KOSHA GUIDE

H - 77 - 2012

국소진동 측정 및 평가지침

2012. 6.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 장재길

개정자 : 산업안전보건공단 장재길 개정자 : 산업안전보건공단 장재길

ㅇ 개정경과

- 2000년 6월 산업위생분야 기준제정위원회 심의
- 2000년 8월 총괄기준제정위원회 심의
- 2004년 11월 KOSHA Code 산업위생분야 제정위원회 심의
- 2004년 12월 KOSHA Code 총괄제정위원회 심의
- 2012년 5월 총괄 제정위원회 심의(개정, 법규개정조항 반영)

ㅇ 관련규격 및 자료

- ISO 5349-1: Mechanical vibration Measurement and evaluation for human exposure to hand-transmitted vibration, Part 1: General requirement, 2001
- ISO 5349-2: Mechanical vibration Measurement and evaluation for human exposure to hand-transmitted vibration, Part 2: Practical guidance for measurement at the workplace, 2001
- ANSI S3.34 1986: American national standard, Guide for the measurement and evaluation of human exposure to vibration transmitted to the hand, 1986
- ACGIH: Threshold limit values for chemical substances and physical agents & biological exposure indices, Hand-arm(segmental) vibration, 2004
- o 관련법규·규칙·고시 등
 - 산업안전보건기준에 관한 규칙 제3편(보건기준) 제4장(소음 및 진동에 의한 건강장해의 예방)

○ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보 건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6월 20일

제 정 자 : 한국산업안전보건공단 이사장

국소진동 측정 및 평가지침

1. 목적

이 지침은 산업안전보건기준에 관한 규칙 (이하 "안전보건규칙"이라 한다) 제3편(보건기준) 제4장(소음 및 진동에 의한 건강장해의 예방)의 규정에 의거 진동발생 기계·기구를 사용하는 작업에 종사하는 근로자의 건강장해 예방과 관련하여 실시하는 국소진동의 측정과 평가방법을 정함을 목적으로 한다.

2. 적용범위

이 지침은 진동발생 기계·기구를 사용할 때 손에 전달되는 주기적인 진동, 비주기적 간헐 진동 및 충격진동의 측정·평가에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "진동"이라 함은 기계, 기구, 시설 및 기타 물체의 사용으로 인하여 발생되는 강한 흔들림을 말한다.
 - (나) "진동원"이라 함은 진동을 발생시키는 기계·기구 등을 말한다.
 - (다) "국소진동"이라 함은 작업자의 손이나 팔로 전달되는 진동을 말한다.
 - (라) "변환기"라 함은 진동 신호를 전기 신호로 바꾸어주는 장치를 말한다.
 - (마) "가속도 실효값"라 함은 발생되는 진동의 최대 진폭에 대한 평균 제곱근을 말한다.

H - 77 - 2012

- (바) "3축 가중 가속도값"이라 함은 x, y, z 각 축에 대한 주파수 가중 가속도 실효 값을 제곱하여 더한 값의 제곱근을 말한다.
- (사) "1일 진동노출량"이라 함은 x, y, z 축에 대한 3축 가중 가속도 값을 8시간에 해당하는 진동에너지 양으로 환산한 것을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙에서 정하는 바에 따른다.

4. 국소진동 노출 측정·평가에 영향을 주는 요인

- (1) 국소진동의 측정 · 평가값에 영향을 주는 인자는 다음과 같다.
- (가) 진동의 주파수 스펙트럼
- (나) 진동의 크기
- (다) 작업일 당 노출시간
- (라) 작업일의 누적노출량
- (2) 개발된 표준 측정·평가 방법이 없으나 측정·평가 결과에 영향을 미치는 인자는 다음과 같다.
 - (가) 손에 전달되는 진동의 방향
 - (나) 작업방법과 작업의 숙련도
 - (다) 작업자의 연령, 신체조건 및 건강상태

- (라) 작업시간대 별 노출형태
- (마) 진동공구를 잡는 힘의 크기
- (바) 손, 팔 및 몸의 자세
- (사) 진동원의 형태와 조건
- (아) 진동에 노출되는 손의 면적과 위치
- (자) 기타 작업장의 온도 등 기후 조건, 혈액순환에 영향을 주는 개인 질환, 말초 혈액 순환에 영향을 주는 약물의 복용, 흡연, 소음·화학물질의 노출 등

