Adopted Levels, Gammas

 $Q(\beta^-)=10470\ 40;\ S(n)=2470\ 40;\ S(p)=18680\ 40;\ Q(\alpha)=-13690\ 40$ 2021Wa16 $S(2n)=10020\ 40,\ S(2p)=33930\ 40,\ Q(\beta^-n)=2090\ 40\ (2021Wa16).$ Isotope discovery (2012Th10): 232 Th(40 Ar,X) at Dubna (1971Ar32). 35 Si production:

- 2015Mo17: ⁹Be(⁴⁰Ar,X) at E(⁴⁰Ar)=95 MeV/nucleon at RIKEN. Measured angular distributions and transverse momentum distributions of fragments. Deduced formulation for the width of transverse momentum distribution as a function of fragment velocity.
- 2012Kw02: ⁹Be,^{nat}Ni,¹⁸¹Ta(⁴⁰Ar,X) at E(⁴⁰Ar)=140 MeV/nucleon at NSCL. Measured fragmentation cross sections, parallel momentum transfers, and widths. Compared with empirical formula EPAX, and predictions from internuclear cascade and deep inelastic models using Monte Carlo ISABEL-GEMINI and DIT-GEMINI codes.
- 2012Zh06: ⁹Be, ¹⁸¹Ta(⁴⁰Ar,X) at E(⁴⁰Ar)=57 MeV/nucleon at HIRFL. Measured momentum distributions and production cross sections of fragments. Observed competition between projectile fragmentation and other mechanisms. Compared with EPAX, abrasion- ablation, and HIPSE models. Studied target dependence of fragment cross sections.
- 2007No13: ⁹Be(⁴⁰Ar,X) at E(⁴⁰Ar)=100 MeV/nucleon at RIKEN. Measured fragment momentum distributions and production cross sections.

2006Ro34: ${}^{2}H({}^{42}S,X)$ at $E({}^{42}S)=99.8$ MeV/nucleon at NSCL. Measured production cross sections.

1997Fo01: ²⁰⁸Pb(³⁷Cl,X) at E(³⁷Cl)=230 MeV at Legnaro. Measured yields.

³⁵Si decay measurements:

1986Du07,1986HuZW,1987DuZU,1988DuZS,1988DuZT: 9 Be(40 Ar,X) at GANIL. Measured $T_{1/2}$ and β^- -delayed γ rays.

2007Ne14: 35 Si g.s. magnetic moment and g-factor using β -NMR.

³⁵Si radius measurements:

- 2006Kh08: ³⁵Si produced by ¹⁸¹Ta(⁴⁸Ca,X) fragmentation at E(⁴⁸Ca)=60.3 MeV/nucleon at GANIL. Measured energy-integrated reaction cross sections at 30-65 MeV/nucleon using a silicon telescope as both active target and detector. Deduced reduced strong absorption radii, isospin dependence, and possible halo structure or large deformation.
- 1999Ai02: Si(³⁵Si,X) at NSCL. Measured energy-integrated reaction cross sections at E=38-80 MeV/ nucleon. Deduced strong absorption radii.

³⁵Si mass measurements: 1986Fi06, 1986Sm05, 1984Ma49.

Theoretical calculations (binding energies, deformation, quadrupole moments, radii, levels, J^{π} , etc.): 2011Ka03, 2009No01, 2008Wi11, 2007Ch82, 2004Kh16, 1999Du05, 1994Mo37, 1994Po05, 1987Wa10, 1986Wo02.

35Si Levels

Cross Reference (XREF) Flags

A 35 Al β^- decay (37.2 ms) B 1 H(34 Si,p):from IAR

 2 H(34 Si,p γ)

D ${}^{9}\text{Be}({}^{36}\text{Si}, {}^{35}\text{Si}\gamma)$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0	(7/2)	0.78 s 12	ABCD	% β^- =100; % β^- n<5 (1995ReZZ/2008ReZZ) μ =(-)1.638 4 (2007Ne14,2014StZZ) μ : Using β -NMR on a polarized fragment beam (2007Ne14). J ^π : (d,p)=3 in 2 H(34 Si,py), 7/2 $^-$ from shell-model predictions, and systematic trends in Si isotopes. T _{1/2} : From β -decay measurement (1988DuZT). In an earlier paper by the same group (1986Du07) value given is 0.87 s <i>17</i> . The evaluators adopt the more recent value. Reduced strong absorption radius r_0^2 =1.261 fm ² 35 from the energy-integrated σ of Si(35 Si,X) (2006Kh08) and r_0^2 =1.258 fm ² 92 from the energy-integrated σ of Si(35 Si,X) (1999Ai02). Configuration= ν f _{7/2} .
909.95 23	(3/2) 55	PS 14	ABCD	J^{π} : L(d,p)=1 in ${}^{2}H({}^{34}Si,p\gamma)$, 3/2 ⁻ from shell-model predictions, and

