مقایسهٔ الگوریتمهای مرتبسازی

محمد ترابی - علی جعفرآبادی - رضا تاجگذاری تیرماه ۱۴۰۲

۱ مرتبسازی درجی

اگریک دسته کارت به شما داده شود که اعداد ۱ تا ۵۰ روی آن نوشته شده است، چگونه آن را مرتب ۲ میکنید؟ احتمالا اول تعداد کمی کارت برمی دارید و آنها را مرتب میکنید؛ سپس بقیه کارتها را یکی پس از دیگری نگاه میکنید و در جای مناسب میان کارتهای مرتب شده قرار می دهید. شکل ۱ نمایی کلی از این روش مرتبسازی نشان می دهد.

وقتی کارتها را با این روند مرتب میکنیم، همواره تعدادی از کارتها مرتب شده است و کارتهایی که هنوز مرتب نشده، یکی پس از دیگری در دستهٔ کارتهای مرتب شده درج ۳ میشوند. اگر با این روش کارتها را مرتب کنیم، درواقع از مرتبسازی درجی استفاده کردهایم.

شکل ۱: مرتب کردن کارتها به کمک مرتبسازی درجی

¹insertion sort

²sort

³insert

الگوريتم مرتبسازي درجي

آرایه ای به طول یک همواره مرتب است؛ بنابراین از عنصر دوم شروع می کنیم و جلو می رویم. فرض کنیم که به عنصر i رسیده ایم، عناصر قبل از i مرتب اند. لذا از آخرین عنصر قبل از i شروع می کنیم و به عقب می رویم. هر یک از عناصر بزرگتر از i را یک واحد به سمت راست انتقال i می دهیم. وقتی به عنصری کوچک تر از i یا به ابتدای آرایه رسیدیم متوقف می شویم i را همانجا درج می کنیم. هنگامی که عنصر i را درج می کنیم، i عنصر اول آرایه مرتب می شوند. بنابراین این کار را ادامه می دهیم تا تمام عناصر آرایه مرتب شوند. درستی مرتب سازی درجی را می توان به کمک ثابت های حلقه i اثبات کرد. [۱] شبه کد مرتب سازی درجی را می توانید در الگوریتم i که در ادامه آمده است مشاهده کنید i .

الگوریتم ۱ مرتبسازی درجی

```
1: procedure INSERTIONSORT(arr, n)

2: for i \leftarrow 1 to n - 1 do

3: key \leftarrow arr[i]

4: j \leftarrow i - 1

5: while j >= 0 and arr[j] > key do

6: arr[j+1] \leftarrow arr[j]

7: j \leftarrow j - 1

8: arr[j+1] \leftarrow key
```

اگر الگوریتم بالا را روی آرایهٔ [۷,۶,۶,۴,۹] اجرا کنیم، آرایه بدین صورت مرتب می شود:

$$\begin{split} [\mathsf{V}, \boldsymbol{\mathcal{P}}, \boldsymbol{\mathcal{P}}, \boldsymbol{\mathfrak{r}}, \boldsymbol{\mathfrak{q}}] &\to [\mathsf{V}, \mathsf{V}, \boldsymbol{\mathcal{P}}, \boldsymbol{\mathfrak{r}}, \boldsymbol{\mathfrak{q}}] \to [\boldsymbol{\mathcal{P}}, \mathsf{V}, \boldsymbol{\mathcal{P}}, \boldsymbol{\mathfrak{r}}, \boldsymbol{\mathfrak{q}}] \to [\boldsymbol{\mathcal{P}}, \mathsf{V}, \mathsf{V}, \boldsymbol{\mathfrak{r}}, \boldsymbol{\mathfrak{q}}] \to [\boldsymbol{\mathcal{P}}, \boldsymbol{\mathcal{P}}, \mathsf{V}, \mathsf{V}, \mathsf{V}] \to [\boldsymbol{\mathcal{P}}, \mathsf{V}, \mathsf{V}, \mathsf{V}] \to [\boldsymbol{\mathcal{P}}, \boldsymbol{\mathcal{P}}, \mathsf{V}, \mathsf{V}, \mathsf{V}] \to [\boldsymbol{\mathcal{P}}, \boldsymbol{\mathcal{P}}, \mathsf{V}, \mathsf{V}, \mathsf{V}] \to [\boldsymbol{\mathcal{P}}, \boldsymbol{\mathcal{P}}, \mathsf{V}, \mathsf{V}, \mathsf{V}] \to [\boldsymbol{\mathcal{P}}, \mathsf{V}, \mathsf{V}]$$

