

Isogeny Based Cryptography: an Introduction

Luca De Feo

IBM Research Zürich

November 28, 2019 NTNU, Trondheim

Slides online at https://defeo.lu/docet

Why isogenies?

Six families still in NIST post-quantum competition:

Lattices 9 encryption 3 signature

Codes 7 encryption

Multivariate 4 signature

Isogenies 1 encryption

Hash-based 1 signature MPC

1 signature

Why isogenies?

Six families still in NIST post-quantum competition:

Lattices9 encryption3 signatureCodes7 encryptionMultivariate4 signatureIsogenies1 encryptionHash-based1 signatureMPC1 signature

NIST-1 level (AES128) (not to scale)

Why isogenies?

Six families still in NIST post-quantum competition:

Lattices 9 encryption 3 signature Codes 7 encryption

Multivariate 4 signature

Isogenies 1 encryption

Hash-based 1 signature

MPC 1 signature

Encryption performance

NIST-1 level (AES128) (not to scale) "We found that CECPQ2 ([NTRU] the ostrich) outperformed CECPQ2b ([SIKE] the turkey), for the majority of connections in the experiment, indicating that **fast algorithms with large keys may be more suitable for TLS than slow algorithms with small keys**. However, **we observed the opposite**—that CECPQ2b outperformed CECPQ2—**for the slowest connections on some devices**, including Windows computers and Android mobile devices. One possible explanation for this is packet fragmentation and packet loss."

K. Kwiatkowski, L. Valenta (Cloudflare)
 The TLS Post-Quantum Experiment

https://blog.cloudflare.com/the-tls-post-quantum-experiment/

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3,$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3,$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

O = (0:1:0) is the point at infinity;

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$
,

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

- $\mathcal{O} = (0:1:0)$ is the point at infinity;
- $y^2 = x^3 + ax + b$ is the affine equation.

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

The law is algebraic (it has formulas);

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

- The law is algebraic (it has formulas);
- The law is commutative;
- 𝒪 is the group identity;
- Opposite points have the same x-value.

Maps: isomorphisms

Isomorphisms

The only invertible algebraic maps between elliptic curves are of the form

$$(x,y)\mapsto (u^2x,u^3y)$$

for some $u \in \bar{k}$.

They are group isomorphisms.

j-Invariant

Let $E: y^2 = x^3 + ax + b$, its *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Two elliptic curves E, E' are isomorphic if and only if j(E) = j(E').

Group structure

Torsion structure

Let E be defined over an algebraically closed field \bar{k} of characteristic p.

$$E[m] \simeq ~~ \mathbb{Z}/m\mathbb{Z} imes \mathbb{Z}/m\mathbb{Z}$$

if
$$p \nmid m$$
,

$$E[p^e] \simeq egin{cases} \mathbb{Z}/p^e\mathbb{Z} \ \{\mathcal{O}\} \end{cases}$$

ordinary case, supersingular case.

Finite fields (Hasse's theorem)

Let \underline{E} be defined over a finite field \mathbb{F}_q , then

$$|\#E(\mathbb{F}_q)-q-1|\leq 2\sqrt{q}.$$

In particular, there exist integers n_1 and $n_2 | \gcd(n_1, q - 1)$ such that

$$E(\mathbb{F}_q)\simeq \mathbb{Z}/n_1\mathbb{Z}\times \mathbb{Z}/n_2\mathbb{Z}.$$

Maps: what's scalar multiplication?

$$[n]: P \mapsto \underbrace{P + P + \dots + P}_{n \text{ times}}$$

- ullet A map E
 ightarrow E,
- a group morphism,
- with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

Maps: what's \$\psi \phi \langle \langle \phi \langle \langle \langle \phi \la

$$[n]: P \mapsto \underbrace{P + P + \cdots + P}_{n \text{ times}}$$

- ullet A map ${m E} o {m E}$,
- a group morphism,
- with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

Maps: what's \$\$\day\frac{h}{a}\langle \frac{h}{a}\langle \frac{h}{a}\l

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map E
 ightarrow E,
- a group morphism,
- with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

Maps: what's \$\$\day\frac{h}{a}\langle \frac{h}{a}\langle \frac{h}{a}\l

$$\phi \ : \ P \mapsto \phi(P)$$

- A map $E \to E E'$,
- a group morphism,
- with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

Maps: what's \$\psi \phi \rangle \rangle \phi \rangle \rangle \phi \rangle \rangle \phi \rangle \

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map E o E E',
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

Maps: what's \$\psi \phi \rangle \rangle \phi \rangle \rangle \phi \rangle \rangle \phi \rangle \

$$\phi \ : \ P \mapsto \phi(P)$$

- A map $E \to E E'$,
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree h / H.

Maps: what's \$\psi \phi \langle \langle \phi \langle \langle \langle \phi \la

$$\phi \ : \ P \mapsto \phi(P)$$

- A map $E \to E E'$,
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree $h^2 \# H$.

(Separable) isogenies ⇔ finite subgroups:

$$0 o H o E \stackrel{\phi}{ o} E' o 0$$

Isogenies: an example over \mathbb{F}_{11}

$$E: y^2 = x^3 + x$$

$$E': y^2 = x^3 - 4x$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

Isogenies: an example over \mathbb{F}_{11}

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.
- ullet Analogous to $x\mapsto x^2$ in \mathbb{F}_q^* .

Maps: isogenies

Theorem

Let $\phi: E \to E'$ be a map between elliptic curves. These conditions are equivalent:

- \bullet ϕ is a surjective group morphism,
- \bullet ϕ is a group morphism with finite kernel,
- ϕ is a non-constant algebraic map of projective varieties sending the point at infinity of E onto the point at infinity of E'.

If they hold ϕ is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.

