Jonathan Simon, Ph.D.

Department of Physics James Franck Institute The University of Chicago 929 E. 57th Street Chicago IL, 60637 Work: 773.702.9661 Cell: 857.928.4132 simonjon@uchicago.edu

ACADEMIC POSITIONS

Assistant Professor of Physics

Neubauer Family Professor

University of Chicago 2012-Present

Postdoctoral Scholar

Group of Prof. Markus Greiner

Harvard University 2010-2012

Quantum magnetism in an optical lattice, bilayer imaging, algorithmic cooling and purification of lattice gases, photon-assisted tunneling, atom-resolved studies of the superfluid to Mott insulator transition.

EDUCATION

Ph.D. in Physics, Harvard University

March 2010

Dissertation: Cavity QED with Atomic Ensembles (Advisor: Vladan Vuletić).

Single photon source, quantum bus, quantum memory, vacuum induced transparency and few photon nonlinearities.

B.S. in Physics, California Institute of Technology

June 2004

Extensive elective coursework in electrical engineering.

Honors and Awards

 National Defense Science & Engineering Graduate Fellowship Harvard Purcell Fellowship Caltech Upperclass Merit Award- Carnation Fellowship Caltech Axline Fellowship (Full Tuition) 	2013 2013 2013 2013 2012 2011 2007-2010 2005-2007 2004-2005 2002-2004 2000-2004
• Intel Science Talent Search Finalist	2000-2004

SERVICE

- Member of the University of Chicago Board of Computing Activities and Services (2016-Present)
- Session Chair, DAMOP 2013 (Quebec City, Canada), DAMOP 2014 (Madison, Wisconsin), DAMOP 2016 (Providence, Rhode Island)
- Chair, James Franck Institute Seminar Committee (2013-Present)
- Physics Department Colloquium Committee (2012-2013, 2015-2016)
- PhD. Thesis Defense Committee (4) (2012-Present)

TEACHING EXPERIENCE

- Instructor, Ph 143 UChicago Undegraduate Honors Vibration, Waves, and Heat Spring 2017
- Faculty supervisor to graduate and undergraduate students 2012-Present
- Instructor, Ph 361 UChicago Graduate Solid State Physics Fall 2012-2013, Fall 2016
- Instructor, Ph 211 UChicago Undergraduate Physics Laboratory Winter 2014, Spring 2016

• Instructor, Ph 471 UChicago Graduate Atomic Physics	Fall 2014
• Postdoctoral supervisor to graduate students on ultracold quantum gas experime	nt 2010-2012
• Recitation leader, MIT 8.03: Vibrations and Waves	Fall 2008
• Mentor, MIT Undergraduate Research Opportunities Program (UROP)	2004-2010
• Section Leader, Ph 7 Caltech Sophomore Physics Lab	Spring 2004
• Teaching assistant, Caltech Sophomore Physics Labs:	
- Fall Term: Ph5 Electronics	2002-2003
- Winter Term: Ph6 Classical Physics	2003-2004
- Spring Term: Ph7 Nuclear Physics	2003-2004

COLLABORATORS AND CO-EDITORS

- Brandon Anderson [Chicago]
- Waseem Bakr [Princeton]
- Hanspeter Büchler [Stuttgart]
- Wenlan Chen [MIT]
- Andrew Daley [Strathclyde]
- Markus Greiner [Harvard]
- Andrey Gromov [Chicago]
- Andrew Houck [Princeton]
- Alex Ruichao Ma [Chicago]
- Johannes Otterbach [Harvard]
- Hannes Pichler [Innsbruck]
- Philipp Preiss [Harvard]
- Johannes Schachenmayer [Pittsburgh]
- David Schuster [Chicago]
- Eric Tai [Harvard]
- Haruka Tanji [Tokyo]
- Vladan Vuletic [MIT]
- Peter Zoller [Innsbruck]

