ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA APLIKOVANÝCH VĚD

Aplikované vědy a informatika Kybernetika a řídící technika

Vypracované otázky ke státní závěrečné zkoušce (Ing.)

22. května 2017	Martin Bulín, MSc.

1	\mathbf{Um}	Umělá inteligence [UISZ]		1
	1.1	Učící	se systémy a klasifikátory [USK]	1
		1.1.1	Kritérium minimální chyby	1
		1.1.2	Pravděpodobnostní diskriminační funkce. Souvislost s klasifikátory podle lineární diskriminační funkce, podle nejmenší vzdálenosti, podle nejbližšího	
			souseda a podle k-nejbližšího souseda.	3
		1.1.3	Klasifikátor s lineární diskriminační funkcí. Klasifikace do dvou a do více	
			tříd	3
		1.1.4	Metody nastavování klasifikátorů (trénování klasifikátorů)	3
		1.1.5	Metody shlukové analýzy (učení bez učitele)	3
		1.1.6	Výběr informativních příznaků	3
1.2 Neuronové sítě [NEU]		onové sítě [NEU]	3	
		1.2.1	Základní umělé modely neuronu, vlastnosti, souvislost s biologickým neu-	
			ronem	4
		1.2.2	Základní typy neuronových sítí. Způsoby činnosti a učení neuronových sítí.	4
		1.2.3	Algoritmus backpropagation.	4
		1.2.4	Sítě se zpětnou vazbou. Hopfieldova neuronová síť	4
		1.2.5	Samoorganizující se sítě	4
		1.2.6	Oblasti použití neuronových sítí	4
	1.3	Zprac	cování digitalizovaného obrazu [ZDO]	4
		1.3.1	Bodové jasové transformace	4
		1.3.2	Geometrické transformace.	4
		1.3.3	Filtrace šumu.	4
		1.3.4	Gradientní operátory.	4
		1.3.5	Metody segmentace	4

		1.3.6	Matematická morfologie	4
2	Teo	rie říze	ení [TŘSZ]	5
	2.1		rní systémy 1-2 [LS1], [LS2]	5
		2.1.1 2.1.2	Matematické modely spojitých a diskrétních lineárních dynamických systémů. Linearizace nelineárních dynamických systémů, rovnovážné stavy. Harmo-	
		2.1.3	nická linearizace	6
		0.1.4	kriteria. Vnitřní a vnější stabilita, kriteria	6
		2.1.4 2.1.5	Časové a frekvenční odezvy elementárních členů regulačních obvodů Základní typy spojitých a diskrétních regulátorů (P,PI,PID, stavové re-	6
		2.1.6	gulátory a stavové regulátory s integračním charakterem), popis, vlastnosti. Struktura regulačních obvodů s jedním a dvěma stupni volnosti, přenosy	6
		2.1.7	v regulačním obvodu, princip vnitřního modelu	6
		2.1.8	Požadavky na funkci a kvalitu regulace (přesnost regulace, dynamický činitel regulace, kmitavost, robustnost ve stabilitě a j.), omezení na dosažitelno	
			kvalitu regulace.	6
		2.1.9	Metoda geometrického místa kořenů, pravidla pro konstrukci a využití při syntéze regulátorů, příklady	6
			Přístup k syntéze regulátorů v klasické teorii regulace, klasické metody, heuristické metody	6
		2.1.11	Deterministická rekonstrukce stavu, stavový regulátor s rekonstruktorem stavu.	6
		2.1.12	Ljapunovova teorie stability. Ljapunovova rovnice.	6
2.2 Teorie odhadu [TOD]		e odhadu [TOD]	6	
		2.2.1	Problémy odhadu, základní etapy vývoje teorie odhadu, náhodné veličiny, náhodné procesy a jejich popis, stochastický systém	7
		2.2.2	Optimální odhad ve smyslu střední kvadratické chyby. Odhad ve smyslu maximální věrohodnosti	7
		2.2.3	Jednorázové a rekurzivní odhady	7
		2.2.4	Odhad stavu lineárního diskrétního systému – filtrace (Kalmanův filtr). .	7
		2.2.5	Úlohy odhadu stavu lineárního diskrétního stochastického systému – predikce a vyhlazování	7
		2.2.6	Odhad stavu lineárního systému se spojitým či diskrétním měřením (Kalman-Bucyho filtr)	7
	2.3	Ontin	nální systémy [OPS]	7
	2.0	2.3.1	Optimální programové řízení diskrétních dynamických systémů. Formulace úlohy. Hamiltonova funkce. Nutné podmínky pro optimální řízení	8
		2.3.2	Optimální programové řízení spojitých dynamických systémů. Formulace úlohy. Hamiltonova funkce. Nutné podmínky pro optimální řízení. Podmínky	O
		2.3.3	transverzality. Pontrjaginův princip minima	8
			Bellmanova funkce. Bellmanova optimalizační rekurze	8

		2.3.4	Syntéza optimálního deterministického systému automatického řízení pro diskrétní lineární řízený systém a kvadratické kritérium. Formulace a řešení. Asymptotické řešení a jeho stabilita	8
		2.3.5	Deterministický spojitý systém automatického řízení. Kontinualizace Bellmanovy optimalizační rekurze.	8
		2.3.6	Optimální stochastický systém automatického řízení. Strategie řízení. Bell-	
		2.3.7	manova funkce a Bellmanova optimalizační rekurze	8
			řízený systém a kvadratické kritérium. Formulace a řešení. Separační teorém.	8
	2.4	_	tivní systémy [AS]	8
		2.4.1	Základní přístupy k syntéze adaptivních řídicích systémů, schematické vyjádření, srovnání s předpoklady a návrhem standardních regulátorů	9
		2.4.2	Adaptivní řízení s referenčním modelem, MIT pravidlo, využití Ljapunovovy teorie stability.	9
		2.4.3	Samonastavující se regulátory, charakteristika a základní přístupy k návrhu bloku řízení, přiřazení pólů, diofantické rovnice, minimální variance	9
		2.4.4	Samonastavující se regulátory, charakteristika a základní přístupy k návrhu bloku poznávání, parametrické metody odhadu	9
		2.4.5	Adaptivní systémy na zpracování signálu, adaptivní prediktor, adaptivní filtr, analogie se samonastavujícími se regulátory	9
		2.4.6	Adaptivní řízení a strukturální vlastnost stochastického optimálního řízení, duální řízení, neutralita, separabilita, ekvivalence určitosti	9
3	Apl	ikovan	á kybernetika [AKSZ]	10
	_			10
	3.1	3.1.1	Metody řešení úloh v UI	10 10
		3.1.2	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda.	10
		3.1.3	Produkční systém. Báze znalostí a báze dat. Dopředné a zpětné šíření	10
		3.1.4	Síťové formalizmy pro reprezentaci znalostí. Sémantické sítě. Rámce. Scénáře.	
		3.1.5	Metody hraní her v UI. Procedura minimax, alfa-beta prořezávání	10
	3.2		elování a simulace 1 [MS1]	10
		3.2.1		11
			Systém, model, modelování, simulace, systémová analýza	
		3.2.2	Modelování systému diskrétních událostí, diskrétní simulace	11
		3.2.2 3.2.3	Modelování systému diskrétních událostí, diskrétní simulace Simulační experiment, studie, analýza rizika, náhoda v simulačních úlohách.	11
		3.2.2	Modelování systému diskrétních událostí, diskrétní simulace	11
		3.2.2 3.2.3	Modelování systému diskrétních událostí, diskrétní simulace Simulační experiment, studie, analýza rizika, náhoda v simulačních úlohách. Modelování v netechnických oborech (kompartmenty, buněčné automaty,)	11 11 11
		3.2.2 3.2.3 3.2.4	Modelování systému diskrétních událostí, diskrétní simulace Simulační experiment, studie, analýza rizika, náhoda v simulačních úlohách. Modelování v netechnických oborech (kompartmenty, buněčné automaty,	11 11
		3.2.2 3.2.3 3.2.4 3.2.5	Modelování systému diskrétních událostí, diskrétní simulace Simulační experiment, studie, analýza rizika, náhoda v simulačních úlohách. Modelování v netechnických oborech (kompartmenty, buněčné automaty,)	11 11 11 11 11
		3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	Modelování systému diskrétních událostí, diskrétní simulace. Simulační experiment, studie, analýza rizika, náhoda v simulačních úlohách. Modelování v netechnických oborech (kompartmenty, buněčné automaty,). Konstrukce modelů na základě měření, zpracování signálu v časové, frekvenční a časo-frekvenční oblasti, modely periodických procesů. Modely vibrací a kmitání, experimentální modální analýza. Generování náhodných čísel, metoda Monte Carlo a odhad přesnosti simulačních výsledků.	11 11 11 11 11 11
	3.3	3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	Modelování systému diskrétních událostí, diskrétní simulace. Simulační experiment, studie, analýza rizika, náhoda v simulačních úlohách. Modelování v netechnických oborech (kompartmenty, buněčné automaty,). Konstrukce modelů na základě měření, zpracování signálu v časové, frekvenční a časo-frekvenční oblasti, modely periodických procesů. Modely vibrací a kmitání, experimentální modální analýza. Generování náhodných čísel, metoda Monte Carlo a odhad přesnosti simulačních výsledků.	11 11 11 11 11 11 11

	3.3.2	Architektura .NET Frameworku; řízený modul, metadata, běh řízeného	10
		kódu.	12
	3.3.3	Jazyk C Sharp: hodnotové a referenční typy; jednoduché typy, implicitní konverze; výrazy a operátory; příkazy; výjimky	12
	3.3.4	Jazyk C Sharp: Členy a přístup k nim; jmenné prostory; třídy, metody,	
		vlastnosti, konstruktory, destruktory; struktury; pole; delegáty; atributy	12
	3.3.5	Softwarové komponenty: DLL, RPC, COM; interface; OPC	12
	3.3.6	Operační systémy: procesy a thready, synchronizace, deadlock, inverze pri-	
		orit; správa paměti; vstupně-výstupní systém, programované vstupy/výstupy,	
		přerušení, DMA, ovladače zařízení; souborové systémy	12
	3.3.7	Operační systémy reálného času: statické a dynamické plánovací algoritmy.	12
	3.3.8	Struktury vzdálených a virtuálních laboratoří	12
3.4	Převo	odníky fyzikálních veličin [PFV]	12
	3.4.1	Struktura a parametry senzorů pro automatizaci, statické a dynamické	
		modely a chyby, metody snižování chyb senzorů	13
	3.4.2	$\rm A/D$ a D/A převodníky, obvody pro úpravu signálů, frekvenční filtry. . .	13
	3.4.3	Senzory teploty a tepla, obvody pro měření odporu, kapacity, indukčnosti	
		a frekvence	13
	3.4.4	Senzory polohy a vzdálenosti (odporové, indukční, kapacitní, ultrazvu-	
		kové, optické).	13
	3.4.5	Senzory síly, hmotnosti, deformace, tlaku, rychlosti, zrychlení a vibrací	
		(tenzometrické, piezoelektrické, kapacitní a elektrodynamické)	13
	3.4.6	Senzory průtoku, množství, hustoty, viskozity, koncentrace a chemického	
		složení	13
	3.4.7	Elektrické akční členy a jejich budiče (stejnosměrné, střídavé, krokové mo-	
		tory, PWM zesilovače, frekvenční měniče)	13
	3.4.8	Hydraulické a pneumatické akční členy (pracovní a řídicí mechanizmy a	
		zdroje tlakového média)	13

Kapitola 1

Umělá inteligence [UISZ]

1.1 Učící se systémy a klasifikátory [USK]

vyučující: Prof. Ing. Josef Psutka, CSc.

ročník/semestr studia: 3.ročník/LS datum zkoušky: X. 4. 2014

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je seznámit studenty se základními metodami klasifikace předmětů a jevů, které jsou reprezentovány svými obrazy (vektory příznaků). Výuka bude zaměřena na klasifikátory, které jsou trénovány s podporou učitele (supervised) anebo bez učitele (unsupervised).

1.1.1 Kritérium minimální chyby.

Často nejsme schopni posoudit jednoznačně, do které třídy vektor příznaků X patří. Cílem je potom nastavit klasifikátor tak, aby ztráty způsobené chybným rozhodnutím byly minimální.

