Daniel Penazzi

May 28, 2022

Tabla de Contenidos

- Definiciones y nociones básicas
 - Definición de Códigos Cíclicos
 - Polinomios
 - Utilidad de mirar las palabras como polinomios
- Polinomio Generador
 - Definición
 - Teorema fundamental de Códigos Cíclicos

- Una clase importante de códigos lineales son los códigos cíclicos.
- Son una clase de códigos lineales con algunas propiedades extras que hacen que el codificado y decodificado de las palabras sea mas eficiente.
- Ademas, en el caso de corrección de mas de un error, tienen un algoritmo mas eficiente que el que podria obtenerse para un código lineal general.
- Y otra propiedad que tienen es que son muy eficientes para corregir "errores en ráfaga"
- Es decir, cuando las condiciones son tales que es mas probable tener errores en un cierto segmento que aleatoriamente a lo largo de la transmisión.

Definición

Un código es cíclico si es lineal y la rotación de cualquiera de sus palabras es otra palabra del código.

- Por ejemplo {000,011,101,110} es cíclico pues cumple ambas propiedades.
- Pero {000, 001, 110, 111} no lo es pues es lineal pero la rotación de la palabra 001 en un bit a izquierda o derecha (es decir, 010 o 100) no está en el código.
- {000,001,010,100} cumple que la rotación de cualquier palabra es una palabra del código, pero no es lineal, asi que no es un código cíclico.
- A los códigos cíclicos también se los llama CRC (Cyclic redundancy code)

⟨□⟩ ⟨₫⟩ ⟨⟨⟨⟨⟩⟩ ⟨⟨⟩

Cambio de notación

Notación

Por motivos que resultaran claros en breve, en vez de denotar las palabras como $w_1...w_n$, las denotaremos como $w_0...w_{n-1}$

Definición

Dada una palabra $w=w_0w_1.....w_{n-2}w_{n-1}$, definimos la rotación (o cyclic shift) de w como la palabra $rot(w)=w_{n-1}w_0w_1....w_{n-2}$

- Dado que $rot^2(w) = w_{n-2}w_{n-1}w_0...w_{n-3}$, etc, esta claro que C es cíclico si C es lineal y se cumple que $w \in C \Rightarrow rot(w) \in C$.
- Como rot es lineal, tambien tenemos que un código es cíclico sii es lineal y existe una base de C tal que rot(w) ∈ C para toda palabra w de la base.
- Por lo tanto es fácil construir códigos cíclicos:
 - Basta tomar una palabra w cualquiera, y tomar el espacio vectorial generado por el conjunto $\{w, rot(w), rot^2(w), ..., rot^{n-1}(w)\}$.
- Como $rot^n(w) = w$, ese conjunto es cerrado por la operacion rot
- Como genera C, podemos extraer una base del mismo que cumple la propiedad anterior.

- El problema con hacer esto es que no tenemos la menor idea de cual sera la dimensión de *C*, por ejemplo.
- Veremos que podemos elejir la palabra w mas cuidadosamente, de forma tal de obtener una base que consistirá en las primeras k rotaciónes de w.
- Ademas, esta palabra w especial tendra otras propiedades que la harán muy efectiva.
- En particular, en vez de tener que guardar toda una matriz $k \times n$ generadora, o $r \times (r + k)$ de chequeo, bastará guardar una sola palabra de longitud n.

Álgebra

- Hay una cosa que debería quedar claro en el secundario, pero nunca o casi nunca la enseñan bien.
- Cuando yo era estudiante, nos enseñaban bien esta diferencia en primer año de famaf, pero creo que la calidad ha decaido y no estoy seguro si siguen haciendolo.
- Asi que repasaremos un poco acerca de polinomios.
- Todos "sabemos" que los polinomios son "cosas" como $1 + x, 2 + x^2, x + x^4 + 5x^7 + x^{10}$, etc
- En general, algo de la forma $\sum_{i=0}^{d} a_i x^i$.
- Pero ¿qué son, exactamente, esas "cosas"?

