Cases of Surjectivity of the Matrix Exponential into Lie Groups: $\mathfrak{so}(3) \to \mathbf{SO}(3)$ and $M_{n \times n}(\mathbb{C}) \to \mathbf{GL}_n(\mathbb{C})$

Larsen Bier

MATH 110B Winter 2025

UCLA

1 Introduction

In this short paper, we prove some properties of the matrix exponential and logarithm, guiding us to two examples of when the exponential map is surjective: $\mathfrak{so}(3) \to SO(3)$ and $M_{n \times n}(\mathbb{C}) \to GL_n(\mathbb{C})$.

2 Matrix Lie Groups

Let $M_{n\times m}(\Omega)$ denote the set of $n\times m$ matrices over the set Ω . Following the convention of [1], we define a matrix lie group as a topologically closed subgroup of $GL_n(\mathbb{C})$. All norms induce the same open sets in finite-dimensional vector spaces (see §1.4 of [2]), so we choose the operator norm: $\|\mathbf{X}\|_{op} := \sup\{\|\mathbf{X}\mathbf{v}\|_2 : \|\mathbf{v}\|_2 = 1\}$, where $\|\cdot\|_2$ is the Euclidean norm on \mathbb{C}^n .

3 The Matrix Exponential

Given a matrix $\mathbf{A} \in M_{n \times n}(\mathbb{C})$, we define the matrix exponential as

$$\exp(\mathbf{A}) := e^{\mathbf{A}} := \sum_{k=0}^{\infty} \frac{\mathbf{X}^k}{k!}.$$

This extends the familiar definition of exponentiation from \mathbb{C} to square matrices over \mathbb{C} . Before we can prove that this power series converges, we need two facts. The first is Theorem 1.3.9 of *An Introduction to Banach Space Theory* [3]. We restate the theorem below but skip the proof for brevity.

Proposition 1. Consider any series $\mathbf{s}_m = \sum_{k=0}^m \mathbf{x}_k$ in a complete normed vector space $(X, \| \cdot \|)$. If $\sum_{k=0}^{\infty} \|\mathbf{x}_k\| < \infty$ (i.e. the series converges absolutely), then \mathbf{s}_m converges in $(X, \| \cdot \|)$.

This allows us to prove the convergence of $e^{\mathbf{A}}$ by showing that it is absolutely convergent. Absolute convergence follows from our next proposition.

Proposition 2. If X, Y are any two elements of $M_{n \times n}(\mathbb{C})$, then $\|XY\|_{op} \leq \|X\|_{op} \|Y\|_{op}$.

Proof: Recall that $\|\mathbf{XY}\|_{\mathrm{op}} = \sup\{\|\mathbf{XYv}\|_2 : \|\mathbf{v}\|_2 = 1\}$. Let $\mathbf{u} = \mathbf{Yv}$. Then $\|\mathbf{u}\|_2 \le \|\mathbf{Y}\|_{\mathrm{op}}\|\mathbf{v}\|_2 = \|\mathbf{Y}\|_{\mathrm{op}}$ by the definition of the operator norm. Likewise, $\|\mathbf{Xu}\|_2 \le \|\mathbf{X}\|_{\mathrm{op}}\|\mathbf{u}\|_2 \le \|\mathbf{X}\|_{\mathrm{op}}\|\mathbf{Y}\|_{\mathrm{op}}$. Combining the previous two inequalities yields $\|\mathbf{XYv}\|_2 \le \|\mathbf{X}\|_{\mathrm{op}}\|\mathbf{Y}\|_{\mathrm{op}}$ for all $\mathbf{v} \in \mathbb{C}^n$ with unit norm. Thus, the supremum over all such \mathbf{v} will be less than or equal to $\|\mathbf{X}\|_{\mathrm{op}}\|\mathbf{Y}\|_{\mathrm{op}}$.

We can now easily show that $e^{\mathbf{A}}$ is convergent for any square matrix over \mathbb{C} . Note that $\|\mathbf{A}^m\|_{\text{op}} \leq \|\mathbf{A}\|_{\text{op}}^m$ by Proposition 2, so

$$\sum_{k=0}^{\infty} \left\| \frac{\mathbf{A}^k}{k!} \right\|_{\text{op}} \le \sum_{k=0}^{\infty} \frac{1}{k!} \|\mathbf{A}\|_{\text{op}}^k = e^{\|\mathbf{A}\|_{\text{op}}} < \infty.$$

So $e^{\mathbf{A}}$ converges by Proposition 1. Furthermore, this function is continuous since for any closed ball of radius r > 0 centered around $\mathbf{0}$ in $M_{n \times n}(\mathbb{C})$,

$$\left\| e^{\mathbf{X}} - \sum_{k=0}^{n} \frac{\mathbf{X}^{k}}{k!} \right\|_{\text{op}} = \left\| \sum_{k=0}^{\infty} \frac{\mathbf{X}^{k}}{k!} - \sum_{k=0}^{n} \frac{\mathbf{X}^{k}}{k!} \right\|_{\text{op}} = \left\| \sum_{k=n+1}^{\infty} \frac{\mathbf{X}^{k}}{k!} \right\|_{\text{op}} \le \sum_{k=n+1}^{\infty} \frac{1}{k!} \|\mathbf{X}\|_{\text{op}}^{k} \le \sum_{k=n+1}^{\infty} \frac{r^{k}}{k!}.$$

Since $\sum_{k=0}^{\infty} \frac{r^k}{k!}$ converges to e^r , the tail end of the partial sums must approach zero, meaning that for any $\varepsilon > 0$, we can choose an n_{ε} large enough that $\sum_{k=n_{\varepsilon}+1}^{\infty} \left(\frac{r^k}{k!}\right) < \varepsilon$. Since this is true for all **X** with $\|\mathbf{X}\|_{\mathrm{op}} \leq r$, the partial sums converge uniformly to $e^{\mathbf{X}}$ on this set. Since any compact set in $M_{n\times n}(\mathbb{C})$ can be covered by a closed ball of large enough radius, this means the series converges uniformly on all compact subsets of $M_{n\times n}(\mathbb{C})$. That means that the series is normally convergent, so the fact that the partial sums are continuous means that the limit function is continuous (See §5.2 of [4]).

Proposition 3. For any $\mathbf{X}, \mathbf{Y} \in M_{n \times n}(\mathbb{C})$, the following facts hold.

- (a) if **X** and **Y** commute, then $e^{\mathbf{X}+\mathbf{Y}} = e^{\mathbf{X}}e^{\mathbf{Y}}$.
- (b) if **C** is invertible, then $e^{\mathbf{C}\mathbf{X}\mathbf{C}^{-1}} = \mathbf{C}e^{\mathbf{X}}\mathbf{C}^{-1}$.

Proof of part (a): Because the matrix exponential converges absolutely, we can multiply the series term by term according to Merten's Theorem (Theorem 3.50 of [5]), so

$$e^{\mathbf{X}}e^{\mathbf{Y}} = (\mathbf{I} + \mathbf{X} + \frac{\mathbf{X}^2}{2!} + \frac{\mathbf{X}^3}{3!} + \cdots)(\mathbf{I} + \mathbf{Y} + \frac{\mathbf{Y}^2}{2!} + \frac{\mathbf{Y}^3}{3!} + \cdots).$$

The terms of combined degree m are the product of an **X** term of degree $k \leq m$ and a **Y** term of degree m-k, so the Cauchy product simplifies to

$$e^{\mathbf{X}}e^{\mathbf{Y}} = \sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{\mathbf{X}^{k} \mathbf{Y}^{m-k}}{k!(m-k)!} = \sum_{m=0}^{\infty} \frac{1}{m!} \sum_{k=0}^{m} \frac{m! \mathbf{X}^{k} \mathbf{Y}^{m-k}}{k!(m-k!)} = \sum_{m=0}^{\infty} \frac{1}{m!} \sum_{k=0}^{m} {m \choose k} \mathbf{X}^{k} \mathbf{Y}^{m-k}.$$
(3.1)

In (3.1) we have what looks like the binomial theorem. Note that the binomial coefficients assume that we can choose products in any order, i.e. that \mathbf{X} and \mathbf{Y} commute. Luckily, they do, so

$$e^{\mathbf{X}}e^{\mathbf{Y}} = \sum_{m=0}^{\infty} \frac{1}{m!} (\mathbf{X} + \mathbf{Y})^m = e^{\mathbf{X} + \mathbf{Y}}.$$

Proof of part (b): The key is to recognize that $(\mathbf{CXC}^{-1})^n = \mathbf{CXC}^{-1} \cdots \mathbf{CXC}^{-1} = \mathbf{CX}^n \mathbf{C}^{-1}$. Thus,

$$e^{\mathbf{C}\mathbf{X}\mathbf{C}^{-1}} = \lim_{m \to \infty} \sum_{n=0}^{m} \frac{1}{n!} (\mathbf{C}\mathbf{X}\mathbf{C}^{-1})^{n}$$

$$= \lim_{m \to \infty} \sum_{n=0}^{m} \frac{1}{n!} \mathbf{C}\mathbf{X}^{n} \mathbf{C}^{-1}$$

$$= \mathbf{C} \left(\lim_{m \to \infty} \sum_{n=0}^{m} \frac{1}{n!} \mathbf{X}^{n}\right) \mathbf{C}^{-1}$$

$$= \mathbf{C} e^{\mathbf{X}} \mathbf{C}^{-1} \qquad \Box$$
(3.2)

Proposition 3 is a powerful tool for computing exponentials and will aid us in proving the following results.

