Devoir à la maison n°7 : corrigé

Problème 1 – Densité parmi les entiers

Partie I -

- **1.** a. On a clairement $v_n(\mathbb{N}^*) = n$ et donc $\delta_n(\mathbb{N}^*) = 1$ pour tout $n \in \mathbb{N}^*$. On en déduit que $\delta_n(\mathbb{N}^*) = 1$.
 - **b.** Comme E est fini, il admet un plus grand élément. Posons $N=\max E$. Pour $n\geqslant N$, $\nu_n(E)=N$ et donc $\delta_n(E)=\frac{N}{n}$. On en déduit que $\delta(E)=0$.
 - **c.** Pour $k \in \mathbb{N}^*$, $\nu_{2k}(2\mathbb{N}) = k$ et $\nu_{2k+1}(2\mathbb{N}) = k+1$. Par conséquent, pour $n \in \mathbb{N}^*$, $\frac{n}{2} \leqslant \nu_n(2\mathbb{N}) \leqslant \frac{n+1}{2}$ et donc $\frac{1}{2} \leqslant \delta_n(2\mathbb{N}) \leqslant \frac{1}{2} + \frac{1}{2n}$. Par encadrement, $\delta(2\mathbb{N}) = \frac{1}{2}$.
 - **d.** Les carrés compris entre 1 sont de la forme k^2 avec $1\leqslant k^2\leqslant n$ i.e. $1\leqslant k\leqslant \sqrt{n}$. On a donc $\nu_n(C)=\lfloor \sqrt{n}\rfloor$. On en déduit l'encadrement $\frac{\sqrt{n}-1}{n}<\delta_n(C)\leqslant \frac{\sqrt{n}}{n}$. Par encadrement, $\delta(C)=0$.
 - **e.** On a $A \cap [1, 2^{2n}] = \bigcup_{k=0}^{n-1} [2^{2k}, 2^{2k+1}]$. Comme card $([2^{2k}, 2^{2k+1}]) = 2^{2k}$,

$$v_{2^{2n}}(A) = \sum_{k=0}^{n-1} 2^{2k} = \frac{2^{2n} - 1}{3}$$

On a également $A\cap [\![1,2^{2n+1}]\!]=\bigcup\limits_{k=0}^n [\!]2^{2k},2^{2k+1}]\!].$ Donc

$$v_{2^{2n+1}}(A) = \sum_{k=0}^{n} 2^{2k} = \frac{2^{2(n+1)} - 1}{3}$$

On a donc $\delta_{2^{2n}}(A) = \frac{2^{2n}-1}{3.2^{2n}}$ et $\delta_{2^{2n+1}}(A) = \frac{2^{2n+2}-1}{3.2^{2n+1}}$. On en déduit que les suites $(\delta_{2^{2n}}(A))$ et $(\delta_{2^{2n+1}}(A))$ convergent respectivement vers $\frac{1}{3}$ et $\frac{2}{3}$. Comme ce sont des suites extraites de $(\delta_n(A))$, cette suite ne converge pas. Ainsi A n'a pas de densité.

f. Remarquons qu'il existe 9^k entiers à k chiffres ne comportant pas de zéro dans leur écriture décimale. On en déduit que pour $p \geqslant 1$, $v_{10^p} = \sum_{k=1}^p 9^k = \frac{9^{p+1}-1}{8}$. Soit n un entier et posons $p = \lfloor \log_{10} n \rfloor + 1$ de sorte que $n \leqslant 10^p$. On a donc

$$0\leqslant \nu_n(D)\leqslant \frac{9^{p+1}-1}{8}\leqslant \frac{9^{\log_{10}(\pi)+2}-1}{8}=\frac{81n^{\log_{10}(9)}-1}{8}$$

Par conséquent

$$0\leqslant \delta_{\mathfrak{n}}(D)\leqslant \frac{81\mathfrak{n}^{\log_{10}(9)}-1}{8\mathfrak{n}}$$

Comme $\log_{10}(9) < 1$, on a par encadrement $\delta(D) = 0$.

