Quiz on 2/23		
Quiz on 2/23 3.4, 4.1, 4.2		
HW 6 Jue 2/25		
4.1: 47. da		
4.1: 47, 48 4.2: 10, 14, 22, 54 4.3: 23, 24, 46		
4.3: 23,24,46		
Reflection 2 due 2/25 (Canvas)		
HW 7 due 3/11		
HW 7 due 3/11 5.1: 16, 26, 28		
Orthogonal Projections and Orthonormal Bases		
Def a) \vec{V} , $\vec{w} \in \mathbb{R}^n$ are orthogonal if $\vec{v} \cdot \vec{w} = 0$		
6) $\vec{V} \in \mathbb{R}^n$ has length $\ \vec{V}\ = t_{\vec{V} \cdot \vec{V}}^{\vec{v}} + V_{\vec{v}} u_{\vec{v}} + v_{\vec{v}} u_{\vec{v}} + v_{\vec{v}} u_{\vec{v}}$		
=		
c) ū is a unit vector if ū =1.		
2) $\vec{x} \in \mathbb{R}^n$ is orthogonal to a subspace \vec{V} of \mathbb{R}^n if $\vec{x} \cdot \vec{v} = 0$ for all $\vec{v} \in \vec{V}$.		
if $\vec{x} \cdot \vec{v} = 0$ for all $\vec{v} \in V$.		
Consequence If subspace V has basis $B = \{\bar{v}_1,, \bar{v}_n\}$		
Hen \dot{X} is orthogonal to $\dot{V} \rightleftharpoons \dot{\dot{X}}, \dot{\dot{V}}_{i} = 0$ for all $1 \le i \le m$.		
1 < i < m.		
Recall $\vec{V} \in \mathbb{R}^n$ $\vec{V} = \frac{1}{\ \vec{V}\ } \vec{V}$ is a unit vector.		
Def Vectors U,, Un in IR" are orthonormal if		
Def Vectors $\vec{u}_1,, \vec{u}_m$ in \mathbb{R}^n are orthonormal if $\vec{u}_i \cdot \vec{u}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} (\vec{u}_i = 1)$		
$u_i \cdot v_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i = 1 \end{cases}$		
(O IF I FJ (U. and U. are orthogrand)		
Eg a) è,, èn are orthonormal since		
$\vec{e}_{i} \cdot \vec{e}_{j} = 10^{2} + 0^{2} + \cdots + 1^{2} + 0^{2} + \cdots + 0^{2} = 1$ $\vec{e}_{i} \cdot \vec{e}_{j} = 0$ if $i \neq j$		

b)
$$\vec{u} = \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix}$$
 $\vec{u} = \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix}$
 $\vec{u} = \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix}$
 $\vec{u} = \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix} + \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix} = \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix} = \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix} + \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix} = \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix} = \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix} + \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix} = \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix} + \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix} = \begin{pmatrix} -i \hat{x} \\ i \hat{x} \end{pmatrix} + \begin{pmatrix} -i \hat{x}$

then,
$$proj_{V}(\vec{x}) = (\vec{e}_{1} \cdot \vec{x})\vec{e}_{1} + (\vec{e}_{2} \cdot \vec{x})\vec{e}_{2}$$

$$= 3\vec{e}_{1} + 2\vec{e}_{2}$$

$$= 3\vec{e}_{1} + 3\vec{e}_{2}$$

$$= 1 + (-1)^{2} + 0 + 1 + 1 + 0 = 1 + 1 + 1 + 1 + 0 = 1 + 1 +$$

