$$a_{i}(t) = \underbrace{\xi} \delta(t - t, t)$$
 $k = 1$
 $k = 1$

Random Signals
White Noise Ost Sample x ~ N(0,1) at every st.
x(t)
or freq domain
@ X(w) = X(-w) = a + ib.
(2) a and b ~ N(0, 1)
Band Cinited
0 Set all X(w) = of for w>2TF
Z do E
(3) ODF -((X(w)) = x(+)
Decoders: D= (AAT) -ATX =
Filtering: 0 F(t) + G(t) = F(w).G(w)
$0 + (t) + (t) = +(\omega) \cdot (1(\omega))$
$ (t) = \begin{cases} 2i(t)di \end{cases} $
2(t) + h(t) = \(dia(t) + h(t) = (\(\frac{2}{c} dia(t) \) + h(t)

Optimal Filter
$$\lambda(t) = (a_1 o_1 + a_2 o_2) * h(t)$$

$$\lambda(t) = (a_1 o_1 + a_2 o_2) * h(t)$$

$$\lambda(t) = (a_1 - a_2) * h(t).$$

Shin = I x = Ediai * h(t) "split" temporal spatial Necode. temporally sunsitive decoders.