[70240413 Statistical Machine Learning, Spring, 2017]

Supervised Learning Classification

Jun Zhu

dcszj@mail.tsinghua.edu.cn
http://bigml.cs.tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems
Tsinghua University

February 28, 2017

Supervised Learning

♦ Task: learn a predictive function

 $h: \mathcal{X} \to \mathcal{Y}$

Label space $\,\mathcal{Y}\,$

"Sports"

"News"

"Politics"

. . .

Share price "\$ 20.50"

"Experience" or training data:

$$\{\langle x_d, y_d \rangle\}_{d=1}^D, x_d \in \mathcal{X}, y_d \in \mathcal{Y}$$

Supervised Learning – classification

Label space \mathcal{Y}

"Sports"

"News"

"Politics"

. . .

"Tool"

"Animal"

. . .

Discrete Labels

Supervised Learning – regression

How to learn a classifier?

K-NN: a Non-parametric approach

Properties of K-NN

- Simple
- Strong consistency results:
 - With infinite data, the error rate of K-NN is at most twice the optimal error rate (i.e., Bayes error rate)

♦ Note: Bayes error rate — the minimum achievable error rate given the distribution of the data

Issues of K-NN

- Computationally intensive for large training sets
 - Clever nearest neighbor search helps
- Selection of K

- Distance metric matters a lot
 - Aware of the metric learning field

K-NN for regression

$$\hat{y} = \sum_{i \in \mathcal{N}_K} \frac{1}{dist(\mathbf{x}, \mathbf{x}_i)} y_i$$

A weighted average is an estimate; where the weight is the inverse distance

A Parametric Method

Sinary classification can be viewed as the task of separating classes in feature space:

A brief history

- Fisher's linear discriminator (1936)
 - Log-ratio of two Gaussians

$$F_{\text{sq}}(\mathbf{x}) = \operatorname{sign}\left[\frac{1}{2}(\mathbf{x} - \mathbf{m}_1)^T \mathbf{\Sigma}_1^{-1}(\mathbf{x} - \mathbf{m}_1) - \frac{1}{2}(\mathbf{x} - \mathbf{m}_2)^T \mathbf{\Sigma}_2^{-1}(\mathbf{x} - \mathbf{m}_2) + \ln \frac{|\mathbf{\Sigma}_2|}{|\mathbf{\Sigma}_1|}\right]$$

- Rosenblatt's perceptron (1962)
 - Only top-layer is updated
- Back-prop for NN (1985)
- ♦ SVM (1995)
- **•** ...

Linear Separators

Which of the linear separators is optimal?

Classification Margin

- ightharpoonup Distance from example \mathbf{x}_i to the separator is $r = \frac{|\mathbf{w}^{\top} \mathbf{x}_i + b|}{\|\mathbf{w}\|}$
- * Examples closest to the hyperplane are *support vectors*.

lacktriangle Margin ho of the separator is the distance between supporting hyperplanes.

Max-margin Classification

- Maximizing the margin is good according to intuition and PAC theory.
- Implies that only support vectors matter; other training examples are ignorable.

Linear SVM

♦ Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$, $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$ be separated by a hyperplane with margin $\boldsymbol{\rho}$. Then for each training example (\mathbf{x}_i, y_i) :

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \le -\rho/2 \quad \text{if } y_{i} = -1 \\ \mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \ge \rho/2 \quad \text{if } y_{i} = 1 \qquad \Longrightarrow \qquad y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \ge \rho/2$$

• For support vector \mathbf{x}_s the above inequality is an equality. After rescaling \mathbf{w} and b by $\rho/2$, we obtain that distance between each \mathbf{x}_s and the hyperplane is

$$r = \frac{y_s(\mathbf{w}^{\top} \mathbf{x}_s + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$$

Linear SVM

♦ Then the margin can be expressed through (rescaled) w and b as:

$$\rho = 2r = \frac{2}{\|\mathbf{w}\|}$$

Observations

♦ We can assume b=0

Classification rule:

classify as: +1 if
$$\mathbf{w}^{\top}\mathbf{x} + b \ge 1$$

-1 if $\mathbf{w}^{\top}\mathbf{x} + b \le -1$

universe if $|\mathbf{w}^{\top}\mathbf{x} + b| < 1$
explodes

This is the same as:

$$y_i \mathbf{w}^\top \mathbf{x}_i \ge 1, \ \forall i = 1, \dots, N$$

The Primal Hard SVM

- Given training dataset: $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$
- ♦ Assume that *D* is linearly separable