Daniel Penazzi

Polinomios

- Uno esta tentado a decir que son funciones, pero eso esta mal.
- Una función polinómica es una función de la forma $f(x) = \sum_{i=0}^{d} a_i x^i$, definida en algún lugar donde tenga sentido la suma y el producto con algunas propiedades minimas, es decir, en un anillo.
- Pero eso no es un polinomio.
- La confusión viene porque en R las dos cosas se pueden identificar: toda función polinómica "es" un polinomio y viceversa.
- Pero en otros anillos eso no pasa.

Polinomios

- La propiedad fundamental que tienen los polinomios es que si $\sum_{i=0}^{d} a_i x^i = \sum_{i=0}^{r} b_i x^i$ con a_d , b_r no nulos, entonces d = r y $a_i = b_i$ para todo i.
- Entonces por ejemplo en $\{0,1\}$, los polinomios 1 + x y $1 + x^2$ son distintos, pero las funciones polinomicas $x \mapsto 1 + x$ y $1 + x^2$ son iguales, pues dos funciones f, g son iguales sii f(x) = g(x) para todo x, y 1 + $x = 1 + x^2$ para todo $x \in \{0,1\}$.
- Asi que en general se define un polinomio simplemente como la "suma formal" $\sum_{i=0}^{d} a_i x^i$.
- Esto parece un acto de magia, pero se puede definir formalmente.
- Hay varias formas, ahora explico una que es la que nos será útil.

<ロ> <回> <回> < 回> < 回> < 三> < 三> < 三> < ○○○

Polinomios

- Se define "x" como la palabra infinita 010.....
- x^2 como 001000...
- y en general xⁱ como la palabra infinita a derecha que tiene un 1 en la posición im contando desde 0, y cero en las otras.
- Y la suma y multiplicación de constantes de la forma obvia.
- Asi, $1 + x^4 + 5x^7 + 8x^{10} = 1000100500800...$
- Un polinomio entonces será simplemente una palabra infinita pero tal que tenga una cantidad finita de entradas no nulas.
- Asi que las entradas infinitas nulas a derecha pueden no escribirse y se puede escribir $1 + x^4 + 5x^7 + 8x^{10} = 10001005008$ entendiendo que luego siguen todos ceros.
- Luego se define la multiplicación entre polinomios de forma tal que obedezca las reglas que ya conocemos.

Lo importante

Si no leyeron nada de lo anterior, o leyeron pero no entendieron, lo importante que les debe quedar, y que es lo que vamos a usar es lo siguiente:

Clave

La palabra $w_0 w_1 \dots w_{n-1}$ se puede pensar como el polinomio $w_0 + w_1 x + w_2 x^2 + \dots + w_{n-1} x^{n-1}$.

- Por ejemplo, $1010 = 1 + x^2$
- Advertencia: en algunos textos la identificación es asumiendo que el termino de mas a la izquierda es el termino de MAYOR grado. En ese caso, 1010 representa al polinomio $x^3 + x$ y no al $1 + x^2$, asi que hay que prestar atención a cual identificación se hace.

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ □ √0

Palabras y polinomios

- ¿Que ganamos pensando en una palabra como un polinomio?
- Que los polinomios se pueden multiplicar.
- Y entonces se pueden mirar los códigos con una estructura algebraica mas "rica" que permite deducir propiedades.
- Pero hay un small problem.
- Dado que estamos trabajando con códigos de longitud n, entonces estamos trabajando con polinomios de grado menor que n. (es decir, el termino no nulo de grado mas alto es n − 1 o menor)
- Y si multiplicamos polinomios el grado crece.

Palabras y polinomios

- Por ejemplo, si multiplicaramos:
- $1010.0110 = (1 + x^2)(x + x^2) = x + x^2 + x^3 + x^4 = 011111$
- Pasariamos de palabras de longitud 4 a palabras de longitud 5.
- Pero queremos quedarnos "dentro" de las palabras de longitud 4, pues queremos trabajar con códigos de bloque.
- Para resolver ese problema, tomamos módulo, porque otra cosa que se puede hacer con polinomios es dividir.

Definición

Si p(x) y m(x) son polinomios, entonces "p(x) mod m(x)" denotará el resto de la division de p(x) por m(x).

