Аналитическая геометрия

Содержание

1	Векторная алгебра					
	1.1	Свойс	тва векторов	3		
	1.2	Ортог	ональная проекция вектора на направление	4		
	1.3	Линей	ная зависимость и независимость векторов	5		
		1.3.1	Критерии линейной зависимости 2 и 3 векторов	6		
	1.4	Базис		7		
		1.4.1	Пространство V_1			
		1.4.2	Пространство V_2			
		1.4.3	Пространство V_3			
2	Koo	рдина	ты вектора. Действия с векторами	10		
	2.1	Скаля	рное произведение векторов	11		
		2.1.1	Свойства скалярного произведения	11		
		2.1.2	Формула для вычисления скалярного произведения двух векторов,			
			заданных ортонормированным базисом	11		
		2.1.3	Формула косинуса между векторами, заданными ортонормирован-			
			ным базисом	12		
	2.2	Векто	рное произведение векторов	12		
		2.2.1	Свойства векторного произведения векторов	12		
		2.2.2	Геометрическое приложение векторов.	12		
	2.3		анное произведение	13		
	2.0	2.3.1	Свойства смешанных произведений	13		
		2.3.2	Формула смешанного произведения трёх векторов в правом ортонор-	10		
		2.0.2	мированном базисе	14		
		2.3.3	Геометрическое приложение смешанного произведения	14		
				15		
3	_	Ірямая на плоскости				
	3.1	Спосо	бы задания прямой			
		3.1.1	Каноническое уравнение	15		
		3.1.2	Параметрическое уравнение			
		3.1.3	Через две точки	15		
		3.1.4	В отрезках	15		
		3.1.5	С угловым коэффициентом	16		
		3.1.6	Общего вида	16		
	3.2	Угол м	между прямыми	16		
		3.2.1	Прямые, заданные каноническими уравнениями	16		
		3.2.2	Прямые, заданные общими уравнениями	17		
		3.2.3	Прямые, заданные угловыми коэффициентами	17		
	3.3	Услові	ие параллельности прямых	17		
		3.3.1	Прямые, заданные каноническими уравнениями	17		
		3.3.2	Прямые, заданные общими уравнениями	17		
		3.3.3	Прямые, заданные угловыми коэффициентами	17		
	3.4		ие перпендикулярности прямых	17		
		3.4.1	Прямые, заданные каноническими уравнениями	17		
		3.4.2	Прямые, заданные общими уравнениями	18		
		3.4.3	Прямые, заданные угловыми коэффициентами	18		
		J. 1.0	r, cogamine Justiniii nooppiniii			

	3.5	Расстояние от точки до прямой	18				
4	Уравнение плоскости 19						
	4.1	Способы задания плоскости	19				
		4.1.1 Через три точки	19				
		4.1.2 Через две точки с направляющим вектором	19				
		4.1.3 Проходящей через точку с двумя направляющими векторами	20				
		4.1.4 Уравнение плоскости в отрезках	20				
		4.1.5 Общее уравнение	21				
	4.2	Угол между плоскостями	21				
		4.2.1 Условие перпендикулярности	21				
		4.2.2 Условие параллельности	21				
	4.3	Расстояние от точки до плоскости	22				
5	Пъс	имая в пространстве	23				
J	5.1		23				
	5.1	Способы задания прямой в пространстве	$\frac{23}{23}$				
		5.1.1 Каноническое уравнение прямой					
		5.1.2 Параметрическое уравнение	23				
		5.1.3 Через две точки	23				
		5.1.4 Общее уравнение	23				
	5.2	Расстояние от точки до прямой в пространстве	24				
		5.2.1 Расстояние между параллельными прямыми	25				
		5.2.2 Расстояние между скрещивающимися прямыми	25				
	5.3	Взаимное расположение прямых в пространстве	26				
		5.3.1 Совпадают	26				
		5.3.2 Параллельны	26				
		5.3.3 Пересекаются	27				
		5.3.4 Скрещиваются	27				
	5.4	Угол между прямой и плоскостью	27				
		5.4.1 Условие параллельности прямой и плоскости	27				
		5.4.2 Условие перпендикулярности прямой и плоскости	28				
		5.4.3 Примеры задач	28				
6	Крі	ивые и поверхности 2-го порядка	33				
	6.1	Эллипс	33				
	6.2	Гипербола	36				
	6.3	Парабола	39				
7	Ma	грицы	41				
•	7.1	Основные понятия	41				
	7.2	Действия с матрицами	42				
	1.4	7.2.1 Сумма матриц	42				
			42				
		7.2.3 Свойства сложения матриц и умножения матрицы на число	43				
		7.2.4 Транспонирование матриц	43				
		7.2.5 Свойства транспонирования матриц	43				
		7.2.6 Произведение матриц	43				
		7.2.7 Свойство антикоммутативности матрицы и его исключения	44				
		7.2.8 Свойства произведения матриц	45				
	7.3	Элементарные преобразования матриц	46				
	7 4	Минор матрицы. Ранг матрицы.	46				

	7.5	Вычисление ранга матрицы	18			
		7.5.1 Метод окаймляющих миноров				
		7.5.2 Метод элементарных преобразований	18			
	7.6	Обратные матрицы	19			
		7.6.1 Критерий существования обратной матрицы	9			
	7.7	Вычисление обратной матрицы	52			
		7.7.1 Метод алгебраических дополнений	52			
		7.7.2 Метод Жордана-Гаусса (с помощью элементарных преобразований) . 5	3			
8	Системы линейных алгебраических уравнений (СЛАУ) 8.1 Формы записи СЛАУ					
		8.1.1 Координатная форма записи				
		8.1.2 Матричная форма записи				
		8.1.3 Векторная форма записи				
	8.2	Решение линейных уравнений	55			
	8.3	Формулы Крамера для решения СЛАУ	6			
	8.4	Теорема Кронекера-Капелли	57			
	8.5	Однородные СЛАУ	59			
	8.6	Неолноролные СЛАV	:4			

1 Векторная алгебра

Определение 1. Вектором называется отрезок, с выбранном на нём направлением.

Определение 2. Два вектора называется **коллинеарными**, если они лежат на одной прямой или на параллельных прямых.

Определение 3. Три вектора называются **компланарными**, если они лежат на прямых, параллельных некоторой плоскости.

Примечание. Вектор определяется точкой начала и точкой конца. (\overrightarrow{AB})

Определение 4. Вектор, у которого точка начала фиксирована, называется **связанным**.

Определение 5. Вектор, у которого точка начала не фиксированная, называется **свободным**.

Примечание. Вектор характеризуется длиной и направлением.

Определение 6. Два вектора называются **сонаправленными**, если они *коллинеар- ны* и имеют одно и то же направление.

Определение 7. Два вектора называются **противоположно направленными** если они *коллинеарны* и имеют противоположные направления.

Определение 8. Два вектора называются равными, если:

- 1. Они коллинеарны и сонаправлены
- 2. Их длины равны

Определение 9. Вектор, длина которого равна 1 называется единичным вектором или **ортом**.

$$\vec{e}$$
 $|\vec{e}| = 1$.

Определение 10. Вектор, длина которого равна нулю (начало и конец совпадают) называется **нулевым вектором**. Направление нулевого вектора произвольное. Нулевой вектор коллинеарен всем векторам.

$$|\vec{0}| = 0.$$

Определение 11. Суммой векторов \vec{a} и \vec{b} называется \vec{c} , который получается по правилу треугольника:

- 1. Конец вектора \vec{a} совмещают с началом вектора \vec{b}
- 2. Тогда вектор, идущий из начала вектора \vec{a} к концу вектора \vec{b} и будет вектором \vec{c} .

Определение 12. Суммой векторов \vec{a} и \vec{b} называется вектор \vec{c} , который получается по правилу параллелограмма следующим образом:

- 1. Совмещают начала векторов \vec{a} и \vec{b}
- 2. Достраивают фигуры до параллелограмма
- 3. Тогда вектор, идущий из начала вектором по диагонали параллелограмма и будет исходным вектором \vec{c} .

Примечание. Если два вектора коллинеарны, то их можно сложить только правилу треугольника.

Определение 13. Произведение вектора \vec{a} на число λ называется вектор \vec{c} , который будет коллинеарен вектору \vec{a} , длина которого будет или меньше в $|\lambda|$ раз и будет сонаправлен, если $\lambda > 0$, и противонаправлен, если $\lambda < 0$.

1.1 Свойства векторов

$$1. \quad \vec{a} + \vec{b} = \vec{b} + \vec{a}$$

$$2. \quad \vec{a} + \vec{b} = \vec{b} + \vec{a}$$

3.
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

4.
$$\forall \vec{a} \ \exists \vec{0} \qquad \vec{a} + \vec{0} = \vec{a}$$

5.
$$\forall \vec{a} \; \exists \vec{b} \qquad \vec{a} + \vec{b} = \vec{0} \implies -\vec{b} = \vec{a}$$

6.
$$\lambda \left(\vec{a} + \vec{b} \right) = \lambda \vec{a} + \lambda \vec{b}$$

7.
$$\lambda(\mu \vec{a}) = (\lambda \mu) \vec{a}$$

8.
$$(\lambda + \mu) \vec{a} = \lambda \vec{a} + \mu \vec{a}$$

Определение 14. Разностью векторов \vec{a} и \vec{b} называется вектор \vec{c} , который получается следующим образом:

- 1. Совмещаем начала векторов \vec{a} и \vec{b}
- 2. Вектор, который идёт из конца вектора \vec{b} в начало вектора \vec{a} и есть искомый вектор \vec{c} .

1.2 Ортогональная проекция вектора на направление

Определение 1. Основание точки O_a перпендикуляра, опущенного их точки A на прямую L называется **ортогональной проекцией точки** A на прямую L.

Определение 2. Пусть имеем вектор \overrightarrow{AB} . Пусть O_a - ортогональная проекция начала вектора \overrightarrow{AB} на прямую L, а O_b - это ортогональная проекция конца вектора \overrightarrow{AB} на прямую L. Тогда вектор $\overrightarrow{O_aO_b}$, соединяющий проекции и лежащий на прямой L, называется ортогональной проекцией вектора \overrightarrow{AB} на прямую L.

Определение 3. Осью называется прямая с выбранным на ней направлением.

Примечание. Если на прямой L выбрано направление, то длину $\overrightarrow{O_aO_b}$ берут со знаком +, если направление вектора совпадает с выбранным направлением L, и со знаком -, если нет.

Определение 4. Длину вектора $\overrightarrow{O_aO_b}$ со знаком, определяющим направление этого вектора, называют ортогональной проекцией вектора \overrightarrow{AB} на ось \overrightarrow{l} .

Определение 5. Ортогональную проекцию вектора на ненулевой вектор \vec{l} называют ортогональной проекцией этого вектора на направление вектора \vec{l} .

Примечание. Важно! Ортогональная проекция вектора на направление - это число!

Теорема 1.

Ортогональная проекция вектора \vec{l} на направление ненулевого вектора \vec{l} равна произведению длины вектора \vec{l} на $\cos\phi = \cos\left(\vec{a},\ \vec{l}\right)$

Теорема 2.

Ортогональная проекция суммы векторов \vec{a} и \vec{b} на направление ненулевого вектора \vec{l} равна сумме ортогональных проекций вектора \vec{a} и \vec{b} на направление ненулевого вектора \vec{l} .

$$\operatorname{\pip}_{\vec{l}}\left(\vec{a} + \vec{b}\right) = \operatorname{\pip}_{\vec{l}}\vec{a} + \operatorname{\pip}_{\vec{l}}\vec{b}.$$

Теорема 3.

Ортогональная проекция вектора произведения \vec{a} и числа λ на направление ненулевого вектора \vec{l} равна произведению числа λ на ортогональную проекцию вектора \vec{a} .

$$\operatorname{np}_{\vec{l}} \lambda \vec{a} = \lambda \operatorname{np}_{\vec{l}} \vec{a}.$$

6

1.3 Линейная зависимость и независимость векторов

Определение 1.

$$\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \ldots + \lambda_n \vec{a_n}$$
 где λ_i — произвольные числа

называется **линейной комбинацией** системы векторов \vec{a} , а числа λ - коэффициентом линейной комбинации.

Определение 2.

Если $\forall \lambda = 0$, то линейную комбинацию называют **тривиальной**.

Если $\neg \forall \lambda = 0$, то линейную комбинацию называют **нетривиальной**.

Определение 3. Система векторов называется **линейно-зависимой**, если существует нетривиальная равная нулевому вектору линейной комбинация этих векторов:

$$\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \ldots + \lambda \vec{a_n} = \vec{0}$$
$$\lambda_1^2 + \lambda_2^2 + \ldots + \lambda_n^2 \neq 0$$

Определение 4. Система векторов называется **линейно-независимой**, если существует только тривиальная равная нулевому вектору линейная комбинация.

$$\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \ldots + \lambda \vec{a_n} = \vec{0}$$

Теорема 1.

Система векторов линейно-зависима тогда и только тогда, когда один из этих векторов можно представить в виде линейной комбинации других векторов.

Доказательство.

1) Пусть система векторов линейно-зависима.

Тогда по определению существует нетривиальная равная нулевому вектору линейная комбинация этих векторов:

$$\lambda_1 \neq 0$$

$$\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \ldots + \lambda_n \vec{a_n} = \vec{0}$$

$$\vec{a_1} = -\frac{\lambda_2}{\lambda_1} \vec{a_2} - \frac{\lambda_3}{\lambda_1} \vec{a_3} - \ldots - \frac{\lambda_n}{\lambda_1} \vec{a_n}$$

Обозначим $\beta_i = -\frac{\lambda_i}{\lambda_1}$, где $i \in N \land 2 \le i \le n$.

Получаем:

$$\vec{a_1} = \beta_2 \vec{a_2} + \beta_3 \vec{a_3} + \ldots + \beta_n \vec{a_n}$$

Что и требовалось доказать.

Доказательство.

2) Пусть один из векторов можно представить в виде линейной комбинации других векторов системы (возьмем $\vec{a_1}$. Перенесём слагаемые из правой части в левую:

$$\vec{a_1} - \lambda_2 \vec{a_2} - \lambda_3 \vec{a_3} - \ldots - \lambda_n \vec{a_n} = \vec{0}$$

Получили нетривиальную равную нулевому вектору линейную комбинацию векторов. По определению, данная система векторов является *линейно-зависимой*.

1.3.1 Критерии линейной зависимости 2 и 3 векторов

Теорема 2.

Два вектора линейно-зависимы тогда и только тогда, когда они коллинеарны.

Доказательство.

1) Необходимость.

Пусть система векторов $\vec{a_1}, \vec{a_2}$ линейно-зависима. Тогда по определению \exists нетривиальная линейная зависимость $= \vec{0}$ этих векторов. Пусть $\lambda_1 \neq 0$, тогда $\vec{a_1} = -\frac{\lambda_2}{\lambda_1}\vec{a_2}$. Обозначим $\beta = -\frac{\lambda_2}{\lambda_1}$, тогда $\vec{a_1} = \beta \vec{a_2}$. По определению произведение вектора на число $\vec{a_1}$ и $\vec{a_2}$ коллинеарны.

2) Достаточность.

Пусть $\vec{a_1} \parallel \vec{a_2}$. Тогда $\vec{a_1} = \lambda \vec{a_2}$ (по определению произведения вектора на число). Перенесем все налево:

$$\vec{a_1} - \lambda \vec{a_2} = \vec{0}$$

По определению $\vec{a_1}$ и $\vec{a_2}$ являются линейной зависимостью.

Теорема 3.

Три вектора линейной зависимы тогда и только тогда, когда они компланарны.

Доказательство.

(1) Пусть $\vec{a_1}$, $\vec{a_2}$, $\vec{a_3}$ - линейная зависимость, тогда по определению существуют:

$$\lambda_1 \vec{a_1} + \lambda_2 \vec{a_2} + \lambda_3 \vec{a_3} = \vec{0}$$

Тогда: $\lambda_1 \neq 0$

$$\vec{a_1} = -\frac{\lambda_2}{\lambda_1} \vec{a_2} - \frac{\lambda_3}{\lambda_1} \vec{a_3}$$

Обозначим $\beta=-\frac{\lambda_i}{\lambda},$ где i=2,3.

$$\vec{a_1} = \beta_2 \vec{a_2} + \beta_3 \vec{a_3}$$

Совместим начала $\vec{a_2}$ и $\vec{a_3}$ и построим $\beta_2 \vec{a_2}$ и $\beta_3 \vec{a_3}$, где $\beta_2, \beta_3 > 0$.

Т.к. $\vec{a_3}$ лежит на диагонали параллелограмма (из правила сложения векторов параллелограммом), получается, что вектора $\vec{a_1}$, $\vec{a_2}$, $\vec{a_3}$ лежат в одной плоскости, что и требовалось доказать.

Доказательство.

(2) Пусть $\vec{a_1}, \vec{a_2}, \vec{a_3}$ лежат в одной плоскости (компланарны). Совместим начала векторов, концы векторов обозначим A_i . Проведём через A_1 прямую, параллельную $\vec{a_3}$.

$$\overrightarrow{OA_2'} \parallel \overrightarrow{OA_2} \implies \overrightarrow{OA_2'} = \lambda_2 \overrightarrow{OA_2}$$

$$\overrightarrow{OA_3'} \parallel \overrightarrow{OA_3} \implies \overrightarrow{OA_3'} = \lambda_3 \overrightarrow{OA_3}$$

Тогда согласно правилу параллелограмма сложения векторов:

$$\overrightarrow{OA_1} = \overrightarrow{OA_2} = \overrightarrow{OA_3}$$
, to $\overrightarrow{a_1} = \lambda_2 \overrightarrow{a_2} + \lambda_3 \overrightarrow{a_3}$

Теорема 4.

Любые 4 вектора линейно зависимы.

1.4 Базис

Определение 1. Базис - упорядоченный набор векторов.

Введём обозначения:

- \bullet V_1 пространство всех коллинеарных векторов
- ullet V_2 пространство всех компланарных векторов
- V_3 пространство всех свободных векторов

1.4.1 Пространство V_1

Определение 2. Пусть $\vec{e} \neq \vec{0} \in V_1$, тогда $\forall \vec{x} \in V_1 \ (\vec{x} = \lambda \vec{e}, \text{ т.к. } \vec{x} \parallel \vec{e})$. Тогда

$$\vec{x} = \lambda \vec{e}$$

называется **разложением** \vec{x} по базису \vec{e} в V_1 , а λ — координаты \vec{x} в этом базисе.

1.4.2 Пространство V_2

Определение 3. Любая упорядоченная пара неколлинеарных векторов в V_2 является **базисом** V_2 .

