第二章课后习题

• 第七题解:

由题意知,首先机器是32位机器,所以

 $R_1 = 0000 \ 108 BH = 0000 \ 0000 \ 0000 \ 0001 \ 0000 \ 1000 \ 1011 b$

 $R_2 = 8080\ 108 BH = 1000\ 0000\ 1000\ 0000\ 0001\ 0000\ 1000\ 1011 b$

- 1. 对于**无符号整数**加法而言: R_1 和 R_2 的真值就为0000~108BH和8080~108BH。
- 2. 对于**带符号整数**乘法而言:由 R_1 和 R_2 的32位二进制表示可知, R_1 的符号为正, R_2 的符号为
 - 负。因为正数的原码和补码均一致,所以 R_1 的真值为+0000~108BH。对负数的补码先减
 - 一,然后再按位取反即可得到其原码,所以 R_2 的真值为
 - $-0111\ 1111\ 0111\ 1111\ 1110\ 1111\ 0111\ 0101b = -7F7F\ EF75H$
- 3. 对于**单精度浮点数**减法而言: R_1 **的真值为**

 $(+1.000\ 0000\ 0001\ 0000\ 1000\ 1011)_2 imes 2^{-127}$; R_2 的真值为

 $(-1.000\ 0000\ 0001\ 0000\ 1000\ 1011)_2 \times 2^{-126}$.

• 第八题解:

关系表达式	运算类 型	结果	说明
0 == 0U	无符号 整数	1	$00\cdots 0B(0)=00\cdots 0B(0)$
-1 < 0	带符号 整数	1	$11\cdots 1B(-1)<00\cdots 0B(0)$
-1 < 0U	无符号 整数	0	$11\cdots 1B(2^{32}-1)>00\cdots 0B(0)$
2147483647 > -2147483647 - 1	带符号 整数	1	$011\cdots 1B(2^{31}-1)>100\cdots 0B(-2^{31})$
2147483647U > -2147483647 - 1	无符号 整数	0	$011\cdots 1B(2^{31}-1)<100\cdots 0B(2^{31})$
2147483647 > (int)2147483648U	带符号 整数	1	$011\cdots 1B(2^{31}-1)>100\cdots 0B(-2^{31})$
-1 > -2	带符号 整数	1	$11\cdots 1B(-1)>11\cdots 0B(-2)$
(unsigned)-1>-2	无符号 整数	1	$11\cdots 1B(2^{32}-1)>11\cdots 0B(2^{32}-2)$

• 第十题解:

- 2. 已知y的机器数为DFFCH,同时y的数据类型为**16位有符号整数**,所以y=-12
- 3. 已知z的机器数为FFFFFFFFAH,同时z的数据类型为32位无符号整数,所以 z=4294967290
- 4. 已知c的机器数为2AH,同时c的数据类型为**8位有符号整数**,所以c=42
- 5. 已知a的机器数为 $C448\ 0000H$,同时a的数据类型为**单精度浮点数**,所以a=-36.0

6. 已知b的机器数为C024~8000~0000~0000H,同时b的数据类型为**双精度浮点数**,所以 b=-36.5

• 第十八题解:

已知x=-0.125,y=7.5,i=100,所以三者的**二进制表示为** $x=(-0.001)_2=-1.0\times 2^{-3},y=(111.1)_2,i=(1100100)_2$ 。从而可知,三者的**机器数表示为** $x=(BE00\ 0000)_{16},y=(40F0\ 0000)_{16},i=(0064)_{16}$ 。

在大端方式和小端方式机器上的存放位置如下表格 (采用十六进制表示):

地址	大端机内容	小端机内容
100	BE	00
101	00	00
102	00	00
103	00	BE
108	40	00
109	F0	00
110	00	F0
111	00	40
112	00	64
113	64	00

第三章课后习题

• 第三题解:

Note

表格中机器数采用十六进制表示

w的机器数	w 的 值	func1(w)的 机器数	func1(w) 的值	func2(w)的机 器数	func2(w) 的值
$0000\ 007F$	127	$0000\ 007F$	127	$0000\ 007F$	127
0000 0080	128	0000 0080	128	FFFF $FF80$	-128
0000~00FF	255	0000~00FF	255	FFFFFFFF	-1
0000 0100	256	0000 0000	0	0000 0000	0

• 第九题解:

表示														
无 符 号	0xB0	176	0x8C	140	0x6C	60	无 意 义	无 意 义	1	0x24	36	无 意 义	无 意 义	0

表示	X	x	Y	y	X + Y	x + y	OF	SF	CF	X - Y	x-y	OF	SF	CF
带符号	0xB0	-80	0x8C	-116	0x6C	60	1	0	无 意 义	0x24	36	0	0	无 意 义

• 第十题解:

已知x=10,y=-6,则可知 $x=(001010)_2,y=(-000110)_2$,所以x和y的补码表示为 x=001010,y=111010

- $\text{1. } [x+y]_{\nmid \! \! \, \uparrow} = [x]_{\nmid \! \! \, \uparrow} + [y]_{\nmid \! \! \, \uparrow} = 000100 = 4 \text{, } [x-y]_{\nmid \! \! \, \uparrow} = [x]_{\nmid \! \! \, \uparrow} + [-y]_{\nmid \! \! \, \uparrow} = 010000 = 16$
- 2. 首先符号位异或 $1 \oplus 0 = 1$,我们可以确定最后结果应该为**负数**,运算过程如下表格。其中A为部分积,B为乘数,C为被乘数。

Α	С	对应的操作
000000	000110	$C_0 = 0$,将 A 和 C 联合右移一位,得000000 000011
000000	000011	$C_0=1$, $A=A+B=001010$, 将 A 和 C 联合右移一位, 得 $000101\ 000001$
000101	000001	$C_0=1$, $A=A+B=001111$, 将 A 和 C 联合右移一位, 得 $000111\ 100000$
000111	100000	$C_0 = 0$,将 A 和 C 联合右移一位,得 $000011\ 110000$
000011	110000	$C_0 = 0$,将 A 和 C 联合右移一位,得 $000001\ 111000$
000001	111000	$C_0=0$,将 A 和 C 联合右移一位,得 000000111100 ,即为最终结果

综上所述, $[x \times y]_{\mathbb{R}} = -111100 = -60$

3. 运算过程如下表格,其中A为累加寄存器,B为乘数,C为被乘数。

A	C	C_{-1}	操作
000000	111010	0	$(C_0,C_{-1})=(0,0)$,将 $A C$ 算术右移一位,得 $000000\ 011101$, $C_{-1}=0$
000000	011101	0	$(C_0,C_{-1})=(1,0)$, $A=A-B=110110$,将 $A C$ 算术右移一位,得111011 001110, $C_{-1}=1$
111011	001110	1	$(C_0,C_{-1})=(0,1)$, $A=A+B=000101$,将 $A C$ 算术右移一位,得000010 100111, $C_{-1}=0$
000010	100111	0	$(C_0,C_{-1})=(1,0)$, $A=A-B=111000$,将 $A C$ 算术右移一位,得111100 010011, $C_{-1}=1$
111100	010011	1	$(C_0,C_{-1})=(1,1)$,将 $A C$ 算术右移一位,得 $111110\ 001001$, $C_{-1}=1$
111110	001001	1	$(C_0,C_{-1})=(1,1)$,将 $A C$ 算术右移一位,得 $111111\ 000100$, $C_{-1}=1$

综上所述, $[x imes y]_{lambda} = 000100 = -60$

4. 计算过程如下表格:

步骤	处的除位(次入hit)	移位前 的 R (十进 制)	左移并加入该位后的 R (十进制)	R 的二 进制 (6 位补 码)	根据上一步符号进 行运算	运算结果 R = R ± D (十进制)	运算后 <i>R</i> 的二 进制	生成商位 q_i
初始	_	0	_	000000	_	_	000000	_
1	1 (最 高 位)	R = 0	$(0\ll 1)+1=1$	000001	上一步 $R \ge 0 \Rightarrow R - D$	1 - 6 = -5	111011	$q_1 = 0$
2	0	-5	$(-5 \ll 1) + 0 = -10$	110110	上一步 $R < 0 \Rightarrow R + D$	-10 + 6 = -4	111100	$q_2=0$
3	1	-4	$(-4\ll 1)+1=-7$	111001	上一步 $R < 0 \Rightarrow R + D$	-7 + 6 = -1	111111	$q_3=0$
4	0 (最 低 位)	-1	$\left(-1\ll1\right)+0=-2$	111110	上一步 $R < 0 \Rightarrow R + D$	-2 + 6 = 4	000100	$q_4=1$
结束调整	-	_	-	_	最终 $R\geq 0$,无需恢复	最终余数 = 4	000100	商二进制 $Q=0001$

综上所述, 商为-1, 余数为4.

• 第十七题解:

采用**减法与移位**结合可以使计算所耗费得时钟周期最少。首先 $55=64-8-1=2^6-2^3-2^0$,所以我们采用以下算法。

$$55 \times x = (x << 6) - (x << 3) - x$$

易得,该种算法只需4个时钟周期。

• 第二十题解:

1. 结论: 永真

证明如下:

IEEE 754 浮点数的平方运算不会引入负号,且 $+\infty \cdot +\infty = +\infty$, $+0 \cdot +0 = +0$, NaN 输入在本题不可能出现(dx 由 int 转换而来)。

因此 dx*dx 必为 +0 或正数, 恒 >= 0。

2. 结论: 不永真

反例如下:

取 x = 0x1ffffff (即 $2^2 - 1$)。

- dx = (double)x 精确等于该整数。
- 先转 float 时需舍入到 24 位有效位,结果变为 2^29 , 再转回 double 后得到 2^29 , 与 dx 不等。

3. 结论: 不永真

反例如下:

令

- $\mathbf{x} = 0 \times 7 ff ff ff (INT_MAX)$
- **■** y = 1

则 x + y 发生**有符号整数溢出**,按 C 规则为未定义行为;在常见 2 补码实现下实际结果为 $INT_MIN (-2^{31})$ 。

而

- $\blacksquare dx = 2 \land 31 1$
- \blacksquare dy = 1
- dx + dy = 2^31 (精确可表示为 double)

显然 2^31 ≠ -2^31, 等式不成立。

4. 结论: 永真

证明如下:

double 的精度 (53 位) 足以完整容纳任意 int (31 位有效值) 的精确值,故 dx, dy, dz 均为精确整数。

整数加法在 double 中**无舍入误差**,且整数加法本身满足结合律,因此浮点运算亦精确相等。

5. 结论: 永真

证明如下:

同上,dx, dy, dz 都是精确整数,且乘积结果远小于 2^53, 故三次乘法均**无舍入误差**。整数乘法满足交换律,因而等式恒成立。

6. 结论: 不永真

反例如下:

取

- x = 0
- **■** y = 1

则

- $dx / dx = 0.0 / 0.0 \rightarrow NaN$
- $dy / dy = 1.0 / 1.0 \rightarrow 1.0$

NaN ≠ 1.0, 等式不成立。

• 第二十四题解:

题号	无附加位结果 (编码)	有 2 位附加位结果 (编码)	真值
(1)	0 1000 001000	0 1000 001001	128 / 144
(2)	0 1111 001111	0 1111 001111	120
(3)	0 1111 000110	0 1111 000110	48
(4)	0 1111 000010	0 1111 000010	16

• 第二十五题解:

1. 计算如下:

2. 计算如下: