CS & IT ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE

Instruction & Addressing Modes

Lecture No.- 02

Recap of Previous Lecture

Topic Instruction

Topic ISA

Topic Types of Instruction

Topics to be Covered

Topic Instruction

Topic

Multiple Instruction Support

A group of bits which instructs computer to perform some operation

Topic: Types of Instruction

- 3-Address Instruction:
- 2-Address Instruction:
- 1-Address Instruction:
- 0-Address Instruction:

#Q. Consider a digital computer which supports 64 2-address instructions. If address length is 9-bits then the length of the instruction is 24 bits?

#Q. Consider a digital computer which supports 64 2-address instructions. If address length is 9-bits then the length of the instruction is _____ bits?

In above question: Each instruction must be stored in memory in a bytealigned fashion. If a program has 200 instructions, then amount of memory required to store the program text is <u>600</u> bytes?

in byte addressable memory

#Q. Consider a digital computer which supports 32 2-address instructions. Consider the address length is 8-bits. Each instruction must be stored in memory in a byte-aligned fashion. If a program has 300 instructions, then amount of memory required to store the program text is <u>900</u> bytes?

8 bits 8 bits 5 bits 5 bits

for 300 inst^{ns} => 300 * 3 = 900 bytes

#Q. A processor has 50 distinct instructions and 16 general purpose registers. Each instruction in system has one opcode field, 2 register operand field and a 10 bits memory address field. The length of the instruction is 24 bits?

no of inst^{ns} = so =) opcode =
$$\left(\log_2 so\right) = 6 \text{ bits}$$

no of $GPR^s = 16 \left(Ro \Rightarrow 0000\right)$ Reg. number = 4 bits
 $Rl \Rightarrow 0001$
 $Rl \Rightarrow 0001$

sopcode = 5 bits

Reg. = 5 bits

A processor has 20 distinct instructions and 32 general purpose registers. A #Q. 24- bit instruction word has an opcode, two register operands and an immediate operand. The number of bits available for the immediate operand field is ____?

	24-bi	ts —	
opcode	Reg.1/Reg.2	Immediate	
5	5 5	*\psi_	1.61.5
		24-(5+5+5	() = 9 bits

#Q. A processor has 20 distinct instructions and 32 general purpose registers. A 24- bit instruction word has an opcode, two register operands and an immediate operand. The number of bits available for the immediate operand field is ____?

In above question: Assume that immediate operand field is an unsigned number, What is its maximum and minimum value possible?

£.	h	C
TON		

9 1=511

format	min	max	
unsigned	0	$(2^{n}-1)$	
sign-magnitude 15 complement 25 complement	$-\binom{n-1}{2} - \binom{n-1}{2} - \binom{2}{2}$	$+(2^{n-1}-1)$ $+(2^{n-1}-1)$ $+(2^{n-1}-1)$	

.

défault => byte adhessable mem. Consider a system which support only 3 address instructions only, and #Q. supports 256B memory. If the instruction size is 40-bits then maximum & minimum number of instruction supported by the system are?

	- 40		
opade	a.1	9.2	9.3
16 bits	8	8	8

no. of cells =
$$\frac{256B}{1B} = 256 = 2^8$$
add. = 8 bits

$$min = 1$$
 $max = 2^{16} = 65536$

Ques) consider a system which supports 64 3-address instraction.

If instr length is 33 bits then address length is ___ bits?

5017

opcode | 9.1 | 9.2 | 9.3

6

27 bits => hence each add = 9 bits

aues) In prev. auest size of memory supported by system

512 bytes ? [byte addressable memory as default]

501

no of cells =
$$2^9$$
 2^9

men

mem.
$$sije = 2^9 * 18$$

$$= 5128$$

consider a system which supports 250 2-address instructions. Each inst'h length is 32 bits. The system supports word addressable men. with word size 4 bytes. The max. size memory system supports = 16 k bytes?

opcode | 9.1 | 9.2 8

32 -8 = 246its =) add. = 12 bits

Mem. Size $= 2^{12} * 4B$ $= 2^{12} * 2^{2}B$ $= 2^{14}B = 2^{4} \cdot 2^{10}B$ $= 2^{16} \times B$

2 mins Summary

Topic

Instruction

Topic

Multiple Instruction Support

Happy Learning

THANK - YOU