Árvores Filogenéticas Herdadas

University of Ulm local Contest Alemanha

Timelimit: 3

Entre outras coisas, Biologia Molecular Computacional lida com o processamento de seqüências genéticas. Considerando a relação evolutiva de duas seqüências, podemos dizer que eles estão intimamente relacionados, se eles não diferem muito. Podemos representar a relação por uma árvore, colocando seqüências de ancestrais acima de seqüências de seus descendentes. Tais árvores são chamadas árvores filogenéticas.

Considerando que uma tarefa da filogenia é inferir uma árvore a partir de seqüências de dados, vamos simplificar um pouco as coisas e proporcionar uma estrutura de árvore - esta será uma árvore binária completa. Você receberá as n folhas da árvore. Claro que você sabe, n é sempre uma potência de 2. Cada folha é uma sequência de aminoácidos (designadas pelos códigos compostos de um caractere que você pode ver na figura). Todas as sequências serão de igual comprimento I. Sua tarefa é derivar a seqüência de um ancestral comum com custos mínimos.

Aminoácido			Aminoácido		
Alanine	Ala	Α	Leucine	Leu	L
Arginine	Arg	R	Lysine	Lys	K
Sparagine	Asn	N	Methionine	Met	M
spartic Acid	Asp	D	Phenylalanine	Phe	F
Cysteine	Cys	С	Proline	Pro	Р
Glutamine	Gln	Q	Serine	Ser	S
utamic Acid	Glu	E	Threonine	Thr	Т
Glycine	Gly	G	Tryptophan	Trp	W
Histidine	His	Н	Tyrosine	Tyr	Υ
soleucine	lle	- 1	Valine	Val	V
utamic Acid Glycine Histidine	Glu Gly His	E G	Threonine Tryptophan Tyrosine	Thr Trp Tyr	•

Os custos são determinados como se segue: cada nó interior da árvore é marcado com uma sequência de comprimento L. O custo de uma extremidade da árvore é o número de posições nas quais as duas sequências diferem nas extremidades. O total custo é a soma dos custos em todas as bordas. A seqüência de um ancestral comum de todas as sequências é então encontrado na raiz da árvore. Um antepassado comum ideal é um ancestral comum com os custos totais mínimos.

Entrada

O arquivo de entrada contém vários casos de teste. Cada caso de teste começa com dois números inteiros $\bf N$ e $\bf L$, denota o número de sequências para as folhas e do seu comprimento, respectivamente. A entrada é terminada por $\bf N$ = $\bf L$ = 0. Caso contrário, 1 \leq $\bf N$ \leq 1024 e 1 \leq $\bf L$ \leq 1000. Em seguida, siga $\bf N$ palavras de comprimento $\bf L$ sobre o alfabeto dos aminoácidos. Eles representam as folhas de uma árvore binária completa, a partir da esquerda para a direita.

Saída

Para cada caso de teste, imprima uma linha contendo algum ancestral comum ideal ótimo e os custos totais mínimos

Exemplo de Entrada	Exemplo de Saída
4 3	AGA 3
AAG	AGA 4
AAA	AGA 4
GGA	R 2
AGA	W O
	Y 1
4 3	Q 0
AAG	
AGA	
AAA	
GGA	
4 3	
AAG	
GGA	
AAA	
AGA	
4 1	
A	
R	
A	
R	
2 1	
W	
W	
2 1	
W	
Y	
1 1	
1 1	
Q	
0.0	
0 0	

University of Ulm local Contest 2000/2001