

## 🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE181116603

# FCC REPORT

**Applicant:** Interglobe Connection Corp

Address of Applicant: 8228 NW 30th Terrace. Doral, Miami, FL 33122

**Equipment Under Test (EUT)** 

Product Name: Mobile Phone

Model No.: EKO Star 6.0 G65

Trade mark: EKO

FCC ID: 2AC7IEKONG65

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Nov., 2018

**Date of Test:** 03 Dec.,2018 to 02 Jan., 2019

Date of report issued: 03 Jan., 2019

Test Result: PASS\*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





## 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 03 Jan., 2019 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Tested by: Over Men Date: 03 Jan., 2019

Test Engineer

Reviewed by: 03 Jan., 2019

Project Engineer



## 3 Contents

|   |         |                                | Page |
|---|---------|--------------------------------|------|
| 1 | COV     | /ER PAGE                       | 1    |
| 2 | VERSION |                                | 2    |
| 3 | CON     | ITENTS                         | 3    |
| 4 |         | T SUMMARY                      |      |
| 5 |         | IERAL INFORMATION              |      |
|   | 5.1     | CLIENT INFORMATION             | 5    |
|   | 5.2     | GENERAL DESCRIPTION OF E.U.T.  | _    |
|   | 5.3     | TEST ENVIRONMENT AND TEST MODE |      |
|   | 5.4     | DESCRIPTION OF SUPPORT UNITS   | 6    |
|   | 5.5     | MEASUREMENT UNCERTAINTY        | 6    |
|   | 5.6     | LABORATORY FACILITY            | 6    |
|   | 5.7     | LABORATORY LOCATION            | 7    |
|   | 5.8     | TEST INSTRUMENTS LIST          | 7    |
| 6 | TES     | T RESULTS AND MEASUREMENT DATA | 8    |
|   | 6.1     | ANTENNA REQUIREMENT            |      |
|   | 6.2     | CONDUCTED EMISSION             | 9    |
|   | 6.3     | CONDUCTED OUTPUT POWER         | 12   |
|   | 6.4     | OCCUPY BANDWIDTH               | _    |
|   | 6.5     | Power Spectral Density         |      |
|   | 6.6     | BAND EDGE                      |      |
|   | 6.6.1   |                                |      |
|   | 6.6.2   |                                |      |
|   | 6.7     | Spurious Emission              |      |
|   | 6.7.1   |                                |      |
|   | 6.7.2   | 2 Radiated Emission Method     | 46   |
| 7 | TES     | T SETUP PHOTO                  | 54   |
| 8 | FUT     | CONSTRUCTIONAL DETAILS         | 55   |





## 4 Test Summary

| Test Items                                    | Section in CFR 47   | Result |
|-----------------------------------------------|---------------------|--------|
| Antenna requirement                           | 15.203 & 15.247 (c) | Pass   |
| AC Power Line Conducted Emission              | 15.207              | Pass   |
| Conducted Peak Output Power                   | 15.247 (b)(3)       | Pass   |
| 6dB Emission Bandwidth 99% Occupied Bandwidth | 15.247 (a)(2)       | Pass   |
| Power Spectral Density                        | 15.247 (e)          | Pass   |
| Band Edge                                     | 15.247 (d)          | Pass   |
| Spurious Emission                             | 15.205 & 15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.

N/A: N/A: Not Applicable.



## 5 General Information

#### 5.1 Client Information

| Applicant:                                      | Interglobe Connection Corp                           |  |
|-------------------------------------------------|------------------------------------------------------|--|
| Address:                                        | 8228 NW 30th Terrace. Doral, Miami, FL 33122         |  |
| Manufacturer/Factory: INTERGLOBE CONNECTION LTD |                                                      |  |
| Address:                                        | RM 1101 11F SAN TOI BLDG 139 CONNAUGHT RD CENTRAL HK |  |

## 5.2 General Description of E.U.T.

| Product Name:              | Mobile Phone                                                                  |
|----------------------------|-------------------------------------------------------------------------------|
| Model No.:                 | EKO Star 6.0 G65                                                              |
| Operation Frequency:       | 2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))                                |
| Operation requestoy.       | 2422MHz~2452MHz (802.11n(H40))                                                |
| Channel numbers:           | 11 for 802.11b/802.11g/802.11(H20)                                            |
| Chambon nambore.           | 7 for 802.11n(H40)                                                            |
| Channel separation:        | 5MHz                                                                          |
| Modulation technology:     | Direct Sequence Spread Spectrum (DSSS)                                        |
| (IEEE 802.11b)             | Direct dequence opiead opecitum (Dodd)                                        |
| Modulation technology:     | Orthogonal Frequency Division Multiplexing(OFDM)                              |
| (IEEE 802.11g/802.11n)     | Orthogonal Frequency Division Waltiplexing(Or Divi)                           |
| Data speed (IEEE 802.11b): | 1Mbps, 2Mbps, 5.5Mbps, 11Mbps                                                 |
| Data speed (IEEE 802.11g): | 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps                  |
| Data speed (IEEE 802.11n): | Up to 150Mbps                                                                 |
| Antenna Type:              | External Antenna                                                              |
| Antenna gain:              | 1.2dBi                                                                        |
| Power supply:              | Rechargeable Li-ion Battery DC3.85V-3150mAh                                   |
|                            | Model: Ara 5.7 B5719                                                          |
| AC adapter:                | Input: AC100-240V, 50/60Hz, 0.15A                                             |
|                            | Output: DC 5.0V, 1000mA                                                       |
| Test Sample Condition:     | The test samples were provided in good working order with no visible defects. |

| Operation Frequency each of channel for 802.11b/g/n(H20) |           |         |           |         |           |         |           |
|----------------------------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                                                  | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                                        | 2412MHz   | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |
| 2                                                        | 2417MHz   | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |
| 3                                                        | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

#### Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

**Report No: CCISE181116603** 

#### 5.3 Test environment and test mode

| Operating Environment: |           |  |  |  |
|------------------------|-----------|--|--|--|
| Temperature:           | 24.0 °C   |  |  |  |
| Humidity:              | 54 % RH   |  |  |  |
| Atmospheric Pressure:  | 1010 mbar |  |  |  |
| Test mode:             | ' '       |  |  |  |

Transmitting mode Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

| Per-scan all kind of data rate, the follow list were the worst case. |          |  |  |  |
|----------------------------------------------------------------------|----------|--|--|--|
| Mode Data rate                                                       |          |  |  |  |
| 802.11b                                                              | 1Mbps    |  |  |  |
| 802.11g                                                              | 6Mbps    |  |  |  |
| 802.11n(H20)                                                         | 6.5Mbps  |  |  |  |
| 802.11n(H40)                                                         | 13.5Mbps |  |  |  |

## 5.4 Description of Support Units

The EUT has been tested as an independent unit.

## 5.5 Measurement Uncertainty

| Parameters                          | Expanded Uncertainty |
|-------------------------------------|----------------------|
| Conducted Emission (9kHz ~ 30MHz)   | ±2.22 dB (k=2)       |
| Radiated Emission (9kHz ~ 30MHz)    | ±2.76 dB (k=2)       |
| Radiated Emission (30MHz ~ 1000MHz) | ±4.28 dB (k=2)       |
| Radiated Emission (1GHz ~ 18GHz)    | ±5.72 dB (k=2)       |
| Radiated Emission (18GHz ~ 40GHz)   | ±2.88 dB (k=2)       |

## 5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

#### IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

#### A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <a href="https://portal.a2la.org/scopepdf/4346-01.pdf">https://portal.a2la.org/scopepdf/4346-01.pdf</a>

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



## 5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

#### 5.8 Test Instruments list

| Radiated Emission: |                 |               |             |                         |                             |
|--------------------|-----------------|---------------|-------------|-------------------------|-----------------------------|
| Test Equipment     | Manufacturer    | Model No.     | Serial No.  | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| 3m SAC             | SAEMC           | 9m*6m*6m      | 966         | 07-22-2017              | 07-21-2020                  |
| Loop Antenna       | SCHWARZBECK     | FMZB1519B     | 00044       | 03-16-2018              | 03-15-2019                  |
| BiConiLog Antenna  | SCHWARZBECK     | VULB9163      | 497         | 03-16-2018              | 03-15-2019                  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D     | 916         | 03-16-2018              | 03-15-2019                  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D     | 1805        | 06-22-2017              | 06-21-2020                  |
| Horn Antenna       | SCHWARZBECK     | BBHA 9170     | BBHA9170582 | 11-21-2018              | 11-20-2019                  |
| EMI Test Software  | AUDIX           | E3            | V           | Version: 6.110919b      |                             |
| Pre-amplifier      | HP              | 8447D         | 2944A09358  | 03-07-2018              | 03-06-2019                  |
| Pre-amplifier      | CD              | PAP-1G18      | 11804       | 03-07-2018              | 03-06-2019                  |
| Spectrum analyzer  | Rohde & Schwarz | FSP30         | 101454      | 03-07-2018              | 03-06-2019                  |
| Spectrum analyzer  | Rohde & Schwarz | FSP40         | 100363      | 11-21-2018              | 11-20-2019                  |
| EMI Test Receiver  | Rohde & Schwarz | ESRP7         | 101070      | 03-07-2018              | 03-06-2019                  |
| Cable              | ZDECL           | Z108-NJ-NJ-81 | 1608458     | 03-07-2018              | 03-06-2019                  |
| Cable              | MICRO-COAX      | MFR64639      | K10742-5    | 03-07-2018              | 03-06-2019                  |
| Cable              | SUHNER          | SUCOFLEX100   | 58193/4PE   | 03-07-2018              | 03-06-2019                  |
| RF Switch Unit     | MWRFTEST        | MW200         | N/A         | N/A                     | N/A                         |
| Test Software      | MWRFTEST        | MTS8200       |             | Version: 2.0.0.0        |                             |

| Conducted Emission: |                 |            |                    |                         |                             |  |
|---------------------|-----------------|------------|--------------------|-------------------------|-----------------------------|--|
| Test Equipment      | Manufacturer    | Model No.  | Serial No.         | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| EMI Test Receiver   | Rohde & Schwarz | ESCI       | 101189             | 03-07-2018              | 03-06-2019                  |  |
| Pulse Limiter       | SCHWARZBECK     | OSRAM 2306 | 9731               | 03-07-2018              | 03-06-2019                  |  |
| LISN                | CHASE           | MN2050D    | 1447               | 03-19-2018              | 03-18-2019                  |  |
| LISN                | Rohde & Schwarz | ESH3-Z5    | 8438621/010        | 07-21-2018              | 07-20-2019                  |  |
| Cable               | HP              | 10503A     | N/A                | 03-07-2018              | 03-06-2019                  |  |
| EMI Test Software   | AUDIX           | E3         | Version: 6.110919b |                         |                             |  |



#### 6 Test results and Measurement Data

### 6.1 Antenna requirement

## Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### E.U.T Antenna:

The WiFi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.2 dBi.



