Problem statement

predicting the house price in USA. To create a model to help him estimate of what the house would sell for.

```
In [1]: 1 import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
4 import seaborn as sns
In [2]: 1 df=pd.read_csv("world-data")
```

To display top 10 rows

In [3]: 1 df.head(10)

Out[3]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code	Capital/Major City	Co2- Emissions	 Out o pocke health expenditure
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.0	Kabul	8,672	 78.40%
1	Albania	105	AL	43.10%	28,748	9,000	11.78	355.0	Tirana	4,536	 56.90%
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.0	Algiers	150,006	 28.10%
3	Andorra	164	AD	40.00%	468	NaN	7.20	376.0	Andorra la Vella	469	 36.40%
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.0	Luanda	34,693	 33.40%
5	Antigua and Barbuda	223	AG	20.50%	443	0	15.33	1.0	St. John's, Saint John	557	 24.30%
6	Argentina	17	AR	54.30%	2,780,400	105,000	17.02	54.0	Buenos Aires	201,348	 17.60%
7	Armenia	104	AM	58.90%	29,743	49,000	13.99	374.0	Yerevan	5,156	 81.60%
8	Australia	3	AU	48.20%	7,741,220	58,000	12.60	61.0	Canberra	375,908	 19.60%
9	Austria	109	AT	32.40%	83,871	21,000	9.70	43.0	Vienna	61,448	 17.90%
10	rows × 25 or	alumna									

10 rows × 35 columns

Data Cleaning And Pre-Processing

In [4]: 1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 195 entries, 0 to 194
Data columns (total 35 columns):

#	Columns (total 35 columns):		Non-Null Count	Dtype
0	Country		195 non-null	 object
1	Density		195 HOH-HULL	object
(P/Kr	•	11	object	
2	Abbreviation	IUII	188 non-null	object
3	Agricultural Land(%)		188 non-null	object
4	Land Area(Km2)		194 non-null	object
5	Armed Forces size		171 non-null	object
6	Birth Rate		189 non-null	float64
7	Calling Code		194 non-null	float64
8	Capital/Major City		192 non-null	object
9	Co2-Emissions		188 non-null	object
10	CPI		178 non-null	object
11	CPI Change (%)		179 non-null	object
12	Currency-Code		180 non-null	object
13	Fertility Rate		188 non-null	float64
14	Forested Area (%)		188 non-null	object
15	Gasoline Price		175 non-null	object
16	GDP		193 non-null	object
17	Gross primary education enrollment (%)		188 non-null	object
18	Gross tertiary education enrollment (%))	183 non-null	object
19	Infant mortality		189 non-null	float64
20	Largest city		189 non-null	object
21	Life expectancy		187 non-null	float64
22	Maternal mortality ratio		181 non-null	float64
23	Minimum wage		150 non-null	object
24	Official language		194 non-null	object
25	Out of pocket health expenditure		188 non-null	object
26	Physicians per thousand		188 non-null	float64
27	Population		194 non-null	object
28	Population: Labor force participation ((%)	176 non-null	object
29	Tax revenue (%)		169 non-null	object
30	Total tax rate		183 non-null	object
31	Unemployment rate		176 non-null	object
32	Urban_population		190 non-null	object
33	Latitude		194 non-null	float64
34	Longitude		194 non-null	float64

dtypes: float64(9), object(26)

memory usage: 53.4+ KB

2 df.describe()

Out[5]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand	Latitude	Longitude
count	189.000000	194.000000	188.000000	189.000000	187.000000	181.000000	188.000000	194.000000	194.000000
mean	20.214974	360.546392	2.698138	21.332804	72.279679	160.392265	1.839840	19.092351	20.232434
std	9.945774	323.236419	1.282267	19.548058	7.483661	233.502024	1.684261	23.961779	66.716110
min	5.900000	1.000000	0.980000	1.400000	52.800000	2.000000	0.010000	-40.900557	-175.198242
25%	11.300000	82.500000	1.705000	6.000000	67.000000	13.000000	0.332500	4.544175	-7.941496
50%	17.950000	255.500000	2.245000	14.000000	73.200000	53.000000	1.460000	17.273849	20.972652
75%	28.750000	506.750000	3.597500	32.700000	77.500000	186.000000	2.935000	40.124603	48.281523
max	46.080000	1876.000000	6.910000	84.500000	85.400000	1150.000000	8.420000	64.963051	178.065032

```
In [6]: 1 # To display the col headings
```

