D09522006_陳維霖_期末報告

題目: 無控火箭 (飛彈) 6自由度運動模擬

Date:2021/1/22

目錄

<u>-,</u>	題目4
<u>=,</u>	前言動機4
<u>=,</u>	預期結果5
四、	方法流程5
(-)	建立6自由度運動方程式6
(二)	介紹求解方程式的數值方法14
(三)	程式求解流程圖15
<u>五、</u>	结果與討論16
六、	結論

圖表目錄

圖表 1 大地座標系	6
圖表 2 彈體座標系	6
圖表 3 大地座標系與彈體座標系之轉換關係	7
圖表 4 彈體座標系與位移、旋轉之關係	8
圖表 5 風軸座標系與彈體座標系之轉換關係	9
圖表 6 彈體受力圖	10
圖表 7 標準大氣溫度、壓力與高度之關係	12
圖表 8 程式運行畫面	18
圖表 9 三維彈道圖	19
圖表 10 水平距離與高度	19
圖表 11 位移	20
圖表 12 加速度	
圖表 13 速度	21
圖表 14 角速度	21
圖表 15 尤拉角 (姿態角)	22
圖表 16 攻角、馬赫數、全速度	22
圖表 17 質量、推力、X 軸加速度	23
圖表 18 不同俯仰角之水平距離 與喜座	23

一、 題目

無控火箭 (飛彈) 6 自由度運動模擬。

二、前言動機

無控火箭(飛彈)是指在火箭(飛彈)飛行載具上不額外加以 控制,其依自由落體方式飛行。

6自由度(Six degrees of freedom)是指剛體在三維空間中運動的自由度有6個,包含在座標系中三個相互垂直的軸上的"平移"及"旋轉"。

經由牛頓力學推導6自由度運動方程式,建立作用力、力矩與 彈體平移及旋轉間的轉換關係。我們已知彈體的物理特性及發動機 推力、氣動力係數,藉由上述轉換關係便可求得彈體在飛行過程中 所有時刻的資訊。

如上的轉換關係,或稱方程式、演算法可應用 FORTRAN 程式語言將其程式化,得到一個模擬彈體飛行的程式,此程式可預估彈體飛行彈道,進而調整初始姿態以改變軌跡,甚至調整火箭設計以符合需求。本文研究目的即為建立該程式,並分析其模擬結果是否符合物理世界的規律。

三、 預期結果

建構出無控火箭(飛彈)6自由度運動模擬程式,預期該程式能讀取輸入資料,包含彈體物理特性及發動機的推力、氣動力係數,使用四階的Runge Kutta Methods 積分便可求得彈體6自由度運動狀態,如加速度、速度、位置、角速度、尤拉角…。再利用 Matlab 程式進行運動狀態繪圖,這些可視化的圖可以幫助我們建構出對該彈體運動特性的概念,與彈道需求比對,便可知道需調整哪些參數才能得我們所希望的彈道軌跡。

四、方法流程

為了好理解,一開始我們把本章分成三個階段,層層遞進,如下:

- (一) 建立6自由度運動方程式
- (二) 介紹求解方程式的數值方法
- (三) 程式求解流程圖

(一) 建立6自由度運動方程式

1. 座標系定義:

大地座標系如圖 1, 彈體座標系如圖 2, 兩者間之轉換關係如圖 3。

圖表 1 大地座標系

圖表 2 彈體座標系

圖表 3 大地座標系與彈體座標系之轉換關係

向量在空間中是不變的,但會因視角不同觀測到不同的量值, 這裡的視角即為座標系。有些向量在某些座標系中較容易描述 及運算,就會以該座標系進行描述,但不存在一個座標系能對 所有物量都容易描述,所以就造成用不同座標(視角)去描述 同一件事,如何把一個物理量在不同座標系中來回使用?就是 求出不同座標系之轉換關係,即座標轉換,當我們做座標轉換 其實是轉換視角去觀測同一件事。 在本文中,大地座標系與彈體座標系,兩者之轉換關係如下轉換矩陣。

$$\begin{split} C_e^b &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\theta & 0 - \sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \cos\theta\cos\psi & \cos\theta\sin\psi & -\sin\theta \\ \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \sin\phi\sin\phi + \cos\phi\cos\psi & \sin\phi\cos\theta \\ \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi & \cos\phi\sin\psi - \sin\phi\cos\psi & \cos\phi\cos\theta \end{bmatrix}. \end{split}$$

