

June 2009 6669 Further Pure Mathematics FP3 (new) Mark Scheme

Question Number	Scheme	Marks
Q1	$\frac{7}{\cosh x} - \frac{\sinh x}{\cosh x} = 5 \implies \frac{14}{e^x + e^{-x}} - \frac{(e^x - e^{-x})}{e^x + e^{-x}} = 5$	M1
	$\therefore 14 - (e^x - e^{-x}) = 5(e^x + e^{-x}) \implies 6e^x - 14 + 4e^{-x} = 0$	A1
	$\therefore 3e^{2x} - 7e^x + 2 = 0 \implies (3e^x - 1)(e^x - 2) = 0$	M1
	$\therefore e^x = \frac{1}{3} \text{ or } 2$	A1
	$x = \ln(\frac{1}{3}) \text{ or } \ln 2$	B1ft [5]
Alternative (i)	Write $7 - \sinh x = 5 \cosh x$, then use exponential substitution $7 - \frac{1}{2}(e^x - e^{-x}) = \frac{5}{2}(e^x + e^{-x})$	M1
	Then proceed as method above.	
Alternative (ii)	$(7\operatorname{sech} x - 5)^2 = \tanh^2 x = 1 - \operatorname{sech}^2 x$	M1
	$50 \operatorname{sech}^2 x - 70 \operatorname{sech} x + 24 = 0$	A1
	$2(5\operatorname{sech} x - 3)(5\operatorname{sech} x - 4) = 0$	M1 A1
	$\operatorname{sech} x = \frac{3}{5} \text{ or } \operatorname{sech} x = \frac{4}{5}$	AI
	$x = \ln(\frac{1}{3}) \text{ or } \ln 2$	B1ft
Q2 (a)	$\mathbf{b} \times \mathbf{c} = 0\mathbf{i} + 5\mathbf{j} + 5\mathbf{k}$	M1 A1 A1 (3)
(b)	$\mathbf{a.(b} \times \mathbf{c}) = 0 + 5 = 5$	M1 A1 ft (2)
(c)	Area of triangle $OBC = \frac{1}{2} 5\mathbf{j} + 5\mathbf{k} = \frac{5}{2} \sqrt{2}$	M1 A1 (2)
(d)	Volume of tetrahedron = $\frac{1}{6} \times 5 = \frac{5}{6}$	B1 ft (1) [8]

	stion nber	Scheme	Mark	(S
Q3	(a)	$\begin{vmatrix} 6-\lambda & 1 & -1 \\ 0 & 7-\lambda & 0 \\ 3 & -1 & 2-\lambda \end{vmatrix} = 0 : (6-\lambda)(7-\lambda)(2-\lambda) + 3(7-\lambda) = 0$	M1	
		$(7 - \lambda) = 0$ verifies $\lambda = 7$ is an eigenvalue (can be seen anywhere) $\therefore (7 - \lambda) \left\{ 12 - 8\lambda + \lambda^2 + 3 \right\} = 0 \therefore (7 - \lambda) \left\{ \lambda^2 - 8\lambda + 15 \right\} = 0$	M1 A1	
		$\therefore (7 - \lambda)(\lambda - 5)(\lambda - 3) = 0 \text{ and } 3 \text{ and } 5 \text{ are the other two eigenvalues}$	M1 A1	(5)
	(b)	$ \operatorname{Set} \begin{pmatrix} 6 & 1 & -1 \\ 0 & 7 & 0 \\ 3 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 7 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ or } \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 0 \\ 3 & -1 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} $	M1	
		Solve $-x + y - z = 0$ and $3x - y - 5z = 0$ to obtain $x = 3z$ or $y = 4z$ and a second equation which can contain 3 variables	M1 A1	
		Obtain eigenvector as $3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ (or multiple)	A1	(4) [9]

Question	Scheme	Mark	(S
Number Q4 (a)			
	$\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \times \frac{1}{\sqrt{1 + (\sqrt{x})^2}}$	B1, M1	
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\sqrt{1+x}} \left(= \frac{1}{2\sqrt{x(1+x)}} \right)$	A1	(2)
			(3)
	$\therefore \int_{\frac{1}{4}}^{4} \frac{1}{\sqrt{x(x+1)}} dx = \left[2 \operatorname{ar} \sinh \sqrt{x} \right]_{\frac{1}{4}}^{4}$	M1	
	$= \left[2\operatorname{ar} \sinh 2 - 2\operatorname{ar} \sinh(\frac{1}{2}) \right]$	M1	
	$= \left[2\ln(2+\sqrt{5})\right] - \left[2\ln(\frac{1}{2}+\sqrt{\frac{5}{4}})\right]$	M1	
	$2\ln\frac{(2+\sqrt{5})}{(\frac{1}{2}+\sqrt{(\frac{5}{4})})} = 2\ln\frac{2(2+\sqrt{5})}{(1+\sqrt{5})} = 2\ln\frac{2(\sqrt{5}+2)(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)} = 2\ln\frac{(3+\sqrt{5})}{2}$	M1	
	$= \ln \frac{(3+\sqrt{5})(3+\sqrt{5})}{4} = \ln \frac{14+6\sqrt{5}}{4} = \ln \left(\frac{7}{2} + \frac{3\sqrt{5}}{2}\right)$	A1 A1	(6)
			(6) [9]
Alternative (i) for part (a)	Use $sinhy = \sqrt{x}$ and state $cosh y \frac{dy}{dx} = \frac{1}{2} x^{-\frac{1}{2}}$	B1	
	$\frac{1}{4}v$ $\frac{1}{2}$ $\frac{1}{2}v^{-\frac{1}{2}}$	M1	
	$\therefore \frac{dy}{dx} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\sqrt{1+\sinh^2 y}} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\sqrt{\left(1+\left(\sqrt{x}\right)^2\right)}}$		
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{1}{2}x^{-\frac{1}{2}}}{\sqrt{1+x}} \left(= \frac{1}{2\sqrt{x(1+x)}} \right)$	A1	(3)
Alternative (i) for part (b)	Use $x = \tan^2 \theta$, $\frac{dx}{d\theta} = 2 \tan \theta \sec^2 \theta$ to give $2 \int \sec \theta d\theta = [2 \ln(\sec \theta + \tan \theta)]$	M1	
	$= \left[2\ln(\sec\theta + \tan\theta)\right]_{\tan\theta = \frac{1}{2}}^{\tan\theta = 2} \text{ i.e. use of limits}$	M1	
	then proceed as before from line 3 of scheme		
Alternative (ii) for part (b)	Use $\int \frac{1}{\sqrt{[(x+\frac{1}{2})^2 - \frac{1}{4}]}} dx = \operatorname{arcosh} \frac{x+\frac{1}{2}}{\frac{1}{2}}$	M1	
	$\sqrt{(x+2)} = \left[\operatorname{arcosh} 9 - \operatorname{arcosh} \left(\frac{3}{2}\right) \right]$	M1	
	$= \left[\ln(9 + \sqrt{80}) \right] - \left[\ln(\frac{3}{2} + \frac{1}{2}\sqrt{5}) \right]$	M1	
	$= \ln \frac{(9+\sqrt{80})}{(\frac{3}{2}+\frac{1}{2}\sqrt{5})} = \ln \frac{2(9+\sqrt{80})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})},$	M1	
	$= \ln \frac{2(9+4\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} = \ln \left(\frac{7}{2} + \frac{3\sqrt{5}}{2}\right)$	A1 A1	(6)
			[9]

Question Number	Scheme	Marl	ks
Q5 (a)		M1A1	(2)
(b)	$I_n = \int x^{n-1} \cdot \frac{x}{\sqrt{(25 - x^2)}} dx = -x^{n-1} \sqrt{25 - x^2} + \int (n-1)x^{n-2} \sqrt{(25 - x^2)} dx$	M1 A1ft	t
	$I_n = \left[-x^{n-1} \sqrt{25 - x^2} \right]_0^5 + \int_0^5 \frac{(n-1)x^{n-2}(25 - x^2)}{\sqrt{(25 - x^2)}} dx$	M1	
	$I_n = 0 + 25(n-1) I_{n-2} - (n-1) I_n$	M1	
	$\therefore nI_n = 25(n-1)I_{n-2} \text{ and so } I_n = \frac{25(n-1)}{n}I_{n-2}$	A1	(5)
(c)	$I_0 = \int_0^5 \frac{1}{\sqrt{(25 - x^2)}} dx = \left[\arcsin(\frac{x}{5})\right]_0^5 = \frac{\pi}{2}$	M1 A1	
	$I_4 = \frac{25 \times 3}{4} \times \frac{25 \times 1}{2} I_0 = \frac{1875}{16} \pi$	M1 A1	(4) [11]
Alternative	Using substitution $x = 5\sin\theta$		
for (b)	$I_n = 5^n \int_0^{\frac{\pi}{2}} \sin^n \theta d\theta = \left[-5^n \sin^{n-1} \theta \cos \theta \right]_0^{\frac{\pi}{2}} + 5^n (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} \theta \cos^2 \theta d\theta$	M1A1	
	$= \left[-5^n \sin^{n-1}\theta \cos\theta\right]_0^{\frac{\pi}{2}} + 5^n (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2}\theta (1-\sin^2\theta) d\theta$	M1	
	$I_n = 0 + 25(n-1) I_{n-2} - (n-1) I_n$	M1	
	$\therefore nI_n = 25(n-1)I_{n-2} \text{ and so } I_n = \frac{25(n-1)}{n}I_{n-2}$	A1	
	(need to see that $I_{n-2} = 5^{n-2} \int_{0}^{\frac{\pi}{2}} \sin^{n-2}\theta d\theta$ for final A1)		(5)

Question Number	Scheme	Marks
Q6 (a)	$\frac{x^2}{a^2} - \frac{(mx+c)^2}{b^2} = 1 \text{and so} b^2 x^2 - a^2 (mx+c)^2 = a^2 b^2$	M1
	$\therefore (b^2 - a^2 m^2) x^2 - 2a^2 m c x - a^2 (c^2 + b^2) = 0$ Or $(a^2 m^2 - b^2) x^2 + 2a^2 m c x + a^2 (c^2 + b^2) = 0$ **	A1 (2)
(b)	$(2a^2mc)^2 = 4(a^2m^2 - b^2) \times a^2(c^2 + b^2)$	M1
	$4a^{4}m^{2}c^{2} = -4a^{2}(b^{2}c^{2} + b^{4} - a^{2}m^{2}c^{2} - a^{2}m^{2}b^{2})$ $c^{2} = a^{2}m^{2} - b^{2} \text{or} a^{2}m^{2} = b^{2} + c^{2}$ *	A1 (2)
(c)	Substitute (1, 4) into $y = mx + c$ to give $4 = m + c$ and Substitute $a = 5$ and $b = 4$ into $c^2 = a^2m^2 - b^2$ to give $c^2 = 25m^2 - 16$ Solve simultaneous equations to eliminate m or $c: (4-m)^2 = 25m^2 - 16$ To obtain $24m^2 + 8m - 32 = 0$ Solve to obtain $8(3m+4)(m-1) = 0$ $m =$ or $m = 1$ or $-\frac{4}{3}$ Substitute to get $c = 3$ or $\frac{16}{3}$ Lines are $y = x + 3$ and $3y + 4x = 16$	B1 M1 A1 M1 A1 M1 A1 (7) [11]

Question Number	Scheme	Marks
Q7 (a)	If the lines meet, $-1+3\lambda = -4+3\mu$ and $2+4\lambda = 2\mu$	M1
	Solve to give $\lambda = 0$ ($\mu = 1$ but this need not be seen).	M1 A1
	Also $1 - \lambda = \alpha$ and so $\alpha = 1$.	B1 (4)
(b)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 4 \\ 0 & 3 & 2 \end{vmatrix} = -6\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ is perpendicular to both lines and hence to the plane	(4) M1 A1
	The plane has equation r.n = a.n , which is $-6x + 2y - 3z = -14$,	M1
	i.e. $-6x + 2y - 3z + 14 = 0$.	A1 o.a.e. (4)
OR (b)	Alternative scheme	
	Use $(1, -1, 2)$ and $(\alpha, -4, 0)$ in equation $ax+by+cz+d=0$	M1
	And third point so three equations, and attempt to solve	M1
	Obtain $6x-2y+3z =$	A1
	(6x - 2y + 3z) - 14 = 0	A1 o.a.e. (4)
(c)	$(a_1 - a_2) = i - 3j - 2k$	M1
	Use formula $\frac{(\mathbf{a_1} - \mathbf{a_2}) \bullet \mathbf{n}}{ \mathbf{n} } = \frac{(\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) \bullet (-6\mathbf{i} + 2\mathbf{j} - 3\mathbf{k})}{\sqrt{(36 + 4 + 9)}} = \left(\frac{-6}{7}\right)$	M1
	Distance is $\frac{6}{7}$	A1 (3) [11]
		[,,]

