Лабораторная работа №2

Измерение и тестирование пропускной способности сети

Ланцова Яна Игоревна

Содержание

1	Цель работы	5
2	Задачи	6
3	Выполнение лабораторной работы	7
4	Выводы	17

Список иллюстраций

3.1	Просмотр адреса машины	7
3.2	Активация интерфейса	8
3.3	Установка ПО	8
3.4	Pазвертывание iperf_plotter	8
3.5	Запуск простейшей топологии	9
3.6	Тестирование соединения	9
3.7	Тестирование соединения в интерфейсе mininet	10
3.8	Указание периода времени передачи	11
	Настройка двухсекундного времени отсчета	12
3.10	Установки количества байт для передачи	13
	Изменение протокола передачи	13
3.12	Изменение номера порта для отправки/получения пакетов или да-	
	таграмм	14
3.13	Параметр обработки данных только от одного клиента с остановкой	
	сервера по завершении теста	14
3.14	Экспорт результатов в файл JSON	15
3.15	Просмотр файла iperf_results.json	15
3.16	Визуализация результатов эксперимента	16

Список таблиц

1 Цель работы

Основной целью работы является знакомство с инструментом для измерения пропускной способности сети в режиме реального времени – iPerf3, а также получение навыков проведения интерактивного эксперимента по измерению пропускной способности моделируемой сети в среде Mininet.

2 Задачи

- 1. Установить на виртуальную машину mininet iPerf3 и дополнительное программное обеспечения для визуализации и обработки данных.
- 2. Провести ряд интерактивных экспериментов по измерению пропускной способности с помощью iPerf3 с построением графиков.

3 Выполнение лабораторной работы

Проверим есть ли сетевой адрес у виртуальной машины, а затем активируем второй интерфейс для доступа в интернет (рис. 3.1;3.2).

Рис. 3.1: Просмотр адреса машины

```
Lest login: Sat Sep 20 09:43:37 2025

mininet@minnet.vm:-5 sudo dhclient thl
minnet@minnet.vm:-5 ifconfig

ch0: flags=4163<br/>
ch0: flags=4163<br/>
flags=416
```

Рис. 3.2: Активация интерфейса

Установим iperf3 и другое необходимое дополнительное ПО (рис. 3.3).

```
mininet@mininet-vm:-$ sudo apt-get install iperf3
Reading package lists... Done
Suilding dependency tree
Reading state information... Done
The following additional packages will be installed:
libiperf0 libsctpl
Suggested packages:
lksctp-tools
The following MEW packages will be installed:
iperf3 libiperf0 libsctpl
Oupgraded, 3 newly installed, 0 to remove and 393 not upgraded.
Need to get 94.1 Nb of archives.
After this operation, 331 Nb of additional disk space will be used.
Do you want to continue? [7/n] y
Get:1 http://us.archive.ubuntu.com/ubuntu focal/main amd64 libsctpl amd64 1.0.18+dfsg-1 [7,876 B]
Get:2 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 libiperf0 amd64 3.7-3 [72.0 kB]
Set:3 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 liperf3 amd64 3.7-3 [14.2 kB]
Fetched 94.1 kB in 19 (135 kB/s)
Selecting previously unselected package libsctpl:amd64.
(Reading database ... 101729 files and directories currently installed.)
```

Рис. 3.3: Установка ПО

Развернем iperf3_plotter. Для этого перейдем во временный каталог и скачаем репозиторий, а затем скачаем ПО (рис. 3.4).

```
minier@mininet-wm:-S cd /tmp
mininet@mininet-wm:/tmpS git clone https://github.com/ekfoury/iperf3_plotter.git
Cloning into 'iperf3_plotter'...
remote: Enumerating objects: 74, done.
remote: Total 74 (delta 0), reused 0 (delta 0), pack-reused 74 (from 1)
Unpacking objects: 104 (14/74), 100,0 8 KiB 1 923.00 KiB/s, done.
mininet@mininet-wm:/tmpS cd /tmp/iperf3_plotter
mininet@mininet-wm:/tmpS cd /tmp/iperf3_plotter
mininet@mininet-wm:/tmp/iperf3_plotter$ sudo cp plot.*/usr/bin
mininet@mininet-wm:/tmp/iperf3_plotter$ sudo cp *.sh /usr/bin
```

