Econometrics April 12, 2023

Topic 13: Non-convex Learning + Lasso

by Sai Zhang

Key points: Combining the best of the two, we can use **Lasso plus Concave** method, with Lasso screening and concave component selecting variables, achieving a coordinated intrinsic two-scale learning.

Disclaimer: The note is built on Prof. Jinchi Lv's lectures of the course at USC, DSO 607, High-Dimensional Statistics and Big Data Problems.

We are facing a tradeoff:

- **Convex** methods: have appealing <u>prediction power and oracle inequalities</u>, but challenging to provide tight false sign rate control
- **Concave** methods: have good <u>variable selection</u> properties, but challenging to establish <u>global</u> properties and risk properties

Here, we take advantage of the linearity of Lasso (convex *and* concave) and try to combine it with concave regularization to get the best of both.

13.1 Model Setup

Again, consider a linear regression model $y = X\beta + \epsilon$, where

- response vector $(n \times 1)$: $\mathbf{y} = (y_1, \dots, y_n)'$
- design matrix $(n \times p)$: $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_p)$, with each column rescaled to have L_2 -norm $n^{1/2}$

here, we consider a scenario where

- $\beta_0 = (\beta_{0,1}, \dots, \beta_{0,p})'$ is *sparse* (with many 0 components)
- ultra-**high** dimensions: $\log p = O(n^a)$, for some 0 < a < 1

and consider the penalized least squares

$$\min_{\beta \in \mathbb{R}^p} \left\{ (2n)^{-1} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda_0 \|\boldsymbol{\beta}\|_1 + \|p_{\lambda}(\boldsymbol{\beta})\|_1 \right\}$$
 (13.1)

where

- $\lambda_0 = c \left(\frac{\log p}{n}\right)^{1/2}$ for some c > 0
- $p_{\lambda}(\boldsymbol{\beta}) = p_{\lambda}(|\boldsymbol{\beta}|) = (p_{\lambda}(|\beta_1|), \dots, p_{\lambda}(|\beta_p|))'$, with $|\boldsymbol{\beta}| = (|\beta_1|, \dots, |\beta_p|)'$; the concave penalty $p_{\lambda}(t)$ is defined on $t \in [0, \infty)$, indexed by $\lambda \ge 0$, increasing in **both** t and λ , $p_{\lambda}(0) = 0$

the 2 penalty components

- L_1 -component: minimum amount of regularization for removing noise in prediction
- concave component $||p_{\lambda}(\beta)||_1$: adapt model sparsity for *variable selection*

Under this set up, we can derive the hard-thresholding property as

Proposition 13.1.1: Hard-Thresholding Property

Assume the $p_{\lambda}(t)$, $t \ge 0$, is **increasing and concave** with

- $p_{\lambda}(t) \ge p_{H,\lambda}(t) = \frac{1}{2} \left[\lambda^2 (\lambda t)_+^2 \right]$ on $[0, \lambda]$
- $p'_{\lambda}((1-c_1)\lambda) \le c_1\lambda$ for some $c_1 \in [0,1)$
- $-p_{\lambda}''(t)$ decreasing on $[0,(1-c_1)\lambda]$

then any <u>local minimizer</u> of 13.1 that is also a <u>global minimizer</u> in each coordinate has the **hard-thresholding** feature that each component is either 0 or of magnitude **larger** than $(1 - c_1)\lambda$

Such property is shared by a wide class of concave penalties, including hard-thresholding penalty $p_{H,\lambda}(t)$ with $c_1 = 0$, L_0 —penalty, and SICA (with suitable c_1).

How to <u>understand</u> this proposition? Let $\hat{\beta} = (\hat{\beta}_1, \dots, \hat{\beta}_p)'$, then each $\hat{\beta}_j$ is the glocal minimizer of the corresponding univariate penalized least-square problem along the j-th coordinate. These univariate problems share a common form with (generally) different scalars z

$$\hat{\beta}(z) = \arg\min_{\beta \in \mathbb{R}} \left\{ \frac{1}{2} (z - \beta)^2 + \lambda_0 |\beta| + p_{H,\lambda}(|\beta|) \right\}$$

after we rescale all covariates to have L_2 -norm $n^{1/2}$. The solution to these univariate problems are

$$\hat{\beta}(z) = \operatorname{sgn}(z)(|z| - \lambda_0) \cdot \mathbf{1}_{|z| > \lambda + \lambda_0}$$

these solutions have the same feature as the hard-thresholded estimator: each component is either 0 or of magnitude larger than λ . This provides a better distinction between insignificant and significant covariates then soft-thresholding by L_1 penalty.

With the hard-thresholding property of Prop. 13.1.1, we can prove a basic constraint for the global optimum $\hat{\beta}$ on an event with significant probability (Fan and Lv, 2014)

$$\|\boldsymbol{\delta}_2\|_1 \le 7\|\boldsymbol{\delta}_1\|_1$$

where $\delta = \hat{\beta} - \beta_0 = (\hat{\beta}_1', \hat{\beta}_2')' - (\beta_{0,1}', \beta_{0,2}')' = (\delta_1', \delta_2')'$, with $\delta_1 \in \mathbb{R}^s$. Where does this constraint come from? For the penalized least square quesion 13.1

$$\min_{\beta \in \mathbb{R}^p} \left\{ (2n)^{-1} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda_0 \|\boldsymbol{\beta}\|_1 + \|p_{\lambda}(\boldsymbol{\beta})\|_1 \right\}$$

the global minimizer $\hat{\beta}$ leads to

$$(2n)^{-1} \|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2} + \lambda_{0} \|\hat{\boldsymbol{\beta}}\|_{1} + \|p_{\lambda}(\hat{\boldsymbol{\beta}})\|_{1} = (2n)^{-1} \|\mathbf{X}\boldsymbol{\beta}_{0} + \boldsymbol{\epsilon} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2} + \lambda_{0} \|\hat{\boldsymbol{\beta}}\|_{1} + \|p_{\lambda}(\hat{\boldsymbol{\beta}})\|_{1}$$

$$= (2n)^{-1} \|\boldsymbol{\epsilon} - \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_{0})\|_{2}^{2} + \lambda_{0} \|\hat{\boldsymbol{\beta}}\|_{1} + \|p_{\lambda}(\hat{\boldsymbol{\beta}})\|_{1}$$

$$\leq (2n)^{-1} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_{0}\|_{2}^{2} + \lambda_{0} \|\boldsymbol{\beta}_{0}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1}$$

$$= (2n)^{-1} \|\boldsymbol{\epsilon}\|_{2}^{2} + \lambda_{0} \|\boldsymbol{\beta}_{0}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1}$$

then, plug in $\delta = \hat{\beta} - \beta_0$, we get

$$(2n)^{-1} \|\boldsymbol{\epsilon} - \mathbf{X}\boldsymbol{\delta}\|_{2}^{2} + \lambda_{0} \|\boldsymbol{\beta}_{0} + \boldsymbol{\delta}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})\|_{1} \leq (2n)^{-1} \|\boldsymbol{\epsilon}\|_{2}^{2} + \lambda_{0} \|\boldsymbol{\beta}_{0}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1}$$

$$(2n)^{-1} \|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} - n^{-1}\boldsymbol{\epsilon}'\mathbf{X}\boldsymbol{\delta} + \lambda_{0} \|\boldsymbol{\beta}_{0} + \boldsymbol{\delta}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})\|_{1} \leq \lambda_{0} \|\boldsymbol{\beta}_{0}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1}$$

since $\beta_{0,2} = \mathbf{0}$, $\delta_2 = \beta_{0,2} + \delta_2$, we have

$$\|\boldsymbol{\beta}_0 + \boldsymbol{\delta}\|_1 = \|\boldsymbol{\beta}_{0,1} + \boldsymbol{\beta}_{0,2} + \boldsymbol{\delta}_1 + \boldsymbol{\delta}_2\|_1 = \|\boldsymbol{\beta}_{0,1} + \boldsymbol{\delta}_1 + \boldsymbol{\delta}_2\|_1 \le \|\boldsymbol{\beta}_{0,1} + \boldsymbol{\delta}_1\|_1 + \|\boldsymbol{\delta}_2\|_1$$

hence

$$(2n)^{-1}\|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} - n^{-1}\boldsymbol{\epsilon}'\mathbf{X}\boldsymbol{\delta} + \lambda_{0}\|\boldsymbol{\delta}_{2}\|_{1} \leq \lambda_{0}\|\boldsymbol{\beta}_{0,1}\|_{1} - \lambda_{0}\|\boldsymbol{\beta}_{0,1} + \boldsymbol{\delta}_{1}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1} - \|p_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})\|_{1}$$

and by the reverse triangle inequality $\|\boldsymbol{\beta}_{0,1}\|_1 - \|\boldsymbol{\beta}_{0,1} + \boldsymbol{\delta}_1\|_1 \le \|\boldsymbol{\delta}_1\|_1$, we get

$$(2n)^{-1} \|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2} - n^{-1}\boldsymbol{\epsilon}'\mathbf{X}\boldsymbol{\delta} + \lambda_{0}\|\boldsymbol{\delta}_{2}\|_{1} \leq \lambda_{0}\|\boldsymbol{\delta}_{1}\|_{1} + \|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1} - \|p_{\lambda}(\boldsymbol{\beta}_{0} + \boldsymbol{\delta})\|_{1}$$

If assume the distribution of the model error ϵ as

$$\Pr\left(\left\|n^{-1}\mathbf{X}'\boldsymbol{\epsilon}\right\|_{\infty} > \frac{\lambda_0}{2}\right) = O\left(p^{-c_0}\right)$$

conditional on the event $\mathcal{E} = \{\|n^{-1}\mathbf{X}'\boldsymbol{\epsilon}\|_{\infty} \leq \lambda_0/2\}$, we have

$$-n^{-1}\epsilon'\mathbf{X}\delta + \lambda_0\|\delta_2\|_1 - \lambda_0\|\delta_1\|_1 \ge -\frac{\lambda_0}{2}\|\delta\|_1 + \lambda_0\|\delta_2\|_1 - \lambda_0\|\delta_1\|_1 = \frac{\lambda_0}{2}\|\delta_2\|_1 - \frac{3\lambda_0}{2}\|\delta_1\|_1$$

plug this result back, get

$$\frac{1}{2n}\|\mathbf{X}\boldsymbol{\delta}\|_{2}^{2}+\frac{\lambda_{0}}{2}\|\boldsymbol{\delta}_{2}\|_{1}\leq\frac{3\lambda_{0}}{2}\|\boldsymbol{\delta}_{1}\|_{1}+\|p_{\lambda}(\boldsymbol{\beta}_{0})\|_{1}-\|p_{\lambda}(\boldsymbol{\beta}_{0}+\boldsymbol{\delta})\|_{1}$$

Now, if we further impose 2 conditions:

• **eigenvalue condition**: for some positive constant κ_0

$$\min_{\|\delta\|_2 = 1, \|\delta\|_0 < 2s} \frac{1}{\sqrt{n}} \|\mathbf{X}\boldsymbol{\delta}\|_2 \ge \kappa_0$$
 (A)

$$\kappa = \kappa(s,7) = \min_{\delta \neq 0, \|\delta_2\|_1 \le 7\|\delta_1\|_1} \left\{ \frac{1}{\sqrt{n}} \frac{\|\mathbf{X}\boldsymbol{\delta}\|_2}{\|\delta_1\|_2 \vee \|\tilde{\boldsymbol{\delta}}_2\|_2} \right\} > 0$$
 (B)

where $\tilde{\delta}_2$ is the subvector of δ_2 consisting of the components with the *s* largest absolute values. Here

- Condition (A) is a mild sparse eigenvalue condition
- Condition **(B)** combines the restricted eigenvalue assumptions in Bickel et al. (2009)¹. The intuition is, for OLS estimation, **X'X** should be **positive definite**, that is

$$\min_{\mathbf{0} \neq \boldsymbol{\delta} \in \mathbb{R}^p} \left\{ \frac{1}{\sqrt{n}} \frac{\|\mathbf{X}\boldsymbol{\delta}\|_2}{\|\boldsymbol{\delta}\|_2} \right\} > 0$$

however, when p > n, this condition **never** holds, hence we replace $\|\boldsymbol{\delta}\|_2$ with the L_2 -norm of $\|\boldsymbol{\delta}_1\|_2$, a subvector of $\boldsymbol{\delta}$

$$\kappa = \kappa(s, 7) \min_{\delta \neq 0, \|\delta_2\|_1 \le 7\|\delta_1\|_1} \left\{ \frac{1}{\sqrt{n}} \frac{\|X\delta\|_2}{\|\delta\|_2} \right\} > 0$$

and for L_q loss with $q \in (1,2]$, we further bound $\|\tilde{\delta}_2\|_2$, which leads to condition **(B)**.

eigenvalue condition:

¹Introduced by Candes and Tao (2007) for studying the oracle inequalities for the Lasso estimator and Dantzig selector.

References

Peter J Bickel, Ya'acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and dantzig selector. *The Annals of Statistics*, pages 1705–1732, 2009.

Emmanuel Candes and Terence Tao. The dantzig selector: Statistical estimation when p is much larger than n. *The Annals of Statistics*, 35(6):2313–2351, 2007.

Yingying Fan and Jinchi Lv. Asymptotic properties for combined 11 and concave regularization. *Biometrika*, 101(1):57–70, 2014.