

AUDIOVISUAL COMMUNICATIONS LCAV

Mathematical Foundations of Signal Processing

Hilbert Spaces and Projection Operators

Benjamín Haro Béjar Mihailo Kolundžija Reza Parhizkar Martin Vetterli

September 15, 2014

Outline

- Spaces
 - Vector spaces
 - Hilbert spaces
- Operators
 - Linear operators
 - Projection operators
- Summary

Goal:

• Establish the basics in a Hilbert space setup through geometric intuition

Readings:

• Chapter 2, "From Euclid to Hilbert", of Foundations of Signal Processing, Sections 2.1 to 2.4 (in particular 2.3.3 and 2.4)

2

For a vector space, we need:

- A set of vectors V
 - These can be vectors in \mathbb{R}^N , functions, etc.
 - Think of geomety in \mathbb{R}^2 or \mathbb{R}^3 , we will use pictures!
- A field of scalars F
 - Real or complex numbers
- Vector addition +
- Scalar multiplication ·

Easy case: N finite, linear algebra, matrices

Beware: *N* goes to infinity... convergence!

Vectors in \mathbb{R}^2

Vectors can be very general objects!

Example: space of square-integrable functions over [-1,1]: $\mathcal{L}^2([-1,1])$

$$\langle \mathbf{x}^{(1)}, \mathbf{x}^{(2)} \rangle = \int_{-1}^{1} \sin(f_1 t) \sin(f_2 t) dt$$

Axioms

- A vector space V is defined over a field $\mathbb F$ (think $\mathbb R$ or $\mathbb C$) as a set with two operations
 - Vector addition: $V \times V \rightarrow V$
 - Scalar multiplication: $\mathbb{F} \times V \to V$

That satisfies the following axioms

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. $\exists 0 \in V \text{ s.t. } x + 0 = x \text{ for all } x \in V$
- $4. \quad \alpha(x+y) = \alpha x + \alpha y$
- 5. $(\alpha + \beta)x = \alpha x + \beta x$
- 6. $(\alpha \beta)x = \alpha(\beta x)$
- 7. 0x = 0 and 1x = x

Key notions

- Subspace
 - S ⊆ V is a subspace when it is closed under vector addition and scalar multiplication:
 - For all x, y in S, x + y is in S
 - For all x in S, α in $\mathbb C$ (or $\mathbb R$), αx is in S

Subspace of symmetric functions over $\mathcal{L}^2[-1,1]$

 $\mathbf{x} = \cos(\pi t)$, $\mathbf{y} = \cos(5\pi t) \Rightarrow \mathbf{x} + \mathbf{y}$, symmetric

Key notions

- Span
 - S: set of vectors (could be infinite)
 - span(S) = set of all finite linear combinations of vectors in S

$$\mathit{span}(S) = \; \left\{ \; \sum_{k=0}^{N-1} lpha_k arphi_k \mid lpha_k \in \mathbb{C} \; (\mathsf{or} \; \mathbb{R}), arphi_k \in S \; \mathsf{and} \; N \in \mathbb{N}
ight\}$$

• span(S) is always a subspace

Key notions

- Linear independence
 - $S = \{\varphi_k\}_{k=0}^{N-1}$ is linearry independent when:

If
$$\sum_{k=0}^{N-1} \alpha_k \varphi_k = 0$$
 then $\alpha_k = 0$ for all k

- If S is infinite, we need every finite subset to be linearly independent
- Dimension
 - Dim(V) = N if V contains a linearly independent set with N vectors and every set with N + 1 or more vectors is linearly dependent
 - V is infinite dimensional if no such finite N exists

Definition (Inner product)

- Formalize the geometric notions of orientation and orthogonality
- Measure similarity between vectors
- ullet An inner product for V is a function $\langle\cdot,\cdot
 angle\ :\ V imes V o \mathbb{C}$ satisfying
 - **1** Distributivity : $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
 - ② Linearity in the 1st argument : $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
 - **3** Hermitian symmetry : $\langle x, y \rangle^* = \langle y, x \rangle$
 - Operative definiteness: $\langle x, x \rangle \ge 0$; $\langle x, x \rangle = 0$ iff x = 0

• Note: $\langle x, \alpha y \rangle = \alpha^* \langle x, y \rangle$

Examples

• On
$$\mathbb{C}^N$$
: $\langle x, y \rangle = \sum_{n=0}^{N-1} x_n y_n^* = y^* x$

