

Machine Learning for Noninvasive Glucose Tracking

Prepared By: Michael Walker

1. Introduction

Problem:

- Prediabetes affects 1 in 3 people, with a 10% annual risk of developing type 2 diabetes.
- No noninvasive, commercially available methods exist for self-management.

Project Highlights:

- Explored the feasibility of using smartwatches and food logs to predict glucose levels.
- Leveraged 25,000 simultaneous glucose, food log, and smartwatch measurements.

Outcome:

 Developed a machine learning model achieving a 13% Mean Absolute Percent Error in real-time glucose prediction.

Target Audience

- Healthcare Professionals
- Researchers: Data scientists and academics.
- Patients: Individuals managing prediabetes.
- Engineers: Those working on health devices.
- Investors: Those interested in health tech.

2. Data Overview + Project Outline

This dataset is downloaded from a study conducted at Duke University:

- 16 participants
- 8-10 days using Dexcom G6 and Empatica E4 devices.
- 25,000+ interstitial glucose readings, along with PPG, EDA, skin temperature, heart rate, interbeat interval, and triaxial accelerometry data, all stored in CSV files.
- Food logs were included
- Demographic details and HbA1c values recorded.

Files were available for each of the 16 patients and were merged for comprehensive analysis:

- ACC.csv (Accelerometer data)
- BVP.csv (Blood Volume Pulse data)
- Dexcom.csv (Glucose readings)
- EDA.csv (Electrodermal activity)
- Food_Log.csv (Food intake log)
- HR.csv (Heart rate data)
- IBI.csv (Interbeat interval data)
- TEMP.csv (Temperature data)
- DEMOGRAPHICS.csv (Demographics data)

Project Outline:

Data Wrangling + Preprocessing

- Dataset: Over 25,000 glucose readings from Dexcom G6 and physiological data from Empatica E4, plus food logs.
- Tasks: Clean, synchronize, and integrate.

Feature Engineering

- Features: Derived from wearables (PPG, EDA, heart rate, accelerometry) and dietary logs.
- Goal: Convert raw data into inputs for modeling.

Model Training

- Models: Various machine learning algorithms were trained to predict glucose levels.
- Metrics: Evaluated using Root Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE).

Real-Time Glucose Prediction

 Application: Provides what would be real-time glucose predictions based on current wearable and food log data.

Evaluation

 Validation: Assessed through Leave-One-Group-Out cross-validation (LOGO-CV) and error metrics.

3. Data Wrangling and Cleaning

Wearable Data

- Issue: Align patient data with 5-minute glucose readings.
- **Solution**: Early Feature Engineering with statistics, resampled to 5-minute intervals, and applied universal wrangling.

Food Log Data

- Issue: Inconsistent column names and formats.
- Solution: Standardized columns, merged logs, forward filled.

Wearable + Food Log + Demographic Data Integration

- Issue: Required alignment of multiple data types.
- Solution: Preprocessed, merged datasets, encoded categories.

Wrangling Overview

•	•	•	•
Wearables df	Food Log df	Demographics df	Combined df
Resampled aligned with Glucose sampling	Removed unnecessary columns	Sex, HbA1c, and Patient ID information	Integrated each df into a single, larger df

Required Resampling on Glucose

CSV	Description	Source	Sampling Period
ACC 001	Tri-axial accelerometry (X-Y-Z)	Empatica E4	0.03 s
BVP 001	Blood volume pulse	Empatica E4	0.02 s
Dexcom 001	Interstitial glucose concentration (mg/dL)	Dexcom G6	300.00 s
EDA 001	Electrodermal activity	Empatica E4	0.25 s
HR 001	Heart Rate	Empatica E4	1.24 s
IBI_001	Interbeat interval	Empatica E4	0.98 s
TEMP_001	Skin Temperature	Empatica E4	0.25 s
food log	Food intake with time and nutritional information	User input	As needed
demographics_csv	Sex, HbA1c, Patient ID	User input	One time

4. Exploratory Data Analysis (EDA)

- Glucose: Roughly normal distribution, centered 100-120 mg/dL, mostly 70-150 mg/dL.
- Patient ID: Most patients have ~1,500 samples; patient 15 has 500 samples.
- acc_x_max: Right-skewed with many high values.
- eda max: Highly skewed, mostly near zero.
- temp_mean: Left-skewed, mostly 32-34°C.
- ibi_q1: Slightly left-skewed, centered around 0.75s
- food_sugar_ffwd: Heavily right-skewed, mostly near zero with a long tail.
- bvp_mean: Tightly centered around zero.
- hr_mean: Normally distributed around 75-85 bpm.
- food total carb ffwd: Heavily right-skewed.

5. Feature Engineering

Feature Enhancements:

- **Log Transformations**: Improved alignment with glucose levels.
- Time-Based Features:
 - o Time since midnight
 - Day of the month
 - Weekend status
 - Total elapsed time
- Categorical Features: One-hot encoding for times of day (Night, Morning, Afternoon, Evening).
- Rolling Statistics:
 - Cumulative sums
 - Dietary intake metrics
 - Rolling sum windows for meal counts, wake time, and activity bouts

- . Gender: Highest correlation with glucose.
- acc_mean_hist_avg: Negatively correlated; lower glucose with higher historical activity.
- food_sugar_sum_120min: Positively correlated; reflects glucose spikes post-sugar intake.
- HbA1c: Positively correlated; indicates higher long-term glucose levels.
- log_eda_mean: Negatively correlated; lower glucose with higher mean electrodermal activity.

