Bayesian Belief Networks in R

Abraham Mathew

Carmichael Lynch

Data³ 2015 March 5, 2015

> head(dat, 10)

	Hair_Color	Race	Text	Pictures		Age	Miles_Away	Shared_Interest	Overweight	Liked_You
1	Black	White	Y	5	22	to 26	Close	0	N	N
2	Blonde	White	N	4	22	to 26	Close	1	N	N
3	Black	Other	Y	4	27	to 30	Close	4	N	N
4	Blonde	White	Y	5	22	to 26	Close	0	N	N
5	Blonde	White	N	4	18	to 21	Close	1	N	N
6	Brunette	White	Y	6	22	to 26	Close	0	N	N
7	Black	White	N	4	22	to 26	Close	1	N	N
8	Blonde	White	Υ	6	22	to 26	Close	2	Y	N
9	Brunette	White	Y	6	18	to 21	Far	0	N	N
10	Blonde	White	Y	5		31+	Far	0	N	N

Review of Probability Theory

- Sample space: The set of all possible events of an experiment
- Marginal probability: the probability of an event occurring, or P(A)
- Conditional probability: the probability of event A occurring given that event B occurs, or P(A|B)
- Joint probability: the probability of event A and event B occurring, or P(AandB)

Probabilistic Graphical Models

- Probabilistic graphical models represent the conditional dependencies between random variables through a graph structure.
- Nodes correspond to random variables and edges represent statistical dependencies between the variables.
- Bayesian Belief Networks (directed acyclic graphics) and Markov Network (undirected).

Bayesian Belief Networks

• Goal: learn the structure of a network and learn the parameters.

- This is a directed acyclic graphic (DAG) that shows the dependencies between the variables.
- The relationship between shared interests and liked you is dependent on the number of pictures.

Bayesian Belief Networks

- P(LY|P), or what is the probability that a user liked you, given the number of pictures on their profile?
- Each node is associated with a probability function that specifies the probability of that variable conditional on the parent node.

Pictures

```
Liked_You 3 4 5 6
N 0.1666667 0.6363636 0.5384615 0.7500000
Y 0.8333333 0.3636364 0.4615385 0.2500000
```

BNLEARN Package

- bnlearn package (CRAN)
- The package implements a number of constraint based, pairwise, score-based, and hybrid structure learning algorithms.
- For the Tinder data set, use a score-based algorithm to learn the network structure.

```
library(bnlearn)
net <- hc(dat)
plot(net)</pre>
```

BNLEARN Package

BNLEARN Package

```
## HIGHLIGHT NODE AND ITS MARKOV BLANKET
plot(net, highlight = c("Pictures",
                      mb(net, "Pictures")))
## ESTIMATE PARAMETERS
fitted <- bn.fit(net. dat)
fitted
## STRENGTH OF THE ARCS
arc.strength(net, dat)
## CONDITIONAL PROBABILITY QUERIES
cpquery(fitted, (Liked_You=="Y"), TRUE)
cpquery(fitted, (Liked_You=="N"),
                (Pictures=="3" & Text=="N"))
```

Further Reading

- Ross, Sheldon. Introduction to Probability Models
- Scutari, Marco. Bayesian Networks: With Examples in R
- Nagarajan, Radhakrishnan, Scutari, Marco, and Lèbre, Sophie.
 Bayesian Networks in R: with Applications in Systems Biology