• On
$$\mathbb{C}^{\mathbb{Z}}$$
: $\langle x, y \rangle = \sum_{n \in \mathbb{Z}} x_n y_n^* = y^* x$

• On
$$\mathbb{C}^{\mathbb{R}}$$
: $\langle x, y \rangle = \int_{-\infty}^{\infty} x(t)y^*(t) dt$

Inner product in \mathbb{R}^2

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_0 y_0 + x_1 y_1$$

Inner product in $\mathcal{L}^2[-1,1]$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \int_{-1}^{1} x(t)y(t)dt = \int_{-1}^{1} t \sin(\pi t)dt$$

$$\mathbf{x} = \sin(\pi t)$$
, $\mathbf{y} = t$, $\langle \mathbf{x}, \mathbf{y} \rangle = 2/\pi \approx 0.6367$

Orthogonality

Let $S = \{\varphi_i\}_{i \in \mathcal{I}}$ be a set of vectors

Definition (Orthogonality)

- ullet x and y are orthogonal when $\langle x,y \rangle = 0$ written $x \perp y$
- S is orthogonal when for all $x, y \in S$, $x \neq y$ we have $x \perp y$
- S is orthonormal when it is orthogonal and for all $x \in S$, $\langle x, x \rangle = 1$
- x is orthogonal to S when $x \perp s$ for all $s \in S$, written $x \perp S$
- S_0 and S_1 are orthogonal when every $s_0 \in S_0$ is orthogonal to S_1 , written $S_0 \perp S_1$

Orthogonality

Inner product in $L_2[-1,1]$

 \mathbf{x},\mathbf{y} from orthogonal subspaces

$$\mathbf{x} = \sin(\pi t), \ \mathbf{y} = 1 - |t|; \ \langle \mathbf{x}, \mathbf{y} \rangle = 0$$

Orthogonality

Inner product in $L_2[-1,1]$

 \mathbf{x},\mathbf{y} from orthogonal subspaces

$$\mathbf{x} = \sin(4\pi t)$$
, $\mathbf{y} = \sin(5\pi t)$, $\langle \mathbf{x}, \mathbf{y} \rangle = 0$

Orthogonal complement

• If S is a subspace of V, the orthogonal complement of S (in V) is the set

$$S^{\perp} = \{x \in V, x \perp S\}$$

• If V is closed (contains all limits) then given $y \in V$, there exists $v \in S$, $w \in S^{\perp}$ s.t.

$$y = v + w$$
 , $V = S \oplus S^{\perp}$

Norm

Definition (Norm)

- Measure length, size of vectors
- ullet A norm on V is a function $\|\cdot\| \ : \ V o \mathbb{R}$ satisfying
 - Operative definiteness: $||x|| \ge 0$ and ||x|| = 0 iff x = 0
 - **②** Positive scalability : $\|\alpha x\| = |\alpha| \|x\|$
 - **1** Triangle inequality : $||x + y|| \le ||x|| + ||y||$ with equality iff $y = \alpha x$

 \bullet Note: We use $\|\|$ for the 2-norm. Other norms will be specified as well explicitly

Norms

Examples

• On
$$\mathbb{C}^N$$
 : $||x|| = \sqrt{\langle x, x \rangle} = \left(\sum_{n=0}^{N-1} |x_n|^2\right)^{\frac{1}{2}}$

• On
$$\mathbb{C}^{\mathbb{Z}}$$
 : $||x|| = \sqrt{\langle x, x \rangle} = \left(\sum_{n \in \mathbb{Z}} |x_n|^2\right)^{1/2}$

• On
$$\mathbb{C}^{\mathbb{R}}$$
 : $||x|| = \sqrt{\langle x, x \rangle} = \left(\int_{-\infty}^{\infty} |x(t)|^2 dt\right)^{1/2}$

Distances, norms and inner products

A norm "induces" a distance

$$d(x,y) = ||x-y||$$

An inner product induces a norm

$$||x|| = \sqrt{\langle x, x \rangle}$$

Not all norms are induced by an inner product

Distances, norms and inner products

Norm and distance in \mathbb{R}^2

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{x_0^2 + x_1^2} \\ \|\mathbf{y}\| = \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle} = \sqrt{y_0^2 + y_1^2} \\ \|\mathbf{x} - \mathbf{y}\| = \sqrt{(x_0 - y_0)^2 + (x_1 - y_1)^2}$$

