Qualifying Synthetic Fuels for Military Applications

Presented at the

2005 DoD Standardization Conference

March 8, 2005

Herbert H. Dobbs, Jr
Team Leader, Fuel Cell Technology
and Alternative Fuels
National Automotive Center
RDECOM/TARDEC
586-574-5157
Herbert.Dobbs@us.army.mil

<u>Acknowledgements</u>

Office of Secretary of Defense Acquistion, Technology, and Logistics Advanced Systems & Concepts

- Ms. Sue Payton Deputy Under Secretary of Defense
- Dr. Theodore K. Barna Assistant Deputy Under Secretary of Defense

Crude Oil: Finite Supply, Rising Demand

Proven Oil Reserves at End of

Top World Oil Consumers in 2003

Top World On Consumers in 200								
		Total Demand						
		Country	(M BPD)					
	1)	United States	20.0					
	2)	China	5.6					
	3)	J apan	5.4					
	4)	Germany	2.6					
	5)	Russia	2.6					
	6)	India	2.2					
	7)	South Korea	2.2					
	8)	Canada	2.2					
	9)	Brazil	2.1					
	10)	France	2.1					
	11)	Mexico	2.0					

Source: BP Statistical Review of World Energy 2004 © BP

World Oil Balance, 1Q04
Supply = 82.1M BPD
Demand = 82.3M BPD
International Energy Agency Oil Market Report

U.S. Demand for Petroleum Products

Many products made from petroleum

Rising Demand for Transportation Fuels

Increasing Reliance on Petroleum Imports

Source: EIA (AEO 2004); Reference Case Scenario [Courtesy John Winslow-DoE]

U.S. Refining Capability Is Strained

Current Military Transportation Needs - Petroleum

Service BPY		<u>Percent</u> <u>BPD</u>		
Army	6%	18,500		
6.7 M				
Air Force	55 %	166,000		
60.8 M				
Navy	38%	114,000		
41.8 M				
Marines		1% Source: DESC, FY02		
1,500	0.7 <u>M</u>			
Total	100%	300,000		
110.0 M				

Bulk Transportation Fuels

Source: DESC Contract Awards, FY03

U.S. Hydrocarbon Resources

Coal 250 B tons = 1,138 Billion BOE

Petroleum Coke 798K BOE/day produced - 361K BOE/day exported 437K BOE/day available

Natural Gas 184.8 Tcf = 33.3 Million BOE

Equivalent to 1.3 Trillion **Barrels of Oil**

Tar Sands 6.1 Billion BOE

Biomass 1.2 B tons =31.75 Billion BOE

Fischer-Tropsch Technology

Emerging Global FT Industry

fis.	initerically operated in			
Plants	Years	Capacity	Feed	
Company	<u>Operated</u>	(BPD)	Stock	
Sasol (S. Africa)	44	160,000	coal	
MossGas (S. Africa)	10	22,500	nat. gas	

15.000

nat. gas

Shell (Malaysia)

History of Commerically Operated FT

FT Projects in U.S.

- BP (Nikiski, AK)
 - 300 bpd demo plant (2003)
- FT product to near-by refinery
- ConocoPhillips (Ponca City, OK)
 - 400 bpd demo plant
 - Just starting up
 - Syntroleum (Tulsa, OK)
 - 70 bpd demo plant (late 2003)
 - DoE co-sponsor
 - Rentech (East Dubuque, IL)
 - Convert nat. gas-fed fertilizer plant to use coal
 - Co-produce FT fuels, fertilizer, and electricity
- WMPI (Gilberton, PA)
 - Convert waste coal to 5000 bpd FT fuels and 41 MWe power
 - DoE co-sponsor

FT Plants U.S. Energy Security

Benefits to Domestic Production of Non-petroleum Fuels

- Provides Secure Supply
 - U.S. Military & Homeland Security
 - Transportation Market
 - Co-production of Electricity and Fuels
- Promotes Diversity of U.S. Energy Supply
 - Uses most plentiful domestic resources
 - Increases number of suppliers worldwide
 - Encourages monetization of worldwide non-petroleum resources
- Provides Stimulus for U. S. Economic Growth
 - New industry = new jobs
 - Offsets crude oil trade deficit (\$200 billion/year)
 - Downward pressure on global energy pricing

