Activities of Daily Living-Recognition with Wristworn Accelerometer

Lecture: Deep Learning Architecture and Models

Professor: Prof. Dr. Kristian Kersting

Students: Merve Bektas, Erik Helmut, Darya Nikitina, Moritz Meser

Agenda

APPROACH

EVALUATION

Problem Statement

"Analysis of human behavior recognition algorithms based on acceleration data" [1]

Activities of Daily Living (ADL)

Recognition of Human Motion Primitives

Algorithm based on deep learning

learn the features directly from the data

Model

Approach

Data

Approach

The Dataset for ADL Recognition with Wrist-worn Accelerometer

- Labelled accelerometer data recordings available for public usage for creation or validation of acceleration models
- 16 different volunteers recorded their performance of simple daily activities
 - 14 activities
 - Examples: walking, brushing teeth, eating soup etc.
 - Collected by one tri-axial accelerometer on the right-wrist of the volunteer
- Idea: Create a public testbench for a better comparison of human motion primitives detection algorithms

Approach

Approach

Learning Rate: 0.001

Batch Size: 1 Epochs: 150

Percentage of Data used for

Training / Validation / Test: 0.7 / 0.1 / 0.2

Training

Evaluation

Accuracy: ~ 91.62%

Activity	TP (Base)	TN (Base)	TP (Ours)	TN (Ours)
Climb Stairs	38.3%	85.78%	95.24%	98.78%
Drink Water from a Glass	90.91%	86.59%	90.48%	100%
Pour Water	95%	71.55%	100%	99.63%
Sit down on chair	0%	100%	85.71%	98.72%
Stand up from chair	35.71%	93.96%	100%	98.17%

Conclusion and Further Improvements

- Efficient and accurate tracking of human motion primitives
 - Low training, validation and test loss after training (compared to a baseline model)
 - High accuracy of the prediction

- Possible Further Improvements
 - Extend model to include other activities
 - Test with different optimizers
 - Compare to other algorithms

Thank you for your attention!

You can find us on GitHub!