Aula de Inteligencia Artificial

Detección

Color y movimiento, restricciones

Esquema simple

Jones and Rehg [1]

Kruppa [2]

Espacios de color

Tarea

Abrir proyecto AulaIA_Detectores

Ejecutar DetectaColor.py

Determina los valores habituales en los espacios de color RGB y HSV para tu piel

Detección no basada en heurísticas Ventana deslizante Coste temporal del clasificador Mayor velocidad

Clasifica cada ventana

Clasificador

¿Qué caracteriza las X?

Clasifica cada ventana

Clasificador

¿Qué caracteriza las X?

Medidas de una imagen

$$x \in \mathfrak{R}^n$$
, $y \in \{\pm 1\}$

Rowley y Kanade Clasificador supervisado Experiencia previa

Viola y Jones

Clasifica cada ventana

Clasificador en cascada, desecha zonas poco prometedores Cascada clasificadores débiles

Viola y Jones

Características de cómputo rápido

Imagen integral

Viola y Jones

Esquema general

Fuente: Cascade structure for Haar classifiers.

Viola y Jones

Código python

```
import cv2
# Carga del clasificador para detección
cascada = cv2.CascadeClassifier('./haarcascade frontalface alt.xml')
# Cargas la imagen
imagen = cv2.imread("worlds-largest-selfie.jpg")
# Conversión a grises
gris = cv2.cvtColor(imagen, cv2.COLOR_BGR2GRAY)
# Detecta objetos
caras = cascada.detectMultiScale(gris)
# Para cada cara detectada
for (x, y, w, h) in caras:
  # Dibuja contenedor
  imagen = cv2.rectangle(imagen, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.imshow("Imagen", imagen)
```

Código ejemplo Viola Jones: AulalA_Detectores

- DetectaVJenimagen
- DetectaVJenimagenysalva
- DetectaVJencam
- DetectaVJcarasyojos
- DetectaFacemarks (no funciona con versión actual opency)

Repositorios clasificadores

- opency
- opencvcontrib

Tarea

Detecta caras con sonrisa y dibuja un sol en su caso

Tarea: Crea tu propio filtro

Detector dlib, HOG+SVM (requiere instalar dlib)

- DetectaDlibcaras
- DetectaDlibcarasnarizpayaso

Más que la cara, Zach Lieberman, 2017

Redes profundas

GPUs

Paralelización masiva

Tarea

Detección con comportamiento diferenciado por sexo/edad

Proyecto AulalA_Detectores

- DetectaDNNcaras
- DetectaDNNedadysexo
- DetectaVJedadysexo

Modelos clasificadores sexo y edad

- Sexo: https://www.dropbox.com/s/iyv483wz7ztr9gh/gender_net.caffemodel?dl=0"
- Edad: https://www.dropbox.com/s/xfb20y596869vbb/age_net.caffemodel?dl=0"

Referencias

- P. Viola and M. J. Jones. Rapid Object Detection using a Boosted Cascade of Simple Features. In Computer Vision and Pattern Recognition, 2001
- Rainer Lienhart and Jochen Maydt. An extended set of Haar-like features for rapid object detection. In IEEE International Conference on Image Processing, 2002
- Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu and Alexander C. Berg. SSD: Single Shot MultiBox Detector. In European Confer ence on Computer Vision, 2016