PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/31, 15/57, C12Q 1/68, C12N 1/21, 9/52, C07K 14/95, G01N 33/569, A61K 39/02

(11) International Publication Number: WO 96/17936

(43) International Publication Date: 13 June 1996 (13.06.96)

(21) International Application Number:

PCT/US95/16108

(22) International Filing Date:

11 December 1995 (11.12.95)

(30) Priority Data:

08/353,485

9 December 1994 (09.12.94)

US

- (71) Applicants: UNIVERSITY OF FLORIDA [US/US]; 186 Grinter Hall, Gainesville, FL 32611 (US). UAB RESEARCH FOUNDATION [US/US]; 1120 G Administration Building, 701 20th Street South, Birmingham, AL 35294 (US).
- (72) Inventors: PROGULSKE-FOX, Ann; Route 2, Box 2495, Melrose, FL 32666 (US). TUMWASORN, Somying; 52/13 Soi Kasetsart 2, Paholyothin 45, Bangkhon, Bangkok 10900 (TH). LEPINE, Guylaine; Apartment #307, 323 Niagara Boulevard, Fort Erie, Ontario L2A 3H1 (CA). HAN, Naiming. Apartment #241, 309 S.W. 16th Avenue, Gainesville, FL 32601 (US). LANTZ, Marilyn; 6622 Greenridge Drive, Indianapolis, IN 46278 (US). PATTI, Joseph, M.; 2751 Prichard Court, Missouri City, TX 77459 (US).

- (74) Agents: WHITLOCK, Ted, W. et al.; Saliwanchik & Saliwanchik, Suite A-1, 2421 N.W. 41st Street, Gainesville, FL 32606-6669 (US).
- (81) Designated States: AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW, SD, SZ, UG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: CLONED PORPHYROMONAS GINGIVALIS GENES AND PROBES FOR THE DETECTION OF PERIODONTAL DISEASE

(57) Abstract

DNA fragments from *Porphyromonas gingivalis* which express hemagglutinin/proteases that elicit anti-*P. gingivalis* immunologic responses are described. Microorganisms, genetically modified to express *P. gingivalis* antigens, are provided. Also disclosed are probes, vaccines, and monoclonal antibodies for the detection and prevention of periodontal disease.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	ЛР	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
СМ	Cameroon	ü	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	T.J	Tajikistan
DE	Germany	MC	Monaco	77	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali		
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MIN	workorg	VN	Viet Nam

DESCRIPTION

CLONED PORPHYROMONAS GINGIVALIS GENES AND PROBES FOR THE DETECTION OF PERIODONTAL DISEASE

5

The subject invention was made with government support under a research project supported by the National Institutes of Health Grant Nos. DE 07496 and DE 00336. The government has certain rights in this invention.

10

Cross-Reference to a Related Application

This is a continuation-in-part of co-pending application Serial No. 08/353,485, filed December 9, 1994, which is a continuation-in-part of application Serial No. 07/647,119, filed January 25, 1991; which is a continuation-in-part of application Serial No. 07/241,640, filed September 8, 1988, now abandoned.

15

Background of the Invention

Periodontal disease (PD) is a chronic inflammatory disease which results in the destruction of the supporting tissues of teeth. Although the specific microbial etiology of PD is not known, it is widely accepted that bacteria are the contributing agents of the disease.

20

The presence of a complex microflora in the subgingival crevice has complicated the identification of the specific etiologic agents of PD. However, it appears that a few genera, primarily gram-negative anaerobes, are associated with disease progression. Several lines of evidence strongly implicate the gram-negative anaerobic bacterium *Porphyromonas gingivalis*, previously known to those skilled in the art as *Bacteroides gingivalis*, as an etiological agent of adult periodontal disease (White, D., D. Mayrand [1981] "Association of Oral *Bacteroides* with Gingivitis and Adult Periodontitis," *J. Periodont. Res.* 1:1-18; Takazoe, L., T. Nakamura, K. Okuda [1984] "Colonization of the Subgingival Area by *Bacteroides gingivalis*," *J. Dent. Res.* 63:422-426. For example, relatively high proportions of *P. gingivalis* have been isolated from adult periodontitis lesions, patients with adult periodontitis have been found to have higher levels of IgG antibodies to *P. gingivalis* than do normal adults, and local immunity to *P. gingivalis* is greater in the more advanced cases than in the early forms of periodontal disease. *P. gingivalis* also appears to be a causative agent of experimental periodontitis in animals (Slots, J., E. Hausmann [1979] "Longitudinal Study of Experimentally Induced Periodontal Disease in *Macaca arctoides*: Relationship Between Microflora and Alveolar Bone Loss," *Infect. Immun.* 23:260-269). In

30

10

15

20

25

30

addition, P. gingivalis possesses a variety of suspected virulence factors such as proteases, collagenases, immunoglobulin degrading enzymes, and adhesins.

In order to exert their pathogenic effects, periodontopathic bacteria such as *P. gingivalis* must possess characteristics which enable them to colonize the host, survive in the periodontal pocket, possibly invade the gingival tissues, and to destroy the collagenous periodontal ligament, the alveolar bone, and other tissue components surrounding the tooth. Components of bacteria which mediate attachment to host tissues include surface structures such as fimbriae, capsular materials, lipopolysaccharides, and membrane-associated extracellular vesicles.

The hemagglutinating activity of *P. gingivalis* has been studied as a parameter that affects the adherence of this organism in the periodontal pocket. Sera from patients with adult periodontitis possess high antibody levels to the *P. gingivalis* hemagglutinin. It is thus suggested that the adhesive surface structures such as hemagglutinin participate in *P. gingivalis* colonization and antigenic stimulation of the host.

Investigations have reported the isolation of hemagglutinin activity from P. gingivalis. Boyd and McBride (Boyd, J., B.C. McBride [1984] "Fractionation of Hemagglutinating and Bacterial Binding Adhesins of Bacteroides gingivalis," Infect. Immun. 45:403-409) prepared an outer membrane component containing hemagglutinating activity from P. gingivalis W12. This preparation contained three major proteins with molecular weights of 69,000, 41,500, and 22,000. Inoshita et al. (Inoshita, E., A. Amano, T. Hanioka, H. Tamagawa, S. Shizukushi, A. Tsunemitsu [1986] "Isolation and Some Properties of Exohemagglutinin from the Culture Medium of Bacteroides gingivalis 381," Infect. Immun. 52:421-427) isolated hemagglutinating activity from culture supernatants of P. gingivalis 381. The isolated hemagglutinin component contains three major proteins with molecular weights of 24,000, 37,000, and 44,000. Okuda et al. (Okuda, K., A. Yamanoto, Y. Naito, I. Takazoe, J. Slots, R.J. Genco [1986] "Purification and Properties of Hemagglutinin from Culture Supernatant of Bacteroides gingivalis," Infect. Immun. 55:659-665) also purified a hemagglutinin of P. gingivalis 381 from culture supernatant which appears to have vesicle or tubelike structures and is comprised mainly of a 40,000 molecular-weight protein. Their recent report indicated that sera from most patients with adult periodontitis reacts to the hemagglutinin antigen at 43,000 and 57,000 molecular weights (Naito, Y., K. Okuda, I. Takazoe [1987] "Detection of Specific Antibody in Adult Human Periodontitis Sera to Surface Antigens of Bacteroides gingivalis," Infect. Immun. 55(3):832-834).

Recombinant DNA techniques have proven to be powerful tools for the study of pathogenesis. However, recombinant DNA techniques have been applied only sparingly to the study of gram-negative anaerobic pathogens and even less to the study of the molecular mechanisms of

periodontopathogenesis. The recombinant DNA methodologies offer advantages over previous methods used in the study of oral pathogens. For example, the cloning of *P. gingivalis* antigens allows for a genetic and molecular analysis of the gene(s) which presently is difficult due to the lack of knowledge about the genetic system in *P. gingivalis*.

5

10

Brief Summary of the Invention

Genes have been cloned and the proteins encoded thereby have been isolated from organisms associated with periodontal disease (PD). In particular, genes from *Porphyromonas gingivalis*, which is an etiological agent of adult PD have been identified, characterized, and sequenced. These genes have also been ligated to an appropriate vector and used to transform an appropriate host cell. The recombinant cells express antigens which elicit immunological responses. Antigens expressed by the *P. gingivalis* clones are also identified and described here.

The invention provides, *inter alia*, a means of detecting the presence of disease-causing *P. gingivalis*. The detection method involves the use of DNA probes and antibody probes which selectively identify the presence of these bacteria or can be used to identify other organisms, including other prokaryotes or eukaryotes, which have similar nucleic acid or amino acid sequences. Also provided are polypeptides which can be used for the production of antibodies to the organisms associated with PD. The antibodies selectively and specifically bind to the subject proteins and can be utilized in purification and identification procedures. These genes and polypeptides can be used as a vaccine against PD. Further, a means of producing monoclonal antibodies for the antigens associated with periodontal disease is also provided.

20

15

Brief Description of the Drawings

25

Figure 1 shows a schematic diagram of restriction enzyme recognition sites of recombinant plasmids from clones 2, 5, and 7. The solid lines represent *P. gingivalis* DNA inserts. The hatched boxes represent pUC9 regions.

Figure 2 shows a restriction map of a hemagglutinin gene, hagB. The hemagglutinin gene is contained on a *HindIII* fragment in pUC9.

30

Figure 3 shows a restriction enzyme map of cloned EcoRV fragments of P. gingivalis 381. The heavy shaded area designates the originally cloned ST2 fragment; the thin shaded area designates the amplified IPCR fragment.

Figure 4 shows the restriction enzyme map of the prtP gene. The top line represents the prtP gene sequence; the bottom line represents the gene product. Restriction sites shown are: B, BamHI; N, NspI; A, AspEI; S, SacI; X, XcmI. Fragments used as probes for Southern blot analyses

10

15

20

25

30

gene.

gene.

gene.

gene.

are shown as heavy bars below the DNA sequence and in the comparable position below the protein sequence. The DNA region homologous to IS1126 is underlined. Regions repeated within the protein are shown as identical boxes, and the Pro-Asn repeat region is indicated by an asterisk. Putative autodegradation cleavage sites and the signal peptide cleavage site are indicated below the gene product.

Brief Description of the Sequences

SEQ ID NO. 1 is the nucleotide sequence of the hemagglutinin gene designated hagA.

SEQ ID NO. 2 is the derived amino acid sequence of the polypeptide encoded by the hagA

SEQ ID NO. 3 is the nucleotide sequence of the hemagglutinin gene designated hagB.

SEQ ID NO. 4 is the derived amino acid sequence of the polypeptide encoded by the hagB

SEQ ID NO. 5 is the nucleotide sequence of the hemagglutinin gene designated hagC. SEQ ID NO. 6 is the derived amino acid sequence of the polypeptide encoded by the hagC

SEQ ID NO. 7 is the nucleotide sequence of the hemagglutinin gene designated hagD. SEQ ID NO. 8 is the derived amino acid sequence of the polypeptide encoded by the hagD

SEQ ID NO. 9 is the nucleotide sequence of the gene designated prtP.

SEQ ID NO. 10 is the derived amino acid sequence of the polypeptide encoded by the *prtP* gene.

SEQ ID NO. 11 is primer APF 147 used according to the subject invention.

SEQ ID NO. 12 is primer APF 148 used according to the subject invention.

SEQ ID NO. 13 is the nucleotide sequence for the entire hagA gene obtained from the EcoRV fragment of the P. gingivalis strain, according to the subject invention.

SEQ ID NO. 14 is the deduced amino acid sequence of the polypeptide encoded by the entire hagA gene.

SEQ ID NO. 15 is the nucleotide sequence of the first approximately 1.3 kb repeat sequence from hagA, designated HArep1

SEQ ID NO. 16 is the deduced amino acid sequence of the polypeptide encoded by *HArep1*. SEQ ID NO. 17 is the nucleotide sequence of the second approximately 1.3 kb repeat sequence from *hagA*, designated *HArep2*.

SEQ ID NO. 18 is the deduced amino acid sequence of the polypeptide encoded by HArep2.

10

15

SEQ ID NO. 19 is the nucleotide sequence of the third approximately 1.3 kb repeat sequence from hagA, designated HArep3.

SEQ ID NO. 20 is the deduced amino acid sequence of the polypeptide encoded by HArep 3.

SEQ ID NO. 21 is the nucleotide sequence of the fourth approximately 1.3 kb repeat sequence from hagA, designated HArep4.

SEQ ID NO. 22 is the deduced amino acid sequence of the polypeptide encoded by HArep4.

SEQ ID NO. 23 is a negative primer at 405 nucleotide (t) upstream of the 5' end of the ST 2 fragment used according to the subject invention.

SEQ ID NO. 24 is a positive primer at 529 nt 3' of the ST 2 fragment used according to the subject invention.

SEQ ID NO. 25 is the nucleotide sequence of the entire hagD gene.

SEQ ID NO. 26 is the deduced amino acid sequence of a polypeptide encoded by a first open reading frame of the entire hagD gene.

SEQ ID NO. 27 is the deduced amino acid sequence of a polypeptide encoded by a second open reading frame of the entire *hagD* gene.

SEQ ID NO. 28 is the nucleotide sequence of the hemagglutinin gene designated hagE.

SEQ ID NO. 29 is the deduced amino acid sequence of the polypeptide encoded by an open reading frame of the hagE gene.

20

25

30

Detailed Description of the Invention

The DNA sequences of the present invention comprise structural genes encoding proteins which can be involved in the pathogenesis of bacteria responsible for periodontal disease. The genes of the subject invention can be isolated from the DNA of *Porphyromonas gingivalis*. The genes of the subject invention are further characterized by determination of their nucleotide sequences. After obtaining the DNA, a gene library can be developed and the resulting DNA fragments inserted into suitable cloning vectors which are introduced into a compatible host. Depending on the particular host used, the vector can include various regulatory and other regions, usually including an origin of replication, and one or more promoter regions and markers for the selection of transformants. In general, the vectors will provide regulatory signals for expression, amplification, and for a regulated response to a variety of conditions and reagents.

Various markers can be employed for the selection of transformants, including biocide resistance, particularly to antibiotics such as ampicillin, tetracycline, trimethoprim, chloramphenicol, and penicillin; toxins, such as colicin; and heavy metals, such as mercuric salts. Alternatively, complementation providing an essential nutrient to an auxotrophic host can be employed.

Hosts which may be employed for the production of the polypeptides of the present invention include unicellular microorganisms, such as prokaryotes, *i.e.*, bacteria; and eukaryotes, such as fungi, including yeasts, algae, protozoa, molds, and the like. Specific bacteria which are susceptible to transformation include members of the Enterobacteriaceae, such as strains of *Escherichia coli*; Salmonella; Bacillaceae, such as *Bacillus subtilis*; Pneumococcus; Streptococcus; *Haemophilus influenzae*, and yeasts such as Saccharomyces, among others.

The DNA sequences can be introduced directly into the genome of the host or can first be incorporated into a vector which is then introduced into the host. Exemplary methods of direct incorporation include transduction by recombinant phage or cosmids, transfection where specially treated host bacterial cells can be caused to take up naked phage chromosomes, and transformation by calcium precipitation. These methods are well known in the art. Exemplary vectors include plasmids, cosmids, and phages.

Genomic libraries of P. gingivalis DNA were constructed in known plasmid expression vectors. For example, the plasmid expression vector, pUC9, contains the pBR 322 origin of replication, the pBR 322 ampicillin resistance gene, and a portion of the $lac\ Z$ gene of E. coli which codes for the α -peptide of β -galactosidase. The amino terminus of the $lac\ Z$ gene contains a polylinker region which has multiple unique cloning sites. Transformation of E. $coli\ JM109$, which is defective in β -galactosidase, with pUC9 complements the bacterial β -galactosidase activity, resulting in the ability of the bacterial cell to metabolize the lactose analog X-GAL to a blue color. Cloned DNA inserted in the polylinker region interrupts the $lac\ Z$ gene of the plasmid. Therefore E. $coli\$ transformants resulting from recombinant plasmids are unable to metabolize X-GAL and appear as white colonies on X-GAL containing plates.

E. coli clones were isolated which stably exhibited P. gingivalis antigen expression. These antigens were detected in intact cells both by filter-binding enzyme immunoassay and ELISA. One of these clones, clone 2, was found to encode a polypeptide with an average molecular weight of greater than 125 kD, seen in polyacrylamide gels and detected by Western blot analysis. This polypeptide was later determined to be greater than 144 kD. The entire hagA gene which was originally identified from clone 2 is now determined to encode a 283.3 kD protein. Expression of the P. gingivalis antigen in clone 2 occurs either in the presence or absence of IPTG but is enhanced by IPTG stimulation. The expression of the clone 3 antigen was also found to be stimulated by IPTG in the same manner as clone 2.

When antigen-expressing clones were surveyed for functional activities, clones 2, 5, and 7 were able to agglutinate crythrocytes whereas *E. coli* JM109 (pUC9) was not. The restriction maps and Southern blot hybridization of these clones indicated that clone 2 cells contain a *Porphyromonas*

10

5

15

20

25

10

15

20

25

DNA insert different from clones 5 and 7. Clone 5, which is also able to autoagglutinate, has a 760 bp DNA fragment in addition to a 4,800 bp fragment in common with the clone 7 insert. Subcloning of these two fragments in different orientations revealed that the 4,800 bp DNA encoded for the hemagglutinating activity and the 760 bp DNA for the autoagglutinating activity. Both fragments must contain a *Porphyromonas* promoter since the subclones with opposite orientations of the inserts still express functional proteins, indicating that antigen expression of clones 5 and 7 is not stimulated by IPTG.

Western blot analysis of clones 5 and 7 and minicell analysis of the subclones further revealed that the *P. gingivalis* DNA fragment encoded polypeptides of approximately 16 kD and approximately 49-50 kD. These polypeptides were sized using SDS-PAGE, under denaturing conditions. A native 49-50 kD protein was also purified by immunoaffinity chromatography. No other purified 49-50 kD protein associated with hemagglutination has been reported. Therefore, the 49-50 kD protein is a previously undetected surface antigen involved in hemagglutination.

E. coli adsorbed rabbit-polyclonal antibody against clone 2 was found to react with several bands in the P. gingivalis cell lysate preparation separated by SDS-PAGE. The most rapidly developing and strongest reaction appeared at two bands of 43 kD and 38 kD. Two bands of 32 kD and 30 kD appeared later and three faint bands of 110 kD, 90 kD and 75 kD sometimes were visible still later. This strongly suggests that the P. gingivalis hemagglutinin is expressed in clone 2.

E. coli adsorbed rabbit-polyclonal antibody against clones 5 and 7 also reacted with two bands of 43 kD and 38 kD, but barely reacted with the higher bands of 110 kD, 90 kD, and 75 kD, and did not react with the bands of 32 kD and 30 kD. Thus, clones 5 and 7 contain DNA inserts which are nonhomologous with clone 2 and express different antigenic epitopes, but all function as hemagglutinin. The clone 7 insert contains a Porphyromonas promoter but the clone 2 insert does not. An E coli host (clone 2) has been designated E coli pST 2 and deposited with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, MD 20852. Also, an E. coli host (clone 5) has been designated E. coli pST 5 and it, too, has been deposited with the ATCC. These deposits were assigned the following accession numbers:

	<u>Culture</u>	Accession number	Deposit date
30	E. coli pST 2	ATCC 67733	June 24, 1988
	E. coli pST 5	ATCC 67734	June 24, 1988

The subject cultures have been deposited under conditions that assure access to the cultures will be available during the pendency of this patent application to one determined by the

Commissioner of Patents and Trademarks to be entitled thereto under 37 CFR 1.14 and 35 U.S.C. 122. The deposits are available as required by foreign patent laws in countries wherein counterparts of the subject application, or its progeny, are filed. However, it should be understood that the availability of a deposit does not constitute a license to practice the subject invention in derogation of patent rights granted by governmental action. Further, the subject culture deposits will be stored and made available to the public in accord with the provisions of the Budapest Treaty for the Deposit of Microorganisms, *i.e.*, they will be stored with all the care necessary to keep them viable and uncontaminated for a period of at least five years after the most recent request for the furnishing of a sample of a deposit, and in any case, for a period of at least 30 (thirty) years after the date of deposit or for the enforceable life of any patent which may issue disclosing the cultures. The depositor acknowledges the duty to replace a deposit should the depository be unable to furnish a sample when requested. All restrictions on the availability to the public of the subject culture deposits will be irrevocably removed upon the granting of a patent disclosing them.

The novel genes disclosed and claimed herein can be probed out of the *E. coli* strains which have been deposited with the ATCC. The isolation of these genes can be performed using techniques which are well-known in the molecular biology art. The isolated genes can be inserted into appropriate vehicles which can then be used to transform another microbe.

It is well understood in the field of biotechnology that the subject genes and gene products have many valuable uses. For example, the genes themselves, and fragments thereof, which comprise particular nucleic acid sequences can be used to specifically and selectively hybridize to, or probe, other nucleic acid sequences to determine the presence of homologous sequences therein. This use of the subject nucleotide sequences, or fragments thereof, as probes can have advantageous applications in their use as a diagnostic tool, identifying organisms or other transformants that have nucleic acid sequences which are sufficiently homologous such that, using standard procedures and conditions, hybridization can occur between the test sequences and the probe. As used herein, substantial sequence homology refers to homology which is sufficient to enable the variant to function in the same capacity as the original probe. Preferably, this homology is greater than 50%; more preferably, this homology is greater than 75%; and most preferably, this homology is greater than 90%. The degree of homology needed for the variant to function in its intended capacity will depend upon the intended use of the sequence. It is well within the skill of a person trained in this art to make mutational, insertional, and deletional mutations which are designated to improve the function of the sequence or otherwise provide a methodological advantage.

In addition, the subject nucleotide and fragments thereof can be sequences useful as primers in the preparation and manufacture of sequences by polymerase chain reaction (PCR), inverse

5

10

15

20

25

polymerase chain reaction (IPCR), or other nucleic acid synthesis methods. Obviously, the subject genes and fragments can be useful for the production of the gene product, *i.e.*, the antigen or polypeptides encoded thereby.

Mutations, insertions, and deletions can be produced in a given polynucleotide sequence in many ways, and these methods are known to the ordinary skilled artisan. Other methods may be come known in the future.

The known methods include, but are not limited to:

- synthesizing chemically or otherwise an artificial sequence which is a mutation, insertion or deletion of the known sequence;
- (2) using a probe of the present invention to obtain via hybridization a new sequence or a mutation, insertion or deletion of the probe sequence; and
- (3) mutating, inserting or deleting a test sequence in vitro or in vivo.

It is important to note that the mutational, insertional, and deletional variants generated from a given probe may be more or less efficient than the original probe. Notwithstanding such differences in efficiency, these variants are within the scope of the present invention. Thus, mutational, insertional, and deletional variants of the disclosed sequences can be readily prepared by methods which are well known to those skilled in the art. These variants can be used in the same manner as the instant probes so long as the variants have substantial sequence homology with the probes.

The gene products can also have a variety of uses. For example, the antigens so produced by a gene in a transformed host can be useful in the production of antibodies to the antigen. Those antibodies can be used as probes, when labeled, or can be used in affinity separation techniques. These polypeptides can also be useful as molecular weight markers in chromatographic or electrophoretic procedures, or the like, where molecular weights are used to characterize an unknown polypeptide or identify or confirm the existence of a known polypeptide.

Following are examples which illustrate materials, methods and procedures, including the best mode, for practicing the invention. These examples are illustrative and should not be construed as limiting.

Example 1 - Preparation of chromosomal DNA

Porphyromonas gingivalis 381 obtained from a stock culture was grown on plates containing Trypticase soy agar (MBL Microbiology Systems, Cockeysville, MD) supplemented with sheep blood (5%), hemin (5 µg/ml), and menadione (5 µg/ml). The organism was also grown in 10

10

5

20

15

25

10

15

20

25

30

ml of Todd-Hewitt broth (BBL) supplemented with hemin (5 μg/ml), menadione (5 μg/ml) and glucose (2 mg/ml). Cultures were incubated in an anaerobic chamber in a N₂-H₂-CO₂ (85:10:5) atmosphere at 37°C until the log phase of growth was obtained. The 10 ml broth culture was transferred into 25 ml of the same medium and subsequently transferred to 500 ml of medium. Incubation was at 37°C anaerobically until a late log phase culture was obtained. *E. coli* JM109 [rec A1, end A1, gyr A96, thi, hsd R17 sup E44, rel A1, (lac-pro AN), (F;tra D36, proAB, lac IZ M15)] and the plasmid expression vector pUC9 have been described previously (Viera, J., J. Messing [1982] "The pUC Plasmids, an M13 mp 7-Derived System for Insertion Mutagenesis and Sequencing with Synthetic Universal Primers," Gene 19:259-268). *E. coli* JM109 was cultured in Luria-Bertani (LB) medium consisting of Bacto-tryptone (10 g/l), Bacto-yeast extract (5 g/l), and NaCl (5 g/l). For solid media, Bacto-agar was added at a final concentration of 15 g/l. *E. coli* JM109 transformants were selected and maintained on LB plates containing 50 μg of ampicillin/ml.

Next, chromosomal DNA from *P. gingivalis* 381 was prepared as follows: One to three liters of cells were pelleted by centrifugation and washed once with 1x SSC buffer (0.87% NaCl, 0.04% sodium citrate) containing 27% sucrose and 10 mM ethylenediaminetetraacetic acid (EDTA). The cells were pelleted and resuspended in 1/50 of the original volume of the same buffer at 4°C. Lysozyme (5 mg/ml) in SSC was added to 0.5 mg/ml; the mixture was mixed thoroughly and incubated at 37°C for 10 minutes. Nine volumes of 1% SSC containing 27% sucrose 10 mM EDTA and 1.11% SDS (prewarmed to 39°C) were added and the cell suspension was incubated at 37°C for 10 to 30 minutes until cell lysis was complete. In order to denature any contaminating proteins, proteinase K was added to a final concentration of 1 mg/ml and the lysate was incubated at 37°C for 4 hours. DNA was extracted twice with phenol, twice with phenol-chloroform (1:1 by volume), and four times with chloroform. Two volumes of absolute alcohol were added and the precipitated DNA was spooled onto a glass rod. The purified DNA was rinsed with 70% ethanol and suspended in TE buffer, pH 8.0 (10 mM Tris-HCl pH 8.0, 1 mM EDTA).

Alternatively chromosomal DNA was isolated from *P. gingivalis* 381 by a method of CTAB (hexadecyltrimethyl ammonium bromide)/CsCl ultracentrifugation. Briefly, 0.4-0.5 g wet cells was resuspended in 9.5 ml TE buffer (10 mM Tris/Cl, pH 8.0, 1 mM EDTA, pH 8.0), and then 0.5 ml of 10% SDS, and 50 µl of 20 mg/ml proteinase K were added and incubated for 1 hour at 37°C. Then 1.8 ml of 5 M NaCl and 1.5 ml CTAB/NaCl were added and incubated 20 minutes at 65°C. The mixture was extracted with Chloroform/isoamyl alcohol and precipitated with 0.6 volume isopropanol. DNA pellet was dissolved in 20 ml TE buffer and 20 g CsCl and 500 µl of 10 mg/ml ethidium bromide were added and centrifuged 30 minutes at 12,000 rpm using a Beckman GA-20 rotor. The supernatant was then centrifuged in a Beckman VTi50 rotor for 18 hours at 45,000 rpm.

10

15

20

25

30

DNA band was collected under long wave UV lamp and ethidium bromide was removed by water saturated butanol extraction and dialyzed against TE buffer thoroughly to remove CsCl.

Chromosomal DNA from the P. gingivalis strain W12 can be obtained by similar methods.

Example 2 - Isolation of Plasmid DNA and Construction of Genomic Libraries

Plasmid DNA was isolated by the method of Ish-Horowicz and Burke (Ish-Horowicz, D., J.F. Burke [1981] "Rapid and Efficient Cosmid Cloning," *Nucleic Acids Res.* 9:2989-2998) in which cells were lysed with SDS-EDTA in the presence of NaOH. Potassium acetate, pH 4.8, was added at 4°C and cell debris, protein, RNA, and chromosomal DNA were removed by centrifugation. The plasmid was precipitated with two volumes of ethanol, washed with 70% ethanol, dried, and resuspended in TE buffer at pH 7.5. The plasmid was separated from contaminating RNA and any remaining chromosomal DNA by cesium chloride density centrifugation in the presence of ethidium bromide. Ethidium bromide and cesium chloride were removed by butanol extraction and dialysis, respectively. The dialyzed plasmid was then phenol-chloroform extracted, ethanol precipitated, and resuspended in TE buffer.

Purified P. gingivalis DNA was then partially digested with Sau3A restriction endonuclease to create fragments of 2-10 kilobases which were ligated to the dephosphorylated BamHI site of vector pUC9 with T₄ DNA ligase by standard methods (Maniatis, T., E.F. Fritsch, J. Sambrook [1982] Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; Sambrook, J., E.F. Fritsch, T. Maniatis [1989] Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; and Wizard Mini-Prep Kit, Promega Co., Madison, WI). Genomic fragments were also obtained by partial digestion of the chromosomal DNA with HindIII restriction endonuclease and ligated to the dephosphorylated HindIII site of pUC9. The recombinant plasmids were used to transform E. coli JM109. E. coli JM109 was grown to an early log phase ($OD_{sso} = 0.2$) in LB broth. Ten ml of the culture were centrifuged at 5,000 rpm, for 5 minutes at 4°C and resuspended in 2 ml of transformation buffer 1 (TFM 1, 10 mM Tris-HCl, pH 7.5, 0.15 M NaCl). The cells were then pelleted and resuspended in 2 ml of TFM 2 (50 mM CaCl₂) and incubated on ice for 45 minutes. The cells were again pelleted and gently resuspended in 3 ml of TFM 2, and dispensed into 0.2 ml aliquots. One-tenth ml of TFM 3 (10 mM Tris-HCl, pH 7.5, 50 mM CaCl₂, 10 mM MgSO₄) was added to each aliquot followed by varying amounts of DNA. The cells were then allowed to incubate on ice for 45 minutes, and heat shocked at 37°C for 2 minutes. LB broth (0.5 ml) was added and the cell suspension was incubated at 37°C for 1 hour. Finally, the cells were plated on LB agar containing ampicillin (50 µg/ml) and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-GAL) (200 µg/ml) and incubated for 24 to

48 hours at 37°C. All transformants were stored at -70°C in LB broth with ampicillin (50 μg/ml) and 20% glycerol.

Example 3 - Preparation of Antisera and Assay of Antibody Titer

5

10

15

Late exponential phase cells of *P. gingivalis* strain 381 were pelleted, washed with 0.01 M phosphate-buffered saline (PBS) pH 7.2, and resuspended in PBS and 0.01 sodium azide at 4°C for at least 1 hour. The cells were again washed with PBS, resuspended to a concentration of 1 x 10° cells/ml and emulsified in an equal volume of Freund's incomplete adjuvant. The cell emulsion was injected in 3 doses at two week intervals for 4 weeks subcutaneously in the back of adult New Zealand rabbits. Each rabbit was given a booster dose 50 to 60 days later. Antisera were collected from the marginal ear veins just prior to immunization and beginning one week after the booster dose. All sera were stored at -20°C.

Rabbit anti-P. gingivalis antiserum was adsorbed 4 times with E. coli JM109 harboring pUC9 plasmid [E. coli JM109 (pUC9)]. For each adsorption, E. coli cells from 1 liter of a stationary phase culture were washed and mixed with 3 ml of serum at 4°C for 1 hour. The serum was recovered by pelleting the cells at 5,000 xg for 20 minutes. For sonicate adsorption, E. coli cells from 500 ml of stationary phase growth suspended in 5 ml PBS were disrupted by sonication and mixed with E. coli cell-adsorbed serum for 1 hour at 4°C. The mixture was centrifuged at 100,000 xg for 1 hour and the resulting clear serum was stored at -20°C.

20

Sera were then tested for anti-*P. gingivalis* and anti-*E. coli* activities by an enzyme-linked immunosorbent assay (ELISA). *P. gingivalis* cells suspended in carbonate-bicarbonate buffer, pH 9.6 (10⁸ cells per well) were fixed to microtiter plates at 4°C overnight. After the wells were washed with 0.5% "TWEEN-20" in PBS, 1% bovine serum albumin (BSA) in PBS was added to each well, and the plates were incubated for 2 hours at room temperature in order to saturate the binding sites. After washing the plates, serially diluted antiserum was added and plates were incubated for 1 hour at room temperature followed by a second wash with 0.5% "TWEEN-20" in PBS. Peroxidase conjugated goat anti-rabbit IgG, diluted 1:1000 in 1% BSA, was added and the plates were again incubated at room temperature for 1 hour. After a final washing, a color-forming substrate solution (0-phenylenediamine, 0.5 g/100 ml in 0.1 M citrate buffer, pH 4.5, and 1.8% hydrogen peroxide) was added, and the plates were incubated for 30 minutes at room temperature. The absorbance at 492 nm was measured with a Titertek Multiscan reader. An absorbance of 0.05 or more over background was considered positive. Background readings were obtained from the wells in which all reagents except anti-*P. gingivalis* antiserum was added. Normal rabbit serum was also tested

30

10

15

20

25

30

against P. gingivalis antigen. To test the effectiveness of adsorption, the titers of treated sera were assayed as described above except that E. coli JM109 (pUC9) whole cells were used as the antigen.

It was found that rabbit anti-P. gingivalis antiserum had an antibody titer of 1:64,000 to P. gingivalis and 1:160 to E. coli (pUC9), whereas normal rabbit serum had an antibody titer of 1:10 to P. gingivalis and 1:80 to E. coli (pUC9). Adsorption of anti-P. gingivalis antiserum with E. coli (pUC9) resulted in a slight reduction of antibody titer to P. gingivalis and reduced the anti-E. coli titer to zero or 1:10.

Example 4 - Filter-Binding Enzyme Immunoassay

Ampicillin-resistant transformants which formed white colonies in the presence of X-GAL were spotted onto LB agar plates with ampicillin, grown overnight, and blotted onto nitrocellulose filter disks. *P. gingivalis* and *E. coli* JM109 (pUC9) were also spotted onto each filter as a positive and negative control, respectively. Duplicate prints of the colonies on nitrocellulose filters were made and colonies on one of each duplicate print were lysed by a 15-minute exposure to chloroform vapor. Filters were then air dried for 30 minutes and soaked for 2 hours in PBS containing 3% BSA. After the filters were washed, adsorbed rabbit anti-*P. gingivalis* antiserum was added and the filters were incubated in a solution of peroxidase conjugated goat anti-rabbit immunoglobulin for 1 hour. After washing, the filters were developed in a color-forming substrate solution consisting of 0.06% 4-chloro-1-naphthol and 3% hydrogen peroxide in a 1:4 solution of methanol-TBS (50 mM Tris hydrochloride, 200 mM NaCl, pH 7.4). Clones which developed a blue color were picked and rescreened by the same procedure.

A total of 1,700 colonies of transformants resulting from *HindIII* restricted chromosomal DNA were tested for the expression of *P. gingivalis* antigens. Seven clones gave positive signals.

Example 5 - Restriction and Southern Blot Analysis of Recombinant Plasmids

To further confirm the positive results of the filter-binding enzyme immunoassay, plasmid DNA was isolated from each positive clone. Electrophoresis of these unrestricted plasmids showed that each clone contained only one recombinant plasmid.

Southern blot analysis was also performed to confirm that the DNA inserts were derived from the *P. gingivalis* DNA. Plasmids were isolated from all the clones that were positive in the filter-binding enzyme immunoassay. Restriction endonuclease digestions were performed under conditions described by the manufacturer to produce complete digestion. Agarose gel electrophoresis was performed as described by Maniatis *et al.* (1982, *supra*).

10

15

20

Recombinant plasmid and pUC9 vector DNAs were digested to completion with the appropriate restriction enzymes and run on a 1.2% agarose gel. P. gingivalis DNA partially digested with Sau3A, and HindIII-digested Eikenella corrodens clone 18 DNA were also loaded in the gel. The DNA was transferred to "BIODYNE" nylon membrane by Southern transfer (Southern, E.M. [1975] "Detection of Specific Sequences Among DNA Fragments Separated by Gel Electrophoresis," J. Mol. Biol. 98:503-517). P. gingivalis DNA partially digested with HindIII was nick translated with (α -32P dCTP) (400 Ci/mmol, Amersham Corp., Arlington Heights, Ill.) as described by Maniatis et al. (1982, supra). The membrane-bound DNA was hybridized to the nicktranslated probe at 42°C in 50% formamide for 16 hours by the method recommended by the manufacturer (Pall Ultrafine Filtration Corp., Glen Cove, NY) which was adapted from Wahl et al. (Wahl, G.M., M. Stern, G.R. Stark [1979] "Efficient Transfer of Large DNA Fragments from Agarose Gels to Diazobenzyloxy-Methyl-Paper and Rapid Hybridization by Using Dextran Sulfate," Proc. Natl. Acad. Sci. USA 76:3683-3687). The membrane was washed at room temperature in wash buffer (2 x SSC and 0.1% SDS) four times each for 5 minutes and twice at 50°C each for 15 minutes in 0.1 x SSC, 0.1% SDS. An autoradiogram was obtained with Kodak XAR-5 film (Eastman Kodak Co., Rochester, NY) and Cronex Quanta II intensifying screen (DuPont Co., Wilmington, DE).

Clones 1, 2, 4, 5, 7, and 8 were generated from *HindIII*-restricted chromosomal DNA. After digestion with *HindIII*, only clones 5, 6, 7, and 8 revealed fragments of the linear pUC9 vector and fragments of *P. gingivalis* DNA inserts. Plasmid DNAs of these clones were restricted with various enzymes and analyzed by gel electrophoresis. The estimated size of inserts of clones 5, 6, 7, and 8 are 5.5, 5.5, 4.8, and 3.5 kb, respectively (Table 1). Thus clones 5 and 6 were found to contain plasmids of the same size and identical restriction fragments.

Clone 3, which was constructed by ligation of Sau3A partially digested P. gingivalis DNA with BamHI cut pUC9, was restricted with Smal and Sall. Restriction analysis revealed a fragment of linear 9 bp-deleted pUC9 and 2 fragments of insert. Restriction analysis with different enzymes showed that the size of the insert of clone 3 was approximately 1.1 kb.

Although clones 1, 2, and 4 were generated from *HindIII* restricted DNA, they did not result in fragments of linear pUC9 after *HindIII* digestion. These cloned DNAs were then restricted with *PvuII*, which generates a 307 bp fragment containing the polylinker-cloning sites from pUC9. Clones 1, 2 and 4 revealed fragments of linear 307 bp-deleted pUC9 and inserts associated with the deleted fragment. These cloned DNAs were digested with various restriction enzymes and analyzed by agarose gel electrophoresis. The size of inserts of clones 1, 2, and 4 were found to be 3.2, 3.2,

30

10

20

25

30

and 3.3 kb, respectively (Table 1). Clones 1 and 2 also contained plasmids of the same size and identical restriction fragments.

Clara Na	Colonies reacted w	Size of B. gingivalis	
Clone No.	unlysed	lysed	DNA cloned (Kb)
1 and 2	4	+	3.2
3	+	+	1.1
4	+	+	3.3
5 and 6	+	+	5.5
. 7	+	+	4.8
8	_b •	+	3.5

Example 6 - Assay of the Titer of Anti-P. gingivalis Antiserum to E. coli Transformants Which Express P. gingivalis Antigens

Cultures of each representative clone were prepared by 100-fold dilution of overnight cultures and grown for 2 hours at 37°C. Isopropyl-β-D-thiogalactopyranoside (IPTG) was added to specific cultures at a final concentration of 1 mM and the cells were pelleted by centrifugation 4 hours later. The cells were washed, resuspended in 1/10 volume of PBS, and the optical density of each suspension was determined at 550 nm. Cell lysate antigen was prepared by breaking the cells with a sonicator. The protein concentration of each lysate was determined by the Bio-Rad protein assay (Bio-Rad Laboratories, Richmond, CA). Determination of the titer of anti-P. gingivalis 381 against these antigens was performed with the ELISA as described above (10⁸ cells or 1 μg protein per well). Normal rabbit serum exhaustively adsorbed with E. coli JM109 (pUC9) was also tested in the same manner.

Anti-P. gingivalis antiserum was able to detect antigen expression in all positive clones except clone 8 in an enzyme-linked immunosorbent assay (ELISA). The antiserum reacted with both whole cell and cell lysate antigens. Isopropyl-β-D-thiogalactopyranoside (IPTG) was not necessary to induce antigen expression. However, in the presence of IPTG, clones 2 and 3 showed higher antigen expression, especially when the cell lysate preparations were tested. These results are shown in Table 2.

b = Negative, not reactive

Table 2. Titer of anti-P. gingivalis antiserum against E. coli transformants which express P. gingivalis antigens

		Antibody titers' against test antigens ^b				
5	Oi	Whole o	ell	Cell L	ysate	
	Organism	IPTG-	IPTG⁺	IPTG-	IPTG⁺	
	Clone 1	320	NT°	320-640	NT	
	Clone 2	320	640	320-640	1280- 2560	
	Clone 3	20	160	40-160	1280	
0.	Clone 4	20-100	20-40	20-40	20-40	
	Clone 5	40-80	40-80	40-80	40-80	
	Clone 6	40	NT	40	NT	
	Clone 7	40	40	40	40	
	Clone 8	0	0	0	NT	
5	E. coli JM109 (pUC9)	0-10	0-10	0-10	0-10	
	P. gingivalis	40,960-64,000	NT	NT	NT	
	Control NRS ^d					

Number designates the reciprocal dilution of the sera which gave OD₄₇₂ reading of 0.05 or more over the background.

Antiserum was exhaustively adsorbed with *E. coli* JM109 (pUC9).

Antigens were prepared from cultures grown without IPTG (IPTG) or in the presence of IPTG (IPTG*).

Not tested.

Normal rabbit serum exhaustively adsorbed with E. coli JM109 (pUC9) did not react to test antigens.

25

30

Example 7 - Sodium Dodecvl Sulfate - Polyacrylamide Gel Electrophoresis (SDS-PAGE)

Five stable representative clones were analyzed for antigen expression by SDS-PAGE. Each of the representative antigen-producing clones was grown to mid-log phase in 3.0 ml of LB broth with 50 µg of ampicillin/ml. The cells were pelleted, washed with PBS, resuspended in 0.3 ml of sample buffer (62.5 mM Tris-hydrochloride, 5% 2-mercaptoethanol, 2% SDS, 10% glycerol, 0.002% bromphenol blue, pH 6.8), and boiled for three minutes. The *P. gingivalis* cell lysate was mixed with an equal volume of sample buffer and treated in the same manner.

SDS-PAGE was performed using a 12% polyacrylamide gel in a vertical slab gel electrophoresis tank (Hoefer Scientific Instruments, San Francisco, CA) as described by Laemmli (Laemmli, U.K. [1970] "Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4," *Nature* (London) 227:680-685). A whole cell preparation from clone 2 was

separated in a 5% SDS polyacrylamide gel and the expressed protein was initially estimated to have a molecular weight of more than 125 kD and later determined to be greater than 144 kD.

Example 8 - Assay for Removal of SHA Adherence Inhibition by Anti-P. gingivalis Antiserum

5

The expression of components detected by in vitro methods was subjected to further examination. The antigen-expressing clones described in the previous examples were tested for the expression of adhesins for saliva-treated hydroxyapatite (SHA adhesin). Anti-P. gingivalis 381 antiserum which inhibits the adherence of P. gingivalis 381 to SHA was adsorbed with each antigen-expressing clone until the titer of the antiserum to each clone was reduced to zero. Each adsorbed antiserum was tested for inhibition of P. gingivalis adherence to SHA.

10

Porphyromonas gingivalis 381 was cultured in Todd-Hewitt broth. E. coli transformants were cultured in LB medium containing 50 μg of ampicillin/ml by preparing 100-fold dilutions of overnight cultures followed by incubation for 2 hours at 37°C. IPTG was added to the cultures, when used at a final concentration of 1 mM, and the cultures were incubated for an additional 4 hours.

15

An assay for the removal of SHA adherence inhibition using anti-P. gingivalis antiserum was used to test for SHA adherence. In order to do this, aliquots of anti-P. gingivalis antiserum were adsorbed with each antigen-expressing clone as well as E. coli JM109 (pUC9). The titer of each adsorbed antiserum was tested against each clone and P. gingivalis whole cell antigen by ELISA as described above.

20

Whole paraffin-stimulated human saliva was collected and heated at 56 °C for 30 minutes to inactivate degradative enzymes. Extraneous debris and cells were removed by centrifugation at 12,000 rpm for 10 minutes and sodium azide was added to a final concentration of 0.04%.

25

Hydroxyapatite (HA) beads (BDH Biochemical, Lt., Poole, England) were treated as previously described (Clark, W.B., L.L. Bammann, R.J. Gibbons [1978] "Comparative Estimates of Bacterial Affinities and Adsorption Sites on Hydroxyapatite Surfaces," *Infect. Immun.* 19:846-853). Briefly, 10 mg of beads were washed and hydrated in distilled water in 250 µl plastic microfuge tubes followed by equilibrium overnight with adsorption buffer (0.05 M KCl, 1 mM K₂HPO₄, pH 7.3, 1 mM CaCl₂ and 0.1 mM MgCl₂). The beads were incubated with 200 µl of saliva for 24 hours at 4°C and then washed with sterile adsorption buffer to remove nonadsorbing material. Control tubes without HA were treated identically.

30

P. gingivalis 381 cells were labeled by growth to late log phase in medium supplemented with (3H) thymidine (10 mCi/ml). The cells were pelleted, washed twice in adsorption buffer, and dispersed with three 10-second pulses (medium power) with a microultrasonic cell disrupter.

The dispersed cells were mixed with each antiserum (1:100 dilution) and normal rabbit serum to a final concentration of 4×10^6 cell/ml. The cell-antiserum suspensions (200 µl) were then added to the SHA beads in microfuge tubes and the tubes were rotated in an anaerobic chamber for I hour. Labeled cells alone (no antisera) were treated in the same manner to determine the number of cells adhering to the SHA surface. A control tube containing cells but no SHA was tested to quantitate the amount of cells bound to the tubes rather than to the SHA. One hundred microliters of adsorption buffer containing unadhered cells was removed and placed in minivials containing 3 ml of aqueous scintillation cocktail (Amersham/Searle, Arlington Heights, IL), and counted with a scintillation counter (Model 455 Parkard Tricarb). Determination of the number of cells adhering to the SHA was done by subtracting the number of cells (no. of counts) in solution from the total number of cells (no. of counts) which did not adhere to the tube.

The results in Table 3 summarize the SHA inhibition data and indicate that the antiserum adsorbed with each antigen-expressing clone still inhibited the adherence of P. gingivalis.

Inhibitor and dilution		% adherence*	% inhibition
None		83.85	-
Normal rabbit serum	1:100	80.08	0.05
Antiserum unadsorbed	1:100	22.70	72.15
Antiserum adsorbed with:			
E. coli JM109 (pUC9)	1:100	21.57	73.07
Clone 2	1:100	10.73	86.59
Clone 3	1:100	22.60	71.78
Clone 4	1:100	16.24	79.71
Clone 5	1:100	27.37	65.82
Clone 7	1:100	19.90	75.15

"Percent adherence was calculated from the following formula: % adherence = [(cpm from tube without SHA - cpm from tube with SHA)/(cpm from tube without SHA)] x 100.

Percent inhibition was calculated from the following formula: % inhibition = [1 - (% adherence in the presence of antibody /% adherence in the absence of antibody)] x 100.

Example 9 - Direct Hemagglutination Assay

The rationale to identify the clones which express hemagglutinin were analogous to those described for the SHA adhesin. The anti-P. gingivalis antiserum adsorbed with each antigenexpressing clone and E. coli JM109 (pUC9), as described for the SHA assay, were tested for removal of hemagglutination inhibition activity of anti-P. gingivalis antiserum. Since it is necessary

10

5

30

10

15

20

25

30

to determine the minimum number of *P. gingivalis* cells which produce hemagglutinin before performing the hemagglutination inhibition assay, a direct hemagglutination assay of antigen-expressing clones together with *P. gingivalis* was first performed.

A direct hemagglutination assay was used to test for adhesion to erythrocytes. The hemagglutination assays were carried out in V-bottom microtiter plates (Dynatech Laboratories, Inc., Alexandria, VA). Erythrocytes (sheep or human group O) were washed three times with PBS (0.02 M phosphate buffered saline), pH 7.2, and resuspended to a final concentration of 0.2% (v/v). Cells of *P. gingivalis* and antigen-expressing clones were washed twice in PBS and resuspended to an optical density of 0.5 and 2.0, respectively, at 660 nm. The cell suspensions were diluted in a twofold series with PBS and 0.05 ml of the suspensions were added to the wells. *E. coli* JM109 (pUC9), which was prepared in the same manner as the antigen-expressing clones, was included as a control. An equal volume (0.05 ml) of washed erythrocytes was added and mixed with the bacterial cells. The plates were stored for 16 hours at 4°C and then examined for evidence of hemagglutination as follows. Agglutinated erythrocytes will settle as clumps which will be dispersed throughout the bottom of the wells, resulting in a pinkish-red coating of each well. In the absence of hemagglutination, the erythrocytes will settle on the bottom of the well as a central, smooth, bright red round disk. The titer was expressed as the reciprocal of the highest dilution showing positive agglutination.

The hemagglutination inhibition assay was also carried out in V-bottom microtiter plates. P. gingivalis cell suspensions in PBS were adjusted to the optical density of 0.5 at 660 nm. Each antiserum examined for hemagglutination inhibition activity was diluted twofold in a series of wells. Fifty microliters of the bacterial suspension containing twice the minimum number of cells which produced hemagglutination was then added to each well. After incubation with gentle shaking at room temperature for 1 hour, 0.05 ml of the washed erythrocytes were added to each well and mixed. The plates are left for 16 hours at 4°C and read for hemagglutination as described above for the hemagglutination assay. The titer was expressed as the reciprocal of the highest dilution showing hemagglutination inhibition.

E. coli transformants which were able to agglutinate erythrocytes were grown in LB broth containing ampicillin as described above. Two rabbits were injected with each clone as previously described. Sera were exhaustively adsorbed with E. coli JM109 (pUC9) and tested for anti-P. gingivalis activity by ELISA.

Anti-clone 2 antiserum diluted 1:10 was separately adsorbed with *P. gingivalis*, *E. coli* JM109 (pUC9), and clones 2, 5, and 7. Washed stationary phase cells of each bacterial culture were prepared as described above. For each adsorption, 10⁷, 10⁸, 10⁹ and 10¹⁰ bacterial cells were mixed

BNSDOCID: <WO 9617936A2 1 >

with 200 µl of serum and the suspensions were stored at 4°C overnight. The sera were recovered by centrifugation at 12,000 xg for 10 minutes. Each adsorbed antiserum was assayed by ELISA to determine the titer to *P. gingivalis*.

The direct hemagglutination assay of these clones demonstrated that clones 2, 5, and 7 did agglutinate sheep erythrocytes, whereas *E. coli* JM109 (pUC9) did not. The hemagglutination titer of clone 2 was 2 and that of clones 5 and 7 agglutinated erythrocytes at the undiluted suspension. In addition, clone 5 was found to auto-agglutinate when resuspended in PBS, pH 7.2.

Example 10 - DNA Restriction Mapping and Characterization Procedures

10

15

5

Restriction endonuclease digestions of the recombinant plasmids from clones 2, 5, and 7 were performed according to manufacturer's directions. Clone 5 DNA was digested with *HindIII* and two fragments of *P. gingivalis* inserts were isolated from agarose gels by the method of Zhu *et al.* (Zhu, J.W. Kempenaers, D. Van der Straeten, R. Contreras, W. Fiers [1985] "A Method for Fast and Pure DNA Elution from Agarose Gels by Centrifugal Filtration," *Biotech.* 3:1014-1016) employing centrifugal filtration of DNA fragments through a Millipore membrane inside a conical tip. The DNA preparations were extracted with phenol-chloroform, precipitated with ethanol and resuspended in TE, pH 8.0. Each DNA fragment was ligated to *HindIII*-digested pUC9 and the resulting recombinant plasmids were transformed into competent *E. coli* JM109 cells as described previously. Recombinant plasmids from these transformants were isolated by rapid plasmid DNA isolation (Silhavy, T.J., M.L. Berman, L.W. Enquist [1984] *Experiments with Gene Fusions*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), digested with appropriate restriction endonucleases, and analyzed by agarose gel electrophoresis.

20

25

The recombinant plasmids of clones, 2, 5, and 7 were restricted with several restriction endonucleases and analyzed in 1.2% agarose gels. A schematic diagram of restriction enzyme recognition sites of these three clones is detailed in Figure 1. These data show that the clone 2 insert is different from that of clones 5 and 7, whereas clones 5 and 7 have one insert fragment in common. The restriction map of clone 2 revealed that the *HindIII* site of the DNA insert at the amino terminal end of the β-galactosidase gene was still intact, but a deletion occurred at the other end of the insert and included most of the linker. The linker region with recognition sites of *PstI*, *SalI*, *BamHI* and *Smal* was deleted but the *EcoRI* site was still intact as well as other sites upstream such as *PvuII* and *NarI*.

30

To further confirm the results of the restriction maps, ³²P-labeled clone 7 recombinant DNA was used as a probe for hybridization of restricted recombinant plasmids by Southern blot analysis. Clone 2 DNA restricted with *HindIII*, *EcoRI*, and *Smal* resulted in DNA fragments of pUC9 and four

10

15

20

25

30

pieces of insert of approximately 1,400, 1,300, 420, and 150 bp. Clone 5 DNA restricted with HindIII resulted in fragments of pUC9 and two pieces of insert approximately 4,800 and 760 bp. Fragment bands of pUC9 and inserts of approximately 2,800, 2,000, and 760 bp were generated from digestion of clone 5 DNA with HindIII and BamHI. Clone 7 DNA restricted with HindIII alone and HindIII together with BamHI resulted in pUC9 and an insert of 4,800 bp, and pUC9, insert of 2,800 and 2,000 bp, respectively.

Hybridization of these transferred restricted DNAs demonstrated that the clone 7 probe hybridized to pUC9 and the common insert of clones 5 and 7 but not to the insert of clone 2.

Clone 5 was found to agglutinate erythrocytes and autoagglutinate, while clone 7 was only able to agglutinate erythrocytes. Clone 5 has an insert of 760 bp in addition to the common insert of 4,800 bp of clone 7. This data suggested that the 760 bp insert might encode for the autoagglutinating activity and the 4,800 bp fragment for the hemagglutinating activity of clone 5. The recombinant plasmid of clone 5 was thus digested with *Hind*III to generate pUC9 and inserts of 4,800 and 760 bp. Each insert band was isolated from these transformants and digested with restriction endonucleases. Subclones with different orientations of the insert were obtained. Subclones of 760 bp inserts were designated clone 5.1 and 5.2 and the subclones of 4,800 bp inserts, clone 5.3 and 5.4. Recombinant plasmids of clones 5.1 and 5.2 digested with *Hind*III did result in pUC9 and the 760 bp inserts, and different patterns of restricted DNAs were seen when digested with *Sal*I. *Hind*III-restricted recombinant plasmids of clones 5.3 and 5.4 revealed pUC9 and inserts of 4,800 bp, while *Eco*RI-restricted recombinant plasmids showed different patterns. Both clones 5.1 and 5.2 were able to autoagglutinate when resuspended in PBS, pH 7.2, but could not agglutinate erythrocytes. Clones 5.3 and 5.4 were both able to agglutinate erythrocytes but did not autoagglutinate.

