Flowchart of IAS Operation

ME	MORY
1.	LOAD M(X) 500 , ADD M(X) 501
2.	STOR M(X) 500, (Other Ins)
••••	
500.	. 3
501 .	. 4

PC	2
MAR	500
MBR	STOR M(X) 500, (Other Ins)
IR	STOR M(X)
IBR	(Other Ins)
AC	7

The IAS Instruction Set

Instruction Type	Opcode	Symbolic Representation	Description
Data transfer	00001010	LOAD MQ	Transfer contents of register MQ to the accumulator AC
	00001001	LOAD $MQ,M(X)$	Transfer contents of memory location X to MQ
	00100001	STOR M(X)	Transfer contents of accumulator to memory location X
	00000001	LOAD M(X)	Transfer $M(X)$ to the accumulator
	00000010	LOAD - M(X)	Transfer $-M(X)$ to the accumulator
	00000011	LOAD M(X)	Transfer absolute value of M(X) to the accumulator
	00000100	LOAD - M(X)	Transfer $- M(X) $ to the accumulator
Unconditional branch	00001101	JUMP M(X,0:19)	Take next instruction from left half of $M(X)$
	00001110	JUMP M(X,20:39)	Take next instruction from right half of $M(X)$
Conditional branch	00001111	JUMP+ M(X,0:19)	If number in the accumulator is nonnegative, take next instruction from left half of $M(X)$
	00010000	JUMP+ M(X,20:39)	If number in the accumulator is nonnegative, take next instruction from right half of $M(X)$
Arithmetic	00000101	ADD M(X)	Add M(X) to AC; put the result in AC
	00000111	ADD[M(X)]	Add $ M(X) $ to AC; put the result in AC
	00000110	SUB M(X)	Subtract M(X) from AC; put the result i
	00001000	$SUB \left M(X) \right $	Subtract $ M(X) $ from AC; put the remainder in AC
	00001011	MUL M(X)	Multiply M(X) by MQ; put most significant bits of result in AC, put least significant bits in MQ
	00001100	DIV M(X)	Divide AC by M(X); put the quotient in MQ and the remainder in AC
	00010100	LSH	Multiply accumulator by 2, i.e., shift let one bit position
	00010101	RSH	Divide accumulator by 2, i.e., shift right one position
Address modify	00010010	STOR M(X,8:19)	Replace left address field at M(X) by 12 rightmost bits of AC
	00010011	STOR M(X,28:39)	Replace right address field at M(X) by rightmost bits of AC