

FEATURES

- 3V to 30V Input Voltage Operation.
- Internal 1.6A Peak Current Switch.
- Internal ±1.8% Reference.
- Low Quiescent Current at 1.6mA.
- Frequency Operation from 100Hz to 100KHz.
- · Current Limiting.

APPLICATIONS

- · Saver for Cellular phones
- DC-DC Converter Module

DESCRIPTION

The MC34063A by Analog Integrations Corporation, an improved second source over the industrial standard MC34063A, is a monolithic control circuit containing the primary functions required for DC/DC converters. The device consists of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This device is specifically designed to be incorporated in stepdown, step-up and voltage-inverting applications with a minimum number of external components. The ±1.8% internal reference and low guiescent current of 1.6mA are among the improvements of the device over the competition.

■ TYPICAL APPLICATION CIRCUIT

Saver Circuit for Cellular Phone

ORDERING INFORMATION

ORDER NUMBER	PIN CONFIGURATION	
MC34063ACN (PLASTIC DIP)	TOP VIEW SC 1 8 DRI SE 2 7 IPK	
MC34063ACS (PLASTIC SO)	TC 3 6 VCC 5FB	

■ ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Comparator Input Voltage Range
Switch Collector Voltage30V
Switch Emitter Voltage30V
Switch Collector to Emitter Voltage30V
Driver Collector Voltage
Switch Current1.6A
Power Dissipation and Thermal Characteristics
DIP Package
Ta= 25°C1.0W
Thermal Resistance100°C /W
SO Package
Ta= 25°C625mW
Thermal Resistance160°C /W
Operating Junction Temperature125°C
Operating Ambient Temperature Range0°C~70°C
Storage Temperature Range

TEL: (8863)577-2500 FAX:(8863)577-2510

■ ELECTRICAL CHARACTERISTICS (VCC= 5V, Ta=25°C, unless otherwise specified.)

PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Oscillator						
Charging Current	5.0V≤VCC≤30V	I _{CHG}	10	25	40	μА
Discharge Current	5.0V≤VCC≤30V	I _{DISCHG}	100	150	200	μΑ
Voltage Swing	PIN 3	Vosc		0.6		V
Discharge to Charge Current Ratio	V _{IPK(SENSE)} =VCC	I _{DISCHG/} I _{CHG}		6.0		
Current Limit Sense Voltage	І _{СНG} =І _{DISCHG}	V _{IPK(SENSE)}	250	300	350	mV
Output Switch						
Saturation Voltage, Darlington Connection	I _{SW} =1.0A; V _{C(DRIVER)} =V _{C(SWITCH)}	V _{CE(SAT)}		1.0	1.3	V
Saturation Voltage	I _{SW} =1.0A; I _{C(DRIVER)} =50mA (Forced β≅20)	V _{CE (SAT)}		0.4	0.7	V
DC Current Gain	I _{SW} =1.0A; V _{CE} =5.0V	h _{FE}	35	120		
Collector Off-State Current	V _{CE} =30V	I _{C(OFF)}		10		nA
Comparator						
Threshold Voltage	0°C≤Ta≤70°C	V_{FB}	1.227	1.25	1.273	V
Threshold Voltage			1.21		1.29	V
Threshold Voltage Line Regulation	3.0V≤VCC≤30V	REG _{LINE}		0.1	0.3	mV/V
Input Bias Current	V _{IN} =0V	I _{IB}		0.4	1	μА
Supply current	$\begin{array}{c} V_{IPK(SENSE)}{=}VCC \\ V_{PIN 5}{>}V_{FB} \\ 5.0V{\leq}VCC{\leq}30V \\ C_{T}{=}0.001\mu\text{F}, PIN 2{=}GND \\ Remaining pins open \end{array}$	Icc		1.6	3	mA

TYPICAL PERFORMANCE CHARACTERISTICS

V_{FB}, Threshold Voltage vs Temperature

Emmiter-Follower Configuration Output Switch Saturation Voltage vs Emmiter Current

Standby Supply Current vs. Supply Voltage

IPK Threshold Voltage vs Temperature

Common-Emitter Configuration Output Switch Saturation Voltage vs Collector Current

TEL: (8863)577-2500 FAX:(8863)577-2510

■ BLOCK DIAGRAM

■ PIN DESCRIPTIONS

PIN 1: SC - 1.6A switch collector

PIN 2: SE - Darlington switch emitter

PIN 3: TC - Oscillator timing capacitor

PIN 4: GND - Power GND

PIN 5: FB - Feedback comparator inverting input

PIN 6: VCC - Power supply input

PIN 7: IPK - Highside current sense input,

TEL: (8863)577-2500 FAX:(8863)577-2510

VCC - V_{IPK}=300mV

PIN 8: DRI - Drive collector

■ APPLICATION INFORMATION

DESIGN FORMULA TABLE

CALCULATION	STEP-DOWN	STEP-UP	VOLTAGE-INVERTING
<u>ton</u>	Vout + V _F	Vout + VF - VIN(MIN)	Vout + Vf
t off	V _{IN(MIN)} - V _{SAT} - V _{OUT}	V _{IN(MIN)} - V _{SAT}	V _{IN} - V _{SAT}
(t _{ON} + t _{OFF}) _{MAX}	1 FMIN	<u>1</u> <u>Fмін</u>	<u>1</u> <u>Fмін</u>
Ст	4x10 ⁻⁵ t _{ON}	4 x 10 ⁻⁵ t _{ON}	4 x 10 ⁻⁵ t _{ON}
I _{C (SWITCH)}	2I _{OUT(MAX)}	$2I_{OUT(MAX)} \left(\frac{t_{ON} + t_{OFF}}{t_{OFF}} \right)$	$2I_{OUT(MAX)} \left(\frac{t_{ON} + t_{OFF}}{t_{OFF}} \right)$
RS	0.33/I _{C(SWITCH)}	0.33/ I _{C (SWITCH)}	0.33/ I _{C (SWITCH)}
L(MIN)	(\frac{V_{IN(MIN)} - V_{SAT} - V_{OUT}}{I_{C(SWITCH)}})t_{ON(MAX)}	$(\frac{V_{\text{IN(MIN)}} - V_{\text{SAT}}}{I_{\text{C(SWITCH)}}})t_{\text{ON(MAX)}}$	$(\frac{V_{\text{IN(MIN)}} - V_{\text{SAT}}}{I_{\text{C(SWITCH)}}})t_{\text{ON(MAX)}}$
Со	Ic(switch) (ton + toff) 8 V RIPPLE (P - P)	VRIPPLE(P - P)	VRIPPLE(P - P)

 $\mathsf{V}_{\mathsf{SAT}}$ =Saturation voltage of the output switch.

٧F =Forward voltage drop of the ringback rectifier

The following power supply characteristics must be chosen:

- Nominal input voltage. V_{IN}

 V_{OUT} - Desired output voltage,

Vout =1.25 (1 + RB/RA)

- Desired output current. **I**OUT

 F_{MIN}

- Minimum desired output switching frequency at the selected values for V_{IN} and I_{OUT} .

V_{RIPPLE (P-P)}- Desired peak-to-peak output ripple voltage. In practice, the calculated value will need to be increased due to the capacitor equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly effect the line and load regulation.

APPLICATION EXAMPLES

Line Regulation	V _{IN} = 10V ~20V @ I _O =500mA	40mV
Load Regulation	V _{IN} = 15V, @ I _O =10mA ~ 500mA	5mV
Short Circuit Current	$V_{IN} = 15V$, @ $R_L = 0.1\Omega$	1.3A

Fig. 1 Step-Down Converter

Fig. 2 Step-Down Converter with External PNP Saturation Switch

APPLICATION EXAMPLES (CONTINUED)

Fig. 3 Step-Up Converter

Fig. 4 Step-Up Converter with External NPN Switch

APPLICATION EXAMPLES (CONTINUED)

Line Regulation	V _{IN} = 4.5V ~6V @ I _O =100mA	20mV
Load Regulation	V _{IN} = 5V, @ I _O =10mA ~ 100mA	100mV

Fig.5 Inverting Converter

Fig 6. Voltage Inverting Converter With PNP Saturated Switch

■ PHYSICAL DIMENSIONS

• 8 LEAD PLASTIC DIP

• 8 LEAD PLASTIC SO

UNIT: mm