Xiao Yuan

第三章: 多元随机变量及其分布1

Xiao Yuan¹

¹Center on Frontiers of Computing Studies, Peking University, Beijing 100871, China xiaoyuan@pku.edu.cn

March 19, 2024

¹讲义内容基于三本参考教材以及网络素材。□ > <圖 > < 臺 > < 臺 > ■ ● ● ●

目录

概率统计

Xiao Yuan

随机向量

一般定义

高散型随机

边缘分布

条件分布

分中函数 连续型随机变量

边缘概率密度

二九正高分

立性

二元随机变量独立性 多元随机变量独立性 贴如亦品在 A A A A

名云随却亦畏

的函数

高散型连续型

和的分布 商的分布

min, max 分密度变换公式

1 随机向量

■一般定义

■ 离散型随机向量

边缘分布条件分布

■ 分布函数

■ 连续型随机变量■ 边缘概率密度

■ 条件概率密度

■ 二元正态分布

- /5-/2//

2 随机变量的独立性

■ 二元随机变量独立性

■ 多元随机变量独立性

■ 随机变量集合独立性

3 多元随机变量的函数

■离散型

连续型和的分布

和的分布

■ 商的分布

min, max 分布密度变换公式

■ 二元正态分布

■ 小结

目录

概率统计

Xiao Yuan

随机向量

地かい同う

一般定义

......

尚似空巡视

边缘分布

各件公布

357 75 VP

分布函数

连续型防机变-

边缘似平面及

久从报本向市

二九正态分

But to also

立性

一子随机容易扬力战

多元随机变量独立(

随机变量集合独立

夕儿随机交里 的函数

高散型

连续型

和的分布

min mo

容许专指八3

古及文状公式

1 随机向量

■ 一般定义

■ 离散型随机向量

20 外刀 中

条件分布

■ 分布函数

■ 连续型随机变量

边缘概率密度

条件概率密度

二元正态分布

随机亦量的独立性

■ 二元随机变量独立性

■ 多元随机变量独立性

■ 随机变量集合独立性

多元随机变量的函数

■ 离散型

■连续型

和的分布
 本公本

■ 尚的分布

■ 111111, 111dA カイ ■ 密度 事操 公式

■ 二元正态分布

■ 小结

随机向量

概率统计

Xiao Yuan

一般字》

刻画同一概率空间上不同性质

■ 例 1: 研究某一地区学龄儿童的发育情况。仅研究身高 H 的分布或仅研究体重 W 的分布是不够的。需要同时考 察每个儿童的身高和体重值、研究身高和体重之间的关 系,这就要引入定义在同一样本空间的两个随机变量。

随机向量

概率统计

Xiao Yuan

一般字》

刻画同一概率空间上不同性质

- 例 1: 研究某一地区学龄儿童的发育情况。仅研究身高 H 的分布或仅研究体重 W 的分布是不够的。需要同时考 察每个儿童的身高和体重值、研究身高和体重之间的关 系,这就要引入定义在同一样本空间的两个随机变量。
- 例 2: 研究某种型号炮弹的弹着点分布。每枚炮弹的弹 着点位置需要由横坐标和纵坐标来确定, 而它们是定义 在同一样本空间的两个随机变量。

随机向量

概率统计

Xiao Yuan

随机向量

一般定义 离散型随机向量 边缘分布 条件分布 分布函数 连续型随机变量 动物细胞的由

条件概率密度 二元正态分布

立性二元随机变量独立性

多元随机变量独立性 随机变量集合独立性

多元随机变量 的函数

连续型 和的分布 育的分布 min, max 分布 刻画同一概率空间上不同性质

- 例 1: 研究某一地区学龄儿童的发育情况。仅研究身高 H 的分布或仅研究体重 W 的分布是不够的。需要同时考 察每个儿童的身高和体重值,研究身高和体重之间的关 系,这就要引入定义在同一样本空间的两个随机变量。
- 例 2: 研究某种型号炮弹的弹着点分布。每枚炮弹的弹着点位置需要由横坐标和纵坐标来确定,而它们是定义在同一样本空间的两个随机变量。

随机向量

对于样本空间 $S = \{e\}$ 和样本点 e, $\mathbf{X} = (X_1, X_2, ..., X_n)$ 为随机向量,其中 $X_i = X_i(e)$ 为定义在 S 上的实、单值函数

概率统计

Xiao Yuan

一般定义

重命,除剂、供养液

离散型随机向量

若 X_i 均为离散型随机变量,则 $X = (X_1, X_2, ..., X_n)$ 为离散 型随机向量

离散型随机向量

(X, Y) 的联合概率分布

型随机向量

若 X_i 均为离散型随机变量,则 $X = (X_1, X_2, \ldots, X_n)$ 为离散

■ 考虑二元离散型随机向量 (X, Y), 假设 X 的取值为 $\{x_i\}, Y$ 的取值为 $\{Y_i\}, 则 p_{ii} = P(X = x_i, Y = y_i)$ 为

概率统计

Xiao Yuan

重命,除剂 压得速

概率统计

Xiao Yuan

重命,除剂 压得速

离散型随机向量

若 X_i 均为离散型随机变量,则 $X = (X_1, X_2, \ldots, X_n)$ 为离散 型随机向量

- 考虑二元离散型随机向量 (X, Y), 假设 X 的取值为 $\{x_i\}, Y$ 的取值为 $\{Y_i\}, 则 p_{ii} = P(X = x_i, Y = y_i)$ 为 (X, Y) 的联合概率分布
- p_{ii} 满足非负性和归一性,也即是 $p_{ii} \ge 0$ 和 $\sum_{i:i} p_{ii} = 1$

概率统计

Xiao Yuan

重命,除剂 压得速

离散型随机向量

若 X_i 均为离散型随机变量,则 $X = (X_1, X_2, \ldots, X_n)$ 为离散 型随机向量

- 考虑二元离散型随机向量 (X, Y), 假设 X 的取值为 $\{x_i\}, Y$ 的取值为 $\{Y_i\}, 则 p_{ii} = P(X = x_i, Y = y_i)$ 为 (X, Y) 的联合概率分布
- p_{ii} 满足非负性和归一性,也即是 $p_{ij} \ge 0$ 和 $\sum_{i,i} p_{ij} = 1$
- 例:设随机变量 X 为 1、2、3、4 四个整数中等可能地取 一个值,另一个随机变量 Y 为 1~X 中等可能地取一整 数值、试求 (X,Y) 的联合概率分布。

边缘分布

概率统计

Xiao Yuan

随机向

一般定义 高散型随机向量 边缘分布 条件分布 分布函数

連续型随机变量 边缘概率密度 条件概率密度 二元正态分布

随机变量的独

工/任 二元随机变量独立的

題机災重果合格。

多元随机变量 的函数

內函数 高散型 達裝型 和的分布 商的分布 min, max 分布 密度变换公式

边缘分布

记 (X, Y) 的联合概率分布为 $p_{ij} = P(X = x_i, Y = y_j)$, 则 X, Y 的边缘分布为

$$P(X = x_i) = \sum_{j} P(X = x_i, Y = y_j) := p_{i \bullet},$$

$$P(Y = y_j) = \sum_{i} P(X = x_i, Y = y_j) := p_{\bullet j}$$
(1)

边缘分布

概率统计

Xiao Yuan

边接分布

■ 例:设不吸烟、少量吸烟、大量吸烟比例为 80%, 15%, 5%, 分别患呼吸道疾病概率为 5%, 25%, 70%。

$$i\lambda X = \begin{cases} 0 & \text{不吸烟} \\ 1 & \text{少量吸烟}, Y = \begin{cases} 1 & \text{患病} \\ 0 & \text{不患病} \end{cases}$$

求联合概率分布和边缘分布

边缘分布

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
运转形断扣亦用

边缘概率密度条件概率密度

二元正态分布 随如亦是的:

立性 二元随机变量独立化 多元随机变量独立化 随机变量集合独立化

多元随机变量

的函数 高散型 进续型 和的分布 高的分布 min, max 分布 密度变换公式 ■ 例: 设不吸烟、少量吸烟、大量吸烟比例为 80%,15%,5%,分别患呼吸道疾病概率为 5%,25%,70%。 记X = $\begin{cases} 0 & \text{不吸烟} \\ 1 & \text{少量吸烟}, Y = \begin{cases} 1 & \text{患病} \\ 0 & \text{不患病} \end{cases}$ 求联合概率分布和边缘分布

$X \backslash Y$	Y=0	Y=1	P(X=i)
X=0	0.76	0.04	0.8
X=1	0.1125	0.0375	0.15
X=2	0.015	0.035	0.05
P(Y=j)	0.8875	0.1125	-

条件分布

概率统计

Xiao Yuan

条件分布

条件分布

记 (X, Y) 的联合概率分布为 $p_{ii} = P(X = x_i, Y = y_i)$,假设

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{\bullet j}},$$

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{p_{ij}}{p_{i\bullet}}$$

分别为在 $Y = v_i$ 或 $X = x_i$ 条件下的条件概率分布

Xiao Yuan

条件分布

接上题

$X \backslash Y$	Y=0	Y=1	P(X=i)
X=0	0.76	0.04	0.8
X=1	0.1125	0.0375	0.15
X=2	0.015	0.035	0.05
P(Y=j)	0.8875	0.1125	-

求患病人中吸烟的概率, 也即是 $P(X \neq 0 | Y = 1) = (0.0375 + 0.035)/0.1125 = 0.6444$

Xiao Yuan

高散型随机向量 边缘分布 条件分布 分布函数 连续型随机变量 边缘概率密度 条件概率密度 二元正态分布

立性 二元随机变量独立也 多元随机变量独立也 随和变量集入独立的

多元随机变量 的函数

e e y 型 和的分布 商的分布 min, max 分 密度变换公式 ■ 接上题

$X \backslash Y$	Y=0	Y=1	P(X=i)
X=0	0.76	0.04	0.8
X=1	0.1125	0.0375	0.15
X=2	0.015	0.035	0.05
P(Y=j)	0.8875	0.1125	-

求患病人中吸烟的概率,也即是 $P(X \neq 0 | Y = 1) = (0.0375 + 0.035)/0.1125 = 0.6444$

■ 假设在时间 t 内球队获得黄牌的次数服从泊松分布 $\pi(\lambda t)$ 。记 X_i 为在 $t_i(i=1,2)$ 时间内得到黄牌数 $t_2 > t_1$,求 X_1, X_2 的联合概率分布

Xiao Yuan

随机向量
一般定义
高散型随机向量
边缘分布
各件分布
分布函数
连续型随机交量
边缘概率密度
条件机率含分布

立性 二元随机变量独立也 多元随机变量独立也

随机变量集合独立性多元随机变量

多元随机变量 的函数 8数型

和的分布 育的分布 min, max 分

min, max 分布 密度变换公式 二元正态分布 ■ 接上题

$X \backslash Y$	Y=0	Y=1	P(X=i)
X=0	0.76	0.04	8.0
X=1	0.1125	0.0375	0.15
X=2	0.015	0.035	0.05
P(Y=j)	0.8875	0.1125	-

求患病人中吸烟的概率,也即是 $P(X \neq 0|Y=1) = (0.0375 + 0.035)/0.1125 = 0.6444$

■ 假设在时间 t 内球队获得黄牌的次数服从泊松分布 $\pi(\lambda t)$ 。记 X_i 为在 $t_i(i=1,2)$ 时间内得到黄牌数 $t_2 > t_1$,求 X_1, X_2 的联合概率分布 $P(X_1 = i, X_2 = j) = P(X_2 = j|X_1 = i)P(X_1 = i),$ $P(X_1 = i) = e^{-\lambda t_1}(\lambda t_1)^i/i!,$ $P(X_2 = j|X_1 = i) = e^{-\lambda (t_2 - t_1)}[\lambda (t_2 - t_1)]^{j-i}/(j-i)!$

Xiao Yuan

条件分布

■ 例: 一射手进行射击, 击中目标的概率为 $p \in (0,1)$, 射 击直中目标两次为止,设以 X 表示首次击中目标所进行 的射击次数,以 Y 表示总共进行的射击次数,试求 X 和 Y的联合分布律和条件分布律。

Xiao Yuan

条件分布

■ 例: 一射手进行射击,击中目标的概率为 $p \in (0,1)$,射击直中目标两次为止,设以 X 表示首次击中目标所进行的射击次数,以 Y 表示总共进行的射击次数,试求 X 和 Y 的联合分布律和条件分布律。

$$P(X = m, Y = n) = p^{2}q^{n-2}, q = 1 - p,$$

 $m = 1, 2, ..., n - 1, n = 2, 3, ...$
 $P(X = m) = pq^{m-1}$
 $P(Y = n) = (n - 1)p^{2}q^{n-2}$
 $P(X = m|Y = n) = 1/(n - 1),$
 $P(Y = n|X = m) = pq^{n-m-1}$

Xiao Yuan

条件分布

例:已知随机变量 X 和 Y 取值为 ±1,且满足 P(X=1)=1/2,
 P(Y=1|X=1)=P(Y=-1|X=-1)=1/3 (1) 求 (X,Y) 的联合分布; (2) 求方程 t²+Xt+Y=0 有实根的概率

Xiao Yuan

条件分布

• 例:已知随机变量 X 和 Y 取值为 ± 1 ,且满足 P(X=1)=1/2, P(Y=1|X=1)=P(Y=-1|X=-1)=1/3 (1) 求 (X,Y) 的联合分布;(2)求方程 $t^2+Xt+Y=0$ 有实根的概率 根据题目条件,有 P(X=-1)=1/2,因此有 P(X=1,Y=1)=1/6,P(X=1,Y=-1)=1/3, P(X=-1,Y=-1)=1/6,P(X=-1,Y=1)=1/3 方程 $t^2+Xt+Y=0$ 有实根条件为 $X^2-4Y\geq 0$,也即 是对应 Y=-1 的情况,因此概率为 P(Y=-1)=1/2.

