(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

- 1,000 MARIA (1,000 MARIA (1,000

(43) 国際公開日 2003 年11 月6 日 (06.11.2003)

PCT

(10) 国際公開番号 WO 03/091808 A1

(51) 国際特許分類7:

(21) 国際出願番号:

G03G 9/097 PCT/JP03/04961

(22) 国際出願日:

2003 年4 月18 日 (18.04.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-126540 2002 年4 月26 日 (26.04.2002) JP

- (71) 出願人 (米国を除く全ての指定国について): 株式会社 上野製薬応用研究所 (KABUSHIKI KAISHA UENO SEIYAKU OYO KENKYUJO) [JP/JP]; 〒541-0043 大 阪府大阪市中央区高麗橋2丁目4番8号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 上野隆三

(UENO,Ryuzo) [JP/JP]; 〒662-0038 兵庫県 西宮市 南郷町 10-27 Hyogo (JP). 北山 雅也 (KI-TAYAMA,Masaya) [JP/JP]; 〒665-0881 兵庫県宝塚市山本東3-76 Hyogo (JP). 南 憲次 (MINAMI,Kenji) [JP/JP]; 〒509-0526 大阪府 泉南市 男里3-15-2 Osaka (JP). 若森浩之 (WAKAMORI,Hiroyuki) [JP/JP]; 〒669-3105 兵庫県 氷上郡 山南町北太田50 Hyogo (JP). 米谷 宜宏 (YONETANI,Nobuhiro) [JP/JP]; 〒663-8022 兵庫県 西宮市日野町10-17 Hyogo (JP).

- (74) 代理人: 河宮 治, 外(KAWAMIYA,Osamu et al.); 〒 540-0001 大阪府 大阪市 中央区城見 1 丁目 3 番 7 号 I MPビル 青山特許事務所 Osaka (JP).
- (81) 指定国 (国内): CN, KR, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

/続葉有/

(54) Title: CHARGE CONTROLLERS

(54) 発明の名称: 電荷制御剤

(57) Abstract: The invention provides safe charge controllers which exhibit excellent negative chargeability and are excellent in the dispersibility in fixing resins or the compatibility with such resins and applicable even to color toners, specifically, charge controllers consisting of naphthol derivatives represented by the general formula [I] or salts thereof; and electrophotographic toners containing the charge controllers.

(57) 要約:

本発明は、優れた負帯電性を有し、定着用樹脂中への分散性および相溶性が良好で、カラートナーへ用いることもでき、かつ安全な電荷制御剤を提供する。具体的には、下記一般式 [I]で表されるナフトール誘導体およびその塩類からなる電荷制御剤、および該電荷制御剤を含有する電子写真用トナーを提供する。

WO 03/091808 A1

添付公開書類: — 国際調査報告書 2文字コード及び他の略語については、定期発行される各*PCT*ガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明 細 書

電荷制御剤

5 技術分野

10

15

20

本発明は、ナフトール誘導体からなる負電荷制御剤に関する。本発明はさらにこの電荷制御剤を含有する電子写真用トナーに関する。

背景技術

複写機等の電子写真プロセスにおいて使用される現像剤として、キャリアとトナーとから成る二成分系現像剤、およびキャリアを必要としない一成分系現像剤が知られている。いずれの現像剤においても、用いられるトナーとしては、従来から、定着用樹脂中に顔料、染料などの着色剤を分散させた微粉体が使用されている。

このトナーの重要な特性の一つに、摩擦帯電性が挙げられる。すなわち、キャリアや帯電付与部材などとの接触によって、正または負の適正なレベルの帯電量を生じること、およびその帯電量が連続使用時や悪環境下においても安定していることが、特にトナーに要求される性能である。トナーの主成分である定着用樹脂自体も通常摩擦帯電性を有するものが用いられるが、その帯電量は十分でないため、現像によって得られる画像はかぶり易く、不鮮明なものとなる。そこで、トナーにさらに摩擦帯電性を付与するために、電荷制御剤と呼ばれる物質を添加し、適正な帯電量を有するように調整するのが一般的である。

