1

Assignment 4

Varenya Upadhyaya EP20BTECH11026

Download all python codes from

https://github.com/varenya27/AI1103/tree/main/ Assignment4/codes

and latex-tikz codes from

https://github.com/varenya27/AI1103/tree/main/ Assignment4/main.tex

PROBLEM

A fair dice is rolled twice. The probability that an odd number will follow an even number is

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{6}$ (c) $\frac{1}{3}$ (d) $\frac{1}{4}$

(b)
$$\frac{1}{6}$$

(c)
$$\frac{1}{3}$$

(d)
$$\frac{1}{4}$$

SOLUTION

The number on the face of a fair die can be either odd or even, let a random variable $X \in \{0, 1\}$ denote the possible outcomes of the event of rolling a die.

Dice output	X	Number
Even number	0	n(X=0)=3
Odd number	1	n(X=1)=3

TABLE 4: Outcome of the Experiment

The probability of getting an even number can then be calculated as,

$$\Pr(X = 0) = \frac{n(X = 0)}{n(X = 0) + n(X = 1)} = \frac{3}{6}$$
 (0.0.1)
= $\frac{1}{2}$ (0.0.2)

Similarly,

$$\Pr(X=1) = \frac{1}{2} \tag{0.0.3}$$

In the experiment, the die is rolled twice. Let E denote the event of getting an even number in the first throw and then an odd number in the second. The probability of this happening can be calculated as:

$$Pr(E) = Pr(X = 0) \times Pr(X = 1)$$
 (0.0.4)

$$= \frac{1}{2} \times \frac{1}{2} \tag{0.0.5}$$

$$=\frac{1}{4} \tag{0.0.6}$$

The required probability is $\frac{1}{4}$; option (d) is correct.