Chapter 2: Modules

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 2.1. Show that $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$ if m, n are coprime.

It suffices to show that

$$(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/d\mathbb{Z}$$

where d is the greatest common divisor of m and n.

Outlines.

(1) Define $\widetilde{\varphi}$ by

 $\widetilde{\varphi}$ is well-defined and $\mathbb{Z}\text{-bilinear}.$

(2) By the universal property, $\widetilde{\varphi}$ factors through a \mathbb{Z} -bilinear map

$$\varphi: (\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \to \mathbb{Z}/d\mathbb{Z}$$

(such that $\varphi(x \otimes y) = \widetilde{\varphi}(x, y)$).

(3) To show that φ is isomorphic, might find the inverse map $\psi: \mathbb{Z}/d\mathbb{Z} \to (\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z})$ of φ . Define ψ by

 ψ is well-defined and \mathbb{Z} -linear.

- (4) $\psi \circ \varphi = id$.
- (5) $\varphi \circ \psi = id$.

Proof of (1).

- (a) $\widetilde{\varphi}$ is well-defined. Say x' = x + am for some $a \in \mathbb{Z}$ and y' = y + bn for some $b \in \mathbb{Z}$. Then $x'y' xy = yam + xbn + abmn \in \mathbb{Z}/d\mathbb{Z}$. That is, $\widetilde{\varphi}$ is independent of coset representative.
- (b) $\widetilde{\varphi}$ is \mathbb{Z} -bilinear.

(i) For any
$$\lambda \in \mathbb{Z}$$
, $\widetilde{\varphi}(\lambda x, y) = \widetilde{\varphi}(x, \lambda y) = \lambda \widetilde{\varphi}(x, y)$. In fact,

$$\widetilde{\varphi}(\lambda(x + m\mathbb{Z}), y + n\mathbb{Z}) = \widetilde{\varphi}(\lambda x + m\mathbb{Z}, y + n\mathbb{Z}) = \lambda xy + d\mathbb{Z},$$

$$\widetilde{\varphi}(x + m\mathbb{Z}, \lambda(y + n\mathbb{Z})) = \widetilde{\varphi}(x + m\mathbb{Z}, \lambda y + n\mathbb{Z}) = \lambda xy + d\mathbb{Z},$$

$$\widetilde{\varphi}(x_1 + m\mathbb{Z}, y + n\mathbb{Z}) = \lambda(xy + d\mathbb{Z}) = \lambda xy + d\mathbb{Z}.$$

(ii)
$$\widetilde{\varphi}(x_1 + x_2, y) = \widetilde{\varphi}(x_1, y) + \widetilde{\varphi}(x_2, y)$$
. In fact,

$$\widetilde{\varphi}((x_1 + x_2) + m\mathbb{Z}, y + n\mathbb{Z}) = (x_1 + x_2)y + d\mathbb{Z},$$

$$\widetilde{\varphi}(x_1 + m\mathbb{Z}, y + n\mathbb{Z}) + \widetilde{\varphi}(x_2 + m\mathbb{Z}, y + n\mathbb{Z}) = (x_1y + d\mathbb{Z}) + (x_2y + d\mathbb{Z})$$

$$= (x_1 + x_2)y + d\mathbb{Z}.$$

(iii) $\widetilde{\varphi}(x, y_1 + y_2) = \widetilde{\varphi}(x, y_1) + \widetilde{\varphi}(x, y_2)$. Similar to (ii).

Proof of (3).

(a) ψ is well-defined. Say z' = z + cd for some $c \in \mathbb{Z}$. Note that $d = \alpha m + \beta n$ for some $\alpha, \beta \in \mathbb{Z}$. Thus

$$\psi(z'+d\mathbb{Z}) = \psi(z+cd+d\mathbb{Z})$$

$$= \psi(z+c(\alpha m+\beta n)+d\mathbb{Z})$$

$$= (z+c(\alpha m+\beta n)+m\mathbb{Z})\otimes (1+n\mathbb{Z})$$

$$= (z+c\beta n+m\mathbb{Z})\otimes (1+n\mathbb{Z})$$

$$= (z+m\mathbb{Z})\otimes (1+n\mathbb{Z})+(c\beta n+m\mathbb{Z})\otimes (1+n\mathbb{Z})$$

$$= \psi(z+d\mathbb{Z})+(1+m\mathbb{Z})\otimes (c\beta n+n\mathbb{Z})$$

$$= \psi(z+d\mathbb{Z}).$$

- (b) ψ is \mathbb{Z} -linear.
 - (i) For any $\lambda \in \mathbb{Z}$, $\psi(\lambda z) = \lambda \psi(z)$. In fact, $\psi(\lambda(z+d\mathbb{Z})) = \psi(\lambda z + d\mathbb{Z}) = (\lambda z + m\mathbb{Z}) \otimes (1+n\mathbb{Z}),$ $\lambda \psi(z+d\mathbb{Z}) = \lambda((z+m\mathbb{Z}) \otimes (1+n\mathbb{Z})) = (\lambda z + m\mathbb{Z}) \otimes (1+n\mathbb{Z}).$

(ii)
$$\psi(z_1 + z_2) = \psi(z_1) + \psi(z_2)$$
.