Question Number	Scheme	Marks
Q8 (a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -3\sin\theta, \ \frac{\mathrm{d}y}{\mathrm{d}\theta} = 5\cos\theta$	B1
	so $S = 2\pi \int 5\sin\theta \sqrt{(-3\sin\theta)^2 + (5\cos\theta)^2} d\theta$	M1
	$\therefore S = 2\pi \int 5\sin\theta \sqrt{9 - 9\cos^2\theta + 25\cos^2\theta} d\theta$	M1
	Let $c = \cos \theta$, $\frac{dc}{d\theta} = -\sin \theta$, limits 0 and $\frac{\pi}{2}$ become 1 and 0	M1
	So $S = k\pi \int_{0}^{\alpha} \sqrt{16c^2 + 9} dc$, where $k = 10$, and α is 1	A1, A1 (6)
(b)	Let $c = \frac{3}{4} \sinh u$. Then $\frac{dc}{du} = \frac{3}{4} \cosh u$	M1
	$\int So S = k\pi \int_{2}^{?} \sqrt{9 \sinh^{2} u + 9} \frac{3}{4} \cosh u du$	A1
	$= k\pi \int_{2}^{2} \frac{9}{4} \cosh^{2} u du = k\pi \int_{2}^{2} \frac{9}{8} (\cosh 2u + 1) du$	M1
	$= k\pi \left[\frac{9}{16} \sinh 2u + \frac{9}{8}u \right]_0^d$	A1
	$=\frac{45\pi}{4} \left[\frac{20}{9} + \ln 3 \right]$ i.e. $\frac{117}{9}$	B1
		(5)
		[11]

June 2010 Further Pure Mathematics FP3 6669 Mark Scheme

Question Number	Scheme	Marks
1.	$\pm \frac{a}{e} = 8, \pm ae = 2$	B1, B1
	$\frac{a}{e} \times ae = a^2 = 16$	
	$a = 4$ $b^2 = a^2(1 - e^2) = a^2 - a^2 e^2$	B1
	$\Rightarrow b^2 = 16 - 4 = 12$	M1
	$\Rightarrow b = \sqrt{12} = 2\sqrt{3}$	A1 (5)
		5

Question Number	Scheme	Marks	3
2.	$x^2 + 4x + 13 = (x+2)^2 + 9$	B1	
	$\int \frac{1}{(x+2)^2+9} dx = \frac{1}{3}\arctan\left(\frac{x+2}{3}\right)$	M1 A1	
	$\left[\frac{1}{3}\arctan\left(\frac{x+2}{3}\right)\right]_{-2}^{1} = \frac{1}{3}\left(\arctan 1 - \arctan 0\right)$	M1	
	$=\frac{\pi}{12}$	A1	(5)
			5

Question Number	Scheme	Ма	ırks
3(a)	$rhs = 1 + 2\sinh^2 x = 1 + 2\left(\frac{e^x - e^{-x}}{2}\right)^2$	M1	
	$=\frac{2+e^{2x}-2+e^{-2x}}{2}$	M1	
	$=\frac{e^{2x}+e^{-2x}}{2}=\cosh 2x=lhs$	A1	(3)
(b)	$1 + 2\sinh^2 x - 3\sinh x = 15$ $2\sinh^2 x - 3\sinh x - 14 = 0$	M1	
	$(\sinh x + 2)(2\sinh x - 7) = 0$	M1	
	$\sinh x = -2, \frac{7}{2}$	A1	
	$x = \ln\left(-2 + \sqrt{(-2)^2 + 1}\right) = \ln\left(-2 + \sqrt{5}\right)$	M1	
	$x = \ln\left(\frac{7}{2} + \sqrt{\left(\frac{7}{2}\right)^2 + 1}\right) = \ln\left(\frac{7 + \sqrt{53}}{2}\right)$	A1	(5)
			8

Question Number	Scheme	Marks	
4(a)	$\int (a-x)^n \cos x dx = (a-x)^n \sin x + \int n(a-x)^{n-1} \sin x dx$	M1A1	
	$\left[\left(a-x\right)^n\sin x\right]_0^a=0$	A1	
	$= -n(a-x)^{n-1}\cos x - \int n(n-1)(a-x)^{n-2}\cos x dx$	dM1	
	$\mathbf{I}_n = na^{n-1} - n(n-1)\mathbf{I}_{n-2} \qquad \bigstar$	A1	(5)
(b)	$I_2 = 2\left(\frac{\pi}{2}\right) - 2\int_0^{\frac{\pi}{2}} \cos x dx$	M1 A1	
	$= \pi - 2 \left[\sin x \right]_0^{\frac{\pi}{2}} = \pi - 2$	A1	(3) 8

Question Number	Scheme	Marks
5(a)	$\frac{dy}{dx} = 2\operatorname{ar}\cosh(3x) \times \frac{3}{\sqrt{9x^2 - 1}}$	M1A1A1
	$\sqrt{9x^2 - 1} \frac{dy}{dx} = 6\operatorname{ar} \cosh(3x)$	
	$(9x^2 - 1)\left(\frac{dy}{dx}\right)^2 = 36\left(\operatorname{ar}\cosh(3x)\right)^2$	dM1
	$\left(9x^2 - 1\right)\left(\frac{dy}{dx}\right)^2 = 36y \qquad \bigstar$	A1 (5)
(b)	$\left\{18x\left(\frac{dy}{dx}\right)^2 + \left(9x^2 - 1\right) \times 2\frac{dy}{dx} \times \frac{d^2y}{dx^2}\right\} = 36\frac{dy}{dx}$	M1 {A1} A1
	$\left(9x^2 - 1\right)\frac{d^2y}{dx^2} + 9x\frac{dy}{dx} = 18 \qquad \bigstar$	A1 (4)
		9

Question Number	Scheme	Marks
6(a)	$\begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & 1 \\ k & 0 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \\ 6 \end{pmatrix} = \lambda \begin{pmatrix} 6 \\ 1 \\ 6 \end{pmatrix}$ $\begin{pmatrix} 24 \\ 4 \\ 6k + 6 \end{pmatrix} = \begin{pmatrix} 6\lambda \\ \lambda \\ 6\lambda \end{pmatrix}$	
	Uses the first or second row to obtain $\lambda = 4$	M1A1 (2)
(b)	Uses the third row and their $\lambda = 4$ to obtain $6k + 6 = 24 \Rightarrow k = 3$	M1 A1 (2)
(c)	$\begin{vmatrix} 1 - \lambda & 0 & 3 \\ 0 & -2 - \lambda & 1 \\ 3 & 0 & 1 - \lambda \end{vmatrix} = 0$	
	$\Rightarrow (1-\lambda)((-2-\lambda)(1-\lambda)-0)-0(0(1-\lambda)-3)+3(0-3(-2-\lambda))=0$ $\Rightarrow (1-\lambda)(-2-\lambda)(1-\lambda)+9(2+\lambda)=(2+\lambda)(9-(1-\lambda)^2)=0$	M1 A1
	$(\lambda^3 - 12\lambda - 16 = 0)$ $\Rightarrow (\lambda + 2)(\lambda^2 - 2\lambda - 8) = 0$	
(d)	$\Rightarrow (\lambda + 2)(\lambda - 2\lambda - 3) = 0$ $\Rightarrow (\lambda + 2)(\lambda + 2)(\lambda - 4) = 0$ $\lambda = -2, 4$ Parametric form of l_1 : $(t + 2, -3t, 4t - 1)$	M1 A1 (4) M1
	$\begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & 1 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} t+2 \\ -3t \\ 4t-1 \end{pmatrix} = \begin{pmatrix} 13t-1 \\ 10t-1 \\ 7t+5 \end{pmatrix}$	M1 A1
	Cartesian equations of l_2 : $\frac{x+1}{13} = \frac{y+1}{10} = \frac{z-5}{7}$	ddM1A1(5)

Question Number	Scheme	Marks
7(a)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 1 & 0 \\ 6 & -2 & 1 \end{vmatrix} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} = 5$	M1 A2(1,0)
(b)	$\mathbf{r} \bullet \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = 5$ Equation of l is $\mathbf{r} = \begin{pmatrix} 6 \\ 13 \\ 5 \end{pmatrix} + t \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$	M1A1 (5)
	At intersection $ \begin{pmatrix} 6+t \\ 13+4t \\ 5+2t \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = 5 $ $\Rightarrow 6+t+4(13+4t)+2(5+2t)=5 \Rightarrow t=-3$ N is $(3,1,-1)$	M1 M1 A1 (4)
(c)	$\overrightarrow{PN} \cdot \overrightarrow{PR} = (-3\mathbf{i} - 12\mathbf{j} - 6\mathbf{k}) \cdot (-5\mathbf{i} - 13\mathbf{j} - 3\mathbf{k}) = 189$ $\sqrt{9 + 144 + 36} \sqrt{25 + 169 + 9} \cos NPR = 189$ $NX = NP \sin NPR = \sqrt{189} \sin NPR = 3.61$	M1 A1ft A1 M1A1 (5) 14

Question Number	Scheme	Marks			
8(a)	$\frac{dx}{dt} = 4\sec t \tan t \frac{dy}{dt} = 2\sec^2 t$	B1 (both)			
	$\frac{dy}{dx} = \frac{2\sec^2 t}{4\sec t \tan t} \qquad \left(=\frac{1}{2\sin t}\right)$	M1			
	$y - 2\tan t = \frac{1}{2\sin t} (x - 4\sec t)$	M1 A1			
	$2y\sin t - \frac{4\sin^2 t}{\cos t} = x - \frac{4}{\cos t}$				
	$2y\sin t = x - \frac{4 - 4\sin^2 t}{\cos t} = x - 4\cos t \qquad \bigstar$	A1 (5)			
(b)	Gradient of l_2 is $-2\sin t$	M1			
	$y = -2x\sin t (2)$	A1			
	$2(-2x\sin t)\sin t = x - 4\cos t \Rightarrow x = \frac{4\cos t}{1 + 4\sin^2 t} $ (1)	M1 A1			
	$y = \frac{-8\sin t \cos t}{1 + 4\sin^2 t}$				
	$(x^2 + y^2)^2 = \left(\frac{16\cos^2 t}{(1 + 4\sin^2 t)^2} + \frac{64\sin^2 t \cos^2 t}{(1 + 4\sin^2 t)^2}\right)^2$				
	$= \frac{256\cos^4 t}{\left(1 + 4\sin^2 t\right)^4} \left(1 + 4\sin^2 t\right)^2 = \frac{256\cos^4 t}{\left(1 + 4\sin^2 t\right)^2}$	M1			
	$16x^{2} - 4y^{2} = \frac{256\cos^{2}t}{\left(1 + 4\sin^{2}t\right)^{2}} - \frac{256\sin^{2}t\cos^{2}t}{\left(1 + 4\sin^{2}t\right)^{2}} = \frac{256\cos^{4}t}{\left(1 + 4\sin^{2}t\right)^{2}}$	A1 (8) 13			

June 2011 Further Pure Mathematics FP3 6669 Mark Scheme

		1	
Question Number	Scheme	Marks	
1.	$\frac{dy}{dx} = 6x^2$ and so surface area $= 2\pi \int 2x^3 \sqrt{(1+(6x^2)^2)} dx$	B1	
	$=4\pi \left[\frac{2}{3\times 36\times 4}(1+36x^4)^{\frac{3}{2}}\right]$	M1 A1	
	Use limits 2 and 0 to give $\frac{4\pi}{216} [13860.016 - 1] = 806$ (to 3 sf)	DM1 A1	
			5
	Notes:		
	Both bits CAO but condone lack of 2π		
1M1	Integrating $\int \left(y \sqrt{1 + \left(\text{their } \frac{dy}{dx} \right)^2} \right) dx$, getting $k(1 + 36x^4)^{\frac{3}{2}}$, condone lack of 2π		
141	If they use a substitution it must be a complete method. CAO		
2DM1	Correct use of 2 and 0 as limits CAO		
2. ZAI	CAO		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{\sqrt{(1-x^2)}} + \arcsin x$	M1 A1	
(ii)	At given value derivative $=\frac{1}{\sqrt{3}} + \frac{\pi}{6} = \frac{2\sqrt{3} + \pi}{6}$	B1	(2)
(I-)	- 22		(1)
(b)	$\frac{dy}{dx} = \frac{6e^{2x}}{1 + 9e^{4x}}$	1M1 A1	
	$dx 1+9e^{4x}$ $= \frac{6}{e^{-2x}+9e^{2x}}$ $= \frac{3}{\frac{5}{2}(e^{2x}+e^{-2x})+\frac{4}{2}(e^{2x}-e^{-2x})}$ $\therefore \frac{dy}{dx} = \frac{3}{5\cosh 2x+4\sinh 2x}$	2M1	
	$=\frac{3}{3}$	3M1	
	$\frac{5}{2}(e^{2x}+e^{-2x})+\frac{4}{2}(e^{2x}-e^{-2x})$		
	$\therefore \frac{dy}{dt} = \frac{3}{5 + 1 \cdot 2 \cdot 4 \cdot 1 \cdot 1 \cdot 2}$	A1 cso	
	$dx = 5\cosh 2x + 4\sinh 2x$		(5) 8
	Notes:		
(a) M1	Differentiating getting an arcsinx term and a $\frac{1}{\sqrt{1 \pm x^2}}$ term		
A1	CAO CAO any correct form		