電子写真用トナーの電荷制御剤としては、一般に、正帯電性のニグロシン系染料、4級アンモニウム塩、負帯電性の含金属モノアゾ染料、サリチル酸金属錯体、 銅フタロシアニン顔料等が知られ、実用化されている。

25 発明の開示

(発明が解決しようとする技術的課題)

上記の従来の電荷制御剤、特に負帯電性の電荷制御剤は、電荷付与能力は高い ものの、染料、顔料等を主体としているため、その特性上、強い着色力を有し、 カラートナーには適さないものであった。

10

15

また、金属錯体であるため、樹脂中への分散性や相溶性が悪く、得られるトナーの帯電量が均一でなかったり、トナーから離脱してキャリアや現像スリープを 汚染しやすく、このようなトナーを用いると、連続複写時に帯電量が低下し、画 像濃度の低下を引き起こしやすいという欠点を有していた。

さらに、金属錯体などの含金属化合物であるため、その複雑な構造上コストが 高く、また、クロム等の金属を含むため人体や環境への影響が問題とされ、金属 を含まないメタルフリーの電荷制御剤の開発が望まれていた。

本発明は、上記問題を解決するために、優れた負帯電性を有し、定着用樹脂中への分散性および相溶性が良好であり、カラートナーへの適用も可能であり、人体や環境にも安全な電荷制御剤を提供することを目的とする。

また、本発明は、トナー粒子が短時間で均一に帯電し、経時的にも安定した帯 電量を有し、画像濃度が高く、かぶりの無い高品質の画像が得られる電子写真用 トナーを提供することを目的とする。

(その解決方法)

本発明者等は、2-ヒドロキシナフタレン-3,6-ジカルボン酸を出発物質としたナフトール誘導体を合成し、その物性等について評価したところ、優れた負帯電性能を有しており、電子写真用トナーの電荷制御剤に適していることを見出し、本発明を完成するに至ったものである。

すなわち、本発明は、一般式 [1]

 示す)からなる群から選択される基、

Rは、水素原子、アルカリ金属、炭素原子数が1~6の分岐を有していてもよく、 置換基を有していてもよいアルキル基およびアシル基、およびフェニルアルキル 基からなる群から選択される基、

Qは、炭素原子数が1~6の分岐を有していてもよいアルキル基およびアルコキシ基、ハロゲン原子、ニトロ基、ニトロソ基、アミノ基およびスルホ基からなる 群から選択される基、

mは、0~3の整数を示す。]

20

25

で表されるナフトール誘導体およびその塩類からなる電荷制御剤に関する。

10 上記式中、Yのエステル化されたカルボキシル基としては、炭素原子数 1~6 のアルコキシカルボニル基 (例えばメトキシカルボニル基、エトキシカルボニル基、プロピルオキシカルボニル基、イソプロピルオキシカルボニル基、プトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基等)、フェノキシカルボニル基またはフェナシルオキシカルボニル基が挙げられ、これらの基に含まれる芳香族基は置換基を有していてもよい。

また基Xとしては、分岐を有していてもよく、置換基を有していてもよく、不飽和結合を有していてもよい炭化水素基、好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、プロピル、プチル、ペンチル、ヘキシル、デシル、ドデシル、ラウリル、ステアリル等、炭素原子数2~6のアルケニル基、例えばビニル、アリル、プロピレニル、プチレニル、ペンチレニル、ヘキシレニル等、置換基を有していてもよい芳香族基、例えばフェニル基、ナフチル基、アントリル基、アントラキノニル基、ピレニル基、または置換基を有していてもよい共役二重結合を有する複素環基、例えばベンズイミダゾロニル基、カルバゾリル基、ピリジル基、チアゾリル基、ベンゾチアゾリル基、イミダゾリル基、インドリル基、チオフリル基、フェノチアジニル基、アクリジニル基、キノリニル基などが例示される。

