Содержание

	рхитектура информационных систем	
1.	1. Модуль 1: Архитектурные основы	
	1.1.1. Лекция 1: Введение. Принципы построения приложения	
	1.1.1.1. Оптимизация системы требует выбора критерия оптимизации	
	1.1.1.2. Принципы SOLID	
	1.1.1.3. Dependency Injection	
	1.1.1.4. Clean Architecture	
	1.1.2. Лекция 2: Альтернативные архитектурные паттерны	
	1.1.2.1. Архитектура на основе фреймворка (Rails, Django)	
	1.1.2.2. Модель акторов (Erlang/Elixir/Akka)	
	1.1.2.3. Проектирование, ориентированное на данные (Data-oriented design)	
	1.1.3. Лекция 3: Протоколы взаимодействия	
	1.1.3.1. REST: стандартный веб-протокол	
	1.1.3.2. GraphQL: клиент запрашивает только нужные данные	
	1.1.3.3. gRPC: бинарный протокол, высокая производительность	
	1.1.3.4. WebSocket: двусторонний канал	
1.	2. Модуль 2: Фундаментальные структуры хранилищ данных	
-	1.2.1. Лекция 4: Базовые механизмы хранения данных	
	1.2.1.1. CSV-файлы как минимальная форма персистентности	
	1.2.1.2. CSV фамлы как минимальная форма персистентности	
	1.2.1.3. Хеш-индексы как первый уровень ускорения выборки	
	1.2.2. Лекция 5: Структурированные индексы	
	1.2.2.1. Отсортированная таблица строк (Sorted String Table, SSTable)	
	1.2.2.2. Дерево слияния структурированного журнала (Log-Structured Merge-Tree, LSM-Tree) .	
	1.2.2.3. Когда использовать LSM-деревья и В-деревья (LSM хороша для записи, В-Тree для чтен)	
1	The Am Hell)
	1.2.3. Лекция 6: ACID, уровни изоляции, аналитические и транзакционные хранилища	4
	1.2.3.1. ACID (Atomicity, Consistency, Isolation, Durability)	
	1.2.3.2. Уровни изоляции	
	1.2.3.3. Аналитические базы данных (OLAP) и колоночные хранилища	
	1.2.3.4. Сжатие колонок	
	1.2.3.5. Сравнение подходов	
1	1.2.3.3. Сравнение подходов 3. Модуль 3: Другие хранилища данных	
1	1.3.1. Лекция 7: Аналитика в оперативной памяти	
	1.3.1.1. Vectorized execution (блочная обработка)	
	1.3.1.2. DuckDB	
	1.3.2. Лекция 8: Кэш в оперативной памяти	
	1.3.2.1. Skip List	
	1.3.2.2. Incremental Rehashing	
	1.3.2.3. HyperLogLog	
	1.3.2.4. Redis	
1	1.5.2.4. Redis	
1.	4. Модуль 4: Методы поиска похожих/олизких элементов	
	1.4.1. Лекция 9: Специализированные индексы для поиска	
	1.4.1.1. Inverted index (перевернутые индексы)	
	1.4.1.3. Bitmap indexes	
	1.4.2.1 Осмору раукторум у продосторующей	
	1.4.2.1. Основы векторных представлений	
	1.4.2.2. HNSW (Hierarchical Navigable Small World)	
	LAZA LAGU OCANV-ARISHIYE GARONOT	-
	1.4.2.4. Примеры: Weaviate. Pinecone. Odrant	

