Exercici 37. Calculeu totes les classes de conjugació del grup diedral $D_{2\cdot 4}$.

Solució.

• Siguin G un grup i $x, y \in G$ dos elements; Diem que x és conjugat de y si existeix $g \in G$ tal que $gxg^{-1} = y$; I definim la classe de conjugació de y com el conjunt

$$[y] = \{x \in D_{2\cdot 4} \mid \exists g \in D_{2\cdot 4}, y = gxg^{-1}\}.$$

• El grup diedral $D_{2\cdot 4}$ és format pels

$$Id, \rho, \rho^2, \rho^3, \sigma, \sigma\rho, \sigma\rho^2, \sigma\rho^3$$

Doncs, procedim a combinar els elements del diedral entre si amb els seus inversos tal com ens diu la definició:

gxg^{-1}	Id[]Id	$\rho[]\rho^3$	$\rho^2[]\rho^2$	$\rho^3[]\rho$	$\sigma[]\sigma$	$\sigma \rho [] \rho^3 \sigma$	$\sigma \rho^2 [] \sigma \rho^2$	$\sigma \rho^3 [] \sigma \rho$
Id	Id	Id	Id	Id	Id	Id	Id	Id
ρ	ρ	ρ	ρ	ρ	ρ^3	$ ho^3$	$ ho^3$	$ ho^3$
ρ^2	ρ^2	$ ho^2$	ρ^2	$ ho^2$	ρ^2	ρ^2	ρ^2	$ ho^2$
ρ^3	$ ho^3$	$ ho^3$	ρ^3	$ ho^3$	ρ	ρ	ρ	ρ
σ	σ	$\sigma \rho^2$	σ	$\sigma \rho^2$	σ	$\sigma \rho^2$	σ	$\sigma \rho^2$
$\sigma \rho$	$\sigma \rho$	$\sigma \rho^3$	$\sigma \rho$	$\sigma \rho^3$	$\sigma \rho^3$	$\sigma \rho$	$\sigma \rho^3$	$\sigma \rho$
$\sigma \rho^2$	$\sigma \rho^2$	σ	$\sigma \rho^2$	σ	$\sigma \rho^2$	σ	$\sigma \rho^2$	σ
$\sigma \rho^3$	$\sigma \rho^3$	$\sigma \rho$	$\sigma \rho^3$	$\sigma \rho$	$\sigma \rho$	$\sigma \rho^3$	$\sigma \rho$	$\sigma \rho^3$

Per tant, les classes de conjugació del diedral són:

$$[Id] = \{Id\},\$$

$$[\rho] = [\rho^{3}] = \{\rho, \rho^{3}\},\$$

$$[\rho^{2}] = \{\rho^{2}\},\$$

$$[\sigma] = [\sigma\rho^{2}] = \{\sigma, \sigma\rho^{2}\},\$$

$$[\sigma\rho] = [\sigma\rho^{3}] = \{\sigma\rho^{3}\}.$$