Module 2A003: Méthodes mathématiques pour la mécanique

TD 7-8 - Equations différentielles d'ordre 1

Equations à variables séparables

Exercice 1 - Loi de refroidissement de Newton

A l'instant t=0, on plonge un corps de témperature Θ_0 (témperature initiale) dans un milieu de témperature Θ_{as} (témperature asymptotique). Supposons que la témperature du milieu demeure constante (par exemple, une tasse de café dans une salle à manger). Comment la témperature du corps $\Theta(t)$ va-t-elle évoluer de Θ_0 vers Θ_{as} ? Avec Newton, admettons que la variation de température est proportionnelle à la différence entre la témperature du corps et celle du milieu, la constante de proportionalité étant k>0:

$$\Theta'(t) = -k(\Theta(t) - \Theta_{as})$$

Questions:

- (a) De quel type d'équation s'agit-il? Résolvez l'équation différentielle avec condition initiale.
- (b) Sachant que, dans une pièce à $20^{\circ}C$ une tasse de café passe de $70^{\circ}C$ à $40^{\circ}C$ en 8 minutes,
 - 1. calculez k;
 - 2. dessinez la fonction $\Theta(t)$;
 - 3. calculez le temps nécessaire pour que le café passe de $70^{\circ}C$ à $20^{\circ}C$;
 - 4. calculez le temps nécessaire pour que le café passe de $70^{\circ}C$ à $20^{\circ}C$ sachant que la témperature finale est mesurée avec une incertitude $\Delta\Theta=\pm0.5^{\circ}C$.

Solutions: (a)
$$\Theta(t) = \Theta_{as} + (\Theta_0 - \Theta_{as})e^{-kt}$$
. (b) 1) $k \approx 0,114$. 4) $t^* \approx 40$ min.

Exercice 2* (Supplémentaire) - Le parachutiste

Lorsqu'un parachutiste ouvre sa voile à l'instant t = 0 sa vitesse est $v(0) = v_0 = 10 \text{ ms}^{-1}$. Quelle est la loi d'évolution de la vitesse v(t)? Décroît elle jusqu'à s'annuler? Question supplémentaire: Peut-on généraliser le résultat précédent à toutes les vitesses initiales?

Données physiques. On considérera que la personne et son équipement pésent 70 kg, une gravité de $10~m.s^{-2}$. On supposera une traînée proportionnelle au carré de la vitesse v et notée $T=bv^2$. Le coefficient de traînée b dépend essentiellement du type de parachute. On choisira $b=30~kg.m^{-1}$.

Solution :
$$v(t) = k \frac{1 + Ce^{\frac{-2bk}{m}t}}{1 - Ce^{\frac{-2bk}{m}t}}$$
 avec $k = \sqrt{\frac{mg}{b}}$ et $C = \frac{v_0 - k}{v_0 + k}$.

Equations linéaires

Exercice 3

Déterminer les solutions réelles définies sur $\mathbb R$ des équations différentielles suivantes :

1.
$$y'(x) + y(x) = \cos x + \sin x$$
.

2.
$$y'(x) - 2xy(x) = \sinh x - 2x \cosh x$$
.

Solutions: ((1)
$$y(x) = \sin x + \lambda e^{-x}$$
. (2) $y(x) = \cosh x + \lambda e^{x^2}$.

Exercice 4

Sur \mathbb{R}^{+*} , résoudre l'équation différentielle suivante en utilisant la variation de la constante : $(xln(x)) y'(x) - y(x) = -\frac{1}{x} (ln(x) + 1) .$

Solutions :
$$y(x) = \frac{1}{x} + \lambda lnx$$
.

Exercice 5 - Problème de Cauchy

Résoudre l'équation différentielle $xy'(x) - y(x) = x^2 e^x$ munie de la condition initiale y(1) = 0en utilisant la méthode de variation de la constante pour trouver la solution particulière.

Solution:
$$y(x) = x(e^x - e)$$
.

Equations non linéaires du premier ordre

Exercice 6*(Supplémentaire) - Equation qui se réduit à une forme séparable

Déterminer la solution réelle sur \mathbb{R}_+^* de l'équation différentielle suivante. On pourra ensuite raisonner par symétrie pour trouver une solution sur \mathbb{R} .

$$xy' - y = \sqrt{x^2 + y^2} \tag{1}$$

Solution:
$$y(x) = \frac{x^2 - \lambda^2}{2\lambda}$$
 avec $\lambda \neq 0$.

Exercice 7

On se propose d'intégrer sur l'intervalle le plus grand possible contenu dans $]0, \infty[$ l'équation différentielle :

(E)
$$y'(x) - \frac{y(x)}{x} - y^2(x) = -9x^2$$
.

- 1. Déterminer $a \in]0, \infty[$ tel que y(x) = ax soit une solution particulière y_0 de (E). 2. Montrer que le changement de fonction inconnue : $y(x) = y_0(x) \frac{1}{z(x)}$ transforme l'équation (E) en l'équation différentielle :

(E1)
$$z'(x) + (6x + \frac{1}{x})z(x) = 1.$$

- 3. Intégrer (E1) sur $]0, \infty[$.
- 4. Donnez toutes les solutions de (E) définies sur $]0, \infty[$.

Solution:
$$y(x) = 3x - \frac{1}{\frac{1}{6x} + \frac{k}{x}e^{-3x^2}}, \forall k \in \mathbb{R}.$$

Module 2A003: Méthodes mathématiques pour la mécanique

TD 9-10 - Equations différentielles d'ordre 2

Equations à coefficients constants

Exercice 1 - Quelques équations non-homogènes

Résoudre les équations suivantes :

- 1. $y'' 3y' + 2y = e^x$
- 2. $4y'' + 4y' + 5y = e^{-x/2} \sin x$
- 3. $y'' + 2y' + y = 2e^{-x}$
- 4. $y'' + 4y = \sin x$.

