Automatické hodnocení anglické výslovnosti nerodilých mluvčích

Diplomová práca

Peter Gazdík

30. augusta 2019

Automatické hodnotenie výslovnosti

Druhy chýb

- segmentálne chyby,
- prozodické chyby.

Úrovne hodnotenia výslovnosti

- detekcia.
- diagnostika.

Hodnotenie segmentálnych chýb

Text	Fonémový prepis
hello world	heləv wa:ld

Hodnotenie segmentálnych chýb

Text	Fonémový prepis
hello world	heləv wa : ld

Hodnotenie segmentálnych chýb

Text	Fonémový prepis
hello world	heləv wərld

Hodnotenie segmentálnych chýb: Existujúci nástroj

Obr. 1: Webové rozhranie nástroja SpeechAce.

Návrh systému: Metódy

Metódy

1. Goodness of Pronunciation (GOP) skóre

$$\mathsf{LR}\;\mathsf{GOP}(p) = \log\left(\frac{p(\boldsymbol{O}^{(p)}|p)}{\max_{q \in Q, q \neq p} p(\boldsymbol{O}^{(p)}|q)}\right) \bigg/ d.$$

- 2. Klasifikačné metódy:
 - Klasifikátor: neurónové siete,
 - Príznaky
 - vierohodnosti HMM stavov,
 - pravdepodobnosti fonologických rysov.

Experimenty

Dataset

• ISLE – dataset nenatívnej angličtiny (talianský a nemecký rečníci).

Vyhodnotenie

- ROC krivka závislosť medzi mierou chybného prijatia (FAR) a mierou chybného odmietnutia (FRR)
 - FAR pomer medzi počtom zle vyslovených foném klasifikovaných ako správne vyslovené k celkovému počtu zle vyslovených,
 - FRR pomer medzi počtom správne vyslovených foném klasifikovaných ako nesprávne vyslovené k celkovému počtu správne vyslovených.
- Rovnaká miera chyby (EER)
 - *EER* := *FAR* = *FRR*

Experimenty

Experimenty

- 1. Porovnanie základných metód s ref. prácou.
- 2. Porovnanie monofónového a trifónového AM.
- 3. Multilingválne trénovanie.
- 4. Porovnanie rôznych GOP skóre.
- 5. Porovnanie dopredných a LSTM neurónových sietí.

Experiment 1: Porovnanie základných metód s ref. prácou

Metódy

- LR GOP skóre,
- neurónová sieť + vierohodnosti HMM stavov (NN HMM),
- neurónová sieť + pravdepodobnosti fonologických rysov (NN Pfeats).

Rozpoznávač reči

monofónový DNN-HMM model.

Experiment 1: Porovnanie základných metód s ref. prácou

Obr. 2: Graf závislosti FAR a FRR pre základné metódy.

Experiment 1: Porovnanie základných metód s ref. prácou

EER [%]	LR GOP	NN HMM	NN PFeats
Navrhnutý systém Referenčný systém ¹	27,23 39,00	27,57 ± 0,16 31,80	28,49 ± 0,14 28,30

Tabuľka 1: Dosiahnuté výsledky pomocou základných metód.

 $^{^1\}mbox{Arora, V.; Lahiri, A.; Reetz, H.: Phonological Feature Based Mispronunciation Detection and Diagnosis using Multi-Task DNNs and Active Learning. 2017.$

Experiment 2: Porovnanie monofónového a trifónového AM

Metódy

- LR GOP skóre,
- neurónová sieť + vierohodnosti HMM stavov (NN HMM).

Rozpoznávač reči

- DNN-HMM monofónový akustický model,
- DNN-HMM trifónový akustický model.

Experiment 2: Porovnanie monofónového a trifónového AM

Obr. 2: Graf závislosti FAR a FRR pri použití monofónového a trifónového AM.

