

Nick Radcliffe
Stochastic Solutions Limited
& Department of Mathematics, University of Edinburgh

PyData London Workshop 27 April 2018

RESOURCES

pip install numpy Numpy: Pandas: pip install pandas TDDA library: pip install tdda pip install feather-format Feather format: Enhancements for pip install pmmif feather format: Material for workshop (inc slides): git clone \ https://github.com/tdda/pydatalondon2018ad.git Docs: tdda library: http://tdda.readthedocs.io

TDDA generally: http://tdda.info

PART 1: CONCEPTS

WHAT IS ANOMALY DETECTION?

Anomaly: Deviation from "normal" / "expected"

Intrinsically dependent on expectation/definition of normality

Examples:

- Detect problems, e.g. fraudulent credit card transactions, systems failures (e.g. server down), gaming (e.g. bogus ecommerce ratings), medical problems (e.g. heart arhythmia).
- Also, detect opportunities: buying patterns suggesting new markets/offers, low usage periods suggesting savings, identifying unusually successful staff/methods/approaches etc.

AUTOMATED ANOMALY DETECTION

- Outlying values in one dimension/variable
- Outlying combinations of values
- Patterns of regularity or irregularity in data streams
- Areas of high or low density
- Illegal data values
- Repetition

WHAT ANOMALIES LOOK LIKE (CONCEPTUALLY)

Outlying values in One Dimension

Often much more extreme than shown here, making plotting tricky

WHAT ANOMALIES OFTEN LOOK LIKE IN PRACTICE

Using Logarithmic or Log-Log Plots to Display Outliers can help

Linear Histogram

Histogram
Frequency vs. Log₁₀ Price

"Log-Log" Histogram Log₁₀ Freq vs. Log₁₀ Price

WHAT ANOMALIES LOOK LIKE?

Outlying combinations of values

Again, may need log scales or similar to see in practice

Are the spikes anomalous?

If so, are the anomalous because of their size, their regularity or both? Is the missing spike anomalous?

Could it be a backup process that runs 6 days a week?

ANOMALY SCORES

Ideal Anomaly Score

Typical Anomaly Score

FALSE POSITIVE & FALSE NEGATIVE RATES

False Positive Rate Number of False
Positives

Number of
True
Negatives

FPR = FP / (FP + TN)

the proportion of non-defective items that are flagged as anomalous

False Negative Rate Number of False Negatives Number of True **Positives**

FNR = FN / (FN + TP)

the proportion of defective items that are flagged as non-anomalous

FALSE POSITIVE & FALSE NEGATIVE RATES

EXAMPLE

10 000 items total

detector flags as

anomalous

FPR = FP / (FP + TN)

FNR = FN / (FN + TP)

1% defective

99% non-defective

80%

10%

-N
ΓN

EXERCISE: FILL IN

EXERCISE: Confirm formula gives FPR of 10% and FNR of 20%

EXERCISE: Calculate proportion of items flagged by the detector that are actually defective

FALSE POSITIVE & FALSE NEGATIVE RATES

EXAMPLE

10 000 items total

detector

flags as

anomalous

FPR = FP / (FP + TN)

FNR = FN / (FN + TP)

1% defective

99% non-defective

80%

10%

TP	FN
80	20
FP	TN
990	8910

EXERCISE: FILL IN

EXERCISE: Confirm formula gives FPR of 10% and FNR of 20%

$$FNR = 20 / (20 + 80) = 20 / 100 = 20\%$$

EXERCISE: Calculate proportion of items flagged by the detector that are actually defective $80 / (80 + 990) = 80 / 1070 \approx 7.5\%$

TRADE-OFF AS CUTOFF VARIES

Choosing cut-off depends on relative costs of true and false positives

PART II: ONE-DIMENSIONAL ANOMALY DETECTION

EXAMPLE TRANSACTION STREAM

	id	category	price
0	710316821	QT	150.39
1	516025643	AA	346.69
2	414345845	QT	205.83
3	590179892	СВ	55.61
4	117687080	QT	142.03
5	684803436	AA	152.10
6	611205703	QT	39.65
7	399848408	AA	455.67
8	289394404	AA	102.61
9	863476710	AA	297.82
10	534170200	KA	80.96
11	898969231	ОТ	81.39

CONSTRAINTS

- Field id (int): Identifier for item. Should not be null (np.nan), and should be unique in the table
- Field category (str):
 Should be one of "AA",
 "CB", "QT", "KA" or "TB"
- Field price (float): unit price in pounds sterling.
 Should be non-negative and no more than 1,000.00.