Distances, norms and inner products

Norm and distance in $\mathcal{L}^2[-1,1]$

$$\|\mathbf{x} - \mathbf{y}\|^2 = \int_{-1}^{1} |x(t) - y(t)|^2 dt$$
 (MSE)

$$\mathbf{x} = \sin(\pi t)$$
; $\mathbf{y} = t$; $\mathbf{x} - \mathbf{y}$; $\|\mathbf{x} - \mathbf{y}\| = \sqrt{5/3 - 4/\pi} \approx 0.6272$

Norms induced by inner products

Properties

Cauchy-Schwarz inequality

$$|\langle x, y \rangle| \le ||x|| ||y||$$

Norms induced by inner products

Properties

Pythagorean theorem

•
$$x \perp y \Rightarrow \|x + y\|^2 = \|x\|^2 + \|y\|^2$$

•
$$\{x_k\}_{k \in K}$$
 orthogonal \Rightarrow $\left\|\sum_{k \in K} x_k\right\|^2 = \sum_{k \in K} \|x_k\|^2$

Norms induced by inner products

Properties

From Pythagorean theorem:

$$||x + y||^2 = ||x||^2 + ||y||^2;$$
 $||x - y||^2 = ||x||^2 + ||y||^2$

Parallelogram Law

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

Normed vector spaces: Standard spaces

$$\bullet \ \mathbb{C}^{N} : \langle x, y \rangle = \sum_{n=0}^{N-1} x_{n} y_{n}^{*}, \qquad \|x\| = \left(\sum_{n=0}^{N-1} |x_{n}|^{2}\right)^{1/2}$$

• $\ell^2(\mathbb{Z})$: square-summable sequences ("finite energy sequences")

$$\langle x,y\rangle = \sum_{n\in\mathbb{Z}} x_n y_n^*, \qquad \|x\| = \left(\sum_{n\in\mathbb{Z}} |x_n|^2\right)^{1/2}$$

• $\mathcal{L}^2(\mathbb{R})$: square-integrable functions ("finite energy functions")

$$\langle x, y \rangle = \int_{-\infty}^{\infty} x(t) y^*(t) dt, \qquad ||x|| = \left(\int_{-\infty}^{\infty} |x(t)|^2 dt \right)^{1/2}$$

Normed vector spaces: Standard spaces

- ullet \mathbb{C}^N : The p norm: $\|x\|_p = \left(\sum_{n=0}^{N-1} |x_n|^p\right)^{1/p}$, for $p \in [1,\infty)$
- $\ell^p(\mathbb{Z})$ spaces : $\|x\|_p = \left(\sum_{n\in\mathbb{Z}} |x_n|^p\right)^{1/p}$, for $p\in[1,\infty)$
- Extend p norm to ℓ^{∞} norm as $\|x\|_{\infty} = \sup_{n \in \mathbb{Z}} |x_n|$
- $x \in \ell^p(\mathbb{Z})$ iff $||x||_p < \infty$
- p=2: the only ℓ^p norm induced by an inner product

Normed vector spaces: Standard spaces

- $\bullet \ \mathcal{L}^p(\mathbb{R}) \text{ spaces} : \|x\|_p \ = \ \left(\int_{-\infty}^\infty \ |x(t)|^p \ \mathrm{d}t\right)^{1/p}$
- ullet Extend to $p=\infty$: \mathcal{L}^{∞} norm $\|x\|_{\infty}=\operatorname*{ess\,sup}_{t\in\mathbb{R}}|x(t)|$
- $x \in \mathcal{L}^p(\mathbb{R})$ iff $||x||_p < \infty$
- p=2: the only \mathcal{L}^p norm induced by an inner product

The world looks different using different norms!

Unit balls in different norms: quasinorm $\ell_{1/2}$, norms $\ell_1,\ell_2,\ell_4,\ell_\infty$

Solution of linear systems using different norms

Consider an under-determined system of equations

$$\mathbf{x} = \mathbf{A}\alpha$$

where **x** is $N \times 1$, **A** is $N \times M$, α is $M \times 1$ and N < M.

- Expansion with respect to an overcomplete set of vectors is not unique.
- Example:

$$x = \frac{1}{5} \cdot \begin{bmatrix} 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}$$

$$\alpha' = \alpha + \alpha^{\perp} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} x + \begin{bmatrix} 2 \\ -1 \end{bmatrix} \gamma,$$

This is a line with slope -1/2 in the $[\alpha_0, \alpha_1]$ plane.

Solution of linear systems using different norms

Different norm minimizations $\|\alpha\|_p$, $p\in\{0,1,2\}$ give different solutions (Ex: x=3/5)

and one of them is sparse!

