¹⁴N MAS NMR Spectroscopy and Quadrupole Coupling Data in Characterization of the IV ↔ III Phase Transition in Ammonium Nitrate

Tania Giavani, Henrik Bildsøe, Jørgen Skibsted, and Hans J. Jakobsen*

Instrument Centre for Solid State NMR Spectroscopy, Department of Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark

Received: August 30, 2001; In Final Form: December 20, 2001

The first application of ¹⁴N MAS NMR spectroscopy and the associated ¹⁴N quadrupole coupling data for characterizing a phase transition between two solid phases is presented. For NH₄NO₃, the transition between the phases IV and III at about 35 °C and the phases themselves are studied by ¹⁴N MAS NMR using the NH₄⁺ as well as the NO₃⁻ ion as probes. Spectra are acquired employing spinning speeds in the range from 2000 to 7000 Hz thereby taking advantage of the frictional heating as the heat source. The ¹⁴N quadrupole coupling constants and asymmetry parameters for both the NH₄⁺ and NO₃⁻ ion determined from these spectra show large changes upon transition between the two phases. Also the transition exhibits the effect of hysteresis with a deviation of about 10 °C for the transition temperature. The results show great potential for ¹⁴N MAS NMR being a useful tool in characterizing phase transitions for nitrogen compounds from ¹⁴N quadrupole coupling data.

Introduction

In a recent communication, it has been demonstrated that solid-state magic-angle spinning (MAS) NMR spectroscopy of the important ¹⁴N spin isotope (99.63% natural abundance, spin I = 1) can be lifted to a level of high usefulness in chemistry and materials science. Generally, the low-y ¹⁴N quadrupolar nucleus is considered a most difficult nucleus to be studied by solid-state NMR methods, in particular by the high-resolution techniques of MAS NMR. One reason that makes ¹⁴N NMR a much greater challenge, as compared to other low-γ quadrupolar nuclei, is the fact that it does not possess a central transition (integer spin isotope), i.e., the commonly investigated transition for low-γ quadrupolar nuclei (e.g., ¹⁷O, ³⁵Cl, ³⁹K, ²⁵Mg, ⁴³Ca, ⁶⁷Zn, ⁹⁵Mo, and ¹³⁷Ba). However, taking advantage of state-ofthe-art transmission line tuning (TLT) CP/MAS probes at high magnetic fields, we recently showed that 14N quadrupolar coupling constants (C_0) in the range 0.5-1.0 MHz (or even larger) and their associated asymmetry parameters (η_0) may be determined from the intensities and line shapes of the numerous spinning sidebands (ssbs) observed for the $(1 \leftrightarrow 0)$ and $(0 \leftrightarrow -1)$ transitions in MAS experiments. In addition to the required high stability in sample spinning, we should note that the TLT probe tuning technology greatly contributes to the quality of the spectra by reducing acoustic ringing usually hampering the observation of low-γ nuclei employing high-Q MAS probes with ceramic capacitors as tuning elements.

Ammonium nitrate (NH₄NO₃), a chemical of high industrial importance because of its use in agriculture and explosives, has been extensively investigated by several physical methods. The great interest devoted to studies of this material originates from the unusually large number of phases (five) observed for solid NH₄NO₃ in the temperature range from -25 to 150 °C. $^{3-5}$ In particular, the phase transition just above room temperature (at about 35 °C) is of interest because it invokes breakage and

caking of NH₄NO₃ pellets, thereby causing problems in the storage of this material. These studies include solid-state ¹⁵N NMR spectroscopy employing ¹⁵N-labeled NH₄NO₃ materials.^{6,7} Recently a comprehensive variable-temperature (VT) solid-state ¹⁵N NMR study (using MAS and static powder samples) characterizing the five accessible phases by their isotropic and anisotropic ¹⁵N chemical shift parameters has been performed.⁸

In this work, we demonstrate the potential of solid-state ¹⁴N MAS NMR spectroscopy as a tool in studies of phase transitions for nitrogen containing compounds. In addition to characterizing phase transitions by changes in isotropic chemical shifts as has been done by ¹⁵N MAS NMR,⁷⁻⁹ ¹⁴N MAS NMR experiments allow determination of the ¹⁴N quadrupole coupling parameters C_0 and η_0 . Such data constitute a valuable set of parameters characterizing the environment of the nitrogen atom and thus serve useful in distinguishing structural changes induced by a phase transition. Considering the phase transition in NH₄NO₃ from phase IV to phase III at about 35 °C, we show that 14N MAS NMR spectroscopy of the ammonium (NH₄⁺) as well as of the nitrate (NO₃⁻) ion allow determination of quite different ¹⁴N quadrupole coupling parameters (C_0 and η_0) for these ions in the two phases. Because of a lack in VT hardware for performing a study at high/low temperatures for the other phase transitions in NH₄NO₃, the phase transition observed here at about 35 °C serves as an illustrative example of the first of its kind detected by ¹⁴N MAS NMR spectroscopy. This phase transition was induced by the frictional heating of the sample/ rotor¹⁰ obtained for different rotor spinning speeds and exhibited a clear hysteresis effect.

Experimental Section

Materials. Because of a heavy overlap in the ¹⁴N MAS NMR spectrum between the two manifolds of spinning sidebands arising from the NH₄⁺ ion and the NO₃⁻ ion, two different samples of NH₄NO₃ were used in this study. A sample of ordinary, naturally occurring NH₄NO₃ (sample **1**), purchased from Merck, was used for the observation of the NH₄⁺ ion.

^{*} To whom correspondence should be addressed. Phone: +45 8942 3842. Fax: +45 8619 6199. E-mail: hja@chem.au.dk.

However, for the observation of the ¹⁴N MAS spectrum for the NO₃⁻ ion without interference from the NH₄⁺ ion, a sample of ¹⁵NH₄⁺-enriched (99% ¹⁵N) ¹⁵NH₄NO₃ (sample 2), purchased from Isotec Inc., was used.

¹⁴N MAS NMR Spectroscopy. ¹⁴N MAS NMR experiments were performed at 43.34 MHz on a Varian INOVA-600 spectrometer with a 14.1 T widebore magnet using a Varian/ Chemagnetics broadband low-y frequency 7.5 mm T3 CP/MAS probe (loaded Q~200 with low-pass filter) with transmissionline tuning and a specified maximum spinning speed of 7 kHz. Spinning speeds in the range from 2000 to 7000 Hz were employed. From the experimental results it was observed that the spinning speed of the 7.5 mm o.d. zirconia rotor could be stabilized to <0.1 Hz using the Varian/Chemagnetics MAS speed controller in the automated mode, i.e., to a higher precision than indicated by the ± 1 Hz of the frequency counter. This was judged from the line widths of the extremely wellresolved line shapes observed within the individual ssbs far away from the isotropic resonance (e.g., ssb number forty). The pressure of the spinning gas (dried and oil-free ordinary air compressed to 8 bar) was highly stabilized by passing through three 50 l ballast tanks in series, each regulated to decrease the pressure by 0.5 bar before entering the MAS speed controller. It is believed that this highly stabilized air pressure is the main reason for the excellent spinning stability manifested by the MAS speed controller. The magic angle was adjusted to the highest possible accuracy (i.e., about $\leq \pm 0.015^{\circ}$) employing the ¹⁴N MAS NMR spectrum of (NH₄)₂HPO₄, which should give the best possible resolution of the two different ¹⁴N resonances for this sample. Spectra were recorded using single-pulse excitation with τ_p equal to 2.0 and 0.5 μ s ($\gamma B_1/2\pi = 40$ kHz corresponding to $\tau_p^{\hat{90}} = 6.3 \,\mu\text{s}$) for the NH₄⁺ and NO₃⁻ ion, respectively. Spectral widths of 0.5 (NH₄⁺) and 1.0 MHz (NO₃⁻) were employed for the two ions with an acquisition of 50 ms and a repetition delay of 4 s for both FIDs which were zerofilled to 512k points before FT. ¹H decoupling $(\gamma B_2/2\pi = 50)$ kHz) was used during acquisition of all ¹⁴N MAS spectra employing a high-power low-pass filter (K&L Microwave, Inc.) on the ¹⁴N observe channel of the probe, ¹⁴N chemical shifts are referenced to the narrow ¹⁴N MAS resonance (~0.3 ppm) of an external sample of solid NH₄Cl. Sample temperatures for the different spinning speeds were determined with a precision of ±2 °C using a sample of ethylene glycol as described earlier.10

Simulations. All experimental ¹⁴N MAS NMR spectra have been analyzed by computer simulations/iterative fittings on a Sun Microsystems Ultra 5 workstation using the program STARS, a solid-state NMR software package developed in our laboratory^{11–15} and incorporated into the Varian VNMR software. Because of the low ¹⁴N resonance frequency, even at 14.1 T ($\nu_0 = 43.34$ MHz), and the high Q (~ 200) of the ¹H-X MAS probe system, the acquisition of ¹⁴N MAS NMR spectra are far from ideal. For example, under our experimental conditions, the radio frequency (rf) bandwidth is highly suppressed during acquisition of the FID (i.e., 50% reduction for a width of $\nu_0/Q = 43.34/200 = 215$ kHz) compared to the corresponding bandwidth for detection at much higher frequencies (e.g., ²³Na or ²⁷Al) for the same Q value. This effect has already been incorporated into the original version of STARS. To achieve optimizations almost to perfection under these conditions, the original version of the STARS/VNMR program has been modified to include (i) variation in the rf offset for detection/ excitation to compensate for nonideal cable length in the duplexer of the preamplifier, which will otherwise result in a

