

Pemilihan

Team Teaching Dasar Pemrograman 2025

Tujuan Pembelajaran

- Mahasiswa mampu memahami struktur kontrol pemilihan
- Mahasiswa mampu menyelesaikan permasalahan sederhana menggunakan if, if-else, switch-case, dan nested if

Contoh Pemilihan dalam Kehidupan

 Ketika kita akan melakukan pembayaran, keberadaan dompet adalah kondisi. Cara kita membayar (cash atau e-wallet) adalah aksi yang dipilih berdasarkan kondisi tersebut.

Definisi Pemilihan

- Pemilihan (selection) adalah instruksi untuk menentukan aksi berdasarkan suatu kondisi.
- Kondisi adalah ekspresi logika yang bernilai BENAR (True) atau SALAH (False).

Contoh Pemilihan dalam Program

- Program tidak selalu berjalan berurutan (sekuensial).
- Program juga bisa berjalan berdasarkan kondisi tertentu.
- Contoh: Login

 kondisi username & password

Struktur Pemilihan di Java

- Dalam kehidupan sehari-hari, kita sering mengambil keputusan berdasarkan kondisi.
- Dalam pemrograman, keputusan tersebut dituliskan dengan struktur pemilihan.
- Struktur pemilihan di Java terdiri dari:
 - a. IF
 - b. IF-ELSE
 - c. IF-ELSE IF-ELSE
 - d. SWITCH-CASE
 - e. Nested IF
 - f. Ternary Operator (?:)

Struktur Pemilihan IF

Struktur Pemilihan IF

Sintaks pada Java:

```
if (kondisi)
{
    Pernyataan;
}
```

- Jika kondisi bernilai BENAR, maka pernyataan akan dieksekusi.
- Sebaliknya, jika kondisi bernilai SALAH, maka pernyataan tidak akan diekseskusi.

Contoh Penggunaan IF


```
if (isLogin) {
  Print("Selamat datang di SIAKAD")
}
```

```
if ( nilai nilai )

Operator Relasional
```

```
if (waktuPengumpulan <= deadline ) {
   Print("Tugas dikumpulkan tepat waktu")
}</pre>
```


Flowchart dan Pseudocode IF

IF (**kondisi**) THEN
Pernyataan
END IF

Struktur Pemilihan IF-ELSE

Struktur Pemilihan IF-ELSE

Sintaks pada Java:

```
if (kondisi)
{
    Pernyataan-1;
}
else
{
    Pernyataan-2;
}
```

- Struktur pemilihan IF-ELSE memiliki dua pernyataan.
- Jika kondisi bernilai BENAR atau terpenuhi, maka Pernyataan-1 akan dieksekusi.
- Namun, jika kondisi bernilai SALAH, maka Pernyataan-2 yang akan dieksekusi.

Contoh Penggunaan IF-ELSE

```
if (isLogin) {
  Print("Selamat datang di SIAKAD")
} else {
  Print("Login gagal, silahkan coba lagi")
}
```

```
if (waktuPengumpulan <= deadline ) {
   Print("Tugas dikumpulkan tepat waktu")
} else {
   Print("Tugas terlambat!")
}</pre>
```


Flowchart dan Pseudocode IF-ELSE


```
IF (kondisi) THEN
Pernyataan-1
ELSE
Pernyataan-2
END IF
```


Struktur Pemilihan IF-ELSE IF-ELSE

Contoh Pemilihan dengan Banyak Kondisi

lisi

Saat berkendara menuju kampus, kita sering bertemu lampu lalu lintas

Setiap warna lampu adalah **kondisi**, aksi kita tergantung pada kondisi tersebut.

- Merah → Berhenti
- Hijau → Jalan terus
- Kuning → Bersiap, hati-hati

Dari contoh ini kita bisa lihat kalau tidak hanya ada dua kemungkinan, tapi ada beberapa kondisi yang berbeda. Dalam pemrograman, situasi seperti ini bisa ditangani dengan struktur **IF – ELSE IF – ELSE**.

Struktur Pemilihan IF-ELSE IF-ELSE

Sintaks pada Java:

```
(kondisi-1) {
    Pernyataan-1;
  else if (kondisi-2) {
    Pernyataan-2;
  else if (kondisi-3) {
    Pernyataan-3;
else{
    Pernyataan-x;
```

- Pernyataan-1 akan dieksekusi apabila kondisi-1 bernilai BENAR.
- Jlka kondisi-1 bernilai SALAH, maka kondisi-2 akan dicek. Jika kondisi-2 BENAR maka Pernyataan-2 dieksekusi, dst.
- Jika tidak ada satupun kondisi yang terpenuhi, maka Pernyataan-x akan dieksekusi.