これらの基の置換基としては、例えばハロゲン原子、ハロゲン化低級アルキル 基、ニトロ基、低級アルキル基、低級アルコキシ基(例えばメトキシ基)、シア ノ基、フェニル基、ナフチル基、フェノキシ基、フリル基、アミノ基、トリアジ

10

15

25

ルアミノ基、ピリミジルアミノ基、ピリダジニルアミノ基、ピリジルアミノ基、ベンゾイルアミノ基、スルホ基、水酸基、エステル化されたカルボキシル基(例えばアルコキシカルボニル基、フェノキシカルボニル基)、アミド化されたカルボキシル基(例えばフェニルアミノカルボニル基)、アルキルアミノスルホニル基、アリール基を有することのある炭素数2~6のアルケニル基等が挙げられる。これらの置換基が、芳香環を含む場合には、その環上にさらに1個以上の別の置換基、例えばハロゲン原子、低級アルキル基、低級アルコキシ基、フェニル基、シアノ基などを有していてもよい。

なお、本明細書において、「低級」とは、炭素原子数が1~6であるものを示す。

「芳香族基」は6員の単環または縮合環であって、縮合環の環数4までの芳香族基を示す。

「共役二重結合を有する複素環基」は1以上のN、SまたはOを含み、共役二 重結合を有する5員乃至6員の単環または縮合環である複素環基。縮合環を形成 する場合は、環数6までのものとする。

一般式 [I] で表されるナフトール誘導体のナフタレン環は、置換基としてQを有していてもよい。Qは任意に、炭素原子数が1~6の分岐を有していてもよいアルキル基およびアルコキシ基、ハロゲン原子、ニトロ基、ニトロソ基、アミノ基およびスルホ基からなる群から選択される。

20 置換基の数mは、通常0であるが3個まで有してもよい。

Rは水素原子、アルカリ金属、炭素原子数が1~6の分岐を有していてもよく、置換基を有していてもよいアルキル基およびアシル基、およびフェニルアルキル基からなる群から選択される。Rの置換基としては、例えばハロゲン原子、低級アルキル基、低級アルコキシ基、アミノ基、シアノ基、ニトロ基、ニトロソ基が挙げられる。

一般式[I]で表わされるナフトール誘導体の塩としては、これに限定されないが、例えばナトリウム塩、カリウム塩などのアルカリ金属塩が例示される。

本発明におけるナフトール誘導体の帯電量を後述するブローオフ法によって測定した結果、帯電量が負の値を示し、かつその絶対値が10.0 μ C/g以上、

好ましくは 50.0μ C/g以上と高い帯電量を示すものであった。本発明におけるナフトール誘導体としては、Yが式ー(CONH)n-Xで表わされ、nが1、Xが炭素原子数 $8\sim18$ のアルキル基であるものが好ましく、中でも以下の化合物が特に好ましい。

5

2

(I)

3

10

上記ナフトール誘導体は、以下の方法によって製造することができる。

まず、WO98/17621 (特願平10-519205) に記載の方法、即ち2-ナフトールカリウムと二酸化炭素を反応させ、酸析分離後、必要により精製することにより2-ヒドロキシナフタレン-3,6-ジカルボン酸を得る。

15

次いで、得られた2ーヒドロキシナフタレンー3,6ージカルボン酸をN,Nージメチルホルムアミドなどの溶媒中で、ヨウ化メチルと反応させることにより2ーヒドロキシナフタレンー3,6ージカルボン酸の3位メチルエステル体を得る。

これをキシレン、スルホラン、テトラヒドロフランなどの溶媒中で塩化チオニ 20 ルなどと反応させて酸クロリドを得、得られた酸クロリドを所定のアルキルアミ

10

15

20

ンと反応させることにより2ーヒドロキシナフタレン-3, 6-ジカルボン酸の 3位メチルエステル、6位アルキルアミド体を得る。

さらにこれを、水性アルコール溶媒中で水酸化ナトリウムなどの塩基と反応させ、反応液を塩酸などにより中和した後、析出物をろ過、洗浄、乾燥することにより、目的とする2ーヒドロキシナフタレン-3,6-ジカルボン酸の6位アルキルアミド体を得ることができる。