1

	advancing le	arning, changing li
Question Number	Scheme	Marks
(b) 1M1	Of correct form $\frac{ae^{2x}}{1\pm be^{4x}}$	
1A1	CAO	
2M1	Getting from expression in e^{4x} to e^{2x} and e^{-2x} only	
3M1 2A1	Using sinh2x and cosh2x in terms of $(e^{2x} + e^{-2x})$ and $(e^{2x} - e^{-2x})$ CSO – answer given	
3.		
(a)	$x^{2}-10x+34=(x-5)^{2}+9$ so $\frac{1}{x^{2}-10x+34}=\frac{1}{(x-5)^{2}+9}=\frac{1}{u^{2}+9}$	B1
	(mark can be earned in either part (a) or (b))	
	$I = \int \frac{1}{u^2 + 9} du = \left[\frac{1}{3} \arctan\left(\frac{u}{3}\right) \right] \qquad I = \int \frac{1}{(x - 5)^2 + 9} du = \left[\frac{1}{3} \arctan\left(\frac{x - 5}{3}\right) \right]$	M1 A1
	Uses limits 3 and 0 to give $\frac{\pi}{12}$ Uses limits 8 and 5 to give $\frac{\pi}{12}$	DM1 A1
	'	(5)
(b) Alt 1	$I = \ln\left(\left(\frac{x-5}{3}\right) + \sqrt{\left(\frac{x-5}{3}\right)^2 + 1}\right) \text{ or } I = \ln\left(\frac{x-5 + \sqrt{\left(x-5\right)^2 + 9}}{3}\right)$	M1 A1
	or $I = \ln\left((x-5) + \sqrt{(x-5)^2 + 9}\right)$	
	Uses limits 5 and 8 to give $ln(1+\sqrt{2})$.	DM1 A1 (4)
(b) Alt 2	Uses $u = x-5$ to get $I = \int \frac{1}{\sqrt{u^2 + 9}} du = \left[\operatorname{arsinh}\left(\frac{u}{3}\right) \right] = \ln\left\{ u + \sqrt{u^2 + 9} \right\}$	9 M1 A1
	Uses limits 3 and 0 and ln expression to give $ln(1+\sqrt{2})$.	DM1 A1
(b) Alt 3	Use substitution $x-5=3\tan\theta$, $\frac{dx}{d\theta}=3\sec^2\theta$ and so	M1 A1 (4)
	$I = \int \sec \theta d\theta = \ln(\sec \theta + \tan \theta)$	
	Uses limits 0 and $\frac{\pi}{4}$ to get $\ln(1+\sqrt{2})$.	DM1 A1
		(4)
	Notes:	
1M1 1A1	CAO allow recovery in (b) Integrating getting k arctan term CAO	
	Correctly using limits.	
4A1	CAU	

	advancing is	earning, chan	iging l
Question Number	Scheme	Marks	5
1A1 2DM1	Integrating to get a ln or hyperbolic term CAO Correctly using limits. CAO		
4. (a)	$I_{n} = \left[\frac{x^{3}}{3} (\ln x)^{n}\right] - \int \frac{x^{3}}{3} \times \frac{n(\ln x)^{n-1}}{x} dx$	M1 A1	
	$= \left[\frac{x^3}{3} (\ln x)^n \right]_1^e - \int_1^e \frac{nx^2 (\ln x)^{n-1}}{3} dx$	DM1	
	$\therefore I_n = \frac{e^3}{3} - \frac{n}{3} I_{n-1} \qquad *$	Alcso	(4)
(b)	$I_0 = \int_1^e x^2 dx = \left[\frac{x^3}{3}\right]_1^e = \frac{e^3}{3} - \frac{1}{3} \text{ or } I_1 = \frac{e^3}{3} - \frac{1}{3} \left(\frac{e^3}{3} - \frac{1}{3}\right) = \frac{2e^3}{9} + \frac{1}{9}$ $I_1 = \frac{e^3}{3} - \frac{1}{3}I_0, \ I_2 = \frac{e^3}{3} - \frac{2}{3}I_1 \text{ and } I_3 = \frac{e^3}{3} - \frac{3}{3}I_2 \text{ so } I_3 = \frac{4e^3}{27} + \frac{2}{27}$	M1 A1	
1A1 2DM1	Notes: Using integration by parts, integrating x^2 , differentiating $(\ln x)^n$ CAO Correctly using limits 1 and e CSO answer given		(4) 8
1A1	Evaluating I_0 or I_1 by an attempt to integrate something CAO Finding I_3 (also probably I_1 and I_2) If 'n's left in M0 I_3 CAO		

	advancing le	earning, chang	ging li
Question Number	Scheme	Marks	
5. (a)	Graph of $y = 3\sinh 2x$	B1	
	Shape of $-e^{2x}$ graph	B1	
	Asymptote: $y = 13$	B1	
	Value 10 on y axis and value 0.7 or $\frac{1}{2} \ln \left(\frac{13}{3} \right)$ on x axis	B1	(4)
	3 (2727) 12 2 27 24 25 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M1 A1	(')
(b)	Use definition $\frac{3}{2}(e^{2x} - e^{-2x}) = 13 - 3e^{2x} \rightarrow 9e^{4x} - 26e^{2x} - 3 = 0$ to form quadratic	DM1 A1	
	$\therefore e^{2x} = -\frac{1}{9} \text{ or } 3$ $\therefore x = \frac{1}{2} \ln(3)$	B1	
	$\therefore x = \frac{1}{2}\ln(3)$	D1	(5)
			(5) 9
2B1 3B1 4B1 (b) 1M1 1A1 2DM1 2A1	Notes: $y = 3\sinh 2x$ first and third quadrant. Shape of $y = -e^{2x}$ correct intersects on positive axes. Equation of asymptote, $y = 13$, given. Penlise 'extra' asymptotes here Intercepts correct both Getting a three terms quadratic in e^{2x} Correct three term quadratic Solving for e^{2x} CAO for e^{2x} condone omission of negative value. CAO one answer only		

	advancing i	earning, chang	ging i
Question Number	Scheme	Marks	
6. (a)	$\mathbf{n} = (2\mathbf{j} - \mathbf{k}) \times (3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 6\mathbf{i} - 3\mathbf{j} - 6\mathbf{k}$ o.a.e. (e.g. $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$)	M1 A1	(2)
(b)	Line <i>l</i> has direction $2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ Angle between line <i>l</i> and normal is given by $(\cos \beta \text{ or } \sin \alpha) = \frac{4+2+2}{\sqrt{9}\sqrt{9}} = \frac{8}{9}$ $\alpha = 90 - \beta = 63$ degrees to nearest degree.	B1 M1 A1ft A1 awrt	(4)
(c) Alt 1	Plane <i>P</i> has equation $\mathbf{r}.(2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = 1$ Perpendicular distance is $\frac{1 - (-7)}{\sqrt{9}} = \frac{8}{3}$	M1 A1 M1 A1	(4)
(c) Alt 2	Parallel plane through A has equation $\mathbf{r} \cdot \frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{3} = \frac{-7}{3}$ Plane P has equation $\mathbf{r} \cdot \frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{3} = \frac{1}{3}$ So O lies between the two and perpendicular distance is $\frac{1}{3} + \frac{7}{3} = \frac{8}{3}$	M1 A1 M1	10
(c) Alt 3	Distance A to $(3,1,2) = \sqrt{2^2 + 2^2 + 1^2} = 3$ Perpendicular distance is '3' sin $\alpha = 3 \times \frac{8}{9} = \frac{8}{3}$	M1A1	(4)(4)
(c) Alt 4	Finding Cartesian equation of plane P: $2x - y - 2z - 1 = 0$ $d = \frac{\left n_1 \alpha + n_2 \beta + n_3 \gamma + d \right }{\sqrt{n_1^2 + n_2^2 + n_3^2}} = \frac{\left 2(1) - 1(3) - 2(3) - 1 \right }{\sqrt{2^2 + 1^2 + 2^2}} = \frac{8}{3}$	M1 A1 M1A1	(4)
A1 (b) B1 M1 1A1ft 2A1 (c) 1M1 1A1 2M1	Angle between ' $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ ' and $2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$, formula of correct form		

Question	Scheme	Marks	
Number			
7. (a)	Det $\mathbf{M} = k(0-2) + 1(1+3) + 1(-2-0) = -2k + 4 - 2 = 2 - 2k$	M1 A1	(2)
(b)	$\mathbf{M}^{T} = \begin{pmatrix} k & 1 & 3 \\ -1 & 0 & -2 \\ 1 & -1 & 1 \end{pmatrix} \text{ so cofactors} = \begin{pmatrix} -2 & -1 & 1 \\ -4 & k-3 & k+1 \\ -2 & 2k-3 & 1 \end{pmatrix}$ (-1 A mark for each term wrong)	M1	
	$\mathbf{M}^{-1} = \frac{1}{2 - 2k} \begin{pmatrix} -2 & -1 & 1 \\ -4 & k - 3 & k + 1 \\ -2 & 2k - 3 & 1 \end{pmatrix}$	M1 A3	(5)
(c)	Let (x, y, z) be on l_1 . Equation of l_2 can be written as $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$.	B1	
	Use $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ with $k = 2$. i.e. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{-2} \begin{pmatrix} -2 & -1 & 1 \\ -4 & -1 & 3 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4+4\lambda \\ 1+\lambda \\ 7+3\lambda \end{pmatrix}$	M1	
	$ \therefore \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3\lambda + 1 \\ 4\lambda - 2 \\ 2\lambda \end{pmatrix} $	M1 A1	
	and so $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0$ where $\mathbf{a} = \mathbf{i} - 2\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ or equivalent or $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ where $\mathbf{a} = \mathbf{i} - 2\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ or equivalent	B1ft	(5) 12
	Notes:		
` /	Finding determinant at least one component correct. CAO		
2M1 1A1 2A1	Finding matrix of cofactors or its transpose Finding inverse matrix, 1/(det) cofactors + transpose At least seven terms correct (so at most 2 incorrect) condone missing det At least eight terms correct (so at most 1 incorrect) condone missing det All nine terms correct, condone missing det		
1M1 2M1 A1	Equation of l_2 Using inverse transformation matrix correctly Finding general point in terms of λ . CAO for general point in terms of one parameter ft for vector equation of their l .		
2M1	Finding general point in terms of λ .		

