Fundations Advanced Programming and Algorithmic Design

Alberto Casagrande Email: acasagrande@units.it

a.a. 2018/2019

What is an Algorithm?

Definition (Algorithm)

Is a sequence of well-defined steps that transforms a set of inputs into a set of outputs in a finite amount of time

A function described by an algorithm is calculable.

A function implementable in a computational model is computable.

Functions, Computability and Calcolability

Are all the functions computable in any specific model?

If this is not the case

- are there calculable functions that are not computable?
- are there computable functions that are not calculable?

Why Is This Relevant For Us?

What if calculability will not be related to computability?

Why Is This Relevant For Us?

What if calculability will not be related to computability?

Algorithms would not guarantee implementability!

Halting Problem

Let h be the function that establish whether any program p eventually ends its execution (\downarrow) on an input i or runs forever (\uparrow)

$$h(p,i) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} 0 & \text{if } p(i) \text{ never ends} \\ 1 & \text{otherwise} \end{array} \right.$$

Definition (Halting problem)

Can we implement h?

For any computable function f(a, b), define

$$g_f(i) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} 0 & \text{if } f(i,i) = 0 \\ \uparrow & \text{otherwise} \\ \frac{1}{2} & \text{runs forever} \end{array} \right.$$

Since f is computable, so it is g_f . Let G_-f implement it.

Can h be one of the f's?

For any computable function f(a, b), define

$$g_f(i) \stackrel{\text{def}}{=} \left\{ egin{array}{ll} 0 & \text{if } f(i,i) = 0 \\ \uparrow & \text{otherwise} \end{array} \right.$$

Since f is computable, so it is g_f . Let G_-f implement it.

Can h be one of the f's? if I can define G_f for f = h then

• If
$$f(G_f, G_f) = 0 \implies g_f(G_f) = 0$$
 and $h(G_f, G_f) = 1$

For any computable function f(a, b), define

$$g_f(i) \stackrel{\text{def}}{=} \left\{ egin{array}{ll} 0 & \text{if } f(i,i) = 0 \\ \uparrow & \text{otherwise} \end{array} \right.$$

Since f is computable, so it is g_f . Let G_f implement it.

Can h be one of the f's?

- ullet If $f(G_-f,G_-f)=0 \implies g_f(G_-f)=0$ and $h(G_-f,G_-f)=1$
- If $f(G_-f, G_-f) \neq 0 \implies g_f(G_-f) \uparrow \text{ and } h(G_-f, G_-f) = 0$

For any computable function f(a, b), define

$$g_f(i) \stackrel{\text{def}}{=} \left\{ egin{array}{ll} 0 & \text{if } f(i,i) = 0 \\ \uparrow & \text{otherwise} \end{array} \right.$$

Since f is computable, so it is g_f . Let G_f implement it.

Can h be one of the f's?

- If $f(G_f, G_f) = 0 \implies g_f(G_f) = 0$ and $h(G_f, G_f) = 1$
- If $f(G_-f, G_-f) \neq 0 \implies g_f(G_-f) \uparrow$ and $h(G_-f, G_-f) = 0$

full contradiction. It cannot be implemented in any computational model.Logic: Let f(generic computations, $h \neq f$ for all computable f's and h is not computable.

Church-Turing Thesis

Church-Turing Thesis

Every effectively calculable function is a computable function.

 $calculability \Longrightarrow computability$

If we have an algorithm for f, then f can be formally computed

Church-Turing Thesis

Church-Turing Thesis

Every effectively calculable function is a computable function.

calculability ⇒ computability

If we have an algorithm for f, then f can be formally computed

It also means that:

- all the "reasonable" computational models are equivalent
- we can avoid "hard-to-be-programmed" models (e.g., Turing machine)

Random-Access Machine (RAM)

- variables to store data (no types)
- arrays
- integer and floating point constants
- algebraic functions: +, -, /, *, $\lfloor \cdot \rfloor$, $\lceil \cdot \rceil$
- assignments floor and ceiling
- pointers (no pointer arithmetic)
- conditional and loop statements
- procedure definitions and recursion
- simple "reasonable" functions, e.g., the length of an array

Algorithms are defined as programs on RAM.

A Simple Algorithm

```
Input: An array A of numbers \langle a_1, \ldots, a_n \rangle.
Output: The maximum among a_1, \ldots, a_n.
def find_max(A):
     max_value \leftarrow A[1]
     for i \leftarrow 2..|A|:
           if A[i] > max_value:
                 max_value \leftarrow A[i]
           endif
     endfor
      return max_value
enddef
```

RAM is not Real Hardware!!!

RAM models real hardware, but it lacks

- real HW limitations s.a. finiteness
- memory hierarchy
- instruction execution time

Every single operation in RAM takes exactly the same time. Floating point multip

How to Measure Algorithm Efficiency?

What about execution time?

How to Measure Algorithm Efficiency?

