MA 6-22

- 1. Nalezněte tečnou rovinu ke grafu $z = 2 + x \ln y$ v bodě A = (1, 1, 2) a zjistěte jaký úhel svírá tato rovina s rovinou xy.
- 2. Přepište následující integrál

$$\int_{1}^{2} \int_{0}^{\sqrt{2x-x^2}} f \, dy \, dx$$

nejprve v opačném pořadí integrace a pak v polárních souřadnicích se středem v počátku v pořadí $d\varrho\,d\varphi$.

- 3. Pomocí Greenovy věty vypočtěte obsah množiny omezené křivkou C s parametrizací $\varphi(t) = \left(\sin t, t^2/2\right), \ t \in \langle 0, \pi \rangle$, a osou y. Návod: zvolte vhodné vektrové pole $\vec{F} = (F_1, F_2)$ splňující $\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y} = 1$.
- 4. Mějme pole $\vec{F}=(yz,xz,xy+2z)$. Zjistěte, zda je potenciální a v kladném případě nalezněte jeho potenciál. Spočtěte hodnotu $\int_{(C)} \vec{F} \, d\vec{s}$ podél kladně orientované jednotkové kružnice C ležící v rovině xz a mající střed v bodě (1,0,2).
- 5. Zjistěte pro mocninnou řadu $\sum_{n=0}^{\infty} \frac{(-2)^{n+1}}{n!} x^n$ poloměr konvergence a určete její součet.

Řešení.

1. Normála ke grafu v bodě A je $\vec{n} = \operatorname{grad}(2 + x \ln y - z)\big|_A = (0, 1, -1)$. Odtud máme, že tečná rovina je y - z + 1 = 0. Úhel mezi tečnou rovinou a rovinou xy je úhel mezi jejich normálovými vektory,

$$\cos \alpha = \frac{(0, 1, -1) \cdot (0, 0, 1)}{\sqrt{2}} = -\frac{1}{\sqrt{2}}.$$

Odtud $\alpha=\frac{3}{4}\pi,$ nebo lze vzít i doplňkový úhel, tj. $\alpha=\frac{1}{4}\pi.$

2. Opačné pořadí je $\int_0^1 \int_1^{1+\sqrt{1-y^2}} f \, dx \, dy$ a v polárních souřadnicích

$$\int_0^{\pi/4} \int_{1/\cos\varphi}^{2\cos\varphi} f(\varrho\cos\varphi,\varrho\sin\varphi)\varrho\,d\varrho\,d\varphi.$$

3. Nejvhodnější volba pole je $\vec{F}=(0,x)$. (Volba $\vec{F}=(-y,0)$ je také správná, ale vede na delší výpočet.) Pak

$$\int_{(C)} \vec{F} \, d\vec{s} = \int_0^{\pi} (0, \sin t) \cdot (\cos t, t) \, dt = \int_0^{\pi} t \sin t \, dt = \pi.$$

Protože integrál přes úsečku na ose y je nulový, je obsah množiny π .

- 4. Pole \vec{F} je potenciální s potenciálem $f=xyz+z^2+K$. Integrál přes kružnici je nulový, neboť intergál přes uzavřené křivky je vždy nula.
- 5. Poloměr konvergence $R=\infty$. Řadu napíšeme jako

$$\sum_{n=0}^{\infty} \frac{(-2)^{n+1}}{n!} x^n = -2 \sum_{n=0}^{\infty} \frac{(-2x)^n}{n!} = -2e^{-2x}.$$