Тема № 4 «КРИТИЧЕСКИ ЗНАЧИМЫЕ НУТРИЕНТЫ В РАЗЛИЧНЫХ ГРУППАХ ПРОДУКТОВ»

Цель: Ознакомиться с вредными для здоровья компонентами питания для мотивированного сокращения их количества в ежедневном употреблении. **Контрольные вопросы:**

- 1. Что понимается под критически значимыми продуктами?
- 2. Основные источники поступления скрытой соли в организм, какие заболевания могут быть спровоцированы повышенным содержанием соли, потребляемой с пищевыми продуктами и блюдами?
- 3. Основные источники поступления скрытого сахара в организм, какие заболевания могут быть спровоцированы повышенным содержанием сахара, потребляемого с пищевыми продуктами и блюдами?
- 4. Основные источники поступления в организм насыщенных жиров и трансизомеров жирных кислот, какие заболевания могут быть спровоцированы повышенным содержанием насыщенных жиров и трансизомеров жирных кислот, потребляемых с пищевыми продуктами и блюдами?
- 5. Какие мероприятия могут повлиять на снижение в меню содержания критически значимых нутриентов?

Справочные материалы по теме:

Говоря о здоровом питании большое внимание уделяется сокращению потребления соли, сахара, жиров животного происхождения, в том числе продуктов их содержащих. Нутриенты, оказывающие негативное воздействие на здоровье, требующие регламентации предельных значений, получили название критически значимых нутриентов. При этом необходимо четко понимать какие продуты несут в себе скрытую угрозу.

Наращивание производства пищевых продуктов все более глубокой переработки, быстрая урбанизация и изменение образа жизни меняют тенденции в области питания. Доступность и ценовая приемлемость прошедших глубокую технологическую переработку, продуктов, мире Bo население потребляет все больше повышаются. всем высококалорийной пищи со значительным содержанием насыщенных жиров, трансжиров, сахаров и соли.

Соль является основным источником натрия, при этом установлена связь между повышенным потреблением натрия и гипертонией, а также увеличением риска сердечно-сосудистых заболеваний и инсультов. Одновременно, по мере отхода от привычных схем питания снижается потребление ключевых составляющих здорового рациона — фруктов, овощей и пищевых волокон (в частности, цельных злаков). Фрукты и овощи содержат калий, способствующий снижению кровяного давления. Роль переработанных пищевых продуктов как источника соли в рационе объясняется тем, что содержание соли в них особенно высоко (в случае готовых блюд, мясопродуктов, таких как бекон, ветчина и сырокопченая колбаса, сыров, соленых снеков, лапши быстрого приготовления и т.д.), а также тем, что они

потребляются часто и в больших количествах (в случае хлеба и переработанных зерновых продуктов). Соль также добавляется в пищу во время приготовления (в виде сухих бульонов) или уже на столе (в виде соусов и пищевой соли). Вместе с тем многие производители меняют рецептуру своей продукции для сокращения содержания соли, и потребителям рекомендуется обращать внимание на этикетки продуктов и выбирать продукты с низким содержанием натрия.

ВОЗ рекомендует взрослым потреблять менее 5 г соли в день (чуть меньше одной чайной ложки). Для детей в возрасте от двух до 15 лет ВОЗ рекомендует корректировать рекомендованное максимальное потребление соли в сторону уменьшения исходя из их потребностей в энергии по сравнению с взрослыми, что соответственно составляет 2,5-5 гр/сутки.

Следует отметить, что натрий является важнейшим биогенным элементом, необходимым для поддержания водно-щелочного баланса, передачи нервных импульсов, нормального функционирования клеток. сопровождается Избыток натрия повышением кровяного давления, повышенным напряжением работе сердечно-сосудистой системы, жидкости организме, нарушением В веществ, накоплением сопровождающегося формированием избыточной массы тела.

Основные источники потребления натрия в пище определяются культурными особенностями и кулинарными предпочтениями населения. Натрий в значительных количествах содержится в продуктах повседневного употребления - в молоке, мясе, хлебобулочных изделиях, мясопродуктах, снековой продукции, а также во вкусовых добавках к пище (соусы, приправы). Натрий содержится также в глутамате натрия, который широко используется в качестве пищевой добавки во многих регионах мира.

Для решения глобальной задачи по снижению заболеваемости населения ожирением, болезнями системы кровообращения, наряду с прочими мероприятиями большое значение имеет сокращение потребления соли. Для реализации этой задачи на популяционном уровне необходимо проведение планомерной работы по пересмотру технологических карт и сокращением в технологии приготовления блюд соли, повышение в структуре питания фруктов и овощей, широкое информирование населения о данной проблеме и ее причинах. В домашних условиях целесообразно постепенно сокращать количество вносимой в блюда при приготовлении соли, убрать с обеденного стола солонку, при формировании меню отдавать приоритет с низким содержанием натрия. Следует отметить, что вкусовые рецепторы человека к пониженному потреблению соли адаптируются постепенно, приоткрывая более широкий диапазон вкусов.

Итак, основными источниками поступления натрия (поваренной соли) в организм человека являются хлеб и хлебные продукты, колбасные изделия и мясные консервы, сыры, консервированные овощи и соленья, соленая и копченая рыбная продукция, а также продукты быстрого питания (фаст-фуд) и различные комбинированные продукты (соусы, кетчупы и др.). Содержание натрия в хлебобулочных изделиях колеблется от 246 до 499

мг/100 г. Мясные консервы содержат от 400 мг до .800 мг/100г (для большинства - около 600 мг/г), вареные колбасные изделия от 800 до 1000 мг/100г, варено- и сырокопченые 1500- 2000 мг/100 г. Овощные консервы и соленья содержат от 600 до 1100 мг/100 г натрия. Содержание натрия в рыбных консервах составляет 540-700 мг/100 г, в копченой рыбе - до 1000 мг, а в соленой - более 4900 мг/100 г. В порции некоторых продуктов фаст-фуда может содержаться до 1000 мг натрия на 100 гр. продукта.

Физиологическая потребность для детей – от 200 до 1 300 мг/сут.

Основными источниками добавленных сахаров являются мучные кондитерские изделия, торты и пирожные, конфеты, сладкие кисломолочные продукты и творожные изделия, сладкие безалкогольные напитки, нектары и сокосодержащие напитки. Под добавленным сахаром следует понимать все виды простых углеводов (сахароза, глюкозофруктозный сироп, крахмальная патока, мед и др.), вносимые в пищевой продукт для придания сладкого вкуса.

В соответствии с действующими ГОСТами в составе печенья может содержаться от 20 до 45 г/100 г сахара, в конфетах 65-75 г/100 г, в пирожных и тортах от 30 до 65 г/100 г. Кисломолочные продукты, такие как сырки творожные глазированные содержат 22- 30 г/100 г сахара, йогурты фруктовые от 6 до 14 г/100 г, йогурты питьевые 7-15 г/100 г. Существенный вклад в потребление сахара вносят безалкогольные напитки, которые содержат 5-12 г/100 г сахара, а также соковая продукция и нектары - от 10 до 35 г/100 г.

Употребление сахара (в чистом виде и в составе продуктов и блюд) в количествах более 40 г/сутки существенно повышает риски формирования избыточной массы тела, болезней системы кровообращения, нарушений восприимчивости к инсулину и лептину, ухудшения памяти, кариесу. ВОЗ рекомендует ограничить потребление сахара в 20 г/сут (2 столовые ложки).

Проблема кариеса хорошо знакома всем, начиная уже с детского возраста. Известно, что бактерии ротовой полости питаются простыми сахарами. В результате их жизнедеятельности образуется кислота, разрушающая зубную эмаль, а затем и дентин, формируется кариозная полость.

Гормон лептин несет информацию в мозговую ткань об удовлетворенности съеденной пищей и вызывает в организме чувство насыщения. Фруктоза препятствует попаданию лептина в мозг и создаёт искусственное чувство голода. У людей с резистентностью к лептину мозг не получает нужного сигнала, поэтому им сложнее контролировать свой аппетит. Исследования на крысах показали, что у животных, которые употребляют фруктозу, вырабатывается больше лептина, чем обычно. В результате, чувствительность организма к нему снижается, животные постоянно хотят есть. Когда фруктозу убирали из рациона крыс, уровень лептина возвращался в норму, аппетит стабилизировался.

Учёные из Новой Зеландии постарались найти связь между лишним весом у мужчин и их возрастом, общей калорийностью питания, сахаром,

употреблением алкоголя, курением. Самая сильная связь прослеживалась между набором веса и употреблением сахара.

Американские ученые провели изучили резистентность к инсулину у крыс, давая им пищу с высоким содержанием сахара, в результате существенно снижалась чувствительность к лептину и инсулину.

Излишнее ежедневное употребление сахара существенно повышает формирования сахарного диабета. что было подтверждено популяционным исследованием (в исследовании принимали участие более 51 тысячи чел.), продолжавшимся с 1991 по 1999 гг. Было доказано, что у людей, которые регулярно употребляют подслащённые напитки (лимонад, сладкий чай, энергетики, сладкий кофе) риск формирования диабета был выше, чем в контрольной группе в 4,8 раза, печеночной недостаточности – в 3,4 раза. Также в исследовании было показано, что если человек ежедневно выпивает стакан сладкого лимонада, он в среднем прибавляет в год, только в связи с этим фактором около 6 лишних кг. Еще одним из неблагоприятных последствий ежедневного избыточного употребления сахара является негативное воздействие повышенного содержания сахара в крови на гипокамп, что сопровождается снижением когнитивных возможностей организма - ухудшается память, развивается эмоциональная тупость.

