Ledit exerice

Amar AHMANE

Soit $f:[0,1] \to [0,1]$ une application croissante. Montrons que f admet au moins un point fixe, i.e

$$\exists x \in [0,1], \quad f(x) = x$$

Posons $\Lambda = \{x \in [0,1] | f(x) \geq x\}$. Ainsi, Λ est une partie de $\mathbb R$ non vide, puisque $0 \in \Lambda$, et majorée par 1, elle admet alors une borne supérieure que l'on note $\sup \Lambda$. Or, $\sup \Lambda \geq 0$, puisque $0 \in \Lambda$, et $\sup \Lambda \leq 1$ puisque 1 est un majorant de Λ ; ainsi, étant donné un $x \in \Lambda$, on a que $\sup \Lambda \geq x$, donc par croissance de f, $f(\sup \Lambda) \geq f(x) \geq x$, donc $f(\sup \Lambda) \geq \sup \Lambda$. Donc $f(f(\sup \Lambda)) \geq f(\sup \Lambda)$ par croissance de f, donc $f(\sup \Lambda) \in \Lambda$ donc $f(\sup \Lambda)$. Par antisymétrie, $f(\sup \Lambda) \in \Lambda$