# පිළිතුරු



18

# **තිකෝණමිති**ය

# 18.1 අභාපාසය

1. පහත දැක්වෙන රූප ඇසුරෙන් දී ඇති වගුව සම්පූර්ණ කරන්න.



|       | ඍජුකෝණික<br>තිකෝණය | කර්ණය      | සළකා බලන<br>කෝණය | සම්මුඛ පාදය | බද්ධ පාදය |
|-------|--------------------|------------|------------------|-------------|-----------|
| (i)   | KLM                | KM         | LŔM              | LM          | KL        |
|       |                    |            | LMK              | <b>KL</b>   | LM        |
| (ii)  | PNO                | OP         | NÔP              | NP          | NO NO     |
|       |                    |            | <i>OPN</i>       | NO NO       | NP        |
| (iii) | QRT                | QR         | $R\hat{Q}T$      | RT          | QT        |
|       | QTS                | <u>Q</u> S | TQS              | TS          | QT        |
| (iv)  | UVX                | UX         | VÛX              | VX          | UV        |
|       | UVW                | UW         | UWV              | <b>UV</b>   | VW        |

## 18.2 අභාගාසය

1. පහත දැක්වෙන එක් එක් රූප සටහනේ දැක්වෙන තොරතුරු ඇසුරෙන්, එම රූපය යටින් දී ඇති හිස්තැන් සම්පූර්ණ කරන්න.







$$\sin \theta = ..\frac{4}{5}... = \frac{\varpi}{\varpi}$$

$$\sin \alpha = ...\frac{3}{5}....$$

$$\sin x = .\frac{5}{5\sqrt{2}} = .\frac{1}{\sqrt{2}}$$

$$\cos \theta = \frac{3}{5} = \frac{8}{5} = \cos \alpha = \frac{4}{5} = \frac{$$

$$\cos \alpha = ...\frac{4}{5}$$
.....

$$\cos x = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt[3]{2}}$$

$$\tan \theta = \frac{4}{3} = \frac{6}{2}$$
  $\tan \alpha = \frac{3}{4} = \frac{$ 

$$\tan \alpha = \frac{3}{4}$$
....

$$\tan x = .\frac{5}{5} = .1...$$

**2.** 
$$\sin \theta = \frac{5}{13}$$
 නම්

- (i)  $\tan \theta$
- (ii)  $\cos heta$  සොයන්න.



- (i)  $\tan \theta = \frac{5}{12}$
- (ii)  $\cos \theta = \frac{12}{13}$

$$AC^{2} = AB^{2} + BC^{2}$$
  
 $13^{2} = AB^{2} + 5^{2}$   
 $169 = AB^{2} + 25$   
 $AB^{2} = 169 - 25$   
 $AB^{2} = 144$   
 $AB = 12$ 

- $oldsymbol{3.}$  රූපයේ දැක්වෙන ABC තිකෝණයේ  $ar{B}$  ඍජුකෝණයකි.  $\hat{C}$  = heta ලෙස දැක්වූ විට,
  - (i)  $B\hat{A}C$ ,  $\theta$  ඇසුරෙන් දක්වන්න.
  - (ii)  $\sin \theta = \cos (90^\circ \theta)$  බව පෙන්වන්න.
  - (iii)  $\frac{\sin \theta}{\cos \theta} = \tan \theta$  බව පෙන්වන්න.



(i)  $B\hat{A}C = 90^{\circ} - \theta$ 

- (iii)  $\sin \theta = \frac{AB}{AC} \rightarrow \bigcirc$
- $\cos \theta = \frac{BC}{AC} \rightarrow 3$

(ii) 
$$\sin \theta = \frac{AB}{AC} \rightarrow \textcircled{1}$$

$$\cos (90^{\circ} - \theta) = \frac{AB}{AC} \rightarrow ②$$

$$\sin\theta = \cos(90^{\circ} - \theta)$$

 $\frac{\sin \theta}{\cos \theta} = \frac{AB}{AC} \div \frac{BC}{AC}$  $=\frac{AB}{AC}\times\frac{AC}{BC}$  $=\frac{AB}{BC}$  $= \tan \theta$ 

|     | 30°                  | 45°                  | 60°                  |
|-----|----------------------|----------------------|----------------------|
| sin | $\frac{1}{2}$        | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ |
| cos | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$        |
| tan | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           |

දැන් ඉහත වගුවේ අගය යොදා ගනිමින් පහත අභාහසයේ යෙදෙන්න.

## 18.3 අභනාසය

 ${f 1.}$  පහත දැක්වෙන තිුකෝණවල දී ඇති දත්ත අනුව,  ${f X}$  මගින් දැක්වෙන පාදවල දිග සොයන්න.

(i) A





(iii)



$$\sin 30^{\circ} = \frac{AB}{AC}$$

$$\sin 30^{\circ} = \frac{x}{2}$$

$$x = 2 \times \sin 30^{\circ}$$

$$x = 2 \times \frac{1}{2}$$

$$x = 1 cm$$

$$\tan 45^{\circ} = \frac{DE}{DF}$$

$$\tan 45^{\circ} = \frac{x}{2}$$

$$x = 2 \times \tan 45^{\circ}$$

$$x = 2 \times 1$$

$$x = 2 cm$$

$$\cos 60^{\circ} = \frac{HI}{GH}$$

$$\cos 60^{\circ} = \frac{5}{x}$$

$$\frac{1}{2} = \frac{5}{x}$$

$$x = 10 cm$$

- 2. පහත දැක්වෙන එක් එක් පුකාශනයේ අගය, ඉහත වගුවේ සඳහන් අනුපාත යොදා ගනිමින් සොයන්න.
  - **a.**  $\sin 30^{\circ} + \cos 60^{\circ}$

