# **Project Report Format**

#### 1. INTRODUCTION

#### 1.1 Project Overview

Pollens Profiling: Automated Classification of Pollen Grains is a machine learning-based project designed to classify various pollen grain types using microscopic images. It aims to reduce the manual workload of researchers and provide faster, more accurate identification of pollen species.

#### 1.2 Purpose

The purpose of this project is to automate the classification of pollen grains using image recognition techniques and a trained deep learning model (CNN), reducing dependency on manual microscopy and increasing research efficiency.

#### 2. IDEATION PHASE

#### 2.1 Problem Statement

Manual pollen classification is time-consuming, requires domain expertise, and is error-prone. This hinders the speed and reliability of environmental studies and allergy forecasting.

## 2.2 Empathy Map Canvas

Says: "Manual classification takes too long."

Thinks: "What if I make an error?"

**Does**: Observes under microscope, compares manually.

Feels: Frustrated, curious about automation.

## 2.3 Brainstorming

Use of CNNs for image classification.

Clean UI for image upload and result display.

Deployment via Flask on web interface.

Model training using high-resolution pollen dataset.

#### 3. REQUIREMENT ANALYSIS

## 3.1 Customer Journey map

Collect sample  $\rightarrow$  Capture Image  $\rightarrow$  Upload  $\rightarrow$  View Prediction  $\rightarrow$  Use Result

#### 3.2 Solution Requirement

**Functional:** Image upload, classification, history tracking **Non-Functional:** Accuracy, performance, usability, scalability

#### 3.3 Data Flow Diagram

User Upload  $\rightarrow$  Server  $\rightarrow$  CNN Model  $\rightarrow$  Output (Class, Confidence)  $\rightarrow$  Display on UI

#### 3.4 Technology Stack

Frontend: HTML, CSS, JS Backend: Python, Flask ML: TensorFlow / Keras Database: SQLite / MySQL Deployment: Localhost or Cloud

#### 4. PROJECT DESIGN

#### 4.1 Problem Solution Fit

The system directly addresses pain points in manual classification by offering AI-driven, automated identification.

#### 4.2 Proposed Solution

Users upload pollen images, the CNN model classifies them, and outputs results with confidence scores. Data is stored for tracking and analysis.

#### **4.3 Solution Architecture**

Client (UI)  $\rightarrow$  Flask Server  $\rightarrow$  CNN Model  $\rightarrow$  Database  $\rightarrow$  Output to User

# 5. PROJECT PLANNING & SCHEDULING

# **5.1 Project Planning**

Sprint-based agile planning over 2 weeks with defined user stories, tasks, and roles.

# 6. FUNCTIONAL AND PERFORMANCE TESTING

# **6.1 Performance Testing**

Tested model accuracy using validation dataset. Evaluated server response time and prediction latency.

# 7. RESULTS



# 8. ADVANTAGES & DISADVANTAGES

Advantages: Fast, accurate, consistent, user-friendly

Disadvantages: Limited to trained classes, requires quality input images

# 9. CONCLUSION

The project successfully automates pollen classification and provides a scalable, efficient alternative to manual methods.

# 10. FUTURE SCOPE

Expand model to classify more pollen species

Mobile app integration

Real-time data sharing with health/environmental agencies

# 11. APPENDIX

#### **Dataset Link:**

https://www.kaggle.com/datasets/andrewmvd/pollen-grain-image-classification?form=MG0AV3

# GitHub & Project Demo Link:

 $\frac{https://github.com/BhanuPallela/pollen-s-profiling-automated-classification-of-pollen-grains}{https://drive.google.com/file/d/1F5VWzo-tuYAcsaVa5hXHp33JKu52gQYA/view?usp=drivesdk}$