4 The Matrix Logarithm

Just like for the exponential, we can use our existing definitions from the complex numbers to extend the logarithm to $M_{n\times n}(\mathbb{C})$. For $\mathbf{A}\in M_{n\times n}(\mathbb{C})$, we define the matrix logarithm as

$$\log(\mathbf{A}) = \sum_{m=1}^{\infty} (-1)^{m+1} \frac{(\mathbf{A} - \mathbf{I})^m}{m}.$$

If we consider the absolute convergence of $\log \mathbf{A}$, we can see that

$$\sum_{m=0}^{\infty} \left\| (-1)^{m+1} \frac{(\mathbf{A} - \mathbf{I})^m}{m} \right\|_{\text{op}} = \sum_{m=0}^{\infty} \frac{1}{m} \left\| (\mathbf{A} - \mathbf{I})^m \right\|_{\text{op}} \le \sum_{m=0}^{\infty} \|\mathbf{A} - \mathbf{I}\|_{\text{op}}^m.$$
(4.1)

Since $\|\mathbf{A} - \mathbf{I}\|_{\text{op}} < 1$, (4.1) converges by the geometric series test. So $\log \mathbf{A}$ converges by Proposition 1.

Proposition 4. log is continuous on the set $\{\mathbf{A} \in M_{n \times n}(\mathbb{C}) : \|\mathbf{A} - \mathbf{I}\|_{op} < 1\}$.

Proof: Let $\mathbf{X} = \mathbf{A} - \mathbf{I}$. Then by assumption, $\|\mathbf{X}\|_{\text{op}} < 1$, and

$$\log \mathbf{A} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (\mathbf{A} - \mathbf{I})^n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \mathbf{X}^n.$$

Let $R \in (0,1)$. Let $\|\mathbf{X}\|_{\text{op}} \leq R$. Then

$$\left\| \log \mathbf{A} - \sum_{n=1}^{m} \frac{(-1)^{n+1}}{n} \mathbf{X}^{n} \right\|_{\text{op}} = \left\| \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \mathbf{X}^{n} - \sum_{n=1}^{m} \frac{(-1)^{n+1}}{n} \mathbf{X}^{n} \right\|_{\text{op}}$$

$$= \left\| \sum_{n=m+1}^{\infty} \frac{(-1)^{n+1}}{n} \mathbf{X}^{n} \right\|_{\text{op}}$$

$$\leq \sum_{n=m+1}^{\infty} \left| \frac{(-1)^{n+1}}{n} \right| \|\mathbf{X}\|_{\text{op}}^{n}$$

$$\leq \sum_{n=m+1}^{\infty} \left| \frac{(-1)^{n+1}}{n} \right| R^{n}.$$
(4.2)

Since $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} R^n = \log(R+1)$, we know that the tail of the sum approaches 0, so as $m \to \infty$, the last line of (4.1) gets arbitrarily small. That is, for any $\varepsilon > 0$, there is some positive integer M such that $\sum_{n=M+1}^{\infty} \frac{(-1)^n+1}{n} R^n < \varepsilon$. Since this bound does not depend on which \mathbf{X} we choose, the series converges uniformly to $\log \mathbf{A}$ on $\{\|\mathbf{A} - \mathbf{I}\|_{\mathrm{op}} \le R\}$. This is true for all $R \in (0,1)$, so the series converges normally on $\{\|\mathbf{A} - \mathbf{I}\|_{\mathrm{op}} < 1\}$. Since each of the partial sums is a continuous polynomial and the convergence is normal, the limit $(\log \mathbf{A})$ is continuous on $\{\|\mathbf{A} - \mathbf{I}\|_{\mathrm{op}} < 1\}$. \square

Proposition 5. For all $\mathbf{A}, \mathbf{B} \in M_{n \times n}(\mathbb{C})$:

- (a) If $\|\mathbf{A} \mathbf{I}\|_{op} < 1$, then $\exp(\log \mathbf{A}) = \mathbf{A}$.
- (b) If \mathbf{B} has $\|\mathbf{B}\|_{op} < \log 2$, then $\log(\exp \mathbf{B}) = \mathbf{B}$.

Proof of part (a): Let $\mathbf{X} = \mathbf{A} - \mathbf{I}$. Then $\exp(\log \mathbf{A}) = \mathbf{A}$ if and only if $\exp(\log(\mathbf{I} + \mathbf{X})) = \mathbf{I} + \mathbf{X}$. We break this proof down into two cases.

