

Inspire...Educate...Transform.

Summary – Machine Learning

Manish Gupta
Manishg.iitb@gmail.com

Topics

- Association Rule Mining
- Decision Tree
- K-Nearest Neighbor, Collaborative filtering
- Clustering
- SVM
- Stacking, Bagging, Boosting and Ensembles

Association Rule Mining: Apriori

Database TDB

Tid	Items	
10	A, C, D	
20	В, С, Е	
30	A, B, C, E	
40	B, E	

	Itemset	sup
$ L_1$	{A}	2
-	{B}	3
—	{C}	3
	{E}	3

_			_
L_2	Itemset	sup	
_	{A, C}	2	
	{B, C}	2	
	{B, E}	3	
1	{C, E}	2	

 Itemset
 sup

 {A, B}
 1

 {A, C}
 2

 {A, E}
 1

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

 $2^{\text{nd}} \text{ scan}$

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset	sup
{B, C, E}	2

Decision Trees

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Refund
No
NO
MarSt
Single, Divorced
Married
NO

< 80K
NO

YES

Training Data

Model: Decision Tree

Splitting Attributes

Decision Trees

- Impurity measures: Gini, Information gain, gain ratio
- ID3 and information gain
- C4.5 and pruning
- CART and Gini

K-Nearest Neighbor, Collaborative filtering

- Pros:
 - Simple process
 - Quick to train
- Cons
 - Curse of dimensionality
 - Slow to test
 - Requires more memory
 - Missing values need to be handled separately

K-Nearest Neighbor, Collaborative filtering

The User x Item Matrix

	Shrek	Snow-white	Superman
Alice	Like	Like	Dislike
Bob	?	Dislike	Like
Chris	Like	Like	Dislike
John	Like	Like	?

- Shall we recommend Superman for John?
- John's taste is similar to both Chris and Alice tastes ⇒ Do not recommend Superman to Jon

Clustering

• K-means is a popular algorithm for extracting groups of similar objects from data.

Randomly initialize cluster centroids

Iterate until convergence

Cluster Assignment Assign each point to a cluster with least distance to centroid

Update centroid of cluster

Agglomerative clustering (Hierarchical)

SVM

- SVM searches for the hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH) using constrained convex quadratic optimization
- Pros: 1. High accuracy 2. Nice theoretical guarantees regarding overfitting 3. With an appropriate kernel they can work well even if your data is not linearly separable in the base feature space 4. Good for high-dimensional data (like text)
- Cons: 1. Memory-intensive 2. Hard to interpret 3. Annoying to run and tune (long training time) 4. Not easy to incorporate domain knowledge (priors)
- Kernel Trick

Stacking, Bagging, Boosting and Ensembles

- Use a combination of models to increase accuracy
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of iteratively learned classifiers
 - AdaBoost
 - Gradient Boosting
 - Random Forest: Each classifier in the ensemble is a decision tree classifier and is generated using a random selection of attributes at each node to determine the split
- Pros: Highly effective in presence of large amount of training data
- Cons: Take long time to train

Stacking, Bagging, Boosting and Ensembles

HYDERABAD

Office and Classrooms

Plot 63/A, Floors 1&2, Road # 13, Film Nagar,

Jubilee Hills, Hyderabad - 500 033

+91-9701685511 (Individuals)

+91-9618483483 (Corporates)

Social Media

Web: http://www.insofe.edu.in

Facebook: https://www.facebook.com/insofe

Twitter: https://twitter.com/Insofeedu

YouTube: http://www.youtube.com/InsofeVideos

SlideShare: http://www.slideshare.net/INSOFE

LinkedIn: http://www.linkedin.com/company/international-school-of-engineering

This presentation may contain references to findings of various reports available in the public domain. INSOFE makes no representation as to their accuracy or that the organization subscribes to those findings.

BENGALURU

Office

Incubex, #728, Grace Platina, 4th Floor, CMH Road, Indira Nagar, 1st Stage, Bengaluru – 560038

+91-9502334561 (Individuals)

+91-9502799088 (Corporates)

Classroom

KnowledgeHut Solutions Pvt. Ltd., Reliable Plaza, Jakkasandra Main Road, Teacher's Colony, 14th Main Road, Sector – 5, HSR Layout, Bengaluru - 560102