Question 1 Let $E \subset [0,1]$.

- (a) (5 marks) Show that int(E) and E are Lebesgue measurable.
- (b) (15 marks) Suppose that $m(\text{int}(E)) = m(\overline{E})$. Show that

$$m(\overline{E} \setminus int(E)) = 0$$

and that E is Lebesgue measurable.

Question 2 (20 marks) Consider the function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(x) = \begin{cases} 0 & \text{if } x < 0, \\ \sin x & \text{if } 0 \le x \le \frac{\pi}{2}, \\ 1 & \text{if } x > \frac{\pi}{2}. \end{cases}$$

Then g is continuous and increasing. Let μ_g be the Lebesgue-Stieltjes measure associated to g. Evaluate $\mu_g((-5, -1])$, $\mu_g((0, \pi/6])$ and show that μ_g is a probability measure.

Question 3 Let (X, \mathcal{M}) be a measurable space and let $A \subset X$.

- (a) (10 marks) Let f = χ_A − χ_{A'}. Show that |f(x)| = f²(x) = 1 for all x ∈ X and that both |f| and f² are M-measurable.
- (b) (10 marks) Show that if A ≠ M, then f is not M-measurable.
 (Hint: Observe that A = {f = 1}.)
- (c) (10 marks) Suppose that A ∈ M. Show that g := 2χ_A + 3χ_A is integrable over X if and only if μ is a finite measure.

Question 4 Let (X, \mathcal{M}, μ) be a measure space. Let f be integrable over X and $B = \{0 < |f| < \infty\}$, $B_n = \{1/n < |f| \le n\}$, $n = 1, 2, \ldots$

- (a) (10 marks) Show that $\int_X f d\mu = \int_B f d\mu$. (Hint: Observe that $X = \{f = 0\} \cup B \cup \{|f| = \infty\}$ and $\mu(\{|f| = \infty\}) = 0$.)
- (b) (10 marks) Show that $|f|\chi_{B_n} \nearrow |f|\chi_B$ and $\lim_{n\to\infty} \int_{B_n} |f| d\mu = \int_X |f| d\mu$.
- (c) (10 marks) Show that for each $\epsilon > 0$, there is a subset A of X such that $\mu(A) < \infty$, f is bounded on A, and $\int_{X \setminus A} |f| d\mu < \epsilon$.