1. (1 pt) Library/Rochester/setLinearAlgebra16DeterminantOfTransf-/ur_la_16_2.pg

Find the determinant of the linear transformation

$$T(f) = 5f + 3f'$$
 from P_2 to P_2 .

 $det = \underline{\hspace{1cm}}$

Correct Answers:

• 125

2. (1 pt) Library/Rochester/setLinearAlgebra16DeterminantOfTransf-/ur_la_16_7.pg

Find the determinant of the linear transformation

T(f) = -7f - 4f' - 3f'' from the space V spanned by $\cos(x)$ and sin(x) to V.

det = ___

Correct Answers:

• 32

3. (1 pt) Library/Rochester/setLinearAlgebra15TransfOfLinSpaces-

Find the matrix A of the linear transformation T(f(t)) = f(6t + t)5) from P_2 to P_2 with respect to the standard basis for P_2 , $\{1,t,t^2\}.$

$$A = \begin{bmatrix} - & - & - \\ - & - & - \end{bmatrix}$$

Correct Answers:

- 1
- 5
- 25
- 0
- 60
- 0 • 0
- 36

4. (1 pt) Library/Rochester/setLinearAlgebra15TransfOfLinSpaces-/ur_la_15_5.pg

Find the matrix A of the linear transformation

$$T(M) = \left[\begin{array}{cc} 4 & 6 \\ 0 & 1 \end{array} \right] M$$

from $U^{2\times 2}$ to $U^{2\times 2}$ (upper triangular matrices), with respect to

Correct Answers:

- 4
- 0
- -6

5. (1 pt) Library/Rochester/setLinearAlgebra15TransfOfLinSpaces-/ur_la_15_8.pg

Find the matrix A of the linear transformation T(f(t)) = f(8)from P_2 to P_2 with respect to the standard basis for P_2 , $\{1,t,t^2\}$.

$$A = \left[\begin{array}{ccc} - & - & - \\ - & - & - \\ - & - & - \end{array} \right]$$

Note: You should be viewing the transformation as mapping to constant polynomials rather than real numbers,

e.g.
$$T(2+t-t^2) = -4 + 0t + 0t^2$$
.
Correct Answers:

- 1 • 8
- 64

- 0
- 0
- 6. (1 pt) Library/Rochester/setLinearAlgebra15TransfOfLinSpaces-/ur_la_15_15.pg

Let V be the plane with equation $x_1 + 4x_2 - 3x_3 = 0$ Find the matrix A of the linear transforma-10 1 11

tion
$$T(x) = \begin{bmatrix} -1 & -1 & -2 \\ 2 & -1 & 1 \end{bmatrix} x$$
 with respect to the basis $\begin{bmatrix} -4 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$

$$\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}.$$

$$A = \left[\frac{1}{1} \right]$$

7. (1 pt) Library/Rochester/setLinearAlgebra15TransfOfLinSpaces-/ur_la_15_13.pg

Let V be the space spanned by the two functions $\cos(t)$ and $\sin(t)$. Find the matrix A of the linear transformation T(f(t)) = f''(t) + 2f'(t) + 9f(t) from V into itself with respect to the basis $\{\cos(t), \sin(t)\}$.

$$A = \left[\begin{array}{cc} - & - \\ - & - \end{array} \right]$$

Correct Answers:

- 8
- 2
- −2
- 8

$8. \quad (1\ pt)\ Library/Rochester/setLinearAlgebra 15 TransfOfLinSpaces-/ur_la_15_10.pg$

Find the matrix A of the linear transformation

$$T(f(t)) = \int_{-2}^{4} f(t)dt$$

from P_3 to \mathbb{R} with respect to the standard bases for P_3 and \mathbb{R} . $A = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$

Correct Answers:

- 6
- 6
- 24
- 60

9. (1 pt) Library/Rochester/setLinearAlgebra15TransfOfLinSpaces-/ur_la_15_3.pg

If $T: P_1 \to P_1$ is a linear transformation such that

$$T(1+4x) = -3-2x$$
 and $T(4+15x) = 4+2x$, then $T(4-5x) =$ _____.

Correct Answers:

• 324 + 202*x

${\bf 10.}\ \ (1\ pt)\ Library/Rochester/setLinearAlgebra 15 TransfOfLinSpaces-/ur_la_15_16.pg$

Let $T: P_3 \to P_3$ be the linear transformation satisfying

$$T(1) = 4x^2 - 2$$
, $T(x) = -4x + 8$, $T(x^2) = 4x^2 - x - 8$.

Find the image of an arbitrary cubic polynomial $ax^2 + bx + c$.

 $T(ax^2 + bx + c) = \underline{\hspace{1cm}}$

Correct Answers:

• a *
$$(4*x^2 + -1*x + -8)$$
 + b * $(-4*x + 8)$ + c * $(4*x^2 + -1*x + -8)$ + b * $(-4*x + 8)$ + c * $(4*x^2 + -1*x + -8)$

11. (1 pt) Library/Rochester/setLinearAlgebra15TransfOfLinSpaces-/ur_la_15_6.pg

Find the matrix *A* of the linear transformation

$$T(M) = \begin{bmatrix} 7 & 3 \\ 0 & 1 \end{bmatrix} M \begin{bmatrix} 7 & 3 \\ 0 & 1 \end{bmatrix}^{-1}$$

from $U^{2\times 2}$ to $U^{2\times 2}$ (upper triangular matrices), with respect to the standard basis for $U^{2\times 2}$:

Correct Answers:

- 1
- 0
- 0
- −3
- ,
- 3
- 0
- U

12. (1 pt) Library/Rochester/setLinearAlgebra15TransfOfLinSpaces/ur_la_15_20.pg

Let V be a vector space, $v, u \in V$, and let $T_1 : V \to V$ and $T_2 : V \to V$ be linear transformations such that $T_1(v) = 3v - 7u$, $T_1(u) = -5v + 7u$, $T_2(v) = -2v + 3u$, and $T_2(u) = 7v - 3u$. Find the images of v and u under the composite of T_1 and T_2 .

$$(T_2T_1)(v) =$$
_______,
 $(T_2T_1)(u) =$ _______.

Correct Answers:

- -55*v + 30*u
- 59*v + -36*u

${\bf 13.} \ \ (1\ pt)\ Library/Rochester/setLinearAlgebra 15 TransfOfLinSpaces/ur_la_15_7.pg$

Find the matrix A of the linear transformation T(f(t)) = 8f'(t) + 9f(t) from P_2 to P_2 with respect to the standard basis for P_2 , $\{1,t,t^2\}$.

$$A = \left[\begin{array}{ccc} - & - & - \\ - & - & - \\ - & - & - \end{array} \right]$$

Correct Answers:

- •
- •
- 0
- 9
- 16
- 0
- 9
- 14. (1 pt) Library/Rochester/setLinearAlgebra15TransfOfLinSpacesrt = -2) rt la 15.4.pg

The matrices
$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, and $A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

form a basis for the linear space $V = \mathbb{R}^{2\times 2}$. Write the matrix of the linear transformation $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ such that $T(A) = 11A + 3A^T$ relative to this basis:

Γ		
	—	 —
	act An	 —.

- 14
- 0
- 0
- 0
- 0
- 11
- 3
- 0
- 0
- 3
- 11
- 0
- 0
- 0
- 0
- 14

15. (1 pt) Library/Rochester/setLinearAlgebra15TransfOfLinSpaces-/ur_la_15_17.pg

Let $T: P_3 \to P_3$ be the linear transformation such that $T(-2x^2) = -3x^2 + 2x$, $T(-0.5x - 2) = 2x^2 - 4x - 4$, and $T(4x^2-1)=4x-2.$

Find T(1), T(x), $T(x^2)$, and $T(ax^2 + bx + c)$, where a, b, and c are arbitrary real numbers.

Correct Answers:

- \bullet 6*x^2 + -8*x + 2
- \bullet -28*x^2 + 40*x + 0
- \bullet 1.5*x^2 + -1*x + 0
- $a*(1.5*x^2 + -1*x + 0) + b*(-28*x^2 + 40*x + 0)$ $c*(6*x^2 + -8*x + 2)$

16. (1 pt) Library/Rochester/setLinearAlgebra9Dependence-/ur_la_9_11.pg

Find a linearly independent set of vectors that spans the same subspace of \mathbb{R}^3 as that spanned by the vectors

$$\left[\begin{array}{c}2\\1\\-1\end{array}\right], \left[\begin{array}{c}-4\\-3\\0\end{array}\right], \left[\begin{array}{c}0\\1\\2\end{array}\right].$$

Linearly independent set:
$$\begin{bmatrix} - \\ - \end{bmatrix}$$
, $\begin{bmatrix} - \\ - \end{bmatrix}$.

Correct Answers:

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{2} \cr$

 $\mbox{1} \cr$

 $\mbox\{-1\}\ \cr$

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c}\end{array}\right.\)

 $\mbox{0} \cr$

 $\mbox{1} \cr$

 $\mbox{2} \cr$

\end{array}\right.\)

17. $(1\quad pt)\quad Library/Rochester/setLinear Algebra 9 Dependence-$ /ur_la_9_1.pg

Let
$$A = \begin{bmatrix} -1\\1\\-6 \end{bmatrix}$$
, $B = \begin{bmatrix} -1\\-1\\-5 \end{bmatrix}$, and $C = \begin{bmatrix} 3\\1\\18 \end{bmatrix}$.

? 1. Determine whether or not the three vectors listed above are linearly independent or linearly dependent.

If they are linearly dependent, determine a non-trivial linear relation - (a non-trivial relation is three numbers which are not all three zero.) Otherwise, if the vectors are linearly independent, enter 0's for the coefficients, since that relationship always holds.

$$A + B + C = 0.$$

You can use this row reduction tool to help with the calculations.

Correct Answers:

- Linearly_Independent
- a multiple of (0,0,0)

18. (1 pt) Library/Rochester/setLinearAlgebra9Dependence-/ur_la_9_13.pg

Find a linearly independent set of vectors that spans the same subspace of \mathbb{R}^4 as that spanned by the vectors

$$\begin{bmatrix} -2 \\ 2 \\ -7 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -3 \\ 3 \end{bmatrix}.$$

Linearly independent set:
$$\begin{bmatrix} - \\ - \\ - \end{bmatrix}$$
, $\begin{bmatrix} - \\ - \\ - \end{bmatrix}$

Correct Answers:

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{1} \cr$

 $\mbox\{-1\} \cr$

 $\mbox{2} \cr$

\mbox{3} \cr

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c

\mbox{0} \cr

 $\mbox{1} \cr$

 $\mbox{-3} \c$

 $\mbox{3} \cr$

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c

 $\mbox{0} \cr$

 $\mbox{1} \cr$

 $\mbox{0} \c$

 $\mbox\{-2\} \cr$

19. (1 pt) Library/Rochester/setLinearAlgebra9Dependence-/ur_la_9_10.pg

Express the vector $v = \begin{bmatrix} -45 \\ -15 \end{bmatrix}$ as a linear combination of

$$x = \begin{bmatrix} -6 \\ -3 \end{bmatrix} \text{ and } y = \begin{bmatrix} -3 \\ 0 \end{bmatrix}.$$

$$y = \underline{\qquad} x + \underline{\qquad} y.$$

Correct Answers:

- 5 • 5

20. (1 pt) Library/Rochester/setLinearAlgebra9Dependence-/ur_la_9_3.pg

Let
$$A = \begin{bmatrix} -2 \\ -1 \\ 4 \\ 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 \\ 7 \\ -3 \\ -5 \end{bmatrix}$, $C = \begin{bmatrix} -6 \\ -9 \\ 8 \\ 5 \end{bmatrix}$, and $D = \begin{bmatrix} -2 \\ -4 \\ 2 \\ 3 \end{bmatrix}$.

