21-127 Homework 7

Christian Broms Section J

Thursday 8th March, 2018

Complete the following problems. Fully justify each response.

- 1. Let $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$ with $n \ge 1$, and $k, \ell \in \mathbb{N}$ with $k \equiv \ell \pmod{n}$ and $a \equiv b \pmod{n}$.
 - (a) Is it true that $a^k \equiv b^k \pmod{n}$? If so, prove it. If not, provide a counterexample.

Yes.

Proof. We begin by proving that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ implies $ac \equiv bd \pmod{n}$. We can write a = kn + b and c = k'n + d for some $k, k' \in \mathbb{Z}$. So $ac = k'kn^2 + (bk' + dk)n + bd$. Because this is in mod n, we can eliminate all factors of n so $ac \equiv bd \pmod{n}$.

Next, we will proceed with induction to show $a^k \equiv b^k \pmod{n}$. Base Case: k = 1, so $a^1 = b^1 \pmod{n}$ is true by the given information.

Induction Hypothesis: Assume $a^k \equiv b^k \pmod{n}$. We will show $a^{k+1} \equiv b^{k+1} \pmod{n}$. We know $a \equiv b \pmod{n}$ and $a^k \equiv b^k \pmod{n}$ by IH, so we multiply these together using the proven fact above to get $a^{k+1} \equiv b^{k+1} \pmod{n}$, and the induction holds.

Thus, we can safely say that $a^k \equiv b^k \pmod{n}$.

(b) Is it true that $a^k \equiv a^\ell \pmod{n}$? If so, prove it. if not, provide a counterexample.

False. Consider the following counterexample: $a=3, n=5, k=7, \ell=2$. So $3^7\not\equiv 3^2\pmod 5$

- 2. Let $a \in \mathbb{Z}$, and let $n \in \mathbb{N}$ with $n \geq 1$. Suppose that $a \perp n$. Show that u, u' are both multiplicative inverses for a if and only if u is a multiplicative inverse for a and $u \equiv u' \pmod{n}$.
 - *Proof.* (\Rightarrow) Assume u, u' are multiplicative inverses for a, such that $au \equiv 1 \pmod{n}$ and $au' \equiv 1 \pmod{n}$. Then, since a and n are coprime, we manipulate then divide by a so $a(u-u') \equiv 0 \pmod{n}$ and $u-u' \equiv 0 \pmod{n}$, so $u \equiv u' \pmod{n}$ and we are done.
 - (\Leftarrow) Assume u is a multiplicative inverse for a and $u \equiv u' \pmod{n}$, so we have $au \equiv 1 \pmod{n}$ and $u \equiv u' \pmod{n}$. We can multiply by a to get $au \equiv au' \pmod{n}$. Since we know $au \equiv 1 \pmod{n}$ and $au \equiv au' \pmod{n}$, we can say $au' \equiv 1 \pmod{n}$. This, taken with the fact $au \equiv 1 \pmod{n}$ implies that u, u' are multiplicative inverses for a.

Therefore, since we have shown both sides of implication, it follows that u, u' are both multiplicative inverses for a if and only if u is a multiplicative inverse for a and $u \equiv u' \pmod{n}$.

3. Let p be a positive prime, and $k \in \mathbb{N}$ with $k \geq 1$. Prove that $\varphi(p^k) = p^k - p^{k-1}$.

Proof. The totient function is defined as $\varphi(n) =$ the number of integers between 1 and n that are coprime to n. In this case, we are looking for some $m \in \mathbb{Z}$ such that $\gcd\left(m, p^k\right) = 1$, so we need some m that does not divide p^k . We list the number of integers between 1 and p^k that are divisible by p as $1p, 2p, 3p \dots p^{k-1}p$. So there are p^{k-1} such numbers, and our set $\{1, 2, 3, \dots p^k\}$ has $p^k - p^{k-1}$ numbers that are not divisible by p^k . Therefore, we conclude $\varphi(p^k) = p^k - p^{k-1}$.

4. Read the proof of Theorem 3.3.49 and Example 3.3.51. Then prove that for any $b \in \mathbb{N}$ with $b \geq 2$, and $a \in \mathbb{N}$, a is divisible by b-1 if and only if the sum of the base b digits of a is divisible by b-1.

Proof. We can write a in its base b expansion as $a = d_r d_{r-1} \dots d_1 d_0$ base b, such that $a = \sum_{i=0}^{r} d_i b^i$. So the sum of these digits can be written as

 $s = \sum_{i=0}^{r} d_i$. Because we defined a as $\sum_{i=0}^{r} d_i b^i$, we can say $s \equiv \sum_{i=0}^{r} d_i b^i$ (mod b-1). We can further reduce this $s \equiv \sum_{i=0}^{r} d_i 1^i$ (mod b-1) because $b \equiv 1 \pmod{b-1}$. Finally, we can reduce to $s \equiv \sum_{i=0}^{r} d_i \pmod{b-1}$ because 1^i is always 1. So $s \equiv a \pmod{b-1}$. It therefore follows by definition of congruence that a is divisible by b-1 if and only if the sum of the base b digits of a is divisible by b-1.

- 5. For each of the following functions, determine if it is injective, surjective, both, or neither. Prove that your answers are correct.
 - (a) $f: \mathbb{Z} \to \mathbb{N}$, $f(x) = x^2$. Injective: No. Consider f(2) = f(-2), but $-2 \neq 2$. Surjective: No. Consider x = 3, but there is no $z \in \mathbb{Z}$ such that $z^2 = 3$, as $\sqrt{3} \notin \mathbb{Z}$
 - (b) $g: \mathbb{N} \to \mathbb{Z}$, $g(x) = x^2$. Injective: Yes. Assume f(x) = f(y), so $x^2 = y^2$ and x = y. Surjective: No. Consider x = 3, but there is no $n \in \mathbb{N}$ such that $n^2 = 3$, as $\sqrt{3} \notin \mathbb{N}$
 - (c) $h: \mathbb{R} \to \mathbb{Z}$, $h(x) = \lfloor x \rfloor$ (note: $\lfloor x \rfloor$ is the number you get by rounding x down to the nearest integer. Formally, we define

$$\lfloor x \rfloor = \max\{y \in \mathbb{Z} \mid y \le x\}.$$

You may be reasonably skeptical that such a number exists, since we cannot apply the Well-Ordering Principle here.... so if you are skeptical, prove it.)

Injective: No. Consider $h(\pi) = h(3)$, but $\pi \neq 3$.

Surjective: Yes. Let $y \in Z$. Let $x = y + \frac{1}{2}$. then y < x < y + 1, so $\max\{n \in \mathbb{Z} \mid n \le x\} = y$. Thus, $f(x) = \lfloor x \rfloor = y$

(d) $f: \mathbb{N} \to \mathbb{Z}$, $f(x) = \begin{cases} \frac{x}{2} & x \text{ is even} \\ -\frac{x+1}{2} & x \text{ is odd} \end{cases}$

Injective: Yes. Suppose f(x) = f(y). So f(x) is either even or odd. In the first case, take f(x) to be odd. Then $f(x) = -\frac{x+1}{2}$

and $f(y) = -\frac{y+1}{2}$, thus $-\frac{x+1}{2} = -\frac{y+1}{2}$, so clearly x = y. In the second case, take f(x) to be even. Then $f(x) = \frac{x}{2}$ and $f(y) = \frac{y}{2}$, thus $\frac{x}{2} = \frac{y}{2}$, and therefore x = y.

Surjective: Let $y \in \mathbb{Z}$. If y is odd, then x = -2y - 1, so $f(-2y - 1) = -\frac{x+1}{2}$ and thus f(x) = y. If y is even, then x = 2y, so $f(2y) = \frac{y}{2}$, and clearly f(x) = y. So the function is surjective.

6. Let $f: X \to Y$ and $g: Y \to Z$ be bijective functions. Prove that $g \circ f$ is also bijective. Is the converse true?

Proof. Since f and g are bijective, then by definiton they are also surjective. So, for some $x \in X$, $y \in Y$, $z \in Z$, we can say f(x) = y, g(y) = z. So, we know $z = g(y) = g(f(x)) = g \circ f(x) = g \circ f$. Hence, $g \circ f$ is surjective.

Next, since we know f and g are bijective, then by definiton they are also injective. So, for some $x,y\in X$ we say $g\circ f(x)=g\circ f(y)$. Then, g(f(x))=g(f(y)). Since g is injective, this implies f(x)=f(y). Moreover, f is injective, so x=y. Hence, $g\circ f$ is injective.

Thus, we can say that if g, f are bijective, then $g \circ f$ is also bijective.

The converse is not true. The converse is let $g \circ f$ be bijective, then g and f are both bijective. We can show this is not true by constructing two functions, g, f that are not bijective, but $g \circ f$ is bijective. If we take $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, g(x,y) = (x) and $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ and f(x) = (x,0), then $g \circ f$ is bijective, while g is not bijective, because it is not injective, and f also not bijective, because it is not surjective.