(n)	10	50	50	6	69.554	64.987	50.558	66.185	51.004	103.55
PUT	linear	O(n)	10	50	50	7	76.084	84.458	54.521	61	50.233	104.552
PUT	linear	O(n)	10	50	50	8	71.151	56.001	52.003	60.049	55.005	105.089
PUT	linear	O(n)	10	50	50	9	79.576	69.032	58.707	60.994	51.037	96.578
PUT	linear	O(n)	10	50	50	10	90.167	48	54.998	57.003	52.994	93.28
DELETE	linear	O(n)	1000	50	5000	1	18.391	22.258	16.142	19.459	11.49	13.541
DELETE	linear	O(n)	1000	50	5000	2	18.631	22.192	16.151	21.152	11.131	13.451
DELETE	linear	O(n)	1000	50	5000	3	18.411	22.222	16.731	21.322	11.271	13.661
DELETE	linear	O(n)	1000	50	5000	4	18.471	22.272	16.091	19.762	11.211	13.541
DELETE	linear	O(n)	1000	50	5000	5	18.491	22.022	16.111	19.522	11.231	13.751
DELETE	linear	O(n)	1000	50	5000	6	18.371	22.082	16.171	19.582	11.371	13.551
DELETE	linear	O(n)	1000	50	5000	7	18.661	22.382	16.131	19.462	11.241	13.351
DELETE	linear	O(n)	1000	50	5000	8	18.351	22.682	16.131	19.551	11.091	13.731
DELETE	linear	O(n)	1000	50	5000	9	18.651	21.952	16.331	19.381	11.161	13.501
DELETE	linear	O(n)	1000	50	5000	10	18.561	22.102	16.181	19.672	11.141	13.511

Lampiran 4 : data mentah pengujian parameter *transfer rate*

metode	skenario	kompleksitas	jumlah	c	n	pengujian			frame	work		
HTTP	SKCHario	Kompieksitas	data	C	11	ke-	express	hapi	koa	nest	elysia	fastify
GET	konstan	O(1)	0	50	50	1	185.1	197.56	183.8	3.03	344.51	231.46
GET	konstan	O(1)	0	50	50	2	233.14	202.27	164.46	222.03	364.8	249.98
GET	konstan	O(1)	0	50	50	3	259.02	207.19	178.56	222.01	344.51	231.44
GET	konstan	O(1)	0	50	50	4	259.11	212.36	173.59	222.03	258.36	260.38
GET	konstan	O(1)	0	50	50	5	266.42	223.56	164.47	222	387.52	260.39
GET	konstan	O(1)	0	50	50	6	252.04	202.27	164.44	222.03	364.77	231.46
GET	konstan	O(1)	0	50	50	7	239.13	193.07	173.6	141.29	344.62	240.37
GET	konstan	O(1)	0	50	50	8	274.26	202.27	168.91	245.4	387.6	231.47
GET	konstan	O(1)	0	50	50	9	233.11	139.26	168.9	245.39	364.77	231.45
GET	konstan	O(1)	0	50	50	10	252.02	217.82	189.37	227.45	364.75	231.48
•••	•			•	•		•				•	
GET	linear	O(n)	10	50	50	1	107.65	170.85	248.8	236.67	215.45	93.9
GET	linear	O(n)	10	50	50	2	252.38	135.75	327.4	294.48	336.63	144.85
GET	linear	O(n)	10	50	50	3	256.76	194.56	361	389.49	384.47	193.75
GET	linear	O(n)	10	50	50	4	224.05	173.5	397.6	378.87	367.09	13.48
GET	linear	O(n)	10	50	50	5	312.52	213.96	425.7	376.76	363.34	110.79
GET	linear	O(n)	10	50	50	6	339.77	221.48	177.7	347.11	386.06	202.62
GET	linear	O(n)	10	50	50	7	370.38	168.88	390.5	368.91	401.24	219.07
GET	linear	O(n)	10	50	50	8	328.64	225.3	414.9	407.18	416.85	208.47
GET	linear	O(n)	10	50	50	9	302.77	229.34	406.5	352.7	409.87	210.71
GET	linear	O(n)	10	50	50	10	78.53	219.01	434.6	368.93	369.51	223.16
	·						•	·			•	'
POST	linear	O(n)	10	50	50	1	62.16	56.93	66.08	95.97	7.14	50.01
POST	linear	O(n)	10	50	50	2	88.1	123.33	135.9	109.41	16.73	56.61