What about execution time? (for what input?) max(array of len 100) != max(

Algorithms are not programs

Assuming 1 time unit per instruction are not realistic because execution time depends on:

- CPU instruction sets
- CPU/Memory/Bus Clock
- language and compiler
- OS memory handling
- . . .

How to Measure Algorithm Efficiency?

What about execution time?

Any other ideas?

Time Complexity

0.00000000

What about execution time?

Any other ideas?

What about scalability?

Definition (Scalability)

Capacity for a system to handle input growth.

Growth Complexity

We do not measure the execution time for a given input

Growth Complexity

We do **not** measure the execution time for a given input

We estimate the relation between input size and execution time

Which growth is preferable between:

• n^2 and n?

Which growth is preferable between:

• n^2 and \underline{n} ?

- n^2 and \underline{n} ?
- n^2 and 2 * n?

- n^2 and \underline{n} ?
- n^2 and 2 * n?

- n^2 and \underline{n} ?
- n^2 and 2 * n?
- n^2 and 500 * n?

- n^2 and \underline{n} ?
- n^2 and 2 * n?
- n^2 and 500 * n?

Asymptotic Time Complexity

Constants are not useful. We are looking at asymptotic behaviour.

We can abstract the single instruction execution time !!!

This intuition is also supported by linear time speedup theorem.

Asymptotic Time Complexity

Constants are not useful. We are looking at asymptotic behaviour.

We can abstract the single instruction execution time !!!

This intuition is also supported by linear time speedup theorem.

U can speedup linearly (time2=C time1) the execution time of a Turing machine writing a code

How to group all the functions that asymptotically are the same?

big O notation

$$O(f(n)) \stackrel{def}{=} \{g(n)| \exists c > 0 \exists n_0 > 0 \ m \ge n_0 \Longrightarrow g(m) \le c * f(m)\}$$

So,
$$g(n) \in O(f(n))$$
 iff

big O notation

$$O(f(n)) \stackrel{def}{=} \{g(n)| \exists c > 0 \exists n_0 > 0 \ m \ge n_0 \Longrightarrow g(m) \le c * f(m)\}$$

So, $g(n) \in O(f(n))$ iff

big O notation

$$O(f(n)) \stackrel{def}{=} \{g(n)| \exists c > 0 \exists n_0 > 0 \ m \ge n_0 \Longrightarrow g(m) \le c * f(m)\}$$

g in O(N) means g grow asyntothically less than some linear function (C* N)

So,
$$g(n) \in O(f(n))$$
 iff

Some Useful Properties

For any $c_1, c_2 \in \mathbb{N}$ and for any $k \in \mathbb{Z}$

- $f(n) \in O(f(n))$
- $O(f(n)) = O(c_1 * f(n) + k)$
- if $c_1 \ge c_2$, then $O(f(n)^{c_1} + k * f(n)^{c_2}) = O(f(n)^{c_1})$
- $O(f(n)^{c_1}) \subseteq O(f(n)^{c_1+c_2})$ es. $n \in O(n^2)$
- if $h(n) \in O(f(n))$ and $h'(n) \in O(g(n))$, then
 - $h(n) + h'(n) \in O(g(n) + f(n))$
 - $h(n) * h'(n) \in O(g(n) * f(n))$

big Ω notation

$$\Omega(f(n)) \stackrel{def}{=} \{g(n) | \exists c > 0 \exists n_0 > 0 \ m \ge n_0 \Longrightarrow c * f(m) \le g(m) \}$$

g in Omega(N) means g grow asyntothically more than some linear function (C* N)

So,
$$g(n) \in \Omega(f(n))$$
 iff

big Ω notation

$$\Omega(f(n)) \stackrel{def}{=} \{g(n) | \exists c > 0 \exists n_0 > 0 \ m \ge n_0 \Longrightarrow c * f(m) \le g(m) \}$$

So, $g(n) \in \Omega(f(n))$ iff

big Ω notation

$$\Omega(f(n)) \stackrel{def}{=} \{g(n) | \exists c > 0 \exists n_0 > 0 \ m \ge n_0 \Longrightarrow c * f(m) \le g(m) \}$$

So, $g(n) \in \Omega(f(n))$ iff

big Θ notation

asintotical equivalence

$$\Theta(f(n)) \stackrel{\text{def}}{=} \{g(n) | \exists c_1, c_2 > 0 \exists n_0 > 0$$

$$m \ge n_0 \Longrightarrow c_1 * f(m) \le g(m) \le c_2 * f(m) \}$$

Theorem

$$f(n) \in \Theta(g(n)) \iff f(n) \in O(g(n)) \cap \Omega(g(n))$$

```
Input: An array A of numbers < a_1, \ldots, a_n >. Output: The maximum among a_1, \ldots, a_n.
```

```
def
         find_max(A):
                                                line 2 costs O(1)
         max_value \leftarrow A[1]
         for i \leftarrow 2 upto len(A):
               if A[i] > max_value:
 5
                    max_value \leftarrow A[i]
6
               endif
         endfor
8
                                                O(1
9
         return max_value
    enddef
10
```

```
Input: An array A of numbers < a_1, \ldots, a_n >. Output: The maximum among a_1, \ldots, a_n.
```

