Manual for Package: physics Revision 1:9M

Karl Kästner

August 11, 2020

Contents

1	@Phys	sics	1
	1.1	Physics	1
	1.2	air_pressure	1
	1.3	beam_bending_deflection	1
	1.4	beam_bending_moment	1
	1.5	beam_bending_strain	1
	1.6	beam_bending_stress	1
	1.7	bolt_stress	2
	1.8	celsius_to_kelvin	2
	1.9	$depth_to_pressure$	2
	1.10	drag_force	2
	1.11	evapotranspiration_blaney	2
	1.12	heat_convection_through_orifice	2
	1.13	heat_transfer	2
	1.14	kelvin_to_celsius	3
	1.15	minimum_cable_diameter	3
	1.16	moment_of_inertia_rectangle	3
	1.17	moment_of_inertia_ring	3
	1.18	optical_attenuation	3
	1.19	parabolic_reflector_gain	3
	1.20	pressure_to_depth	3
	1.21	saturation_vapor_pressure	3
	1.22	sound_absorption_air	4
	1.23	sound_absorption_water	4
	1.24	sound_velocity_water	4
	1.25	thermal_flux	4
	1.26	viscosity_dynamic_water	4
	1.27	viscosity_kinematic_water	4

2	hydrog	gen-spectrum	5
	2.1	hydrogen_spectrum_1d	5
	2.2	hydrogen_spectrum_2012_12_02	5
	2.3	hydrogen_spectrum_2d	5
	2.4	hydrogen_spectrum_3d	5
3	salinit	y	5
	3.1	Salinity	5
	3.2	Salinity78	5
	3.3	canter_cremer_number	5
	3.4	density2salinity	5
	3.5	dispersion_hws_savenije	6
	3.6	dispersion_tda_burgh	6
	3.7	$richardson_number$	6
	3.8	salinity	6
	3.9	salinity_intrusion_length	6
	3.10	sea_water_density	6
	3.11	tidal_discharge	7
	3.12	tidal_excursion	7
	3.13	tidal_prism_channel	7
	3.14	tidal_prism_estuary	7
	3.15	$tidal_velocity \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	7
4	physic	s	7
	4.1	$test_sound_absorption_air \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	7
5	turbul	ence	8
	5.1	keps2nu	8
6	wind-v	wave	8
	6.1	short_wave_length	8
	6.2	short_wave_shear_velocity	8
	6.3	$wave_height_from_wind_speed \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	8

1 @Physics

1.1 Physics

Physics and physical standard quantities

1.2 air_pressure

- 1.3 beam_bending_deflection
- 1.4 beam_bending_moment
- 1.5 beam_bending_strain
- 1.6 beam_bending_stress
- 1.7 bolt_stress
- 1.8 celsius_to_kelvin

```
convert temperature from degree Celsius to Kelvin function t_K = celsius\_to\_kelvin(t_C)
```

1.9 depth_to_pressure

convert depth to pressure in fresh water at standard temperature

```
z = (p - p0)/(rho g)
=> p = rho g z + p0
```

input

 ${\tt p0}$: nx1 or scalar, pressure at water surface in BAR

 ${\tt d}$: depth in metre

output :

p : nx1, pressure at measurement depth in BAR

1.10	$ m drag_force$
1.11	$evapotranspiration_blaney$
1.12	$heat_convection_through_orifice$
1.13	${ m heat_transfer}$
1.14	$kelvin_to_celsius$
conve	rt temperature degree Kelvin to Celsius
	rt temperature degree Kelvin to Celsius minimum_cable_diameter
1.15	
1.15 1.16	$minimum_cable_diameter$
1.15 1.16	$minimum_cable_diameter$ $moment_of_inertia_rectangle$

1.19 parabolic_reflector_gain

$1.20 \quad pressure_to_depth$

```
convert pressure to depth in fresh water at standard temperature
z = (p - p0)/(rho*g)
input:
p : nx1, pressure at measurement depth in BAR
p0 : nx1 or scalar, pressure at water surface in BAR
output:
d : depth in metre
```

1.21 saturation_vapor_pressure

1.22 sound_absorption_air

$1.23 \quad sound_absorption_water$

```
sound absrobption in water
following Francois and Garrison, 1982

function alpha = sound_absorption(f,S,D,T)

input:
f : frequency (Hz)
S : salinity
D : depth (m)
T : temperature (degree C)

output:
alpha = sound attenuation in dB/m (not dB/km)

function alpha = sound_absorption(f,S,D,T,model)
```

1.24 sound_velocity_water

sound velocity in water following Lubbers and Graaff (1998) this formula does not include depth and salinity effects

- 1.25 thermal_flux
- 1.26 viscosity_dynamic_water
- 1.27 viscosity_kinematic_water
- 2 hydrogen-spectrum
- 2.1 hydrogen_spectrum_1d
- $2.2 \quad hydrogen_spectrum_2012_12_02$
- 2.3 hydrogen_spectrum_2d
- 2.4 hydrogen_spectrum_3d

3 salinity

3.1 Salinity

3.2 Salinity78

3.3 canter_cremer_number

Canter Cremer Number

ratio of fresh water to sea water that flows into the estuary

 $\ensuremath{\mathsf{Qf}}$: fresh water discharge

Savenije, Salinity and tides, eq. 1.1, 2.35 and 5.67

3.4 density2salinity

3.5 dispersion_hws_savenije

Dispersion at river mouth during high water slack

 ${\tt v0}$: tidal velocity scale

E0 : tidal excursion

h0 : depth

a : convergence length
Nr : Richargson Number

Savenije 1993c, Savenije, Salinity and Tides, eg. 5.70

3.6 dispersion_tda_burgh

3.7 richardson_number

Estuarine Richardson Number potential energy due to mixing the entire fresh water with sea water

ratio of potential energy and buoyancy Savenije, Salinity and Tides, 2.36

drho : difference of sea water and fresh water density

rho : fresh water density

h : depth

v : tidal velocity scale

N : Cramer number

3.8 salinity

3.9 salinity_intrusion_length

3.10 sea_water_density

3.11 tidal_discharge

specific tidal discharge (discharge per unit width)

3.12 tidal_excursion

Tidal excursion length

Pt : tidal prism

h0 : depth w0 : width

3.13 tidal_prism_channel

Tidal prism
Pt = int_lsw^hws Q_t dt ~ A E
z1 : tidal amplitude
w0 : width of estuary at mouth
b : length of width convergence
dH_dx = rate of damping of H
c.f. Savenije 2.34, 2.64

3.14 tidal_prism_estuary

Tidal prism
Pt = int_lsw^hws Q_t dt ~ A E
z1 : tidal amplitude
w0 : width of estuary at mouth
b : length of width convergence
dH_dx = rate of damping of H
c.f. Savenije 2.34, 2.64

3.15 tidal_velocity

4 physics

4.1 test_sound_absorption_air

5 turbulence

5.1 keps2nu

6 wind-wave

6.1 short_wave_length

- $6.2 \quad short_wave_shear_velocity$
- $6.3 \quad wave_height_from_wind_speed$