Bioinformatic Tool for Identifying Causative Mutation Candidates from RNA-seq Data

Ramzy Al-Mulla¹, Amelia Dayton¹, Zach Girard¹, Anne Martin², Adam Miller²

1. Bioinformatics and Genomics Master's Program - KCGIP, University of Oregon; 2. Institute of Neuroscience, Department of Biology, University of Oregon

1. How do we identify novel causative mutations?

Bulk Segregant Analysis (BSA) is a method used to identify causative mutations and examine related gene regulatory changes in a mutant population.

However, identifying an individual mutation within the genome is largely inaccessible to researchers without computational expertise. Existing tools^{1,2} are outdated and rely on unsupported software.

Objective: Build a fast, accessible bioinformatics pipeline to identify causative mutations in the genome

With our new pipeline, we aim to uncover an unknown mutation that resulted in the diminished development of chemical and electrical synapses in zebrafish.

2. Bioinformatic workflow from RNA-seq data to candidate genes

Figure 1: Bioinformatic workflow for mapping pipeline. This pipeline uses publicly available tools for alignment, variant calling, variant effect prediction, and differential expression analysis. Custom-built R scripts output maps of linked regions and lists of candidate genes based on the predicted effects of each variant.

Figure 2: Linked mutations in control hoxb1b and novel mutant dataset. Purple and magenta markers represent the sliding window average of the SNP's frequency and black markers represent all SNPs across the chromosome. Linked mutant region located on Chromosome 10 is denoted by the vertical blue lines.

4. Identification of candidate mutations

Table 1: Top Five SNP & INDEL Candidates from Chromosome 10

Gene	Position	Count	Freq.	Consequence	Function
cadm2a	23213868	123	0.73	intron variant	cell adhesion
cltca	28335761	40	0.88	intron variant	protein transport
nsd3	20586604	29	0.93	stop gained	histone methylation
pcdh1g29	21799222	22	0.59	stop gained	cell adhesion
frem2a	25986164	18	0.83	stop gained	cell adhesion

Experimentally test candidate genes to determine which is causing the observed phenotype

6. Future Directions

- Build and launch an accessible web-based application for non-bioinformaticians
- Apply pipeline to other model organisms

5. Improvements to tool performance

Original tool to original tool. modifications. **Memory Usage** Original for mapping genome Modified-

Figure 3: Performance comparison of modified

- (A) Time to map genome before and after custom
- (B) Memory improvement before and after custom modifications.

7. Acknowledgements

We would like to thank the UO GC3F, our mentors and peers within the Knight Campus Graduate Internship Program for their unwavering support, and the NIH (R21NS135433) for project funding. This work benefited from access to the University of Oregon high performance computing cluster, Talapas.

- 1. A. C. Miller, N. D. Obholzer, A. N. Shah, S. G. Megason, C. B. Moens, RNA-seq-based mapping and candidate identification of mutations from forward genetic screens. Genome Res 23, 679–686 (2013).
- 2. M. E. Bowen, K. Henke, K. R. Siegfried, M. L. Warman, M. P. Harris, Efficient mapping and cloning of mutations in zebrafish by low-coverage Whole-Genome Sequencing. Genetics 190, 1017-1024 (2012).

