Masalah PL dapat kita rumuskan dalam bentuk dua masalah baku: memaksimumkan baku dan meminimumkan baku. Selain kedua bentuk ini, masalah PL juga bisa dirumuskan dalam bentuk masalah PL dengan kendala bertanda campuran seperti pada contoh tadi. Kita bahas dulu masalah PL berbentuk baku.

Bentuk Baku Masalah PL

1. Maksimum Baku

Masalah PL bentuk maksimum baku adalah bentuk masalah PL dengan tujuan memaksimumkan dengan semua tanda pada kendala utama kurang dari sama dengan (≤).

Diberikan masalah PL berikut,

memaksimumkan
$$f(x_1, x_2, ..., x_n) = c_1x_1 + c_2x_2 + \cdots + c_nx_n$$
 terhadap kendala

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &\leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &\leq b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &\leq b_m \\ x_1 &\geq 0, x_2 \geq 0, \dots, x_n \geq 0. \end{aligned}$$

2. Minimum Baku

Masalah PL bentuk minimum baku adalah bentuk masalah PL dengan tujuan meminimumkan dengan semua tanda pada kendala utama lebih dari sama dengan (≥).

Diberikan masalah PL berikut,

meminimumkan
$$f(x_1, x_2, ..., x_n) = c_1x_1 + c_2x_2 + \cdots + c_nx_n$$
 terhadap kendala

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \ge b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \ge b_2$

$$\begin{aligned} &\vdots \\ &a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \ge b_m \\ &x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0. \end{aligned}$$

Kita akan bekerja dengan masalah PL memaksimumkan baku terlebih dahulu untuk mempermudah pemahaman tentang metode simpleks.

Penyelesaian Masalah Maksimum Baku.

Karena semua kendala utamanya bertanda \leq , seperti diuraikan sebelumnya, langkah pertama adalah mengubah masalah ke bentuk kanonik. Ubah kendala berbentuk pertidaksamaan linear menjadi persamaan linear dengan menambahkan variabel slack $s_i \geq 0, i = 1, 2, ..., m$ untuk setiap kendala ke-i, sehingga kendala pertidaksamaan menjadi persamaan:

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} + s_{1} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} + s_{2} = b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} + s_{m} = b_{m}$$

$$x_{j} \geq 0, \forall j = 1, 2, \dots, n, s_{i} \geq 0, \forall i = 1, 2, \dots, m.$$

$$(4)$$

Fungsi tujuan menjadi:

Memaksimumkan

$$f(x_1, x_2, \dots, x_n, s_1, s_2, \dots, s_m) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n + 0 s_1 + 0 s_2 + \dots + 0 s_m,$$
(5)

karena s_i , $\forall i = 1, 2, ..., m$ adalah variabel basis dengan $s_i \geq 0$, $\forall i = 1, 2, ..., m$ dan agar nilai fungsi tujuan tidak berubah, maka koefisien biaya (c_i) untuk s_i adalah nol, $\forall i = 1, 2, ..., m$.

(4) dapat ditulis lebih terstruktur sebagai berikut,

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + s_1 + 0s_2 + \dots + 0s_m = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + 0s_1 + s_2 + \dots + 0s_m = b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + 0s_1 + 0s_2 + \dots + s_m = b_m$$
(6)

3. Matriks bentuk kanonik masalah PL maksimum baku

Selanjutnya masalah disederhanakan menjadi

memaksimumkan
$$\bar{z} = \bar{c}^T \bar{x}$$
 (7)

terhadap kendala
$$A\bar{x} = \bar{b}$$
 (8)

$$\bar{x} \ge \bar{0}$$
 (9)

yang dalam bentuk matriks bentuk kanonik

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & 0 & 0 & \cdots & 1 \end{bmatrix}, \bar{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \bar{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ s_1 \\ s_2 \\ \vdots \\ s_m \end{bmatrix}, dan \ \bar{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

Masalah PL dengan kendala (4) atau (6) disebut masalah PL dalam bentuk kanonik. s_i , $\forall i=1,2,...,m$ pada (3) menjadi variabel basis yang nilai-nilainya tidak nol, sedangkan x_j , $\forall j=1,2,...,n$ pada (3) menjadi variabel non basis yang nilainya dinolkan, atau $x_j=0$, $\forall j=1,2,...,n$.

Akibatnya nilai awal fungsi tujuan menjadi:

$$f(x_1, x_2, ..., x_n, s_1, s_2, ..., s_m) = f(0,0, ..., 0, s_1, s_2, ..., s_m) = 0.$$

Diperoleh solusi awal / plb awalnya adalah $(x_1, x_2, ..., x_n, s_1, s_2, ..., s_m) = (0,0,...,0,b_1,b_2,...,b_m).$

4. Tabel awal masalah PLmaksimum baku

Tabel Awal Simpleks

Masalah PL maksimum baku yang telah diubah menjadi berbentuk kanonik (4) atau (6) serta (5) dapat dinyatakan dalam tabel awal simpleks sebagai berikut:

	c_{j}	c_1	c_2	•••	c_n	0	0	•••	0	b_i	R_i
\bar{c}_i	$\bar{x}_i \setminus x_j$	x_1	x_2	•••	x_n	<i>S</i> ₁	<i>S</i> ₂	•••	S_m		κ_l
0	s_1	a ₁₁	<i>a</i> ₁₂	•••	a_{1n}	1	0	•••	0	b_1	R_1
0	s_2	a_{21}	a_{22}	•••	a_{2n}	0	1	•••	0	b_2	R_2
	•••		•••	•••	•••	•••	•••	•••		•••	•••
0	s_m	a_{m1}	a_{m2}	•••	a_{mn}	0	0	•••	1	b_m	R_m
	Z_j	z_1	z_2	•••	z_n	z_{n+1}	z_{n+2}	•••	z_{n+m}		
	$z_j - c_j$	$z_1 - c_1$	$z_2 - c_2$		$z_n - c_n$	z_{n+1}			Z_{n+m}	Z	
						$-c_{n+1}$	$-c_{n+2}$		$-c_{n+m}$		

Keterangan tabel:

 x_j , $\forall j = 1, 2, ..., n$ adalah variabel-variabel soal / masalah

 a_{ij} , $\forall i = 1, 2, ..., m$, $\forall j = 1, 2, ..., n$ adalah koefisien teknis

 b_i adalah nilai kanan / suku tetap, $b_i \ge 0$, $\forall i = 1, 2, ..., m$

 c_j adalah koefisien ongkos / biaya, $\forall j = 1, 2, ..., n$

 \bar{x}_i , $\forall i = 1, 2, ..., m$ adalah variabel basis pada bentuk kanonik, dalam hal ini s_i , $\forall i = 1, 2, ..., m$

 \bar{c}_i , $\forall i = 1,2,...,m$ adalah koefisien ongkos dari x_i

$$z_j = \sum_{i=1}^m \bar{c}_i a_{ij}$$

$$Z = \sum_{i=1}^{m} \bar{c}_i b_i \quad \text{(nilai fungsi sasaran / tujuan)}$$

 $z_j - c_j$ adalah selisih z_j dengan $c_j, \forall j = 1, 2, \ldots, n$

 R_i adalah rasio antara b_i dengan a_{ik} , jika x_k terpilih menjadi variabel basis.