UNIVERSITY OF WOLVERHAMPTON FACULTY OF SCIENCE AND ENGINEERING 7CS033 DATA MINING & INFORMATICS WORKSHOP # 6

Using the data point below, where the data points belong to three classes. We need to classify these using a decision tree classifier using one split.

X1	X2	Y
1	1	1
1	1	1
1	1	2
1	0	3
0	0	2
0	0	3

Information gain is a measure that is used to calculate effectiveness of an attribute in classifying a dataset. It quantifies the reduction in entropy or impurity after a dataset is split on an attribute.

Formula is given by:

$$H(S) = -\sum_{i=1}^c p_i \log_2(p_i)$$

Pi = proportion of the points in class i:

From the table above we have 6 points from 3 classes:

❖ Class 1 : Pi = 2/6 = 0.33

❖ Class 2 : Pi = 2/6 = 0.33

❖ Class 3 : Pi = 2/6 = 0.33

Therefore:

$$H(s) = -(0.33 Log 2 0.33 + 0.33 Log 2 0.33 + 0.33 Log 2 0.33)$$

Root entropy H(S) = 1.585

Calculating the information gain for split on X1:

We split as follows, based on values of 1 and 0.

- X1 = 1:4
- X1 = 0:2

Entropy of X1 = 1:

$$H(X1=1) = -(2/4Log2(2/4) + 1/4Log2(1/4) + 1/4Log212/4))$$

$$H(X1=1)=1.5$$

Entropy of X1 = 0:

$$H(X1=0) = -(1/2Log2(1/2) + 1/2Log2(1/2))$$

$$H(X1=0)=1$$

Weighted Entropy After Split:

$$Havg(X1) = 4/6*H(X1=1) + 2/*H(X1=0) = 1.333$$

Finally information gain for X1 = H(S) - Havg(X1) = 1.585 - 1.333 = 0.252

Gain (X1) = 0.252

Calculating the information gain for split on X2:

We split as follows, based on values of 1 and 0.

- X2 = 1:3
- X2 = 0:3

Entropy of X2 = 1:

$$H(X2=1) = -(2/3Log2(2/3) + 1/3Log2(1/3))$$

$$H(X2=1) = 0.918$$

Entropy of X1 = 0:

$$H(X2=0) = -(1/3Log2(1/3) + 2/3Log2(2/3))$$

$$H(X2=0) = 0.918$$

Weighted Entropy After Split:

$$Havg(X2) = 3/6*H(X2=1) + 3/6*H(X2=0) = 0.918$$

Finally information gain for X2 = H(S) - Havg(X2) = 1.585 - 0.918 = 0.667

$$Gain(X1) = 0.667$$

Compare the information gain for the two above we see that the split on X2 is higher than the information gain of x1, hence reduces the uncertainty more effectively,

Diagram of decision tree and leaf labels:

Left branch : 2 points of Class 1, 1 point of Class 2 \rightarrow Majority class = 1 Right branch : 1 point of Class 2, 2 points of Class 3 \rightarrow Majority class = 3

K-Means clustering:

Use the K-means clustering to find two different clusters in the following sequence of three-dimensional points:

X = [(1,9,14),(2,18,23),(3,30,30),(4,21,9),(5,9,17),(6,25,32),(7,36,25),(8,10,12),(9,38,45),(10,1,2)]

Initial centroids randomly: (1,9,14) and (10,1,2).

C1: (1,9,14). C2: (10,1,2).

Euclidean distance:

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$

Point 1: $(1,9,14) \rightarrow C1=0$

Point 2: $(2,18,23) \rightarrow C1=12.08$, $C2=25.16 \rightarrow C1$

Point 3: $(3,30,30) \rightarrow C1=23.64, C2=37.52 \rightarrow C1$

Point 4: $(4,21,9) \rightarrow C1=13.34, C2=20.88 \rightarrow C1$

Point 5: $(5,9,17) \rightarrow C1=5.0$, $C2=17.26 \rightarrow C1$

Point 6: $(6,25,32) \rightarrow C1=22.36, C2=35.03 \rightarrow C1$

Point 7: $(7,36,25) \rightarrow C1=28.62$, $C2=38.72 \rightarrow C1$

Point 8: $(8,10,12) \rightarrow C1=7.35$, $C2=11.53 \rightarrow C1$

Point 9: $(9,38,45) \rightarrow C1=38.32$, $C2=50.12 \rightarrow C1$

Point 10: $(10,1,2) \rightarrow C1=17.15$, C2=0 (same point) $\rightarrow C2$

Clusters:

C1 : Points $1-9 \rightarrow (5,21.78,23)$, Taking the mean from 1-9.

C2 : Point 10 -> (10,1,2)

Iteration 2: Assign Clusters

Using new centroids C1=(5,21.78,23), C2=(10,1,2):

Point 1: C1=15.36, C2=17.15 \rightarrow C1

Point 2: C1=5.10, C2=25.16 \rightarrow C1

Point 3: C1=11.36, C2=37.52 \rightarrow C1

Point 4: C1=14.00, C2=20.88→ C1

Point 5: C1=14.05, C2=17.26 \rightarrow C1

Point 6: C1=9.92, C2=35.03 \rightarrow C1

Point 7: C1=15.95 , C2=38.72 \rightarrow C1

Point 8: C1=15.61, C2=11.53 \rightarrow C2

Point 9: C1=24.54, C2=50.12→ C1

Point 10: C1=25.0, C2=0 \rightarrow C2

Clusters:

C1: Points 1-7, $9 \rightarrow$ taking the mean \rightarrow (4.63,23.25,24.38)

C2: Points 8, 10 -> taking the mean -> (9,5.5,7)

Iteration 3: Assign Clusters

Point 1: C1=16.10 C2=11.05→ C2

Point 2: C1=6.09, C2=23.05 \rightarrow C1

Point 3: C1=11.06, C2=35.95 \rightarrow C1

Point 4: C1=15.23, C2=13.80→ C2

Point 5: C1=15.34, C2=12.18→ C2

Point 6: C1=9.62, C2=33.40 \rightarrow C1

Point 7: C1=15.06, C2=36.37 \rightarrow C1

Point 8: C1=17.31, C2= $5.50 \rightarrow C2$

Point 9: C1=24.07, C2=47.81→ C1

Point 10: C1=25.43 , C2=6.58 $\,\rightarrow$ C2

Clusters:

- C1: Points 2, 3, 6, 7, 9 -> taking the mean (5.4,29.4,31)
- C2: Points 1, 4, 5, 8, 10 -> taking the mean (5.6,10,10.8)

Final Clusters:

- **Cluster 1:** (2,18,23), (3,30,30), (6,25,32), (7,36,25), (9,38,45).
- **Cluster 2**: (1,9,14), (4,21,9), (5,9,17), (8,10,12), (10,1,2).

Centroids: C1=(5.4,29.4,31), C2=(5.6,10,10.8)