

## **Example**

• Classification of public transport.









- Features:
  - Length  $(x_1)$
  - Width  $(x_2)$
  - Height  $(x_3)$

# **Example**



## **Terminology**



### **Decision Tree**

- Generate approximate solution through recursive top-down partitioning.
- The "informativeness" of the features are tested at each node.
- Criteria for quantifying feature informativeness:
  - Information Gain
  - Gain Ratio
  - Gini Index
- The most informative feature is selected for datapartitioning at a particular node.



### Information: Intuition

- Are you going to class? Yes  $\rightarrow 1$ , No  $\rightarrow 0$ .
  - Specifying a choice  $\rightarrow 1$  bit of information
- Information conveyed by a sequence of 100 such independent events  $\rightarrow$  100 bits.
- Suppose you usually attend all the classes. If somebody tells me whether you are coming to the next class or not, then which of the following is more informative?
  - Yes
  - No ✓
- Another example: Temperature in Kolkata on December 20. Which of following is more informative?



• If the probability of an event is **high**, then the information conveyed by knowing that the event has occurred is **low**.

### Information definition

 $\bullet$  Suppose the probability of an event is p, then the information associated with it can be quantified as

$$I \equiv \log_2\left(\frac{1}{p}\right) = -\log_2(p)$$

- Note:  $\log_2(1/p)$  is a decreasing function of p.
- Two questions:
  - Why log function?

Ans.: log is a simple function with some nice properties, one of them being additivity. If x and y are two independent events, then the information conveyed through knowledge of the two events:

$$I_{x,y} = \log_2\left(\frac{1}{P(x \text{ and } y)}\right)$$

$$= \log_2\left(\frac{1}{p_x p_y}\right) = \log_2\left(\frac{1}{p_x}\right) + \log_2\left(\frac{1}{p_y}\right)$$

$$= I_x + I_y$$

### Information definition

• Suppose the probability of an event is p, then the information associated with it can be quantified as

$$I \equiv \log_2\left(\frac{1}{p}\right) = -\log_2(p)$$

- Note:  $\log_2(1/p)$  is a decreasing function of p.
- Two questions:
  - Why log function?
  - Why base 2?
     Ans.: This is from Shannon's convention. The unit of information is bits in this case
- Expected information in a set of K possible outcomes:

$$H(p_1, p_2, ..., p_K) = \sum_{k=1}^{K} p_k \log_2(1/p_k) = -\sum_{k=1}^{K} p_k \log_2(p_k)$$

• This is called **entropy**.

## **Entropy**

- Entropy is a measure of uncertainty/randomness in a dataset.
- Suppose we have a dataset  $\mathcal{D}$  comprising of N points with K classes.
- The probability  $p_k$  of a data point to be in the kth class can be evaluated as

$$p_k = \frac{N_k}{N}$$

where  $N_k$  is the number of data points in class k.

## Entropy



## Entropy

• Entropy of the dataset:

$$H(\mathcal{D}) = -\sum_{k=1}^{K} p_k \log_2 p_k$$

• Binary classification:



## **High entropy**

• Entropy of the dataset is high if it comprise equally probable classes.



- Higher the entropy more the information content.
- For binary classification  $\max H(\mathcal{D}) = 1$ .
- For *n*-ary classification  $\max H(\mathcal{D}) = \log_2 n$ .

## Information gain

- Information gain gives information on the importance of features.
- Suppose there are M features  $\{\mathcal{F}_1, \mathcal{F}_2, ....., \mathcal{F}_M\}$ . Each of these features again takes different values.
- Suppose the *m*th feature can take any one of the  $\beta_m$  values from the set  $\mathcal{V}_{\mathcal{F}_m} = \{v_{\mathcal{F}_m}^{(1)}, v_{\mathcal{F}_m}^{(2)}, ...., v_{\mathcal{F}_m}^{(\beta_m)}\}.$
- Let  $\mathcal{D}_{\mathcal{F}_m,j}$  be the set comprising  $n_{m,j}$  data points for which the *m*th feature  $\mathcal{F}_m$  takes its *j*th value  $v_{\mathcal{F}_m}^{(j)}$ .
- The information gain after knowing the values of the mth feature  $\mathcal{F}_m$  can then be given as:

$$IG(\mathcal{D}, \mathcal{F}_m) = H(\mathcal{D}) - \sum_{j=1}^{\beta_m} \left(\frac{n_{m,j}}{N}\right) H(\mathcal{D}_{\mathcal{F}_m,j})$$

