Assignment No.01

- Course: Deep learning for perception
- Section: DS-B
- Instructor: Dr. Qurat Ul Ain
- Submitted By: Khawaja Muhammad Owais
- i211762

Short Report

1. Network Details

- Architecture:
 - Base: MobileNetV2 (width multiplier 1.0, depthwise separable conv blocks).
 - Classifier Head: GlobalAveragePooling → Dense(256, ReLU, Dropout 0.4) → Dense(num_classes, softmax).
- Parameters: ~3.5 M trainable after fine-tuning top 20 layers (2.2 M frozen).
- Training Settings:
 - Image size: 124×124 RGB
 - $-\,$ Batch size: $32\,$
 - Optimizer: Adam (lr=1e-4 then 1e-5)Epochs: up to 20 with early stopping.

2. Dataset Splits

Data Distribution:

Data Distribution

Train: 70 %Validation: 15 %

• Test: 15 %

• All images from /content/drive/MyDrive/Dataset/images, annotations from /content/drive/MyDrive/Dataset/annotations.

3. Training Graphs

- Loss curves: Training loss decreased to ~1.54; validation loss plateaued ~1.84.
- Accuracy curves: Training accuracy ${\sim}44$ %, validation ${\sim}30$ % at best.

4. Performance Measures

• Classification

Accuracy: **0.296**Macro F1: **0.303**

• Regression (Valence/Arousal)

- RMSE: **0.425** - Corr(V): 0.061

- Corr(A): 0.042 Results Visualization:

Results Visualization

5. Performance Comparison of CNN Architectures

Model	Input Size	Train Time (approx)	Val Ac- curacy	Test Accuracy
MobileNetV2 (ours)	124×124	~1 hr 50 min	~0.30	0.296
Simple Custom CNN (baseline, earlier test)	96×96	~1 hr	~0.20	~0.18

MobileNetV2 clearly outperformed a simple CNN in both accuracy (~10 % absolute gain) and training stability, while staying within Colab's 2-hour limit.

Summary

The goal was to classify signatures with a CNN and evaluate performance. We used a **transfer learning** approach with MobileNetV2, fine-tuned the top layers, and achieved ~30 % test accuracy within the limited runtime on Colab Free GPU. Although the accuracy is modest, it beats a baseline custom CNN and demonstrates that pretrained feature extraction is beneficial even with a constrained training budget.