GRADUATE, POSTDOCTORAL, AND UNDERGRADUATE ADVISORS AND ADVISEES

- Vladan Vuletic: PI's graduate supervisor
- Markus Greiner: PI's principal postdoctoral sponsor
- Ariel Sommer: Grainger Postdoctoral Fellow, UChicago 2013-2016 • Ruichao (Alex) Ma: Kadanoff-Rice Postdoctoral Fellow, UChicago 2015-Present • Claire Baum: Graduate Student, UChicago 2017-Present • Ningvuan Jia: Graduate Student, UChicago 2013-Present • Alexandros Georgakopoulos: Graduate Student, UChicago 2012-Present • Clai Owens: Graduate Student, UChicago 2013-Present Albert Ryou: Graduate Student, UChicago 2012-2017 • Nathan Schine: Graduate Student, UChicago 2013-Present • Brendan Saxberg: Graduate Student, UChicago 2016-Present • Aziza Suleymanzade: Graduate Student, UChicago 2014-Present • Mark Stone: Graduate Student, UChicago 2015-Present
- Undergraduates (UChicago): Jared Beh (2017-Present), Jasmine Kalia (2017-Present), Evan Mata (2016-Present), Lin Su (2017-Present), Joshua Wakefield (2016-Present); Lindsay Bassman (2012-2014), Michael Cervia (2013-2016), Michelle Chalupnik (2015-2017), Jeremy Estes (2015-2016), Scott Eustice (2015-2017), Graham Greve (2012-2014), Aaron Krahn (2012-2014), Aman LaChapelle (2015-2017), Yuehui (Leon) Lu (2016-2017), Tahoe Schrader (2015-2016), Jeremy Seeman (2012), Jin Woo Sung (2013-2014), Sohini Upadhyay (2014-2015).

PEER-REVIEWED PUBLICATIONS

- Jia Ningyuan, Nathan Schine, Alexandros Georgakopoulos, Albert Ryou, Ariel Sommer, Jonathan Simon, **Photons and polaritons in a time-reversal-broken non-planar resonator.** arXiv: 1709.00021 (2017).
- Clai Owens, Aman LaChapelle, Brendan Saxberg, Brandon Anderson, Ruichao Ma, Jonathan

- Simon, David I Schuster, Quarter-Flux Hofstadter Lattice in Qubit-Compatible Microwave Cavity Array. arXiv: 1708.01651 (2017).
- Ningyuan Jia, Nathan Schine, Alexandros Georgakopoulos, Albert Ryou, Ariel Sommer, Jonathan Simon, A Strongly Interacting Polaritonic Quantum Dot. arXiv: 1705.07475 (2017).
- Ruichao Ma, Clai Owens, Andrew Houck, David I. Schuster, Jonathan Simon, An Autonomous Stabilizer for Incompressible Photon Fluids and Solids. Phys. Rev. A 95, 043811 (2017).
- Ruichao Ma, Clai Owens, Aman LaChapelle, David I. Schuster, Jonathan Simon, Hamiltonian Tomography of Photonic Lattices. Phys. Rev. A 95, 062120 (2017).
- Albert Ryou, Jonathan Simon, Active Cancellation of Acoustical Resonances with an FPGA FIR Filter. Rev. Sci. Inst. 88, 013101 (2017).
- Brandon M. Anderson, Ruichao Ma, Clai Owens, David I. Schuster, Jonathan Simon, Engineering Topological Many-Body Materials in Microwave Cavity Arrays. *Phys. Rev. X* 6, 041043 (2016).
- Nathan Schine, Albert Ryou, Andrey Gromov, Ariel Sommer, Jonathan Simon, Synthetic Landau Levels for Photons. Nature 534, 671-5 (2016).
- Jia Ningyuan, Alexandros Georgakopoulos, Albert Ryou, Nathan Schine, Ariel Sommer, Jonathan Simon, **Observation and characterization of cavity Rydberg polaritons.** *Phys. Rev. A.* 93, 041802(R) (2016).
- Ariel Sommer, Jonathan Simon, Engineering Photonic Floquet Hamiltonians through Fabry Pérot Resonators. New Journal of Physics 18, 035008 (2015).
- Ariel Sommer, Hanspeter Buchler, and Jonathan Simon, Quantum Crystals and Laughlin Droplets of Cavity Rydberg Polaritons. arXiv: 1506.00341 (2015).
- Ningyuan Jia, Ariel Sommer, David Schuster, and Jonathan Simon, **Time- and Site-Resolved Dynamics in a Topological Circuit.** *Phys. Rev. X* 5, 021031 (2015). [Highlighted in the "Condensed Matter Journal Club"]
- Philipp M. Preiss, Ruichao Ma, M. Eric Tai, Jonathan Simon, Markus Greiner, Quantum gas microscopy with spin, atom-number, and multilayer readout. *Phys. Rev. A* 91, 041602(R) (2015).
- Andrew Daley, Jonathan Simon Effective three-body interactions via photon-assisted tunneling in an optical lattice. *Phys. Rev. A* 89, 053619 (2014).
- Hannes Pichler, Johannes Schachenmayer, Jonathan Simon, Peter Zoller, Andrew J. Daley,
 Dressed, noise- or disorder- resistant optical lattices. Phys. Rev. A 86, 051605(R) (2012).
- Waseem S. Bakr, Philipp M. Preiss, M. Eric Tai, Ruichao Ma, Jonathan Simon, Markus Greiner,
 Orbital excitation blockade and algorithmic cooling in quantum gases. Nature 480,
 500-503 (2011) [Selected for a Nature "News and Views"]
- Haruka Tanji-Suzuki, Wenlan Chen, Renate Landig, Jonathan Simon, Vladan Vuletic, **Vacuum Induced Transparency.** Science 333, 1266-1269 (2011). [Selected for a Science "Perspective" and a Nature Photonics "News and Views"]
- Ruichao Ma, M. Eric Tai, Philipp M. Preiss, Waseem S. Bakr, Jonathan Simon, Markus Greiner,
 Photon-Assisted Tunneling in a Biased, Strongly Correlated Bose Gas. Phys. Rev. Lett. 107, 095301 (2011).
- Jonathan Simon, Waseem S. Bakr, Ruichao Ma, M. Eric Tai, Philipp M. Preiss, Markus Greiner,
 Quantum Simulation of Antiferromagnetic Spin Chains in an Optical Lattice. Nature
 472, 307-312 (2011). [Selected for a Nature "News and Views"]
- Waseem S. Bakr, Amy Peng, M. Eric Tai, Ruichao Ma, Jonathan Simon, Jonathon Gillen, Simon Fölling, Lode Pollet, Markus Greiner, **Probing the Superfluid-to-Mott-Insulator Transition at the Single-Atom Level.** Science 329, 547-550 (2010). [Selected for a Science "Perspective"]
- Haruka Tanji, Saikat Ghosh, Jonathan Simon, Benjamin Bloom, and Vladan Vuletic, **Heralded Single-Magnon Quantum Memory for Photon Polarization States.** *Phys. Rev. Lett.* 103, 043601 (2009). [Selected for a PRL "Viewpoint"]
- Jonathan Simon, Haruka Tanji, Saikat Ghosh, Vladan Vuletic, Single-photon bus connecting spin-wave quantum memories. *Nat. Phys.* 3, 765 (2007).

- Vladan Vuletic, James Thompson, Adam T. Black, and Jonathan Simon, External-feedback laser cooling of molecular gases. *Phys. Rev. A* 75, 051405(R) (2007).
- Jonathan Simon, Haruka Tanji, James K. Thompson, and Vladan Vuletic, Interfacing Collective Atomic Excitations and Single Photons. *Phys. Rev. Lett.* 98, 183601 (2007).
- Huanqian Loh, Yu-Ju Lin, Igor Teper, Marko Cetina, Jonathan Simon, James K. Thompson, Vladan Vuletic, Influence of grating parameters on the linewidths of external-cavity diode lasers. Appl. Opt., Vol. 45, Issue 36, 9191–9197 (2006).
- James K. Thompson, Jonathan Simon, Huanqian Loh, Vladan Vuletic, A High-Brightness Source of Narrowband, Identical-Photon Pairs. Science 313, 74–77 (2006).