Fischer-Tropsch (FT) Fuels Fuels for the 21st Century

- Can use existing distribution infrastructure
- Cleaner Air Healthier Lives
 - Exceed EPA 2006 regulations for ultra-low sulfur fuels
 - No sulfur
 - Cleaner burning
 - · No aromatics, no sulfur
 - Lower engine exhaust emissions
- Less toxic
 - No aromatics, no heteroatoms
 - Biodegradeable

FT Fuels Being Evaluated

- FT diesel fuel evaluations in bus fleet demonstrations
 - Denali National Park
 - Washington DC WMATA
- Fuels produced at Syntroleum Tulsa Port of Catoosa Demonstration Plant
 - DoE is co-sponsor
 - Ultra-clean Transportation Fuels Program
 - National Energy Technology Laboratory (NETL)
 - Marathon is co-sponsor
 - ICRC Program Manager

DoD-DoE Joint Agency Program for FT Fuels

- FY03 program start
 - Continuing FY04, FY05
- FT jet fuel supplied by Syntroleum Corp. from Tulsa demonstration plant
- Define FT fuel formulations needed to allow use in all DoD equipment
- Coordination of military/commercial aviation communities through Coordinating Research Council (CRC)

Managed by:

Research Participants

- Air Force
 - Air Force Fuels Research Laboratory/NAFRC
 - University of Dayton Research Institute
- Army
 - TARDEC Fuels & Lubricants Laboratory
 - Southwest Research Institute
- Navy
 - NAVAIR Fuels and Lubricants Laboratory
 - Naval Fuels and Lubricants Integrated
 Product Team
- DoE
 - National Energy Technology Laboratory
- Syntroleum Corp.

FT Fuels Reduce Emissions

- Less Pollutant Emissions
 - 2.4% less CO₂
 - 50% to 90% less particulate matter (PM)
 - 100% reduction in SOx
 - ~1% less fuel burn (increased gravimetric energy density)

Highly Paraffinic Fuel - normal and isoparaffins

Petroleum derived fuels are rich in aromatics, cycloparaffins, and heteroatoms

Reduced Particulate Emissions with FT Fuel Relative to JP-8

>

96% reduction* in particulate emissions at idle conditions.

Even moderate fractions of FT fuel blended in JP-8 significantly reduce exhaust emission particulates in T63 turbine engine

* Note: Results are highly dependent on engine model/year and composition of baseline fuel.

Reduced Exhaust Emissions with FT Fuel Relative to Low-Sulfur Diesel Fuel

Over 50% reduction in particulate emissions in transient mode.

FT fuel burns more completely and emissions are significantly cleaner than EPA certified low-sulfur diesel fuel tested in 6.5L diesel engine.

(RP-1 replacement)

FT Fuels Improve Aerospace Propulsion and Power Systems

Fuels Benefit Air/Ground/Marine Propulsion and Power Systems

FT Fuels Have Superior Thermal Stability

Increased fuel thermal stability enables development of very fuel efficient propulsion systems

FT Fuels Have Excellent Low Temperature Properties

Superior Low Temperature Properties
Improve High Altitude Operations
and Low Temperature Starting

FT Fuel Benefits for Navy Shipboard Use

Storage Stability Test Results

(Syntroleum S-5)

FT fuel responds well to standard

antioxidant (AO) used for petroleum

Compatibility Evaluation Test Results

(2 FT fuels: F-T 1 and F-T 2)

typical navy fuel

FT fuels

Low copper uptake of FT fuel =

good long-term storage stabi

- Excellent long-term storage stability
- Significant reduction in copper up-take
 - Increased thermal stability / Extended engine life

FT Fuels The Next Single Fuel for the Battlefield

- Clean Fuels
 - Reduced emissions
 - No aromatics
- Enables Fuel Efficient Designs
 - Increased thermal stability
- Excellent lowtemperature properties allow for:
 - higher altitude operations
 - improves diesel engine cold-starting capability

Take Action— Make It Happen

FT Plants in the U.S. converting our vast hydrocarbon resources into transportation fuels:

- Enhances our energy secoxity
- Promotes diversity of supply
- Stimulates U.S. economic growth
- Leads to Cleaner Air Healthier Lives

The U.S. Military is preparing to use FT fuels:

- FT fuels offer advantages to the military
- DoD-DoE Joint Program is working to make possible -

FT Fuel for the Military

National Energy Security Post 9/11, June 2002

(a study conducted by the United States Energy Association)

"More than 50% of the gasoline, aviation fuel, heating oil, diesel fuel and other petroleum products come from a dozen or more nations abroad. Some are friendly, some are not. The answer to increased energy security is diversifying our sources of supply . . ."