(X36PAR: Paralelní systémy a algoritmy, posluchárna K1, Pondělí, 19/4/2009, 14:30-17:00, přednáší Pavel Tvrdík)

Přednáška #9: Permutační směrování v mřížkových a hyperkubických sítích

Předpoklady

■ Permutace:

- úplné: každý uzel vyšle a přijme právě 1 paket.
- neúplné: každý uzel vyšle nebo přijme nejvýše 1 paket.
- Uvažujeme pouze ortogonální a hyperkubické sítě.
- Uvažujeme většinou store-and-forward (SF) sítě.
- Algoritmy pro efektivní permutační směrování ve WH sítích jsou zpravidla komplikovanější.
- V některých případech předpokládáme, že kromě standardních vstupních a výstupních front mají směrovače pomocné fronty pro β paketů. Pak definujeme, že permutace je paměťově optimální, jestliže $\beta = O(1)$.

Ortogonální sítě

Komunikace 1-mnoha v 1-D mřížkách strategií nejvzdálenějšímu nejdřív (FF)

Lemma 1. Předpokládejme plně duplexní všeportovou SF mřížku M(n) s $\beta = O(n)$ a komunikační problém 1-mnoha takový, že

- 1. každý uzel je zdrojem jakéhokoli počtu paketů,
- 2. každý uzel je cílem nejvýše 1 paketu.

Pak řízení toku pomocí strategie Farthest-First (FF) lze tuto komunikaci provést v nejvýše n-1 krocích.

Důkaz

Indukcí podle délky cest, po kterých se pakety pohybují.

- Strategie FF: paket s nejdelší cestou před sebou má nejvyšší prioritu.
- lacktriangleq Pro dané $1 \leq i \leq n-1$, definujme $Z_i = \mathsf{podm}\check{r}i\check{z}ka\ i\ uzl\mathring{u}\ nejv\acute{i}ce\ vpravo\ v\ M(n).$
 - *i*-prioritní pakety = pakety směřující do Z_i .
 - k = # i-prioritních paketů.
 - $p_i = \text{zprava } j\text{-t\'y } i\text{-prioritn\'i paket}, \ 1 \leq j \leq k.$

- Pakety pohybující se v opačném směru spolu nikdy nekolidují.
- *i*-prioritní pakety pokračují v pohybu bez přerušení, jakmile se jednou dají do pohybu.
- Konflikt více *i*-prioritních paketů v 1 uzlu je řešen pomocí FF.
- Strategie FF nikdy nezpozdí *i*-prioritní paket kvůli neprioritnímu paketu.
- Paket p_1 se dá do pohybu v kroku 1.
 - p_1 dosáhne bezkonfliktně Z_i v nejvýše n-i krocích.
 - Po kroku 1 nemůže p_1 potkat, a tudíž zpozdit, jakýkoli jiný *i*-prioritní paket.
- $\blacksquare p_1$ může zpozdit v kroku 1 paket $p_2 \implies p_2$ se dá do pohybu nejpozději v kroku 2.
 - p_2 dosáhne bezkonfliktně Z_i v nejvýše n-i+1 krocích.
 - Po kroku 2, p_2 nemůže zpozdit jakýkoli jiný *i*-prioritní paket.
- Indukce: poslední *i*-prioritní paket p_k se dá do pohybu nejpozději v kroku k.
- V nejhorším případě:
 - \bullet k=i,
 - p_i je v kroku i-1 stále v nejlevějším uzlu,
 - ullet k dosažení svého cíle, *i*-tého uzlu zprava, musí překonat n-i hran
 - $\implies p_i$ potřebuje pro dosažení cíle nejvýše (i-1)+(n-i)=n-1 kroků.

lacktriangle Protože tento argument platí pro jakékoli i, $1 \leq i \leq n-1$, lemma je dokázána.

Všechny pakety se dají do pohybu v kroku 1 a jejich pohyb je bezkolizní.

Poznámka: Téměř identické s EOTSort řazením na 1-D mřížce.

XY permutační směrování v 2-D mřížkách

Věta 2. Uvažujme libovolnou permutaci π na všeportové plně-duplexní SF 2-D mřížce M(n,n). Pak pro provedení permutace π pomocí XY směrování je potřeba nejvýše 2n-2 krocích, což je optimální, ale směrovače potřebují fronty na $\beta = \max(2, 2n/3 - 1)$ paketů.

