

Guía Ayudantía Mecánica Intermedia (FIS 310) Daniel Salinas A.

Contenidos: Problemas de mecánica clasica

1. Ecuación de movimiento para el problema de Kepler.

Demuestre que la ecuación de movimiento es

$$\alpha = \frac{p_{\theta}^{2}}{\mu k} \\
\varepsilon = \sqrt{1 + \frac{2Ep_{\theta}^{2}}{\mu k^{2}}} \right\} \to r = \frac{\alpha}{1 + \varepsilon \cos(\theta - \theta')} \tag{1}$$

- 1. Considere el caso del oscilador armónico (n = -2).
 - (a) Clasifique que las órbitas posibles (en términos de E y p_{θ}).
 - (b) Encuentre la solución r(t) y $\theta(t)$. ¿Es la órbita cerrada?.
- 2. Tome la órbita $r = k\theta^2$. Encuentre la fuerza central que la produce.
- 3. Una partícula se mueve en dos dimensiones bajo la influencia de una fuerza central determinada por el potencial $V(r) = ar^p + br^q$. Encontrar las potencias p y q que hacen posible lograr una orbita espiral $r = c\theta^2$, con c constante.