Example 11 - Identification and Characterization of Gene Products by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE). Western Blot, Minicell Analysis, and Immunoaffinity Chromatography

P. gingivalis cell lysate and cells of E. coli transformants were prepared and analyzed by SDS-PAGE as described above and Western blot as described by Burnette (Burnette, W.N. [1981] "Western Blotting: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to radiographic detection with antibody and radioiodinated protein A," Anal. Biochem. 112:195-203). Antisera to clones 2, 5, and 7 exhaustively adsorbed with E. coli JM109 (pUC9) were used as probes in the Western blot. Control antisera included anti-clone 2 antiserum also adsorbed with

10

15

20

P. gingivalis at the ratio of 10^{10} cells per 100 μ l of antiserum, and antiserum to E. coli JM109 harboring pUC9 with Eikenella corrodens DNA insert.

Upon Western blot analysis of clone 2, a protein antigen of approximately 125 kD and a smear of lower molecular weight were detected using *E. coli* adsorbed anti-*P. gingivalis* antiserum but no corresponding antigens expressed in clones 5 and 7 were detected by Western blot analysis. Clones 5 and 7 did, however, express a protein detected as a major band of approximate M.W. 49-50 kD by Western blot analysis and revealed an additional minor band of 27 kD upon minicell autoradiography.

For the identification of clones 5 and 7 gene products, the minicell procedure was used as described by Clark-Curtiss et al. and Dougan et al. (Clark-Curtiss, J.E., R. Curtiss III [1983] "Analysis of Recombinant DNA Using Escherichia coli Minicells," Methods Enzymol. 101:347-362; Dougan, G., M. Kehoe [1984] "The minicell system as a method for studying expression from plasmid DNA," Methods Microbiol. 17:233-258). Recombinant plasmids were transformed into E. coli as previously described. Transformants were selected on LB plates containing 50 µg/ml ampicillin and 10 mM isopropyl-β-D-thiogalactopyranoside (IPTG). Colonies were streaked for isolation and grown overnight at 37°C in BSG (phosphate-buffered saline + 0.01% gelatin) containing 50 µg/ml ampicillin. Minicells were then isolated by sequential low speed centrifugation, high speed centrifugation of the low speed supernatant fluid, and centrifugation through a 5-30% (w/v) sucrose gradient. The sucrose gradient centrifugation was repeated at least once. The minicells were collected and diluted twofold in BSG, pelleted by centrifugation at 10,000 rpm for 10 minutes, and the resulting pellet was resuspended in minicell labeling medium containing no methionine. After incubation of the minicell suspension for 10 minutes at 37°C, 10 µCi of 35Smethionine were added. Following a 15 minute incubation, the cells were chilled for 10 minutes on ice and pelleted by a two minute centrifugation in a microfuge. The cell pellets were then processed for SDS-PAGE. Autoradiography was performed on 35S-methionine labeled minicell preparations which were electrophoresed on a 12% SDS-PAGE.

In order to determine the native *P. gingivalis* antigens which clone 2 expressed, antisera against clone 2 were made in rabbits for use as a probe in Western blot analysis. Pooled anti-clone 2 antiserum had a titer of 1:16,000 against *P. gingivalis* whole cell antigen. This antiserum was adsorbed exhaustively with *E. coli* JM109 (pUC9) until the anti-*E. coli* titer was reduced from 1:50,000 to 1:10 in the *E. coli* whole cell ELISA. The adsorbed antiserum, diluted to 1:200, was used as a probe to detect antigens separated in a 12.5% SDS polyacrylamide gel and transferred to a nitrocellulose sheet. This antiserum reacted with two major bands of approximately MWs 43,000 and 38,000 and two bands of MWs 32,000 and 30,000 in *P. gingivalis* cell lysate antigen and the

30

10

15

20

25

30

125 kD protein band of expressed antigen in clone 2. Normal rabbit serum reacted to a common 40,000 molecular weight band of all the clones and E. coli JM109 (pUC9).

In order to prove that the *P. gingivalis* reactive polypeptides are exclusively *P. gingivalis* proteins, the native *P. gingivalis* antigens were reacted to *E. coli* adsorbed anti-clone 2 antiserum, *P. gingivalis* cell lysate antigen and clone 2 whole cell antigen were again separated in 12.5% SDS-polyacrylamide gel. Upon transfer to a nitrocellulose sheet, each was reacted with (1) *E. coli* adsorbed anti-clone 2 antiserum, (2) *P. gingivalis* adsorbed anti-clone 2 antiserum, and (3) antisera to *E. coli* JM109 harboring pUC9 with an *Eikenella corrodens* DNA insert. *E. coli* adsorbed anti-clone 2 reacted to *P. gingivalis* cell lysate at two major bands of MWs 43,000 and 33,000, two bands of MWs 32,000 and 30,000 and three faint bands of higher molecular weight of approximately 110,000, 90,000 and 75,000 daltons. This adsorbed antiserum also reacted to a band of expressed antigen having a molecular weight greater than 125 kD in clone 2.

To define the native *P. gingivalis* antigens which clones 5 and 7 expressed, antisera against clones 5 and 7 were also made in rabbits and had titers of 1:800 and 1:1,600 to *P. gingivalis* antigens. These antisera exhaustively adsorbed with *E. coli* were used to identify the reactive native *P. gingivalis* antigens. Antisera against clones 5 and 7 at the dilution of 1:5 and 1:10 were found to react with two bands of approximately 43,000 and 38,000 daltons in *P. gingivalis* cell lysate antigen preparation but did not react to the expressed clone 2 antigen. This antiserum also reacted to a common band of approximately 36,000 daltons of *E. coli* antigen in each clone and *E. coli* JM109 (pUC9). Normal rabbit serum did not react to any *P. gingivalis* antigens.

Immunoaffinity chromatography was used to identify and purify the native *P. gingivalis* gene product and to verify that inserts of clones 5 and 7 contained the entire gene. Immune rabbit IgG was purified via DEAE cellulose. Following the precipitation of IgG by the addition of saturated ammonium sulfate to the sera, the IgG was coupled to "AFFI-GEL" (Bio-Rad Laboratories, Richmond, CA) by incubation for two hours at room temperature and overnight at 4°C. The coupled material was then used to prepare a 3 cm³ column. After the column was washed extensively with 0.02 M phosphate buffer, pH 8.0, 1-2 ml of *P. gingivalis* 381 sonicate containing 18 mg/ml protein were added and run through the column using a peristaltic pump generating a flow rate of 20 ml/hr. The column cluate was monitored for absorbance at 280 nm. The column retentate was cluted from the column by addition of 0.1 M glycine, pH 2.5. The recovered retentates were concentrated by centrifugation through a molecular weight cut-off filter, pressure concentration in an Amicon filter (Amicon, Danvers, MA), lyophilization, or a combination of the above. When a *P. gingivalis* 381 cell lysate was applied to an affinity column containing anti-clone 7 rabbit IgG,

10

and the retained antigenic peptides were eluted and analyzed by SDS-PAGE, a major band at 49-50 kD was evident.

Example 12 - Determination of the Relationship Between the Expressed Antigens of Clones 2, 5 and 7

Although antisera against clones 2, 5, and 7 reacted to *P. gingivalis* cell lysate at two major bands of 43,000 and 38,000 MWs, *E. coli* adsorbed anti-clone 2 antiserum also reacted to the greater than 125 kD protein band synthesized in clone 2. However, *E. coli* adsorbed anti-clone 5 and anti-clone 7 antisera did not react to this expressed antigen band of clone 2.

To further define the relationship of the epitopes of the expressed antigen in clone 2 from that of clones 5 and 7, adsorption of anti-clone 2 antiserum with several antigens was performed and each adsorbed anti-clone 2 antiserum was tested for its titer to *P. gingivalis* whole cell antigen by ELISA. The antibody titer to *P. gingivalis* of anti-clone 2 antiserum was removed in a dose response manner by adsorption with *P. gingivalis* and clone 2 cells. Adsorption with *E. coli* JM109 (pUC9), clone 5 or clone 7 did not reduce the antibody titer to *P. gingivalis* of anti-clone 2 antiserum.

The ability of antisera to *P. gingivalis* and hemagglutinable *E. coli* to inhibit the hemagglutinating activity of *P. gingivalis* was determined and is summarized in Table 4. All antisera inhibited *P. gingivalis* hemagglutination at titers four to eight times that of normal rabbit sera.

20

15

Table 4. Inhibition of hemagglutinating activity of *P. gingivalis* by anti-hemagglutinating *E. coli* antisera.

	Antiserum	Hemagglutination inhibition titer
	Anti-P. gingivalis	
25	unadsorbed	640
	adsorbed with E. coli JM109	
	(pUC9)	640
	Normal rabbit serum	160
	Anti-clone 2	320-640
30	Preimmune	80
	Anti-clone 5	160
	Preimmune	40
	Anti-clone 7	160
	Preimmune	40

"Normal rabbit serum and preimmune sera titers are from each particular group of rabbits.

10

15

20

25

30

Example 13 - DNA Sequencing of P. gingivalis Hemagglutinin Genes

The P. gingivalis 381 chromosome contains at least five genes which encode hemagglutinin. The P. gingivalis genes encoding hemagelutinin proteins have been designated hagA, hagB, hagC, hagD, and hagE. Genes encoding hemagglutinins were cloned using standard procedures as described above or with minor modifications as readily recognized and understood in the art. Plasmid DNA was isolated from the transformed hosts by a rapid method wherein DNA samples for sequencing were prepared by alkaline-lysis/PEG precipitation method. Briefly, transformed E. coli JM 109 cells growing in 50 ml Terrific broth with ampicillin were collected (ca. 0.5 g wet weight) and resuspended in 2 ml of 50 mM glucose, 25 mM Tris/Cl (pH 8.0), and 10 mM EDTA (pH 8.0). A freshly prepared 4 ml solution of 0.2 N NaOH, 1% SDS was added and left on ice for 10 minutes. Then 3 ml of ice-cooled potassium acetate solution was added and left on ice for 10 minutes. The mixture was centrifuged 30 minutes at 9,000 rpm at 4°C and RNase A was added to a final concentration of 20 µg/ml to the supernatant and incubated for 20 minutes at 37°C. The mixture was extracted thoroughly with chloroform/isoamyl alcohol. An equal volume of isopropanol was added to precipitate DNA, left for 10 minutes at room temperature, and centrifuged for 30 minutes at 9,000 rpm at room temperature. The DNA pellet was dissolved in 3.36 ml of H₂O. Then 0.64 ml of 5 M NaCl and 4 ml of 13% PEG 8000 (polyethylene glycol, Sigma) were added and left on ice for more than 1 hour. After centrifugation for 15 minutes at 9,000 rpm at 4°C, the DNA pellet was dissolved in sterilized water. By this method, 200 to 400 µg of highly purified plasmid DNA can be obtained in one day.

A. Characterization of the hagA gene and gene product. The hemagglutinin gene designated hagA was obtained from the P. gingivalis 381-derived clone ST 2, and was determined to be more than 4500 bp in length. The sequence of the ST2-derived DNA sequence is shown in SEQ ID NO.

1. The open reading frame (ORF) of the hagA gene from clone 2 was determined to encode a polypeptide of at least 1339 amino acids, and >144 kD. The derived amino acid sequence encoded by the hagA gene from clone 2 is shown in SEQ ID NO. 2. A 10,119 bp EcoRV fragment was cloned that included an additional 338 bp of upstream sequence. The complete open reading frame (ORF) of hagA was found to be 7,887 bp in length (bases 365 to 8251 of the EcoRV fragment), encoding a protein of 2,628 amino acids with a molecular weight of 283.3 kD. The nucleotide and deduced amino acid sequences of the entire hagA gene are shown as SEQ ID NO. 13 and SEQ ID NO. 14, respectively. It was initially found that the hagA sequence has an approximately 1.1 kb repeating unit which repeats at least four times and may repeat as many as six times, with only minor differences in the repeat unit. Further analysis confirmed that the hagA gene has four large contiguous direct repeats totalling 5,404 bp in length, each ranging from 1,318 to 1,368 bp in length.

Specifically, these approximately 1.3 kb repeat fragments, collectively referred to hereinafter as *HArep*, are (referring to bp number of *Eco*RV fragment): *HArep1*, bp 1862-3211 (SEQ ID NO. 15); *HArep2*, bp 3212-4579 (SEQ ID NO. 17); *HArep3*, bp 4580-5947 (SEQ ID NO. 19); and *HArep4*, bp 5948-7265 (SEQ ID NO. 21). The deduced amino acid sequences for the nucleotide repeat fragments *HArep1*, *HArep2*, *HArep3*, and *HArep4* are shown as SEQ ID NOS. 16, 18, 20, and 22, respectively. This repeat unit has been shown to have hemagglutinin activity. The results of the hemagglutinin assay for strains having varying numbers of *HArep* repeat units are shown in Table 5, below.

10

5

Table 5. Hemagglutinin titer			
Strain	No. of <i>HArep</i>	A ₆₆₀	HA titer
381 (wild-type strain)	>4	0.13	1/128
pNH9	1	3	1/8
pNH1	2	0.85	1/64
E. coli	0		

15

20

When compared with that of hagA, several reported protease genes were found to contain at least one copy of the HArep sequence. For example, prtH, a gene encoding a C3 protease cloned from strain W83, shares a region of 271 amino acids with 95.6% homology to hagA. Rgp-1, the arginine-specific cysteine protease/hemagglutinin gene cloned from strain H66, contains a 522amino acid region with 93.1% homology, as well as prtR cloned from strain W50. Agp, cloned from strain 381 by Okamoto et al., and prpR, cloned by Curtis et al., which are identical genes to rgp-1 isolated from different strains, each contain one HArep sequence of hagA. An additional gene, agp, which is missing a 713-amino acid internal portion of rgp-1, also contains one HArep sequence. In addition, prtP, a cysteine protease/hemagglutinin gene cloned from strain W12 and described herein, has an 849-amino acid C-terminal region which shares 92.2% homology to hagA, with the last 253 amino acids (almost half of the length of the prtP gene) absolutely identical. Tla, another protease gene cloned from strain W50 by Curtis et al., has a 789-amino acid C-terminal region with 95.2% homology to hagA, with the last 171 amino acids completely identical. This 171-amino acid region constitutes almost three-fourths of the length of the TLA gene. In addition, hagD, a fourth hemagglutinin gene cloned from strain 381, described hereinbelow, has a 523-amino acid region with 92.7% homology, as well as the 3' 72-amino acid with 98.6% identity to hagA. HagE, an additional hemagglutinin gene cloned from strain 381, also described hereinbelow, contains a 518-

30

amino acid region with 92.3% homology to hagA. Without exception, these high homology regions of each of these genes are within or extend from the repeat region of hagA. The hagA is a central member of a multigene family which share the HArep sequence.

In addition, each of these genes contains a common 72-amino acid C-terminus with hagA (81.9 to 100% homology), except for prtH, in which this region is located in the middle of the gene.

A search through the National Center for Biotechnology Information Database using the GENINFO Experimental Blast Network Service revealed no significant homology of hagA to any other sequences in the databases except for the Mycoplasma gallisepticum hemagglutinin genes (pMGA) and the circumsporozoite protein genes of Plasmodium falciparum. These genes were found to have homology to hagA in very short regions (9 of 13 amino acids for the circumsporozoite protein of P. falciparum and 11 of 14 amino acids for pMGA of M. gallisepticum).

To ensure that the complete hagA gene sequence was isolated from clone 2, chromosome DNA samples were digested by restriction enzymes which did not cut the original cloned fragment clone 2, including AccI, AseI, (Biolabs) VspI (the isoschizomer from Promega), BcII, BgIII, BstXI, DraI (BRL), EcoRV, NruI (Stratagene), PstI, PvuII, SaII, SphI, SspI, SstI (Sigma), StuI, and XhoI. The digested fragments were transferred to positive-charged nylon membranes (Boehringer Mannheim Biochemicals, Indianapolis, IN) by capillary transfer method. The whole ST2 fragment was labeled and detected by nonradioactive Genius Kit (Boehringer Mannheim Biochemicals). Alternatively, a region of the first 394 bp of clone 2, which is distant from the repeat sequence region, was labeled using the nonradioactive DIG DNA Labeling and Detection Kit (Boehringer Mannheim) and used as a probe to detect the bound DNA fragments on the nylon membrane. The results were made visible on X-Ray films by Lumi-phos 530 system (Boehringer Mannheim Biochemicals).

Inverse polymerase chain reaction (IPCR) was employed to determine the complete sequence of a gene, and was used to obtain the flanking 5' and 3' sequences and thus the entire nucleotide sequence of the *hagA* gene. To carry out the IPCR procedure, two 18-mer oligo primers, negative primer at position nt 224 and positive primer at position nt 2032, were chosen and synthesized at University of Florida DNA Synthesis Core Lab. In addition, a negative primer at 405 nucleotide (t) upstream of the 5' end of the ST 2 fragment (GGC AAA CCA AAA AGA TTC, SEQ ID NO. 23) and a positive primer at 529 nt 3' of the ST 2 fragment (TTC TTC CAA CGA CTA CAC, SEQ ID NO. 24) were selected and synthesized at the University of Florida DNA Synthesis Core Facility.

The total Asel (VspI) digested fragments and the 3-7 kb fragments extracted from agarose gel were self-ligated at a DNA concentration of 1-10 ng/µl with 1 U of T4DNA ligase (Promega)

15

10

5

. 20

25

per 50 µl reaction mixture for 16 hours at 16°C, respectively. Then, the ligation mixture was heated for 15 minutes at 65° and extracted with phenol/chloroform, chloroform, precipitated with ethanol and resuspended in sterilized distilled water. IPCR reactions were performed in 2 steps: first, the self-ligated DNA sample in buffer was heated for 30 minutes at 94°C; then, Taq polymerase (Promega) was added and cycled using a PTC-100 Programmable Thermal Controller (MJ Research, Inc., Watertown, MA). We used 35 cycles of denaturation at 94°C for 1 minute, primer annealing at 52°C for 1 minute, and extension at 72°C for about 5 minutes.

The amplified mixture was extracted with phenol/chloroform, chloroform and electrophoresed at 1% low melting agarose gel. The excised fragment was then treated with agarase (Boehringer Mannheim Biochemicals). The DNA samples treated with agarase are purified enough for direct sequencing. After analysis of direct sequencing data, the amplified IPCR fragment was cut by *HindIII* and *KpnI* and cloned into pBluescript II SK and transformed in *E. coli* JM 109. Several subclones were constructed and one oligo primer was also synthesized to complete the sequencing.

15

5

10

Sequencing of the hagA gene was carried out at the University of Florida DNA Sequencing Core lab using the Taq Dye Primer and Taq Dyedeoxy Terminator Cycle Sequencing Protocol developed by ABI (Applied Biosystems, Inc., Foster City, CA) with fluorescent labeled primer(s) and labeled dideoxy nucleotides, respectively. The labeled extension were analyzed on an ABI 373 DNA Sequencer. Sequence data were analyzed by the Sequence Analysis Software Package of the University of Wisconsin.

20

25

Southern blot analysis results indicated that Asel restriction of genomic DNA produced a single 6.9 kb fragment which hybridized to the probe used. Under the conditions used, as described, a 5,963 bp fragment was successfully amplified via IPCR which, when sequenced, was found to include an additional 2,997 bp sequence 3' to the ST 2 fragment. The start codon was found to be located 720 bp upstream of the 5' end of the ST 2 fragment. In order to obtain the 3' end of this gene, a BamHl gene bank was constructed from which an 8,818 bp cloned fragment containing an additional 3,362 bp downstream DNA was obtained. Sequencing this downstream region revealed that the stop codon was located 1,017 bp downstream of the 3' end of the 6.9 kb Asel fragment.

30

The complete ORF of hagA beginning at base No. 365 and ending at base No. 8251 is calculated to encode a 2628-amino acid protein with a molecular weight of 283.3 kD. Analysis of the sequence revealed potential -10, -35 consensus sequences located at bases 168 and 143, respectively. However, no E. coli-like ribosome binding site was found upstream of the start codon except for AGG at the -4 to -2 position. Two potential stemloop structures, forming 14 and 9 bplong inverted repeats were identified 51 and 101 bp downstream of the stop codon, respectively.

10

15

20

25

30

Residues No. 5-21 are consistent with a typical, hydrophobic leader or signal sequence according to the Chou-Fasman Prediction. In addition, Chou-Fasman rules predict the beginning amino acids of *HArep* to be very antigenic and hydrophilic. The amino acid sequence which begins each of the *HAreps*, is very similar to a region of *M. gallisepticum* hemagglutinin genes. The common repeating amino acid sequence (Pro-Asn) among *P. gingivalis* and *M. gallisepticum* hemagglutinin genes listed above indicates that this region is involved in erythrocyte binding.

The repeat region was found to begin immediately after the first KpnI site at base No. 1862 and to end at base No. 7265, making the entire repeat region 5,404 bp in length without a single gap. The first repeat unit ($HArep\ 1$) is 1,350 bp and has 99.5% identity to the second repeat unit. The repeat units $HArep\ 2$ and $HArep\ 3$ are 1,368 bp in length and are 99.9% identical to each other. The fourth repeat unit ($HArep\ 4$) is 1,318 bp in length and has 98.6% identity to $HArep\ 2$ and $HArep\ 3$, respectively. As shown in SEQ ID NO. 16, the beginning amino acid sequence of the $HArep\ 1$ is "Pro Asn Pro Asn Pro Gly Thr Thr Thr ..." while that of the other three is "Gly Thr Pro Asn Pro Asn Pro Asn Pro Gly Thr Thr Thr ..." (see SEQ ID NOS. 18, 20, and 22). Thus, $HArep\ 2$ at the very beginning contain six amino acids more than $HArep\ 1$. This difference is due to $HArep\ 1$ containing two fewer repeats of the Pro-Asn sequence since the Gly-Thr is present before the sequence of "Pro Asn Pro Asn Pro Gly Thr Thr Thr ..." in $HArep\ 1$.

Another distinguishing characteristic of the *hagA* multigene family is the presence of a 72-amino acid sequence normally at the extreme carboxy terminus of the proteins. This region is hydrophobic according to the Chou-Fasman Prediction and can serve to anchor the proteins in the outer membrane or serve in some other common recognition function.

The hemagglutinin (HA) encoded by the hagA gene can have the characteristics of a cysteine protease, a trypsin-like protease, and a hemagglutinin. Hemagglutinins of Porphyromonas gingivalis can be involved in virulence. The HAs of P. gingivalis are nonfimbral adhesins, since biochemical studies have shown that the purified fimbrillin subunit of P. gingivalis failed to agglutinate red blood cells or to inhibit hemagglutination by P. gingivalis, and immunological studies have shown that monospecific antibody against the hemagglutinin did not bind strongly to the fibrillar structures of P. gingivalis.

It has been previously suggested that protease and hemagglutination activities of P. gingivalis are related. One study reported that mutant strains of P. gingivalis deficient in trypsin-like protease activity had markedly reduced hemagglutination activity. Others have reported that a 44 kD purified outer membrane hemagglutinin has been further characterized as a cysteine protease. The DNA sequence of hagA was compared with the DNA sequence of an approximately 4.5 kb fragment of genomic DNA from the λ FBPl clone made from the of P. gingivalis W12 strain. The

gene from the λ FBP1 clone was isolated and named prtP (see section F of this Example, below). The prtP gene encodes protein(s) reactive with antibody that inhibits a cysteine protease of P. gingivalis W12, and that binds a fibrinogen. The nucleotide sequences of hagA and prtP were compared, and were found to contain internal regions approximately 2 kb in size that share a high degree of sequence similarity. The hagA gene contains three regions that share greater than 90% sequence identity with prtP. These regions include a 217 bp sequence in which there is 90% identity, and a 884 bp sequence in which there is 94% identity and a 500 bp sequence in which there is 97% identity. These findings raise the possibility of relatedness between fibrinogen binding protein and a hemagglutinin of P, gingivalis.

10

15

5

B. Characterization of hagB gene and gene product. The gene encoding a hemagglutinin hagB was obtained for sequencing from P. gingivalis on a 2.0 kb HindIII BamHI fragment and 2.4 kb BamHI-EcoRI fragment cloned into pUC9 and transformed into E. coli JM109. These fragments were subcloned into the M13 bacteriophage vectors for sequencing (Yannish-Peron, C., J. Viera, J. Messing [1985] "Improved M13 phage cloning vectors and host strains: Nucleotide sequences of M13mp18 and pUC9 vectors," Gene 33:103-119). The entire lengths of these fragments were sequenced utilizing the universal priming site of M13 and by synthesizing oligonucleotide primers for the remaining regions of the fragments. The sequencing of the 1.7 kb KpnI-PstI fragment and the DNA adjacent to the BamHI site ensured that the 2.0 kb and 2.4 kb fragments were contiguous. E. coli JM109 was used as the host strain for transfection with M13 and grown in 2x YT broth. Recombinant phages were detected by using soft agar (0.75%) overlays of 2x YT broth base supplemented with 0.33 mM isopropyl-beta-D-thiogalactopyranoside (IPTG) and 0.02% 5-bromo-4-chloro-3-indolyl-3-galactoside (X-GAL).

25 .

20

Restriction enzymes, T4 DNA ligase, and M13 17-mer primer were purchased from either Bethesda Research Laboratories (Gaithersburg, MD) or Fischer Scientific Co., St. Louis, MO) and were used in accordance with the specifications of the manufacturers. Other oligonucleotide primers were synthesized by the Molecular Biology Resource Facility (Oklahoma City, OK). Sequencing reagents were from the T7 Sequencing Kit of Pharmacia (Piscataway, NJ) or the Sequenase DNA sequencing kit of U.S. Biochemical Corp. (Cleveland, OH). The $[\alpha-35S]$ dATP was purchased from DuPont, NEN Research Products (Boston, MA). IPTG and X-GAL were purchased from Sigma Chemical Co. (St. Louis, MO).

30

DNA sequencing was performed by using the dideoxy chain-termination method (Sanger, F., S. Nicklen, A.R. Coulson [1977] "DNA sequencing with chain terminating inhibitors," *Proc. Natl. Acad. Sci. USA* 74:5463-5467). Different portions of each fragment were sequenced from synthesized oligonucleotide primers. The DNA sequence of the gene was determined for both

strands and was analyzed by the James M. Pustell DNA and protein sequencing program (International Biotechnologies, Inc., New Haven, CT). The nucleotide sequence of the hagB hemagglutinin gene is 1053 nucleotides in length as shown in SEQ ID NO. 3. The mol.% G+C content is 59.9%. The reading frame of the hemagglutinin gene was defined by a putative ribosome binding site and promoters upstream of the ATG start codon and potential stem-loop structures downstream of the stop codon. Beginning 181 to 239 bases upstream of the two potential promoters was a region of direct repeats. A sequence of 41 nucleotides was repeated four times contiguously with only minor differences. Open reading frames were also identified on the opposite strands both upstream and downstream of the hemagglutinin gene.

10

5

The amino acid sequence of the hemagglutinin was derived from the nucleotide sequence and determined to be 350 residues in length. The derived protein of M_r=39,375 was basic with an isoelectric point of 8.98 and hydrophilic. A potential signal peptide is evident. Cleavage is most probable after amino acids 32-36, though none of these sites conforms ideally to the -3,-1 rules of von Heijne. The derived amino acid sequence encoded by the *hagB* gene is shown in SEQ ID NO.

15

Comparison of the nucleotide and derived amino acid sequences with the gene and protein bank libraries did not uncover any significant homology between the hemagglutinin and previously determined sequences.

20

Upstream from the hemagglutinin reading frame were two potential promoters which in turn were preceded by a series of direct repeats. The function of the direct repeats is not known but it would be reasonable to hypothesize that they have a role in gene expression.

25

The codon usage for the hemagglutinin was examined and found to follow the pattern for a gene with low level expression, though this pattern was broken in a few instances. In general, the pattern for low expression consists of a low U/C ratio in the third base position of the codon for some amino acids, but a high U/C ratio in the third position for other amino acids. Perhaps due to the high %G+C content of the hemagglutinin gene a low U/C ratio existed for most amino acids. Overall, however, the codon usage followed the pattern for low expression more often than that for high expression. The usage of some codons which specify rate tRNA species in E. coli may also be evidence of a lower level of expression of the hemagglutinin gene. Alternatively, the same tRNA species may not be rate limiting in P. gingivalis but could explain the difficulty in expressing the cloned product in E. coli.

30

C. Characterization of the hagC gene and gene product. A third hemagglutinin gene, designated hagC was isolated from Porphyromonas gingivalis 381. The nucleotide sequence of the

10

15

20

25

30

hagC gene is shown in SEQ ID NO. 5 and has a 1050 bp coding region. The derived amino acid sequence is shown in SEQ ID NO. 6.

The hagC gene was isolated in a similar manner as the hagB gene. Briefly, isolated P. gingivalis 381 chromosomal DNA was digested with HindIII and electrophoresed through a 0.8% agarose gel in Tris-acetate buffer. A band of agarose containing the fragments ranging from 4 to 20 kb was cut out of the gel and the DNA extracted using a phenol freeze/thaw procedure. The DNA was ligated to the dephosphorylated HindIII restricted pUC18 plasmid (Pharmacia LKB Biotechnology, Piscataway, NJ) using the T4 DNA ligase (Promega Corp.) overnight at 16° C. The recombinant plasmids were transformed into E. coli DH5 α (BRL) and plated on LB plates supplemented with ampicillin, IPTG and X-GAL. Colonies were picked on duplicate plates and grown aerobically at 37° C overnight. The clones from one of the duplicated plants were transferred to positively charged rylon membranes (BM Corp.) and lysed according to the procedure described by Sambrook et al. The membranes were then left to dry for 30 minutes and baked at 120° C for 30 minutes. The hybridization was carried out as described above; however, a 960 bp BamHI-PstI DNA fragment from hagB gene was used as a probe.

Recombinant plasmid DNA was prepared using the alkaline lysis method, modified as described. The cells were grown in LB broth supplemented with 50 µg/ml ampicillin. The closed circular DNA was purified by equilibrium centrifugation in a continuous CsCl-ethidium bromide gradient. DNA further destined for sequence was additionally submitted to precipitation with polyethylene glycol.

Double stranded DNA sequencing was performed by the University of Florida Interdisciplinary Center for Biotechnology Research DNA Sequencing Core laboratory. Sequencing was accomplished by employing the Taq Dye Primer and Taq Dye Terminator cycle sequencing protocols (Applied Biosystems, Inc., Foster City, CA) using the fluorescent primers and dideoxynucleotides, respectively. The labeled extension products were analyzed on an ABI373a DNA sequencer (Applied Biosystems, Inc.). The sequence was obtained for both strands of DNA using the appropriate subclones or synthetic oligonucleotides synthesized by the University of Florida DNA Synthesis Core Facility. the sequencing strategy was designed to sequence overlapping sites used in DNA subcloning. The sequence was analyzed with the Genetic Computer Group Sequence analysis software.

The 1851 bp *HindIII-SstII* DNA fragment comprising the *hagC* gene revealed an open reading frame (ORF) of 350 amino acids corresponding to a 39.3 kD protein with an isoelectric point of 8.36. The ATG start site, located at position 374 of the DNA, is preceded by putative -10 (339TATTAT³⁴⁴) and -35 (314TTGCTG sequences which differ from the *E. coli* consensus promoter

sequences TATAAT and TTGACA, by one and three nucleotides respectively. However, no match to consensus Shine-Dalgarno sequence could be found upstream the ATG codon. A nearly perfect dyad symmetry of 18 nucleotides can be noticed at the end of the hagC ORF and may represent a potential stem-loop structure used in transcription-termination.

5

A comparison between the hagB and hagC nucleotide sequences revealed that their ORFs are 99% homologous, but their upstream and downstream regions are only 39.5 and 34.6% homologous, respectively. It is worth noting that both genes encode a 350-amino acid protein which are 98.6% homologous. The HagB protein exhibits a deduced MW of 39.4 kD and pI of 8.98. The hagB gene possesses two sets of -10 and -35 sequences which are similar to the consensus sequences found in E. coli. Contrary to hagC however, a ribosome-binding site can be noted upstream the ATG initiation codon in position 363. Furthermore, four repeats of 42 bp each that are found in the promoter region of hagB are missing from the hagC gene. A potential transcription-termination stem-loop made by a nearly perfect 17 nucleotide long dyad symmetry can also be noted at the end of the hagB gene. No nucleotide sequence or protein exhibiting significant homology to the hagC gene or protein was found using the data bases GenBank, EMBL, or NBRF.

15

10

D. Characterization of the hagD gene and gene product. A fourth hemagglutinin gene, designated as hagD, was isolated from P. gingivalis 381 using standard procedures as described. The original nucleotide sequence comprising the hagD gene is shown in SEQ ID NO. 7. The hagD ORF as originally determined codes for a 1087 amino acid, 117 kD protein with a pI of 4.5. The derived amino acid sequence encoded by the original hagD gene is shown in SEQ ID NO. 8. The nucleotide sequence for the entire hagD gene is shown as SEQ ID NO. 25. Two open reading frames were identified within the hagD nucleotide sequence. The first open reading frame, bases 696-1790, encodes a polypeptide shown as SEQ ID NO. 26. This polypeptide can have activity as a protease. The second open reading frame, bases 1790-5866, encodes a polypeptide shown as SEQ ID NO. 27. The second encoded polypeptide has activity as a hemagglutinin.

25

30

20

The *P. gingivalis* 381 cells were grown at 37°C in Todd-Hewitt broth (THB) supplemented with 5 μg/ml hemin and 1 μg/ml menadione in an atmosphere of 10% H₂-5% CO₂-85% N₂. *HindIII*-restricted genomic DNA was then electrophoresed through TAE agarose gel (9%). The DNA was transferred to a nylon membrane by the capillary alkaline transfer method using 0.4 M NaOH-0.6 M NaC and labeled using the nonradioactive DNA labeling and detection kit (Genius, Boehringer Mamheim). The membrane was prehybridized for 2 hours at 42°C in 5X SSC (0.75 M NaCl, 0.085 M sodium citrate (pH 7.0); blocking agent 0.5% (w/v); N-lauroylsarcosine (Na-salt), 0.1% (w/v); sodium dodecyl sulfate (SDS), 0.02% (w/v); formamide 50% (v/v)).

10

The EcoRI-PvuII DNA fragment from hagA was randomly primed by incorporation of digoxigenin-labeled dUTP. Hybridization was carried out overnight at 42°C. The membrane was washed twice with each of the following solutions: 2X SSC-0.1% (w/v) SDS at room temperature for 5 minutes, and 0.1X SSC-0.1% (w/v) SDS at 68°C for 15 minutes. Detection was carried out using "LUMI-PHOS" 530 (Boehringer Mannheim), the enhancer for chemiluminescent detection of alkaline phosphatase, according to the manufacturer, and autoradiographed.

A genomic bank was created using *HindIII*-digested chromosomal DNA from *P. gingivalis* 381, as described above for *hagC*. Fragments ranging from 4.8 to 6.4 kb were cut out and the DNA was recovered using the phenol freeze/thaw procedure. The DNA was then ligated to the dephosphorylated *HindIII* restricted pUC18 (Pharmacia) using T4 DNA ligase overnight at 16°C.

Recombinant plasmids were transformed into *E. coli* DH5α (BRL) and plated on Luria-Bertani (LB)(10 g/l Bacto®Tryptone, 5 g/l yeast extract, 5 g/l NaCl, 15 g/l agar) plates supplemented with 50 μg/ml ampicillin. Colonies were picked, transferred to nylon membranes, and subjected to lysis in 10% (w/v) SDS, 3 minutes; 0.5 N NaOH-1.5 M NaCl, 5 minutes; 1.5 M NaCl-0.5 M Tris-Cl (pH 7.4), 5 minutes; and 2X SSC, 5 minutes. The membranes were then left to dry for 30 minutes and baked at 120°C for 30 minutes. Prior to hybridization the membranes were washed in: 5X SSC, 0.5% SDS, 1 mM EDTA (pH 8.0) for 30 minutes at 50°C. Hybridization was then carried out as described above using a 1,228 bp *HindIII-SmaI hagA* DNA fragment as a probe.

Plasmid DNA was isolated and restriction mapping, was carried out according to procedures described.

Double-stranded DNA sequencing was performed by the University of Florida ICBR DNA Sequencing Core Laboratory. Sequencing was accomplished by employing the Taq Dye Primer and Taq Dye Terminator cycle sequencing protocols using the fluorescent primers and dideoxy nucleotides, respectively. The entire sequence was obtained for both strands of DNA using the appropriate subclones or synthetic oligonucleotides synthesized by the University of Florida DNA Synthesis Core Facility. The sequencing strategy was designed to sequence overlapping sites used in DNA subcloning.

The complete sequence was determined using the Genetic Computer Group Sequence analysis software and the inverse polymerase chain reaction (IPCR) method. For the IPCR procedure, 50-500 ng of *P. gingivalis* genomic DNA restricted with *Bam*HI was circularized and self-ligated with T4 DNA ligase overnight at 16°C. The circularized genomic DNA was amplified by IPCR in a mixture containing: 160 mM each dNTPs, 1.5 mM MgCl₂, 1X Buffer [1X=50 mM KCl, 10 mM Tris-HCl (pH 8.3)], 4x10-4 mM of the primers APF 147 (5'-GGAATGGGAGATGGAACT-3') (SEQ ID NO. 11) and APF 148 (5'-

20

25

30

10

15

20

25

30

GTAACCCGTATTGTCTCC-3') (SEQ ID NO. 12) and 5 U Taq I. The IPCR amplification was accomplished with the "PTC-100" Programmable Thermal Controller (MJ Research, Inc.) for 5 linked files as follows: (1) 30 minutes at 94°C for 1 cycle after which the Taq I was added; (2) 1 minute at 94°C; (3) 1 minute at 52°C; (4) 5 minutes at 72°C, repeat steps 2,3, and 4, 34 more times; (5) 10 minutes at 72°C. The amplicon was gel purified and the DNA was extracted using agarase. The purified amplicon was sent to be sequenced using APF 147 (SEQ ID NO. 11) as the primer.

The recombinant plasmid comprising the hagD gene in E. coli expressed four proteins which were subjected to SDS-PAGE electrophoresis under denaturing conditions a doublet corresponding to proteins with Mr of 90 and 85.8 kD, as well as an 80 kD and a 20 kD protein. Based on the intensity of the bands, the 80 kD protein appeared to be the most strongly expressed. A comparison between hagD and hagA amino acid sequences revealed that they possess an overall homology of 73.8% composed of a central region with 90% homology flanked by regions sharing less than 60% homology. Hag D was also found to possess high homology (89.5%) to the prtP gene product isolated from the strain P. gingivalis W12. The N-terminus region of these two proteins was found to be more homologous (90%) than the C-terminus (72%). It is therefore possible that hagD and prtP gene products represent different alleles of the same gene which evolved, from a common ancestral strain and diverged. Both hagA and hagD transcripts, as determined by reverse PCR analysis, were detectable only in hemin-replete conditions as previously reported for hagC. These results show that hagA, hagC, and hagD might be coordinately regulated by hemin while hagB is differentially expressed.

E. Characterization of the hagE gene and gene product. Using a repeated sequence of hagA as a probe, an additional fragment approximately 2.6 bp in length was detected in P. gingivalis 381 genomic DNA by Southern analysis. In order to clone this fragment, a genebank was constructed from P. gingivalis strain 381 genomic DNA and screened by in situ hybridization with the probe. A total of 59 positive colonies were identified. Restriction enzyme digestion of mini-preparations of plasmid DNA from 8 positive colonies revealed that 7 of them contained the expected fragment. Hemagglutination assay demonstrated that the cloned fragment in one orientation conferred a high level of hemagglutination activity on the E. coli host strain but no activity when the fragment was in the opposite orientation. Sequencing data confirmed that the 5' sequence of the clone is unrelated to that of hagA while the 3' sequence of 600 bp has high homology to hagA. This homology occurs in the area of the 1.3 kb repeat in hagA. This discovery of yet another gene, designated hagE, with areas of homology to hagA, may indicate that these genes represent a multi-gene family with similar

10

15

20

25

30

functions and perhaps identical active sites. It is likely that such duplication indicates an essential or important function to the bacterial species and its interaction with the host.

By constructing a gene library, an 8.64 kb fragment was obtained which, when sequenced, was found to contain the complete open reading frame (ORF) of hagE. This ORF is 5,064 bp in length and encodes a 1,687 amino acid, 183.7 kD protein. The nucleotide and amino acid sequences for hagE are shown as SEQ ID NOS. 28 and 29, respectively. Two other ORFs were found in hagE between nucleotides 6580-7551 and 7716-8640, respectively. When comparing the sequence of hagE with that of prtH, which encodes a C3 protease from strain W83, it was found that the whole 3,658 bp cloned fragment of prtH was within the clone comprising hagE. The hagE fragment contains an additional 3,761 bp 5' and 1,327 bp 3' of the prtH fragment. The homology of the common sequence is 98%. However, there are also 16 gaps in comparing the two sequences, including one base deletion, 13 one-base, and 2 two-base additions in prtH. This is likely due to strain differences. However, a sequence of an additional protease gene (rpg-I) reported from another strain (HG66) showed only 2 gaps in this region and maintained the ORF in relation to hagE. Most interestingly, translation analysis of our cloned fragment showed there is no prtH-like ORF present. Therefore, prtH is likely not present in P. gingivalis strain 381. In addition, two additional ORFs directly downstream of hagE were identified within the cloned fragment. The sequencing of hagEhas revealed it to be a member of the HagA multi-gene family.

F. Characterization of the prtP gene and gene product. A gene and polypeptide having homologous regions to those of the hagA, hagB, hagC, hagD, and hagE genes and gene products were isolated from Porphyromonas gingivalis W12. The P. gingivalis DNA insert in λFBP1 was 4.5 kb (pHW2) and was subcloned for sequencing. It contained a large open reading frame, which encodes approximately the carboxy-terminal two-thirds of the cysteine proteinase, porphypain. The complete gene encoding porphypain was obtained using PCR and IPCR technology. The gene, which has a nucleotide sequence as shown in SEQ ID NO. 9, is designated prtP. The deduced amino acid sequence of the prtP gene is shown in SEQ ID NO. 10.

Four repeated amino acid sequences and more than five Pro-Asn tandem repeats were identified in the carboxy-terminal three-fifths of the gene. Repeat 1 includes amino acid segments 688-708 and 946-967; repeat 2 includes three amino acid segments 887-952, 1341-1405, and 1607-1650; repeat three includes amino acids 985-1006 and 1430-1451; and repeat 4 includes amino acids 1041-(1100) and 1488-(1547). These repeats can be functionally or structurally important. For example, a Pro-X motif in the TonB protein has been implicated in crossing the periplasmic space. Based on Southern blot analyses, Repeat 2 was present in at least 20 copies in each of the seven *P. gingivalis* genomes examined. The pattern of bands observed in these analyses was very similar for

10

15

20

25

30

strains W50 and W83, but not identical; these strains have been previously indistinguishable when analyzed by multilocus enzyme electrophoresis, DNA fingerprinting, and arbitrarily primed PCR. Therefore, the repeats can be useful for distinguishing *P. gingivalis* strains. Strains ATCC 33277 and 381 showed an identical banding pattern in our analysis, which supports previous analyses characterizing the relatedness of the strains and the suggestion that strain ATCC 33277 is actually a derivative of strain 381.

Several other *P. gingivalis* genes with homology to *prtP* have been described. Most of *hagA*, which encodes a hemagglutinin identified originally in strain 381 was highly homologous to the C-terminal portion of *prtP*, including four-and-a-half copies of a large DNA segment encompassing the *prtP* Repeat 2 sequence. Our data were consistent with the presence of *hagA* in the seven strains examined. Certain evidence suggests that an extracellular form of PrtP participates in hemagglutination, indicative of the function of the large region the proteins have in common. Five proteinase genes previously identified in *P. gingivalis* were also found to be partially homologous to *prtP*: *rgp-1*, *prpR1*, *prtR*, *prtH*, and *agp*. Each of these genes is thought to encode a proteinase with Arg-X specificity, but not Lys-X specificity, and none of them had homology to the N-terminal portion of PrtP. The subject proteinases from the subject strain W12 have been demonstrated to degrade fibrinogen and fibronectin and hydrolyze both N-*p*-tosyl-Gly-Pro-Lys-*p*-nitroanilide and N-*p*-tosyl-Gly-Pro-Arg-*p*-nitroanilide.

Genomic DNA from *Porphyromonas gingivalis* W12 was isolated using standard procedures, as described herein and was purified and disrupted by shearing. *EcoRI* linkers were ligated to the ends of *P. gingivalis* DNA fragments of appropriate sizes, and the fragments were cloned into the λ gtl1 vector. The λ gtl1 library was screened using polyclonal antibodies raised against a 120-kD cysteine proteinase (porphypain), purified from *P. gingivalis* W12. Several clones were isolated that reacted strongly with the anti-proteinase antibody. One of the clones, λ FBP1, reacted strongly with the antibody, and contained a protein which bound fibrinogen.

The gene prtP has an open reading frame extending from bases 696 to 5894 and encodes a unique protein of 1732 amino acids, including a putative signal sequence for protein secretion. The predicted molecular mass for the mature protein was 186 kD, which is close to the observed molecular mass of 180 kD. There was one copy of prtP in the genomes of seven P. gingivalis strains examined (ATCC 33277, 381, W50, W83, W12, HG66, and ATCC 53977). The gene is located 5' to a region with a high degree of homology to the insertion element IS1126 in P. gingivalis strain W12. The PrtP protein had regions of high homology to Hag A, a hemagglutinin of P. gingivalis, and to several purported proteinases of P. gingivalis that have Arg-X specificity. A detailed comparison of genes encoding the latter and cpgR indicates that rgp-1, prpR1, prtR, agp,

10

15

20

30

cpgR, and possibly prtH can be derived from identical genetic loci. Although an rgp-1-like locus was detected in seven P. gingivalis strains by Southern blot analyses, agp and cpgR were not detected, not even in the strains from which they were originally isolated. In addition, at least 20 copies of a repeat region common to PrtP, the Rgp-1-like proteins, and Hag A were observed in each of the seven genomes examined. The repeat region hybridization patterns for strains W83 and W50 were very similar, and they were identical for strains 381 and ATCC 33277, providing further evidence that these strains are closely related genetically.

P. gingivalis organisms produce a number of proteolytic enzymes which are found both extracellularly and associated with the bacterial cell surface. Most of these P. gingivalis enzymes have been referred to previously as "trypsin-like," based on their preferential hydrolysis of proteins and peptides on the carboxyl side of basic amino acid residues. However, the designation is inappropriate because all of the enzymes that have been recent characterizations of the enzymes indicate they are cysteine proteinases.

The large, cell surface-associated cysteine proteinase (porphypain; PrtP) from P. gingivalis W12 can hydrolyze synthetic peptide substrates with either arginine or lysine residues in the P_1 position. Hydrolysis of both Arg-X substrates and Lys-X substrates is activated by reducing agents (Cysteine $\gg \beta$ -mercaptoethanol = DTT), and derivatives of glycine stimulate both activities. Both activities are inhibited by EDTA; however, hydrolysis of Arg-X substrates is inhibited by leupeptin and preferentially by Tyr-Pro-Arg chloromethyl ketone (YPRCK) over TLCK, and hydrolysis of Lys-X substrates is unaffected by leupeptin and preferentially inhibited by TLCK over YPRCK, indicating the presence of two types of active sites. The porphypain of the subject invention can contain two separate enzymes or a single enzyme which has one active site with two different conformations—one which accepts lysine in P_1 , and the other which accepts arginine in P_1 .

25 Example 14 - Construction of DNA Probes

DNA-DNA hybridization assays (DNA probes) are based on the fact that single-stranded DNA will re-anneal only with a complementary strand of DNA whose sequence is homologous. More recently, DNA probes have been used as a means of detecting various infectious agents and some are now used routinely in clinical microbiology laboratories. The identification of DNA sequences of oral *Porphyromonas* sp. make it possible to create DNA probes for the identification of these species. Therefore, one application of the identification and isolation of genomic sequences which encode bacterial antigens is the use of the DNA fragments as DNA probes. In the current case, these probes may comprise the *Porphyromonas* clones identified herein, or fragments of these

10

15

clones. Also, the DNA sequence shown in SEQ ID NOS. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, and 28, or fragments of those sequences, can be used to construct suitable probes.

Each recombinant plasmid is isolated and digested with whichever restriction enzyme was used to generate that particular genomic library. The digested plasmid DNA is then separated electrophoretically on an agarose gel as described earlier. The *Porphyromonas* DNA band containing the fragment is cut out of the gel and the DNA fragment is recovered by electro-elution employing centrifugal filtration of DNA fragments through a Durapore (Millipore) membrane inside a conical tip. This rapid and simple method recovers 70% of the DNA in a highly pure state.

The conical tip is assembled as follows: the conical portion of a 1.5 ml Eppendorf tube is cut off and a hole pierced in the bottom with a thin wire. A 4.5 cm² piece of Durapore (Millipore) membrane is wetted (d. H₂O) on a piece of parafilm, the filter square is then formed around a blunt-ended glass rod, and the filter is placed inside the conical bottom (cone). Excess filter is cut away, the filter tip is placed inside a 1.5 ml Eppendorf tube, and the filter is prewetted with 200 µl of elution buffer (0.1% SDS + 50 mM Tris-HCl, pH 7.5). The gel slice is then transferred to the prepared conical tip. After centrifugation of the DNA preparation in a microcentrifuge (Eppendorf) for 10 minutes, the filtered aqueous phase containing the DNA is precipitated by the addition of 5 M NaCl (to 1 M) and two volumes of ethanol. After ethanol precipitation, the DNA fragment(s) is labeled non-radioactively, using a photo-activatable biotin tag as described by the supplier (Clontech Laboratories, Inc.).

20

For biotin labelling, the DNA fragment preparation is adjusted to a concentration of 1 mg/ml (TE) and is mixed with photo-activatable biotin (PAB) at a ratio of 1:3 (DNA:PAB) in a 1.5 ml Eppendorf tube. The tube is placed in an ice bath 10 cm below a 275 W (GE RSM) sunlamp and the DNA + PAB is irradiated for 15 minutes. The DNA solution is then mixed with an equal volume of 0.1 M Tris-Cl (pH 9.0) and the volume adjusted to ≥ 100 μl with H₂). The unincorporated PAB is extracted from the DNA by the addition of an equal volume of 2-butanol, vortexing, centrifuging briefly, and withdrawing the lower aqueous phase with a Pipetman. The extraction can be repeated to remove any traces of unbound PAB. 3 M NaOAc (pH 5.6) is added to the DNA solution to a final concentration of 0.3 M and the labeled DNA is precipitated by the addition of three volumes of ethanol.

30

25

After the sample is cooled at -70°C for 15 minutes, the precipitated DNA is recovered by centrifugation for 10 minutes. The DNA pellet is dissolved in 10 mM Tris (pH 7.9) and 0.1 mM EDTA. The labeled probe DNA remains stable for one year if stored at -20°C.

A non-radioactive method of labeling the DNA probes may be desirable because: (1) the photoactivatable reactions are simple and rapid, (2) the sensitivity is as high as ³²P-labeled probes,

(3) the PAB-labeled probes have a long storage life, (4) these probes are relatively inexpensive, and (5) detection of bound probes is by simple colorimetric methods. The radioactive labeling of probes requires the use of ³²P, which has a very short half-life (14 days) and is thus unstable and expensive. The use of radioactive probes would be limited because of cost, the dangers of radioactivity, strict requirements for disposal, and the need for licensing. However, if for some reason the biotin-HRP method of labeling is unacceptable, the DNA fragments can be labeled with [8 P] 32 deoxy-CTP by standard nick translation methods as described by Maniatis *et al.* (1982, *supra*). Other labelling techniques which are well known or accepted by ordinary skilled artisans can also be employed for visualization of the nucleic acid probes.

10

15

20

25

5

Example 15 - Determining the Specificity of the DNA Probes

The prepared DNA probes are screened for specificity against a battery of oral *Porphyromonas* species, other oral species, and other non-oral gram-negative bacteria.

Cultures of the test strains are grown in appropriate medium to a density of approximately 10° cells per ml. The cells are centrifuged and suspended in 5.0 ml of distilled water. Sodium hydroxide is added to 0.5 N and the cells are incubated at 90°C for 20 to 30 minutes in order to lyse the cells and denature the DNA. The cell suspension is neutralized by the addition of 0.5 N HCl diluted in 20x SSC and chilled on ice for 20 minutes. A volume of 0.5 ml (or less) of the suspension is diluted to 4.0 ml volume with 10x SSC and vacuum filtered in a manifold onto nitrocellulose paper (type HAWP, 0.45 µm, Millipore Corp.) which is prewetted with 10x SSC. After the filters are rinsed with 4.0 ml of 10x SSC, they are dried and heated at 85°C for 3 hours in a vacuum oven (this fixes the chromosomal DNA onto the filter). After the filters are incubated for 2-3 hours at 42°C with the prehybridization buffer (6x SSPE [1.08 M NaCl, 0.06 M NaH₂PO₄, 0.48 M NaOH, 6.0 mM Na, EDTA, pH 7.0], 5x BFP [0.1% BSA, 0.1% Ficoll, and 0.1% polyvinyl pyrrolidine], 1% [w/v] glycine, 50% formamide, and 100 µg denatured salmon sperm DNA/ml), the prehybridization buffer is replaced with hybridization buffer containing 0.01 to 0.1 µg of labeled heat-denatured probe DNA in 5x SSPE, 1x BFP, 50% formamide, 100 µg salmon sperm/ml, 0.3% SDS, and 10% sulfate. Hybridization is accomplished by incubating the DNA mixtures for 12 hours at 42°C. The filters are then washed twice in 2x SSPE - 0.2% SDA for 25 minutes at 60°C in order to remove any unhybridized probe DNA.

30

The hybridized (bound) probe DNA can be detected by incubation of the filters for 30 minutes on 1 M NaCl + 0.1 M Tris-HCl (pH 7.5) + 2 mM $MgCl_2 + 0.05\%$ "TRITON" X-100 + 3% BSA and then for 25 minutes in 1 mg/ml streptavidin alkaline phosphate conjugate in the same buffer. Next, the filters are washed 3 times with 50-100 ml of buffer containing 1 M NaCl, 0.1 M

10

15

20

Tris-HCl, pH 7.5, 2 mM MgCl₂, and 0.05% "TRITON" X-100. A fourth wash of buffer contains 0.1 M NaCl and 0.3 M sodium citrate, pH 7.0. The color is developed by the addition of 32 µl nitroblue tetrazolium, 16 µl 5-bromo-4-chloro-3-indosyl-phosphate in 5.0 ml of 0.1 M NaCl + 0.3 M sodium citrate. After incubation in subdued light for 30 minutes, any spots which are visible indicate hybridization of probe DNA to target DNA.

