

5、画出电路输出端B的波形 (触发器起始状态为0)

6、时序电路如图所示,起始状态为001,分析该电路:

- 1) 列出时钟方程、激励方程和状态方程
- 2) 列出状态转换表和状态转换图
- 3) 描述电路的功能
- 4) 判断电路能否自启动

解: (1) 这是一个上升沿触发的同步时序逻辑电路,

时钟方程:
$$CP_0 = CP_1 = CP_2 = CP$$

激励方程:
$$D_0 = Q_2^n, D_1 = Q_0^n, D_2 = Q_1^n$$

状态方程:
$$Q_0^{n+1} = D_0 = Q_2^n$$

$$Q_1^{n+1} = D_1 = Q_0^n$$

$$Q_2^{n+1} = D_2 = Q_1^n$$

(2) 列状态转换表

СР	Q ₂ r	Q_1^n	Q _o n	$Q_2^{n+1} Q_1^{n+1} Q_0^{n+1}$			
1	0	0	0	0	0	0	
1	0	0	1	0	1	0	
1	0	1	0	1	0	0	
1	0	1	1	1	1	0	
\uparrow	1	0	0	0	0	1	
\uparrow	1	0	1	0	1	1	
\uparrow	1	1	0	1	0	1	
1	1	1	1	1	1	1	

画状态转换图

$$001 \to 010 \to 100 \quad 011 \to 110 \to 101 \\ 000 \quad 111 \to 110 \to 101$$

- (3) 选择001作为起始状态,电路实现的是循环左移1位的环形计数器功能。
- (4)有多个循环,因此,电路不能自启动。
- 7、设计一个按自然态序进行计数的同步十二进制加法计数器
- 1) 画出状态转换图
- 2) 求出状态方程、激励方程和时钟方程
- 3) 画出时序逻辑电路图。

卡诺图化简:

状态方程.

$$\begin{bmatrix} Q_3^{n+1} = Q_3^n \overline{Q_1^n} + Q_2^n Q_1^n Q_0^n + Q_3^n \overline{Q_0^n} \\ Q_2^{n+1} = Q_2^n \overline{Q_1^n} + Q_2^n \overline{Q_0^n} + \overline{Q_3^n} \overline{Q_2^n} Q_1^n Q_0^n \\ Q_1^{n+1} = Q_0^n \overline{Q_1^n} + Q_1^n \overline{Q_0^n} \end{bmatrix}$$

$$Q_0^{n+1} = \overline{Q_0^n}$$

选择JK触发器
$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

激励方程
$$J_3 = Q_2^n Q_1^n Q_0^n \qquad K_3 = Q_2^n Q_1^n \overline{Q_0^n}$$

$$J_2 = Q_0^n Q_1^n \overline{Q_0^n} \qquad K_2 = Q_1^n Q_0^n$$

$$J_1 = K_1 = Q_0^n$$

$$J_0 = K_0 = 1$$

同步时钟方程为 $CP_0 = CP_1 = CP_2 = CP_3 = CP$ 输出方程 $Y = Q_3^n \overline{Q_2^n} Q_1^n Q_0^n$

解: (1) 十二进制同步状态加法计数器共有12个状态, 其状态状态转换图如下:

(2) 12个状态,需选择4个触发器,四个触发器的状态转换的卡诺图如下:

4.6设计一个组合逻辑电路,其输入是3位二进制数 $B=B_2B_1B_0$,输出是 $Y_1=2B$, $Y_2=B^2$ 。 Y_1 、 Y_2 也是二进制数。

解:由题意可知,Y1用需用4位二进制数表示,Y2需用6位二进制数表示。

设 Y_1 =2B= $F_3F_2F_1F_0$, Y_2 = B^2 = $G_5G_4G_3G_2G_1G_0$ 。

(1) 根据题意可以列出真值表:

B ₂	B ₁	B ₀	F ₃	F ₂	F ₁	Fo	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0	0	0	0	0	1
0	1	0	0	1	0	0	0	0	0	1	0	0
0	1	1	0	1	1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0	1	0	0	0	0
1	0	1	1	0	1	0	0	1	1	0	0	1
1	1	0	1	1	0	0	1	0	0	1	0	0
1	1	1	1	1	1	0	1	1	0	0	0	1

4.6设计一个组合逻辑电路, 其输入是3位二进制数 $B=B_2B_1B_0$,输出是 $Y_1=2B$, $Y_2=B^2$ 。 Y_1 、 Y_2 也是二进制数。

解:

				_									
:	B ₂	B ₁	B ₀	F ₃	F ₂	F ₁	F ₀	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	1	0	0	1	0	0	0	0	0	0	1
	0	1	0	0	1	0	0	0	0	0	1	0	0
	0	1	1	0	1	1	0	0	0	1	0	0	1
	[1_	0	q.	A	0	0	0	0	1	0	0	0	0
5	L ₁	0	1	1	0	1	0	0	1	1	0	0	1
1	1_	1	Q	1	1	0	0	1	0	0	1	0	0
	1	1	1	V	1	1	0	1	1	0	0	0	1

(2) 利用卡诺图化简得到输出函数表达式:

 $F_3 = B_2$, $F_2 = B_1$, $F_1 = B_0$, $F_0 = 0$;

 $\mathsf{G5} = \mathsf{B1B2} \times \mathsf{G4} = B_2 \overline{B_1} + B_2 B_0 \times \mathsf{G3} = \overline{B_2} B_1 B_0 + B_2 \overline{B_1} B_0 \times \mathsf{G2} = B_1 \overline{B_0} \times \mathsf{G1} = 0 \times \mathsf{G0} = B_0 \times \mathsf{G2} = B_0 \times \mathsf{G3} = B_0 \times \mathsf{$

(3) 根据表达式画出逻辑电路图(略)

4.14用二-十进制编码器、译码器、发光二极管七段显示器,组成一个1位数码显示电 路。当0~9十个输入端中某一个接地时,显示相应数码。选择合适的器件画出连线图。

1)选择10线-4线优先编码器74LS147,其 并 10、1×1

输入输出都是低电平有效。

SN54/74LS147 **FUNCTION TABLE**

		PUTS	OUTF	1	INPUTS								
	Α	В	С	D	9	8	7	6	5	4	3	2	1
	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
10	L	H	H	L	L	X	X	X	X	X	X	X	X
	Н	Н	H	L	H	L	X	X	X	X	X	X	X
	L	L	L	Н	Н	H	L	X	X	X	X	X	X
	Н	L	L	Н	Н	H	H	L	X	X	X	X	X
	L	H	L	Н	Н	H	H	H	L	X	X	X	X
	Н	H	L	Н	Н	H	H	H	H	L	X	X	X
	L	L	Н	Н	Н	H	H	Н	H	H	L	X	X
	Н	L	H	Н	Н	H	H	H	H	Н	Н	L	X
	L	Н	Н	Н	Н	H	H	Н	H	Н	Н	Н	L

H = HIGH Logic Level, L = LOW Logic Level, X = Irrelevant

4.14用二-十进制编码器、译码器、发光二极管七段显示器,组成一个1位数码显示电路。当0~9十个输入端中某一个接地时,显示相应数码。选择合适的器件画出连线图。

48. 1548
FUNCTION TABLE (T2)

2)选择显示译码器74LS48, 其输入输出高电平有效。

DECIMAL OR			INPL	JTS			BI/RBO†			οι	JTPU	TS			NOTE
FUNCTION	LT	RBI	D	С	В	Α		а	b	С	d	е_	f	g	
0	Н	Н	L.	L	À	L	Н	Н	Н	Н	Н	н	Н	L	1
1	н	×	L	L	L	н	н	L	Н	H	L	L	L	L	1-1
2	н	×	L	L	H	L	н	н	Н	L	н	н	L	н	
3	н	×	L	L	н	Н	н	Н	Н	Н	н	L	L	Н	
4	Н	X	L	н	L	L	н	L	Н	Н	L	L	Н	н	
5	н	×	L	н	L	H	н	н	L	Н	н	L	Н	н	
6	н	x	L	н	Н	L	н	L	L	Н	н	Н	Н	н	
7	Н	×	L	н	Н	Н	н	н	н	Н	L	L	L_	L	1
8	Н	X	Н	L	L	L	Н	Н	Н	Н	Н	н	Н	н	
9	н	×	н	L	L	н	н	н	Н	н	L.	L	Н	н	
10	Н	×	н	L	н	L	н	L	L	L	H	Н	L	Н	
11	Н	×	н	L	Н	Н	н	L	L	Н	Н	L_	L	Н	
12	Н	Х	Н	Н	L	L	Н	L	н	L	L	L	Н	Н	}
13	н	x	н	н	L	н	н	н	L	L	н	L	H	н	
14	н	x	н	н	н	L	н	L	L	L	H	Н	н	н	
15	н	×	н	Н	н	Н	н	L	L	L	L	L	L	L	
BI	X	X	Х	X	X	×	L	L	L	L	L	L	L	L	2
RBI	н	L	L	L	L	L	L	L	L	L	L	L	L	L	3
LT	L	×	X	X	X	X	н	Н	H	H	Н	Н	Н	Н	4

3)选择共阴极七段数码管。

4.18 用16*8位EPROM实现组合逻辑函数。

$$\underline{Y_1} = \sum m(2,3,4,5,6,7,14,15)$$

6.10 设计一个脉冲序列发生器,使之在一系列CP信号作用下,其输出端能周期性地输出 00101101。

4) 用卡诺图表示输出函数和状态变量

$$Q_2{}^nQ_1{}^nQ_0{}^n \xrightarrow{/Y} Q_2{}^{n+1}Q_1{}^{n+1}Q_0{}^{n+1}$$

5) 由卡诺图写出状态方程和输出方程:

6.10 设计一个脉冲序列发生器,使之在一系列CP信号作用下,其输出端能周期性地输出 00101101。

6) 选择边沿D触发器,根据触发器的特性方程Qⁿ⁺¹=D可得触发器的驱动方程:

$$D_2 = Q_2^n Q_0^n + Q_1^n \overline{Q_0^n}$$

$$D_1 = \overline{Q_2^n} Q_0^n + Q_1^n \overline{Q_0^n}$$

$$D_0 = \overline{Q_2^n} \cdot \overline{Q_1^n} + Q_2^n Q_1^n$$

7) 画出逻辑电路图

6.11 设计一个步进电机用的三相六状态脉冲分配器。如果用1表示线圈导通,用0表示线圈截止,则三个线圈ABC的状态转换图应如图所示。在正转时控制输入端G为1,反转时为0。

解:

1) 根据给出的状态转换图,可以得到卡诺图:

$Q_1^nQ_2^n$	00	01	11	10
00	×××	011	010	110
01	101	001	×××	100
11	110	100	×××	010
10	×××	101	001	011

$$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$$

6.11 设计一个步进电机用的三相六状态脉冲分配器。如果用1表示线圈导通,用0表示线圈截止,则三个线圈ABC的状态转换图应如图所示。在正转时控制输入端G为1,反转时为0。

解:

2) 根据卡诺图写出状态方程:

$$Q_2^{n+1} = \overline{G} \cdot \overline{Q_0^n} + G \overline{Q_1^n}$$

$$Q_1^{n+1} = \overline{G} \cdot \overline{Q_2^n} + G \overline{Q_0^n}$$

$$Q_0^{n+1} = \overline{G} \cdot \overline{Q_1^n} + G \overline{Q_2^n}$$

6.11 设计一个步进电机用的三相六状态脉冲分配器。如果用1表示线圈导通,用0表示线圈截止,则三个线圈ABC的状态转换图应如图所示。在正转时控制输入端G为1,反转时为0。

解:

3)选择D触发器,根据D触发器的特性方程可得D触发器的激励方程:

$$\begin{aligned} \mathbf{D}_2 &= \overline{\mathbf{G}} \cdot \overline{Q_0^n} + \mathbf{G} \overline{Q_1^n} \\ \mathbf{D}_1 &= \overline{\mathbf{G}} \cdot \overline{Q_2^n} + \mathbf{G} \overline{Q_0^n} \\ \mathbf{D}_0 &= \overline{\mathbf{G}} \cdot \overline{Q_1^n} + \mathbf{G} \overline{Q_2^n} \end{aligned}$$

