Algebraic Statistics

P1: Intro to Algebraic Geometry

Longphi Nguyen Laila Rizvi Ying Shi

University of California, Davis

December 7, 2012

Goal: Given $I = \langle g_1, ..., g_s \rangle$ and $f \in \mathbb{K}[\vec{x}]$, is $f \in ?$

Goal: Given $I = \langle g_1, ..., g_s \rangle$ and $f \in \mathbb{K}[\vec{x}]$, is $f \in ?$?

How to solve? Extend GCD to multivariate polynomials.

Goal: Given $I = \langle g_1, ..., g_s \rangle$ and $f \in \mathbb{K}[\vec{x}]$, is $f \in I$?

How to solve? Extend GCD to multivariate polynomials.

$$f=a_1g_1+a_2g_2+...+a_ng_n+r$$
, where $a_i,r\in\mathbb{K}[ec{x}]$, $i=1,2,...,n$

Goal: Given $I = \langle g_1, ..., g_s \rangle$ and $f \in \mathbb{K}[\vec{x}]$, is $f \in I$?

How to solve? Extend GCD to multivariate polynomials.

$$f=a_1g_1+a_2g_2+...+a_ng_n+r$$
, where $a_i,r\in\mathbb{K}[ec{x}]$, $i=1,2,...,n$

Solution: $f \in I \iff r = 0$ for some monomial ordering.

$$f = xy^2 - x$$
, $g_1 = xy + 1$, $g_2 = y^2 - 1$.

$$f = xy^2 - x$$
, $g_1 = xy + 1$, $g_2 = y^2 - 1$.

1) Ordering
$$x > y$$
: $f = yg_1 + 0g_2 + (-x - y)$

2) Ordering
$$y >_{lex} x$$
: $f = 0g_1 + xg_2 + 0$

$$f = xy^2 - x$$
, $g_1 = xy + 1$, $g_2 = y^2 - 1$.

1) Ordering
$$x > y$$
: $f = yg_1 + 0g_2 + (-x - y)$

2) Ordering
$$y > x$$
: $f = 0g_1 + xg_2 + 0$

Problem #1: How to find "good" g_i 's. Generators are not unique. e.g. $\langle x + y, x - y \rangle = \langle x, y \rangle$

Problem #2: r is not unique.

$$f = xy^2 - x$$
, $g_1 = xy + 1$, $g_2 = y^2 - 1$.

1) Ordering
$$x > y$$
: $f = yg_1 + 0g_2 + (-x - y)$

2) Ordering
$$y > x$$
: $f = 0g_1 + xg_2 + 0$

Problem #1: How to find "good" g_i 's. Generators are not unique. e.g. $\langle x + y, x - y \rangle = \langle x, y \rangle$

Problem #2: r is not unique.

Look at: Groebner basis

Definition: Fix a monomial order. Suppose I is an ideal such that $< LT(I) > = < LT(g_1), LT(g_2), \ldots, LT(g_t) >$. Then, $G = \{g_1, g_2, \ldots, g_t\}$ is a Groebner basis of I.

Definition: Fix a monomial order. Suppose I is an ideal such that $\langle LT(I) \rangle = \langle LT(g_1), LT(g_2), \dots, LT(g_t) \rangle$. Then, $G = \{g_1, g_2, \dots, g_t\}$ is a Groebner basis of I.

Hilbert Basis Theorem: Every ideal $I \subset \mathbb{K}[\vec{x}]$ is finitely generated.

Corollary: Every nonzero ideal has a Groebner basis.

Definition: Fix a monomial order. Suppose I is an ideal such that $\langle LT(I) \rangle = \langle LT(g_1), LT(g_2), \dots, LT(g_t) \rangle$. Then, $G = \{g_1, g_2, \dots, g_t\}$ is a Groebner basis of I.

Hilbert Basis Theorem: Every ideal $I \subset \mathbb{K}[\vec{x}]$ is finitely generated.

Corollary: Every nonzero ideal has a Groebner basis.

Then, every nonzero ideal $I \subset \mathbb{K}[\vec{x}]$ has a finite Groebner basis.

Importance: Given a Groebner basis G of ideal I and ordering:

1. The division algorithm gives a unique remainder r.

2.
$$r = Rem(f, G) = 0 \iff f \in I$$
.

Importance: Given a Groebner basis G of ideal I and ordering:

1. The division algorithm gives a unique remainder r.

2.
$$r = Rem(f, G) = 0 \iff f \in I$$
.

How to find a Groebner basis? Can use Buchberger's algorithm. First, need to introduce S-polynomials.