- log_eda_max: Negatively correlated; lower glucose with higher electrodermal peaks.
- acc_x_max: Negatively correlated; lower glucose with higher max acceleration.
- 8. **food_total_carb_sum_120min**: Positively correlated; glucose increases with carb intake.
- day_period_Afternoon: Negatively correlated; lower glucose in the afternoon.

6. Pipeline & Model Survey

Model Pipeline Overview:

- 1. **Data Extraction**: First 25% of data
 - a. **Training Data**: Patients 3-16
 - b. **Testing Data**: Patient 2
- 2. Preprocessing:
 - a. Impute missing values with mean
 - Standardize features with StandardScaler
- 3. Model Evaluation:
 - a. Function: evaluate_model()
 - b. **Metrics**: MAE, RMSE, R², MAPE
- 4. Visualization:
 - a. Compare true vs. predicted values
 - b. Plot RMSE vs. parameter values
- 5. **Hyperparameters Tested**: Max depth, number of neighbors, C, etc.

Model Survey Discussion:

Partial Least Squares Regression had the best RMSE score.

Next Steps:

- Optimize PLS on full dataset
- 2. Choose a more complex model (XGBoost) and optimize hyperparameters on full dataset

6b. Pipeline & Model Survey

Model Pipeline Overview:

- 1. **Data Extraction**: First 25% of data
 - a. **Training Data**: Patients 3-16
 - b. **Testing Data**: Patient 2
- 2. Preprocessing:
 - a. Impute missing values with mean
 - b. Standardize features with StandardScaler
- 3. Model Evaluation:
 - a. **Function**: evaluate_model()
 - b. **Metrics**: MAE, RMSE, R², MAPE
- 4. Visualization:
 - a. Compare true vs. predicted values
 - b. Plot RMSE vs. parameter values
- 5. **Hyperparameters Tested**: Max depth, number of neighbors, C, etc.

7. Final Model Optimization

Optimization Process:

- Models: PLS Regression & XGBoost
- Method: RandomizedSearchCV with Leave-One-Group-Out Cross-Validation (LOGO CV)
- 3. **Data**: Patients 2-16 (excluding Patient 1)
- 4. **Pipeline**: Imputation and Standardize features
- 5. **Hyperparameters**: Tuned for optimal performance
 - a. PLS: N Components
 - b. XGBoost: n_estimators, max_depth, learning_rate, reg_alpha, reg_lambda, subsample

PLS Regression Number of Components
Optimized N_Components: 6
RMSE: 21.04 (Best Performance)

XGBoost:

- Optimized Parameters:
- Learning rate: 0.247
- Max depth: 1
- 120 estimators
- reg alpha: 0.806
- reg_lambda: 2.171
- Subsample: 0.960
- **RMSE**: 21.80

8. Final Model Performance

Test Setup:

- Patient 1 excluded from training
- Models: XGBoost & PLS Regression
- Tuning: RandomizedSearchCV with LOGO CV (patients 2-16)

Results:

- XGBoost: RMSE 15.84 mg/dL, MAPE 11.56%
- **PLS**: Similar performance
- Both significantly outperformed Mean Regressor

Takeaway:

- XGBoost Model performs best with lowest RMSE
- Further refinement is needed before clinical use

Model	RMSE (mg/dL)	MAPE (%)
Mean Regressor	18.42	15.82
PLS Regression	15.91	11.97
XGBoost	15.84	11.56

9. Feature Importance

- **Top Features:** Gender and HbA1c as crucial for predicting glucose levels.
- **XGBoost** emphasizes EDA and accelerometer features, while **PLS Regression** focuses on temporal factors and heart rate variability.
- Food-related metrics are important, confirming their role in glucose prediction.

10. Model Performance vs. Training Data Size

- Models struggle early on with just a few patients.
- Significant accuracy improvement with 3-5 patients.
- Diminishing returns beyond 8 patients.

11. Conclusions and Future Work

Project Overview and Key Takeaways

- 1. Developed a model capable of capturing complex glucose patterns.
- XGBoost with optimized hyperparameters achieved the best performance:
 RMSE of 15.84 mg/dL and MAPE of 11.56% on the test patient.
- 3. Despite strong results, the model is **not yet suitable for clinical use.**

Future Work for Model Enhancements:

- 1. **Expanded Dataset**: Thousands of patients to boost generalization.
- 2. **Enhanced Food Logs**: Ensure consistent, accurate tracking
- Stress & Sleep Data & O2 Levels: Add wearable/self-reported data on stress, sleep, and O2 levels.
- 4. **Environmental**: Include temperature and humidity for glucose impact.
- 5. **Hydration Tracking**: Integrate hydration data into prediction models.
- 6. **Advanced Features**: Explore new features to capture rapid glucose changes.

