

ANÁLISE DE DEMANDA VIA INTELIGÊNCIA ARTIFICIAL NO RESTAURANTE UNIVERSITÁRIO DO INSTITUTO DE CIÊNCIA E TECNOLOGIA DA UNIFESP

Douglas Diniz Landim, <u>ddlandim@unifesp.br</u>
RA 76681
Ciência da Computação.
Trabalho de Conclusão de Curso - Parte 1
Orientador: Prof. Dr. Vinicius Veloso

Agradecimentos

Minha jornada pela graduação foi marcada por muita persistência, dificuldades e fracassos. Agradeço primeiramente a Deus por me dar fé e alimentar minha persistência e esperança. Apesar de todo o conteúdo técnico das mais de 40 disciplinas do meu curso, o que mais me agregou aprendizado foi o ambiente desafiador desta universidade; que somado à muitas dificuldades pessoais, acidentes, contratempos de saúde, profissão e família; constituiu o conjunto perfeito de desafios que me derrubaram muitas vezes e me fizeram ser uma pessoa melhor ao me levantar, mais convicto e perseverante a cada nova tentativa de conquistar minhas aprovações. Agradeço à minha família por sempre me apoiar dando tudo de si, a meu professor por me aceitar orientar, e me motivar sempre me dando atenção como um amigo nas conversas no fim da aula durante o caminho até o estacionamento da faculdade, nas reuniões e chats online até nos finais de semana, aos amigos universitários, e a todos os professores que me acompanharam e ofereceram desafios em todos esses anos na UNIFESP.

Evolução do trabalho:

Motivação

428.620 refeições subsidiadas no banco de dados do sistema antigo, no período de 2011 à 2016.

111.454 refeições no período de 2017 a 01/08/2018 que fecham o modelo de contrato antigo.

Valor pago em cada refeição pela UNIFESP: R\$9,14. Total investido: R\$4.936.276,36

Valor pago pelo aluno: R\$2,50 pelo aluno. Total investido R\$1.350.185,00.

Movimentação do restaurante: R\$6.286.461,36

Total de refeições: ti.sjc@unifesp.br (Francismar / Fiscal de Contrato do R.U)

Valores por refeição: Ederson Barroso, ederbarroso@gmail.com, gerente nutrimenta.

Desperdício

ATUALMENTE O RESTAURANTE NÃO TEM NENHUM MODELO PREDITIVO.

- MÉTODOS SUBJETIVOS
- ANÁLISE DOS DIAS ANTERIORES

Fonte: Adaptado de [SIL03] e [SIL02]

Retirado de Junior, 2007. Analise de previsão de demanda baseado em séries temporais em uma empresa do setor de perfumes e cosméticos.

Trabalhos anteriores

DATA	VENDAS	TEMPERATURA		Histogram of t	
10/08/16 17/08/16 24/08/16 07/09/16	303 291	18 28 23 21	Density	0.0 0.4 0.8 1.2	1.0 0.0 0.5 1.0
14/09/16	381	27.5		-1.0 0.0 0.5 1.0	-3 -2 -1 0 1 2 3
21/09/16	291	20		tx	Quantiles of Standard Normal
28/09/16	291	24			
	TABE	LA 1		C	RÁFICO 2

GRÁFICO 2: Cálculo bootstrap de 1000 reamostragens t da TABELA 1 em função da densidade. Intervalo de confiança obtido por Bca: 95% (-0.8666, 0.9290), outras estatísticas obtidas pela biblioteca: Original: 0.4040055, Bias: -0.148679, Erro padrão: 0.51477

DATA	VENDAS	TEMPERATURA	Histogram of t	
28/09/16	291	27	8 - 1	65 1
05/10/16	284	21		₽ 0 - 2
19/10/16	78	35	¥ 5 -	8
26/10/16	277	30	8]	2
09/11/16	274	31	-1.0 0.0 0.5 1.0	-3 -2 -1 0 1 2 3

