

OSCI 552 Project

Presented by Group 13

Agenda

1 Introduction

2 Approach Discussion

3 Implementaion Details

4 Summary and Q&A

Meet Our Group

Sahithi

Mona

Ganesh

Credit History
Challenges and Data
Science Solutions

Introduction

Home Credit, established in 1997, aims to broaden financial inclusion by responsibly lending to individuals with limited credit history. By improving risk assessment, they seek to accept more loan applications and enhance the financial well-being of historically underserved populations.

Understanding
Score Calculation
and Preserving
Stability

Building a ML model that predicts the credit worthiness

PROCESS OVERVIEW

pandas

And one more thing... It takes many pandas to defeat one polar bear...

DATASET DESCRIPTION

Kaggle has a Data Explorer in the Data section which serves as a great starter guide to understand the data structure and distribution

DATASET DESCRIPTION CONTINUED...

train_app	olprev_1_0.csv(8	337.13 MB)				± [] >
Detail Compact Column 10 of 41 columns V						
case_id	# actualdpd_94	# annuity_853A	approvaldate	# byoccupation	△ cancelreason	# childnum_21L
2	0.0	640.2			a55475b1	0.0
2	0.0	1682.4			a55475b1	0.0
3	0.0	6140.0			P94_109_143	
4	0.0	2556.6			P24_27_36	
5	0.0				P85_114_140	
6	0.0	1110.4		1.0	a55475b1	0.0
6	0.0	1773.8			P94_109_143	
6	0.0	4189.6			P94_109_143	0.0
10	0.0	10916.601	2019-01-11		P73_130_169	
13	0.0	1603.8			a55475b1	2.0
13	0.0	5069.6			P94_109_143	
13	0.0	5334.8003			P94_109_143	
14	0.0	2218.0			P30_86_84	
14	0.0	2508.6			P94_109_143	
14	0.0	4178.0	2018-10-11		a55475b1	
16	0.0	2821.6			P94_109_143	0.0
16	0.0	4873.6			P94_109_143	0.0
17	0.0	3665.4001			P94_109_143	

We can explore the detailed insights using Column and Compact tabs...

We used the Data Wrangler Extension in MS VS Code to drill down and gain deeper insights of the data

Exploratory Data Analysis

△ Variable	=	△ Description	=
465 unique values			

The competition sponsor divided the features into custom types:

- P Transform DPD (Days past due)
- M Masking categories
- A Transform amount
- . D Transform date
- T Unspecified Transform
- · L Unspecified Transform

- We have used .describe() to explore the distribution of all the features.
- By analyzing the min, max, avg and inter quartile regions for the numeric features we gained a lot of insights into the data.
- We have used the line plots for numeric data and bar plots for categorical data (stacked bar charts) to visualize the variation,
- After the detailed inspection and examination of data we move on to the Data Integration and Memory Optimization part.

Exploratory Data Analysis Continued...

Data Integration (DI) & Memory Optimization (MO)

Read the Data using Polars

Optimize memory by strategic data transformation (Ex: Int64 to Int8)

Combine the multiple instances of same file types and use GroupBy

Initial Train Data

File 32

DI & MO

File 2

File 1

Transformed Train Data

File 17

DATASET ENTITY RELATIONSHIP DIAGRAM

Our given train data has no duplicate column names in the total dataset

Data Cleaning & Data Aggregation

Drop the Columns or features that have null values > threshold

For Categorical Columns drop columns where value frequency is equal to 1 or > 180

Select the Train Base (df_train_base) as our main file to add other features

Now we will aggregate the data from the other 16 files on to Train Base using Case_ID as our key

After Data Aggregation we end up with a single file (df_base_train):

- No duplicate Case_IDs
- No duplicate Columns (features)
- Still has missing values

Feature Engineering & Data Imputation

Add Decision_Month and Decision_Week columns to our df_train_base which later helps us to convert out date type attributes to days

Group the columns by correlation so that we end with groups of columns having similar data relationships

Use reduce_groups function to select most representative column within the group (Dimensionality Reduction)

Data Imputation – Fill the null values of numeric data with the mean and categorical data with mode (if not "null")

Converting the Processed Data to Pandas

Convert the final df_train_base (filled) that we have after Data Imputation to Pandas as it has a good ecosystem support

This Dataframe df_train_base in pandas format will be now fed into model training as input

This marks the end to the Data Wrangling Phase...