OTHER PUBLICATIONS

- Jonathan Simon, Magnetic Fields without magnetic fields. Nature News and Views 515 (2014)
- Jonathan Simon, Markus Greiner, A Duo of Graphene Mimics. Nature News and Views 483 (2012).
- Haruka Tanji-Suzuki, Ian D. Leroux, Monika H. Schleier-Smith, Marko Cetina, Andrew Grier, Jonathan Simon, Vladan Vuletic, Interaction between Atomic Ensembles and Optical Resonators: Classical Description. Adv. At. Mol. Opt. Phys 60, 201-237 (2011).
- Haruka Tanji, Jonathan Simon, Saikat Ghosh, Benjamin Bloom, Vladan Vuletic, **Heralded atomic-ensemble quantum memory for photon polarization states.** *Phys. Scr. T* 135, 014010 (2009).

RESEARCH TALKS

- Invited Speaker, Cavity QED Summer School; Lausanne, Switzerland, September 2017; An Introduction to Topological Photonics.
- Invited Speaker, BEC 2017; Sant Feliu, Spain, September 2017; Building Topological Quantum Matter from Photons and Polaritons.
- Invited Speaker, NYU Frontiers in Emergent Quantum Phenomena; Manhattan NY, June 2017; Building Quantum Materials from Light: Polariton Blockade to Landau Levels in Curved Space.
- Invited Speaker, DAMOP 2017; Sacramento, California, June 2017; Photonic Landau Levels in Curved Space.
- Invited Speaker, QFLM at Institute of Scientific Studies of Cargèse: Quantum Fluids of Light and Matter, Corsica, France, May 2017; Topological Photonic Quantum Materials: Landau Levels to Polariton Blockade.
- Invited Speaker, University of Chicago Computations in Science, Chicago, Illinois, April 2017; Building Strongly Correlated Matter from Light.
- Invited Speaker, UMass Amherst Physics Colloquium, Amherst, MA, April 2017; Topological Cavity QED: Photonics Landau Levels in Curved Space.
- Invited Speaker, Emerging Optical Materials Workshop @ MIT Lincoln Labs, Lexington, MA, April 2017; Topological Cavity QED: Photonics Landau Levels in Curved Space.
- Invited Speaker, ETH Physics Colloquium, Zurich, Switzerland, March 2017; Topological Physics in Curved Space: Twisted Cavities to Polariton Blockade.
- Invited Speaker, Princeton Physics Colloquium, Princeton, New Jersey, March 2017; Topological Physics in Curved Space: Twisted Cavities to Polariton Blockade.
- Invited Speaker, UC Berkeley AMO Seminar, Berkeley, California, February 2017; Building Quantum Matter from Light: from Topological Photonics to Polariton Blockade.
- Invited Speaker, University of Kaiserslautern Physics Colloquium, Kaiserslautern, Germany, February 2017; Building Quantum Matter from Light: from Topological Photonics to Polariton Blockade.
- Invited Speaker, Aspen Center for Physics: Topological Meta-Materials, Aspen, CO, January 2017; Building Quantum Matter from Light: from Topological Photonics to Polariton Blockade.
- Invited Speaker, KITP Conference on Universality in Few-Body Systems, Santa Barbara, CA, December 2016; Building Quantum Materials from Light.
- Invited Speaker, Frontiers in Optics/Laser Science Conference (FiO/LS), Rochester, NY, Oc-

