Clinical Biochemistry

- Measurement of components of plasma to identify or monitor disease.
- Monitor organ function
- Measuring proteins
 - Albumin
 - Immunoglobulins
 - Enzymes
 - Hormones

Immunoglobulins

- Synthesised by B lymphocytes
- 5 different types IgA, IgD, IgE, IgG & IgM

UNSW SYDNEY

Antigens and Antibodies

- Most antigens have many epitopes
- Injecting antigens into mammals produces serum of polyclonal antibodies
- Bind to many different epitopes and with different affinities
- A uniform, high affinity, highly specific antibody preparation would be preferable
- Monoclonal antibodies

Targets for Monoclonal Antibody-based Diagnostic Tests

Hormones

- Chorionic gonadotropin
 Growth hormone
- Luteinizing hormone
- Follicle-stimulating hormone
- Thyroid-stimulating hormone

Tumour markers

- Interleukin-2 receptor
- Epidermal growth factor receptor

Drug Monitoring

- Theophylline
- Gentamicin
- Cyclosporin

Infectious diseases

- Herpes
- Rubella
- Hepatitis B
- Legionella
- HIV

Diagnostics in solution

- The chemistry can also be performed in solution and detected using an ELISA
- The presence of anti-hepatitis A antibodies in plasma
- Usually reported as a dilution of your plasma, titrating the reactivity of the IgG

8

Antibodies as diagnostics

- Hormones (Proteins) usually measured by an antibody detection system
- β Human Chorionic Gonadotrophin (β HCG) detection in pregnancy made of 2 protein subunits; α and β
- Luteinising hormone (LH) has an α subunit with similarities in 3D structure
- Both control oocyte maturation and release
 - LH causes ovulation and is raised post menopause
 - $-\beta$ HCG results in the maintenance of the placenta

Pregnancy test strip

- A
 - Pregnancy results in an increase in human chorionic gonadotrophin hormone in urine
 - No hCG not pregnant
- B
 - If human hCG present binds to soluble anti-hCG Ab conjugated to insoluble blue dye
 - If not, dye conjugated anti-hCG AB flows thru strip with urine
- C
 - If human hCG bound to anti-hCG Ab (dye) then binds to another anti-hCG Ab coupled to the membrane in a strip
 - The dye conjugated anti-hCG Ab continues to flow past this strip if hCG absent
- D
 - The dye conjugated hCG is added in excess in the early part cf the strip leaving free antibody to flow past step C and to bind to an anti antibody coupled to the membrane in a strip.
 - In both cases there is excess Ab so we expect a strip of colour to appear – CONTROL strip

Pregnant

Not pregnant

Diagnostics

Limitations

- Sensitivity = the probability of detecting the clinical event in those who have the protein marker
- Specificity = the probability of not detecting the clinical event in those who don't have the protein marker
- False negatives
 - dilute urine specimens, low levels of hCG (less than 50 mIU/mL) first morning urine
 - Early in pregnancy
- False positives some cancers cause elevated levels of hCG.
- Confirmation with other test physical examination

Specificity

- The antibody is specific for the β subunit, cross reactivity with the α subunit will cause false positives.
- Test for LH?

Exercise: Design an ovulation test strip

Using pregnancy test strip as an example, how can we design a test strip to test for ovulation?

Things to consider:

- Which antigen shall we target?
- What antibody shall we use to avoid cross reactivity with HCG hormone?

Label each component in the test strip.