概率统计

Xiao Yuan

分布函数

分布函数

考虑随机向量 $X = (X_1, X_2, \dots, X_n)$ 和实变量 $\mathbf{x} = (x_1, x_2, \dots, x_n)$, 函数 $F(\mathbf{x}) = P(\mathbf{X} \leq \mathbf{x})$ 为 \mathbf{x} 的概率分布 函数

概率统计

Xiao Yuan

分布函数

分布函数

考虑随机向量 $X = (X_1, X_2, ..., X_n)$ 和实变量 $\mathbf{x} = (x_1, x_2, \dots, x_n)$, 函数 $F(\mathbf{x}) = P(\mathbf{X} \leq \mathbf{x})$ 为 \mathbf{x} 的概率分布 函数

■ 非负性: $F(\mathbf{x}) \in [0,1]$ 且满足 $F(-\infty) = 0$ 和 $F(\infty) = 1$

概率统计

Xiao Yuan

随机向量 一般定义 离散型随机向量 边缘分布 条件分布

分布函数 连续型随机变量 边缘概率密度 条件概率密度 二元正态分布

随机变量的独 立性

多元随机变量独立(随机变量集合独立(

多 元 随 机 变 的 函 数

和的分布 商的分布

密度变换公式

分布函数

考虑随机向量 $\textbf{X}=(X_1,X_2,\ldots,X_n)$ 和实变量 $\textbf{x}=(x_1,x_2,\ldots,x_n)$,函数 $F(\textbf{x})=P(\textbf{X}\leq \textbf{x})$ 为 x 的概率分布函数

- 非负性: $F(x) \in [0,1]$ 且满足 $F(-\infty) = 0$ 和 $F(\infty) = 1$
- 单调性: F(x) 单调不减, 也即是 $F(x) \le F(x')$ 当 $x \le x'$

概率统计

Xiao Yuan

分布函数

分布函数

考虑随机向量 $X = (X_1, X_2, ..., X_n)$ 和实变量 $\mathbf{x} = (x_1, x_2, \dots, x_n)$, 函数 $F(\mathbf{x}) = P(\mathbf{X} \leq \mathbf{x})$ 为 \mathbf{x} 的概率分布 函数

■ 非负性: $F(\mathbf{x}) \in [0,1]$ 且满足 $F(-\infty) = 0$ 和 $F(\infty) = 1$

■ 单调性: F(x) 单调不减, 也即是 F(x) < F(x') 当 x < x'

■ 右连续: $\lim_{\epsilon \to 0^+} F(\mathbf{x} + \epsilon) = F(\mathbf{x})$

概率统计

Xiao Yuan

随机向量 一般定义 离散型随机向量 边缘分布 条件分布 分布函数

分中函数 连续型随机变量 边缘概率密度 条件概率密度 二元正态分布

随机变量的独 立性

多元随机变量独立位随机变量集合独立位

多元随机变量 的函数 *****

连续型 和的分布 商的分布

min, max 分升 密度变换公式

分布函数

考虑随机向量 $\mathbf{X} = (X_1, X_2, \dots, X_n)$ 和实变量 $\mathbf{x} = (x_1, x_2, \dots, x_n)$,函数 $F(\mathbf{x}) = P(\mathbf{X} \leq \mathbf{x})$ 为 \mathbf{x} 的概率分布函数

- 非负性: $F(x) \in [0,1]$ 且满足 $F(-\infty) = 0$ 和 $F(\infty) = 1$
- 单调性: F(x) 单调不减, 也即是 $F(x) \le F(x')$ 当 $x \le x'$
- 右连续: $\lim_{\varepsilon \to 0^+} F(\mathbf{x} + \varepsilon) = F(\mathbf{x})$
- 给定 $x_1 \le x_1', x_2 < x_2'$, 我们有 $F(x_1, x_2) F(x_1', x_2) F(x_1, x_2') + F(x_1', x_2') \ge 0$ 注意到 $F(x_1, x_2) F(x_1', x_2) F(x_1, x_2') + F(x_1', x_2') = P(\mathbf{x} \le \mathbf{X} \le \mathbf{x}') \ge 0$

边缘分布与条件分布

概率统计

Xiao Yuan

随机向量

一般定义 高散型随机向

边缘分布 条件分布

分布函数

连续型随机变生

条件概率密

二元正态分

立性

二元随机变量独. 多元随机变量独.

随机变量集合独

多元随机变量

高放型

和的分布

min, ma

密度变换公式

边缘分布函数

记 (X,Y) 的分布函数为 F(x,y),则 X,Y 的边缘分布函数为

$$F_X(x) = P(X \le x) = F(x, \infty), \ F_Y(y) = P(Y \le y) = F(\infty, y)$$

边缘分布与条件分布

概率统计

Xiao Yuan

随机向量 一般定义 离散型随机向量 边線分布

边缘分布 条件分布 分布函数

连续型随机变量 边缘概率密度 各件概率密度

条件概率密度 二元正态分布

近机災重的独 立性 二元随机变量独立的

多元随机变量独立位随机变量集合独立位

多元随机变量 的函数

连续型 和的分布 商的分布

min, max 分不密度变换公式

边缘分布函数

记 (X,Y) 的分布函数为 F(x,y),则 X,Y 的边缘分布函数为

$$F_X(x) = P(X \le x) = F(x, \infty), \ F_Y(y) = P(Y \le y) = F(\infty, y)$$

条件分布函数

记 (X,Y) 的分布函数为 F(x,y), 当 $P(y < Y \le y + \varepsilon) > 0, \forall \varepsilon > 0$, 则 X 相对 Y = y 的条件分布函数为

$$F_{X|Y}(x|y) = \lim_{\varepsilon \to 0^+} P(X \le x|y < Y \le y + \varepsilon)$$

$$= \lim_{\varepsilon \to 0^+} \frac{P(X \le x, y < Y \le y + \varepsilon)}{P(y < Y \le y + \varepsilon)}$$

记为
$$P(X \le x | Y = y)$$

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
体性形解机容量

连续型随机变量 边缘概率密度

条件概率密度 二元正态分布

立性二元随机变量独立多元随机变量独立

多元随机变量

高散型 连续型 和的分布

和的分布商的分布

密度变换公式

联合概率密度

随机向量 $\mathbf{X} = (X_1, X_2, \dots, X_n)$ 的概率分布函数 $F(\mathbf{x})$ 满足 $F(\mathbf{x}) = \int_{-\infty}^{\mathbf{x}} f(\mathbf{x}) d\mathbf{x}$,且 f 非负归一,则称 \mathbf{X} 为连续型随机变量,称 $f(\mathbf{x})$ 为联合概率密度

概率统计

Xiao Yuan

海娃型随机容量

联合概率密度

随机向量 $X = (X_1, X_2, ..., X_n)$ 的概率分布函数 F(x) 满足 $F(x) = \int_{-\infty}^{x} f(x) dx$, 且 f 非负归一, 则称 X 为连续型随机变 量, 称 f(x) 为联合概率密度

■ 非负性: $f(\mathbf{x}) \geq 0$

■ 归一性: $\int_{-\infty}^{\infty} f(\mathbf{x}) d\mathbf{x} = 1$

概率统计

Xiao Yuan

海娃型随机容量

联合概率密度

随机向量 $X = (X_1, X_2, ..., X_n)$ 的概率分布函数 F(x) 满足 $F(x) = \int_{-\infty}^{x} f(x) dx$, 且 f 非负归一, 则称 X 为连续型随机变 量、称 f(x) 为联合概率密度

■ 非负性: $f(\mathbf{x}) \geq 0$

■ 归一性: $\int_{-\infty}^{\infty} f(\mathbf{x}) d\mathbf{x} = 1$

■ 在 $f(\mathbf{x})$ 的连续点,我们有 $\frac{\partial^n F(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x} \partial \mathbf{x}} = f(\mathbf{x})$

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
体性型随机容量

連续型随机变量 边缘概率密度 各件概率容度

条件概率密度 二元正态分布

随机变量的教 立性

二元随机变量独立性 多元随机变量独立性 踏如亦品作人始之始

多元随机变量 的函数

高散型 连续型 和的分布

min, max 分容度变换公式

联合概率密度

随机向量 $\boldsymbol{X}=(X_1,X_2,\ldots,X_n)$ 的概率分布函数 $F(\boldsymbol{x})$ 满足 $F(\boldsymbol{x})=\int_{-\infty}^{\boldsymbol{x}}f(\boldsymbol{x})d\boldsymbol{x}$,且 f 非负归一,则称 \boldsymbol{X} 为连续型随机变量,称 $f(\boldsymbol{x})$ 为联合概率密度

■ 非负性: f(x) ≥ 0

■ 归一性: $\int_{-\infty}^{\infty} f(\mathbf{x}) d\mathbf{x} = 1$

■ 在 $f(\mathbf{x})$ 的连续点,我们有 $\frac{\partial^n F(\mathbf{x})}{\partial x_1 \partial x_2 ... \partial x_n} = f(\mathbf{x})$

■ 假设 $G \neq n$ 维向量空间的区域,则 $P(x \in G) = \int_{x \in G} f(x) dx$

Xiao Yuan

海娃型随机容量

边缘概率密度度 杂件机率密度 二元正成立量的系 近性 二元性机变量独立 多元限变量独立 多元限变量独立 更级机变量独立 多的函数型 进转型 和的分布 min, max 分 密度及成分布

- 例: 设二元随机变量 (X, Y) 具有概率密度 $f(x, y) = \begin{cases} cy & x \in (0, 1), y \in (x^2, x) \\ 0 & \textit{else} \end{cases}$ (1) 求 c
 - (2) 求 (X, Y) 的联合分布函数
 - (3) R P(X > 0.5)

Xiao Yuan

海娃型随机 容量

- 例:设二元随机变量 (X, Y) 具有概率密度 $f(x,y) = \begin{cases} cy & x \in (0,1), y \in (x^2, x) \\ 0 & \textit{else} \end{cases}$ (1) 求 c
 - (2) 求 (X, Y) 的联合分布函数
 - (3) R P(X > 0.5)
- (1) c = 15

(2)
$$F(x,y) = \begin{cases} 0 & x \le 0 \text{ or } y \le 0\\ 1 & x \ge 1 \text{ and } y \ge 1\\ \frac{15}{2}(xy^2 - 2y^3/3 - x^5/5) & 0 < x^2 < y \le x < 1\\ \frac{15}{2}(-2y^3/3 + 4y^{2.5}/5) & y \le x^2 \text{ and } 0 < y \ge 1\\ \frac{15}{2}(x^3/3 - x^5/5) & x \le y \text{ and } 0 < x \ge 1 \end{cases}$$

