LISTING OF THE CLAIMS (including amendments, if any)

1. (currently amended) A method implemented in a computer system, for clustering a string, the string including a plurality of characters, the method including:

identifying R unique n-grams T1...R in the string;

for every unique n-gram Ts:

if a frequency of $T_{S}\, \text{in}$ a set of n-gram statistics is not greater than a first threshold;

clustering the string with a cluster associated with Ts;

otherwise:

for every other n-gram Tv in the string T1...R, except S:

concluding that the frequency of n-gram Tv is greater than the first threshold, and in response:

if the frequency of an n-gram pair T_{S} - T_{V} is not greater than a second threshold:

clustering the string with a cluster associated with the n-gram pair $T_{S^*}T_{V^*}; \label{eq:Ts-Ty}$

otherwise:

for every other n-gram Tx in the string T1...R. except S and y:

clustering the string with a cluster associated with an n-gram triple $T_{S^{\ast}}T_{V^{\ast}}T_{X^{\ast}}$

where $T_{1...R}$ is a set of n-grams, R is the number of elements in $T_{1...R}$, and T_S , T_V , and T_S are members of $T_{1...R}$, and T_S , T_S , and T_S , T_S and T_S are integer indexes to identify members of $T_{1...R}$.

- $2.\ (original)\ \ The\ method\ of\ claim\ 1\ further\ including\ compiling\ n\hbox{-}gram\ statistics.}$
- 3. (original) The method of claim 1 further including compiling n-gram pair statistics.

4-5. (cancelled)

 (<u>currently amended</u>) A method implemented in a computer system, for clustering a string, the string including a plurality of characters, the method including:

identifying R unique n-grams T1...R in the string;

for every unique n-gram Ts:

if a frequency of $T_{S}\, \text{in}$ a set of n-gram statistics is not greater than a first threshold;

clustering the string with a cluster associated with Ts;

otherwise:

for i = 1 to Y:

for every unique set of i n-grams Tu in the string T1...R. except S:

if the frequency of the n-gram set $T_{S^{\ast}}T_{U}$ is not greater than a second threshold:

clustering the string with a cluster associated with the n-gram set T_{S} - T_{U} :

if the string has not been associated with a cluster with this value of Ts:

for every unique set of Y+1 n-grams T_{UY} in the string T_{1...R. except S}:

clustering the string with a cluster associated with the Y+2 n-gram group $T_{\rm S}$ - $T_{\rm LW}$.

- where $T_{1...R}$ is a set of n-grams, R is the number of elements in $T_{1...R}$, T_S and T_U are members of $T_{1...R}$, T_{UY} is a subset of $T_{1...R}$, S, V, and X are integer indexes to identify members of $T_{1...R}$ and I and I are integers.
- 7. (original) The method of claim 6 where Y = 1.
- 8. (original) The method of claim 6 further including compiling n-gram statistics.
- 9. (original) The method of claim 6 further including compiling n-gram group statistics.

10. (<u>currently amended</u>) A computer program, stored on a tangible storage medium, for use in clustering a string, the program including executable instructions that cause a computer to:

identify R unique n-grams $T_{1\dots R}$ in the string;

for every unique n-gram Ts:

if a frequency of Ts in a set of n-gram statistics is not greater than a first threshold;

cluster the string with a cluster associated with Ts;

otherwise:

for every other n-gram Tv in the string T1...R, except S:

concluding that the frequency of n-gram $T_{\rm V}$ is greater than the first threshold, and in response:

if the frequency of an n-gram pair T_{S} - T_{V} is not greater than a second threshold:

cluster the string with a cluster associated with the n-gram pair $T_{S^{-}}$ $T_{V^{+}}$

otherwise

for every other n-gram T_X in the string $T_{1\dots R,\,\text{except S and }V}$:

cluster the string with a cluster associated with an n-gram triple Ts-Tv-Tx:

where $T_{1...R}$ is a set of n-grams, R is the number of elements in $T_{1...R}$, and T_S , T_V , and T_X are members of $T_{1...R}$, and S, V, and X are integer indexes to identify members of $T_{1...R}$.

- 11. (original) The computer program of claim 10 further including executable instructions that cause a computer to compile n-gram statistics.
- 12. (original) The computer program of claim 10 further including executable instructions that cause a computer to compile n-gram pair statistics.