Success of Al Writers

- Ahmet Emre Usta
- Hüseyin Yiğit Ülker

High-level Overview of the Paper

- Insufficiency of plagiarism checkers
 - Inability to detect texts paraphrased with artificial intelligence

- Deep Learning Approach for plagiarism detection
 - Finding semantic similarity with Bert,RoBERTa, DeBERTa, AlBERT pre-train models
- Dataset creation
- Analysis of results

Problem Statement and Motivation

The incapability of current plagiarism detection tools to detect the similarity of writings paraphrased by AI systems.

Related Work

Original Article | Open Access | Published: 24 June 2022

Reliable plagiarism detection system based on deep learning approaches

Mohamed A. El-Rashidy □, Ramy G. Mohamed, Nawal A. El-Fishawy & Marwa A. Shouman

Neural Computing and Applications 34, 18837–18858 (2022) Cite this article

1379 Accesses 1 Altmetric Metrics

- Models : BERT ,RoBERTa, GloVe
- Similarity Measure : cosine similarity, manhattan distance, euclidean distance, dot product similarity
- Dataset : SNLI and STS benchmark
- Paper link: (PDF) NLP based Deep Learning Approach for Plagiarism Detection

Related Work

2- An external plagiarism detection system based on part-of-speech (POS) tag n-grams and word embedding

Dataset : PAN-PC 11

Paper link: An external plagiarism detection system based on

part-of-speech (POS) tag n-grams and word embedding - ScienceDirect

Expert Systems with Applications
Volume 197, 1 July 2022, 116677

An external plagiarism detection system based on part-of-speech (POS) tag n-grams and word embedding

https://doi.org/10.1016/j.eswa.2022.116677

Get rights and content

Key technical ideas

Pretrained-Models

Bert-base-uncased Roberta-base Alberta-base Deberta-v3-xsmall

BERT

Size (millions)

Training Time

Base: 110

Large: 340

Base: 8 x V100 x 12

RoBERTa

Base: 110

Large: 340

Large: 1024 x V100 x 1

Model Structures

Layer (type)	Output Shape	Param #	Connected to	
input_ids (InputLayer)	[(None, 128)]		[]	
attention_masks (InputLayer)	[(None, 128)]		[]	
token type ids (InputLayer)	[(None, 128)]		П	
	TFBaseModelOutputWi thPoolingAndCrossAt tentions(last_hidde n_state=(None, 128, 768), poolen_output=(Non	109482240	['input_ids[0][0]', 'attention_masks[0][0]', 'token_type_ids[0][0]']	9]'] [0]',
	e, cross_attentions =None)	CASE	<mark>-D</mark>	
bidirectional (Bidirectional)	(None, 128, 128)	426496	['bert[0][0]']	
<pre>global_average_pooling1d (Glob alAveragePooling1D)</pre>	(None, 128)		['bidirectional[0][0]']	
global_max_pooling1d (GlobalMa xPooling1D)	(None, 128)		['bidirectional[0][0]']	1.1
concatenate (Concatenate)	(None, 256)		['global_average_pooling1d[0][0]'] , 'global_max_pooling1d[0][0]']	1.1
dropout_37 (Dropout)	(None, 256)		['concatenate[0][0]']	ling1d[0][0]
dense (Dense)	(None, 3)		['dropout_37[0][0]']	g1d[0][0]']
Total params: 109,909,507 Total params: 109,909,507 feature extraction				

Layer (type) Output Shape Param # Connected to input_ids (InputLayer) [(None, 128)] attention_masks (InputLayer) [(None, 128)] token_type_ids (InputLayer) [(None, 128)] deberta (TFDebertaV2MainLayer) TFBaseModelOutput(1 70682112 ['input_ids[0][0]', 'attention_masks[0][0]', 'token_type_ids[0][0]'] **DEBERTA-V3-XSMALL** , attentions=None) bidirectional (Bidirectional) (None, 128, 128) 229888 ['deberta[0][0]'] global_average_pooling1d (Glob (None, 128) ['bidirectional[0][0]'] alAveragePooling1D) global_max_pooling1d (GlobalMa (None, 128) ['bidirectional[0][0]'] xPooling1D) ['global average pooling1d[0][0]' concatenate (Concatenate) (None, 256) , 'global_max_pooling1d[0][0]'] ['concatenate[0][0]'] dropout (Dropout) (None, 256) dense (Dense) (None, 3) ['dropout[0][0]'] Total params: 70,912,771 Trainable params: 230,659 feature extraction Non-trainable params: 70,682,112 Total params: 70,912,771

fine tuning

Trainable params: 70,912,771

Non-trainable params: 0

Datasets

- 1- SNLI (Stanford Natural Language Inference)
- 2- ANLI (Adversarial Natural Language Inference)
- 3- Paraphrased Articles using GPT-3

Paraphrased Academic Article Dataset Generated using GPT-3

An older and younger man smiling.

A black race car starts up in front of a crowd of people.

A soccer game with multiple males playing.

A smiling costumed woman is holding an umbrella.

A smiling costumed woman is holding an umbrella.

A man inspects the uniform of a figure in some East Asian country.

