Решения

Задача № 1.

Ответ: 4.

Центр вписанной в треугольник окружности и три центра вневписанных окружностей.

Задача № 2. (Автор: Москвитин Н.А.)

Опустим перпендикуляры DE, DF и DG к прямым, содержащим стороны AB, BC и AC $\triangle ABC$.

Тогда $\angle DBE = \angle DBC = \angle ACB$.

 $\Delta EBD = \Delta FBD$ (по гипотенузе и острому углу) \Rightarrow DE = DF.

 $\angle BDC = \angle BCD$ ($\triangle CBD$ - равнобедренный).

 $\angle BDC = \angle DCG$ (накрест лежащие при секущей CD).

Следовательно, $\angle BCD = \angle DCG$.

Тогда DF = DG, но это и значит, что D является центром вневписанной окружности треугольника.

Задача № 3.

a) Ответ: 90°.

 $\angle CBK = 60^{\circ}$ (как внешний угол при вершине B),

 $\angle CBB_1 = 60^\circ$ (т.к. BB_1 — биссектриса $\angle ABC = 120^\circ$). Поэтому, BC — биссектриса $\angle B_1BK$. A_1 — точка пересечения биссектрисы BC внешнего угла B_1BK и внутреннего угла A треугольника ABB_1 значит A_1 — центр вневписанной окружности треугольника ABB_1 . Аналогично, C_1 — центр вневписанной окружности треугольника BCB_1 . Следовательно, B_1A_1 и B_1C_1 — биссектрисы смежных углов, а значит, угол между ними равен 90. Итак, $\angle A_1B_1C_1 = 90^\circ$

b) Ответ: 30°.

Из доказанного следует, что точка P пересечения CC_1 и B_1A_1 является пересечением биссектрис ΔBCB_1 .

Следовательно, $\angle B_1 PC = 180^{\circ} - (\angle PB_1 C + \angle PCB_1) = 180^{\circ} - \frac{\angle BB_1 C + \angle BCB_1}{2} = 120^{\circ}$.

Так как $\angle B_1 PC$ — внешний для прямоугольного треугольника PB_1C_1 , то $\angle B_1C_1C = \angle B_1PC - 90^\circ = 30^\circ$.

Задача № 4.

 $\angle O_1 A O_3$ — угол между биссектрисами смежных углов.

Следовательно, $O_1A \perp O_3A$.

Аналогично, $O_1A \perp O_2A$.

Поэтому, O_1A — высота $\Delta O_1O_2O_3$.

Точно так же докажем, что O_2B и O_3C — высоты $\Delta O_1O_2O_3$.

Задача № 5. (воспользоваться результатом задачи № 4)

Построение:

- 1. $\Delta O_1 O_2 O_3$.
- $2. O_1 A, O_2 B, O_3 C$ высоты $\Delta O_1 O_2 O_3$.
- $3. \Delta ABC$ искомый.

Задача № 6. (воспользоваться рисунком задачи № 4)

Центр O_1 вневписанной окружности, касающейся стороны BC, является точкой пересечения биссектрис внешних углов при вершинах B и C.

Поэтому,
$$\angle O_1 CB = \frac{180^\circ - \angle C}{2} < 90^\circ$$
, $\angle O_1 BC = \frac{180^\circ - \angle B}{2} < 90^\circ$, $\angle BO_1 C = \frac{180^\circ - \angle A}{2} < 90^\circ$. $\Delta O_1 O_2 O_3$ — остроугольный.

Задача № 7.

Обозначим AB = c, BC = a, CA = b. Известно, что AP = BQ = p, где p – полупериметр треугольника.

Тогда, если T – середина PQ , то

$$PT = \frac{1}{2}PQ = \frac{1}{2}(QA + AB + BP) = \frac{1}{2}((p-c) + c + (p-c)) =$$

$$=\frac{1}{2}(2p-c)=\frac{1}{2}(a+b+c-c)=\frac{a+b}{2}$$
 значит,

$$BT = PT - BP = \frac{a+b}{2} - (p-c) = \frac{a+b}{2} - \frac{a+b-c}{2} = \frac{c}{2}$$
, r.e.

T — середина AB.

Задача № 8.

Обозначим вершины треугольника, противолежащие сторонам a,b,c, через A,B,C (C — вершина прямого угла), а точки касания — через A_1,B_1,C_1 соответственно. Если O — центр данной окружности, то OA_1CB_1 — квадрат со стороной, равной r. Поэтому $CA_1 = r$, $BC_1 = BA_1 = r - a$, $AC_1 = AB_1 = r - b$, $c = AB = AC_1 + C_1B = 2r - a - b$.