1.4.3. Лекция 11: Геопространственные структуры	
1.4.3.1. R-Tree	5
1.4.3.2. QuadTree и KD-Tree	5
1.5. Модуль 5: Операционные компоненты	
1.5.1. Лекция 12: Прокси и Rate Limiting	5
1.5.1.1. Forward Proxy / Reverse Proxy	
1.5.1.2. Распределение нагрузки	5
1.5.1.3. Ограничение частоты запросов	5
1.5.2. Лекция 13: Безопасность и управление доступом	5
1.5.2.1. Аутентификация и авторизация	
1.5.2.2. RBAC и ABAC	5
1.5.2.3. Single Sign-On	5
1.5.3. Лекция 14: Логирование, мониторинг и планирование задач	
1.5.3.1. Сбор логов	
1.5.3.2. Сбор метрик (Prometheus)	5
1.5.3.3. Мониторинг и диагностика (Grafana)	5
1.5.3.4. Планировщики (Celery, Airflow, Dagster)	5
1.6. Модуль 6: System Design	5
1.6.1. Лекция 15: Разбор дизайна конкретной системы	
1.6.1.1. Применение всех концепций на практике	
2. Распределённые системы обработки данных	7
2.1. Модуль 1: Компоненты распределённых систем	7
2.1.1. Лекция 1: Основы распределённых систем	7
2.1.1.1. САР-теорема	7
2.1.1.2. Механизмы репликации данных	7
2.1.1.3. ZooKeeper: распределённое решение проблем согласованности и отказоустойчивост	и 7
2.1.2. Лекция 2: Гарантии консистентности и координация распределённых транзакций	7
2.1.2.1. Алгоритмы достижения консенсуса	
2.1.2.2. Модель конечной консистентности (Eventual consistency) и требование идемпотентно	
операций	
2.1.2.3. Протокол двухфазного коммита (Two-Phase Commit, 2PC)	
2.2. Модуль 2: Распределенные сервисы	
2.2.1. Лекция 3: Асинхронное взаимодействие сервисов	
2.2.1.1. Event Bus и Event-Driven Architecture	
2.2.1.2. Publish-Subscribe vs Message Queue	
2.2.1.3. Saga Pattern	
2.2.2. Лекция 4: Kafka	
2.2.2.1. Внутреннее устройство	
2.2.3. Лекция 5: Kubernetes	
2.2.3.1. Роль и место в современных архитектурах	
2.2.3.2. Области использования	
2.2.3.3. Внутреннее устройство	
2.2.4. Лекция 6: ClickHouse	
2.2.4.1. Архитектура системы хранения и обработки данных	
2.2.4.2. Партиционирование	
2.2.4.3. Таблицы серии MergeTree как основной механизм персистентности	
2.2.5. Лекция 7: Apache Spark	
2.2.5.1. Роль и место в современных архитектурах	
2.2.5.2. Области использования	
2.2.5.3. Внутреннее устройство	
2.2.5.4. API	
2.2.6. Лекция 8: Erlang	
2.2.6.1. Роль и место в современных архитектурах	8

2.2.6.2. Erlang VM (BEAM) и процессы	8				
2.2.6.3. Модель акторов	8				
2.2.6.4. Fault tolerance и "Let it crash" философия	8				
2.2.6.5. OTP фреймворк (Supervisor, GenServer)	8				
2.2.6.6. Синхронизация и распределённые вычисления	8				
2.2.6.7. Elixir	8				
2.3. Модуль 3: Распределенные БД	8				
2.3.1. Лекция 9: Большие данные	8				
2.3.1.1. Свойства					
2.3.1.2. Архитектуры					
2.3.2. Лекция 10: Full Text Search в распределённых системах					
2.3.2.1. Elasticsearch и Solr					
2.3.2.2. Распределённый поиск					
2.3.2.3. Масштабирование					
2.3.3. Лекция 11: Документные хранилища					
2.3.3.1. MongoDB: sharding strategies, write concerns					
2.3.3.2. Object storage: MinIO					
2.3.4. Лекция 12: Распределенные пространственные и графовые БД					
2.3.4.1. Графовые БД					
2.3.4.2. Пространственные БД					
2.3.4.3. Шардирование графов и пространственных данных	9				
 Архитектура информационных систем Модуль 1: Архитектурные основы 					
1.1.1. Лекция 1: Введение. Принципы построения приложения					
1.1.1.1. Оптимизация системы требует выбора критерия оптимизации					
1.1.1.2. Принципы SOLID					
1.1.1.3. Dependency Injection					
1.1.1.4. Clean Architecture					
1.1.2. Лекция 2: Альтернативные архитектурные паттерны					
1.1.2.1. Архитектура на основе фреймворка (Rails, Django)					
1.1.2.2. Модель акторов (Erlang/Elixir/Akka)					
1.1.2.3. Проектирование, ориентированное на данные (Data-oriented design)					
1.1.3. Лекция 3: Протоколы взаимодействия					
1.1.3.1. REST: стандартный веб-протокол					
1.1.3.2. GraphQL: клиент запрашивает только нужные данные					
1.1.3.3. gRPC: бинарный протокол, высокая производительность					
1.1.3.4. WebSocket: двусторонний канал					
1.2. Модуль 2: Фундаментальные структуры хранилищ данных					

