Tutorato di Logica

Manuel Di Agostino

Università di Parma

30/09/2025

Qualche info utile

- Dove trovo le slide?
 - Elly2025
 - Unipr-org (https://github.com/unipr-org/tutorati)

- Per qualsiasi domanda:
 - manuel.diagostino@studenti.unipr.it

Sommario

- Logica proposizionale
 - Connettivi
 - Proprietà dei connettivi
 - Forme normali

Quantificatori

Sommario

- Logica proposizionale
 - Connettivi
 - Proprietà dei connettivi
 - Forme normali

Quantificatori

Connettivi logici di base

Tavola di verità

Operatore NOT $(\neg p)$

р	q	$\neg p$	
1	1	0	
1	0	0	
0	1	1	
0	0	1	

Connettivi logici di base

Tavola di verità

Operatore AND $(p \land q)$

р	q	$\neg p$	$p \wedge q$	
1	1	0	1	
1	0	0	0	
0	1	1	0	
0	0	1	0	

Connettivi logici di base

Tavola di verità

Operatore OR $(p \lor q)$

р	q	$\neg p$	$p \wedge q$	$p \lor q$
1	1	0	1	1
1	0	0	0	1
0	1	1	0	1
0	0	1	0	0

Costanti logiche ed equivalenza

Definizione (Costanti \top, \bot)

Definiamo la costante \top come proposizione sempre **vera**.

Definiamo la costante \perp come proposizione sempre **falsa**.

Costanti logiche ed equivalenza

Definizione (Costanti \top, \bot)

Definiamo la costante \top come proposizione sempre **vera**.

Definiamo la costante \perp come proposizione sempre **falsa**.

Definizione (Equivalenza tra proposizioni)

Diciamo che due proposizioni p, q sono **equivalenti** (semanticamente) se e solo se hanno la stessa tavola di verità. In simboli:

$$p \equiv q$$

Alcuni capisaldi

Principio del terzo escluso

$$p \vee \neg p$$
 è sempre vero.

р	$\neg p$	$p \vee \neg p$
1	0	1
0	1	1

Alcuni capisaldi

Principio del terzo escluso

$$p \vee \neg p$$
 è sempre vero.

р	$\neg p$	$p \lor \neg p$
1	0	1
0	1	1

Principio di non contraddizione

$$\neg(p \land \neg p)$$
 è sempre vero.

р	$\neg p$	$\neg (p \land \neg p)$
1	0	1
0	1	1

Alcuni capisaldi

Principio del terzo escluso

$$p \vee \neg p$$
 è sempre vero.

р	$\neg p$	$p \lor \neg p$
1	0	1
0	1	1

Principio di non contraddizione

$$\neg(p \land \neg p)$$
 è sempre vero.

p	$\neg p$	$\neg(p \land \neg p)$
1	0	1
0	1	1

Queste formule sono Tautologie

Sommario

- Logica proposizionale
 - Connettivi
 - Proprietà dei connettivi
 - Forme normali

Quantificatori

Proprietà dei Connettivi Logici

Proprietà

• Involuzione di ¬:

$$\neg \neg a \equiv a$$

• Idempotenza di ∧, ∨:

$$a \wedge a \equiv a$$
 $a \vee a \equiv a$

Commutativa:

$$a \wedge b \equiv b \wedge a$$
 $a \vee b \equiv b \vee a$

Associativa:

$$(a \wedge b) \wedge c \equiv a \wedge (b \wedge c)$$

$$(a \lor b) \lor c \equiv a \lor (b \lor c)$$

Proprietà dei Connettivi Logici

Proprietà

Distributiva:

$$(a \wedge b) \vee c \equiv (a \vee c) \wedge (b \vee c)$$
$$(a \vee b) \wedge c \equiv (a \wedge c) \vee (b \wedge c)$$

• Leggi di De Morgan:

$$\neg(a \land b) \equiv (\neg a \lor \neg b)$$

$$\neg(a \lor b) \equiv (\neg a \land \neg b)$$

Proprietà dei Connettivi Logici

Proprietà

• Elemento neutro e dominante:

$$a \wedge \top \equiv a$$
 $a \wedge \bot \equiv \bot$
 $a \vee \bot \equiv a$ $a \vee \top \equiv \top$

Tutte queste proprietà si possono dimostrare utilizzando le tavole di verità (esercizio).