次に、本発明の電荷制御剤を含む電子写真用トナーについて説明する。本発明の電荷制御剤は、一成分現像剤、二成分現像剤いずれを製造する際にも好適に用いられる。電子写真用トナーは通常、定着用樹脂中に着色剤、電荷制御剤などの添加剤を分散させて製造される。本発明のトナーは、電荷制御剤として上記に示したナフトール誘導体を用いることの他は、従来のトナーと同様にして調製することができる。

定着用樹脂としては、例えばスチレン系重合体、アクリル系重合体、スチレンーアクリル系共重合体、スチレンーメタクリル酸エステル共重合体、スチレンープロピレン共重合体、スチレンーブタジエン共重合体、スチレンマレイン酸共重合体、オレフィン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリビニルブチラール樹脂等を単独または混合して使用することができる。

着色剤としては、例えば、カーボンブラック、ランプブラック、鉄黒、群青、 ニグロシン染料、アニリンブルー、フタロシアニンブルー、フタロシアニングリ ーン、ハンザイエロー、クロムイエロー、ローズベンガル、トリアリールメタン 系染料、モノアゾ系、ビスアゾ系染顔料等を挙げることができる。着色剤として は、トナーの目的とする色に応じて選択すればよい。

着色剤の添加量は、定着用樹脂100重量部に対して1~20重量部、特に2~10重量部であるのが好ましい。

25 電荷制御剤としては、一般式 [I]で表されるナフトール誘導体が用いられ、 その添加量は、定着用樹脂100重量部に対して0.1~10重量部、特に0.1 ~5重量部が好ましい。電荷制御剤の添加量が0.1重量部を下回ると、帯電性 付与効果が十分に発現されず、また10重量部を上回ると、トナーの品質が低下 する傾向がある。

15

25

なお、電荷制御剤としては、一般式 [I] で表されるナフトール誘導体ととも に、公知の他の電荷制御剤、例えば、含金属モノアゾ染料、サリチル酸金属錯体 および銅フタロシアニン顔料等を併用してもよい。

その他、トナーの定着性や流動性を向上させるため、低分子量オレフィン重合 体や微粉末シリカ等の添加剤を含有せしめてもよい。さらに、本発明の電子写真 用トナーは、本発明の目的に反しない限り、電子写真用トナーへ添加することが 従来知られているいかなる成分を含有させてもよい。

トナー粒子径は、特に限定されないが 20μ m以下、好ましくは 10μ m以下であるのがよい。

本発明の電子写真用トナーは、従来公知のいかなる方法で製造してもよい。具体的にはこれに限定されないが、上記の各成分を乾式ブレンダー、ヘンシェルミキサー、ボールミル等によって均質に予備混練して得られた混合物を、例えばバンバリーミキサー、ロール、一軸または二軸の押出混練機等の混練装置を用いて均一に溶融混練した後、得られた混練物を冷却して粉砕し、必要に応じて分級することで製造される。この他に重合法、マイクロカプセル重合法、スプレードライ法等、公知の方法で製造することができる。

本発明の電荷制御剤は、樹脂との相溶性に優れるため、他の成分とともに樹脂中に内添し、溶融混練するのがよいが、定着用樹脂、着色剤よりなる微粉子の表面近傍に機械的衝撃により固着または埋設させてもよい。

20 (従来技術より有効な効果)

本発明のナフトール誘導体からなる電荷制御剤は高い帯電特性を有すると共に 樹脂との相溶性に優れ、樹脂中に均一に分散するものである。また白色あるいは 淡色を呈し、着色剤自体の色調を阻害しないものである。