2 df.columns

In [37]:

1 cols=df.dropna()
2 cols

Out[37]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code	Capital/Major City	Co2- Emissions	 O pc h expend
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.0	Kabul	8,672	 78
1	Albania	105	AL	43.10%	28,748	9,000	11.78	355.0	Tirana	4,536	 56
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.0	Algiers	150,006	 28
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.0	Luanda	34,693	 33
6	Argentina	17	AR	54.30%	2,780,400	105,000	17.02	54.0	Buenos Aires	201,348	 17
185	United Kingdom	281	GB	71.70%	243,610	148,000	11.00	44.0	London	379,025	 14
186	United States	36	US	44.40%	9,833,517	1,359,000	11.60	1.0	Washington, D.C.	5,006,302	 11
187	Uruguay	20	UY	82.60%	176,215	22,000	13.86	598.0	Montevideo	6,766	 16
191	Vietnam	314	VN	39.30%	331,210	522,000	16.75	84.0	Hanoi	192,668	 43
193	Zambia	25	ZM	32.10%	752,618	16,000	36.19	260.0	Lusaka	5,141	 27

110 rows × 35 columns

EDA and Visualization

In [10]: 1 sns.pairplot(df)

Out[10]: <seaborn.axisgrid.PairGrid at 0x22c06241fa0>

In [38]: 1 sns.displot(df['Birth Rate'])

Out[38]: <seaborn.axisgrid.FacetGrid at 0x22c0be40eb0>

Out[48]:

	Birth Rate	Calling Code	Latitude	Longitude
0	32.49	93.0	33.939110	67.709953
1	11.78	355.0	41.153332	20.168331
2	24.28	213.0	28.033886	1.659626
4	40.73	244.0	-11.202692	17.873887
6	17.02	54.0	-38.416097	-63.616672
185	11.00	44.0	55.378051	-3.435973
186	11.60	1.0	37.090240	-95.712891
187	13.86	598.0	-32.522779	-55.765835
191	16.75	84.0	14.058324	108.277199
193	36.19	260.0	-13.133897	27.849332

110 rows × 4 columns

To train the model - MODEL BUILD

Going to train linear regression model; We split our data into 2 variables x and y where x is independent var(input) and y is dependent on x(output), we could ignore address col as it is not required for our model

To split the dataset into test data

```
In [51]:
           1 # importing lib for splitting test data
           2 from sklearn.model_selection import train_test_split
           1 x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [52]:
In [53]:
           1 from sklearn.linear_model import LinearRegression
           3 lr=LinearRegression()
           4 lr.fit(x_train,y_train)
Out[53]: LinearRegression()
In [54]:
           1 print(lr.intercept )
         [-3.55271368e-15]
In [55]:
           1 print(lr.score(x_test,y_test))
         1.0
In [56]:
           1 coeff=pd.DataFrame(lr.coef_)
           2 coeff
Out[56]:
                                    2
                         1
                                                3
```

0 1.0 2.756087e-17 -8.430790e-17 2.977896e-18

```
In [57]:
           1 pred = lr.predict(x_test)
           plt.scatter(y_test,pred)
Out[57]: <matplotlib.collections.PathCollection at 0x22c0be40820>
           45
           40
           35
          30
          25
          20
          15
          10
                          20
                               25
                                     30
                                          35
                     15
                                                40
                                                     45
           1 from sklearn.linear_model import Ridge,Lasso
In [58]:
In [59]:
           1 rr=Ridge(alpha=10)
           2 rr.fit(x_train,y_train)
Out[59]: Ridge(alpha=10)
In [60]:
           1 rr.score(x_test,y_test)
Out[60]: 0.9999958918418803
In [61]:
           1 la=Lasso(alpha=10)
           2 la.fit(x_train,y_train)
Out[61]: Lasso(alpha=10)
In [62]:
           1 la.score(x_test,y_test)
Out[62]: 0.9863459147333142
```

In []: 1