Problem Set 1

1. (10) Consider the following sequence of metabolic reactions. The value for ΔG and ΔG° for each reaction (in kcal/mol) is given above and below the arrows, respectively, as shown:

Answer the following questions. Provide an intuitive explanation for each.

- **a)** Which step or steps in this metabolic sequence are candidate points for regulatory control?
- **b)** What is the K_{eq} for the reaction A \Rightarrow B?
- c) What is the mass-action ratio* for A $\ \leftrightarrows$ B in cells during steady-state?
- d) What is the mass-action ratio for B

 □ C in cells during steady-state?
- 2. (10 pts) The enzyme triose phosphate isomerase catalyzes the following reaction:

The ΔG° for this reaction is -1.83 kcal/mol. Are the following statements True or False? Give an explanation in each case.

- (a) The reaction will necessarily proceed from left to right, spontaneously.
- (b) The rate of the reaction in the forward direction is higher than that in the reverse direction at equilibrium.
- (c) At equilibrium the concentration of dihydroxyacetone-P is greater than that of glyceraldehyde-3-P.
- (d) The data given are sufficient to calculate the equilibrium constant of the reaction.
- (e) Since the ΔG° for this reaction is not large, the reaction is expected to proceed slowly
- 3. In the following reaction: A \Rightarrow B, $\Delta G = -7.0 \text{ kcal/mol}$, and $\Delta G^{\circ} = +1.4 \text{ kcal/mol}$.
 - a) What is the ratio of [B]/[A]:
 - 1) at equilibrium? (2)
 - 2) during steady-state flux in vivo? (2)
 - b) If the reaction in vivo were allowed to come to equilibrium, would there be net formation of A, or B, compared to the initial conditions? Explain intuitively (2).
- **4.** Explain in terms of free energy why the reactions catalyzed by phosphofructokinase, pyruvate dehydrogenase, acetyl-CoA carboxylase, and others are suitable points for potent metabolic control (you may need to look up the values for ΔG and ΔG° for these reactions in Lehninger).
- **5.** (10 pts) Indicate whether the following statements are <u>True or False</u>, and for each, briefly explain your answer.
- a) If the change in free energy for a reaction is zero, then:

___ The changes in both entropy and enthalpy must also each be 0.

___ The equilibrium constant is 1.

____ The reaction is displaced away from equilibrium.

b) A reaction proceeds spontaneously with the liberation of heat, thus:

The reaction, by definition, is exclusively enthalpy driven.

c) A reaction proceeds spontaneously with the absorption of heat, thus:

___ The reaction must be entropy driven.

Problem Set 1 MCDB 108B

- **6.** (5 pts) The hydrolysis of 2-phosphoglycerate to glycerate and phosphate has a ΔG^0 = -4.1 kcal/mol. Under steady-state conditions in cells, the concentrations of reactants and products are: 2-phosphoglycerate= 10⁻⁵ M; glycerate= 10⁻¹ M; phosphate= 10⁻¹ M. Show how you arrive at your answers to the following questions:
 - a) To the nearest power of 10, what is the value for K_{eq} for this reaction?
 - b) What is the approximate change in free energy for this reaction in living cells?
 - c) Upon cell death, would there be net formation of glycerate or 2-phosphorglycerate?
- 7. (10 pts) For the following hypothetical metabolic pathway:

	ΔG^0	<u>∆G</u>
$A \leftrightarrow B$	-0.4	-8
$B \leftrightarrow C$	0	-0.6
$C \leftrightarrow D$	-1.4	-5.6
$D \leftrightarrow E$	5.7	-0.3
$E \leftrightarrow F$	-7.8	0.6
$F \leftrightarrow G$	1.4	-0.4
$G \leftrightarrow H$	-4.5	0
$H \leftrightarrow I$	0.2	0.2
$I \leftrightarrow J$	0.4	-1.5
$J \leftrightarrow K$	-7.5	-4

Answer the following questions and explain your answers:

- a) Indicate the steps that are rate limiting.
- b) Indicate all steps that are candidate points for metabolic control.
- c) Indicate the steps in which the MAR=1 during steady-state flux.
- d) Indicate all steps that are essentially at equilibrium during steady-state flux.
- e) Which reaction(s) has an equilibrium constant equal to 0.1?
- f) What is the MAR of C

 □ D during steady-state flux?
- 8) (4) Glycogen phosphorylase catalyzes the reaction:

$$glycogen_n + PO_4 \implies glucose-1-P + glycogen_{n-1}$$

The equilibrium constant for this reaction is 0.088, meaning that at equilibrium the reactants are significantly favored. Estimate the approximate corresponding ΔG° value for this reaaction. Under physiological conditions, how would it be possible for this reaction to exhibit a ΔG value < 0 such that glycogen can be broken down to G1P spontaneously. Explain.

- 9) Coupled reactions:
- a) For the reaction: phosphoenolpyruvate + ADP + H⁺ \rightarrow pyruvate + ATP, ΔG° = -7.5 kcal/mol. What is the value for ΔG° for the *hydrolysis* of phosphoenolpyruvate?
- b) In cells, glucose-6-P can be formed from glucose-1-P or, alternatively, from fructose-6-P:

 $\Delta G^{\circ} = -1.7 \text{ kcal/mol}$

 $\Delta G^{\circ} = 0.4 \text{ kcal/mol}$

What is the ratio of fructose-6-P to glucose-1-P at equilibrium?

10) Consider the following disaccharide (which does not necessarily occur naturally):

- a) (4) Show the chemical reaction mechanism that resulted in this cyclic compound as generated from the corresponding straight chain forms of the reactants.
- b) (4) Provide the name of this disaccharide indicating the correct stereoisomer and the correct linkage, by filling in the blanks:

- pyranosyl –	() -	-furanoside
	\	/	

c) (1) Would this disaccharide be detectable in the blood by Tollen's reagent?