Пусть в V_2 $\vec{e_1} \not \mid \vec{e_2}$, тогда эти вектора можно рассматривать как базис $V_2, \vec{x} \in V_2 \implies \vec{e_1}, \vec{e_2}, \vec{x}$ — линейная зависимость.

$$\vec{x} = \lambda_1 \vec{e_1} + \lambda_2 \vec{e_2}$$

— разложение вектора \vec{x} по базису $\vec{e_1}, \vec{e_2}$. λ_1 и λ_2 называются координатами \vec{x} в этом базисе.

Определение 4. Базис в V_2 называется **ортогональным**, если базисные вектора лежат на перпендикулярных прямых.

1.4.3 Пространство V_3

Определение 5. Любая упорядоченная тройка некомпланарных векторов в V_3 называется **базисом в** V_3 .

Пусть $\vec{e_1}, \vec{e_2}, \vec{e_3}$ - упорядоченная тройка векторов в $V_3, \vec{x} \in V_3$. Тогда система векторов линейно зависима (по теореме 4). По теореме 1

$$\vec{x} = \lambda_1 \vec{e_1} + \lambda_2 \vec{e_2} + \lambda_3 \vec{e_3}$$

Данное выражение называется **разложением** \vec{x} по базису $\vec{e_1}, \vec{e_2}, \vec{e_3}$ в V_3 , а $\lambda_1, \lambda_2, \lambda_3$ называются координатами \vec{x} в базисе.

Базис в V_3 , если базисные вектора лежат на взаимно перпендикулярных прямых.

Определение 6. Ортонормированный базис — ортогональный базис из \vec{e} векторов.

Теорема 1 (О разложении вектора по базису).

Любой вектор можно разложить по базису и при этом единственным образом.

Доказательство.

Пусть в пространстве V_3 зафиксирован базис $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$. Возьмём вектор \vec{x} . Тогда система векторов \vec{x} , $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ - линейно зависима, если вектор \vec{x} можно представить в виде линейной комбинации векторов $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$:

$$\vec{x} = \lambda_1 \vec{e_1} + \lambda_2 \vec{e_2} + \lambda_3 + \vec{e_3} \tag{1}$$

Предположим, что разложение вектора \vec{x} – не единственное.

$$\vec{x} = \rho \vec{e_1} + \rho \vec{e_2} + \rho \vec{e_3} \tag{2}$$

Вычтем из (1) уравнение (2). Тогда:

$$\vec{0} = (\lambda_1 - \rho_1)\vec{e_1} + (\lambda_2 - \rho_2)\vec{e_2} + (\lambda_3 - \rho_3)\vec{e_3}$$
(3)

Поскольку базисные вектора $\vec{e_1}, \vec{e_2}, \vec{e_3}$ – линейно независимы, то выражение (3) представляет собой тривиальную линейную комбинацию векторов $\vec{e_1}, \vec{e_2}, \vec{e_3}$, равную нулю. Тогда получаем:

$$\lambda_1 - \delta_1 = 0 \qquad \lambda_1 = \delta_1$$

$$\lambda_2 - \delta_2 = 0 \implies \lambda_2 = \delta_2$$

$$\lambda_3 - \delta_3 = 0 \qquad \lambda_3 = \delta_3$$

Коэффициенты равны, что и требовалось доказать.

Пример. Пусть в пространстве V_2 зафиксирован базис \vec{i}, \vec{j} .

$$|\vec{i}| = 1, \quad |\vec{j}| = 1$$

$$\vec{a} = \overrightarrow{OA} + \overrightarrow{OB}$$

$$\overrightarrow{OA} \parallel \vec{i} \implies \overrightarrow{OA} = x_a \vec{i}$$

$$\overrightarrow{OB} \parallel \vec{j} \implies \overrightarrow{OB} = y_a \vec{j}$$

$$\implies \vec{a} = x_a \vec{i} + y_a \vec{j}$$

Пример. Пусть в пространстве V_3 зафиксирован ортонормированный базис $\vec{i}, \vec{j}, \vec{k}$. Тогда:

$$\vec{a} = \{x_a, y_a, z_a\}$$
$$\vec{a} = x_a \vec{i} + y_a \vec{j} + z_a \vec{k}$$

$\overrightarrow{ ext{P}}$ азложить \overrightarrow{a} по векторам $\overrightarrow{b}, \overrightarrow{c}.$

Дано:

$$\vec{a} = 3\vec{i} - 4\vec{j}$$

$$\vec{b} = 2\vec{i} - \vec{j}$$

$$\vec{c} = -\vec{i} - 5\vec{j}$$

Решение:

$$\vec{a} = \alpha \vec{b} + \beta \vec{c}$$

$$3\vec{i} - 4\vec{j} = \alpha(2\vec{i} + \vec{j}) + \beta(-\vec{i} + 5\vec{j})$$

$$3\vec{i} - 4\vec{j} = (2\alpha - \beta)\vec{i} + (\alpha + 5\beta)\vec{j} \Rightarrow$$

$$\begin{cases} 3 = 2\alpha - \beta \\ -4 = \alpha + 5\beta \end{cases} \Rightarrow \begin{cases} \beta = -1 \\ \alpha = 1 \end{cases}$$

2 Координаты вектора. Действия с векторами

Пусть:

$$\vec{a} = \{x_a, y_a, x_a\}$$
$$\vec{b} = \{x_b, y_b, z_b\}$$

Примечание. Два вектора равны, если равны соответствующие координаты.

Тогда:

$$\vec{c} = \vec{a} + \vec{b} = \{x_a + x_b, y_a + y_b, z_a + z_b\}$$

 $k\vec{a} = \{kx_a, ky_a, kz_a\}$

Замечание. $k\vec{a}=k\cdot\{\ldots\}$ - так записывать нельзя!

Если $\vec{a} \parallel \vec{b}$, то $\vec{b} = \lambda \vec{a}$, где $\lambda = const$

$$\begin{cases} x_b = \lambda x_a \\ y_b = \lambda y_a \\ z_b = \lambda z_b \end{cases} \implies \frac{x_a}{x_b} = \frac{y_a}{y_b} = \frac{z_a}{z_b}$$

Расчёт косинуса угла по разложению в базисе

Пример. В V_2 :

$$\vec{a} = \{x_a, y_a, z_a\}$$
$$|\vec{a}| = \sqrt{x_a^2 + y_a^2 + z_a^2}$$
$$\cos \alpha = \frac{x_a}{|\vec{a}|} \cos \beta = \frac{y_a}{|\vec{a}|}$$

Пример. Для V_3 :

$$\cos \alpha = \frac{x_a}{|\vec{a}|} \quad x_a = |\vec{a}| \cos \alpha$$
$$\cos \beta = \frac{y_a}{|\vec{a}|} \quad y_a = |\vec{a}| \cos \beta$$
$$\cos \gamma = \frac{z_a}{|\vec{a}|} \quad z_a = |\vec{a}| \cos \gamma$$

Возведём в квадрат:

$$|\vec{a}|^2 \cos^2 \alpha + |\vec{a}|^2 \cos^2 \beta + |\vec{a}|^2 \cos^2 \gamma = x_a^2 + y_a^2 + z_a^2 = |\vec{a}|^2$$

$$\implies \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

В результате получаем орт вектора \vec{a} :

$$\vec{e_a} = \{\cos\alpha, \cos\beta, \cos\gamma\}$$

2.1 Скалярное произведение векторов

Определение 1. Скалярным произведением векторов \vec{a}, \vec{b} называется число равное произведению длин этих векторов на косинус угла между ними.

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \phi$$

2.1.1 Свойства скалярного произведения

1. Коммутативность

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

2.

$$\vec{a}^2 \ge 0$$

$$\vec{a}^2 = 0 \iff \vec{a} = \vec{0}$$

$$\vec{a}^2 = |\vec{a}|^2$$

3. Дистрибутивность

$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

4. Ассоциативность

$$(\lambda \vec{a}) \cdot \vec{b} = \lambda \left(\vec{a} \cdot \vec{b} \right)$$

2.1.2 Формула для вычисления скалярного произведения двух векторов, заданных ортонормированным базисом

$$ec{a} \cdot ec{b} = |ec{a}| \cdot |ec{b}| \cos arphi$$
 $ec{a} \cdot ec{b} > 0$, если $arphi \in \left(0; rac{\pi}{2}
ight)$ $ec{a} \cdot ec{b} < 0$, если $arphi \in \left(rac{\pi}{2}; \pi
ight)$ $ec{a} \cdot ec{b} = 0$, если $arphi = rac{\pi}{2}$

Пусть в пространстве V_3 с заданным ортонормированном базисом $\vec{i}, \vec{j}, \vec{k}$ заданы вектора \vec{a}, \vec{b} :

$$\vec{a} = x_a \vec{i} + y_a \vec{j} + z_a \vec{k}$$
$$\vec{b} = x_b \vec{i} + y_b \vec{j} + z_b \vec{k}$$

Тогда:

$$\vec{i}^2 = \vec{i} \cdot \vec{i} = |\vec{i}|^2 = 1 \qquad \vec{i} \perp \vec{j} \implies \vec{i} \cdot \vec{j} = 0$$

$$\vec{j}^2 = \vec{j} \cdot \vec{j} = |\vec{j}|^2 = 1 \qquad \vec{i} \perp \vec{k} \implies \vec{i} \cdot \vec{k} = 0$$

$$\vec{k}^2 = \vec{k} \cdot \vec{k} = |\vec{k}|^2 = 1 \qquad \vec{j} \perp \vec{k} \implies \vec{j} \cdot \vec{k} = 0$$

$$\vec{a} \cdot \vec{b} = \left(x_a \vec{i} + y_a \vec{j} + z_a \vec{k} \right) \left(x_b \vec{i} + y_b \vec{j} + z_b \vec{k} \right) = x_a x_b \vec{i}^2 + x_a y_b (\vec{i} \cdot \vec{j}) + x_a z_b (\vec{i} \cdot \vec{k}) + y_a x_a (\vec{i} \cdot \vec{j}) + y_a y_b \vec{j}^2 + y_a z_b (\vec{j} \cdot \vec{k}) + z_a x_b (\vec{i} \cdot \vec{k}) + z_a y_b (\vec{j} \cdot \vec{k}) + z_a z_b \vec{k}^2 = x_a x_b + y_a y_b + z_a z_b$$

$$\vec{a} \cdot \vec{b} = x_a x_b + y_a y_b + z_a z_b$$

2.1.3 Формула косинуса между векторами, заданными ортонормированным базисом

Т.к. $\vec{a}\vec{b} = |\vec{a}||\vec{b}|\cos\varphi$, то:

$$\cos \varphi = \frac{\vec{a}\vec{b}}{|\vec{a}||\vec{b}|}$$

$$= \frac{x_a x_b + y_a y_b + z_a z_b}{|\vec{a}| \cdot |\vec{b}|}$$

$$= \frac{x_a x_b + y_a y_b + z_a z_b}{\sqrt{x_a^2 + y_a^2 + z_a^2} \cdot \sqrt{x_b^2 + y_b^2 + z_b^2}}$$

$$\cos \varphi = \frac{x_a x_b + y_a y_b + z_a z_b}{\sqrt{x_a^2 + y_a^2 + z_a^2} \cdot \sqrt{x_b^2 + y_b^2 + z_b^2}}$$

2.2 Векторное произведение векторов

Определение 2. Тройка векторов называется **правой**, если кратчайший поворот от вектора \vec{a} к \vec{b} осуществляется *против часовой стрелки* (смотря из конца вектора \vec{c}).

Определение 3. Тройка векторов называется **левой**, если кратчайший поворот от вектора \vec{a} к \vec{b} осуществляется *по часовой стрелки* (смотря из конца вектора \vec{c}).

Определение 4. Векторным произведением векторов \vec{a} и \vec{b} называется вектор \vec{c} , который удовлетворяет следующему условию:

- 1. \vec{c} ортогонален векторам \vec{a} и \vec{b} (перпендикулярен плоскости, в которой лежат вектора \vec{a} и \vec{b});
- $2. \vec{c} = |\vec{a}||\vec{b}| \cdot \sin \phi$
- 3. Вектора $\vec{a}, \vec{b}, \vec{c}$ образуют npasyю тройку векторов.

Обозначение:

$$ec{a} imes ec{b}$$
 или $[ec{a}, ec{b}]$

2.2.1 Свойства векторного произведения векторов

1. Антикоммутативность

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

2. Дистрибутивность

$$(\vec{a_1} + \vec{a_2}) \times \vec{b} = \vec{a_1} \times \vec{b} + \vec{a_2} \times \vec{b}$$

3. Ассоциативность

$$(\lambda \vec{a}) \times \vec{b} = \lambda \left(\vec{a} \times \vec{b} \right)$$

2.2.2 Геометрическое приложение векторов.

Пусть $\vec{a} = \{x_a, y_a, x_a\}$ и $\vec{b} = \{x_b, y_b, z_b\}$. Совместим начала этих векторов и достроим до параллелограмма. Тогда площадь этого параллелограмма будет равна модулю векторного произведения этих векторов.

Пример.

$$A(1, 2, -1), \quad B(-1, 1, 0), \quad C(0, -1, 2)$$

$$\overrightarrow{AB} = \{-2, -1, 1\}$$

$$\overrightarrow{AC} = \{-1, -3, 3\}$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & -1 & 1 \\ -1 & -3 & 3 \end{vmatrix} = \vec{i} \cdot (-1)^{1+1} \begin{vmatrix} -1 & 1 \\ -3 & 3 \end{vmatrix} + \vec{j} \cdot (-1)^{1+2} \begin{vmatrix} -2 & 1 \\ -1 & 3 \end{vmatrix} + \vec{k} \cdot (-1)^{1+3} \begin{vmatrix} -2 & -1 \\ -1 & -3 \end{vmatrix} = 0\vec{i} + 5\vec{j} + 5\vec{k}$$

$$\vec{c} = \{0, 5, 5\} \implies |\vec{c}| = \sqrt{50} = 5\sqrt{2}$$

 $S_{ABC} = \frac{1}{2}S_{ABCD} = \frac{1}{2} \cdot 5\sqrt{2} = \frac{5}{\sqrt{2}}$

2.3 Смешанное произведение

Определение 5. Смешанное произведение векторов $\vec{a}, \vec{b}, \vec{c}$ называется скалярное произведения первых двух векторов \vec{a} и \vec{b} на третий вектор \vec{c} .

$$\vec{a}\vec{b}\vec{c} = (\vec{a}\cdot\vec{b})\times\vec{c}$$

2.3.1 Свойства смешанных произведений

1. Свойство перестановки (кососимметричности)

$$\vec{a}\vec{b}\vec{c} = \vec{c}\vec{a}\vec{b} = \vec{b}\vec{c}\vec{a} = -\vec{b}\vec{a}\vec{c} = -\vec{c}\vec{b}\vec{a} = -\vec{a}\vec{c}\vec{b}$$

2. Три вектора компланарны тогда и только тогда, когда их смешанное произведение равно 0.

$$\vec{a}, \vec{b}, \vec{c}$$
 - компланарны $\iff \vec{a}\vec{b}\vec{c} = 0$

Примечание.

 $\vec{a}\vec{b}\vec{c}>0, \text{ если } \vec{a}, \vec{b}, \vec{c}\text{ - правая тройка векторов.} \\ \vec{a}\vec{b}\vec{c}<0, \text{ если } \vec{a}, \vec{b}, \vec{c}\text{ - левая тройка векторов.}$

3. Свойство ассоциативности (работает для любого положения λ)

$$(\lambda \vec{a})\vec{b}\vec{c} = \lambda (\vec{a}\vec{b}\vec{c})$$

Доказательство.

$$(\lambda \vec{a})\vec{b}\vec{c} = (\lambda \vec{a})\vec{d} = \lambda(\vec{a}\vec{d}) = \lambda(\vec{a}(\vec{b}\vec{c})) = \lambda(\vec{a}\vec{b}\vec{c})$$

4. Свойство коммутативности (работает не только для \vec{a} , но и векторов \vec{b} и \vec{c})

$$(\vec{a_1} + \vec{a_2})\vec{b}\vec{c} = \vec{a_1}\vec{b}\vec{c} + \vec{a_2}\vec{b}\vec{c}$$

Доказательство.

$$(\vec{a_1} + \vec{a_2})\vec{b}\vec{c} = (\vec{a_1} + \vec{a_2})\vec{d} = \vec{a_1}\vec{d} + \vec{a_2}\vec{d} = \vec{a_1}(\vec{b}\vec{c}) + \vec{a_2}(\vec{b}\vec{c}) = \vec{a_1}\vec{b}\vec{c} + \vec{a_2}\vec{b}\vec{c}$$

2.3.2 Формула смешанного произведения трёх векторов в правом ортонормированном базисе

Пусть $\vec{a}, \vec{b}, \vec{c}$ заданы координатами:

$$\vec{a} = \{x_a, y_a, x_a\}$$

 $\vec{b} = \{x_b, y_b, .z_b\}$
 $\vec{c} = \{x_c, y_c, z_c\}$

Найдём смешанное произведение:

$$\vec{a}\vec{b}\vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c} = \left\{ \begin{vmatrix} y_a & z_a \\ y_b & z_b \end{vmatrix}, - \begin{vmatrix} x_a & z_a \\ x_b & z_b \end{vmatrix}, \begin{vmatrix} x_a & y_a \\ x_b & y_b \end{vmatrix} \right\} \cdot \vec{c} =$$

$$= \begin{vmatrix} y_a & z_a \\ y_b & z_b \end{vmatrix} \cdot x_c - \begin{vmatrix} x_a & z_a \\ x_b & z_b \end{vmatrix} \cdot y_c + \begin{vmatrix} x_a & y_a \\ x_b & y_b \end{vmatrix} \cdot z_c =$$

$$= \begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix}$$

T.e.

$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} x_a & y_a & z_c \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix}$$

2.3.3 Геометрическое приложение смешанного произведения

Пусть $\vec{a}, \vec{b}, \vec{c}$. Совместим начала этих векторов и достроим до параллелепипеда. Тогда $V_{paral} = |\vec{a}\vec{b}\vec{c}|$.

Примечание.

$$V_{pyramid} = \frac{1}{6}V_{paral} = \frac{1}{6} \cdot |\vec{a}\vec{b}\vec{c}|$$

3 Прямая на плоскости

3.1 Способы задания прямой

3.1.1 Каноническое уравнение

Пусть прямая l проходит через точку $M_0(x_0, y_0)$ и задана направляющим вектором $\vec{S} = \{m, n\}$ (т.е. вектор параллелен прямой).

