PGCD - PPCM Théorèmes de Bézout et de Gauss

Table des matières

1	Plus grand commun diviseur	2
	1.1 Définition	2
	1.2 Nombres premiers entre eux	2
	1.3 Algorithme d'Euclide	3
2	Plus petit commun multiple	4
3	Théorème de Bézout	4
	3.1 Égalité de Bézout	4
	3.2 Théorème de Bézout	5
	3.3 Algorithme de Bézout	6
	3.4 Corollaire de Bézout	6
4	Le théorème de Gauss	7
	4.1 Le théorème	7
	4.2 Corollaire du théorème de Gauss	8
	4.3 Propriétés	8

1 Plus grand commun diviseur

1.1 Définition

Définition 1: Soit a et b deux entiers relatifs non nuls.

L'ensemble des diviseurs communs à a et b admet un plus grand élément D, appelé plus grand commun diviseur.

On note : D = pgcd(a, b)

Démonstration : Existence

L'ensemble des diviseurs communs à a et b est un ensemble fini car intersection de deux ensembles finis.

De plus 1 divise a et b donc l'ensemble des diviseurs communs à a et b est non vide.

Or tout ensemble fini non vide admet un plus grand élément donc *D* existe.

Exemples :

$$pgcd(24, 18) = 6$$

 $pgcd(60, 84) = 12$
 $pgcd(150, 240) = 30$

Propriétés:

- Si *b* divise *a* alors pgcd(a, b) = |b|
- Pour tout entier naturel k non nul, on a: pgcd(ka, kb) = k pgcd(a, b).

1.2 Nombres premiers entre eux

Définition 2 : On dit que a et b sont premiers entre eux si et seulement si

$$pgcd(a, b) = 1$$

Exemple: pgcd(15,8) = 1 donc 15 et 8 sont premiers entre eux.

⚠ Il ne faut pas confondre des nombres premiers entre eux et des nombres premiers. 15 et 8 ne sont pas premiers et pourtant ils sont premiers entre eux.

Par contre deux nombres premiers distincts sont nécessairement premiers entre eux.

1.3 Algorithme d'Euclide

Théorème 1: Soit a et b deux naturels non nuls tels que b ne divise pas a.

La suite des divisions euclidiennes suivantes finit par s'arrêter. Le dernier reste non nul est alors le pgcd(a, b)

$$a \operatorname{par} b$$
 $a = b q_0 + r_0$ $\operatorname{avec} b > r_0 \geqslant 0$
 $b \operatorname{par} r_0$ $b = r_0 q_1 + r_1$ $\operatorname{avec} r_0 > r_1 \geqslant 0$
 $r_0 \operatorname{par} r_1$ $r_0 = r_1 q_2 + r_2$ $\operatorname{avec} r_1 > r_2 \geqslant 0$
 \vdots \vdots
 $r_{n-2} \operatorname{par} r_{n-1}$ $r_{n-2} = r_{n-1} q_n + r_n$ $\operatorname{avec} r_{n-1} > r_n \geqslant 0$
 $r_{n-1} \operatorname{par} r_n$ $r_{n-1} = r_n q_{n+1} + 0$

On a alors $pgcd(a, b) = r_n$.

Démonstration:

• La suite des restes : r_0 , r_1 , r_2 , ..., r_n est une suite strictement décroissante dans \mathbb{N} car $r_0 > r_1 > r_2 > \cdots > r_n$.

Cette suite est donc finie. Il existe alors n tel que $r_{n+1} = 0$.

Montrons que $pgcd(a, b) = pgcd(b, r_0)$.

Soit
$$D = \operatorname{pgcd}(a, b)$$
 et $d = \operatorname{pgcd}(b, r_0)$.

D divise a et b donc D divise $a - bq_0 = r_0$, donc D divise b et r_0 donc $D ext{divise } b$ et r_0 donc d divise d div

On déduit de ces deux inégalités que D = d: $pgcd(a, b) = pgcd(b, r_0)$

• De proche en proche, on en déduit que :

$$\operatorname{pgcd}(a,b) = \operatorname{pgcd}(b,r_0) = \cdots = \operatorname{pgcd}(r_{n-2},r_{n-1}) = \operatorname{pgcd}(r_{n-1},r_n)$$

or r_n divise r_{n-1} , donc $pgcd(r_{n-1}, r_n) = r_n$

Conclusion : $pgcd(a, b) = r_n$. Le dernier reste non nul est le pgcd.

Exemple:

Calculer le pgcd(4 539, 1 958).

On effectue les divisions euclidiennes suivantes :

$$4539 = 1958 \times 2 + 623$$

 $1958 = 623 \times 3 + 89$
 $623 = 89 \times 7$

Conclusion : pgcd(4539, 1958) = 89

Remarque : Le petit nombre d'étapes montre la performance de cet algorithme.

