

International Institute Of Information <u>Technology</u>

EC5.101.M20.NeSS-SS part

Submitted by:

Group A9

Sl.No	Name	Roll No.	Contributions
1.	Abhinav Siddharth	2020112007	Finding P gain, I gain, D
			gain.
2.	Smruti Biswal	2020112011	Finding transfer function,
			Cover-page and question
			writing.
3.	Sreenya Chitluri	2020102065	
			Finding the step response

Problem Statement:

Figure

- (J) Moment of Inertia of the rotor = **0.01** $kg.m^2$
- (b) motor viscous friction constant = 0.1 N.m.s
- (Ke) electromotive force constant = **0.01** V/rad/sec
- (Kt) motor torque constant = **0.01** N.m/Amp
- (R) electric resistance = 1 Ω
- (L) electric inductance = **1** H

You have a DC motor as a system as shown in Figure above and it is supposed to run at a rotational speed ($\dot{\theta}=\frac{d\theta}{dt}=\omega$) of 0.1~rad/sec by accelerating from no rotation if the DC supply of 3 V is turned on. The back emf(e) developed in the system can be calculated as $e=K\omega$.

So, if we apply KVL in the circuit shown in Figure above , we get

$$L\frac{di}{dt} + Ri = V - K\omega$$

Once the motor speed reaches desired speed, possible changes in the motor speed should be less than $0.05\,\%$ of the desired speed. Once the motor turned on, before the steady state running condition any possible overshoot in speed should be less than 5% as any higher speed can damage the system and the time to reach steady state should be less than 2%. Design a PID controller for this purpose.