Arquitectura de computadoras: Ejercicio RTL

Dalia Camacho García Formentí

1 Pregunta 1

Diseñe una computadora capaz de realizar las siguientes instrucciones. Para las funciones control, basta con mencionar qué controla cada una y cuántas son. Debe incluirse diagrama a bloques de todos los componentes y sus interconexiones.

Código	Mnemónico	Comentario
00	LD INDIR	$A \leftarrow M[PTR].$
01	LDI PTR	$PTR \leftarrow dato.$
02	INC PTR	$PTR \leftarrow PTR + 1.$
03	MOVR	$R \leftarrow A$.
04	ADDR	$A \leftarrow A + R$.
05	ADDI	$A \leftarrow A + dato$.
06	SHL	$A \leftarrow shlA$.
07	OR	$A \leftarrow A \lor R$.

Microoperaciones

 $q_2t_4: MBR \leftarrow M[MAR],$

FETCH	$PC \leftarrow PC + 1$
$t_0: MAR \leftarrow PC$	$q_2t_5: PTR \leftarrow MBR,$
$t_1: MBR \leftarrow M[MAR],$ $PC \leftarrow PC + 1$	$T \leftarrow 0$
$t_2: IR \leftarrow MBR$	
tz. Ht \ WBIt	INC PTR
	$q_3t_3: PTR \leftarrow PTR + 1,$
LD INDIR	$T \leftarrow 0$
$q_1t_3:MAR \leftarrow PTR$	
$q_1t_4:MBR \leftarrow M[MAR]$	
$q_1t_5: A \leftarrow MBR,$	MOVR
$T \leftarrow 0$	$q_4t_3: R \leftarrow A,$
	$T \leftarrow 0$
LDI PTR.	
$a_2t3:MAR \leftarrow PC$	ΔDDR

 $q_5t_3: A \leftarrow A + R, T \leftarrow 0$

$$\begin{array}{ll} \textbf{SHL} \\ \textbf{ADDI} & q_7t_3: A \leftarrow shl(A), \\ q_6t_3: MAR \leftarrow PC & T \leftarrow 0 \\ q_6t_4: MBR \leftarrow M[MAR], \\ PC \leftarrow PC + 1 \\ q_6t_5: A \leftarrow A + MBR, \\ T \leftarrow 0 & \textbf{OR} \\ q_8t_3: A \leftarrow A \vee R, \\ T \leftarrow 0 & T \leftarrow 0 \end{array}$$

Señales de control

Senates de Control
$$MAR \leftarrow PC := X_1 = t_0 + q_2t_3 + q_6t_3$$

$$MAR \leftarrow PTR := X_2 = q_1t_5$$

$$MBR \leftarrow M[MAR] := X_3 = t_1 + q_1t_4 + q_2t_4 + q_6t_4$$

$$PC \leftarrow PC + 1 := X_4 = t_1 + q_2t_4 + q_6t_4$$

$$IR \leftarrow MBR := X_5 = t_2$$

$$A \leftarrow MBR := X_6 = q_1t_5 + q_5t_3$$

$$A \leftarrow A + R := X_7 = q_5t_3$$

$$A \leftarrow A + MBR := X_8 = q_6t_5$$

$$A \leftarrow shl(A) := X_9 = q_7t_3$$

$$A \leftarrow A \lor R : X_{10} = q_8t_3$$

$$PTR \leftarrow MBR := X_{11} = q_2t_5$$

$$PTR \leftarrow PTR + 1 : X_{12} = q_3t_3$$

$$R \leftarrow A : X_{13} = q_4t_3$$

$$T \leftarrow 0 := X_{14} = q_1t_5 + q_2t_5 + q_3t_3 + q_4t_3 + q_5t_3 + q_6t_5 + q_7t_3 + q_8t_3$$

1.1 •