List of useful formulae

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\lambda)h(t-\lambda)d\lambda$$

$$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$$

$$c_0 = \frac{1}{T} \int_{} x(t)dt$$

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t)e^{-jn\omega_0 t}dt$$

$$c_n = 2\operatorname{Re}[c_n] = \frac{2}{T} \int_{} x(t) \cos n\omega_0 t dt$$

$$b_n = -2\operatorname{Im}[c_n] = \frac{2}{T} \int_{} x(t) \sin n\omega_0 t dt$$

$$X(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \qquad X(\omega) = \int_{-\infty}^{\infty} X(t) e^{-j\omega t} dt$$

$$X(\omega) = 2\int_{0}^{\infty} x(t)\cos\omega t dt \qquad X(\omega) = -j2\int_{0}^{\infty} x(t)\sin\omega t dt$$

$$X(s) = \int_{0}^{\infty} x(t)e^{-st}dt$$

$$x(t) = \frac{1}{j2\pi} \int_{c-j\infty}^{c+j\infty} X(s)e^{st}dt$$

Unit step response for 2nd order systems

Damping factor, ζ	Unit step response
>1	$y(t) = \frac{k}{p_1 p_2} + k_2 e^{p_1 t} . u(t) + k_3 e^{p_2 t} . u(t)$
1	$y(t) = \frac{k}{\omega_n^2} \left(1 - \left(1 + \omega_n t \right) e^{-\omega_n t} . u(t) \right)$
0 < ζ< 1	$y(t) = \frac{k}{\omega_n^2} \left(1 - \frac{\omega_n}{\omega_d} e^{-\zeta \omega_n t} \sin(\omega_d t + \theta) . u(t) \right)$
0	$y(t) = \frac{k}{\omega_n^2} (1 - \cos(\omega_n t) \cdot u(t))$

Fourier Transform Pairs

C:	ana	ı
OI.	gna	ı

Fourier Transfrom

$$\sum_{n=-\infty}^{\infty} c_n e^{jm\omega_s t} \qquad 2\pi \sum_{n=-\infty}^{\infty} c_n \delta(\omega - n\omega_o)$$

$$e^{j\omega_s t} \qquad 2\pi \delta(\omega - \omega_b)$$

$$\cos \omega_b t \qquad \pi[\delta(\omega + \omega_b) + \delta(\omega - \omega_b)]$$

$$\sin \omega_b t \qquad j\pi[\delta(\omega + \omega_b) - \delta(\omega - \omega_b)]$$

$$1 \qquad 2\pi \delta(\omega)$$

$$\delta(t) \qquad 1$$

$$u(t) \qquad \frac{1}{j\omega} + \pi \delta(\omega)$$

$$\delta(t - t_o) \qquad e^{-j\omega_o}$$

$$e^{-it}u(t), a > 0 \qquad \frac{1}{a + j\omega}$$

$$x(t) = \begin{cases} 1, & |t| < \tau \\ 0, & |t| > \tau \end{cases} \qquad \frac{2\sin \omega \tau}{\omega} = 2\pi \delta(\omega \tau)$$

$$\sum_{n=-\infty}^{\infty} \delta(t - nT) \qquad \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$$

Properties of Laplace Transform

Property	Transform Property
Linearity	$ax_1(t) + bx_2(t) \leftrightarrow aX_1(s) + bX_2(s).$
Time shift	$x(t-t_o) \ u(t-t_o) \leftrightarrow X(s)e^{-st_o} \ t_o > 0$
Multiplication by a complex exponential	$x(t)e^{s_o t} \longleftrightarrow X(s-s_o)$
Time scaling	$x(at) \leftrightarrow X(s/a)/ a $
Differentiation in time domain	$\frac{dx(t)}{dt} \leftrightarrow sX(s) - x(0)$
	$\frac{d^2x(t)}{dt^2} \leftrightarrow s^2X(s) - sx(0) - \frac{dx(t)}{dt}\bigg _{t=0}$
Differentiation in s domain	$t^{n}x(t) \leftrightarrow \frac{d^{n}X(s)}{ds^{n}}(-1)^{n}$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau \leftrightarrow \frac{1}{s} X(s)$
Convolution in time domain	$x(t)*h(t) \leftrightarrow X(s).H(s)$
Initial value theorem	$x(0) = \lim_{s \to \infty} sX(s)$
Final value theorem	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$
(if $x(t)$ has a finite value as $t \to \infty$)	

Laplace Transform pairs

Signal

Unit step: u(t)

Unit impulse: $\delta(t)$

Unit ramp: tu(t)

 $e^{-at}u(t)$

 $t^n e^{-at} u(t)$

 $(\cos \omega_0 t) u(t)$

 $(\sin \omega_0 t)u(t)$

 $(e^{-at}\cos\omega_o t)u(t)$

 $(e^{-at}\sin\omega_0 t)u(t)$

 $(t\cos\omega_o t)u(t)$

 $(t\sin\omega_0 t)u(t)$

Transform

 $\frac{1}{s}$

1

 $\frac{1}{s^2}$

 $\frac{1}{s+a}$

 $\frac{n!}{(s+a)^{n+1}}$

 $\frac{s}{\left(s^2 + \omega_o^2\right)}$

 $\frac{\omega_o}{\left(s^2 + \omega_o^2\right)}$

 $\frac{s+a}{\left(\left(s+a\right)^2+\omega_o^2\right)}$

 $\frac{\omega_o}{\left((s+a)^2+{\omega_o}^2\right)}$

 $\frac{s^2 - \omega_o^2}{\left(s^2 + \omega_o^2\right)^2}$

 $\frac{2\omega_o s}{\left(s^2 + \omega_o^2\right)^2}$