CONVERTITORI TENSIONE/CORRENTE (V/I)

GENERALITÀ

I convertitori tensione/corrente (V/I) sono utilizzati per ottenere in un carico una corrente proporzionale alla tensione di ingresso e indipendente dal carico stesso.

Per convertire una tensione in una corrente ad essa proporzionale è sufficiente una resistenza in derivazione alla tensione di ingresso da convertire.

Qualora sia invece necessario convertire un generatore reale in uno ideale di corrente, si può utilizzare un amplificatore di transconduttanza con amplificatore operazionale.

Viene detto amplificatore di transconduttanza in quanto la sua funzione di trasferimento è, dimensionalmente, una conduttanza.

Tali circuiti sono essenzialmente di due tipi:

- con carico non collegato a massa (flottante);
- con carico collegato a massa.

CONVERTITORI V/I CON CARICO NON COLLEGATO A MASSA

Convertitore V/I invertente

Il circuito di figura mostra un convertitore V/I in cui la resistenza di carico R_L è flottante, cioè non collegata a massa.

Considerando gli ingressi equipotenziali, $V_{-} = V_{+} = 0$, e trascurando la corrente di polarizzazione assorbita dall'ingresso invertente, si ha:

$$I_L = I_R = \frac{V_i}{R} \implies I_L = \frac{V_i}{R}$$
.

Da ciò risulta provato che la corrente I_L non dipende dal carico R_L , ma dalla tensione di ingresso. Fissato il valore di R, la corrente I_L verrà univocamente determinata dal valore della tensione V_i di ingresso.

Il circuito viene detto invertente nel senso che, se $V_i > 0$, la corrente va dall'ingresso invertente all'uscita, che risulta a potenziale negativo rispetto massa.

La dipendenza della corrente I_L da V_i si mantiene finché il circuito funziona linearmente, ossia finché la tensione di uscita, che dipende dalla tensione di ingresso, si mantiene al di sotto del valore di saturazione (oltre il quale V_o non può più aumentare) e la corrente erogata dall'uscita non superi i $5 \div 10 \text{mA}$, oltre i quali inizia a entrare in funzione la limitazione interna della corrente di uscita dell'amplificatore operazionale.

$$V_{o} = -\frac{R_{L}}{R} \cdot V_{i} < V_{oSAT}$$
.

Se l'uscita satura, la corrente non dipenderà più dalla tensione d'ingresso.

Convertitore V/I non invertente

Considerando gli ingressi equipotenziali, $V_{-} = V_{+} = V_{i}$, e trascurando le correnti di polarizzazione, si ha:

$$\begin{vmatrix} V_{-} = V_{+} = V_{i} \\ I_{L} = I_{R} \end{vmatrix} \implies I_{R} = \frac{V_{-}}{R} = \frac{V_{i}}{R} \implies I_{L} = \frac{V_{i}}{R} .$$

Una volta fissato il valore di R, la corrente dipende solo dalla tensione V_i di ingresso, ed è indipendente dal valore del carico R_L .

Il circuito viene detto non invertente nel senso che, se $V_i > 0$, la corrente va dall'uscita all'ingresso invertente; la tensione di uscita risulta positiva rispetto massa.

La corrente in questo convertitore V/I non invertente ha verso opposto rispetto alla corrente del convertitore V/I invertente prima visto.

La dipendenza della corrente I_L da V_i si mantiene finché il circuito funziona linearmente, ossia finché la tensione di uscita, che dipende dalla tensione di ingresso, si mantiene al di sotto del valore di saturazione (oltre il quale V_o non può più aumentare) e la corrente erogata dall'uscita non superi i $5 \div 10 \text{mA}$, oltre i quali inizia a entrare in funzione la limitazione interna della corrente di uscita dell'amplificatore operazionale.

$$V_{o} = \left(1 + \frac{R_{L}}{R}\right) \cdot V_{i} < V_{oSAT}$$
.

Se l'uscita satura, la corrente non dipenderà più dalla tensione d'ingresso.

Convertitore V/I differenziale

Considerando gli ingressi equipotenziali, si ha:

$$\begin{vmatrix} V_{-} = V_{+} = V_{1} \\ I_{L} = I_{R} \end{vmatrix} \Rightarrow I_{R} = \frac{V_{1} - V_{2}}{R} \Rightarrow I_{L} = \frac{V_{1} - V_{2}}{R} = \frac{V_{d}}{R}.$$

La corrente sul carico risulta proporzionale alla differenza delle tensioni sui due ingressi. Il segno + o - di I_L , a seconda che prevalga V_1 o V_2 , ne definisce il verso:

- se $V_1 > V_2$, $V_d > 0$, il verso della corrente I_L è quello di figura;
- se $V_1 \le V_2$, $V_d \le 0$, il verso della corrente I_L è quello opposto.

La dipendenza della corrente I_L da V_d si mantiene finché il circuito funziona linearmente, ossia finché la tensione di uscita, che dipende dalla tensione di ingresso, si mantiene al di sotto del valore di saturazione (oltre il quale V_o non può più aumentare) e la corrente erogata dall'uscita non superi i $5 \div 10 \text{mA}$, oltre i quali inizia a entrare in funzione la limitazione interna della corrente di uscita dell'amplificatore operazionale.

La dipendenza della tensione d'uscita V_o dalla tensione si ottiene applicando il principio di sovrapposizione degli effetti e sommando i contributi dei due ingressi:

$$V_{o} = \left(1 + \frac{R_{L}}{R}\right) \cdot V_{1} - \frac{R_{L}}{R} \cdot V_{2} = \frac{R_{L}}{R} \cdot \left(V_{1} - V_{2}\right) + V_{1} = \frac{R_{L}}{R} \cdot V_{d} + V_{1} < V_{oSAT}.$$

CONVERTITORE V/I CON CARICO COLLEGATO A MASSA

Convertitore V/I invertente

Perché tale circuito risulti un convertitore V/I, la corrente I_L nel carico deve dipendere dalla tensione di ingresso V_i ed essere indipendente dal carico stesso.

Per dimostrare ciò si parte dall'equipotenzialità degli ingressi e dalla relazione delle correnti al nodo N

$$V_{-} = V_{+} \qquad I_{L} = I_{0} - I_{R}$$

Alla tensione V_{-} contribuiscono due cause: V_{i} e V_{o} . Applicando il principio di sovrapposizione degli effetti, si ottiene:

$$V_{-} = \frac{R}{R+R} \cdot V_{i} + \frac{R}{R+R} \cdot V_{o} = \frac{V_{i}}{2} + \frac{V_{o}}{2} = V_{+}$$

Per le correnti I_o e I_R, applicando la legge di Ohm, si ha:

$$I_{o} = \frac{V_{o} - V_{+}}{R}$$

$$I_{R} = \frac{V_{+}}{R}$$

Sostituendo nell'equazione di I_L, si ha:

$$I_{L} = I_{o} - I_{R} = \frac{V_{o} - V_{+}}{R} - \frac{V_{+}}{R} = \frac{V_{o}}{R} - \frac{2V_{+}}{R}$$

Per esprimere I_L in funzione di V_i, si sostituisce al posto di V₊ l'espressione ottenuta per V₋:

$$I_{L} = \frac{V_{o}}{R} - \frac{2V_{+}}{R} = \frac{V_{o}}{R} - \frac{2}{R} \cdot \left(\frac{V_{i}}{2} + \frac{V_{o}}{2}\right) = -\frac{V_{i}}{R}$$

Il segno meno sta ad indicare che il verso della corrente è quello opposto a quello riportato in figura.

Se si utilizza un amplificatore operazionale con ingresso JFET si può fissare per R un valore superiore a $10 M\Omega$, potendosi ottenere valori di I_L dell'ordine di $10 \eta A$, con buone condizioni di stabilità Al contrario, nel caso di amplificatore operazionale con ingresso BJT è prudente limitare il valore di R a $100 K\Omega$. Inoltre, più è alto il valore di R rispetto a R_L e maggiore sarà l'intervallo delle tensioni d'ingresso utilizzabili, cui, però, corrisponderanno correnti di valore molto piccolo.

Il massimo valore di I_L è limitato a qualche mA, a causa dell'autoprotezione che limita la corrente di uscita degli amplificatori operazionali integrati.

