第三章习题选解

P118 ex1(1) 原问题为:

$$\begin{aligned} & \text{min} & z = -9x_1 - 16x_2 \\ & \text{s.t.} & x_1 + 4x_2 + x_3 = 80 \\ & 2x_1 + 3x_2 + x_4 = 90 \\ & x_j \geq 0, j = 1, 2, 3, 4 \end{aligned}$$

已得到一组基本可行解 x3, x4, 可直接开始单纯形迭代, 相应的单纯形表为:

	x_1	x_2	x_3	x_4	RHS
x_3	1	4*	1	0	80
x_4	2	3	0	1	90
z	9	16	0	0	0

有 2 个非基变量可作为入基变量, 依次为 x_1, x_2 . 选取非基变量 x_2 为入基变量, 计算得第 1 个基变量即 x_3 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	RHS
x_2	$\frac{1}{4}$	1	$\frac{1}{4}$	0	20
x_4	$\frac{5}{4}*$	0	$-\frac{3}{4}$	1	30
z	5	0	-4	0	-320

选取非基变量 x_1 为入基变量, 计算得第 2 个基变量即 x_4 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	RHS
x_2	0	1	<u>2</u> 5	$-\frac{1}{5}$	14
x_1	1	0	$-\frac{3}{5}$	$\frac{4}{5}$	24
z	0	0	-1	-4	-440

检验系数均小于或等于 0, 当前解是最优解, 最优解是: $x_2 = 14$, $x_1 = 24$, $x_3 = x_4 = 0$, 对应的最优值为 $z^* = -440$.

P118 ex1(2) 原问题为:

$$\begin{array}{ll} \max & z = x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 + x_3 = 6 \\ & -x_1 + x_2 + x_4 = 1 \\ & x_j \geq 0, j = 1, 2, 3, 4 \end{array}$$

已得到一组基本可行解,可直接开始单纯形迭代,相应的单纯形表为:

	x_1	x_2	x_3	x_4	RHS
x_3	2	3	1	0	6
x_4	-1	1*	0	1	1
z	-1	-3	0	0	0

注意是 MAX 问题, 有 2 个非基变量可作为入基变量, 依次为 x_1, x_2 . 选取非基变量 x_2 为入基变量, 计算得第 2 个基变量即 x_4 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	RHS
x_3	5*	0	1	-3	3
x_2	-1	1	0	1	1
z	-4	0	0	3	3

选取非基变量 x_1 为入基变量, 计算得第 1 个基变量即 x_3 为离基变量, 作相应的旋转后单纯形表为:

由于是 MAX 问题, 当前解是最优解, 最优解是: $x_1 = \frac{3}{5}, x_2 = \frac{8}{5}, x_3 = x_4 = 0$, 对应的最优值为 $z^* = \frac{27}{5}$.

P119, ex3 原问题为:

$$\max \quad z = x_1 - 3x_2 - x_3$$
 s.t.
$$3x_1 - x_2 + 2x_3 + x_4 = 7$$

$$-2x_1 + 4x_2 + x_5 = 12$$

$$-4x_1 + 3x_2 + 8x_3 + x_6 = 10$$

$$x_i \ge 0, j = 1, \dots, 6$$

已得到一组基本可行解 x_4, x_5, x_6 , 可直接开始单纯形迭代, 相应的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_4	3*	-1	2	1	0	0	7
x_5	-2	4	0	0	1	0	12
x_6	-4	3	8	0	0	1	10
\overline{z}	-1	3	1	0	0	0	0

注意是 MAX 问题, 选取非基变量 x_1 为入基变量, 计算得第 1 个基变量即 x_4 为离基变量, 作相 应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_1	1	$-\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	0	0	$\frac{7}{3}$
x_5	0	$\frac{10}{3}$	$\frac{4}{3}$	$\frac{2}{3}$	1	0	$\frac{50}{3}$
x_6	0	$\frac{5}{3}$	$\frac{32}{3}$	$\frac{4}{3}$	0	1	$\frac{58}{3}$
\overline{z}	0	8/3	<u>5</u> 3	$\frac{1}{3}$	0	0	$\frac{7}{3}$

注意是 MAX 问题, 当前解是最优解, 最优解是: $x_1=\frac{7}{3}, x_5=\frac{50}{3}, x_6=\frac{58}{3}, x_2=x_3=x_4=0,$ 对应的最优值为 $z^*=\frac{7}{3}$.

P119 ex1(5) 问题的标准形为:

min
$$z = -3x_1 - x_2$$

s.t. $3x_1 + 3x_2 + x_3 = 30$
 $4x_1 - 4x_2 + x_4 = 16$
 $2x_1 - x_2 + x_5 = 12$
 $x_j \ge 0, j = 1, \dots, 5$

已得到一组基本可行解,可直接开始单纯形迭代,相应的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_3	3	3	1	0	0	30
x_4	4*	-4	0	1	0	16
x_5	2	-1	0	0	1	12
z	3	1	0	0	0	0

有 2 个非基变量可作为入基变量, 依次为 x_1, x_2 . 选取非基变量 x_1 为入基变量, 计算得第 2 个基变量即 x_4 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_3	0	6*	1	$-\frac{3}{4}$	0	18
x_1	1	-1	0	$\frac{1}{4}$	0	4
x_5	0	1	0	$-\frac{1}{2}$	1	4
z	0	4	0	$-\frac{3}{4}$	0	-12

选取非基变量 x_2 为入基变量, 计算得第 1 个基变量即 x_3 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_2	0	1	$\frac{1}{6}$	$-\frac{1}{8}$	0	3
x_1	1	0	$\frac{1}{6}$	$\frac{1}{8}$	0	7
x_5	0	0	$-\frac{1}{6}$	$-\frac{3}{8}$	1	1
z	0	0	$-\frac{2}{3}$	$-\frac{1}{4}$	0	-24

检验系数均小于或等于 0, 当前解是最优解, 最优解是: $x_2 = 3, x_1 = 7, x_5 = 1, x_3 = x_4 = 0$, 对应的最优值为 $z^* = -24$.

P119 ex2(1) 问题的标准形为:

min
$$z = 4x_1 + 6x_2 + 18x_3$$

s.t. $x_1 + 3x_3 - x_4 = 3$
 $x_2 + 2x_3 - x_5 = 5$
 $x_j \ge 0, j = 1, \dots, 5$

第一阶问题为:

min
$$g = x_6 + x_7$$

s.t. $x_1 + 3x_3 - x_4 + x_6 = 3$
 $+x_2 + 2x_3 - x_5 + x_7 = 5$
 $x_j \ge 0, j = 1, \dots, 7$

相应的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
x_6	1	0	3	-1	0	1	0	3
x_7	0	1	2	0	-1	0	0	5
\overline{g}	0	0	0	0	0	-1	-1	0

上表中,目标行中与基变量对应的系数不全为0,说明与当前基变量(或基矩阵)对应的检验系数尚未算出.用消元法将目标行中与基变量对应的系数消去,得到新的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
x_6	1	0	3*	-1	0	1	0	3
x_7	0	1	2	0	-1	0	1	5
g	1	1	5	-1	-1	0	0	8

有 3 个非基变量可作为入基变量,依次为 x_1, x_2, x_3 . 选取非基变量 x_3 为入基变量,计算得第 1

个基变量即 x₆ 为离基变量, 作相应的旋转后单纯形表为:

		x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
x	3	$\frac{1}{3}$	0	1	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	1
x_{i}	7	$-\frac{2}{3}$	1*	0	$\frac{2}{3}$	-1	$-\frac{2}{3}$	1	3
g		$-\frac{2}{3}$	1	0	$\frac{2}{3}$	-1	$-\frac{5}{3}$	0	3

有 2 个非基变量可作为入基变量, 依次为 x_2 , x_4 . 选取非基变量 x_2 为入基变量, 计算得第 2 个基变量即 x_7 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
x_3	$\frac{1}{3}$	0	1	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	1
x_2	$-\frac{2}{3}$	1	0	$\frac{2}{3}$	-1	$-\frac{2}{3}$	1	3
g	0	0	0	0	0	-1	-1	0

检验系数均小于或等于 0, 当前解是最优解, 去掉人工变量开始第二阶段, 相应的单纯形表为:

上表中,目标行中与基变量对应的系数不全为 0,说明与当前基变量 (或基矩阵) 对应的检验系数尚未算出. 用消元法将目标行中与基变量对应的系数消去,得到新的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_3	$\frac{1}{3}$	0	1	$-\frac{1}{3}$	0	1
x_2	$-\frac{2}{3}$	1	0	$\frac{2}{3}$	-1	3
z	-2	0	0	-2	-6	36

检验系数均小于或等于 0, 当前解是最优解, 最优解是: $x_3 = 1, x_2 = 3, x_1 = x_4 = x_5 = 0$, 对应的最优值为 $z^* = 36$.

