Devoir à la maison n° 5 : corrigé

SOLUTION 1.

1. La fonction $x \mapsto x(a - bx)$ et continue donc bornée sur le segment $[0, \pi]$. Il existe donc $K \in \mathbb{R}_+$ tel que $\forall x \in [0, \pi]$, $|x(a - bx)| \leq K$. De plus, $\forall x \in [0, \pi]$, $|\sin x| \leq 1$. Ainsi pour tout $n \in \mathbb{N}$

$$|I_n|\leqslant \int_0^\pi \frac{|x(a-bx)|^n}{n!} |\sin x| \ dx \leqslant \int_0^\pi \frac{K^n}{n!} \ dx = \frac{K^n}{n!} \pi$$

 $\mathrm{Or}\, \lim_{n\to +\infty} \frac{K^n}{n!} = 0. \; \mathrm{On} \; \mathrm{en} \; \mathrm{d\'eduit} \; \mathrm{que} \; (I_n) \; \mathrm{converge} \; \mathrm{vers} \; 0 \; \mathrm{puisque} \; K^n \underset{n\to +\infty}{=} o(n!).$

Remarque. Si on ne souhaite pas utiliser de résultat théorique sur la continuité, on peut également étudier la fonction $x\mapsto x(a-bx)$ sur $[0,\pi]$. On prouve aisément que cette fonction est positive sur $[0,\pi]$ et qu'elle admet un maximum en $\frac{a}{2b}=\frac{\pi}{2}$ valant $\frac{a^2}{4b}$. De plus, $0\leqslant \sin x\leqslant 1$ pour tout $x\in [0,\pi]$, ce qui permet d'affirmer par croissance de l'intégrale que pour tout $n\in\mathbb{N}$

$$0\leqslant I_n\leqslant \pi\frac{\left(\frac{\alpha^2}{4b}\right)^n}{n!}$$

On conclut avec le théorème des gendarmes.

2. On a $I_0=\int_0^\pi \sin x \; dx=2.$ On calcule I_1 par intégration par parties :

$$I_{1} = \int_{0}^{\pi} x(a - bx) \sin x \, dx = -\left[x(a - bx) \cos x\right]_{0}^{\pi} + \int_{0}^{\pi} (a - 2bx) \cos x \, dx$$

Or $a - b\pi = 0$ donc, par une nouvelle intégration par parties :

$$I_1 = \int_0^{\pi} (a - 2bx) \cos x \, dx = [(a - 2bx) \sin x]_0^{\pi} + 2b \int_0^{\pi} \sin x \, dx = 4b$$

3. La méthode par excellence pour déterminer des relations de récurrence entre intégrales est à nouveau l'intégration par parties. On remarquera que la dérivée de $x\mapsto \frac{x^k(a-bx)^k}{k!}$ est $x\mapsto \frac{x^{k-1}(a-bx)^{k-1}}{(k-1)!}(a-2bx)$. Allons-y!

$$\begin{split} I_{n+2} &= \int_0^\pi \frac{x^{n+2}(a-bx)^{n+2}}{(n+2)!} \sin x \, dx \\ &= -\left[\frac{x^{n+2}(a-bx)^{n+2}}{(n+2)!} \cos x\right]_0^\pi + \int_0^\pi \frac{x^{n+1}(a-bx)^{n+1}}{(n+1)!} (a-2bx) \cos x \, dx \\ &= \int_0^\pi \frac{x^{n+1}(a-bx)^{n+1}}{(n+1)!} (a-2bx) \cos x \, dx \\ &= \left[\frac{x^{n+1}(a-bx)^{n+1}}{(n+1)!} (a-2bx) \sin x\right]_0^\pi + 2b \int_0^\pi \frac{x^{n+1}(a-bx)^{n+1}}{(n+1)!} \sin x \, dx - \int_0^\pi \frac{x^n(a-bx)^n}{n!} (a-2bx)^2 \sin x \, dx \\ &= 2bI_{n+1} - \int_0^\pi \frac{x^n(a-bx)^n}{n!} (a^2-4bx(a-bx)) \sin x \, dx \\ &= 2bI_{n+1} - a^2I_n + 4(n+1)bI_{n+1} = 2b(2n+3)I_{n+1} - a^2I_n \end{split}$$

4. I_0 et I_1 sont des entiers. La relation de récurrence précédente montre que I_n est entier pour tout $n \in \mathbb{N}$. Comme (I_n) converge vers 0, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, $|I_n| \le \frac{1}{2}$. Comme les I_n sont des entiers, $I_n = 0$ pour $n \ge N$. Ainsi (I_n) est stationnaire de limite nulle.

Soit $n \ge N$. On a donc $I_n = 0$. Or l'application $f: x \mapsto \frac{x^n(a-bx)^n}{n!} \sin x$ est positive et continue sur $[0,\pi]$. On en déduit qu'elle est nulle sur $[0,\pi]$, ce qui est faux. Par exemple, $f(\frac{\pi}{2}) > 0$. Il y a contradiction : π n'est pas rationnel.

Solution 2.

1. On a facilement $I_0 = \frac{\pi}{2}$, $J_0 = \frac{\pi^3}{24}$, $I_1 = 1$. Pour le calcul de J_1 , on intègre deux fois par parties :

$$\begin{split} J_1 &= \left[t^2 \sin t\right]_0^{\frac{\pi}{2}} - 2 \int_0^{\frac{\pi}{2}} t \sin t \, dt \\ &= \frac{\pi^2}{4} + 2 \left[t \cos t\right]_0^{\frac{\pi}{2}} - 2 \int_0^{\frac{\pi}{2}} \cos t \, dt \\ &= \frac{\pi^2}{4} - 2 \end{split}$$

- 2. Soit $n \in \mathbb{N}$. La fonction \cos^n est continue, positive et non constamment nulle sur $\left[0, \frac{\pi}{2}\right]$ donc son intégrale sur ce segment est stritement positive i.e. $I_n > 0$.
- 3. Soit $n \in \mathbb{N}$. On procède à nouveau à une intégration par parties :

$$\begin{split} I_{n+2} &= \left[\sin t \cos^{n+1} t \right]_0^{\frac{\pi}{2}} + (n+1) \int_0^{\frac{\pi}{2}} \sin^2 t \cos^n t \, dt \\ &= (n+1) \int_0^{\frac{\pi}{2}} (1 - \cos^2 t) \cos^n t \, dt \\ &= (n+1) (I_n - I_{n+2}) \end{split}$$

On en déduit l'égalité demandée.

4. a. Il est évident que $t \ge 0$ pour $t \in [0, \frac{\pi}{2}]$.

Pour établir l'autre inégalité, il suffit d'utiliser la concavité de la fonction sin sur $\left[0,\frac{\pi}{2}\right]$. En effet, sur l'intervalle $\left[0,\frac{\pi}{2}\right]$, le graphe de cette fonction est au-dessus de la corde reliant les points d'abscisse 0 et $\frac{\pi}{2}$. Ainsi pour tout $t\in\left[0,\frac{\pi}{2}\right]$, sin $t\geqslant\frac{2t}{\pi}$ et on en déduit bien la seconde inégalité demandée.

Pour les nouvelles générations qui ignoreront tout de la convexité, on introduit la fonction $f: t \mapsto \frac{\pi}{2} \sin t - t$. f est deux fois dérivable sur $\left[0, \frac{\pi}{2}\right]$ et $f''(t) = -\frac{\pi}{2} \sin t$ pour tout $t \in \left[0, \frac{\pi}{2}\right]$. Ainsi f'' est négative sur $\left[0, \frac{\pi}{2}\right]$ et ne s'annule qu'en 0 ce qui prouve la stricte décroissance de f'. On a $f'(0) = \frac{\pi}{2} - 1 > 0$ et $f'\left(\frac{\pi}{2}\right) = -1 < 0$. f' étant également continue, le corollaire du théorème des valeurs intermédiaires montre que f' s'annule en un unique réel α sur $\left[\alpha, \frac{\pi}{2}\right]$. La décroissance de f' montre que f' est positive sur $\left[0, \alpha\right]$ et négative sur $\left[\alpha, \frac{\pi}{2}\right]$. Ainsi f est croissante sur $\left[0, \alpha\right]$ et décroissante sur $\left[0, \frac{\pi}{2}\right]$. Puisque $f(0) = f\left(\frac{\pi}{2}\right) = 0$, f est positive sur $\left[0, \frac{\pi}{2}\right]$.

b. Soit $n \in \mathbb{N}$. On a donc par croissance de l'intégrale

$$0 \leqslant J_n \leqslant \int_0^{\frac{\pi}{2}} \frac{\pi^2}{4} \sin^2 t \cos^n t \, dt = \frac{\pi^2}{4} \int_0^{\frac{\pi}{2}} (1 - \cos^2 t) \cos^n t \, dt = \frac{\pi^2}{4} (I_n - I_{n+2})$$

c. Soit $n \in \mathbb{N}$. Puisque $I_n > 0$

$$0\leqslant \frac{J_n}{I_n}\leqslant \frac{\pi^2}{4}\left(1-\frac{I_{n+2}}{I_n}\right)$$

Or d'après la question 3, $\frac{I_{n+2}}{I_n} = \frac{n+1}{n+2} \underset{n \to +\infty}{\longrightarrow} 1$. Par le théorème des gendarmes, $\left(\frac{I_n}{I_n}\right)$ converge vers 0.

5. a. On procède encore une fois à des intégrations par parties :

$$\begin{split} I_{n+2} &= \left[t\cos^{n+2}t\right]_0^{\frac{\pi}{2}} + (n+2)\int_0^{\frac{\pi}{2}}t\sin t\cos^{n+1}t\,dt \\ &= (n+2)\left[\frac{t^2}{2}\sin t\cos^{n+1}t\right]_0^{\frac{\pi}{2}} - (n+2)\int_0^{\frac{\pi}{2}}\frac{t^2}{2}\left(\cos^{n+2}t - (n+1)\sin^2t\cos^nt\right)\,dt \\ &= -\frac{1}{2}(n+2)\int_0^{\frac{\pi}{2}}t^2\left(\cos^{n+2}t - (n+1)(1-\cos^2t)\cos^nt\right)\,dt \\ &= -\frac{1}{2}(n+2)\int_0^{\frac{\pi}{2}}t^2\left((n+2)\cos^{n+2}t - (n+1)\cos^nt\right)\,dt \\ &= \frac{1}{2}\left((n+2)(n+1)J_n - (n+2)^2J_{n+2}\right) \end{split}$$

b. En utilisant la question **3**

$$\frac{J_n}{I_n} - \frac{J_{n+2}}{I_{n+2}} = \frac{(n+1)J_n}{(n+2)I_{n+2}} - \frac{J_{n+2}}{I_{n+2}} = \frac{\frac{n+1}{n+2}J_n - J_{n+2}}{I_{n+2}}$$

En utilisant maintenant la question précédente :

$$\frac{J_n}{I_n} - \frac{J_{n+2}}{I_{n+2}} = \frac{\frac{n+1}{n+2}J_n - J_{n+2}}{\frac{1}{2}\left((n+2)(n+1)J_n - (n+2)^2J_{n+2}\right)} = \frac{2}{(n+2)^2}$$

 $\textbf{6.} \ \, \text{En sommant les \'egalit\'es de la question pr\'ec\'edente pour } \, n \in \llbracket 0,N \rrbracket \, \, (\text{avec } N \geqslant 1), \, \text{on obtient par t\'elescopage}$

$$\frac{J_0}{I_0} + \frac{J_1}{I_1} - \frac{J_{N+1}}{I_{N+1}} - \frac{J_{N+2}}{I_{N+2}} = 2\sum_{n=0}^{N} \frac{1}{(n+2)^2} = 2S_{N+2} - 2$$

En utilisant la question 4.c, on en déduit que (S_n) converge vers $\frac{1}{2}\left(\frac{J_0}{I_0} + \frac{J_1}{I_1}\right) + 1$. En utilisant les résultats de la question 1, on a :

$$\begin{aligned} \frac{1}{2} \left(\frac{J_0}{I_0} + \frac{J_1}{I_1} \right) + 1 &= \frac{1}{2} \left(\frac{\frac{\pi^3}{24}}{\frac{\pi}{2}} + \frac{\frac{\pi^2}{4} - 2}{1} \right) + 1 \\ &= \frac{1}{2} \left(\frac{\pi^2}{12} + \frac{\pi^2}{4} - 2 \right) + 1 = \frac{\pi^2}{6} \end{aligned}$$