

Attention Models: da motivação às variantes modernas

Intuição geométrica, formulação matemática e aplicações

Rodrigo Petrus Domingues, Felipe Grael e Vivian

17 de agosto de 2025

1 Motivação e Histórico

- ► Motivação e Histórico
- ► Transformers
- Embeddings & Interpretações
- Treino & Hiperparâmetros
- Séries Temporais
- ▶ Language Models
- ▶ Vision Transformer
- Graph Attention
- Referências Bibliográficas

Redes Neurais Recorrentes

1 Motivação e Histórico

Figura: Redes Neurais Recorrentes 1

- Bem adaptadas para dados sequenciais como séries temporais e texto
- Diferentes tipos de modelos: LSTM, GRU
- Diferentes arquiteturas: simples, bidirecional, encoder-decoder

¹Figura de Christopher Olah

Tipos de camadas RNN

1 Motivação e Histórico

LSTM

$$\begin{split} f_t &= \sigma(W_f[h_{t-1}, x_t] + b_f), & i_t &= \sigma(W_i[h_{t-1}, x_t] + b_i), \\ \tilde{C}_t &= \tanh(W_c[h_{t-1}, x_t] + b_c), & C_t &= f_t \odot C_{t-1} + i_t \odot \tilde{C}_t, \\ o_t &= \sigma(W_o[h_{t-1}, x_t] + b_o), & h_t &= o_t \odot \tanh(C_t) \end{split}$$

GRU

$$\begin{split} z_t &= \sigma(W_z \cdot [h_{t-1}, x_t]) \\ r_t &= \sigma(W_r \cdot [h_{t-1}, x_t]) \\ \tilde{h}_t &= \tanh(W \cdot [r_t \odot h_{t-1}, x_t]) \\ h_t &= (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t \end{split}$$

Arquitetura Seq2Seq para Tradução

1 Motivação e Histórico

- Gargalo: toda a informação comprimida em $c = h_n$.
 - Processamento sequencial \Rightarrow baixa paralelização.
 - Dependências longas ainda são difíceis (mesmo com portas).
 - Gargalo do contexto (vetor único) degrada qualidade em frases longas.

Atenção aditiva [1]

1 Motivação e Histórico

$$e_{ij} = a(s_{i-1}, h_j), \quad \alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}, \quad c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

- h_j : estado oculto do encoder na posição j (palavra x_j).
- s_{i-1} : estado do decoder no passo anterior (y_{i-1}) .
- e_{ij} : escore de alinhamento entre h_j e s_{i-1} (via rede feedforward).
- α_{ij} : pesos normalizados (softmax) \rightarrow distribuem a atenção sobre os h_i .
- c_i : vetor de contexto dinâmico usado para prever y_i .

Intuição: O decoder calcula, em cada passo, um mapa de atenção sobre os estados do encoder, decidindo onde focar.

Integração com encoder bidirecional e decoder

1 Motivação e Histórico

• O encoder é uma RNN bidirecional:

$$h_j = [\overrightarrow{h_j}; \overleftarrow{h_j}]$$

Cada h_j contém contexto passado e futuro da palavra x_j .

- O vetor de contexto c_i é construído a partir desses estados bidirecionais.
- O decoder (RNN unidirecional) atualiza seu estado com:

$$s_i = f(s_{i-1}, y_{i-1}, c_i)$$

- Usa o estado anterior s_{i-1} O símbolo anterior y_{i-1} O contexto dinâmico c_i
- Assim, a cada passo, o decoder combina memória interna + contexto dinâmico para prever y_i .

Resultado: Resolve o gargalo do vetor fixo único (h_n) e permite traduções mais fiéis em frases longas.

Atenção multiplicativa [2]

1 Motivação e Histórico

Três variantes de scoring:

$$e_{ij} = v^{ op} anh(W[s_j; h_i])$$
 (concat, similar ao Bahdanau) $e_{ij} = s_j^{ op} W h_i$ (general) $e_{ij} = s_j^{ op} h_i$ (dot)

- s_i : query \rightarrow estado oculto do decoder.
- h_i : key/value \rightarrow estado do encoder.
- Concat: aproxima-se da atenção aditiva de Bahdanau.
- **General:** bilinear, mais expressivo (aprende W).
- **Dot:** mais simples e rápido (nenhum parâmetro extra).

Nota: Podemos reinterpretar em termos modernos como $Q = s_i$, $K = h_i$, $V = h_i$.

Global vs Local Attention [2]

1 Motivação e Histórico

Figure 2: Global attentional model – at each time step t, the model infers a variable-length alignment weight vector a_t based on the current target state h_t and all source states \bar{h}_s . A global context vector c_t is then computed as the weighted average, according to a_t , over all the source states.

Figure 3: **Local attention model** – the model first predicts a single aligned position p_t for the current target word. A window centered around the source position p_t is then used to compute a context vector c_t , a weighted average of the source hidden states in the window. The weights a_t are inferred from the current target state h_t and those source states h_s in the window.

Self-Attention: dependências em paralelo

1 Motivação e Histórico

$$\operatorname{Att}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V, \quad Q = XW_Q, K = XW_K, V = XW_V.$$

- Calcula relações entre todos os tokens da mesma sequência, em paralelo.
- Multi-head:

$$\operatorname{MHA}(X) = \operatorname{Concat}(H_1, \dots, H_h) W_O, \quad H_r = \operatorname{softmax}\left(\frac{Q_r K_r^{\top}}{\sqrt{d_k}}\right) V_r.$$

• Comparativo: RNN/LSTM exige n passos sequenciais; self-attention faz um passo paralelo com custo $\mathcal{O}(n^2)$.

Arquitetura pré-transformer

1 Motivação e Histórico

Figura: Exemplo de arquitetura pré-transformer (aditiva) [3]

2 Transformers

- ▶ Motivação e Histórico
- **▶** Transformers
- Embeddings & Interpretações
- ► Treino & Hiperparâmetros
- Séries Temporais
- ▶ Language Models
- Vision Transformer
- Graph Attentior
- ▶ Referências Bibliográficas

Attention Is All You Need [4]: nascendo o Transformer

- **Remove** completamente a recorrência (sem LSTM).
- Positional encodings preservam ordem:

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{\mathsf{model}}}}\right), \quad PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{\mathsf{model}}}}\right).$$

Figura: Exemplo de codificação posicional senoidal [4]

Bloco Transformer e arquitetura

2 Transformers

• Cada bloco Transformer (pré-norm, forma comum):

$$Y = X + \text{MHA}(\text{LN}(X)),$$

 $Z = Y + \text{FFN}(\text{LN}(Y)), \quad \text{FFN}(u) = W_2 \phi(W_1 u + b_1) + b_2,$

- Empilha-se vários blocos de atenção+FFN ⇒ arquitetura Transformer.
- Máscara causal (para LMs) impede olhar o futuro:

softmax
$$\left(\frac{QK^{\top}}{\sqrt{d_k}} + M\right)$$
, $M_{ij} = \begin{cases} 0, & j \leq i \\ -\infty, & j > i \end{cases}$

Arquiteturas Transformer e Aplicações

Encoder-Decoder

(Transformer original, 2017)

- Tradução automática
- Sumarização
- Diálogo
- Captioning

Encoder-only

(BERT, RoBERTa, DistilBERT)

- Classificação de texto
- NER (entidades)
- QA (extração de trechos)
- Análise semântica

Decoder-only

(GPT, LLaMA, etc.)

- Modelos de linguagem
- Geração de texto
- Completamento de prompts
- Story generation

Arquiteturas Transformer: encoder e decoder [4]

Figura: Transformer Encoder e Decoder 16/43

Figura: Multi-Head Attention

Figura: Multi-Head Attention

Resumo da evolução dos modelos

2 Transformers

Linha do tempo (síntese):

- LSTM encoder-decoder: contexto único $c = h_n$ (gargalo).
- LSTM + atenção (Bahdanau/Luong): alívio do gargalo.
- Self-attention: dependências longas em paralelo.
- Transformer: atenção + posição + FFN; várias camadas empilhadas; sem LSTM.