Contoh Penggunaan IF-ELSE IF-ELSE


```
if (kendaraan == "mobil") {
 Print("Biaya parkir Rp 5.000")
} else if (kendaraan == "sepeda motor") {
 Print("Biaya parkir Rp 3.000")
} else if (kendaraan == "sepeda") {
 Print("Biaya parkir Rp 2.000")
} else {
 Print("Jenis kendaraan tidak dikenal")
```


Flowchart dan Pseudocode IF-ELSE IF-ELSE

Struktur Pemilihan SWITCH-CASE

Struktur Pemilihan SWITCH-CASE

Sintaks pada Java:

```
Switch (variabel) {
    case Konstanta-1:
    Pernyataan-1;
    break;
    case Konstanta-2
    Pernyataan-2;
    break;
    default;
    Pernyataan-x;
```

- Sintaks pemilihan ini menjalankan salah satu dari beberapa pernyataan case sesuai dengan nilai variabel yang ada di dalam switch.
- Proses akan dilanjutkan sampai ditemukan pernyataan break.
- Jika tidak ada nilai pada case yang sesuai dengan nilai kondisi, maka proses akan dilanjutkan ke pernyataan yang ada di dalam default.

Contoh Penggunaan SWITCH-CASE


```
switch (menu){
    case 1:
        Print ("Input Nilai")
        break
    case 2:
        Print ("Lihat Transkrip")
        break
    case 3:
        Print ("Cetak KRS")
        break
    default:
        Print ("Menu tidak valid")
```


Flowchart dan Pseudocode SWITCH-CASE

SWITCH (variabel)

CASE konstanta-1:

Pernyataan-1

CASE konstanta-2:

Pernyataan-2

DEFAULT:

Pernyataan-x

END SWITCH

Pada pseudocode, tidak perlu menuliskan **break**

Nested IF

Pemilihan Bersarang

- Pemilihan bersarang (NESTED IF) merupakan jenis pemilihan yang digunakan untuk mengambil keputusan dalam bentuk level (bertingkat)
- Di dalam suatu pernyataan IF (atau IF-ELSE) bisa saja terdapat pernyataan IF (atau IF-ELSE) yang lain

Struktur Pemilihan Nested-IF

Bentuk Umum:

```
(Kondisi-1) {
  if (Kondisi-2) {
      Pernyataan-1;
          (Kondisi-n) {
           Pernyataan-2;
        else {
           Pernyataan-3;
    else {
      Pernyataan-n;
else
  Pernyataan-x;
```

- Kondisi yang akan diseleksi pertama kali adalah kondisi IF yang berada di posisi terluar (Kondisi-1).
- Jika Kondisi-1 bernilai SALAH, maka pernyataan ELSE terluar (pasangan dari IF yang bersangkutan) yang akan diproses. Namun, jika pernyataan ELSE (pasangan dari IF) tidak ditulis, maka penyeleksian kondisi akan dihentikan.
- Jika ternyata **Kondisi-1** bernilai **BENAR**, maka kondisi berikutnya yang lebih dalam (Kondisi-2) akan diseleksi.
- Jika Kondisi-2 bernilai SALAH, maka pernyataan ELSE (pasangan dari IF yang bersangkutan) yang akan diproses. Namun, jika pernyataan ELSE (pasangan dari IF) tidak ditulis, maka penyeleksian kondisi akan dihentikan, dst. Dasar Pemrograman

Contoh Penggunaan Nested IF


```
(kondisi-1) THEN
    IF (kondisi-2) THEN
        Pernyataan-1
           (kondisi-n) THEN
            Pernyataan-2
        ELSE
            Pernyataan-3
        END IF
    ELSE
        Pernyataan-n
    END IF
ELSE
    Pernyataan-x
END IF
```


Memilih Struktur Pemilihan yang Tepat

- a. IF \rightarrow untuk kondisi sederhana
- b. IF-ELSE → jika ada dua kondisi
- c. IF-ELSE IF-ELSE -> jika ada banyak kategori (kondisi lebih dari dua)
- d. SWITCH-CASE → jika pilihan tetap dan jumlah banyak
- e. NESTED IF -> jika kondisi saling bertingkat

Ternary Operator

Ternary Operator (?:)

- Bentuk singkat dari IF-ELSE
- Hanya digunakan jika ada satu pernyataan untuk kondisi BENAR dan SALAH
- Sintaks:

```
(Kondisi) ? aksi_jika_benar : aksi_jika_salah
```

 Ternary operator hanya cara singkat di kode program. Dalam pseudocode/flowchart, tetap digunakan IF-ELSE

Contoh Penggunaan Ternary Operator

```
if (saldo >= 20000) {
   pesan = "Bisa beli kopi kekinian";
} else {
   pesan = "Saldo tidak cukup, top-up dulu";
}
```

Ternary Operator

```
pesan = (saldo >= 20000) ? "Bisa beli kopi kekinian" : "Saldo tidak cukup, top-up dulu";
```


Ekspresi Logika &&, | |, dan!