"tilt" of the manifold of spinning sidebands (ssbs), (ii) a phase shift, dubbed "Q phasing", introduced by the narrow rf bandwidth and thus partly caused by the high Q of the probe system, and (iii) the second-order cross term between the quadrupole coupling and chemical shift anisotropy (CSA) in the average Hamiltonian (vide infra), a term proportional to $\nu_0 \delta_\sigma C_{\rm Q}/\nu_0$ and usually neglected, ¹³ but of importance for the appearance of the line shapes for the individual ssbs in ¹⁴N MAS NMR of the nitrate ion.¹

The quadrupole coupling and CSA parameters determined or used by STARS are related to their tensor elements by the following equations:

$$C_{Q} = \frac{eQV_{zz}}{h}$$

$$\eta_{Q} = \frac{V_{yy} - V_{xx}}{V_{zz}}$$

$$\delta_{\sigma} = \delta_{iso} - \delta_{zz}$$

$$\eta_{\sigma} = \frac{\delta_{xx} - \delta_{yy}}{\delta_{\sigma}}$$
(1)

where $\delta_{\rm iso} = \frac{1}{3}(\delta_{xx} + \delta_{yy} + \delta_{zz})$. The principal tensor elements of the CSA (δ) and electric field gradient (V) tensors are defined using the convention

$$|\lambda_{zz} - 1/3 \operatorname{Tr}(\lambda)| \ge |\lambda_{xx} - 1/3 \operatorname{Tr}(\lambda)| \ge |\lambda_{yy} - 1/3 \operatorname{Tr}(\lambda)|$$
 (2)

where $\lambda_{ii} = \delta_{ii}$ and V_{ii} . The Euler angles (ψ, χ, χ) and ξ , describing the orientation of the CSA tensor relative to the quadrupole coupling tensor, correspond to positive rotations about $\delta_{77}(\psi)$, the new $\delta_{vv}(\chi)$, and the final $\delta_{zz}(\xi)$ axis. These angles are defined in the ranges $0 \le \psi \le \pi$ and $0 \le (\gamma, \xi) \le \pi/2$.¹⁴

Expressions for the first-order quadrupole and anisotropic shift Hamiltonians and for the second-order quadrupolar Hamiltonian are given in refs 12 and 13. The second-order quadrupolar-CSA cross term required for the simulations of the NO₃⁻ ion spectra arises from the general expression

$$\begin{split} \bar{\tilde{H}}^{(2)}(t) &= \frac{-i\omega_0}{4\pi} \int_0^{2\pi/\omega_0} \int_0^t [\bar{\tilde{H}}(t), \bar{\tilde{H}}(t')] \, \mathrm{d}t' \, \mathrm{d}t = \\ &\frac{-i\omega_0}{4\pi} \int_0^{2\pi/\omega_0} \int_0^t ([\bar{\tilde{H}}_{\mathrm{Q}}(t), \bar{\tilde{H}}_{\mathrm{Q}}(t')] + [\bar{\tilde{H}}_{\mathrm{Q}}(t), \bar{\tilde{H}}_{\mathrm{G}}(t')] + \\ &[\bar{\tilde{H}}_{\mathrm{G}}(t), \bar{\tilde{H}}_{\mathrm{Q}}(t')] + [\bar{\tilde{H}}_{\mathrm{G}}(t), \bar{\tilde{H}}_{\mathrm{G}}(t')]) \, \mathrm{d}t' \, \mathrm{d}t \end{split} \tag{3}$$

where $\tilde{\tilde{H}}^{(2)}(t)$ is the average Hamiltonian in the Zeeman interaction representation and $\omega_0 = 2\pi v_0$ is the Larmor frequency. The second and third terms of eq 3, which constitute the cross term, may be written as

$$\tilde{\bar{H}}_{Q,\sigma}^{(2)}(t) = -[A_{2,1}^{Q}(t)A_{2,-1}^{\sigma}(t) + A_{2,-1}^{Q}(t)A_{2,1}^{\sigma}(t)](I(I+1) - 3I_{z}^{2})/\omega_{0} \tag{4}$$

where $A_{2,m}^{\lambda}(t)$ denotes the spatial part of the interaction in the laboratory frame. The $A_{2m}^{\lambda}(t)$ terms are obtained from the principal axis components and from the Euler angles defined above via Wigner rotations.¹⁶

Results and Discussion

A series of ¹⁴N MAS NMR spectra with spinning speeds (ν_r) in the range from 2000 to 7000 Hz has been recorded for both

Figure 1. ¹⁴N MAS NMR spectra of the NH₄⁺ ion in ordinary NH₄NO₃ at two different spinning speeds. (a) Experimental spectrum for $\nu_r = 2000\,$ Hz, a line broadening of 10 Hz, and 11 475 scans. (c) Experimental spectrum for $\nu_r = 5000\,$ Hz, a line broadening of 10 Hz, and 2000 scans. Parts b and d illustrate the optimized simulated spectra corresponding to the experimental spectra in parts a and c, respectively, and to the parameters in Table 1. In addition to the experimental conditions given in the Experimental Section, the deviations from the exact magic angle were determined to be -0.015° for parts a and b and -0.010° for parts c and d. See also text.

sample 1 and sample 2 with the purpose of characterizing the phase transition for NH_4NO_3 at about 35 °C by the spectra of the NH_4^+ ion as well as for the NO_3^- ion.

