

Velammal College of Engineering and Technology

Viraganoor, Madurai – 625 009 (Autonomous)

B.E. End Semester Examinations November 2023

First Semester Time: 3 Hours Regulation 2021 Max. Marks 100

21MA101 - Matrices and Calculus

(Common to All Branches)

Answer ALL Questions PART-A (10 x 2 = 20 Marks)

Find the Sum and Product of the Eigen values of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$

- 2. Find the nature of the quadratic form $f(x_1, x_2, x_3) = 2x_1^2 x_2^2$.
- 3. Interpret the given function $f(x) = x^2$ is an even or odd.
- 4. Demonstrate $\frac{dy}{dx}$ if $x^2 + y^2 = 16$
- 5. Demonstrate the Jacobian $\frac{\partial(u,v)}{\partial(x,y)}$ if $u = \frac{2x-y}{2}, v = \frac{y}{2}$
- 6. Compute $\frac{du}{dt}$ if given $u = x^2 + y^2$, $x = at^2$, y = 2at
- 7. Evaluate $\int (e^{2x} + 3x 7)dx$.
- 8. Demonstrate the value of $\int_{-10}^{10} x^2 \sin x dx$.
- 9. Evaluate $\iint_{1}^{a} xydxdy$.
- 10. Evaluate $\int_{0}^{\pi} \int_{0}^{\cos \theta} r dr d\theta.$

$Part - B (5 \times 16 = 80)$

Apply Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$, find A^{-1} and A^4 .

- b) Reduce the quadratic form $x_1^2 + x_2^2 + x_3^2 2x_1x_2 2x_2x_1 2x_1x_3$ to canonical form through an orthogonal transformation and also find rank. Index, signature and nature.
- 12. a) (i) Compute the domain, range for $f(x) = \sqrt{5x + 10}$
 - (ii) Compute the infinite limit value of $\frac{Lim}{x \to -3}, \frac{x+2}{x+3}$. (8 + 8 Marks)

OR

- b) (i) Demonstrate $\frac{dy}{dx}$ if $y = (\sin x)^x$. (8 + 8 Marks)
 - (ii) Obtain the local maximum and minimum value of the function $f(x) = x + 2 \sin x$ in $[0,2\pi]$
- 13. a) (i) Apply Taylor's series, expand $e' \cos y$ in powers of x and y up to second degree.
 - (ii) A rectangular box, open at the top, is to have a volume of 32cc. Make use of the information, find the dimensions of the box that requires the least material for its construction.

 (8 + 8 Marks)

OR

- b) (i) If z = f(x, y), where $x = u^2 v^2$ and y = 2uv, Develop that $\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = 4\left(u^2 + v^2\left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}\right)\right)$
 - (ii) Obtain the absolute maximum and minimum value of the function $f(x) = 3x^4 4x^3 12x^2 + 1$ in [-2, 3] (8 + 8 Marks)
- (i) Apply the integral property, evaluate $\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a x}} dx$
 - (ii) Compute $\int e^{ax} \sin bx \, dx$ by using integration by parts.

(8 + 8 Marks)

OR

- Apply the integral concepts, evaluate $\int \tan^{-1} x dx$ and hence deduce the value of $\int_{0}^{1} \tan^{-1} x dx$.
- (i) Apply the concept of Change the order of integration, evaluate $\int_{0}^{4a} \int_{\frac{x^{2}}{4a}}^{4a} xydydx.$
 - (ii) Calculate the area between the parabolas $x^2 = 4ay$ and $y^2 = 4ax$ (8 + 8 Marks

OR

b) Apply triple integral concept, find the volume of the ellipsoid.