If ³²P-labeled probes are used the same hybridization conditions can be used (adding 10⁶ CPM of ³²P probe) but instead of adding the streptavidin conjugate, the filters are dried for 1-2 hours at 70°C, and hybridization is detected by autoradiography. Alternatively, the filters can be cut into squares, placed into scintillation vials, and counted in scintillant.

Once probes are identified which are specific for either B. intermedius or P. gingivalis, or several Porphyromonas spp., they can be tested with known mixtures of the test bacteria grown on plates as follows: various mixtures of the test bacteria can be prepared with a known concentration of B. intermedius or P. gingivalis and spread on agar plates and incubated anaerobically as described earlier in this proposal. After the colonies have appeared (2-4 days), they are blotted onto nitrocellulose membranes, and the membranes processed for hybridization. If the DNA probe(s) is specific and sensitive, then only the P. gingivalis or B. intermedius colony blots should be positive. It is also possible that a probe may be found that is genus or group specific.

DNA probes for chromosomally-encoded genes require 10⁵ to 10⁶ bacteria per colony or dot blot in order to give a reliable positive result. This is comparable to 1 to 10 pg of DNA. Given this level of detection, a primary culturing step is desirable prior to blotting the colonies onto membrane filters and hybridization with the probe DNA.

Example 16 - Vaccines

In view of the immunoprotectant activity exhibited by certain of the compositions of matter of the subject invention, vaccines may be produced from the polypeptides expressed by cells which have been transformed with DNA fragments from *Porphyromonas gingivalis*. By introducing these peptides, along with a pharmacologically suitable vehicle, into the human or animal host, that host can be induced to generate immunological protection against *P. gingivalis*. The preparation of such a vaccine composition is within the skill of one trained in the medical and immunological sciences. Cells which can be used to produce recombinant peptides include, but are not limited to, bacteria, yeasts, insects, and eukaryotic cells.

30

10

15

20

25

30

Example 17 - Construction of an Oral Vaccine

It has been recognized that natural infection with enteric organisms produces the highest levels of antibodies and the longest lasting immunity to reinfection. The use of Salmonella as an attenuated vaccine carrier organism has several advantages. Salmonella spp. are capable of colonizing the Peyer's patches and gut lamina propria where they elicit a strong local IgA response in the intestine. The IgA response is also spread to other external secretions such as saliva by the seeding of these tissues with plasma cell precursors primed in the gut via the so called common mucosal immune system. These responses are important in preventing initial adhesion and colonization of mucosal surfaces – the initial step in the etiology of periodontal disease. In addition, live Salmonella elicits a humoral (serum) response of the IgM, IgG and IgA isotypes due to its invasive nature. Finally, infection with live organisms also stimulates a cell-mediated immune response—primarily T-cell mediated stimulation of macrophages—which is important in immunity since Salmonella can survive intracellularly within phagocytic cells. Several non-virulent mutants of Salmonella spp. have been developed. For example, an attenuated galE mutant of S. typhi (strain Ty21a) which lacks the enzyme UDP-galactose-4-epimerase has been developed.

Another approach to attenuation has been to use aromatic amino acid dependent (aro⁻) strains of Salmonella which are nonvirulent because they require metabolites not found in mammalian tissues, i.e., p-aminobenzoate and 2,3-dihydroxybenzoate. The strains are constructed using the aro:A554::Tn10 transposon, and, because it can cause deletion or deletion-inversion mutations, one can generate non-reverting mutants. These mutants synthesize a complete smooth LPS, are able to effectively colonize the Pever's patches and gut, and are highly immunogenic. In mice of the Salmonella-susceptible line BALB/c, intraperitoneal injection of as few as 2 x 10⁵ aro S. typhimurium protected against an i.p. challenge of 5 x 10⁵ virulent parent cells 30 days later (>25,000 i.p.LD₅₀). Oral immunization with 2 x 10⁸ aro cells protected mice against an oral challenge of 3 x 10⁷ virulent organisms (ca. 100 oral LD₅₀).

Because live Salmonella is such an efficient stimulator of mucosal immunity it can be used as a carrier to deliver recombinant gene products cloned from other pathogens directly to the tissues (i.e., Peyer's patches) which most efficiently generate an immune response in the gut, and through the common mucosal immune system, to other distant secretory sites. At the same time a humoral immune response is stimulated which may further help prevent or abort invasion. Using cloned antigens in a Salmonella carrier system gives one the ability to target the immune response to important virulence antigens leading to a protective immune response.

Chromosomal DNA was isolated from *P. gingivalis* strain 381 by the following method: One to three liters of cells were pelleted by centrifugation and washed (on ice) in 1/50 volume of 1X

10

15

20

25

30

SSC buffer (0.87% NaCl, 0.04% Na citrate) containing 27% sucrose and 10 mM EDTA. The cells were again pelleted and resuspended to 10¹⁰ cells/ml in the same buffer. Lysozyme (5 mg/ml in 1X SSC buffer) was added to 0.5 mg/ml, the cells were mixed thoroughly and incubated at 37°C for 10 minutes. Nine volumes of 1X SSC containing 27% sucrose, 10 mM EDTA and 1.11% SDS (prewarmed to 39°C) were added to the cells and incubated at 37°C until cell lysis was complete (10-30 minutes). The lysed cells were mixed gently and incubated at 37°C for 30 minutes. Proteinase K (Sigma, St. Louis, MO) was added to a final concentration of 1 mg/ml and the lysate was incubated at 37°C for 4 hours. An equal volume of phenol-Tris (9:1 freshly distilled phenol:1 M Tris-HCl, pH 7.5) was added to the Proteinase K-treated mixture and the mixture was agitated gently at room temperature for 30 minutes. The DNA mixture was then centrifuged in 150 ml Corex tubes at 3000 rpm. The top (phenol) layer was removed and discarded. The phenol extraction was repeated and the DNA (aqueous) layer was dialyzed extensively against 10 mM Tris-HCl, pH 8.0, 1 mM EDTA. Finally, the DNA was incubated with RNase at 37°C for 1 hour.

Expression vectors which contain a promoter upstream from the cloning site were used to help insure that cloned DNA was expressed whether or not a structural gene was cloned with its own promoter. The expression plasmid pUC9 (2.7 kb) contains the origin of replication, ampicillin resistance gene, and *lac* gene of pBR 322. The *lac HaeII* fragment (*lac* gene) contains a polylinker region from M12mp9 which has multiple unique cloning sites in the gene that encodes for the peptide of β-galactosidase. Thus, recombinant vectors that contain an insert in any of the cloning sites generate white colonies on X-GAL plates since they are not able to degrade the lactose analog, X-GAL. Vectors without an insert degrade X-GAL and result in blue colonies on X-GAL plates since the gene is not interrupted by an insert. Other plasmid vectors are available and could be used. One such plasmid is pAD 230.

The chromosomal DNA and vector DNA were ligated with T4 DNA ligase at ratios of 2:1 and 5:1. The ligated DNA was phenol-chloroform (24:1 isoamyl alcohol) extracted, ethanol precipitated, washed, dried, and redissolved in TE. Early log-phase cells (OD=0.2 to 0.5) were washed with transformation buffer 1 (TFM 1, 10 mM Tris-Cl, pH 7.5, 0.15 M NaCl). The cells were pelleted, resuspended, and incubated on ice for 45 minutes in TFM 2 (50 mM CaCl₂). After the cells are again pelleted, they are gently resuspended once more in TFM 2. A 0.2 ml volume of cells were added to 0.1 ml TFM 3 (10 mM Tris-HCl, pH 7.5, 50 mM CaCl₂, 10 mM MgSO₄·7H₂O) on ice. Varying amounts of DNA were added to the cells. The tubes were incubated on ice for 45 minutes, at which time the cells were heat shocked at 37°C for 2 minutes. A 0.5 ml volume of LB broth was added per tube and the cells were incubated at 37°C for 30 to 60 minutes to allow

expression of antibiotic resistance. Finally, the cells were spread on plates of LB + antibiotic (50 μ g/ml ampicillin) and X-GAL and incubated 24 to 48 hours at 37°C.

Any colonies which appeared on the LB + ampicillin + X-GAL plates after 24-36 hours of incubation were transformants which contained and expressed pUC9. A large number (80-90%) of these were white colonies which contain a plasmid with inserted *P. gingivalis* DNA. Once a transformant was identified which expressed *P. gingivalis* SHA adhesin, the protein was identified by Western blotting cell lysates of the transformant.

Because the initial cloning was done in *E. coli*, the recombinant plasmids may be modified by the *E. coli* modification system. These modified recombinant plasmids were used to transform strains of *Salmonella*. Initially, recombinant plasmids were passed into *Salmonella typhimurium* strain LB 5000, which is restriction (is not able to restrict foreign DNA) but modification. This modifies the plasmid DNA according to the *Salmonella* system.

Recombinant *P. gingivalis* plasmids encoding for the *Porphyromonas* (SHA) adhesin can be isolated and purified as described above. The identity and purity of the preparation can be monitored by restriction analysis and agarose gel electrophoresis. Cells of *Salmonella* strain LB 5000 can be made competent and transformed with the recombinant plasmid as described above. Transformants can be selected by growth in the presence of ampicillin and are tested for the expression of the *Porphyromonas* antigen also by procedures described above.

The recombinant plasmid can be isolated from strain LB 5000 and the identity of the plasmid verified. The purified plasmid can be used to transform non-reverting nonvirulent mutants of various Salmonella spp. These strains include (but are not limited to) S. enteriditis (typhimurium) SL 3261 (WRAY his G46 aro A), SL 1479 (UCD his C527 aro A), SL 3237 (FIRN rps L120 aro A), and S. dublin SL 3261 (his 646 aro A). Transformants can be screened for resistance to ampicillin and assayed for expression of the Porphyromonas antigen by enzyme-linked immunosorbent assay as described above. In addition, SDS-PAGE and Western blotting can be done to confirm the presence of the antigen in the Salmonella transformants.

The *P. gingivalis* hemagglutinin protein was expressed in nonvirulent *Salmonella typhimurium* strain SL3261/CL7 and tested for activity as a competitive inhibitor of hemagglutination. The *S. typhimurium* cells were broken by sonic disruption, whole cells and debris removed by centrifugation and the supernatant adjusted to 40% saturation with NH₄SO₃. The supernatant was collected, dialyzed, and fractionated on a CM-Sephadex column using a 50-450 mM NaCl gradient. Fractions were evaluated via Western blot analysis for reactivity with absorbed sera directed against *P. gingivalis*. The peak fraction was found to inhibit hemagglutination of

10

5

15

20

25

10

15

20

erythrocytes by whole *P. gingivalis* cells. This same material was analyzed for the N-terminal amino acid sequence and found to match the sequence predicted from the cloned gene.

The gene for the *Porphyromonas* antigen can also be transduced into the *Salmonella* carrier strains by P22 transduction. Transductants can be selected by growth in the presence of ampicillin and by the expression of the *Porphyromonas* antigen, as detected by immunoblotting using the monospecific or monoclonal antibody.

Additional carrier strains can be generated from other Salmonella serotypes. These strains can be derived from virulent strains by the introduction of mutations such as (auxotrophic) aro A or gal E. In addition, the "O" antigen may be altered or mutated to a rough LPS in strains already avirulent by P₁ transduction.

Example 18 - Monoclonal Antibodies

Appropriate mice can be immunized with antigens of, or cells expressing antigens of, *Porphyromonas gingivalis*. The antigens used for this immunization can be those which are identified and described in the previous examples in view of their exhibited immunogenic activity. The techniques employed to accomplish this immunization procedure are familiar to those skilled in this art. The spleens can then be removed from the immunized mice and the cells therefrom fused to SP-2 myeloma cells using polyethylene glycol. The desired hybrid cells can then be selected by adding hypozanthine-aminopterin-thymidine to the medium. The surviving cells can then be tested for antibody production. The testing for antibody production can be accomplished using ELISA, immunoblot, and/or Western blot procedures as described in the previous examples.

The monoclonal antibodies produced by the procedure just described can be used to test for the presence of *P. gingivalis* antigens in a sample of biological fluid. The testing procedure involves contacting the biological fluid with a composition containing one or more of the monoclonal antibodies. If *P. gingivalis* antigens are present in the biological fluid, then a reaction will occur and this reaction can be detected and quantified by fluorescence or other means.

It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the appended claims.

30

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT(S) INFORMATION:

Applicant Name: University of Florida

186 Grinter Hall Street address:

> City: Gainesville

Florida State/Province:

> Country: US

Postal code/Zip: 32611

Fax: (904) 392-6600 (904) 392-8929 Phone number:

University of Alabama-Birmingham Research Foundation Applicant Name:

1120 G Administration Bldg., 701 20th St. South Street address:

> City: Birmingham

State/Province: Alabama

> Country: US

Postal code/Zip: 35294

(205) 934-9911 Fax: (205) 975-5560 Phone number:

(ii) TITLE OF INVENTION: Cloned Porphyromonas gingivalis Genes and Probes for the Detection of Periodontal Disease

(iii) NUMBER OF SEQUENCES: 29

- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Ted W. Whitlock
 - (B) STREET: 2421 N.W. 41st Street, Suite A-1
 - (C) CITY: Gainesville
 - (D) STATE: FL
 - (E) COUNTRY: USA
 - (F) ZIP: 32606
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US

 - (B) FILING DATE: (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/353,485
 - (B) FILING DATE: 09-DEC-1994
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/647,119
 - (B) FILING DATE: 25-JAN-1991
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/241,640
 - (B) FILING DATE: 08-SEP-1988
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Whitlock, Ted W.

								ER: NUMB			.c3					
	(ix	(A) T	ELEP	HONE	: (9	04)	RMAT 375- 2-58	8100							
(2)	INF	ORMA	TION	FOR	SEQ	ID.	NO:1	:								
	(i	(QUEN A) L B) T C) S D) T	engt Ype: Tran	H: 4 nuc DEDN	510 : leic ESS:	base aci sin	pai d	rs							
	(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
	(ix	(.	ATUR A) N B) L	AME/			.151	8								
								SEQ								
ATT	AATC	TTT .	AATA	CTTT	CA A	AAGG'	Me				u As				T TCG e Ser	53
CTC Leu 10	Ala	GTC Val	CTA Leu	TTA Leu	TCC Ser 15	CTA Leu	TTG Leu	TGT Cys	TGG Trp	GGA Gly 20	CAG Gln	ACG Thr	GCT Ala	GCC Ala	GCA Ala 25	101
CAG Gln	GGA Gly	GGG Gly	CCG Pro	AAG Lys 30	ACT Thr	GCT Ala	CCT Pro	TCT Ser	GTG Val 35	ACG Thr	CAC His	CAA Gln	GCG Ala	GTG Val 40	CAG Gln	149
AAA Lys	GGT Gly	ATT Ile	CGA Arg 45	ACA Thr	TCC Ser	AAG Lys	GTT Val	AAG Lys 50	GAT Asp	CTC Leu	CGA Arg	GAT Asp	CCG Pro 55	ATT Ile	CCT Pro	197
GCC Ala	GGT Gly	ATG Met 60	GCA Ala	CGA Arg	ATT Ile	ATC Ile	TTG Leu 65	GAG Glu	GCT Ala	CAC His	GAT Asp	GTA Val 70	TGG Trp	GAA Glu	GAC Asp	245
GGC Gly	ACA Thr 75	GGC Gly	TAT Tyr	CAA Gln	ATG Met	CTT Leu 80	TGG Trp	GAT Asp	GCA Ala	GAT Asp	CAC His 85	AAT Asn	CAG Gln	TAC Tyr	GGC Gly	293
GCA Ala 90	TCC Ser	ATT Ile	CCC Pro	GAA Glu	GAA Glu 95	TCT Ser	TTT Phe	TGG Trp	TTT Phe	GCC Ala 100	AAC Asn	GGA Gly	ACG Thr	ATC Ile	CCG Pro 105	341
GCC Ala	GGT Gly	CTT Leu	TAC Tyr	GAT Asp 110	CCT Pro	TTC Phe	GAG Glu	TAT Tyr	AAA Lys 115	GTT Val	CCG Pro	GTC Val	AAT Asn	GCC Ala 120	GAT Asp	389
GCA Ala	TCT Ser	TTT Phe	TCT Ser 125	CCC Pro	ACG Thr	AAT Asn	TTC Phe	GTG Val 130	CTT Leu	GAT Asp	GGA Gly	ACA Thr	GCA Ala 135	TCA Ser	GCC Ala	437
GAT Asp	ATT Ile	CCT Pro 140	GCC Ala	GGC Gly	ACT Thr	TAT Tyr	GAC Asp 145	TAT Tyr	GTA Val	ATC Ile	ATT Ile	AAC Asn 150	CCC Pro	AAT Asn	CCT Pro	485

GGC Gly	ATA Ile 155	ATA Ile	TAT : Tyr	ATA Ile	Val (GGA (Gly (SAG Slu	GGT Gly	GTC '	ser.	AAA Lys 165	GGT Gly	AAC (Asn)	GAT Asp	TAT Tyr	533
GTG Val 170	GTA Val	GAG Glu	GCC Ala	GGT Gly	AAG Lys 175	ACT !	rat Tyr	CAT His	Phe	ACT Thr 180	GTC Val	CAA Gln	CGA Arg	CAA Gln	GGC Gly 185	581
CCC Pro	GGC Gly	GAT Asp	GCT Ala	GCG Ala 190	TCC Ser	GTT Val	GTA Val	GTG Val	ACC Thr 195	GGA Gly	GAA Glu	GGT Gly	GTA	AAT Asn 200	GAA Glu	629
TTC Phe	GCT Ala	CCC Pro	GTA Val 205	CAG Gln	AAT Asn	CTC Leu	CAA Gln	TGG Trp 210	TCT	GTA Val	TCT Ser	GGG Gly	CAG Gln 215	ACA Thr	GTG Val	677
ACC Thr	CTC Leu	ACT Thr 220	Trp	CAA Gln	GCC Ala	CCC Pro	GCA Ala 225	TCC Ser	GAC Asp	AAA Lys	CGG Arg	ACT Thr 230	TAT Tyr	GTG Val	TTG Leu	725
AAC Asn	GAA Glu 235	Ser	TTC Phe	GAT Asp	ACG Thr	CAA Gln 240	ACG Thr	CTT Leu	CCT Pro	AAC Asn	GGC Gly 245	TGG Trp	ACA Thr	ATG Met	ATC Ile	773
GAT Asp 250	Ala	GAT Asp	GGT Gly	GAT Asp	GGT Gly 255	CAC His	AAT Asn	TGG Trp	CTA Leu	TCT Ser 260	ACA Thr	ATA Ile	AAC Asn	GTT Val	TAC Tyr 265	821
AAC Asn	ACT Thr	GCT Ala	ACT Thr	CAT His 270	Thr	GGT Gly	GAC Asp	GGT Gly	GCT Ala 275	Met	TTT Phe	AGC Ser	AAA Lys	TCA Ser 280	TGG	869
ACT Thi	GCT Ala	AGC Sei	GGT Gly 285	Gly	GCA Ala	AAA Lys	ATT	GAT Asp 290	Leu	AGT Ser	CCT	GAC Asp	AAC Asn 295	Tyr	TTG Leu	917
GTA Val	A ACT	CCF Pro	Lys	GTT Val	ACG Thr	GTT Val	CCT Pro 305	Gli	AAT Asn	GGT	AAA Lys	CTI Lev 310	Ser	TAI	TGG	965
GT' Va	1 Se	r Se	r Glr	ı Val	CCT Pro	Trp	Thr	AAT Asi	r GAG n Glu	CAT His	TAT Ty: 325	c Gl	A GTG / Val	TTC Phe	TTG Leu	1013
TC Se. 33	r Th	A AC	c GGA r Gly	A AAG y Asi	GAG Glu 335	ı Ala	GCA Ala	A AAG A Asi	C TTT n Phe	Thi 340	: Ile	A AAG e Ly:	G CTA S Leu	CTC	GAA Glu 345	1061
GA Gl	A AC u Th	C CT r Le	c GGJ u Gl	y Se:	r Asp	AAA Lys	CCT Pro	r GC	T CCC a Pro 35	o Met	AA As	C TTO	G GT(u Val	3 AA(L Ly: 36(G AGT s Ser	1109
GA Gl	A GG u Gl	A GT y Va	A AA 1 Ly: 36	s Le	T CC:	r GCA S Ala	A CC'	TA 5 Ty 37	r Gli	G GAN	A AG	A AC g Th	C ATC r Ile 37	e As	T CTC p Leu	1157
TC Se	T GC	C TA a Ty 38	r Al	c GG a Gl	A CAN y Gl	A CAG	G GT n Va 38	l Ty	C TT	G GC: u Al	A TT a Ph	C CG e Ar 39	g Hi	T TT s Ph	C AAC e Asn	1205

TCT Ser	ACA Thr 395	GGT Gly	ATA Ile	TTC Phe	CGT Arg	CTT Leu 400	TAT Tyr	CTT Leu	GAT Asp	GAT Asp	GTG Val 405	GCT Ala	GTT Val	TCT	GGT Gly	1253
GAA Glu 410	GGT Gly	TCT Ser	TCC	AAC Asn	GAC Asp 415	TAC Tyr	ACG Thr	TAC Tyr	ACG Thr	GTA Val 420	TAT Tyr	CGT Arg	GAC Asp	AAT Asn	GTT Val 425	1301
GTT Val	ATT Ile	GCC Ala	CAG Gln	AAT Asn 430	CTC Leu	GCG Ala	GCA Ala	ACG Thr	ACA Thr 435	TTC Phe	AAT Asn	CAG Gln	GAA Glu	AAT Asn 440	GTA Val	1349
														GCC Ala		1397
GTA Val	TCT Ser	CCG Pro 460	AAG Lys	GTA Val	TGT Cys	AAA Lys	GAC Asp 465	GTT Val	ACG Thr	GTA Val	GAA Glu	GGA Gly 470	TCC Ser	AAC Asn	GAA Glu	1445
TTT Phe	GCT Ala 475	CAT His	GTA Val	CAG Gln	AAC Asn	CTG Leu 480	ACC Thr	GGT Gly	AGT Ser	GCA Ala	GTA Val 485	GGT Gly	CAG Gln	AAA Lys	GTA Val	1493
			TGG Trp					G G	racc	CCGAJ	A TC	CGAA!	rccc			1538
GGA	ACAA	CAA	CACT'	TTCC	GA A'	CAT!	rcgaj	AA A	rggt	ATTC	CTG	CCTC	ATG	GAAG	ACGATC	1598
GAT	GCAG	ACG	GTGA	CGGC	AA C	TTA	GGAC	G AC	GACC	CCTC	CTC	ccgg	AGG	CACC'	PCTTTT	1658
GCA	GGTC	ACA :	ACAG'	TGCA	AT C	rgtg	CCTC	r TC	GGCT'	TCTT	ATA	TCAA	CTT	TGAA	GGTCCT	1718
CAG	AACC	CTG :	ATAA	CTAT	CT G	gtta(CACC	G GA	GCTA'	TCTC	TTC	CTAA	CGG .	AGGA	ACGCTT	1778
ACT'	rtct	GGG '	TATG'	TGCA	CA A	GATG	CCAA!	r TA	TGCA	TCAG	AGC	acta'	TGC	CGTG'	TACGCA	1838
TCT'	CTA	CGG	GTAA	CGAC	GC T	TCCA	ACTT(C GC	CAAC	GCTT	TGT	TGGA	AGA .	agtg	CTGACG	1896
GCC	AAG A	CAG	TTGT'	TACG	GC A	CCTG	AAGC	C AT	TCGT	GGCA	CTC	GTGT'	TCA	GGGC	ACCTGG	195
TAT	CAAA	AGA	CGGT	ACAG'	TT G	CCTG	cggg'	r ac	TAAG	TATG	TTG	CTTT	CCG	TCAC'	TTCGGC	201
TGT	ACGG	ACT	TCTT	CTGG	AT T	aacc'	TTGA'	r ga	TGTT	GAGA	TCA	AGGC	CAA	CGGC	AAGCGC	207
GCA	GACT'	rca	CGGA	AACG	TT C	GAGT	CTTC'	T AC	TCAT	GGAG	AGG	CACC	GGC	GGAA'	TGGACT	213
ACT.	ATCG	ATG	CCGA'	TGGC	GA T	GGTC	AGGG'	T TG	GCTC	TGTC	TGT	CTTC	CGG	ACAA	TTGGAC	219
TGG	CTGA	CAG	CTCA	TGGC	GG C	ACCA	ACGT:	A GT	AGCC	TCTT	TCT	CATG	GAA	TGGA	atggct	225
TTG	AATC	CTG .	ATAA	CTAT	ct c	ATCT	СААА	G GA	TGTT.	ACAG	GCG	CAAC	TAA	GGTA	AAGTAC	231
TAC	TATG	CAG	TCAA	CGAC	GG T	TTTC	CCGG	g ga	TCAC	TATG	CGG	TGAT	GAT	CTCC	AAGACG	237
GGC	ACGA	ACG	CCGG	AGAC	TT C	ACGG	TTGT	T T	CGAA	GAAA	CGC	CTAA	CGG	AATA	AATAAG	243
GGC	GGAG	CAA	GATT	CGGT	ст т	TCCA	CGGA	A GC	CGAT	GGCG	CCA	AACC	TCA	aagt	GTATGG	249
n.m.c		~~~	~~~		mm		~~~	m ~~	mn n ~		m m-c	~~~		mcn c	mr.c.n.m	255

recreegar	T TGAACTACA	T TCTTTTGGA	T GATATTCAG	T TCACCATGG	G TGGCAGCCCC	2618
ACCCCGACC	G ATTATACCT	A CACGGTGTA	T CGTGACGGT	A CGAAGATCA	A GGAAGGTCTG	2678
ACCGAAACG	A CCTTCGAAG	A AGACGGTGT	A GCTACGGGC	A ACCATGAGT	a tigcgtggaa	2738
GTGAAGTAC	A CAGCCGGCG	T ATCTCCGAA	a gagtgtgta	A ACGTAACTG	T TGATCCTGTG	2798
CAGTTCAAT	C CTGTACAGA	A CCTGACCGG	T AGTGCAGTC	G GCCAGAAAG	T AACGCTTAAG	2858
TGGGATGCA	C CTAATGGTA	C CCCGAATCC	A AATCCAAAT	CGAATCCGG	G AACAACAACA	2918
CTTTCCGAA	T CATTCGAAA	A TGGTATTCC	r gcctcatggi	A AGACGATCG	A TGCAGACGGT	2978
GACGGCAAC	A ATTGGACGA	GACCCCTCCT	r cccggaggci	CCTCTTTTG	AGGTCACAAC	3038
AGTGCGATC	r GTGCCTCTT	C GGCTTCTTAT	TATCAACTTT	AAGGCCCTC	GAACCCTGAT	3098
AACTATCTG	F TTACACCGG	A GCTATCTCTT	CCTAACGGA	GAACGCTTAC	TTTCTGGGTA	3158
TGTGCACAA	ATGCCAATT	TGCATCAGAG	CACTATGCCG	TGTATGCATC	TTCTACGGGT	3218
AACGACGCTT	CCAACTTCG	CAACGCTTTG	TTGGAAGAAG	TGCTGACGGC	CAAGACAGTT	3278
GTTACGGCAC	CTGAAGCCAI	TCGTGGCACT	CGTGTTCAGG	GCACCTGGTA	TCAAAAGACG	3338
GTACAGTTGC	CTGCGGGTAC	TAAGTATGTT	GCTTTCCGTC	ACTTCGGCTG	TACGGACTTC	3398
TTCTGGATCA	ACCTTGATGA	TGTTGAGATC	AAGGCCAACG	GCAAGCGCGC	AGACTTCACG	3458
GAAACGTTCG	AGTCTTCTAC	TCATGGAGAG	GCACCGGCGG	AATGGACTAC	TATCGATGCC	3518
GATGGCGATG	GTCAGGGTTG	GCTCTGTCTG	TCTTCCGGAC	AATTGGGCTG	GCTGACAGCT	3578
CATGGCGGCA	CCAACGTAGT	AGCCTCTTTC	TCATGGAATG	GAATGGCTTT	GAATCCTGAT	3638
AACTATCTCA	TCTCAAAGGA	TGTTACAGGC	GCAACTAAGG	TAAAGTACTA	CTATGCAGTC	3698
AACGACGGTT	TTCCCGGGGA	TCACTATGCG	GTGATGTTCT	CCAAGACGGG	CACGAACGCC	3758
GGAGACTTCA	CGGTTGTTTT	CGAAGAAACG	CCTAACGGAA	TAAATAAGGG	CGGAGCAAGA	3818
TTCGGTCTTT	CCACGGAAGC	CGATGGCGCC	AAACCTCAAA	GTGTATGGTT	CGAGCGTACG	3878
GTAGATTTGC	CTGCGGGTAC	TAAGTATGTT	GCTTTCCGTC	ACTACAATTG	CTCGGATTTG	3938
					CCCGACCGAT	3998
					CGAAACGACC	4058
					GAAGTACACA	4118
GCCGGCGTAT	CTCCGAAAGA	GTGTGTAAAC	GTAACTGTTG	ATCCTGTGCA	GTTCAATCCT	4178
		TGCAGTCGGC				4238
		TCCAAATCCG				4298
		CTCATGGAAG				4358
		CGGAGGCACC				4418
GTCTCTTCGG	CTTCTTATAT	CAACTTTGAA	GGCCCTCAGA	ACCCTGATAA	CTATCTGGTT	4478

ACACCGGAGC TATCTCTTCC TGGCGGATTA AT

4510

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 497 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Arg Lys Leu Asn Ser Leu Phe Ser Leu Ala Val Leu Leu Ser Leu 1 5 10 15

Leu Cys Trp Gly Gln Thr Ala Ala Ala Gln Gly Gly Pro Lys Thr Ala 20 25 30

Pro Ser Val Thr His Gln Ala Val Gln Lys Gly Ile Arg Thr Ser Lys 35 40 45

Val Lys Asp Leu Arg Asp Pro Ile Pro Ala Gly Met Ala Arg Ile Ile 50 55 60

Leu Glu Ala His Asp Val Trp Glu Asp Gly Thr Gly Tyr Gln Met Leu 65 70 75 80

Trp Asp Ala Asp His Asn Gln Tyr Gly Ala Ser Ile Pro Glu Glu Ser 85 90 95

Phe Trp Phe Ala Asn Gly Thr Ile Pro Ala Gly Leu Tyr Asp Pro Phe 100 105 110

Glu Tyr Lys Val Pro Val Asn Ala Asp Ala Ser Phe Ser Pro Thr Asn 115 120 125

Phe Val Leu Asp Gly Thr Ala Ser Ala Asp Ile Pro Ala Gly Thr Tyr 130 135 140

Asp Tyr Val Ile Ile Asn Pro Asn Pro Gly Ile Ile Tyr Ile Val Gly 145 150 155 160

Glu Gly Val Ser Lys Gly Asn Asp Tyr Val Val Glu Ala Gly Lys Thr 165 170 175

Tyr His Phe Thr Val Gln Arg Gln Gly Pro Gly Asp Ala Ala Ser Val 180 185 190

Val Val Thr Gly Glu Gly Gly Asn Glu Phe Ala Pro Val Gln Asn Leu 195 200 205

Gln Trp Ser Val Ser Gly Gln Thr Val Thr Leu Thr Trp Gln Ala Pro 210 215 220

Ala Ser Asp Lys Arg Thr Tyr Val Leu Asn Glu Ser Phe Asp Thr Gln 225 230 235 240

Thr Leu Pro Asn Gly Trp Thr Met Ile Asp Ala Asp Gly Asp Gly His 245 250 255

Asn Trp Leu Ser Thr Ile Asn Val Tyr Asn Thr Ala Thr His Thr Gly 265 Asp Gly Ala Met Phe Ser Lys Ser Trp Thr Ala Ser Gly Gly Ala Lys Ile Asp Leu Ser Pro Asp Asn Tyr Leu Val Thr Pro Lys Val Thr Val Pro Glu Asn Gly Lys Leu Ser Tyr Trp Val Ser Ser Gln Val Pro Trp Thr Asn Glu His Tyr Gly Val Phe Leu Ser Thr Thr Gly Asn Glu Ala 330 325 Ala Asn Phe Thr Ile Lys Leu Leu Glu Glu Thr Leu Gly Ser Asp Lys 345 Pro Ala Pro Met Asn Leu Val Lys Ser Glu Gly Val Lys Leu Pro Ala Pro Tyr Gln Glu Arg Thr Ile Asp Leu Ser Ala Tyr Ala Gly Gln Gln 375 Val Tyr Leu Ala Phe Arg His Phe Asn Ser Thr Gly Ile Phe Arg Leu Tyr Leu Asp Asp Val Ala Val Ser Gly Glu Gly Ser Ser Asn Asp Tyr 405 Thr Tyr Thr Val Tyr Arg Asp Asn Val Val Ile Ala Gln Asn Leu Ala Ala Thr Thr Phe Asn Gln Glu Asn Val Ala Pro Gly Gln Tyr Asn Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Val Cys Lys Asp Val Thr Val Glu Gly Ser Asn Glu Phe Ala His Val Gln Asn Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys Trp Asp Ala Pro

Asn

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1470 base pairs(B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(vi)	ORIGINAL	SOURCE:

(A) ORGANISM: Porphyromonas gingivalis

(B) STRAIN: FDC381

(vii) IMMEDIATE SOURCE:

(A) LIBRARY: genomic
(B) CLONE: ST7

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 310..1359

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GTI	TCTI	GCT	CCCI	GCAC	GA I	GTAG	GAAG	c cc	TTGI	CACG	TGF	CAAI	CAC	TCCG	TGCATG	60
ATG	CAGG	AAG	CCGI	TGTC	AC G	TGAC	AATC	A CI	CCGI	GCAC	GAI	GCAG	GAA	GCTG	TCGTCA	120
															TCGCGC	180
															GGGGCA	
																240
															AAAAAG	300
GAA	AAAC	AA A M	TG A et T	CT G	TA G	AA A lu A	AT T sn L 5	TG C eu A	GT C rg L	TG C eu G	ln A	GG C rg L 10	TC C eu G	AA A ln A	AT sn	348
TTG	GAG	CAC	TAC	CGT	TTT	GCC	AAG	AAT	GTG	CTG	ACG	CTC	TGT	CGC	ACG	396
reu	15	HIS	Tyr	Arg	Phe	A1a 20	Lys	Asn	Val	Leu	Thr 25	Leu	Cys	Arg	Thr	
GCA	AAT	ATC	GCT	AAA	CTG	AAT	ccc	AAA	CTG	ccc	GAG	CTG	GAA	AAG	GCT	444
30	Asn	IIe	Ala	Lys	Leu 35	Asn	Pro	Lys	Leu	Pro	Glu	Leu	Glu	Lys	Ala 45	
ATC	GAA	ATG	GAG	GAT	TTG	GCT	СТС	דע ב	cce	ccc	GT/C		226	CD C	CTG	
Ile	Glu	Met	Glu	Asp 50	Leu	Ala	Leu	Asn	Pro	Pro	Val	Ala	Asn	Glu	Leu	492
200									55					60		
Thr	Pro	Gln	GTC Val	ATA Ile	GCC Ala	CTC Leu	GAC	GAG Glu	GAA Glu	CGC	GAC	AGA	GCC	TAT	CAG Gln	540
			65					70		9	.ωρ	9	75	TYL	GIII	
GCG	CTG	ATG	TCG	CGC	GTG	CGT	TCG	TAT	GCT	TTC	GAC	GAG	GAC	AGC	CAG	588
ΑTα	reu	80	ser	Arg	Val	Arg	Ser 85	Tyr	Ala	Phe	Asp	Glu 90	Asp	Ser	Gln	
CTG	CGC	AAC	GCG	GCA	GCC	AGA	ATC	GAA	GAC	GTG	ecc			m > ~		
Leu	Arg 95	Asn	Ala	Ala	Ala	Arg	Ile	Glu	Asp	Val	Ala	Ala	Arg	Tyr	GGC	636
						100					105					
AAC Asn	GTG Val	ATC Ile	CGA	ATG Met	AAC	TAT	GAC	AAG	GAG	ACG Thr	GCC	GCG	ATA	GAG	AAT	684
110					115	- , -	ترت.	-ys	GIU	120	wra	MIA	TTE	GII	Asn 125	
TTC	CTC	ACC	GAT	CTC	AAG	GGC	GAĠ	AAC	ATT	CGC	ccc	CTC	GTA	ACG	AAA	732
Phe	Leu	Thr	Asp	Leu 130	Lys	Gly	Glu	Asn	Ile 135	Arg	Pro	Leu	Val	Thr	Lys	132
									133					140		

CTC Leu	GGC Gly	.GTG Val	ACG Thr 145	GCA Ala	CTC Leu	GTT Val	GAC Asp	AGA Arg 150	CTG Leu	GAA Glu	AAG Lys	AAC Asn	AAT Asn 155	AAG Lys	GCC Ala	780
TTC Phe	GCC Ala	GAC Asp 160	TTC Phe	TTC Phe	CTC Leu	CGC Arg	CGT Arg 165	CTG Leu	AGC Ser	ACC Thr	GAC Asp	CAA Gln 170	CGA Arg	GGC	AAA Lys	828
TAT Tyr	GAC Asp 175	GTG Val	AAG Lys	GCA Ala	CTC Leu	CGT Arg 180	GCC Ala	GAG Glu	ACC Thr	GAC Asp	CGC Arg 185	ACA Thr	TTG Leu	GTA Val	GCC Ala	876
GTG Val 190	GTG Val	CGC Arg	CGC Ar g	ATG Met	GAC Asp 195	TCC Ser	ATC Ile	GAC Asp	GAC Asp	ATG Met 200	GAG Glu	CCG Pro	AGC Ser	CCG Pro	GAG Glu 205	924
ATC Ile	CGT Arg	GCG Ala	CTC Leu	ATC Ile 210	GAG Glu	CTC Leu	TAC Tyr	AAC Asn	CGA Arg 215	CTC Leu	GTG Val	GCC Ala	AAT Asn	CGC Arg 220	CGC Arg	972
GCT Ala	CTC Leu	TTG Leu	GCT Ala 225	CGT Arg	CGC Arg	GCC Ala	AGC Ser	TAC Tyr 230	GGA Gly	GAA Glu	GCA Ala	GCC Ala	GTG Val 235	GAG Glu	AAG Lys	1020
CGT Arg	CGT Arg	GCC Ala 240	GAG Glu	ATC Ile	GCC Ala	GAG Glu	ATG Met 245	CTC Leu	CGC Arg	CCC Pro	CTG Leu	CTC Leu 250	GCC Ala	CGG Arg	ATC Ile	1068
GTG Val	GAG Glu 255	GAG Glu	AAG Lys	AAG Lys	ACG Thr	GCC Ala 260	GTC Val	TTT Phe	GCC Ala	GGT Gly	CGC Arg 265	ACC Thr	CTC Leu	GGC Gly	ACG Thr	1116
270	Lys	Asn	CGC Arg	His	Tyr 275	Leu	Ile	Thr	Phe	Val 280	Ala	Glu	Asn	Gly	As p 285	1164
GIU	GIU	Asp	CGC Arg	7rp 290	Tyr	Arg	Ile	Asn	Gly 295	Glu	Gln	Leu	Val	Tyr 300	Val	1212
PIO	GIU	Asp	GAA Glu 305	Leu	Pro	Lys	Pro	Lys 310	Lys	Lys	Lys	Lys	Pro 315	Ala	Ser	1260
AGC Ser	ACG Thr	GAC Asp 320	ACT Thr	CCA Pro	TCC Ser	GAG Glu	CCG Pro 325	CCC Pro	GTC Val	CTG Leu	CCG Pro	GAT Asp 330	CCA Pro	TCG Ser	CAA Gln	1308
GGA Gly	GGC Gly 335	AGC Ser	AGT Ser	AGC Ser	GGC Gly	GGT Gly 340	GGC Gly	GAG Glu	CAA Gln	GGC Gly	TCT Ser 345	ACC Thr	GGC Gly	GGC Gly	GGA Gly	1356
CTC Leu 350	TGAT	cccc	CC G	TGCC	GTCC	T GC	CGGC	CGCA	. GCA	.GCAC	AGG	CAAC	CGAG	AT		1409
LAA 1	AGAC	AA A	.G G GG	CTGT	G AC	CAAA	TTCA	TTT	TTGG	CAC	AGCC	CCTŢ	GT A	TATT	CGAAA	1469
A.																1470

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 350 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Thr Val Glu Asn Leu Arg Leu Gln Arg Leu Gln Asn Leu Glu His

1 10 15

Tyr Arg Phe Ala Lys Asn Val Leu Thr Leu Cys Arg Thr Ala Asn Ile 20 25 30

Ala Lys Leu Asn Pro Lys Leu Pro Glu Leu Glu Lys Ala Ile Glu Met
35 40 45

Glu Asp Leu Ala Leu Asn Pro Pro Val Ala Asn Glu Leu Thr Pro Gln
50 55 60

Val Ile Ala Leu Asp Glu Glu Arg Asp Arg Ala Tyr Gln Ala Leu Met 65 70 75 80

Ser Arg Val Arg Ser Tyr Ala Phe Asp Glu Asp Ser Gln Leu Arg Asn 85 90 95

Ala Ala Arg Ile Glu Asp Val Ala Ala Arg Tyr Gly Asn Val Ile 100 105 110

Arg Met Asn Tyr Asp Lys Glu Thr Ala Ala Ile Glu Asn Phe Leu Thr 115 120 125

Asp Leu Lys Gly Glu Asn Ile Arg Pro Leu Val Thr Lys Leu Gly Val

Thr Ala Leu Val Asp Arg Leu Glu Lys Asn Asn Lys Ala Phe Ala Asp 145 150 155 160

Phe Phe Leu Arg Arg Leu Ser Thr Asp Gln Arg Gly Lys Tyr Asp Val

Lys Ala Leu Arg Ala Glu Thr Asp Arg Thr Leu Val Ala Val Val Arg 180 185 190

Arg Met Asp Ser Ile Asp Asp Met Glu Pro Ser Pro Glu Ile Arg Ala 195 200 205

Leu Ile Glu Leu Tyr Asn Arg Leu Val Ala Asn Arg Arg Ala Leu Leu 210 215 220

Ala Arg Arg Ala Ser Tyr Gly Glu Ala Ala Val Glu Lys Arg Arg Ala 230 235 240

Glu Ile Ala Glu Met Leu Arg Pro Leu Leu Ala Arg Ile Val Glu Glu 245 250 255

Lys Lys Thr Ala Val Phe Ala Gly Arg Thr Leu Gly Thr Gly Lys Asn 260 265 270

Arg	His		Leu		Thr	Phe	Val 280	Ala	Glu	Asn	Gly	Asp 285	Glu	Glu	Asp
Arg			Arg		Asn		Glu		Leu	Val	Tyr 300	Val	Pro	Glu	Asp
Glu 305		Pro	Lys	Pro	Lys 310				Lys	Pro 315	Ala	Ser	Ser	Thr	Asp 320
Thr	Pro	Ser	Glu	Pro 325	Pro	Val	Leu	Pro	Asp 330	Pro	Ser	Gln	Gly	Gly 335	Ser
Ser	Ser				Glu							Gly	Leu 350		

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1841 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 374..1424
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AAGCTTGCAC CTACGACAAA AGATTTTTTC ATCTTACTAT ATTTTTGGGAT TATATTTCTA	60
CACCTCCTTA TCCGGAATTT GGAAATGCGG GGCAAAAGTA GAAAAATTTT ATTTCCATCA	120
AAAAAAATCT TCAAATTTTT TTCACTTTGC GCATTCTGCA TATAAATGCT GCTACGTCGG	180
CAGATTATTC TGGTTAAAAA GTTATAGATG CAGCTCTTGG TTATAGTGTC CTAAGATCGC	240
TATGCAACCT GTAAGAAACG ATTGTAGGGT GTTTCTTGCT TCCTGCACGA ATGCAGGAGA	300
GCAGAAACGC CCGTTGCTGC TCCCGTCAAT ACACTAATTA TTATCGACTT AACCCCTTAA	360
TTCAAAAACT AAA ATG ACT GCA GAA ATT TTC TCG TTT TCC CGG CTC CAA Met Thr Ala Glu Ile Phe Ser Phe Ser Arg Leu Gln 1 5 10	409
AAT TTG GAG CAC TAC CGT TTT GCC AAG AAT GTG CTG ACG CTC TGT CGC Asn Leu Glu His Tyr Arg Phe Ala Lys Asn Val Leu Thr Leu Cys Arg 15 20 25	457
ACG GCA AAT ATC GCT AAA CTG AAT CCC AAA CTG CCC GAG CTG GAA AAG Thr Ala Asn Ile Ala Lys Leu Asn Pro Lys Leu Pro Glu Leu Glu Lys 30 35 40	505
GCT ATC GAA ATG GAG GAT TTG GCT CTG AAT CCG CCC GTC GCG AAC GAG Ala Ile Glu Met Glu Asp Leu Ala Leu Asn Pro Pro Val Ala Asn Glu 45 50 55 60	553

CTG Leu	ACG Thr	CCT Pro	CAG Gln	GTC Val 65	ATA Ile	GCC Ala	CTC Leu	GAC 'Asp	GAG Glu 70	GAA Glu	CGC Arg	GAC Asp	AGA Arg	GCC Ala 75	TAT Tyr	601
CAG Gln	GCG Ala	CTG Leu	ATG Met 80	Ser	CGC Arg	GTG Val	CGT Arg	TCG Ser 85	TAT Tyr	GCT Ala	TTC Phe	GAC Asp	GAG Glu 90	GAC Asp	AGC Ser	649
CAG Gln	CTG Leu	CGC Arg 95	AAC Asn	GCG Ala	GCA Ala	GCC Ala	AGA Arg 100	ATC Ile	GAA Glu	GAC Asp	GTG Val	GCC Ala 105	GCT Ala	CGC Arg	TAC Tyr	697
GGC Gly	AAC Asn 110	GTG Val	ATC Ile	CGA Arg	ATG Met	AAC Asn 115	TAT Tyr	GAC Asp	AAG Lys	GAG Glu	ACG Thr 120	GCC Ala	GCG Ala	ATA Ile	GAG Glu	745
AAT Asn 125	TTC Phe	CTC Leu	ACC Thr	GAT Asp	CTC Leu 130	AAG Lys	GCC	GAG Glu	AAC Asn	ATT Ile 135	CGC Arg	CCC Pro	CTC Leu	GTA Val	ACG Thr 140	793
AAA Lys	CTC Leu	G1 y	GTG Val	ACG Thr 145	GCA Ala	CTC Leu	GTT Val	GAC Asp	AGA Arg 150	CTG Leu	GAA Glu	AAG Lys	AAC Asn	AAT Asn 155	AAG Lys	841
GCC Ala	TTC Phe	GCC Ala	GAC Asp 160	TTC Phe	TTC Phe	CTC Leu	CGC Arg	CGT Arg 165	CTG Leu	AGC Ser	ACC Thr	GAC Asp	CAA Gln 170	CGA Arg	GGC Gly	889
AAA Lys	TAT Tyr	GAC Asp 175	GTG Val	AAG Lys	GCA Ala	CTC Leu	CGT Arg 180	GCC Ala	GAG Glu	ACC Thr	GAC Asp	CGC Arg 185	ACA Thr	TTG Leu	GTA Val	937
GCC Ala	GTG Val 190	GTG Val	CGC Arg	CGC Arg	ATG Met	GAC Asp 195	TCC Ser	ATC Ile	GAC Asp	GAC Asp	ATG Met 200	GAG Glu	CCG Pro	AGC Ser	CCG Pro	985
GAG Glu 205	ATC Ile	CGT Arg	GCG Ala	CTC Leu	ATC Ile 210	GAG Glu	CTC Leu	TAC Tyr	AAC Asn	CGA Arg 215	CTC Leu	GTG Val	GCC Ala	AAT Asn	CGC Arg 220	1033
CGC Arg	GCT Ala	CTC Leu	TTG Leu	GCT Ala 225	CGT Arg	CGC Arg	GCC Ala	AGC Ser	TAC Tyr 230	GGA Gly	GAA Glu	GCA Ala	GCC Ala	GTG Val 235	GAG Glu	1081
AAG Lys	CGT Arg	CGT Ar g	GCC Ala 240	GAG Glu	ATC Ile	GCC Ala	GAG Glu	ATG Met 245	CTC Leu	CGC Arg	CCC Pro	CTG Leu	CTC Leu 250	GCC Ala	CGG Arg	1129
ATC Ile	GTG Val	GAG Glu 255	GAG Glu	AAG Lys	AAG Lys	ACG Thr	GCC Ala 260	GTC Val	TTT Phe	GCC Ala	GGT Gly	CGC Arg 265	ACC Thr	CTC Leu	GGC Gly	1177
ACG Thr	GGC Gly 270	AAG Lys	AAC Asn	CGC Arg	CAC His	TAT Tyr 275	CTC Leu	ATC Ile	ACA Thr	TTC Phe	GTA Val 280	GCC Ala	GAG Glu	AAC Asn	GGC Gly	1225
GAC Asp 285	GAG Glu	GAG Glu	GAT Asp	CGC Arg	TGG Trp 290	TAC Tyr	CGC Arg	ATC Ile	AAC Asn	GGG Gly 295	GAG Glu	CAA Gln	CTC Leu	GTC Val	TAT Tyr 300	1273

GTG Val	CCC Pro	GAA Glu	GAC Asp	GAA Glu 305	CTC Leu	CCC Pro	AAG Lys	CCG Pro	AAG Lys 310	AAA Lys	AAG Lys	AAG Lys	AAA Lys	CCC Pro 315	GCA Ala	1321
AGC Ser	AGC Ser	ACG Thr	GAC Asp 320	ACT Thr	CCA Pro	TCC Ser	GAG Glu	CCG Pro 325	CCC Pro	GTC Val	CTG Leu	CCG Pro	GAT Asp 330	CCA Pro	TCG Ser	1369
CAA Gln	GGA Gly	GGC Gly 335	AGC Ser	AGT Ser	AGC Ser	GGC Gly	GGT Gly 340	GGC	GAG Glu	CAA Gln	GGC	TCT Ser 345	ACC Thr	GGC Gly	GGC Gly	1417
GGA Gly	CTC Leu 350	T GA	ATCC	Caci	CCC	CCGI	'GCC	GTCC	TGTC	ee c	CCGCZ	(GCA)	SC AC	AGGC	CAACC	1474
GAGI	'ATA	AA G	ACAP	AGGG	G CI	'GTGA	CCAA	ATI	CATI	TTT	GGCA	CAGO	cc c	TTTC	AGGTG	1534
CATA	AGAA	TC 1	TATAT	TAC	G GA	GAAC	OTAA	CCI	GTAA	GAG	CAGI	CAC	AT G	CCGI	TTTCC	1594
TCAT	ATAC	AG I	'AATC	CGGA	A GA	CGTC	TTCC	AGC	AGAT	'CGG	GATG	TCTC	AG A	ACCC	ATGCT	1654
CCTT	TTAT	'GG G	CTGG	GGTT	T TG	GTTT	GGCT	CTG	AAAT	TTT	TTCC	AAGG	GA T	CTAG	TTTTT	1714
AGCT	CTCA	AT G	GGCC	AGAT	c cc	CCCT	CAAG	TGC	TTAA	CGA	GAGA	.GGAT	'AA A	AGGG	TAATA	1774
CCGT	GAAC	GC I	CTGC	GGTC	T AT	CGGT	AGCG	TAC	GGTC	ATG	AACA	GGTG	TG T	ACGT	GCCTG	1834
TCCG	CGG													÷		1841

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 350 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Thr Ala Glu Ile Phe Ser Phe Ser Arg Leu Gln Asn Leu Glu His 1 5 10 15

Tyr Arg Phe Ala Lys Asn Val Leu Thr Leu Cys Arg Thr Ala Asn Ile 20 25 30

Ala Lys Leu Asn Pro Lys Leu Pro Glu Leu Glu Lys Ala Ile Glu Met 35 40 45

Glu Asp Leu Ala Leu Asn Pro Pro Val Ala Asn Glu Leu Thr Pro Gln
50 55 60

Val Ile Ala Leu Asp Glu Glu Arg Asp Arg Ala Tyr Gln Ala Leu Met 65 70 75 80

Ser Arg Val Arg Ser Tyr Ala Phe Asp Glu Asp Ser Gln Leu Arg Asn 85 90 95

Ala Ala Arg Ile Glu Asp Val Ala Ala Arg Tyr Gly Asn Val Ile 100 105 110 WO 96/17936 PCT/US95/16108

59

Arg Met Asn Tyr Asp Lys Glu Thr Ala Ala Ile Glu Asn Phe Leu Thr Asp Leu Lys Gly Glu Asn Ile Arg Pro Leu Val Thr Lys Leu Gly Val Thr Ala Leu Val Asp Arg Leu Glu Lys Asn Asn Lys Ala Phe Ala Asp 150 Phe Phe Leu Arg Arg Leu Ser Thr Asp Gln Arg Gly Lys Tyr Asp Val 170 Lys Ala Leu Arg Ala Glu Thr Asp Arg Thr Leu Val Ala Val Val Arg Arg Met Asp Ser Ile Asp Asp Met Glu Pro Ser Pro Glu Ile Arg Ala Leu Ile Glu Leu Tyr Asn Arg Leu Val Ala Asn Arg Arg Ala Leu Leu Ala Arg Arg Ala Ser Tyr Gly Glu Ala Ala Val Glu Lys Arg Arg Ala Glu Ile Ala Glu Met Leu Arg Pro Leu Leu Ala Arg Ile Val Glu Glu 250 Lys Lys Thr Ala Val Phe Ala Gly Arg Thr Leu Gly Thr Gly Lys Asn Arg His Tyr Leu Ile Thr Phe Val Ala Glu Asn Gly Asp Glu Glu Asp Arg Trp Tyr Arg Ile Asn Gly Glu Gln Leu Val Tyr Val Pro Glu Asp Glu Leu Pro Lys Pro Lys Lys Lys Lys Pro Ala Ser Ser Thr Asp Thr Pro Ser Glu Pro Pro Val Leu Pro Asp Pro Ser Gln Gly Gly Ser 325 330 Ser Ser Gly Gly Glu Gln Gly Ser Thr Gly Gly Gly Leu

- (2) INFORMATION FOR SEQ ID NO:7:
- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4080 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 87..3347