? 1. Determine whether or not the four vectors listed above are linearly independent or linearly dependent.

If they are linearly dependent, determine a non-trivial linear relation - (a non-trivial relation is three numbers which are not all three zero.) Otherwise, if the vectors are linearly independent, enter 0's for the coefficients, since that relationship always holds.

$$A + B + C + D = 0.$$

You can use this row reduction tool to help with the calculations.

Correct Answers:

- Independent
- a multiple of (0,0,0,0)

21. (1 pt) Library/Rochester/setLinearAlgebra14TransfOfRn-/ur_la_14_4.pg

If
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
 is a linear transformation such that $T \begin{bmatrix} 1 \\ 6 \end{bmatrix} = \begin{bmatrix} 12 \\ 29 \end{bmatrix}$ and $T \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} 31 \\ -31 \end{bmatrix}$,

then the standard matrix of T is $A = \begin{vmatrix} & & & \\ & & & \end{vmatrix}$

Correct Answers:

- 6
- 1
- −1
- 5

22. (1 pt) Library/Rochester/setLinearAlgebra14TransfOfRn-/ur_la_14_6.pg

A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ whose matrix is

is onto if and only if $k \neq$ ___.

Correct Answers:

• 3.5

23. (1 pt) Library/Rochester/setLinearAlgebra14TransfOfRn-/ur_la_14_13.pg

Match each linear transformation with its matrix.

$$-1.$$
 $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

$$\begin{array}{cccc}
 & 2. & \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \\
 & 3. & \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \\
 & 4. & \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \\
 & 5. & \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \\
 & 6. & \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}
\end{array}$$

- A. Contraction by a factor of 2
- B. Rotation through an angle of 90° in the clockwise di-
- C. Rotation through an angle of 90° in the counterclockwise direction
- D. Reflection in the origin
- E. Reflection in the x-axis
- F. Projection onto the *x*-axis

Correct Answers:

- E
- B
- C

24. (1 pt) Library/Rochester/setLinearAlgebra14TransfOfRn-/ur_la_14_1.pg

If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation such that

$$T\begin{bmatrix} 1\\0\\0\end{bmatrix} = \begin{bmatrix} 1\\0\\4\end{bmatrix}, T\begin{bmatrix} 0\\1\\0\end{bmatrix} = \begin{bmatrix} 1\\-2\\-3\end{bmatrix},$$
and
$$T\begin{bmatrix} 0\\0\\1\end{bmatrix} = \begin{bmatrix} 0\\-2\\-1\end{bmatrix},$$
then
$$T\begin{bmatrix} -5\\4\\0\end{bmatrix} = \begin{bmatrix} -\frac{1}{2}\\-1\end{bmatrix}.$$

$$Correct Answers:$$

- −1
- -8
- −32

25. (1 pt) Library/Rochester/setLinearAlgebra14TransfOfRn-/ur_la_14_7.pg

The matrix

$$A = \begin{bmatrix} -2 & -3 & 2 & 1 \\ -5 & -6 & 5 & 2.5 \\ -9 & -12 & 9 & 8.5 \end{bmatrix}$$

is a matrix of a linear transformation $T: \mathbb{R}^k \to \mathbb{R}^n$ where

$$k = _{--}, n = _{--},$$

$$\dim(\operatorname{Ker}(T)) = \underline{\hspace{1cm}}, \ \dim(\operatorname{Range}(T)) = \underline{\hspace{1cm}}.$$

Is T onto? (enter YES or NO) ____.

Is T one-to-one? (enter YES or NO) ____. Correct Answers:

- 4
- 3
- 1
- 3
- yes
- no

 ${\bf 26.} \qquad (1\ \ pt) \quad Library/Rochester/setLinearAlgebra 14 TransfOfRn-lur_la_14_27.pg$

Which of the following linear transformations from \mathbb{R}^3 to \mathbb{R}^3 are invertible?

- A. Reflection in the yz -plane
- B. Projection onto the xy -plane
- C. Dilation by a factor of 4
- D. Identity transformation (i.e. T(v) = v for all v)
- E. Trivial transformation (i.e. T(v) = 0 for all v)
- F. Rotation about the z -axis

Correct Answers:

• ACDF

 ${\bf 27.} \qquad (1\ pt) \ Library/Rochester/setLinearAlgebra 14 TransfOfRn-/ur_la_14_10.pg$

Consider a linear transformation T from \mathbb{R}^3 to \mathbb{R}^2 for which

$$T\begin{bmatrix} 1\\0\\0\end{bmatrix} = \begin{bmatrix} 9\\6 \end{bmatrix}, T\begin{bmatrix} 0\\1\\0\end{bmatrix} = \begin{bmatrix} 8\\3 \end{bmatrix},$$
 and
$$T\begin{bmatrix} 0\\0\\1\end{bmatrix} = \begin{bmatrix} 4\\5 \end{bmatrix}.$$

Find the matrix A of T

Correct Answers:

- 9
- 8
- 1
- 3
- 5

 ${\bf 28.} \qquad (1\ pt) \ Library/Rochester/setLinearAlgebra 14 TransfOfRn-/ur_la_14_16.pg$

The dot product of two vectors in \mathbb{R}^3 is defined by

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = a_1b_1 + a_2b_2 + a_3b_3.$$

Let $v = \begin{bmatrix} -1 \\ 5 \\ 1 \end{bmatrix}$. Find the matrix *A* of the linear transformation

from \mathbb{R}^3 to \mathbb{R} given by $T(x) = v \cdot x$.

$$A = \begin{bmatrix} & & & & \\ & & & & & \end{bmatrix}$$
.

Correct Answers:

- −1
- 5
- 1

 ${\bf 29.} \hspace{0.5in} {\bf (1~pt)} \hspace{0.5in} Library/Rochester/setLinearAlgebra 14 TransfOfRn-\\$

/ur_la_14_3.pg

Let
$$b_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 and $b_2 = \begin{bmatrix} -2 \\ -7 \end{bmatrix}$.

The set $B = \{b_1, b_2\}$ is a basis for \mathbb{R}^2 .

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that

$$T(b_1) = 3b_1 + 2b_2$$
 and $T(b_2) = 6b_1 + 5b_2$.

Then the matrix of T relative to the basis B is

$$[T]_B = \left[\begin{array}{cc} ---- \\ --- \end{array} \right]$$

and the matrix of T relative to the standard basis E for \mathbb{R}^2 is

$$[T]_E = \left| \begin{array}{ccc} & \cdots & \cdots \\ & \cdots & \cdots \end{array} \right|$$

Correct Answers:

- 3
- 6
- 2
- 5-19
- 6
- -86
- 27

 $30. \hspace{1.5cm} (1 \hspace{1.5cm} pt) \hspace{1.5cm} Library/Rochester/setLinearAlgebra4InverseMatrix-/ur_Ch2_1_3.pg$

Given:

Given:
$$T(\begin{bmatrix} 2 \\ -2 \end{bmatrix}) = \begin{bmatrix} -10 \\ -14 \end{bmatrix}$$

$$T(\begin{bmatrix} -6 \\ -5 \end{bmatrix}) = \begin{bmatrix} 41 \\ 64 \end{bmatrix}$$

Find a matrix such that:

$$T(\vec{v}) = \begin{bmatrix} - & - \\ - & - \end{bmatrix} (\vec{v})$$

Correct Answers:

- \(\displaystyle\left.\begin{array}{cc}\\mbox{-6} &\mbox{-1} \cr\\mbox{-9} &\mbox{-2} \cr\\end{array}\right.\)
- ${\bf 31.} \qquad (1\ pt) \ Library/Rochester/setLinearAlgebra 14 TransfOfRn-/ur_la_14_27.pg$

Which of the following linear transformations from \mathbb{R}^3 to \mathbb{R}^3 are invertible?

- A. Reflection in the xy -plane
- B. Identity transformation (i.e. T(v) = v for all v)
- C. Rotation about the y -axis
- D. Trivial transformation (i.e. T(v) = 0 for all v)
- E. Projection onto the xz -plane
- F. Dilation by a factor of 3

Correct Answers:

ABCF

${\bf 32.} \qquad (1\ pt) \ Library/Rochester/setLinearAlgebra 14 TransfOfRn-/ur_la_14_10.pg$

Consider a linear transformation T from \mathbb{R}^3 to \mathbb{R}^2 for which

$$T\begin{bmatrix} 1\\0\\0\end{bmatrix} = \begin{bmatrix} 5\\8 \end{bmatrix}, T\begin{bmatrix} 0\\1\\0\end{bmatrix} = \begin{bmatrix} 2\\0\end{bmatrix},$$
 and
$$T\begin{bmatrix} 0\\0\end{bmatrix} = \begin{bmatrix} 9\\1\end{bmatrix}.$$

Find the matrix A of T.

$$A = \left[\begin{array}{ccc} & & & \\ & & & \end{array} \right]$$

Correct Answers:

- 5
- 2
- 9
- 8
- 0
- ---

33. (1 pt) Library/Rochester/setLinearAlgebra14TransfOfRn-/ur_la_14_15.pg

Find the matrix A of the linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 that rotates any vector through an angle of 45° in the counterclockwise direction.

$$A = \left[\begin{array}{cc} & & & \\ & & & \end{array} \right].$$

Correct Answers:

- cos(45*pi/180)
- (-1)*sin(45*pi/180)
- sin(45*pi/180)
- cos(45*pi/180)

${\bf 34.} \qquad (1\ pt) \ Library/Rochester/setLinearAlgebra 14 TransfOfRn-/ur_la_14_28.pg$

Find the matrix M of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -6x_1 - 2x_2 \\ -9x_1 + x_2 \end{bmatrix}$.

$$M = \left[\begin{array}{cc} & & & \\ & & & \end{array} \right]$$
.

Correct Answers:

- -6
- -2
- - <u>5</u>
- **35.** (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms-/ur_la_23_3.pg

/ui _ia_23_3.j

The matrix
$$A = \begin{bmatrix} 2.2 & 0 & 0.6 \\ 0 & 5 & 0 \\ 0.6 & 0 & 3.8 \end{bmatrix}$$

has three distinct eigenvalues, $\lambda_1 < \lambda_2 < \lambda_3$,

$$\lambda_1 = \underline{\hspace{1cm}}$$

$$\lambda_2 = \underline{\hspace{1cm}},$$

$$\lambda_3 = \underline{\hspace{1cm}}$$
.

Classify the quadratic form $Q(x) = x^T Ax$:

- A. Q(x) is positive definite
- B. Q(x) is positive semidefinite
- C. Q(x) is indefinite
- D. Q(x) is negative definite
- E. Q(x) is negative semidefinite

Correct Answers:

- 2
- 4
- 5
- *F*

36. (1 pt) Library/Rochester/setLinearAlgebra23QuadraticForms-/ur_la_23_2.pg

Find the eigenvalues of the matrix

$$M = \left[\begin{array}{cc} -90 & 20 \\ 20 & -60 \end{array} \right].$$

Enter the two eigenvalues, separated by a comma:

Classify the quadratic form $Q(x) = x^T Ax$:

- A. Q(x) is indefinite
- B. Q(x) is positive definite
- C. Q(x) is positive semidefinite
- D. Q(x) is negative semidefinite
- E. Q(x) is negative definite

Correct Answers:

- −50, −100
- E

37. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBasesur_la_18_2.pg

Let
$$x = \begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix}$$
 and $y = \begin{bmatrix} -5 \\ -1 \\ 3 \end{bmatrix}$

Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of \mathbb{R}^3 spanned by x and y.

- 0.639602149066831
- -0.426401432711221
- -0.639602149066831
- -0.554700196225229
- -0.832050294337844
- 0

38. (1 pt) Library/Rochester/setLinearAlgebra18OrthogonalBases-/ur_la_18_6.pg

Find an orthonormal basis of the plane $x_1 + 6x_2 - x_3 = 0$.

• \(\displaystyle\left.\begin{array}{c} \mbox{0.707106781186547} \cr

\mbox{0} \cr

\mbox{0.707106781186547} \cr

\end{array}\right.\) ,\(\displaystyle\left.\begin{\arrayGagget Answers:

 $\mbox\{-0.688247201611685\}\ \cr$ \mbox{0.229415733870562} \cr \mbox{0.688247201611685} \cr

\end{array}\right.\)

39. $(1\ pt)\ Library/Rochester/setLinearAlgebra 8 Vector Spaces-$ /ur_la_8_2.pg

Which of the following subsets of $\mathbb{R}^{3\times3}$ are subspaces of $\mathbb{R}^{3\times3}$?

- A. The 3×3 matrices of rank 2
- B. The 3×3 matrices with determinant 0
- C. The 3×3 matrices in reduced row-echelon form
- D. The 3×3 matrices with all zeros in the third row
- E. The diagonal 3×3 matrices
- F. The 3×3 matrices with trace 0 (the trace of a matrix is the sum of its diagonal entries)

Correct Answers:

• DEF

40. (1 pt) Library/Rochester/setLinearAlgebra8VectorSpaces- $/ur_la_8_3.pg$

Determine whether the given set S is a subspace of the vector space V.

- A. V is the vector space of all real-valued functions defined on the interval [a,b], and S is the subset of V consisting of those functions satisfying f(a) = 3.
- B. $V = P_3$, and S is the subset of P_3 consisting of all polynomials of the form $p(x) = ax^3 + bx$.
- C. $V = M_n(\mathbb{R})$, and S is the subset of all upper triangular
- D. V is the vector space of all real-valued functions defined on the interval $(-\infty, \infty)$, and S is the subset of V consisting of those functions satisfying f(0) = 0.
- E. $V = M_n(\mathbb{R})$, and S is the subset of all $n \times n$ matrices with det(A) = 0.
- F. $V = \mathbb{R}^2$, and S is the set of all vectors (x_1, x_2) in V satisfying $3x_1 + 4x_2 = 0$.
- G. $V = P_5$, and S is the subset of P_5 consisting of those polynomials satisfying p(1) > p(0).

Correct Answers:

• BCDF

41. (1 pt) Library/Rochester/setLinearAlgebra8VectorSpaces-/ur_la_8_6.pg

Which of the following sets are subspaces of \mathbb{R}^3 ?

- A. $\{(x,y,z) \mid x,y,z > 0\}$
- B. $\{(x,y,z) \mid -5x-7y-8z=0\}$
- C. $\{(x, x-5, x-7) \mid x \text{ arbitrary number } \}$
- D. $\{(x, y, z) \mid 5x + 7y = 0, 8x + 4z = 0\}$
- E. $\{(x, y, z) \mid -9x 2y 3z = -4\}$
- F. $\{(4x, 9x, 2x) \mid x \text{ arbitrary number } \}$

• BDF

42. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_4.pg

Let W be the subspace of \mathbb{R}^3 spanned by the vectors

. Find the matrix A of the orthogonal projection onto W

$$A = \left[\begin{array}{cccc} & & & & & \\ & & & & & \\ & & & & & \\ \end{array} \right]$$

Correct Answers:

- -0.166666666666667
- -0.166666666666667
- 0.833333333333333
- -0.3333333333333333 -0.3333333333333333
- 0.333333333333333

43. $(1\ pt)\ Library/Rochester/setLinear Algebra 17 Dot Product Rn-$ /ur_la_17_2.pg

$$Let x = \begin{bmatrix} -2 \\ 2 \\ 1 \\ -5 \end{bmatrix}$$

Find the norm of x and the unit vector in the direction of x.

- - 5.8309518948453 -0.342997170285018
 - 0.342997170285018
 - 0.171498585142509
 - -0.857492925712544

44. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_16.pg

Find the orthogonal projection of $v = \begin{bmatrix} 9 \\ -13 \\ -13 \\ -3 \end{bmatrix}$ onto the subspace V of \mathbb{R}^3 spanned by $\begin{bmatrix} -5 \\ -2 \\ -1 \\ -4 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ -4 \\ 8 \\ 0 \end{bmatrix}$. $\text{proj}_V(v) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}$

Correct Answers:

- -0.652173913043478
- 2.33913043478261
- -5.3304347826087
- -0.521739130434783

$\begin{tabular}{lll} \bf 45. & (1 & pt) & Library/Rochester/setLinearAlgebra 17 Dot Product Rn-/ur_la_17_3.pg \\ \end{tabular}$

Find the angle α between the vectors $\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ -3 \\ 5 \end{bmatrix}$ $\alpha = \underline{\qquad}$

Correct Answers:

• 0.451026811796262

$\begin{tabular}{lll} \bf 46. & (1 & pt) & Library/Rochester/setLinearAlgebra 17 Dot Product Rn-\large large large$

Find the orthogonal projection of $v = \begin{bmatrix} 0 \\ 5 \\ 0 \\ 0 \end{bmatrix}$

onto the subspace V of \mathbb{R}^3 spanned by

$$\begin{bmatrix} -1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \text{ and } \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix}.$$

$$\text{proj}_{V}(v) = \begin{bmatrix} \vdots \\ \vdots \\ \end{bmatrix}.$$

$$Correct Answers:$$

- -1.25
- 3.75
- −1.25
- 1.25

$\label{eq:continuous} 47. \qquad (1\ pt)\ Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_11.pg$

Let $\{e_1, e_2, e_3, e_4, e_5, e_6\}$ be the standard basis in \mathbb{R}^6 . Find the length of the vector $x = 2e_1 - 4e_2 + 5e_3 - 3e_4 - 3e_5 - 5e_6$.

$$||x|| = \underline{\hspace{1cm}}$$

Correct Answers:

9.38083151964686

$\begin{tabular}{lll} \bf 48. & (1 & pt) & Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_14.pg \end{tabular}$

Find two linearly independent vectors perpendicular to the vec-

$$tor v = \begin{bmatrix} 8 \\ 3 \\ -1 \end{bmatrix}.$$

$$\begin{bmatrix} - \\ - \\ - \end{bmatrix}, \begin{bmatrix} - \\ - \\ - \end{bmatrix}$$
Correct Answers:

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{1} \cr$

 $\mbox{0} \c)$

\mbox{8} \cr

 $\label{left.begin{array} conditions} $$\left(\operatorname{array} \right) , (\displaystyle \le \operatorname{left.begin{array} {conditions} } \left(\operatorname{array} \right) . $$\left(\operatorname{array} \right) = \operatorname{array} \left(\operatorname{array} \right) . $$$

 $\mbox{-3} \c$

\mbox{8} \cr

\mbox{0} \cr

\end{array}\right.\)

${\bf 49.} \qquad (1\ \ pt)\ \ Library/Rochester/setLinearAlgebra 17 Dot Product Rn-/ur_la_17_15.pg$

Find the orthogonal projection of $v = \begin{bmatrix} 3 \\ -2 \\ 14 \end{bmatrix}$ onto the subspace V of \mathbb{R}^3 spanned by $\begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} -2 \\ -5 \\ -14 \end{bmatrix}$.

$$\operatorname{proj}_V(v) = \left[\begin{array}{ccc} & & & \\ & - & & \\ \end{array} \right].$$

Correct Answers:

- −0.96
- 1.6
- 13.28

${\bf 50.} \qquad (1\ pt)\ Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_1.pg$

Let
$$x = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$
 and $y = \begin{bmatrix} 5 \\ 5 \\ -1 \end{bmatrix}$.

Find the dot product of x and y.

$$x \cdot y = \underline{\hspace{1cm}}$$
. Correct Answers:

−5

51. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRnur la 17 21.pg

Let
$$v_1 = \begin{bmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -0.5 \\ -0.5 \\ 0.5 \\ 0.5 \end{bmatrix}$, and $v_3 = \begin{bmatrix} -0.5 \\ 0.5 \\ 0.5 \\ -0.5 \end{bmatrix}$.

Find a vector v_4 in \mathbb{R}^4 such that the vectors v_1 , v_2 , v_3 , and v_4 are

orthonormal.
$$v_4 = \begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}.$$

Correct Answers:

- \(\displaystyle\left.\begin{array}{c} $\mbox\{-0.5\}\ \cr$ $\mbox{0.5} \cr$ $\mbox{-0.5} \cr$ $\mbox{0.5} \cr$ \end{array}\right.\)
- 52. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_19.pg

Let
$$v = \begin{bmatrix} -3 \\ 7 \\ -3 \\ 1 \end{bmatrix}$$

Find a basis of the subspace of \mathbb{R}^4 consisting of all vectors perpendicular to v.

- \(\displaystyle\left.\begin{array}{c}
 - $\mbox{7} \cr$
 - $\mbox{3} \c$
 - \mbox{0} \cr
 - $\mbox{0} \cr$

 - $\mbox{-3} \cr$
 - $\mbox{0} \c)$
 - $\mbox{3} \cr$
 - \mbox{0} \cr

 - \mbox{1} \cr
 - \mbox{0} \cr
 - \mbox{0} \cr
 - $\mbox{3} \cr$
 - \end{array}\right.\)
- 53. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_5.pg

Let W be the subspace of \mathbb{R}^3 spanned by the vectors

It W be the subspace of
$$\mathbb{R}^3$$
 spanned by the vectors $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

and
$$\begin{bmatrix} -8\\9\\-1\\2 \end{bmatrix}$$
. Find the matrix A of the orthogonal projection

Correct Answers:

- 0.43
- −0.49
- 0.01
- −0.07
- -0.49
- 0.57
- 0.07
- 0.01
- 0.01 • 0.07
- 0.57
- −0.49
- −0.07
- 0.01
- −0.49
- 0.43
- 54. $(1\ pt)\ Library/Rochester/setLinear Algebra 17 Dot Product Rn-$ /ur_la_17_10.pg

Find the length of the vector $x = \begin{bmatrix} -6 \\ -3 \\ 4 \end{bmatrix}$.

 $||x|| = _{-}$

Correct Answers:

- 7.81024967590665
- 55. $(1\ pt)\ Library/Rochester/setLinear Algebra 17 Dot Product Rn-$

 $\begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$, $u = \begin{bmatrix} -3 \\ 7 \\ -4 \end{bmatrix}$, and let W the subspace of \mathbb{R}^4

Correct Answers:

- \(\displaystyle\left.\begin{array}{c}
 - $\mbox\{-20\}\ \cr$
 - $\mbox\{-8\} \cr$
 - $\mbox{1} \cr$
 - $\mbox{0} \cr$

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c

- $\mbox\{-15\} \cr$
- $\mbox{-7} \cr$
- \mbox{0} \cr
- $\mbox{1} \cr$
- \end{array}\right.\)

56. $(1\ pt)\ Library/Rochester/setLinearAlgebra 17 Dot Product Rn-$ /ur_la_17_6.pg

Find a vector v perpendicular to the vector u =

$$v = \begin{bmatrix} - \\ - \end{bmatrix}$$
.