S-polynomials:

$$S(f_1,f_2)=x^{\gamma}[rac{f_1}{LT(f_1)}-rac{f_2}{LT(f_2)}]$$
, where $x^{\gamma}=LCM(LM(f_1),LM(f_2))$

S-polynomials:

$$S(f_1,f_2)=x^{\gamma}[rac{f_1}{LT(f_1)}-rac{f_2}{LT(f_2)}]$$
, where $x^{\gamma}=LCM(LM(f_1),LM(f_2))$

Example:
$$f_1 = y - x^2$$
, $f_2 = z - x^3$, $y > z > x$

$$S(f_1, f_2) = yz\left[\frac{y - x^2}{y} - \frac{z - x^3}{z}\right]$$

= $-zx^2 + yx^3$

 $G = \{g_1, g_2, ..., g_t\}$ is a Groebner basis for $I \iff Rem(S(g_i, g_j), G) = 0$, for all $i \neq j$.

$$G = \{g_1, g_2, ..., g_t\}$$
 is a Groebner basis for $I \iff Rem(S(g_i, g_j), G) = 0$, for all $i \neq j$.

Example (continued):

$$f_1 = y - x^2$$
, $f_2 = z - x^3$, $S(f_1, f_2) = -zx^2 + yx^3 = S$

$$G = \{g_1, g_2, ..., g_t\}$$
 is a Groebner basis for $I \iff Rem(S(g_i, g_j), G) = 0$, for all $i \neq j$.

Example (continued):

$$f_1 = y - x^2$$
, $f_2 = z - x^3$, $S(f_1, f_2) = -zx^2 + yx^3 = S$

By division algorithm under y > z > x, lex = x

$$G = \{g_1, g_2, ..., g_t\}$$
 is a Groebner basis for $I \iff Rem(S(g_i, g_j), G) = 0$, for all $i \neq j$.

Example (continued):

$$f_1 = y - x^2$$
, $f_2 = z - x^3$, $S(f_1, f_2) = -zx^2 + yx^3 = S$

By division algorithm under y > z > x, lex = x

$$S = x^3(y - x^2) - x^2(z - x^3) + 0$$

$$G = \{g_1, g_2, ..., g_t\}$$
 is a Groebner basis for $I \iff Rem(S(g_i, g_j), G) = 0$, for all $i \neq j$.

Example (continued):

$$f_1 = y - x^2$$
, $f_2 = z - x^3$, $S(f_1, f_2) = -zx^2 + yx^3 = S$

By division algorithm under y > z > x, lex = x

$$S = x^3(y - x^2) - x^2(z - x^3) + 0 \Longrightarrow$$
 Groebner basis

$$G = \{g_1, g_2, ..., g_t\}$$
 is a Groebner basis for $I \iff Rem(S(g_i, g_j), G) = 0$, for all $i \neq j$.

Example (continued):

$$f_1 = y - x^2$$
, $f_2 = z - x^3$, $S(f_1, f_2) = -zx^2 + yx^3 = S$

By division algorithm under y > z > x, lex = x

$$S = x^3(y - x^2) - x^2(z - x^3) + 0 \Longrightarrow$$
 Groebner basis

Note: $Rem(S', G) \neq 0$ under x > y > z.

Thus, we have a way to determine if $\{g_1, ..., g_t\}$ is a Groebner basis.

But how do we find a Groebner basis?

Buchberger's Algorithm

```
Input: F = (f_1, f_2, ..., f_5)
Output: G=(g_1, g_2, \ldots, g_t)
G=F
Repeat
     G' = G
     For each pair \{i, j\}, i \neq j in G', do
          g=Rem(S(i, j), G))
          If S \neq 0
               then G=G \cup \{g\}
Until G=G'
```

Sample steps:

G	Rem(S(.,.), G))
$\{g_1,g_2\}$	<i>g</i> 3
$\{g_1,g_2,g_3\}$	g ₄
$\{g_1,g_2,g_3,g_4\}$	0

Problem: Groebner basis is not unique and contains redundancies.

e.g.
$$\{y - x^2, z - x^3\}$$
 for $\{y - x^2, z - x^3\}$ w.r.t. $y > z > x$

Goal: Remove redundancies in Groebner basis.

Goal: Remove redundancies in Groebner basis.

Definition: Given a Groebner basis G, a reduced Groebner basis is such that:

- 1) $LC(g_i) = 1$, for all $g_i \in G$
- 2) No term of g_i is divisible by $LM(G \setminus \{g_i\})$

Goal: Remove redundancies in Groebner basis.

Definition: Given a Groebner basis G, a reduced Groebner basis is such that:

- 1) $LC(g_i) = 1$, for all $g_i \in G$
- 2) No term of g_i is divisible by $LM(G \setminus \{g_i\})$

Importance: Reduced Groebner basis is unique!

Thank you! :) :)