さらに合成方法が、簡易であるため低コストで得ることができ、また金属を含まないため人体や環境にも安全である。したがって、電子写真用トナー等の電荷 制御剤、特に負帯電性の電荷制御剤として優れた性能を示すものである。

本発明の電荷制御剤を用いた電子写真用トナーは、短時間で均一に帯電し、経時的にも安定した帯電量が維持されるため、画像濃度が高くかぶりの無い高品質の画像が得られる。また電荷制御剤による現像スリープ、キャリア等の汚染が回

15

20

避されるため、連続複写時においても安定した高濃度の画像が得られる。さらに 電荷制御剤による色調への影響が少ないため、カラートナーにも使用できる。 図面の簡単な説明

図1は、実施例1で得たナフトール誘導体の赤外吸収スペクトル (KBr法) を示すチャートである。

図2は、実施例2で得たナフトール誘導体の赤外吸収スペクトル(KBr法) を示すチャートである。

図3は、実施例3で得たナフトール誘導体の赤外吸収スペクトル(KBr法) を示すチャートである。

10 図4は、実施例4で得たナフトール誘導体の赤外吸収スペクトル (KBr法) を示すチャートである。

> 図5は、実施例5で得たナフトール誘導体の赤外吸収スペクトル (KBr法) を示すチャートである。

> 図 6 は、実施例 6 で得たナフトール誘導体の赤外吸収スペクトル (KBr法) を示すチャートである。

> 図7は、実施例7で得たナフトール誘導体の赤外吸収スペクトル (KBr法) を示すチャートである。

実施例

以下に示す実施例によって本発明をさらに詳細に説明する。本実施例はいかな る意味においても発明を限定するものではない。

実施例1

2ーヒドロキシー3ーヒドロキシカルボニルー6-n-オクチルアミノカルボニ ルナフタレン

25 2ーヒドロキシー6ーヒドロキシカルボニルー3ーメトキシカルボニルナフタ レン17.3gをテトラヒドロフラン170gに懸濁し、N, Nージメチルホル ムアミドを加えた後、塩化チオニル1 2.5 gを加えて、50℃にて2時間反応させた。その後、残存する塩化チオニルを溶剤とともに留去し、これにn-オクチルアミン1 8.4 gをテトラヒドロフラン1 7 0 gに溶解した溶液を加えて、還流下約15 h r 反応させた。反応後、溶剤を留去し、これにメタノール150 gを加え、懸濁させた。その後、結晶をろ別し、メタノールおよび水で十分に洗浄した。このようにして得られた2ーヒドロキシー3ーメトキシカルボニルー6ーn-オクチルアミノカルボニルナフタレン15.2 gをメタノール152 gに懸濁し、これに水酸化ナトリウム5.1 gを水100 gに溶解した溶液を加えて、70℃で2時間反応した後、カーボン処理を行い、塩酸を用いてpHを2~3に調整した。析出する結晶をろ別し、十分水洗した後、乾燥して白色粉末14.1 gを得た(分解点:304℃)。赤外線吸収スペクトル(KBr法)を図1に示す。

このようにして得られた 2-ヒドロキシー3-メトキシカルボニルー6-nーオクチルアミノカルボニルナフタレンの摩擦帯電量を、ブローオフ粉体帯電量測定装置(東芝ケミカル社製 TB 200型)で、以下の測定条件にて 200メッシュ(75μ m)の金網を使用して測定した。その結果、本化合物の摩擦帯電量は -51.9μ C/gであった。

<測定条件>

温度 20℃

20 湿度 20%

10

15

ブローガス $(N, 1.0 \text{ Kg/cm}^2)$

ブローオフ時間 60秒

フェライトキャリア使用

25 実施例2~7

実施例1のnーオクチルアミンを表1に示すアミンあるいはアルコールに代えることの他は、実施例1と同様にしてナフトール誘導体を合成し、摩擦帯電量および分解点を測定した。結果を表1にまとめた。赤外線吸収スペクトル (KBr 法)を図2~図7に示す。

