

Université Batna 2 Département de médecine Faculté de médecine

PHYSIOLOGIE DU MILIEU INTERIEUR

Dr BOUHIDEL

Année universitaire 2023-2024

OBJECTIFS PEDAGOGIQUES

- Définir le milieu intérieur et l'homéostasie.
- Décrire les différents compartiments liquidiens, leur composition et les méthodes de mesure.
- ✓ Comprendre que la cellule est impactée par tous les changements qui peuvent concerner le milieu intérieur.
- ✓ Comprendre l'importance des forces physiques du milieu intérieur dans le fonctionnement cellulaire.
- ✓ Définir les mécanismes d'échanges entre différents compartiments liquidiens.
- ✓ Expliquer les notions d'osmolarité et des états d'hydratation.
- ✓ Comprendre que le transport de l'eau et du sodium à travers la paroi vasculaire est le facteur déterminant de la dynamique du milieu intérieur.
- Comprendre les mécanismes impliqués dans la déshydratation cellulaire.
- ✓ Définir les états d'hyperhydratation et de déshydratation.

PLAN GENERAL

- I. RAPPELS-DEFINITIONS
- II. ECHANGES D'EAU ENTRE LES COMPARTIMENTS EXTRA-ET INTRACELLULAIRE
- III. ECHANGES ENTRE LES COMPARTIMENTS PLASMATIQUE ET INTERSTITIEL
- IV. ECHANGES ENTRE LE PLASMA ET L'EXTERIEUR
- V. CONCLUSION

Unités de mesure des concentrations de solutés

Molarité, en moles/L

NaCl 1M = 58,5 g/L

Osmolarité, n de particules à activité osmotique/L

Glucose 1M = 1 osmole/L

Protéine 1M = 1 osmole/L

- Osmolalité, osmoles/Kg de solvant
- Equivalents, charges électriques

Ex: NaCl = Na
$$^+$$
 + Cl $^-$ = 2 Eq/L

$$CaCl_2 = Ca^+ + 2Cl^- = 4 Eq/L$$

Glucose (non-électrolyte) = 0 Eq/L

Le milieu intérieur

"La fixité du milieu intérieur est la condition d'une vie libre et indépendante".

Claude Bernard

Osmose et tonicité dans les liquides corporels

- Solutions très diluées : mmoles, mEquivalents ou mosmoles par litre
- Solvant : eau (densité 1)
 Osmolalité ≈ osmolarité = mOsm/L d'eau
- Osmolarité d'une solution par rapport à une autre
 - Iso-osmotique : quantité identique de solutés par volume
 - Hyperosmotique : plus élevée
 - Hypo-osmotique : plus basse

Osmose et tonicité dans les liquides corporels

- Tonicité : effet de l'osmolarité d'une solution sur le volume cellulaire
- L' osmolarité est mesurable : nombre d'osmoles par litre (kg) de solution
- La tonicité se définit par rapport à une cellule

Les liquides corporels

Importance de la stabilité des liquides corporels

- Rôle du rein : maintenir la stabilité du milieu extracellulaire pour préserver le fonctionnement cellulaire
- Stabilité du volume et de la composition du LIC essentielle au fonctionnement cellulaire : dépend de celle du LEC (le milieu intérieur) maintenue dans des limites très étroites
 - Natrémie, taux de Na⁺ plasmatique normal = 140 mOsm/L
 Hyponatrémie sévère (<120 mOsm/L) : le plasma devient
 hypotonique et l'eau se déplace vers les cellules.
 Gonflement cellulaire avec des conséquences graves
 au niveau cérébral (douleur, confusion, coma, mort).

Kaliémie, taux de K⁺ plasmatique normal = 4,5 mOsm/L
 Hyperkaliémie sévère (> 5 mOsm/L): dépolarisation des cellules et augmentation de l'excitabilité nerveuse et cardiaque (risque d'arythmies graves et mortelles)

Composition des liquides corporels

Contenu corporel en eau

Tranche d'âge		% poids corpore	
0 à 6 mois		74	
6 mois à 12 ans		60	
	t	59	
12 à 18 ans	† † † † † † † † † † † † † † † † † † †	56	
40 1 50	ŧ	59	
19 à 50 ans	ŧ	50	
. do 50 ana	•	56	
+ de 50 ans		47	