$$= \frac{1}{2} + \frac{1}{2}$$

**c.**  $\sin 60^{\circ} + \cos 30^{\circ} + \tan 60^{\circ}$ 

$$= \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + \sqrt{3}$$

$$=\sqrt{3}+\sqrt{3}$$

$$= 2\sqrt{3}$$

**b.**  $\sin 45^{\circ} + \cos 45^{\circ} + \tan 60^{\circ}$ 

**d.**  $\cos 60^{\circ} + \sin 30^{\circ} + \tan 60^{\circ}$ 

$$=$$
  $\frac{1}{\sqrt{2}}$  +  $\frac{1}{\sqrt{2}}$  +  $\sqrt{3}$ 

$$=$$
  $\frac{1}{2}$  +  $\frac{1}{2}$  +  $\sqrt{3}$ 

$$= \frac{2}{\sqrt{2}} + \sqrt{3}$$

$$= 1 + \sqrt{3}$$

$$= \frac{2 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} + \sqrt{3}$$

$$= \sqrt{2} + \sqrt{3}$$

- 3. පහත දැක්වෙන පුකාශන සතාහපනය කරන්න.
  - (i)  $\sin 30^{\circ} \cos 60^{\circ} + \cos 30^{\circ} \sin 60^{\circ} = 1$

$$\begin{array}{lll} \text{D. } \text{D.} & = \sin 30^{\circ} \cos 60^{\circ} + \cos 30^{\circ} \sin 60^{\circ} \\ & = \frac{1}{2} \times \frac{1}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} \\ & = \frac{1}{4} + \frac{3}{4} \\ & = 1 \\ & = \underline{\epsilon}, \, \text{D.} \end{array}$$

(ii)  $\cos 30^{\circ} \cos 60^{\circ} - \sin 60^{\circ} \sin 30^{\circ} = 0$ 

$$\begin{array}{l} \text{2. } \Theta_{7} = \cos 30^{\circ} \cos 60^{\circ} - \sin 60^{\circ} \sin 30^{\circ} \\ \\ = \frac{\sqrt{3}}{2} \times \frac{1}{2} - \frac{\sqrt{3}}{2} \times \frac{1}{2} \\ \\ = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} \\ \\ = 0 \\ \\ = \underbrace{\epsilon. \ \Theta_{7}.} \end{array}$$

(iii) 
$$\tan 30^{\circ} = \frac{\tan 60^{\circ} - \tan 30^{\circ}}{1 + \tan 60^{\circ} \tan 30^{\circ}}$$

$$\xi. \, \, \odot_7. \, = \frac{\tan 60^\circ - \tan 30^\circ}{1 + \tan 60^\circ \tan 30^\circ}$$
$$= \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1 + \sqrt{3} \times \frac{1}{\sqrt{3}}}$$

$$= \frac{\left(\frac{\sqrt{3} \times \sqrt{3} - 1}{\sqrt{3}}\right)}{1 + 1} = \frac{\left(\frac{3 - 1}{\sqrt{3}}\right)}{2} = \frac{\left(\frac{2}{\sqrt{3}}\right)}{2} = \frac{2}{\sqrt{3}} \div 2 = \frac{1}{\sqrt{3}}$$

4. දී ඇති රූපයේ දැක්වෙන තොරතුරු අනුව,

- (i) AX දිග
- (ii) AC පාදයේ දිග සොයන්න. ( $\sqrt{3} = 1.7$  ලෙස ගන්න)



(i) 
$$\tan 45^\circ = \frac{AX}{BX}$$
  
 $\tan 45^\circ = \frac{AX}{5}$   
 $1 = \frac{AX}{5}$   
 $AX = 5 \text{ cm}$ 

(ii) 
$$\sin 60^{\circ} = \frac{AX}{AC}$$

$$\sin 60^{\circ} = \frac{5}{AC}$$

$$\frac{\sqrt{3}}{2} = \frac{5}{AC}$$

$$AC = \frac{10}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$= \frac{10\sqrt{3}}{3}$$

$$= \frac{10\sqrt{3}}{3}$$

$$= \frac{10\times1.7}{3}$$

$$= \frac{17}{3}$$

$$= 5.66 \text{ cm}$$

$$AC = \frac{10}{1.7}$$

$$= \frac{10^{1}}{10^{0.2304}}$$

$$= 10^{1-0.2304}$$

$$= 10^{0.7696}$$

$$= 5.883$$

$$AC = 5.883 \text{ cm}$$

( $\sqrt{3}$  හි අගය සඳහා දශමස්ථාන එකක් පමණක් භාවිතා කර ඇති නිසා පිළිතුරු දෙකක් ලැබී ඇත.)

**5.** ABCD සෘජුකෝණාසුයේ BC පාදය  $12~{
m cm}$  වේ නම් විකර්ණයේ දිග සොයන්න.



$$\sin 30^\circ = \frac{BC}{AC}$$
  $\frac{1}{2} = \frac{12}{AC}$   $AC = 24 \text{ cm}$  විකර්ණයේ දිග = 24 cm

6. ඇන්ටෙනා කණුවක් සිරස් ව තබා ගැනීම සඳහා එහි මුදුනේ සිට 50 cm ක් පහළින් ගැට ගසන ලද කම්බියක අනික් කෙළවර කණුව පාමුල සිට 5 m ඇතින් තිරස් පොළොවේ පිහිටි කුඤ්ඤයකට තදින් ඇදෙන සේ ගැට ගසා ඇත. කම්බිය හා තිරස් පොළොව අතර කෝණය 30° වේ.

- (i) මෙම තොරතුරු දළ රූපයකින් දක්වන්න.
- (ii)  $\sqrt{3}$  = 1.7 ලෙස ගෙන කණුවේ උස සොයන්න.