⁴shift

⁵loop invariants

مىبأشد. $arr[\cdot]$ مىبأشد. كه الگوريتم بر پايه صفر است؛ يعنى عنصر اول آرايه $arr[\cdot]$ مىبأشد.

توجه داشته باشید که پیچیدگی زمانی مرتبسازی درجی در بهترین حالت خطی است. همچنین بهترین حالت وقتی اتفاق میافتد که آرایه مرتب باشد. میتوانیم نتیجه بگیریم که در مواقعی که آرایه مرتب و یا تقریبا مرتب است مرتبسازی درجی بسیار سریع عمل میکند. بنابراین اگر از قبل مطلع هستیم که معمولا دادههای ما تقریبا مرتب است، استفاده از مرتبسازی درجی میتواند گزینه مناسبی باشد.

به عنوان مثال فرض کنید که یک لیست هزارتایی از اسامی دانشجویان یک موسسه در اختیار دارید که به ترتیب حروف الفبا مرتب شده اند. در سال جدید پنجاه دانشجو در موسسه نام نویسی میکنند و اسامی آنها به آخر آرایه اضافه میشود. اگرچه روشهای زیادی برای مرتب کردن لیست جدید دانشجویان وجود دارد، مرتبسازی درجی گزینه مناسبی محسوب میشود و از دیگر روشهای مرتبسازی که در این مقاله توضیح داده شده، بهتر عمل میکند.

خوب است بدانید می توان پیچیدگی زمانی مرتب سازی درجی در بدترین حالت را با تغییراتی در الگوریتم آن بهبود بخشید. به عنوان مثال مرتبسازی شِل $^{\vee}$ یک روش مرتبسازی دیگر است که از مرتبسازی درجی استفاده می کند و در حالت کلی دارای پیچیدگی زمانی بهتری است. [۲] [۳] جزئیات الگوریتم و پیچیدگی زمانی مرتبسازی شل را در این مقاله بررسی نمی کنیم.

۲ مرتبسازی انتخابی^

مرتبسازی انتخابی الگوریتم سادهای دارد و احتمالاً یکی از اولین الگوریتمهای مرتبسازی باشد که به ذهنمان میرسد. مرتبسازی انتخابی اینگونه عمل میکند که کوچکترین عنصر آرایه را پیدا میکند، آن را در سمت چپ قرار میدهد و سپس به سراغ عناصر باقیمانده میرود.

⁷shell sort

⁸selection sort

الگوریتم ۲ مرتبسازی انتخابی

```
1: procedure SelectionSort(arr, n)
2: for i \leftarrow 0 to n - 1 do
3: minIndex \leftarrow i
4: for j \leftarrow i + 1 to n do
5: if arr[j] < arr[minIndex] then
6: minIndex \leftarrow j
7: Swap(arr, i, minIndex)
```

الگوريتم ٣ جابهجايي

```
1: procedure Swap(arr, n)
```

- 2: $temp \leftarrow arr[i]$
- 3: $arr[i] \leftarrow arr[j]$
- 4: $arr[j] \leftarrow temp$

مراجع

- [1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction to Algorithms*. The MIT Press, 4th ed., 2022.
- [2] R. B. Frank, R. M.; Lazarus, "A high-speed sorting procedure," *Communications of the ACM*, p.20–22, 1960.
- [3] R. Sedgewick, "A new upper bound for shellsort," *Journal of Algorithms*, p.159–173, 1986.