Learning Theory: Lecture Notes

Lecturer: Kamalika Chaudhuri Scribe: Qiushi Wang

October 9, 2015

1 The Agnostic PAC Model

Recall that one of the constraints of the PAC model is that the data distribution D has to be separable with respect to the hypothesis class \mathcal{H} . The Agnostic PAC model removes this restriction. That is, there no longer exists a $h \in \mathcal{H}$ with $err_D(h) = 0$.

Definition 1 (Agnostic PAC Model) A hypothesis class \mathcal{H} is said to be Agnostic PAC-Learnable if there is an algorithm A with the following property. For all $\epsilon, \delta, 0 \leq \epsilon, \delta \leq \frac{1}{2}$, all distributions D over $\mathcal{X} \times \mathcal{Y}$, if A is given ϵ, δ and $m_{\mathcal{H}}(\epsilon, \delta)$ examples from D, then with probability $\geq 1 - \delta$, it outputs a $h \in H$ with:

$$\operatorname{err}_D(h) \le \epsilon + \inf_{h^* \in \mathcal{H}} \operatorname{err}_D(h^*)$$

The learning procedure in the PAC model is to find a hypothesis in \mathcal{H} which is consistent with all the input examples. In the Agnostic PAC model, there is no such hypothesis. Instead, a common learning procedure is to find a hypothesis h that minimizes the *empirical error*, or the error on the training examples.

Suppose that given a set of samples S drawn from a data distribution D, h^* minimizes the empirical error err(h, S) while h_{opt} minimizes the true error $err_D(h)$.

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \operatorname{err}(h, S)$$
 and $h_{\operatorname{opt}} = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \operatorname{err}(h).$

Our goal is to find the condition under which $\operatorname{err}_D(h^*) \leq \varepsilon + \operatorname{err}_D(h_{\operatorname{opt}})$.

Lemma 1 For a fixed $h \in \mathcal{H}$ and m samples S drawn from D,

$$\mathbb{P}\left(|\operatorname{err}_D(h) - \operatorname{err}(h,S)| \geq \varepsilon\right) \leq 2e^{-m\varepsilon^2}.$$

PROOF: Let $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ be the sample set, and let $Z_i = \mathbb{1}(h(x_i) \neq y_i)$ for any $h \in \mathcal{H}$. Then,

$$\mathbb{E}[Z_i] = \underset{D}{\mathsf{err}}(h)$$
 and $\mathsf{err}(h,S) = \frac{1}{m} \sum_i Z_i$.

The bound then follows directly from applying Hoeffding's Inequality. \Box

Theorem 1 For a finite hypothesis class $|\mathcal{H}|$,

$$\mathbb{P}\left(\underset{D}{\operatorname{err}}(h^*) - \underset{D}{\operatorname{err}}(h_{opt}) \geq \varepsilon \right) \leq 2|\mathcal{H}|e^{-m\varepsilon^2/4}.$$

PROOF: First observe that $err_D(h^*) - err_D(h_{opt})$ can be split into three terms

$$\Pr_D(h^*) - \Pr_D(h_{\mathrm{opt}}) = \left(\Pr_D(h^*) - \Pr(h^*, S) \right) + \left(\Pr(h^*, S) - \Pr(h_{\mathrm{opt}}, S) \right) + \left(\Pr(h_{\mathrm{opt}}, S) - \Pr(h_{\mathrm{opt}}, S) \right) + \left(\Pr(h_{\mathrm{opt$$

The middle term, $(\operatorname{err}(h^*, S) - \operatorname{err}_D(h_{\operatorname{opt}})) \leq 0$, because h^* minimizes $\operatorname{err}(h, S)$. Thus

$$\Pr_{D}(h^*) - \Pr_{D}(h_{\mathrm{opt}}) \leq 2 \sup_{h \in \mathcal{H}} |\Pr_{D}(h) - \Pr(h, S)|.$$

