Single-Factor ANOVA

Hypothesis $H_0: \mu_1 = \ldots = \mu_I$ vs $H_1:$ at least two $\mu_i's$ differ.

Assumptions: (1) Each sample has equal sample size (J) (2) Normal populations (3) Equal variance: $\sigma_1^2 = \ldots = \sigma_I^2$. Idea: In the pooled two-sample t test with m = n, $T = \frac{\bar{X}_1 - \bar{X}_2 - 0}{\sqrt{S_p^2 \times 2/n}} \sim t_{2n-2} \to T^2 = \frac{(\bar{X}_1 - \bar{X}_2)^2 + (\bar{X}_2 - \bar{X}_1)^2}{S_p^2/n} \sim F_{1,2n-2}$

Raw data	Sample 1	:	Sample I		Treat all the data from one sample
	X_{11}	:	X_{I1}		$\bar{X}_{} = \frac{1}{IJ}(X_{11} + + X_{1J} + + X_{II} + + X_{IJ})$
	X_{12}	:	X_{I2}		$=rac{1}{I}(ar{X}_{ m L}+\ldots+ar{X}_{ m L})$
				Total sum of square (SST) =	$\sum_{i=1}^{I} \sum_{j=1}^{J} (X_{ij} - \bar{X}_{\cdot\cdot})^2$
	X_{1J}	:	X_{IJ}		
Sample mean	Sample mean $\bar{X}_1 = \frac{1}{j} \sum_{j=1}^{J} X_{1j}$:	$\bar{X}_L = \frac{1}{J} \sum_{j=1}^{J} X_{lj}$	$\bar{X}_i = \frac{1}{J} \sum_{j=1}^{J} X_{Ij}$ Sum of square of treatment (SSTr) = $J \sum_{i=1}^{i} (\bar{X}_i - \bar{X}_i.)^2$	$J\sum_{i=1}^{i} (\bar{X}_i - \bar{X})^2$ $\sum_{i=1}^{i} (\bar{X}_i - \bar{X})^2$
Sample variance	$S_1^- = \frac{1}{J-1} \sum_{j=1} (A_{1j} - A_{1})^-$:	$S_{ar{I}} = rac{J-1}{J-1} \sum_{j=1} (\Lambda_{Ij} - \Lambda_{I.})^{-j}$	Sum of square of error (SSE)=	$\sum_{i=1} \sum_{j=1} (A_{ij} - A_{i,j}) = (J - 1) \sum_{i=1} S_i^*$ This one is used to calculate the pool sample variance.

Theorem: Under all the assumptions (balanced data, normal distribution, equal variance), we have

- 1. $SSE/\sigma^2 \sim \chi^2_{I(J-1)}$ no matter H_0 is true or not;
- 2. $SSTr/\sigma^2 \sim \chi_{I-1}^2$ if and only if H_0 is true;
- 3. SSTr and SSE are independent random variables, where $SSE = \sum_{i=1}^{I} \sum_{j=1}^{J} (\bar{X}_{ij} \bar{X}_{i.})^2 = (J-1) \sum_{i=1}^{I} S_i^2$ and $SSTr = J \sum_{i=1}^{I} (\bar{X}_{i.} \bar{X}_{..})^2$

Test: The F test: $F = \frac{MSTr}{MSE} = \frac{SSTr/[\sigma^2(I-1)]}{SSE/[\sigma^2I(J-1)]} \stackrel{H_0}{\sim} F_{I-1,I(J-1)}$. We reject H_0 at level α whenever $F > F_{\alpha,I-1,I(J-1)}$.

Table 1: ANOVA TABLE

Source of variation	df	Sum of Squares Mean Squares	Mean Squares	ĹΉ
Treatments	I-1	SSTr	MSTr	MSTr/MSE
Error	I(J-1)	SSE	MSE	
Total	IJ-1	LSS		