(i)



(ii)

$$\tan 30^\circ = \frac{AC}{DA}$$

$$\frac{1}{\sqrt{3}} = \frac{h - 0}{5}$$

$$h - 0.5 = \frac{5}{\sqrt{3}}$$

$$h - 0.5 = \frac{5}{1.7}$$

$$\tan 30^{\circ} = \frac{1}{DA}$$

$$\frac{1}{\sqrt{3}} = \frac{h - 0.5}{5}$$

$$h - 0.5 = \frac{5}{\sqrt{3}}$$

$$h - 0.5 = \frac{5}{1.7}$$

$$= \frac{10^{0.6990}}{10^{0.2304}}$$

$$= 10^{0.4686}$$

$$= 2.942$$

$$h - 0.5 = 2.942$$

$$h = 2.942 + 0.5$$

$$h = 3.442$$

කණුවේ උස 
$$= 3.442~\mathrm{m}$$

## 18.4 අභාගාසය

1. පහත දැක්වෙන එක් එක් අගය ටැංජන වගුව භාවිතයෙන් සොයන්න.

**a.** 
$$\tan 25^{\circ} = 0.4663$$

**b.** 
$$\tan 37^{\circ} = 0.7536$$

c. 
$$\tan 40^{\circ} 54' = \tan 40^{\circ} 50' + 4'$$

$$= 0.8642 + 0.0020$$

$$= 0.8662$$

 $oldsymbol{2}$ . පහත දැක්වෙන එක් එක් ටැංජන අගයට අදාළ heta කෝණය සොයන්න.

**a.** 
$$\tan \theta = 0.3214$$

**a.** 
$$\tan \theta = 0.3214$$
 **b.**  $\tan \theta = 0.7513$  **c.**  $\tan \theta = 0.9432$ 

**c.** 
$$\tan \theta = 0.9432$$

**a.** 
$$\tan \theta = 0.3214$$

$$= 0.3185 + 0.0029$$

$$\theta = 17^{\circ} 40' + 9'$$

$$\theta = 17^{\circ} \, 49'$$

**b.** 
$$\tan \theta = 0.7513$$

$$= 0.7490 + 0.0023$$

$$\theta = 36^{\circ} 50' + 5'$$

$$\theta = 36^{\circ} 55'$$

**c.** 
$$\tan \theta = 0.9432$$

$$= 0.9380 + 0.0052$$

$$\theta = 43^{\circ} \, 10' + 9'$$

$$\theta = 43^{\circ} \, 19'$$

- 3. පහත දැක්වෙන එක් එක් අගය සයින් වගුව භාවිතයෙන් සොයන්න.
- **a.** sin 10° 30′ **b.** sin 21° 32′ **c.** sin 25° 57′

**a.** 
$$\sin 10^{\circ} 30' = 0.1822$$

**b.** 
$$\sin 21^{\circ} 32' = \sin 21^{\circ} 30' + 2'$$
 **c.**  $\sin 25^{\circ} 57' = \sin 25^{\circ} 50' + 7'$   
=  $0.3665 + 0.0005$  =  $0.4358 + 0.001$ 

$$= 0.3670$$

$$\sin 25^{\circ} 57' = \sin 25^{\circ} 50' + 7'$$

$$= 0.4358 + 0.0018$$

$$= 0.4376$$

 $oldsymbol{4.}$  පහත දැක්වෙන එක් එක් සයින අගයට අදාළ heta කෝණය සොයන්න.

**a.** 
$$\sin \theta = 0.5000$$
 **b.**  $\sin \theta = 0.4348$  **c.**  $\sin \theta = 0.6437$ 

**b.** 
$$\sin \theta = 0.4348$$

**c.** 
$$\sin \theta = 0.6437$$

**a.** 
$$\sin \theta = 0.5000$$

$$\theta=30^{\circ}$$

**c.** 
$$\sin \theta = 0.6437$$

$$= 0.6428 + 0.0009$$

**b.** 
$$\sin \theta = 0.4348$$

$$= 0.4331 + 0.0017$$

$$\theta = 25^{\circ} 40' + 6'$$

$$\theta = 25^{\circ} \, 46'$$

$$\theta = 40^{\circ} 00' + 4'$$

$$\theta = 40^{\circ} \, 04'$$

- 5. පහත දැක්වෙන එක් එක් අගය කෝසයින වගුව භාවිතයෙන් සොයන්න. පිළිතුරුවල නිවැරදිතාව සයින් වගුව භාවිතයෙන් පරීක්ෂා කරන්න.

  - **a.** cos 5° 40′ **b.** cos 29° 30′ **c.** cos 44° 10′

**a.** 
$$\cos 5^{\circ} 40' = 0.9951$$

**a.** 
$$\cos 5^{\circ} 40' = \underline{0.9951}$$
  $\cos 5^{\circ} 40' = \sin (90^{\circ} - 5^{\circ} 40') = \sin 84^{\circ} 20' = \underline{0.9951}$ 

**b.** 
$$\cos 29^{\circ} 30' = \underline{0.8704}$$

$$\cos 29^{\circ} 30' = \sin (90^{\circ} - 29^{\circ} 30') = \sin 60^{\circ} 30' = 0.8704$$

c. 
$$\cos 44^{\circ} 10' = 0.7173$$

**c.** 
$$\cos 44^{\circ} 10' = 0.7173$$
  $\cos 44^{\circ} 10' = \sin (90^{\circ} - 44^{\circ} 10') = \sin 45^{\circ} 50' = 0.7173$ 

 $oldsymbol{6}$ . පහත දැක්වෙන එක් එක් කෝසයින අගයට ගැලපෙන heta කෝණය සොයන්න.

**a.** 
$$\cos \theta = 0.4358$$
 **b.**  $\cos \theta = 0.6450$  **c.**  $\cos \theta = 0.9974$ 

**b.** 
$$\cos \theta = 0.6450$$

$$\mathbf{c.} \cos \theta = 0.9974$$

**a.** 
$$\cos \theta = 0.4358$$

$$\theta = 64^{\circ} \, 10'$$

**b.** 
$$\cos \theta = 0.6450$$

$$\theta = 49^{\circ} \, 50'$$

**a.** 
$$\cos \theta = 0.9974$$

$$\theta = 4^{\circ} \, 10'$$

## 18.5 අභාගාසය

 පහත දැක්වෙන එක් එක් තිුකෝණයේ, වීජීය සංකේතයෙන් දක්වා ඇති පාදවල දිග සොයන්න.



$$\sin 30^{\circ}10' = \frac{a}{12}$$

$$a = 12 \times \sin 30^{\circ}10'$$

$$a = 12 \times 0.5025$$

$$\underline{a = 6.03 \ cm}$$



$$\tan 33^{\circ}27' = \frac{b}{10}$$
 $b = 10 \times \tan 33^{\circ}27'$ 
 $b = 10 \times 0.6606$ 
 $b = 6.606 \ cm$ 



$$\sin 40^{\circ}08' = \frac{6}{e}$$

$$e = \frac{6}{\sin 40^{\circ}08'}$$

$$e = \frac{6}{0.6446}$$

$$= \frac{10^{0.7782}}{10^{\overline{1}.8093}}$$

$$= 10^{0.9689}$$

$$= 9.31$$

$$e = 9.31 cm$$



$$\tan 27^{\circ}15' = \frac{d}{20}$$
 $d = 20 \times \tan 27^{\circ}15'$ 
 $d = 20 \times 0.5150$ 
 $d = 10.3 \ cm$ 



$$\sin 58^{\circ}05' = \frac{8}{c}$$

$$c = \frac{8}{\sin 58^{\circ}05'}$$

$$c = \frac{8}{0.8488}$$

$$\underline{c = 9.424 \ cm}$$





$$\tan 23^{\circ}48' = \frac{f}{15}$$
 $f = 15 \times \tan 23^{\circ}48'$ 
 $f = 15 \times 0.4411$ 
 $f = 6.6165 \ cm$ 

2. පහත දැක්වෙන එක් එක් තිුකෝණයේ, වීජිය සංකේතයෙන් දක්වා ඇති කෝණයේ අගය සොයන්න.





#### (ii)



#### (iii)



$$\tan p = \frac{5}{8}$$

$$\tan p = 0.6250$$

$$p = 32^{\circ}$$

$$\sin q = \frac{7}{10}$$

$$\sin q = 0.7000$$

$$q = 44^{\circ}26'$$

$$\cos r = \frac{5}{12}$$

$$\cos r = 0.4166$$

$$r = 65^{\circ}23'$$

- $oldsymbol{3.}$  රූපයේ දැක්වෙන තොරතුරු මත ABC තිකෝණයේ
  - (i) පරිමිතිය
  - (ii) වර්ගඵලය

සොයන්න.



#### ADC සෘජුකෝණික $\Delta$ සැලැකූ විට

$$\sin 40^{\circ} = \frac{DC}{AC}$$

$$\sin 40^{\circ} = \frac{5}{AC}$$

$$AC = \frac{5}{\sin 40^{\circ}}$$

$$AC = \frac{5}{0.6428}$$

$$AC = 7.78 cm$$

## ADC සෘජුකෝණික $\Delta$ සැලැකූ විට

$$\tan 40^\circ = \frac{DC}{4D}$$

$$\tan 40^{\circ} = \frac{5}{4D}$$

$$AD = \frac{5}{\tan 40^{\circ}}$$

$$AD = \frac{5}{0.8391}$$

$$= \frac{5}{0.6428}$$

$$= \frac{10^{0.6990}}{10^{\overline{1}.9239}}$$

$$= 10^{0.7751}$$

= 5.958

$$AD = 5.958 cm$$

## ABD සෘජුකෝණික $\Delta$ සැලැකූ විට

$$\sin 32^{\circ}22' = \frac{AD}{AB}$$

$$0.5353 = \frac{5.958}{AB}$$

$$AB = \frac{5.958}{0.5353}$$

$$AB = 11.13 \ cm$$

$$= \frac{5.958}{0.5353}$$
$$= \frac{10^{0.7751}}{10^{\overline{1}.7286}}$$

 $=\frac{10^{0.6990}}{10^{\overline{1}.8080}}$ 

 $=10^{0.8910}$ 

= 7.78

 $=10^{1.0465}$ 

## ABD සෘජුකෝණික $\Delta$ සැලැකූ විට

$$\tan 32^{\circ}22' = \frac{AD}{BD}$$

$$0.6338 = \frac{5.958}{BD}$$

$$BD = \frac{5.958}{0.6338}$$

$$BD = 9.404 \ cm$$

$$=\frac{5.958}{0.6338}$$

$$=\frac{10^{0.7751}}{10^{1.8019}}$$

$$=10^{0.9732}$$

$$= 9.404$$

(i) ABC තිකෝණයේ පරිමිතිය =AB+BD+DC+CA =11.13+9.404+5+7.78  $=33.314\ cm$ 



(ii) 
$$ABC$$
 තිකෝණයේ වර්ගඵලය  $= \frac{1}{2} \times BC \times AD$   $= \frac{1}{2} \times 14.404 \times 5.958$   $= 7.202 \times 5.958$   $= 42.9 \ cm^2$ 

$$= 7.202 \times 5.958$$

$$= 10^{0.8574} \times 10^{0.7751}$$

$$= 10^{1.6325}$$

$$= 42.9$$



රූපයේ දැක්වෙන තොරතුරු මත ABC තිකෝණයේ ABC හි අගය  $30^\circ~58\,'$ ක් බව පෙන්වන්න.

