

Intro to modelling with Machine learning

Master of Software Engineering - Advanced Artificial Intelligence July | 2021 | Australia

Yolanda Carreno Gomez | ID: A00032641

Abstract

The present manual summarises programming tasks from Google focused on machine learning techniques; it is an introduction to modelling using ML, linear regression hyperparameters and normalisation techniques.

Hyperparameters are the variables that define the network structure, for instance the number of hidden units and the variables that determine how the network is trained, for example the Learning Rate. Hyperparameters are crucial to train ML models to obtain better AI or neural network results. Thus, for the purpose of this task, I found that there are four main hyperparameters: Batch size, num_epochs, hidden layer, and learning rate.

Task 0: Use pandas to explore and prepare the data

The data is divided in two categories as listed below:

numeric_feature_names

[] # Run to inspect categorical features. car_data[categorical_feature_names]

	make	fuel-type	aspiration	num-doors	body-style	drive-wheels	engine-location	engine-type	num-cylinders	fuel-system
183	volkswagen	gas	std	two	sedan	fwd	front	ohc	four	mpfi
154	toyota	gas	std	four	wagon	4wd	front	ohc	four	2bbl
116	peugot	diesel	turbo	four	sedan	rwd	front	1	four	idi
161	toyota	gas	std	four	hatchback	fwd	front	ohc	four	2bbl
63	mazda	diesel	std	?	sedan	fwd	front	ohc	four	idi
55	mazda	gas	std	two	hatchback	rwd	front	rotor	two	4bbl
80	mitsubishi	gas	turbo	two	hatchback	fwd	front	ohc	four	spdi
76	mitsubishi	gas	std	two	hatchback	fwd	front	ohc	four	2bbl
33	honda	gas	std	two	hatchback	fwd	front	ohc	four	1bbl
60	mazda	gas	std	four	sedan	fwd	front	ohc	four	2bbl

205 rows x 10 columns

categorical_feature_names

[] # Run to inspect numeric features. car_data[numeric_feature_names]

	symboling	wheel-base	length	width	height	weight	engine-size	bore	stroke	compression-ratio	horsepower	peak-rpm	city-mpg	highway-mpg	price
183	2	97.30	171.70	65.50	55.70	2209	109	3.19	3.40	9.00	85	5250	27	34	7975
154	0	95.70	169.70	63.60	59.10	2290	92	3.05	3.03	9.00	62	4800	27	32	7898
116	0	107.90	186.70	68.40	56.70	3252	152	3.70	3.52	21.00	95	4150	28	33	17950
161	0	95.70	166.30	64.40	52.80	2122	98	3.19	3.03	9.00	70	4800	28	34	8358
63	0	98.80	177.80	66.50	55.50	2443	122	3.39	3.39	22.70	64	4650	36	42	10795
55	3	95.30	169.00	65.70	49.60	2380	70	?	?	9.40	101	6000	17	23	10945
80	3	96.30	173.00	65.40	49.40	2370	110	3.17	3.46	7.50	116	5500	23	30	9959
76	2	93.70	157.30	64.40	50.80	1918	92	2.97	3.23	9.40	68	5500	37	41	5389
33	1	93.70	150.00	64.00	52.60	1940	92	2.91	3.41	9.20	76	6000	30	34	6529
60	0	98.80	177.80	66.50	55.50	2410	122	3.39	3.39	8.60	84	4800	26	32	8495

205 rows \times 15 columns

Task 1: Make your best model with numeric features. No normalization allowed.

Modify the model provided below to achieve the lowest eval loss. You may want to change various hyperparameters

- learning rate
- choice of optimizer
- hidden layer dimensions -- make sure your choice here makes sense given the number of training examples
- batch size
- num training steps
- (anything else you can think of changing)
- Do not use the normalizer fn arg on numeric column.

In this task, I used deep neural network which has more layers than MLP and the normal neural network as shown in the figure 1

Figure 1. Deep neural network

The goal is to provide better hyperparameters to obtain lowest eva (evaluation process) loss (error rate). This model task trains, evaluates and then predicts.

To solve this task, I have changed the gradient descent for Adagrad Optimizer, the reason is because when I run the operation, the data overlaps, and the type of data I am using is failing. This task only uses the numeric features.

Adagrad is an algorithm for gradient-based optimization which adapts the learning rate to the parameters, excecuting low learning rates for parameters

associated with often occurring features, and greater updates like high learning rates for parameters related to infrequent features, (Ruder, 2016).

In other words, during the neural network training, its weights are arbitrarily initialised originally, subsequently they are updated in each epoch to improve the network accuracy. At each epoch, the training data output compares to actual data through the loss function to compute the error and then the weight is updated accordingly, the **optimizer** can be represented as bellow.

