Characterizing Machine Learning I/O with MLPerf Storage

Oana Balmau WoCC Keynote, December 12th, 2023

Humanity produces a lot of data

Humanity produces a lot of data

Data is the moving force of ML algorithms

... but in many projects the storage decision is an afterthought

Dataset fits in system memory

Training time increased by 3x

An example of a coronal section of one of the training cases with its ground truth segmentation overlaid (kidney in red, tumor in blue).

Source https://arxiv.org/pdf/1912.01054.pdf

Medical image segmentation

2019 Kidney Tumor Segmentation Challenge (KiTS19) CT scans from ~300 kidney tumor cases

Sample images from the KiTS19 dataset before (left) and after (right) preprocessing.

Source: https://arxiv.org/pdf/1908.02625.pdf

File System —			
Data loader			
process			
Process running — training			

Experiment setup

DGX-1 server

ML Training

- 8 x V100 GPUs, 32GB GPU memory
- 512GB DRAM
- Image segmentation workload:
 - Unet3D, Pytorch
 - MLPerf Training implementation

ML Evaluation

KiTS19 dataset

Dataset fits in system memory

Dataset fits in system memory

Data is the moving force of ML algorithms

... but in many projects the storage decision is an afterthought

Why create an ML Storage benchmark?

Why create an ML Storage benchmark?

- Understand <u>storage</u> bottlenecks in ML workloads and propose optimizations
 - Help AI/ML researchers and practitioners make an informed <u>storage</u> decision

MLPerf Storage Working Group (132 members)

Who are we?

WEKA

Current ML/AI benchmarks

Many existing ML/AI benchmarks

Current ML/AI benchmarks

- Focus on end-to-end testing
 - → hard to isolate value of each component
- Insist on training and inference speed
 - → tend to simplify storage
 - → ignore pre-processing
- Expensive accelerators needed to run
- Require extensive entry knowledge

Benchmark Vision

Focus on end-to-end testing

Simplified storage setup

Expensive accelerators needed to run

Require extensive entry knowledge

Our work

Focus on storage impact in ML/AI

Realistic storage & pre-processing settings

No accelerator required to run

Minimal AI/ML knowledge required

Stages of the ML Pipeline

Stages of the ML Pipeline

^[1] Murray et al. tf.data: A Machine Learning Data Processing Framework, VLDB 21.

^[2] Zhao et a. Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training ISCA 22.

Storage resources

Disk

Memory

Compute resources

CPUs

Accelerators (GPU, TPU)

Compute resources

CPUs

Accelerators (GPU, TPU)

Stages of the ML Pipeline

- [1] Murray et al. tf.data: A Machine Learning Data Processing Framework, VLDB 21.
- [2] Zhao et a. **Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training** ISCA 22.

Storage resources

Disk

System Memory (DRAM)

Compute resources

CPUs

Accelerators (GPU, ASIC)

Cleaned dataset

Compute resources

CPUs

Accelerators (GPU, ASIC)

MLPerf Storage

Data cleaning & pre-processing

Focus on storage impact in ML/AI

Realistic **storage** settings in

training phase

No accelerator required to run

Minimal AI/ML knowledge

MLPerf Storage – workloads

Workload	Image segmentation	Natural language processing	Recommender Systems
Model	3D U-Net	BERT	DLRM
Seed data	KiTS19 Set of images	Wikipedia 2020 Text	Criteo Terabyte Click logs
Framework	Pytorch	Tensorflow	Pytorch
I/O behavior	Random access inside many small files	Sequential access of small subset of files, streamed.	Random access inside one large file

- Single node
- Many simulated accelerators.

- Synthetic datasets generated from real dataset seed.
- Local storage

MLPerf Storage – Benchmark metric

Must capture dynamics between storage and compute.

MLPerf Storage – Benchmark metric

Must capture dynamics between storage and compute.

Storage-centric metrics

- ✓ IOPS
- ✓ Latency
- ✓ Read/Write throughput
- ✓ Capacity

Compute-centric metrics

- ✓ Training time
- ✓ Trained model accuracy
- ✓ Accelerator utilization

- ⊗Neither metric is enough to capture the storage-compute relationship
 - Storage metrics too generic. Cannot capture dynamics of ML workloads.
 - Compute-centric metrics too narrow (e.g., no notion of dataset size).

Proposed metric

$$Throughput = \frac{num_samples}{Time \ per \ epoch}$$

Goal of benchmark:

Maximize samples / second, given an Accelerator Utilization > 90% at a certain scale.