Для решения глобальной задачи по сокращению количества потребляемого сахара необходима реализация комплекса мер по повышению осведомленности детей и их родителей о влиянии сахара на здоровье, в т.ч. о быстрых и отсроченных эффектах; пересмотр технологических карт и сокращение в технологии приготовления блюд сахара, постепенное исключение из рациона питания школьников кондитерских изделий и замещение их фруктами и йогуртами, популяризация использования некалорийных сахарозаменителей.

Основными источниками жира, насыщенных жирных кислот и трансизомеров жирных кислот являются продукты, произведенные с использованием мясного и молочного сырья, кондитерские изделия, некоторые виды масложировой продукции и соусы.

Мясные продукты, такие как колбасы, сосиски и сардельки, мясные деликатесы, готовые кулинарные изделия, полуфабрикаты и консервы, позиционируются как источник полноценного белка с высокой усвояемостью и биологической ценностью, в тоже время они являются основными источниками жира. Содержание белка в вареных колбасах, сосисках и сардельках колеблется от 8% до 13%, тогда как жира от 15% до 38%, при этом соотношение белок/жир составляет от 1:1,15 до 1:4,75. В группе полукопченых, варено-копченых и сырокопченых колбас и деликатесных мясных продуктов соотношение белок/жир чаще возрастает в сторону преобладания жира. Содержание жира в мясорастительных консервах, выпускаемых по национальному стандарту, колеблется от 8% до 35,0% и зависит от вида и соотношений использованного сырья. При этом та же продукция, но производимая по техническим условиям предприятий, может содержать значительно большее количество жира. В кондитерских изделиях в

зависимости от состава компонентов содержание жира достигает 30%. В готовых соусах и майонезах содержание жира может достигать 65%. Содержание насыщенных жирных кислот в мясных продуктах колеблется от 3,3% до 11,6% в зависимости от содержания жира и вида используемого сырья, при этом у существенной доли ассортимента колбасных изделий оно составляет в среднем 5-6%. В молочной продукции при уровне жира до 10% также содержится 5-6% насыщенных жирных кислот.

Избыточное потребление жирной пищи также во многом определяет риски формирования повышенной массы тела, заболеваний системы кровообращения (атеросклероза), нарушению жирового обмена, функции печени.

Отдельно следует остановиться на трансизомерах жирных кислот образующихся при гидрогенезации жидких растительных масел. Именно трансизомеры, оказывают существенное влияние на риски развития сердечнососудистых заболеваний. Поэтому их содержание в масложировой продукции является показателем безопасности и строго регламентируется. В соответствии с действующими требованиями ТР ТС 024/2011 «Технический регламент на масложировую продукцию» содержание трансизомеров жирных кислот в масложировой продукции не должно превышать 2%.

Создателем метода гидрогенизации (присоединения водорода к двойной связи) считают французского химика Поля Сабатье. В июне 1897 года он сделал открытие, заложившее основы превращения растительного масла в твердую субстанцию, в 1912 году получил за это Нобелевскую премию. Сабатье обнаружил, что мелкие частицы никеля служат хорошим катализатором реакции газообразного водорода с этиленом, простейшим углеводородом с двойной связью. Но вскоре выяснилось, что таким же способом можно присоединять водород и к другим веществам с двойной связью. В 1901 году немецкий химик Вильгельм Норман применил этот метод для переработки жидких растительных масел в твердые жиры, а в 1902 году получил на него патент. Процесс гидрогенизации (гидрирование) происходит при пропускании водорода под давлением через масло, нагретое до высокой температуры (около 200 градусов Цельсия). При этом часть ненасыщенных жирных кислот превращается в насыщенные.

Изначально гидрогенизированное масло не считалось вредным и даже рекомендовалось как здоровая альтернатива животному жиру. Никого не факт. частичной смутил ТОТ что при гидрогенизации пространственная структура молекул: значительная часть ненасыщенных жирных кислот (до 60%) переходит из цис-формы в транс-форму. С точки зрения производителей маргаринов накопление транс-изомеров влияло на свойства жира только положительно, поскольку приводило к повышению температуры плавления и твердости. Гидрогенизированные маргарины на их основе были дешевле сливочного масла, дольше хранились (даже без охлаждения) и позволяли многоразовое использование при жарке. Именно гидрогенизированный жир стал основой индустрии "фаст-фуд" и двигателем ее бурного развития. В 1993 году в журнале "Ланцет" вышла

