CS499 Homework 9

Intersteller

Exercise 9.1

We define $f_1:\mathbb{N}\to\mathbb{N}$

$$f_1(0) = 0, f_1(1) = 1, \dots, f_1(n) = n.$$

We define $f_2: \mathbb{N} \to \mathbb{N}^2$ based on this graph:

	0	/	2	う	4	5	13.4
0	(0,0)	(0-1)	(0,2)	(°,3)	(0,4)	(0,5)	11)
1	(1,0)	(1/1)	(1/2)	(ルう)	(h4)	(1,5)	111
2	(2)0)	(۱۱رم)	(2,2)	(2,3)	(2,4)	(2,5)	111
3	(3.0)	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	eu.
į	Ē,	Ę	Ę	÷	ε.	1.11	.,,

Figure 1:

$$f_2(0) = (0,0), f_2(1) = (0,1), f_2(2) = (1,0) \cdots$$

We define $f_3: \mathbb{N} \to \mathbb{N}^3$ based on this graph:

	0	/	2	3	4	5	13.3
£(0)=(0,0)	(0,0,0)	(0,0,1)	(9,0,2)	(0,0,3)	(0,0,4)	(0,0,5)	(1)
f _{2(1)=(0,1)}	(0,1,0)	(1,1,0)	(2/1/2)	(6,1,0)	(0,1,4)	(O.1,5)	ruj.
f=(2)=(1,0)	(1,0,0)	(101)	(پسره دا)	(1,0/3)	(104)	(1,0,5)	111
£ (3)=(2,0)	(100,0)	(,0,1)	(2,0,2)	(جرەر2)	(2,0,4)	(2,0,5)	(1)
:	į.	Ę	12.5	Ę	Ē	1.11	.,

Figure 2:

$$f_2(0) = (0,0,0), f_2(1) = (0,0,1), f_2(2) = (0,1,0) \cdots$$

And so on, we can define $f_k, k \in \mathbb{N}$. Now we can define a bijection $\mathbb{N} \to \mathbb{N}^*$ base on this graph:

	0	/	2	3	4	5	11.1
f,	f,(0)	f (1)	f(2)	fico	f,(4)	f,(5)	NI)
f ₂	f. (0)	f_(1)	f.(2)	f_(3,)	f.(4)	£(5)	щ
	f3(0)	f_(1)	f3(2)	f3(3)	f3(4)	f ₃ (5)	11/
-f4	f4(0)	f4(1)	£(2)	£()	f4(4)	<i>f</i> ₄ (5)	(1)
:	-	***	E	<i>m,</i>	1111	6.7	'',

Figure 3:

We have $0 \to \{\in\}$, $1 \to f_1(0)$, $2 \to f_1(1)$, $3 \to f_2(0) \cdots$. This is a bijection $N \to N*$.

Exercise 9.2

We can define a bijection from $\{0,1\}^{\mathbb{N}}$ to $\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$ as follows. Given $A=(a_1a_2a_3a_4\cdots,b_1b_2b_3b_4\cdots)$, we define $f(A)=a_1b_1a_2b_2a_3b_3a_4b_4\cdots$. To be more precisely,

$$f(A)[i] = \begin{cases} A[1][\frac{i+1}{2}], \ i \ is \ odd \ number \\ A[2][\frac{i}{2}], \ i \ is \ even \ number \end{cases}$$

Obviously, for each $A \in \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$, there is only one $f(A) \in \{0,1\}^{\mathbb{N}}$. For each $B \in \{0,1\}^{\mathbb{N}}$, there is only one $B = f^{-1}(B) \in \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$. Therefore, f is a bijection and $\{0,1\}^{\mathbb{N}} \cong \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$. Using the fact that $\mathbb{R} \cong \{0,1\}^{\mathbb{N}}$, we can get $\mathbb{R} \cong \mathbb{R} \times \mathbb{R}$.

Exercies 9.3

We use the Cantor's method to proove that. For any $A \in (\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$, we define that f(A) is the $\{0,1\}^{\mathbb{N}}$ sequence we get by following the blue line as follows.

Figure 4:

It is obvious that for any $B \in \{0,1\}^{\mathbb{N}}$, we can get to $f^{-1} \in (\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$ by writing it down following the blue line. Therefore, f is a bijection and $\{0,1\}^{\mathbb{N}} \cong (\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$. Using the fact that $\mathbb{R} \cong \{0,1\}^{\mathbb{N}}$, we can get $\mathbb{R} \cong \mathbb{R}^{\mathbb{N}}$.

