Chapter-13 उच्च पादपों में प्रकाश-संश्लेषण

अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर

प्रश्न 1.

एक पौधे को बाहर से देखकर क्या आप बता सकते हैं कि वह C₄ई है अथवा C₃? कैसे और क्यों? उत्तर :

पौधे जो शुष्क ट्रॉपिकल क्षेत्रों के लिए अनुक्लित होते हैं उनमें C₄पथ पाया जाता है अन्यथा C₃तथा C₄पौधों में बाह्य आकारिकी लगभग समान होती है।

प्रश्न 2.

एक पौधे की आन्तरिक संरचना को देखकर क्या आप बता सकते हैं कि वह C₃है अथवा C₄? वर्णन कीजिए।

उत्तर:

पत्तियों की आन्तिरिक संरचना (vertical section) को देखकर C_3 तथा C_4 पौधों को पहचाना जा सकता है। C_4 पौधों की पत्तियों की शारीरिकी (anatomy) क्रान्ज प्रकार (Kranz type) की होती है। जर्मन भाषा में क्रान्ज शब्द का तात्पर्य माला (wreath) या छल्ला (ring) है। पत्तियों के पर्णमध्योतक (mesophyll) में खम्भ ऊतक (palisade tissue) नहीं होता। संवहन बण्डल के चारों ओर गोल मृदूतक कोशिकाएँ पर्यों के रूप में व्यवस्थित होती हैं। पत्तियों के संवहन बण्डल के चारों ओर पूलाच्छद (bundle sheath) होता है। ये कोशिकाएँ बड़ी होती हैं। पुलाच्छद की कोशिकाओं में हरितलवक बड़े होते हैं तथा उनमें ग्रैना कम विकसित होते हैं अथवा अनुपस्थित होते हैं, जबिक पर्ण मध्योतक कोशिकाओं में हरितलवक छोटे होते हैं। इनमें ग्रेना विकसित होते हैं। अतः C_4 पौधों की पत्तियों में द्विरूपी हरितलवक (dirmorphic chloroplast) पाए जाते हैं। प्रकाश संश्लेषण प्रक्रम में वर्णक तन्त्र C_4 पौधों की परितयों हो। का अभाव होता है।

C₃ पौधों की पत्तियों की

शारीरिकी (anatomy) क्रान्ज प्रकार की नहीं होती। इसकी पत्तियों में पर्णमध्योतक में खम्भ ऊतक पाया जाता है। सभी कोशिकाओं में एक ही प्रकार के हरितलवक पाए। जाते हैं। प्रकाश संश्लेषण तन्त्र में दोनों वर्णक तन्त्र पाए जाते हैं।

प्रश्न 3.

हालांकि C4 पौधों में बहुत कम कोशिकाएँ जैव संश्लेषण-केल्विन पथ को वहन करती हैं फिर भी वे उच्च उत्पादकता वाले होते हैं। क्या इस पर चर्चा कर सकते हो कि ऐसा क्यों है?

उत्तर:

C₄ पौधों में दो प्रकार के क्लोरोप्लास्ट मिलते हैं। मीसोफिल का क्लोरोप्लास्ट CO₂ वातावरण से लेता है। यह बहुत क CO₂ सान्द्रता को भी आसानी से अवशोषित कर सकता है। यहाँ तक कि जब रन्ध्र लगभग बन्द होते हैं तब भी CO₂ का अवशोषण कर सकता है। अतः CO₂ की आवश्यकता निरन्तर बनी रहती है, अतः इसलिए इनकी उत्पादकता उच्च होती है।

प्रश्न 4.

रुबिस्को (RUBISCO) एक एन्जाइम है जो कार्बोक्सिलेस और ऑक्सीजनेस के रूप में काम करता है। आप ऐसा क्यों मानते हैं कि C4 पौधों में रुबिस्को अधिक मात्रा में कार्बोक्सिलेशन करता है?

उत्तर:

कैल्विन चक्र (Calvin Cycle) में CO₂ ग्राही RuBP से क्रिया करके 3-फॉस्फोग्लिसरिक अम्ल (PGA) के 2 अणु बनाता है। यह क्रिया रुबिस्को (RUBISCO) के द्वारा उत्प्रेरित होती है

$RuBP + CO_2 + H_2O \rightarrow 2 \text{ (3 PGA)}$

रुबिस्को संसार में सबसे अधिक मात्रा में पाया जाने वाला प्रोटीन (एन्जाइम) है। यह O_2 तथा CO_2 दोनों से बन्धित हो सकता है। रुबिस्को में O_2 की अपेक्षा CO_2 के लिए अधिक बन्धुता होती है, लेकिन आबन्धता O_2 तथा CO_2 की सापेक्ष सान्द्रता पर निर्भर करती है। C3 पौधों में कुछ O_2 रुबिस्को से बन्धित हो जाने के कारण CO_2 का यौगिकीकरण कम हो जाता है; क्योंकि रुबिस्को O_2 से बन्धित होकर

फॉस्फो ग्लाइकोलेट अणु बनाता है। इस प्रक्रम को प्रकाश श्वसन (photorespiration) कहते हैं। प्रकाश श्वसन के कारण शर्करा नहीं बनती और न ही ऊर्जा ATP के रूप में संचित होती है। С₄ पौधों में प्रकाश श्वसन नहीं होता। С₄ पौधों में पर्णमध्योतक का मैलिक अम्ल पूलाच्छद में दूटकर पाइरुविक अम्ल तथा CO₂ बनाता है। इसके फलस्वरूपे CO₂ की सान्द्रता बढ़ जाती है और रुबिस्को एक कार्बोक्सिलेस (carboxylase) के रूप में ही कार्य करता है। इसके फलस्वरूप उत्पादकता बढ़ जाती है। यहाँ रुबिस्को ऑक्सीजिनेस (oxygenase) का कार्य नहीं करता।

प्रश्न 5.

मान लीजिए यहाँ पर क्लोरोफिल 'बी' की उच्च सान्द्रता युक्त, मगर क्लोरोफिल 'ए' की कमी वाले पेड़ थे। क्या ये प्रकाश संश्लेषण करते होंगे? तब पौधों में क्लोरोफिल 'बी' क्यों होता है और फिर दूसरे गौण वर्णकों की क्या जरूरत है?

उत्तर:

क्लोरोफिल 'बी', जैन्थोफिल तथा कैरोटिन सहायक वर्णक (accessory pigments) होते हैं। ये प्रकाश को अवशोषित करके, ऊर्जा को क्लोरोफिल 'ए' को स्थानान्तरित कर देते हैं। वास्तव में ये वर्णक प्रकाश संश्लेषण को प्रेरित करने वाली उपयोगी तरंगदैर्घ्य के क्षेत्र को बढ़ाने का कार्य करते हैं और क्लोरोफिल 'ए' को फोटो ऑक्सीडेशन (photo oxidation) से बचाते हैं। क्लोरोफिल 'ए' प्रकाश संश्लेषण में प्रयुक्त होने वाला मुख्य वर्णक है। अतः क्लोरोफिल 'ए' की कमी वाले पौधों में प्रकाश संश्लेषण प्रभावित होगा। प्रश्न 6.

यदि पत्ती को अँधेरे में रख दिया गया हो तो उसका रंग क्रमशः पीला एवं हरा-पीला हो जाता है? कौन-से वर्णक आपकी सोच में अधिक स्थायी हैं?

उत्तर:

पौधे के हरे भागों में हरितलवक पाया जाता है। हरितलवक की उपस्थिति में पौधे प्रकाश संश्लेषण द्वारा भोजन का संश्लेषण करते हैं। पौधे के अप्रकाशिक भागों में अवर्णीलवक पाया जाता है। प्रकाश की उपस्थिति में अवर्णीलवक हरितलवक में बदल जाता है। हरितलवक की ग्रैना पटलिकाओं में पर्णहरित, कैरोटिनॉयड्स (carotenoids) पाए जाते हैं। कैरोटिनॉयड्स दो प्रकार के होते हैं जैन्थोफिल (xanthophyll) तथा कैरोटिन (carotene)। ये क्रमशः पीले एवं नारंगी वर्णक होते हैं। पर्णहरित निर्माण के लिए प्रकाश की उपस्थिति आवश्यक होती है। प्रकाश का अवशोषण या प्रकाश ऊर्जा को ग्रहण करने का कार्य मुख्य रूप से पर्णहरित करता है। पौधे को अन्धकार में रख देने पर प्रकाश संश्लेषण क्रिया अवरुद्ध हो जाती है। पौधे में संचित भोज्य पदार्थ समाप्त हो जाते हैं तो इसके फलस्वरूप पत्तियों में पाए जाने वाले पर्णहरित का विघटन प्रारम्भ हो जाता है। इसके फलस्वरूप पत्तियाँ कैसेटिनॉयड्स के कारण पीली या हरी-पीली दिखाई देने लगती हैं। कैरोटिनॉयड्स पर्णहरित की तुलना में अधिक स्थायी होते हैं।

प्रश्न 7.