#### **Decision Trees**

## Information gain

- $IG(\mathcal{D}, \mathcal{F}_m)$  is given as the entropy of  $\mathcal{D}$  minus the weighted sum of entropy of its children.
- More information gain means less uncertainty on  $\mathcal{D}$  after a particular feature is known.
- Information gain is used for identifying the best feature for discriminating between the output classes.
- Measures the amount of "information" a feature gives about the class.

| Instance | Weather | Health  | Teaching    | Topic<br>Importance | Going to class? |
|----------|---------|---------|-------------|---------------------|-----------------|
| 1        | Hot     | Good    | Interesting | Medium              | Yes             |
| 2        | Cold    | Average | Boring      | High                | Yes             |
| 3        | Cold    | Sick    | Mediocre    | Medium              | No              |
| 4        | Mild    | Average | Interesting | High                | Yes             |
| 5        | Rainy   | Sick    | Mediocre    | Low                 | No              |
| 6        | Hot     | Good    | Boring      | High                | Yes             |
| 7        | Rainy   | Good    | Mediocre    | Medium              | No              |
| 8        | Mild    | Good    | Mediocre    | Medium              | Yes             |
| 9        | Rainy   | Good    | Mediocre    | High                | Yes             |
| 10       | Hot     | Average | Interesting | Medium              | Yes             |
| 11       | Mild    | Good    | Boring      | Low                 | No              |
| 12       | Cold    | Average | Interesting | Low                 | Yes             |
| 13       | Mild    | Sick    | Interesting | High                | Yes             |
| 14       | Rainy   | Average | Boring      | Medium              | No              |
| 15       | Mild    | Good    | Interesting | Low                 | Yes             |

- 2 output classes:
  - Yes, going to class
  - No
- Dataset  $\mathcal{D}$ : 10 Yes and 5 No.
- Let output classes  $C_1$  and  $C_2$  correspond to Yes and No, respectively.

#### **Decision Trees**

| Instance | Weather | Health  | Teaching    | Topic<br>Importance | Going to class? |
|----------|---------|---------|-------------|---------------------|-----------------|
| 1        | Hot     | Good    | Interesting | Medium              | Yes             |
| 2        | Cold    | Average | Boring      | High                | Yes             |
| 3        | Cold    | Sick    | Mediocre    | Medium              | No              |
| 4        | Mild    | Average | Interesting | High                | Yes             |
| 5        | Rainy   | Sick    | Mediocre    | Low                 | No              |
| 6        | Hot     | Good    | Boring      | High                | Yes             |
| 7        | Rainy   | Good    | Mediocre    | Medium              | No              |
| 8        | Mild    | Good    | Mediocre    | Medium              | Yes             |
| 9        | Rainy   | Good    | Mediocre    | High                | Yes             |
| 10       | Hot     | Average | Interesting | Medium              | Yes             |
| 11       | Mild    | Good    | Boring      | Low                 | No              |
| 12       | Cold    | Average | Interesting | Low                 | Yes             |
| 13       | Mild    | Sick    | Interesting | High                | Yes             |
| 14       | Rainy   | Average | Boring      | Medium              | No              |
| 15       | Mild    | Good    | Interesting | Low                 | Yes             |

#### • Four features:

- Weather  $(\mathcal{F}_1) \in \{ \text{ Hot, Cold, Rainy, Mild } \}$
- Health  $(\mathcal{F}_2) \in \{ \text{Good, Average, Sick } \}$
- Teaching  $(\mathcal{F}_3) \in \{ \text{ Interesting, Mediocre, Boring } \}$
- Topic Importance  $(\mathcal{F}_4) \in \{ \text{ High, Medium, Low } \}$

#### **Decision Trees**

| Instance | Weather | Health  | Teaching    | Topic<br>Importance | Going to class? |
|----------|---------|---------|-------------|---------------------|-----------------|
| 1        | Hot     | Good    | Interesting | Medium              | Yes             |
| 2        | Cold    | Average | Boring      | High                | Yes             |
| 3        | Cold    | Sick    | Mediocre    | Medium              | No              |
| 4        | Mild    | Average | Interesting | High                | Yes             |
| 5        | Rainy   | Sick    | Mediocre    | Low                 | No              |
| 6        | Hot     | Good    | Boring      | High                | Yes             |
| 7        | Rainy   | Good    | Mediocre    | Medium              | No              |
| 8        | Mild    | Good    | Mediocre    | Medium              | Yes             |
| 9        | Rainy   | Good    | Mediocre    | High                | Yes             |
| 10       | Hot     | Average | Interesting | Medium              | Yes             |
| 11       | Mild    | Good    | Boring      | Low                 | No              |
| 12       | Cold    | Average | Interesting | Low                 | Yes             |
| 13       | Mild    | Sick    | Interesting | High                | Yes             |
| 14       | Rainy   | Average | Boring      | Medium              | No              |
| 15       | Mild    | Good    | Interesting | Low                 | Yes             |

• Therefore 
$$p(\mathcal{C}_1) = \frac{10}{15}$$
 and  $p(\mathcal{C}_2) = \frac{5}{15}$ 

• Entropy of the dataset: 
$$H(\mathcal{D}) = -p(\mathcal{C}_1) \log_2 p(\mathcal{C}_1) - p(\mathcal{C}_2) \log_2 p(\mathcal{C}_2)$$
  

$$= -\frac{10}{15} \log_2 \left(\frac{10}{15}\right) - \frac{5}{15} \log_2 \left(\frac{5}{15}\right)$$

$$= 0.918$$

| Instance | Weather | Health  | Teaching    | Topic<br>Importance | Going to class? |
|----------|---------|---------|-------------|---------------------|-----------------|
| 1        | Hot     | Good    | Interesting | Medium              | Yes             |
| 2        | Cold    | Average | Boring      | High                | Yes             |
| 3        | Cold    | Sick    | Mediocre    | Medium              | No              |
| 4        | Mild    | Average | Interesting | High                | Yes             |
| 5        | Rainy   | Sick    | Mediocre    | Low                 | No              |
| 6        | Hot     | Good    | Boring      | High                | Yes             |
| 7        | Rainy   | Good    | Mediocre    | Medium              | No              |
| 8        | Mild    | Good    | Mediocre    | Medium              | Yes             |
| 9        | Rainy   | Good    | Mediocre    | High                | Yes             |
| 10       | Hot     | Average | Interesting | Medium              | Yes             |
| 11       | Mild    | Good    | Boring      | Low                 | No              |
| 12       | Cold    | Average | Interesting | Low                 | Yes             |
| 13       | Mild    | Sick    | Interesting | High                | Yes             |
| 14       | Rainy   | Average | Boring      | Medium              | No              |
| 15       | Mild    | Good    | Interesting | Low                 | Yes             |

- Now we will check the information gain for each of the (four) features to determine the feature yielding the largest information gain.
- Consider feature  $\mathcal{F}_1$ : Weather.
- It can take one of the 4 possible values: {Hot, Cold, Rainy, Mild}. The values are indexed from 1 to 4.

#### **Decision Trees**

| I | nstance | Weather | Health  | Teaching    | Topic<br>Importance | Going to class? |   |
|---|---------|---------|---------|-------------|---------------------|-----------------|---|
| Ī | 1       | Hot     | Good    | Interesting | Medium              | Yes             | \ |
|   | 2       | Cold    | Average | Boring      | High                | Yes             | ľ |
|   | 3       | Cold    | Sick    | Mediocre    | Medium              | No              |   |
|   | 4       | Mild    | Average | Interesting | High                | Yes             |   |
|   | 5       | Rainy   | Sick    | Mediocre    | Low                 | No              |   |
|   | 6       | Hot     | Good    | Boring      | High                | Yes             | , |
|   | 7       | Rainy   | Good    | Mediocre    | Medium              | No              |   |
|   | 8       | Mild    | Good    | Mediocre    | Medium              | Yes             |   |
|   | 9       | Rainy   | Good    | Mediocre    | High                | Yes             |   |
|   | 10      | Hot     | Average | Interesting | Medium              | Yes             | - |
|   | 11      | Mild    | Good    | Boring      | Low                 | No              |   |
|   | 12      | Cold    | Average | Interesting | Low                 | Yes             |   |
|   | 13      | Mild    | Sick    | Interesting | High                | Yes             |   |
|   | 14      | Rainy   | Average | Boring      | Medium              | No              |   |
|   | 15      | Mild    | Good    | Interesting | Low                 | Yes             |   |

| \ | Instance | Weather | Health  | Teaching    | Topic<br>Importance | Going to class? |
|---|----------|---------|---------|-------------|---------------------|-----------------|
| X | 1        | Hot     | Good    | Interesting | Medium              | Yes             |
|   | 6        | Hot     | Good    | Boring      | High                | Yes             |
| - | 10       | Hot     | Average | Interesting | Medium              | Yes             |

### • Therefore

$$H(\mathcal{D}_{\mathcal{F}_{1},1}) = -p(\mathcal{C}_{1}|\mathcal{D}_{\mathcal{F}_{1},1})\log_{2}p(\mathcal{C}_{1}|\mathcal{D}_{\mathcal{F}_{1},1}) - p(\mathcal{C}_{2}|\mathcal{D}_{\mathcal{F}_{1},1})\log_{2}p(\mathcal{C}_{2}|\mathcal{D}_{\mathcal{F}_{1},1})$$

$$= -\frac{3}{3}\log_{2}\left(\frac{3}{3}\right) - \frac{0}{3}\log_{2}\left(\frac{0}{3}\right)$$

$$= 0$$

| Instance | Weather | Health  | Teaching    | Topic<br>Importance | Going to class? |   |
|----------|---------|---------|-------------|---------------------|-----------------|---|
| 1        | Hot     | Good    | Interesting | Medium              | Yes             | \ |
| 2        | Cold    | Average | Boring      | High                | Yes             |   |
| 3        | Cold    | Sick    | Mediocre    | Medium              | No              |   |
| 4        | Mild    | Average | Interesting | High                | Yes             |   |
| 5        | Rainy   | Sick    | Mediocre    | Low                 | No              |   |
| 6        | Hot     | Good    | Boring      | High                | Yes             | , |
| 7        | Rainy   | Good    | Mediocre    | Medium              | No              |   |
| 8        | Mild    | Good    | Mediocre    | Medium              | Yes             |   |
| 9        | Rainy   | Good    | Mediocre    | High                | Yes             |   |
| 10       | Hot     | Average | Interesting | Medium              | Yes             | - |
| 11       | Mild    | Good    | Boring      | Low                 | No              |   |
| 12       | Cold    | Average | Interesting | Low                 | Yes             |   |
| 13       | Mild    | Sick    | Interesting | High                | Yes             |   |
| 14       | Rainy   | Average | Boring      | Medium              | No              |   |
| 15       | Mild    | Good    | Interesting | Low                 | Yes             |   |

|              | Instance | Weather | Health  | Teaching    | Topic<br>Importance | Going to class? |
|--------------|----------|---------|---------|-------------|---------------------|-----------------|
| $\checkmark$ | 1        | Hot     | Good    | Interesting | Medium              | Yes             |
|              | 6        | Hot     | Good    | Boring      | High                | Yes             |
| -            | 10       | Hot     | Average | Interesting | Medium              | Yes             |

- Similarly  $H(\mathcal{D}_{\mathcal{F}_1,2}) = 0.918$ ,  $H(\mathcal{D}_{\mathcal{F}_1,3}) = 0.811$  and  $H(\mathcal{D}_{\mathcal{F}_1,4}) = 0.722$ .
- Therefore information gain after feature  $\mathcal{F}_1$  is known:

$$IG(\mathcal{D}, \mathcal{F}_1) = H(\mathcal{D}) - \left( \left( \frac{n_{1,1}}{N} \right) H(\mathcal{D}_{\mathcal{F}_1,1}) + \left( \frac{n_{1,2}}{N} \right) H(\mathcal{D}_{\mathcal{F}_1,2}) + \left( \frac{n_{1,3}}{N} \right) H(\mathcal{D}_{\mathcal{F}_1,3}) + \left( \frac{n_{1,4}}{N} \right) H(\mathcal{D}_{\mathcal{F}_1,4}) \right)$$