Выберем на прямой l произвольную точку M. Составим $\overrightarrow{M_0M}=\{x-x_0,y-y_0,z-z_0\}.$

$$\overrightarrow{M_0M} \parallel \overrightarrow{s} \implies \boxed{\frac{x - x_0}{m} = \frac{y - y_0}{n}}$$

3.1.2 Параметрическое уравнение

Пусть прямая l задана каноническим уравнением:

$$\frac{x - x_0}{m} = \frac{y - y_0}{n}$$

Обозначим коэффициент пропорциональности через t. Тогда:

$$\frac{x - x_0}{m} = t$$

$$\frac{y - y_0}{n} = t$$

$$\Rightarrow \begin{bmatrix} x = x_0 + mt \\ y = y_0 + nt \end{bmatrix}$$

3.1.3 Через две точки

Пусть прямая l проходит через точки $M_0(x_0, y_0)$ и M(x, y). Выберем на прямой l произвольную точку $M_1(x_1, y_1)$. Составим два вектора $\overrightarrow{M_0M}$, $\overrightarrow{M_0, M_1}$.

$$\overrightarrow{M_0M} = \{x - x_0, y - y_0\}
\overrightarrow{M_0M_1} = \{x_1 - x_0, y_1 - y_0\}$$

Т.к. вектора коллинеарны, то и соответствующие координаты пропорциональны:

$$\boxed{\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}}$$

3.1.4 В отрезках

Пусть прямая l отсекает от координатного угла отрезки a и b. Тогда прямая l проходит через точки A(0,a) и B(b,0).

$$\frac{x-a}{0-a} = \frac{y-0}{b-0} \implies \boxed{\frac{x}{a} + \frac{y}{b} = 1}$$

17

3.1.5 С угловым коэффициентом

Пусть прямая l проходит через точку $M_0(x_0, y_0)$. Выберем произвольную точку M(x, y). Тогда из прямоугольного треугольника $\triangle M_0AM$:

$$\triangle M_0 AM : \operatorname{tg} \varphi = \frac{y - y_0}{x - x_0}$$

$$\Pi \text{ Пусть } \operatorname{tg} \varphi = k$$

$$k = \frac{y - y_0}{x - x_0}$$

$$y - y_0 = kx - x_0$$

$$y = kx - kx_0 + y_0$$

$$-kx_0 + y_0 = const = b$$

$$y = kx + b$$

3.1.6 Общего вида

Пусть прямая l проходит через точку $M_0(x_0, y_0)$, а также дан перпендикулярный ей вектор $\vec{n} = \{A, B\}$. Выберем произвольную точку M(x, y). Тогда:

$$\vec{n} = \{A, B\} \qquad \overrightarrow{M_0 M} = \{x - x_0, y - y_0\}$$

$$\vec{n} \perp \overrightarrow{M_0 M} \implies \vec{n} \cdot \overrightarrow{M_0 M} = 0$$

$$A(x - x_0) + B(y - y_0) = 0$$

$$Ax + By + (-Ax_0 - By_0) = 0$$

Обозначим: $-Ax_0 - By_0 = const = C$. Получаем:

$$Ax + By + C = 0$$

3.2 Угол между прямыми

3.2.1 Прямые, заданные каноническими уравнениями

$$l_1: \frac{x-0}{m_1} = \frac{y-y_0}{n_1}$$
$$l_2: \frac{x-\widetilde{x}_0}{m_2} = \frac{y-\widetilde{y}_0}{n_2}$$

Угол между прямыми l_1, l_2 соответствует углу между направляющими векторами $\vec{S_1}, \vec{S_2}$ для соответствующий прямых.

$$\widehat{(l_1, l_2)} = \widehat{(\vec{S_1}, \vec{S_2})} = \varphi$$

$$\cos \varphi = \frac{|\vec{S_1} \cdot \vec{S_2}|}{|\vec{S_1}| \cdot |\vec{S_2}|}$$

$$\cos \varphi = \frac{|m_1 \cdot m_2 + n_1 \cdot n_2|}{\sqrt{m_1^2 + n_1^2} \cdot \sqrt{m_2^2 + n_2^2}}$$

3.2.2 Прямые, заданные общими уравнениями

$$l_1: A_1x + B_1y + C_1 = 0$$

$$l_2: A_2x + B_2y + C_2 = 0$$

$$\vec{n_1} = \{A_1, B_1\}$$

$$\vec{n_2} = \{A_2, B_2\}$$

Угол между прямыми l_1, l_2 соответствует углу между нормалями $\vec{n_1}, \vec{n_2}$ к соответствующим прямым.

$$\widehat{(l_1, l_2)} = \widehat{(\vec{n_1}, \vec{n_2})} = \varphi$$

$$\cos \varphi = \frac{\vec{n_1} \cdot \vec{n_2}}{|\vec{n_1}| \cdot |\vec{n_2}|}$$

$$\cos \varphi = \frac{|A_1 A_2 + B_1 B_2|}{\sqrt{A_1^2 + B_1^2} \cdot \sqrt{A_2^2 + B_2^2}}$$

3.2.3 Прямые, заданные угловыми коэффициентами

$$\begin{cases} l_1 : y = k_1 x + b_1, & k_1 = \operatorname{tg} \varphi_1 \\ l_2 : y = k_2 x + b_2, & k_2 = \operatorname{tg} \varphi_2 \end{cases} \implies \varphi = \varphi_2 - \varphi_1$$

$$\operatorname{tg} \varphi = \operatorname{tg} \varphi_2 - \operatorname{tg} \varphi_1 = \frac{\operatorname{tg} \varphi_2 - \operatorname{tg} \varphi_1}{1 + \operatorname{tg} \varphi_1 \operatorname{tg} \varphi_2} = \frac{k_2 - k_1}{1 + k_1 k_2} \Rightarrow$$

$$\Rightarrow \boxed{\varphi = \operatorname{arctg} \frac{k_2 - k_1}{1 + k_1 k_2}}$$

3.3 Условие параллельности прямых

3.3.1 Прямые, заданные каноническими уравнениями

Если
$$l_1 \parallel l_2$$
, то $\vec{s_1} \parallel \vec{s_2} \ \Rightarrow \ \boxed{\frac{m_1}{m_2} = \frac{n_1}{n_2}}$

3.3.2 Прямые, заданные общими уравнениями

Если
$$l_1 \parallel l_2$$
, то $\vec{n_1} \parallel \vec{n_2} \ \Rightarrow \boxed{\frac{A_1}{A_2} = \frac{B_1}{B_2}}$

3.3.3 Прямые, заданные угловыми коэффициентами

Если
$$l_1 \parallel l_2$$
, то $\varphi=0 \ \Rightarrow \ tg\varphi=0 \ \Rightarrow k_2-k_1=0 \ \Rightarrow \ \boxed{k_2=k_1}$

3.4 Условие перпендикулярности прямых

3.4.1 Прямые, заданные каноническими уравнениями

Если
$$l_1\perp l_2$$
, то $\vec{S_1}\perp\vec{S_2} \ \Rightarrow \ \vec{S_1}\cdot\vec{S_2}=0 \ \Rightarrow \ \boxed{m_1m_2+n_1n_2=0}$

3.4.2 Прямые, заданные общими уравнениями

Если
$$l_1 \perp l_2$$
, то $\vec{n_1} \perp \vec{n_2} \; \Rightarrow \; \boxed{\frac{A_1}{A_2} + \frac{B_1}{B_2} = 0}$

3.4.3 Прямые, заданные угловыми коэффициентами

Если $l_1 \perp l_2$, то:

$$\varphi = \frac{\pi}{2} \quad \Rightarrow \quad \nexists \operatorname{tg} \varphi \quad \Rightarrow \quad 1 + k_1 k_2 = 0 \quad \Rightarrow \quad k_1 k_2 = -1 \Rightarrow \boxed{k_2 = -\frac{1}{k_1}}$$

3.5 Расстояние от точки до прямой

Пусть прямая l задана общим уравнением:

$$l: Ax + By + C = 0 \implies \vec{n} = \{A, B\}$$

Требуется найти расстояние от точки $M_0(x_0, y_0)$ до прямой l.

Возьмём на прямой l произвольную точку M. Тогда расстояние от точки M_0 будет равно проекции вектора $\overrightarrow{MM_0}$ на направление вектора нормали прямой l.

$$\frac{\rho(M_0, l) = \operatorname{np}_{\vec{n}} \overrightarrow{MM_0}}{\overrightarrow{MM_0}} = \{x_0 - x, y_0 - y\}$$

$$\vec{n} \cdot \overrightarrow{MM_0} = |\vec{n}| \cdot |MM_0| \cdot \cos \varphi = |\vec{n}| \cdot \pi \overrightarrow{MM_0} \Rightarrow$$

$$\Rightarrow \pi \overrightarrow{p_n} \overrightarrow{MM_0} = \frac{|\vec{n} \cdot \overrightarrow{MM_0}|}{\vec{n}} = \frac{A(x_0 - x) + B(y_0 - y)}{\sqrt{A^2 + B^2}} =$$

$$= \frac{Ax_0 + By_0 + (-Ax - By)}{\sqrt{A^2 + B^2}}$$

Из общего уравнения прямой l:

$$-Ax - By = C$$

$$\rho(M_0, l) = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

Пример. Найти расстояние от точки $M_0(1,-2)$ до прямой l:y=3x-1.

$$3x-y-1=0$$
 - общее уравнение прямой
$$Ax+By+C=0$$

$$\rho(M_0, l) = \frac{|3 \cdot (-1) + (-1) \cdot (-2) - 1|}{\sqrt{3^2 + (-1)^2}} = \frac{4}{\sqrt{10}}$$

4 Уравнение плоскости

4.1 Способы задания плоскости

4.1.1 Через три точки

Пусть заданы точки $M_1(x_1, y_1, z_1), M_2(x_2, y_2, z_2), M_3(x_3, y_3, z_3)$, которые принадлежат плоскости α .

$$M_1(x_1, y_1, z_1) \in \alpha$$

 $M_2(x_2, y_2, z_2) \in \alpha$
 $M_3(x_3, y_3, z_3) \in \alpha$

Выберем точку на плоскости α точку M(x, y, z). Составим вектора:

$$\overrightarrow{M_1M} = \{x - x_1, y - y_1, z - z_1\}$$

$$\overrightarrow{M_1M_2} = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\}$$

$$\overrightarrow{M_1M_3} = \{x_3 - x_1, y_3 - y_1, z_3 - z_1\}$$

 $\overrightarrow{M_1M},\overrightarrow{M_1M_2},\overrightarrow{M_1M_3}$ - компланарны, а значит:

$$\overrightarrow{M_1M} \cdot \overrightarrow{M_1M_2} \cdot \overrightarrow{M_1M_3} = 0$$

Следовательно:

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

4.1.2 Через две точки с направляющим вектором

Пусть даны:

$$M_1(x_1, y_1, z_1) \in \alpha$$

$$M_2(x_2, y_2, z_2) \in \alpha$$

$$\vec{S} = \{m, n, p\} \in \beta$$

$$\alpha \parallel \beta$$

Выберем на плоскости α произвольную точку $M(x,y,z) \in \alpha$ Составим вектора:

$$\overrightarrow{M_1M} = \{x - x_1, y - y_1, z - z_1\}$$

$$\overrightarrow{M_1M_2} = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\}$$

Тогда вектора $\overrightarrow{M_1,M},\overrightarrow{M_1,M_2},\overrightarrow{S}$ - компланарны, а следовательно:

$$\overrightarrow{M_1M} \cdot \overrightarrow{M_1M_2} \cdot \vec{S} = 0 \implies \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ m & n & p \end{vmatrix} = 0$$

4.1.3 Проходящей через точку с двумя направляющими векторами

Пусть даны:

$$M_1(x_1, y_1, z_1) \in \alpha$$

 $\vec{S}_1 = \{m_1, n_1, p_1\} \in \beta$
 $\vec{S}_2 = \{m_2, n_2, p_2\} \in \beta$
 $\alpha \parallel \beta$

Выберем на плоскости α произвольную точку $M(x,y,z) \in \alpha$ Составим вектор $\overrightarrow{M_1M} = \{x-x_1,y-y_1,z-z_1\}$ Тогда вектора $\overrightarrow{M_1M}, \overrightarrow{S_1}, \overrightarrow{S_2}$ - компланарны, а следовательно:

$$\overrightarrow{M_1M} \cdot \overrightarrow{S_1} \cdot \overrightarrow{S_2} = 0 \implies \begin{bmatrix} x - x_1 & y - y_1 & z - z_1 \\ m_1 & n_1 & p_1 \\ m_2 & n_2 & p_2 \end{bmatrix} = 0$$

4.1.4 Уравнение плоскости в отрезках

Пусть плоскость α отсекает от координатного угла отрезки a,b,c на осях x,y,z соответственно. Обозначим точки пересечения A,B,C. Тогда:

$$A(a,0,0)$$
 $B(0,b,0)$ $C(0,0,c)$

Выберем на плоскости α произвольную точку $M(x,y,z) \in \alpha$ Составим вектора:

$$\overrightarrow{AM} = \{x - a, y, z\}$$

$$\overrightarrow{AB} = \{-a, b, 0\}$$

$$\overrightarrow{AC} = \{-a, 0, c\}$$

Тогда вектора \overrightarrow{AM} , \overrightarrow{AB} , \overrightarrow{AC} - компланарны, а следовательно:

$$\overrightarrow{AM} \cdot \overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \Rightarrow \begin{vmatrix} x - a & y & z \\ -a & b & 0 \\ -a & 0 & c \end{vmatrix} = 0 \Rightarrow$$

$$\Rightarrow (x - a) \cdot (-1)^{1+1} \begin{vmatrix} b & 0 \\ 0 & c \end{vmatrix} + y \cdot (-1)^{1+2} \begin{vmatrix} -a & 0 \\ -a & c \end{vmatrix} + z \cdot (-1)^{1+3} \begin{vmatrix} -a & b \\ -a & 0 \end{vmatrix} = 0 \Rightarrow$$

$$(x - a)bc - y(-ac) + zab = 0$$

$$xbc + yac + zab = abc$$

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

4.1.5Общее уравнение

Пусть даны:

$$M_0(x_0,y_0,z_0)\in lpha$$
 $ec{n}=\{A,B,C\}$ - вектор нормали

Выберем на плоскости α произвольную точку $M(x,y,z) \in \alpha$ Составим вектор $\overrightarrow{M_0M} = \{x - x_0, y - y_0, z - z_0\}$ Тогда:

$$\vec{n} \perp \overrightarrow{M_0 M} \Rightarrow \vec{n} \cdot \overrightarrow{M_0 M} \Leftrightarrow$$

$$\Leftrightarrow A(x - x_0) + B(y - y_0) + C(z - z_0) = 0 \Leftrightarrow$$

$$\Leftrightarrow Ax + By + Cz + (-Ax_0 - By_0 - Cz_0) = D \Leftrightarrow$$

$$\boxed{Ax + By + Cz + D = 0}$$

Угол между плоскостями 4.2

Пусть заданы плоскости общими уравнениями:

$$\alpha_1 : A_1 x + B_1 y + C z_1 + D_1 = 0 \implies \vec{n_1} = \{A_1, B_1, C_1\}$$

 $\alpha_2 : A_2 x + B_2 y + C z_2 + D_2 = 0 \implies \vec{n_2} = \{A_2, B_2, C_2\}$

Угол между плоскостями α_1, α_2 равен углу между нормалями n_1, n_2 к этим плоскостям. Тогда можно найти:

$$\cos \varphi = \frac{\vec{n_1} \cdot \vec{n_2}}{|\vec{n_1}| \cdot |\vec{n_2}|} = \boxed{\frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} + \sqrt{A_2^2 + B_2^2 + C_2^2}}}$$

4.2.1Условие перпендикулярности

Если
$$\alpha_1 \perp \alpha_2$$
, то $\vec{n_1} \perp \vec{n_2} \ \Rightarrow \ \vec{n_1} \cdot \vec{n_2} = 0 \ \Rightarrow \ \boxed{A_1 A_2 + B_1 B_2 + C_1 C_2 = 0}$

4.2.2Условие параллельности

Если
$$\alpha_1 \parallel \alpha_2$$
, то $\vec{n_1} \parallel \vec{n_2} \Rightarrow \boxed{\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}}$

Примечание. Если
$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2}$$
, то плоскости совпадают. Примечание. Если $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$, то плоскости не совпадают.

Примечание. Если
$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$$
, то плоскости **не совпадают**

4.3 Расстояние от точки до плоскости

Пусть плоскость α задана общим уравнением:

$$\alpha : Ax + By + Cx + D = 0$$
, где $\vec{n} = \{A, B, C\}$

Пусть задана некоторая точка $M_0(x_0,y_0,z_0)$. Возьмём некоторую точку $M(x,y,z) \in \alpha$. Составим вектор $M_0M = \{x_0-x,y_0-y,z_0-z\}$. Тогда модуль проекции MM_0 на вектор на направление вектора нормали и есть искомое расстояние. Найдем:

$$\overrightarrow{M_0M} \cdot \overrightarrow{n} = |\overrightarrow{M_0M}| \underbrace{|\overrightarrow{n}| \cdot \cos \varphi}_{\text{II} p_{\overrightarrow{n}} \overrightarrow{M_0M}}$$

$$\vec{n} \cdot \overrightarrow{M_0 M} = A(x_0 - x) + B(y_0 - y) + C(z_0 - z)$$

$$= Ax_0 + By_0 + Cz_0 + (-Ax - By - Cz)$$

$$= Ax_0 + By_0 + Cz_0 + D$$

$$|\vec{n}| = \sqrt{A^2 + B^2 + C^2}$$

$$\rho(M_0, \alpha) = | \operatorname{np}_{\vec{n}} \overrightarrow{M_0 M}| = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

5 Прямая в пространстве

5.1 Способы задания прямой в пространстве

5.1.1 Каноническое уравнение прямой

Пусть прямая l проходит через точку $M_0\left(x_0,y_0,z_0\right)$ и имеет направляющий вектор $\vec{S}=\{m,n,p\}$. Возьмём на прямой l произвольную точку M(x,y,z). Составим вектор:

$$\overrightarrow{M_0M} = \{x - x_0, y - y_0, z - z_0\}$$

Отсюда:

$$\overrightarrow{M_0M} \parallel \overrightarrow{S} \implies \boxed{\frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p}}$$

5.1.2 Параметрическое уравнение

Пусть прямая l задана каноническим уравнением:

$$l: \frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p} = (t)$$

Отсюда:

$$\begin{cases} \frac{x - x_0}{m} = t \\ \frac{y - y_0}{n} = t \\ \frac{z - z_0}{p} = t \end{cases} \Longrightarrow \begin{bmatrix} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{bmatrix}$$

5.1.3 Через две точки

Пусть прямая l проходит через точки $M_0(x_0, y_0, z_0)$ и $M_1(x_1, y_1, z_1)$. Возьмём на прямой l точку M(x, y, z). Составим два вектора:

$$\overrightarrow{M_0M} = \{x - x_0, y - y_0, z - z_0\}$$

$$\overrightarrow{M_0M_1} = \{x_1 - x_0, y_1 - y_0, z_1 - z_0\}$$

Отсюда:

$$\overrightarrow{M_0M} \parallel \overrightarrow{M_0M_1} \implies \boxed{\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}}$$

5.1.4 Общее уравнение

Пусть плоскости α_1 и α_2 заданы общими уравнениями:

$$\alpha_1 : A_1 x + B_1 y + C_1 z + D_1 = 0$$

$$\alpha_2 : A_2 x + B_2 y + C_2 z + D_2 = 0$$

Если $\alpha_1 \not \mid \alpha_2$, то они пересекаются по прямой l. Тогда $\forall M(x,y,z) \in l$ будет выполнятся система:

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

Пример. Составить уравнение прямой, являющейся пересечением плоскостей:

$$\alpha_1 : 2x + y - z + 4 = 0$$

 $\alpha_2 : 3x + 2y + z - 6 = 0$

Для того, чтобы составить уравнение прямой l, нужно знать $M_0(x_0, y_0, z_0)$ направляющий вектор $\vec{S} = \{m, n, p\}$.