Correct Answers:

- \(\displaystyle\left.\begin{array}{c} $\mbox{3} \cr$ $\mbox{-5} \cr$ \end{array}\right.\)
- 57. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_27.pg Find a basis of the subspace of \mathbb{R}^4 that consists of all vectors perpendicular to both

- Correct Answers:
 - \(\displaystyle\left.\begin{array}{c}
 - $\mbox{1} \cr$
 - \mbox{8} \cr
 - $\mbox\{-1\} \cr$
 - \mbox{0} \cr
 - \end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c} \mbox{3} \cr
 - $\mbox\{-4\}\ \cr$
 - $\mbox\{-1\} \ \cr$
 - $\mbox{0} \c)$

 - $\mbox\{-1\} \cr$ \end{array}\right.\)
- 58. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_4.pg

Find the coordinate vector of x =with respect to the

basis
$$B = \left\{ \begin{bmatrix} 1\\7\\8 \end{bmatrix}, \begin{bmatrix} 0\\1\\-4 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$
 or \mathbb{R}^3 .

Correct Answers:

- -4
- 31
- 151
- $\mathbf{59.}\ (1\ pt)\ Library/Rochester/setLinearAlgebra \mathbf{10Bases/ur_la_10_24.pg}$ Find a basis of the subspace of \mathbb{R}^4 spanned by the following

vectors:
$$\begin{bmatrix} 3 \\ 3 \\ -12 \\ 3 \\ -3 \end{bmatrix}$$
, $\begin{bmatrix} -3 \\ -3 \\ 12 \\ -2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 0 \\ 6 \\ -6 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 9 \\ 3 \\ -23 \\ 15 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -9 \\ -3 \\ 23 \\ -15 \\ -3 \end{bmatrix}$
 $\begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}$, $\begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}$, $\begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}$, $\begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}$. Correct Answers:

- \(\displaystyle\left.\begin{array}{c}
 - $\mbox{3} \cr$
 - $\mbox{3} \cr$
 - $\mbox\{-12\} \cr$
 - $\mbox{3} \cr$
 - $\mbox{-3} \c$
 - \end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c
 - $\mbox{-3} \cr$
 - $\mbox{-3} \cr$
 - $\mbox{12} \cr$
 - $\mbox\{-2\} \cr$
 - $\mbox{3} \cr$
 - \end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c
 - $\mbox{-3} \cr$
 - \mbox{0} \cr
 - \mbox{6} \cr
 - $\mbox\{-6\} \cr$
- $\mbox{-3} \cr$
- \end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c
- \mbox{9} \cr
- $\mbox\{-23\} \cr$
- $\mbox{15} \cr$
- $\mbox{3} \cr$
- \end{array}\right.\)
- 60. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_3.pg

Find the coordinates of the vector $x = \begin{bmatrix} 6 \\ -40 \end{bmatrix}$ relative to the basis B

basis
$$B$$
:
$$[x]_B = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$

- 2
- 2
- 61. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_25.pg Find a basis of the subspace of \mathbb{R}^3 defined by the equation

$$5x_1 + 3x_2 + 2x_3 = 0.$$

$$\begin{bmatrix} - \\ - \\ - \end{bmatrix}, \begin{bmatrix} - \\ - \\ - \end{bmatrix}$$

$$Correct Answers:$$

• \(\displaystyle\left.\begin{array}{c} $\mbox{2} \cr$ \mbox{0} \cr $\mbox{-5} \cr$ \end{array}\right.\) ,\(\\displaystyle\left.\\begin\{\array\\footnote{\text{wo linearly independent vectors perpendicular to the vec- $\mbox{3} \cr$ $\mbox{-5} \cr$ $\mbox{0} \c)$ \end{array}\right.\)

62. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_18.pg Find bases of the kernel and image of the orthogonal projection onto the plane 4x + 3y + z = 0 in \mathbb{R}^3 .

• \(\displaystyle\left.\begin{array}{c} $\mbox{4} \cr$

 $\mbox{3} \cr$

 $\mbox{1} \cr$

\end{array}\right.\)

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{1} \cr$

\mbox{0} \cr

 $\mbox\{-4\} \cr$

\mbox{3} \cr

 $\mbox\{-4\}\ \cr$

 $\mbox{0} \c$

\end{array}\right.\)

63. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_26.pg Find a basis of the subspace of \mathbb{R}^4 defined by the equation

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{-7} \cr$

 $\mbox\{-4\} \cr$

 $\mbox{0} \c$

 $\mbox{0} \c$

 $\label{left.begin{array} (\displaystyle left. begin{array} \{ c \}_{-9} \end{array} (\displaystyle left. beg$

 $\mbox{2} \cr$

 $\mbox{0} \c)$

 $\mbox\{-4\}\ \cr$

 $\mbox{0} \c)$

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c}

 $\mbox{7} \cr$

\mbox{0} \cr

\mbox{0} \cr

 $\mbox{-4} \cr$

\end{array}\right.\)

64. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_14.pg

$$cor v = \begin{bmatrix} -8 \\ -3 \\ 5 \end{bmatrix}.$$

$$\begin{bmatrix} - \\ - \\ - \end{bmatrix}, \begin{bmatrix} - \\ - \\ - \end{bmatrix}.$$

$$Correct Answers:$$

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{5} \cr$

 $\mbox{0} \c$

\mbox{8} \cr

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c

 $\mbox\{-3\} \cr$

\mbox{8} \cr

\mbox{0} \cr

\end{array}\right.\)

65. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_15.pg

Find the orthogonal projection of v =16 onto the subspace

$$\operatorname{proj}_{V}(v) = \left[\begin{array}{cc} & & & & \\ & & & \\ & & & \end{array}\right].$$

- 5.94155844155844
- 16.2987012987013
- -6.46103896103896

66. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_1.pg

Let
$$x = \begin{bmatrix} -4 \\ 3 \\ 1 \end{bmatrix}$$
 and $y = \begin{bmatrix} 4 \\ 3 \\ -2 \end{bmatrix}$

Find the dot product of x and y

$$x \cdot y = \underline{\hspace{1cm}}$$
. Correct Answers:

$(1\ pt)\ Library/Rochester/setLinear Algebra 17 Dot Product Rn-$

 $\begin{bmatrix} 0.5 \\ -0.5 \\ 0.5 \\ 0.5 \end{bmatrix}, v_2 = \begin{bmatrix} 0.5 \\ -0.5 \\ -0.5 \\ -0.5 \end{bmatrix}, \text{ and } v_3 = \begin{bmatrix} 0.5 \\ 0.5 \\ 0.5 \\ -0.5 \end{bmatrix}.$

Find a vector v_4 in \mathbb{R}^4 such that the vectors v_1 , v_2 , v_3 , and v_4 are

orthonormal.

Correct Answers:

• \(\displaystyle\left.\begin{array}{c} $\mbox{0.5} \cr$ $\mbox{0.5} \cr$ $\mbox\{-0.5\}\ \cr$ $\mbox{0.5} \cr$ \end{array}\right.\)

$(1\ pt)\ Library/Rochester/setLinear Algebra 17 Dot Product Rn-$ /ur_la_17_19.pg

Let
$$v = \begin{bmatrix} -7 \\ 9 \\ 9 \\ 3 \end{bmatrix}$$

Find a basis of the subspace of \mathbb{R}^4 consisting of all vectors per-

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{9} \cr$

 $\mbox{7} \cr$

 $\mbox{0} \cr$

 $\mbox{0} \cr$

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{\cuperset{c}} -0.0961538461538461

 $\mbox{9} \cr$

\mbox{0} \cr

 $\mbox{7} \c$

 $\mbox{0} \c)$

 $\mbox{3} \cr$

 $\mbox{0} \c$

\mbox{0} \cr

 $\mbox{7} \cr$

\end{array}\right.\)

69. (1 pt) Library/Rochester/setLinearAlgebra17DotProductRn-/ur_la_17_12.pg

Find a vector x perpendicular to the vectors v =

$$u = \begin{bmatrix} -1 \\ -2 \\ -2 \end{bmatrix}.$$

$$x = \begin{bmatrix} - \\ - \\ - \end{bmatrix}.$$

• \(\displaystyle\left.\begin{array}{c} $\mbox{-8} \cr$

 $\mbox{3} \cr$ $\mbox{1} \cr$ \end{array}\right.\)

70. $(1\ pt)\ Library/Rochester/setLinear Algebra 17 Dot Product Rn-$ /ur_la_17_5.pg

Let W be the subspace of \mathbb{R}^3 spanned by the vectors

0 . Find the matrix A of the orthogonal projection onto W

Correct Answers:

- 0.403846153846154
- -0.0192307692307692
- -0.480769230769231
- -0.0961538461538461
- -0.0192307692307692
- 0.596153846153846
- -0.0961538461538461
- 0.480769230769231
- -0.480769230769231
- -0.0961538461538461
- 0.596153846153846
- 0.0192307692307692
- - 0.480769230769231
 - 0.0192307692307692
 - 0.403846153846154

/ur_la_17_20.pg

Let
$$v = \begin{bmatrix} 1 \\ 3 \\ -3 \\ -4 \end{bmatrix}$$
, $u = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 3 \end{bmatrix}$, and let W the subspace of \mathbb{R}^4

spanned by v and u. Find a basis of W^{\perp} .

• \(\displaystyle\left.\begin{array}{c}

\mbox{0} \cr

 $\mbox{1} \cr$

 $\mbox{1} \cr$

 $\mbox{0} \c$

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c

 $\mbox\{-5\}\ \cr$

 $\mbox{3} \cr$

 $\mbox{0} \cr$

72. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_4.pg

Find the coordinate vector of x =with respect to the

$$[x]_B = \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$

- −4
- 22
- 182

73. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_3.pg $\begin{bmatrix} -1 \\ -10 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 12 \end{bmatrix}$ is a basis for \mathbb{R}^2 .

Find the coordinates of the vector $x = \begin{bmatrix} -1 \\ -16 \end{bmatrix}$ relative to the basis B

$$[x]_B = \begin{bmatrix} \\ \\ \end{bmatrix}$$
Correct Answers:

- −2
- −3
- 74. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_18.pg Find bases of the kernel and image of the orthogonal projection onto the plane -2x + 5y + z = 0 in \mathbb{R}^3 .

Correct Answers:

- \(\displaystyle\left.\begin{array}{c}
 - $\mbox\{-2\} \ \cr$
 - $\mbox{5} \cr$
 - $\mbox{1} \cr$
 - \end{array}\right.\)
- \(\displaystyle\left.\begin{array}{c}
- $\mbox{1} \c$
- \mbox{0} \cr
- $\mbox{2} \cr$
- \mbox{5} \cr
- $\mbox{2} \cr$
- \mbox{0} \cr
- \end{array}\right.\)

75. $(1\ pt)\ Library/Rochester/setLinearAlgebra 17 Dot Product Rn-$ /ur_la_17_14.pg

Find two linearly independent vectors perpendicular to the vec-

tor
$$v = \begin{bmatrix} -4 \\ -7 \\ 7 \end{bmatrix}$$
.
$$\begin{bmatrix} - \\ - \\ - \end{bmatrix}, \begin{bmatrix} - \\ - \\ - \end{bmatrix}$$

- \(\displaystyle\left.\begin{array}{c}
 - $\mbox{7} \cr$
 - \mbox{0} \cr
 - $\mbox{4} \cr$

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c

- $\mbox\{-7\} \cr$
- \mbox{4} \cr
- \mbox{0} \cr
- \end{array}\right.\)
- 76. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_4.pg

Find the coordinate vector of x =with respect to the

basis
$$B = \left\{ \begin{bmatrix} 1 \\ 8 \\ 8 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ or } \mathbb{R}^3$$

$$[x]_B = \begin{bmatrix} ---- \\ ---- \end{bmatrix}$$

$$[x]_B = \left[\begin{array}{c} ---- \\ ---- \end{array}\right]$$

Correct Answers:

- 1

- 77. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_5.pg Let *B* be the basis of \mathbb{R}^2 consisting of the vectors

$$\begin{bmatrix} 4 \\ -2 \end{bmatrix}$$
 and $\begin{bmatrix} -1 \\ 5 \end{bmatrix}$,

and let R be the basis consisting of

$$\begin{bmatrix} -2 \\ -1 \end{bmatrix}$$
 and $\begin{bmatrix} -3 \\ -2 \end{bmatrix}$

Find a matrix *P* such that $[x]_R = P[x]_B$ for all *x* in \mathbb{R}^2 .

$$P = \left[\begin{array}{ccc} & & & \\ & & & \end{array}\right]$$

- −14
- 17

- 78. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_35.pg Find a basis for the space of 2x2 diagonal matrices:

$$\left\{ \begin{bmatrix} - & - \\ - & - \end{bmatrix}, \begin{bmatrix} - & - \\ - & - \end{bmatrix} \right\}$$

• \(\displaystyle\left.\begin{array}{cc} $\mbox{1} & \mbox{0} \cr$ $\mbox{0} \& \mbox{0} \ \cr$ \end{array}\right.\) \(\displaystyle\left.\begin{array} $\mbox{0} \&\mbox{0} \cr$ $\mbox{0} \&\mbox{1} \cr$ \end{array}\right.\)

79. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_32.pg Find a basis of the subspace of \mathbb{R}^4 consisting of all vectors of

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{1} \cr$

 $\mbox\{-4\} \cr$

\mbox{8} \cr

 $\mbox\{-6\} \cr$

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c}\mbox{0} \cr

 $\mbox{0} \cr$

 $\mbox{1} \cr$

\mbox{8} \cr

 $\mbox{3} \cr$

\end{array}\right.\)

80. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_6.pg The set $B = \{2 + 2x^2, 10 - 4x + 10x^2, 16 - 8x + 14x^2\}$ is a basis for P_2 . Find the coordinates of $p(x) = -8 + 4x - 10x^2$ relative to this basis:

$$[p(x)]_B = \begin{bmatrix} \dots \\ \dots \\ \dots \end{bmatrix}$$

Correct Answers:

- 3
- −3
- 1

81. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_19.pg

in \mathbb{R}^3 . Let *L* be the line spanned by

Find a basis of the orthogonal complement L^{\perp} of L.

Correct Answers:

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{7} \cr$

 $\mbox{0} \c$

 $\mbox{4} \c$

 $\mbox{-8} \cr$

 $\mbox{4} \cr$ \mbox{0} \cr \end{array}\right.\)

82. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_20.pg

in \mathbb{R}^4 Let L be the line spanned by

Find a basis of the orthogonal complement L^{\perp} of L.

• \(\displaystyle\left.\begin{array}{c}

 $\mbox\{-4\} \cr$

 $\mbox{9} \cr$

\mbox{0} \cr

 $\mbox{0} \cr$

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c

\mbox{6} \cr

\mbox{0} \cr

 $\mbox{9} \cr$

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c

 $\mbox{7} \cr$

\mbox{0} \cr

 $\mbox{0} \c$

\mbox{9} \cr

\end{array}\right.\)

83. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_2.pg Consider the basis B of \mathbb{R}^2 consisting of vectors

$$\begin{bmatrix} -6 \\ -5 \end{bmatrix} \text{ and } \begin{bmatrix} 5 \\ -2 \end{bmatrix}.$$

Find x in \mathbb{R}^2 whose coordinate vector relative to the basis B is

$$[x]_B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$$

$$x = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}.$$
Correct Answers:

- 22
- 6

84. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_36.pg Find a basis for the space of 2x2 lower triangular matrices:

ر آ		1 [_	 1 [_	_].
{		,	 ,		. .
Corre	ct Answe	rs:	J L		

• \(\displaystyle\left.\begin{array}{cc}

 $\mbox{1} &\mbox{0} \cr$

 $\mbox{0} \&\mbox{0} \c$

\end{array}\right.\) \(\displaystyle\left.\begin{array}{cc

 $\mbox{0} \&\mbox{0} \c$

 $\mbox{1} &\mbox{0} \cr$

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c}\end{array}\right.\) \(\displaystyle\left.\begin{array}{cc

\mbox{0} &\mbox{0} \cr

 $\mbox{0} \&\mbox{1} \cr$ \end{array}\right.\)

85. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_33.pg The set $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is called the standard basis of the space of 2×2 matrices.

Find the coordinates of $M = \begin{bmatrix} -8 & 6 \\ -7 & 2 \end{bmatrix}$ with respect to this ba-

$$[M]_B = \begin{bmatrix} \cdots \\ \cdots \\ \cdots \end{bmatrix}$$

- -8
- 6
- −7

86. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_34.pg The set $B = \left\{ \begin{bmatrix} -1 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix} \right\}$ is a basis of the space of upper-triangular 2×2 matrices.

Find the coordinates of $M = \begin{bmatrix} -6 & 5 \\ 0 & 9 \end{bmatrix}$ with respect to this ba-

$$[M]_B = \begin{bmatrix} \cdots \\ \cdots \end{bmatrix}$$
.

Correct Answers:

- 6
- −7

87. (1 pt) Library/Rochester/setLinearAlgebra10Bases/ur_la_10_1.pg The vectors

$$v_1 = \begin{bmatrix} 1 \\ -6 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} -3 \\ 7 \\ -3 \end{bmatrix}, \text{ and } v_3 = \begin{bmatrix} -4 \\ 2 \\ k \end{bmatrix}$$

form a basis for \mathbb{R}^3 if and only if $k \neq$ ___

Correct Answers:

88. (1 pt) Library/TCNJ/TCNJ_IntroLinearTransformations-/problem2.pg

Let
$$A = \begin{bmatrix} 3 & -1 \\ 3 & 8 \\ 9 & -6 \end{bmatrix}$$
.

Let $A = \begin{bmatrix} 3 & -1 \\ 3 & 8 \\ 9 & -6 \end{bmatrix}$. Define the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ as T(x) = Ax. Find the images of $u = \begin{bmatrix} -2 \\ -4 \end{bmatrix}$ and $v = \begin{bmatrix} a \\ b \end{bmatrix}$ under T.

$$T(u) = \left[\begin{array}{c} ---- \\ ---- \end{array} \right]$$

$$T(v) = \left[\begin{array}{c} ---- \\ ---- \end{array} \right]$$

Correct Answers:

- −2
- -38
- (a*3+-1*b)
- (a*3+8*b)

89. (1 pt) Library/TCNJ/TCNJ_IntroLinearTransformations-/problem23.pg

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $T(x_1,x_2,x_3) = (x_1 - x_2,x_2 - x_3,x_3 - x_1).$

Find a vector $w \in \mathbb{R}^3$ that is not in the image of T.

Correct Answers:

• 23

90. (1 pt) Library/TCNJ/TCNJ_IntroLinearTransformations-/problem18.pg

Let
$$e_1 = (1,0)$$
, $e_2 = (0,1)$, $x_1 = (-3,-6)$, and $x_2 = (2,-7)$.

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that sends e_1 to x_1 and e_2 to x_2 .

If T maps (1,3) to the vector y, then $y = (\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$. Correct Answers:

- 3
- -27

(1 pt) Library/TCNJ/TCNJ_IntroLinearTransformations-/problem22.pg

$$Let A = \begin{bmatrix} 1 & 5 & 5 & -5 \\ 0 & 1 & 2 & -2 \\ -1 & -3 & -1 & 1 \end{bmatrix}$$

Find a vector w in \mathbb{R}^3 that is not in the image of the transformation $x \mapsto Ax$.

 $w = \underline{\hspace{1cm}}$

Correct Answers:

• 23

92. (1 pt) Library/TCNJ/TCNJ_IntroLinearTransformations-/problem1.pg

Let
$$A = \begin{bmatrix} 1 & 4 \\ -1 & 1 \end{bmatrix}$$
.

Let $A = \begin{bmatrix} 1 & 4 \\ -1 & 1 \end{bmatrix}$. Define the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ as T(x) = Ax.

Find the images of
$$u = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$
 and $v = \begin{bmatrix} a \\ b \end{bmatrix}$ under T .

$$T(u) = \begin{bmatrix} & & \\ & & & \end{bmatrix}$$
$$T(v) = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$

Correct Answers

- 21
- 4
- (a*1+4*b)
- (a*-1+1*b)

$93. \hspace{1.5cm} \hbox{(1 pt)} \hspace{0.2cm} Library/TCNJ/TCNJ_IntroLinearTransformations-\\/problem13.pg$

Let *A* be a 9×8 matrix. What must *a* and *b* be if we define the linear transformation by $T : \mathbb{R}^a \to \mathbb{R}^b$ as T(x) = Ax?

a = _____ *b* = ____

Correct Answers:

- 8
- 9

94. (1 pt) Library/TCNJ/TCNJ_IntroLinearTransformations/problem17.pg

Hello

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that sends the vector u = (5,2) into (2,1) and maps v = (1,3) into (-1,3). Use properties of a linear transformation to calculate

$$T(-5u) = (__, __), T(9v) = (__, __)$$

 $T(-5u+9v) = (___, ___)$

Correct Answers:

- −10
- −5
- −9
- 27
- -1922

95. (1 pt) Library/TCNJ/TCNJ_VectorSpaces/problem2.pg

Let H be the set of all vectors of the form: $\begin{bmatrix} 5t \\ 0 \\ 4t \end{bmatrix}$. Find a

vector v in \mathbb{R}^3 such that $H = Span\{v\}$.

$$v = \begin{bmatrix} \dots \\ \dots \end{bmatrix}.$$

$$Correct Answer$$

 \bullet a multiple of (5, 0, 4)

96. (1 pt) Library/TCNJ/TCNJ_VectorSpaces/problem4.pg

Let *W* be the set of all vectors of the form:

5s-2t -2s-4t 3s-5t 2s-4t

. Find

vectors u and v such that $W = Span\{u, v\}$.

$$u = \begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}, v = \begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}$$

Correct Answers:

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{5} \cr$

 $\mbox\{-2\} \cr$

\mbox{3} \cr

\mbox{2} \cr

 $\label{left.begin{array} (classification of the context of the$

 $\mbox\{-2\} \cr$

 $\mbox\{-4\} \cr$

 $\mbox{-5} \cr$

 $\mbox{-4} \cr$

\end{array}\right.\)

97. (1 pt) Library/TCNJ/TCNJ_VectorSpaces/problem3.pg

Let W be the set of all vectors of the form:

-3b+2c b . Find c

vectors u and v such that $W = Span\{u, v\}$.

$$u = \begin{bmatrix} - \\ - \\ - \end{bmatrix}, v = \begin{bmatrix} - \\ - \\ - \end{bmatrix}$$

$$Correct Answers:$$

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{-3} \c$

\mbox{1} \cr

\mbox{0} \cr

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c

\mbox{2} \cr

\mbox{0} \cr

\mbox{1} \cr

\end{array}\right.\)

${\bf 98.}\ (1\ pt)\ Library/TCNJ/TCNJ_VectorSpaces/problem {\bf 5.pg}$

Let
$$v_1 = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 12 \\ 3 \\ 16 \end{bmatrix}$, $v_3 = \begin{bmatrix} 46 \\ 12 \\ 60 \end{bmatrix}$ and $w = \begin{bmatrix} 8 \\ 4 \\ 10 \end{bmatrix}$

1. Is $w \text{ in } \{v_1, v_2, v_3\}$? Type "yes" or "no".

- 2. How many vectors are in $\{v_1, v_2, v_3\}$? Enter "inf" if the answer is infinitely many.
- 3. How many vectors are in $Span\{v_1, v_2, v_3\}$? Enter "inf" if the answer is infinitely many. _____
- 4. Is w in the subspace spanned by $\{v_1, v_2, v_3\}$? Type "yes" or "no".

