1

Variables aleatorias y distribución de probabilidad

1.1. El concepto de variables aleatorias

Definición 1.1 Sea S un espacio muestral sobre el que se encuentra definida una función de probabilidad. Sea X una función de valor real definida sobre S, de manera que transforme los resultados de S en puntos sobre la recta de los reales. Se dice entonces que X es un variable aleatoria.

Definición 1.2 Se dice que una variable aleatoria X es discreta si el número de valores que puede tomar es contable (ya sea finito o infinito), y si éstos pueden arreglarse en una secuencia que corresponde con los enteros positivos.

Definición 1.3 Se dice que una variable aleatoria X es continua si sus valores consisten en uno o más intervalos de la recta de los reales.

1.2. Distribuciones de probabilidad de variables aleatorias discretas

Definición 1.4 Sea X una variable aleatoria discreta. Se llamará a p(x) = P(X = x) función de probabilidad de la variable aleatoria X, si satisface las siquientes propiedades:

1. $p(x) \ge 0$ para todos los valores x de X;

2.
$$\sum_{x} p(x) = 1$$
.

Definición 1.5 La función de distribución acumulativa de la variable aleatoria X es la probabilidad de que X sea menor o igual a un valor específico de x y está dada por:

$$F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i)$$

En general, la función de distribución acumulativa F(x) de una variable aleatoria discreta es una función no decreciente de los valores de X, de tal manera que:

1. $0 \le F(x) \le 1$ para cualquier x;

2.
$$F(x_i) \geq F(x_j)$$
 si $x_i \geq x_j$;

3.
$$P(X > x) = 1 - F(x)$$
.

4.
$$P(X = x) = F(x) - F(x - 1);$$

5.
$$P(x_i \ge X \ge x_i) = F(x_i) - F(x_i - 1)$$

1.3. Distribuciones de probabilidad de variables aleatorias continuas

Definición 1.6 1. $f(x) \ge 0$, $-\infty < x < \infty$,

2.
$$\int_{-\infty}^{\infty} f(x) \ dx \ y$$

3.
$$P(a \le X \le b) = \int_a^b f(x) \, dx$$

Para la función de distribución acumulativa F(x) se tiene:

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(t) dt$$

Dado que para cualquier varible aleatoria continua X,

$$P(X = x) = \inf_{x}^{x} f(t) dt = 0, \Longrightarrow P(X \le x) = P(X < x) = F(x)$$

La distribución acumulativa F(x) es una función lisa no decreciente de los valores de la v.a. con las siguiente propiedades:

1.
$$F(-\infty) = 0$$
;

2.
$$F(\infty) = 1$$
;

3.
$$P(a < X < b) = F(b) - F(a)$$

4.
$$dF(x)/dx = f(x)$$
.

1.4. Valor esperado de una variable aleatoria

Definición 1.7 El valor esperado de una variable aleatoria X es el promedio o valor medio de X y está dado por:

$$E(X) = \sum_{x} xp(x)$$
 Si x es discreta, o

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
 Si x es continua.

En donde p(x) y f(x) son las funciones de probabilidad y de densidad de probabilidad, respectivamente.

En general, el valor esperado de una función g(x) de la variables aleatoria X, está dado por:

$$E(g(X)) = \sum_{x} g(x)p(x)$$
 Si x es discreta, o

$$E(g(X)) = \int_{-\infty}^{\infty} g(x)xf(x) dx$$
 Si x es continua.

1.4.1. Propiedades

1. El valor esperado de una constante c es el valor de la constante.

$$E(c) = \int_{-\infty}^{\infty} cf(x) \ dx = c \int_{-\infty}^{\infty} f(x) \ dx = c$$

2. El valor esperado de la cantidad aX + b, en donde a y b son constantes, es el producto de a por el valor esperado de x más b.

$$E(aX+b) = \int_{-\infty}^{\infty} (ax+b)f(x) dx = a \int_{-\infty}^{\infty} xf(x) dx + b \int_{-\infty}^{\infty} f(x) dx = aE(X) + b$$

3. El valor esperado de la suma de dos funciones g(X) y h(X) de X es la suma de los valores esperados de g(X) y h(X).

$$E\left[g(X) + h(X)\right] = \int_{-\infty}^{\infty} \left[g(x) + h(x)\right] dx \int_{-\infty}^{\infty} g(x)f(x) dx + \int_{-\infty}^{i} nftyh(x)f(x) dx = E\left[g(X)\right] + E\left[h(X)\right]$$

1.5. Momentos de una variable aleatoria