Definition 1 Ztráta, která vznikne, jestliže obraz náležející do třídy ω_s zařadí klasifikátor do třídy ω_r : $l(\omega_r|\omega_s)$

- předp., že obrazový prostor X obsahuje obrazy z R tříd: $\omega_1,...,\omega_R$
- apriorní p
psti výskytu obrazů náležejících ke třídě $\omega_r => p(\omega_r), \qquad r=1,...,R$
- podmíněná hustota p
psti obrazu x ze třídy ω_r je $p(x|\omega_r), \qquad r=1,...,R$
- nechť je dána matice ztrátových funkcí:

$$l = \begin{bmatrix} l(\omega_1 | \omega_1) & \dots & l(\omega_1 | \omega_R) \\ \vdots & \ddots & \vdots \\ l(\omega_R | \omega_1) & \dots & l(\omega_R | \omega_R) \end{bmatrix}$$
(1.1)

Předpokládejme, že na vstup klasifikátoru přicházejí x pouze z ω_s a klasifikátor je bude zařazovat do ω_r podle diskriminační funkce $\omega_r = d(x, q)$.

Definition 2 Podmíněná střední ztráta (střední ztráta podmíněná výběrem obrazů výlučně ze třídy ω_s :

$$J(q|\omega_s) = \int_X l[d(x,q)|\omega_s] \cdot p(x|\omega_s) dx$$
 (1.2)

Protože jednotlivé třídy ω_s se vyskytují s p
pstí $p(\omega_s)$, bude celková střední ztráta:

$$J(q) = \sum_{s=1}^{R} J(q|\omega_s) \cdot p(\omega_s) = \int_{X} \sum_{s=1}^{R} l[d(x,q)|\omega_s] \cdot p(x|\omega_s) \cdot p(\omega_s) dx$$
 (1.3)

Hledáme q^* , které minimalizuje J(q):

$$J(q^*) = \min_{q} J(q) = \int_{X} \min_{q} \sum_{s=1}^{R} l[d(x,q)|\omega_s] \cdot p(x|\omega_s) \cdot p(\omega_s) dx =$$

$$= \int_{X} \min_{r} \sum_{s=1}^{R} l(\omega_r|\omega_s) \cdot p(x|\omega_s) \cdot p(\omega_s) dx = \int_{X} \min_{r} L_x(\omega_r) dx$$
(1.4)

Místo minima
$$J(q)$$
 hledáme minimum $L_x(\omega_r) = \sum_{r=1}^R l(\omega_r | \omega_s) \cdot p(x | \omega_s) \cdot p(\omega_s), \qquad r = 1, ..., R.$

Při klasifikaci podle funkce $L_x(\omega_r)$ by se postupovalo tak, že pro daný x by se vyčíslily všechny $L_x(\omega_r), r=1,...,R$ a obraz x by se přiřadil do té třídy ω_s , pro kterou by byla ztráta minimální. Je zřejmé, že různou volbou ztrátové funkce $l(\omega_r|\omega_s)$ dostáváme různý tvar rozhodovacího pravidla. Předpokládejme, že ztrátová funkce je zvolena tak, že při správném rozhodnutí přiřadí ztrátu 0 a při jakémkoliv špatném rozhodnutí ztrátu 1 (penalta 0/1).

$$l(\omega_r|\omega_s) = 1 - \delta_{rs}, \qquad \delta_{rs} = \begin{cases} 1 & r = s \\ 0 & r \neq s \end{cases}$$
 (1.5)

Po dosazení:

$$L_{x}(\omega_{r}) = \sum_{s=1}^{R} (1 - \delta_{rs}) p(x|\omega_{s}) \cdot p(\omega_{s}) = \sum_{s=1}^{R} p(x|\omega_{s}) \cdot p(\omega_{s}) - \sum_{s=1}^{R} \delta_{rs} p(x|\omega_{s}) \cdot p(\omega_{s})$$

$$= \sum_{s=1}^{R} \left[p(x|\omega_{s}) \cdot p(\omega_{s}) \right] - p(x|\omega_{r}) \cdot p(\omega_{r})$$
(1.6)

Platí známý Bayesův vztah:

$$p(\omega_s|x) = \frac{p(x|\omega_s) \cdot p(\omega_s)}{p(x)} \qquad , \tag{1.7}$$

kde $p(\omega_s|x)$ je aposteriorní pravděpodobnost, která vyjadřuje p
pst třídy ω_s za předpokladu, že je na vstupu klasifikátoru obraz x.