PYTHON2 USERS

Apparently, feather files are not compatible between Python2 and Python3:

if sys.version_info.major == 2:
 mv data data3
 mv data2 data

EXERCISE 1

EXPERT

Find all the records that violate each constraint stated above. You can get the data with:

from detect import get_2d_outlier_dataframe
df = get_2d_outlier_dataframe()

INTERMEDIATE

Edit exercise1.py and try to uncomment the rows in main, one at a time, and fill in the parts marked ### FILL IN.

There are hints, in order, in the file hints.txt.

Solution in detect.py

BEGINNER

Run detect.py

Read through the code and try to understand how it works

SUPER EXPERT

Find all bugs and other imperfections in detect.py

FINDING NULLS

```
def find nulls(df, col):
    okcol = col + ' nonnull ok'
    df[okcol] = df[col].notna()
    null rows = df[df[okcol] == False]
    if len(null rows) > 0:
        print(null rows[['id', 'category', 'price']])
    else:
        print('No nulls in column %s' % col)
    return null rows
def find all nulls(df):
    for c in list(df):
        find nulls(df, c)
```

FINDING DUPLICATES

```
def find dup ids(df):
    df['id unique ok'] = (df.groupby('id')['id']
                             .transform('count') == 1)
    dup ids = df[df.id unique ok == False]['id']
    if len(dup ids) > 0:
        cid = dup ids.groupby(df.id).count()
        cid.rename(columns={'id':'count'})
        cid.reset index()
        print(cid)
    return dup ids
```

FINDING OUTLIERS

FINDING INVALID STRING VALUES

```
def find_bad_categories(df):
    allowed = ["AA", "CB", "QT", "KA", "TB"]
    df['category_ok'] = df['category'].isin(allowed)
    bad_cats = df[df.category_ok == False]
    if len(bad_cats) > 0:
        print(bad_cats[['id', 'category', 'price']])
    return bad_cats
```

FINDING ALL THE BADS

USING TDDA TO MAKE ALL THIS EASIER

TEST-DRIVEN DATA ANALYSIS

- Test-driven data analysis is methodology & software (open-source and commercial) for improving quality and robustness of analytical processes
- Two main components:
 - Reference Testing: extensions to unittest & pytest for testing analytical processes
 - Automatic Constraint Discovery & Verification.
- Can use the data verification capabilities as a general purpose anomaly detection framework, as we do here.
- We use the **tdda** library, available from PyPI.

EXAMPLE TRANSACTION STREAM

	id	category	price
0	710316821	QT	150.39
1	516025643	AA	346.69
2	414345845	QT	205.83
3	590179892	СВ	55.61
4	117687080	QT	142.03
5	684803436	AA	152.10
6	611205703	QT	39.65
7	399848408	AA	455.67
8	289394404	AA	102.61
9	863476710	AA	297.82
10	534170200	KA	80.96
11	898969231	QT	81.39

CONSTRAINTS

- Field **id** (int): Identifier for item. Should not be null (np.nan), and should be unique in the table
- Field **category** (str):
 Should be one of "AA",
 "CB", "QT", "KA" or "TB"
- Field **price** (float): unit price in pounds sterling.
 Should be non-negative and no more than 1,000.00.

EXAMPLE TRANSACTION STREAM

```
"fields": {
  "id": {
    "type": "int",
    "max nulls": 0,
    "no duplicates": true
  "category": {
    "type": "string",
    "max nulls": 0,
    "allowed values":
      ["AA", "CB", "QT",
      "KA", "TB"]
  "price": {
    "type": "real",
    "min": 0.0,
    "max": 1000.0,
    "max nulls": 0
     constraints.tdda
```

CONSTRAINTS

- Field id (int): Identifier for item. Should not be null (np.nan), and should be unique in the table
- Field **category** (str):
 Should be one of "AA",
 "CB", "QT", "KA" or "TB"
- Field **price** (str): unit price in pounds sterling. Should be non-negative and no more than 1,000.00.

ANOMALY DETECTION WITH TDDA

COMMAND-LINE VERSION

(Assuming numpy and pandas already installed!)

pip install tdda
pip install feather-format
pip install pmmif
cd pydatalondon2018ad/oned

tdda detect data/items.feather constraints.tdda

bads.csv

--per-constraint

--output-fields

\ input data

\ json constraints files

\ location for output (.csv or .feather)

\ write cols for each constraint write all original cols too

cat bads.csv

CSV FILES IN TDDA LIBRARY

WE USE THESE OPTIONS FOR pd.read csv

```
'index_col': None,
'infer_datetime_format': True,
'quotechar': '"',
'quoting': csv.QUOTE_MINIMAL,
'escapechar': '\\',
'na_values': ['', 'NaN', 'NULL'],
'keep_default_na': False,
```

* Pandas CSV reader does not readily allow empty strings and null values to co-exist when using blank for nulls.

ANOMALY DETECTION WITH TDDA

API VERSION

```
from pmmif import featherpmm
from tdda.constraints import detect df
path = 'data/items.feather'
df = featherpmm.read dataframe(path).df
v = detect df(df, 'constraints.tdda',
              detect per constraint=True,
              detect output fields=[])
bads df = v.detected()
print(bads df)
```

GENERATING CONSTRAINT AUTOMATICALLY

COMMAND-LINE VERSION

tdda discover data/good_items.feather goods.tdda

or .csv
file containing known
good (non-anomalous)
data

location for output constraints file

or

tdda discover data/good_items.feather goods.tdda \
--rex

Also generate regular expressions characterizing string fields

GENERATED CONSTRAINTS FILE

```
"fields": {
    "id": {
                                      "category": {
        "type": "int",
                                            "type": "string",
        "min": 100000546,
                                            "min length": 2,
        "max": 899995057,
                                            "max length": 2,
        "sign": "positive",
                                            "max nulls": 0,
        "max nulls": 0,
                                            "allowed values": [
        "no duplicates": true
                                                "AA",
                                                "CB",
                                                "KA",
    "price": {
                                                 "QT",
        "type": "real",
                                                 "ТВ"
        "min": 0.0,
        "max": 985.18,
                                            "rex": [
        "sign": "non-negative",
                                                "^[A-Z]{2}$"
        "max nulls": 0
                                        },
```

GENERATING CONSTRAINTS AUTOMATICALLY

COMMAND-LINE VERSION

tdda discover data/good_items.feather goods.tdda

or .csv
file containing known
good (non-anomalous)
data

location for output constraints file

or

tdda discover data/good_items.feather goods.tdda \

--rex

Also generate regular expressions characterizing string fields

GENERATING CONSTRAINTS AUTOMATICALLY

API VERSION

```
from pmmif import featherpmm
from tdda.constraints import discover_df

path = 'data/good_items.feather'
df = featherpmm.read_dataframe(path).df

constraints = discover_df(df, inc_rex=True)
with open('autoconstraints.tdda', 'w') as f:
    f.write(constraints.to json())
```

PART III: GENERALIZED SEASONALITY

GENERALIZED SEASONALITY

- With most data streams, there are regular, or semi-regular patterns in the data
 - month of year
 - day of week
 - time of day
 - "special" dates (public holidays)
 - important events (World Cup Matches, Parliamentary Debates, new releases of tdda library etc.)
- Relatedly, there are often long-term trends, such as growth rates
- In detecting anomalies, it's usually necessary to adjust for one or more of these.