- 2. a. $A \cap \llbracket 1, \alpha_n \rrbracket = \{\alpha_1, \dots, \alpha_n\} \text{ donc } \nu_{\alpha_n}(A) = n.$
 - b. La suite $(\delta_{\alpha_n}(A))$ est une suite extraite de la suite $(\delta_n(A))$ car la suite (α_n) est strictement croissante. Elle possède donc la même limite $\delta(A)$. Il suffit de remarquer que $\delta_{\alpha_n}(A) = \frac{n}{\alpha_n}$.
 - **c.** Si $A \cap \llbracket 1, n \rrbracket = \varnothing$, alors $\nu_n(A) = 0$. De plus, cela signifie qu'aucun des α_n n'appartient à $\llbracket 1, n \rrbracket$. En particulier, $\alpha_1 > n$. Sinon $A \cap \llbracket 1, n \rrbracket = \{\alpha_1, \ldots, \alpha_k\}$. Comme $k = \text{card}\,(\{\alpha_1, \ldots, \alpha_k\})$, on a donc $k = \nu_n(A)$. Or $\alpha_k \in \llbracket 1, n \rrbracket$ donc $\alpha_{\nu_n(A)} \leq n$. De plus, $\alpha_{k+1} \notin \llbracket 1, n \rrbracket$ donc $\alpha_{\nu_n(A)+1} > n$.

- $\begin{aligned} \textbf{d.} \ \ &\text{D'après la question précédente, } \frac{1}{n} \leqslant \frac{1}{a_{\nu_n(A)}} \text{ puis } \frac{\nu_n(A)}{n} \leqslant \frac{\nu_n(A)}{a_{\nu_n(A)}}. \\ &\text{De même, } \frac{1}{a_{\nu_n(A)+1}} < \frac{1}{n} \text{ puis } \frac{\nu_n(A)+1}{a_{\nu_n(A)+1}} < \frac{\nu_n(A)+1}{n} \text{ et enfin } \frac{\nu_n(A)+1}{a_{\nu_n(A)+1}} \frac{1}{n} < \frac{\nu_n(A)}{n}. \\ &\text{La suite } (\nu_n(A)) \text{ est croissante et non majorée puisque A est infini : elle diverge donc vers $+\infty$. Comme la suite $\left(\frac{n}{a_n}\right)$ converge vers l, les suites $\left(\frac{\nu_n(A)}{a_{\nu_n(A)}}\right)$ et $\left(\frac{\nu_n(A)+1}{a_{\nu_n(A)+1}}\right)$ convergent également vers l. Par encadrement, $\lim_{n\to+\infty} \frac{\nu_n(A)}{n} = l$. \end{aligned}$
- 3. On utilise le résultat de la question précédente.
 - **a.** Posons $a_n = p + nq$ de sorte que $A = \{a_n \mid n \in \mathbb{N}\}$. La suite (a_n) est strictement croissante car q > 0. On a donc $\delta(A) = \lim_{n \to +\infty} \frac{n}{a_n} = \frac{1}{q}$.
 - **b.** Posons $a_n = \lfloor n\alpha \rfloor$. On a $a_n \leqslant n\alpha$ et $a_{n+1} > (n+1)\alpha 1 \geqslant n\alpha$ car $\alpha \geqslant 1$. Ainsi la suite (a_n) est strictement croissante. Comme $(n-1)\alpha < a_n \leqslant n\alpha$, $a_n \sim n\alpha$. Donc $\delta(A) = \lim \frac{n}{a_n} = \frac{1}{\alpha}$.

Partie II -

1. Notons $A_n = A \cap \llbracket 1, n \rrbracket$ et $B_n = B \cap \llbracket 1, n \rrbracket$. On sait que

$$\operatorname{card}(A_n) + \operatorname{card}(B_n) = \operatorname{card}(A_n \cup B_n) + \operatorname{card}(A_n \cap B_n)$$

c'est-à-dire $\nu_n(A) + \nu_n(B) = \nu_n(A \cup B) + \nu_n(A \cap B)$. On en déduit que $\delta_n(A) + \delta_n(B) = \delta_n(A \cup B) + \delta_n(A \cap B)$. Si trois de ces suites ont une limite, alors la quatrième également et dans ce cas, $\delta(A) + \delta(B) = \delta(A \cap B) + \delta(A \cup B)$.

- **2.** Si A et B sont disjoints, alors $A \cap B = \emptyset$ possède une densité nulle. D'après la question précédente, $A \cup B$ possède une densité et $\delta(A \cup B) = \delta(A) + \delta(B)$.
- 3. $A \cup \overline{A} = \mathbb{N}^*$ possède une densité égale à 1. $A \cap \overline{A} = \emptyset$ possède une densité nulle. On en déduit que \overline{A} possède une densité et que $\delta(\overline{A}) = 1 \delta(A)$.
- **4.** Soit A un ensemble négligeable et $B \subset A$. On a donc $0 \le \nu_n(B) \le \nu_n(B)$ puis $0 \le \delta_n(B) \le \delta_n(A)$. Par encadrement, B possède une densité et $\delta(B) = 0$. Donc B est également négligeable.
- **5.** $A \cap B$ est une partie de B donc est négligeable i.e. possède une densité nulle. Comme A et B possèdent également une densité, $A \cup B$ possède une densité et $\delta(A \cup B) = \delta(A) + \delta(B) \delta(A \cap B) = \delta$.

Partie III -

1. Si (u_n) converge, (u_{p_n}) converge également vers la même limite puisque (p_n) diverge vers $+\infty$. Réciproquement supposons que (u_{p_n}) converge vers une limite l. Soit $\epsilon>0$. Il existe donc $K\in\mathbb{N}^*$ tel que $k\geqslant K\implies \|u_{p_k}-l\|<\epsilon$. Posons $N=p_K$ et donnons-nous $n\geqslant N$. Notons $E=\{k\in\mathbb{N}^*\mid p_k>n\}$. E est une partie non vide de \mathbb{N}^* puisque (p_k) diverge vers $+\infty$. Elle possède donc un plus petit élément. Posons $k_0=\min E-1$. On a donc $p_{k_0}\leqslant n< p_{k_0+1}\leqslant p_{k_0}+1$. D'où $n=p_{k_0}$. De plus, $p_K\geqslant n$ donc $K\notin E$. Ainsi $K<\min E$ i.e. $K\leqslant\min E-1=k_0$. Ainsi

$$\|u_n-l\|=\|u_{p_{k_0}}-l\|<\epsilon$$

On en déduit la convergence de (u_n) vers l.

2. Comme B est infini, B est non vide. On a donc $v_n(B) \ge 1$ pour n suffisamment grand.

$$\delta_{\mathfrak{n}}(A \cap B) = \frac{\nu_{\mathfrak{n}}(A \cap B)}{\mathfrak{n}} = \frac{\nu_{\mathfrak{n}}(A \cap B)}{\nu_{\mathfrak{n}}(B)} \frac{\nu_{\mathfrak{n}}(B)}{\mathfrak{n}}$$

Or $\nu_n(A \cap B) = \text{card}(A \cap B \cap \llbracket 1, n \rrbracket) = \text{card}(A \cap \{b_1, \dots, b_{\nu_n(B)}\})$ puisque $\text{card}(B \cap \llbracket 1, n \rrbracket) = \nu_n(B)$. Finalement, $\delta_n(A \cap B) = \delta_{\nu_n(B)}(A|B)\delta_n(B)$.

 $\text{Comme } (\delta_{\mathfrak{n}}(B)) \text{ a une limite non nulle, on peut écrire } \delta_{\nu_{\mathfrak{n}}(B)}(A|B) = \frac{\delta_{\mathfrak{n}}(A \cap B)}{\delta_{\mathfrak{n}}(B)} \text{ à partir d'un certain rang. On en déduit}$

que la suite $(\delta_{\nu_n(B)}(A|B))$ converge vers $\frac{\delta(A\cap B)}{\delta(B)}$. Enfin, $\nu_{n+1}(B)=\nu_n(B)$ si $n+1\notin B$ et $\nu_{n+1}(B)=\nu_n(B)+1$ si $n+1\in B$. On a donc $\nu_n(B)\leqslant \nu_{n+1}(B)\leqslant \nu_n(B)+1$. D'après le lemme, $\delta_n(A|B)$ converge également vers $\frac{\delta(A\cap B)}{\delta(B)}$. Ainsi A possède une densité relative par rapport à B et celle-ci vaut $\frac{\delta(A\cap B)}{\delta(B)}$.

- 3. a. Soient A un ensemble négligeable et B un ensemble possédant une densité. Comme $A \cap B$ est une partie de A, on déduit de la question II.4 que $A \cap B$ est également négligeable. On a donc $\delta(A \cap B) = \delta(A)\delta(B) = 0$.
 - **b.** Si A et B sont indépendants, alors A, B et $A \cap B$ possèdent une densité et $\delta(A \cap B) = \delta(A)\delta(B)$. D'après la question III.2, A possède une densité relative dans B et $\delta(A|B) = \frac{\delta(A \cap B)}{\delta(B)} = \delta(A)$.

Réciproquement, si A possède une densité relative dans B et $\delta(A|B) = \delta(A)$, $A \cap B$ possède une densité et $\delta(A \cap B) = \delta(A|B)\delta(B) = \delta(A)\delta(B)$ d'après la question **III.2**. Ainsi A et B sont indépendants.

- 4. Comme $M_p = \{pn, n \in \mathbb{N}^*\}$, $\delta(M_p) = \frac{1}{p}$ d'après la question I.2. $M_p \cap M_q$ est l'ensemble des multiples communs de p et q donc $M_p \cap M_q = M_{p \vee q}$ où $p \vee q$ désigne le ppcm de p et q. Ainsi M_p et M_q sont indépendants si et seulement si $\frac{1}{p \vee q} = \frac{1}{pq}$ i.e. $p \vee q = pq$, ce qui équivaut à p et q premiers entre eux.
- 5. Supposons que A soit négligeable. A_B est une partie de A donc est également négligeable. Ainsi $\delta(A_B) = \delta(A)\delta(B) = 0$. Supposons maintenant que A n'est pas négligebale. Puisque $A_B \cap \{a_1, \ldots, a_n\} = \{a_{b_k} \mid b_k \leqslant n\}$, $card(A_B \cap \{a_1, \ldots, a_n\}) = card(\{B \cap [\![1,n]\!]\}) = \nu_n(B)$. Ainsi $\delta_n(A_B|A) = \frac{\nu_n(B)}{n} = \delta_n(B)$. Ainsi A_B possède une densité dans A et $\delta(A_B|A) = \delta(B)$. En reprenant le raisonnement de la question III.2, on montre que $\delta_n(A_B \cap A) = \delta_{\nu_n(A)}(A_B|A)\delta_n(A)$ i.e. $\delta_n(A_B) = \delta_{\nu_n(A)}(A_B|A)\delta_n(A)$. On en déduit que A_B possède une densité et que $\delta(A_B) = \delta(A_B|A)\delta(A) = \delta(B)\delta(A)$.

Remarque. On peut aussi utiliser la question **I.2**. En effet, la suite (a_{b_n}) est croissante et $\frac{n}{a_{b_n}} = \frac{b_n}{a_{b_n}} \frac{n}{b_n}$. La suite $\left(\frac{b_n}{a_{b_n}}\right)$ est extraite de la suite $\left(\frac{n}{a_n}\right)$ et converge donc vers $\delta(A)$. Par ailleurs, la suite $\left(\frac{n}{b_n}\right)$ converge vers $\delta(B)$. Ainsi la suite $\left(\frac{n}{a_{b_n}}\right)$ converge vers $\delta(A)\delta(B)$, ce qui prouve que A_B possède une densité égale à $\delta(A)\delta(B)$.

Partie IV -

1. Première méthode

Montrons par récurrence sur k que pour tout k-uplet d'ensembles (B_1, \ldots, B_k) vérifiant

$$(*) \qquad \forall I \subset [\![1,k]\!], \ \bigcap_{i \in I} B_i \ \text{a une densit\'e et} \ \delta \left(\bigcap_{i \in I} B_i\right) = \prod_{i \in I} \delta(B_i)$$

$$\bigcap_{i=1}^{k} \overline{B_i} \text{ possède une densit\'e et } \delta \left(\bigcap_{i=1}^{k} \overline{B_i} \right) = \prod_{i=1}^{k} \delta(\overline{B_i}).$$

L'initialisation au rang k=1 est évidente. Supposons la propriété vraie à un rang $k\in\mathbb{N}^*$ et montrons-la au rang k+1. Soit donc (B_1,\ldots,B_{k+1}) un k+1-uplet d'ensembles vérifiant la propriété (*). Montrons que le k-uplet $(B_1,\ldots,B_{k-1},B_k\cup B_{k+1})$

vérifie également la propriété (*). Il suffit de vérifier que pour $I \subset [\![1,k-1]\!], \left(\bigcap_{i\in I}B_i\right)\cap (B_k\cup B_{k+1})$ admet une densité et que

$$\delta\left(\bigcap_{i\in I}B_i\right)\cap (B_k\cup B_{k+1})=\left(\prod_{i\in I}\delta(B_i)\right)\delta(B_k\cup B_{k+1})$$

Soit donc $I \subset [1, k-1]$. On a

$$\left(\bigcap_{i\in I}B_i\right)\cap (B_k\cup B_{k+1})=\left(\left(\bigcap_{i\in I}B_i\right)\cap B_k\right)\cup \left(\left(\bigcap_{i\in I}B_i\right)\cap B_{k+1}\right)$$

Or
$$\left(\bigcap_{i\in I}B_i\right)\cap B_k$$
 et $\left(\bigcap_{i\in I}B_i\right)\cap B_{k+1}$ ont une densité et

$$\left(\left(\bigcap_{i\in I}B_i\right)\cap B_k\right)\cap \left(\left(\bigcap_{i\in I}B_i\right)\cap B_{k+1}\right)=\left(\bigcap_{i\in I}B_i\right)\cap B_k\cap B_{k+1}$$

a donc également une densité. De plus,

$$\begin{split} \delta\left(\left(\bigcap_{i\in I}B_{i}\right)\cap\left(B_{k}\cup B_{k+1}\right)\right) &= \delta\left(\left(\bigcap_{i\in I}B_{i}\right)\cap B_{k}\right) + \delta\left(\left(\bigcap_{i\in I}B_{i}\right)\cap B_{k+1}\right) \\ &- \delta\left(\left(\bigcap_{i\in I}B_{i}\right)\cap B_{k}\cap B_{k+1}\right) \\ &= \left(\prod_{i\in I}\delta(B_{i})\right)\left(\delta(B_{k}) + \delta(B_{k+1}) - \delta(B_{k})\delta(B_{k+1})\right) \\ &= \left(\prod_{i\in I}\delta(B_{i})\right)\left(\delta(B_{k}) + \delta(B_{k+1}) - \delta(B_{k}\cap B_{k+1})\right) \\ &= \left(\prod_{i\in I}\delta(B_{i})\right)\delta(B_{k}\cup B_{k+1}) \end{split}$$

en appliquant (*) en remplaçant I par I \cup k,I \cup {k + 1} et {k, k + 1}. On peut donc appliquer l'hypothèse de récurrence au k-uplet $(B_1, \ldots, B_{k-1}, B_k \cup B_{k+1})$. Ainsi

$$\begin{split} \delta(\overline{B_1} \cap \dots \cap \overline{B_{k+1}} &= \delta(\overline{B_1} \cap \dots \cap \overline{B_{k-1}} \cap \overline{B_k \cup B_{k+1}}) \\ &= \delta(\overline{B_1}) \dots \delta(\overline{B_{k-1}}) \delta(\overline{B_k \cup B_{k+1}}) \end{split}$$

Or en utilisant (*) en remplaçant I par $\{k, k+1\}$, on a :

$$\begin{split} \delta(\overline{B_k \cup B_{k+1}}) &= 1 - \delta(B_k \cup B_{k+1}) = 1 - \delta(B_k) - \delta(B_{k+1}) + \delta(B_k \cap B_{k+1}) \\ &= 1 - \delta(B_k) - \delta(B_{k+1}) + \delta(B_k)\delta(B_{k+1}) = (1 - \delta(B_k))(1 - \delta(B_{k+1})) = \delta(\overline{B_k})\delta(\overline{B_{k+1}}) \end{split}$$

ce qui achève la récurrence.

Il suffit enfin de remarquer que (A_1,\ldots,A_k) vérifie (*) puisque pour $I\subset [\![1,k]\!], \bigcap_{i\in I}A_i=\{np_1\mid \in \mathbb{N}^*\}$ admet une densité et que

$$\left(\bigcap_{i\in I} A_i\right) = \frac{1}{\prod_{i\in I} p_i} = \prod_{i\in I} \delta(A_i)$$

On en déduit que

$$\delta\left(\bigcap_{i=1}^k \overline{A_i}\right) = \prod_{i=1}^k \delta(\overline{A_i}) = \prod_{i=1}^k \left(1 - \frac{1}{p_i}\right)$$

Seconde méthode

Rappelons tout d'abord que $\delta(A_i) = \frac{1}{p_i}$ pour tout $i \in \mathbb{N}^*$.

On fait l'hypothèse de récurrence suivante :

$$HR(k): \bigcap_{i=1}^k \overline{A_i} \text{ admet une densit\'e et } \delta\left(\bigcap_{i=1}^k \overline{A_i}\right) = \prod_{i=1}^k \bigg(1 - \frac{1}{p_i}\bigg).$$

L'initialisation au rang k=1 est évidente. Supposons donc HR(k) pour un certain $k \in \mathbb{N}^*$.

On montre d'abord que $\bigcap_{i=1}^{k+1} \overline{A_i}$ possède une densité dans A_{k+1} .

$$\delta_n\left(\bigcap_{i=1}^k \overline{A_i}|A_k\right) = \frac{\operatorname{card}\left(\left(\bigcap_{i=1}^k \overline{A_i}\right)\cap \{jp_{k+1}\mid 1\leqslant j\leqslant n\}\right)}{n}$$

Or un entier de la forme jp_{k+1} n'est pas multiple de p_1, \ldots, p_k si et seulement si j n'est pas multiple de p_1, \ldots, p_k . Autrement dit,

$$\operatorname{card}\left(\left(\bigcap_{i=1}^{k}\overline{A_{i}}\right)\cap\left\{jp_{k+1}\mid1\leqslant j\leqslant n\right\}\right)=\nu_{n}\left(\bigcap_{i=1}^{k}\overline{A_{i}}\right)$$

$$\begin{aligned} &\text{On a donc } \delta_n \left(\bigcap_{i=1}^k \overline{A_i} | A_k \right) = \delta_n \left(\bigcap_{i=1}^k \overline{A_i} \right). \text{ Ainsi } \bigcap_{i=1}^{k+1} \overline{A_i} \text{ possède une densité dans } A_{k+1} \text{ et } \delta \left(\bigcap_{i=1}^k \overline{A_i} | A_k \right) = \delta \left(\bigcap_{i=1}^k \overline{A_i} \right). \end{aligned}$$

$$&\text{On en déduit ensuite que } \left(\bigcap_{i=1}^k \overline{A_i} \right) \cap A_{k+1} \text{ possède une densité et que } \delta \left(\left(\bigcap_{i=1}^k \overline{A_i} \right) \cap A_{k+1} \right) = \delta \left(\bigcap_{i=1}^k \overline{A_i} \right) \delta(A_{k+1}). \end{aligned}$$

 $\text{Puisque} \bigcap_{i=1}^{k} \overline{A_i} \text{ est l'union disjointe de } \bigcap_{i=1}^{k+1} \overline{A_i} \text{ et } \left(\bigcap_{i=1}^{k} \overline{A_i}\right) \cap A_{k+1} \text{ et que ces trois ensembles possèdent une densit\'e}:$

$$\begin{split} \delta\left(\bigcap_{i=1}^{k+1}\overline{A_i}\right) &= \delta\left(\bigcap_{i=1}^{k+1}\overline{A_i}\right) - \delta\left(\left(\bigcap_{i=1}^{k}\overline{A_i}\right)\cap A_{k+1}\right) \\ &= \delta\left(\bigcap_{i=1}^{k+1}\overline{A_i}\right)(1 - \delta(A_{k+1}) = \prod_{i=1}^{k+1}\left(1 - \frac{1}{p_i}\right) \end{split}$$

