Security in Computing & Information Technology

Lecture 8
Network Security

Lecture Schedule

Foundations

- 1. Introduction
- 2. Vulnerabilities, Threats, Attacks

Basic mechanisms

- 3. Security mechanisms, Elementary cryptography
- 4. Authentication
- 5. Access control

Major computing security areas

- 6. Operating systems
- 7. Databases
- 8. Networks
- 9. Web
- 10. Mobile computing

Applications

- 11. Privacy
- SecComp Lecture 812. Internet banking

Lecture Topics

- Security of the communication medium
- Traffic security
- Intrusions and their detection

Computer Networks

- Interconnected computers
- Provide communication between nodes
- Components

Network Configurations

- TopologyLayout of the network
 - Physical topology
 - Interconnection of cables (e.g. bus, ring)
 - Logical topology
 - Data transfer paths
 - May or may not be the same as physical topology

Wired Networks

- Communication medium is cable
 - AdvantageSignal confined to the cable

DisadvantageCabling costs

Wired Media Security

Cable paths may be publicly accessible

- Cable
 - Coaxial cable: very easy to tap unnoticed
 Detect the electromagnetic field radiated
 around the cable
 - Twisted pair: fairly easy to tap, hard to notice

Low radiation: Connection may need to be interrupted

- Optical fibre
 - Can be tapped unnoticed after removing outer protection (cladding & jacket)

Cable Security - Wiretapping Tools

Copper cable

Optical cable

Wireless Networks

- Communication medium is air
 - AdvantageNo Cabling cost

Disadvantage
 Reduced range (fast signal attenuation)
 Lack of security

Wireless Media Security

Transmission medium is openly accessible

- Eavesdropping
 - Confidentiality (secrecy) problem
 - Anyone in the vicinity can receive the signal
 - Intrusion cannot be detected
 - War driving: searching for wireless networks by driving around in a car
- Easy to interfere with Data integrity problem
 - Anyone in the vicinity can transmit
 - Signal interference may corrupt the signal (jamming)

Network Vulnerabilities

AnonymityOn the Internet no-one knows you are a dog

- Many points of attack
 - Source can be anywhere
 - Huge range of targets

- Unknown perimeter
 - The Internet spans the whole world
- Unknown communication path
 - Message routes optimised for fast delivery

Node Addressing

- MAC address
 - "Physical" address of a node
 - Assigned by equipment manufacturer
 - Cannot be changed
- IP address
 - Address assigned by the network
 - Can change/be reassigned as network conditions require
- Human-understandable names
 - Domain name system (DNS)
- Mapping between
 - IP addresses and MAC addresses: Address Resolution Protocol (ARP)
 - names and IP addresses: DNS name resolution

Seven-Layer OSI Model

	Layer	Function	Security support
	Application	User process	Yes
	Presentation	Data formats, encryption	Yes
	Session	Connection management	
	Transport	End-to-end data transfer	
	Network	Logical addressing, determining paths	Yes
	Data link	Physical addressing, sending packets	Yes (can be messy)
SecCon	Physical p Lecture 8	Medium interface, transmitting bits	Yes 13

Internet Protocols

- Communication protocol
 - Rules for exchanging messages
 - Description of message formats
- Essential Internet protocols (TCP/IP)
 - Use basic information
 - Source address
 - Destination address
 - Optimise
 - For speed
 - For reliable message delivery
 - Information protection
 - Limited protection against transmission errors
 - No protection against malicious use or interference

Securing the Network

- Physical security
 - Protecting the wires (cables)
 Telecommunication companies provide basic network protection
- Traffic protection
 - Firewalls

Site manager's responsibility

The more restrictive, the stronger the protection

- Secure protocols
 - Security-aware protocols
 Require the installation & support of additional software

Firewalls

- Function: protect computers and networks
 - First line of defence
 - Preventive tool
- Operation
 - Traffic screening
 - Block unwanted communication
 - Repel certain attacks
 - Device protection
 - Single host protection
 - Installed in workstations
 - Network segment or a whole network protection
 - Installed at
 - network entry/exit points
 - computer connections

Firewall Implementation

- Firewall software
 - Uses a rule base to make decisions
 - Purpose-built software
 - Kits are available for different operating systems
- Firewall solutions
 - Dedicated hardware
 - Fast
 - Should not run any other application software
 - Has advanced management features
 - Software running on the protected device
 - Cheaper
 - Less secure
 - Application software can interfere with the operation
 - Vulnerable to insider attacks
 - Implements better-than-nothing (BTN) security

Firewall Types

- Packet filters
 - Look at the message and take action (filter)
 - Filtering
 - can be based on protocol type, source/destination address, content (packet payload), time of day, etc
 - can be performed at one layer or across several layers
 - results in passing or discarding the message
 - Processing is fast
- Proxies
 - Interpret the message
 - Generate a new message with the same content
 - Processing is slower

Secure Protocols

- Additional protocols operating over the existing ones
- Are not part of the standard TCP/IP protocol set
- Are implemented at different layers
- Can provide
 - Authentication
 - Confidentiality/secrecy
- ExamplesIPsec, DNSsec, TLS (SSL)

Attacks

- Targeting a node
 - Host compromise
 - Denial of service
- Targeting a connection
 - Person-in-the-middle
 - Session hijacking
 - Traffic diversion
- Targeting a whole network
 - Interfering with network administration

Host Compromise

Aims

- Collect sensitive data from target
- Use compromised computer to launch further attacks

Methods

- Using automated tools
 E.g. Viruses, worms, etc
 - Used for mass infection/intrusion

Manually

Hackers bypassing access control

 Used for accessing large systems (e.g. databases)

Denial of Service (DoS)

Aims

- Block external access to the site
- Bring the site down (crash it)

Methods

- Direct flooding
 - Traffic via established connections
 - Legitimate connection requests
 - Malformed/unfinished connection requests
- Indirect flooding
 - Directing responses to maliciously formed queries to the victim (e.g. DNS amplification attack)

Distributed DoS

- Using a large number of compromised computers for the attack
- The Storm botnet

Image source: Kanich et al, Spamalytics: An Empirical Analysis of Spam Marketing Conversion

Person-in-the-Middle

Active eavesdropping ("unauthorised proxy")

- Aim
 - To intercept messages
 - To modify/inject messages
- Method
 - Splits the original connection into two, e.g.
 - One between client and attacker
 - One between attacker and server
 - Attacker can read and modify all messages
 - Can be done over an https connection as well
 - Tools can
 - Intercept browser messages
 - Allow the operator to modify those messages (e.g. HTML)
- Traffic diversion
- Redirecting messages to the attacker so that the intended recipient may not even receive it

Session Hijacking

An unauthorised entity takes over a valid, legitimate connection

- Session fixation
 - Attacker tricks the victim into connecting to a server with a session ID set by the attacker or
 - Communication uses a predictable session token
- Session sidejacking (sniffing)
 - Attacker acquires an existing, valid session ID, and takes over the connection
- Cross-site scripting (XSS)
 - Attacker tricks the user's computer to run malicious code (and e.g. steal a session token)
 - Details will be discussed in next week's lecture

Attacks on Network Administration

- Attack on the authentication database
 E.g. password file attack
- Attack on network security devices
 E.g. firewall attack
- Attack on web servers E.g. defacing
- Rogue secondary certificate authorities (CA)
 - E.g. secondary CA
 - has a certificate from a trustworthy CA
 - issues certificates to less reliable subjects

Attack Example: DNS Switching

Normal operation

Hijacked DNS server

Intrusion Detection Systems

- IDS Function: protect computers and networks
 - Second line of defence
 - Reactive tool
- Operation
 - Monitors the operation
 - Stealth mode: not visible to other hosts
 - Looks for evidence of unauthorised activity
 - Raises alarm
 - False positive: alarm generated by legitimate operation
 - False negative: genuine attack missed

Logs and Audit Trails

Logs

- Traces of operation
- Generated by system and application programs
- Kept in a fileEasy to access, easy to review
- Audit trails
 - A protected collection of information about system activities
 - Contains detailed information
 - Better chances to detect anomalies
 - More data to store & analyse

Audit Trail Example

Event list (MS Windows)

- Generated by
 - Applications
 - System programs

IDS Types

- Network based
 - Network devices (e.g. routers) checking all traffic
 - Advantage: few devices can protect a large network
 - Disadvantages
 - Cannot cope with current, high network speeds
 - Cannot analyse encrypted packets
- Host based
 - Dominant approach: system integrity verification
 - Advantage: Can analyse encrypted traffic
 - Disadvantage: performance penalty borne by the host
- Application based
 - Monitors data used by running applications (event logs etc.)
 - Advantage: can observe user interaction
 - Disadvantage: tied to a particular application
- Target based

Targets monitor their own data (e.g. cryptographic hash)

Detection Approaches

- Misuse detection
 - Looking for known attack patterns ("misuse signature")
 - Based on pattern matching
 E.g. code pattern in memory
- Anomaly detection
 - Looking for deviation from normal (expected) system behaviour ("strange event")
 - Based on behaviour analysis
 E.g. number/frequency of resource access

Misuse Detection

- Detects known events only
 - Database has to be updated periodically
 - Protection becomes available only <u>after</u> the threat's appearance
- Race between hackers & security people E.g. a virus encrypts itself when propagating and uses unpredictable encryption keys (virus signature varies) ⇒ new detection methods emerge
- Typical example: Antivirus software

Anomaly Detection

- Can detect new, unknown events
- Protection is available potentially <u>when</u> the threat appears
- Description of normal behaviour
 - Statistics based
 - E.g. system calls, network traffic
 - System has to be trained what constitutes normal behaviour
 - Specification based
 - E.g. logic-based rules
 - Similar to misuse detection, but evaluates data rather than matching against known patterns

Visual Intrusion Detection

- Attack visualisation
 - Showing traffic (e.g. packet traces)
 - Relies on human processing
 - More capable
 - Prone to human errors (tiredness)

Incident Handling

- Detection
 - Investigate incident candidates
 - Identify attack
- Containment
 - Stop the spread of malware
 - Prevent further damage
- Eradication
 - Removal of malware
- Recovery
 - Restore damaged items
 - Restart the operation

Summary

- Networks have many points of attack
- Traffic security is a major concern
- Protection
 - First line: firewalls
 - Second line: intrusion detection systems