Следовательно, $r = \frac{a+b+c}{2}$.

Задача № 9.

 $Oтвет: R_1R_1.$

Отрезок CT_1 (T_1 — точка касания прямой CB и окружности радиуса R_2) равен R_2 . Окружность радиуса R_2 является вневписанной окружностью ΔABC , значит, $R_2 = p$. Площадь треугольника находим как произведение радиуса вписанной окружности на полупериметр: $S = rp = R_1R_2$.

Задача № 10.

Ответ: 45°.

Расстояния от вершины C ΔCMN до точек B и D равны его полупериметру. Значит, B и D — точки касания вневписанной окружности , центр которой находится в вершине A квадрата ABCD. Тогда, AM и AN — биссектрисы $\angle BMN$ и $\angle MND$ соответственно. $\angle CMN$ + $\angle CNM$ = 90° ,

значит,
$$\angle AMN + \angle MNA = 180^{\circ} - \frac{\angle CMN + \angle CNM}{2} = 135^{\circ}$$
.

Откуда, $\angle MAN = 180^{\circ} - (\angle AMN + \angle MNA) = 45^{\circ}$.

Задача № 11.

Пусть O — центр вписанной окружности прямоугольного треугольника ABC,

P — точка касания этой окружности с катетом BC, r — радиус этой окружности.

Пусть также окружность с центром в точке O_1 и радиусом R касается катета BC в точке Q и, кроме того, касается продолжений катета AC и гипотенузы AB.

Отрезок OO_1 виден из точек C и B под прямым углом. Поэтому точки B и C лежат на окружности с диаметром OO_1 .

Следовательно, $\angle BOO_1 = \angle BCO_1 = 45^\circ$.

Тогда $OB = O_1B$.

Пусть M и N точки касания окружностей с прямой AB (AM < AN).

Тогда $\triangle OMB$ и $\triangle BNO_1$ равны по гипотенузе и острому углу.

Поэтому $BM = O_1 N = R$.

Следовательно, BC = BP + PC = BM + PC = R + r.

O B C Поскольку центр окружности, вписанной в угол, лежит на биссектрисе этого угла, то точки O, O_1 и O_2 лежат на одной прямой. Пусть углы при вершинах O и A $\triangle OAB$ равны соответственно α и β . По теореме о внешнем угле треугольника

$$\angle AO_1O_2 = \angle AOO_1 + \angle OAO_1 = \frac{\alpha}{2} + \frac{\beta}{2} = \frac{1}{2}(\alpha + \beta) = \frac{1}{2}(\angle AOB + \angle OAB) = \frac{1}{2}\angle ABC.$$

Пусть угол при вершине A треугольника OAC равен β ', а окружность с центром O_2 касается луча OA в точке D. Тогда

$$\angle AO_2O_1 = \angle DAO_2 - \angle AOO_2 = \frac{1}{2}(180^{\circ} - \beta') - \frac{\alpha}{2} = \frac{1}{2}(180^{\circ} - \beta' - \alpha) = \frac{1}{2} \angle ACO = \frac{1}{2} \angle ACO$$

Из условия задачи следует, что $\angle AO_1O_2 = \angle AO_2O_1$, значит, $\angle ABC = \angle ACB$.

Следовательно, ΔABC – равнобедренный.

Задача № 13.

Ответ: $\sqrt{3}$.

Пусть O_1 и O_2 — центры окружностей радиусов 2 и 3 соответственно, M и N — их точки касания со стороной RQ. Тогда, $RM = \frac{O_1 M}{tg30^\circ} = \frac{2}{\sqrt{3}} = 2\sqrt{3}$, $RN = \frac{O_2 N}{tg60^\circ} = \frac{3}{\sqrt{3}} = \sqrt{3}$.

Поэтому, $MN = RM - RN = 2\sqrt{3} - \sqrt{3} = \sqrt{3}$.

Задача № 14. (смотрите решение задачи № 13)

Ответ: $3\sqrt{3}$.

Задача № 15.

Ответ: $2R\sqrt{2}$.

