PARTIAL DERIVATIVES: CHAIN RULES

Partial derivatives also can be defined for functions of three or more variables. Note that partial derivatives may fail to exist when the required limits do not exist.

13G Chain rule for
$$f(g(x, y))$$
: $\frac{\partial f}{\partial x} = \frac{df}{dg} \frac{\partial g}{\partial x}$ and $\frac{\partial f}{\partial y} = \frac{df}{dg} \frac{\partial g}{\partial y}$. (1)

• If z(x,y)

In Problems 5-9, find the first partial derivatives.

5. $z = 2x^2 - 3xy + 4y^2$.

Treating y as a constant and differentiating with respect to x yields $\frac{\partial z}{\partial x} = 4x - 3y$.

Treating x as a constant and differentiating with respect to y yields $\frac{\partial z}{\partial y} = -3x + 8y$

6. $z = \frac{x^2}{y} + \frac{y^2}{x}$.

Treating y as a constant and differentiating with respect to x yields $\frac{\partial z}{\partial x} = \frac{2x}{y} - \frac{y^2}{x^2}$.

Treating x as a constant and differentiating with respect to y yields $\frac{\partial z}{\partial y} = -\frac{x^2}{y^2} + \frac{2y}{x}$.

7. $z = \sin(2x + 3y)$.

$$\frac{\partial z}{\partial x} = 2\cos(2x + 3y)$$
 and $\frac{\partial z}{\partial y} = 3\cos(2x + 3y)$

8. $z = \tan^{-1}(x^2y) + \tan^{-1}(xy^2)$.

$$\frac{\partial z}{\partial x} = \frac{2xy}{1 + x^4 y^2} + \frac{y^2}{1 + x^2 y^4} \quad \text{and} \quad \frac{\partial z}{\partial y} = \frac{x^2}{1 + x^4 y^2} + \frac{2xy}{1 + x^2 y^4}$$

9. $z = e^{x^2 + xy}$

$$\frac{\partial z}{\partial x} = e^{x^2 + xy}(2x + y)$$
 and $\frac{\partial z}{\partial y} = xe^{x^2 + xy}$

* In Problems 11–13, find the first partial derivatives of z with respect to the independent variables x and y.

11.
$$x^2 + y^2 + z^2 = c$$

Differentiate implicitly with respect to x, treating y as a constant, to obtain:

$$2x + 2z \frac{\partial z}{\partial x} = 0$$
. Hence, $\frac{\partial z}{\partial x} = -\frac{x}{z}$

Differentiate implicitly with respect to y, treating x as a constant:

$$2y + 2z \frac{\partial z}{\partial y} = 0$$
. Hence, $\frac{\partial z}{\partial y} = -\frac{y}{z}$

Q13:
$$xy + yz + zx = c$$

Differentiating with respect to x yields
$$y + y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial x} + z = 0$$
, whence $\frac{\partial z}{\partial x} = -\frac{y+z}{x+y}$.

Differentiating with respect to y yields
$$x + y \frac{\partial z}{\partial y} + z + x \frac{\partial z}{\partial y} = 0$$
, whence $\frac{\partial z}{\partial y} = -\frac{x+z}{x+y}$.

14. Considering x and y as independent variables, find $\frac{\partial r}{\partial x}$, $\frac{\partial r}{\partial y}$, $\frac{\partial \theta}{\partial x}$, $\frac{\partial \theta}{\partial y}$ when $x = e^{2r} \cos \theta$, $y = e^{3r} \sin \theta$.

First differentiate the given relations with respect to x:

$$1 = 2e^{2r}\cos\theta \frac{\partial r}{\partial x} - e^{2r}\sin\theta \frac{\partial \theta}{\partial x} \quad \text{and} \quad 0 = 3e^{3r}\sin\theta \frac{\partial r}{\partial x} + e^{3r}\cos\theta \frac{\partial \theta}{\partial x}$$

Then solve simultaneously to obtain
$$\frac{\partial r}{\partial x} = \frac{\cos \theta}{e^{2r}(2+\sin^2 \theta)}$$
 and $\frac{\partial \theta}{\partial x} = -\frac{3\sin \theta}{e^{2r}(2+\sin^2 \theta)}$.

