2023 빅데이터캠퍼스 공모전 분석결과(요약)

팀명	동그리	접수번호	미기재
제목	거주취약계층의 주7 "그린 리모델링" 우선 저	서 환경 개선을 위한 역 선정 및 활성화 제언	
	○ 전세계적으로 기후 변화로 인한 피해를 온실가스 감축을 위한 다양한 노력을 하고 일 ▶ 서울시의 평균 기온이 상승하고 폭역, 한파, 일	있다.	

○ 노후 건물 리모델링을 통해 건물의 에너지 효율을 개선한다면, 온실가스 감축을 통한 기후변화에 대한 대응 및 주거환경의 회복을 기대할 수 있다.

▶ 서울시는 기후 위기에 대한 대응으로 [기후변화전략 2050 온실가스 감축전략] 추진을 통해

- ▶ 서울의 온실가스 배출량의 70%는 건물에서 발생하는 온실가스이다.
- ▶ 서울시의 주거 건물 중 절반 이상이 30년 이상 된 노후건물이다.

온실가스 감축을 위한 노력을 하고 있다.

추진 배경 및 필요성

○ 노후건물에 방치된 저소득층, 고령층, 장애인계층 등의 거주취약계층은 노후화된 시설물로 인해 다양한 사고의 위험성에 노출되어 있다.

- ▶ 거주취약계층은 노후화된 건물로 인해 사회적/경제적/환경적 어려움에 처해 있다.
- ▶ 거주취약계층이 처한 어려움은 사회적으로는 이동 및 접근성의 제한, 경제적으로는 냉난방 비용 증가로 인한 부담, 환경적으로는 시설 파손 및 환경 질환 노출에 대한 위험성이 있다.

○ 그린 리모델링을 적용함으로써 에너지 성능 향상 및 주거 환경 개선에 따른 온실가스 감축 뿐만 아니라 주거 환경을 개선할 수 있다.

- 그리 리모델링이란, [기존 건축물의 에너지 개선 기준]을 포함한 에너지 성능 향상 및 효율 개선을 통해 녹색 건축물로 전환하는 활동을 말한다.
- 다양한 측면의 장점을 기대할 수 있으나, 현재 그린 리모델링의 사업 현황을 보았을 때, 전국뿐만 아니라 서울시도 목표치 대비 저조한 실적을 보인다는 점에서 그린 리모델링 활성화 방안에 대한 고려가 필요하다.

- ▶서울시의 인구 수 대비 민간사업 승인 건수는 타 광역시와 비교하였을 때 큰 차이를 보이며, 전국적으로도 감소하는 추세를 보인다.
- ▶ 서울시의 [저탄소 건물 전환 100만 호] 사업 실적은 39%이며, 그 중 그린 리모델링 실적은 7% 미만으로 저조한 편이다.

		주거	취약지역		거	주취약계층
	주	거 환경 특성	주	거 건물 특성	거	주인구 특성
	교통 접근성		노후 주택 비율	_	저소 독충 분포	
	버스 노선 정보	서울 열린데이터 광장	노후주택비율	KOSIS 국가통계포텔	차상위 계층	공공데이터 포텔
	철도 노선 정보	공공데이터 포텔			기초생활수급자	서울 열린데이터 광장
.입	I Marrie ala	100	공가 바울		I	
l터	복지시설 접근	8	빈집 현황 풍계	서울 열린데이터 광장	고령 인구 분포	
-	복지시설 목록	서울 열린데이터 광장			주민등록 인구	서울시 빅데이터 캠퍼스
			수리 수요 비율		거주 인구	서울시 빅데이터 캠퍼스
	녹지 비율		희망의 집 정보	서울 열린데이터 광장		
	녹지현황 통계	서울 열린데이터 광강			장애인 분포	
					장애인 등급별	서울시 빅데이터 캠퍼스
					장애인 연령별	서울시 빅데이터 캠퍼:
					장애인 유형별	서울시 빅데이터 캠퍼-

○데이터 수집 및 전처리

데이터는 서울시 빅데이터 캠퍼스에서 제공받은 데이터 파일을 포함해 각종 공공데이터를 수집하여 구성하였다.

전처리 과정에서는 각 지표별 단위를 동일화하여 해석력을 높이기 위해 Min-Max Scaling을 적용하였다.

시군구명	단위면격당 교통접근성	노후 건물비율	1인당 복지시설수	단위면격당 녹지면격	공가비율	수리수요 비율	시군구명	행정동명	거소 독충분 포	고령인구분포	장애인분포
강남구	15.114	0.281	0.0002	0.0508	0.0665	0.0004	종로구	청문효자동	0.002015	0.001272	0.000577
강동구	16.958	0.1673	0.0003	0.0246	0.0349	0.0029	종로구	사직동	0.002299	0.001079	0.001094
ŧ	10	ä	1	1	i.	1	1	14	li i	à	1
중구	25.301	0.1843	0.0003	0.0222	0.0373	0.0063	노원구	상계9동	0.013512	0.002188	0.002353
중랑구	21.784	0.1729	0.0004	0.0292	0.018	0.0054	노원구	상계10동	0.009679	0.001772	0.002026

분석과정 및 방법

각 지수별 계산 수식은 다음과 같다

단위면적당 _	_	대중교통 노선 개수	단위면적당		녹지 면적	고령인구	=	65세 이상 고령 인구 수
교통접근성 "		총 면적	녹지면적	-	총 면적	분포		총 65세 이상 고령 인구 수
노후건물		30년 이상 노후 건물 수	공가	=	공가 수	장애인		장애인 수
비율 =		총 건물 수	비율	-	총 건물 수	분포	-	총 장애인 수
1인당		복지시설 수	수리수요	_	희망의 집 수리 건물 수	저소 득층		저소득층 인구 수
복지시설 수		총 인구 수	비율	-	총 건물 수	분포	=	총 저소득층 인구 수

○ 구 단위 주거 취약 지역 선별

구별 주거 환경 특성과 주거 건물 특성에 대한 탐색적 데이터 분석(EDA)를 통해 자치구별로 각 특성의 차이가 두드러짐을 확인하였다. 계층적 군집분석 방법인 완전연결법, 와드연결법과 비계층적 군집분석 방법인 K-Means Clustering, K-Medoids Clustering을 적용하여 구별 주거 취약 지역을 선별한다.

군집 과정에서 실루엣 계수를 기반으로 최적 군집 수를 선정하여 클러스터링을 진행한 후, 각 군집별로 주거 취약 지수를 계산하여 가장 점수가 높은 집단을 거주 취약 지역으로 선정한다.

주거 취약 지수를 계산하는 수식은 다음과 같다.

주거 취약 지수 = ((1 - 주거 환경 지수) + (주거 건물 지수)) / 6 X 100

* 주거 환경 지수는 낮음수록, 주거 건물 지수는 높음수록 주거 취약 지수가 높음

군점	단위면적당 교통접근성	노후 건물비율	1인당 복지사설 수	단위면적당 녹지면적	공가비율	수리수요 비율	군장	단위면적당 교통접근성	노후 건물비율	1인당 복지시설 수	단위면격당 녹지면격	공가비율	수리수요 비율
1	0.3224	0.3365	0.2664	0.5912	0.5016	0.2118	1	0.197	0.5222	0.5382	0.1535	0.3701	0.7729
2	0.197	0.5222	0.5382	0.1535	0.3701	0.7729	2	0.0869	0.2692	0.2438	0.5976	0.6002	0.1174
3	0.7971	0.2561	0.5055	0.3621	0.2086	0.5421	3	0.737	0.3109	0.4352	0.4358	0.2652	0.4714
	[5] 7	레츠저	군집분석	아저여	겨버			[6]	게츠저	군집분석	아드여	격번	
	[5] ,	1107		550	2 4			[O]	1107		4-6		
군집	단위면격당 교통접근성	기 O 그 노후 건물비율	1인당 복지사설수	단위면적당 녹지면적	공기비율	수리수요 비율	군집	단위면적당 교통접근성	노후 건물비율	1인당 복지사설 수	단위면적당 녹지면적	공가비율	수리수요 비율
군집 1	단위면격당	上章	1인당	단위면적당		수리수요 비율 0.1174	군집 1	단위면격당	上車	1인당	단위면적당		수리수요 비율 0.4832
군권 1 2	단위면적당 교통접근성	노후 건물비율	1인당 복지사설 수	단위면격당 녹지면격	공기비율	비율	10000	단위면적당 교통접근성	노후 건물비율	1인당 복지사설 수	단위면적당 녹지면적	공가비율	11-12-1-12-2
1	단위면격당 교통접근성 0.0869	노후 건물비율 0.2692	1인당 복지사설 수 0.2438	단위면격당 녹지면격 0.5976	공가비율 0.6002	U ∰ 0.1174	1	단위면적당 교통접근성 0.7262	노후 건물비율 0.2845	1인당 복지시설 수 0.4227	단위면적당 녹지면적 0.4161	공가비율 0.2374	0.4832

=> 자치구 단위 주거 취약 지역 선정

군집화 결과를 하드 보팅하여 각 군집 기법별로 주거 취약 군집으로 선정된 구를 모두 추출하여 주거 취약 지역으로 선정하였다.

-> 강북구, 노원구, 도봉구, 종로구

선정된 구의 주거 취약 지수를 확인하였을 때 전체 평균 대비 10점 이상 높은 지역들이 선정된 것을 확인할 수 있다.