P119 ex2(2) 问题的标准形为:

$$\max \quad z = 2x_1 + x_2$$
 s.t.
$$x_1 + x_2 + x_3 = 5$$

$$-x_1 + x_2 + x_4 = 0$$

$$6x_1 + 2x_2 + x_5 = 21$$

$$x_j \ge 0, j = 1, \dots, 5$$

x₃, x₄, x₅ 是一组基本可行解, 可直接开始单纯形迭代, 相应的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_3	1	1	1	0	0	5
x_4	-1	1	0	1	0	0
x_5	6*	2	0	0	1	21
\overline{z}	-2	-1	0	0	0	0

注意是 MAX 问题, 有 2 个非基变量可作为入基变量, 依次为 x_1, x_2 . 选取非基变量 x_1 为入基变

量, 计算得第 3 个基变量即 x₅ 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_3	0	$\frac{2}{3}*$	1	0	$-\frac{1}{6}$	$\frac{3}{2}$
x_4	0	$\frac{4}{3}$	0	1	$\frac{1}{6}$	$\frac{7}{2}$
x_1	1	$\frac{1}{3}$	0	0	$\frac{1}{6}$	$\frac{7}{2}$
\overline{z}	0	$-\frac{1}{3}$	0	0	$\frac{1}{3}$	7

选取非基变量 x_2 为入基变量, 计算得第 1 个基变量即 x_3 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_2	0	1	$\frac{3}{2}$	0	$-\frac{1}{4}$	$\frac{9}{4}$
x_4	0	0	-2	1	$\frac{1}{2}$	$\frac{1}{2}$
x_1	1	0	$-\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{11}{4}$
\overline{z}	0	0	$\frac{1}{2}$	0	$\frac{1}{4}$	31 4

当前解是最优解, 最优解是: $x_2 = \frac{9}{4}, x_4 = \frac{1}{2}, x_1 = \frac{11}{4}, x_3 = x_5 = 0$, 对应的最优值为 $z^* = \frac{31}{4}$. P119 ex2(3) 问题的标准形为:

max
$$z = 3x_1 - 5x_2$$

s.t. $-x_1 + 2x_2 + 4x_3 + x_4 = 4$
 $x_1 + x_2 + 2x_3 + x_5 = 5$
 $-x_1 + 2x_2 + x_3 - x_6 = 1$
 $x_j \ge 0, j = 1, \dots, 6$

第一阶问题为:

$$\begin{aligned} & \min \quad g = x_7 \\ & \text{s.t.} \quad -x_1 + 2x_2 + 4x_3 + x_4 = 4 \\ & \quad x_1 + x_2 + 2x_3 + x_5 = 5 \\ & \quad -x_1 + 2x_2 + x_3 - x_6 + x_7 = 1 \\ & \quad x_j \geq 0, j = 1, \dots, 7 \end{aligned}$$

相应的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
x_4	-1	2	4	1	0	0	0	4
x_5	1	1	2	0	1	0	0	5
x_7	-1 1 -1	2	1	0	0	-1	1	1
g						0		0

上表中,目标行中与基变量对应的系数不全为0,说明与当前基变量(或基矩阵)对应的检验系数尚未算出.用消元法将目标行中与基变量对应的系数消去,得到新的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
x_4	-1 1	2	4	1	0	0	0	4
x_5	1	1	2	0	1	0	0	5
x_7	-1	2*	1	0	0	-1	1	1
\overline{g}	-1	2	1	0	0	-1	0	1

有 2 个非基变量可作为入基变量, 依次为 x_2, x_3 . 选取非基变量 x_2 为入基变量, 计算得第 3 个基变量即 x_7 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
x_4	0	0	3	1	0	1	-1	3
x_5	$\frac{3}{2}$	0	$\frac{3}{2}$	0	1	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{9}{2}$
x_2	$-\frac{1}{2}$	1	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
\overline{g}	0	0	0	0	0	0	-1	0

检验系数均小于或等于 0, 当前解是最优解, 去掉人工变量开始第二阶段, 相应的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_4	0	0	3	1	0	1	3
x_5	$\frac{3}{2}$	0	$\frac{3}{2}$	0	1	$\frac{1}{2}$	$\frac{9}{2}$
x_2	$-\frac{1}{2}$	1	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	$\frac{1}{2}$
z	-3	5	0	0	0	0	0

上表中,目标行中与基变量对应的系数不全为0,说明与当前基变量(或基矩阵)对应的检验系数尚未算出.用消元法将目标行中与基变量对应的系数消去,得到新的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_4	0	0	3*	1	0	1	3
x_5	$\frac{3}{2}$	0	$\frac{3}{2}$	0	1	$\frac{1}{2}$	$\frac{9}{2}$
x_2	$-\frac{1}{2}$	1	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	$\frac{1}{2}$
z	$-\frac{1}{2}$	0	$-\frac{5}{2}$	0	0	$\frac{5}{2}$	$-\frac{5}{2}$

注意是 MAX 问题, 有 2 个非基变量可作为入基变量, 依次为 x_1, x_3 . 选取非基变量 x_3 为入基变量, 有 2 个基变量可作为离基变量, 依次为 x_4, x_2 . 不妨选取第 1 个基变量即 x_4 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_3	0	0	1	$\frac{1}{3}$	0	$\frac{1}{3}$	1
x_5	$\frac{3}{2}*$	0	0	$-\frac{1}{2}$	1	0	3
x_2	$-\frac{1}{2}$	1	0	$-\frac{1}{6}$	0	$-\frac{2}{3}$	0
z	$-\frac{1}{2}$	0	0	<u>5</u>	0	10 3	0

选取非基变量 x_1 为入基变量, 计算得第 2 个基变量即 x_5 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_3	0	0	1	$\frac{1}{3}$	0	$\frac{1}{3}$	1
x_1	1	0	0	$-\frac{1}{3}$	$\frac{2}{3}$	0	2
x_2	0	1	0	$-\frac{1}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	1
z	0	0	0	2 3	1/3	10 3	1

当前解是最优解, 最优解是: $x_3 = 1$, $x_1 = 2$, $x_2 = 1$, $x_4 = x_5 = x_6 = 0$, 对应的最优值为 $z^* = 1$. P119 ex2(5) 将原问题化为 MIN 问题求解, 相应的标准形为:

$$\begin{aligned} & \text{min} & -z = 3x_1 - 2x_2 + x_3 \\ & \text{s.t.} & 2x_1 + x_2 - x_3 + x_4 = 5 \\ & 4x_1 + 3x_2 + x_3 - x_5 = 3 \\ & -x_1 + x_2 + x_3 = 2 \\ & x_j \geq 0, j = 1, \dots, 5 \end{aligned}$$

第一阶问题为:

$$\begin{aligned} & \text{min} & & g = x_6 + x_7 \\ & \text{s.t.} & & 2x_1 + x_2 - x_3 + x_4 = 5 \\ & & & 4x_1 + 3x_2 + x_3 - x_5 + x_6 = 3 \\ & & & -x_1 + x_2 + x_3 + x_7 = 2 \\ & & & x_j \ge 0, j = 1, \dots, 7 \end{aligned}$$

相应的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
x_4	2	1	-1	1	0	0	0	5
x_6	4	3	1	0	-1	1	0	3
x_7	$\begin{array}{c} 2\\ 4\\ -1 \end{array}$	1	1	0	0	0	1	2
\overline{g}					0			0

上表中,目标行中与基变量对应的系数不全为0,说明与当前基变量(或基矩阵)对应的检验系数尚未算出.用消元法将目标行中与基变量对应的系数消去,得到新的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
x_4	2 4 -1	1	-1	1	0	0	0	5
x_6	4	3*	1	0	-1	1	0	3
x_7	-1	1	1	0	0	0	1	2
\overline{g}					-1			5

有 3 个非基变量可作为入基变量, 依次为 x_1, x_2, x_3 . 选取非基变量 x_2 为入基变量, 计算得第 2 个基变量即 x_6 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
x_4	$\frac{2}{3}$	0	$-\frac{4}{3}$	1	$\frac{1}{3}$	$-\frac{1}{3}$	0	4
x_2	$\frac{4}{3}$	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	$\frac{1}{3}$	0	1
x_7	$-\frac{7}{3}$	0	$\frac{2}{3}*$	0	$\frac{1}{3}$	$-\frac{1}{3}$	1	1
g	$-\frac{7}{3}$	0	$\frac{2}{3}$	0	$\frac{1}{3}$	$-\frac{4}{3}$	0	1

有 2 个非基变量可作为入基变量, 依次为 x_3, x_5 . 选取非基变量 x_3 为入基变量, 计算得第 3 个基变量即 x_7 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
x_4	-4	0	0	1	1	-1	2	6
x_2	$\frac{5}{2}$	1	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$
x_3	$-\frac{7}{2}$	0	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{3}{2}$	$\frac{3}{2}$
\overline{g}	0	0	0	0	0	-1	-1	0

检验系数均小于或等于 0, 当前解是最优解, 去掉人工变量开始第二阶段, 相应的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_4	-4	0	0	1	1	6
x_2	$\frac{5}{2}$	1	0	0	$-\frac{1}{2}$	$\frac{1}{2}$
x_3	$-\frac{7}{2}$	0	1	0	$\frac{1}{2}$	$\frac{3}{2}$
-z	-3	2	-1	0	0	0

上表中,目标行中与基变量对应的系数不全为0,说明与当前基变量(或基矩阵)对应的检验系数尚未算出.用消元法将目标行中与基变量对应的系数消去,得到新的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_4	-4	0	0	1	1	6
x_2	$\frac{5}{2}$	1	0	0	$-\frac{1}{2}$	$\frac{1}{2}$
x_3	$-\frac{7}{2}$	0	1	0	$\frac{1}{2}*$	$\frac{3}{2}$
-z	$-\frac{23}{2}$	0	0	0	$\frac{3}{2}$	$\frac{1}{2}$

选取非基变量 x_5 为入基变量, 计算得第 3 个基变量即 x_3 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_4	3	0	-2	1	0	3
x_2	-1	1	1	0	0	2
x_5	-7	0	2	0	1	3
-z	-1	0	-3	0	0	-4

检验系数均小于或等于 0, 当前解是最优解, 最优解是: $x_4 = 3, x_2 = 2, x_5 = 3, x_1 = x_3 = 0$, 对应的最优值为 $z^* = -(-4) = 4$.

P119 ex2(7) 问题的标准形为:

$$\begin{aligned} & \text{min} & z = 3x_1 - 2x_2 + x_3 \\ & \text{s.t.} & 2x_1 - 3x_2 + x_3 = 1 \\ & 2x_1 + 3x_2 - x_4 = 8 \\ & x_j \geq 0, j = 1, 2, 3, 4 \end{aligned}$$

第一阶问题为:

min
$$g = x_5$$

s.t. $2x_1 - 3x_2 + x_3 = 1$
 $2x_1 + 3x_2 - x_4 + x_5 = 8$
 $x_j \ge 0, j = 1, \dots, 5$

相应的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_3	2	-3	1	0	0	1
x_5	2	3	0	-1	1	8
g	0	0	0	0	-1	0

上表中,目标行中与基变量对应的系数不全为 0,用消元法将目标行中与基变量对应的系数消去,得到新的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_3	2	-3	1	0	0	1
x_5	2	3*	0	-1	1	8
z	2	3	0	-1	0	8

有 2 个非基变量可作为入基变量, 依次为 x_1, x_2 . 选取非基变量 x_2 为入基变量, 计算得第 2 个基变量即 x_5 为离基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_3	4	0	1	-1	1	9
x_2	$\frac{2}{3}$	1	0	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{8}{3}$
g	0	0	0	0	-1	0

检验系数均小于或等于 0, 当前解是最优解, 且对应的最优值为 $g^* = 0$. 去掉人工变量开始第二阶段, 相应的单纯形表为:

	x_1	x_2	x_3	x_4	RHS
x_3	4	0	1	-1	9
x_2	$\frac{2}{3}$	1	0	$-\frac{1}{3}$	$\frac{8}{3}$
z	-3	2	-1	0	0

上表中,目标行中与基变量对应的系数不全为 0,用消元法将目标行中与基变量对应的系数消去,得到新的单纯形表为:

	x_1	x_2	x_3	x_4	RHS
x_3	4	0	1	-1	9
x_2	$\frac{2}{3}$	1	0	$-\frac{1}{3}$	<u>8</u> 3
z	$-\frac{1}{3}$	0	0	$-\frac{1}{3}$	11 3

检验系数均小于或等于 0, 当前解是最优解, 最优解是: $x_3=9, x_2=\frac{8}{3}, x_1=x_4=0$, 对应的最优值为 $z^*=\frac{11}{3}$.

第四章习题选解

P164, ex7(1): 问题的标准形为:

min
$$z = 4x_1 + 6x_2 + 18x_3$$

s.t. $x_1 + 3x_3 - x_4 = 3$
 $+x_2 + 2x_3 - x_5 = 5$
 $x_j \ge 0, j = 1, \dots, 5$

相应的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_4	-1	0	-3	1	0	-3
x_5	0	-1*	-2	0	1	-5
z	-4	-6	-18	0	0	0

上述单纯形表对偶可行, 基变量 x_4, x_5 均可作为离基变量, 选 x_5 为离基变量. 下面确定进基变量, 计算:

$$\min\{\,\frac{\zeta_2}{\bar{a}_{22}},\frac{\zeta_3}{\bar{a}_{23}}\,\}=\frac{\zeta_2}{\bar{a}_{22}}=6$$

因此应选非基变量 x2 为进基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_4	-1	0	-3*	1	0	-3
x_2	0	1	2	0	-1	5
z	-4	0	-6	0	-6	30

选 x4 为离基变量. 计算:

$$\min\{\frac{\zeta_1}{\bar{a}_{11}}, \frac{\zeta_3}{\bar{a}_{13}}\} = \frac{\zeta_3}{\bar{a}_{13}} = 2$$

因此应选非基变量 x3 为进基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	RHS
x_3	$\frac{1}{3}$	0	1	$-\frac{1}{3}$	0	1
x_2	$-\frac{2}{3}$	1	0	$\frac{2}{3}$	-1	3
z	-2	0	0	-2	-6	36

右端项均大于或等于 0, 当前解是最优解, 最优解是: $x_3 = 1$, $x_2 = 3$, $x_1 = x_4 = x_5 = 0$, 对应的最优值为 $z^* = 36$.

P164, ex7(2): 问题的标准形为:

$$\max z = -3x_1 - 2x_2 - 4x_3 - 8x_4$$
s.t.
$$-2x_1 + 5x_2 + 3x_3 - 5x_4 + x_5 = 3$$

$$x_1 + 2x_2 + 5x_3 + 6x_4 - x_6 = 8$$

$$x_j \ge 0, j = 1, \dots, 6$$

相应的单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_5	-2		3		1	0	3
x_6	-1	-2	-5*	-6	0	1	-8
z	3	2	4	8	0	0	0

注意是 MAX 问题, 上述单纯形表对偶可行, 且

$$\bar{b}_2 = \min\{\bar{b}_i \mid i = 1, 2\} = -8 < 0$$

选 x6 为离基变量. 下面确定进基变量, 计算:

$$\max\{\frac{\zeta_1}{\bar{a}_{21}}, \frac{\zeta_2}{\bar{a}_{22}}, \frac{\zeta_3}{\bar{a}_{23}}, \frac{\zeta_4}{\bar{a}_{24}}\} = \frac{\zeta_3}{\bar{a}_{23}} = -\frac{4}{5}$$

因此应选非基变量 x3 为进基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_5	$-\frac{13}{5}$	19 5	0	$-\frac{43}{5}*$	1	$\frac{3}{5}$	$-\frac{9}{5}$
x_3	$\frac{1}{5}$	$\frac{2}{5}$	1	$\frac{6}{5}$	0	$-\frac{1}{5}$	<u>8</u> 5
z	11 5	2 5	0	$\frac{16}{5}$	0	$\frac{4}{5}$	$-\frac{32}{5}$

上述单纯形表中,

$$\bar{b}_1 = \min\{\bar{b}_i \mid i = 1, 2\} = -\frac{9}{5} < 0$$

选 x5 为离基变量. 下面确定进基变量, 计算:

$$\max\{\,\frac{\zeta_1}{\bar{a}_{11}},\frac{\zeta_4}{\bar{a}_{14}}\,\} = \frac{\zeta_4}{\bar{a}_{14}} = -\frac{16}{43}$$

因此应选非基变量 x4 为进基变量, 作相应的旋转后单纯形表为:

	x_1	x_2	x_3	x_4	x_5	x_6	RHS
x_4	$\frac{13}{43}$	$-\frac{19}{43}$	0	1	$-\frac{5}{43}$	$-\frac{3}{43}$	$\frac{9}{43}$
x_3	$-\frac{7}{43}$	$\frac{40}{43}$	1	0	$\frac{6}{43}$	$-\frac{5}{43}$	$\frac{58}{43}$
z	$\frac{53}{43}$	$\frac{78}{43}$	0	0	$\frac{16}{43}$	$\frac{44}{43}$	$-\frac{304}{43}$

右端项均大于或等于 0, 当前解是最优解, 最优解是: $x_4 = \frac{9}{43}, x_3 = \frac{58}{43}, x_1 = x_2 = x_5 = x_6 = 0$, 对应的最优值为 $z^* = -\frac{304}{43}$.

第七章习题选解

P243, ex3:

解:

目标函数为:

$$f(x) = 4x_1 - 3x_2$$

约束函数为:

$$c_1(x) = 4 - x_1 - x_2 \ge 0,$$

$$c_2(x) = x_2 + 7 \ge 0,$$

$$c_3(x) = -(x_1 - 3)^2 + x_2 + 1 \ge 0,$$

相应的 Lagrange 函数为:

$$L(x,\lambda) = 4x_1 - 3x_2 - \lambda_1 (4 - x_1 - x_2) - \lambda_2 (x_2 + 7) - \lambda_3 \left(-(x_1 - 3)^2 + x_2 + 1 \right)$$

$$\nabla_x L = \begin{bmatrix} 4 + \lambda_1 - \lambda_3 (-2x_1 + 6) \\ -3 + \lambda_1 - \lambda_2 - \lambda_3 \end{bmatrix}$$

$$\nabla_{xx} L = \begin{bmatrix} 2\lambda_3 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\nabla c_1(x) = \begin{bmatrix} -1 & -1 \end{bmatrix}^T$$

$$\nabla c_2(x) = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$$

$$\nabla c_3(x) = \begin{bmatrix} -2x_1 + 6 & 1 \end{bmatrix}^T$$

解

$$\nabla_x L = \begin{bmatrix} 4 + \lambda_1 - \lambda_3 & (-2x_1 + 6) \\ -3 + \lambda_1 - \lambda_2 - \lambda_3 \end{bmatrix} = 0$$
$$\lambda_1 c_1(x) = \lambda_1 (4 - x_1 - x_2) = 0,$$
$$\lambda_2 c_2(x) = \lambda_2 (x_2 + 7) = 0,$$
$$\lambda_3 c_3(x) = \lambda_3 (-(x_1 - 3)^2 + x_2 + 1) = 0,$$

得 4 个解, 依次为:

第1个解———

$$x_1^{(1)} = 11, x_2^{(1)} = -7$$
$$\lambda_1^{(1)} = -4, \lambda_2^{(1)} = -7, \lambda_3^{(1)} = 0$$

------ 第 2 个解 ------

$$x_1^{(2)} = \frac{11}{3}, x_2^{(2)} = -\frac{5}{9}$$

$$\lambda_1^{(2)} = 0, \lambda_2^{(2)} = 0, \lambda_3^{(2)} = -3$$

------ 第 3 个解 ------

$$x_1^{(3)} = 1, x_2^{(3)} = 3$$

$$\lambda_1^{(3)} = \frac{16}{3}, \lambda_2^{(3)} = 0, \lambda_3^{(3)} = \frac{7}{3}$$

------- 第 4 个解 ---------

$$\begin{aligned} x_1^{(4)} &= 4, x_2^{(4)} = 0 \\ \lambda_1^{(4)} &= \frac{2}{3}, \lambda_2^{(4)} = 0, \lambda_3^{(4)} = -\frac{7}{3} \end{aligned}$$

(1) 对第 1 个解, 由于

$$\lambda_1^{(1)} = -4 < 0$$

不是 K-T 点, 舍去.

(2) 对第 2 个解:

$$x_1^{(2)} = \frac{11}{3}, x_2^{(2)} = -\frac{5}{9},$$

由于

$$\lambda_3^{(2)} = -3 < 0$$

不是 K-T 点, 舍去.