Algorithme: Voici un algorithme d'Euclide que l'on peut proposer pour trouver le pgcd de deux nombres. On pourrait éventuellement utiliser l'algorithme de la division euclidienne à l'intérieur du programme, mais pour les besoins de simplicité, on utilisera la partie entière pour trouver le quotient.

```
Variables : a, b, q, r entiers naturels

Entrées et initialisation

| Lire a, b
| E(a/b) \rightarrow q
| a - bq \rightarrow r

Traitement
| tant que r \neq 0 faire
| b \rightarrow a
| r \rightarrow b
| E(a/b) \rightarrow q
| a - bq \rightarrow r
| fin

Sorties : Afficher b
```

2 Plus petit commun multiple

Définition 3 : Soit a et b deux entiers relatifs non nuls.

L'ensemble des multiples strictement positifs communs à a et à b admet un plus petit élément M, appelé plus petit commun multiple.

On le note : M = ppcm(a, b).

Démonstration : Existence

L'ensemble des multiples strictement positifs à a et à b n'est pas vide. En effet |ab| est un multiple positif de a et de b.

Toute partie non vide de $\mathbb N$ admet un plus petit élément donc M existe.

Exemple:

```
ppcm(18, 12) = 36

ppcm(24, 40) = 120
```

Pour additionner deux fractions, on recherche le dénominateur commun le plus petit qui n'est autre que le ppcm.

Propriétés:

- Si *b* divise *a* alors ppcm(a, b) = |a|
- Si a et b sont premiers entre eux alors ppcm(a, b) = |ab|
- On a: $ab = ppcm(a, b) \times pgcd(a, b)$

3 Théorème de Bézout

3.1 Égalité de Bézout

Théorème 2 : Soit a et b deux entiers non nuls et D = pgcd(a, b)

Il existe alors un couple (u, v) d'entiers relatifs tels que :

$$au + bv = D$$

Démonstration :

Soit G l'ensemble formé par les entiers naturels strictement positifs de la forme ma + nb où m et n sont des entiers relatifs.

G est une partie de \mathbb{N} non vide : on vérifie facilement que $|a| \in G$.

G admet donc un plus petit élément d tel que d = au + bv

- D = pgcd(a, b) divise a et b donc D divise au + bv = d et donc $D \le d$
- Montrons que *d* divise *a*

Divisons a par d, on a alors a = dq + r avec $0 \le r < d$.

On isole le reste et on remplace d par au + bv:

$$r = a - dq = a - auq - bvq = a(1 - uq) + b(-vq)$$

Donc r = 0. En effet si $r \neq 0$ alors $r \in G$, or r < d et d est le plus petit élément de G, cela est absurde.

r=0 donc d divise a. En faisant le même raisonnement, on montrerait que d divise aussi b.

d divise *a* et *b* donc $d \leq D$

• conclusion : $D \le d$ et $d \le D$ donc D = d.

Conséquence : Tout diviseur commun à a et b divise leur pgcd.

3.2 Théorème de Bézout

<u>Théorème</u> 3: Deux entiers relatifs a et b sont premiers entre eux si et seulement si, il existe deux entiers relatifs u et v tels que :

$$au + bv = 1$$

ROC Démonstration:

 $Dans le sens \Rightarrow$: Immédiat grâce à l'égalité de Bézout.

Dans le sens \Leftarrow : (réciproquement)

On suppose qu'il existe deux entiers u et v tels que : au + bv = 1.

Si D = pgcd(a, b) alors D divise a et b donc D divise au + bv.

Donc *D* divise 1. On a bien D = 1.

Exemple: : Montrer que (2n+1) et (3n+2) sont premiers entre eux $\forall n \in \mathbb{N}$.

Il s'agit de trouver des coefficients u et v pour que u(2n+1)+v(3n+2)=1.

$$-3(2n+1) + 2(3n+2) = -6n - 3 + 6n + 4 = 1$$

 $\forall n \in \mathbb{N}$, il existe u = -3 et v = 2 tel que u(2n+1) + v(3n+2) = 1.

Les entiers (2n + 1) et (3n + 2) sont premiers entre eux.

Exemple: Montrer que 59 et 27 sont premiers entre eux puis déterminer un couple (x,y) tel que : 59x + 27y = 1

Pour montrer que 59 et 27 sont premiers entre eux on effectue l'algorithme d'Euclide et pour déterminer un couple (x, y), on remonte l'algorithme d'Euclide :

$$59 = 27 \times 2 + 5$$
 (1)
 $27 = 5 \times 5 + 2$ (2)
 $5 = 2 \times 2 + 1$ (3)

59 et 27 sont premiers entre eux.

