Question 1

1-a)

Le système A fourni effectivement de la puissance active à B. Le signe affiché par le wattmètre sera positif, car si on considère A en convention générateur, le courant et la puissance active vont vers B (ce qui est le cas en observant le point de fonctionnement P1). Il s'agit du cas ou ϕ se situe entre $-\frac{\pi}{2}$ et 0 rad.

1-b)

C'est le système B qui fourni la puissance réactive à A. Si B absorbait la puissance réactive comme le ferais une inductance, le courant serait en retard et non en avance par rapport à la tension.

1-c)

Non, la puissance active transite de B vers A. Le signe affiché par le watt-mètre sera donc négatif, car la convention indique une valeur de puissance positive (A vers B) seulement si ϕ se trouve entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$. Dans ce cas ϕ se situe entre $-\pi$ et $-\frac{\pi}{2}$.

1-d)

Is est en avance par rapport à la tension, donc c'est encore B qui fourni la puissance réactive à A (dans la convention imposée évidemment)

Question 2

2-a)

A est en convention générateur et B est en convention récepteur

2-b)

	Signe de P	Signe de Q
PT1	positif	positif
PT2	positif	nul
PT3	positif	négatif
PT4	nul	négatif
PT5	négatif	négatif
PT6	négatif	nul
PT7	négatif	positif
PT8	nul	positif

2-c)

	A produit P	A consomme P	A produit Q	A consomme Q
PT1	Oui	Non	Oui	Non
PT2	Oui	Non	Non	Non
PT3	Oui	Non	Non	Oui
PT4	Non	Non	Non	Oui
PT5	Non	Oui	Non	Oui
PT6	Non	Oui	Non	Non
PT7	Non	Oui	Oui	Non
PT8	Non	Non	Oui	Non

	B produit P	B consomme P	B produit Q	B consomme Q
PT1	Non	Oui	Non	Oui
PT2	Non	Oui	Non	Non
PT3	Non	Oui	Oui	Non
PT4	Non	Non	Oui	Non
PT5	Oui	Non	Oui	Non
PT6	Oui	Non	Non	Non
PT7	Oui	Non	Non	Oui
PT8	Non	Non	Non	Oui

Question 3

Pour que la puissance active soit positive, il faut que ϕ se trouve entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$, à condition que la tension V aille de la borne inférieure vers la borne supérieure. Dans ce cas précis selon le branchement du transformateur de tension et celui de courant, La tension V va de la borne supérieure vers la borne inférieure. Cela signifie que par rapport à notre modèle habituel dans le plan complexe, il y a un déphasage de π rad pour V. Autrement dit, la puissance devient positive si le courant va de B vers A.

Cependant si on fait la valeur absolue de la puissance, le vecteur retourne à 0 degrés (on annule le signe négatif) et notre modèle donne une puissance positive si la puissance transite de A vers B.

page 2