¹⁴N MAS NMR of NH₄⁺. Figures 1 and 2 show a series of experimental ¹⁴N MAS NMR spectra for the NH₄⁺ ion in sample 1 acquired in the order of increasing spinning speed using $\nu_r = 2000$ Hz (Figure 1a), $\nu_r = 5000$ Hz (Figure 1c), $\nu_r = 6000$ Hz (Figure 2a), and $\nu_r = 7000$ Hz (Figure 2c). Below each experimental spectrum is shown the simulation corresponding to the optimized parameters (Table 1) resulting from an iterative fit of the experimental spectrum. In all cases, the spectra exhibit an excellent agreement between experiment and simulation and thereby serve to illustrate the high quality of the corresponding

Figure 2. ¹⁴N MAS NMR spectra of the NH₄⁺ ion in ordinary NH₄NO₃ illustrating the phase transition from phase IV to III in going from $\nu_{\rm r}=6000$ to 7000 Hz. (a) Experimental spectrum for $\nu_{\rm r}=6000$ Hz, a line broadening of 10 Hz, and 928 scans. (c) Experimental spectrum for $\nu_{\rm r}=7000$ Hz, a line broadening of 10 Hz, and 789 scans. Parts b and d show the optimized simulated spectra corresponding to parts a and c, respectively, the parameters in Table 1, and for deviations from the exact magic angle of -0.010° parts a and b and -0.009° parts c and d. A low-intensity manifold of ssbs from the NO₃⁻ ion is observed in the experimental spectra (see also text).

parameters. We should note that a low-intensity manifold of ssbs, extending outside the spectral range for NH_4^+ and which arise from the NO_3^- ion, are observed in all experimental spectra. Also, it is pointed out that all simulations performed in relation to the analysis of the NH_4^+ ion spectra were carried out without including any CSA. Despite this, many of the slight asymmetries (with respect to the center of the experimental spectra) observed for the peak heights of the ssbs also turn up in the simulations. These variations are ascribed to slight differential line splittings/broadening for the ssbs across the spectral manifolds and are attributable to slight deviations ($\sim 0.01^\circ$) in the spinning axis from the exact setting to the magic

TABLE 1: ¹⁴N Quadrupole Coupling Parameters (C_Q, η_Q) and Isotropic Chemical Shifts $(\delta_{\rm iso})$ for the NH₄⁺ and NO₃⁻ Ion in NH₄NO₃ at Different Spinning Speeds $(v_{\rm r})$ and Corresponding Sample Temperatures $(t_{\rm c})^a$

ion	ν _r [kHz]	t _c ^b [°C]	figure	C _Q [kHz]	$\eta_{ m Q}$	$\delta_{\mathrm{iso}}{}^{c}$ [ppm]
NH ₄ ^{+ d}	2.0	23	1a	246	0.85	-17.3
	5.0	31	1c	245	0.85	-17.6
	6.0	36	2a	245	0.85	-17.1
	7.0	41	2c	127	0.41	-15.8
NO_3^{-c}	7.0	41	3c	665	0.00	338.6
	6.0	36	4a	662	0.01	338.9
	5.0	31	4c	662	0.01	338.9
	4.0	28	3a	620	0.25	335.3

^a The error limits for C_Q , η_Q , and δ_{iso} are ±10 kHz, ±0.01, and ±0.3 ppm, respectively. ^b The error in t_c is ±2 °C. ^c The δ_{iso} values (relative to solid NH₄Cl) include corrections for the second-order quadrupole shifts, which for the NH₄⁺ ion are 3.0 ppm (phase IV) and 0.7 ppm (phase III) and for the NO₃[−] ion are 15.7 ppm (phase IV) and 17.7 ppm (phase III). ^d Experiments for NH₄⁺ are performed in order of increasing ν_r , i.e., increasing t_c , with the IV → III transition observed between 36 and 41 °C. ^e Experiments for NO₃[−] are performed in order of decreasing ν_r , i.e., decreasing t_c , with the III → IV transition observed between 28 and 31 °C.

angle of 54.736° as determined from the iterative fitting. Inspection of the ¹⁴N MAS NMR spectra in Figures 1 and 2 which were recorded in order of increasing spinning speed clearly shows an abrupt change in the appearance of the manifold of ssbs for the NH_4^+ ion by increasing ν_r from 6000 to 7000 Hz. This is also reflected in the quadrupole coupling parameters (C_Q and η_Q) determined from analysis of the spectra (Table 1). This abrupt change is undoubtedly related to the phase transition from phase IV to phase III in NH4NO3, known to occur at about 35 °C and induced by the increase in frictional heating at the higher spinning speeds. A similar observation has been made in the ¹⁵N MAS NMR study of ¹⁵NH₄¹⁵NO₃ using a 5 mm probe.8 From the data in Table 1, we observe that the phase transition results in a dramatic decrease by approximately 50% for both $C_{\rm Q}$ and $\eta_{\rm Q}$ in going from the lowtemperature (phase IV) to the high-temperature phase (phase III), whereas the change in δ_{iso} (+1.7 ppm) is less pronounced. However, within the error limits determined for the isotropic chemical shifts, we find that the difference in $\delta_{\rm iso}(^{15}{\rm N})$ (= ± 1.9 ppm) reported earlier for the ¹⁵NH₄⁺ ion for this phase transition is identical to our determinations for the change in $\delta_{iso}(^{14}N)$ in this study. Clearly, the ¹⁴N quadrupole coupling parameters (C_Q and η_0) for the NH₄⁺ ion determined from ¹⁴N MAS NMR constitute a highly sensitive set of NMR parameters compared to the isotropic chemical shift in characterizing the studied phase

 ^{14}N MAS NMR of NO $_3^-$. To characterize the phase transition in NH $_4$ NO $_3$ just above room temperature by the behavior of the NO $_3^-$ ion when subjected to ^{14}N MAS NMR spectroscopy, a sample of ^{15}N -enriched $^{15}NH_4NO_3$ was used. This material was selected in order to suppress the intensity of the $^{14}NH_4^+$ manifold of ssbs and thereby to better appreciate an undisturbed appearance of the manifold of ssbs for the NO $_3^-$ ion. We should note that it is possible to obtain ^{14}N MAS NMR spectra for the NO $_3^-$ ion without overlap of the NH $_4^+$ resonances and of sufficient quality using ordinary nonenriched NH $_4$ NO $_3$ and an appropriate spinning speed. However, for the sake of clarity and for a more clear illustration of the ^{14}N spectral change which takes place during the phase transition, the ^{15}N -enriched $^{15}NH_4NO_3$ sample has been employed in the present study.

 ^{14}N MAS NMR spectra of the NO₃⁻ ion, acquired using a spectral width of 1 MHz and for $\nu_{\rm r}$ equal to 4000 and 7000 Hz, are presented in Figure 3 parts a and c, respectively. These

Figure 3. ¹⁴N MAS NMR spectra of the NO_3^- ion in ¹⁵N-enriched ¹⁵NH₄NO₃ illustrating the phase transition from phase IV to III in going from $\nu_r = 4000$ Hz to 7000 Hz. (a) Experimental spectrum (phase IV) for $\nu_r = 4000$ Hz, a line broadening of 10 Hz, and 40000 scans. (c) Experimental spectrum (phase III) for $\nu_r = 7000$ Hz, a line broadening of 10 Hz, and 14659 scans. Parts b and d show the optimized simulated spectra corresponding to parts a and c, respectively, the parameters in Table 1, and for deviations from the exact magic angle of -0.012° parts a and b and -0.010° parts c and d. A low-intensity manifold of ssbs from the NH₄+ ion (1% nonenriched) in phase III is observed in the experimental spectrum (part c; see text).

spectra exhibit clear differences in their overall appearances and can be used to characterize the ¹⁴N quadrupole coupling parameters for the phase below (phase IV) and above (phase III) the phase transition at about 35 °C. The corresponding simulated spectra, based on the parameters resulting from the iterative fitting (Table 1) and using the ¹⁵N CSA data reported elsewhere,⁸ are shown in Figure 3 parts b and d below the experimental spectra. It is encouraging to observe that the spinning speed of 7000 Hz for the 7.5 mm probe induces a clear-cut and well-defined change in the ¹⁴N spectral appearance and quadrupole coupling parameters for the NO₃⁻ ion as is also observed for the NH₄⁺ ion (Figure 2c). Indeed the phase change

Figure 4. Expansions of spinning sidebands showing the line shape patterns for a selected region in the experimental (a) and simulated (b) spectra from Figure 3c,d. The simulated spectrum in b includes the second-order quadrupolar-CSA cross-term, whereas in the simulation c, this term has been omitted; otherwise identical parameters are employed (see Figure 3 and text).

for the NH₄⁺ ion can also be observed in the centerpart of Figure 3c as the low-intensity manifold of ssbs resulting from the 1% ¹⁴NH₄NO₃ present in 99% ¹⁵N-enriched ¹⁵NH₄NO₃.