Exercise 9.4

We can form a bijection from \mathcal{F} to $\mathbb{R}^{\mathbb{N}}$ as follows. For $\forall f \in \mathcal{F}$, we can determine it solely if and only if we know f(q) for $\forall q \in \mathbb{Q}$. Since \mathbb{Q} is countable, we can list \mathbb{Q} as a sequence of $q_0, q_1, q_2, ..., q_n, ...$ Thus we can determine f if and only if we know the sequence $f(q_0), f(q_1), ..., f(q_n), ...$ And $f(q_i) \in \mathbb{R}$ where $i \in \mathbb{N}$, so we can form a bijection from \mathcal{F} to $\mathbb{R}^{\mathbb{N}}$. Thus, we have $\mathcal{F} \cong \mathbb{R}^{\mathbb{N}}$. According to **Exercise 9.3**, $\mathbb{R} \cong \mathbb{R}^{\mathbb{N}}$. Therefore, we have $\mathcal{F} \cong \mathbb{R}^{\mathbb{N}} \cong \mathbb{R}$.

Exercise 9.5

 $000\cdots,100\cdots,1100\cdots,11100\cdots$ According to this rule, the first n bits of the n^{th} sequence are 1, and the remaining bits are 0. Obviously, these sequences constitute a countably infinite chain.

Exercise 9.6

 $100\cdots,0100\cdots,00100\cdots,000100\cdots$ According to this rule, the n^{th} bit of the n^{th} sequence is 1, and the remaining bits are 0. Obviously, these sequences constitute a countably infinite antichain.

Notion: In the following part, we denote the i^{th} digit of a sequence X as x_i .

Exercise 9.7

```
\forall S \in \{0,1\}^{\mathbb{N}}, define f(S) = T as follows.
```

If $s_k = 0$, then $t_{2k-1} := 0$, $t_{2k} := 1$.

If $s_k = 1$, then $t_{2k-1} := 1$, $t_{2k} := 0$.

For example:

$$S = 1011010......$$

$$f(S) = 10,01,10,10,01,10,01,.....$$

Let $A = \{f(S) | \forall S \in \{0,1\}^{\mathbb{N}}\}$. Obviously, f is a bijection from $\{0,1\}^{\mathbb{N}}$ to A. $A \cong \{0,1\}^{\mathbb{N}}$ is uncountable. Also, $\forall T_a, T_b \in A$ is not comparable since "01" and "10" is not comparable. Thus, A is an required antichain.

Exercise 9.8

 $\forall S \in \{0,1\}^{\mathbb{N}}$, define f(S) = T as follows.

Consider the sequence consisting of the first k digits in S $s_{1:k}$ as a binary number a_k . Let $t_{(2^k+1):(2^k+a_k)}:=1$, $t_{(2^k+a_k+1):(2^{k+1})}:=0$. Specially, we define that the first 2 digits of T are always 0.

For example:

$$s = 1011.....$$

Let $A = \{f(S) | \forall S \in \{0,1\}^{\mathbb{N}}\}$. Obviously, f is a bijection from $\{0,1\}^{\mathbb{N}}$ to A. $A \cong \{0,1\}^{\mathbb{N}}$ is uncountable. Also, $\forall T_a, T_b \in A$ is comparable for the following reason.

 $\forall T_a, T_b \in A, \ T_a \neq T_b$, assume $f^{-1}(T_a) = S_a, \ f^{-1}(T_b) = S_b$. Assume that the first different digit of S_a and S_b is the k^{th} digit and the k^{th} digit of S_a is 1. Then, $\forall m \geq k$, the binary number consisting of the first m digit of S_a is larger than that of S_b , which leads to the fact that T_a is "greater" than T_b . Thus, A is the required chain.

Exercise 9.9

 $\forall S \in \{0,1\}^{\mathbb{N}}$, define f(S) = T as follows.

$$t_n = \sum_{i=1}^{n} (s_i + 1)3^{i-1}, \ n \in \mathbb{N}^*$$

Let
$$X = \{ f(S) | \forall S \in \{0, 1\}^{\mathbb{N}} \}.$$

Therefore, f is a bijection from $\{0,1\}^{\mathbb{N}}$ to X. $X \cong \{0,1\}^{\mathbb{N}}$ is uncountable. And f(S) is an infinite subset of \mathbb{N} . Whenever distinct $x,y\in X(x=\{x_1,x_2,\ldots\})$, suppose $m=f^{-1}(x), n=f^{-1}(y)$ and assume the first different digit between m and n is the k^{th} digit. Then $x\cap y=\{x_1,x_2,x_3,\cdots,x_{k-1}\}$, which is finite.

Question

How to prove that $\mathbb{R} \ncong 2^{\mathbb{R}}$.