

# **XD74LS74 DIP-14**

### **Pin Arrangement**



### **Function Table**

|        | In    | Output |   |       |                  |
|--------|-------|--------|---|-------|------------------|
| Preset | Clear | Clock  | D | Q     | Q                |
| L      | Н     | Х      | X | Н     | L                |
| Н      | L     | Х      | Х | L     | Н                |
| L      | L     | Х      | X | H*    | H*               |
| Н      | Н     | 1      | Н | Н     | L                |
| Н      | Н     | 1      | L | L     | Н                |
| Н      | Н     | L      | X | $Q_0$ | $\overline{Q}_0$ |

H; high level, L; low level, X; irrelevant, 1; transition from low to high level,

 $Q_0$ ; level of Q before the indicated steady-state input conditions were established.

 $<sup>\</sup>overline{Q}_0$ ; complement of  $\overline{Q}_0$  or level of Q before the indicated steady-state input conditions were established.

<sup>\*;</sup> This configuration is nonstable, that is, it will not persist when preset and clear inputs return to their inactive (high) level.

# **Absolute Maximum Ratings**

| Item                | Symbol          | Ratings     | Unit |  |
|---------------------|-----------------|-------------|------|--|
| Supply voltage      | V <sub>CC</sub> | 7           | V    |  |
| Input voltage       | V <sub>IN</sub> | 7           | V    |  |
| Power dissipation   | P <sub>T</sub>  | 400         | mW   |  |
| Storage temperature | Tstg            | -65 to +150 | °C   |  |

Note: Voltage value, unless otherwise noted, are with respect to network ground terminal.

# **Recommended Operating Conditions**

| Item             |                       | Symbol             | Min  | Тур  | Max  | Unit |  |
|------------------|-----------------------|--------------------|------|------|------|------|--|
| Supply voltage   | Supply voltage        |                    | 4.75 | 5.00 | 5.25 | V    |  |
| Output current   |                       | I <sub>OH</sub>    | _    | _    | -400 | μΑ   |  |
|                  |                       | I <sub>OL</sub>    | _    | _    | 8    | mA   |  |
| Operating temper | Operating temperature |                    | -20  | 25   | 75   | °C   |  |
| Clock frequency  |                       | f <sub>clock</sub> | 0    | _    | 25   | MHz  |  |
| Pulse width      | Clock High            | t <sub>w</sub>     | 25   | _    | _    | no   |  |
| Fuise width      | Clear Preset          | t <sub>w</sub>     | 25   | _    | _    | ns   |  |
| Cotup timo       | "H" Data              | t <sub>su</sub>    | 20↑  | _    | _    |      |  |
| Setup time       | "L" Data              | t <sub>su</sub>    | 20↑  | _    | _    | ns   |  |
| Hold time        |                       | t <sub>h</sub>     | 5↑   | _    | _    | ns   |  |

Note: ↑; The arrow indicates the rising edge.

# **Electrical Characteristics**

 $(Ta = -20 \text{ to } +75 \text{ }^{\circ}\text{C})$ 

| Item                         |        | Symbol            | min. | typ.* | max. | Unit | Condition                                                                                                              |  |  |
|------------------------------|--------|-------------------|------|-------|------|------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Input voltage                |        | V <sub>IH</sub>   | 2.0  | _     | _    | V    |                                                                                                                        |  |  |
|                              |        | V <sub>IL</sub>   | _    | _     | 0.8  | V    |                                                                                                                        |  |  |
| Output voltage               |        | V <sub>OH</sub>   | 2.7  | _     | _    | V    | $\begin{array}{c} V_{CC} = 4.75 \; V, \; V_{IH} = 2 \; V, \; V_{IL} = 0.8 \; V, \\ I_{OH} = -400 \; \mu A \end{array}$ |  |  |
| Output vo                    | ılage  | V                 | _    | _     | 0.5  | V    | $I_{OL} = 8 \text{ mA}$ $V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V},$                                             |  |  |
|                              |        | V <sub>OL</sub>   | _    | _     | 0.4  |      | I <sub>OL</sub> = 4 mA V <sub>IH</sub> = 2 V                                                                           |  |  |
|                              | D      |                   | _    | _     | 20   |      |                                                                                                                        |  |  |
|                              | Clear  | ,                 | _    | _     | 40   | μΑ   | $V_{CC} = 5.25 \text{ V}, V_{I} = 2.7 \text{ V}$                                                                       |  |  |
|                              | Preset | - I <sub>IH</sub> | _    | _     | 40   |      |                                                                                                                        |  |  |
|                              | Clock  |                   | _    | _     | 20   |      |                                                                                                                        |  |  |
|                              | D      | I <sub>IL</sub>   | _    | _     | -0.4 | mA   | $V_{CC} = 5.25 \text{ V}, V_1 = 0.4 \text{ V}$                                                                         |  |  |
| Input                        | Clear  |                   | _    | _     | -0.8 |      |                                                                                                                        |  |  |
| current                      | Preset |                   | _    | _     | -0.8 |      |                                                                                                                        |  |  |
|                              | Clock  |                   | _    | _     | -0.4 |      |                                                                                                                        |  |  |
|                              | D      | I <sub>I</sub>    | _    | _     | 0.1  | mA   | V <sub>CC</sub> = 5.25 V, V <sub>I</sub> = 7 V                                                                         |  |  |
|                              | Clear  |                   | _    | _     | 0.2  |      |                                                                                                                        |  |  |
|                              | Preset |                   | _    | _     | 0.2  |      |                                                                                                                        |  |  |
|                              | Clock  |                   | _    | _     | 0.1  |      |                                                                                                                        |  |  |
| Short-circuit output current |        | Ios               | -20  | _     | -100 | mA   | V <sub>CC</sub> = 5.25 V                                                                                               |  |  |
| Supply current               |        | Icc**             | _    | 4     | 8    | mA   | V <sub>CC</sub> = 5.25 V                                                                                               |  |  |
| Input clamp voltage          |        | V <sub>IR</sub>   | _    | _     | -1.5 | V    | $V_{CC} = 4.75 \text{ V}, I_{IN} = -18 \text{ mA}$                                                                     |  |  |

Notes:  $^*V_{CC} = 5 \text{ V}$ ,  $Ta = 25^{\circ}C$ 

## **Switching Characteristics**

$$(V_{CC} = 5 \text{ V}, \text{Ta} = 25^{\circ}\text{C})$$

| Item                    | Symbol           | Inputs       | Outputs           | min. | typ. | max. | Unit | Condition                                           |
|-------------------------|------------------|--------------|-------------------|------|------|------|------|-----------------------------------------------------|
| Maximum clock frequency | f <sub>max</sub> |              |                   | 25   | 33   |      | MHz  | C 15 pF                                             |
| Propagation delay time  | t <sub>PLH</sub> | Clear, Clock | Q, $\overline{Q}$ | _    | 13   | 25   | ns   | $C_L = 15 \text{ pF},$<br>$R_L = 2 \text{ k}\Omega$ |
| i Topagation delay time | t <sub>PHL</sub> | or Preset    |                   | _    | 25   | 40   | ns   | 11 2 1/22                                           |

# **Timing Definition**



<sup>\*\*</sup> With all output open,  $I_{CC}$  is measured with the Q and  $\overline{Q}$  outputs high in turn. At the time of measurement, the clock input is grounded.

### **Testing Method**

#### **Test Circuit**

1.  $f_{\text{max}}$ ,  $t_{\text{PLH}}$ ,  $t_{\text{PHL}}$  (Clock $\rightarrow$ Q,  $\overline{Q}$ )



Notes:

- 1. Test is put into the each flip-flop.
- 2. C<sub>L</sub> includes probe and jig capacitance.
- 3. All diodes are 1S2074(H).
- 2.  $t_{PHL}$ ,  $t_{PLH}$  (Clear or Preset $\rightarrow$  Q,  $\overline{Q}$ )



Notes:

- 1. Test is put into the each flip-flop.
- 2.  $C_L$  includes probe and jig capacitance.
- 3. All diodes are 1S2074(H).

#### Waveforms 1



Note: Clock input pulse;  $t_{TLH} \le 15$  ns,  $t_{THL} \le 6$  ns, PRR = 1 MHz, duty cycle = 50% and for  $f_{max}$ ,  $t_{TLH} = t_{THL} \le 2.5$  ns

#### Waveforms 2



Note: Crear and presel input pulse;  $t_{TLH} \le 15$  ns,  $t_{THL} \le 6$  ns, PRR = 1 MHz,

### DIP14



以上信息仅供参考. 如需帮助联系客服人员。谢谢 XINLUDA