weak convergence

question $a_n : \sum a_n b_n$ converges $\forall b \in \ell_2 \stackrel{?}{\Longrightarrow} a \in \ell_2$.

weak convergence $x_n \xrightarrow{w} x : \langle x_n, y \rangle \to \langle x, y \rangle$ for all y.

observations i. weak limits are unique and linear. ii. $x_n \longrightarrow x \implies x_n \stackrel{w}{\longrightarrow} x$. iii. $x_n \stackrel{w}{\longrightarrow} x \implies x_n \longrightarrow x$ if dim H finite.

observation $(u_n)^{\infty}$ orthonormal $\Longrightarrow u_n \xrightarrow{w} 0$ by Bessel.

 $\underline{\text{exercise}} \text{ i. } x_n \overset{w}{\longrightarrow} x \implies \|x\| \leq \liminf \|x_n\| \text{. ii. } x_n \overset{w}{\longrightarrow} x \text{ and } \|x_n\| \longrightarrow \|x\| \implies x_n \longrightarrow x.$

weak Cauchy: $\langle x_n, y \rangle$ converges for all y.

claim weak Cauchy \implies bounded.

 $\underline{\text{proof}}$ given x_n , let $C_n = \{y : \forall k | \langle x_k, y \rangle | \leq n \}$. then C_n closed, $\bigcup C_n = H$. by Baire, $\text{Ball}_r y_0 \subseteq C_{n_0}$ has nonempty interior.

if x_m is nonzero, we get $\langle x_m, \frac{rx_m}{2\|x_m\|} \rangle$ is in absolute value at most $2n_0$, hence $\|x_m\| \leq 4n_0/r$ is bounded.

<u>claim</u> x_n bounded, $\langle x_n, z \rangle$ converges for all z in a dense subset $\implies x_n$ weak Cauchy.

 $\underline{\text{proof}} \text{ let } \|x_n\| \leq M. \text{ fix } y, \varepsilon. \text{ find } \|y-z_0\| \leq \frac{\varepsilon}{4M}. \text{ so } \forall n, m \geq N_0 \text{ we have } |\langle x_n-x_m, z_0 \rangle| \leq \varepsilon/2 \implies |\langle x_n-x_m, y \rangle| \leq \varepsilon. \quad \mathbf{I} = \frac{\varepsilon}{4M}.$

<u>claim</u> weak Cauchy implies weak convergence.

proof $\lim \langle y, x_n \rangle$ is a well defined linear functional. it is bounded because x_n is. by Riesz, $\lim \langle y, x_n \rangle = \langle y, x \rangle$.

exercise conclude a positive answer to the above question.

<u>claim</u> $x_n \in H$ bounded $\Longrightarrow \exists x_{n_k}$ weakly convergent.

<u>proof</u> assuming H separable: fix y_n dense. as $\langle y_1, x_n \rangle$ bounded, there is a convergent subsequence given by $x_{1,n}$. continue with $\langle y_2, x_{1,n} \rangle$ etc, we have $x_{m,n}$. let $x'_n = x_{n,n}$ denote the diagonal subsequence. so $\langle y_k, x'_n \rangle$ converges as its eventually a subsequence of $\langle y_j, x_{j,n} \rangle$. by the above claims, x'_n weakly convergent.

exercise finish the nonseparable case using $H_0 = \text{Clos}(\text{Span}\{x_n\})$.

 $[\text{Banach-Saks}] \ x_n \stackrel{w}{\longrightarrow} x \text{ implies } \exists x_{n_k} \stackrel{a}{\longrightarrow} x, \text{ i.e. } \frac{x_{n_1} + \dots + x_{n_k}}{k} \to x.$

 $\underline{\text{proof}}$ wlog $x=0, \|x_n\| \leq M$. as $\langle x_n, y \rangle \longrightarrow 0$ for all y, we pick $x_1'=x_1$ and inductively x_n' s.t. $|\langle x_j', x_n' \rangle| \leq \frac{1}{n-1}$ for

$$j = 1, \dots, n - 1$$
. we get $\left\| \sum_{j=1}^{k} x_j' \right\|^2 \le kM^2 + 2(\frac{1}{1} + \frac{2}{2} + \dots + \frac{k-1}{k-1}) = o(k^2)$, i.e. $x_k' \stackrel{a}{\longrightarrow} 0$.

corollary a closed convex set is closed under weak limits.

exercise C closed, bounded, convex, $C \xrightarrow{f} \mathbb{R}$ convex, bounded from below with $x_n \to x \implies f(x) \le \liminf f(x_n)$. then f assumes its minimum.

<u>exercise</u> two linear operators S, T on H with $\langle Tx, y \rangle = \langle x, Sy \rangle$ implies S, T bounded.

exercise in ℓ_2 we have $x_k \xrightarrow{w} x$ iff x_n bounded and $x_k \xrightarrow{p} x$ pointwise.