The theorem then results from combining this with the previous lemma, and applying an Union Bound over all $h \in \mathcal{H}$:

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}|\operatorname{err}(h)-\operatorname{err}(h,S)|\geq\frac{\varepsilon}{2}\right)\leq\sum_{h\in\mathcal{H}}\mathbb{P}\left(|\operatorname{err}(h)-\operatorname{err}(h,S)|\geq\frac{\varepsilon}{2}\right)\leq 2|\mathcal{H}|e^{-m\varepsilon^2/4}.$$

For failure probability $\leq \delta$, the bound in Theorem 1 can be re-written as:

$$\varepsilon(m) \le 2 \cdot \sqrt{\frac{\ln(2|\mathcal{H}|/\delta)}{m}}$$
 (1)

Contrast this with the analogous bound for PAC learning:

$$\varepsilon(m) \le \frac{\ln(|\mathcal{H}|/\delta)}{m} \tag{2}$$

Thus, Agnostic PAC learning is statistically harder than PAC learning. Usually it is also computationally harder as well.

2 Bounds for Infinite Hypothesis Classes

The generalization bounds we have proved so far apply to finite hypothesis classes, because the union bound step breaks down when \mathcal{H} is infinite. We will now see how we can exploit the structure of a hypothesis class to show generalization bounds which apply infinite classes as well.

What kind of structure can we exploit? In cases where a hypothesis class is infinite, many different hypotheses can produce the same labeling so often the set of meaningful hypotheses is much smaller. We will measure the complexity a hypothesis class by the richness of the labelings it can produce.

This notion can be made formal by the *VC dimension*. Assuming binary classification, that is $\mathcal{Y} = \{0, 1\}$, for a hypothesis class \mathcal{H} , and a set of examples $S = \{x_1, \dots, x_m\}$, we define:

$$\Pi_{\mathcal{H}}(S) = \{ (h(x_1), \dots, h(x_m)) \mid h \in \mathcal{H} \}.$$

Here \mathcal{H} may be infinite but $\Pi_{\mathcal{H}}(S)$ has at most 2^m possible elements, and under certain conditions on \mathcal{H} , $\Pi_{\mathcal{H}}(S)$ may have even less.

Definition 1 We say a hypothesis class \mathcal{H} shatters S if $\Pi_{\mathcal{H}}(S) = \{0,1\}^m$.

Definition 2 The VC dimension of \mathcal{H} is the size of the largest set of examples that can be shattered by \mathcal{H} . The VC dimension is infinite if for all m, there is a set of m examples shattered by \mathcal{H} .

Example 1: Bidirectional Thresholds. Let $\mathcal{X} = \mathbb{R}$ with $\mathcal{H} = \mathbb{R} \times \{+, -\}$. Here each example is a point on a line, and has a binary label. Each hypothesis in \mathcal{H} corresponds to a threshold t and a sign (+ or -), and can be written as $h_{\{t,+\}}$ or $h_{\{t,-\}}$, defined as follows:

$$h_{\{t,+\}}(x) = +, \quad x \ge t$$

= -, otherwise

In other words, $h_{\{t,+\}}$ labels everything to the right of t as + and everything else as -, and $h_{\{t,-\}}$ is defined correspondingly. Since t can take on any real value, \mathcal{H} is infinite.

Note that on any fixed set of points $S = \{x_1, x_2, \dots, x_m\}$ of size $m, |\Pi_{\mathcal{H}}(S)| \leq 2m$. Consider the following m+1 intervals:

$$(-\infty, x_1), (x_1, x_2), (x_2, x_3), \dots, (x_{m-2}, x_{m-1}), (x_{m-1}, x_m), (x_m, \infty)$$
 (3)

Two thresholds t and t' placed in the same interval and with the same sign would result in the same labeling; moreover the pairs $h_{\{-\infty,+\}}$ and $h_{\{\infty,-\}}$ as well as $h_{\{-\infty,-\}}$ and $h_{\{\infty,+\}}$ result in the same labelling. Thus there are $\leq 2m$ distinct labelings.

