Lecture 8

Scalable PCA/SVD

Dimensionally Reduction Example Project Example Analysis

https://powcoder.com

Add Wechar powcoder http://www.dcs.shef.ac.uk/~haiping

COM6012 Scalable Machine Learning Spring 2018

Week 8 Contents

Unsupervised Learning

Assignment Project Exam Help

- PCA Dimensionality Reduction https://powcoder.com
- SVD Factor Analysis Powcoder

Scalable PCA in Spark

Unsupervised Learning

Supervised methods

Unsupervised methods

Assignment Project Exam Help

$$y = f(X)_{\text{https://powcoder.com}} f(X)$$

predict our data

Add WeChat powcoder

find structure in the data on its own

Three Topics

- Principal component analysis (PCA) & SVD
 - Dimensionality reduction & factor analysis Assignment Project Exam Help
- K-means
 - Clustering https://powcoder.com
- Matrix factorization (with missing information)
 - Collaborative filtering → Recommender system
- Scale these algorithms for big data

Week 8 Contents

Unsupervised Learning

Assignment Project Exam Help

- PCA Dimensionality Reduction https://powcoder.com
- SVD Factor Analysis Powcoder

Scalable PCA in Spark

Dimensionality Reduction

- **Assumption:** Data lies on or near a low *d*-dimensional subspace
- Axes of this subspace are effective representation of the data

Why Reduce Dimensions?

Why reduce dimensions?

- Discover hidden Garrelations/topics Help
 - Words that occur commonly together
- Remove redundant and noisy features
 - Not all words Ardd SWe Chat powcoder
- Interpretation and visualization
- Easier storage and processing of the data

Dimensionality Reduction

Raw data is complex and high-dimensional

Assignment Project Exam Help

• Dimensionality reduction describes the data using a simpler, more compact representation

Add WeChat powcoder

• This representation may make interesting patterns in the data clearer or easier to see

Dimensionality Reduction

• Goal: Find a 'better' representation for data

- How do we define 'better'? https://powcoder.com
- For example
 - Minimise reconstruction hat powcoder
 - Maximise variance
 - They give the same solution → PCA!

PCA Algorithm

- Input: N data points, each $\rightarrow D$ -dimensional vector
- PCA algorithment Project Exam Help
 - 1. $X_0 \leftarrow \text{Form } N \times D \text{ data matrix, with one row vector } X_n$ per data pointtps://powcoder.com
 - 2. X: subtract mean x from each row vector x_n in X₀
 3. Σ ← X^TX Gramian (scatter) matrix for X

 - Find eigenvectors and eigenvalues of Σ
 - PCs U $(D \times d)$ \leftarrow the d eigenvectors with largest eigenvalues
- PCA feature for y D-dim: U^Ty (d-dimensional)
 - Zero correlations, ordered by variance

2D Data

Principal Components

• The best axis to project

Minimum RMS error

 Principal vectors are orthogonal

How Many Components?

• Check the distribution of eigen-values

• Take enough many eigen-vectors to cover 80-90% of the

variance

13/04/2018

13

Other Practical Tips

- PCA assumptions (linearity, orthogonality) not always appropriate
- Various extensionneta Professi Exdiff et et underlying assumptions, e.g., manifold learning, Kernel PCA, https://powcoder.com
- Centring is crucial, WeChat pust preprocess data so that all features have zero mean before applying PCA
- PCA results dependent on scaling of data
- Data is sometimes rescaled in practice before applying PCA

Problems and Limitations

- What if very large dimensional data?
 - e.g., Images (D ≥ 10⁴= 100x100) Assignment Project Exam Help
- Problem:
 - Gramian matrhttps:/spewroder.com
 - D=10⁴ \rightarrow | Σ | = 10⁸ Add WeChat powcoder
- Singular Value Decomposition (SVD)!
 - Efficient algorithms available
 - Some implementations find just top d eigenvectors

Week 8 Contents

Unsupervised Learning

Assignment Project Exam Help

- PCA Dimensionality Reduction https://powcoder.com
- SVD Factor Analysis hat powcoder

Scalable PCA in Spark

Singular Value Decomposition

- Factorization (decomposition) problem
 - #1: Find concepts/topics/genres → Factor Analysis
 - #2: Reduce dimensionality ject Exam Help

term	data	information	retrieval	brain	lung
document	https:/	//powcoder.c	com		
CS-TR1	1	1	1	0	0
CS-TR2	Add V	VeChat pow	coder	0	0
CS-TR3		1	1	0	0
CS-TR4	5	5	5	0	0
${f MED-TR1}$	0	0	0	2	2
${f MED-TR2}$	0	0	0	3	3
MED-TR3	0	0	0	1	1

The above matrix is actually "2-dimensional." All rows can be reconstructed by scaling [1 1 1 0 0] or [0 0 0 1 1]: D=5→d=2

SVD - Definition

$$\mathbf{A}_{[\mathbf{n} \times \mathbf{m}]} = \mathbf{U}_{[\mathbf{n} \times \mathbf{r}]} \mathbf{\Lambda}_{[\mathbf{r} \times \mathbf{r}]} (\mathbf{V}_{[\mathbf{m} \times \mathbf{r}]})^{T}$$
Assignment Project Exam Help

- A: $n \times m$ mathity (e/gp,) wood one outs, m terms)
- U: $n \times r$ matrix (n vlocuments we sage epts)
- Λ : $r \times r$ diagonal matrix (strength of each 'concept') (r: rank of the matrix)
- V: $m \times r$ matrix (m terms, r concepts)

SVD - Properties

Always possible to decompose matrix \mathbf{A} into $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$, Assignment Project Exam Help

- U, Λ, V: unique (*)
 https://powcoder.com
 U, V: column orthonormal (i.e., columns are unit vectors, orthogonal to each other Chat powcoder
 - $U^TU = I$; $V^TV = I$ (I: identity matrix)
- A: singular value are positive, and sorted in decreasing order

SVD ←→Eigen-decomposition

- SVD gives us:
 - $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$
- Eigen-decomposition: Project Exam Help
 - $\mathbf{B} = \mathbf{W} \mathbf{\Sigma} \mathbf{W}^{\mathrm{T}}$
 - U, V, W are bittpsompowwoder.com
 - Λ , Σ are diagonal

Add WeChat powcoder

- Relationship:
 - $AA^T = U \Lambda V^T (U \Lambda V^T)^T = U \Lambda V^T (V \Lambda^T U^T) = U \Lambda \Lambda^T U^T$
 - $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{V} \Lambda^{\mathsf{T}} \mathbf{U}^{\mathsf{T}} (\mathbf{U} \Lambda \mathbf{V}^{\mathsf{T}}) = \mathbf{V} \Lambda \Lambda^{\mathsf{T}} \mathbf{V}^{\mathsf{T}} = \mathbf{V} \Lambda^{2} \mathbf{V}^{\mathsf{T}}$
 - B= $A^TA=W \Sigma W^T$

SVD for PCA

- PCA by SVD:
 - 1. \mathbf{X}_0 Form $N \times d$ data matrix, with one row vector \mathbf{x}_n per data point Project Exam Help
 - 2. X subtract mean x from each row vector \mathbf{x}_n in \mathbf{X}_0
 - 3. U \wedge V^T \leftarrow SVD of X
 - The right singular Welchart powerequivalent to the eigenvectors of $X^TX \rightarrow$ the PCs
 - The singular values in Λ are equal to the square roots of the eigenvalues of $\mathbf{X}^T\mathbf{X}$

SVD - Properties

'spectral decomposition' of the matrix:

SVD - Interpretation

'documents', 'terms' and 'concepts':

- U: document-to-concept similarity matrix Assignment Project Exam Help
- V: term-to-concept similarity matrix
- A: its diagonal elements: strength of each concept

Add WeChat powcoder

Projection:

• Best axis to project on: ('best' = min sum of squares of projection errors)

• $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

CCLIT	uata.	HIOHHAGIOH	TOTTICANT	DI STITI	TOTE
$\operatorname{document}$					
CS-TR1	1	1	1	0	0
CS-TR2	2	2	2	0	0
CS-TR3	1	1	1	0	0
A gaignment Droics TR4Eve			5	0	0
retriemansigninent Proposition			0	2	2
MED-TR2	0	0	0	3	3
MED-TR3	0	0	0	1	1
	document CS-TR1 CS-TR2 CS-TR3 CS-TR4 CS-TR4 MED-TR2	document	CS-TR1	CS-TR1	CS-TR1

inf.

$$\begin{array}{c}
\text{dd} & 0.18 & 0 \\
\text{WeChat} \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}$$

$$\mathbf{X} \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} \quad \mathbf{X}$$

• A = U
$$\wedge$$
 V^T - example: doc-to-concept retric Assignment Project Exam Helpty matrix at inf. brain lung https://powcoder.com

$$\uparrow \quad \begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{bmatrix}$$

$$\downarrow \quad \begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\uparrow \quad \begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\downarrow \quad \begin{bmatrix}
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{bmatrix}$$

$$\downarrow \quad \begin{bmatrix}
0.58 & 0.58 & 0.58 & 0 & 0 \\
0 & 0 & 0.71 & 0.71
\end{bmatrix}$$

• $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

retrievassignment Project Exam Help for Strength of CS-concept https://powcoder.com 0.53 0.58 0.58 0.58 0 0.80

• $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

SVD – Dimensionality Reduction

- Q: how exactly is (**further**) dim. reduction done?
- A: set the Assaigherent Budjact Alvant Helpo:
- Note: 3 zero singular values already removed

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} Add \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0 & 0.36 & 0 \\ 0 & 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \\ 0 & 0.58 & 0.58 & 0.58 & 0 \\ 0 & 0 & 0.71 & 0.71 \end{bmatrix}$$

