Exam 2 Review

- 1. Continuity Equation
 - a. Standard forms
 - b. Divergence, Dines Compensation
 - c. Geostrophic wind divergence
 - d. ω, relationship to w
 - e. Stability Change equation
- 2. Thermal Wind
 - a. Equations in x,y,p and x,y,z
 - i) characteristics
 - ii) calculations of wind change with height
 - iii) geostrophic wind versus actual wind
 - b. Horizontal temperature advection
 - i) backing and veering
 - ii) implications on stability change
 - c. Baroclinic vs barotropic
 - i) definitions
 - ii) relationship to thermal wind
 - iii) physical implications
 - d. Vertical structure of cyclones, anticyclones
 - i) cold core low, etc.
 - ii) relationship between thermal wind, geostrophic wind
 - iii) physical implications
- 3. Circulation and vorticity
 - a. Definition of circulation
 - b. Calculations of circulation, vorticity
 - c. Bjerknes Circulation Theorem
 - i) solenoidal term
 - ii) sea breeze calculations
 - d. Vorticity equation
 - i) basis for equation
 - ii) source for each term
 - iii) physical interpretation of terms
 - iv) applications
 - e Geostrophic vorticity
 - i) relation to actual vorticity
 - ii) calculations based on isobaric height field
 - f. Potential vorticity
 - i) assumptions required
 - ii) IPV form, units
 - iii) physical implications
 - iv) applications
 - g. Rossby Waves
 - i) assumptions required
 - ii) phase speed
 - iii) role of Beta parameter