Universidad Autónoma Metropolitana Iztapalapa ELECTRICIDAD Y MAGNETISMO ELEMENTAL I (CC52)

Dra. Silvia Sandra Hidalgo Tobón

Tarea 1

Entregar lunes 14 de agosto, antes de las 15:00 hrs.

En la figura del problema 2, cuatro partículas forman un cuadrado. Las cargas son q₁ = q₄ = Q y q₂ = q₃ = q. (a) ¿Cuánto vale Q/q si la fuerza electrostática total en las partículas 1 y 4 es cero?.
(b) ¿Existe algún valor para q que haga que la fuerza electrostática total en las cuatro partículas sea cero? Explica tu respuesta.

Problema 1

- 2. Dos partículas se encuentran fijas en el eje x. La primera, de carga $40 \mu C$ se localiza en x = -2.0 cm; la segunda de carga Q se localiza en x = 3.0 cm. Una tercera partícula con cagra de magnitud de $20 \mu C$ se libera del reposo en el eje y en y = 2.0 cm. ¿Cuál es el valor de Q si la aceleración inicial de la parícula 3 está en la dirección positiva de (a) el eje x y (b) el eje y?
- 3. Un cascarón esférico no conductor, con un radio interno de 4.0 cm y radio exterior de 6.0 cm, tiene una carga distribuida uniformemente en el volumen entre sus superficies interna y externa. La densidad de carga volumétrica ρ es la carga por unidad de volumen, con la unidad de coulomb por metro cúbico. Para este cascarón $\rho = b/r$, donde r es la distancia en metros desde el centro del cascarón y $b = 3.0 \ \mu\text{C/m}^2$. ¿Cuál es la carga neta en el cascarón?
- 4. En la figura del problema 4, las partículas 2 y 4, de carga -e, están fijas sobre el eje y, en $y_2=-10.0~{\rm cm}$ y $y_4=5.00~{\rm cm}$. Las partículas 1 y 3, de carga -e, se pueden mover a lo largo

del eje x. La partícula 5, de carga +e está fija en el origen. Inicialmente la partícla 1 está en $x_1=-10.0$ cm. (a) ¿Para qué valor de x la partícula 1 debe moverse para rotar en la dirección de la fuerza eléctrica neta \vec{F}_{net} en la partícula 5 30° en el sentido de las manecillas del reloj? (b) Con la partícula 1 fija en su nueva posición, para qué valor de x se debe mover la partícula 3 para rotar \vec{F}_{net} de vuelta a su dirección original?

Problema 4

5. En la figura del problema 5, seis particulas cargadas rodean a la partícula 7 a una distancia radial ya sea d=1.0 cm o 2d, como se ilustra. Las cargas son $q_1=+2e$, $q_2=+4e$, $q_3=+e$, $q_4=+4e$, $q_5=+2e$, $q_6=+8e$, $q_7=+6e$, con $e=1.60\times 10^{-19}$ C. ¿Cuál es la magnitud de la fuerza electrostática total en la partícula 7?

Problema 5