- tober 2016; Topological Cavity QED: Landau Levels in Curved Space to Microwave Chern Insulators.
- Invited Speaker, KITP Conference on Topological Quantum Matter, Santa Barbara, CA, October 2016; Landau Levels in Curved Space.
- Invited Speaker, MURI Workshop on Synthetic Quantum Materials, and Quantum Dynamics of Atomic Gases, UChicago Eckhardt Center, September 2016; Topological Cavity QED: Landau Levels in Curved Space.
- Invited Speaker, KITPC Workshop: Synthetic Topological Materials, Chinese Academy of Sciences, Beijing, China, August 2016; Topological Cavity QED: Landau Levels in Curved Space.
- Invited Speaker, Harvard ITAMP: Connecting Few-body and Many-body Pictures of Fractional Quantum Hall Physics, Cambridge, MA, July 2016; Topological Cavity QED: Landau Levels in Curved Space to Microwave Chern Insulators.
- Invited Speaker, Lorentz Center: Topological Physics at ħ = 0: Photonic, Acoustic, and Mechanical Analogues of Electronic Topological Insulators, Leiden, Netherlands, May 2016; Landau Levels in Curved Space, (Topological Circuits & Microwave Chern Insulators).
- Invited Speaker, Simons Center for Geometry and Topology Conference: Geometry of Quantum States in Condensed Matter, Stony Brook, NY, April 2016; Landau Levels in Curved Space: Topological Photonics in Twisted Resonators.
- Invited Speaker, University of Illinois, Urbana-Champagne, April 2016; Topological Photonics with Twisted Resonators and Braided Circuits.
- Invited Speaker, MPQ Colloquium, Garching, Germany, February 2016; Topological Photonics with Twisted Resonators and Braided Circuits.
- Invited Speaker, CoQuS Colloquium, Vienna, Austria, November 2015; Topological Photonics with Twisted Resonators and Braided Circuits.
- Invited Speaker, UC/PKU Workshop on quantum condensed matter physics, Beijing, China,
 CA, October 2015; Topological Photonics with Twisted Resonators and Braided Circuits.
- Invited Speaker, James Franck Institute Seminar, Chicago, IL, October 2015; Topological Photonics with Twisted Resonators and Braided Circuits.
- Invited Speaker, KITP Conference on Non-equilibrium dynamics of strongly interacting photons, Santa Barbara, CA, October 2015; Topological Photonics with Twisted Resonators and Braided Circuits.
- Invited Speaker, 12th US-Japan Seminar on many body quantum systems, Madison, Wisconsin, September 2015; Topological Photonics with Twisted Resonators and Braided Circuits.
- Invited Speaker, Quantum Systems and Technology, Monte Verita, Switzerland, June 2015; Topological Photonics with Twisted Resonators and Braided Circuits.
- Invited Speaker, Aspen Center for Physics: Nonequilibrium Quantum Matter, Aspen, Colorado, March 2015; Progress Towards Topological Cavity Quantum Electrodynamics.
- Invited Speaker, Strongly correlated fluids of light and matter, Trento Italy, January 2015; Topological Photonics: Braided Microwave Circuits and Twisted Resonators.
- Invited Speaker, OSA Incubator on Topological Order of Photons, Washington DC, April 2014; Weaving (Quantum) Materials from Light.
- Invited Speaker, Quantum Optics Obergurgl 2014, Obergurgl Austria, February 2014; Weaving Quantum Materials from Light: Towards Few-Body Physics in Multimode Rydberg Cavity QED.
- Invited Speaker, Physics of Quantum Information, Snowbird Utah, January 2014; Weaving Quantum Materials from Light: Cold Atoms, Topological Circuits, Photons and Beyond.
- Condensed Matter Seminar, Northwestern University, December 2013; Engineering Photonic Topological & Quantum Materials.
- AMO Seminar, University of St. Andrews, October 2013; Weaving Quantum Materials from Light: Cold Atoms, Topological Circuits, Photons and Beyond.
- AMO Seminar, University of Strathclyde, October 2013; Weaving Quantum Materials from Light: Cold Atoms, Topological Circuits, Photons and Beyond.
- REU Seminar, University of Chicago, July 2013; Engineering Quantum- and Topological- Materials Cold Atoms, Quantum Circuits and Beyond.
- AMO Seminar, University of Wisconsin. Madison, Wisconsin, February 2013; Engineering

