LIF15 – Théorie des langages formels

Sylvain Brandel 2019 – 2020 sylvain.brandel@univ-lyon1.fr

CM 9

AUTOMATES À PILE ALGÉBRICITÉ

Définition

Un automate à pile est un sextuplet $M = (K, \Sigma, \Gamma, \Delta, s, F)$ avec :

- K : ensemble fini d'états
- $-\Sigma$: ensemble fini de symboles d'entrée (alphabet)
- $-\Gamma$: ensemble fini de symboles de la pile
- s ∈ K : état initial
- F ⊆ K : ensemble des états finaux
- $-\Delta \subset (K \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\})) \times (K \times (\Gamma \cup \{\epsilon\}))$: fonction de transition.

- Une transition ((p, a, A), (q, B)) ∈ ∆ où :
 - p est l'état courant
 - a est le symbole d'entrée courant
 - A est le symbole sommet de la pile
 - q est le nouvel état
 - B est le nouveau symbole en sommet de pile

a pour effet :

- (1) De passer de l'état p à l'état q
- (2) D'avancer la tête de lecture après a
- (3) De dépiler A du sommet de la pile
- (4) D'empiler B sur la pile

Définition

Soit M = (K, Σ , Γ , Δ , s, F) un automate à pile.

Une configuration de M est définie par un triplet $(q_i, w, \alpha) \in K \times \Sigma^* \times \Gamma^*$ où :

- q_i est l'état courant de M,
- w est la partie de la chaîne restant à analyser,
- $-\alpha$ est le contenu de la pile.

Définition

Soient (q_i, u, α) et (q_j, v, β) deux configurations d'un automate à pile $M = (K, \Sigma, \Gamma, \Delta, s, F)$.

```
On dit que (q_i, u, \alpha) conduit à (q_j, v, \beta) en une étape ssi \exists \sigma \in (\Sigma \cup \{\epsilon\}), \exists A, B \in (\Gamma \cup \{\epsilon\}) tels que : u = \sigma v et \alpha = \alpha' A et \beta = \beta' B et ((q_i, \sigma, A), (q_j, B)) \in \Delta.
```

On note $(q_i, u, \alpha) \vdash_M (q_i, v, \beta)$.

Définition

La relation \vdash_{M}^{*} est la fermeture réflexive transitive de \vdash_{M} .

Définition

Soit M = (K, Σ , Γ , Δ , s, F) un automate à pile. Un mot w $\in \Sigma^*$ est accepté par M ssi (s, w, ε) \vdash_M^* (f, ε , ε) avec f \in F.

Définition

Le langage accepté par M, noté L(M), est l'ensemble des mots acceptés par M.

• Soit M = $(K, \Sigma, \Gamma, \Delta, s, F)$ avec :

- Un automate à pile est déterministe s'il y a au plus une transition applicable pour tout triplet de la forme (État courant, symbole d'entrée, sommet de pile).
- Les automates à pile non déterministes reconnaissent plus de langages que les automates à pile déterministes

Automates à pile et grammaires algébriques

Théorème

La classe des langages acceptés par les automates à pile est égale à la classe des langages engendrés par les grammaires algébriques.

Définition

Un automate à pile est dit simple ssi quelle que soit la transition ((p, a, α), (q, β)) $\in \Delta$, on a :

 $\alpha \in \Gamma$ (sauf pour p = S où on ne dépile rien) et $|\beta| \le 2$

Proposition

On peut transformer tout automate à pile en un automate simple équivalent.

Propriétés des langages algébriques Preuve d'algébricité

- Pour montrer qu'un langage est algébrique, on peut :
 - soit définir une grammaire algébrique qui engendre ce langage,
 - soit définir un automate à pile qui l'accepte.
- Il est également possible d'utiliser les propriétés de stabilité de la classe des langages algébriques

Propriétés des langages algébriques Propriétés de stabilité

Théorème

La classe des langages algébriques est stable par les opérations d'union, de concaténation et d'étoile de Kleene.

Preuve

Soient deux grammaires $G_1 = (V_1, \Sigma_1, R_1, S_1)$ et $G_2 = (V_2, \Sigma_2, R_2, S_2)$, avec $V_1 \cap V_2 = \emptyset$. (On renomme éventuellement les non-terminaux.)

La preuve (constructive) consiste à :

- construire une grammaire G à partir de G₁ et G₂ validant les propriétés de stabilité,
- montrer que $L(G) = L(G_1)$ op $L(G_2)$ (op $\in \{ \cup, . \}$) et $L(G) = L(G_1)^*$.

Propriétés des langages algébriques Propriétés de stabilité

Preuve

(a) Union

Soit G = (V, Σ, R, S) avec :

- $V = V_1 \cup V_2 \cup \{S\}$ où $S \notin V_1 \cup V_2$ (renommage éventuel)
- $\Sigma = \Sigma_1 \cup \Sigma_2$
- $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 \mid S_2\}$

(b) Concaténation

Soit G = (V, Σ, R, S) avec :

- $V = V_1 \cup V_2 \cup \{S\}$ où $S \notin V_1 \cup V_2$ (renommage éventuel)
- $\Sigma = \Sigma_1 \cup \Sigma_2$
- $R = R_1 \cup R_2 \cup \{S \to S_1S_2\}$

(c) Opération étoile

Soit G = (V, Σ, R, S) avec :

- $V = V_1 \cup \{S\}$ où $S \notin V_1$ (renommage éventuel)
- $\sum = \sum_{1}$
- $R = R_1 \cup \{S \rightarrow S_1S \mid \varepsilon\}$

Propriétés des langages algébriques Propriétés de stabilité

Remarque

Contrairement à la classe des langages rationnels, la classe des langages algébriques n'est pas stable par intersection et complémentation.

Théorème

L'intersection d'un langage rationnel et d'un langage algébrique est algébrique.

Définition

Une grammaire algébrique $G = (V, \Sigma, R, S)$ est sous forme normale de Chomsky si chaque règle est de la forme :

$$\begin{array}{ccc} A \to BC \ \ avec \ B, \ C \in V - \{S\} \\ ou & A \to \sigma & avec \ \sigma \in \Sigma \\ ou & A \to e \end{array}$$

Théorème

Pour toute grammaire algébrique, il existe une grammaire sous forme normale de Chomsky équivalente.

Théorème (lemme de la double étoile)

Soit L un langage algébrique.

Il existe un nombre k, dépendant de L, tel que tout mot $z \in L$, $|z| \ge k$, peut être décomposé en z = uvwxy avec :

- (i) $|\mathbf{vwx}| \leq k$
- (ii) $|\mathbf{v}| + |\mathbf{x}| > 0$ (ie. $\mathbf{v} \neq \varepsilon$ ou $\mathbf{x} \neq \varepsilon$)
- (iii) $uv^iwx^iy \in L, \forall i \geq 0$

(d'où l'appellation de double étoile : v^i et $x^i = v^*$ et x^*)

Lemme

Soit G = (V, Σ , R, S) une grammaire algébrique sous forme normale de Chomsky.

Soit $S \Rightarrow_G^* w$ une dérivation de $w \in \Sigma^*$ dont l'arbre de dérivation est noté T. Si la hauteur de T est n alors $|w| \le 2^{n-1}$.

Corollaire

Soit G = (V, Σ , R, S) une grammaire algébrique sous forme normale de Chomsky.

Soit $S \Rightarrow_{G}^{*} w$ une dérivation de $w \in L(G)$.

Si $|w| \ge 2^n$ alors l'arbre de dérivation est de hauteur $\ge n+1$.

Exemple

Montrons que L = { $a^nb^nc^n | n \ge 0$ } est non algébrique.

Supposons que L est algébrique.

D'après le lemme de la double étoile, il existe une constante k, dépendant de L, telle que :

 \forall z \in L, $|z| \ge k$, z peut être décomposé en z = uvwxy avec :

- (i) $|vwx| \le k$
- (ii) |v| + |x| > 0 (au moins un des deux n'est pas le mot vide)
- (iii) $uv^iwx^iy \in L, \forall i \geq 0$

Exemple

Considérons la chaîne particulière $z_0 = a^k b^k c^k$. On a bien $z_0 \in L$ et $|z_0| = 3k \ge k$. Les décompositions de $z_0 = uvwxy$ satisfaisant $|vwx| \le k$ et |v| + |x| > 0 sont telles que :

Soit l'une des sous-chaînes v ou x contient plus d'un type de symbole, de la forme a⁺b⁺ ou b⁺c⁺. uviwxiy avec i > 1 contient un a après un b ou un b après un c. (par exemple uv²wx²y = u aabb aabb w x x y, si v = aabb) donc la chaîne uviwxiy n'est plus de la forme apbpcp avec p ≥ 0, donc uviwxiv ∉ L pour n > 1.

Soit v et x sont des sous-chaînes de a^k ou de b^k ou de c^k.

Comme au plus une des chaînes v ou x est vide, toute chaîne de la forme uv^nwx^ny avec n > 1 est caractérisée par une augmentation de un $(v = \varepsilon \text{ ou } x = \varepsilon)$ ou deux $(v \neq \varepsilon \text{ et } x \neq \varepsilon)$ des trois types de terminaux.

donc pour n > 1, la chaîne uv^iwx^iy est de la forme $a^pb^qc^r$ mais avec $p \ne q$ ou $q \ne r$. donc $uv^iwx^iy \not\in L$ pour n > 1.

Pas d'autres possibilités pour v et x, les autres sous-chaines u, w et y n'influencent pas.

Pour toutes les décompositions possibles de la chaîne z_0 il y a une contradiction.

Donc l'hypothèse est fausse \Rightarrow L non algébrique.

Propriétés des langages algébriques Preuve de non algébricité

- Pour montrer qu'un langage est non algébrique, on peut utiliser :
 - Le lemme de la double étoile,
 - Les propriétés de stabilité de la classe des langages algébriques,
 - Le théorème qui dit que l'intersection d'un langage algébrique et d'un langage rationnel est algébrique.

Problèmes indécidables pour les langages algébriques

- Une question est décidable s'il existe un algorithme (c'est-à-dire un processus déterministe) qui s'arrête avec une réponse (oui ou non) pour chaque entrée.
- Une question est indécidable si un tel algorithme n'existe pas.

Problèmes indécidables pour les langages algébriques

Théorème

Les questions suivantes sont décidables :

- Étant donnés une grammaire algébrique G et un mot w
 est-ce que w ∈ L(G) ?
- Étant donnée une grammaire algébrique G, est-ce que L(G) = ∅ ?

Les questions suivantes sont indécidables :

- − Soit G une grammaire algébrique. Est-ce que $L(G) = \sum^*$?
- Soient G_1 et G_2 deux grammaires algébriques. Est-ce que $L(G_1) = L(G_2)$?
- Soient M_1 et M_2 deux automates à pile. Est-ce que $L(M_1) = L(M_2)$?
- Soit M un automate à pile. Trouver un automate à pile équivalent minimal en nombre d'états.