Es decir, $p(x) \mod m(x)$ es el único polinomio r(x) de grado menor que el grado de m(x) tal que existe un polimonio q(x) con p(x) = q(x)m(x) + r(x)

- Tambien diremos que $p(x) \equiv q(x)_{(\text{mod } h(x))}$ sii:
 - $p(x) \bmod h(x) = q(x) \bmod h(x).$

- Por lo tanto, si queremos "multiplicar" dos palabras de longitud n y obtener otra vez una palabra de longitud n
 - es decir, multiplicar dos polinomios de grado menor que n y obtener otro polinomio de grado menor que n
- bastará con multiplicar los polinomios correspondientes y luego tomar modulo algun polinomio de grado n.
- Por ejemplo, podriamos tomar el producto módulo x^n .
- Pero será mejor tomar el producto módulo $1 + x^n$
- Para no confundirnos con la multiplicación usual de polinomios, la denotaremos con un simbolo especial

Notación

Dadas dos palabras v y w de longitud n, identificadas con los polinomios v(x), w(x), definimos:

$$v\odot w=v(x)w(x)\ \mathrm{mod}\ (1+x^n)$$

- Nota: en ocasiones extenderemos la definición a casos donde una de las palabras tenga mas de n bits, definiendola de la misma forma.
- Ejemplo: Si *n* = 4 tenemos:

1010
$$\odot$$
 0110 = $(1 + x^2)(x + x^2) \mod 1 + x^4$
= $(x + x^2 + x^3 + x^4) \mod 1 + x^4$
= $1 + x + x^2 + x^3 = 1111$

←□▶←□▶←□▶←□ ●
 ←○

- Para tomar módulo $1 + x^n$ no hace falta dividir el polinomio por $1 + x^n$ y calcular el resto.
- Basta recordar que mod es lineal
- Por lo tanto,como $(1 + x^n) \mod (1 + x^n) = 0$, entonces obviamente $x^n \mod (1 + x^n) = 1$.
- (esto ultimo pues estamos trabajando en {0,1})
- Se puede ver esto directamente: $x^n = (1 + x^n).1 + 1.$
- En general si se trabaja en entornos donde $1 \neq -1$, en vez de tomar el polinomio $1 + x^n$ como módulo, se toma el polinomio $-1 + x^n$.
- Pues $x^n \mod (-1 + x^n) = 1$

Clave para la utilidad de los códigos cíclicos

Propiedad

$$rot(w) = x \odot w(x)$$

Prueba:

$$x \odot w(x) = x(w_0 + w_1x + ... + w_{n-2}x^{n-2} + w_{n-1}x^{n-1}) \bmod (1 + x^n)$$

$$= (w_0x + w_1x^2 + ... + w_{n-2}x^{n-1} + w_{n-1}x^n) \bmod (1 + x^n)$$

$$= w_0x + w_1x^2 + ... + w_{n-2}x^{n-1} + w_{n-1}$$

$$= w_{n-1} + w_0x + w_1x^2 + ... + w_{n-2}x^{n-1}$$

$$= rot(w)$$

Clave para la utilidad de los códigos cíclicos

Propiedad

Sea C un código cíclico, $w \in C$ y v una palabra cualquiera. Entonces $v \odot w \in C$.

- Prueba: por la propiedad anterior, $x \odot w = rot(w) \in C$ (pues C es cíclico)
- Por lo tanto $x^i \odot w \in C$ para todo i.
- Como C, al ser cíclico, es lineal, entonces cualquier combinación lineal de xⁱ ⊙ w estará en C.
- Es decir, $\sum a_i(x^i \odot w) \in C$ para cualesquiera a_i .
- Pero $\sum a_i(x^i\odot w)=(\sum a_ix^i)\odot w$.
- Concluimos que $v \odot w \in C$ para cualesquiera $v = \sum a_i x^i$.

Ideales

- En matemática a un objeto que tiene esa propiedad "absorbente" se le llama un ideal.
- Asi que un código cíclico es un ideal.
- Para seguir con las propiedades de códigos cíclicos, enunciaremos una propiedad que vale para cualquier código lineal.
- Sólo que es una propiedad útil exclusivamente en el caso de los códigos cíclicos, por eso no la dimos antes.

Propiedad

Si C es lineal, entonces existe **un único** polinomio no nulo en C de grado mínimo

- Nota: esta propiedad vale sólo en {0,1}. Si no estamos en {0,1} hay que agregar la condición de que sea mónico para la unicidad.
- Prueba: Supongamos que hubiera dos distintos: $g_1 \neq g_2$.
- Como son distintos, y estamos en $\{0,1\}$, $g_1 + g_2 \neq 0$.
- Como C es lineal, $g_1 + g_2$ está en C.
- Pero ¿cual es el grado de $g_1 + g_2$?

- Sea t el grado común a g_1, g_2 .
- Ambos son de la forma x^t +cosas de grado mas chico.
- Por lo tanto, al sumarlos, queda $x^t + x^t + \cos as$ de grado mas chico.
- **Como estamos en \{0, 1\}, x^t + x^t = 0**
- $lue{}$ Asi que el grado de g_1+g_2 es estrictamente menor que t
- Absurdo, pues como $g_1 + g_2 \neq 0$, tendriamos un polinomio no nulo de grado mas chico que el menor grado de un polinomio no nulo.

Polinomio Generador

Definición

Si C es cíclico, el único polinomio no nulo de menor grado se llama el polinomio generador y se lo suele denotar por g(x).

- ¿Por qué se le llama el polinomio generador?
- Porque vamos a ver que el polinomio genera algebráicamente todo el código.
- Por lo tanto, en vez de tener que guardar una matriz generadora, basta con guardar al polinomio generador.
- De hecho, hay listas de códigos cíclicos muy utiles en la literatura, y lo único que se dan son los polinomios generadores.
- De hecho, hay tablas de estos códigos, lo que se suele dar en cada entrada son los indices de los coeficientes que son 1.

Daniel Penazzi Códigos Cíclicos May 28, 2022 24 / 33

Teorema fundamental de códigos cíclicos

Teorema

Sea g(x) el polinomio generador de un código cíclico C de longitud n. Entonces:

- 1 C esta formado por los multiplos de g(x) de grado menor que n: $C = \{p(x) : gr(p) < n\&g(x)|p(x)\}$
- **2** $C = \{v(x) \odot g(x) : v \text{ es un polinomio cualquiera}\}$
- gr(g(x)) = n k.
- g(x) divide a $1 + x^n$
- $g_0 = 1$

(□▶∢∰▶∢≣▶∢≣▶ ≣ 쓋९ଙ

Prueba

- Prueba: Sea $C_1 = \{p(x) : gr(p) < n\&g(x)|p(x)\}$ y $C_2 = \{v(x) \odot g(x) : v \text{ es un polinomio cualquiera}\}.$
- Por la propiedad que probamos antes, $C_2 \subseteq C$, pues $g(x) \in C$.
- Sea $p(x) \in C$.
- Dividamos p(x) por g(x), obteniendo polinomios q(x) y r(x), con gr(r) < gr(g) tal que p(x) = q(x)g(x) + r(x).
- Por lo tanto r(x) = p(x) + q(x)g(x).
- Como gr(r) < gr(g) < n, entonces $r(x) = r(x) \mod (1 + x^n)$
- Como $p(x) \in C$, entonces gr(p) < n, y $p(x) = p(x) \mod (1 + x^n)$
- Entonces:

$$r(x) = r(x) \mod (1 + x^n)$$
= $(p(x) + q(x)g(x)) \mod (1 + x^n)$
= $p(x) \mod (1 + x^n) + (q(x)g(x)) \mod (1 + x^n)$
= $p(x) + q \odot g$

- Como $p(x) \in C$ y $q \odot g \in C$ y C es lineal, concluimos que $r \in C$.
- Pero gr(r) < gr(g) que es el polinomio no nulo de menor grado de C.
- Concluimos que r = 0.
- Por lo tanto $p(x) = q(x)g(x) + r(x) = q(x)g(x) \in C_1$.

Daniel Penazzi Códigos Cíclicos May 28, 2022 27/33

- Entonces concluimos que $C \subseteq C_1$ y habiamos visto $C_2 \subseteq C$, sólo nos resta ver que $C_1 \subseteq C_2$.
- Pero esa inclusión es obvia, pues si gr(p) < n y p(x) = q(x)g(x), entonces:
- $p(x) = p(x) \bmod (1 + x^n) \text{ (pues } gr(p) < n)$
- Y por lo tanto $p(x) = q(x)g(x) \mod (1 + x^n) = q \odot g \in C_2$.
- Con esto hemos probado las partes 1) y 2) del teorema.
- Vamos a la 3).