metode	skenario	kompleksitas	jumlah	0	n	pengujian			frame	work		
HTTP	skellallo	Kompieksitas	data	С	n	ke-	express	hapi	koa	nest	elysia	fastify
POST	linear	O(n)	10	50	50	3	149.84	112.94	135.92	144.25	27.6	78.97
POST	linear	O(n)	10	50	50	4	148.69	142.05	181.26	127.93	27.97	67.39
POST	linear	O(n)	10	50	50	5	159.74	124.96	150.99	152.92	28.46	54.37
POST	linear	O(n)	10	50	50	6	141.15	126.7	127.39	192.02	26.55	73.55
POST	linear	O(n)	10	50	50	7	211.57	56.67	189.65	176.94	28.06	81.42
POST	linear	O(n)	10	50	50	8	161.07	147.16	179.12	202.31	37.16	61.44
POST	linear	O(n)	10	50	50	9	185.19	153.67	148.28	150.74	34.81	84.63
POST	linear	O(n)	10	50	50	10	181.1	166.84	153.57	142.32	32.99	95.36
			i	•			-	i				
PUT	linear	O(n)	10	50	50	1	102.64	106.73	105.24	116.22	64.18	43.78
PUT	linear	O(n)	10	50	50	2	116.62	147.27	125.55	136.54	138.83	67.6
PUT	linear	O(n)	10	50	50	3	133.82	144.92	118.06	167.91	126.33	58.16
PUT	linear	O(n)	10	50	50	4	129.55	147.24	138.69	162.97	129.84	22.84
PUT	linear	O(n)	10	50	50	5	20.53	144.93	141.25	175.86	135.52	62.66
PUT	linear	O(n)	10	50	50	6	159.36	140.5	156.46	167.47	154.13	76.39
PUT	linear	O(n)	10	50	50	7	145.68	108.11	145.08	181.7	156.5	75.66
PUT	linear	O(n)	10	50	50	8	155.78	163.05	152.11	184.58	142.92	75.27
PUT	linear	O(n)	10	50	50	9	139.29	132.27	134.74	181.72	154.03	81.9
PUT	linear	O(n)	10	50	50	10	120.76	190.23	143.83	194.45	148.34	84.8
DELETE	linear	O(n)	1000	50	5000	1	602.67	410.22	490.02	569.61	684.19	584.14
DELETE	linear	O(n)	1000	50	5000	2	594.91	411.45	489.76	524.03	706.27	588.07
DELETE	linear	O(n)	1000	50	5000	3	602.02	410.9	472.78	519.85	697.49	579.03
DELETE	linear	O(n)	1000	50	5000	4	600.06	409.98	491.58	560.89	701.23	584.16
DELETE	linear	O(n)	1000	50	5000	5	599.41	414.63	490.97	567.78	699.98	575.25
DELETE	linear	O(n)	1000	50	5000	6	603.33	413.5	489.15	566.04	691.36	583.73

metode	ckanaria	kompleksitas	jumlah	0	n	pengujian			frame	work		
HTTP	skenario	Kompieksitas	data	C	n	ke-	express	hapi	koa	nest	elysia	fastify
DELETE	linear	O(n)	1000	50	5000	7	593.95	407.96	490.36	569.53	699.35	592.48
DELETE	linear	O(n)	1000	50	5000	8	603.99	402.57	490.36	566.91	708.81	576.08
DELETE	linear	O(n)	1000	50	5000	9	594.27	415.95	484.36	571.88	704.37	585.89
DELETE	linear	O(n)	1000	50	5000	10	597.15	413.13	488.85	563.45	705.63	585.46

Lampiran 5 : data mentah hasil pengujian tool mitata js

metode	skenario	Iromplakaitas	jumlah	pengujian ke -			fram	nework		
http	skenario	kompleksitas	data	pengujian ke -	express	hapi	koa	nest	elysia	fastify
GET	konstan	O(1)	0	1	1022089	1451571.2	1511593	1400932	1731125.895	1304782
GET	konstan	O(1)	0	2	737195.1	1115308.45	1222000	1055878	1100928.647	1100732
GET	konstan	O(1)	0	3	573451	981204.496	1108466	1036733	767457.4209	906029.7
GET	konstan	O(1)	0	4	574366.3	994818.367	843112	1356157	885033.0056	678109.6