Из (1)
$$\implies \vec{n_1} = \{2, 1, -1\}$$

Из (2) $\implies \vec{n_2} = \{3, 2, 1\}$
 $\alpha_1 \neq \alpha_2$

Найдем точку M_0 . Пусть $z_0 = 0$ (прямая обязательно пересечёт плоскость oXY):

$$\begin{cases} 2x_0 + y_0 + 4 = 0 \\ 3x_0 + 2y_0 - 6 = 0 \end{cases} \implies \begin{cases} 4x_0 + 2y_0 + 8 = 0 \\ 3x_0 + 2y_0 + -6 = 0 \end{cases} \implies \begin{cases} x_0 = -14 \\ y_0 = 24 \end{cases} \implies M_0(-14, 24, 0)$$

Найдем направляющий вектор \vec{S}

$$\vec{S} = \vec{n_2} \cdot \vec{n_1} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 2 & 1 \\ 2 & 1 & -1 \end{vmatrix} = -3\vec{i} + 5\vec{j} - \vec{k} \implies \vec{S} = \{-3, 5, 1\}$$

Составим каноническое уравнение прямой:

$$\frac{x+14}{-3} = \frac{y-24}{5} = \frac{z}{-1}$$

5.2 Расстояние от точки до прямой в пространстве

Пусть прямая l задана каноническим уравнением:

$$l: \frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p}$$
$$\vec{S} = \{m, n, p\}$$

Задана точка $M_1(x_1, y_1, z_1) \notin l$. Составим вектор:

$$\overrightarrow{M_0M_1} = \{x_1 - x_0, y_1 - y_0, z_1 - z_0\}$$

Построим на векторах \vec{S} и $\overline{M_0M}$ параллелограмм. Тогда высота этого параллелограмма из точки M_1 и есть искомое расстояние от точки M_1 до прямой l.

$$S_{par} = h \cdot |\vec{S}|$$

$$h = \frac{S_{par}}{|\vec{S}|}$$

$$S_{par} = |\overrightarrow{M_0 M_1} \times \vec{S}|$$

Тогда:

$$\overrightarrow{M_0M_1} \times \overrightarrow{S} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ m & n & p \end{vmatrix} =$$

$$= \begin{vmatrix} y_1 - y_0 & z_1 - z_0 \\ n & p \end{vmatrix} \cdot \overrightarrow{i} - \begin{vmatrix} x_1 - x_0 & z_1 - z_0 \\ m & p \end{vmatrix} \cdot \overrightarrow{j} + \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ m & n \end{vmatrix} \cdot \overrightarrow{k} \Longrightarrow$$

$$\overrightarrow{M_0M_1} \times \overrightarrow{S} = \left\{ \begin{vmatrix} y_1 - y_0 & z_1 - z_0 \\ n & p \end{vmatrix}, - \begin{vmatrix} x_1 - x_0 & z_1 - z_0 \\ m & p \end{vmatrix}, \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ m & n \end{vmatrix} \right\} \Longrightarrow$$

$$|\overrightarrow{M_0M_1} \times \overrightarrow{S}| = \sqrt{\begin{vmatrix} y_1 - y_0 & z_1 - z_0 \\ n & p \end{vmatrix}^2 + \begin{vmatrix} x_1 - x_0 & z_1 - z_0 \\ m & p \end{vmatrix}^2 + \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ m & n \end{vmatrix}^2} \Longrightarrow$$

$$\rho(M_1, l) = \frac{|\overrightarrow{M_1M_0} \times \overrightarrow{S}|}{|\overrightarrow{S}|} = \boxed{\frac{\sqrt{\begin{vmatrix} y_1 - y_0 & z_1 - z_0 \\ n & p \end{vmatrix}^2 + \begin{vmatrix} x_1 - x_0 & z_1 - z_0 \\ m & p \end{vmatrix}^2 + \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ m & p \end{vmatrix}^2}{\sqrt{m^2 + n^2 + p^2}}}$$

5.2.1 Расстояние между параллельными прямыми

Пусть прямые заданы каноническими уравнениями:

$$l_1: \frac{x - x_0}{m_1} = \frac{y - y_0}{n_1} = \frac{z - z_0}{p_1} \implies M_0(x_0, y_0, z_0), \vec{S_1} = \{m_1, n_1, p_1\}$$

$$l_2: \frac{x - x_0}{m_2} = \frac{y - y_0}{n_2} = \frac{z - z_0}{p_2} \implies M_0(x_0, y_0, z_0), \vec{S_2} = \{m_2, n_2, p_2\}$$

$$l_1 \parallel l_2 \implies \frac{m_1}{m_2} = \frac{p_1}{p_2}$$

Построим параллелограмм на векторах $\overrightarrow{S_1}$ и $\overrightarrow{M_1M_2}$. Тогда расстояние между прямыми l_1 и l_2 будет высота данного параллелограмма.

$$\rho(l_1, l_2) = \frac{|\overrightarrow{M_1 M_0} \times \overrightarrow{S}|}{|\overrightarrow{S}|} = \boxed{ \frac{\sqrt{\begin{vmatrix} y_2 - y_1 & z_2 - z_1 \\ n_1 & p_1 \end{vmatrix}^2 + \begin{vmatrix} x_2 - x_1 & z_2 - z_1 \\ m_1 & p_1 \end{vmatrix}^2 + \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ m_1 & p_1 \end{vmatrix}^2 }{\sqrt{m_1^2 + n_1^2 + p_1^2}}}$$

5.2.2 Расстояние между скрещивающимися прямыми

Пусть прямые заданы каноническими уравнениями:

$$l_1: \frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1} \implies M_1(x_1, y_1, z_1), \quad \vec{S}_1 = \{m_1, n_1, p_1\}$$

$$l_2: \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2} \implies M_2(x_2, y_2, z_2), \quad \vec{S}_2 = \{m_2, n_2, p_2\}$$

Составим вектор $\overrightarrow{M_1M_2} = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\}$

Вектора \vec{S} и $\overrightarrow{M_1M_2}$ не компланарны. Поэтому на этих векторах можно построить парал-

лелепипед. Тогда расстояние между прямыми l_1 и l_2 будет равно высоте этого параллелепипеда.

$$V = |\overrightarrow{M_1 M_2} \cdot \overrightarrow{s_1} \cdot \overrightarrow{s_2}|$$
$$V = h \cdot S$$

$$\overrightarrow{M_{1}M_{2}} \cdot \overrightarrow{s_{1}} \cdot \overrightarrow{s_{2}} = \begin{vmatrix} x_{2} - x_{1} & y_{2} - y_{1} & z_{2} - z_{1} \\ m_{1} & n_{1} & p_{1} \\ m_{2} & n_{2} & p_{2} \end{vmatrix}$$

$$S = |\overrightarrow{s_{1}} \times \overrightarrow{s_{2}}| = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ m_{1} & n_{1} & p_{1} \\ m_{2} & n_{2} & p_{2} \end{vmatrix} = \overrightarrow{i} \cdot \begin{vmatrix} n_{1} & p_{1} \\ n_{2} & p_{2} \end{vmatrix} - \overrightarrow{j} \cdot \begin{vmatrix} m_{1} & p_{1} \\ m_{2} & p_{2} \end{vmatrix} + \overrightarrow{k} \cdot \begin{vmatrix} m_{1} & n_{1} \\ m_{2} & n_{2} \end{vmatrix} \Rightarrow$$

$$\Rightarrow \rho(l_{2}, l_{1}) = \frac{\begin{vmatrix} x_{2} - x_{1} & y_{2} - y_{1} & x_{2} - x_{1} \\ m_{1} & n_{1} & p_{1} \\ m_{2} & n_{2} & p_{2} \end{vmatrix}}{\sqrt{\begin{vmatrix} n_{1} & p_{1} \\ n_{2} & p_{2} \end{vmatrix}^{2} + \begin{vmatrix} m_{1} & p_{1} \\ m_{2} & p_{2} \end{vmatrix}^{2} + \begin{vmatrix} m_{1} & n_{1} \\ m_{2} & n_{2} \end{vmatrix}^{2}}$$

5.3 Взаимное расположение прямых в пространстве

Пусть прямые l_1 и l_2 заданы каноническими уравнениями:

$$l_1: \frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1} \implies M_1(x_1, y_1, z_1), \vec{S_1} = \{m_1, n_1, p_1\}$$
$$l_2: \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2} \implies M_2(x_2, y_2, z_2), \vec{S_2} = \{m_2, n_2, p_2\}$$

Составим вектор $\overrightarrow{M_1M_2}$.

5.3.1 Совпадают

Если прямые l_1 и l_2 **совпадают**, то:

$$\frac{m_1}{m_2} = \frac{n_1}{n_1} = \frac{p_1}{p_1}$$

$$\frac{x_2 - x_1}{m_1} = \frac{y_2 - y_1}{n_1} = \frac{z_2 - z_1}{p_1}$$

5.3.2 Параллельны

Если прямые l_1 и l_2 **параллельны** то:

$$\frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2}$$

И не выполняется условие:

$$\frac{x_2 - x_1}{m_1} = \frac{y_2 - y_1}{n_1} = \frac{z_2 - z_1}{p_1}$$

5.3.3 Пересекаются

Если прямые l_1 и l_2 пересекаются, они лежат в одной плоскости. В таком случае вектора $\overrightarrow{M_1M_2}, \vec{s_1}, \vec{s_2}$ – компланарны:

$$\overrightarrow{M_1M_2} \cdot \vec{S_1} \cdot \vec{S_2} = 0$$

$$\begin{bmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ m_1 & n_1 & p_1 \\ m_2 & n_2 & p_2 \end{bmatrix} = 0$$

5.3.4 Скрещиваются

Если прямые l_1 и l_2 **скрещиваются**, то они не лежат в одной плоскости. В таком случае вектора $\overrightarrow{M_1M_2}, \vec{s_1}, \vec{s_2}$ – некомпланарны:

$$\overrightarrow{M_1M_2} \cdot \overrightarrow{S_1} \cdot \overrightarrow{S_2} \neq 0$$

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ m_1 & n_1 & p_1 \\ m_2 & n_2 & p_2 \end{vmatrix} \neq 0$$

5.4 Угол между прямой и плоскостью

Пусть плоскость задана общим уравнением:

$$\alpha: Ax + By + Cz + D = 0$$

Пусть прямая l задана каноническим уравнением:

$$l: \frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p}$$
 $\vec{s} = \{m, n, p\}$

Обозначим угол φ - между прямой плоскостью, и β - между прямой и нормалью. Тогда:

$$\cos \beta = \frac{\vec{n} \cdot \vec{s}}{|\vec{n}| \cdot |\vec{s}|}$$

$$\beta = 90 - \varphi$$

$$\cos(90 - \varphi) = \frac{\vec{n} \cdot \vec{s}}{|\vec{n}| \cdot |\vec{s}|} \implies \sin(\varphi) = \frac{\vec{n} \cdot \vec{s}}{|\vec{n}| \cdot |\vec{s}|}$$

$$\sin \varphi = \frac{|Am + Bn + Cp|}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{m^2 + n^2 + v^2}}$$

5.4.1 Условие параллельности прямой и плоскости

Пусть плоскость задана общим уравнением:

$$\alpha : Ax + By + Cz + D = 0$$
 $\vec{n} = \{A, B, C\}$

Пусть прямая l задана каноническим уравнением:

$$l: \frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$
 $\vec{s} = \{m, n, p\}$

$$l \parallel \alpha \implies \vec{n} \perp \vec{s} \implies \vec{n} \cdot \vec{s} = 0$$

$$\boxed{Am + Bn + Cp = 0}$$

5.4.2 Условие перпендикулярности прямой и плоскости

Пусть плоскость задана общим уравнением:

$$\alpha : Ax + By + Cz + D = 0$$
 $\vec{n} = \{A, B, C\}$

Пусть прямая l задана каноническим уравнением:

$$l: \frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$
 $\vec{s} = \{m, n, p\}$

$$l \perp \alpha \implies \vec{n} \parallel \vec{s} \implies \boxed{\frac{A}{m} = \frac{B}{n} = \frac{C}{p}}$$

5.4.3 Примеры задач

Пример. Задача: составить уравнение прямой l_2 симметричной прямой l_1 , которая задана каноническим уравнением:

$$\frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{0}$$
 $\vec{s} = \{2, 1, 0\}$

относительно плоскости α :

$$\alpha: x - y + 2z - 1 = 0$$
 $\vec{n} = \{1, -1, 2\}$

Решение: (1) Проверим, является ли прямая l_1 параллельной плоскости α :

$$\vec{s} \cdot \vec{n} = 2 \cdot 1 + 1 \cdot (-1) + 0 \cdot 2 = 2 - 1 = 1 \neq 0 \implies l_1 \not \mid \alpha$$

(2) Находим точку пересечения прямой l с плоскостью α - пусть это точка $A(x_2, y_2, z_2)$. Из канонического уравнения прямой l_1 получим параметрическое уравнение:

$$\frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{0} = t$$

$$\begin{cases} \frac{x-1}{2} = t \\ \frac{y}{1} = t \implies \begin{cases} x = 2t+1 \\ y = t \\ z = -1 \end{cases}$$

Т.к. точка A принадлежит и прямой, и плоскости, то её координаты удовлетворяют и параметрическому уравнению прямой, и общему уравнению плоскости:

$$2t + 1 - t - 2 - 1 = 0$$

$$t = 2 \implies \begin{cases} x_2 = 5 \\ y_2 = 2 \\ z_2 = -1 \end{cases} \implies A(5, 2, -1)$$

(3) Из канонического уравнения прямой возьмем точку $M_1(1,0,-1) \in l_1$. Найдем ей симметричную относительно плоскости α точку $M_2(x_2,y_2,z_2)$ Составим уравнение прямой l_3 , проходящей через точку M_1 и с направляющим вектором \vec{n} .

$$\frac{x-1}{1} = \frac{y}{-1} = \frac{z+1}{2}$$

Найдём точку пересечения $O(x_3, y_3, z_3)$ прямой l_3 с плоскостью α . Составим параметрическое уравнение прямой l_3 :

$$\frac{x-1}{1} = \frac{y}{-1} = \frac{z+1}{2} = t$$

$$\begin{cases} \frac{x-1}{1} = t \\ \frac{y}{-1} = t \\ \frac{z+1}{2} = t \end{cases} \Longrightarrow \begin{cases} x = t+1 \\ y = -t \\ z = 2t-1 \end{cases}$$

T.к. точка O принадлежит и прямой, и плоскости, то её координаты удовлетворяют и параметрическому уравнению прямой, и общему уравнению плоскости:

$$t+1+t+4t-2=0$$

$$t=\frac{1}{3} \implies \begin{cases} x_3 = \frac{4}{3} \\ y_3 = -\frac{1}{3} \\ z_3 = \frac{1}{3} \end{cases}$$

Составляем вектор $\overrightarrow{M_1O}$:

$$\overrightarrow{M_1O} = \left\{ \frac{1}{3}, -\frac{1}{3}, \frac{2}{3} \right\}$$

Пусть $M_2(x_2, y_2, z_2)$. Тогда:

$$\overrightarrow{OM_2} = \{x_2, y_2, z_2\}$$

$$\overrightarrow{M_1O} = \overrightarrow{OM_2} \implies \begin{cases} x_2 - \frac{4}{3} = \frac{1}{3} \\ y_2 + \frac{1}{3} = -\frac{1}{3} \\ z_2 + \frac{1}{3} = \frac{2}{3} \end{cases} \iff \begin{cases} x_2 = \frac{5}{3} \\ y_2 = \frac{2}{3} \\ z_2 = \frac{1}{3} \end{cases}$$

4) Составляем уравнение прямой, проходящей через точки A(5,2,-1) и $M_2\left(\frac{5}{3},-\frac{2}{3},\frac{1}{3}\right)$:

$$\frac{x - x_a}{x_1 - x_a} = \frac{y - y_a}{y_2 - y_a} = \frac{z - z_a}{z_2 - z_a}$$

$$\frac{x - 5}{\frac{5}{3} - 5} = \frac{y - 2}{-\frac{2}{3} - 2} = \frac{z + 1}{\frac{1}{3} + 1}$$

$$\frac{x - 5}{-\frac{10}{3}} = \frac{y - 2}{-\frac{8}{3}} = \frac{z + 1}{\frac{4}{3}}$$

$$\frac{x - 5}{-5} = \frac{y - 2}{-4} = \frac{z + 1}{4}$$

Пример. Задача: Составить каноническое уравнение общего перпендикуляра к прямым l_1 и l_2 , заданными параметрическими уравнениями:

$$l_1:$$

$$\begin{cases} x = t + 2 \\ y = 3t + 4 \\ z = -2t - 2 \end{cases}$$

$$l_2:$$

$$\begin{cases} x = -3t + 2 \\ y = t \\ z = 3t - 4 \end{cases}$$

Решение:

1) Составим канонические уравнения прямых для l_1 и l_2 :

$$l_1: \begin{cases} t = \frac{x-2}{2} \\ t = \frac{y-4}{3} \implies \frac{x-2}{2} = \frac{y-4}{3} = \frac{z+2}{-2} \implies \\ t = \frac{z+2}{-2} \\ M_1(2,4,-2) \qquad \vec{S_1} = \{2,3,-2\} \end{cases}$$

$$l_2: \begin{cases} t = \frac{x-1}{-3} \\ t = \frac{y}{1} \implies \frac{x-1}{-3} = \frac{y-4}{3} = \frac{z+2}{-2} \implies \\ t = \frac{z+4}{3} \end{cases}$$

$$M_2(1, 4, -2) \qquad \vec{S}_2 = \{-3, 1, 3\}$$

Найдём вектор $\overrightarrow{M_1M_2}$:

$$\overrightarrow{M_1M_2} = \{0, -4, -2\}$$

Проверим, являются ли прямые l_1 и l_2 скрещивающимися или параллельными. Найдём смешанное произведение $\overrightarrow{M_1M_2} \vec{S_1} \vec{S_2}$:

$$\overrightarrow{M_1 M_2} \vec{S_1} \vec{S_2} = \begin{vmatrix} 0 & -4 & -2 \\ 2 & 3 & -2 \\ -3 & 1 & 3 \end{vmatrix} = -22 \neq 0$$