5. 국소진동 측정준비

- 5.1 국소진동 측정대상 작업에 대한 정보 파악 국소진동을 측정하기 전에 다음사항을 파악한다.
 - (1) 진동원
 - (2) 진동원의 작동
 - (3) 진동 노출에 영향을 줄 수 있는 작업조건
 - (4) 진동 노출에 영향을 줄 수 있는 부속 공구나 부품
 - (5) 최고 진동발생 가능 작업 및 시간
 - (6) 각 작업별 잠재 유해 · 위험도

H - 77 - 2012

5.2 측정방법의 구분

국소진동의 측정방법은 작업형태 및 시간에 따라 다음의 네 가지로 구분한다.

(1) 연속작업에 대한 측정

- (가) 진동발생 작업시간이 연속적이고 길며 작업시간 동안 작업자의 신체가 진동 원에 지속적으로 접촉되어 있는 때에는 해당 작업의 모든 시간동안 측정한다.
- (나) 1일 진동 노출량을 측정하기 위해서는 노출 진동의 크기와 시간을 조사한다.
- (2) 간헐작업에 대한 장시간 측정
- (가) 진동발생 작업시간이 길고 발생되는 진동이 간헐적이어서 무진동 노출시간이 작업시간 사이에 짧게나마 있으나 작업자의 신체가 진동원의 표면에 지속적으로 접촉되어 있는 때에는 해당 작업의 모든 시간동안 측정한다. 이 경우 무진동 노출시간은 해당 작업시간의 일부로 본다.
- (나) 1일 진동 노출량을 측정하기 위해서는 노출진동의 크기와 시간을 조사한다. 이 경우 진동노출시간의 산정에는 무진동 노출시간도 포함한다.
- (3) 간헐작업에 대한 단시간 측정
 - (가) 진동발생 작업 시간이 짧고 간헐적이지만 무진동 시간동안 작업자의 신체가 진동원의 표면에서 떨어져 있거나 진동이 없는 다른 기계·기구 등에 접촉되는 때에는 진동발생 작업시간 동안만 측정한다.
 - (나) 측정시간이 지나치게 짧아 신뢰할 만한 결과값의 산출이 어려운 때에는 실제작업 조건과 유사한 상태에서 이루어지는 모의 진동노출을 통하여 측정하는 등 충분한 시간동안 측정이 이루어지도록 한다.
 - (다) 1일 진동 노출량을 측정하기 위해서는 노출 진동의 크기와 시간을 조사한다.

H - 77 - 2012

- (4) 단일 또는 반복 충격작업에 대한 측정
- (가) 충격진동이 발생하는 시간을 정하여 측정하되 측정시간은 무진동시간이 최소화 될 수 있도록 한다.
- (나) 1일 진동 노출량을 측정하기 위해서는 노출진동의 크기, 충격진동의 발생회수 및 측정한 충격진동의 회수를 산출한다.
- (다) 임팩트렌치 또는 리베팅해머의 사용 등과 같이 단일 또는 반복되는 충격진동에 작업자가 노출되는 경우로서 실 노출시간의 산출이 곤란하고 충격진동 회수의 산출만이 가능한 경우에 적용한다.

6. 국소진동의 측정

6.1 측정장비

- 6.1.1 측정장비의 보정과 점검
 - (1) 진동측정장비는 변환기, 증폭기, 지시계 및 기록계 등으로 구성된다.
 - (2) 국소진동의 측정에 사용되는 모든 장비는 측정 전·후에 적절히 가동하고 있는지를 점검한다. 또한 측정장비는 공인된 검인정기관에서 주기적으로 보정을 실시한다.

6.1.2 진동 변환기

국소진동의 측정에 사용하는 변환기는 다음의 조건에 적합한 것을 사용한다.

- (1) 국소진동의 측정에 사용되는 가속도계 등 변환기는 측정하고자 하는 국소진동 범위에 적합한 것이어야 하며 가속도값이 큰 충격진동을 측정하고자 하는 때에 는 특별히 설계된 변환기를 사용한다.
- (2) 측정에 사용하는 변환기는 작업의 방해를 최소화 할 수 있는 것을 사용한다.

H - 77 - 2012

- (3) 진동 변환기로서 가속도계를 사용하는 때에는 다음의 조건에 적합한 것을 사용한다.
- (가) 사용되는 가속도계의 공진 주파수는 30版이상이어야 한다.
- (나) 가속도계의 무게는 진동원 손잡이 등 무게의 5% 미만이어야 한다. 가속도계 등의 무게가 커서 진동측정에 영향을 줄 가능성이 있는 때에는 가속도계 등의 무게 와 동일한 무게를 진동원에 부착시킨 전·후의 측정결과를 비교하여 큰 차이가 있을 때에는 보다 가벼운 가속도계를 사용한다.
- (다) 측정대상 주파수인 6.3~1,250Hz (1/3 옥타브밴드 기준)의 주파수에서 충분한 감도를 가지면서 충격에 견딜 수 있는 가속도계를 사용한다.
- (라) 온·습도 등 환경조건이 측정 감도에 영향을 받지 않는 가속도계를 사용한다.

6.1.3 변환기의 부착위치 및 방향

(1) 국소진동 측정 위치는 <그림 1>에서와 같이 기본중심 좌표계 또는 생체역학 좌표 계를 중심으로 3개 직교 좌표축의 가속도값을 나타낼 수 있도록 한다.

--- 생체역학적좌표계

----기본 중심 좌표계

a) 손으로 잡는 위치(원기둥 막대를 손으로 잡는 것을 표준으로 함)

- b) 평평한 손바닥 위치(원을 손으로 누르는 것을 표준으로 함) <그림 1> 국소진동의 측정을 위한 3개 직교 좌표축
- (2) 3개 축에 대한 진동의 측정은 동시에 실시한다. 다만 동시 측정이 작업 등의 특성상 곤란한 때에는 한 개 또는 두 개의 축에 대한 측정을 실시 한 후 나머지 축들에 대한 측정을 연속적으로 실시할 수 있다. 이 경우 작업자의 진동에 대한 노출 조건이 유사하여야 한다.
- (3) 국소진동은 진동체의 표면으로서 진동원을 잡는 위치의 중심 부위에 가까운 곳에서 측정하고 변환기의 부착 위치를 기록한다.

6.1.4 변환기의 부착방법

- (1) 변환기는 단단하게 부착한다. 다만 견고한 부착이 어려운 때에는 특별히 고안된 어댑터 등을 사용한다.
- (2) 탄성체의 표면에 변환기를 부착하는 때에는 변환기가 부착되는 위치에서 해당 탄성체를 제거하거나 탄성체를 충분히 눌러서 탄성을 제거한 상태로 부착한다. 이 방법으로 탄성체에 부착이 불가능한 때에는 어댑터 등을 사용한다.
- (3) 진동변환기를 부착하는 때에는 변환기, 보조기구 등의 공진으로 인하여 그 진 동이 손으로 전달되지 않도록 주의한다.

H - 77 - 2012

- (4) 가속도계의 부착은 다음 중 한 가지 방법을 사용한다.
- (가) 나사를 사용한 부착
- (나) 접착제를 사용한 부착
- (다) 클램프를 사용한 부착
- (라) 손으로 잡을 수 있는 어댑터의 사용

6.2 국소진동 측정 단위

- (1) 국소진동에 대한 1차적 측정단위는 주파수가중 가속도 실효값(Root-mean-square) 으로 하며 단위는 m/s²으로 한다.
- (2) 가속도 실효값 산정을 위한 가속도값의 적분은 선형적분법을 사용하고 대표값을 사용하도록 적분시간을 선정한다.

6.3 측정 시간

- (1) 정상작업시간 동안의 측정
 - (가) 진동원이나 해당 작업에 대하여 대표적인 평균진동이 측정될 수 있도록 한다. 진 동원에 신체가 접촉되기 시작한 순간부터 측정을 시작하고 신체접촉이 끝나면 즉시 측정을 종료한다. 이 경우 측정시간에는 무진동 노출시간을 포함하고 가 능한 한 하루 중 수회 해당 진동원이나 작업에 대한 측정을 실시한다.
 - (나) 총 측정시간은 최소한 1분 이상 되어야 한다.
 - (다) 장시간 1회 측정보다는 단시간 수회 측정이 바람직하므로 해당 작업에 대하여 최소한 3회 이상 측정을 실시한다.
 - (라) 8초미만의 단시간 측정은 특히 저주파 진동에 대한 신뢰성을 떨어뜨리게 되므로 피하여야 하며 불가피한 경우에는 총 측정시간이 1분 이상이 될 수 있도록 4회 이상 측정을 실시한다.

H - 77 - 2012

- (2) 모의 작업을 통한 측정
- (가) 짧은 작업을 반복하면서 진동원을 빈번히 들고 놓은 경우 등 정상작업이 이루어 지는 동안 진동측정이 불가능하거나 어려운 경우에는 모의 작업을 통한 측정 방법을 사용한다.
- (나) 측정을 실시하는 모의 작업은 가능한 한 중단 없이 실제 작업시간보다 충분히 오랫동안 실시한다.

6.4 1일 진동 노출시간의 측정

1일 진동 노출량을 산정하기 위해서는 작업자의 1일 진동 실 노출시간을 산정하되다음의 정보를 근거로 한다.

- (1) 작업시간 중의 실 노출시간 측정
- (가) 초시계의 사용
- (나) 진동원과 연결된 자료 저장창치의 사용
- (다) 비디오촬영 결과의 분석
- (라) 작업자의 행동분석 자료
- (2) 작업율(1일 작업시간 당 작업주기)에 대한 정보
- (가) 작업율 정보는 작업을 종료 할 때까지의 생산제품의 양 등을 근거로 하여 산정한다.
- (나) 1일 진동노출시간은 주기 당 노출시간과 일간 총 작업주기 수를 곱하여 산정한다.
- (다) 진동원의 사용시간을 작업자의 기억에 의존하는 때에는 사용시간의 과다산정 가능성에 주의한다.

6.5 진동원을 손으로 잡는 힘

- (1) 국소진동에 대한 작업자의 노출은 진동원을 잡는 힘(Gripping force)에 좌우되므로 작업 중 진동원을 잡는 힘이 대표적인 때에 측정을 실시한다.
- (2) 손과 진동원을 잡는 위치 사이의 잡는 힘을 측정하고 작업자의 자세와 개인적인 작업조건도 함께 기록한다.

6.6 주파수의 보정

- (1) 국소진동의 인체에 대한 영향은 주파수에 따라 달라지므로 다음 중 한 가지 방법으로 주파수 보정을 실시한다.
- (가) 아날로그형 주파수 필터의 사용
- (나) 디지탈형 주파수 필터의 사용
- (다) 주파수 보정값의 사용
- (2) 1/3옥타브밴드 중심 주파수에 대한 주파수 보정값은 <표 2>와 같으며 계산식은 식(1) 과 같다.

$$a_{hw} = \sqrt{\sum_{i} (W_{hi} a_{hi})^{2}} \cdots (1)$$

여기서, a_{hw} : 가속도 실효값 (m/s^2)

 W_{ii} : i번째 중심주파수에 대한 가중값

 a_{hi} : i번째 중심주파수에 대한 가속도 실효값 (m/s^2)

<표 2> 1/3옥타브밴드 값에 적용하는 주파수 가중값

주파수 번호	공칭 주파수(Hz)	가중치(W _{hi})	
8	6.3	0.727	
9	8	0.873	
10	10	0.951	
11	12.5	0.958	
12	16	0.896	
13	20	0.782	
14	25	0.647	
15	31.5	0.519	
16	40	0.411	
17	50	0.324	
18	63	0.256	
19	80	0.202	
20	100	0.160	
21	125	0.127	
22	160	0.101	
23	200	0.0799	
24	250	0.0634	
25	315	0.0503	
26	400	0.0398	
27	500	0,0314	
28	630	0.0245	
29	800	0.0186	
30	1000	0.0135	
31	1250	0.00894	

7. 국소진동의 평가

7.1 3축 가중 가속도값의 계산

- (1) 대부분의 진동원은 3개 직교축 모두에 대한 진동을 발생시키고 모든 축이 동일 하게 인체에 영향을 줄 수 있으므로 x, y 및 z축에 대한 주파수가중 가속도 실효 값을 각각 기록한다.
- (2) 국소진동의 노출평가에는 3개 직교축의 진동 값을 고려한 3개 축의 가속도 실효 값(Root-sum-of-square)을 적용하고 3축 가중 가속도값의 계산은 식(2)와 같다.

여기서, a_{hv} : 3축 가중 가속도 값($\mathrm{m/s^2}$)

 a_{hwx} : x축에 대한 가속도 실효값(m/s²)

 a_{huu} : y축에 대한 가속도 실효값($\mathrm{m/s}^2$)

 a_{hwz} : z축에 대한 가속도 실효값(m/s²)

(3) 3개 축에 대한 측정이 곤란하여 1개 또는 2개축에 대한 측정만이 이루어진 경우에는 최대진동 노출 축을 반드시 포함시켜야 하며 측정결과값에 $1.0\sim1.7$ 에 해당하는 가중값을 곱하여 3축 가중 가속도값을 산출하고 보고서에 측정결과와 함께 가중값과 선정사유를 기재한다.

7.2 1일 노출량 계산

(1) 국소진동 노출 평가는 노출진동의 크기와 시간을 고려한 8시간 등가 에너지 값인 1일 진동 노출량으로 하며 이 값의 계산은 식(3)과 같다.

$$A(8) = a_{hw} \sqrt{\frac{T}{T_0}} \qquad (3)$$

H - 77 - 2012

여기서, A(8): 1일 진동 노출량

 a_{hw} : 가속도 실효값(m/s²)

T : 1일 진동 노출시간

T。: 8시간 해당 기준시간(28,800초)

(2) 작업자가 여러 개의 서로 다른 가속도의 국소진동에 노출되는 경우의 1일 진동 노출량은 식(4)에 따라 구한다.

$$A(8) = \sqrt{\frac{1}{T} \sum_{i=1}^{n} (a_{hvi})^{2} T_{i}}$$
 (4)

여기서, a_{hvi} : i작업에 대한 가속도 실효값($\mathrm{m/s^2}$)

n : 1일 총 진동 작업수

 T_i : i 작업의 지속시간

7.4 국소진동에 대한 1일 노출량과 인체영향과의 관계

(1) 국소진동에 의한 인체영항은 10% 작업자에게서의 수지백증 발생가능 평균 진동 노출기간과 1일 진동 노출량의 관계로 나타낼 수 있다. 두 인자간의 관계는 식 (5)와 같다. 이 식에 의한 진동 노출 작업자군의 평균 진동노출기간은 작업자군에 대한 평균의 개념이므로 개인에 대하여는 적용하지 않는다.

$$Dy = 31.8 [A(8)]^{-1.06}$$
(5)

여기서, $D_{\!\scriptscriptstyle u}$: 진동 노출 작업자군의 평균 진동노출기간(년)

A(8): 1일 진동 노출량

(2) 식(5)에서 진동 노출 작업자군의 평균 진동노출기간과 1일 진동 노출량과의 관계는 <표 3> 및 <그림 2>와 같이 나타낼 수 있다.

<표 3> 1일 진동 노출량과 작업자의 10% 수지백증 발생가능 노출기간과의 관계

노출기간(년)	1	2	4	8
1일 진동노출량(m/s²)	26	14	7	3.7

<그림 2> 노출작업자의 10% 수지백증 발생가능 기간과 진동노출량과의 관계

7.5 측정・평가 결과의 보고

국소진동의 측정ㆍ평가결과 보고서에는 다음 사항을 포함한다.

- (1) 측정 대상 회사명, 측정일, 측정자
- (2) 측정대상 작업자 성명 및 작업 공정명
- (3) 온도, 습도, 소음 등의 작업장 환경조건
- (4) 작업명칭, 작업 대상물, 작업내용 등의 측정대상 작업의 조건
- (5) 진동원의 명칭, 형식, 동력, 회전수, 토크 및 부속공구
- (6) 측정 장비의 제조사, 형식 및 모델
- (7) 변환기의 보정방법 및 보정일
- (8) 변환기의 무게, 부착위치 및 부착방법
- (9) 각 작업별 및 각 축별 가속도 실효값
- (10) 각 작업별 손과 팔의 자세, 손목의 각도, 팔꿈치와 어깨의 각도 등 작업자의 진동 작업관련 작업자세
- (11) 각 작업별 3축 가중 가속도값
- (12) 1일 진동 노출량
- (13) 10% 작업자에게서의 수지백증 발생가능 평균진동 노출기간

8. 국소진동에 대한 1일 노출량 권고기준

8시간을 기준으로한 일일 진동 노출량은 5.0%를 초과하지 않도록 한다.