Session 9.2: Spatio-temporal modelling for area data

Bayesian modelling for Spatial and Spatio-temporal data, Imperial College London

Learning Objectives

At the end of this session you should be able to:

- Explain how to extend spatial or temporal models to spatio-temporal models
- Fit Bayesian space-time models using R-INLA

The topics covered in this lecture can be found in Chapter 7 of the book Spatial and **Spatio-Temporal Bayesian Models with** R-INLA.

Outline

- 1. Temporal dependence
- 2. From space to space-time
- 3. Type of interactions

Temporal dependence

Temporal dependence

- Similarly to spatial dependence, it is sometimes necessary to model temporal dependence of data or of parameters:
- the weekly or monthly number of cases of many diseases exhibit often a seasonal pattern as well as short term dependence
- ullet the underlying daily level of atmospheric pollutants, e.g. PM $_{10}$, will show strong correlation over consecutive days because their lifetime lasts over several days
- To the contrary of spatial models, there is a natural order to any time series data which is used in specifying the models.

Spatial patterns

1. Data

- ullet Disease counts y_i in area i and stratum k, aggregated over a time period, $i=1,\ldots,N$, $k=1,\ldots,K$
- ullet Population counts n_{ik} in area i and stratum k, aggregated over a time period
- ullet Expected numbers $E_i = \sum_k n_{ik} r_k$, where r_k reference rate for stratum (age, gender,...)

2. Spatial smoothing using BYM model

$$egin{aligned} y_i &\sim \operatorname{Poisson}(E_i
ho_i); \quad i=1,\ldots,N \ \log
ho_i &= b_0 + v_i + u_i \ v_i &\sim \operatorname{Normal}(0,\sigma_v^2) \ oldsymbol{u} &\sim \operatorname{ICAR}(oldsymbol{W},\sigma_u^2)
ightarrow u_i|u_j, \ j
eq i \sim \operatorname{Normal}\left(rac{\sum_j w_{ij}u_j}{\sum_j w_{ij}},\sigma_u^2/n_i
ight) \end{aligned}$$

with $w_{ij}=1$ if areas i and j are neighbours, 0 otherwise

1. Data

- ullet Disease counts y_{tk} in time period t and stratum k, aggregated over space, $t=1,\ldots,T$ (equally-spaced time intervals), $k=1,\ldots,K$
- ullet Population counts n_{tk} in time period t and stratum k, aggregated over space
- ullet Expected numbers $E_t = \sum_k n_{tk} r_k$, where r_k reference rate for stratum (age, gender,...)

$$y_t \sim ext{Poisson}(E_t
ho_t); \quad t = 1, \dots, T \ ext{log}
ho_t = ???$$

1. Data

- ullet Disease counts y_{tk} in time period t and stratum k, aggregated over space, $t=1,\ldots,T$ (equally-spaced time intervals), $k=1,\ldots,K$
- ullet Population counts n_{tk} in time period t and stratum k, aggregated over space
- ullet Expected numbers $E_t = \sum_k n_{tk} r_k$, where r_k reference rate for stratum (age, gender,...)

$$y_t \sim ext{Poisson}(E_t
ho_t); \quad t = 1, \dots, T \ ext{log}
ho_t = b_0 + eta t \quad ext{simple linear regression}$$

1. Data

- ullet Disease counts y_{tk} in time period t and stratum k, aggregated over space, $t=1,\ldots,T$ (equally-spaced time intervals), $k=1,\ldots,K$
- ullet Population counts n_{tk} in time period t and stratum k, aggregated over space
- ullet Expected numbers $E_t = \sum_k n_{tk} r_k$, where r_k reference rate for stratum (age, gender,...)

$$egin{aligned} y_t &\sim \operatorname{Poisson}(E_t
ho_t); \quad t=1,\ldots,T \ \log
ho_t &= b_0 + eta t \quad ext{simple linear regression} \ &= b_0 + \psi_t \quad ext{global temporal smoothing} \ \psi_t &\sim \operatorname{Normal}(0,\sigma_\psi^2) \end{aligned}$$

1. Data

- ullet Disease counts y_{tk} in time period t and stratum k, aggregated over space, $t=1,\ldots,T$ (equally-spaced time intervals), $k=1,\ldots,K$
- ullet Population counts n_{tk} in time period t and stratum k, aggregated over space
- ullet Expected numbers $E_t = \sum_k n_{tk} r_k$, where r_k reference rate for stratum (age, gender,...)

