Системный анализ

ЗАДАЧА ВЫБОРА СТРУКТУРЫ СЛОЖНОЙ СИСТЕМЫ

Снигирева Лочман Мельничук

Задание

- Построить иерархическую структуру сложной системы (СС) любой природы с альтернативными вариантами каждого типа ФЭ на каждом иерархическом уровне;
- Построить множество Парето структур для СС;
- Предложить структуру на основании приоритетных требований, предъявляемых заказчиком к СС в целом.

Дрон

Структура данного проектируемого объекта состоит из m = 4 иерархических уровней:

- 1. Имиджевая составляющая, состоит из 1 типа функционального элемента (ФЭ) корпус [4 параметра]
- 2. Механика, представляет собой 2 типа ФЭ: двигатели [5 параметров] и пропеллеры [4 параметра].
- 3. Аппаратная составляющая, представляет собой 3 типа ФЭ: процессор [3 параметра], датчик связи [2 параметра], программное обеспечение [4 параметра], камера [5 параметров].
- 4. Аккумулятор (он же является типом функционального элемента с 5 параметрами)

имиджевая составляющая						
	1. Корпус					
Название	Цена	Bec	Портативность	Материал		
AgDrone	15000	180	TRUE	волоконный композит		
<u>Hubsan H501S</u>	10500	230	TRUE	экструдированный пенополистирол		
Raytheon	7000	300	FALSE	кевлар		
<u>Тахион</u>	8000	450	FALSE	углепластика		

	МЕХАНИКА						
1. Двигатели							
Название	Цена	Bec	Тип	Число двигателей	Тип движителя		
DJI SPARK	10000	160	Бесколлекторный электродвигатель	6	реактивная тяга		
WL Toys WLFalseQ282Jw	8000	200	Коллекторный электродвигатель	4	реактивная тяга		
Syma X5SW	5000	320	Электродвигатель	4	винт		
Syma X8HW	1000	130	Электродвигатель	2	винт		
	2. Пропеллеры						
Название	Название Цена Вес Материал Число						
Phantom 3	200	30	волоконный композит	2			
DJI Inspire 2	150	50	карбон	2			
DJI 9450 CW	240	130	карбон	6			
AEE Propeller	245	75	карбон	4			

АППАРАТНАЯ СОСТАВЛЯЮЩАЯ					
1. Программное обеспечение					
Название	Цена	Наличие GPS	Наличие ИИ	Производитель	
ENIVI One Button	750	TRUE	TRUE	Harris Geospatial	
ENVI OneButton				<u>Solutions</u>	
<u>UASMaster</u>	640	TRUE	TRUE	<u>Trimble</u>	
Agisoft Photoscan	360	TRUE	FALSE	<u>Agisoft</u>	
PHOTOMOD UAS	260	FALSE	FALSE	<u>Trimble</u>	
2. Процессор					
Название	Цена	Частота	Кількість ядер		
TMS320C6678	460	1.8	6		

		4. Камера		
Название	Цена	Мп	Угол обзора	ИК подсветка
AVT 6600AUXSDWF	1750	2.4	180	35
AVT AHDCH 108	1200	2	180	18
JIMI JH012	980	2.4	105	15
AVT 3300AUXSD	330	1.5	90	10

АККУМУЛЯТОР				
1. Аккумулятор				
Название	Цена	Продолжительность полета	Взлетная масса	Висота полета
Luftera	1400	360	5	150
Aladin	800	60	4	300
LiPo	600	120	10	400
Skywalker X8	2100	240	8	1200

Алгоритм

$$Q_0 = \{K_r^0 | K_r^- \le K_r^0 \le K_r^+; r = \overline{1, R_0}\},$$
 - Множество требований к объекту в целом

Необходимо выбрать по одному функциональному элементу каждого j-го типа на каждом i-м иерархическом уровне согласно требованиям. Далее строится множество Паретто.

Известно $M\Phi_{i\,j}$ - множество альтернатив. Оно раскладывается на подмножества:

Попытки

 $n_{ij}^- > 0$; $n_{ij}^+ > 0$, - количество элементов в множествах $M\Phi_{ij}^-$ чи $M\Phi_{ij}^+$ соответственно.

Можем расчитать вероятность выбора функционального элемента $\Phi_{ij} \in M\Phi_{ij}^+$ с к-й попытки:

$$P_{k}\left(\Phi_{ij} \in M\Phi_{ij}^{+}\right) = 1 - \left(1 - n_{ij}^{+} / \left(n_{ij} - (k-1)\right)\right)^{\binom{n_{ij} - \binom{k-1}{j}}{2}},$$

для $k = n_{ij}^- + 1$:

$$P_k(\Phi_{ij} \in M\Phi_{ij}^+) = 1 - (1 - n_{ij}^+ / n_{ij}^+)^{n_{ij}^+} = 1.$$

Следовательно, можем вывести, что $k_{ij}^{+} = n_{ij}^{-} + 1$.

Попытки

Для каждого функционального элемента количество попыток выбора независимо. Получаем:

$$k_i^+ = \sum_{j=1}^{n_i} (n_{ij}^- + 1),$$

На каждом иерархическом уровне количество попыток взаимно независимо. Получаем:

$$k^+ = \sum_{i=1}^{\hat{m}} k_i^+$$
.

Начало работы программы
— имеем возможность
описать требования к
внешним показателям для
каждого типа
функциональных
элементов в виде таких
показателей качества.

Допустим, имеем такие требования. Также, пусть заказчику в приоритете общая стоимость конечного продукта. Необходимо выбрать по одному ФЭ каждого типа на каждом иерархическом уровне.

В таком случае имеем множество структур Паретто мощности 32. В данной вкладке имеем возможность просмотреть все структуры из множества. При использовании метода целенаправленного выбора ФЭ потребовалось 102 попытки. В то время как при полном переборе нужно было выполнить 48 попыток.

Как уже говорилось ранее, заказчику нужен наиболее дешевый вариант. Выбираем это требование из списка и получаем приоритетную структуру проектируемого объекта.

Литература

- https://geektimes.ru/company/dronk/blog/269722/ Классы квадрокоптеров какие бывают и для чего используются
- http://robotrends.ru/robopedia/osnovye-konstrukcii-bespilotnikov Основные конструкции беспилотников
- https://www.dronezon.com/learn-about-drones-quadcopters/what-is-dronetechnology-or-how-does-drone-technology-work/ - How Do Drones Work And What Is Drone Technology