La dipendenza della corrente I_L da V_d si mantiene finché il circuito funziona linearmente, ossia finché la tensione di uscita, che dipende dalla tensione di ingresso, si mantiene al di sotto del valore di saturazione (oltre il quale V_o non può più aumentare). Per calcolare V_o si parte dall'equipotenzialità degli ingressi:

$$\begin{split} V_{-} &= V_{+} \quad \Rightarrow \quad V_{-} = \frac{R}{R+R} \cdot V_{i} + \frac{R}{R+R} \cdot V_{o} = \frac{R /\!\!/ R_{L}}{R+R /\!\!/ R_{L}} \cdot V_{o} = V_{+} \quad \Rightarrow \\ & \Rightarrow \quad \frac{V_{i}}{2} + \frac{V_{o}}{2} = \frac{\frac{RR_{L}}{R+R_{L}}}{R+\frac{RR_{L}}{R+R_{L}}} \cdot V_{o} = \frac{\frac{R_{L}}{R+R_{L}}}{\frac{R+R_{L}+R_{L}}{R+R_{L}}} \cdot V_{o} = \frac{R_{L}}{R+2R_{L}} \cdot V_{o} \quad \Rightarrow \\ & \Rightarrow \quad \frac{V_{o}}{2} - \frac{R_{L}}{R+2R_{L}} \cdot V_{o} = -\frac{V_{i}}{2} \quad \Rightarrow \quad \frac{R+2R_{L}-2R_{L}}{2 \cdot (R+2R_{L})} \cdot V_{o} = -\frac{V_{i}}{2} \quad \Rightarrow \\ & \Rightarrow \quad \frac{R}{2 \cdot (R+2R_{L})} \cdot V_{o} = -\frac{V_{i}}{2} \quad \Rightarrow \quad V_{o} = -\left(1 + \frac{2R_{L}}{R}\right) \cdot V_{i} < V_{oSAT} \end{split}$$

Convertitore V/I non invertente

Per dimostrare che I_L è funzione di V_i e non del carico si parte dall'equipotenzialità degli ingressi e dalla relazione delle correnti al nodo N:

$$V_{-} = V_{+} \qquad \qquad I_{L} = I_{o} + I_{R}$$

Per V₋ si ha:

$$V_{-} = \frac{R}{R+R} \cdot V_{o} = \frac{V_{o}}{2} = V_{+}$$

Per le correnti I_o e I_R, applicando la legge di Ohm, si ha:

$$I_{o} = \frac{V_{o} - V_{+}}{R}$$

$$I_{R} = \frac{V_{i} - V_{+}}{R}$$

Sostituendo nell'equazione di I_L, si ha:

$$I_{L} = I_{o} + I_{R} = \frac{V_{o} - V_{+}}{R} + \frac{V_{i} - V_{+}}{R} = \frac{V_{o}}{R} + \frac{V_{i}}{R} - \frac{2V_{+}}{R}$$

Per esprimere I_L in funzione di V_i, si sostituisce al posto di V₊ l'espressione ottenuta per V₋:

$$I_{_{L}} = \frac{V_{_{o}}}{R} + \frac{V_{_{i}}}{R} - \frac{2V_{_{+}}}{R} = \frac{V_{_{o}}}{R} + \frac{V_{_{i}}}{R} - \frac{2}{R} \cdot \frac{V_{_{o}}}{2} = \frac{V_{_{i}}}{R}$$

La positività di I_L sta ad indicare che il verso della corrente e concorde con quello riportato in figura, ed opposto al verso della corrente del circuito invertente.

Il massimo valore di I_L è limitato a qualche mA, a causa dell'autoprotezione che limita la corrente di uscita degli amplificatori operazionali integrati.

La dipendenza della corrente I_L da V_d si mantiene finché il circuito funziona linearmente, ossia finché la tensione di uscita, che dipende dalla tensione di ingresso, si mantiene al di sotto del valore di saturazione (oltre il quale V_o non può più aumentare). Per calcolare V_o si parte dall'equipotenzialità degli ingressi:

$$\begin{split} V_{-} &= V_{+} \quad \Rightarrow \quad V_{-} = \frac{R}{R+R} \cdot V_{o} = \frac{R /\!\!/ R_{L}}{R+R /\!\!/ R_{L}} \cdot V_{i} + \frac{R /\!\!/ R_{L}}{R+R /\!\!/ R_{L}} \cdot V_{o} = V_{+} \quad \Rightarrow \\ & \Rightarrow \quad \frac{V_{o}}{2} = \frac{\frac{RR_{L}}{R+R_{L}}}{R+\frac{RR_{L}}{R+R_{L}}} \cdot V_{i} + \frac{\frac{RR_{L}}{R+R_{L}}}{R+\frac{RR_{L}}{R+R_{L}}} \cdot V_{o} = \frac{R_{L}}{R+2R_{L}} \cdot V_{i} + \frac{R_{L}}{R+2R_{L}} \cdot V_{o} \quad \Rightarrow \\ & \Rightarrow \quad \frac{V_{o}}{2} - \frac{R_{L}}{R+2R_{L}} \cdot V_{o} = \frac{R_{L}}{R+2R_{L}} \cdot V_{i} \quad \Rightarrow \quad \frac{R+2R_{L}-2R_{L}}{2 \cdot (R+2R_{L})} \cdot V_{o} = \frac{R_{L}}{R+2R_{L}} \cdot V_{i} \quad \Rightarrow \\ & \Rightarrow \quad \frac{R}{2} \cdot V_{o} = R_{L} \cdot V_{i} \quad \Rightarrow \quad V_{o} = \frac{2R_{L}}{R} \cdot V_{i} < V_{oSAT} \end{split}$$

Convertitore V/I differenziale

Applicando il principio di sovrapposizione degli effetti, si ha:

$$I_{L} = I_{L1} + I_{L2} = \frac{V_{1}}{R} - \frac{V_{2}}{R} = \frac{V_{1} - V_{2}}{R} = \frac{V_{d}}{R}$$

La corrente sul carico risulta proporzionale alla differenza delle tensioni sui due ingressi. Il segno + o - di I_L , a seconda che prevalga V_1 o V_2 , ne definisce il verso:

- se $V_1 > V_2$, $V_d > 0$, il verso della corrente I_L è quello di figura;
- se $V_1 < V_2$, $V_d < 0$, il verso della corrente I_L è quello opposto.

Il massimo valore di I_L è limitato a qualche mA, a causa dell'autoprotezione che limita la corrente di uscita degli amplificatori operazionali integrati.

La dipendenza della corrente I_L da V_d si mantiene finché il circuito funziona linearmente, ossia finché la tensione di uscita, che dipende dalla tensione di ingresso, si mantiene al di sotto del valore di saturazione (oltre il quale V_o non può più aumentare). Per calcolare V_o si utilizza il principio di sovrapposizione degli effetti:

$$V_{o} = V_{o1} + V_{o+} = \frac{2R_{L}}{R} \cdot V_{1} - \left(1 + \frac{2R_{L}}{R}\right) \cdot V_{1} = \frac{2R_{L}}{R} \cdot \left(V_{1} - V_{2}\right) - V_{2} = \frac{2R_{L}}{R} \cdot V_{d} - V_{2} < V_{oSAT}$$

VERIFICA DI CONVERTITORI TENSIONE/CORRENTE (V/I)

GENERALITÀ

Si utilizzerà l'amplificatore operazionale TL081 alimentato con tensione duale $V_{CC} = \pm 12V$. Come strumenti di misura si utilizzeranno quattro multimetri digitali $4\frac{1}{2}$ digit.

I circuiti saranno montati su una piastra sperimentale (figura) che dispone delle alimentazioni, di due generatori di tensione continua di precisione variabili da -10V a +10V, un generatore di tensione di riferimento di precisione regolabile da 0 a 9V. Tali generatori variabili consentono di regolare la tensione con una precisione del millesimo di volt.

Di ogni circuito si è preventivato il funzionamento, verificando poi sperimentalmente l'esattezza delle previsioni.

I risultati sperimentali sono stati tabulati e, ove possibile, quantizzati mediante grafici. Nelle tabelle sono anche riportati i valori teorici aspettati, sia per il funzionamento lineare sia per quello non lineare.

Dato che la tensione di uscita dipende dal valore della tensione di ingresso, e che non potrà mai essere superiore alla tensione di saturazione, esiste una limitazione al valore sia della resistenza R_L sia della tensione Vi d'ingresso oltre il quale la corrente I_L perde la sua dipendenza da Vi.

Scopo della verifica è quello di evidenziare la costanza della corrente I_L al variare della resistenza di carico R_L e la dipendenza della corrente I_L dalla tensione d'ingresso V_i nella zona di funzionamento lineare del circuito (tensione d'uscita compresa tra le due tensioni di saturazione). Verificare, inoltre, che, quando l'uscita satura, la corrente I_L non dipende più da V_i .

Criteri di progetto

Nel dimensionare i circuiti bisogna tenere conto dei valori di tensione d'ingresso e di resistenza dio carico che saturano l'uscita; inoltre, il valore della corrente deve risultare inferiore a 5mA ad evitare che entri in funzione la protezione interna verso i corto circuiti.

Si procede nel seguente modo:

- 1. si fissa la massima corrente nel carico I_{LMAX} (4mA) in corrispondenza di un massimo valore di tensione d'ingresso (V_{iMAX}) al quale deve saturare l'uscita ($V_o = V_{oSAT} = 10V$);
- 2. con i valori fissati al punto 1, si determina il valore della resistenza R;
- 3. avendo fissato il valore della tensione di saturazione dell'uscita, e utilizzando i valori al punto 1 e 2, si determina il valore della resistenza del carico R_L^i al quale si ha la saturazione dell'uscita quando $V_i = V_{iMAX}$;
- 4. si fissa il valore della resistenza R_L, tenendo conto del valore che si utilizzerà per V_i.

Tutto ciò consente di dimensionare le resistenze in modo da ottenere una verifica più significativa possibile, anche per quanto riguarda l'interpretazione dei valori misurati.

Particolare attenzione bisognerà porre nel dimensionare i valori delle resistenze per i circuiti con risposta differenziale; i valori, in questo caso, dipendono dalla differenza delle tensioni d'ingresso.

Amplificatore operazionale utilizzato

L'amplificatore operazionale usato per realizzare i circuiti è il TL081, con ingresso bi-FET. Le caratteristiche fondamentali sono alto slew-rate, bassa corrente di polarizzazione e di offset, bassa deriva termica, alta impedenza di ingresso.

Caratteristiche

- Bassa dissipazione di potenza.
- Ampi intervalli della tensione di modo comune e differenziale.
- Bassa corrente di offset e di polarizzazione.
- Protezione dai corto circuiti dell'uscita.
- Bassa distorsione armonica.
- Basso rumore.
- Alta impedenza di ingresso, stadio di ingresso JFET.
- Compensazione interna di frequenza.
- Alto slew-rate, 13 V/µs.

Valori massimi assoluti, alla temperatura ambiente di 25°C

- Tensione di alimentazione positiva, +V_{CC}
- Tensione di alimentazione negativa, -V_{CC}
- Tensione differenziale di ingresso
- Durata del corto circuito d'uscita

Diagramma delle connessioni

- Dissipazione totale di potenza continua a 25°C
- Intervallo delle temperature di funzionamento

intervanto delle temperature di runzionali

NC +Vcc 00T 0FFCET NVLL 8 7 6 5 4 2 3 4 0FFSET NN- IN+ -Vcc

18V

-18V

±30V

illimitata

680mW

da 0°C a 70°C

CONVERTITORI V/I CON CARICO NON COLLEGATO A MASSA

CONVERTITORE V/I INVERTENTE

Dimensionamento del circuito

Si fissa
$$I_{\text{LMAX}} = 4\text{mA}$$
 e $V_{\text{iMAX}} = 6V$ e si calcola $R = \frac{V_{\text{iMAX}}}{I_{\text{LMAX}}} = \frac{6}{4 \cdot 10^{-3}} = 1,5 \text{k}\Omega$.

Assumendo $V_{oSAT} = 10V$, si calcola $R_{\rm L}^{'}$ dalla funzione d'uscita nelle condizioni di saturazione:

$$V_{oSAT} = -\frac{R_L^{'}}{R} \cdot V_{iMAX} \implies R_L^{'} = -\frac{-V_{oSAT}}{V_{iMAX}} \cdot R = -\frac{-10}{6} \cdot 1.5 \cdot 10^3 = 2,5 \text{k}\Omega$$

– Verifica della indipendenza di I_L da R_L : si fissano $V_i = 2V$ e R = 1,5kΩ. La corrente I_L ha un valore sicuramente inferiore a $I_{LMAX} = 4mA$ e la saturazione dell'uscita si avrà per un valore di R_L maggiore di $R_L^{'}$:

$$R_{LMAX} = -\frac{V_{oSAT}}{V_i} \cdot R = -\frac{-10}{2} \cdot 1.5 \cdot 10^3 = 7,5k\Omega$$

Si utilizzeranno i seguenti valori di R_L : 0,22 $K\Omega$; 0,47 $K\Omega$; 0,68 $K\Omega$; 1 $K\Omega$; 1,8 $K\Omega$; 2,2 $K\Omega$; 3,3 $K\Omega$; 3,9 $K\Omega$; 4,7 $K\Omega$; 5,6 $K\Omega$; 6,8 $K\Omega$; 8,2 $K\Omega$; 10 $K\Omega$.

– Verifica della dipendenza di I_L da V_i : si fissano $R_L = 2,2k\Omega$ e $R = 1,5k\Omega$. Avendo scelto un valore commerciale di R_L inferiore a $R_L^{'}$, l'uscita saturerà per un valore maggiore di 6V e una corrente I_{LMAX} maggiore di 4mA. Infatti:

$$V_{oSAT} = -\frac{R_L}{R} \cdot V_{iMAX} \implies V_{iMAX} = -\frac{-V_{oSAT}}{R_L} \cdot R = -\frac{-10}{2,2 \cdot 10^3} \cdot 1,5 \cdot 10^3 = 6,82V$$

Cui corrisponde una corrente
$$I_{LMAX} = \frac{V_{iMAX}}{R} = \frac{6.82}{1.5 \cdot 10^3} = 4.55 \text{mA}$$
.

Per V_i si utilizzeranno i seguenti valori: 1V; 1,5V; 2V; 2,5V; 3V; 3,5V; 4V; 4,5V; 5V; 5,5V; 6V; 6,5V; 6,8V; 7V; 8V; 9V; 10V.

Circuito di misura

Si misurano V_i , V_o , V_{RL} , e si calcola, con il valore misurato di V_{RL} , il valore di I_L , applicando la legge di Ohm ai capi di R_L : $I_L = \frac{V_{RL}}{R_I}$.

Nella tabella vengono riportati anche i valori calcolati di V_o e di I_L . Nei casi in cui l'uscita è satura, il valore calcolato di I_L è quello nelle condizioni di uscita satura, negli altri casi è quello imposto dalla resistenza R e dalla tensione d'ingresso.

Quando
$$\left|V_{o}\right| < \left|V_{oSAT}\right|$$
, la corrente è data da $I_{L} = \frac{V_{i}}{R}$.

Quando $|V_o| = |V_{oSAT}|$, la corrente I_L non è più funzione lineare di V_i . La corrente I_L attraversa la serie $R + R_L$ che è sottoposta alla differenza di potenziale $V_{oSAT} - V_i$. Applicando la legge di Ohm ai capi della serie si ha: $I_L = \frac{V_{oSAT} - V_i}{R + R_L}$. Poiché il valore della tensione di saturazione risulta anche sensibilmente diverso da quello reale, come valore di saturazione si assumerà quello rilevato sperimentalmente; ciò consente di calcolare valori molto prossimi a quelli misurati. Inoltre, il valore di tensione di saturazione positiva risulterà diverso da quella di saturazione negativa.

La tensione V_o si calcola dall'espressione $V_o = -\frac{R_L}{R} \cdot V_i$

Tabella delle misure di I_L con variazione di R_L : $\,V_{_i}=2V\;;\;R=$ 1,5k Ω : $\,R_{_{LMAX}}=7,5k\Omega$.

	ΚΩ		Volt		mA	Volt	mA
N	$R_{ m L}$	Vi	V _o	$V_{ m RL}$	$I_{\rm L}$	Vo calc	I _L calc
1	0,22	2	-0,301	-0,299	-1,359	-0,290	-1,333
2	0,47	2	-0,628	-0,626	-1,359	-0,627	-1,333
3	0,68	2	-0,930	-0,928	-1,364	-0,907	-1,333
4	1	2	-1,341	-1,339	-1,339	-1,333	-1,333
5	1,8	2	-2.378	-2,376	-1,320	-2,400	-1,333
6	2,2	2	-2,961	-2,959	-1,345	-2,933	-1,333
7	3,3	2	-4,378	-4,376	-1,326	-4,400	-1,333
8	3,9	2	-5,184	-5,182	-1,329	-5,200	-1,333
9	4,7	2	-6,282	-6,279	-1,336	-6,267	-1,333
10	5,6	2	-7,444	-7,442	-1,329	-7,467	-1,333
11	6,8	2	-9,199	-9,197	-1,3525	-9,067	-1,333
12	8,2	2	-10,322	-10,403	-1,270	-10,93	-1,237
13	10	2	-10,438	-10,817	-1,082	-13,33	-1,043

Il valore della tensione di saturazione risulta di -10V (valore che verrà usato nel calcolo di I_L in saturazione).

Tabella delle misure di I_L con variazione di $V_i : \ V_{iMAX} = 6,82V \ ; \ R = 1,5k\Omega \ : \ R_{_L} = 2,2k\Omega \ .$

	ΚΩ		Volt		mA	Volt	mA
N	$R_{ m L}$	Vi	V_{o}	$V_{ m RL}$	I_{L}	Vo calc	I _L calc
1	2,2	1	-1,483	-1,480	-0,67	-1,47	-0,67
2	2,2	1,5	-2,225	-2,222	-1,01	-2,2	-1
3	2,2	2	-2,955	-2,952	-1,34	-2,93	-1,33
4	2,2	2,5	-3,699	-3,696	-1,68	-3,66	-1,67
5	2,2	3	-4,425	-4,423	-2,01	-4,4	-2
6	2,2	3,5	-5,167	-5,165	-2,35	-5,13	-2,33
7	2,2	4	-5,902	-5,900	-2,68	-5,87	-2,67
8	2,2	4,5	-6,633	-6,630	-3,01	-6,6	-3
9	2,2	5	-7,377	-7,374	-3,35	-7,33	-3,33
10	2,2	5,5	-8,104	-8,101	-3,68	-8,08	-3,67
11	2,2	6	-8,845	-8,841	-4,018	-8,8	-4
12	2,2	6,5	-9,452	-9,498	-4,32	-9,53	-4,33
13	2,2	7	-9,480	-9,695	-4,375	-9,97	-4,405
14	2,2	7,5	-9,483	-9,818	-4,463	-10,27	-4,46
15	2,2	8	-9,448	-10,389	-4,722	-11,73	-4,73
16	2,2	9	-9,365	-10,937	-4,97	-13,2	-5
17	2,2	10	-9,295	-11,491	-5,22	-15,6	-5,27

Il valore della tensione di saturazione risulta di -9.5V (valore che verrà usato nel calcolo di I_L in saturazione).

