

REC'D 0 4 FES 2004

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 60 691.9

Anmeldetag:

23. Dezember 2002

Anmelder/Inhaber:

Technische Universität München,

80333 München/DE

Bezeichnung:

Vorrichtung und Verfahren zur parallelen, automatisierten Kultivierung von Zellen unter

technischen Bedingungen

IPC:

C 12 M 1/02

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 12. Januar 2004

Deutsches Patent- und Markenamt

Der Präsident

Wallner

A 9161 03/00 EDV-L

Patentanwälte
European Patent Attorneys
European Trademark Attorneys
Dipl.-Ing. J. Pfenning (–1994)
Dipl.-Phys. K. H. Meinig (–1995)
Dr.-Ing. A. Butenschön, München
Dipl.-Ing. J. Bergmann*, Berlin
Dipl.-Chem. Dr. H. Reitzle, München
Dipl.-Ing. U. Grambow, Dresden
Dipl.-Phys. Dr. H. Gleiter, München
Dr.-Ing. S. Golkowsky**, Berlin
auch Rechtsanwalt*nlicht Eur. Pat. Att.

80336 München, Mozartstraße 17 Telefon: 089/5309336 Telefax: 089/532229 e-mail: muc@pmp-patent.de 10719 Berlin, Joachimstaler Str. 10-12

Telefon: 030/88 44 810
Telefax: 030/88136 89
e-mail: bln@pmp-patent.de
01217 Dresden, Gostritzer Str. 61-63

Telefon: 03 51/87 18 160 Telefax: 03 51/87 18 162 e-mail: dd@pmp-patent.de

München, 23. Dezember 2002 B 40384(I)DE(WK)

Technische Universität München Arcisstr. 21

80333 München

Vorrichtung und Verfahren zur parallelen, automatisierten Kultivierung von Zellen unter technischen Bedingungen

TU München (I)

Vorrichtung und Verfahren zur parallelen, automatisierten Kultivierung von Zellen unter technischen Bedingungen

. 5

15

Die vorliegende Erfindung betrifft eine Vorrichtung zur Kultivierung von Zellen, eine Anordnung derartiger Vorrichtungen, ein hierfür geeignetes Rührorgan sowie ein Kulturverfahren für Zellen. Derartige Vorrichtungen und Verfahren werden zur Kultivierung von Zellen im Milliliter-Maßstab benötigt. Diese werden besonders für parallele Ansätze bei der Stamm- bzw. Bioprozeßentwicklung in der chemischen Industrie, z.B. für die Reaktionsoptimierung bzw. Katalysator-optimierung, im Bereich des Umweltschutzes, für die Optimierung von Abwasserbehandlungen bzw. chemischen oder biologischen Behandlung von Feststoffen bzw. von Abluft, oder im Bereich der Lebensmitteltechnologie eingesetzt.

Bislang wurden als Reaktoren zur Kultivierung von Zellen in Flüssigkeitssäulen im Millilitermaßstab, wie das insbesondere für Parallelreaktionen zur Erprobung bestimmter biotechnologischer Techniken erforderlich ist, Schüttelkolben oder Rührkessel eingesetzt.

Der klassische Parallelreaktor in der Biotechnologie ist der Schüttelkolben, mit dem seit dem letzten Jahrhundert einfache Satzversuche im Parallelansatz manuell durchgeführt werden. Schüttelkolben werden auf Schütteltablaren montiert, in Inkubatoren bei vorgegebener Temperatur mit einer bestimmten Schüttelfrequenz in eine Rotationsbewegung mit gegebener Exzentrizität versetzt. Durch die Bewegung des Reaktionsgefäßes erfolgt eine Durchmischung der im Reaktionsgefäß enthaltenen Flüssigkeit, in der die biochemische Reaktion stattfindet.

Über Oberflächenbegasung wird der für viele biochemische Reaktionen notwendige Sauerstoff aus der Gasphase in die Flüssigphase eingetragen. Hohe Sauerstoffeinträge sind folglich nur möglich, wenn ein sehr großes Oberflächen/Volumen Verhältnis eingestellt wird. Das bedeutet, daß sehr große Schüttelkolben (1-2 l Volumen) mit sehr wenig Reaktionsmedium (10-20 ml) bei möglichst großer Exzentrizität und Schüttelfrequenz (400 rpm) betrieben werden müssen. Unter diesen Bedingungen werden Sauerstoffübergangskoeffizienten $k_{\rm L}a$ von bis zu 0.07 s⁻¹ erreicht.

Der Leistungseintrag in einen Schüttelkolben erfolgt durch die Reibung der Flüssigkeit an der Innenwand des rotierenden Reaktionsgefäßes. Es erfolgt damit eine relativ gleichmäßige Energiedissipation.

10

5

15

20

5

30

Die Vorteile der Schüttelkolbenkultivierung sind die einfache Handhabung und der relativ geringe apparative Aufwand.

5

10

15

20

5

30

35

Eine neuere Entwicklung ist der Betrieb von parallelen Kleinreaktoren in einem Inkubator mit intermittierender Substratdosierung und paralleler pH-Kon-

Alternativ hierzu können auch Rührkesselreaktoren eingesetzt werden. Wesentliche reaktionstechnische Unterschiede zwischen dem Reaktionsgefäß Schüttelkolben und dem Reaktionsgefäß Rührkesselreaktor - dem klassischen Produktionsreaktor der Biotechnologie sind der geringere Sauerstoffeintrag, das weitaus geringere Verhältnis der maximalen lokalen Energiedissipation zum mittleren Leistungseintrag und die fehlende Kontrolle wichtiger Prozeßgrößen (wie beispielsweise pH oder P_{02}). Dies führt dazu, daß Reaktionsverläufe in den meisten Fällen nicht direkt vom Reaktionssystem Schüttelkolben in das Reaktionssystem Rührkesselreaktor übertragen werden können und damit in der Bioprozeßentwicklung zusätzliche personal- und zeitintensive sequentielle Experimente in Laborbioreaktoren erforderlich sind.

Technische Ansätze dieses Problem zu lösen, sind die Bereitstellung von parallelen Rührkesseleinheiten mit vollständiger individueller Meß- und Regeltechnik. Kommerziell erhältlich sind Parallelreaktorsysteme mit 4 oder 6 Rührkesselreaktoren mit einem Volumen von bis zu 0,5 l. Die gewonnenen Prozeßdaten sind meist gut auf größere Rührkesselreaktoren übertragbar. Der Kapital-, Personal- und Zeitaufwand wird jedoch außerordentlich hoch, wenn mehrere dieser Parallelreaktoreinheiten zur Bioprozeßentwicklung eingesetzt werden müssen.

trolle (DE 197 09 603 A1). Als parallele Kleinreaktoren werden entweder Blasensäulen oder gerührte Säulen mit einem Arbeitsvolumen von 200 ml eingesetzt (DE 195 29 099 A1). Damit können Sauerstoffübergangskoeffizienten und volumenspezifische Leistungseinträge wie im klassischen Rührkesselreaktor erzielt werden. Die Anzahl paralleler Bioreaktoren ist jedoch beschränkt (≤ 16). Eine weitere Parallelisierung ist auf Basis dieser Technologieplattform praktisch nicht möglich. Zur simultanen Konzentrationsmessung von Schlüsselkomponenten des Reaktionsmediums (Substratoder Produktkonzentration) werden parallele Probenahme- und Analysensysteme verwendet (EP 0995 098 A1).

Eine weitere, einfache Möglichkeit, noch weitaus mehr Reaktoren parallel zu betreiben, ist die Verwendung von Mikrotiterplatten in Inkubationsschüttlern zur Satz-Kultivierung von Zellen. Mikrotiterplatten mit 24, 48, 96 oder mehr Vertiefungen zur Kultivierung von Zellen weisen jedoch in noch stärkerem Maße die selben reaktionstechnischen Restriktionen wie Schüttelkolben auf. Zusätzlich erweist sich die Verdunstung in diesem Maßstab als problematisch, da der relative Verdunstungsvolumenstrom bezogen auf das Ausgangsvolumen durch das sehr große Oberflächen/Volumen-Verhältnis und dem geringen Reaktionsvolumen (≤ 1,5 ml) sehr viel größer ist als beispielsweise im Schüttelkolben oder Rührkesselreaktor.

Um eine zügige Umsetzung neuer biologischer Erkenntnisse in technisch realisierbare und wirtschaftliche Verfahren durchführen zu können, muß die bisher sequentielle Vorgehensweise mit einfachen Parallelansätzen im Schüttelkolben und der nachfolgenden Optimierung der Reaktionsbedingungen im kontrollierten Laborrührkesselreaktor überwunden werden. Dies ist

nur möglich, wenn eine möglichst große Zahl von Rührkesselreaktoren automatisiert unter technischen, kontrollierten Reaktionsbedingungen im Parallelansatz durchgeführt werden kann.

5

Um eine Parallelisierung von Rührkesselreaktoren zu ermöglichen, müssen diese so einfach wie möglich aufgebaut und möglichst ohne Einbauten zu betreiben sein. Ideale Reaktionsgefäße sind beispielsweise sterilisierbare Reagenzgläser oder Mikrotiterplatten mit entsprechend großen Kavitäten.

10

Der Leistungseintrag kann in diesem Maßstab einfach durch Magnetrührantriebe erfolgen. In technischen Rührreaktoren wird der Sauerstoffeintrag in das Reaktionsmedium bei Volumenbegasung primär durch den Leistungseintrag des Rührorgans und sekundär durch die Gasleerrohrgeschwindigkeit bestimmt. Eine Primärdispergierung der Gasphase wie sie im klassischen Rührkesselreaktor über einen Gasverteiler am Reaktorboden erfolgt, ist in parallel angeordneten Milliliter-Rührkesselreaktoren jedoch nur sehr aufwendig zu realisieren: Die Reaktionsgefäße müßten mit einer individuellen Gaszufuhr und einem Gasverteiler versehen werden. Der Gasverteiler müßte sicherstellen, daß in

jedem der parallelen Reaktionsgefäße exakt die gewünschte Gasleerrohrgeschwindigkeit erzielt wird.

20

15

30

Bisher ist es nur möglich, entweder eine hohe Zahl von einfachen, unkontrollierten Parallelreaktionen unter nichttechnischen Bedingungen in Mikrotiterplatten oder in Schüttelkolben durchzuführen oder eine relativ kleine Anzahl von Bioreaktoren unter kontrollierten, technischen Bedingungen zu betreiben.

Da es erforderlich ist, einen hohen Gaseintrag in die Reaktionsgefäße zu erzielen, bietet es sich an, die Sterilgaszufuhr von oben in die Gefäße durchzuführen. Hierzu wäre die einfachste sterile Abgrenzung der Einsatz eines Sterilfilters als Abdeckung der einzelnen Reaktoren bzw. einer gesamten Anordnung von Reaktoren. Ein solches Sterilfilter müßte neben der mechanischen Barriere für Kontaminanten jedoch eine gute Gastransporteigenschaft besitzen, um eine Sauerstofflimitierung in den Reaktionsgefäßen zu vermeiden.

Darüber hinaus stellt der Deckel des Reaktionsgefäßes die einzige Möglichkeit zum Eingriff in den Reaktionsablauf dar, beispielsweise zur Zugabe von Substrat, Titrationsmitteln oder Induktoren während der Reaktion, zur Probenentnahme zur Prozeßkontrolle oder zum Einbringen von Meßsonden. Um diese Eingriffe steriltechnisch einwandfrei durchführen zu können, wird das Sterilfilter gewöhnlich als Septum ausgeführt. Die Gasdurchlässigkeit von Septen, die meist auf Siliconbasis beruhen, ist jedoch unzureichend, so daß beide Funktionen nicht durch ein Material erfüllt werden können. Problematisch ist es daher, einen einfachen und gesichert sterilen Zugang zu dem bzw. den Reaktionsgefäßen zu haben, wobei dieser Zugang jedoch unter allen Umständen steril sein soll.

Aufgabe der vorliegenden Erfindung ist es daher, eine Vorrichtung zur Kultivierung von Zellen in Flüssigkeitssäulen im Millilitermaßstab zu schaffen, mit der zum einen ein hoher Gas- und Leistungseintrag erzielt wird und zum andern einzelne oder auch eine große Zahl von derartigen Vorrichtungen parallelisiert effektiv betrieben werden können. Weiterhin ist es Aufgabe der vorliegenden Erfindung, eine derartige An-

.

ordnung paralleler Vorrichtungen zur Verfügung zu stellen sowie ein Rührorgan, mit dem der gewünschte hohe Leistungs- und Gaseintrag erzielt werden kann. Die Aufgabe der vorliegenden Erfindung ist es zusätzlich, entsprechende Kulturverfahren von Zellen in Flüssigkeitssäulen im Millilitermaßstab zur Verfügung zu stellen.

Diese Aufgabe wird durch die Vorrichtung nach Anspruch 1, das Rührorgan nach Anspruch 17, die Anordnung nach Anspruch 26 sowie das Verfahren nach Anspruch 44 gelöst. Vorteilhafte Weiterbildungen der jeweiligen Vorrichtung, Anordnung, Rührorgan bzw. des erfindungsgemäßen Verfahrens werden in den jeweiligen abhängigen Ansprüchen gegeben.

Mit der erfindungsgemäßen Lösung, ist es möglich, einzelne oder auch eine Vielzahl von automatisierten Rührkesselreaktoren, beispielsweise 24,48 oder 96 oder mehr Rührkesselreaktoren sowohl für die Stammals auch für die Bioprozeßentwicklung zeiteffektiv unter technischen Reaktionsbedingungen zu betreiben. Damit ist die parallele automatisierte Kultivierung von Zellen im Millilitermaßstab unter individuell kontrollierten Reaktionsbedingungen, wie Temperatur, Wasserstoffionenaktivität, Sauerstoffeintrag, Leistungseintrag sowie Medienzufuhr möglich, so daß Reaktionsverläufe, wie sie im klassischen Rührkesselbioreaktor erzielt werden, im Parallelansatz durchführbar sind. Unter Millimetermaßstab wird dabei vorteilhafterweise ein Bereich für das gerührte Flüssigkeitsvolumen von 0,5 bis 50 ml, vorzugsweise von 1 bis 30 ml, vorzugsweise von 5 bis 20 ml verstanden. Mit Hilfe der erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Verfahrens ist eine direkte Übertragung der so gewonnenen (fed batch) Prozeßverläufe

20

15

5

10

30

8.

aus dem erfindungsgemäßen Milliliter-Maßstab in den Liter-Maßstab (und umgekehrt) möglich. Die erfindungsgemäßen Milliliter-Rührreaktoren erlauben eine ebenso effiziente Sauerstoffversorgung von Organismen in Flüssigkultur wie Rührkesselreaktoren größeren Maßstabs mit Volumenbegasung.

Bei Einsatz der erfindungsgemäßen Rührkesselreaktoren ist eine Parallelisierung von einer großen Zahl von Bioreaktoren in einem Bioreaktorblock möglich, wobei deren Betrieb erstmalig durch Einsatz von Laborrobottern, beispielsweise Pipettier-Robotern und dergleichen automatisierbar ist und so ein effizienter, individuell kontrollierter Parallelbetrieb ermöglicht wird. Erst die erfindungsgemäße Vorrichtung und auch die erfindungsgemäße Abdeckung ermöglichen die Verwendung eines Laborroboters und damit einen Quantensprung in der Gewinnung relevanter Prozeßdaten.

Werden die Laborroboter mit geeigneten Screening und Optimierroutinen betrieben, so kann eine Prozeßoptimierung, beispielsweise bezüglich der Medienzusammensetzung, der Induktionsverfahren und der Dosierprofile, systematisch und mit hoher Zeiteffizienz erzielt werden. Die vollständige Digitalisierung der parallelen Prozeßentwicklung ermöglicht weiterhin eine neuartige Datentransparenz und Datenverfügbarkeit.

Da die Volumina der Rührkesselreaktoren, mit denen dennoch eine aussagekräftige Information über den jeweiligen Prozeßverlauf gewonnen werden kann, nunmehr stark minimiert werden können, beispielsweise statt 500 ml lediglich noch 5 ml, kann bei gleichem Gesamtvolumen durch Einsatz von 100x mehr Reaktionsgefäßen ein Vielfaches an Information gewonnen bzw. bei gleicher Informationsmenge der Zeitaufwand durch die rea-

10

5

15

20

30

liesierte Automatisierung minimiert werden. Bei Einsatz geeigneter Versuchsplanungs-Algorithmen kann damit ein Quantensprung in der Effektivität der Bioprozeßentwicklung ermöglicht werden.

5

10

Die vorliegende Erfindung beruht entscheidend darauf, daß erkannt wurde, daß der Gaseintrag von der Oberfläche der Flüssigkeitssäule in die Flüssigkeitssäule in einem Rührkesselreaktor dadurch verbessert wird, daß entweder der Behälter und/oder das Rührorgan derart ausgebildet werden, daß die Strömungsgeschwindigkeit sich längs einer Stromlinie oder Bahnlinie, die beim Rührkesselreaktor im Kreis verläuft, sich längs der Stromlinie bzw. Bahnlinie örtlich und/oder zeitlich ändert. Dies führt zu einem räumlich und/oder zeitlich pulsierenden Bernoulli-Effekt. Dies kann beispielsweise in einer zum Boden des Rührkesselreaktors (Behälters) .gerichtete Förderung der Kultursuspension führen, welche zu intensiven Eintrag von Glasblasen führt. Als Stromlinien werden dabei Linien in der Strömung bezeichnet, deren Richtung in jedem Rammpunkt mit der Richtung des Geschwindigkeitsvektors übereinstimmt. Als Bahnlinie werden Linien bezeichnet, die von den Flüssigkeitsteilchen durchlaufen werden.

20

15

Geeignete Ausgestaltung des Behälters (Rührkesselreaktor) und/oder des Rührorgans verstärken den oben genannten Gaseintrag von der Oberfläche in die Flüssigkeitssäule.

30

Zum einen ist es möglich, den Behälter selbst so auszugestalten, daß sein Innenvolumen keine rotationssymmetrische Form aufweist. Dort wo der Flüssigkeitsstrom sich dann verbreitert, befindet sich ein Bereich geringer Strömungsgeschwindigkeit und damit ho-

hen Druckes während dort wo die Flüssigkeit zwischen dem Rührorgan und der Behälterwand durchströmt ein Bereich hoher Strömungsgeschwindigkeit und damit niedrigen Druckes vorliegt. Damit ist eine räumlich längs des Umfangs des Behälters variierende Strömungsgeschwindigkeit bzw. variierender Flüssigkeitsdruck gegeben.

Der selbe Effekt wird erzielt, wenn das Rührorgan innerhalb des beliebig oder auch rotationssymmetrisch
geformten Behälters außermittig bzw. exzentrisch angeordnet wird. In diesem Falle ergeben sich wieder
Abstände zwischen Rührorgan und Wand des Behälters,
die längs des Umfangs des Behälters variieren und dadurch unterschiedliche Strömungsgeschwindigkeiten und
Druckverhältnisse induzieren.

Eine weitere Möglichkeit um diesen pulsierenden Bernoulli-Effekt zu erzielen, ist es, längs des Umfangs des Behälters Strömungsbrecher anzuordnen. Unter Strömungsbecher werden dabei Elemente verstanden, die sich in der Strömung der gerührten Flüssigkeit befinden und so für diese einen Strömungswiderstand darstellen. Strömungsbrecher führen zu einer Verengung des Strömungsquerschnitts. Da der Abstand zwischen Rührer und Wand des Gefäßes größer ist als zwischen Rührer und Strömungsbrecher, bilden sich zwischen Rührer und Strömungsbrecher wieder Bereiche hoher Strömungsgeschwindigkeit und zwischen Rührer und freien Wandbereichen Bereiche geringer Strömungsgeschwindigkeit aus. Der Strömungsbrecher muß dabei nicht in der Drehebene des Rührorgans angeordnet sein, sondern kann unterhalb, in der Drehebene oder auch bzw. zusätzlich auch oberhalb der Drehebene des Rührorgans angeordnet sein. In all diesen Fällen ergibt sich ein pulsierender Bernoulli-Effekt. Die

10

5

15

20

30

Strömungsbrecher können vorteilhafterweise einstückig mit der Lagerung des Rührorgans oder einstückig mit dem Behälter ausgebildet sein, beispielsweise im Spritzgußverfahren.

5

Die Spaltabstände sollen dabei so gewählt werden, daß sich ein ausreichender pulsierender Bernoulli-Effekt ergibt, jedoch die Scherkräfte nicht so groß werden, daß die in der Suspension enthaltenen Zellen zerstört werden. Spaltabstände > 0,05 mm, vorzugsweise > 0,1 mm und/oder < 20 mm, vorzugsweise < 3 mm sind hierfür besonders geeignet. Als Behälter sind klassische Rührkolben, Reagenzgläser oder auch die Kavitäten einer Mikrotiterplatte oder einer speziell gefertigten Platte gleicher Kavitätenanordnung mit adäquaten Durchmessern geeignet.

15

10

Eine weitere Möglichkeit einen pulsierenden Bernoulli-Effekt zu erzeugen besteht darin, das Rührorgan geeignet auszubilden. Hierzu wird in das Rührorgan eine Bohrung eingebracht, die von der Unterseite des Rührorgans sich zu einer Seitenwand bzw. zur Oberseite des Rührorgans erstreckt. Vorteilhafterweise verläuft die Bohrung unter einem Winkel α mit $0^{\circ} \le \alpha$ < 90° zur Dreh- bzw. Mittelachse des Rührorgans, wobei sich dieser Winkel nach oben öffnet.

20

Vorteilhaft können auch weitere Durchgangskanäle mit einer entsprechenden Öffnung nach unten von der Oberseite des Rührorgans sich zu dessen Seitenwand bzw. Unterseite erstrecken.

30

Diese Kanäle können auch nur teilweise durch das Rührorgan unter dem Winkel α verlaufen und dann auf einen bezüglich der auf der Drehachse senkrecht stehenden Ebene in dieser Ebene oder unter einem Winkel

< 90° nach oben oder unten zu dieser Ebene verknüpft verlaufenden weiteren Kanal stoßen und in diesen einmünden, der seinerseits an der seitlichen Außenwand des Rührorgans mit einer Öffnung endet.

5

Durch derartige Bohrungen wird ebenfalls eine Strömung vom Boden des Behälters zur Seitenwand des
Rührorgans induziert, die zu einem veränderten Druck
an den von der Drehachse abgewandten Öffnung der Bohrungen bzw. Kanäle führt und so einen pulsierenden
Bernoulli-Effekt induziert.

10

15

Vorteilhafterweise weisen die Gefäße einen Verschluß bzw. Abdeckung auf, die das Gefäß bzw. eine Anordnung von Gefäßen steril abdeckt. In diese Verschlüsse können zum einen Gasverteilerstrukturen zur Zufuhr von Sterilgas eingebracht sein. Der Verschluß kann hierzu beispielsweise aus einer Doppelbodenplatte bestehen, wobei die Gasverteilerstruktur im Zwischenraum zwischen den beiden Platten der Doppelbodenplatte angeordnet sind. Der Verschluß kann auch aus einer oder mehreren Platten bestehen, wobei die Gasverteilerstrukturen an der Unterseite der untersten Platte angeordnet sind.

20

Vorteilhafterweise werden die Gasverteilerstrukturen derart angelegt, daß ausgehend von einer zentralen Gaszufuhr einzelne Kanäle als Abzweigungen zu den jeweiligen Behältern führen. Vorteilhafterweise werden die Kanäle dabei so geführt, daß sie sowohl gleiche Querschnitte, gleiche Länge als auch die gleiche Anzahl von Biegungen oder Knicken aufweisen. Dadurch wird ein gleichmäßiger Gasdruck auf sämtlichen Behältern bewirkt. Dabei können entweder lediglich die Ab-

zweigungen in gleicher Weise angelegt sein oder auch

das gesamte System.

30

Weiterhin weist der Verschluß vorteilhafterweise für jeden einzelnen Behälter eine Öffnung auf, die nach außen von dem Behälter zugeführtem Sterilgas durchströmt wird. Diese Öffnung kann beispielsweise ein Röhrchen sein, durch das eine Kanüle oder jede andere längliche Probenentnahme- oder Sensoreinheit eingeführt werden kann. Da dies dann im Gegenstrom erfolgt, ist es lediglich erforderlich, die jeweils eingebrachte Einheit zuvor zu sterilisieren und dann durch das Röhrchen in die Suspension einzuführen, um

eine Kontamination des Reaktionsgefäßes zu vermeiden.

Weiterhin kann der Verschluß Stege aufweisen, die bei einer Anordnung von Behältern die einzelnen Behälter voneinander steril isoliert. Ein weiterer Steg, Probebehälter, der ebenfalls dem jeweiligen Behälter zugeordnet ist, kann so ausgebildet sein, daß er in die Suspension eintaucht und dabei den Einlaß für das Sterilgas von dem oben genannten Auslaß abtrennt. Dies führt dazu, daß das Sterilgas zu einem Weg durch die Kultursuspension gezwungen wird und dadurch die Begasung der Kultursuspension weiter verbessert wird.

Im folgenden werden Beispiele erfindungsgemäßer Vorrichtung, Anordnung von Vorrichtung, Rührorgane und zugehöriger Verfahren beschrieben.

Es zeigen

- Fig. 1 einen Längsschnitt durch eine Anordnung (Bioreaktorblock) von Bioreaktoren;
- Fig. 2 verschiedene Varianten der Anordnung von Strömungsbrechern und Rührorganen in einem

10

5

15

20

•

35

Biorektor;

	5	Fig. 3	die Anordnung eines erfindungsgemäßen Rührorgans und Strömungsbrecher in einem Bioreaktor;
		Fign. 4 bis 6	weitere erfindungsgemäße Vorrichtungen;
1	LO	Fig. 7	ein erfindungsgemäßes Rührorgan;
		Fign. 8 bis 13	weitere erfindungsgemäße Rührorgane;
•	15	Fig. 14	eine weitere Anordnung von Bioreaktoren und die Struktur des dazugehörigen Verschlus- ses;
2	30	Fig. 15	die Struktur eines weiteren Verschlusses;
	20	Fig. 16	eine Gesamtanordnung mit Pipettier-Roboter
	.	Fig. 17	den prinzipiellen Ablauf einer parallelen Steuerung einer Bioreaktorenanordnung;
		Fig. 18	maximale Sauerstoffübergangs-Koeffizienten für erfindungsgemäße Magnetrührorgane ver- schiedenen Typs;
	30	Fig. 19	Sauerstoffübergangskoeffizienten für Mag- netrührorgane verschiedener erfindungsgemä- ßer Typen;
		Fign. 20	
•	35	bis 22	die Ergebnisse der Kultivierung von Escherichia coli in erfindungsgemäßen Rührsyste men verschiedenen Typs;

Fig. 23 eine Tabelle der für die Messungen gemäß der Figuren 18 bis 22 verwendeten Rührsysteme.

Im folgenden werden in sämtlichen Figuren für gleiche oder ähnliche Elemente gleiche oder ähnliche Bezugszeichen verwendet.

10

5

Fig. 1 zeigt eine erfindungsgemäße Anordnung von Reaktionsgefäßen 9a, 9b als Behälter in einem Modulsystem 2, das im folgenden insgesamt als Bioreaktorblock 1 bezeichnet wird.

15

20

Dieser Bioreaktorblock 1 enthält bis zu 96 Kavitäten bzw. Bohrungen 8a, 8b, wobei diese in verschiedenen Formaten angeordnet sein können, beispielsweise 4 x3, 4 x 5, 8 x 3, 8 x 6 bzw. 8 x 12 Bohrungen. Die Durchmesser der Bohrungen 8a, 8b liegen vorteilhafterweise zwischen 10 und 35 mm. Sie werden so im Bioreaktorblock 1 angeordnet, daß entsprechend dimensionierte Kleinstreaktionsgefäße 9a, 9b in diese formschlüssig eingebracht werden können. Der Bioreaktorblock 1 ist dabei aus einer Vielzahl von horizontalen Schichten 3, 4, 5 aufgebaut, wobei die unterste Schicht 3 eine Basisplatte, die darüberliegende Schicht 4 einen Mittelteil und die darüberliegende Schicht 5 einen Oberteil bildet. Zwischen der Basisplatte 3 und dem Mittelteil 4 sind Bohrungen 6a, 6b, 6c angeordnet, die als Wärmetauscher von einem Fluid mit geeigneter Temperatur durchströmt werden und so den gesamten Bioreaktorblock 1 temperieren. Im Mittelteil 4 sind weiterhin die Bohrungen 8a, 8b umgebend magnetisch induktive Magnetantriebe 7a, 7b angeordnet wie sie beispielsweise aus der US 4 568 195

30

bekannt sind. Das Oberteil 5 enthält einen seitlich überstehenden Rand 12 längs der Außenseite des gesamten Biorektorblockes 1, in den eine Sterilgaszufuhr 13 zur Zufuhr von sterilem Gas von außen in den Bioreaktorblock 1 eingebracht ist.

Im Innenbereich des Bioreaktorblocks 1 kann auf das Oberteil 5 eine Distanzscheibe 11 aufgelegt werden. Da das einzelne Rührgefäß 9a, 9b an seiner Oberseite bzw. Oberkante einen ringförmigen Flansch 10a, 10b aufweist, stützt sich dieser Flansch 10a, 10b auf die Distanzscheibe 11. Durch Wahl einer geeignet dicken Distanzscheibe 11 kann die Höhe des Reaktorgefäßes 9a, 9b eingestellt werden. Damit ist dann die Rührhöhe eines in dem Gefäß 9a, 9b angeordneten Magnetrührers 21a, 21b über dem Boden des Reaktionsgefäßes 9a, 9b definiert. In das jeweilige Reaktionsgefäß 9a, 9b ist an dessen Boden aufliegend ein einstückiger Strömungsbrecher 20a, 20b angeordnet, der an zwei Stellen auf der Umfangslinie des Reaktorgefäßes 9a, 9b den Querschnitt des Reaktorgefäßes verengt. Der Strömungsbrecher 20a, 20b endet mit seiner Oberkante im vorliegenden Beispiel unterhalb der Rührebene des Rührorgans 21a, 21b. In anderen Beispielen kann sich jedoch der Strömungsbrecher auch seitlich neben das Rührorgan erstrecken oder dieses sogar nach oben überragen. Es ist auch möglich, daß die Strömungsbrecher nur oberhalb und/oder in der Rührebene des Rührorgans angeordnet sind.

Der auf den Bioreaktorblock 1 aufgebrachte Deckel bzw. Abdeckung 15 weist Mittelstege 14a, 14b auf, die sich bis zu der Distanzscheibe 11 erstrecken und so die einzelnen Reaktionsgefäße 9a, 9b als Trennwände steril voneinander isolieren. Weiterhin sind Stege 18a, 18b vorgesehen, die sich bis in den Reaktions-

10

5

15

20

30

raum 9a, 9b erstrecken und diesen ebenfalls als Trennwände in zwei Kompartimente teilen. Zuletzt weist der Deckel 15 auch noch je eine Bohrung 16a, 16b auf, durch die sich jeweils ein Röhrchen 17a, 17b erstreckt. Dieses Röhrchen 17a, 17b stellt eine beständig offene Verbindung zwischen der Außenseite des Bioreaktorblocks 1 und jeweils einem der Reaktorgefäße 9a, 9b dar.

10

15

5

Wird nun eine Kultursuspension 30a, 30b in die jeweiligen Gefäße 9a, 9b eingebracht, so trennt der Steg 18a, 18b die Oberfläche 19a, 19b der Flüssigkeit 30a, 30b in zwei voneinander getrennte Bereiche 19a, 19a'bzw. 19b, 19b'. Wird nun der Rührer 21a bzw. 21b in Drehung zersetzt, so bildet sich eine konvexe Flüssigkeitsoberfläche 19a bzw. 19b aufgrund der Mitdrehung der Flüssigkeit aus. Für die Flüssigkeit 30a bzw. 30b an der Oberfläche 19a'bzw. 19b' ist dieser Effekt nicht so ausgeprägt und hier nicht weiter dargestellt.

20

Wird nun über die Sterilgaszufuhr 13 ein Gas auf die Oberfläche 19a' unter Überdruck geleitet, so muß dieses um den Behälter 9a wieder zu verlassen durch den linken Schenkel 31a der Flüssigkeitssäule unter dem Steg 18a hindurch in den rechten Schenkel 32a der Flüssigkeitssäule strömen und von dort das Gefäß über das Röhrchen 17a wieder verlassen. Da das Röhrchen 17a auf diese Art und Weise ständig von innen nach außen durchströmt wird, ist das Reaktionsgefäß 9a steril, obwohl das Röhrchen 17a offen ist und einen beständig offenen Zugang zu dem Gefäß 9a bildet. Dasselbe gilt für das Reaktionsgefäß 9b entsprechend.

35

30

Vorteilhafterweise können nun über das Röhrchen 17a bzw. 17b ohne weiteres Eingriffe in den Reaktionsablauf durchgeführt werden. Dies bedeutet beispielsweise, daß über das Röhrchen 17a, 17b Substrat oder Titrationsmittel oder Induktoren hinzugegeben werden können, daß Proben entnommen werden können oder Meßsonden, beispielsweise pH-Elektroden in die Flüssigkeit 30a bzw. 30b eingeführt werden können. Das Einführen entsprechender Sonden erfolgt dabei im Gegenstrom des ausströmenden sterilen Gases, so daß eine Kontamination des Gefäßes 9a bzw. 9b vermieden wird.

10

5

Die Abdeckung 15 realisiert daher eine Sterilabdekkung für den Bioreaktorblock 1 mit einer zentralen Gaseinspeisung 13 über ein Sterilfilter. Eine individuelle Verteilung des sterilen Gases über zu den einzelnen Milliliter-Rührreaktoren führende Gasverteilerstrukturen kann ebenfalls erfolgen.

15

Der konvektive Luftstrom durch das Röhrchen 17a, 17b, verhindert also im Betrieb den Eintrag von Fremdkeimen über die Umgebungsluft. Das offene Führungsrohr 17a, 17b ist hier beispielsweise aus Aluminium gefertigt und ist dadurch auch als Zugang mit sterilen Pipettenspitzen oder Anstechkanülen geeignet.

20

Werden Gasverteilerstrukturen in der Sterilabdeckung eingesetzt, so sind diese so zu gestalten, daß eine Kreuzkontamination durch Aerosolverschleppung oder Schaumbildung ausgeschlossen wird.

30

Der Bioreaktorblock 1 und die Abdeckung 15 sind so paßgenau gestaltet, daß sie unter einer sterilen Arbeitsbank, gegebenenfalls nach steriler Befüllung der Einzelreaktoren 9a, 9b mit Reaktionsmedium 30a, 30b zu einer Funktionseinheit zusammengefügt werden können.

Die Sterilisation des Bioreaktorblocks 1 und der Abdeckung 15 kann entweder gemeinsam in einem Autoklaven oder auch als Einzelkomponenten erfolgen. Zur Sterilisation des Bioreaktorblocks 1 im Autoklaven ist eine kostenaufwendige Kapselung der induktiven Antriebe 7a, 7b erforderlich, um ein direktes Autoklavieren zu ermöglichen.

Alternativ können auch wie hier vorgestellt, Bioreaktoreinsätze 9a, 9b verwendet werden (entsprechend zu Mikrotiterplatten) die getrennt vom Bioreaktorblock 1 sterilisierbar sind. Diese Bioreaktoreinsätze 9a, 9b können auch als sterile Einmal- bzw. Wegwerfartikel ausgestaltet sein, sofern deren Material und Produktionskosten gering sind.

Fig. 2 zeigt in den Teilbildern a bis d die Verwendung von Strömungsbrechern 20 und Rührorganen 21 zur Erzeugung eines pulsierenden Bernoulli-Effektes. Dabei ist jeweils nur die linke Hälfte eines Reaktionsgefäßes 9 dargestellt.

In den Figuren 20a und 20b ist die Oberkante des Strömungsbrechers 20 unterhalb der Rührebene des Rührorgans 21.

In Fig. 2a ist das Rührorgan mittig in dem Gefäß 9 gelagert, wobei die Lagerung magnetisch induktiv erfolgt.

In Fig. 2b ist das Magnetrührorgan 21 über eine Welle 23 gelagert, über die es auch angetrieben werden kann.

In den Figuren 2c und 2d erstreckt sich der Strömungsbrecher 20 seitlich über die Drehebene des Mag-

10

5

15

20

30

netrührorgans 21 hinaus.

In Fig. 2c ist das Rührorgan 21 so wie in Fig. 2b über eine Welle 23 gelagert und wird gegebenenfalls auch über diese oder magnetisch angetrieben. In Fig. 2d ist die Welle 23 innerhalb des Rührgefäßes 9 exzentrisch außerhalb der Mittelachse 24 des Gefäßes 9 gelagert, so daß der durch den Strömungsbrecher erzeugte pulsierende Bernoulli-Effekt hier noch weiter verstärkt wird.

In den einzelnen Fällen der Fign. 2a und 2d bildet sich damit eine unterschiedlich geformte Flüssigkeitsoberfläche 19 der Flüssigkeit 30 aus.

Bei sämtlichen Beispielen 2b bis 2d ist es möglich, sofern die Welle 23 nicht dem Antrieb des Magnet-rührorgans 21 dient, die Welle 23 und den Strömungsbrecher 20 einstückig zu fertigen und als Einheit in das Reaktionsgefäß 9 paßgenau einzuschieben.

Im folgenden werden nun Beispiele für erfindungsgemäße Rührorgane und erfindungsgemäße Reaktionsgefäße dargestellt. Denn bei Verwendung eines geeigneten Rührorgans besteht prinzipiell die Möglichkeit, auf eine Primärdispergierung der Gasphase durch einen Gasverteiler wie im Stand der Technik zu verzichten, da kleine Reaktionsgefäße im Vergleich zu Labor-Rührkesselreaktoren ein weitaus höheres Oberfläche/Volumen-Verhältnis aufweisen.

In der vorliegenden Erfindung wurden geeignete, vorteilhafterweise dampfsterilisierbare Magnetrührorgane entwickelt, die eine axiale Förderung von der Flüssigkeitsoberfläche zum Boden des Reaktionsgefäßes (Einsaugen der Gasphase) und eine effektive Disper-

10

5

15

20

30

gierung der Gasphase in möglichst kleine Gasblasen mit hoher Sauerstoffaustauschfläche (hohe lokale Energiedissipation) im Reaktionsmedium sowie eine Freisetzung der verbrauchten Gasblasen an der Flüssigkeitsoberfläche bewirken. Diese Magnetrührorgane besitzen einen Grundkörper, der vorteilhafterweise aus Teflon gefertigt sein kann und einen bis vier Magnetkerne (Ferrit oder seltene Erdmagnete wie z. B. SmCo(SamariumCobalt) oder NdFeB(NeodymEisenBor)) als Antriebsmittel enthält. Die im folgenden vorgestellten Magnetrührorgane haben vorteilhafterweise die folgenden Dimensionen und Formen:

- Kreiszylindrische Magnetrührorgane 3 bis 20 mm
 Durchmesser, Höhe von 2 bis 25 mm.
- Eiförmige Magnetrührorgane runder Zentralquerschnitt (Durchmesser 15 mm), Länge von 3 bis 20 mm.
- Quaderförmige Magnetrührorgane 3 x 8 mm bis 9 x 20 mm Grundfläche und Höhen von 4 bis 25 mm.

Diese Grundkörper sind vorteilhafterweise mit Bohrungen bzw. Kanälen versehen. Diese sind zwischen 3 und 20 mm lang und besitzen Durchmesser von 0,5 bis 3 mm. Hierbei sind unterschiedliche Anordnungen der Bohrungen realisierbar:

- Unter einem nach oben offenen Winkel α zur Vertikalen verlaufende Kanäle induzieren eine Ringströmung im Reaktionsgefäß.
- Unter einem nach oben offenen Winkel α zur Vertikalen verlaufende Kanäle treffen vor deren Austritt in die Flüssigkeit auf unter einem Winkel β zur Horizontalen verlaufende Luftkanäle.

10

5

15

20

30

 Vertikal verlaufende Kanäle mit einem Abstand von 0-3 mm begünstigen das Entgasen der Flüssigphase.

Diese Magnetrührorgane werden dabei auf Geschwindigkeiten bis zu 4000 U/min beschleunigt, beispielsweise durch ein geeignetes magnetisches Drehfeld oder durch eine Welle.

Das Einsaugen der Gasphase in die Reaktionsgefäße mit diesen Rührorganen setzt bei einer Mindestdrehzahl des Magnetrührorgans ein und wird durch Steigerung der Drehzahl stärker. Diese Mindestdrehzahl ist abhängig vom eingesetzten Magnetrührorgan, von der Position des Magnetrührorgans unterhalb der ruhenden Flüssigkeitsoberfläche und von den Stoffeigenschaften der Flüssigkeit.

Ein besonders effektives Einsaugen der Gasphase und Dispergierung in Gasblasen im Reaktionsmedium kann in Reaktionsgefäßen mit Strömungsbrechern erfolgen, die längs der Gefäßwand in der umlaufenden Flüssigkeitsströmung angeordnet sind. Diese vorteilhafterweise ein bis vier Strömungsbrecher können entweder unterhalb und/oder oberhalb oder über die gesamte Gefäßhöhe an der Gefäßwand angeordnet sein.

Das Magnetrührorgan wird bevorzugt selbstzentrierend in einem geeigneten, rotierenden Magnetfeld betrieben. Es kann jedoch wie in Fig. 2 gezeigt auch eine Befestigung des Magnetrührorgans auf einer im Reaktionsgefäß fixierten Welle erfolgen.

35

30

10

5

15

Die Fign. 3 bis 13 zeigen verschiedene Ausführungsformen erfindungsgemäßer Rührgefäße bzw. Rührorgane.

Fig. 3 zeigt in Fig. 3b ein Rührgefäß 9, bei dem an jeweils gegenüberliegenden Seiten insgesamt vier Strömungsbrecher 20a bis 20d angeordnet sind. Diese sind in 90° Abstand auf den Umfang des Rührgefäßes 9 verteilt und erstrecken sich bis in die Drehebene des in dem Gefäß 9 angeordneten Rührorgans 21. Das Rührorgan 21 dreht sich um seine Mittelachse 22 und ist zentrisch in dem Gefäß 9 angeordnet. Es weist ausgehend von seiner Unterseite 29 eine Bohrung 33 mit einer unteren Öffnung 43 auf, die sich in senkrechter Richtung, d. h. unter einem Winkel von 0° zur Drehachse 22 nach oben erstreckt. Von der Oberseite 28 des Drehorgans 21 erstrecken sich zwei Bohrungen 34a und 34b mit Öffnungen 44a und 44b an der Oberseite 28 des Drehorgans 21 nach unten. Sämtliche Bohrungen 33, 34a und 34b münden in horizontale Bohrungen 35a und 35b, die sich um 180° zueinander versetzt bis zur seitlichen Außenseite des Rührorgans 21 erstrekken und dort Öffnungen 45a und 45b bilden.

Wenn das Rührorgan 21 um seine Mittelachse 22 in einer Flüssigkeit 30 dreht, induziert der Kanal 33 eine Ringströmung im Reaktionsgefäß gemeinsam mit dem horizontal verlaufenden Kanal 35a. Die Kanäle 34a und 34b saugen ihrerseits Gas von oben ein und führen ebenfalls zu einer verbesserten Begasung der im Gefäß 9 befindlichen Flüssigkeit 30.

Fig. 3a zeigt einen Querschnitt längs der Linie A-A in Fig. 3b durch die gesamte Anordnung. Unter der Annahme, daß sich das Rührorgan 21 um die Achse 22 in Uhrzeigerrichtung dreht (diese Annahme wird auch bei den folgenden Figuren eingehalten) bilden sich nun

10

5

15

20

30

zwischen den Brechern 20a bis 20d und dem Rührorgan 21 jeweils schmale Spalte 37a bis 37d mit Bereichen 40 mit hoher Strömungsgeschwindigkeit und damit niedrigem Flüssigkeitsdruck aus. Zwischen den Strömungsberechern 20a bis 20d längs des Gefäßumfangs liegt ein großer Spalt 36 zwischen dem Rührorgan 21 und der Wand des Gefäßes 9 vor in dem dementsprechend Bereiche 41 mit geringer Strömungsgeschwindigkeit und damit großen hydrostatischem Druck auftreten. Insgesamt führt der Betrieb eines solchen Reaktionsgefäßes 9 zu einer örtlichen Schwankung der Strömungsgeschwindigkeit, d. h. zu einem örtlich pulsierenden Bernoulli-Effekt.

Durch die Bohrungen 33, 34a, 34b, 35a und 35b werden weiterhin zeitlich längs der Öffnungen 45a und 45b im Gefäß umlaufende, pulsierende Schwankungen der Strömungsgeschwindigkeit induziert, die ebenfalls zu einer Begasung des Reaktionsvolumens führen.

Der Antrieb des Rührorgans 21 erfolgt magnetisch induktiv über in das Rührorgan 21 eingelagerte Magnete 25a bis 25d.

Fig. 4 zeigt eine Anordnung mit einem zu Fig. 3 identischen Rührorgan 21, wobei hier jedoch das Reaktionsgefäß wie in Fig. 4a, dem Schnitt längs der Linie A-A in Fig. 4b, zu erkennen ist, einen rechteckigen Querschnitt aufweist. Strömungsbrecher sind nicht vorhanden. In diesem Falle ändert sich die Spaltbreite zwischen Rührorgan, das rotationssymmetrisch aufgebaut ist und der Wand des Rührgefäßes 9 räumlich periodisch, da die Spalten in den Ecken des Rührgefäßes 9 breiter sind als zwischen der Mitte der jeweiligen Wand des Rührgefäßes 9 und dem Rührorgan 21. Dies führt wiederum zu Bereichen 40 mit hoher Strö-

5

10

15

20

35

mungsgeschwindigkeit in der Mitte der Wände und Bereichen 41 mit geringer Strömungsgeschwindigkeit in den Ecken des Gefäßes 9. Die Wirkung dieses so räumlich pulsierenden Bernoulli-Effektes wird verstärkt durch die Verwendung eines Rührorgans 21 mit den vorbeschriebenen Bohrungen, die einen zeitlich pulsierenden Bernoulli-Effekt induzieren.

Fig. 5 zeigt wiederum dasselbe Rührorgan 21, das nunmehr jedoch in einem rotationssymmetrischen Rührgefäß 9 angeordnet ist. Allerdings erfolgt die Anordnung des Rührorgans 21 exzentrisch zur Mittelachse 24 des Gefäßes 9 auf einer Welle 23. Nunmehr ist durch die exzentrische Anordnung dafür gesorgt, daß der Spaltabstand 36 zwischen der Wand des Rührgefäßes 9 und dem Rührorgan 21 auf einer Seite des Gefäßes größer ist als auf der anderen Seite des Gefäßes. Dementsprechend bilden sich wieder Zonen 41 geringer Strömungsgeschwindigkeit 41 im Bereich des großen Spaltes und Zonen 40 hoher Strömungsgeschwindigkeit im Bereich des schmalen Spaltes aus. Auch hier wird der so mit einer Periode von 360° pulsierende Bernoulli-Effekt verstärkt durch die Bohrungen 33, 34a, 34b, 35a, 35b in dem Rührorgan 21.

Auch in Fig. 6 wird ein ähnliches Rührorgan 21 verwendet wie in der vorigen Figur. In diesem Falle liegt wiederum ein zylinderförmiges Reaktionsgefäß 9 und ein zylinderförmiges Rührorgan 21 vor. Der Abstand 36 zwischen der Wand des Rührgefäßes 9 und dem Rührorgan 21 ist nun auf dem vollen Umfang nahezu identisch mit zwei Ausnahmen. Denn die horizontalen Bohrungen 35a und 35b sind beim vorliegenden Rührorgan 21 im Bereich ihrer seitlichen Öffnungen 45a und 45b konisch aufgeweitet. In diesen Bereichen liegt jeweils eine Erweiterung 36a' bzw. 36b' des Spaltes

10

5

15

20

30

36 vor, so daß dort Zonen 41 niedriger Strömungsgeschwindigkeit sich ausbilden. Daher laufen diese Zonen 41 niedriger Strömungsgeschwindigkeit nunmehr mit dem Rührorgan 21 innerhalb des Gefäßes 9 um. Dies führt zu einem örtlich und zeitlich pulsierenden Strömungsfeld und damit wiederum zu dem gewünschten pulsierenden Bernoulli-Effekt.

Fig. 7 zeigt die einfachste Form eines Rührorganes 21 mit schräg nach außen verlaufenden Bohrungen 33a und 33b. Die Bohrungen 33a, 33b beginnen an der Unterseite 29 des Rührorgans 21 mit einer Öffnung 43a, 43b und enden an der Oberseite 28 des Rührers 21 in einer Öffnung 44a bzw. 44b. Fig. 7b zeigt dabei einen Schnitt längs der Linie A-A aus Fig. 7a.

Die Bohrungen weisen dabei einen länglichen Querschnitt auf, wie in Fig. 7a in der Aufsicht zu erkennen ist. Sie führen zu einer Förderung von Flüssigkeit von dem Boden 29 des Rührgefäßes 9 nach oben und tragen so zur Ausbildung der Flüssigkeitsoberfläche als Trombe bei.

Fig. 8 zeigt ebenfalls ein Rührorgan, wie es ähnlich bereits in Fig. 3 dargestellt wurde. Fig. 8b zeigt dabei einen Querschnitt, Fig. 8a einen Querschnitt längs der Schnittlinie A-A in Fig. 8b und Fig. 8c einen Querschnitt längs der Schnittlinie B-B in Fig. 8b. Im Unterschied zu Fig. 3 liegen nunmehr jedoch nicht zwei vertikal von der Oberfläche des Rührorgans sich in dessen Innere erstreckende Bohrung 34a und 34b sondern insgesamt vier um einen Winkel von 90° zueinander versetzte Bohrungen 34a bis 34d vor.

In Fig. 9 ist ein weiteres erfindungsgemäßes Rührorgan dargestellt, wobei die Figuren 9a und 9c eine

10

5

15

20

30

Aufsicht bzw. eine Untersicht des in Fig. 9b im Querschnitt dargestellten Rührorganes darstellen. Auch hier sind in dem Rührer 21 wiederum vier von der Oberseite 28 des Rührorgans 21 ausgehende Bohrungen 34a bis 34d um die Mittelachse 22 des Rührorganes 21 um 90° versetzt angeordnet, wobei sich diese Bohrung 34a bis 34d nunmehr unter einem Winkel β zur Mittelachse bzw. Drehachse 22 des Rührorgans 21 nach unten außen erstrecken. In gleicher, nahezu symmetrischer Weise erstrecken sich Bohrungen 33a bis 33d von der Unterseite 29 des Rührorganes 21 unter einem Winkel α gegen die Mittelachse bzw. Drehachse 22 des Rührorgans 21 nach oben außen in den Körper des Rührorgans 21 hinein. Beide treffen auf insgesamt vier ebenfalls um 90° gegeneinander versetzt angeordnete horizontale Kanäle 35a bis 35d, die mit Öffnung 45a bis 45d in der Seitenfläche 26 des Rührorganes enden.

Die Seitenfläche 26 dieses Rührorganes erstreckt sich von seiner Oberfläche 28 senkrecht nach unten bis zu der Ebene der horizontalen Bohrungen 35a bis 35d und läuft dann konisch parallel zu den Bohrungen 33a bis 33d nach unten zusammen.

Die Bohrungen 33a bis 33d fördern wiederum Flüssigkeit vom Boden eines Gefäßes nach oben während die
Bohrungen 34a bis 34d Gas- und Flüssigkeit bzw. eine
Mischung hiervon von der Oberfläche 28 des Rührorganes 21 einziehen und an der Grenzfläche von Gas- und
Flüssigkeit Turbulenzen erzeugen. Auch hierdurch wird
ein pulsierender Bernoulli-Effekt erzeugt bzw. gegebenenfalls verstärkt.

Eine weitere Möglichkeit einen pulsierenden Bernoulli-Effekt zu erzeugen besteht darin, ein nicht rotationssymmetrisches Rührorgan einzusetzen.

10

5

15

20

30

Bei dem in Fig. 10 dargestellten Rührorgan 21 liegen eine geradlinige Vorderseite 26 und eine zur Vorderseite 26 parallele, geradlinige Rückseite 27 vor, während die sich längs der Wand des Rührgefäßes 9 bewegenden die Vorderseite 26 und die Rückseiten 27 verbindenden Seitenflächen 27 konvex gekrümmt sind.

Ein derartiges Rührorgan 21 kann beispielsweise in einem nicht rotationssymmetrischen Rührgefäß oder in einem Rührgefäß mit Strömungsbrechern eingesetzt werden.

In Fig. 11 ist ein Rührorgan wie in Fig. 10 dargestellt, das zusätzlich unter einem Winkel α gegen die Drehachse 22 verlaufende Bohrungen 33a bzw. 33b aufweist. Diese fördern Flüssigkeit von den Öffnungen 43a, 43b an der Unterseite 29 des Rührorganes 21 zu den Öffnungen 43a' und 43b' an der Oberseite 28 des Rührorgans 21.

Fig. 12 zeigt ein Rührorgan wie in Fig. 11, wobei nunmehr die Bohrungen 33a und 33b eine wie in Fig. 12a in der Aufsicht erkenntliche im Querschnitt längliche Form aufweisen.

In Fig. 13 sind zusätzlich zu den Bohrungen 33a und 33b wie in Fig. 11 weitere Bohrungen 34a, 34b eingebracht, die sich versetzt zur Mittelachse 22 des Rührorgans 21 parallel zur Mittelachse 22 von der Unterseite 29 zur Oberseite 28 erstrecken und jeweils in Öffnungen 44a, 44b an der Unterseite 29 bzw. in Öffnungen 44a', 44b' an der Oberseite 28 enden. Diese Kanäle 34a, 34b dienen der Entgasung der Flüssigkeit, d. h. dem Entfernen der verbrauchten in die Flüssigkeit eindispergierten Gasblasen.

