



# Le guidage en rotation







### Guidage en rotation

- La solution constructive qui réalise une liaison pivot est appelée guidage en rotation.
- Le guidage en rotation est nécessaire dans de nombreux cas (moteurs, roues de véhicules, hélices d'avion ou de turbine...).
- On appelle arbre le contenu et logement ou alésage le contenant.



### Guidage en rotation: Contact direct

Le guidage en rotation est obtenu par contact direct des surfaces cylindriques arbre/logement (figures ...).

Des arrêts suppriment les degrés de liberté en translation

Avantage : Coût peu élevé.

Inconvénient : Frottements.

Domaine d'utilisation :

A cause des risques d'échauffement, cette solution est réservée aux domaines suivants :

- Faibles vitesses ;
- Efforts transmissibles peu élevés.



Articulation en chape



# Guidage en rotation

Pour avoir le bon fonctionnement de ce guidage, il faut respecter deux conditions :

- Un jeu axial.
- Un jeu radial (diamétral) déduit d'un choix judicieux d'un ajustement tournant ø 36 H7 f7





# Guidage en rotation

Ce guidage fait apparaître deux types de surfaces :

- Surfaces planes **S1**
- Surfaces cylindriques S







### Guidage en rotation: Coussinets

Les coussinets sont des bagues cylindriques en bronze ou en matière plastique, montés serrés dans l'alésage. L'arbre est monté glissant dans le coussinet. Ils permettent de :

- Diminuer le coefficient de frottement ;
- Augmenter la durée de vie de l'arbre et du logement ;
- Diminuer le bruit ;
- Supporter seuls l'usure.















### Guidage en rotation: Bague autolubrifiantes

Elles sont obtenues par frittage (compression de poudre à température élevée) et sont donc poreuses.

Les porosités contiennent du lubrifiant qui, sous l'effet centrifuge du mouvement, est aspiré et forme un coussin d'huile. A l'arrêt, le lubrifiant reprend sa place par capillarité.

#### **Exemple de montage:**







Coussinets en métal fritté autolubrifiants



### Guidage en rotation: Rotule

Cette solution est utilisée pour corriger l'alignement de l'arbre.





### Guidage en rotation: Roulements



Cette solution constructive développée à la suite est très utilisée. Le guidage est assuré avec précision avec un frottement minimal.



### Guidage en rotation: Silentblocs



Deux bagues métalliques reliées par une bague en caoutchouc.



## LES ROULEMENTS

### Composition d'un roulement



<u>1</u>: Bague extérieure, liée à l'alésage (logement du roulement)

<u>2</u>: Bague intérieure, liée à l'arbre

<u>3</u> : Cage, assure le maintien des éléments roulants

<u>4</u>: **Eléments roulants**, situés entre les deux bagues :





# Types de charge supportées par les roulements





# Les principaux types de roulements à billes et à rouleaux (exemples)

| Type de roulement                                                          |  | Représentation |                 | Aptitude à la<br>charge |        | Aptitude<br>à | Remarques<br>Utilisations                                                                                                                                         |
|----------------------------------------------------------------------------|--|----------------|-----------------|-------------------------|--------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                            |  | Normale        | Conventionnelle | Radiale                 | Axiale | la vitesse    | Othisations                                                                                                                                                       |
| Roulement<br>à billes<br>à contact<br>radial                               |  |                | +               | +++                     | + +    | +++           | Le plus utilisé.<br>Très économique.Existe en<br>plusieurs variantes<br>(Etanche, avec rainure et<br>segment d'arrêt)                                             |
| Roulement<br>à une ou deux<br>rangées<br>de billes<br>à contact<br>oblique |  |                | ×               | +++                     | +++    | ++            | Les roulements à<br>une rangée de billes<br>doivent être montés<br>par paire.<br>Avec une rangée de billes,<br>la charge ne peut être<br>appliquée que d'un côté. |

### Règles de montage des roulements

La bague **TOURNANTE** par rapport à la direction de la charge est montée **SERREE** sur sa portée.

La bague **FIXE** par rapport à la direction de la charge est montée **GLISSANTE**(avec jeu) sur sa portée.



#### Montage *ALESAGE* (moyeu) TOURNANT





La bague intérieure est **TOURNANTE** La bague intérieure est **FIXE** La bague extérieure est **FIXE** 

La bague extérieure est **TOURNANTE** 

### Cotation des portées de roulement :

Seul le diamètre des portées de l'arbre Ød et de l'alésage ØD sont à coter.





# Montage des roulements à billes à contact radial:

1er cas: arbre tournant par rapport à la charge :



#### **ARRETS AXIAUX DES BAGUES:**

Les **bagues intérieures** montées serrées sont **arrêtées** en translation par

quatre obstacles: A, B, C et D

Les **bagues extérieures** montées glissantes sont **arrêtées** en translation

par deux obstacles: E et H

#### Exemple de montage :





# Montage des roulements à billes à contact radial:

<u>2ème cas</u>: ALESAGE (moyeu) tournant par rapport à la charge :



#### ARRETS AXIAUX DES BAGUES :

Les **bagues intérieures** montées glissantes sont **arrêtées** en translation

par deux obstacles: E et H

Les **bagues extérieures** montées serrées sont **arrêtées** en translation par

quatre obstacles: A, B, C et D

#### Exemple de montage :





























L'élément de maintien en position (l'écrou à encoches (4)) est freiné par la rondelle frein (3).



## Liaison du couvercle (1) avec le demicarter (7)



Nature des surfaces de contact : Plane et cylindrique ;

Moyen de positionnement : Centrage court ;

Eléments de fixation : 4 Vis (6).

## Liaison des deux demi-carters (7) et (15)



Nature des surfaces de contact : Plane ;

Moyen de positionnement : 2 pieds de centrage (13) ;

Eléments de fixation : 4 Vis (23).

## Application: TOURET A MEULER





# Application: TOURET A MEULER





## Eléments assurant les obstacles





# Exercice 2





# Corrigé de l'exercice 2

