CSCI S-89B — Assignment 2

Name: InJoo Kim

Due: September 18, 2025

Re: Assignment #2

Problem 1 — One-step Temperature Forecasting

We forecast the temperature series using recurrent models (GRU/LSTM).

The task is one-step-ahead prediction using only T (degC).

We hold out the last 1,440 points (10 days) for testing and avoid leakage by computing any statistics on train/val only.

```
In [2]: # (0) Setup and Data Preparation
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.metrics import mean_squared_error
        import tensorflow as tf
        from tensorflow import keras
        from tensorflow.keras import layers
        # Reproducibility
        SEED = 42
        np.random.seed(SEED)
        tf.random.set_seed(SEED)
        # Load dataset (temperature only)
        df = pd.read_csv("jena_climate_2009_2016.csv", parse_dates=True, index_col="Date
        xt = df["T (degC)"].reset index(drop=True).astype("float32").values
        # Time-respecting split: last 1440 = test (10 days)
        TEST_HORIZON = 1440
        test_start = len(xt) - TEST_HORIZON
        x_trainval = xt[:test_start]
        x test = xt[test start:]
        print(f"Train/Validation length: {len(x_trainval)}, Test length: {len(x_test)}")
```

Train/Validation length: 419111, Test length: 1440

(a) Baseline: Persistence Forecast

We use the persistence model: $[\hat{x}_{t+1} = x_t]$ This is a strong baseline for smooth short-horizon signals. We evaluate MSE on the 10-day test block and show a line plot.

```
In [3]: # Persistence baseline on the raw 10-day test block
    y_test = x_test[1:]
    yhat_pers = x_test[:-1]
    mse_pers = mean_squared_error(y_test, yhat_pers)
    print(f"Persistence Test MSE (raw 10-day block) = {mse_pers:.5f}")

# Plot: Actual vs Persistence on the test block
    plt.figure(figsize=(12,3))
    plt.plot(range(1, len(x_test)), y_test, label="Actual (test)")
    plt.plot(range(1, len(x_test)), yhat_pers, label="Persistence", alpha=0.8)
    plt.title("Persistence baseline - Test block (10 days)")
    plt.xlabel("Time step (10-min intervals)")
    plt.ylabel("Temperature (°C)")
    plt.legend()
    plt.tight_layout()
    plt.show()
```

Persistence Test MSE (raw 10-day block) = 0.03414

(b) Supervised Windows and Validation Setup

We construct sliding windows of length (W = 144) (one full day).

We split train/validation contiguously (no shuffling). Loss = MSE, optimizer = Adam, early stopping on val loss.

```
# Create supervised windows: input = previous W samples, target = next sample
In [4]:
        def make_supervised(series, W=144):
            X, y = [], []
            for i in range(W, len(series)):
                X.append(series[i-W:i])
                y.append(series[i])
            X = np.asarray(X).reshape(-1, W, 1) # (n_samples, W, 1)
            y = np.asarray(y).astype("float32")
            return X, y
        # Window size
        W = 144
        # Windows for train/val
        X_all, y_all = make_supervised(x_trainval, W)
        split_idx = int(0.8 * len(X_all)) # contiguous split
        X_train, X_val = X_all[:split_idx], X_all[split_idx:]
        y_train, y_val = y_all[:split_idx], y_all[split_idx:]
        print("Train shapes:", X_train.shape, y_train.shape, "| Val shapes:", X_val.shap
```

Train shapes: (335173, 144, 1) (335173,) | Val shapes: (83794, 144, 1) (83794,)

(c) GRU Model — Train with Early Stopping

We train a single-layer GRU with a linear output unit. Early stopping might prevent overfitting and restores the best weights.

```
In [5]:
        # Build GRU model
        def build_gru(input_shape):
            model = keras.Sequential([
                 layers.GRU(32, input_shape=input_shape),
                layers.Dense(1)
            model.compile(optimizer="adam", loss="mse")
            return model
        gru = build_gru((W,1))
        early_stop = keras.callbacks.EarlyStopping(
            monitor="val_loss", patience=5, restore_best_weights=True
        hist_gru = gru.fit(
            X_train, y_train,
            validation_data=(X_val, y_val),
            epochs=50,
            batch_size=256,
            callbacks=[early_stop],
            verbose=1
```

Epoch 1/50

```
c:\Dev\csci89\venv\lib\site-packages\keras\src\layers\rnn\rnn.py:199: UserWarnin
g: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Seque
ntial models, prefer using an `Input(shape)` object as the first layer in the mod
el instead.
   super().__init__(**kwargs)
```