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

TCAAGAATCA GGCCTTCTTA ATAACCAATT CAGGCCTTCC TCCGGGTTCT TACCGTAAAC 60												
TAATTTACTA AAAG			TT GTT GCT GAT CCC al Val Ala Asp Pro 5									
			A GCC GAA AAT GGT e Ala Glu Asn Gly									
			CCT GTG ATC AAC Pro Val Ile Asn 40									
	Glu Pro Ser P		GTT AAC AAC TTG Val Asn Asn Leu 55									
	Gly Glu Glu Va		TGG GAT ACC CCG Trp Asp Thr Pro									
			A CGG ATC GGA GAC RATG Ile Gly Asp 85									
CTT TTC GTT ACG Leu Phe Val Thr 90	ATC GAA CCT GO Ile Glu Pro A 95	CA AAC GAT GTA la Asn Asp Val 100	A CGT GCC AAC GAA Arg Ala Asn Glu	GCC 401 Ala 105								
AAG GTT GTG CTC Lys Val Val Leu	GCA GCA GAC A Ala Ala Asp A 110	AC GTA TGG GGA sn Val Trp Gly 115	A GAC AAT ACG GGT Asp Asn Thr Gly 120	TAC 449 Tyr								
CAG TTC TTG TTG Gln Phe Leu Leu 125	Asp Ala Asp H	AC AAT ACA TTO is Asn Thr Phe 130	GGA AGT GTC ATT Gly Ser Val Ile 135	CCG 497 Pro								
GCA ACC GGT CCT Ala Thr Gly Pro 140	Leu Phe Thr G	GA ACA GCT TCT ly Thr Ala Ser 45	T TCC AAT CTT TAC Ser Asn Leu Tyr 150	AGT 545 Ser								
GCG AAC TTC GAG Ala Asn Phe Glu 155	TAT TTG ATC Co	CG GCC AAT GCC ro Ala Asn Ala	GAT CCT GTT GTT A Asp Pro Val Val 165	ACT 593 Thr								
ACA CAG AAT ATT Thr Gln Asn Ile 170	ATC GTT ACA G Ile Val Thr G 175	GA CAG GGT GAP ly Gln Gly Glu 180	A GTT GTA ATC CCC 1 Val Val Ile Pro	GGT 641 Gly 185								
GGT GTT TAC GAC Gly Val Tyr Asp	TAT TGC ATT A Tyr Cys Ile T 190	CG AAC CCG GAA hr Asn Pro Glu 195	A CCT GCA TCC GGA 1 Pro Ala Ser Gly 200	AAG 689 Lys								
ATG TGG ATC GCA Met Trp Ile Ala 205	Gly Asp Gly A	AC AAC CAG CCT sp Asn Gln Pro 210	GCA CGT TAT GAC Ala Arg Tyr Asp 215	GAT 737 Asp								

TT Ph	C AC	A TTC r Phe 220	e Gli	A GCA 1 Ala	A GGC A Gly	AAG Lys	Lys 225	Туг	ACC Thr	TTC Phe	ACC Thr	ATC Met 230	Arc	CGG	GCC J Ala	785
G1;	A ATO y Mei 23	: GT2	A GAI / Asp	GEA Gly	ACT Thr	GAT Asp 240	ATG Met	GAP Glu	A GTC	GAA Glu	GAC Asp 245	Asp	TCA Ser	CCT Pro	GCA Ala	833
AG0 Se2 250	r Tyl	Thr	TAT	ACA Thr	GTC Val 255	TAT	CGT Arg	GAC Asp	GGC Gly	ACG Thr 260	Lys	ATC Ile	AAG Lys	GAP Glu	GGT Gly 265	881
CT(Let	ACG Thr	GCT Ala	ACG Thr	Thr 270	Phe	GAA Glu	GAA Glu	GAC Asp	GGT Gly 275	GTA Val	GCT Ala	GCA Ala	GGC Gly	AAT Asn 280	His	929
GA Glu	TAT Tyr	TGC	GTG Val 285	Glu	GTT Val	AAG Lys	TAC Tyr	ACA Thr 290	Ala	GGC Gly	GTA Val	TCT Ser	CCG Pro 295	AAG Lys	GTA Val	977
Cys	Lys	300	Val	Thr	Val	GAA Glu	Gly 305	Ser	Asn	Glu	Phe	Ala 310	Pro	Val	Gln	1025
ASII	315	rnr	GIŸ	Ser	Ala	GTC Val 320	Gly	Gln	Lys	Val	Thr 325	Leu	Lys	Trp	Asp	1073
330	PIO	Asn	GIY	Thr	Pro 335	AAT Asn	Pro	Asn	Pro	Asn 340	Pro	Asn	Pro	Gly	Thr 345	1121
rnr	Tnr	Leu	Ser	G1 u 350	Ser	TTC Phe	Glu	Asn	Gly 355	Ile	Pro	Ala	Ser	Trp 360	Lys	1169
1111	TIE	Asp	365	Asp	GIA	GAC Asp	Gly	His 370	Gly	Trp	Lys	Pro	Gly 375	Asn	Ala	1217
PIO	GIY	380	Ala	GIA	Tyr		Ser 385	Asn	Gly	Cys	Val	Tyr 390	Ser	Glu	Ser	1265
rne	395	Leu	GIÀ	GTĀ	ITE	GGA Gly 400	Val	Leu	Thr	Pro	Asp 405	Asn	Tyr	Leu	Ile	1313
410	PIO	ALA	Leu	Asp	415	GCT : Ala :	Asn	Gly	Gly	Lys 420	Leu	Thr	Phe	Trp	Val 425	1361
Cys	714	GIN	ASP	430	ASN	TAT (Alla	Ser	Glu 435	His	Tyr	Ala	Val	Tyr 440	Ala	1409
501	261	Int	445	Asn .	Asp .	GCA : Ala :	ser .	Asn 450	Phe '	Thr .	Asn .	Ala	Leu 455	Leu	Glu	1457
GAG Glu	ACG Thr	ATT Ile 460	ACG Thr	GCA . Ala	AAA Lys	GGT (TT (/al : 465	CGC Arg	TCG (Ser)	CCG Pro	Glu .	GCT . Ala 470	ATT Ile .	CGT Arg	GGT Gly	1505

CGT Arg	ATA Ile 475	CAG Gln	GGT Gly	ACT Thr	TGG Trp	CGC Arg 480	CAG Gln	AAG Lys	ACG Thr	GTA Val	GAC Asp 485	CTT Leu	CCC Pro	GCA Ala	GGT Gly	1553
ACG Thr 490	Lys	TAT Tyr	GTT Val	GCT Ala	TTC Phe 495	CGT Arg	CAC His	TTC Phe	CAA Gln	AGC Ser 500	ACG Thr	GAT Asp	ATG Met	TTC Phe	TAC Tyr 505	1601
ATC Ile	GAC Asp	CTT Leu	GAT Asp	GAG Glu 510	GTT Val	GAG Glu	ATC Ile	AAG Lys	GCC Ala 515	AAT Asn	GGC Gly	AAG Lys	CGC Arg	GCA Ala 520	GAC Asp	1649
TTC Phe	ACG Thr	GAA Glu	ACG Thr 525	TTC Phe	GAG Glu	TCT Ser	TCT Ser	ACT Thr 530	CAT His	GGA Gly	GAG Glu	GCA Ala	CCA Pro 535	GCG Ala	GAA Glu	1697
TGG Trp	ACT Thr	ACT Thr 540	ATC Ile	GAT Asp	GCC Ala	GAT Asp	GGC Gly 545	GAT Asp	GGT Gly	CAG Gln	GAT Asp	TGG Trp 550	CTC Leu	TGT Cys	CTG Leu	1745
TCT Ser	TCC Ser 555	GGA Gly	CAA Gln	TTG Leu	GAC Asp	TGG Trp 560	CTG Leu	ACA Thr	GCT Ala	CAT His	GGC Gly 565	GGC Gly	ACC Thr	AAC Asn	GTA Val	1793
GTA Val 570	GCC Ala	TCT Ser	TTC Phe	TCA Ser	TGG Trp 575	AAT Asn	GGA Gly	ATG Met	GCT Ala	TTG Leu 580	AAT Asn	CCT Pro	GAT Asp	AAC Asn	TAT Tyr 585	1841
CTC Leu	ATC Ile	TCA Ser	AAG Lys	GAT Asp 590	GTT Val	ACA Thr	GGC Gly	GCA Ala	ACG Thr 595	AAG Lys	GTA Val	AAG Lys	TAC Tyr	TAC Tyr 600	TAT Tyr	1889
GCA Ala	GTC Val	AAC Asn	GAC Asp 605	GGT Gly	TTT Phe	CCC Pro	GGG Gly	GAT Asp 610	CAC His	TAT Tyr	GCG Ala	GTG Val	ATG Met 615	ATC Ile	TCC Ser	1937
AAG Lys	ACG Thr	GGC Gly 620	ACG Thr	AAC Asn	GCC Ala	GGA Gly	GAC Asp 625	TTC Phe	ACG Thr	GTT Val	GTT Val	TTC Phe 630	GAA Glu	GAA Glu	ACG Thr	1985
CCT Pro	AAC Asn 635	GGA Gly	ATA Ile	AAT Asn	AAG Lys	GGC Gly 640	GGA Gly	GCA Ala	AGA Arg	TTC Phe	GGT Gly 645	CTT Leu	TCC Ser	ACG Thr	GAA Glu	2033
GCC Ala 650	AAT Asn	GGC GGC	GCC Ala	AAA Lys	CCT Pro 655	CAA Gln	AGT Ser	GTA Val	TGG Trp	ATC Ile 660	GAG Glu	CGT Arg	ACG Thr	GTA Val	GAT Asp 665	2081
TTG Leu	CCT Pro	GCG Ala	GGC Gly	ACG Thr 670	AAG Lys	TAT Tyr	GTT Val	GCT Ala	TTC Phe 675	CGT Arg	CAC His	TAC Tyr	AAT Asn	TGC Cys 680	TCG Ser	2129
GAT Asp	TTG Leu	GAC Asp	TAC Tyr 685	ATT Ile	CTT Leu	TTG Leu	GAT Asp	GAT Asp 690	ATT Ile	CAG Gln	TTC Phe	ACC Thr	ATG Met 695	GGT Gly	GGC	2177
AGC Ser	CCC Pro	ACC Thr 700	CCG Pro	ACC Thr	GAT. Asp	TAT Tyr	ACC Thr 705	TAC Tyr	ACG Thr	GTA Val	TAT Tyr	CGT Arg 710	GAT Asp	GGT Gly	ACG Thr	2225
AAG Lys	ATC Ile 715	AAG Lys	GAA Glu	GGT Gly	CTG Leu	ACC Thr 720	GAA Glu	ACG Thr	ACC Thr	TTC Phe	GAA Glu 725	GAA Glu	GAC Asp	GGC Gly	GTA Val	2273

GCT Ala 730	Thr	GGC Gly	AAT Asn	CAT His	GAG Glu 735	Tyr	TGC Cys	GTG Val	GAA Glu	GTG Val 740	Lys	TAC	ACA Thr	GCC	GGC Gly 745	2321
GTA Val	TCT Ser	CCG Pro	AAG Lys	GTG Val 750	Cys	GTA Val	AAC Asn	GTA Val	ACT Thr 755	Ile	AAT Asn	CCG Pro	ACT	CAG Gln 760	TTC Phe	2369
AAT Asn	CCT Pro	GTA Val	AAG Lys 765	AAC Asn	CTG Leu	AAG Lys	GCA Ala	CAA Gln 770	CCG Pro	GAT Asp	GGC	GGC Gly	GAC Asp 775	GTG Val	GTT Val	2417
CTC Leu	AAG Lys	TGG Trp 780	GAA Glu	GCC Ala	CCG Pro	AGT Ser	GGC Gly 785	AAA Lys	CGA Arg	GGA Gly	GAA Glu	CTG Leu 790	CTT Leu	AAT Asn	GAA Glu	2465
GAT Asp	TTT Phe 795	Glu	GGA Gly	GAC Asp	GCT Ala	ATT Ile 800	CCC Pro	ACA Thr	GGG Gly	TGG Trp	ACA Thr 805	GCA Ala	TTG Leu	GAT Asp	GCC Ala	2513
GAT Asp 810	Gly	GAC Asp	GGT Gly	AAT Asn	AAC Asn 815	TGG	GAT Asp	ATC Ile	ACG Thr	CTC Leu 820	AAT Asn	GAA Glu	TTT Phe	ACG Thr	CGA Arg 825	2561
GGA Gly	GAG Glu	CGT Arg	CAT His	GTT Val 830	CTT Leu	TCA Ser	CCT Pro	TTA Leu	CGC Arg 835	GCC Ala	AGC Ser	AAC Asn	GTA Val	GCC Ala 840	ATA Ile	2609
Ser	Tyr	Ser	TCT Ser 845	Leu	Leu	Gln	Gly	Gln 850	Glu	Tyr	Leu	Pro	Leu 855	Thr	Pro	2657
AAC Asn	AAC Asn	TTT Phe 860	CTG Leu	ATC Ile	ACT Thr	CCG Pro	AAG Lys 865	GTT Val	GAA Glu	GGA Gly	GCA Ala	AAG Lys 870	AAG Lys	ATT Ile	ACT Thr	2705
TAT Tyr	AAG Lys 875	GTG Val	GGT Gly	TCA Ser	CCG Pro	GGT Gly 880	CTT Leu	CCT Pro	CAA Gln	TGG Trp	AGT Ser 885	CAT His	GAT Asp	CAT His	TAT Tyr	2753
890	Leu	Cys	ATC Ile	Ser	Lys 895	Ser	Gly	Thr	Ala	Ala 900	Ala	Asp	Phe	Glu	Val 905	2801
ATC Ile	TTT Phe	GAA Glu	GAA Glu	ACG Thr 910	ATG Met	ACC Thr	TAC Tyr	ACT Thr	CAA Gln 915	GGA Gly	GGA Gly	GCC Ala	AAC Asn	TTG Leu 920	ACA Thr	2849
AGA Arg	GAA Glu	AAA Lys	GAC Asp 925	CTC Leu	CCT Pro	GCC Ala	GGC Gly	ACG Thr 930	AAA Lys	TAT Tyr	GTC Val	GCT Ala	TTC Phe 935	CGT Arg	CAT His	2897
TAC	AAT Asn	TGC Cys 940	ACG Thr	GAT Asp	GTT Val	CTG Leu	GGC Gly 945	ATA Ile	ATG Met	ATT Ile	GAC Asp	GAT Asp 950	GTA Val	GTG Val	ATA Ile	2945
ACA Thr	GGT Gly 955	GAA Glu	GGC Gly	GAA Glu	GGT Gly	CCC Pro 960	AGT Ser	TAC Tyr	ACC Thr	TAC Tyr	ACG Thr 965	GTG Val	TAT Tyr	CGT Arg	GAC Asp	2993
GGC Gly 970	ACG Thr	AAG Lys	ATC Ile	CAG Gln	GAA Glu 975	GGT Gly	CTG Leu	ACC Thr	GAA Glu	ACG Thr 980	ACC Thr	TAC Tyr	CGC Arg	gat Asp	GCA Ala 985	3041

GGA Gly	ATG Met	AGT Ser	GCA Ala	CAA Gln 990	TCT	CAT His	GAG Glu	TAT Tyr	TGC Cys 995	GTA Val	GAG Glu	GTT Val	AAG Lys	TAC Tyr 1000	Ala	3089
GCC Ala	GGC	GTA Val	TCT Ser 1005	Pro	AAG Lys	GTT Val	TGT Cys	GTG Val 1010	Asp	TAT Tyr	ATT Ile	CCT Pro	GAT Asp 101	GGA Gly	GTG Val	3137
GCA Ala	GAC Asp	GTA Val 1020	Thr	GCT Ala	CAG Gln	AAG Lys	CCT Pro 1025	Tyr	ACG Thr	CTG Leu	ACG Thr	GTT Val 1030	Val	GGA Gly	AAG Lys	3185
ACT Thr	ATC Ile 1035	Thr	GTA Val	ACT Thr	TGC Cys	CAA Gln 1040	Gly	GAA Glu	GCT Ala	ATG Met	ATC Ile 1045	Tyr	GAC Asp	ATG Met	AAC Asn	3233
GGT Gly 105	Arg	CGT Arg	CTG Leu	GCA Ala	GCG Ala 105	Gly	CGC Arg	AAC Asn	ACG Thr	GTT Val 1060	Val	TAC Tyr	ACG Thr	GCT Ala	CAG Gln 1065	3281
GGC GGC	GGC Gly	TAC Tyr	TAT Tyr	GCA Ala 107	Val	ATG Met	GTT Val	GTC Val	GTT Val 107	Asp	GGC Gly	AAG Lys	TCT Ser	TAC Tyr 108	Val	3329
	AAA Lys			Ile		TAA	rtct	STC 1	rtgg/	ACTC	GG A	GACT'	rtgt	G		3377
CAG	ACAC'	TTT '	TAAT	ATAG	GT C	rgtai	ATTG'	T CT	CAGA	GTAT	GAA'	rcgg'	rcg	CCCG	ACTTCC	3437
TTA	AAAG	GAG	GTCG	GGCG	AC T	rcgt'	TTTT:	A TT	ATTG	CTGT	CTG	GTAA	ACT	TGTC	AAGAGG	3497
AGA	CCTT	TGA .	AAAA	TGGG	GC G	GTCA	AATA	T TT	TCGG'	TCTA	TGG	GTCA	TAA	TGCA	GGCTAC	3557
TGT	TTTA	GGT	GTAT	GTTG	GG C	TATC'	TTCC	T AT	CTTT	AAGA	GAC	CTTT	GAA	AAAT.	AAGGAG	3617
ATG	GAGG	gaa	GAGG	agtt	CT T	GGCA	AAAT	A GG	AGCG	agtg	AAA	GGGG	TGG	CAGT.	AAGGAG	3677
TGA	aagt	AGT	TGTA	AATC	cc c	CCTT	TGAG	G AG	CTAC	TTĢT	ACG	AGCT	CCT	CAAG	GGTGGT	3737
TAT	GCCT	TAT	CCTA	.CGGA	TG A	GGAC	ATA	T TA	TCCC	CGGC	GTT	CTGT	ATA	AATT.	AAAGGC	3797
GAT	GCTT	TCA	AGAA	TGTT	TT G	AGTA	TGGG	T CT	TGGC	AAGT	ccc	CGGT	ATC	GACA	TGTCCG	3857
CCP	TGAA	ACC	ACCG	GCGA	AT A	CTGC	CAAA	G GT	GCGT	TCGA	TGG	TGCT	CCG	TATC	GGACTG	3917
ATI	GCTT	TGT	TTCG	TTGC	TT C	TCTT	CCTC	G GT	CAAT	GCCC	TGT	TGCG	TTG	TGCC	TTGTGC	3977
ATA	ATGO	CGT	CTTG	AAGG	TG A	TGGG	TTTG	C AG	GTAG	GAAC	GAT	TTTC	ccc	GCAA	GCATAT	4037
CCI	TTGI	cce	CCAA	GACG	GC T	GTAC	CTTG	A GG	TATG	TTTG	CAC	!				4080

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1087 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met 1	Gly	Thr	Val	Val 5	Ala	Asp	Pro	Thr	Val 10	Ala	Ala	Pro	Val	Lys 15	Met
Ala	Lys	Gln	Ile 20	Ala	Glu	Asn	Gly	Asn 25	Tyr	Asp	Val	Val	Met 30	Thr	Arg
Ser	Asn	Tyr 35	Leu	Pro	Val	Ile	Asn 40	Gln	Ile	Gln	Ala	Gly 45	Glu	Pro	Ser
Pro	Tyr 50	Gln	Pro	Val	Asn	Asn 55	Leu	Thr	Ala	Pro	Pro 60	Glu	Gly	Glu	Glu
Val 65	Ala	Leu	Lys	Trp	Asp 70	Thr	Pro	Ser	Ala	Lys 75	Lys	Ala	Glu	Ala	Ser 80
Arg	Glu	Val	Lys	Arg 85	Ile	Gly	Asp	Gly	Leu 90	Phe	Val	Thr	Ile	Glu 95	Pro
Ala	Asn	Asp	Val 100	Arg	Ala	Asn	Glu	Ala 105	Lys	Val	Val	Leu	Ala 110	Ala	Asp
Asn	Val	Trp 115	Gly	Asp	Asn	Thr	Gly 120	Tyr	Gln	Phe	Leu	Leu 125	Asp	Ala	Asp
His	Asn 130	Thr	Phe	Gly	Ser	Val 135	Ile	Pro	Ala	Thr	Gly 140	Pro	Leu	Phe	Thr
Gly 145	Thr	Ala	Ser	Ser	Asn 150	Leu	Tyr	Ser	Ala	Asn 155	Phe	Glu	Tyr	Leu	11e 160
Pro	Ala	Asn	Ala	Asp 165	Pro	Val	Val	Thr	Thr 170	Gln	Asn	Ile	Ile	Val 175	Thr
Gly	Gln	Gly	Glu 180	Val	Val	Ile	Pro	Gly 185	Gly	Val	Tyr	Asp	Tyr 190	Cys	Ile
Thr	Asn	Pro 195	Glu	Pro	Ala	Ser	Gly 200	Lys	Met	Trp	Ile	Ala 205	Gly	Asp	Gly
Asp	Asn 210	Gln	Pro	Ala	Arg	Tyr 215	Asp	Asp	Phe	Thr	Phe 220	Glu	Ala	Gly	Lys
Lys 225	Tyr	Thr	Phe	Thr	Met 230	Arg	Arg	Ala	Gly	Met 235	Gly	Asp	Gly	Thr	Asp 240
Met	Glu	Val	Glu	Asp 245	Asp	Ser	Pro	Ala	Ser 250	Tyr	Thr	Tyr	Thr	Val 255	Tyr
Arg	Asp	Gly	Thr 260	Lys	Ile	Lys	Glu	Gly 265	Leu	Thr	Ala	Thr	Thr 270	Phe	Glu
Glu	Asp	Gly 275	Val	Ala	Ala	Gly	Asn 280	His	Glu	Tyr	Cys	Val 285	Glu	Val	Lys
Tyr	Thr 290	Ala	Gly	Val	Ser	Pro 295	Lys	Val	Cys	Lys	Asp 300	Val	Thr	Val	Glu
Gly 305	Ser	Asn	Glu	Phe	Ala 310	Pro	Val	Gln	Asn	Leu 315	Thr	Gly	Ser	Ala	Val 320
Gly	Gln	Lys	Val	Thr 325	Leu	Lys	Trp	Asp	Ala 330	Pro	Asn	Gly	Thr	Pro	Asn

Pro	Asn	Pro	Asn 340	Pro	Asn	Pro	Gly	Thr 345	Thr	Thr	Leu	Ser	Glu 350	Ser	Phe
Glu	Asn	Gly 355	Ile	Pro	Ala	Ser	Trp 360	Lys	Thr	Ile	Asp	Ala 365	Asp	Gly	Asp
Gly	His 370	Gly	Trp	Lys	Pro	Gly 375	Asn	Ala	Pro	Gly	Ile 380	Ala	Gly	Tyr	Asn
Ser 385	Asn	Gly	Cys	Val	Tyr 390	Ser	Glu	Ser	Phe	Gly 395	Leu	Gly	Gly	Ile	Gly 400
Val	Leu	Thr	Pro	Asp 405	Asn	Tyr	Leu	Ile	Thr 410	Pro	Ala	Leu	Asp	Leu 415	Ala
Asn	Gly	Gly	Lys 420	Leu	Thr	Phe	Trp	Val 425	Cys	Ala	Gln	Asp	Ala 430	Asn	Tyr
Ala	Ser	Glu 435	His	Tyr	Ala	Val	Tyr 440	Ala	Ser	Ser	Thr	Gly 445	Asn	Asp	Ala
Ser	Asn 450	Phe	Thr	Aşn	Ala	Leu 455	Leu	Glu	Glu	Thr	Ile 460	Thr	Ala	Lys	Gly
Val 465	Arg	Ser	Pro	Glu	Ala 470	Ile	Arg	Gly	Arg	Ile 475	Gln	Gly	Thr	Trp	Arg 480
Gln	Lys	Thr	Val	Asp 485	Leu	Pro	Ala	Gly	Thr 490		Tyr	Val	Ala	Phe 495	Arg
His	Phe	Gln	Ser 500	Thr	Asp	Met	Phe	Tyr 505	Ile	Asp	Leu	Asp	Glu 510	Val	Glu
Ile	Lys	Ala 515	Asn	Gly	Lys	Arg	Ala 520	Asp	Phe	Thr	Glu	Thr 525	Phe	Glu	Ser
Ser	Thr 530		Gly	Glu	Ala	Pro 535		Glu	Trp	Thr	Thr 540		Asp	Ala	Asp
Gly 545	-	Gly	Gln	Asp	Trp 550	Leu	Cys	Leu	Ser	Ser 555		Gln	Leu	Asp	Trp 560
Leu	Thr	Ala	His	Gly 565		Thr	Asn	Val	Val 570		Ser	Phe	Ser	Trp 575	Asn
Gly	Met	Ala	Leu 580		Pro	Asp	Asn	Tyr 585		Ile	Ser	Lys	Asp 590		Thr
Gly	Ala	Thr 595	Lys	Val	Lys	Tyr	Tyr 600		Ala	Val	Asn	Asp 605		Phe	Pro
Gly	Asp 610		Tyr	Ala	Val	Met 615		Ser	Lys	Thr	Gly 620		Asn	Ala	Gly
Asp 625		Thr	. Val	Val	Phe 630		Glu	Thr	Pro	Asn 635		Ile	Asn	Lys	G1 y 64 0
Gly	Ala	Arg	Phe	Gly 645		Ser	Thr	Glu	Ala 650		Gly	Ala	Lys	Pro 655	
Ser	. Val	Trp	Ile 660		Arg	Thr	· Val	Asp 665		Pro	Ala	Gly	Thr 670		Туг

Val	Ala	Phe 675		His	Tyr	Asn	Cys 680	Ser	Asp	Leu	Asp	Tyr 685	Ile	Leu	Leu
Asp	Asp 690		Gln	Phe	Thr	Met 695		Gly	Ser	Pro	Thr 700	Pro	Thr	Asp	Tyr
Thr 705	Tyr	Thr	Val	Tyr	Arg 710	Asp	Gly	Thr	Lys	Ile 715	Lys	Glu	Gly	Leu	Thr 720
Glu	Thr	Thr	Phe	Glu 725	Glu	Asp	Gly	Val	Ala 730	Thr	Gly	Asn	His	Glu 735	Tyr
Cys	Val	Glu	Val 740	Lys	Tyr	Thr	Ala	Gly 745	Val	Ser	Pro	Lys	Val 750	Cys	Val
Asn	Val	Thr 755	Ile	Asn	Pro	Thr	Gln 760	Phe	Asn	Pro	Val	Lys 765	Asn	Leu	Lys
Ala	Gln 770	Pro	Asp	Gly	Gly	Asp 775	Val	Val	Leu	Lys	Trp 780	Glu	Ala	Pro	Ser
Gly 785	Lys	Arg	Gly	Glu	Leu 790	Leu	Asn	Glu	Asp	Phe 795	Glu	Gly	Asp	Ala	Ile 800
Pro	Thr	Gly	Trp	Thr 805	Ala	Leu	Asp	Ala	Asp 810	Gly	Asp	Gly	Asn	Asn 815	Trp
Asp	Ile	Thr	Leu 820	Asn	Glu	Phe	Thr	Arg 825	Gly	Glu	Arg	His	Val 830	Leu	Ser
Pro	Leu	Arg 835	Ala	Ser	Asn	Val	Ala 840	Ile	Ser	Tyr	Ser	Ser 845	Leu	Leu	Gln
Gly	Gln 850	Glu	Tyr	Leu	Pro	Leu 855	Thr	Pro	Asn	Asn	Phe 860	Leu	Ile	Thr	Pro
Lys 865	Val	Glu	Gly	Ala	Lys 870	Lys	Ile	Thr	Tyr	Lys 875	Val	Gly	Ser	Pro	Gly 880
Leu	Pro	Gln	Trp	Ser 885	His	Asp	His	Tyr	Ala 890	Leu	Cys	Ile	Ser	Lys 895	Ser
			900		Asp			905					910		
Tyr	Thr	Gln 915	Gly	Gly	Ala	Asn	Leu 920	Thr	Arg	Glu	Lys	Asp 925	Leu	Pro	Ala
	930				Ala	935					940		_		
Gly 945	Ile	Met	Ile	Asp	Asp 950	Val	Val	Ile	Thr	Gly 955	Glu	Gly	Glu	Gly	Pro 960
				965	Val				970		-	•		975	-
			980		Tyr			985					990		
Glu	Tyr	Cys 995	Val	Glu	Val	Lys	Tyr		Ala	Gly	Val	Ser		Lys	Val

Cys Val Asp Tyr Ile Pro Asp Gly Val Ala Asp Val Thr Ala Gln Lys 1010 1015 1020

Pro Tyr Thr Leu Thr Val Val Gly Lys Thr Ile Thr Val Thr Cys Gln 1025 1030 1035 1040

Gly Glu Ala Met Ile Tyr Asp Met Asn Gly Arg Arg Leu Ala Ala Gly 1045 1050 1055

Arg Asn Thr Val Val Tyr Thr Ala Gln Gly Gly Tyr Tyr Ala Val Met 1060 1065 1070

Val Val Asp Gly Lys Ser Tyr Val Glu Lys Leu Ala Ile Lys 1075 1080 1085

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6895 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS

- (B) LOCATION: 696..5894
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ggatcctacg (CCCGATACCC	ATACTCGAAG	CCTTTGCTCA	GTACCATCCT	GCAGAAGGTT	60
actetttege :	ATATAGTGAC	CCTCTTTTCT	CTCAGCATAA	TGGTACCTAT	CATATCAGTA	120
AGGGGCGTAT	TGTCTTTTCG	AACAATGTAC	AGCCCGAGAA	CTCTTTACTT	CCACATCACA	180
CCCCGACTC	CTTAGTCAAG	GATCTTTTTT	CCCCTTTCCC	CTCCGCTCTC	TTCCTCATGC	240
TGGACTGACT	TAACCTTGGT	CTGCTCTACT	TTTCGGTTGT	AAATACATGC	AACACAATAA	300
CTTTAAGTGT	TGTTAGACAA	CACTTTTACA	AGACTCTGAC	TTTTAATGAG	GTGGAGCATG	360
AACCTTTTCC	TCTTTCATCT	TCTCCTTCAG	ATTACAGTCA	ATATTTTGGC	AAAAGGCTAA	420
TTGACAGCCT	TTTATAAGGG	TTAATCCCTT	GTGGCTTATA	TTGAAAACAT	GTTCTTTATA	480
ATCCGATACT	CTTCTTAAAT	CGAATTTTTT	CTCTAAATTG	CGCCGCAACA	AAACTCCTTG	540
AGAAAAGTAC	CAATAGAAAT	AGAAGGTAGC	ATTTTGCCTT	TAAATTCCTT	TTCTTTTCTT	600
GGATTGTTCT	TGAAATGAAT	CTTATTTGTG	GATTTTTTT	GTTTTTTTAA	CCCGGCCGTG	660
GTTCTCTGAA	TCACGACCAT	AAATTGTTTT		AGG AAA TTA Arg Lys Leu		713
				TAC GCC CA		761

						CCG Pro									AAT Asn	809
						GCA Ala 45										857
						GGT Gly										905
						GAG Glu										953
						CCT Pro										1001
						GTT Val										1049
						CCC Pro 125										1097
						AAT Asn										1145
						CAA Gln										1193
						ACC Thr										1241
						AGA Arg										1289
						GCT Ala 205									TTT Phe	1337
						GCT Ala										1385
						TTG Leu										1433
GTT Val	GCA Ala	GGT Gly	GCA Ala 250	AAA Lys	TTC Phe	AAA Lys	GAA Glu	GCT Ala 255	CTC Leu	AAG Lys	CCT Pro	TGG Trp	CTC Leu 260	ACT Thr	TGG Trp	1481
AAG Lys	GCT Ala	CAA Gln 265	AAG Lys	GGC Gly	TTC Phe	TAT Tyr	CTG Leu 270	GAT Asp	GTG Val	CAT	TAC Tyr	ACA Thr 275	GAC Asp	GAA Glu	GCT Ala	1529

					AAC Asn											1577
TAC Tyr 295	TAA Asn	GAT Asp	GGA Gly	TTG Leu	GCA Ala 300	GCT Ala	AGT Ser	GCT Ala	GCT Ala	CCG Pro 305	GTC Val	TTC Phe	TTG Leu	GCT Ala	TTG Leu 310	1625
					GTT Val											1673
AAA Lys	GTT Val	ACC Thr	GAC Asp 330	TTG Leu	TAT Tyr	TAC Tyr	AGT Ser	GCA Ala 335	GTC Val	GAT Asp	GGC Gly	GAC Asp	TAT Tyr 340	TTC Phe	CCT Pro	1721
					CGT Arg											1769
					GTA Val											1817
					AAA Lys 380											1865
					GGT Gly											1913
					CAT His										AAA Lys	1961
					TGC Cys											2009
					CAT His										CTT Leu	2057
	Thr				CTG Leu 460	Lys					Lys					2105
					TGC Cys											2153
				Glu	GTA Val											2201
			Gly		TCT			Ser					Asp			2249

TGG Trp	AGT Ser 520	GTG Val	GGT Gly	GCT Ala	AAT Asn	GCC Ala 525	GTA Val	TTT Phe	GGT Gly	GTT Val	CAG Gln 530	CCT Pro	ACT Thr	TTT Phe	GAA Glu	229	97
GGT Gly 535	ACG Thr	TCT Ser	ATG Met	GGT Gly	TCT Ser 540	TAT Tyr	GAT Asp	GCT Ala	ACA Thr	TTC Phe 545	TTG Leu	GAG Glu	GAT Asp	TCG Ser	TAC Tyr 550	234	15
AAC Asn	ACA Thr	GTG Val	AAT Asn	TCT Ser 555	ATT	ATG Met	TGG Trp	GCA Ala	GGT Gly 560	AAT Asn	CTT Leu	GCC Ala	GCT Ala	ACT Thr 565	CAT His	239	33
GCT Ala	GGA Gly	AAT Asn	ATC Ile 570	GGC Gly	AAT Asn	ATT Ile	ACC Thr	CAT His 575	ATT Ile	GGT Gly	GCT Ala	CAT	TAC Tyr 580	TAT Tyr	TGG Trp	244	11
						GGC Gly										248	}9
						TAT Tyr 605										253	37
						CAG Gln										258	15
TCT Ser	AAA Lys	GAT Asp	GGA Gly	GTT Val 635	TTG Leu	TAT Tyr	GGA Gly	ACA Thr	GGT Gly 640	GTT Val	GCT Ala	AAT Asn	GCC Ala	AGC Ser 645	GGT Gly	263	13
GTT Val	GCG Ala	ACT Thr	GTG Val 650	AGT Ser	ATG Met	ACT Thr	AAG Lys	CAG Gln 655	ATT Ile	ACG Thr	GAA Glu	AAT Asn	GGT Gly 660	AAT Asn	TAT Tyr	268	11
Asp	Val	Val 665	Ile	Thr	Arg	TCT Ser	Asn 670	Tyr	Leu	Pro	Val	Ile 675	Lys	Gln	Ile	272	:9
Gln	Val 680	Gly	Glu	Pro	Ser	CCC Pro 685	Tyr	Gln	Pro	Val	Ser 690	Asn	Leu	Thr	Ala	2 7 7	7
Thr 695	Thr	Gln	Gly	Gln	Lys 700	GTA Val	Thr	Leu	Lys	Trp 705	Glu	Ala	Pro	Ser	Ala 710	282	:5
Lys	Lys	Ala	Glu	Gly 715	Ser	CGT Arg	Glu	Val	Lys 720	Arg	Ile	Gly	Asp	Gly 725	Leu	287	3
TTC Phe	GTT Val	ACG Thr	ATC Ile 730	GAA Glu	CCT Pro	GCA Ala	AAC Asn	GAT Asp 735	GTA Val	CGT Arg	GCC Ala	AAC Asn	GAA Glu 740	GCC Ala	AAG Lys	292	:1
Val	Val	Leu 745	Ala	Ala	Asp	AAC Asn	Val 750	Trp	Gly	Asp	Asn	Thr 755	Gly	Tyr	Gln	296	9
TTC Phe	TTG Leu 760	TTG Leu	GAT Asp	GCC Ala	GAT Asp	CAC His 765	AAT Asn	ACA Thr	TTC Phe	GGA Gly	AGT Ser 770	GTC Val	ATT Ile	CCG Pro	GCA Ala	301	.ד

ACC Thr 775	GGT Gly	CCT Pro	CTC Leu	TTT Phe	ACC Thr 780	GGA Gly	ACA Thr	GCT Ala	TCT Ser	TCC Ser 785	AAT Asn	CTT Leu	TAC Tyr	AGT Ser	GCG Ala 790	3065
AAC Asn	TTC Phe	GAG Glu	TAT Tyr	TTG Leu 795	GTC Val	CCG Pro	GCC Ala	AAT Asn	GCC Ala 800	GAT Asp	CCT Pro	GTT Val	GTT Val	ACT Thr 805	ACA Thr	3113
CAG Gln	AAT Asn	ATT Ile	ATC Ile 810	GTT Val	ACA Thr	GGA Gly	CAG Gln	GGT Gly 815	GAA Glu	GTT Val	GTA Val	ATC Ile	CCC Pro 820	GGT Gly	GGT Gly	3161
GTT Val	TAC Tyr	GAC Asp 825	TAT Tyr	TGC Cys	ATT Ile	ACG Thr	AAC Asn 830	CCG Pro	GAA Glu	CCT Pro	GCA Ala	TCC Ser 835	GGA Gly	AAG Lys	ATG Met	3209
TGG	ATC Ile 840	GCA Ala	GGA Gly	GAT Asp	GGA Gly	GGC Gly 845	AAC Asn	CAG Gln	CCT Pro	GCA Ala	CGT Arg 850	TAT Tyr	GAC Asp	GAT Asp	TTC Phe	3257
ACA Thr 855	TTC Phe	GAA Glu	GCA Ala	GGC Gly	AAG Lys 860	AAG Lys	TAC Tyr	ACC Thr	TTC Phe	ACG Thr 865	ATG Met	CGT Arg	CGC Arg	GCC Ala	GGA Gly 870	3305
ATG Met	GGA Gly	GAT Asp	GGA Gly	ACT Thr 875	GAT Asp	ATG Met	GAA Glu	GTC Val	GAA Glu 880	GAC Asp	GAT Asp	TCA Ser	CCT Pro	GCA Ala 885	AGC Ser	3353
TAT Tyr	ACC Thr	TAC Tyr	ACG Thr 890	GTG Val	TAT Tyr	CGT Arg	GAC Asp	GGC Gly 895	ACG Thr	AAG Lys	ATC Ile	AAG Lys	GAA Glu 900	GGT Gly	CTG Leu	3401
ACA Thr	GCT Ala	ACG Thr 905	Thr	TTC Phe	GAA Glu	GAA Glu	GAC Asp 910	Gly	GTA Val	GCT Ala	GCA Ala	GGC Gly 915	AAT Asn	CAT	GAG Glu	3449
TAT Tyr	TGC Cys 920	Val	GAA Glu	GTT Val	AAG Lys	TAC Tyr 925	ACA Thr	GCC Ala	GGC Gly	GTA Val	Ser 930	Pro	AAG Lys	GTA Val	TGT Cys	3497
AAA Lys 935	Asp	GTT Val	ACG Thr	GTA Val	GAA Glu 940	GGA Gly	TCC	AAT Asn	GAA Glu	TTT Phe 945	Ala	CCT Pro	GTA Val	CAG Gln	AAC Asn 950	3545
CTG Leu	ACC	GGT	AGT Ser	TCA Ser 955	GTA Val	GGT Gly	CAG Gln	AAA Lys	GTA Val 960	Thr	CTT Leu	AAG Lys	TGG	GAT Asp 965	Ala	3593
				Pro					Asn					Pro	GGA Gly	3641
			Ser					Asr.					Ser		AAG Lys	3689
ACC Thr	Ile 100	Asp	GCA Ala	GAC Asp	GGT Gly	GAC Asp 100	Gly	CAT His	GGC Gly	TGG Trp	Lys 101	Pro	Gly Gly	AAT Asn	GCT	3737
	Gly					Ast					s Val				TCA Ser 1030	3785

TTC Phe	GLY	Leu	GGT Gly	GGT Gly 103	Ile	GGA Gly	GTT Val	CTT Leu	ACC Thr 104	Pro	GAC Asp	AAC Asn	TAT	CTG Leu 104	Ile	3833
ACA Thr	CCG Pro	GCA Ala	TTG Leu 1050	Asp	TTG Leu	CCT	AAC Asn	GGA Gly 105	Gly	AAG Lys	TTG Leu	ACT Thr	TTC Phe 106	Trp	GTA Val	3881
TGC Cys	GCA Ala	CAG Gln 1065	Asp	GCT Ala	AAT Asn	TAT Tyr	GCA Ala 107	Ser	GAG Glu	CAC His	TAT Tyr	GCG Ala 107	Val	TAT Tyr	GCA Ala	3929
TCT Ser	TCG Ser 1080	Thr	GGT Gly	AAC Asn	GAT Asp	GCA Ala 108	Ser	AAC Asn	TTC Phe	ACG Thr	AAT Asn 109	GCT Ala O	TTG Leu	TTG Leu	GAA Glu	3977
GAG Glu 1095	Thr	ATT Ile	ACG Thr	GCA Ala	AAA Lys 110	Gly O	GTT Val	CGC Arg	TCG Ser	CCG Pro 110	Lys	GCT Ala	ATT Ile	CGT Arg	GGT Gly 1110	4025
CGT Arg	ATA Ile	CAG Gln	GGT Gly	ACT Thr 1115	Trp	CGC Arg	CAG Gln	AAG Lys	ACG Thr 112	Val	GAC Asp	CTT Leu	CCC Pro	GCA Ala 112	Gly	4073
ACG Thr	AAA Lys	TAT Tyr	GTT Val 1130	Ala	TTC Phe	CGT Arg	CAC His	TTC Phe 113	Gln	AGC Ser	ACG Thr	GAT Asp	ATG Met 1140	Phe	TAC Tyr	4121
ATC Ile	GAC Asp	CTT Leu 1145	Asp	GAG Glu	GTT Val	GAG Glu	ATC Ile 1150	Lys	GCC Ala	AAT Asn	GGC Gly	AAG Lys 1155	Arg	GCA Ala	GAC Asp	4169
TTC Phe	ACG Thr 1160	Glu	ACG Thr	TTC Phe	GAG Glu	TCT Ser 1165	Ser	ACT Thr	CAT His	GGA Gly	GAG Glu 1170	GCA Ala	CCA Pro	GCG Ala	GAA Glu	4217
TGG Trp 1175	Thr	ACT Thr	ATC Ile	GAT Asp	GCC Ala 1180	Asp	Gly	GAT Asp	GGT Gly	CAG Gln 1185	Gly	TGG Trp	CTC Leu	TGT Cys	CTG Leu 1190	4265
TCT Ser	TCC Ser	GGA Gly	CAA Gln	TTG Leu 1195	Asp	TGG Trp	CTG Leu	ACA Thr	GCT Ala 1200	His	GGC Gly	GGC Gly	AGC Ser	AAC Asn 1205	Val	4313
GTA Val	AGC Ser	Ser	TTC Phe 1210	Ser	TGG Trp	AAT Asn	GGA Gly	ATG Met 1215	Ala	TTG Leu	AAT Asn	CCT Pro	GAT Asp 1220	Asn	TAT Tyr	4361
CTC Leu	ATC Ile	TCA . Ser 1225	Lys	GAT Asp	GTT Val	ACA Thr	GGC Gly 1230	Ala	ACG Thr	AAG Lys	GTA Val	AAG Lys 1235	Tyr	TAC Tyr	TAT Tyr	4409
Ala	GTC Val 1240	Asn.	GAC Asp	GGT Gly	TTT Phe	CCC Pro 1245	Gly	GAT Asp	CAC His	TAT Tyr	GCG Ala 1250	GTG Val	ATG Met	ATC Ile	TCC Ser	4457
AAG Lys 1255	Thr	GGC ;	ACG . Thr .	Asn	GCC Ala 1260	Gly	GAC Asp	TTC Phe	ACG Thr	GTT Val 1265	Val	TTC Phe	GAA Glu	GAA Glu	ACG Thr 1270	4505
CCT Pro	AAC Asn	GGA :	Ile .	AAT Asn 1275	Lys	GGC Gly	GGA Gly	GCA Ala	AGA Arg 1280	Phe	GGT Gly	CTT Leu	TCC Ser	ACG Thr 1285	Glu	4553

GCC A	AAT Asn	GGC Gly	GCC Ala 1290	Lys	CCT Pro	CAA :	ser	GTA Val 1295	TIP	ATC	GAG Glu	CGT Arg	ACG Thr 1300		GAT Asp	4601
TTG Leu	CCT Pro	GCA Ala 1305	Gly	ACG Thr	AAG Lys	Tyr	GTT Val 1310	Ala	TTC Phe	CGT Arg	UTS	TAC Tyr 1315	A	TGC Cys	TCG Ser	4649
GAT Asp	TTG Leu 1320	Asn	TAC Tyr	ATT Ile	CTT Leu	TTG Leu 1325	Asp	GAT Asp	ATT Ile	CAG Gln	TTC Phe 1330	T 11T	ATG Met	Gly GGT	GGC Gly	4697
AGC Ser 1335	Pro	ACC Thr	CCG Pro	ACC Thr	GAT Asp 1340	Tyr	ACC Thr	TAC Tyr	ACG Thr	GTG Val 1345	TAT	CGT Arg	GAT Asp	GGT Gly	ACG Thr 1350	4745
AA G Lys	ATC Ile	AAG Lys	GAA Glu	GGT Gly 135	Leu	ACC Thr	GAA Glu	ACG Thr	ACC Thr 136	Pne	GAA Glu	GAA Glu	GAC Asp	GGC Gly 136	GTA Val 5	4793
GCT Ala	ACG Thr	GGC Gly	AAT Asn 137	His	GAG Glu	TAT Tyr	TGC Cys	GTG Val 137	GIU	GTG Val	AAG Lys	TAC Tyr	ACA Thr 138		GGC Gly	4841
GTA Val	TCT Ser	CCG Pro 138	Lys	AAA Lys	TGT Cys	GTA Val	GAC Asp 139	Val	ACT Thr	GTT Val	AAT Asn	TCG Ser 139	1111	CAG Gln	TTC Phe	4889
AAT Asn	CCT Pro	Val	CAG Gln	AAC Asn	: CTG Leu	ACG Thr 140	Ala	GAA Glu	CAA Gln	GCT Ala	CCT Pro 141	ASI	AGC Ser	ATG Met	GAT Asp	4937
GCA Ala 141	Ile	CTI	AAP Lys	TGG Trp	AAT Asn 142	Ala	CCG Pro	GCA Ala	TCI Ser	AAG Lys 142	Arg	GCG	GAA Glu	GT1	CTG Leu 1430	4985
AAC Asn	GAZ Glu	A GAG	TTC Phe	GAJ Glu 143	ı Ası	GGT Gly	ATI	CCI Pro	GCC Ala	a Ser	TGG	AAC Lys	ACC Thi	144	GAT Asp 15	5033
GCA Ala	A GAG	GG Gly	r GAG y Asi 14:	o Gl	y Asr	CAA :	TGC Trp	ACC Th: 14	r Th	G ACC	CCT Pro	CC.	r ccc Pro 140) GT	A GGC y Gly	5081
TC(Se)	TC' Se	r TT' r Pho	e Ala	A GG a Gl	r CAG y His	C AAC	2 AG	r Al	G ATO	C TG1 e Cys	r GTC s Val	TC' Se 14	r se	A GC	T TCT a Ser	5129
CA! Hi:	s Il	C AA e As 80	C TT	T GA e Gl	A GG' u Gl	r cc: y Pro	o Gl	G AA n As	c cc n Pr	T GA' o As _l	r AAG p Asi 14	пту	T CT r Le	G GT u Va	T ACA l Thr	5177
Pr	G GA o Gl 95	G CT u Le	T TC u Se	T CT r Le	u Pr	T GG o Gl 00	c GG y Gl	A GG y Gl	A AC	r Le	T AC u Th 05	T TT r Ph	C TG	G GT p Va	A TGT 1 Cys 151	5225 0
GC Al	A CA a Gl	A GA aA n.	T GC	a As	T TA n Ty 15	T GC	A TC a Se	A GA r Gl	.u Hı	C TA S Ty	T GC	c GI a Va	G TA	T MI	A TCT a Ser 25	5273
TC Se	T AC	e Go	Ly As	AC GA sn As 530	AC GC	T TC	C AA	in Pi	rc GC ne Al 535	C AA La As	c GC in Al	T TI	eu ne	G GF eu Gl	A GAA Lu Glu	5321

Val	Leu	Thr 154	Ala	AAG Lys	Thr	Val	GTT Val 155	Thr	GCA Ala	Pro	GAA Glu	GCC Ala 155	Ile	CGT Arg	GGT Gly	536
ACT Thr	CGT Arg 1560	Ala	CAG Gln	eg c	ACC Thr	TGG Trp 156	Tyr	CAA Gln	AAG Lys	ACG Thr	GTA Val 157	Gln	TTG Leu	CCT Pro	GCG Ala	541
GGT Gly 1575	Thr	AAG Lys	TAT Tyr	GTT Val	GCC Ala 158	Phe	CGT Arg	CAC His	TTC Phe	GGC Gly 158	Cys	ACG Thr	GAC Asp	TTC Phe	TTC Phe 1590	5465
TGG Trp	ATC Ile	AAC Asn	CTT Leu	GAT Asp 1595	Asp	GTT Val	GTA Val	ATC Ile	ACT Thr 160	Ser	GGG Gly	AAC Asn	GCT Ala	CCG Pro 160	Ser	5513
TAC Tyr	ACC Thr	TAT Tyr	ACG Thr 1610	Ile	TAT Tyr	CGT Arg	AAT Asn	AAT Asn 1615	Thr	CAG Gln	ATA Ile	GCA Ala	TCA Ser 162	Gly	GTA Val	5561
ACG Thr	GAG Glu	ACT Thr 1625	Thr	TAC Týr	CGA Arg	GAT Asp	CCG Pro 1630	Asp	TTG Leu	GCT Ala	ACC Thr	GGT Gly 1635	Phe	TAC Tyr	ACG Thr	5609
TAC Tyr	GGT Gly 1640	Val	AAG Lys	GTT Val	GTT Val	TAC Tyr 1645	Pro	AAC Asn	GGA Gly	GAA Glu	TCA Ser 1650	Ala	ATC Ile	GAA Glu	ACT Thr	5657
GCT Ala 1655	Thr	TTG Leu	AAT Asn	ATC Ile	ACT Thr 1660	Ser	TTG Leu	GCA Ala	GAC Asp	GTA Val 1665	Thr	GCT Ala	CAG Gln	AAG Lys	CCT Pro 1670	5705
TAC I	ACG Thr	CTG Leu	ACA Thr	GTT Val 1675	Val	GGA Gly	AAG Lys	ACG Thr	ATC Ile 1680	Thr	GTA Val	ACT Thr	TGC Cys	CAA Gln 1685	Gly	5753
GAA (Glu)	GCT Ala	Met	ATC Ile 1690	Tyr	GAC Asp	ATG Met	AAC Asn	GGT Gly 1695	Arg	CGT Arg	CTG Leu	GCA Ala	GCG Ala 1700	Gly	CGC Arg	5801
AAC ; Asn ;	Chr '	GTT Val 1705	Val	TAC Tyr	ACG Thr	Ala	CAG Gln 1710	Gly	GGC Gly	CAC His	TAT Tyr	GCA Ala 1715	Val	ATG Met	GTT Val	5849
AGT /	TT (/al / 1720	GAC Asp	GGC . Gly	AAG Lys	Ser	TAC Tyr 1725	Val	GAG Glu	AAA Lys	Leu	GCT Ala 1730	Val	AAG Lys	AAAT	TCTGTC	5901
TTGG	ACTC	GG A	GACT	TTGT	G CA	.GACA	CTTT	TAA	GATA	GGT	CTGT	aatt	GT C	TCAG	AGTAT	5961
GAAT	CGGT	CG C	CCGA	CTTC	C TT	AAAA	GGAG	GTC	GGGC	GAC	TTCG	TTTT	TA T	TATT	GCTGT	6021
CCGG1	AAA?	CT T	GTCA	AGAG	G AG	ACCT	TTGA	AAA	ATGA	GAC	CTTT	GCAC	GG C	GATT	GGTGT	6081
															TTAAA	6141
															AACAT	6201
															TCAGG	6261
															GAAGC	6321
GACAA	VAAT	SC C	ATCG	GCGC	c cc	GGCT'	TATG	ACG'	TGAT	TCT	CTTA'	TTCA	AG A	ፐርፓጥ	GCTTC	6381

CGAAGACATG	GTACAACCTC	AGTGATTGTG	CTTTGGAGGA	GCGCATCAAT	GATTCAATCA	6441
CCTTTTCCCG	ATTCTTGGGG	CTATGGAAGA	GGTATCTCCC	GACCACAGCA	CCATCAGTCG	6501
ATTTCGTTCG	GCACTGACAG	AGTTGGGGCT	CATGGACAAA	CTATTGGCGC	AGTTTAACAA	6561
ACAACTTTTC	CGCCATCACA	TTTCGGTCAG	GGAAAGGGTG	CTTGTCGATG	CAAGCCTTGT	6623
GGAGATACGG	AGCACCATCG	AACGCACCTT	TGGCAGTATT	CGCCGGTGGT	TTCATGGCGG	668
ACGATGTCGA	TACCGGGGAC	TTGCCAAGAC	CCATACTCAA	AACATTCTTG	AAAGCATCGC	674
CTTTAATTTA	TACAGAACCC	CGGGGATAAT	TATGTCCTCA	TCTCTAGGAT	AAGGTATAAC	680
CACCCTTGAG	GAGCTCGTGC	AAGCAGCTCC	TCAAGGGGGA	TTTACAACTA	CTTTCACTCC	686
TTACCGCCAC	CCTTTTCCCT	CCCTCCCGGA	ATTC			689

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1732 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Arg Lys Leu Leu Leu Ile Ala Ala Ser Leu Leu Gly Val Gly

