INTERACÇÃO PESSOA MÁQUINA

AULA 6

A PSICOLOGIA DAS COISAS DO QUOTIDIANO CONCEPTUALIZAÇÃO DA INTERACÇÃO

©2012-...LÍGIA FERREIRA BASEADO EM MATERIAL ©ALAN DIX ©SALVADOR ABREU @INTRODUÇÃO DESIGN DE INTERFACES

- Nos primeiros tractores agrícolas:
 - ⇒centro de gravidade elevado e largura curta entre eixos
 - ⇒ terreno acidentado → acidente!
 - ⇒Erro humano?
 - ightharpoonupProvavelmente, erro de concepção ightharpoonup os tractores modernos têm baixo centro de gravidade e grande eixo traseiro.
- Frustrações diárias
 - ⇒É capaz de utilizar todas as funções (sem ler o manual do utilizador) do seu:
 - ⇒smart-watch
 - → telefone móvel
 - → Microondas
 - → Vídeo/DVD...

- "Projector de slides "Leitz Pravodit"
 - →Apenas um botão para controlar a apresentação
 - ⇒Durante a apresentação, os slides por vezes avançam e por vezes retrocedem!
 - ⇒Se tivermos acesso ao manual do utilizador:
 - breve aperto do botão → slides vão para a frente
 - longo aperto do botão → desliza para trás
 - → Que desenho elegante!?!
 - 1 botão => 2 funções opostas
 - →Como era suposto alguém que usa o projector pela primeira vez saber isto?!??
 - →Os manuais do utilizador raramente estão ao lado do projector...

- Anfiteatro Louis-Laird em Sorbonne
 - →O tecto está cheio de pinturas magníficas, orientadas para o conferencista de cabeça para baixo para a audiência!
 - ⇒ecrã de projecção é eléctrico: tem ser controlado a partir de uma sala separada.
 - ⇒porque é que a pessoa que tenta baixar ou levantar o ecrã não pode ver o que está a fazer?

 Imagine que está sentado no banco da figura e puxa a alavanca apontada pela seta branca...

O que espera que aconteça?

→O banco pode deslizar para trás ou para a frente de acordo com o tipo de força que se aplica.

- Surpresa!, ...o assento solta-se, para que possa ser removido.
- A maioria das pessoas não esperaria este resultado, que pode até ser perigoso.
- Sugestão de design:
 - →Ninguém quer ejectar o banco enquanto está sentado nele. Portanto, este controlo (alavanca) deve ser colocado noutro local, de preferência inatingível por alguém sentado no assento.

- Este desenho de torneira é tão mau que requer instruções para ser utilizado de forma apropriada:
 - →dispositivo comum
 - → funcionamento pouco comum
 - → controlo oculto
- Sugestão de design:
 - → frequentemente, quando um dispositivo comum requer instruções de utilização ...significa que existem problemas de concepção.

• Se colocarmos um CD neste leitor de CD e carregarmos no "play" buttton, nada acontece. ???

• Os botões de controlo para o leitor de CD estão ao lado do leitor de cassetes e viceversa.

- Sugestão de design
 - →As pessoas esperam encontrar os controlos para um determinado dispositivo ao lado do dispositivo que controlam. É assim que deve ser!

- A figura mostra um botão de controlo dum candeeiro de secretária.
- O botão tem 3 posições: baixa intensidade, (I), apagado (O) e alta intensidade (II).
- O que é que está errado?
 - ⇒Para alterar a intensidade da luz, é preciso desligá-la primeiro.
 - → Torna-se difícil comparar as 2 intensidade (I) e (II).

• A figura mostram um painel de controlo de um elevador num hotel.

 Para mover o elevador para o piso desejado, é necessário premir o botão correspondente e depois deslizar o cartão do quarto na fenda vertical (por esta ordem). Quem o diria?

- Sugestão de design
 - →Ajudar o utilizador a reconhecer o leitor de cartões, tornando-o visível:
 - rotular o leitor de cartões, ou ainda melhor ...
 - utilizando um tipo de leitor de cartões mais familiar e menos discreto.
 - → Como é mais provável que um hóspede carregue num botão do que insira o seu cartão de quarto, o elevador pode pedir ao hóspede para inserir o seu cartão de quarto depois de carregar num botão. (aumentando (ou piscando) a iluminação do leitor de cartões depois de premido o botão).

• Onde está o velocímetro?

Aqui, não há dúvidas

- pretendo digitar : rm *~ para remover ficheiros de backup do Emacs.
- Na realidade digitei rm * ~ que remove tudo!
- Não existe a opção Undo ("desfazer") ...

- Reportado em [Lee, 1992]:
 - ⇒Em 1988, o USS Vincennes abateu um Airbus Iran Air A-300 com 290 pessoas a bordo.
 - →O sistema de armas Aegis a bordo do Vincennes tinha um software sofisticado para identificar e localizar potenciais alvos.
 - No entanto, o ecrá grande não mostrava informações sobre a altitude a altitude tinha de ser lida a partir de consolas separadas.
 - →O Airbus, que se tinha nivelado a 12500 pés, foi considerado um caça F-14 descendo de 9000 pés.
 - →Ironicamente, um navio de escolta com equipamento mais antigo foi capaz de ler a altitude do avião de forma bastante correcta, mas não pôde intervir a tempo.

 Ao definir o tamanho da cache no IE 4.0, o utilizador só estava autorizado a especificar uma percentagem do seu disco rígido. A configuração mais pequena é de 1%.

• 10GB -> 100MB

- Visual Basic 5.0 utiliza uma "list box" com apenas 2 itens (!)
- · Os radio buttons seriam melhores.

INTERFACE HALL OF SHAME

- Os separadores em linha (controlos de tabulação) estão entre os melhores elementos de interface.
- · Os separadores em várias linhas são talvez os piores elementos de interface.
- Clicar num dos separadores a partir de outro que não a linha da frente provoca uma grande reorganização de todo o conjunto de separadores. Seleccionando um dos separadores na linha.

• Um número diferente de separadores por linha e múltiplos separadores para cada função também não são úteis!

INTERFACE HALL OF SHAME

- As pessoas formam modelos mentais sobre a forma como as coisas funcionam, como os eventos acontecem ou como as pessoas se comportam Modelos conceptuais.
- Os modelos conceptuais advêm de:
 - → Causalidade
 - → Familiaridade com dispositivos semelhantes
 - ⇒Experiência e formação
 - →Instruções
 - →Interacção
- Um bom modelo conceptual permite-nos prever os efeitos das nossas acções.

- Exemplo: Frigorífico combinado
 - → 2 compartimentos
 - congelador
 - frigorifico
- 2 coisas a fazer:
 - ⇒ajustar a temperatura do compartimento de congelação
 - ⇒ajustar a temperatura do compartimento frigorífico
- 2 controlos

- os 2 controlos sugerem um modelo conceptual para operar um combinado de dois compartimentos.
- o modelo conceptual aparente, resultante dos controlos do dispositivo e das instruções, sugere que cada controlo é responsável pela temperatura do compartimento com o mesmo nome.

- ...mas este modelo conceptual não corresponde à forma como o dispositivo funciona na realidade.
- o modelo conceptual real: existe apenas um termóstato e um único mecanismo de arrefecimento. Um controlo ajusta a regulação do termóstato, o outro a proporção relativa de ar frio enviado para cada um dos dois compartimentos.

System System Model

- Modelo do sistema (ou modelo de implementação) = como funciona o sistema
 - ⇒as suas partes constituintes e a forma como trabalham em conjunto para fazer o que o sistema faz

Modelo da interface (imagem do sistema) é o modelo que o sistema apresenta ao utilizador.

 Modelo do utilizador (ou modelo conceptual) é a forma como o utilizador pensa que o sistema funciona.

• Modelo do designer é o modelo que o desenhador da interface pretendeu transmitir ao utilizador.

 O desenhador espera que o modelo do utilizador seja semelhante ao modelo de desenho.

 Mas,... o designer não comunica directamente com o utilizador.

• A comunicação é feita através do modelo de interface.

• O modelo de interface deve tornar o modelo de desenho claro e consistente para o utilizador (evitando que o utilizador crie um modelo conceptual errado).

- O modelo de interface deve ser:
 - → Simples
 - →Apropriado: reflectir o modelo de tarefa do utilizador (aprendido com a análise de tarefa)
 - → Bem-comunicado
- O modelo de interface pode ser bastante diferente do modelo do sistema.

- Tarefas do designer:
 - ⇒Escolher o modelo conceptual adequado.
 - → Comunicá-lo correctamente ao utilizador.

COMO COMUNICAR AO UTILIZADOR UM MODELO CORRECTO?

- Affordances(possibilidades)
- Mapeamento
- Visibilidade
- Feedback
- Constrangimentos/Restrições

AFFORDANCES

- Affordances propriedades percebidas e reais de uma coisa que determinam como a coisa pode ser usada.
 - → A aparência pode sugerir a utilização:
 - a cadeira é para sentar
 - botão(push) é para premir
 - list box é para seleccionar
 - botão(rodar) é para virar
- A aparência deve ser utilizada para dizer ao utilizador o que deve fazer.
- Quando coisas simples precisam de instruções, o desenho falhou!

AFFORDANCES

- Portas
 - →Podemos abri-las ou fechá-las
 - → Como?
 - empurrando para lá?
 - puxando para cá?
 - Deslizando para a direita? Para a esquerda

 As respostas devem ser dadas pelo desenho, sem necessidade de palavras ou símbolos, sem necessidade de tentativas.

AFFORDANCES

• Bom desenho... a barra vertical sugere puxar; a barra horizontal sugere empurrar.

MAPPING

- Mappings (mapeamentos) relação entre os controlos e os seus efeitos sobre o sistema.
- Mapeamentos naturais utilizam analogias físicas e convenções culturais.
- Princípio dos mapeamentos naturais: a relação entre os controlos e as acções deve ser clara para o utilizador.
- Ex:
 - ⇒para virar o carro para a direita, rodamos o volante no sentido dos ponteiros do relógio (o seu topo move-se para a direita)
 - →Mover o controlo para cima para mover um objecto para cima.
 - → Um som mais alto para representar uma quantidade maior.

MAPPING

- Mapeamento arbitrário: vários arranjos possíveis; necessidade de etiquetas ou memorização.
- Mapeamento parcial: apenas(!) 4 arranjos possíveis, mas ainda é possível a confusão.
- Mapeamento natural: sem ambiguidade, sem necessidade de rótulos, tempo de aprendizagem ou memória.

VISIBILIDADE

- As partes importantes do sistema devem ser visíveis.
- Onde está o papel higiénico?

VISIBILIDADE

• Onde está o papel higiénico?

As respostas devem ser dadas pelo desenho; não há necessidade de rótulos e não há necessidade de experimentação, está à vista:Visibilidade

VISIBILIDADE

- A causalidade existe quando algo que acontece depois de uma acção parece ser causado por essa acção.
- Dois tipos de falsa causalidade:
 - → Coincidências
 - Tocar no teclado no momento exacto em que o computador falha, faz-nos sentir que fizemos qualquer coisa errada.
 - Executar uma nova aplicação imediatamente antes de o computador crashar, achamos que foi a aplicação a causa
 - →Os efeitos invisíveis geram confusão
 - Quando uma acção não tem efeito visível, podemos concluir que foi ignorada e repeti-la.
 - Clicar repetidamente num botão sem qualquer alteração perceptível do sistema.
 - → Necessidade de FEEDBACK!!!

FEEDBACK

- As acções devem ter um feedback visível imediato!
- Imaginemos:
 - ⇒falar sem ouvir a própria voz
 - →desenhar com um lápis que não deixa marca
- Tipos de feedback:
 - → Visual
 - →Áudio
 - → Háptico
- EX:
 - →Alteração da imagem apresentada por movimento da barra vertical de scroll.
 - →Os objectos arrastados seguem o cursor.

RESTRIÇÕES

- + possibilidades => + dificuldade em gerir novas situações.
- As restrições restringem o número de possibilidades.
- Tipos:
 - ⇒Físicas: baseiam-se na forma do objecto; limitam possíveis operações; mais eficazes quando são visíveis.
 - ⇒Semânticas: contam com o nosso conhecimento da situação e do mundo.
 - → Culturais: baseiam-se em convenções culturais.
 - →Lógicas: exploram relações lógicas. O mapeamento natural proporciona restrições lógicas (relação lógica no espaço). Os affoedances sugerem possibilidades.
- Restrições: reduzir as alternativas.

CONSTRAINTS

RESTRIÇÕES

- As convenções culturais podem variar:
 - →Interruptores de luz:
 - EUA: para baixo -desligado
 - UK: para baixo ligado
 - → Torneiras:
 - EUA: rodar para esquerda abrir
 - UK: rodar para a esquerda fechar
 - → Vermelho:
 - EUA: perigo
 - Egipto: morte
 - Índia: vida
 - China: felicidade
 - ...

RESTRIÇÕES

- Restrições físicas:
 - ⇒o capacete é para a cabeça(não cabe em mais lado nenhum)
 - → a viseira do capacete tem uma única orientação correcta
- Restrições semânticas
 - ⇒o conductor vai sentado na mota, virado para a frente(para a estrada)
 - ⇒as etiquetas são colocadas de forma a poderem ser lidas(não de cabeça para baixo)
- Restrições culturais
 - ⇒as luzes vermelhas estão na parte de trás(luzes de stop)
 - ⇒as luzes amarelas ou brancas são a cor padrão para os faróis
 - → veículo policial tem frequentemente uma luz azul no topo
- Restrições lógicas
 - ⇒se houver apenas uma luz amarela, e se as luzes vermelhas estiverem na retaguarda, as luzes azuis são os pisca-pisca.

MODELOS CONCEPTUAIS

- As tesouras fornecem um bom modelo conceptual:
 - → Affordances
 - buracos para colocar os dedos
 - → Restrições
 - O buraco grande sugere vários dedos e um pequeno buraco para o polegar.
 - → Mapeamento
 - entre dedos e buracos
- Modelo conceptual
 - →As partes operacionais são visíveis e as implicações são claras. O modelo conceptual é tornado claro.