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2$$

s.t.: $y_i \mathbf{w}^{\top} \mathbf{x}_i \ge 1, \ \forall i = 1, \dots, N$

Prediction:

$$f(\mathbf{x}; \hat{\mathbf{w}}) = \operatorname{sign}(\hat{\mathbf{w}}^{\top} \mathbf{x})$$

This is a QP problem (d-dimensional)
(Quadratic cost function, linear constraints)

Constrained Optimization

 $\min_{x} x^{2}$ s.t. $x \ge b$

Lagrange Multiplier

$$\min_x x^2$$
 s.t. $x \ge b$

♦ Move the constraint to objective function — Lagrangian

$$L(x,\alpha) = x^2 - \alpha(x-b)$$
, s.t.: $\alpha \ge 0$

Solve:

$$\min_{x} \max_{\alpha} \quad L(x, \alpha)$$

s.t.: $\alpha \ge 0$

Constraint is active when $\alpha > 0$

Lagrange Multiplier – dual variables

Solving:

$$\min_{x} \max_{\alpha} \quad L(x,\alpha) = x^2 - \alpha(x-b)$$
s.t.: $\alpha \ge 0$

We get:

$$\frac{\partial L}{\partial x} = 0 \Rightarrow x^* = \frac{\alpha}{2}$$

$$\frac{\partial L}{\partial \alpha} = 0 \Rightarrow \alpha^* = \max(2b, 0)$$

When $\alpha > 0$, constraint is tight

From Primal to Dual

Primal problem:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2$$

s.t.: $y_i \mathbf{w}^{\top} \mathbf{x}_i \ge 1, \ \forall i = 1, \dots, N$

Lagrangian function:

$$L(\mathbf{w}, \boldsymbol{\alpha}) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{N} \alpha_i \left(y_i \mathbf{w}^{\top} \mathbf{x}_i - 1 \right)$$

$$\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_N)^{\top} \geq 0$$

The Lagrange Problem

$$L(\mathbf{w}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i \left(y_i \mathbf{w}^{\top} \mathbf{x}_i - 1 \right)$$

The Lagrange problem:

$$(\hat{\mathbf{w}}, \hat{\boldsymbol{\alpha}}) = \arg\min_{\mathbf{w}} \max_{\boldsymbol{\alpha}} L(\mathbf{w}, \boldsymbol{\alpha})$$

$$0 = \frac{\partial L(\mathbf{w}, \boldsymbol{\alpha})}{\partial \mathbf{w}}|_{\hat{\mathbf{w}}} = \hat{\mathbf{w}} - \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

$$\Rightarrow \hat{\mathbf{w}} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

The Dual Problem

$$L(\mathbf{w}, \boldsymbol{\alpha}) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{N} \alpha_i \left(y_i \mathbf{w}^\top \mathbf{x}_i - 1 \right)$$
$$\Rightarrow \hat{\mathbf{w}} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

$$\Rightarrow L(\hat{\mathbf{w}}, \boldsymbol{\alpha}) = \frac{1}{2} ||\hat{\mathbf{w}}||^2 - \sum_{i} \alpha_i \left(y_i \hat{\mathbf{w}}^{\top} \mathbf{x}_i - 1 \right)$$

$$= \frac{1}{2} \| \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \|^{2} + \boldsymbol{\alpha}^{T} \mathbf{1} - \sum_{i} \alpha_{i} y_{i} \left(\sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j} \right)^{T} \mathbf{x}_{i}$$
$$= \boldsymbol{\alpha}^{T} \mathbf{1} - \frac{1}{2} \boldsymbol{\alpha}^{T} \mathbf{Y} G \mathbf{Y} \boldsymbol{\alpha}$$

$$\mathbf{Y} := diag(y_1, \dots, y_N)$$

$$G \in \mathbb{R}^{N \times N}$$
, where $G_{ij} := \mathbf{x}_i^{\top} \mathbf{x}_j$ Gram matrix