5

10

15

20

30

Fig. 14 zeigt in Teilbild a eine erfindungsgemäße Reaktorvorrichtung, bei der in Öffnungen 8a bis 8e in einem Reaktorblock 2 Behälter 9a bis 9e eingelassen sind. Diese Behälter 9a bis 9e weisen wiederum an ihrem oberen Umfangsrand ihrer Öffnung einen Flansch auf, mit dem sie auf einer Distanzscheibe 11a bis 11f aufliegen. Die gesamte Anordnung der Behälter wird überdeckt von einem deckelartigen Verschluß 15, in den wie bereits oben beschrieben, Röhrchen 17a bis 17e eingelassen sind, um ein Ausströmen von Gas zu ermöglichen. Der Deckel 15 weist weiterhin Trennwände 14a bis 14e auf, um die einzelnen Behälter voneinander gasdicht zu isolieren.

Fig. 14b zeigt nun einen Querschnitt längs der Linie A-A in Fig. 14a durch den Verschluß 15, während Fig. 14a ein Querschnitt durch die Gesamtanordnung längs der Linie B-B in Fig. 14b darstellt.

Ausgehend von einer Gaszufuhrbohrung 50 verästelt sich diese Bohrung über einzelne weitere Bohrungen 51, 52, 53, 54 bis 55 immer weiter und mündet letztlich in jeweils einen Gasauslaß über den einzelnen Behältern 9a bis 9e. In Fig. 14b ist auch zu erkennen, daß die Behälter 9 in einem zweidimensionalen Array angeordnet sind. Die Länge der Bohrungen 50 bis 55 von dem Gaseinlaß 50 bis zum Auslaß in den Luftraum über den Gefäßen 9 ist dabei jeweils konstant. Auch die Zahl der Knicke, die die einzelnen Gasführungen vom Einlaß bis zum Auslaß über den Behältern durchlaufen, ist konstant. Die Höhe der Kanäle kann dabei jedoch variabel sein. Entscheidend ist nun, daß entweder in diesen Bohrungen 50 bis 55 kein nennenswerter Druckabfall auftritt oder der Druckabfall durch die gleiche Länge und die gleiche Anzahl an

15

10

5

20

30

Knicke für jedes einzelne Behältnis 9 identisch ist.

30

Fig. 15 zeigt einen weiteren Verschluß 15 mit einer entsprechenden Gasverteilerstruktur bestehend aus Kanälen 50 bis 55, 51' bis 55'. Auch hier sind die Wege und die Anzahl der Knicke vom Einlaß 50 bis zu dem jeweiligen Behälter 9 für jeden Behälter identisch.

Im folgenden werden nun einzelne Messungen mit erfindungsgemäßen Reaktionsgefäßen bzw. mit einem erfindungsgemäßen Bioreaktorblock dargestellt.

Wenn der Bioreaktorblock 1 entsprechend geometrisch gestaltet wird (Abstand und Anordnung der einzelnen Milliliter-Rührreaktoren, z.B. jeweils 8 Milliliter-Rührreaktoren parallel - da Pipettier-Roboter meist mit 8 parallelen Dosierstrecken ausgerüstet sind -, etc.) kann eine einfache Automatisierung erfolgen. Mit Hilfe eines Pipettier-Roboters als Aktor können

- Proben individuell gezogen und prinzipiell alle manuellen off-line Analysenverfahren automatisiert werden (Bestimmung von Zell-, Substrat-, Produkt- und Nebenprodukt-Konzentrationen),
- Korrekturmittel, Substrate und/oder Induktoren individuell dosiert werden,
- die einzelnen Milliliter-Rührreaktoren mit Sensoren (bspw. entsprechend dimensionierte pH-Elektroden) intermittierend beprobt werden.

Mit Hilfe geeigneter Prozeßkontrollsysteme ist damit eine automatisierte Prozeßführung im Parallelansatz möglich: pH-Regelung, individuelle Substratdosierung, automatisierte off-line Probenahme und Analyse, und

10

5

15

20

30

dergleichen.

Prinzipiell sind zur automatisierten Durchführung von parallelen Zellkultivierungen folgende Arbeitsschritte notwendig. Die Zeitplanung sind dabei so ausgelegt, daß die Arbeitsschritte im Verlauf des gesamten Prozesses im gleichen Zeittakt ausgeführt werden können, d.h. es wird die Einhaltung einer konstanten Zeitspanne At zwischen den Arbeitsschritten ermöglicht. Ein solcher Zeitplan ist in Fig. 17 dargestellt.

- Dispensing D: Die parallel betriebenen Milliliter-Rührreaktoren werden von einem Pipettier-Roboter mit sterilem, destillierten Wasser zur Verdunstungskontrolle und/oder frischem Medium zur Realisierung von Zulauf- oder kontinuierlichen Verfahren und/oder Titrationsmittel zur pH-Kontrolle und/oder Induktionsmittel versorgt.

 Die jeweilig notwendigen Volumina einer jeden Lösung werden durch im Voraus mit allen notwendigen Parametern initialisierte Algorithmen berechnet.
- Sampling: Um at-line Analytik automatisiert durchführen zu können, werden den Milliliter-Rührreaktoren regelmäßig vorgegebene Probenvolumina entnommen und in Mikrotiterplatten abgegeben.
- Mikrotiterplattenbewegungen MTP Trans: Nach Entnahme einer vorgegebenen Anzahl Proben in eine Mikrotiterplatte, beispielsweise einer Probe pro Milliliter-Rührreaktor, wird die Mikrotiterplatte vom Labor-Roboter zu einem Mikrotiterplatten-Meßgerät transportiert.

. 15

10

5

20

30

10

15

20

30

35

At-line Analytik: Die in eine Mikrotiterplatte abgegebenen Bioreaktorproben werden in einem Meßgerät (z.B. Mikrotiterplatten-Photometer/Fluorimeter) vermessen. Beispielsweise können so die Biotrockenmassekonzentration (c_x) und der pH-Wert bestimmt werden. Auch andere bioverfahrenstechnisch relevante Parameter (z.B. Substratkonzentration, Produktkonzentration) könnten auf diese Weise bestimmt werden. Die erhaltenen Meßwerte werden Regelalgorithmen zur Verfügung gestellt und nehmen so Einfluß auf die folgenden vom Laborroboter auszuführenden Dispensing-Schritte. Durch Etablierung eines Kreislaufs mindestens zweier Mikrotiterplatten kann die Analytik parallel zu den vom Pipettier-Roboter durchgeführten Dispensing- und Sampling-Schritten erfolgen. Eine Mikrotiterplatte wird demnach mit Proben gefüllt während die Proben in der zweiten Mikrotiterplatte im Meßgerät analysiert werden. Nach abgeschlossener Analyse der Mikrotiterplatte wird diese in einem Mikrotiterplatten-Waschgerät gesäubert und dem Kreislauf erneut zugeführt.

Reinigung der Mikrotiterplatte ("Plate wash"):
Nach Beendigung des Versuchs wird die jeweilige
Mikrotiterplatte gereinigt und kann so erneut
verwendet werden.

Fig. 16 zeigt eine Anordnung mit Mikrotiterplatten 60a, 60b, 60c in einem Pipettier-Roboter, wobei in dieser Skizze der Kreislauf einer Proben-Mikrotiter-platte 60a bis 60c verfolgt werden kann. Die in Fig. 16 dargestellte automatische Anlage 56 weist eine

Grundplatte 57 auf, auf der eine Anordnung 64 von Behältern (Reaktorblock) oder Probenahmegefäßen, ein Tisch 58 zur Aufnahme von Mikrotiterplatten 60a, ein Fotometer 62 und eine Waschstation 63 aufweist. Weiterhin ist oberhalb der Grundplatte 57 ein Tragebalken 66 angeordnet, auf dem mittels Querbalken 59a und 59b die Pipettenspitzen 65 und ein Tragarm 61 für Mikrotiterplatten verschieblich aufgehängt sind.

10

5

In einem ersten Schritt wird nun eine Mikrotiterplatte 60a mit Proben aus dem Reaktorblock 64 über die Pipettenspitzen 65 befüllt. Die Mikrotiterplatte 60a wird dann mit dem Tragarm 61 zu dem Fotometer 62 transportiert, wo die einzelnen Näpfchen der Mikrotiterplatten 60b fotometrisch vermessen werden. Die so vermessene Mikrotiterplatte 60b wird mit dem Tragarm zu der Waschvorrichtung 63 transportiert, wo die Mikrotiterplatte (hier nun Mikrotiterplatte 60c) gewaschen und gereinigt wird. Damit steht die Mikrotiterplatte 60c wiederum den Proben und Meßzyklus zur Verfügung und wird von dem Tragarm 61 zurück auf den Tisch 58 befördert.

15

20

Je nach Prozeßanforderung können dem Prozeßkreislauf zu bestimmten Zeitpunkten mit Proben gefüllte Mikrotiterplatten entzogen und gekühlt zwischengelagert werden. Eine neue Mikrotiterplatte kann dem Prozeß automatisch zugeführt werden, um den Analytikkreislauf aufrecht erhalten zu können.

30

Die Bestimmung von im wäßrigen Reaktionsmedium gelösten Stoffen wie die Wasserstoffionenaktivität (pH) muß in jedem Reaktionsgefäß individuell erfolgen. Eine Verwendung von 48 oder 96 einzelnen pH-Sensoren, beispielsweise sterilisierbare pH-Einstabmeßketten (Glaselektroden), ist nicht ökonomisch. Auch die Ver-

wendung von kostengünstigen pH-Feldeffekttransistoren ("Wegwerfsensoren") ist aufgrund der zusätzlich erforderlichen klassischen Referenzelektroden und der fehlenden thermischen Stabilität (Sterilisierbarkeit) praktisch nicht möglich.

Die Anzahl der erforderlichen pH-Sensoren für Parallelreaktoren kann prinzipiell reduziert werden, wenn
ein Sensor für mehrere Reaktionsgefäße benutzt werden
kann. Eine Möglichkeit der technischen Realisierung
ist die Integration kommerziell erhältlicher Miniatur-pH-Elektroden in Anstechkanülen, die mit Hilfe
eines Pipettierroboters intermittierend in die einzelnen Milliliter-Rührreaktoren eingetaucht werden.
Hierzu geeignet sind pH-Einstabmeßketten mit einem
Außendurchmesser von 1 mm und einer Ansprechzeit von
~ 6 s.

Eine weitere Möglichkeit ist die sterile Entnahme von Proben aus den einzelnen Milliliter-Rührreaktoren mit Kanülen und die parallele Messung des pH-Wertes in den Proben mit pH-sensitiven Mikrotiterplatten. Am Boden der Kavitäten dieser kommerziell erhältlichen Mikrotiterplatten ist ein Sensorspot integriert, in welchem zwei Fluorophore immobilisiert sind. Diese Fluorophore können in einem entsprechend ausgestatteten Photometer-Fluorimeter ausgelesen werden. Die Fluoreszenzeigenschaften des Indikator-Fluorophors variieren mit dem pH-Wert der Lösung während der Referenz-Fluorophor ein vom pH-Wert unabhängiges Fluoreszenzsignal produziert. Das Verhältnis aus Indikator- zu Referenzsignal kann zum pH-Wert der Lösung über eine Sigmoid-Funktion korreliert werden. Die Verwendung eines Referenzfarbstoffs erhöht die Meßgenauigkeit und die Lebensdauer der Sensoren, da eine Abnahme der Signalintensität durch "Ausbluten"

10

5

15

20

30

des Sensors (Diffusion der Fluorophore in die Meßlösungen) einen geringeren Einfluß auf das Meßsignal zur Folge hat.

5

Die erzeugten pH-Meßdaten werden vom Prozeßkontrollsystem gelesen und Regelalgorithmen zur Verfügung gestellt. Diese berechnen das notwendige Volumen Titrationsmittel pro Reaktorgefäß um einen gewünschten pH-Sollwert in dem Reaktorgefäß aufrecht zu erhalten. Das Prozeßkontrollsystem berechnet die Dispensing-Schritte unter Berücksichtigung der notwendigen Zudosierung zur pH-Kontrolle.

10

15

Wesentlich an der vorliegenden Erfindung ist der damit mögliche hohe Sauerstoff- und Energieeintrag in eine Kultursuspension. Im folgenden werden daher Messungen der Sauerstoffübergangskoeffizienten $k_{\rm L}a$ verschiedener erfindungsgemäßen Magnetrührsysteme beschrieben.

20

Es wurden Rührorgane der Typen I bis V entsprechend Fig. 7 (Typ I), Fig. 10 (Typ II), Fig. 12 (Typ III), Fig. 11 (Typ IV) und Fig. 9 (Typ V) mit der dynamischen Sulfitmethode (Havelka et al. 1998) unter vergleichbaren Bedingungen bzgl. Volumen der Flüssigphase, Lagerung des Rührorgans und Anordnung der Strömungsbrecher verglichen (siehe Fig. 18). Diese Versuche wurden in einem Milliliter-Rührreaktor mit 15,5 mm Durchmesser durchgeführt. Mit den Rührern der Typen I bis V wurden bei einer Drehzahl von 2600 rpm $k_{\rm L}a$ -Werte in 0,5 M Na_2SO_4 -Lösung im Bereich von 0,156-0,244 s⁻¹ erreicht.

30

Zur Bestimmung der k_L a-Werte wird als Flüssigphase 0,5 M Na_2SO_4 -Lösung verwendet, weiche nicht-koales-zierende Bedingungen garantiert. Zusätzlich wird eine

Konzentration von 10^{-3} M CoSO4 als Katalysator für die chemische Oxidation von Sulfit zu Sulfat vorgelegt. Die Durchführung der dynamischen Sulfitmethode beginnt mit dem Belüften der Flüssigphase mit Luft, bis diese Sättigung erreicht. Nach Zugabe einer ausreichend großen Stoffmenge Sulfit um den gesamten, in der Flüssigphase gelösten Sauerstoff zu verbrauchen, sinkt die Gelöstsauerstoffkonzentration der Flüssigphase schlagartig auf Null. Nach stöchiometrischem Sulfitumsatz steigt die Gelöstsauerstoffkonzentration in der Flüssigphase wieder an. Aus dieser sogenannten Aufsättigungskurve wird der $k_{\rm L}$ a-Wert unter Annahme ideal durchmischter Bedingungen in Flüssig- und Gasphase bestimmt. Dabei wird die Ansprechzeit der verwendeten Sauerstoffsonde im Modell berücksichtigt.

Herkömmliche technische Rührkesselreaktoren werden bei Sauerstoffübergangskoeffizienten von $k_{\rm L}a < 0.25~{\rm s}^{-1}$ betrieben. Damit sind in erfindungsgemäßen Milliliter-Rührreaktoren bzw. mit den erfindungsgemäßen Rührorganen dieselben oder ähnliche Sauerstoffeintragsraten erreichbar (zum Vergleich: in Schüttelkolben oder Mikrotiterplatten können unter optimalen Bedingungen Sauerstoffübergangskoeffizienten von maximal $k_{\rm L}a = 0.07~{\rm s}^{-1}$ erreicht werden).

Sauerstoffübergangskoeffizienten der Rührsysteme des Typs III und V wurden darüber hinaus mit 8 ml 0,5 M $\rm Na_2SO_4$ -Lösung ebenfalls in einem Milliliter-Rühr-reaktor mit 20 mm Durchmesser durchgeführt (Fig. 19). Dabei wurden Rührsysteme nach Fig. 2b und 2c verwendet. Maximal erreichte $\rm k_La$ -Werte für eine Drehzahl von 2800 rpm liegen hier sogar bei bis zu 0,355 s⁻¹.

Zur Verifizierung der Sauerstoffeintragseigenschaften der Rührsysteme wurden parallele Kultivierungen mit Escherichia coli (wt) als Beispielsystem durchgeführt.

5

100 ml eines sterilen, definierten Mediums wurden in einem mit Alucap verschlossenen 500 ml Schüttelkolben mit 0,25% Inokkulum aus dem Feedstock angeimpft und 14 h bei 37 °C und 200 rpm in einem Schüttelinkubator mit einer Exzentrizität von 5 cm inkubiert. Am folgenden Tag wurden 4-6 ml dieser Vorkultur in Milliliter-Rührreaktoren überführt. In den Milliliter-Rührreaktoren wurden die Zellen für 3,5 h bei 2000 rpm eines erfindungsgemäßen Rührorgans und weitere 2,5 h bei 2200 rpm bei 37 °C inkubiert. Der pH-Wert wurde auf 6,8 geregelt.

15

10

Der Schüttelkolben (SK) wurde mit den ca. 40 ml Restvolumen der Vorkultur weiter im Schüttelinkubator bei gleichen Bedingungen inkubiert.

20

Die Meßergebnisse in Fig. 20 bis 22 belegen, daß in den Milliliter-Rührreaktoren ein weiteres Wachstum der Bakterien möglich ist, wenn genügend Sauerstoff eingetragen wird. Dabei zeigen die jeweiligen Kurven einen herkömmlichen Schüttelkolben (SK), einen erfindungsgemäßen Rührer eines bestimmten Typs ohne Strömungsbrecher (z. B. "Typ II ohne SB") bzw. mit Strömungsbrecher (z. B. Typ II"). Aus den Fign. 20 bis 22 ist zu erkennen, daß bereits eine Drehzahl von 2200 rpm in den Ansätzen mit den Rührsystemen des Typs II, III und V eine bis zu 2,5-fach höhere Biotrockenmassekonzentration, als im Schüttelkolbenansatz (SK) ermöglicht.

30

Fig. 23 gibt in Tabellenform nun jeweils an, in welcher Konfiguration die einzelnen Rührsysteme eingesetzt wurden. Dabei wird jeweils für die Messungen, die in einer bestimmten Figur dargestellt sind, der Gefäßdurchmesser und die Anzahl der Strömungsbrecher angegeben. Weiterhin wird die Konfiguration aus Strömungsbrecher und Rührorgan unter Bezug auf die Darstellung in den Fign. 2a bis 2d angegeben.

Zusammenfassend läßt sich damit feststellen, daß durch die vorliegende Erfindung parallele Milliliter-Rührreaktoren ermöglicht wurden, in denen ein vergleichbarer Wachstumsverlauf von kontrollierten Prozeßverläufen ermöglicht wird wie in Bioreaktoren des Labormaßstabs.

Oberflächenbegaste, gegebenenfalls mit speziellen Magnetrührorganen ausgestattete Milliliter-Rührreaktoren erlauben eine ebenso effiziente Sauerstoffversorgung von Organismen in Flüssigkultur wie Rührkesselreaktoren größeren Maßstabs mit Volumenbegasung.

Der Einsatz von bis zu 96 und mehr Milliliter-Rührreaktoren in einem Bioreaktorblock, der mit Hilfe von
Pipettier-Robotern automatisierbar ist, ermöglicht
erstmalig einen effizienten, individuell kontrollierten Parallelbetrieb. Die Verwendung eines LaborRoboters zur Automatisierung der Parallelreaktionen
ermöglicht damit einen Quantensprung in der Gewinnung
relevanter Prozeßdaten.

Durch Implementierung geeigneter Screening- und Optimierroutinen können Screening-Verfahren und Prozeßoptimierungen (Medienzusammensetzung, Induktionsverfahren, Dosierprofile) systematisch und mit hoher Zeiteffizienz im Parallelansatz automatisiert werden. Ei-

10

5

15

20

30

ne vollständige Digitalisierung der parallelen Proze-Bentwicklung ermöglicht weiter eine neuartige Datentransparenz und -verfügbarkeit.

5

Mit Hilfe dieses neuen Werkzeuges zur HochdurchsatzBioprozessentwicklung können neue Bioprozesse zeiteffektiv unter technischen Reaktionsbedingungen entwikkelt werden, da beispielsweise statt einem Experiment
im kontrollierten 0,5 l Rührkesselreaktor mit demselben Reaktionsvolumen zeitgleich 100 Experimente in
100 parallelen 5 ml-Rührkesselreaktoren automatisiert
durchführbar sind – also der 100-fache Informationsgewinn pro Zeiteinheit möglich wird. Bei Einsatz geeigneter Versuchsplanungsalgorithmen wird die Effektivität der Bioprozeßentwicklung weiter gesteigert.

10

TU München (I)

Patentansprüche

5

15

20

 Vorrichtung zur Kultivierung von Zellen in Flüssigkeitssäulen im Milliliter-Maßstab mit einem Behälter zur Aufnahme einer flüssigen Kultursuspension der Zellen,

einem Rührorgan zum Rühren der Kultursuspension in dem Behälter um eine Rührachse,

d a d u r c h g e k e n n z e i c h n e t , daß der Behälter und/oder das Rührorgan derart ausgebildet sind, daß die Strömungsgeschwindigkeit sich längs einer Stromlinie oder Bahnlinie um die Rührachse örtlich und/oder zeitlich ändert.

- Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß der Behälter und/oder das Rührorgan derart ausgebildet sind, daß durch das Rührorgan eine von der Suspensionsoberfläche zum Boden des Behälters gerichtete Förderung der Kultursuspension erfolgt.
 - 3. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß die Förderung der Kul-

tursuspension eine bezüglich der Rührachse axiale Komponente aufweist.

4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die die Kultursuspension umschließenden Innenwände des Behältes unterhalb, in und/oder oberhalb der Drehebene des Rührorgans eine nicht rotationssymetrische Form aufweist.

- 5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die die Kultursuspension umschließenden Innenwände des Behälters unterhalb, in und/oder oberhalb der Drehebene des Rührorgans ein Vieleck, vorzugsweise mit
 vier, fünf, sechs oder mehr Ecken bildet.
- 15 6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Drehachse des Rührorgans außermittig bzw. exzentrisch bezüglich der die Kultursuspension umschließenden Innenwände des Behälters in dem Behälter angeordnet ist.
 - 7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß an der Innenwand
 des Behälters längs des Umlaufs des Rührorgans

mindestens ein Strömungsbrecher angeordnet ist.

8. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß ein, zwei, drei, vier oder mehr Strömungsbrecher längs der Innenwand des Behälters beabstandet, vorteilhafterweise gleichmäßig beabstandet, zueinander angeordnet sind.

- Vorrichtung nach einem der beiden vorhergehenden
 Ansprüche, dadurch gekennzeichnet, daß der bzw.
 die Strömungsbrecher unterhalb, in und/oder oberhalb der Drehebene des Rührorgans angeordnet ist bzw. sind.
- 10. Vorrichtung nach einem der drei vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Rührorgan und der Strömungsbrecher mit einem minimaler Spaltabstand zueinander von 0,05 mm bis 20 mm, vorzugsweise 0,1 mm bis 3 mm angeordnet sind.
- 11. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Behälter ein
 Kolben, ein Reagenzglas oder eine Kavität einer
 Mikrotiterplatte oder einer anderen mit Kavitäten
 versehenen Platte ist.

- 12. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Rührorgan
 magnetisch positioniert und/oder antreibbar ist.
- 13. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Rührorgan
 gelagert oder ungelagert ist.
 - 14. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Rührorgan über eine Welle gelagert und gegebenenfalls über die Welle antreibbar ist.

- 15. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß die Welle und der bzw. die Strömungsbrecher einstückig ausgebildet sind.
- 16. Vorrichtung nach einem der Ansprüche 6 bis 9, 13

 und 14, dadurch gekennzeichnet, daß die Welle und der bzw. die Strömungsbrecher in den Behälter einsteckbar ist bzw. sind.
- 17. Rührorgan mit einem Grundkörper, der im Betrieb
 eine Oberseite und eine Unterseite aufweist

 d a d u r c h g e k e n n z e i c h n e t , daß
 in dem Grundkörper mindestens ein erster Durchgangskanal angeordnet ist, dessen erste Öffnung
 sich an der Unterseite des Grundkörpers und des-

sen zweite Öffnung sich an der Oberseite oder seitlich am Grundkörper befindet.

- 18. Rührorgan nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß in dem Grundkörper als erster Durchgangskanal mindestens eine erste Bohrung angeordnet ist, deren Durchgangsachse mit der Drehachse des Rührorgans einen zur Oberseite des Rührorgans sich öffnenden Winkel α mit 0° ≤ α < 90° einschließt.</p>
- 10 19. Rührorgan nach einem der beiden vorhergehenden
 Ansprüche, dadurch gekennzeichnet, daß in dem
 Grundkörper mindestens ein weiterer zweiter
 Durchgangskanal angeordnet ist, dessen erste Öffnung sich an der Oberseite des Grundkörpers und
 dessen zweite Öffnung sich an der Unterseite oder
 seitlich am Grundkörper befindet.
- 20. Rührorgan nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß in dem Grundkörper als zweiter Durchgangskanal mindestens eine zweite
 20 Bohrung angeordnet ist, deren Durchgangsachse mit der Drehachse des Rührorgans einen zur Unterseite des Rührorgans sich öffnenden Winkel α mit 0° ≤ α
 < 90° einschließt.

21. Rührorgan nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der erste und der zweite Durchgangskanal aufeinandertreffen und einen gemeinsamen Durchgangskanal bildend seitlich aus dem Rührorgan austreten.

5

10

- 22. Rührorgan nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, daß zwei oder mehrere erste und/oder zweite Durchgangskanäle längs des Umfangs des Rührorgans gleichmäßig beabstandet zueinander angeordnet sind.
- 23. Rührorgan nach einem der Ansprüche 17 bis 22, dadurch gekennzeichnet, daß der Grundkörper im Querschnitt senkrecht zur Drehachse kreiszylindrisch, elliptisch, vieleckig, viereckig oder rechteckig ist.
- 24. Rührorgan nach einem der Ansprüche 17 bis 23, dadurch gekennzeichnet, daß der Grundkörper oval, eiförmig oder quaderförmig ist.
- 25. Vorrichtung nach einem der Ansprüche 1 bis 16,
 20 dadurch gekennzeichnet, daß das Rührorgan nach einem der Ansprüche 16 bis 23 ausgebildet ist.
 - 26. Anordnung zur parallelen, automatisierten Kultivierung von Zellen in Flüssigkeitssäulen im Mil-

lilitermaßstab

gekennzeichnet durch

mindestens eine Vorrichtung oder Rührorgan nach einem der vorhergehenden Ansprüche.

- 5 27. Anordnung nach dem vorhergehenden Anspruch, gekennzeichnet durch einen Block, in dem eine der Anzahl der Behälter entsprechende Anzahl Kavitäten angeordnet sind, welche selbst Behälter darstellen oder zur Aufnahme von Behältern ausgebildet sind.
 - 28. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß die Kavitäten als Bohrungen mit einem Durchmesser entsprechend dem Außendurchmesser der Behälter ausgebildet sind.
- 15 29. Anordnung nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in dem Block Mittel zum Temperieren des Blocks, Mittel zum Antreiben der Magnetrührorgane und/oder eine Sterilgaszufuhr zu den Behältern angeordnet sind.
- 20 30. Anordnung nach einem der Ansprüche 25 bis 28, dadurch gekennzeichnet, daß die Behälter, die Anordnung und/oder der Block auf ihrer bzw. seiner Oberseite mittels einer Abdeckung steril ver-

schlossen ist.

- 31. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß die Abdeckung eine Öffnung zur Freisetzung von Gasen und als Zugang zum Innenraum des Behälters oder Blocks aufweist, die sich geradlinig und länglich von dem Innenraum zur Außenseite der Abdeckung erstreckt und diese für Gaskonvektion offen miteinander verbindet.
- 32. Anordnung nach dem vorhergehenden Anspruch, da
 durch gekennzeichnet, daß im Innenraum ein höherer Gasdruck als auf der Außenseite der Abdeckung
 vorliegt.
- 33. Anordnung nach einem der beiden vorhergehenden
 Ansprüche, dadurch gekennzeichnet, daß die Öffnung die Form einer Bohrung oder eines Röhrchens
 aufweist.
- 34. Anordnung nach einem der drei vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Öffnung eine lichte Weite aufweist, die das Einführen eines Beprobungsorgans oder eines Sensors, einer Pipettenspitze, einer Anstechkanüle, einer pHElektrode oder eines anderen Gegenstandes bzw.

 länglichen Gegenstandes in den Innenraum des Be-

hälters oder Blocks ermöglicht.

5

10

15

- 35. Anordnung nach einem der Ansprüche 31 bis 34, dadurch gekennzeichnet, daß die Öffnung ein Röhrchen aus Metall oder Metalllegierungen, vorteilhafterweise aus Aluminium und/oder Silber ist.
- 36. Anordnung nach einem der Ansprüche 31 bis 35, gekennzeichnet durch Behältertrennelemente, die in auf die Behälter bzw. den Block aufgesetztem Zustand einzelne Behälter voneinander gasdicht und/oder flüssigkeitsdicht abtrennt.
- 37. Anordnung nach einem der Ansprüche 31 bis 36, dadurch gekennzeichnet, daß die Abdeckung eine sterile Gaszufuhr zu dem oder zu mehreren Behältern, für alle Behälter gemeinsam oder für mehrere oder jeden der Behälter einzeln aufweist.
- 38. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß die sterile Gaszufuhr
 in die Abdeckung integrierte oder der Abdeckung
 benachbart angeordnete Gasverteilerstrukturen
 aufweist.
- 39. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß in der Abdeckung Kanäle
 als Gasverteilerstrukturen angeordnet sind.

40. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß die Kanäle zwischen dem Gaseinlaß in die Gasverteilerstruktur und den Gasauslässen in die jeweiligen Behälter sämtlich eine gleiche Länge und/oder dieselbe Anzahl Knikke aufweisen.

5

10

15

- 41. Anordnung nach einem der Ansprüche 36 bis 40, dadurch gekennzeichnet, daß die Gaszufuhr mit einer Gaseinspeisung, gegebenenfalls über Sterilfilter und/oder Luftbefeuchter verbunden ist.
- 42. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Abdeckung
 mindestens eine flächige Schicht bzw. ebene Platte aufweist, die die Öffnung des mindestens einen
 Behälters abdeckt.
- 43. Anordnung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß sie mindestens zwei parallel zueinander angeordnete flächige Schichten aufweist, zwischen denen die Gasverteilerstrukturen angeordnet sind.
- 44. Verfahren zur Kultivierung von Zellen in Flüssigkeitssäulen im Milliliter-Maßstab, wobei mindestens eine Zellsuspension in einem Behälter der-

art bewegt wird, daß die Zellsuspension eine Ringströmung ausbildet

11

dadurch gekennzeichnet, daß die Strömungsgeschwindigkeit der Ringströmung sich längs einer Strömungslinie örtlich und/oder zeitlich ändert.

- 45. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß der Behälter und/oder
 das Rührorgan derart ausgebildet sind, eine von
 der Suspensionsoberfläche zum Boden des Behälters
 gerichtete Förderung der Kultursuspension erfolgt.
- 46. Verfahren nach einem der beiden vorhergehenden
 Ansprüche, dadurch gekennzeichnet, daß die mindestens eine Zellsuspension in einer Vorrichtung
 oder Anordnung nach einem der vorhergehenden Ansprüche unter Rühren mit einem Rührorgan kultiviert wird.
- 47. Verfahren nach dem vorhergehenden Anspruch, da20 durch gekennzeichnet, daß das Rührorgan mit 1 bis
 4000 Umdrehungen pro Minute angetrieben wird.
 - 48. Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das

Rührorgan mit über 500 Umdrehungen pro Minute angetrieben wird.

49. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß das Rührorgan mit über
1000 Umdrehungen pro Minute angetrieben wird.

Fig. 2

Fig.3

Fig.4

Fig. 5

Fig. 6

Fig.9

Fig. 10

Fig. 11

Fig. 13

Fig. 14

Fig. 15

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Konfiguration	Typ I: 2a Typ II: 2b Typ III: 2b Typ IV: 2b Typ V: 2b	Typ III: 2b Typ III: 2c Typ V: 2c	Typ II: 2b	Typ V: 2b	Typ III: 2b
Strömung brecher	4	4	4	4	4
Gefässdurch- messer	15.5 mm	20.0 mm	15.5 mm	15.5 mm	15.5 mm
Figur	48	49	20	2.4	22

Fig. 23

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

. BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURED OR ILLEGIBLE TEXT OR DRAWING
Z SKEWED/SLANTED IMAGES
□ COLORED OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox