Ergebnisse Zu	ugversuch	Labro Werksto	ffkunde / V	ergleichswer	te							Stand	23.06.2022
Werkstoff	Prüfer	Datum	do	d _u	Lo	Lu	R_{eH}	R _{p0,2}	R _m	R _u	Α	z	E
			in mm	in mm	in mm	in mm	in MPa	in MPa	in MPa	in MPa	in %	in %	in MPa
S235JR+N		Mittelwert	7,97	4,21	40	55,4	2	72	403	972	38,4	71,9	206000
S235JR+N	Mg	29.05.2020	7,90	3,70	40	56,1	188		347	1090	40,3	78,1	101000
S235JR+N	Wk	10.06.2021	8,02	4,52	40	54,7	307		431	888	36,8	68,2	208000
S235JR+N	Ts	11.06.2021	7,98	4,41	40	55,3	320		432	937	38,2	69,5	204000
S235JR+C		Mittelwert	8,03	4,73	40	48,5	4	83	550	1019	21,3	65,2	209000
S235JR+C	Mg	29.05.2020	8,10	4,60	40	48,6	493		543	1020	21,5	67,7	210000
S235JR+C	Wk	10.06.2021	8,00	4,72	40	48,4		482	563	1100	21	65,2	209000
S235JR+C	Ts	11.06.2021	7,99	4,88	40	48,5		475	545	936	21,3	62,7	209000
C45E+N		Mittelwert	8,03	5,82	40	49,1	3	87	639	980	22,6	47,5	200000
C45E+N	Mg	29.05.2020	8,00	5,90	40	50,5	418		676	1010	26,3	45,6	207000
C45E+N	Wk	10.06.2021	8,08	5,80	40	45,4	361		581	955	13,5	48,5	183000
C45E+N	Ts	11.06.2021	8,01	5,76	40	51,3	381		661	975	28,1	48,3	210000
C45E+C		Mittelwert	8,04	6,46	40	44,0	7:	25	823	1050	10,0	35,5	204000
C45E+C	Mg	29.05.2020	8,10	6,50	40	44,4		712	815	1040	11	35,6	186000
C45E+C	Wk	10.06.2021	8,04	6,38	40	43,7	717		827	1070	9,30	37,0	213000
C45E+C	Ts	11.06.2021	7,99	6,50	40	43,9		746	826	1040	9,75	33,8	212000

anm: kursiv gedruckte Werte sind in dem Mittelwert nicht enthalten

3/6

Somm 2	20 mm	Then Lex	23 mm
Probe Nr. S 235	Probe Nr. S235	Probe Nr.	Probe Nr.
in um 7, 98 7, 98 20,01	4, 105 10 So 2 10 So 2	in www. 8,811	1, 20 mm 1, 30, 14 25, 14 mm 2
in was	24.80 mm m 2004 Con 10 mm	in mm 40,0	in hum 40,0 Su 33,18
in was in 28 15	in 4.88 4.88 21.25	in war 5,76 5,765 in 82,78	in du 375 8 16 18 18 18 18 18 18 18 18 18 18 18 18 18
in was 55726 in 85,5	in www. 28,84	in wn 2 2 18 28 48,28	2 2 3383 2 45, 30 43, 30 43, 30 43, 30
III Auswertung FeH in LW M, O ReH in 320	$F_{ m eH}$ in $R_{ m eH}$	in $\frac{F_{\text{eH}}}{MR}$ in $\frac{R_{\text{eH}}}{MR}$	III Auswertung FeH in ReH
$F_{p0,2}$ in R_{p02}		Fp0.2 in ASS Rp0.2	Fp0.2 in EN 37, 4 Rp0.2 in N/m.2 in N/m.2
$\begin{array}{c} F_{\rm m} \\ \text{in } \mathcal{L}_{\rm N} \\ 24.6 \\ R_{\rm m} \\ \text{in } \mathcal{L}_{\rm N} \\ 434.5 \end{array}$	in & in & Fm 23,8 27,3 Rm in MR in MR in MR in MR in MR 14745	in EN in EN in EN in MR in MR in MR in MR	Fm Fm 41,4 11 11 11 11 11 11 11 11 11 11 11 11 11
in $\frac{F_u}{W}$ in $\frac{R_u}{W}$	in Fu in AR.	in 180 25,4 in 1800	in 24,5
m HPa. 204200	in what	220 000 See 1	2 12000