Judgments Hypothesis

Model Train Details

DATASET INFORMATIONS					
Dataset Name	Original Dataset Name	Data Length	Size(MB)	Details	
df_train	snli_data	549361	65	SNLI Train Data	
df_train_longer_sentences	snli_data	266582	38	Half of SNLI test data (only longer sentences)	
df_validation	snli_data	9842	1.2	SNLI Validation Data	
df_test	snli_data	9824	1.2	SNLI Test Data	
ANLI	anli_data	169265	66.4	All ANLI data (train+validation+test)	

Model Train Details

MODELS						
Model Name	Train Datasets	Val Dataset	Max String Length	Batch Size	Epoch	Total Parameters
albert-base	df_train	df_validation	128	32	8	12,110,851
bert-base-uncased	df_train	df_validation	128	32	2	109,909,507
roberta-base	df_train_longer _sentences	df_validation	128	32	4	125,072,899
deberta-v3-xsmall	df_train+anli	df_validation	128	32	4	70,912,771

Technical Metrics

SNLI DATA TEST RESULTS					
Model Name	df_test_time(second)	df_test_loss(x10^-4)	df_test_acc(x10^-4)	Test Environment	
albert-base	17.7	4179	8391	Google Colab Pro	
bert-base-uncased	22	2778	9022	Google Colab Pro	
roberta-base	17.1	2749	9053	Google Colab Pro	
deberta-v3-xsmall	23	2535	9108	Google Colab Pro	

(more accurate better)

Technical Metrics

ANLI DATA TEST RESULTS					
Model Name	ANLI_test_time(second)	ANLI_test_loss(x10^-4)	ANLI_test_acc(x10^-4)	Test Environment	
albert-base	285	11476	4985	Google Colab Pro	
bert-base-uncased	364	11211	6025	Google Colab Pro	
roberta-base	277	15230	5424	Google Colab Pro	
deberta-v3-xsmall	232	2199	9226	Google Colab Pro	

(faster better)

Experiment Results

Paraphrased Articles using GPT-3					
Model	Title Similarity Percentage	Abstract Similarity Percentage	Introduction Similarity Percentage		
BERT	73,3	81,8	64,1		
RoBERTa	77,8	75,9	57,7		
DeBERTa	74,6	66,4	38,5		
AIBERT	62,6	71,5	53,3		

Experiment Results

BERT gave us better results even though it has less parameters and is trained with data consisting of fewer but longer sentences

Experiment Results

Strength and Weakness

W - 128 string per sentence limit

W - longer run times

S - similarity check on every sentences of two paragraph

S - semantic similarity check

Future Direction

Training with Higher *Epochs* Numbers

Working on PAN-PC 11 Dataset

Finding a *Faster* Solutions

Trying Longer String Sequences

Fully Functional *Hugging Face* Spaces

This pictures created the prompt "future of ai" using Night Cafe's stable diffusion model

DEMO

Semantic Similarity Checker

Original Text Moussaka is one of the best known Greek dishes - a baked casserole consisting of ground lamb meat and layers of sliced eggplant, covered with a thick layer of bechamel sauce that gets golden and crusty as it bakes. The lamb is sometimes replaced with beef, while the eggplants might be replaced with zucchini or potatoes. It is likely that moussaka has Middle-Eastern origins, and it was introduced when the Arabs brought the eggplant to Greece. Its Greek name mousakás is derived from the Turkish musakka, which came from the Arabic word musagga'ah, meaning chilled. Moussaka is not an everyday dish-it is baked as a special treat for guests and family on festive days. An exotic version of lasagna, without the pasta, moussaka is exceptionally healthy due to the abundance of vegetables used in the dish. It is commonly cut into squares and served warm, not hot, as the dish needs some resting time in order to firm up. Suspected Text Moussaka is a traditional Greek dish made up of ground lamb (or sometimes beef) and layers of eggplant, all covered in a thick and golden bechamel sauce. It is thought to have originated from the Middle East, as the name is derived from the Turkish musakka, which comes from the Arabic word musagga'ah, meaning chilled. It is not a meal eaten every day, but is a special treat that is served on festive occasions. It is similar to lasagna, but without the pasta, and is very healthy due to the vegetables used. It is usually cut into squares and served warm after it has had some time to cool and firm up. Clear Submit

Overall Similarity

46.058001120885216

Flag

https://c26df07d-df3d-479f.gradio.live/

(link expires in a few hours)

Original Text

Moussaka is one of the best known Greek dishes – a baked casserole consisting of ground lamb meat and layers of sliced eggplant, covered with a thick layer of bechamel sauce that gets golden and crusty as it bakes. The lamb is sometimes replaced with beef, while the eggplants might be replaced with zucchini or potatoes. It is likely that moussaka has Middle-Eastern origins, and it was introduced when the Arabs brought the eggplant to Greece. Its Greek name mousakás is derived from the Turkish musakka, which came from the Arabic word musaqqa'ah, meaning chilled.Moussaka is not an everyday dish-it is baked as a special treat for guests and family on festive days. An exotic version of lasagna, without the pasta, moussaka is exceptionally healthy due to the abundance of vegetables used in the dish. It is commonly cut into squares and served warm, not hot, as the dish needs some resting time in order to firm up.

Suspected Text

Moussaka is a traditional Greek dish made up of ground lamb (or sometimes beef) and layers of eggplant, all covered in a thick and golden bechamel sauce. It is thought to have originated from the Middle East, as the name is derived from the Turkish musakka, which comes from the Arabic word musaqqa'ah, meaning chilled. It is not a meal eaten every day, but is a special treat that is served on festive occasions. It is similar to lasagna, but without the pasta, and is very healthy due to the vegetables used. It is usually cut into squares and served warm after it has had some time to cool and firm up.

For Future Works

https://www.linkedin.com/in/a-emreusta/

https://www.linkedin.com/in/huseyin-yigit-ulker/

https://www.kaggle.com/datasets/aemreusta/paraphrased-articles-using-gpt3

https://github.com/a-emreusta/success-of-ai-writers