(3) 对第 3 个解:

$$x_1^{(3)} = 1, x_2^{(3)} = 3$$

在该点处, $c_1(x^{(3)} = 0, c_1(x^{(3)} = 10 > 0, c_3(x^{(3)} = 0, 因此该点可行, 且$

$$\lambda_1^{(3)} = \frac{16}{3} \ge 0, \lambda_2^{(3)} = 0 \ge 0, \lambda_3^{(3)} = \frac{7}{3} \ge 0,$$

因此该点是 K-T 点。

再看二阶条件(该题不作要求):

$$\nabla_{xx}L^{(3)} = \begin{bmatrix} \frac{14}{3} & 0\\ 0 & 0 \end{bmatrix}$$

$$\nabla c_1^{(3)} = \begin{bmatrix} -1 & -1 \end{bmatrix}^T,$$

$$\nabla c_3^{(3)} = \begin{bmatrix} 4 & 1 \end{bmatrix}^T,$$

由

$$\nabla c_j^{(3)T} d = 0, \quad j = 1, 3$$

得到:

$$d = 0, \Rightarrow \mathcal{G}(x^{(3)}) = \{0\},\$$

所以 x⁽³⁾ 是严格局部极小点.

事实上,该问题是凸规划问题,因此 K-T 点一定是全局最优点! (4) 对第 4 个解:

$$x_1^{(4)} = 4, x_2^{(4)} = 0,$$

由于

$$\lambda_3^{(4)} = -\frac{7}{3} < 0$$

不是 K-T 点, 舍去.

P243(老版 P283), ex4

解:

目标函数为:

$$f(x) = \left(x_1 - \frac{9}{4}\right)^2 + (x_2 - 2)^2$$

约束函数为:

$$c_1(x) = -x_1^2 + x_2 \ge 0,$$

$$c_2(x) = 6 - x_1 - x_2 \ge 0,$$

$$c_3(x) = x_1 \ge 0,$$

$$c_4(x) = x_2 \ge 0,$$

相应的 Lagrange 函数为:

$$L(x,\lambda) = \left(x_1 - \frac{9}{4}\right)^2 + (x_2 - 2)^2 - \lambda_1 \left(-x_1^2 + x_2\right) - \lambda_2 \left(6 - x_1 - x_2\right) - \lambda_3 x_1 - \lambda_4 x_2$$

$$\nabla_x L = \begin{bmatrix} -\frac{9}{2} + 2x_1 + 2\lambda_1 x_1 + \lambda_2 - \lambda_3 \\ -4 + 2x_2 - \lambda_1 + \lambda_2 - \lambda_4 \end{bmatrix}$$

$$\nabla_{xx} L = \begin{bmatrix} 2 + 2\lambda_1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\nabla c_1(x) = \begin{bmatrix} -2x_1 & 1 \end{bmatrix}^T$$

$$\nabla c_2(x) = \begin{bmatrix} -1 & -1 \end{bmatrix}^T$$

$$\nabla c_3(x) = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$$

$$\nabla c_4(x) = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$$

于是 KKT 条件为:

$$\nabla_x L = \begin{bmatrix} -\frac{9}{2} + 2 x_1 + 2 \lambda_1 x_1 + \lambda_2 - \lambda_3 \\ -4 + 2 x_2 - \lambda_1 + \lambda_2 - \lambda_4 \end{bmatrix} = 0$$

$$\lambda_1 c_1(x) = \lambda_1 (-x_1^2 + x_2) = 0,$$

$$\lambda_2 c_2(x) = \lambda_2 (-x_1 - x_2) = 0,$$

$$\lambda_3 c_3(x) = \lambda_3 x_1 = 0,$$

$$\lambda_4 c_4(x) = \lambda_4 x_2 = 0,$$

$$\lambda_i \ge 0, \ c_i(x) \ge 0, \ i = 1, 2, 3, 4$$

(上述方程组一共有 $2^4 = 16$ 个可能的化简方程组!)

对第一个解.

$$x_1^{(1)} = \frac{3}{2}, x_2^{(1)} = \frac{9}{4},$$

由 KKT 条件得:

$$\lambda_1^{(1)} = \frac{1}{2} > 0, \lambda_2^{(1)} = 0, \lambda_3^{(1)} = 0, \lambda_4^{(1)} = 0,$$

因此 $x^{(1)}$ 是 KKT 点,由于原问题是凸优化问题,因此该点是全局最优解。(由于该问题的目标函数是严格凸函数,因此该问题的最优解一定唯一,从而其它两个解一定不是最优解,再由 Slater 条件知该问题的最优解一定是 K-T 点,因此其它两个解一定不 K-T 点,后面将验证该点。)

对第2个解:

$$x_1^{(2)} = \frac{9}{4}, x_2^{(2)} = 2,$$

$$c_1(x^{(2))} = -\frac{49}{16} < 0,$$

不可行, 不是最优解。

对第3个解

$$x_1^{(3)} = 0, x_2^{(3)} = 2,$$

该点是可行的,由 KKT 条件得:

$$\lambda_1^{(3)} = 0, \lambda_2^{(3)} = 0, \lambda_3^{(3)} = -\frac{9}{2}, \lambda_4^{(3)} = 0$$

由于 $\lambda_3^{(3)} = -\frac{9}{2} < 0$,因此 $x^{(3)}$ 不是 KT 点,显然在该点处起作用约束仅为 $c_3(x)$, $\nabla c_3(x^{(3)}) = (1,0)^T$ 自身线性无关,从而由 KT 定理知 $x^{(3)}$ 一定**不是**最优解。

ex5, 新版 P244 (老版 P284, **其目标函数应由** $x_1^2 - x_2 + 3x_3$ 改为 $x_1^2 - x_2 - 3x_3$, **否则将无 KT** 点。)

解:

目标函数为:

$$f(x) = x_1^2 - x_2 - 3x_3$$

约束函数为:

$$c_1(x) = x_1^2 + 2x_2 - x_3 = 0.$$

$$c_2(x) = -x_1 - x_2 - x_3 \ge 0,$$

相应的 Lagrange 函数为:

$$L(x,\lambda) = x_1^2 - x_2 - 3x_3 - \lambda_1 (x_1^2 + 2x_2 - x_3) - \lambda_2 (-x_1 - x_2 - x_3)$$

$$\nabla_x L = \begin{bmatrix} 2 x_1 - 2 \lambda_1 x_1 + \lambda_2 \\ -1 - 2 \lambda_1 + \lambda_2 \\ -3 + \lambda_1 + \lambda_2 \end{bmatrix}$$

$$abla_{xx}L = \left[egin{array}{cccc} 2 - 2\,\lambda_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}
ight]$$

$$\nabla c_1(x) = \begin{bmatrix} 2x_1 & 2 & -1 \end{bmatrix}^T$$

$$\nabla c_2(x) = \begin{bmatrix} -1 & -1 & -1 \end{bmatrix}^T$$

$$\nabla_x L = \begin{bmatrix} 2x_1 - 2\lambda_1 x_1 + \lambda_2 \\ -1 - 2\lambda_1 + \lambda_2 \\ -3 + \lambda_1 + \lambda_2 \end{bmatrix} = 0,$$
$$x_1^2 + 2x_2 - x_3 = 0,$$
$$\lambda_2 c_2(x) = \lambda_2 (-x_1 - x_2 - x_3) = 0,$$
$$\lambda_2 \ge 0, c_2(x) = -x_1 - x_2 - x_3 \ge 0$$

得1个解,

$$x_1^{(1)} = -\frac{7}{2}, x_2^{(1)} = -\frac{35}{12}, x_3^{(1)} = \frac{77}{12}$$
$$\lambda_1^{(1)} = \frac{2}{3}, \lambda_2^{(1)} = \frac{7}{3}$$

$$\nabla_{xx}L^{(1)} = \begin{bmatrix} \frac{2}{3} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\nabla c_1^{(1)} = \begin{bmatrix} -7 & 2 & -1 \end{bmatrix}^T,$$

$$\nabla c_2^{(1)} = \begin{bmatrix} -1 & -1 & -1 \end{bmatrix}^T,$$

由

$$\nabla c_j^{(1)T} d = 0, \quad j = 1, 2$$

得到基础解系构成的矩阵为:

$$Z = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$
$$Z^T G Z = \frac{2}{3} > 0$$

 Z^TGZ 是正定矩阵, 所以 $x^{(1)}$ 是严格局部极小点。

ex6, 新版 P244 (老版 P284)

解:

化为 min 问题, 目标函数为:

$$f(x) = x_1^2 + x_2^2 - 14x_1 - 6x_2 - 7$$

约束函数为:

$$c_1(x) = 2 - x_1 - x_2 \ge 0,$$

 $c_2(x) = 3 - x_1 - 2x_2 \ge 0,$

相应的 Lagrange 函数为:

$$L(x,\lambda) = x_1^2 + x_2^2 - 14x_1 - 6x_2 - 7 - \lambda_1 (2 - x_1 - x_2) - \lambda_2 (3 - x_1 - 2x_2)$$
$$\nabla_x L = \begin{bmatrix} 2x_1 - 14 + \lambda_1 + \lambda_2 \\ 2x_2 - 6 + \lambda_1 + 2\lambda_2 \end{bmatrix}$$

$$\nabla_{xx}L = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
$$\nabla c_1(x) = \begin{bmatrix} -1 & -1 \end{bmatrix}^T$$
$$\nabla c_2(x) = \begin{bmatrix} -1 & -2 \end{bmatrix}^T$$

$$\nabla_x L = \begin{bmatrix} 2x_1 - 14 + \lambda_1 + \lambda_2 \\ 2x_2 - 6 + \lambda_1 + 2\lambda_2 \end{bmatrix} = 0$$
$$\lambda_1 c_1(x) = \lambda_1 (2 - x_1 - x_2) = 0,$$
$$\lambda_2 c_2(x) = \lambda_2 (3 - x_1 - 2x_2) = 0,$$
$$2 - x_1 - x_2 \ge 0, \lambda_1 \ge 0$$
$$3 - x_1 - 2x_2 \ge 0, \lambda_2 \ge 0$$