The Dual Hard SVM

$$\mathbf{Y} := diag(y_1, \dots, y_N)$$

$$G \in \mathbb{R}^{N \times N}$$
, where $G_{ij} := \mathbf{x}_i^{\top} \mathbf{x}_j$ Gram matrix

$$\hat{\boldsymbol{\alpha}} = \arg \max_{\boldsymbol{\alpha}} \ \boldsymbol{\alpha}^{\top} \mathbf{1} - \frac{1}{2} \boldsymbol{\alpha}^{\top} \mathbf{Y} G \mathbf{Y} \boldsymbol{\alpha}$$

s.t.: $\alpha_i \ge 0, \ \forall i = 1, \dots, N$

Optimal solution:

$$\hat{\mathbf{w}} = \sum_{i=1}^{N} \hat{\alpha}_i y_i \mathbf{x}_i$$

Prediction:

$$f(\mathbf{x}; \hat{\mathbf{w}}) = \operatorname{sign}\left(\hat{\mathbf{w}}^{\top}\mathbf{x}\right) = \operatorname{sign}\left(\sum_{i=1}^{N} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i}^{\top}\mathbf{x}\right)$$

dual sparsity

The Problem with Hard SVM

♦ It assumes samples are linearly separable ...

Now about if the data is not linearly separable?

The Problem with Hard SVM

♦ If the data is not linearly separable, adding new features might make it linearly separable

□ Now drop this "augmented" data into our linear SVM!

The Problem with Hard SVM

- ♦ It assumes samples are linearly separable
- Solutions:
 - User feature transformation to a higher-dim space
 - Overfitting ⁽³⁾
 - Soft margin SVM instead of hard SVM
 - Next slides

Hard SVM

The hard SVM problem can be rewritten:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2$$

s.t.: $y_i \mathbf{w}^{\top} \mathbf{x}_i > 0, \ \forall i = 1, \dots, N$

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{N} \ell_{0-\infty}(y_i \mathbf{w}^{\top} \mathbf{x}_i)$$

where
$$\ell_{0-\infty}(b) = \begin{cases} \infty & if \ b < 0 \\ 0 & if \ b > 0 \end{cases}$$

From Hard to Soft Constraints

Instead of using hard constraints (linearly separable)

$$\hat{\mathbf{w}}_{hard} = \arg\min_{\mathbf{w}} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{N} \ell_{0-\infty}(y_i \mathbf{w}^{\top} \mathbf{x}_i)$$

- We can try to solve the soft version of it:
 - □ The loss is only 1 instead of ∞ if misclassify an instance

$$\hat{\mathbf{w}}_{soft} = \arg\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i=1}^{N} \ell_{0-1}(y_i \mathbf{w}^{\top} \mathbf{x}_i)$$

where
$$\ell_{0-1}(b) = \begin{cases} 1 & if \ b < 0 \\ 0 & if \ b > 0 \end{cases}$$

Problems with 0/1 loss

$$\hat{\mathbf{w}}_{soft} = \arg\min_{\mathbf{w}} \frac{\lambda}{2} ||\mathbf{w}||^2 + \sum_{i=1}^{N} \ell_{0-1}(y_i \mathbf{w}^{\top} \mathbf{x}_i)$$

where
$$\ell_{0-1}(b) = \begin{cases} 1 & if \ b < 0 \\ 0 & if \ b > 0 \end{cases}$$

- \bullet It is not convex in $y\mathbf{w}^{\top}\mathbf{x}$
 - □ It is not convex in **w**, either
- ♦ We like convex functions ...