Case 1: X is diagonalizable. Then $\mathbf{X} = \mathbf{CDC}^{-1}$ where \mathbf{D} is a diagonal matrix whose entries are the (not necessarily distinct) eigenvalues of \mathbf{A} . Since $\|\mathbf{X}\|_{\mathrm{op}} < 1$ by assumption, each eigenvalue λ_i has modulus less than 1 (since otherwise \mathbf{X} scales some vector by more than $\|\mathbf{X}\|_{\mathrm{op}}$, which is impossible). Thus, $\lambda_i + 1$ is contained in the ball of radius 1 around 1 in \mathbb{C} , so $\log(\lambda_i + 1)$ converges. So

$$\log(\mathbf{X} + \mathbf{I}) = \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \mathbf{X}^{m}$$

$$= \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} (\mathbf{C} \mathbf{D} \mathbf{C}^{-1})^{m}$$

$$= \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \mathbf{C} \begin{pmatrix} \lambda_{1}^{m} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{m} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{n}^{m} \end{pmatrix} \mathbf{C}^{-1}$$

$$= \mathbf{C} \begin{pmatrix} \log(\lambda_{1} + 1) & 0 & \dots & 0 \\ 0 & \log(\lambda_{2} + 1) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \log(\lambda_{n} + 1) \end{pmatrix} \mathbf{C}^{-1}.$$
(4.3)

Since $|(\lambda_i + 1) - 1| < 1$, $e^{\log(\lambda_i + 1)} = \lambda_i + 1$. Thus,

$$\exp(\log(\mathbf{X} + \mathbf{I})) = \mathbf{C} \begin{pmatrix} \lambda_1 + 1 & 0 & \dots & 0 \\ 0 & \lambda_2 + 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n + 1 \end{pmatrix} \mathbf{C}^{-1}$$

$$= \mathbf{C}(\mathbf{D} + \mathbf{I})\mathbf{C}^{-1}$$

$$= \mathbf{C}\mathbf{D}\mathbf{C}^{-1} + \mathbf{I}$$

$$= \mathbf{X} + \mathbf{I}.$$
(4.4)

Case 2: X is not diagonalizable. Then since the characteristic polynomial of X splits over \mathbb{C} , it has a Jordan normal decomposition $X = \mathbf{B}\mathbf{J}\mathbf{B}^{-1}$, where \mathbf{J} has the eigenvalues of \mathbf{X} on its diagonal. Let \mathbf{D} be the diagonal matrix with diagonal entries $1, 2, \ldots, n$. Then let $\mathbf{X}_k = \mathbf{B}(\mathbf{J} + \frac{1}{k}\mathbf{D})\mathbf{B}^{-1}$ define a sequence that converges to \mathbf{X} . \mathbf{X}_k is written in Jordan normal form (since the addition of $\frac{1}{k}\mathbf{D}$ only changes the diagonal entries). Thus, the i^{th} eigenvalue of \mathbf{X}_k is $\mathbf{J}_{ii} + \frac{i}{k}$. For sufficiently large k, each of these values will be distinct, meaning \mathbf{X}_k will be diagonalizable. Furthermore, since $\mathbf{X}_k \to \mathbf{X}$ and $\|\mathbf{X}\|_{\text{op}} < 1$, eventually $\|\mathbf{X}_k\|_{\text{op}} < 1$. By the continuity of log when $\|\mathbf{X}\|_{\text{op}} < 1$ and the global continuity of exp, we can swap limits for this sequence for large k, so

$$\exp(\log(\mathbf{X} + \mathbf{I})) = \exp(\log(\lim_{k \to \infty} [\mathbf{X}_k + \mathbf{I}])) = \lim_{k \to \infty} \exp(\log(\mathbf{X}_k + \mathbf{I})) = \lim_{k \to \infty} \mathbf{X}_k + \mathbf{I} = \mathbf{X} + \mathbf{I}.$$
 (4.5)

Where we were able to cancel exp and log in the fourth expression using the diagonalizable case.

Proof of part (b): First we note that if $\|\mathbf{B}\|_{\mathrm{op}} < \log 2$, then

$$\|e^{\mathbf{B}} - \mathbf{I}\|_{\text{op}} = \|(\mathbf{I} + \mathbf{B} + \frac{\mathbf{B}^{2}}{2!} + \frac{\mathbf{B}^{3}}{3!} + \cdots) - \mathbf{I}\|_{\text{op}}$$

$$\leq \|\mathbf{B}\|_{\text{op}} + \left\|\frac{\mathbf{B}^{2}}{2!}\right\|_{\text{op}} + \left\|\frac{\mathbf{B}^{3}}{3!}\right\|_{\text{op}} + \cdots$$

$$= e^{\|\mathbf{B}\|_{\text{op}}} - 1$$

$$< e^{\log 2} - 1$$

$$= 1.$$
(4.6)