Pandas has better integration support and with Scikit Learn, TensorFlow, XGBoost, Seaborn and other python libraries and frameworks. Hence, it offers a wide range of choices to the user to build a robust model utilizing best libraries

We tried adjusting different parameters for these models and the best results for each model is shown in the table

Light GBM	CAT Boost	Random Forest
(Best)	(Best)	(Best)
MAX AUC SCORE	MAX AUC SCORE:	MAX AUC SCORE
(0.7861)	(0.7747)	(0.6673)

Kaggle Stability Criteria (Gini Stability)

Random Forest

Ablation Study

Тур	e Conditions	Light GBM	CAT Boost	Random Forest
DW	NULL FILTERING FREQUENCY THESHOLD: 0.50	MAX AUC SCORE:0.7701	MAX AUC SCORE: 0.7624	MAX AUC SCORE: 0.6102
DW	NULL FILTERING FREQUENCY THESHOLD: 0.70	MAX AUC SCORE: 0.7844	MAX AUC SCORE: 0.7716	MAX AUC SCORE: 0.6573
DW	NULL FILTERING FREQUENCY THESHOLD: 0.80	MAX AUC SCORE:0.7820	MAX AUC SCORE: 0.7733	MAX AUC SCORE: 0.6495

DW = Examining Data Wrangling Steps

Ablation Study Continued...

FREQUENCY			
.D: 160	C SCORE: 0.7856 MAX AUC SCORE: 0.7736	6 MAX AUC SCORE: 0.6523	
FREQUENCY D: 180 MAX AUG STABILITY)	2 SCORE: 0.7844 MAX AUC SCORE: 0.7716	6 MAX AUC SCORE: 0.6573	
FREQUENCY D: 200	2 SCORE: 0.7834 MAX AUC SCORE: 0.77 4		***
.D S	REQUENCY MAX AUC	TABILITY) MAX AUC SCORE: 0.7844 MAX AUC SCORE: 0.7746 MAX AUC SCORE: 0.7746	PEQUENCY MAX AUC SCORE: 0.7844 MAX AUC SCORE: 0.7716 MAX AUC SCORE: 0.6573 MAX AUC SCORE: 0.7834 MAX AUC SCORE: 0.7747 MAX AUC SCORE: 0.6429

Ablation Study Continued...

Туре	Conditions	Light GBM	CAT Boost	Random Forest	
ML	LGB ESTIMATORS: 1000 CAT ESTIMATORS: 4000 RF ESTIMATORS: 60	MAX AUC SCORE: 0.7841	MAX AUC SCORE: 0.7674	MAX AUC SCORE: 0.6557	
ML	LGB ESTIMATORS: 1500 CAT ESTIMATORS: 5000 RF ESTIMATORS: 80	MAX AUC SCORE: 0.7844	MAX AUC SCORE: 0.7714	MAX AUC SCORE: 0.6605	
ML	LGB ESTIMATORS: 2000 CAT ESTIMATORS: 6000 RF ESTIMATORS: 100	MAX AUC SCORE: 0.7861	MAX AUC SCORE: 0.7716	MAX AUC SCORE: 0.6673	

Key Accomplishments

#	Team	Members	Score	Entries	Last	Join
419	ML_DS_GROUP_13		0.584	5	21h	

For Data Imputation we are planning to use K-Nearest Neighbors (KNN) Imputation to try improving our missing values filling strategy

Future Scope & Conclusion

Try to Optimize strategies for handling categorical data

Try to use more Ensemble Methods

XG Boosting?

Really appreciate any suggestions for future implementation...

Thank You!