Adopted Levels, Gammas (continued)

³⁵Si Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	XREF	Comments		
				systematic trends in Si isotopes.		
				$T_{1/2}$: From analysis of broadened lineshape in ${}^{9}\text{Be}({}^{36}\text{Si}, {}^{35}\text{Si}\gamma)$ (2014St18).		
				Configuration= $\nu p_{3/2}$.		
973.88 18	$(3/2^+)$	5.9 ns 6	AB D	$T_{1/2}$: From the time spectrum of delayed coincidences in 35 Al β^- decay (2001Nu01).		
1444?	$(1/2^+)$		В	E(level), J^{π} : corresponding to a possible IAR in 35 P with L(p)=0 from R-Matrix analysis in 1 H(34 Si,p):From IAR (2012Im01).		
1689 <i>3</i>	1/2+		D	J^{π} : L(n)=0 in ${}^{9}Be({}^{36}Si, {}^{35}Si\gamma)$.		
1970 <i>6</i>	,		D			
2044 5	(1/2)		CD	J^{π} : L(d,p)=1 in ${}^{2}H({}^{34}Si,p\gamma)$, $1/2^{-}$ from shell-model predictions. Configuration= $\nu p_{1/2}$.		
2168.2 4	5/2+		AB D	J^{π} : corresponding to an IAR in ³⁵ P with L(p)=2 and J=5/2 ⁺ from R-Matrix analysis in ¹ H(³⁴ Si,p):From IAR (2012Im01).		
2194?	(1/2-,3/2-)		В	E(level), J^{π} : corresponding to a possible IAR in ^{35}P with L(p)=1 from R-Matrix analysis in $^{1}H(^{34}Si,p)$:From IAR (2012Im01).		
2275 6			D			
2377 7			D			
3140			Α			
3450			Α			
3611? 8			. D			
3770			A			
5190	(5/2)-		A	π. I (J) 2 : 2II/34c:)		
≈5500	(5/2)		С	J^{π} : L(d,p)=3 in ${}^{2}H({}^{34}Si,p\gamma)$. Configuration= $\nu f_{5/2}$.		
5760			Α			
6330			Α			
7360			Α			
7690			Α			

 $^{^{\}dagger}$ From a least-squares fit to γ -ray energies if applicable. Values without uncertainties are from 35 Al β^- decay, unless otherwise noted. \ddagger From shell mode predictions and systematic trends on Si isotopes.

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbb{E}_f	J_f^π	Mult.	α#	Comments
909.95	$(3/2)^-$ 55	910.11 30	100	0	$(7/2)^{-}$	[E2]		
973.88	$(3/2^+)$	64.1 <i>3</i>	100	909.95	$(3/2)^{-}$ 55	[E1]	0.0368 8	B(E1)(W.u.)=0.00036 4
		973.78 20	11.8 24	0	$(7/2)^{-}$	[M2]		B(M2)(W.u.)=0.059 14
1689	1/2+	715 [‡] 4	14.6 [‡] <i>15</i>	973.88	$(3/2^+)$			
		780 [‡] 4	100 [‡] 8	909.95	$(3/2)^{-}$ 55			
1970		1970 [‡] 6	100	0	$(7/2)^{-}$			
2044	$(1/2)^{-}$	1134 [‡] 5	100	909.95	$(3/2)^{-}$ 55			
2168.2	5/2+	1194.2 <i>4</i>	35 8	973.88	$(3/2^+)$			
		2168.2 <i>6</i>	100 20	0	$(7/2)^{-}$			
2275		2275 [‡] 6	100	0	$(7/2)^{-}$			
2377		2377 [‡] 7	100	0	$(7/2)^{-}$			
3611?		3611 [‡] 8	100	0	$(7/2)^{-}$			

Adopted Levels, Gammas (continued)

γ (35Si) (continued)

 † From 35 Al β^- decay, unless otherwise noted. ‡ From 9 Be(36 Si, 35 Si γ).

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.