Fonctions Réelles

Julien BESTARD

GENTS DO IT WITH PRECISION

Table des matières

		3
	1.1 Comparateur de landau	. 3
2	Les comparaisons de Landau	4
	2.1 Exercice 1.1	4
	2.2 Exercice 1.2	4
	2.3 Exercice 1.3	4
	2.4 Exercise 1.4	5

1 Cours

1.1 Comparateur de landau

Voisinage de
$$x_0$$
 V
Pour $x \in \mathbb{R} \cup \{-\infty, +\infty\}$:
Pour $x_0 \in \mathbb{R}, \exists \alpha \in \mathbb{R},]x_0 - \alpha, x_0 + \alpha[$
Pour $x_0 = +\infty, \exists A \in \mathbb{R}, V =]A, +\infty[$
Pour $x_0 = -\infty, \exists B \in \mathbb{R}, V =]-\infty, B[$

Rappel sur les 3 comparateus : o, O, \sim

1.
$$f = o(g) \iff \exists \varepsilon, \lim_{\substack{x \to x_0 \\ g(x)}} \varepsilon(x) = 0$$

$$\iff \frac{f(x)}{g(x)} \underset{x \to x_0}{\longrightarrow} 0$$

2.
$$f = O(g) \iff \exists$$
 fonction γ bornée au voisinage de $x_0, \frac{f(x)}{g(x)}$ bornée $f \underset{x_0}{\sim} g \iff \exists$ fonction $B, B(x) \underset{x \to x_0}{\longrightarrow} 1, f(x) = g(x)B(x)$

$$f \underset{x_0}{\sim} g \iff \exists \text{ fonction } B, B(x) \underset{x \to x_0}{\longrightarrow} 1, f(x) = g(x)B(x)$$

$$3. \iff \frac{f(x)}{g(x)} \underset{x \to x_0}{\longrightarrow} 1$$

$$\iff \exists \text{ fonction } \alpha, \alpha(x) \underset{x \to x_0}{\longrightarrow} 0, f(x) = g(x)(1 + \alpha(x))$$

2 Les comparaisons de Landau

Dans les corrections des exos : V_{x_0} signifie au voisinage de x_0 .

2.1 Exercice 1.1

- 1. $f(x) = o(0) \iff \exists \varepsilon \text{ tel que } \varepsilon(x) \underset{x \to x_0}{\longrightarrow}, f(x) = 0 \varepsilon(x) = 0$ Donc $\forall x \in V_{x_0}, f(x) = 0$
- 2. $g(x) = O(0) \iff \exists \gamma$ bornée au voisinage de 0 tel que $g(x) = 0 \gamma(x) = 0$ Donc $\forall x \in V_{x_0}$, g(x) = 0
- 3. $h(x) \sim 0 \iff \exists \beta \text{ tel que } \beta(x) \underset{x \to x_0}{\longrightarrow} 0, h(x) = 0 (1 + \beta(x)) = 0$ Donc $\forall x \in V_{x_0}, h(x) = 0$

2.2 Exercice 1.2

$$\frac{\operatorname{Cas} l \neq 0}{f(x) \underset{x_0}{\sim} 0} : \iff \forall x \in V_{x_0}, f(x) = 0$$

$$\iff \lim_{x \to x_0} f(x) = 0$$

Donc (P) est vrai si $l \neq 0$

$$\frac{\text{Cas } l = 0}{f(x) \underset{x_0}{\sim} 0} \iff \forall x \in V_{x_0}, f(x) = 0$$

$$\iff \lim_{x \to x_0} f(x) = 0$$

Donc (P) est vrai si l=0

Ainsi (P) est vraie pour $l \in \mathbb{R}$

2.3 Exercice 1.3

1a. $\underline{x^{\alpha} = o(x^{\beta})}$ au voisinage de $+\infty$:

$$x^{\alpha} \underset{+\infty}{=} o(x^{\beta}) \quad \Longleftrightarrow \quad \lim_{x \to +\infty} \frac{x^{\alpha}}{x^{\beta}} = 0$$
$$\iff \quad \lim_{x \to +\infty} x^{\alpha - \beta} = 0$$
$$\iff \quad \alpha > \beta$$

1b. $x^{\alpha} = o(x^{\beta})$ au voisinage de $+\infty$:

$$x^{\alpha} = o(x^{\beta}) \iff \lim_{x \to 0} \frac{x^{\alpha}}{x^{\beta}} = 0$$

$$\iff \exists \varepsilon \text{ tel que } \varepsilon(x) \to 0 \text{ et } x^{\alpha} = x^{\beta} \cdot \varepsilon(x)$$

$$\iff \exists \varepsilon \text{ tel que } \varepsilon(x) \to 0 \text{ et } x^{\alpha-\beta} = \varepsilon(x)$$

$$\iff \lim_{x \to 0} x^{\alpha-\beta} = 0$$

$$\iff \alpha - \beta > 0$$

$$\iff \alpha > \beta$$

2a. Soit g(x) un polynôme tel que

$$f(x) \underset{+\infty}{\sim} g(x) \iff \lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1$$

$$\iff \lim_{x \to +\infty} \frac{2x - x^2 - 4x^3}{g(x)} = 1$$

$$\iff \lim_{x \to +\infty} \frac{x^3(2/x^2 - 1/x - 4)}{g(x)} = 1$$

$$\iff g(x) = -4x^3$$

Donc
$$2x - x^2 - 4x^3 \sim_{+\infty} -4x^3$$

2b. Soit g(x) un polynôme tel que

$$f(x) \underset{0}{\sim} g(x) \iff \lim_{x \to 0} \frac{f(x)}{g(x)} = 1$$

$$\iff \lim_{x \to 0} \frac{2x - x^2 - 4x^3}{g(x)} = 1$$

$$\iff \lim_{x \to +\infty} \frac{x(2x - x - 4x^2)}{g(x)} = 1$$

$$\iff g(x) = 2x$$

Donc
$$2x - x^2 - 4x^3 \sim 2x$$

2.4 Exercice 1.4

Pour cet exercice, le a. correspond "Au voisinage de $+\infty$ " et le b. "Au voisinage de x_0 ".

1a.
$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$
 (croissance comparée)

Donc
$$\ln(x) = o(x)$$
 et $\ln(x) = O(x)$

2a.
$$\lim_{x \to +\infty} \frac{x}{e^x} = 0$$
 (croissance comparée)

Donc
$$x = o(e^x)$$
 et $x = O(e^x)$

2b.
$$\lim_{x \to 0} \frac{x}{e^x} = 0$$

Donc
$$x = o(e^x)$$
 et $x = O(e^x)$

3a.
$$\lim_{x \to +\infty} \frac{x^2 + 1}{2x^3 - x^2 - x} = 0$$

Donc
$$x^2 + 1 = o(2x^3 - x^2 - x)$$
 et $x^2 + 1 = O(2x^3 - x^2 - x)$

3b.
$$\lim_{x \to 0} \frac{2x^3 - x^2 - x}{x^2 + 1} = 0$$

Donc
$$2x^3 - x^2 - x = o(x^2 + 1)$$
 et $2x^3 - x^2 - x = O(x^2 + 1)$