Portfolio Data Analytics 1st

# San Francisco Bikeshare Trip Insight

TAKEN FROM CASE STUDY RevoU Mini Course - Data Analytics

DHEA AMALIA LUTFIANI

(7 FEB - 18 FEB)

## **Case Study Instructions**

#### **QUESTION**

#### Table of interest:

'bigquery-public-data.san\_francisco\_bikeshare.bikeshare\_trips'

- 1. Look at this data and start thinking. List down 3 trends/points that you want to show.
- 2. From here, try to explore the data and make changes, filter, and prepare the data that you need.
- 3. Create some visualizations or dashboard with the best type of chart you have learned.

  The easiest is with Google Data Studio or Google Sheets.
- 4. Then, make 1-2 slides from the Graphs with the insights you got to present your findingsto the stakeholders (read this article from HBR)

# Preview Data

### Schema from the Dataset :

| Field name              | Туре      | Mode     | Collation | Policy Tags 2 | Description                                                                                                  |
|-------------------------|-----------|----------|-----------|---------------|--------------------------------------------------------------------------------------------------------------|
| trip_id                 | STRING    | REQUIRED |           |               | Numeric ID of bike trip                                                                                      |
| duration_sec            | INTEGER   | NULLABLE |           |               | Time of trip in seconds                                                                                      |
| start_date              | TIMESTAMP | NULLABLE |           |               | Start date of trip with date and time, in PST                                                                |
| start_station_name      | STRING    | NULLABLE |           |               | Station name of start station                                                                                |
| start_station_id        | INTEGER   | NULLABLE |           |               | Numeric reference for start station                                                                          |
| end_date                | TIMESTAMP | NULLABLE |           |               | End date of trip with date and time, in PST                                                                  |
| end_station_name        | STRING    | NULLABLE |           |               | Station name for end station                                                                                 |
| end_station_id          | INTEGER   | NULLABLE |           |               | Numeric reference for end station                                                                            |
| bike_number             | INTEGER   | NULLABLE |           |               | ID of bike used                                                                                              |
| zip_code                | STRING    | NULLABLE |           |               | Home zip code of subscriber (customers can choose to manually enter zip at kiosk however data is unreliable) |
| subscriber_type         | STRING    | NULLABLE |           |               | Subscriber = annual or 30-day member; Customer = 24-hour or 3-day member                                     |
| c_subscription_type     | STRING    | NULLABLE |           |               |                                                                                                              |
| start_station_latitude  | FLOAT     | NULLABLE |           |               |                                                                                                              |
| start_station_longitude | FLOAT     | NULLABLE |           |               |                                                                                                              |
| end_station_latitude    | FLOAT     | NULLABLE |           |               |                                                                                                              |
| end_station_longitude   | FLOAT     | NULLABLE |           |               |                                                                                                              |
| member_birth_year       | INTEGER   | NULLABLE |           |               |                                                                                                              |
| member_gender           | STRING    | NULLABLE |           |               |                                                                                                              |

## **Preview Data**

#### Schema from the Dataset:

| bike_share_for_all_trip | STRING    | NULLABLE |
|-------------------------|-----------|----------|
| start_station_geom      | GEOGRAPHY | NULLABLE |
| end_station_geom        | GEOGRAPHY | NULLABLE |

From this data preview, we can find out the description of each column and know which columns can be used to answer problems or which columns can be useful for finding new insights.