## 6.2 Conducted Emission

| Test Requirement:     | FCC Part 15 C Section 1                                                                                                                                                 | FCC Part 15 C Section 15.207                                                                                                                        |                  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
| Test Method:          | ANSI C63.10: 2013                                                                                                                                                       | ANSI C63.10: 2013                                                                                                                                   |                  |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                       | 150 kHz to 30 MHz                                                                                                                                   |                  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                 |                                                                                                                                                     |                  |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 k                                                                                                                                                     | Hz                                                                                                                                                  |                  |  |  |
| Limit:                | Frequency range                                                                                                                                                         | Limit (                                                                                                                                             | dBuV)            |  |  |
| Limit.                | (MHz)                                                                                                                                                                   | Quasi-peak                                                                                                                                          | Average          |  |  |
|                       | 0.15-0.5                                                                                                                                                                | 66 to 56*                                                                                                                                           | 56 to 46*        |  |  |
|                       | 0.5-5                                                                                                                                                                   | 56                                                                                                                                                  | 46               |  |  |
|                       | 5-30                                                                                                                                                                    | 60                                                                                                                                                  | 50               |  |  |
|                       | * Decreases with the log                                                                                                                                                | arithm of the frequency.                                                                                                                            |                  |  |  |
| Test procedure        | line impedance stab 50ohm/50uH couplin 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. li interference. In order | a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). |                  |  |  |
| Test setup:           | AUX Equipment  Test table/Insula  Remarkc E.U.T. Equipment Under LISN Line Impedence St                                                                                 | E.U.T  EMI Receiver                                                                                                                                 | ilter — AC power |  |  |
|                       | Test table height=0.8m                                                                                                                                                  | asmedion incuron                                                                                                                                    |                  |  |  |
| Test Instruments:     | Refer to section 5.8 for details                                                                                                                                        |                                                                                                                                                     |                  |  |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                        |                                                                                                                                                     |                  |  |  |
| Test results:         | Passed                                                                                                                                                                  |                                                                                                                                                     |                  |  |  |



#### **Measurement Data:**

| Product name:   | Mobile Phone     | Product model: | EKO Star 6.0 G65      |
|-----------------|------------------|----------------|-----------------------|
| Test by:        | Mike             | Test mode:     | Wi-Fi Tx mode         |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Line                  |
| Test voltage:   | AC 120 V/60 Hz   | Environment:   | Temp: 22.5℃ Huni: 55% |



|             | Freq   | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------|--------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|             | MHz    | dBu∇          | <u>dB</u>      |               | dBu₹  | —dBu∀         | <u>ab</u>     |         |
| 1           | 0.182  | 34.43         | 0.73           | 10.77         | 45.93 | 64.42         | -18.49        | QP      |
| 2           | 0.186  | 14.59         | 0.73           | 10.76         | 26.08 | 54.20         | -28.12        | Average |
| 2           | 0.502  | 28.37         | 0.76           | 10.76         | 39.89 | 56.00         | -16.11        | QP      |
| 4<br>5<br>6 | 0.541  | 14.95         | 0.76           | 10.76         | 26.47 | 46.00         | -19.53        | Average |
| 5           | 1.065  | 9.73          | 0.78           | 10.88         | 21.39 | 46.00         | -24.61        | Average |
| 6           | 1.117  | 28.08         | 0.78           | 10.88         | 39.74 | 56.00         | -16.26        | QP      |
| 7           | 2.461  | 24.43         | 0.78           | 10.94         | 36.15 | 56.00         | -19.85        | QP      |
| 8           | 2.594  | 10.11         | 0.78           | 10.93         | 21.82 | 46.00         | -24.18        | Average |
| 9           | 4.647  | 28.29         | 0.76           | 10.86         | 39.91 | 56.00         | -16.09        | QP      |
| 10          | 4.874  | 13.38         | 0.76           | 10.85         | 24.99 | 46.00         | -21.01        | Average |
| 11          | 17.849 | 28.32         | 0.70           | 10.92         | 39.94 |               | -20.06        |         |
| 12          | 17.849 | 12.18         | 0.70           | 10.92         | 23.80 | 50.00         | -26.20        | Average |

#### Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.



| Product name:                                                                              | Mobile Phone                                                                                                                                                                                                                                 | Product model:                                                                                                                      | EKO Star 6.0 G65                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test by:                                                                                   | Mike                                                                                                                                                                                                                                         | Test mode:                                                                                                                          | Wi-Fi Tx mode                                                                                                                                                                                                                         |
| Test frequency:                                                                            | 150 kHz ~ 30 MHz                                                                                                                                                                                                                             | Phase:                                                                                                                              | Neutral                                                                                                                                                                                                                               |
| Test voltage:                                                                              | AC 120 V/60 Hz                                                                                                                                                                                                                               | Environment:                                                                                                                        | Temp: 22.5℃ Huni: 55%                                                                                                                                                                                                                 |
| 80 Level (dBuV) 70 60 50 40 20 10 0.15 .2 Trace: 3                                         | .5 1  Read LISN 1 Level Factor                                                                                                                                                                                                               |                                                                                                                                     | FCC PART15 B QP FCC PART15 B AV  9 11 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                             |
| MH2                                                                                        | dBuV dB                                                                                                                                                                                                                                      | dB dBu∀                                                                                                                             | dBu∀ dB                                                                                                                                                                                                                               |
| 1 0.182 2 0.186 3 0.497 4 0.502 5 0.979 6 1.100 7 2.213 8 2.213 9 4.622 10 4.874 11 17.849 | 6     20.12     0.66       7     24.95     0.61       2     33.40     0.61       9     29.86     0.67       0     19.39     0.67       3     27.00     0.67       3     15.52     0.67       2     31.39     0.70       1     16.79     0.70 | 10.76 31.54<br>10.76 36.32<br>10.76 44.77<br>10.86 41.39<br>10.88 30.94<br>10.95 38.62<br>10.95 27.14<br>10.86 42.95<br>10.85 28.34 | 64.42 -20.78 QP<br>54.20 -22.66 Average<br>46.05 -9.73 Average<br>56.00 -11.23 QP<br>56.00 -14.61 QP<br>46.00 -15.06 Average<br>56.00 -17.38 QP<br>46.00 -18.86 Average<br>56.00 -13.05 QP<br>46.00 -17.66 Average<br>60.00 -21.92 QP |

#### Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.



## **6.3 Conducted Output Power**

| Test Requirement: | FCC Part 15 C Section 15.247 (b)(3)                                   |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and KDB 558074                                       |
| Limit:            | 30dBm                                                                 |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.8 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Passed                                                                |

#### **Measurement Data:**

| Test CH | Max     | ximum Conducte | d Output Power (d | Bm)          | Limit(dBm)  | Result |
|---------|---------|----------------|-------------------|--------------|-------------|--------|
| Test CH | 802.11b | 802.11g        | 802.11n(H20)      | 802.11n(H40) | Limit(abin) | Result |
| Lowest  | 14.64   | 12.39          | 11.94             | 11.19        |             |        |
| Middle  | 14.49   | 13.67          | 13.68             | 11.44        | 30.00       | Pass   |
| Highest | 14.26   | 13.97          | 13.28             | 11.31        |             |        |



#### Test plot as follows:









## 6.4 Occupy Bandwidth

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(2)                                   |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and KDB 558074                                       |
| Limit:            | >500kHz                                                               |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.8 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Passed                                                                |

#### **Measurement Data:**

| Test CH |         | 6dB Emission B | on Bandwidth (MHz) Limit(kHz) |              | Result      |        |
|---------|---------|----------------|-------------------------------|--------------|-------------|--------|
| Test CH | 802.11b | 802.11g        | 802.11n(H20)                  | 802.11n(H40) | LIIIII(KHZ) | Result |
| Lowest  | 9.28    | 15.68          | 16.32                         | 35.52        |             |        |
| Middle  | 10.24   | 15.28          | 15.28                         | 35.52        | >500        | Pass   |
| Highest | 10.24   | 15.28          | 15.60                         | 35.52        |             |        |
| Test CH |         | 99% Occupy Ba  | Limit/kH=\                    | Result       |             |        |
| Test CH | 802.11b | 802.11g        | 802.11n(H20)                  | 802.11n(H40) | Limit(kHz)  | Result |
| Lowest  | 12.72   | 16.48          | 17.60                         | 35.84        |             |        |
| Middle  | 12.72   | 16.48          | 17.68                         | 35.84        | N/A         | N/A    |
| Highest | 13.04   | 16.56          | 17.68                         | 35.84        |             |        |



#### Test plot as follows:

















## 6.5 Power Spectral Density

| Test Requirement: | FCC Part 15 C Section 15.247 (e)                                      |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and KDB 558074                                       |
| Limit:            | 8dBm                                                                  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.8 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Passed                                                                |

#### **Measurement Data:**

| Toot CU |         | Power Spectra | al Density (dBm) |              | Limit(dDm) | Dogult |
|---------|---------|---------------|------------------|--------------|------------|--------|
| Test CH | 802.11b | 802.11g       | 802.11n(H20)     | 802.11n(H40) | Limit(dBm) | Result |
| Lowest  | 5.30    | 0.26          | 0.21             | -4.05        |            |        |
| Middle  | 5.42    | 1.47          | 1.87             | -3.90        | 8.00       | Pass   |
| Highest | 4.89    | 1.76          | 1.76             | -4.50        |            |        |



#### Test plot as follows:









## 6.6 Band Edge

## 6.6.1 Conducted Emission Method

| 0.0.1 Odiladeted Eliliogidii |                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:            | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |
| Test Method:                 | ANSI C63.10:2013 and KDB 558074                                                                                                                                                                                                                                                                                                                                                         |
| Limit:                       | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |
| Test setup:                  | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |
| Test Instruments:            | Refer to section 5.8 for details                                                                                                                                                                                                                                                                                                                                                        |
| Test mode:                   | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |
| Test results:                | Passed                                                                                                                                                                                                                                                                                                                                                                                  |



#### Test plot as follows:









#### 6.6.2 Radiated Emission Method

| 0.0.2 | Radiated Emission Me  | etnou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                             |                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                              |
|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Test Requirement:     | FCC Part 15 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Section '                                                                                                                                                                                                                                   | 15.20                                                                                        | 9 and 15.205                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                              |
|       | Test Method:          | ANSI C63.10: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2013 and                                                                                                                                                                                                                                    | KDE                                                                                          | 3 558074                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                              |
|       | Test Frequency Range: | 2.3GHz to 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GHz                                                                                                                                                                                                                                         |                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                              |
|       | Test Distance:        | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                             |                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                              |
|       | Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detec                                                                                                                                                                                                                                       | tor                                                                                          | RBW                                                                                                                                                                                                                               | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ΒW                                                                                                                               | Remark                                                                                                                                                                       |
|       | •                     | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pea                                                                                                                                                                                                                                         |                                                                                              | 1MHz                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ИНz                                                                                                                              | Peak Value                                                                                                                                                                   |
|       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RMS                                                                                                                                                                                                                                         |                                                                                              | 1MHz                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MHz<br>T                                                                                                                         | Average Value                                                                                                                                                                |
|       | Limit:                | Frequenc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                             | Lin                                                                                          | nit (dBuV/m @<br>54.00                                                                                                                                                                                                            | 3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Δν                                                                                                                               | Remark<br>verage Value                                                                                                                                                       |
|       |                       | Above 1G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hz                                                                                                                                                                                                                                          |                                                                                              | 74.00                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | Peak Value                                                                                                                                                                   |
|       | Test Procedure:       | the ground to determing to determing to determing the second seco | d at a 3 m<br>ne the po<br>was set 3<br>which was<br>na height<br>d to deter<br>ontal and<br>measurer<br>suspected<br>then the a<br>d the rota<br>maximun<br>eceiver sy<br>Bandwidt<br>sision leve<br>becified, to<br>would be<br>margin we | eter esition metes motoris varine vertinent. I emis table n reavistem h with hen te repwould | camber. The to of the highest ers away from to unted on the to aried from one the maximum cal polarization assion, the EUT na was turned from the was turned from the example of the EUT in peak esting could be orted. Otherwise | able value interpretation and the interpretat | vas rota tion. erference variable to four of the fi he antel errange ghts fror degrees etect Ful de. e was 1 ped ance e emission | meters above ield strength. nna are set to d to its worst in 1 meter to 4 is to 360 degrees inction and ddB lower than if the peak values ons that did not sing peak, quasi- |
|       | Test setup:           | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AE E (Turntabl                                                                                                                                                                                                                              | · .                                                                                          | Hor 3m Ground Reference Plane                                                                                                                                                                                                     | n Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Antenna Tox                                                                                                                      | wer                                                                                                                                                                          |
|       | Test Instruments:     | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n 5.8 for c                                                                                                                                                                                                                                 | detail                                                                                       | S                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                              |
|       | Test mode:            | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n 5.3 for o                                                                                                                                                                                                                                 | detail                                                                                       | S                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                              |
|       | Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                             |                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                              |
|       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                              |