 $p(x|\omega_s)$... ppst x za předpokladu, že patří do ω_s

 $p(\omega_s)$... apriorní ppst třídy ω_s

p(x) ... ppst obrazu x (celková hustota funkce do obrazového prostoru)

$$\sum_{s=1}^{R} p(\omega_s|x) \stackrel{!}{=} 1 = \sum_{s=1}^{R} \frac{p(x|\omega_s) \cdot p(\omega_s)}{p(x)} = p(x) = \sum_{s=1}^{R} p(x|\omega_s) \cdot p(\omega_s)$$
(1.8)

Dosadíme: $L_x(\omega_r) = p(x) - p(x|\omega_r) \cdot p(\omega_r)$. Hodnota p(x) je pro všechny třídy konstantní a jedná se v podstatě o aditivní konstantu, takže lze definovat novou funkci $L_x'(\omega_r) = p(x|\omega_r) \cdot p(\omega_r)$. Klasifikace zde probíhá tak, že se hledá takové zařazení ω_s , pro které je $L_x'(\omega_r)$ maximální:

$$\omega_r^* = \underset{r}{\operatorname{argmax}} p(x|\omega_r) \cdot p(\omega_r), \qquad r = 1, ..., R$$
(1.9)

1.1.2 Pravděpodobnostní diskriminační funkce. Souvislost s klasifikátory podle lineární diskriminační funkce, podle nejmenší vzdálenosti, podle nejbližšího souseda a podle k-nejbližšího souseda.

Kritérium minimální chyby se často označuje jako Bayesovo kritérium. Klasifikaci lze zajistit s využitím diskriminačních funkcí:

$$g'_r(x) = p(x|\omega_r) \cdot p(\omega_r), \qquad r = 1, ..., R$$
 (1.10)

- 1.1.3 Klasifikátor s lineární diskriminační funkcí. Klasifikace do dvou a do více tříd.
- 1.1.4 Metody nastavování klasifikátorů (trénování klasifikátorů).
- 1.1.5 Metody shlukové analýzy (učení bez učitele).
- 1.1.6 Výběr informativních příznaků.

1.2 Neuronové sítě [NEU]

vyučující: Doc. Dr. Ing. Vlasta Radová

ročník/semestr studia: 5.ročník/ZS datum zkoušky: 5. 1. 2017

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je seznámit studenty se základními typy umělých neuronových sítí a s možnostmi jejich využití.

- 1.2.1 Základní umělé modely neuronu, vlastnosti, souvislost s biologickým neuronem.
- 1.2.2 Základní typy neuronových sítí. Způsoby činnosti a učení neuronových sítí.
- 1.2.3 Algoritmus backpropagation.
- 1.2.4 Sítě se zpětnou vazbou. Hopfieldova neuronová síť.
- 1.2.5 Samoorganizující se sítě.
- 1.2.6 Oblasti použití neuronových sítí.

1.3 Zpracování digitalizovaného obrazu [ZDO]

vyučující: Doc. Ing. Miloš Železný Ph.D.

Ing. Petr Neduchal

ročník/semestr studia: 4.ročník/LS datum zkoušky: 13. 7. 2015

hodnocen'i: 1

cíl předmětu (STAG):

Porozumět principům zpracování digitalizovaného obrazu a počítačového vidění. Analyzovat vlastnosti obrazové informace a interpretovat tyto informace, navrhnout a vytvořit algoritmus pro zpracování obrazové informace s cílem rozpoznání objektů, jevů či vlastností scény v obraze obsažené.

- 1.3.1 Bodové jasové transformace.
- 1.3.2 Geometrické transformace.
- 1.3.3 Filtrace šumu.
- 1.3.4 Gradientní operátory.
- 1.3.5 Metody segmentace.
- 1.3.6 Matematická morfologie.

Kapitola 2

Teorie řízení [TŘSZ]

2.1 Lineární systémy 1-2 [LS1], [LS2]

vyučující: Doc. Ing. Jiří Melichar, CSc.

