Compton Streuung

Friedrich Schüßler, Volker Karle

April 24, 2015

Assistent: Kilian Rosbach

Was ist Compton Streuung?

Photonen streuen elastisch an freien Elektronen

Inhaltsverzeichnis

Einführung

Experimenteller Aufbau

Kalibrierung

Energieerhaltung

Differentieller Wirkungsquerschnitt

Appendix

Inhaltsverzeichnis

Einführung

Experimenteller Aufbau

Kalibrierung

Energieerhaltung

Differentieller Wirkungsquerschnitt

Appendix

Einführung

Inhaltsverzeichnis

Einführung

Experimenteller Aufbau

Kalibrierung

Energieerhaltung

Differentieller Wirkungsquerschnitt

Appendix

Foto des Aufbaus

Aufbau ohne Elektronik

Aufbau mit Elektronik

Zerfallsschemata von ¹³⁷Cs und ²²Na

Inhaltsverzeichnis

Einführung

Experimenteller Aufbau

Kalibrierung

Energieerhaltung

Differentieller Wirkungsquerschnitt

Appendix

Wie sieht ein Compton Peak aus?

Klein-Nishina Formel

$$\frac{d\sigma_{C}}{dE_{e,kin}} = \frac{\alpha^{2}\lambda_{e}^{2}}{16\pi^{3}m_{e}c^{2}} \frac{1}{a^{2}} \left(\frac{b^{2}}{a^{2}(a-b)^{2}} + \frac{(b-1)^{2}-1}{a(a-b)} \right)$$
(1)

mit
$$a := E_{\gamma}/m_e c^2$$

und $b := E_{e,kin}/m_e c^2$

Wie sieht ein Compton Peak aus? Klein-Nishina Formel!

Nal Szintillator, ¹³⁷Cs Probe, mit PVC

Nal Szintillator, ¹³⁷Cs Probe, mit PVC

Linearer fit für Nal Szintillator

Sichtbare Peaks und Kanten für beide Szintillisatoren

	Peak/Kante	E / keV	Nal / Channel	PVC / Channel
¹³⁷ Cs	Photo	662	8040.59 ± 0.03	
	Compton	477	5720 ± 4	178.9 ± 0.3
	Rückstreu	183	2510 ± 12	
²² Na	Photo	511	6347 ± 3	
	Compton	341	4000 ± 2000	108 ± 2
	Photo	1277	14180 ± 20	
	Compton	1064	12000 ± 4000	414 ± 4

Inhaltsverzeichnis

Einführung

Experimenteller Aufbau

Kalibrierung

Energieerhaltung

Differentieller Wirkungsquerschnitt

Appendix

Energieerhaltung

Elektronenergie gemessen mit dem PVC Szintillator für $\theta = 90^{\circ}$, koinzidente Schaltung

Elektronenergie gemessen mit dem PVC Szintillator für $\theta = 15^{\circ}$, koinzidente Schaltung

Energie gestreuter Photonen, gemessen mit dem Nal Szintillator für $\theta=30^{\circ}$, koinzidente Schaltung

Energieerhaltung

Figure: Name

Inhaltsverzeichnis

Einführung

Experimenteller Aufbau

Kalibrierung

Energieerhaltung

Differentieller Wirkungsquerschnitt

Appendix

Differentieller Wirkungsquerschnitt

Differentieller Wirkungsquerschnitt

Take home message

The benefits of science are not only material ones. The truths that science teaches are of common interest the world over. The language of science is universal, and is a powerful force in bringing the peoples of the world closer together.

Inhaltsverzeichnis

Einführung

Experimenteller Aufbau

Kalibrierung

Energieerhaltung

Differentieller Wirkungsquerschnitt

Appendix

Nal szintillator, ¹³⁷Cs Probe, ohne PVC

Kalibrierung Nal, ²²Na Probe (Messzeit 1h)

Kalibrierung PVC, ²²Na Probe (Messzeit 16.5h)

Kalibrierung PVC, ¹³⁷Cs Probe (Messzeit 6h)

Linearer fit, PVC

Hintergrund und zufaellige Koinzidenzen beim PVC Szintillator (Messzeit: 13.4h and 1h)

Hintergrund und zufaellige Koinzidenzen beim Nal Szintillator (Messzeit: 62h)

Energie gestreuter Photonen, gemessen mit dem Nal Szintillator für $\theta=105^{\circ}$, koinzidente Schaltung

