**Team: #3** 

Course Project 22/12/2023

Team Project on the course "Principles of Applied Statistics"

#### **A Kernel Test of Goodness of Fit**

Kamil **Garifullin** 

Viktoriia **Zinkovich** 

Maksim Osipenko

# Problems Problems Problems Problems

Motivation for the research

Problems
Problems
Problems
Problems



#### **Problem Statement**



**Goal:** if given a set of sample  $\{Z_i\}_{i=1}^n$  with distributio  $Z_i \sim q$ , our interest is in whether **q matches** some reference or **target distribution p** 

Gorham & Mackey's (2015) approach problems:



**Complexity** of the function class used (results from applying the Stein operator to the Sobolev space)



**Unclear** how to compute **p-values** or determine when to accept the null hypothesis

# Methods Methods Methods Methods

Theoretical methods used in the following work

Methods
Methods
Methods
Methods
Methods

Goal: find the maximum discrepancy between target distribution p and observed sample distribution  ${f q}$  in a RKHS (Reproducing Kernel Hilbert Space)  ${\cal F}$ 

For that task – we define a **Stein discrepancy**:

$$S_p(Z) := \sup_{\|f\| < 1} \mathbb{E}\left(T_p f
ight)(Z) - \mathbb{E}\left(T_p f
ight)(X)$$

Goal: find the maximum discrepancy between target distribution p and observed sample distribution q in a RKHS (Reproducing Kernel Hilbert Space)  ${\cal F}$ 

For that task – we define a **Stein discrepancy**:

$$S_p(Z) := \sup_{\|f\| < 1} \mathbb{E} \widehat{ig(T_p fig)}(Z) - \mathbb{E} \, (T_p fig)(X)$$
  $igcap_{T_p f} := \sum_{i=1}^d \Big( rac{\partial \log p(x)}{\partial x_i} f_i(x) + rac{\partial f_i(x)}{\partial x_i} \Big)$ 

Stein operator acting on  $f \in \mathcal{F}^d$ 

Goal: find the maximum discrepancy between target distribution p and observed sample distribution  ${f q}$  in a RKHS (Reproducing Kernel Hilbert Space)  ${\cal F}$ 

For that task – we define a **Stein discrepancy**:

$$S_p(Z) := \sup_{\|f\| < 1} \mathbb{E}\left(T_p f
ight)(Z) - \mathbb{E}\left(T_p f
ight)(X)$$

Goal: find the maximum discrepancy between target distribution p and **observed sample distribution q** in a RKHS (*Reproducing Kernel Hilbert Space*)  $\mathcal{F}$ 

For that task – we define a **Stein discrepancy**:

$$S_p(Z) := \sup_{\|f\| < 1} \mathbb{E}\left(T_p f
ight)(Z) - \mathbb{E}\left(T_p f
ight)(X)$$

It can be shown that

$$S_p(Z)^2=\mathbb{E} h_p(Z,Z')$$

Goal: find the maximum discrepancy between target distribution p and observed sample distribution q in a RKHS (Reproducing Kernel Hilbert Space)  $\mathcal{F}$ 

For that task – we define a **Stein discrepancy**:

$$S_p(Z) := \sup_{\|f\| < 1} \mathbb{E}\left(T_p f
ight)(Z) - \mathbb{E}\left(T_p f
ight)(X)$$

It can be shown that

$$S_p(Z)^2=\mathbb{E} h_p(Z,Z')$$



$$egin{aligned} h_p(x,y) := & 
abla \log p(x)^ op 
abla \log p(y) k(x,y) + 
abla \log p(y)^ op 
abla_x k(x,y) \ &+ 
abla \log p(x)^ op 
abla_y k(x,y) + \left< 
abla_x k(x,\cdot), 
abla_y k(\cdot,y) 
ight>_{\mathcal{F}^d} \end{aligned}$$

Goal: find the maximum discrepancy between target distribution p and **observed sample distribution q** in a RKHS (*Reproducing Kernel Hilbert Space*)  $\mathcal{F}$ 

For that task – we define a **Stein discrepancy**:

$$S_p(Z) := \sup_{\|f\| < 1} \mathbb{E}\left(T_p f
ight)(Z) - \mathbb{E}\left(T_p f
ight)(X)$$

It can be shown that

$$S_p(Z)^2 = \mathbb{E} h_p(Z,Z')$$

$$egin{aligned} h_p(x,y) := & 
abla \log p(x)^ op 
abla \log p(y) k(x,y) + 
abla \log p(y)^ op 
abla_x k(x,y) \ &+ 
abla \log p(x)^ op 
abla_y k(x,y) + 
abla \nabla_x k(x,\cdot) 
abla \nabla_y k(\cdot,y) 
abla_{\mathcal{F}^d} 
abla_{\mathcal{F}^d} \end{aligned}$$



#### **Methods:** Main Results

$$S_p(Z) := \sup_{\|f\| < 1} \mathbb{E}\left(T_p f
ight)(Z) - \mathbb{E}\left(T_p f
ight)(X) \ S_p(Z)^2 = \mathbb{E} h_p(Z,Z')$$