एक ही पौधे की पत्ती का छाया वाला (उल्टा) भाग देखें और उसके चमक वाले (सीधे) भाग से तुलना करें अथवा गमले में लगे धूप में रखे हुए तथा छाया में रखे हुए पौधों के बीच तुलना करें। कौन-सा गहरे रंग का होता है और क्यों?

उत्तर :

जब हम पत्ती की पृष्ठ सतह को देखते हैं तो यह अधर तल की अपेक्षा अधिक गहरे रंग की और चमकीली दिखाई देती है। इसी प्रकार धूप में रखे हुए गमले की पत्तियाँ छाया में रखे हुए गमले की पत्तियों की अपेक्षा अधिक गहरे रंग की और चमकीली प्रतीत होती हैं। इसका कारण यह है कि पृष्ठ तल पर अधिचर्म (epidermis) के नीचे खम्भ ऊतक (palisade tissue) पाया जाता है। खम्भ ऊतक में हरितलवक अधिक मात्रा में पाया जाता है। खम्भ ऊतक प्रकाश संश्लेषण के लिए विशिष्टीकृत कोशिकाएँ होती हैं। धूप में रखे गमले की पत्तियाँ छाया में रखे गमले की अपेक्षा अधिक गहरे रंग की प्रतीत होती हैं। पत्तियों के अधिक गहरे रंग का होने का मुख्य कारण कोशिकाओं में पर्णहरित की मात्रा अधिक होती है क्योंकि पर्णहरित निर्माण के लिए प्रकाश एक महत्त्वपूर्ण कारक होता है। इसके अतिरिक्त प्रकाश संश्लेषण के कारण पृष्ठ सतह की कोशिकाओं में अधिक स्टार्च का निर्माण होता है।

प्रश्न 8.

प्रकाश संश्लेषण की दर पर प्रकाश का प्रभाव पड़ता है। ग्राफ के आधार पर निम्नलिखित प्रश्नों के उत्तर दीजिए

- (अ) वक्र के किस बिन्द् अथवा बिन्द्ओं पर (क, ख अथवा ग) प्रकाश एक नियामक कारक है?
- (ब) 'क' बिन्दु पर नियामक कारक कौन-से हैं?
- (स) वक्र में 'ग' और 'घ' क्या निरूपित करता है?

उत्तर :

(3T)

प्रकाश की गुणवत्ता, प्रकाश की तीव्रता प्रकाश संश्लेषण को प्रभावित करती है। उच्च प्रकाश तीव्रता प्रकाश नियामक कारक नहीं होता; क्योंकि अन्य कारक सीमित हो जाते हैं। कम प्रकाश तीव्रता पर प्रकाश एक नियामक कारक "क" बिन्द पर होता है।

(ৰ)

प्रकाश।

(स)

वक्र में 'ग' बिन्दु प्रकाश संतृप्तता को प्रदर्शित करता है। इस बिन्दु पर प्रकाश तीव्रता बढ़ने पर भी प्रकाश संश्लेषण की दर नहीं बढ़ती। 'घ' बिन्दु यह निरूपित करता है कि प्रकाश तीव्रता इस बिन्दु पर सीमाकारक हो सकता है।

निम्नलिखित में तुलना कीजिए

- (अ) C₃ एवं C4 पथ
- (ब) चक्रीय एवं अचक्रीय फोटोफॉस्फोरिलेशन
- (स) C3 एवं C4 पादपों की पत्ती की शारीरिकी।

उत्तर :

(**3**T)

C₃ तथा C₄ पथ में अन्तर

क्र° सं°	C ₃ पथ	C ₄ पथ
1.	CO_2 का स्थिरीकरण एक बार होता है।	CO ₂ का स्थिरीकरण दो बार होता है। पर्णमध्योतक तथा पूलाच्छद कोशिकाओं में क्रमशः ऑक्सेलोऐसीटिक अम्ल तथा 3-फॉस्फोग्लिसरिक अम्ल बनता है।
2.	CO_2 ग्राही का कार्य RuBP करता है।	इसमें PEP (फॉस्फोइनोल पाइरुविक अम्ल) CO ₂ ग्राही का कार्य करता है।
3.	CO ₂ स्थिरीकरण के फलस्वरूप बनने वाला प्रथम पदार्थ 3-फॉस्फोग्लिसरिक अम्ल होता है। यह 3-कार्बन यौगिक है।	CO ₂ स्थिरीकरण के फलस्वरूप बनने वाला प्रथम पदार्थ ऑक्सेलोऐसीटिक अम्ल होता है। यह 4-कार्बन यौगिक है।
4.	ये वायुमण्डल से अपेक्षाकृत कम ${ m CO_2}$ ग्रहण करते हैं।	ये वायुमण्डल से अधिक CO_2 ग्रहण करते हैं।
5.	सन्तुलन तीव्रता बिन्दु (compensation point) ${ m CO}_2$ की अधिक सान्द्रता (50-100 ppm) पर होता है।	सन्तुलन तीव्रता बिन्दु CO_2 की कम सान्द्रता (0-10 ppm) पर होता है।
6.	इसके लिए उपयुक्त ताप 20-25°C होता है।	इसके लिए उपयुक्त ताप 30-45°C होता है।
7.	इनमें प्रकाश श्वसन (photo respiration) होता है और फॉस्फोग्लाइकोलेट बनता है।	
8.	O2 प्रकाश संश्लेषण के लिए अवरोधक का कार्य करता है (फॉस्फोग्लाइकोलेट बनने के कारण)।	O ₂ का प्रकाश संश्लेषण पर अवरोधक प्रभाव नहीं होता (प्रकाश श्वसन के न होने से)।
9.	इसमें एन्जाइम रुविस्को (RUBISCO) होता है।	इसमें एन्जाइम पेप कार्बोक्सिलेस (PEP carboxylase) होता है।
10.	उत्पादकता (Productivity) कम होती है।	उत्पादकता अधिक होती है।
11.	उदाहरण —आलू, टमाटर।	उदाहरण —मक्का, घास, चौलाई (Amaranthus) आदि।

— (ब)

चक्रीय तथा अचक्रीय फोटोफॉस्फोरिलेशन में अन्तर

क्र॰ सं॰	चक्रीय फोटोफॉस्फोरिलेशन	अचक्रीय फोटोफॉस्फोरिलेशन
1,	ऑक्सीजन का उत्सर्जन नहीं होता।	ऑक्सीजन का उत्सर्जन होता है।
2.	जल का उपयोग (जल विघटन) नहीं होता।	जल का उपयोग (जल विघटन) होता है।
3.	इसमें केवल प्रकाश प्रक्रम प्रथम (photo act I) ही	इसमें प्रकाश प्रक्रम प्रथम तथा द्वितीय (photo act I
	होता है।	and photo act II) दोनों होते हैं।
4.	$NADP.H_2$ का निर्माण नहीं होता। केवल ATP	NADP. H ₂ तथा ATP का संश्लेषण होता है।
	का ही निर्माण होता है।	_
5.	P 700 अन्तिम इलेक्ट्रॉनग्राही होता है।	NADP अन्तिम इलेक्ट्रॉनग्राही होता है।
6.	फेरीडॉक्सिन से इलेक्ट्रॉन के सायटोक्रोम b ₆ से	प्लास्टो क्विनोन से इलेक्ट्रॉन के सायटोक्रोम b ₆
	सायटोक्रोम-7 पर आने से ऊर्जा मुक्त ATP में	और \mathbf{b}_6 से सायटोक्रोम- f पर आने से मुक्त ऊर्जी
	संचित होती है।	ATP में संचित होती है।
7.	उत्तेजित होकर इलेक्ट्रॉन उत्सर्जित करने वाला	उत्तेजित होकर इलेक्ट्रॉन् उत्सर्जित करने वाला
	वर्णक P ₇₀₀ प्रकार का क्लोरोफिल 'ए' होता है।	वर्णक P_{673} प्रकार का क्लोरोफिल 'ए' होता है। (स)

C3 तथा C4पादपों की पत्ती की शारीरिकी में अन्तर

क्र° सं°	C_3 पौधों की पत्ती की शारीरिकी	C₄ पौधों की पत्ती की शारीरिकी
1.	C ₃ पौधे सभी प्रकार की जलवायु में पाए जाते हैं।	C ₄ पौधे उष्ण कटिबन्धी (tropical) तथा उपो ^ए ण कटिबन्धी (subtropical) जलवायु में पाए जाते हैं।
2.	पत्तियों में क्रान्ज शारीरिकी (Kranz anatomy) नहीं पाई जाती।	
3.	पर्णमध्योतक सामान्यतया खम्भ ऊतक (palisade tissue) तथा स्पंजी मृदूतक में भिन्नित होता है।	
4.	मुदुतकीय पूलाच्छद से घिरा होता है।	संवहन बण्डल चारों ओर से हरितलवक युक्त मृदूतकीय पूलाच्छद से घिरा होता है।
5.	होते हैं। छोटे ग्रैना तथा स्पष्ट स्ट्रोमा दोनों प्रकार के वर्णक तन्त्र (I + II) उपस्थित होते हैं।	हरितलवक दो प्रकार के (dimorphic) होते हैं—पर्णमध्योतक की कोशिकाओं में सामान्य हरितलवक (C3 पौघों के समान), किन्तु पूलाच्छद कोशिकाओं में बड़े आकार के ग्रैना-विहीन हरितलवक पाए जाते हैं।

परीक्षोपयोगी प्रश्नोत्तर

बहुविकल्पीय प्रश्न

प्रश्न 1.

प्रकाश-संश्लेषण के लिए आवश्यक शर्त हैं

- (क) प्रकाश एवं उचित तापक्रम
- (ख) पर्णहरित एवं जल
- (ग) कार्बन डाइऑक्साइड

(घ) ये सभी		
उत्तर:		
(घ) ये सभी		
प्रश्न 2.		
चक्रीय प्रकाश-फॉस्फोरिलीकरण में उपयोग होता है		
(क) PSI		
(অ) PSII		
(ग) PSI और PSII		
(घ) इनमें से कोई नहीं		
उत्तर:		
(布) PSI		
प्रश्न 3.		
अचक्रीय प्रकाश-फॉस्फोरिलीकरण में किसका उपयोग होता है?		
(क) PSI		
(অ) PSII		
(ग) PSI और PSII		
(घ) इनमें से कोई नहीं		
उत्तर:		
(ग) PSI और PSII		
प्रश्न 4.		
निम्न में किसकी CO2 सन्तुलन-प्रकाश तीव्रता उच्चतम होती है?		
(क) C2 पौधों की		
(ख) C₃ पौधों की		
(ग) C₄ पौधों की		
(घ) एल्पाइन पौधों की		
उत्तर:		
(ख) C₃ पौधों की		
प्रश्न 5.		
कैल्विन-बेन्सन चक्र का प्रारम्भिक विकर है		
(क) फॉस्फोट्रायोज आइसोमेरेज		
(ख) राइबुलोज-1, 5-डाइफॉस्फेट कार्बोक्सीलेज		
(ग) ट्रायोज फॉस्फेट डीहाइड्रोजीनेज		

(घ) इनमें से सभी

उत्तर:

(ख) राइबुलोज-1, 5-डाइफॉस्फेट कार्बोक्सीलेज

प्रश्न 6.

C₄ चक्र में प्रथम CO₂ ग्रहणकर्ता है

- (क) RUBP
- (ख) PGA
- **(ग)** OAA
- (घ) PEP

उत्तर:

(घ) PEP

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.

प्रकाश-संश्लेषण की परिभाषा लिखिए। प्रकाश-संश्लेषण की प्रक्रिया को प्रभावित करने वाले एक बाहय कारक तथा एक आन्तरिक कारक का उल्लेख कीजिए।

उत्तर:

वह अभिक्रिया जिसमें हरे पेड़-पौधे सूर्य के प्रकाश, CO2, जल तथा पर्णहरिम की उपस्थिति में कार्बोहाइड्रेट्स का निर्माण करते हैं, प्रकाश-संश्लेषण कहलाती है। प्रकाश-संश्लेषण की प्रक्रिया को प्रभावित करने वाला एक प्रमुख बाहय कारक प्रकाश तथा आन्तरिक कारक पर्णहरिम है।

प्रश्न 2.

पर्णहरित के पाइरोल चक्र से सम्बन्धित तत्त्व का नाम बताइए।

उत्तर:

पाइरोल वलय (चक्र) (pyrole ring) के मध्य में एक मैग्नीशियम (Mg) परमाणु होता है।

प्रश्न 3.

पर्णहरिम (chlorophyll) के अणु कहाँ पाये जाते हैं?

उत्तर:

हरित लवक के ग्रेना में पाये जाते हैं।

प्रश्न 4.

प्रकाश संश्लेषण में निकलने वाली ऑक्सीजन किस पदार्थ के अणुओं से प्राप्त होती है?

उत्तर:

जल (H₂O) से।

प्रश्न 5.

जल के दो अणु के प्रकाश-अपघटन में कितने फोटॉन की आवश्यकता होती है?

उत्तर:

जल के दो अणु के प्रकाश-अपघटन में चार फोटॉन की आवश्यकता होती है।

प्रश्न 6.

C₄ पौधे क्या हैं? इसके दो उदाहरण लिखिए।

उत्तर:

जिन हैच और स्लैम चक्र वाले पौधों में कार्बन डाइऑक्साइड स्थिरीकरण का प्रथम उत्पाद 4 कार्बन वाला पदार्थ ऑक्सेलोऐसीटिक अम्ल होता है, C4 पौधे कहलाते हैं। उदाहरणार्थ-गन्ना, मक्का इत्यादि।

प्रश्न 7.

क्रान्ज शारीरिकी किन पौधों में पायी जाती है?

उत्तर:

C₄ पौधों में।

प्रश्न 8.

एक पौधे का नाम बताइए जिसमें प्रकाश-संश्लेषण में दो कार्बन डाइऑक्साइड ग्राही होते

उत्तर:

गन्ना (C₄ पौधा)।

प्रश्न 9.

प्रकाश-संश्लेषण प्रदर्शित करने वाले उपकरण के जल में कोल्ड ड्रिंक मिलाने पर अधिक बुलबुले निकलते हैं। कारण स्पष्ट कीजिए।

उत्तर:

प्रकाश-संश्लेषण प्रदर्शित करने वाले उपकरण के जल में कोल्ड ड्रिंक मिलाने पर अधिक बुलबुले निकलते हैं; क्योंकि कोल्ड ड्रिंक में CO₂ गैस होती है जिसके कारण उपकरण के जल में CO₂ की सान्द्रता बढ़ जाती है और प्रकाश-संश्लेषण की क्रिया तीव्र हो जाती है जिससे अधिक मात्रा में O₂ गैस निकलती है।

लघु उत्तरीय प्रश्न

प्रश्न 1.

प्रकाश-संश्लेषण की प्रकाशिक तथा अप्रकाशिक प्रक्रियाओं में अन्तर बताइए।

उत्तर:

प्रकाश-संश्लेषण की प्रकाशिक तथा अप्रकाशिक प्रक्रियाओं में अन्तर

प्रकाशिक प्रक्रियाएँ	अप्रकाशिक प्रक्रियाएँ	
 ये क्रियाएँ केवल प्रकाश में सम्पन्न होती हैं। 	 इन क्रियाओं के लिए प्रकाश की कोई आवश्यकता नहीं होती है। 	
 ये हरितलवक के ग्रैना (grana) पर होने वाली प्रक्रियाएँ हैं। 	• ये क्रियाएँ हरितलवक (chloroplast) की पीठिका (stroma) में होती हैं।	
इन प्रक्रियाओं में प्रकाशीय ऊर्जा का अवशोषण तथा स्थिरीकरण (trapping) किया जाता है। इस प्रकार गतिज प्रकाशीय ऊर्जा को विभवीय रासायनिक ऊर्जा के रूप में बदलकर ATP अणुओं का निर्माण होता है जिसे प्रकाशफॉस्फोरीकरण (photophosphorylation) कहा जाता है।	 इन प्रक्रियाओं में प्रकाशीय क्रियाओं से प्राप्त ऊर्जा, जो ATP अणुओं के उच्च ऊर्जा बन्धों के रूप में होती है, का उपयोग कार्बन स्वांगीकरण (carbon assimila- tion) में किया जाता है। 	
• इन क्रियाओं में जल का विच्छेदन (अपघटन) करके H तथा e^- (इलेक्ट्रॉन) प्राप्त किये जाते हैं। यहाँ ऑक्सीजन उप-उत्पाद के रूप में भी प्राप्त होती है। इस प्रकार $2H_2O \longrightarrow 2H^+ + 2OH^ 2OH^- \longrightarrow H_2O + \frac{1}{2}O_2$	• कार्बन डाइऑक्साइड के अपचयन (reduction) के लिए प्रकाशीय क्रियाओं से प्राप्त NADP·H ₂ का उपभोग कर H ⁺ प्राप्त किये जाते हैं। ये प्रक्रियाएँ लम्बी, जिटल तथा चक्रीय क्रम (cyclic succession) में होती हैं।	
$2H^+ + NADP \longrightarrow NADP \cdot H_2$		
 इन क्रियाओं की उप-उत्पाद ऑक्सीजन गैस के रूप में निकलती है। 	 इन क्रियाओं में कार्बन डाइऑक्साइड कच्चे पदार्थ के रूप में प्रयुक्त होती है। 	
 इन प्रक्रियाओं के लिए दो वर्णक तन्त्रों की आवश्यकता होती है। 	 इन प्रक्रियाओं में इस प्रकार के किन्हीं तन्त्रों की कोई आवश्यकता नहीं होती। 	

प्रश्न 2.

हिल अभिक्रिया से आप क्या समझते हैं?

उत्तर:

वैज्ञानिक हिल (Hill) ने प्रकाश संश्लेषण (photosynthesis) की क्रिया के अध्ययन के समय यह बताया कि जल के अणुओं के टूटने पर H2 का निर्माण होता है तथा इससे उप उत्पाद के रूप में ऑक्सीजन गैस उत्पन्न होती है। बाद में H2 को वातावरण से प्राप्त की गई CO2 के साथ स्थिर करके विभिन्न प्रकार के कार्बोहाइड्रेट्स का निर्माण किया जाता है। हिल अभिक्रिया प्रकाश की उपस्थिति में ही सम्पन्न होती है, इसलिये इस क्रिया को प्रकाश अभिक्रिया (light reaction) भी कहते हैं।

$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$
 ↑ प्रश्न 3.

प्रकाशीय श्वसन से आप क्या समझते हैं ?

उत्तर:

प्रकाशीय श्वसन (photorespiration) को समझने के लिए, हमें कैल्विन पथ के प्रथम चरण अर्थात् CO2 स्थिरीकरण के विषय में कुछ अधिक जानकारी प्राप्त करनी होगी। यह वह अभिक्रिया है जहाँ

RuBP कार्बन डाइऑक्साइड से संयोजित होकर 3PGA के 2 अणुओं का गठन करता है और एक एन्जाइम रिबुलोज बिसफॉस्फेट कार्बोक्सिलेज ऑक्सीजिनेज (RuBisCO) के दवारा उत्प्रेरित होता है।

RuBP + CO₂ $\xrightarrow{\text{RuBisCO}}$ 2 (3PGA) RuBisCO एन्जाइम विश्व में सबसे प्रचुर मात्रा में पाया जाता है क्योंकि यह CO₂ एवं O₂ दोनों से बन्धित हो सकता है, इसलिए इसे रुबिस्को कहते हैं। रुबिस्को में O₂ की अपेक्षा CO₂ के लिए अधिक बन्धुता है। कल्पना कीजिए कि यदि ऐसा नहीं होता तो क्या होता? यह बन्धुता प्रतियोगितात्मक है। O₂ अथवा CO₂ इनमें से कौन आबन्ध होगा, यह उनकी सापेक्ष सान्द्रता पर निर्भर करता है।

C₂ पौधों में कुछ O₂ RuBisCO से बन्धित होती है अत: CO₂ का यौगिकीकरण कम हो जाता है। यहाँ पर RUBP, 3-PGA के अणुओं में परिवर्तित होने की बजाय ऑक्सीजन से संयोजित होकर चक्र में एक फॉस्फोग्लिसरेट अणु बनाता है जिसे प्रकाशीय श्वसन कहते हैं। प्रकाश श्वसन पथ में शर्करा और ATP को संश्लेषण नहीं होता; बल्कि इसमें ATP के उपयोग के साथ CO2 भी निकलती है। प्रकाशीय श्वसन पथ में ATP अथवा NADPH का संश्लेषण नहीं होता; अत: प्रकाश श्वसन एक निरर्थक प्रक्रिया है।

 C_4 पौधों में प्रकाशीय श्वसन नहीं होता है। इसका कारण यह है कि इनमें एक ऐसी प्रणाली होती है जो एन्जाइम स्थल पर CO_2 की सान्द्रता बढ़ा देती है। ऐसा तब होता है जब पर्णमध्योतक का C_4 अम्ल पूलाच्छद में दूटकर CO_2 को मुक्त करता है, जिसके परिणामस्वरूप CO_2 की अन्तराकोशिकीय सान्द्रता बढ़ जाती है। इससे यह सुनिश्चित हो जाता है कि रुबिस्को कार्बोक्सिलेज के रूप में कार्य करता है, जिससे इसकी ऑक्सीजनेज के रूप में कार्य करने की क्षमता कम हो जाती है।

प्रश्न 4.

C3 तथा CAM पौधों में अन्तर बताइए।

उत्तर:

कुछ पौधों; विशेषकर अत्यधिक ताप में उगने वाले सरस मरुद्भिदों; जैसे—नागफनी (Opuntia), केतकी (Agave) आदि में दिन के समय रन्ध्र बन्द रहने से ऊतकों को कार्बन डाइऑक्साइड नहीं मिल पाती है। यह रात्रि को रन्ध्रों के खुलने पर उपलब्ध होती है। अत: इन पौधों की पत्तियों की मध्योतक कोशिकाओं (mesophyll cells) में कार्बन डाइऑक्साइड का स्थिरीकरण C_4 पौधों के समान ही होता है। रात्रि के समय ये पत्तियाँ PEP (phosphoenol pyruvic acid) के साथ मिलकर CO_2 ऑक्सेलोऐसीटिक अम्ल (oxaloacetic acid) तथा बाद में मैलिक अम्ल (malic acid) बना लेती है। दिन के समय मैलिक अम्ल विघटित होकर CO_2 निष्कासित करता है जो कैल्विन चक्र में प्रवेश करती है। ध्यान रहे, यहाँ पर्णमध्योतक कोशिकाओं में ही दोनों बार स्थिरीकरण होता है, C_4 पौधों की तरह दो भिन्न कोशिकाओं में नहीं। ऐसे पौधों को कैम पादप (CAM plant) कहा गया है।

प्रश्न 5.

C₄ व C₃ पौधों में अन्तर कीजिए।

उत्तर :

C₄ व C₃ पौधों में अन्तर

C ₄ पौधे	C ₃ पौधे
• क्रैन्ज प्रकार (kranz type) के पूलीय आच्छद (bundle sheath) की कोशिकाओं में बड़े-बड़े जबिक पर्णमध्योतक (mesophyll) की कोशिकाओं में छोटे-छोटे हरितलवक होते हैं।	• सभी कोशिकाओं में हिरतलवक (chloroplasts) समान प्रकार के होते हैं।
पर्णमध्योतक की कोशिकाओं में हरित लवक C3 पौधे के समान किन्तु पूलीय आच्छद कोशिकाओं में ह्रितलवकों में श्रेना अविकसित अथवा अनुपस्थित होते हैं। वर्णक तन्त्र-II का अभाव होने के कारण NADP.H2 की इन कोशिकाओं में कमी होती है।	 सभी हिरतलवकों में छोटे ग्रैना (grana) तथा स्पष्ट स्ट्रोमा (stroma) में दोनों प्रकार के वर्णक तन्त्र (I & II) उपस्थित होते हैं।
 प्रकाश संश्लेषण के लिए हैच व स्लैक चक्र (Hatch and Slack cycle) का सहारा लिया जाता है। बाद की क्रियाएँ कैल्विन चक्र (Calvin cycle) द्वारा होती हैं। 	 यह क्रिया केवल कैल्विन चक्र के द्वारा होती है। सभी हरी कोशिकाएँ इसे करने में समर्थ होती हैं।
 कैल्विन चक्र के विकरों का पर्णमध्योतक कोशिकाओं में अभाव होता है इस कारण यह क्रिया पूलीय आच्छद की कोशिकाओं में होती है। 	 ये सभी हरी कोशिकाओं में समान रूप से होती हैं।

- CO₂ का स्थिरीकरण दो बार होता है—पहले । केवल एक बार होता है। पर्णमध्योतक कोशिकाओं में और बाद में पूलीय आच्छद की कोशिकाओं में।
- पर्णमध्योतक कोशिकाओं में एक C₃ यौगिक फॉस्फोइनॉल पाइरुविक अम्ल (phosphoenol pyruvic acid = PEP) किन्तु पूलीय आच्छद की कोशिकाओं में C5 यौगिक-रिबुलोज बाइफॉस्फेट (ribulose biphosphate = RuBP) होता है।
- रिबुलोज बाइफॉस्फेट कार्बोक्सिलेस पूलीय आच्छद । सभी कोशिकाओं में . रिबुलोज बाइफॉस्फेट कोशिकाओं में किन्तु पर्णमध्योतक कोशिकाओं में फॉस्फोइनॉल पाइरुवेट कार्बोक्सिलेस CO2 ग्राही पदार्थ हैं।
- कार्बन डाइऑक्साइड की उपयोग क्षमता अधिक है; अतः कार्य शक्ति अधिक छोटी है। वातावरण में कम सान्द्रता (10 ppm) रह जाने पर भी क्रिया होती रहती है।
- ऑक्सैलोऐसीटिक अम्ल–एक प्रकाश-संश्लेषण का प्रथम स्थायी उत्पाद होता है।

- सभी कोशिकाओं में C₅ यौगिक—रिबुलोज बाइफॉस्प्केट (RuBP) होता है।
- कार्बोक्सिलेस (ribulose biphosphate carboxylase) CO2 ग्राही होता है।
- कम कार्बन डाइऑक्साइड प्रयोग में ला पाते हैं; अत: कार्य क्षमता कम होती है। वातावरण में उच्च सान्द्रता ं (50 ppm से ऊपर) रहने पर ही CO2 का उपयोग कर पाते हैं।
- C4 यौगिक 🔷 फॉस्फोग्लिसरिक अम्ल-एक प्रकाश-संश्लेषण का प्रथम स्थायी उत्पाद होता है। .प्रश्न

6.