SUMÁRIO

Sumário

1	Intr	oduçã	0	21
	1.1	Conte	xtualização e Motivação	21
	1.2		ição do problema	22
	1.3	Justifi	calivas	22
	1.4	Objeti	ivos	22
			Objetivo geral	22
		1.4.2	Objetivos específicos	23
	1.5	Metod	lologia	23
	1.6	Organ	ização do documento	24
2	Fur		ntação Teórica	25
	2.1	Introd	lução	25
	22	Anális	ses Estatísticas	26
		2.2.1	Análise Exploratória dos Dados	26
		2.2.2	Métodos de Previsão	26
		2.2.3	Métodos de previsão de Demanda	27
		2.2.4	Séries Temporais	28
		2.2.5	Componentes Temporais	28
		2.26	Previsão com Regressão Linear Múltipla	
		2.27	Algoritmo de Regressão Linear Multipla	31
	23	Intelig	gencia Artificial	31
		2.3.1	Neuronio Artificial	31
		2.3.2	Redes Neurais Artificiais	34
		2.3.3	Funcionamento e treino do neurônio perceptron	36
		2.3.4	Limite de um Perceptron	42
		2.3.5	Rede Perceptrons Múltiplas Camadas - MLP	43
		2.3.6	Perceptrons Múltiplas Camadas com Retro Propagação de Erro	46
		2.3.7	Treino da MLP - BackPropagation para 1 sinal de saída	48
		2.3.8	Algoritmo de treino e validação backpropagation	53
3	Tra	balhos	relacionados	55
		3.0.1	ANÁLISES EM RESTAURANTES UNIVERSITÁRIOS	55
		3.0.2	ANÁLISES EM OUTROS CENÁRIOS	56
		3.0.3	TESES COMPARATIVAS DE DIVERSOS MÉTODOS DE PREVI-	
			SÃO DE DEMANDA.	56

4	Pla	no de at	tividades para o TCC II	5
	4.1			é
		4.1.1	Dados de Consumo e de Data	6
		4.1.2	Dados Climáticos	ť
		4.1.3		ť
5	Cor	nclusão		6
Re	eferê	ncias .		6

Principais referências de heurísticas de previsão de demanda.

ALBINO MILESKI JUNIOR

ANÁLISE DE MÉTODOS DE PREVISÃO DE DEMANDA BASEADOS EM SÉRIES TEMPORAIS EM UMA EMPRESA DO SETOR DE PERFUMES E COSMÉTICOS

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia de Produção e Sistemas da Pontificia Universidade Católica do Paraná como requisito parcial para obtenção do título de Mestre em Engenharia de Produção e Sistemas.

> CURITIBA 2007

Figura 2.3: Esquema do trabalho.

Fonte: Adaptado de [SIL03] e [SIL02]

Figura 3.4: Métodos para previsão da demanda.

Principais referências de modelos estatísticos.

Modelos de Regressão

Clarice Garcia Borges Demétrio

Departamento de Ciências Exatas, ESALQ, USP Caixa Postal 9 13418-900 Piracicaba, SP

Email: Clarice@carpa.ciagri.usp.br Fax: 019 34294346

Sílvio Sandoval Zocchi

Departamento de Ciências Exatas, ESALQ, USP Caixa Postal 9

13418-900 Piracicaba, SP

Email: sszocchi@carpa.ciagri.usp.br Fax: 019 34294346

29 de março de 2011

y	x_1	x_2		x_p
y_1	x11	x_{12}		x_{1p}
y_2	x_{21}	x_{22}		x_{2p}
:	:	:	:	:
y_n	x_{n1}	x_{n2}		x_{np}

$$\widehat{\beta} = (X'X)^{-1}X'Y.$$

Tabela 2.2.1: Representação dos dados.

Notemos que os estimadores de mínimos quadrados dos parâmetros do "Modelo 2.2" podem ser facilmente encontrados considerando a notação matricial dos dados, que é de fácil manipulação. Desta forma, considerando a entrada de dados apresentada na Tabela 2.2.1, o modelo de Regressão Linear Múltipla pode ser escrito como

$$Y = X\beta + \varepsilon$$
.

com

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} \quad \mathbf{e} \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix},$$

em que

- Y é um vetor n x 1 cujos componentes corresponde às n respostas;
- X é uma matriz de dimensão n × (p+1) denominada matriz do modelo;
- ε é um vetor de dimensão n × 1 cujos componentes são os erros e
- β é um vetor (p+1) × 1 cujos elementos são os coeficientes de regressão.

