Asadullah Hill Galib

As an AI Research Scientist with a Ph.D. in Computer Science, I bring a robust background in Software Engineering and a proven record of success in multidisciplinary research collaboration. (Link: Explore my work in Machine Learning and AI)

Education

Ph.D. in Computer Science

August 2020 - July 2024

Michigan State University, MI, USA

Advisor: Pang-Ning Tan; Dissertation: Predictive and Generative Modeling of Time Series Extremes [Details]

M.Sc. in Software Engineering

January 2019 - December 2020

University of Dhaka, Dhaka, Bangladesh

Thesis: Significant Features Analysis For Android Malware Detection Using Machine Learning Techniques [Manuscript] [Code]

B.Sc. in **Software Engineering**

November 2014 - December 2018

University of Dhaka, Dhaka, Bangladesh

Experience

Al Research Scientist, TSMC Technology, Inc.

November 2024 - Present

• Designing and developing advanced Al-driven analytics to enhance critical business intelligence applications at the Artificial Intelligence for Business Intelligence Research (AI4BIR) Center, TSMC.

Researcher (Internship), Frontier Development Lab (FDL) 2022 by NASA and the SETI Institute
June 2022 - August 2022

- Created the first machine learning-ready dataset and statistical tool comprising spatiotemporally varying seismic precursors.
- Built machine learning models for forecasting and detecting earthquakes from heterogeneous multivariate time series data.
- Research outcomes: 3 AGU abstracts, 2 papers, 1 technical memo, and 1 NASA NTR.

Graduate Research Assistant, *Michigan State University (CSE)*

January 2022 - July 2024

• Developing novel deep learning algorithms addressing extreme events within spatio-temporal and time series data.

Graduate Teaching Assistant, *Michigan State University (CSE)*

August 2020 - December 2021

• Lead classes and labs of 260+ students in CSE 102: Algorithmic Thinking and Programming (Python)

Software Engineer & Executive Assistant (Internship), Brain Station 23

January 2018 - June 2018

• Developed from scratch and maintained a web application and a mobile application, using Laravel Framework, PHP, MySQL, React-Native, Redux-Saga, Android Studio, Postman, and proper version-controlling (Git, SourceTree).

Technical Skills (* PROFICIENT)

AI/ML Skills*: Generative AI, Representation Learning, Forecasting, Timeseries/Spatiotemporal ML, Adversarial ML, Large Language Models (LLMs), NLP, OpenAI API, Interpretable/Explainable AI, Reinforcement Learning, Cloud Computing, MLOps AI/ML Tools: PyTorch*, Lightning*, Captum*, SK-learn*, Pandas*, NumPy*, Matplotlib*, Anaconda*, MATLAB, Keras CS Skills: Python*, Java, C*, PHP, JavaScript, Android*, GCP*, Docker, Selenium, SQL, React Native, Laravel, Agile, SRS* Selected Publications (Full List)

Authored 11 papers in top-tier AI/ML conferences (NeurIPS (twice), KDD (twice), IJCAI (twice), ICDM). Selected ones:

- Galib, A. H., Tan, P. N., & Luo, L. FIDE: Frequency-Inflated Conditional Diffusion Model for Extreme-Aware Time Series Generation. NeurIPS 2024. (Introduces a novel approach that preserves extreme values in time series generation.)
- Galib, A. H., Tan, P. N. & Luo, L. (2023, Dec.). SimEXT: Self-supervised Representation Learning for Extreme Values in Time Series. ICDM 2023, IEEE. (Improves representation learning by 1.1%-8.2% and downstream prediction by 1.7%-11.6%.)
- Series. ICDM 2023, IEEE. (Improves representation learning by 1.1%-8.2% and downstream prediction by 1.7%-11.6%.)

 Galib, A. H., McDonald, A., Tan, P. N. & Luo, L. (2023, Aug.). Self-Recover: Forecasting Block Maxima in Time Series from Predictors with Disparate Temporal Coverage using Self-Supervised Learning. IJCAI 2023. (Improves forecasting by 3%-10%.)
- Galib, A. H., McDonald, A., Wilson, T., Luo, L., & Tan, P. N. (2022, Jul.). DeepExtrema: A Deep Learning Approach for Forecasting Block Maxima in Time Series Data. IJCAI 2022. (Enhances forecasting by 6.5%-16%.)

Academic and Research Projects (Full LIST WITH DETAILS)

- On the Susceptibility and Robustness of Time Series Models through Adversarial Attack and Defense: The vulnerability and robustness of several time series models are investigated through adversarial attacks and defense. [Manuscript][Code]
- Predicting GitHub Issues Lifetime using Machine Learning and Topic Modeling (LDA): It outperforms the previous approach with a high precision and f1- measure. It extracts distinguishable and comprehensible topics from issues. [Manuscript].
- Pre-birth Factors in the Early Assessment of Child Mortality using Machine Learning Techniques: It achieves an AUC score of 0.947 which outperforms the clinical standards. Also, it assesses the relative importance of the factors. [Manuscript].
- LifeBlood: A GPS-based blood donor finder android app that searches and sorts nearer blood donors. [Technical Report][Code]