प्रकाश-संश्लेषण को प्रभावित करने वाले बाह्य कारकों का वर्णन कीजिए।

उत्तर:

प्रकाश-संश्लेषण को प्रभावित करने वाले बाह्य कारकों का वर्णन निम्नवत् है

1. प्रकाश

जब हम प्रकाश को प्रकाश – संश्लेषण को प्रभावित करने वाले कारक के रूप में लेते हैं तो हमें प्रकाश की गुणवत्ता, प्रकाश की तीव्रता तथा दीप्तिकाल के बीच अन्तर करने की आवश्यकता होती है। यहाँ कम प्रकाश तीव्रता पर आपतित प्रकाश तथा CO2 के यौगिकीकरण की दर के बीच एक रेखीय सम्बन्ध है। उच्च प्रकाश तीव्रता होने पर, इस दर में कोई वृद्धि नहीं होती है, अन्य कारक सीमित हो जाते हैं। इसमें ध्यान देने वाली रोचक बात यह है कि प्रकाश संतृप्ति पूर्ण प्रकाश के 10 प्रतिशत पर होती है। छाया अथवा सघन जंगलों में उगने वाले पौधों को छोड़कर प्रकाश शायद ही प्रकृति में सीमाकारी कारक हो। एक सीमा के बाद आपतित प्रकाश क्लोरोफिल के विघटन का कारण होता है, जिससे प्रकाश-संश्लेषण की दर कम हो जाती है।

2. कार्बन डाइऑक्साइड की सान्द्रता

प्रकाश संश्लेषण में कार्बन डाइऑक्साइड एक प्रमुख सीमाकारी कारक है। वाय्मण्डल में CO2 की सान्द्रती बहुत ही कम है (0.03 और 0.04 प्रतिशत के बीच)। CO2 की सान्द्रता में 0.05 प्रतिशत तक वृद्धि के कारण CO2 की यौगिकीकरण दर में वृद्धि हो सकती है, लेकिन इससे अधिक की मात्रा लम्बे

समय तक के लिए क्षितिकारक बन सकती है। C_3 एवं C_4 पौधे CO_2 की भिन्न-भिन्न सान्द्रताओं में भिन्न अनुक्रिया करते हैं। निम्न प्रकाश स्थितियों में दोनों में से कोई भी समूह उच्च CO_2 सान्द्रता के प्रति अनुक्रिया नहीं करते हैं। उच्च प्रकाश तीव्रता में C_3 तथा C_4 दोनों ही तरह के पादपों में प्रकाश-संश्लेषण की बढ़ी दर अधिक हो जाती है। यहाँ पर यह ध्यान देना महत्त्वपूर्ण है कि C_4 पौधे लगभग 360 μ 1 L^4 पर संतृप्त हो जाते हैं जबिक C_3 बढ़ी हुई CO_2 सान्द्रता पर अनुक्रिया करते हैं तथा संतृप्तता केवल 450 μ 1 L^4 के बाद ही दिखाते हैं। अत: उपलब्ध CO_2 का स्तर C_3 पादपों के लिए सीमाकारी है। सच तो यह है कि C_3 पौधे उच्चतरे CO_2 सान्द्रता में अनुक्रिया करते हैं और इससे प्रकाश-संश्लेषण की दर में वृद्धि होती है, जिसके फलस्वरूप उत्पादन अधिक होता है और इस सिद्धान्त का उपयोग ग्रीन हाउस फसलों; जैसे-टमाटर एवं बेल मिर्च में किया गया है। इन्हें कार्बन-डाइऑक्साइड से भरपूर वातावरण में बढ़ने का अवसर दिया जाता है तािक उच्च पैदावार प्राप्त हो।

3. ताप

प्रकाश संश्लेषण की अप्रकाशीय अभिक्रिया एन्जाइमों पर निर्भर करती है इसलिए यह ताप द्वारा नियन्त्रित होती है। यद्यपि प्रकाश अभिक्रिया भी ताप संवेदी होती है, लेकिन उस पर ताप का काफी कम प्रभाव होता है। C₄ पौधे उच्च ताप पर अनुक्रिया करते हैं तथा उनमें प्रकाश-संश्लेषण की दर भी ऊँची होती है, जबिक C₃ पौधों के लिए इष्टतम ताप कम होता है। विभिन्न पौधों के प्रकाश-संश्लेषण के लिए इष्टतम ताप उनके अनुक्लित आवास पर निर्भर करता है। उष्णकटिबन्धी पौधों के लिए इष्टतम ताप उच्च होता है। समशीतोष्ण जलवायु में उगने वाले पौधों के लिए अपेक्षाकृत कम ताप की आवश्यकता होती है।

4. जल

यद्यपि प्रकाश अभिक्रिया में जल एक महत्त्वपूर्ण प्रतिक्रिया अभिकारक है, तथापि, कारक के रूप में जल का प्रभाव पूरे पादप पर पड़ता है, न कि सीधे प्रकाश-संश्लेषण पर। जल तनाव रन्ध्र को बन्द कर देता है; अतः CO₂ की उपलब्धता घट जाती है। इसके साथ ही, जल अभाव से पत्तियाँ मुरझा जाती हैं, जिससे पत्तियों का क्षेत्रफल कम हो जाता है और इसके साथ-ही-साथ उपापचयी क्रियाएँ भी कम हो जाती हैं।

प्रश्न 7.

पौधों के जीवन में प्रकाश का क्या महत्त्व है? स्पष्ट कीजिए।

उत्तर:

पौधों के जीवन में प्रकाश का बहुत महत्त्व है क्योंकि प्रकाश के बिना पौधों का जीवन संभव नहीं है। पौधों को प्रकाश संश्लेषण की क्रिया द्वारा अपना भोजन निर्माण करने के लिए प्रकाश की आवश्यकता होती है और यदि प्रकाश ही नहीं होगा तो वे प्रकाश-संश्लेषण की क्रिया नहीं कर पाएँगे। और भोजन के अभाव में मर जायेंगे। इसके अतिरिक्त पौधों को अनेक कार्यों; जैसे-फलने-फूलने, वृद्धि, प्रजनन, बीजों के अंक्रण

आदि के लिए भी प्रकाश की आवश्यकता होती है। अतः हम कह सकते हैं कि पौधों के जीवन में प्रकाश का बहुत महत्त्व है।

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.

कैल्विन चक्र का विस्तार से वर्णन कीजिए। या प्रकाश-संश्लेषण क्रिया-विधि का संक्षेप में वर्णन कीजिए। या प्रकाश-संश्लेषण की क्रिया-विधि के सम्बन्ध में आधुनिक विचार बताइए एवं विस्तार से समझाइए। या प्रकाश-संश्लेषण के कैल्विन चक्र का वर्णन कीजिए। था प्रकाश-संश्लेषण के C3 चक्र का विवरण दीजिए। या प्रकाश-संश्लेषण किसे कहते हैं? इसके चक्रीय एवं अचक्रीय प्रकाश-फॉस्फोरिलीकरण का वर्णन कीजिए। या प्रकाश-संश्लेषण की क्रिया में पर्णहरित का क्या कार्य है? इसकी प्रकाशिक क्रिया समझाइए। या प्रकाश-संश्लेषण के अन्तर्गत प्रकाश एवं अन्धकार प्रक्रिया में भेद कीजिए। या प्रकाशहीन प्रक्रिया क्या है? कैल्विन चक्र का सचित्र वर्णन कीजिए। या कैल्विन-बेन्सन चक्र का वर्णन कीजिए। यह क्रिया हरितलवक के किस भाग में होती है? या प्रकाश कर्म। तथा प्रकाश कर्म। में अन्तर बताइए। या प्रकाश संश्लेषण से आप क्या समझते हैं? प्रकाश-संश्लेषण में होने वाली प्रकाशहीन अभिक्रिया का सविस्तार वर्णन कीजिए।

उत्तर:

प्रकाश-संश्लेषण

वह अभिक्रिया जिसमें हरे पेड़-पौधे सूर्य के प्रकाश, CO2, जल तथा पर्णहरित (Chlorophyll) की उपस्थिति में कार्बोहाइड्रेट्स का निर्माण करते हैं, प्रकाश संश्लेषण (photosynthesis) कहलाती है। इसे निम्न समीकरण द्वारा प्रदर्शित किया जा सकता है

$$6\text{CO}_2 + 12\text{H}_2\text{O} \xrightarrow{\text{sunlight}} \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{H}_2\text{O} + 6\text{O}_2 \uparrow$$
 प्रकाश-संश्लेषण की क्रिया-विधि

