| Comenzado en  | Thursday, 29 de June de 2023, 21:02 |
|---------------|-------------------------------------|
| Estado        | Terminados                          |
| Finalizado en | Thursday, 29 de June de 2023, 22:44 |
| Tiempo        | 1 hora 42 mins                      |
| empleado      |                                     |
| Calificación  | <b>75.00</b> de un total de 100.00  |

Correcta

Puntúa 20.00 sobre 20.00

En la trayectoria de corriente I = 5 A que se muestra en la figura, produce un campo magnético en P, que es el centro del arco, con a = 5 cm, b = 12 cm. Utilizando la Ley de Biot y Savart:



a) La magnitud del campo magnético producido en  ${\bf P}$  por el segmento de radio b es

4.363

**✓** μΤ

b) La magnitud del campo magnético producido en P por el segmento de cable horizontal donde retorna la corriente eléctrica es

0

🗸 μΤ

c) La magnitud del campo magnético resultante por toda la trayectoria de corriente es

6.109

**✓** μΤ

d) Indicar la dirección del campo magnético resultante producido en P, para toda la trayectoria de la corriente I (Usar la referencia  $\pm i$ ,  $\pm j$ ,  $\pm k$ , conforme los ejes indicados

+k **†** 

Correcta

Puntúa 20.00 sobre 20.00

El flujo magnético de la espira mostrada aumenta gradualmente con la relación:

$$\Phi_{B} = [ (3.00 t + 1.00) (t - 2.00) ]$$

donde  $\Phi_B$  en miliWeber y t está en segundos. Un campo magnético t sale del plano de la página, la parte circular de la espira tiene un radio de 2.00m



a) El valor absoluto de la fem inducida en la espira cuando t = 5.50 s es

28

## ✓ mV (07 pts.)

b) El alambre que forma la espira tiene una longitud total de 18.0 m, es de cobre de resistividad 1.70 x 10  $^{-8}$   $\Omega$ m, con diámetro de su sección de 6.00 mm. Calcular la corriente inducida en la espira de alambre es

2.587

# ✓ A (08 pts.)

c) Indicar la dirección de la corriente inducida en el segmento de resistencia  $\mathbf{R}$ . ( $\pm$   $\mathbf{i}$ ,  $\pm$   $\mathbf{j}$ ,  $\pm$   $\mathbf{k}$ )



(05 pts.)

Correcta

Puntúa 10.00 sobre 10.00

Una línea de transporte de energía eléctrica. tiene una longitud L=60.1 m , por ella circula una corriente de i=2.72 kA, como se muestra en la figura . El campo magnético de la Tierra en esta ubicación tiene una magnitud de 58  $\mu$ T y forma un ángulo de  $\theta$ =63,2° con la línea de transmisión.



a) Encuentre la magnitud de la fuerza magnética sobre la línea de transmisión es



✓ N

b) Encuentre la la dirección de la fuerza magnética sobre la línea de transmisión es



La respuesta correcta es: -k

Correcta

Puntúa 20.00 sobre 20.00

En un acelerador nuclear, una partícula con carga  $q=+3.3\mu C$  y masa  $m=11.5\mu g$  es acelerada a partir del reposo hasta alcanzar una velocidad  $\mathbf{v}=(3.50\hat{\imath}+7.77\mathbf{k})$ m/s, entra a un campo magnético  $\mathbf{B}=(140\hat{\imath}+218\mathbf{j})$ T, con los datos anteriores halle:

Las componentes de la aceleración que experimenta la partícula en el campo.

a) 
$$a_x =$$

$$\checkmark$$
  $imes 10^5~m/s^2$ 

b) 
$$a_y$$
 =

$$\checkmark$$
  $\times 10^5~m/s^2$ 

c) 
$$a_z$$
 =

$$\checkmark$$
  $\times 10^5~m/s^2$ 

d) La magnitud de la aceleración es a =

$$\checkmark$$
  $imes 10^5~m/s^2$ 

Incorrecta

Puntúa 0.00 sobre 20.00

Los valores de los resistores y las fuentes de poder del circuito son  $R_1=1K\Omega$ ,  $R_2=1K\Omega$ ,  $R_3=1K\Omega$ ,  $R_4=1K\Omega$ ,  $V_1=24$  V,  $V_2=12$  V y  $V_3=12$ V. Si los capacitores mostrados en el circuito se encuentran inicialmente descargados y los interruptores se cierran en t=0s,



calcule la magnitud de las corrientes que marcan los amperímetros A1 y A2

A1 =



× mA



12

× mA

Parcialmente correcta

Puntúa 5.00 sobre 10.00

En la figura se muestra una varilla conductora de longitud L=18,6cm con una masa m=19,3g , montada sobre unos rieles sin fricción, por donde circula una corriente i=7,96A en la dirección mostrada. Si un campo magnético uniforme actúa perpendicular a la página, haciendo que la varilla se mueva verticalmente hacia arriba con velocidad constante y en presencia de la gravedad.



### Calcule:

a) la magnitud del campo para cumplir con la descripción anterior es



## × T

b) La dirección del campo Magnético





## 

Ir a...