Рис. 3.4: Развертывание iperf_plotter

Запустим простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8. Также запусились терминалы двух хостов, коммутатора и контроллера. Терминалы коммутатора и контроллера закроем. Посмотрим настройки сети созданной топологии (рис. 3.5).

```
mininet@mininet-wm:-$ sudo mm --topo=single,2 -x
*** Creating network

*** Adding controller
*** Adding bosts:
h1 h2

*** Adding switches:
s1

*** Adding links:
(h1, s1) (h2, s1)

*** Configuring hosts
h1 h2

*** Running terms on localhost:10.0

*** Running terms on localhost:10.0

*** Starting lawitches
s1 ...

*** Starting 1 switches
s1 ...

*** Starting 1 switches
s1 ...

*** Starting LI:
mininet> het
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0
c0
mininet> links
h1-eth0:->s1-eth1 (0K OK)
h2-eth0<->>1-eth2 (OK OK)
mininet> dump
(Most h1: h1-eth0:10.0.0.1 pid=8095)

*** Good The Control of the Contro
```

Рис. 3.5: Запуск простейшей топологии

Запустим тестовое соединение между хостами(рис. 3.6).

Рис. 3.6: Тестирование соединения

Проанализируем полученный в результате выполнения теста сводный отчёт, отобразившийся как на клиенте, так и на сервере iPerf3. Он содержет следующие данные:

- ID: идентификационный номер соединения 7.
- интервал (Interval): временной интервал для периодических отчетов о пропускной способности (по умолчанию временной интервал равен 1 секунде);
- передача (Transfer): сколько данных было передано за каждый интервал времени было пепредано от 287 МВ до 444 МВ в секунду;
- пропускная способность (Bitrate): измеренная пропускная способность в каждом временном интервале от 2.40 до 3.72 Gbit/sec;

- Retr: количество повторно переданных TCP-сегментов за каждый временной интервал (это поле увеличивается, когда TCP-сегменты теряются в сети из-за перегрузки или повреждения) чем больше пропускная способность, тем больше число повторно переданных TCP-сегментов;
- Cwnd: указывает размер окна перегрузки в каждом временном интервале (TCP использует эту переменную для ограничения объёма данных, которые TCP-клиент может отправить до получения подтверждения отправленных данных) этот параметр нахоится в интервале от 1.55 МВ до 1.80 МВ.

В концк указан общий вес переданных сообщений и средняя скорость для получателя и отправтеля равнаые 3.75 GB и 3.22 Gbit/sec соответственно, а для отправителя дополнительно указано общее количество повторно отправленных TCP-сегментов равное 10

Проведем аналогичный эксперимент в интерфейсе mininet (рис. 3.7).

```
mininet> h2 iperf3 -s &
mininet> h1 iperf3 -c h2
Connecting to host 10.0.0.2, port 5201

[ 5] local 10.0.0.1 port 56304 connected to 10.0.0.2 port 5201

[ ID] Interval Transfer Bitrate Retr Cwnd
[ 5] 0.00-1.00 sec 245 MBytes 2.04 Gbits/sec 0 3.76 MBytes
[ 5] 1.00-2.00 sec 189 MBytes 1.59 Gbits/sec 0 3.95 MBytes
[ 5] 2.00-3.00 sec 200 MBytes 1.68 Gbits/sec 0 4.15 MBytes
[ 5] 3.00-4.01 sec 179 MBytes 1.49 Gbits/sec 0 4.36 MBytes
[ 5] 4.01-5.01 sec 176 MBytes 1.48 Gbits/sec 0 4.36 MBytes
[ 5] 5.01-6.00 sec 175 MBytes 1.48 Gbits/sec 0 4.36 MBytes
[ 5] 6.00-7.02 sec 181 MBytes 1.50 Gbits/sec 0 4.57 MBytes
[ 5] 7.02-8.01 sec 166 MBytes 1.42 Gbits/sec 0 4.57 MBytes
[ 5] 9.01-10.00 sec 175 MBytes 1.72 Gbits/sec 0 4.57 MBytes
[ 5] 9.01-10.00 sec 187 MBytes 1.67 Gbits/sec 0 4.57 MBytes
[ 5] 9.01-10.00 sec 189 MBytes 1.67 Gbits/sec 0 4.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 0 5.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 0 5.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 0 5.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 0 5.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 0 5.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 0 5.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 0 5.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 0 5.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 0 5.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 0 5.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 0 5.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 0 5.57 MBytes
[ 5] 0.00-10.00 sec 1.87 GBytes 1.61 Gbits/sec 1.61 Gbits/sec
```

Рис. 3.7: Тестирование соединения в интерфейсе mininet

Сравним результаты. Увидим, что на 1.88 GB меньше было передано, а пропускная способность в два раза меньше, в то время как количество повторно отправленных TCP-сегментов не изменилось.

Для указания iPerf3 периода времени для передачи можно использовать ключ -t (или –time) (рис. 3.8).

Рис. 3.8: Указание периода времени передачи

Настроим клиент iPerf3 для выполнения теста пропускной способности с 2секундным интервалом времени отсчёта как на клиенте, так и на сервере. Используем опцию -і для установки интервала между отсчётами, измеряемого в секундах(рис. 3.9).

```
root@mininet-vm:/home/mininet#
root@mininet-vm:/home/mininet# iperf3 -s -i 2
warning: this system does not seem to support IPv6 - trying IPv4
Server listening on 5201
Accepted connection from 10.0.0.1, port 56310
 nterval Transfer Bitrate
0.00-10.00 sec 3.82 GBytes 3.28 Gbits/sec
[ ID] Interval
                                                                          receiver
bash: [: missing `]'
root@mininet-vm:/home/mininet# [ 7] 0.00-5.00 sec 2.01 GBytes 3.45 Gbits
/sec 0 sender
bash: [: missing `]'
root@mininet-vm:/home/mininet# [ 7] 0.00-5.00 sec 1.99 GBytes 3.42 Gbits
/sec receiver
bash: [: missing `]'
root@mininet-vm:/home/mininet#
root@mininet-vm:/home/mininet# iperf3 -c 10.0.0.2 -i 2
0.00-10.00 sec 3.84 GBytes 3.30 Gbits/sec 0.00-10.00 sec 3.82 GBytes 3.28 Gbits/sec
                                                                          sender
                                                                         receiver
```

Рис. 3.9: Настройка двухсекундного времени отсчета

Можно увидеть, что действительно интервал увеличился в два раза, в результате чего в два раза учеличилось также вес переданный за один интервал времени и количество повторно высланных TCP-сегментов, но пропускная способность и суммарные величины практически не изменились.

Зададим на клиенте iPerf3 отправку определённого объёма данных. Используем опцию -n для установки количества байт для передачи(рис. 3.10).

```
root@mininet-vm:/home/mininet# iperf3 -c 10.0.0.2 -n 16G
Connecting to host 10.0.0.2, port 5201
[ 7] local 10.0.0.1 port 56316 connected to 10.0.0.2 port 5201
                             Transfer Bitrate Retr
sec 401 MBytes 3.36 Gbits/sec 0
sec 390 MBytes 3.27 Gbits/sec 0
sec 389 MBytes 3.26 Gbits/sec 0
                                                                                                  Cwnd
1.10 MBytes
             0.00-1.00
            1.00-2.00
2.00-3.00
                                                                                                  1.27 MBytes
1.47 MBytes
                                          358 MBytes
352 MBytes
418 MBytes
                                sec
sec
sec
             3.00-4.00
                                                            3.00 Gbits/sec
2.96 Gbits/sec
                                                                                            0
                                                                                                  1.47 MBytes
                                                             3.50 Gbits/sec
                                                                                                  1.47 MBvtes
             5.00-6.00
            6.00-7.00
                                          426 MBvtes
                                                              3.58 Gbits/sec
 * "host: h2"@mininet-vm
                                                                                                                                  Server listening on 5201
iperf3: interrupt - the server has terminated root@mininet-vm:/home/mininet# iperf3 -s warning: this system does not seem to support IPv6 - trying IPv4
Accepted connection from 10.0.0.1, port 56314 [ 7] local 10.0.0.2 port 5201 connected to 10.0.0.1 port 56316
                                Transfer Bitrate
sec 387 MBytes 3.24 Gbits/sec
sec 389 MBytes 3.26 Gbits/sec
  ID] Interval
7] 0.00-1.00
         1.00-2.00
```