Composition des liquides corporels

Compartiments liquidiens

Eau corporelle totale (60%) = 42 litres

Les solutés des liquides corporels

NON-ELECTROLYTES

95% des solutés

Composition ionique du LEC

Plasma et liquide interstitiel

- Na⁺ et anions associés : surtout CIet HCO3⁻
- Composition et osmolarité (mOsm/L) presque identiques : paroi capillaire très perméable à tous les solutés sauf aux protéines
- Différences liée à l'équilibre de Gibbs-Donnan
 - Distribution des ions
 - Plus de particules osmotiquement actives dans le plasma : osmolarité plus élevée de 1 à 2 mOsm/L
 - Pression oncotique : 25 mmHg

	Plasma	Liquide interstitiel
Protéines	2	0
Na+	142	139
CI-	108	110
нсоз-	28	30

Osmolarité plasmatique

- Electroneutralité des liquides :
 Quantité des anions = quantité des cations
- Na⁺: 95% des cations du LEC (140 mmol/L)
 Natrémie: principal déterminant de l'osmolarité du LEC
- Osmolarité plasmatique ~ [Na+] + [anions associés]
 Calcul rapide : 2X natrémie = 280 mOsm/L
- Si on tient compte des non-électrolytes (glucose, urée): 5mOsm/L chacun
 2[Na+] + [glucose] + [urée] = 290 mOsm/L

~290 mOsm/L

[glucose] 5 [urée] 5 [électrolytes] 280

Composition ionique du liquide intracellulaire

Osmolarité du LIC surtout due aux sels de potassium Légèrement > à celle du LEC

à cause de la concentration élevée des protéines intracellulaires

Equilibre de Gibbs-Donnan entre LIC et liquide interstitiel

Plus de charges osmotiquement actives dans le LIC

Pompe Na⁺-K⁺ ATPase

Bilan : expulsion de particules osmotiquement actives Neutralise l'effet Gibbs-Donnan

Prévient le gonflement cellulaire

Echanges d'eau et de solutés entre les divers compartiments

Echanges d'eau

- Les membranes cellulaires et la paroi capillaire sont très perméables à l'eau qui peut donc se déplacer aisément d'un compartiment à l'autre
- Deux facteurs déterminent les mouvements d'eau
 - L'osmose
 - La pression hydrostatique générée par le système cardiovasculaire (pompe cardiaque et résistance vasculaire)

Mécanismes de déplacement de l'eau à travers les membranes cellulaires

Bicouche lipidique fluide

Tête polaire : hydrophile attire les autres composés polaires et ioniques

Queue non-polaire : hydrophobe confère à la membrane une imperméabilité à la plupart des molécules polaires (sauf l'eau), aux ions et aux grosses molécules

DIFFUSION SIMPLE

Mécanismes de déplacement de l'eau à travers les membranes cellulaires

- Membrane cellulaire plus perméable à l'eau qu'aux solutés
- Paroi capillaire très perméable à l'eau et aux solutés
- Gradient osmotique créé par les solutés qui ne traversent pas les membranes
 - Osmolarité extracellulaire : sodium et anions associés (NaCl)
 - Osmolarité intracellulaire : potassium et anions associés
- Déplacement d'eau entre les compartiments gouvernés par ces forces osmotiques : quasi égalité de l'osmolarité dans tous les liquides corporels (sauf urine, sueur)

~300 mosmoles/L

- Compartiment plasmatique en contact avec l'extérieur → changements du volume et de l'osmolarité des liquides corporels à travers des changements survenant d'abord dans le liquide extracellulaire
- Gain ou perte d'eau ou d'osmoles dans le compartiment extracellulaire : changements du volume et de l'osmolarité plasmatique → redistribution de l'eau entre les compartiments extra- et intracellulaires

Volume et osmolarité des compartiments liquidiens

~ 300 mOsm/L dans tous les liquides corporels

L'équilibre osmotique requiert qu'il y ait le même nombre de particules dans un litre de liquide extra- ou intracellulaire

Gain de liquide isotonique

Expansion iso-osmotique

Perte de liquide isotonique

Contraction iso-osmotique

Gain d'eau pure

Expansion hypo-osmotique

Gain d'eau pure

Expansion hypo-osmotique

Volume total (litres)

Perte d'eau pure

Contraction hyper-osmotique

Volume total (litres)

Perte d'eau pure

Contraction hyper-osmotique

Perte d'eau pure

Contraction hyper-osmotique

Effets sur le volume cellulaire

- Changements aigus de l'osmolarité et donc de la tonicité du LEC → modification du volume cellulaire
 - Diminution de l'osmolarité du LEC qui devient hypotonique
 - Entrée d'eau dans les cellules, gonflement cellulaire (en particulier au niveau des neurones cérébraux)
 - Augmentation de la pression intracrânienne
 - Maux de tête, convulsions, confusion, coma
 - Augmentation de l'osmolarité du LEC qui devient hypertonique
 - · Sortie d'eau des cellules, diminution du volume cellulaire
 - Diminution de la pression intracrânienne
 - Convulsions, confusion, coma
- Changements chroniques de l'osmolarité du LEC → régulation du volume cellulaire par les cellules elles-mêmes : ajustement de la composition ionique du milieu intracellulaire

- Pompe Na⁺ K⁺ ATPase et échangeur Na⁺-H⁺: échanges normaux
- • ↓ [K+] du LEC : hypokaliémie

 Sortie de K+ des cellules en échange avec
 Na+ ou H+: impact sur la natrémie
- ↑ [H⁺] du LEC : acidose métabolique
 Entrée dans les cellules en échange avec Na⁺ ou K⁺
 - Effet de la sortie de Na⁺ : négligeable
 - Effet de la sortie de K⁺ : hyperkaliémie
- ↓ [H+] du LEC : alcalose métabolique
 Sortie des cellules en échange avec Na+ et K+
 - Effet de l'entrée de Na⁺ : négligeable
 - Effet de l'entrée de K⁺ : hypokaliémie

ECHANGES ENTRE LES COMPARTIMENTS PLASMATIQUE ET INTERSTITIEL

ECHANGES ENTRE LES COMPARTIMENTS PLASMATIQUE ET INTERSTITIEL

- Echanges gazeux, de nutriments et de déchets par diffusion
- Echanges liquidiens par filtration sous les gradients de pressions osmotiques et hydrostatiques : Forces de Starling

ECHANGES ENTRE LES COMPARTIMENTS PLASMATIQUE ET INTERSTITIEL

Côté artériel

PNF = 10 mmHg

- P. hydrostatique capillaire : 35 mmHg
- P: hydrostatique interstitielle : 0 mmHg
- P. osmotique capillaire (oncotique): 26 mmHg
- P. osmotique interstitielle : 1 mmHg

Côté veineux

PNF = -8 mmHq

- P. hydrostatique capillaire : 17 mmHg
- P: hydrostatique interstitielle : 0 mmHg
- P. osmotique capillaire (oncotique): 26 mmHg
- P. osmotique interstitielle : 1 mmHg

ECHANGES ENTRE LES COMPARTIMENTS PLASMATIQUE ET INTERSTITIEL

Rôle du système lymphatique

 Liquide filtré dans le compartiment interstitiel et non réabsorbé

~ 2 ml/min

- Drainé par les vaisseaux lymphatiques puis retourné par le conduit thoracique dans le compartiment plasmatique au niveau de la circulation veineuse
- Constance des volumes des deux compartiments à l'équilibre

ECHANGES ENTRE LES COMPARTIMENTS PLASMATIQUE ET INTERSTITIEL

- Maintien des volumes plasmatiques et sanguin constants malgré le gain ou la perte de liquide isotonique par le compartiment plasmatique
- Expansion du volume plasmatique
 - → transfert de ce liquide vers le compartiment interstitiel
- Contraction du volume plasmatique
 - → transfert de liquide interstitiel vers l'espace vasculaire

ECHANGES ENTRE LE PLASMA ET L'EXTERIEUR

ECHANGES ENTRE LE PLASMA ET L'EXTERIEUR

EQUILIBRE EXTERNE

CONCLUSION

CONCLUSION

QUESTIONS?

Condition	Exemple	Liqui extracel		Liquide intracellulaire	
		Osmolarité	Volume	Osmolarité	Volume
Expansion hypo-osmotique	Ingestion excessive d'eau				
Contraction hypo-osmotique	Perte rénale de sodium		0		
Expansion iso-osmotique	Infusion intraveineuse				
Contraction iso-osmotique	Hémorragie				
Expansion hyperosmotique	Infusion/ingestion d'une solution saline concentrée				
Contraction hyperosmotique	Diabète insipide				

↑ augmentation

↓ diminution

= pas de changement

CONCLUSION

REPONSE

Condition	Exemple	Liquide extracellulaire		Liquide intracellulaire	
		Osmolarité	Volume	Osmolarité	Volume
Expansion hypo-osmotique	Ingestion excessive d'eau	4	^	4	1
Contraction hypo-osmotique	Perte rénale de sodium	→	4	4	1
Expansion iso-osmotique	Infusion intraveineuse	=	1	=	=
Contraction iso-osmotique	Hémorragie	=	4	=	=
Expansion hyperosmotique	Ingestion d'une solution saline concentrée	^	1	^	4
Contraction hyperosmotique	Diabète insipide	1	4	1	4

MERCI DE VOTRE ATTENTION