Example: Multiplication-by-m

On any curve, an isogeny from E to itself (i.e., an endomorphism):

$$egin{array}{ll} [m] \; : \; E
ightarrow E, \ P \mapsto [m]P. \end{array}$$

Isogeny lexicon

Degree

- ullet \approx degree of the rational fractions defining the isogeny;
- Rough measure of the information needed to encode it.

Separable, inseparable, cyclic

An isogeny ϕ is separable iff $\deg \phi = \# \ker \phi$.

- Given $H \subset E$ finite, write $\phi : E \to E/H$ for the unique separable isogeny s.t. $\ker \phi = H$.
- ϕ inseparable $\Rightarrow p$ divides deg ϕ .
- Cyclic isogeny \equiv separable isogeny with cyclic kernel.
 - ightharpoonup Non-example: the multiplication map [m]:E o E.

The dual isogeny

Let $\phi: E o E'$ be an isogeny of degree m. There is a unique isogeny $\hat{\phi}: E' o E$ such that

$$\hat{\phi}\circ\phi=[m]_E,\quad \phi\circ\hat{\phi}=[m]_{E'}.$$

 $\hat{\phi}$ is called the dual isogeny of ϕ ; it has the following properties:

- \bullet $\hat{\phi}$ is defined over k if and only if ϕ is;
- 2 $\widehat{\psi \circ \phi} = \widehat{\phi} \circ \widehat{\psi}$ for any isogeny $\psi : E' \to E''$;
- \bullet $\widehat{\psi+\phi}=\hat{\psi}+\hat{\phi}$ for any isogeny $\psi:E o E'$;
- $\hat{\hat{\phi}} = \phi.$

NTNU

NTNU

NTNU

$$j = 1728$$

Isogeny graphs

Serre-Tate theorem

Two elliptic curves E, E' defined over a finite field \mathbb{F}_q are isogenous (over \mathbb{F}_q) iff $\#E(\mathbb{F}_q) = \#E'(\mathbb{F}_q)$.

Isogeny graphs

- Vertices are curves up to isomorphism,
- Edges are isogenies up to isomorphism.

Isogeny volcanoes

- Curves are ordinary,
- Isogenies all have degree a prime ℓ .

The endomorphism ring

The endomorphism ring $\operatorname{End}(E)$ of an elliptic curve E is the ring of all isogenies $E \to E$ (plus the null map) with addition and composition.

Theorem (Deuring)

Let E be an elliptic curve defined over a field k of characteristic p.

 $\operatorname{End}(E)$ is isomorphic to one of the following:

ullet \mathbb{Z} , only if p=0

E is ordinary.

• An order \mathcal{O} in a quadratic imaginary field:

E is ordinary with complex multiplication by \mathcal{O} .

• Only if p > 0, a maximal order in a quaternion algebra^a:

E is supersingular.

 a (ramified at p and ∞)

Algebras, orders

- A quadratic imaginary number field is an extension of \mathbb{Q} of the form $\mathbb{Q}(\sqrt{-D})$ for some D > 0.
- A quaternion algebra is an algebra of the form $\mathbb{Q} + \alpha \mathbb{Q} + \beta \mathbb{Q} + \alpha \beta \mathbb{Q}$, where the generators satisfy the relations

$$lpha^2, eta^2 \in \mathbb{Q}, \quad lpha^2 < 0, \quad eta^2 < 0, \quad etalpha = -lphaeta.$$

Orders

Let K be a finitely generated \mathbb{Q} -algebra. An order $\mathcal{O} \subset K$ is a subring of K that is a finitely generated \mathbb{Z} -module of maximal dimension. An order that is not contained in any other order of K is called a maximal order.

Examples:

- \mathbb{Z} is the only order contained in \mathbb{Q} ,
- $\mathbb{Z}[i]$ is the only maximal order of $\mathbb{Q}(i)$,
- $\mathbb{Z}[\sqrt{5}]$ is a non-maximal order of $\mathbb{Q}(\sqrt{5})$,
- The ring of integers of a number field is its only maximal order,
- In general, maximal orders in quaternion algebras are not unique.

The finite field case

Frobenius endomorphism

$$\pi:(x,y)\mapsto (x^q,y^q)$$

Theorem (Hasse): π satisfies a quadratic equation

$$\pi^2 - t\pi + q = 0.$$

- t is the trace,
- $D_{\pi}=t^2-4q\leq 0$ is the discriminant,
- $t = 0 \mod p$ iff the curve is supersingular.
- In the ordinary case $D_{\pi} \neq 0$ and

$$\mathbb{Z}[\pi] \subset \operatorname{End}(E) \subset \mathbb{Q}(\sqrt{D_\pi}).$$

Let E, E' be curves with respective endomorphism rings $\mathcal{O}, \mathcal{O}' \subset K$. Let $\phi: E \to E'$ be an isogeny of prime degree ℓ , then:

$$\begin{array}{ll} \text{if } \mathcal{O} = \mathcal{O}', & \phi \text{ is horizontal;} \\ \text{if } [\mathcal{O}':\mathcal{O}] = \ell, & \phi \text{ is ascending;} \\ \text{if } [\mathcal{O}:\mathcal{O}'] = \ell, & \phi \text{ is descending.} \\ \end{array}$$

Ordinary isogeny volcano of degree $\ell = 3$.

Let E be ordinary, $\operatorname{End}(E) \subset K$.

 \mathcal{O}_K : maximal order of K, \mathcal{D}_K : discriminant of K.

		Horizontal	Ascending	Descending
$oldsymbol{\ell} mid \left[\mathcal{O}_K:\mathcal{O} ight]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(rac{D_K}{\ell} ight)$		
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]$	$ig \; oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
$\boldsymbol{\ell} \mid [\mathcal{O}_K : \mathcal{O}]$	$ig \; oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	$\hat{\ell}$
$oldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]$	$ig oldsymbol{\ell} mid \left[\mathcal{O} : \mathbb{Z}[\pi] ight]$		1	

Let E be ordinary, $\operatorname{End}(E) \subset K$.

 \mathcal{O}_K : maximal order of K,

 D_K : discriminant of K.

 $\mathsf{Height} = v_\ell([\mathcal{O}_K : \mathbb{Z}[\pi]]).$

		Horizontal	Ascending	Descending
$oldsymbol{\ell} mid \left[\mathcal{O}_K:\mathcal{O} ight]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(rac{D_K}{\ell} ight)$		
$\boldsymbol{\ell} \nmid [\mathcal{O}_K:\mathcal{O}]$	$oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
, , ,	$oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$,	1	l
$oldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	

Let E be ordinary, $\operatorname{End}(E) \subset K$.

 \mathcal{O}_K : maximal order of K,

 D_K : discriminant of K.

 $\mathsf{Height} = v_{\ell}([\mathcal{O}_K : \mathbb{Z}[\pi]]).$

How large is the crater?

		Horizontal	Ascending	Descending
$oldsymbol{\ell} mid \left[\mathcal{O}_K : \mathcal{O} ight]$	$\ell mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(rac{D_K}{\ell} ight)$		
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]$	$ig \; oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(rac{D_K}{\ell} ight)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
	$ig \; oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$,	1	l
$oldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]$	$ig oldsymbol{\ell} mid \left[\mathcal{O} : \mathbb{Z}[\pi] ight]$		1	

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$). Edges are horizontal isogenies of bounded prime degree.

— degree 2

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$). Edges are horizontal isogenies of bounded prime degree.

- degree 2
- degree 3

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$). Edges are horizontal isogenies of bounded prime degree.

- degree 2
- degree 3
- degree 5

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$). Edges are horizontal isogenies of bounded prime degree.

- degree 2
- degree 3
 - degree 5

What's happening here? Algebra!

Horizontal Isogenies

$$\ker \phi_{\mathfrak{a}} = \{P \in E \mid lpha(P) = 0 ext{ for all } lpha \in \mathfrak{a}\}$$

Invertible Ideals

$$\mathfrak{a}\subset \mathrm{End}(E)$$

Horizontal Isogenies

$$\ker \phi_{\mathfrak{a}} = \{P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a} \}$$
 degree dual composition "direction" on the ℓ -isogeny cycle

Invertible Ideals

 $\mathfrak{a}\subset \mathrm{End}(E)$

norm
conjugate
product
ideal of norm ℓ

Horizontal Isogenies

$$\ker \phi_{\mathfrak{a}} = \{P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a}\}$$

degree dual composition "direction" on the ℓ -isogeny cycle

endomorphism

Invertible Ideals

$$\mathfrak{a}\subset \mathrm{End}(E)$$

norm conjugate product ideal of norm ℓ

principal

 $\mathfrak{a}/\mathfrak{b}$ is principal

Horizontal Isogenies

$$\ker \phi_{\mathfrak{a}} = \{P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a}\}$$

degree dual composition "direction" on the ℓ -isogeny cycle

endomorphism

Elliptic curves with CM by \mathcal{O}

Invertible Ideals

 $\mathfrak{a}\subset \mathrm{End}(E)$

norm conjugate product ideal of norm ℓ

principal

 $\mathfrak{a}/\mathfrak{b}$ is principal

Invertible ideals / Principal ideals

Class group action

Class group

The class group of an order $\mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$ is the quotient

$$\mathrm{Cl}(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

It is a finite abelian group.

Main theorem of complex multiplication

The class group of $\mathcal O$ acts faithfully and transitively on the set of elliptic curves with CM by $\mathcal O$ by

$$\mathrm{Cl}(\mathcal{O}) imes \mathrm{Ell}(\mathcal{O}) o \mathrm{Ell}(\mathcal{O})$$
 $\mathfrak{a} * E \equiv E/E[\mathfrak{a}]$

Corollary

$$\# \operatorname{Cl}(\mathcal{O}) = \# \operatorname{Ell}(\mathcal{O}).$$

Supersingular endomorphisms

Recall, a curve E over a field \mathbb{F}_q of characteristic p is supersingular iff

$$\pi^2 - t\pi + q = 0$$

with $t = 0 \mod p$.

Case:
$$t=0$$
 \Rightarrow $D_{\pi}=-4q$

- Only possibility for E/\mathbb{F}_p ,
- E/\mathbb{F}_p has CM by an order of $\mathbb{Q}(\sqrt{-p})$, similar to the ordinary case.

Case:
$$t=\pm 2\sqrt{q}$$
 \Rightarrow $D_{\pi}=0$

- General case for E/\mathbb{F}_q , when q is an even power.
- $\pi = \pm \sqrt{q} \in \mathbb{Z}$, hence no complex multiplication.

We will ignore marginal cases: $t = \pm \sqrt{q}, \pm \sqrt{2q}, \pm \sqrt{3q}$.

The full endomorphism ring

Theorem (Deuring)

Let E be a supersingular elliptic curve, then

- E is isomorphic to a curve defined over \mathbb{F}_{p^2} ;
- Every isogeny of E is defined over \mathbb{F}_{p^2} ;
- Every endomorphism of E is defined over \mathbb{F}_{p^2} ;
- End(E) is isomorphic to a maximal order in a quaternion algebra ramified at p and ∞ .

In particular:

- If E is defined over \mathbb{F}_p , then $\operatorname{End}_{\mathbb{F}_p}(E)$ is strictly contained in $\operatorname{End}(E)$.
- Some endomorphisms do not commute!

NTNU

An example

The curve of j-invariant 1728

$$E:y^2=x^3+x$$

is supersingular over \mathbb{F}_p iff $p = -1 \mod 4$.

Endomorphisms

 $\operatorname{End}(E)=\mathbb{Z}\langle\iota,\pi
angle$, with:

- π the Frobenius endomorphism, s.t. $\pi^2 = -p$;
- \bullet ι the map

$$\iota(x,y)=(-x,iy),$$

where $i \in \mathbb{F}_{p^2}$ is a 4-th root of unity. Clearly, $\iota^2 = -1$.

And $\iota \pi = -\pi \iota$.

Class group action party

•
$$j = 1728$$

Class group action party

Supersingular graphs

- Quaternion algebras have many maximal orders.
- For every maximal order type of $B_{p,\infty}$ there are 1 or 2 curves over \mathbb{F}_{p^2} having endomorphism ring isomorphic to it.
- There is a unique isogeny class of supersingular curves over $\overline{\mathbb{F}}_p$ of size $\approx p/12$.
- Left ideals act on the set of maximal orders like isogenies.
- The graph of ℓ -isogenies is $(\ell + 1)$ -regular.

Figure: 3-isogeny graph on \mathbb{F}_{97^2} .

Graphs lexicon

```
Degree: Number of (outgoing/ingoing) edges.
```

k-regular: All vertices have degree k.

Connected: There is a path between any two vertices.

Distance: The length of the shortest path between two vertices.

Diameter: The longest distance between two vertices.

 $\lambda_1 \ge \cdots \ge \lambda_n$: The (ordered) eigenvalues of the adjacency matrix.

Expander graphs

Proposition

If G is a k-regular graph, its largest and smallest eigenvalues satisfy

$$k = \lambda_1 \ge \lambda_n \ge -k$$
.

Expander families

An infinite family of connected k-regular graphs on n vertices is an expander family if there exists an $\epsilon > 0$ such that all non-trivial eigenvalues satisfy $|\lambda| \le (1 - \epsilon)k$ for n large enough.

- Expander graphs have short diameter: $O(\log n)$;
- Random walks mix rapidly: after $O(\log n)$ steps, the induced distribution on the vertices is close to uniform.

Expander graphs from isogenies

Theorem (Pizer)

Let ℓ be fixed. The family of graphs of supersingular curves over \mathbb{F}_{p^2} with ℓ -isogenies, as $p \to \infty$, is an expander family^a.

^aEven better, it has the Ramanujan property.

Theorem (Jao, Miller, Venkatesan)

Let $\mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$ be an order in a quadratic imaginary field. The graphs of all curves over \mathbb{F}_q with complex multiplication by \mathcal{O} , with isogenies of prime degree bounded^a by $(\log q)^{2+\delta}$, are expanders.

^aMay contain traces of GRH.

Executive summary

- Separable ℓ -isogeny = finite kernel = subgroup of $E[\ell]$ (= ideal of norm ℓ),
- Isogeny graphs have j-invariants for vertices and "some" isogenies for edges.
- By varying the choices for the vertex and the isogeny set, we obtain graphs with different properties.
- ℓ -isogeny graphs of ordinary curves are volcanoes, (full) ℓ -isogeny graphs of supersingular curves are finite $(\ell+1)$ -regular.
- CM theory naturally leads to define graphs of horizontal isogenies (both in the ordinary and the supersingular case) that are isomorphic to Cayley graphs of class groups.
- ullet CM graphs are expanders. Supersingular full ℓ -isogeny graphs are Ramanujan.

Isogeny Based Cryptography: an Introduction

Luca De Feo

IBM Research Zürich

November 28, 2019 NTNU, Trondheim

Slides online at https://defeo.lu/docet

The beauty and the beast (credit: Lorenz Panny)

Components of particular isogeny graphs look like this:

Which of these is good for crypto?

The beauty and the beast (credit: Lorenz Panny)

Components of particular isogeny graphs look like this:

Which of these is good for crypto? **Both.**

The beauty and the beast (credit: Lorenz Panny)

At this time, there are <u>two distinct families</u> of systems:

CSIDH [pron.: sea-side] https://csidh.isogeny.org

 \mathbb{F}_{p^2} SIDH

https://sike.org

Brief history of isogeny-based cryptography

- 1997 Couveignes introduces the Hard Homogeneous Spaces framework. His work stays unpublished for 10 years.
- 2006 Rostovtsev & Stolbunov independently rediscover Couveignes ideas, suggest isogeny-based Diffie–Hellman as a quantum-resistant primitive.
- 2006-2010 Other isogeny-based protocols by Teske and Charles, Goren & Lauter.
- 2011-2012 D., Jao & Plût introduce SIDH, an efficient post-quantum key exchange inspired by Couveignes, Rostovtsev, Stolbunov, Charles, Goren, Lauter.
 - 2017 SIDH is submitted to the NIST competition (with the name SIKE, only isogeny-based candidate).
 - 2018 D., Kieffer & Smith resurrect the Couveignes–Rostovtsev–Stolbunov protocol, Castryck, Lange, Martindale, Panny & Renes create an efficient variant named CSIDH.
 - 2019 The year of proofs of isogeny knowledge: SeaSign (D. & Galbraith; Decru, Panny & Vercauteren), CSI-FiSh (Beullens, Kleinjung & Vercauteren), VDF (D., Masson, Petit & Sanso), threshold (D. & Meyer).

The QUANTHOM Menace

Basically every isogeny-based key-exchange...

Basically every isogeny-based key-exchange...

Basically every isogeny-based key-exchange...

Hard Homogeneous Spaces¹

Principal Homogeneous Space

 $\mathcal{G} \supset \mathcal{E}$: A (finite) set \mathcal{E} acted upon by a group \mathcal{G} faithfully and transitively:

$$*: \mathcal{G} imes \mathcal{E} \longrightarrow \mathcal{E} \ \mathfrak{g} * E \longmapsto E'$$

Compatibility: $\mathfrak{g}'*(\mathfrak{g}*E)=(\mathfrak{g}'\mathfrak{g})*E$ for all $\mathfrak{g},\mathfrak{g}'\in\mathcal{G}$ and $E\in\mathcal{E};$

Identity: e * E = E if and only if $e \in G$ is the identity element;

Transitivity: for all $E, E' \in \mathcal{E}$ there exist a unique $\mathfrak{g} \in \mathcal{G}$ such that $\mathfrak{g} * E' = E$.

Example: the set of elliptic curves with complex multiplication by \mathcal{O}

is a PHS for the class group $Cl(\mathcal{O})$.

¹Couveignes 2006.

Hard Homogeneous Spaces

Hard Homogeneous Space (HHS)

A Principal Homogeneous Space $\mathcal{G} \ \circlearrowright \ \mathcal{E}$ such that \mathcal{G} is commutative and:

- Evaluating $E' = \mathfrak{g} * E$ is easy;
- Inverting the action is hard.

HHS Diffie-Hellman

Goal: Alice and Bob have never met before. They are chatting over a public channel, and want to agree on a shared secret to start a private conversation.

Setup: They agree on a (large) HHS $\mathcal{G} \circlearrowright \mathcal{E}$ of order N.

HHSDH from complex multiplication

Obstacles:

- The group size of $Cl(\mathcal{O})$ is unknown.
- Only ideals of small norm (isogenies of small degree) are efficient to evaluate.

Solution:

ullet Restrict to elements of $\mathrm{Cl}(\mathcal{O})$ of the form

$$\mathfrak{g}=\prod \mathfrak{a}_i^{e_i}$$

for a basis of a_i of small norm.

• Equivalent to doing isogeny walks of smooth degree.

- •
- •
- • E₀
 - •
 - - •

- ullet A supersingular curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.

- A supersingular curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A: E_0 \to E_A$ of length $O(\log p)$;

- A supersingular curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A: E_0 \to E_A$ of length $O(\log p)$;
- Bob does the same;

- A supersingular curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A: E_0 \to E_A$ of length $O(\log p)$;
- Bob does the same;
- \bullet They publish E_A and E_B ;

Public parameters:

- A supersingular curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A: E_0 \to E_A$ of length $O(\log p)$;
- Bob does the same;
- \bullet They publish E_A and E_B ;
- Alice repeats her secret walk ϕ_A starting from E_B .

- A supersingular curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A: E_0 \to E_A$ of length $O(\log p)$;
- Bob does the same;
- **1** They publish E_A and E_B ;
- Alice repeats her secret walk ϕ_A starting from E_B .
- **Sob** repeats his secret walk ϕ_B starting from E_A .

CSIDH data flow

Your secret: a vector of number of isogeny steps for each degree

$$(5,1,-4,\dots)$$

Your public key: (the j-invariant of) a supersingular elliptic curve

 $j = 0x23baf75419531a44f3b97cc9d8291a275047fcdae0c9a0c0ebb993964f821f2 \\ 0c11058a4200ff38c4a85e208345300033b0d3119ff4a7c1be0acd62a622002a9$

Quantum security

Fact: Shor's algorithm does not apply to Diffie-Hellman protocols from group actions.

Subexponential attack

 $\exp(\sqrt{\log p \log \log p})$

- Reduction to the hidden shift problem by evaluating the class group action in quantum supersposition^a (subexpoential cost);
- Well known reduction from the hidden shift to the dihedral (non-abelian) hidden subgroup problem;
- Kuperberg's algorithm^b solves the dHSP with a subexponential number of class group evaluations.
- ullet Recent work^c suggests that 2^{64} -qbit security is achieved somewhere in $512 < \log p < 1024$.

^aChilds, Jao, and Soukharev 2014.

^bKuperberg 2005; Regev 2004; Kuperberg 2013.

^cBonnetain and Naya-Plasencia 2018; Bonnetain and Schrottenloher 2018; Biasse, Jacobson Jr, and Iezzi 2018; Jao, LeGrow, Leonardi, and Ruiz-Lopez 2018; Bernstein, Lange, Martindale, and Panny 2018.

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

- Fix small primes ℓ_A , ℓ_B ;
- No canonical labeling of the ℓ_A and ℓ_B -isogeny graphs; however...

Walk of length e Isogeny of degree $\ell_A^{e_A}$ Kernel $\langle P \rangle \subset E[\ell_A^{e_A}]$ $\ker \phi = \langle P \rangle \subset E[\ell_A^{e_A}]$ $\ker \psi = \langle Q \rangle \subset E[\ell_B^{e_B}]$ $\ker \phi' = \langle \psi(P) \rangle$ $\ker \psi' = \langle \phi(Q) \rangle$

Supersingular Isogeny Diffie-Hellman²

Parameters:

- Prime p such that $p+1=\ell^a_A\ell^b_B$;
- Supersingular curve $E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2$;
- $E[\ell_A^a] = \langle P_A, Q_A \rangle$;
- $E[\ell_B^b] = \langle P_B, Q_B \rangle$.

Secret data:

- $\bullet R_A = m_A P_A + n_A Q_A,$
- $\bullet R_B = m_B P_B + n_B Q_B,$

² Jao and De Feo 2011: De Feo, Jao, and Plût 2014.

Supersingular Isogeny Diffie-Hellman²

Parameters:

- Prime p such that $p+1=\boldsymbol{\ell}_A^a\boldsymbol{\ell}_B^b$;
- Supersingular curve $E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2$;
- $E[\ell_A^a] = \langle P_A, Q_A \rangle$;
- $\bullet \ E[\ell_B^b] = \langle P_B, Q_B \rangle.$

Secret data:

- $\bullet R_A = m_A P_A + n_A Q_A,$
- $\bullet \ R_B = m_B P_B + n_B Q_B,$

²Jao and De Feo 2011; De Feo, Jao, and Plût 2014.

Supersingular Isogeny Diffie-Hellman²

Parameters:

- Prime p such that $p+1=\ell_A^a \ell_B^b$;
- Supersingular curve $E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2$;
- \bullet $E[\ell_A^a] = \langle P_A, Q_A \rangle$;
- \bullet $E[\ell_B^b] = \langle P_B, Q_B \rangle$.

Secret data:

- $\bullet R_{A} = m_{A}P_{A} + n_{A}Q_{A}.$
- $R_B = m_B P_B + n_B Q_B$.

²Jao and De Feo 2011: De Feo, Jao, and Plût 2014.

CSIDH vs SIDH	COLDIA	CIDII	
	CSIDH	SIDH	
Speed (on x64 arch., NIST 1)	\sim 35ms	\sim 6ms 346B	
Public key size (NIST 1)	64B		
Key compression			
↓ speed		\sim 11ms	
size		209B	
Submitted to NIST	no	yes	
TRL	4	6	
Best classical attack	$p^{1/4}$	$p^{1/4}$ $(p^{3/8})$	
Best quantum attack	$ ilde{\mathcal{O}}\left(3^{\sqrt{\log_3 p}} ight)$	$p^{1/6}$ $(p^{3/8})$	
Key size scales	quadratically	linearly	
CPA security	yes	yes	
CCA security	yes	Fujisaki-Okamoto	
Constant time	it's complicated	yes	
Non-interactive key exchange	yes	no	
Signatures	short but (slow do not scale)	big and slow	

Why prove a secret isogeny?

Public: Curves E, E'

Secret: An isogeny walk E o E'

Why?

- For interactive identification;
- For signing messages;
- For validating public keys (esp. SIDH);
- More...

Some properties

Zero knowledge				
	Statistical	Computational	Quantum resistance	Succinctness
CSIDH	√		√/sort of	
SIDH		\checkmark	\checkmark	
Pairings				\checkmark

Security assumptions in Isogeny-based Cryptography

Isogeny walk problem

Input Two isogenous elliptic curves E, E' over \mathbb{F}_q . Output A path $E \to E'$ in an isogeny graph.

SIDH problem (1)

Input Elliptic curves E, E' over \mathbb{F}_a , isogenous of degree $\ell_A^{e_A}$.

Output The unique path $E \to E'$ of length e_A in the ℓ_A -isogeny graph.

SIDH problem (2)

- Input Elliptic curves E, E' over \mathbb{F}_q , isogenous of degree $\ell_A^{e_A}$;
 - The action of the isogeny on $E[\ell_{\mathcal{D}}^{e_{\mathcal{D}}}]$.

Output The unique path $E \to E'$ of length e_A in the ℓ_A -isogeny graph.

A Σ-protocol from Diffie-Hellman³

• A key pair (s, g^s) ;

$$g \longrightarrow g$$

³Kids, do not try this at home! Use Schnorr!

A Σ -protocol from Diffie-Hellman³

- A key pair (s, g^s) ;
- Commit to a random element g^r ;

³Kids, do not try this at home! Use Schnorr!

A Σ-protocol from Diffie–Hellman³

- A key pair (s, g^s) ;
- Commit to a random element g^r ;
- Challenge with bit $b \in \{0, 1\}$;

³Kids, do not try this at home! Use Schnorr!

A Σ-protocol from Diffie-Hellman³

- A key pair (s, g^s) ;
- Commit to a random element g^r ;
- Challenge with bit $b \in \{0, 1\}$;
- Respond with $c = r b \cdot s \mod \#G$;

³Kids, do not try this at home! Use Schnorr!

A Σ-protocol from Diffie-Hellman³

- A key pair (s, g^s) ;
- Commit to a random element q^r ;
- Challenge with bit $b \in \{0, 1\}$;
- Respond with $c = r b \cdot s \mod \#G$;
- Verify that $g^c(g^s)^b = g^r$.

³Kids, do not try this at home! Use Schnorr!

A Σ-protocol from Diffie–Hellman³

- A key pair (s, g^s) ;
- Commit to a random element g^r ;
- Challenge with bit $b \in \{0, 1\}$;
- Respond with $c = r b \cdot s \mod \#G$;
- Verify that $g^c(g^s)^b = g^r$.

Zero-knowledge

Does not leak because:

c is uniformly distributed and independent from s.

³Kids, do not try this at home! Use Schnorr!

A Σ-protocol from Diffie-Hellman³

- A key pair (s, g^s) ;
- Commit to a random element q^r ;
- Challenge with bit $b \in \{0, 1\}$;
- Respond with $c = r b \cdot s \mod \#G$;
- Verify that $g^c(g^s)^b = g^r$.

Zero-knowledge

Does not leak because:

c is uniformly distributed and independent from s.

Unlike Schnorr, compatible with group action Diffie-Hellman.

³Kids, do not try this at home! Use Schnorr!

The trouble with groups of unknown structure

In CSIDH secrets look like: $g^{\vec{s}}=g_2^{s_2}g_3^{s_3}g_5^{s_5}\cdots$

- the elements g_i are fixed,
- the secret is the exponent vector $\vec{s} = (s_2, s_3, \dots) \in [-B, B]^n$,
- secrets must be sampled in a box $[-B, B]^n$ "large enough"...

The trouble with groups of unknown structure

In CSIDH secrets look like: $g^{\vec{s}}=g_2^{s_2}g_3^{s_3}g_5^{s_5}\cdots$

- the elements g_i are fixed,
- the secret is the exponent vector $\vec{s} = (s_2, s_3, \dots) \in [-B, B]^n$,
- secrets must be sampled in a box $[-B, B]^n$ "large enough"...

The leakage

With \vec{s} , $\vec{r} \stackrel{\$}{\leftarrow} [-B, B]^n$, the distribution of $\vec{r} - \vec{s}$ depends on the long term secret \vec{s} !

The two fixes

Do like the lattice people

SeaSign: D. and Galbraith 2019

- Use Fiat-Shamir with aborts (Lyubashevsky 2009).
- Huge increase in signature size and time.
- Compromise signature size/time with public key size (still slow).

