

FLUID MECHANICS OF EXTERNAL FLOWS

Gregory V. Selby, Ph.D.
Old Dominion University
Norfolk, VA

INTERNAL VS. EXTERNAL FLOWS

Internal Flow (flow through/in geometry): Flow bounded on all sides by a solid surface

Flow in Pipes and Ducts

Flow in the Human Circulatory System

INTERNAL VS. EXTERNAL FLOWS

External Flow (flow over geometry):

Flow bounded on all at least one side by a

solid surface

Flow over Buildings

Flow over Hills

Flow over Ground Vehicles

Flow over Aircraft and Marine Craft

IMPORTANT BASIC CONCEPTS

- Drag and Lift
 - + Drag: Force opposite the flow direction
 - + Lift: Force normal to the flow direction
- Non-Dimensional Parameters
 - + drag coefficient: $C_D = D/(1/2 \rho V_{\infty}^2 S)$
 - + lift coefficient: $C_L = L/(1/2 \rho V_{\infty}^2 S)$
 - + Reynolds number (ratio of inertial forces to viscous forces): Re = $\rho V_{\infty} L/\mu$

Application: Aerodynamics

- Aerodynamicists study the interaction of forces acting on vehicles moving in the atmosphere and the effect on translation
- These forces are thrust, drag, weight and lift

COMPONENTS OF DRAG

Two main sources of drag are:

the pressure distribution over a body and the friction between the fluid and the body

+pressure drag and friction drag

COMPONENTS OF DRAG

Friction Drag

- Due to the viscosity of a fluid...the resistance of a fluid to flow
- + The frictional force between a fluid and a solid boundary is based on the product of shear stress, τ , and surface area, S, where $\tau = \mu \; du/dy$ for a Newtonian fluid

Generally, $(du/dy)_{turbulent} \\ > (du/dy)_{laminar} \\ and \ \tau_{turbulent} \\ > \tau_{laminar}$

FRICTION (VISCOUS) DRAG REDUCTION

- Applications
 - + Aerodynamics of LFC Airfoils

Surface Suction Orifices

F-16XL WITH TITANIUM GLOVE USED TO INVESTIGATE LAMINAR-FLOW CONTROL

FRICTION (VISCOUS) DRAG REDUCTION

- Applications
 - + Biofluidmechanics

Shark!

Surface Denticles

NEW SPEEDO SWIMSUIT

Speedo's new swimsuit being tested...the maker says the suit works like a shark's skin to aid hydrodynamics. Several materials tested in a wind tunnel at NASA Langley by an aerospace engineer.

SPEEDO'S FASTSKIN REDUCES DRAG BY 3%

COMPONENTS OF DRAG

* Pressure Drag

- + Due to the pressure distribution around a body
- + Pressure drag is reduced by streamlining a body
- + Blunt bodies experience high levels of pressure drag

PRESSURE DRAG REDUCTION

- Applications
 - + Ground Vehicles

MAN/Krone Furturistic Streamlined Truck

Conventional Truck with Flow Deflector and Gap Seal

PRESSURE DRAG REDUCTION

Applications

+ Sports Aerodynamics - why does a golf ball have dimples?

CYLINDERS IN CROSSFLOW

Flow Visualization of Dye Flow Past a Stationary Sphere

Laminar Flow, Re=15,000

Turbulent Flow (trip wire), Re=30,000

(Onera, Werle 1980)

PRESSURE DRAG REDUCTION

Why does a curveball curve? Why does a knuckleball move erratically?

MAGNUS FORCE ON A SPINNING BALL

Flow Visualization of Smoke Flow Past a Spinning Baseball

 $V = 77 \text{ ft/s}, \omega = 630 \text{ rpm}$

(Univ. Notre Dame, Brown 1971)

Flow Visualization of Smoke Flow Past a Tennis Ball at Re=167,000

Why does a tennis ball have fuzz?

Stationary

Spinning (CCW)

LIFT COEFFICIENT VS. ANGULAR VELOCITY

Figure 9.39 © John Wiley & Sons, Inc. All rights reserved.

The Bernoulli Principle

The Bernoulli Principle helps explain how airplanes fly and the Magnus force

The Bernoulli Principle states that the faster the flow, the lower the pressure, since

$$P + \frac{1}{2} \rho V^2 + \gamma Z = const.$$

DEMONSTRATION: THE BERNOULLI PRINCIPLE

QUESTIONS? QUESTIONS?

References

www.foxnews.com

www.aviation-for-kids.com
www.123rf.com
www-personal.umich.edu/~sjmoura/files/ME170.pdf
www.presentationmedia.com
www.memphis-soaring.org
www-mdp.eng.cam.ac.uk
www.history.nasa.gov
www.sciencedirect.com
www.ocean.si.edu
www.dept.aoe.vt.edu/~jschetz/fluidnature/