Понятия и формули:

• Вероятностен модел на проста линейна регресия:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, \dots, n, \epsilon_i \sim N(0, \sigma^2).$$

• Оценки на регресионните коефициенти по метода на най-малките квадрати:

$$\begin{split} \hat{\beta}_1 &= \frac{S_{xy}}{S_{xx}}, \\ \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x}, \text{ където} \\ S_{xx} &= \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - \frac{(\sum_{i=1}^n x_i)^2}{n}, \\ S_{xy} &= \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^n x_i y_i - \frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n} \\ S_{yy} &= \sum_{i=1}^n (y_i - \bar{y})^2 = \sum_{i=1}^n y_i^2 - \frac{(\sum_{i=1}^n y_i)^2}{n}. \end{split}$$

- Коефициент на корелация: $r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$.
- Коефициент на определяне (coefficient of determination): $r^2 = \frac{S_{yy} SSE}{S_{yy}}$, където $SSE = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = S_{yy} \hat{\beta}_1 S_{xy} = S_{yy} \frac{S_{xy}^2}{S_{xx}}$.

Зад.1 Дадени са 5 точки със следните координати:

- а) намерете линеен модел по метода на най-малките квадрати
- б) начертайте на графика получената в а) права и петте точки
- в) пресметнете r и r^2

Отговор: a) $\hat{y} = 3.0 + 1.2x$ в) $r = 0.9487; r^2 = 0.9$

Зад.2 Дадени са точки със следните координати:

X	1	2	3	4	5	6
У	5.6	4.6	4.5	3.7	3.2	2.7

- а) намерете линеен модел по метода на най-малките квадрати
- б) начертайте на графика получената в а) права и шестте точки
- в) пресметнете r и r^2

Отговор: а) $\hat{y} = 6.0 - 0.557x$ в) $r = -0.9871; r^2 = 0.9744$

Зад.3 Пресметнете коефициента на корелация за резултатите от тест за придобиване на степен, представени в следната таблица:

Студент	Тест по математика	Краен тест за придобиване на степен
1	39	65
2	43	78
3	21	52
4	64	82
5	57	92
6	47	89
7	28	73
8	75	98
9	34	56
10	52	75

Отговор: r = 0.84

Зад.4 Дадени са 5 точки със следните координати:

- а) намерете линеен модел по метода на най-малките квадрати
- б) начертайте на графика получената в а) права и петте точки. Базирайки се на чертежа, какъв ще бъде знакът на коефициента на корелация?
 - в) пресметнете r и r^2

Отговор: а) $\hat{y} = 3.0 + 6x$ б) положителен в) r = 0.9487; $r^2 = 0.9$

Зад.5 Дадени са следните данни:

- а) намерете линеен модел по метода на най-малките квадрати;
- б) начертайте на графика получената в а) права и шестте точки;
- в) пресметнете r и интерпретирайте;
- г) с какъв процент сумата от квадратите от отклоненията се редуцира, когато за предсказване на y се използва $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$, а не \bar{y} .

Отговор: а) $\hat{y} = 8.267 - 1.314x$ в) -0.982 г) 96.5%

Зад.6 Проведено е изследване как хора със слухови увреждания общуват със събеседници (Journal of the Academy of Rehabilitative Audiology, Vol. 27, 1994). Всеки от 13 индивида със слухови увреждания и с кохлеарен имплант е участвал в диалог с познат човек (член на семейството) и с непознат човек (който е инструктиран да не взема инициативата при проблеми в комуникацията). В таблицата по-долу е показан общият брой думи, използван от обекта при всеки от двата диалога.

Обект	Тест по математика, х	Краен тест за придобиване на степен, y
1	65	47
2	160	78
3	55	90
4	83	75
5	0	6
6	140	101
7	49	40
8	164	215
9	62	29
10	56	75
11	207	121
12	207	139
13	93	83

- а) Начертайте данните на графика. Изглежда ли да има линейна зависимост между двете променливи? Ако да, тя положителна или отрицателна е?
- б) Предложете статистическа линейна зависимост на y от x. Намерете оценки на регресионните коефициенти. Пресметнете коефициента на корелация между x и y. Сверете резултатите с резултата от R:

47 78 90 75 6 101 40 215 29 75 121 139 83

```
> plot(x,y)
> abline(lm(y~x))
> summary(lm(y~x))
```

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max -42.034 -14.128 -10.382 4.802 92.468

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.1275 19.2194 1.047 0.31745
x 0.6244 0.1590 3.927 0.00236 **

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 36.13 on 11 degrees of freedom Multiple R-squared: 0.5837, Adjusted R-squared: 0.5459

F-statistic: 15.42 on 1 and 11 DF, p-value: 0.002363