 Пусть O_1 и O_2 — центры данных окружностей (R — радиус первой), C — вершина прямого угла. Тогда треугольник O_1CO_2 — прямоугольный. Поскольку точки O_1 и O_2 расположены на биссектрисе угла A, то $\angle O_1O_2C = 75^{\circ} - 45^{\circ} = 30^{\circ}$.

 O_1C — диагональ квадрата со стороной R, значит $O_1C=R\sqrt{2}$.

Следовательно, $O_1O_2 = 2O_1C = 2R\sqrt{2}$.

Задача № 16.

Ombem: $\frac{1}{2}p(p-a)tg\frac{\alpha}{2}$.

1 способ:

Пусть M — точка касания данной окружности со стороной BC. Тогда KB = BM, LC = CM, 2p = AB + BC + AC = AK + AL, a T.K. AK = AL, To AK = p.

Поэтому,
$$OK = AK \cdot tg \frac{\alpha}{2} = p \cdot tg \frac{\alpha}{2}$$
.

Следовательно,
$$S_{DOK} = \frac{1}{2}DK \cdot OK = \frac{1}{2}p(p-a)tg\frac{\alpha}{2}$$
.

2 способ:

AK = p (теорема о касательной к вневписанной окружности), $OK = p \cdot tg \frac{\alpha}{2}$ (соотношение между радиусом вневписанной окружности и периметром треугольника).

$$S_{DOK} = \frac{1}{2}DK \cdot OK = \frac{1}{2}p(p-a)tg\frac{\alpha}{2}.$$

Задача № 17.

Omeem: $\frac{315}{2}$.

Данная окружность — вневписанная окружность треугольника CAD, касающаяся стороны CD и продолжений сторон AC и AD. Пусть

 $\angle ADC = \alpha$, $\angle BAD = 2\alpha$. O — центр окружности, P и Q — проекции вершин B и Cменьшего основания трапеции на AD, M — точка касания с прямой AD, K — с прямой AC. Поскольку CO — биссектриса угла KCD, то

$$\angle BCA = \angle KCO = \angle OCD = \angle CDA = \angle CAD = \angle BAC = \alpha$$
, $\triangle ABC$ и $\triangle ACD$ — равнобедренные.

Тогда
$$AB = BC = 13$$
, $BP = OM = 5$, $AP = \sqrt{AB^2 - BP^2} = \sqrt{13^2 - 5^2} = 12$,

$$\cos 2\alpha = \cos \angle BAP = \frac{AP}{AB} = \frac{12}{13}, \ tg\angle CDA = tg\alpha = \sqrt{\frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}} = \frac{1}{5}, \ DQ = CO \cdot ctg\alpha = 5 \cdot 5 = 25,$$

$$AD = AP + PQ + QD = 12 + 13 + 25 = 50.$$

Следовательно, $S_{ABCD} = \frac{1}{2}(AD + DC) \cdot BP = \frac{1}{2}(50 + 13) \cdot 5 = \frac{315}{2}$.

Задача № 18.

Пусть R — радиус вневписанной окружности, r — радиус вписанной. $\Delta CMO_1 \sim \Delta CKO$, значит, $\frac{CM}{R} = \frac{r}{CK}$, CK = p - c, CM = p - AC = p - b.

Откуда,
$$\frac{p-b}{R} = \frac{r}{p-c}$$
 или $rR = (p-c)(p-b)$.

Ho
$$R = \frac{S}{p-a}$$
, $r = \frac{S}{p}$, значит $rR = \frac{S}{p-a} \cdot \frac{S}{p} = (p-c)(p-b)$.

Отсюда следует формула Герона $S = \sqrt{p(p-a)(p-b)(p-c)}$

Задача № 19.

Поскольку, $\angle AOM = \angle ABO + \angle OAB = \angle ACM + \angle OAB = \angle CAM + \angle OAC = \angle OAM$, то $\triangle OMA$ — равнобедренный, MO = MA. Аналогично докажем, что MO = MC. $\angle OAO_1$ — прямой как угол между биссектрисами смежных углов.

Обозначим $\angle AOM = \angle OAM = \varphi$, тогда $\angle MAO_1 = 90^\circ$ - φ

Поэтому ΔAMO_1 — равнобедренный и $MA = MO_1$. Следовательно, $MA = MO = MC = MO_1$. Поэтому точки A, O, C, O_1 лежат на окружности с центром в точке M.

Задача № 20.

Пусть вневписанная окружность касается стороны $AB \triangle ABC$;

$$\angle ABC = \alpha, \angle CAB = \beta, \angle CBA = \gamma.$$

 O_1, O_2 — центры вписанной и вневписанной окружностей соответственно,

M — середина O_1O_2 . Поскольку отрезок O_1O_2 виден из точек A и B под прямым углом, то M — центр окружности, описанной около четырёхугольника AO_1BO_2 . Тогда

$$\angle AO_2B = \angle AO_2O_1 + \angle BO_2O_1 = \angle O_1BA + \angle O_1AB = \frac{\gamma}{2} + \frac{\beta}{2} = 90^{\circ} - \frac{\alpha}{2}$$

$$\angle AMB = 2\angle AO_2B = 180^\circ - \alpha$$
.

Следовательно, точки A, C, B и M лежат на одной окружности, т.е. на окружности, описанной около треугольника ABC.

Задача № 21.

Ответ: 5460.

Применяя соотношение 2:
$$\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r}$$
, имеем $\frac{1}{9} + \frac{1}{18} + \frac{1}{21} = \frac{1}{r}$, $r = \frac{14}{3}$.

Используя соотношение 6:
$$S = \sqrt{r_a r_b r_c r}$$
, получаем $S = \sqrt{9 \cdot 18 \cdot 21 \cdot \frac{14}{3}} = 126$.

Ответ на вопрос задачи получим, воспользовавшись соотношением 1: $r_a + r_b + r_c - r = \frac{abc}{S}$,

то есть
$$abc = (r_a + r_b + r_c - r) \cdot S$$
. Итак, $abc = (9 + 18 + 21 - \frac{14}{3}) \cdot 126 = 5460$.

Задача № 22.

а) выразим все радиусы через стороны, площадь и полупериметр треугольника:

$$\begin{split} r &= \frac{S}{p}, R = \frac{abc}{4S}, r_a = \frac{S}{p-a}, r_b = \frac{S}{p-b}, r_c = \frac{S}{p-c} \,. \\ \text{Значит, } r_a + r_b + r_c - r = \frac{S}{p-a} + \frac{S}{p-b} + \frac{S}{p-c} - \frac{S}{p} = \\ &= S \cdot \frac{p(p-b)(p-c) + p(p-a)(p-c) + p(p-a)(p-b) - (p-a)(p-b)(p-c)}{p(p-a)(p-b)(p-c)} = \\ &= S \cdot \frac{abc}{S^2} = \frac{abc}{S} = 4R \Rightarrow r_a + r_b + r_c = r + 4R \,. \end{split}$$

$$b$$
) воспользуемся формулами $r_a = \frac{S}{p-a}, r_b = \frac{S}{p-b}, r_c = \frac{S}{p-c}$, имеем

$$\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{p-a}{S} + \frac{p-b}{S} + \frac{p-c}{S} = \frac{3p-(a+b+c)}{S} = \frac{3p-2p}{S} = \frac{p}{S} = \frac{1}{r}.$$

Итак,
$$\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r}$$
.

$$c$$
) из $r_a r_b r_c = rp^2 = rp \cdot p = Sp$.

Следовательно $S = \frac{r_a r_b r_c}{p}$.

d) используя формулы (b), (c) и S = pr имеем:

$$\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{r_a r_b + r_b r_c + r_a r_c}{r_a r_b r_c} = \frac{r_a r_b + r_b r_c + r_a r_c}{Sp} = \frac{p}{S}.$$

Следовательно $r_a r_b + r_b r_c + r_a r_c = p^2$.

e) используя формулу (c) и S=pr, имеем $r_a r_b r_c = Sp = rp^2$.

$$f$$
) используя формулу (c) и $S=pr$, имеем $S=rac{r_ar_br_c}{p}=rac{r_ar_br_c}{S}$ или $S^2=r_ar_br_cr$.

Следовательно $S = \sqrt{r_a r_b r_c r}$.

$$g$$
) воспользуемся формулами $r_b = \frac{S}{p-b}, r_c = \frac{S}{p-c}$

Значит,
$$\frac{1}{r_b} + \frac{1}{r_c} = \frac{p-b}{S} + \frac{p-c}{S} = \frac{2p-b-c}{S} = \frac{a+b+c-b-c}{S} = \frac{a}{S} = \frac{a}{\frac{1}{2}ah_a} = \frac{2}{h_a}$$
,

$$\frac{1}{h_a} = \frac{1}{2} \left(\frac{1}{r_b} + \frac{1}{r_c} \right).$$