BROUILLON - Sommer des puissances de différentes façons

(27/10/2020 - 29/10/2020)

MANQUE DES DESSINS!

Christophe BAL

Ce document s'intéresse à différents moyens de trouver les formules de sommation de puissances successives d'un réel $q \neq 1$. Nous commencerons par étudier les cas très particuliers des puissances de q=2 et de celles de $q=\frac{1}{2}$ pour passer ensuite au cas général.

Chaque section a été rédigée pour être lue indépendamment des autres même si cela implique de répéter certains calculs ou raisonnements que l'on trouve ailleurs dans le document.

Abréviations utilisées pour les titres des sections

ALG: méthode de type ALG-ébrique
ARI: méthode de type ARI-thmétique
EXP: méthode de type EXP-érimental
GÉO: méthode de type GÉO-métrique
INFO: méthode de type INFO-rmatique

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

Chap	pitre 1. Sommer les puissances de 2	3
1.	[INFO] Comptons les feuilles des arbres binaires complets	3
2.	[ALG] Jouons avec les écritures	4
3.	[ALG] Sommes télescopiques	6
4.	AFFAIRE À SUIVRE	8

Chapitre 1

Sommer les puissances de 2

- 1. [INFO] Comptons les feuilles des arbres binaires complets
- **1.1.** La preuve. ???
- 1.2. Commentaires. ???

2. [ALG] Jouons avec les écritures

2.1. La preuve. Les calculs suivants sont très simples à suivre mais malheureusement peu éclairants d'un point de vue conceptuel. Le cas où n=0 étant évident, on suppose par la suite que $n \in \mathbb{N}^*$.

$$S_n \stackrel{\text{def}}{=} \sum_{k=0}^n 2^k \iff S_n = 1 + \sum_{k=1}^n 2^k$$

$$\iff S_n = 1 + \sum_{i=0}^{n-1} 2^{i+1}$$

$$\iff S_n = 1 + 2 \sum_{i=0}^{n-1} 2^i$$

$$\iff \sum_{k=0}^{n-1} 2^k + 2^n = 1 + 2 \sum_{i=0}^{n-1} 2^i$$

$$\iff S_{n-1} + 2^n = 1 + 2S_{n-1}$$

$$\iff S_{n-1} + 2^n = 1 + 2S_{n-1}$$

$$\iff S_{n-1} = 2^n - 1$$

$$\iff S_{n-1} = 2^n - 1$$
Donc $S_0 = 1$ et $\forall n \in \mathbb{N}^*$, $S_{n-1} = 2^n - 1$. Ceci se réécrit : $\forall n \in \mathbb{N}$, $S_n = 2^{n+1} - 1$.

- 2.2. Commentaires. La méthode précédente se généralise sans souci aux puissances de q comme nous le verrons dans la section ?? page ??. Par contre elle n'éclaire en rien sur la signification de la formule trouvée mais a l'avantage d'être prouvable via un ordinateur.
- **2.3.** D'autres applications. La réécriture de sommes peut permettre de trouver des sommes du type $\sum_{k=0}^{n} k^{p}$. Montrons par exemple comment trouver une formule explicite de la somme $G_n = \sum_{k=0}^{n} k$ où nous laissons de nouveau de côté le cas trivial où n = 0. L'idée est de réécrite $G_n = \sum_{k=0}^{n} k^2$ et non G_n car nous allons voir que la réécriture va éliminer les carrés $G_n = \sum_{k=0}^{n} k^2$ et non G_n car nous allons voir que la réécriture va éliminer les carrés $G_n = \sum_{k=0}^{n} k^2$

$$C_n \stackrel{\text{def}}{=} \sum_{k=0}^n k^2 \iff C_n = 0 + \sum_{k=1}^n k^2$$

$$\iff C_n = \sum_{i=0}^{n-1} (i+1)^2$$

$$\iff C_n = \sum_{i=0}^{n-1} (i^2 + 2i + 1)$$

$$\iff C_n = \sum_{i=0}^{n-1} i^2 + 2 \sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} 1$$

$$\iff C_n = C_{n-1} + 2C_{n-1} + n$$

$$\iff C_{n-1} + n^2 = C_{n-1} + 2C_{n-1} + n$$

$$\iff n^2 = 2C_{n-1} + n$$

$$\implies n^2 = 2C_{n-1} + n$$

^{1.} La lettre G faire référence à Gauss à qui l'on attribue une méthode très astucieuse pour calculer cette somme en la réordonnant.

