Метод наименьших квадратов

Николай Жидков

3 апреля 2018 г.

1 Структура программы

Программа разделена на функции, записанные в файле solve.py. В программе выделены 3 блока. Первый содержит функции из прошлых заданий (решение СЛАУ, возмущения). Второй блок содержит функции, описанные ниже. Третий блок - основная функция выполнения.

- process_command_line_args, разбор аргументов командной строки:
 - Ничего не принимает
 - Возвращает файл для считывания данных filename, флаг полного дебаг вывода $full_mode$, степень полинома m, флаг использования одинаковых весов $equal_weights$, ссылка на функцию для рассчета базисных функций phi, флаг построения графика plot.
- read(filename), чтение данных:
 - Принимает имя файла
 - Возвращает число точек в сетке n, массив точек X, массив значений в точках Y, массив весов p
- build_system(p, X, Y, n, m, phi), строит СЛАУ для нахожления коэффициентов перед базисными функциями:
 - Принимает массив весовых коэффициентов p, массив точек X, массив значений в точках Y, число точек в сетке n, степень полинома m, функция вычислений базисной функции phi.

- Возвращает матрицу А и столбец b.
- deviations(X, Y, P), считает отклонения:
 - Принимает массив точек X, массив значений функции в точках Y, массив значений в точках полинома в точках P.
 - Возвращает минимальное, максимальное и среднее отклонение.

2 Структура файлов исходных данных

Во входном файле ожидаются некоторые числа, формат которых описан дальше, при этом наличие пробелов и переводов строк между ними не важен (можно все данные задать в строку через проблел или по одному на строке, это не имеет значения).

Сначала ожидается число n - число узлов. Дальше идут n чисел - узлы сетки, потом еще n чисел - значения функции в узлах. После этого можно задать весовые коэффициенты в формате номер коэфициента и значения (по умолчанию все коэффициенты =1)

Пример входных данных

3

0.01 0.02 0.03

1 12 3.343

0 14.4

1 2

В результате программе примет функцию, заданную в трех точках 0.01, 0.02, 0.03 со значениями 1, 12, 3.343. Весовые коэффициенты будут 14.4, 2, 1.

3 Примеры вызова из командной строки

Обязательные флаги (для каждого должно быть обязательно указано какое-то значение):

- --input = для указания входного файла (произвольная строка)
- --deg = для указания степени полинома (натуральное число)
- --poly = для выбора базисных функций (два варианта standard и legendre)

Дополнительные опции (по умолчанию выключены):

- --full или -f для вывода подробной информации
- $--equal_weights$ или -e чтобы все весовые коэффиенты были равны 1 (даже если что-то указано во входном файле, значения будут проигнорированы).

• --plot или -p для вывода графика (синим выводится функция, оранжевым полином)

Примеры запусков

• Строим полином 5-ой степени по точкам из файла *data* с помощью полиномов Лежандра. Все веса выставляем в 1, в конце выводим график. Дебаг информация не выводится.

• Строим полином 10-ой степени по точкам из файла data с помощью стандартных полиномов x^j . Дебаг информация выводится, график не строится, веса по умолчананию 1, но могут быть изменены через входной файл.

4 Численный эксперимент

4.1 степень полинома 4

Полученный полином при одинаковых весах: $1.416364-0.016119x^1-1.416245x^2+0.931432x^3-0.049175x^4$.

Полученный полином при весах [10.0,1,1,1,1,20.0,10.0,1,1,1,1,1,1,10.0,1,20.0,1,1,1,1,1,1,1,1,1,1,1,1]

Критерий анализа	Веса постоянные (%)	Веса переменные
Наименьшая абсолютная ошибка	0.01299	0.000385922002963
Наибольшая абсолютная ошибка	0.33220	0.483314319147685
Средняя абсолютная ошибка	0.10554	0.099952249436113

Стандартные базисые функции

	Возмущение матрицы	Возмущение вектора	Чувствительность
	(%)	(%)	решения
максимальное	3.16898	244.31352	99.99332
среднее	2.40740	120.50122	49.54340
минимальное	1.66164	41.78941	20.20190

Полиномы Лежандра

	-		
	Возмущение матрицы	Возмущение вектора	Чувствительность
	(%)	(%)	решения
максимальное	4.00000	5.16191	1.84020
среднее	2.88506	3.44437	1.27230
минимальное	1.13641	2.01689	1.01290

4.2 степень полинома 7

Полученный полином при одинаковых весах: $1.568903x_0 + 0.287342x^1 + -4.559324x^2 + 0.780871x^3 + 9.005063x^4 + -5.160245x^5 + -2.959547x^6 + 2.011809x^7$.

Критерий анализа	Веса постоянные (%)	Веса переменные
Наименьшая абсолютная ошибка	0.001727434894614	0.000841234277782
Наибольшая абсолютная ошибка	0.172415466746918	0.224322713840519
Средняя абсолютная ошибка	0.058579829907618	0.055907695828496

Стандартные базисые функции

	Возмущение матрицы	Возмущение вектора	Чувствительность
	(%)	(%)	решения
максимальное	3.26145	163.75074	101.30600
среднее	2.42021	106.91050	48.34924
минимальное	1.61640	71.37342	22.45056

Полиномы Лежандра

	Возмущение матрицы	Возмущение вектора	Чувствительность
	(%)	(%)	решения
максимальное	3.93094	4.52149	3.00852
среднее	2.26593	3.09789	1.65827
минимальное	1.00728	1.66332	0.97767

4.3 степень полинома 14

Критерий анализа	Веса постоянные (%)	Веса переменные
Наименьшая абсолютная ошибка	0.000153587092497	0.000003629045815
Наибольшая абсолютная ошибка	0.025300241322584	0.032793533409576
Средняя абсолютная ошибка	0.008317548076360	0.008159458596758

Стандартные базисые функции

<u> </u>			
	Возмущение матрицы	Возмущение вектора	Чувствительность
	(%)	(%)	решения
максимальное	2.63284	100.31338	65.63425
среднее	2.23143	100.07348	45.82486
минимальное	1.52736	99.97096	37.97527

Полиномы Лежандра

	Возмущение матрицы	Возмущение вектора	Чувствительность
	(%)	(%)	решения
максимальное	3.67832	15.85469	12.41772
среднее	2.30980	11.14188	5.79881
минимальное	1.26857	6.69361	2.83865

4.4 Выводы

- Чувствительность решения при использовании полиномов Лежандра в среднем гораздо меньше, чем при стандартных функциях.
- Подобрать руками весовые коэффициенты так, чтобы улучшились сразу все показатели, очень сложно. Либо улучшаются вместе среднее и минимальное, но подскакивает максимальное, либо уменьшается максимальное, но увеличивается среднее.