Feng Chia University

Electrical Engineering Fundamentals I Lab

Laboratory 2

Equivalent Circuit

Instructor: Prof. Shyan-Lung Lin

Student Name: 周嘉禾

Student ID: D1166506

Experiment Date:23/11/2023

I. Introduction

- a. To be familiar with Thevenin equivalent, Norton equivalent
- b. To be familiar with maximum power transfer theorem

II. Materials

- a. Digital Multimeter
- b. Triple Output Power Supply
- c. Resistors
 - 1. $2 \text{ k}\Omega \times 2$, 5.6 k Ω , 1 k Ω
 - 2. 100Ω , $1 k\Omega$, $2.2 k\Omega$, $10 k\Omega$

III. Circuit diagram

▲ Figure 1. Circuit of Experiment 2.a Examples of Thevenin equivalent

▲ Figure 2. Circuit of Experiment 2.b Maximum power transfer theorem

IV. Methods

V. Experiments data

a. Experiment 2.a

Table 1: Results of the V_{Th} and R_{Th} Measurements

	Pratical	Theorem	% Error
V_{Th}	13.8700 V	13.6842 V	1.36%
R_{Th}	$1.5007~\mathrm{k}\Omega$	$1.4737~\mathrm{k}\Omega$	1.83%

b. Experiment 2.b

Table 2: Results of the V_L and I_L Measurements, and calculation of $P_L\,$

R_L	100 Ω	1 kΩ	2.2 kΩ	10 kΩ
$V_{\rm L}$	0.9049 V	4.9905 V	6.8624 V	9.0906 V
I_L	9.2188 mA	5.0675 mA	3.1713 mA	0.9176 mA
P_L	8.3421 mW	25.2894 mW	21.7627 mW	8.3415 mW

VI. Results

▲ Figure 3. Photo of Experiment 2.a Examples of Thevenin equivalent

▲ Figure 4. Photo of Experiment 2.b Maximum power transfer theorem

VII. Discussion

With the R_L closing to R_{out} , the power dissipation will be maximum and become larger than the R_L away from R_{out} .

VIII. Conclusion

By measuring the equivalent circuit, it's easy to understand the Thevenin and Norton equivalent and maximum power transfer theorem.