Exercice 2

Cet exercice porte sur la programmation en général et la récursivité en particulier.

On considère un tableau de nombres de n lignes et p colonnes.

Les lignes sont numérotées de 0 à n-1 et les colonnes sont numérotées de 0 à p-1. La case en haut à gauche est repérée par (0,0) et la case en bas à droite par (n-1,p-1).

On appelle *chemin* une succession de cases allant de la case (0,0) à la case (n-1,p-1), en n'autorisant que des déplacements case par case : soit vers la droite, soit vers le bas.

On appelle somme d'un chemin la somme des entiers situés sur ce chemin.

Par exemple, pour le tableau T suivant :

4	1	1	3
2	0	2	1
3	1	5	1

- Un chemin est (0,0), (0,1), (0,2), (1,2), (2,2), (2,3) (en gras sur le tableau);
- La somme du chemin précédent est 14.
- (0,0), (0,2), (2,2), (2,3) n'est pas un chemin.

L'objectif de cet exercice est de déterminer la somme maximale pour tous les chemins possibles allant de la case (0,0) à la case (n-1,p-1).

Question 1 On considère tous les chemins allant de la case (0,0) à la case (2,3) du tableau T donné en exemple.

- 1. Un tel chemin comprend nécessairement 3 déplacements vers la droite. Combien de déplacements vers le bas comprend-il?
- 2. La longueur d'un chemin est égal au nombre de cases de ce chemin. Justifier que tous les chemins allant de (0,0) à (2,3) ont une longueur égale à 6.

Question 2 En listant tous les chemins possibles allant de (0,0) à (2,3) du tableau T, déterminer un chemin qui permet d'obtenir la somme maximale et la valeur de cette somme.

Question 3 On veut créer le tableau T' où chaque élément T'[i][j] est la somme maximale pour tous les chemins possibles allant de (0,0) à (i,j).

1. Compléter et recopier sur votre copie le tableau T' donné ci-dessous associé au tableau

$$\mathtt{T} = \begin{bmatrix} 4 & 1 & 1 & 3 \\ 2 & 0 & 2 & 1 \\ 3 & 1 & 5 & 1 \end{bmatrix}$$

	4	5	6	?
T' =	6	?	8	10
	9	10	?	16

2. Justifier que si j est différent de 0, alors : T'[0][j] = T[0][j] + T'[0][j-1]

Question 4 Justifier que si i et j sont différents de 0, alors : T'[i][j] = T[i][j] + max(T'[i-1][j], T'[i][j-1]).

Question 5 On veut créer la fonction récursive somme_max ayant pour paramètres un tableau T, un entier i et un entier j. Cette fonction renvoie la somme maximale pour tous les chemins possibles allant de la case (0, 0) à la case (i, j).

- 1. Quel est le cas de base, à savoir le cas qui est traité directement sans faire appel à la fonction somme_max? Que renvoie-t-on dans ce cas?
- 2. À l'aide de la question précédente, écrire en Python la fonction récursive ${\tt somme_max}$.
- 3. Quel appel de fonction doit-on faire pour résoudre le problème initial?