O método de mínimos quadrados tem como objetivo encontrar o vetor $\widehat{\beta}$ que minimiza

$$\begin{split} L &= \sum_{i=1}^n \varepsilon_i^2 = \varepsilon' \varepsilon = (Y - X\beta)'(Y - X\beta) = \\ &= Y'Y - Y'X\beta - \beta'X'Y + \beta'X'X\beta = Y'Y - 2\beta'X'Y + \beta'X'X\beta. \end{split}$$

sendo que $Y'X\beta = \beta'X'Y$ pois o produto resulta em um escalar. A notação X' representa o transposto da matriz X enquanto que $Y' \in \beta'$ representam os transpostos dos vetores $Y \in \beta$, respectivamente. Usando a técnica de derivação (em termos matriciais) obtemos

$$\frac{\partial L}{\partial \beta} = -2X'Y + 2X'X\beta.$$

Principais referências de modelos de inteligência artificial em R.U.

MODELOS PARA PREVISÃO DE DEMANDA NO RESTAURANTE UNIVERSITÁRIO UTILIZANDO TÉCNICAS DE REDES NEURAIS

> Liliane Lopes Cordeiro (DMA - UFV) hililopescordeiro@yahoo.com.br Heverton Augusto Pereira (Unicamp) hevertonaugusto@yahoo.com.br

Resumo

Um dos grandes problemas enfrentados hoje no mundo é a elevação dos preços dos alimentos. Eto tem causado preocupações para a população em geral e também para as empresas como restaurantes que sofrem diretamente os reflexos da variação no preço dos alimentos. Atualmente o Restaurante Universitário (R.U.) da Universidade Federal de Viçosa não possui um sistema que ajude na gestão de compras dos alimentos. O objetivo deste trabalho é utilizar a técnica de Redes Neurais Artificiais do tipo MLP (Perceptron Multiplas Camadas) para fazer a predição do número de usuários que irão fazer suas refleições no R.U. em uma, duas e três semanas para a administração poder determinar a política de compras de alimentos. As redes desenvolvidas utilizam o dia da semana e os cinco dias anteriores ao que se deseja prever. Para validar os modelos propostos foram separados conjuntos de dados para realização de comparações e analizes do eficácia da nova forma de gestão das compras.

Abstract

Nowadays, one of the major problems in the world is the rising of food prices. The problem concerns general population and also businesses such as restaurants that suffer directly the consequences of changes in the food prices. Currently the University Restaurant (R.U.), at Federal University of Viçosa does not have a system that helps in the management to buy food. This work uses the technique of Artificial Neural Networks MLP type (Multiple Layers Percept on) to predict the number of users who will have their meals in the R.U. in one, two and three weeks to support the administration's decision of food storing. The developed networks have as input variables: day of the week and the previous five days until the day that want to predict. Different data were used to validate the models through comparisons and analysis of the new management food busines benefits.

Palawas-chaves: Redes Neurais Artificiais, Previsão, Gestão

Figura 4 - Entradas e saida da rede proposta

Media do err	o (Refeições)	Total (5 dias)				
Treinamento Validação		Previsto	Esperado	Erro (Refeições)	% erro	
-4,3 -44,9		17124	16900	224	1,32	

Media do err	o (Refeições)	Total (10 dias)				
Treinamento	Validação	Previsto	Esperado	Erro (Refeições)	% erro	
0,92	-107,2	36534	35462	1072	3,0	

Media do err	o (Refeições)		Total	Total (15 dias)	
Treinamento	Validação	Previsto	Esperado	Erro (Refeições)	% erro
1,7	46,8	51785	52488	703	1,34

Principais referências de modelos de inteligência artificial em R.U.

Ioné Celso ROCHA¹ Felipe Delestro MAJOS¹ Fernando FREI¹

RESUMO

Objettvo

Construir uma rede neural artificial para auxiliar os gestores de restaurantes universitários na previsão de refeições diárias.

Métodos

O estudo foi desenvelido a partir do lexentamento de olto vartivele que influenciam o número de refeições didicis sendes no existuarde invenetativo. Ultar, a eo algoritmo de trenamento Sactopropagation. O resultados por meio da rede são comparados com os da série estudada e com esuitados da estimação por média aritmética.

Resultados

A rode proposta acompanha as instituensa alterações que ocorrem no número de refeições didetas do restaurante universitário. Em 73% dos días analisados, o mélodo das redes neurais artificiais apresenta uma taxa de acorto maior do que o mélodo da média artificidas atmplés.

