WHAT IS CLAIMED IS:

1	1. A bipolar transistor, comprising:
2	a substrate;
3	a semiconductor intrinsic base layer formed by blanket epitaxy on the
4	substrate;
5	a collector layer formed on the substrate;
6;==5	an emitter formed over the semiconductor intrinsic base layer, forming a
'' 7'' ''-'	junction between the semiconductor intrinsic base layer and the emitter, wherein the junction
8111 1.11	at a lateral portion of the emitter extends farther into the intrinsic base layer than the junction
6 7 8 8 9	at a center portion of the emitter;
10	an extrinsic base formed adjacent to the lateral portion of the emitter;
10 [1] 11 [1] 12 [1]	a base electrode formed on a portion of the extrinsic base layer;
12 []	a collector electrode formed on a portion of the collector layer; and
13	an emitter electrode formed on a portion of the emitter layer.
1	2. A bipolar transistor as claimed in claim 1, wherein the emitter comprises a
2	pedestal having a top which contacts an emitter layer.
1	3. A bipolar transistor as recited in claim 1, wherein a raised extrinsic base layer
2	is formed and comprises one of a highly-doped polysilicon or a highly-doped amorphous

3	silicon.
1	4. A transistor as recited in claim 1, wherein the lateral portion has a depth in
2	a range of approximately 20-40 nm.
i	5. A bipolar transistor as recited in claim 1, wherein the semiconductor intrinsic
2	base layer comprises silicon germanium.
1	6. A bipolar transistor as recited in claim 1, further comprising a sidewall spacer
	formed between and electrically isolating the emitter and the extrinsic base layer.
	7. A bipolar transistor as recited in claim 6, wherein the sidewall spacer comprises one of a silicon nitride, a silicon dioxide, or a combination of the two.
	·
1 []]	8. A bipolar transistor as recited in claim 7, wherein the sidewall spacer has a width in the range of 10 to 70 nanometers.
1	9. A bipolar transistor as recited in claim 2, wherein the emitter comprises one
2	of a polysilicon or an amorphous silicon.
1	10. A bipolar transistor as recited in claim 1, wherein the emitter layer has a
)	thickness in the range of 30 to 200 panameters

2	with phosphorous that minimizes drive-in and activation anneal temperatures.
1	12. A method of making a bipolar transistor, comprising:
2	providing a semiconductor intrinsic base layer on a substrate;
3	providing a collector layer on the substrate;
4	providing a semiconductor intrinsic base layer on the substrate;
5	providing a mandrel or removable region in the location of an emitter;
5 6 7 7 11 8	providing a recess adjacent to mandrel films into the semiconductor intrinsic
7 []	base layer to form a silicon pedestal;
	providing an insulating spacer adjacent to the silicon pedestal and mandrel
(4) 9 :: 	films;
10	providing an emitter on the semiconductor intrinsic base layer which contacts
11	the intrinsic base layer in the former location of the mandrel films and which extends a
12	distance wider than the silicon pedestal and a distance below a top surface of the silicon
13	pedestal, the semiconductor intrinsic base layer forming a junction with the emitter;
14	providing a base electrode on a portion of raised extrinsic base layer;
15	providing a collector electrode on a portion of the collector layer; and
16	providing an emitter electrode on a portion of the emitter layer.

A bipolar transistor as recited in claim 1, wherein the emitter is in-situ doped

1

13.

11.

A method of making a bipolar transistor as recited in claim 13, wherein the

- 2 recess has a thickness in the range of 5 to 50 nanometers. A method of making a bipolar transistor as recited in claim 13, wherein a 1 2 raised extrinsic base layer is formed and comprises one of a highly-doped polysilicon or a 3 highly-doped amorphous silicon. 15. A method of making a bipolar transistor as recited in claim 13, wherein the 1 2 bipolar transistor is a heterojunction bipolar transistor. 16. A method of making a bipolar transistor as recited in claim 13, wherein the semiconductor intrinsic base layer comprises silicon germanium. 1,1 1:3 17. A method of making a bipolar transistor as recited in claim 13, wherein a sidewall spacer formed between and electrically isolating the emitter layer and the extrinsic
 - 18. A method of making a bipolar transistor as recited in claim 17, wherein one of a silicon nitride, a silicon dioxide, or a combination of the two is used for the sidewall spacer.
 - 19. A method of making a heterojunction bipolar transistor as recited in claim 17, wherein the sidewall spacer is provided with a width in the range of 10 to 70 nanometers.

base layer.

1

2

3

1

2

1

2

- 20. A method of making a heterojunction bipolar transistor as recited in claim 13, wherein one of a polysilicon or an amorphous silicon is used for the emitter layer.
- 21. A method of making a heterojunction bipolar transistor as recited in claim 13, wherein the emitter layer is provided with a thickness in the range of 30 to 200 nanometers.
- 22. A method of making a heterojunction bipolar transistor as recited in claim 13, further comprising in-situ doping the emitter layer with phosphorous to minimize drive-in and activation anneal temperatures.