ROB311 Quiz 3

Hanhee Lee

March 20, 2025

Contents

 2
 2
 2
 2
 2

One-Shot Multi-Agent Decision Problems

1 Multi-Agent Problems

Summary: In a Multi-Agent problem, we assume that:

- \bullet Set of states for environment is ${\mathcal S}$
- P agents within environment.
- For each state $s \in \mathcal{S}$:
 - possible actions for agent i is $A_i(s)$
 - set of action profiles is $\mathcal{A}(s) = \prod_{i=1}^{r} \mathcal{A}_i(s)$
- possible state-action pairs are $\mathcal{T} = \{(s, a) \text{ s.t. } s \in \mathcal{S}, a \in \mathcal{A}(s)\}$
- environment in some origin state, s_0
- ullet environment destroyed after N transitions
- agent j wants to find policy $\pi_j(a_j \mid s)$ so that $\mathbb{E}[r_j(p)]$ is maximized
- agents act independently given the environmen

Name	Function:
State transition given state-action pair defined by $\operatorname{tr}:\mathcal{T}\to\mathcal{S}$	tr(s, a) = state transition from s under a
Reward to each agent, i defined by $r_i: \mathcal{Q} \times \mathcal{S} \to \mathbb{R}_+$	$r_i(s, a, \operatorname{tr}(s, a)) = \operatorname{rwd}$ to agent i for $(s, a, \operatorname{tr}(s, a))$
State evolution of environment after N transitions	$p = \langle (s_0, a^{(1)}, s_1), \dots, (s_{N-1}, a^{(N)}, s_N) \rangle$
• Given sequence of actions: $p.a = \langle a^{(1)}, \dots, a^{(n)} \rangle$ • $s_N = \tau(s_{n-1}, a^{(n)})$	
reward to agent i	$r_i(p) = \sum_{n=1}^{N} r_i(s_{n-1}, a^{(n)}, s_n)$
expected-reward (value) of playing a from s for agent j	$p(s' s) := \mathbb{P}[S_{t+1} = s' S_t = s]$
Prob. that state of the env. after T transitions is s	$p_T(s) := \mathbb{P}[S_T = s]$ $= \sum_{s'} p_{T-1}(s')p(s s')$
 \$p_{T-1}(s')\$: Prob. \$s'\$ at \$T\$-1 (given) \$-p_0(s)\$: Base case \$p(s s')\$: Prob. \$s\$ given \$s'\$ (from graph) 	

1.1 Action Equilibria

- 1.1.1 Finding Action Equilibria
- 1.2 Strategy Equilibria
- 1.2.1 Finding Strategy Equilibria
- 1.2.2 Existence of Stategy Equilibria
- 1.2.3 Convergence of Stategy Equilibria
- 1.3 Examples
- 1.3.1 Optimal Action Profiles