1.2.1. Лекция 4: Базовые механизмы хранения данных

1.2.1.1. CSV-файлы как минимальная форма персистентности

- 1.2.1.2. CSV с добавлением записей и журналированием изменений
- 1.2.1.3. Хеш-индексы как первый уровень ускорения выборки
- 1.2.2. Лекция 5: Структурированные индексы
- 1.2.2.1. Отсортированная таблица строк (Sorted String Table, SSTable)
- 1.2.2.2. Дерево слияния структурированного журнала (Log-Structured Merge-Tree, LSM-Tree)
- 1.2.2.3. Когда использовать LSM-деревья и В-деревья (LSM хороша для записи, В-Тree для чтения)
- 1.2.3. Лекция 6: АСІD, уровни изоляции, аналитические и транзакционные хранилища
- 1.2.3.1. ACID (Atomicity, Consistency, Isolation, Durability)

1.2.3.2. Уровни изоляции

- Read Uncommitted
- · Read Committed
- · Repeatable Read
- Serializable
- 1.2.3.3. Аналитические базы данных (OLAP) и колоночные хранилища
- 1.2.3.4. Сжатие колонок
- 1.2.3.5. Сравнение подходов
- 1.3. Модуль 3: Другие хранилища данных
- 1.3.1. Лекция 7: Аналитика в оперативной памяти
- 1.3.1.1. Vectorized execution (блочная обработка)

1.3.1.2. DuckDB

- Чтение из различных источников
- Трансформация данных
- Запись
- 1.3.2. Лекция 8: Кэш в оперативной памяти
- 1.3.2.1. Skip List
- 1.3.2.2. Incremental Rehashing
- 1.3.2.3. HyperLogLog

1.3.2.4. Redis

- Архитектура (однопоточность, event-driven)
- 1.4. Модуль 4: Методы поиска похожих/близких элементов
- 1.4.1. Лекция 9: Специализированные индексы для поиска
- 1.4.1.1. Inverted Index (перевёрнутые индексы)
- Постинг-листы (posting lists)
- Применение: Elasticsearch, Lucene
- 1.4.1.2. Тгіе (префиксные деревья)
- Автодополнение, префиксный поиск
- 1.4.1.3. Bitmap indexes
- Для категориальных данных

1.4.2. Лекция 10: Векторные индексы для поиска подобия

1.4.2.1. Основы векторных представлений

1.4.2.2. HNSW (Hierarchical Navigable Small World)

- Граф как индекс
- Поиск соседей

1.4.2.3. LSH (Locality-Sensitive Hashing)

- Вероятностный поиск
- 1.4.2.4. Примеры: Weaviate, Pinecone, Qdrant
- 1.4.3. Лекция 11: Геопространственные структуры

1.4.3.1. R-Tree

- Bounding boxes, MBR
- Применение: PostGIS

1.4.3.2. QuadTree и KD-Tree

- Разбиение пространства
- Когда какое дерево эффективнее

1.5. Модуль 5: Операционные компоненты

1.5.1. Лекция 12: Прокси и Rate Limiting

1.5.1.1. Forward Proxy / Reverse Proxy

1.5.1.2. Распределение нагрузки

- Round Robin
- Least Connections
- Weighted Least Connections
- IP Hash
- Consistent Hashing

1.5.1.3. Ограничение частоты запросов

- Token Bucket
- Sliding Window

1.5.2. Лекция 13: Безопасность и управление доступом

1.5.2.1. Аутентификация и авторизация

- 1.5.2.2. RBAC и ABAC
- 1.5.2.3. Single Sign-On
- 1.5.3. Лекция 14: Логирование, мониторинг и планирование задач
- 1.5.3.1. Сбор логов
- 1.5.3.2. Сбор метрик (Prometheus)
- 1.5.3.3. Мониторинг и диагностика (Grafana)
- 1.5.3.4. Планировщики (Celery, Airflow, Dagster)