^{2.} Ce principe d'élimination se repère vite si l'on raisonne directement en réécrivant la somme cherchée G_n .

$$C_n \stackrel{\text{def}}{=} \sum_{k=0}^n k^2 \iff n^2 - n = 2G_{n-1}$$
$$\iff G_{n-1} = \frac{n(n-1)}{2}$$

Donc
$$G_0 = 0$$
 et $\forall n \in \mathbb{N}^*$, $G_{n-1} = \frac{n(n-1)}{2}$. Ceci se réécrit : $\forall n \in \mathbb{N}$, $\sum_{k=0}^n k = \frac{n(n+1)}{2}$.

On peut continuer de façon analogue pour obtenir une formule explicite de C_n via la somme des cubes d'entiers successifs, puis ensuite on en aura une pour la somme des cubes elle-même mais les calculs deviennent vite pénibles 3 ... Voici la partie importante pour découvrir que $\forall n \in \mathbb{N}$,

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} .$$

$$D_{n} \stackrel{\text{def}}{=} \sum_{k=0}^{n} k^{3} \iff D_{n} = \sum_{i=0}^{n-1} (i+1)^{3}$$

$$\iff D_{n} = \sum_{i=0}^{n-1} (i^{3} + 3i^{2} + 3i + 1)$$

$$\iff D_{n} = D_{n-1} + 3C_{n-1} + 3G_{n-1} + n$$

$$\iff n^{3} = 3C_{n-1} + 3G_{n-1} + n$$

$$\iff 3C_{n-1} = n^{3} - 3 \cdot \frac{n(n-1)}{2} - n$$

$$\iff 6C_{n-1} = 2n^{3} - 3n(n-1) - 2n$$

$$\iff 6C_{n-1} = n(2n^{2} - 3n + 1)$$

$$\iff 6C_{n-1} = n(n-1)(2n-1)$$
1 est une racine évidente de $2X^{2} - 3X + 1$.

Finissons en montrant que $\forall n \in \mathbb{N}$, $\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4} = \left(\sum_{k=0}^{n} k\right)^2$. Que c'est joli! Notez que les calculs se compliquent vite et rendent la preuve très inélégante.

$$E_{n} \stackrel{\text{def}}{=} \sum_{k=0}^{n} k^{4} \iff E_{n} = \sum_{i=0}^{n-1} (i^{4} + 4i^{3} + 6i^{2} + 4i + 1)$$

$$\iff n^{4} = 4D_{n-1} + 6C_{n-1} + 4G_{n-1} + n$$

$$\iff 4D_{n-1} = n^{4} - n(n-1)(2n-1) - 2n(n-1) - n$$

$$\iff 4D_{n-1} = n \cdot \left[n^{3} - (n-1)(2n-1) - 2(n-1) - 1 \right]$$

$$\iff 4D_{n-1} = n(n-1) \cdot \left[n^{2} + n + 1 - (2n-1) - 2 \right]$$

$$\iff 4D_{n-1} = n(n-1)(n^{2} - n)$$

$$\iff 4D_{n-1} = n^{2}(n-1)^{2}$$

^{3.} En fait il existe une formulation générale faisant intervenir les nombres de Bernoulli qui ont de jolies propriétés.

8

3. [ALG] Sommes télescopiques

3.1. La preuve. Pour trouver une formule explicite de $S_n \stackrel{\text{def}}{=} \sum_{k=0}^n 2^k$, on peut noter que $2^k = 2 \cdot 2^{k-1} = 2^{k-1} + 2^{k-1}$ donne $2^{k-1} = 2^k - 2^{k-1}$ d'où l'on déduit que $\forall k \in \mathbb{N}, \ 2^k = 2^{k+1} - 2^k$. Ceci nous conduit aux calculs suivants.

