15. ČERVNA 2023 MARTIN ŠIMÁK

Měření činitele jakosti Q rezonátorů Laboratorní úloha ukazuje možnosti vektorového měření při určování jakosti rezonátorů a definování rovnic ve vektorovém analyzátoru.

Úkoly měření

- 1. Změřte pod vedením vyučujícího pomocí vektorového analyzátoru Agilent E8364A jednotlivé činitele jakosti dutinového, mikropáskového a dielektrického rezonátoru a určete jejich náhradní obvody. U dielektrického rezonátoru proměřte vlastnosti jak bez odrazného terčíku, tak s odrazným terčíkem.
- 2. V referenční rovině měření v místě vazby na rezonátor určete typ rezonančního obvodu a reálnou složku impedance či admitance. Dále určete potřebné frekvence dle metod popsaných v [1], [2] a [3].
- 3. Z naměřených hodnot odvoďte náhradní obvod rezonančních obvodů a určete hodnoty jeho prvků.

Použité přístroje a komponenty

• Vektorový analyzátor Agilent E8364A (45 MHz až 50 GHz)

Popis měření

Teoretický úvod Při měření na VNA je naprosto nezbytné se vždy vyhnout elektrostatickému výboji na středním vodiči testovacích kabelů či na vodičích s nimi spojenými. Je proto nutno vyloučit dotyk ruky s těmito vodiči a používat zemněný náramek.

V rámci měření určujeme celkem tři činitele jakosti: nezatížený činitel jakosti Q_u , zatížený činitel jakosti Q_L a externi činitel jakosti Q_{ext} . Mezi těmito činiteli platí relace

$$Q_u = Q_L(1+\beta) = \beta Q_{\text{ext}},$$

kde β je koeficient vazby rezonátoru na vedení. Jak pojednává článek [1], pro určení všech tří činitelů jakosti je nutné určit postupně frekvence f_1 a f_2 popisující stav Re(Z) = Im(Z), frekvence f_3 a f_4 , kdy $\text{Im}(Z) = \text{Re}(Z) + 50~\Omega$, a frekvence f_5 a f_6 jakožto body průsečíků rezonanční smyčky a jednotkové kružnice. Všechny tyto významné frekvence jsou ilustrovány na obrázku 1. Pro činitele jakosti potom platí

$$Q_u = \frac{f_0}{f_1 - f_2},$$
 $Q_L = \frac{f_0}{f_3 - f_4},$ $Q_{\text{ext}} = \frac{f_0}{f_5 - f_6},$ (1)

kde f_0 je rezonanční frekvence.

Za znalosti nezatíženého činitele jakosti Q_u lze spočítat kapacitu kondenzátoru a indukčnost cívky v náhradním obvodu rezonátoru. V případě paralelní rezonance platí vztah

$$Q_u = 2\pi f_0 RC, (2)$$

Obrázek 1: Vyznamné frekvenční body pro výpočet činitelů jakosti

zatímco pro sériovou rezonanci plati

$$Q_u = \frac{2\pi f_0 L}{R}. (3)$$

Hodnotu druhého reaktančního prvku vždy určíme z Thomsonova vztahu pro rezonanci ve tvaru

$$f_0 = \frac{1}{2\pi\sqrt{LC}}. (4)$$

Měření dutinového rezonátoru Před měřením jakosti dutinového rezonátoru je nutné nejprve zkalibrovat VNA na dané měření – v našem případě metodou TRL na vlnovodu R100. Dále abychom se vyhnuli potenciálnímu vynechání ostré rezonance, je vhodné nastavit vysoký počet frekvenčních bodů (16001). Frekvenční pásmo je 8 GHz až 12.4 GHz, což můžeme dále zúžit na okolí rezonanční frekvence tak, abychom mohli jemně posouvat kurzor po rezonanční křivce Smithova diagramu. Případně lze i zmenšit počet frekvenčních bodů.

Výsledky měření Během měření jsme pozorovali smyčku paralelní rezonance s odporem v rezonanci $R=15.6~\Omega$. Naměřené hodnoty frekvencí významných pro určení činitelů jakosti jsou zaneseny v tabulce 1. Z těchto dat jsou vypočtené hodnoty parametrů náhradního obvodového zapojení rezonátoru v tabulce 2.

f_0 [GHz]	f_1 [GHz]	f_2 [GHz]	f_3 [GHz]	f_4 [GHz]	f_5 [GHz]	f_6 [GHz]
10.27493	10.27526	10.27458	10.27536	10.27446	10.27502	10.27480

Tabulka 1: Vyznamné frekvence pro dutinový rezonátor

Měření mikropáskového rezonátoru Pro měření na mikropáskovém vedení kalibrujeme VNA na konci testovacích kabelů pomocí metody OSM. Použitý kalibrační kit je Agilent 85052C

Q_u $[-]$	Q_L [-]	$Q_{\rm ext}$ [-]	$R [\Omega]$	C [nF]	L [fH]
15110	11417	46704	15.6	15.0	16

Tabulka 2: Činitelé jakosti a parametry náhradního obvodu dutinového rezonátoru

3.5 mm Precision Calibration Kit. Počet frekvenčních bodů je vhodné opět navýšit na 16001 a frekvenční pásmo je 1 GHz až 18 GHz. Po připojení přípravku s mikropáskových rezonátorem vybereme vhodnou rezonanční smyčku¹ a nastavíme užší frekvenční pásmo pokrývající její nejbližší okolí. Dále je vhodné při zatlumeném rezonátoru pomocí nastavení *Scale/Electrical Delay* nastavit referenční rovinu měření na konec vazebního mikropáskového vedení. Po odtlumení již lze rozpoznat typ rezonančního obvodu, na základě čehož můžeme postupovat dle [1], tj. posunout rezonanční smyčku symetricky kolem imaginární osy, určit rezonanční odpor a výsledně získat pomocí uvedených vztahů jednotlivé činitele jakosti.

Výsledky měření Během měření jsme pozorovali smyčku sériové rezonance s odporem v rezonanci $R=32.2~\Omega$. Naměřené hodnoty frekvencí významných pro určení činitelů jakosti jsou zaneseny v tabulce 3. Z těchto dat jsou vypočtené hodnoty parametrů náhradního obvodového zapojení rezonátoru v tabulce 4.

f_0 [GHz]	f_1 [GHz]	f_2 [GHz]	f_3 [GHz]	f_4 [GHz]	f_5 [GHz]	f_6 [GHz]
10.36582	10.38422	10.34782	10.41062	10.32462	10.39342	10.33982

Tabulka 3: Vyznamné frekvence pro mikropáskový rezonátor

Q_u [-]	Q_L [-]	$Q_{\text{ext}} [-]$	$R [\Omega]$	C [fF]	L [nH]
285	121	193	32.2	1.7	140.9

Tabulka 4: Činitelé jakosti a parametry náhradního obvodu mikropáskového rezonátoru

Určení typu rezonančnho obvodu dielektrického rezonátoru Dielektrický rezonátor měříme navázaný na bezodrazově zakončené mikropáskové vedení. Nejprve je třeba rozšířit frekvenční pásmo na 8 Ghz až 12 GHz, kde lze očekávat rezonanční frekvenci rezonátoru. Dále odpojíme výstupní adaptér s 50Ω zátěží a nastavíme frekvenční rovinu měření na konec mikropásku pomocí nastavení $Scale/Electrical\ Delay$. Následně zmenšíme $Electrical\ delay$ tak, aby sbalené klubíčko a tím i referenční rovina byla v místě zkratu. Potřebnou hodnotu $Electrical\ delay$ si poznamenáme. Do této referenční roviny, která je $\lambda/4$ od otevřeného konce a která je bodem maxima magnetického pole, umístíme dielektrický rezonátor. Z charakteru rezonanční smyčku lze určit typ rezonančního obvodu.

Výsledky měření Během měření jsme pozorovali smyčku paralelní rezonance.

Určení vlastností dielektrického rezonátoru Tento úkol přímo na navazuje na předchozí s tím, že připojíme zpět výstupní adaptér 50Ω zátěže k přípravku a odpojíme vstupní adaptér

¹Rezonanční smyčky lze odlišit od zbytku chování obvodu zatlumením rezonátoru dotykem prstu. Dotyku s vazebním mikropáskem bychom se však měli vyvarovat.

SMA-mikropásek spolu s testovacím kabelem. Pomocí zvětšení hodnoty $Scale/Electrical\ Delay$ o poznamenanou hodnotu posuneme referenční rovinu o $\lambda/4$ dovnitř mikropásku. V této referenční rovině pak umišťujeme dielektrický rezonátor. Mechanickým přemístněním nebo jemnou změnou $Electrical\ delay$ nastavíme smyčku tak, aby byla symetrická vzhledem k imaginární ose.

Dle metody popsané v článcích [2] a [3] je nyní třeba smyčku $2\times$ zvětšit a posunout o hodnotu -1. Dále určíme reálnou složku impedance na rezonanční frekvenci v impedančním Smithově diagramu pomocí markerů. Určená impdance odpovídá sériovému rezonančnímu odporu rezonátoru a 50Ω zátěže. Nyní již můžeme přepnout zobrazení do Smithova admitančního diagramu a odečíst hodnoty významných frekvencí pro určení činitelů jakosti.

Výsledky měření s terčíkem Během měření jsme pozorovali smyčku paralelní rezonance s odporem v rezonanci $R=461~\Omega$. Naměřené hodnoty frekvencí významných pro určení činitelů jakosti jsou zaneseny v tabulce 5. Z těchto dat jsou vypočtené hodnoty parametrů náhradního obvodového zapojení rezonátoru v tabulce 6.

f_0 [GHz]	f_1 [GHz]	f_2 [GHz]	f_3 [GHz]	f_4 [GHz]	f_5 [GHz]	f_6 [GHz]
10.4788	10.4680	10.4600	10.4885	10.4395	10.4830	10.4445

Tabulka 5: Vyznamné frekvence pro dielektrický rezonátor s terčíkem

Q_u $[-]$	Q_L [-]	$Q_{\rm ext}$ [-]	$R [\Omega]$	C [pF]	L [pH]
1310	213	272	461	43.2	5.3

Tabulka 6: Činitelé jakosti a parametry náhradního obvodu dielektrického rezonátoru s terčíkem

Výsledky měření bez terčíku Během měření jsme pozorovali smyčku paralelní rezonance s odporem v rezonanci $R=183~\Omega$. Naměřené hodnoty frekvencí významných pro určení činitelů jakosti jsou zaneseny v tabulce 7. Z těchto dat jsou vypočtené hodnoty parametrů náhradního obvodového zapojení rezonátoru v tabulce 8.

f_0 [GHz]	f_1 [GHz]	f_2 [GHz]	f_3 [GHz]	f_4 [GHz]	f_5 [GHz]	f_6 [GHz]
10.3908	10.4100	10.3775	10.4325	10.3560	10.4135	10.3720

Tabulka 7: Vyznamné frekvence pro dielektrický rezonátor bez terčíku

Q_u $[-]$	Q_L [-]	Q_{ext} [-]	$R [\Omega]$	C [pF]	L [pH]
320	136	250	183	26.8	8.8

Tabulka 8: Činitelé jakosti a parametry náhradního obvodu dielektrického rezonátoru bez terčíku

Závěr

V rámci laboratorní úlohy jsme se seznámili s možnostmi vektorového měření při určování jakosti rezonátorů a definování rovnic ve vektorovém analyzátoru. K určení jednotlivých činitelů jakosti a parametrů náhracního obvodového zapojení měřených rezonátorů jsme využívali

metod, které jsou popsány v odkazované literatuře a vuyžvajíí impedančního měření. Měření proběhlo bez větších potíží a byli jsme tak schopni vyhodnotit a srovnat jakost jednotlivých rezonátorů. Jako nejkvalitnější se z hlediska činitelů jakosti jednoznačně jeví dutinový rezonátor, jehož hodnoty jsou mnohem vyšší než u ostatních typů.

Literatura

- [1] Tysl V., Měření při velmi vysokých kmitočtech, skriptum ČVUT FEL, listopad 1976, str. 90–96.
- [2] Khanna A. P. S., Garault Y., Determination of Loaded, Unloaded, and External Quality Factors of a Dielectric Resonator Coupled to a Microstrip Line, IEEE Trans. on MTT, vol. MTT-31, č. 3, březen 1983, str. 261–264.
- [3] Khanna A. P. S., *Q measurement of microstrip coupled dielectric resonators*, Microwaves & RF, leden 1984, str. 81–86.