Значит, прямые не лежат в одной плоскости, следовательно, они скрещивающиеся. 2) Найдем направляющий вектор общего перпендикуляра к прямым l_1 и l_2 .

$$\begin{vmatrix} \vec{S} \perp \vec{S_1} \\ \vec{S} \perp \vec{S_2} \end{vmatrix} \iff \vec{S} = \vec{S_1} \times \vec{S_2}$$

$$\vec{S_1} \times \vec{S_2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 3 & -2 \\ -3 & 1 & 3 \end{vmatrix} = 11\vec{i} + 11\vec{k} \implies \vec{S} = \{1, 0, 1\}$$

3) Составим уравнение плоскости α_1 , проходящей через точки M_1 и вектора $\vec{S_1}\vec{S}$. Возьмём произвольную точку $M(x, y, z) \in \alpha_1$. Составим вектор $\overrightarrow{M_1M}$:

$$\overrightarrow{M_1M} = \{x - 2, y - 4, z + 2\}$$

Вектора $\overrightarrow{M_1M}, \vec{S_1}, \vec{S}$ - компланарные, а следовательно:

$$\overrightarrow{M_1 M} \overrightarrow{S_1} \overrightarrow{S} = 0$$

$$\overrightarrow{M_1 M} \overrightarrow{S_1} \overrightarrow{S} = \begin{vmatrix} x - 2 & y - 4 & z + 2 \\ 2 & -3 & 2 \\ 1 & 0 & 1 \end{vmatrix} = -3x + 4y + 3z - 4$$

$$\boxed{\alpha_1 \colon -3x + 4y + 3z - 4 = 0}$$

4) Составим плоскость α_2 через точку M_2 и вектора $\vec{S_1}$ и $\vec{S_2}$. Возьмём произвольную точку $M(x, y, z) \in \alpha_2$. Составим вектор $\overrightarrow{M_2M}$:

$$\overrightarrow{M_2M} = \{x - 2, y, z + 4\}$$

Вектора $\overrightarrow{M_2M}, \vec{S_2}, \vec{S}$ - компланарные, а следовательно:

$$\overrightarrow{M_2M} \vec{S_2} \vec{S} = 0$$

$$\overrightarrow{M_2M} \vec{S_2} \vec{S} = \begin{vmatrix} x - 2 & y & z + 4 \\ -3 & 1 & 3 \\ 1 & 0 & 1 \end{vmatrix} = x + 6y - z - 6 = 0$$

$$\boxed{\alpha_2 \colon x + 6y - z - 6 = 0}$$

5) Для начала, определим одну из координат точек. Прямая l пересекает плоскость oXY, т.е. можем взять z=0. Тогда в системе уравнений:

$$\begin{cases}
-3x + 4y + 3z - 4 = 0 \\
x + 6y - z - 6 = 0
\end{cases}$$

$$\begin{cases}
-3x + 4y - 4 = 0 \\
x + 6y - 6 = 0
\end{cases} \implies \begin{cases}
x = 0 \\
y = 1
\end{cases} \implies A(0, 1, 0)$$

где точка $A \in \alpha_1, \alpha_2, l.$

Составляем каноническое уравнение прямой l, проходящей через точку A, и с направляющим вектором \vec{S} .

$$\frac{x-0}{1} = \frac{y-1}{0} = \frac{z-0}{1}$$
$$\frac{x}{1} = \frac{y-1}{0} = \frac{z}{1}$$

Модуль 2

6 Кривые и поверхности 2-го порядка

Определение 1. Уравнением второго порядка называется уравнение вида:

$$Ax^{2} + 2Bxy + Cy^{2} + Dx + Ey + F = 0$$

$$A, B, C, D, E, F = const, A^{2} + B^{2} + C^{2} > 0$$

6.1 Эллипс

Определение 1. Эллипс — геометрическое место точек, сумма расстояний от каждой из которых до двух фиксированных точек, называемых фокусами, постоянна и равна 2a.

$$F_1, F_2$$
 — фокусы эллипса

Определение 2. Расстояние между фокусами называется фокальным расстоянием

Определение 3. Расстояние от каждой точки эллипса до фокуса называется фокальным радиусом

Определение 4. Прямая (большая ось), на которой лежат фокусы, и прямая (малая ось), которая проходит на равном расстоянии от фокусов, являются осями симметрии эллипса.

1 прямая — большая ось

2 прямая — малая ось

Определение 5. Точка пересечения осей называется центром эллипса

Определение 6. Точки пересечения с осями называются вершинами эллипса.

Уравнение эллипса

Расположим декартову систему координат так, чтобы её начало координат совпадало с центром эллипса, а фокусы лежали на оси абсцисс.

О – центр эллипса

 F_1, F_2 – фокусы эллипса

 $A_1(a,0),\ A_2(0,b),\ A_3(-a,0),\ A_4(0,-b)$ – вершины эллипса

 $F_1(-c,0), F_2(c,0)$

Возьмём точку M(x,y), принадлежащую эллипсу

Составим векторы $\overrightarrow{F_1M} = \{x+c,y\}, \ \overrightarrow{F_2M} = \{x-c,y\}$ $a = A_3O = OA_1$

$$|\overrightarrow{F_1M}| + |\overrightarrow{F_2M}| = 2a$$

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$

$$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}$$

$$(x+c)^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2$$

$$x^2 + 2xc + c^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + x^2 - 2xc + c^2 + y^2$$

$$4a\sqrt{(x-c)^2 + y^2} = 4a^2 - 4xc$$

$$a\sqrt{(x-c)^2 + y^2} = a^2 - xc$$

$$a^2c^2 + x^2a^2 - 2a^2xc + a^2y^2 = a^4 - 2a^2xc + x^2c^2$$

$$x^2a^2 - x^2c^2 + a^2y^2 = a^4 - a^2c^2$$

$$x^2(a^2 - c^2) + a^2y^2 = a^2(a^2 - c^2) \mid :a^2(a^2 - c^2)$$

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$
 Обозначим $b^2 = a^2 - c^2 \Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ — каноническое уравнение эллипса

a — большая полуось эллипса, b — малая полуось эллипса

Замечание. $a = 2, \ b = \sqrt{2}$

Неверная запись уравнения: $\frac{x^2}{2^2} + \frac{y^2}{(\sqrt{2})^2} = 1$

Верная запись уравнения: $\frac{x^2}{4} + \frac{y^2}{2} = 1$

Определение 7. Отношение фокального расстояния эллипса к большой оси называется **эксцентриситетом**.

Обозначение – ε

$$\frac{F_1F_2}{A_3A_1} = \frac{2c}{2a} = \varepsilon \ \Rightarrow \ \varepsilon = \frac{c}{a}$$

T.K.
$$c < a \implies 0 < \varepsilon < a$$

Теорема 1.

Отношение фокального радиуса точки эллипса к расстоянию от этой точки до некоторой прямой, называемой **директрисой**, постоянно и равно эксцентриситету. Директриса перпендикулярна прямой, на которой лежат фокусы.

Уравнение директрисы:

$$d_1 \colon x = -\frac{a}{\varepsilon}$$
$$d_2 \colon x = \frac{a}{\varepsilon}$$

Примечание.

1. Уравнение эллипса с центром в точке $O(x_0, y_0)$

$$\boxed{\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1}$$

2. Уравнение мнимого эллипса (с центром в точке O(0,0))

$$\boxed{\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1}$$

3. Уравнение окружности с центром в точке O(0,0) и радиусом R

$$a = b = R$$

$$\frac{x^2}{R^2} + \frac{y^2}{R^2} = 1$$

$$\downarrow \downarrow$$

$$x^2 + y^2 = R^2$$

4. Уравнение окружности с центром в точке $O'(x_0, y_0)$ и радиусом $R, \varepsilon = 0$

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$

37

5. Уравнение точки $O'(x_0, y_0)$

$$(x - x_0)^2 + (y - y_0)^2 = 0$$

6. Если a < b, то эллипс будет вытянут вдоль оси y и фокусы будут располагаться на оси Oy. (Рис. 1b)

$$\varepsilon = \frac{2c}{2b}$$

6.2 Гипербола

Определение 1. Гиперболой называется геометрическое место точек, разность расстояний от каждой из которых до двух фиксированных точек, называемых фокусами, постоянна и равна 2a.

Определение 2. Прямая (*действительная осъ*), на которой лежат фокусы, и прямая (*мнимая осъ*), которая проходит через середину отрезка между фокусами перпендикулярно первой прямой, называются **осями гиперболы**.

1 ось – действительная ось

2 ось – мнимая ось

Определение 3. Расстояние между фокусами называется **фокальным расстоянием**.

$$F_1, F_2$$
 – фокусы гиперболы

$$F_1F_2 = 2c$$

Определение 4. Точка пересечения действительной и мнимой осей называется **центром гиперболы**.

Определение 5. Точки пересечения гиперболы с действительной осью называется **вершиной гиперболы**.

Уравнение гиперболы

Расположим декартову прямоугольную систему координат так, чтобы её начало совпадало с центром гиперболы, а фокусы лежали на оси абсцисс (Рис. 2a).

$$F_1(-c,0), F_2(c,0), M(x,y)$$

Составим два вектора: $\overrightarrow{F_1M} = \{x+c,y\}$

$$\overline{F_2M} = \{x-c,y\}$$

$$|\overline{F_1M}| - |\overline{F_2M}| = 2a$$

$$\sqrt{(x+c)^2 - y^2} - \sqrt{(x-c)^2 + y^2} = 2a$$

$$\sqrt{(x+c)^2 + y^2} = 2a + \sqrt{(x-c)^2 + y^2}$$

$$(x+c)^2 + y^2 = 4a^2 + 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2$$

$$x^2 + 2xc + c^2 + y^2 = 4a^2 + 4a\sqrt{(x-c)^2 + y^2} + x^2 - 2xc + c^2 + y^2$$

$$-4a\sqrt{(x-c)^2 + y^2} = 4a^2 - 4xc$$

$$-a\sqrt{(x-c)^2 + y^2} = a^2 - xc$$

$$a^2c^2 + x^2a^2 - 2a^2xc + a^2y^2 = a^4 - 2a^2xc + x^2c^2$$

$$x^2a^2 - x^2c^2 + a^2y^2 = a^4 - a^2c^2$$

$$x^2(a^2 - c^2) + a^2y^2 = a^2(a^2 - c^2) \mid :a^2(a^2 - c^2)$$

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$
 Обозначим $b^2 = c^2 - a^2 \Rightarrow \boxed{\frac{x^2}{a^2} - \frac{y^2}{b^2}} = 1$ — каноническое уравнение гиперболы с центром в точке $O(0,0)$

a – действительная ось гиперболы, b – мнимая ось гиперболы

Определение 6. Отношение фокального расстояния к величине действительной оси гиперболы называется **эксцентриситетом** (ε)

$$\varepsilon = \frac{2c}{2a}$$
 t.k. $c > a$, to $\varepsilon > 1 \Rightarrow \ \varepsilon = \frac{c}{a}$

Эксцентриситет характеризует форму гиперболы. Чем меньше эксцентриситет, тем меньше отношение $\frac{b}{a}$ её полуосей, а значит, тем более вытянут её основной прямо-угольник.

Определение 7. Директриса (см. определение эллипса)

$$d_1 \colon x = -\frac{a}{\varepsilon}$$
$$d_2 \colon x = \frac{a}{\varepsilon}$$

Примечание.

1. Канонические уравнения сопряжённой гиперболы (с центром в точке O(0,0))

$$\sqrt{-rac{x^2}{a^2} + rac{y^2}{b^2}} = 1$$
 или $\frac{x^2}{a^2} - rac{y^2}{b^2} = -1$

2. Уравнение гиперболы с центром в точке $O(x_0, y_0)$

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$$

3. Если a = b, то равносторонняя:

$$\boxed{\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{a^2} = 1}$$

4. Две прямые

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

$$b^2 x^2 - a^2 y^2 = 0$$

$$(bx - ay)(bx + ay) = 0 \implies$$

$$bx - ay = 0 \implies y = \frac{b}{a}x$$

$$\Rightarrow$$

$$bx + ay = 0 \implies y = -\frac{b}{a}x$$

5. Уравнения асимптот

$$l_1 : y = \frac{b}{a}x$$

$$l_2 : y = -\frac{b}{a}x$$

Если центр гиперболы $O(x_0, y_0)$, то:

$$l_1: y - y_0 = \frac{b}{a}(x - x_0) \implies y = y_0 + \frac{b}{a}(x - x_0) \implies y = \frac{b}{a}x + \left(y_0 - \frac{b}{a}x_0\right)$$

$$l_2: y - y_0 = -\frac{b}{a}(x - x_0) \implies y = y_0 - \frac{b}{a}(x - x_0) \implies y = -\frac{b}{a}x + \left(y_0 + \frac{b}{a}x_0\right)$$

6.3 Парабола

Определение 1. Параболой называется геометрическое место точек, расстояния от каждой из которых до некоторой фиксированной точки, называемой фокусом, и некоторой фиксированной прямой, называемой директрисой, равны.

Уравнение параболы

Обозначим расстояние от директрисы до фокуса буквой p.

Расположим декартову прямоугольную систему координат так, чтобы начало координат совпадало с вершиной параболы, а фокус находился на оси абсцисс. (Рис. 3а) Возьмём произвольную точку M(x, y).

 $A(-\frac{p}{2},y); \ F(\frac{p}{2},0)$ – фокус параболы

Составим два вектора: $\overrightarrow{AM} = \left\{x + \frac{p}{2}, 0\right\}$ и $\overrightarrow{FM} = \left\{x - \frac{p}{2}, y\right\}$

По определению $|\overrightarrow{AM}| = |\overrightarrow{FM}|$

$$\sqrt{\left(x + \frac{p}{2}\right)^2 + 0^2} = \sqrt{\left(x - \frac{p}{2}\right)^2 + y^2}$$
$$x^2 + xp + \frac{p^2}{4} = x^2 - xp + \frac{p^2}{4} + y^2$$

 $y^2 = 2px$ — каноническое уравнение параболы с вершиной в точке O(0,0)

- ullet Если p>0, то ветви параболы направлены вправо $\mid y^2=3x\Rightarrow p=rac{3}{2}$
- \bullet Если p<0, то ветви параболы направлены влево

 $\Pi pume uanue: x^2 = 2py$ (каноническое уравнение параболы)

- Если p > 0, то ветви параболы направлены вверх (Рис. 3b)
- Если p < 0, то ветви параболы направлены вниз

Если вершина параболы находится в $O'(x_0, y_0)$, то:

$$(y-y_0)^2 = 2p(x-x_0)$$
 или $(x-x_0)^2 = 2p(y-y_0)$

Уравнение директрисы:

•
$$y^2 = 2px \implies \boxed{d \colon x = -\frac{p}{2}}$$

•
$$y^2 = 2px \implies \boxed{d \colon x = -\frac{p}{2}}$$
 (Если $O(x_0, y_0)$, то $d \colon x - x_0 = -\frac{p}{2} \implies x = x_0 - \frac{p}{2}$)

•
$$x^2 = 2py \implies d: y = -\frac{p}{2}$$

•
$$x^2 = 2py \implies \boxed{d \colon y = -\frac{p}{2}}$$
 (Если $O'(x_0, y_0)$, то $d \colon y - y_0 = -\frac{p}{2} \Rightarrow y = y_0 - \frac{p}{2}$)

(b) Парабола, ветви вверх

Рис. 3

Пример.

$$2x^{2} - 4y^{2} - 6x + 8y - 10 = 0$$

$$2(x^{2} - 3x) - 4(y^{2} - 2y) - 10 = 0$$

$$2\left(x^{2} - 3x + \frac{9}{4} - \frac{9}{4}\right) - 4(y^{2} - 2y + 1 - 1) - 10 = 0$$

$$2\left(x - \frac{3}{2}\right)^{2} - \frac{9}{2} - 4(y - 1)^{2} + 4 - 10 = 0$$

$$2\left(x - \frac{3}{2}\right)^{2} - 4(y + 1)^{2} = \frac{21}{2}$$

$$\left(x - \frac{3}{2}\right)^{2}$$

$$\left(x - \frac{3}{2}\right)^{2}$$

$$\left(x - \frac{3}{2}\right)^{2}$$

$$\frac{\left(x - \frac{3}{2}\right)^2}{\frac{21}{4}} - \frac{(y - 1)^2}{\frac{21}{8}} = 1$$
 – уравнение

Гипербола с центром в точке $O'\left(\frac{3}{2},1\right)$

Действительная полуось: $a = \frac{\sqrt{21}}{2}$

Мнимая полуось: $b = \sqrt{\frac{21}{8}}$

Рис. 4: Пример

7 Матрицы

7.1 Основные понятия

Определение 1. Матрицей называется таблица (чисел), в которой элементы расположены по строкам и столбцам.

- Матрицы обозначаются большими латинскими буквами: A, B, C, \dots
- Размерность определяется количеством строк (m) и количеством столбцов (n) и обозначается $m \times n$
- Элемент a_{ij} элемент, который находится в i-ой строке и в j-ом столбце.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_m & a_{m+1} & \dots & a_{mn} \end{pmatrix}$$

Определение 2. Матрицы называются **квадратными**, если количество строк равно количеству столбцов (m=n).

Определение 3. Матрицы называются **диагональными**, если все элементы матрицы, кроме элементов на главной диагонали, равны нулю. При этом эта матрица квадратная.

$$D = \begin{pmatrix} d_{11} & 0 & \dots & 0 \\ 0 & d_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & d_{mn} \end{pmatrix} \quad d_{ij} \neq 0, \ 1 \leq i \leq n$$

Определение 4.

 Γ лавная диагональ — последовательность элементов, которая идёт из левого верхнего угла в правый нижний.

Побочная диагональ — последовательность элементов, которая идёт из правого верхнего угла в левый нижний.

Определение 5. Единичная матрица — матрица, у которой все элементы на главной диагонали равны единице, а остальные равны нулю.

$$E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Определение 6. Нулевой матрицей называется матрица, элементы которой равны нулю.

43

Определение 7. Верхней треугольной матрицей называется квадратная матрица, у которой под главной диагональю все элементы равны нулю.

$$A = \begin{pmatrix} 2 & 5 & 6 & 11 \\ 0 & 3 & 7 & 10 \\ 0 & 0 & 4 & 9 \\ 0 & 0 & 0 & 8 \end{pmatrix}$$

Определение 8. Нижней треугольной матрицей называется квадратная матрица, у которой над главной диагональю все элементы равны нулю.

