some stuff

Arshia and Mirzadi

July 24, 2025

Abstract

Your abstract.

1 Introduction

we build a bandit-style portfolio manager that only learns when we actually trade a stock: each stock gets a risk-adjusted score q_i (regularized squared sharpe), and its ucb exploration bonus shrinks purely with its own trade count. an "anytime" average risk budget controls how often we trade—if a trade would push risk too high, we skip. this ties exploration directly to trading activity while keeping portfolio-level risk in check, and can extend to trading small bundles of stocks using the same scoring and budget rule.

2 Market, Actions, Observability

Notation.

- $K \in \mathbb{N}$: number of stocks (arms).
- Horizon $T \in N$; rounds t = 1, ..., T.
- Decision $A_t \in \{1, ..., K\}$ or skip (null action).
- Realized return when trading i at t: $R_{i,t} \in [\ell, u]$, i.i.d. across t with unknown mean μ_i and variance σ_i^2 .

Observability / **Exploration.** Although full price paths may be observable, the *learning sample size* updates only when a trade is executed:

$$N_i(t) = \sum_{s \le t} \mathbf{1} \{ A_s = i \}.$$

All estimators and exploration bonuses depend solely on $N_i(t)$ (no exploration on passive observability).

3 Risk / Budget Structure (Anytime Cost Constraint)

Each trade of stock i incurs deterministic cost $c_i \geq 0$. Define cumulative and average costs:

$$C(t) = \sum_{s \le t} c_{A_s}, \qquad \bar{C}(t) = \frac{C(t)}{t}.$$

Fix budget level c > 0. The anytime constraint requires

$$\bar{C}(t) < c \quad \forall t.$$

Under-utilization Target. Let $\omega(t)$ denote a lower confidence bound on the minimum cost gap (problem-dependent). Define a shrinking target average cost

$$c_t = c - \frac{\log t}{\omega^2(t) t}.$$

Skipping (null action) is permitted to enforce $\bar{C}(t) \leq c_t$.

Multi-resource Extension. For m resource types, let $\mathbf{c}_i \in R^m$ and maintain $\mathbf{C}(t) = \sum_{s \leq t} \mathbf{c}_{A_s}$; impose componentwise anytime constraints. Negative components allow replenishment.

4 Risk-Adjusted Value

For stock i, define the regularized squared Sharpe ratio (RSSR)

$$q_i = \frac{\mu_i^2}{L + \sigma_i^2}, \qquad L > 0.$$

Empirical statistics over $N_i(t)$ trades:

$$\bar{X}_i(t) = \frac{1}{N_i(t)} \sum_{s: A_s = i} R_{i,s}, \quad \bar{V}_i(t) = \frac{1}{N_i(t)} \sum_{s: A_s = i} \left(R_{i,s} - \bar{X}_i(t) \right)^2, \quad \tilde{X}_i(t) = \frac{1}{N_i(t)} \sum_{s: A_s = i} R_{i,s}^2.$$

Confidence radius:

$$\epsilon_i(t) = \sqrt{\frac{2\log t}{N_i(t)}}.$$

Empirical RSSR:

$$\widehat{q}_i(t) = \frac{\bar{X}_i^2(t)}{L + \bar{V}_i(t)}.$$

Define the UCB-RSSR index

$$B_{i}(t) = \frac{\bar{X}_{i}^{2}(t)}{L + \bar{V}_{i}(t)} + \frac{\left(\bar{V}_{i}(t) + \tilde{X}_{i}(t) + 2\epsilon_{i}(t) + L\right)\epsilon_{i}(t)}{(L + \bar{V}_{i}(t))(L + \bar{V}_{i}(t) - 3\epsilon_{i}(t))}.$$
(1)

A deviation bound (problem constants suppressed) has the form

$$\Pr(|\widehat{q}_i(t) - q_i| > \widehat{\epsilon}_i(t)) \le 2 \exp\left(-\frac{2N_i(t)\widehat{\epsilon}_i^2(t)}{u^2}\right),$$

with

$$\hat{\epsilon}_i(t) = \frac{\left(\bar{V}_i(t) + \tilde{X}_i(t) + 2\epsilon_i(t) + L\right)\epsilon_i(t)}{(L + \bar{V}_i(t))(L + \bar{V}_i(t) - 3\epsilon_i(t))}.$$

5 Single-Stock Trading Algorithm (Anytime-Cost UCB-RSSR)

Initialization. Trade each stock δ times (round-robin), updating statistics.

[h] Anytime-Cost UCB-RSSR [1] **Input:** Budget c, regularization L, initialization length δ , horizon T. **Init:** For t=1 to δK , set $A_t=((t-1) \bmod K)+1$; update N_i , \bar{X}_i , \bar{V}_i , \tilde{X}_i , B_i . $t=\delta K+1$ to T Compute $c_t=c-\frac{\log t}{\omega^2(t)t}$. $C(t-1)+\min_i c_i>c_t t$ $A_t\leftarrow \text{skip}$ (null action); continue. Select $i_t=\arg\max_i B_i(t-1)$. Execute trade i_t : observe $R_{i_t,t}$. Update N_{i_t} , \bar{X}_{i_t} , \bar{X}_{i_t} , \tilde{X}_{i_t} . Recompute $\epsilon_{i_t}(t)$ and $B_{i_t}(t)$ via (1). Update cost $C(t)=C(t-1)+c_{i_t}$.

6 Multi-Stock (Base) Trades

Let \mathcal{B} denote a collection of bases $b \subseteq \{1, \dots, K\}$ with weight vectors $w_i \ge 0$ $(i \in b)$. Portfolio empirical RSSR:

$$\widehat{q}_b(t) = \frac{\left(\sum_{i \in b} w_i \bar{X}_i(t)\right)^2}{L + \sum_{i \in b} w_i^2 \bar{V}_i(t)}.$$

Conservative bonus:

$$CB_b(t) = \sum_{i \in b} w_i (B_i(t) - \widehat{q}_i(t)),$$

Index:

$$B_b(t) = \widehat{q}_b(t) + CB_b(t).$$

At round t choose

$$b_t = \arg\max_{b \in \mathcal{B}} B_b(t-1)$$

subject to cost/budget checks and minimum inclusion probability ω_{\min} (each arm in a base must appear with probability $\geq \omega_{\min}$). Statistics of arms in b_t are updated as in the single-stock case.

7 Regret / Guarantees

Let $i^* = \arg \max_i q_i$ and $\Delta_i = q_{i^*} - q_i$. Under standard regularity and gap assumptions:

- UCB-RSSR (single resource): $\sum_{t=1}^{T} (q_{i^*} q_{A_t}) = O\left(\sum_{i:\Delta_i > 0} \frac{\log T}{\Delta_i}\right)$.
- Anytime cost with under-utilization: additional $O(K \log T)$ term; number of skips sublinear.
- Multi-resource / replenishable (block scheduling or primal–dual): analogous logarithmic or $\tilde{O}(\sqrt{KT})$ bounds depending on sign structure of costs.

8 Implementation Parameters

- Regularization L > 0 controls stability of RSSR.
- Initialization length δ ensures sufficient samples to estimate variances.
- Under-utilization schedule $c_t = c \frac{\log t}{\omega^2(t)t}$.

9 Exploration Principle

Exploration bonus depends only on trade counts:

$$\epsilon_i(t) = \sqrt{\frac{2\log t}{N_i(t)}}.$$

Passive observability does not alter $N_i(t)$; thus no exploration pressure from merely observing prices.

References