```
In [1]:
         import pandas as pd
         from sklearn.model selection import train test split
         from sklearn.svm import SVC
         from sklearn.metrics import accuracy_score
         from sklearn.neighbors import KNeighborsClassifier
         df = pd.read_csv("./emails.csv")
In [2]:
         df.head()
In [3]:
Out[3]:
            Email
                  the to ect and for of
                                             a you hou ... connevey jay valued lay infrastructure
             No.
            Email
         0
                    0
                       0
                                0
                                     0 0
                                             2
                                                  0
                                                       0 ...
                                                                    0
                                                                        0
                                                                               0
                                                                                    0
                                                                                                 0
                            1
            Email
                    8 13
                          24
                                6
                                     6
                                        2 102
                                                  1
                                                      27 ...
                                                                    0
                                                                        0
                                                                               0
                                                                                    0
                                                                                                 0
            Email
                                0
                                                  0
                                                                               0
                                                                                                 0
                       0
                            1
                                        0
                                             8
                                                       0
                                                                    0
                                                                        0
                                                                                    0
            Email
                       5
                           22
                                0
                                            51
                                                                        0
                                                                               0
         3
                                     5
                                        1
                                                  2
                                                      10 ...
                                                                    0
                                                                                    0
                                                                                                 0
                                                       9 ...
                          17
                                        2
                                            57
                                                  0
                                                                    0
                                                                        0
                                                                               0
                                                                                    0
                                                                                                 0
        5 rows × 3002 columns
         df.isnull().sum()
In [4]:
         Email No.
                        0
Out[4]:
         the
                        0
                        0
         to
                        0
         ect
         and
                        0
```

Out[5]:		the	to	ect	and	for	of	а	you	hou	in	•••	enhancements	connevey	jay	valued	lay
	0	0	0	1	0	0	0	2	0	0	0	•••	0	0	0	0	0
	1	8	13	24	6	6	2	102	1	27	18	•••	0	0	0	0	0
	2	0	0	1	0	0	0	8	0	0	4		0	0	0	0	0
	3	0	5	22	0	5	1	51	2	10	1		0	0	0	0	0
	4	7	6	17	1	5	2	57	0	9	3		0	0	0	0	0
	•••																
	5167	2	2	2	3	0	0	32	0	0	5		0	0	0	0	0
	5168	35	27	11	2	6	5	151	4	3	23		0	0	0	0	0
	5169	0	0	1	1	0	0	11	0	0	1		0	0	0	0	0
	5170	2	7	1	0	2	1	28	2	0	8		0	0	0	0	0
	5171	22	24	5	1	6	5	148	8	2	23	•••	0	0	0	0	0
	E172	ro.u.c	v 20	000 6	ماريمور												

5172 rows × 3000 columns

```
In [6]: Y = df.iloc[:,-1].values
         array([0, 0, 0, ..., 1, 1, 0], dtype=int64)
 Out[6]:
 In [7]: train_x,test_x,train_y,test_y = train_test_split(X,Y,test_size = 0.25)
 In [8]: svc = SVC(C=1.0,kernel='rbf',gamma='auto')
          svc.fit(train x,train y)
         y_pred2 = svc.predict(test_x)
         print("Accuracy Score for SVC : ", accuracy_score(y_pred2,test_y))
         Accuracy Score for SVC : 0.9164733178654292
 In [9]: X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random_stat
In [10]:
         knn = KNeighborsClassifier(n neighbors=7)
In [11]: knn.fit(X_train, y_train)
         KNeighborsClassifier(n_neighbors=7)
Out[11]:
In [12]: | print(knn.predict(X_test))
         [0 0 1 ... 0 1 0]
         E:\Anaconda3\lib\site-packages\sklearn\neighbors\_classification.py:228: FutureWarnin
         g: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior o
         {\sf f} `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior {\sf w}
         ill change: the default value of `keepdims` will become False, the `axis` over which
         the statistic is taken will be eliminated, and the value None will no longer be accep
```

ted. Set `keepdims` to True or False to avoid this warning.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

```
In [13]: print(knn.score(X_test, y_test))
```

0.8685990338164251

E:\Anaconda3\lib\site-packages\sklearn\neighbors_classification.py:228: FutureWarnin g: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior o f `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior w ill change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

In []: