| Sample written test -1                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Which of the following statements is <b>not</b> correct in accordance to the Euclid's postulates?                                                    |
| A) If a circle is cut off by the diameter of the circle, then the figure obtained is a semicircle.                                                      |
| B) Trilateral figures are contained by three straight lines.                                                                                            |
| C) If a triangle has an obtuse angle, then it is an obtuse angled triangle.                                                                             |
| D) If all the sides of a triangle are equal, then it is an isosceles triangle.                                                                          |
| Answer:                                                                                                                                                 |
| D                                                                                                                                                       |
| Solution:                                                                                                                                               |
| According to Euclid, an equilateral triangle is a triangle whose all sides are equal and an isosceles triangle is a triangle whose two sides are equal. |
| Thus, the definition given in the $alternative D$ is incorrect.                                                                                         |
| The correct answer is D.                                                                                                                                |
| 2. Use the following information to answer the next question.                                                                                           |
| The semi-perimeter of an isosceles triangle is 12 cm. The length of its unequal side is 10 cm.                                                          |
| What is the length of each equal side of the triangle?                                                                                                  |
| A) 6 cm                                                                                                                                                 |
| B) 7 cm                                                                                                                                                 |
| C) 8 cm                                                                                                                                                 |
| D) 9 cm                                                                                                                                                 |
| Answer:                                                                                                                                                 |
| В                                                                                                                                                       |
| Solution:                                                                                                                                               |

Length of the unequal side of the triangle = 10 cm

Let the length of each equal side be a.

∴Semi-perimeter of the triangle 
$$=\frac{a+a+10 \text{ cm}}{2}=12 \text{ cm}$$

$$\Rightarrow \frac{2a + 10 \text{ cm}}{2} = 12 \text{ cm}$$

$$\Rightarrow$$
 2a + 10 cm = 24 cm

$$\Rightarrow$$
 2a = 24 cm - 10 cm

$$\Rightarrow 2a = 14$$
 cm

$$\Rightarrow a = \frac{14}{2}$$
 cm = 7 cm

Thus, the length of each equal side of the triangle is 7 cm.

3. What is the semi-perimeter of a right-angled triangle the lengths of whose adjacent sides at right angle are 8 cm and 15 cm?

- A) 11.5 cm
- B) 16.5 cm
- C) 19 cm
- D) 20 cm

# **Answer:**

D

## Solution:

Let a and b be the adjacent sides of  $\triangle ABC$ , which is right-angled at C.

Let the length of the hypotenuse be c.

Let a = 8 cm and b = 15 cm.



On applying Pythagoras theorem to  $\Delta ABC$ , we obtain

$$c^2 = a^2 + b^2$$

$$c^2 = (8 \text{ cm})^2 + (15 \text{ cm})^2$$

$$c^2 = 64 \text{ cm}^2 + 225 \text{ cm}^2$$

$$c^2 = 289 \text{ cm}^2$$

$$c = 17 \text{ cm}$$

The semi-perimeter(s) of a triangle with sides a, b, and c is given by

$$s = \frac{a+b+c}{2}$$

$$\therefore s = \frac{8 \text{ cm} + 15 \text{ cm} + 17 \text{ cm}}{2} = \frac{40}{2} \text{ cm} = 20 \text{ cm}$$

Thus, the semi-perimeter of the given right triangle is 20 cm.

The correct answer is D.

- 4. According to Euclid's axioms, which of the following statements is incorrect?
- A) 1 is less than 1/4
- B) If x = y, then x 8 = y 8
- C) Things which coincide with one another are equal to one another.
- D) Things which are double of the same things are equal to one another.

# **Answer:**

Α

# **Solution:**

Consider the statement given in alternative A.

It is known that the whole is greater than the part.

$$\therefore 1 > \frac{1}{4}$$

Thus, the statement given in alternative **A** is incorrect.

The correct answer is A.

5. Which of the following polynomials is **not** cubic?

- A)  $3y^3 + 1$
- B)  $v^3$
- C)  $y^3 + 3y^2 + 3$
- D) 3y + 3

#### **Answer:**

D

### Solution:

A polynomial of degree 1 is known as linear polynomial.

A polynomial of degree 2 is known as quadratic polynomial.

A polynomial of degree 3 is known as cubic polynomial.

A polynomial of degree 0 is known as constant polynomial.

Number 0 is known as zero polynomial.

Since the degree of the polynomial 3y + 3 is 1, it is not a cubic polynomial. It is a linear polynomial.

The correct answer is D.

6. What is the difference between the degrees of the polynomials  $2x^3(x^5+3)+2$  and  $3t^3+t+9$ ?

- A) 0
- B) 2
- C)5
- D) 8

# Answer:

С

# **Solution:**

The highest power of the variable in a polynomial is called the degree of the polynomial.

$$2x^3(x^5 + 3) + 2 = 2x^8 + 6x^3 + 2$$

Here, the highest power of the variable x in the polynomial  $2x^3(x^5+3)+2$  or  $2x^8+6x^3+2$  is 8. Hence, the degree of this polynomial is 8.

The highest power of the variable t in the polynomial  $3t^3 + t + 9$  is 3. Hence, the degree of this polynomial is 3.

Difference = 8 - 3 = 5

Thus, the difference between the degrees of the two given polynomials is 5.

The correct answer is C

7. Use the following information to answer the next question.

The given figure shows a trapezium ABCD. Sides AD and BC of the trapezium are parallel and BD is the diagonal. The measures of ∠ADB and ∠DCE are 30° and 125° respectively.



The measure of ∠BDC is

- A) 150°
- B) 120°
- C) 95°
- D) 85

#### **Answer:**

С

## Solution:

Sides AD and BC are parallel and diagonal BD acts as the transversal.

Thus,  $\angle DBC = \angle ADB = 30^{\circ}$  (alternate interior angles)

In a triangle, an exterior angle equals the sum of the two opposite interior angles.

Thus, in  $\triangle BCD$ ,

$$\angle DCE = \angle DBC + \angle BDC$$

$$125^{\circ} = 30^{\circ} + \angle BDC$$

$$\angle BDC = 125^{\circ} - 30^{\circ} = 95^{\circ}$$

The correct answer is C.

**8.** Use the following information to answer the next question.



The value of x is

- A) 40°
- B) 46°
- C) 70°
- D) 76°

**Answer:** 

D

# **Solution:**

 $2x + 10^{\circ} = x + 86^{\circ}$  (alternate external angles are of equal magnitudes)

$$2x - x = 86^{\circ} - 10^{\circ}$$

The correct answer is D.