Рис. 3.10: Установки количества байт для передачи

Изменим в тесте измерения пропускной способности iPerf3 протокол передачи данных с TCP (установлен по умолчанию) на UDP. iPerf3 автоматически определяет протокол транспортного уровня на стороне сервера. Для изменения протокола используем опцию -u на стороне клиента iPerf3 (рис. 3.11).

```
| The stand of the standard of
```

Рис. 3.11: Изменение протокола передачи

В тесте измерения пропускной способности iPerf3 изменим номер порта для отправки/получения пакетов или датаграмм через указанный порт. Используем для этого опцию -р (рис. 3.12).

Рис. 3.12: Изменение номера порта для отправки/получения пакетов или датаграмм

По умолчанию после запуска сервер iPerf3 постоянно прослушивает входящие соединения. В тесте измерения пропускной способности iPerf3 зададим для сервера параметр обработки данных только от одного клиента с остановкой сервера по завершении теста. Для этого используем опцию -1 на сервере iPerf3 (рис. 3.13).

Рис. 3.13: Параметр обработки данных только от одного клиента с остановкой сервера по завершении теста

Экспортируем результаты теста измерения пропускной способности iPerf3 в файл JSON (рис. 3.14):

Рис. 3.14: Экспорт результатов в файл JSON

Убедимся, что файл iperf_results.json создан в указанном каталоге. Для этого в терминале хоста h1 введем следующие команды (рис. 3.15).

Рис. 3.15: Просмотр файла iperf_results.json

Визуализируем результаты эксперимента. В виртуальной машине mininet перейдем в каталог для работы над проектом, проверим права доступа к файлу JSON. Сгенерируем выходные данные для файла JSON iPerf3. Убедимся, что файлы с данными и графиками сформировались (рис. 3.16).

```
mininet@nininet-un:"/work/lab_iperf3$ plot_iperf .sh iperf_results.json
mininet@nininet-un:"/work/lab_iperf3$ cd results/
mininet@nininet-un:"/work/lab_iperf3$ cd results/
mininet@nininet-un:"/work/lab_iperf3/results$ ls -1
total 88
-ru-ru-r-- 1 mininet mininet 461 Sep 20 08:24 1.dat
-ru-ru-r-- 1 mininet mininet 9839 Sep 20 08:24 bytes.pdf
-ru-ru-r-- 1 mininet mininet 9855 Sep 20 08:24 bytes.pdf
-ru-ru-r-- 1 mininet mininet 9936 Sep 20 08:24 trund.pdf
-ru-ru-ru- 1 mininet mininet 9936 Sep 20 08:24 trunsmits.pdf
-ru-ru-ru- 1 mininet mininet 9937 Sep 20 08:24 RTI_Uar_pdf
-ru-ru-ru- 1 mininet mininet 9224 Sep 20 08:24 RTI_Uar_pdf
-ru-ru-r- 1 mininet mininet 9551 Sep 20 08:24 throughput.pdf
mininet@nininet-uni*/work/lab_iperf3/results$
```

Рис. 3.16: Визуализация результатов эксперимента

4 Выводы

В результате выполнения работы познакомились с инструментом для измерения пропускной способности сети в режиме реального времени – iPerf3, а также получение навыков проведения интерактивного эксперимента по измерению пропускной способности моделируемой сети в среде Mininet.