To illustrate how the second-order quadrupolar-CSA cross term and the setting of the magic angle influence the ¹⁴N spectra of the NO₃⁻ ion, Figures 4 and 5 show expansions and simulations for three of the ssbs observed in Figure 3c. Figure 4 shows that using the parameters in Table 1 the experimentally observed line shapes for these ssbs (Figure 4a) can only be simulated to high precision by inclusion of the quadrupolar-CSA cross term as seen in Figure 4b. When this cross-term is omitted, when all other terms in the average Hamiltonian are kept, and when the same parameters as for Figure 4b are used, the resulting simulation is shown in Figure 4c. The line shapes in Figure 4c clearly differ from those in Figure 4b and result from the second-order quadrupolar term modulated by the effect of the magic-angle setting. The influence of the adjustment of the magic angle on the same three ssbs is illustrated in Figure 5. The simulation in Figure 5b is identical to the optimized fitting (Figure 4b) for the experimental ssbs (Figure 4a) and corresponds to a deviation of -0.010° from exact magic-angle setting. The simulations in Figure 5a-e, corresponding to deviations of -0.02, -0.01, +0.00, +0.01, and $+0.02^{\circ}$ from the magic angle, illustrate that ¹⁴N MAS spectra for the NO₃⁻ ion are sensitive to angle settings within a few thousands of a degree.

The clear-cut phase transition observed from the spectra for the NO_3^- ion leaves great promises to ^{14}N MAS NMR spectroscopy as a method in studies of phase transitions for nitrates in general. Finally, we should note that the difference in isotropic ^{14}N chemical shift determined in this study for the NO_3^- ion, $\Delta\delta_{\rm iso}$ (^{14}N) = 3.5 ppm, in the transition from phase IV to phase III is similar to that reported by Anderson-Altmann

Figure 5. Expansions of simulated spinning sideband patterns illustrating the influence of magic-angle adjustment on the line shapes for the same three sidebands as in Figure 4. The simulations correspond to the following deviations from exact magic-angle setting: (a) -0.02° , (b) -0.01° , (c) 0.00° , (d) 0.01° , and (e) 0.02° . The simulation in b is identical to Figure 4b, and all simulations employ the optimized parameters for the experimental spectrum in Figure 4a (Figure 3c).

and Grant⁸ from the ¹⁵N MAS NMR study, $\Delta \delta_{iso}$ (¹⁵N) = 2.4 ppm, taking the error limits into account.

Hysteresis. Following the determination of the phase transition for NH₄NO₃ from phase IV into phase III by means of ¹⁴N MAS NMR at $\nu_r \approx 7000$ Hz, employing either the NH₄⁺ or the NO₃⁻ ion (cf. Figures 2 and 3), we decided to investigate the possible effect of hysteresis (i.e., the thermal history of the sample) by ¹⁴N MAS NMR using the NO₃⁻ ion as a probe. Thus, after acquisition of the spectrum for $\nu_r = 7000$ Hz (41 °C), ¹⁴N MAS NMR spectra of the NO₃⁻ ion were acquired in decreasing order of ν_r for $\nu_r = 6000$ (36 °C, Figure 6a) and 5000 Hz (31 °C, Figure 6c), allowing 2–4 h to elapse before starting data acquisition overnight. These spectra appear quite identical to that obtained for $\nu_r = 7000$ Hz (41 °C), although minor intensity differences for the ssbs can be noted for the three spectra, caused by the change in spinning speeds. This

Figure 6. ¹⁴N MAS NMR spectra of the NO₃⁻ ion in ¹⁵N-enriched $^{15}\text{NH}_4\text{NO}_3$ for (a) $v_r = 6000$ and (c) 5000 Hz and recorded in order of decreasing spinning speed following the spectrum in Figure 3c for $v_{\rm r} = 7000$ Hz and thereby illustrating the effect of hysteresis for the studied phase transition. (a) Experimental spectrum for $\nu_r = 6000$ Hz, a line broadening of 10 Hz, and 14336 scans. (c) Experimental spectrum for $\nu_{\rm r} = 5000$ Hz, a line broadening of 10 Hz, and 16010 scans. Parts b and d show the optimized simulated spectra corresponding to parts a and c, respectively, the parameters in Table 1, and for deviations from the exact magic angle of -0.011° parts a and b and -0.010° parts c and d. See text.

shows that phase III still persists for $v_r = 5000$ Hz (31 °C) upon lowering the spinning speed. Furthermore, this same conclusion is reached by comparison of the shape for the lowintensity manifold of ssbs for the NH₄⁺ ion in Figures 3 and 6 with the NH_4^+ ion spectra in Figure 2. However, decreasing ν_r to 4000 Hz (28 °C) and allowing the sample to stabilize its phase for about 4 h before starting acquisition of the ¹⁴N MAS spectrum leads to a spectrum identical to that shown in Figure 3a. Thus, the phase transition for NH₄NO₃ just above room temperature exhibits the typical hysteresis behavior often encountered in phase transitions of solid inorganics (e.g., AlPO₄cristobalite¹⁷) as well as organics (e.g., d-camphor¹⁸). An

approximate temperature difference of about 8-10 °C for the phase transition temperature in the temperature range 30-40 °C depends on increasing or decreasing the sample temperature as seen from our results in Table 1.

