NMMB538 - DÚ1 Jan Oupický

1

 \hat{f} značí homogenizaci polynomu f pomocí proměnné z. Proto

$$\widehat{w(x,y)} = y^2 z - x^3 - axz^2 - bz^3$$

 $\pi_X(f)$ značí náhrazení proměnné X jednotkou. Proto

$$\pi_X(\widehat{w(x,y)}) = -bz^3 + y^2z - az^2 - 1$$

$$\pi_Y(\widehat{w(x,y)}) = -bz^3 - x^3 - axz^2 + z$$

2

$$w(x,y) = y^2 - x^3 - ax - b. \ deg(w) = 3 \implies 3w(x,y) = -3x^3 + 3y^2 - 3ax - 3b$$

$$\frac{\partial w}{\partial x} = -3x^2 - a$$

$$\frac{\partial w}{\partial y} = 2y \implies$$

$$x\frac{\partial w}{\partial x} + y\frac{\partial w}{\partial y} = x(-3x^2 - a) + y(2y) = -3x^3 + 2y^2 - ax \neq 3w(x,y)$$

Rovnost (P4) tedy neplatí, což není překvapivé, jelikož w není homogenní.

3

Využijeme toho, že $f \in K[x_1, ..., x_n]$ je irreducibilní právě tehdy, když \hat{f} je irreducibilní (P3 (v)) a také vlastnosti (P3 (i)). Označme $\hat{f} = F := 2X^3 - X^2Y + 2XY^2 - Y^3$.

Použijeme zobrazení π_Y a označme $f := \pi_Y(F) = 2x^3 - x^2 + 2x - 1 \in \mathbb{Q}[x]$. Tento polynom už lze jednoduše rozložit na ireducibilní polynomy. Všimneme si, že $f = 2(x^3 - \frac{1}{2}x^2 + x - \frac{1}{2}) \implies f(\frac{1}{2}) = 0 \implies f = (2x - 1)(x^2 + 1)$. Vidíme, že oba faktory jsou ireducibilní $\mathbb{Q}[x]$. Použijeme zobrazení na oba faktory a dostaneme, že $F = (2X - Y)(X^2 + Y^2)$, přičemž víme, že jsou ireducibilní.

4

Označme $w(x,y)\coloneqq y^2-x^3-ax-b\in K[x,y], C=V_w.$ Po zhomogenizovaní dostaneme $W\coloneqq \hat{w}=Y^2Z-X^3-aXZ^2-bZ^3\in K[X,Y,Z], \hat{C}=V_W.$ Vidíme, že bod v nekonečnu pro tuto křivku je jediný a to (Z:X:Y)=(0:0:1). Chceme tedy spočítat valuaci X a Y v místě $P_{(0:0:1)}\in K(\hat{C}),$ která bude ekvivalentní valuaci x a y v místě $P_{\infty}\in K(C).$

Jediný model, který nám zobrazí bod (0:0:1) na affiní bod je $\pi_Y(\hat{C})$. Přesněji $\pi_Y((0:0:1)) = (0,0)$. Stejně tak dostáváme vyjádření křivky (pokud pouzijeme trochu nepřesně značení π_Y i pro homomorfismus polynomů) $f \coloneqq \pi_Y(W) = z - x^3 - axz^2 - bz^3 = z + z(-axz - bz^2) + (-x^3) \in K[x,z]$.

Polynom f je v bodě (0,0) hladký $(\frac{\partial f}{\partial z} = 1)$. Tečna v bodě (0,0) je z. Víme tedy že $v_{(0,0)}(x) = 1$, protože $x \notin (z)$. Dále máme rovnost $z + z(-axz - bz^2) = x^3 \implies v_{(0,0)}(x^3) = 3v_{(0,0)}(x) = 3 = v_{(0,0)}(z(1-axz-bz^2)) = v_{(0,0)}(z) + v_{(0,0)}(1-axz-bz^2) = v_{(0,0)}(z)$. Máme tedy $v_{(0,0)}(x) = 1$, $v_{(0,0)}(z) = 3$.