Si riportano i grafici di I_L e di I_L calcolata in funzione di R_L e in funzione di V_i .

Il grafico evidenzia che la corrente si mantiene praticamente costante al variare di R_L fino al valore 6,8K Ω , oltre il quale l'uscita satura con conseguente variazione di I_L .

Il grafico evidenzia che la corrente dipende linearmente da V_i fino ad una tensione d'ingresso di circa 6,8V. Oltre questo valore l'uscita satura e si perde la dipendenza da V_i .

CONVERTITORE V/I NON INVERTENTE

Dimensionamento del circuito

Si fissa
$$I_{LMAX}=4mA$$
 e $V_{iMAX}=6V$ e si calcola $R=\frac{V_{iMAX}}{I_{LMAX}}=\frac{6}{4\cdot 10^{-3}}=1,5k\Omega$.

Assumendo $V_{oSAT} = 10V$, si calcola $R_{L}^{'}$ dalla funzione d'uscita nelle condizioni di saturazione:

$$V_{oSAT} = \left(1 + \frac{R_L^{'}}{R}\right) \cdot V_{iMAX} \quad \Rightarrow \quad R_L^{'} = \left(\frac{V_{oSAT}}{V_{iMAX}} - 1\right) \cdot R = \left(\frac{10}{6} - 1\right) \cdot 1,5 \cdot 10^3 = 1k\Omega$$

– Verifica della indipendenza di I_L da R_L : si fissano $V_i = 2V$ e R = 1,5kΩ. La corrente I_L ha un valore sicuramente inferiore a $I_{LMAX} = 4mA$ e la saturazione dell'uscita si avrà per un valore di R_L maggiore di R_L :

$$R_{LMAX} = \left(\frac{V_{oSAT}}{V_i} - 1\right) \cdot R = \left(\frac{10}{2} - 1\right) \cdot 1,5 \cdot 10^3 = 6k\Omega$$

Si utilizzeranno i seguenti valori di R_L : 0,68K Ω ; 0,82K Ω ; 1K Ω ; 1,2K Ω ; 1,5K Ω ; 1,8K Ω ; 2,2K Ω ; 2,7K Ω ; 3,3K Ω ; 3,9K Ω ; 4,7K Ω ; 5,6K Ω ; 6,8K Ω ; 8,2K Ω ; 10K Ω .

– Verifica della dipendenza di I_L da V_i : si fissano R_L = 1kΩ e R = 1,5kΩ. Avendo scelto un valore commerciale di R_L uguale a $R_L^{'}$, l'uscita saturerà quando la tensione d'ingresso assumerà il valore di 6V e la corrente I_{LMAX} risulterà di 4mA.

Per V_i si utilizzeranno i seguenti valori: 0,5V; 1V; 1,5V; 2V; 2,5V; 3V; 3,5V; 4V; 4,5V; 5V; 5,5V; 6V; 6,5V; 7V; 7,5V; 8V; 8,5V; 9V.

Circuito di misura

Si misurano V_i , V_o , V_{RL} , e si calcola, con il valore misurato di V_{RL} , il valore di I_L , applicando la legge di Ohm ai capi di R_L : $I_L = \frac{V_{RL}}{R}$.

Nella tabella vengono riportati anche i valori calcolati di V_o e di I_L . Nei casi in cui l'uscita è satura, il valore calcolato di I_L è quello nelle condizioni di uscita satura, negli altri casi è quello imposto dalla resistenza R e dalla tensione d'ingresso.

Quando
$$\left|V_{o}\right| < \left|V_{oSAT}\right|$$
, la corrente è data da $I_{L} = \frac{V_{i}}{R}$.

Quando $|V_o| = |V_{oSAT}|$, la corrente I_L non è più funzione lineare di V_i . L'equipotenzialità degli ingressi si mantiene anche quando l'uscita satura. La corrente I_L si calcola applicando la legge di Ohm ai capi della resistenza R_L , che è sottoposta alla differenza di potenziale $V_{oSAT} - V_i$, si ha:

$$I_L = \frac{V_{oSAT} - V_i}{R_L}$$
. Poiché il valore della tensione di saturazione risulta anche sensibilmente diverso

da quello reale, come valore di saturazione si assumerà quello rilevato sperimentalmente; ciò consente di calcolare valori molto prossimi a quelli misurati. Inoltre, il valore di tensione di saturazione positiva risulta diverso da quella di saturazione negativa.

La tensione
$$V_o$$
 si calcola dall'espressione $V_o = \left(1 + \frac{R_L}{R}\right) \cdot V_i$

Tabella delle misure di I_L con variazione di R_L : $V_i = 2V$; $R = 1.5k\Omega$: $R_{LMAX} = 6k\Omega$.

	ΚΩ		Volt		mA	Volt	mA
N	$R_{ m L}$	Vi	V_{o}	$ m V_{RL}$	I_{L}	Vo calc	I _L calc
1	0,68	2	2,928	0,923	1,357	2,907	1,333
2	0,82	2	3,091	1,086	1,324	3,093	1,333
3	1	2	3,336	1,331	1,331	3,333	1,333
4	1,2	2	3,586	1,582	1,318	3,6	1,333
5	1,5	2	3,981	1,977	1,318	4	1,333
6	1,8	2	4,370	2,364	1,313	4,4	1,333
7	2,2	2	4,949	2,944	1,338	4,93	1,333
8	2,7	2	5,579	3,574	1,324	5,6	1,333
9	3,3	2	6,370	4,366	1,323	6,4	1,333
10	3,9	2	7,179	5,174	1,327	7,2	1,333
11	4,7	2	8.373	6,268	1,334	8,27	1,333
12	5,6	2	9,431	7,427	1,326	9,47	1,333
13	6,8	2	10,990	8,986	1,321	11,066	1,333
14	8,2	2	11,036	9,031	1,101	12,93	1,097
15	10	2	11,086	9,082	0,9082	15,33	0,9

Il valore della tensione di saturazione risulta di 11V (valore che verrà usato nel calcolo di I_L in condizioni di saturazione).

Tabella delle misure di I_L con variazione di V_i : $V_{iMAX}=6V$; $R=1,5k\Omega$: $R_L=1k\Omega$.

	ΚΩ		Volt		mA	Volt	mA
N	$R_{ m L}$	Vi	Vo	$V_{ m RL}$	$I_{\rm L}$	V _o calc	I _L calc
1	1	0,5	0,835	0,331	0,331	0,833	0,333
2	1	1	1,672	0,666	0,666	1,667	0,667
3	1	1,5	2,504	0,999	0,999	2,5	1
4	1	2	3,334	1,331	1,331	3,333	1,333
5	1	2,5	4,176	1,668	1,668	4,167	1,667

6	1	3	5,009	2,002	2,002	3	2
7	1	3,5	5,838	2,333	2,333	5,833	2,333
8	1	4	6,683	2,672	2,672	6,667	2,667
9	1	4,5	7,503	3,000	3,000	7,5	3
10	1	5	8,348	3,338	3,338	8,333	3,333
11	1	5,5	9,179	3,671	3,671	9,167	3,667
12	1	6	10,008	4,003	4,003	10	4
13	1	6,5	10,245	3,736	3,736	10,83	3,7
14	1	7	10,244	3,231	3,231	11,67	3,2
15	1	7,5	10,243	2,730	2,730	12,5	2,7
16	1	8	10,243	2,233	2,233	13,33	2,2
17	1	8,5	10,243	1,736	1,736	14,67	1,7
18	1	9	10,243	1,235	1,235	15	1,2

Il valore della tensione di saturazione risulta di 10,2V (valore che verrà usato nel calcolo di I_L in condizioni di saturazione).

Si riportano i grafici di I_L e di I_L calcolata in funzione di R_L e in funzione di V_i.

Il grafico evidenzia che la corrente si mantiene praticamente costante al variare di R_L fino al valore $6.8K\Omega$, oltre il quale l'uscita satura con conseguente variazione di I_L .

Il grafico evidenzia che la corrente dipende linearmente da V_i fino ad una tensione d'ingresso di circa 6V. Oltre questo valore l'uscita satura e si perde la dipendenza da V_i .

CONVERTITORE V/I DIFFERENZIALE

$$\begin{aligned} \text{Poich\'e} \quad V_o &= \frac{R_L}{R} \cdot V_d + V_1 \quad \Rightarrow \quad \begin{cases} V_d &= \frac{R}{R_L} \cdot \left(V_o - V_1 \right) \quad \Rightarrow \quad V_{dMAX} = \frac{R}{R_L} \cdot \left(V_{oSAT} - V_1 \right) \\ \\ R_L &= \frac{V_o - V_1}{V_d} \cdot R \quad \Rightarrow \quad R_{LMAX} = \frac{V_{oSAT} - V_1}{V_d} \cdot R \end{aligned}$$

In questa applicazione, i valori V_{dMAX} e R_{LMAX} , oltre che dipendere da V_{oSAT} , dipendono dal valore di V_1 ; quindi, per uno stesso valore di V_1 , dipendendo la tensione differenziale tra i due ingressi anche da V_2 , l'uscita può risultare sia satura sia non satura. Per tale motivo nelle tabelle compare anche una colonna in cui si riporta il valore di V_{dMAX} calcolato dall'espressione sopra riportata.