- 2 costs *O*(1)
- 4-6 cost O(1)
- 4-6 repeatedO(n) times
- 9 costs O(1)

$$O(1+1) =$$

```
Input: An array A of numbers < a_1, ..., a_n >. Output: The maximum among a_1, ..., a_n.
```

- 2 costs *O*(1)
- 4-6 cost O(1)
- 4-6 repeated O(n) times
- 9 costs O(1)

$$O(1+1*n) =$$

```
Input: An array A of numbers < a_1, \ldots, a_n >. Output: The maximum among a_1, \ldots, a_n.
```

```
def
         find_max(A):
         max_value \leftarrow A[1]
         for i \leftarrow 2 upto len(A):
               if A[i] > max_value:
 5
                    max_value \leftarrow A[i]
6
               endif
         endfor
8
9
         return max_value
                                               O(n)
    enddef
10
```

- 2 costs *O*(1)
- 4-6 cost O(1)
- 4-6 repeated O(n) times
- 9 costs O(1)

$$O(1+1*n+1)=O(n)$$

Arrays and Lists (Abstract Data Types)

Arrays Are indexed collections of values fixed in length.

Arrays and Lists (Abstract Data Types)

Arrays Are indexed collections of values fixed in length.

Single-Linked Lists Are sequences of values supporting head and next operations

Head
$$\xrightarrow{\text{next}}$$
 $\xrightarrow{-4}$ $\xrightarrow{\text{next}}$ $\xrightarrow{0}$ $\xrightarrow{\text{next}}$ $\xrightarrow{1}$ $\xrightarrow{\text{next}}$

Arrays and Lists (Abstract Data Types)

Arrays Are indexed collections of values fixed in length.

Single-Linked Lists Are sequences of values supporting head and next operations

Head
$$\xrightarrow{\text{next}}$$
 $\xrightarrow{-4}$ $\xrightarrow{\text{next}}$ $\xrightarrow{0}$ $\xrightarrow{\text{next}}$ $\xrightarrow{1}$ $\xrightarrow{\text{next}}$

Double-Linked Lists Are sequences of values supporting head, next and previous operations

Queue and Stacks (Abstract Data Types)

- Queues Are collections of values ruled according the FIFO policy. They support head, is_empty, insert_back, extract_head operations
- Stacks Are collections of values ruled according the LIFO policy. They support top, is_empty, insert_top, extract_top operations

Graphs (Graph Theory)

Are pairs (V, E) where:

Are pairs (V, E) where:

V is a set of nodes

b

e

(g)

a

Graphs (Graph Theory)

Are pairs (V, E) where:

V is a set of nodes

E is a set of edges

Graphs (Graph Theory)

Are pairs (V, E) where:

V is a set of nodes or vertices

E is a set of edges

If the edges are (un)directed, the graph is (un)directed

Paths and Cycles

A path of length n between $a, b \in V$ is a sequence e_1, \ldots, e_n s.t.

- e₁ involves a
- e_n involves b
- e_i and e_{i+1} involve a common node n_i

Paths and Cycles

A path of length n between $a, b \in V$ is a sequence e_1, \ldots, e_n s.t.

- e₁ involves a
- e_n involves b
- e_i and e_{i+1} involve a common node n_i

A cycle is a path whose initial and final node coincide.

Connected and Acyclic Graphs (Graph Theory)

A graph is connected if there is a path between every pairs of nodes

A graph is acyclic if it does not contains cycles

Connected and Acyclic Graphs (Graph Theory)

A graph is connected if there is a path between every pairs of nodes

A graph is acyclic if it does not contains cycles

A tree is an connected and acyclic undirected graphs

Trees (Abstract Data Types)

Organize data in a hierarchical finite tree (graph theory)

Trees (Abstract Data Types)

Organize data in a hierarchical finite tree (graph theory)

One of the nodes is the root of the graph

The depth of a node is its distance from the root

The parent of a node is a node one step closer to the root

The parent of a node is a node one step closer to the root

The children of a node have it as parent

The parent of a node is a node one step closer to the root

The children of a node have it as parent

Two nodes are siblings if they have the same parent

Tree Leaves and Height

The leaves are nodes without children

Tree Leaves and Height

The leaves are nodes without children

The internal nodes have children

Tree Leaves and Height

The leaves are nodes without children

The internal nodes have children

The height of a tree is the max depth among those of its leaves

n-ary Tree and Completeness

Every node of a n-ary tree can have up to n children

n-ary Tree and Completeness

Every node of a n-ary tree can have up to n children

A n-ary tree is complete if the nodes in all the levels but the last one have n children

