Permutationsgruppen WS 20/21

Prof. Pöschel

3. Dezember 2020

In halts verzeichnis

0	Automorphismen, invariante Relationen und die Sätze von Krasner	 1
Anhang	.	8
Index		8

Preface

The plan is to go rather fast through the first chapter of this book(to get fast to K-Theory), take some notes, write down ideas, examples and remarks, rewrite proofs, so that i can understand them in my way. Also add sometimes reminders to concepts/definitions, so that i have a good overview about vector bundles and of course K-Theory. I will also use notation from courses i took in the past. But I will put remarks for the reader. Hope you will find these notes helpful in any way.

ScyllaHide, 3. Dezember 2020

0. Automorphismen, invariante Relationen und die Sätze von Krasner

algebraisch haben wir folgende Sachen

kombinatorische Strukturen Gruppe der "Symmetrien" Relationen gegeben Automorphismen

Invariante Relation G gegeben

► Erinnerung (??)

 $g \in S_M$ induziert $\tilde{g} \in S_{M^n}$ durch

$$(a_1,\ldots,a_n)^g:=(a_1,\ldots,a_n)^{\tilde{g}}:=(a_1^g,\ldots,a_n^g)$$

Bezeichnung der (\tilde{G}, M^n) auch mit (G, M^n) oder $(G^{[n]}, M^n)$. ?? \Rightarrow Wirkung auf $\mathcal{P}(M^n)$ Bezeichnung $(G, \mathcal{P}(M^n))$ (für $G \leq S_M$:

$$\Phi^g:=\left\{\underline{a}^{\tilde{g}}\mid\underline{a}\in\Phi\right\}\quad\text{ vergleiche \ref{eq:proposed}.}\text{ für }\Phi\subseteq M^n$$

Definition 0.1

 $q \in S_M, \Phi \subseteq M^n$ n-stellige Relation (Elemente (n-Tupel) als Spalten einer "Matrix"). q bewahrt Φ (Bezeichnung $g \triangleright \Phi$), also Φ invariant für g, bzw g Automorphismus von Φ

$$\Leftrightarrow \Phi^g \subseteq \Phi$$
 bzw. $\Phi^g = \Phi$

d.h. $\forall a_1, \ldots, a_n \in M : (a_1, \ldots, a_n) \in \Phi \stackrel{\rightleftharpoons}{\Rightarrow} a_1^g, \ldots a_n^g \in \Phi$ (M endlich: $g \triangleright \Phi \Leftrightarrow g$ Automorphismus)

Bezeichne die Menge der endlich-stelligen Relation mit

$$R_M:=\{\Phi\mid\subseteq M^n\mid n=1,2,3,\ldots\}$$
 Aut $\Phi=\operatorname{Aut}_M\Phi:=\{g\in S_M\mid \Phi^g=\Phi\}$

Für $Q \subseteq R_M$:

$$\operatorname{Aut} \mathcal{Q} := \bigcap_{\Phi \in \mathcal{Q}} \operatorname{Aut} \Phi \quad (\operatorname{Automorphismen \ von} \ \mathcal{Q})$$

$$n - \operatorname{Inv}(G, M) := n - \operatorname{Inv}_M G \ (n - \operatorname{Inv} G)$$

$$= \{ \Phi \subset M^n \mid \forall q \in G \colon q \rhd \Phi \}$$

n-stellige Invarianten von G:

$$\operatorname{Inv}_M G := \bigcup_{n=1}^{\infty} n - \operatorname{Inv} G \quad (\underline{\operatorname{Invarianten}} \text{ von } G)$$

Jede binäre Relation, also auch

$$\{(g,\Phi) \mid \Phi^g = \Phi\} \subseteq S_M \times R_M$$

induziert eine Galoisverbindung (φ, ψ) .

Definition 0.2

Durch Aut und Inv ist eine Galoisverbindung gegeben:

$$\varphi \colon \operatorname{Aut} \begin{cases} \mathcal{P}(R_M) & \to \mathcal{P}(S_M) \\ \mathcal{Q} & \mapsto \operatorname{Aut} \mathcal{Q} \end{cases}$$

$$\psi \colon \operatorname{Inv} \begin{cases} \mathcal{P}(S_M) & \to \mathcal{P}(R_M) \\ G & \mapsto \operatorname{Inv} G \end{cases}$$

insbesondere gelten die folgenden Eigenschaften $(G, G' \subseteq S_M, \mathcal{Q}, Q' \subseteq R_M)$:

- (i) $G \subseteq G' \Rightarrow \operatorname{Inv} G \supseteq \operatorname{Inv} G'$
- (ii) $G \subseteq Q' \Rightarrow \operatorname{Aut} Q \supseteq \operatorname{Aut} Q'$
- (iii) $G \subseteq \operatorname{Aut} \operatorname{Inv} G$
- (iv) $U \subseteq \text{Inv Aut } U \text{ What is } U \text{ here? :o}$
- (v) Aut Inv Aut Q = Aut Q
- (vi) Inv Aut Inv G = Inv G
- (vii) $G \mapsto \operatorname{Aut} \operatorname{Inv} G$ ist Hüllenoperator What is a Hüllenoperator?
- (viii) $\mathcal{Q} \mapsto \text{Inv Aut } \mathcal{Q} \text{ ist Hüllenoperator}$
- (ix) $G \subseteq Aut \mathcal{Q} \Leftrightarrow Inv G \supseteq \mathcal{Q}$
- (x) Aut und Inv sind Bijektionen auf den Galoishüllen

$$G = \operatorname{Aut} \operatorname{Inv} G \quad \mathcal{Q} = \operatorname{Inv} \operatorname{Aut} \mathcal{Q}$$

▶ Bemerkung

- Definition 0.2 (i)-Definition 0.2 (iv) definieren bereits die Galoisverbindung.
- Definition 0.2 (v) Definition 0.2 (x) sind Folgerungen aus Definition 0.2 (i)-Definition 0.2 (iv)

► Erinnerung (Hüllenoperator)

content...

Definition 0.3

Eine Relation der Form

$$(a_1, \ldots, a_n)^G = \{(a_1, \ldots, a_n)^g \mid g \in G\}$$

heißt n-Bahn (n-Orbit) von $G \leq S_M$.

Notation:

$$n - \operatorname{Orb}(G, M) = \text{Menge der } n\text{-Bahnen}$$

= $\{\underline{a}^G \mid \underline{a} \in M^n\}$

▶ Bemerkung

- 1. $\Phi \in n \text{Orb}(G, M) \Leftrightarrow \Phi \in 1 \text{Orb}(G^{[n]}, M^n)$
- 2. $\Phi \in \text{Inv}(G, M) \Leftrightarrow \Phi$ invariante Menge von $(G^{[n]}, M^n)$ (vergleiche ??)

Satz 0.4

Sei $G \leq S_M$.

(a) Jede n-Bahn ist eine invariante Relation:

$$n - \operatorname{Orb}(G, M) \subseteq n - \operatorname{Inv}(G, M)$$

- (b) Jede n-stellige invariante Relation ist (disjunkte) Vereinigung von n-Bahnen
- (c) $|n \operatorname{Inv}(G, M)| = 2^{|n \operatorname{Orb}(G, M)|}$

proof. 1. $\underline{a}^{G \cdot G} = \underline{a}^{G}$ für beliebige $\underline{a} \in M^{n}$ (wobei \underline{a}^{G} n-Bahn ist)

2. folgt aus $\ref{eq:condition}$ (satz 0.4 (b) für n-Bahnen) und Bemerkung zu Definition 0.3

Folgerung aus ??.

Lemma 0.5

Für $\Phi \in n - \operatorname{Orb}(G, M)$ und $\underline{a} = (a_1, \dots, a_n) \in \Phi$, gilt:

$$|\Phi| = [G: G_{a_1,\dots,a_n}] = \frac{|G|}{|(a_1,\dots,a_n)|}.$$

 $(G_{a_1,...,a_n}$ ist Stabilisator und $\mathcal{Q} = G^{[n]}$, letzteres gilt nach ??)

proof.

$$\Phi = (a_1, \dots, a_n)^G =: \underline{a}^{\tilde{G}}$$

$$\tilde{G}_{\underline{a}} = G_{a_1 \dots a_n} \text{ für Wirkung } (\tilde{G}, M^n)$$

$$\stackrel{??}{\Longrightarrow} \left| \tilde{G} \right| = \left| G \right| = \left| \tilde{G}_{\underline{a}} \right| \cdot \left| \underline{a}^{\tilde{G}} \right|$$

Galoisverbindung Aut – Inv (vergleiche??)

- Was sind die Galoishüllen? (d.h. Aut Q bzw. Inv G?)
- Probleme:
 - Welche (Permutations)Gruppen sind Automorphismengruppen von geeigneten invarianten Relation?
 - Welche Relationsmengen sind die invarianten Relationen für eine geeignete Gruppe $G \leq S_M$?
- Setze von Maire Krasner (1912-1985) (hier nur für endliche Grundmengen M)

Vorbemerkung:

Satz 0.6

Sei $Q \subseteq R_M$. Dann ist Aut_M Q eine (Permutations)Gruppe ($\leq S_M$).

proof. SeSt! \Box

Theorem 0.7 (1. Satz von Krasner)

Sei $M = \{a_1, \ldots, a_m\}$ endlich!

(i) Jede Permutationsgruppe (G, M) ist Automorphismengruppe einer geeigneten Menge von Relationen. Insbesondere gilt:

 $G = \operatorname{Aut} \operatorname{Inv} G$

= Aut Orb G Orb alle n-Bahn, $n \in \{1, 2, 3, \ldots\}$

 $= \operatorname{Aut} m - \operatorname{Orb} G$

 $= \operatorname{Aut} \underline{a}G \quad (\underline{a} := (a_1, \dots, a_m))$

(Es reicht eine einzige m-stellige Relation)

(ii) Für beliebige Teilmenge $G \subseteq S_M$ gilt:

$$\langle G \rangle = \operatorname{Aut} \operatorname{Inv} G$$

 $(\langle G \rangle$ interne Beschreibung der von G erzeugten Untergruppe, Aut InvG externe Beschreibung der von G erzeugten Untergruppe (als Galoishülle))

Definition 0.8

1. zu Theorem 0.7 (i) Wir zeigen zunächst

$$\operatorname{Aut}\Phi\subseteq G$$

für die von $\underline{a}=(a_1,\ldots,a_m)$ erzeugte m-Bahn $\Phi=aG$. Sei $f\in \operatorname{Aut}\Phi\Rightarrow\underbrace{(a_1,\ldots,a_m)}_{\in\Phi}=\underline{a}^G,$

also $\exists g \in G: (a_1, \ldots, a_m)^f = (a_1, \ldots, a_m)^g \in \underline{a}^{\underline{G}}$, d.h. $f = g \in G$, also Aut $\Phi \subseteq G$. Die angegebenen Gleichungen folgen nun unmittelbar:

$$G \overset{Definition\ 0.2\ (iii)}{\subseteq} \operatorname{Aut}\operatorname{Inv} G \overset{Definition\ 0.2\ (ii)}{\subseteq} \operatorname{Aut}\operatorname{Orb} G$$

$$\operatorname{Aut} m - \operatorname{Orb} G \subseteq \operatorname{Aut}\{\Phi\} \subseteq G.$$

2. zu Theorem 0.7 (ii)

$$G \subseteq \operatorname{Aut} \operatorname{Inv} G \quad \operatorname{Definition} \ 0.2 \ (iii)$$

$$\Rightarrow \langle G \rangle \subseteq \langle \operatorname{Aut} \operatorname{Inv} G \rangle \stackrel{\operatorname{satz}}{=} \stackrel{0.6}{=} \operatorname{Aut} \operatorname{Inv} G \subseteq \operatorname{Aut} \operatorname{Inv} \langle G \rangle \stackrel{\operatorname{Theorem}}{=} \stackrel{0.7}{=} \stackrel{(i)}{<} G \rangle.$$

▶ Bemerkung 0.9 (Operationen auf Relationen)

Jede Formel $\varphi(M, \dots, R_q, a_1, \dots, x_n)$ des Prädikantenkalküls 1. Stufe $(\exists, \forall, \vee, \wedge, \neg, =)$ und Relationssymbole (Prädikate) R_1, \dots, R_q (R_i sind i-stellig, $i = 1, \dots, q$) und freie Variablen x_1, \dots, x_n definiert eine q-stellige Operation

$$Fq: \mathcal{P}(M^{r_i}) \times \dots \mathcal{P}(M^{r_i}) \to \mathcal{P}(M^n)$$

(genau er logische Operation), die q vielen Relationen $\Phi_1 \subseteq M^{r_1}, \dots, \Phi_g \subseteq M^{r_q}$ eine n-stellige

Relation $F_{\varphi}(\Phi_1, \dots, \Phi_q)$ zuordnet:

$$F_{\varphi}(\Phi_1,\ldots,\Phi_q):=\{(a_1,\ldots,a_q)\in M^n\mid\models\varphi(\Phi_1,\ldots,\Phi_q,a_1,\ldots,a_n)\}$$

(wobei \models "es gilt" heisst.)