उपर्युक्त समीकरण से, यह स्पष्ट है कि $6O_2$ निकलने के लिए $12H_2O$, की आवश्यकता पड़ेगी। वास्तव में, जल (H_2O) को प्रकाश में क्लोरोफिल की उपस्थित में हाइड्रोजन तथा ऑक्सीजन के लिए अपघटित (decompose) किया जाता है। वैज्ञानिक हिल (Hill) ने प्रकाशीय क्रियाओं को अलग से पहचाना तथा यह भी निश्चित किया कि प्रकाश की ऊर्जा का उपयोग जल के अणुओं को तोड़कर उससे कच्चे माल की तरह H_2 को निष्कासित किया जाता है इसी से उप-उत्पाद के रूप में O_2 भी प्राप्त होती है। बाद में, हाइड्रोजन को वातावरण से प्राप्त की गयी कार्बन डाइऑक्साइड (CO_2) के साथ स्थिर (fix) करके कार्बीहाइड्रेट्स का निर्माण किया जाता है। यह क्रिया अत्यन्त जटिल होती है तथा अनेक पद और तन्त्रों में होकर सम्पन्न होती है। इस प्रकार प्रारम्भिक क्रियाओं के लिए प्रकाश की आवश्यकता होती है अतः ये क्रियाएँ प्रकाशीय क्रियाएँ या हिलअभिक्रियाएँ (light reactions or Hill reactions) कहलाती हैं। बाद की क्रियाओं के लिए प्रकाश की आवश्यकता नहीं होती है और ये अप्रकाशीय क्रियाएँ (dark reactions)

कहलाती हैं। प्रकाश-संश्लेषण के सम्बन्ध में अब यह पूर्णतः निश्चित हो चुका है कि क्लोरोप्लास्ट के अन्दर प्रकाशीय क्रियाएँ गैना (grana) पर तथा अन्य क्रियाएँ पीठिका (stroma) में होती हैं। सभी प्रकार के एन्जाइम्स (enzymes) इत्यादि का निर्माण तथा उपयोग जो प्रकाश संश्लेषण में आवश्यक होते हैं, क्लोरोप्लास्ट के अन्दर ही होता है। इसलिए इस सम्पूर्ण क्रिया को दो भागों में बाँटते हैं

1. प्रकाशीय प्रक्रियाएँ : हिल अभिक्रियाएँ

समस्त प्रकाशीय अभिक्रियाएँ हरितलवक के ग्रैना (grana) पर होती हैं। प्रकाश के अवशोषण से लेकर प्रकाशीय ऊर्जा को प्रयोग करने वाले तक, सभी सम्बन्धित वर्णक, दो प्रकार के वर्णक तन्त्रों में बँटे रहते हैं। इनको वर्णक तन्त्र-। और वर्णक तन्त्र-॥ कहते हैं। इन्हीं वर्णक तन्त्रों में क्रमशः प्रकाश कर्म-1 तथा प्रकाश कर्म-॥ होते हैं। दोनों प्रकाश कर्मों में होने वाली विभिन्न अभिक्रियाओं के मुख्य परिणाम इस प्रकार हैं

- 1. सूर्य के प्रकाश की विकिरण ऊर्जा के कारण क्लोरोफिल के अणु सक्रिय हो जाते हैं और उत्तेजित इलेक्ट्रॉन्स (active electrons) का निष्कासन करते हैं।
- 2. इलेक्ट्रॉन्स निष्कासित करने के बाद बने सक्रिय क्लोरोफिल की उपस्थिति में आवश्यक ऊर्जा प्राप्त कर जल के अणुओं का विच्छेदन होता है, जिससे हाइड्रोजन तथा ऑक्सीजन प्राप्त होती है

$$2H_2O \longrightarrow 2H^+ + 2OH^-$$

 $2OH^- \longrightarrow H_2O + \frac{1}{2}O_2$

- 3. उत्तेजित इलेक्ट्रॉन्स इलेक्ट्रॉन स्थानान्तरण तन्त्र के द्वारा अपने स्तर को शनैः-शनैः कम करते हैं। मुक्त हुई इस ऊर्जा को ADP के अणुओं में एक फॉस्फेट गुट्ट जोड़कर, ATP अणु बनाकर संचित कर लिया जाता है।
- 4. जल विच्छेदन से प्राप्त हाइड्रोजन NADP नामक हाइड्रोजन ग्राही के द्वारा एकत्र कर ली जाती है।

$$NADP + 2H^+ \longrightarrow NADP \cdot H_2$$

5. प्राप्त ऑक्सीजन पौधे से बाहर निकल जाती है। उपर्युक्त सम्पूर्ण प्रकाशीय अभिक्रियाओं में से प्रकाश कर्म-। में सूर्य के प्रकाश की ऊर्जा को इलेक्ट्रॉन स्थानान्तरण तन्त्र के माध्यम से चक्रीय प्रकाशीय फॉस्फोरिलेशन के द्वारा ATP में अनुबन्धित कर लिया जाता है। प्रकाश कर्म-॥ में जल के प्रकाशीय विच्छेदन की क्रिया होती है, यहाँ ATP निर्माण की क्रिया अचिक्रक प्रकाशीय फॉस्फोरिलेशन होती है।

चक्रीय फोटोफॉस्फोरिलेशन: प्रकाश कर्म-।

इस क्रिया में हरितलवक में स्थित वर्णक तन्त्र-l (pigment system-l) में क्लोरोफिल के अणु प्रकाशीय ऊर्जा अवशोषित कर ऊर्जित हो जाते हैं। इसके फलस्वरूप इनके प्रत्येक अणु से उच्च ऊर्जा स्तर वाला इलेक्ट्रॉन निकलता है। यह इलेक्ट्रॉन ग्राही पदार्थ अथवा फेरेडॉक्सिन द्वारा ग्रहण कर लिया जाता है। फेरेडॉक्सिन से इलेक्ट्रॉन विभिन्न साइटोक्रोम (cyt b6, cyt f) और प्लास्टोसायनिन से बनी हुई इलेक्ट्रॉन स्थानान्तरण श्रृंखला (electron transport chain) के द्वारा वापस क्लोरोफिल तक पहुँच जाता है। इस क्रमिक क्रिया में इलेक्ट्रॉन्स की कुछ ऊर्जा ए॰डी॰पी॰ (ADP) को ए॰टी॰पी॰ (ATP) में परिवर्तित करने के काम में आती है; क्योंकि इस क्रिया में ए॰डी॰पी॰ में फॉस्फेट का एक मूलक जुड़ता है और यह क्रिया प्रकाश में होती है। अतः इस क्रिया को फोटोफॉस्फोरिलेशन (photophosphorylation) कहते हैं। साथ ही इस क्रिया में क्लोरोफिल से निकला हुआ इलेक्ट्रॉन वापस क्लोरोफिल में ही आ जाता है। अतः इस प्रकार के फोटोफॉस्फोरिलेशन को चक्रीय फोटोफॉस्फोरिलेशन (cyclic photophosphorylation) कहते हैं।

चित्र-अचक्रीय फोटोफॉस्फोरिलेशन वर्णक तन्त्र-II पर होता है। जल के प्रकाशिक अपघटन से NADPH2 व ATP का निर्माण तथा ऑक्सीजन का निष्कासन होता है। यह वर्णक तन्त्र-I के प्रकाश कर्म-I से सम्बन्धित होता है।

जल का प्रकाशिक अपघटन :

प्रकाश कर्म-II

वर्णक तन्त्र-II (pigment system-II) में होने वाला प्रकाश कर्म-II (photo act-II) अचक्रीय फोटोफॉस्फोरिलेशन (non-cyclic photo- phosphorylation) है अर्थात् इस क्रिया में सक्रिय क्लोरोफिल से उत्सर्जित उत्तेजित इलेक्ट्रॉन वापस क्लोरोफिल में नहीं आता है, परन्तु NADP के माध्यम से इलेक्ट्रॉन स्थानान्तरण तन्त्र में जाकर कार्बन डाइऑक्साइड को शर्करा में अपचयित करता है। ऐसी पिरिस्थिति में क्लोरोफिल में किसी बाहय इलेक्ट्रॉन दाता से इलेक्ट्रॉन प्राप्त होने चाहिए। हरित पादपों में यह इलेक्ट्रॉन OH- आयनों से प्राप्त होते हैं जो साधारणतया जलीय वातावरण में उपस्थित रहते हैं। सामान्य अचक्रीय फॉस्फोरिलेशन में NADP इलेक्ट्रॉन ग्राही (electron acceptor) है। NADP का प्रत्येक अणु दो इलेक्ट्रॉन को ग्रहण करके NADP.H2 बनाता है जो बाद में कार्बन डाइऑक्साइड से शर्करा को उत्पन्न करने के काम आता है। NADP.H2 के निर्माण में दो प्रोटॉन्स की भी आवश्यकता होती है जो जल के ट्टने से प्राप्त होते हैं। जल के अपघटन में हाइड्रॉक्सिल आयन व इलेक्ट्रॉन भी प्राप्त होते हैं। ये हाइड्रॉक्सिल आयन आपस में क्रिया करके ऑक्सीजन व जल बनाते हैं। और क्लोरोफिल में इलेक्ट्रॉन्स का प्रतिस्थापन साइटोक्रोम श्रृंखला से होकर जल से निकले हुए इलेक्ट्रॉन्स के द्वारा होता है, इस क्रिया में ए०डी०पी० से ए०टी०पी० का संश्लेषण होता है।