得:

$$x_1 = 3, x_2 = -1$$

 $\lambda_1 = 8, \lambda_2 = 0$

$$abla_{xx}L = \left[egin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right]$$

Hess 阵正定, 且 f(x) 是凸函数, 所以 x 是全局严格极小点。

P244, ex7:

解:

目标函数为:

$$f(x) = x_1^2 + x_2^2$$

约束函数为:

$$c_1(x) = -4 + x_1 + x_2 \ge 0,$$

$$c_2(x) = 2x_1 + x_2 - 5 \ge 0,$$

相应的 Lagrange 函数为:

$$L(x,\lambda) = x_1^2 + x_2^2 - \lambda_1 (-4 + x_1 + x_2) - \lambda_2 (2x_1 + x_2 - 5)$$

$$\nabla_x L = \begin{bmatrix} 2x_1 - \lambda_1 - 2\lambda_2 \\ 2x_2 - \lambda_1 - \lambda_2 \end{bmatrix}$$

$$\nabla_{xx} L = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\nabla c_1(x) = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$$

$$\nabla c_2(x) = \begin{bmatrix} 2 & 1 \end{bmatrix}^T$$

$$\nabla_x L = \begin{bmatrix} 2x_1 - \lambda_1 - 2\lambda_2 \\ 2x_2 - \lambda_1 - \lambda_2 \end{bmatrix} = 0$$
$$\lambda_1 c_1(x) = \lambda_1 (-4 + x_1 + x_2) = 0,$$
$$\lambda_2 c_2(x) = \lambda_2 (2x_1 + x_2 - 5) = 0,$$

得 4 个解, 依次为:

------- 第 1 个解 ---------

$$x_1^{(1)} = 0, x_2^{(1)} = 0$$

$$\lambda_1^{(1)} = 0, \lambda_2^{(1)} = 0$$

——— 第 2 个解 ———

$$x_1^{(2)} = 2, x_2^{(2)} = 1$$

$$\lambda_1^{(2)} = 0, \lambda_2^{(2)} = 2$$

——— 第 3 个解 ———

$$x_1^{(3)} = 2, x_2^{(3)} = 2$$

$$\lambda_1^{(3)} = 4, \lambda_2^{(3)} = 0$$

———第4个解———

$$x_1^{(4)} = 1, x_2^{(4)} = 3$$

$$\lambda_1^{(4)} = 10, \lambda_2^{(4)} = -4$$

(1) 对第 1 个解:

$$x_1^{(1)} = 0, x_2^{(1)} = 0$$

$$c_1(x^{(1))} = -4 < 0$$

不可行, 舍去.

(2) 对第 2 个解:

$$x_1^{(2)} = 2, x_2^{(2)} = 1$$

$$c_1(x^{(2))} = -1 < 0$$

不可行, 舍去.

(3) 对第 3 个解:

$$x_1^{(3)} = 2, x_2^{(3)} = 2$$

该点可行,且

$$\lambda_1^{(3)} = 4 \geq 0, \lambda_2^{(3)} = 0 \geq 0$$

因此该点是 KT 点,再由该问题是凸规划问题,满足 Slater 条件,且目标函数严格凸,因此该点一定是唯一的全局严格极小点。从而对第 4 个解 $x_1^{(4)} = 1, x_2^{(4)} = 3$ 不用再检查。

P244, ex8

解: 注意此处的 $x^{(i)}$ 的顺序与书上的不同,此处的 $x^{(1)}$ 相当于书上的 $x^{(3)}$,此处的 $x^{(3)}$ 相当于书上的 $x^{(1)}$,此处的 $x^{(4)}$ 相当于书上的 $x^{(2)}$.

$$L(x,\lambda,\mu) = x_2 - \lambda \left(-x_1^2 - (x_2 - 4)^2 + 16\right) - \mu \left((x_1 - 2)^2 + (x_2 - 3)^2 - 13\right)$$

$$\nabla_x L = \begin{bmatrix} 2\lambda x_1 - \mu & (2x_1 - 4) \\ 1 - \lambda & (-2x_2 + 8) - \mu & (2x_2 - 6) \end{bmatrix}$$

$$\nabla_{xx} L = \begin{bmatrix} 2\lambda - 2\mu & 0 \\ 0 & 2\lambda - 2\mu \end{bmatrix}$$

$$\nabla c_1 = \begin{bmatrix} -2x_1 & -2x_2 + 8 \end{bmatrix}^T, \nabla c_2 = \begin{bmatrix} 2x_1 - 4 & 2x_2 - 6 \end{bmatrix}^T$$

$$\begin{cases} \nabla_x L = 0, \\ (x_1 - 2)^2 + (x_2 - 3)^2 - 13 = 0, \\ \lambda \left(-x_1^2 - (x_2 - 4)^2 + 16 \right) = 0 \end{cases}$$

得:

$$\begin{split} (x_1^{(1)},x_2^{(1)},\lambda^{(1)},\mu^{(1)}) &= (2,3+\sqrt{13},0,\frac{\sqrt{13}}{26}) \\ (x_1^{(2)},x_2^{(2)},\lambda^{(2)},\mu^{(2)}) &= (2,3-\sqrt{13},0,-\frac{\sqrt{13}}{26}) \\ (x_1^{(3)},x_2^{(3)},\lambda^{(3)},\mu^{(3)}) &= (0,0,\frac{1}{8},0) \\ (x_1^{(4)},x_2^{(4)},\lambda^{(4)},\mu^{(4)}) &= (\frac{16}{5},\frac{32}{5},\frac{3}{40},\frac{1}{5}) \\ (1) &\stackrel{\text{df}}{=} (x_1^{(1)},x_2^{(1)},\lambda^{(1)},\mu^{(1)}) &= (2,3+\sqrt{13},0,\frac{\sqrt{13}}{26})) \text{ ft}, \\ c_1(x^{(1)}) &= 12 - \left(-1+\sqrt{13}\right)^2 > 0 \end{split}$$

该点可行, 但约束 $c_1(x)$ 在该点处不起作用.

$$\nabla_{xx}L^{(1)} = \begin{bmatrix} -\frac{\sqrt{13}}{13} & 0\\ 0 & -\frac{\sqrt{13}}{13} \end{bmatrix}$$

$$\nabla c_1^{(1)} = \begin{bmatrix} -4 & 2 - 2\sqrt{13} \end{bmatrix}^T, \nabla c_2^{(1)} = \begin{bmatrix} 0 & 2\sqrt{13} \end{bmatrix}^T$$

显然该点处 $\nabla c_2^{(1)}$ 本身线性无关. 由

$$2\sqrt{13}\,d_2 = 0$$

得:

$$d_1 \neq 0, d_2 = 0$$

$$d^T \nabla_{xx} L^{(1)} d = -\frac{\sqrt{13}}{13} d_1^2 < 0$$

因此 x(1) 不是局部极小点

(2)
$$\stackrel{\underline{}}{=}$$
 $(x_1^{(2)}, x_2^{(2)}, \lambda^{(2)}, \mu^{(2)}) = (2, 3 - \sqrt{13}, 0, -\frac{1}{26}\sqrt{13})$ Fy,

$$c_1(x^{(2)}) = 12 - \left(-1 - \sqrt{13}\right)^2 < 0$$

不可行.

(3)
$$\stackrel{\text{def}}{=} (x_1^{(3)}, x_2^{(3)}, \lambda^{(3)}, \mu^{(3)}) = (0, 0, \frac{1}{8}, 0)$$
 Fy,

$$c_1(x^{(3)}) = 0, \lambda^{(3)} = \frac{1}{8} > 0$$

该点可行且 $c_1(x)$ 在该点处是强积极的不等式约束 (即其对应的 Lagrange 乘子大于 0).

$$\nabla_{xx}L^{(3)} = \begin{bmatrix} \frac{1}{4} & 0\\ 0 & \frac{1}{4} \end{bmatrix}$$

由 $\nabla_{xx}L^{(3)}$ 的正定性知 $x^{(3)}$ 是严格局部极小点 (4) 当 $(x_1^{(4)}, x_2^{(4)}, \lambda^{(4)}, \mu^{(4)}) = (\frac{16}{5}, \frac{32}{5}, \frac{3}{40}, \frac{1}{5})$ 时,

(4)
$$\stackrel{\text{def}}{=} (x_1^{(4)}, x_2^{(4)}, \lambda^{(4)}, \mu^{(4)}) = (\frac{16}{5}, \frac{32}{5}, \frac{3}{40}, \frac{1}{5})$$
 $\stackrel{\text{ph}}{=}$

$$c_1(x^{(3)}) = 0$$

该点可行,且 $c_1(x)$ 在该点处是强积极的不等式约束.

$$\nabla_{xx} L^{(4)} = \begin{bmatrix} -\frac{1}{4} & 0\\ 0 & -\frac{1}{4} \end{bmatrix}$$

$$\nabla c_1^{(4)} = \begin{bmatrix} -\frac{32}{5} & -\frac{24}{5} \end{bmatrix}^T, \nabla c_2^{(4)} = \begin{bmatrix} \frac{12}{5} & \frac{34}{5} \end{bmatrix}^T$$

由

$$-\frac{32}{5}d_1 - \frac{24}{5}d_2 = 0, \frac{12}{5}d_1 + \frac{34}{5}d_2 = 0$$

