			清华大学	本科生		题专用	<u>纸</u>	
考	试课程	数据结构		年	月	日		
姓	名	张博睿	班级_	自75		学号	2017011537	
选	上择题	填	空题	分析	题	程序	序设计题	总分
1,	A. 动态组	分) :可以把数排 结构、静态 结构、非线	结构	B. 顺序	结构、			
	09}, R=	$\{r\}$, $r = \{<0\}$	1, 02>, <	01,03>, 居结构 A 是	<01, 04	4>, <02)。	, 05>, <02	05,06,07,08, ,06>,<03,07>,) 图型结构
	算法的时A. 问题的 C. A和) B. 待处 D. 计算		的初态		
	一个栈的 元素是(A. 不确) C. i	(B) _°	J 123…n,	若输出序 B. n-i D. n-i	+1	一个元素	是 n,输出	第 i(1<=i<=n)个
	下列选项 A. 顺序表 C. 链队列		存储结构无	关的术语 B. 链表 D. 栈)		
	A. 串是 ² C. 模式[中的的叙述 字符的有限 匹配是串的 可以采用顺	序列 一种重要运	B. 2	产串是由	空格构	成的串	
		地址 SA 开	始连续存放		内,存		且至少需要的	3,列下标 j 从 1 到 的单元数为(^C)。
								留、可出栈,直到所 个数是(^B) 。
	A. 3		B. 4	С.	5		D. 6	
	A. 0 (n)	E中当前结点)和 0(1))和 0(n)	京的后继和	В	. 0 (1)	更分别是) 和 0 (和 0 (n)		

	存储,若数组元素 A[2][3]的存储地址为 1087, 组元素 A[6][7]的存储地址为 (A)
A. 1207	В. 1209
C. 1211	D. 1213
11、数据结构是(D) A. 一种数据类型 C. 一组性质相同的数据元素的集合 D. 相互之间存在一种或多种特定	
的值为(D) 这里的位置应该和	th Java", s2="it",则子串定位函数 index(s1,s2)下标是不一样的,位置的起点应该是1,下标的起点应该是0
A. 15 C. 17	B. 16 D. 18
13、 将一个 A[1100][1100]的三x 元素 A[66,65]在 B 中的位置为: (付角阵,按行压缩存储到一维数组 B[1298]中,A 中 B)
A. 198	В. 195
C. 197	D. 199
14、 队和栈的主要区别是(D) A. 逻辑结构不同 C. 所包含的运算个数不同	B. 存储结构不同 D. 限定插入和删除的位置不同
15、链栈与顺序栈相比,比较明显的A. 插入操作更加方便C. 不会出现下溢的情况	优点是(D) B. 删除操作更加方便 D. 不会出现上溢的情况
16、 己知广义表的表头为 a, 表尾为(A. (a, (b, c)) C. ((a), b, c)	b, c),则此广义表为(B) B. (a, b, c) D. ((a, b, c))
17、 带头结点的单链表 head 为空的判	定条件是(B)
A. head==NULL	B. head->next==NULL
C. head->next==head	D. head!=NULL
18、 在一个单链表中, 若 p 所指结点 (B)	不是最后结点,在 p 之后插入 s 所指结点,则执行
<pre>A. s->next=p; p->next=s; C. s->next=p->next; p=s;</pre>	<pre>B. s->next=p->next; p->next=s; D. p->next=s; s->next=p;</pre>
19、设广义表 L= ((a,b), (c,d)),	则 Tail(Head(Tail(L)))的结果是: C
A. b	B. d
C. (d)	D. (c, d)
20、 栈和队列都是(A) A. 限制存取位置的线性结构 C. 链式存储的线性结构	B. 顺序存储的线性结构 D. 限制存取位置的非线性结构