#### 802.11b mode:

| oduc  | t Name:        | Mobile Ph              | none             |                             | Pi                     | roduct Mo            | del:                | EKO Star 6      | .0 G65       |
|-------|----------------|------------------------|------------------|-----------------------------|------------------------|----------------------|---------------------|-----------------|--------------|
| st By | <b>/</b> :     | Mike                   |                  |                             | Te                     | Test mode:           |                     | 802.11b Tx mode |              |
| st Ch | nannel:        | Lowest ch              | nannel           |                             | Po                     | Polarization:        |                     | Vertical        |              |
| st Vo | oltage:        | AC 120/6               | 0Hz              |                             | Eı                     | nvironmen            | t:                  | Temp: 24°C      | Huni: 57%    |
| 1     | ovel (dDu\//m) |                        |                  |                             | ·                      |                      |                     |                 |              |
| 110   | evel (dBuV/m)  |                        |                  |                             |                        |                      |                     |                 | 1            |
| 100   |                |                        | 1                |                             |                        |                      |                     |                 | ~~           |
|       |                |                        |                  |                             |                        |                      |                     | ſ               |              |
| 80    |                |                        |                  |                             |                        |                      |                     | FQC             | PART 15 (PK) |
|       |                |                        |                  |                             |                        |                      |                     | 1               |              |
| 60    |                |                        |                  |                             |                        |                      |                     | FCC             | PART 15 (AV) |
| 7     | Mary Mayor     | maya                   | ~~~              | Way way                     | mm                     | non                  | mym                 |                 |              |
| 40    | 9 3 4 5 7      | <u> </u>               |                  | 13                          |                        |                      |                     |                 |              |
|       |                |                        |                  |                             |                        |                      |                     |                 |              |
|       |                |                        |                  |                             |                        |                      |                     |                 |              |
| 20    |                |                        |                  |                             |                        |                      |                     |                 |              |
| 20    |                |                        |                  |                             |                        |                      |                     |                 |              |
| 0     | 240 2220       |                        | 22               | 50                          |                        |                      |                     |                 | 242          |
| 0     | 2310 2320      |                        | 23               | 50<br>Fred                  | quency (MH             | iz)                  |                     |                 | 242          |
| 0     | T.T. (7)       | ReadA                  | ntenna           | Fred<br>Cable               | Preamp                 |                      | Limit               |                 |              |
| 0     | T.T. (7)       | ReadA<br>Level         | ntenna           | Fred<br>Cable               | Preamp                 |                      |                     | Over<br>Limit   |              |
| 0     | T.T. (7)       | ReadA<br>Level<br>dBuV | ntenna           | Fred<br>Cable               | Preamp<br>Factor       | Level                |                     | Limit           |              |
| 0     | Freq           | Level                  | ntenna<br>Factor | Fred<br>Cable<br>Loss<br>dB | Preamp<br>Factor<br>dB | Level  dBuV/m  50.05 | Line  dBuV/m  74.00 | Limit           | Remark<br>   |

#### Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| roduc       | t Name:            | Mobile Ph | ione             |                             | P                      | roduct Mo                  | del:           | EKO Star 6.0 G65    |              |  |
|-------------|--------------------|-----------|------------------|-----------------------------|------------------------|----------------------------|----------------|---------------------|--------------|--|
| Test By     | <i>/</i> :         | Mike      |                  | Test mode: 802.11b Tx mode  |                        | Test mode: 802.11b Tx mode |                | x mode              |              |  |
| Test Ch     | nannel:            | Lowest ch | nannel           |                             | P                      | olarization                | :              | Horizontal          |              |  |
| Test Vo     | oltage:            | AC 120/6  | 0Hz              |                             | E                      | Environment:               |                | Temp: 24°C Huni: 57 |              |  |
| 200         | - V-0021 (1000-60) |           |                  |                             |                        |                            |                |                     |              |  |
| 110 Le      | evel (dBuV/m)      | 1         |                  |                             |                        |                            |                |                     |              |  |
| 100         |                    |           |                  |                             |                        |                            |                |                     |              |  |
| 515-55-24-3 |                    |           |                  |                             |                        |                            |                |                     | ^^           |  |
| 80          |                    |           |                  |                             |                        |                            |                |                     |              |  |
| 00          |                    |           |                  |                             |                        |                            |                | FCC                 | PART 15 (PK) |  |
|             |                    |           |                  |                             |                        |                            |                |                     | 1            |  |
| 60          |                    |           |                  |                             |                        |                            |                |                     | PART 15 (AV) |  |
| V           | mm                 | www       | my               | mmy                         | more                   | www                        | why            | M.                  |              |  |
| 40          |                    | 1         |                  |                             |                        |                            | - 17           |                     |              |  |
|             |                    |           |                  |                             |                        |                            |                |                     |              |  |
|             |                    |           |                  |                             |                        |                            |                |                     |              |  |
| 20          |                    |           |                  |                             |                        |                            |                |                     |              |  |
| 20          |                    |           |                  |                             |                        |                            |                |                     |              |  |
| 20          |                    |           |                  |                             |                        |                            |                |                     |              |  |
| 0           | 310 2320           |           | 235              |                             |                        |                            | 4              |                     | 242          |  |
| 0           | 310 2320           | D 14      |                  | Freq                        | juency (MH             | 100                        | T              |                     | 242          |  |
| 0           |                    |           | ntenna           | Freq<br>Cable               | Preamp                 |                            | Limit<br>Line  | Over                |              |  |
| 0           | Freq               | Level     | ntenna<br>Factor | Freq<br>Cable<br>Loss       | Preamp<br>Factor       | Level                      | Line           | Limit               |              |  |
| 0           |                    |           | ntenna           | Freq<br>Cable               | Preamp<br>Factor       |                            | Line           | Limit               |              |  |
| 0           | Freq               | Level     | ntenna<br>Factor | Freq<br>Cable<br>Loss<br>dB | Preamp<br>Factor<br>dB | Level                      | Line<br>dBuV/m | Limit               | Remark       |  |

#### Remark:

<sup>1.</sup> Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

<sup>2.</sup> The emission levels of other frequencies are very lower than the limit and not show in test report.



| roduct Name:            | Mobile Phone                         |                     | Pr                     | oduct Mod    | el:      | EKO Star 6    | 6.0 G65       |
|-------------------------|--------------------------------------|---------------------|------------------------|--------------|----------|---------------|---------------|
| est By:                 | Mike                                 |                     | Te                     | est mode:    |          | 802.11b Tx    | mode          |
| est Channel:            | Highest channel                      |                     | Po                     | olarization: |          | Vertical      |               |
| est Voltage:            | AC 120/60Hz                          |                     | Er                     | nvironment   | :        | Temp: 24℃     | Huni: 57%     |
| 110 Level (dBuV/m)      |                                      |                     |                        |              |          |               |               |
| 110                     |                                      |                     |                        |              |          |               | Ī             |
| 100                     |                                      |                     |                        |              |          |               |               |
|                         | 7                                    |                     |                        |              |          |               |               |
| 80                      |                                      |                     |                        |              |          | FCC           | DADT 45 (DIV) |
|                         |                                      |                     |                        |              |          | FLL           | PART 15 (PK)  |
|                         |                                      | 1                   |                        |              |          |               |               |
| 00                      |                                      |                     | ~ 1                    |              |          |               |               |
| 60                      |                                      |                     | ~/                     |              | -0/3 - / | FCC           | PART 15 (AV)  |
| 60                      |                                      |                     | m/                     | 1            | ~~~      | FCC           | PART 15 (AV)  |
| 40                      |                                      |                     | ~                      |              | ~~~      | FCC           | PART 15 (AV)  |
|                         |                                      |                     | m                      | 1            | ~~~      | FCC           | PART 15 (AV)  |
| 40                      |                                      |                     | ~                      |              | ~~~      | FCC           | PART 15 (AV)  |
|                         |                                      |                     |                        | 1            | ~~~      | FCC           | PART 15 (AV)  |
| 20                      |                                      |                     | ~                      |              | ~~~      | FCC           | PART 15 (AV)  |
| 40                      |                                      |                     |                        | 1            | ~~~      | FCC           | PART 15 (AV)  |
| 20                      |                                      |                     | uency (MH:             |              | ~~~      |               |               |
| 20<br>0<br>2452         | ReadAnten                            | na Cable            | Preamp                 |              |          | Over          | 2500          |
| 20 0 2452               | ReadAnten<br>Level Facto             | na Cable            | Preamp                 |              |          | Over          | 2500          |
| 20<br>0<br>2452         | ReadAnten<br>Level Facto<br>dBuV dB, | na Cable<br>or Loss | Preamp<br>Factor       |              | Line     | Over<br>Limit | 2500          |
| 20<br>0<br>2452<br>Freq | Level Facto                          | na Cable<br>or Loss | Preamp<br>Factor<br>dB | Level        | Line     | Over<br>Limit | 2500          |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name:                             | Mobile Ph      | none             |               | P                | roduct Mod               | del:           | EKO Star        | 6.0 G65         |  |
|-------------------------------------------|----------------|------------------|---------------|------------------|--------------------------|----------------|-----------------|-----------------|--|
| Test By:                                  | Mike           |                  |               | Т                | Test mode: Polarization: |                | 802.11b Tx mode |                 |  |
| Test Channel:                             | Highest c      | hannel           |               | P                |                          |                | Horizontal      |                 |  |
| Test Voltage:                             | AC 120/6       | 0Hz              |               | E                | nvironmen                | t:             | Temp: 24°       | C Huni: 57%     |  |
| 110 Level (dBuV/m)                        |                |                  |               |                  |                          |                |                 |                 |  |
| 80                                        |                |                  |               |                  |                          |                | FCC             | PART 15 (PK)    |  |
| 60                                        |                |                  | 1             | ~~~              |                          | 2              | FCC             | PART 15 (AV)    |  |
| 40                                        |                |                  |               |                  | 4                        | W              |                 |                 |  |
| 20                                        |                |                  |               |                  |                          |                |                 |                 |  |
| 02452                                     |                |                  |               |                  |                          |                |                 | 2500            |  |
| \$11.500000000000000000000000000000000000 |                |                  |               | quency (MH       |                          |                |                 |                 |  |
| Freq                                      | ReadA<br>Level | ntenna<br>Factor | Cable<br>Loss | Preamp<br>Factor | Level                    | Limit<br>Line  |                 | Remark          |  |
| MHz                                       | —dBu₹          | <u>dB</u> /m     | <u>a</u>      | <u>qp</u>        | dBuV/m                   | dBuV/m         | <u>dB</u>       |                 |  |
| 1 2483.500<br>2 2483.500                  | 18.25<br>11.71 | 27.57<br>27.57   | 4.81<br>4.81  |                  | 52.33<br>45.79           | 74.00<br>54.00 | -21.67<br>-8.21 | Peak<br>Average |  |
| Remark:                                   |                |                  |               |                  |                          |                |                 |                 |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





#### 802.11g mode:

| roduct          | t Name:            | Mobile Ph                       | one                      |                     | Pr                     | Product Model:          |                | EKO Star 6.0 G65     |             |  |
|-----------------|--------------------|---------------------------------|--------------------------|---------------------|------------------------|-------------------------|----------------|----------------------|-------------|--|
| est By          | <i>r</i> :         | Mike Test mode: 802.11g Tx mode |                          |                     |                        | mode                    |                |                      |             |  |
| est Ch          | nannel:            | Lowest ch                       | annel                    |                     | Po                     | olarization:            |                | Vertical             |             |  |
| est Vo          | ltage:             | AC 120/60                       | )Hz                      |                     | En                     | vironment               | :              | Temp: 24°C Huni: 57° |             |  |
| Lo              | ovol (dDu\//m)     |                                 |                          |                     | ·                      |                         | ·              |                      |             |  |
| 110             | evel (dBuV/m)      |                                 |                          |                     |                        | M                       |                |                      |             |  |
| 100             |                    |                                 |                          |                     |                        |                         |                |                      | 100000      |  |
|                 |                    |                                 |                          |                     |                        |                         |                | ~                    | ( a more    |  |
| 80              |                    |                                 |                          |                     |                        |                         |                | FCC P                | ART 15 (PK) |  |
|                 |                    |                                 |                          |                     |                        |                         |                |                      |             |  |
| 60              |                    |                                 |                          |                     |                        |                         |                | FCCD                 | ART 15 (AV) |  |
| ~               | - Mary and a grand | ~~~~~                           | mm                       | mm                  | www                    | man                     | morphon        | 1001                 | ANT TO (AV) |  |
| 40              |                    |                                 |                          | V-1-2               |                        |                         | 1              |                      |             |  |
|                 |                    |                                 |                          |                     |                        |                         |                |                      |             |  |
| 20              |                    |                                 |                          |                     |                        |                         |                |                      |             |  |
| 20              |                    |                                 |                          |                     |                        |                         |                |                      |             |  |
|                 |                    |                                 |                          |                     |                        |                         |                |                      |             |  |
|                 | 310 2320           |                                 | 235                      |                     | uanau (MILI-           | -1                      |                |                      | 242         |  |
| 023             |                    |                                 |                          |                     |                        |                         |                |                      |             |  |
| 0 <sup>23</sup> |                    | Readú                           | ntenna                   |                     | uency (MH)             |                         | Limit          | Ower                 |             |  |
| 0 23            | Freq               | ReadA<br>Level                  | ntenna<br>Factor         | Cable               | Preamp                 | od<br>S<br>Potos Kristo | Limit<br>Line  | Over<br>Limit        | Remark      |  |
| 023             | Freq<br>MHz        | ReadA<br>Level<br>— dBuV        | ntenna<br>Factor<br>dB/m | Cable               | Preamp<br>Factor       | od<br>S<br>Potos Kristo | Line           | Limit                | Remark      |  |
| 0 23            |                    | Level                           | Factor dB/m              | Cable<br>Loss<br>dB | Preamp<br>Factor<br>dB | Level                   | Line<br>dBuV/m | Limit                |             |  |

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name: |                | Mobile Ph | ione                     |                       | P                                                        | roduct Mo          | del:                | EKO Star 6.0 G65 |              |  |
|---------------|----------------|-----------|--------------------------|-----------------------|----------------------------------------------------------|--------------------|---------------------|------------------|--------------|--|
| est By        | <b>':</b>      | Mike      |                          |                       | Te                                                       | est mode:          |                     | 802.11g Tx       | mode         |  |
| est Ch        | annel:         | Lowest ch | nannel                   |                       | P                                                        | olarization        | :                   | Horizontal       |              |  |
| est Vo        | Itage:         | AC 120/6  | 0Hz                      |                       | E                                                        | nvironmen          | t:                  | Temp: 24°C       | Huni: 57%    |  |
| Lov           | /el (dBuV/m)   |           |                          |                       |                                                          |                    |                     |                  |              |  |
| 10            | ver (dbdv/iii) |           |                          |                       |                                                          |                    |                     |                  | -            |  |
| 00            |                |           |                          |                       |                                                          |                    |                     |                  |              |  |
|               |                |           |                          |                       |                                                          |                    |                     | 1                | vom.         |  |
| 80            |                |           |                          |                       |                                                          |                    |                     | FICC             | PART 15 (PK) |  |
|               |                |           |                          |                       |                                                          |                    |                     |                  |              |  |
| 60            |                |           |                          |                       |                                                          |                    |                     | FCC              | PART 15 (AV) |  |
| W             | man            | MANA      | www                      | Mun                   | V-7~~                                                    | money              | mon                 | and and          | THIS TO (NE) |  |
| 40            |                |           |                          |                       |                                                          |                    |                     |                  | - 1          |  |
|               |                |           |                          |                       |                                                          |                    |                     |                  |              |  |
|               |                |           |                          |                       |                                                          |                    |                     |                  |              |  |
| 20            |                |           |                          |                       |                                                          |                    |                     |                  |              |  |
| 20            |                |           |                          |                       |                                                          |                    |                     |                  |              |  |
| 0             |                |           |                          |                       |                                                          |                    |                     |                  |              |  |
| 0 231         | 10 2320        |           | 235                      |                       | uency (MH                                                | (z)                |                     |                  | 242          |  |
| 0             | 10 2320        | ReadA     |                          | Freq                  | uency (MH<br>Preamo                                      | 115                | Limit               | Over             | 242          |  |
| 0             |                |           | 235<br>Intenna<br>Factor | Freq<br>Cable         | Preamp                                                   |                    |                     | Over<br>Limit    | enc Do       |  |
| 0             |                |           | ıntenna                  | Freq<br>Cable         | Preamp<br>Factor                                         |                    | Line                | Limit            | enc Do       |  |
| 0             | Freq           | Level     | intenna<br>Factor        | Freq<br>Cable<br>Loss | Preamp<br>Factor<br>———————————————————————————————————— | Level dBuV/m 50.75 | Line  dBuV/m  74.00 | Limit            | Remark<br>   |  |

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name:            | Mobile Phone                |                           | Product Mod          | lel:                                              | EKO Star 6      | 6.0 G65         |
|--------------------------|-----------------------------|---------------------------|----------------------|---------------------------------------------------|-----------------|-----------------|
| Test By:                 | Mike                        |                           | Test mode:           |                                                   | 802.11g Tx      | mode            |
| Test Channel:            | Highest channel             |                           | Polarization:        |                                                   | Vertical        |                 |
| Test Voltage:            | AC 120/60Hz                 |                           | Environment          | ::                                                | Temp: 24°C      | Huni: 57%       |
| 110 Level (dBuV/m)       |                             |                           |                      |                                                   |                 |                 |
| 80                       | ~~~~                        |                           |                      |                                                   | FCC             | PART 15 (PK)    |
| 60                       |                             | ~~                        | 1                    | , <del>, , , , , , , , , , , , , , , , , , </del> | FCC             | PART 15 (AV)    |
| 40                       |                             |                           |                      |                                                   |                 |                 |
| 20                       |                             |                           |                      |                                                   |                 |                 |
| 02452                    |                             | Frequency (               | MHz)                 |                                                   |                 | 2500            |
| Freq                     | ReadAntenna<br>Level Factor | Cable Pream<br>Loss Facto | np<br>or Level       | Limit<br>Line                                     | Over<br>Limit   | Remark          |
| MHz                      | dBu∀ dB/m                   | dB                        | iB dBuV/m            | dBuV/m                                            | dB              |                 |
| 1 2483.500<br>2 2483.500 | 23.34 27.57<br>12.49 27.57  | 4.81 0.0<br>4.81 0.0      | 00 57.42<br>00 46.57 | 74.00<br>54.00                                    | -16.58<br>-7.43 | Peak<br>Average |

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name:                   | Mobile Phone                |              | F                             | Product Mo          | odel:          | EKO Sta         | r 6.0 G65       |
|---------------------------------|-----------------------------|--------------|-------------------------------|---------------------|----------------|-----------------|-----------------|
| Гest By:                        | Mike                        |              | ٦                             | est mode:           |                | 802.11g         | Tx mode         |
| Test Channel:                   | Highest channel             |              | F                             | Polarizatio         | n:             | Horizonta       | al              |
| Test Voltage:                   | AC 120/60Hz                 |              | E                             | Environme           | nt:            | Temp: 24        | 4℃ Huni: 57%    |
| 110 Level (dBuV/m) 100 80 60 40 |                             |              |                               |                     | 2              |                 | CC PART 15 (PK) |
| 20                              |                             |              |                               |                     |                |                 |                 |
| 0 <sub>2452</sub> Freq          | ReadAntenna<br>Level Factor | Cable        | quency (M<br>Preamp<br>Factor | 147 (1909)          | Limit<br>Line  | Over<br>Limit   | 2500<br>Remark  |
| MHz                             | dBuV dB/m                   | dB           |                               | $\overline{dBuV/m}$ | dBuV/m         | <u>dB</u>       |                 |
| 1 2483,500<br>2 2483,500        | 21.38 27.57<br>12.71 27.57  | 4.81<br>4.81 | 0.00<br>0.00                  | 55.46<br>46.79      | 74.00<br>54.00 | -18.54<br>-7.21 | Peak<br>Average |

#### Remark.

<sup>1.</sup> Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

<sup>2.</sup> The emission levels of other frequencies are very lower than the limit and not show in test report.





#### 802.11n(HT20):

| Toduc   | ct Name:       | Mobile Ph | none                       |                             | Pr                     | Product Model:     |                     | EKO Star 6.0 G65      |              |  |
|---------|----------------|-----------|----------------------------|-----------------------------|------------------------|--------------------|---------------------|-----------------------|--------------|--|
| est B   | y:             | Mike      |                            |                             | Те                     | est mode:          |                     | 802.11n(HT            | 20) Tx mode  |  |
| est C   | hannel:        | Lowest ch | nannel                     |                             | Po                     | olarization:       |                     | Vertical              |              |  |
| est V   | oltage:        | AC 120/6  | 0Hz                        |                             | Er                     | nvironment         | :                   | Temp: 24℃             | Huni: 57%    |  |
| 16      | evel (dBuV/m)  |           |                            |                             |                        |                    |                     |                       |              |  |
| - ALLES | over (abaviii) |           |                            |                             |                        |                    |                     |                       |              |  |
| 100     |                |           |                            |                             |                        |                    |                     |                       | ma           |  |
|         |                |           |                            |                             |                        |                    |                     | \mathcal{A}^\circ}    |              |  |
| 80      |                |           |                            |                             |                        |                    |                     | FCC                   | PART 15 (PK) |  |
|         |                |           |                            |                             |                        |                    |                     |                       |              |  |
| 60      |                |           |                            |                             |                        |                    | 4 00                | FCC                   | PART 15 (AV) |  |
| ~       | mount          | LAM       | man                        | mon                         | www                    | MY                 | wy.                 |                       |              |  |
|         |                |           |                            |                             |                        |                    |                     |                       |              |  |
| 40      |                |           |                            |                             |                        |                    |                     |                       |              |  |
| 40      |                |           |                            |                             |                        |                    |                     |                       |              |  |
| 20      |                |           |                            |                             |                        |                    |                     |                       |              |  |
|         |                |           |                            |                             |                        |                    |                     |                       |              |  |
| 20      | 310 2320       |           | 235                        | 50                          |                        |                    |                     |                       | 242          |  |
| 20      | 310 2320       |           | 235                        |                             | uency (MH              | z)                 |                     |                       | 242          |  |
| 20      |                |           | intenna                    | Freq<br>Cable               | Preamp                 |                    | Limit               |                       |              |  |
| 20      |                |           | intenna                    | Freq<br>Cable               |                        |                    |                     | Over<br>Limit         |              |  |
| 20      |                |           | intenna                    | Freq<br>Cable               | Preamp<br>Factor       |                    | Line                | Limit                 |              |  |
| 20      | Freq           | Level     | ntenna<br>Factor<br>——dB/m | Freq<br>Cable<br>Loss<br>dB | Preamp<br>Factor<br>dB | Level dBuV/m 50.55 | Line  dBuV/m  74.00 | Limit<br>dB<br>-23.45 |              |  |

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| roauc  | t Name:          | Mobile Ph      | none                    |                             | P                             | roduct M    | odel:           | EKO Star 6 | 6.0 G65         |
|--------|------------------|----------------|-------------------------|-----------------------------|-------------------------------|-------------|-----------------|------------|-----------------|
| est By | y:               | Mike           |                         |                             | Т                             | est mode    | :               | 802.11n(H  | T20) Tx mode    |
| est Ch | hannel:          | Lowest ch      | nannel                  |                             | Polarization: Horizontal      |             |                 |            |                 |
| est Vo | oltage:          | AC 120/6       | 0Hz                     |                             | E                             | nvironme    | ent:            | Temp: 24°0 | Huni: 57%       |
|        | and felDed flee  |                |                         |                             |                               |             |                 |            |                 |
| 110    | evel (dBuV/m)    |                |                         |                             |                               |             |                 |            | Ĭ               |
| 100    |                  |                |                         |                             |                               | -           |                 |            | -               |
|        |                  |                |                         |                             |                               |             |                 |            | a sama          |
| 80     |                  |                |                         |                             |                               |             |                 | #CC        | C PART 15 (PK)  |
|        |                  |                |                         |                             |                               |             |                 |            |                 |
| 60     |                  |                |                         |                             |                               |             |                 | a a deci   | C PART 15 (AV)  |
|        |                  |                |                         |                             | tour agency of the control of | - O 4       | 20 20           | ANA IC     | C FAINT 13 (AV) |
| n      | my               | www            | www                     | man                         | vovo                          | V V V       | marry of the    | 3          |                 |
| 40     | www              | ~~~            | www                     | was me                      | voger                         | ~~~ w       | mar o va        |            | 3               |
| 40     | w/vm             | LWW.           | www                     | way m                       | v                             | ~~~ w       | Mary Congress   | 1          |                 |
|        | www              | ~~~~           | www                     |                             | VVV                           | ~~~ w       | Mar Congress    | ,          |                 |
| 40     | ~~~~~            | ~~~~           | www                     |                             | www.                          | ~~\\        | Mary Conference |            |                 |
| 20     | www.             | ~~~~           |                         |                             | Mary.                         | ~~\~\~      |                 |            |                 |
| 20     | 310 2320         | ~~~~           | 23:                     | 50                          | mency (M)                     |             |                 |            | 242             |
| 20     | 310 2320         | Readé          | 239                     | 50<br>Free                  | juency (Mi                    | Hz)         | 4               | Over       |                 |
| 20     | 310 2320<br>Freq | ReadA<br>Level |                         | 50<br>Fred<br>Cable         | Preamp                        | Hz)         | Limit           |            |                 |
| 20     |                  | ReadA<br>Level | 23sunt enna             | 50<br>Fred<br>Cable         | Preamp<br>Factor              | Hz)         | Limit           | Limit      | Remark          |
| 20     | Freq             | Level          | 23<br>Intenna<br>Factor | 50<br>Fred<br>Cable<br>Loss | Preamp<br>Factor<br>dB        | Hz)<br>Leve | Limit<br>l Line | Limit      | Remark          |

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| roduct Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mobile Phone    |                                        |                        |               |             | EKO Star 6.0 G65 |               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|------------------------|---------------|-------------|------------------|---------------|--|
| est By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mike            | Highest channel Polarization: Vertical |                        | Polarization: |             | ( ),             |               |  |
| est Channel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Highest channel |                                        |                        |               |             |                  |               |  |
| est Voltage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AC 120/60Hz     |                                        | En                     | vironment     | :           | Temp: 24℃ Huni:  |               |  |
| Loyal /dBu\//m\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                        |               | _           |                  |               |  |
| 110 Level (dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                        |                        |               |             |                  |               |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               |                                        |                        |               |             |                  |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -~~~~           | my                                     |                        |               |             |                  |               |  |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                        |                        |               |             |                  |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        | 200                    | -             |             | FCC              | PART 15 (PK)  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                        |               |             |                  |               |  |
| - 12 to 12 t |                 |                                        |                        | - la          |             |                  |               |  |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                        |                        |               | 1           | FCC              | PART 15 (AV)  |  |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                        |                        | 2             | 1           | FCC              | PART 15 (AV)  |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                        |                        | 2             |             | FCC              | PART 15 (AV)  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                        | 2             |             | FCC              | PART 15 (AV)  |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                        |                        | 2             |             | FCC              | PART 15 (AV)  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                        | 2             |             | FCC              | PART 15 (AV)  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                        |                        | 2             |             | FCC              | PART 15 (AV)  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                        |                        | 2             |             | FCC              | 250           |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                                        | uency (MH              |               |             |                  |               |  |
| 20<br>0<br>2452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | na Cable                               | Preamp                 |               | Limit       | Over             | 250           |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | na Cable                               | Preamp                 |               |             | Over             |               |  |
| 20<br>0<br>2452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level Fact      | na Cable                               | Preamp<br>Factor       |               | Line        | Over<br>Limit    | 250           |  |
| 20<br>0<br>2452<br>Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level Fact      | nna Cable<br>or Loss                   | Preamp<br>Factor<br>dB | Level         | Line dBuV/m | Over<br>Limit    | 250<br>Remark |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Name:          | Mobile Phor       | Mobile Phone |                        |                        | Product Model:           |       | EKO Star 6.0 G65                             |                |  |
|------------------------|-------------------|--------------|------------------------|------------------------|--------------------------|-------|----------------------------------------------|----------------|--|
| Test By:               | Mike              |              |                        | Те                     | Test mode: Polarization: |       | 802.11n(HT                                   | 20) Tx mode    |  |
| Test Channel:          | Highest cha       | nnel         |                        | Ро                     |                          |       | Horizontal                                   |                |  |
| Test Voltage:          | AC 120/60H        | İz           |                        | En                     | vironment                | -     | Temp: 24°C Huni: 57%                         |                |  |
| 110 Level (dBuV/m)     |                   |              |                        |                        |                          |       |                                              |                |  |
| Section 1              |                   |              |                        |                        |                          |       |                                              |                |  |
| 100                    |                   |              |                        |                        |                          |       |                                              |                |  |
|                        | ~~~               | m            |                        |                        |                          |       |                                              |                |  |
| 80                     |                   | 1            |                        |                        |                          |       | FCC                                          | PART 15 (PK)   |  |
| T T                    |                   |              | 5                      |                        |                          |       |                                              |                |  |
| 60                     |                   |              |                        | m                      | 1                        |       | FCC                                          | PART 15 (AV)   |  |
|                        |                   |              |                        |                        | 7                        | mw    | ~                                            | mi             |  |
| 40                     |                   |              |                        |                        | 4                        |       |                                              |                |  |
|                        |                   |              |                        |                        |                          |       |                                              |                |  |
| 20                     |                   |              |                        |                        |                          |       |                                              |                |  |
|                        |                   |              |                        |                        |                          |       |                                              |                |  |
|                        |                   |              |                        |                        |                          |       |                                              |                |  |
| 0                      |                   |              |                        |                        |                          |       |                                              | 2500           |  |
|                        |                   |              | Frequ                  | ency (MHz              | z)                       |       |                                              | 2500           |  |
| 02452                  |                   | tenna Ca     | able :                 | Preamp                 |                          | Limit |                                              |                |  |
| 02452                  | ReadAn<br>Level F |              | able :                 | Preamp                 |                          |       |                                              | 2500<br>Remark |  |
| 02452                  | Level F           |              | able :                 | Preamp<br>Factor       |                          | Line  | Limit                                        |                |  |
| 0 <sub>2452</sub> Freq | Level F           | actor I      | able !<br>Loss !<br>dB | Preamp<br>Factor<br>dB | Level                    | Line  | Limit<br>——————————————————————————————————— | Remark         |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





# 802.11n(HT40):

| rodu  | ct Name:        | Mobile Ph | none             |                 | Pi           | roduct Mod    | lel:           | EKO Star 6.0 G65 |              |  |
|-------|-----------------|-----------|------------------|-----------------|--------------|---------------|----------------|------------------|--------------|--|
| est B | y:              | Mike      |                  |                 | Te           | est mode:     |                | 802.11n(H        | Γ40) Tx mode |  |
| est C | hannel:         | Lowest ch | nannel           |                 | Po           | Polarization: |                |                  |              |  |
| est V | oltage:         | AC 120/6  | 0Hz              |                 | Ei           | nvironmen     | t:             | Temp: 24℃        | Huni: 57%    |  |
|       | avel (dDv)(las) |           |                  |                 |              |               |                |                  |              |  |
| 110   | evel (dBuV/m)   |           |                  |                 |              |               |                |                  |              |  |
| 100   |                 |           |                  |                 |              |               |                |                  |              |  |
|       |                 |           |                  |                 |              |               | ~              | My               | Vrv my       |  |
| 80    |                 |           |                  |                 |              |               |                | ECC              | PART 15 (PK) |  |
| -     |                 |           |                  |                 |              |               |                | rcc              | PART 13 (PR) |  |
| 60    |                 |           |                  |                 |              | Λħ.Λ/         | Sold           | F00              | DART AT AND  |  |
| 7     | \ \ \ \ /       | co O.     | 20.0             | - m             | M Mm         | /M/V          |                | FCC              | PART 15 (AV) |  |
| 40    | MANA            | Mm        | Marsh            | ~~ ~            | L b A        |               |                |                  |              |  |
| 40    |                 |           |                  |                 |              |               |                |                  |              |  |
|       |                 |           |                  |                 |              |               |                |                  |              |  |
| 20    |                 |           |                  |                 |              |               |                |                  |              |  |
|       |                 |           |                  |                 |              |               |                |                  |              |  |
| 0     | 310 2320        | 1         | 2350             |                 |              |               |                |                  | 244          |  |
|       |                 |           |                  | Frequency (MHz) |              |               |                |                  |              |  |
| 2     |                 |           |                  |                 |              |               |                |                  |              |  |
| 2     |                 |           | ntenna           |                 | Preamp       |               | Limit          |                  | 120          |  |
| 2     | Freq            |           | ntenna<br>Factor |                 |              | Level         |                |                  | Remark       |  |
| 2     | Freq<br>MHz     |           |                  |                 | Factor       | Level         | Line           | Limit            | Remark       |  |
| 1     |                 | Level     | Factor           | Loss            | Factor<br>dB | Level         | Line<br>dBuV/m | Limit            |              |  |

# Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| roduct Na             | ame:                                   | Mobile Phone Mike                   |                                        |                        | Pro                                  | Product Model: Test mode:                    |                         | EKO Star 6.0 G65<br>802.11n(HT40) Tx mode            |               |  |
|-----------------------|----------------------------------------|-------------------------------------|----------------------------------------|------------------------|--------------------------------------|----------------------------------------------|-------------------------|------------------------------------------------------|---------------|--|
| est By:               |                                        |                                     |                                        |                        | Те                                   |                                              |                         |                                                      |               |  |
| est Chani             | nel:                                   | Lowest cha                          | owest channel Polarization: Horizontal |                        |                                      |                                              |                         |                                                      |               |  |
| est Voltaç            | ge:                                    | AC 120/60Hz Environment: Temp: 24°C |                                        |                        |                                      |                                              |                         | Temp: 24°C Huni: 5°                                  |               |  |
| Louis                 | (dD, dlles)                            |                                     |                                        |                        |                                      |                                              | •                       |                                                      |               |  |
| 110 Level             | (dBuV/m)                               |                                     | 3                                      |                        |                                      |                                              |                         |                                                      | 1             |  |
| 100                   |                                        |                                     |                                        |                        |                                      |                                              | -                       |                                                      |               |  |
|                       |                                        |                                     |                                        |                        |                                      |                                              |                         |                                                      |               |  |
| 80                    |                                        |                                     |                                        |                        |                                      |                                              | med                     | way or                                               | man           |  |
| 00                    |                                        |                                     |                                        |                        |                                      |                                              |                         | FCCF                                                 | PART 15 (PK)  |  |
|                       |                                        |                                     |                                        |                        |                                      |                                              |                         | TOO TAKE 13                                          |               |  |
|                       |                                        |                                     |                                        |                        |                                      |                                              |                         |                                                      | )             |  |
| 60                    |                                        |                                     |                                        |                        |                                      | 1.1Mm                                        | -1                      | FCC F                                                | PART 15 (AV)  |  |
| 60                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~ ~~~                               | Nym, ~~                                | www                    | ww                                   | A JAMA                                       | -1                      | FCC F                                                | PART 15 (AV)  |  |
| ww                    | ~~~~~                                  | ~~~                                 | Marin                                  | Mrw                    | mm                                   | Amin (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | -N                      | FCC F                                                | PART 15 (AV)  |  |
| 40                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | vw.                                 | Mur                                    | ~/~~                   | mm                                   | 2<br>2                                       | -1                      | FCC F                                                | PART 15 (AV)  |  |
| ww                    | ~~~~                                   | ~~~                                 | Mmm                                    | N                      | mm                                   | 2                                            | -N                      | FCC F                                                | PART 15 (AV)  |  |
| ww                    | www                                    | ~~~                                 | Mmm                                    | www.                   | more                                 | 2                                            | M                       | FCCF                                                 | PART 15 (AV)  |  |
| 40                    |                                        | ~~~                                 | Mmm                                    | ~/~~                   | mm                                   | 2<br>2                                       | -N                      | FCC F                                                | PART 15 (AV)  |  |
| 40                    |                                        | ~~~                                 |                                        | ~/~~v                  | home                                 | 2                                            | -M                      | FCC                                                  | PART 15 (AV)  |  |
| 40                    |                                        | ~~~                                 | 2350                                   |                        |                                      |                                              |                         | FCC                                                  | PART 15 (AV)  |  |
| 40                    |                                        | ~~~                                 |                                        |                        | nency (MHz                           |                                              | -M                      | FCC                                                  |               |  |
| 40                    | 2320                                   | ReadA                               | 2350<br>nt enna                        | Frequ                  | uency (MHz<br>Preamp                 | )                                            | Limit                   | Over                                                 | 244           |  |
| 40                    | 2320                                   | ReadA                               | 2350<br>nt enna                        | Frequ                  | uency (MHz<br>Preamp                 | )                                            | Limit                   |                                                      | 244           |  |
| 40                    | 2320                                   | ReadA                               | 2350<br>nt enna                        | Frequ                  | iency (MHz<br>Preamp<br>Factor       | )                                            | Limit<br>Line           | Over<br>Limit                                        | 244           |  |
| 40<br>20<br>0<br>2310 | 2320<br>Freq                           | ReadA<br>Level<br>——dBuV            | 2350<br>ntenna<br>Factor               | Frequ<br>Cable<br>Loss | lency (MHz<br>Preamp<br>Factor<br>dB | )<br>Level                                   | Limit<br>Line<br>dBuV/m | Over<br>Limit                                        | 244<br>Remark |  |
| 20<br>0<br>2310       | 2320<br>Freq                           | ReadA<br>Level                      | 2350<br>ntenna<br>Factor               | Frequ<br>Cable<br>Loss | Preamp<br>Factor<br>dB               | )  Level  dBuV/m  54.91                      | Limit<br>Line<br>dBuV/m | Over<br>Limit<br>——————————————————————————————————— | 244<br>Remark |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product N         | ame:                 | Mobile Ph                        | one            |              | Pi                       | roduct Mode    | el:                          | EKO Star 6.0 G65<br>802.11n(HT40) Tx mode |                                        |  |  |
|-------------------|----------------------|----------------------------------|----------------|--------------|--------------------------|----------------|------------------------------|-------------------------------------------|----------------------------------------|--|--|
| Test By:          |                      | Mike Highest channel AC 120/60Hz |                | Te           | Test mode: Polarization: |                | 802.11n(HT                   | 40) Tx mode                               |                                        |  |  |
| Test Chan         | nel:                 |                                  |                | P            |                          |                | Vertical  Temp: 24° Huni: 53 |                                           |                                        |  |  |
| Test Volta        | ge:                  | AC 120/60                        | )Hz            |              | E                        | nvironment:    | :                            | Temp: 24℃                                 | Huni: 57%                              |  |  |
| Louis             | L/dDuller            |                                  |                |              |                          |                |                              |                                           |                                        |  |  |
| 110 Leve          | l (dBuV/m)           |                                  |                |              |                          |                |                              |                                           | 1                                      |  |  |
| 100               |                      |                                  |                | -            |                          |                |                              |                                           |                                        |  |  |
|                   | ~~~                  | ~~                               | 4              | ~~           | ~ ~                      |                |                              |                                           |                                        |  |  |
| 80                |                      | V                                | V              |              | ~.                       | 1              |                              | FCC                                       | PART 15 (PK)                           |  |  |
| 1                 |                      |                                  |                |              |                          | 1              |                              |                                           | 771111 10 (171)                        |  |  |
| 60                |                      |                                  |                |              |                          | 1              |                              | 1 ECC                                     | PART 15 (AV)                           |  |  |
|                   |                      |                                  |                |              |                          | 7000           | ~                            |                                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |  |  |
| 40                |                      |                                  |                |              |                          |                |                              | 10000                                     |                                        |  |  |
|                   |                      |                                  |                |              |                          |                |                              |                                           |                                        |  |  |
| 20                |                      |                                  |                |              |                          |                |                              |                                           |                                        |  |  |
| 20                |                      |                                  |                |              |                          |                |                              |                                           |                                        |  |  |
|                   |                      |                                  |                |              |                          |                |                              |                                           |                                        |  |  |
| <sup>0</sup> 2432 |                      | 24                               | 50             |              |                          | 11-3           | 40                           |                                           | 250                                    |  |  |
|                   |                      | Readú                            | intenna        |              | uency (Mi<br>Preamp      |                | Limit                        | Over                                      |                                        |  |  |
|                   | Freq                 |                                  | Factor         |              |                          | Level          | Line                         |                                           | Remark                                 |  |  |
| -                 | MHz                  | —dBuV                            |                |              | dE                       | dBuV/m         | dBuV/m                       |                                           |                                        |  |  |
|                   | 2483.500             | 19.86                            | 27.57          | 4.81         | 0.00                     | 53.94          |                              | -20.06                                    |                                        |  |  |
| 1 2               | 2483.500<br>2483.500 | 19.86<br>14.29                   | 27.57<br>27.57 | 4.81<br>4.81 | 0.00<br>0.00             | 53.94<br>48.37 |                              | -20.06<br>-5.63                           |                                        |  |  |

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product Na  | me:     | Mobile Ph            | one          |               | Pro           | Product Model:      |        | EKO Star 6.0 G65                  |                                         |  |
|-------------|---------|----------------------|--------------|---------------|---------------|---------------------|--------|-----------------------------------|-----------------------------------------|--|
| est By:     |         | Mike Highest channel |              |               | Tes           | Test mode:          |        | 802.11n(HT40) Tx mode  Horizontal |                                         |  |
| est Chann   | el:     |                      |              |               | Polarization: |                     | H      |                                   |                                         |  |
| est Voltag  | e:      | AC 120/60            | )Hz          |               | En            | vironment:          | Т      | Temp: 24℃ Huni:                   |                                         |  |
|             | 15 10 1 |                      |              |               | •             |                     |        |                                   |                                         |  |
| 110 Level ( | dBuV/m) |                      |              |               |               |                     |        |                                   |                                         |  |
| 100         |         |                      |              | -             |               |                     |        |                                   |                                         |  |
|             |         |                      |              | Colombia (No. |               |                     |        |                                   |                                         |  |
| 80          | ~~      | ~~                   | S            | Mm            | ~~            |                     |        | FCC                               | DADT 45 (DIC)                           |  |
|             | .Cet    |                      |              |               | 23            | \                   |        | FLL                               | PART 15 (PK)                            |  |
| 60          |         |                      |              |               |               | 1                   |        |                                   |                                         |  |
| 00)         |         |                      |              |               |               | - bas               | 1      | FCC                               | PART 15 (AV)                            |  |
|             |         |                      |              |               |               |                     |        |                                   | • • • • • • • • • • • • • • • • • • • • |  |
| 40          |         |                      |              |               |               |                     |        |                                   |                                         |  |
|             |         |                      |              |               |               |                     |        |                                   |                                         |  |
| 20          |         |                      |              |               |               |                     |        |                                   |                                         |  |
|             |         |                      |              |               |               |                     |        |                                   |                                         |  |
| 02432       |         | 24                   | 50           |               |               |                     |        |                                   | 25                                      |  |
| 2432        |         | 24.                  | 50           | Frequ         | uency (MH:    | z)                  |        |                                   | 23                                      |  |
|             |         |                      | Ant enna     |               | Preamp        |                     | Limit  |                                   |                                         |  |
|             | Freq    | Level                | Factor       | Loss          | Factor        | Level               | Line   | Limit                             | Remark                                  |  |
|             | MHz     | dBu₹                 | <u>dB</u> /m |               | <u>dB</u>     | $\overline{dBuV/m}$ | dBuV/m | <u>d</u> B                        |                                         |  |
| 1 2 2       | 483.500 | 20.24                |              | 4.81          | 0.00          | 54.32               | 74.00  | -19.68                            | Peak                                    |  |
|             | 483.500 | 13.96                | 27.57        | 4.81          | 0.00          | 40.04               | E4 00  | F 00                              | Average                                 |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

# 6.7.1 Conducted Emission Method

| 0.7.1 Conducted Emission |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:        | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Method:             | ANSI C63.10:2013 and KDB 558074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Limit:                   | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. |
| Test setup:              | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test Instruments:        | Refer to section 5.8 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test mode:               | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test results:            | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