Question	Scheme	arning, changii Marks	
Number	Scheme	Warks	
(a)	Uses $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b \cosh \theta}{a \sinh \theta}$ or $\frac{2x}{a^2} - \frac{2yy'}{b^2} = 0 \rightarrow y' = \frac{xb^2}{ya^2} = \frac{b \cosh \theta}{a \sinh \theta}$ So $y - b \sinh \theta = \frac{b \cosh \theta}{a \sinh \theta} (x - a \cosh \theta)$	M1 A1	
	$a \sinh \theta$ $\therefore ab(\cosh^2 \theta - \sinh^2 \theta) = xb \cosh \theta - ya \sinh \theta \text{ and as } (\cosh^2 \theta - \sinh^2 \theta) = 1$ $xb \cosh \theta - ya \sinh \theta = ab *$	Alcso	(4)
		((4)
(b)	P is the point $(\frac{a}{\cosh \theta}, 0)$	M1 A1	
		((2)
(c)	l_2 has equation $x = a$ and meets l_1 at $Q(a, \frac{b(\cosh \theta - 1)}{\sinh \theta})$	M1 A1	
		((2)
(d) Alt 1	The mid point of PQ is given by $X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}$, $Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$	1M1 A1ft	
	$4Y^{2} + b^{2} = b^{2} \left(\frac{\cosh^{2}\theta + 1 - 2\cosh\theta + \sinh^{2}\theta}{\sinh^{2}\theta} \right)$	2M1	
	$=b^2\left(\frac{2\cosh^2\theta - 2\cosh\theta}{\sinh^2\theta}\right)$	3M1	
	$X(4Y^{2} + b^{2}) = ab^{2} \left(\frac{(\cosh \theta + 1)(\cosh \theta - 1)2\cosh \theta}{2\cosh \theta \sinh^{2} \theta} \right)$	4M1	
	Simplify fraction by using $\cosh^2 \theta - \sinh^2 \theta = 1$ to give $x(4y^2 + b^2) = ab^2$ *	A1cso	
		((6)
(d) Alt 2	First line of solution as before $4Y^2 + b^2 = b^2 \left(\coth^2 \theta + \operatorname{cosech}^2 \theta - 2 \coth \theta \operatorname{cosech} \theta + 1 \right)$	1M1A1ft 2M1	
	$= b^2 \left(2 \coth^2 \theta - 2 \coth \theta \operatorname{cosech} \theta \right)$	3M1	
	$X(4Y^{2} + b^{2}) = ab^{2} \left(\coth \theta \left(\coth \theta - \operatorname{cosech} \theta \right) (1 + \operatorname{sech} \theta) \right)$	4M1	
	Simplify expansion by using $\coth^2 \theta - \operatorname{cosech}^2 \theta = 1$ to give $x(4y^2 + b^2) = ab^2 *$	A1cso	
			(6)
			14
			_

O a a tila sa	advancing t	earning, changing
Question Number	Scheme	Marks
8.		
	Finding gradient in terms of θ	
	CAO	
	Finding equation of tangent	
2A1	CSO (answer given) look for $\pm(\cosh^2\theta - \sinh^2\theta)$	
(b)M1	Putting $y = 0$ into their tangent	
A1ft	P found, ft for their tangent o.e.	
(c) M1	Putting $x = a$ into their tangent.	
A1	CAO Q found o.e.	
(d)	For Alt 1 and 2	
	Finding expressions, in terms of $\sinh \theta$ and $\cosh \theta$ but must be adding	
	Ft on their P and Q,	
	Finding $4y^2 + b^2$	
	Simplified, factorised, maximum of 2 terms per bracket	
	Finding $x(4y^2+b^2)$, completely factorised, maximum of 2 terms per bracket	
2A1	CSO	
(d)	For Alts 3, 4 and 5	
	Finding expressions, in terms of $\sinh \theta$ and $\cosh \theta$ but must be adding	
	Ft on their P and Q	
	Getting $\cosh \theta$ in terms of x	
	y or y^2 in terms of $\cosh \theta$ or $\sinh \theta$ in terms of x and y	
	Getting equation in terms of x and y only. No square roots.	
ZAI	CSO	

Question Number	Scheme		Marks
8(d) Alt 3	$X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}, Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$	As main scheme	1M1 A1ft
	2005110	$\cosh \theta$ in terms of x	2M1
	$\sinh \theta = \frac{b(\cosh \theta - 1)}{2y} = \frac{b(a - x)}{(2x - a)y}$	$sinh \theta$ in terms of x and y	3M1
		Using $\cosh^2\theta - \sinh^2\theta = 1$	4M1
	Simplifies to give required equation		
	$\int y^2 4x(a-x) = b^2(a-x)^2, \ x(4y^2+b^2) = ab^2$]	A1cso
	 	1	(6)
			(6)
Alt 4	$X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}, Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$	As main scheme	1M1 A1ft
	$ \cosh \theta = \frac{a}{2x - a} $	$\cosh \theta$ in terms of x	2M1
	$y^{2} = \frac{b^{2}(\cosh\theta - 1)^{2}}{4(\cosh^{2}\theta - 1)} = \frac{b^{2}(\cosh\theta - 1)}{4(\cosh\theta + 1)}$	y^2 in terms of $\cosh \theta$ only	3M1
	$y^{2} = \frac{b^{2} \left(\frac{2a - 2x}{2x - a}\right)^{2}}{4\left(\frac{2x}{2x - a}\right)} \text{ o.e}$	Forms equation in x and y only	4M1
	Simplifies to give required equation		A1 cso
	simplifies to give required equation		(6)
Alt 5	$X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}, Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$	As main scheme	1M1 A1ft
	$ \cosh\theta = \frac{a}{2x - a} $	$\cosh \theta$ in terms of x	2M1
	$y = \left(\frac{b(\cosh\theta - 1)}{2\sinh\theta}\right) = \left(\frac{b(\cosh\theta - 1)}{2\sqrt{\cosh^2\theta - 1}}\right)$	y in terms of $\cosh \theta$ only	3M1
	Eliminate $\sqrt{}$ and forms equation in x and y		4M1
	Simplifies to give required equation	l	A1cso
	Simplifies to 51.0 required equation		

June 2012 6669 Further Pure Maths FP3 Mark Scheme

Question Number	Scheme	Marks
1. (a)	Uses formula to obtain $e = \frac{5}{4}$	M1A1
	Uses ae formula	M1 (3)
(b)	Uses other formula $\frac{a}{e}$ Obtains both Foci are $(\pm 5,0)$ and Directrices are $x = \pm \frac{16}{5}$ (needs both	M1 A1 cso (2)
	method marks)	(5 marks)

Notes

a1M1: Uses $b^2 = a^2(e^2 - 1)$ to get e > 1

a1A1: cao a2M1: Uses $\frac{a}{e}$ b1M1: Uses $\frac{a}{e}$

b1A1: cso for both foci and both directrices. Must have both of the 2 previous M marks may be implicit.

Question Number	Scheme	Marks
2.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh 3x$	B1
	so $s = \int \sqrt{1 + \sinh^2 3x} dx$	M1
	$\therefore s = \int \cosh 3x dx$	A1
	$= \left[\frac{1}{3}\sinh 3x\right]_0^{\ln a}$	M1
	$= \frac{1}{3}\sinh 3\ln a = \frac{1}{6}[e^{3\ln a} - e^{-3\ln a}]$	DM1
	$= \frac{1}{6}(a^3 - \frac{1}{a^3}) $ (so $k = 1/6$)	A1 (6 marks)

Notes

1B1: cao

1M1: Use of arc length formula, need both $\sqrt{}$ and $\left(\frac{dy}{dx}\right)^2$.

1A1: $\int \cosh 3x dx$ cao

2M1: Attempt to integrate, getting a hyperbolic function o.e.

3M1: depends on previous M mark. Correct use of lna and 0 as limits. Must see some

exponentials. 2A1: cao

Question Number	Scheme	Marks
3. (a)	$AC = 3\mathbf{i} + 6\mathbf{j} + 2\mathbf{k},$ $BC = -3\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$ $AC \times BC = 10\mathbf{i} - 15\mathbf{j} + 30\mathbf{k}$	B1, B1 M1 A1 (4)
(b)	Area of triangle $ABC = \frac{1}{2} 10\mathbf{i} - 15\mathbf{j} + 30\mathbf{k} = \frac{1}{2} \sqrt{1225} = 17.5$	M1 A1 (2)
(c)	Equation of plane is $10x-15y+30z = -20$ or $2x-3y+6z = -4$ So $\mathbf{r} \cdot (2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}) = -4$ or correct multiple	M1 A1 (2) (8 marks)

Notes

Notes a1B1: $AC = 3\mathbf{i} + 6\mathbf{j} + 2\mathbf{k}$ cao, any form

a2B1: $BC = -3\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$ cao, any form

a1M1: Attempt to find cross product, modulus of one term correct.

a1A1: cao, any form.

b1M1: modulus of their answer to (a) – condone missing ½ here. To finding area of triangle

by correct method.

b1A1: cao.

c1M1: [Using their answer to (a) to] find equation of plane. Look for a.n or b.n or c.n for p.

c1A1: cao

Question Number	Scheme	Marks
4(a)	$I_n = \left[x^n \left(-\frac{1}{2}\cos 2x \right) \right]_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} -\frac{1}{2}nx^{n-1}\cos 2x dx$	M1 A1
		M1 A1
	i.e. $I_n = \frac{1}{4}n\left(\frac{\pi}{4}\right)^{n-1} - \frac{1}{4}n(n-1)I_{n-2}$ *	A1cso
		(5)
(b)	$I_0 = \int_0^{\frac{\pi}{4}} \sin 2x dx = \left[-\frac{1}{2} \cos 2x \right]_0^{\frac{\pi}{4}} = \frac{1}{2}$	M1 A1
	$I_2 = \frac{1}{4} \times 2 \times \left(\frac{\pi}{4}\right) - \frac{1}{4} \times 2 \times I_0$, so $I_2 = \frac{\pi}{8} - \frac{1}{4}$	M1 A1 (4)
(c)	$I_4 = \left(\frac{\pi}{4}\right)^3 - \frac{1}{4} \times 4 \times 3I_2 = \frac{\pi^3}{64} - 3\left(\frac{\pi}{8} - \frac{1}{4}\right) = \frac{1}{64}(\pi^3 - 24\pi + 48) *$	M1 A1cso

a1M1: Use of integration by parts, integrating $\sin 2x$, differentiating x^n .

a1A1: cao

a2M1: Second application of integration by parts, integrating $\cos 2x$, differentiating x^{n-1} .

a2A1: cao

a3A1: cso Including correct use of $\frac{\pi}{4}$ and 0 as limits.

b1M1: Integrating to find I_0 or setting up parts to find I_2 .

b1A1: cao (Accept $I_0 = \frac{1}{2}$ here for both marks)

b2M1: Finding I_2 in terms of π . If 'n''s left in M0

b2A1: cao

c1M1: Finding I_4 in terms of I_2 then in terms of π . If 'n''s left in M0

c1A1: cso

Question Number	Scheme	Marks
5. (a)	$\arcsin 2x, +x \frac{2}{\sqrt{1+4x^2}}$	M1A1, A1 (3)
(b)	$\therefore \int_0^{\sqrt{2}} \operatorname{arsinh} 2x dx = \left[x \operatorname{arsinh} 2x \right]_0^{\sqrt{2}} - \int_0^{\sqrt{2}} \frac{2x}{\sqrt{1 + 4x^2}} dx$	1M1 1A1ft
	$= \left[x \arcsin 2x\right]_0^{\sqrt{2}} - \left[\frac{1}{2}(1+4x^2)^{\frac{1}{2}}\right]_0^{\sqrt{2}}$	2M1 2A1
	$= \sqrt{2} \operatorname{arsinh} 2\sqrt{2} - \left[\frac{3}{2} - \frac{1}{2}\right]$	3DM1
	$=\sqrt{2}\ln(3+2\sqrt{2})-1$	4M1 3A1 (7) (10 marks)

a1M1: Differentiating getting an arsinh term **and** a term of the form $\frac{px}{\sqrt{1 \pm qx^2}}$

a1A1: cao ar $\sinh 2x$

a2A1: cao + $\frac{2x}{\sqrt{1+4x^2}}$

 $b1M1\colon rearranging their answer to (a). <math display="inline">\boldsymbol{OR}$ setting up parts

b1A1: ft from their (a) **OR** setting up parts correctly

b2M1: Integrating getting an arsinh or arcosh term **and** a $(1 \pm ax^2)^{\frac{1}{2}}$ term o.e..

b2A1: cao

b3DM1: depends on previous M, correct use of $\sqrt{2}$ and 0 as limits.

b4M1: converting to log form.

b3A1: cao depends on all previous M marks.

Question Number	Scheme	Marks	
6(a)	$\frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0 \text{and so} \frac{dy}{dx} = -\frac{xb^2}{ya^2} = -\frac{b\cos\theta}{a\sin\theta}$	M1 A1	
	$\therefore y - b\sin\theta = -\frac{b\cos\theta}{a\sin\theta}(x - a\cos\theta)$	M1	
	Uses $\cos^2 \theta + \sin^2 \theta = 1$ to give $\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$	A1cso (4)	
(b)	Gradient of circle is $-\frac{\cos \theta}{\sin \theta}$ and equation of tangent is	M1	
	$y - a \sin \theta = -\frac{\cos \theta}{\sin \theta} (x - a \cos \theta)$ or sets $a = b$ in previous answer		
	So $y\sin\theta + x\cos\theta = a$	A1 (2)	
(c)	Eliminate x or y to give $y \sin \theta(\frac{a}{b} - 1) = 0$ or $x \cos \theta(\frac{b}{a} - 1) = b - a$	M1	
	l_1 and l_2 meet at $(\frac{a}{\cos\theta}, 0)$	A1, B1 (3)	
(d)	The locus of R is part of the line $y = 0$, such that $x \ge a$ and $x \le -a$ Or clearly labelled sketch. Accept "real axis"	B1, B1 (2) (11 marks)	

a1M1: Finding gradient in terms of θ . Must use calculus.

a1A1: cao

a2M1: Finding equation of tangent

a2A1: cso (answer given). Need to get $\cos^2 \theta + \sin^2 \theta$ on the same side.

b1M1: Finding gradient and equation of tangent, **or** setting a = b.

b1A1: cao need not be simplified.

c1M1: As scheme

c1A1: $x = \frac{a}{\cos \theta}$, need not be simplified.

c1B1: y = 0, need not be simplified.

d1B1: Identifying locus as y = 0 or real/'x' axis.

d2B1: Depends on previous B mark, identifies correct parts of y = 0. Condone use of strict inequalities.