1.6. Модуль 6: System Design

1.6.1. Лекция 15: Разбор дизайна конкретной системы

1.6.1.1. Применение всех концепций на практике							
-							

2. Распределённые системы обработки данных

2.1. Модуль 1: Компоненты распределённых систем

2.1.1. Лекция 1: Основы распределённых систем

2.1.1.1. САР-теорема

- Следствия компромиссов между согласованностью, доступностью и устойчивостью к разделению сети
- Примеры СА, АР, СР систем

2.1.1.2. Механизмы репликации данных

- Архитектура "ведущий-подчинённый" (Leader-Follower)
- Репликация с использованием кворумов (quorum-based replication)

2.1.1.3. ZooKeeper: распределённое решение проблем согласованности и отказоустойчивости

- Механизмы решения классических проблем распределённых систем
- Применение в системах Kafka и ClickHouse

2.1.2. Лекция 2: Гарантии консистентности и координация распределённых транзакций

2.1.2.1. Алгоритмы достижения консенсуса

- Raft
- Paxos

2.1.2.2. Модель конечной консистентности (Eventual consistency) и требование идемпотентности операций

2.1.2.3. Протокол двухфазного коммита (Two-Phase Commit, 2PC)

- Этапы выполнения
- Гарантии надёжности

2.2. Модуль 2: Распределенные сервисы

2.2.1. Лекция 3: Асинхронное взаимодействие сервисов

- 2.2.1.1. Event Bus и Event-Driven Architecture
- 2.2.1.2. Publish-Subscribe vs Message Queue
- 2.2.1.3. Saga Pattern
- 2.2.2. Лекция 4: Kafka
- 2.2.2.1. Внутреннее устройство
- 2.2.3. Лекция 5: Kubernetes
- 2.2.3.1. Роль и место в современных архитектурах
- 2.2.3.2. Области использования
- 2.2.3.3. Внутреннее устройство
- 2.2.4. Лекция 6: ClickHouse

2.2.4.1. Архитектура системы хранения и обработки данных

- Принципы организации хранения
- Методы компрессии данных

2.2.4.2. Партиционирование

- Выбор ключа
- Управление партициями (добавление, удаление)

2.2.4.3. Таблицы серии MergeTree как основной механизм персистентности

- Базовая таблица MergeTree и её специализированные варианты
- ReplacingMergeTree для управления версионированием
- ReplicatedMergeTree для обеспечения отказоустойчивости

2.2.5. Лекция 7: Apache Spark

2.2.5.1. Роль и место в современных архитектурах

2.2.5.2. Области использования

2.2.5.3. Внутреннее устройство

2.2.5.4. API

- Dataframe
- SparkSQL

2.2.6. Лекция 8: Erlang

2.2.6.1. Роль и место в современных архитектурах

2.2.6.2. Erlang VM (BEAM) и процессы

- 2.2.6.3. Модель акторов
- 2.2.6.4. Fault tolerance и "Let it crash" философия
- 2.2.6.5. OTP фреймворк (Supervisor, GenServer)

2.2.6.6. Синхронизация и распределённые вычисления

2.2.6.7. Elixir

2.3. Модуль 3: Распределенные БД

2.3.1. Лекция 9: Большие данные

2.3.1.1. Свойства

- Объем
- Скорость
- Разнообразие
- Достоверность

2.3.1.2. Архитектуры

- Modern Data Architecture
- Lambda
- · Lakehouse

2.3.2. Лекция 10: Full Text Search в распределённых системах

2.3.2.1. Elasticsearch и Solr

- · Sharding: hash-based, range-based
- Replication и replica factor
- Eventual consistency при индексировании

2.3.2.2. Распределённый поиск

- Broadcast query, merge результатов
- Search After вместо offset/limit

2.3.2.3. Масштабирование

• Hot shards проблема

- Index rollover, segment merging
- 2.3.3. Лекция 11: Документные хранилища
- 2.3.3.1. MongoDB: sharding strategies, write concerns
- 2.3.3.2. Object storage: MinIO
- 2.3.4. Лекция 12: Распределенные пространственные и графовые БД
- 2.3.4.1. Графовые БД
- 2.3.4.2. Пространственные БД
- 2.3.4.3. Шардирование графов и пространственных данных