Again, if **B** is diagonalizable, then $\mathbf{B} = \mathbf{C}\mathbf{D}\mathbf{C}^{-1}$, where **D** is a diagonal matrix of the eigenvalues $\lambda_1, \ldots, \lambda_n$ of **B** and **C** is invertible. Since the exponential of a diagonal matrix is taken entry-wise, $e_{ii}^{\mathbf{D}} = e^{\lambda_i}$. Furthermore, these are the eigenvalues of $e^{\mathbf{B}}$ because $e^{\mathbf{B}} = \mathbf{C}e^{\mathbf{D}}\mathbf{C}^{-1}$ is a diagonalization of $e^{\mathbf{B}}$. To get a bound on the modulus of these eigenvalues, consider that subtracting **I** from a matrix decreases all its eigenvalues by 1, so the eigenvalues of $e^{\mathbf{B}} - \mathbf{I}$ are $e^{\lambda_i} - 1$. Since $||e^{\mathbf{B}} - \mathbf{I}||_{\text{op}} < 1$, each eigenvalue must have modulus less than 1 as shown in case 1 of part (a). Thus, $|e^{\lambda_i} - 1| < 1$, so $\log e^{\lambda_i} = \lambda_i$. Since the log of a diagonal matrix is also taken entry-wise [as we showed in equation (4.2)], that means $\log(e^{\mathbf{D}}) = \mathbf{D}$. In (4.2), we also showed that $\log(\mathbf{C}\mathbf{D}\mathbf{C}^{-1}) = \mathbf{C}\log(\mathbf{A})\mathbf{C}^{-1}$ for invertible **C** and diagonal **A**. Thus,

$$\log e^{\mathbf{B}} = \log(\mathbf{C}e^{\mathbf{D}}\mathbf{C}^{-1})$$

$$= \mathbf{C}\log(e^{\mathbf{D}})\mathbf{C}^{-1}$$

$$= \mathbf{C}\mathbf{D}\mathbf{C}^{-1}$$

$$= \mathbf{B}.$$
(4.7)

In the case that **B** is not diagonalizable, we can approximate it by a sequence of diagonalizable matrices like in part (a), using the continuity of log and exp to get the desired result. \Box

5 Cases of Surjectivity of The Exponential

We now have the tools needed to investigate cases where the exponential map is surjective.

5.1 Surjectivity of exp : $M_{n\times n}(\mathbb{C}) \to \mathbf{GL}_n(\mathbb{C})$

To prove that this map is surjective, we follow the outline of exercises 2.8 and 2.9 from *Lie Groups, Lie Algebras, and Representations* [1]. First we require some definitions. A square matrix \mathbf{N} is said to be nilpotent if there exists a positive integer k such that $\mathbf{N}^k = \mathbf{0}$. A square matrix \mathbf{U} is unipotent if $\mathbf{U} - \mathbf{I}$ is nilpotent.

Proposition 6. If U is unipotent, then $\log(U)$ is nilpotent, and if N is nilpotent, then $\exp(N)$ is unipotent.

Proof: We first must show that finite sums of commuting nilpotent matrices are nilpotent. Let \mathbf{N}, \mathbf{M} be nilpotent matrices that commute with eachother. Then there exists some $k \in \mathbb{N}$ such that $\mathbf{N}^k = \mathbf{M}^k = \mathbf{0}$. By the binomial theorem: $(\mathbf{N} + \mathbf{M})^p = \sum_{j=1}^p \binom{p}{j} \mathbf{N}^j \mathbf{M}^{p-j}$ (this is where we needed commuting matrices). If we choose $p \geq 2k$, then $p-j \geq k$ or $j \geq k$ since $(p-j)+j=p \geq 2k$. Thus, for every term in $(\mathbf{N} + \mathbf{M})^p$, either \mathbf{N}^j or \mathbf{M}^{p-j} is $\mathbf{0}$, meaning the whole sum is $\mathbf{0}$. So, $\mathbf{N} + \mathbf{M}$ is nilpotent. Continuing inductively, we can see this is true for any finite sum (since any term in the sum will commute).

Now we can prove the proposition. Since **U** is unipotent, $\mathbf{U} - \mathbf{I}$ is nilpontent, so there are finitely many $k \in \mathbb{N}$ such that $(\mathbf{U} - \mathbf{I})^k \neq \mathbf{0}$. The power series of $\log(\mathbf{U})$ becomes

$$\log(\mathbf{U}) = \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} (\mathbf{U} - \mathbf{I})^m = \sum_{m=1}^{k} \frac{(-1)^{m+1}}{m} (\mathbf{U} - \mathbf{I})^m.$$
 (5.1)

Where for the last equality we used the fact that eventually every summand is $\mathbf{0}$. Since each term in the sum is a scaled positive power of $\mathbf{U} - \mathbf{I}$, the terms all commute. Thus, this sum is nilpotent, proving part one of the proposition.

For part two, since **N** is nilpotent, there are finitely many $k \in \mathbb{N}$ such that $\mathbf{N}^k \neq \mathbf{0}$. The power series expansion of $\exp(\mathbf{N})$ can be rewritten as

$$\exp(\mathbf{N}) = \sum_{m=0}^{\infty} \frac{1}{m!} \mathbf{N}^m = \sum_{m=0}^{k} \frac{1}{m!} \mathbf{N}^m = \mathbf{I} + \sum_{m=1}^{k} \frac{1}{m!} \mathbf{N}^m.$$
 (5.2)

Since the terms of the summation are all scaled positive powers of \mathbf{N} , they commute, so the summation is nilpotent. Thus, $\exp(\mathbf{N})$ is unipotent. \square

These facts help us expand the cases where log is the inverse of exp, as the next proposition will show.

