Permutations

1.1 Groups of Permutations

Theorem 1.1 (Symmetric Groups). Let A be a set and define $S_A = \{\phi: \phi: A \to A, \text{ one-to-one and onto}\}$. With S_A equipped with the binary operation of composition, $\langle S_A, \circ \rangle$ is a group.

Consider the basic example where $A = \{1, 2, 3\}$. Consider an example element $\phi \in S_A$. It can be defined in the following way

$$\phi(1) \rightarrow 1$$

$$\phi(2) \rightarrow 3$$

$$\phi(3) \to 2$$
.

Something of interest is a map from S_A can also be naturally expressed as a matrix like the following

$$\phi = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}.$$