MODELOS CONCEPTUAIS

- Um relógio digital com vários botões não fornece um bom modelo conceptual.
 - → Affordances
 - sabemos como usar as botões(carregar),...mas o que é que eles fazem?
 - → Mapeamento
 - nenhuma relação evidente entre os botões e as suas funções
 - →Sem restrições
 - → Conhecimentos anteriores
 - não há semelhança com relógios mecânicos.
 - → Modelo conceptual
 - Deve ser formado a partir de instruções(manual precisa-se)

DIFICULDADES NA INTERACÇÃO

- Golfo de execução
 - →Dificuldade em escolher as acções ou em executá-las
 - →Affordances, restrições, mapeamentos são uma ajuda preciosa
- Golfo de avaliação
 - →Dificuldade em determinar os efeitos das nossas acções
 - →O feedback é essencial aqui

• ERRO

- ⇒forma-se uma intenção errada
- ⇒Geralmente relacionado com um modelo conceptual que não é correcto

LAPSO

- ⇒erro na realização da intenção (execução errada)
 - Erros de descrição
 - Erros de captura
 - Erros de modo

- Erros de descrição
 - → A acção pretendida é substituída por outra acção com muito em comum
 - Deitar sumo de laranja nos seus cereais
 - Atirar a camisa para a sanita em vez do cesto da roupa suja
 - "atirar a camisa para a parte de cima do recipiente"
 - →Acontece quando a descrição interna da intenção não é suficientemente precisa.
 - ⇒Devem-se evitar acções com descrições muito semelhantes
 - grandes filas de interruptores iguais

- Erros de captura
 - →Uma sequência de acções é substituída por outra sequência que começa da mesma forma. Normalmente a primeira é novidade e a segunda é bem conhecida.
 - Saio de sua casa e quando dou por mim estou a ir para a Universidade, e não para onde queria ir
 - Vi :comando wq
- Evitar sequências de acção com os mesmos prefixos

• Erros de modo

- →Ocorrem quando os dispositivos têm diferentes modos de funcionamento e a mesma acção tem significados diferentes, dependendo do modo seleccionado
 - Modo de inserção da Vi vs. modo de comando
 - modo de maiúsculas(CAPS LOCK)

• Evitar erros de modo

- → Eliminar modos
- → Visibilidade do modo
- → modos temporários
- → Conjuntos de acção disjuntos nos diferentes modos

• Falta de consistência

- ⇒Quando as pessoas desconhecem determinados sistema, tendem a derivar a operacionalidade por analogia com sistemas que lhes pareçam semelhantes
- ⇒É um poderoso método de raciocínio humano(a analogia) no entanto:
- →... pode conduzir a erros se o mapeamento não for consistente.

- As pessoas cometem erros frequentemente
 - → Vamos desenhar para o erro!
 - → Assumir: Todos os possíveis erros serão cometidos!
- Conceber sistemas exploratórios, com a possibilidade de desfazer as acções(UNDO)

METÁFORAS

Uma metáfora

- →Outra abordagem ao problema do modelo conceptual
- →Relacionar a informática com outras actividades do mundo real é uma técnica de ensino eficaz
 - Ambiente de trabalho
 - Caixote do lixo
- muitas boas interfaces não se baseiam em metáforas
 - Hyperlink
 - Janelas redimensionáveis

METÁFORAS

- Problemas
 - → Difícil encontrar uma boa metáfora
 - → Constrangimento
 - →Algumas tarefas não cabem numa dada metáfora
 - → Diferenças culturais
- O uso de uma metáfora não é sequer garantia de uma boa comunicação do modelo conceptual:
 - → RealCD: maus affordances, visibilidade

METÁFORA

Interface Hall of Shame

METÁFORA

DISTRIBUIÇÃO DO CONHECIMENTO

- Conhecimento na cabeça e no mundo
 - ⇒parcialmente na cabeça
 - ⇒parcialmente no mundo
 - ⇒parcialmente em restrições
- Conhecimento no mundo
 - ⇒reduz a necessidade de aprendizagem e esforço mental.
 - ⇒EX:
 - →a interface pode mostrar o formato de entrada:
 - >Por favor introduza a data (aaaa/mm/dd):_
 - O formato das ranhuras apenas permite o objecto correcto.

- inconsistência: a scrollbar normalmente é usada para deslocar o conteúdo de uma janela, não para selecionar
- Affordances: movimento contínuo; não selecção discreta.
- Os utilizadores frequentes não têm vantagens: como encontrar um modelo utilizado anteriormente?
- OKAY?

• Sugestões para corrigir os problemas da interface?

- Affordance: uma caixa sugere a selecção de um modelo.
- O acesso aleatório aos modelos disponíveis é trivial.
- Não há necessidade de mensagens de ajuda.