Si fissa
$$I_{LMAX}=4mA$$
 e $V_{dMAX}=6V$ e si calcola $R=\frac{V_{dMAX}}{I_{LMAX}}=\frac{6}{4\cdot 10^{-3}}=1,5k\Omega$.

– Verifica della indipendenza di I_L da R_L : si fissano $V_d=2V$, $V_1=1V$, $V_2=-1V$, $V_{oSAT}=10V$ e $R=1,5k\Omega$. La corrente I_L ha un valore sicuramente inferiore a $I_{LMAX}=4mA$ e la saturazione dell'uscita si avrà per un valore di R_L :

$$R_{LMAX} = \frac{V_{oSAT} - V_1}{V_d} \cdot R = \frac{10 - 1}{2} \cdot 1,5 \cdot 10^3 = 6,75 \text{k}\Omega$$

Si utilizzeranno i seguenti valori di R_L : 1,2 $K\Omega$; 1,5 $K\Omega$; 1,8 $K\Omega$; 2,2 $K\Omega$; 2,7 $K\Omega$; 3,3 $K\Omega$; 3,9 $K\Omega$; 4,7 $K\Omega$; 5,6 $K\Omega$; 6,8 $K\Omega$; 8,2 $K\Omega$.

– Verifica della dipendenza di I_L da V_d : si fissano $R_L = 2,2k\Omega$ e $R = 1,2k\Omega$. Con tali valori si ha:

$$V_{dMAX} = R \cdot I_{LMAX} = 1,2 \cdot 10^{3} \cdot 4 \cdot 10^{-3} = 4,8V$$

Per V_1 e V_2 si utilizzeranno le seguenti coppie di valori: 1V e 0,5V (0,5V); 2V e 1V (1V); 3V e 1V (2V); 3V e 0,5V (2,5V); 2V e -1V (3V); 2V e -2V (4V); 3V e -1,5V (4,5V); 6V e 1V (5V); 6V e 0,5V (5,5V); 2V e 4V (-2V); 1V e 4V (-3V); -2V e 2V (-4V); -2V e 2,5V (-4,5V); -3V e 2,5V (-5,5V); -3V e 3V (-6V); -3,5V e 3V (-6,5V); -4V e 3V (-7V).

Circuito di misura

Si misurano V_1 , V_2 , V_o , V_{RL} , e si calcola, con il valore misurato di V_{RL} , il valore di I_L , applicando la legge di Ohm ai capi di R_L : $I_L = \frac{V_{RL}}{R}$.

Nella tabella vengono riportati anche i valori calcolati di V_{dMAX} , V_o e I_L . Nei casi in cui l'uscita è satura, il valore calcolato di I_L è quello nelle condizioni di uscita satura, negli altri casi è quello imposto dalla resistenza R e dalla tensione d'ingresso.

Quando $|V_o| < |V_{oSAT}|$, la corrente è data da $I_L = \frac{V_d}{R}$.

Quando $\left|V_{o}\right| = \left|V_{oSAT}\right|$, la corrente perde la sua dipendenza da V_{d} . La corrente I_{L} attraversa la serie $R+R_{L}$ che è sottoposta alla differenza di potenziale $V_{2}-V_{oSAT}$. Applicando la legge di Ohm ai capi della serie si ha: $I_{L}=\frac{V_{2}-V_{oSAT}}{R+R_{L}}$, valore che dipende sia da V_{oSAT} sia da V_{2} .

 $\text{Le tensioni } V_o \text{ e } V_{\text{dMAX}} \text{ si calcola da } V_o = \frac{R_L}{R} \cdot V_{\text{d}} + V_{\text{l}} \text{ e } V_{\text{dMAX}} = \frac{R}{R_L} \cdot \left(V_{\text{oSAT}} - V_{\text{l}} \right).$

Tabella delle misure di I_L con variazione di R_L : $V_{_d}=2V\,;\;R=$ 1,5k Ω : $R_{_{LMAX}}=6k\Omega$.

	ΚΩ			Volt			mA	V	olt	mA
N	$R_{\rm L}$	V_1	V_2	V_d	Vo	V_{RL}	I_{L}	V_{dMAX}	Vo calc	I _L calc
1	1,2	1	-1	2	2,588	1,594	1,328	11,25	2,6	1,333
2	1,5	1	-1	2	2,984	1,989	1,326	9	3	1,333
3	1,8	1	-1	2	3,371	2,375	1,319	7,5	3,4	1,333
4	2,2	1	-1	2	3,947	2,953	1,342	6,14	3,93	1,333
5	2,7	1	-1	2	4,579	3,584	1,327	5	4,6	1,333
6	3,3	1	-1	2	5,374	4,379	1,327	4,091	5,4	1,333
7	3,9	1	-1	2	6,180	5,185	1,329	3,46	6,2	1,333
8	4,7	1	-1	2	7,278	6,283	1,337	2,87	7,27	1,333
9	5,6	1	-1	2	8,434	7,439	1,328	2,41	8,47	1,333
10	6,8	1	-1	2	10,177	9,182	1,350	1,985	10,07	1,333
11	8,2	1	-1	2	11,013	10,142	1,237	1,65	11,93	1,237

Il valore della tensione di saturazione risulta di 11V (valore che verrà usato nel calcolo di I_L in condizioni di saturazione).

Tabella delle misure di I_L con variazione di V_d : R = 1,2k Ω : $R_{_L}$ = 2,2k Ω .

	ΚΩ			Volt			mA	V	olt	mA
N	$R_{\rm L}$	V_1	V_2	V_d	Vo	V_{RL}	I_{L}	V_{dMAX}	V _o calc	I _L calc
1	2,2	1	0.5	0,5	1,921	0,926	0,420	4,91	1,92	0,42
2	2,2	2	1	1	3,826	1,834	0,834	4,36	3,83	0,83
3	2,2	3	1	2	6,677	3,680	1,67	3,82	6,67	1,668
4	2,2	3	0,5	2,5	7,596	4,600	2,091	3,82	7,58	2,08
5	2,2	2	-1	3	7,516	5,524	2,51	4,36	7,5	2,5
6	2,2	2	-2	4	9,347	7,356	3,34	4,36	9,33	3,33
7	2,2	3	-1,5	4,5	10,411	7,723	3,51	3,82	11,25	3,529
8	2,2	6	1	5	10,590	6,215	2,825	2,18	15,17	2,794
9	2,2	6	0,5	5,5	10,554	6,514	2,961	2,18	16,08	2,941
10	2,2	2	4	-2	-1,684	-3,679	-1,67	4,36	-1,67	-1,67
11	2,2	1	4	-3	-4,508	-5,506	-2,50	4,91	-4,5	-2,5
12	2,2	-2	2	-4	-9,370	-7,360	-3,345	-4,60	-9,33	-3,33
13	2,2	-2	2,5	-4,5	-9,709	-7,905	-3,59	-4,60	-10,25	-3,59
14	2,2	-3	2,5	-5,5	-9,758	-7,937	-3,61	-3,82	-13,08	-3,59
15	2,2	-3	3	-6	-9,714	-8,237	-3,74	-3,82	-14	-3,74
16	2,2	-3,5	3	-6,5	-9,714	-8,232	-3,74	-3,54	-15,42	-3,74
17	2,2	-4	3	-7	-9,714	-8,232	-3,74	-3,27	-16,03	-3,74

Il valore delle tensioni di saturazione sono +10,5V e -9,7V (valori che verranno usati nel calcolo di I_L in condizioni di saturazione).

Si riportano i grafici di I_L e di I_L calcolata in funzione di R_L e in funzione di V_d .

Il grafico evidenzia che la corrente si mantiene praticamente costante al variare di R_L fino al valore 6,8K Ω , oltre il quale l'uscita satura con conseguente variazione di I_L .

Il grafico evidenzia che la corrente dipende linearmente da V_d fino ad una tensione differenziale d'ingresso di circa $\pm 4,5V$, cui corrisponde una corrente di circa $\pm 3,5mA$. Oltre questo valore l'uscita satura e si perde la dipendenza da V_i .

CONVERTITORE V/I CON CARICO COLLEGATO A MASSA

CONVERTITORE V/I INVERTENTE

Dimensionamento del circuito

$$Si~fissa~I_{LMAX} = 4mA~e~V_{iMAX} = 5V~e~si~calcola~R = \frac{V_{iMAX}}{I_{LMAX}} = \frac{5}{4 \cdot 10^{-3}} = 1{,}25k\Omega ~~\rightarrow ~~R = 1{,}2k\Omega \,.$$

Assumendo $V_{oSAT} = 10V$, si calcola $R_L^{'}$ dalla funzione d'uscita nelle condizioni di saturazione:

$$-V_{oSAT} = -\left(1 + \frac{2R_L^{'}}{R}\right) \cdot V_{iMAX} \quad \Rightarrow \quad R_L^{'} = \left(\frac{V_{oSAT}}{V_{iMAX}} - 1\right) \cdot \frac{R}{2} = \left(\frac{10}{5} - 1\right) \cdot \frac{1,2 \cdot 10^3}{2} = 0,6k\Omega$$

- Verifica della indipendenza di I_L da R_L : si fissano $V_i = 2V$ e R = 1,2kΩ. La corrente I_L ha un valore sicuramente inferiore a $I_{LMAX} = 4mA$ e la saturazione dell'uscita si avrà per un valore di R_L maggiore di $R_L^{'}$:

$$R_{LMAX} = \left(\frac{V_{oSAT}}{V_i} - 1\right) \cdot \frac{R}{2} = \left(\frac{10}{2} - 1\right) \cdot \frac{1,2 \cdot 10^3}{2} = 2,4k\Omega$$

Si utilizzeranno i seguenti valori di R_L : 0,47K Ω ; 0,68K Ω ; 0,82K Ω ; 1K Ω ; 1,2K Ω ; 1,5K Ω ; 1,8K Ω ; 2,2K Ω ; 2,7K Ω ; 3,3K Ω ; 4,7K Ω .