Ekspresi Logika dalam Pemilihan

- Kadang kita perlu lebih dari satu kondisi dalam struktur pemilihan.
- Operator logika:
 - a. && (AND): BENAR jika semua kondisi BENAR
 - b. | | (OR) : **BENAR** jika **salah satu** kondisi **BENAR**
 - c. ! (NOT) : membalik nilai kondisi

Contoh Penggunaan Ekspresi Logika

```
if (username == "mahasiswa" AND password == "pass"){
   Print ("Akses diterima")
} else {
   Print ("Akses ditolak")
}
```

```
OOO

if (!(nilai >= 70)) {
    Print ("Remidi")
}
```


Contoh Studi Kasus

Kasus 1

- Seorang mahasiswa ingin mencetak kartu ujian. Sistem harus mengecek status pembayaran UKT terlebih dahulu.
 - Jika UKT sudah dibayar → mahasiswa dapat mencetak kartu ujian.
 - Jika UKT belum dibayar → sistem menolak pencetakan dan menampilkan pesan "Bayar UKT terlebih dahulu".
- Buatlah flowchart dan pseudocode untuk menyelesaikan masalah tersebut!

Kasus 1 (Jawaban)

```
IF (UKT == "lunas") THEN
    Print "Cetak kartu ujian berhasil"

ELSE
    tampilkan "Bayar UKT terlebih dahulu"
END IF
```


Kasus 2

- Di gedung JTI lantai 7 terdapat mesin pemesanan minuman otomatis.
 Mahasiswa dapat memilih menu:
 - Pilih 1 → Cappuccino
 - Pilih 2 → Matcha
 - \circ Pilih 3 \rightarrow Oat milk
 - Pilih angka lain → Mencetak keterangan menu tidak tersedia
- Buatlah flowchart dan pseudocode untuk menyelesaikan masalah tersebut!

END SWITCH

Kasus 2 (Jawaban)

SWITCH (menu)

CASE 1:

Print "Cappuccino"

CASE 2:

Print "Matcha"

CASE 3:

Print "Oat milk"

DEFAULT:

Print "Menu tidak tersedia"

Kasus 3

- Sistem ujian online akan mengecek kelayakan mahasiswa untuk mengikuti ujian.
 - Jika presensi kehadiran < 75% → tampilkan "Tidak boleh ikut ujian".</p>
 - Jika presensi kehadiran ≥ 75%, maka dicek lagi nilai tugas:
 - Jika nilai tugas ≥ 60 → mahasiswa bisa ikut ujian.
 - Jika nilai tugas < 60 → tampilkan "Tidak boleh ikut ujian karena nilai tugas kurang".
- Buatlah flowchart dan pseudocode untuk menyelesaikan masalah tersebut!

TEKNOLOGI INFORMASI
POLITEKNIK NEGERI MALANG
KASUS 3 (Jawaban Flowchart)

Kasus 3 (Jawaban Pseudocode)

```
IF (kehadiran >= 75) THEN
    IF (nilaiTugas >= 60) THEN
        Print "Boleh ikut ujian"
    ELSE
        Print "Tidak boleh ikut ujian karena nilai tugas kurang"
    END IF
ELSE
        Print "Tidak boleh ikut ujian"
END IF
```


Latihan

- 1. Sistem perpustakaan kampus memberikan izin masuk dengan dua syarat:
 - Jika mahasiswa membawa kartu mahasiswa, atau sudah melakukan registrasi online, maka boleh masuk.
 - Jika tidak memenuhi salah satu dari dua syarat tersebut, maka ditolak masuk. Buatlah flowchart dan pseudocode untuk menyelesaikan masalah tersebut!
- 2. Di kampus tersedia layanan WiFi gratis yang hanya bisa diakses oleh civitas akademika. Sistem hotspot kampus akan melakukan pengecekan sebagai berikut:
 - Jika jenis pengguna adalah dosen, maka tampilkan "Akses WiFi diberikan (dosen)".
 - Jika jenis pengguna adalah mahasiswa, maka sistem akan memeriksa jumlah SKS yang diambil:
 - Jika SKS ≥ 12, maka tampilkan "Akses WiFi diberikan (mahasiswa aktif)".
 - Jika SKS < 12, maka tampilkan "Akses ditolak, SKS kurang dari 12".
 - Jika bukan mahasiswa maupun dosen, maka tampilkan "Akses ditolak". Buatlah flowchart dan pseudocode untuk menyelesaikan masalah tersebut!