OncoPeptVAC

Identify prioritized neo-antigens and neo-epitopes quickly

OncoPept VAC^{m} is an end-to-end genomics platform delivering prioritized T-cell neo-epitopes that can be used as DNA or peptide vaccines for cancer immunotherapy

Highlights

- Time saving generates a short and comprehensive list of tumor-specific mutant peptides for your vaccine program
- State-of-the-art prediction of HLA-types, antigen processing and MHC-peptide binding
- Proprietary strategy to select the most-relevant candidate neo-antigens for validation

Key Benefits

DNA/Peptide Vaccine composition

Benefits	Features
Identify cancer variants with high specificity and sensitivity	 Robust NGS platform with optimized variant calling pipeline
Identify cancer mutations that are potentially HLA-binding	 Sensitive HLA typing and HLA expression analysis Accurate mapping of expressed variants Proprietary neo-epitope selection with multiple prioritization steps Greater than 2-log reduction in the number of prioritized peptides
Identify cancer mutations that are potentially T-cell binding	 Automatic identification of TCR-binding mutations based on the position of the amino acid within the peptide Utilizes the chemical structure of the amino acids to predict rules of TCR binding

DNA/Peptide Vaccine structure

Create optimum length of the peptide or DNA vaccine	 Generates peptide of optimum length to preserve the position of the mutant amino acid at the HLA-binding or TCR-binding sites
Ensure the peptide/DNA vaccines are processed correctly to produce HLA-binding neo-epitope	 Creates the sequence of the peptide/DNA with optimum proteasomal/ immunoproteasomal processing sites to ensure generation of core HLA binding peptide

DNA/Peptide Vaccine validation

Assay to determine efficient presentation of peptides by antigen presenting cells, such as dendritic cells*	 Generates peptide of optimum length to preserve the position of the mutant amino acid at the HLA-binding or TCR-binding sites
Ensures that the predicted peptide can activate T-cells*	 T-cell activation assay using patient-derived T-cells, dendritic cells and exogenously added peptides

Workflow

Key Deliverables

- ✓ Exome Sequence somatic variant identification
- ✓ RNA sequence variant expression

- ✓ HLA typing
- ✓ All data files
- ✓ Vaccine candidates

Key Metrics

Sequencing Method	Illumina Hi-Seq Platform
Bioinformatics	MedGenome Proprietary and Public tools
Depth	• DNA (150X); RNA (60-80 million reads)
Turn Around Time	• 4 weeks (Rapid TAT available at additional cost)
Sample Requirements	Tumor only or tumor with matched normal
Sample Types	• Frozen tumor, FFPE, Blood
DNA Input Required	• 1μg-4μg
RNA Input Required	• 300ng-1µg
Blood Required	• 2-5 million blood cells
FFPE Required	• 3 X10 micron slides
Frozen tumor Required	• 300 µg – 1mg

Please contact

Debbie Consiglio, VP, Sales

- ⊠ debbiec@medgenome.com
- (C) +1-203-823-6510
- @www.medgenome.com

California

MedGenome Inc

348 Hatch Drive,

Foster City, CA 94404, USA

Phone: (888) 440-0954

FAX: (888) 440-0946