0.1 Lecture 12

0.1.1 Topics

- Definition of K-cell.
- Theorem: If $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$ is a sequence of k-cells, then $\bigcap_{n=1}^{\infty} I_n$ is nonempty.
- Theorem: Every k—cell is compact.
- Theorem: Suppose $E \subseteq \mathbb{R}^k$. Then
- Connected sets

E is closed and bounded \iff E is compact \iff Every infinite subset of E has a limit point in E.

• Theorem: Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Corollary. If $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$ is a sequence of compact sets, then $\bigcap_{n=1}^{\infty} I_n$ is nonempty.

Theorem (Nested Interval Property). If $I_n = [a_n, b_n]$ is a sequence of closed intervals in \mathbb{R} such that $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$, then $\bigcap_{n=1}^{\infty} I_n$ is nonempty.

Definition (K-cell). The set $I = [a_1, b_1] \times \cdots \times [a_k, b_k]$ is called a k-cell in \mathbb{R}^k .

Example. Let $I = [a_1, a_2] \times [a_2, b_2]$ is a 2-cell in \mathbb{R}^2 .

Theorem (Nested Cell Property). If $I_1 \supseteq I_2 \supseteq I_3 \cdots$ is a nested sequence of k-cells, then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proof. For each $n \in \mathbb{N}$, let

$$I_n = [a_1^{(n)}, b_1^{(n)}] \times \dots \times [a_k^{(n)}, b_k^{(n)}]$$

Also, let

$$\forall n \in \mathbb{N} \text{ and } \forall 1 \leq i \leq k, \text{ we have } A_i^{(n)} = [a_i^{(n)}, b_i^{(n)}]$$

Since for each $n \in \mathbb{N}$, $I_n \supseteq I_{n+1}$, we have

$$A_i^{(n)} \supseteq A_i^{(n+1)} \ \forall 1 \le i \le k.$$

That is,

$$I_1 = A_1^{(1)} \times \cdots \times A_k^{(1)}$$

$$I_2 = A_1^{(2)} \times \cdots \times A_k^{(2)}$$

$$\vdots$$

$$I_n = A_1^{(n)} \times \cdots A_k^{(n)}.$$

Hence, it follows from the nested interval property that there exists

$$\exists x_1 \in \bigcap_{n=1}^{\infty} A_1^{(n)}$$

$$\exists x_2 \in \bigcap_{i=1}^{\infty} A_2^{(n)}$$

$$\vdots$$

$$\exists x_k \in \bigcap_{n=1}^{\infty} A_k^{(n)}.$$

Thus, by a fact in set theory; that is,

$$(A \cap B) \times (C \cap D) \subset (A \times C) \cap (B \times D).$$

$$(x_1, \dots, x_k) \in \left[\bigcup_{n=1}^{\infty} A_1^{(n)}\right] \times \left[\bigcap_{n=1}^{\infty} A_2^{(n)}\right] \times \dots \times \left[\bigcap_{n=1}^{\infty} A_k^{(n)}\right]$$

$$\subseteq \bigcap_{n=1}^{\infty} [A_1^{(n)} \times \dots \times A_k^{(n)}]$$

$$= \bigcap_{n=1}^{\infty} I_n.$$

Hence, we see that

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$

Theorem. Every k-cell in \mathbb{R}^k is compact.

Proof. Here we will prove the claim for 2-cells. The proof for a general k-cell is completely analogous. Let $I = [a_1, b_1] \times [a_2, b_2]$ be a 2-cell. Let $a = (a_1, a_2)$ and $b = (b_1, b_2)$. Let

$$\delta = d(a,b) = ||a - b|| = \sqrt{|a_1 - b_1|^2 + |a_2 - b_2|^2}$$

. Note that if $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are any two points in I, then

$$x_1, y_1 \in [a_1, b_2] \Longrightarrow |x_1 - y_1| \le |b_1 - a_1|$$

 $x_2, y_2 \in [a_2, b_2] \Longrightarrow |x_2 - y_2| \le |b_2 - a_2|$

which implies that

$$\sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2} \le \sqrt{|a_1 - b_1|^2 + |a_2 - b_2|^2} = \delta.$$

So, $d(x,y) \leq \delta$. Let us assume for contradiction that I is NOT compact. So, there exists an open cover $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$ of I that does NOT have a finite subcover; that is, $I\subseteq\bigcup_{{\alpha}\in\Lambda}G_{\alpha}$. For each $1\leq i\leq 2$, divide $[a_i,b_i]$ into two subintervals of equal length:

$$c_i = \frac{a_i + b_i}{2}$$
 $[a_i, b_i] = [a_i, c_i] \cup [c_i, b_i].$

These subintervals determine 4 2-cells. There is at least one of these 4 2-cells that is not covered

by any finite subcollection of $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$. Let us call this 2-cell as I_1 . Notice that

$$\forall x, y \in I_1 \ \|x - y\|_2 \le \frac{\delta}{2}.$$

Now, subdivide I_1 into 4 2-cells and continue this process inductively. In this manner, we will obtain a sequence of 2-cells

$$I, I_1, I_2, I_3, \dots$$

such that

$$I \supseteq I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots \tag{1}$$

$$\forall x, y \in I_n, \quad ||x - y|| \le \frac{\delta}{2} \tag{2}$$

 $\forall n \in \mathbb{N}$ I_n cannot be covered by a finite subcollection of $\{G_\alpha\}_{\alpha \in I}$

Theorem (Heine-Borel Theorem). Let $E \subseteq \mathbb{R}^k$. The following statements are equivalent:

- (a) E is closed and bounded.
- (b) E is compact.
- (c) Every infinite subset of E has a limit point of E.

Proof.

Remark. Note that in any general metric space, we have $(a) \Longrightarrow (b)$ is not necessarily true.

Theorem (Bolzano-Weierstrass Theorem). Let $E \subseteq \mathbb{R}^k$ and E is an infinite set and bounded. Then $E' \neq \emptyset$.

Proof. Suppose that E is bounded. Then there exists a k-cell I such that $E \subseteq I$. By Theorem 2.40, we know that I is a compact set. Furthermore, we know that I is limit point compact by Theorem 2.41. So, every infinite set in I has a limit point in I. In particular, E has a limit point in I. So, $E \neq \emptyset$.

Definition (Connected Sets, Disconnected, connected). Let (X, d) be a metric space.

- (i) Two sets $A, B \subseteq X$ are aid to be disjoint if $A \cap B = \emptyset$.
- (ii) Two sets $A, B \subseteq X$ are said to be **separated** if $\overline{A} \cap B$ and $A \cap \overline{B}$ are both empty.
- (iii) A set $E \subseteq X$ is said to **disconnected** if it can be written as a union of tow nonempty separated sets A and B; that is, $E = A \cup B$.
- (iv) A set $E \subseteq X$ is said to be connected if it is NOT disconnected.

Example ($\mathbb R$ with the standard metric). (*) If we have A=(1,2) and B=(2,5) are separated, then

$$\overline{A} \cap B = [1, 2] \cap (2, 5) = \emptyset$$

$$A \cap \overline{B} = (1,2) \cap [2,5] = \emptyset.$$

Hence, $E = A \cup B$ is disconnected.

(*) We have C=(1,2] and D=(2,5) are disjoint but not separated; that is, we have

$$C\cap \overline{D}=(1,2]\cap [2,5]=\{2\}$$

$$C \cup D = (1,5)$$
 is indeed connected.

0.2 Lecture 12