Question Number	Scheme	Marks
7(a)	$f(x) = 5\cosh x - 4\sinh x = 5 \times \frac{1}{2} (e^x + e^{-x}) - 4 \times \frac{1}{2} (e^x - e^{-x})$	M1
	$= \frac{1}{2}(e^x + 9e^{-x}) \qquad *$	A1cso (2)
(b)	$\frac{1}{2}(e^x + 9e^{-x}) = 5 \implies e^{2x} - 10e^x + 9 = 0$	M1 A1
	So $e^x = 9$ or 1 and $x = \ln 9$ or 0	M1 A1 (4)
(c)	Integral may be written $\int \frac{2e^x}{e^{2x} + 9} dx$	B1
	This is $\frac{2}{3}\arctan\left(\frac{e^x}{3}\right)$	M1 A1
	Uses limits to give $\left[\frac{2}{3}\arctan 1 - \frac{2}{3}\arctan (\frac{1}{\sqrt{3}})\right] = \left[\frac{2}{3} \times \frac{\pi}{4} - \frac{2}{3} \times \frac{\pi}{6}\right] = \frac{\pi}{18}$	DM1 A1cso (5) (11 marks)

a1M1: Replacing both $\cosh x$ and $\sinh x$ by terms in e^x and e^{-x} condone sign errors here.

a1A1: cso (answer given)

b1M1: Getting a three term quadratic in e^x

b1A1: cao

b2M1: solving to x =

b2A1: cao need ln9 (o.e) and 0 (not ln1)

c1B1: cao getting into suitable form, may substitute first.

c1M1: Integrating to give term in arctan

c1A1: cao

c2M1: Depends on previous M mark. Correct use of ln3 and ½ ln3 as limits.

c2A1: cso must see them subtracting two terms in π .

Question Number	Scheme	Marks
8. (a)	$\begin{vmatrix} 2-\lambda & 1 & 0 \\ 1 & 2-\lambda & 0 \\ -1 & 0 & 4-\lambda \end{vmatrix} = 0 : (2-\lambda)(2-\lambda)(4-\lambda) - (4-\lambda) = 0$	M1
	$(4-\lambda) = 0$ verifies $\lambda = 4$ is an eigenvalue (can be seen anywhere)	M1
	$\therefore (4-\lambda)\left\{4-4\lambda+\lambda^2-1\right\}=0 \therefore (4-\lambda)\left\{\lambda^2-4\lambda+3\right\}=0$	A1
	$\therefore (4-\lambda)(\lambda-1)(\lambda-3) = 0 \text{ and } 3 \text{ and } 1 \text{ are the other two eigenvalues}$	M1 A1
(b)		(5) M1
	Solve $-2x + y = 0$ and $x - 2y = 0$ and $-x = 0$ to obtain $x = 0$, $y = 0$,	M1
	z = k Obtain eigenvector as k (or multiple)	A1 (3)
(c)	l_1 has equation which may be written $\begin{pmatrix} 3+\lambda\\2-\lambda\\-2+2\lambda \end{pmatrix}$	B1
	So l_2 is given by $\mathbf{r} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ -1 & 0 & 4 \end{pmatrix} \begin{pmatrix} 3+\lambda \\ 2-\lambda \\ -2+2\lambda \end{pmatrix}$	M1
	i.e. $\mathbf{r} = \begin{pmatrix} 8 + \lambda \\ 7 - \lambda \\ -11 + 7\lambda \end{pmatrix}$	M1 A1
	So $(\mathbf{r} - \mathbf{c}) \times \mathbf{d} = 0$ where $\mathbf{c} = 8\mathbf{i} + 7\mathbf{j} - 11\mathbf{k}$ and $\mathbf{d} = \mathbf{i} - \mathbf{j} + 7\mathbf{k}$	A1ft (5) (13 marks)

a1M1: Condone missing = 0. (They might expand the determinant using any row or column)

a2M1: Shows $\lambda = 4$ is an eigenvalue. Some working needed need to see = 0 at some stage.

a1A1: Three term quadratic factor cao, may be implicit (this A depends on 1st M only)

a2M1: Attempt at factorisation (usual rules), solving to $\lambda = ...$

a2A1: cao. If they state $\lambda = 1$ and 3 please give the marks.

b1M1: Using Ax = 4x o.e.

b2M1: Getting a pair of correct equations.

b1A1: cao

c1B1: Using **a** and **b**.

c1M1: Using r = M x their matrix in **a** and **b**.

c2M1: Getting an expression for l_2 with at least one component correct.

c1A1: cao all three components correct

c2A1ft: ft their vector, must have $\mathbf{r} = \text{or } (\mathbf{r} \cdot \mathbf{c})\mathbf{x} d = 0$ need both equation and r.

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 3 (6669/01R)

Question Number	Scheme	Marks	
	Foci (±5, 0), Direct	$rices x = \pm \frac{9}{5}$	
1.	$(\pm)ae = (\pm)5 \text{ and } (\pm)\frac{a}{e} = (\pm)\frac{9}{5}$	Correct equations (ignore ±'s)	B1
	so $e = \frac{5}{a} \Rightarrow \frac{a^2}{5} = \frac{9}{5} \Rightarrow a^2 = 9$	M1: Solves using an appropriate method to find a^2 or a	M1A1
	or $a = \frac{5}{e} \Rightarrow \frac{5}{e^2} = \frac{9}{5} \Rightarrow e = \frac{5}{3} \Rightarrow a = 3$	A1: $a^2 = 9$ or $a = (\pm)3$	
	$b^{2} = a^{2}e^{2} - a^{2} \Rightarrow b^{2} = 25 - 9 \text{ so}$ $b^{2} = 16 (\Rightarrow b = 4)$ or $b^{2} = a^{2}(e^{2} - 1) \Rightarrow b^{2} = 9\left(\frac{25}{9} - 1\right)$ $b^{2} = 16 (\Rightarrow b = 4)$	M1: Use of $b^2 = a^2(e^2 - 1)$ to obtain a numerical value for b^2 or b A1: : $b^2 = 16$ or $b = (\pm)4$	M1 A1
	So $\frac{x^2}{9} - \frac{y^2}{16} = 1$	M1:Use of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with their a^2 and b^2 A1: Correct hyperbola in any form.	M1 A1
			(7)

Question Number	Sch	Marks	
2.	$l_1: (\mathbf{i} - \mathbf{j} + \mathbf{k}) + \lambda(4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})$	l_2 : $(3\mathbf{i} + 7\mathbf{j} + 2\mathbf{k}) + \lambda(-4\mathbf{i} + 6\mathbf{j} + \mathbf{k})$	
(a)	$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 3 & 2 \\ -4 & 6 & 1 \end{vmatrix} = -9\mathbf{i} - 12\mathbf{j} + 36\mathbf{k}$	M1: Correct attempt at a vector product between $4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ and $-4\mathbf{i} + 6\mathbf{j} + \mathbf{k}$ (if the method is unclear then 2 components must be correct) allowing for the sign error in the <i>y</i> component.	M1A1
		A1: Any multiple of $(3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k})$	
			(2)
(b) Way 1	$\mathbf{a}_1 - \mathbf{a}_2 = \pm (2\mathbf{i} + 8\mathbf{j} + \mathbf{k})$	M1: Attempt to subtract position vectors A1: Correct vector ±(2i + 8j + k) (Allow as coordinates)	M1 A1
	So $p = \frac{\begin{pmatrix} 2\\8\\1 \end{pmatrix} \begin{pmatrix} -9\\-12\\36 \end{pmatrix}}{\sqrt{9^2 + 12^2 + 36^2}}$	Correct formula for the distance using their vectors: $\frac{"\pm (2i + 8j + k)" \cdot "n"}{ "n" }$	M1
	$p = \frac{\pm 78}{\sqrt{1521}} = \frac{\pm 78}{39} = 2$	M1: Correctly forms a scalar product in the numerator and Pythagoras in the denominator. (Dependent on the previous method mark)	dM1 A1
		A1: 2 (not -2)	
			(5)
(b)	$(\mathbf{i} - \mathbf{j} + \mathbf{k}) \bullet (3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}) = -13 (d_1)$	M1: Attempt scalar product between their n and either position vector	M1A1
Way 2	$(3\mathbf{i} + 7\mathbf{j} + 2\mathbf{k}) \bullet (3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}) = 13 (d_2)$	A1: Both scalar products correct	WIAI
	$\frac{\pm 13}{\sqrt{3^2 + 4^2 + 12^2}} (=1)$	Divides either of their scalar products by the magnitude of their normal vector. $\frac{d_1 or d_2}{\left \ \mathbf{n} \ \right }$	M1
	$p = \frac{d_1}{\left \mathbf{n''} \right } - \frac{d_2}{\left \mathbf{n''} \right } \text{ or } 2 \times \frac{d_1}{\left \mathbf{n''} \right }$	M1: Correct attempt to find the required distance i.e. subtracts their $\frac{d_1}{\left \mathbf{''n''} \right } \text{ and } \frac{d_2}{\left \mathbf{''n''} \right } \text{ or doubles their } \frac{d_1}{\left \mathbf{''n''} \right } \text{ if } \\ \left d_1 \right = \left d_2 \right \text{ . (Dependent on the previous method mark)} \\ \text{A1: 2 (not -2)}$	dM1 A1
			(5)
			Total 7

Question Number	Scheme			Mark	KS
3. (a)	y P N $x = 8$	\xrightarrow{x}	A closed curve approximately symmetrical about both axes. A vertical line to the right of the curve. A horizontal line from any point on the ellipse to the vertical line with both P and N clearly marked.	B1	(1)
3. (b)	$M \text{ is } \left(\frac{x+8}{2}, y\right) = (X, Y)$ $\text{or } \left(\frac{6\cos\theta + 8}{2}, 3\sin\theta\right) = (X, Y)$	M1: Finds the mid-point of PN A1: Correct mid-point		M1A1	
	$\frac{(2X-8)^2}{36} + \frac{Y^2}{9} = 1$			M1 A1	
					(4)
	The next 3 marks are dependent on having the equation of a circle.				
(c)	Circle because equation may be written $(x-4)^2 + y^2 = 3^2$	follow through	rgument – allow h provided they do Can be implied by and radius.	B1ft	
	The centre is (4, 0) and the radius is 3	find centre an	circle equation to d radius entre and radius	M1A1	
		TIT. COHOCE C	onio una ruarus		(3)
				Total	
	Special Case: In (b) they assume the locus is a circle and find the intercepts on the x-axis as (1, 0) and (7, 0) and hence deduce the centre (4, 0) and radius 3. This approach scores no marks in (b) but allow recovery in (c).				

