NFV Requirements

High Packet Rates: Must keep up with line rate which is >10MPPS

NFV Requirements

- High Packet Rates: Must keep up with line rate which is >10MPPS
- Low Latency: Used for applications like VoIP and video conferencing

NFV Requirements

- High Packet Rates: Must keep up with line rate which is >10MPPS
- Low Latency: Used for applications like VoIP and video conferencing
- NF Chaining: Packets go through sequence of NFs

Challenges for NFV

Challenges for NFV

- Running NFs
 - Isolation and Performance

Challenges for NFV

- Running NFs
 - Isolation and Performance

- Building NFs
 - High-Level Programming and Performance

Running NFs

• Memory Isolation: Each NF's memory cannot be accessed by other NFs.

Memory Isolation: Each NF's memory cannot be accessed by other NFs.

• Packet Isolation: When chained, each NF processes packets in isolation.

Memory Isolation: Each NF's memory cannot be accessed by other NFs.

• Packet Isolation: When chained, each NF processes packets in isolation.

• Performance Isolation: One NF does not affect another's performance.

Memory Isolation: Each NF's memory cannot be accessed by other NFs.

• Packet Isolation: When chained, each NF processes packets in isolation.

Performance Isolation: One NF does not affect another's performance.

Memory Isolation

Packet Isolation

ZCSI: Zero Copy Soft Isolation

• VMs and containers impose cost on packets crossing isolation boundaries.

ZCSI: Zero Copy Soft Isolation

- VMs and containers impose cost on packets crossing isolation boundaries.
- Insight: Use type checking (compile time) and runtime checks for isolation.
 - Isolation costs largely paid at compile time (small runtime costs).

Our Approach

• Disallow pointer arithmetic in NF code: use safe subset of languages.

Our Approach

- Disallow pointer arithmetic in NF code: use safe subset of languages.
- Type checks + array bounds checking provide memory isolation.

- Disallow pointer arithmetic in NF code: use safe subset of languages.
- Type checks + array bounds checking provide memory isolation.
- Build on unique types for packet isolation.

- Disallow pointer arithmetic in NF code: use safe subset of languages.
- Type checks + array bounds checking provide memory isolation.
- Build on unique types for packet isolation.
 - Unique types ensure references destroyed after certain calls.

- Disallow pointer arithmetic in NF code: use safe subset of languages.
- Type checks + array bounds checking provide memory isolation.
- Build on unique types for packet isolation.
 - Unique types ensure references destroyed after certain calls.
 - Ensure only one NF has a reference to a packet.

- Disallow pointer arithmetic in NF code: use safe subset of languages.
- Type checks + array bounds checking provide memory isolation.
- Build on unique types for packet isolation.
 - Unique types ensure references destroyed after certain calls.
 - Ensure only one NF has a reference to a packet.
 - Enables zero copy packet I/O.

- Disallow pointer arithmetic in NF code: use safe subset of languages.
- Type checks + array bounds checking provide memory isolation.
- Build on unique types for packet isolation.
 - Unique types ensure references destroyed after certain calls.
 - Ensure only one NF has a reference to a packet.
 - Enables zero copy packet I/O.
- All of these features implemented on top of Rust.

Provides memory and packet isolation.

- Provides memory and packet isolation.
- Improved consolidation: multiple NFs can share a core.

- Provides memory and packet isolation.
- Improved consolidation: multiple NFs can share a core.
 - Function call to NF (~ few cycles) vs context switch (~1μs).

- Provides memory and packet isolation.
- Improved consolidation: multiple NFs can share a core.
 - Function call to NF (\sim few cycles) vs context switch (\sim 1µs).
- Reduce memory and cache pressure.

- Provides memory and packet isolation.
- Improved consolidation: multiple NFs can share a core.
 - Function call to NF (~ few cycles) vs context switch (~1μs).
- Reduce memory and cache pressure.
 - Zero copy I/O => do not need to copy packets around.

Challenges for NFV

- Running NFs
 - Isolation and Performance

- Building NFs
 - High-Level Programming and Performance

• Current: NF writers concerned about meeting performance targets

- Current: NF writers concerned about meeting performance targets
 - Low level abstractions (I/O, cache aware data structures) and low level code.

- Current: NF writers concerned about meeting performance targets
 - Low level abstractions (I/O, cache aware data structures) and low level code.
- Spend lots of time optimizing how abstractions are used to get performance.

- Current: NF writers concerned about meeting performance targets
 - Low level abstractions (I/O, cache aware data structures) and low level code.
- Spend lots of time optimizing how abstractions are used to get performance.
- Observation: NFs exhibit common patterns: abstract and optimize these.

- Current: NF writers concerned about meeting performance targets
 - Low level abstractions (I/O, cache aware data structures) and low level code.
- Spend lots of time optimizing how abstractions are used to get performance.
- Observation: NFs exhibit common patterns: abstract and optimize these.
- What happened in other areas

- Current: NF writers concerned about meeting performance targets
 - Low level abstractions (I/O, cache aware data structures) and low level code.
- Spend lots of time optimizing how abstractions are used to get performance.
- Observation: NFs exhibit common patterns: abstract and optimize these.
- What happened in other areas
 - MPI to Map Reduce, etc.

Abstractions

Packet Processing

Parse/Deparse

Transform

Filter

Byte Stream

Window

Packetize

Control Flow

Group By

Shuffle

Merge

State

Bounded Consistency

Abstractions

Packet Processing

Parse/Deparse Header

Transform UDF

Filter UDF

Group By
Shuffle
Merge

Byte Stream
Window
UDF
Packetize
UDF

State

Bounded
Consistency

Shuffle Abstraction

Shuffle Abstraction

Example NF: Maglev

- Maglev: Load balancer from Google (NSDI'16).
- Main contribution: a novel consistent hashing algorithm.
 - Most of the work in common optimization: batching, scaling cross core.
- NetBricks implementation: 105 lines, 2 hours of time.
- Comparable performance to optimized code

Managing NFs

E2 (SOSP'15)

Stratos

FTMB (SIGCOMM '15)

FlowTags (NSDI '14)

Building and Running NFs

No Isolation

CoMB (NSDI'12) xOMB (ANCS'12)

VM Isolation

ClickOS (NSDI'14)

NetVM (IEEE TNSM)

HyperSwitch (ATC'13)

mSwitch (SOSR'15)

Conclusion

- Software isolation is necessary for high performance NFV.
 - Type checking + bound checking + unique types.
- Performance is not anathema to high-level programming
 - Abstract operators + UDF simplify development.

Code available at http://netbricks.io/

Backup

Both Memory Isolation and I/O Induce Overheads