Solutions:

1.
$$y = (\alpha - x)e^x + \beta e^{2x}$$
, 2. $y = \left[\left(\alpha - \frac{x}{8}\right)\cos x + \beta \sin x\right]e^{-x/2}$, 3. $y = (x^2 + \alpha x + \beta)e^{-x}$, 4. $y = \alpha \cos(2x) + \beta \sin(2x) + \frac{1}{3}\sin x$, $\alpha, \beta \in \mathbb{R}$.

Exercice 2 - Régimes d'oscillations d'un système Masse+Ressort

On considère un système (masse+ressort) où la masse M est supposée ponctuelle. Le ressort, de raideur k, a une longueur à vide X_0 et est posé sur un support horizontal (de telle sorte que le poids n'intervienne pas dans l'équation du mouvement). Soit X(t) la position de la masse M à l'instant t. On appelera $x(t) = X(t) - X_0$ la position relative.

On suppose dans un premier temps que les frottements sont négligeables.

1) Donnez l'équation du mouvement sous la forme canonique $\ddot{x}(t) + \omega^2 x(t) = 0$. Résolvez l'équation en supposant qu'à t = 0 la masse est en $X = X_0$, et qu'on lui impose une vitesse initiale $v(t = 0) = V_0$.

Solution:
$$x(t) = \frac{V_0}{\omega} \sin \omega t$$
.

On suppose dans toute la suite que les frottements ne peuvent plus être négligés. On les modélise par un frottement fluide de la forme -fv(t) où f est le facteur de frottement, qui dépend de la forme de l'objet et de la viscosité de l'air (Formule de Stokes).

- 2) Donnez l'équation du mouvement amorti sous la forme canonique $\ddot{x}(t) + \frac{\omega}{Q}\dot{x}(t) + \omega^2 x(t) = 0$ en précisant l'expression du facteur de qualité Q.
- 3) De quel paramètre physique va dépendre la forme de la solution? Combien de régimes possibles peut-on avoir? À quoi correspondent-ils? Donnez un critère pour chaque régime.
- 4) Résoudre l'équation amortie pour ces trois régimes différents en utilisant les conditions initiales de la question 1). Esquissez le graphe de x = x(t).

Equations à coefficients variables

Exercice 3 - Méthode de la variation des constantes

On considère l'équation différentielle :

$$(x+1)y'' - (2x-1)y' + (x-2)y = x+1$$
(2)

- 1. Vérifier que $y_1(x) = e^x$ est solution de l'équation différentielle homogène associée.
- 2. Trouver une deuxième solution $y_2(x)$ de l'équation différentielle homogène, de sorte que y_1, y_2 soient linéairement indépendantes.
- 3. Trouver une solution particulière pour l'équation différentielle non-homogène (2).
- 4. Conclure quant à la solution générale de l'équation (2).

Solution:

$$y(x) = 1 + 3\frac{x+2}{(x+1)^2} + \left[\alpha + \frac{\beta}{(x+1)^2}\right]e^x.$$

avec $\alpha, \beta \in \mathbb{R}$.

Exercice 4* : Supplémentaire

Résoudre par le changement de fonction $z=\frac{y}{x}$ l'équation différentielle :

$$x^{2}y''(x) - 2xy'(x) + (2 - x^{2})y(x) = 0.$$

Solution:

$$y(x) = x(\lambda \cosh x + \mu \sinh x)$$
 avec $\lambda, \mu \in \mathbb{R}$.

Module 2A003: Méthodes mathématiques pour la mécanique

TD 11-12 - Systèmes différentiels

Exercice 1- Systèmes différentiels linéaires

1. Résoudre le système différentiel linéaire X' = AX, avec :

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

2. Déterminer les solutions réelles du système différentiel suivant :

$$\begin{cases} x' = x + z \\ y' = -y - z \\ z' = 2y + z \end{cases}$$

$$Solution: 2. \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \lambda e^t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} \cos t - \sin t \\ \cos t + \sin t \\ -2 \cos t \end{pmatrix} + \nu \begin{pmatrix} \sin t + \cos t \\ \sin t - \cos t \\ -2 \sin t \end{pmatrix}, \quad \lambda, \mu, \nu \in \mathbb{R}$$

Exercice 3 - Système Masses+Ressorts

On considère un système masse-ressort, composé de deux masses reliées par deux ressorts élastiques. Si le mouvement de ces deux masses se fait sans amortissement, on décrit leur déplacement par le système différentiel :

$$\begin{cases} m_1 y_1^{"} = -k_1 y_1 + k_2 (y_2 - y_1) \\ m_2 y_2^{"} = -k_2 (y_2 - y_1) \end{cases}$$

où $y_1 = y_1(t)$ représente le déplacement de la première masse, $y_2 = y_2(t)$ le déplacement de la deuxième masse et k_1 , k_2 sont les constantes d'élasticité des deux ressorts. Résoudre le système pour $m_1 = m_2 = 1$, $k_1 = 3$ et $k_2 = 2$.

$$Solution: \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} = a \begin{pmatrix} \cos t \\ -2\cos t \end{pmatrix} + b \begin{pmatrix} \sin t \\ 2\sin t \end{pmatrix} + c \begin{pmatrix} 2\cos(\sqrt{6}t) \\ -\cos(\sqrt{6}t) \end{pmatrix} + d \begin{pmatrix} 2\sin(\sqrt{6}t) \\ -\sin(\sqrt{6}t) \end{pmatrix}, \ a,b,c,d \in \mathbb{R}$$