

Informática Gráfica: Datos de la asignatura.

Carlos Ureña

2020-21

Grado en Informática y Matemáticas Dpt. Lenguajes y Sistemas Informáticos

ETSI Informática y de Telecomunicación Universidad de Granada

Datos de la asignatura. Índice.

- 1. La materia
- 2. Objetivos
- 3. Programa, temario.
- 4. Horarios, profesor y documentación.
- 5. Evaluación.
- 6. Bibliografía y recursos online

Sección **1.**

La materia.

Informática Gráfica

La Informática Gráfica es la parte de la Informática que se ocupa del procesamiento de información geométrica y visual. Algunos de los campos más relevantes son:

- ► La representación de información: modelos geométricos.
- La generación de imágenes: visualización (rendering).
- La entrada de información: interacción y adquisición de modelos.
- La computación geométrica: operaciones y cálculos sobre los modelos.

Modelos geométricos.

Diseño de modelos abstractos de objetos reales, y de las estructuras de datos que se usan para representarlos en la memoria de un ordenador. Creación de los modelos.

Aplicaciones: Videojuegos, realidad virtual, simuladores

La asignatura se centra en este tipo de aplicaciones. Ejemplo:

Simulador de Conducción con Editor de Entornos (proyecto fin de carrera de Valerio M. Sevilla, tutor: Carlos Ureña)

Aplicaciones: visualización (rendering).

Producción de imágenes a partir de modelos geométricos en memoria, no necesariamente de forma interactiva (para cine, anuncios y efectos especiales en general)

Aplicaciones: interacción y captura de modelos.

Adquisición de nuevos modelos a partir de objetos reales.

Aplicaciones: computación geométrica.

Algoritmos y metodologías para procesamiento y edición de los modelos.

Sección 2. Objetivos.

Objetivos de la asignatura

- Conocer los fundamentos del modelado geométrico
- ➤ Saber diseñar y utilizar las estructuras de datos más adecuadas para representar un modelo geométrico
- Saber diseñar modelos jerárquicos
- ► Saber utilizar y representar transformaciones geométricas utilizando coordenadas homogéneas
- Conocer los fundamentos de la visualización 2D y 3D
- Conocer los fundamentos de los modelos de iluminación
- Entender y poder configurar los parámetros de materiales y luces
- Conocer la funcionalidad básica de OpenGL
- ➤ Saber diseñar un programa interactivo con eventos, garantizando la accesibilidad y la usabilidad.
- Saber diseñar e implementar programas gráficos interactivos usando OpenGL
- Conocer los fundamentos de la animación por ordenador

Sección 3.

Programa, temario..

Programa de teoría

El programa de teoría para el curso 2020-21 es el siguiente:

- 1. Introducción: Introducción a la informática Gráfica. OpenGL.
- Modelado de objetos: Fundamentos de modelado. Representación de mallas poligonales. Transformaciones. Instanciación. Modelos jerárquicos. Cálculo de normales. Formatos.
- Visualización: Cámara y su configuración en OpenGL. Modelo de iluminación local. Iluminación en OpenGL. Sombreado para Z-buffer. Visualización de texturas. Texturas en OpenGL.
- 4. **Animación e Interacción:** Sistemas interactivos. Gestión de eventos. Posicionamiento. Selección. Animación. Colisiones.
- 5. Aspectos avanzados de visualización: Ray-tracing.

Programa de prácticas

El programa de prácticas para el curso 2020-21 es el siguiente:

- 1. Introducción. Modelado y visualización de objetos 3D sencillos
- 2. Modelos poligonales: carga de PLYs y generación por revolución.
- 3. Modelos jerárquicos: creación de un objeto jerárquico.
- 4. Modelo de aspecto: materiales, fuentes de luz y texturas.
- 5. Interacción: gestión de cámara y selección.

El código de las prácticas se desarrollará de forma incremental, cada práctica se hace sobre las anteriores.

Sección 4.

Horarios, profesor y documentación..

Asignatura

Datos relativos al curso académico 2020-21

Asig.	Informática Gráfica
	Grado en Informática y Matemáticas
	(4° curso, 1 ^{er} semestre)
	Dpt. Lenguajes y Sistemas Informáticos
Créditos	3 Teoría + 3 Prácticas
Horarios	Teoría: Lunes 9:30 a 11:30, aula 1.1
	Prácticas: grupo 1: Martes 9:30-10:30 aula 3.5
	grupo 2: Lunes 11:30-13:30 aula 2.6

Datos de contacto y tutorías

profesor	Carlos Ureña Almagro
despacho	ETSIIT, planta 3, pasillo izquierdo, desp. 34
teléfono	958 240 577
e-mail	☞ curena@ugr.es
web	₱ http://lsi.ugr.es/curena
tutorías	Martes 11:30-13:30
(20-21)	Miércoles 11:30-13:30
	Viernes 17:30-19:30

Sección **5. Evaluación.**.

Evaluación: pruebas de evaluación.

En la convocatoria ordinaria, en evaluación continua se harán las siguientes pruebas:

- **E1** Examen de teoría escrito, en la fecha establecida por el centro, con un peso de 30 % en la nota final.
- **E2** Examen de prácticas escrito, junto con el examen de teoría, con un peso del 20 % en la nota final.
- E3 Pruebas de prácticas en ordenador (mínimo 2 pruebas). Se establecerán varias fechas para la entrega y defensa de prácticas. Cada prueba consistirá en resolver un problema de programación basado en cada una de las prácticas, usando el código realizado y entregado previamente por el alumno. Estas pruebas tienen un peso del 50 % en la nota final (10 % cada práctica).

