Dérivation globale

Premières Spécialité Mathématiques

1 Fonction dérivée

Remarque. On rappelle qu'une fonction f définie sur un intervalle I est dite dérivable en $a \in I$ si et seulement si le taux de variation

 $T_a(h) = \frac{f(a+h) - f(a)}{h}$

admet une limite finie quand h tend vers 0. La valeur de cette limite $\lim_{h\to 0} T_a(h)$ est alors appelé **nombre dérivé de** f en a et est noté f'(a).

En résumé, la notion de dérivation est un processus dépendant de f qui à tout nombre a associe, quand c'est possible, un autre nombre f'(a). Il s'agit donc d'une **fonction**.

Définition 1. Soit f une fonction définie sur un intervalle I. On dit que f est **dérivable sur** I si pour tout nombre $a \in I$, la fonction f est dérivable en a. Dans ce cas, on pose f' la fonction définie sur I qui à tout $x \in I$ associe le nombre dérivé f'(x).

Exemple. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$.

a)	Après avoir vérifié que f est dérivable en -3 , calculer $f'(-3)$.
b)	La valeur -3 a-t-elle eu spécifiquement un impact dans votre démonstration?
,	R.

Proposition 1.

- 1. Soit $c \in \mathbb{R}$. La fonction constante définie sur \mathbb{R} $f: x \mapsto c$ est dérivable sur \mathbb{R} , et sa dérivée est $f': x \mapsto 0$.
- 2. La fonction identité définie sur \mathbb{R} par $f: x \mapsto x$ est dérivable sur \mathbb{R} , et sa dérivée est $f': x \mapsto 1$.
- 3. La fonction carré définie sur \mathbb{R} par $f: x \mapsto x^2$ est dérivable sur \mathbb{R} , et sa dérivée est $f': x \mapsto 2x$.
- 4. La fonction puissance $n \in \mathbb{N}$ définie sur \mathbb{R} par $f: x \mapsto x^n$ est déribale sur \mathbb{R} , et sa dérivée est $f': x \mapsto nx^{n-1}$
- 5. La fonction inverse définie sur $]-\infty;0[\cup]0;+\infty[$ par $f:x\mapsto \frac{1}{x}$ est dérivable sur $]-\infty;0[\cup]0;+\infty[$, et sa dérivée est $f':x\mapsto -\frac{1}{x^2}$.
- 6. La fonction racine carrée définie sur $[0; +\infty[$ par $f: x \mapsto \sqrt{x}$ est dérivable sur $]0; +\infty[$, et sa dérivée est $f': x \mapsto \frac{1}{2\sqrt{x}}$.

Remarque.

Démonstration.

- Avant de dériver une fonction, il faut s'assurer qu'elle est bien dérivable.
- La fonction racine carrée est dérivable sur $]0; +\infty[$ (ouvert en 0), tandis qu'elle sur définie sur $[0; +\infty[$ (fermé en 0). En effet, la fonction n'est pas dérivable en 0.

I		
l .		
I		
I		
l .		
1		