– Verifica della dipendenza di I_L da V_i : si fissano $R_L = 1,2k\Omega$ e $R = 1,2k\Omega$. L'uscita saturerà per:

$$-V_{oSAT} = -\frac{R + 2R_{L}}{R} \cdot V_{iMAX} \quad \Rightarrow \quad V_{iMAX} = \frac{R}{R + 2R_{L}} \cdot V_{oSAT} = \frac{1,2 \cdot 10^{3}}{1,2 \cdot 10^{3} + 2 \cdot 1,2 \cdot 10^{3}} \cdot 10 = 3,33V$$

Cui corrisponde una corrente
$$I_{LMAX} = \frac{V_{iMAX}}{R} = \frac{3,33}{1,2 \cdot 10^3} = 2,775 \text{mA}$$
.

Per V_i si utilizzeranno i seguenti valori: 0,3V; 0,5V; 0,8V; 1V; 1,3V; 1,5V; 1,8V; 2V; 2,3V; 2,5V; 2,8V; 3V; 3,3V; 3,5V; 3,8V; 4V; 4,3V; 4,5V.

Circuito di misura

Si misurano V_i , V_o , V_{RL} , e si calcola, con il valore misurato di V_{RL} , il valore di I_L , applicando la legge di Ohm ai capi di R_L : $I_L = \frac{V_{RL}}{R_{_T}}$.

Nella tabella vengono riportati anche i valori calcolati di V_o e di I_L . Nei casi in cui l'uscita è satura, il valore calcolato di I_L è quello nelle condizioni di uscita satura, negli altri casi è quello imposto dalla resistenza R e dalla tensione d'ingresso.

Quando $\left|V_{_{o}}\right|\!<\!\left|V_{_{oSAT}}\right|,$ la corrente è data da $I_{_{L}}=\frac{V_{_{i}}}{R}.$

Quando $|V_o| = |V_{oSAT}|$, la corrente I_L non è più funzione lineare di V_i . La corrente I_L si calcola applicando la legge di Ohm ai capi della resistenza R_L , che è sottoposta alla differenza di potenziale V_{oSAT} che si ripartisce ai capi del parallelo R/R_L , si ha:

$$I_{\rm L} = \frac{V_{\rm RL}}{R_{\rm L}} = \frac{R \, / \! / \, R_{\rm L}}{R + R \, / \! / \, R_{\rm L}} \cdot V_{\rm oSAT} \cdot \frac{1}{R_{\rm L}} = \frac{R_{\rm L}}{R + 2 R_{\rm L}} \cdot V_{\rm oSAT} \cdot \frac{1}{R_{\rm L}} = \frac{V_{\rm oSAT}}{R + 2 R_{\rm L}} \, .$$

Poiché il valore della tensione di saturazione risulta anche sensibilmente diverso da quello reale, come valore di saturazione si assumerà quello rilevato sperimentalmente; ciò consente di calcolare valori molto prossimi a quelli misurati. Inoltre, il valore di tensione di saturazione positiva risulta diverso da quella di saturazione negativa.

La tensione
$$V_o$$
 si calcola dall'espressione $V_o = -\left(1 + \frac{2R_L}{R}\right) \cdot V_i$

Tabella delle misure di $\textbf{I}_{\textbf{L}}$ con variazione di $\textbf{R}_{\textbf{L}} \colon \ V_i = 2V \ ; \ R = 1{,}2k\Omega \ ; \ R_{_{LMAX}} = 2{,}4k\Omega$.

	ΚΩ		Volt			Volt	mA
N	$R_{ m L}$	Vi	V _o	$V_{ m RL}$	$I_{\rm L}$	Vo calc	I _L calc
1	0,47	2	-3,518	-0,776	-1,65	-3,567	-1,67
2	0,68	2	-4,247	-1,143	-1,68	-4,267	-1,67
3	0,82	2	-4,647	-1,343	-1,64	-4,733	-1,67
4	1	2	-5,245	-1,643	-1,643	-5,33	-1,67
5	1,2	2	-5,852	-1,947	-1,62	-6	-1,67
6	1,5	2	-6,805	-2,427	-1,618	- 7	-1,67
7	1,8	2	-8,333	-2,947	-1,64	-8	-1,67
8	2,2	2	-8,284	-3,259	-1,48	-9,33	-1,48
9	2,7	2	-8,334	-3,407	-1,262	-11	-1,26
10	3,3	2	-8,370	-3,539	-1,072	-13	-1,064
11	4,7	2	-8,418	-3,734	-0,794	-17,67	-0,783

Il valore della tensione di saturazione risulta di -8.3V (valore che verrà usato nel calcolo di I_L in condizioni di saturazione). Tale valore risulta sensibilmente inferiore a quello preventivato di -10V.

Tabella delle misure di I_L con variazione di V_i : $R=1,2k\Omega$: $R_L=2,2k\Omega$.

	ΚΩ		Volt				Volt	mA
N	$R_{ m L}$	Vi	V_{o}	$ m V_{RL}$	I_{L}		Vo calc	I _L calc
1	1,2	0,3	-0,911	-0,312	-0,26		-0,9	-0,25
2	1,2	0,5	-1,505	-0,510	-0,425		-1,5	-0,42
3	1,2	0,8	-2,383	-0,803	-0,669		-2,4	-0,67
4	1,2	1	-2,917	-1,002	-0,835		-3	-0,833
5	1,2	1,3	-3,870	-1,300	-1,083		-3,9	-1,083
6	1,2	1,5	-4,458	-1,497	-1,2475		-4,5	-1,25
7	1,2	1,8	-5,348	-1,795	-1,496		-5,4	-1,5
8	1,2	2	-5,950	-1,996	-1,663		-6	-1,67

9	1,2	2,3	-6,832	-2,291	-1,909	-6,9	-1,917
10	1,2	2,5	-7,420	-2,488	-2,073	-7,5	-2,083
11	1,2	2,8	-8,089	-2,712	-2,26	-8,4	-2,22
12	1,2	3	-8,104	-2,717	-2,264	-9	-2,22
13	1,2	3,3	-8,097	-2,715	-2,2625	-9,9	-2,22
14	1,2	3,5	-8,087	-2,711	-2,259	-10,5	-2,22
15	1,2	3,8	-8,068	-2,705	-2,254	-11,4	-2,22
16	1,2	4	-8,052	-2,700	-2,25	-12	-2,22
17	1,2	4,3	-8,029	-2,692	-2,243	-12,9	-2,22
18	1,2	4,5	-8,012	-2,686	-2,238	-13,5	-2,22

Il valore della tensione di saturazione risulta di -8V (valore che verrà usato nel calcolo di I_L in condizioni di saturazione). Tale valore risulta sensibilmente inferiore a quello preventivato di -10V.

Si riportano i grafici di I_L e di I_L calcolata in funzione di R_L e in funzione di V_i .

Il grafico evidenzia che la corrente si mantiene praticamente costante al variare di R_L fino al valore 1,8 $K\Omega$, oltre il quale l'uscita satura con conseguente variazione di I_L .

Il grafico evidenzia che la corrente dipende linearmente da V_i fino ad una tensione d'ingresso di circa 2,8V. Oltre questo valore l'uscita satura e si perde la dipendenza da V_i .

CONVERTITORE V/I NON INVERTENTE

Dimensionamento del circuito

Si fissa
$$I_{LMAX}=4mA$$
 e $V_{iMAX}=6V$ e si calcola $R=\frac{V_{dMAX}}{I_{LMAX}}=\frac{6}{4\cdot 10^{-3}}=1,5k\Omega$.

Assumendo $V_{oSAT} = 10V$, si calcola $R_L^{'}$ dalla funzione d'uscita nelle condizioni di saturazione:

$$V_{oSAT} = \frac{2R_L^{'}}{R} \cdot V_{iMAX} \implies R_L^{'} = \frac{V_{oSAT}}{V_{iMAX}} \cdot \frac{R}{2} = \frac{10}{6} \cdot \frac{1,5 \cdot 10^3}{2} = 1,25k\Omega$$

– Verifica della indipendenza di I_L da R_L : si fissano $V_i=2V$ e $R=1,5k\Omega$. La corrente I_L ha un valore sicuramente inferiore a $I_{LMAX}=4mA$ e la saturazione dell'uscita si avrà per un valore di R_L maggiore di $R_L^{'}$:

$$R_{LMAX} = \frac{V_{oSAT}}{V_i} \cdot \frac{R}{2} = \frac{10}{2} \cdot \frac{1,5 \cdot 10^3}{2} = 3,75 \text{k}\Omega$$

Si utilizzeranno i seguenti valori di R_L : 0,22 $K\Omega$; 0,47 $K\Omega$; 0,68 $K\Omega$; 1 $K\Omega$; 1,2 $K\Omega$; 1,5 $K\Omega$; 1,8 $K\Omega$; 2,2 $K\Omega$; 2,7 $K\Omega$; 3,3 $K\Omega$; 3,9 $K\Omega$; 4,7 $K\Omega$; 5,6 $K\Omega$.

