南京林业大学试卷(B卷) 课程_线性代数A 2020~2021 学年第<u>1</u>学期

		一、单项选择题(每小题 3 分,共 30 分) 1. 行列式有两行元素对应相等是该行列式等于 0 的(
	1.	行列式有两行元	素对应相等是该行外	列式等士 0 的() 条件.	
		(A) 充分	(B) 必要	(C) 充要	(D)既不充分也	2不必要
袙	2.					
		(A) A = E	(B) A 不可逆	(C) A 可逆,且 A	$1^{-1} = A \qquad (D) \ A$!可逆,且 $A^{-1} = A$
	3.	设 ξ_1,ξ_2 是非齐次线性方程组 $Ax=b$ 的两个不同解,则以下结论正确的是().				
	4.	$(A) \frac{1}{5} \xi_1 + \frac{4}{5} \xi_2$	是 $Ax = b$ 的解	$(B) \xi_1 - \xi_2$	Ax = b的解	
		(C) $\xi_1 + \xi_2$ 是 A	4x = 0 的解	$(D)\frac{1}{3}\xi_1 +$	$\frac{2}{3}\xi_2 \not\equiv Ax = 0 \text{ in}$	解
		设 A,B 都是 n 阶可逆矩阵,且满足 $(AB)^2 = E$,则下列等式正确的是().				
中		$(A) A = B^{-1}$	(B) AB = E	(C) BA = B	E (D) $(BA$	$A)^2 = E$
掛	5. 设 n 维向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的秩为 4 ,则向量组 $\beta_1=\alpha_1+\alpha_2,\beta_2=\alpha_2+\alpha_3$,					
	β_3	$\mathcal{G}_3 = \alpha_3 + \alpha_4$ 的秩为().				
		(A) 1	(<i>B</i>) 2	(C) 3	(D) 4	
李	6.	设 α 是 n 维非零实列向量,矩阵 $A = E + \alpha \alpha^T$, $n \ge 3$, 则().				
		(A) A 至少有 n	-1 个特征值为 1;	(B) A 只有 1 个	特征值为1;	
		(A) $A = 9$ 有 $n - 1$ 十 特征值为 1; (B) A 为有 1 十 特征值为 1; (C) A 恰有 $n - 1$ 个特征值为 1; (D) A 没有 1 个特征值为 1.				
	7.	设 $D = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$	$\begin{vmatrix} a_3 \\ b_3 \\ c_3 \end{vmatrix} = -1$,则 $D_1 =$	$\begin{vmatrix} 4a_1 & 2a_2 & 2a_3 \\ 2b_1 & b_2 & b_3 \\ -2c_1 & -c_2 & -c_3 \end{vmatrix} =$	= ().	
		(A) 4	(<i>B</i>) –4	(<i>C</i>) –2	(D) 2	
	8.	设 $A_{m \times n}$ 为实矩阵		,则下列不正确的是	是().	

(A) 若 AB = 0,则 B = 0; (B) 若 BA = 0,则 B = 0;

$$(C)$$
 $A^T A x = 0$ 有无穷多个解; (D) $A A^T x = 0$ 只有零解.

$$(D) AA^T x = 0$$
 只有零解

9. 设矩阵
$$B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
,已知矩阵 A 相似于 B ,则 $R(A-2E)+R(A-E)$ ().

- $(A) 2 \qquad (B) 3 \qquad (C) 4 \qquad (D) 5$

10. 设P为n阶正交矩阵,x是一个n维列向量,且||x||=1,则||Px||= ().

- (A) -1 (B) -2 (C) 1 (D) 2

二、计算题(每小题 10 分, 共 50 分)

1. 计算行列式
$$D = \begin{vmatrix} 1 & 2 & 3 & -2 \\ 2 & -1 & -2 & -3 \\ 3 & 2 & -1 & 2 \\ 2 & -3 & 2 & 1 \end{vmatrix}$$
 的值。

2. 设问 a,b 为何值时, 线性方程组 $\begin{cases} x_1 + x_2 + \cdots, & + \\ x_2 + 2x_3 + 2x_4 = 1, \\ -x_2 + (a-3)x_3 - 2x_4 = b, \end{cases}$ 有唯一解, 无解, 有无穷多组解?并求 $\begin{cases} x_1 + x_2 + \cdots, & + \\ -x_2 + (a-3)x_3 - 2x_4 = b, \\ 3x_1 + 2x_2 + x_3 + ax_4 = -1 \end{cases}$

在有无穷多组解时的通解.

3. 已知
$$A = \begin{pmatrix} 4 & 3 & 0 \\ 5 & 10 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \\ 2 & 5 & 8 \end{pmatrix}$, 解矩阵方程 $3B + 2X = XA$.

4. 求 $\alpha_1 = (2,1,3,-1)^T$, $\alpha_2 = (3,-1,2,0)^T$, $\alpha_3 = (1,3,4,-2)^T$, $\alpha_4 = (4,-3,1,1)^T$ 的一个最大线性无 关组. 并将其余的向量用该最大线性无关组线性表出。

5. 求矩阵
$$A = \begin{pmatrix} 1 & -2 & -4 \\ -2 & 4 & -2 \\ -4 & -2 & 1 \end{pmatrix}$$
 的特征值与全部特征向量.

三、(本题 10 分) 求一个正交线性变换,将二次型 $f=x_1^2+4x_2^2+4x_3^2-4x_1x_2+4x_1x_3-8x_2x_3$ 化成 标准形。

四、(每小题5分,共10分)

- 1. 设 3 阶方阵 A 的伴随矩阵为 A^* , 且 $|A| = \frac{1}{2}$, 求 $|(3A)^{-1} 2A^*|$.
- 2. 设矩阵 $A = (a_1, a_2, a_3, a_4)$,其中 a_2, a_3, a_4 线性无关, $a_1 = 2a_2 a_3$. 向量 $b = a_1 + a_2 + a_3 + a_4$,求方 程 Ax = b 的通解.