Equivalenza con la Contronominale

Un'implicazione logica $p \to q$ è sempre equivalente alla sua **contronominale**, ovvero $\neg q \to \neg p$.

Dimostrazione

$$p o q \equiv \neg p \lor q$$
 (Definizione di implicazione)
 $\equiv \neg p \lor \neg (\neg q)$ (Doppia negazione)
 $\equiv \neg (\neg q) \lor \neg p$ (Proprietà commutativa di \lor)
 $\equiv \neg q \to \neg p$ (Riscrivendo come implicazione)

Legge dell'Assorbimento (1) I

Esercizio 1

Dimostrare la prima legge dell'assorbimento, usando le tavole di verità:

$$p \wedge (p \vee q) \equiv p$$

Legge dell'Assorbimento (1) II

Soluzione

Costruiamo la tavola di verità.

p	q	$p \lor q$	$p \wedge (p \vee q)$
1	1	1	1
1	0	1	1
0	1	1	0
0	0	0	0

Poiché la colonna dei valori di verità di p è identica alla colonna finale di $p \land (p \lor q)$, l'equivalenza logica è dimostrata.

Legge dell'Assorbimento (2) I

Esercizio 2

Dimostrare la seconda legge dell'assorbimento, usando le tavole di verità:

$$p \lor (p \land q) \equiv p$$

Legge dell'Assorbimento (2) II

Soluzione

Costruiamo la tavola di verità.

p	q	$p \wedge q$	$p \lor (p \land q)$
1	1	1	1
1	0	0	1
0	1	0	0
0	0	0	0

Poiché la colonna dei valori di verità di p è identica alla colonna finale di $p \lor (p \land q)$, l'equivalenza logica è dimostrata.

Doppia Implicazione (Bicondizionale)

Definizione

Date due proposizioni p e q, la loro **doppia implicazione** si indica con $p \leftrightarrow q$ e si legge "p se e solo se q".

L'espressione è **vera** quando p e q hanno lo stesso valore di verità (entrambe vere o entrambe false).

Equivale alla congiunzione di due implicazioni:

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

Esercizi, tavole di verità

Esercizio 3

Ricavare le tavole di verità delle seguenti:

- \bullet $a \land (b \rightarrow a)$

Sommario

- 1 Logica proposizionale
 - Connettivi
 - Proprietà dei connettivi
 - Forme normali

Quantificatori

Proposizione dalla tabella di verità

Data la proposizione $p \rightarrow q$:

p	q	p o q
1	1	1
1	0	0
0	1	1
0	0	1

vogliamo costruirne una equivalente a partire dalla tabella di verità.

Definizione (Forma Normale Disgiuntiva (DNF))

Si costruisce facendo la **disgiunzione** (OR) di congiunzioni (AND) di formule basiche^a , delle righe in cui il risultato è 1.

$$(p \wedge q) \vee (\neg p \wedge q) \vee (\neg p \wedge \neg q)$$

^aUna formula basica è una variabile proposizionale o la sua negazione.

Proposizione dalla tabella di verità

Data la proposizione $p \rightarrow q$:

p	q	p o q
1	1	1
1	0	0
0	1	1
0	0	1

vogliamo costruirne una equivalente a partire dalla tabella di verità.

Definizione (Forma Normale Congiuntiva (CNF))

Si costruisce facendo la **congiunzione** (AND) di disgiunzioni (OR) di formule basiche a , delle righe in cui il risultato è 0.

$$(\neg p \lor q)$$

^aUna formula basica è una variabile proposizionale o la sua negazione.