Leu Tyr Ala Gln Ser Ala Lys Ile Lys Leu Asp Ala Pro Thr Thr Arg

Thr Thr Cys Thr Asn Asn Ser Phe Lys Gln Phe Asp Ala Ser Phe Ser

Phe Asn Glu Val Glu Leu Thr Lys Val Glu Thr Lys Gly Gly Thr Phe

Ala Ser Val Ser Ile Pro Gly Ala Phe Pro Thr Gly Glu Val Gly Ser

Pro Glu Val Pro Ala Val Arg Lys Leu Ile Ala Val Pro Val Gly Ala

Thr Pro Val Val Arg Val Lys Ser Phe Thr Glu Gln Val Tyr Ser Leu

Asn Gln Tyr Gly Ser Glu Lys Leu Met Pro His Gln Pro Ser Met Ser

Lys Ser Asp Asp Pro Glu Lys Val Pro Phe Val Tyr Asn Ala Ala Ala

Tyr Ala Arg Lys Gly Phe Val Gly Gln Glu Leu Thr Gln Val Glu Met 155

Leu Gly Thr Met Arg Gly Val Arg Ile Ala Ala Leu Thr Ile Asn Pro 165 170

Val	Gln	Tyr	Asp 180	Val	Val	Ala	Asn	Gln 185	Leu	Lys	Val	Arg	Asn 190	Asn	Ile
Glu	Ile	Glu 195	Val	Ser	Phe	Gln	Gly 200	Ala	Asp	Glu	Val	Ala 205	Thr	Gln	Arg
Leu	Tyr 210	Asp	Ala	Ser	Phe	Ser 215	Pro	Tyr	Phe	Glu	Thr 220	Ala	Tyr	Lys	Gln
Leu 225	Phe	Asn	Arg	Asp	Val 230	Tyr	Thr	Asp	His	Gly 235	Asp	Leu	Tyr	Asn	Thr 240
Pro	Val	Arg	Met	Leu 245	Val	Val	Ala	Gly	Ala 250	Lys	Phe	Lys	Glu	Ala 255	Leu
Lys	Pro	Trp	Leu 260	Thr	Trp	Lys	Ala	Gln 265	Lys	Gly	Phe	Tyr	Leu 270	Asp	Val
His	Tyr	Thr 275	Asp	Glu	Ala	Glu	Val 280	Gly	Thr	Thr	Asn	Ala 285	Ser	Ile	Lys
Ala	Phe 290	Ile	His	Lys	Lys	Tyr 295	Asn	Asp	Gly	Leu	Ala 300	Ala	Ser	Ala	Ala
Pro 305	Val	Phe	Leu	Ala	Leu 310	Val	Gly	Asp	Thr	Asp 315	Val	Ile	Ser	Gly	Glu 320
Lys	Gly	Lys	Lys	Thr 325	Lys	Lys	Val	Thr	Asp 330	Leu	Tyr	Tyr	Ser	Ala 335	Val
_		-	Tyr 340					345					350		
		355	Glu				360		-	_		365		_	
	370		Met		_	375		_			380				
385			Asp	-	390	-				395	-				400
			Met	405	-				410				_	415	_
	_		Tyr 420		-			425		_	-	-	430		
		435	Val				440					445			
	450		Asp			455					460				
465			Lys		470					475					480
			Tyr	485					490					495	
Lys	Glu	Lys	Gly 500	Ala	Tyr	Ala	Tyr	Ile 505	Gly	Ser	Ser	Pro	Asn 510	Ser	Tyr

Trp	Gly	Glu 515	Asp	Tyr	Tyr	Trp	Ser 520	Val	Gly	Ala	Asn	Ala 525	Val	Phe	Gly
Val	Gln 530	Pro	Thr	Phe	Glu	Gly 535	Thr	Ser	Met	Gly	Ser 540	туг	Asp	Ala	Thr
Phe 545	Leu	Glu	Asp	Ser	Tyr 550	Asn	Thr	Val	Asn	Ser 555	Ile	Met	Trp	Ala	Gly 560
Asn	Leu	Ala	Ala	Thr 565	His	Ala	Gly	Asn	Ile 570	Gly	Asn	Ile	Thr	His 575	Ile
Gly	Ala	His	Tyr 580	Tyr	Trp	Glu	Ala	Tyr 585	His	Val	Leu	Gly	Asp 590	Gly	Ser
Val	Met	Pro 595	Tyr	Arg	Ala	Met	Pro 600	Lys	Thr	Asn	Thr	Tyr 605	Thr	Leu	Pro
Ala	Ser 610	Leu	Pro	Gln	Asn	Gln 615	Ala	Ser	Tyr	Ser	Ile 620	Gln	Ala	Ser	Ala
Gly 625	Ser	Tyr	Val	Ala	Ile 630	Ser	Lys	Asp	Gly	Val 635	Leu	Tyr	Gly	Thr	Gly 640
				645		•			650				Lys	655	
			660					665					Asn 670	_	
		675					680					685	Tyr		
	690					695					700		Thr		_
705					710					715			Glu		720
				725					730				Asn	735	•
			740					745					Val 750		_
		755					760					765	Asn		
	770					775					780		Thr		
785					790					795			Ala		800
				805					810				Gln	815	
			820					825					Asn 830		
Pro	Ala	Ser 835	Gly	Lys	Met	Trp	11e 840	Ala	Gly	Asp	Gly	Gly 845	Asn	Gln	Pro

Ala	Arg 850	Tyr	Asp	Asp	Phe	Thr 855	Phe	Glu	Ala	Gly	Lys 860	Lys	Tyr	Thr	Phe
Thr 865	Met	Arg	Arg	Ala	Gly 870	Met	Gly	Asp	Gly	Thr 875	Asp	Met	Glu	Val	Glu 880
Asp	Asp	Ser	Pro	Ala 885	Ser	Tyr	Thr	Tyr	Thr 890	Val	Tyr	Arg	Asp	Gly 895	Thr
Lys	Ile	Lys	Glu 900	Gly	Leu	Thr	Ala	Thr 905	Thr	Phe	Glu	Glu	Asp 910	Gly	Val
Ala	Ala	Gly 915	Asn	His	Glu	Tyr	Cys 920	Val	Glu	Val	Lys	Tyr 925	Thr	Ala	Gly
Val	Ser 930	Pro	Lys	Val	Cys	Lys 935	Asp	Val	Thr	Val	Glu 940	Gly	Ser	Asn	Glu
Phe 945	Ala	Pro	Val	Gln	Asn 950	Leu	Thr	Gly	Ser	Ser 955	Val	Gly	Gln	Lys	Val 960
Thr	Leu	Lys	Trp	Asp 965	Ala	Pro	Asn	Gly	Thr 970	Pro	Asn	Pro	Asn	Pro 975	Asn
Pro	Asn	Ь́го	Asn 980	Pro	Gly	Thr	Thr	Leu 985	Ser	Glu	Ser	Phe	Glu 990	Asn	Gly
		995					1000)				1005	5	His	
	1010)				1015	5				1020)		Asn	
Cys 1025	Val	Tyr	Ser	Glu	Ser 1030		Gly	Leu	Gly	Gly 1035		Gly	Val	Leu	Thr 1040
				1045	5				1050)				Gly 1055	5
Lys	Leu	Thr	Phe 1060		Val	Cys	Ala	Gln 1065		Ala	Asn	Tyr	Ala 1070	Ser	Glu
His	Tyr	Ala 1075	Val	Tyr	Ala	Ser	Ser 1080		Gly	Asn	Asp	Ala 1085		Asn	Phe
Thr	Asn 1090	Ala	Leu	Leu	Glu	Glu 1095		Ile	Thr	Ala	Lys 1100	Gly	Val	Arg	Ser
Pro 1105	Lys	Ala	Ile	Arg	Gly 1110		Ile	Gln	Gly	Thr 1115		Arg	Gln	Lys	Thr 1120

Asn Gly Lys Arg Ala Asp Phe Thr Glu Thr Phe Glu Ser Ser Thr His 1155 1160 1165

Val Asp Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg His Phe Gln

Ser Thr Asp Met Phe Tyr Ile Asp Leu Asp Glu Val Glu Ile Lys Ala

1145

1130

Gly Glu Ala Pro Ala Glu Trp Thr Thr Ile Asp Ala Asp Gly Asp Gly 1170 1175 1180

- Gln Gly Trp Leu Cys Leu Ser Ser Gly Gln Leu Asp Trp Leu Thr Ala 1185 1190 1195 1200
- His Gly Gly Ser Asn Val Val Ser Ser Phe Ser Trp Asn Gly Met Ala 1205 1210 1215
- Leu Asn Pro Asp Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr 1220 1225 1230
- Lys Val Lys Tyr Tyr Ala Val Asn Asp Gly Phe Pro Gly Asp His
- Tyr Ala Val Met Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr
- Val Val Phe Glu Glu Thr Pro Asn Gly Ile Asn Lys Gly Gly Ala Arg 1265 1270 1275 1280
- Phe Gly Leu Ser Thr Glu Ala Asn Gly Ala Lys Pro Gln Ser Val Trp 1285 1290 1295
- Ile Glu Arg Thr Val Asp Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe 1300 1305 1310
- Arg His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile Leu Leu Asp Asp Ile 1315 1320 1325
- Gln Phe Thr Met Gly Gly Ser Pro Thr Pro Thr Asp Tyr Thr Tyr Thr 1330 1340
- Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu Thr Glu Thr Thr 1345 1350 1355 1360
- Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His Glu Tyr Cys Val Glu 1365 1370 1375
- Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Lys Cys Val Asp Val Thr 1380 1385 1390
- Val Asn Ser Thr Gln Phe Asn Pro Val Gln Asn Leu Thr Ala Glu Gln 1395 1400 1405
- Ala Pro Asn Ser Met Asp Ala Ile Leu Lys Trp Asn Ala Pro Ala Ser 1410 1415 1420
- Lys Arg Ala Glu Val Leu Asn Glu Asp Phe Glu Asn Gly Ile Pro Ala 1425 1430 1435 1440
- Ser Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly Asn Asn Trp Thr Thr 1445 1450 1455
- Thr Pro Pro Gly Gly Ser Ser Phe Ala Gly His Asn Ser Ala Ile 1460 1465 1470
- Cys Val Ser Ser Ala Ser His Ile Asn Phe Glu Gly Pro Gln Asn Pro 1475 1480 1485
- Asp Asn Tyr Leu Val Thr Pro Glu Leu Ser Leu Pro Gly Gly Gly Thr 1490 1495 1500
- Leu Thr Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His 1505 1510 1515 1520

WO 96/17936 PCT/US95/16108

81

- Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala 1525 1530 1535
- Asn Ala Leu Leu Glu Glu Val Leu Thr Ala Lys Thr Val Val Thr Ala 1540 1545 1550
- Pro Glu Ala Ile Arg Gly Thr Arg Ala Gln Gly Thr Trp Tyr Gln Lys 1555 1560 1565
- Thr Val Gln Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg His Phe 1570 1575 1580
- Gly Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp Asp Val Val Ile Thr 1585 1590 1595 1600
- Ser Gly Asn Ala Pro Ser Tyr Thr Tyr Thr Ile Tyr Arg Asn Asn Thr 1605 1610 1615
- Gln Ile Ala Ser Gly Val Thr Glu Thr Thr Tyr Arg Asp Pro Asp Leu 1620 1625 1630
- Ala Thr Gly Phe Tyr Thr Tyr Gly Val Lys Val Val Tyr Pro Asn Gly 1635 1640 1645
- Glu Ser Ala Ile Glu Thr Ala Thr Leu Asn Ile Thr Ser Leu Ala Asp 1650 1655 1660
- Val Thr Ala Gln Lys Pro Tyr Thr Leu Thr Val Val Gly Lys Thr Ile 1665 1670 1675 1680
- Thr Val Thr Cys Gln Gly Glu Ala Met Ile Tyr Asp Met Asn Gly Arg 1685 1690 1695
- Arg Leu Ala Ala Gly Arg Asn Thr Val Val Tyr Thr Ala Gln Gly Gly 1700 1705 1710
- His Tyr Ala Val Met Val Val Val Asp Gly Lys Ser Tyr Val Glu Lys 1715 1720 1725
- Leu Ala Val Lys 1730

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GGAATGGGAG ATGGAACT

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 18 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(X1) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
GTAACCCGTA TTGTCTCC	18
(2) INFORMATION FOR SEQ ID NO:13:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8588 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3658248	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
GATATCCGGC TCTTCGGCAG AGAATGCGAG AGATTCAGGA TATATCGCAA CGGCCTTGTC	60
AAGATCGAGG CCTCTTTAGG TCATGGATAT AACGTGAGTT CGATGTAAGC TTTTCGGCCT	120
TTCCATCATA CAATCGATTC GATTCTCTTT GGACTCAATA AAAAATATAA AATACTCAAA	180
GAGTTGGCAT ATAACTTTGC CTCAGTGGCG AGTGGGTTTT TCGGCCAATT CCTAAAGAAG	240
AAAATAGCTG TTTGTATCTT TTTGCGAAAA AAGTTTGGCG GATTAAGATT AAAAACATAT	300
CTTTCGGGCG ATAGTGGTAG AGCACTATCT TGCGAAACAT TAATCTTTAA TACTTTCAAA	360
AGGT ATG AGA AAA TTG AAT TCT TTA TTT TCG CTC GCC GTC CTA TTA TCC Met Arg Lys Leu Asn Ser Leu Phe Ser Leu Ala Val Leu Leu Ser 1 5 10 15	409
CTA TTG TGT TGG GGA CAG ACG GCT GCC GCA CAG GGA GGG CCG AAG ACT Leu Leu Cys Trp Gly Gln Thr Ala Ala Ala Gln Gly Gly Pro Lys Thr 20 25 30	457
GCT CCT TCT GTG ACG CAC CAA GCG GTG CAG AAA GGT ATT CGA ACA TCC Ala Pro Ser Val Thr His Gln Ala Val Gln Lys Gly Ile Arg Thr Ser 35 40 45	505
AAG GTT AAG GAT CTC CGA GAT CCG ATT CCT GCC GGT ATG GCA CGA ATT Lys Val Lys Asp Leu Arg Asp Pro Ile Pro Ala Gly Met Ala Arg Ile 50 55 . 60	553
ATC TTG GAG GCT CAC GAT GTA TGG GAA GAC GGC ACA GGC TAT CAA ATG Ile Leu Glu Ala His Asp Val Trp Glu Asp Gly Thr Gly Tyr Gln Met 65 70 75	601

		CAC His 85						649
		AAC Asn						697
		CCG Pro						745
		GGA Gly						793
	 	 ATT Ile						841
		AAA Lys 165						889
	 	 GTC Val		 				937
		GAA Glu						985
		TCT Ser						1033
		CGG Arg						1081
		GGC Gly 245						1129
 	 	 ACA Thr	 	 	 	 	 	1177
		TTT Phe						1225
		CCT Pro					ACG Thr	1273
		AAA Lys						1321
		TAT Tyr 325						1369

GCT Ala	GCA Ala	AAC Asn	TTT Phe	ACG Thr 340	Ile	AAG Lys	CTA Leu	CTG Leu	GAA Glu 345	Glu	ACC Thr	CTC	GGA Gly	TCC Ser 350	GAC Asp		1417
AAA Lys	Pro	GCT Ala	CCG Pro 355	Met	AAC Asn	TTG Leu	GTG Val	AAG Lys 360	Ser	GAA Glu	GGA Gly	GTA Val	AAG Lys 365	CTT Leu	CCT Pro		1465
GCA Ala	CCT Pro	TAT Tyr 370	Gln	GAA Glu	AGA Arg	ACC Thr	ATC Ile 375	GAT Asp	CTC Leu	TCT Ser	GCC Ala	TAT Tyr 380	GCC Ala	GGA Gly	CAA Gln		1513
CAG Gln	GTG Val 385	Tyr	TTG Leu	GCA Ala	TTC Phe	CGT Arg 390	CAT His	TTC Phe	AAC Asn	TCT Ser	ACA Thr 395	GGT Gly	ATA Ile	TTC Phe	CGT Arg		1561
CTT Leu 400	TAT Tyr	CTT Leu	GAT Asp	GAT Asp	GTG Val 405	GCT Ala	GTT Val	TCT	GGT Gly	GAA Glu 410	GGT Gly	TCT Ser	TCC Ser	AAC Asn	GAC Asp 415		1609
TAC Tyr	ACG Thr	TAC Tyr	ACG Thr	GTA Val 420	TAT Tyr	CGT Arg	GAC Asp	AAT Asn	GTT Val 425	GTT Val	ATT Ile	GCC Ala	CAG Gln	AAT Asn 430	CTC Leu		1657
Ala	Ala	Thr	Thr 435	Phe	Asn	Gln	Glu	Asn 440	GTA Val	Ala	Pro	Gly	Gln 445	Tyr	Asn		1705
Tyr	Cys	Val 450	Glu	Val	Lys	Tyr	Thr 455	Ala	GGC GGC	Val	Ser	Pro 460	Lys	Val	Cys		1753
Lys	465	Val	Thr	Val	Glu	Gly 470	Ser	Asn	GAA Glu	Phe	Ala 475	His	Val	Gln	Asn		1801
180	Thr	GIÀ	Ser	Ala	Val 485	Gly	Gln	Lys	GTA Val	Thr 490	Leu	Lys	Trp	Asp	Ala 495		1849
PIO.	Asn	GIÀ	Thr	Pro 500	Asn	Pro	Asn	Pro	GGA Gly 505	Thr	Thr	Thr	Leu	Ser 510	Glu		1897
Ser	rne	GIU	515	GIY	Ile	Pro	Ala	Ser 520	TGG Trp	Lys	Thr	Ile	Asp 525	Ala	Asp		1945
GGT Gly	GAC Asp	GGC Gly 530	AAC Asn	AAT Asn	TGG Trp	ACG Thr	ACG Thr 535	ACC Thr	CCT Pro	CCT Pro	CCC Pro	GGA Gly 540	GGC Gly	ACC Thr	TCT Ser		1993
TTT Phe	GCA Ala 545	GGT Gly	CAC His	AAC Asn	AGT Ser	GCA Ala 550	ATC Ile	TGT Cys	GCC Ala	TCT Ser	TCG Ser 555	GCT Ala	TCT Ser	TAT Tyr	ATC Ile		2041
AAC Asn 560	TTT Phe	GAA Glu	GGT Gly	CCT Pro	CAG Gln 565	AAC Asn	CCT Pro	GAT Asp	AAC Asn	TAT Tyr 570	CTG Leu	GTT Val	ACA Thr	CCG Pro	GAG Glu 575	;	2089
CTA Leu	TCT Ser	CTT Leu	CCT Pro	AAC Asn 580	GGA Gly	GGA Gly	ACG Thr	CTT Leu	ACT Thr 585	TTC Phe	TGG Trp	GTA Val	TGT Cys	GCA Ala 590	CAA Gln	:	2137

GAT Asp	GCC Ala	AAT Asn	TAT Tyr 595	GCA Ala	TCA Ser	GAG Glu	CAC His	TAT Tyr 600	GCC Ala	GTG Val	TAC Tyr	GCA Ala	TCT Ser 605	TCT Ser	ACG Thr	2185
					AAC Asn										CTG Leu	2233
					GTT Val											2281
GTT Val 640	CAG Gln	G] y	ACC Thr	TGG Trp	TAT Tyr 645	CAA Gln	AAG Lys	ACG Thr	GTA Val	CAG Gln 650	TTG Leu	CCT Pro	GCG Ala	GGT Gly	ACT Thr 655	2329
					CGT Arg											2377
AAC Asn	CTT Leu	GAT Asp	GAT Asp 675	GTT Val	GAG Glu	ATC Ile	AAG Lys	GCC Ala 680	AAC Asn	Gly GGC	AAG Lys	CGC Arg	GCA Ala 685	GAC Asp	TTC Phe	2425
	Glu														TGG Trp	2473
ACT Thr	ACT Thr 705	ATC Ile	GAT Asp	GCC Ala	GAT Asp	GGC Gly 710	GAT Asp	GGT Gly	CAG Gln	GGT Gly	TGG Trp 715	CTC Leu	TGT Cys	CTG Leu	TCT Ser	2521
TCC Ser 720	GGA Gly	CAA Gln	TTG Leu	GAC Asp	TGG Trp 725	CTG Leu	ACA Thr	GCT Ala	CAT His	GGC Gly 730	GGC Gly	ACC Thr	AAC Asn	GTA Val	GTA Val 735	2569
					AAT Asn										CTC Leu	2617
															GCA Ala	2665
					CCC Pro										AAG Lys	2713
	GGC Gly				GGA Glv											2761
	785				•	790					795					
	GGA	ATA		AAG	GGC	790 GGA	GCA	AGA	TTC	GGT	795 CTT	TCC	ACG	GAA	GCC Ala 815	2809
Asn 800 GAT	GGA Gly GGC	ATA Ile	Asn AAA	AAG Lys CCT	GGC Gly 805	790 GGA Gly AGT	GCA Ala GTA	AGA Arg TGG	TTC Phe	GGT Gly 810 GAG	795 CTT Leu CGT	TCC Ser	ACG Thr	GAA Glu GAT	GCC Ala	2809 2857

TTG Leu	AAC Asn	TAC Tyr 850	TTe	CTT Leu	TTG Leu	GAT Asp	GAT Asp 855	Ile	CAG Gln	TTC Phe	ACC Thi	ATO Met	: Gly	GGC Gly	: AGC Ser	2953
CCC Pro	ACC Thr 865	PIO	ACC Thr	GAT Asp	TAT Tyr	ACC Thr 870	Tyr	ACG Thr	GTG Val	TAT	CGI Arg 875	Asp	GGT Gly	ACG Thr	AAG Lys	3001
880	гàг	GIU	GIÀ	Leu	885	Glu	Thr	Thr	Phe	Glu 890	Glu	Asp	Gly	Val	GCT Ala 895	3049
ACG Thr	GGC	AAC Asn	CAT His	GAG Glu 900	TAT Tyr	TGC Cys	GTG Val	GAA Glu	GTG Val 905	AAG Lys	TAC	ACA Thr	GCC	GGC Gly 910	GTA Val	3097
TCT Ser	CCG Pro	AAA Lys	GAG Glu 915	TGT Cys	GTA Val	AAC Asn	GTA Val	ACT Thr 920	GTT Val	GAT Asp	CCT Pro	GTG Val	CAG Gln 925	TTC Phe	AAT Asn	3145
CCT Pro	GTA Val	CAG Gln 930	AAC Asn	CTG Leu	ACC Thr	GGT Gly	AGT Ser 935	GCA Ala	GTC Val	GGC Gly	CAG Gln	AAA Lys 940	GTA Val	ACG Thr	CTT Leu	3193
AAG Lys	TGG Trp 945	GAT Asp	GCA Ala	CCT Pro	AAT Asn	GGT Gly 950	ACC Thr	CCG Pro	AAT Asn	CCA Pro	AAT Asn 955	CCA Pro	AAT Asn	CCG Pro	AAT Asn	3241
CCG Pro 960	GGA Gly	ACA Thr	ACA Thr	ACA Thr	CTT Leu 965	TCC Ser	GAA Glu	TCA Ser	TTC Phe	GAA Glu 970	AAT Asn	GGT Gly	ATT Ile	CCT Pro	GCC Ala 975	3289
261	Trp	ьуs	Thr	980	Asp	Ala	Asp	Gly	Asp 985	Gly	Asn	Asn	Trp	ACG Thr 990	Thr	3337
ACC. Thr	CCT Pro	CCT Pro	CCC Pro 995	GGA Gly	GGC	ACC Thr	TCT Ser	TTT Phe 1000	Ala	GLY	CAC His	AAC Asn	AGT Ser 1005	GCG Ala	ATC Ile	3385
TGT Cys	GCC Ala	TCT Ser 1010	ser	GCT Ala	TCT Ser	TAT Tyr	ATC Ile 1015	Asn	TTT Phe	GAA Glu	ejà eec	CCT Pro 1020	Gln	AAC Asn	CCT Pro	3433
GAT A sp	AAC Asn 1025	Tyr	CTG Leu	GTT Val	ACA Thr	CCG Pro 1030	Glu	CTA Leu	TCT Ser	CTT Leu	CCT Pro 1035	Asn	GGA Gly	GGA Gly	ACG Thr	3481
CTT Leu 1040	TILL	TTC Phe	TGG Trp	GTA Val	TGT Cys 1045	ALA	CAA Gln	GAT Asp	GCC Ala	AAT Asn 1050	Tyr	GCA Ala	TCA Ser	GAG Glu	CAC His 1055	3529
TAT Tyr	GCC Ala	GTG Val	Tyr	GCA Ala 1060	Ser	TCT . Ser	ACG Thr	GGT Gly	AAC Asn 1065	Asp	GCT Ala	TCC Ser	AAC Asn	TTC Phe 1070	Ala	3577
AAC Asn	GCT Ala	Ded	TTG Leu 1075	GIU	GAA Glu	GTG (Leu '	ACG Thr 1080	Ala	AAG Lys	ACA Thr	GTT Val	GTT Val 1085	Thr .	GCA Ala	3625
CCT Pro	914	GCC Ala 1090	TIE .	CGT Arg	GGC :	rnr 1	CGT (Arg \ 1095	GTT Val	CAG Gln	GGC . Gly	ACC Thr	TGG Trp 1100	Tyr	CAA . Gln	AAG Lys	3673

ACG GTA CAC Thr Val Glr 1105			Thr Lys				
GGC TGT ACC Gly Cys Thi 1120					Asp Val		
GCC AAC GGG Ala Asn Gly		Ala Asp					Thr
CAT GGA GAO				Thr Ile			
GGT CAG GGT Gly Gln Gly 117	Trp Leu	Cys Leu				Trp Leu	
GCT CAT GGG Ala His Gly 1185			Val Ala				
GCT TTG AAT Ala Leu Asr 1200					Asp Val		
ACT AAG GTA Thr Lys Val		Tyr Tyr					Asp
CAC TAT GCC His Tyr Ala	GTG ATG Val Met 1235	ATC TCC . Ile Ser	AAG ACG Lys Thr 1240	Gly Thr	AAC GCC Asn Ala	GGA GAC Gly Asp 1245	TTC 4105 Phe
ACG GTT GTT Thr Val Val 125	. Phe Glu	Glu Thr				Gly Gly	
AGA TTC GGT Arg Phe Gly 1265			Ala Asp				
TGG ATC GAG Trp Ile Glu 1280					Thr Lys		
TTC CGT CAC		Cys Ser					Asp
ATT CAG TTO	ACC ATG Thr Met 1315	GGT GGC .	AGC CCC Ser Pro 1320	Thr Pro	ACC GAT Thr Asp	TAT ACC Tyr Thr 1325	TAC 4345 Tyr
ACG GTG TAT Thr Val Tyr 133	Arg Asp	Gly Thr				Thr Glu	
ACC TTC GAP Thr Phe Glv 1345	GAA GAC Glu Asp	GGT GTA Gly Val 1350	Ala Thr	GGC AAC Gly Asn	CAT GAG His Glu 1355	TAT TGC Tyr Cys	GTG -4441 Val

GAA Glu 136	Val	AAG Lys	TAC Tyr	ACA Thr	GCC Ala 136	Gly	GTA Val	TCT	CCG Pro	AAA Lys 137	Glu	TGT Cys	GTA Val	AAC Asn	GTA Val 1375	4489
ACT Thr	GTT Val	GAT Asp	CCT Pro	GTG Val 138	Gln	TTC Phe	AAT Asn	CCT Pro	GTA Val 138	Gln	AAC Asn	CTG Leu	ACC Thr	GGT Gly 139	Ser	4537
GCA Ala	GTC Val	GGC Gly	CAG Gln 139	Lys	GTA Val	ACG Thr	CTT Leu	AAG Lys 140	Trp	GAT Asp	GCA Ala	CCT Pro	AAT Asn 140	Gly	ACC Thr	4585
CCG Pro	AAT Asn	CCA Pro 1410	Asn	CCA Pro	AAT Asn	CCG Pro	AAT Asn 141	Pro	GGA Gly	ACA Thr	ACA Thr	ACA Thr 142	Leu	TCC Ser	GAA Glu	4633
TCA Ser	TTC Phe 142	Glu	AAT Asn	GGT Gly	ATT Ile	CCT Pro 1430	Ala	TCA Ser	TGG Trp	AAG Lys	ACG Thr 143	Ile	GAT Asp	GCA Ala	GAC Asp	4681
GGT Gly 1440	Asp	GGC Gly	AAC Asn	AAT Asn	TGG Trp 144	Thr	ACG Thr	ACC Thr	CCT Pro	CCT Pro 1450	Pro	GGA Gly	GGC Gly	ACC Thr	TCT Ser 1455	4729
TTT Phe	GCA Ala	GGT Gly	CAC His	AAC Asn 146	Ser	GCG Ala	ATC Ile	TGT Cys	GCC Ala 146	Ser	TCG Ser	GCT Ala	TCT Ser	TAT Tyr 147	Ile	4777
AAC Asn	TTT Phe	GAA Glu	GGC Gly 1475	Pro	CAG Gln	AAC Asn	CCT Pro	GAT Asp 1480	Asn	TAT Tyr	CTG Leu	GTT Val	ACA Thr 1485	Pro	GAG Glu	4825
CTA Leu	TCT Ser	CTT Leu 1490	Pro	AAC Asn	GGA Gly	GGA Gly	ACG Thr 1495	Leu	ACT Thr	TTC Phe	TGG Trp	GTA Val 1500	Cys	GCA Ala	CAA Gln	4873
GAT Asp	GCC Ala 1505	AAT Asn	TAT Tyr	GCA Ala	TCA Ser	GAG Glu 1510	His	TAT Tyr	GCC Ala	GTG Val	TAT Tyr 1515	Ala	TCT Ser	TCT Ser	ACG Thr	4921
GGT Gly 1520	Asn	GAC Asp	GCT Ala	TCC Ser	AAC Asn 1525	Phe	GCC Ala	AAC Asn	GCT Ala	TTG Leu 1530	Leu	GAA Glu	GAA Glu	GTG Val	CTG Leu 1535	4969
ACG Thr	GCC Ala	AAG Lys	ACA Thr	GTT Val 1540	Val	ACG Thr	GCA Ala	CCT Pro	GAA Glu 1545	Ala	ATT Ile	CGT Arg	GGC	ACT Thr 1550	Arg	5017
GTT Val	CAG Gln	GGC Gly	ACC Thr 1555	Trp	TAT Tyr	CAA Gln	AAG Lys	ACG Thr 1560	Val	CAG Gln	TTG Leu	CCT Pro	GCG Ala 1565	Gly	ACT Thr	5065
AAG Lys	TAT Tyr	GTT Val 1570	Ala	TTC Phe	CGT Arg	CAC His	TTC Phe 1575	Gly	TGT Cys	ACG Thr	GAC Asp	TTC Phe 1580	Phe	TGG Trp	ATC Ile	5113
AAC Asn	CTT Leu 1585	GAT Asp	gat Asp	GTT Val	GAG Glu	ATC Ile 1590	Lys	GCC Ala	AAC Asn	GGC Gly	AAG Lys 1595	Arg	GCA Ala	GAC Asp	TTC Phe	5161
ACG Thr 1600	GIU	ACG Thr	TTC Phe	GAG Glu	TCT Ser 1605	Ser	ACT Thr	CAT His	GGA Gly	GAG Glu 1610	Ala	CCG Pro	GCG Ala	GAA Glu	TGG Trp 1615	5209

	ACT Thr				Asp					Gly					Ser	5 257
TCC Ser	GGA Gly	CAA Gln	TTG Leu 163	Gly	TGG Trp	CTG Leu	ACA Thr	GCT Ala 164	His	GD y	GGC Gly	ACC Thr	AAC Asn 164	Val	GTA Val	5305
GCC Ala	TCT Ser	TTC Phe 1650	Ser	TGG Trp	AAT Asn	GGA Gly	ATG Met 1655	Ala	TTG Leu	AAT Asn	CCT Pro	GAT Asp 1660	Asn	TAT Tyr	CTC Leu	5353
ATC Ile	TCA Ser 1665	Lys	GAT Asp	GTT Val	ACA Thr	GGC Gly 1670	Ala	ACT	AAG Lys	GTA Val	AAG Lys 167	Tyr	TAC Tyr	TAT Tyr	GCA Ala	5401
GTC Val 1680	AAC Asn)	GAC Asp	GGT Gly	TTT Phe	CCC Pro 1685	Gly	GAT Asp	CAC His	TAT Tyr	GCG Ala 1690	Val	ATG Met	ATC Ile	TCC Ser	AAG Lys 1695	5449
ACG Thr	Gly	ACG Thr	AAC Asn	GCC Ala 1700	Gly	GAC Asp	TTC Phe	ACG Thr	GTT Val 1705	Val	TTC Phe	GAA Glu	GAA Glu	ACG Thr 1710	Pro	5497
AAC Asn	GGA Gly	ATA Ile	AAT Asn 1715	Lys	GC	GGA Gly	GCA Ala	AGA Arg 172	Phe	GGT Gly	CTT Leu	TCC Ser	ACG Thr 1725	Glu	GCC Ala	5545
gat Asp	GGC Gly	GCC Ala 1730	Lys	CCT Pro	CAA Gln	AGT Ser	GTA Val 1735	Trp	ATC Ile	GAG Glu	CGT Arg	ACG Thr 1740	Val	GAT Asp	TTG Leu	5593
CCT Pro	GCG Ala 1745	Gly	ACT	AAG Lys	TAT Tyr	GTT Val 1750	Ala	TTC Phe	CGA Arg	CAC His	TAC Tyr 1755	Asn	TGC Cys	TCG Ser	GAT Asp	5641
TTG Leu 1760	AAC Asn	TAC Tyr	ATT Ile	CTT Leu	TTG Leu 1765	Asp	GAT Asp	ATT Ile	CAG Gln	TTC Phe 1770	Thr	ATG Met	Gly	GGC Gly	AGC Ser 1775	5689
CCC Pro	ACC Thr	CCG Pro	ACC Thr	GAT Asp 1780	Tyr	ACC Thr	TAC Tyr	ACG Thr	GTG Val 1785	Tyr	CGT Arg	GAC Asp	GGT Gly	ACG Thr 1790	Lys	5737
ATC Ile	AAG Lys	GAA Glu	GGT Gly 1795	Leu	ACC Thr	GAA Glu	ACG Thr	ACC Thr 1800	Phe	GAA Glu	GAA Glu	GAC Asp	GGT Gly 1805	Val	GCT Ala	5785
ACG Thr	GGC Gly	AAC Asn 1810	His	GAG Glu	TAT Tyr	TGC Cys	GTG Val 1815	Glu	GTG Val	AAG Lys	TAC Tyr	ACA Thr 1820	Ala	GGC Gly	GTA Val	5833
TCT Ser	CCG Pro 1825	Lys	GAG Glu	TGT Cys	GTA Val	AAC Asn 1830	-Val	ACT Thr	GTT Val	GAT Asp	CCT Pro 1835	Val	CAG Gln	TTC Phe	AAT Asn	5881
CCT Pro 1840	GTA Val	CAG Gln	AAC Asn	CTG Leu	ACC Thr 1845	Gly	AGT Ser	GCA Ala	GTC Val	GGC Gly 1850	Gln	AAA Lys	GTA Val	ACG Thr	CTT Leu 1855	5929
AAG Lys	TGG Trp	gat Asp	Ala	CCT Pro 1860	Asn	GGT Gly	ACC Thr	CCG Pro	AAT Asn 1865	Pro	AAT Asn	CCA Pro	AAT Asn	CCG Pro 1870	Asn	5977

CCG Pro	GGA Gly	ACA Thr	ACA Thr 187	Thr	CTT Leu	TCC Ser	GAA Glu	TCA Ser 188	Phe	GAA Glu	AAT Asn	GGT Gly	ATT Ile 188	Pro	GCC Ala	6025
TCA Ser	TGG Trp	AAG Lys 1890	Thr	ATC Ile	GAT Asp	GCA Ala	GAC Asp 189	Gly	GAC Asp	GGC Gly	AAC Asn	AAT Asn 190	Trp	ACG Thr	ACG Thr	6073
ACC Thr	CCT Pro 1905	Pro	CCC Pro	GGA Gly	G1 y	ACC Thr 1910	Ser	TTT Phe	GCA Ala	GGT Gly	CAC His 1915	Asn	AGT Ser	GCG Ala	ATC Ile	6121
TGT Cys 1920	Val	TCT Ser	TCG Ser	GCT Ala	TCT Ser 192	TAT Tyr	ATC Ile	AAC Asn	TTT Phe	GAA Glu 1930	Gly	CCT Pro	CAG Gln	AAC Asn	CCT Pro 1935	6169
GAT Asp	AAC Asn	TAT Tyr	CTG Leu	GTT Val 1940	Thr	CCG Pro	GAG Glu	CTA Leu	TCT Ser 1945	Leu	CCT Pro	GGC	GGA Gly	GGA Gly 1950	Thr	6217
CTT Leu	ACT Thr	TTC Phe	TGG Trp 1955	Val	TGT Cys	GCA Ala	CAA Gln	GAT Asp 1960	Ala	AAT Asn	TAT Tyr	GCA Ala	TCA Ser 1965	Glu	CAC His	6265
TAT Tyr	GCC Ala	GTG Val 1970	Tyr	GCA Ala	TCT Ser	TCT Ser	ACG Thr 1975	Gly	AAC Asn	GAC Asp	GCT Ala	TCC Ser 1980	Asn	TTC Phe	GCC Ala	6313
AAC Asn	GCT Ala 1985	Leu	TTG Leu	GAA Glu	GAA Glu	GTG Val 1990	Leu	ACG Thr	GCC Ala	AAG Lys	ACA Thr 1995	Val-	GTT Val	ACG Thr	GCA Ala	6361
CCT Pro 2000	Glu	GCC Ala	ATT Ile	CGT Arg	GGC Gly 2005	ACT Thr	CGT Arg	GTT Val	CAG Gln	GGC Gly 2010	Thr	TGG Trp	TAT Tyr	CAA Gln	AAG Lys 2015	6409
ACG Thr	GTA Val	CAG Gln	TTG Leu	CCT Pro 2020	Ala	GGT Gly	ACT Thr	AAG Lys	TAT Tyr 2025	Val	GCC Ala	TTC Phe	CGT Arg	CAC His 2030	Phe	6457
GGC Gly	TGT Cys	ACG Thr	GAC Asp 2035	Phe	TTC Phe	TGG Trp	ATC Ile	AAC Asn 2040	Leu	GAT Asp	GAA Glu	GTT Val	GAG Glu 2045	Ile	AAG Lys	6505
GCC Ala	AAC Asn	GGC Gly 2050	Lys	CGC Arg	GCA Ala	GAC Asp	TTC Phe 2055	Thr	GAA Glu	ACG Thr	TTC Phe	GAG Glu 2060	Ser	TCT Ser	ACT Thr	6553
CAT His	GGA Gly 2065	GIU	GCA Ala	CCG Pro	GCG Ala	GAA Glu 2070	Trp	ACT Thr	ACT Thr	ATC Ile	GAT Asp 2075	Ala	GAT Asp	GGC Gly	GAT Asp	6601
GGT Gly 2080	GIn	GGT Gly	TGG Trp	CTC Leu	TGT Cys 2085	CTG Leu	TCT Ser	TCC Ser	GGA Gly	CAA Gln 2090	Leu	GAC Asp	TGG Trp	CTG Leu	ACA Thr 2095	6649
GCT Ala	CAT His	GLY	Gly	ACC Thr 2100	Asn	GTA Val	GTA Val	Ala	TCT Ser 2105	Phe	TCA Ser	TGG Trp	TAA neA	GGA Gly 2110	Met	6697
GCT Ala	TTG Leu	AAT Asn	CCT Pro 2115	Asp	AAC Asn	TAT Tyr	Leu	ATC Ile 2120	Ser	AAG Lys	GAT Asp	GTT Val	ACA Thr 2125	Gly	GCA Ala	6745

ACT A	G GTA 's Val 213	Lys	TAC Tyr	TAC Tyr	TAT Tyr	GCA Ala 213	Val	AAC Asn	GAC Asp	Gly	TT1 Phe	Pro	GG(GAT Asp	6793
CAC TA His Ty 21	T GCG r Ala 45	GTG Val	ATG Met	ATC Ile	TCC Ser 215	Lys	ACG Thr	Gly	ACG Thr	AAC Asn 215	Ala	GGA Gly	GAC Asp	TTC Phe	6841
ACG GT Thr Va 2160	T GTT l Val	TTC Phe	GAA Glu	GAA Glu 216	Thr	CCT Pro	AAC Asn	GGA Gly	ATA Ile 217	Asn	AAG Lys	GGC Gly	Gly	GCA Ala 2175	6889
AGA TI Arg Ph	C GGT e Gly	CTT Leu	TCC Ser 2180	Thr	GAA Glu	GCC Ala	GAT Asp	GGC Gly 218	Ala	AAA Lys	CCT Pro	CAA Gln	AGT Ser 219	Val	6937
TGG AT	C GAG e Glu	CGT Arg 2195	Thr	GTA Val	GAT Asp	TTG Leu	CCT Pro 220	Ala	GGC	ACG Thr	AAG Lys	TAT Tyr 220	Val	GCT Ala	6985
TTC CG Phe Ar	T CAC g His 2210	Tyr	AAT Asn	TGC Cys	TCG Ser	GAT Asp 221	Leu	AAC Asn	TAC Tyr	ATT Ile	CTT Leu 222	Leu	GAT Asp	GAT Asp	7033
ATT CA Ile Gl 22	n Phe	ACC Thr	ATG Met	GGT Gly	GGC Gly 2230	Ser	CCC Pro	ACC Thr	CCG Pro	ACC Thr 223	Asp	TAT Tyr	ACC Thr	TAC Tyr	7081
ACG GT Thr Va 2240	G TAT l Tyr	CGT Arg	GAC Asp	GGT Gly 2245	Thr	AAG Lys	ATC Ile	AAG Lys	GAA Glu 2250	Gly	CTG Leu	ACC Thr	GAA Glu	ACG Thr 2255	7129
ACC TT Thr Ph	C GAA e Glu	Glu	GAT Asp 2260	Gly	GTA Val	GCT Ala	ACG Thr	GGC Gly 226	Asn	CAT His	GAG Glu	TAT Tyr	TGC Cys 227	Val	7177
GAA GT Glu Va	G AAG l Lys	TAC Tyr 2275	Thr	GCC Ala	GGC Gly	GTA Val	TCT Ser 2280	Pro	AAG Lys	GTG Val	TGT Cys	GTA Val 228	Asn	GTA Val	7225
ACT AT	AAT Asn 2290	Pro	ACT Thr	CAG Gln	TTC Phe	AAT Asn 2295	Pro	GTA Val	CAG Gln	AAC Asn	CTG Leu 2300	Thr	GCA Ala	GAA Glu	7273
CAA GC	Pro	AAC : Asn :	AGC . Ser :	Met	GAT Asp 2310	Ala	ATC Ile	CTT Leu	AAA Lys	TGG Trp 2315	Asn	GCA Ala	CCG Pro	GCA Ala	7321
TCT AAC Ser Ly: 2320	G CGT	GCG (Ala (Glu '	GTT Val 2325	Leu	AAC Asn	GAA Glu	GAC Asp	TTC Phe 2330	Glu	AAT Asn	GGT Gly	ATT Ile	CCT Pro 2335	7369
TCC TC	TGG .	Lys :	ACG : Thr : 2340	ATC Ile .	GAT Asp	GCA Ala	GAC Asp	GGG Gly 2345	Asp	GGC Gly	AAC Asn	AAT Asn	TGG Trp 2350	Thr	7417
ACG ACC	Pro .	CCT (Pro I 2355	CCC (GGA (GGC Gly	Ser	TCT Ser 2360	Phe	GCA Ala	GGT Gly	CAC His	AAC Asn 2365	Ser	GCG Ala	7465
ATC TGT	GTC 1 Val 2 2370	TCT 1 Ser S	CG (Ser)	GCT :	Ser	TAT Tyr 2375	Ile	AAC Asn	TTT Phe	GAA Glu	GGT Gly 2380	Pro	CAG Gln	AAC Asn	7513

CCT Pro	GAT Asp 238	Asn	TAT	CTG Leu	GTT Val	ACA Thr 239	Pro	GAG Glu	CTT Leu	TCT	CTT Leu 239	Pro	GGC Gly	GGA Gly	GGA Gly	7561
ACG Thr 240	тел	ACT Thr	TTC Phe	TGG Trp	GTA Val 240	Cys	GCA Ala	CAA Gln	GAT Asp	GCC Ala 241	Asn	TAT Tyr	GCA Ala	TCA Ser	GAG Glu 2415	7609
CAC His	TAT	GCC Ala	GTG Val	TAT Tyr 242	Ala	TCT Ser	TCT Ser	ACG Thr	GGT Gly 242	Asn	GAC Asp	GCT Ala	TCC Ser	AAC Asn 243		7657
GCC	AAC Asn	GCT Ala	TTG Leu 243	Leu	GAA Glu	GAA Glu	GTG Val	CTG Leu 244	Thr	GCC Ala	AAG Lys	ACA Thr	GTT Val 244	Val	ACG Thr	7705
GCG Ala	CCT Pro	GAA Glu 245	Ala	ATT Ile	CGT Arg	GGC Gly	ACT Thr 245	Arg	GTT Val	CAG Gln	GGC Gly	ACC Thr 246	Trp	TAT Tyr	CAA Gln	7753
AAG Lys	ACG Thr 246	Val	CAG Gln	TTG Leu	CCT Pro	GCG Ala 247	Gly	ACT Thr	AAG Lys	TAT Tyr	GTT Val 2475	Ala	TTC Phe	CGT Arg	CAC His	7801
TTC Phe 248	GIĀ	TGT Cys	ACG Thr	GAC Asp	TTC Phe 248	Phe	TGG Trp	ATC Ile	AAC Asn	CTT Leu 2490	Asp	gat Asp	GTT Val	GTA Val	ATC Ile 2495	7849
Thr	Ser	GTÀ	Asn	Ala 2500	Pro	Ser	Tyr	Thr	Tyr 250	Thr	Ile	Tyr	CGT Arg	Asn 2510	Asn)	7897
Inr	GIN	116	2515	Ser	Gly	Val	Thr	Glu 252	Thr	Thr	Tyr	Arg	GAT Asp 2525	Pro	Asp	7945
Leu	Ala	2530	GT À	Phe	Tyr	Thr	Tyr 2535	Gly	Val	Lys	Val	Val 2540		Pro	Asn	7993
GGA Gly	GAA Glu 2545	Ser	GCT Ala	ATC Ile	GAA Glu	ACT Thr 2550	Ala	ACG Thr	TTG Leu	AAT Asn	ATC Ile 2555	Thr	TCG Ser	TTG Leu	GCA Ala	8041
GAC Asp 2560	VAI	ACG Thr	GCT Ala	CAG Gln	AAG Lys 2565	PIO	TAC Tyr	ACG Thr	CTG Leu	ACA Thr 2570	Val	GTA Val	GGA Gly	AAG Lys	ACG Thr 2575	8089
ATC Ile	ACG Thr	GTA Val	ACT Thr	TGC Cys 2580	GIn	GGC Gly	GAA Glu	GCT Ala	ATG Met 2585	Ile	TAC Tyr	GAC Asp	ATG Met	AAC Asn 2590	Gly	8137
CGT Arg	CGT Arg	CTG Leu	GCA Ala 2595	ALA	GGT Gly	CGC Arg	Asn	ACG Thr 2600	Val	GTT Val	TAC Tyr	ACG Thr	GCT Ala 2605	CAG Gln	GGC Gly	8185
GGC Gly	CAC His	TAT Tyr 2610	ALA	GTC . Val	ATG Met	GTT Val	GTC Val 2615	Val	GAC Asp	GGC Gly	Lys	TCC Ser 2620	TAC Tyr	GTA Val	GAG Glu	8233
AAA Lys	CTC Leu 2625	ALA	GTA . Val	AAG Lys	TAAC	GAGA	TG A	TTAT	TTTC	g at	CGGT.	ATGC	TCT	acca	ACC	8288

GATCGCTTTA	ATCGGTCGCC	CGGCTTCCAT	AAAAAGGAGT	CGGGCGACTC	TTTTACTCCA	8348
ACCAAATAAG	CATTGTTTTA	TAGCCTTTCG	GAATATACTC	CGGAAGGGGG	TCGAGCTACG	8408
CCCTACAGCG	ACTCGGGCTA	CGCCGTAGAG	CGTACCGAGC	TGCGCTCTAC	GGCTCTTCGA	8468
GCTACGCTGT	AGGGCTCACT	GCGCCAAGCT	CTACGGCTCA	GCTCGGCCAC	CTCTACGGCT	8528
CCCGGAGCGG	AACTCTACGG	CTCGGCTCGC	TACGCTGTAG	AGCGTACCTA	CGCCGAGCTC	8588

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2628 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Arg Lys Leu Asn Ser Leu Phe Ser Leu Ala Val Leu Leu Ser Leu 15

Leu Cys Trp Gly Gln Thr Ala Ala Ala Gln Gly Gly Pro Lys Thr Ala 20

Pro Ser Val Thr His Gln Ala Val Gln Lys Gly Ile Arg Thr Ser Lys 45

Val Lys Asp Leu Arg Asp Pro Ile Pro Ala Gly Met Ala Arg Ile Ile 65

Leu Glu Ala His Asp Val Trp Glu Asp Gly Thr Gly Tyr Gln Met Leu 65

Trp Asp Ala Asp His Asn Gln Tyr Gly Ala Ser Ile Pro Glu Glu Ser 95

Phe Trp Phe Ala Asn Gly Thr Ile Pro Ala Gly Leu Tyr Asp Pro Phe 100

Glu Tyr Lys Val Pro Val Asn Ala Asp Ala Ser Phe Ser Pro Thr Asn 120

Phe Val Leu Asp Gly Thr Ala Ser Ala Asp Ile Pro Ala Gly Thr Tyr 130

Asp Tyr Val Ile Ile Asn Pro Asn Pro Gly Ile Ile Tyr Ile Val Gly 145

Asp Tyr Val Ile Ile Asn Pro Asn Pro Gly Ile Ile Tyr Ile Val Gly 145

Asp Tyr Val Ile Ile Asn Pro Asn Pro Gly Ile Ile Tyr Ile Val Gly 145

Asp Tyr Val Ile Ile Asn Pro Asn Pro Gly Ile Ile Tyr Ile Val Gly 145

Asp Tyr Val Ile Ile Asn Pro Asn Pro Gly Ile Ile Tyr Ile Val Gly 145

Asp Tyr Val Ile Val Gly Incomplete Inc

Glu Gly Val Ser Lys Gly Asn Asp Tyr Val Val Glu Ala Gly Lys Thr

Tyr His Phe Thr Val Gln Arg Gln Gly Pro Gly Asp Ala Ala Ser Val

Val Val Thr Gly Glu Gly Gly Asn Glu Phe Ala Pro Val Gln Asn Leu 195 200 205

Gln Trp Ser Val Ser Gly Gln Thr Val Thr Leu Thr Trp Gln Ala Pro 210 220

Ala 225	Ser	Asp	Lys	Arg	Thr 230	Tyr	Val	Leu	Asn	Glu 235	Ser	Phe	Asp	Thr	Gln 240
Thr	Leu	Pro	Asn	Gly 245	Trp	Thr	Met	Ile	Asp 250	Ala	Asp	Gly	Asp	Gly 255	His
Asn	Trp	Leu	Ser 260	Thr	Ile	Asn	Val	Tyr 265	Asn	Thr	Ala	Thr	His 270	Thr	Gly
Asp	Gly	Ala 275	Met	Phe	Ser	Lys	Ser 280	Trp	Thr	Ala	Ser	Gly 285	Gly	Ala	Lys
Ile	Asp 290	Leu	Ser	Pro	Asp	Asn 295	Tyr	Leu	Val	Thr	Pro 300	Lys	Val	Thr	Val
Pro 305	Glu	Asn	Gly	Lys	Leu 310	Ser	Tyr	Trp	Val	Ser 315	Ser	Gln	Val	Pro	Trp 320
Thr	Asn	Glu	His	Tyr 325	Gly	Val	Phe	Leu	Ser 330	Thr	Thr	Gly	Asn	Glu 335	Ala
Ala	Asn	Phe	Thr 340	Ile	Lys	Leu	Leu	Glu 345	Glu	Thr	Leu	Gly	Ser 350	Asp	Lys
Pro	Ala	Pro 355	Met	Asn	Leu	Val	Lys 360	Ser	Glu	Gly	Val	Lys 365	Leu	Pro	Ala
Pro	Tyr 370	Gln	Glu	Arg	Thr	Ile 375	Asp	Leu	Ser	Ala	Tyr 380	Ala	Gly	Gln	Gln
385			Ala		390					395					400
			Asp	405					410					415	_
			Val 420		_			425					430		
		435	Phe				440					445	_		-
Cys	Val 450	Glu	Val	Lys	Tyr	Thr 455	Ala	Gly	Val	Ser	Pro 460	Lys	Val	Cys	Lys
465			Val		470					475					480
			Ala	485					490					495	
			Pro 500					505					510		
		515	Gly				520					525			
	530		Asn			535					540	*			
Ala 545	Gly	His	Asn	Ser	Ala 550	Ile	Cys	Ala	Ser	Ser 555	Ala	Ser	Tyr	Ile	Asn 560

Phe	Glu	Gly	Pro	Gln 565	Asn	Pro	Asp	Asn	Tyr 570	Leu	Val	Thr	Pro	Glu 575	Leu
Ser	Leu	Pro	Asn 580	Gly	Gly	Thr	Leu	Thr 585	Phe	Trp	Val	Cys	Ala 590	Gln	Asp
Ala	Asn	Tyr 595	Ala	Ser	Glu	His	Tyr 600	Ala	Val	Tyr	Ala	Ser 605	Ser	Thr	Gly
Asn	Asp 610	Ala	Ser	Asn	Phe	Ala 615	Asn	Ala	Leu	Leu	Glu 620	Glu	Val	Leu	Thr
Ala 625	Lys	Thr	Val	Val	Thr 630	Ala	Pro	Glu	Ala	Ile 635	Arg	Gly	Thr	Arg	Val 640
Gln	Gly	Thr	Trp	Tyr 645	Gln	Lys	Thr	Val	Gln 650	Leu	Pro	Ala	Gly	Thr 655	Lys
Tyr	Val	Ala	Phe 660	Arg	His	Phe	Gly	Cys 665	Thr	Asp	Phe	Phe	Trp 670	Ile	Asn
Leu	Asp	Asp 675	Val	Glu	Ile	Lys	Ala 680	Asn	Gly	Lys	Arg	Ala 685	Asp	Phe	Thr
Glu	Thr 690	Phe	Glu	Ser	Ser	Thr 695	His	Gly	Glu	Ala	Pro 700	Ala	Glu	Trp	Thr
Thr 705	Ile	Asp	Ala	Asp	Gly 710	Asp	Gly	Gln	Gly	Trp 715	Leu	Cys	Leu	Ser	Ser 720
Gly	Gln	Leu	Asp	Trp 725	Leu	Thr	Ala	His	Gly 730	Gly	Thr	Asn	Val	Val 735	Ala
Ser	Phe	Ser	Trp 740	Asn	Gly	Met	Ala	Leu 745	Asn	Pro	Asp	Asn	Tyr 750	Leu	Ile
Ser	Lys	Asp 755	Val	Thr	Gly	Ala	Thr 760	Lys	Val	Lys	Tyr	Tyr 765	Tyr	Ala	Val
Asn	Asp 770	Gly	Phe	Pro	Gly	Asp 775	His	Tyr	Ala	Val	Met 780		Ser	Lys	Thr
Gly 785	Thr	Asn	Ala	Gly	Asp 790	Phe	Thr	Val	Val	Phe 795	Glu	Glu	Thr	Pro	Asn 800
Gly	Ile	Asn	Lys	Gly 805	Gly	Ala	Arg	Phe	Gly 810	Leu	Ser	Thr	Glu	Ala 815	Asp
Gly	Ala	Lys	Pro 820	Gln	Ser	Val	Trp	Ile 825	Glu	Arg	Thr	Val	Asp 830	Leu	Pro
Ala	Gly	Thr 835	Lys	Tyr	Val	Ala	Phe 840	Arg	His	Tyr	Asn	Cys 845	Ser	Asp	Leu
Asn	Tyr 850	Ile	Leu	Leu	Asp	Asp 855	Ile	Gln	Phe	Thr	Met 860	Gly	Gly	Ser	Pro
Thr 865	Pro	Thr	Asp	Tyr	Thr 870	Tyr	Thr	Val	Tyr	Arg 875	Asp	Gly	Thr	Lys	Ile 880
Lys	Glu	Gly	Leu	Thr 885	Glu	Thr	Thr	Phe	Glu 890	Glu	Asp	Gly	Val	Ala 895	Thr

- Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser 900 905 910
- Pro Lys Glu Cys Val Asn Val Thr Val Asp Pro Val Gln Phe Asn Pro 915 920 925
- Val Gln Asn Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys 930 935 940
- Trp Asp Ala Pro Asn Gly Thr Pro Asn Pro Asn Pro Asn Pro Asn Pro 945 950 955 960
- Gly Thr Thr Leu Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser 965 970 975
- Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly Asn Asn Trp Thr Thr Thr 980 985 990
- Pro Pro Pro Gly Gly Thr Ser Phe Ala Gly His Asn Ser Ala Ile Cys 995 1000 1005
- Ala Ser Ser Ala Ser Tyr Ile Asn Phe Glu Gly Pro Gln Asn Pro Asp 1010 1015 1020
- Asn Tyr Leu Val Thr Pro Glu Leu Ser Leu Pro Asn Gly Gly Thr Leu 1025 1030 1035 1040
- Thr Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr 1045 1050 1055
- Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala Asn 1060 1065 1070
- Ala Leu Leu Glu Glu Val Leu Thr Ala Lys Thr Val Val Thr Ala Pro 1075 1080 1085
- Glu Ala Ile Arg Gly Thr Arg Val Gln Gly Thr Trp Tyr Gln Lys Thr 1090 1095 1100
- Val Gln Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg His Phe Gly 1105 1110 1115
- Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp Asp Val Glu Ile Lys Ala 1125 1130 1135
- Asn Gly Lys Arg Ala Asp Phe Thr Glu Thr Phe Glu Ser Ser Thr His 1140 1145 1150
- Gly Glu Ala Pro Ala Glu Trp Thr Thr Ile Asp Ala Asp Gly Asp Gly 1155 1160 1165
- Gln Gly Trp Leu Cys Leu Ser Ser Gly Gln Leu Gly Trp Leu Thr Ala 1170 1180
- His Gly Gly Thr Asn Val Val Ala Ser Phe Ser Trp Asn Gly Met Ala 1185 1190 1195 1200
- Leu Asn Pro Asp Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr 1205 1210 1215
- Lys Val Lys Tyr Tyr Tyr Ala Val Asn Asp Gly Phe Pro Gly Asp His 1220 1225 1230

- Tyr Ala Val Met Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr 1235 1240 1245
- Val Val Phe Glu Glu Thr Pro Asn Gly Ile Asn Lys Gly Gly Ala Arg 1250 1255 1260
- Phe Gly Leu Ser Thr Glu Ala Asp Gly Ala Lys Pro Gln Ser Val Trp 1265 1270 1275 1280
- Ile Glu Arg Thr Val Asp Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe 1285 1290 1295
- Arg His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile Leu Leu Asp Asp Ile 1300 1305 1310
- Gln Phe Thr Met Gly Gly Ser Pro Thr Pro Thr Asp Tyr Thr Tyr Thr 1315 1320 1325
- Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu Thr Glu Thr Thr 1330 1340
- Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His Glu Tyr Cys Val Glu 1345 1350 1355 1360
- Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Glu Cys Val Asn Val Thr 1365 1370 1375
- Val Asp Pro Val Gln Phe Asn Pro Val Gln Asn Leu Thr Gly Ser Ala 1380 1385 1390
- Val Gly Gln Lys Val Thr Leu Lys Trp Asp Ala Pro Asn Gly Thr Pro 1395 1400 1405
- Asn Pro Asn Pro Asn Pro Gly Thr Thr Thr Leu Ser Glu Ser 1410 1415 1420
- Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp Ala Asp Gly 1425 1430 1435 1440
- Asp Gly Asn Asn Trp Thr Thr Thr Pro Pro Pro Gly Gly Thr Ser Phe 1445 1450 1455
- Ala Gly His Asn Ser Ala Ile Cys Ala Ser Ser Ala Ser Tyr Ile Asn 1460 1465 1470
- Phe Glu Gly Pro Gln Asn Pro Asp Asn Tyr Leu Val Thr Pro Glu Leu 1475 1480 1485
- Ser Leu Pro Asn Gly Gly Thr Leu Thr Phe Trp Val Cys Ala Gln Asp 1490 1495 1500
- Ala Asn Tyr Ala Ser Glu His Tyr Ala Val Tyr Ala Ser Ser Thr Gly 1505 1510 1515 1520
- Asn Asp Ala Ser Asn Phe Ala Asn Ala Leu Leu Glu Glu Val Leu Thr 1525 1530 1535
- Ala Lys Thr Val Val Thr Ala Pro Glu Ala Ile Arg Gly Thr Arg Val 1540 1545 1550
- Gln Gly Thr Trp Tyr Gln Lys Thr Val Gln Leu Pro Ala Gly Thr Lys
 1555 1560 1565

- Tyr Val Ala Phe Arg His Phe Gly Cys Thr Asp Phe Phe Trp Ile Asn 1570 1575 1580
- Leu Asp Asp Val Glu Ile Lys Ala Asn Gly Lys Arg Ala Asp Phe Thr 1585 1590 1595 1600
- Glu Thr Phe Glu Ser Ser Thr His Gly Glu Ala Pro Ala Glu Trp Thr 1605 1610 1615
- Thr Ile Asp Ala Asp Gly Asp Gly Gln Gly Trp Leu Cys Leu Ser Ser 1620 1625 1630
- Gly Gln Leu Gly Trp Leu Thr Ala His Gly Gly Thr Asn Val Val Ala 1635 1640 1645
- Ser Phe Ser Trp Asn Gly Met Ala Leu Asn Pro Asp Asn Tyr Leu Ile 1650 1655 1660
- Ser Lys Asp Val Thr Gly Ala Thr Lys Val Lys Tyr Tyr Tyr Ala Val 1665 1670 1675 1680
- Asn Asp Gly Phe Pro Gly Asp His Tyr Ala Val Met Ile Ser Lys Thr 1685 1690 1695
- Gly Thr Asn Ala Gly Asp Phe Thr Val Val Phe Glu Glu Thr Pro Asn 1700 1705 1710
- Gly Ile Asn Lys Gly Gly Ala Arg Phe Gly Leu Ser Thr Glu Ala Asp 1715 1720 1725
- Gly Ala Lys Pro Gln Ser Val Trp Ile Glu Arg Thr Val Asp Leu Pro 1730 1740
- Ala Gly Thr Lys Tyr Val Ala Phe Arg His Tyr Asn Cys Ser Asp Leu 1745 1750 1755 1760
- Asn Tyr Ile Leu Leu Asp Asp Ile Gln Phe Thr Met Gly Gly Ser Pro 1765 1770 1775
- Thr Pro Thr Asp Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile 1780 1785 1790
- Lys Glu Gly Leu Thr Glu Thr Thr Phe Glu Glu Asp Gly Val Ala Thr 1795 1800 1805
- Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser 1810 1815 1820
- Pro Lys Glu Cys Val Asn Val Thr Val Asp Pro Val Gln Phe Asn Pro 1825 1830 1835 1840
- Val Gln Asn Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys 1845 1850 1855
- Trp Asp Ala Pro Asn Gly Thr Pro Asn Pro Asn Pro Asn Pro Asn Pro 1860 1865 1870
- Gly Thr Thr Leu Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser 1875 1880 1885
- Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly Asn Asn Trp Thr Thr 1890 1895 1900

- Pro Pro Pro Gly Gly Thr Ser Phe Ala Gly His Asn Ser Ala Ile Cys 1905 1910 1915 1920
- Val Ser Ser Ala Ser Tyr Ile Asn Phe Glu Gly Pro Gln Asn Pro Asp 1925 1930 1935
- Asn Tyr Leu Val Thr Pro Glu Leu Ser Leu Pro Gly Gly Gly Thr Leu 1940 1945 1950
- Thr Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr 1955 1960 1965
- Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala Asn 1970 1975 1980
- Ala Leu Leu Glu Glu Val Leu Thr Ala Lys Thr Val Val Thr Ala Pro 1985 1990 1995 2000
- Glu Ala Ile Arg Gly Thr Arg Val Gln Gly Thr Trp Tyr Gln Lys Thr 2005 2010 2015
- Val Gln Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg His Phe Gly 2020 2025 2030
- Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp Glu Val Glu Ile Lys Ala 2035 2040 2045
- Asn Gly Lys Arg Ala Asp Phe Thr Glu Thr Phe Glu Ser Ser Thr His 2050 2060
- Gly Glu Ala Pro Ala Glu Trp Thr Thr Ile Asp Ala Asp Gly Asp Gly 2065 2070 2075 2080
- Gln Gly Trp Leu Cys Leu Ser Ser Gly Gln Leu Asp Trp Leu Thr Ala 2085 2090 2095
- His Gly Gly Thr Asn Val Val Ala Ser Phe Ser Trp Asn Gly Met Ala 2100 2105 2110
- Leu Asn Pro Asp Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr 2115 2120 2125
- Lys Val Lys Tyr Tyr Tyr Ala Val Asn Asp Gly Phe Pro Gly Asp His 2130 2135 2140
- Tyr Ala Val Met Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr 2145 2150 2155 2160
- Val Val Phe Glu Glu Thr Pro Asn Gly Ile Asn Lys Gly Gly Ala Arg 2165 2170 2175
- Phe Gly Leu Ser Thr Glu Ala Asp Gly Ala Lys Pro Gln Ser Val Trp 2180 2185 2190
- Ile Glu Arg Thr Val Asp Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe 2195 2200 2205
- Arg His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile Leu Leu Asp Asp Ile 2210 2215 2220
- Gln Phe Thr Met Gly Gly Ser Pro Thr Pro Thr Asp Tyr Thr Tyr Thr 2225 2230 2235 2240

- Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu Thr Glu Thr Thr 2245 2250 2255
- Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His Glu Tyr Cys Val Glu 2260 2265 2270
- Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Val Cys Val Asn Val Thr 2275 2280 2285
- Ile Asn Pro Thr Gln Phe Asn Pro Val Gln Asn Leu Thr Ala Glu Gln 2290 2295 2300
- Ala Pro Asn Ser Met Asp Ala Ile Leu Lys Trp Asn Ala Pro Ala Ser 2305 2310 2315 2320
- Lys Arg Ala Glu Val Leu Asn Glu Asp Phe Glu Asn Gly Ile Pro Ser 2325 2330 2335
- Ser Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly Asn Asn Trp Thr Thr 2340 2345 2350
- Thr Pro Pro Gly Gly Ser Ser Phe Ala Gly His Asn Ser Ala Ile 2355 2360 2365
- Cys Val Ser Ser Ala Ser Tyr Ile Asn Phe Glu Gly Pro Gln Asn Pro 2370 2375 2380
- Asp Asn Tyr Leu Val Thr Pro Glu Leu Ser Leu Pro Gly Gly Gly Thr 2385 2390 2395 2400
- Leu Thr Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His 2405 2410 2415
- Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala 2420 2425 2430
- Asn Ala Leu Leu Glu Glu Val Leu Thr Ala Lys Thr Val Val Thr Ala 2435 2440 2445
- Pro Glu Ala Ile Arg Gly Thr Arg Val Gln Gly Thr Trp Tyr Gln Lys 2450 2455 2460
- Thr Val Gln Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg His Phe 2465 2470 2475 2480
- Gly Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp Asp Val Val Ile Thr 2485 2490 2495
- Ser Gly Asn Ala Pro Ser Tyr Thr Tyr Thr Ile Tyr Arg Asn Asn Thr 2500 2505 2510
- Gln Ile Ala Ser Gly Val Thr Glu Thr Thr Tyr Arg Asp Pro Asp Leu 2515 2520 2525
- Ala Thr Gly Phe Tyr Thr Tyr Gly Val Lys Val Val Tyr Pro Asn Gly 2530 2540
- Glu Ser Ala Ile Glu Thr Ala Thr Leu Asn Ile Thr Ser Leu Ala Asp 2545 2550 2555 2560
- Val Thr Ala Gln Lys Pro Tyr Thr Leu Thr Val Val Gly Lys Thr Ile 2565 2570 2575

Thr Val Thr Cys Gln Gly Glu Ala Met Ile Tyr Asp Met Asn Gly Arg 2580 2585 2590

Arg Leu Ala Ala Gly Arg Asn Thr Val Val Tyr Thr Ala Gln Gly Gly 2595 2600 2605

His Tyr Ala Val Met Val Val Val Asp Gly Lys Ser Tyr Val Glu Lys 2610 2615 2620

Leu Ala Val Lys 2625

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1350 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1350
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CCG Pro	AAT Asn 263	Pro	AAT Asn	CCC Pro	GGA Gly	ACA Thr 263	Thr	ACA Thr	CTT Leu	TCC Ser	GAA Glu 264	Ser	TTC Phe	GAA Glu	AAT Asn		48
GGT Gly 264	TTG	CCT Pro	GCC Ala	TCA Ser	TGG Trp 2650	Lys	ACG Thr	ATC Ile	GAT Asp	GCA Ala 265	Asp	GGT Gly	GAC Asp	GGC Gly	AAC Asn 2660		96
AAT Asn	TGG Trp	ACG Thr	ACG Thr	ACC Thr 2665	Pro	CCT Pro	CCC Pro	GGA Gly	GGC Gly 267	Thr	TCT Ser	TTT Phe	GCA Ala	GGT Gly 267	His		144
AAC Asn	AGT Ser	GCA Ala	ATC Ile 2680	TGT Cys	GCC Ala	TCT Ser	TCG Ser	GCT Ala 2685	Ser	TAT Tyr	ATC Ile	AAC Asn	TTT Phe 269	Glu	GGT Gly		192
CCT Pro	CAG Gln	AAC Asn 2695	PIO	GAT Asp	AAC Asn	TAT Tyr	CTG Leu 2700	Val	ACA Thr	CCG Pro	GAG Glu	CTA Leu 2705	Ser	CTT Leu	CCT Pro	:	240
AAC Asn	GGA Gly 2710	GTA	ACG Thr	CTT Leu	Thr	TTC Phe 2715	Trp	GTA Val	TGT Cys	GCA Ala	CAA Gln 2720	Asp	GCC Ala	AAT Asn	TAT Tyr	:	288
GCA Ala 2725	Ser	GAG Glu	CAC His	Tyr	GCC Ala 2730	Val	TAC Tyr	GCA Ala	TCT Ser	TCT Ser 2735	Thr	GGT Gly	AAC Asn	GAC Asp	GCT Ala 2740	:	336
TCC Ser	AAC Asn	TTC Phe	Ala	AAC Asn 2745	GCT Ala	TTG Leu	TTG Leu	Glu	GAA Glu 2750	Val	CTG Leu	ACG Thr	GCC Ala	AAG Lys 2755	Thr	3	384

				Pro					Gly				CAG Gln 2770	Gly		432
			Lys					Pro					TAT Tyr			480
		His					Asp					Asn	CTT Leu			528
	Glu					Gly					Phe		GAA Glu			576
					Gly					Glu			ACT Thr		Asp	624
				Gly					Cys				GGA Gly 2850	Gln		672
			Thr					Thr					Ser		TCA Ser	720
		Gly					Pro					Ile	TCA Ser			768
	Thr					Val					Ala		AAC Asn		_	816
Val 288	Thr 5	Gly	Ala GAT	Thr	Lys 2890 TAT Tyr	Val GCG	Lys	Tyr ATG	Tyr ATC	Tyr 2895 TCC Ser	Ala 5 AAG	Val ACG		Asp	Gly 2900 AAC Asn	816 864
Val 288 TTT Phe	Thr 5 CCC Pro	GLY GGG GLY	Ala GAT Asp	CAC His 2905 ACG Thr	Lys 2890 TAT Tyr 5	Val GCG Ala GTT	Lys GTG Val	Tyr ATG Met	Tyr ATC Ile 2910 GAA Glu	Tyr 2895 TCC Ser	Ala AAG Lys CCT	Val ACG Thr	Asn GGC Gly	ASP ACG Thr 2915 ATA Ile	Gly 2900 AAC Asn	
Val 288 TTT Phe GCC Ala	Thr 5 CCC Pro GGA Gly	GLY GGG GLY GAC ASP	GAT Asp TTC Phe 292 GCA Ala	CAC His 2905 ACG Thr	Lys 2890 TAT Tyr 5 GTT Val	Val GCG Ala GTT Val	Lys GTG Val TTC Phe	Tyr ATG Met GAA Glu 2923 TCC Ser	ATC Ile 2910 GAA Glu	Tyr 2895 TCC Ser ACG Thr	Ala AAG Lys CCT Pro	ACG Thr AAC Asn	GGC Gly GGA Gly 2930 GGC Gly	ASP ACG Thr 2915 ATA Ile	G1y 2900 AAC Asn AAT Asn	864
Val 288 TTT Phe GCC Ala AAG Lys	Thr CCC Pro GGA Gly GGC Gly CAA	GGG GLY GAC ASP GGA GLY 293:	GAT Asp TTC Phe 2920 GCA Ala	CAC His 2905 ACG Thr AGA Arg	Lys 2890 TAT Tyr GTT Val TTC Phe	GCG Ala GTT Val GGT Gly	GTG Val TTC Phe CTT Leu 294 CGT Arg	Tyr ATG Met GAA Glu 292: TCC Ser	ATC 11e 2910 GAA Glu ACG Thr	Tyr 2895 TCC Ser ACG Thr GAA Glu	Ala AAG Lys CCT Pro GCC Ala	ACG Thr AAC Asn GAT Asp 294	GGC Gly GGA Gly 2930 GGC Gly	ASP ACG Thr 2915 ATA Ile GCC Ala	Gly 2900 AAC Asn AAT Asn AAA Lys	864 912
Val 288 TTT Phe GCC Ala AAG Lys CCT Pro	Thr CCC Pro GGA Gly GGC Gly CAA Gln 295	GGG GLY GAC Asp GGA GLY 2935 AGT Ser	GAT Asp TTC Phe 2920 GCA Ala TTC GTA Val	CAC His 2905 ACG Thr AGA Arg	Lys 2890 TAT Tyr GTT Val TTC Phe	GCG Ala GTT Val GGT Gly GAG Glu 295	TTC Phe CTT Leu 294 CGT Arg	Tyr ATG Met GAA Glu 292: TCC Ser ACG Thr	ATC Ile 2910 GAA Glu ACG Thr GTA Val	Tyr 2895 TCC Ser ACG Thr GAA Glu GAT Asp	Ala AAG Lys CCT Pro GCC Ala TTG Leu 296 GAT Asp	ACG Thr AAC Asn GAT Asp 2945 CCT Pro 0	GGC GLY GGA GLY 2930 GGC GLY 5	ASP ACG Thr 291! ATA Ile GCC Ala GGT Gly	Gly 2900 AAC ASN AAT ASN AAA Lys ACT Thr	912 960
Val 288 TTT Phe GCC Ala AAG Lys CCT Pro AAG Lys 296 CTT	Thr CCC Pro GGA Gly GGC Gly CAA Gln 295 TAT Tyr TTG	GLY GGG GLY GAC Asp GGA GLY 293: AGT Ser O GTT Val	GAT Asp TTC Phe 2920 GCA Ala 5 GTA Val GCT Ala	CAC His 2905 ACG Thr AGA Arg TGG Trp TTC Phe	TAT Tyr Solution of the Control of t	GCG Ala GTT Val GGT Gly GAG G1u 295. CAC His	TTC Phe CTT Leu 294 CGT Arg TAC Tyr	Tyr ATG Met GAA Glu 292: TCC Ser ACG Thr AAT ASD	ATC 11e 2910 GAA Glu ACG Thr GTA Val TGC Cys	Tyr 2895 TCC Ser ACG Thr GAA Glu GAT ASP TCG Ser 297	Ala AAG Lys CCT Pro GCC Ala TTG Leu 296 GAT Asp 5	ACG Thr AAC ASN GAT ASP 294! CCT Pro 0	GGC Gly 2930 GGC Gly GCG Ala	ASP ACG Thr 2919 ATA Ile GCC Ala GGT Gly TAC Tyr	AAC ASN AAT ASN AAA Lys ACT Thr ATT 11e 2980 ACC Thr	912 960 1008

CTG Leu	ACC Thr	GAA Glu 3015	Thr	ACC Thr	TTC Phe	GAA Glu	GAA Glu 3020	Asp	GGT Gly	GTA Val	GCT Ala	ACG Thr 3025	Gly	AAC Asn	CAT His	12	200
GAG Glu	TAT Tyr 3030	Cys	GTG Val	GAA Glu	GTG Val	AAG Lys 3035	Tyr	ACA Thr	GCC Ala	GD y	GTA Val 3040	Ser	CCG Pro	AAA Lys	GAG Glu	12	248
	GTA Val					Asp					Asn					12	96
	ACC Thr				Val					Thr					Ala	13	44
CCT Pro	AAT Asn															13	50

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Pro Asn Pro Asn Pro Gly Thr Thr Leu Ser Glu Ser Phe Glu Asn

Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly Asn

Asn Trp Thr Thr Pro Pro Pro Gly Gly Thr Ser Phe Ala Gly His

Asn Ser Ala Ile Cys Ala Ser Ser Ala Ser Tyr Ile Asn Phe Glu Gly

Pro Gln Asn Pro Asp Asn Tyr Leu Val Thr Pro Glu Leu Ser Leu Pro

Asn Gly Gly Thr Leu Thr Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr

Ala Ser Glu His Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala

Ser Asn Phe Ala Asn Ala Leu Leu Glu Glu Val Leu Thr Ala Lys Thr

Val Val Thr Ala Pro Glu Ala Ile Arg Gly Thr Arg Val Gln Gly Thr

Trp Tyr Gln Lys Thr Val Gln Leu Pro Ala Gly Thr Lys Tyr Val Ala 160

Phe Arg His Phe Gly Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp Asp Val Glu Ile Lys Ala Asn Gly Lys Arg Ala Asp Phe Thr Glu Thr Phe Glu Ser Ser Thr His Gly Glu Ala Pro Ala Glu Trp Thr Thr Ile Asp Ala Asp Gly Asp Gly Gln Gly Trp Leu Cys Leu Ser Ser Gly Gln Leu Asp Trp Leu Thr Ala His Gly Gly Thr Asn Val Val Ala Ser Phe Ser Trp Asn Gly Met Ala Leu Asn Pro Asp Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr Lys Val Lys Tyr Tyr Tyr Ala Val Asn Asp Gly Phe Pro Gly Asp His Tyr Ala Val Met Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr Val Val Phe Glu Glu Thr Pro Asn Gly Ile Asn 295 Lys Gly Gly Ala Arg Phe Gly Leu Ser Thr Glu Ala Asp Gly Ala Lys Pro Gln Ser Val Trp Ile Glu Arg Thr Val Asp Leu Pro Ala Gly Thr 330 Lys Tyr Val Ala Phe Arg His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile 345 Leu Leu Asp Asp Ile Gln Phe Thr Met Gly Gly Ser Pro Thr Pro Thr Asp Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly 375 Leu Thr Glu Thr Thr Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Glu Cys Val Asn Val Thr Val Asp Pro Val Gln Phe Asn Pro Val Gln Asn 425 Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys Trp Asp Ala Pro Asn

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1368 base pairs
 - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 1..1368

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GGT Gly	ACC Thr	CCG Pro	AAT Asn	CCA Pro 455	AAT Asn	CCA Pro	AAT Asn	CCG Pro	AAT Asn 460	CCG Pro	GGA Gly	ACA Thr	ACA Thr	ACA Thr 465	CTT Leu	48
TCC Ser	GAA Glu	TCA Ser	TTC Phe 470	GAA Glu	AAT Asn	GGT Gly	ATT Ile	CCT Pro 475	GCC Ala	TCA Ser	TGG Trp	AAG Lys	ACG Thr 480	ATC Ile	GAT Asp	96
GCA Ala	GAC Asp	GGT Gly 485	GAC Asp	GGC Gly	AAC Asn	AAT Asn	TGG Trp 490	ACG Thr	ACG Thr	ACC Thr	CCT Pro	CCT Pro 495	CCC Pro	GGA Gly	GGC Gly	144
ACC Thr	TCT Ser 500	TTT Phe	GCA Ala	GGT Gly	CAC His	AAC Asn 505	AGT Ser	GCG Ala	ATC Ile	TGT Cys	GCC Ala 510	TCT Ser	TCG Ser	GCT Ala	TCT Ser	192
TAT Tyr 515	ATC Ile	AAC Asn	TTT Phe	GAA Glu	GGC Gly 520	CCT Pro	CAG Gln	AAC Asn	CCT Pro	GAT Asp 525	AAC Asn	TAT Tyr	CTG Leu	GTT Val	ACA Thr 530	240
CCG Pro	GAG Glu	CTA Leu	TCT Ser	CTT Leu 535	CCT Pro	AAC Asn	GGA Gly	GGA Gly	ACG Thr 540	CTT Leu	ACT Thr	TTC Phe	TGG Trp	GTA Val 545	TGT Cys	288
GCA Ala	CAA Gln	GAT Asp	GCC Ala 550	AAT Asn	TAT Tyr	GCA Ala	TCA Ser	GAG Glu 555	CAC His	TAT Tyr	GCC Ala	GTG Val	TAT Tyr 560	GCA Ala	TCT Ser	336
TCT Ser	ACG Thr	GGT Gly 565	AAC Asn	GAC Asp	GCT Ala	TCC Ser	AAC Asn 570	TTC Phe	GCC Ala	AAC Asn	GCT Ala	TTG Leu 575	TTG Leu	GAA Glu	GAA Glu	384
GTG Val	CTG Leu 580	ACG Thr	GCC Ala	AAG Lys	ACA Thr	GTT Val 585	GTT Val	ACG Thr	GCA Ala	CCT Pro	GAA Glu 590	GCC Ala	ATT Ile	CGT Arg	GGC Gly	432
ACT Thr 595	CGT Arg	GTT Val	CAG Gln	GGC Gly	ACC Thr 600	TGG Trp	TAT Tyr	CAA Gln	AAG Lys	ACG Thr 605	GTA Val	CAG Gln	TTG Leu	CCT Pro	GCG Ala 610	480
GGT Gly	ACT Thr	AAG Lys	TAT Tyr	GTT Val 615	GCT Ala	TTC Phe	CGT Arg	CAC His	TTC Phe 620	GGC Gly	TGT Cys	ACG Thr	GAC Asp	TTC Phe 625	TTC Phe	528
TGG Trp	ATC Ile	AAC Asn	CTT Leu 630	GAT Asp	GAT Asp	GTT Val	GAG Glu	ATC Ile 635	AAG Lys	GCC Ala	AAC Asn	GGC Gly	AAG Lys 640	CGC Arg	GCA Ala	576
GAC Asp	TTC Phe	ACG Thr 645	GAA Glu	ACG Thr	TTC Phe	GAG Glu	TCT Ser 650	TCT Ser	ACT Thr	CAT His	GGA Gly	GAG Glu 655	GCA Ala	CCG Pro	GCG Ala	624

						GCC Ala 665										672
CTG Leu 675	TCT Ser	TCC Ser	GGA Gly	CAA Gln	TTG Leu 680	GGC	TGG Trp	CTG Leu	ACA Thr	GCT Ala 685	CAT His	GGC Gly	GGC Gly	ACC Thr	AAC Asn 690	720
						TGG Trp										768
						GTT Val										816
						TTT Phe									ATC Ile	864
TCC Ser	AAG Lys 740	ACG Thr	GGC Gly	ACG Thr	AAC Asn	GCC Ala 745	GGA Gly	GAC Asp	TTC Phe	ACG Thr	GTT Val 750	GTT Val	TTC Phe	GAA Glu	GAA Glu	912
ACG Thr 755	CCT Pro	AAC Asn	GGA Gly	ATA Ile	AAT Asn 760	AAG Lys	GGC Gly	GGA Gly	GCA Ala	AGA Arg 765	TTC Phe	GGT Gly	CTT Leu	TCC Ser	ACG Thr 770	960
						CCT Pro										1008
GAT Asp	TTG Leu	CCT Pro	GCG Ala 790	Gly GGT	ACT Thr	AAG Lys	TAT Tyr	GTT Val 795	GCT Ala	TTC Phe	CGT Arg	CAC His	TAC Tyr 800	AAT Asn	TGC Cys	1056
TCG Ser	GAT Asp	TTG Leu 805	AAC Asn	TAC Tyr	ATT Ile	CTT Leu	TTG Leu 810	GAT Asp	GAT Asp	ATT Ile	CAG Gln	TTC Phe 815	ACC Thr	ATG Met	GGT Gly	1104
GGC GGC	AGC Ser 820	CCC Pro	ACC Thr	CCG Pro	ACC Thr	GAT Asp 825	TAT Tyr	ACC Thr	TAC Tyr	ACG Thr	GTG Val 830	TAT Tyr	CGT Arg	GAC Asp	GGT Gly	1152
ACG Thr 835	AAG Lys	ATC Ile	AAG Lys	GAA Glu	GGT Gly 840	CTG Leu	ACC Thr	GAA Glu	ACG Thr	ACC Thr 845	TTC Phe	GAA Glu	GAA Glu	GAC Asp	GGT Gly 850	1200
GTA Val	GCT Ala	ACG Thr	GGC Gly	AAC Asn 855	CAT His	GAG Glu	TAT Tyr	TGC Cys	GTG Val 860	GAA Glu	GTG Val	AAG Lys	TAC Tyr	ACA Thr 865	GCC Ala	1248
G1 y	GTA Val	TCT Ser	CCG Pro 870	AAA Lys	GAG Glu	TGT Cys	GTA Val	AAC Asn 875	GTA Val	ACT Thr	GTT Val	GAT Asp	CCT Pro 880	GTG Val	CAG Gln	1296
TTC Phe	AAT Asn	CCT Pro 885	GTA Val	CAG Gln	AAC Asn	CTG Leu	ACC Thr 890	GGT Gly	AGT Ser	GCA Ala	GTC Val	GGC Gly 895	CAG Gln	AAA Lys	GTA Val	1344
						CCT Pro 905										1368

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 456 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Gly Thr Pro Asn Pro Asn Pro Asn Pro Asn Pro Gly Thr Thr Leu

1 10 15

Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp 20 25 30

Ala Asp Gly Asp Gly Asn Asn Trp Thr Thr Thr Pro Pro Gly Gly 35 40 45

Thr Ser Phe Ala Gly His Asn Ser Ala Ile Cys Ala Ser Ser Ala Ser 50 55 60

Tyr Ile Asn Phe Glu Gly Pro Gln Asn Pro Asp Asn Tyr Leu Val Thr
65 70 75 80

Pro Glu Leu Ser Leu Pro Asn Gly Gly Thr Leu Thr Phe Trp Val Cys 85 90 95

Ala Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr Ala Val Tyr Ala Ser 100 105 110

Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala Asn Ala Leu Leu Glu Glu 115 120 125

Val Leu Thr Ala Lys Thr Val Val Thr Ala Pro Glu Ala Ile Arg Gly 130 135 140

Thr Arg Val Gln Gly Thr Trp Tyr Gln Lys Thr Val Gln Leu Pro Ala 145 150 155 160

Gly Thr Lys Tyr Val Ala Phe Arg His Phe Gly Cys Thr Asp Phe Phe 165 170 175

Trp Ile Asn Leu Asp Asp Val Glu Ile Lys Ala Asn Gly Lys Arg Ala 180 185 190

Asp Phe Thr Glu Thr Phe Glu Ser Ser Thr His Gly Glu Ala Pro Ala 195 200 205

Glu Trp Thr Thr Ile Asp Ala Asp Gly Asp Gly Gln Gly Trp Leu Cys 210 220

Leu Ser Ser Gly Gln Leu Gly Trp Leu Thr Ala His Gly Gly Thr Asn 225 230 235 240

Val Val Ala Ser Phe Ser Trp Asn Gly Met Ala Leu Asn Pro Asp Asn 245 250 255

Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr Lys Val Lys Tyr Tyr
260 265 270

WO 96/17936 PCT/US95/16108

108

Tyr	Ala	Val 275	Asn	Asp	Gly	Phe	Pro 280	Gly	Asp	His	Tyr	Ala 285	Val	Met	Ile
Ser	Lys 290	Thr	Gly	Thr	Asn	Ala 295	Gly	Asp	Phe	Thr	Val 300	Val	Phe	Glu	Glu
Thr 305	Pro	Asn	Gly	Ile	Asn 310	Lys	Gly	Gly	Ala	Arg 315	Phe	Gly	Leu	Ser	Thr 320
Glu	Ala	Asp	Gly	Ala 325	Lys	Pro	Gln	Ser	Val 330	Trp	Ile	Glu	Arg	Thr 335	Val
Asp	Leu	Pro	Ala 340	Gly	Thr	Lys	Tyr	Val 345	Ala	Phe	Arg	His	Tyr 350	Asn	Cys
Ser	Asp	Leu 355	Asn	Tyr	Ile	Leu	Leu 360	Asp	Asp	Ile	Gln	Phe 365	Thr	Met	Gly
Gly	Ser 370	Pro	Thr	Pro	Thr	Asp 375	Tyr	Thr	Tyr	Thr	Val 380	Tyr	Arg	Asp	Gly
Thr 385	Lys	Ile	Lys	Glu	Gly 390	Leu	Thr	Glu	Thr	Thr 395	Phe	Glu	Glu	Asp	Gly 400
Val	Ala	Thr	Gly	Asn 405	His	Glu	Tyr	Cys	Val 410	Glu	Val	Lys	Tyr	Thr 415	Ala
		Ser	420	_				425				_	430		
Phe	Asn	Pro 435	Val	Gln	Asn	Leu	Thr 440	Gly	Ser	Ala	Val	Gly 445	Gln	Lys	Val
Thr	Leu 450	Lys	Trp	Asp	Ala	Pro 455	Asn								
(2)	INF	ORMAT	rion	FOR	SEQ	ID N	10:19	:							
	(i)	(E	f) II	engti (PE : [rani	i: 13 nucl	868 b leic ESS:	ase acio sino	pai:	rs						

- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: 1..1368
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

480

GGT ACC CCG AAT CCA AAT CCG AAT CCG GGA ACA ACA ACA CTT 48 Gly Thr Pro Asn Pro Asn Pro Asn Pro Gly Thr Thr Leu 465 TCC GAA TCA TTC GAA AAT GGT ATT CCT GCC TCA TGG AAG ACG ATC GAT 96 Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp

GCF Ala	GAC Asp 490	GI	r GA(Y Asi	C GG(AA(Asi	AAT ASD 495	Trp	ACO Thi	ACC Thi	ACC Thr	Pro	Pro	CCC Pro	GGF Gly	GGC Gly	144
ACC Thr 505	Ser	TTT	r GCA E Ala	A GG7 A Gly	CAC His 510	: Asn	AGT Ser	GCG Ala	ATO	TGT Cys 515	Ala	TCT Ser	TCC Ser	GCT Ala	Ser 520	192
TAT Tyr	ATC	AAC Asr	TTT Phe	GAA Glu 525	Gly	CCT Pro	CAG Gln	AAC Asn	CCT Pro 530	Asp	AAC Asn	TAT	CTG Leu	GTT Val 535	ACA Thr	240
CCG Pro	GAG Glu	CTA Leu	TCT Ser 540	Leu	CCT Pro	AAC Asn	GGA Gly	GGA Gly 545	Thr	CTT Leu	ACT Thr	TTC	TGG Trp 550	Val	TGT	288
GCA Ala	CAA Gln	GAT Asp 555	Ala	AAT Asn	TAT Tyr	GCA Ala	TCA Ser 560	GAG Glu	CAC His	TAT Tyr	GCC Ala	GTG Val 565	TAT Tyr	GCA Ala	TCT Ser	336
TCT Ser	ACG Thr 570	GGT Gly	AAC Asn	GAC Asp	GCT Ala	TCC Ser 575	AAC Asn	TTC Phe	GCC Ala	AAC Asn	GCT Ala 580	TTG Leu	TTG Leu	GAA Glu	GAA Glu	384
GTG Val 585	CTG Leu	ACG Thr	GCC Ala	AAG Lys	ACA Thr 590	GTT Val	GTT Val	ACG Thr	GCA Ala	CCT Pro 595	GAA Glu	GCC Ala	ATT Ile	CGT Arg	GGC Gly 600	432
ACT Thr	CGT Arg	GTT Val	CAG Gln	GGC Gly 605	ACC Thr	TGG Trp	TAT Tyr	CAA Gln	AAG Lys 610	ACG Thr	GTA Val	CAG Gln	TTG Leu	CCT Pro 615	GCG Ala	480
етА	Thr	Lys	Tyr 620	Val	Ala	Phe	Arg	His 625	Phe	GGC Gly	Cys	Thr	Asp 630	Phe	Phe	528
TGG Trp	ATC Ile	AAC Asn 635	CTT Leu	GAT Asp	GAT Asp	GTT Val	GAG Glu 640	ATC Ile	AAG Lys	GCC Ala	AAC Asn	GGC Gly 645	AAG Lys	CGC Arg	GCA Ala	576
GAC Asp	TTC Phe 650	ACG Thr	GAA Glu	ACG Thr	TTC Phe	GAG Glu 655	TCT Ser	TCT Ser	ACT Thr	CAT His	GGA Gly 660	GAG Glu	GCA Ala	CCG Pro	GCG Ala	624
GAA Glu 665	TGG Trp	ACT Thr	ACT Thr	ATC Ile	GAT Asp 670	GCC Ala	GAT Asp	GGC Gly	GAT Asp	GGT Gly 675	CAG Gln	GGT Gly	TGG Trp	CTC Leu	TGT Cys 680	672
CTG Leu	TCT Ser	TCC Ser	GGA Gly	CAA Gln 685	TTG Leu	GGC Gly	TGG Trp	CTG Leu	ACA Thr 690	GCT Ala	CAT His	GGC Gly	GG y	ACC Thr 695	AAC Asn	720
TA al	GTA Val	GCC Ala	TCT Ser 700	TTC Phe	TCA Ser	TGG Trp	AAT Asn	GGA Gly 705	ATG Met	GCT Ala	TTG Leu	AAT Asn	CCT Pro 710	GAT A sp	AAC Asn	768
Yr	Leu	ATC Ile 715	TCA Ser	AAG Lys	GAT Asp	Val	ACA Thr 720	GGC Gly	GCA Ala	ACT Thr	AAG Lys	GTA Val 725	AAG Lys	TAC Tyr	TAC Tyr	816
Ϋ́	GCA Ala 730	GTC Val	AAC Asn	GAC Asp	GGT Gly	TTT Phe 735	CCC Pro	GGG Gly	GAT Asp	CAC His	TAT Tyr 740	GCG Ala	GTG Val	ATG Met	ATC Ile	864

TCC Ser 745	AAG Lys	ACG Thr	GGC Gly	ACG Thr	AAC Asn 750	GCC Ala	GGA Gly	GAC Asp	TTC Phe	ACG Thr 755	GTT Val	GTT Val	TTC Phe	GAA Glu	GAA Glu 760	912
ACG Thr	CCT Pro	AAC Asn	GGA Gly	ATA Ile 765	AAT Asn	AAG Lys	GGC Gly	GGA Gly	GCA Ala 770	AGA Arg	TTC Phe	GGT Gly	CTT Leu	TCC Ser 775	ACG Thr	960
GAA Glu	GCC Ala	GAT Asp	GGC Gly 780	GCC Ala	AAA Lys	CCT Pro	CAA Gln	AGT Ser 785	GTA Val	TGG Trp	ATC Ile	GAG Glu	CGT Arg 790	ACG Thr	GTA Val	1008
GAT Asp	TTG Leu	CCT Pro 795	GCG Ala	GGT Gly	ACT Thr	AAG Lys	TAT Tyr 800	GTT Val	GCT Ala	TTC Phe	CGA Arg	CAC His 805	TAC Tyr	AAT Asn	TGC Cys	1056
TCG Ser	GAT Asp 810	TTG Leu	AAC Asn	TAC Tyr	ATT Ile	CTT Leu 815	TTG Leu	GAT Asp	GAT Asp	ATT Ile	CAG Gln 820	TTC Phe	ACC Thr	ATG Met	GGT	1104
GGC Gly 825	Ser	CCC	ACC Thr	CCG Pro	ACC Thr 830	GAT Asp	TAT Tyr	ACC Thr	TAC Tyr	ACG Thr 835	var	TAT Tyr	CGT Arg	GAC Asp	GGT Gly 840	1152
ACG Thr	AAG Lys	ATC Ile	AAG Lys	GAA Glu 845	Gly	CTG Leu	ACC Thr	GAA Glu	ACG Thr 850	Thr	TTC Phe	GAA Glu	GAA Glu	GAC Asp 855	Gry	1200
GTA Val	GCT Ala	ACG Thr	GGC Gly 860	Asr	CAT His	GAG Glu	TAT	TGC Cys 865	Val	GAP Glu	GTG Val	AAG Lys	TAC Tyr 870	1111	GCC	1248
Gly	GT#	TCT Ser 875	Pro	Ly:	A GAG s Glu	TGT Cys	GTA Val 880	Asr	GTA Val	ACT L Thi	r GTT	GAT L Asp 885	PIC	GTG Val	Gln	1296
TTC Phe	AA: As: 890	n Pro	r GTA	A CAG	G AAC n Asr	CTC Lev 895	1 Th:	c GGT c Gly	r AG1 / Sei	r GCI	A GTG a Val 90	T GT?	CAG Glr	AAI Lys	A GTA S Val	1344
ACC Th: 90	r Le	r AA u Ly:	s Tr	G GA'	r GCI p Ala 91	a Pro	AA 1 AS:	n n								1368

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 456 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Gly Thr Pro Asn Pro Asn Pro Asn Pro Asn Pro Gly Thr Thr Thr Leu
1 5 10 15

Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp 20 25 30

Ala	Asp	Gly 35	Asp	Gly	Asn	Asn	Trp 40	Thr	Thr	Thr	Pro	Pro 45	Pro	Gly	Gl
Thr	Ser 50	Phe	Ala	Gly	His	Asn 55	Ser	Ala	Ile	Cys	Ala 60	Ser	Ser	Ala	Se
Tyr 65	Ile	Asn	Phe	Glu	Gly 70	Pro	Gln	Asn	Pro	Asp 75	Asn	Tyr	Leu	Val	Th:
Pro	Glu	Leu	Ser	Leu 85	Pro	Asn	Gly	Gly	Thr 90	Leu	Thr	Phe	Trp	Val 95	Cys
Ala	Gln	Ąsp	Ala 100	Asn	Tyr	Ala	Ser	Glu 105	His	Tyr	Ala	Val	Tyr 110	Ala	Ser
Ser	Thr	Gly 115	Asn	Asp	Ala	Ser	Asn 120	Phe	Ala	Asn	Ala	Leu 125	Leu	Glu	Glu
Val	Leu 130	Thr	Ala	Lys	Thr	Val 135	Val	Thr	Ala	Pro	Glu 140	Ala	Ile	Arg	Gly
Thr 145	Arg	Val	Gln	Gly	Thr 150	Trp	Tyr	Gln	Lys	Thr 155	Val	Gln	Leu	Pro	Ala 160
Gly	Thr	Lys	Tyr	Val 165	Ala	Phe	Arg	His	Phe 170	Gly	Cys	Thr	Asp	Phe 175	Phe
Trp	Ile	Asn	Leu 180	Asp	Asp	Val	Glu	11e 185	Lys	Ala	Asn	Gly	Lys 190	Arg	Ala
Asp	Phe	Thr 195	Glu	Thr	Phe	Glu	Ser 200	Ser	Thr	His	Gly	Glu 205	Ala	Pro	Ala
	210					215					220	_		Leu	_
225					230					235		_		Thr	240
Val	Val	Ala	Ser	Phe 245	Ser	Trp	Asn	Gly	Met 250	Ala	Leu	Asn	Pro	Asp 255	Asn
Tyr	Leu	Ile	Ser 260	Lys	Asp	Val	Thr	Gly 265	Ala	Thr	Lys	Val	Lys 270	Tyr	Туг
Tyr	Ala	Val 275	Asn	Asp	Gly	.Phe	Pro 280	Gly	Asp	His	Tyr	Ala 285	Val	Met	Ile
Ser	Lys 290	Thr	Gly	Thr	Asn	Ala 295	Gly	Asp	Phe	Thr	Val 300	Val	Phe	Glu	Glu
Thr 305	Pro	Asn	Gly	Ile	Asn 310	Lys	Gly	Gly	Ala	Arg 315	Phe	Gly	Leu	Ser	Thr 320
Glu	Ala	Asp	Gly	Ala 325	Lys	Pro	Gln	Ser	Val 330	Trp	Ile	Glu	Arg	Thr 335	Val
Asp	Leu	Pro	Ala 340	Gly	Thr	Lys	Tyr	Val 345	Ala	Phe	Arg	His	Tyr 350	Asn	Cys
Ser	Asp	Leu 355	Asn	Tyr	Ile	Leu	Leu 360	Asp	Asp	Ile	Gln	Phe 365	Thr	Met	Gly

Gly	Ser 370	Pro	Thr	Pro	Thr	Asp 375	Tyr	Thr	Tyr	Thr	Val 380	Tyr	Arg	Asp	Gly	
Thr 385	Lys	Ile	Lys	Glu	390	Leu	Thr	Glu	Thr	Thr 395	Phe	Glu	Glu	Asp	Gly 400	
Val	Ala	Thr	Gly	Asn 405	His	Glu	Tyr	Cys	Val 410	Glu	Val	Lys	Tyr	Thr 415	Ala	
Gly	Val	Ser	Pro 420	Lys	Glu	Cys	Val	Asn 425	Val	Thr	Val	Asp	Pro 430	Val	Gln	
Phe		Pro 435	Val	Gln	Asn	Leu	Thr 440	Gly	Ser	Ala	Val	Gly 445	Gln	Lys	Val	
Thr	Leu 450	Lys	Trp	Asp	Ala	Pro 455	Asn									
(2)	INFO	RMA1	rion	FOR	SEQ	ID 1	10:21	.:								
	(i)	() ()	A) LI 3) Ti 5) Si	ENGTI YPE:	nuc. DEDNI	318 1 leic ESS:	STIC ase acic since ar	pai: i	rs							
					YPE:	DNA	(ge	nomi	c)							
		() ()	B) L	ame/i ocati	ION:	1										
			_						ID NO							46
GGT Gly	ACC Thr	CCG Pro	AAT Asn 460	Pro	AAT Asn	Pro	AAT Asn	Pro 465	Asn	Pro	GGA	Thr	Thr 470	ACA Thr	Leu	48
TCC Ser	GAA Glu	TCA Ser 475	Phe	GAA Glu	AAT Asn	GGT Gly	ATT Ile 480	Pro	GCC Ala	TCA Ser	TGG Trp	AAG Lys 485	Thr	ATC Ile	GAT Asp	96
Ala	GAC Asp 490	Gly	Asp	Glv	Asn	Asn	Trp	Thr	ACG Thr	Thr	Pro	Pro	CCC Pro	GGA Gly	G1Y GGC	144
ACC Thr 505	Ser	TTT Phe	GCA Ala	GGT Gly	CAC His 510	Asn	AGT Ser	GCG	ATC Ile	TGT Cys 515	Val	TCT Ser	TCG Ser	GCT Ala	TCT Ser 520	192
TAT Ty:	ATC	AAC Asn	TTT Phe	GAA Glu 525	Gly	CCT	CAG	AAC Asn	CCT Pro 530	Asp	AAC Asn	TAT	CTG Leu	GTT Val 535	ACA Thr	240
Pro	GAG Glu	CTA Leu	TCT Ser 540	Leu	CCI Pro	GGC Gly	GGA Gly	GGP Gly 545	Thr	CTT	ACT	TTC Phe	TGG Trp 550	Val	TGT Cys	288

TCT Ser	ACG Thr 570	GGT Gly	AAC Asn	GAC Asp	GCT Ala	TCC Ser 575	AAC Asn	TTC Phe	GCC Ala	AAC Asn	GCT Ala 580	TTG Leu	TTG Leu	GAA Glu	GAA Glu	384
GTG Val 585	CTG Leu	ACG Thr	GCC Ala	AAG Lys	ACA Thr 590	GTT Val	GTT Val	ACG Thr	GCA Ala	CCT Pro 595	GAA Glu	GCC Ala	ATT Ile	CGT Arg	GGC Gly 600	432
ACT Thr	CGT Arg	GTT Val	CAG Gln	GGC Gly 605	ACC Thr	TGG Trp	TAT Tyr	CAA Gln	AAG Lys 610	ACG Thr	GTA Val	CAG Gln	TTG Leu	CCT Pro 615	GCG Ala	480
GGT Gly	ACT Thr	AAG Lys	TAT Tyr 620	GTT Val	GCC	TTC Phe	CGT Arg	CAC His 625	TTC Phe	GGC Gly	TGT Cys	ACG Thr	GAC Asp 630	TTC Phe	TTC Phe	528
TGG Trp	ATC Ile	AAC Asn 635	CTT Leu	GAT Asp	GAA Glu	GTT Val	GAG Glu 640	ATC Ile	AAG Lys	GCC Ala	AAC Asn	GGC Gly 645	AAG Lys	CGC Arg	GCA Ala	576
GAC Asp	TTC Phe 650	ACG Thr	GAA Glu	ACG Thr	TTC Phe	GAG Glu 655	TCT Ser	TCT Ser	ACT Thr	CAT His	GGA Gly 660	GAG Glu	GCA Ala	CCG Pro	GCG Ala	624
GAA Glu 665	TGG Trp	ACT Thr	ACT Thr	ATC Ile	GAT Asp 670	GCC Ala	GAT Asp	GGC	GAT Asp	GGT Gly 675	CAG Gln	GGT Gly	TGG Trp	CTC Leu	TGT Cys 680	672
CTG Leu	TCT Ser	TCC Ser	GGA Gly	CAA Gln 685	TTG Leu	GAC Asp	TGG Trp	CTG Leu	ACA Thr 690	GCT Ala	CAT His	GGC	GGC GLy	ACC Thr 695	AAC Asn	720
GTA Val	GTA Val	GCC Ala	TCT Ser 700	TTC Phe	TCA Ser	TGG Trp	AAT Asn	GGA Gly 705	ATG Met	GCT Ala	TTG Leu	AAT Asn	CCT Pro 710	GAT Asp	AAC Asn	768
TAT Tyr	CTC Leu	ATC Ile 715	Ser	AAG Lys	GAT Asp	GTT Val	ACA Thr 720	Gly	GCA Ala	ACT	AAG Lys	GTA Val 725	AAG Lys	TAC Tyr	TAC	816
TAT	GCA Ala 730	Val	AAC Asn	GAC Asp	GGT Gly	TTT Phe 735	Pro	GGG Gly	GAT Asp	CAC His	TAT Tyr 740	Ala	GTG Val	ATG Met	ATC Ile	864
TCC Ser 745	Lys	ACG Thr	GGC Gly	ACG Thr	AAC Asn 750	GCC Ala	GGA Gly	GAC Asp	TTC Phe	ACG Thr 755	GTT Val	GTT Val	TTC Phe	GAA Glu	GAA Glu 760	912
ACC Thi	CCT Pro	AAC Asn	GGA Gly	ATA Ile 765	Asn	AAG Lys	GGC G1 y	GGA Gly	GCA Ala 770	Arg	TTC Phe	GGT Gly	CTT Leu	TCC Ser 775		960
GAA Glu	GCC Ala	GAT Asp	GGC Gly 780	Ala	AAA Lys	CCT Pro	CAA Gln	AGT Ser 785	Val	TGG Trp	ATC Ile	GAG Glu	CGT Arg 790	Thr	GTA Val	1008
			Ala					Val					Tyr		TGC Cys	1056
TC(Se:	GAT Asp 810	Lev	AAC Asn	TAC	ATT	CTT Leu 815	Leu	GAT Asp	GAT Asp	ATT Ile	Gln 820	Phe	ACC	ATG Met	GGT Gly	1104

GGC Gly 825	AGC Ser	CCC Pro	ACC Thr	CCG Pro	ACC Thr 830	GAT Asp	TAT Tyr	ACC Thr	TAC Tyr	ACG Thr 835	GTG Val	TAT Tyr	CGT Arg	GAC Asp	GGT Gly 840	1152
ACG Thr	AAG Lys	ATC Ile	AAG Lys	GAA Glu 845	GGT Gly	CTG Leu	ACC Thr	GAA Glu	ACG Thr 850	ACC Thr	TTC Phe	GAA Glu	GAA Glu	GAT Asp 855	GGT Gly	1200
GTA Val	GCT Ala	ACG Thr	GGC Gly 860	AAT Asn	CAT His	GAG Glu	TAT Tyr	TGC Cys 865	GTG Val	GAA Glu	GTG Val	AAG Lys	TAC Tyr 870	ACA Thr	GCC Ala	1248
GGC Gly	GTA Val	TCT Ser 875	CCG Pro	AAG Lys	GTG Val	TGT Cys	GTA Val 880	AAC Asn	GTA Val	ACT Thr	ATT Ile	AAT Asn 885	CCG Pro	ACT Thr	CAG Gln	1296
			GTA Val					•								1318

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 439 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Gly Thr Pro Asn Pro Asn Pro Asn Pro Gly Thr Thr Thr Leu
1 10 15

Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp 20 25 30

Ala Asp Gly Asp Gly Asn Asn Trp Thr Thr Thr Pro Pro Pro Gly Gly 35 40 45

Thr Ser Phe Ala Gly His Asn Ser Ala Ile Cys Val Ser Ser Ala Ser 50 55 60

Tyr Ile Asn Phe Glu Gly Pro Gln Asn Pro Asp Asn Tyr Leu Val Thr
65 70 75 80

Pro Glu Leu Ser Leu Pro Gly Gly Gly Thr Leu Thr Phe Trp Val Cys 85 90 95

Ala Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr Ala Val Tyr Ala Ser 100 105 110

Ser Thr Gly Asn Asp Ala Ser Asn Phe Ala Asn Ala Leu Leu Glu Glu 115 120 125

Val Leu Thr Ala Lys Thr Val Val Thr Ala Pro Glu Ala Ile Arg Gly 130 135 140

Thr Arg Val Gln Gly Thr Trp Tyr Gln Lys Thr Val Gln Leu Pro Ala 145 150 155 160 Gly Thr Lys Tyr Val Ala Phe Arg His Phe Gly Cys Thr Asp Phe Phe Trp Ile Asn Leu Asp Glu Val Glu Ile Lys Ala Asn Gly Lys Arg Ala Asp Phe Thr Glu Thr Phe Glu Ser Ser Thr His Gly Glu Ala Pro Ala 200 195 Glu Trp Thr Thr Ile Asp Ala Asp Gly Asp Gly Gln Gly Trp Leu Cys Leu Ser Ser Gly Gln Leu Asp Trp Leu Thr Ala His Gly Gly Thr Asn Val Val Ala Ser Phe Ser Trp Asn Gly Met Ala Leu Asn Pro Asp Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr Lys Val Lys Tyr Tyr Tyr Ala Val Asn Asp Gly Phe Pro Gly Asp His Tyr Ala Val Met Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr Val Val Phe Glu Glu Thr Pro Asn Gly Ile Asn Lys Gly Gly Ala Arg Phe Gly Leu Ser Thr Glu Ala Asp Gly Ala Lys Pro Gln Ser Val Trp Ile Glu Arg Thr Val Asp Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg His Tyr Asn Cys Ser Asp Leu Asn Tyr Ile Leu Leu Asp Asp Ile Gln Phe Thr Met Gly Gly Ser Pro Thr Pro Thr Asp Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu Thr Glu Thr Thr Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala 410 Gly Val Ser Pro Lys Val Cys Val Asn Val Thr Ile Asn Pro Thr Gln 425 420 Phe Asn Pro Val Gln Asn Leu

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

WO 96/17936 PCT/US95/16108.