GET	konstan	O(1)	0	5	726227.4	711490.26	919230.3	686755.6	485634.6451	1015471
GET	konstan	O(1)	0	6	932256.4	680608.515	847378	740515.7	567179.0279	570695.2
GET	konstan	O(1)	0	7	808155.2	604713.714	567265	866927.9	484291.5615	566336.6
GET	konstan	O(1)	0	8	486026.3	741682.583	510289.7	841602	387834.6344	571569.5
GET	konstan	O(1)	0	9	480916.1	616377.162	482082.2	609920.6	378183.2432	477823.4
GET	konstan	O(1)	0	10	480451.8	798989.139	654273.5	597691.8	371816.7552	514791.5
GET	linear	o(n)	10	1	1745188	1843197.96	1711867	1994651	1873858.929	1564636
GET	linear	o(n)	10	2	1191228	1356112.23	1241243	1644357	1399636.062	1384190
GET	linear	o(n)	10	3	1143444	1308935.48	1056458	1297083	1055858.319	1865091
GET	linear	o(n)	10	4	1121941	1251613.89	1114973	1184838	1040197.039	1146974
GET	linear	o(n)	10	5	1362206	1350446	1038251	1190457	1153851.46	1269726
GET	linear	o(n)	10	6	1169045	1919960.79	1755972	1626921	1420005.869	1465767
GET	linear	o(n)	10	7	1620133	1470555.06	1457419	1282861	930570.1031	1808229

metode	skenario	kompleksitas	jumlah	pengujian ke -						
http	skellallo	Kompieksitas	data	pengujian ke -	express	hapi	koa	nest	elysia	fastify
GET	linear	o(n)	10	8	1366846	1544464.43	1113528	1560139	1669574.536	1451317
GET	linear	o(n)	10	9	1110567	1553256.42	1125526	1214150	1453296.552	1161783
GET	linear	o(n)	10	10	1129196	1564848.38	1191409	1259354	1025044.822	1233592
GET	linear	o(n)	100	1	1500491	3137687.44	1995418	1560783	1698398.365	1535404
GET	linear	o(n)	100	2	1413177	2833362.5	1388123	2479963	1865168.142	1422277
GET	linear	o(n)	100	3	1334930	2800368.02	1341850	1652931	1268141.851	1759639
GET	linear	o(n)	100	4	1353284	3065638.31	1337115	1472717	1384226.316	1388089
GET	linear	o(n)	100	5	1552721	3815719.02	1363957	1531143	1171425.693	1921773
GET	linear	o(n)	100	6	1349093	5299945.95	1992460	1459909	2317845.956	1949018
GET	linear	o(n)	100	7	1400998	5139377.78	1404876	1645932	1146307.26	1794717
GET	linear	o(n)	100	8	2438545	5430602.86	1306883	1748946	1380006.114	1453539
GET	linear	o(n)	100	9	1361025	3440073.18	1276670	1564033	1120938.475	1566518
GET	linear	o(n)	100	10	1364888	14703190.2	1425112	1635643	1532836.253	1346238
GET	linear	o(n)	500	1	2847469	4129577.12	2847469	2955054	2334543.911	2713429
GET	linear	o(n)	500	2	2375859	4129685.43	2375859	3184886	2337074.908	2369358
GET	linear	o(n)	500	3	2336005	4131611.33	2336005	2640856	2107947.315	2673079
GET	linear	o(n)	500	4	2409943	4598822.63	2409943	2779375	2141144.595	2458363
GET	linear	o(n)	500	5	2411775	6911602.27	2411775	3369574	2333898.148	2467245
GET	linear	o(n)	500	6	3005861	5417648.28	3005861	3185122	2157766.552	3692408
GET	linear	o(n)	500	7	2689077	7099725.88	2689077	2735348	1868667.164	2865127
GET	linear	o(n)	500	8	2677505	7672623.75	2677505	2637462	2733072.174	2535688