- Verifica della dipendenza di I_L da V_i : si fissano $R_L = 1.5 \text{k}\Omega$ e $R = 1.5 \text{k}\Omega$. L'uscita saturerà per:

$$V_{\text{oSAT}} = \frac{2R_L}{R} \cdot V_{\text{iMAX}} \implies V_{\text{iMAX}} = \frac{R}{2R_L} \cdot V_{\text{oSAT}} = \frac{1,5 \cdot 10^3}{2 \cdot 1,5 \cdot 10^3} \cdot 10 = 5V$$

Cui corrisponde una corrente $I_{LMAX} = \frac{V_{iMAX}}{R} = \frac{5}{1,5 \cdot 10^3} = 3,33 \text{mA}$.

Per V_i si utilizzeranno i seguenti valori: 0,5V; 1V; 1,5V; 2V; 2,5V; 3V; 3,5V; 4V; 4,5V; 5V; 5,5V; 6V; 6,5V; 7V; 7,5V.

Circuito di misura

Si misurano V_i , V_o , V_{RL} , e si calcola, con il valore misurato di V_{RL} , il valore di I_L , applicando la legge di Ohm ai capi di R_L : $I_L = \frac{V_{RL}}{R_I}$.

Nella tabella vengono riportati anche i valori calcolati di V_o e di I_L . Nei casi in cui l'uscita è satura, il valore calcolato di I_L è quello nelle condizioni di uscita satura, negli altri casi è quello imposto dalla resistenza R e dalla tensione d'ingresso.

Quando
$$\left|V_{o}\right| < \left|V_{oSAT}\right|$$
, la corrente è data da $I_{L} = \frac{V_{i}}{R}$.

Quando $|V_o| = |V_{oSAT}|$, la corrente I_L non è più funzione lineare di V_i . La corrente I_L si calcola applicando la legge di Ohm ai capi della resistenza R_L . La differenza di potenziale ai capi di R_L dipende sia dalla tensione V_{oSAT} sia dalla tensione V_i . Applicando il principio di sovrapposizione degli effetti, si ha:

$$V_{RL} = \frac{R /\!\!/ R_L}{R + R /\!\!/ R_L} V_i + \frac{R /\!\!/ R_L}{R + R /\!\!/ R_L} V_{oSAT} = \frac{R_L}{R + 2R_L} V_i + \frac{R_L}{R + 2R_L} V_{oSAT} = \frac{R_L}{R + 2R_L} (V_{oSAT} + V_i)$$

$$I_{\rm L} = \frac{V_{\rm RL}}{R_{\rm L}} = \frac{R_{\rm L}}{R+2R_{\rm L}} \big(V_{\rm oSAT} + V_{\rm i}\,\big) \cdot \frac{1}{R_{\rm L}} = \frac{V_{\rm oSAT} + V_{\rm i}}{R+2R_{\rm L}} \;. \label{eq:energy}$$

Poiché il valore della tensione di saturazione risulta anche sensibilmente diverso da quello reale, come valore di saturazione si assumerà quello rilevato sperimentalmente; ciò consente di calcolare valori molto prossimi a quelli misurati. Inoltre, il valore di tensione di saturazione positiva risulta diverso da quella di saturazione negativa.

La tensione
$$V_o$$
 si calcola dall'espressione $V_o = \frac{2R_L}{R} \cdot V_i$

Tabella delle misure di I_{L} con variazione di R_{L} : $\,V_{_{i}}=2V$; $\,R=1.5k\Omega\,\colon\,R_{_{LMAX}}=3.75k\Omega$.

	ΚΩ		Volt		mA	Volt	mA
N	$R_{ m L}$	Vi	V _o	$V_{ m RL}$	I_{L}	Vo calc	I _L calc
1	0,22	2	0,596	0,298	1,354	0,587	1,33
2	0,47	2	1,225	0,627	1,334	1,253	1,33
3	0,68	2	1,860	0,930	1,368	1,813	1,33
4	1	2	2,684	1,342	1,342	2,67	1,33
5	1,2	2	3,264	1,633	1,361	3,2	1,33
6	1,5	2	3,985	1,993	1,329	4	1,33
7	1,8	2	4,750	2,375	1,319	4,8	1,33
8	2,2	2	5,915	2,959	1,345	5,867	1,33
9	2,7	2	7,181	3,592	1,33	7,2	1,33
10	3,3	2	8,753	4,378	1,327	8,8	1,33
11	3,9	2	9,639	4,880	1,25	10,4	1,258
12	4,7	2	9,660	5,030	1,07	12,53	1,073
13	5,6	2	9,676	5,146	0,919	14,93	0,921

Il valore della tensione di saturazione risulta di 9,7V (valore che verrà usato nel calcolo di I_L in condizioni di saturazione).

Tabella delle misure di I_L con variazione di $\mathbf{V}_i:~R=1{,}5k\Omega:~R_{_L}=1{,}5k\Omega$.

	ΚΩ		Volt		mA	Volt	mA
N	$R_{ m L}$	Vi	Vo	V_{RL}	$I_{\rm L}$	Vo calc	I _L calc
1	1,5	0,5	0,982	0,492	0,328	1	0,333
2	1,5	1	1,984	0,992	0,661	2	0,667
3	1,5	1,5	2,981	1,491	0,994	3	1
4	1,5	2	3,983	1,992	1,328	4	1,333
5	1,5	2,5	4,988	2,495	1,663	5	1,667
6	1,5	3	5,981	2,991	1,994	6	2
7	1,5	3,5	6,985	3,493	2,328	7	2,333
8	1,5	4	7,981	3,992	2,661	8	2,667
9	1,5	4,5	8,979	4,491	2,994	9	3
10	1,5	5	9,641	4,879	3,253	10	3,333
11	1,5	5,5	9,664	5,053	3,369	11	3,378
12	1,5	6	9,688	5,228	3,485	12	3,488
13	1,5	6,5	9,711	5,402	3,601	13	3,6
14	1,5	7	9,735	5,578	3,719	14	3,711
15	1,5	7,5	9,758	5,751	3,834	15	3,82

Il valore della tensione di saturazione risulta di 11V (valore che verrà usato nel calcolo di I_L in condizioni di saturazione).

Si riportano i grafici di I_L e di I_L calcolata in funzione di R_L e in funzione di V_i .

Il grafico evidenzia che la corrente si mantiene praticamente costante al variare di R_L fino al valore 3,3 $K\Omega$, oltre il quale l'uscita satura con conseguente variazione di I_L .

Il grafico evidenzia che la corrente dipende linearmente da V_i fino ad una tensione d'ingresso di circa 5V. Oltre questo valore l'uscita satura e si perde la dipendenza da V_i .

CONVERTITORE V/I DIFFERENZIALE

$$\begin{aligned} \text{Poich\'e} \quad V_{_{0}} = \frac{R}{2R_{_{L}}} \cdot \left(V_{_{0}} + V_{_{2}}\right) & \Rightarrow \quad V_{_{dMAX}} = \frac{R}{2R_{_{L}}} \cdot \left(V_{_{oSAT}} + V_{_{2}}\right) \\ R_{_{L}} = \frac{V_{_{0}} + V_{_{2}}}{V_{_{d}}} \cdot \frac{R}{2} & \Rightarrow \quad R_{_{LMAX}} = \frac{V_{_{oSAT}} + V_{_{2}}}{V_{_{d}}} \cdot \frac{R}{2} \end{aligned}$$

In questa applicazione, i valori V_{dMAX} e R_{LMAX} , oltre che dipendere da V_{oSAT} , dipendono dal valore di V_2 ; quindi, per uno stesso valore di V_2 , dipendendo la tensione differenziale tra i due ingressi anche da V_1 , l'uscita può risultare sia satura sia non satura. Per tale motivo nelle tabelle compare anche una colonna in cui si riporta il valore di V_{dMAX} calcolato dall'espressione sopra riportata.

Si fissa
$$I_{LMAX}=4mA$$
 e $V_{dMAX}=5V$ e si calcola $R=\frac{V_{dMAX}}{I_{LMAX}}=\frac{5}{4\cdot 10^{-3}}=1{,}25k\Omega$ \rightarrow $R=1{,}2k\Omega$.

– Verifica della indipendenza di I_L da R_L : si fissano $V_d = 2V$, $V_1 = 1V$, $V_2 = -1V$, $V_{oSAT} = 10V$ e R = 1,2kΩ. La corrente I_L ha un valore sicuramente inferiore a $I_{LMAX} = 4mA$ e la saturazione dell'uscita si avrà per un valore di R_L :

$$R_{LMAX} = \frac{V_{oSAT} + V_2}{V_d} \cdot \frac{R}{2} = \frac{10 - 1}{2} \cdot \frac{1,2 \cdot 10^3}{2} = 2,7k\Omega$$

Si utilizzeranno i seguenti valori di R_L : 0,22 $K\Omega$; 0,33 $K\Omega$; 0,47 $K\Omega$; 0,56 $K\Omega$; 0,68 $K\Omega$; 0,82 $K\Omega$; 1 $K\Omega$; 1,2 $K\Omega$; 1,5 $K\Omega$; 1,8 $K\Omega$; 2,2 $K\Omega$; 2,7 $K\Omega$; 3,3 $K\Omega$; 3,9 $K\Omega$; 4,7 $K\Omega$.