×	21	、多维数组之所以有行优先顺序和列优先顺序两种存储方式是因为(D) A. 数组的元素处在行和列两个关系中 B. 数组的元素必须从左到右顺序排列 C. 数组的元素之间存在次序关系 D. 数组是多维结构,内存是一维结构
	22.	、下面关于线性表的叙述中,错误的是哪一个? (B) A. 线性表采用顺序存储,必须占用一片连续的存储单元。 B. 线性表采用顺序存储,便于进行插入和删除操作。 C. 线性表采用链接存储,不必占用一片连续的存储单元。 D. 线性表采用链接存储,便于插入和删除操作。
	23	、若长度为 n 的线性表采用顺序存储结构,在其第 i 个位置插入一个新元素的算法的时间复杂度为($_{\rm C}$) (1<=i<=n+1)。 A. 0(0) B. 0(1) C. 0(n) D. 0(n²)
	24.	 在双向链表指针 p 的结点前插入一个指针 q 的结点操作是(C)。 A. p->Llink=q;q->Rlink=p;p->Llink->Rlink=q;q->Llink=q; B. p->Llink=q;p->Llink->Rlink=q;q->Rlink=p;q->Llink=p->Llink; C. q->Rlink=p;q->Llink=p->Llink;p->Llink->Rlink=q;p->Llink=q; D. q->Llink=p->Llink;q->Rlink=q;p->Llink=q;
	25	、将一个长度为 n 的单链表链接到长度为 m 的单链表之后,该算法时间复杂度为($^{\rm C}$)。 A. O(n) B. O(1) C. O(m) D. O(m+n)
	26	、设计一个判别表达式中左,右括号是否配对出现的算法,采用(D)数据结构最佳。A. 线性表的顺序存储结构 B. 队列 C. 线性表的链式存储结构 D. 栈
	27	、设栈 S 和队列 Q 的初始状态为空,元素 e1, e2, e3, e4, e5 和 e6 依次通过栈 S,一个元素出栈后即进队列 Q,若 6 个元素出队的序列是 e2, e4, e3, e6, e5, e1 则栈 S 的容量至少应该是(c)。 A. 6 B. 4 C. 3 D. 2
	28	A. 战 B. 4 C. 3 D. 2 X. 递归实现或函数调用时,处理参数及返回地址,应采用的数据结构是(A) A. 栈 B. 多维数组 C. 队列 D. 线性表
	29	、设某链表中最常用的操作是在链表的尾部插入或删除元素,则选用下列(^C)存储方式最节省运算时间。 A. 单向链表 B. 单向循环链表 C. 双向链表 D. 双向循环链表
	30	、设一个有序的单链表中有 n 个结点,现要求插入一个新结点后使得单链表仍然保持有序,则该操作的时间复杂度为($^{\rm D}$)。 (A) $0(\log_2 n)$ (B) $0(1)$ (C) $0(n^2)$ (D) $0(n)$

