

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 039 019 ⁽¹³⁾ C1

(51) Int. Cl.⁶ C 03 C 13/02

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 5040473/33, 29.04.1992

(46) Date of publication: 09.07.1995

(71) Applicant:

Nauchno-issledovatel'skaja laboratorija bazal'tovykh volokon Instituta problem materialovedenija AN Ukrainy (UA)

(72) Inventor: Trefilov Viktor Ivanovich[UA], Sergeev Vladimir Petrovich[UA], Makhova Marija Fedorovna[UA], Dzhigiris Dmitrij Danilovich[UA], Mishchenko Evgenij Semenovich[UA], Chuvashov Jurij Nikolaevich[UA], Bocharova Irina Nikolaevna[UA], Gorbachev Grigorij Fedorovich[UA]

တ

တ

3

(73) Proprietor:

Nauchno-issledovateľskaja laboratorija bazaľtovykh volokon Instituta problem materialovedenija AN Ukrainy (UA)

(54) GLASS FOR FIBER GLASS

(57) Abstract:

FIELD: glass industry. SUBSTANCE: glass has, wt.-% silicon oxide (SiO₂) 47.5-57.8; aluminium oxide (Al₂O₃) 17.1-19; titanium oxide (TiO₂) 1.2-2; ferric oxide (Fe₂O₃) 3.8-8.5; ferrous oxide (FeO) 3.4-7.0; manganese oxide (MnO) 0.11-0.19; calcium oxide (CaO) 6.5-10.8; magnesium oxide (MgO) 2.3-7.5; potassium oxide (K₂O) 0.8-2.5; sodium

oxide (Na₂O) 2.2-4.6; sulfur oxide (SO₂) 0.01-0.20; phosphorus pentoxide (P₂O₅) 1.1-2.0; scandium oxide (Sc₂O₃) 0.03-1.2; zinc oxide (ZnO) 0.05-1.0. Ratio is Al $_2$ O₃/(Ca+MgO)<2,0. Stability in 2N HCl (98 C, 3 h) is 98-98.9% in Ca(OH) $_2$ is 991.-99.8% Glass is used production of unbroken and rough fibers. EFFECT: enhanced quality of glass. 2 cl, 4 tbl

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 039 019 ⁽¹³⁾ C1

(51) MOK⁶ C 03 C 13/02

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 5040473/33, 29.04.1992
- (46) Дата публикации: 09.07.1995
- (56) Ссылки: Авторское свидетельство СССР N 525634, кл. С 03С 13/00, 1975. Авторское свидетельство СССР N 1261923, кл. С 03С 13/06, 1986.
- (71) Заявитель: Научно-исследовательская лаборатория базальтовых волокон Института проблем материаловедения АН Украины (UA)
- (72) Изобретатель: Трефилов Виктор Иванович[UA], Сергеев Владимир Петрович[UA], Махова Мария Федоровна[UA], Джигирис Дмитрий Данилович[UA], Мищенко Евгений Семенович[UA], Чувашов Юрий Николаевич[UA], Бочарова Ирина Николаевна[UA], Горбачев Григорий Федорович[UA]

တ

တ

3

(73) Патентообладатель:
Научно-исследовательская лаборатория
базальтовых волокон Института проблем
материаловедения АН Украины (UA)

(54) СТЕКЛО ДЛЯ СТЕКЛОВОЛОКНА

(57) Реферат:

Использование: для производства непрерывных и грубых волокон. Сущность изобретения: стекло для стекловолокна содержит, в мас. оксид кремния 47,5 57,8 БФ SiO_2 , оксид алюминия 17,1 19 БФ Al_2O_3 , оксид титана 1,2 2 БФ TiO_2 , оксид железа 3,8 8,5 БФ Fe_2O_3 , оксид железа 3,4 7,0 БФ FeO, оксид марганца 0,11 0,19 БФ MnO, оксид

кальция 6,5 10,8 БФ СаО, оксид магния 2,3 7,5 БФ MgO, оксид калия 0,8 2,5 БФ K $_2$ O, оксид натрия 2,2 4,6 БФ Na $_2$ O, оксид серы 0,01 0,20 БФ SO $_3$, оксид фосфора 1,1 2,0 БФ P $_2$ O $_5$, оксид скандия 0,03 1,2 БФ Sc $_2$ O $_3$, оксид цинка 0,05 1,0 БФ ZnO. Соотношение AI $_2$ O $_3$ /(Ca+MgO)<2,0. Устойчивость в 2N HCI (98°C, 3 ч) 98 98,9% в Ca(OH) $_2$ 99,1 99,8% 1 3.п. ф-лы, 4 табл.

Изобретение относится к составам стекол, предназначенных для производства непрерывных и грубых волокон, которые могут быть использованы для получения различных тканей и нетканых материалов, фильтров, для армирования цементных и гипсовых вяжущих, а также полимеров и других целей.

Цель изобретения снижение кристаллизационной способности, удлинение температурного интервала выработки, обеспечение надежности процесса и повышение устойчивости в кислых средах.

В известных составах стекол, применяемых для стекловолокна, содержится SiO_2 , TiO_2 , Al_2O_3 , Fe_2O_3 , FeO, CaO, MgO, MnO, K_2O , Na_2O , P_2O_5 , La_2O_3 . Для составления шихты в качестве исходного материала используют андезит, корректирующийся кварцевым песком, мелом, доломитом, содой и трехокисью лантана, а в ряде случаев пиролюзитом [1]

Известен состав стекла, содержащий SiO $_2$, Al $_2$ O $_3$, TiO $_2$, Fe $_2$ O $_3$, FeO, MnO, CaO, MgO, K $_2$ O, Na $_2$ O, SO $_3$ [2]

Исходным сырьем для получения минерального волокна этого состава служит порода типа ортоамфиболитов и амфиболитов как однокомпонентная шихта. Однако такое стекло обладает высокой кристаллизационной способностью, низкой кислотоустойчивостью и из-за узкого интервала выработки не может быть использовано в производстве непрерывных и грубых волокон.

Для устранения указанных недостатков и достижения цели предложены составы, конкретные из которых приведены в табл.1.

Технологические свойства расплавов и физико-химические свойства волокон приведены в табл. 2 и 3 соответственно. Как видно из табл.1, предлагаемое стекло отличается от известного более высоким содержанием оксидов алюминия и трехвалентного железа, что приводит к увеличению кислотоустойчивости. Этот эффект усиливают оксиды фосфора и скандия (как элементы III и V групп таблицы Д.И.Менделеева).

Известно, что оксиды железа, кальция и значительно повышают кристаллизационную способность расплава, что отрицательно отражается на процессе волокнообразования (особенно непрерывных волокон). За счет этого интервал выработки волокон сужается, возрастает обрывность и процесс получения волокон неустойчив. Уменьшение указанных оксидов обеспечивает снижение температуры верхнего предела кристаллизации (Тв.п.к.), удлинение температурного интервала выработки и надежность процесса. Введение оксида цинка приводит к образованию с Al₂O₃ твердого раствора, устойчивого к кислотам. Важным условием является соблюдение соотношения A1 203 которое должно быть более 1,2,

CaO+MgO

刀

0

ယ

ဖ

ဖ

но менее 2,0.

Стекло указанного состава может быть получено как из обычных, используемых в стекловарении исходных компонентов, так и на основе различных природных материалов,

например андезитов, андезитобазальтов, базальтов, диабазов, габбро.

Процесс варки стекла предлагаемого состава осуществляли в печи при температуре 1450°С до получения гомогенного расплава. Формирование волокон происходило устойчиво.

Как следует из табл.3 в сравнении с прототипом, Тв.п.к. предлагаемого состава стекла на 50-80°С ниже, интервал выработки волокна расширен в 6-9 раз, а кислотоустойчивость выше в 2,2-5,3 раза.

Из предлагаемого состава стекла получены также и грубые волокна. Результаты испытаний их физико-химических свойств представлены в табл.4.

Из табл.4 видно, что грубые волокна из стекла предлагаемого состава обладают высокой стойкостью не только к кислотам, но и к насыщенному раствору Ca(OH)₂, что предопределяет их использование при изготовлении фибробетона.

Ассортимент получаемых волокон (непрерывных и грубых), высокая химическая устойчивость в агрессивных средах дает возможность использовать ИХ производства тканых и нетканых, фильтровальных материалов, армирующих наполнителей композитов, армирования бетонов на основе минеральных вяжущих и др. стойких при эксплуатации в агрессивных средах в химической и других отраслях промышленности, в качестве фильтров грубой, тонкой и сверхтонкой очистки агрессивных сред.

Долговечность тканей, изготовленных из волокна предлагаемого состава превышает долговечность стеклянных тканей примерно в 1,5 раза. Из стекла предлагаемого состава наработаны и испытаны партии непрерывного и грубого волокна в количестве 800 и 1000 кг соответственно.

Физико-химические исследования полученного волокна подтвердили его высокую химическую устойчивость в агрессивных средах.

Формула изобретения:

1. СТЕКЛО ДЛЯ СТЕКЛОВОЛОКНА, включающее SiO_2 , Al_2O_3 , TiO_2 , Fe_2O_3 , FeO_3 , MnO, CaO, MgO, K_2O , Na $_2O$ и SO_3 , отличающееся тем, что оно дополнительно содержит P_2O_5 , ZnO и SC_2O_3 при следующем соотношении компонентов, мас.

SiO₂ 47,5 57,8 Al₂O₃ 17,1 19,0 50 TiO₂ 1,2 2,0 Fe₂O₃ 3,8-8,5 FeO 3.4 7.0 MnO 0,11 0,19 CaO 6,5 10,8 MgO 2,3 7,5 K₂O 0,8 2,5 Na₂O 2,2 4,6 SO₃ 0,01 0,20 P₂O₅ 1,1 2,0 SC₂O₃ 0,03 1,2 60 ZnO 0,05 1,0

2. Стекло по п.1, отличающееся тем, что отношение

$$1,2 < \frac{Al_2^0}{CaO + MgO} < 2,0.$$

20

Компоненты	Состав волокна, мас. %					
	1	2	3	4	5	
SiO ₂	56,26	52,40	49,00	57,8	47.5	
Al ₂ O ₃	17,20	17,80	18,28	19,0	17,1	
TiO ₂	1,20	1,26	1,45	1,2	2,0	
Fe ₂ O ₃	4,41	5,54	5,80	3,8	7,4	
FeO	3,50	3,98	4,20	3,4	5,2	
MnO	0,12	0,13	0,18	0,11	0,15	
CaO	6,90	7,30	8,18	7,2	6,75	
MgO	4,00	5,00	5,40	2,3	7,5	
K ₂ O	2,31	1,56	0,90	0,8	1,2	
Na ₂ O	2,91	2,28	2,31	2,2	3,0	
SO ₃	0,01	0,05	0,10	0,05	0,1	
P ₂ O ₅	1,10	1,45	2,00	1,1	1,4	
Sc ₂ O ₃	0,03	0,75	1,20	0,04	0,5	
ZnO	0,05	0,50	1,00	1,0	0,2	
Al ₂ O ₃	1,58	1,45	1,35	2,0	1,2	
CaO + MgO	.,	.,			- ,_	
Cao i Mgo						

Таблица 2

Состав, №	Вязкость, Па ⁻ с при ^о С					
	1450	1400	1350	1300	1250	
1	510	940	1900	2900	1800	
2	155	220	500	1000	200	
3	76	135	246	565	1150	
4	710	1260	2250	4000	8600	
5	70	124	220	395	1250	

R ∪

20390

9

C 1

Таблица 3

Технологические свойст- ва расплавов и волокон	Состав волокна						
	1	2	3	4	5		
Температура верхнего предела кристаллизации,	1220	1230	1250	1210	1250		
Тв.п.к., °С Температурный интервал выработки, °С	1320-1380	1300-1370	1280-1370	1340-1400	1290-1370		
Средний диаметр волок- на, мкм	9,0	8,9	9,3	-	-		
Предел прочности при растяжении, МПа	2200	2380	2240	-	-		
Потери массы в 2 HCl (90°C,3 ч), мг/5000 см ²	324,1	388,5	789,4	-	-		

	Составы стекол	-
1	2	3
160	150	155
280	300	305
98.9	98.0	97,1
99,1	99,6	99,8
	280 98,9	1 2 160 150 280 300 98,9 98,0

-5-

R ∪

2039019

C 1