Mid term Exam for Financial Econometrics with Python

PRAT Paul; GAVINI Charles; FOURNIER Justin; BLANC Mathieu

November 11, 2024

Contents

1	Introduction	1
2	Preliminary 2.1 AMAZON 2.2 Data Table 2.3 Checking the 25 Years range condition	1
3	First Results 3.1 Prices Evolutions	2 2 2 3
4	Amazon and the 8 Stylized Facts 4.1 Prices are non-stationary	3
\mathbf{A}	Appendix: Python Code	3

1 Introduction

For the midterm assignment, we composed a group of 4 with Gavini Charles; Fournier Justin; Prat Paul and Blanc Mathieu. This document contains all the results of our assignment, including tables, figures, and calculations. It is composed by 1 parts, first, importing the good python libraries, then initialising variables to separate the differents datas (daily, monthly, ..., returns, logreturns,...)

2 Preliminary

2.1 AMAZON

The chosen stock is Amazon, because it is higly related in the current actuality. We are very interested in a major company such as Amazon, which has grown significantly over time. The ticker from yahoo finance is " AMZN" on the Nasdaq stock exchange AMAZON on Yahoo Finance First, importing the Amazon stock with yfinance, then display the pandas table. We will import 25 years, 8 months and 25 days of data (from 1999-01-21 to 2024-10-16).

2.2 Data Table

The data printed here, is the preview of the Amazon stock extraction from yahoo fiannee:

Price Ticker Date	Adj Close AMZN	Close AMZN	High AMZN	Low AMZN	Open AMZN	Volume AMZN
1999-01-21 00:00:00+00:00	2.650000	2.650000	2.759375	2.314063	2.612500	940964000
1999-01-22 00:00:00+00:00	3.075000	3.075000	3.146875	2.468750	2.487500	875316000
1999-01-25 00:00:00+00:00	2.809375	2.809375	3.084375	2.750000	3.037500	546476000
1999-01-26 00:00:00+00:00	2.877344	2.877344	3.031250	2.765625	2.815625	490696000
1999-01-27 00:00:00+00:00	3.140625	3.140625	3.493750	3.000000	3.353125	700452000

Table 1: Preview of Amazon Stock Data from Yahoo Finance

2.3 Checking the 25 Years range condition

We have to check that the data is correctly displayed over a 25years range, hopefully, the introduction from Amazon is from january 1999, so it we should be able to find a 25 year range of data of the Amazon stock. To check that we can compute a python code to count the gaps and visualize the dates of gaps in order to see for any huge gap that would be problematic for analyzing data.

Figure 1: Missing Dates in Full Date Range (2010 to 2011)

We count only 9 days without data over the 25-year range. Thus, the full data contains at least 25 years of values

3 First Results

3.1 Prices Evolutions

Then, ploting the prices evolution:

Figure 2: Prices over time by frequency

3.2 Calculating Returns

Figure 3: Prices, returns and log returns

3.3 Squared Returns

Figure 4: Squared daily returns and daily log returns

4 Amazon and the 8 Stylized Facts

4.1 Prices are non-stationary

The first feature that will highlight non-stationarity of the prices is the comparison of p(t) vs p(t-1).

Indeed, The graph demonstrates a strong linear relationship between $\log(p_t)$ and $\log(p_{t-1})$, indicating that Amazon's prices exhibit non-stationarity, as the prices at time t are highly dependent on those at t-1. Moreover, the next graph prooves that Amazon's empirical ACF is slowly decaying which is often a symptom on non-stationarity.

A Appendix: Python Code

Below is the Python code used in this analysis.

```
# Python code example
import numpy as np
import pandas as pd

def analyze_data(data):
    mean = np.mean(data)
    std_dev = np.std(data)
    return mean, std_dev

data = [1, 2, 3, 4, 5]
mean, std_dev = analyze_data(data)
print(f"Mean: {mean}, Standard Deviation: {std_dev}")
```

Listing 1: Python Code for Analysis

Figure 5: Comparison of $\log(p_t)$ vs $\log(p_{t-1})$

Figure 6: Autocorrelations of daily Prices (1999-2024)