Frekans Filtreleme

Frequency Filtering

FT'nin konvolüsyon özelliği

Let functions f(r,c) and g(r,c) have Fourier Transforms F(u,v) and G(u,v). Then,

$$\mathbf{F}\{f * g\} = F \cdot G.$$

Moreover,

$$\mathbf{F}\{f\cdot g\} = F*G.$$

* = konvolüsyon
· = carnma

Bir konvolüsyonun FT si FT lerin çarpımına eşit.

Renkli görüntülerde, bu işlem her bir bant için ayrı yapılmalı.

Matlab: FT ile konvolüsyon

```
1.
      Görüntüyü oku, I.
2.
      Maskeyi hazırla, h (5x5).
                                Maske genellikle tek banttır
3.
      Maske toplamini hesapla: s = sum(sum(h));
4.
     If s == 0, set s = 1;
5.
     H = zeros(size(I));
6.
      h maskesini H'in ortasına kopyala
7.
      H' kaydır. H = ifftshift(H);
8.
      I ve H'ın FFTsini hesapla: FI=fft2(I); FH=fft2(H);
9.
      Noktasal çarpımı yap: FJ=FI.*FH;
10.
      Ters FT'yi hesapla: J = real(ifft2(FJ));
      Sonucu normalize et: J = uint8(J/s);
11.
```

FFT'nin koordinat merkezi

merkez= (floor(*R*/2)+1, floor(*C*/2)+1)

Matlabda fftshift ve ifftshift

```
J = \text{fftshift}(I):
I(1,1) \rightarrow J(\lfloor R/2 \rfloor + 1, \lfloor C/2 \rfloor + 1)
I = \text{ifftshift}(J):
J(\lfloor R/2 \rfloor + 1, \lfloor C/2 \rfloor + 1) \rightarrow I(1,1)
```

[x] = floor(x) = x den daha küçük en büyük tamsayı

Bulanıklaşma: Ortalama / Düşük Geçiren Filtre

Bulanıklaşma kaynaklanır:

- Uzaysal alanda piksel ortalamasından
 - Her bir çıkış pikseli komşuların ağırlıklandırılmış bir ortalamasına sahiptir.
 - Ağırlık matrisin toplamı birdir ve yapılan bir konvolüsyon işlemidir.
- Frekans alanında düşük geçiren filtre:
 - Yüksek frekanslar elimine edilir.
 - Bağımsız frekans bileşenleri ω'nin artış olmayan bir fonksiyonla çarpılmasıyla. $1/ω = 1/\sqrt{(u^2+v^2)}$.

Keskinleştirme: Çıkarım / Yüksek Geçiren Filtre

Keskinleştirme görüntüye bir kopyasının eklenmesiyle olur ki, bu kopya

- Uzaysal alanda piksel fark
 - Her bir çıkış pikseli, kendisi ve komşularının ağırlıklandırılmış bir ortalamasının farkına eşittir.
 - Ağırlık matrisinin toplamı sıfırdır ve yapılan işlem bir konvolüsyondur.
- Frekans alanında yüksek geçiren filtre:
 - Yüksek frekanslar güçlendirilir veya iyileştirilir.
 - Bağımsız frekans bileşenleri ω'nun artan bir fonksiyonuyla çarpılır. $\alpha \omega = \alpha \sqrt{(u^2+v^2)}$, burada α sabittir.

Hatırlayalım ki:

FT'nin konvolüsyon özelliği

Let functions f(r,c) and g(r,c) have Fourier Transforms F(u,v) and G(u,v). Then,

$$\mathbf{F}\{f*g\} = F \cdot G.$$

Moreover,

$$\mathsf{F}\{f\cdot g\} = F * G.$$

Thus we can compute f*g by

$$f*g = \mathbf{F}^{-1}\{F \cdot G\}.$$

* = konvolüsyon · = carpma

Bir konvolüsyonun FT si FT lerin çarpımına eşit.

İdeal Düşük Geçiren Filtre

FT sunumu

Görüntü: 512x512 FD filtre çapı: 16

Merkez profili

İdeal Düşük Geçiren Filtre

Görüntü: 512x512 FD filtre çapı: 8

Merkez profili

Güç spektrumu ve Faz

Güç spektrumu

Faz

İdeal Düşük Geçiren Filtre

Güç spektrumu

Görüntü: 512x512 FD filtre çapı: 16

FD'de Ideal LPF

İdeal Düşük Geçiren Filtre

Filtrelenmiş Görüntü

Filtrelenmiş PS

Görüntü: 512x512 FD filtre çapı: 16

Orijinal Görüntü

bununla çarpılır

FD sunumu

Görüntü: 512×512 FD dar geçit çapı: 16

Merkez Profil

Görüntü

PS.