116

	(11)	MOLECULE TYPE: DNA (genomic)	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:23:	
GGCZ	AAACC	AA AAAGATTC	18
/2\	TNEO	DWINTON FOR CEO TO NO. 24.	
(2)		RMATION FOR SEQ ID NO:24:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:24:	
TTC	ITCCA	AC GACTACAC	18
(2)	INFO	RMATION FOR SEQ ID NO:25:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 6241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
w.	(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 6961787 (D) OTHER INFORMATION: /product= "hagD protease"	
	(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 17905866 (D) OTHER INFORMATION: /product= "hagD hemagglutinin"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:25:	
GGAI	CCTA	CG CCCGATACCC ATACTCGAAG CCTTTGCTCA GTACCATCCT GCAGAAGTTC	60
ACTO	CTTTC	GC ATATAGTGAC CCTCTTTTCT CTCAGCATAA TGGTACCTAT CATATCAGTA	120
AGGG	GCATA	AT TGTCTTTTCG AACAATGTAC AGCCCGAGAA CTCTTTACTT CCACATCACA	180
cccc	CCGAC	TC CTTAGTCAAG GATCTTTTTT CCCCTTTCCC CTCCGCTCTC TTCCTCATGC	240
TGGF	ACTGA	CT TAACCTTGGT CTGCTCTACT TTTCGGTTGT AAATACATGC AATACAATAA	300
CTTI	TAAGT	GT TGTTAGACAA CACTTTTACA AGACTCTGAC TTTTAATGAG GTGGAGCATG	360
AACC	TTTT	CC TCTTTCATCT TCTCATTCAG ATTATAGTCA ATATTTTAGT AAAAGGCTAA	420
TTG	ACAGC	CT TTTATAAGGG TTAATCCCTT GTCGCTTATA TTGAAAACAT GTTCTTTATA	480
ATC	GATA	CT CTTCTTAAAT CGAATTTTTT CTCTAAATTG CGCCGCAACA AAACTCCTTG	540

BNSDOCID: <WO_____9617936A2_I_>

AGA	AAAG	TAC	CAAI	AGA	AT A	IGAA G	GTAG	C AI	TTTG	CCTT	TAF	VATTO	CTT	TTCI	TTTCTT	600
GGA	TTGT	TCT	TGAA	ATG	AT C	TTAT	TTGT	G GA	TCTT	TTTT	GTI	TTTT	TAA	ccce	GCCGTG	660
GTT	CTCT	GAA	TCAC	GACC	A TA	laatt	GTTT	T AA					TTA Leu			713
CTG Leu	ATC	GCG	GCG Ala	Ser 450	Leu	TTG Leu	GGA Gly	GTT Val	GGT Gly 455	CTT Leu	TAC Tyr	GCC Ala	CAA Gln	AGC Ser 460	Ala	761
AAG Lys	ATT	AAG Lys	Leu 465	Asp	GCT Ala	CCG Pro	ACT Thr	ACT Thr 470	Arg	ACG Thr	ACA Thr	TGT Cys	ACG Thr 475	AAC Asn	AAT Asn	809
AGC Ser	TTC Phe	AAG Lys 480	Gln	TTC Phe	GAT Asp	GCA Ala	AGC Ser 485	TTT	TCG Ser	TTC Phe	AAT Asn	GAA Glu 490	Val	GAG Glu	CTG Leu	857
ACA Thr	AAG Lys 495	GTG Val	GAG Glu	ACC Thr	AAA Lys	GGT Gly 500	GGT Gly	ACT Thr	TTC Phe	GCC Ala	TCA Ser 505	GTG Val	TCA Ser	ATT Ile	CCG Pro	905
GGT Gly 510	GCA Ala	TTC Phe	CCG Pro	ACC Thr	GGT Gly 515	GAG Glu	GTT Val	GGT Gly	TCT Ser	CCC Pro 520	GAA Glu	GTG Val	CCA Pro	GCA Ala	GTT Val 525	953
AGG Arg	AAG Lys	TTG Leu	ATT Ile	GCT Ala 530	GTG Val	CCT	GTC Val	GGA Gly	GCC Ala 535	ACA Thr	CCT Pro	GTT Val	GTT Val	CGC Arg 540	GTG Val	1001
AAA Lys	AGT Ser	TTT Phe	ACC Thr 545	GAG Glu	CAA Gln	GTT Val	TAC Tyr	TCT Ser 550	CTG Leu	AAC Asn	CAA Gln	TAC Tyr	GGT Gly 555	TCC Ser	GAA Glu	1049
AAA Lys	CTC Leu	ATG Met 560	CCA Pro	CAT His	CAA Gln	CCC Pro	TCT Ser 565	ATG Met	AGC Ser	AAG Lys	AGT Ser	GAT Asp 570	GAT Asp	CCC Pro	GAA Glu	1097
AAG Lys	GTT Val 575	CCC Pro	TTC Phe	GTT Val	TAC Tyr	AAT Asn 580	GCT Ala	GCT Ala	GCT Ala	TAT Tyr	GCA Ala 585	CGC A rg	AAA Lys	GGT Gly	TTT Phe	1145
GTC Val 590	GGA Gly	CAA Gln	GAA Glu	CTG Leu	ACC Thr 595	CAA Gln	GTA Val	GAA Glu	ATG Met	TTG Leu 600	GGG Gly	ACA Thr	ATG Met	CGT Arg	GGT Gly 605	1193
GTT Val	CGC Arg	ATT Ile	GCA Ala	GCT Ala 610	CTT Leu	ACC Thr	ATT Ile	AAT Asn	CCT Pro 615	GTT Val	CAG Gln	TAT Tyr	GAT Asp	GTG Val 620	GTT Val	1241
GCA Ala	AAC Asn	CAA Gln	TTG Leu 625	AAG Lys	GTT Val	AGA Arg	AAC Asn	AAC Asn 630	ATC Ile	GAA Glu	ATT Ile	GAA Glu	GTA Val 635	AGC Ser	TTT Phe	1289
CAA Gln	GGA Gly	GCT Ala 640	GAT Asp	GAA Glu	GTA Val	GCT Ala	ACA Thr 645	CAA Gln	CGT Arg	TTG Leu	TAT Tyr	GAT Asp 650	GCT Ala	TCT Ser	TTT Phe	1337
AGC Ser	CCT Pro 655	TAT Tyr	TTC Phe	GAA Glu	ACA Thr	GCT Ala 660	TAT Tyr	AAA Lys	CAG Gln	CTC Leu	TTC Phe 665	AAT Asn	AGA Arg	GAT Asp	GTT Val	1385

TAT Tyr 670	ACA Thr	GAT Asp	CAT His	GGC Gly	GAC Asp 675	TTG Leu	TAT Tyr	AAT Asn	ACG Thr	CCG Pro 680	GTT Val	CGT Arg	ATG Met	CTT Leu	GTT Val 685	1433
GTT Val	GCA Ala	GGT Gly	GCA Ala	AAA Lys 690	TTC Phe	AAA Lys	GAA Glu	GCT Ala	CTC Leu 695	AAG Lys	CCT Pro	TGG Trp	CTC Leu	ACT Thr 700	TGG Trp	1481
AAG Lys	GCT Ala	CAA Gln	AAG Lys 705	GGC Gly	TTC Phe	TAT Tyr	CTG Leu	GAT Asp 710	GTG Val	CAT His	TAC Tyr	ACA Thr	GAC Asp 715	GAA Glu	GCT Ala	1529
GAA Glu	GTA Val	GGA Gly 720	ACG Thr	ACA Thr	AAC Asn	GCC Ala	TCT Ser 725	ATC Ile	AAG Lys	GCA Ala	TTT Phe	ATT Ile 730	CAC His	AAG Lys	AAA Lys	1577
TAC	AAT Asn 735	GAT Asp	GGA Gly	TTG Leu	GCA Ala	GCT Ala 740	AGT Ser	GCT Ala	GCT Ala	CCG Pro	GTC Val 745	TTC Phe	TTG Leu	GCT Ala	TTG Leu	1625
GTT Val 750	GGT Gly	GAC Asp	ACT Thr	GAC Asp	GTT Val 755	ATT Ile	AGC Ser	GGA Gly	GAA Glu	AAA Lys 760	GGA Gly	AAG Lys	AAA Lys	ACA Thr	AAA Lys 765	1673
AAA Lys	GTT Val	ACC Thr	GAC Asp	TTG Leu 770	TAT Tyr	TAC Tyr	AGT Ser	GCA Ala	GTC Val 775	GAT Asp	Gly GGC	GAC Asp	TAT Tyr	TTC Phe 780	CCT Pro	1721
GAA Glu	ATG Met	TAT Tyr	ACT Thr 785	TTC Phe	CGT Arg	ATG Met	TCT Ser	GCT Ala 790	TCT Ser	TCC Ser	CCA Pro	GAA Glu	GAA Glu 795	CTG Leu	ACG Thr	1769
			Asp				ATG ' Met '	TAT (GAA A	AAG (Lys)	SCT 1 Ala 1 5	ACC I	ATG (CCG (Pro)	SAT Asp	1816
Asn AAG	Ile AGC Ser	Ile 800 TAT	Asp TTG	Lys	Tyr	GCC	Met ' 1 CTC	Tyr (Glu 1 ATT	Lys 1	Ala 1 5 GGT	Thr I	Met :	TCC Ser	Asp TAC	1816 1864
ASN AAG Lys 10	Ile AGC Ser	Ile 800 TAT Tyr	Asp TTG Leu	Lys GAA Glu ATA	AAG Lys 15	GCC Ala	Met ' 1 CTC Leu CAA	TYT TTG Leu	Glu I ATT Ile	GCC Ala 20	GGT GLY	GCT Ala GCT	GAC Asp GTA	Pro J TCC	TAC Tyr 25	
Asn AAG Lys 10 TGG Trp	AGC Ser AAT Asn	Ile 800 TAT Tyr CCT Pro	TTG Leu AAG Lys	GAA Glu ATA Ile 30 GAT	AAG Lys 15 GGC Gly	GCC Ala CAG Gln	Met ' 1 CTC Leu CAA Gln TAT	TYT TTG Leu ACC Thr	ATT Ile ATC Ile 35 GAT Asp	GCC Ala 20 AAA Lys	GGT Gly TAT Tyr	GCT Ala GCT Ala	GAC Asp GTA Val	TCC Ser CAG Gln 40 CCT Pro	TAC Tyr 25 TAT Tyr	1864
ASN AAG Lys 10 TGG Trp TAC Tyr	AGC Ser AAT Asn TAC Tyr	Ile 800 TAT Tyr CCT Pro AAT Asn	TTG Leu AAG Lys CAA Gln 45	GAA Glu ATA Ile 30 GAT Asp	AAG Lys 15 GGC Gly CAT His	GCC Ala CAG Gln GGC Gly	TAT Tyr	TTG Leu ACC Thr ACA Thr 50	ATT Ile ATC Ile 35 GAT Asp	GCC Ala 20 AAA Lys GTG Val	GGT Gly TAT Tyr TAC Tyr	GCT Ala GCT Ala AGT Ser	GAC ASP GTA Val TAC Tyr 55 GTC Val	TCC Ser CAG Gln 40 CCT Pro	TAC Tyr 25 TAT Tyr AAA Lys	1864
Asn AAG Lys 10 TGG Trp TAC Tyr GCT Ala	AGC Ser AAT Asn TAC Tyr CCT Pro	TAT TYT CCT Pro AAT TYT TTT TTT TTT TTT TTT TTT TTT TTT	ASP TTG Leu AAG Lys CAA Gln 45 ACA Thr	GAA Glu ATA Ile 30 GAT Asp	AAG Lys 15 GGC Gly CAT His TGC Cys	GCC Ala CAG Gln GGC Gly TAT Tyr	CTC Leu CAA Gln TAT Tyr AGT Ser 65	TTG Leu ACC Thr ACA Thr 50 CAC	ATT Ile ATC Ile 35 GAT Asp	GCC Ala 20 AAA Lys GTG Val AAT ASn	GGT GIY TAT TYP TAC TYP ACC THP	GCT Ala GCT Ala AGT Ser GGT Gly 70 GCA Ala	GAC ASP GTA Val TAC Tyr 55 GTC Val	TCC Ser CAG Gln 40 CCT Pro	TAC Tyr 25 TAT Tyr AAA Lys	1864 1912 1960
Asn AAG Lys 10 TGG Trp TAC Tyr GCT Ala	AGC Ser AAT Asn TAC Tyr CCT Pro	TAT TYT CCT Pro AAT ASD TAT TYT CTAT TYT CCT CTAT CTAT CTAT	ASP TTG Leu AAG Lys CAA Gln 45 ACA Thr	GAA Glu ATA Ile 30 GAT Asp GGC Gly	AAG Lys 15 GGC Gly CAT His Cys	GCC Ala CAG Gln GGC Gly TAT Tyr GGA Gly 80	CTC Leu CAA Gln TAT Tyr AGT Ser Ser GCA	TTG Leu ACC Thr ACA Thr 50 CAC His	ATT Ile ATC Ile 35 GAT Asp TTG Leu ACA	GCC Alaa 20 AAA Lys GTG Val AAT ASn TCA	GGT GGT TYR TAC TYR ACC Thr TGG TRP 85	GCT Ala GCT Ala AGT Ser GGT G1y 70 GCA Ala	GAC Asp GTA Val TAC Tyr 55 GTC Val GAT Asp	TCC Ser CAG Gln 40 CCT Pro GGC Gly	TAC Tyr 25 TAT Tyr AAA Lys TTT Phe	1864 1912 1960 2008

CCT Pro	TGC Cys	TTI Phe	GGA Gly 125	Glu	GTA Val	ATG Met	ACT	CGT Arc 130	, Val	AAG Lys	GAG Glu	AAA Lys	GGT Gly 135	Ala	TAT	220	00
GCC Ala	TAT	ATC Ile 140	GIY	TCA Ser	TCT Ser	CCG	AAT Asn 145	Ser	TAT	Trp	GGC Gly	GAG Glu 150	Asp	TAC	TAT	224	18
Tcp	AGT Ser 155	Val	Gly	GCT	AAT Asn	GCC Ala 160	GTA Val	TTI Phe	GGT	GTT Val	CAG Gln 165	Pro	ACT Thr	TTT Phe	GAA Glu	229	6
GGT Gly 170	Thr	TCT	ATG Met	GGT Gly	TCT Ser 175	Tyr	GAT Asp	GCT Ala	ACA Thr	TTC Phe 180	Leu	GAA Glu	GAT Asp	TCG Ser	TAC Tyr 185	234	4
AAC Asn	ACA Thr	GTG Val	AAT Asn	TCT Ser 190	Ile	ATG Met	TGG Trp	GCA Ala	GGT Gly 195	AAT Asn	CTT Leu	GCC Ala	GCT Ala	ACT Thr 200	CAT His	239	2
GCT Ala	GGA Gly	AAT Asn	ATC Ile 205	GGC Gly	AAT Asn	ATT Ile	ACC Thr	CAT His 210	ATC Ile	GGT Gly	GCT Ala	CAT His	TAC Tyr 215	TAT Tyr	TGG Trp	244	0
GAA Glu	GCT Ala	TAT Tyr 220	CAT His	GTC Val	CTT Leu	GGC Gly	GAT Asp 225	GGT Gly	TCG Ser	GTT Val	ATG Met	CCT Pro 230	TAT Tyr	CGT Arg	GCA Ala	248	8
ATG Met	CCT Pro 235	AAG Lys	ACC Thr	AAT Asn	ACT Thr	TAT Tyr 240	ACG Thr	CTT Leu	CCT Pro	GCT Ala	TCT Ser 245	CTG Leu	CCT Pro	CAG Gln	AAT Asn	253	6
CAG Gln 250	GCT Ala	TCT	TAT Tyr	AGC Ser	ATT Ile 255	CAG Gln	GCT Ala	TCT Ser	GCC Ala	GGT Gly 260	TCT Ser	TAC Tyr	GTA Val	GCT Ala	ATT Ile 265	258	4
TCT Ser	AAA Lys	GAT Asp	GGA Gly	GTT Val 270	TTG Leu	TAT Tyr	GGA Gly	ACA Thr	GGT Gly 275	GTT Val	GCT Ala	AAT Asn	GCC Ala	AGC Ser 280	GGT Gly	263:	2
GTT Val	GCG Ala	ACT Thr	GTG Val 285	AAT Asn	ATG Met	ACT Thr	AAG Lys	CAG Gln 290	ATT Ile	ACG Thr	GAA Glu	AAT Asn	GGT Gly 295	AAT Asn	TAT Tyr	2680	D
GAT Asp	GTA Val	GTT Val 300	ATC Ile	ACT Thr	CGC Arg	TCT Ser	AAT Asn 305	TAT Tyr	CTT Leu	CCT Pro	GTG Val	ATC Ile 310	AAG Lys	CAA Gln	ATT Ile	2728	8
CAG Gln	GCA Ala 315	GGA Gly	GAG Glu	CCT Pro	AGC Ser	CCC Pro 320	TAC Tyr	CAG Gln	CCT Pro	GTT Val	TCC Ser 325	AAC Asn	TTG Leu	ACT Thr	GCT Ala	2776	5
ACA Thr 330	ACG Thr	CAG Gln	GGT Gly	CAG Gln	AAA Lys 335	GTA Val	ACG Thr	CTC Leu	AAG Lys	TGG Trp 340	GAT Asp	GCC Ala	CCG Pro	AGC Ser	GCA Ala 345	2824	1
AAG Lys	AAG Lys	GCA Ala	GAA Glu	GCT Ala 350	TCC Ser	CGT Arg	GAA Glu	GTA Val	AAA Lys 355	CGG Arg	ATC Ile	GGA Gly	GAC Asp	GGT Gly 360	CTT Leu	2872	2
TTC Phe	GTT Val	ACG Thr	ATC Ile 365	GAA Glu	CCT Pro	GCA . Ala .	Asn .	GAT Asp 370	GTA Val	CGT Arg	GCC Ala	Asn	GAA Glu 375	GCC Ala	AAG Lys	2920)

GTT Val	GTG Val	CTC Leu 380	GCA Ala	GCA Ala	GAC Asp	AAC Asn	GTA Val 385	TGG Trp	GGA Gly	GAC Asp	AAT Asn	ACG Thr 390	GGT Gly	TAC Tyr	CAG Gln	2968
TTC Phe	TTG Leu 395	TTG Leu	GAT Asp	GCC Ala	GAT Asp	CAC His 400	AAT Asn	ACA Thr	TTC Phe	GGA Gly	AGT Ser 405	GTC Val	ATT Ile	CCG Pro	GCA Ala	3016
ACC Thr 410	GGT Gly	CCT Pro	CTC Leu	TTT Phe	ACC Thr 415	GGA Gly	ACA Thr	GCT Ala	TCT Ser	TCC Ser 420	AAT Asn	CTT Leu	TAC Tyr	AGT Ser	GCG Ala 425	3064
AAC Asn	TTC Phe	GAG Glu	TAT Tyr	TTG Leu 430	ATC Ile	CCG Pro	GCC Ala	AAT Asn	GCC Ala 435	GAT Asp	CCT Pro	GTT Val	GTT Val	ACT Thr 440	ACA Thr	3112
CAG Gln	AAT Asn	ATT Ile	ATC Ile 445	GTT Val	ACA Thr	GGA Gly	CAG Gln	GGT Gly 450	GAA Glu	GTT Val	GTA Val	ATC Ile	CCC Pro 455	GGT Gly	GGT Gly	3160
GTT Val	TAC Tyr	GAC Asp 460	TAT Tyr	TGC Cys	ATT Ile	ACG Thr	AAC Asn 465	CCG Pro	GAA Glu	CCT Pro	GCA Ala	TCC Ser 470	GGA Gly	AAG Lys	ATG Met	3208
Trp	11e 475	GCA Ala	Gly	Asp	Gly	Asp 480	Asn	Gln	Pro	Ala	Arg 485	Tyr	Asp	Asp	Phe	3256
490	Phe	GAA Glu	Ala	Gly	Lys 495	Lys	Tyr	Thr	Phe	Thr 500	Met	Arg	Arg	Ala	Gly 505	3304
Met	Gly	GAT Asp	Gly	Thr 510	Asp	Met	Glu	Val	Glu 515	Asp	Asp	Ser	Pro	Ala 520	Ser	3352
Tyr	Thr	TAT Tyr	Thr 525	Val	Tyr	Arg	Asp	Gly 530	Thr	Lys	Ile	Lys	Glu 535	Gly	Leu	3400
Thr	Ala	ACG Thr 540	Thr	Phe	Glu	Glu	Asp 545	Gly	Val	Ala	Ala	Gly 550	Asn	His	Glu	3448
TAT Tyr	TGC Cys 555	GTG Val	GAA Glu	GTT Val	AAG Lys	TAC Tyr 560	ACA Thr	GCC Ala	GGC Gly	GTA Val	TCT Ser 565	CCG Pro	AAG Lys	GTA Val	TGT Cys	3496
AAA Lys 570	GAC Asp	GTT Val	ACG Thr	GTA Val	GAA Glu 575	GGA Gly	TCC Ser	AAT Asn	GAA Glu	TTT Phe 580	GCT Ala	CCT Pro	GTA Val	CAG Gln	AAC Asn 585	3544
CTG Leu	ACC Thr	GGT Gly	AGT Ser	GCA Ala 590	GTC Val	GGC Gly	CAG Gln	AAA Lys	GTA Val 595	ACG Thr	CTT Leu	AAG Lys	TGG Trp	GAT Asp 600	GCA Ala	3592
CCT Pro	AAT Asn	GGT Gly	ACC Thr 605	CCA Pro	AAT Asn	CCG Pro	AAT Asn	CCG Pro 610	AAT Asn	CCG Pro	AAT Asn	CCG Pro	GGA Gly 615	ACA Thr	ACA Thr	3640
ACA Thr	CTT Leu	TCC Ser 620	GAA Glu	TCA Ser	TTC Phe	GAA Glu	AAT Asn 625	GGT Gly	ATT Ile	CCT Pro	GCC Ala	TCA Ser 630	TGG Trp	AAG Lys	ACG Thr	3688

ATC Ile	GAT Asp 635	GCA Ala	GAC Asp	Gly	GAC Asp	GGG Gly 640	CAT His	ely	TGG	AAA Lys	CCT Pro 645	GGA Gly	AAT Asn	GCT Ala	CCC Pro		3736
GGA Gly 650	Ile	GCT Ala	Gly	TAC Tyr	AAT Asn 655	AGC Ser	AAT Asn	GGT Gly	TGT Cys	GTA Val 660	TAT	TCA Ser	GAG Glu	TCA Ser	TTC Phe 665		3784
GGT Gly	CTT Leu	GGT Gly	GGT Gly	ATA Ile 670	GGA Gly	GTT Val	CTT Leu	ACC Thr	CCT Pro 675	GAC Asp	AAC Asn	TAT Tyr	CTG Leu	ATA Ile 680	ACA Thr		3832
CCG Pro	GCA Ala	TTG Leu	GAT Asp 685	TTG Leu	GCT Ala	AAC Asn	GGA Gly	GGT Gly 690	AAG Lys	TTG Leu	ACT Thr	TTC Phe	TGG Trp 695	GTA Val	TGC Cys		3880
GCA Ala	CAG Gln	GAT Asp 700	GCT Ala	AAT Asn	TAT Tyr	GCA Ala	TCC Ser 705	GAG Glu	CAC His	TAT Tyr	GCG Ala	GTG Val 710	TAT Tyr	GCA Ala	TCT Ser		3928
TCG Ser	ACC Thr 715	GGT Gly	AAC Asn	GAT Asp	GCA Ala	TCC Ser 720	AAC Asn	TTC Phe	ACG Thr	AAT Asn	GCT Ala 725	TTG Leu	TTG Leu	GAA Glu	GAG Glu		3976
ACG Thr 730	ATT Ile	ACG Thr	GCA Ala	AAA Lys	GGT Gly 735	GTT Val	CGC Arg	TCG Ser	CCG Pro	GAA Glu 740	GCT Ala	ATT Ile	CGT Arg	gj y Get	CGT Arg 745	•	4024
ATA Ile	CAG Gln	GGT Gly	ACT Thr	TGG Trp 750	CGC Arg	CAG Gln	AAG Lys	ACG Thr	GTA Val 755	GAC Asp	CTT Leu	CCC Pro	GCA Ala	GGT Gly 760	ACG Thr	•	4072
AAA Lys	TAT Tyr	GTT Val	GCT Ala 765	TTC Phe	CGT Arg	CAC His	TTC Phe	CAA Gln 770	AGC Ser	ACG Thr	GAT Asp	ATG Met	TTC Phe 775	TAC Tyr	ATC Ile		4120
GAC Asp	CTT Leu	GAT Asp 780	GAG Glu	GTT Val	GAG Glu	ATC Ile	AAG Lys 785	GCC Ala	AAT Asn	Gly GC	AAG Lys	CGC Arg 790	GCA Ala	GAC Asp	TTC Phe	•	4168
ACG Thr	GAA Glu 795	ACG Thr	TTC Phe	GAG Glu	TCT Ser	TCT Ser 800	ACT Thr	CAT His	GGA Gly	GAG Glu	GCA Ala 805	CCA Pro	GCG Ala	GAA Glu	TGG Trp	4	4216
ACT Thr 810	ACT Thr	ATC Ile	GAT Asp	GCC Ala	GAT Asp 815	GGC Gly	GAT A sp	GIY	CAG Gln	GAT Asp 820	TGG Trp	CTC Leu	TGT Cys	CTG Leu	TCT Ser 825	•	4264
TCC Ser	GGA Gly	CAA Gln	TTG Leu	GAC Asp 830	TGG Trp	CTG Leu	ACA Thr	GCT Ala	CAT His 835	GGC Gly	GGC	ACC Thr	AAC Asn	GTA Val 840	GTA Val	4	4312
GCC Ala	TCT Ser	TTC Phe	TCA Ser 845	TGG Trp	AAT Asn	GGA Gly	ATG Met	GCT Ala 850	TTG Leu	AAT Asn	CCT Pro	GAT Asp	AAC Asn 855	TAT Tyr	CTC Leu	4	4360
ATC Ile	TCA Ser	AAG Lys 860	GAT Asp	GTT Val	ACA Thr	GGC Gly	GCA Ala 865	ACG Thr	AAG Lys	GTA Val	AAG Lys	TAC Tyr 870	TAC Tyr	TAT Tyr	GCA Ala	•	4408
GTC Val	AAC Asn 875	GAC Asp	GGT Gly	TTT Phe	CCC Pro	GGG Gly 880	GAT Asp	CAC His	TAT Tyr	GCG Ala	GTG Val 885	ATG Met	ATC Ile	TCC Ser	AAG Lys	4	1456

ACG Thr 890	Gry	ACG Thr	AAC Asn	GCC Ala	GGA Gly 895	GAC Asp	TTC Phe	ACG Thr	GTT Val	GTI Val 900	. Phe	GAA Glu	GAA Glu	ACG Thr	CCT Pro 905	4504
AAC Asn	GGA Gly	ATA Ile	AAT Asn	AAG Lys 910	GIA	GGA Gly	GCA Ala	AGA Arg	TTC Phe 915	Gly	CTI	TCC Ser	ACG Thr	GAA Glu 920	GCC Ala	4552
AAT Asn	GGC Gly	GCC Ala	AAA Lys 925	CCT Pro	CAA Gln	AGT Ser	GTA Val	TGG Trp 930	ATC Ile	GAG Glu	CGT	ACG Thr	GTA Val 935	Asp	TTG Leu	4600
CCT Pro	GCG Ala	GGC Gly 940	ACG Thr	AAG Lys	TAT Tyr	GTT Val	GCT Ala 945	TTC Phe	CGT Arg	CAC His	TAC Tyr	AAT Asn 950	TGC Cys	TCG Ser	GAT Asp	4648
TTG Leu	GAC Asp 955	TAC Tyr	ATT Ile	CTT Leu	TTG Leu	GAT Asp 960	GAT Asp	ATT Ile	CAG Gln	TTC Phe	ACC Thr 965	ATG Met	GGT Gly	GGC Gly	AGC Ser	4696
CCC Pro 970	ACC Thr	CCG Pro	ACC Thr	GÀT Asp	TAT Tyr 975	ACC Thr	TAC Tyr	ACG Thr	GTA Val	TAT Tyr 980	CGT Arg	GAT Asp	GGT Gly	ACG Thr	AAG Lys 985	4744
116	пåз	GIU	GIY	990	Thr	GAA Glu	Thr	Thr	Phe 995	Glu	Glu	Asp	Gly	Val 1000	Ala O	4792
ACG Thr	GGC Gly	AAT Asn	CAT His 1005	GIU	TAT Tyr	TGC Cys	GTG Val	GAA Glu 1010	Val	AAG Lys	TAC Tyr	ACA Thr	GCC Ala 1015	Gly	GTA Val	4840
TCT Ser	CCG Pro	AAG Lys 1020	val	TGT Cys	GTA Val	AAC Asn	GTA Val 1025	Thr	ATT Ile	AAT Asn	CCG Pro	ACT Thr 1030	Gln	TTC Phe	AAT Asn	4888
110	1035) Dys	ASII	ren	Lys	GCA Ala 1040	Gin	Pro	Asp	Gly	Gly 1045	Asp 5	Val	Val	Leu	4936
1050)	GIU	ALA	PFO	1055		Lys	Arg	Gly	Glu 1060	Leu)	Leu	Asn	Glu	Asp 1065	4984
		Cly	rsp	1070)	CCC Pro	The	стÀ	Trp 1075	Thr	Ala	Leu	Asp	Ala 1080	Asp)	5032
GGT Gly	GAC Asp	GGT Gly	AAT Asn 1085	Wall	TGG Trp	GAT Asp	ATC Ile	ACG Thr 1090	Leu	AAT Asn	GAA Glu	TTT Phe	ACG Thr 1095	Arg	GGA Gly	5080
	 9	1100)	rea	ser		ьец 1105	Arg	Ala	Ser	Asn	Val 1110	Ala	Ile	Ser	5128
	1115	,	200	Deu	GIN	GGT Gly 1120	GIN	GIU	Tyr	Leu	Pro 1125	Leu	Thr	Pro	Asn	5176
AAC Asn 1130		CTG Leu	ATC Ile	ACT Thr	CCG Pro 1135	гàг	GTT Val	GAA Glu	GCA Gly	GCA Ala 1140	Lys	AAG Lys	ATT Ile	ACT Thr	TAT Tyr 1145	5224

AAG Lys	GTG Val	GGT Gly	TCA Ser	CCG Pro 1150	Gly	CTT Leu	CCT Pro	CAA Gln	TGG Trp 1155	Ser	His	GAT Asp	CAT	TAT Tyr 1160	Ala	5272
CTC Leu	TGT Cys	ATC Ile	TCC Ser 1165	Lys	AGC Ser	GGA Gly	ACG Thr	GCT Ala 1170	Ala	GCC Ala	GAC Asp	TTC Phe	GAA Glu 1175	Val	ATC Ile	5320
TTT Phe	GAA Glu	GAA Glu 1180	Thr	ATG Met	ACC Thr	TAC Tyr	ACT Thr 1185	Gln	GGA Gly	GGA Gly	GCC Ala	AAC Asn 1190	Leu	ACA Thr	AGA Arg	5368
GAA Glu	AAA Lys 1195	GAC Asp	CTC Leu	CCT Pro	GCC Ala	GGC Gly 1200	Thr	AAA Lys	TAT Tyr	GTC Val	GCT Ala 1205	Phe	CGT Arg	CAT His	TAC Tyr	5416
	Cys	ACG Thr				Gly					Asp					5464
GGT Gly	GAA Glu	el y GGC	GAA Glu	GGT Gly. 1230	Pro	AGT Ser	TAC Tyr	ACC Thr	TAC Tyr 1235	Thr	GTG Val	TAT Tyr	CGT Arg	GAC Asp 1240	Gly	5512
ACG Thr	AAG Lys	ATC Ile	CAG Gln 1245	Glu	GGT Gly	CTG Leu	ACC Thr	GAA Glu 1250	Thr	ACC Thr	TAC Tyr	CGC Ar g	GAT Asp 1255	Ala	GGA Gly	5560
		GCA Ala 1260	Gln					Cys					Tyr			5608
GGC Gly	GTA Val 1275	Ser	CCG Pro	AAG Lys	GTT Val	TGT Cys 1280	Val	GAT Asp	TAT Tyr	ATT Ile	CCT Pro 1285	Asp	GGA Gly	GTG Val	GCA Ala	5656
GAC Asp 129	Val	ACT Thr	GCT Ala	CAG Gln	AAG Lys 1295	Pro	TAC Tyr	ACG Thr	CTG Leu	ACG Thr 1300	Val	GTA Val	GGA Gly	AAG Lys	ACT Thr 1305	5704
	-	GTA Val			Gln					Ile					Gly	5752
		CTG Leu		Ala					Val					Gln		5800
			Ala					Val					Tyr		GAG Glu	5848
		GCT Ala 5			TAA	TTC	rgtc	rtg (GACT(CGGA	ga c'	TTTG'	TGCA	G		5896
ACA	CTTT:	raa 1	CATA	GGTC	rg T	LATT	GTCT(C AG	AGTA!	rgaa	TCG	GTCG	ccc (GACT'	rcctta	5956
AAA	GGAG	STC (GGC	GACT:	rc G	rttt'	ratt?	A TT	GCTG:	rctg	GTA	aact'	TGT (CAAG	AGGAGA	6016
CCT	TTGA	AAA	atgg(GCG	ST C	ARTA	ATTT'	r ce	GTCT)	ATGG	GTC	aaat'	TGC 2	AGGC'	FACTGT	6076
TTT.	AGGT	GTA :	rgtt	GGGC'	ra T	CTTC	CTAT	C TT	TAAG	AGAC	CTT	TGAA	AAA '	TAAG	GAGATG	6136

GAGGGAAGAG GAGTTCTTGG CATAAAAGGA GCC	GAGTGAAA GGGGTGGCAG TAAGGAGTGA 619
AAGTAGTTGT AAATCCCCCC TTTGAGGAGC TAG	CTTGTACG AGCTC 624
(2) INFORMATION FOR SEQ ID NO:26:	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 364 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Met Arg Lys Leu Leu Leu Leu Ile Ala Ala Ser Leu Leu Gly Val Gly
1 5 10 15

Leu Tyr Ala Gln Ser Ala Lys Ile Lys Leu Asp Ala Pro Thr Thr Arg

Thr Thr Cys Thr Asn Asn Ser Phe Lys Gln Phe Asp Ala Ser Phe Ser $\frac{35}{40}$

Phe Asn Glu Val Glu Leu Thr Lys Val Glu Thr Lys Gly Gly Thr Phe 50 55 60

Ala Ser Val Ser Ile Pro Gly Ala Phe Pro Thr Gly Glu Val Gly Ser 65 70 75 80

Pro Glu Val Pro Ala Val Arg Lys Leu Ile Ala Val Pro Val Gly Ala 85 90 95

Thr Pro Val Val Arg Val Lys Ser Phe Thr Glu Gln Val Tyr Ser Leu 100 105 110

Asn Gln Tyr Gly Ser Glu Lys Leu Met Pro His Gln Pro Ser Met Ser

Lys Ser Asp Asp Pro Glu Lys Val Pro Phe Val Tyr Asn Ala Ala Ala 130 135 140

Tyr Ala Arg Lys Gly Phe Val Gly Gln Glu Leu Thr Gln Val Glu Met 150 155 160

Leu Gly Thr Met Arg Gly Val Arg Ile Ala Ala Leu Thr Ile Asn Pro 165 170 175

Val Gln Tyr Asp Val Val Ala Asn Gln Leu Lys Val Arg Asn Asn Ile 180 185 190

Glu Ile Glu Val Ser Phe Gln Gly Ala Asp Glu Val Ala Thr Gln Arg
195 200 205

Leu Tyr Asp Ala Ser Phe Ser Pro Tyr Phe Glu Thr Ala Tyr Lys Gln 210 215 220

Leu Phe Asn Arg Asp Val Tyr Thr Asp His Gly Asp Leu Tyr Asn Thr 230 235 240

Pro Val Arg Met Leu Val Val Ala Gly Ala Lys Phe Lys Glu Ala Leu 245 250 255

BNSDOCID: <WO_____9617936A2_I_>

Lys Pro Trp Leu Thr Trp Lys Ala Gln Lys Gly Phe Tyr Leu Asp Val 260 265 270

His Tyr Thr Asp Glu Ala Glu Val Gly Thr Thr Asn Ala Ser Ile Lys 275 280 285

Ala Phe Ile His Lys Lys Tyr Asn Asp Gly Leu Ala Ala Ser Ala Ala 290 295 300

Pro Val Phe Leu Ala Leu Val Gly Asp Thr Asp Val Ile Ser Gly Glu 305 310 315

Lys Gly Lys Lys Thr Lys Lys Val Thr Asp Leu Tyr Tyr Ser Ala Val 325 330 335

Asp Gly Asp Tyr Phe Pro Glu Met Tyr Thr Phe Arg Met Ser Ala Ser 340 345 350

Ser Pro Glu Glu Leu Thr Asn Ile Ile Asp Lys Tyr 355 360

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1358 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Met Tyr Glu Lys Ala Thr Met Pro Asp Lys Ser Tyr Leu Glu Lys Ala 1 5 10 15

Leu Leu Ile Ala Gly Ala Asp Ser Tyr Trp Asn Pro Lys Ile Gly Gln
20 25 30

Gln Thr Ile Lys Tyr Ala Val Gln Tyr Tyr Tyr Asn Gln Asp His Gly 35 40 45

Tyr Thr Asp Val Tyr Ser Tyr Pro Lys Ala Pro Tyr Thr Gly Cys Tyr 50 55 60

Ser His Leu Asn Thr Gly Val Gly Phe Ala Asn Tyr Thr Ala His Gly 65 70 75 80

Ser Glu Thr Ser Trp Ala Asp Pro Ser Leu Thr Ala Thr Gln Val Lys
85 90 95

Ala Leu Thr Asn Lys Asp Lys Tyr Phe Leu Ala Ile Gly Asn Cys Cys 100 105 110

Val Thr Ala Gln Phe Asp Tyr Pro Gln Pro Cys Phe Gly Glu Val Met 115 120 125

Thr Arg Val Lys Glu Lys Gly Ala Tyr Ala Tyr Ile Gly Ser Ser Pro 130 135 140

Asn Ser Tyr Trp Gly Glu Asp Tyr Tyr Trp Ser Val Gly Ala Asn Ala 145 150 155 160

Val	Phe	Gly	Val	Gln 165	Pro	Thr	Phe	Glu	Gly 170	Thr	Ser	Met	Gly	Ser 175	Tyr
Asp	Ala	Thr	Phe 180	Leu	Glu	Asp	Ser	Tyr 185	Asn	Thr	Val	Asn	Ser 190	Ile	Met
Trp	Ala	Gly 195	Asn	Leu	Ala	Ala	Thr 200	His	Ala	Gly	Asn	Ile 205	Gly	Asn	Ile
Thr	His 210	Ile	Gly	Ala	His	Tyr 215	Tyr	Trp	Glu	Ala	Tyr 220	His	Val	Leu	Gly
Asp 225	Gly	Ser	Val	Met	Pro 230	Tyr	Arg	Ala	Met	Pro 235	Lys	Thr	Asn	Thr	Tyr 240
Thr	Leu	Pro	Ala	Ser 245	Leu	Pro	Gln	Asn	Gln 250	Ala	Ser	Tyr	Ser	Ile 255	Gln
Ala	Ser	Ala	Gly 260	Ser	Tyr	Val	Ala	11e 265	Ser	Lys	Asp	Gly	Val 270	Leu	Tyr
		275					Ser 280					285			
	290					295	Asn				300				
305					310		Gln			315					320
				325			Thr		330			_		335	
			340				Ser	345					350		
		355					Gly 360					365			
٠	370					375	Ala				380			-	
385					390		Tyr			395				_	400
Asn	Thr	Phe	Gly	Ser 405	Val	Ile	Pro	Ala	Thr 410	Gly	Pro	Leu	Phe	Thr 415	Gly
Thr	Ala	Ser	Ser 420	Asn	Leu	Tyr	Ser	Ala 425	Asn	Phe	Glu	Tyr	Leu 430	Ile	Pro
Ala	Asn	Ala 435	Asp	Pro	Val	Val	Thr 440	Thr	Gln	Asn	Ile	Ile 445	Val	Thr	Gly
	450					455	Gly				460				
Asn 465	Pro	Glu	Pro	Ala	Ser 47 0	Gly	Lys	Met	Trp	Ile 475	Ala	Gly	Asp	Gly	Asp 480
Asn	Gln	Pro	Ala	Arg 485	Tyr	Asp	Asp	Phe	Thr 490	Phe	Glu	Ala	Gly	Lys 495	Lys

Tyr Thr Phe Thr Met Arg Arg Ala Gly Met Gly Asp Gly Thr Asp Met 505 Glu Val Glu Asp Asp Ser Pro Ala Ser Tyr Thr Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu Thr Ala Thr Thr Phe Glu Glu Asp Gly Val Ala Ala Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Val Cys Lys Asp Val Thr Val Glu Gly Ser Asn Glu Phe Ala Pro Val Gln Asn Leu Thr Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys Trp Asp Ala Pro Asn Gly Thr Pro Asn Pro 600 Asn Pro Asn Pro Asn Pro Gly Thr Thr Leu Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser Trp Lys Thr Ile Asp Ala Asp Gly Asp Gly His Gly Trp Lys Pro Gly Asn Ala Pro Gly Ile Ala Gly Tyr Asn Ser Asn Gly Cys Val Tyr Ser Glu Ser Phe Gly Leu Gly Gly Ile Gly Val Leu Thr Pro Asp Asn Tyr Leu Ile Thr Pro Ala Leu Asp Leu Ala Asn 680 Gly Gly Lys Leu Thr Phe Trp Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr Ala Val Tyr Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Thr Asn Ala Leu Leu Glu Glu Thr Ile Thr Ala Lys Gly Val 730 Arg Ser Pro Glu Ala Ile Arg Gly Arg Ile Gln Gly Thr Trp Arg Gln Lys Thr Val Asp Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg His Phe Gln Ser Thr Asp Met Phe Tyr Ile Asp Leu Asp Glu Val Glu Ile Lys Ala Asn Gly Lys Arg Ala Asp Phe Thr Glu Thr Phe Glu Ser Ser 790 Thr His Gly Glu Ala Pro Ala Glu Trp Thr Thr Ile Asp Ala Asp Gly Asp Gly Gln Asp Trp Leu Cys Leu Ser Ser Gly Gln Leu Asp Trp Leu

- Thr Ala His Gly Gly Thr Asn Val Val Ala Ser Phe Ser Trp Asn Gly 835 840 845
- Met Ala Leu Asn Pro Asp Asn Tyr Leu Ile Ser Lys Asp Val Thr Gly 850 860
- Ala Thr Lys Val Lys Tyr Tyr Tyr Ala Val Asn Asp Gly Phe Pro Gly 865 870 875 880
- Asp His Tyr Ala Val Met Ile Ser Lys Thr Gly Thr Asn Ala Gly Asp 885 890 895
- Phe Thr Val Val Phe Glu Glu Thr Pro Asn Gly Ile Asn Lys Gly Gly 900 905 910
- Ala Arg Phe Gly Leu Ser Thr Glu Ala Asn Gly Ala Lys Pro Gln Ser 915 920 925
- Val Trp Ile Glu Arg Thr Val Asp Leu Pro Ala Gly Thr Lys Tyr Val 930 935 940
- Ala Phe Arg His Tyr Asn Cys Ser Asp Leu Asp Tyr Ile Leu Leu Asp 945 950 955 960
- Asp Ile Gln Phe Thr Met Gly Gly Ser Pro Thr Pro Thr Asp Tyr Thr 965 970 975
- Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu Thr Glu 980 985 990
- Thr Thr Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His Glu Tyr Cys 995 1000 1005
- Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Val Cys Val Asn 1010 1015 1020
- Val Thr Ile Asn Pro Thr Gln Phe Asn Pro Val Lys Asn Leu Lys Ala 1025 1030 1035 1040
- Gln Pro Asp Gly Gly Asp Val Val Leu Lys Trp Glu Ala Pro Ser Gly 1045 1050 1055
- Lys Arg Gly Glu Leu Leu Asn Glu Asp Phe Glu Gly Asp Ala Ile Pro 1060 1065 1070
- Thr Gly Trp Thr Ala Leu Asp Ala Asp Gly Asp Gly Asn Asn Trp Asp 1075 1080 1085
- Ile Thr Leu Asn Glu Phe Thr Arg Gly Glu Arg His Val Leu Ser Pro 1090 1095 1100
- Leu Arg Ala Ser Asn Val Ala Ile Ser Tyr Ser Ser Leu Leu Gln Gly 1105 1110 1115 1120
- Gln Glu Tyr Leu Pro Leu Thr Pro Asn Asn Phe Leu Ile Thr Pro Lys 1125 1130 1135
- Val Glu Gly Ala Lys Lys Ile Thr Tyr Lys Val Gly Ser Pro Gly Leu 1140 1145 1150
- Pro Gln Trp Ser His Asp His Tyr Ala Leu Cys Ile Ser Lys Ser Gly
 1155 1160 1165

									129							
Thr	Ala 1170		Ala	Asp	Phe	Glu 1175		Ile	Phe	Glu	Glu 1180		Met	Thr	Tyr	
Thr 1185		Gly	Gly	Ala	Asn 1190		Thr	Arg	Glu	Lys 1195		Leu	Pro	Ala	Gly 1200	
Thr	Lys	Tyr	Val	Ala 1205		Arg	His	Tyr	Asn 1210	_	Thr	Asp	Val	Leu 1215	-	
Ile	Met	Ile	Asp 1220	_	Val	Val	Ile	Thr 1225	_	Glu	Gly	Glu	Gly 123	Pro	Ser	
Tyr	Thr	Tyr 1235		Val	Tyr	Arg	Asp 1240		Thr	Lys	Ile	Gln 1245		Gly	Leu	
Thr	Glu 1250		Thr	Tyr	Arg	Asp 1255		Gly	Met	Ser	Ala 1260		Ser	His	Glu	
Tyr 1265	Cys	Val	Glu	Val	Lys 1270		Ala	Ala	Gly	Val 1275		Pro	Lys	Val	Cys 1280	
Val	Asp	Tyr	Ile	Pro 1285		Gly	Val	Ala	Asp 1290		Thr	Ala	Gln	Lys 1295		
Tyr	Thr	Leu	Thr 1300		Val	Gly	Lys	Thr 1305		Thr	Val	Thr	Cys 131	Gln O	Gly	
Glu	Ala	Met 1315		Tyr	Asp	Met	Asn 1320		Arg	Arg	Leu	Ala 1325		Gly	Arg	
Asn	Thr 1330		Val	Tyr	Thr	Ala 1335		Gly	Gly	Tyr	Tyr 1340		Val	Met	Val	
Val 134		Asp	Gly	Lys	Ser 1350		Val	Glu	Lys	Leu 1355		Ile	Lys			
(2)	INFO	ORMA	rion	FOR	SEQ	ID 1	10:28	3:								
	(i)	(<i>)</i> (E	A) LI 3) Ti 3) Si	engti (Pe : [rani	i: 86 nucl	TER 540 l Leic ESS: line	ase acio sino	pai:	cs				÷			
	(ii)	MOI	LECUI	LE TY	PE:	DNA	(ger	nomic	=)							
	(ix)		A) NU	AME/I		CDS 971.	.603	31								
	(xi)	SEÇ	QUENC	CE DE	ESCRI	PTIC	ON: S	SEQ J	D NO	28:	:					
AGG	CTTI	GA C	EACG	GCA(A AC	GCCG	CGC	A GCC	TCC	CTT	CGA	AGGT	STC 1	ICGA,	CGTCC	60
ACA	rcggr	GA A	ATCC	STAGO	CA G1	rgcto	ATT	G CCF	ATTG	AGCA	GCAC	CCGA	GGT (GTGGC	CGCATC	120
AGA	TATA1	TTT 1	CAT	CAGTO	G AT	TAT	AGG	TAT	rcggi	CAG	LAAA	AAGC	CTT (CCGAP	ATCCGA	180
CAA	GATA	GT F	GAAJ	\GAGA	AG TO	CATO	TGA	AAC	AGAT	CAT	TCG	AGGA1	TTA '	rcgat	CAACT	240

GAAAAGGCAG GAGTTGTTTT GCGTTTTGGT TCGGAAAATT ACCTGATCAG CATTCGTAAA

				AAAATTTTTG GAA	
				CAATCCGAGC ATT	- -
				AGAGAGAGAA TAT	
CCAACGGTTC	ATCCTTATAT	CAGAGGTTAA A	AGATATGGT A	ACGCTCATCG AGG	AGCTGAT 540
TGGCTTAGTA	GGTGAGACTT	TCTTAAGAGA C	TATCGGCAC C	TACAGGAAG TTC	ATGGCAC 600
				LAAAAGGATG AAA	
TCCATACGAC	AACCAAATAG	CCGTCTACGG T	AGACGAATG C	AAACCCAAT ATG	AGGCCAT 720
CAATCAATCC	GAATGACAGC	TTTTGGGCAA T	ATATTATGC A	TATTTTGAT TCG	CGTTTAA 780
AGGAAAAGTG	CATATATTTG	CGATTGTGGT A	TTTCTTTCG G	TTTCTATGT GAA	TTTTGTC 840
TCCCAAGAAG	ACTTTATAAT	GCATAAATAC A	GAAGGGGTA C	TACACAGTA AAA	CATATT 900
CTAATTTCAT	CAAAATGAAA	AACTTGAACA A	GTTTGTTTC A	TTGCTCTTT GCT	CTTCCTT 960
	ATG GCA TTT Met Ala Phe 1360	GCG CAG CAG Ala Gln Gln 136	Thr Glu Le	G GGA CGC AAT u Gly Arg Asn 1370	CCG 1009 Pro
AAT GTC AGA Asn Val Arg 137	neg neg et	A TCC ACT CAG u Ser Thr Gli 1380	G CAA TCG G	TG ACA AAG GTT al Thr Lys Val 1385	CAG 1057
TTC CGT ATG Phe Arg Met 1390	GAC AAC CT Asp Asn Le	C AAG TTC ACC u Lys Phe Thi 1395	GIU Val G	AA ACC CCT AAG ln Thr Pro Lys 400	GGA 1105
ATG GCA CAA Met Ala Gln 1405	GTG CCG AC Val Pro Th 14	r Tyr Thr Gli	A GGG GTT AN Gly Val As 1415	AT CTT TCC GAA sn Leu Ser Glu	AAA 1153 Lys 1420
GGG ATG CCT Gly Met Pro	ACG CTT CC Thr Leu Pr 1425	C ATT CTA TCA O Ile Leu Ser	CGC TCT TT Arg Ser Le	TG GCG GTT TCA eu Ala Val Ser 143	Asp
ACT CGT GAG Thr Arg Glu	ATG AAG GTI Met Lys Val 1440	A GAG GTT GTT l Glu Val Val 144	. Ser Ser Lu	AG TTC ATC GAA /s Phe Ile Glu 1450	AAG 1249 Lys
AAA AAT GTC Lys Asn Val 1455	Den TIE MI	A CCC TCC AAG Pro Ser Lys 1460	GGC ATG AT Gly Met Il	TT ATG CGT AAC e Met Arg Asn 1465	GAA 1297 Glu
GAT CCG AAA Asp Pro Lys 1470	AAG ATC CCT Lys Ile Pro	TAC GTT TAT Tyr Val Tyr 1475	GIY Lys Se	C TAC TCG CAA T Tyr Ser Gln 80	AAC 1345 Asn
AAA TTC TTC Lys Phe Phe 1485	CCG GGA GAG Pro Gly Glu 149	TIE ALE THE	CTT GAT GA Leu Asp As 1495	T CCT TTT ATC p Pro Phe Ile	CTT 1393 Leu 1500
GT GAT GTG Arg Asp Val	CGT GGA CAG Arg Gly Gln 1505	GTT GTA AAC Val Val Asn	TTT GCG CC Phe Ala Pro 1510	T TTG CAG TAT o Leu Gln Tyr 1515	Asn

				ATC ACT GTG (Ile Thr Val) 1530	
	Ser Glu G		Asn Ile Leu	AAC AAG AAA (Asn Lys Lys (1545	
TTT GCC GGC Phe Ala Gly 1550	TTT GAA GI Phe Glu A	AC ACA TAC sp Thr Tyr 1555	AAG CGC ATG Lys Arg Met	TTC ATG AAC ? Phe Met Asn ? 1560	TAC GAG 1585 Tyr Glu
CCG GGG CGT Pro Gly Arg 1565	Tyr Thr P	CG GTA GAG TO Val Glu 570	GAA AAA CAA Glu Lys Gln 157	AAT GGT CGT 1 Asn Gly Arg 1 5	ATG ATC 1633 Met Ile 1580
GTC ATC GTA Val Ile Val	GCC AAA AA Ala Lys Ly 1585	AG TAT GAG ys Tyr Glu	GGA GAT ATT Gly Asp Ile 1590	AAA GAT TTC (Lys Asp Phe	GTT GAT 1681 Val Asp 1595
				AAA GTG GCA (Lys Val Ala (1610	
	Pro Val T		Ala Ile Gln	CAG TTC GTT I Gln Phe Val 1 1625	
GAA TAC GAG Glu Tyr Glu 1630	AAA GAA G Lys Glu G	GT AAT GAT ly Asn Asp 1635	TTG ACC TAT Leu Thr Tyr	GTT CTT TTG Val Leu Leu 1640	GTT GGC 1825 Val Gly
	Asp Ile P			GGG ATC AAA G Gly Ile Lys 5	
CAG GTA TAT Gln Val Tyr	Gly Gln I			TAC AAC GAA	
	1665	•	Asn Asp His 1670		Val Phe 1675
	TTC TCA T	GT GAG AGC	1670 AAA GAG GAT		1675 CAA ATC 1969 Gln Ile
Ile Gly Arg	TTC TCA T Phe Ser C 1680 ATT CAC T	GT GAG AGC ys Glu Ser AT GAG CGC	AAA GAG GAT Lys Glu Asp 1685 AAT ATA ACC Asn Ile Thr	CTG AAG ACA	CAA ATC 1969 Gln Ile AAA TGG 2017
GAT CGG ACT Asp Arg Thr 169 CTC GGT CAG	TTC TCA T Phe Ser C 1680 ATT CAC T Ile His T	GT GAG AGC ys Glu Ser AT GAG CGC yr Glu Arg 170 GT ATT GCT	AAA GAG GAT Lys Glu Asp 1685 AAT ATA ACC Asn Ile Thr O	CTG AAG ACA Leu Lys Thr 1690 ACG GAA GAC	CAA ATC 1969 Gln Ile AAA TGG 2017 Lys Trp TCC GCA 2065
GAT CGG ACT Asp Arg Thr 169 CTC GGT CAG Leu Gly Gln 1710 GAC AAT GGT	TTC TCA T Phe Ser C 1680 ATT CAC T Ile His T GCT CTT T Ala Leu C GAA AGT G Glu Ser A	GT GAG AGC ys Glu Ser AT GAG CGC yr Glu Arg 170 GT ATT GCT ys Ile Ala 1715 AT ATC CAG	AAA GAG GAT Lys Glu Asp 1685 AAT ATA ACC Asn Ile Thr 0 TCG GCT GAA Ser Ala Glu	CTG AAG ACA Leu Lys Thr 1690 ACG GAA GAC Thr Glu Asp 1705 GGA GGC CCA Gly Gly Pro 1720 GTA ATC GCC Val Ile Ala	1675 CAA ATC 1969 Gln Ile AAA TGG 2017 Lys Trp TCC GCA 2065 Ser Ala AAT CTG 2113
GAT CGG ACT Asp Arg Thr 169 CTC GGT CAG Leu Gly Gln 1710 GAC AAT GGT Asp Asn Gly 1725 CTT ACC CAG	TTC TCA T Phe Ser C 1680 ATT CAC T Ile His T GCT CTT T Ala Leu C GAA AGT G Glu Ser A 1 TAT GGC T	GT GAG AGC ys Glu Ser AT GAG CGC yr Glu Arg 170 GT ATT GCT ys Ile Ala 1715 AT ATC CAG sp Ile Gln 730 AT ACC AAG	AAA GAG GAT Lys Glu Asp 1685 AAT ATA ACC ASN Ile Thr 0 TCG GCT GAA Ser Ala Glu CAT GAG AAT His Glu Asn 173 ATT ATC AAA	CTG AAG ACA Leu Lys Thr 1690 ACG GAA GAC Thr Glu Asp 1705 GGA GGC CCA Gly Gly Pro 1720 GTA ATC GCC Val Ile Ala	1675 CAA ATC 1969 Gln Ile AAA TGG 2017 Lys Trp TCC GCA 2065 Ser Ala AAT CTG 2113 ASn Leu 1740 CCG GGA 2161

• •		17	75	r Gr	у нт	s GI	y Se 17	80 F G1	u Th	r Al	a Tr	p Gl;	y Th 85	r Se	T CAC r His	2257
	17	90		L HI:	s va.	17:	95	n Lei	u Th	r Ası	n Se 18	r Ası 00	n Gl:	n Le	A CCG u Pro	2305
180	5	- 111	- vař	, va.	181	LO	s va.	L ASI	n Gl	y As ₁	Pho 15	e Let	ı Phe	e Se	C ATG r Met 1820	2353
	J Cy.	> File	= Ala	182	25	i Lei	ı Met	Arç	183	a Glr 30	ı Ly:	s Asp	Gly	18:	-	2401
	. 01	, 1111	184	0	r TTE	: TT6	: Ala	184	Thi	Ile	≥ Ası	n Glm	Ser 185	Trp 50	G GCT	2449
		185	55	Gry	GIII	Asp	186	Met 0	Asn	ı Glu	ı Ile	leu 186	Cys	Glu	AAA Lys	2497
	187	0	. YS!	116	Lys	187	5	Phe	: Gly	, Gly	Val 188	Thr	Met	Asn	GGT Gly	2545
188	5	7111	1160	Val	189	O Lys	Tyr	ьys	Lys	189	Gly 5	' Glu	Lys	Met	CTC Leu 1900	2593
			4.11	190	5	Giy	Asp	Pro	5er 191	Leu 0	Leu	GTT Val	Arg	Thr 191	Leu 5	2641
		****	1920	b WE C	GIN	val	Thr	192	Pro 5	Ala	Gln	Ile	Asn 193	Leu 0		2689
		193	5	A3II	Val	ser	194	Asp 0	Tyr	Asn	Gly	GCT Ala 1945	Ile	Ala	Thr	2737
	195	0		Oly	пуз	1955	Pne 5	GIĀ	Ser	Ala	Val 196	-	Glu	Asn	Gly	2785
196	5				1970)	GIY	ren	Inr	Asn 1975	Glu	AGC Ser	Thr	Leu	Thr 1980	2833
				1985	,	ASII	гуs	GTU	1990	Val	Ile	AAG Lys	Thr	Ile 1995	Asn	2881
		,	2000		ng!!	FIU	Tyr	2005	PIO	Val	Ser		Leu 2010	Thr	Ala	2929
ACA Thr	ACG Thr	CAG Gln 2015	3	CAG Gln	AAA Lys	GTA Val	ACG Thr 2020	reu	AAG Lys	TGG Trp	GAT Asp	GCA Ala 2025	Pro	AGC Ser	ACG Thr	2977

AAA ACC AAT GCA Lys Thr Asn Ala 2030	ACC ACT AAT Thr Thr Asn 2035	Thr Ala Arg	AGC GTG GAT GG Ser Val Asp Gl 2040	C ATA CGA 302 y Ile Arg	:5
GAA TTG GTT CTT Glu Leu Val Leu 2045	CTG TCA GTC Leu Ser Val 2050	AGC GAT GCC Ser Asp Ala	CCC GAA CTT CT Pro Glu Leu Le 2055	T CGC AGC 307. u Arg Ser 2060	3
GGT CAG GCC GAG Gly Gln Ala Glu	ATT GTT CTT Ile Val Leu 2065	GAA GCT CAC Glu Ala His 2070	Asp Val Trp As	T GAT GGA 312 n Asp Gly 2075	:1
TCC GGT TAT CAG Ser Gly Tyr Gln 208	Ile Leu Leu	GAT GCA GAC Asp Ala Asp 2085	His Asp Gln Ty	T GGA CAG 316 r Gly Gln 90	59
GTT ATA CCC AGT Val Ile Pro Ser 2095	GAT ACC CAT Asp Thr His	ACT CTT TGG Thr Leu Trp 2100	CCG AAC TGT AG Pro Asn Cys Se 2105	T GTC CCG 321 r Val Pro	.7
GCC AAT CTG TTC Ala Asn Leu Phe 2110	GCT CCG TTC Ala Pro Phe 211	Glu Tyr Thr	GTT CCG GAA AA Val Pro Glu As 2120	T GCA GAT 326 n Ala Asp	3 5
CCT TCT TGT TCC Pro Ser Cys Ser 2125	CCT ACC AAT Pro Thr Asn 2130	ATG ATA ATG Met Ile Met	GAT GGT ACT GC Asp Gly Thr Al 2135	A TCC GTT 331 a Ser Val 2140	٤3
AAT ATA CCG GCC Asn Ile Pro Ala	GGA ACT TAT Gly Thr Tyr 2145	GAC TTT GCA Asp Phe Ala 215	Ile Ala Ala Pr	T CAA GCA 336 O Gln Ala 2155	51
AAT GCA AAG ATT Asn Ala Lys Ile 216	Trp Ile Ala	GGA CAA GGA Gly Gln Gly 2165	Pro Thr Lys Gl	A GAT GAT 340 u Asp Asp 70)9
TAT GTA TTT GAA Tyr Val Phe Glu 2175	GCC GGT AAA Ala Gly Lys	AAA TAC CAT Lys Tyr His 2180	TTC CTT ATG AP Phe Leu Met Ly 2185	G AAG ATG 345 's Lys Met	57
GGT AGC GGT GAT Gly Ser Gly Asp 2190	GGA ACT GAA Gly Thr Glu 219	Leu Thr Ile	AGC GAA GGT GG Ser Glu Gly Gl 2200	ET GGA AGC 350 y Gly Ser)5
GAT TAC ACC TAT Asp Tyr Thr Tyr 2205	ACT GTC TAT Thr Val Tyr 2210	CGT GAC GGC Arg Asp Gly	ACG AAG ATC AA Thr Lys Ile Ly 2215	AG GAA GGT 355 vs Glu Gly 2220	53
CTG ACG GCT ACG Leu Thr Ala Thr	ACA TTC GAA Thr Phe Glu 2225	GAA GAC GGT Glu Asp Gly 223	Val Ala Thr Gl	GC AAT CAT 360 .y Asn His 2235	01
GAG TAT TGC GTG Glu Tyr Cys Val 224	. Glu Val Lys	TAC ACA GCC Tyr Thr Ala 2245	Gly Val Ser Pr	CG AAG GTA 364 CO Lys Val 250	4 9
TGT AAA GAC GTT Cys Lys Asp Val 2255	TACG GTA GAA Thr Val Glu	GGA TCC AAT Gly Ser Asn 2260	GAA TTT GCT CO Glu Phe Ala Pr 2265	CT GTA CAG 369 TO Val Gln	97
AAC CTG ACC GGT Asn Leu Thr Gly 2270	r AGT GCA GTC y Ser Ala Val 227	Gly Gln Lys	GTA ACG CTC AI Val Thr Leu Ly 2280	AG TGG GAT 374 ys Trp Asp	45

228	5	, wai		/ Ini	229	o Asn	Pro) Asr	n Pro	229	Pro	Ası	n Pro	As:	r CCG n Pro 230	
LO!!	FIC	, GT.	rni	230)5	Leu	Ser	Glu	231	Phe 10	e Glu	Asr	Gly	/ Ile 23:		3841
GCC Ala	TCA Ser	TGG	AAG Lys 232	Ini	ATC Ile	GAT Asp	GCA Ala	GAC Asp 232	Gly	GAC Asp	GGG Gly	CAT His	GG(Gly 233	Tr:	AAG Lys	3889
110	GLY	233	5	PIC	. сту	TTE	A1a 234	0 GTA	Tyr	Asn	Ser	Asn 234	Gly 5	Cys	GTA Val	3937
- , -	235	0	Ser	FIIE	GIY	235	5 5	GIĀ	' Ile	Gly	Val 236	Leu 0	Thr	Pro	GAC Asp	3985
2365	5	Deu	116	Inr	237	ALA O	Leu	Asp	Leu	Pro 237	Asn 5	Gly	Gly	Lys	TTG Leu 2380	4033
1111	rne	ιτρ	val	238	Ala 5	GIN	Asp	Ala	Asn 239	Tyr O	Ala	Ser	Glu	His 239		4081
	,	TYL	240	o O	ser	Thr	GIY	Asn 240	Asp 5	Ala	Ser	Asn	Phe 241	Thr 0	AAT Asn	4129
,,,,,	neu	241	5	GIU	Thr	TTE	Thr 2420	Ala	Lys	Gly	Val	Arg 2425	Ser	Pro	GAA Glu	4177
	2430)	Gly	Arg	116	2435	GIĀ	Thr	Trp	Arg	Gln 2440	Lys)	Thr	Val	GAC Asp	4225
2445		,,,,,	Gly	1111	AAA Lys 2450	Tyr	Val	ALA	Phe	Arg 2455	His	Phe	Gln	Ser	Thr 2460	4273
		• • • •	-7-	2465		Leu	Asp	GIU	Val 2470	Glu)	Ile	Lys	Ala	Asn 2475	Gly 5	4321
			2480	FILE	ACG Thr	GIU	Thr	Pne 2485	GIU	Ser	Ser	Thr	His 2 4 90	Gly	Glu	4369
		2495	911	11p	ACT . Thr	THE	2500	Asp .	Ala .	Asp	Gly .	Asp 2505	Gly	Gln	Gly	4417
2	2510	- ,	200	SEL		2515	σIN .	Leu .	Asp	Trp	Leu ' 2520	Thr .	Ala	His	Gly	4465
GGC # Gly 7 2525	ACC :	AAC Asn	GTA Val	·ar	GCC : Ala : 2530	TCT :	TTC :	TCA ' Ser '	Trp .	AAT (Asn (2535	GGA : Gly !	ATG Met	GCT Ala	Leu	AAT Asn 2540	4513

CCT Pro	GAT Asp	AAC Asn	TAT	CTC Leu 254	Ile	TC. Ser	AAG Lys	GA1 Asp	GT1 Val 255	Thr	GE GE GE	GCA Ala	A ACC	E AAG Lys 255	GTA Val	4561
AAG Lys	TAC	TAC	TAT Tyr 256	Ala	GTC Val	AAC Asn	GAC Asp	GG1 G1 256	, Phe	CCC Pro	Gly	GAI Asp	CAC His 257	Ty	GCG Ala	4609
GTG Val	ATG Met	ATC Ile 257	Ser	AAG Lys	ACG Thr	GGC	ACG Thr 258	Asn	GCC Ala	GGA Gly	GAC Asp	TTC Phe 258	Thr	GTI Val	GTT Val	4657
TTC Phe	GAA Glu 259	GIU	ACG Thr	Pro	AAC Asn	GGA Gly 259	Ile	AAT Asn	AAG Lys	GGC	GGA Gly 260	Ala	AGA Arg	TTC Phe	GGT	4705
CTT Leu 260	ser	ACG Thr	GAA Glu	GCC Ala	AAT Asn 261	Gly	GCC Ala	AAA Lys	CCT Pro	CAA Gln 261	Ser	GTA Val	TGG Trp	ATC	GAG Glu 2620	4753
CGT Arg	ACG Thr	GTA Val	GAT Asp	TTG Leu 262	Pro	GCG Ala	GGC	ACG Thr	AAG Lys 263	Tyr	GTT Val	GCT Ala	TTC Phe	CGT Arg 263	His	4801
Tyr	ASN	Cys	2640	Asp 0	Leu	Asn	Tyr	Ile 264		Leu	Asp	Asp	Ile 265	Gln 0	Phe	4849
THE	met	2655	GIY	Ser	Pro	Thr	Pro 266	Thr	GAT Asp	Tyr	Thr	Tyr 266	Thr 5	Val	Tyr	4897
Arg	2670	GIÀ	Thr	Lys	Ile	Lys 2675	Glu	Gly	CTG Leu	Thr	Glu 268	Thr	Thr	Phe	Glu	4945
2685	Asp	GLY	Val	Ala	Thr 2690	Gly	Asn	His	GAG Glu	Tyr 2695	Cys	Val	Glu	Val	Lys 2700	4993
TAC Tyr	THE	ALA	GIŸ	Val 2705	Ser	Pro	Lys	Glu	TGC Cys 2710	Val	Asn	Val	Thr	Ile 2715	Asn	5041
	III	GIN	2720	Asn	Pro	Val	Lys	Asn 2725		Lys	Ala	Gln	Pro 2730	Asp	Gly	5089
Gly .	rsp.	2735	vai	Leu	rys	Trp	G1u 2740	Ala	CCG Pro	Ser	Ala	Lys 2745	Lys	Thr	Glu	5137
Gry	2750	Aig	GIU	val .	Lys :	Arg 2755	Ile	Gly	GAC Asp	Gly	Leu 2760	Phe	Val	Thr	Ile	5185
GAA Glu 2765	FIO.	ALE.	ASN A	Asp :	2770	Arg .	Ala .	Asn	Glu .	Ala 2775	Lys	Val	Val	Leu	Ala 2780	5233
GCA (SAC . Asp .	AAC (Asn '	val:	TGG (Trp (2785	GGA (SAC . Asp .	AAT . Asn	Thr	GGT Gly 2790	Tyr	CAG Gln	TTC Phe	TTG Leu	TTG Leu 2795	Asp	5281

GCC Ala	GAT Asp	CAC His	AAT Asn 2800	Thr	TTC Phe	GGA Gly	AGT Ser	GTC Val 2805	Ile	CCG Pro	GCA Ala	ACC Thr	GGT Gly 2810	Pro	CTC Leu	5329
TTT Phe	Thr	GGA Gly 2815	Thr	GCT Ala	TCT Ser	TCC Ser	AAT Asn 2820	Leu	TAC Tyr	AGT Ser	GCG Ala	AAC Asn 2825	Phe	GAG Glu	TAT TYP	5377
TTG Leu	ATC Ile 2830	Pro	GCC Ala	AAT Asn	GCC Ala	GAT Asp 2835	Pro	GTT Val	GTT Val	ACT Thr	ACA Thr 284	Gln	AAT Asn	ATT Ile	ATC Ile	5425
GTT Val 2845	ACA Thr	GGA Gly	CAG Gln	GGT Gly	GAA Glu 2850	Val	GTA Val	ATC Ile	CCC Pro	GGT Gly 2855	Gly	GTT Val	TAC Tyr	GAC Asp	TAT Tyr 2860	5473
TGC Cys	ATT Ile	ACG Thr	AAC Asn	CCG Pro 2865	Glu	CCT Pro	GCA Ala	TCC Ser	GGA Gly 287	Lys	ATG Met	TGG Trp	ATC Ile	GCA Ala 287	Gly	5521
GAT Asp	GGA Gly	GGC G1 y	AAC Asn 2880	Gln	CCT Pro	GCA Ala	CGT Arg	TAT Tyr 288	Asp	GAT Asp	TTC Phe	ACA Thr	TTC Phe 289	Glu	GCA Ala	5569
GGC Gly	AAG Lys	AAG Lys 289	Tyr	ACC Thr	TTC Phe	ACG Thr	ATG Met 290	Arg	CGC Arg	GCC Ala	GGA Gly	ATG Met 290	Gly	GAT Asp	GGA Gly	5617
ACT Thr	GAT Asp 291	Met	GAA Glu	GTC Val	GAA Glu	GAC Asp 291	Asp	TCA Ser	CCT Pro	GCA Ala	AGC Ser 292	Tyr	ACC Thr	TAT Tyr	ACA Thr	5665
GTC Val 292	TAT Tyr 5	CGT Arg	GAC Asp	GGC Gly	ACG Thr 293	Lys	ATC Ile	AAG Lys	GAA Glu	GGT Gly 293	Leu	ACC	GAA Glu	ACG Thr	ACC Thr 2940	5713
TAC Tyr	CGC Arg	GAT Asp	GCA Ala	GGA Gly 294	Met	AGT Ser	GCA Ala	CAA Gln	TCT Ser 295	His	GAG Glu	TAT	TGC Cys	GTA Val 295	GAG Glu 5	5761
GTT Val	AAG Lys	TAC Tyr	GCA Ala 296	Ala	GGC Gly	GTA Val	TCT Ser	CCG Pro 296	Lys	GTT Val	TGT Cys	GTG Val	GAT Asp 297	Tyr	ATT Ile	5809
CCT	GAC Asp	GGA Gly 297	Val	GCA Ala	GAC Asp	GTA Val	ACG Thr 298	Ala	CAG Gln	AAG Lys	Pro	TAC Tyr 298	Thr	CTG Leu	ACA Thr	5857
GTT Val	GTT Val 299	Gly	AAG Lys	ACG Thr	ATC	ACG Thr 299	Val	ACT Thr	TGC Cys	CAA Gln	300 G17	/ Glu	GCT Ala	ATG Met	ATC	5905
TAC Tyr 300	Asp	AT6 Met	AAC Asn	GGT	CGT Arg 301	Arg	CTG Leu	GCA Ala	A GCC	GGT Gly 301	/ Arg	AAC AST	ACA Thr	GTT Val	GTT Val 3020	5953
TAC Ty:	ACG Thr	GCT	CAG Gln	GGC Gly 302	Gly	TAC Tyr	TAI	GCF Ala	A GTC a Val 303	. Met	GTT Val	r GTC L Val	GTI Val	GAC Asp 303	GGC Gly B5	6001
AA(Lys	G TCT S Ser	TAC Ty	C GTA r Val 304	Glu	AAA Lys	CTC Lev	GC1	GTA Val 304	Lys	TAJ	LTTC:	rgtc	TTG	ACT	GG	605:

AGACTTTGT	G CAGACACTT	TAATATAGG	CTGTAATTG1	CTCAGAGTAT	GAATCGATCG	6111
CCCGACCTC	C TTTTAAGGA	A GTCGGGCGA	TTCGTTTTT	TGCCTATTAT	TCTAATATAC	6171
TTCTGAAAC	ATTTGTTCC	AAAAGTTGC	TGAAAAGATI	ATCTTACTAT	CTTTGCACTG	6231
CAAAAGGGG	GTTTCCTAAG	GTTTTCCCC	GAGTAGTAC	GTAATAACGG	TGTGGTAGTT	6291
CAGCTGGTT	GAATACCTGC	CTGTCACGC	GGGGGTCGCG	GGTTCGAGTC	CCGTCCATAC	6351
CGCTAAAATA	AGGAGTTGTG	TTGAAATAGI	TTTTCGGCAC	AGCTCCATTT	TTGTATGTTA	6411
TCGCAGCACC	GGAAAGTATA	ATTGCCGGAT	GAGATTATTO	AATATGCTCG	GAAGATTTTC	6471
TTAGAACGAA	GCAGAAGTGT	TTGTCTTTAT	TACGATCTGC	TTGGGACATA	GGGATTAAAT	6531
TAGTATTATI	'GCAGGAGGGA	CGGTACATGG	AGTCGCCCGG	CCAATCAGAT	GAAGAAAGAA	6591
GAACTACGAT	TGATTTTAT	GGGAACGGCC	GATTTTGCTG	TTCCGGCACT	CCGAGCTTTG	6651
GTCGAAAACG	GATACCAAGT	AAAAGCTGTG	GTCACTATGC	CGGACAAGCC	TATGGGTCGA	6711
GGACATAAGG	TAAGTCCCAG	TATGGTCAAA	CTATACGCAC	AGGAATTGGG	TCTGCCTATT	6771
CTCCAGCCGG	ACAATCTGAA	CGAGGAATCT	TTTCTCGATG	AACTACGGAC	TTATCAGCCG	6831
CACTTGCAAA	TCGTAGTGGC	TTTCCGTATG	CTTCCTCGCT	CCGTATGGCA	AATGCCCCC	6891
ATGGGAACAA	TCAATCTGCA	TGGCTCTCTG	CTGCCCATGT	ATCGAGGAGC	AGCCCCTATC	6951
AACCACGCGA	TACGCCATGG	CGATACGGAA	ACGGGAGTTA	CCACCTTCCG	CCTCCGGCAT	7011
GAGATAGATA	CGGGTGAAGT	ACTGCTGCAA	GAGAAGTTGC	CTATAGGACA	TGAAGAGACT	7071
TTCGGCGAAT	TGTACGAACG	TATGGCTACT	CTCGGTGCAT	CCGTATTGGT	GCACACAGTG	7131
				AGCAACTTCC		7191
				GTATCGATTG		7251
		•		CCCCTACAGC		7311
				ACCGTACCCA		7371
				GGGACAAGAA		7431
					CAAGAAACAA	7491
				CAGATATGTA		7551
				CCTCTTGCAT		7611
				GTTGGTCGTA		7671
				CATCATGAAA		7731
				GACAAAGCCT		7791
				CCTCGCTTTG		7851
				CGTAGCGGGA		7911
CGGCGCAGGA	CGTACGCGAT	TGGGAGGCAC	AGACAGGAGA	ACACTCCTAT	TGGACCAACA	7971

GTCTCTTCGG	GGGGATGCCT	ATGTACCAGA	TTTCGCCAAG	CTATCCCTCT	ACCCATACGC	8031
TCCAAACCAT	ACAGGATGTT	CTGACCCTGC	GCAAGCCTTT	CTATCTATTA	GGCACCTATG	8091
CCTGGATGCT	TTTTGCCATG	ATGGGAGGGT	TCTTTCTTTT	CCTTAGATCG	CTTCGAATCA	8151
GGATTTTGCC	GGCAGTCATA	GGCTCCATCG	CATGGGCCTT	TTCTTCCTAC	TTCCTGATTC	8211
TGATTATGGC	CGGACATATA	TGGAAGCTGA	CAGCTATGTG	TTTTATTCCT	CCTACTCTTG	8271
CCGGTATGAT	CTGGATCTAC	AATGGGAGGT	GGTTGGCAGG	CGGTAGCGTG	ATGGCTTTTT	8331
TCACGGCTTT	GCAAGTCTTG	GCTAATCATG	TACAGATGAG	CTATTACTTC	CTGTTCGTCA	8391
TGTTTTTCAT	GGTGTTGGCT	TTCTTGGCAG	AAGCCATTCA	AACAAAACGA	ATCCGACACT	8451
TCTTCCTTTC	CTCGGCAGTA	GTCGTCATAG	CAGGTCTGGT	GGGTATAGCT	GTGAATAGTA	8511
CCAACCTCTT	CCACACCTAC	CAATACGGCA	AAGAGACCAT	GCGTGGAGGT	AGCGAACTGA	8571
CGCTCAAGCA	GAGCGGAGCA	CCCACGGATC	AAGTGACGCA	TGAGAATAAA	AGCGGACTGG	8631
ACAAGGCCT						8640

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1687 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Met Ala Phe Ala Gln Gln Thr Glu Leu Gly Arg Asn Pro Asn Val Arg
1 10 15

Leu Leu Glu Ser Thr Gln Gln Ser Val Thr Lys Val Gln Phe Arg Met 20 25 30

Asp Asn Leu Lys Phe Thr Glu Val Gln Thr Pro Lys Gly Met Ala Gln 35 40

Val Pro Thr Tyr Thr Glu Gly Val Asn Leu Ser Glu Lys Gly Met Pro 50 55 60

Thr Leu Pro Ile Leu Ser Arg Ser Leu Ala Val Ser Asp Thr Arg Glu
65 70 75 80

Met Lys Val Glu Val Val Ser Ser Lys Phe Ile Glu Lys Lys Asn Val 85 90 95

Leu Ile Ala Pro Ser Lys Gly Met Ile Met Arg Asn Glu Asp Pro Lys
100 105 110

Lys Ile Pro Tyr Val Tyr Gly Lys Ser Tyr Ser Gln Asn Lys Phe Phe 115 120 125

Pro Gly Glu Ile Ala Thr Leu Asp Asp Pro Phe Ile Leu Arg Asp Val 130 135 140

Arg 145	Gly	Gln	Val	Val	Asn 150	Phe	Ala	Pro	Leu	Gln 155		Asn	Pro	Val	Th:
Lys	Thr	Leu	Arg	Ile 165		Thr	Glu	Ile	Thr 170		Ala	Val	Ser	Glu 175	
Ser	Glu	Gln	Gly 180		Asn	Ile	Leu	Asn 185	Lys	Lys	Gly	Thr	Phe 190		Gl
Phe	Glu	Asp 195	Thr	Tyr	Lys	Arg	Met 200		Met	Asn	Tyr	Glu 205	Pro	Gly	Arc
Tyr	Thr 210	Pro	Val	Glu	Glu	Lys 215	Gln	Asn	Gly	Arg	Met 220	Ile	Val	Ile	Va]
Ala 225	Lys	Lys	Tyr	Glu	Gly 230	Asp	Ile	Lys	Asp	Phe 235	Val	Asp	Trp	Lys	Asi 240
Gln	Arg	Gly	Leu	Arg 245	Thr	Glu	Val	Lys	Val 250	Ala	Glu	Asp	Ile	Ala 255	Ser
Pro	Val	Thr	Ala 260	Asn	Ala	Ile	Gln	Gln 265	Phe	Val	Lys	Gln	Glu 270	Tyr	Glu
Lys	Glu	Gly 275	Asn	Asp	Leu	Thr	Tyr 280	Val	Leu	Leu	Val	Gly 285	Asp	His	Lys
Asp	11e 290	Pro	Ala	Lys	Ile	Thr 295	Pro	Gly	Ile	Lys	Ser 300	Asp	Gln	Val	Tyr
Gly 305	Gln	Ile	Val	Gly	Asn 310	Asp	His	Tyr	Asn	Glu 315	Val	Phe	Ile	Gly	Arg 320
				325					Lys 330				_	335	
			340					345	Glu				350	_	
		355					360		Gly			365			_
	370					375			Ile		380				
385					390				Tyr	395					400
				405					Gly 410					415	_
			420					425	Gly				430		
		435					440		Asn			445			
	450					455			Leu		460				
Ala 465	Glu	Ala	Leu	Met	Arg 470	Ala	Gln	Lys	Asp	Gly 475	Lys	Pro	Thr	Gly	Thr 480

Val Ala Ile Ile Ala Ser Thr Ile Asn Gln Ser Trp Ala Ser Pro Met Arg Gly Gln Asp Glu Met Asn Glu Ile Leu Cys Glu Lys His Pro Asn 505 Asn Ile Lys Arg Thr Phe Gly Gly Val Thr Met Asn Gly Met Phe Ala Met Val Glu Lys Tyr Lys Lys Asp Gly Glu Lys Met Leu Asp Thr Trp Thr Val Phe Gly Asp Pro Ser Leu Leu Val Arg Thr Leu Val Pro Thr Lys Met Gln Val Thr Ala Pro Ala Gln Ile Asn Leu Thr Asp Ala Ser Val Asn Val Ser Cys Asp Tyr Asn Gly Ala Ile Ala Thr Ile Ser Ala Asn Gly Lys Met Phe Gly Ser Ala Val Val Glu Asn Gly Thr Ala Thr 595 600 605 Ile Asn Leu Thr Gly Leu Thr Asn Glu Ser Thr Leu Thr Leu Thr Val Val Gly Tyr Asn Lys Glu Thr Val Ile Lys Thr Ile Asn Thr Asn Gly Glu Pro Asn Pro Tyr Gln Pro Val Ser Asn Leu Thr Ala Thr Thr Gln 650 Gly Gln Lys Val Thr Leu Lys Trp Asp Ala Pro Ser Thr Lys Thr Asn 665 Ala Thr Thr Asn Thr Ala Arg Ser Val Asp Gly Ile Arg Glu Leu Val 680 Leu Leu Ser Val Ser Asp Ala Pro Glu Leu Leu Arg Ser Gly Gln Ala Glu Ile Val Leu Glu Ala His Asp Val Trp Asn Asp Gly Ser Gly Tyr Gln Ile Leu Leu Asp Ala Asp His Asp Gln Tyr Gly Gln Val Ile Pro Ser Asp Thr His Thr Leu Trp Pro Asn Cys Ser Val Pro Ala Asn Leu Phe Ala Pro Phe Glu Tyr Thr Val Pro Glu Asn Ala Asp Pro Ser Cys 760 Ser Pro Thr Asn Met Ile Met Asp Gly Thr Ala Ser Val Asn Ile Pro 775 Ala Gly Thr Tyr Asp Phe Ala Ile Ala Ala Pro Gln Ala Asn Ala Lys Ile Trp Ile Ala Gly Gln Gly Pro Thr Lys Glu Asp Asp Tyr Val Phe 810

- Glu Ala Gly Lys Lys Tyr His Phe Leu Met Lys Lys Met Gly Ser Gly 820 825 830
- Asp Gly Thr Glu Leu Thr Ile Ser Glu Gly Gly Gly Ser Asp Tyr Thr 835 840 845
- Tyr Thr Val Tyr Arg Asp Gly Thr Lys Ile Lys Glu Gly Leu Thr Ala 850 860
- Thr Thr Phe Glu Glu Asp Gly Val Ala Thr Gly Asn His Glu Tyr Cys 875 880
- Val Glu Val Lys Tyr Thr Ala Gly Val Ser Pro Lys Val Cys Lys Asp 885 890 895
- Val Thr Val Glu Gly Ser Asn Glu Phe Ala Pro Val Gln Asn Leu Thr 900 905 910
- Gly Ser Ala Val Gly Gln Lys Val Thr Leu Lys Trp Asp Ala Pro Asn 915 920 925
- Gly Thr Pro Asn Pro Asn Pro Asn Pro Asn Pro Asn Pro Gly 930 935 940
- Thr Thr Leu Ser Glu Ser Phe Glu Asn Gly Ile Pro Ala Ser Trp 945 950 955 960
- Lys Thr Ile Asp Ala Asp Gly Asp Gly His Gly Trp Lys Pro Gly Asn 965 970 975
- Ala Pro Gly Ile Ala Gly Tyr Asn Ser Asn Gly Cys Val Tyr Ser Glu 980 985 990
- Ser Phe Gly Leu Gly Gly Ile Gly Val Leu Thr Pro Asp Asn Tyr Leu 995 1000 1005
- Ile Thr Pro Ala Leu Asp Leu Pro Asn Gly Gly Lys Leu Thr Phe Trp 1010 1015 1020
- Val Cys Ala Gln Asp Ala Asn Tyr Ala Ser Glu His Tyr Ala Val Tyr 1025 1030 1035 1040
- Ala Ser Ser Thr Gly Asn Asp Ala Ser Asn Phe Thr Asn Ala Leu Leu 1045 1050 1055
- Glu Glu Thr Ile Thr Ala Lys Gly Val Arg Ser Pro Glu Ala Ile Arg 1060 1065 1070
- Gly Arg Ile Gln Gly Thr Trp Arg Gln Lys Thr Val Asp Leu Pro Ala 1075 1080 1085
- Gly Thr Lys Tyr Val Ala Phe Arg His Phe Gln Ser Thr Asp Met Phe 1090 1095 1100
- Tyr Ile Asp Leu Asp Glu Val Glu Ile Lys Ala Asn Gly Lys Arg Ala 1105 1110 1115 1120
- Asp Phe Thr Glu Thr Phe Glu Ser Ser Thr His Gly Glu Ala Pro Ala 1125 1130 1135
- Glu Trp Thr Thr Ile Asp Ala Asp Gly Asp Gly Gln Gly Trp Leu Cys
 1140 1145 1150

- Leu Ser Ser Gly Gln Leu Asp Trp Leu Thr Ala His Gly Gly Thr Asn 1155 1160 1165
- Val Val Ala Ser Phe Ser Trp Asn Gly Met Ala Leu Asn Pro Asp Asn 1170 1175 1180
- Tyr Leu Ile Ser Lys Asp Val Thr Gly Ala Thr Lys Val Lys Tyr Tyr 1185 1190 1195 1200
- Tyr Ala Val Asn Asp Gly Phe Pro Gly Asp His Tyr Ala Val Met Ile 1205 1210 1215
- Ser Lys Thr Gly Thr Asn Ala Gly Asp Phe Thr Val Val Phe Glu Glu 1220 1225 1230
- Thr Pro Asn Gly Ile Asn Lys Gly Gly Ala Arg Phe Gly Leu Ser Thr 1235 1240 1245
- Glu Ala Asn Gly Ala Lys Pro Gln Ser Val Trp Ile Glu Arg Thr Val 1250 1260
- Asp Leu Pro Ala Gly Thr Lys Tyr Val Ala Phe Arg His Tyr Asn Cys 1265 1270 1275 1280
- Ser Asp Leu Asn Tyr Ile Leu Leu Asp Asp Ile Gln Phe Thr Met Gly
 1285 1290 1295
- Gly Ser Pro Thr Pro Thr Asp Tyr Thr Tyr Thr Val Tyr Arg Asp Gly
 1300 1305 1310
- Thr Lys Ile Lys Glu Gly Leu Thr Glu Thr Thr Phe Glu Glu Asp Gly 1315 1320 1325
- Val Ala Thr Gly Asn His Glu Tyr Cys Val Glu Val Lys Tyr Thr Ala 1330 1335 1340
- Gly Val Ser Pro Lys Glu Cys Val Asn Val Thr Ile Asn Pro Thr Gln 1345 1350 1355 1360
- Phe Asn Pro Val Lys Asn Leu Lys Ala Gln Pro Asp Gly Gly Asp Val 1365 1370 1375
- Val Leu Lys Trp Glu Ala Pro Ser Ala Lys Lys Thr Glu Gly Ser Arg 1380 1385 1390
- Glu Val Lys Arg Ile Gly Asp Gly Leu Phe Val Thr Ile Glu Pro Ala 1395 1400 1405
- Asn Asp Val Arg Ala Asn Glu Ala Lys Val Val Leu Ala Ala Asp Asn 1410 1415 1420
- Val Trp Gly Asp Asn Thr Gly Tyr Gln Phe Leu Leu Asp Ala Asp His 1425 1430 1435 1440
- Asn Thr Phe Gly Ser Val Ile Pro Ala Thr Gly Pro Leu Phe Thr Gly 1445 1450 1455
- Thr Ala Ser Ser Asn Leu Tyr Ser Ala Asn Phe Glu Tyr Leu Ile Pro 1460 1465 1470
- Ala Asn Ala Asp Pro Val Val Thr Thr Gln Asn Ile Ile Val Thr Gly 1475 1480 1485

- Gln Gly Glu Val Val Ile Pro Gly Gly Val Tyr Asp Tyr Cys Ile Thr 1490 1495 1500
- Asn Pro Glu Pro Ala Ser Gly Lys Met Trp Ile Ala Gly Asp Gly Gly 1505 1510 1515 1520
- Asn Gln Pro Ala Arg Tyr Asp Asp Phe Thr Phe Glu Ala Gly Lys Lys 1525 1530 1535
- Tyr Thr Phe Thr Met Arg Arg Ala Gly Met Gly Asp Gly Thr Asp Met 1540 1550
- Glu Val Glu Asp Asp Ser Pro Ala Ser Tyr Thr Tyr Thr Val Tyr Arg 1555 1560 1565
- Asp Gly Thr Lys Ile Lys Glu Gly Leu Thr Glu Thr Thr Tyr Arg Asp 1570 1580
- Ala Gly Met Ser Ala Gln Ser His Glu Tyr Cys Val Glu Val Lys Tyr 1585 1590 1595 1600
- Ala Ala Gly Val Ser Pro Lys Val Cys Val Asp Tyr Ile Pro Asp Gly
 1605 1610 1615
- Val Ala Asp Val Thr Ala Gln Lys Pro Tyr Thr Leu Thr Val Val Gly
 1620 1625 1630
- Lys Thr Ile Thr Val Thr Cys Gln Gly Glu Ala Met Ile Tyr Asp Met 1635 1640 1645
- Asn Gly Arg Arg Leu Ala Ala Gly Arg Asn Thr Val Val Tyr Thr Ala 1650 1660
- Gln Gly Gly Tyr Tyr Ala Val Met Val Val Val Asp Gly Lys Ser Tyr 1665 1670 1675 1680
- Val Glu Lys Leu Ala Val Lys 1685

Claims

1	1. A method for the detection of evidence of periodontal disease in human or animal tissue
2	or fluid samples, said method comprising contacting said sample with a DNA probe wherein said
3	probe comprises a detectable single-stranded DNA having a nucleotide sequence sufficiently
4	homologous with the DNA of Porphyromonas gingivalis so that the DNA of the probe specifically
5	and selectively hybridizes with the DNA of said bacteria for detection of said probe bound to said
6	homologous DNA.
1	2. The method, according to claim 1, wherein said DNA probe comprises a nucleotide
2	sequence selected from the group consisting of SEQ ID NO. 11, SEQ ID NO. 15, SEQ ID NO. 17,
3	SEQ ID NO. 19, SEQ ID NO. 21, and SEQ ID NO. 23, or a fragment of variant thereof, said
4	fragment or variant having sufficient homology with said sequences to specifically and selectively
5	hybridize thereto.
1	3. The method, according to claim 1, wherein said DNA probe comprises a nucleotide
2	sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ
3	ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 13, SEQ ID NO. 25, and SEQ ID NO. 28, or a fragment or
4	variant thereof.
1	4. The method, according to claim 2, wherein said nucleotide sequence encodes a
2	polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO. 12,
3	SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, and SEQ ID NO. 24, or a
4	fragment or variant thereof.
1	5. A Porphyromonas gingivalis gene encoding a polypeptide, said polypeptide having an
2	amino acid sequence selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID
3	NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ
4	ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 26, SEQ ID NO. 27, and SEQ ID NO. 29, or a fragment
5	or variant thereof.

6. The gene, according to claim 3, said gene comprising the nucleotide sequence selected

from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 7, SEQ

ì

3	ID NO. 9, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21,
4	SEQ ID NO. 25, and SEQ ID NO. 28, or a fragment or variant thereof.
1	7. A host cell transformed with a Porphyromonas gingivalis gene which encodes a
2	Porphyromonas gingivalis antigen, said gene selected from the group consisting of SEQ ID NO.
3	1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 13, SEQ ID NO.
4	15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 25, and SEQ ID NO. 28, or a
5	fragment or variant thereof.
1	8. The recombinant cell, according to claim 7, which has all of the identifying characteristics
2	of ATCC 67733.
1	9. The recombinant cell, according to claim 7, which has all the identifying characteristics
2	of ATCC 67734.
1	10. A polypeptide wherein said polypeptide has an amino acid sequence selected from the
2	group consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO.
3	10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID
4	NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 27, and SEQ ID NO. 29, or a fragment or
5	variant thereof.
1	11. A method for detecting the presence of anti-Porphyromonas gingivalis antibodies in
2	a biological fluid sample, said method comprising
3	(a) contacting the sample with whole transformed host cell or cell lysate, wherein said
4	cell expresses Porphyromonas gingivalis-specific antigens, said contacting done
5	under conditions compatible with specific antigen/antibody immunocomplex
6	formation between said expressed antigens and antibodies present in the sample;
7	and
8	(b) detecting immunocomplex formation by means of a label to thereby detect the
9	presence of Porphyromonas gingivalis antibodies in the sample.
1	12. The method, according to claim 11, wherein said Porphyromonas gingivalis antigen
2	expressed by the host cell or cell lysate is a polypeptide having the amino acid sequence selected
2	from the arrangement of SEO ID NO. 2, SEO ID NO. 4, SEO ID NO. 6, SEO ID NO. 8, SEO

4	ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20,
	SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 27, and SEQ ID NO. 29, or a
_	fragment or variant thereof.

- 13. The method, according to claim 11, wherein said *Porphyromonas gingivalis* antigen is encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, and SEQ ID NO. 28, or a fragment or variant thereof.
 - 14. A method for vaccinating a susceptible human or animal host to confer immunity to periodontal disease, said method comprising administering an immunizing amount of a transformed host cell or cell lysate, or a product of a transformed host cell, wherein said cell has been transformed with a DNA fragment which encodes an amino acid sequence selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 27, and SEQ ID NO. 29, or a fragment or variant thereof.
 - 15. The method, according to claim 14, wherein said DNA fragment has the nucleotide sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 7, SEQ ID NO. 9, SEQ ID NO. 11, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21, SEQ ID NO. 23, SEQ ID NO. 25, and SEQ ID NO. 28, or a fragment or variant thereof.
 - 16. A vaccine for conferring immunity to periodontal disease on a susceptible human or animal host, said vaccine comprising an immunizing amount of a DNA sequence, a host cell transformed with said DNA sequence, or a product or lysate of said transformed host cell, wherein said DNA sequence encodes an amino acid sequence selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8 SEQ ID NO. 10, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, and SEQ ID NO. 29, or a fragment or variant thereof.
- 17. The vaccine, according to claim 16, wherein said DNA sequence is sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, SEQ ID NO. 7, SEQ

1

2

3

4

5 6

3	ID NO. 9, SEQ ID NO. 13, SEQ ID NO. 15, SEQ ID NO. 17, SEQ ID NO. 19, SEQ ID NO. 21,
4	SEQ ID NO. 25, and SEQ ID NO. 28, or a fragment or variant thereof.

- 18. The vaccine, according to claim 16, wherein said transformed host cells are Salmonella.
- 19. A monoclonal antibody reagent useful in determining the presence of a periodontal pathogen, said reagent comprising at least one monoclonal antibody species-specific to *Porphyromonas gingivalis*, wherein said monoclonal antibody specifically and selectively binds to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6, SEQ ID NO. 8, SEQ ID NO. 10, SEQ ID NO. 12, SEQ ID NO. 14, SEQ ID NO. 16, SEQ ID NO. 18, SEQ ID NO. 20, SEQ ID NO. 22, SEQ ID NO. 24, SEQ ID NO. 26, SEQ ID NO. 27, and SEQ ID NO. 29, or a fragment or variant thereof.
- 20. A kit for detecting evidence of periodontal disease, wherein said kit comprises a Porphyromonas gingivalis-specific component selected from the group consisting of the hagA, hagB, hagC, hagD gene, or prtP, a polypeptide product of said gene, and an antibody to said polypeptide gene product.

BNSDOCID: <WO_____9617936A2_I_>

BNSDOCID: <WO_____9617936A2_I_>

BNSDOCID: <WO_____9617936A2_1_>

THIS PAGE BLANK (USPTO)

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/31, C12Q 1/68, C12N 15/57, 1/21, 9/52, C07K 14/195, G01N 33/569, A61K 39/02, C07K 16/12

A3

(11) International Publication Number:

WO 96/17936

(43) International Publication Date:

13 June 1996 (13.06.96)

(21) International Application Number:

PCT/US95/16108

(22) International Filing Date:

11 December 1995 (11.12.95)

(30) Priority Data:

08/353,485

US 9 December 1994 (09.12.94)

wanchik, Suite A-1, 2421 N.W. 41st Street, Gainesville, FL 32606-6669 (US).

(74) Agents: WHITLOCK, Ted, W. et al.; Saliwanchik & Sali-

(71) Applicants: UNIVERSITY OF FLORIDA [US/US]; 186 Grinter Hall, Gainesville, FL 32611 (US). UAB RESEARCH FOUNDATION [US/US]; 1120 G Administration Building,

701 20th Street South, Birmingham, AL 35294 (US).

(72) Inventors: PROGULSKE-FOX, Ann; Route 2, Box 2495, Melrose, FL 32666 (US). TUMWASORN, Somying; 52/13 Soi Kasetsart 2, Paholyothin 45, Bangkhon, Bangkok 10900 (TH). LEPINE, Guylaine; Apartment #307, 323 Niagara Boulevard, Fort Erie, Ontario L2A 3H1 (CA). HAN, Naiming; Apartment #241, 309 S.W. 16th Avenue, Gainesville, FL 32601 (US). LANTZ, Marilyn; 6622 Greenridge Drive, Indianapolis, IN 46278 (US). PATTI, Joseph, M.; 2751 Prichard Court, Missouri City, TX 77459 (US).

(81) Designated States: AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW, SD, SZ, UG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 19 September 1996 (19.09.96)

(54) Title: CLONED PORPHYROMONAS GINGIVALIS GENES AND PROBES FOR THE DETECTION OF PERIODONTAL DISEASE

(57) Abstract

DNA fragments from Porphyromonas gingivalis which express hemagglutinin/proteases that elicit anti-P. gingivalis immunologic responses are described. Microorganisms, genetically modified to express P. gingivalis antigens, are provided. Also disclosed are probes, vaccines, and monoclonal antibodies for the detection and prevention of periodontal disease.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

• •				MR	Mauritania
AT	Austria	GB	United Kingdom	MW	Malawi
AU	Australia	GE	Georgia	NE	Niger
BB	Barbados	GN	Guinea	NL NL	Netherlands
BE	Belgium	GR	Greece .		Norway
BF	Burkina Faso	HU	Hung u y	NO	New Zealand
BG	Bulgaria	1E	Ireland	NZ	
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JР	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
	Canada	KG	Kyrgystan	RU	Russian Federation
CA	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CF			of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SI	Slovenia
CH	Switzerland	KZ	Kazakhsian	SK	Slovakia
CI	Côte d'Ivoire	ü	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	TD	Chad
CN	China	LU	Luxembourg	TG	Togo
CS	Czechoslovakia	LV	Larvia	TJ	Tajikistan
CZ	Czech Republic	MC	Monaco	TT	Trinidad and Tobago
DE	Germany		Republic of Moldova	UA	Ukraine
DK	Denmark	MD	Madagascar	US	United States of America
ES	Spain	MG	Mali	UZ	Uzbekistan
Fl	Finland	ML		VN	Viet Nam
FR	Prance	MN	Mongolia		
GA	Gabon				

PC1/US 95/16108

A. CLASSIFICATION OF SUBJECT MATTER 1PC 6 C12N15/31 C12Q1/68 C12N15/57 C12N1/21 C12N9/52 C07K14/195 G01N33/569 A61K39/02 C07K16/12 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ' Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X 94TH GENERAL MEETING OF THE AMERICAN 5-7,10, SOCIETY FOR MICROBIOLOGY, LAS VEGAS, NEVADA, USA, MAY 23-27, 1994. ABSTRACTS OF THE GENERAL MEETING OF THE AMERICAN SOCIETY FOR MICROBIOLOGY 94 (0). 1994. 116. ISSN: 1060-2011, XP002002602 LEPINE G ET AL 'Cloning and characterization of a fourth putative hemagglutinin gene from Porphyromonas gingivalis. Y see abstract D-117 11-18,20 -/--Further documents are listed in the continuation of box C. X X Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance IDACUPAUT "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 14 May 1996 **0** 7. 08. 96 Name and mailing address of the ISA Authorized office European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Ripswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 VAN DER SCHAAL C.A.

Form PCT/ISA/210 (second sheet) (July 1992)

Inter neal Application No PC1/US 95/16108

	DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
alegory *	Citation of document, with indication, where appropriate, or all little of	
Υ	INFECTION AND IMMUNITY, vol.62, no.10, October 1994, WASHINGTON US pages 4279 - 4286, XP002002603	1-4
A	H. FLETCHER ET AL 'Cloning and characterization of a new protease gene (prtH) from Porphyromonas gingivalis' see the whole document	5-7,10
P,Y	BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS,	1-4
	vol.207, no.1, 6 February 1995, ORLANDO, FL US pages 424 - 431, XP002002604 L. KIRSZBAUM ET AL 'Complete nucleotide sequence of a gene prtR of Porphyromonas gingivalis W50 encoding a 132kDa protein	
Y	see figure 1 & EMBL/Genbank DATABASES, Accession no L26341	1-4
P,Y	JOURNAL OF BIOLOGICAL CHEMISTRY, vol.270, no.3, 20 January 1995, MD US pages 1007 - 1010, XP002002605 N. PAVLOFF ET AL 'Molecular cloning and structural characterization of the Arg-gingipain proteinase of Porphyromonas gingivalis'	1-4
Y	see the whole document & EMBL/Genbank DATABASES Accession no U15282	1-4
Y	G.KELLER AND M.MANAK 'DNA Probes', STOCKTON PRESS, XP0002002607 see page 525 - page 564	1-4
Y	INFECTION AND IMMUNITY, vol.62, no.5, May 1994, WASHINGTON US pages 1652 - 1657, XP002002606 D. DUSEK ET AL 'Systemic and mucosal immune responses in mice orally immunized with avirulent Salmonella typhimurium expressing a clined Porphyromonas gingivalis hemagglutinin' see the whole document	11-18,20
A	ORAL MICROBIOL. IMMUNOL., vol.4, 1989 pages 121 - 131, XP000568734 A. PROGULSKY-FOX 'The expression and function of a Bacteroides gingivalis hemagglutinin gene in E. coli' see the whole document	5-7,10
	-/	1

Inter Tail Application No
PCT/US 95/16198

C.(Continuet	ion) DOCUMENTS CONSIDERED TO BE RELEVANT	br1/02 32/19198
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Ρ,Υ	WO,A,95 07286 (UNIV GEORGIA) 16 March 1995 see the whole document	1-4, 11-18
	·	

3

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No.

PCT/US 95/ 16108

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This i	international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 14 and 15 are directed to a method of treatment of the human body the search has been carried out and based on the alleged effects of the compound.
2. [Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Bo	x 11 Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
Th	is International Searching Authority found multiple inventions in this international application, as follows: For further information please see enclosed form!
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
	A. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-7,10-20 partially
	Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA.210 (continuation of first sheet (1)) (July 1992)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/210

- 1. Claims 1-7 10-20 partially: HagD, gene encoding the polypeptide, antibodies against the hemagglutinin and use of the gene or fragments thereof or of cells expressing the gene in methods for the detection of Porhyromonas gingivalis or antibodies against the microorganism or as vaccine.
- 2. Claims 1-7 10-20 partially: PrtP, gene encoding the polypeptide, antibodies against the protease and use of the gene or fragments thereof or of cells expressing the gene in methods for the detection of Porphyromonas gingivalis or antibodies against the microorganism or as vaccine.
- 3. Claims 1-7 10-19 partially: HagE, gene encoding the polypeptide, antibodies against the protease and use of the gene or fragments thereof or of cells expressing the gene in methods for the detection of Porphyromonas gingivalis or antibodies against the microorganism or as vaccine.
- 4. Claims 8 completely, 1-7, 10-20 partially: HagA, gene encoding the polypeptide, antibodies against the hemagglutinin and use of the gene or fragments thereof or of cells expressing the gene in methods for the detection of Porphyromonas gingivalis or antibodies against the microorganism or as vaccine.
- 5. Claims 9 completely, 1 3 5-7 10-20 partially: HagB, gene encoding the polypeptide, antibodies against the hemagglutinin and use of the gene or fragments thereof or of cells expressing the gene in methods for the detection of Porphyromonas gingivalis or antibodies against the microorganism or as vaccine.
- 6. Claims 1 3 5-7 10-20 partially: HagC, gene encoding the polypeptide, antibodies against the hemagglutinin and use of the gene or fragments thereof or of cells expressing the gene in methods for the detection of Porphyromonas gingivalis or antibodies against the microorganism or as vaccine.

It is to be noted that the different subjects mentioned above contain in principle, due to the fact that some of the polypeptides have already been disclosed, further separate inventions. However taking into account the balance between necessary search effort and the levying of additional fees, the ISA has regrouped the different claimed inventions on the basis of the 6 different proteins.

information on patent family members

Inter mal Application No PCT/US 95/16108

Patent document cited in search report	Publication date	Patent memi		Publication date
WO-A-9507286	16-03-95	US-A- US-A- EP-A- WO-A-	5523390 5475097 0717747 9511298	04-06-96 12-12-95 26-06-96 27-04-95

Form PCT/ISA/218 (patent family annex) (July 1992)