# Preview Data

## Preview the Data:

| Row | trip_id           | duration_sec | start_date              | start_station_name            | start_station_id | end_date                | end_station_name | end_station_id | bike_number | zip_code | subscriber_type |
|-----|-------------------|--------------|-------------------------|-------------------------------|------------------|-------------------------|------------------|----------------|-------------|----------|-----------------|
| 1   | 4420151206105200  | 5780         | 2015-12-06 10:52:00 UTC | Mezes                         | 83               | 2015-12-06 12:28:00 UTC | Mezes            | 83             | 44          | 94064    | Customer        |
| 2   | 65020151013190200 | 255          | 2015-10-13 19:02:00 UTC | Mezes                         | 83               | 2015-10-13 19:07:00 UTC | Mezes            | 83             | 650         | 94063    | Subscriber      |
| 3   | 5220160303220000  | 1377         | 2016-03-03 22:00:00 UTC | Redwood City Public Library   | 24               | 2016-03-03 22:23:00 UTC | Mezes            | 83             | 52          | 94063    | Customer        |
| 4   | 12120151024142000 | 422          | 2015-10-24 14:20:00 UTC | Redwood City Public Library   | 24               | 2015-10-24 14:27:00 UTC | Mezes            | 83             | 121         | 94063    | Subscriber      |
| 5   | 12720160218173400 | 341          | 2016-02-18 17:34:00 UTC | Redwood City Caltrain Station | 22               | 2016-02-18 17:40:00 UTC | Mezes            | 83             | 127         | 94063    | Subscriber      |
| 6   | 8420151214180800  | 256          | 2015-12-14 18:08:00 UTC | Redwood City Caltrain Station | 22               | 2015-12-14 18:12:00 UTC | Mezes            | 83             | 84          | 94063    | Subscriber      |
| 7   | 57720160201180900 | 266          | 2016-02-01 18:09:00 UTC | Redwood City Caltrain Station | 22               | 2016-02-01 18:13:00 UTC | Mezes            | 83             | 577         | 94063    | Subscriber      |
| 8   | 57720160326111200 | 3951         | 2016-03-26 11:12:00 UTC | Redwood City Caltrain Station | 22               | 2016-03-26 12:18:00 UTC | Mezes            | 83             | 577         | 94117    | Customer        |
| 9   | 64220160414170700 | 256          | 2016-04-14 17:07:00 UTC | Redwood City Caltrain Station | 22               | 2016-04-14 17:11:00 UTC | Mezes            | 83             | 642         | 94063    | Subscriber      |
| 10  | 6420160509173100  | 326          | 2016-05-09 17:31:00 UTC | Redwood City Caltrain Station | 22               | 2016-05-09 17:37:00 UTC | Mezes            | 83             | 64          | 94063    | Subscriber      |

| Row                        | c_subscription_type           | start_station_latitude        | start_station_longitude       | end_station_latitude          | end_station_longitude         | member_birth_year             | member_gender                 | bike_share_for_all_trip       | start_station_geom            | end_station_geom              |
|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| 1                          | null                          |
| 2                          | null                          |
| 3                          | null                          |
| 4                          | null                          |
| 5                          | null                          |
| 6                          | null                          |
| 7                          | null                          |
| 8                          | null                          |
| 9                          | null                          |
| 10                         | null                          |
| 3<br>4<br>5<br>6<br>7<br>8 | null null null null null null |

## **Defining Question**

List down trends/points that you want to show :

- 1. Number of trips per month
- 2. Average duration of the trips per month
- 3. The monthly trend of the total trips and the average of duration time
- 4. Who are the most enthusiasts or renters of this San Francisco bikeshare? (Male or Female)
- 5. From which customers do we get more revenue? (from subscriber or customer)

## **Exploring Data**

## Include SQL with BigQuery

- There are 2 queries used in this project.
   The first query is to answer problem questions for numbers 1 and 2.
   And the second query is to answer other problems, namely problems number 3, 4, and 5.
- Why are these two queries separated?
   Because I personally want to answer the first and second problems in the entire span of time. This is done in order to see what happened and how the picture or outline of the company's situation.
   And to answer another problem, I use a more specific time, starting in 2017.
  - Why did I choose this range?
  - Will be answered in the second probem later.

# **Exploring Data**

## Include SQL with BigQuery

## 1. First Query

```
1 SELECT trip_id,
2    duration_sec,
3    start_date,
4    start_station_id,
5    start_station_name,
6    subscriber_type,
7    member_gender
8 FROM `bigquery-public-data.san_francisco_bikeshare.bikeshare_trips`
```

#### And the result:

| Que                     | Query results     |              |                        |             |                  |                         |                 |               |  |  |
|-------------------------|-------------------|--------------|------------------------|-------------|------------------|-------------------------|-----------------|---------------|--|--|
| JOB INFORMATION RESULTS |                   | JSON         | ISON EXECUTION DETAILS |             |                  |                         |                 |               |  |  |
| Row                     | trip_id           | duration_sec | start_date             |             | start_station_id | start_station_name      | subscriber_type | member_gender |  |  |
| 1                       | 15520160318103300 | 6032         | 2016-03-18 1           | 0:33:00 UTC | 83               | Mezes                   | Customer        | null          |  |  |
| 2                       | 17420160223122500 | 801          | 2016-02-23 1           | 2:25:00 UTC | 83               | Mezes                   | Customer        | null          |  |  |
| 3                       | 20820160318103300 | 6079         | 2016-03-18 1           | 0:33:00 UTC | 83               | Mezes                   | Customer        | null          |  |  |
| 4                       | 65320150924172200 | 2618         | 2015-09-241            | 7:22:00 UTC | 83               | Mezes                   | Customer        | null          |  |  |
| 5                       | 15720150926125700 | 1008         | 2015-09-26 1           | 2:57:00 UTC | 83               | Mezes                   | Subscriber      | null          |  |  |
| 6                       | 4420151206105200  | 5780         | 2015-12-06 1           | 0:52:00 UTC | 83               | Mezes                   | Customer        | null          |  |  |
| 7                       | 24620160214052500 | 1021         | 2016-02-14 (           | 5:25:00 UTC | 26               | Kaiser Hospital         | Subscriber      | null          |  |  |
| 8                       | 65020151005164100 | 587          | 2015-10-05 1           | 6:41:00 UTC | 21               | Sequoia Hospital        | Subscriber      | null          |  |  |
| 9                       | 17420160223120000 | 1334         | 2016-02-23 1           | 2:00:00 UTC | 23               | San Mateo County Center | Customer        | null          |  |  |
| 10                      | 14920151225131700 | 1113         | 2015-12-25 1           | 3:17:00 UTC | 23               | San Mateo County Center | Subscriber      | null          |  |  |

