$oxed{1}$ Montrer que les intégrales généralisées suivantes sont convergentes :

$$I_1 = \int_0^{+\infty} \frac{\cos x}{\sqrt{e^x - 1}} dx, \quad I_2 = \int_1^{+\infty} \ln\left(1 + \frac{\cos x}{x}\right) dx, \quad I_3 = \int_1^{+\infty} \left(\exp\left(\frac{\sin x}{x}\right) - 1\right) dx$$

$$I_4 = \int_1^{+\infty} \sin(x^2) dx. \text{ (Utiliser le changement de variable } y = x^2\text{)}$$

- Soit $f:[0,+\infty[\to \mathbb{R}$ une foction continue. On suppose que l'intégrale $\int_0^{+\infty} f(t)\,dt$ est convergente.
- 1) Soit $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ deux suites qui vérifient $\lim_{n\to+\infty}x_n=\lim_{n\to+\infty}y_n=+\infty$. Montrer que

$$\lim_{n \to +\infty} \int_{x_{-}}^{y_n} f(t) dt = 0.$$

2) Application: Montrer que

$$\forall n \in \mathbb{N}, \quad \int_{(2n+1)\pi}^{(2n+2)\pi} e^{-t\sin t} dt \ge \pi.$$

En déduire que l'intégrale $\int_0^{+\infty} e^{-t \sin t} \, dt$ est divergente.

3 Soit α un réel. On cosidère les intégrales

$$I_{\alpha} = \int_{1}^{+\infty} \frac{\cos(\ln(t))}{t^{\alpha}} dt \quad \text{et} \quad J_{\alpha} = \int_{1}^{+\infty} \frac{\sin(\ln(t))}{t^{\alpha}} dt$$

- 1) On suppose que $\alpha > 1$. Montrer que I_{α} et J_{α} sont convergentes.
- 2) Pour tout réel α , on désigne par f_α et g_α les fonctions définies sur $[1,+\infty[$ par :

$$\forall t \geq 1, \quad f_{\alpha}(t) = \frac{\cos\left(\ln(t)\right)}{t^{\alpha}} \quad \text{et} \quad g_{\alpha}(t) = \frac{\sin\left(\ln(t)\right)}{t^{\alpha}}.$$

a) Calculer $(1-\alpha)f'_{\alpha-1}(t)+g'_{\alpha-1}(t)$ et $(1-\alpha)g'_{\alpha-1}(t)-f'_{\alpha-1}(t)$.

b) En déduire que pour tout réel $\alpha > 1$, on a

$$I_{\alpha} = \frac{\alpha - 1}{\alpha^2 - 2\alpha + 2}$$
 et $J_{\alpha} = \frac{1}{\alpha^2 - 2\alpha + 2}$.

- 3) Montrer que pour tout réel $\alpha \leq 1$, les intégrales I_{α} et J_{α} sont divergentes.
- 4 1) Montrer que pour tous réel a > 0 les intégrales généralisées

$$\int_0^1 \frac{\ln(t)}{a^2 + t^2} dt \quad \text{et} \quad \int_1^{+\infty} \frac{\ln(t)}{a^2 + t^2} dt$$

sont convergentes. On pose $I = \int_0^{+\infty} \frac{\ln(t)}{a^2 + t^2} dt$.

2) Pour tout $\varepsilon>0$ et tout M>0, on pose $I(\varepsilon,M)=\int_{\varepsilon}^{M}\frac{\ln(t)}{a^2+t^2}dt$.

A l'aide du changement de variable $x = \frac{a^2}{t}$. Montrer que

$$I(\varepsilon, M) = -2\ln(a) \int_{a^2/\varepsilon}^{a^2/M} \frac{dx}{a^2 + x^2} + \int_{a^2/\varepsilon}^{a^2/M} \frac{\ln x}{a^2 + x^2} dx.$$

- 3) Calculer $\int_0^{+\infty} \frac{dx}{a^2 + x^2}$. En déduire que $I = \frac{\pi}{2a} \ln a$.
- 1) a) Montrer que l'intégrale généralisée $\int_0^{+\infty} \frac{1-\cos x}{x^2} dx$ est convergente.
- b) Pour tout $\varepsilon>0$ et tout M>0, on pose $I(\varepsilon,M)=\int_{\varepsilon}^{M}\frac{1-\cos x}{x^2}\,dx.$

A l'aide d'une intégration par paties, montrer que

$$I(\varepsilon, M) = \frac{1 - \cos \varepsilon}{\varepsilon} - \frac{1 - \cos M}{M} + \int_{\varepsilon}^{M} \frac{\sin x}{x} dx.$$

En déduire que $\int_0^{+\infty} \frac{1 - \cos x}{x^2} dx = \frac{\pi}{2}.$

2) Montrer que l'intégrale généralisée $\int_0^{+\infty} \frac{\sin^2 x}{x^2} dx$ est convergente et on a

$$\int_0^{+\infty} \frac{\sin^2 x}{x^2} \, dx = \int_0^{+\infty} \frac{1 - \cos x}{x^2} \, dx = \frac{\pi}{2}.$$

Indication : On rappel que $\sin^2 x = \frac{1 - \cos(2x)}{2}$.

- **6** Pour tout entier naturel n on pose $I_n = \int_0^{+\infty} x^n e^{-\frac{x^2}{2}} dx$.
- 1) Montrer que l'intégrale \mathcal{I}_n est convergente. Calculer \mathcal{I}_1 .
- 2) Montrer que $\forall n \in \mathbb{N}$, $I_{n+2} = (n+1)I_n$.
- 3) On admet que $I_0 = \sqrt{\frac{\pi}{2}}$. Montrer que

$$\forall n \in \mathbb{N}, \quad I_{2n} = \frac{(2n)!}{2^n n!} \sqrt{\frac{\pi}{2}} \quad \text{et} \quad I_{2n+1} = 2^n n!.$$