Определение 9. Две матрицы **равны**, если они имеют одинаковую размерность и их соответствующие элементы равны.

$$A_{m imes n}, \ B_{m imes n}$$
 $A=B \iff a_{ij}=b_{ij},$ где $i=1,\ \ldots,\ m$ $j=1,\ \ldots,\ n$

7.2 Действия с матрицами

7.2.1 Сумма матриц

Определение 1. Суммой матриц $A_{m \times n}$ и $B_{m \times n}$ называется матрица C, элементы которой являются суммами соответствующих элементов A и B.

$$A_{m \times n} + B_{m \times n} = C_{m \times n}, \quad \text{где } c_{ij} = a_{ij} + b_{ij}, \quad \begin{subarray}{ll} i = 1 \dots m \\ j = 1 \dots n \end{subarray}$$

Замечание. Операция сложения матриц вводится только для матриц <u>одинаковых</u> размеров.

Пример.

$$A_{2\times 2} = \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix} \qquad B_{2\times 2} = \begin{pmatrix} 4 & 1 \\ 0 & 3 \end{pmatrix}$$
$$C_{2\times 2} = A + B = \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix} + \begin{pmatrix} 4 & 1 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 3+4 & 2+1 \\ 1+0 & -1+3 \end{pmatrix} = \begin{pmatrix} 7 & 3 \\ 1 & 2 \end{pmatrix}$$

7.2.2 Умножение матрицы на число

Определение 2. Произведением матрицы $A_{m \times n}$ на число k = const называется матрица $C_{m \times n}$, элементы которой равны произведению соответствующего элемента матрицы a_{ij} на число k.

$$C = k \cdot A$$
 $c_{ij} = k \cdot a_{ij}$, где $i = 1, \ldots, m$ $j = 1, \ldots, n$

7.2.3 Свойства сложения матриц и умножения матрицы на число

1.
$$A + B = B + A$$

2.
$$(A+B)+C=A+(B+C)=B+(A+C)$$

3. Если
$$O$$
 — нулевая матрица, то $A + O = A$

4. Найдётся такая матрица
$$B$$
, что $A + B = 0$ $(B = -A)$

5.
$$\lambda \cdot (A+B) = \lambda A + \lambda B$$

 $\lambda = const$

6.
$$(\lambda + \mu) \cdot A = \lambda A + \mu A$$

7.
$$\lambda \cdot (\mu A) = (\lambda \mu) \cdot A$$

7.2.4 Транспонирование матриц

Определение 3. Транспонированной матрицей $(A_{m \times n}^T)$ называется матрица $A_{m \times n}$, элементы которой равны $a_{ij}^T = a_{ji}, \quad i = 1, \dots, m$ $j = 1, \dots, n$

$$A_{2\times 3} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \longrightarrow A_{3\times 2}^T \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

7.2.5 Свойства транспонирования матриц

1.
$$(A+B)^T = A^T + B^T$$

$$2. \ (\lambda \cdot A)^T = \lambda \cdot A^T$$

7.2.6 Произведение матриц

Определение 4. Произведением матриц $A_{m \times k}$ и $B_{k \times n}$ называется матрица $C_{m \times n}$, которая получается следующим образом:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ik}b_{kj} = \sum_{l=1}^{k} a_{il} \cdot b_{lj}$$
 $i = 1, \ldots, m$
 $j = 1, \ldots, n$

Замечание. Матрицы можно перемножить, если количество столбцов первой матрицы равно количеству строк второй матрицы. Тогда результирующая матрица будет иметь количество строк первой матрицы и количество столбцов второй матрицы.

$$C_{4\times 5} = A_{4\times \underline{2}} \cdot B_{\underline{2}\times 5}$$

45

Пример.

$$C_{2\times 2} = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 4 & 5 \\ 2 & -1 \\ 3 & -2 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 \cdot 4 + (-1) \cdot 2 + 2 \cdot 3 & 1 \cdot 5 + (-1)(-1) + 2(-2) \\ 2 \cdot 4 + 3 \cdot 2 + 0 \cdot 3 & 2 \cdot 5 + 3 \cdot (-1) + 0 \cdot (-2) \end{pmatrix} = \begin{pmatrix} 8 & 2 \\ 14 & 17 \end{pmatrix}$$

7.2.7 Свойство антикоммутативности матрицы и его исключения

$$A \cdot B \neq B \cdot A$$

Исключения: $A_{m \times n}$ и $B_{m \times n}$

1.
$$A = B$$

 $A \cdot B = A \cdot A = A^2$

2.
$$B = 0$$

 $A \cdot 0 = 0 \cdot A = 0$

3.
$$B = E$$

 $A \cdot E = E \cdot A = A$

4.
$$B=A^{-1}$$
 – обратная матрица к A $A\cdot A^{-1}=A^{-1}\cdot A=E$

Пример.

$$A = \begin{pmatrix} 4 & 5 \\ 2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix}$$
$$A \cdot B = \begin{pmatrix} 4 & 5 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ -1 & 8 \end{pmatrix}$$
$$B \cdot A = \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 4 & 5 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 6 & -3 \\ 0 & 7 \end{pmatrix}$$
$$A \cdot B \neq B \cdot A$$

7.2.8 Свойства произведения матриц

1.
$$A \cdot B \neq B \cdot A$$

2.
$$1 \cdot A = A$$

3.
$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$
 – ассоциативность умножения матриц

Доказательство.

Пусть $A_{m\times n}$, $B_{k\times n}$, $C_{n\times k}$

$$(A \cdot B) \cdot C = \sum_{r=1}^{n} [(A \cdot B)]_{ir} [C]_{rj} = \sum_{r=1}^{k} \left(\sum_{s=1}^{s} [A]_{is} \cdot [B]_{sr} \right) \cdot [C]_{rj} =$$

$$= \sum_{r=1}^{n} \sum_{s=1}^{k} [A]_{is} \cdot [B]_{sr} \cdot [C]_{rj} = \sum_{s=1}^{k} [A]_{is} \cdot \sum_{r=1}^{n} [B]_{sr} \cdot [C]_{rj} = \sum_{s=1}^{k} [A]_{is} \cdot [(B \cdot C)]_{sj} = A \cdot (B \cdot C)$$

4. $(A+B)\cdot C = A\cdot C + B\cdot C$ – дистрибутивность умножения матриц относительно сложения

Доказательство.

 $A_{m \times k}, B_{m \times n}, C_{k \times n}$

$$(A+B) \cdot C = \sum_{r=1}^{k} [(A+B)]_{ir} \cdot [C]_{rj} = \sum_{r=1}^{k} ([A]_{ir} + [B]_{ir}) \cdot [C]_{rj} =$$

$$= \sum_{r=1}^{k} ([A]_{ir} \cdot [C]_{rj} + [B]_{ir}[C]_{rj}) = \sum_{r=1}^{k} [A]_{ir} \cdot [C]_{ri} + \sum_{r=1}^{k} [B]_{ir} \cdot [C]_{ri} = A \cdot C + B \cdot C$$

5. $(A \cdot B)^T = B^T \cdot A^T$ – применение транспонирования к произведению матриц

Доказательство.

 $A_{m \times n}$ $B_{m \times n}$

$$(A \cdot B)^{T} = [(A \cdot B)^{T}]_{ij} = [A \cdot B]_{ji} = \sum_{r=1}^{k} [A]_{jr} \cdot [B]_{ri} =$$

$$= \sum_{r=1}^{k} [A^{T}]_{ri} \cdot [B^{T}]_{ir} = \sum_{r=1}^{k} [B^{T}]_{ir} \cdot [A^{T}]_{ri} = [B^{T} \cdot A^{T}]_{ij} = B^{T} \cdot A^{T}$$

7.3 Элементарные преобразования матриц

- 1. Перестановка строк (столбцов) матриц
- 2. Умножение элементов строки (столбца) матрицы на число
- 3. Прибавление к элементам одной строки (столбца) соответствующих элементов другой строки (столбца), умноженного на число
- 4. Используя элементарные преобразования любую матрицу можно привести к ступенчатому виду

Пример. Ступенчатый вид

$$\begin{pmatrix} 3 & 1 & 2 & 4 \\ -1 & 3 & 1 & -2 \\ 5 & 6 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 3 & 1 & 2 & 4 \\ 0 & 10 & 5 & -2 \\ 0 & 13 & -13 & -20 \end{pmatrix} \sim \begin{pmatrix} 3 & 1 & 2 & 4 \\ 0 & 10 & 5 & -2 \\ 0 & 0 & -195 & -174 \end{pmatrix}$$

7.4 Минор матрицы. Ранг матрицы.

Определение 1. Минором k-го порядка матрицы A называется определитель, составленный из пересечения k строк и k столбцов матрицы A с сохранением их порядка.

Определение 2. Окаймляющим минором для минора M матрицы A называется минор M', который получается из минора M путём добавления одной строки одного столбца. Порядок окаймляющего минора на единицу больше минора M.

$$A = \begin{pmatrix} 4 & 5 & 1 & 3 \\ 3 & 2 & 7 & 5 \\ 1 & -1 & 0 & 7 \end{pmatrix}$$
 $M_2 = \begin{vmatrix} 4 & 5 \\ 3 & 2 \end{vmatrix} \longrightarrow M_3' \begin{vmatrix} 4 & 5 & 1 \\ 3 & 2 & 7 \\ 1 & -1 & 0 \end{vmatrix}$ или $M_3' = \begin{vmatrix} 4 & 5 & 3 \\ 3 & 2 & 5 \\ 1 & -1 & 7 \end{vmatrix}$

Определение 3. Базисным минором матрицы A называется минор, который удовлетворяет следующим условиям:

- 1. Он не равен нулю
- 2. Его порядок равен рангу матрицы A

Определение 4. Рангом матрицы A называется число, равное наибольшему порядку, отличного от нуля минора матрицы A.

Обозначение: $\operatorname{Rg} A$ или $\operatorname{rg} A$

Определение 5. Строки (столбцы) матрицы A, входящие в базисный минор, называются **базисом**.

48

Теорема 1 (О базисном миноре).

- \bullet Базисные строки (столбцы) матрицы A, <u>входящие</u> в базисный минор, линейно независимы.
- Любую строку (столбец), не входящую в базисный минор, можно представить в виде линейной комбинации базисных строк (столбцов).

Доказательство.

- ullet Пусть ранг матрицы A=r. Предположим, что строки матрицы A линейно зависимы. Тогда одну из них можно выразить как линейную комбинацию остальных базисных строк. Значит, в базисном миноре одна строка будет линейной комбинацией остальных строк и, по свойству определителей, этот минор будет равен нулю, что противоречит определению базисного минора. Следовательно, наше предположение неверно, и базисные строки, входящие в базисный минор, линейно независимы.
- Пусть базисный минор состоит из первых r строк и r столбцов матрицы A. Добавим к этому минору произвольную i-ую строку и j-й столбец. В результате получаем окаймляющий минор:

$$M = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1r} \\ a_{21} & a_{22} & \dots & a_{2r} \\ \dots & \dots & \dots & \dots \\ a_{r1} & a_{r2} & \dots & a_{rr} \end{vmatrix} \longrightarrow M' = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1r} & a_{1j} \\ a_{21} & a_{22} & \dots & a_{2r} & a_{2j} \\ \dots & \dots & \dots & \dots \\ a_{r1} & a_{r2} & \dots & a_{rr} & a_{rj} \\ a_{i1} & a_{i2} & \dots & a_{ir} & a_{ij} \end{vmatrix}$$

Если $j \leq r$, то в миноре M' будет два одинаковых столбца и этот минор будет равен нулю.

Если j > r, то минор M' так же будет равен нулю (Пояснение: Ранг матрицы A равен r, значит, наибольший порядок отличного от нуля минора равен r. Минор M' имеет ранг r+1, значит, он равен нулю).

Определитель можно вычислить путём разложения по какой-либо строке (столбцу), поэтому найдём определитель M' путём его разложения по j-ому столбцу.

$$a_{1j}A_{ij} + a_{2j}A_{2j} + \dots + a_{rj}A_{rj} + a_{ij}A_{ij} = 0$$

$$j = r + 1, \ i = r + 1$$

$$\Rightarrow a_{1,r+1}A_{1,r+1} + a_{2,r+1}A_{2,r+1} + \dots + a_{r,r+1}A_{r,r+1} + a_{r+1,r+1}A_{r+1,r+1} = 0$$

 $A_{ij}=(-1)^{i+j}M_{ij}$ – алгебраическое дополнение элемента a_{ij} $A_{r+1,r+1}=M$ – базисный минор; т.к. $M\neq 0$, то $A_{r+1,r+1}\neq 0$

$$a_{r+1,r+1} = -\frac{A_{1,r+1}}{A_{r+1,r+1}} a_{1,r+1} - \frac{A_{2,r+1}}{A_{r+1,r+1}} a_{2,r+1} - \dots - \frac{A_{r,r+1}}{A_{r+1,r+1}} a_{r,r+1}$$

Обозначим:
$$\lambda_i = -\frac{A_{i,r+1}}{A_{r+1,r+1}}, \ i=1,\ldots, \ r$$

$$a_{r+1,r+1} = \lambda_1 a_{1,r+1} + \lambda_2 a_{2,r+1} + \ldots + \lambda_r a_{r,r+1}$$

Получили, что элементы i-й строке можно представить в виде линейной комбинации соответствующих элементов базисных строк, где $j=1,\ldots,\ r.$

Аналогично доказывается для столбцов.

7.5 Вычисление ранга матрицы

7.5.1 Метод окаймляющих миноров

Сначала берём минор 1-го порядка, то есть любой ненулевой элемент матрицы A. Составляем окаймляющий минор 2-го порядка для этого элемента, вычисляем его.

- Если он не равен нулю, то составляем окаймляющий минор 3-го порядка и так далее.
- Если окаймляющий минор равен нулю, то рассматриваем другой элемент.
- Если миноры (k+1)-го порядка равны нулю, а среди миноров k-го порядка есть неравные нулю, значит, ранг матрицы A=k

Пример.

$$A = \begin{pmatrix} 2 & 3 & 1 & 7 \\ -1 & 4 & 0 & 5 \\ -3 & 1 & -1 & -2 \end{pmatrix}$$

$$M_{1} = |2| = 2 \neq 0$$

$$M_{2} = \begin{vmatrix} 2 & 3 \\ -1 & 4 \end{vmatrix} = 8 + 3 = 11 \neq 0$$

$$M_{3_{a}} = \begin{vmatrix} 2 & 3 & 1 \\ -1 & 4 & 0 \\ -3 & 1 & -1 \end{vmatrix} = 0$$

$$M_{3_{a}} = \begin{vmatrix} 2 & 3 & 1 \\ 4 & 0 & 5 \\ 1 & -1 & -2 \end{vmatrix} = 0$$

$$M_{3_{d}} = \begin{vmatrix} 2 & 1 & 7 \\ -1 & 0 & 5 \\ -3 & -1 & -2 \end{vmatrix} = 0$$

$$\mathbb{R}g A = 2$$

Все миноры 3-го порядка равны нулю, а среди миноров 2-го порядка есть определитель не равный нулю, значит, ранг матрицы равен 2.

7.5.2 Метод элементарных преобразований

Теорема 2.

Ранг матрицы не меняется при элементарных преобразованиях строк (столбцов) матрицы.

• Ранг матрицы равен количеству ненулевых строк ступенчатой матрицы, полученной из исходной путём элементарных преобразований.

Пример.

$$A = \begin{pmatrix} 2 & 3 & 1 & 7 \\ -1 & 4 & 0 & 5 \\ -3 & 1 & -1 & -2 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 1 & 7 \\ 0 & 11 & 1 & 17 \\ 0 & 11 & 1 & 17 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 1 & 7 \\ 0 & 11 & 1 & 17 \\ 0 & 0 & 0 & 0 \end{pmatrix} \implies Rg \ A = 2$$

2-ю строку умножаем на 2 и прибавляем 1-ю.

3-ю строку умножаем на 2 и прибавляем 1-ю, умноженную на 3.

7.6 Обратные матрицы

Определение 1. Обратной матрицей квадратной матрицы $A_{m \times n}$ называется матрица $A_{m \times n}^{-1}$ такая, что

$$A \cdot A^{-1} = A^{-1} \cdot A = E$$

Обратная матрица вычисляется по формуле:

$$A^{-1} = \frac{1}{\det A} \cdot \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{T}$$

 $\det A$ – определитель матрицы A

 $A_{ij} = (-1)^{i+j} M_{ij}$ – алгебраическое дополнение элемента a_{ij} матрицы A.

Определение 2. Матрица A^* , являющаяся транспонированной матрицей алгебраических дополнений элементов матрицы A, называется **присоединённой матрицей**.

$$A^* = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^T = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$
$$A^{-1} = \frac{1}{\det A} \cdot A^*$$

Критерий существования обратной матрицы

Теорема 1.

Для того чтобы матрица A имела обратную матрицу, необходимо и достаточно, чтобы определитель матрицы A был не равен нулю.

Доказательство (Необходимость).

Пусть матрица A имеет обратную матрицу. Тогда по определению $A \cdot A^{-1} = E$.

Значит, $\det(A \cdot A^{-1}) = \det E = 1$.

По свойству определителей (с учётом предыдущего):

$$\det(A\cdot A^{-1}) = \det A\cdot \det A^{-1} = 1 \ \Rightarrow \ \det A \neq 0$$

Доказательство (Достаточность).

Пусть определитель матрицы A не равен нулю. Если определитель матрицы разложить по i-ой строке:

$$\sum_{j=1}^{n} a_{ij} A_{ij} = a_{i1} A_{i1} + a_{i2} A_{i2} + \dots + a_{in} A_{in} = \det A$$

$$\sum_{j=1}^{n} a_{ij} A_{kj} = a_{i1} A_{k1} + a_{i2} A_{k2} + \dots + a_{in} A_{kn} = 0$$

$$\sum_{j=1}^{n} a_{ij} A_{kj} = a_{i1} A_{k1} + a_{i2} A_{k2} + \ldots + a_{in} A_{kn} = 0$$

Рассмотрим матрицу B: $b_{ij} = \frac{A_{ji}}{\det A}$ A_{ij} – алгебраическое дополнение элемента a_{ji} матрицы A.

