Verification of PBAR systems

Dileepa Fernando

July 6, 2017

A Proofs

In general, given a set of Byzantine players $Z \subset [n]$, a global state s, the pay-off of i playing the game for k steps should be as follows.

$$\begin{split} v_i^{'k}(Z,s) &= \\ & \begin{cases} &\text{if } \mathbf{k} > \mathbf{0} \wedge \mathbf{i} \notin \mathbf{Z} \\ & \max_{\pi_i^{'a} \in \Pi_{t=0}^{k-1} A_i} (\min_{\pi_Z^{'a} \in \Pi_{t=0}^{k-1} A_Z} \{E_{\pi_{[n]-Z-\{i\}}^{'a} \in \Pi_{t=0}^{k-1} A_{[n]-Z-\{i\}}} \\ & (\Sigma_{t=0}^{k-1} \beta_i^t H_i(\pi'^s(t), \pi'^a(t)))| \\ & BT(Z \cup \{i\}, \pi'^s(t), \pi'^a(t), \pi'^s(t+1)) \wedge \pi'^s(0) = s \wedge |\pi'| = k\}) \\ & \text{if } \mathbf{k} > \mathbf{0} \wedge \mathbf{i} \in \mathbf{Z} \\ & \max_{\pi_i^{'a} \in \Pi_{t=0}^{k-1} A_i} \min_{\pi_{[Z]-\{i\}}^{'a} \in \Pi_{t=0}^{k-1} A_{[Z]-\{i\}}} \{\{E_{\pi_{[n]-Z}^{'a} \in \Pi_{t=0}^{k-1} A_{[n]-Z}} \\ & (\Sigma_{t=0}^{k-1} \beta_i^t H_i(\pi'^s(t), \pi'^a(t)))| \\ & BT(Z, \pi'^s(t), \pi'^a(t), \pi'^s(t+1)) \wedge \pi'^s(0) = s \wedge |\pi'| = k\}\} \\ & \text{if } \mathbf{k} = \mathbf{0} \\ & 0 \end{cases} \end{split}$$

where π' is a path of length k.

In the case of $k > 0 \land i \notin Z$, $\pi'^{s}(t)$ is the state at position t in the path π' and $\pi'^{a}(t)$ is the action at position t in the path π' . Hence, $H_{i}(\pi'^{s}(t), \pi'^{a}(t))$ defines the pay-off of i on the transition at position t. The pay-offs of length k is the sum of each position, with every pay-off weighted with discount factor β_i^t , i.e., $\sum_{t=0}^{k-1} \beta_i^t H_i(\pi^{\prime s}(t), \pi^{\prime a}(t))$. Note that given a choice, we have a tree, containing a set of paths. For each path in the tree, calculation of the pay-off of the path is as above. The expected pay-off of the tree can be calculated using these pay-offs, by considering the probabilities in each path. This process is denoted by $E_{\pi_{[n]-Z-\{i\}}^{i}\in\Pi_{t=0}^{k-1}A_{[n]-Z-\{i\}}}$. The possible trees are grouped by the rational players' choices of non-deterministic actions, i.e., for one choice, there are a set of trees due to that there may be different choices for Byzantine players. For each set/group of trees, we choose the tree that minimised the expected pay-off, denoted by $\min_{\pi_Z'^a \in \Pi_{t=0}^{k-1} A_Z}$, because we assume that the Byzantine players try to minimise i's pay-offs. Now in each group (i.e., for a choice of the rational player), there is only the minimised tree, and each group has exactly one choice of non-deterministic actions of i. We choose the one which gives the maximum expected pay-off, denoted by $\max_{\pi_i'^a \in \Pi_{t=0}^{k-1} A_i}$, meaning that the rational player i always makes the choice that gives the maximised pay-off. In addition, we ensure that each transition in each path is valid $(BT(Z \cup \{i\}, \pi'^s(t), \pi'^a(t), \pi'^s(t+1))),$ the initial state of each path is s and the length of each path is k. Hence, in summary, the formula captures the intuitive calculate of i's pay-off in length kstarting from s w.r.t. $Z \cup \{i\}$.