■ Beispiel 0.10 (logische Operationen)

(a) $\varphi(R_1, R_2, x, y) :\equiv \exists z : R_1(x, y) \lor R_2(z, y)$

$$F_{\varphi}(\Phi_1, \Phi_2) = \{(x, y) \in M^2 \mid \exists z \colon \Phi_1(x, z) \lor \Phi_2(z, y)\} = \varphi_1 \circ \Phi_2$$
 Relationen produkt

(b)

$$\varphi_{12}(R_1, R_2, x, y) :\equiv R_1(x, y) \vee \wedge R_2(x, y)$$
$$F_{\varphi_1, \varphi_2}(\Phi_1, \Phi_2) = \Phi_1 \cap \bigcup \Phi_2$$

(c)
$$\varphi(R_1, x_1, \dots, x_n) := \neg R_1(x_1, \dots, x_n)$$

$$F_{\varphi}(\Phi_1) = \neg \Phi_1 \quad (= M^n \setminus \Phi \text{ Komplement})$$

(d) $\varphi(x_1,\ldots,x_4)\vee x_1=x_2\vee x_3=x_4$ (keine Prädikate für q=0) \Rightarrow konstante Operation,

$$F_{\varphi} = \{(a_1, a_2, a_3, a_4) \in M^4 \mid a_1 = a_2 \lor a_3 = a_4 \subseteq M^4\}$$

(e) $\varphi(x_1, x_2) := x_1 = x_2 \Rightarrow \text{Konstante}$

$$F_{\varphi} = \{(a_1, a_2) \in M^2 \mid a_2 = a_1\} = \Delta_M$$
 Gleichheitsrelation

(f) $\varphi(R_1, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \exists x_i : R_1(x_1, \dots, x_i, \dots, x_n)$

$$F_{\varphi}(\Phi_1) = \left\{ (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n) \in M^{n-1} \mid \exists a_i \colon (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n) \in \Phi_1 \right\}$$

=: $\pi_{n \setminus \{i\}}(\Phi_1)$ Projektion von Φ_1 auf die $(\underline{n} \setminus \{i\})$ -ten Koordinaten.

Streichen der i-ten Zeile (Bei Darstellung von Relationen durch "Matrix", Elemente (n-Tupel) als Spalten)

Definition 0.11 (Krasner-Algebra)

Für $Q \subseteq R_M$ sei

$$[\mathcal{Q}] := \{ F_{\varphi}(\Phi_1, \dots, \Phi_q) \mid \Phi_1, \dots, \Phi_q \in \mathcal{Q}, \varphi(R_1, \dots, R_q, x_1, \dots, x_n) \}$$

formal wie in Bemerkung 0.9 mit $q \in \{0, 1, 2, \ldots\}, n \in \{1, 2, \ldots\}$

Abschluss gegen logische Operationen

▶ Bemerkung

- (a) $\mathcal{Q} \mapsto [\mathcal{Q}]$ ist Hüllenoperator (insbesondere gilt $[[\mathcal{Q}]] = [\mathbb{Q}]$)
- (b) Die abgeschlossene Mengen Q (d.h. Q = [Q]) heißen auch Krasner-Algebren.

Aus algebraischer Sicht sind dies genau die Unteralgebren von $\langle R_M, F(\varphi)_{\varphi \text{ Formel}} \rangle$. Äquivalente Beschreibung von Unteralgebren von

$$R_M = \langle R_M, \Delta_M, \neg, \rho, \tau, \Delta, \nabla, \circ \rangle$$

Dabei bedeuten die Elemente von $\underline{R_M}$ folgendes:

• Δ_M :

$$Q \subseteq \underline{R_M} \Leftrightarrow Q = [Q].$$

Index