$$\psi((z_1 + z_2) + d\mathbb{Z}) = (z_1 + z_2 + m\mathbb{Z}) \otimes (1 + n\mathbb{Z}),$$

$$\psi(z_1 + d\mathbb{Z}) + \psi(z_2 + d\mathbb{Z}) = (z_1 + m\mathbb{Z}) \otimes (1 + n\mathbb{Z}) + (z_2 + m\mathbb{Z}) \otimes (1 + n\mathbb{Z})$$

$$= (z_1 + z_2 + m\mathbb{Z}) \otimes (1 + n\mathbb{Z}).$$

Proof of (4). For any $(x + m\mathbb{Z}) \otimes (y + n\mathbb{Z}) \in (\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z})$,

$$\psi(\varphi((x+m\mathbb{Z})\otimes(y+n\mathbb{Z}))) = \psi(xy+d\mathbb{Z})$$
$$= (xy+m\mathbb{Z})\otimes(1+n\mathbb{Z})$$
$$= (x+m\mathbb{Z})\otimes(y+n\mathbb{Z}).$$

Proof of (5). For any $z + d\mathbb{Z} \in \mathbb{Z}/d\mathbb{Z}$,

$$\varphi(\psi(z+d\mathbb{Z})) = \varphi((z+m\mathbb{Z}) \otimes (1+n\mathbb{Z}))$$
$$= z+d\mathbb{Z}.$$

Exercise 2.2. Let A be a ring, \mathfrak{a} an ideal, M an A-module. Show that $(A/\mathfrak{a}) \otimes_A M$ is isomorphic to $M/\mathfrak{a}M$. (Hint: Tensor the exact sequence $0 \to \mathfrak{a} \to A \to A/\mathfrak{a} \to 0$ with M.

Proof (Hint). There is a natural exact sequence E:

$$E: 0 \to \mathfrak{a} \xrightarrow{i} A \xrightarrow{\pi} A/\mathfrak{a} \to 0$$

where i is the inclusion map (and π is the projection map). Tensor E with M:

$$E': \mathfrak{a} \otimes_A M \xrightarrow{i \otimes 1} A \otimes_A M \xrightarrow{\pi \otimes 1} (A/\mathfrak{a}) \otimes_A M \to 0$$

is exact, or

$$(A/\mathfrak{a}) \otimes_A M \cong A \otimes_A M/\mathrm{im}(i \otimes 1).$$

By Proposition 2.14, There is an unique isomorphism $A \otimes_A M \to M$ defined by $a \otimes x \mapsto ax$. This isomorphism sends $\operatorname{im}(i \otimes 1)$ to $\mathfrak{a}M$. Therefore,

$$(A/\mathfrak{a}) \otimes_A M \cong M/\mathfrak{a}M.$$

 $Proof\ (Brute\mbox{-}force).$

(1) Define $\widetilde{\varphi}$ by

 $\widetilde{\varphi}$ is well-defined and A-bilinear.

(2) By the universal property, $\widetilde{\varphi}$ factors through a A-bilinear map

$$\varphi: A/\mathfrak{a} \otimes_A M \to M/\mathfrak{a}M$$

(such that $\varphi(a \otimes x) = \widetilde{\varphi}(a, x)$).

(3) To show that φ is isomorphic, might find the inverse map $\psi: M/\mathfrak{a}M \to A/\mathfrak{a} \otimes_A M$ of φ . Define ψ by

 ψ is well-defined and A-linear.

- (4) $\psi \circ \varphi = id$.
- (5) $\varphi \circ \psi = id$.

Exercise 2.3. Let A be a local ring, M and N finitely generated A-modules. Prove that if $M \otimes_A N = 0$, then M = 0 or N = 0. (Hint: Let \mathfrak{m} be the maximal ideal, $k = A/\mathfrak{m}$ the residue field. Let $M_k = k \otimes_A M \cong M/\mathfrak{m}M$ by Exercise 2.2. By Nakayama's lemma, $M_k = 0 \Longrightarrow M = 0$. But $M \otimes_A N = 0 \Longrightarrow (M \otimes_A N)_k = 0 \Longrightarrow M_k \otimes_k N_k = 0 \Longrightarrow M_k = 0$ or $N_k = 0$ since M_k , N_k are vector spaces over a field.)

The conclusion might be false if A is not local. For example, Exercise 2.1.

Proof (Hint). Let \mathfrak{m} be the maximal ideal, $k = A/\mathfrak{m}$ the residue field. Let $M_k = k \otimes_A M$.

(1) (Base extension) Show that $(M \otimes_A N)_k = M_k \otimes_k N_k$. In fact, by Proposition 2.14

$$(M \otimes_A N)_k = k \otimes_A (M \otimes_A N)$$

$$= (k \otimes_A M) \otimes_A N$$

$$= M_k \otimes_A N$$

$$= (M_k \otimes_k k) \otimes_A N$$

$$= M_k \otimes_k (k \otimes_A N)$$

$$= M_k \otimes_k N_k.$$

(2)

$$\begin{split} M \otimes_A N &= 0 \Longrightarrow (M \otimes_A N)_k = 0 \\ &\Longrightarrow M_k \otimes_k N_k = 0 \\ &\Longrightarrow M_k = 0 \text{ or } N_k = 0 \\ &\Longrightarrow M/\mathfrak{m}M = 0 \text{ or } M/\mathfrak{m}M = 0 \\ &\Longrightarrow M = 0 \text{ or } N = 0. \end{split} \tag{(11)}$$