ABD ඍජුකෝණික  $\Delta$  සැලැකූ විට

$$\tan A\widehat{B}D = \frac{AD}{BD}$$

$$= \frac{12}{20}$$

$$= 0.6000$$

$$A\widehat{B}D = 30^{\circ} 58'$$

$$A\widehat{B}C = 30^{\circ} 58'$$



PQRS නුපීසියමේ SR>PQ වේ.  $PS=12~{
m cm}$  හා  $QR=15~{
m cm}$  නම් QRS හි අගය සොයන්න.

PSX සෘජුකෝණික  $\Delta$  සැලැකූ විට

$$\sin 55^{\circ} = \frac{PX}{PS}$$
  
 $0.8192 = \frac{PX}{12}$ 

$$PX = 12 \times 0.8192 = QY$$

QRY සෘජුකෝණික  $\Delta$  සැලැකූ විට

$$\sin Q\hat{R}Y = \frac{QY}{QR}$$

$$= \frac{12 \times 0.8192}{15}$$

$$= \frac{3.2768}{5}$$

$$= 0.6553$$

$$Q\hat{R}Y = 40^{\circ} 56'$$

$$Q\hat{R}S = 40^{\circ} 56'$$

## 18.6 අභාපාසය

- 1. පහත දැක්වෙන තොරතුරු ඇසුරෙන් දළ රූප සටහන් අඳින්න.
  - (i) AB සිරස් කුළුනක මුදුන A වේ. කුළුනේ පාමුල සිට සම බිමේ මීටර 20ක් ඈතින් සිටින නිරීක්ෂකයෙකුට කුළුන මුදුන පෙනෙන ආරෝහණ කෝණය  $55^{\circ}~20~{}'$ කි. නිරීක්ෂකයාගේ උස  $1.5~{}$ m වේ.



(ii) මීටර 35ක් උස දුරකථන සම්පේෂණ කුළුණක මුදුනේ සිට එහි අලුත්වැඩියාවක යෙදෙන කාර්මිකයෙක්, කුළුණු පිහිටි බිමේ, ඈත නතර කර තිබෙන වාහනයක් පෙනෙන, අවරෝහණ කෝණය 50°කි.



(iii) සිරස් ගොඩනැගිල්ලක දෙවන මහලේ සිටින්නෙක්, මීටර 75ක් දුරින් වූ පුදීපස්ථම්භයක මුදුන 27° 35′ක ආරෝහණ කෝණයකින් ද, එහි පාමුල පෙනෙන අවරෝහණ කෝණය 41° 15′කි.



(iv) ළමයෙක්, සිරස් විදුලි සම්පේෂණ කුළුනක මුදුන  $30^\circ$  ආරෝහණ කෝණයකින් දකියි.  $25~\mathrm{m}$  ක් කුළුන දෙසට ලංවී නැවත කුළුන දෙස බැලූ විට එහි මුදුන පෙනෙන්නේ  $50^\circ$ ක ආරෝහණ කෝණයකිනි (ළමයාගේ උස නොසළකා හරින්න).



2. 20 m උස පුදීපස්ථම්භයක මුදුනේ වූ ජනේලයකින්, පිටත බලන ආරක්ෂක නිලධාරියෙක් මුහුදේ යාතුා කරන නැවක් 30° 15 'ක අවරෝහණ කෝණයකින් තිබෙන බව නිරීක්ෂණය කරයි. නැවට පුදීපස්ථම්භයේ සිට ඇති දුර ගණනය කරන්න.



$$\tan 30^{\circ}15' = \frac{AB}{AC}$$

$$0.5832 = \frac{20}{AC}$$

$$AC = \frac{20}{0.5832}$$

$$AC = 34.3 \text{ m}$$



නැවට පුදීපස්ථම්භයේ සිට ඇති දුර  $= 34.3 \ \mathrm{m}$ 

3. සිරස් කුළුනක පාමුල සිට සම මට්ටමේ මීටර 20ක් ඇතින් පිහිටි ලක්ෂායක සිට බලන විට කුළුන මුදුනේ ආරෝහණ කෝණය 35° 12 ක් විය. කුළුන සිරස් ව රඳවා ගැනීමට කුළුන පාමුල සිට මීටර 20ක් දුරින් සම බිමේ සවිකර ඇති කුඤ්ඤයක සිට කම්බියක්, හොඳින් ඇදෙන සේ කුළුන මුදුනට ගැට ගැසීමට අවශා ය. ඒ සඳහා අවශා කම්බියේ දිග සොයන්න. (නිරීක්ෂකයාගේ උස නොසළකා හරින්න, ගැට ගැසීම සඳහා කම්බියේ මීටර බාගයක දිගක් අවශා බව සලකන්න)



$$\cos 35^{\circ}12' = \frac{AC}{BC}$$

$$0.8172 = \frac{20}{BC}$$

$$BC = \frac{20}{0.8172}$$

$$BC = 24.47 \text{ m}$$

$$= \frac{20}{0.8172}$$

$$= \frac{10^{1.3010}}{10^{\overline{1}.9123}}$$

$$= 10^{1.3887}$$

$$= 24.47$$

අවශා කම්බියේ දිග 
$$= 24.47 + 0.5 \text{ m}$$
  $= 24.97 \text{ m}$ 

4. සිරස් විදුලි කම්බි කණුවක පාමුල පිහිටි සම බිමෙහි ලක්ෂායක සිට බලන විට කණුව මුදුනේ ආරෝහණ කෝණය  $50^\circ$  කි. කණුවේ උස මීටර 12ක් නම්, කණුව පාමුල සිට නිරීක්ෂණ ලක්ෂායට ඇති දුර සොයන්න. (නිරීක්ෂකයාගේ උස නොසළකා හරින්න)