Conclusão

A rode neural artificial mostrou se mais adequada para a provida do número de refeições do que a meladologia, de midia simples ou quando a decisão do número de refeições é feita de forma subjetiva, sem critérios científicos. **Tormos de indexaçõe:** Desportícios de altrencios. Redes neurais artificiais. Sentiços de altimentação.

Rev. Nutr., Campines, 24(5):735-742, set./out., 2011

Revista de Nutrigio

Figura 1. Arquitetura da rede neural artificial.

⁹ Universichele: Estadrial Phallsta julio de Mosquita Filho, Paraldade de Ciências e Leiras, Carso de Engenharia Hotecnologica, Departemento de Ciências Biologicas. An Den Antiène, 2100, 19006-900, Assis, SP, Bradi. Correspondencia pass/Carrespondencia. J. C. 8002101. Penale. quicològicas carepa. Inc.

Principais referências de modelos de inteligência artificial em R.U.

the daily number of meals served by a university cafeteria

lené Celso ROCHA Felipe Delestro MATOS¹

RESUMO

Construir uma rede neural artificial para auxiliar os gestores de restaurantes universitários na previsão de refeiches diádas.

Métodos

diárias servidas no restaurante universitário. Utiliza-se o algoritmo de treinamento Backpropagation. Os resultados por meio da rede são comparados com os da série estudada e com resultados da estimação por média aritmética.

A rede proposta acompanha as inúmeras alterações que ocomem no número de refeições diárias do restaurante universitário. Em 73% dos dias analisados, o método das redes neurais artificiais apresenta uma taxa de acerto major do que o método da média artimética simples. Conclusão

A rede neural artificial mostrou-se mais adequada para a previsão do número de refeições do que a metodologia de média simples ou guando a decisão do número de refeições é feita de forma subletiva, sem critérios científicos Termos de Indexação: Desperdicios de alimentos. Redes neurais artificiais. Serviços de alimentação

Universidade Estadual Paulista Nilio de Mosquita Filho, Paculdade de Ciências e Leinas, Curso de Engenharia Filos Departamento de Cátricias Biológicas. As Dom António, 2100, 19806-900, Assis, SP, Braell. Correspond in: J.C. ROCHA. E-mail: -cjocko-Wassix unesp. Inc.

Rev. Nutr., Campines, 24(5):735-742, set./but., 2011

Figura 3. Desempenho da rede neural artificial em comparação ao número de refeições reais.

Para o estudo em pauta, o erro geral obtido pela metodologia da RNA foi de 9,5%.

Principais referências de previsão em outros cenários.

Previsão de Demanda de Energia Elétrica Utilizando Redes Neurais Artificiais e Support Vector Regression

Gabriel I. S. Ruas¹, Ticiano A. C. Bragatto¹, Marcus V. Lamar², Alexandre R. Aoki³, Silvio Michel de Rocco⁴

Departamento de Engenharia Elétrica – Universidade Federal do Paraná (UFPR) Caixa Postal 19011 – 81531-990 – Curitiba – PR – Brazil

²Departamento de Ciências da Computação – Universidade de Brasília (UnB) Caixa Postal 4466 - 70919-970 - Brasília – DF – Brazil.

> Instituto de Tecnologia para o Desenvolvimento (LACTEC) Caixa Postal 19067 - 81531-980 - Curitiba - PR - Brazil.

Copel Distribuição S/A (COPEL)
Rua José Izidoro Biazetto, 158 – Bloco C – 81200-240 – Curitiba – PR – Brazil.

{bragatto@ufpr.br, gabrielruas@gmail.com, lamar@unb.br, aoki@lactec.org.br, rocco.silvio@copel.com}

Abstract. This paper describes a short time electrical energy demand forecast system using two different techniques of Artificial Intelligence: Recurrent Artificial Neural Networks and Support Vector Regression. A brief analysis of the demand over the electrical energy network connection points is also done.

Resumo. Este artigo descreve um sistema de previsão da demanda de energia a curto prazo utilizando duas técnicas diferentes de inteligência artificial: Redes neurais artificiais recorrentes e support vector regression. Também foi feita uma breve análise do perfil de demanda dos pontos de conexão da rede de energia elétrica.

Figura 2-Demanda em duas semanas consecutivas

Figura 6 - Estrutura geral da rede Elman

Principais referências de previsão em outros cenários.

METODOLOGIA PARA PREVISÃO DE DEMANDA DE ENERGIA ELÉTRICA EM CURTÍSSIMO PRAZO BASEADA EM UM MODELO PROBABILÍSTICO DISCRETO

Carlos Vinicius M. Silva^{1*}; William F. Marx¹; Mauricio Sperandio¹; Daniel P. Bernardon¹; Gladis Bordin²;

Sérgio Bordignon³

¹ Universidade Federal do Pampa - UNIPAMPA

² Universidade Federal do Rio Grande do Sul – UFRGS

³ Muxfeldt, Marin & Cia. Ltda – MuxEnergia

Fig. 1 Padrões de demanda semanal e diária.

	Demanda	Temperat.	Umidade	Vento
Demanda	1,0000		-	-
Temperat.	0,2483	1,0000		
Umidade	0,1107	0,1930	1,0000	-
Vento	-0,1602	-0,1062	0,0347	1,0000

Tab. 1 Correlação entre variáveis climáticas e demanda.

Fig. 2 Uma transformação Φ : E→S em uma mapa 4x4 com conexões hexagonais.

Fig. 3 Mapas componentes 6x6 para as quatro variáveis estudadas.

Principais referenciais teóricos.

ALBINO MILESKI JUNIOR

ANÁLISE DE MÉTODOS DE PREVISÃO DE DEMANDA BASEADOS EM SÉRIES TEMPORAIS EM UMA EMPRESA DO SETOR DE PERFUMES E COSMÉTICOS

> Dissertação apresentada ao Programa de Pós-Graduação em Engenharia de Produção e Sistemas da Pontificia Universidade Católica do Paraná como requisito parcial para obtenção do título de Mestre em Engenharia de Produção e Sistemas.

REDES NEURAIS NA PREDIÇÃO DE VALORES ENERGÉTICOS DE ALIMENTOS PARA AVES

ANTÔNIO DE PÁDUA BRAGA ANURÉ PONCE DE LEON F. DE CARVALHO

TERESA BERNARDA LUDERMIR

LAVRAS - MG 2014

CURITIBA

Dados extraídos, T.I.

■ F	U_CONSULTA_PO	OR PERÍODO_31.10.2018 - Co	ppia.xls - LibreOffice C	alc			
Arq	uivo <u>E</u> ditar E	<u>x</u> ibir <u>I</u> nserir <u>F</u> ormatar	Est <u>i</u> los <u>P</u> lanilha <u>C</u>	ados Fe <u>r</u> ramentas <u>J</u> a	nela Aj <u>u</u> da		
	i - 🖻 - 🛭		% 🖟 🔓 🕕	🛓 🕵 (S) · 🧀	Abc	· · · ·) if 7 [
Ar	ial	v 10 v a a	<u>a</u> <u>a</u> · =			<u>-</u> • %	0.0
Α1	~	Σ = DATA					
	A	В	С	D	E	F	G
1	DATA	TODOS ALMOÇO	TODOS JANTAR	TODOS REFEIÇÃO*	ALUNOS ALMOÇO	ALUNOS JANTAR	TOTAL ALUNOS
2	(31/10/2018)	395	0	395	362	0	362
3	(30/10/2018)	667	0	667	437	256	693
4	(29/10/2018)	511	0	511	293	185	478
5	(26/10/2018)	241	4	245	263	63	326
6	(25/10/2018)	458	0	458	402	0	402
7	(24/10/2018)	508	0	508	382	228	610
8	(23/10/2018)	557	0	557	203	272	475
9	(22/10/2018)	620	0	620	323	201	524
10	(19/10/2018)	38	0	38	49	1	50
11	(18/10/2018)	143	0	143	138	3	141
12	(17/10/2018)	253	2	255	188	72	260
13	(16/10/2018)	195	4	199	165	45	210
14	(15/10/2018)	172	0	172	110	28	138
15	(11/10/2018)	443	3	446	355	152	507
16	(10/10/2018)	501	3	504	387	196	583
17	(09/10/2018)	707	0	707	411	270	681
18	(08/10/2018)	581	0	581	287	221	508
19	(05/10/2018)	233	18	251	216	80	296

Dados extraídos, T.I.