得:

$$d_1 = 0, d_2 = 0$$

从而:

$$\mathcal{G}(x^{(4)}) = \{0\},\$$

所以 x⁽⁴⁾ 是严格局部极小点

第十章习题选解

新版 P328 (老版 P391), ex2

$$f(x) = (6 + x_1 + x_2)^2 + (2 - 3x_1 - 3x_2 - x_1x_2)^2$$

$$g = \nabla f(x) = \begin{bmatrix} 12 + 2x_1 + 2x_2 + 2(2 - 3x_1 - 3x_2 - x_1x_2)(-3 - x_2) \\ 12 + 2x_1 + 2x_2 + 2(2 - 3x_1 - 3x_2 - x_1x_2)(-3 - x_1) \end{bmatrix},$$

$$= \begin{bmatrix} 20x_1 + 16x_2 + 12x_1x_2 + 6x_2^2 + 2x_1x_2^2 \\ 16x_1 + 20x_2 + 6x_1^2 + 12x_1x_2 + 2x_1^2x_2 \end{bmatrix},$$

$$\nabla^2 f(x) = \begin{bmatrix} 20 + 12x_2 + 2x_2^2 & 16 + 12x_1 + 12x_2 + 4x_1x_2 \\ 16 + 12x_1 + 12x_2 + 4x_1x_2 & 20 + 12x_1 + 2x_1^2 \end{bmatrix}$$

$$\hat{x} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}$$

因此在点 $\hat{x} = (-4,6)^T$ 处的最速下降方向是:

$$d = -\nabla f(\hat{x}) = \begin{bmatrix} 344 \\ -56 \end{bmatrix}$$

$$\nabla^2 f(\hat{x}) = \begin{bmatrix} 164 & -56 \\ -56 & 4 \end{bmatrix}, (\nabla^2 f(\hat{x}))^{-1} = \begin{bmatrix} -\frac{1}{620} & -\frac{7}{310} \\ -\frac{7}{310} & -\frac{41}{620} \end{bmatrix}$$

因此在点 $\hat{x} = (-4,6)^T$ 处的牛顿方向是:

$$d = -(\nabla^2 f(\hat{x}))^{-1} g = \begin{bmatrix} \frac{22}{31} \\ -\frac{126}{31} \end{bmatrix}$$

新版 P328 (老版 P392), ex3

$$f(x) = x_1^2 - 2x_1x_2 + 4x_2^2 + x_1 - 3x_2$$
$$g = \nabla f(x) = \begin{bmatrix} 2x_1 - 2x_2 + 1 \\ -2x_1 + 8x_2 - 3 \end{bmatrix},$$

(该处的 $\phi(\alpha)$ 可以不计算,仅供参考。由于目标函数是二次函数,因此也可使用后面介绍的共轭梯度法中计算梯度和某个方向上的极小点步长公式,以减少运算量!

$$\phi(\alpha) = f(x - \alpha g) = [x_1 - \alpha (2x_1 - 2x_2 + 1)]^2 - 2[x_1 - \alpha (2x_1 - 2x_2 + 1)][x_2 - \alpha (-2x_1 + 8x_2 - 3)] + 4[x_2 - \alpha (-2x_1 + 8x_2 - 3)]^2 + x_1 - \alpha (2x_1 - 2x_2 + 1) - 3x_2 + 3\alpha (-2x_1 + 8x_2 - 3) = (-176x_1x_2 + 28x_1^2 + 292x_2^2 - 224x_2 + 43 + 68x_1)\alpha^2 + (40x_1x_2 - 10 - 16x_1 + 52x_2 - 8x_1^2 - 68x_2^2)\alpha + x_1^2 - 2x_1x_2 + 4x_2^2 + x_1 - 3x_2$$

)

$$x^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$g^{(0)} = \nabla f(x_0) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, ||g^{(0)}|| = 3.162278$$

$$\phi_0(\alpha) = f(x^{(0)} - \alpha g^{(0)}) = 1 - 10 \alpha + 31 \alpha^2$$

$$\alpha_0 = \frac{5}{31}$$

$$x^{(1)} = x^{(0)} - \alpha_0 g^{(0)} = \begin{bmatrix} \frac{26}{31} \\ \frac{16}{31} \end{bmatrix}$$

$$g^{(1)} = \begin{bmatrix} \frac{51}{31} \\ -\frac{17}{31} \end{bmatrix}, ||g^{(1)}|| = 1.734152, f(x^{(1)}) = \frac{6}{31}$$

$$\phi_1(\alpha) = f(x^{(1)} - \alpha g^{(1)}) = \frac{6}{31} - \frac{2890}{961} \alpha + \frac{5491}{961} \alpha^2$$

$$\alpha_1 = \frac{5}{19}$$

$$x^{(2)} = x^{(1)} - \alpha_1 g^{(1)} = \begin{bmatrix} \frac{239}{589} \\ \frac{389}{589} \end{bmatrix}$$

$$g^{(2)} = \begin{bmatrix} \frac{289}{589} \\ \frac{867}{580} \end{bmatrix}, \quad ||g^{(2)}|| = 1.551610, \quad f(x^{(2)}) = -\frac{3691}{18259}$$

新版 P330 (老版 P394), ex14(1)

目标函数为:

$$f(x) = \frac{1}{2} x_1^2 + x_2^2$$

$$g = \nabla f(x) = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix}, \quad G = \nabla^2 f(x) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

初值为:

$$x^{(0)} = \begin{bmatrix} 4\\4 \end{bmatrix}, \quad f(x^{(0)}) = 24$$

$$g^{(0)} = \nabla f(x_0) = \begin{bmatrix} 4\\8 \end{bmatrix}, d^{(0)} = -g^{(0)} = \begin{bmatrix} -4\\-8 \end{bmatrix}$$

$$g^{(0)T}g^{(0)} = 80, \quad ||g^{(0)}|| = 4\sqrt{5} = 8.944272$$

$$Gd^{(0)} = \begin{bmatrix} 1&0\\0&2 \end{bmatrix} \begin{bmatrix} -4\\-8 \end{bmatrix} = \begin{bmatrix} -4\\-16 \end{bmatrix}$$

$$d^{(0)T}Gd^{(0)} = \begin{bmatrix} -4&-8 \end{bmatrix} \begin{bmatrix} -4\\-16 \end{bmatrix} = 144$$

$$\alpha_0 = \frac{g^{(0)T}g^{(0)}}{d^{(0)T}Gd^{(0)}} = \frac{5}{9}$$

$$x^{(1)} = x^{(0)} + \alpha_0 d^{(0)} = \begin{bmatrix} 4\\4 \end{bmatrix} + \frac{5}{9} \begin{bmatrix} -4\\-8 \end{bmatrix} = \begin{bmatrix} \frac{16}{9}\\-\frac{4}{9} \end{bmatrix}$$

$$f(x^{(1)}) = \frac{16}{9}$$

$$g^{(1)} = g^{(0)} + \alpha_0 Gd^{(0)} = \begin{bmatrix} 4\\8 \end{bmatrix} + \frac{5}{9} \begin{bmatrix} -4\\-16 \end{bmatrix} = \begin{bmatrix} \frac{16}{9}\\-\frac{8}{9} \end{bmatrix},$$

$$g^{(1)T}g^{(1)} = \frac{320}{81}, \quad ||g^{(1)}|| = \frac{8}{9}\sqrt{5} = 1.987616$$

$$\beta_0 = \frac{g^{(1)T}g^{(1)}}{g^{(0)T}g^{(0)}} = \frac{4}{81}$$

$$d^{(1)} = -g^{(1)} + \beta_0 d^{(0)} = -\begin{bmatrix} \frac{16}{9} \\ -\frac{8}{9} \end{bmatrix} + \frac{4}{81} \begin{bmatrix} -4 \\ -8 \end{bmatrix} = \begin{bmatrix} -\frac{160}{81} \\ \frac{40}{81} \end{bmatrix},$$

$$Gd^{(1)} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -\frac{160}{81} \\ \frac{40}{81} \end{bmatrix} = \begin{bmatrix} -\frac{160}{81} \\ \frac{80}{81} \end{bmatrix}$$

$$d^{(1)T}Gd^{(1)} = \begin{bmatrix} -\frac{160}{81} & \frac{40}{81} \end{bmatrix} \begin{bmatrix} -\frac{160}{81} \\ \frac{80}{81} \end{bmatrix} = \frac{3200}{729}$$

$$\alpha_1 = \frac{g^{(1)T}g^{(1)}}{d^{(1)T}Gd^{(1)}} = \frac{9}{10}$$

$$x^{(2)} = x^{(1)} + \alpha_1 d^{(1)} = \begin{bmatrix} \frac{16}{9} \\ -\frac{4}{9} \end{bmatrix} + \frac{9}{10} \begin{bmatrix} -\frac{160}{81} \\ \frac{40}{81} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$f(x^{(2)}) = 0$$

$$g^{(2)} = g^{(1)} + \alpha_1 Gd^{(1)} = \begin{bmatrix} \frac{16}{9} \\ -\frac{8}{9} \end{bmatrix} + \frac{9}{10} \begin{bmatrix} -\frac{160}{81} \\ \frac{80}{81} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$g^{(2)T}g^{(2)} = 0, \quad ||g^{(2)}|| = 0 = 0.0000000$$

得到最优解。

新版 P330 (老版 P394), ex14(2)

$$f(x) = x_1^2 - 2x_1x_2 + 2x_2^2 + 2x_2 + 2$$

$$g = \nabla f(x) = \begin{bmatrix} 2x_1 - 2x_2 \\ -2x_1 + 4x_2 + 2 \end{bmatrix}, \quad G = \nabla^2 f(x) = \begin{bmatrix} 2 & -2 \\ -2 & 4 \end{bmatrix}$$

$$x^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$g^{(0)} = \nabla f(x_0) = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, d^{(0)} = -g^{(0)} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$

$$g^{(0)T}g^{(0)} = 4, \quad ||g^{(0)}|| = 2$$

$$Gd^{(0)} = \begin{bmatrix} 2 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ -8 \end{bmatrix}$$

$$d^{(0)T}Gd^{(0)} = \begin{bmatrix} 0 & -2 \end{bmatrix} \begin{bmatrix} 4 \\ -8 \end{bmatrix} = 16$$

$$\alpha_0 = \frac{g^{(0)T}g^{(0)}}{d^{(0)T}Gd^{(0)}} = \frac{1}{4}$$

$$x^{(1)} = x^{(0)} + \alpha_0 d^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{1}{2} \end{bmatrix}$$

$$g^{(1)} = g^{(0)} + \alpha_0 G d^{(0)} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 4 \\ -8 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$g^{(1)T} g^{(1)} = 1, \quad \|g^{(1)}\| = 1$$

$$\beta_0 = \frac{g^{(1)T} g^{(1)}}{g^{(0)T} g^{(0)}} = \frac{1}{4}$$

$$d^{(1)} = -g^{(0)} + \beta_0 d^{(0)} = -\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ -\frac{1}{2} \end{bmatrix},$$

$$f(x^{(1)}) = \frac{3}{2}$$

$$G d^{(1)} = \begin{bmatrix} 2 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$d^{(1)T} G d^{(1)} = \begin{bmatrix} -1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = 1$$

$$\alpha_1 = \frac{g^{(1)T} g^{(1)}}{d^{(1)T} G d^{(1)}} = 1$$

$$x^{(2)} = x^{(1)} + \alpha_1 d^{(1)} = \begin{bmatrix} 0 \\ -\frac{1}{2} \end{bmatrix} + \begin{bmatrix} -1 \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$g^{(2)} = g^{(1)} + \alpha_1 G d^{(1)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$g^{(2)T} g^{(2)} = 0, \quad \|g^{(2)}\| = 0$$

$$f(x^{(2)}) = 1$$

新版 P330 (老版 P394), ex14(3)

目标函数为:

$$f(x) = (x_1 - 2)^2 + 2 (x_2 - 1)^2$$

$$g = \nabla f(x) = \begin{bmatrix} 2x_1 - 4 \\ 4x_2 - 4 \end{bmatrix}, \quad G = \nabla^2 f(x) = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

初值为:

$$x^{(0)} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad f(x^{(0)}) = 9$$

$$g^{(0)} = \nabla f(x_0) = \begin{bmatrix} -2 \\ 8 \end{bmatrix}, d^{(0)} = -g^{(0)} = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$$

$$g^{(0)T}g^{(0)} = 68, \quad ||g^{(0)}|| = 2\sqrt{17} = 8.246211$$

$$Gd^{(0)} = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ -8 \end{bmatrix} = \begin{bmatrix} 4 \\ -32 \end{bmatrix}$$

$$d^{(0)T}Gd^{(0)} = \begin{bmatrix} 2 & -8 \end{bmatrix} \begin{bmatrix} 4 \\ -32 \end{bmatrix} = 264$$

$$\alpha_0 = \frac{g^{(0)T}g^{(0)}}{d^{(0)T}Gd^{(0)}} = \frac{17}{66}$$

$$x^{(1)} = x^{(0)} + \alpha_0 d^{(0)} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \frac{17}{66} \begin{bmatrix} 2 \\ -8 \end{bmatrix} = \begin{bmatrix} \frac{50}{33} \\ \frac{31}{33} \end{bmatrix}$$

$$f(x^{(1)}) = \frac{8}{33}$$

$$g^{(1)} = g^{(0)} + \alpha_0 Gd^{(0)} = \begin{bmatrix} -2 \\ 8 \end{bmatrix} + \frac{17}{66} \begin{bmatrix} 4 \\ -32 \end{bmatrix} = \begin{bmatrix} -\frac{32}{33} \\ -\frac{8}{33} \end{bmatrix},$$

$$g^{(1)T}g^{(1)} = \frac{1088}{1089}, \quad \|g^{(1)}\| = \frac{8}{33}\sqrt{17} = 0.999541$$

$$\beta_0 = \frac{g^{(1)T}g^{(1)}}{g^{(0)T}g^{(0)}} = \frac{16}{1089}$$

$$d^{(1)} = -g^{(1)} + \beta_0 d^{(0)} = -\begin{bmatrix} -\frac{32}{33} \\ -\frac{8}{33} \end{bmatrix} + \frac{16}{1089} \begin{bmatrix} 2 \\ -8 \end{bmatrix} = \begin{bmatrix} \frac{1088}{1089} \\ \frac{136}{1089} \end{bmatrix},$$

$$Gd^{(1)} = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{1088}{1089} \\ \frac{136}{1089} \end{bmatrix} = \begin{bmatrix} \frac{2176}{1089} \\ \frac{544}{1089} \end{bmatrix}$$

$$d^{(1)T}Gd^{(1)} = \begin{bmatrix} \frac{1088}{1089} & \frac{136}{1089} \end{bmatrix} \begin{bmatrix} \frac{2176}{1089} \\ \frac{544}{1089} \end{bmatrix} = \frac{73984}{35937}$$

$$\alpha_1 = \frac{g^{(1)T}g^{(1)}}{d^{(1)T}Gd^{(1)}} = \frac{33}{68}$$

$$x^{(2)} = x^{(1)} + \alpha_1 d^{(1)} = \begin{bmatrix} \frac{50}{33} \\ \frac{31}{33} \end{bmatrix} + \frac{33}{68} \begin{bmatrix} \frac{1088}{1089} \\ \frac{136}{1089} \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$f(x^{(2)}) = 0$$

$$g^{(2)} = g^{(1)} + \alpha_1 Gd^{(1)} = \begin{bmatrix} -\frac{32}{33} \\ -\frac{8}{33} \end{bmatrix} + \frac{33}{68} \begin{bmatrix} \frac{2176}{1089} \\ \frac{136}{1089} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$g^{(2)T}g^{(2)} = 0, \quad \|g^{(2)}\| = 0 = 0.000000$$

得到最优解。

新版 P330 (老版 P395), ex14(4)

$$f(x) = 2x_1^2 + 2x_1x_2 + x_2^2 + 3x_1 - 4x_2$$

$$g = \nabla f(x) = \begin{bmatrix} 4x_1 + 2x_2 + 3 \\ 2x_1 + 2x_2 - 4 \end{bmatrix}, \quad G = \nabla^2 f(x) = \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix}$$

$$x^{(0)} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

$$g^{(0)} = \nabla f(x_0) = \begin{bmatrix} 23 \\ 10 \end{bmatrix}, d^{(0)} = -g^{(0)} = \begin{bmatrix} -23 \\ -10 \end{bmatrix}$$

$$g^{(0)T}g^{(0)} = 629, \quad \|g^{(0)}\| = \sqrt{629} = 25.079872$$

$$Gd^{(0)} = \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -23 \\ -10 \end{bmatrix} = \begin{bmatrix} -112 \\ -66 \end{bmatrix}$$

$$d^{(0)T}Gd^{(0)} = \begin{bmatrix} -23 & -10 \end{bmatrix} \begin{bmatrix} -112 \\ -66 \end{bmatrix} = 3236$$

$$\alpha_0 = \frac{g^{(0)T}g^{(0)}}{d^{(0)T}Gd^{(0)}} = \frac{629}{3236}$$

$$x^{(1)} = x^{(0)} + \alpha_0 d^{(0)} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} + \frac{629}{3236} \begin{bmatrix} -23 \\ -10 \end{bmatrix} = \begin{bmatrix} -\frac{4759}{3236} \\ \frac{3327}{1618} \end{bmatrix}$$

$$g^{(1)} = g^{(0)} + \alpha_0 Gd^{(0)} = \begin{bmatrix} 23 \\ 10 \end{bmatrix} + \frac{629}{3236} \begin{bmatrix} -112 \\ -66 \end{bmatrix} = \begin{bmatrix} \frac{995}{809} \\ -\frac{4577}{1618} \end{bmatrix},$$

$$g^{(1)T}g^{(1)} = \frac{24909029}{2617924}, \quad \|g^{(1)}\| = \frac{1}{1308962} \sqrt{16302486208949} = 3.084607$$

$$\beta_0 = \frac{g^{(1)T}g^{(1)}}{g^{(0)T}g^{(0)}} = \frac{39601}{2617924}$$

$$d^{(1)} = -g^{(0)} + \beta_0 d^{(0)} = -\begin{bmatrix} \frac{95}{900} \\ -\frac{4577}{1618} \end{bmatrix} + \frac{39601}{2617924} \begin{bmatrix} -23 \\ -10 \end{bmatrix} = \begin{bmatrix} -\frac{4130643}{2617924} \\ \frac{1752394}{654481} \end{bmatrix},$$

$$f(x^{(1)}) = -\frac{65569}{654481}$$

$$Gd^{(1)} = \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -\frac{4130643}{2617924} \\ \frac{1752394}{654481} \end{bmatrix} = \begin{bmatrix} -\frac{625855}{654481} \\ \frac{2878933}{1308962} \end{bmatrix} = \frac{15667779241}{2117900516}$$

$$\alpha_1 = \frac{g^{(1)T}g^{(1)}}{d^{(1)T}Gd^{(1)}} = \frac{809}{629}$$

$$x^{(2)} = x^{(1)} + \alpha_1 d^{(1)} = \begin{bmatrix} \frac{995}{3236} \\ -\frac{4577}{3236} \\ \frac{13618}{1654481} \end{bmatrix} + \frac{809}{629} \begin{bmatrix} -\frac{4130643}{2617924} \\ \frac{1752394}{15308962} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$g^{(2)T}g^{(2)} = 0, \quad \|g^{(2)}\| = 0$$

得到最优解 $x^{(2)}$, 相应的最优目标函数值为:

$$f(x^{(2)}) = -\frac{65}{4}$$

当然也可直接采用浮点计算,精确到小数点后三位即可。 新版 P330 (老版 P395), ex14(5) 目标函数为:

$$f(x) = 2x_1^2 + 2x_1x_2 + 5x_2^2$$

$$g = \nabla f(x) = \begin{bmatrix} 4x_1 + 2x_2 \\ 2x_1 + 10x_2 \end{bmatrix}, \quad G = \nabla^2 f(x) = \begin{bmatrix} 4 & 2 \\ 2 & 10 \end{bmatrix}$$