If $k > 0 \land i \in Z$, since $i \in Z$, the set of altruistic and Byzantine players differ from the set of altruistic and Byzantine players in the case of $i \notin Z$, that is, in the case of $i \notin Z$, i can be altruistic or rational, whereas in the case of $i \in Z$, i can be Byzantine or rational. Hence, the grouping of trees due to the rational players' choices is different in these two cases. Therefore, in the case of $i \in Z$,

the process of calculating the expected pay-off of trees is denoted differently as $E_{\pi_{[n]-Z}^{\prime a} \in \Pi_{t=0}^{k-1} A_{[n]-Z}}$. The second difference is in the BT functions. Since $i \in \mathbb{Z}$, we do not need to additionally add i to Z to capture the rational behaviour of i. If k = 0, we initialise the pay-off as 0.

Similarly, we define the correct pay-off for $u_i^{'k}(Z,s)$ as follows:

Similarly, we define the correct pay-off for
$$u_i^{"}(Z,s)$$
 as follows:
$$u_i^{'k}(Z,s) = \begin{cases} \text{if } \mathbf{k} > \mathbf{0} \wedge \mathbf{i} \notin \mathbf{Z} \\ E_{a_i \in A_i} \left(\min_{a_Z \in A_Z} \left\{ \\ E_{a_{[n]-Z-\{i\}} \in A_{a_{[n]-Z-\{i\}}}} \left(\Sigma_{t=0}^{k-1} \beta_i^t H_i(\pi'^s(t), \pi'^a(t)) \right) \right| \\ BT(Z, \pi'^s(t), \pi'^a(t), \pi'^s(t+1)) \wedge \pi'^s(0) = s \wedge |\pi'| = k \}) \\ \text{if } \mathbf{k} > \mathbf{0} \wedge \mathbf{i} \in \mathbf{Z} \\ \min_{a_i \in A_i} \left\{ \min_{a_{Z-\{i\}} \in A_{Z-\{i\}}} \left\{ \\ E_{a_{[n]-Z} \in A_{[n]-Z}} \left(\Sigma_{t=0}^{k-1} \beta_i^t H_i(\pi'^s(t), \pi'^a(t)) \right) \right| \\ BT(Z, \pi'^s(t), \pi'^a(t), \pi'^s(t+1)) \wedge \pi'^s(0) = s \wedge |\pi'| = k \}) \end{cases}$$

Correctness of the dynamic programming definition

$$\begin{split} v_i^{'k}(Z,s) &= \\ \begin{cases} &\text{if } \mathbf{k} > \mathbf{0} \wedge \mathbf{i} \in \mathbf{Z} \\ &\max_{\pi_i^{'a} \in \Pi_{t=0}^{k-1} A_i} \min_{\pi_{[Z]-\{i\}}^{'a} \in \Pi_{t=0}^{k-1} A_{[Z]-\{i\}}} \left\{ \left\{ E_{\pi_{[n]-Z}^{'a} \in \Pi_{t=0}^{k-1} A_{[n]-Z}} \right. \\ &\left. \left(\sum_{t=0}^{k-1} \beta_i^t h_i(\pi'^s(t), \pi'^a(t)) \right) \right| \\ &BT(Z, \pi'^s(t), \pi'^a(t), \pi'^s(t+1)) \wedge \pi'^s(0) = s \wedge |\pi'| = k \right\} \right\} \\ &\text{if } \mathbf{k} > \mathbf{0} \wedge \mathbf{i} \notin \mathbf{Z} \\ &E_{\pi_i'^a \in \Pi_{t=0}^{k-1} A_i} \left(\min_{\pi_Z'^a \in \Pi_{t=0}^{k-1} A_Z} \left\{ E_{\pi_{[n]-Z-\{i\}}^{'a} \in \Pi_{t=0}^{k-1} A_{[n]-Z-\{i\}}} \right. \\ &\left. \left(\sum_{t=0}^{k-1} \beta_i^t h_i(\pi'^s(t), \pi'^a(t)) \right) \right| \\ &BT(Z, \pi'^s(t), \pi'^a(t), \pi'^s(t+1)) \wedge \pi'^s(0) = s \wedge |\pi'| = k \right\} \right) \\ &\text{if } \mathbf{k} = \mathbf{0} \\ &0 \end{cases} \end{split}$$

For recall,

$$\textbf{Theorem 1} \ v_i^{'k}(Z,s) = v_i^k(Z,s) \ and \ u_i^{'k}(Z,s) = u_i^k(Z,s), \ \forall k \geq 0.$$