- Sea t el grado de g(x).
- Por 1), $p(x) \in C$ sii es de la forma q(x)g(x) para algun polinomio q(x).
- Pero como el grado de los elementos de C es menor que n, entonces el grado de q(x)g(x) debe ser menor que n.
- Por lo tanto el grado de q(x) debe ser menor que n-t.
- Asi, para cada polinomio de grado menor que n − t corresponde un polinomio de C, y vicecersa.
- Por lo tanto la cardinalidad de C es igual a la cardinalidad del conjunto de polinomios de grado menor que n-t.
- ¿Cual es esa cardinalidad? Piensenlo un poco antes de ver la siguiente página.

29 / 33

- Los polinomios de grado menor que n-t tienen n-t coeficientes (los de los términos de grado 0, 1, ..., n-t-1).
- Cada uno de esos coeficientes puede ser 1 o 0, asi que cada uno tiene dos posibilidades.
- Como son n-t, el total de polinomios posibles es 2^{n-t} .
- Entonces hemos probado que la cardinalidad de C es 2^{n-t} .
- Pero como C es lineal, sabemos que su cardinalidad es 2^k.
- Asi que $2^k = 2^{n-t}$, por lo tanto k = n t, y el grado de g(x) es t = n k.
- Fin parte 3

- La parte 4) se puede probar de varias formas. Veamos una:
- Dividimos $1 + x^n$ por g(x), obteniendo q(x), r(x) con gr(r) < gr(g) tal que $1 + x^n = q(x)g(x) + r(x)$.
- Por lo tanto $r(x) = 1 + x^n + q(x)g(x)$.
- Como $gr(r) < gr(g) < n, r(x) = r(x) \mod (1 + x^n).$
- Asi: $r(x) = (1 + x^n + q(x)g(x)) \mod (1 + x^n) = q \odot g \in C$
- (en la igualdad anterior usamos $(1 + x^n) \mod (1 + x^n) = 0$)
- Como $r \in C$ y gr(r) < gr(g), entonces r = 0 y $g(x)|(1 + x^n)$

- Otra prueba es observar que por la parte 3), g es de la forma $g_0 + g_1x + ... + g_{n-k-1}x^{n-k-1} + x^{n-k}$
- Por lo tanto $x^k g(x) = g_0 x^k + g_1 x^{k+1} + ... + g_{n-k-1} x^{n-1} + x^n$.
- Como 1+1=0, tenemos:
- $x^k g(x) = 1 + g_0 x^k + g_1 x^{k+1} + ... + g_{n-k-1} x^{n-1} + (1 + x^n)$
- Pero $1 + g_0 x^k + g_1 x^{k+1} + ... + g_{n-k-1} x^{n-1} = rot^k(g)$, asi que:
- $x^k g(x) = rot^k(g) + (1 + x^n).$
- Como $rot^k(g) \in C$, entonces por la parte 1) del teorema tenemos que $rot^k(g) = q(x)g(x)$ para algún q de grado adecuado.
- Entonces $1 + x^n = x^k g(x) + rot^k(g) = x^k g(x) + q(x)g(x) = (x^k + q(x))g(x)$
- **E**s decir, g divide a $1 + x^n$.

Fin Prueba

- Para la parte 5) basta observar que si $1 + x^n = q(x)g(x)$ entonces $1 = q_0g_0$ por lo tanto $g_0 = 1$.
- Fin prueba
- Como g divide a $1 + x^n$, $\frac{1+x^n}{g(x)}$ es un polinomio, que se suele llamar el polinomio chequeador y lo denotaremos por h(x).
- Se llama asi pues si $p(x) \in C$, entonces, como p(x) = q(x)g(x) para algún q:
- $h(x) \odot p(x) = h(x)p(x) \mod (1 + x^n) = h(x)q(x)g(x) \mod (1 + x^n) = 0.$
- La última igualdad pues $h(x)g(x) = 1 + x^n$ por definición de h.