#### Oppgave 1 – Artimetikk

Toerkomplement er den metoden alle datamaskiner representerer eit negativt heiltall. For å få toerkomplementet av eit negativt tall så skriv ein ut tallet i binær form, inverterer tallene og legger til 1 til resultatet. Antar vi jobber med tall med 8 bits størrelse og vi vil finne ut korleis -28 blir representert som eit toerkomplement. Først skriver vi ut 28 i binær form:

#### 00011100

Vi tar så å inverterer tallene. 0 blir 1 og 1 blir 0.

#### 11100011

Så legger vi til 1:

#### 11100100

Sånn skriver ein -28 i 8 bit binær form. Det lure med denne representasjonen av negative tall er at subtraksjon blir mykje lettere å utføre. Den kan utføres som addisjon av de to tallene. For eksempel

| 34   | 00100010 | 34   | 00100010 | 34     | 00100010    | 34      | 00100010 |
|------|----------|------|----------|--------|-------------|---------|----------|
| + 32 | 00100000 | - 32 | 00100000 | +(-32) | 11100000    | - (-32) | 11100000 |
| = 66 | 01000010 | = 02 | 00000010 | = 02   | (1)00000010 | = 66    | 01000010 |

Innen data så er flyttall ein måte å representere reelle tall. Dei er uttrykt ved hjelp av ein desimalbrøk og ein eksponent. Eksponenten er den potensen med grunntallet 10 som desimaltallet må multipliseres med for å få tallets faktiske verdi. F.eks. 1.2345 skrives som:

$$R = Significand x base^{exponent}$$

$$1.2345 = 12345 \times 10^{-4}$$

Betegnelsen flyttall henspiller på at desimalpunktet ikkje har nokon fast plassering, men flyttes etter som dei forskjellige beregningsoperasjonene utføres. Binært så representeres det på følgende måte:

$$1.2345_{10} = 1x10^{0} + 2x10^{-1} + 3x10^{-2} + 4x10^{-4} + 5x10^{-5}$$

$$0,1011 = 2^{-1} + 2^{-3} + 2^{-4} = 0,5 + 0,125 + 0,0625 = 0,6875_{10}$$

## Oppgåve 2

(a)

 $A \ NAND \ B = \bar{A} \cdot \bar{B} = F$ 



| Α | В | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

(b)

$$NOT\ A\ OR\ NOT\ B = \bar{A} + \bar{B} = F$$



| Α | В | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

(c) (d) Associative Law

$$A OR (B+C) = A+B+C = F$$

$$(A OR B) + C = A + B + C = F$$



| Α      | В | С | F |
|--------|---|---|---|
| A<br>0 | 0 | 0 | 0 |
| 0      | 0 | 1 | 1 |
| 0      | 1 | 0 | 1 |
| 0      | 1 | 1 | 1 |
| 1      | 0 | 0 | 1 |
| 1      | 0 | 1 | 1 |
| 1      | 1 | 0 | 1 |
| 1      | 1 | 1 | 1 |



### (e) (f) Associative Law

$$A \ AND \ (B \ AND \ C) = A \cdot B \cdot C = F$$
  
 $(A \ AND \ B) \ AND \ C = A \cdot B \cdot C = F$ 



C

| В | С                          | F                                             |
|---|----------------------------|-----------------------------------------------|
| 0 | 0                          | 0                                             |
| 0 | 1                          | 0                                             |
| 1 | 0                          | 0                                             |
| 1 | 1                          | 0                                             |
| 0 | 0                          | 0                                             |
| 0 | 1                          | 0                                             |
| 1 | 0                          | 0                                             |
| 1 | 1                          | 1                                             |
|   | 0<br>0<br>1<br>1<br>0<br>0 | 0 0<br>0 1<br>1 0<br>1 1<br>0 0<br>0 1<br>1 0 |

(g)



A OR B = A + B = F

| Α | В | F |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

(h)

$$(NOT\ A\ AND\ A)\ OR\ (NOT\ B\ AND\ B) = (\bar{A}\cdot A) + (\bar{B}\cdot B) = F$$

Simplified: F = 0 (Contradiction)



| Α | В | F |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

## Oppgåve 3

(a)

| С | В | Α | а | b | С | g |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 |

(b) (c)  $a = \bar{A} + B\bar{C} + \bar{B}C$ 

| СВ | А | 0           | 1 |
|----|---|-------------|---|
| 00 |   | Q           | 0 |
| 01 |   | <b>/1</b> \ | 1 |
| 11 |   | 1           | 0 |
| 10 |   | 1           | 1 |

## $b=\bar{A}\bar{B}C$

| СВ | А | 0 | 1 |
|----|---|---|---|
| 00 |   | 0 | 0 |
| 01 |   | 0 | 0 |
| 11 | ( | 1 | 0 |
| 10 |   | 0 | 0 |

$$c = \bar{A}C + \bar{B}C$$

| СВ | А | 0        | 1 |
|----|---|----------|---|
| 00 |   | 0        | 0 |
| 01 |   | <u>A</u> | 0 |
| 11 |   | (1)      | 0 |
| 10 |   | 1        | 1 |

# $g = A\bar{C} + A\bar{B}C$

| СВ | А | 0 | 1   |
|----|---|---|-----|
| 00 |   | 0 | 1   |
| 01 |   | 0 | 1)  |
| 11 |   | 0 | X   |
| 10 |   | 0 | (1) |

(d)



# Oppgåve 4

| D Input | Output |                    | S-R Input |   |  |
|---------|--------|--------------------|-----------|---|--|
|         | Qn     | Q <sub>n</sub> + 1 | S         | R |  |
| 0       | 0      | 0                  | 0         | Х |  |
| 0       | 1      | 0                  | 0         | 1 |  |
| 1       | 0      | 1                  | 1         | 0 |  |
| 1       | 1      | 1                  | Х         | 0 |  |

| D | Qn | 0 | 1  | D | Qn | 0 | 1 |
|---|----|---|----|---|----|---|---|
| 0 |    | 0 | 0/ | 0 |    | Х | 1 |
| 1 |    | 1 | X  | 1 |    | 0 | 0 |

$$R = \overline{D}$$

$$S = D$$