1310/1310 ————	100	20ms/ston		1000	15 2200	- val_loss:	2 1102
Epoch 2/50	405	sellis/step	-	1055.	13.3200	- vai_1055	. 3.1102
1310/1310 —————	37s	28ms/step	_	loss:	0.6206 -	val loss:	0.7643
Epoch 3/50		,					
1310/1310	39s	30ms/step	-	loss:	0.1730 -	<pre>val_loss:</pre>	0.2858
Epoch 4/50							
1310/1310	37s	28ms/step	-	loss:	0.0815 -	val_loss:	0.1312
Epoch 5/50							
	· 37s	28ms/step	-	loss:	0.0539 -	val_loss:	0.0753
Epoch 6/50	44-	24==/=+==		1	0.0446		0 0551
1310/1310 ———————————————————————————————————	445	34ms/step	-	1055:	0.0446 -	vai_ioss:	0.0551
•	455	34ms/sten	_	1055.	0 0415 -	val_loss:	0 0478
Epoch 8/50	455	3-m3/ 3ccp		1033.	0.0413	va1_1055.	0.0470
1310/1310 ————	54s	41ms/step	_	loss:	0.0404 -	val loss:	0.0448
Epoch 9/50						_	
1310/1310	46s	35ms/step	-	loss:	0.0400 -	<pre>val_loss:</pre>	0.0435
Epoch 10/50							
1310/1310	41s	31ms/step	-	loss:	0.0399 -	val_loss:	0.0427
Epoch 11/50				-			
1310/1310 ———————————————————————————————————	47s	36ms/step	-	loss:	0.0398 -	val_loss:	0.0423
Epoch 12/50 1310/1310 ———————————————————————————————————	11c	2/mc/c+on		1055	0 0207	val_loss:	0 0/21
Epoch 13/50	443	341113/3 CEP	_	1055.	0.0337 -	va1_1055.	0.0421
•	46s	35ms/step	_	loss:	0.0396 -	val_loss:	0.0419
Epoch 14/50		,					
1310/1310 —————	44s	34ms/step	-	loss:	0.0396 -	val_loss:	0.0417
Epoch 15/50							
1310/1310	44s	33ms/step	-	loss:	0.0395 -	<pre>val_loss:</pre>	0.0417
Epoch 16/50							
	44s	33ms/step	-	loss:	0.0395 -	val_loss:	0.0416
Epoch 17/50	45.	24==/=+==		1	0.0204		0 0415
1310/1310 ———————————————————————————————————	455	34ms/step	-	1055:	0.0394 -	va1_1055:	0.0415
•	445	34ms/sten	_	loss:	0.0394 -	val_loss:	0.0415
Epoch 19/50		3 m3, 3 ccp		1033.	0.033	.41_1055.	0.0125
•	45s	34ms/step	-	loss:	0.0393 -	val_loss:	0.0414
Epoch 20/50							
1310/1310 —————	53s	41ms/step	-	loss:	0.0393 -	val_loss:	0.0413
Epoch 21/50							
1310/1310	45s	34ms/step	-	loss:	0.0392 -	val_loss:	0.0413
Epoch 22/50 1310/1310 ———————————————————————————————————	F46	11ms /s+on		10551	0 0202	val lacci	0 0412
Epoch 23/50	545	41ms/step	-	1055:	0.0392 -	va1_1055;	0.0412
1310/1310	595	45ms/sten	_	loss:	0.0391 -	val loss:	0.0412
Epoch 24/50	323	13.113/3000		1033.	0.0331	.41_1055.	0.0112
•	57s	44ms/step	_	loss:	0.0391 -	val_loss:	0.0411
Epoch 25/50							
1310/1310 —————	58s	45ms/step	-	loss:	0.0390 -	<pre>val_loss:</pre>	0.0411
Epoch 26/50							
	58s	44ms/step	-	loss:	0.0390 -	val_loss:	0.0411
Epoch 27/50	F0-	15m=/=+=		1	0.000	wal la	0.0410
1310/1310 ———————————————————————————————————	585	45ms/step	-	TOSS:	0.0389 -	val_loss:	0.0410
Epoch 28/50 1310/1310 ———————————————————————————————————	560	43ms/stan	_	1055.	0.0389 -	val_loss:	0.0410
Epoch 29/50	203	-+JIII3/31EP	-	1033.	0.0009 -	vu1033.	0.0410
1310/1310 —————	57s	44ms/step	_	loss:	0.0388 -	val loss:	0.0411
Epoch 30/50		·				_	
1310/1310 —————	38s	29ms/step	-	loss:	0.0388 -	<pre>val_loss:</pre>	0.0411
Epoch 31/50							

```
      1310/1310
      35s 27ms/step - loss: 0.0387 - val_loss: 0.0411

      Epoch 32/50
      1310/1310
      37s 28ms/step - loss: 0.0387 - val_loss: 0.0412

      Epoch 33/50
      1310/1310
      35s 27ms/step - loss: 0.0386 - val_loss: 0.0412
```

GRU Training/Validation Curves and Best Epoch

```
In [6]: # Plot GRU Loss curves
    plt.figure(figsize=(8,3))
    plt.plot(hist_gru.history["loss"], label="train loss")
    plt.plot(hist_gru.history["val_loss"], label="val loss")
    plt.xlabel("Epoch"); plt.ylabel("MSE"); plt.title("GRU - Training vs Validation"
    plt.legend(); plt.tight_layout(); plt.show()

best_val_gru = float(np.min(hist_gru.history["val_loss"]))
    best_epoch_gru = int(np.argmin(hist_gru.history["val_loss"]) + 1)
    print(f"GRU - Best validation MSE = {best_val_gru:.5e} at epoch {best_epoch_gru}
```


GRU - Best validation MSE = 4.10472e-02 at epoch 28

(d) LSTM Model

We repeat the same protocol with an LSTM cell for comparison to GRU.

```
In [7]: # Build LSTM model
        def build_lstm(input_shape):
            model = keras.Sequential([
                 layers.LSTM(32, input_shape=input_shape),
                 layers.Dense(1)
            1)
            model.compile(optimizer="adam", loss="mse")
            return model
        lstm = build_lstm((W,1))
        hist lstm = lstm.fit(
            X_train, y_train,
            validation_data=(X_val, y_val),
            epochs=50,
            batch size=256,
            callbacks=[early_stop],
            verbose=1
```

Epoch 1/50					
1310/1310	41 s	31ms/step	-	loss:	13.9806 - val_loss: 2.2759
Epoch 2/50					
1310/1310 —————	40s	30ms/step	-	loss:	0.4924 - val_loss: 0.5567
Epoch 3/50					
1310/1310	40s	30ms/step	-	loss:	0.1410 - val_loss: 0.2123
Epoch 4/50					
1310/1310 —————	40s	30ms/step	-	loss:	0.0714 - val_loss: 0.1041
Epoch 5/50					
1310/1310	40s	30ms/step	-	loss:	0.0507 - val_loss: 0.0667

LSTM Training/Validation Curves and Best Epoch

```
In [8]: # Plot LSTM loss curves
plt.figure(figsize=(8,3))
plt.plot(hist_lstm.history["loss"], label="train loss")
plt.plot(hist_lstm.history["val_loss"], label="val loss")
plt.xlabel("Epoch"); plt.ylabel("MSE"); plt.title("LSTM - Training vs Validation
plt.legend(); plt.tight_layout(); plt.show()

best_val_lstm = float(np.min(hist_lstm.history["val_loss"]))
best_epoch_lstm = int(np.argmin(hist_lstm.history["val_loss"]) + 1)
print(f"LSTM - Best validation MSE = {best_val_lstm:.5e} at epoch {best_epoch_lstm.history["val_loss"]}
```


LSTM — Best validation MSE = 6.67165e-02 at epoch 5

(e) Test Performance — Persistence vs GRU vs LSTM

We evaluate all three on the held-out test block and compare MSEs and plots.

```
In [9]: # Prepare test windows
   X_test_seq, y_test_seq = make_supervised(x_test, W)

# Persistence aligned to windows: last value of each input window
   yhat_pers_windowed = X_test_seq[:, -1, 0]
   mse_pers_windowed = mean_squared_error(y_test_seq, yhat_pers_windowed)

# GRU predictions
   yhat_gru = gru.predict(X_test_seq, verbose=0).flatten()
   mse_gru_test = mean_squared_error(y_test_seq, yhat_gru)

# LSTM predictions
   yhat_lstm = lstm.predict(X_test_seq, verbose=0).flatten()
   mse_lstm_test = mean_squared_error(y_test_seq, yhat_lstm)
```

```
print("=== Test MSEs (10-day holdout) ===")
print(f"Persistence (windowed) : {mse_pers_windowed:.5f}")
print(f"GRU
                               : {mse_gru_test:.5f}")
print(f"LSTM
                               : {mse_lstm_test:.5f}")
# Plot comparison on a slice for readability
n_plot = min(800, len(y_test_seq))
plt.figure(figsize=(12,3))
plt.plot(y_test_seq[:n_plot], label="Actual")
plt.plot(yhat_pers_windowed[:n_plot], label="Persistence", alpha=0.7)
plt.plot(yhat_gru[:n_plot], label="GRU", alpha=0.8)
plt.plot(yhat_lstm[:n_plot], label="LSTM", alpha=0.8)
plt.title("Test block - Actual vs Persistence vs GRU vs LSTM (slice)")
plt.xlabel("Time index (10-min intervals)")
plt.ylabel("Temperature (°C)")
plt.legend()
plt.tight_layout()
plt.show()
```

=== Test MSEs (10-day holdout) ===
Persistence (windowed) : 0.03497
GRU : 0.02069
LSTM : 0.04464

(f) Interpretation and Lessons Learned

- **Persistence is strong at 10-minute horizon.** The copy-last forecast remains very competitive due to high autocorrelation in temperature at short lags.
- Validation ≠ Generalization. Even with very low validation MSE (early stopping),
 GRU/LSTM may underperform on the final 10-day block due to temporal shift.
- **Model choice:** GRU and LSTM behave similarly here; neither consistently surpasses persistence under the assignment constraints (single feature, contiguous split, onestep).
- **Practical note:** Time-respecting splits, baseline comparisons, and leakage-free prep are essential.

(g) Possible Extensions

- Larger context window (e.g., (W=192, 288, 432)) to span more cycles.
- Modest width increases and dropout on recurrent units for regularization.
- Combine persistence with light autoregressive correction.
- Block cross-validation across multiple time segments to assess stability.

Problem 2 — IMDB Movie Review Classification

Task. Set num_words = 200, train the classifier, plot *training/validation accuracy vs. epochs*, report *test accuracy* at the *optimal epoch*, and explain what x_train[0] represents.

```
In [10]: # Imports & reproducibility
         import numpy as np
         import tensorflow as tf
         from tensorflow import keras
         from tensorflow.keras import layers
         import matplotlib.pyplot as plt
         SEED = 42
         np.random.seed(SEED)
         tf.random.set seed(SEED)
         # Load IMDB with top-200 vocabulary
         NUM_WORDS = 200
         (x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=N
         # Multi-hot vectorization (presence/absence over the 200 most frequent tokens)
         def vectorize_sequences(seqs, dimension=NUM_WORDS):
             out = np.zeros((len(seqs), dimension), dtype="float32")
             for i, s in enumerate(seqs):
                 idx = [t for t in s if 0 <= t < dimension]</pre>
                 out[i, idx] = 1.0
             return out
         x_train_vec = vectorize_sequences(x_train)
         x_test_vec = vectorize_sequences(x_test)
         y_train = np.asarray(y_train, dtype="float32")
         y_test = np.asarray(y_test, dtype="float32")
         # Validation split (first 10k as validation)
         x val, y val = x train vec[:10 000], y train[:10 000]
         partial_x, partial_y = x_train_vec[10_000:], y_train[10_000:]
```

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-dataset s/imdb.npz $\,$

17464789/17464789 — **1s** Ous/step

Model & Training

Architecture: Dense(16, ReLU) \rightarrow Dense(16, ReLU) \rightarrow Dense(1, Sigmoid) Loss: binary_crossentropy, Optimizer: RMSprop, Metric: accuracy

Train **40** epochs; pick **optimal epoch = argmax(val_accuracy)**.

```
layers.Dense(1, activation="sigmoid"),
])
m.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["accurac return m"]

model = build_model()
history = model.fit(
    partial_x, partial_y,
    epochs=40,
    batch_size=512,
    validation_data=(x_val, y_val),
    verbose=0
)

hist = history.history
best_epoch = int(np.argmax(hist["val_accuracy"])) + 1
print(f"Optimal epoch (by val_accuracy): {best_epoch} | val_acc={hist['val_accuracy]} | val_accuracy={hist['val_accuracy]} | val_accuracy={hist['val_accura
```

Optimal epoch (by val_accuracy): 12 | val_acc=0.7404

Results & Required Explanation

- Below: **Training vs Validation accuracy** curve and the selected **optimal epoch**.
- Final result: retrain the same model on the **full training set** for **optimal epoch** and report **test accuracy**.
- What is x_train[0]?

The first movie review encoded as a **sequence of integer word IDs** (restricted to the top-200 words).

