experiment and let E be an event that occurs with some E_i . Then,

$$P\left(\frac{E_i}{E}\right) = \frac{P\left(\frac{E}{E_i}\right) \cdot P(E_i)}{\sum_{i=1}^n P(E/E_i) \cdot P(E_i)} ; \quad i = 1, 2, 3, \dots, n$$

Probability Distribution

(1) If a random variable X takes the values $x_1, x_2, ..., x_n$ with respective probabilities $p_1, p_2, ..., p_n$ then the probability distribution of X is given by

X	x_1	x_2	χ_3	•••	•••	x_n
P(X)	p_1	p_2	p_3		•••	p_n

The above probability distribution of X is defined only when

(i) Each
$$p_i \ge 0$$
; (ii) $\sum_{i=1}^{n} p_i = 1$.

(2) The mean of X, denoted by μ , is defined as

$$\mu = E(X) = \sum_{i=1}^{n} p_i x_i$$

(3) The variance, denoted by σ^2 , is defined as

$$\sigma^2 = \left(\sum x_i^2 p_i - \mu^2\right)$$

(4) The S.D. is given by $\sigma = \sqrt{Variance}$.

Binomial Distribution

(1) Bernoulli's Theorem

Let there be n independent trials in an experiment and let the random variable X denote the number of successes in these trials. Let the probability of getting a success in a single trial be p and that of getting a failure be q so that p + q = 1. Then,

$$P(X = r) = {}_{r}^{n}C.p^{r}.q^{n-r}$$

The probability distribution of X may be expressed as

X	0	1	•••	•••	•••	r
P(X)	q^n	npq^{n-1}	•••	•••	•••	$\binom{n}{r}C.p^r.q^{n-r}$

This distribution is called a binomial distribution.

(2) Condition for the Applicability of a Binomial Distribution

- The experiment is performed for a finite and fixed number of trials.
- Each trial must give either a success or a failure.
- The probability of a success in each trial is the same.
- (3) The mean of binomial distribution is given by $\mu = np$.
- (4) The variance of binomial distribution is given by $\sigma^2 = npq$.