Proof 1 For k = 0, the result is trivial because value of empty path is defined to be 0. So the maximin path value is 0. Substitute the original function value $v_i^{'k}(Z,s)$ to compute $v_i^{k+1}(Z,s)$ in the dynamic programming definition. Let $i \in \mathbb{Z}$, any path of length k th iteration be π and let $\{\pi\}$ be any infinite length probabilistic path starting from state s.

$$\begin{split} E_{a_{[n]-Z}\in A_{[n]-Z}}(h(s,\langle a_i,a_{-i}\rangle) + \beta_i v_i^k(Z,s')|BT(Z,s,\langle a_i,a_{-i}\rangle,s')) \\ &= E_{a_{[n]-Z}\in A_{[n]-Z}}(h(s,\langle a_i,a_{-i}\rangle) + \beta_i E_{\pi^a\in\Pi_{t=0}^{k-1}A_{[n]-Z}}(\Sigma_{t=0}^{k-1}\beta_i^t h_i(\pi^s(t),\pi^a(t))|\\ &BT(Z,s,\langle a_i,a_{-i}\rangle,s'))) \\ &= E_{a_{[n]-Z}\in A_{[n]-Z}}(h(s,\langle a_i,a_{-i}\rangle)) + E_{A_{[n]-Z}}(E_{\pi'^a\in\Pi_{t=1}^kA_{[n]-Z}}(\Sigma_{t=1}^k\beta_i^t h_i(\pi'^s(t),\pi'^a(t))|BT(Z,s,\langle a_i,a_{-i}\rangle,s'))) \\ &= E_{\pi'^a\in\Pi_{t=0}^kA_{[n]-Z}}(h(s,\langle a_i,a_{-i}\rangle)) + E_{\pi'^a\in\Pi_{t=0}^kA_{[n]-Z}}(\Sigma_{t=1}^k\beta_i^t h_i(\pi'^s(t),\pi'^a(t))|\\ &BT(Z,s,\langle a_i,a_{-i}\rangle,s')) \\ &= E_{\pi'^a\in\Pi_{t=0}^kA_{[n]-Z}}(\Sigma_{t=0}^k\beta_i^t h_i(\pi'^s(t),\pi'^a(t))|BT(Z,s,\langle a_i,a_{-i}\rangle,s')) \end{split}$$

The maximin value would be:

$$v_{i}'k(Z,s) = \max_{\pi_{i}'^{a} \in \Pi_{t=0}^{k} A_{i}} \min_{\pi_{[Z]-\{i\}}'^{a} \in \Pi_{t=0}^{k} A_{[Z]-\{i\}}} E_{\pi_{i}'^{a} \in \Pi_{t=0}^{k} A_{[n]-Z}} (\sum_{t=0}^{k} \beta_{i}^{t} h_{i}(\pi'^{s}(t), \pi'^{a}(t)) |BT(Z, s, \langle a_{i}, a_{-i} \rangle, s'))$$
(2)

When $\{\pi\}$ is the path set corresponding to optimal expected value for length k, $\{\pi'\}$ would be the path set $s\langle a_i, a_{-i}\rangle\pi\in\Pi^k_{t=0}A_{[n]-Z}$. Suppose we choose a different path set from s' other than $v_i^k(s',Z)$ if does not correspond to the maximum expected value over player i among the guaranteed values, we can miss a max value path set in general. The proof is similar for $u_i^k(Z,s)$.

A.2 Correctness of Arbitrary Precision Nash Equilibria Verification[?]

Proposition 1 Though this result is not directly used in the proof of Theorem ??, we take advantage of this subsection to explain how one can prove it. Indeed, Proposition 1 relies on the same Lemmas than the ones used for the proof of Theorem ??. For recall,

Proposition 1 1.
$$\lim_{k\to\infty} v_i^k(Z,s) = v_i(Z,s)$$

2.
$$\lim_{k\to\infty} u_i^k(Z,s) = u_i(Z,s)$$

Lemma 1 1.
$$\forall k \in \mathbb{N}, |v_i(\{\pi\}) - v_i(\{\pi|_k\})| < e_i(k)$$
.

2.
$$\lim_{k\to\infty} v_i(\{\pi|_k\}) = v_i(\{\pi\}).$$

Lemma 2 Let $\{\pi\}$ be a probabilistic path set s.t. $v_i(\{\pi\})$ is minimum in $Path(s, Z, i, \sigma)$, let $\{\{\bar{\pi}_k\}\}_{k \in \mathbb{N}}$ be a sequence of finite path, s.t. $\forall k, \ v_i(\{\bar{\pi}_k\})$ is minimum in $Path_k(s, Z, i, \sigma)$, then $v_i(\{\pi|_k\}) - v_i(\{\bar{\pi}_k\}) \leq 2e_i(k)$.

