Решающие деревья. Предобработка данных

Что будет на уроке?

- 1. Что такое решающее дерево.
- 2. Алгоритмы, основанные на деревьях.
- 3. Предобработка данных.
- 4. Что делать при несбалансированных классах.

Что такое дерево?

Дерево — структура данных, представляющая собой набор вершин (корень, лист) и рёбер (ветвей).

Что такое решающее дерево?

Input: age, gender, occupation, ...

Like the computer game X

src: https://xgboost.readthedocs.io/en/latest/tutorials/model.html

Плюсы и минусы алгоритмов на деревьях

Плюсы

- Легко интерпретируются.
- Подходят для задачи регрессии и для задачи классификации.
- Не нуждаются в масштабировании признаков.
- Проверяется статистическими тестами.

Минусы

- Склонны к переобучению.
- Плохо работают на несбалансированных данных.

Ансамбли деревьев

Цель ансамблевых методов — объединять предсказания нескольких эстиматоров, построенных с заданным алгоритмом обучения, чтобы улучшить их обобщаемость или устойчивость.

Различают два основных ансамблевых метода:

- 1. Усредняющие методы (Averaging methods).
- 2. Методы, основанные на технике бустинга (Boosted methods).

Усредняющие методы

Суть: независимо друг от друга обучаем несколько эстиматоров, затем усредняем их предсказания.

Примеры таких методов:

- 1. Bagging.
- 2. Случайные леса (Random forests).

Boosted methods

Суть: эстиматоры строятся один за другим, каждый последующий обучается на ошибке предыдущего.

Примеры таких методов:

- 1. AdaBoost.
- GradientBoostedTrees.

Предобработка признаков

Практическое задание

- 1. Изучите методические материалы к занятию.
- 2. Пройдите тест с выбором варианта ответа.