GET	linear	o(n)	500	9	2422019	35293386.7	2422019	2767520	1884888.393	2889401
GET	linear	o(n)	500	10	2459482	10133750	2459482	3111814	2120367.785	2402720
GET	linear	o(n)	1000	1	2684608	6007742.72	3618978	3913756	2607874.689	3872518
GET	linear	o(n)	1000	2	2402068	5561804.42	3403071	3949163	3914523.899	3721488

metode	skenario	kompleksitas	pleksitas jumlah pengujian ke -						framework				
http	skellario	Kompieksitas	data	pengujian ke -	express	hapi	koa	nest	elysia	fastify			
GET	linear	o(n)	1000	3	2571919	6305117.53	3382538	3624738	2840209.009	3638955			
GET	linear	o(n)	1000	4	2734327	6197101.01	3458013	3651102	2665765.823	3364883			
GET	linear	o(n)	1000	5	2580640	7517893.83	3431011	3720275	2648675.847	3614397			
GET	linear	o(n)	1000	6	2379252	9729567.8	3851492	3796790	2544198.78	4596930			
GET	linear	o(n)	1000	7	2520589	14015390	3613298	4033816	2729821.121	3932199			
GET	linear	o(n)	1000	8	2586063	9462445.31	3539024	4144540	2956436.493	4313855			
GET	linear	o(n)	1000	9	2453200	13142279.5	4113889	3708541	2618673.967	3652468			
GET	linear	o(n)	1000	10	2450017	13174908.9	3533669	4040821	2720334.483	3869806			
POST	linear	o(n)	10	1	2360683	2554957.49	2248058	2441370	3871061.35	2222896			
POST	linear	o(n)	10	2	1242179	1491171.43	1254704	1764534	2885071.233	1696384			
POST	linear	o(n)	10	3	1164320	1386509.03	1149231	1568127	2077535.855	1343358			
POST	linear	o(n)	10	4	1121534	1490788.84	1148415	1222495	2032146.154	1168464			
POST	linear	o(n)	10	5	1218878	1612220.37	1084076	1258373	2654718.487	1308066			
POST	linear	o(n)	10	6	1105730	2260635.9	1909274	1774124	3027334.928	1691986			
POST	linear	o(n)	10	7	1558377	1586754.66	1201583	1508608	1883272.619	1716037			
POST	linear	o(n)	10	8	1382068	1576802.3	1617739	1607915	1934087.156	1252970			
POST	linear	o(n)	10	9	1092651	1662759.79	1109941	1415160	2647197.468	1026722			
POST	linear	o(n)	10	10	1100180	6798695.35	1178327	1208215	2290785.507	1075977			
POST	linear	o(n)	100	1	2364484	2345116.21	2655592	2489374	10043040.98	2565847			
POST	linear	o(n)	100	2	1800140	2479981.36	1851944	2519466	17390719.44	1710391			
POST	linear	o(n)	100	3	1605947	2375945.34	1604798	1942899	15012587.8	2659638			
POST	linear	o(n)	100	4	1590880	1997967.85	1558374	2048319	10102927.87	1617556			
POST	linear	o(n)	100	5	1797497	3204611.64	1594067	2000218	10778457.89	2076816			
POST	linear	o(n)	100	6	1718179	2499969.39	3193348	3893724	29203450	1771393			
POST	linear	o(n)	100	7	2061296	3015373.82	2499668	1985561	9480710.769	2722113			
POST	linear	o(n)	100	8	2050699	2389899.15	1960992	3262642	12256842	1799159			

metode	skenario	kompleksitas	jumlah	pengujian ke -	framework							
http	skellario	Kompieksitas	data	pengujian ke -	express	hapi	koa	nest	elysia	fastify		
POST	linear	o(n)	100	9	1596191	3691134.21	1569732	2247179	12565270.83	1615866		
