

TD n°2 Matlab : script, fonction, plot & fplot

I) Exercice 1:

Le spectre d'énergie lumineuse émis par un corps noir est donné en fonction de la longueur d'onde λ et de la température T par la distribution de Planck :

$$q(\lambda, T) = \frac{2\pi c^2 h}{\lambda^5} \frac{1}{e^{\frac{ch}{\lambda kT}}}$$

Avec $q(\lambda, T)$ en W/m^3 , $c = 3 \times 10^8$ m/s la vitesse de la lumière, $h = 6.62 \times 10^{-34}$ J.s la constante de Planck et $k = 1.38 \times 10^{-23}$ $J.K^{-1}$. $molecule^{-1}$ la constante de Boltzmann.

- 1) Ecrire un script pour tracer la densité q λ , T en fonction de λ pour T = 1500, 2000, 2500 et 3000 K. ATTENTION : Les abscisses λ devront apparaître en μm . ($\lambda \in [0.25\mu m, 3\mu m]$) (à l'aide de la fonction « plot »)
- 2) Refaire 1) à l'aide « fplot ». Il faudra créer au préalable une fonction « energie » qui calcule le spectre d'énergie lumineuse q en fonction de λ , c, h, k, T.

II) Exercice 2:

Pour calculer la capacité calorifique C_p d'un gaz en fonction de la température T (en Kelvin), on dispose de corrélations du type :

$$C_p(T) = A + B\left(\frac{\frac{C}{T}}{\sinh\left(\frac{C}{T}\right)}\right)^2 + D\left(\frac{\frac{E}{T}}{\sinh\left(\frac{E}{T}\right)}\right)^2$$

Il est souvent intéressant de calculer également la primitive de cette fonction, qui s'exprime par :

$$I_p = AT + \frac{BC}{\tanh\left(\frac{C}{T}\right)} - \frac{DE}{\tanh\left(\frac{E}{T}\right)}$$

Avec
$$A = 10$$
; $B = 1$; $C = 100$; $D = 1$; $E = 1000$;

- 1) Ecrire dans un fichier une fonction Matlab appelée « cpip » qui reçoit en entrée la température T et les coefficients A, B, C, D, E, et calculer C_p et I_p en sortie.
- 2) Ecrire un programme Matlab qui utilise la fonction précédente pour tracer sur $C_p(T)$ et $I_p(T)$ sur l'intervalle $T \in [250K, 3000K]$.