Stuff with kernels and its gradients

#### **Methods:** Main Results

$$S_p(Z):=\sup_{\|f\|<1}\mathbb{E}\,(T_pf)(Z)-\mathbb{E}\,(T_pf)(X)$$
 Stuff with  $oxed{kernels}$  and its gradients

**Theorem:** Let p, q be probability measure,  $Z \sim q$ , then under certain conditions (finite math. expectations...):

$$S_p(Z) = 0 \iff p = q$$

#### **Methods:** Main Results

$$S_p(Z) := \sup_{\|f\| < 1} \mathbb{E}\left(T_p f
ight)(Z) - \mathbb{E}\left(T_p f
ight)(X)$$
 $S_p(Z)^2 = \mathbb{E} h_p(Z,Z')$ 

**Theorem:** Let p, q be probability measure,  $Z \sim q$ , then under certain conditions (finite math. expectations...):

$$S_p(Z)=0 \quad \Longleftrightarrow \quad p=q$$

Stain discrepancy – indicator of similarity!

$$H_0: S_p(Z)=0 \quad ext{ vs } \quad H_1: S_p(Z) 
eq 0$$

$$H_0: S_p(Z) = 0 \quad ext{ vs } \quad H_1: S_p(Z) 
eq 0$$

$$S_p(Z)^2 = \mathbb{E} h_p(Z,Z')$$

was shown 2 slides ago

$$H_0: S_p(Z) = 0 \quad ext{ vs } \quad H_1: S_p(Z) 
eq 0$$

$$S_p(Z)^2 = \mathbb{E} h_p(Z,Z')$$
  $\longrightarrow$   $nV_n = rac{1}{n} \sum_{i,j=1}^n h\left(Z_i,Z_j
ight)$  was shown 2 slides ago

estimator

$$H_0: S_p(Z) = 0 \quad ext{ vs } \quad H_1: S_p(Z) 
eq 0$$

$$S_p(Z)^2 = \mathbb{E} h_p(Z,Z')$$
  $\longrightarrow$   $nV_n = rac{1}{n} \sum_{i,j=1}^n h\left(Z_i,Z_j
ight)$ 

But what if  $Z_i$  exhibit **correlation** behaviour?

$$H_0: S_p(Z) = 0 \quad ext{ vs } \quad H_1: S_p(Z) 
eq 0$$

$$S_p(Z)^2 = \mathbb{E} h_p(Z,Z') \hspace{1cm} op nV_n = rac{1}{n} \sum_{i,j=1}^n h\left(Z_i,Z_j
ight)$$

But what if  $Z_i$  exhibit correlation behaviour? The Wild Bootstrap technique

Markov chain:  $W_{t,n} = \mathbf{1}(U_t > a_n)W_{t-1,n} - \mathbf{1}(U_t < a_n)W_{t-1,n}$ 

$$H_0: S_p(Z) = 0 \quad ext{ vs } \quad H_1: S_p(Z) 
eq 0$$

$$S_p(Z)^2 = \mathbb{E} h_p(Z,Z') \hspace{1cm} op nV_n = rac{1}{n} \sum_{i,j=1}^n h\left(Z_i,Z_j
ight)$$

But what if  $Z_i$  exhibit correlation behaviour? The Wild Bootstrap technique

Markov chain: 
$$W_{t,n} = \mathbf{1}(U_t > a_n) W_{t-1,n} - \mathbf{1}(U_t < a_n) W_{t-1,n}$$

$$H_0: S_p(Z) = 0 \quad ext{ vs } \quad H_1: S_p(Z) 
eq 0$$

But what if  $Z_i$  exhibit correlation behaviour? The Wild Bootstrap technique

Markov chain: 
$$W_{t,n} = \mathbf{1}(U_t > a_n)W_{t-1,n} - \mathbf{1}(U_t < a_n)W_{t-1,n}$$

$$nB_n = rac{1}{n}\sum_{i,j=1}^n W_{i,n}W_{j,n}h\left(Z_i,Z_j
ight)$$

# Experiments Experiments Experiments Experiments

Most interesting part, u know:)

Experiments
Experiments
Experiments
Experiments
Experiments

$$H_0: Z \sim \mathcal{N}(0,1) \quad ext{vs} \quad H_1: Z 
ot \sim \mathcal{N}(0,1)$$

Student's t-distribution vs Normal

$$H_0: Z \sim \mathcal{N}(0,1) \quad ext{vs} \quad H_1: Z 
ot \sim \mathcal{N}(0,1)$$

$$nB_n = rac{1}{n}\sum_{i,j=1}^n W_{i,n}W_{j,n}h\left(Z_i,Z_j
ight)$$

Markov chain:  $W_{t,n} = \mathbf{1}(U_t > a_n)W_{t-1,n} - \mathbf{1}(U_t < a_n)W_{t-1,n}$ 

Student's t-distribution vs Normal

$$H_0: Z \sim \mathcal{N}(0,1) \quad ext{vs} \quad H_1: Z 
ot \sim \mathcal{N}(0,1)$$

$$nB_n = rac{1}{n}\sum_{i,j=1}^n W_{i,n}W_{j,n}h\left(Z_i,Z_j
ight)$$

Markov chain: 
$$W_{t,n} = \mathbf{1}(U_t > a_n) W_{t-1,n} - \mathbf{1}(U_t < a_n) W_{t-1,n}$$

How to choose?



$$H_0: Z \sim \mathcal{N}(0,1) \quad ext{vs} \quad H_1: Z 
ot \sim \mathcal{N}(0,1)$$



- 1. Make a sample from **Student's t-distribution** (going to Normal distribution with  $\nu \to \infty$ )
- Expect **low-p-values** when degrees of freedom are small

# Team #3 Goodness of Fit

#### **Experiment #1**



- Sampled using Markov Chain Monte Carlo
- Distribution PDF:

$$f(t) = rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\,\Gamma(rac{
u}{2})}igg(1+rac{t^2}{
u}igg)^{-(
u+1)/2}$$

# Team #3 Goodness of Fit

#### **Experiment #1**

```
for dof in degrees_of_freedom:
    for n in range(N_exp):
        X = t_student_distrib(5000, dof, 0.01)
        test = GaussianQuadraticTest(grad_log_normal)
        V_n, _ = test.get_statistics(X)
        p_value = test.compute_pvalues(V_n)
```



```
for dof in degrees of freedom:
                                                                    compute V-statistics
    for n in range(N exp):
                                                                   nV_n = rac{1}{n}\sum_{i=1}^n h\left(Z_i,Z_j
ight)
        X = t student distrib(5000, dof, 0.01)
        test = GaussianQuadraticTest(grad log normal)
        V n, = test.get statistics(X)
        p value = test.compute pvalues(V n)
                                                         compute p-values
                                                        nB_n = rac{1}{n}\sum_{i=1}^n W_{i,n}W_{j,n}h\left(Z_i,Z_j
ight)
                                                         count(nBn > nVn)
```

#### **Experiments:** $a_n = 0.5$

#### Graph we obtained



#### Graph from the article





#### Experiments: $a_n = 0.02$

#### Graph we obtained



#### Graph from the article





## **Experiments: thinning**

#### Graph we obtained



#### Graph from the article





Statistical model criticism on gaussian processes



#### Kernel selection.

Predictions made by GPR when using the Linear, RBF kernels.

The shaded region around each curve represents the 95% CI

Statistical model criticism on gaussian processes

- Solar dataset
- 1D regression problem with N=402
- We fit  $N_{train}$  = 361 data using a GP with a squared exponential kernel and a Gaussian noise model

$$k(x,x') = \sigma^2 \exp\left(-rac{\|x-x'\|^2}{2l^2}
ight)$$

: solar uaraser ~ predictive distribution

# Team #3 Goodness of Fit

#### **Experiment #2**

Statistical model criticism on gaussian processes



#### Fitted GPR:

- Green dots are train dataset
- Red dots are test dataset
- Green line is GPR predicted line
- Dotted green lines are left and right edges of confidence interval



Statistical model criticism on gaussian processes



- 1. Bootstrapped  $B_n$  distribution with the test statistic  $V_n$  marked.
- 2. That it is **unlikely** that the test points were generated by the fitted GP model.



Convergence in non-parametric density estimation

- Measuring quality-of-fit nonparametric density estimation
- 2 density models:
  - The infinite dimensional exponential family
  - The approximation to this model via random Fourier features

Convergence in non-parametric density estimation



Distribution of p-values

- N observations
- A quadratic time test on N<sub>test</sub> = 500
- Goal: identify N sufficiently large, that the method would not reject the null hypothesis

Convergence in non-parametric density estimation



Distribution of p-values



- F is approximated by a finite dictionary of random Fourier features
- The same N number is used
- P-values do not have a uniform distribution, even for a large number of random features

# Conclusion Conclusion Conclusion Conclusion

Let's recap what we have done

Conclusion Conclusion Conclusion Conclusion

# Team #3 Goodness of Fit

#### **Contribution of Team members**



Viktoriia Zinkovich
Data Science, MS-1

- Experiment: Student's t-distribution VS normal
- Presentation design



Kamil Garifullin
Data Science, MS-1

- Experiment: Statistical Model criticism on Gaussian Processes
- Presentation design



Maksim Osipenko
Data Science, MS-1

- Experiment: Convergence in non-parametric density estimation
- Problem statement

#### Conclusion

Construction of the RKHS-based Stein discrepancy and associated statistical test

Experimental illustrations on synthetic examples:

student's t vs normal statistical model criticism convergence in nonparametric density estimation.

#### **Questions?**





Maksim Osipenko
Maksim.Osipenko@skoltech.ru
Data Science



Viktoriia Zinkovich
Viktoriia.Zinkovich@skoltech.ru
Data Science



Kamil Garifullin
Kamil.Garifullin@skoltech.ru
Data Science





Code is available at Github