1.3 - The Limit of a Function

Example 1: Consider the graph of the function $f(x) = x^2 - x + 4$.

Describe the behavior of the function as x approaches 1 from the left and right side.

Thus, we say that $\lim_{x\to 1} (x^2 - x + 4) =$

Now consider the same function $f(x) = x^2 - x + 4$ and complete the table below:

Χ.

.9

.99

.999

.9999

1

1.0001

1.001

1.01

f(x)

Definition 1: The function f(x) has the limit L as x approaches a, written $\lim_{x \to a} f(x) = L$,

if the value of f(x) can be made as close to the number L as we please by taking x sufficiently close to a (but not equal to a). The limit is not affected by whether f(a) is defined or not.

Note: You must approach a from both sides when finding a limit unless stated otherwise.

Diagram:

Notes:

- 1. X approaching a from the left: $\lim_{x\to a^-} f(x)$
- 2. X approaching a from the right: $\lim_{x \to a^+} f(x)$
- 3. For the limit to exist, the limit value from the left must be the same as the limit value from the right side. Otherwise, the limit does not exist.

$$\lim_{x\to a} f(x) = L \text{ if and only if } \lim_{x\to a^-} f(x) = L \text{ and } \lim_{x\to a^+} f(x) = L$$

Example 2: Consider the function $f(x) = \frac{\sin x}{x}$.

- a. State the domain of the function.
- b. What do you think value of $\lim_{x \to 0} \frac{\sin x}{x}$ is?
- c. Use a graphing calculator to graph the function near x = 0.

Example 3: Let's now investigate $\lim_{x\to 0}\sin(\frac{\pi}{x})$. Don't forget to also consider the values smaller but very close to zero.

$$f(1) = f(1/2) = f(1/3) = f(1/4) =$$

$$f(.1) = f(.01) =$$

Example 4: Consider the function $G = {5, x=1 \atop \frac{x^2-1}{x-1}, x \neq 1}$. Graph the function and find the limit, if it exists.

a. $\lim_{x\to-2} G$

- b. $\lim_{x\to 3^{-}} G$
- c. $\lim_{x\to 1} G$

Example 5: Consider the function $H(t) = \begin{cases} 0, t < 0 \\ 1, t \ge 0 \end{cases}$. Graph the function and find the limit, if it exists.

a. $\lim_{t\to -3} H$

- b. $\lim_{t\to 0^-} H$
- c. $\lim_{t\to 0^+} H$

 $d. \lim_{t\to 0} H$

e. $\lim_{t\to 5} H$

Example 6: Find $\lim_{x\to\pi} 5\sin x$, if it exists.