(3)
$$P(X > 0.5) = 47/64$$

边缘概率密度

概率统计

Xiao Yuan

边缝概率密度

边缘概率密度

记 (X, Y) 的概率密度为 f(x, y), 则 X, Y 的概率密度为

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy, \ f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

边缘概率密度

概率统计

Xiao Yuan

边接概率密度

边缘概率密度

记 (X, Y) 的概率密度为 f(x, y), 则 X, Y 的概率密度为

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy, \ f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

注意到

$$F_X(x) = F(x, \infty) = \int_{-\infty}^{x} \left[\int_{-\infty}^{\infty} f(x, y) dy \right] dx$$
 (2)

同时我们有 $F_X(x) = \int_{-\infty}^x f_X(x) dx$, 因此我们有

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy.$$
 (3)

Xiao Yuan

边缘概率密度

■ 例:设二元随机变量 (X, Y) 具有概率密度 $f(x,y) = \begin{cases} 15y & x \in (0,1), y \in (x^2, x) \\ 0 & else \end{cases}$ 求 (X, Y) 的边缘概率密度

Xiao Yuan

```
边缘概率密度
```

• 例: 设二元随机变量 (X, Y) 具有概率密度 $f(x, y) = \begin{cases} 15y & x \in (0, 1), y \in (x^2, x) \\ 0 & else \end{cases}$ 求 (X, Y) 的边缘概率密度 $f_X(x) = \begin{cases} 15(x^2 - x^4)/2 & x \in (0, 1) \\ 0 & else \end{cases}$ $f_Y(y) = \begin{cases} 15(y^{3/2} - y^2) & y \in (0, 1) \\ 0 & else \end{cases}$

条件概率密度

概率统计

Xiao Yuan

条件概率密度

条件概率密度

记 (X, Y) 的概率密度为 f(x, y), 若 $f_Y(y) > 0$ 或若 $f_X(x) > 0$, 则 X 相对 Y = y 的条件概率密度为

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}, \ f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

条件概率密度

概率统计

Xiao Yuan

条件概率密度

条件概率密度

记 (X, Y) 的概率密度为 f(x, y), 若 $f_Y(y) > 0$ 或若 $f_X(x) > 0$, 则 X 相对 Y = v 的条件概率密度为

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}, \ f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

$$F_{X|Y}(x|y) = \lim_{\varepsilon \to 0^{+}} \frac{P(X \le x, y < Y \le y + \varepsilon)}{P(y < Y \le y + \varepsilon)}$$

$$= \lim_{\varepsilon \to 0^{+}} \frac{F(x, y + \varepsilon) - F(x, y)}{F_{Y}(y + \varepsilon) - F_{Y}(y)} \text{ (divide by } \varepsilon)$$

$$= \frac{\partial F(x, y)/\partial y}{\partial F_{Y}(y)/\partial y} = \frac{\partial \int_{-\infty}^{x} \int_{-\infty}^{y} f(x, y) dx dy/\partial y}{\partial \int_{-\infty}^{y} f_{Y}(y) dy/\partial y}$$

$$= \int_{-\infty}^{x} f(x, y)/f_{Y}(y) dx$$

Xiao Yuan

条件概率密度

■ 例:设有一件工作需要甲乙两人接力完成、完成时间不能超过 30 分 钟。设甲先干了 X 分钟, 再由乙完成, 加起来共用 Y 分钟。若 $X \sim U(0,30)$, 在 X = x 条件下, $Y \sim U(x,30)$ 。(1) 求 (X,Y) 的联 合概率密度以及条件概率密度; (2) 当已知两人共花了 25 分钟完成 工作时, 求甲的工作时间不超过 10 分钟的概率。

Xiao Yuan

随机向量
一般定义
高数型随机向量
边缘分布
条件分布
分布函数
迷妹型随机变量
边缘概率密度

条件概率密度 二元正态分布

立性 二元随机变量独立性 多元随机变量独立性 随机变量集合独立性

多元随机变量 的函数

离散型 连续型 和的分布 育的分布 min, max 分布 • 例:设有一件工作需要甲乙两人接力完成,完成时间不能超过 30 分钟。设甲先干了X分钟,再由乙完成,加起来共用Y分钟。若 $X \sim U(0,30)$,在X = x条件下, $Y \sim U(x,30)$ 。(1)求(X,Y)的联合概率密度以及条件概率密度;(2)当已知两人共花了25分钟完成工作时,求甲的工作时间不超过10分钟的概率。

$$\begin{split} f(x) &= \begin{cases} 1/30 & x \in (1,30) \\ 0 & else \end{cases} & f_{Y|X}(y|x) = \begin{cases} 1/(30-x) & y \in (x,30) \\ 0 & else \end{cases} \\ f(x,y) &= \begin{cases} 1/[30(30-x)] & x \in (0,30), y \in (x,30) \\ 0 & else \end{cases} \\ f_{Y}(y) &= \int_{-\infty}^{y} f(x,y) dx = \begin{cases} \ln(30/(30-y))/30 & y \in (0,30) \\ 0 & else \end{cases} \\ f_{X|Y}(x|y) &= f(x,y)/f_{Y}(y) = \begin{cases} 1/[(30-x)\ln(30/(30-y))] & y \in (x,30) \\ 0 & else \end{cases} \\ f(x) &= f(x,y)/f_{Y}(y) = \begin{cases} 1/[(30-x)\ln(30/(30-y))] & y \in (x,30) \\ 0 & else \end{cases} \\ f(x) &= f(x,y)/f_{Y}(y) = f(x,y$$

二元正态分布

概率统计

Xiao Yuan

二元正态分布

二元正态分布

随机变量 (X, Y) 的概率密度为

$$\begin{split} f(x,y) &= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{\frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right]}. \\ & \mbox{ 其中 } \sigma_1,\sigma_2 > 0, \ |\rho| < 1, \ \mbox{ 并称 } (X,Y) \ \mbox{ 为服从参数} \end{split}$$

 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 的二元正态分布, 记作 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

二元正态分布

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度

二元正态分布 随机变量的独 立性

多九随机变量独立作 随机变量集合独立作 名 开 陌 机 亦 晋

多元随机变量 的函数 ^{高数型}

高的分布 min, max 分布 密度变换公式

二元正态分布

随机变量 (X, Y) 的概率密度为

$$f(x,y) = \frac{1}{\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}} e^{\frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right]}.$$
 其中 $\sigma_1, \sigma_2 > 0$, $|\rho| < 1$, 并称 (X, Y) 为服从参数 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 的二元正态分布,记作 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

- N(0,0,1,1,0) 为二维独立(标准)正态分布
- $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$, 也即是 $X \sim N(\mu_1, \sigma_1^2)$. 同理 $Y \sim N(\mu_2, \sigma_2^2)$

•
$$f_{X|Y}(x|y) = \frac{1}{\sqrt{2\pi}\sigma_1\sqrt{1-\rho^2}}e^{-\frac{\left[x-(\mu_1+\rho\frac{\sigma_1}{\sigma_2}(y-\mu_2))\right]^2}{2(1-\rho^2)\sigma_1^2}}$$
, 也即是在 $Y=y$ 条件下 $X \sim N(\mu_1+\rho\frac{\sigma_1}{\sigma_2}(y-\mu_2),(1-\rho^2)\sigma_1^2)$, 同理在 $X=x$ 条件下 $Y \sim N(\mu_2+\rho\frac{\sigma_2}{\sigma_1}(x-\mu_1),(1-\rho^2)\sigma_2^2)$

目录

概率统计

Xiao Yuan

一般定义

随机变量的独 立性

■ 一般定义

■ 离散型随机向量

■ 分布函数

■ 连续型随机变量

2 随机变量的独立性

■ 二元随机变量独立性

■ 多元随机变量独立性

■ 随机变量集合独立性

■ 离散型

连续型

小结

二元随机变量的独立性

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
连续型随机密度
条件根率密度

随机变量的犯立性

二元随机变量独立性 多元随机变量独立性 随机变量集合独立性

多元随机变量 的函数

连续型 和的分布 育的分布 min, max

二元随机变量的独立性

记 (X, Y) 的分布函数为 F(x, y),边缘分布分别为 $F_X(x)$ 和 $F_Y(y)$,若对所有 x, y 有 $F(x, y) = F_X(x) \cdot F_Y(y)$,则称 X, Y 相 互独立

二元随机变量的独立性

概率统计

Xiao Yuan

二元随机变量独立性

二元随机变量的独立性

记 (X,Y) 的分布函数为 F(x,y), 边缘分布分别为 $F_X(x)$ 和 $F_Y(y)$ 、若对所有 x, y 有 $F(x, y) = F_X(x) \cdot F_Y(y)$ 、则称 X, Y 相 互独立

■ 离散型: 离散型随机变量 (X, Y) 相互独立等价于概率 $P(X = x, Y = y) = P_X(X = x) \cdot P_Y(Y = y)$ 对于所有 x, y 成立

二元随机变量的独立性

概率统计

Xiao Yuan

随机变量的独立性 二元随机变量独立性

多元随机变量独立性 随机变量集合独立性

多元随机变量 的函数

高散型 连续型 和的分布

和的分布 商的分布 min, max 分²

二元随机变量的独立性

记 (X, Y) 的分布函数为 F(x, y), 边缘分布分别为 $F_X(x)$ 和 $F_Y(y)$, 若对所有 x, y 有 $F(x, y) = F_X(x) \cdot F_Y(y)$, 则称 X, Y 相 互独立

- 离散型: 离散型随机变量 (X, Y) 相互独立等价于概率 $P(X = x, Y = y) = P_X(X = x) \cdot P_Y(Y = y)$ 对于所有 x, y 成立
- 连续型: 连续型随机变量 (X, Y) 相互独立等价于概率密度 $f(X = x, Y = y) = f_X(X = x) \cdot f_Y(Y = y)$ 对于 (几乎) 所有 x, y 成立 (除去面积为零的区域都成立)

Xiao Yuan

随机向量 一般定义 高散型随机 边缘分布 条件分布

分布函数 连续型随机变量 边缘概率容序

条件概率密度 二元正态分析

随机变量的

二元随机变量独立性 多元随机变量独立性

多元随机变量的函数

高散型 连续型

和的分布

min, max 密度变换公司

密度变换公式

• 给定概率密度 $f(x,y) = \begin{cases} 6e^{-2x-3y} & x,y>0 \\ 0 & else \end{cases}$ 问随机变量是否独立?

Xiao Yuan

二元随机变量独立性

• 给定概率密度 $f(x,y) = \begin{cases} 6e^{-2x-3y} & x,y>0 \\ 0 & else \end{cases}$ 问随机变量 是否独立?

■ 已知随机变量 X, Y 相互独立, 且服从同一分布 $f(x) = \begin{cases} \frac{1}{2}e^{-2x} & x > 0\\ 0 & else \end{cases}, \quad |i| P(X \le 2Y)?$

Xiao Yuan

二元随机变量独立性

• 给定概率密度 $f(x,y) = \begin{cases} 6e^{-2x-3y} & x,y>0 \\ 0 & else \end{cases}$ 问随机变量 是否独立?

■ 已知随机变量 X, Y 相互独立, 且服从同一分布 $f(x) = \begin{cases} \frac{1}{2}e^{-2x} & x > 0\\ 0 & else \end{cases}, \quad \forall P(X \le 2Y)?$ $f(x, y) = f_X(x)f_Y(Y) = \begin{cases} \frac{1}{4}e^{-2(x+y)} & x, y > 0\\ 0 & else \end{cases}$ $P(X \le 2Y) = \int_{-\infty}^{\infty} dx \int_{x/2}^{\infty} f(x, y) dy = 2/3$

Xiao Yuan

二元随机变量独立性

• 给定概率密度 $f(x,y) = \begin{cases} 6e^{-2x-3y} & x,y>0 \\ 0 & else \end{cases}$ 问随机变量 是否独立?

■ 已知随机变量 X, Y 相互独立, 且服从同一分布 $f(x) = \begin{cases} \frac{1}{2}e^{-2x} & x > 0\\ 0 & else \end{cases}, \quad \text{if } P(X \le 2Y)?$ $f(x,y) = f_X(x)f_Y(Y) = \begin{cases} \frac{1}{4}e^{-2(x+y)} & x,y > 0\\ 0 & else \end{cases}$ $P(X \le 2Y) = \int_{-\infty}^{\infty} dx \int_{x/2}^{\infty} f(x, y) dy = 2/3$

■ 二元正态分布 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ 相互独立的充要条件 是 $\rho = 0$

例子

概率统计

Xiao Yuan

随机向量 一般定义 高散型随机的 边缘分布 各件分布

分布函数 连续型随机变量

条件概率密度 二元正态分析

随机变量的狐

二元随机变量独立性 多元随机变量独立性 站如本母生人孙之神

多元随机变量

的函数高數型

和的分布

育的分布 min, ma

密度变换公式

■ 某条蚕的产卵数 X 服从泊松分布 $X \sim \pi(\lambda)$,每个卵变为成虫的概率为 p,各卵是否变为成虫彼此独立. 设成虫数和死卵数分别为 Y, Z, Y, Z 是否相互独立.

例子

概率统计

Xiao Yuan

二元随机变量独立性

■ 某条蚕的产卵数 X 服从泊松分布 $X \sim \pi(\lambda)$, 每个卵变为 成虫的概率为 D, 各卵是否变为成虫彼此独立. 设成虫数 和死卵数分别为 Y, Z, Y, Z 是否相互独立.

■ 考虑 Y, Z 的联合分布:

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
分布函数
连续型随机变量
边缘根率密度
条件概率密度

随机 发 更 的 独 立 性

二元随机变量独立性 多元随机变量独立性 随机变量集合独立性

多兀随机发重 的函数

连续型 和的分布 育的分布

商的分布 min, max 分布 密度变换公式 二元正态分布 ■ 某条蚕的产卵数 X 服从泊松分布 $X \sim \pi(\lambda)$,每个卵变为成虫的概率为 p,各卵是否变为成虫彼此独立. 设成虫数和死卵数分别为 Y, Z, Y, Z 是否相互独立.

■ 考虑 Y, Z 的联合分布:

$$P(Y = k, Z = l) = P(Y = k, X = k + l)$$

$$= P(X = k + l)P(Y = k \mid X = k + l)$$

$$= \frac{\lambda^{k+l}}{(k+l)!} e^{-\lambda} \cdot \frac{(k+l)!}{k! l!} p^{k} (1-p)^{l}$$

$$= \frac{(\lambda p)^{k}}{k!} e^{-\lambda p} \cdot \frac{(\lambda (1-p))^{l}}{l!} e^{-\lambda (1-p)}$$

联合分布等于边缘分布乘积,所以 Y, Z 相互独立.

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度

随机变量的犯

正性 二元随机变量独立性 多元随机变量独立性

随机变量集合独立的

的函数 离散型 连续型 和的分布 商的分布 min, max 分布

多元随机变量的独立性

记 $\textbf{X} = (X_1, X_2, \dots, X_n)$ 的分布函数为 F(x), $\textbf{x} = (x_1, x_2, \dots, x_n)$, 边缘分布分别为 $F_{X_i}(x_i)$, 若对所有 x 有 $F(\textbf{X}) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot \dots \cdot F_{X_n}(x_n)$, 则称 X_1, X_2, \dots, X_n 相互独立

概率统计

Xiao Yuan

多元随机安量独立性

多元随机变量的独立性

记 $X = (X_1, X_2, ..., X_n)$ 的分布函数为 F(x),

 $\mathbf{x} = (x_1, x_2, \dots, x_n)$, 边缘分布分别为 $F_{\mathbf{x}_i}(\mathbf{x}_i)$, 若对所有 \mathbf{x} 有

 $F(\mathbf{X}) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot \cdots \cdot F_{X_n}(x_n), \quad \text{Max } X_1, X_2, \dots, X_n$ 相互独立

若 X 为连续性随机向量,则相互独立等价于

$$f(\mathbf{X}) = f_{\mathbf{X}_1}(\mathbf{x}_1) \cdot f_{\mathbf{X}_2}(\mathbf{x}_2) \cdot \cdots \cdot f_{\mathbf{X}_n}(\mathbf{x}_n)$$

概率统计

Xiao Yuan

随机向量
一般定义
高数型随机向量
边缘分布
条件分布
各件分布
基础型随机变量
边缘概率密度
条件研查

随机变量的独立性 二元随机变量独立性 多元随机变量独立性 随机变量集合独立性

多元随机变量 的函数

连续型 和的分布 商的分布

密度变换公式

多元随机变量的独立性

记 $\mathbf{X} = (X_1, X_2, \dots, X_n)$ 的分布函数为 $F(\mathbf{x})$,

 $\mathbf{x} = (x_1, x_2, \dots, x_n)$, 边缘分布分别为 $F_{X_i}(x_i)$, 若对所有 \mathbf{x} 有 $F(\mathbf{X}) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot \dots \cdot F_{X_n}(x_n)$, 则称 X_1, X_2, \dots, X_n 相互独立

若 X 为连续性随机向量,则相互独立等价于

 $f(\mathbf{X}) = f_{X_1}(x_1) \cdot f_{X_2}(x_2) \cdot \cdots \cdot f_{X_n}(x_n)$

■ 若 X₁, X₂,..., X_n 两两独立,是否有 X₁, X₂,..., X_n 相互独立?

概率统计

Xiao Yuan

多元随机安量独立性

多元随机变量的独立性

记 $X = (X_1, X_2, ..., X_n)$ 的分布函数为 F(x),

 $\mathbf{x} = (x_1, x_2, \dots, x_n)$, 边缘分布分别为 $F_{\mathbf{x}:}(x_i)$, 若对所有 \mathbf{x} 有 $F(\mathbf{X}) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot \cdots \cdot F_{X_n}(x_n), \quad \text{Max } X_1, X_2, \dots, X_n$ 相互独立

若 X 为连续性随机向量,则相互独立等价于

 $f(\mathbf{X}) = f_{\mathbf{X}_1}(\mathbf{X}_1) \cdot f_{\mathbf{X}_2}(\mathbf{X}_2) \cdot \cdots \cdot f_{\mathbf{X}_n}(\mathbf{X}_n)$

- 若 X_1, X_2, \ldots, X_n 两两独立、是否有 X_1, X_2, \ldots, X_n 相互独立?
- 考虑 0-1 随机变量且 $p(X_1 = x_1, X_2 = x_2, X_3 = x_3) =$ $p_{X_1}(x_1)p_{X_2}(x_2)p_{X_2}(x_3)(1+f(x_1)f(x_2)f(x_3))$, 同时满足 f(0) + f(1) = 0, $p_{X_{1,2,3}}(x_{1,2,3}) = 1/2$

概率统计

Xiao Yuan

随机向量
一般定义
高教型随机向量
边缘分布
条件分布
分布函数
延续型随机变量
边缘概率密度
条件概率容应

随机变量的独立性 二元随机变量独立性 多元随机变量独立性

多元随机变量 的函数

连续型 和的分布 育的分布 min, max 分布

多元随机变量的独立性

记 $\textbf{X} = (X_1, X_2, \dots, X_n)$ 的分布函数为 F(x), $\textbf{x} = (x_1, x_2, \dots, x_n)$, 边缘分布分别为 $F_{X_i}(x_i)$,若对所有 x 有 $F(\textbf{X}) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot \dots \cdot F_{X_n}(x_n)$,则称 X_1, X_2, \dots, X_n 相互独立

若 X 为连续性随机向量,则相互独立等价于 $f(X) = f_{X_1}(x_1) \cdot f_{X_2}(x_2) \cdot \cdots \cdot f_{X_n}(x_n)$

- 若 X₁, X₂,..., X_n 两两独立,是否有 X₁, X₂,..., X_n 相互独立?
- 考虑 0-1 随机变量且 $p(X_1 = x_1, X_2 = x_2, X_3 = x_3) = p_{X_1}(x_1)p_{X_2}(x_2)p_{X_3}(x_3)(1 + f(x_1)f(x_2)f(x_3))$,同时满足 f(0) + f(1) = 0, $p_{X_{1,2,3}}(x_{1,2,3}) = 1/2$
- 若 X₁, X₂,..., X_n 相互独立, 是否有 X₁, X₂,..., X_n 两两独立?

概率统计

Xiao Yuan

随机向量
一般定义
高教型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度
条件概率密度

随机变量的独 立性 二元随机变量独立性 多元随机变量独立性

多元随机变量 的函数

连续型 和的分布 商的分布 min, max 分布

多元随机变量的独立性

记 $\mathbf{X} = (X_1, X_2, \dots, X_n)$ 的分布函数为 $F(\mathbf{x})$, $\mathbf{x} = (x_1, x_2, \dots, x_n)$, 边缘分布分别为 $F_{X_i}(x_i)$, 若对所有 \mathbf{x} 有 $F(\mathbf{X}) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot \dots \cdot F_{X_n}(x_n)$, 则称 X_1, X_2, \dots, X_n 相互独立

若 X 为连续性随机向量,则相互独立等价于 $f(X) = f_{X_1}(x_1) \cdot f_{X_2}(x_2) \cdot \cdots \cdot f_{X_n}(x_n)$

- 若 X₁, X₂,..., X_n 两两独立,是否有 X₁, X₂,..., X_n 相互独立?
- 考虑 0-1 随机变量且 $p(X_1 = x_1, X_2 = x_2, X_3 = x_3) = p_{X_1}(x_1)p_{X_2}(x_2)p_{X_3}(x_3)(1 + f(x_1)f(x_2)f(x_3))$,同时满足 f(0) + f(1) = 0, $p_{X_{1,2,3}}(x_{1,2,3}) = 1/2$
- 若 X₁, X₂,..., X_n 相互独立, 是否有 X₁, X₂,..., X_n 两两独立?
- 注意与事件独立的区别

概率统计

Xiao Yuan

随机安量集合独立性

随机变量集合的独立性

记 $X = (X_1, X_2, ..., X_n)$ 的分布函数为 $F_X(x)$,

 $\mathbf{x} = (x_1, x_2, ..., x_n)$, 边缘分布分别为 $F_{\mathbf{x}:}(x_i)$, 记

 $Y = (Y_1, Y_2, ..., Y_m)$ 的分布函数为 $F_{\mathbf{v}}(\mathbf{v})$,

 $y = (y_1, y_2, ..., y_m)$, 边缘分布分别为 $F_{Y_i}(y_i)$, 若对所有 x, y

有 $F(x, y) = F_X(x)F_Y(y)$, 则称 X 与 Y 相互独立

概率统计

Xiao Yuan

随机安量集合独立性

随机变量集合的独立性

记 $X = (X_1, X_2, ..., X_n)$ 的分布函数为 $F_X(x)$, $\mathbf{x} = (x_1, x_2, ..., x_n)$, 边缘分布分别为 $F_{X_i}(x_i)$, 记 $Y = (Y_1, Y_2, ..., Y_m)$ 的分布函数为 $F_{\mathbf{v}}(\mathbf{v})$, $y = (y_1, y_2, ..., y_m)$, 边缘分布分别为 $F_{Y_i}(y_i)$, 若对所有 x, y有 $F(x, y) = F_X(x)F_Y(y)$, 则称 X 与 Y 相互独立

■ 若 X 与 Y 相互独立,则 X;和 Y;相互独立

概率统计

Xiao Yuan

随机安量集合独立性

随机变量集合的独立性

记 $X = (X_1, X_2, ..., X_n)$ 的分布函数为 $F_X(x)$, $\mathbf{x} = (x_1, x_2, ..., x_n)$, 边缘分布分别为 $F_{X_i}(x_i)$, 记 $Y = (Y_1, Y_2, \dots, Y_m)$ 的分布函数为 $F_Y(y)$, $y = (y_1, y_2, ..., y_m)$, 边缘分布分别为 $F_{Y_i}(y_i)$, 若对所有 x, y有 $F(x, y) = F_X(x)F_Y(y)$, 则称 X 与 Y 相互独立

- 若 X 与 Y 相互独立,则 X;和 Y;相互独立
- 若任意 X; 和 Y; 相互独立, X 与 Y 不一定相互独立

概率统计

Xiao Yuan

随机向量
一般定义
高散型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度
条件概率密度

随机变量的独立性 二元随机变量独立性 多元随机变量独立性 酸机变量独立性

多元随机变量

的函数 高散型 连续型

連续型 和的分布 商的分布 min, max 分布 容在空柱公式

随机变量集合的独立性

记 $\mathbf{X} = (X_1, X_2, ..., X_n)$ 的分布函数为 $F_{\mathbf{X}}(\mathbf{x})$, $\mathbf{x} = (x_1, x_2, ..., x_n)$, 边缘分布分别为 $F_{\mathbf{X}_i}(x_i)$, 记 $\mathbf{Y} = (Y_1, Y_2, ..., Y_m)$ 的分布函数为 $F_{\mathbf{Y}}(\mathbf{y})$,

 $\mathbf{y} = (y_1, y_2, \dots, y_m)$, 边缘分布分别为 $F_{Y_i}(y_i)$, 若对所有 \mathbf{x}, \mathbf{y}

有 $F(x, y) = F_X(x)F_Y(y)$, 则称 X 与 Y 相互独立

- 若 X 与 Y 相互独立,则 X;和 Y;相互独立
- 若任意 X; 和 Y; 相互独立, X 与 Y 不一定相互独立
- 若 **X** 与 **Y** 相互独立,则 h(**X**) 和 g(**Y**) 相互独立 (其中 h,g 为连续函数)

目录

概率统计

Xiao Yuan

一般定义

多元随机变量 的函数

■ 一般定义

■ 离散型随机向量

- 分布函数
- 连续型随机变量
- - 二元随机变量独立性
 - 多元随机变量独立性
 - 随机变量集合独立性
 - 多元随机变量的函数
 - 离散型
 - 连续型
 - 小结

多元随机变量的离散型函数

概率统计

Xiao Yuan

惠散型

问题

问题:已知多元随机变量 $X = (X_1, X_2, ..., X_n)$ 的概率分布和 离散型函数 Y = g(X), 求 Y 的概率分布

多元随机变量的离散型函数

概率统计

Xiao Yuan

随机向量
一般定义
高散型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度

随机变量的

二元随机变量独立性 多元随机变量独立性 随机变量集合独立性

连续型和的分布

min, max ź 密度变换公式

问题

问题:已知多元随机变量 $X = (X_1, X_2, ..., X_n)$ 的概率分布和离散型函数 Y = g(X), 求 Y 的概率分布

多元离散随机变量函数的概率分布

对于多元随机变量 $X = (X_1, X_2, ..., X_n)$, 若 Y = g(X) 为离散随机变量,则可以首先找出 Y 的所有可能值,再找出每个值对应的等价事件来求出概率

Xiao Yuan

随机向量

一般定义 离散型随机向量 边缘分布 条件分布 分布函数

分布函数 连续型随机变量 边缘概率密度

条件概率密度 二元正态分布

随机变量的² 立性

二元随机变量独立性

随机变量集合独立

多 元 随 机 型 的 函 数

高散型

和的分布

min, max 密度变换公:

密度変換公式

■ 已知随机变量 X, Y 的概率分布

令 U = X + Y, $V = \max\{X, Y\}$, 求 (U, V) 的联合概率分布

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
连续型随机变量

近 本 概 平 密 皮 条 件 概 率 密 皮 二 元 正 态 分 布

立性二元随机变量独立

多元随机变量

高散型

和的分布 商的分布

密度变换公式

■ 已知随机变量 X, Y 的概率分布

令 U = X + Y, $V = \max\{X, Y\}$, 求 (U, V) 的联合概率分布

Xiao Yuan

惠散型

■ 已知随机变量 X 的概率密度为 $f_X(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$ 令

Xiao Yuan

惠散型

■ 已知随机变量 X 的概率密度为 $f_X(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & x < 0 \end{cases}$ 令

$$\begin{array}{c|cccc} U \backslash V & V = 0 & V = 1 \\ \hline U = 0 & 1 - e^{-1} & 0 \\ U = 1 & e^{-1} - e^{-2} & e^{-2} \end{array}$$

Xiao Yuan

一般定义

惠散型

■ 已知 $X \sim \pi(\lambda_x)$, $Y \sim \pi(\lambda_y)$, 求 Z = X + Y 的概率分布

Xiao Yuan

多元随机变量 的函数

高散型 连续型 和的分布

有的分布 min, max

密度变换公式

■ 已知 $X \sim \pi(\lambda_x)$, $Y \sim \pi(\lambda_y)$, 求 Z = X + Y 的概率分布 $P(X = i) = e^{-\lambda_x} \lambda_x^i / i!$, $P(Y = j) = e^{-\lambda_y} \lambda_y^j / j!$, 因此

$$P(Z = k) = \sum_{i=0}^{k} P(X = i) P(Y = k - i)$$

$$= \sum_{i=0}^{k} \frac{e^{-\lambda_x} \lambda_x^i}{i!} \frac{e^{-\lambda_y} \lambda_y^{k-i}}{(k-i)!},$$

$$= \frac{e^{-(\lambda_x + \lambda_y)}}{k!} \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \lambda_x^i \lambda_y^{k-i},$$

$$= \frac{e^{-(\lambda_x + \lambda_y)} (\lambda_x + \lambda_y)^k}{k!}$$
(4)

也即是 $Z \sim \pi(\lambda_x + \lambda_y)$

和的分布

概率统计

Xiao Yuan

一般定义

和的分布

对于多元随机变量 $X = (X_1, X_2, ..., X_n)$ 的连续型函数 Y = g(X), 我们可 以用分布函数来分析 Y 的概率分布

和的分布

概率统计

Xiao Yuan

和的分布

对于多元随机变量 $X = (X_1, X_2, ..., X_n)$ 的连续型函数 Y = g(X), 我们可 以用分布函数来分析 Y 的概率分布

已知 (X, Y) 的概率密度为 f(x, y), Z = X + Y 的概率密度为 $f_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) dx = \int_{-\infty}^{\infty} f(z - y, y) dy$

和的分布

概率统计

Xiao Yuan

和的分布

以用分布函数来分析 Y 的概率分布

对于多元随机变量 $X = (X_1, X_2, ..., X_n)$ 的连续型函数 Y = g(X), 我们可

已知 (X, Y) 的概率密度为 f(x, y), Z = X + Y 的概率密度为 $f_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) dx = \int_{-\infty}^{\infty} f(z - y, y) dy$

$$F_{Z}(z) = P(Z \le z) = \int_{x+y \le z} f(x, y) dx dy,$$

$$= \int_{-\infty}^{\infty} dx \int_{-\infty}^{z-x} f(x, y) dy,$$

$$= \int_{-\infty}^{\infty} dx \int_{-\infty}^{z} f(x, \tilde{y} - x) d\tilde{y}, \ (\tilde{y} = x + y)$$

$$= \int_{-\infty}^{z} d\tilde{y} \int_{-\infty}^{\infty} f(x, \tilde{y} - x) dx$$

因此 $f_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) dx$

概率统计

Xiao Yuan

随机向

高散型随机向量 边缘分布 条件分布 分布函数 连续型随机变量

条件概率密 二元正态分

随机变量的数 立性

二元随机变量独立 多元随机变量独立

多元随机变量

高散型

和的分布 商的分布

密度变换公式

卷积公式

已知 (X,Y) 相互独立,概率密度分别为 $f_X(x), f_Y(y)$,

Z = X + Y 的概率密度为

$$f_Z(z) = f_X * f_Z = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy$$

恭积公式

概率统计

Xiao Yuan

和的分布

恭积公式

已知 (X,Y) 相互独立、概率密度分别为 $f_X(x),f_Y(y)$, Z = X + Y 的概率密度为

 $f_Z(z) = f_X * f_Z = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) dy$

■ 例:已知 (X, Y) 的概率密度为 f(x, y), 求 Z = X - Y 的 概率密度

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度
条件概率密度

随机变量的独 立性

多元随机变量独立性随机变量集合独立性

多元随机变量 的函数

高散型 连续型 和的分布 商的分布 min, max 分布

卷积公式

已知 (X, Y) 相互独立,概率密度分别为 $f_X(x), f_Y(y)$, Z = X + Y 的概率密度为 $f_Z(z) = f_{Z'} * f_{Z'} = \int_{-\infty}^{\infty} f_Y(x) f_Y(z - x) dx = \int_{-\infty}^{\infty} f_Y(z - y) f_Y(y) f$

$$f_Z(z) = f_X * f_Z = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy$$

例: 已知 (X, Y) 的概率密度为 f(x,y), 求 Z=X-Y 的概率密度
 (X,-Y) 的概率密度为 f(x,-y), 因此 Z=X-Y 的概率

$$(X, -Y)$$
 的概率密度为 $f(x, -y)$,因此 $Z = X - Y$ 的概率密度为 $f_Z(z) = \int_{-\infty}^{\infty} f(x, x - z) dx = \int_{-\infty}^{\infty} f(z + y, y) dy$

概率统计

Xiao Yuan

随机,向量

一般定义 离散型随机向量 边缘分布 条件分布

亦什万中 分布函数 连续型随机变量 边级概率密度

近塚帆平省及 条件概率密度 ーニエカルカ

防却亦是的

立性

多元随机变量独

多元随机变量

高散型

和的分布

min, max : 密度变换公式

商的分布 min, ms

卷积公式

已知 (X, Y) 相互独立, 概率密度分别为 $f_X(x)$, $f_Y(y)$, Z = X + Y 的概率密度为

$$f_Z(z) = f_X * f_Z = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy$$

● 例: 已知 X, Y 相互独立且都服从标准正态分布 N(0,1),
 求 Z = X + Y 的概率密度.

概率统计

Xiao Yuan

随机向量
一般定义
高数型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度

随机变量的数 立性

多元随机变量独立性随机变量集合独立性

多元随机变量 的函数

连续型 和的分布 商的分布

密度变换公式

卷积公式

已知 (X, Y) 相互独立, 概率密度分别为 $f_X(x), f_Y(y)$, Z = X + Y 的概率密度为

$$f_Z(z) = f_X * f_Z = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy$$

例: 已知 X, Y 相互独立且都服从标准正态分布 N(0,1),
 求 Z= X+ Y 的概率密度.
 由卷积公式:

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-x^2/2} e^{-(z - x)^2/2} dx$$
$$= \frac{1}{2\sqrt{\pi}} e^{-z^2/4}.$$

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度

随机变量的独立性

多元随机变量独立作 随机变量集合独立作

的函数

和的分布

min, max 分 密度变换公式

Xiao Yuan

卷积公式

已知 (X,Y) 相互独立,概率密度分别为 $f_X(x),f_Y(y)$, Z=X+Y 的概率密度为 $f_Z(z)=f_X*f_Z=\int_{-\infty}^{\infty}f_X(x)f_Y(z-x)dx=\int_{-\infty}^{\infty}f_X(z-y)f_Y(y)dy$

■ 例: 已知 X, Y 相互独立且都服从参数为 1 的指数分布, 求 Z= X+ Y 的概率密度.

概率统计

Xiao Yuan

随机向量
一般定义
高教型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度
条件概率密度

随机变量的独立性

多元随机变量独立位 随机变量集合独立位 名 云 防扣 亦 器

多元随机变量 的函数 离数型

和的分布 商的分布

min, max 分升 密度变换公式 卷积公式

已知 (X,Y) 相互独立,概率密度分别为 $f_X(x), f_Y(y)$, Z = X + Y 的概率密度为

 $f_Z(z) = f_X * f_Z = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) dy$

■ 例: 已知 X, Y 相互独立且都服从参数为 1 的指数分布,求 Z = X + Y 的概率密度. 注意 X, Y 的取值都是正数. 当 $z \le 0$ 时显然有 $f_Z(z) = 0$. 当 z > 0 时,由卷积公式:

$$f_Z(z) = \int_0^z f_X(x) f_Y(z-x) dx = \int_0^z e^{-z} dx = ze^{-z}.$$

概率统计

Xiao Yuan

随机向景

一般定义 离散型随机向量 边缘分布 条件分布 分布函数 连续型随机变量

边缘概率密度 条件概率密度 二元正态分布

随机变量的系 立性

多元随机变量独立性随机变量集合独立性

多元随机变量 的函数

的函数

和的分布

min, max 分密度变换公式

已知 (X, Y) 相互独立

- 二项分布: 若 $X \sim B(n,p)$, $Y \sim B(m,p)$, 则 $X + Y \sim B(m+n,p)$
- 泊松分布: 若 $X \sim \pi(\lambda_1)$, $Y \sim \pi(\lambda_2)$, 则 $X + Y \sim \pi(\lambda_1 + \lambda_2)$
- 负二项分布: $\ddot{A} \times NB(n,p)$, $Y \sim NB(m,p)$, 则 $X + Y \sim NB(m+n,p)$
- Γ 分布: \dot{A} $\dot{$
- 正态分布: 若 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, 则 $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
- 考虑 0-1 分布、几何分布、指数分布的可加性
- 考虑多个独立随机变量的可加性

χ^2 分布

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
分布函数
连续型随机变量
边缘根率密度
条件概率密度

随机变量的系 立性

多元随机变量独立作随机变量集合独立作

的函数

高散型 连续型 和的分布

> 商的分布 min, max

min, max 分有 密度变换公式 二元.F.充分布

χ^2 分布

概率密度为
$$f(x) = \begin{cases} \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2-1} e^{-x/2} & x \ge 0 \\ 0 & else \end{cases}$$
 随机变量 X 被称作 χ^2 分布,记作 $\chi^2(n)$

这里
$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx, \alpha > 0$$

- 注意到 $\chi^2(n) = \Gamma(n/2, 1/2)$, 也即是伽马分布的特殊情况
- 若随机变量 $X \sim N(0,1)$, 则 $X^2 \sim \chi^2(1)$
- 考虑 n 个独立随机变量 $X_i \sim N(0,1)$,则 $\sum_i X_i^2 \sim \chi^2(n)$
- 若 $X \sim \chi^2(n)$, $Y \sim \chi^2(m)$, 则 $X + Y \sim \chi^2(n+m)$
- 一个常用的公式为 $\int_0^\infty \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2-1} e^{-x/2} = 1.$

商的分布

概率统计

Xiao Yuan

商的分布

商的分布

已知 (X, Y) 的概率密度为 f(x, y), Z = X/Y 的概率密度为 $f_Z(z) = \int_{-\infty}^{\infty} |y| f(yz, y) dy$

商的分布

概率统计

Xiao Yuan

商的分布

商的分布

已知 (X,Y) 的概率密度为 f(x,y), Z=X/Y 的概率密度为 $f_Z(z) = \int_{-\infty}^{\infty} |y| f(yz, y) dy$

$$F_{Z}(z) = P(Z \le z) = \int_{x/y \le z} f(x, y) dx dy,$$

$$= \int_{x/y \le z, y > 0} f(x, y) dx dy + \int_{x/y \le z, y < 0} f(x, y) dx dy$$

$$= \int_{0}^{\infty} dy \int_{-\infty}^{yz} dx f(x, y) + \int_{-\infty}^{0} dy \int_{yz}^{\infty} dx f(x, y)$$

因此 $f_Z(z) = F_Z'(z) = \int_0^\infty dyy f(yz, y) - \int_0^\infty dyy f(yzz, y) = \int_0^\infty |y| f(yz, y) dy$

Xiao Yuan

随机变量的

二元随机变量独立 多元随机变量独立 随机变量集合独立

多元随机变量的函数

內函数 高數型 連续型 和的分布 **商的分布** min, max 分布 密度变换公式 ■ 已知 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, 且 X,Y相互独立,求 $Z = \frac{X}{\sqrt{Y/n}}$

Xiao Yuan

商的分布

■ 已知 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, 且 X, Y 相互独立, 求 $Z = \frac{X}{\sqrt{Y/n}}$

首先我们有 $Y = \sqrt{Y/n}$ 的概率密度 $f_{Y'}(y) = \begin{cases} \frac{2(n/2)^{n/2}}{\Gamma(n/2)} y^{n-1} e^{-ny^2/2} & x \ge 0\\ 0 & else \end{cases}$

X与 Y 也独立,因此 Z=X/Y 的概率密度为

$$f_{Z}(z) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{2(n/2)^{n/2}}{\Gamma(n/2)} e^{-y^{2}(z^{2}+n)/2} y^{n} dy \Leftrightarrow t = y^{2}(z^{2}+n), \text{ M}$$

$$f_{Z}(z) = \frac{1}{\sqrt{2\pi}} \frac{2(n/2)^{n/2}}{\Gamma(n/2)} (z^{2}+n)^{-(n+1)/2} \int_{-\infty}^{\infty} e^{-t/2} t^{(n+1)/2-1} dy \text{ is}$$

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} \frac{2(n/2)^{n/2}}{\Gamma(n/2)} (z^2 + n)^{-(n+1)/2} \int_{-\infty}^{\infty} e^{-t/2} t^{(n+1)/2-1} dy \ \stackrel{\cdot}{\bowtie}$$

意到
$$\frac{1}{2^{(n+1)/2}\Gamma((n+1)/2)}\int_{-\infty}^{\infty}e^{-t/2}t^{(n+1)/2-1}dy=1$$
 我们有 $f_Z(z)=\frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)}(1+y^2/n)^{-(n+1)/2}$

$$f_Z(z) = \frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)} (1 + y^2/n)^{-(n+1)/2}$$

概率统计

Xiao Yuan

随机向

一般定义 离散型随机向: 边缘分布

条件分布分布函数

连续型随机变量 边缘概率密度 各位概率密度

二元正态分

随机发重的2 立性

二元随机变量独立 多元随机变量独立

多元随机变量

高數型

和的分布

min, max 分布

密度变换公式

min, max 分布

已知 (X, Y) 独立且服从 U(0,1), $Z_1 = \min\{X, Y\}$ 和 $Z_2 = \max\{X, Y\}$ 的概率密度为 $f_{Z_1}(z) = 2(1-z)$ 和 $f_{Z_2}(z) = 2z$, 其中 x 非零取值范围为 (0,1)

概率统计

Xiao Yuan

随机 向量
一般定义
高教型随机向量
边缘分布
参外布函数
连续型随机变量
边缘概率密度
未件概率密度
未几正态分布

随机变量的独立性 二元随机变量独立位 多元随机变量独立位

多元随机变量 的函数 ^{离散型}

连续型 和的分布 商的分布

min, max 分布 密度变换公式

min, max 分布

已知 (X, Y) 独立且服从 U(0,1), $Z_1 = \min\{X, Y\}$ 和 $Z_2 = \max\{X, Y\}$ 的概率密度为 $f_{Z_1}(z) = 2(1-z)$ 和 $f_{Z_2}(z) = 2z$, 其中 x 非零取值范围为 (0,1)

考虑 $z \in (0,1)$,有分布函数 $F_{Z_1}(z) = P(\min\{X,Y\} \le z) = 1 - P(\min\{X,Y\} \ge z) = 1 - P(X \ge z \& Y \ge z) = 1 - P(X \ge z)^2 = 1 - (1-z)^2$,因此 $f_{Z_1}(z) = 2(1-z)$

概率统计

Xiao Yuan

随机向量
一般定义又
高数型放机向量
边缘分布
条件分布
分布函数
建续型随机变量
边缘概率密度
企作概率 盈分布

随机变量的独立性 二元随机变量独立位 多元随机变量独立位

多元随机变量 的函数 ^{离散型}

连续型 和的分布 育的分布 min, max 分布

min, max 分布 密度变换公式

min, max 分布

已知 (X, Y) 独立且服从 U(0,1), $Z_1 = \min\{X, Y\}$ 和 $Z_2 = \max\{X, Y\}$ 的概率密度为 $f_{Z_1}(z) = 2(1-z)$ 和 $f_{Z_2}(z) = 2z$, 其中 x 非零取值范围为 (0,1)

考虑 $z \in (0,1)$,有分布函数 $F_{Z_1}(z) = P(\min\{X,Y\} \leq z) = 1 - P(\min\{X,Y\} \geq z) = 1 - P(X \geq z \& Y \geq z) = 1 - P(X \geq z)^2 = 1 - (1-z)^2$,因此 $f_{Z_1}(z) = 2(1-z)$ 考虑 $z \in (0,1)$,有分布函数 $F_{Z_2}(z) = P(\max\{X,Y\} \leq z) = P(X \leq z \& Y \leq z) = P(X \leq z)^2 = z^2$,因此 $f_{Z_2}(z) = 2z$

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度

二元正态分布

立性 二元随机变量独立性 多元随机变量独立性

随机变量集合独立也

多元随机变量 的函数

连续型 和的分布 高的分布

min, max 分布 密度变换公式

min, max 分布

已知 $\mathbf{X} = (X_1, X_2, \dots, X_n)$ 相互独立且分布函数为 $F(\mathbf{X}) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot \dots \cdot F_{X_n}(x_n)$, $Z_1 = \min\{X_i\}$ 和 $Z_2 = \max\{X_i\}$ 的分布函数为 $F_{Z_1}(z) = 1 - (1 - F_{X_1}(z))(1 - F_{X_2}(z)) \dots (1 - F_{X_n}(z))$ 和 $F_{Z_2}(z) = F_{X_1}(z)F_{X_2}(z) \dots F_{X_n}(z)$

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度
条件概率密度

随机变量的独立性 二元随机变量独立性

多元随机变量独立的随机变量集合独立的

高散型 连续型 和的分布 育的分布

min, max 分布 密度变换公式

min, max 分布

已知 $\mathbf{X} = (X_1, X_2, \dots, X_n)$ 相互独立且分布函数为 $F(\mathbf{X}) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot \dots \cdot F_{X_n}(x_n)$, $Z_1 = \min\{X_i\}$ 和 $Z_2 = \max\{X_i\}$ 的分布函数为 $F_{Z_1}(z) = 1 - (1 - F_{X_1}(z))(1 - F_{X_2}(z)) \dots (1 - F_{X_n}(z))$ 和 $F_{Z_2}(z) = F_{X_1}(z)F_{X_2}(z) \dots F_{X_n}(z)$ 特别地,当 $F_{X_i}(x) = F_{X_j}(x)$,则有 $F_{Z_1}(z) = 1 - (1 - F_{X_1}(z))^n$ 和 $F_{Z_2}(z) = F_{X_1}(z)^n$

密度变换公式

概率统计

Xiao Yuan

密度变换公式

若 X 和 Y = g(X) 都是 n 维随机向量, 我们有:

密度变换公式

设连续型随机向量 $X = (X_1, X_2, \dots, X_n)$ 的概率密度为 $f_X(x)$, $g: \mathbb{R}^n \to \mathbb{R}^n$ 有连续偏导数、且反函数 $h(y) = g^{-1}(y)$ 唯一、 则随机向量 $\mathbf{Y} = \mathbf{g}(\mathbf{X})$ 的概率密度为 $f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(\mathbf{h}(\mathbf{y}))|J(\mathbf{y})|$, 其中 $J(y) = \det J(y)$ 为 h 在 y 处的 Jacobi 行列式,这里有矩 阵 $\mathbf{J}_{ik} = \partial h_i(\mathbf{y})/\partial y_k$

密度变换公式

概率统计

Xiao Yuan

随机向量
一般定义
馬數型除机向量
边缘分布
分布函数
连续型机车安度
条件概率密度

随机变量的独立性

多元随机变量独立。随机变量集合独立。

多元随机变量 的函数 高数型

●映型 和的分布 高的分布 min, max 分布

min, max 分才 密度变换公式 若 X 和 Y = g(X) 都是 n 维随机向量, 我们有:

密度变换公式

设连续型随机向量 $\mathbf{X} = (X_1, X_2, \dots, X_n)$ 的概率密度为 $f_{\mathbf{X}}(\mathbf{x})$, $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ 有连续偏导数,且反函数 $\mathbf{h}(\mathbf{y}) = \mathbf{g}^{-1}(\mathbf{y})$ 唯一,则随机向量 $\mathbf{Y} = \mathbf{g}(\mathbf{X})$ 的概率密度为 $f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(\mathbf{h}(\mathbf{y}))|J(\mathbf{y})|$,其中 $J(\mathbf{y}) = \det J(\mathbf{y})$ 为 \mathbf{h} 在 \mathbf{y} 处的 Jacobi 行列式,这里有矩阵 $J_{jk} = \partial h_j(\mathbf{y})/\partial y_k$

直观理解:

设 $\mathbf{y} = \mathbf{g}(\mathbf{x})$,则 $P(\mathbf{x} \le \mathbf{X} \le \mathbf{x} + \mathrm{d}\mathbf{x}) = P(\mathbf{y} \le \mathbf{Y} \le \mathbf{y} + \mathrm{d}\mathbf{y})$. 所以 $f_{\mathbf{X}}(\mathbf{x})\mathrm{d}\mathbf{x} = f_{\mathbf{Y}}(\mathbf{y})\mathrm{d}\mathbf{y}$.

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(\mathbf{x}) \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{y}} = f_{\mathbf{X}}(\mathbf{h}(\mathbf{y}))|J(\mathbf{y})|$$

密度变换公式

概率统计

Xiao Yuan

随机向量
一般定义
高散型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度

随机变量的独 立性

二元随机变量独立性 多元随机变量独立性 随机变量集合独立性

多元随机变量 的函数 ^{离散型}

和的分布 育的分布 min, max 分布 密度变换公式 若 X 和 Y = g(X) 都是 n 维随机向量, 我们有:

密度变换公式

设连续型随机向量 $\mathbf{X} = (X_1, X_2, \dots, X_n)$ 的概率密度为 $f_{\mathbf{X}}(\mathbf{x})$, $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ 有连续偏导数,且反函数 $\mathbf{h}(\mathbf{y}) = \mathbf{g}^{-1}(\mathbf{y})$ 唯一,则随机向量 $\mathbf{Y} = \mathbf{g}(\mathbf{X})$ 的概率密度为 $f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(\mathbf{h}(\mathbf{y}))|J(\mathbf{y})|$,其中 $J(\mathbf{y}) = \det J(\mathbf{y})$ 为 \mathbf{h} 在 \mathbf{y} 处的 Jacobi 行列式,这里有矩阵 $J_{jk} = \partial h_j(\mathbf{y})/\partial y_k$

直观理解:

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(\mathbf{x}) \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{y}} = f_{\mathbf{X}}(\mathbf{h}(\mathbf{y})) |J(\mathbf{y})|$$

一元情形下, $\frac{dx}{dy} = |h'(y)|$,其中 h 是 g 的反函数,这就是第二章连续随机变量的函数分布定理.

例子

概率统计

Xiao Yuan

密度变换公式

■ 例 1: 已知 X, Y 相互独立且都服从 N(0,1) 分布, 令 $X = R\cos W, Y = R\sin W, 其中 R > 0, W \in [0, 2\pi).$ 求 (R, W) 的概率密度.

Xiao Yuan

密度变换公式

■ 例 1: 已知 X, Y 相互独立且都服从 N(0,1) 分布, 令 $X = R\cos W$, $Y = R\sin W$, 其中 R > 0, $W \in [0, 2\pi)$. 求 (R, W) 的概率密度.

考虑映射 $h:(r,w)\mapsto(x,y),\ x=r\cos w,\ y=r\sin w.$

Jacobi 行列式

$$\left| \frac{\partial(x,y)}{\partial(r,w)} \right| = \left| \begin{array}{cc} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial w} \end{array} \right| = r.$$

由 $f_{X,Y}(x,y)$ dxdy = $f_{R,W}(r,w)$ drdw 知

$$f_{R,W}(\mathbf{r}, \mathbf{w}) = f_{X,Y}(x, y) \left| \frac{\partial(x, y)}{\partial(\mathbf{r}, \mathbf{w})} \right| = \frac{1}{2\pi} \mathbf{r} e^{-\frac{r^2}{2}}.$$

其中, $r \in (0, +\infty)$, $w \in [0, 2\pi)$.

Xiao Yuan

密度变换公式

■ 例 1: 已知 X, Y 相互独立且都服从 N(0,1) 分布, 令 $X = R\cos W, Y = R\sin W, 其中 R > 0, W \in [0, 2\pi).$ 求 (R, W) 的概率密度.

$$f_{R,W}(\mathbf{r}, \mathbf{w}) = \begin{cases} \frac{1}{2\pi} \mathbf{r} e^{-\frac{\mathbf{r}^2}{2}} & \mathbf{r} \in (0, +\infty), \mathbf{w} \in [0, 2\pi) \\ 0 & \textit{else} \end{cases}$$

可以看出:

■ R. W 相互独立 (联合密度恰好是边缘密度的乘积).

Xiao Yuan

随机向量
一般定义
高教型随机向量
边缘分布
各件分布
分布函数
连续型随机变量
边缘概率密度

二元正态分布

立性

随机变量集合独立

多元随机变量 的函数

高散型 连续型 和的分布 育的分布 min, max 分布 密度变换公式 ■ 例 1: 已知 X, Y 相互独立且都服从 N(0,1) 分布,令 $X = R\cos W, Y = R\sin W, 其中 <math>R > 0, W \in [0, 2\pi)$. 求 (R, W) 的概率密度.

$$f_{R,W}(\mathbf{r}, \mathbf{w}) = \begin{cases} \frac{1}{2\pi} \mathbf{r} e^{-\frac{\mathbf{r}^2}{2}} & \mathbf{r} \in (0, +\infty), \mathbf{w} \in [0, 2\pi) \\ 0 & \textit{else} \end{cases}$$

可以看出:

- R, W 相互独立 (联合密度恰好是边缘密度的乘积).
- $W \sim U(0, 2\pi), \ V = R^2 = X^2 + Y^2 \sim Exp(\frac{1}{2}).$

$$p_V(v) = p_R(r) \left| \frac{\mathrm{d}r}{\mathrm{d}v} \right| = r \mathrm{e}^{-\frac{r^2}{2}} \cdot \frac{1}{2r} = \frac{1}{2} \mathrm{e}^{-\frac{v}{2}}$$

Xiao Yuan

密度变换公式

■ 例 1: 已知 X, Y 相互独立且都服从 N(0,1) 分布, 令 $X = R\cos W, Y = R\sin W, 其中 R > 0, W \in [0, 2\pi).$ 求 (R, W) 的概率密度.

$$f_{R,W}(\mathbf{r}, \mathbf{w}) = \begin{cases} \frac{1}{2\pi} \mathbf{r} e^{-\frac{\mathbf{r}^2}{2}} & \mathbf{r} \in (0, +\infty), \mathbf{w} \in [0, 2\pi) \\ 0 & \textit{else} \end{cases}$$

可以看出:

- R, W 相互独立 (联合密度恰好是边缘密度的乘积).
- $W \sim U(0, 2\pi)$, $V = R^2 = X^2 + Y^2 \sim Exp(\frac{1}{2})$.

$$p_V(v) = p_R(r) \left| \frac{\mathrm{d}r}{\mathrm{d}v} \right| = r \mathrm{e}^{-\frac{r^2}{2}} \cdot \frac{1}{2r} = \frac{1}{2} \mathrm{e}^{-\frac{v}{2}}$$

 这一例子刻画了二维正态向量在极坐标表示下的行为. 能 否将结论推广到更高维?

例子

概率统计

Xiao Yuan

一般定义

密度变换公式

■ 例 2: 已知 X, Y 相互独立且都服从 N(0,1) 分布. 求 Z = X/Y的分布.

Xiao Yuan

密度变换公式

■ 例 2: 已知 X, Y 相互独立且都服从 N(0,1) 分布. 求 Z = X/Y 的分布.

定义映射 $g:(x,y)\mapsto(z,w), z=x/y, w=y$. Jacobi 行列式

$$\left| \frac{\partial(z, w)}{\partial(x, y)} \right| = \left| \begin{array}{cc} \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} \end{array} \right| = \left| \begin{array}{cc} \frac{1}{y} & -\frac{x}{y^2} \\ 0 & 1 \end{array} \right| = \frac{1}{y}.$$

由 $f_{X,Y}(x,y)|\mathrm{d}x\mathrm{d}y|=f_{Z,W}(z,w)|\mathrm{d}z\mathrm{d}w|$ 知

$$f_{Z,W}(z,w) = f_{X,Y}(x,y) \left| \frac{\partial(z,w)}{\partial(x,y)} \right|^{-1} = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}} \cdot |y| = \frac{|w|}{2\pi} e^{-\frac{z^2w^2+w^2}{2}}.$$

Xiao Yuan

随机向量
一般定义
高散型随机向量
边缘分布
条件分布
分布函数
連续型随机变量
边缘概率密度

随机变量的独 立性

多元随机变量独立作 随机变量集合独立作

多元随机变量 的函数

连续型 和的分布 育的分布 min, max 分布 審度变换公式 二元正态分布 ■ 例 2: 已知 X, Y 相互独立且都服从 N(0,1) 分布. 求 Z = X/Y 的分布.

定义映射 $g:(x,y)\mapsto(z,w),\ z=x/y,\ w=y.$ Jacobi 行列式

$$\left| \frac{\partial(z, w)}{\partial(x, y)} \right| = \left| \begin{array}{cc} \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} \end{array} \right| = \left| \begin{array}{cc} \frac{1}{y} & -\frac{x}{y^2} \\ 0 & 1 \end{array} \right| = \frac{1}{y}.$$

由 $f_{X,Y}(x,y)|\mathrm{d}x\mathrm{d}y|=f_{Z,W}(z,w)|\mathrm{d}z\mathrm{d}w|$ 知

$$f_{Z,W}(z,w) = f_{X,Y}(x,y) \left| \frac{\partial(z,w)}{\partial(x,y)} \right|^{-1} = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}} \cdot |y| = \frac{|w|}{2\pi} e^{-\frac{z^2w^2+w^2}{2}}.$$

$$\Rightarrow f_{Z}(z) = \int_{\mathbb{R}} f_{Z,W}(z,w) dw = \frac{1}{\pi} \int_{0}^{+\infty} w e^{-\frac{(z^{2}+1)w^{2}}{2}} dw = \frac{1}{\pi(z^{2}+1)}.$$

Z的分布称为柯西分布.

二元正态分布

概率统计

Xiao Yuan

二元正充分布

二元正态分布

随机变量 (X, Y) 的概率密度为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{\frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right]}.$$

其中 $\sigma_1, \sigma_2 > 0, |\rho| < 1$,并称 (X, Y) 为服从参数

 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 的二元正态分布,记作 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

二元正杰分布

概率统计

Xiao Yuan

二元正充分布

二元正杰分布

随机变量 (X, Y) 的概率密度为

$$f(x,y) = \frac{1}{\frac{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}{2}} e^{\frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right]}.$$
 其中 $\sigma_1, \sigma_2 > 0$, $|\rho| < 1$, 并称 (X, Y) 为服从参数 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 的二元正态分布,记作 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

■ 若 $Z_1, Z_2 \sim N(0,1)$, 则 $(X_1 = aZ_1 + bZ_2 + \mu_1, X_2 =$ $cZ_1 + dZ_2 + \mu_2$) ~ $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, 其中 $\sigma_1 = \sqrt{a^2 + b^2}, \ \sigma_2 = \sqrt{c^2 + d^2}, \ \rho = \frac{ac + bd}{\sigma_1 \sigma_2}, \ ad - bc \neq 0.$

二元正态分布

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
連续型随机变量
边缘概率密度

随机变量的剂 立性

二九随机变量独立(多元随机变量独立(随机变量集合独立(

多元随机变量 的函数

地域型 和的分布 育的分布 min, max 分布

二元正充分布

二元正态分布

随机变量 (X, Y) 的概率密度为

$$f(x,y) = \frac{1}{\frac{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}{2\sigma_1^2}} e^{\frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]}.$$
 其中 $\sigma_1, \sigma_2 > 0$, $|\rho| < 1$, 并称 (X, Y) 为服从参数 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 的二元正态分布,记作 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

- 若 $Z_1, Z_2 \sim N(0,1)$, 则 $(X_1 = aZ_1 + bZ_2 + \mu_1, X_2 = cZ_1 + dZ_2 + \mu_2) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, 其中 $\sigma_1 = \sqrt{a^2 + b^2}$, $\sigma_2 = \sqrt{c^2 + d^2}$, $\rho = \frac{ac + bd}{\sigma_1 \sigma_2}$, $ad bc \neq 0$.
- 若 X, Y 服从二元正态分布,则 X' = aX + bY + e, Y' = cX + dY + f (其中 $ad bc \neq 0$), 也服从二元正态分布

小结

概率统计

Xiao Yuan

给定 X 的分布和映射 $g: \mathbb{R}^n \to \mathbb{R}^m$, 计算随机变量函数 Y = g(X) 的分布的方法:

■ 离散型: 找出 Y 的所有可能取值,逐个计算概率.

小结

概率统计

Xiao Yuan

给定 X 的分布和映射 $g: \mathbb{R}^n \to \mathbb{R}^m$, 计算随机变量函数 Y = g(X) 的分布的方法:

- 离散型: 找出 Y 的所有可能取值,逐个计算概率.
- 连续型:
 - m=1: 考虑卷积公式,或先求 Y的分布函数再求导数.
 - m = n: 使用密度变换 (例 1).
 - m < n: 找到合适的 n m 个随机变量,将 g 补足为 n 维向量值函数再使用密度变换 (例 2).

小结

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
连续型随机密度
途缘概率密度

一九正忍分布 随机变量的独 立性

二元随机变量独立性 多元随机变量独立性 随机变量集合独立性

多元随机变量 的函数

连续型 和的分布 育的分布 min, max 给定 X 的分布和映射 $g: \mathbb{R}^n \to \mathbb{R}^m$, 计算随机变量函数 Y = g(X) 的分布的方法:

- 离散型: 找出 Y 的所有可能取值,逐个计算概率.
- 连续型:
 - m=1:考虑卷积公式,或先求 Y 的分布函数再求导数.
 - m = n: 使用密度变换 (例 1).
 - m < n: 找到合适的 n m 个随机变量,将 g 补足为 n 维向量值函数再使用密度变换(例 2).

练习: 利用密度变换公式分别求和、商、积的概率密度公式

利用均匀分布生成目标分布

概率统计

Xiao Yuan

问题

问题:如何利用均匀分布随机变量 $X \sim U(0,1)$ 生成连续随机 变量 Y (概率密度 $f_{Y}(y)$)

给定 $Y = g(X), X = h(Y), 则有 <math>f_Y(y) = f_X(h(y))|h'(y)|,$ 因此 $h(y) = F_Y(y)$

利用均匀分布生成目标分布

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
连续型随机变量
边缘概率密度

随机变量的独立性

二元随机变量独立也 多元随机变量独立也 随机变量集合独立也

多元随机变量 的函数 高散型

连续型 和的分布 商的分布 min, max 分不

问题

问题:如何利用均匀分布随机变量 $X \sim \textit{U}(0,1)$ 生成连续随机

问题:如何利用均匀分布随机变量 $X \sim U(0,1)$ 生成连续随机变量 Y (概率密度 $f_Y(y)$)

给定 Y = g(X), X = h(Y), 则有 $f_Y(y) = f_X(h(y))|h'(y)|$, 因此 $h(y) = F_Y(y)$

利用均匀分布生成目标分布

假设 Y 的分布函数为 $F_Y(y)$, 已知均匀分布 $X \sim U(0,1)$, 则有 $Y = F_Y^{-1}(X)$

■ 实际过程中,我们可以利用均匀的随机数发生器来产生任意分布的随机数

概率统计

Xiao Yuan

例:产生单位圆内均匀分布的点

随机 向量一般定义 高散型随机向量 边缘分布 分布函数 连续型随机变量 边缘概率密度 条件极率密度 二元正态分布

随机变量的名立性

多元随机变量独立随机变量集合独立

的函数

和的分布商的分布

min, ma

7度变换公式

概率统计

Xiao Yuan

随机向引

高散型随机的 边缘分布

边缘分布 条件分布 公布品数

连续型随机变量

边缘概率密度

条件概率密

二元正态分布

随机变量的立性

一元随机交量独;
多元随机变量独;

多元随机变量

的函数高數型

连续型 和的分布

和的分布

min, max 密度变换公式

密度変換公式

例:产生单位圆内均匀分布的点

■ 策略 1: 产生独立均匀分布 (X, Y), 并留下满足 $X^2 + Y^2 \le 1$ 的点

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
进续型随机变量

条件概率密度 二元正态分布

立性
二元随机变量独立
多元随机变量独立

多元随机变量

的函数 高數型 连续型

和的分布 商的分布

密度变换公式

例:产生单位圆内均匀分布的点

- 策略 1: 产生独立均匀分布 (X, Y), 并留下满足 $X^2 + Y^2 \le 1$ 的点
- 缺点: 当考虑高维球时,满足条件的概率指数变小

概率统计

Xiao Yuan

随机向量
一般定义
离散型随机向量
边缘分布
条件分布
分布函数
进续型随机变量
边缘继续型

随机变量的独立性

多元随机变量独立随机变量集合独立

多九随机实 的函数 ****

连续型 和的分布 商的分布 min, max 分布 例:产生单位圆内均匀分布的点

- 策略 1: 产生独立均匀分布 (X, Y), 并留下满足 $X^2 + Y^2 \le 1$ 的点
- 缺点: 当考虑高维球时,满足条件的概率指数变小
- 策略 2: 产生独立均匀分布 (X, Y), 再归一化为 (X/R, Y/R), 其中 $R = \sqrt{X^2 + Y^2}$?

概率统计

Xiao Yuan

例:产生单位圆内均匀分布的点

- 策略 1: 产生独立均匀分布 (X, Y)、并留下满足 $X^2 + Y^2 < 1$ 的点
- 缺点: 当考虑高维球时,满足条件的概率指数变小
- 策略 2: 产生独立均匀分布 (X, Y), 再归一化为 (X/R, Y/R), 其中 $R = \sqrt{X^2 + Y^2}$?
- 策略 3: 考虑极坐标 (R, W), 由 $f_{X,Y}(x,y)dxdy = f_{R,W}(r,w)drdw$ 知 (R,W) 的概率密度 为

$$f_{R,W}(\mathbf{r},\mathbf{w}) = f_{X,Y}(x,y) \left| \frac{\partial(x,y)}{\partial(r,w)} \right| = \frac{\mathbf{r}}{\pi}.$$

因此, $F_R(r) = r^2$, 也即是对于 $X \sim U(0,1)$, 可以通过 \sqrt{X} 得到 R 的分布

概率统计

Xiao Yuan

例:产生单位球面内均匀分布的点

随机向量
一般定义
高散型随机向量
边缘分布
条件分布
分布函数
进续型随机变量
边缘概率密度
二元正态分布

随机变量的》 立性 二元随机变量独立

多元随机变量

连续型 和的分布 商的分布

密度变换公式

概率统计

Xiao Yuan

随机向

一般定义 高散形随机向

边缘分布

条件分布

连续型随机变

边缘概率密度

条件概率密度

二元正态分布

随机变量的 立性

多元随机变量独立

多元随机变量

高散型

和的分布

和的分布

min, max 密度变换公式

密度变换公式

例:产生单位球面内均匀分布的点

■ 策略 1: 产生独立均匀分布 (X, Y, Z), 并留下满足 X² + Y² + Z² = 1 的点?

概率统计

Xiao Yuan

例:产生单位球面内均匀分布的点

- 策略 1: 产生独立均匀分布 (X, Y, Z), 并留下满足 $X^2 + Y^2 + Z^2 = 1$ 的点?
- 策略 2: 产生独立均匀分布 (X, Y, Z), 再归一化为 (X/R, Y/R, Z/R), 其中 $R = \sqrt{X^2 + Y^2 + Z^2}$?

概率统计

Xiao Yuan

随机向量
一般定义
高散型随机向量
边缘分布
条件分布
分布函数
进续型随机变量
边缘概率密度
条件概率密度

随机变量的独 立性

多元随机变量独立。

多几随机变重 的函数 高数型

為牧型 连续型 和的分布 高的分布 min, max 分不 例:产生单位球面内均匀分布的点

- 策略 1: 产生独立均匀分布 (X, Y, Z), 并留下满足 X² + Y² + Z² = 1 的点?
- 策略 2: 产生独立均匀分布 (X, Y, Z), 再归一化为 (X/R, Y/R, Z/R), 其中 $R = \sqrt{X^2 + Y^2 + Z^2}$?
- 策略 3: 产生独立均匀分布 (X, Y, Z), 并留下满足 $X^2 + Y^2 + Z^2 \le 1$ 的点,再归一化为 (X/R, Y/R, Z/R), 其中 $R = \sqrt{X^2 + Y^2 + Z^2}$?

概率统计

Xiao Yuan

例:产生单位球面内均匀分布的点

- 策略 1: 产生独立均匀分布 (X, Y, Z), 并留下满足 $X^2 + Y^2 + Z^2 = 1$ 的 5?
- 策略 2: 产生独立均匀分布 (X, Y, Z), 再归一化为 (X/R, Y/R, Z/R), 其中 $R = \sqrt{X^2 + Y^2 + Z^2}$?
- 策略 3: 产生独立均匀分布 (X, Y, Z), 并留下满足 $X^2 + Y^2 + Z^2 < 1$ 的点, 再归一化为 (X/R, Y/R, Z/R), 其中 $R = \sqrt{X^2 + Y^2 + Z^2}$?
- 策略 4: 产生单位球内均匀分布的点, 再归一化?

概率统计

Xiao Yuan

例:产生单位球面内均匀分布的点

- 策略 1: 产生独立均匀分布 (X, Y, Z), 并留下满足 $X^2 + Y^2 + Z^2 = 1$ 的点?
- 策略 2: 产生独立均匀分布 (X, Y, Z), 再归一化为 (X/R, Y/R, Z/R), $\sharp P R = \sqrt{X^2 + Y^2 + Z^2}$?
- 策略 3: 产生独立均匀分布 (X, Y, Z), 并留下满足 $X^2 + Y^2 + Z^2 < 1$ 的点, 再归一化为 (X/R, Y/R, Z/R), 其中 $R = \sqrt{X^2 + Y^2 + Z^2}$?
- 策略 4: 产生单位球内均匀分布的点, 再归一化?
- 策略 5: 考虑球坐标 (R, θ, φ), 我们有

$$\frac{1}{4\pi}dA = f(\theta,\phi)d\theta d\phi$$

因此 $f(\theta, \phi) = \sin(\phi)/4\pi$, 也即是 $f(\theta) = 1/2\pi$, $f(\phi) = \sin(\phi)/2$

概率统计

Xiao Yuan

一般定义

例:产生 d 维球内内或球面上均匀分布的点

概率统计

Xiao Yuan

例:产生 d 维球内内或球面上均匀分布的点

■ 球面:考虑独立同分布随机变量 Xi、概率密度为 $f(x_i) \sim N(0,1)$,则

$$f(\vec{x}) = f(x_1)f(x_2)\cdots f(x_d) = \frac{1}{(2\pi)^{d/2}}e^{-\frac{1}{2}|\vec{x}|^2}$$

因此 $f(\vec{x})$ 只与 $|\vec{x}|$ 相关与角度无关,因此归一化的 $Y_i = X_i/|\vec{X}|$ 为 d 维球面上均匀分布的点。

概率统计

Xiao Yuan

随 机 向 量
一般定义
高散型随机向量
边缘分布
条件分布
分布函数
进续型随机变量
边缘概率密度
条件概率密度

随机变量的独 立性

多元随机变量独立{ 随机变量集合独立{

多元随机变量 的函数

离散型 连续型 和的分布 商的分布 min, max 分² 例:产生 d 维球内内或球面上均匀分布的点

■ 球面:考虑独立同分布随机变量 X_i ,概率密度为 $f(x_i) \sim N(0,1)$,则

$$f(\vec{x}) = f(x_1)f(x_2)\cdots f(x_d) = \frac{1}{(2\pi)^{d/2}}e^{-\frac{1}{2}|\vec{x}|^2}$$

因此 $f(\vec{x})$ 只与 $|\vec{x}|$ 相关与角度无关,因此归一化的 $Y_i = X_i/|\vec{X}|$ 为 d 维球面上均匀分布的点。

■ 球内:记求内均匀的点为 Z_i ,则 $f_{\overline{Z}}(\vec{z}) \propto dV_d$ 。注意到 $dV_d = R^{d-1}dRdS_d$ 。因此,我们可以用 $U(0,1)^{1/d}$ 生成 R,同时有 $Z_i = Y_iR = U(0,1)^{1/d} \times X_i/|\vec{X}|$.