HOUR-OF-DAY, DAY-OF-WEEK

Typically collect each of these "background" patterns over many cycles to provide reference information for normalisation

ACTUAL VS. EXPECTED (NORMALIZED)

Two very obvious points that look anomalous here.

But what about the less clear-cut ones?

Usually need at least two criteria—proportionate and absolute deviation from expectation

EXAMPLE OUTLIER DEFINITION

Outlier if:

- actual value is larger than expected value by at least 50% and by at least 150;
- *or* actual value is lower than the expected by at least a third and by at least 150;

There are no general rules for choosing limits

Can use statistical measures (*n* standard deviations) etc., but the data usually being used for anomaly detection tends not to follow a pattern that makes this useful.

Normally just look at historical problems and set limits based on those, judgement and relative false positive/negative costs

ACTUAL VS. LIMITS

ACTUAL VS. LIMITS

Can obviously use these directly to select anomalous records, or use them as columns for the tdda library to combine with others for overall anomaly detection:

```
df['actual_min_ok'] = df['actual'] >= df['lower']
df['actual_max_ok'] = df['actual'] <= df['upper']</pre>
```

а	ctual	expected	uppor	1		
		CAPCCCC	upper	lower	actual_min_ok	actual_max_ok
date						
2020-01-01 07:00:00	287	447	670.5	297.00	False	True
2020-01-01 21:00:00	433	656	984.0	439.52	False	True
2020-01-02 03:00:00	2804	264	414.0	114.00	True	False
2020-01-02 10:00:00	1147	1796	2694.0	1203.32	False	True
2020-01-03 07:00:00	309	475	712.5	318.25	False	True
2020-01-04 18:00:00	317	866	1299.0	580.22	False	True
2020-01-05 08:00:00	512	793	1189.5	531.31	False	True
2020-01-05 10:00:00	886	1635	2452.5	1095.45	False	True
2020-01-05 11:00:00	974	1551	2326.5	1039.17	False	True
2020-01-05 20:00:00	0	636	954.0	426.12	False	True
2020-01-05 21:00:00	0	683	1024.5	457.61	False	True
2020-01-06 09:00:00	724	1159	1738.5	776.53	False	True
2020-01-07 10:00:00	813	1336	2004.0	895.12	False	True

actual	expected	upper	lower	actual_min_ok	actual_max_ok
	-				
287	447	670.5	297.00	False	True
433	656	984.0	439.52	False	True
2804	264	414.0	114.00	True	False
1147	1796	2694.0	1203.32	False	True
309	475	712.5	318.25	False	True
317	866	1299.0	580.22	False	True
512	793	1189.5	531.31	False	True
886	1635	2452.5	1095.45	False	True
974	1551	2326.5	1039.17	False	True
0	636	954.0	426.12	False	True
0	683	1024.5	457.61	False	True
724	1159	1738.5	776.53	False	True
813	1336	2004.0	895.12	False	True
	287 433 2804 1147 309 317 512 886 974 0 0 724	287 447 433 656 2804 264 1147 1796 309 475 317 866 512 793 886 1635 974 1551 0 636 0 683 724 1159	287	287	287

EXERCISE 2

In exercise2.py, copy plot_actual_vs_expected as a new function plot_actual_vs_limits.

Calculate upper and lower cols, as on previous slides.

Uncomment the commented line to get a better colour scheme.

Delete or filter out the expected column from the DataFrame.

Uncomment the call in main and run it.

This should produce (the right) graph in graphs/week-actual-vs-limits.svg.

Hints in hints2.txt; solution is in ad_norm_hour_day.py.

EXERCISE 3

Identify the outliers algorithmically, rather than graphically and print them.

Hints in hints3.txt.

Solution in ad_norm_hour_day.py

http://tdda.info

https://github.com/tdda

*tweet (DM) us email address for invitation
Or email me.

@tdda0 @njr0 @StochasticSolns

Correct interpretation: Zero (Error of interpretation: Letter "Oh")

https://github.com/tdda/pydatalondon2018ad/ pydatalondon2018ad.pdf