1. 프로젝트 개요

🛖 프로젝트 개요

Problem Type. 사진에서 쓰레기 Detection 및 10 종류(General trash, Paper, Paper pack, Metal, Glass, Plastic, Styrofoam, Plastic bag, Battery, Clothing) 쓰레기 분류 Metric. mAP 50

Data. 총 9,754장의 이미지 (1024 x 1024), annotation file (coco format)

₩ 개발환경 & 협업툴

• 개발환경

개발환경	버전
VSCode	1.60.0
PyTorch (GPU)	1.7.1
mmdetection	

• 협업 Tool GitHub, Wandb, Notion

GitHub file & directory

2. 팀 구성 및 역할

팀 구성 및 역할

- Dataset Part → 김창현
- Model Part

 - o 2-Stage → **박민수, 박기련, 김창현**

3. 프로젝트 수행 절차 및 방법

II EDA

- Class별 분포 : 불균형으로 인한 문제가 발생할 여지가 있음
- Augmentation, Sampling, Loss measurement 를 통해 해결할 필요가 있음

- Class별 box area 통계치
- General Trash가 평균적으로 작은 Bbox, clothing이 큰 Bbox

• 큰 Bbox보다 작은 Bbox 분포가 높다는 것을 확인할 수 있음

🗾 내부 평가 지표 설정

✔ Validation Set 통일

- 하루 10회로 한정된 제출 기회를 효율적으로 사용하기 위해, 내부 평가 지표 설정
- Stratified K-Fold 를 이용하여 Class 를 균등하게 나눈 후, Fold 별로 동일한 모델 학습
- LB Score 와 가장 근사한 Validation mAP50 를 가지는 Dataset을 공통 평가 지표로 설정

🛐 불균형 클래스 문제

Over Sampling

- 가설
 - EDA결과 2,3,4,8,9번 카테고리의 데이터가 다른 클래스에 비해 현저히 적은 것을 확인하고 해당 카테고리의 데이터를 증강
 - o 클래스별 분포: [3165, 4939, 710, 758, 765, 2372, 1036, 4073, 139, 386]
- 결과
 - ∘ 기존 데이터셋에서 위의 카테고리를 Over Sampling한 결과 LB상 0.02 상승
 - 2,3,4번 카테고리를 3배 8,9는 2배 0.0008 상승(8, 9번 카테고리는 데이터가 제일 적긴하지만 제일 높은 정확도로 예측해 더 이상 늘리지 않음)
- 정리
 - Over sampling을 적용한 후 LB의 mAP50의 유의미한 상승을 확인. 그러나 데이터 증강의 수가 특정 수준을 넘어가게 되면 미미한 영향을 미치거나 오히려 하락
 - Over sampling을 한 데이터에 Augmentation상에서는 들어가지 않는 옵션들로 미리 적용해 더 다양한 데이터로 만들었으면 좋았을거라는 아쉬움이 듦

Augmentation

Albumentation

- 1. RandomRotate90, RandomFlip (Horizion, Vertical)
 - Rotate 를 시켜도 Object 의 형태는 동일하므로 데이터 증강의 목적으로 사용
- 2. HueSaturationValue, RandomGamma, CLAHE [One of]
 - 여러가지 밝기에 따른 일반화 성능 향상 도모
- 3. Blur, GaussianNoise, MotionBlur [One of]
 - 초점이 흐린 Image가 들어올 것을 대비

Result

Augmentation 적용 전: Swin_T Cascade R-CNN (0.5419)

Augmentation 적용 후 : Swin_T Cascade R-CNN (0.5949) → 약 0.05 상승

[] WBF (Ensemble)

WBF

• 가장 정확한 Bbox 하나만을 남기는 NMS나 NMW와 달리, WBF는 예측된 Bbox의 정보를 모두 사용하기 때문에 여러개 모델 앙상블 시 더 유리하다 판단

4. 프로젝트 수행 결과 및 분석

Result

	BackBone	Model	Val mAP50	LB Score
1	Resnet101	Cascade R-CNN	0.5290	
2		Grid R-CNN	0.5054	
3		ATSS + DyHead	0.4934	
4		UniverseNet	0.6070	0.6134
5		Centernet2	0.5860	0.5927
6	Swin_T	Cascade R-CNN	0.5810	0.5949
7		HTC	0.5899	0.6003
8	Swin_L (1K)	Cascade R-CNN	0.6520	0.6849
9		HTC	0.6660	0.6819
10		Centernet2	0.6160	0.6184
11		ATSS + DyHead	0.6450	0.6660
12	Swin_L(22K)	HTC	0.6510	0.6722
13	YOLO	YOLOx	0.4280	
14		YOLOv5x6	0.5600	
15		YOLOv5l6	0.5900	

B

Ensemble

- 선정 기준
 - ∘ val_mAP50 0.6 ↑ (YOLO의 경우 0.5)
 - o val_mAP_s 0.001 ↑
- 선정 모델 (mAP50)
 - 1. Resnet101 UniverseNet (0.6070)
 - 8. Swin_L(1K) Cascade R-CNN (0.6520)
 - 9. Swin_L(1K) HTC (0.6660)
 - 10. Swin_L(1K) Centernet2 (0.6160)
 - 12. Swin_L(22K) HTC (0.6510)
 - 14. YOLO YOLOv5x6 (0.5600)
 - 15. YOLO YOLOv5l6 (0.5900)
- 최종 LB Score

Public : 0.7207 Private : 0.7059 (5등 / 19 team)

분석

- TTA (Flip) 와 Augmentation 을 모든 실험에 적용
- BackBone 을 ResNet → Swin Transformer 로 키워나감으로써 성능 ↑
- 전체적으로 Swin L 기반 Model 성능이 압도적
- Small Size 객체 탐지율을 높이기 위하여 YOLO 를 사용하여 Ensemble

5. 자체 평가 의견

잘한 점들

- Wandb 시각화 , 결과 공유
- 실험 설계 및 분석
- Notion으로 체계적인 실험 관리
- 각기 다른 특징의 모델로 실험
- 협업

아쉬웠던 점들

- Inference 결과를 체계적으로 관리하지 못함
- Github을 활용하지 못함
- 실험 description을 자세히 적지 못함
- 디테일하지 못한 EDA

시도했으나 잘 되지 않았던 것들

- EfficientDet을 시도하려 했으나 에러가 발생하거나 결과가 제대로 출력이 안되었음
- Instaboost를 시도하려 했으나 Segment 정보가 없어서 하지 못함
- Convnext 를 BackBone으로 사용하려 했으나, OOM 문제로 실패
- Model Soup 를 시도하려 했으나 체크포인트 파일 백업부재로 실패

프로젝트를 통해 배운 점 또는 시사점

- mmDetection을 활용한 object detection 전반적인 과정 학습을 경험할 수 있었음
- 단일 모델의 성능도 중요하지만, 모델 간 시너지를 높이는 Ensemble의 중요성을 깨달음
- Detection Task 의 모델에서 Feautre Map 추출하는 Backbone 이 성능에 가장 많은 영향을 미친다는 것을 알게됨