○ 동 단위 거주취약계층 분포 지역 선정

	I	상관분석	저소득층 분포	고령인구 분포	장애인 분포
		저소득층 분포	1.0000	0.5351	0.0882
		고령인구 분포	0.5351	1.0000	-0.0118
		장애인 분포	0.0882	-0.0118	1.0000

상관분석 결과 저소득층 분포와 고령인구 분포 변수 간의 높은 상관관계가 있는 것을 확인하였다. 다중공선성을 해소를 목적으로 주성분 분석(PCA)을 수행하여 지수별 가중치를 산출하고 지수를 변환하였다.

주성분 분석 결과 주성분 2개로 전체의 약 91%를 설명할 수 있어, 2개의 주성분으로 PCA score를 계산하였다. 이후 Min-Max Scaling 을 적용하여 거주취약계층 분포지수로 환산하고 거주취약계층이 다수 분포한 지역을 선정하였다.

=> 행정동 단위 거주취약계층 분포 지역 선정

각 구별로 상대적 거주취약계층이 많이 분포한 지역을 선정하여 그린 리모델링 우선 도입 지역으로 선정하였다.

-> 선정된 행정동은 강북구 번 3 동, 노원구 중계 2.3 동, 도봉구 방학 1 동, 종로구 혜화동이다.

전체 행정동의 거주취약계층 분포지수 대비 28점 이상 높은 지역들이 선정된 것을 확인할 수 있다.

○ 건물 단위 특성 기반 맞춤형 그린 리모델링 적용 방안 탐색

그린 리모델링의 다양한 유형을 각 건물의 특성을 분석하여 이를 기반으로 최적의 효율을 기대할 수 있는 그린 리모델링 유형을 제안할 수 있다.

유형은 크게 PASSIVE의 에너지 손실 최소화 방안과 ACTIVE의 에너지 생산 방안으로 나눌 수 있다. 이를 통해 궁극적으로는 제로에너지 주택화를 도모할 수 있다.

○ 분석 결론

○ 우선 선정 지역에 그린 리모델링 적용 시 온실가스 기대 감축량

각 우선 선정 지역의 온실가스 배출량을 기반으로 노후주택에 그린 리모델링을 적용하였을 때 기대할 수 있는 온실가스 감축량을 계산하였다.

우선 선정 지역 4개 동의 총 온실가스 배출량은 연간 67,120 톤이며 각 비율을 적용하였을 때 기대 감축량은 연간 27,015 톤으로 현재 온실가스 배출량 대비 약 40%를 감축하는 효과를 기대할 수 있다. 이는 소나무 식재 12,683 그루, 전력 54,030 kWh, 대형트럭 5,403 대로 환산 가치를 가진다.

○ 활용 방안

활용방안

기대효과

분석툴

참고문헌

- 지역 경제 활성화
- : 지역 내에서 노동력 확보를 통한 경제 활성화 및 일자리 창출 효과를 기대할 수 있다.
- **장기적인 관리체계 구축** : 지속적인 모니터링을 통한 관련 후속 정책을 개선하고 발전시키는 기반을 마련할 수 있다.
- **추가 분석 기회 창출** : 사례 및 유관 데이터를 기반으로 신규 분석과제를 도출하는 기회를 만들 수 있다.

○ 참고문헌

- [1] 서울특별시 기후환경정책과, 『 2050온실가스 감축전략 』 ,2023.10.20
- [2] 서울연구원 , 『 2050 서울시 탄소배출 중립 위한 정책과제 』, 2020
- [3] "공공건축물 그린리모델링, 지역의 랜드마크가 되다", 대한민국 정책브리핑 , 2020.10.13
- [4] "서울 건물 54.3%는 '노후건축물'…주거용도 절반 이상 노후화", 동아일보 , 2023.03.02
- [5] "반지하노후 주택 개선 '리모델링'이가장 현실적 대안", 전기신문, 2023.07.01
- [6] "노후 건축물 에너지효율↑·거주환경 개선…그린리모델링본격화", 그린포스트코리아, 2020.05.13.
- [7] 한국보건사회연구원 . 『취약계층 지원 및 주거복지 강화방안을 위한 연구 』,2010
- [8] 국가법령정보센터, 『녹색건축물 조성 지원법』, 2017
- [9] 국토교통부 카드뉴스, "환기·냉난방비·온실가스, 그린리모델링으로해결", 2020.09.28.
- [10] 그린리모델링창조센터, 『민간이자지원사업 사업실적』,2022
- [11] "160만건 목표 '그린 리모델링', 로드맵이 없다", 경향신문, 2023.10.15
- [12] 한국토지주택공사 토지주택연구원, 『노후주택 그린리모델링활성화 및 지속가능 전략 수립』, 2022
- **분석툴** : 파이썬, 엑셀, 주피터, folium