Nuclear Reactors

Neutrons

- 1932, neutrons discovered
- 1935, used to transmute elements.
- 1939, used to cause fission in Uranium
- 1939: beginning of WWII
- 1940: Plutonium made from Uranium

1942, first sustained chain reaction (CP-1)

1945, First nuclear bomb detonation

1951, first power reactor (EBR-1)

1952, First meltdown

Energy/Mass

- $\circ E = mc^2$
 - m = mass of particle
 - c =speed of light
- Electron-Volt (eV)
 - Unit of energy
 - Energy gained by an electron accelerated through $1 \, Volt$ of electric potential.
 - Electrical appliances operate around 120 Volts

Scientific Notation

$$\circ$$
 #.# \times 10[#]

•
$$10^1 = 10$$

•
$$10^2 = 100$$

•
$$10^3 = 1,000$$

$$\circ$$
 1.5 × 10¹ = 15

$$0.1.5 \times 10^2 = 150$$

$$0.1 \times 10^6 \ eV = 1 \ MeV$$

Mass of Particles

- Proton
 - 938.272 *MeV*
- Neutron
 - 939.566 MeV
 - Alone, decays to proton after $\sim 15 \ min$
- Electron
 - 0.511 *MeV*

Nucleus

- Made up of protons and neutrons
 - Called Nucleons
- $\circ A = \#$ of nucleons (protons + neutrons)
- $\bullet A Z = \# \text{ of neutrons}$
- - E = symbol for element
- Hydrogen: ${}_{1}^{1}H$

Isotopes

- \bullet Hydrogen: ${}_{1}^{1}H$
 - Deuterium: ²H
 - Tritium: ${}_{1}^{3}H$
- Uranium
 - ²³³₉₂*U*
 - ²³⁵₉₂*U*
 - ²³⁸₉₂*U*

Binding Energy

Binding Energy

http://staff.orecity.k12.or.us/les.sitton/Nuclear/313.htm

Nuclear Fusion

• D-T Fusion

• Fusion of a Deuterium + Tritium nucleus

•
$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + n + energy$$

$$^{2}H + ^{3}H \rightarrow ^{4}He + n + energy$$

• How much energy do we get?

• ${}^{2}H$: 1875.613 *MeV*

• ${}^{3}H:2808.920 \,MeV$

• ${}^{4}_{2}He: 3727.378 MeV$

• *n* : 939.566 *MeV*

- $\circ {}_{1}^{2}H + {}_{1}^{3}H$
 - \bullet 1875.613 MeV + 2808.920 MeV =

- $^{\circ} _{1}^{2}H + _{1}^{3}H$
 - \bullet 1875.613 MeV + 2808.920 MeV = 4684.533 <math>MeV
- $\circ {}_{2}^{4}He + n$
 - $3727.378 \, MeV + 939.566 \, MeV =$

- $^{2}H + ^{3}H$
 - \bullet 1875.613 MeV + 2808.920 MeV = 4684.533 <math>MeV
- $\circ {}_{2}^{4}He + n$
 - $3727.378 \, MeV + 939.566 \, MeV = 4666.944 \, MeV$
- Energy
 - 4684.533 *MeV* 4666.944 *MeV* =

- $^{\circ} _{1}^{2}H + _{1}^{3}H$
 - \bullet 1875.613 MeV + 2808.920 MeV = 4684.533 <math>MeV
- $^{\circ}$ $^{4}_{2}He + n$
 - $3727.378 \, MeV + 939.566 \, MeV = 4666.944 \, MeV$
- Energy
 - 4684.533 *MeV* 4666.944 *MeV* = 17.6 *MeV*

U-235

•
$$^{235}_{92}U + n \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3n$$

 \circ $^{235}_{92}U: 218,941.983 MeV$

0.0141 Ba: 131,260.924 MeV

 $\circ {}_{36}^{92}Kr:85,628.657 MeV$

n: 939.566 MeV

Nuclear Reactor

- The story of a neutron
 - Born from a fission reaction
 - It bounces around the reactor slowing down.
 - Once it is slow enough, it causes another fission.
- But things can go wrong in the story
 - It leaves the reactor.
 - It gets absorbed by something other than fuel.

Nuclear Reactor

Criticality

- To keep this going...
 - On average, make one new fission for every fission that happens.
 - Out of all the neutrons born from a fission, we need one to cause a new fission.
 - Minimize the loss of neutrons.

Criticality

- $\bullet k = nP_aP_c$
 - n = avg. number of neutrons born per neutron absorbed by fuel (from fission).
 - P_a = probability neutron is absorbed by fuel
 - P_l = probability a neutron stays in reactor.
- $\bullet k < 1$: sub-critical

Criticality

- $\circ n \approx 1.65$
 - Number of neutrons made per neutron absorbed by fuel
- $\circ P_a \approx 0.62$
 - 62% of neutrons that stay in reactor are absorbed by fuel
 - $\bullet \overline{nP_a} \approx 1.023$
- $\bullet k = 1 : P_c = \frac{1}{nP_a} \approx 0.98$
 - We need 98% of neutrons to stay in reactor.

Transmutation

- What happens to the neutrons that are absorbed by non-fuel?
- One thing that can happen is Plutonium

•
$$^{238}_{92}U + n \rightarrow ^{239}_{92}U \rightarrow ^{239}_{94}Pu + 2e$$

- Another thing is Deuterium
 - $\bullet \ _1^1H + n \to _1^2H$
 - If there is water (H_2O) in there.
 - Using heavy water prevents that (D_2O)