- 4) 根据激励方程画出逻辑电路图
- 5) 电路不能自启动

6.30 设计一个自动售票机的逻辑电路。每次只允许投入一枚五角或一元的硬币,累计投入两元后给出一张邮票;如果投入一元五角后,再投一枚一元硬币,则给出邮票的同时,还应找回五角钱。要求设计的电路能自启动,方法不限。

解:

1)根据题意分析,假设SO代表初始状态,没有硬币投入,S1代表接收到一枚五角的硬币,S2代表接收到一枚一元的硬币,S3代表接收到一元五角的硬币。用A=1代表投了一枚一元的硬币,B=1代表投了一枚五角的硬币。输出变量:用Y=1代表给出邮票,Z=1代表找回五角钱。

在初始状态为<u>so</u>下,如果接受了一枚<u>五角</u>硬币,状态转换到s1;如果接受了一元的硬币,状态转换到s2。

在<u>S1状态</u>下,如果接受了一枚五角硬币,状态转换到<u>S2</u>;如果接受了一枚一<u>元的硬币</u>,状态转换到S3。

在52状态下,如果接受了一枚五角硬币,状态转换到S3;如果接受了一枚一元的硬币,状态转换到S0,给出邮票。

在**S3**状态下,如果接受了一枚五角硬币,状态转换到**S0**,给出邮票;如果接受了一枚一元的硬币,状态转换到**S0**,给出邮票并找回五角钱。

可以得到状态转换图和状态转换表如下:

6.30 设计一个自动售票机的逻辑电路,每枚邮票一元五角。每次只允许投入一枚五角或一元的硬币,累计投入一元五角后给出一张邮票;如果投入一元后,再投一枚一元硬币,则给出邮票的同时,还应找回五角钱。要求设计的电路能自启动,方法不限。

解:

2)对状态进行编码,有四个状态,所以用两位二进制数表示。状态SO、S1、S2、S3分别用编码OO、O1、10、11表示。由原始状态转换表可以得到输出和次态的卡诺图: 🔌 🔰 🚺 D

10	11	01	00	$Q_1^n Q_0^n$
10/00	××/××	01/00	00/00	00
11/00	××/××	10/00	01/00	01
00/11	××/××	00/10	11/00	11
00/10	××/××	11/00	10/00	10

 $Q_1^{n+1}Q_0^{n+1}/YZ$

$Q_1^n Q_0^n$	00	01	11	10
00	00/00	01/00	××/××	11/00
01	01/00	11/00	××/××	10/00
11	11/00	10/00	××/××	00/10
10	10/00	00/10	××/××	00/11

6.30 设计一个自动售票机的逻辑电路,每枚邮票一元五角。每次只允许投入一枚五角或一元的硬币,累计投入一元五角后给出一张邮票;如果投入一元后,再投一枚一元硬币,则给出邮票的同时,还应找回五角钱。要求设计的电路能自启动,方法不限。

解:

2) 根据卡诺图可以得到状态方程和输出函数表达式:

$$Q_{1}^{n+1} = \overline{Q_{1}^{n}} \cdot A + Q_{1}^{n} \overline{A} \overline{B} + \overline{Q_{1}^{n}} \cdot Q_{0}^{n} B + Q_{1}^{n} \cdot \overline{Q_{0}^{n}} \cdot \overline{A}$$

$$Q_{0}^{n+1} = \overline{Q_{1}^{n}} \cdot Q_{0}^{n} \cdot \overline{B} + \overline{Q_{0}^{n}} B + Q_{0}^{n} \overline{A} \cdot \overline{B}$$

$$\underline{Y} = Q_{1}^{n} A + Q_{1}^{n} Q_{0}^{n} B$$

$$\underline{Z} = Q_{1}^{n} Q_{0}^{n} A$$

6.30 设计一个自动售票机的逻辑电路,每枚邮票一元五角。每次只允许投入一枚五角或一元的硬币,累计投入一元五角后给出一张邮票;如果投入一元后,再投一枚一元硬币,则给出邮票的同时,还应找回五角钱。要求设计的电路能自启动,方法不限。

解:

4)选择D触发器,可得D触发器的激励方程:

$$\mathsf{D}_1 = \overline{Q_1^n} \cdot A + Q_1^n \bar{A} \bar{B} + \overline{Q_1^n} \cdot Q_0^n B + Q_1^n \cdot \overline{Q_0^n} \cdot \bar{A}$$

$$D_0 = \overline{Q_1^n} \cdot Q_0^n \cdot \overline{B} + \overline{Q_0^n} B + Q_0^n \overline{A} \cdot \overline{B}$$

5)根据激励方程和输出方程画出电路图(略)。

- 1、分析下图所示组合逻辑电路的功能:
- 1) 写出输出函数表达式
- 2) 列出真值表
- 3) 分析电路的功能

解: (1) 输出函数表达式

$$Y = \overline{\overline{A + \overline{A + B}} + \overline{\overline{A + B}} + \overline{B}} = \overline{A}\overline{B} + AB$$

(2) 列出真值表

Α	В	Y	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

(3)分析电路的功能

实现同或运算,可用于检偶。

2、用与非门设计报警电路

设备中有三个传感器A,B,C,如果传感器A输出为1,同时B,C中至少有一个输出也为1,表示设备工作状态正常,电路输出为0,否则工作异常发出报警,电路输出为1。

解:设输入为A,B,C,输出为Y,由题意可知Y=0表示设备工作正常,Y=1表示设备工作异常发出报警。

3、用集成二进制译码器74LS138和与非门构成一个全加器。

(1) 全加器有3个输入信号, A(被加数), B(加数), C(低位进位), 2个输出信号S(本为和), CO (向高 位的进位),列出真值表:

A	В	C	S	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1_
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(2)写出输出函数的标准与非-与非表达式:

$$\underline{S} = \sum m(1,2,4,7) = \overline{m_1} \cdot \overline{m_2} \cdot \overline{m_4} \cdot \overline{m_7}$$

$$\underline{CO} = \sum m(3,5,6,7) = \overline{m_3} \cdot \overline{m_5} \cdot \overline{m_6} \cdot \overline{m_7}$$

(3)画出连线图

4、[题 4.15] 用中规模集成电路,设计一个路灯控制电路,要求能在四个不同的地方,都可以独立

地控制灯的亮灭。

解: (1) 假设四个地方的开 关分别用A、B、C、D表示, 灯用Y表示。列真值表

A I	вс	D	Υ	ABCD	Y
0 (0 0	0	0	1000	1
0 (0 0	1	1	1001	0
0 (0 1	0	1	1010	0
0 (0 1	1	0	1011	1
0 1	1 0	0	1	1100	0
0 1	1 0	1	0	1101	1
0 1	1 1	0	0	1110	1
0 1	1 1	1	1	1111	0

(2)卡诺图化简

 $= \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}C\bar{D} + \bar{A}B\bar{C}\bar{D} + \bar{A}BCD$ $+ AB\bar{C}D + ABC\bar{D} + A\bar{B}\bar{C}\bar{D} + A\bar{B}CD$ $= \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}C\bar{D} + \bar{A}B\bar{C}\bar{D} + \bar{A}BCD$ $+ A\bar{B}\bar{C}\bar{D} + A\bar{B}CD + AB\bar{C}D + ABC\bar{D}$

AR CD				
7D /_	00	01	11	10
00	0	1	0	1
01	1	0	1	0
11	0	1	0	1
10	1	0	1	0

(3)因为输入变量有4个,选用8选1数据选择器

数据选择器的输出为 $Y = D_0 \overline{A}_2 \overline{A}_1 \overline{A}_0 + D_1 \overline{A}_2 \overline{A}_1 A_0 + \cdots + D_7 A_2 A_1 A_0$

设A=A2,B=A1,C=A0,则

$$D_0 = \underline{D}$$
, $D_1 = \overline{D}$, $D_2 = \overline{D}$, $D_3 = \underline{D}$, $D_4 = \overline{D}$, $D_5 = \underline{D}$, $D_6 = \underline{D}$, $D_7 = \overline{D}$ (4)电路连接

74151

5、画出电路输出端B的波形 (触发器起始状态为0)

