MATB24 TUTORIAL PROBLEMS 5, WEEK OF Oct19-23

KEY WORDS: isomorphism, invertible linear transformation, change of coordinate matrix RELEVANT SECTIONS IN THE TEXTBOOK: Sec 3.3, 7.1,7.2 FB or 3C, 3D SA

WARM-UP: As usual, write down a complete definition or a complete mathematical characterization for the following terms.

- Let 𝔞 and 𝔞 be a ordered basses for finite dimensional vector spaces W and V respectively. A matrix representation of a linear transformation T: V → W with respect to 𝔞 and 𝔞.
- Let $\mathfrak B$ be a an ordered basis for a vector space W. Define the $\mathfrak B$ -coordinates of a vector $\vec v \in W$.
- Let $\mathfrak B$ be a an ordered basis for a vector space W. Give an isomorphism between W and $\mathbb R^{\dim W}$

A: Consider the basis $\mathcal{E}=(\vec{e}_1,\vec{e}_2)$ and $\mathcal{B}=(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}-1\\1\end{bmatrix})$. Suppose $T:\mathbb{R}^2\to\mathbb{R}^2$ is given by $T([\vec{v}]_{\mathcal{E}})=\begin{bmatrix}1&2\\0&-1\end{bmatrix}[\vec{v}]_{\mathcal{E}}$.

- (1) Find the change of basis matrices $C_{\mathcal{B}\to\mathcal{E}}$ and $C_{\mathcal{E}\to\mathcal{B}}$ and explain what they do and how they are related.
- (2) Let $T_{\mathcal{B}\to\mathcal{E}}$ and $T_{\mathcal{E}\to\mathcal{B}}$ be linear transformations corresponding to $C_{\mathcal{B}\to\mathcal{E}}$ and $C_{\mathcal{E}\to\mathcal{B}}$ respectively. Use composition of maps to construct a linear transformation that takes in $[\vec{v}]_{\mathcal{B}}$ as input and gives $[T\vec{v}]_{\mathcal{B}}$ as output.
- (3) Compute a matrix for your answer in previous part.
- (4) Compare your answer to the matrix

$$[[T(\begin{bmatrix}1\\1\end{bmatrix})]_{\mathcal{B}}, [T(\begin{bmatrix}-1\\1\end{bmatrix})]_{\mathcal{B}}].$$

B: Let V be the vector space of polynomials of degree less than or equal to 2 in the variable t. Let \mathcal{B} be the basis of V given by $(1, t, t^2)$.

- (1) Let $\vec{v}_1 = 1 + t$, $\vec{v}_2 = t^2 t$, $\vec{v}_3 = 1 t + t^2$. Show that $\mathcal{C} = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ is a basis for V.
- (2) Describe explicitly the coordinate isomorphism $V \cong \mathbb{R}^3$ given by \mathcal{C} . Where does this isomorphism send the element $a + bt + ct^2$ of V? (Here a, b, c are scalars.)
- (3) Let $\vec{w}_1 = 1 t$, $\vec{w}_2 = 1 + t^2$, $\vec{w}_3 = t$. Show that $\mathcal{D} = (\vec{w}_1, \vec{w}_2, \vec{w}_3)$ is also a basis of V.
- (4) Describe explicitly the coordinate isomorphism $V \cong \mathbb{R}^3$ given by \mathcal{D} . Where does this isomorphism send the element $a + bt + ct^2$ of V? (Here a, b, c are scalars.)
- (5) Let A be the matrix

$$A = \begin{bmatrix} [\vec{w}_1]_{\mathcal{C}} & [\vec{w}_2]_{\mathcal{C}} & [\vec{w}_3]_{\mathcal{C}} \end{bmatrix}$$

Let B be the matrix

$$B = \begin{bmatrix} [\vec{v}_1]_{\mathcal{D}} & [\vec{v}_2]_{\mathcal{D}} & [\vec{v}_3]_{\mathcal{D}} \end{bmatrix}$$

If an element \vec{v} in V has coordinates $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ in the basis \mathcal{C} , how would you compute its

coordinates in the basis \mathcal{D} ? Now do the same question with \mathcal{C} and \mathcal{D} interchanged.

(6) Are the matrices A and B related in a simple way?

C: Let V and W be n and m dimensional F-vectorspaces and let \mathcal{B} and \mathcal{A} be bases for V and W respectively. Let $T_{\mathcal{B}}: V \to F^n$ and $T_{\mathcal{A}}: W \to \bar{F}^m$ denote the coordinate isomorphisms. Let $S:V\to W$ be a linear transformation.

- (1) Prove that $\text{Null}[S]_{\mathcal{B},\mathcal{A}} = T_{\mathcal{B}}(\ker S)$ and $\text{Col}[S]_{\mathcal{B},\mathcal{A}} = T_{\mathcal{A}}(\text{Img}S)$. (2) Prove that $\text{Null}[S]_{\mathcal{B},\mathcal{A}} \cong \ker S$ and $\text{Col}[S]_{\mathcal{B},\mathcal{A}} \cong \text{Img}S$
- (3) Rank-nullity theorem for S states that $\dim \ker S + \dim \operatorname{Img} S = \dim V$. Use (1) and (2) to prove the rank-nullity theorem for S. You can use your MATA22 knowledge on how to find rank and nullity of a matrix.
- (4) Let $\mathcal{B} = (\cos x, \sin x, 1)$ and let $V = \operatorname{Span}(B) S : V \to V$ be a linear transformation with $[S]_{\mathcal{B}} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 1 & -1 \end{bmatrix}$. Find the kernel and the image of S. Justify your computation using the results you proved in this problem.

COOL-OFF:

- (1) Give an example of a linear transformation whose matrix representation doesn't depend on the choice of basis
- (2) Give an example of a linear transformation T and two different matrix representation of T.