4.3.1 Algoritmo

Valores sugeridos para os parâmetros: um pequeno parâmetro $\alpha_{min} > 0$, um parâmetro grande $\alpha_{max} > \alpha_{min}$ (ex: $\alpha_{min} = 1.e - 30$ e $\alpha_{max} = 1.e + 30$), $\varepsilon = 1.e - 6$, parâmetro de decrescimento suficiente $\eta \in (0,1)$ (ex: $\eta = 1.e - 4$), parâmetros de "salvaguarda" $0 < \sigma_1 < \sigma_2 < 1$ (ex: $\sigma_1 = 0.1$ e $\sigma_2 = 0.9$). Além disso, um inteiro $M \ge 1$, sendo que se M = 1 então a busca linear GLL reduz-se a uma busca linear monótona.

Algoritmo. Spectral Projected Gradient (SPG)

Passo 1. Considere o ponto inicial $x_0 \in \mathbb{R}^n$ e as funções f, gradf e projf.

Defina α_{\min} , α_{\max} , ε , η , σ_1 e σ_2 e M.

Faça k = 0.

Passo 2. Calcule $f(x_k)$ e $grad f(x_k)$.

Passo 3. Calcule o gradiente projetado $proj f(x_k - grad f(x_k))$.

Passo 4. Calcule o comprimento de passo espectral inicial como

$$\alpha = \min\{\alpha_{\max}, \max\{\alpha_{\min}, \frac{1}{\|projf(x_k - gradf(x_k)) - x_k\|}\}\}.$$

Passo 5. (Critério de parada)

Se $\|projf(x_k - gradf(x_k)) - x_k\| \le \varepsilon$, pare; se não, continue com o passo 6.

Passo 6. Calcule a direção espectral do gradiente projetado como

$$d_k = proj f(x_k - \alpha grad f(x_k)) - x_k.$$

Passo 7. Backtracking (Busca linear não monótona Grippo-Lampariello-Lucidi)

Passo 7.1. Faça $\alpha = 1.0$.

Passo 7.2. Calcule $x_{k+1} = projf(x_k - \alpha gradf(x_k))$.

Passo 7.3. Calcule $f(x_{k+1})$.

Passo 7.4. Calcule $f_{\max} = \max_{0 \le j \le \min\{k, M-1\}} \{f(x_{k-j})\}.$

Passo 8. Se

$$f(x_{k+1}) \le f_{\max} + \eta \langle d_k, gradf(x_k) \rangle$$
,

então vá para o passo 10; se não, continue com o passo 9, onde é feita a interpolação quadrática.

Passo 9. (Interpolação quadrática) Se $\alpha \leq 0.1$, então faça $\alpha = \frac{\alpha}{2.0}$; se não, calcule

$$a_t = -\frac{\alpha^2 \langle gradf(x_k), d_k \rangle}{2(f(x_{k+1}) - f(x_k) - \alpha(\langle gradf(x_k), d_k \rangle))}.$$

Se $a_t < \sigma_1$ ou $a_t > \sigma_2 \alpha$, então faça $a_t = \frac{a_t}{2}$. Faça $\alpha = a_t$. Calcule $x_{k+1} = projf(x_k - \alpha gradf(x_k))$ e vá para o passo 8.

Passo 10. (Calcular α_{k+1}) Calcule $s_k = x_{k+1} - x_k$, $y_k = gradf(x_{k+1}) - gradf(x_k)$ e determine o comprimento de passo espectral da seguinte forma: Se $\langle s_k, y_k \rangle \leq 0$, então faça $\alpha = \alpha_{\text{max}}$; se não,

$$\alpha = \min\{\alpha_{\max}, \max\{\alpha_{\min}, \frac{\langle s_k, s_k \rangle}{\langle s_k, y_k \rangle}\}\},\,$$

k = k + 1 e continue com o passo 5.