Fine-tuning GPT-2 for Short Query Intent Classification

Jin Young Lee

June 11, 2025

Understanding Search Intent

Figure: Different types of Search Intent

Motivation and Problem Statement

What is the problem? Why is it important?

- Short queries (e.g., "weather?", "pizza nearby") are ambiguous
- Misclassified intents degrade user experience
- Accurate intent classification is crucial for:
 - Voice Assistants
 - Search Engines
- Challenge: Minimal context in short queries

Proposed Approach and Methodology

Category	Detail
Model	GPT-2 base model (768d hidden)
Classification Head	Custom linear layer
Fine-tuning Modes	Last-linear-layer, Full-model
Regularization	Dropout (0.3)
Optimizer	AdamW
Learning Rate	1e-3
Batch Size	8
Loss Function	Cross-entropy
Early Stopping	Based on dev accuracy

Amazon MASSIVE Dataset (EN-US Subset)

[View on Hugging Face]

Feature	Description
Total Languages	51 (Multilingual)
Subset Used	en-US only
Utterance Count	\sim 60,000 utterances (EN-US)
Intent Classes	60 distinct intent types
Domains	Music, Weather, Alarms, Smart Home, etc.
Utterance Length	Mix of short and long queries
Label Quality	Human-annotated, high quality
Source	Amazon Alexa / MASSIVE Dataset

MASSIVE Dataset: EN-US Subset Examples

ID	Utterance	Intent Label
1	wake me up at nine am on friday	alarm_set
2	set an alarm for two hours from now	alarm_set
5	stop	audio_volume_mute
9	make the lighting bit more warm here	iot_hue_lightchange
15	turn off the light in the bathroom	iot_hue_lightoff
22	dim the lights in the kitchen	iot_hue_lightdim
25	olly clean the flat	iot_cleaning
33	check when the show starts	calendar_query
34	i want to listen arijit singh song once again	play_music

Intent types include alarms, smart lighting, music playback, and calendar access.

Data Preprocessing Pipeline - Input Example

Preprocessing Steps for GPT-2:

- Tokenize input using GPT-2 tokenizer (BPE-based)
- Apply dynamic padding within batch
- Truncate to max model input length (e.g., 128)
- Use <|endoftext|> as padding token
- Track unique utterance ID for evaluation alignment

Example Utterance:

- Text: "play some jazz music"
- Intent: music.play_song

Tokenization Flow: From Text to Embeddings

Training Progress

Loss and Metrics Tracking

- Training loss decreases steadily
- Validation metrics show convergence
- No significant overfitting observed
- Full-model fine-tuning shows better convergence

Figure: Example: Accuracy over Epochs

Training and Development Loss

Figure: Training and Development Loss over Epochs

Accuracy over Epochs

Figure: Accuracy Performance over Epochs (Last-Linear-Layer)

Accuracy Comparison: Last-Linear-Layer vs. Full-Model

Figure: Last-Linear-Layer Accuracy

Figure: Full-Model Accuracy

F1 Score Comparison: Last-Linear-Layer vs. Full-Model

Figure: Last-Linear-Layer F1 Scores

Figure: Full-Model F1 Scores

Comparison to Official MASSIVE Benchmark (EN-US)

Intent Accuracy on EN-US Subset:

FitzGerald et al., 2022 (arXiv:2204.08582)

Model	Туре	Accuracy (%)
GPT-2	Decoder-only (monolingual)	80.1
mT5 Enc Full	Encoder-decoder (multilingual)	89.0 ± 1.1
mT5 T2T Full	Encoder-decoder (multilingual)	87.9 ± 1.2
XLM-R Full	Encoder-only (multilingual)	88.3 ± 1.2

Interpretation:

- Our GPT-2 model achieves competitive performance without cross-lingual supervision.
- Models in the paper use larger pretraining corpora, multilingual tokens, and more parameters.
- \rightarrow For an English-only GPT-2 baseline, 80% accuracy is strong given the task complexity.

Ours vs. Original MASSIVE Benchmark

Original MASSIVE Benchmark (FitzGerald et al., 2022)

arXiv:2204.08582

- mT5 / XLM-R models trained using:
 - p3dn.24xlarge (8x V100 GPUs) for 3-5 days
 - g4dn.metal (8x T4 GPUs) for mT5 Encoder
 - Extensive hyperparameter tuning on multilingual data

Our Setup (GPT-2):

- Single RTX 3080 GPU
- Training time: 3 hours total
- No multilingual pretraining or zero-shot setup

Conclusion: Our monolingual GPT-2 model achieves competitive performance with only a fraction of the computational cost.