$$\tan 40^{\circ} = \frac{AC}{AB}$$

$$0.8391 = \frac{x}{12}$$

$$x = 12 \times 0.8391$$

$$= 10.0692 \text{ m}$$

කණුව පාමුල සිට නිරීක්ෂණ ලක්ෂායට ඇති දුර  $=10.0692~\mathrm{m}$ 

- 5. තිරස් පොළොව මත A හා B සිරස් කුළුනු දෙකක මීටර් 200ක පරතරයකින් පිහිටා තිබේ. A කුළුන මුදුනේ සිට, B හි මුදුනේ ආරෝහණ කෝණය  $4^\circ$  10 'ක් ද, B හි පාමුල අවරෝහණ කෝණය  $8^\circ$  15 'ක් ද බව පෙණුනි.
  - (i) මෙම තොරතුරු දළ රූපයකින් දක්වන්න.
  - (ii) A හා B කුළුනුවල උස වෙන වෙන ම ආසන්න මීටරයට සොයන්න.
  - (iii) A කුළුන පාමුල සිට, B කුළුන මුදුනෙහි ආරෝහණ කෝණය සොයන්න.



(ii) ABC සෘජුකෝණික තිකෝණය සැලැකු විට

$$an 8°15' = rac{AC}{AB}$$
 $0.1450 = rac{x}{200}$ 
 $x = 200 \times 0.1450 = 29$ 
 $A$  කුළුමන් උස =  $29$  m



$$\tan \theta = \frac{DB}{AB}$$

$$= \frac{43.58}{200}$$

$$= 0.2179$$

$$\theta = 12^{\circ}18'$$

DEC සෘජුකෝණික තිකෝණය සැලැකූ විට

$$\tan 4^{\circ}10' = \frac{DE}{CE}$$

$$0.0729 = \frac{y}{200}$$

$$y = 200 \times 0.0729 = 14.58$$

$$B$$
 කුළුනේ උස =  $x + y$   
=  $29 + 14.58$   
=  $43.58 \text{ m}$ 

- 6. එකිනෙකට මීටර 20 දුරින් පිහිටි සිරස් කණු දෙකක් අතර හරිමැද සිටින්නෙකුට එක් කණුවක මුදුනේ ආරෝහණ කෝණය  $60^\circ$  ක් බව ද, අනෙක මුදුනේ ආරෝහණ කෝණය  $30^\circ$  ක් බව ද පෙනුනි. (නිරීක්ෂකයාගේ උස නොසලකා හරින්න).
  - (i) කණු දෙකේ උස වෙන වෙනම සොයන්න.
  - (ii) එක් කණුවක මුදුනේ ගැට ගසන ලද කම්බියක් අනෙක් කණුවේ මුදුනේ හොඳින් ඇදෙන සේ ගැට ගසා ඇත. ගැටවලට යොදා ගත් කොටස නොසළකා හැර එම කම්බියේ දිග සොයන්න



(i) ABE සෘජුකෝණික තිුකෝණය සැලැකූ විට

$$an 60^\circ = rac{AB}{AE}$$
  $an 60^\circ = rac{AB}{10}$   $an 60^\circ = rac{AB}{10}$   $an 60^\circ = 10 imes 1.732$   $an 17.32$   $an 1$ 

CDE සෘජුකෝණික තිකෝණය සැලැකූ විට

$$an 30^\circ = rac{CD}{EC}$$
 $an 30^\circ = rac{CD}{10}$ 
 $an 30^\circ = rac{CD}{10}$ 
 $an 30^\circ = 10 imes an 30^\circ$ 
 $an 10 imes 0.5774$ 
 $an 5.774$ 
 $an 20$  කුණුවේ උස =  $5.774 imes 1.00$ 



BF = AB - CD = 17.32 - 5.774 = 11.546

BDF සෘජුකෝණික තිකෝණය සැලැකු විට

$$\tan \theta = \frac{BF}{FD} = \frac{11.546}{20}$$
$$= 0.5773$$
$$\theta = 30^{\circ}$$

BDF සෘජුකෝණික තිුකෝණය සැලැකූ විට

$$\sin \theta = \frac{BF}{BD}$$

$$\sin 30^{\circ} = \frac{11.546}{BD}$$

$$BD = \frac{11.546}{\sin 30^{\circ}}$$

$$= \frac{11.546}{0.5} = 23.092$$

අවශා කම්බියේ දිග  $= 23.092 \, m$ 

## 18.7 අභාගාසය

- 1. පහත දැක්වෙන තොරතුරුවලට අදාළ දළ රූප සටහන් අඳින්න.
  - (i) A සිට  $080^\circ$ ක දිගංශයකින් හා මීටර 12ක් දුරින් B පිහිටා ඇත.



(ii) Pසිට 120°ක දිගංශයකින් හා මීටර 50ක් දුරින් Qද, Qසිට 040°ක දිගංශයකින් හා මීටර 25ක් දුරින් Rද පිහිටයි.



(iii) Xසිට  $150^\circ$  ක දිගංශයකින් හා මීටර 30ක් දුරින් Yද, Yසිට  $200^\circ$  ක දිගංශයකින් හා මීටර 100ක් දුරින් Zද, Zසිට  $080^\circ$  ක දිගංශයකින් හා මීටර 50ක් දුරින් Aද පිහිටයි.



- **2.** A නම් ස්ථානයෙන් ගමන් අරඹන යතුරුපැදිකරුවෙක්, නැගෙනහිර දිශාව ඔස්සේ කිලෝමීටර 8ක් ගොස්, එතැනින් උතුරු දිශාවට හැරී, කිලෝමීටර 6ක් ගමන් කර B නම් ස්ථානයේ නතර වේ.
  - (i) මෙම තොරතුරු දළ රූප සටහනකින් දක්වන්න.
  - (ii) B සිට A හි දිගංශය සොයන්න.
  - (iii) A හා B අතර කෙටීම දුර සොයන්න.



(ii) 
$$\tan \theta = \frac{AC}{BC}$$

$$= \frac{8}{6}$$

$$= 1.3333$$

$$\theta = 53^{\circ}08'$$

$$B සිට A හි දිගංශය = 180^{\circ} + 53^{\circ}08'$$

$$= 233^{\circ}08'$$

(iii) 
$$\sin \theta = \frac{AC}{AB}$$
$$\sin 53^{\circ}08' = \frac{8}{AB}$$
$$0.8000 = \frac{8}{AB}$$
$$AB = \frac{8}{0.8}$$
$$AB = 10$$

A හා B අතර කෙටීම දුර  $=10\ m$ 

- $m{3.}$  නැවක්, A නම් වරායෙන් පිටත්ව  $040^\circ$ ක දිගංශයකින්, කිලෝමීටර 150ක් දුර යාතුා කර Bවරායට ළඟා වේ. Bවරාය පිහිටා ඇතතේ,
  - (i) A වරායට කවර දුරක් උතුරින් ද?
  - (ii) A වරායට කවර දුරක් නැගෙනහිරින් ද?



(i) 
$$\sin 40^\circ = \frac{AC}{AB}$$
  
 $AC = AB \times \sin 40^\circ$   
 $AC = 150 \times 0.6428$   
 $AC = 96.42 \text{ km}$ 

A වරායට  $96.42~\mathrm{km}$  උතුරින්

(ii) 
$$\sin 50^\circ = \frac{BC}{AB}$$
  
 $BC = AB \times \sin 50^\circ$   
 $BC = 150 \times 0.7660$   
 $BC = 114.9 \text{ km}$ 

A වරායට  $114.9~\mathrm{km}$  නැගෙනහිරින්

4. සෘජු සමාන්තර ඉවුරු සහිත ගඟක පළල මැන ගැනීමට උත්සාහ දරණ ශිෂායෙක්, ඉවුරේ ලක්ෂායක හිඳ, ඊට පුතිවිරුද්ධ ඉවුරේ, ඉවුරුවලට ලම්බක දිශාවක පිහිටි ගසක් නිරීක්ෂණය කරයි. එතැන් සිට මීටර 75 ක් ඉවුර දිගේ ගොස් බැලූ විට ගස පිහිටි දිගංශය 210°ක් බව නිරීක්ෂණය කළේ ය. දිගංශය සහිත දළ රූපසටහනක් ඇඳ තිකෝණමිතික අනුපාත භාවිතයෙන් ගඟේ පළල ආසන්න මීටරයට සොයන්න.



$$an 60^\circ = rac{AT}{AB}$$
  $AT = AB imes an 60^\circ$   $AT = 75 imes 1.732$   $AT = 129.9 ext{ m}$  ගමෙග් පළල =  $130 ext{ m}$ 



$$an 30^\circ = rac{AT}{AB}$$
  $AT = AB imes an 30^\circ$   $AT = 75 imes 0.5774$   $AT = 43.305 ext{ m}$  ගගේ පළල =  $rac{43 ext{ m}}{2000}$ 

- 5. වන රක්ෂිත කණ්ඩායමක් විසින් ඈත වනය තුළ හටගෙන ඇති ගින්නක් නිරීක්ෂණය කරනු ලැබී ය. ඔවුහු ඒ මොහොතේ ලබා ගත් තොරතුරු අනුව C කඳවුරේ සිට  $070^\circ$  ක වූ දිගංශයකින් පිහිටි A මහා මාර්ගය ඔස්සේ  $2.5~{
  m km}$ ක් ගොස් P ස්ථානයටත් එම ස්ථානයෙන්,  $340^\circ$  ක දිගංශයකින්  $1.5~{
  m km}$  ගොස් F නම් ගින්න තිබූ ස්ථානයටත් ලඟා වූහ.
  - (i) මෙම තොරතුරු දළ රූප සටහනකින් දක්වන්න.
  - (ii) ආරක්ෂක භටයින් කණ්ඩායම මහා මාර්ගයේ සිට ගින්න තිබූ තැනට ඉක්මනින් ළඟා වීමට P ස්ථානයෙන් හැරීමට තෝරා ගැනීම සුදුසු බව හේතු දක්වමින් පෙන්වන්න.
  - (iii) ආරක්ෂක භටයින් සිය කඳවුරේ දී මුල් වරට ගින්න නිරීක්ෂණය කරන්නට ඇත්තේ කවර දිගංශයකින් ද?



(ii) 
$$C\hat{P}F = 340^{\circ} - (180^{\circ} + 70^{\circ})$$
  
 $C\hat{P}F = 90^{\circ}$ 

A මාර්ගයේ සිට F ස්ථානයට ඇති කෙටිම දුර F සිට ඇති ලම්බ දුරයි.  $C\widehat{P}F=90^\circ$  නිසා ලම්බ දුර FP වේ. එම නිසා P ස්ථානයෙන් හැරීම සුදුසුය.

(iii) *CPF* ඍජුකෝණික තිුකෝණය සැලැකූ විට

$$\tan (\theta + 20^{\circ}) = \frac{CP}{FP}$$

$$= \frac{2.5}{1.5}$$

$$\tan (\theta + 20^{\circ}) = 1.6666$$

$$\theta + 20^{\circ} = 59^{\circ} 02'$$

$$\theta = 59^{\circ} 02' - 20^{\circ}$$

$$\theta = 39^{\circ} 02'$$

මුල් වරට ගින්න නිරීක්ෂණය කළ දිගංශය =  $039^{\circ}\,02'$ 

# මිශු අභාහාසය

 $m{1.}\ P$ හා Q නැව් දෙකක් වරායකින්, එක විට පිටත් වෙයි. එක් එක් නැව පැයට කිලෝ මීටර  $m{18}$ ක් වූ සමාන වේගයෙන් ගමන් කරයි. Pයාතුා කරන්නේ වරායේ සිට  $m{010}^\circ$  දිගංශයක වන අතර, Qයාතුා කරන්නේ වරායේ සිට  $m{320}^\circ$  ක දිගංශයකිනි. පැයකට පසු නැව් දෙක අතර දුර සොයන්න.





$$\sin 25^\circ = \frac{QR}{o \ Q}$$

$$QR = 0 \ Q \times \sin 25^\circ$$

$$= 0 \ Q \times \sin 25^\circ$$

$$= 18 \times 0.4226$$

$$= 7.6068$$

$$QP = 2 \times QR$$
$$= 2 \times 7.6068$$
$$= 15.2136$$

පැයකට පසු නැව් දෙක අතර දුර  $=15.2136~\mathrm{km}$ 

- **2.** පාර දෙපස පිහිටි උස් ගොඩනැගිලි දෙකකින් එකක් අනෙකට වඩා මීටර 9ක් උස වේ. උසින් වැඩි ගොඩනැගිල්ලේ පාමුල සිට බලන විට අනෙක මුදුනේ ආරෝහණ කෝණය  $42^{\circ}\,20'$ කි. උසින් අඩු ගොඩනැගිල්ල මීටර 15ක් උස නම්, නිරීක්ෂකයාගේ උස නොසලකා හරිමින්,
  - (i) ගොඩනැගිලි දෙක අතර දුර සොයන්න.
  - (ii) උසින් අඩු ගොඩනැගිල්ලේ පාමුල සිට උසින් වැඩි ගොඩනැගිල්ලේ මුදුන පෙනෙන ආරෝහණ කෝණය සොයන්න.



(i) ABC සෘජුකෝණික තිුකෝණය සැලැකූ විට

$$\tan 42^{\circ}20' = \frac{AB}{AC}$$

$$0.9110 = \frac{15}{AC}$$

$$AC = \frac{15}{0.9110}$$

$$= \frac{10^{1.1761}}{10^{\overline{1}.9595}}$$

$$= 10^{1.2166}$$

$$AC = 16.47$$

ගොඩනැගිලි දෙක අතර දුර  $= 16.47 \, m$ 

(ii) ACD ඍජුකෝණික තුිකෝණය සැලැකූ විට

$$\tan \theta = \frac{DC}{AC}$$

$$= \frac{24}{16.47}$$

$$= 1.4570$$

$$\theta = 55^{\circ}32'$$

$$= \frac{24}{16.47}$$

$$= \frac{10^{1.3802}}{10^{1.2166}}$$

$$= 10^{0.1636}$$

$$= 1.457$$

**3.** ABC තිකෝණයේ AB=10 cm, BC=7 cm හා  $A\hat{B}C=30^\circ$  26 'වේ. A සිට BCට ඇඳි ලම්බය AXවේ. ABC තිකෝණයේ වර්ගඵලය සොයන්න.



ABX සෘජුකෝණික තිුකෝණය සැලැකූ විට

$$\sin 30^{\circ}26' = \frac{AX}{AB}$$

$$AX = AB \times \sin 30^{\circ}26'$$

$$= 10 \times 0.5065$$

$$= 5.065$$

$$ABC$$
 තිකෝණයේ වර්ගඵලය  $= rac{1}{2} imes BC imes AX$   $= rac{1}{2} imes 7 imes 5.065$   $= 7 imes 2.5325$   $= 17.7275 \ cm^2$ 

- **4.** තිරස් තලයක පිහිටි කොඩි කණු දෙකක් බිමට සිටුවා ඇති ලක්ෂා දෙක යා කරන රේඛාව මත A හා B ලක්ෂා දෙකක් තිබේ. A හි සිට බැලූ විට කොඩි කණු මුදුන්වල ආරෝහණ කෝණ  $30^\circ$  ද,  $60^\circ$  ද වේ. B සිට බැලූ විට ඒවායේ ආරෝහණ කෝණ පිළිවෙළින්  $60^\circ$  ද  $45^\circ$  ද වේ. AB දිග 10 m නම්
  - (i) කොඩි කණු දෙකේ උස වෙන වෙන ම සොයන්න.
  - (ii) කොඩි කණු දෙක අතර දුර සොයන්න.



(ii) BQS සෘජුකෝණික තිකෝණය සැලැකූ විට

$$\sin 30^{\circ} = \frac{BQ}{BS}$$

$$BQ = BS \times \sin 30^{\circ}$$

$$= 10 \times 0.5$$

$$= 5$$

PQ = PB + BQ

(i) APR සෘජුකෝණික තිුකෝණය සැලැකූ විට

$$\tan 60^\circ = \frac{PR}{PA}$$
$$1.732 = \frac{x}{x-10}$$

$$1.732(x-10) = x$$

$$\begin{array}{r}
 1.732x - 17.32 &= x \\
 1.732x - x &= 17.32 \\
 0.732x &= 17.32 \\
 x &= \frac{17.32}{0.732} \\
 x &= \frac{17.32}{0.732} \\
 x &= 23.66
 \end{array}$$

$$= \frac{17.32}{0.732} \\
 = 10^{1.2385} \\
 = 10^{1.3740} \\
 = 23.66$$

$$PR$$
 කණුවේ උස  $=23.66\,m$ 

BQS සෘජුකෝණික තිකෝණය සැලැකූ විට

$$\sin 60^\circ = \frac{SQ}{BS}$$
 $SQ = BS \times \sin 60^\circ$ 
 $= 10 \times 0.8660$ 
 $= 8.66$ 
 $QS$  කුණුවේ උස  $= 8.66 m$