After our preprocessing, it becomes a **200-dimensional binary vector** indicating which of those words appear (order discarded).

```
In [12]: # Plot accuracy curves
    epochs = range(1, len(hist["accuracy"]) + 1)
    plt.figure(figsize=(6,4))
    plt.plot(epochs, hist["accuracy"], label="Train Acc")
    plt.plot(epochs, hist["val_accuracy"], label="Val Acc")
    plt.xlabel("Epoch"); plt.ylabel("Accuracy"); plt.title("Training vs Validation A
    plt.legend(loc="lower right"); plt.grid(True); plt.show()

# Retrain on full training set with optimal epoch, then evaluate
    opt_model = build_model()
    opt_model.fit(x_train_vec, y_train, epochs=best_epoch, batch_size=512, verbose=0
    test_loss, test_acc = opt_model.evaluate(x_test_vec, y_test, verbose=0)
    print(f"Test accuracy at optimal epoch ({best_epoch})): {test_acc:.4f}")
```


Test accuracy at optimal epoch (12): 0.7423

Problem 3 — IMDB Classification with RNN

We now modify Problem 2 so that each input is a sequence of vectors with shape (500, 200).

We then train a recurrent network and evaluate its performance.

```
In [13]: import numpy as np
         import tensorflow as tf
         from tensorflow import keras
         from tensorflow.keras import layers
         # reproducibility
         SEED = 42
         np.random.seed(SEED)
         tf.random.set_seed(SEED)
         NUM WORDS = 200
         MAXLEN = 500 # fixed sequence length
         # Load imdb with top-200 words
         (x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=N
         # pad sequences to Length 500
         x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=MAXLEN)
         x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=MAXLEN)
         # convert each token to one-hot vector of Length 200
         def to_one_hot(seqs, dimension=NUM_WORDS):
             out = np.zeros((len(seqs), MAXLEN, dimension), dtype="float32")
             for i, seq in enumerate(seqs):
```

```
for j, token in enumerate(seq):
    if 0 <= token < dimension:
        out[i, j, token] = 1.0

return out

x_train_oh = to_one_hot(x_train)
x_test_oh = to_one_hot(x_test)

y_train = np.asarray(y_train, dtype="float32")
y_test = np.asarray(y_test, dtype="float32")
x_train_oh.shape, x_test_oh.shape</pre>
```

Out[13]: ((25000, 500, 200), (25000, 500, 200))

Model

We use a recurrent network (LSTM) since it handles sequences effectively. Architecture:

- LSTM(32)
- Dense(1, sigmoid)

Loss: binary_crossentropy, Optimizer: RMSprop, Metric: accuracy.

Model: "sequential_4"

Layer (type)	Output Shape	Param #
lstm_1 (LSTM)	(None, 32)	29,824
dense_8 (Dense)	(None, 1)	33

```
Total params: 29,857 (116.63 KB)

Trainable params: 29,857 (116.63 KB)

Non-trainable params: 0 (0.00 B)
```

Training

Train for up to 10 epochs (longer takes time).

Choose the **optimal epoch** by highest validation accuracy.

```
In [15]: history = model.fit(
    x_train_oh, y_train,
    epochs=10,
    batch_size=128,
    validation_split=0.2,
    verbose=0
)

hist = history.history
best_epoch = int(np.argmax(hist["val_accuracy"])) + 1
print(f"Optimal epoch: {best_epoch}, val_acc={hist['val_accuracy'][best_epoch-1]}
```

Optimal epoch: 9, val_acc=0.7666

Results

- Training vs Validation accuracy (see plot).
- Retrain with the optimal epoch on the full training set.
- Report the test accuracy.

```
import matplotlib.pyplot as plt

epochs = range(1, len(hist["accuracy"]) + 1)
  plt.plot(epochs, hist["accuracy"], label="Train Acc")
  plt.plot(epochs, hist["val_accuracy"], label="Val Acc")
  plt.xlabel("Epoch"); plt.ylabel("Accuracy")
  plt.legend(); plt.grid(); plt.show()

opt_model = build_rnn()
  opt_model.fit(x_train_oh, y_train, epochs=best_epoch, batch_size=128, verbose=0)
  test_loss, test_acc = opt_model.evaluate(x_test_oh, y_test, verbose=0)
  print(f"Test accuracy at optimal epoch ({best_epoch}): {test_acc:.4f}")
```


Test accuracy at optimal epoch (9): 0.7273

Explanation of x_train[0] and x_train[0][0]

• x_train[0] : the first review as a sequence of **500 tokens**, each token represented as a 200-dimensional one-hot vector.

Shape = (500, 200).

• x_train[0][0] : the **first token** of the first review, a single **200-dimensional one-hot vector**.

Exactly one index = 1 (the word ID present), all other entries = 0.

Tn Γ 1: