CS 760: Machine Learning - Fall 2020

Homework 1: Review

Due: 09/24/2020

Zijie Zhang

September 21, 2020

Problem	1

Proof. By the definition, \mathbb{R}^D is a subspace if for every $a, b \in \mathbb{R}$ and every $u, v \in \mathbb{R}^D$, $au + bv \in \mathbb{R}^D$. It is trivial.

Problem 2

Proof.

- (a) $\boldsymbol{x}=(-1,\cdots,-1)\in\mathbb{R}^D$. The element-wise square roots is $(i,\cdots,i)\not\in\mathbb{R}^D$. \mathbb{R}^D is not closed under element-wise square roots.
- (b) \mathbb{C}^D .

Problem 3

Proof. For every element $x, y \in \mathbb{U}$. They can be represented by a linear combination of u_1, \dots, u_R .

$$\boldsymbol{x} = \alpha_1 \boldsymbol{u}_1 + \dots + \alpha_R \boldsymbol{u}_R$$

$$\mathbf{y} = \beta_1 \mathbf{u}_1 + \cdots + \beta_R \mathbf{u}_R$$

For every $a, b \in \mathbb{R}$,

$$a\mathbf{x} + b\mathbf{y} = (a\alpha_1 + b\beta_1)\mathbf{u}_1 + \dots + (a\alpha_R + b\beta_R)\mathbf{u}_R$$

 $a\mathbf{x} + b\mathbf{y} \in \mathbb{U}$, so \mathbb{U} is a subspace.

Problem 4

Proof. \Box

Problem 5

Proof.

Problem 6

Proof.

Problem 7

Proof. \Box