WESTBERG

CENTRAL FAX CENTER

DEC 1 9 2007

Atty. Dkt. No. 200209179-1

Dec 19 '07

IN THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

(Previously Presented) A method of determining a placement of services of a 1. 2 distributed application onto nodes of a distributed resource infrastructure comprising 3 the steps of: 4 forming communication constraints between node pairs which ensure that a 5 sum of transport demands between a particular node pair does not exceed a 6 transport capacity between the particular node pair, each term of the sum 7 comprising a product of a first placement variable, a second placement variable, 8 and the transport demand between the services associated with the first and 9 second placement variables; 10 forming an objective; and 11 employing a local search solution to solve an integer program comprising the 12 communication constraints and the objective, which determines the placement of 13 the services onto the nodes. 1 2. (Previously Presented) A method of determining a placement of services of a 2 distributed application onto nodes of a distributed resource infrastructure comprising 3 the steps of: establishing an application model of the services comprising transport 5 demands between the services; 6 establishing an infrastructure model of the nodes comprising transport 7 capacities between the nodes; 8 forming an integer program that comprises: 9 a set of placement variables for a combination of the services and the 10 nodes, each of the placement variables indicating whether a particular service 11 is located on a particular node: 12

communication constraints between node pairs which ensure that a sum of

13	the transport demands between a particular node pair does not exceed the
14	transport capacity between the particular node pair, each term of the sum
15	comprising a product of a first placement variable, a second placement
16	variable, and the transport demand between the services associated with the
17	first and second placement variables, and
18	an objective; and
19	employing a local search solution to solve the integer program which
20	determines the placement of the services onto the nodes.

1 3. (Canceled)

- 1 4. (Original) The method of claim 2 wherein the objective comprises minimizing communication traffic between the nodes.
- 1 5. (Original) The method of claim 2 wherein the application model further comprises processing demands for the services.
- 1 6. (Original) The method of claim 5 wherein the infrastructure model further comprises processing capacities for the nodes.
- 7. (Original) The method of claim 6 wherein the integer program further comprises
 processing constraints which ensure that a sum of the processing demands for each of
 the nodes does not exceed the processing capacity for the node.
- 1 8. (Original) The method of claim 7 wherein the objective comprises minimizing communication traffic between the nodes and balancing the processing demands on the nodes.
- 9. (Original) The method of claim 6 wherein the processing demands and the processing capacities are normalized according to a processing criterion.

- 1 10. (Original) The method of claim 9 wherein the processing criterion comprises an
- 2 algorithm speed.
- 1 11. (Original) The method of claim 9 wherein the processing criterion comprises a
- 2 transaction speed.
- 1 12. (Original) The method of claim 9 wherein the processing capacities of the nodes
- 2 are found according to a look-up table in which different types of nodes have been
- 3 normalized according to the processing criterion.
- 1 13. (Original) The method of claim 2 wherein the application model further
- 2 comprises storage demands for the services.
- 1 14. (Original) The method of claim 13 wherein the infrastructure model further
- 2 comprises storage capacities for the nodes.
- 1 15. (Original) The method of claim 14 wherein the integer program further
- 2 comprises storage constraints which ensure that a sum of the storage demands for
- ach of the nodes does not exceed the storage capacity for the node.
- 1 16. (Original) The method of claim 2 wherein the integer program further comprises
- 2 placement constraints which ensure that each of the services is placed on one and
- 3 only one of the nodes.
- 1 17. (Original) The method of claim 2 wherein the services reside on the nodes
- 2 according to a previous assignment.
- 1 18. (Original) The method of claim 17 further comprising the step of assessing
- 2 reassignment penalties for service placements that differs from the previous
- 3 assignment.

1	19. (Original) The method of claim 18 wherein the integer program further
2	comprises a second objective that seeks to minimize the reassignment penalties.
1	20. (Previously Presented) A method of determining a placement of services of a
2	distributed application onto nodes of a distributed resource infrastructure comprising
3	the steps of:
4	establishing an application model of the services that comprises processing
5	demands for the services, storage demands for the services, and transport
6	demands between the services;
7	establishing an infrastructure model of the nodes that comprises processing
8	capacities for the nodes, storage capacities for the nodes, and transport capacities
9	between the nodes;
10	forming an integer program that comprises:
11	a set of placement variables for a combination of the services and the
12	nodes, each of the placement variables indicating whether a particular service
13	is located on a particular node;
14	processing constraints which ensure that a sum of the processing demands
15	for each of the nodes does not exceed the processing capacity for the node;
16	storage constraints which ensure that a sum of the storage demands for
17	each of the nodes does not exceed the storage capacity for the node;
18	placement constraints which ensure that each of the services is placed on
19	one and only one node;
20	communication constraints between node pairs which ensure that a sum o
21	the transport demands between a particular node pair does not exceed the
22	transport capacity between the particular node pair, each term of the sum
23	comprising a product of a first placement variable, a second placement
24	variable, and the transport demand between the services associated with the
25	first and second placement variables; and
26	an objective of minimizing communication traffic between the nodes and
27	balancing processing loads on the nodes; and
28	employing a local search solution to solve the integer program which

Dec 19 '07

29 detern	mines the placem	ent of the service	s onto the nodes.
-----------	------------------	--------------------	-------------------