¹⁴N Quadrupole Coupling Parameters. Because of the quite large changes in both $C_{\rm Q}$ and $\eta_{\rm Q}$ for the ${\rm NH_4}^+$ as well as the NO₃⁻ ion during the phase transition just above room temperature (about 34 °C) for NH₄NO₃ (Table 1), it seems of interest to compare these data with parameters determined for other ammonium salts and nitrates in the solid state. For this purpose, a comparison with parameters we recently determined from ¹⁴N MAS NMR for a number of such compounds seems feasible.1,19,20

For the NH₄⁺ ion (including alkylammonium ions), we have so far observed huge variations in C_Q ranging from 0 (NH₄Cl) to 1.2 MHz (ethylenediamine dihydrochloride). Furthermore, the variations for the asymmetry parameter are just as large ranging from $\eta = 0$ to 1. For example, for NH₄H₂PO₄, we find $\eta_{\rm Q}=0$, whereas for (NH₄)₂HPO₄, we obtain $\eta_{\rm Q}=0.9$ for the two nonequivalent NH₄⁺ ions. Therefore, at this time, it appears difficult to come up with any structural relationships for the quadrupole coupling parameters of ammonium ions. On the other hand, however, the large variations observed for these parameters should make C_0 and η_0 extremely sensitive probes for characterizing phase transitions in ammonium salts. For the IV→III phase transition in NH₄NO₃, the 50% reduction, observed in this study for C_Q of the NH₄⁺ ion, is ascribed to an increase in molecular reorientation for this ion in phase III. Finally, we should note that a ¹⁴N MAS NMR spectrum of the NH_4^+ in NH_4NO_3 for $\nu_r = 7.8$ kHz, or at least part of it, has recently been published by Fung et al.²¹ However, it appears impossible to achieve a simulated spectrum with an appearance resembling the published spectrum using either set of our parameters for the NH_4^+ ion (Table 1).

Comparison of the NO_3^- data (C_0 and η_0) obtained for the two phases in NH₄NO₃ with those determined earlier for NO₃⁻ ions from ¹⁴N MAS NMR¹ or reported in the literature²² for KNO₃, NaNO₃, Ba(NO₃)₂, Sr(NO₃)₂, and Pb(NO₃)₂ appears somewhat more straightforward. For these nitrates, C_Q ranges from about 500 to 750 kHz, whereas $\eta_Q = 0$. For the two phases studied here for NH₄NO₃, the C_Q values fall in the centerpart of this range but differ mutually by only about 40 kHz. More interestingly, the clear visual difference in the appearance of the ¹⁴N MAS NMR spectrum for the NO₃⁻ ion in the two phases (cf. Figure 3) shows that the change in η_0 from 0 to 0.25 is unique for the phase IV in NH₄NO₃ as compared to the other nitrates. Clearly, the asymmetry parameter η_0 by itself can be a very sensitive probe for characterizing or detecting phase transitions for quadrupolar nuclei in general. The slight increase observed for C_0 upon transition from phase IV to III indicates that the reorientational process (in-plane C₃ rotations) for the NO₃⁻ ion in the two phases is quite similar. From solid-state ¹⁵N NMR studies of ¹⁵NH₄¹⁵NO₃, it has been shown that this dynamic process first undergoes a dramatic rate increase upon transition from phase II to I.^{6,8} Thus, the changes observed for the quadrupole coupling parameters (C_0 and η_0) between phases IV and III is most likely related to differences in crystal structures for the NO₃⁻ ion in the two phases.

To gain further insight into a possible quantitative interpretation of the ¹⁴N quadrupole coupling parameters for the NO₃⁻ ion in phase IV and III, the ¹⁴N electric field gradients (EFGs) have been calculated for the NO₃⁻ ion in these phases employing point-monopole calculations. This approach has earlier proven useful in estimating the EFGs in ionic structures such as sodium

and cesium salts.^{23,24} For the two phases of NH₄NO₃, only the geometry of the NO₃⁻ ion is taken into account in the calculations, employing the crystal structural data reported from neutron diffraction for the two forms of NH₄NO₃.^{3,5} Assuming ideal charges for the oxygens of the NO_3^- ion (i.e., q(O) =-2e) gives the following ratio for the unique tensor element of the EFG tensor $V_{zz}^{\rm calc}({\rm III})/V_{zz}^{\rm calc}({\rm IV})=1.03$ and EFG asymmetry parameters of $\eta_Q^{\rm calc}=0.02$ and 0.16 for phases III and IV, respectively. Alternatively, the effective charges of the oxygen atoms can be estimated from the crystal structures using the approach by Brown and Shannon²⁵ and the chemical bond data of Brown and Altermatt.²⁶ For phase III, this gives effective charges of q(O1) = -0.507e and q(O2) = -0.528e, whereas q(O1) = -0.653e and q(O2) = -0.330e are calculated for phase IV of NH₄NO₃. Employing these charges in the point-monopole calculations gives the ratio $V_{zz}^{\rm calc}({\rm III})/V_{zz}^{\rm calc}({\rm IV})=1.18$ and EFG asymmetry parameters of $\eta_{\mathcal{Q}}^{\rm calc}=0.02$ and 0.58 for phases III and IV, respectively. The two calculated ratios for the unique tensor elements are in favorable agreement with the experimental ratio for the quadrupole coupling constants $C_0(III)/C_0(IV) =$ 1.07. Furthermore, both calculations predict $\eta_{\rm Q} \approx 0$ for phase III and a somewhat larger value of η_0 for phase IV as observed experimentally. These findings strongly suggest that the quite small variations in C_0 and η_0 for the NO_3^- ion upon the IV \leftrightarrow III phase transition are related to the local geometries of the NO_3^- ion.