Použijeme-li izomorfimus ψ_Y z P.14 dostaneme tedy $P_{(0,0)} \in K(V_f) \cong P_{(0:0:1)} \in K(\hat{C})$. Dostaneme tedy $1 = v_{P_{(0,0)}}(x+(f)) = v_{P_{(0:0:1)}}(\frac{X+(W)}{Y+(W)})$ a $3 = v_{P_{(0,0)}}(z+(f)) = v_{P_{(0:0:1)}}(\frac{Z+(W)}{Y+(W)})$. Víme tedy:

$$v_{P_{(0:0:1)}}(X+(W))-v_{P_{(0:0:1)}}(Y+(W))=1$$

$$v_{P_{(0:0:1)}}(Z+(W)) - v_{P_{(0:0:1)}}(Y+(W)) = 3$$

Poté $P_{\infty} \in K(C) \cong P_{(0:0:1)} \in K(\hat{C}) \implies v_{P_{\infty}}(x+(w)) = v_{P_{(0:0:1)}}(\frac{X+(W)}{Z+(W)}) = 1-3 = -2$ a $v_{P_{\infty}}(y+(w)) = v_{P_{(0:0:1)}}(\frac{Y+(W)}{Z+(W)}) = -v_{P_{(0:0:1)}}(\frac{Z+(W)}{Y+(W)}) = -3$.

5

Absolutní ireducibilita: Označme zadaný polynom $f \coloneqq ax^2 + by^2 - 1$. f je primitivní. Nechť $D = \bar{K}[x]$, D je zřejmě obor. Použijeme Eisensteinovo kritérium. $f \in D[y] \implies f = by^2 + (ax^2 - 1)$. $ax^2 - 1 = (\sqrt{a}x - 1)(\sqrt{a}x + 1) \in D$. Zvolme $c \coloneqq \sqrt{a}x + 1$, c je irreducibilní v D, $b \in K$, $c \nmid b$ a zároveň $c \mid (ax^2 - 1)$, $c^2 \nmid (ax^2 - 1)$. Tedy dle Eisensteinova kritéria je f irreducibilní v D neboli absolutně irreducibilní v K[x, y].

Spočteme parciální derivace pro f:

$$\frac{\partial f}{\partial x}(x,y) = 2ax$$

$$\frac{\partial f}{\partial y}(x,y) = -2by$$

Obě derivace jsou nulové pouze v bode (0,0), ten ale není na křivce. C je proto hladká.

Označme $F := \hat{f} = aX^2 + bY^2 - Z^2$. $\hat{C} = V_F$. Derivace pro X,Y jsou stejné. Jediná nová parciální derivace je $\frac{\partial F}{\partial Z}(z,x,y) = -2Z$. Jako v přechozím případě, aby všechny derivace byly 0, tak musí být všechny souřadnice rovné 0, což není bod v projektivní prostoru. Proto je \hat{C} hladká.

Pokud místo v nekonečnu pro K(C) existuje, tak bude odpovídat místu v $K(\hat{C})$ pro nějaký bod $\alpha \in \hat{C}$. Pro tento bod tedy platí $F(\alpha) = 0$. Tento bod bude mít souřadnice $(Z:X:Y) = (0:\alpha_1:\alpha_2)$. Zvolme $\alpha_1 = 1$ a dopočteme α_2 . $F(\alpha) = 0 \iff a+bY^2 = 0 \implies Y = \sqrt{-\frac{a}{b}}$. Takže musí platit $\alpha = (0:1:\sqrt{-\frac{a}{b}})$.

Pokud $\sqrt{-\frac{a}{b}} \in K$, tak dle P.15 je toto místo (P_{α}) jednoznačně určené a je stupně 1. Pokud $\sqrt{-\frac{a}{b}} \notin K$, tak nemůže být stupně 1.

Valuace:

V případě $K=\mathbb{R}$, tak místo v nekonečnu existuje pokud a>0,b<0 nebo a<0,b>0 (jinak neexistuje odmocnina). Pokud místo neexistuje, tak má křivka tvar elipsy. Naopak pokud místo v nekonečnu existuje, tak je to hyperbola.