- Verifica della dipendenza di I_L da V_d : si fissano $R_L = 1,2k\Omega$ e $R = 1,2k\Omega$.

Per V_1 e V_2 si utilizzeranno le seguenti coppie di valori: -3V e 1V (-4V); 4V e 1V (3V); -4V e 1,5V (-5,5V); -1V e 2V (-3V); 2V e 4V (-2V); 3V e -1V (4V); -3V e -2V (-1V); 2V e -2,5V (4,5V); 3V e -3V (6V); -2V e -3,5V (1,5V); -2V e -4V (2V); 2V e 2V (0V); 5V e 3V (2V); 2V e 4V (-2V); -6V e -2V (-4V); -2V e -3V (1V); -2V e -4V (2V); 2V e 1V (4V); -4V e -0,5V (-3,5V); 1V e 2,5V (-1,5V);

6.5V e 3.5V (3V); 3.5V e -1.5V (5V).

Circuito di misura

Si misurano V_1 , V_2 , V_o , V_{RL} , e si calcola, con il valore misurato di V_{RL} , il valore di I_L , applicando la legge di Ohm ai capi di R_L : $I_L = \frac{V_{RL}}{R}$.

Nella tabella vengono riportati anche i valori calcolati di V_{dMAX} , V_o e I_L . Nei casi in cui l'uscita è satura, il valore calcolato di I_L è quello nelle condizioni di uscita satura, negli altri casi è quello imposto dalla resistenza R e dalla tensione d'ingresso.

Quando
$$\left|V_{o}\right| < \left|V_{oSAT}\right|$$
, la corrente è data da $I_{L} = \frac{V_{d}}{R}$.

Quando $|V_o| = |V_{oSAT}|$, la corrente I_L non è più funzione lineare di V_i . La corrente I_L si calcola applicando la legge di Ohm ai capi della resistenza R_L . La differenza di potenziale ai capi di R_L dipende sia dalla tensione V_{oSAT} sia dalla tensione V_1 . Applicando il principio di sovrapposizione degli effetti, si ha:

$$V_{RL} = \frac{V_{_{1}} \cdot R \, / \! / \, R_{_{L}}}{R + R \, / \! / \, R_{_{L}}} + \frac{\pm \, V_{_{oSAT}} \cdot R \, / \! / \, R_{_{L}}}{R + R \, / \! / \, R_{_{L}}} = \frac{V_{_{1}} \cdot R_{_{L}}}{R + 2 R_{_{L}}} + \frac{\pm \, V_{_{oSAT}} \cdot R_{_{L}}}{R + 2 R_{_{L}}} = \frac{R_{_{L}}}{R + 2 R_{_{L}}} \left(\pm \, V_{_{oSAT}} + V_{_{1}} \right)$$

$$I_{\rm L} = \frac{V_{\rm RL}}{R_{\rm L}} = \frac{R_{\rm L}}{R + 2R_{\rm L}} \left(\pm \, V_{\rm oSAT} + V_{\rm 1} \right) \cdot \frac{1}{R_{\rm L}} = \frac{\pm \, V_{\rm oSAT} + V_{\rm 1}}{R + 2R_{\rm L}} \, .$$

Poiché il valore della tensione di saturazione risulta anche sensibilmente diverso da quello reale, come valore di saturazione si assumerà quello rilevato sperimentalmente; ciò consente di calcolare valori molto prossimi a quelli misurati. Inoltre, il valore di tensione di saturazione positiva risulta diverso da quella di saturazione negativa.

$$\text{Le tensioni } V_o \text{ e } V_{\text{dMAX}} \text{ si calcola da } V_o = \frac{2R_L}{R} \cdot V_{\text{d}} - V_{\text{2}} \text{ e } V_{\text{dMAX}} = \frac{R}{2R_L} \cdot \left(\pm V_{\text{oSAT}} + V_{\text{2}} \right).$$

Tabella delle misure di I_L con variazione di $R_L \colon \ V_d = 2V \ ; \ R = 1{,}2k\Omega \ ; \ R_{LMAX} = 2{,}7k\Omega \ .$

	ΚΩ	Volt					mA	Volt		mA
N	$R_{ m L}$	V_1	V_2	V_d	V_{o}	V_{RL}	I_{L}	V_{dMAX}	Vo calc	I _L calc
1	0,22	1	-1	2	1,576	0,370	1,682	22,1	1,733	1,67
2	0,33	1	-1	2	2,112	0,548	1,661	14,73	2,100	1,67
3	0,47	1	-1	2	2,581	0,782	1,664	10,34	2,567	1,67
4	0,56	1	-1	2	2,884	0,932	1,664	8,68	2,867	1,67
5	0,68	1	-1	2	3,347	1,162	1,709	7,15	3,267	1,67
6	0,82	1	-1	2	3,765	1,370	1,671	5,93	3,733	1,67
7	1	1	-1	2	4,396	1,684	1,684	4,86	4,333	1,67
8	1,2	1	-1	2	5,138	2,053	1,711	4,05	5	1,67
9	1,5	1	-1	2	5,065	2,514	1,676	3,24	6	1,67
10	1,8	1	-1	2	7,072	3,015	1,675	3,7	7	1,67
11	2,2	1	-1	2	8,586	3,768	1,713	2,21	8,33	1,67
12	2,7	1	-1	2	9,128	4,137	1,532	1,8	10	1,530
13	3,3	1	-1	2	9,152	4,289	1,300	1,47	12	1,295
14	3,9	1	-1	2	9,168	4,402	1,129	1,246	14	1,122
15	4,7	1	-1	2	9,185	4,515	0,961	1,034	15,67	0,953

Il valore della tensione di saturazione risulta di 9,1V (valore che verrà usato nel calcolo di I_L in condizioni di saturazione).

Tabella delle misure di I_{L} con variazione di $\textbf{V}_{\textbf{d}} \colon \ R = 1{,}2k\Omega \ \colon \ R_{_{L}} = 1{,}2k\Omega \ .$

	ΚΩ	Volt					mA	Vo	mA	
N	R _L	V_1	V_2	V _d	V _o	V_{RL}	$I_{\rm L}$	V_{dMAX}	V _o calc	I _L calc
1	1,2	-4	1,5	-5,5	-8,544	-4,174	-3,478	-3,25	-12,5	-3,333
2	1,2	-3	1	-4	-8,471	-3,819	-3,183	-3,5	-8,00	-2,917
3	1,2	-1	3	-4	-8,201	-3,065	-2,554	-2,5	-11	-2,50
4	1,2	-6	-2	-4	-5,979	-3,984	-3,320	-5	-6	-3,33
5	1,2	-4	-0,5	-3,5	-6,534	-3,507	-2,922	-4,25	-6,5	-2,917
6	1,2	-1	2	-3	-8,120	-3,038	-2,532	-3	-8	-2,50
7	1,2	2	4	-2	-7,847	-1,951	-1,626	-2	-8	-1,67
8	1,2	1	2,5	-1,5	-5,635	-1,548	-1,290	-2,75	-5,5	-1,250
9	1,2	-3	-2	-1	0,054	-0,984	-0,820	-5	0	-0,833
10	1,2	2	2	0	-2,080	-0,035	-0,029	-3	-2	0
11	1,2	-2	-3	1	5,104	1,028	0,857	6	5	0,833
12	1,2	-2	-3,5	1,5	6,611	1,530	1,275	2,75	6,5	1,250
13	1,2	-2	-4	2	8,138	2,037	1,698	2,5	8	1,67
14	1,2	5	3	2	0,899	1,956	1,630	3	1	1,67
15	1,2	4	1	3	4,977	2,978	2,482	5	5	2,50
16	1,2	6,5	3,5	3	2,397	2,950	2,458	2,75	2,5	2,50
17	1,2	3	-1	4	9,071	4,008	3,340	4	9	3,33
18	1,2	5	1	4	6,992	3,980	3,317	4	7	3,33
19	1,2	2	-2,5	4,5	8,914	3,624	3,020	3,25	11,5	3,055
20	1,2	3,5	-1,5	5	9,087	4,178	3,482	3,75	11,5	3,47
21	1,2	3	-3	6	8,924	3,958	3,298	3	15	3,33

Il valore delle tensioni di saturazione sono +9V e -8V (valori che verranno usati nel calcolo di I_L in condizioni di saturazione).

Si riportano i grafici di I_L e di I_L calcolata in funzione di R_L e in funzione di V_d.

Il grafico evidenzia che la corrente si mantiene praticamente costante al variare di R_L fino al valore $2,2K\Omega$, oltre il quale l'uscita satura con conseguente variazione di I_L .

Il grafico evidenzia che la corrente dipende linearmente da V_d fino ad una tensione differenziale d'ingresso di circa $\pm 3,5V$, cui corrisponde una corrente di circa ± 3 mA. Oltre questo valore l'uscita satura e si perde la dipendenza da V_i .