

UNLP. Facultad de Informática

LÓGICA E INTELIGENCIA ARTIFICIAL

CURSO 2025 - PRÁCTICA 2

Temario

- Lógica de Enunciados. El lenguaje de la Lógica. Representación Simbólica. Enunciados y conectivas. Funciones de verdad y tablas de verdad. Tautologías, contradicciones, equivalencias lógicas. Reglas de manipulación y sustitución. Formas normales.

Bibliografía

- Hamilton. Lógica para matemáticos. Capítulo 1.

Ejercicios

Tautologías, contradicciones, equivalencias.

1- Sean A, B fbfs que cumplen que (¬A V B) es tautología. Sea C una fbf cualquiera. Determinar, si es posible, cuáles de las siguientes fbfs son tautologías y cuales contradicciones. Justificar las respuestas.

 $((\neg(A \rightarrow B)) \rightarrow C)$ $(C \rightarrow ((\neg A) \lor B))$ $((\neg A) \rightarrow B)$

Ayuda: Ver def. 1.5 Hamilton.

2- Responder y justificar:

 $\[\[\] \] \] (p \to q)$ es lógicamente equivalente a $(p \lor \neg q)$? $\[\] \] \[\] \] (\neg (p \leftrightarrow q))$ es lógicamente equivalente a $(\neg p \lor \neg q)$? $\[\] \] (\neg (p \lor q))$ es lógicamente equivalente a $(p \land q)$? $\[\] \] \] (\neg (p \lor q))$ es lógicamente equivalente a $\[\] \] \] (\neg (p \lor q))$ es lógicamente equivalente a $\[\] \] \] (\neg (p \lor q))$? Ayuda: ver def. 1.7 Hamilton.

- **3.** Demostrar que toda tautología del Càlculo de Enunciados está lógicamente implicada por cualquier fbf del Càlculo de Enunciados.
- **4.** Verificar que la fbf $(p \rightarrow p)$ y la fbf $(p \lor \neg p)$ son lógicamente equivalentes.
- **5.** Demostrar utilizando la técnica del absurdo que $((p \land \neg p) \rightarrow q)$ es una tautología.
- **6.** Sea A una fbf donde aparecen solo los conectivos Λ , V, \neg . Sea A* la fbf que se obtiene a partir de A reemplazando cada Λ por V y cada V por Λ . Si A es una tautología, A* ¿también lo es? Justificar. Ayuda: utilizar la técnica de demostración por contraejemplo.
- **7.** Demostrar utilizando la técnica del absurdo que dadas A y B fbfs cualesquiera, siempre ocurre que si A y $(A \rightarrow B)$ son tautologías entonces B también lo es.

UNLP. Facultad de Informática

LÓGICA E INTELIGENCIA ARTIFICIAL

CURSO 2025 - PRÁCTICA 2

Ayuda: ver prop. 1.9 Hamilton.

8- Nos asignan para trabajar con un agente inteligente llamado T que usa una lógica proposicional que le permite contestar con tres valores: sì: V, no: F, y no sé: I (por "indefinido"). Las fbfs con las que trabaja el agente T son las mismas del Cálculo de Enunciados, y la semántica de las fórmulas que conoce T se define como sigue:

¬ p	рVq	рΛ q
VF II FV	V V V V V V V I I V V F I I F F V V F I I	V V V V V I I V F F I I V I I I F F F F
	FII FFF	F F I F F F

Cuando da valores indefinidos, el agente T dice que la fbf es "absurda".

Demostrar que, para el agente T, la regla de inferencia modus ponens "preserva la absurdidad", es decir, la forma argumentativa: A, A \rightarrow B $\dot{\cdot}$ B es absurda cuando ambas premisas son absurdas.

Formas normales.

- **9.** Obtener una forma normal conjuntiva para la fbf: $\neg((\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p))$. Fundamentar los pasos seguidos.
- **10**. La siguiente fbf está en FNC: $(p \lor \neg q \lor \neg p) \land (\neg r \lor \neg q) \land (r \lor \neg p \lor r \lor q)$. Obtener para esta fbf una FNC reducida, esto es, una fbf lógicamente equivalente a la dada que también esté en FNC y en la que las letras de proposición aparezcan cada una a lo sumo una vez dentro de cada paréntesis.
- **11.** Se dice que una fbf del C. de Enunciados está en forma normal negativa (FNN) si las negaciones siempre están ajustadas sobre una letra proposicional y si además no hay condicionales. Transformar a FNN: $(a \rightarrow (\neg b \rightarrow c)) \rightarrow ((a \rightarrow \neg b) \rightarrow (a \rightarrow c))$.

Conjuntos de conectivos.

12. Sea A una fbf donde aparecen solo los conectivos Λ , \neg . Sea A* la fbf que se obtiene a partir de A reemplazando cada Λ por V y cada letra de proposición por su negación (o sea, cada p por \neg p, cada q por \neg q, etc.). Probar, utilizando la técnica de inducción que A* es lógicamente equivalente a \neg A.

UNLP. Facultad de Informática

LÓGICA E INTELIGENCIA ARTIFICIAL

CURSO 2025 - PRÁCTICA 2

Ayuda: ver prop 1.15 Hamilton.

13. Demostrar utilizando la técnica de inducción que cualquier fórmula bien formada A que contenga sólo los conectivos $\{V, \Lambda\}$ puede tomar el valor F.

Ayuda: usar inducción sobre la cantidad de conectivos de la fórmula.

14. Explicar por qué el siguiente conjunto no es un conjunto adecuado de conectivos {Λ, V}. Ayuda: utilizar def. en sec. 1.5 Hamilton.