Question Number	Schem	e	Marks
4.	$ \begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1+s+t \\ -1+s+2t \\ 2 & -2t \end{pmatrix} $	M1: Writes Π_1 as a single vector	M1A1
	$ \begin{pmatrix} 0 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} -1+3+2t \\ 2 & -2t \end{pmatrix} $	A1: Correct statement	WITAT
	$\begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & -1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1+s+t \\ -1+s+2t \\ 2 & -2t \end{pmatrix} =$	$= \begin{pmatrix} 2+2s+2t+6-6t \\ -2+2s+4t-2+2t \\ -1+s+2t+4-4t \end{pmatrix}$	M1A1
	M1: Correct attempt to multiply A	1: Correct vector in any form	
	$= \begin{pmatrix} 8+2s-4t \\ -4+2s+6t \\ 3+s-2t \end{pmatrix}$	Correct simplified vector	B1
	$\mathbf{r} = \begin{pmatrix} 8 \\ -4 \\ 3 \end{pmatrix} + s \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} -4 \\ 6 \\ -2 \end{pmatrix}$	
	$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & 1 \\ -4 & 6 - 2 \end{vmatrix} = -10\mathbf{i} + 20\mathbf{k}$	M1: Attempts cross product of their direction vectors A1: Any multiple of -10 i +20 k	M1A1
	-4 6 - 2 $(8i - 4j + 3k).(i - 2k) = 8 - 6$	Attempt scalar product of their normal vector with their position vector	M1
	r. (i - 2k) = 2	Correct equation (accept any correct equivalent e.g. r. (-10 i + 20 k) = -20)	A1
			(9)

Question Number	Scheme		Marks
5(a)	$I_n = \left[x^n (2x-1)^{\frac{1}{2}} \right]_1^5 - \int_1^5 nx^{n-1} (2x-1)^{\frac{1}{2}} dx$	M1: Parts in the correct direction including a valid attempt to integrate $(2x-1)^{-\frac{1}{2}}$	M1 A1
		A1: Fully correct application – may be un-simplified. (Ignore limits)	
	$I_n = \underline{5^n \times 3 - 1} - \int_1^5 nx^{n-1} \underline{(2x - 1)(2x - 1)^{-\frac{1}{2}}} dx$	Obtains a correct (possibly un-simplified) expression using the limits 5 and 1 and writes $(2x-1)^{\frac{1}{2}} \operatorname{as} (2x-1)(2x-1)^{-\frac{1}{2}}$	B1
	$I_n = 5^n \times 3 - 1 - 2nI_n + nI_{n-1}$	Replaces $\int x^{n} (2x-1)^{-\frac{1}{2}} dx \text{ with } I_{n}$ and $\int x^{n-1} (2x-1)^{-\frac{1}{2}} dx \text{ with }$ I_{n-1}	dM1
	$(2n+1)I_n = nI_{n-1} + 3 \times 5^n - 1 *$	Correct completion to printed answer with no errors seen	A1cso
			(5)
(b)	$I_0 = \int_1^5 (2x - 1)^{-\frac{1}{2}} dx = \left[(2x - 1)^{\frac{1}{2}} \right]_1^5 = 2$	$I_0 = 2$	B1
	$5I_2 = 2I_1 + 74$ and $3I_1 = I_0 + 14$	M1: Correctly applies the given reduction formula twice A1: Correct equations for I_2 and I_1 (may be implied)	M1 A1
	So $I_1 = \frac{16}{3}$ and $I_2 =$ or $5I_2 = 2\frac{I_0 + 14}{3} + 74$ and $I_2 =$	Completes to obtains a numerical expression for I_2	dM1
	$I_2 = \frac{254}{15}$		B1
			(5)
			Total 10

Question Number	Scheme		Marks
6. (a)	$\begin{pmatrix} 4 & 2 & 3 \\ 2 & b & 0 \\ a & 1 & 8 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ \dots \\ \dots \end{pmatrix}, = \lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \lambda = 8$	M1: Multiplies the given matrix by the given eigenvector M1: Equates the x value to λ A1: $\lambda = 8$	M1, M1, A1
			(3)
	$\begin{pmatrix} 8 \\ 2+2b \\ a+2 \end{pmatrix} = "8" \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} $ So $a = -2$ and $b = 7$	M1: Their $2 + 2b = 2\lambda$ or their $a + 2 = 0$	
(b)	2+2b = "8" 2 So a = -2 and b = 7	A1: $b = 7$ or $a = -2$	M1 A1 A1
	(a+2) (0)	A1: $b = 7$ and $a = -2$	
			(3)
(c)	$\begin{vmatrix} 4 - \lambda & 2 & 3 \\ 2 & 7 - \lambda & 0 \\ -2 & 1 & 8 - \lambda \end{vmatrix}$!	M1
	$\therefore (4-\lambda)(7-\lambda)(8-\lambda) - 2 \times 2(8-\lambda)$		
	Correct attempt to establish the Cl = 0 is required but may be imp	-	
	Allow this mark if the equation	is in terms of a, b, c	
	Attempts to factorise i.e. $(8 - \lambda)(30 - 11\lambda + $ or $(5 - \lambda)(48 - 14\lambda + \lambda^2)$ (NB 240-		M1 A1
	M1: Attempt to factorise their cubic – an attempt to identify a linear factor and processes to obtain a simplified quadratic factor A1: Correct factorisation into one linear and one quadratic factor		
	Eigenvalues are 5 and 6	M1: Solves their equation to obtain the other eigenvalues A1: 5 and 6	M1 A1
			(5)
			Total 8

7(a)	Put 6cosh $x = 9 - 2$ sinh x $6 \times \frac{1}{2} (e^x + e^{-x}) = 9 - 2 \times \frac{1}{2} (e^x - e^{-x})$		M1
	$6 \times \frac{1}{2} (e^x + e^{-x}) = 9 - 2 \times \frac{1}{2} (e^x - e^{-x})$		1.11
		Replaces cosh <i>x</i> and sinh <i>x</i> by the correct exponential forms	M1
	$4e^{x} + 2e^{-x} - 9 = 0 \implies 4e^{2x} - 9e^{x} + 2 = 0$	M1: Multiplies by e ^x A1: Correct quadratic in e ^x in any form with terms collected	M1 A1
	So $e^x = \frac{1}{4}$ or 2 and $x = \ln 2$ or $\ln \frac{1}{4}$	M1: Solves their quadratic in e ^x A1: Correct values of <i>x</i> (Any correct equivalent form)	M1 A1
(1)			(6)
(b)	Area is $\int (9 - 2\sinh x - 6\cosh x) dx$	$\int (9-2\sinh x - 6\cosh x) dx \text{ or}$ $\int (6\cosh x - (9-2\sinh x)) dx$ or the equivalent in exponential form	M1
	$\pm (9x - 2\cosh x - 6\sinh x)$ or	M1: Attempt to integrate	N/1 A 1
	$\pm(9x-4e^{x}+2e^{-x})$	A1: Correct integration	M1 A1
	$\pm ([9 \ln 2 - 2 \cosh \ln 2 - 6 \sinh \ln 2] - [9]$	$\ln\frac{1}{4} - 2\cosh\ln\frac{1}{4} - 6\sinh\ln\frac{1}{4}\right)$	dM1
	Complete substitution of their limits from part (a). Depends on both previous M's		
=	$= \pm (9\ln(2 \div \frac{1}{4}) - (e^{\ln 2} + e^{-\ln 2}) - 3(e^{\ln 2} - e^{-\ln 2})$	2) + ($e^{\ln \frac{1}{4}}$ + $e^{-\ln \frac{1}{4}}$) + 3($e^{\ln \frac{1}{4}}$ - $e^{-\ln \frac{1}{4}}$))	M1
	Combines logs correctly and uses cosh and	d sinh of ln correctly at least once	
	$\left(9\ln 8 - \frac{5}{2} - \frac{18}{4} + 4.25 - 11.25\right) =$	=9ln8 –14 or 27ln2 – 14	A1cao
	Any correct equivalent Subtracting the wrong way round could score 5/6 may		
	Subtracting the wrong way round could score 5/6 max		
			(6) Total 12
	Note If they use $4e^{2x} - 9e^x + 2$ in (b) to	find the even permanter	

Question Number	Sch	neme	Marks
8 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-\frac{1}{2}}$	Correct derivative (may be unsimplified)	B1
	$s = \int \sqrt{1 + (x^{-\frac{1}{2}})^2} dx = \int_1^8 \sqrt{(1 + \frac{1}{x})} dx$	A correct formula quoted or implied. There must be some working before the printed answer.	B1
			(2)
(b)	$x = \sinh^2 u \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}u} = 2\sinh u \cosh u$	Correct derivative	B1
	$(1+\frac{1}{x}) = 1 + \operatorname{cosech}^2 u = \coth^2 u$	$(1 + \frac{1}{x}) = \coth^2 u \text{ or } (1 + \frac{1}{x}) = \frac{\cosh^2 u}{\sinh^2 u}$ (may be implied by later work)	B1
	$s = \int \coth u \cdot 2 \sinh u \cosh u du =$	M1: Complete substitution	
	$\int 2\cosh^2 u du$	A1: $\int 2\cosh^2 u du$	M1 A1
	$= u + \frac{1}{2}\sinh 2u \text{or } \frac{1}{4}e^{2u} + u - \frac{1}{4}e^{-2u}$	M1: Uses $\cosh 2u = \pm 2 \cosh^2 u \pm 1$ or changes to exponentials in an attempt to integrate an expression of the form $k \cosh^2 u$	dM1 A1
		A1: Correct integration	
		(2) , $x = 1 \Rightarrow u = \operatorname{arsinh} 1 = \ln(1 + \sqrt{2})$	
	$\left[u+\frac{1}{2}\sinh u\right]$	$\left[2u\right]_{\text{arsinh}}^{\text{arsinh}}$	
	$= \operatorname{arsinh} \sqrt{8} + \frac{1}{2} \sinh(2\operatorname{arsinh} \sqrt{8})$	$\overline{8}$) – (arsinh1+ $\frac{1}{2}$ sinh(2arsinh1))	
	$or \qquad \left[\frac{1}{4}e^{2u} + u - \frac{1}{4}e^{-2u}\right]_{\text{arsinh}}^{\text{arsinh}\sqrt{8}}$		
	$= \frac{1}{4} e^{\operatorname{arsinh}\sqrt{8}} + \operatorname{ars}$	$\sinh\sqrt{8} - \frac{1}{4}e^{-2arsinh1}$	ddM1A1
	or $\left[\operatorname{arsinh} \sqrt{x} + \frac{1}{2} \sinh(2 \operatorname{arsinh} \sqrt{x}) \right]_{1}^{8}$		
	= $\operatorname{arsinh} \sqrt{8} + \frac{1}{2} \sinh(2 \operatorname{arsinh} \sqrt{8}) - (\operatorname{arsinh} 1 + \frac{1}{2} \sinh(2 \operatorname{arsinh} 1))$		
		or their $\ln(3+2\sqrt{2})$ and $\ln(1+\sqrt{2})$ used	
	correctly in their f(u) or the limits 8 and 1 used correctly if they revert to x Dependent on both previous M's A1: A completely correct expression		
	$\ln(1+\sqrt{2})+5\sqrt{2}$		A1
			(9)
			Total 11

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 3 (6669/01)

Physics And Maths Tutor.com

Question Number	Scheme		Marks
	Mark (a) a	nd (b) together	
1. (a) & (b)	$ae = 13$ and $a^2(e^2 - 1) = 25$	Sight of both of these (can be implied by their work) (allow \pm ae = \pm 13 or \pm ae = 13 or ae = \pm 13)	B1
	Solves to obtain $a^2 = \dots$ or $a = \dots$	Eliminates e to reach $a^2 = \dots$ or $a = \dots$	M1
	a = 12	Cao (not ± 12) unless -12 is rejected	A1
	e = 13/ "12"	Uses their a to find e or finds e by eliminating a (Ignore \pm here) (Can be implied by a correct answer)	M1
	$x = (\pm)\frac{a}{e}, = \pm \frac{144}{13}$	M1: $(x =)(\pm)\frac{a}{e}$ \pm not needed for this mark nor is x and even allow $y = (\pm)\frac{a}{e}$ here – just look for use of $\frac{a}{e}$ with numerical a and e . A1: $x = \pm \frac{144}{13}$ oe but must be an equation (Do not allow $x = \pm \frac{12}{13/12}$)	M1, A1
			Total 6
		uation for the ellipse (b ² =a ² (1-e ²))	

