Ch 3 - Démonstrations non faites en classe.

Théorème : de la dérivée de la réciproque

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue, strictement monotone. Notons J = f(I); d'après le théorème de la bijection, f réalise une bijection de I sur J.

Soit $y_0 \in J$. On pose $x_0 = f^{-1}(y_0)$ (de sorte que $y_0 = f(x_0)$). On suppose f dérivable en x_0 , alors :

$$f^{-1}$$
 dérivable en $y_0 \iff f'(f^{-1}(y_0)) \neq 0$

et dans ce cas, on a
$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$$
.

Démonstration:

Soit $y \in J \setminus \{y_0\}$. On peut écrire : $\frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{f^{-1}(y) - f^{-1}(y_0)}{f(f^{-1}(y)) - f(f^{-1}(y_0))}$.

• Supposons que $f'(x_0) \neq 0$. On sait que $\frac{f(x) - f(x_0)}{x - x_0} \xrightarrow[x \to x_0]{} f'(x_0)$, avec $f'(x_0) \in \mathbb{R}^*$ et $f(x) - f(x_0) \neq 0$ pour $x \neq x_0$ (grâce à la bijectivité de f), donc on sait que

$$\frac{x - x_0}{f(x) - f(x_0)} \xrightarrow[x \to x_0]{} \frac{1}{f'(x_0)} : (1)$$

Par ailleurs, on sait grâce au théorème de la bijection que f^{-1} est continue en y_0 , et donc que $f^{-1}(y) \xrightarrow{y \to y_0} f^{-1}(y_0)$ i.e. $f^{-1}(y) \xrightarrow{y \to y_0} x_0 : (2)$.

On peut donc faire une composition de limites avec (1) et (2):

$$i.e. \frac{f^{-1}(y) - x_0}{f(f^{-1}(y)) - f(x_0)} \xrightarrow{y \to y_0} \frac{1}{f'(x_0)}$$
$$= \frac{f^{-1}(y) - f^{-1}(y_0)}{f(f^{-1}(y)) - f(f^{-1}(y_0))} = \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} \xrightarrow{y \to y_0} \frac{1}{f'(f^{-1}(y_0))}$$

Ce qui signifie que f^{-1} est dérivable en y_0 et que $\left(f^{-1}\right)'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$.

- Supposons que $f'(x_0) = 0$. On sait donc que $\frac{f(x) f(x_0)}{x x_0} \xrightarrow[x \to x_0]{} 0$. Nous avons aussi supposé f strictement monotone
 - Dans le cas où f est strictement croissante :

Pour tout $x \in I \setminus \{x_0\}$ tel que $x < x_0$, on a $f(x) - f(x_0) < 0$, et aussi $x - x_0 < 0$,

donc le taux d'accroissement $\frac{f(x) - f(x_0)}{x - x_0}$ est strictement positif; Pour tout $x \in I \setminus \{x_0\}$ tel que $x > x_0$, on a $f(x) - f(x_0) > 0$, et aussi $x - x_0 > 0$, donc le taux d'accroissement $\frac{f(x) - f(x_0)}{x - x_0}$ est strictement positif.

Puisque cette expression tend vers 0 en x_0 en restant strictement positive, son inverse tend vers $+\infty$ en x_0 :

$$\frac{x - x_0}{f(x) - f(x_0)} \xrightarrow[x \to x_0]{} + \infty : (1)$$

— Dans le cas où f est strictement décroissante, il n'est pas difficile d'adapter ce qui précède et de constater que le taux d'accroissement est toujours strictement négatif, on trouve alors :

$$\frac{x - x_0}{f(x) - f(x_0)} \xrightarrow[x \to x_0]{} -\infty : (1)$$

On peut alors faire une composition de limites comme dans le cas $f'(x_0) \neq 0$, sauf qu'on trouvera alors que le taux d'accroissement de f^{-1} en y_0 aura pour limite en $y_0 + \infty$ ou $-\infty$ (selon la stricte monotonie de f). Dans les deux cas, on conclut que f^{-1} n'est pas dérivable en y_0 .

Par contraposée : si f^{-1} est dérivable en y_0 , alors $f'(x_0) \neq 0$.

Théorème-définition:

• La fonction $f: [0,\pi] \to [-1,1]$ réalise une bijection de $[0,\pi]$ sur [-1,1]. $x \mapsto \cos(x)$

($\bigwedge f$ n'est pas la fonction cosinus).

Sa réciproque f^{-1} est appelée arccosinus, et notée Arccos.

• La fonction Arccos est définie et continue sur [-1,1], à valeurs dans $[0,\pi]$, et strictement décroissante.

Démo 6:

- $[0,\pi]$ est un intervalle
- f est continue sur $[0, \pi]$
- f est dérivable sur $[0, \pi]$ et : $\forall x \in [0, \pi], f'(x) = -\sin(x) \le 0$ et $f'(x) = 0 \iff x = 0$ ou $x = \pi$.

Donc f est strictement décroissante sur $[0, \pi]$.

Par le théorème de la bijection, f réalise une bijection de $[0,\pi]$ sur $f([0,\pi]) = [f(\pi), f(0)] = [-1, 1]$.

Ainsi $f^{-1}:[-1,1]\to[0,\pi]$, et toujours par le théorème de la bijection, f^{-1} est continue, et a la même stricte monotonie que $f:f^{-1}$ est strictement décroissante.

Théorème:

Arccos n'est dérivable que sur] -1,1[, et pour tout $x\in]-1,1[$:

$$\operatorname{Arccos}'(x) = \frac{-1}{\sqrt{1 - x^2}}$$

2

Démo 7 : Arccos est la réciproque de $f:[0,\pi] \to [-1,1]$, qui vérifiait bien toutes les $x \mapsto \cos(x)$

hypothèses du théorème de la bijection.

Soit $y \in [-1, 1]$. Posons $x = \operatorname{Arccos}(y)$ (de sorte que $y = \cos(x)$, et que $x \in [0, \pi]$). f est dérivable en x, donc, par le théorème de la dérivée de la réciproque,

Arccos dérivable en
$$y \iff f'(x) \neq 0$$

 $\iff -\sin(x) \neq 0$
 $\iff \sin(x) \neq 0$

Or $x \in [0, \pi]$ donc

$$\sin(x) = 0 \iff x = 0 \text{ ou } x = \pi$$

$$\iff \operatorname{Arccos}(y) = 0 \text{ ou } \operatorname{Arccos}(y) = \pi$$

$$\iff y = 1 \text{ ou } y = -1 \quad (\operatorname{car} \cos(0) = 1 \text{ et } \cos(\pi) = -1)$$

Ainsi:

Arccos dérivable en
$$y \iff y \neq 1$$
 et $y \neq -1$

Autrement dit, Arccos est dérivable <u>seulement</u> sur] -1,1[. Supposons $y \in]-1,1$ [. Toujours par le théorème,

$$\operatorname{Arccos}(y) = \frac{1}{f'(\operatorname{Arccos}(y))} = \frac{1}{-\sin(\operatorname{Arccos}(y))}$$

Par ailleurs:

$$(\sin(\operatorname{Arccos}(y)))^{2} + (\cos(\operatorname{Arccos}(y)))^{2} = 1$$

$$(\sin(\operatorname{Arccos}(y)))^{2} + y^{2} = 1$$

$$\operatorname{donc} (\sin(\operatorname{Arccos}(y)))^{2} = 1 - y^{2}$$

$$\sqrt{(\sin(\operatorname{Arccos}(y)))^{2}} = \sqrt{1 - y^{2}}$$

$$|\sin(\operatorname{Arccos}(y))| = \sqrt{1 - y^{2}}$$

Or $\operatorname{Arccos}(y) \in [0,\pi]$ et sin est positive sur $[0,\pi]$, donc $\sin(\operatorname{Arccos}(y)) \geq 0$, donc $\sin(\operatorname{Arccos}(y)) = \sqrt{1-y^2}$.

$$\sin(\operatorname{Arccos}(y)) = \sqrt{1 - y^2}.$$

Ainsi $\operatorname{Arccos}'(y) = \frac{-1}{\sqrt{1 - y^2}}.$