WESTBERG

I	21. (Previously Presented) A computer readable memory comprising computer code
2	for directing a computer to make a determination of a placement of services of a
3	distributed application onto nodes of a distributed resource infrastructure, the
4	determination of the placement of the services onto the nodes comprising the steps of
5	forming communication constraints between node pairs which ensure that a
6	sum of transport demands between a particular node pair does not exceed a
7	transport capacity between the particular node pair, each term of the sum
8	comprising a product of a first placement variable, a second placement variable,
9	and the transport demand between the services associated with the first and
10	second placement variables;
11	forming an objective; and
12	employing a local search solution to solve an integer program comprising the
13	communication constraints and the objective, which determines the placement of
14	the services onto the nodes.
	·

22. (Previously Presented) A computer readable memory comprising computer code
for directing a computer to make a determination of a placement of services of a
distributed application onto nodes of a distributed resource infrastructure, the
determination of the placement of the services onto the nodes comprising the steps of:
establishing an application model of the services comprising transport
demands between the services;
establishing an infrastructure model of the nodes comprising transport
capacities between the nodes;
forming an integer program that comprises:
a set of placement variables for a combination of the services and the
nodes, each of the placement variables indicating whether a particular service
is located on a particular node;
communication constraints between node pairs which ensure that a sum of

the transport demands between a particular node pair does not exceed the

15	transport capacity between the particular node pair, each ter	m of the sum
16	comprising a product of a first placement variable, a second	placement
17	variable, and the transport demand between the services asse	ociated with the
18	first and second placement variables; and	
19	an objective; and	
20	employing a local search solution to solve the integer progra	ım which
21	determines the placement of the services onto the nodes.	14.3

- 1 23. (Canceled)
- 1 24. (Original) The computer readable memory of claim 22 wherein the objective comprises minimizing communication traffic between the nodes.
- 1 25. (Original) The computer readable memory of claim 22 wherein the application 2 model further comprises processing demands for the services.
- 1 26. (Original) The computer readable memory of claim 25 wherein the infrastructure model further comprises processing capacities for the nodes.
- Original) The computer readable memory of claim 26 wherein the integer program further comprises processing constraints ensure that a sum of the processing demands for each of the nodes does not exceed the processing capacity for the node.
- 1 28. (Original) The computer readable memory of claim 27 wherein the objective comprises balancing the processing demands on the nodes.
- 1 29. (Original) The computer readable memory of claim 26 wherein the processing demands and the processing capacities are normalized according to a processing criterion.
- 1 30. (Original) The computer readable memory of claim 29 wherein the processing

- 2 criterion comprises an algorithm speed.
- 31. 1 (Previously Presented) The computer readable memory of claim 29 wherein the

Fax:650-968-4383

- 2 processing criterion comprises a transaction speed.
- 1 32. (Previously Presented) The computer readable memory of claim 29 wherein the
- 2 processing capacities of the nodes are found according to a look-up table in which
- 3 different types of nodes have been normalized according to the processing criterion.
- 1 33. (Original) The computer readable memory of claim 22 wherein the application
- 2 model further comprises storage demands for the services.
- 34. 1 (Original) The computer readable memory of claim 33 wherein the infrastructure
- 2 model further comprises storage capacities for the nodes.
- 35. (Original) The computer readable memory of claim 34 wherein the integer
- 2 program further comprises storage constraints which ensure that a sum of the storage
- 3 demands for each of the nodes does not exceed the storage capacity for the node.
- 1 36. (Original) The computer readable memory of claim 22 wherein the integer
- 2 program further comprises placement constraints which ensure that each of the
- 3 services is placed on one and only one of the nodes.
- 1 37. (Original) The computer readable memory of claim 22 wherein the services
- 2 reside on the nodes according to a previous assignment.
- 1 38. (Original) The computer readable memory of claim 37 further comprising the
- step of assessing reassignment penalties for service placements that differs from the 2
- 3 previous assignment.
- 39. (Original) The computer readable memory of claim 38 wherein the integer

28

2	program further comprises a second objective that seeks to minimize the
3	reassignment penalties.

1	40. (Previously Presented) A computer readable memory comprising computer code
2	for directing a computer to make a determination of a placement of services of a
3	distributed application onto nodes of a distributed resource infrastructure, the
4	determination of the placement of the services onto the nodes comprising the steps of
5	establishing an application model of the services that comprises processing
6	demands for the services, storage demands for the services, and transport
7	demands between the services;
8	establishing an infrastructure model of the nodes that comprises processing
9	capacities for the nodes, storage capacities for the nodes, and transport capacities
10	between the nodes;
11	forming an integer program that comprises:
12	a set of placement variables for a combination of the services and the
13	nodes, each of the placement variables indicating whether a particular service
14	is located on a particular node;
15	processing constraints which ensure that a sum of the processing demands
16	for each of the nodes does not exceed the processing capacity for the node;
17	storage constraints which ensure that a sum of the storage demands for
18	each of the nodes does not exceed the storage capacity for the node;
19	placement constraints which ensure that each of the services is placed on
20	one and only one node:
21	communication constraints between node pairs which ensure that a sum of
22	the transport demands between a particular node pair does not exceed the
23	transport capacity between the particular node pair, each term of the sum
24	comprising a product of a first placement variable, a second placement
25	variable, and the transport demand between the services associated with the
26	first and second placement variables; and
27	an objective of minimizing communication traffic between the nodes and

balancing processing loads on the nodes; and

29	employing a local search solution to solve the integer program which
30	determines the placement of the services onto the nodes.