# Test plot as follows:









# 6.7.2 Radiated Emission Method

| 6.7.2 Radiated Emission M | etilou                                                                                                                                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                   |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement:         | FCC Part 15 C S                                                                                                                                                                                                                                                       | ection 15.20                                                                                                                                                                                 | 9 and 15.205                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                   |
| Test Method:              | ANSI C63.10:201                                                                                                                                                                                                                                                       | 13                                                                                                                                                                                           |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                   |
| Test Frequency Range:     | 9kHz to 25GHz                                                                                                                                                                                                                                                         |                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                   |
| Test Distance:            | 3m                                                                                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                   |
| Receiver setup:           | Frequency                                                                                                                                                                                                                                                             | Detector                                                                                                                                                                                     | RBW                                                                                                                                                                       | VE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3W                                                                                                                                        | Remark                                                                                                                                                                                            |
| · ·                       | 30MHz-1GHz                                                                                                                                                                                                                                                            | Quasi-peak                                                                                                                                                                                   | 120KHz                                                                                                                                                                    | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KHz                                                                                                                                       | Quasi-peak Value                                                                                                                                                                                  |
|                           | Above 1GHz                                                                                                                                                                                                                                                            | Peak                                                                                                                                                                                         | 1MHz                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1Hz                                                                                                                                       | Peak Value                                                                                                                                                                                        |
|                           |                                                                                                                                                                                                                                                                       | RMS                                                                                                                                                                                          | 1MHz                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1Hz                                                                                                                                       | Average Value                                                                                                                                                                                     |
| Limit:                    | Frequency<br>30MHz-88MH                                                                                                                                                                                                                                               |                                                                                                                                                                                              | nit (dBuV/m @3<br>40.0                                                                                                                                                    | sm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                         | Remark<br>uasi-peak Value                                                                                                                                                                         |
|                           | 88MHz-216MH                                                                                                                                                                                                                                                           |                                                                                                                                                                                              | 43.5                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           | uasi-peak Value                                                                                                                                                                                   |
|                           | 216MHz-960M                                                                                                                                                                                                                                                           |                                                                                                                                                                                              | 46.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           | uasi-peak Value                                                                                                                                                                                   |
|                           | 960MHz-1GH                                                                                                                                                                                                                                                            |                                                                                                                                                                                              | 54.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           | uasi-peak Value                                                                                                                                                                                   |
|                           |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                              | 54.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           | Average Value                                                                                                                                                                                     |
|                           | Above 1GHz                                                                                                                                                                                                                                                            |                                                                                                                                                                                              | 74.0<br>the top of a rot                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           | Peak Value                                                                                                                                                                                        |
|                           | The table was highest radia?  The EUT was antenna, who tower.  The antenna the ground to Both horizon make the med.  For each suscase and the meters and to find the med.  The test-reconspecified Base.  If the emission the limit spen of the EUT we have 10dB med. | as rotated 36 ation. Its set 3 meterich was mount height is van determine atal and vertice asurement. Spected emister the antenitation level of the cified, then to would be reparagin would | of degrees to of the saway from the top the maximum to the | Hetermiche interpretation of a value on sof the was a one ight of the was a control of the wa | erferent<br>variable<br>to four<br>of the to<br>ne ante<br>trange<br>hts fro<br>degree<br>tect Furde.<br>was 1<br>ped and<br>emissione us | re-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 is to 360 degrees inction and 10dB lower than d the peak values ions that did not sing peak, quasi- |
| Test setup:               | Below 1GHz  EUT  Turn Table  Ground P  Above 1GHz                                                                                                                                                                                                                     |                                                                                                                                                                                              | m                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                         |                                                                                                                                                                                                   |







### Measurement Data (worst case):

#### **Below 1GHz:**

| Product Name:   | Mobile Phone   | Product Model: | EKO Star 6.0 G65    |
|-----------------|----------------|----------------|---------------------|
| Test By:        | Mike           | Test mode:     | Wi-Fi Tx mode       |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Vertical            |
| Test Voltage:   | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |
| Level (dBuV/m)  |                |                |                     |



|                       | Freq    |       | ntenna<br>Factor |            |           |                     | Limit<br>Line |           | Remark |
|-----------------------|---------|-------|------------------|------------|-----------|---------------------|---------------|-----------|--------|
| -                     | MHz     | dBu∜  | <u>dB</u> /π     | d <u>B</u> | <u>ab</u> | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u> |        |
| 1                     | 44.901  | 43.46 | 13.68            | 1.28       | 29.86     | 28.56               | 40.00         | -11.44    | QP     |
| 2                     | 70.090  | 43.27 | 9.09             | 1.52       | 29.72     | 24.16               | 40.00         | -15.84    | QP     |
| 2<br>3<br>4<br>5<br>6 | 100.934 | 41.50 | 11.76            | 1.95       | 29.52     | 25.69               | 43.50         | -17.81    | QP     |
| 4                     | 133.151 | 44.44 | 8.51             | 2.32       | 29.31     | 25.96               | 43.50         | -17.54    | QP     |
| 5                     | 150.538 | 44.61 | 8.63             | 2.52       | 29.22     | 26.54               | 43.50         | -16.96    | QP     |
| 6                     | 283.979 | 38.55 | 13.51            | 2.90       | 28.48     | 26.48               | 46.00         | -19.52    | QP     |

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| roduct              | Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mobile Phone                    |                                                      |                                             |                                                   | oduct Mode                       | el:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EKO Star 6.0 G65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                        |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------|---------------------------------------------|---------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|
| est By:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mike                            |                                                      |                                             | Tes                                               | st mode:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wi-Fi Tx m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ode                        |                        |
| est Freq            | luency:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 MHz ~                        | 1 GHz                                                |                                             | Ро                                                | larization:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                        |
| est Volta           | age:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AC 120/6                        | 0Hz                                                  |                                             | En                                                | vironment:                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp: 24℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C F                        | Huni: 57%              |
| Level               | (dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                                      |                                             |                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |
| 80                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y Y                             |                                                      |                                             |                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |
| 70                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                      |                                             |                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |
| 202                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                      |                                             |                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |
| 60                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                      |                                             |                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FCC PAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 715 CL                     | ASSR                   |
| 50                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                      |                                             |                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TCCFAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (113 CL                    | .A336                  |
| 30                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                      |                                             | ी                                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |
| 40                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                               |                                                      |                                             |                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                      |                                             |                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 1 1                                                  |                                             |                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |
| 30                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | $-\lambda$                                           | 2                                           | 3                                                 | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                          | S. London Bridge       |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | $\wedge$                                             | W.                                          | 3                                                 | 4                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | La destructuração por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Manager M                  | A LONG LANGE OF STREET |
| 20                  | بالمعارية فالمرادية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                                                      | A TOTAL COMMENT                             |                                                   | Paragash Paragash                | Howard House                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | applemental comments of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MA Francisco               | i Ling lander or the   |
| 20                  | and the same of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mortina                         |                                                      | Mary Jarry                                  |                                                   | power the field                  | Mary days days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of and the court of the court o | WAS STATE                  | A LONG BARRANT         |
| 10                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | marine                          |                                                      | Mary how                                    | A A A A A A A A A A A A A A A A A A A             | person the factor                | Holivan de de la competitación de la competita |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAR FORMAN                 |                        |
| 20                  | and of the same of | marine                          | 100                                                  | Freque                                      | 200<br>Jency (MHz                                 |                                  | Manufacture of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAR Samonia                | 1000                   |
| 10                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Read                            |                                                      | 0.000.000.000                               | uency (MHz                                        | z)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MA FORMAN                  |                        |
| 10                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 100<br>Antenna<br>Factor                             | Cable                                       |                                                   | z)                               | Limit<br>Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 500<br>Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 1000                   |
| 10                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | Antenna<br>Factor                                    | Cable                                       | uency (MHz<br>Preamp<br>Factor                    | z)                               | Limit<br>Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 500<br>Over<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 1000                   |
| 20<br>10<br>0<br>30 | 50<br>Freq<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Level<br>dBuV                   | Antenna<br>Factor<br>——dB/m                          | Cable<br>Loss<br>dB                         | uency (MHz<br>Preamp<br>Factor<br>dB              | Level                            | Limit<br>Line<br>dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500<br>Over<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rema                       | 1000                   |
| 20<br>10<br>0<br>30 | 50<br>Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Level                           | Antenna<br>Factor                                    | Cable<br>Loss                               | uency (MHz<br>Preamp<br>Factor                    | z)<br>Level                      | Limit<br>Line<br>dBuV/m<br>43.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500<br>Over<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rema                       | 1000                   |
| 20<br>10<br>0<br>30 | 50 Freq MHz 103.806 115.321 187.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Level  dBuV  45.81 41.63 38.70  | Antenna<br>Factor<br>dB/m<br>11.94<br>11.16<br>10.80 | Cable<br>Loss<br>dB<br>1.99<br>2.11<br>2.78 | Preamp<br>Factor<br>dB<br>29.50<br>29.42<br>28.92 | Level  dBuV/m  30.24 25.48 23.36 | Limit<br>Line<br>dBuV/m<br>43.50<br>43.50<br>43.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500<br>Over<br>Limit<br>———————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rema<br><br>QP<br>QP<br>QP | 1000                   |
| 10                  | 50<br>Freq<br>MHz<br>103.806<br>115.321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level<br>dBuV<br>45.81<br>41.63 | Antenna<br>Factor<br>dB/m<br>11.94<br>11.16          | Cable<br>Loss<br>dB<br>1.99<br>2.11         | Preamp<br>Factor<br>dB<br>29.50<br>29.42          | Level  dBuV/m  30.24 25.48       | Limit<br>Line<br>dBuV/m<br>43.50<br>43.50<br>43.50<br>46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500<br>Over<br>Limit<br>———————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rema<br><br>QP<br>QP<br>QP | 1000                   |

<sup>1.</sup> Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

<sup>2.</sup> The emission levels of other frequencies are very lower than the limit and not show in test report.





#### **Above 1GHz**

| Above 1GHz         |                         |                             |                       |                          |                   |                        |                    |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
|                    |                         |                             |                       | 802.11b                  |                   |                        |                    |              |
|                    |                         |                             |                       | annel: Lowe              |                   |                        |                    |              |
|                    |                         | ı                           | De                    | tector: Peak             | Value             |                        | T                  |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |
| 4824.00            | 47.42                   | 36.06                       | 6.81                  | 41.82                    | 48.47             | 74.00                  | -25.53             | Vertical     |
| 4824.00            | 47.04                   | 36.06                       | 6.81                  | 41.82                    | 48.09             | 74.00                  | -25.91             | Horizontal   |
|                    |                         |                             | Dete                  | ctor: Averag             | je Value          |                        |                    |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |
| 4824.00            | 38.51                   | 36.06                       | 6.81                  | 41.82                    | 39.56             | 54.00                  | -14.44             | Vertical     |
| 4824.00            | 37.19                   | 36.06                       | 6.81                  | 41.82                    | 38.24             | 54.00                  | -15.76             | Horizontal   |
|                    |                         |                             |                       | annel: Mido              |                   |                        |                    |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |
| 4874.00            | 46.78                   | 36.32                       | 6.85                  | 41.84                    | 48.11             | 74.00                  | -25.89             | Vertical     |
| 4874.00            | 47.32                   | 36.32                       | 6.85                  | 41.84                    | 48.65             | 74.00                  | -25.35             | Horizontal   |
|                    |                         |                             | Dete                  | ctor: Averag             | je Value          |                        |                    |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |
| 4874.00            | 38.47                   | 36.32                       | 6.85                  | 41.84                    | 39.80             | 54.00                  | -14.20             | Vertical     |
| 4874.00            | 37.59                   | 36.32                       | 6.85                  | 41.84                    | 38.92             | 54.00                  | -15.08             | Horizontal   |
|                    |                         |                             |                       |                          |                   |                        |                    |              |
|                    |                         |                             |                       | annel: Highe             |                   |                        |                    |              |
|                    |                         | 1                           |                       | tector: Peak             | Value             |                        | T                  |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |
| 4924.00            | 47.12                   | 36.58                       | 6.89                  | 41.86                    | 48.73             | 74.00                  | -25.27             | Vertical     |
| 4924.00            | 47.40                   | 36.58                       | 6.89                  | 41.86                    | 49.01             | 74.00                  | -24.99             | Horizontal   |
|                    |                         |                             | Dete                  | ctor: Averag             | je Value          |                        |                    |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |
| 4924.00            | 37.29                   | 36.58                       | 6.89                  | 41.86                    | 38.90             | 54.00                  | -15.10             | Vertical     |
| 4924.00            | 37.61                   | 36.58                       | 6.89                  | 41.86                    | 39.22             | 54.00                  | -14.78             | Horizontal   |
|                    |                         |                             |                       |                          |                   |                        |                    |              |