3 Embeddings & Interpretações

- Motivação e Histórico
- Transformers
- ► Embeddings & Interpretações
- Treino & Hiperparâmetros
- Séries Temporais
- ▶ Language Models
- ▶ Vision Transformer
- Graph Attentior
- Referências Bibliográficas

Word/Subword Embeddings

3 Embeddings & Interpretações

- Estáticos (Word2Vec, GloVe) vs. Contextuais (ELMo, BERT)
- Subword (BPE/Unigram) para robustez morfológica
- Análogos em outras modalidades: patches (ViT), time2vec (TS), node2vec (grafos)

Atenção: projeções e compatibilidade

3 Embeddings & Interpretações

• Projeções lineares:

$$Q = XW_Q, K = XW_K, V = XW_V.$$

- Compatibilidade: $e_i = \frac{\langle q, k_i \rangle}{\sqrt{d}}$ (ou cosseno se normalizar).
- Pesos:

$$\alpha_i = \operatorname{softmax}(e_i) \Rightarrow \alpha_i \geq 0, \ \sum_i \alpha_i = 1.$$

Figura: Pesos α_i (softmax do dot-product)

Interpretação Geométrica: contexto = barycenter 3 Embeddings & Interpretações

- Contexto: $c = \sum_i \alpha_i v_i \in \text{conv}\{v_i\} \Rightarrow \text{combinação }$ convexa dos values.
- **Geometria**: níveis de igual peso são hiperplanos ortogonais a q; pesos crescem exponencialmente com o alinhamento entre q e k_i .

Multi-head: múltiplas projeções/métricas

3 Embeddings & Interpretações

- Cada head aplica $(W_Q^{(h)}, W_K^{(h)}, W_V^{(h)})$ e induz uma métrica interna distinta:

$$\langle x, y \rangle_h = x^\top W_Q^{(h)} W_K^{(h)} ^\top y.$$

• Heads diferentes \to diferentes pesos $\alpha^{(h)}$ e contextos $c^{(h)}$; a saída concatena/combina esses subespaços.

Figura: Head 1

Interpretação Matemática: Self-Attention

3 Embeddings & Interpretações

Fórmula central (scaled dot-product)

$$Att(Q, K, V) = softmax \left(\frac{QK^{\top}}{\sqrt{d_k}}\right) V$$

- Máscara causal/atencional conforme a tarefa
- Complexidade $\mathcal{O}(n^2)$ em tempo/memória
- Gradientes e saturação da softmax

Positional Encodings — Absolutos

3 Embeddings & Interpretações

• Senoidais [4]:

$$PE(pos, 2i) = \sin\left(\frac{pos}{10000^{2i/d}}\right), \quad PE(pos, 2i+1) = \cos\left(\frac{pos}{10000^{2i/d}}\right)$$

- Frequências diferentes em cada dimensão.
- Permitem extrapolação por periodicidade.
- Risco: aliasing (padrões que se repetem em posições distantes).

• Aprendidos:

$$z_{pos} = x_{pos} + P_{pos}, \ P \in \mathbb{R}^{L_{\text{max}} \times d}$$

- Mais flexíveis e adaptados à tarefa.
- **Limite**: não extrapolam para posições > $L_{\rm max}$.

Positional Encodings — Relativos e Bias

3 Embeddings & Interpretações

• Shaw et al. (2018):

$$e_{ij} = q_i^{\top}(k_j + r_{i-j})$$

ou com bias b_{i-j} . Codifica **distâncias** em vez de posições absolutas.

• T5 (Raffel et al., 2020):

$$e_{ij} = q_i^{\top} k_j + B_{\mathsf{bucket}(i-j)}$$

- "Baldes" de distâncias (log-escalados).
- Barato, simples, bom para extrapolação moderada.
- ALiBi (Press et al., 2022):

$$e_{ij} + m_h (i-j)$$

- Inclinação linear por head.
- Suporta janelas muito maiores sem retraining.
- Praticamente custo zero.

Positional Encodings — RoPE e Impacto Prático 3 Embeddings & Interpretações

• RoPE (Su et al., 2021): aplica rotação dependente da posição:

$$\tilde{x}_{2i}, \tilde{x}_{2i+1} = \begin{cases} x_{2i}\cos\theta - x_{2i+1}\sin\theta \\ x_{2i}\sin\theta + x_{2i+1}\cos\theta \end{cases}, \quad \theta = \frac{pos}{10000^{2i/d}}$$

- Produto $q^{\top}k$ passa a depender de $(pos_q pos_k)$.
- \Rightarrow natural para codificar deslocamentos/ordem relativa.
- Impacto prático:
 - Absolutos aprendidos: limitados ao $L_{\rm max}$.
 - Senoidais: extrapolam mas sofrem com aliasing.
 - Relativos (T5, ALiBi, RoPE): melhor estabilidade para contextos longos.
- Hoje: ALiBi e RoPE são o padrão em LLMs de longo contexto.

4 Treino & Hiperparâmetros

- ▶ Motivação e Histórico
- ► Transformers
- Embeddings & Interpretações
- ► Treino & Hiperparâmetros
- Séries Temporais
- ▶ Language Models
- ▶ Vision Transformer
- Graph Attentior
- ► Referências Bibliográficas

Práticas de Treino 4 Treino & Hiperparâmetros

- AdamW, warmup + decaimento; label smoothing quando aplicável
- Regularização: dropout, stochastic depth, weight decay
- AMP/mixed precision, grad clipping, checkpointing
- Dados: curriculum, masking, augmentation (TS/ViT/GAT)

Hiperparâmetros Essenciais

4 Treino & Hiperparâmetros

- Profundidade, d_{model} , #heads, d_{ff} , dropout
- Comprimento de contexto, batch size, LR schedule
- Específicos: tokenização (LM), patch size (ViT), janela/patch (TS)

Qual tamanho ideal? (Scaling)

4 Treino & Hiperparâmetros

- Leis de escala [5]: desempenho cresce com ↑ dados, parâmetros e compute, até saturar.
- Trade-offs: muitos parâmetros + poucos dados → overfitting; muitos dados + poucos parâmetros → subutilização.
- Tokens vs. parâmetros: ideal quando #tokens \approx múltiplos de #parâmetros [6].
- Contexto: janelas maiores ajudam, mas ganhos saturam.
- Regra prática: dimensione conforme dataset + compute + budget de inferência.

Resumo: não há tamanho ótimo universal — depende do equilíbrio entre dados, parâmetros e recursos disponíveis.

5 Séries Temporais

- ▶ Motivação e Histórico
- ► Transformers
- Embeddings & Interpretações
- Treino & Hiperparâmetros
- ▶ Séries Temporais
- Language Models
- ▶ Vision Transformer
- Graph Attentior
- Referências Bibliográficas

Atenção em Séries Temporais

5 Séries Temporais

- Codificação temporal: absolutos/relativos; *Time2Vec*; embeddings de calendário (hora/dia/sazonalidade).
- Exógenas + cross-attention: integrar variáveis externas (clima, preços, feriados) à série-alvo.
- **Contextos longos:** *patching* (janelas), sparsity e hashing; ganhos de janelas muito grandes tendem a saturar.
- Por que atenção: foca nos trechos relevantes do histórico e alinha padrões não estacionários/irregulares.
- Tarefas: previsão (forecasting), imputação (faltantes) e detecção de anomalias.

Modelos recentes (com código)

5 Séries Temporais

- Informer (AAAI'21) atenção esparsa p/ sequências longas.
- Autoformer (NeurIPS'21) auto-correlação + decomposição.
- PatchTST (ICLR'23) patching / channel-independent.
- TimesNet (ICLR'23) modelagem de variação temporal 2D.
- TSDiffusion (2023) difusão para séries temporais.

6 Language Models

- ▶ Motivação e Histórico
- Transformers
- Embeddings & Interpretações
- Treino & Hiperparâmetros
- Séries Temporais
- ► Language Models
- Vision Transformer
- Graph Attentior
- Referências Bibliográficas

Language Models (LM)

6 Language Models

- Atenção causal (masked self-attention): máscara triangular impede olhar o futuro.
- Objetivo autoregressivo: minimizar $-\sum_t \log p(x_t \mid x_{< t})$ (next-token).
- Pré-treino (corpus amplo, tarefa genérica) vs. fine-tuning (tarefa/estilo): instruction tuning (FLAN), RLHF (InstructGPT).
- **PEFT** (ajuste eficiente): *LoRA*, *Adapters* (congelar base + poucos params).
- Métricas: perplexity (surpresa média por token) e downstream (ex.: SuperGLUE, MMLU).

Language Models — Implementações (GitHub)

6 Language Models

- karpathy/nanoGPT (2022) GPT minimalista
- huggingface/transformers (2019) biblioteca SOTA
- EleutherAl/gpt-neox (2022) treino LLMs em larga escala
- meta-llama/llama (2023) código/pesos Llama
- harvardnlp/annotated-transformer (2018) Transformer anotado

- huggingface/trl (2020) SFT, PPO/DPO, RLHF
- DeepSpeed-Chat (2023) pipeline RLHF
- OpenRLHF/OpenRLHF (2023) RLHF escalável
- huggingface/peft (2023) PEFT (LoRA, QLoRA, etc.)
- adapter-hub/adapters (2020) biblioteca de Adapters
- microsoft/LoRA (2021) implementação LoRA oficial
- google-research/FLAN (2021) dados p/ instruction tuning

7 Vision Transformer

- ▶ Motivação e Histórico
- ▶ Transformers
- Embeddings & Interpretações
- ▶ Treino & Hiperparâmetros
- Séries Temporais
- Language Models
- ▶ Vision Transformer
- Graph Attentior
- Referências Bibliográficas

Vision Transformer (ViT)

7 Vision Transformer

- Imagem \rightarrow patches + [CLS] token
- Posicionais 2D; augmentations (RandAug, Mixup/CutMix)
- Transfer: linear probe vs. fine-tune

8 Graph Attention

- ▶ Motivação e Histórico
- ► Transformers
- Embeddings & Interpretações
- ▶ Treino & Hiperparâmetros
- Séries Temporais
- Language Models
- Vision Transformer
- ► Graph Attention
- Referências Bibliográficas

Graph Attention Networks (GAT)

8 Graph Attention

Coeficientes de Atenção (um cabeçalho)

$$\alpha_{ij} = \operatorname{softmax}_{j} \left(\operatorname{LeakyReLU} \left(a^{\top} [W h_{i} || W h_{j}] \right) \right)$$

- Multi-head; sobre-smoothing e escalabilidade
- Heterógrafos e atenção relacional

9 Referências Bibliográficas

- Motivação e Histórico
- Transformers
- Embeddings & Interpretações
- ▶ Treino & Hiperparâmetros
- Séries Temporais
- ▶ Language Models
- ▶ Vision Transformer
- ▶ Graph Attentior
- ► Referências Bibliográficas

Referências Bibliográficas

9 Referências Bibliográficas

- [1] D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate," *arXiv preprint arXiv:1409.0473*, 2014.
- [2] M.-T. Luong, H. Pham, and C. D. Manning, "Effective approaches to attention-based neural machine translation," in *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1412–1421, 2015.
- [3] S. Gu and Y. Zhuang, "Method for solving constrained 0-1 quadratic programming problems based on pointer network and reinforcement learning," *Neural Computing and Applications*, vol. 35, 2022.

Referências Bibliográficas

9 Referências Bibliográficas

- [4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need," in *Advances in Neural Information Processing Systems*, vol. 30, 2017.
- [5] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei, "Scaling laws for neural language models," arXiv preprint arXiv:2001.08361, 2020.
- [6] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, J. Noland, K. Millican, G. v. d. Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre, "Training compute-optimal large language models," arXiv preprint arXiv:2203.15556, 2022.