SVD - Dimensionality Reduction

SVD - Dimensionality Reduction

• Best rank-1 approximation

Week 8 Contents

Unsupervised Learning

- PCA Dimensionality Reduction https://powcoder.com
- SVD Factor Analysis Powcoder
- Scalable PCA in Spark

PCA & SVD in Spark MLlib

- Not scalable: computePrincipalComponents() from RowMatrix
- Scalable: correquite & VPD (jett din a Rowallatrix
- Code: https://powcoder.com https://github.com/apache/spark/blob/v2.1.0/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/Row Matrix, scalar Add Wechat powcoder
- Documentation:

https://spark.apache.org/docs/2.1.0/api/scala/index.html#org.apache.spark.mllib.linalg.distributed.RowMatrix

PCA in Spark MLlib (RDD)

Not scalable, local computation

```
val brzSvd.SVD(u: BDM[Double], s: BDV[Double], _) = brzSvd(Cov)
```

Notebook 8

PCA in Spark ML (DF)

Now in

https://spark.apache.org/docs/2_1_0/ml_features.html#pca Assignment Project Exam Help

- Under features
- Scalable? Not likely

```
val pcade WeChat,powcoder
.setInputCol("features")
.setOutputCol("pcaFeatures")
.setK(3)
.fit(df)
```

SVD in Spark MLlib (RDD)

- https://spark.apache.org/docs/2.1.0/mllib-dimensionality-reduction.html
 Assignment Project Exam Help

 With distributed implementations

https://powcoder.com

```
val mat: RowMatrix = new RowMatrix(dataRDD)
Add WeChat powcoder // Compute the top 5 singular values and corresponding singular vectors.
val svd: SingularValueDecomposition[RowMatrix, Matrix] = mat.computeSVD(5, computeU = true)
val U: RowMatrix = svd.U // The U factor is a RowMatrix.
val s: Vector = svd.s // The singular values are stored in a local dense vector.
val V: Matrix = svd.V // The V factor is a local dense matrix.
```

SVD in Spark MLlib (RDD)

• An $m \times n$ data matrix **A** with m > n (note different

notations)
Assignment Project Exam Help
For large matrices, usually we don't need the complete factorization but oddy then top k singular values and its associated singular vectors.

Add WeChat powcoder

• Save storage, de-noise and recover the low-rank

structure of the matrix (dimensionality reduction)

SVD in Spark MLlib (RDD)

- An $m \times n$ data matrix A
- Assume maskighment Project Exam Help
- The singular values and the right singular vectors are derived from the eigenvalues and the eigenvectors of ATA (which is smaller than A)
- The left singular vectors are computed via matrix multiplication as $\mathbf{U} = \mathbf{A} \mathbf{V} \ \mathbf{\Lambda}^{-1}$, if requested by the user via the computeU parameter

- Auto
- If n is small (ighlow) opposed argumented with n (k>n/2), compute $\mathbf{A}^T\mathbf{A}$ first and then compute its top eigenvalues and the process of the driver
- Otherwise, compute VACA ar powdistributive way and send it to ARPACK to compute the top eigenvalues and eigenvectors on the driver node

Auto (default)

Specify computeMode (private)

```
Assignment Project Exam Help

case "local-svd" => SVDMode.LocalLAPACK

case "local-svd" => SVDMode.LocalLAPACK

case "local-svd" => SVDMode.DistARPACK

Add WeChat powcoder
```

computeMode (note brzSvd.SVD is local)

```
// Compute the eigen-decomposition of A' * A.
val (sigmaSquareA: BDV Double | u: BDM Puble ) = compressode matchelp
            require(k < n, s"k must be smaller than n in local-eigs mode but got k=$k and n=$n.")
           val G = computeGramianMatrix()./asBreeze.asInstanceOf[BDM[Double]]
            EigenValueDecomposition Symmetric Plg (W=COUCT, C,QII, maxIter)
      case SVDMode.LocalLAPACK =>
           require(n < 17515, 2 and lead to the reduced of the
           val G = computeGramianMatrix().asBreeze.asInstanceOf[BDM[Double]]
           val brzSvd.SVD(uFull: BDM[Double], sigmaSquaresFull: BDV[Double], _) = brzSvd(G)
            (sigmaSquaresFull, uFull)
      case SVDMode.DistARPACK =>
            if (rows.getStorageLevel == StorageLevel.NONE) {
                  logWarning("The input data is not directly cached, which may hurt performance if its"
                        + " parent RDDs are also uncached.")
            require(k < n, s"k must be smaller than n in dist-eigs mode but got k=$k and n=$n.")</pre>
            EigenValueDecomposition.symmetricEigs(multiplyGramianMatrixBy, n, k, tol, maxIter)
```

Remark

- Acknowledgement
 - Some slides are adapted from slides by Jure Leskovec et al. http://www.minds.org
- References https://powcoder.com
 - http://infolab.stanford.edu/~ullman/mmds/ch11.pdf
 - http://www.mmds.org
 - https://en.wikipedia.org/wiki/Principal_component_analy_sis
 - https://spark.apache.org/docs/2.1.0/mllib-dimensionality-reduction.html