EHB 352 SAYISAL HABERLEŞME

Ödev-1

(Teslim Tarihi: 15.04.2021)

- **1.** X_1 , X_2 rastlantı değişkenleri, sırasıyla 0 ve 3 ortalamalı σ^2 varyanslı Gauss dağılımlıdırlar.
 - a) X_1 , X_2 rastlantı değişkenlerinin olasılık yoğunluk fonksiyonlarını ($f_{X_1}(x)$, $f_{X_2}(x)$ PDF'lerini) yazınız. (2 p)
 - **b)** $\sigma^2=1$ ve $\sigma^2=5$ değerleri için X_1 , X_2 rastlantı değişkenlerinin PDF'lerini ($f_{X_1}(x)$, $f_{X_2}(x)$), [-5,10] aralığında bilgisayar programı yardımıyla çizdiriniz. Grafiklerinizin anlaşılır olmasına özen gösteriniz. (8 p)
 - **c)** X_1 , X_2 rastlantı değişkenlerinin birikimli dağılım fonksiyonlarını (CDF'lerini, $F_{X_1}(x)$, $F_{X_2}(x)$) Q(.) fonksiyonu, erf(.) fonksiyonu ve erfc(.) fonksiyonu cinsinden yazınız. Her bir fonksiyonun tanımını ve ifade ederken kullandığınız dönüşümleri gösteriniz. (13 p)
 - **d)** $\sigma^2 = 1$ ve $\sigma^2 = 5$ değerleri için X_1 , X_2 rastlantı değişkenlerinin CDF'lerini ($F_{X_1}(x)$, $F_{X_2}(x)$), [-5,10] aralığında bilgisayar programı yardımıyla çizdiriniz. (8 p)
 - **e)** $\sigma^2 = 1$ ve $\sigma^2 = 5$ için $\Pr(5 > X_1 > 1)$, $\Pr(0 < X_2 < 1)$ olasılıklarını bilgisayar programı yardımıyla hesaplayınız. (4 p)
- 2. $x(t) = \begin{cases} \cos(2\pi t) & 0 \le t \le 1 \\ 0 & t < 0, \ t > 1 \end{cases}$ olarak verilen x(t) işareti aşağıda PDM ve PPM yöntemleri ile modülasyona uğratılmaktadır.
 - a) x(t) işareti, $f_s=10Hz$ frekansına sahip $\tau=50ms$ genişlikli ve 1 Volt genlikli darbe katarı ile çarpılarak $x_s(t)$ işareti elde ediliyor (Kullandığınız bilgisayar programında yeterli çözünürlük için gerekli örnek sayısını kendiniz belirleyebilirsiniz). $x_s(t)$ işaretini [0,1] sn aralığında bilgisayar yardımıyla çizdiriniz. x(t) ve $x_s(t)$ işaretlerinin genlik spektrumunu [-50,50] Hz aralığı için bilgisayar yardımıyla çizdiriniz. (15 p)
 - aralığı için bilgisayar yardımıyla çizdiriniz. (15 p) **b)** x(t) işareti, bir periyodu $a(t) = \begin{cases} 50t - 1.25, & 0 < t < 0.05sn \\ 3.75 - 50t & 0.05 < t < 0.1sn \end{cases}$ şeklinde tanımlanan
 - 0.1sn ile periyodik a(t) işareti yardımıyla darbe genişlik modülasyonuna (PDM) uğratılmaktadır. Birebir derste anlatılan adımları takip ederek, PDM işaretini $\begin{bmatrix} 0, 1 \end{bmatrix}$ sn aralığı için çizdiriniz. PDM işaretinin genlik spektrumunu $\begin{bmatrix} -50, 50 \end{bmatrix}$ Hz aralığı için bilgisayar programı yardımıyla çizdiriniz. (15 p)
 - c) x(t) işareti b) şıkkında bulanan PDM işareti yardımıyla darbe yer (pozisyon) modülasyonuna (PPM) uğratılmaktadır. Darbe pozisyonları PDM işaretinin darbe düşüşü ile tetiklenmektedir. k. örneğe ait darbenin yeri $t_k = kT_s + 0.05 + 0.025\tau_k$ olarak belirlenmekte olup burada τ_k , k. örneğe ait PDM işaretinin genişliğini göstermektedir. Her bir PPM darbesi $\tau = 3msn$ genişliklidir. PPM işaretini [0, 1] sn aralığı ve PPM işaretinin genlik spektrumunu [-50, 50] Hz aralığı için bilgisayar programı yardımıyla çizdiriniz. Sizce derste anlatılan sisteme göre ödevde tasarladığınız PPM sisteminin avantajı veya dezavantajı nedir? (15 p)

- **3.** Aşağıdaki seçeceğiniz konulardan biri hakkında bir rapor hazırlayınız. Yararlandığınız kaynakları sayfa numarasını da belirterek yazınız. (20 p)
 - PAM, PDM, PPM modülasyonunu gerçekleyen sayısal devreler ve bu modülasyonların uygulama alanları
 - Ses ve görüntü işaretlerini sıkıştırma teknikleri/standartları
 - Optik haberleşmede PPM kullanımı
 - A/D ve D/A dönüştürücüler
 - Hat kodlama (Line coding)

Önemli Uyarılar:

- 1) Kullandığınız bilgisayar programının modülasyon ve demodülasyon hazır fonksiyonları kullanılmayacaktır. Çizimi istenilen fonksiyonlar için derste verilen ifadelerden yararlanınız.
- 2) Bilgisayar programı çıktılarındaki her bir eğriyi mutlaka etiketleyiniz ve eksenleri isimlendiriniz.
- 3) Ödevlerinizi e-posta yoluyla göndermeyiniz.
- 4) **Cevaplarınızı**, **çizim sonuçlarınızı ve kodlarınızı** içeren Word formatındaki dosyayı ve ayrıca program kodlarınızı (örneğin .m uzantılı MATLAB kodlarınızı) Ninova'ya en geç **15 Nisan 2021 saat 23:59'a** kadar yükleyiniz.
- 5) Herhangi bir kaynaktan Kopyala Yapıştır yöntemi ile yazılan ödevler kabul edilmeyecektir.
- 6) 3. soruda raporun uzunluğundan daha çok içeriğine göre değerlendirme yapılacaktır. 700-1000 kelime aralığında raporunuzu hazırlayabilirsiniz. Raporunuz okuyup özümsediğiniz bilgilerin kendi cümleleriniz ile ifade edilmesi ile oluşmalıdır. Yararlandığınız kaynakların sayfa numarasını da belirterek yazınız.