| Instance | Weather | Health  | Teaching    | Topic<br>Importance | Going to class? |
|----------|---------|---------|-------------|---------------------|-----------------|
| 1        | Hot     | Good    | Interesting | Medium              | Yes             |
| 2        | Cold    | Average | Boring      | High                | Yes             |
| 3        | Cold    | Sick    | Mediocre    | Medium              | No              |
| 4        | Mild    | Average | Interesting | High                | Yes             |
| 5        | Rainy   | Sick    | Mediocre    | Low                 | No              |
| 6        | Hot     | Good    | Boring      | High                | Yes             |
| 7        | Rainy   | Good    | Mediocre    | Medium              | No              |
| 8        | Mild    | Good    | Mediocre    | Medium              | Yes             |
| 9        | Rainy   | Good    | Mediocre    | High                | Yes             |
| 10       | Hot     | Average | Interesting | Medium              | Yes             |
| 11       | Mild    | Good    | Boring      | Low                 | No              |
| 12       | Cold    | Average | Interesting | Low                 | Yes             |
| 13       | Mild    | Sick    | Interesting | High                | Yes             |
| 14       | Rainy   | Average | Boring      | Medium              | No              |
| 15       | Mild    | Good    | Interesting | Low                 | Yes             |

$$IG(\mathcal{D}, \mathcal{F}_1) = 0.918 - \left(\frac{3}{15} \times 0 + \frac{3}{15} \times 0.918 + \frac{4}{15} \times 0.811 + \frac{5}{15} \times 0.722\right)$$
  
= 0.277

| Instance | Weather | Health  | Teaching    | Topic<br>Importance | Going to class? |
|----------|---------|---------|-------------|---------------------|-----------------|
| 1        | Hot     | Good    | Interesting | Medium              | Yes             |
| 2        | Cold    | Average | Boring      | High                | Yes             |
| 3        | Cold    | Sick    | Mediocre    | Medium              | No              |
| 4        | Mild    | Average | Interesting | High                | Yes             |
| 5        | Rainy   | Sick    | Mediocre    | Low                 | No              |
| 6        | Hot     | Good    | Boring      | High                | Yes             |
| 7        | Rainy   | Good    | Mediocre    | Medium              | No              |
| 8        | Mild    | Good    | Mediocre    | Medium              | Yes             |
| 9        | Rainy   | Good    | Mediocre    | High                | Yes             |
| 10       | Hot     | Average | Interesting | Medium              | Yes             |
| 11       | Mild    | Good    | Boring      | Low                 | No              |
| 12       | Cold    | Average | Interesting | Low                 | Yes             |
| 13       | Mild    | Sick    | Interesting | High                | Yes             |
| 14       | Rainy   | Average | Boring      | Medium              | No              |
| 15       | Mild    | Good    | Interesting | Low                 | Yes             |

• Similarly can compute the information gain for the other features:

$$-IG(\mathcal{D},\mathcal{F}_2)=0.091$$

$$-IG(\mathcal{D},\mathcal{F}_3) = 0.328$$

$$-IG(\mathcal{D}, \mathcal{F}_4) = 0.251$$

• Select the feature with the highest information gain as the root node as it is most informative.

#### **Decision Trees**

## **Root node (Level-1)**



• In the present case feature  $\mathcal{F}_3$  is taken as the root node.

## **Teaching – Interesting (Level-2, Node-1)**

| Instance | Weather | Health  | Teaching    | Topic<br>Importance | Going to class? |
|----------|---------|---------|-------------|---------------------|-----------------|
| 1        | Hot     | Good    | Interesting | Medium              | Yes             |
| 4        | Mild    | Average | Interesting | High                | Yes             |
| 10       | Hot     | Average | Interesting | Medium              | Yes             |
| 12       | Cold    | Average | Interesting | Low                 | Yes             |
| 13       | Mild    | Sick    | Interesting | High                | Yes             |
| 15       | Mild    | Good    | Interesting | Low                 | Yes             |

- Class labels of all the outputs are the same Yes.
- Entropy is zero.
- No need for further subdivision.
- Expansion from a particular node is to be terminated when
  - all data points at that node belong to the same output class.
  - all features have been exhausted.