Найдём $C=A\cdot B$:

$$C_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} = \sum_{k=1}^{n} a_{ik} \cdot \frac{A_{jk}}{\det A} = \frac{1}{\det A} \sum_{k=1}^{n} a_{ik} A_{jk} = \begin{cases} \frac{1}{\det A} \cdot \det A = 1 &, \text{ если } i = j \\ \frac{1}{\det A} \cdot 0 = 0 &, \text{ если } i \neq j \end{cases}$$

$$\Rightarrow C = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} \qquad C_{ij} = 1, \text{ если } i = j \\ C_{ij} = 0, \text{ если } i \neq j$$

Аналогично $C' = B \cdot A$

$$C'_{ij} = \sum_{k=1}^{n} b_{ik} \cdot a_{kj} = \sum_{k=1}^{n} \frac{A_{ki}}{\det A} \cdot a_{kj} = \frac{1}{\det A} \sum_{k=1}^{n} A_{ki} a_{kj} = \begin{cases} \frac{1}{\det A} \cdot \det A = 1 &, \text{ если } i = j \\ \frac{1}{\det A} \cdot 0 = 0 &, \text{ если } i \neq j \end{cases}$$

$$\Rightarrow C' = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} \quad C'_{ij} = 1, \text{ если } i = j \\ C'_{ij} = 0, \text{ если } i \neq j$$

Получим
$$\left. egin{aligned} A \cdot B &= E \\ B \cdot A &= E \end{aligned} \right\} \Rightarrow \$$
 по определению $B = A^{-1}$

Таким образом, доказали, что если определитель матрицы не равен нулю, то эта матрица имеет обратную.

Теорема 2.

Пусть матрицы $A_{n\times n}$ и $B_{n\times n}$ имеют обратные матрицы $A_{n\times n}^{-1}$ и $B_{n\times n}^{-1}$. Тогда обратная матрица к их произведению равна произведению обратных матриц:

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

Доказательство.
$$C = A \cdot B \qquad C^{-1} = (A \cdot B)^{-1}$$

$$\underbrace{(A \cdot B) \cdot (A \cdot B)^{-1}}_{C} = (A \cdot B) \cdot (B^{-1} \cdot A^{-1}) = A \cdot \underbrace{(B \cdot B^{-1})}_{E} \cdot A^{-1} = \underbrace{A \cdot E}_{A} \cdot A^{-1} = A \cdot A^{-1} = E$$

$$(AB)^{-1} \cdot (A \cdot B) = (B^{-1} \cdot A^{-1}) \cdot (A \cdot B) = B^{-1} \cdot \underbrace{(A^{-1} \cdot A)}_{E} \cdot B = B^{-1} \cdot \underbrace{E \cdot B}_{B} = B^{-1} \cdot B = E$$

Теорема 3.

Пусть матрица $A_{n\times n}$ имеет обратную матрицу. Тогда:

$$\left(A^{T}\right)^{-1} = \left(A^{-1}\right)^{T}$$

Доказательство.

$$C = A^T$$

$$C \cdot C^{-1} = A^{T} \cdot (A^{T})^{-1} = A^{T} \cdot (A^{-1})^{T} = (A \cdot A^{-1})^{T} = E^{T} = E$$

$$C^{-1} \cdot C = (A^{T})^{-1} \cdot A^{T} = (A^{-1})^{T} \cdot A^{T} = (A^{-1} \cdot A)^{T} = E^{T} = E$$

Определение 3. Матрица, у которой определитель не равен нулю, называется **невы- рожденной**. Её также называют **обратимой**.

Определение 4. Матрица, у которой определитель равен нулю, называется **вырож- денной**.

7.7 Вычисление обратной матрицы

7.7.1 Метод алгебраических дополнений

$$A^{-1} = \frac{1}{\det A} \cdot \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{T}$$

$$A = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 2 & 3 \\ 3 & 1 & 0 \end{pmatrix}$$

1. Находим определитель:

$$\det A = \begin{vmatrix} 1 & 0 & -1 \\ -1 & 2 & 3 \\ 3 & 1 & 0 \end{vmatrix} = 4$$

2. Находим алгебраическое дополнение элементов матрицы A: $A_{ij} = (-1)^{i+j} M_{ij}$

$$A_{11} = (-1)^{1+1} M_{11} = \begin{vmatrix} 2 & 3 \\ 1 & 0 \end{vmatrix} = -3 \qquad A_{21} = (-1)^{2+1} M_{21} = \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} = -1$$

$$A_{12} = (-1)^{1+2} M_{12} = \begin{vmatrix} -1 & 3 \\ 3 & 0 \end{vmatrix} = 9 \qquad A_{22} = (-1)^{2+2} M_{22} = \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix} = 3$$

$$A_{13} = (-1)^{1+3} M_{13} = \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = -7 \qquad A_{23} = (-1)^{2+3} M_{23} = \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} = -1$$

$$A_{31} = (-1)^{3+1} M_{31} = \begin{vmatrix} 0 & -1 \\ 2 & 3 \end{vmatrix} = 2$$

$$A_{32} = (-1)^{3+2} M_{32} = \begin{vmatrix} 1 & -1 \\ -1 & 3 \end{vmatrix} = -2$$

$$A_{33} = (-1)^{3+3} M_{33} = \begin{vmatrix} 1 & 0 \\ -1 & 2 \end{vmatrix} = 2$$

3. Находим обратную матрицу (A^{-1}) :

$$A^{-1} = \frac{1}{4} \begin{pmatrix} -3 & 9 & -7 \\ -1 & 3 & -1 \\ 2 & -2 & 2 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -3 & -1 & 2 \\ 9 & 3 & -2 \\ -7 & -1 & 2 \end{pmatrix} = \begin{pmatrix} -\frac{3}{4} & -\frac{1}{4} & \frac{2}{4} \\ \frac{9}{4} & \frac{3}{4} & -\frac{2}{4} \\ -\frac{7}{4} & -\frac{1}{4} & \frac{2}{4} \end{pmatrix}$$

Проверка: $A^* = A \cdot A^{-1} = A^{-1} \cdot A = E$

$$A^{-1} \cdot A = \underbrace{\frac{1}{4} \cdot \begin{pmatrix} -3 & -1 & 2\\ 9 & 3 & -2\\ -7 & -1 & 2 \end{pmatrix}}_{A^{-1}} \cdot \underbrace{\begin{pmatrix} 1 & 0 & -1\\ -1 & 2 & 3\\ 3 & 1 & 0 \end{pmatrix}}_{A} = \underbrace{\frac{1}{4} \begin{pmatrix} 4 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 4 \end{pmatrix}}_{A} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

54

7.7.2 Метод Жордана-Гаусса (с помощью элементарных преобразований)

- 1. Приписываем к матрице A справа единичную матрицу такой же размерности A|E
- 2. С помощью элементарных преобразований строк матрицы приводим матрицу A к треугольному виду
 - (2.1) Переписываем первую строку без изменения
 - (2.2) С помощью элементарных преобразований получаем нулевые элементы в первом столбце матрицы A под элементом A_{11}
 - (2.3) Переписываем первые две строки без изменения
 - (2.4) С помощью элементарных преобразований строк получаем нулевые элементы во втором столбце под элементом A_{22}
 - (2.5) и так далее ...
- 3. С помощью элементарных преобразований строк получаем в левой части расширенной матрицы диагональную матрицу
 - (3.1) Переписываем первую строку без изменений
 - (3.2) Получаем нулевые элементы в последнем столбце над элементом a'_{nn}
 - (3.3) Переписываем первые две строки без изменений
 - (3.4) Получаем нулевые элементы в предпоследнем столбце над элементом $a'_{n-1,n-1}$
 - (3.5) и так далее ...
- 4. Делим каждую строку матрицы на соответствующий диагональный элемент в левой части полученной матрицы.
- 5. В результате в левой части получается единичная матрица E, а в правой части обратная матрица A^{-1}

Примечание. Если элемент $a_{11}=0$, то переставляем две строки матрицы так, чтобы $a_{11}\neq 0$

Пример.

$$A|E = \begin{pmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ -1 & 2 & 3 & | & 0 & 1 & 0 \\ 3 & 1 & 0 & | & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 2 & 2 & | & 1 & 1 & 0 \\ 0 & 1 & 3 & | & -3 & 0 & 1 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & 0 & -1 & | & 1 & 0 & 0 \\ 0 & 2 & 2 & | & 1 & 1 & 0 \\ 0 & 0 & -4 & | & 7 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} -4 & 0 & 0 & | & 3 & 1 & -2 \\ 0 & 4 & 0 & | & 9 & 3 & -2 \\ 0 & 0 & -4 & | & 7 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & -\frac{3}{4} & -\frac{1}{4} & \frac{2}{4} \\ 0 & 1 & 0 & | & \frac{9}{4} & \frac{3}{4} & -\frac{2}{4} \\ 0 & 0 & 1 & | & -\frac{7}{4} & -\frac{1}{4} & \frac{2}{4} \end{pmatrix}$$

Системы линейных алгебраических уравнений (СЛАУ) 8

Формы записи СЛАУ 8.1

Координатная форма записи

Определение 1. Системой линейных алгебраических уравнений называется система уравнений вида:

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\
 \ldots \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m
\end{cases}$$
(1)

 $a_{ij}=const-$ коэффициенты при неизвестных в СЛАУ $i=1,\ldots,m$ $j=1,\ldots,n$

 $b_i = const$ — свободные члены СЛАУ $i=1,\ldots,m$ x_j — переменные СЛАУ $j=1,\ldots,n$

Определение 2. Совокупность переменных (x_1, x_2, \dots, x_n) , при которых каждое уравнение системы обращается в верное равенство, называется решением.

8.1.2 Матричная форма записи

Обозначим:

$$A = \begin{pmatrix} a_{11} & a_{22} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Получаем $A \cdot X = B$

8.1.3Векторная форма записи

Обозначим:

$$\overline{a_1} = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, \quad \overline{a_2} = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \dots, \quad \overline{a_n} = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} \qquad \overline{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$\overline{a_1}x_1 + \overline{a_2}x_2 + \ldots + \overline{a_n}x_n = \overline{b}$$

В векторной форме записи вектор \bar{b} можно представить в виде линейной комбинации векторов $\overline{a_1}, \ \overline{a_2}, \ \dots, \ \overline{a_n}$, координаты которого соответствуют столбцам матрицы A.

Определение 3.

СЛАУ, имеющая решение, называется совместной.

СЛАУ, не имеющая решение, называется не совместной.

Определение 4.

Совместная СЛАУ, имеющая единственное решение, называется совместной определённой.

Совместная СЛАУ, имеющая бесконечное множество решений, называется совместной неопределённой.

Определение 5.

СЛАУ (1), у которой все члены равны нулю, называется однородной.

СЛАУ (1), у которой хотя бы один $b_i \neq 0, \ 0 \leq i \leq m$, называется **неоднородной**.

8.2 Решение линейных уравнений

1. $A \cdot X = B$

Умножим обе части уравнения на обратную матрицу слева

$$\underbrace{A^{-1} \cdot A}_{E} \cdot X = A^{-1} \cdot B \implies \underbrace{E \cdot X}_{X} = A^{-1} \cdot B \implies \boxed{X = A^{-1} \cdot B}$$

2. $X \cdot A = B$

Умножим обе части уравнения на обратную матрицу справа

$$X \cdot \underbrace{A^{-1} \cdot A}_{E} = B \cdot A^{-1} \implies \underbrace{X \cdot E}_{X} = B \cdot A^{-1} \implies \boxed{X = B \cdot A^{-1}}$$

3. $A \cdot X \cdot C = B$

Умножим обе части уравнения на обратную матрицу A слева и на обратную матрицу C справа

$$\underbrace{A^{-1} \cdot A}_E \cdot X \cdot \underbrace{C \cdot C^{-1}}_E = A^{-1} \cdot B \cdot C^{-1} \ \Rightarrow \ \underbrace{E \cdot X \cdot E}_X = A^{-1} \cdot B \cdot C^{-1} \ \Longrightarrow \ X = \boxed{A^{-1} \cdot B \cdot C^{-1}}$$

Пример.
$$X \cdot \begin{pmatrix} 2 & -1 \\ 5 & 0 \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ 1 & -1 \end{pmatrix} \qquad X \cdot A = B \qquad X = B \cdot A^{-1}$$

$$A|E = \begin{pmatrix} 2 & -1 & | & 1 & 0 \\ 5 & 0 & | & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & -1 & | & 1 & 0 \\ 0 & 5 & | & -5 & 2 \end{pmatrix} \sim \begin{pmatrix} 10 & 0 & | & 0 & 2 \\ 0 & 5 & | & -5 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & 0 & \frac{1}{5} \\ 0 & 1 & | & -1 & \frac{2}{5} \end{pmatrix}$$

$$X = B \cdot A^{-1} = \begin{pmatrix} -3 & 2 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & \frac{1}{5} \\ -1 & \frac{2}{5} \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -3 & 2 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -5 & 2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -10 & 1 \\ 5 & -1 \end{pmatrix} = \begin{pmatrix} -2 & \frac{1}{5} \\ 1 & -\frac{1}{5} \end{pmatrix}$$

8.3 Формулы Крамера для решения СЛАУ

Пусть задана СЛАУ в координатной форме (1). Запишем эту СЛАУ в матричном виде, где A имеет размерность $n \times n$ (количество уравнений = количество переменных).

$$A \cdot X = B$$

$$A_{n \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \quad B_{n \times 1} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Пусть матрица A невырожденная, $\det A \neq 0$. Тогда обратная матрица будет иметь вид:

$$A^{-1} = \frac{1}{\det A} \cdot \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{T} = \begin{pmatrix} \frac{A_{11}}{\det A} & \frac{A_{21}}{\det A} & \dots & \frac{A_{n1}}{\det A} \\ \frac{A_{12}}{\det A} & \frac{A_{22}}{\det A} & \dots & \frac{A_{n2}}{\det A} \\ \dots & \dots & \dots & \dots \\ \frac{A_{1n}}{\det A} & \frac{A_{2n}}{\det A} & \dots & \frac{A_{nn}}{\det A} \end{pmatrix}$$

Решением уравнения будет $X = A^{-1} \cdot B$

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = X = \begin{pmatrix} \frac{A_{11}}{\det A} & \frac{A_{21}}{\det A} & \cdots & \frac{A_{n1}}{\det A} \\ \frac{A_{12}}{\det A} & \frac{A_{22}}{\det A} & \cdots & \frac{A_{n2}}{\det A} \\ \vdots \\ \frac{A_{1n}}{\det A} & \frac{A_{2n}}{\det A} & \cdots & \frac{A_{nn}}{\det A} \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

$$x_1 = \frac{A_{11}}{\det A} \cdot b_1 + \frac{A_{21}}{\det A} \cdot b_2 + \ldots + \frac{A_{n1}}{\det A} \cdot b_n = \frac{A_{11}b_1 + A_{21}b_2 + \ldots + A_{n1}b_n}{\det A}$$

Числитель – разложение определителя A_1 по столбцу:

$$\Delta_{1} = \begin{vmatrix} b_{1} & a_{12} & \dots & a_{1n} \\ b_{2} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ b_{n} & a_{n2} & \dots & a_{nn} \end{vmatrix} \qquad \Delta = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$
$$\det A = \Delta \qquad x_{1} = \frac{\Delta 1}{\Delta}$$

Определитель Δ_1 получается из определителя Δ , если заменить первый столбец этого определителя на столбец свободных членов СЛАУ. Определитель Δ_1 называется **главным**.

$$\boxed{x_i = rac{\Delta_i}{\Delta}}, \ i = 1, \dots, n$$
 — формула Крамера

Определитель Δ_i получается из главного определителя путём замены i-го столбца на столбец свободных членов СЛАУ.

Замечание. Если главный определитель равен нулю, то формулу Крамера использовать нельзя.

Примечание. Однородная СЛАУ всегда совместная.

Примечание.

ullet Если матрица A квадратная и невырожденная и её определитель не равен нулю, то СЛАУ имеет единственное решение:

$$x_1 = x_2 = \ldots = x_n = 0$$

 \bullet Если матрица A квадратная и вырожденная, то СЛАУ имеет бесконечное множество решений.

8.4 Теорема Кронекера-Капелли

Теорема 1.

Для того чтобы СЛАУ была совместной, необходимо и достаточно, чтобы ранг матрицы A был равен рангу расширенной матрицы.

$$A \cdot X = B$$
 $A|B$ $\operatorname{Rg} A = \operatorname{Rg}(A|B)$

Доказательство (Необходимость).

Пусть СЛАУ $A \cdot X = b$ – совместная и пусть $\operatorname{Rg} A = r$.

Пусть базисный минор состоит из первых r строк и r столбцов матрицы A.

$$M = \begin{vmatrix} a_1 1 & a_1 2 & \dots & a_1 r \\ a_2 1 & a_2 2 & \dots & a_2 r \\ \dots & \dots & \dots & \dots \\ a_r 1 & a_r 2 & \dots & a_r r \end{vmatrix}$$

Если использовать векторную запись СЛАУ, то если СЛАУ имеет решение x_1, x_2, \ldots, x_n , тогда любой столбец матрицы A можно представить в виде:

$$a_1x_1 + a_2x_2 + \ldots + a_rx_r + a_{r+1}x_{r+1} + \ldots + a_nx_n = b$$
 (1)

Согласно теореме *о базисном миноре* ($\mathbf{C.47,\ T.1}$), любой столбец матрицы A, который не входит в базисный минор, можно представить в виде линейной комбинации столбцов базисного минора.

Тогда:

Подставим (2) в (1):

$$a_{1}x_{1} + a_{2}x_{2} + \ldots + a_{r}x_{r} + (\lambda_{1,r+1}a_{1} + \lambda_{2,r+1}a_{2} + \ldots + \lambda_{r,r+1}a_{r})x_{r+1} + \\ + \ldots + (\lambda_{1n}a_{1} + \lambda_{2n}a_{2} + \ldots + \lambda_{rn}a_{n})x_{n} = b$$

$$\underbrace{(x_{1} + \lambda_{1,r+1}x_{r+1} + \ldots + \lambda_{1n}x_{n})}_{\beta_{1}} a_{1} + \underbrace{(x_{2} + \lambda_{2,r+1}x_{r+1} + \ldots + \lambda_{2n}x_{n})}_{\beta_{2}} a_{2} + \ldots + \\ + \underbrace{(x_{r} + \lambda_{r,r+1}x_{r+1} + \ldots + \lambda_{rn}x_{n})}_{\beta_{r}} a_{r} = b$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

В результате столбец свободных членов можно представить в виде линейной комбинации столбцов базисного минора. Отсюда следует, что базисный минор M матрицы A будет и базисным минором расширенной матрицы A|B, так как минор M не равен нулю и любой окаймляющий минор M' будет равен нулю.

- 1. Если в качестве окаймляющего минора будет минор, который входит в столбец матрицы A, то этот минор будет равен нулю по определению базисного минора матрицы A.
- 2. Если в окаймляющем миноре будет столбец свободных членов, то этот минор будет равен нулю по свойству определителей, так как этот столбец b будет линейной комбинацией остальных столбцов определителя.

$$\underbrace{\operatorname{Rg} A}_{r} = \underbrace{\operatorname{Rg}(A|B)}_{r}$$

Доказательство (Достаточность).