2. Soit $N \in \mathbb{N}^*$. Soit p_k le plus grand nombre premier et M la plus grande puissance intervenant dans les décompositions en facteurs premiers des entiers de 1 à N. Pour $i \in [1, k]$

$$\frac{1}{1 - \frac{1}{p_i}} = \lim_{n \to +\infty} \sum_{m=0}^{n} \frac{1}{p_i^m} \ge \sum_{m=0}^{M} \frac{1}{p_i^m}$$

On en déduit que

$$\frac{1}{P_k} = \prod_{i=1}^k \frac{1}{1 - \frac{1}{P_i}} \geqslant \prod_{i=1}^k \sum_{m=0}^M \frac{1}{p_i^m} = \sum_{(m_1, \dots, m_k) \in [0, M]^k} \frac{1}{p_1^{m_1} \dots p_k^{m_k}}$$

Par définition de k et M, on retrouve tous les entiers de 1 à N parmi les entiers $p_1^{m_1} \dots p_k^{m_k}$ lorsque m_1, \dots, m_k décrivent $[\![0,M]\!]$. Ainsi $\frac{1}{P_k} \geqslant \sum_{n=0}^N \frac{1}{n}$. On démontre classiquement que la suite $\left(\sum_{m=0}^n \frac{1}{m}\right)_{n\in\mathbb{N}^*}$ diverge vers $+\infty$. Ceci montre que la suite $\left(\frac{1}{P_k}\right)_{k\in\mathbb{N}^*}$ n'est pas majorée. Par ailleurs, cette suite est croissante puisque pour tout $i\in\mathbb{N}^*$, $0<1-\frac{1}{p_i}<1$. On en déduit que $\left(\frac{1}{P_k}\right)_{k\in\mathbb{N}^*}$ diverge vers $+\infty$, ce qui prouve que la suite $(P_k)_{k\in\mathbb{N}^*}$ converge vers 0.

- 3. Pour $j\geqslant k+1$, p_j est premier avec les p_i pour $1\leqslant i\leqslant k$ donc appartient à $\bigcap_{i=1}^k\overline{A_i}$. On a donc $\nu_n(\mathbb{P})\leqslant k+\nu_n\left(\bigcap_{i=1}^k\overline{A_i}\right)$ dès que $n>p_k$. Ainsi $\delta_n(\mathbb{P})\leqslant \frac{k}{n}+\delta_n\left(\bigcap_{i=1}^k\overline{A_i}\right)$ pour $n>p_k$. En passant à la limite supérieure, on obtient l'inégalité demandée.
- $\begin{array}{l} \textbf{4. Puisque } \limsup \delta_n(\mathbb{P}) \leqslant P_k, \text{ on a en faisant tendre } k \text{ vers } +\infty, \limsup \delta_n(\mathbb{P}) \leqslant \textbf{0}. \text{ Comme par ailleurs, } \delta_n(\mathbb{P}) \geqslant \textbf{0} \text{ pour tout} \\ n \geqslant 1, \text{ on a \'egalement } \liminf_{n \to +\infty} \delta_n(\mathbb{P}) \geqslant \textbf{0}. \text{ Puisque } \liminf_{n \to +\infty} \delta_n(\mathbb{P}) \leqslant \limsup_{n \to +\infty} \delta_n(\mathbb{P}), \text{ on a } \limsup_{n \to +\infty} \delta_n(\mathbb{P}) = \limsup_{n \to +\infty} \delta_n(\mathbb{P}) = \textbf{0} \\ \text{et donc } (\delta_n(\mathbb{P})) \text{ converge vers } \textbf{0}, \text{ ce qui signifie que } \mathbb{P} \text{ est de densit\'e nulle.} \end{array}$