Lecture Summary: Expected Value

Source: Lecture 3.1.pdf

Key Points

- Definition of Expected Value:
 - The expected value (denoted as E[X]) is a measure of the "average" value a random variable X takes, weighted by its probabilities.
 - Formula:

$$E[X] = \sum_{t \in T_X} t \cdot f_X(t),$$

where T_X is the range of X and $f_X(t) = P(X = t)$ is the probability mass function (PMF).

- Interpretation: Over repeated trials, the arithmetic mean of X approaches E[X].
- Importance of Expected Value:
 - Summarizes the central tendency of a random variable.
 - Provides insights into long-term outcomes (e.g., average gains in a casino game).
 - Useful in practical decision-making and theoretical analysis.
- Examples:
 - Bernoulli Random Variable:
 - * PMF: P(X = 1) = p, P(X = 0) = 1 p.
 - * Expected value:

$$E[X] = 0 \cdot (1 - p) + 1 \cdot p = p.$$

- Uniform Random Variable (1 to 6):
 - * PMF: $P(X = x) = \frac{1}{6}$ for $x \in \{1, 2, 3, 4, 5, 6\}$.
 - * Expected value:

$$E[X] = \frac{1}{6}(1+2+3+4+5+6) = 3.5.$$

- Lottery Example:
 - * PMF: $P(X = 200) = \frac{1}{1000}$, $P(X = 20) = \frac{27}{1000}$, $P(X = 0) = \frac{972}{1000}$.
 - * Expected value:

$$E[X] = 200 \cdot \frac{1}{1000} + 20 \cdot \frac{27}{1000} + 0 \cdot \frac{972}{1000} = 0.56.$$

- Properties of Expected Value:
 - Units of E[X] match the units of X.
 - -E[X] may not be a value in the range of X.
- Advanced Examples:

- Geometric Distribution:

- * PMF: $P(X = k) = (1 p)^{k-1}p$ for k = 1, 2, ...
- * Expected value:

$$E[X] = \frac{1}{p}.$$

- Poisson Distribution:

- * PMF: $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ for $k = 0, 1, \dots$
- * Expected value:

$$E[X] = \lambda.$$

- Binomial Distribution:

- * PMF: $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ for k = 0, 1, ..., n.
- * Expected value:

$$E[X] = np.$$

• Key Techniques:

- Use summation formulas for uniform and geometric progressions to simplify calculations.
- Understand difference equations for summation proofs.

Simplified Explanation

Expected Value: The "average" value of a random variable, found by summing each possible value weighted by its probability.

Examples: - Bernoulli(p): E[X] = p. - Uniform(1 to 6): E[X] = 3.5. - Geometric(p): $E[X] = \frac{1}{p}$.

Why It Matters: Expected value helps understand long-term outcomes and guides practical decisions (e.g., betting strategies).

Conclusion

In this lecture, we:

- Defined expected value and its practical significance.
- Demonstrated calculations for common distributions.
- Highlighted techniques for simplifying summations.

Expected value bridges probability and real-world applications, providing insights into the central tendency of random variables.