Пусть $\operatorname{Rg} A = \operatorname{Rg}(A|B)$ и пусть базисный минор состоит из первых r строк и r столбцов матрицы A.

$$M = \begin{vmatrix} a_1 1 & a_1 2 & \dots & a_1 r \\ a_2 1 & a_2 2 & \dots & a_2 r \\ \dots & \dots & \dots & \dots \\ a_r 1 & a_r 2 & \dots & a_r r \end{vmatrix}$$

Тогда столбец b можно представить в виде линейной комбинации столбцов базисного минора.

$$b=x_1^\circ a_2+x_2^\circ a_2+\ldots+x_r^\circ a_r+0\cdot a_{r+1}+0\cdot a_{r+2}+\ldots+0\cdot a_n$$
 $x_1^\circ,x_2^\circ,\ldots,x_r^\circ$ — коэффициенты линейной комбинации $x_i=const,\quad i=1,\ldots,r$

Добавим к этой линейной комбинации вектора:

$$a_{r+1}, a_{r+2}, \dots, a_n$$
 $x_{r+1}^{\circ} = 0, x_{r+2}^{\circ} = 0, \dots, x_n^{\circ} = 0$
 $x = (x_1, x_2, \dots, x_r, x_{r+1}, x_{r+2}, \dots, x) =$
 $= (x_1, x_2, \dots, x_r, 0, 0, \dots, 0)$

Этот набор переменных составляет решение СЛАУ, то есть СЛАУ является совместной.

8.5 Однородные СЛАУ

$$A \cdot X = \Theta \qquad \Theta_{m \times 1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \qquad X_{n \times 1} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad A_{m \times n} = \begin{pmatrix} a_{11} & a_{22} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

X – матрица-столбец или столбец неизвестных

A – матрица

Теорема 2 (О свойствах решений однородных СЛАУ).

Пусть $X^{(1)}, X^{(2)}, \dots, X^{(k)}$ – решение СЛАУ. Тогда их линейная комбинация тоже является решением СЛАУ.

Доказательство.

$$A \cdot X = \Theta$$

$$X = \lambda_1 X^{(1)} + \lambda_2 X^{(2)} + \ldots + \lambda_k X^{(k)} = \sum_{i=1}^k \lambda_i \cdot X^{(i)}$$

$$\lambda_i = const, \quad i = 1, \ldots, k$$

$$A\cdot X=A\cdot \sum_{i=1}^k \lambda_i\cdot X^{(i)} \xrightarrow[]{\substack{\text{с матрицами}\\ \text{с матрицами}}} \sum_{i=1}^k A\cdot \lambda_i\cdot X^{(i)} = \sum_{i=1}^k \lambda_i\cdot \underbrace{A\cdot X^{(i)}}_{\Theta} = \sum_{i=1}^k \lambda_i\cdot \Theta = \Theta$$
 То есть получили $A\cdot X=\Theta$

 $A\cdot X^{(i)}=\Theta$, т.к. $X^{(i)}$ – решение однородной СЛАУ $A\cdot X=\Theta$

В результате получили, что столбец X, который является линейной комбинацией решения однородной СЛАУ, является решением однородной СЛАУ.

Определение 6. Набор k = n - r линейно-независимых решений однородной СЛАУ называется **фундаментальной системой решений** однородной СЛАУ, где n – количество неизвестных, а r – ранг матрицы A

Теорема 3 (О существовании фундаментальной системы решений однородной СЛАУ). Пусть имеется однородная СЛАУ $A \cdot X = \Theta$ с n неизвестными и $\operatorname{Rg} A = r$. Тогда существует набор k = n - r решений однородной СЛАУ, который образует фундаментальную систему решений.

$$X^{(1)}, X^{(2)}, \dots, X^{(k)}$$

Доказательство.

Пусть базисный минор матрицы A состоит из первых r строк и r столбцов матрицы A. Тогда любая строка матрицы A с номерами $r+1, \ldots, m$ будет линейной комбинацией строк базисного минора по теореме o базисном миноре (C.47, T.1).

Если решение СЛАУ x_1, x_2, \ldots, x_n удовлетворяет уравнениям СЛАУ, соответствующим строкам базисного минора, то это решение будет удовлетворять и остальным уравнениям СЛАУ (с r+1 до m). Поэтому исключим из системы уравнения с r+1 до m. В результате получим следующую систему уравнений:

Переменные, соответствующие базисным столбцам, называются базисными переменными, а остальные свободными.

В системе (3) базисными переменными являются x_1, x_2, \ldots, x_r , а свободными являются x_{r+1}, \ldots, x_n

В системе (3) оставим в левой части слагаемые, содержащие базисные переменные, а в правой свободные:

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1r}x_r = -a_{1,r+1}x_{r+1} - \ldots - a_{1n}x_n \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2r}x_r = -a_{2,r+1}x_{r+1} - \ldots - a_{2n}x_n \\
 \vdots \\
 a_{r1}x_1 + a_{r2}x_2 + \ldots + a_{rr}x_r = -a_{r,r+1}x_{r+1} - \ldots - a_{rn}x_n
\end{cases} \tag{4}$$

Если свободным переменным x_1, x_2, \ldots, x_r придавать различные значения, то в системе (4) главный определитель левой части будет не равен нулю, так как этот определитель равен базисному минору матрицы A и эта система будет иметь единственное решение.

Возьмём k наборов свободных переменных вида:

$$x_{r+1}^{(1)}=1$$
 $x_{r+1}^{(2)}=0$ \cdots $x_{r+1}^{(k)}=0$ $x_{r+2}^{(1)}=0$ $x_{r+2}^{(1)}=0$ \cdots $x_{r+2}^{(k)}=0$ \cdots $x_{r+2}^{(k)}=0$ \cdots $x_{r+2}^{(k)}=0$ \cdots $x_{r+2}^{(k)}=0$ \cdots $x_{r+2}^{(k)}=1$ (1) – номер набора $x_{r+j}^{(i)}=1,\ i=j$ $x_{r+j}^{(i)}=0,\ i\neq j$

При каждом наборе свободных переменных получаем решение однородной СЛАУ.

$$x^{(i)} = \begin{pmatrix} x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_r^{(i)} \\ x_{r+1}^{(i)} \\ \vdots \\ x_n^{(i)} \end{pmatrix}$$
 из СЛАУ (4) $i = 1, \dots, k$

В результате получаем k решений однородной СЛАУ. Покажем, что они являются линейно-независимыми. Пусть линейная комбинация этих решений равна нулю.

$$\lambda_{1} \underbrace{\begin{pmatrix} x_{1}^{(1)} \\ x_{2}^{(1)} \\ \vdots \\ x_{r}^{(1)} \\ x_{r+1}^{(1)} \\ x_{r+2}^{(1)} \\ \vdots \\ x_{n}^{(1)} \end{pmatrix}}_{X^{(1)}} + \lambda_{2} \underbrace{\begin{pmatrix} x_{1}^{(2)} \\ x_{2}^{(2)} \\ \vdots \\ x_{r}^{(2)} \\ x_{r+1}^{(2)} \\ x_{r+1}^{(2)} \\ \vdots \\ x_{n}^{(2)} \end{pmatrix}}_{X^{(2)}} + \dots + \lambda_{k} \underbrace{\begin{pmatrix} x_{1}^{(k)} \\ x_{2}^{(k)} \\ \vdots \\ x_{r}^{(k)} \\ x_{r+1}^{(k)} \\ x_{r+2}^{(k)} \\ \vdots \\ x_{n}^{(k)} \end{pmatrix}}_{Q} = \underbrace{\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}}_{Q}$$

$$r+1: \quad 1 \cdot \lambda_1 + 0 \cdot \lambda_2 + \ldots + 0 \cdot \lambda_k = 0 \implies \lambda_1 = 0$$

$$r+2: \quad 0 \cdot \lambda_1 + 1 \cdot \lambda_2 + \ldots + 0 \cdot \lambda_k = 0 \implies \lambda_2 = 0$$

$$n: \quad 0 \cdot \lambda_1 + 0 \cdot \lambda_2 + \ldots + 1 \cdot \lambda_k = 0 \implies \lambda_k = 0$$

В результате получили тривиальную, равную нулю, линейную комбинацию решений однородной СЛАУ.

Тогда по определению эти решения являются линейно-независимыми.

Тогда по определению они образуют фундаментальную систему решений СЛАУ.

Определение 7. Если в каждом столбце фундаментальной системе решений все свободные переменные равны нулю, кроме одного, равного единице, то такая ФСР называется **нормальной**.

Теорема 4 (О структуре общего решения однородной СЛАУ). Пусть $X^{(1)}, X^{(2)}, \dots, X^{(k)}$ — это некоторая ФСР однородной СЛАУ $A \cdot X = \Theta$.

Тогда любое решение однородной СЛАУ:

$$X_{\text{O,Hop.}} = c_1 X^{(1)} + c_2 X^{(2)} + \ldots + c_k X^{(k)}$$
 $c_i = const, \ i = 1, \ldots, k$

Доказательство.

Пусть СЛАУ:

Пусть
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 — решение (1) и матрица A имеет ранг r (Rg $A = r$).

Тогда, если X является решением системы (1), то он является решением первых r уравнений, соответствующих базисным строкам матрицы A.

(Пусть базисный минор состоит из первых r строк и n столбцов матрицы A, тогда столбец X является и решением уравнений с r+1 до m, которые являются линейной комбинацией первых r уравнений этой системы, и поэтому эти уравнения можно исключить.)

Так как базисный минор включается первые r столбцов матрицы A, то базисными переменными будут переменные, соответствующие этим столбцам.

Зависимые переменные: x_1, x_2, \ldots, x_r

Свободные переменные: $x_{r+1}, x_{r+2}, \dots, x_m$

После исключения из системы (1) уравнений с r+1 до m получаем следующую систему уравнений:

Преобразуем систему (2) так, чтобы в левой части остались слагаемые, содержащие только базисные переменные, а в правой – свободные.

Задавая различные значения свободных переменных, мы получаем систему (3), которая будет иметь единственное решение, так как главный определитель этой системы будет равен главному минору, который не равен нулю. ($\Delta = M \neq 0$)

Решаем систему и получаем следующее решение:

Если столбцы $X^{(1)}, X^{(2)}, \dots, X^{(k)}$ образуют ФСР, то они удовлетворяют решению (4).

$$X^{(i)} = egin{pmatrix} X_1^{(i)} \\ X_2^{(i)} \\ \vdots \\ X_r^{(i)} \\ X_{r+1}^{(i)} \\ \vdots \\ X_n^{(i)} \end{pmatrix}$$
 i — номер столбца, входящего в ФСР.

Составим матрицу, в которой первый столбец — это столбец X, являющийся решением СЛАУ:

$$B = \begin{pmatrix} x_1 & x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(k)} \\ x_2 & x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(k)} \\ \dots & \dots & \dots & \dots & \dots \\ x_r & x_r^{(1)} & x_r^{(2)} & \dots & x_r^{(k)} \\ x_{r+1} & x_{r+1}^{(1)} & x_{r+1}^{(2)} & \dots & x_{r+1}^{(k)} \\ \dots & \dots & \dots & \dots & \dots \\ x_n & x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(k)} \\ X & X^{(1)} & X^{(2)} & \dots & X^{(k)} \end{pmatrix}$$

Вычтем из элементов первой строки линейную комбинацию соответствующих элементов строк с r+1 до n с коэффициентами $\lambda_{1,r+1}, \lambda_{1,r+2}, \ldots, \lambda_{1n}$:

Получили, что элементы первой строки равны нулю.

Аналогично вычитаем из элементов второй строки соответствующие элементы строк с r+1 до n с коэффициентами $\lambda_{2,r+1}, \lambda_{2,r+2}, \ldots, \lambda_{2n}$.

Используя (5) получаем, что все элементы второй строки тоже равны нулю. Далее продолжаем вычитать из элементов r-ой строки соответствующие элементы (r+1)-ой строки.

В результате получаем, что в преобразованной матрице первые r строк будут нулевыми.

$$B \sim \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \\ x_{r+1} & x_{r+1}^{(1)} & x_{r+1}^{(2)} & \dots & x_{r+1}^{(k)} \\ \dots & \dots & \dots & \dots \\ x_n & x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(k)} \\ X & X^{(1)} & X^{(2)} & \dots & X^{(k)} \end{pmatrix}$$

Поскольку элементарные преобразования не меняют ранг матрицы, то получаем, что $\operatorname{Rg} B = k$, где k = n - r. По условию столбцы $X^{(1)}, X^{(2)}, \ldots, X^{(k)}$ образуют ФСР, следовательно, являются линейно независимыми. Значит, первый столбец матрицы B можно представить в виде линейной комбинации столбцов $X^{(1)}, X^{(2)}, \ldots, X^{(k)}$. Получили:

$$X = c_1 X^{(1)} + c_2 X^{(2)} + \ldots + c_k X^{(k)}$$

8.6 Неоднородные СЛАУ

Теорема 5 (О связи решений неоднородной и соответствующей однородной СЛАУ). Пусть $X^{(0)}$ – это некоторое решение неоднородной СЛАУ $A \cdot X = B$. Произвольный столбец X является решением СЛАУ $A \cdot X = B$ тогда и только тогда, когда его можно представить в виде:

$$X = X^{(0)} + Y$$
, где Y – решение соответсвующей однородной СЛАУ $A \cdot Y = \Theta$

Доказательство (Необходимость).

Пусть X – решение СЛАУ $A \cdot X = B$. Обозначим $Y = X - X^{(0)}$.

Найдём произведение:

$$A\cdot Y=A(X-X^{(0)})=\underbrace{A\cdot X}_B-\underbrace{A\cdot X^{(0)}}_B=\Theta\ \Rightarrow\ Y-\ \ \$$
решение соответсвующей однородной СЛАУ $A\cdot Y=\Theta$

Доказательство (Достаточность).

Пусть X можно представить в виде $X = X^{(0)} + Y$, где Y — решение соответствующей однородной СЛАУ $A \cdot Y = \Theta$. Тогда найдём произведение:

$$A\cdot X=A(X^{(0)}+Y)=\underbrace{A\cdot X^{(0)}}_B+\underbrace{A\cdot Y}_\Theta=B+\Theta=B\Rightarrow\ X-$$
 решение неоднородной СЛАУ $A\cdot X=B$

Теорема 6 (О структуре общего решения неоднородной CЛАУ).

Пусть $X^{(0)}$ – частное решение неоднородной СЛАУ $A \cdot X = B$.

Пусть $X^{(1)}, X^{(2)}, \dots, X^{(k)}$ — некоторая ФСР, соответствующая однородной СЛАУ $A \cdot X = \Theta$. Тогда общее решение неоднородной СЛАУ будет иметь вид:

$$X_{\text{неод.}} = X^{(0)} + c_1 X^{(1)} + c_2 X^{(2)} + \ldots + c_k X^{(k)}$$
 $c_i \in \mathbb{R}, \ i = 1, \ldots, k$

доказательство.
$$X^{(i)}, \ i=1,\ldots,k \qquad A\cdot X^{(i)}=\Theta$$

$$A \cdot X_{\text{неод.}} = A \cdot \left(X^{(0)} + c_1 X^{(1)} + c_2 X^{(2)} + \ldots + c_k X^{(k)} \right) =$$

$$= \underbrace{A \cdot X^{(0)}}_{B} + c_1 \cdot \underbrace{A X^{(1)}}_{\Theta} + c_2 \cdot \underbrace{A X^{(2)}}_{\Theta} + \ldots + c_k \cdot \underbrace{A X^{(k)}}_{\Theta} =$$

$$= B + c_1 \Theta + c_2 \Theta + \ldots + c_k \Theta = B$$

Пример. Найти ФСР однородной СЛАУ:

$$\begin{cases} 2x_1 - x_2 + 2x_3 - x_4 = 0 \\ -x_1 + x_2 - x_3 + x_4 = 0 \\ 3x_1 - 2x_2 + 3x_3 - 2x_4 = 0 \end{cases}$$

$$A = \begin{pmatrix} 2 & -1 & 2 & -1 \\ -1 & 1 & -1 & 1 \\ 3 & -2 & 3 & -2 \end{pmatrix} \sim \begin{pmatrix} 2 & -1 & 2 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \operatorname{Rg} A = 2$$

Базисные переменные: x_1, x_2

Свободные переменные: x_3, x_4

$$\begin{cases} 2x_1 - x_2 + 2x_3 - x_4 = 0 \\ -x_1 + x_2 - x_3 + x_4 = 0 \end{cases} \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 2 & 1 & 2 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

Пусть
$$x_3 = t, t \in \mathbb{R}$$
 $x_2 = -q$ $x_4 = q, q \in \mathbb{R}$ $x_1 = -\frac{1}{2}q - t + \frac{1}{2}q = -t$

$$X_{\text{одн.}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -t \\ -q \\ t \\ q \end{pmatrix} = \begin{pmatrix} -t \\ 0 \\ t \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -q \\ 0 \\ q \end{pmatrix} = t \underbrace{\begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}}_{X^{(1)}} + q \underbrace{\begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}}_{X^{(2)}}$$

$$\Phi \text{CP}: X^{(1)} = \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}, X^{(2)} = \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}$$

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ 3x_1 + 7x_2 + 2x_3 = -2 \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ 3x_1 + 7x_2 + 2x_3 = -2 \end{cases}$$

$$A|B = \begin{pmatrix} 3 & 2 & 1 & 0 \\ 3 & 7 & 2 & -2 \end{pmatrix} \sim \begin{pmatrix} x_1 & x_2 & x_3 \\ 3 & 2 & 1 & 0 \\ 0 & 5 & 1 & -2 \end{pmatrix} \qquad \operatorname{Rg} A|B = 2$$

Базисные переменные: x_1, x_2 Свободные переменные: x_3

$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0 \\ + 5x_2 + x_3 = -2 \end{cases}$$
 Обозначим:
$$x_3 = t$$

$$x_2 = -\frac{1}{5}t - \frac{2}{5}$$

$$x_1 = -\frac{1}{5}t + \frac{4}{15}$$

$$X_{\text{неод.}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{5}t + \frac{4}{15} \\ -\frac{1}{5}t - \frac{2}{5} \\ t \end{pmatrix} = \begin{pmatrix} \frac{4}{15} \\ -\frac{2}{5} \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{1}{5} \\ -\frac{1}{5} \\ 1 \end{pmatrix}$$

$$X_{\text{неод.}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{5}t + \frac{4}{15} \\ -\frac{1}{5}t - \frac{2}{5} \\ t \end{pmatrix} = \begin{pmatrix} \frac{4}{15} \\ -\frac{2}{5} \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{1}{5} \\ -\frac{1}{5} \\ 1 \end{pmatrix}$$

$$X_{\text{неод.}} = X^{(0)} + X_{\text{одн.}}$$