Dimostrazione dell'equivalenza

Si può dimostrare che le due formulazioni sono equivalenti. Nel nostro esempio:

$$(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q) \equiv (p \land q) \lor (\neg p \land (q \lor \neg q))$$

$$\equiv (p \land q) \lor (\neg p \land (\top))$$

$$\equiv (p \land q) \lor (\neg p)$$

$$\equiv (p \lor \neg p) \land (q \lor \neg p)$$

$$\equiv (\top) \land (q \lor \neg p)$$

$$\equiv q \lor \neg p$$

$$\equiv \neg p \lor q$$

Esercizio: Implicazione e Congiunzione

Esercizio 4

Dimostrare la seguente equivalenza, che lega l'implicazione alla congiunzione, senza usare le tavole di verità:

$$(p \land q) \rightarrow r \equiv (p \rightarrow r) \lor (q \rightarrow r)$$

Soluzione

$$\begin{array}{ll} (p \wedge q) \rightarrow r \equiv \neg (p \wedge q) \vee r & \text{Def. di } \rightarrow \\ & \equiv (\neg p \vee \neg q) \vee r & \text{De Morgan} \\ & \equiv \neg p \vee \neg q \vee (r \vee r) & \text{Idempotenza di } \vee \\ & \equiv (\neg p \vee r) \vee (\neg q \vee r) & \text{Associatività e Commutatività} \\ & \equiv (p \rightarrow r) \vee (q \rightarrow r) & \text{Def. di } \rightarrow \end{array}$$

Esercizio: Tautologia del Modus Tollens I

Esercizio 5

Dimostrare che la formula del *Modus Tollens* è una tautologia (cioè è sempre vera), usando le tavole di verità:

$$((p \rightarrow q) \land \neg q) \rightarrow \neg p$$

Esercizio: Tautologia del Modus Tollens II

Soluzione

Costruiamo la tavola di verità completa.

p	q	$\neg p$	$\neg q$	p o q	$(p ightarrow q) \wedge eg q$	$((p ightarrow q) \wedge eg q) ightarrow eg p$
1	1	0	0	1	0	1
1	0	0	1	0	0	1
0	1	1	0	1	0	1
0	0	1	1	1	1	1

Poiché la colonna finale della tavola di verità contiene solo valori 1, la formula è una tautologia.

Esercizi

Esercizio 6

Dimostrazione con equivalenze logiche

Sfruttando le proprietà viste (distributività, De Morgan, etc.), dimostrare la seguente equivalenza, senza usare le tavole di verità:

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

Esercizi

Esercizio 6

Dimostrazione con equivalenze logiche

Sfruttando le proprietà viste (distributività, De Morgan, etc.), dimostrare la seguente equivalenza, senza usare le tavole di verità:

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

Soluzione

$$(p o q) \wedge (p o r) \equiv (\neg p \vee q) \wedge (\neg p \vee r)$$
 Def. di o

$$\equiv \neg p \vee (q \wedge r)$$
 Prop. distributiva
$$\equiv p o (q \wedge r)$$
 Def. di o

Sommario

- Logica proposizionale
 - Connettivi
 - Proprietà dei connettivi
 - Forme normali

Quantificatori

Quantificatori: negazione

Definizione (Regole per la negazione dei quantificatori)

Valgono le seguenti:

$$\neg(\forall x. p(x)) \equiv \exists x : \neg p(x)$$
$$\neg(\exists x : p(x)) \equiv \forall x. \neg p(x)$$

Quantificatori: negazione

Definizione (Regole per la negazione dei quantificatori)

Valgono le seguenti:

$$\neg(\forall x. p(x)) \equiv \exists x : \neg p(x)$$
$$\neg(\exists x : p(x)) \equiv \forall x. \neg p(x)$$

La prima regola equivale a esibire un **controesempio** per confutare un enunciato.

Example

"Il quadrato di un intero è sempre pari."

Quantificatori: negazione

Definizione (Regole per la negazione dei quantificatori)

Valgono le seguenti:

$$\neg(\forall x. p(x)) \equiv \exists x : \neg p(x)$$
$$\neg(\exists x : p(x)) \equiv \forall x. \neg p(x)$$

La prima regola equivale a esibire un **controesempio** per confutare un enunciato.

Example

"Il quadrato di un intero è sempre pari." Falso, esiste il numero 5 il cui quadrato è 25 (dispari).

Esercizi: trovare un controesempio

Esercizio 7

Confutare le seguenti proposizioni (dominio: \mathbb{N}):

- **1** \forall *n*, 3*n* + 6 ≥ 5*n*
- ② $\forall n, 10n^2 > n^3$

In alcuni casi meglio farsi aiutare dal PC :)