Question Number	Scheme	Marks
2. (a)	$k \operatorname{arsinh}\left(\frac{2x}{3}\right) (+c)$ or $k \ln[px + \sqrt{(p^2x^2 + \frac{9}{4}p^2)}] (+c)$	M1
	$\frac{1}{2} \operatorname{arsinh} \left(\frac{2x}{3} \right) (+c) \text{or} \frac{1}{2} \ln[px + \sqrt{(p^2x^2 + \frac{9}{4}p^2)}] (+c)$	A1
		(2)
(b)	So: $\frac{1}{2} \ln \left[6 + \sqrt{45} \right] - \frac{1}{2} \ln \left[-6 + \sqrt{45} \right] = \frac{1}{2} \ln \left[\frac{6 + \sqrt{45}}{-6 + \sqrt{45}} \right]$	M1
	Uses correct limits <u>and</u> combines logs	
	$= \frac{1}{2} \ln \left[\frac{6 + \sqrt{45}}{-6 + \sqrt{45}} \right] \left[\frac{6 + \sqrt{45}}{6 + \sqrt{45}} \right] = \frac{1}{2} \ln \left[\frac{(6 + \sqrt{45})^2}{9} \right]$	M1
	Correct method to rationalise denominator (may be implied) Method must be clear if answer does not follow their fraction	
	$= \ln[2 + \sqrt{5}] \text{ (or } \frac{1}{2}\ln[9 + 4\sqrt{5}] \text{)}$	Alcso
	Note that the last 3 marks can be scored without the need to rationalise e.g.	
	$2 \times \frac{1}{2} \left[\ln[2x + \sqrt{(4x^2 + 9)}] \right]_0^3 = \ln(6 + \sqrt{45}) - \ln 3 = \ln(\frac{6 + \sqrt{45}}{3})$	
	M1: Uses the limits 0 and 3 and doubles	
	M1: Combines Logs A1: $\ln[2+\sqrt{5}]$ oe	
	πι. μ[2+ γ3]σε	(3)
		Total 5
Alternative for (a)	$x = \frac{3}{2}\sinh u \Rightarrow \int \frac{1}{\sqrt{9\sinh^2 u + 9}} \cdot \frac{3}{2}\cosh u du = k \operatorname{arsinh}\left(\frac{2x}{3}\right) (+c)$	M1
	$\frac{1}{2} \operatorname{ar} \sinh \left(\frac{2x}{3} \right) (+c)$	A1
Alternative for (b)	$\left[\frac{1}{2}\operatorname{arsinh}\left(\frac{2x}{3}\right)\right]_{-3}^{3} = \frac{1}{2}\operatorname{arsinh} 2 -\frac{1}{2}\operatorname{arsinh} -2$	
	$\frac{1}{2}\ln(2+\sqrt{5}) - \frac{1}{2}\ln(\sqrt{5}-2) = \frac{1}{2}\ln(\frac{2+\sqrt{5}}{\sqrt{5}-2})$	M1
	Uses correct limits and combines logs	
	$= \frac{1}{2} \ln(\frac{2+\sqrt{5}}{\sqrt{5}-2} \cdot \frac{\sqrt{5}+2}{\sqrt{5}+2}) = \frac{1}{2} \ln(\frac{2\sqrt{5}+4+5+2\sqrt{5}}{5-4})$	M1
	Correct method to rationalise denominator (may be implied) Method must be clear if answer does not follow their fraction	
	$= \frac{1}{2} \ln[9 + 4\sqrt{5}]$	A1cso

Question Number	Scho	eme		Marks
3.	$(\frac{\mathrm{d}x}{\mathrm{d}\theta}) = 2\sinh 2\theta$ and $(\frac{\mathrm{d}y}{\mathrm{d}\theta}) = 4\cosh \theta$		B1	
	Or equivalen			
	$A = (2\pi) \int 4 \sinh \theta \sqrt{"2\sin^2 \theta}$	$nh 2\theta''^2 + "$	$4\cosh\theta''^2d\theta$	
	$A = (2\pi) \int 4 \sinh \theta \sqrt{1 + (\frac{\pi}{4})^2}$	r "4 cosh θ" '2 sinh 2θ"	$(2)^2 \cdot 2\sinh 2\theta d\theta$	M1
	Use of correct formula including r chain rule used. Allow the			
	$A = 32\pi \int \sin \theta$	$h\theta \cosh^2\theta$	$\mathrm{d} heta$	
	$A = 32\pi \int (\sinh \theta)$			B1
	Completely correct expression for This mark may be recovered la	ter if the	2π is introduced later	
	$A = \frac{32\pi}{3} \left[\cosh^3 \theta \right]_0^1$	of a corredepender	d attempt to integrate a expression or a multiple ect expression — nt on the first M1 ect expression	dM1A1
	$=\frac{32\pi}{3}\left[\cosh^3 1-1\right]$	M1: Uses correctly previous	s the limits 0 and 1 . Dependent on both	ddM1A1
				(7)
	Example Alternative Inte		_	
	$\int \sinh \theta \cosh^2 \theta d\theta = \int \sinh \theta (1 + \sin \theta) \int (\sinh \theta + \frac{1}{4} \sinh 3\theta - \frac{3}{4} \sinh \theta)$	$d\theta = \frac{1}{4} \int ($	$\sinh \theta + \sinh 3\theta $ d θ	
	$= \frac{1}{4}\cosh\theta + \frac{1}{12}\cosh 3\theta$ $\mathbf{dM1:} \int \sinh\theta \cosh^2\theta d\theta = p\cosh\theta + q\cosh 3\theta$		dM1A1	
	$\mathbf{A1} : 32\pi \left[\frac{1}{4} \cosh \left(\frac$			
	$A = 8\pi \left[\cosh\theta + \frac{1}{3}\cosh 3\theta\right]_0^1$ $= 8\pi (\cosh 1 + \frac{1}{3}\cosh 3 - \cosh 0 - - $	cosh 0)	M1: Uses the limits 0 and 1 correctly. Dependent on both previous M''s	ddM1A1
	$\frac{32\pi}{3} \left[\cosh^3 1 - 1 \right]$		A1: Cao	

Physics And Maths Tutor.com

Question Number	Sch	Marks		
3.	Alternative Car	Alternative Cartesian Approach		
	$x = 1 + \frac{y^2}{8}$	Any correct Cartesian equation	B1	
	$\frac{dx}{dy} = \frac{y}{4} \text{or} \frac{dy}{dx} = \frac{\sqrt{2}}{(x-1)^{\frac{1}{2}}}$	Correct Derivative	B1	
	$A = \int 2\pi \cdot y \sqrt{1 + \left(\frac{y}{4}\right)^2} dy \text{ or } A = \int 2\pi \cdot \sqrt{8} (x - 1)^{\frac{1}{2}} \sqrt{1 + \left(\frac{2}{x - 1}\right)} dx$		M1	
	Use of a cor	rect formula		
	$A = 2\pi \times \frac{2}{3} \times 8 \left(1 + \frac{y^2}{16} \right)^{\frac{3}{2}} \text{ or } A = \frac{4\pi\sqrt{8}}{3} x + 1^{\frac{3}{2}}$		dM1 A1	
	M1: Convincing attempt to integrate a relevant expression –			
	dependent on the first M1 but allow the omission of 2π			
	A1: Completely corr	rect expression for A		
	$A = 2\pi \times \frac{2}{3} \times 8 + \sinh^2 1^{\frac{3}{2}} - 2\pi \times \frac{2}{3}$	$\times \times \frac{2}{3} \times 8 + \sinh^2 1^{\frac{3}{2}} - 2\pi \times \frac{2}{3} \times 8 \text{ or } 2\pi \times \frac{2}{3} \times \sqrt{8} + \cosh 2^{\frac{3}{2}} - \frac{32\pi}{3}$		
	Correct use of limits $(0 \rightarrow 4\sinh 1 \text{ for y or } 1 \rightarrow \cosh 2 \text{ for } x)$			
	Use $1+\sinh^2 1 = \cosh^2 1$	Use $\cosh 2 = 2\cosh^2 1 - 1$		
	to give $\frac{32\pi}{3} \left[\cosh^3 1 - 1 \right]$	to give $\frac{32\pi}{3} \left[\cosh^3 1 - 1 \right]$	A1	

Physics And Maths Tutor.com

Question Number	Scheme		Marks
4.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{40}{\sqrt{(x^2 - 1)}} - 9$	M1: $\frac{dy}{dx} = \frac{p}{\sqrt{(x^2 - 1)}} - q$ A1: Cao	M1 A1
	Put $\frac{dy}{dx} = 0$ and obtain $x^2 =$ (Allow sign errors only)	$e.g.\left(\frac{1681}{81}\right)$	dM1
	$x = \frac{41}{9}$	M1: Square root A1: $x = \frac{41}{9}$ or exact equivalent $(\text{not} \pm \frac{41}{9})$	M1 A1
	$y = 40 \ln \left\{ \left(\frac{41}{9} \right) + \sqrt{\left(\frac{41}{9} \right)^2 - 1} \right\} - "41"$	Substitutes $x = \frac{41}{9}$ into the curve and uses the logarithmic form of arcosh	M1
	So $y = 80 \ln 3 - 41$	Cao	A1
			Total 7

Question Number	Scho	eme	Marks
5. (a) (i)&(ii)	$\begin{pmatrix} 1 & 1 & a \\ 2 & b & c \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1+a \\ b+c \\ 1 \end{pmatrix} = \lambda_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \text{ and so } a = -1, \ \lambda_1 = 1$		M1, A1, A1
	M1: Multiplies out matrix with fi λ_1 times eigenvector. A1 : Dedu		
	$\begin{pmatrix} 1 & 1 & a \\ 2 & b & c \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1-a \\ 2-c \\ -2 \end{pmatrix} = \lambda_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \text{ and so } c = 2, \ \lambda_2 = 2$		M1, A1, A1
	M1: Multiplies out matrix with sec λ_2 times eigenvector. A1: Dedu	ond eigenvector and puts equal to uces $c = 2$. A1: Deduces $\lambda_2 = 2$	
	$b+c=\lambda_1\text{so }b=-1$	M1: Uses $b + c = \lambda_1$ with their λ_1 to find a value for b (They must have an equation in b and c from the first eigenvector to score this mark) A1: $b = -1$	M1A1
	$(a = -1, b = -1, c = 2, \lambda_1 = 1, \lambda_2 = 2)$	111.0	(8)
(b)(i)	detP = -d - 1	Allow $1 - d - 2$ or $1 - (2 + d)$ A correct (possibly un-simplified) determinant	B1
(ii)	$\mathbf{P}^{T} = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \\ 0 & d & 1 \end{pmatrix} $ or n cofactors $\begin{pmatrix} 1 & -2 - d \\ -1 & 1 \\ d & -d \end{pmatrix}$	ninors $\begin{pmatrix} 1 & d+2 & 1 \\ 1 & 1 & 1 \\ d & d & -1 \end{pmatrix}$ or $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ a correct first step $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	B1
	$\frac{1}{-d-1} \begin{pmatrix} 1 & -1 & d \\ -2-d & 1 & -d \\ 1 & -1 & -1 \end{pmatrix}$	M1: Identifiable full attempt at inverse including reciprocal of determinant. Could be indicated by at least 6 correct elements. A1: Two rows or two columns correct (ignoring determinant) BUT M0A1A0 or M0A1A1 is not possible A1: Fully correct inverse	M1 A1 A1
			(5) Total 13

Question Number	Sch	heme	Marks
6(a)	$I_n = \int_0^4 \frac{x^{n-1} \times x (16 - x^2)^{\frac{1}{2}} dx}{1 + x^2}$	M1: Obtains $x(16-x^2)^{\frac{1}{2}}$ prior to integration A1: Correct underlined expression (can be implied by their integration)	M1A1
	$I_n = \left[-\frac{1}{3} x^{n-1} (16 - x^2) \right]$	$\int_{0}^{\frac{3}{2}} \int_{0}^{4} + \frac{n-1}{3} \int_{0}^{4} x^{n-2} (16 - x^{2})^{\frac{3}{2}} dx$	dM1
	dM1: Parts in the co	rrect direction (Ignore limits)	
	$\therefore I_n = \frac{n-1}{3} \int_0^4 x^{n-2}$	$(16-x^2)(16-x^2)^{\frac{1}{2}}dx$	
	i.e. $I_n = \frac{16(n-1)}{3}I_{n-2} - \frac{n-1}{3}I_n$	Manipulates to obtain at least one integral in terms of I_n or I_{n-2} on the rhs.	M1
	$I_n(1+\frac{n-1}{3}) = \frac{16(n-1)}{3}I_{n-2}$	Collects terms in I_n from both sides	M1
	$(n+2)I_n = 16(n-1)I_{n-2} *$	Printed answer with no errors	A1*cso (6)
Way 2	$\int_0^4 x^n (16 - x^2)^{\frac{1}{2}} dx = \int_0^4 x^n \frac{(16 - x^2)}{(16 - x^2)^{\frac{1}{2}}} dx = \int_0^4 \frac{16x^n}{(16 - x^2)^{\frac{1}{2}}} dx - \int_0^4 \frac{x^{n+2}}{(16 - x^2)^{\frac{1}{2}}} dx$		(0)
	$= \int_0^4 16x^{n-1} \times x(16-x^2)^{-\frac{1}{2}} dx$	$dx - \int_0^4 x^{n+1} \times x (16 - x^2)^{-\frac{1}{2}} dx$	M1A1
	M1: Obtains $x(16-x^2)^{-\frac{1}{2}}$ prior to	M1: Obtains $x(16-x^2)^{-\frac{1}{2}}$ prior to integration A1: Correct expressions	
	$= \left[-16x^{n-1}(16-x^2)^{\frac{1}{2}}\right]_0^4 + 16(n-1)\int_0^4 x^{n-2}(16-x^2)^{\frac{1}{2}}dx$ $-\left(\left[-x^{n+1}(16-x^2)^{\frac{1}{2}}\right]_0^4 + (n+1)\int_0^4 x^n(16-x^2)^{\frac{1}{2}}dx\right)$		dM1
	dM1: Parts in the correct di	rection on both (Ignore limits)	
	$I_n = 16(n-1)I_{n-2} - (n+1)I_n$	Manipulates to obtain at least one integral in terms of I_n or I_{n-2} on the rhs.	M1
	$I_n(1+n+1) = 16(n-1)I_{n-2}$	Collects terms in I_n from both sides	M1
	$(n+2)I_n = 16(n-1)I_{n-2} *$	Printed answer with no errors	A1*
Way 3	$\int_0^4 x^n (16 - x^2)^{\frac{1}{2}} dx = \int_0^4 x \times x^{n-1} \frac{(16 - x^2)^{\frac{1}{2}}}{(16 - x^2)^{\frac{1}{2}}} dx$	A1: Correct expression	M1A1
	$= \left[-x^{n-1} (16 - x^2) (16 - x^2)^{\frac{1}{2}} \right]_0^4 + \int_0^4 (16(n-1)x^{n-2} - (n+1)x^n) (16 - x^2)^{\frac{1}{2}} dx$		dM1
	dM1: Parts in the co		
	$I_n = 16(n-1)I_{n-2} - (n+1)I_n$	Manipulates to obtain at least one integral in terms of I_n or I_{n-2} on the rhs.	M1
	$I_n(1+n+1) = 16(n-1)I_{n-2}$	Collects terms in I_n from both sides	M1
	$(n+2)I_n = 16(n-1)I_{n-2} *$	Printed answer with no errors	A1*

Question Number	Scheme		Marks	
(b)	$I_1 = \int_0^4 x \sqrt{(16 - x^2)} dx = \left[-\frac{1}{3} (16 - x^2)^{\frac{3}{2}} \right]$	$\int_{0}^{4} = \frac{64}{3}$ M1: Correct integration to find I_{1} $A1: \frac{64}{3} \text{ or equivalent}$	M1 A1	
		(May be implied by a later work – they are a asked explicitly for I_1)		
	$\frac{64}{3}$ must come from correct work			
	Using $x = 4\sin\theta$:			
	$I_1 = \int_0^{\frac{\pi}{2}} 4\sin\theta \sqrt{(16 - 16\sin^2\theta)} 4\cos\theta d\theta = \int_0^{\frac{\pi}{2}} 64\sin\theta \cos^2\theta d\theta$			
	$= \left[-\frac{64}{3} \cos^3 \theta \right]_0^{\frac{\pi}{2}}$			
	M1: A <u>complete</u> substitution and at	S		
	A1: $\frac{64}{3}$ or equivalent			
	$I_5 = \frac{64}{7}I_3, I_3 = \frac{32}{5}I_1$	Applies to apply reduction formula twice. First M1 for I_5 in terms of I_3 , second M1 for I_3 in terms of I_1 (Can be implied)		
	$I_5 = \frac{131072}{105}$	Any <u>exact</u> equivalent (Depends on all previous marks having been scored)	A1	
			(5)	
			Total 11	

Question Number	Scheme		Marks
7(a)	$\left(\frac{dx}{d\theta} = -a\sin\theta \text{ and } \frac{dy}{d\theta} = a\sin\theta$	M1 A1	
	M1: Differentiates both x a		
	A1: Fully corre		
	Alterna		
	M1: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \frac{2x}{a^2} + \frac{2yy'}{b^2} =$		
	Differentiates implicitly an		
	A1: = -		
	Normal has gradient $\frac{a \sin \theta}{b \cos \theta} or \frac{a^2 y}{b^2 x}$	Correct perpendicular gradient rule	M1
	$(y - b\sin\theta) = \frac{a\sin\theta}{b\cos\theta}(x - a\cos\theta)$	Correct straight line method using a "changed" gradient which is a function of θ	M1
	If $y = mx + c$ is used n	eed to find c for M1	
	$ax\sin\theta - by\cos\theta = (a$	$(a^2-b^2)\sin\theta\cos\theta$ *	A1
	Fully correct completi		
			(5)
(b)	$x = \frac{(a^2 - b^2)\cos\theta}{a}$	Allow un-simplified	В1
	$y = -\frac{(a^2 - b^2)\sin\theta}{b}$	Allow un-simplified	B1
	$x = \frac{(a^2 - b^2)\cos\theta}{a}$ $y = -\frac{(a^2 - b^2)\sin\theta}{b}$ $\left(=\frac{1}{2}\frac{(a^2 - b^2)^2\cos\theta\sin\theta}{ab}\right)$	$= \frac{1}{4} \frac{(a^2 - b^2)^2}{ab} \sin 2\theta$	M1A1
	M1: Area of triangle is $\frac{1}{2}$ " OA "×" OB " and uses double angle formula		
	correctly		
	A1: Correct expression for the area (must be positive)		
		-	(4)
(c)	Maximum area when $\sin 2\theta = 1$ so $\theta = \frac{\pi}{4}$ or 45	Correct value for θ (may be implied by correct coordinates)	B1
	So the point <i>P</i> is at $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ oe	M1: Substitutes their value of θ where $0 < \theta < \frac{\pi}{2}$ or $0 < \theta < 90$ into	M1 A1
	$\left(a\cos\frac{\pi}{4}, b\sin\frac{\pi}{4}\right)$ scores B1M1A0	their parametric coordinates	
	4 4)	A1: Correct exact coordinates	
	Mark part (c) independently		
			(3)
			Total 12

Number	Scheme		Marks
8(a)	(6i+2j+12k).(3i-4j+2k)=34	Attempt scalar product	M1
	$\frac{(6\mathbf{i} + 2\mathbf{j} + 12\mathbf{k}) \cdot (3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) - 5}{\sqrt{3^2 + 4^2 + 2^2}}$	Use of correct formula	M1
	$\sqrt{29} (\text{not} - \sqrt{29})$	Correct distance (Allow $29/\sqrt{29}$)	A1
			(3)
(a) Way 2	$\mathbf{r} = (6\mathbf{i} + 2\mathbf{j} + 12\mathbf{k})$ $\therefore 6 + 3\lambda \ 3 + 2 - 4\lambda$,	M1
	Substitutes the parametric coordinates of the line through (6, 2, 12)		
	perpendicular to the plane into the cartesian equation.		
	$\lambda = -1 \Rightarrow 3,6,10 \text{ or } -3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$	Solves for λ to obtain the required point or vector.	M1
	$\sqrt{29}$	Correct distance	A1
(a) Way 3	Parallel plane containing $(6, 2, 12)$ is $\mathbf{r}.(3\mathbf{i}-4\mathbf{j}+2\mathbf{k}) = 34$ $\mathbf{r}.(3\mathbf{i}-4\mathbf{j}+2\mathbf{k}) = 34$	Origin to this plane is $\frac{34}{\sqrt{29}}$	M1
	$\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{34}{\sqrt{29}}$	_	
	$\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{5}{\sqrt{29}}$	Origin to plane is $\frac{5}{\sqrt{29}}$	M1
	$\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29}$	Correct distance	A1
(b) For a cross product, if the method is	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 5 \\ 1 - 1 - 2 \end{vmatrix} = \begin{pmatrix} 3 \\ 9 \\ -3 \end{pmatrix}$	M1: Attempts $(2\mathbf{i}+1\mathbf{j}+5\mathbf{k})\times(\mathbf{i}-\mathbf{j}-2\mathbf{k})$ A1: Any multiple of $\mathbf{i}+3\mathbf{j}-\mathbf{k}$	M1A1
unclear, 2 out of 3 components	$(\cos \theta) = \frac{(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) \cdot (\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) \cdot (\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) \cdot (\mathbf{i} - 4\mathbf{j} - 4\mathbf{j} - 4\mathbf{k})}{\sqrt{3^2 + 4^2 + 2^2} \sqrt{1^2}}$	$\frac{+3\mathbf{j}-\mathbf{k})}{+3^2+1^2} \left(=\frac{-11}{\sqrt{29}\sqrt{11}}\right)$	M1
should be	Attempts scalar product of norm	al vectors including magnitudes	
correct for M1	52	Obtains angle using arccos (dependent on previous M1)	dM1 A1
1711	Do not isw and mark the final answer e.g. $90 - 52 = 38$ loses the A1		(5)
(c)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \end{vmatrix} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$	M1: Attempt cross product of normal vectors	M1A1
	$\begin{vmatrix} 3-4 & 2 \end{vmatrix} \begin{pmatrix} -13 \end{pmatrix}$	A1: Correct vector	
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \begin{pmatrix} 2 \\ -5 \\ -13 \end{pmatrix}$ $\frac{\text{M1: Attempt cross product of normal vectors}}{\text{A1: Correct vector}}$ $x = 0: (0, \frac{5}{2}, \frac{15}{2}), y = 0: (1, 0, 1), z = 0: (\frac{15}{13}, \frac{-5}{13}, 0)$		M1A1
	M1: Valid attempt at a point on bot May use way 3 to fin		
	$r \times (-2i+5j+13k) = -5i-15j+5k$	M1: r × dir = pos.vector × dir (This way round) A1: Correct equation	M1A1
		AT. Contect equation	(6)

Question Number	Schem	ne	Marks
(c) Way 2	" $x + 3y - z = 0$ " and $3x - 4y + 2z = 5$ eliminate x, or y or z and substitutes bacterms of the	ck to obtain two of the variables in	M1
	$(x = 1 - \frac{2}{5}y \text{ and } z = 1 + \frac{13}{5}y) \text{ or } (y = \frac{5z - 5}{13} \text{ and } x = \frac{15 - 2z}{13}) \text{ or}$ $(y = \frac{5 - 5x}{2} \text{ and } z = \frac{15 - 13x}{2})$		A1
	Cartesian Equations: $x = \frac{y - \frac{5}{2}}{-\frac{5}{2}} = \frac{z - \frac{15}{2}}{-\frac{13}{2}} \text{ or } \frac{x - 1}{-\frac{2}{5}} = y = \frac{z - 1}{\frac{13}{5}} \text{ or } \frac{x - \frac{15}{13}}{-\frac{2}{13}} = \frac{y + \frac{5}{13}}{\frac{5}{13}} = z$		
	Points and Directions: Direction can be any multiple $(0, \frac{5}{2}, \frac{15}{2}), \mathbf{i} - \frac{5}{2}\mathbf{j} - \frac{13}{2}\mathbf{k}$ or $(1,0,1), -\frac{2}{5}\mathbf{i} + \mathbf{j} + \frac{13}{5}\mathbf{k}$ or $(\frac{15}{13}, -\frac{5}{13}, 0), -\frac{2}{13}\mathbf{i} + \frac{5}{13}\mathbf{j} + \mathbf{k}$		M1 A1
	M1:Uses their Cartesian equations correctly to obtain a point and direction A1: Correct point and direction – it may not be clear which is which – i.e. look for the correct numbers either as points or vectors		
	Equation of line in required form: e.g. $\mathbf{r} \times (-2\mathbf{i} + 5\mathbf{j} + 13\mathbf{k}) = -5\mathbf{i} - 15\mathbf{j} + 5\mathbf{k}$ Or Equivalent		M1 A1
			(6)
(c) Way 3	$ \begin{pmatrix} 2\lambda + \mu \\ \lambda - \mu \\ 5\lambda - 2\mu \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = 5 \Rightarrow 12\lambda + 3\mu = 5 $	M1: Substitutes parametric form of Π_2 into the vector equation of Π_1 A1: Correct equation	M1A1
	$\mu = \frac{5}{3}, \lambda = 0 \text{ gives } (\frac{5}{3}, -\frac{5}{3}, \frac{10}{3})$	M1: Finds 2 points and direction	
	$\mu = 0, \lambda = \frac{5}{12} \text{ gives } (\frac{5}{6}, \frac{5}{12}, \frac{25}{12})$ Direction $\begin{pmatrix} -2\\5\\13 \end{pmatrix}$	A1: Correct coordinates and direction	M1A1
	Equation of line in required form: e.g. $\mathbf{r} \times (-2\mathbf{i} + 5\mathbf{j} + 13\mathbf{k}) = -5\mathbf{i} - 15\mathbf{j} + 5\mathbf{k}$ Or Equivalent		M1A1
	Do not allow 'mixed' methods – mark the best single attempt NB for checking, a general point on the line will be of the form: $(1 - 2\lambda, 5\lambda, 1 + 13\lambda)$		