Aperture photometry

Goal

Color-magnitude diagram (CMD)

- The diagram plotting the relation between magnitudes and colors of target objects.
- For stellar objets, x-axis usually indicates a color and y-axis usually indicates a magnitudes (for galaxies, it's flipped).

From the CMD, we see

- Stars disributes on color-magnitude plan with patterns.
- Most stars are on the thine lines.
- and,,,

From the CMD, we know

- (add)
- Compare with a Hertzsprung-Russel diagram.
 - In observation, which one is easier to be obatined?
 - Is it okay to use an apparent magnitude instead of a luminosity or an absolute magnitude?
- More details in the astronomy classes.

To construct a CMD, we should measure

- x-axis: color, which is the difference of magnitudes between two bands.
- y-axis: magnitude
- We should measure magnitudes!

(real) Goal

ra_r	dec_r	ra_g	dec_g	mag_r	mag_g
84.097787	31.193101	84.097786	31.193098	18.156043	19.582877
84.138697	31.138529	84.138698	31.138541	19.040868	20.932445
84.178309	31.085561	84.178288	31.085562	18.328615	16.426038
84.109727	31.177515	84.109743	31.177521	18.697421	19.973394
84.069409	31.233780	84.069398	31.233782	19.996716	20.878002
84.244876	31.294286	84.244873	31.294286	19.110202	20.262591
84.335969	31.172562	84.335958	31.172582	18.862541	20.144324
84.236671	31.305838	84.236660	31.305840	16.232652	17.185152
84.216391	31.333031	84.216389	31.333030	16.783001	17.530967
84.253575	31.284087	84.253580	31.284090	15.357524	16.182001

Reference

- Setson 1987 section 3: https://ui.adsabs.harvard.edu/abs/1987PASP...99..191S/abstract
- Da Costa 1992 section 2: https://ui.adsabs.harvard.edu/abs/1992ASPC...23...90D/abstract
- Romanishin 2002 section 17.2: https://www1.phys.vt.edu/~jhs/phys3154/
 CCDPhotometryBook.pdf
- Photuils doc.: https://photutils.readthedocs.io/en/stable/aperture.html
- AO class material by YS.Bach: https://ysbach.github.io/SNU_AOpython/chaps/03-aperture.html

• Q. What is a magnitude?

A. a measure of brightness

• Q. Can we measure a 'standard' brightness only from an image?

A. No.

• Q. How can we define the brightness of a star?

Hint. pixel value $\propto \#$ of photons

 Do CCD pixels detect only photons from the star?

A. No, there are many sources of photons

- target star
- sky background
- other stars
- unresolved obejcts

• Q. How can we count only the photons from the star?

A. Subtract the photons from the background

• Q. What is the range of the sum?

A. are the star occupies, surely.

• Q. How can we define the 'region' of the star?

A. Little vague...

- Detection of the star?
- Ceter of the star?
- Boundary of the star?

- Detection of the star?
 - Find a local maximum
 - profile width > (FWHM)_{thres} ~ seeing
- Ceter of the star?
- Boundary of the star?

- Detection of the star?
 - Find a local maximum
 - profile width > (FWHM)_{thres} ~ seeing
- Ceter of the star?
- Boundary of the star?

- Detection of the star?
 - Find a local maximum
 - profile width > (FWHM)_{thres} ~ seeing
- Ceter of the star?
- Boundary of the star?

- Detection of the star?
 - Find a local maximum
 - profile width > (FWHM)_{thres} ~ seeing
- Ceter of the star?
- Boundary of the star?

- Detection of the star?
 - Find a local maximum
 - profile width > (FWHM)_{thres} ~ seeing
- Ceter of the star?
- Boundary of the star?

- Detection of the star?
- Ceter of the star?
 - center of mass/Gaussian fitting
- Boundary of the star?

- Detection of the star?
- Ceter of the star?
 - center of mass/Gaussian fitting
- Boundary of the star?

- Detection of the star?
- Ceter of the star?
- Boundary of the star?
 - In principle, the star extends infinitely
 - In practice,
 - ✓ small enough not to contaminated from other sources
 - √ large enough to include the 'most' of the sar

• Determining the aperture size e.g.)

- Detection of the star?
- Ceter of the star?
- Boundary of the star?
 - In principle, the star extends infinitely
 - In practice,
 - ✓ small enough not to contaminated from other sources
 - √ large enough to include the 'most' of the sar

- Which background?
 - The star area
 - The most exact. But we can't.
 - Mean of all background in the image
 - the background varies over the image.
 - Nearby area
 - approximately correct. Actually, in general, correct enough.

Annulus

Mean vs Median vs Mode

Matching and CMD

Matching and CMD

Matching and CMD

Advanced aperture photometry

- distinguisih star and contaminat
- Adjustable aperture radius
- aperture corrections
- Uncertainties of the fluxes

(Simple) Aperture radius

• Here, we use a single radius for apertures.

HW: Draw a CMD from a JWST image