Dados estruturados.

Tabeta 4 - Tabeta de dados do R.U.

production and the second	26/02/2018	27/02/2018
VENDAS - Yi	446	470
PARAMETROS Xi		
Temperatura(C)	27.2	28.5
Precipitação(%)	88	84
Distancia do Recesso Anterior	1	2
Distancia do Recesso Posterior	4	3
Vendas 1º Dia Anterior	0	446
Vendas 2º Dia Anterior	0	0
Vendas 3º Dia Anterior	0	0
Vendas 4º Dia Anterior	0	0
Vendas 5º Dia Anterior	0	0
Segunda	1	. 0
Terça	0	1
Quarta	0	0
Quinta	0	0
Sexta	0	0
Primavera	0	0
Verão	1	1
Outono	0	0
Inverno	0	0
1o Semestre	1	0
2o Semestre	1	0

$$Y = \begin{bmatrix} 446 \\ 470 \end{bmatrix} \quad X = \begin{bmatrix} 27.288140000010000010011 \\ 28.58414446000001000010011 \end{bmatrix}$$

Modelo proposto.

O sinal de saída do perceptron entende-se então por: $y = \delta(\sum_{i=1}^{n} XiWi + b)$

Tipos de função de ativação: (a) função degrau, (b) função linear, (c) função sigmoide, (d) função tangente hiperbólica

Média com resultados de rnas com validações diferentes:

Cronograma

Para a continuação deste trabalho o cronograma abaixo deve ser seguido.

Attyldades	Março	Abril	Malo	Junho	Julho
1	-		3 - 3		į.
2	· /	100	22 1		
3		1			
4		1	1		
5	N 8	1	1	1	
6				1	
7	9 3		3 - 3	V	£
8	8 3		20 1		1

Tabela 3 - Plano de atividades para o TCC II

- Estruturação do conjunto de dados do R.U do ano de 2017 conforme Tabela 4. O carregamento dos dados será realizado no Matlah, que já tem bibliotecas prontas que retornam o dia da semana baseado em uma data de entrada. Será realizado a predição de regressão com dados de 2017, e a medição de qualidade do modelo será feita com dados de 2018. Anotando-se o Erro Absoluto Médio (EAM), Erro Quadrado Médio (EQM) e Raiz do Erro Quadrado Médio (REQM).
- 2. Implementação do grafo se de neural com nós perceptrons. A topologia seguirá conforme dados já estruturados na seção 2.2.3, será criado uma primeira camada oculta com o número de neurônios igual ao número de entradas, e 1 camada de saída, com 1 neurônio. Cada nó deve conter métodos de inicialização do número de entradas, inicialização dos pesos, inicialização de função de ativação, inicialização de bias e calculo de saída. O grafo deve conter métodos de criar camadas, nós em cada camada, criar arestas orientadas das conexões dos nós.
- Implementação do método feedforward que deve ser capaz de percorrer as camadas do grafo, e calcular o sinal de saída.
- Implementação do método feedbackward que deve ser capaz de percorrer inversamente as camadas do gravo, e regravar os pesos sinápticos de cada nó.
- Implementação do Algoritmo de treino e validação backpropagation, com η = 0,5 e função de ativação sigmóide para todos os neurônios.
- O conjunto de dados original e estruturado na etapa anterior com regressão, estruturado conforme tabela 1, com todos os dados de 2017, terá um conjunto de 20% de observações

retiradas aleatoriamente de cada estação do ano de 2017, e será formado um par 80% de treino e 20% validação. Este processo de formação de pares será repetido 3x, obtendo 3 pares. Os 3 pares farão 3 treinos backpropagation, obtendo-se 3 modelos, será feito um metodo comiteRna, com combinador de média das saídas, onde o conjunto de dados de teste de 2018 será apresentado ao método, que replicara os dados aos 3 modelos de ma, e apresentará um valor mediano da saída dos 3 modelos.

- Meta-análise dos resultados da regressão, e do comiteRna, com os avaliadores de qualidade dos modelos, Erro Absoluto Médio (EAM), Erro Quadrado Médio (EQM) e Raiz do Erro Quadrado Médio (REQM).
- 8. Escrita do TCC2