Prüfprotokoll Zugversuch

Projekt Nr.: 100.00.2

Prüfnorm:	DINEN SO 689	2-1	
Probe:	Zujarobe DINS	0125 -	B8x40
Werkstoff:	SZ35, TR+C, SZ35.	JE+N,	C45E+C, C45E+N,
Soll-Dehnur	ngsgeschwindigkeit für $R_{ m eH}, R_{ m p}$	$\dot{e}_{L_e} =$	0,00025/5=0,085 %/5
Soll-Dehnur	ngsgeschwindigkeit für Rm, A, Z	$\dot{e}_{L_c} =$	00067/s

 Messmittel
 Typ / Bezeichnung / Messmittelnummer
 Messbereich / Auflösung

 Prüfmaschine
 Helewald Resulta
 1

 Kraftmesssystem
 Kunfung dose HBH Z4A
 0 - 100 kN

 Feinwegmessung
 Bellusia HELSchlieber
 0 - 2m m

 Längenmessung
 Lüngen Helsschlieber
 0 - 150 mm

 Prüftemp.:
 Transport Helsschlieber
 0 - 150 mm

					III Auswert	ing		
Probe Nr.	d _o in ми	L₀ in <u>թրա</u>	d _u in <u>wa</u>	Lu in the test	F _{eH} in	$F_{p0,2}$ in M	F _m in	in <u>k</u> W
5235	8,00	40	4,72	48,4	/	24,25	28,30	17,75
TR	Some	Same	in X	in 2/0	R _{eH} in	R _{p02} in MR	R _m in MR	in MR
, _	592655	17,4974	21,0	65,2	/	482	563	1104

III Auswertung F_{m} in k k k l $L_{
m o}$ in the test $L_{\rm u}$ in \mathbb{R}^{1} F_{eH} in $\mathbb{A}^{\mathbb{A}}$ $F_{\mathrm{p0,2}}$ in \mathbb{A} F_u in july Probe interter in active Nr. 15,50 $\ln \frac{Z}{\sqrt{2}}$ R_{eH} in M_{e} in_MR in Ma +N

					III Auswertur	ng .		
Probe Nr.	$\frac{d_{o}}{\ln \frac{100 + 4y}{2}}$	L _o in see	d _u in the in	L_{u} in ω_{total}	F_{eH} in kN	$F_{p0,2}$ in $k N$	in <u>ku</u>	ink N
C4SE	8,08	40	5,80	45,4	18,5	/	29.8	25,25
+11	So.	See in neme	A_/ in	in %	R _{eH} in MR	R _{p02} in	R _m Mg	in MR
	51.28	26,42	135	485	361	/	581	955

					III Auswertun	ng		
Probe Nr.	do interest	$L_{ m o}$ in ϵ	d_{u} in $_{\circ^{\mathrm{u}_{1}\circ \circ_{1}}}$	$L_{ m u}$ in where	F_{eH} in	$F_{p0,2}$ in A	$\operatorname{in}_{k}^{F_{m}}$	$\frac{F_u}{\ln \Delta \ell}$
C45E	8,04	40.	6,38	43,7	/	364	420	34,25
+C	So.	See 2	A_/ in_%	in <u>%</u>	R _{eH} in	R_{p02} in M	R _m in HR	in MR
	50,7634		3,3	37,0	/	717	827	1671

					III Auswertu	ing		
Probe Nr.	in	in	in	in	F _{eH} in	F _{p0,2} in	in	in
			Ain	Z in	R _{eH} in	R _{p02} in	R _m in	R _u
				*				

F _{eH} in	$F_{ m p0,2}$ in	F _m	F_{u}
	-	in	in
R _{eH}	R _{p02} in	R _m	R _u