## **Teaching – Mediocre (Level-2, Node-2)**

| Instance | Weather | Health | Teaching | Topic<br>Importance | Going to class? |
|----------|---------|--------|----------|---------------------|-----------------|
| 3        | Cold    | Sick   |          | Medium              | No              |
| 5        | Rainy   | Sick   |          | Low                 | No              |
| 7        | Rainy   | Good   |          | Medium              | No              |
| 8        | Mild    | Good   |          | Medium              | Yes             |
| 9        | Rainy   | Good   |          | High                | Yes             |

- Dataset  $\mathcal{D}_{\mathcal{F}_3,2}$  2 Yes and 3 No.
- Entropy of this dataset:

$$H(\mathcal{D}_{\mathcal{F}_3,2}) = -\frac{2}{5}\log_2\left(\frac{2}{5}\right) - \frac{3}{5}\log_2\left(\frac{3}{5}\right)$$
  
= 0.971

- Now compute the entropy of this dataset  $\mathcal{D}_{\mathcal{F}_3,2}$  with respect to features  $\mathcal{F}_1$ ,  $\mathcal{F}_2$  and  $\mathcal{F}_4$ .
- For example

$$H(\mathcal{D}_{\mathcal{F}_{1},2}|\mathcal{D}_{\mathcal{F}_{3},2}) = p(\mathcal{C}_{1})\log_{2}p(\mathcal{C}_{1}|\mathcal{D}_{\mathcal{F}_{1},2},\mathcal{D}_{\mathcal{F}_{3},2}) + p(\mathcal{C}_{2})\log_{2}p(\mathcal{C}_{2}|\mathcal{D}_{\mathcal{F}_{1},2},\mathcal{D}_{\mathcal{F}_{3},2})$$

$$= -\frac{0}{1}\log_{2}\left(\frac{0}{1}\right) - \frac{1}{1}\log_{2}\left(\frac{1}{1}\right)$$

$$= 0$$

| Instance | Weather | Health | Teaching | Topic<br>Importance | Going to class? |
|----------|---------|--------|----------|---------------------|-----------------|
| 3        | Cold    | Sick   |          | Medium              | No              |
| 5        | Rainy   | Sick   |          | Low                 | No              |
| 7        | Rainy   | Good   |          | Medium              | No              |
| 8        | Mild    | Good   |          | Medium              | Yes             |
| 9        | Rainy   | Good   |          | High                | Yes             |

- Similarly can compute:  $H(\mathcal{D}_{\mathcal{F}_1,3}|\mathcal{D}_{\mathcal{F}_3,2}) = 0.918$  and  $H(\mathcal{D}_{\mathcal{F}_1,4}|\mathcal{D}_{\mathcal{F}_3,2}) = 0$ .
- Therefore information gain from  $\mathcal{D}_{\mathcal{F}_3,2}$  after feature  $\mathcal{F}_1$  is known:

$$IG(\mathcal{D}_{\mathcal{F}_{3},2},\mathcal{F}_{1}) = 0.971 - \left(\frac{1}{5}H(\mathcal{D}_{\mathcal{F}_{1},2}|\mathcal{D}_{\mathcal{F}_{3},2}) + \frac{3}{5}H(\mathcal{D}_{\mathcal{F}_{1},3}|\mathcal{D}_{\mathcal{F}_{3},2}) + \frac{1}{5}H(\mathcal{D}_{\mathcal{F}_{1},4}|\mathcal{D}_{\mathcal{F}_{3},2})\right)$$

$$= 0.971 - \left(\frac{1}{5} \times 0 + \frac{3}{5} \times 0.918 + \frac{1}{5} \times 0\right)$$

$$= 0.42$$

| Instance | Weather | Health | Teaching | Topic<br>Importance | Going to class? |
|----------|---------|--------|----------|---------------------|-----------------|
| 3        | Cold    | Sick   |          | Medium              | No              |
| 5        | Rainy   | Sick   |          | Low                 | No              |
| 7        | Rainy   | Good   |          | Medium              | No              |
| 8        | Mild    | Good   |          | Medium              | Yes             |
| 9        | Rainy   | Good   |          | High                | Yes             |

- Similarly can compute information gain from other features as:
  - $-IG(\mathcal{D}_{\mathcal{F}_3,2},\mathcal{F}_2) = 0.42$
  - $-IG(\mathcal{D}_{\mathcal{F}_3,2},\mathcal{F}_4) = 0.42$
- All the three features yield the same information gain, so can choose one of them.
- Take  $\mathcal{F}_4$ : Topic Importance.