$$egin{aligned} y_t &\sim \operatorname{Poisson}(E_t
ho_t); \quad t=1,\ldots,T \ \log
ho_t &= b_0 + eta t \quad ext{simple linear regression} \ &= b_0 + \psi_t \quad ext{global temporal smoothing} \ \psi_t &\sim \operatorname{Normal}(0,\sigma_\psi^2) \ &= b_0 + \gamma_t \quad ext{local temporal smoothing} \ \gamma_t &\sim ext{distribution ?} \end{aligned}$$

1. Data

- ullet Disease counts y_{tk} in time period t and stratum k, aggregated over space, $t=1,\ldots,T$ (equally-spaced time intervals), $k=1,\ldots,K$
- ullet Population counts n_{tk} in time period t and stratum k, aggregated over space
- ullet Expected numbers $E_t = \sum_k n_{tk} r_k$, where r_k reference rate for stratum (age, gender,...)

$$egin{aligned} y_t &\sim \operatorname{Poisson}(E_t
ho_t); \quad t=1,\ldots,T \ \log
ho_t &= b_0 + eta t \quad ext{simple linear regression} \ &= b_0 + \psi_t \quad ext{global temporal smoothing} \ \psi_t &\sim \operatorname{Normal}(0,\sigma_\psi^2) \ &= b_0 + \gamma_t \quad ext{local temporal smoothing} \ \gamma_t &\sim ext{distribution ?} \ &= b_0 + \gamma_t + \psi_t \quad ext{global and local temporal smoothing} \end{aligned}$$

Ohio Lung cancer data

- Data on lung cancer in 88 counties of Ohio, 1968-1988
- Annual rates adjusted by gender and race

Ohio Lung cancer data: modelled temporal trend

• Smoothed temporal trend using random walk models (posterior mean) seen in the previous lecture

Ohio Lung cancer spatial pattern (no temporal dimension)

SMR 3 6 9 12

From space to space-time

Disease mapping: Extending space to space-time

- Disease mapping is usually carried out on aggregated data over a time period
- Rather than suppressing the time dimension, it can be interesting to use models that combine the space and time dimension
- The stability (or not) of the spatial pattern can aid interpretation
- The specific space-time components of the model can potentially pinpoint unusual/emerging hazards
- Data:
 - $-y_{it}$ and
 - E_{it} : the observed and expected number of cases in area i at time t calculated as $E_{it}=\sum_k n_{itk}r_k$, where r_k reference rate for stratum (age, gender,...)

Schematic representation I

Linear spatio-temporal model

• A simple model assumes a linear effect of time:

$$\mathsf{log}
ho_{it} = b_0 + u_i + v_i + eta imes t$$

- ullet Main spatial effect u_i+v_i
- Main linear trend β (global time effect)
- A differential effect δ_i can be added

$$\mathsf{log}
ho_{it} = b_0 + u_i + v_i + (eta + \delta_i) imes t$$

• If $\delta_i < 0$ then the area-specific trend is less steep than the mean trend, whilst $\delta_i > 0$ implies that the area-specific trend is steeper than the mean trend.

Dynamic spatio-temporal model

Noise model: Poisson/Binomial

Latent structure: Space + Time + Interactions

Ohio Lung cancer - temporal SMRs

Log SMR time trends in each county

• Slightly increasing trend but lots of variation across the counties

Simple linear spatio-temporal model (Model 1)

$$y_{it} \sim ext{Poisson}(ext{E}_{it}
ho_{it}) \ ext{log}
ho_{it} = b_0 + eta * t + u_i + v_i$$

where

- ullet b_0 overall log RR in Ohio over the 21-year period
- $ullet v_i \sim ext{Normal}(0, \sigma_v^2)$ spatially unstructured RE
- $oldsymbol{u} \sim ext{ICAR}(\mathbf{W}, \sigma_u^2)$ spatially structured RE
- ullet exp(eta) is the change in the RR associated with a 1-year increase in time

```
> formula.mod1 = y ~ 1 + f(county, model="bym",
+ graph=Ohio.adj) + year
```

Log-linear temporal model with unstructured temporal RE (Model 2)

$$y_{it} \sim ext{Poisson}(ext{E}_{it}
ho_{it}) \ ext{log}
ho_{it} = b_0 + eta * t + u_i + v_i + oldsymbol{\psi_t}$$

where

- ullet b_0 overall log RR in Ohio over the 21-year period
- $ullet v_i \sim ext{Normal}(0, \sigma_v^2)$ spatially unstructured RE
- $oldsymbol{u} \sim ext{ICAR}(\mathbf{W}, \sigma_u^2)$ spatially structured RE
- ullet exp(eta) is the change in the RR associated with a 1-year increase in time
- ullet $\psi_t \sim ext{Normal}(0, \sigma_\psi^2)$ temporally unstructured RE

Ohio lung cancer - comparison models 1 and 2

```
mean sd 0.025quant 0.5quant 0.975quant mode kld (Intercept) -1.00051649 0.24837671 -1.49021595 -1.00050788 -0.5108657 -1.0004908 1.127221e-08 year 0.02042516 0.01702402 -0.01327892 0.02042535 0.0541282 0.0204257 1.358019e-08
```

Ohio lung cancer - comparison models 1 and 2

Let's look at the temporal random effect in model 2

Some temporal structure which suggests that the linear term is not capturing the temporal trend well

Simple additive space-time structure version 1 (Model 3)

This model assumes that the space time variations can be captured by the superimposition of a BYM spatial model and a structured time trend

$$y_{it} \sim ext{Poisson}(ext{E}_{it}
ho_{it}) \ ext{log}
ho_{it} = b_0 + b_i + rac{m{\gamma}_t}{m{\gamma}_t}$$

- \bullet $b_i = v_i + u_i$
- $ullet v_i \sim ext{Normal}(0, \sigma_v^2)$ spatially unstructured RE
- $oldsymbol{u} \sim ext{ICAR}(\mathbf{W}, \sigma_u^2)$ spatially structured RE
- ullet $\gamma_t \sim ext{RW}(1)$ temporally structured RE with variance parameter σ_γ^2
- Assuming a BYM2 specification, there are 3 hyperparameters
 - au_b , the marginal precision of b_i
 - $-\phi$, the proportion of spatial variability explained by the spatially structured component
 - σ_{γ}^2 , the conditional variance of the RW(1) modelling the time trend

```
> mod3 = inla(data=ohio.data,formula=formula.mod3, E=E, family="poisson")
```

Simple additive space-time structure version 2 (Model 4)

$$y_{it} \sim ext{Poisson}(ext{E}_{it}
ho_{it}) \ ext{log}
ho_{it} = b_0 + u_i + v_i + rac{oldsymbol{\psi_t}}{oldsymbol{\psi_t}} + oldsymbol{\gamma_t}$$

where

- ullet b_0 overall log RR in Ohio over the 21-year period
- $ullet v_i \sim ext{Normal}(0, \sigma_v^2)$ spatially unstructured RE
- ullet $\mathbf{u} \sim ext{ICAR}(\mathbf{W}, \sigma_u^2)$ spatially structured RE
- ullet $\gamma_t \sim ext{RW}(1)$ temporally structured RE with variance parameter σ_γ^2
- $ullet \psi_t \sim ext{Normal}(0, \sigma_\psi^2)$ temporally unstructured RE

```
> mod4 = inla(data=ohio.data,formula=formula.mod4, E=E, family="poisson")
```

Ohio lung cancer - comparison models 3 and 4

Posterior means of the temporal RE

Model 3 = γ_t

Model 4 = $\psi_t + \gamma_t$

Ohio lung cancer - area-specific temporal RR

Posterior means of the temporal RE γ_t (model 3)

Ohio lung cancer - spatial patterns (all models)

Posterior means of the spatial random effects for the 4 different models

Similar patterns with the 4 models

Space-time model with exchangeable interactions (Model 5)

$$egin{aligned} y_{it} &\sim ext{Poisson}(ext{E}_{it}
ho_{it}) \ ext{log}
ho_{it} &= b_0 + b_i + \ \gamma_t + \psi_t + \delta_{it} \ b_i &= v_i + u_i \ \gamma_t &\sim ext{RW}(1) \ \psi_t &\sim ext{N}(0, \sigma_\psi^2) \ \delta_{it} &\sim ext{Normal}(0, \sigma_\delta^2) \end{aligned}$$

The simple additive model 4 can be extended by including space-time interactions parameters, δ_{it} , modelled as exchangeable random effects, that capture departure from the additive structure

Interpretation of the interactions in model 5

- ullet The interactions δ_{it} allow to highlight unusual temporal trends
- ullet Rules based on the posterior probabilities $p(\delta_{it}>0)$ for at least 1 time t
- Ohio lung cancer: 6 counties with unusual temporal trends

"usual" temporal trends

unusual temporal trends

INLA code for model with interaction (Model 5)

- In INLA is very easy to include the interaction in the formula environment
- We need to specify an index for the interaction, i.e. for each combination of area/time

```
egin{aligned} \mathsf{log}
ho_{it} &= b_0 + b_i + \gamma_t + \psi_t + \delta_{it} \ b_i &= v_i + u_i \ \gamma_t &\sim \mathrm{RW}(1) \ \psi_t &\sim N(0, \sigma_\psi^2) \ \delta_{it} &\sim &\mathrm{Normal}(0, \sigma_\delta^2) \end{aligned}
```

Types of interactions

Another example: Birth weight in Georgia

- Count of babies weigthing less than 2500g in 159 counties in Georgia (US)
- Period 2000 2010

Different types of interactions

$$egin{aligned} y_{it} &\sim ext{Poisson}(ext{E}_{it}
ho_{it}) \ ext{log}
ho_{it} &= b_0 + b_i + \gamma_t + \psi_t + \pmb{\delta_{it}} \ b_i &= v_i + u_i \ \gamma_t &\sim ext{RW}(1) \ \psi_t &\sim N(0,\sigma_\psi^2) \end{aligned}$$

Characteristics of ST interaction

Interaction Parameters Rank

1	v and ψ	nT
II	v and γ	n(T-1) for RW1, $n(T-2)$ for RW2
III	u and ψ	(n-1)T
IV	u and γ	(n-1)(T-1) for RW1, (n-1)(T-2) for RW2

• We will learn how to develop Type I interaction in INLA

How to model interactions

• Data in R format

```
# A tibble: 1,749 × 8
   ID.area
             Obs ID.year
                           Exp
                                          E NAME
                                                    ID.area.year
     <int> <int>
                   <dbl> <dbl> <dbl> <chr>
                                                           <int>
              20
                          25.8
                                       25.8 Appling
 2
              24
                          25.1
                                      25.1 Appling
              25
                          22.8
                                   25
                                      22.8 Appling
                                       25.2 Appling
              31
                          25.2
                                   31
 5
                          24.9
                                       24.9 Appling
              24
                                       26.7 Appling
              40
                          26.7
                          26.0
                                       26.0 Appling
              29
 8
              35
                          27.2
                                   35
                                      27.2 Appling
 9
                                      25.1 Appling
              26
                          25.1
                                   26
10
              25
                                       24.5 Appling
                      10
                          24.5
                                                               10
# ... with 1,739 more rows
```

• We need to make sure to have an index for area (ID. area), one for time (ID. year) and one for the interaction (ID. area. year)

Type I interaction in INLA

Let's adopt Type I interaction, which assumes that the two unstructured effects v_i and ψ_t interact

Kronecker product

• For the interactions of type II-IV we will need to use the **Kronecker product** to specify the dependencies. It is a matrix multiplication which returns a block matrix.

For instance

$$egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix} \otimes egin{bmatrix} 0 & 5 \ 6 & 7 \end{bmatrix} = egin{bmatrix} 1 egin{bmatrix} 0 & 5 \ 6 & 7 \end{bmatrix} & 2 egin{bmatrix} 0 & 5 \ 6 & 7 \end{bmatrix} \ 3 egin{bmatrix} 0 & 5 \ 6 & 7 \end{bmatrix} & 4 egin{bmatrix} 0 & 5 \ 6 & 7 \end{bmatrix} \end{bmatrix}$$

- There is a function in R which does exactly that: kronecker(a,b)
- We will not go through type II-IV of interactions, as they are pretty complex and also they can take a **very long** time to run
- If you are interested in knowing more how to set interactions using the Kronecker product in INLA see Goicoa, Adin, Ugarte, and Hodges (2018)

Summary

- Increase quality of datasets that are both spatially and temporally indexed
- Advanced methods to deal with this type of data
- Allow to interpret the stability (or not) of the spatial patterns

References

Goicoa, T., A. Adin, M. Ugarte, et al. (2018). "In spatio-temporal disease mapping models, identifiability constraints affect PQL and INLA results". In: *Stochastic Environmental Research and Risk Assessment* 32.3, pp. 749-770.