NADP.H, व ATP का निर्माण व ऑक्सीजन का निकलना जल के प्रकाशिक अपघटन के अन्तिम उत्पाद हैं। ऑक्सीजन उप-उत्पाद के रूप में ही बनती है। चक्रीय फोटोफॉस्फोरिलेशन में केवल ATP का उत्पादन होता है। इस प्रकार उत्पन्न ATP को स्वांगीकारी शक्ति (assimilatory power) तथा (NADP.H) को अपचयन शक्ति (reducing power) कहते हैं। प्रकाश संश्लेषणात्मक भाग (अप्रकाशीय अभिक्रिया) में यही शक्तियाँ अत्यधिक महत्त्वपूर्ण हैं अर्थात् ये वास्तविक संश्लेषण का महत्त्वपूर्ण आधार हैं।

2. अप्रकाशीय (अन्धकार) क्रियाएँ : कैल्विन का योगदान

प्रकाश संश्लेषण के लिए ये संश्लेषणात्मक अभिक्रियाएँ हैं जिनके लिए प्रकाश की कोई आवश्यकता नहीं होती तथा ये क्लोरोप्लास्ट के मैट्रिक्स या पीठिका (matrix or stroma) में होती हैं। इन क्रियाओं में कार्बोहाइड्रेट्स (carbohydrates) का निर्माण होता है। ये अत्यन्त जटिल क्रियाएँ हैं। इस सम्बन्ध में वर्तमान जानकारी प्रमुख रूप से मैल्विन कैल्विन (Malvin Calvin) व बेन्सन (Benson), बैशम (Bassham), गैफरॉन (Gaffron), फैगर (Fager) आदि के द्वारा दी गयी है। कार्बन डाइऑक्साइड (CO2) किस तरह, किस-किस प्रकार के यौगिक, किस कोशिका और उसके किस भाग में बनाती है तथा किस प्रकार से कार्बोहाइड्रेट्स का निर्माण होता है? इसका क्रम कार्बन का प्रकाश-संश्लेषण में मार्ग (path of carbon in photosynthesis) कहलाता है। कार्बन का यह पथ प्रमुख रूप से कैल्विन (Calvin) ने अपने साथियों के साथ रेडियो-सक्रिय कार्बन (radioactive carbon =C14) का प्रयोग करके खोजा।

कार्बन डाइऑक्साइड, C¹⁴O₂ प्रकार की प्रयोग में लायी गयी तथा बनने वाले यौगिकों का उनकी रेडियोसक्रियता (radioactivity) के आधार पर पता किया गया कि कार्बन का संयोग किस-किस रूप में होता है। इस आधार पर एक निश्चित चक्र तैयार किया गया। इसको कैल्विन चक्र (Calvin cycle) कहते हैं।

कार्बोहाइड्रेट्स के संश्लेषण का कार्य, वास्तव में बिना प्रकाश के ही हो जाता है, किन्तु CO_2 ; के अपचयन के लिए H^+ , जो NADP . H_2 के रूप में प्राप्त होते हैं, प्रकाशीय अभिक्रियाओं से ही मिलते हैं। चूँि अप्रकाशीय अभिक्रियाएँ अथवा कार्बन पथ की क्रियाएँ एक चक्र के रूप में होती हैं, जिसकी खोज कैल्विन वैज्ञानिक ने की। इस कारण इनके नाम पर ही इस चक्र को कैल्विन चक्र (Calvin cycle) कहते हैं। इन अभिक्रियाओं में CO_2 के स्थिरीकरण का प्रथम स्थायी उत्पाद 3 कार्बन (C_3) यौगिक, फॉस्फोग्लिसरिक अम्ल (3-phosphoglyceric acid = 3 PGA) होता है। इस आधार पर इसे C_3 -चक्र (C_3 -cycle) भी कहते हैं

कैल्विन चक्र या कार्बन पथ

1. प्रथम फॉस्फोरिलीकरण (First phosphorylation) :

कार्बन डाइऑक्साइड के अपचयन का आरम्भ 5-कार्बन वाली शर्करा रिबुलोज 5-फॉस्फेट (ribulose 5-phosphate) के ए॰टी॰पी॰ (ATP) से एक फॉस्फेट समूह प्राप्त करने के बाद होता है। इस प्रकार, इस शर्करा के 6 अणु ATP के 6 अणुओं (प्रकाशीय अभिक्रियाओं से प्राप्त) से संयुक्त होकर रिबुलोज 1, 5-बाइफॉस्फेट के 6 अणुओं का निर्माण करते हैं

6 ribulose 5 phosphate + 6 ATP phosphopentokinase 6 RuBP + 6 ADP ...(i) 2.

कार्बोक्सिलीकरण (Carboxylation):

उपर्युक्त के अनुसार कार्बन डाइऑक्साइड का अपचयन सबसे पहले 5 कार्बन वाले यौगिक, रिबुलोज 1, 5-बाइफॉस्फेट के साथ होता है। ऐसा समझा जाता है कि इस क्रिया में एक 6 कार्बन वाले अस्थायी कीटो अम्ल का निर्माण होता है और यह शीघ्र ही दूटकर दो, 3-फॉस्फोग्लिसरिक अम्ल (3-PGA) के अणु बनाता है। इस क्रिया में कार्बन डाइऑक्साइड के 6 अणुओं का उपयोग होता है

6 ribulose 1, 5 - biphosphate +
$$6CO_2 \xrightarrow{\text{carboxydismutase}} 6$$
 keto acid (C_6 unstable)
6 keto acid + $6H_2O \longrightarrow 12$ (3 - phosphoglyceric acid) ...(ii) 3.

द्वितीय फॉस्फोरिलीकरण (Second phosphorylation) :

3-PGA के 12 अणु जो समीकरण (ii) से प्राप्त हो रहे हैं, एन्जाइम ट्राइओज फॉस्फेट डीहाइड्रोजिनेज तथा फॉस्फोग्लिसरिक ऐसिड काइनेज की उपस्थिति में दो प्रकार की क्रियाएँ करते हैं। पहले 1, 3-डाइफॉस्फोग्लिसरिक अम्ल (1, 3-diphosphoglyceric acid = 1, 3-PGA) बना है। इसमें 12 ATP अणुओं का उपयोग होता है

अपचयन (Reduction):

1, 3-डाइफॉस्फोग्लिसरिक अम्ल बाद में 3-फॉस्फोग्लिसरेल्डिहाइड (3-phospho-glyceraldehyde = PGAL) में बदल जाता है। इस क्रिया में प्रकाश कर्म-II से प्राप्त NADP. H2 से हाइड्रोजन प्राप्त की जाती है तथा फॉस्फोरिक अम्ल (H3PO4) बनता है

फॉस्फोग्लिसरेल्डिहाइड:

(PGAL) एक खाद्य पदार्थ है और कई प्रकार से क्रिया करता है। इनमें अभिक्रियाओं को अग्रलिखित दो

भागों में बाँटा जा सकता है

चित्र-अप्रकाशीय (अन्धकार) क्रिया (कैल्विन चक्र) की मुख्य संश्लेषण प्रक्रिया के प्रमुख पद

1. खण्ड A (section A):

12 PGAL अणुओं में से दो अणु विभिन्न पदों में होकर पहले हेक्सोज शर्करा का एक अणु तथा बाद में अन्य अणुओं के साथ मिलकर मण्ड (starch) आदि का निर्माण करते हैं।

2. खण्ड B (section B) :

12 PGAIL में से शेष 10 अणुओं से चक्रीय क्रियाओं द्वारा 6 अणु रिबुलोज मॉनोफॉस्फेट (ribulose monophosphate) के बनाते हैं।

खण्ड A

- (i) PGAL का एक अणु फॉस्फोटाइओज आइसोमिरेज (एन्जाइम) की उपस्थित में अपने समावयवी (isomer), डाइहाइड्रॉक्सीऐसीटोन फॉस्फेट (dihydroxyacetone phosphate) में परिवर्तित हो जाता है
- 3 phosphoglyceraldehyde isomerase 3 dihydroxyacetone phosphate ...(v) (ii) एक अणु उपर्युक्त क्रिया में बने 3-डाइहाइड्रॉक्सी ऐसीटोन फॉस्फेट के साथ मिलकर फ्रक्टोज 1, 6-डाइफॉस्फेट (fructose 1, 6-diphosphate) का निर्माण करते हैं। यह दो ट्राइओसेज (CG) से मिलकर हेक्सोज (CG) बनने की क्रिया है। इस क्रिया में एल्डोंलेज (एन्जाइम) आवश्यक है।

fructose 1, 6-diphosphate ...(vi) (iii) बाद

में, फ्रक्टोज 1, 6-डाइफॉस्फेट [समीकरण (vi)] एक फॉस्फेट समूह का निष्कासन, फॉस्फेटेज (phosphatase) एन्जाइम की उपस्थिति में करते हैं