Figure 2. Optimizer representation

After implementing different gradient descent optimization algorithms, I found that Adagrad gets the best result compared to Adam, Adadelta, Momentum, and AMSGrad.

The changes are as bellow:

From:

```
est = tf.estimator.DNNRegressor(
    feature_columns=model_feature_columns,
    hidden units=[64],
```

```
optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.01),
)

To:
est = tf.estimator.DNNRegressor(
    feature_columns=model_feature_columns,
    hidden_units=[128],
    optimizer=tf.train.AdagradOptimizer(learning_rate=0.03),
)
```

The normalization has not been used and hyperparameters have been changed

From:

```
16 - batch size
None - num_epochs
64 - hidden layer
0.01 - learning rate

Original result:

scores {'average_loss': 202.7198, 'label/mean': 12949.43, 'loss': 3196.7354, 'prediction/mean': 12949.551, 'global_step': 10000}

To:

16 - batch size
6000 - num_epochs
128 - hidden layer
0.03 - learning rate

My best solution:

scores {'average_loss': 30.111895, 'label/mean': 12949.43, 'loss':
```

By defining DNNregressor with the above hyperparameters with 10000 times of training, I reduced the error rate from 3,196.7354 to 30.111895 and dropped

30.111895, 'prediction/mean': 12948.418, 'global step': 10000}

the average loss from 202.7198 to 30.111895. That was the best solution I could get.

Task 2: Take your best numeric model from earlier. Add normalization.

To solve this task model, I used mean normalization function and the following hyperparameters:

```
16 - batch size
6000 - num_epochs
128 - hidden layer
0.03 - learning rate
```

My result:


```
scores {'average_loss': 159447700.0, 'label/mean': 12949.43, 'loss':
2514367500.0, 'prediction/mean': 3077.7976, 'global_step': 10000}
```

Original result:

```
16 - batch size
None - num_epochs
64 -hidden layer
0.01 - learning ratescores
scores {'average_loss': 148274740.0, 'label/mean': 12949.43, 'loss': 2338178600.0, 'prediction/mean': 3716.531, 'global step': 10000}
```

Does normalization improve model quality on this dataset? Why or why not?

The normalization did not improve the model because I wanted to predict the real values, I was not getting any closer to what I expected. A good normalization should show you the closest to the predicted one, the normalization should get the data/cluster together to have less errors.

The main goal of the normalization is to reduce the standard deviation, the less spread the data is, the better. But that was not the case with this task model.

Task 3: Make your best model using only categorical features

To solve this task, I used the same hyperparameters than the previous tasks. Example Task 3

Original hyperparameters and result:

```
16 - batch size
None - num_epochs
64 -hidden layer
0.01 - learning ratescores
scores {'average_loss': 158473800.0, 'label/mean': 12949.43, 'loss': 2499009800.0, 'prediction/mean': 3323.4685, 'global step': 10000}
```

My hyperparameters and result:

```
16 - batch size
6000 - num_epochs
128 -hidden layer
0.03 - learning rate
scores {'average_loss': 33032070.0, 'label/mean': 12949.43, 'loss': 520890340.0, 'prediction/mean': 12602.933, 'global step': 10000}
```

By defining DNNregressor with the above hyperparameters with 10,000 times of training, I reduced dramatically the error rate from 2,499,009,800.0 to 520,890,340.0 and dropped efficiently the average loss from 158,473,800.0 to 33,032,070.0. That was the best solution I could get.

Task 4: Using all categorical and numerical the features, make the best model that you can make

To solve this task I did two tests; one with mean normalization and another one without normalization.

My hyperparameters

```
16 - batch size
60000 - num_epochs
128 -hidden layer
0.03 - learning rate
```

Results:

With mean normalization

```
scores {'average_loss': 21282280.0, 'label/mean': 12949.43, 'loss':
335605200.0, 'prediction/mean': 12944.759, 'global step': 10000}
```

without normalization

```
scores {'average_loss': 18.920738, 'label/mean': 12949.43, 'loss':
298.3655, 'prediction/mean': 12948.648, 'global step': 10000}
```

Normalization didn't get better results with the functions I have; it doesn't make any difference by using both categorical and numerical features and using normalization because the errors are so high.

In summary, this assignment helped me to understand the use of ML modelling techniques, I found that normalization was not possible to use in all the models because the clusters did not get better when training, on the other hand, changing the optimisation functions and the hyperparameters helped a lot to improve the results of this modelling tasks.

REFERENCES

Ruder, S. (2016). *An overview of gradient descent optimization algorithms*. Retrieved from https://ruder.io/optimizing-gradient-descent/index.html#adagrad