# **Exploring Data**

## Include SQL with BigQuery

## 2. Second Query

```
1 SELECT trip_id,
2    duration_sec,
3    start_date,
4    start_station_id,
5    start_station_name,
6    subscriber_type,
7    member_gender
8 FROM _bigquery-public-data.san_francisco_bikeshare.bikeshare_trips`
9 WHERE start_date > '2017-01-01'
```

#### And the result:

| Qu  | Query results                                  |              |                         |                  |                    |                 |               |  |  |  |
|-----|------------------------------------------------|--------------|-------------------------|------------------|--------------------|-----------------|---------------|--|--|--|
| JOB | JOB INFORMATION RESULTS JSON EXECUTION DETAILS |              |                         |                  |                    |                 |               |  |  |  |
| Row | trip_id                                        | duration_sec | start_date              | start_station_id | start_station_name | subscriber_type | member_gender |  |  |  |
| 1   | 11772018012512354700                           | 1289         | 2018-01-25 12:35:47 UTC | 198              | Snow Park          | Customer        | Male          |  |  |  |
| 2   | 35082017122611364600                           | 2014         | 2017-12-26 11:36:46 UTC | 198              | Snow Park          | Subscriber      | Male          |  |  |  |
| 3   | 18072017112013471000                           | 2032         | 2017-11-20 13:47:10 UTC | 198              | Snow Park          | Subscriber      | Male          |  |  |  |
| 4   | 4962017072412014500                            | 1401         | 2017-07-24 12:01:45 UTC | 198              | Snow Park          | Subscriber      | Male          |  |  |  |
| 5   | 1102017112113071300                            | 2147         | 2017-11-21 13:07:13 UTC | 198              | Snow Park          | Subscriber      | Male          |  |  |  |
| 6   | 11022018012513063900                           | 1537         | 2018-01-25 13:06:39 UTC | 198              | Snow Park          | Subscriber      | Female        |  |  |  |
| 7   | 13892017102016295800                           | 3744         | 2017-10-20 16:29:58 UTC | 198              | Snow Park          | Customer        | null          |  |  |  |
| 8   | 9632017102215414300                            | 6242         | 2017-10-22 15:41:43 UTC | 198              | Snow Park          | Customer        | Female        |  |  |  |

#### 1. Number of trips per month



This diagram shows the number of trips per month at each station. We can say that:

- Where Market at Sansome station has the highest number of trips per month than any other station.
- Every year in the end of the year, the users of this San Francisco bikeshare service are decreasing.
- And in October 2014, had the most number of trips.

2. Average duration of the trips per month

This chart shows the average duration of bikeshare usage/borrowing (grouped by gender). However, it can be seen that:

- The implementation of this gender grouping started in June 2017.
- From Sept 2016 to May 2017 no data was recorded.
- And the highest average duration of the trips per month occurred in July 2017



3. The monthly trend of the total trips and the average of duration time (after re-open the bikeshare)



- Means that for a large number of trips, it is not necessarily a lot of time spent on bikeshare for each trip.
- Where in the diagram it can be seen that the trend in the number of trips from the beginning of the bikeshare reopening until April 2018 tends to increase but for the average duration of use of this bikeshare, it tends to decrease.
- Which means the number of trips is a lot but the use is only for a short time.

4. Who are the most enthusiasts or renters of this San Francisco bikeshare? (Male or Female)



- In this section we can focus on the data starting in 2017, because in this data there is already a gender distinction between male and female and we can find more detailed insight.
- From the diagram below, it can be seen that the most users of bikeshare are male.
- Which reaches more than half the number of service users each month.
- And it is undeniable that there are still service users who do not want to provide information about their gender.

5. From which customers do we get more revenue? (from subscriber or customer)



From the diagram below, it can be seen that:

- We got more revenue from subscriber.
- Which is a customer segment that becomes a monthly or annual member who has a longer period.

# THANK YOU

## **DHEA AMALIA LUTFIANI**

(7 FEB - 18 FEB)