

The Benchmark Data Library Project: ein Metadaten-Archiv für Simulationsdaten

Rainer Dangl und Friedrich Leisch

Institut für Angewandte Statistik & EDV Universität für Bodenkultur Wien

Kolloquium der Wiener Biometrischen Sektion der ROeS

Introduction

New methods in model validation in unsupervised learning are commonly tested on artificial data

Usual approach

develop new test data from scratch → is this always necessary?

Alternative approach

- search for suitable datasets in previous studies
- advantage → compare performance of methods directly
- if no suitable dataset is available develop own setup
- → where to conveniently get artificial data?

Existing Repositories

Problems

- targeted toward supervised learning
- real world data
- no clearly structured metadata information

Requirements for a Benchmarking Repository

- only for artificial data
- clearly structured metadata that is the same for all datasets
- data sets are summarized in experimental setups
- 'peer-reviewed data sets'
- three data types: metric/functional/ordinal
- clear documentation of source of data sets
- visualization of data sets preferable
- users can easily contribute to the library

The Benchmark Data Library

Combines the aforementioned requirements into an easy to use combination of an R package and a web application based on the shiny package for R.

- ullet shiny enables reactive programming paradigms ullet dynamic UI generation possible
- there is no huge storage required no actual data is stored, just the metadata
- convenient way of exploring available data sets in the library
- if a new setup is is uploaded it is immediately available for download
- users who download create their data set on the client no serverside lags due to heavy load

Reactive expressions in shiny

```
shinyServer(function(input, output) {
  output$result <- renderText({
    if(input$number == 1) return("One!")
    else return("Something else!")
  })
})

<input id="number" class="shiny-bound-input" type="number"></input>
<div id="result" class="shiny-html-output"></div>
```

The reactive function automatically updates the content of variable result depending on the value of number

The Benchmark Data Library

Metadata objects

- each dataset in a setup is represented by a metadata object
- S4 objects that are processed by the data generator
- three types available: metric/functional/ordinal
- flexible enough to enable any data set but strict enough to provide a universal frame for all data sets
- the data generator only acts as an assembler that puts together the data set based on the metadata object

Example: it depends on the content of the slot 'distribution' (which data generating function) how the slot 'clusters' looks like - arguments must match \rightarrow mvrnorm needs at least n, mu and Sigma, these arguments must be there for each cluster in the 'clusters' slot

Metadata objects

Input file

Input file

```
require(MASS)
dangl2014 <- function(setnr = NULL, seed = NULL, info = FALSE){</pre>
 tab <- data.frame(n = c(50, 40), k = c(2,2), shape = c("spherical", "spherical"))
 ref <- "Dangl R. (2014) A small simulation study. Journal of Simple Datasets 10(2), 1-10"
 if(info == T) return(list(summary = inf, reference = ref))
 if(setnr == 1) {
   return(new("metadata.metric",
                clusters = list(c1 = list(n = 250, mu = c(3,4), Sigma=diag(1,2)),
                                c2 = list(n = 250, mu = c(1,2), Sigma=diag(1,2))),
                distribution = "mvrnorm", seed = seed, variables = 2, total_n = 500, k = 2))
 }
 if(setnr == 2){
   return(new("metadata.metric",
                clusters = list(c1 = list(n = 200, mu = c(0,2), Sigma=diag(1,2)),
                                c2 = list(n = 200, mu = c(-1, -2), Sigma=diag(1, 2))),
                distribution = "mvrnorm", seed = seed, variables = 2, total_n = 400, k = 2))
 }
}
```

Outlook

In the near future, the app will be used within the group \rightarrow thorough testing before it can go public

Features still to be implemented:

- functional data implementation not satisfactory yet
- documentation
- other additional features/data types

• ..