

Modeling VII

Introduction

- Non-Parametric Classification
- K-Nearest Neighbors (k-NN)
 - Machine Learning Technique
 - Intuitive
 - Non-Parametric
 - Used for Predicting Classes of an Output Variable
- Instructions:
 - Open Supplement File
 - Knit the Document
 - Read the Introduction

Idea Behind k-NN

- Scenario: Will a College Football Player Be Drafted Into the NFL?
- Two Possible Classes
 - Drafted
 - Undrafted
- Known Information
 - Data From All Previous Players
 Who Entered Draft
 - Whether or Not They Were Drafted
 - Their University and Position
 - Playing Statistics
 - Body Measurements

Idea Behind k-NN

- Current Draft Eligible Player
 - Who? Mike Jones
 - USC and QB
 - Passer Rating = 95
 - 6'4", 205 lbs.
- Goal: Predict Whether or Not Mike Jones Will Be Drafted
- Base Your Prediction for Mike Jones on the k=5 Most Similar Players From Historical Info

Idea Behind k-NN

Process

- Consider Database of Info
- Find 5 Most Similar Players
 - QB's From USC
 - Similar Passer Ratings
 - Similar Body Types
- Of the 5, Observe Classes
 - 4 Drafted
 - 1 Undrafted
- Above Info Acts as Votes
- Historical Information Leads Us to Conclude Mike Jones is More Likely to Be Drafted
- Predict Mike Jones Will Be Drafted into the NFL

k-NN Algorithm

- Step 1: Choose a k
- Step 2: Select the k Most Similar
 Observations in a Database Which
 are the "Closest" According to the
 Input Variables
- Step 3: Find the Most Common Classification Among These
- Step 4: Classify the New
 Observation Based on What is
 Category is Known to Occur Most

Pause For Lyrics

Love can touch us one time And last for a lifetime And never let go till we're gone

Part 1: Feature Engineering and Visualization

- Titanic Survival Data
 - > library(titanic)
 - Response Variable

$$Y = \begin{cases} 1 & \text{if Survived} \\ 0 & \text{if Did Not Survive} \end{cases}$$

- Explanatory Variables
 - Siblings/Spouses Aboard
 - Parents/Children Aboard
 - Passenger Fare
- Goal: Use k-NN to Predict a
 Passenger to Survive or to Die a
 Miserable, Cold Death

Part 1: Feature Engineering and Visualization

Run Chunk 1

- Creating a New Variable
- What Does This Variable Represent?

• Run Chunk 2

Pause For Lyrics

Love was when I loved you One true time I hold to In my life we'll always go on

Part 2: Obtaining Predictions Using k-NN

New Individual: Alice

- Had 3 Family Members on Ship
- Spent \$75 on Ticket
- Survived or Died?

Run Chunk 1

Part 2: Obtaining Predictions Using k-NN

- Finding Similar Passenger
 - Out-of-Sample Passenger
 - $X_{11} = Family Onboard$
 - $X_{12} = Fare$
 - Passenger in Training Data
 - $X_{21} = Family Onboard$
 - $X_{22} = Fare$
 - Geometric Distance Formula

$$d = \sqrt{(x_{11} - x_{21})^2 + (x_{12} - x_{22})^2}$$

- Two Scenarios
 - Distance is Small
 - Distance is Large

Part 2: Obtaining Predictions Using k-NN

- Run Chunk 2
 - Suppose k=5
 - Five Most Similar Passengers

Survived	Fare	Family	d
1	93.500	2	6.576473
0	106.425	1	6.729088
1	106.425	0	7.090883
1	93.500	0	7.158911
1	108.900	1	9.121952
0	108.900	1	9.121952

- Why are There Six?
- Did Alice Survive or Die?

Part 2: Obtaining Predictions Using k-NN

Run Chunk 3

Output Figure

- What Did You Expect to See?
- Are You Surprised?

Pause For Lyrics

Near, far, wherever you are
I believe that the heart does go on
Once more you open the door
And you're here in my heart
And my heart will go on and on

Consider Standardization

- Multiple Methods
- Classic Formula

$$Z = \frac{X - \mu}{\sigma_{\chi}}$$

- Use \overline{x} and s_x
- What We are Doing
 - Centering Data
 - Scaling Data

> scale(x,center=T,scale=T)

Run Chunk 1

- Units: Standard Deviations
- Alice: Above Average Family Size and Fare

Run Chunk 2

- Recall: Alice
 - Family Size of 3
 - \$100 Ticket
- Before & After Standardization

Surviv	ed	Fare	Family	d
	1	93.500	2	6.576473
	0	106.425	1	6.729088
	1	106.425	0	7.090883
	1	93.500	0	7.158911
	1	108.900	1	9.121952
	0	108.900	1	9.121952

Surviv	ed	Fare	Family	d
	1	120.0	3	0.4024677
		120.0	3	0.4024677
		120.0	3	0.4024677
	1	120.0	3	0.4024677
	1	93.5	2	0.6334387

Chunk 2 Continued

 Both Before and After Standardization We Would Predict Alice to Survive

Updated Figure

Pause For Lyrics

You're here, there's nothing I fear And I know that my heart will go on

Part 4: Tuning k for k-NN

Run Chunk 1

• Suppose k is Large (k=500)

- Chunk 1 Continued
 - Votes From Neighbors

```
KNN.PREDICT=table(ST5$Survived)
print(KNN.PREDICT)
```

```
##
## 0 1
## 258 251
```

- Based on k-NN When k=500
 - 258 Neighbors Died
 - 251 Neighbors Survived
- Predict Alice is Food for Fish

- Leave-on-Out Cross Validation
 - Helpful Package for k-NN> library(class)
 - Install the R Package
 - Helpful Functions
 - Peforming k-NN
 - > knn(train, test, cl, k = 1)
 - LOOCV
 - > knn.cv(train, cl, k = 1)
 - For Other Important Arguments,
 See Documentation

Run Chunk 2

- Consider k=1,2,3,...,250
- Use CV, to Generate Out-of-Sample Predictions for Each k
- Calculate Overall Accuracy Percentage

- Run Chunk 3
 - Identify Best Choice for k (k=18)
 - Use k to Generate Predictions on Future Data With Unknown Survival > titanic_test

 Figure Illustrating Predictions on Test Set for Competition

Pause For Lyrics

We'll stay forever this way You are safe in my heart and My heart will go on and on In Memoriam

Closing

Disperse and Make Reasonable Decisions