Correct Answers:

- no
- 3
- inf
- yes

99. (1 pt) Library/TCNJ/TCNJ_VectorSpaces/problem6.pg

Determine if each of the following sets is a subspace of \mathbb{P}_n , for an appropriate value of n. Type "yes" or "no" for each answer.

Let W_1 be the set of all polynomials of the form $p(t) = at^2$, where a is in \mathbb{R} .

Let W_2 be the set of all polynomials of the form $p(t) = t^2 + a$, where a is in \mathbb{R} .

Let W_3 be the set of all polynomials of the form $p(t) = at^2 + at$, where a is in \mathbb{R} .

Correct Answers:

- yes
- no
- yes

${\bf 100.}\ (1\ pt)\ Library/TCNJ/TCNJ_OrthogonalSets/problem 4.pg$

Let
$$y = \begin{bmatrix} -10 \\ 5 \\ -8 \end{bmatrix}$$
 and $u = \begin{bmatrix} -3 \\ -4 \\ 7 \end{bmatrix}$. Describe y as the sum of two

orthogonal vectors, x_1 in $\overline{Span}\{u\}$ and x_2 orthogonal to u.

$$x_1 = \begin{vmatrix} \cdots \\ \cdots \end{vmatrix}$$
 , $x_2 = \begin{vmatrix} \cdots \\ \cdots \end{vmatrix}$

Correct Answers:

- 1.86486486486486
- 2.48648648648649
- -4.35135135135135
- -11.8648648648649
- 2.51351351351351
- -3.64864864864865

101. (1 pt) Library/TCNJ/TCNJ_OrthogonalSets/problem15.pg

Given
$$v = \begin{bmatrix} -1 \\ -2 \\ -7 \\ 6 \\ -10 \end{bmatrix}$$
, find the coordinates for v in the subspace

W spanned by
$$u_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \\ -1 \\ 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} -7 \\ 3 \\ 5 \\ 16 \\ 5 \end{bmatrix}$,

$$u_4 = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \text{ and } u_5 = \begin{bmatrix} -4 \\ -2 \\ 1 \\ -2 \\ 1 \end{bmatrix}. \text{ Note that } u_1, u_2, u_3, u_4 \text{ and } u_5$$
 are orthogonal.

$$v = \underline{\qquad} u_1 + \underline{\qquad} u_2 + \underline{\qquad} u_3 + \underline{\qquad} u_4 + \underline{\qquad} u_5$$
Correct Answers:

- -4
- -3.85714285714286
- 0.032967032967033
- -1.5
- -0.807692307692308

102. (1 pt) Library/TCNJ/TCNJ_OrthogonalSets/problem14.pg

Given
$$v = \begin{bmatrix} -10 \\ 5 \\ -6 \\ 8 \end{bmatrix}$$
, find the coordinates for v in the subspace

W spanned by
$$u_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 1 \\ 3 \\ 5 \\ 4 \end{bmatrix}$, $u_3 = \begin{bmatrix} 11 \\ -1 \\ 4 \\ -7 \end{bmatrix}$ and

$$u_4 = \begin{bmatrix} 0 \\ -3 \\ 1 \\ 1 \end{bmatrix}$$
. Note that u_1 , u_2 , u_3 and u_4 are orthogonal.

$$v = \underline{\qquad} u_1 + \underline{\qquad} u_2 + \underline{\qquad} u_3 + \underline{\qquad} u_4$$

Correct Answers:

- 1.333333333333333
- 0.137254901960784
- -1.0427807486631
- -1.1818181818181818

103. (1 pt) Library/TCNJ/TCNJ_OrthogonalSets/problem8.pg All vectors are in \mathbb{R}^n .

Check the true statements below:

- A. If the columns of an $m \times n$ matrix are orthonormal, then the linear mapping $x \to Ax$ preserves lengths.
- B. The orthogonal projection of y onto v is the same as the orthogonal projection of y onto cv whenever $c \neq 0$.
- C. If a set $S = \{u_1, ..., u_p\}$ has the property that $u_i \cdot u_j = 0$ whenever $i \neq j$, then S is an orthonormal set.
- D. Not every orthogonal set in \mathbb{R}^n is a linearly independent set.
- E. An orthogonal matrix is invertible.

Correct Answers:

• ABDE

104. (1 pt) Library/TCNJ/TCNJ_OrthogonalSets/problem16.pg

Suppose v_1, v_2, v_3 is an orthogonal set of vectors in \mathbb{R}^5 . Let w be a vector in Span (v_1, v_2, v_3) such that

$$v_1 \cdot v_1 = 45, v_2 \cdot v_2 = 145.25, v_3 \cdot v_3 = 25,$$

 $w \cdot v_1 = 135, w \cdot v_2 = -290.5, w \cdot v_3 = -75,$

then
$$w = v_1 + v_2 + v_3$$
.

- 3
- −2
- -3

105. (1 pt) Library/TCNJ/TCNJ_OrthogonalSets/problem3.pg

 $\begin{bmatrix} -7 \\ -4 \end{bmatrix}$. Describe y as the sum of two orthogonal vectors, x_1 in $Span\{u\}$ and x_2 orthogonal to u.

$$x_1 = \begin{bmatrix} & & \\ & & \end{bmatrix}$$
, $x_2 = \begin{bmatrix} & & \\ & & \end{bmatrix}$.

Correct Answers:

- -0.646153846153846
- -0.369230769230769
- -5.35384615384615
- 9.36923076923077

106. (1 pt) Library/TCNJ/TCNJ_OrthogonalSets/problem11.pg

Given
$$v = \begin{bmatrix} -9\\9\\0\\8 \end{bmatrix}$$
, find the coordinates for v in the subspace W

spanned by
$$u_1 = \begin{bmatrix} 3 \\ -3 \\ 3 \\ 0 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 3 \\ 0 \\ -3 \\ 1 \end{bmatrix}$ and $u_3 = \begin{bmatrix} -6 \\ -3 \\ 3 \\ 27 \end{bmatrix}$. Note

that u_1 , u_2 and u_3 are orthogonal

$$v = \underline{\qquad} u_1 + \underline{\qquad} u_2 + \underline{\qquad} u_3$$

Correct Answers:

- - −2 −1
 - 0.310344827586207

107. (1 pt) Library/TCNJ/TCNJ_OrthogonalSets/problem12.pg

Given
$$v = \begin{bmatrix} -5 \\ 3 \\ -9 \end{bmatrix}$$
, find the coordinates for v in the subspace W

spanned by
$$u_1 = \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ and $u_3 = \begin{bmatrix} 3 \\ -5 \\ -6 \end{bmatrix}$. Note

that u_1 , u_2 and u_3 are orthogonal

$$v = \underline{\hspace{1cm}} u_1 + \underline{\hspace{1cm}} u_2 + \underline{\hspace{1cm}} u_3$$

Correct Answers:

- -1.57142857142857
- -3.8
- 0.342857142857143

108. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem1.pg

Show that the vectors $\langle 1, 2, 1 \rangle$, $\langle 1, 3, 1 \rangle$, $\langle 1, 4, 1 \rangle$ do not span \mathbb{R}^3 by giving a vector not in their span: ____

Correct Answers:

• 23

109. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem13.pg Do the following sets of vectors span \mathbb{R}^3 ?

$$\boxed{?}1. \begin{bmatrix} -2\\2\\-1 \end{bmatrix}, \begin{bmatrix} -8\\8\\-3 \end{bmatrix}$$

$$\begin{array}{c}
? 2. \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ -7 \\ 7 \end{bmatrix}, \begin{bmatrix} 9 \\ -12 \\ 12 \end{bmatrix} \\
? 3. \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -6 \\ 3 \end{bmatrix}, \begin{bmatrix} -12 \\ 18 \\ -10 \end{bmatrix} \\
? 4. \begin{bmatrix} -3 \\ -2 \\ -2 \end{bmatrix}, \begin{bmatrix} 9 \\ 6 \\ 7 \end{bmatrix}, \begin{bmatrix} 12 \\ 8 \\ 9 \end{bmatrix}, \begin{bmatrix} 33 \\ 22 \\ 25 \end{bmatrix}$$

Correct Answers:

- No
- Yes
- No
- No

110. (1 pt) Library/TCNJ/TCNJ_MatrixEquations/problem3.pg Do the columns of the matrix span \mathbb{R}^3 ?

$$?1. A = \begin{bmatrix} 5 & 25 & 29 \\ 5 & 24 & 28 \\ 2 & 10 & 12 \end{bmatrix}$$

$$?2. A = \begin{bmatrix} -4 & -8 & 0 & 48 \\ -4 & -9 & 1 & 52 \\ 2 & 4 & 0 & -24 \end{bmatrix}$$

$$?3. A = \begin{bmatrix} 9 & 9 & -9 \\ -4 & -4 & 4 \\ 1 & 1 & -1 \end{bmatrix}$$

$$?4. A = \begin{bmatrix} -3 & 5 \\ -2 & -6 \\ -6 & 8 \end{bmatrix}$$

Correct Answers:

- Yes
- No
- No
- No

111. (1 pt) Library/TCNJ/TCNJ_OrthogonalProjections/problem2.pg

Let
$$y = \begin{bmatrix} 8 \\ 9 \\ -2 \end{bmatrix}$$
, $u_1 = \begin{bmatrix} -3 \\ -2 \\ 2 \end{bmatrix}$, $u_2 = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$. Compute the

distance d from y to the plane in \mathbb{R}^3 spanned by u_1 and u_2 .

Correct Answers:

0.171498585142508

${\bf 112.}\ (1\ pt)\ Library/TCNJ/TCNJ_Orthogonal Projections/problem 7.pg$

Find the projection of
$$v = \begin{bmatrix} 5 \\ -5 \\ -2 \end{bmatrix}$$
 onto the line l of \mathbb{R}^3 given by

the parametric equation
$$l = tu$$
, where $u = \begin{bmatrix} -1 \\ 3 \\ -4 \end{bmatrix}$

Correct Answers:

- 0.461538461538462
- -1.38461538461538
- 1.84615384615385

113. (1 pt) Library/TCNJ/TCNJ_OrthogonalProjections/problem5.pg All vectors and subspaces are in \mathbb{R}^n .

Check the true statements below:

- A. If W is a subspace of \mathbb{R}^n and if v is in both W and W^{\perp} , then v must be the zero vector.
- B. If an $n \times p$ matrix U has orthonormal columns, then $UU^Tx = x$ for all x in \mathbb{R}^n .
- C. If $y = z_1 + z_2$, where z_1 is in a subspace W and z_2 is in W^{\perp} , then z_1 must be the orthogonal projection of y onto W.
- D. The best approximation to y by elements of a subspace W is given by the vector $y \text{proj}_W(y)$.
- E. In the Orthogonal Decomposition Theorem, each term $\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + ... + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$ is itself an orthogonal projection of y onto a subspace of W.

Correct Answers:

• ACE

114. (1 pt) Library/TCNJ/TCNJ_OrthogonalProjections/problem9.pg

Find the projection of
$$v = \begin{bmatrix} -2 \\ 13 \\ -17 \end{bmatrix}$$
 onto the subspace V of \mathbb{R}^3 spanned by $\begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} -6 \\ 6 \\ -2 \end{bmatrix}$.

$$\operatorname{proj}_{V}(v) = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$
.

- -10.2622950819672
- 5.77049180327869
- -13.9016393442623

115. (1 pt) Library/TCNJ/TCNJ_OrthogonalProjections/problem6.pg Find the shortest distance from the point P = (-5, 4, -2) to a point on the line given by l: (x, y, z) = (-7t, 5t, -1t). The distance is _______.