MLPerf Storage

Data cleaning & pre-processing

Focus on storage impact in ML/AI

Realistic storage settings in

training phase

No accelerator required to run

Minimal AI/ML knowledge

Data pipeline in ML: Training

Data pipeline in MLPerf Storage benchmark

Benchmark is built as an extension of DLIO [1]

[1] H. Devarajan, H. Zheng, et al. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications, CCGrid '21.

Data pipeline in MLPerf Storage benchmark

✓ Realistic storage settings: nothing changes in data pipeline, apart from training computation.

Benchmark is built as an extension of DLIO [1]

[1] H. Devarajan, H. Zheng, et al. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications, CCGrid '21.

Data pipeline in MLPerf Storage benchmark

✓ Realistic storage settings: nothing changes in data pipeline, apart from training computation.

[1] H. Devarajan, H. Zheng, et al. DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications, CCGrid '21.

oana.balmau@mcgill.ca

Experimental Evaluation

- DGX-1 server
 - 8 x V100 GPUs, 32GB GPU memory
 - 512GB DRAM

• Dataset size : Host memory size = 2:1

oana.balmau@mcgill.ca 43

3D U-Net

• Pytorch, KiTS19 dataset seed

- Small model, large data.
 - 100s MB per sample
- One sample per file.

Simulating training time does not impact I/O patterns

Experiment setup: DGX-1 with 8xV100 GPUs, 512GB DRAM. Dataset: KiTS19, Dataset size: Memory size ratio 2:1

Simulating training time does not impact I/O patterns

Experiment setup: DGX-1 with 8xV100 GPUs, 512GB DRAM. Dataset: KiTS19, Dataset size: Memory size ratio 2:1

Simulating training time does not impact I/O patterns

Experiment setup: DGX-1 with 8xV100 GPUs, 512GB DRAM. Dataset: KiTS19, Dataset size: Memory size ratio 2:1

3D U-Net: Step Breakdown

Natural Language Processing: BERT

- Tensorflow implementation, Wikipedia dataset seed
- Large model, small data.
 - Model takes up most of GPU memory
- Many small samples per file
 - ~300K samples per file
- Sequential access inside the files
 - Prefetching

BERT

50

BERT

51

BERT: Step Breakdown

DLRM

PyTorch implementation, Criteo dataset seed

- Large model, Large data.
 - Model and data parallelism
- Many small random accesses inside a large file

DLRM

54

DLRM: Step Breakdown

Lessons learned so far

Storage on its own is not the main issue.

- Studying I/O patterns revealed opportunities for improvement:
 - In the data loaders (3D U-Net)
 - In the checkpointing (BERT)
 - In the algorithm (DLRM)

MLPerf Storage v0.5 results overview

Workload selected

Workload	Image segmentation	Natural language processing
Model	UNet3D	BERT
Seed data	KiTS19 Set of images	Wikipedia 2020 Text
Sample size	~146 MB	~2.5 KB
Framework	Pytorch	Tensorflow
I/O behavior	Randomly select and read a file	Sequential access a subset of files, streamed

57

MLPerf Storage v0.5 results overview

Scatter plots of the results from the submitters: (a) UNet3D and (b) Bert. UNet3D is I/O intensive workload and Bert is compute intensive

MLPerf Storage v0.5 results overview

Scatter plots of the results from the submitters: (a) UNet3D and (b) Bert. UNet3D is I/O intensive workload and Bert is compute intensive

Next Steps in MLPerf Storage

Collect processing times for different accelerator types: A100, H100.

Benchmark competition round 2: https://github.com/mlcommons/storage

I/O in distributed training

New workloads (LLM, text-to-image, HPC)

Workload collocation

Extend benchmark with ML pre-processing phase.

McGill DISCS Lab

discslab.cs.mcgill.ca gitlab.cs.mcgill.ca/discs-lab

Postdoctoral Researcher

Dr. Stella Bitchebe

PhD Candidates:

Nelson Bore

Jiaxuan Chen

Shubham Vashisth

Pritish Mishra

Rahma Nouaji

Masters Students

Zachary Doucet

Aayush Kapur

Aidan Goldfarb

Ruoyu Deng

Key Takeaways – MLPerf Storage

MLPerf Storage is a new benchmark

Realistic **storage** settings

No accelerators required to run

Follow MLPerf Storage repository for updates:

https://github.com/mlcommons/storage

Get involved
https://mlcommons.org/working-groups/benchmarks/storage/

Share your thoughts Email oana.balmau@mcgill.ca

Thanks to all working group co-chairs!

Curtis Anderson
Panasas

Huihuo Zheng Argonne National Labs

Johnu George, Nutanix