Compute the group structure and stop whining

CSI-FiSh: Beullens, Kleinjung and Vercauteren 2019

- Already suggested by Couveignes (1996) and Stolbunov (2006).
- Computationally intensive (subexponential parameter generation).
- Decent parameters, e.g.: 263 bytes, 390 ms, @NIST-1.
- Technically not post-quantum (signing requires solving ApproxCVP).

Rejection sampling

- Sample long term secret \vec{s} in the usual box $[-B, B]^n$,
- Sample ephemeral \vec{r} in a larger box $[-(\delta+1)B, (\delta+1)B]^n$,
- Throw away $\vec{r} \vec{s}$ if it is out of the box $[-\delta B, \delta B]^n$.

Zero-knowledge

Theorem: $\vec{r} - \vec{s}$ is uniformly distributed in $[-\delta B, \delta B]^n$.

Problem: set δ so that rejection probability is low.

SeaSign Performance (NIST-1)

	t=1 bit challenges	t=16 bits challenges	PK compression
Sig size	20 KiB	978 B	3136 B
PK size	64 B	4 MiB	32 B
SK size	32 B	16 B	1 MiB
Est. keygen time	30 ms	30 mins	30 mins
Est. sign time	30 hours	6 mins	6 mins
Est. verify time	10 hours	2 mins	2 mins
Asymptotic sig size	$O(\lambda^2 \log(\lambda))$	$O(\lambda t \log(\lambda))$	$O(\lambda^2 t)$

Speed/size compromises by Decru, Panny and Vercauteren 2019

		, , , , , , , , , , , , , , , , , , , ,	
Sig size	36 KiB	2 KiB	_
Est. sign time	30 mins	80 s	_
Est. verify time	20 mins	20 s	_

CSI-FiSh⁵

- Record breaking class group computation for CSIDH-512, hard to scale to larger primes;
- Effectively (but not asymptotically) makes CSIDH into an HHS:
 - ► Compatible with secret sharing in the exponent, yields decent threshold signatures.⁴

${\mathcal S}$	t	k	sk	sk	sig	KeyGen	Sign	Verify
2^1	56	16	16 B	128 B	1880 B	100 ms	2.92 s	2.92 s
2^2	38	14	16 B	256 B	1286 B	200 ms	1.98 s	1.97 s
2^3	28	16	16 B	512 B	956 B	400 ms	1.48 s	1.48 s
2^4	23	13	16 B	1 KB	791 B	810 ms	1.20 s	1.19 s
2^{6}	16	16	16 B	4 KB	560 B	3.3 s	862 ms	859 ms
2^{8}	13	11	16 B	16 KB	461 B	13 s	671 ms	670 ms
2^{10}	11	7	16 B	64 KB	395 B	52 s	569 ms	567 ms
2^{12}	9	11	16 B	256 KB	329 B	3.5 m	471 ms	469 ms
2^{15}	7	16	16 B	2 MB	263 B	28 m	395 ms	393 ms

⁴De Feo and Meyer 2019.

⁵Beullens, Kleinjung, and Vercauteren 2019.

 $\frac{1}{3}$ -soundness

 $\frac{1}{2}$ -soundness Secret ϕ of degree $\ell_A^{e_A}$.

- Choose a random point $P \in E[\ell_R^{e_B}]$, compute the diagram;
- Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;

 $\frac{1}{3}$ -soundness

- **O** Choose a random point $P \in E[\ell_B^{e_B}]$, compute the diagram;
- ② Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- The verifier challenges to reveal one out of the 3 sides
 - ▶ Isogenies ψ , ψ' (degree $\ell_B^{e_B}$) unrelated to secret;

 $\frac{1}{3}$ -soundness

- Choose a random point $P \in E[\ell_B^{e_B}]$, compute the diagram;
- ② Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- The verifier challenges to reveal one out of the 3 sides
 - ▶ Isogenies ψ , ψ' (degree $\ell_B^{e_B}$) unrelated to secret;

 $\frac{1}{3}$ -soundness

- **O** Choose a random point $P \in E[\ell_B^{e_B}]$, compute the diagram;
- ② Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- The verifier challenges to reveal one out of the 3 sides
 - ▶ Isogenies ψ , ψ' (degree $\ell_B^{e_B}$) unrelated to secret;
 - ▶ Isogeny ϕ' conjectured to not reveal useful information on ϕ .

A Σ -protocol for SIDH

- $\frac{1}{3}$ -soundness
- Secret ϕ of degree $\ell_A^{e_A}$.

- **O** Choose a random point $P \in E[\ell_B^{e_B}]$, compute the diagram;
- ② Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- The verifier challenges to reveal one out of the 3 sides
 - ▶ Isogenies ψ , ψ' (degree $\ell_B^{e_B}$) unrelated to secret;
 - ▶ Isogeny ϕ' conjectured to not reveal useful information on ϕ .

Improving to $\frac{1}{2}$ -soundness

- Reveal ψ , ψ' simultaneously;
- Reveals action of ϕ on $E[\ell_R^{e_B}] \Rightarrow$ Stronger security assumption.

SIDH signature performance (NIST-1)

According to Yoo, Azarderakhsh, Jalali, Jao and Vladimir Soukharev 2017:

Size: $\approx 100KB$,

Time: seconds.

SIDH signature performance (NIST-1)

According to Yoo, Azarderakhsh, Jalali, Jao and Vladimir Soukharev 2017:

Size: $\approx 100KB$, Time: seconds.

Galbraith, Petit and Silva 2017

- Concept similar to CSI-FiSh: exploits known structure of endomorphism ring;
- Statistical zero knowledge (under heuristic assumptions);
- Based on the generic isogeny walk problem (requires special starting curve, though);
- Size/performance comparable to Yoo et al. (and possibly slower).

