Regular Functions and Cost Register Automata

Rajeev Alur Mukund Raghothaman

University of Pennsylvania

Monday 16th September, 2013

Cost register automata

Regular functions

Cost register automata

Regular functions

Languages, $\Sigma^* \to \mathtt{bool}$

Cost register automata

Regular functions

Languages, $\Sigma^* o \mathtt{bool}$

DFA

Cost register automata

Regular functions

Languages, $\Sigma^* \to \text{bool}$ String transductions, $\Sigma^* \to \Gamma^*$ DFA SST

Cost register automata

Regular functions from Σ^* to integers $\mathbb Z$	
Languages, $\Sigma^* o exttt{bool}$	DFA
String transductions, $\Sigma^* o \Gamma^*$	SST
Numerical functions, $\Sigma^* o \mathbb{Z}$?

Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines

Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines $\begin{array}{c} C/2 & S & C/1 \\ \hline \\ start & \# & S \end{array}$

Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines

► Intuitive, analyzable

Modelling a coffee shop: Attempt 1

Finite automata with cost labels, a la Mealy machines

- ► Intuitive, analyzable
- ▶ But not very expressive...

Modelling a coffee shop: Attempt 1

What if the survey gives us a discount for coffee already purchased?

- ► Not possible if costs are paid up front
- ► Cost of an event cannot be influenced by later events

Modelling a coffee shop: Attempt 1

What if the survey gives us a discount for coffee already purchased?

- ▶ Not possible if costs are paid up front
- ► Cost of an event cannot be influenced by later events

Solution?

Modelling a coffee shop: Attempt 1

What if the survey gives us a discount for coffee already purchased?

- ▶ Not possible if costs are paid up front
- ► Cost of an event cannot be influenced by later events

Solution? Registers!

Modelling a coffee shop: Attempt 2

Properties

- Closure under linear combination, input reversal, and regular lookahead
- ► Fast equivalence procedure, decidable containment
- ► Equivalent to regular string-to-expression-tree transducers

Properties

- ► Closure under linear combination, input reversal, and regular lookahead f^{rev} defined as $f^{rev}(\sigma) = f(\sigma^{rev})$ is regular when f is
- ► Fast equivalence procedure, decidable containment
- ► Equivalent to regular string-to-expression-tree transducers

Properties

- Closure under linear combination, input reversal, and regular lookahead f^{rev} defined as $f^{rev}(\sigma) = f(\sigma^{rev})$ is regular when f is
- ► Fast equivalence procedure, decidable containment
- ► Equivalent to regular string-to-expression-tree transducers

Cost register automata

Regular functions from Σ^* to integers $\mathbb Z$	
Languages, $\Sigma^* o exttt{bool}$	DFA
String transductions, $\Sigma^* o \Gamma^*$	SST
Numerical functions, $\Sigma^* o \mathbb{Z}$?

Cost register automata

Regular functions from Σ^* to integers $\mathbb Z$ Languages, $\Sigma^* \to \mathtt{bool}$

String transductions, $\Sigma^* \to \Gamma^*$ Numerical functions, $\Sigma^* \to \mathbb{Z}$ DFA SST CRA

4D > 4A > 4B > 4B > B 990

Regular functions

- ▶ Fix a (numerical) domain \mathbb{D} , and operations $G = \{+, \min, \times, \ldots\}$
- ► Recall MSO-definable string-to-tree transductions

Regular functions: String-to-expression-tree transducers

Fewest *C*-s between consecutive *M*-s (*CCMCCCM*)

ACRAs and additive regular functions

ACRA
$$\equiv$$
 Regular Functions $(+c)$ \equiv Regular Functions $(+)$ \equiv Copyless CRA $(+)$

$$CRA(min, +c) \equiv Weighted automata$$

Analysis Problems

Questions to Ask

Analysis problems

Equivalence

- ▶ PTIME for ACRAs: Gaussian elimination
- ▶ Open for copyless CRA $(\min, +c)$ over $\mathbb N$

Containment and min-value

Questions to Ask

Minimization of CRAs

Registers

- ► Decision problem PSPACE-complete for ACRAs
- ► Similar techniques might extend to binary operations (SST)

States

► Open for ACRAs

Questions to Ask

Learning

Angluin style learning

Given oracles to

- \blacktriangleright evaluate $f(\sigma)$ given σ , and
- ▶ provide a counter-example σ so $f(\sigma) \neq f'(\sigma)$ given a proposal f',

compute a representation of f

Thank you! Questions?

Fin!