1、在数据的组织方式上,数据物理结构主要包括	_,	填空题(20分) 顺序映像(顺序存储结构)非顺序映像(链式存储结构)
2、数据结构中评价算法复杂性的两个重要指标是		1、在数据的组织方式上,数据物理结构主要包括
3、下面程序段中带下划线的语句的执行次数的数量级是:log (2)n i=1; WHILE (i <n) ((i,="" (a,="" 2,="" 2。="" 3,="" 4,="" 4、线性表l="(a1," 5,="" 5、顺序存储结构是通过表示元素之间的关系的;链式存储结构是通过表示元素之间的关系的。元素在存储器中的相对位置(下标)="" 6、对于双向链表,在两个结点之间插入一个新结点需修改的指针共_4个,单链表为2_个。="" 7、设有一个空栈,现有输入序列为1,="" 8、一个广义表为(a,="" 9、一个n×n的对称矩阵,如果以行为主序或以列为主序存入内存,则其占用内存规模为<="" a2,="" an)="" b),="" d,="" e,="" i="i*2;}" j),="" k)),则该广义表的长度为,深度为3_。="" pop,="" push,="" push之后,输出序列是23。="" td="" {="" ···,="" 用数组表示,假定删除表中任一元素的概率相同,则删除一个元素平均需要移动元素的个数是(n-1)="" 经过push,=""><td></td><td>时间有九度 空间复杂度</td></n)>		时间有九 度 空间复杂度
i=1; WHILE (i≤n) {i=i*2;} 4、线性表L= (a1, a2, ···, an) 用数组表示,假定删除表中任一元素的概率相同,则删除一个元素平均需要移动元素的个数是		
4、线性表L= (a1, a2, ···, an) 用数组表示,假定删除表中任一元素的概率相同,则删除一个元素平均需要移动元素的个数是		
元素之间的关系的。元素在存储器中的相对位置(下标) 指示元素存储地址的 6、对于双向链表,在两个结点之间插入一个新结点需修改的指针共 4		4、线性表L=(a1, a2, ···, an)用数组表示,假定删除表中任一元素的概率相同,则删除
2		5、顺序存储结构是通过表示元素之间的关系的;链式存储结构是通过表示 元素之间的关系的。元素在存储器中的相对位置(下标) 指示元素存储地址
PUSH, PUSH, POP, PUSH, POP, PUSH, PUSH之后,输出序列是		
	X	2.1/1 / — 1.1/2 / 2.1/2 / 1.1/
17,则当前尾指针的值为。 11、假设一个6阶的下三角矩阵B按列优先顺序压缩存储在一维数组A中,其中A[0]存储矩阵的第一个元素b11,则A[14]存储的元素是。 12、循环队列用数组A[0m-1]存放其元素值,已知其头尾指针分别是front和rear,则当前队列的元素个数是。(以牺牲一个空间的方法区别队满。) 13、设指针变量p指向单链表中结点A,指针变量s指向被插入的结点X,则在结点A的后面插入结点X需要执行的语句序列: s->next=p->next;		
阵的第一个元素b11,则A[14]存储的元素是b63_。 12、循环队列用数组A[0m-1]存放其元素值,已知其头尾指针分别是front和rear,则当前队列的元素个数是。(以 <u>牺牲一个空间的方法区别队满</u>) 13、设指针变量p指向单链表中结点A,指针变量s指向被插入的结点X,则在结点A的后面插入结点X需要执行的语句序列: s->next=p->next;		
当前队列的元素个数是。(以牺牲一个空间的方法区别队。(以牺牲一个空间的方法区别队		
插入结点X需要执行的语句序列: s->next=p->next;		当前队列的元素个数是。(<u>rear-front+m)%m</u> 。(以 <u>牺牲一个空间的方法区别队</u>
		14、在一个长度为n的顺序表中删除第i个元素时,需向前移动个元素。
		15、在单链表中,要删除某一指定的结点,必须找到该结点的 直接前驱 _结点。

```
(1)
                                                            int Fib(int n)
三、分析题(30分)
                                                             if(n==0) return 0;
1、已知斐波那契数列递推公式为: Fn=Fn-1+Fn-2, 其中 F0=0,F1=1
                                                             if(n==1) return 1;
(1) 请采用递归方法编写求第 n 项斐波那契数的算法;
                                                             return Fib(n-1)+Fib(n-2);
(2) 请画出该递归算法的递归树;
                                                            (2)递归树
(3) 是否有其他更高效的算法求解第 n 项斐波那契数?如有请给出其算法实现。(3)
                                                            1、动态规划;
                                                            2、公式法;
                                                            3、for循环
2、设有单链表类型定义如下:
 typedef struct node {
     int data;
     struct node *next;
 } *LinkList;
 阅读下列算法,并回答问题:
 void f33(LinkList head, int A, int B)
 {
     LinkList p=NULL;
     While (head !=NULL)
     {
        if (head->data>A&&head->data<B)
            p=head;
        head=head->next;
     }
     if (p!=NULL)
        printf("%d\n",p->data);
(1) 已知链表h如下图所示,给出执行f33(h,5,8)之后的输出结果;
             (1)7
(2) 简述算法f33的功能。
             (2)查找链表中存储的数据大于A且小于B的最后一个结点,将结点中存储的数据打印出来。
```