Proposition 7. If U is unipotent, then $\exp(\log U) = U$, and if N is nilpotent, then $\log(\exp N) = N$.

Proof:. Let $\gamma(t) = \mathbf{I} + t(\mathbf{U} - \mathbf{I})$ be a smooth curve in $M_{n \times n}(\mathbb{C})$ parameterized by $t \in \mathbb{R}$. By Proposition 6, since \mathbf{U} is unipotent, the power series of $\log \mathbf{U}$ is finite, hence a polynomial of t. Since $\log \mathbf{U}$ is nilpotent, the power series of $\exp \log(\mathbf{U})$ is finite by Proposition 6, so it is a polynomial over t. Furthermore, $\|\gamma(t) - \mathbf{I}\|_{\mathrm{op}} = \|t(\mathbf{U} - \mathbf{I})\|_{\mathrm{op}}$, which approaches zero as t does. Thus, we can pick some $\varepsilon > 0$ such that for all $t \in [0, \varepsilon] : \|\gamma(t) - \mathbf{I}\|_{\mathrm{op}} < 1$. Thus, $\exp(\log \gamma(t)) = \gamma(t)$ on $[0, \varepsilon]$ by Proposition 5. If we consider $[0, \varepsilon]$ to be a subset of \mathbb{C} , then for the i^{th} row and j^{th} column of our matrices, $\exp \log(\gamma(t))_{i,j}$ and $\gamma(t)_{i,j}$ are two polynomials over \mathbb{C} that agree on $[0, \varepsilon]$, which has a nonisolated point. By the identity principle (See §5.7 of [4]), this means $\exp \log(\mathbf{U}(t))_{i,j} = \mathbf{U}(t)_{i,j}$ on all of \mathbb{C} . Since all entries agree, $\exp(\log(\gamma(t))) = \gamma(t)$ on all of \mathbb{C} , namely at t = 1. Since $\gamma(1) = \mathbf{U}$, we have $\exp(\log \mathbf{U}) = \mathbf{U}$ for all unipotent matrices.

The proof proceeds similarly for **N**. If we let $\alpha(t) = t\mathbf{N}$, then as a consequence of Proposition 7, $\log(\exp \alpha(t))$ depends polynomially on t. Since $\|\mathbf{N}(t)\|_{\mathrm{op}} = |t| \|\mathbf{N}\|_{\mathrm{op}}$, we can again choose a small $\varepsilon > 0$ such that for all $t \in [0, \varepsilon] : \|\alpha(t)\|_{\mathrm{op}} < \log(2)$. Thus, on $[0, \varepsilon]$, $\log(\exp \alpha(t)) = \alpha(t)$. Applying the identity principle element-wise as done above will yield the desired result. \square

With Propositions 5 and 6 under our belts, we are ready to prove exp: $M_{n\times n}(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ is surjective. From the fundamental theorem of algebra, the characteristic polynomial of any matrix $\mathbf{A} \in \mathrm{GL}_n(\mathbb{C})$ will split over \mathbb{C} . Thus, there is a Jordan normal decomposition of the form $\mathbf{A} = \mathbf{CJC}^{-1}$ where \mathbf{C} is an invertible matrix and \mathbf{J} is a Jordan block matrix (see §7 of [6]). Jordan block matrices are of the form

$$\mathbf{J} = \begin{bmatrix} \mathbf{J}_1 & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{J}_2 & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{J}_k \end{bmatrix}. \tag{5.3}$$

Where each $\mathbf{J}_i = \lambda_i \mathbf{I} + \mathbf{N}_i$ for a nilpotent matrix \mathbf{N}_i and a nonzero complex number λ_i (the λ_i are nonzero since \mathbf{A} is invertible). We first show that any Jordan block is in the image of the exponential, then show that combining the Jordan block preimages results in a preimage for \mathbf{J} . Let $\mathbf{B} = \lambda \mathbf{I} + \mathbf{N} = \lambda \mathbf{I}(\mathbf{I} + \mathbf{N}/\lambda)$ be any Jordan block. Since $\lambda \neq 0$, there exists some $z \in \mathbb{C}$ such that $\lambda = e^z$. Thus, $\lambda \mathbf{I} = \exp(z\mathbf{I})$ (This is because exponentials of diagonal matrices are taken entry-wise). So we have $\mathbf{B} = \exp(z\mathbf{I})(\mathbf{I} + \mathbf{N}/\lambda)$. Since $(\mathbf{I} + \mathbf{N}/\lambda)$ is unipotent, $\exp(\log(\mathbf{I} + \mathbf{N}/\lambda)) = \mathbf{I} + \mathbf{N}/\lambda$ by Proposition 7. Thus, $\mathbf{B} = \exp(z\mathbf{I}) \exp(\log(\mathbf{I} + \mathbf{N}/\lambda))$. Scalar multiples of the identity matrix commute with any other matrix, so $\mathbf{B} = \exp(z\mathbf{I} + \log(\mathbf{I} + \mathbf{N}/\lambda))$ by Proposition 3. Thus, any invertible Jordan block is in the image of the exponential.