Space of random variables

• Random variables X with finite second moment

$$\mathbb{E}[|X|^2] < \infty$$

Inner product and norm

$$\langle X, Y \rangle = \mathbb{E}[XY^*]$$

$$||X|| = \sqrt{\mathbb{E}[|X|^2]}$$

Apply all the abstract theorems to random variables.

$C^p([a,b])$ Spaces

- C([a, b]): inner product space of complex, continuous functions over interval [a, b]
- $C^p([a,b])$: inner product space of complex, continuous functions with p-continuous derivatives over interval [a,b]
- Usual inner product, usual norm

$$\langle x,y\rangle = \int_a^b x(t)y^*(t) dt, \quad ||x|| = \left(\int_a^b |x(t)|^2 dt\right)^{1/2}$$

- **Example**: set of polynomial functions over an interval forms a subspace of $C^p([a,b])$, for any a,b in \mathbb{R} and p in \mathbb{N} .
- Why: closed under vector space operations, and polynomials are indefinitely differentiable

Hilbert spaces: Convergence

Definition

A sequence of vectors x_0, x_1, \ldots in a normed vector space V is said to converge to $v \in V$ when $\lim_{k \to \infty} ||v - x_k|| = 0$, or for any $\varepsilon > 0$, there exists K_{ε} such that $||v - x_k|| < \varepsilon$ for all $k > K_{\varepsilon}$.

• Choice of the norm in V is key

Example

For
$$k \in \mathbb{Z}^+$$
, let

$$x_k(t) = \begin{cases} 1, & \text{for } t \in [0, 1/k]; \\ 0, & \text{otherwise.} \end{cases}$$

$$v(t)=0$$
 for all t . Then for $p\in [1,\infty)$,

$$\|v-x_k\|_p = \left(\int_{-\infty}^{\infty} |v(t)-x_k(t)|^p dt\right)^{1/p} = \left(\frac{1}{k}\right)^{1/p} \stackrel{k\to\infty}{\longrightarrow} 0,$$

For
$$p = \infty$$
: $||v - x_k||_{\infty} = 1$ for all k

Hilbert spaces: Completeness

Definitions

- A sequence $\{x_n\}$ is a Cauchy sequence in a normed space when for any $\varepsilon > 0$, there exists k_{ε} such that $||x_k x_m|| < \varepsilon$ for all $k, m > k_{\varepsilon}$
- A normed vector space V is complete if every Cauchy sequence converges in V
- A complete normed vector space is called a Banach space
- A complete inner product space is called a Hilbert space

Examples

- Q is not a complete space
 - $\bullet \ \sum_{n=1}^{\infty} \frac{1}{n^2} \ \longrightarrow \ \frac{\pi^2}{6} \ \in \mathbb{R}, \notin \mathbb{Q}$
 - $\bullet \ \sum_{n=0}^{\infty} \frac{1}{n!} \ \longrightarrow \ e \ \in \mathbb{R}, \notin \mathbb{Q}$

ullet R is a complete space

Examples

- All finite dimensional spaces are complete
- \bullet $\ell^p(\mathbb{Z})$ and $\mathcal{L}^p(\mathbb{R})$ are complete
 - $\ell^2(\mathbb{Z})$ and $\mathcal{L}^2(\mathbb{R})$ are Hilbert spaces
- $C^q([a,b])$, functions on [a,b] with q continuous derivatives, are not complete except for q=0 under \mathcal{L}^{∞} norm
- Vector space of random variables as already defined is a Hilbert space

Convergence and its pitfalls

Gibbs phenomenon

Approximating a square wave with partial sums of the Fourier series

$$\sum_{k=0}^{N} \mathbf{x}^{(2k+1)}, \qquad \mathbf{x}^{(n)} = \sin(\pi n t)/n, \quad t \in [-1, 1]$$

$$0$$

$$-1$$

$$0$$

$$1$$

Convergence and its pitfalls

Gibbs phenomenon

Approximating a square wave with partial sums of the Fourier series

$$\sum_{k=0}^{N} \mathbf{x}^{(2k+1)}, \qquad \mathbf{x}^{(n)} = \sin(\pi n t)/n, \quad t \in [-1, 1]$$

$$0$$

$$-1$$

$$0$$

$$1$$

Convergence and its pitfalls

Gibbs phenomenon

Approximating a square wave with partial sums of the Fourier series

$$\sum_{k=0}^{N} \mathbf{x}^{(2k+1)}, \qquad \mathbf{x}^{(n)} = \sin(\pi n t)/n, \quad t \in [-1, 1]$$

$$0$$

$$-1$$

$$0$$

$$1$$

Convergence and its pitfalls

Gibbs phenomenon

Approximating a square wave with partial sums of the Fourier series

Convergence and its pitfalls

Gibbs phenomenon

Approximating a square wave with partial sums of the Fourier series

Linear operators

Linear operators generalize matrices

Definitions

- $A: H_0 \to H_1$ is a linear operator when for all $x, y \in H_0, \alpha \in \mathbb{C}$:

 - **2** Scalability: $A(\alpha x) = \alpha(Ax)$
- Null space (subspace of H_0): $\mathcal{N}(A) = \{x \in H_0, Ax = 0\}$
- Range space (subspace of H_1): $\mathcal{R}(A) = \{Ax \in H_1, x \in H_0\}$
- Operator norm: $||A|| = \sup_{||x||=1} ||Ax||$
- A is bounded when: $||A|| < \infty$
- Inverse: Bounded $B: H_1 \to H_0$ inverse of bounded A if and only if:

BAx = x, for every $x \in H_0$ ABy = y, for every $y \in H_1$

Linear operators: Illustration

• $\mathcal{R}(A)$ is the plane $5y_1 + 2y_2 + 8y_3 = 0$ since $(-2, 1, 1) \times (-2, -3, 2) = (5, 2, 8)$, where \times denotes the cross-product

Adjoint operators

Adjoint generalizes Hermitian transposition of matrices

Definition (Adjoint and self-adjoint operators)

• $A^*: H_1 \to H_0$ is the adjoint of $A: H_0 \to H_1$ when

$$\langle Ax, y \rangle_{H_1} = \langle x, A^*y \rangle_{H_0}$$
 for every $x \in H_0$, $y \in H_1$

- If $A = A^*$, A is self-adjoint or Hermitian
- ullet Note that $\mathcal{N}(A^*)=\mathcal{R}(A)^\perp$

Adjoint operator: Illustration

• $\mathcal{N}(A^*)$ is the line $\frac{y_1}{5} = \frac{y_2}{2} = \frac{y_3}{8}$, since again $(-2,1,1) \times (-2,-3,2) = (5,2,8)$

Adjoint operators

Theorem (Adjoint properties)

Let $A: H_0 \longrightarrow H_1$ be a bounded linear operator

- A* exists and is unique
- $(A^*)^* = A$
- $||A^*|| = ||A||$
- **1** If A invertible, $(A^{-1})^* = (A^*)^{-1}$
- **1** B: $H_0 \longrightarrow H_1$ bounded, $(A + B)^* = A^* + B^*$

Adjoint operators: Local averaging

$$A: \mathcal{L}^{2}(\mathbb{R}) \to \ell^{2}(\mathbb{Z}) \qquad (Ax)_{k} = \int_{k-1/2}^{k+1/2} x(t) dt$$

$$\langle Ax, y \rangle_{\ell^{2}} = \sum_{n \in \mathbb{Z}} (Ax)_{n} y_{n}^{*} = \sum_{n \in \mathbb{Z}} \left(\int_{n-1/2}^{n+1/2} x(t) dt \right) y_{n}^{*} = \sum_{n \in \mathbb{Z}} \int_{n-1/2}^{n+1/2} x(t) y_{n}^{*} dt$$

$$= \sum_{n \in \mathbb{Z}} \int_{n-1/2}^{n+1/2} x(t) (A^{*}y)^{*}(t) dt = \int_{-\infty}^{\infty} x(t) (A^{*}y)^{*}(t) dt = \langle x, A^{*}y \rangle_{\mathcal{L}^{2}}$$

Unitary operators

Definition (Unitary operators)

- A bounded linear operator $A: H_0 \longrightarrow H_1$ is unitary when:
 - A is invertible
 - ② A preserves inner products: $\langle Ax, Ay \rangle_{H_1} = \langle x, y \rangle_{H_0}$ for every $x, y \in H_0$
- If A is unitary, then $||Ax||^2 = ||x||^2$
- A is unitary if and only if $A^{-1} = A^*$

Projection operators

Definition (Projection, orthogonal projection, oblique projection)

- P is idempotent when $P^2 = P$
- A projection operator is a bounded linear operator that is idempotent
- An orthogonal projection operator is a self-adjoint projection operator
- An oblique projection operator is not self adjoint