статья, автор которой Уолтер Виллет утверждал, что потребление транс-жиров приводит к повышению риска сердечно-сосудистых заболеваний. Причина, по мнению автора, состояла в том, что транс-жиры вызывают изменение соотношения липопротеинов высокой и низкой плотности в сторону Это увеличения первых. свою очередь является фактором, предрасполагающим атеросклерозу. Свои предположения подтвердил фактами, подсчитав потребление транс-жиров в рационе 85 тысяч здоровых женщин, а затем в течение восьми лет регистрировал среди них заболеваемость и смертность от сердечных заболеваний. Количество инфарктов, случаев внезапной смерти от сердечного приступа и выраженность атеросклероза оказались существенно больше среди тех, кто все эти восемь лет ел много маргаринов. Таким образом, исследования показали, что трансжиры ведут себя иначе, чем цис-жиры, не только на сковородке, но и в организме. Например, оказавшись в составе фосфолипидов клеточных мембран, они влияют на работу белковых молекул, пронизывающих мембраны, так называемых трансмембранных белков. А это в свою очередь нарушает передачу сигналов, например, при взаимодействии гормонов с рецепторами, поскольку рецепторы как раз являются трансмембранными белками. Страдает транспорт веществ, ведь белковые каналы для переноса молекул через мембрану также относятся к трансмембранным белкам. Так как фосфолипиды являются еще и сырьем для синтеза молекул иммунной системы, наличие в них жирных кислот в транс-конформации приводит к нарушению биохимии воспалительных процессов. Помимо повышения риска развития атеросклероза и сопутствующих заболеваний сердца и сосудов, изомеры приводят снижению чувствительности трансподжелудочной железы к инсулину – развивается диабет 2-го типа, хронических воспалительные процессы, ожирение. Таким образом, если вместо нормального строительного материала мы предлагаем организму бракованные транс-изомеры, образуются дефектные биологические структуры, которые начинают давать сбой.

Для уменьшения потребления транс-жиров необходимо исключить из рациона питания маргарины, просматривать этикетки на приобретаемые продукты на предмет содержания в них транс-изомеров жирных кислот.

Таким образом, мероприятия по снижению содержания в пищевой продукции критически значимых нутриентов реализуются по трем основным направлениям: 1) работа с населением по вопросам здорового питания; 2) информирование населения о содержании критически значимых нутриентов в пищевой продукции; 3) сокращение количества продуктов, источников критически значимых нутриентов в меню организованных коллективов.

Список дополнительной литературы по теме:

- 1. Донскова Л.А. Пищевые добавки в мясной индустрии: идентификация опасностей и скрининговый анализ риска // Управленец. 2014. №3 (49). C.62-67.
- 2. Ефремов А.А., Макарова Л.Г., Шаталина Н.В., Первышина Г.Г. Экологические аспекты здорового питания жителей Сибирского региона // Химия растительного сырья. 2002.- № 3. С. 69-72.
- 3. Иванов С.В., Баранова В.В. Е-добавки, их негативное влияние на организм // Вестник науки и образования. 2019. №7-2 (61). С.62-66.
- 4. Койнова А.Н. Индустрия пищевых добавок: состояние и перспективы развития // Пищевая индустрия. -2019. № 3 (41). С. 36-39.
- 5. Матюхина З.П. Основы физиологии питания, гигиены и санитарии. М.: Изд. «Академия», 2003, 184 с.
- 6. Руководство ВОЗ о потреблении натрия для взрослых и детей, 2012 г.
- 7. Технический регламент Таможенного союза «Требования безопасности пищевых добавок, ароматизаторов и технологических вспомогательных средств» ТР ТС 029/2012 (решение №58 от 20 июля 2012 Совета Европейкой экономической комиссии.
- 8. Шарховский Е.К. Гигиена продовольственных товаров. М.: «Новое Знание». 2003. 262с.
- 9. https://doi.org/10.1152/ajpregu.00195/2008/ A. Shapiro, W. Mu, C. Roncal. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding/
- 10. https://doi.org/10.1136/bmj.e7492 (Published 15 January 2013)/ Lisa Te Morenga, Simonette Mallard, Jim Mann. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies (дата обращения к электронному ресурсу 25.04.2020).
- 11. https://doi.org/10.1093/ajcn/76.5.911/ Sharon S Elliott, Nancy L Keim, Judith S Stern, Karen Teff, Peter J Havel/Fructose, weight gain, and the insulin resistance syndrome/ The American Journal of Clinical Nutrition, Volume 76, Issue 5, November 2002, Pages 911–922. (дата обращения к электронному ресурсу 25.04.2020).
- 12. https://www.ncbi.nlm.nih.gov/pubmed/20693348/Malik VS1, Popkin BM, Bray GA, Després JP, Willett WC, Hu FB. /Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis// Diabetes Care. 2010 Nov;33(11):2477-83. doi: 10.2337/dc10-1079. Epub 2010 Aug 6. (дата обращения к электронному ресурсу 25.04.2020).
- 13.https://www.nkj.ru/archive/articles/9780/ (дата обращения к электронному ресурсу 25.04.2020).