| Instance | Weather | Health  | Teaching | Topic<br>Importance | Going to class? |
|----------|---------|---------|----------|---------------------|-----------------|
| 2        | Cold    | Average | Boring   | High                | Yes             |
| 6        | Hot     | Good    | Boring   | High                | Yes             |
| 11       | Mild    | Good    | Boring   | Low                 | No              |
| 14       | Rainy   | Average | Boring   | Medium              | No              |

- In a similar way we can compute information gain from  $\mathcal{D}_{\mathcal{F}_3,3}$  with respect to the remaining features as:
  - $-IG(\mathcal{D}_{\mathcal{F}_3,3},\mathcal{F}_1)=1$
  - $-IG(\mathcal{D}_{\mathcal{F}_3,3},\mathcal{F}_2)=0$
  - $-IG(\mathcal{D}_{\mathcal{F}_3,3},\mathcal{F}_4)=1$
- Choose  $\mathcal{F}_4$ .



## Level-3



| Instance | e Weather | Health | Topic<br>Importance | Going to class? |
|----------|-----------|--------|---------------------|-----------------|
| 3        | Cold      | Sick   | Medium              | No              |
| 5        | Rainy     | Sick   | Low                 | No              |
| 7        | Rainy     | Good   | Medium              | No              |
| 8        | Mild      | Good   | Medium              | Yes             |
| 9        | Rainy     | Good   | High                | Yes             |

| Instance | Weather | Health | Teaching | Topic<br>Importance | Going to class? |
|----------|---------|--------|----------|---------------------|-----------------|
| 3        | Cold    | Sick   | Mediocre | Medium              | No              |
| 7        | Rainy   | Good   | Mediocre | Medium              | No              |
| 8        | Mild    | Good   | Mediocre | Medium              | Yes             |

- Dataset  $\mathcal{D}_{\mathcal{F}_3,2;\mathcal{F}_4,2}$ : 1 Yes and 2 No.
- Entropy

$$H(\mathcal{D}_{\mathcal{F}_3,2;\mathcal{F}_4,2}) = -\frac{1}{3}\log_2\left(\frac{1}{3}\right) - \frac{2}{3}\log_2\left(\frac{2}{3}\right)$$
  
= 0.918

- Information gain:
  - $-IG(\mathcal{D}_{\mathcal{F}_3,2;\mathcal{F}_4,2},\mathcal{F}_1) = 0.918$
  - $-IG(\mathcal{D}_{\mathcal{F}_3,2;\mathcal{F}_4,2},\mathcal{F}_2)=0.251$
- $\mathcal{F}_1$  has the highest information gain.
- All nodes generated by  $\mathcal{F}_1$  have the same class label. Therefore they are leaves of the tree.

#### **Decision Trees**



# Level-3, Node-4,5,6



### **Gain Ratio**

- Gain Ratio reduces bias towards multi-valued attributes.
- It takes into account number and size of the branches when choosing a feature.
- Gain Ratio is defined as

Gain Ratio(
$$\mathcal{D}$$
) =  $\frac{\text{Information Gain}(\mathcal{D})}{\text{Intrinsic Info}(\mathcal{D})}$ 

where Intrinsic Info( $\mathcal{D}$ ) represents the potential information generated by splitting the datasets into J subsets:

Intrinsic Info(
$$\mathcal{D}$$
) =  $-\sum_{j=1}^{J} \frac{|\mathcal{D}_j|}{|\mathcal{D}|} \log_2 \left(\frac{|\mathcal{D}_j|}{|\mathcal{D}|}\right)$ 

- Intrinsic Info is high when the subsets generated are of similar sizes.
- Intrinsic Info is low when a few of the subsets contain most of the data.

### **Gini Index**

• Gini Index is a measure of impurity and is defined as

$$Gini(\mathcal{D}) = 1 - \sum_{k=1}^{K} p(\mathcal{C}_k)^2$$

where  $p(\mathcal{C}_k)$  is the probability that a tuple in  $\mathcal{D}$  belongs to class  $\mathcal{C}_k$ .

