Asymptotic Analysis in Econometrics

Lecture 1: Stochastic Convergence

Fu Ouyang

April 22, 2018

Convergence Concepts

Delta Method

Laws of Large Numbers

Central Limit Theorem

Appendix

Resnick Chapter 5 & 6

Convergence in Distribution

A random vector $X=(X_1,...,X_k)$ is a vector of random variables. The distribution function of X is the map $x\mapsto P(X\leq x)$. A sequence of random vectors X_n is said to converge in distribution to a random vector X if

$$P(X_n \le x) \to P(X \le x)$$

for every x at which $P(X \le x)$ is continuous. Alternative names are weak convergence and convergence in law, denoted by $X_n \rightsquigarrow X$.

2.11 Implication of weak convergence

Suppose that $X_n \rightsquigarrow X$ for a random vector X with a continuous distribution function. Then

$$\sup_{x} |P(X_n \le x) - P(X \le x)| \to 0$$

Equivalent Definitions of Weak Convergence

2.2 Portmanteau lemma

The following statements are equivalent:

- 1. $X_n \rightsquigarrow X$.
- 2. $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$ for any bounded, continuous function f.
- 3. $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$ for any bounded, Lipschitz function f.
- 4. $\mathbb{E}\exp\left[it^TX_n\right] \to \mathbb{E}\exp\left[it^TX\right]$, $\forall t \in \mathbb{R}^k$. (Lévy's continuity theorem)
- 5. $t^T X_n \rightsquigarrow t^T X$ for all $t \in \mathbb{R}^k$. (Cramér-Wold device)
- 6. $\liminf_{n\to\infty} \mathbb{E}f(X_n) \ge \mathbb{E}f(X)$ for all nonnegative, continuous function f.
- 7. $\liminf_{n\to\infty} P(X_n \in G) \ge P(X \in G)$ for every open set G.
- 8. $\limsup_{n\to\infty} P(X_n \in F) \leq P(X \in F)$ for every closed set F.
- 9. $P(X_n \in B) \ge P(X \in B)$ for every Borel set B with $P(X \in \delta B) = 0$.

Continuous Mapping Theorem and Slutsky's Theorem

2.3 Continuous mapping theorem

Let $g: \mathbb{R}^k \mapsto \mathbb{R}^m$ be continuous on a set C such that $\mathbb{P}(X \in C) = 1$.

- 1. If $X_n \rightsquigarrow X$, then $g(X_n) \rightsquigarrow g(X)$.
- 2. If $X_n \stackrel{p}{\to} X$, then $g(X_n) \stackrel{p}{\to} g(X)$.
- 3. If $X_n \stackrel{a.s.}{\to} X$, then $g(X_n) \stackrel{a.s.}{\to} g(X)$.

2.8 Slutsky's theorem

Let X_n , X and Y_n be random vectors or variables. If $X_n \rightsquigarrow X$ and $Y_n \rightsquigarrow c$ for a constant c, then

- 1. $X_n + Y_n \rightsquigarrow X + c$.
- 2. $Y_n X_n \leadsto cX$.
- 3. $Y_n^{-1}X_n \rightsquigarrow c^{-1}X$ provided $c \neq 0$.

Relations among Different Convergence Modes

2.7 Relations among different convergence modes

Let X_n , X, Y_n and Y be random vectors and c be a constant. Then

- 1. $X_n \stackrel{a.s.}{\to} X \Rightarrow X_n \stackrel{p}{\to} X$.
- $2. \ X_n \stackrel{p}{\to} X \Rightarrow X_n \leadsto X.$
- 3. $X_n \stackrel{p}{\to} c \Leftrightarrow X_n \leadsto c$.
- 4. If $X_n \rightsquigarrow X$ and $d(X_n, Y_n) \to 0$, then $Y_n \rightsquigarrow X$.
- 5. If $X_n \rightsquigarrow X$ and $Y_n \stackrel{p}{\rightarrow} c$, then $(X_n, Y_n) \rightsquigarrow (X, c)$.
- 6. $X_n \stackrel{p}{\to} X$ and $Y_n \stackrel{p}{\to} Y \Leftrightarrow (X_n, Y_n) \stackrel{p}{\to} (X, Y)$.

Prohorov's Theorem

Tightness and uniform tightness

A random vector X is tight if $\forall \varepsilon > 0$, there is a constant M > 0 such that

$$P(\|X\| > M) < \varepsilon$$

A set of random vectors $\{X_{\alpha} : \alpha \in A\}$ is called uniformly tight (bounded in probability) if

$$\sup_{\alpha \in \mathcal{A}} P\left(\|X_{\alpha}\| > M\right) < \varepsilon$$

2.4 Prohorov's theorem

Let X_n be random vectors in \mathbb{R}^k .

- 1. If $X_n \rightsquigarrow X$ for some X, then $\{X_n : n \in \mathbb{N}\}$ is uniformly tight.
- 2. If $\{X_n : n \in \mathbb{N}\}$ is uniformly tight, then there exists a subsequence with $X_{n_j} \rightsquigarrow X$ as $j \to \infty$, for some X.

Stochastic *O* and *o* Symbols

Big O and small o

- 1. $X_n = O_p(1) \Leftrightarrow \{X_n\}$ is uniformly tight.
- 2. $X_n = o_p(1) \Leftrightarrow X_n \stackrel{p}{\to} 0$.
- 3. $X_n = O_p(R_n) \Leftrightarrow X_n = Y_n R_n \text{ and } Y_n = O_p(1).$
- 4. $X_n = o_p(R_n) \Leftrightarrow X_n = Y_n R_n \text{ and } Y_n = o_p(1).$

2.12 Rules of calculus with *O* and *o* symbols

Let R be a function on \mathbb{R}^k with R(0) = 0 and $X_n = o_p(1)$ be a sequence of random vectors with values in the domain of R. Then, $\forall p > 0$,

- 1. If $R(h) = O(\|h\|^p)$ as $h \to 0$, then $R(X_n) = O_p(\|X_n\|^p)$.
- 2. If $R(h) = o(\|h\|^p)$ as $h \to 0$, then $R(X_n) = o_p(\|X_n\|^p)$.

Convergence Concepts

Delta Method

Laws of Large Numbers

Central Limit Theorem

Appendix

Differentiability

Let $\phi : \mathbb{R}^k \to \mathbb{R}^m$. For $h \in \mathbb{R}^k$, denote

$$\phi'_{\theta} = \phi'(\theta) \text{ and } \phi'_{\theta}(h) = \phi'(\theta) h$$

 ϕ is differentiable at θ if there is a linear map $\phi'_{\theta}: \mathbb{R}^k \to \mathbb{R}^m$ such that

$$\phi\left(\theta+h\right)-\phi\left(\theta\right)=\phi_{\theta}^{\prime}\left(h\right)+o\left(\left\|h\right\|
ight)$$
 , as $h o0$

where

$$\phi_{\theta}' = \begin{pmatrix} \frac{\partial \phi_1}{\partial x_1} (\theta) & \cdots & \frac{\partial \phi_1}{\partial x_k} (\theta) \\ \vdots & \ddots & \vdots \\ \frac{\partial \phi_m}{\partial x_1} (\theta) & \cdots & \frac{\partial \phi_m}{\partial x_k} (\theta) \end{pmatrix}$$

A sufficient condition for ϕ to be differentiable at θ is that all $\partial \phi_j(x)/\partial x_i$ exist for x in a neighborhood of θ and are continuous at θ . ϕ is said to be continuously differentiable if ϕ'_{θ} is continuous on θ . ϕ'_{θ} is called gradient when m=1.

Delta Method

3.1 Delta method

Suppose $\phi: \mathbb{D}_{\phi} \subset \mathbb{R}^k \to \mathbb{R}^m$ is differentiable at θ . Let T_n be random vectors taking their values in \mathbb{D}_{ϕ} . If $r_n (T_n - \theta) \leadsto T$ for $r_n \to \infty$, then

$$r_n\left(\phi\left(T_n\right) - \phi\left(\theta\right)\right) \leadsto \phi'_{\theta}\left(T\right)$$

Moreover, $r_n\left(\phi\left(T_n\right) - \phi\left(\theta\right)\right) - \phi_{\theta}'\left(r_n\left(T_n - \theta\right)\right) \stackrel{p}{\to} 0.$

3.8 Uniform delta method

Let $\phi: \mathbb{D}_{\phi} \subset \mathbb{R}^k \to \mathbb{R}^m$ be continuously differentiable in a neighborhood of θ and T_n be random vectors taking their values in \mathbb{D}_{ϕ} . If $\theta_n \to \theta$ and $r_n (T_n - \theta_n) \leadsto T$ for $r_n \to \infty$, then

$$r_n\left(\phi\left(T_n\right) - \phi\left(\theta_n\right)\right) \leadsto \phi'_{\theta}\left(T\right)$$

Moreover, $r_n\left(\phi\left(T_n\right) - \phi\left(\theta_n\right)\right) - \phi_{\theta}'\left(r_n\left(T_n - \theta_n\right)\right) \stackrel{p}{\to} 0.$

Application: Variance Stabilizing Transformations

Suppose that $\sqrt{n}(T_n-\theta) \rightsquigarrow N(0,\sigma^2(\theta))$. Provided that it is consistent, some $\sigma^2(\widehat{\theta})$ can be used in place of unknown $\sigma^2(\theta)$ to conduct various inference.

An alternative approach is called variance-stabilizing transformation, which may lead to a better approximation.

If $\phi(\theta) \equiv \int \sigma^{-1}(\theta) d\theta$ is differentiable, then

$$\sqrt{n}(\phi(T_n) - \phi(\theta)) \rightsquigarrow N(0, \phi'(\theta)^2 \sigma^2(\theta)) = N(0, 1)$$

If ϕ is well-defined and strictly monotone, one can use this approach to derive the asymptotic confidence interval for θ .

Higer-Order Expansions

In the one-dimensional case, Taylor's expansion of $\phi(T_n)$ has the form:

$$\phi(T_n) = \phi(\theta) + (T_n - \theta) \phi'(\theta) + \frac{1}{2} (T_n - \theta)^2 \phi''(\theta) + \cdots$$

When $\phi'(\theta) = 0$, the rate and limiting distribution of $\phi(T_n)$ is determined by the quadratic term:

$$2r_n^2 \left[\phi\left(T_n\right) - \phi\left(\theta\right)\right] = r_n^2 \left(T_n - \theta\right)^2 \phi''\left(\theta\right) + \cdots$$

Need to carefully determine the rate if T_n is higher-dimensional:

$$\phi(T_n) - \phi(\theta) = \sum_{k=1}^K \frac{\partial \phi}{\partial x_k} (\theta) (T_{nk} - \theta_k) |$$

$$+ \frac{1}{2} \sum_{k=1}^K \sum_{l=1}^K \frac{\partial^2 \phi}{\partial x_k \partial x_l} (\theta) (T_{nk} - \theta_k) (T_{nl} - \theta_l)$$

Laws of Large Numbers

Resnick Chapter 7

Central Limit Theorem

Resnick Chapter 9

Convergence Concepts

Delta Method

Laws of Large Numbers

Central Limit Theorem

Appendix

- $\bullet \ \limsup \& \liminf$
- inequalities