MMU data format 분석

염지현, 김형범

지현 & 형범 의견

: MMU 담당자분께 넘겨받은 연산 및 데이터 format은 현재 구현한 sparse matrix와 거리가 있기 때문에 이 방식이 우리와 맞지 않다고 생각..

파일 이름	용도	크기	비고
Image_pixel	256*256 image pixel 값 한 줄로 펴서 저장	256*256	
lmg_pruning	임계치 이하 값을 0으로 치환하는 압축 방법	37594	
cifm	이미지를 3*3*128로 저장	3*3*129 → 1*1*1161	
Cimf_value	CIFM에서 0이 아닌 value 값을 저장	774	
cifm_pos	CIFM에서 0이 아닌 값의 위치 저장	774	
Ckm	커널을 3*3*128로 저장	3*3*129 → 1*1*1161	Lenna image 기준
Ckm_value	ckm에서 0이 아닌 value 값을 저장	768	
Ckm_pos	ckm에서 0이 아닌 값의 위치 저장	768	
Same_pos	Cifm과 ckm position에서 같은 position 값 저장	511	
Mac_out	Same_pos 연산 결과값 저장	511	

파일 이름	용도	크기(저장된 숫자 개수)	비고
lmage_pixel	256*256 image pixel 값 한 줄로 펴서 저장	256*256	
lmg_pruning	임계치 이하 값을 0으로 치환하는 압축 방법	37594	
cifm	이미지를 3*3*128로 저장	3*3*129 → 1*1*1161	
Cimf_value	CIFM에서 0이 아닌 value 값을 저장	774	
cifm_pos	CIFM에서 0이 아닌 값의 위치 저장	774	
Ckm	커널을 3*3*128로 저장	3*3*129 → 1*1*1161	Lenna image 기준
Ckm_value	ckm에서 0이 아닌 value 값을 저장	768	
Ckm_pos	ckm에서 0이 아닌 값의 위치 저장	768	
Same_pos	Cifm과 ckm position에서 같은 position 값 저장	511	
Mac_out	Same_pos 연산 결과값 저장	511	

1) Image_pixel: RGB → YCbCr 로 변환하여 저장

3) CIFM: 이미지를 3*3*128로 저장

4) CKM: 커널을 3*3*128로 저장

Input 개수: 12, output 개수: 12라고 가정

5) same_position: CIFM, CKM position 같은 부분 저장

Data format 분석 6) mac_out: same_position과 같은 크기의 output 출력 cifm_pos Mac_out Same_pos ckm_pos

1) Pruning을 통해 이미지 압축 시 많은 정보 손실

: 머리카락처럼 살려야 하는 정보를 날린 상태에서 SR 진행 시 결과 보장 불가

1) Pruning을 통해 이미지 압축 시 많은 정보 손실

: 머리카락처럼 살려야 하는 정보를 날린 상태에서 SR 진행 시 결과 보장 불가

2) 1*1, 3*3, 5*5, 9*9 kernel 사용

: 3*3 size 외에 다른 size 사용 가능성 파악 필요

3) 연산량 증가

: layer 별로 (input 쪼개기 → channelization → 0이 아닌 val, pos 저장 → 연산 → 하나의 output으로 합침) 과정 반복