# Remark:

<sup>1.</sup> Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

<sup>2.</sup> The emission levels of other frequencies are very lower than the limit and not show in test report.





| 802.11g                                                                                          |                         |                             |                       |                          |                   |                        |                    |              |  |
|--------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|--------------------|--------------|--|
| Test channel: Lowest channel                                                                     |                         |                             |                       |                          |                   |                        |                    |              |  |
| Detector: Peak Value                                                                             |                         |                             |                       |                          |                   |                        |                    |              |  |
| Frequency<br>(MHz)                                                                               | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |
| 4824.00                                                                                          | 47.18                   | 36.06                       | 6.81                  | 41.82                    | 48.23             | 74.00                  | -25.77             | Vertical     |  |
| 4824.00                                                                                          | 47.26                   | 36.06                       | 6.81                  | 41.82                    | 48.31             | 74.00                  | -25.69             | Horizontal   |  |
| Detector: Average Value                                                                          |                         |                             |                       |                          |                   |                        |                    |              |  |
| Frequency<br>(MHz)                                                                               | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |
| 4824.00                                                                                          | 38.91                   | 36.06                       | 6.81                  | 41.82                    | 39.96             | 54.00                  | -14.04             | Vertical     |  |
| 4824.00                                                                                          | 37.46                   | 36.06                       | 6.81                  | 41.82                    | 38.51             | 54.00                  | -15.49             | Horizontal   |  |
| Test channel: Middle channel                                                                     |                         |                             |                       |                          |                   |                        |                    |              |  |
| Detector: Peak Value                                                                             |                         |                             |                       |                          |                   |                        |                    |              |  |
| Frequency<br>(MHz)                                                                               | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |
| 4874.00                                                                                          | 46.83                   | 36.32                       | 6.85                  | 41.84                    | 48.16             | 74.00                  | -25.84             | Vertical     |  |
| 4874.00                                                                                          | 47.18                   | 36.32                       | 6.85                  | 41.84                    | 48.51             | 74.00                  | -25.49             | Horizontal   |  |
|                                                                                                  |                         |                             | Dete                  | ctor: Averag             | je Value          |                        |                    |              |  |
| Frequency<br>(MHz)                                                                               | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |
| 4874.00                                                                                          | 38.94                   | 36.32                       | 6.85                  | 41.84                    | 40.27             | 54.00                  | -13.73             | Vertical     |  |
| 4874.00                                                                                          | 37.85                   | 36.32                       | 6.85                  | 41.84                    | 39.18             | 54.00                  | -14.82             | Horizontal   |  |
|                                                                                                  |                         |                             |                       |                          |                   |                        |                    |              |  |
| Test channel: Highest channel                                                                    |                         |                             |                       |                          |                   |                        |                    |              |  |
|                                                                                                  |                         |                             |                       | tector: Peak             | Value             |                        |                    |              |  |
| Frequency<br>(MHz)                                                                               | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |
| 4924.00                                                                                          | 47.96                   | 36.58                       | 6.89                  | 41.86                    | 49.57             | 74.00                  | -24.43             | Vertical     |  |
| 4924.00                                                                                          | 47.64                   | 36.58                       | 6.89                  | 41.86                    | 49.25             | 74.00                  | -24.75             | Horizontal   |  |
| Detector: Average Value                                                                          |                         |                             |                       |                          |                   |                        |                    |              |  |
| Frequency<br>(MHz)                                                                               | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |
| 4924.00                                                                                          | 37.93                   | 36.58                       | 6.89                  | 41.86                    | 39.54             | 54.00                  | -14.46             | Vertical     |  |
| 4924.00                                                                                          | 37.47                   | 36.58                       | 6.89                  | 41.86                    | 39.08             | 54.00                  | -14.92             | Horizontal   |  |
| Remark:  1 Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor |                         |                             |                       |                          |                   |                        |                    |              |  |

<sup>1.</sup> Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

<sup>2.</sup> The emission levels of other frequencies are very lower than the limit and not show in test report.





|                              |                               |                             |                       | 802.11n(HT               | 20)               |                        |                    |              |  |  |
|------------------------------|-------------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|--------------------|--------------|--|--|
| Test channel: Lowest channel |                               |                             |                       |                          |                   |                        |                    |              |  |  |
| Detector: Peak Value         |                               |                             |                       |                          |                   |                        |                    |              |  |  |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV)       | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |
| 4824.00                      | 48.29                         | 36.06                       | 6.81                  | 41.82                    | 49.34             | 74.00                  | -24.66             | Vertical     |  |  |
| 4824.00                      | 47.61                         | 36.06                       | 6.81                  | 41.82                    | 48.66             | 74.00                  | -25.34             | Horizontal   |  |  |
| Detector: Average Value      |                               |                             |                       |                          |                   |                        |                    |              |  |  |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV)       | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |
| 4824.00                      | 38.64                         | 36.06                       | 6.81                  | 41.82                    | 39.69             | 54.00                  | -14.31             | Vertical     |  |  |
| 4824.00                      | 37.29                         | 36.06                       | 6.81                  | 41.82                    | 38.34             | 54.00                  | -15.66             | Horizontal   |  |  |
| Test channel: Middle channel |                               |                             |                       |                          |                   |                        |                    |              |  |  |
|                              |                               |                             | De                    | tector: Peak             | Value             |                        |                    |              |  |  |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV)       | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |
| 4874.00                      | 47.26                         | 36.32                       | 6.85                  | 41.84                    | 48.59             | 74.00                  | -25.41             | Vertical     |  |  |
| 4874.00                      | 46.83                         | 36.32                       | 6.85                  | 41.84                    | 48.16             | 74.00                  | -25.84             | Horizontal   |  |  |
|                              |                               |                             | Dete                  | ctor: Averaç             | je Value          |                        |                    |              |  |  |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV)       | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |
| 4874.00                      | 38.46                         | 36.32                       | 6.85                  | 41.84                    | 39.79             | 54.00                  | -14.21             | Vertical     |  |  |
| 4874.00                      | 37.14                         | 36.32                       | 6.85                  | 41.84                    | 38.47             | 54.00                  | -15.53             | Horizontal   |  |  |
|                              | Test channel: Highest channel |                             |                       |                          |                   |                        |                    |              |  |  |
|                              |                               |                             | De                    | tector: Peak             | Value             |                        |                    |              |  |  |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV)       | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |
| 4924.00                      | 47.26                         | 36.58                       | 6.89                  | 41.86                    | 48.87             | 74.00                  | -25.13             | Vertical     |  |  |
| 4924.00                      | 47.61                         | 36.58                       | 6.89                  | 41.86                    | 49.22             | 74.00                  | -24.78             | Horizontal   |  |  |
| Detector: Average Value      |                               |                             |                       |                          |                   |                        |                    |              |  |  |
| Frequency<br>(MHz)           | Read<br>Level<br>(dBuV)       | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |
| 4924.00                      | 37.45                         | 36.58                       | 6.89                  | 41.86                    | 39.06             | 54.00                  | -14.94             | Vertical     |  |  |
| 4924.00                      | 37.67                         | 36.58                       | 6.89                  | 41.86                    | 39.28             | 54.00                  | -14.72             | Horizontal   |  |  |
| Remark:<br>1. Final Lev      | vel = Receive                 |                             |                       |                          | Loss – Pream      | nplifier Factor.       |                    |              |  |  |

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2. The emission levels of other frequencies are very lower than the limit and not show in test report.





|                               |                         |                             |                       | 802.11n(HT               | 40)               |                        |                    |              |  |  |
|-------------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|--------------------|--------------|--|--|
| Test channel: Lowest channel  |                         |                             |                       |                          |                   |                        |                    |              |  |  |
|                               |                         |                             | De                    | tector: Peak             | Value             |                        |                    |              |  |  |
| Frequency<br>(MHz)            | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |
| 4844.00                       | 48.91                   | 36.06                       | 6.81                  | 41.82                    | 49.96             | 74.00                  | -24.04             | Vertical     |  |  |
| 4844.00                       | 47.26                   | 36.06                       | 6.81                  | 41.82                    | 48.31             | 74.00                  | -25.69             | Horizontal   |  |  |
| Detector: Average Value       |                         |                             |                       |                          |                   |                        |                    |              |  |  |
| Frequency<br>(MHz)            | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |
| 4844.00                       | 38.46                   | 36.06                       | 6.81                  | 41.82                    | 39.51             | 54.00                  | -14.49             | Vertical     |  |  |
| 4844.00                       | 37.29                   | 36.06                       | 6.81                  | 41.82                    | 38.34             | 54.00                  | -15.66             | Horizontal   |  |  |
| Test channel: Middle channel  |                         |                             |                       |                          |                   |                        |                    |              |  |  |
|                               |                         |                             |                       | tector: Peak             |                   |                        |                    |              |  |  |
| Frequency<br>(MHz)            | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |
| 4874.00                       | 47.92                   | 36.32                       | 6.85                  | 41.84                    | 49.25             | 74.00                  | -24.75             | Vertical     |  |  |
| 4874.00                       | 46.17                   | 36.32                       | 6.85                  | 41.84                    | 47.50             | 74.00                  | -26.50             | Horizontal   |  |  |
|                               |                         |                             | Dete                  | ctor: Averag             | ge Value          |                        |                    |              |  |  |
| Frequency<br>(MHz)            | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |
| 4874.00                       | 38.91                   | 36.32                       | 6.85                  | 41.84                    | 40.24             | 54.00                  | -13.76             | Vertical     |  |  |
| 4874.00                       | 37.56                   | 36.32                       | 6.85                  | 41.84                    | 38.89             | 54.00                  | -15.11             | Horizontal   |  |  |
| Test channel: Highest channel |                         |                             |                       |                          |                   |                        |                    |              |  |  |
|                               |                         |                             |                       | tector: Peak             |                   |                        |                    |              |  |  |
|                               | Read                    | Antenna                     | Cable                 |                          | value             |                        |                    |              |  |  |
| Frequency<br>(MHz)            | Level<br>(dBuV)         | Factor<br>(dB/m)            | Loss<br>(dB)          | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |
| 4904.00                       | 47.52                   | 36.45                       | 6.87                  | 41.85                    | 48.99             | 74.00                  | -25.01             | Vertical     |  |  |
| 4904.00                       | 47.43                   | 36.45                       | 6.87                  | 41.85                    | 48.90             | 74.00                  | -25.10             | Horizontal   |  |  |
|                               | Detector: Average Value |                             |                       |                          |                   |                        |                    |              |  |  |
| Frequency<br>(MHz)            | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit (dB) | Polarization |  |  |
| 4904.00                       | 37.62                   | 36.45                       | 6.87                  | 41.85                    | 39.09             | 54.00                  | -14.91             | Vertical     |  |  |
| 4904.00                       | 37.11                   | 36.45                       | 6.87                  | 41.85                    | 38.58             | 54.00                  | -15.42             | Horizontal   |  |  |
| Remark:<br>1. Final Lev       | vel = Receive           | r Read level -              | - Antenna Fa          | actor + Cable            | Loss – Prean      | nplifier Factor.       |                    |              |  |  |

<sup>1.</sup> Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

<sup>2.</sup> The emission levels of other frequencies are very lower than the limit and not show in test report.