Verifiable delay functions⁶

Wanted

```
Function (family) f: X \rightarrow Y s.t.:
```

- Evaluating f(x) takes long time:
 - uniformly long time,
 - on almost all random inputs x,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Why?

- Distributed lottery;
- Distributed consensus protocols (blockchains);
- ...

⁶Boneh, Bonneau, Bünz, and Fisch 2018.

Weil pairing and isogenies

Theorem

Let $\phi: E \to E'$ be an isogeny and $\hat{\phi}: E' \to E$ its dual. Let e_N be the Weil pairing of E and e'_N that of E'. Then, for

$$e_N(P,\hat{\phi}(Q))=e_N'(\phi(P),Q),$$

for any $P \in E[N]$ and $Q \in E'[N]$.

Corollary

$$e_N'(\phi(P),\phi(Q))=e_N(P,Q)^{\deg\phi}.$$

Isogeny VDF⁷

Idea

Evaluation: Evaluate a long chain of isogenies at a random point.

Verification: Check a pairing equation.

- Verification time independent of the length of the isogeny chain.
- Constraints:
 - Pairing friendly curves,
 - Large field size for pairing security,
 - Must be difficult to find "shortcuts":
 - ★ Large isogeny graph,
 - ★ Unknown endomorphism rings ⇒ Trusted setup!
- \Rightarrow Supersingular curves over ≈ 1500 bit fields.

⁷De Feo, Masson, Petit, and Sanso 2019.

Conclusion

- Repeat with me: I need isogeny-based crypto!
- Different isogeny graphs enable different applications, different security assumptions.
- Public key encryption based on isogenies is a reality, although maybe not your #1 choice for TLS.
- Post-quantum isogeny signatures are still far from practical.
- Practical isogeny signatures do exists (CSI-FiSh); you can start using them now if you are an isogeny hippie, are ok for threshold signatures, but they do not scale.
- Pairing-based isogeny proofs are usable, but not interesting for signatures; look into succinctness, instead!

Article citations I

- Couveignes, Jean-Marc (2006).
 Hard Homogeneous Spaces.
 URL: http://eprint.iacr.org/2006/291/.
 - Childs, Andrew, David Jao, and Vladimir Soukharev (2014). "Constructing elliptic curve isogenies in quantum subexponential time." In: Journal of Mathematical Cryptology 8.1, Pp. 1–29.
- Kuperberg, Greg (2005).

"A subexponential-time quantum algorithm for the dihedral hidden subgroup problem."

In: SIAM J. Comput. 35.1, Pp. 170–188. eprint: quant-ph/0302112.

Article citations II

Regev, Oded (June 2004).

A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Problem with Polynomial Space.

arXiv: quant-ph/0406151.

URL: http://arxiv.org/abs/quant-ph/0406151.

Article citations III

Kuperberg, Greg (2013).

"Another Subexponential-time Quantum Algorithm for the Dihedral Hidden Subgroup Problem."

In: 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013).

Ed. by Simone Severini and Fernando Brandao.

Vol. 22.

Leibniz International Proceedings in Informatics (LIPIcs).

Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Pp. 20–34.

URL: http://drops.dagstuhl.de/opus/volltexte/2013/4321.

Article citations IV

Bonnetain, Xavier and María Naya-Plasencia (2018).
Hidden Shift Quantum Cryptanalysis and Implications.
Cryptology ePrint Archive, Report 2018/432.
https://eprint.iacr.org/2018/432.

Bonnetain, Xavier and André Schrottenloher (2018).

Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes.

Cryptology ePrint Archive, Report 2018/537.

https://eprint.iacr.org/2018/537.

Biasse, Jean-François, Michael J Jacobson Jr, and Annamaria lezzi (2018). "A note on the security of CSIDH."

In: arXiv preprint arXiv:1806.03656.
URL: https://arxiv.org/abs/1806.03656.

NTNU

Article citations V

Jao, David, Jason LeGrow, Christopher Leonardi, and Luiz Ruiz-Lopez (2018). "A polynomial quantum space attack on CRS and CSIDH."

In: MathCrypt 2018.

To appear.

Bernstein, Daniel J., Tanja Lange, Chloe Martindale, and Lorenz Panny (2018). Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies. To appear at EuroCrypt 2019.

URL: https://eprint.iacr.org/2018/1059.

Article citations VI

Jao, David and Luca De Feo (2011).

"Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies."

In: Post-Quantum Cryptography.

Ed. by Bo-Yin Yang.

Vol. 7071.

Lecture Notes in Computer Science.

Taipei, Taiwan: Springer Berlin / Heidelberg.

Chap. 2, pp. 19-34.

De Feo, Luca, David Jao, and Jérôme Plût (2014).

"Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies."

In: Journal of Mathematical Cryptology 8.3,

Pp. 209-247.

NTNU

Article citations VII

- De Feo, Luca and Michael Meyer (2019).
 - Threshold Schemes from Isogeny Assumptions.
 - Cryptology ePrint Archive, Report 2019/1288.
 - URL: https://eprint.iacr.org/2019/1288.
- Beullens, Ward, Thorsten Kleinjung, and Frederik Vercauteren (2019). CSI-FiSh: Efficient Isogeny based Signatures through Class Group Computations. Cryptology ePrint Archive, Report 2019/498.
- https://eprint.iacr.org/2019/498.
- Boneh, Dan, Joseph Bonneau, Benedikt Bünz, and Ben Fisch (2018). "Verifiable Delay Functions."
- In: Advances in Cryptology CRYPTO 2018.
- Ed. by Hovay Shacham and Alexandra Boldvreva.
- Cham: Springer International Publishing.
- Pp. 757-788.

Article citations VIII

De Feo, Luca, Simon Masson, Christophe Petit, and Antonio Sanso (2019). Verifiable Delay Functions from Supersingular Isogenies and Pairings.

Cryptology ePrint Archive, Report 2019/166.

URL: https://eprint.iacr.org/2019/166.