- Synthetic Quantum Materials from Cold Atoms: Mott Insulators to Emergent Polariton Crystals.
- AMO Seminar, University of Waterloo. Waterloo Ontario, Canada, January 2013; Engineering Quantum Materials from Cold Atoms: Mott Insulators to Emergent Crystals.
- Physics Colloquium, University of Chicago. Chicago, Illinois, December 2012; Engineering Synthetic Quantum Materials from Cold Atoms: Mott Insulators to Emergent Polariton Crystals.
- AMO Seminar, Northwestern University. Evanston, Illinois, November 2012; Engineering Synthetic Quantum Materials from Cold Atoms: Mott Insulators to Emergent Polariton Crystals.
- Invited Speaker, Midwest Cold Atom Workshop. Champaign, Illinois, November 2012; Engineering Synthetic Quantum Materials from Cold Atoms: Mott Insulators to Emergent Polariton Crystals.
- Invited Speaker, New Laser Scientist Conference. Rochester, New York, October 2012; Engineering Synthetic Quantum Materials from Cold Atoms: Mott Insulators to Emergent Polariton Crystals.
- Invited Speaker, Quantum Walks, Quantum Simulators and Quantum Networks, Bonn, Germany, July 2012; Building Synthetic Materials From Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- Invited Speaker, Quantum Systems and Technology Workshop. Monte Verita, Ascona Switzerland, June 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- Physics Seminar, Boston University, Cambridge, Massachusetts, May 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- Atomic Physics Seminar, Stanford University, Stanford California, March 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattce.
- Atomic Physics Seminar, University of Illinois at Urbana-Champagne, February 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- Colloquium, UMass Amherst, February 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- AMO Seminar, University of Michigan, February 2012; Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- Colloquium, Institute for Quantum Computing, Waterloo Ontario, Canada, February 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- AMO Seminar, University of California Los Angeles, Los Angeles California, February 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- Colloquium, Duke University, Durham, North Carolina, February 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- Colloquium, Caltech, Pasadena CA, January 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- AMO Seminar, Yale University, New Haven, Connecticut, January 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- LAASP Seminar, Cornell University, Ithaca, New York, January 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- AMO Seminar, Princeton University, Princeton, New Jersey, January 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- Institute Seminar, James Franck Institute, University of Chicago, Chicago Illinois, January 2012; Building Synthetic Materials from Ultracold Atoms: Quantum Magnetism in an Optical Lattice.
- Invited Speaker, Aspen Center for Physics: New Directions in Ultracold Atomic Systems, January 2012, Aspen, Colorado; Atom-Resolved Many-Body Quantum Physics.
- Invited Speaker, CifAR Quantum Materials Program Meet, Montreal Quebec Canada, October 2011; Engineering Synthetic Materials with Cold Atoms: Quantum Magnetism in an Optical Lattice.
- AMO Seminar, Institute for Quantum Optics and Quantum Information, Innsbruck, Austria, September 2011; Quantum Magnetism in an Optical Lattice.
- Invited Speaker, Strongly Correlated Electron Systems 2011, Cambridge, UK, September 2011;

- Mott Insulators to Quantum Magnets: Atom-By-Atom Imaging and Manipulation of Designer Condensed Matter.
- Keynote Speaker, Photonics Ireland, Dublin Ireland, September 2011; Quantum Magnetism with Ultracold Atoms: A Microscopic View of Artificial Quantum Matter
- Invited Speaker, Quantum phenomena in graphene, other low-dimensional materials, and optical lattices, Erice, Italy, August 2011; Quantum Magnetism in an Optical Lattice.
- Invited Speaker, Minerva-Weizmann workshop on Entanglement in Atomic systems, Rohovot, Israel, November 2010; Probing the Superfluid to Mott Insulator Transition at the Single Site Level.
- Colloquium, University of Connecticut Atomic Physics Seminar, Storrs, Connecticut, November 2010; Quantum Gas Microscope: Exploring the Superfluid to Mott Insulator Transition at the Single Atom Level.
- Invited Speaker, CNLS Conference on Complexity and Disorder at Ultra-low Temperatures, Santa Fe, New Mexico, June 2010; Single-Site Probing of the Superfluid-Mott Insulator Transition with a Quantum Gas Microscope.
- Invited Talk, Princeton-TAMU Symposium on Quantum Coherence and Laser Spectroscopy, Princeton, New Jersey, Mark 2007; Single Photons and Quantum Memories: Climbing the Dicke Ladder One Rung at a Time.