Algèbre 2 Cyclotomie

Question 1/6

$$D_{\mathbb{K}}(X^n-1)$$

Réponse 1/6

 $\mathbb{K}(\zeta_n)$ avec ζ_n une racine primitive $n^{\text{ième}}$ de l'unité

Par le morphisme de Frobénius, si $\text{car}(\mathbb{K}) = p$,

Par le morphisme de Frobénius, si $\operatorname{car}(\mathbb{K}) = p$ $\zeta_{np^m} = \zeta_n$, en particulier, 1 est la seule racine $\operatorname{de} X^{p^m} - 1$

Question 2/6

Structure de
$$Gal(\mathbb{L}/\mathbb{K})$$
 avec $\mathbb{L} = \mathbb{K}(\zeta_n)$

Réponse 2/6

 $\operatorname{Gal}(\mathbb{L}/\mathbb{K})$ est un sous-groupe de $(\mathbb{Z}/n\mathbb{Z})^{\times}$ et un morphisme est donné par le caractère cyclotomique

Question 3/6

Caractère cyclotomique

Réponse 3/6

$$\chi: \operatorname{Gal}(\mathbb{L}/\mathbb{K}) \longrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times}$$
 où $\chi(\sigma)$ est tel que $\sigma \longmapsto \chi(\sigma)$
$$\sigma(\zeta_n) = \zeta_n^{\chi(\sigma)}$$
 χ est injectif

Question 4/6

Stucture de
$$\operatorname{Hom}(\mu_n,(\mathbb{K}^{\operatorname{alg}},\times))$$

Réponse 4/6

$$\operatorname{Hom}(\mu_n, \mathbb{K}^{\operatorname{alg}}) \cong \mathbb{Z}/n\mathbb{Z}$$
 et un isomorhisme est donné par $\mathbb{Z}/n\mathbb{Z} \longrightarrow \operatorname{Hom}(\mu_n, \mathbb{K}^{\operatorname{alg}})$ $k \longmapsto (\zeta_n \mapsto \zeta_n^k)$

Question 5/6

Propriété de $D_{\mathbb{K}}(X^n-1)/\mathbb{K}$

Réponse 5/6

Si $\operatorname{car}(\mathbb{K}) = 0$ ou $n \wedge \operatorname{car}(\mathbb{K}) = 1$ alors $X^n - 1$ est séparable sur \mathbb{K} donc $D_{\mathbb{K}}(X^n - 1)/\mathbb{K}$ est galoisienne

Question 6/6

Propriétés de Φ_n

Réponse 6/6

$$\Phi_n \in \mathbb{Z}[X]$$
 est unitaire et irréductible sur \mathbb{Z} et sur \mathbb{Q}

En particulier,
$$[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \varphi(n)$$
 et $\mathrm{Gal}(\mathbb{Q}(\zeta_n)\mathbb{Q}/\cong)(\mathbb{Z}/n\mathbb{Z})^{\times}$

$$X^n - 1 = \prod_{d|n} \Phi_d(X)$$