Linear Regression Task 6 Hansel Aditia Hartono – 2602067874 Ignatius Kennard - 260206719

			. •			
1).						
Linear Re	gression					
x	y	хy	χ^2	f(x)	y - f(x)	[y - f(x)]^2
1	2.7	2.7	1	2.7321	-0.0321	0.0010
2	3.5	7	4	3.4929	0.0071	0.0001
3	4.3	12.9	9	4.2536	0.0464	0.0022
4	5	20	16	5.0143	-0.0143	0.0002
5	5.8	29	25	5.7750	0.0250	0.0006
6	6.5	39	36	6.535714286	-0.036	0.00127551
7	7.3	51.1	49	7.296428571	0.0036	1.27551E-05
28	35.1	161.7	140	35.1000	0.0000	0.0054
x bar=	4		Slope	0.760714286		
y bar=	5.014286		Y-intercept	1.971428571		
b=	0.760714		y=a+bx	1.9714 + 0.7607x		
a=	1.9714					
SD=	0.032733					

Trying out python (this is not used for answer, just reference)

```
import numpy as np
  from scipy.interpolate import CubicSpline
 x = np.array([1, 2, 3, 4, 5])
 y = np.array([1, 3, 5, 8, 10])
  cs = CubicSpline(x, y)
  a = cs.c
  b = (cs(x[1:]) - cs(x[:-1])) / (x[1:] - x[:-1])
  c = y[:-1]
  c = c.reshape(-1, 1)
  for i in range(len(c)):
         print("f(x) = {}(x - {})^3 + {}(x - {})^2 + {}(x - {}) + {}".format(
                 a[i], x[i], b[i], x[i], c[i], x[i], c[i]))
  f_3_5 = cs(3.5)
 print ("Cubic spline function value at x = 3.5:", f_3_5)
f(x) = \begin{bmatrix} 0.29166667 & 0.29166667 & -0.45833333 & -0.45833333 \end{bmatrix}(x - 1)^3 + 2.0(x - 1)^2 + \begin{bmatrix} 1 \end{bmatrix}(x - 1) + \begin{bmatrix} 1 \end{bmatrix}
f(x) = \begin{bmatrix} -8.75000000e - 01 & -2.22044605e - 16 & 8.75000000e - 01 & -5.00000000e - 01 \end{bmatrix}(x - 2)^3 + 2.0(x - 2)^2 + \begin{bmatrix} 3 \end{bmatrix}(x - 2) + \begin{bmatrix} 3 \end{bmatrix}
f(x) = \begin{bmatrix} 2.58333333 & 1.70833333 & 2.58333333 & 2.95833333 \end{bmatrix}(x - 3)^3 + 3.0(x - 3)^2 + \begin{bmatrix} 5 \end{bmatrix}(x - 3) + \begin{bmatrix} 5 \end{bmatrix}
f(x) = [1. 3. 5. 8.](x - 4)^3 + 2.0(x - 4)^2 + [8](x - 4) + [8]
Cubic spline function value at x = 3.5: 6.453125
```

\	
101234	
2. (a·) x 1 2 3 4 5	
	K ₁ = 0
y ₀	
h. 1 n=4	
<u> </u>	
1 = 1 -> 16 + 4k1+162 = 6(4) - 24,+42	-> K2 + 9K3 =-6
4k, +k2 - 6 (1-2(3)+5)	K1+4K2+ K3 2 6_
A + K 6(0)	K2+9K3 =-6
4k, + k2 · 0 //	4K, + 6K2+4Ks = 29_
	1k, + 15 k2 = 30
1=2 -7 K, +4k2+K3 = 6(4, -242+43)	
K, + 9k2 + K5 : 6 (3-2(5)+8)	9K, +15K2 = 36
K1 + 9k2 + K3 . 6(1)	9K1 +K2 = 0
k, + 4k2+k3 . 6	4k2 =30
	K2 = 30/14
i= 3 -> K2+4k3+K4 . 6(42-242+44)	= 15/4 //
K2+ 9K3 , 6 (5-2(8)+10)	
K24 1/k3 = 6(-1)	K2+9K32-6
K2+4k3: -6	15/7 +4k3 = -6
	171

9k, +k 2 2 0 2 =30 9k, 2 . 17/7 = 30/14 K1 = 15/28// = 15/4 // 11632-6 9kz = -6

9K3:-6-15/A K32 -57/28 //

1:3

$$f(3) \ge \frac{1}{6h} (x_3 - x)^3 k_2 + \frac{1}{6h} (x - x_2)^3 k_3 + \frac{1}{h} (x_3 - x) (y_1 - \frac{h^2}{6} \times k_2) + \frac{1}{h} (x_1 - x_2) (y_3 - \frac{h^2}{6} \times k_3)$$

$$f(3): \frac{C}{1} (4-5)_3 \times \frac{1}{12} + \frac{C}{12} (5-3)_3 \times \frac{18}{12} + 1(4-5) \times (2-\frac{C}{12}) + 1(5-3) (8-\frac{C}{12}) \times \frac{5}{12}$$

$$\{(3): \frac{5}{14}(4-x)^3 - \frac{19}{56}(x-3)^3 + (4-x)^{\frac{65}{14}} + (x-s)^{\frac{467}{56}}\}$$

$$f(3) = \frac{5}{14} (4-x)^3 - \frac{19}{56} (x-3)^3 + \frac{65}{14} (4-x) + \frac{667}{56} (x-3) //$$