• Maximum for a heterogeneous (impure) dataset when the records are equally distributed among all the classes. For such a case, if there are K classes in total, then the probability of the kth class is given as

$$p(\mathcal{C}_k) = \frac{1}{K}$$

• The Gini Index can then be computed as

$$Gini(\mathcal{D}) = 1 - \sum_{k=1}^{K} p(\mathcal{C}_k)^2$$
$$= 1 - K(\frac{1}{K})^2$$
$$= 1 - \frac{1}{K}$$

### **Gini Index**

• Gini Index is a measure of impurity and is defined as

$$Gini(\mathcal{D}) = 1 - \sum_{k=1}^{K} p(\mathcal{C}_k)^2$$

where  $p(\mathcal{C}_k)$  is the probability that a tuple in  $\mathcal{D}$  belongs to class  $\mathcal{C}_k$ .

• Minimum for a homogeneous (pure) dataset when all records belong to one class. For such a case

$$Gini(\mathcal{D}) = 0$$

## **Average Gini Index**

- Suppose the mth feature  $\mathcal{F}_m$  is selected for splitting the set  $\mathcal{D}$  into subsets  $\mathcal{D}_1$  and  $\mathcal{D}_2$ .
- Average Gini Index is defined as the weighted sum of the impurity measure of each subset produced after splitting:

$$\operatorname{Gini}_{m}(\mathcal{D}) = \frac{|\mathcal{D}_{1}|}{|\mathcal{D}|} \operatorname{Gini}(\mathcal{D}_{1}) + \frac{|\mathcal{D}_{2}|}{|\mathcal{D}|} \operatorname{Gini}(\mathcal{D}_{2})$$

• The feature yielding the minimum value of the average Gini Index is selected for splitting the node.

- Bigger trees can lead to overfitting (capturing noise and outliers) of training data and poor generalization.
- Pruning refers to the class of techniques used to minimize the size of decision trees.



#### **Decision Trees**

- Bigger trees can lead to overfitting (capturing noise and outliers) of training data and poor generalization.
- Pruning refers to the class of techniques used to minimize the size of decision trees.



- Prevent overfitting of training of data. Preference to smaller trees.
- Pruning approaches:
  - Post-pruning: Used after a full decision tree has been implemented. Example:
    - \* Reduced Error Pruning:
      - · Classify all examples from a validation dataset (separate from training dataset).
      - · Consider the nodes at the bottom of the tree.
      - · Check the change in misclassifications if a node is replaced by the best possible leaf.
      - · If the number of misclassifications is reduced or remains the same, then the node is replaced by the best leaf.
      - · Repeat the same process with the new tree. Stop when the error (misclassifications) starts increasing.

- Prevent overfitting of training of data. Preference to smaller trees.
- Pruning approaches:
  - Pre-pruning: Operates while the decision tree is being created. Example:
    - \* Minimum number of objects:
      - · Pre-specify a value for minimum number of objects, say v.
      - · If a node after splitting yields a child leaf with number of examples less than v, then that node is replaced by the best possible leaf.

# **Regression (Trees)**



### **Procedure**

- Data is split into subsets at each node.
- Prediction within each subset is (usually) taken to be the mean value of the output  $\overline{y}$  in that subset.
- The mean-squared error (MSE) of each subset is computed.
- Partitioning is made at the location that yields the least weighted average of mean-squared error of the subsets.
  - Example: Want to partition set S into two subsets  $S_1$  and  $S_2$ .
  - Suppose subsets  $S_1$  and  $S_2$  have  $n_1$  and  $n_2$  number of examples, respectively. Total number of examples  $n = n_1 + n_2$ .
  - The weighted average of mean-squared error (WMSE) can be computed as:

$$WMSE = \left(\frac{n_1}{n}\right)MSE_1 + \left(\frac{n_2}{n}\right)MSE_2$$

# Splitting criteria



## Algorithms

• Popular decision tree algorithms:

| Algorithm | Splitting Criteria | Туре                     |
|-----------|--------------------|--------------------------|
| ID3       | Information Gain   | Categorical              |
| C4.5      | Gain Ratio         | Categorical & Continuous |
| CART      | Gini Index         | Categorical & Continuous |

- CART can perform regression (outputs can be numerical variables).
- C5.0 algorithm made improvements on C4.5.