其中b表示彈體座標系,e表示大地座標系

φ: 滚轉角 (ROLL), θ: 俯仰角(PITCH), φ:偏航角(YAW)

彈體位移(速度)、姿態角(角速度)在彈體座標系上之表示如圖 4。

圖表 4 彈體座標系與位移、旋轉之關係

圖表 5 風軸座標系與彈體座標系之轉換關係

風軸座標系與彈體座標系, 角度關係如下公式

$$\alpha = \tan^{-1}(w/u),$$

$$\beta = \sin^{-1}(v/V_M),$$

$$\tan \alpha = \tan \theta \cos \phi,$$

$$\tan \gamma = \tan \theta \sin \phi,$$

$$\sin \beta = \sin \theta \sin \phi,$$

$$\cos \theta = \cos \alpha \cos \beta = (\tan^2 \alpha + \tan^2 \beta)^{1/2},$$

$$\tan \phi = \cot \alpha \tan \gamma = \tan \beta / \sin \alpha.$$

其中

 α : 攻角, β : 側滑角, θ : 總攻角, ϕ : 風向角

Vm: 彈體總速度

u: 彈體 x 軸速度

v: 彈體 y 軸速度

w: 彈體 z 軸速度

2. 作用在彈體上之力、力矩:

彈體受力如圖 6:

圖表 6 彈體受力圖

其中

Thrust: 推力, Gravity: 重力, Drag: 氣動阻力, Lift: 氣動升力

力與力矩方程式如下:

合力: $\Sigma \vec{F} = \vec{F}_g + \vec{F}_T + \vec{F}_{air}$

合力矩: $\Sigma \vec{M} = \vec{M}_{air}$

重力: $\vec{F}_g = m\vec{g}$

推力: $\vec{F}_T = T - p_{air}A_e$

氣動力: $F_i = Cf_iQS_{ref}$, i = x, y, z

氣動力矩: $M_i = Cm_iQS_{ref}L_{ref}$, i = x, y, z

其中

m: 彈體質量, g: 重力加速度

T: 真空推力, Pair: 大氣壓力, Ae: 噴嘴出口面積

Q: 動壓, Cf: 氣動力係數, Cm: 氣動力矩係數

Sref: 參考面積, Lref: 參考長度

氣動力係數一般以風洞吹試及計算流體力學 (CFD)得到氣動力係數,以表格表示,真空推力由實驗及模擬獲得。因爲氣動力係數與大氣條件相關,所以須引入標準大氣模式。

3. 國際標準大氣模式:

本文採 1962 年標準大氣模式如圖 7, 公式如下

$$H = rac{R_{earth}h}{R_{earth}+h}$$
 $T = T_b + eta(H-H_b)$
 $p = p_b \exp\left(-rac{g}{RT}(H-H_b)
ight)$, 同溫層 $(eta=0)$
 $p = p_b \left(1 + rac{eta}{T_b}(H-H_b)
ight)^{-rac{g}{Reta}}$, 同溫層 $(eta\neq0)$
 $ho = rac{p}{RT}$
 $C_s = \sqrt{rac{kRT}{M}}$

圖表 7 標準大氣溫度、壓力與高度之關係

4. 6自由度運動方程式:

由於6自由度運動方程式組推導繁雜,涉及牛頓力學、動力學、運動學,我們直接使用其結果,參考文獻有詳細推導供有 興趣的人查閱。6自由度運動方程式如下,為一階微分方程組:

$$\begin{bmatrix} V_{x} \\ \dot{V}_{y} \\ \dot{V}_{z} \end{bmatrix}_{e} = \begin{bmatrix} F_{x} \\ F_{y} \\ F_{z} \end{bmatrix}_{e} / m$$

$$\begin{bmatrix} \dot{X} \\ \dot{Y} \\ \dot{Z} \end{bmatrix}_{e} = \begin{bmatrix} V_{x} \\ V_{y} \\ V_{z} \end{bmatrix}_{e}$$