Experiment 2: Porovnanie monofónového a trifónového AM

EER [%]	LR GOP	NN HMM
Mono AM	27,23	$27,57 \pm 0,16$
Tri AM	26,91	$27,06 \pm 0,\!18$

Tabuľka 2: Dosiahnuté výsledky pri použití monofónového a trifónového AM.

Experiment 3: Multilingválne trénovanie

Jazyky

- natívne jazyky: angličtina, nemčina, taliančina,
- nenatívne jazyky: angličitina.

Metódy

- Mono LR GOP,
- Tri LR GOP.

Experiment 3: Multilingválne trénovanie

EER [%]	Mono LR GOP	Tri LR GOP
NN-EN	27,75	26,91
$EN \to NN\text{-}EN$	27,27	26,35
$DE \to NN\text{-}EN$	26,55	26,63
$IT \to NN\text{-}EN$	26,71	26,35
$EN \to DE \to NN\text{-}EN$	26,55	26,43
$EN \to IT \to NN\text{-}EN$	26,83	26,47
$EN \to DE \to IT \to NN\text{-}EN$	26,55	25,78
$\overline{EN \to IT \to DE \to NN\text{-}EN}$	26,67	26,31

Tabuľka 3: Dosiahnuté výsledky pri použití multilingválnych akustických modeloch.

Experimenty: Zhrnutie výsledkov

- Najlepšia metóda: LR GOP skóre.
- Ďalšie zlepšenie vďaka použitiu trifónového AM a multilingválneho trénovania.
- Najepší výsledok: EER = 25,78 % (ref. systém 28,30 %).

Analýza datasetu

Postup

- Časť datasetu anotovaná viacerými anotátormi súčasne,
- FAR a FRR po dvojiciach anotátorov, hodnotenie jedného anotátora je uvažované ako referenčné.

Analýza datasetu

Obr. 2: Hodnoty FAR a FRR určené po dvojiciach anotátorov.

Analýza datasetu

Obr. 2: Hodnoty FAR a FRR určené po dvojiciach anotátorov – fonéma ə.

Otázka oponenta 1

Otázka

V předposledním odstavci na straně 27 píšete, že pro multi-class výstup používáte na výstupní vrstvě softmax. Jasně prosím zdůvodněte motivaci této architektury a tříd které klasifikujete (vstupní a výstupní data).

- Klasifikácia binárnych fonologických rysov (multi-label N z M),
- Vstupy: fbank príznaky jedného rámca reči,
- Výstupy: 19 fonologických rysov.

Softmax

Logistická sigmoida

$$f_j(a_1, a_2, \dots, a_m) = \frac{e^{a_j}}{\sum_{k=1}^M e^{a_k}}$$
 $f(a_j) = \frac{1}{1 + e^{-a_j}}$

Otázka oponenta 2

Otázka

Popište stručně včem přesně se liší referenční a váš systém, a z čeho podle vás vzniklo zlepšení, kterého jste dosáhl.

GOP skóre

Navrhnutý systém

$$\mathsf{GOP}(p) = \log \left(\frac{p(\boldsymbol{O}^{(p)}|p)}{\max_{q \in Q, q \neq p} p(\boldsymbol{O}^{(p)}|q)} \right) \bigg/ d.$$

Referenčný systém

$$\mathsf{GOP}(p) = \log \left(\frac{p(p|\boldsymbol{O}^{(p)})}{\max_{q \in Q, q \neq p} p(q|\boldsymbol{O}^{(p)})} \right) \bigg/ d.$$

Otázka oponenta 2

NN HMM

- odlišná objektívna funkcia crossentropia vs. kvadratická stredná odchýlka,
- normalizácia príznakov (nulová stredná hodnota a jednotkový rozptyl).

NN PFeats

- porovnateľné výsledky,
- odlišná objektívna funkcia crossentropia vs. kvadratická stredná odchýlka,
- normalizácia príznakov (nulová stredná hodnota a jednotkový rozptyl).

Princíp multilingválneho trénovania

Princíp

Obr. 3: Postupné, sekvenčné trénovania DNN akustického modelu na viacerých jazykoch.