Correct Answers:

1.29614813968157

$\begin{tabular}{lll} \bf 116. & (1 & pt) & Library/TCNJ/TCNJ_MatrixLinearTransformation-/problem25.pg \end{tabular}$

Let T be an onto linear transformation from \mathbb{R}^r to \mathbb{R}^s .

- $\underline{\hspace{0.5cm}}$ 1. What can one say about the relationship between r and s.
 - A. r < s
 - B. r > s
 - C. $r \ge s$
 - D. $r \leq s$
 - E. There is not enough information to tell

Correct Answers:

• C

${\bf 117.} \qquad (1\ \ pt)\ \ Library/TCNJ/TCNJ_MatrixLinearTransformation-/problem 18.pg$

Let T be an injective linear transformation from \mathbb{R}^r to \mathbb{R}^s . Let A be the matrix associated to T and let B be the row-echelon reduction of A.

- ___1. Determine which of the following conditions can hold:
 - A. r = 5, s = 7 and B has 5 pivots.
 - B. r = 5, s = 7 and B has 4 pivots.
 - C. r = 7, s = 5 and B has 5 pivots.
 - D. r = 7, s = 5 and B has 4 pivots.
 - E. None of the above.

Correct Answers:

A

${\bf 118.} \qquad (1\ \ pt) \ \ Library/TCNJ/TCNJ_MatrixLinearTransformation-/problem22.pg$

Match the following concepts with the correct definitions:

- ___1. f is a function from \mathbb{R}^3 to \mathbb{R}^3
- 2. f is an onto function from \mathbb{R}^3 to \mathbb{R}^3
- $_$ 3. f is a one-to-one function from \mathbb{R}^3 to \mathbb{R}^3
 - A. For every $y \in \mathbb{R}^3$, there is a $x \in \mathbb{R}^3$ such that f(x) = y.
 - B. For every $x \in \mathbb{R}^3$, there is a $y \in \mathbb{R}^3$ such that f(x) = y.
 - C. For every $y \in \mathbb{R}^3$, there is a unique $x \in \mathbb{R}^3$ such that f(x) = y.
 - D. For every $y \in \mathbb{R}^3$, there is at most one $x \in \mathbb{R}^3$ such that f(x) = y.

- B
- A
- D

(1 pt) Library/TCNJ/TCNJ_MatrixLinearTransformation-119. /problem20.pg

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T(x,y) = (12x - 12y, 6x - 6y)$$

Find a vector w that is not in the image of T.

Correct Answers:

• 23

120. (1 pt) Library/TCNJ/TCNJ_MatrixLinearTransformation-/problem4.pg

Let T be the linear transformation defined by

$$T(x_1, x_2, x_3) = (5x_1 + 4x_3, 9x_1 - 3x_2 + x_3, 7x_1 + 8x_2, 2x_1 - x_2 - 6x_3).$$

Its associated matrix A is an $n \times m$ matrix,

where $n = \underline{\hspace{1cm}}$, and $m = \underline{\hspace{1cm}}$.

Correct Answers:

- 4
- 3

121. (1 pt) Library/TCNJ/TCNJ_MatrixLinearTransformation-/problem3.pg

Let T be the linear transformation defined by

$$T(x_1, x_2, x_3, x_4, x_5) = -9x_1 + 6x_2 + 7x_3 + 5x_4 - 8x_5.$$

Its associated matrix A is a $\longrightarrow \times \longrightarrow$ matrix.

Correct Answers:

- 1
- 5

122. $(1\ pt)\ Library/TCNJ/TCNJ_MatrixLinearTransformation-$ /problem9.pg

Consider a linear transformation T from \mathbb{R}^3 to \mathbb{R}^2 for which

$$\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} = \begin{bmatrix}
1 \\
2 \\
6
\end{bmatrix}, \quad T \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} = \begin{bmatrix}
7 \\
4 \\
3
\end{bmatrix}, \quad T \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} = \begin{bmatrix}
5 \\
9 \\
0
\end{bmatrix}$$

Find the matrix \overline{A} of T

Correct Answers:

- 1

123. (1 pt) Library/TCNJ/TCNJ_MatrixLinearTransformation-/problem10.pg

To every linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 , there is an associated 2×2 matrix. Match the following linear transformations with their associated matrix.

- --1. The projection onto the x-axis given by T(x,y)=(x,0)
- ___2. Reflection about the line y=x
- $_3$. Clockwise rotation by $\pi/2$ radians
- ____4. Reflection about the *x*-axis
- ____5. Reflection about the y-axis
- <u>6.</u> Counter-clockwise rotation by $\pi/2$ radians

A.
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

B.
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

C.
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

D.
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

E.
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

F.
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

G. None of the above

Correct Answers:

- F
- D

124. (1 pt) Library/TCNJ/TCNJ_MatrixLinearTransformation-/problem6.pg

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that first rotates points clockwise through 30° and then reflects points through the line y = x.

Find the standard matrix A for T.

$$A = \begin{bmatrix} --- \\ --- \end{bmatrix}$$
Correct Answers:

- −0.5 • 0.866025403784439
- 0.866025403784439
- 0.5

125. (1 pt) Library/TCNJ/TCNJ_LinearIndependence/problem2.pg

Determine whether or not the following sets S of 2×2 matrices are linearly independent.

$$\begin{array}{l}
? 1. S = \left\{ \begin{pmatrix} 1 & 4 \\ -4 & 3 \end{pmatrix}, \begin{pmatrix} 4 & 1 \\ 1 & -4 \end{pmatrix}, \begin{pmatrix} 4 & -4 \\ 1 & 0 \end{pmatrix} \right\} \\
? 2. S = \left\{ \begin{pmatrix} -1 & 6 \\ 5 & 0 \end{pmatrix}, \begin{pmatrix} 5 & -30 \\ -25 & 0 \end{pmatrix} \right\} \\
? 3. S = \left\{ \begin{pmatrix} -1 & 6 \\ 5 & 0 \end{pmatrix}, \begin{pmatrix} 5 & -55 \\ 5 & 0 \end{pmatrix} \right\} \\
? 4. S = \left\{ \begin{pmatrix} -1 & 6 \\ 5 & 0 \end{pmatrix}, \begin{pmatrix} 5 & -55 \\ 5 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -3 \\ 9 & 10 \end{pmatrix}, \begin{pmatrix} 6 & -1 \\ -30 & -5 \end{pmatrix} \right\}$$

Correct Answers:

- Linearly_Independent
- Linearly_Dependent
- Linearly_Independent
- Linearly_Dependent

126. (1 pt) Library/TCNJ/TCNJ_LengthOrthogonality/problem4.pg

Let W be the set of all vectors $\begin{bmatrix} x \\ y \\ x + y \end{bmatrix}$ with x and y real.

Determine whether each of the following vectors is in W^{\perp} .

$$?1. v = \begin{bmatrix} 7 \\ -8 \\ 8 \\ 2 \end{bmatrix}$$

$$?2. v = \begin{bmatrix} 2 \\ 9 \\ -7 \\ 3 \\ -3 \end{bmatrix}$$

$$?3. v = \begin{bmatrix} 3 \\ 3 \\ -3 \end{bmatrix}$$

Correct Answers:

- No
- No
- Yes

127. (1 pt) Library/TCNJ/TCNJ_LengthOrthogonality/problem7.pg

Let W be the set of all vectors $\begin{vmatrix} x \\ y \\ x + y \end{vmatrix}$ with x and y real.

Determine whether each of the following vectors is in W^{\perp} .

$$\begin{array}{c}
? 1. \ v = \begin{bmatrix} 9 \\ -8 \\ -1 \end{bmatrix} \\
? 2. \ v = \begin{bmatrix} 6 \\ -9 \\ 7 \end{bmatrix}$$

$$\boxed{?}3. \ \ v = \begin{bmatrix} 5 \\ 5 \\ -5 \end{bmatrix}$$

Correct Answers:

- No
- No
- Yes

128. (1 pt) Library/TCNJ/TCNJ_LengthOrthogonality/problem3.pg

Let W be the set of all vectors $\begin{bmatrix} x \\ y \\ x + y \end{bmatrix}$ with x and y real. Find

• a multiple of (-1, -1, 1)

129. (1 pt) Library/TCNJ/TCNJ_LengthOrthogonality/problem6.pg

Find the angle α between the vectors $\begin{bmatrix} 1 \\ -4 \end{bmatrix}$ and $\begin{bmatrix} 5 \\ 4 \end{bmatrix}$.

Correct Answers:

• 2.00055860589159

${\bf 130.} \qquad (1\ pt)\ Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/problem2.pg$

$$Let A = \begin{bmatrix} 2 & -3 & 7 \\ -5 & -3 & -7 \\ -4 & -5 & -3 \\ 2 & 4 & 0 \\ -5 & -9 & -1 \end{bmatrix}$$

Give a basis for the column space of A.

$$u = \begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}, v = \begin{bmatrix} - \\ - \\ - \end{bmatrix}$$

Correct Answers:

• \(\displaystyle\left.\begin{array}{c}

\mbox{2} \cr

 $\mbox{-5} \cr$

 $\mbox{-4} \cr$

 $\mbox{2} \cr$

 $\mbox{-5} \cr$

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c}

 $\mbox{-3} \cr$

 $\mbox{-3} \cr$

 $\mbox{-5} \cr$

\mbox{4} \cr

 $\mbox{-9} \cr$

\end{array}\right.\)

${\bf 131.} \qquad (1\ pt)\ Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/problem4.pg$

Determine which of the following pairs of functions are linearly independent.

? 1.
$$f(t) = 3t^2 + 21t$$
 , $g(t) = 3t^2 - 21t$

$$\boxed{?} 2. \ f(\theta) = \cos(3\theta) \quad , \quad g(\theta) = 3\cos^3(\theta) - 6\cos(\theta)$$

? 3.
$$f(t) = 17t^3$$
 , $g(t) = e^x$

7. 4.
$$f(x) = x^3$$
, $g(x) = |x|^3$

75.
$$f(x,y) = 2x - 4y - 12$$
, $g(x,y) = -3x + 6y + 18$

$$\boxed{?} 6. \ f(t) = e^{\lambda t} \cos(\mu t) \quad , \quad g(t) = e^{\lambda t} \sin(\mu t) \quad , \mu \neq 0$$

7.
$$f(x) = x^2$$
, $g(x) = 4|x|^2$

$$8. \ f(x) = e^{3x} \quad , \quad g(x) = e^{3(x-3)}$$

? 9.
$$f(t) = 3t$$
 , $g(t) = |t|$

Correct Answers:

- Linearly independent
- Linearly dependent
- Linearly independent
- Linearly independent
- Linearly independent
- Linearly independent
- Linearly dependent
- Linearly dependent
- Linearly independent

${\bf 132.} \qquad (1\ pt)\ Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/problem7.pg$

Let
$$W_1$$
 be the set: $\begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 9 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -3 \\ 5 \end{bmatrix}$

Determine if W_1 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W_1 is a basis.
- B. W_1 is not a basis because it is linearly dependent.
- C. W_1 is not a basis because it does not span \mathbb{R}^3 .

Let
$$W_2$$
 be the set: $\begin{bmatrix} -2 \\ 3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -1 \\ 5 \end{bmatrix}$.

Determine if W_2 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W₂ is not a basis because it is linearly dependent.
- B. W_2 is not a basis because it does not span \mathbb{R}^3 .
- C. W_2 is a basis.

Correct Answers:

- B
- B

${\bf 133.} \qquad (1\ \ pt)\ \ Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-\\/problem1.pg$

Let
$$A = \begin{bmatrix} -5 & 4 & -1 & -2 & 1 \\ 4 & 4 & 2 & -4 & 3 \\ -14 & 4 & -4 & 0 & -1 \end{bmatrix}$$

Give a basis for the row space of A.

$$u = \begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}, v = \begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}.$$

Correct Answers:

- \(\displaystyle\left.\begin{array}{c}
 - $\mbox{-5} \c$
 - \mbox{4} \cr
 - $\mbox\{-1\} \cr$
 - $\mbox{-2} \cr$
 - $\mbox{1} \cr$
 - \end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c
 - $\mbox{4} \cr$
 - $\mbox{4} \cr$
 - $\mbox{2} \cr$
 - \mbox{-4} \cr
 - \mbox{3} \cr
 - \end{array}\right.\)

$134. \hspace{1.5cm} (1 \hspace{1em} pt) \hspace{1em} Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-\\/problem3.pg$

Let
$$A = \begin{bmatrix} 2 & -3 & 5 & 1 & 1 \\ 2 & 4 & 5 & 1 & 3 \\ 2 & -10 & 5 & 1 & -1 \end{bmatrix}$$

Give a basis for the row space of A.

$$u = \begin{bmatrix} - \\ - \\ - \end{bmatrix}, v = \begin{bmatrix} - \\ - \\ - \end{bmatrix}.$$

- \(\displaystyle\left.\begin{array}{c}
 - \mbox{2} \cr
 - $\mbox{-3} \cr$
 - $\mbox{5} \cr$
 - \mbox{1} \cr
 - \mbox{1} \cr
 - \end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c
 - $\mbox{2} \c$
 - \mbox{4} \cr
 - \mbox{5} \cr
 - \mbox{1} \cr
 - \mbox{3} \cr
 - \end{array}\right.\)

135. (1 pt) Library/TCNJ/TCNJ_BasesLinearlyIndependentSet/problem5.pg

Let
$$W_1$$
 be the set: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Determine if W_1 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W_1 is not a basis because it is linearly dependent.
- B. W_1 is not a basis because it does not span \mathbb{R}^3 .
- C. W_1 is a basis.

Let
$$W_2$$
 be the set: $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

Determine if W_2 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W_2 is not a basis because it is linearly dependent.
- B. W_2 is not a basis because it does not span \mathbb{R}^3 .
- C. W_2 is a basis.

Correct Answers:

- C
- AB

${\bf 136.} \qquad (1\ pt)\ Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/problem9.pg$

Check the true statements below:

- A. If $H = Span\{b_1,...,b_p\}$, then $\{b_1,...,b_p\}$ is a basis for H.
- B. A basis is a spanning set that is as large as possible.
- C. The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^n .
- D. In some cases, the linear dependence relations amoung the columns of a matrix can be affected by certain elementary row operations on the matrix.
- E. A single vector by itself is linearly dependent.

Correct Answers:

• C

${\bf 137.} \qquad {\bf (1~pt)~Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/problem10.pg}$

Determine whether each set $\{p_1, p_2\}$ is a linearly independent set in \mathbb{P}_3 . Type "yes" or "no" for each answer.

The polynomials $p_1(t) = 1 + t^2$ and $p_2(t) = 1 - t^2$.

The polynomials $p_1(t) = 2t + t^2$ and $p_2(t) = 1 + t$.

The polynomials $p_1(t) = 2t - 4t^2$ and $p_2(t) = 6t^2 - 3t$. ______

• yes

- yes
- no

138. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem4.pg

Let
$$u = \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix}$$
 and $v = \begin{bmatrix} 4 \\ -9 \\ 7 \end{bmatrix}$

Find two vectors in $span\{u,v\}$ that are not multiples of u or v and show the weights on u and v used to generate them.

$$\underline{\hspace{1cm}} u + \underline{\hspace{1cm}} v = \underline{\hspace{1cm}}$$

Correct Answers:

- •
- •
- •

139. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem7.pg

Let
$$A = \begin{bmatrix} -3 & 3 & 9 \\ 1 & 1 & -1 \\ 4 & -2 & -9 \end{bmatrix}$$
 and $b = \begin{bmatrix} 6 \\ -4 \\ 4 \end{bmatrix}$.

Denote the columns of A by a_1 , a_2 , a_3 , and let $W = span\{a_1, a_2, a_3\}$.

- ? 1. Determine if b is in W
- ? 2. Determine if b is in $\{a_1, a_2, a_3\}$

How many vectors are in $\{a_1, a_2, a_3\}$? (For infinitely many, enter -1)

How many vectors are in W? (For infinitely many, enter -1)

Correct Answers:

- Yes
- No
- 3

140. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem1.pg

Let x, y, z be vectors and suppose z = -3x - 1y and w = 3x + 2y + 1z.

Mark the statements below that must be true.

- A. Span(x, y)=Span(w)
- B. Span(y, w) = Span(z)
- C. Span(y) = Span(w)
- D. Span(x, y) = Span(x, w, z)

Correct Answers:

• CD

141. (1 pt) Library/TCNJ/TCNJ_LengthOrthogonality/problem2.pg All vectors are in \mathbb{R}^n .

Check the true statements below:

- A. If x is orthogonal to every vector in a subspace W, then x is in W[⊥].
- B. If $||u||^2 + ||v||^2 = ||u + v||^2$, then *u* and *v* are orthogonal.
- C. For an m × n matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.
- D. $u \cdot v v \cdot u = 0$.
- E. For any scalar c, ||cv|| = c||v||.

Correct Answers:

• ABCD

142. (1 pt) Library/TCNJ/TCNJ_LengthOrthogonality/problem4.pg

Let W be the set of all vectors $\begin{bmatrix} x \\ y \\ x + y \end{bmatrix}$ with x and y real.

Determine whether each of the following vectors is in W^{\perp} .

$$\begin{array}{c}
? 1. \ v = \begin{bmatrix} 2 \\ 2 \\ -2 \end{bmatrix} \\
? 2. \ v = \begin{bmatrix} 1 \\ 4 \\ 8 \end{bmatrix} \\
? 3. \ v = \begin{bmatrix} 8 \\ 1 \\ -8 \end{bmatrix}$$

Correct Answers:

- Yes
- No
- No

143. (1 pt) Library/TCNJ/TCNJ_LengthOrthogonality/problem6.pg

Find the angle α between the vectors $\begin{bmatrix} -4 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ -5 \end{bmatrix}$. $\alpha = \underline{\qquad}$

Correct Answers:

• 2.89661399046293

${\bf 144.} \qquad (1\ pt)\ Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/problem2.pg$

$$Let A = \begin{bmatrix} 5 & 1 & 9 \\ -3 & 4 & -10 \\ -2 & -2 & -2 \\ 1 & 2 & 0 \\ 3 & 7 & -1 \end{bmatrix}$$

Give a basis for the column space of A.

$$u = \begin{bmatrix} - \\ - \\ - \\ - \\ - \end{bmatrix}, v = \begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}$$

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{5} \cr$

\mbox{-3} \cr

 $\mbox{-2} \c$

\mbox{1} \cr

\mbox{3} \cr

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c

 $\mbox{1} \cr$

 $\mbox{4} \cr$

 $\mbox{-2} \c$

 $\mbox{2} \c$

 $\mbox{7} \c$

\end{array}\right.\)

${\bf 145.} \qquad (1\ pt)\ Library/TCNJ/TCNJ_BasesLinearlyIndependentSet/problem7.pg$

Let
$$W_1$$
 be the set: $\begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 9 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -3 \\ 5 \end{bmatrix}$.

Determine if W_1 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W_1 is a basis.
- B. W_1 is not a basis because it does not span \mathbb{R}^3 .
- \bullet C. W_1 is not a basis because it is linearly dependent.

Let
$$W_2$$
 be the set: $\begin{bmatrix} -2 \\ 3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -1 \\ 5 \end{bmatrix}$.

Determine if W_2 is a basis for \mathbb{R}^3 and check the correct answer(s) below.

- A. W_2 is a basis.
- B. W_2 is not a basis because it does not span \mathbb{R}^3 .
- \bullet C. W_2 is not a basis because it is linearly dependent.

Correct Answers:

- C
- B

${\bf 146.} \qquad (1\ pt)\ Library/TCNJ/TCNJ_BasesLinearlyIndependentSet-/problem1.pg$

$$Let A = \begin{bmatrix} -5 & 3 & -2 & -5 & -4 \\ 5 & -3 & 2 & -10 & -7 \\ -15 & 9 & -6 & 0 & -1 \end{bmatrix}$$

Give a basis for the row space of A.

$$u = \begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}, v = \begin{bmatrix} - \\ - \\ - \\ - \end{bmatrix}$$

• \(\displaystyle\left.\begin{array}{c}

 $\mbox{-5} \cr$

 $\mbox{3} \cr$

 $\mbox\{-2\} \cr$

 $\mbox\{-5\}\ \cr$

 $\mbox{5} \cr$

 $\mbox{-3} \cr$

\mbox{2} \cr

 $\mbox\{-10\} \cr$

 $\mbox\{-7\} \cr$

\end{array}\right.\)

147. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem8.pg

Find the value of a for which

$$v = \begin{bmatrix} 5 \\ a \\ -7 \\ -7 \end{bmatrix}$$

is in the set

$$H = span \left\{ \begin{bmatrix} 5\\2\\-3\\5 \end{bmatrix}, \begin{bmatrix} 0\\-3\\2\\-4 \end{bmatrix}, \begin{bmatrix} 0\\0\\-3\\-4 \end{bmatrix} \right\}.$$

a = _____

Correct Answers:

−1

148. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem5.pg

Let $H = span\{u, v\}$. For each of the following sets of vectors determine whether H is a line or a plane.

? 1.
$$u = \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix}$$
, $v = \begin{bmatrix} -10 \\ 5 \\ -5 \end{bmatrix}$,

 ? 2. $u = \begin{bmatrix} 8 \\ -2 \\ -3 \end{bmatrix}$, $v = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$,

 ? 3. $u = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$, $v = \begin{bmatrix} -12 \\ -12 \\ -4 \end{bmatrix}$,

 ? 4. $u = \begin{bmatrix} -2 \\ 2 \\ -1 \end{bmatrix}$, $v = \begin{bmatrix} -8 \\ 6 \\ -4 \end{bmatrix}$,

Correct Answers:

- Plane
- Line
- Line
- Plane

149. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem9.pg

Find the value of a for which

$$\operatorname{array} \left\{ \begin{bmatrix} -2 \\ -1 \\ c \\ -4 \\ a \end{bmatrix} \right\}$$

is in the set

$$H = span \left\{ \begin{bmatrix} -1\\ -3\\ -5\\ 3 \end{bmatrix}, \begin{bmatrix} 0\\ 5\\ 1\\ 5 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ -5\\ -2 \end{bmatrix} \right\}.$$

a =

Correct Answers:

• 13

150. (1 pt) Library/TCNJ/TCNJ_VectorEquations/problem6.pg Let $u = \langle -1, -2, -1 \rangle$ and $v = \langle -1, 1, 2 \rangle$

Find a vector w not in $span\{u, v\}$.

 $w = _{-}$ Correct Answers:

• 23

151. (1 pt) Library/TCNJ/TCNJ_LinearTransformations-/problem20.pg

Let
$$A = \begin{bmatrix} -1 & -8 & -9 \\ 6 & 3 & -9 \end{bmatrix}$$
.

Define the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ as T(x) = Ax. Find the images of $u = \begin{bmatrix} -5 \\ 5 \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ under T.

$$T(u) = \begin{bmatrix} & & \\ & & \end{bmatrix}$$
$$T(v) = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

- (a*-1+-8*b+-9*c)
- (a*6+3*b+-9*c)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America