Lemma 3 $\forall s \in S$ and strategy σ we have: $\lim_{k\to\infty} v_i^k(Z, s, \sigma|_k) = v_i(Z, s, \sigma)$.

Lemma 4 $\forall s \in S$ and $\forall k \in \mathbb{N}$, we have: $|v_i^k(Z,s) - v_i(Z,s)| < E_i(k)$.

Lemma 5 $\forall s \in S \text{ and } \forall k \in \mathbb{N}, \text{ we have:}$ $|u_i^k(Z,s) - u_i(Z,s)| < E_i(k).$

As written in the paper, apart Lemma 1, Lemmas 2 to 5, as well as the proposition, are very similar from the results established in [?]. For that reason, we do not reproduce their proof here and we refer to the text and [?] for more details. Proof of Lemma 1 is given below.

We now present the proof of Theorem ??. For recall,

Theorem 2 Let $\mathcal{G} = (S, s_0, A, T, P, H, \beta)$ be an n player game, $\epsilon > 0$ and $\delta > 0$ and $Z \subset [n]$ be the set of Byzantine players, for each player $i \in [n]$ let

- 1. $M_i = max\{|h_i(s, a)||s \in S \text{ and } a \in A\}$
- 2. $E_i(k) = 5\beta_i^k \frac{M_i}{1-\beta_i}$
- 3. $\Delta_i(k) = \max\{v_i^k(Z \cup \{i\}, \mathsf{f}(s)) u_i^k(Z, s) | s \in O\}$
- 4. $\epsilon_1(i, k) = \Delta_i(k) 2E_i(k)$
- 5. $\epsilon_2(i, k) = \Delta_i(k) + 2E_i(k)$,

and let k_i be the minimum numbers of steps such that $4E_i(k_i) < \delta$,

- 1. if $\forall i \in [n], \ \epsilon \geq \epsilon_2(i, k_i) > 0$ then $\mathcal{M}_{|qz}$ is ϵ -Nash-equilibrium,
- 2. if $\exists i \in [n], \ 0 < \epsilon \le \epsilon_1(i, k_i)$ then $\mathcal{M}_{|qz}$ is not ϵ -Nash-equilibrium,
- 3. if $\forall i \in [n]$, $\epsilon_1(i, k_i) < \epsilon$ and $\exists j \in [n]$ s.t. $\epsilon < \epsilon_2(j, k_j)$ then $\mathcal{M}_{|gz}$ is $(\epsilon + \delta)$ -Nash-equilibrium.

Proof 2 In order to prove the convergence of the value function, we want to bound the value difference by a more convenient function. For that purpose, we define $e_i(k) = \beta_i^k \frac{M_i}{1-\beta_i}$ and prove Lemma 1.

Lemma 1 1. $\forall k \in \mathbb{N}, |v_i(\{\pi\}) - v_i(\{\pi|_k\})| \le e_i(k)$.

2.
$$\lim_{k\to\infty} v_i(\{\pi|_k\}) = v_i(\{\pi\})$$

$$\begin{aligned} \textit{Proof 3} \quad & 1. \ |v_i(\{\pi|_T\}) - v_i(\{\pi|_k\})| = \\ & |E_{\pi'^a \in \Pi_{t=0}^{k-1} A_{[n]-Z}}(\Sigma_{t=0}^{k-1} \beta_i^t h_i(\pi^s(t), \pi^a(t))) - \\ & E_{\pi''^a \in \Pi_{t=0}^{k-1} A_{[n]-Z}\Pi_{t=k}^T A_{[n]-Z}}(\Sigma_{t=0}^T \beta_i^t h_i(\pi''^s(t), \pi''^a(t)))| \\ & = |E_{\pi''^a \in \Pi_{t=0}^{k-1} A_{[n]-Z}\Pi_{t=k}^T A_{[n]-Z}}(\Sigma_{t=0}^{k-1} \beta_i^t h_i(\pi^s(t), \pi^a(t))) - \\ & E_{\pi''^a \in \Pi_{t=0}^{k-1} A_{[n]-Z}\Pi_{t=k}^T A_{[n]-Z}}(\Sigma_{t=0}^T \beta_i^t h_i(\pi''^s(t), \pi''^a(t)))| \\ & = |E_{\pi''^a \in \Pi_{t=0}^{k-1} A_{[n]-Z}\Pi_{t=k}^T A_{[n]-Z}}(\Sigma_{t=k}^T \beta_i^t h_i(\pi''^s(t), \pi''^a(t)))| \end{aligned}$$

```
\leq |\Sigma_{t=k}^T E_{\pi''^a \in \Pi_{t=0}^{k-1} A_{[n]-Z} \Pi_{t=k}^T A_{[n]-Z}} (\beta_i^t h_i(\pi''^s(t), \pi''^a(t)))| \text{ (Linearity of Expectation)}
\leq \Sigma_{t=k}^T |E_{\pi''^a \in \Pi_{t=0}^{k-1} A_{[n]-Z} \Pi_{t=k}^T A_{[n]-Z}} (\beta_i^t h_i(\pi''^s(t), \pi''^a(t)))| \text{ (Triangle inequality)}
\leq \beta_i^k \frac{M_i}{1-\beta_i} \text{ (By the choice of } M_i \text{ and } \lim_{T \to \infty})
\leq e_i(k)
```

2. $\lim_{k\to\infty} e_i(k) = 0$, $\lim_{k\to\infty} |v_i(\{\pi\}) - v_i(\{\pi|_k\})| = 0$ (by comparison test) $\lim_{k\to\infty} v_i(\{\pi|_k\}) = v_i(\{\pi\})$.

Now we have all the intermediate results to prove Theorem ??. By Lemma ?? and ??, we have: $\forall s \in S$, $|v_i^k(Z,s)-v_i(Z,s)| < E_i(k)$ and $|u_i^k(Z,s)-u_i(Z,s)| < E_i(k)$. This implies:

$$v_i(Z \cup \{i\}, s) \leq v_i^k(Z \cup \{i\}, s) + E_i(k)$$
 by Lemma ?? $v_i(Z \cup \{i\}, s) \geq v_i^k(Z \cup \{i\}, s) - E_i(k)$ by Lemma ?? $u_i(Z, s) \leq u_i^k(Z, s) + E_i(k)$ by Lemma ?? $u_i(Z, s) \geq u_i^k(Z, s) - E_i(k)$ by Lemma ??

Now, we can prove the three following statements:

- 1. Using Lemma ?? and Lemma ??, $v_{i}(Z \cup \{i\}, s) u_{i}(Z, s) \leq v_{i}^{k}(Z \cup \{i\}, s) + E_{i}(k) (u_{i}^{k}(Z, s) E_{i}(k)) \\ = v_{i}^{k}(Z \cup \{i\}, s) u_{i}^{k}(Z, s) + 2E_{i}(k) \\ \leq \Delta_{i}(k) + 2E_{i}(k) \\ \text{if } \epsilon \geq \epsilon_{2}(i, k) \text{ then } \Delta_{i}(k) \leq \epsilon 2E_{i}(k) \\ \text{So, } \forall s \in I, \\ v_{i}(Z \cup \{i\}, s) u_{i}(Z, s) \leq \epsilon \\ M \text{ is } \epsilon Nash.$
- 2. Similarly, ?? and ?? can be used to prove $v_i(Z \cup \{i\}, s) u_i(Z, s) \ge v_i^k(Z \cup \{i\}, s) E_i(k) (u_i^k(Z, s) + E_i(k)) = v_i^k(Z \cup \{i\}, s) u_i^k(Z, s) 2E_i(k)$ if $\epsilon \le \epsilon_1(i, k)$ then $\Delta_i(k) \ge \epsilon + 2E_i(k)$ This implies $\exists Z \in P([n] \{i\})$ and $s \in I$ s.t. $v_i(Z \cup \{i\}, s) u_i(Z, s) \ge \epsilon$ M is not $\epsilon Nash$.
- 3. if $\forall i, \epsilon_1(i, k_i) < \epsilon$ and for some $j, \epsilon < \epsilon_2(j, k_j)$, it is not possible to decide whether M is $\epsilon Nash$. But, since $\epsilon_2(j, k_j) \epsilon_1(i, k_i) = 4E_i(k_i)$ and $4E_i(k_i) < \delta$, we have, $\forall i \in [n], \epsilon + \delta > \epsilon_2(i, k_i)$. According to the first statement, we have $(\epsilon + \delta) Nash$.