Manifold Learning and Sparse Representation: Assignment 10

ZHANG Yuan, 1601111332

Exercise 165

The mutual-coherence is 0.9988 (the normalized inner product of the last two columns).

Exercise 167

We first compute \tilde{A} with normalized columns. Then compute Gram matrix $G = \tilde{A}^T \tilde{A}$ of \tilde{A} and then sort every row of G in descending order to obtain G_S . Thus,

$$\mu_1(2) = \max_{1 \le j \le 4} G_S(j, 2) + G_S(j, 3) = 0.99880.9981 = 1.9969.$$

Exercise 168

Proof. We can take any p columns of A to construct a sub-matrix A_p and obtain the Gram matrix G_p of A_p . Since $\mu_1(p-1) < 1$ deduces to the sum of off-diagonal of elements of each column is strict less than 1 (let one column equal to j and the other Λ), G_p is strictly diagonally dominant with positive diagonal elements (which is 1) and hence positive definite. Therefore, given $\mu_1(p-1) < 1$, any p columns of A are linear independent and spark(A) > p. In other words, spark(A) should be large or equal than the smallest p such that $\mu_1(p-1) \leq 1$.

Exercise 169

The uncertainty and uniqueness properties follow immediately with the lower bound of spark given in the last exercise.

Uncertainty. $||x_1||_0 + ||x_1||_1 \ge \min p |\mu_1(p-1) \ge 1$.

Uniqueness. If a system of linear equations Ax = b has a solution x obeying $||x||_0 < \frac{1}{2} \min\{p|\mu_1(p-1) \ge 1\}$, this solution is necessarily the sparsest possible.