POST	linear	o(n)	100	10	1611107	4067088.19	1587273	2069809	22438292.59	1752120		
POST	linear	o(n)	500	1	5515451	5248995.24	5614207	7323624	46831308.33	7064774		
POST	linear	o(n)	500	2	4835200	4171768.33	4501981	10626791	83099433.33	4239765		
POST	linear	o(n)	500	3	4537080	3919813.67	4383363	6656665	53596890	7464390		
POST	linear	o(n)	500	4	4519936	4805655.86	4858396	4646066	57481960	4606090		
POST	linear	o(n)	500	5	4172679	6837329.35	3798694	6063528	82782233.33	4293150		
POST	linear	o(n)	500	6	4528689	11250374	5955735	8223207	50136509.09	4089973		
POST	linear	o(n)	500	7	6058143	10310371.4	4949077	6785120	46605725	6110124		
POST	linear	o(n)	500	8	5494119	6367488.51	4287977	7225029	81486380	4543213		
POST	linear	o(n)	500	9	3673773	10108432.3	5171571	6413416	42279307.69	5388917		
POST	linear	o(n)	500	10	5029723	24392070	4507094	5072592	62256237.5	4544408		
POST	linear	o(n)	1000	1	6615739	7785329.33	6972481	9838232	95708220	9556506		
POST	linear	o(n)	1000	2	8695049	8328417.24	5868297	12321184	242627733.3	7009428		
POST	linear	o(n)	1000	3	5920370	8625360	5313586	9669974	89330100	7206624		
POST	linear	o(n)	1000	4	7019403	9079180.6	7881101	7758211	142809940	9235884		
POST	linear	o(n)	1000	5	6892157	8219859.15	5291622	13154996	87349750	7263225		
POST	linear	o(n)	1000	6	8650115	14458876.7	9287461	15628820	85221816.67	8462142		
POST	linear	o(n)	1000	7	8868700	14436397.6	7026241	12081707	89272500	15058500		
POST	linear	o(n)	1000	8	8668173	9588114.06	5313105	8901875	100399160	8208195		
POST	linear	o(n)	1000	9	6417368	18102477.4	6944401	8564428	99880320	6431778		
POST	linear	o(n)	1000	10	5872503	14898721.6	5897463	9927194	91161500	6307782		
PUT	linear	o(n)	10	1	2177612	2650134.73	2076886	3218051	1897798.503	1979880		
PUT	linear	o(n)	10	2	1631222	1933612.23	1725023	2235377	1414874.944	1651647		
PUT	linear	o(n)	10	3	1607678	1877157.66	1597222	1867180	1993194.304	2465012		
PUT	linear	o(n)	10	4	1600653	1838181.4	1578377	1704027	1293662.012	1852707		

metode	skenario	kompleksitas	jumlah	pengujian ke -						
http	skenano	Kompieksitas	data	pengujian ke -	express	hapi	koa	nest	elysia	fastify
PUT	linear	o(n)	10	5	1884124	2460152.36	1536518	1605859	1323000.837	1900170
PUT	linear	o(n)	10	6	1590631	2224813.17	2236294	1896488	1859570.175	2221316
PUT	linear	o(n)	10	7	2102187	1925708.81	2222716	1843259	1582187.563	3636249
PUT	linear	o(n)	10	8	2136594	2046734.74	1629944	2635908	1883938.69	2260790
PUT	linear	o(n)	10	9	1521262	2036026.13	1609421	1679914	1330946.234	1729347
PUT	linear	o(n)	10	10	1547997	2732293.39	1644210	1575380	1564404.938	3012424
PUT	linear	o(n)	100	1	2077447	2444898.83	3084948	2182351	1872255	2093154
PUT	linear	o(n)	100	2	1953665	2445164.06	1967033	3150218	1877990.855	2021735
PUT	linear	o(n)	100	3	1855259	2328597.77	1905692	2252624	1695166.667	2415468
PUT	linear	o(n)	100	4	1775899	2221017.56	1840809	1920283	1678149.604	2252738