分析题第1题:

```
3、请补充 KMP 算法中的 get_next( )及 Index_KMP( )函数,并给出字符串 S='abaabaabaac'
的 next[]值。
void get next(SString T, int next[])
{// 求模式串 T 的 next 函数值并存入数组 next。
  int i=1, j=0;
  next[1]=0;
  while(______) <u>1</u>: i<T[0]
     \mathsf{if}(\underline{\hspace{1cm}}2\underline{\hspace{1cm}})\ \underline{2}\colon \underline{\mathsf{j==0}}\, \|\,\mathsf{T[i]==T[j]}
        ++i:
        ++j;
     }
     else
                                    j=next[j];
   }
}
int Index KMP(SString S, SString T, int pos, int next[])
{// 利用模式串 T 的 next 函数求 T 在主串 S 中第 pos 个字符之后的位置的 KMP 算法。
// 其中, T 非空, 1≤pos≤StrLength(S)。
  int i=pos,j=1;
  while(____5___) \underline{5:}___i<=$[0] && j<=T[0]
   {
     if(______6____) // 继续比较后继字符 <u>6:</u> j==0||S[i]==T[j]
       ++i;
        ++j;
     else // 模式串向右移动
                                j=next[j]
         7___;
  if(j>T[0]) // 匹配成功
     return <u>8</u>; <u>8: i-T[0]</u>
  else
     return 0;
}
```

j	1	2	3	4	5	6	7	8	9	10	11
字符串 S	а	b	а	а	b	а	а	b	а	а	С
next[j]	0	1	1	2	2	3	4	5	6	7	8

四、程序设计题(20分)

- 1、在创建采用十字链表表示的稀疏矩阵时,可以按任意顺序输入非零元素。每个非零元结点按升序被插入到两个没有头结点的单链表中:一个是所在行链表;另一个是所在列链表。当插入或删除结点时,只要修改相关的行、列链表即可。
 - (1) 请给出在十字链表中插入一个结点的算法思路,并绘制流程图;
 - (2) 请完成在十字链表中插入一个结点的算法InsertAscend;
 - (3) 假设稀疏矩阵M的(mu, nu, tu)为(3, 3, 5),请画出执行InsertAscend插入结点(2,1,2)、(1,2,1)、(3,2,5)后,稀疏矩阵M的十字链表(M的初始状态为空,元素下标从1开始)。

```
//稀疏矩阵的十字链表存储表示
struct OLNode
   int i, j; // 该非零元的行和列下标
  ElemType e; // 非零元素值
  OLNode *right, *down; // 该非零元所在行表和列表的后继链域
typedef OLNode *OLink;
struct CrossList
   OLink *rhead, *chead; // 行列链表头指针向量基址,由 CreatSMatrix OL()分配
   int mu, nu, tu; // 稀疏矩阵的行数、列数和非零元个数
};
//创建稀疏矩阵
void CreateSMatrix(CrossList &M)
{ // 创建稀疏矩阵 M, 采用十字链表存储表示。算法 5.4 改
   int i,k:
  OLink p;
   if (M. rhead)
     DestroySMatrix(M);
   printf("请输入稀疏矩阵的行数列数非零元个数:"):
   scanf ("%d%d%d", &M. mu, &M. nu, &i);
   InitSMatrixList(M); // 初始化 M 的表头指针向量
   printf("请按任意次序输入%d 个非零元的行列元素值:\n", M. tu);
   for (k=0; k< i; k++)
     p=(OLink)malloc(sizeof(OLNode)); // 生成结点
     if(!p)
     exit (OVERFLOW);
     scanf ("%d%d%d", &p->i, &p->j, &p->e); // 给结点的 3 个成员赋值
     InsertAscend (M, p); // 将结点 p 按行列值升序插到矩阵 M 中
```

//在十字链表中插入一个结点 void InsertAscend(CrossList &M, OLink p) { // 初始条件: 稀疏矩阵 M 存在,p 指向的结点存在。 // 操作结果: 按行列升序将 p 所指结点插入 M
}