Stochastic Optimization lab assignment Benders decomposition of a stochastic problem

A bank branch wants to determine the amount of money to be deposited in an ATM on Fridays, before the weekend. The branch estimates that money has a cost (associated to the loss of benefits by interest rates) of $c \in$ for each \in in the ATM. The demand of money during the weekend is a discrete random variable ξ , taking s values ξ_i with probabilities p_i , $i=1,\ldots,s$. The ATM has a capacity of $u \in$, with a technical minimum of $l \in$. If the demand is greater than x then the ATM has to be refilled, with a cost of $q \in$ for each \in the demand exceeds x. The bank branch formulates the following stochastic optimization problem in extensive form:

$$\min \quad cx + \sum_{i=1}^{s} p_i q y_i$$

s. to
$$l \leq x \leq u$$

$$x + y_i \geq \xi_i \quad i = 1, \dots, s$$

$$y_i \geq 0 \quad i = 1, \dots, s$$

Write and AMPL code to solve the above problem using Benders decomposition. Check the solution coincides with the one obtained by directly solving the extensive form as a linear optimization problem. You have to deliver:

- A report describing the Benders master and subproblem formulations; the AMPL code, including a short description of it; the computational results obtained. In particular, detail and justify the formulation of the Benders subproblem.
- A .zip file including the AMPL .mod, .dat and .run files.

Use the following parameters for the problem:

		i	p_i	ξ_i
c	=0.00025	1	0.04	150
	= 0.00025 = 0.0011	2	0.09	120
q l		3	0.10	110
U	=21	4	0.21	100
	= 147	5	0.27	80
s	=7	6	0.23	60
		7	0.06	50

The units of l, u and ξ_i are thousands of \in .