Theorem

• A bounded linear operator P on H satisfies $\langle x - Px, Py \rangle = 0$ for all $x, y \in H$ iff P is an orthogonal projection operator

Theorem

• If $A: H_0 \to H_1$, $B: H_1 \to H_0$ bounded and A is a left inverse of B, then BA is a projection operator. If $B=A^*$ then, $BA=A^*A$ is an orthogonal projection

Best approximation: Euclidean geometry

x is a point in Euclidean space

- Nearest point problem: Find $\hat{x} \in S$ that is closest to x
- Solution uniquely determined by $x \hat{x} \perp S$
 - ullet Circle must touch S in one point, radius ot tangent

Best approximation: Hilbert space geometry

- S closed subspace of a Hilbert space
- Best approximation problem:

Find
$$\widehat{x} \in S$$
 that is closest to x
 $\widehat{x} = \underset{s \in S}{\operatorname{argmin}} ||x - s||$

Best approximation by orthogonal projection

Theorem (Projection theorem)

Let S be a closed subspace of Hilbert space H and let $x \in H$.

- Existence: There exists $\hat{x} \in S$ such that $||x \hat{x}|| \le ||x s||$ for all $s \in S$
- Orthogonality: $x \hat{x} \perp S$ is necessary and sufficient to determine \hat{x}
- Uniqueness: \hat{x} is unique
- Linearity: $\hat{x} = Px$ where P is a linear operator
- Idempotency: P(Px) = Px for all $x \in H$
- Self-adjointness: $P = P^*$

All "nearest vector in a subspace" problems in Hilbert spaces are the same

Example 1: Least-square polynomial approximation

- Consider: $x(t) = \cos(\frac{3}{2}\pi t) \in \mathcal{L}^2([0,1])$
- Find the degree-1 polynomial closest to x (in \mathcal{L}^2 norm)
- Solution: Use orthogonality

$$0 = \langle x(t) - \widehat{x}(t), 1 \rangle_t = \int_0^1 \left(\cos(\frac{3}{2}\pi t) - (a_0 + a_1 t) \right) 1 dt = -\frac{2}{3\pi} - a_0 - \frac{1}{2}a_1$$

$$0 = \langle x(t) - \widehat{x}(t), t \rangle_t = \int_0^1 \left(\cos(\frac{3}{2}\pi t) - (a_0 + a_1 t) \right) t dt = -\frac{4 + 6\pi}{9\pi^2} - \frac{1}{2}a_0 - \frac{1}{3}a_1$$

Approx. with higher degree polynomials

Example 2: MMSE estimate

- Consider: Real-valued random variable x
- Find the constant c that minimizes $E[(x-c)^2]$
- Note:
 - Expected square is a Hilbert space norm
 - Constants are a closed subspace in vector space of random variables
- Solution: Use orthogonality
 - c determined uniquely by $E[(x-c)\alpha c] = 0$ for all $\alpha \in \mathbb{R}$
 - $\bullet c = E[x]$
- Alternative:
 - Expand into quadratic function of c and minimize with calculus
 - Not too difficult, but lacks insight

Example 3: Best piecewise-constant approximation

Local averaging

$$A:\mathcal{L}^2(\mathbb{R}) o \ell^2(\mathbb{Z})$$
 $(Ax)_k = \int_{k-rac{1}{2}}^{k+rac{1}{2}} x(t)dt$

has adjoint $A^*:\ell^2(\mathbb{Z}) o \mathcal{L}^2(\mathbb{R})$ that produces staircase function

• AA^* is identity, so A^*A is orthogonal projection

2.2 59

Example 4: Approximations of "All is vanity" image—Haar

Example 4: Approximations of "All is vanity" image—Haar

Example 4: Approximations of "All is vanity" image—sinc

Projection and direct sums

Theorem

• P projection on H, $S = \mathcal{R}(P)$, $T = \mathcal{N}(P)$. Then $H = S \oplus T$

(a) Decomposition

(b) Orthogonal projection $T \equiv S^{\perp}$

(c) Oblique projection $T = \widetilde{S}^{\perp}$

• If S, T closed subspaces s.t. $H = S \oplus T$ then there exists projection P on H s.t. $S = \mathcal{R}(P)$ and $T = \mathcal{N}(P)$

Summary

- Geometry is key to gain intuition and understanding
- Vector spaces, subspaces
- Norms, inner products
- Hilbert spaces
- Linear operators, adjoints
- Projections

As an exercise...

