华为第一届领航杯应用数学大赛

低功耗自适应 FIR 滤波硬件算法

柴昊、李明昊、王熙元

复旦大学 南京大学

2023.9.20

目录

- 1 理论回顾
- 2 算法实现
- 3 硬件测试
- 4 致谢

理论回顾

算法复现

理论回顾 ○●

文章来源: reference1 reference2 reference3

主要内容: 使用经典加速

- AAA
- BBB
- CCC

DDDDDDD

算法实现

C++ 硬件算法

理论回顾

ADDDDAADDADADADADAD

AAA

测试方式

文件树 evaluation.h evaluation.cpp

硬件测试

数据表格

理论回顾

AAAAAA 数学公式 BBBBBBB

$$G_1(x) = p_0 + \dots + p_5 x^5$$
, $G_2(x) = f + (1 - f) e^{-N_2(1 - x)}$

从而

$$\begin{split} \widetilde{Z}(x) &= Q + (1-Q) \frac{G_1^{'}(T_1x + (1-T_1))G_2(T_2x + (1-T_2)) + N_2G_1(T_1x + (1-T_1))e^{-N_2T_2(1-x)}}{G_1^{'}(1) + N_2} \\ R_0 &= Q + (1-Q) \frac{T_1G_1^{''}(1) + (1-f)N_1N_2(T_1 + T_2) + (1-f)N_2^2T_2}{G_1^{'}(1) + N_2} \end{split}$$

$$R_0 = Q + (1 - Q) \frac{1 G_1(2) + (2 - M_1)^2 G_2(2) + 1}{G_1'(1) + N_2}$$

如下等表格。。。。

国家	R_0	P_{∞}	$Z(\mathbf{P}_{\infty})$
德国	2.81	0.0852	0.0855
西班牙	3.44	0.039	0.039
葡萄牙	3.4	0.04	0.04
巴西	3.82	0.026	0.026

理论回顾

主要技术优势。...

讨论

理论回顾

主要技术优势。。。

算法在硬件/通信芯片上的性能提示效率

报告结束 感谢聆听