En convocatoria extraordinaria y en evaluación única final se seguirán los mismos criterios excepto que las pruebas de prácticas (E3) se realizarán (GM: Informática Gráfica- curso 20-21- creado el 16 de septiembre de 2020 - transparencia 12 de 18.

Evaluación: calificación.

- ➤ Se podrá sumar hasta un 10 % de la nota máxima por trabajos adicionales, realización de ejercicios o presentaciones, mejora de las prácticas, etc., siempre que se haga de forma previamente acordada con el profesor y siempre que se supere la asignatura con el resto de items evaluables (E1, E2 y E3).
- ➤ Si la calificación de E1, E2 o E3 es inferior al 35 % del máximo, computará como 0.
- ▶ Para aprobar la asignatura hay que obtener igual o más del 50 % del total, e igual o más del 35 % en cada parte (E1, E2 y E3).
- ➤ Si un alumno no supera la asignatura en la convocatoria ordinaria del curso 20-21, pero tiene una nota igual o superior al 50 % en algunas de las partes (E1, E2 o E3), entonces podrá conservar esa nota para la convocatoria extraordinaria de 2021-22.

Sección 6.

Bibliografía y recursos online.

Bibliografía básica (1/2)

J.F. Hughes, A.van Dam, M. McGuire, D.F. Sklar, J.D. Foley, S.K. Feiner, K. Akeley. Computer Graphics: Principles and Practice (3rd Edition).

- Ed. Pearson, 2014. ISBN: 978-0-321-39952-6.
- 🖙 Ejemplares en papel en la biblioteca ETSIIT
- Biblioteca UGR: enlace al texto (en O'Reilly Safary Books On-line)
- Página sobre el libro, de los autores (incluye material de laboratorio)
- Página en el sitio web del editor (Pearson)

Steven J. Gortler

Foundations of 3D Computer Graphics (1st edition)

Ed. The MIT Press, 2012.

- 😇 Ejemplares en papel en la biblioteca ETSIIT
- Biblioteca UGR: enlace al texto (en O'Reilly Safary Books On-line)
- Página sobre el libro, de los autores (incluye código fuente)
- Página en el sitio web del editor (The MIT Press)

Bibliografía básica (2/2)

Peter Shirley, Steve Marschner Fundamentals of Computer Graphics (4th edition) Ed. CRC Press, 2015.

- 🖙 Ejemplares en papel en la biblioteca ETSIIT (3ª edición).
- Biblioteca UGR: enlace al texto (en O'Reilly Safary Books On-line)
- Página sobre el libro, de los autores (incluye material)
- Página en el sitio web del editor (CRC Press)

Tomas Akenine-Möller, Eric Haines, Naty Hoffman

Real-Time Rendering (4th Edition)

Ed. CRC Press, 2018

- 🖙 Ejemplares en papel en la biblioteca ETSIIT
- Biblioteca UGR: enlace al texto (en O'Reilly Safary Books On-line)
- Página sobre el libro, de los autores (incluye abundante material)
- Página en el sitio web del editor (CRC Press)

Bibliografía de matemáticas para gráficos

Eric Lengyel

Mathematics for 3D Game Programming and Computer Graphics (3rd edition) Ed. Cengage Learning, 2011.

- 😇 Ejemplares en papel en la biblioteca ETSIIT
- Biblioteca UGR: enlace al texto (en O'Reilly Safary Books On-line)
- Página sobre el libro, de los autores (incluye código fuente)

Michael F Mortenson

Mathematics for Computer Graphics Applications (2nd edition). Ed. Industrial Press, 1999.

Fiemplares en papel en la biblioteca ETSIIT

Bibliografía sobre OpenGL

Dave Shreiner (editor)

Sobre la librería OpenGL, útil especialmente para las prácticas

```
Dave Shreiner (editor)

OpenGL Programming Guide: The official guide to learning OpenGL

Ed. Addison Wesley.

Fichas UGR: en papel (biblioteca ETSIIT) y en línea (Safary books online):

Versión 1.2 (1995) en papel

Versión 2 (2006) en papel

Versión 2.1 (2008) en papel

Versión 3.1 (2010) en papel

Versión 4.3 (2013) en papel

Versión 4.5 (2016) en línea
```

```
Open GL Reference Manual.
Ed. Addison-Wesley.

EP Ejemplares en papel en la biblioteca ETSIIT, versión 1.4 (2004)
```

Documentación on-line sobre OpenGL y GLFW

- Páginas de referencia de OpenGL (y GLU)
 - ► Versión 2.1: 🖙 www.opengl.org/sdk/docs/man2
 - ► Versión 3.3: 🖙 www.opengl.org/sdk/docs/man3
 - ► Versión 4.5: 🖙 www.opengl.org/sdk/docs/man
- ► OpenGL Programming Guide (the *red book*)
 - ► OpenGL 1.1 (en html): www.glprogramming.com/red/
- Registry (documentos de especificación oficiales de OpenGL):
 - ► Actuales (ver 4.6): www.opengl.org/registry/#apispecs
 - ► Versiones anteriores: 🖙 www.opengl.org/registry/#oldspecs
- ▶ Librería GLFW (documentación, código fuente, binarios)
 - ➤ Sitio web: [™] www.glfw.org
 - ▶ Documentación: ☞ www.glfw.org/documentation.html
- ▶ Página de referencia de GLSL:
 - ► Todas las ver.: www.opengl.org/sdk/docs/manglsl/

Fin de la presentación.