If we let $\mathbf{L}_i = z_i \mathbf{I} + \log(\mathbf{I} + \mathbf{N}_i/\lambda_i)$ be the preimage of \mathbf{J}_i , then substituting \mathbf{L}_i into the position of \mathbf{J}_i for each $i \in \{1, ..., k\}$ yields a matrix \mathbf{L} whose image under exp is \mathbf{J} . This is because every power of \mathbf{L} looks like

$$\mathbf{L}^{m} = \begin{bmatrix} \mathbf{L}_{1}^{m} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{L}_{2}^{m} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{L}_{k}^{m} \end{bmatrix} . \tag{5.4}$$

Taking the limit of the partial sums of $\exp(\mathbf{L})$ yields

$$\exp(\mathbf{L}) = \lim_{m \to \infty} \begin{bmatrix} \mathbf{L}_1^m/m! & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{L}_2^m/m! & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{L}_k^m/m! \end{bmatrix} = \begin{bmatrix} \exp(\mathbf{L}_1) & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \exp(\mathbf{L}_2) & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \exp(\mathbf{L}_k) \end{bmatrix}.$$
(5.5)

Where we used the fact that limits of matrices are taken element wise. Since $\exp(\mathbf{L_i}) = \mathbf{J_i}$, this matrix is equal to \mathbf{J} . Finally, since \mathbf{C} is invertible, $\exp(\mathbf{CLC}^{-1}) = \mathbf{C}\exp(\mathbf{L})\mathbf{C}^{-1} = \mathbf{CJC}^{-1} = \mathbf{A}$ by Proposition 3, concluding the proof that $\exp: M_{n \times n}(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ is surjective \square

5.2 Surjectivity of exp : $\mathfrak{so}(3) \to \mathbf{SO}(3)$

The following definition is taken from §2.5 of Lie Groups, Lie Algebras, and Representations [1]. Given a matrix Lie Group G, its Lie algebra, denoted \mathfrak{g} , is the set of matrices \mathbf{X} such that for all $t \in \mathbb{R}$: $e^{t\mathbf{X}} \in G$. The Lie algebra is of special interest in group theory because it is a vector space under the bracket operation, enabling us to study Lie groups via their Lie algebras using the tools of linear algebra [1]. While we won't explore Lie algebras deeply, we are concerned with the image of the exponential on the lie algebra of SO(3), which we denote $\mathfrak{so}(3)$. As shown in section 5.4 of [7], the lie algebra of $\mathfrak{so}(3)$ is the set of skew-symmetric real matrices.

Proposition 8. The map $\exp : \mathfrak{so}(3) \to SO(3)$ is surjective.

Proof: In the standard basis, a rotation through the x-axis by angle θ can be represented in the form

$$\mathbf{R}_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}. \tag{5.6}$$

By Euler's Rotation Theorem (Euler 1775, [8]), **R** is equivalent to a rotation about an axis spanned by a unit vector $\mathbf{v} \in \mathbb{R}^3$. If we consider any set of linearly independent vectors where \mathbf{v} is our first vector, then the Graham Schmidt process will generate an orthonormal basis $\{\mathbf{v}, \mathbf{u}, \mathbf{w}\}$. In this basis, \mathbf{v} remains fixed under transformation by **R**, and \mathbf{u}, \mathbf{v} span the plane which **R** induces a rotation of angle θ through. Thus, in our new basis, we may represent **R** in the form of (5.6). In the language of similarity,

 $\mathbf{R} = \mathbf{B}\mathbf{R}_x\mathbf{B}^{-1}$ for an invertible change-of-basis matrix \mathbf{B} . We would now like to show that \mathbf{R}_x is in the image of exp. Consider the matrix

$$\mathbf{X} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\theta \\ 0 & \theta & 0 \end{pmatrix}.$$

The powers of X are cyclic, since

$$\mathbf{X}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\theta^{2} & 0 \\ 0 & 0 & -\theta^{2} \end{pmatrix}$$

$$\mathbf{X}^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \theta^{3} \\ 0 & -\theta^{3} & 0 \end{pmatrix}$$

$$\mathbf{X}^{4} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \theta^{4} & 0 \\ 0 & 0 & \theta^{4} \end{pmatrix}$$

$$\mathbf{X}^{5} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\theta^{5} \\ 0 & \theta^{5} & 0 \end{pmatrix} = \theta^{4}\mathbf{X}.$$

Using this fact we can show that the explicit formula for $e^{\mathbf{X}}$ is

$$e^{\mathbf{X}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \gamma & \delta \end{pmatrix}. \tag{5.7}$$

Where the 1 in the first entry comes from the identity term $\mathbf{X}^0 = \mathbf{I}$, and the remaining terms come from inspecting the entries of successive powers of \mathbf{X} . Computing them yields

$$\alpha = 1 + \frac{0}{1!} - \frac{\theta^{2}}{2!} + \frac{0}{3!} + \frac{\theta^{4}}{4!} + \dots = 1 - \frac{\theta^{2}}{2!} + \frac{\theta^{4}}{4!} - \frac{\theta^{6}}{6!} + \dots = \cos(\theta),$$

$$\beta = 0 - \frac{\theta}{1!} + \frac{0}{2!} + \frac{\theta^{3}}{3!} + \frac{0}{4!} + \dots = -\theta + \frac{\theta^{3}}{3!} - \frac{\theta^{5}}{5!} + \frac{\theta^{7}}{7!} + \dots = -\sin(\theta),$$

$$\gamma = 0 + \frac{\theta}{1!} + \frac{0}{2!} - \frac{\theta^{3}}{3!} + \frac{0}{4!} + \dots = \theta - \frac{\theta^{3}}{3!} + \frac{\theta^{5}}{5!} - \frac{\theta^{7}}{7!} + \dots = \sin(\theta),$$

$$\delta = 1 + \frac{0}{1!} - \frac{\theta^{2}}{2!} + \frac{0}{3!} + \frac{\theta^{4}}{4!} + \dots = 1 - \frac{\theta^{2}}{2!} + \frac{\theta^{4}}{4!} - \frac{\theta^{6}}{6!} + \dots = \cos(\theta).$$

$$(5.8)$$

Which shows that $e^{\mathbf{X}} = \mathbf{R}_x$. Thus,

$$e^{(\mathbf{B}\mathbf{X}\mathbf{B}^{-1})} = \mathbf{B}e^{\mathbf{X}}\mathbf{B}^{-1} = \mathbf{B}\mathbf{R}_{x}\mathbf{B}^{-1} = \mathbf{R}.$$
 (5.9)

If we can show that $\mathbf{B}\mathbf{X}\mathbf{B}^{-1}$ is skew-symmetric, then we are done. Recall that \mathbf{B} is the change of basis matrix from the standard basis to the orthonormal basis $\{\mathbf{v}, \mathbf{u}, \mathbf{w}\}$. These are two orthonormal bases, so \mathbf{B} is orthogonal (see §14.3 of [9]). So $\mathbf{B}^{\intercal} = \mathbf{B}^{-1}$ and

$$\mathbf{BXB}^{-1} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\theta \\ 0 & \theta & 0 \end{pmatrix} \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}$$

$$= \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ -\theta c & -\theta f & -\theta i \\ \theta b & \theta e & \theta h \end{pmatrix}$$

$$= \begin{pmatrix} \theta b c + \theta b c & -\theta b f + \theta e c & -\theta b i + \theta c h \\ -\theta e c + \theta b f & -\theta e f + \theta e f & -\theta e i + \theta f h \\ -\theta c h + \theta b i & -\theta f h + \theta e i & -\theta h i + \theta h i \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -\theta b f + \theta e c & -\theta b i + \theta c h \\ -(-\theta b f + \theta e c) & 0 & -\theta e i + \theta f h \\ -(-\theta b c + \theta c h) & -(\theta e i + \theta f h) e i & 0 \end{pmatrix}.$$

$$(5.10)$$

So \mathbf{BXB}^{-1} is skew-symmetric, concluding the proof that $\exp:\mathfrak{so}(3)\to\mathrm{SO}(3)$ is surjective. \square

References

- [1] Brian C. Hall, *Lie Groups, Lie Algebras, and Representations*, Springer-Verlag New York Inc, 2010, https://doi.org/10.1007/978-0-387-21554-9.
- [2] Amol Sasane, A Friendly Approach to Functional Analysis, World Scientific Publishing Europe Ltd, 2017.
- [3] Robert E. Megginson, An Introduction to Banach Space Theory, Springer-Verlag New York Inc, 1998.
- [4] Theodore W. Gamelin, Complex Analysis, Undergraduate Texts in Mathematics, 2001.
- [5] Walter Rudin, Principles of Mathematical Analysis, MCGraw-Hill, 1976.
- [6] Stephen H. Friedberg, Linear Algebra, Pearson Education, Inc, 2019.
- [7] Kristopher Tapp, Matrix Groups for Undergraduates, American Mathematical Society, 2005.
- [8] Leonard Euler, General formulas for any translation of rigid bodies, https://www.17centurymaths.com/contents/euler/e478tr.pdf, 1775. Accessed: 2025-03-11
- [9] David Cherney, Linear Algebra, UCDavis, 2013.