Approximation of the step function

$$f(\mathbf{x}) := \mathbf{w}^{\top} \mathbf{x}$$

Approximation of 0/1 loss

Piecewise linear approximation (hinge loss, convex, nonsmooth)

$$\ell_{lin}(yf(\mathbf{x})) = \max(0, 1 - yf(\mathbf{x}))$$

- \mathbf{v} we want $yf(\mathbf{x}) > 1$
- Quadratic approximation (square-loss, convex, smooth)

$$\ell_{quad}(yf(\mathbf{x})) = \max(0, 1 - yf(\mathbf{x}))^2$$

• Huber loss (combine the above two, convex, smooth)

$$\ell_{Huber}(yf(\mathbf{x})) = \begin{cases} 1 - yf(\mathbf{x}) & if \ yf(\mathbf{x}) < 0 \\ \max(0, 1 - yf(\mathbf{x}))^2 & if \ yf(\mathbf{x}) \ge 0 \end{cases}$$

The Hinge loss approximation of 0/1 loss

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{N} \ell_{lin}(y_i \mathbf{w}^{\top} \mathbf{x}_i)$$

• where:

$$\ell_{lin}(y_i \mathbf{w}^\top \mathbf{x}_i) = \max(0, 1 - y_i \mathbf{w}^\top \mathbf{x}_i)$$
$$\geq \ell_{0-1}(y_i \mathbf{w}^\top \mathbf{x}_i)$$

□ The hinge loss upper bounds the 0/1 loss

Geometric interpretation: slack variables

$$\xi_i := \ell_{lin}(y_i \mathbf{w}^\top \mathbf{x}_i) = \max(0, 1 - y_i \mathbf{w}^\top \mathbf{x}_i)$$

The Primal Soft SVM problem

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{N} \xi_i$$

where
$$\xi_i := \ell_{lin}(y_i \mathbf{w}^\top \mathbf{x}_i) = \max(0, 1 - y_i \mathbf{w}^\top \mathbf{x}_i)$$

Equivalently:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{N} \xi_i$$

s.t.:
$$y_i \mathbf{w}^\top \mathbf{x}_i \ge 1 - \xi_i, \ \forall i = 1, \dots, N$$

$$\xi_i \geq 0, \ \forall i = 1, \dots, N$$

The Primal Soft SVM problem

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{N} \xi_i$$

s.t.:
$$y_i \mathbf{w}^\top \mathbf{x}_i \ge 1 - \xi_i, \ \forall i = 1, \dots, N$$

$$\xi_i \ge 0, \ \forall i = 1, \dots, N$$

Equivalently:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \xi_i$$

$$C = \frac{1}{\lambda}$$

Dual Soft SVM (using hinge loss)

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$
s.t.: $y_i \mathbf{w}^{\top} \mathbf{x}_i \ge 1 - \xi_i, \ \forall i = 1, \dots, N$

$$\xi_i \ge 0, \ \forall i = 1, \dots, N$$

Lagrange multipliers

$$\alpha \geq 0, \ \beta \geq 0$$

Lagrangian function

$$L(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} \xi_i - \sum_{i} \alpha_i (y_i \mathbf{w}^{\top} \mathbf{x}_i - 1 + \xi_i) - \sum_{i} \beta_i \xi_i$$

$$\min_{\mathbf{w}, \boldsymbol{\xi}} \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}} L(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

Dual Soft SVM (using hinge loss)

$$L(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \|\mathbf{w}\|^2 + C\boldsymbol{\xi}^{\mathsf{T}} \mathbf{1} - \sum_{i} \alpha_i y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i + \boldsymbol{\alpha}^{\mathsf{T}} \mathbf{1} - \boldsymbol{\xi}^{\mathsf{T}} (\boldsymbol{\alpha} + \boldsymbol{\beta})$$

We get:

$$0 = \frac{\partial L}{\partial \mathbf{w}}|_{\hat{\mathbf{w}}} \qquad \Rightarrow \hat{\mathbf{w}} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

$$0 = \frac{\partial L}{\partial \boldsymbol{\xi}}|_{\hat{\boldsymbol{\xi}}} \qquad \Rightarrow \boldsymbol{\beta} = C\mathbf{1} - \boldsymbol{\alpha} \ge 0$$
$$\Rightarrow 0 < \boldsymbol{\alpha} < C\mathbf{1}$$

Dual problem:

$$(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}}) = \underset{0 < \boldsymbol{\alpha} < C\mathbf{1}; 0 < \boldsymbol{\beta}}{\operatorname{argmax}} L(\hat{\mathbf{w}}, \hat{\boldsymbol{\xi}}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$\hat{\boldsymbol{\alpha}} = \operatorname*{argmax}_{0 \leq \boldsymbol{\alpha} \leq C\mathbf{1}} \boldsymbol{\alpha}^{\top} \mathbf{1} - \frac{1}{2} \boldsymbol{\alpha}^{\top} \mathbf{Y} G \mathbf{Y} \boldsymbol{\alpha}$$

Dual Soft SVM (using hinge loss)

$$\mathbf{Y} := diag(y_1, \dots, y_N)$$

$$G \in \mathbb{R}^{N \times N}, \text{ where } G_{ij} := \mathbf{x}_i^{\top} \mathbf{x}_j \quad \text{Gram matrix}$$

$$\hat{\boldsymbol{\alpha}} = \operatorname*{argmax}_{0 \leq \boldsymbol{\alpha} \leq C\mathbf{1}} \boldsymbol{\alpha}^{\top} \mathbf{1} - \frac{1}{2} \boldsymbol{\alpha}^{\top} \mathbf{Y} G \mathbf{Y} \boldsymbol{\alpha}$$

◆ This is the same as the dual hard SVM problem, except that we have additional constraints

SVM in the dual space

Solve the dual problem

$$\hat{\boldsymbol{\alpha}} = \operatorname*{argmax}_{0 \leq \boldsymbol{\alpha} \leq C\mathbf{1}} \boldsymbol{\alpha}^{\top} \mathbf{1} - \frac{1}{2} \boldsymbol{\alpha}^{\top} \mathbf{Y} G \mathbf{Y} \boldsymbol{\alpha}$$

The primal solution

alpha, learned th be dual sparsity

$$\Rightarrow \hat{\mathbf{w}} = \sum_{i=1}^{N} \hat{\alpha}_i y_i \mathbf{x}_i$$

Prediction

$$f(\mathbf{x}; \hat{\mathbf{w}}) = \operatorname{sign}\left(\hat{\mathbf{w}}^{\top}\mathbf{x}\right) = \operatorname{sign}\left(\sum_{i=1}^{N} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i}^{\top}\mathbf{x}\right)$$

Why it is called Support Vector Machines?

Hard-SVM:

$$L(\mathbf{w}, \boldsymbol{\alpha}) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{N} \alpha_i \left(y_i \mathbf{w}^\top \mathbf{x}_i - 1 \right)$$

$$\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_N)^{\top} \geq 0$$

KKT conditions (complementary slackness condition):

$$\forall i: \ \hat{\alpha}_i \left(y_i \hat{\mathbf{w}}^\top \mathbf{x}_i - 1 \right) = 0$$

$$\hat{\alpha}_i = 0 \quad OR \quad \hat{\alpha}_i > 0 \Rightarrow y_i \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_i = 1$$

 \mathbf{x}_i is on the margin line! SUPPORT VECTORS

Why it is called Support Vector Machines?

Hard SVM:

Only need to store support vectors to predict labels of test data

Support vectors in Soft SVM

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$
s.t.: $y_i \mathbf{w}^{\top} \mathbf{x}_i \ge 1 - \xi_i, \ \forall i = 1, \dots, N$

$$\xi_i \ge 0, \ \forall i = 1, \dots, N$$

Margin support vectors

$$y_i \mathbf{w}^{\top} \mathbf{x}_i = 1$$

Nonmargin support vectors

$$\xi_i > 0$$

Dual Sparsity

lacktriangle Only few Lagrange multipliers (dual variables) α_i can be non-zero

What about multiple classes?

One vs All

- Learn multiple binary classifiers separately:
 - ullet class k vs. rest $(\mathbf{w}_k, b_k)_{k=1,2,3}$

Prediction:

$$\hat{y} = \underset{k}{\operatorname{argmax}} (\mathbf{w}_k^{\top} \mathbf{x} + b_k)$$

Problems with One vs All?

$$\hat{y} = \underset{k}{\operatorname{argmax}}(\mathbf{w}_k^{\top} \mathbf{x} + b_k)$$

- ♦ (1) The weights may not be based on the same scale
 - □ Note: $(a\mathbf{w}_k)^{\top}\mathbf{x} + (ab_k)$ is also a solution
- ♦ (2) Imbalance issue when learning each binary classifier
 - Much more negatives than positives

One vs One

♦ Learn K(K-1)/2 binary classifiers

- Prediction:
 - Majority voting
- Ambiguity issue!

Learning 1 Joint Classifier

 \diamond Simultaneously learn 3 sets of weights $(\mathbf{w}_k, b_k)_{k=1,2,3}$

$$\hat{y} = \underset{k}{\operatorname{argmax}}(\mathbf{w}_k^{\top} \mathbf{x} + b_k)$$

$$\forall i, \ \forall y \neq y_i :$$

$$\mathbf{w}_{y_i}^{\top} \mathbf{x}_i + b_{y_i} \ge \mathbf{w}_y^{\top} \mathbf{x}_i + b_y + 1$$

Margin: gap between true class and nearest other class

Learning 1 Joint Classifier

 \diamond Simultaneously learn 3 sets of weights $(\mathbf{w}_k, b_k)_{k=1,2,3}$

Joint optimization:

$$\min_{\mathbf{w},b} \ \frac{1}{2} \sum_{y} \|\mathbf{w}_{y}\|^{2} + C \sum_{i=1}^{N} \sum_{y \neq y_{i}} \xi_{iy}$$

s.t.:
$$\mathbf{w}_{y_i}^{\top} \mathbf{x}_i + b_{y_i} \ge \mathbf{w}_y^{\top} \mathbf{x}_i + b_y + 1 - \xi_{iy} \ \forall i, \ \forall y \neq y_i$$

$$\xi_{iy} \ge 0$$
 $\forall i, \ \forall y \ne y_i$

Prediction:

$$\hat{y} = \operatorname*{argmax}_{k} (\mathbf{w}_{k}^{\top} \mathbf{x} + b_{k})$$

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between
 - □ 0/1 loss
 - Hinge loss
- Tackling multiple class
 - One vs. All
 - Multiclass SVMs

SVM for Regression

- lacktriangle Training data $(\mathbf{x}_i, y_i), \ \mathbf{x}_i \in \mathbb{R}^d, \ y_i \in \mathbb{R}$
- Still learn a hyper-plane (linear model)
- Squared error is the popular loss

$$\sum_{i=1}^{N} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

- a smooth function no sparsity
- \diamond A piecewise linear approximation (ϵ -insensitive loss)

$$\sum_{i=1}^{N} \max(0, |y_i - \mathbf{w}^{\top} \mathbf{x}_i| - \epsilon)$$

SVM in the dual space

Without offset b:

$$\hat{\boldsymbol{\alpha}} = \operatorname*{argmax}_{\boldsymbol{\alpha}} \boldsymbol{\alpha}^{\top} \mathbf{1} - \frac{1}{2} \boldsymbol{\alpha}^{\top} \mathbf{Y} G \mathbf{Y} \boldsymbol{\alpha}$$

s.t.: $0 \le \boldsymbol{\alpha} \le C \mathbf{1}$

With offset b:

$$\hat{\boldsymbol{\alpha}} = \operatorname*{argmax}_{\boldsymbol{\alpha}} \boldsymbol{\alpha}^{\top} \mathbf{1} - \frac{1}{2} \boldsymbol{\alpha}^{\top} \mathbf{Y} G \mathbf{Y} \boldsymbol{\alpha}$$
s.t.: $0 \le \boldsymbol{\alpha} \le C \mathbf{1}$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

Why solve the dual SVM?

- The dual problem has simpler constraints
- ◆ There some quadratic programming algorithms that can solve the dual fast, especially in high-dimensions (d >> N)
 - □ See [Bottou & Lin, 2007] for a summary of dual SVM solvers
 - Be aware of the fast algorithms directly solving the primal problem, e.g., cutting-plane, stochastic subgradient, etc.
- More importantly, the Kernel Trick!!

Nonlinear SVM

Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard?

♦ How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature Spaces

♦ **General idea**: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

Dot Product of Polynomials

 \diamond Polynomials of degree exactly d: $\Phi(\mathbf{x})$

$$\mathbf{x} = (x_1, x_2)^{\top}, \quad \mathbf{z} = (z_1, z_2)^{\top}$$

♦ d=1:

$$\Phi(\mathbf{x})^{\top}\Phi(\mathbf{z}) = \mathbf{x}^{\top}\mathbf{z}$$

 \bullet d=2: $\Phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^{\top}$

$$\Phi(\mathbf{x})^{\top}\Phi(\mathbf{z}) = (\mathbf{x}^{\top}\mathbf{z})^{2}$$

In general:

$$\Phi(\mathbf{x})^{\top}\Phi(\mathbf{z}) = (\mathbf{x}^{\top}\mathbf{z})^d = K(\mathbf{x}, \mathbf{z})$$

Support Vector Nets

[Cortes & Vapnik, 1995]

The Kernel Trick

Linear SVM relies on inner product between vectors

$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{\top} \mathbf{x}_j$$

- \diamond If map every data point into high-dimensional space via Φ : \mathbf{x}
 - \rightarrow $\Phi(\mathbf{x})$, the inner product becomes:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i)^{\top} \Phi(\mathbf{x}_j)$$

- ♦ A kernel function is a function that is equivalent to an inner product in some feature space.
- ◆ The feature mapping is not explicitly needed as long as we can compute the dot product using some Kernel K

Support Vector Nets

[Cortes & Vapnik, 1995]

What functions are kernels?

- For some function $K(\mathbf{x}_i, \mathbf{x}_j)$ checking that $K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i)^T \boldsymbol{\varphi}(\mathbf{x}_j)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

Semi-positive definite symmetric functions correspond to a semipositive definite symmetric Gram matrix:

	$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1,\mathbf{x}_3)$		$K(\mathbf{x}_1,\mathbf{x}_n)$
	$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$		$K(\mathbf{x}_2,\mathbf{x}_n)$
<i>K</i> =					
	•••	•••	•••	•••	•••
	$K(\mathbf{x}_n,\mathbf{x}_1)$	$K(\mathbf{x}_n,\mathbf{x}_2)$	$K(\mathbf{x}_n,\mathbf{x}_3)$	•••	$K(\mathbf{x}_n,\mathbf{x}_n)$

Example Kernel Functions

- ♦ Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$ □ Mapping Φ: $\mathbf{x} \to \Phi(\mathbf{x})$, where $\Phi(\mathbf{x})$ is \mathbf{x} itself
- Polynomial of power $p: K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
 - Mapping Φ : $\mathbf{x} \to \Phi(\mathbf{x})$, where $\Phi(\mathbf{x})$ has $\binom{d+p}{p}$ dimensions
- Gaussian (radial-basis function):

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

- Mapping Φ : $\mathbf{x} \to \Phi(\mathbf{x})$, where $\Phi(\mathbf{x})$ is *infinite-dimensional*: every point is mapped to *a function*; combination of functions for support vectors is the separator.
- ♦ Higher-dimensional space still has *intrinsic* dimensionality *d*, but linear separators in it correspond to *non-linear* separators in original space.

Overfitting

- Huge feature space with kernels, what about overfitting??
 - Maximizing margin leads to a sparse set of support vectors
 - Some interesting theory says that SVMs search for simply hypothesis with a large margin
 - Often robust to overfitting

SVM – demo

http://www.isis.ecs.soton.ac.uk/resources/syminfo/

Good ToolKits: [1] SVM-Light: http://svmlight.joachims.org/

[2] LibSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Chessboard dataset, Polynomial kernel

Chessboard dataset, Polynomial kernel

Chessboard dataset, Polynomial kernel

Chessboard dataset, RBF kernel

Advanced topics

- Scalable algorithms to learn SVMs
 - Linear SVMs
 - Linear algorithm, e.g., cutting-plane (2009)
 - Stochastic optimization, e.g., Pegasos (2007)
 - Distributed learning, e.g., divide-and-conquer (2013)
 - Non-linear SVMs
 - Kernel approximation, e.g., using low-rank or random features
- Structured output learning with SVMs
 - Will cover later

♦ An incomplete list of SVM solvers [Menon, 2010]

Algorithm	Citation	SVM type	Optimization type	Style	Runtime
SMO	[Platt, 1999]	Kernel	Dual QP	Batch	$\Omega(n^2d)$
SVM ^{light}	[Joachims, 1999]	Kernel	Dual QP	Batch	$\Omega(n^2d)$
Core Vector Machine	[Tsang et al., 2005, 2007]	SL Kernel	Dual geometry	Batch	$O(s/\rho^4)$
SVM ^{perf}	[Joachims, 2006]	Linear	Dual QP	Batch	$O(ns/\lambda \rho^2)$
NORMA	[Kivinen et al., 2004]	Kernel	Primal SGD	Online(-style)	$\tilde{O}(s/ ho^2)$
SVM-SGD	[Bottou, 2007]	Linear	Primal SGD	Online-style	Unknown
Pegasos	[Shalev-Shwartz et al., 2007]	Kernel	Primal SGD/SGP	Online-style	$ ilde{O}(s/\lambda ho)$
LibLinear	[Hsieh et al., 2008]	Linear	Dual coordinate descent	Batch	$O(nd \cdot \log(1/\rho))$
SGD-QN	[Bordes and Bottou, 2008]	Linear	Primal 2SGD	Online-style	Unknown
FOLOS	[Duchi and Singer, 2008]	Linear	Primal SGP	Online-style	$ ilde{O}(s/\lambda ho)$
BMRM	[Smola et al., 2007]	Linear	Dual QP	Batch	$O(d/\lambda ho)$
OCAS	[Franc and Sonnenburg, 2008]	Linear	Primal QP	Batch	O(nd)

Validation

- Model selection:
 - Almost invariably, all ML methods have some free parameters
 - The number of neighbors in K-NN
 - The kernel parameters in SVMs
- Performance estimation:
 - Once we have chosen a model, how to estimate its performance?

Motivation

- ♦ If we had access to an unlimited number of examples, there is a straightforward answer
 - Choose the model with the lowest error rate on the entire population
 - □ The error rate is the true error rate
- ♦ In practice, we only access to a finite set of examples, usually smaller than we wanted
 - Use all training data to select model => too optimistic!
 - A better approach is to split the training set into disjoint subsets

Holdout Method

- Split dataset into two subsets
 - Training set: used to learn the classifier
 - Test set: used to estimate the error rate of the trained classifier

♦ E.g.: used to determine a stopping point of an iterative alg.:

Holdout Method

- Two basic drawbacks
 - In problems with a sparse dataset, we may not be able to afford the "luxury" of setting aside a portion of data for testing
 - A single train-test split may lead to misleading results, e.g., if we happened to get an "unfortunate" split
- Resampling can overcome the limitations, but at the expense of more computations
 - Cross-validation
 - Random subsampling
 - K-fold cross-validation
 - Leave-one-out cross-validation
 - Bootstrap

Random Subsampling

- Performs K data splits of the entire dataset
 - Each split randomly selects a (fixed) no. examples
 - For each split, retrain the classifier with training data, and evaluate on test examples

♦ The true error is estimated as the average

$$E = \frac{1}{K} \sum_{k=1}^{K} E_k$$

K-Fold Cross-validation

- Create a K-fold partition of the dataset
 - □ For each of K experiments, use K-1 folds for training and the remaining one for testing

- K-fold CV is similar to random subsampling
 - □ The advantage of K-fold CV is that all examples are eventually used for both training and testing
- True error is estimated as the average

$$E = \frac{1}{K} \sum_{k=1}^{K} E_k$$

Leave-one-out Cross-Validation

♦ Leave-one-out CV is the extreme case of K-fold CV, where K=N

$$E = \frac{1}{N} \sum_{k=1}^{N} E_k$$

How many folds are needed?

- With a large number of folds
 - (+) The bias of true error estimate is small (i.e., accurate estimate)
 - □ (—) The variance of true error estimate is large the K training sets are too similar to one another
 - (—) The computational time will be large (i.e., many experiments)
- With a small number of folds
 - (+) The computation time is reduced
 - (+) The variance of true error estimate is small
 - □ (—) The bias of the estimator is large, depending on the learning curve of the classifier
- ♦ In practice, a large dataset often needs a small K, while a very sparse dataset often needs a large K
- \bullet A common choice for K-fold CV is K=10

Three-way data splits

- If model selection and true error estimates are to be computed simultaneously, the data needs to be divided into 3 disjoint sets
 - **Training set**: used for learning to fit the parameters of the classifier
 - Validation set: used to tune the parameters of a classifier
 - Test set: used only to assess the performance of a fully trained classifier