Conclusions

Solid-state ¹⁴N MAS NMR spectroscopy is shown to be an excellent method in studies of phase transitions for nitrogen compounds. ¹⁴N quadrupole coupling constants and asymmetry parameters for the NH₄⁺ and NO₃⁻ ion in NH₄NO₃, as determined from the ¹⁴N MAS manifold of spinning sidebands, are extremely sensitive to changes in crystal structure and dynamics induced by a phase transition. The quadrupole coupling data provide an alternative and more sensitive parameter set for characterizing phase transitions compared to the ¹⁴N isotropic chemical shifts. For NH₄NO₃ the ¹⁴N isotropic chemical shifts are identical to the corresponding ¹⁵N values used earlier to characterize the solid phases from ¹⁵N-enriched samples.

Acknowledgment. The use of the facilities at the Instrument Centre for Solid-State NMR Spectroscopy, University of Aarhus, sponsored by the Danish Natural Research Council, the Danish Technical Science Research Council, Teknologistyrelsen, Carlsbergfondet, and Direktør Ib Henriksens Fond, is acknowledged. Financial support from the two Danish Research Councils (J.nr. 5020-00-0018 and J.nr. 0001237) is acknowledged.

References and Notes

- (1) Jakobsen, H. J.; Bildsøe, H.; Skibsted, J.; Giavani, T. J. Am. Chem. Soc. 2001, 123, 5098.
- (2) Parsonage, N. G.; Staveley, L. A. K. *Disorder in Crystals*; Clarendon Press: Oxford 1978; p 338–350.
- (3) Lucas, B. W.; Ahtee, M.; Hewat, A. W. Acta Crystallogr. 1979, B35, 1038.
- (4) Choi, C. S.; Prask, H. J.; Prince, E. Appl. Crystallogr. 1980, 13, 403.
 - (5) Choi, C. S.; Prask, H. J. Acta Crystallogr. 1982, B38, 2324.
 - (6) Wasylishen, R. E. Spectrochim. Acta 1984, 40A, 115.
 - (7) Marino, R. A.; Bulusu, S. J. Energ. Mater. 1985, 3, 57.
- (8) Anderson-Altmann, K. L.; Grant, D. M. J. Phys. Chem. 1993, 97, 11096.
- Schönwandt, B. V.; Jakobsen. H. J. J. Solid State Chem. 1999, 145,
 10.
 - (10) Bjorholm, T.; Jakobsen, H. J. J. Magn. Reson. 1989, 84, 204.
- (11) Jakobsen, H. J.; Skibsted, J.; Bildsøe, H.; Nielsen, N. C. J. Magn. Reson. 1989, 85, 173.
- (12) Skibsted, J.; Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J. J. Magn. Reson. 1991, 95, 88.
- (13) Skibsted, J.; Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J. *Chem. Phys. Lett.* **1992**, *188*, 405.
- (14) Skibsted, J.; Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J. J. Am. Chem. Soc. 1993, 115, 7351.
- (15) STARS is available as part of the VNMR software from Varian
- (16) Spiess, H. W. In *NMR Basic Principles and Progress*; Diehl, P., Fluck, E., Kosfeld, E., Eds.; Springer: Berlin, 1978; Vol. 15.
- (17) Philips, B. L.; Thompson, J. G.; Xiao, Y.; Kirkpatrick, R. J. Phys. Chem. Minerals. 1993, 20, 341.
 - (18) Yager, W. A.; Morgan, S. O. J. Am. Chem. Soc. 1935, 57, 2071.
 - (19) Jescheke, G.; Jansen, M. Angew. Chem., Int. Ed. 1998, 37, 1282.
 - (20) Unpublished results from our laboratory.
 - (21) Khitrin, A. K.; Fung, B. M. J. Chem. Phys. 1999, 111, 8963.
 - (22) Bastow, T.; Stuart, S. N. Z. Naturforsch. 1990, 45A, 459.
- (23) Koller, H.; Engelhardt, G.; Kentgens, A. P. M.; Sauer, J. J. Phys. Chem. 1994, 98, 1544.
- (24) Skibsted, J.; Vosegaard, T.; Bildsøe, H.; Jakobsen, H. J. J. Phys. Chem. **1996**, 100, 14872.
 - (25) Brown, I. D.; Shannon, R. D. Acta Crystallogr. 1973, A29, 266.
 - (26) Brown, I. D.; Altermatt, D. Acta Crystallogr. 1985, B41, 244.