Ejercicio 20

Consigna

Considere los siguientes conjuntos:

- $P = \{p_i : i \in \mathbb{N}\}$
- $\Sigma = P \cup \{\oplus, \otimes, \}, (\}$
- El conjunto L definido inductivamente por las siguientes reglas:
 - 1. Si $p_i \in P$, entonces $p_i \in L$
 - 2. Si $\varphi \in L$ y $\psi \in L$, entonces $(\varphi \oplus \psi) \in L$
 - 3. Si $\varphi \in L$ y $\psi \in L$, entonces $(\varphi \otimes \psi) \in L$
- (a) Dada una función:
 - $v_1: P \to \{0,1\}$
 - $v_1(p_i) = \begin{cases} 1 & \text{si } i \text{ es par} \\ 0 & \text{si } i \text{ no es par} \end{cases}$

Defina una función recursiva $eval_1:L\to\{0,1\}$ considerando que se evalúa \oplus como el máximo, \otimes como el mínimo, y cada $p_i \in P$ como $v_1(p_i)$.

Por ejemplo: $eval_1(((p_0 \otimes p_1) \oplus p_0)) = 1$

(b) Defina una función recursiva $eval_2: L \times (P \to \{0,1\}) \to \{0,1\}$, donde se agrega la interpretación de los elementos de P a la función $eval_1$.

Por ejemplo: $eval_2(((p_0 \otimes p_1) \oplus p_0), v_1) = 1$

- (c) Indique si las siguientes afirmaciones son verdaderas o falsas para cualquier función v:
 - $(\forall \varphi, \psi \in L) eval_2((\varphi \oplus \psi), v) = 1 \Rightarrow eval_2(\varphi, v) = 1$
 - $(\forall \varphi, \psi \in L) eval_2((\varphi \oplus \psi), v) = 1 \Leftarrow eval_2(\varphi, v) = 1$
 - $\bullet \ (\forall \varphi, \psi \in L) \ eval_2((\varphi \otimes \psi), v) = 1 \Rightarrow eval_2(\varphi, v) = 1$
 - $(\forall \varphi, \psi \in L) eval_2((\varphi \otimes \psi), v) = 1 \Leftarrow eval_2(\varphi, v) = 1$

Resolución

Antes de empezar, debemos tener en cuenta que todo lo siguiente se basa en que L es libre, pero a priori no tengo una forma de demostrar porque esto es así, aunque intuitivamente es visible que L es libre.

1

Parte a

Para definir una función recursiva, definamos primero el ERP para el conjunto L:

- 1. $F(p_i) = f_{p_i}$
- 2. $F(\varphi \oplus \psi) = f_{s_1}(\varphi, \psi, F(\psi), F(\varphi))$ 3. $F(\varphi \otimes \psi) = f_{s_2}(\varphi, \psi, F(\psi), F(\varphi))$

A partir de esto, usando las definiciones de v_1, \oplus, \otimes , podemos construir $eval_1$:

1.
$$eval_1(p_i) = v_1(p_i)$$

- 2. $eval_1(\varphi \oplus \psi) = mx\{v_1(\varphi), v_1(\psi)\}$ 3. $eval_1(\varphi \otimes \psi) = mn\{v_1(\varphi), v_1(\psi)\}$

Dónde $v_1(\varphi), v_1(\psi) \in \{0, 1\}$ por lo que podemos usar las funciones mx, mn sobre \mathbb{N}

Observación: El ERP usualmente se ve complejo, pero lo importante es saber que elementos tenemos que definir, y saber decir de que depende la definición de estos.

Parte b

Construir $eval_2$ es muy parecido a construir $eval_1$, solo que ahora la función v es dada como parámetro en vez de estar predefinida. Entonces, definimos $eval_2$:

- 1. $eval_2(p_i) = v(p_i)$
- 2. $eval_2(\varphi \oplus \psi) = mx\{v(\varphi), v(\psi)\}\$ 3. $eval_2(\varphi \otimes \psi) = mn\{v(\varphi), v(\psi)\}\$

Listo, esto nos define $eval_2$.

Parte c

Ahora que tenemos definida $eval_2$ podemos seguir con esta parte:

Afirmación #1
$$(\forall \varphi, \psi \in L) \ eval_2((\varphi \oplus \psi), v) = 1 \Rightarrow eval_2(\varphi, v) = 1$$

La hipótesis nos dice que el máximo de $v(\varphi), v(\psi)$ es 1, es decir que o $v(\varphi) = 1$ o $v(\psi) = 1$ o las dos cosas a la vez. Con esto, podemos afirmar que existen algunos φ, ψ tal que $(\varphi) = 0$ y $v(\psi) = 1$ y la hipótesis sigue siendo verdadera, en cambio, en este caso:

$$eval_2(\varphi,v) \neq 1$$

Por lo que esta afirmación es FALSA.

$$\textbf{Afirmación #2} \quad (\forall \varphi, \psi \in L) \ eval_2((\varphi \oplus \psi), v) = 1 \Leftarrow eval_2(\varphi, v) = 1$$

La hipótesis cambia en este caso, nos dice que $v(\varphi) = 1$, entonces esto nos dice que el máximo entre $v(\varphi), v(\psi)$ siempre va a ser 1, sin importar quién es ψ . Entonces:

Esta afirmación es VERDADERA.

$$\textbf{Afirmación #3} \quad (\forall \varphi, \psi \in L) \ eval_2((\varphi \otimes \psi), v) = 1 \Rightarrow eval_2(\varphi, v) = 1$$

La hipótesis nos dice que el mínimo entre $v(\varphi), v(\psi)$ es 1. Esto implica directamente que ambos $v(\varphi) = v(\psi) = 1$ por lo que:

$$eval_2(\varphi,v)=1$$

Entonces esta afirmación es VERDADERA.

$$\textbf{Afirmación #4} \quad (\forall \varphi, \psi \in L) \ eval_2((\varphi \otimes \psi), v) = 1 \Leftarrow eval_2(\varphi, v) = 1$$

Si miramos la tesis directamente, podemos confirmar que la única forma de que el mínimo entre $v(\varphi),v(\psi)$ sea 1, es que ambas sean 1. Por la hipótesis solo sabemos que $v(\varphi)=1$, entonces $v(\psi)$ podría ser 0, por lo tanto negando la tesis.

Entonces, esta afirmación es FALSA.