$$\begin{bmatrix} \dot{\omega}_{x} \\ \dot{\omega}_{y} \\ \dot{\omega}_{z} \end{bmatrix}_{e} = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix}_{e}^{-1} \begin{bmatrix} M_{x} \\ M_{y} \\ M_{z} \end{bmatrix}_{e}$$

$$\begin{bmatrix} \dot{\theta} \\ \dot{\phi} \\ \dot{\gamma} \end{bmatrix}_{e} = \begin{bmatrix} 0 & \cos\gamma & \sin\gamma \\ 0 & \frac{\sin\gamma}{\cos\theta} & \frac{\cos\gamma}{\cos\theta} \\ 1 & \tan\theta\sin\gamma & \tan\theta\cos\gamma \end{bmatrix} \begin{bmatrix} P \\ Q \\ R \end{bmatrix}_{b}$$

$$\dot{m} = -\dot{m} \cdot loss$$

其中

下標 i=x、y、z,下標 e 表大地座標系,b 表彈體座標系

Fi: 合力, Mi: 合力矩, Xi: 位置, Vi: 速度, ωi: 角速度

θ: 俯仰角, φ: 偏航角, γ: 滾轉角

P: 滚轉角速度, Q: 俯仰角速度, R: 偏航角速度

m: 質量變化率, m: 質量

以上共13條一階微分方程式組成6自由度運動方程式。

求解方程組可得到13個彈體狀態:

 $[Vx \quad Vy \quad Vz \quad X \quad Y \quad Z \quad P \quad Q \quad R \quad \phi \quad \theta \quad \gamma \quad m]$

(二) 介紹求解方程式的數值方法

為了求解 6 自由度運動方程式,即 13 條一階微分方程式,可以表示成 $\dot{Y}(i) = f[t,Y(i)]$, $i=1\sim13$,本文採用四階 Runge Kutta Methods 求解。Runge-Kutta methods 是用於非線性常微分方程的解的重要的一類隱式或顯式疊代法。由數學家卡爾·龍格和馬丁·威爾海姆·庫塔於 1900 年左右發明。

公式如下,概念為由 k1,k2,k3,k4 等四種斜率權重分配積分而得, 精度達時間步長的 4 次方。

令初值問題表述如下。

$$y'=f(t,y),\quad y(t_0)=y_0$$

則,對於該問題的RK4由如下方程給出:

$$y_{n+1}=y_n+rac{h}{6}(k_1+2k_2+2k_3+k_4)$$

其中

$$egin{aligned} k_1 &= f\left(t_n, y_n
ight) \ k_2 &= f\left(t_n + rac{h}{2}, y_n + rac{h}{2}k_1
ight) \ k_3 &= f\left(t_n + rac{h}{2}, y_n + rac{h}{2}k_2
ight) \ k_4 &= f\left(t_n + h, y_n + hk_3
ight) \end{aligned}$$

這樣,下一個值(y_{n+1})由現在的值(y_n)加上時間間隔(h)和一個估算的斜率的乘積所決定。該斜率是以下斜率的加權平均:

- k₁是時間段開始時的斜率;
- k_2 是時間段中點的斜率,通過歐拉法採用斜率 k_1 來決定y在點 $t_n + h/2$ 的值;
- k_3 也是中點的斜率,但是這次採用斜率 k_2 決定y值;
- k_4 是時間段終點的斜率,其y值用 k_3 決定。

當四個斜率取平均時,中點的斜率有更大的權值:

$$ext{slope} = rac{k_1 + 2k_2 + 2k_3 + k_4}{6}.$$

RK4法是四階方法,也就是說每步的誤差是 h^5 階,而總積累誤差為 h^4 階。

注意上述公式對於純量或者向量函數(y可以是向量)都適用。

(三) 程式求解流程圖

五、 結果與討論

6 自由度運動方程式求解後可得到 13 個彈體狀態:

 $[Vx \quad Vy \quad Vz \quad X \quad Y \quad Z \quad P \quad Q \quad R \quad \phi \quad \theta \quad \gamma \quad m]$

速度 Vx Vy Vz

位移 Х Ү Ζ

角速度P Q R

尤拉角φθγ

質量m

除了上述狀態外, 我們列出一些同樣重要的狀態如下:

加速度 Ax Ay Az

攻角 AF, 馬赫數 Ma, 全速度 V

水平距離 R, 高度 H

將上述狀態會製成圖如下,繪製順序及格式依照重要性決定,與上 述順序無關: 討論:是否符合物理規律?