PUT	linear	o(n)	100	5	1930159	2965945.05	1861976	2452182	1841541.279	2101825
PUT	linear	o(n)	100	6	1868764	2642122.18	3649480	2057997	2827926.697	2105955
PUT	linear	o(n)	100	7	1905151	2700985.65	1935574	1978114	1914784.592	2477600
PUT	linear	o(n)	100	8	2623550	2399189.16	1831654	2463988	1973360.313	1808924
PUT	linear	o(n)	100	9	2201094	3630406.29	1759023	2010800	1429574.887	1833148
PUT	linear	o(n)	100	10	1829991	2874050	1884766	2391176	1597737.688	2402082
PUT	linear	o(n)	500	1	3119708	3585241.14	3711659	3514837	2764206.637	4056310
PUT	linear	o(n)	500	2	3051020	3562263.64	2940936	3658264	3301353.968	3625926
PUT	linear	o(n)	500	3	2972487	3517848.02	2978952	3067822	2579629.675	3602545
PUT	linear	o(n)	500	4	3495287	3598403.49	2917928	3012062	2781225.893	3028308
PUT	linear	o(n)	500	5	3039636	3833032.12	2902071	3734777	2966275.943	3623091
PUT	linear	o(n)	500	6	3010055	4255033.81	3209569	3429867	2742697.835	3617921
PUT	linear	o(n)	500	7	3222810	6399397.94	3410610	3216383	2485537.795	4635447
PUT	linear	o(n)	500	8	3125750	3809962.05	3029081	3163982	3837968.293	4356571
PUT	linear	o(n)	500	9	2977275	5543506.8	2878865	3048730	2463335.019	3314411
PUT	linear	o(n)	500	10	2933331	4918362.99	3122675	4375111	2978155.66	3175868

metode	skenario	Irommlalraitas	jumlah	nonoviion Iro			fram	ework		
http	skenario	kompleksitas	data	pengujian ke -	express	hapi	koa	nest	elysia	fastify
PUT	linear	o(n)	1000	1	4980470	5502902.63	4666195	6299972	4029728.387	4772773
PUT	linear	o(n)	1000	2	4671138	5465197.37	4611892	5188408	6418528.571	5779825
PUT	linear	o(n)	1000	3	4465259	7124024.42	4643145	5305938	4486117.266	6148970
PUT	linear	o(n)	1000	4	4923296	6295136.36	4665651	4654251	4673079.545	4809427
PUT	linear	o(n)	1000	5	4728027	6453775.53	4748764	4777167	3738679.042	4753044
PUT	linear	o(n)	1000	6	4596480	9984506.56	4841053	4695374	3743964.497	5671556
PUT	linear	o(n)	1000	7	4892084	8298100	4924188	4689250	3888736.646	4826560
PUT	linear	o(n)	1000	8	5210774	7763732.89	4803358	4963069	4178039.735	5871916
PUT	linear	o(n)	1000	9	4654441	17693896.9	5413560	4925416	4334300	4909494
PUT	linear	o(n)	1000	10	4636570	12168826	4654476	5812220	3832905.455	5768765
DELETE	linear	o(n)	10	1	1199796	1621570.51	1367682	1479293	1554257.882	1297259
DELETE	linear	o(n)	10	2	1027873	1338869.96	1148799	1530586	1147808.073	1040869
DELETE	linear	o(n)	10	3	1005717	1227454.56	957109.4	1180401	1385486.245	1219158
DELETE	linear	o(n)	10	4	947034.4	1263616.83	979347.7	1151160	828413.4289	953484.4
DELETE	linear	o(n)	10	5	1232744	1423184.34	934981.2	1077323	952745.6964	1434548
DELETE	linear	o(n)	10	6	986252.8	1485699.76	1341922	1236675	1450172.874	1194611
DELETE	linear	o(n)	10	7	1311878	1352847.06	1719928	1149781	1053622.259	1960678
DELETE	linear	o(n)	10	8	1431429	1273264.9	946996.6	2568552	1045522.517	1066120