初值为:

$$x^{(0)} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}, \quad f(x^{(0)}) = 20$$

$$g^{(0)} = \nabla f(x_0) = \begin{bmatrix} 4 \\ -16 \end{bmatrix}, d^{(0)} = -g^{(0)} = \begin{bmatrix} -4 \\ 16 \end{bmatrix}$$

$$g^{(0)T}g^{(0)} = 272, \quad \|g^{(0)}\| = 4\sqrt{17} = 16.492423$$

$$Gd^{(0)} = \begin{bmatrix} 4 & 2 \\ 2 & 10 \end{bmatrix} \begin{bmatrix} -4 \\ 16 \end{bmatrix} = \begin{bmatrix} 16 \\ 152 \end{bmatrix}$$

$$d^{(0)T}Gd^{(0)} = \begin{bmatrix} -4 & 16 \end{bmatrix} \begin{bmatrix} 16 \\ 152 \end{bmatrix} = 2368$$

$$\alpha_0 = \frac{g^{(0)T}g^{(0)}}{d^{(0)T}Gd^{(0)}} = \frac{17}{148}$$

$$x^{(1)} = x^{(0)} + \alpha_0 d^{(0)} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} + \frac{17}{148} \begin{bmatrix} -4 \\ 16 \end{bmatrix} = \begin{bmatrix} \frac{57}{37} \\ -\frac{6}{37} \end{bmatrix}$$

$$f(x^{(1)}) = \frac{162}{37}$$

$$g^{(1)} = g^{(0)} + \alpha_0 Gd^{(0)} = \begin{bmatrix} 4 \\ -16 \end{bmatrix} + \frac{17}{148} \begin{bmatrix} 16 \\ 152 \end{bmatrix} = \begin{bmatrix} \frac{216}{37} \\ \frac{54}{37} \end{bmatrix},$$

$$g^{(1)T}g^{(1)} = \frac{49572}{1369}, \quad \|g^{(1)}\| = \frac{54}{37}\sqrt{17} = 6.017506$$

$$\beta_0 = \frac{g^{(1)T}g^{(1)}}{g^{(0)T}g^{(0)}} = \frac{729}{5476}$$

$$d^{(1)} = -g^{(1)} + \beta_0 d^{(0)} = -\begin{bmatrix} \frac{216}{37} \\ \frac{54}{37} \end{bmatrix} + \frac{729}{5476} \begin{bmatrix} -4 \\ 16 \end{bmatrix} = \begin{bmatrix} -\frac{8721}{1369} \\ \frac{918}{1369} \end{bmatrix},$$

$$Gd^{(1)} = \begin{bmatrix} 4 & 2 \\ 2 & 10 \end{bmatrix} \begin{bmatrix} -\frac{8721}{1369} \\ \frac{918}{1369} \end{bmatrix} = \begin{bmatrix} -\frac{33048}{1369} \\ -\frac{8262}{1369} \end{bmatrix}$$

$$d^{(1)T}Gd^{(1)} = \begin{bmatrix} -\frac{8721}{1369} & \frac{918}{1369} \end{bmatrix} \begin{bmatrix} -\frac{33048}{1369} \\ -\frac{8262}{1369} \end{bmatrix} = \frac{7584516}{50653}$$

$$\alpha_1 = \frac{g^{(1)T}g^{(1)}}{d^{(1)T}Gd^{(1)}} = \frac{37}{153}$$

$$x^{(2)} = x^{(1)} + \alpha_1 d^{(1)} = \begin{bmatrix} \frac{57}{37} \\ -\frac{6}{37} \end{bmatrix} + \frac{37}{153} \begin{bmatrix} -\frac{8721}{1369} \\ \frac{918}{1369} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$f(x^{(2)}) = 0$$

$$g^{(2)} = g^{(1)} + \alpha_1 G d^{(1)} = \begin{bmatrix} \frac{216}{37} \\ \frac{54}{37} \end{bmatrix} + \frac{37}{153} \begin{bmatrix} -\frac{33048}{1369} \\ -\frac{8262}{1369} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$g^{(2)T} g^{(2)} = 0, \quad ||g^{(2)}|| = 0 = 0.000000$$

得到最优解 x⁽²⁾。

当然也可直接采用浮点计算,精确到小数点后三位即可。

第十三章习题选解

ex1(2):

目标函数为:

$$f(x) = x_1^2 + x_2^2$$

约束函数为:

$$c_1(x) = x_1 + x_2 - 1 = 0,$$

目标函数的梯度为:

$$abla_x f(x) = \left[egin{array}{c} 2 \, x_1 \ 2 \, x_2 \end{array} \right]$$

约束函数的梯度为:

$$\nabla_x c_1(x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

相应的外罚函数为:

$$F(x,\sigma) = x_1^2 + x_2^2 + \sigma(x_1 + x_2 - 1)^2$$

计算得罚函数的梯度为:

$$abla_x F(x,\sigma) = \left[egin{array}{l} 2 \, x_1 + 2 \, \sigma \, \left(x_1 + x_2 - 1
ight) \ 2 \, x_2 + 2 \, \sigma \, \left(x_1 + x_2 - 1
ight) \end{array}
ight]$$

计算得罚函数的海色矩阵为:

$$\nabla_{xx}^{2} F(x,\sigma) = \begin{bmatrix} 2 + 2\sigma & 2\sigma \\ & & \\ & 2\sigma & 2 + 2\sigma \end{bmatrix}$$

求解 $\nabla_x F(x,\sigma) = 0$ 得:

$$x_1 = \frac{\sigma}{1 + 2\sigma}$$
$$x_2 = \frac{\sigma}{1 + 2\sigma}$$

 $\sigma \rightarrow +\infty$ 得:

$$x_1 = \frac{1}{2}$$
$$x_2 = \frac{1}{2}$$

由海色矩阵的正定性 (σ > 0) 知该解为全局最优解.

ex1(4): 目标函数为:

$$f(x) = x_1^2 + x_2^2$$

约束函数为:

$$c_1(x) = -2 x_1 - x_2 + 2 \ge 0,$$

 $c_2(x) = x_2 - 1 \ge 0,$

目标函数的梯度为:

$$\nabla_x f(x) = \left[\begin{array}{c} 2 x_1 \\ 2 x_2 \end{array} \right]$$

约束函数的梯度为:

$$\nabla_x c_1(x) = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$$

$$\nabla_x c_2(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

相应的外罚函数为:

$$F(x,\sigma) = x_1^2 + x_2^2 + \sigma\{(\max\{2*x_1 + x_2 - 2, 0\})^2 + (\max\{-x_2 + 1, 0\})^2\}$$

1) 当 $c_1(x) = -2x_1 - x_2 + 2 \ge 0$, $c_2(x) = x_2 - 1 \ge 0$ 时, 计算得罚函数的梯度为:

$$\nabla_x F(x,\sigma) = \begin{bmatrix} 2 x_1 \\ 2 x_2 \end{bmatrix}$$

求解 $\nabla_x F(x,\sigma) = 0$ 得:

$$x_1 = 0$$
$$x_2 = 0$$

代入到相应的约束函数得:

$$c_1(x) = 2 \ge 0$$

 $c_2(x) = -1 < 0$

舍去

2) 当 $c_1(x) = -2x_1 - x_2 + 2 < 0, c_2(x) = x_2 - 1 \ge 0$ 时, 计算得罚函数的梯度为:

$$\nabla_x F(x,\sigma) = \begin{bmatrix} 2x_1 + 2\sigma (4x_1 + 2x_2 - 4) \\ 2x_2 + 2\sigma (2x_1 + x_2 - 2) \end{bmatrix}$$

求解 $\nabla_x F(x,\sigma) = 0$ 得:

$$x_1 = \frac{4\sigma}{1 + 5\sigma}$$
$$x_2 = \frac{2\sigma}{1 + 5\sigma}$$

代入到相应的约束函数得:

$$c_1(x) = 2 (1 + 5 \sigma)^{-1} > 0$$

舍去

3) 当 $c_1(x) = -2x_1 - x_2 + 2 \ge 0$, $c_2(x) = x_2 - 1 < 0$ 时, 计算得罚函数的梯度为:

$$abla_x F(x,\sigma) = \left[egin{array}{c} 2 \, x_1 \ \\ 2 \, x_2 + 2 \, \sigma \, \left(x_2 - 1
ight) \end{array}
ight]$$

计算得罚函数的海色矩阵为:

$$\nabla_{xx}^2 F(x,\sigma) = \begin{bmatrix} 2 & 0 \\ 0 & 2+2\sigma \end{bmatrix}$$

求解 $\nabla_x F(x,\sigma) = 0$ 得:

$$x_1 = 0$$
$$x_2 = \frac{\sigma}{1 + \sigma}$$

代入到相应的约束函数得:

$$c_1(x) = \frac{\sigma + 2}{1 + \sigma} \ge 0$$
$$c_2(x) = -(1 + \sigma)^{-1} < 0$$

$$x_1 = 0$$

 $x_2 = 1$

由海色矩阵的正定性知该解为全局最优解.

4) 当 $c_1(x) = -2x_1 - x_2 + 2 < 0$, $c_2(x) = x_2 - 1 < 0$ 时, 计算得罚函数的梯度为:

$$\nabla_x F(x,\sigma) = \left[\begin{array}{c} 2 x_1 + 2 \sigma (4 x_1 + 2 x_2 - 4) \\ 2 x_2 + 2 \sigma (2 x_1 + 2 x_2 - 3) \end{array} \right]$$

求解 $\nabla_x F(x,\sigma) = 0$ 得:

$$x_1 = \frac{2 \sigma (\sigma + 2)}{1 + 6 \sigma + 4 \sigma^2}$$
$$x_2 = \frac{\sigma (4 \sigma + 3)}{1 + 6 \sigma + 4 \sigma^2}$$

代入到相应的约束函数得:

$$c_1(x) = \frac{\sigma + 2}{1 + 6\,\sigma + 4\,\sigma^2} > 0$$

舍去