फॉस्फेट (fructose 6-phosphate) एन्जाइम की उपस्थिति में अन्य हेक्सोज फॉस्फेट का, आन्तरिक परिवर्तन के द्वारा निर्माण कर सकते हैं। इसी प्रकार ग्लूकोज फॉस्फेट का भी निर्माण कर सकते हैं। ग्लूकोज या फ्रक्टोज फॉस्फेट अपना एकमात्र फॉस्फेट समूह फॉस्फेटेज (phosphatase) एन्जाइम की उपस्थिति में निष्कासित कर लेते हैं। इस प्रकार ग्लूकोज (glucose) का एक अणु उत्पादित होता है।

खण्ड B

इन विभिन्न क्रियाओं में रिल्लोज 5-फॉस्फेट (ribulose 5-phosphate) फिर से उत्पन्न होता है, पुनरुत्पादन (regeneration)। फॉस्फोग्लिसरेल्डिहाइड (PGAL) डाइहाइड्रॉक्सीऐसीटोन फॉस्फेट, ट्राइओज, 4-कार्बन (tetrose), 5-कार्बन (pentose), 7-कार्बन (heptose) आदि शर्करा फॉस्फेट बनाने के लिये भी प्रारम्भिक पदार्थ हैं। इस कार्य में हेक्सोज शर्कराओं को भी काम में लाया जाता है। निम्नलिखित क्रियाएँ इसको स्पष्ट करती हैं

- (a) fructose 6-phosphate + PGAL

 + xylulose 5-phosphate

 + xylulose 5-phosphate(viii)
- (b) erythrose 4-phosphate + PGAL $\xrightarrow{\text{aldolase}}$
 - sedoheptulose 1, 7-diphosphate ...(ix)
- (c) sedoheptulose 1, 7-diphosphate phosphatase
 - sedoheptulose 7-phosphate ...(x)
- (d) sedoheptulose 7- phosphate + PGAL

 transketolase
 - ribose 5-phosphate + xylulose 5-phosphate ...(xi)
- (e) xylulose 5-phosphate phosphoketopentose epimerase
 - ribulose 5-phosphate ...(xii)
- (f) ribose 5-phosphate ribulose 5-phosphate ...(xiii) समीकरण (xii) तथा (xiii) के परिवर्तनों से रिबुलोज 5-फॉस्फेट (ribulose 5-phosphate) के 2+4 = 6 अणु प्राप्त हो जाते हैं,

जो समीकरण (i) के अनुसार 6 ATP से फॉस्फेट समूह प्राप्त करके रिबुलोज बाइफॉस्फेट (ribulose biphosphate = RuBP) में परिवर्तित होते हैं, जो नये कार्बन डाइऑक्साइड अणुओं के अपचयन के लिये तैयार होते हैं। इस प्रकार ये क्रियाएँ चक्रीय (cyclic) होती हैं। उपर्युक्त सम्पूर्ण क्रियाओं में 18 ATP तथा 12 NADP.H2 काम में आ जाते हैं और केवल एक अणु ग्लूकोज प्राप्त होता है

$$6CO_2 + 18 \text{ ATP} + 12 \text{NADP. H}_2 \xrightarrow{\text{enzymes}}$$

$$C_6 \text{H}_{12} O_6 + 6 \text{H}_2 \text{O} + 12 \text{NADP} + 18 \text{ ADP} + 18 \text{iP} \text{ प्रकाशीय}$$

तथा अप्रकाशीय सम्पूर्ण क्रियाओं को जोड़कर निम्न अभिक्रिया प्राप्त होती है

$$6CO_2 + 12H_2O \xrightarrow{\text{chlorophyll}} C_6H_{12}O_6 + 6H_2O + 6O_2$$
 ੈ ਪ੍ਰਵਾਰ 2.

C4पथ का वर्णन कीजिए। C₃ एवं C₄ पौधों की पित्तियों की शारीरिकी की तुलना कीजिए। या हैच-स्लैक चक्र का वर्णन कीजिए। यह किन पौधों में पाया जाता है? इन पौधों की पित्तियों के शरीर की क्या विशेषता हैं?

उत्तर:

वे पौधे जो उच्च ताप वाले क्षेत्रों में पाए जाते हैं उनमें C_4 पथ पाया जाता है। इन पौधों में CO_2 के यौगिकीकरण का पहला उत्पाद यद्यपि एक 4C पदार्थ ऑक्सैलोऐसीटिक अम्ल (Oxaloacetic acid) होता है फिर भी इनके मुख्य जैव संश्लेषण पथ में C_3 पथ अथवा कैल्विन चक्र ही होता है। C_4 पौधे विशिष्ट होते हैं। इनकी पत्तियों में एक विशेष प्रकार की शारीरिकी पायी जाती है। ये पौधे उच्च ताप को

भी सह सकते हैं। ये उच्च प्रकाश तीव्रता के प्रति अनुक्रिया करते हैं। इनमें प्रकाश श्वसन प्रक्रिया नहीं होती और जैव भार अधिक उत्पन्न होता है।

C₄ पथ पौधों के संवहन बण्डल (vascular bundle) के चारों ओर स्थित बृहद् कोशिकाएँ पूलाच्छद (bundle sheath) कोशिकाएँ कहलाती हैं और पत्तियाँ जिनमें ऐसा शरीर होता है, उन्हें क्रैन्ज शरीर (Kranz anatomy) वाली पत्तियाँ कहते हैं। यहाँ कैंज का अर्थ है छल्ला अथवा घेरा, चूँकि कोशिकाओं की व्यवस्था एक छल्ले के रूप में होती है। संवहन बण्डल के आस-पास पूलाच्छद कोशिकाओं की अनेक परतें (several layers) होती हैं। इनमें बहुत अधिक संख्या में क्लोरोप्लास्ट होते हैं। इसकी मोटी भित्तियाँ गैस से अप्रवेश्य होती हैं और इनमें अन्तरकोशीय स्थान नहीं होता। सर्वप्रथम सन् 1957 में कोर्शचॉक (Kortschak) एवं सहयोगियों ने बताया कि गन्ने के पौधों (sugarcane plants) में अप्रकाशीय अभिक्रिया के दौरान प्रथम स्थाई यौगिक (first stable product) के रूप में 4C वाला यौगिक बनता है। इसी प्रकार की व्याख्या कार्पिलो (Karpilov, 1960) ने मक्का की पत्तियों (maize leaves) में की। बाद में सन् 1966 में एम॰डी॰ हैच और सी॰आर॰ स्लैक (M.D. Hatch and C.R. Slack) ने इसकी विस्तृत व्याख्या की

जिसे हैच एवं स्लैक पथ (Hatch and Slack path) कहते हैं। यह एक चक्रीय प्रक्रिया है। यह मुख्य रूप से एकबीजपत्री पौधों; जैसे-sugarcane, maize, cyperus (घास); Sorghum, Atriplex आदि में पाया जाता है। यह कुछ द्विबीजपत्री पौधों (जैसे Amaranthus) में भी पाया जाता है। हैच एवं स्लैक पथ के निम्नलिखित चरण होते हैं

 CO_2 का प्राथमिक ग्राही एक 3 कार्बन अणु फॉस्फोइनोल पाइरुवेट (PEP) है और वह पर्णमध्योतक कोशिका में स्थित होता है। इस यौगिकीकरण को PEP कार्बोक्सीलेज (PEP carboxylase) नामक एन्जाइम सम्पन्न करता है। पर्णमध्योतक कोशिकाओं में रुबिस्को एन्जाइम नहीं होता है। C_4 अम्ल, ऑक्सैलोऐसीटिक अम्ल (OAA) पर्णमध्योतक कोशिका में निर्मित होता है। इसके बाद पर्णमध्योतक कोशिका में अन्य 4-कार्बन वाले अम्ल; जैसे—मैलिक अम्ल (malic acid) और एस्पार्टिक अम्ल (aspartic acid) बनते हैं, जोकि पूलाच्छद कोशिका (bundle sheath cells) में चले जाते हैं। पूलाच्छद कोशिका में यह C_4 अम्ल विघटित हो जाता है जिससे CO_2 तथा एक 3-कार्बन अणु पाइरुविक अम्ल मुक्त होते हैं।

चित्र---C₄ Pathway

3-कार्बन अणु पुनः

पर्णमध्योतक में वापस आ जाता है, जहाँ यह पुनः PEP में बदल जाता है और इस तरह से यह चक्र पूरा होता है। पूलाच्छद कोशिका से निकली CO_2 कैल्विन पथ अथवा C_3 चक्र में प्रवेश करती है। कैल्विन एक ऐसा पथ है जो सभी पौधों में समान रूप से होता है। पूलाच्छद कोशिका रुबिस्को से भरपूर होती है, परन्तु इनमें PEP कार्बोक्सीलेज का अभाव होता है। अतः मैलिक पथ एवं कैल्विन पथ जिसके परिणामस्वरूप शर्करा बनती है, वह C_3 एवं C_4 पौधों में सामान्य रूप से होता है। ध्यान रहे कि कैल्विन पथ सभी C_3 पौधों की पर्णमध्योतक कोशिकाओं में पाया जाता है। C_4 पौधों में पर्णमध्योतक कोशिकाओं में यह सम्पन्न नहीं होता है, किन्तु केवल पूलाच्छद कोशिकाओं में कारगर होता है।