実施	アミン・	ナフトール誘導体	摩擦带電量	/\&\\
例No.	アルコール	の構造		分解点
Date.	770- 70		(μC/g)	(°C)
2	n-C ₄ H ₈ NH ₂	HO COOH CONHC ₄ H ₉	-15.3	314
3	n-C ₁₂ H ₂₅ NH ₂	HO COOH CONHC ₁₂ H ₂₅	-50.2	310
4	n-C ₁₈ H ₃₇ NH ₂	HO COOH CONHC ₁₈ H ₃₇	-51.0	3 1 0
5	NH ₂	HQ COOH CONH	-29.1	302
6	NH ₂	HO COOH CONH	-13.0	290
.7	n-C ₁₆ H ₃₃ OH	HO COOH COOC ₁₆ H ₃₃	-23.6	3 2 8

処方例

本発明のトナー処方例を以下に示す。以下の処方例において「部」とは重量部を意味するものとする。以下の例は例示のためだけに記載するものであり、いかなる意味においても本発明を限定するものではない。

5 [黒色トナー]

スチレンアクリル樹脂100部、カーボンブラック6部、実施例1の化合物2

部をボールミルで均一に予備混合した後、加圧ニーダーにより溶融混練する。次いで、混練物を振動ミルで粗粉砕し、さらにジェットミルで微粉砕して黒色トナーが得られる。

[カラートナー (シアン)]

5 スチレンアクリル樹脂をポリエステル樹脂に、カーボンブラックをフタロシア ニンブルーに変えることの他は、黒色トナーの調製例と同様にして、カラートナ ー (シアン) が得られる。

[カラートナー (イエロー)]

スチレンアクリル樹脂をポリエステル樹脂に、カーボンブラックをハンザイエローに変えることの他は、黒色トナーの調製例と同様にして、カラートナー(イエロー)が得られる。

[カラートナー (マゼンダ)]

スチレンアクリル樹脂をポリエステル樹脂に、カーボンブラックをローズベン ガルに変えることの他は、黒色トナーの調製例と同様にして、カラートナー (マ ゼンダ) が得られる。

産業上の利用の可能性

15

本発明によって、電子写真用トナー等に用いられる電荷制御剤、および該電荷 制御剤を含有する電子写真用トナーが提供される。

請求の範囲

1. 下記一般式 [I] で表されるナフトール誘導体およびその塩類からなる電荷制御剤。

5 [式中Yは、エステル化されたカルボキシル基および式ー(CONH)n-X(式中Xは、分岐を有していてもよく、置換基を有していてもよく、不飽和結合を有していてもよい炭化水素基、置換基を有していてもよい芳香族基および共役二重結合を有する複素環基からなる群から選択される基、nは、1または2の整数を示す)からなる群から選択される基、

10 Rは、水素原子、アルカリ金属、炭素原子数が1~6の分岐を有していてもよく、 置換基を有していてもよいアルキル基およびアシル基、およびフェニルアルキル 基からなる群から選択される基、

Qは、炭素原子数が $1\sim6$ の分岐を有していてもよいアルキル基およびアルコキシ基、ハロゲン原子、ニトロ基、ニトロソ基、アミノ基およびスルホ基からなる群から選択される基、

mは、0~3の整数を示す。]

15

20

- 2. Yが式-(CONH)n-Xで表わされ、nが1、Xが炭素数 $8\sim18$ のアルキル基である請求項1記載の電荷制御剤。
- 3. 帯電量が負の値を示し、かつその絶対値が10.0 μ C/g以上である、請求項1記載の電荷制御剤。
 - 4. 少なくとも定着用樹脂および着色剤を含有し、一般式 [I] で表わされるナフトール誘導体またはその塩類からなる電荷制御剤を含む電子写真用トナー。

Fig. 2

WO 03/091808

PCT/JP03/04961

4/7

Fig. 4

6/7

Fig. 6

7/7

Fig. 7