What is the VC dimension of this class? Thresholds can produce all possible labels on a set of two distinct points. However on a sequence of three points, they cannot label the sequence +, -, + or -, +, -. Thus no sets of size 3 are shattered, and the VC dimension of this hypothesis class is 2.

Example 2: Intervals on the line. Let $\mathcal{X} = \mathbb{R}$ with $\mathcal{H} = \mathbb{R} \times \mathbb{R}$. Samples again label points on the line and each hypothesis corresponds to two real values defining an interval; points inside the interval are labeled + and everything else is labeled -. Formally, for each interval [a, b], $h_{[a,b]}(x) = +$ for $a \le x \le b$, and - otherwise.

For any set $S = \{x_1, \ldots, x_m\}$ of m points, $|\Pi_{\mathcal{H}}(S)| = {m+1 \choose 2} + 1$. Any two hypotheses $h_{[a,b]}$ and $h_{[a',b']}$ where a and a' (or b and b') lie in the same interval in the sequence in Equation 3 produce the same labeling of S. Thus there are $\leq {m+1 \choose 2}$ distinct labelings of S where not all data points are labeled -, corresponding to hypotheses $h_{[a,b]}$ where a and b lie in different intervals in the sequence in Equation 3. Finally, we add the all - labelling which is achieved by $h_{[a,a]}$ for any a.

What is the VC dimension of intervals? Intervals can label any sequence of two distinct points but cannot label a sequence of three distinct points +,-,+. Thus the VC dimension of \mathcal{H} is 2. If \mathcal{H} is expanded to allow bidirectional intervals, the previous sequence could then be labeled but sequences such as +,-,+,- could not be, giving a VC dimension of 3.

Example 3: Linear Classifiers. Let $\mathcal{X} = \mathbb{R}^2$ with $\mathcal{H} = \{\text{linear classifiers over } \mathbb{R}^2\}$. Consider a set S of 3 points in general position. Figure 2 shows that all possible labelings of S are achievable by \mathcal{H} . Thus there exists a set of 3 points that can be shattered by \mathcal{H} .

On the other hand, it can be shown that no set of 4 distinct points on the plane can be shattered by \mathcal{H} . Thus the VC dimension of \mathcal{H} is 3. Note that a set of 3 collinear points on the plane cannot be shattered by \mathcal{H} because the labeling +,-,+ is not achievable by \mathcal{H} ; but this does not change the VC dimension calculation because there is a set of size 3 that can be shattered.

In general, the VC dimension for the hypothesis class of linear classifiers in \mathbb{R}^d is d+1.

Theorem 2 For any finite hypothesis class \mathcal{H} , VC-dim(\mathcal{H}) $\leq \log_2 |\mathcal{H}|$.

PROOF: If \mathcal{H} shatters S then $|\mathcal{H}|$ is at least 2^m meaning the VC dimension can be at most $\log_2 |\mathcal{H}|$.

Figure 1: All possible labelings of S are achievable by the class of linear classifiers on the plane.

Example 3: Infinite VC dimension. Let $\mathcal{X} = \mathbb{R}$ and $\mathcal{H} = \mathbb{R}$. For $w \in \mathbb{R}$ a hypothesis is given by

$$h_w(x) = \operatorname{sign}(\sin(wx)).$$

For all m, the set $S = \{2^1, 2^2, \dots, 2^m\}$ is shattered by h. To see this, let $w = -\pi * (0.y_1y_2 \dots y_m)$ be a decimal binary encoding of a set of desired labels, converting -1 to 0. Essentially each x_i bit shifts w to produce the desired label as a result of the fact that $\operatorname{sign}(\sin(\pi z)) = (-1)^{\lfloor z \rfloor}$. Thus the VC dimension of this hypothesis class is infinite.