- 1. 彈體僅有垂直面受力,水平面無受力,所以彈道不會有 y 軸位 移、速度、加速度,圖示符合。
- 2. 彈體無操控,受推力、重力、氣動力作用下,應呈現拋物線狀自 由落體軌跡,圖示符合。
- 3. 無橫向力, 所以彈體角速度僅有 Q 俯仰角速度有值, 無滾轉及偏 航角速度, 圖示符合。
- 4. 俯仰角初始值 25 度逐漸變小(彈尖朝上慢慢變成朝下)、攻角 5 度逐漸收斂至 0,是因為彈體為穩定彈,在氣動力作用下使彈體 逐漸穩定,即攻角收斂成 0,圖示符合。
- 5. 質量初始值 600 多公斤, 隨著發動機燃燒逐漸減輕, 到 25 秒燃畢 後維持在 300 多公斤, 圖示符合。
- 6. 推力與軸向加速度曲線趨勢一致,表示軸向加速度主要由推力所 貢獻,且在25秒燃畢後推力消失,圖示符合。
- 7. 初始俯仰角 25、40、50 度相比,俯仰角越小造成大部分時間待在低空層,空氣密度大,空氣阻力大導致大部分能量被阻力消耗,射程自然較短、高度自然較低,反之,俯仰角越大,空層越高, 氣動力小,消耗能量少,自然飛得又高又遠,圖示符合。

總結本章,模擬結果與物理規律一致。

	🖿 final —	-zsh — 80×24		
	6Dof interation	start		
t	X(m)	Y(m)	Z(m)	
0.0000	0.00	0.00	-0.80	
1.0000	53.71	0.00	-20.43	
2.0000	252.82	0.00	-82.52	
3.0000	632.20	0.00	-187.43	
4.0000	1199.26	0.00	-332.75	
5.0000	1880.26	0.00	-497.03	
6.0000	2599.33	0.00	-660.76	
7.0000	3330.45	0.00	-817.60	
8.0000	4068.99	0.00	-966.41	
9.0000	4813.67	0.00	-1106.81	
10.0000	5564.80	0.00	-1238.79	
11.0000	6323.56	0.00	-1362.46	
12.0000	7090.99	0.00	-1477.87	
13.0000	7868.01	0.00	-1585.06	
14.0000	8655.64	0.00	-1684.03	
15.0000	9455.02	0.00	-1774.79	
16.0000	10267.29	0.00	-1857.33	
17.0000	11093.49	0.00	-1931.59	
18.0000	11933.51	0.00	-1997.40	
19.0000	12778.77	0.00	-2054.01	
20.0000	13603.63	0.00	-2099.78	
21.0000	14397.78	0.00	-2134.40	

圖表 8 程式運行畫面

圖表 9 三維彈道圖

圖表 10 水平距離與高度

圖表 11 位移

圖表 12 加速度

圖表 13 速度

圖表 14 角速度

圖表 15 尤拉角 (姿態角)

圖表 16 攻角、馬赫數、全速度

圖表 17 質量、推力、x 軸加速度

圖表 18 不同俯仰角之水平距離與高度

六、 結論

本文為了建構6自由度運動模擬程式,從推導6自由度運動方程 式出發,經歷了座標系定義、推導了力及力矩、介紹了標準大氣模 式,完備了待求解的13條一階微分方程式,再採取Runge Kutta 4 階積分得到高精度的解,上述流程再經由Fortran程式化變成一個 可執行的模擬程式,運行程式後,我們想知道的所有時刻下的飛彈 狀態都可以獲得。

最終使用 Matlab 將感興趣的飛彈狀態繪圖,分析後確定模擬結果符合物理規律,即完成了該6自由度運動模擬程式的建置。

6自由度運動模擬程式提供了我們設計飛行載具的參考,讓我們 能夠有依據的去設計、修改彈體特性以符合我們的需求。

參考文獻:

1. U.S. Standard atmosphere, 1962 / National Aeronautics & Space

Administration

- 2. 外彈道學, 2000
- 3. Missile Guidance and Control Systems, 2003