On remonte l'algorithme d'Euclide :
$$2 \times 2 = 5 - 1$$

On multiplie l'égalité (2) par 2

$$27 \times 2 = 5 \times 10 + 2 \times 2$$

$$27 \times 2 = 5 \times 10 + 5 - 1$$

$$27 \times 2 = 5 \times 11 - 1$$

$$5 \times 11 = 27 \times 2 + 1$$

on multiplie l'égalité (1) par 11

$$59 \times 11 = 27 \times 22 + 5 \times 11$$

$$59 \times 11 = 27 \times 22 + 27 \times 2 + 1$$

$$59 \times 11 = 27 \times 24 + 1$$

On a donc: $59 \times 11 + 27 \times (-24) = 1$

3.3 Algorithme de Bézout

Il s'agit de déterminer un couple (u; v) d'entiers relatifs sachant que les entiers a et b sont premiers entre eux. On doit donc avoir : au + bv = 1

On isole le premier terme :

$$au = b(-v) + r$$

On teste, en incrémentant u, le reste de la division de m = au par b. Tant que le reste est différent de 1, on réitère la division.

On analysera de plus si le réel b est positif ou non pour déterminer le quotient. Une fois u trouvé, on détermine v:

$$v = \frac{1-m}{h}$$

On teste ce programme avec : a = 59 et

On trouve alors : u = 11 et v = -24

```
Variables : a, b, u, v, m, r entiers

Entrées et initialisation

Lire a, b
0 \rightarrow r
0 \rightarrow u

Traitement

tant que r \neq 1 faire

u+1 \rightarrow u
au \rightarrow m
si \ b > 0 alors

m-E\left(\frac{m}{b}\right) \times b \rightarrow r
sinon
m-E\left(\frac{m}{b}+1\right) \times b \rightarrow r
fin
fin
fin
\frac{1-m}{b} \rightarrow v

Sorties : Afficher u et v
```

3.4 Corollaire de Bézout

Théorème 4: L'équation ax + by = c admet des solutions entières si et seulement si c est un multiple du pgcd(a, b).

Démonstration :

Dans le sens \Rightarrow

ax + by = c admet une solution (x_0, y_0) .

Comme D = pgcd(a, b) divise a et b il divise $ax_0 + by_0$.

D divise donc c

 $Dans le sens \Leftarrow (réciproquement)$

c est un multiple de D = pgcd(a, b).

Donc il existe un entier relatif k tel que : c = kd

De l'égalité de Bézout, il existe deux entiers relatifs u et v tels que :

$$au + bv = D$$

En multipliant par k, on obtient :

$$auk + bvk = kD \Leftrightarrow a(uk) + b(vk) = c$$

Donc il existe $x_0 = uk$ et $y_0 = vk$ tels que $ax_0 + by_0 = c$

Exemple: L'équation 4x + 9y = 2 admet des solutions car pgcd(4, 9) = 1 et 2 multiple de 1

L'équation 9x - 15y = 2 n'admet pas de solution car $\operatorname{pgcd}(9,15) = 3$ et 2 non multiple de 3

4 Le théorème de Gauss

4.1 Le théorème

Théorème S: Soit a, b et c trois entiers relatifs non nuls.

Si a divise le produit bc et si a et b sont premiers entre eux alors a divise c.

ROC Si *a* divise le produit bc, alors il existe un entier k tel que : bc = ka

Si a et b sont premiers entre eux, d'après le théorème de Bézout, il existe deux entiers u et v tels que : au + bv = 1

En multipliant par c, on a :

$$acu + bcv = c$$
 or $bc = ka$, donc:
 $acu + kav = c$
 $a(cu + kv) = c$

Donc *a* divise *c*.

Exemple: Trouver les solutions dans \mathbb{Z}^2 de l'équation: 5(x-1)=7y

5 divise 7*y*, or $\operatorname{pgcd}(5,7)=1$, donc d'après le théorème de Gauss 5 divise *y*. On a donc : y=5k

En remplaçant dans l'équation, on a :

$$5(x-1) = 7 \times 5k \quad \Leftrightarrow \quad x-1 = 7k \quad \Leftrightarrow \quad x = 7k+1$$

Les solutions sont donc de la forme : $\begin{cases} x = 7k + 1 \\ y = 5k \end{cases} \quad k \in \mathbb{Z}$

4.2 Corollaire du théorème de Gauss

Théorème 6 : Si b et c divise a et si b et c sont premiers entre eux alors bc divise a.

ROC Démonstration : Si b et c divise a, alors il existe k et k' entiers relatifs tels que :

$$a = kb$$
 et $a = k'c$ donc: $kb = k'c$

b divise k'c, or $\operatorname{pgcd}(b,c)=1$ donc d'après le théorème de Gauss b divise k' donc : k'=k''b

$$a = k'c = k''bc$$

Donc *bc* divise *a*.

Exemple: Si 5 et 12 divise a, comme 5 et 12 sont premiers entre eux, $5 \times 12 = 60$ divise a.

4.3 Propriétés

Ces propriétés découlent du théorème de Bézout et de Gauss.

Propriété 1 : Soit a et b deux entiers non nuls, D leur pgcd et M leur ppcm.

• Il existe deux entiers a' et b' premiers entre eux tels que :

$$a = Da'$$
 et $b = Db'$

• On a les relations suivantes :

$$M = Da'b'$$
 et $ab = MD$