Now differentiate the given relations with respect to y:

$$0 = 2e^{2r}\cos\theta \frac{\partial r}{\partial y} - e^{2r}\sin\theta \frac{\partial\theta}{\partial y} \quad \text{and} \quad 1 = 3e^{3r}\sin\theta \frac{\partial r}{\partial y} + e^{3r}\cos\theta \frac{\partial\theta}{\partial y}$$

Then solve simultaneously to obtain
$$\frac{\partial r}{\partial y} = \frac{\sin \theta}{e^{3r}(2 + \sin^2 \theta)}$$
 and $\frac{\partial \theta}{\partial y} = \frac{2\cos \theta}{e^{3r}(2 + \sin^2 \theta)}$.

In Problems 16 and 17, find all second partial derivatives of z

16.
$$x^2 + y^2 + 3xy$$

$$\frac{\partial z}{\partial x} = 2x + 3y,$$
 $\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = 2,$ $\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = 3$

$$\frac{\partial z}{\partial y} = 3x + 2y, \qquad \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = 2, \qquad \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = 3 \quad \text{Note that} \quad \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y}.$$

17. x cosy – v cosx

$$\frac{\partial z}{\partial x} = \cos y + y \sin x, \qquad \frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = y \cos x$$
$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = -\sin y + \sin x$$

$$\frac{\partial z}{\partial y} = -x \sin y - \cos x, \qquad \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = -x \cos y$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = -\sin y + \sin x$$
Note that
$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y}.$$

Total Differential. Differentiability. Chain Rules Total Differential

Let z = f(x, y). Let Δx and Δy be any numbers. Δx and Δy are called *increments of x and y*, respectively.

For these increments of x and y, the corresponding change in z, denoted Δz , is defined by

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y) \tag{49.1}$$

The total differential dz is defined by:

$$dz = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y = f_x(x, y) \Delta x + f_y(x, y) \Delta y \tag{49.2}$$

Note that, if z = f(x, y) = x, then $\frac{\partial z}{\partial x} = 1$ and $\frac{\partial z}{\partial y} = 0$, and, therefore, $dz = \Delta x$. So, $dx = \Delta x$.

Similarly, $dy = \Delta y$. Hence, equation (49.2) becomes

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = f_x(x,y)dx + f_y(x,y)dy$$
 (49.3)

Notation: dz is also denoted df.

These definitions can be extended to functions of three or more variables. For example, if u = f(x, y, z), then we get:

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz = f_x(x, y, z) dx + f_y(x, y, z) dy + f_z(x, y, z) dz$$

EXAMPLE 49.1: Let $z = x \cos y - 2x^2 + 3$. Then $\frac{\partial z}{\partial x} = \cos y - 4x$ and $\frac{\partial z}{\partial y} = -x \sin y$. Then the total differential for z is

 $dz = (\cos y - 4x) dx - (x \sin y) dy$

In the case of a function of one variable y = f(x), we used the approximation principle $\Delta y \sim f'(x)$ $\Delta x = dy$ to estimate values of f. However, in the case of a function z = f(x, y) of two variables, the function f has to satisfy a special condition in order to make good approximations possible.

Chain Rules Chain Rule (2 → 1)

Let z = f(x, y), where f is differentiable, and let x = g(t) and y = h(t), where g and h are differentiable functions of one variable.

Then z = f(g(t)) is a differentiable function of one variable, and

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$
 (49.6)

warning: Note the double meaning of z, x, and y in (49.6). In $\frac{dz}{dt}$, z means f(g(t), h(t)), whereas, in $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, z means f(x, y).

In $\frac{\partial z}{\partial x}$, x is an independent variable, whereas, in $\frac{dz}{dt}$, x means g(t). Likewise, y has two different meanings.

To prove (49.6), note first that, by (49.4), $\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$

Then
$$\frac{\Delta z}{\Delta t} = \frac{\partial z}{\partial x} \frac{\Delta x}{\Delta t} + \frac{\partial z}{\partial y} \frac{\Delta y}{\Delta t} + \epsilon_1 \frac{\Delta x}{\Delta t} + \epsilon_2 \frac{\Delta y}{\Delta t}. \text{ Letting } \Delta t \longrightarrow 0, \text{ we obtain}$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt} + O(\Delta x) + O(\Delta y) = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

(Note that, since g and h are differentiable, they are continuous.

Hence, as $\Delta t \to 0$, $\Delta x \to 0$ and $\Delta y \to 0$ and, therefore, $\epsilon_1 \to 0$ and $\epsilon_2 \to 0$.

13H Chain rule for
$$f(x(t), y(t))$$
:
$$\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}.$$
 (3)

For
$$f(x, y, t)$$
 the chain rule is $\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial t}$. (4)

EXAMPLE 49.4: Let $z = xy + \sin x$ and let $x = t^2$ and $y = \cos t$. Note that $\frac{\partial z}{\partial x} = y + \cos x$ and $\frac{\partial z}{\partial y} = x$.

Moreover, $\frac{dx}{dt} = 2t$ and $\frac{dy}{dt} = -\sin t$. Now, as a function of $z = t^2 \cos t + \sin(t^2)$.

In Problems 1 and 2, find the total differential.

1.
$$z = x^3y + x^2y^2 + xy^3$$

We have
$$\frac{\partial z}{\partial x} = 3x^2y + 2xy^2 + y^3$$
 and $\frac{\partial z}{\partial y} = x^3 + 2x^2y + 3xy^2$

Then
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = (3x^2y + 2xy^2 + y^3) dx + (x^3 + 2x^2y + 3xy^2) dy$$

 $2. \quad z = x \sin y - y \sin x$

We have
$$\frac{\partial z}{\partial x} = \sin y - y \cos x$$
 and $\frac{\partial z}{\partial y} = x \cos y - \sin x$

Then
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = (\sin y - y \cos x) dx + (x \cos y - \sin x) dy$$

10. Find dz/dt, given $z = x^2 + 3xy + 5y^2$; $x = \sin t$, $y = \cos t$.

Since

$$\frac{\partial z}{\partial x} = 2x + 3y$$
, $\frac{\partial z}{\partial y} = 3x + 10y$, $\frac{dx}{dt} = \cos t$, $\frac{dy}{dt} = -\sin t$

we have
$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt} = (2x + 3y)\cos t - (3x + 10y)\sin t$$

11. Find dz/dt, given $z = \text{In}(x^2 + y^2)$; $x = e^{-t}$, $y = e^t$.

Since

$$\frac{\partial z}{\partial x} = \frac{2x}{x^2 + y^2}, \quad \frac{\partial z}{\partial y} = \frac{2y}{x^2 + y^2}, \quad \frac{dx}{dt} = -e^{-t}, \quad \frac{dy}{dt} = e^{t}$$

we have
$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt} = \frac{2x}{x^2 + y^2}(-e^{-t}) + \frac{2y}{x^2 - y^2}e^{t} = 2\frac{ye^{t} - xe^{-t}}{x^2 + y^2}$$

12. Find $\frac{\partial z}{\partial x}$, given $z = f(x, y) = x^2 + 2xy + 4y^2$, $y = e^{ax}$.

$$\frac{dz}{dx} = f_x + f_y \frac{dy}{dx} = (2x + 2y) + (2x + 8)ae^{ax} = 2(x + y) + 2a(x + 4y)e^{ax}$$

- 13. Find (a) $\frac{dz}{dx}$ and (b) $\frac{dz}{dy}$, given $z = f(x, y) = xy^2 + yx^2$, $y = \ln x$.
 - (a) Here x is the independent variable:

$$\frac{dz}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx} = (y^2 + 2xy) + (2xy + x^2)\frac{1}{x} = y^2 + 2xy + 2y + x$$

(b) Here y is the independent variable:

$$\frac{dz}{dy} = \frac{\partial f}{\partial x}\frac{dx}{dy} + \frac{\partial f}{\partial y} = (y^2 + 2xy)x + (2xy + x^2) = xy^2 + 2x^2y + 2xy + x^2$$

16. Find
$$\frac{\partial z}{\partial r}$$
 and $\frac{\partial z}{\partial s}$, given $z = x^2 + xy + y^2$, $x = 2r + s$, $y = r - 2s$.

Here

$$\frac{\partial z}{\partial x} = 2x + y$$
, $\frac{\partial z}{\partial y} = x + 2y$, $\frac{\partial x}{\partial r} = 2$, $\frac{\partial x}{\partial s} = 1$, $\frac{\partial y}{\partial r} = 1$, $\frac{\partial y}{\partial s} = -2$

Then
$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} = (2x + y)(2) + (x + 2y)(1) = 5x + 4y$$

and
$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} = (2x + y)(1) + (x + 2y)(-2) = -3y$$

17. Find
$$\frac{\partial u}{\partial \rho}$$
, $\frac{\partial u}{\partial \beta}$, and $\frac{\partial u}{\partial \theta}$, given $u = x^2 + 2y^2 + 2z^2$ $x = \rho \sin \beta \cos \theta$. $y = \rho \sin \beta \sin \theta$. $z = \rho \cos \beta$.

$$\frac{\partial u}{\partial \rho} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \rho} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \rho} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial \rho} = 2x \sin \beta \cos \theta + 4y \sin \beta \sin \theta + 4z \cos \theta$$

$$\frac{\partial u}{\partial \beta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \beta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \beta} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial \beta} = 2x\rho\cos\beta\cos\theta + 4y\rho\cos\beta\sin\theta - 4z\rho\sin\beta$$

$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial \theta} = -2x\rho \sin\beta \sin\theta + 4y\rho \sin\beta \cos\theta$$

18. Find
$$\frac{du}{dx}$$
, given $u = f(x, y, z) = xy + yz + zx$; $y = \frac{1}{x}$, $z = x^2$.

$$\frac{du}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx} + \frac{\partial f}{\partial z}\frac{dz}{dx} = (y+z) + (x+z)\left(-\frac{1}{x^2}\right) + (y+x)2x = y+z+2x(x+y) - \frac{x+z}{x^2}$$

19. Use implicit differentiation (formula (49.8)) to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, given $F(x, y, z) = x^2 + 3xy - 2y^2 + 3xz + z^2 = 0$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{2x + 3y + 3z}{3x + 2z}$$
 and $\frac{\partial z}{\partial x} = -\frac{F_y}{F_z} = -\frac{3x - 4y}{3x + 2z}$

20. Use implicit differentiation (formula (49.8)) to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, given $\sin xy + \sin yz + \sin zx = 1$.

Set $F(x, y, z) = \sin xy + \sin yz + \sin zx - 1$ then

$$\frac{\partial F}{\partial x} = y \cos xy + z \cos zx, \quad \frac{\partial F}{\partial y} = x \cos xy + z \cos yz, \quad \frac{\partial F}{\partial z} = y \cos yz + x \cos zx$$

and
$$\frac{\partial z}{\partial x} = -\frac{\partial F/\partial x}{\partial F/\partial z} = -\frac{y\cos xy + z\cos zx}{y\cos yz + x\cos zx}, \quad \frac{\partial z}{\partial y} = -\frac{\partial F/\partial y}{\partial F/\partial z} = -\frac{x\cos xy + z\cos yz}{y\cos yz + x\cos zx}$$

28. Find du/dt, given:

(a)
$$u = x^2y^3$$
 $x = 2t^3$, $y = 3t^2$

Ans.
$$6xy^2t(2yt + 3x)$$

(b)
$$u = x \cos y + y \sin x \ x = \sin 2t$$
, $y = \cos 2t$

Ans.
$$2(\cos y + y \cos x) \cos 2t - 2(-x \sin y + \sin x) \sin 2t$$

(c)
$$u = xy + yz + zx$$
; $x = e^t$, $y = e^{-t}$, $z = e^t + e^{-t}$

Ans.
$$(x + 2y + z)e^{t} - (2x + y + z)e^{-t}$$

24. Find the total differential of the following functions:

(a)
$$z = xy^3 + 2xy^3$$

Ans.
$$dz = (3x^2 + 2y^2) dx + (x^2 + 6y^2) dy$$

(b)
$$\theta = \tan^{-1} \left(\frac{y}{x} \right)$$

(c) $z = e^{x^2 - y^2}$

Ans.
$$d\theta = \frac{x \, dy - y \, dx}{x^2 + y^2}$$

(c)
$$z = e^{x^2 - y^2}$$

Ans.
$$dz = 2z(x dx - y dy)$$

(d)
$$z = x(x^2 + y^2)^{-1/2}$$

Ans.
$$dz = \frac{y(ydx - xdy)}{(x^2 + y^2)^{3/2}}$$

24. (a) is not correct actual function is $z = x^3 y + 2xy^3$