$$S_{n} \stackrel{\text{def}}{=} \sum_{k=0}^{n} 2^{k}$$

$$= \sum_{k=0}^{n} (2^{k+1} - 2^{k})$$

$$= \sum_{k=0}^{n} 2^{k+1} - \sum_{k=0}^{n} 2^{k}$$

$$= \sum_{i=1}^{n+1} 2^{i} - \sum_{k=0}^{n} 2^{k}$$

$$= \sum_{i=1}^{n} 2^{i} + 2^{n+1} - 2^{0} - \sum_{k=1}^{n} 2^{k}$$

$$= 2^{n+1} - 1$$

$$i = k+1 \iff k = i-1$$

$$On \text{ fait apparaître des sommes identiques.}$$

$$= 2^{n+1} - 1$$

- **3.2. Commentaires.** Les simplifications du type $\sum_{k=0}^{n} (2^{k+1} 2^k) = 2^{n+1} 2^0$, ou plus généralement du type $\sum_{k=0}^{n} (u_{k+1} u_k) = u_{n+1} u_0$ ou $\sum_{k=0}^{n} (u_k u_{k+1}) = u_0 u_{n+1}$, sont un grand classique : on parle de « sommes télescopiques » ⁴. L'usage de cette astuce fonctionne sans souci avec les puissances de q comme nous le verrons dans la section ?? page ??. Bien qu'élégants du point de vue algébrique, les calculs ci-dessus ne donnent aucune information sur la signification de la formule trouvée.
- **3.3. D'autres applications.** Une application rigolote est l'obtention d'une formule explicite de la somme $I_n \stackrel{\text{def}}{=} \sum_{k=1}^n \frac{1}{k(k+1)}$. Une fois noté que $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$ le calcul est très aisé ⁵.

$$I_n \stackrel{\text{def}}{=} \sum_{k=1}^n \frac{1}{k(k+1)}$$

$$= \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \frac{1}{1} - \frac{1}{n+1}$$

$$= \frac{n}{n+1}$$
Usage de sommes télescopiques.

^{4.} Cette technique permet par exemple de ramener l'étude d'une suite à celle d'une série. Or il se trouve que l'on dispose d'outils très pratiques pour étudier les séries.

^{5.} Cet exemple est concu comme un cas typique d'usage de sommes télescopiques.

On peut aussi utiliser des sommes télescopiques pour expliciter $\sum_{k=0}^{n} k^p$. Montrons par exemple comment trouver une formule explicite de la somme 6 $G_n \stackrel{\text{def}}{=} \sum_{k=0}^{n} k$. L'idée astucieuse consiste à noter que $(k+1)^2 - k^2 = 2k+1$ puis à procéder comme suit.

$$2G_n = \sum_{k=0}^{n} 2k$$

$$= \sum_{k=0}^{n} \left[(k+1)^2 - k^2 - 1 \right]$$

$$= \sum_{k=0}^{n} \left[(k+1)^2 - k^2 \right] - \sum_{k=0}^{n} 1$$

$$= (n+1)^2 - 0^2 - (n+1)$$

$$= (n+1) \cdot \left[(n+1) - 1 \right]$$

$$= n(n+1)$$

Donc $\forall n \in \mathbb{N}$, $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$. La preuve précédente, bien que calculatoire, est relativement élégante ⁷. Continuons avec $C_n \stackrel{\text{def}}{=} \sum_{k=0}^{n} k^2 \text{ via } (k+1)^3 - k^3 = 3k^2 + 3k + 1 \text{ et la formule précédente.}$

Donc
$$\forall n \in \mathbb{N}$$
, $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$.

^{6.} La lettre G faire référence à Gauss à qui l'on attribue une méthode très astucieuse pour calculer cette somme en la réordonnant.

^{7.} Vous pourrez comparer avec celle proposée dans la section 2 page 4.

Finissons en montrant que $\forall n \in \mathbb{N}$, $\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4} = \left(\sum_{k=0}^{n} k\right)^2$. Un très joli résultat! Nous allons utiliser de $(k+1)^4 - k^4 = 4k^3 + 6k^2 + 4k + 1$. Notez que les calculs se compliquent vite et rendent la preuve de moins en moins élégante ⁸.

$$\begin{split} 4\sum_{k=0}^{n}k^{3} &= \sum_{k=0}^{n}\left[\left(k+1\right)^{4}-k^{4}-6k^{2}-4k-1\right] \\ &= \sum_{k=0}^{n}\left[\left(k+1\right)^{4}-k^{4}\right]-6\sum_{k=0}^{n}k^{2}-4\sum_{k=0}^{n}k-\sum_{k=0}^{n}1 \\ &= (n+1)^{4}-0^{4}-6\cdot\frac{n(n+1)(2n+1)}{6}-4\cdot\frac{n(n+1)}{2}-(n+1) \\ &= (n+1)\cdot\left[\left(n+1\right)^{3}-n(2n+1)-2n-1\right] \\ &= (n+1)\cdot\left[\left(n+1\right)^{3}-2n^{2}-3n-1\right] \\ &= (n+1)\cdot\left[\left(n+1\right)^{3}-(n+1)(2n+1)\right] & (-1) \ \textit{est une racine \'evidente de } 2X^{2}+3X+1. \\ &= (n+1)^{2}\cdot\left[\left(n+1\right)^{2}-2n-1\right] \\ &= n^{2}(n+1)^{2} \end{split}$$

4. AFFAIRE À SUIVRE...

^{8.} Un bon cadre d'étude pour des puissances plus élevées est celui utilisant les nombres de Bernoulli qui ont de jolies propriétés.