Ing. Martin Čech, Ph.D. Ing. Jiří Mertl, Ph.D.

ročník/semestr studia: 2.ročník/ZS-LS

datum zkoušky: X. 1. 2013/X. X. 2013

hodnoceni: 1/2

cíl předmětu (STAG):

LS1: Student by měl získat přehled o typech, struktuře a chování reálných dynamických systémů, obeznámit se s metodikou tvorby matematických modelů reálných dynamických systémů a s metodami analýzy jejich vlastností a chování v časové i frekvenční oblasti. Student by měl také porozumět základním principům řízení dynamických systémů a metodám pro získávání potřebných dat z reálných procesů.

Cílem předmětu LS2 je, aby student:

- získal přehled o klasických regulačních úlohách, o struktuře regulačních obvodů a o základních typech dynamických i nedynamických regulátorů;
- dokázal analyzovat reálnou regulační úlohu v její celistvosti, uměl formulovat požadavky na kvalitu regulace v časové i frekvenční oblasti při současném respektování všech omezení;
- byl schopen použít vhodné metody pro návrh spojitých i číslicových regulátorů a získávat potřebná data z reálného procesu;
- byl schopen analýzy nelineárních dynamických systémů a základní orientace v problémech jejich řízení.

- 2.1.1 Matematické modely spojitých a diskrétních lineárních dynamických systémů.
- 2.1.2 Linearizace nelineárních dynamických systémů, rovnovážné stavy. Harmonická linearizace.
- 2.1.3 Vlastnosti lineárních dynamických systémů. Řiditelnost, pozorovatelnost, kriteria. Vnitřní a vnější stabilita, kriteria.
- 2.1.4 Časové a frekvenční odezvy elementárních členů regulačních obvodů.
- 2.1.5 Základní typy spojitých a diskrétních regulátorů (P,PI,PID, stavové regulátory a stavové regulátory s integračním charakterem), popis, vlastnosti.
- 2.1.6 Struktura regulačních obvodů s jedním a dvěma stupni volnosti, přenosy v regulačním obvodu, princip vnitřního modelu.
- 2.1.7 Problém umístitelnosti pólů a nul nedynamickými a dynamickými regulátory. Požadavky na umístění pólů, konečný počet kroků regulace.
- 2.1.8 Požadavky na funkci a kvalitu regulace (přesnost regulace, dynamický činitel regulace, kmitavost, robustnost ve stabilitě a j.), omezení na dosažitelnou kvalitu regulace.
- 2.1.9 Metoda geometrického místa kořenů, pravidla pro konstrukci a využití při syntéze regulátorů, příklady.
- 2.1.10 Přístup k syntéze regulátorů v klasické teorii regulace, klasické metody, heuristické metody.
- 2.1.11 Deterministická rekonstrukce stavu, stavový regulátor s rekonstruktorem stavu.
- 2.1.12 Ljapunovova teorie stability. Ljapunovova rovnice.

2.2 Teorie odhadu [TOD]

vyučující: Prof. Ing. Miroslav Šimandl, CSc.

Ing. Jindřich Duník, Ph.D.

ročník/semestr studia: 3.ročník/ZS datum zkoušky: 28. 4. 2014

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je obeznámit studenty s možnostmi odhadu parametrů, náhodných veličin a náhodných procesů v podmínkách neurčitosti z apriorních informací a měřených dat.

- 2.2.1 Problémy odhadu, základní etapy vývoje teorie odhadu, náhodné veličiny, náhodné procesy a jejich popis, stochastický systém.
- 2.2.2 Optimální odhad ve smyslu střední kvadratické chyby. Odhad ve smyslu maximální věrohodnosti.
- 2.2.3 Jednorázové a rekurzivní odhady.
- 2.2.4 Odhad stavu lineárního diskrétního systému filtrace (Kalmanův filtr).
- 2.2.5 Úlohy odhadu stavu lineárního diskrétního stochastického systému predikce a vyhlazování.
- 2.2.6 Odhad stavu lineárního systému se spojitým či diskrétním měřením (Kalman-Bucyho filtr).

2.3 Optimální systémy [OPS]

vyučující: Ing. Miroslav Flídr, Ph.D.

Ing. Ivo Punčochář, Ph.D.

ročník/semestr studia: 4.ročník/LS datum zkoušky: 15. 7. 2015

hodnocení: 3 cíl předmětu (STAG):

Cílem předmětu je seznámení studentů s různými typy optimalizačních úloh. Studenti se naučí řešit jednak základní statické optimalizační úlohy tak především úlohy optimalizace dynamických systémů. Důraz je kladen především na pochopení řešení následujících problémů:

- časově optimální řízení;
- Pontrjaginův princip minima;
- dynamické programování a Bellmanova optimalizační rekurze;
- lineárně kvadratická úloha optimálního řízení.

- 2.3.1 Optimální programové řízení diskrétních dynamických systémů. Formulace úlohy. Hamiltonova funkce. Nutné podmínky pro optimální řízení.
- 2.3.2 Optimální programové řízení spojitých dynamických systémů. Formulace úlohy. Hamiltonova funkce. Nutné podmínky pro optimální řízení. Podmínky transverzality. Pontrjaginův princip minima.
- 2.3.3 Deterministický diskrétní systém automatického řízení. Princip optimality. Bellmanova funkce. Bellmanova optimalizační rekurze.
- 2.3.4 Syntéza optimálního deterministického systému automatického řízení pro diskrétní lineární řízený systém a kvadratické kritérium. Formulace a řešení. Asymptotické řešení a jeho stabilita.
- 2.3.5 Deterministický spojitý systém automatického řízení. Kontinualizace Bellmanovy optimalizační rekurze.
- 2.3.6 Optimální stochastický systém automatického řízení. Strategie řízení. Bellmanova funkce a Bellmanova optimalizační rekurze.
- 2.3.7 Syntéza optimálního systému automatického řízení pro lineární gaussovský řízený systém a kvadratické kritérium. Formulace a řešení. Separační teorém.

2.4 Adaptivní systémy [AS]

vyučující: Ing. Jindřich Duník, Ph.D.

Ing. Ladislav Král, Ph.D.

ročník/semestr studia: 5.ročník/ZS datum zkoušky: 12. 12. 2016

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je obeznámit studenty s adaptivními systémy automatického řízení a adaptivními systémy zpracování signálů.

- 2.4.1 Základní přístupy k syntéze adaptivních řídicích systémů, schematické vyjádření, srovnání s předpoklady a návrhem standardních regulátorů.
- 2.4.2 Adaptivní řízení s referenčním modelem, MIT pravidlo, využití Ljapunovovy teorie stability.
- 2.4.3 Samonastavující se regulátory, charakteristika a základní přístupy k návrhu bloku řízení, přiřazení pólů, diofantické rovnice, minimální variance.
- 2.4.4 Samonastavující se regulátory, charakteristika a základní přístupy k návrhu bloku poznávání, parametrické metody odhadu.
- 2.4.5 Adaptivní systémy na zpracování signálu, adaptivní prediktor, adaptivní filtr, analogie se samonastavujícími se regulátory.
- 2.4.6 Adaptivní řízení a strukturální vlastnost stochastického optimálního řízení, duální řízení, neutralita, separabilita, ekvivalence určitosti.

Kapitola 3

Aplikovaná kybernetika [AKSZ]

3.1 Umělá inteligence [UI]

vyučující: Prof. Ing. Josef Psutka, CSc.

Ing. Aleš Pražák, Ph.D.

ročník/semestr studia: 2.ročník/ZS datum zkoušky: X. X. 2012

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je seznámit studenty se základními problémovými oblastmi umělé inteligence (UI) a naučit je aplikovat vybrané metody řešení úloh, reprezentace znalostí v UI a hraní her.

3.1.1 Metody řešení úloh v UI

- 3.1.2 Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda.
- 3.1.3 Produkční systém. Báze znalostí a báze dat. Dopředné a zpětné šíření.
- 3.1.4 Síťové formalizmy pro reprezentaci znalostí. Sémantické sítě. Rámce. Scénáře.
- 3.1.5 Metody hraní her v UI. Procedura minimax, alfa-beta prořezávání.

3.2 Modelování a simulace 1 [MS1]

vyučující: Ing. Václav Hajšman, Ph.D.

Ing. Jindřich Liška, Ph.D.

Ing. Miloš Fetter

ročník/semestr studia: 2.ročník/ZS datum zkoušky: X. X. 2012

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je seznámit studenty se základními principy modelování dynamických systémů.

- 3.2.1 Systém, model, modelování, simulace, systémová analýza.
- 3.2.2 Modelování systému diskrétních událostí, diskrétní simulace.
- 3.2.3 Simulační experiment, studie, analýza rizika, náhoda v simulačních úlohách.
- 3.2.4 Modelování v netechnických oborech (kompartmenty, buněčné automaty, ...).
- 3.2.5 Konstrukce modelů na základě měření, zpracování signálu v časové, frekvenční a časo-frekvenční oblasti, modely periodických procesů.
- 3.2.6 Modely vibrací a kmitání, experimentální modální analýza.
- 3.2.7 Generování náhodných čísel, metoda Monte Carlo a odhad přesnosti simulačních výsledků.

3.3 Programové prostředky řízení [PP]

vyučující: Ing. Pavel Balda, Ph.D.

ročník/semestr studia: 3.ročník/LS datum zkoušky: X. X. 2014

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je naučit studenty aplikovat některé vybrané techniky programování řídicích a informačních systémů především prostředky jazyka C#. V rámci předmětu je podána klasifikace operačních systémů a jejich základní vlastnosti. Dále je vysvětlena hierarchie programového vybavení typických řídicích systémů od čidel a akčních členů až po podnikové systémy.

- 3.3.1 Architektura podnikových řídicích systémů; používané programovací jazyky.
- 3.3.2 Architektura .NET Frameworku; řízený modul, metadata, běh řízeného kódu.
- 3.3.3 Jazyk C Sharp: hodnotové a referenční typy; jednoduché typy, implicitní konverze; výrazy a operátory; příkazy; výjimky.
- 3.3.4 Jazyk C Sharp: Členy a přístup k nim; jmenné prostory; třídy, metody, vlastnosti, konstruktory, destruktory; struktury; pole; delegáty; atributy.
- 3.3.5 Softwarové komponenty: DLL, RPC, COM; interface; OPC.
- 3.3.6 Operační systémy: procesy a thready, synchronizace, deadlock, inverze priorit; správa paměti; vstupně-výstupní systém, programované vstupy/výstupy, přerušení, DMA, ovladače zařízení; souborové systémy.
- 3.3.7 Operační systémy reálného času: statické a dynamické plánovací algoritmy.
- 3.3.8 Struktury vzdálených a virtuálních laboratoří.

3.4 Převodníky fyzikálních veličin [PFV]

vyučující: Ing. Liber Jelínek Ph.D.

ročník/semestr studia: 4.ročník/LS datum zkoušky: 16. 6. 2016

hodnocení: 2

cíl předmětu (STAG):

Cílem předmětu je seznámit studenty se základními principy, vlastnostmi a modely senzorů a akčních členů pro potřeby automatizace, monitorování a diagnostiky.

- 3.4.1 Struktura a parametry senzorů pro automatizaci, statické a dynamické modely a chyby, metody snižování chyb senzorů.
- 3.4.2 A/D a D/A převodníky, obvody pro úpravu signálů, frekvenční filtry.
- 3.4.3 Senzory teploty a tepla, obvody pro měření odporu, kapacity, indukčnosti a frekvence.
- 3.4.4 Senzory polohy a vzdálenosti (odporové, indukční, kapacitní, ultrazvukové, optické).
- 3.4.5 Senzory síly, hmotnosti, deformace, tlaku, rychlosti, zrychlení a vibrací (tenzometrické, piezoelektrické, kapacitní a elektrodynamické).
- 3.4.6 Senzory průtoku, množství, hustoty, viskozity, koncentrace a chemického složení.
- 3.4.7 Elektrické akční členy a jejich budiče (stejnosměrné, střídavé, krokové motory, PWM zesilovače, frekvenční měniče).
- 3.4.8 Hydraulické a pneumatické akční členy (pracovní a řídicí mechanizmy a zdroje tlakového média).