DELETE	linear	o(n)	10	9	935531.9	1351059.17	1182401	1345377	1021016.801	1152369
DELETE	linear	o(n)	10	10	946110.2	2208551.43	1012035	1077325	925374.2313	1325640
DELETE	linear	o(n)	100	1	1097260	1458486.87	1512383	1418472	1077945.254	1340791
DELETE	linear	o(n)	100	2	982474.9	1357793.78	1019265	1816354	970054.6851	1206867
DELETE	linear	o(n)	100	3	980501.9	1315479.17	973833.5	1272421	1341152.665	1335394
DELETE	linear	o(n)	100	4	998336.3	1395271.4	990640.5	1106907	850737.6344	1409445
DELETE	linear	o(n)	100	5	988411.2	1748269.72	975094.1	1600283	872873.6111	1350473
DELETE	linear	o(n)	100	6	962525.2	1640253.26	1867769	1279641	1980489.457	1012536

metode	alramania	Irommlalraitas	jumlah	nonquiion Iro	framework						
http	skenario	kompleksitas	data	pengujian ke -	express	hapi	koa	nest	elysia	fastify	
DELETE	linear	o(n)	100	7	1120593	1803100.57	1004867	1117409	1376295.842	1517648	
DELETE	linear	o(n)	100	8	1354366	1660912.37	931758.5	1349933	1247230.435	1022329	
DELETE	linear	o(n)	100	9	961370.5	1872003.63	1005196	1133803	912969.8251	903832.5	
DELETE	linear	o(n)	100	10	1059441	2498131.75	1161914	1599551	926890.8148	1169731	
DELETE	linear	o(n)	500	1	1223962	1398904.89	1387244	1466092	1263069.721	1316618	
DELETE	linear	o(n)	500	2	1009475	1397875.38	992259.2	1280057	1420398.658	1059521	
DELETE	linear	o(n)	500	3	905179.4	1336566.67	977956.4	1380517	950671.6642	1119317	
DELETE	linear	o(n)	500	4	1443579	1613643.91	934130.2	1173543	881505.9474	909189.9	
DELETE	linear	o(n)	500	5	1002810	1801082.32	979693.2	1364799	842119.5739	1017167	
DELETE	linear	o(n)	500	6	1027579	2329798.9	1004624	1169531	1043872.414	1205765	
DELETE	linear	o(n)	500	7	1109090	1559289.92	1134456	1066980	930972.9013	1858496	
DELETE	linear	o(n)	500	8	1046597	1513664.72	931274.9	1118819	1315427.708	1158946	
DELETE	linear	o(n)	500	9	975228.4	1988720.5	868790.1	1118267	880883.8483	1002075	
DELETE	linear	o(n)	500	10	1027731	4050700	1021792	1345004	802249.4282	987737.4	
DELETE	linear	o(n)	1000	1	1129455	1423076.08	1096578	2216100	1151645.173	1162831	
DELETE	linear	o(n)	1000	2	1033085	1439100.68	971280	1299632	1931093.458	1098308	
DELETE	linear	o(n)	1000	3	1015444	1854511.83	998227.3	1107006	1143350.633	1362395	
DELETE	linear	o(n)	1000	4	975504.4	1420158.26	994715.7	1192457	1326888.518	920643.8	
DELETE	linear	o(n)	1000	5	1135570	1843709.04	982715	1071552	822522.0339	972770.7	
DELETE	linear	o(n)	1000	6	1036062	1547361.4	1062689	1431643	838968.8742	1505633	
DELETE	linear	o(n)	1000	7	1093476	2057438.44	970784.5	1198069	787360.9877	1354950	
DELETE	linear	o(n)	1000	8	1008703	1575511.9	896702.8	1230779	1043182.787	1335930	
DELETE	linear	o(n)	1000	9	1015566	1487449.64	1524701	1099411	1095104.131	974624.4	
DELETE	linear	o(n)	1000	10	926875.5	2487617.78	1015597	1297920	1140792.652	1017232	