2.1 Sauer's Lemma

Sauer's Lemma formally relates the VC dimension of a hypothesis class \mathcal{H} and the size of $\Pi_{\mathcal{H}}(S)$ for any set S of examples of size m.

Lemma 2 If the VC dimension for a hypothesis class \mathcal{H} is d then for a set of m samples S, where $m \geq d$,

$$|\Pi_{\mathcal{H}}(S)| \le \sum_{i=0}^{d} {m \choose i} \le \left(\frac{em}{d}\right)^d \in O(m^d)$$

PROOF: We will prove this by induction over m and d. Let $\Phi_d(m) = \sum_{i=0}^d {m \choose i}$. The two base cases:

- When m = 0, S is the empty set so $|\Pi_{\mathcal{H}}(S)| \leq 1$ and $\Phi_d(0) = 1$.
- When d = 0, \mathcal{H} cannot even shatter one point so only one labeling is possible and $|\Pi_{\mathcal{H}}(S)| = \Phi_0(m) = 1$.

Then, assuming Sauer's Lemma holds for (m-1,d) and (m-1,d-1), we wish to show $|\Pi_{\mathcal{H}}(S)| \leq \Phi_d(m)$.

Let $S = \{x_1, \dots, x_m\}$. In what follows, we restrict ourselves to the sample space S. Restriction to S can only decrease the VC dimension of \mathcal{H} , so it does not affect the theorem statement.

We start by splitting $|\Pi_{\mathcal{H}}(S)|$ through introducing two new hypothesis classes \mathcal{H}_1 and \mathcal{H}_2 defined on samples $S' = \{x_1, \dots, x_{m-1}\}$. \mathcal{H}_1 is identical to \mathcal{H} but ignores the last example x_m while \mathcal{H}_2 consists of only those hypotheses where duplicates differing only on x_m would occur in \mathcal{H} . A sample split could be as follows:

If a set is shattered by \mathcal{H}_1 , it is also shattered by \mathcal{H} . Thus

$$VC\text{-}dim(\mathcal{H}_1) \leq VC\text{-}dim(\mathcal{H}) = d.$$

If S' is shattered by \mathcal{H}_2 , then $S' \cup \{x_m\}$ is shattered by \mathcal{H} implying

$$VC\text{-}dim(\mathcal{H}_1) \leq VC\text{-}dim(\mathcal{H}) - 1 = d - 1.$$

With this split, $|\Pi_{\mathcal{H}}(S)| = |\Pi_{\mathcal{H}_1}(S')| + |\Pi_{\mathcal{H}_2}(S')|$. Let ℓ be any labeling of $S \setminus \{x_m\}$ achievable by \mathcal{H} ; if $(\ell, +)$ and $(\ell, -)$ both occur in $\Pi_{\mathcal{H}}(S)$, then ℓ occurs in both \mathcal{H}_1 and \mathcal{H}_2 ; otherwise, ℓ occurs only in \mathcal{H}_1 .

So by the inductive hypothesis,

$$|\Pi_{\mathcal{H}}(S)| \leq \Phi_d(m-1) + \Phi_{d-1}(m-1) = \sum_{i=0}^d {m-1 \choose i} + \sum_{i=0}^{d-1} {m-1 \choose i}$$
$$= \sum_{i=0}^d {m-1 \choose i} + \sum_{i=1}^d {m-1 \choose i-1} = \sum_{i=1}^d {m \choose i} = \Phi_d(m).$$

Finally, from Sterling's approximation, for when $m \geq d$,

$$\Phi_d(m) = \sum_{i=0}^d \binom{m}{i} \le \left(\frac{m}{d}\right)^d \sum_{i=0}^d \binom{m}{d} \left(\frac{d}{m}\right)^i = \left(\frac{m}{d}\right)^d \left(1 + \frac{d}{m}\right)^m \le \left(\frac{em}{d}\right)^d.$$