МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» (Самарский университет)

Институт информатики и кибернетики

Кафедра информационных систем и технологий

ОТЧЕТ ПО ПРАКТИКЕ

Вид практики производственная

(учебная, производственная)

Тип практики <u>научно-исследовательская работа</u> (в соответствии с ОПОП ВО)

Сроки прохождения практики: с 01.09.2022 по 29.12.2022 (в соответствии с календарным учебным графиком)

по направлению подготовки 09.03.01 Информатика и вычислительная техника (уровень бакалавриата) направленность (профиль) «Информационные системы»

Обучающийся группы № 6304-090301D <u>И.И. Алеев</u>

Руководитель практики, доцент кафедры информационных систем и технологий В.С. Сивков

Дата сдачи 29.12.2022	
Дата защиты 29.12.2022	
Оценка	

СОДЕРЖАНИЕ

- 1. Задание(я) для выполнения определенных видов работ, связанных с будущей профессиональной деятельностью (сбор и анализ данных и материалов, проведение исследований).
- 2. Описательная часть.
- 3. Список использованных источников.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» (Самарский университет)

Институт информатики и кибернетики

Кафедра информационных систем и технологий

Задание(я) для выполнения определенных видов работ, связанных с будущей профессиональной деятельностью (сбор и анализ данных и материалов, проведение исследований)

Обучающемуся	Алееву	Ибрагиму	Ильясовичу_	
группы 6304-090301]	-	•	•	

Направление на практику оформлено приказом по университету от 29.08.2022 г. № 305-ПР

на <u>кафедру информационных систем и технологий</u>

(наименование профильной организации или структурного подразделения университета)

Тема НИР: <u>«</u>Разработка устройства интернета вещей на базе современных систем реального времени»

Планируемые результаты освоения образовательной программы (компетенции)	Планируемые результаты практики	Содержание задания
ПК-6 Способен осуществлять	Знать: технологии разработки технических спецификаций	Провести анализ имеющихся
разработку	программных компонентов и их	технологий
требований и проектирование	взаимодействия. Уметь: обосновывать выбор	разработки технических
программного	технологии разработки	спецификаций
обеспечения ПК 6.2	технических спецификаций программных компонентов.	программных компонентов и их
Разрабатывает технические	Владеть: навыками разработки технических спецификаций	взаимодействия.
спецификации на	программных компонентов.	Провести анализ
программные		методологий
компоненты и их взаимодействие		разработки информационно-
		логических

	про	ректов
	про	ограммного
	обе	еспечения.
	Сде	елать
	обо	основание выбора
	ист	пользуемых
	мет	годологий и
	тех	кнологий для
	ино	формационной
	сис	стемы по
	раз	работке и
		нкционированию
	уст	гройства
	инл	гернета вещей.
Цата выдачи задания 01.09.2022. Срок представления на кафедру отчета о практи	xe 29.12.2022	
Руководитель практики,		
доцент кафедры ИСТ		_ В.С. Сивков
• •	(подпись)	
Задание принял к исполнению		
обучающийся группы № 6304-090301D		_ И.И. Алеев
	(подпись)	

Описательная часть

Анализ имеющихся технологий разработки технических спецификаций программных компонентов и их взаимодействия.

Система реального времени (СРВ) – система, которая должна реагировать на события во внешней, по отношению к системе, среде или воздействовать на среду в рамках требуемых временных ограничений. Оксфордский словарь английского языка говорит об СРВ как о системе, для которой важно время получения результата. Другими словами, обработка информации системой должна производиться за определённый конечный период времени, чтобы постоянное и своевременное взаимодействие со средой. поддерживать Естественно, контролирующей что масштаб времени системы И контролируемой ею среды должен совпадать.

Интернет вещей — концепция сети передачи данных между физическими объектами («вещами»), оснащёнными встроенными средствами и технологиями для взаимодействия друг с другом или с внешней средой. Предполагается, что организация таких сетей способна перестроить экономические и общественные процессы, исключить из части действий и операций необходимость участия человека.

Существует множество устройств реального времени, которые способны функционировать как устройства интернета вещей. В данный момент на рынке представлены микроконтроллеры которые были специально разработаны для работы с системами умного дома, что показывается в виде поддержки различных протоколов обмена «из коробки», предоставление производителем программного обеспечения и инструкций по интеграции своего устройства в уже готовую систему. Примером готовой платформы является микроконтроллер от компании ST серии STM32L4 – B-L475E-IOT01A, которое имеет возможность передачи данных с помощью технологий WI-FI, Bluetooth, NFC, радио, а также множество разнообразных датчиков.

Для того, чтобы информационная система была способна получать команды от пользователя существует два основных варианта архитектуры:

Централизованная ИС – множество устройств являются дочерними по отношению к какому-либо локальному устройству, которое считывает, хранит, обрабатывает данные полученные с узлов, а также управляет ими.

Децентрализованная ИС – множество устройств являются равноценными по отношению друг к другу, управление осуществляется с помощью удалённых сервисов.

	Централизованная ИС	Децентрализованная ИС
	1. Простота в проектировании	1. Популярность сервисов
ства	2. Детерминированный порядок	2. Возможно локальное
ОИНС	обработки	размещение
Достоинства	3. Возможна отладка	3. Стабильность не зависит
		от состояния узлов
	1. Стабильность системы	1. Отладка возможна только
	всецело зависит от	при локальном
Z	центрального узла	размещении
Недостатки	2. Высокая нагрузка на канал	2. Недетерминированный
Дос	центрального узла	порядок обработки
He	3. Необходимость отдельного	
	размещения, что влечёт	
	затраты	

В обоих вариантах возможно использование различных протоколов и технологий, наиболее распространёнными являются варианты с использованием беспроводных сетей, так как они наиболее удобны при установке. Наиболее популярными протоколами являются МQTT, ZigBee и Wi-Fi.

1. ZigBee (IEEE 802.15.4) — технология созданная для сетей, в которых функционируют малопроизводительные устройства с ограниченным энергопотреблением, для таких целей как домашняя автоматизация,

- общий сбор данных с медицинских датчиков и подобных, где в малых проектах необходима беспроводная связь.
- 2. MQTT (Message Queue Telemetry Transport) открытый протокол обмена данными созданный для работы в условиях с ограниченной пропускной способностью канала и ограниченным количеством кода.
- 3. Wi-Fi технология беспроводной локальной сети с устройствами на основе стандартов IEEE 802.11, то есть в беспроводной локальной сетевой зоне частотных диапазонов 0,9; 2,4; 3,6; 5 и 60 ГГц.

Так как протокол MQTT высокоуровневый и основывается на протоколе TCP/IP, то в качестве аппаратного модуля можно использовать, как модули ZigBee, так и Wi-Fi.

	ZigBee	Wi-Fi
	1. Распространённость в готовых	1. Наиболее простая и
	решениях	популярная технология
	2. Множество готовых модулей	2. Широкий набор модулей
	3. Высокая энергоэфективность	3. Механизм настройки
		известен и прост.
3a		4. Низкая цена
нст		5. Чаще всего достаточно
Достоинства		иметь только устройство
До		для работы, так как в
		рабочих условиях уже
		присутствует роутер или
		любое другое устройство
		с поддержкой режима
		«точка доступа Wi-Fi»

	1. Цена несколько выше, чем у	1. Энергопотребление
	модулей Wi-Fi	несколько выше, чем у
KM	2. Менее распространён, чем Wi-	ZigBee
стал	Fi	2. Необходимо настроить
Недостатки	3. Для взаимодействия будет	статический адрес для
	недостаточно иметь модуль на	локальной сети
	готовом устройстве	

В результате для выполнения проекта была выбрана следующая конфигурация:

- Централизованная информационная система
- Беспроводная технология Wi-Fi

Анализ методологий разработки информационно-логических проектов программного обеспечения.

От выбора методологии будет зависеть то, как разные этапы жизненного цикла будут связаны между собой и в какой последовательности реализованы. Чтобы правильно выбрать модель, нужно понимать плюсы и минусы каждой из них и суть своего проекта.

1. Waterfall

Эта модель предполагает постепенное перемещение по этапам жизненного цикла. Сначала проводится анализ и составление задачи, затем проектирование, затем программирование и так далее. Каждый следующий этап стартует только тогда, когда закончен предыдущий. В этом кроется главное преимущество «водопада» и главный недостаток.

С одной стороны, проектом легко управлять, есть четкая последовательность действий, сроки выполнения и бюджет известен заранее. С другой — проекты с такой моделью не терпят правок, требующих возвращения к предыдущим этапам, а результат заказчик видит только на завершающих этапах разработки, когда приложение почти готово.

Достоинства	Недостатки
1. Тестирование могут проводить	1. Тестирование происходит на
люди с более низкой	последних этапах. 2. Чем масштабнее проект, тем
квалификацией	большая вероятность критических
2. Низкая вероятность ошибок в	ошибок, исправление которых потребует значительного
небольших проектах.	увеличения бюджета.
3. Стоимость и сроки известны на	3. Заказчик видит готовый продукт лишь в конце разработки.
начальном этапе	4. Написание и согласование
4. Простое управление разработкой	подробной документации также может вызвать множество
при наличии четко	задержек.
сформулированной документации.	

2. TDD (Test-driven development) или же V-model

TDD модель является модифицированной версией «водопада». V стоит в названии от двух главных принципов данной методологии — validation и verification. По сути, здесь процессы происходят друг за другом, однако на каждом этапе присутствует элемент тестирования. Продукт подвергается тщательным проверкам уже на начальных этапах разработки. Тестирование является основополагающим элементом всего процесса.

	Достоинства	Недостатки
 Тестирование проходит на всех этапах разработки. Вероятность ошибок сводится к минимуму. Требуется высокий уровень квалификации тестировщиков и/или их высокая занятость. Если ошибка все же была допущена, то вернуться к предыдущему этапу будет даже дороже, чем при каскадной модели. 	разработки. 2. Вероятность ошибок сводится к	и/или их высокая занятость. 2. Если ошибка все же была допущена, то вернуться к предыдущему этапу будет даже дороже, чем при каскадной

3. Инкрементная модель

Инкрементная модель в целом следует той же структуре, что и каскадная, однако, как можно понять из названия, все этапы проходят несколько раз в течение жизненного цикла ПО. Получается своеобразный «мультиводопад».

Достоинства	Недостатки
 Есть возможность раннего выхода на рынок, чтобы посмотреть реакцию пользователей. Базовая версия ПО стоит дешевле. Модули можно доделывать по мере появления денег, либо не делать вовсе за ненадобностью. Самые рискованные идеи можно отложить на потом. Исправление ошибок обходится дешевле. 	 Требования к проекту на каждом этапе должны быть четко определены и понятны. Необходим хороший менеджмент. Приложение может выйти слишком «сырым» и не дожить до появления всех функций.

4. Быстрая разработка

RAD Model (Rapid Application Development model) — это модель быстрой разработки приложений. Это своего рода ответвление инкрементной модели, так как процесс создания ПО происходит таким же образом с единственным

исключением — над проектом работает сразу несколько команд. То есть в один момент времени параллельно существует несколько мини-проектов в одном большом проекте, которые интегрируются в рабочий прототип по мере готовности.

Достоинства	Недостатки
 Есть возможность раннего выхода на рынок, чтобы посмотреть реакцию пользователей. Базовая версия ПО стоит дешевле. Модули можно доделывать по мере появления денег, либо не делать вовсе 	 Требования к проекту на каждом этапе должны быть четко определены и понятны. Необходим хороший менеджмент. Приложение может выйти слишком «сырым» и не дожить до появления
за ненадобностью. Самые рискованные идеи можно отложить на потом. 3. Исправление ошибок обходится дешевле.	всех функций.

5. Итеративная модель

По сути, итеративная модель — это также разновидность инкрементной модели, которая, однако, лучше показывает себя в больших проектах, где конечная цель заранее не определена либо планируется применение какихлибо инновационных подходов.

Достоинства	Недостатки
 Есть возможность раннего выхода на рынок, чтобы посмотреть реакцию пользователей. Возможность запустить проект, когда конечная цель до конца не определена. Добавлять новые функции и менять направление проекта можно с каждой новой итерацией в зависимости от бюджета. 	 Добавление заранее не оговоренных функций может привести к необходимости полного переделывания целых кусков проекта. Отсутствие фиксированного бюджета и сроков реализации. Приложение может выйти слишком «сырым» и не дожить до того, как станет функционально соответствовать задумке

6. Спиральная модель

Эта модель — также «родственница» инкрементной и итеративной моделей, но с большим упором на анализ рисков и оценку выгоды проекта. Разработка идет по такому же принципу: реализация части проекта и вывод продукта на рынок поэтапно. Единственное отличие — разработка каждой новой версии

продукта начинается только в том случае, если заказчик уверен в ее необходимости, востребованности и потенциальной выгоде.

Все перечисленные методологии обладают своими преимуществами и недостатками, а также необходимыми условиями для применения, поэтому для применения одной из них необходимо составить требования к проекту, в частности указать формат поддержки, ограниченность в сроках разработки и эксплуатации, расширяемость набора функций.

Обоснование выбора используемых методологий и технологий.

Среди перечисленных методологий для выполнения проекты была выбрана разработка через тестирования или TDD. Главной причиной данного выбора стало то, что в проекте задействуются не только абстракции и программное обеспечение, но и аппаратная платформа, поэтому малейшая ошибка в проектировании способна вывести аппарат из строя, например, при неправильном задании частоты тактового сигнала устройство будет неспособно с достаточной скоростью ответить на входящий запрос, в результате будут отсутствовать и исходящие данные о состоянии, и входящие не смогут быть корректно интерпретированы.

ЗАКЛЮЧЕНИЕ

В процессе выполнения научно-исследовательской работы был освоен индикатор ПК-6.2 компетенции ПК-6, и решены все поставленные задачи:

- был проведен анализ имеющихся технологий разработки технических спецификаций программных компонентов и их взаимодействия;
- был проведен анализ методологий разработки информационнологических проектов программного обеспечения;
- было сделано обоснование выбора используемых методологий и технологий для разработки информационной системы по разработке и функционированию устройства интернета вещей.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. https://ru.wikipedia.org/wiki/Операционная система реального времени
- 2. https://ru.wikipedia.org/wiki/Информационная_система
- 3. https://highload.today/metodologii-razrabotki/