FD'de ideal HPF

Filtrelenmiş PS

Görüntü: 512x512 FD dar geçit çapı: 16

Orijinal Görüntü

Pozitif pikseller

Filtrelenmiş Görüntü

Görüntü: 512x512 FD dar geçit çapı: 16

Negatif pikseller

Belirsizlik İlişkisi

If $\Delta x \Delta y$ is the extent of the object in space and if $\Delta u \Delta v$ is its extent in frequency then,

$$\Delta x \, \Delta y \cdot \Delta u \, \Delta v \ge \frac{1}{16\pi^2}$$

Uzaysal alandaki küçük bir nesne, frekans alanında büyük bir miktara sahiptir.

Belirsizlik İlişkisi

Hatırlaki, FD'deki bir çift impulse uzaysalda bir sinüzoid olur.

FD'deki simetrik bir çizgi uzaysalda sinüzoidal bir çizgi olur.

İdeal Filtreler İdeal Sonuçlar Üretmez

FD'de keskin bir cuttoff..

...uzaysalda dalgalanmaya neden olur.

İdeal Filtreler İdeal Sonuçlar Üretmez

Optimal Filtre: Gaussian

Gaussian filtre belirsizlik ilişkisini optimize eder. Bu fonksiyon en keskin cutoff ve en az dalgalanma sağlar.

1d Gaussian

$$g(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

2d Gaussian

Eğer r & c için μ ve σ farklıysa ...

$$g(r,c) = g(r)g(c)$$

$$= \frac{1}{\sigma_r \sigma_c 2\pi} e^{-\frac{(r-\mu_r)^2}{2\sigma_r^2} - \frac{(y-\mu_c)^2}{2\sigma_c^2}}$$

$$= \frac{1}{\sigma_r \sigma_c 2\pi} e^{-\frac{\sigma_c^2 (x-\mu_r)^2 + \sigma_r^2 (y-\mu_c)^2}{2\sigma_r^2 \sigma_c^2}}$$

...veya eğer r & c için μ ve σ aynıysa

$$g(r,c) = \frac{1}{\sigma^2 2\pi} e^{-\frac{(r-\mu)^2 + (c-\mu)^2}{2\sigma^2}}$$

Optimal Filtre: Gaussian

Gaussian düşük geçiren filtreyle...

... dalgalanma ve gölgelenme olmadan yumuşatır.

Görüntü: 512x512 SD filtre sigma = 8

Frekans Domain (FD)

Uzaysal Domain (SD)

Merkez Profil

Görüntü: 512x512 SD filtre sigma = 2

Frekans Domain (FD)

Uzaysal Domain (SD)

Merkez Profil

Görüntü: 512x512 SD filtre sigma = 8

Orijinal Görüntü

PS

FD'de Gaussian LPF

Görüntü: 512x512 SD filtre sigma = 8

Filtrelenmis Görüntü

Filtrelenmis PS

Orijinal Görüntü

Görüntü: 512x512 FD'deki daire sigma = 8

Görüntü: 512x512 FD'deki daire sigma = 8

Orijinal Görüntü

PS.

FD'de Gaussian HPF

Görüntü: 512×512 FD'deki daire sigma = 8

Filtrelenmiş Görüntü

Filtrelenmiş PS

Orijinal Görüntü

Görüntü: 512×512 FD'deki daire sigma = 8

Pozitif pikseller

Filtrelenmiş Görüntü

Negatif pikseller

Karşılaştırma: Gaussian – İdeal Filtre

Ideal LPF

Orijinal Görüntü

Ideal HPF

Karşılaştırma: Gaussian – İdeal Filtre

Gaussian LPF

Orijinal Görüntü

Gaussian HPF

Başka bir yüksek geçiren filtre

Orijinal görüntü

Filtre PS

Filtrelenmiş görüntü

Ideal Band geçiren filtre

Orijinal görüntü

Filtre PS

Filtrelenmiş görüntü

Görüntü: 512x512 sigma = 2 - sigma = 8

Merkez profil

Görüntü: 512x512 sigma = 2 - sigma = 8

Orijinal Görüntü

PS

FD'de Gaussian BPF

Görüntü: 512x512 sigma = 2 - sigma = 8

Filtrelenmiş görüntü

Filtre PS

Orijinal görüntü

Görüntü: 512x512 sigma = 2 - sigma = 8

Pozitif Pikseller

Filtrelenmiş Görüntü

Negatif Pikseller

Karşılaştırma: İdeal - Gaussian

Ideal BPF

Orijinal Görüntü

Gaussian BPF

Bulanıklaşmış Görüntünün Güç Spektrumu ve Fazı

Orijinal Görüntünün Güç Spektrumu ve Fazı

Keskin Görüntünün Güç Spektrumu ve Fazı

