CBSE कक्षा 11 अर्थशास्त्र पाठ - 5 केंद्रीय प्रवृत्ति का माप पुनरावृत्ति नोट्स

स्मरणीय बिन्दु-

- केन्द्रीय प्रवृत्ति वह एकक संख्यात्मक मूल्य है जो आँकड़ों के पूरे समूह का प्रतिनिधित्व करता है।
- समान्तर माध्य- किसी श्रृंखला के सभी मूल्यों के योग को उसकी संख्या से भाग देने पर प्राप्त संख्या समांतर माध्य कहलाती है।
- समान्तर माध्य को प्रकार
- 1. **सामान्य अथवा सरल समांतर माध्य-** सभी पदों को समान महत्व देते हुए जो समान्तर माध्य प्राप्त होता है उसे सरल समांतर माध्य कहते हैं।
- 2. **भारित माध्य-** यदि श्रृंखला के सभी मदों को उनके महत्व के अनुसार भार देते हुए जब माध्य ज्ञात करते हैं, उसे भारित माध्य कहते हैं।
 - समान्तर माध्य ज्ञात करने के सूत्र

श्रेणी	प्रत्यक्ष विधि	लघु विधि	पद विचलन विधि
व्यक्तिगत	$ar{x} = rac{\Sigma x}{N}$	$ar{x} = A + rac{\Sigma d}{N}$	$ar{x} = A + rac{\Sigma d^1}{N} imes i$
खण्डित	$ar{x} = rac{\Sigma f x}{N}$	$ar{x} = A + rac{\Sigma f d}{N}$	$ar{x} = A + rac{\Sigma f d^1}{N} imes i$
अखण्डित	$ar{x} = rac{\Sigma fm}{N}$	$ar{x} = A + rac{\Sigma f d}{N}$	$ar{x} = A + rac{\Sigma f d^1}{N} imes i$

• भारित माध्य $= \frac{\Sigma wx}{\Sigma w}$

गुण	दोष
1. गणना में सरल	1. सीमांत मूल्यों का प्रभाव
2. सभी मूल्यों पर आधारित	2. गलत निष्कर्ष संभव
3. समांतर माध्य का मान निश्चित।	3. यदि आँकड़े गुणात्मक हो तो माध्य संभव नहीं।
4. ऑकड़ों को व्यवस्थित करने की आवश्यकता नहीं।	4. ग्राफ से माध्य संभव नहीं।

- मध्यका- वह मूल्य जो श्रेणी को दो बराबर भाग में बाँटता हो उसे मध्यका कहते हैं। इसे द्वितीय चतुर्थक भी कहते हैं।
- चतुर्थक- वह मूल्य जो श्रेणी को चार भागों में विभाजित करे उसे चतुर्थक कहते हैं।

- o प्रथम या निम्न चतुर्थक → Q1
- o द्वितीय या मध्यम चतुर्थक \rightarrow Q2 \rightarrow (मध्यका)
- o तृतीय या उच्च चतुर्थक → Q3
- मध्यका एवं चतुर्थक ज्ञात करने का सूत्र-

माप श्रेणी	व्यक्तिगत श्रेणी	खण्डित श्रेणी	अखण्डित श्रेणी	प्रथम चतुर्थक
Q1	$\left(rac{N+1}{4} ight)^{th}$	$\left(rac{N+1}{4} ight)^{th}$	$\frac{N}{4}th$	$=L_1+rac{rac{N}{4}-c.f.}{f} imes i$
Q2 (M)	$\left(rac{N+1}{2} ight)^{th}$	$\left(rac{N+1}{2} ight)^{th}$	$rac{N}{2}^{th}$	$=L_1+rac{rac{N}{2}-c.f.}{f} imes i$
Q3	$3\Big(rac{N+1}{4}\Big)^{th}$	$\left(rac{N+1}{4} ight)^{th}$	$3\left(\frac{N}{4}\right)^{th}$	$=L_1+rac{rac{3N}{4}-c.f.}{f} imes i$

• मध्यका के गुण एवं दोष-

गुण	दोष
1. गणना सरल है	1. ऑकड़ों को व्यवस्थित करना पड़ता है।
2. इसे ग्राफ से ज्ञात कर सकते हैं।	2. सभी मूल्यों पर आधारित नही है।
3. सीमांत मूल्य से अप्रभावित।	3. जब आवृत्तियाँ अनियमित हो तब मध्यका श्रेणी का प्रतिनिधित्व नहीं करता है।
4. श्रेणी के अपूर्ण होने पर भी ज्ञात करना सम्भव।	5. बीजगणितीय उपयोग संभव नहीं।

• बहुलक- वह मूल्य जो श्रृंखला में सबसे अधिक बार आती है।

$$(Z) = L_1 + rac{f_1 - f_0}{2f_1 - f_0 - f_2} imes i$$

 L_1 = बहुलक वर्ग की निम्न सीमा

 \mathbf{f}_2 = बहुलक वर्ग के बाद की आवृत्ति

 \mathbf{f}_1 = बहुलक वर्ग की आवृत्ति

i = बहुलक वर्ग का वर्ग अन्तराल

 \mathbf{f}_0 = बहुलक वर्ग के पूर्व की आवृत्ति

गुण	दोष
1. सरल माप	1. सभी मूल्यों पर आधारित नहीं

2. ग्राफ द्वारा ज्ञात करना संभव		2. समूहीकरण की विधि जटिल	
	3. सीमांत मूल्य का प्रभाव नहीं	3. बीजगणितीय उपयोग संभव नहीं	

- बहुलक =3 मध्यका 2 माध्य
- मध्यका ज्ञात करने की ग्राफीय विधि

विधि-1 से कम से अधिक विधि - सबसे पहले श्रेणी को कम या से अधिक वितरण में बदला जाता है। उसके बाद आँकड़ों को ग्राफ में प्रदर्शित करते हैं।

श्रृंखला की N/2 वां पद निर्धारित करके, X अक्ष पर लम्ब डाला जाता है उसके बाद मध्यका ज्ञात कर सकते हैं।

विधि-2 से कम तथा से अधिक विधि- एक ही ग्राफ पर 'से कम एवं 'से अधिक' दोनो ओजाइव खीच कर दोनो वक्र जहाँ पर एक दूसरे को काटते हैं उस बिन्दु से x अक्ष पर लम्ब डालते हैं x अक्ष पर जहाँ लम्ब गिरता है उस मूल्य को समांतर माध्य कहते हैं।

• बहुलक- श्रृंखला को आयत चित्र में प्रस्तुत करते हैं उसके बाद सबसे ऊँचे आयत वर्ग को बहुलक वर्ग कहते हैं। बहुलक वर्ग के एक कोने को दूसरे आयत वर्ग के किनारे से मिलाते हैं बहुलक वर्ग के दूसरे कोने को सामने वाले आयत वर्ग से मिलाते हैं ये दोनो रेखाएं जहाँ भी एक दूसरे को काटते है वहाँ से x अक्ष पर लम्ब डाला जाता है लम्ब बिन्दु को बहुलक कहते हैं।