Příklad úplné permutace na M(3,3)

- Důkaz časové složitosti: Všechny pakety se pohybují ke svým cílovým sloupcům
 - ⇒ na horizontálních kanálech nejsou kolize
 - \implies každý paket dosáhne svůj cílový sloupec v nejvýše n-1 krocích.
- Strategie FF ve sloupcích (Lemma 1)
 - \implies každý paket dosáhne svůj cílový řádek v nejvýše n-1 krocích.
- Důkaz $\beta = \max(2, 2n/3 1)$. Triviálně $\beta \ge 2$. Uvažujme uzel u = [n/3, 2]:
 - max. # soupeřících paketů = # cílových uzlů = n-2.
 - ullet všech n-3 paketů může do u dorazit v n/3-1 krocích

 $\implies u$ musí dočasně uložit 1+n-3-(n/3-1)=2n/3-1 paketů.

Vícerozměrné mřížky

Důsledek 3. Jakákoli permutace π na všeportové plně-duplexní SF k-D mřížce $M(n,\ldots,n)$ s dimenzně uspořádaným směrováním potřebuje nejvýše k(n-1) kroků a $\beta=\max(2k-2,n-2-\frac{n-3}{2k-1}).$

Problém protichůdných požadavků na paměť a čas permutací

Existuje časově i paměťově optimální permutační směrování na 2-D mřížkách?

- 1. $\beta=0$: pakety p_1,p_2,p_6,p_7 se zpozdí
- 2. $\beta > 0$: pakety p_1, p_2, p_6, p_7 se nezpozdí

Metody minimalizace paměťových požadavků pro permutační směrování

Tento problém minimalizace je značně obtížný. Obecně existují 3 obvyklé postupy:

- randomizace,
- permutační směrování založené na seřazení paketů,
- permutace s předvýpočtem: off-line permutační směrování s předpočítáním optimálních tras.

Randomizace a náhodné permutace

■ Nejjednodušší postup pro zmenšení maximální velikosti fronty:

převedení permutace s nejhorším chováním na 2 náhodné permutace .

 \blacksquare Uvažujme permutaci π na p procesorech.

```
Algorithm ValiantRandomizedPerm (In: permutation \pi:\{1,\ldots,p\} \to \{1,\ldots,p\}) for all i:=1,\ldots,p do_in_parallel \{ Fáze 1: Vygeneruj náhodný mezilehlý uzel g(i). Fáze 2: Pošli paket z i do g(i) použitím základního minimálního směrování. Fáze 3: Pošli paket z g(i) do \pi(i) použitím základního minimálního směrování.\}
```

lacktriangleq 2 vysílače si vybírají své cíle $\operatorname{nezávisle} \implies 1$ uzel může být cílem více než 1 paketu.

Věta 4. Jakoukoli permutaci v M(n,n) lze pomocí randomizace realizovat v 2n+o(n) krocích s $\beta=O(\log n)$ frontami s pravděpodobností aspoň $1-O(1/n^2)$.

Náznak důkazu:

```
Algorithm MeshrandPerm (In: permutation \pi:\{1,\ldots,n^2\} \to \{1,\ldots,n^2\}) {Fáze 0: Rozděl každý sloupec do \log n segmentů velikosti n/\log n. Fáze 1: Pošli každý paket náhodnému cíli uvnitř jeho segmentu. Fáze 2: Pošli každý paket uvnitř jeho současného řádku do jeho správného sloupce. Fáze 3: Pošli každý paket uvnitř jeho správného sloupce do jeho správného řádku. }
```

Při kolizi na kanálech použijí směrovače opět strategii FF.

On-line permutační směrování založené na řazení

Věta 5. Permutační směrování na všeportové $SF\ M(n,n)$ s plně-duplexními kanály může být provedeno

$$\mathsf{v}\ O(T_{\mathrm{sort}}(M(n,n)) + 3n) \ \mathsf{krocich}\ \mathsf{s}\ \beta = 0$$
,

kde $T_{\rm sort}(M(n,n))$ je paralelní čas hadovitého seřazení n^2 čísel na M(n,n).

Z přednášky #8 (Paralelní třídící algoritmy) víme, že $T_{\text{sort}}(M(n,n)) = 3n + o(n)$.

Důkaz

```
Algorithm SORTINGBASEDMESHPERM (In: permutation \pi:\{1,\ldots,n^2\} \to \{1,\ldots,n^2\})
```

Fáze 1: Seřaď pakety hadovitě do sloupců podle adresy jejich cílového sloupce.

$$(* T_{\mathrm{sort}}(M(n,n)) \text{ kroků } *)$$

Fáze 2: *Otoč* každý 2. sloupec.

$$(*n-1 \text{ kroků} *)$$

- (* Nyní máme pakety seřazeny lexikograficky do sloupců. *)
- (* Počet paketů s *týmž cílovým sloupcem* je $\leq n$. *)
- (* Tudíž, v každém řádku, \exists *nejvýše* 1 paket určený pro daný sloupec. *)
- **Fáze 3:** Paralelně ve \forall řádkách, zpermutuj pakety do *správných sloupců*. (*n-1 kroků *) $(* \text{Nyní v každém sloupci}, \exists \textit{nejvýš 1} \text{ paket určený pro 1 daný řádek}. *)$
- **Fáze 4:** Paralelně ve \forall sloupcích, zpermutuj pakety do *správných řádků*. (*n-1 kroků *)

Z popisu algoritmu plyne, že v žádné fázi nepotřebujeme žádné pomocné fronty.

Off-line permutační směrování

- Směrování založené na seřazení = on-line řešení: permutace není známá dopředu a každý uzel zná pouze svůj paket.
- V řadě aplikací je tatáž předem známá permutace prováděna opakovaně. Typický příklad:

simulace 1 sítě nebo paralelního počítače na jiné síti nebo jiném počítači.

⇒ Pak si lze předpočítat off-line časově anebo paměťově optimální směrování.

Věta 6. Existuje off-line algoritmus, který pro libovolnou permutaci na M(n,n) předpočítá směrování o (3n-3) krocích a s $\beta=0$.

Důkaz. Algoritmus má také 4 fáze (poslední 2 jsou stejné jako předtím).

```
Algorithm OfflineMeshPerm (In: permutation \pi: \{1, \dots, n^2\} \rightarrow \{1, \dots, n^2\})
```

Fáze 1: Ve \forall sloupcích, *předpočítej* permutace takové, aby v každém řádku M(n,n) \exists nejvýše 1 paket určený pro daný sloupec.

Fáze 2: Realizuj tyto permutace ve všech sloupcích paralelně. (*n-1 kroků *)

Fáze 3: Paralelně ve \forall řádkách, zpermutuj pakety do *správných sloupců*. (*n-1 kroků *)

Fáze 4: Paralelně ve \forall sloupcích, zpermutuj pakety do *správných řádků*. (*n-1 kroků *)

Výpočet sloupcových permutací ve fázi 1

- \blacksquare Pro danou permutaci π na M(n,n), zkonstruuj směrovací bipartitní graf G_π s $V(G_\pi)=S\cup D$, kde
 - $S = \{s_1, \ldots, s_n\} = \mathsf{zdrojov\acute{e}} \ \mathsf{sloupce} \ M(n, n)$,
 - $D = \{d_1, \dots, d_n\} = \text{c\'ilov\'e sloupce } M(n, n)$,
 - $\langle s_{j_1}, d_{j_2} \rangle \in E(G_{\pi}) \iff \text{sloupec } j_1 \text{ obsahuje paket s cílovým sloupcem } j_2.$
- Použij Hallovu větu pro konstrukci n-barvení v G_{π} .

Hallova věta o párování

Věta 7. Libovolný k-regulární bipartitní graf může být rozdělen do k dokonalých párování čili má k-barvení hran.

 $\begin{array}{l} \textbf{for } i=1,\ldots,k-1 \textbf{ do_sequentially} \\ \textbf{begin} \\ zkonstruuj \ 1 \ dokonal\'e \ p\'arov\'an\'i \ a \ obarvi \ jeho \ hrany \ barvou \ i; \\ odstraň \ hrany \ tohoto \ p\'arov\'an\'i \ i \ z \ G; \\ \textbf{end} \\ Zbývaj\'ic\'imu \ dokonal\'emu \ p\'arov\'an\'i \ v \ G \ p\'rir\'ad' \ barvu \ k \end{array}$

Motivace

1 dokonalé párování pprox n hran s barvou i pprox n paketů přesunutých do řádku i

Konstrukce jednoho dokonalé párování v G_π

Indukcí přes velikost párování.

- Máme-li částečné párování M v G_{π} s m hranami, $1 \leq m < n$, pak zkonstruujeme párování M' s m+1 hranami.
- \blacksquare Označme hrany M jako <u>červené</u> a všechny ostatní hrany G_{π} jako <u>modré</u>.
- Nechť $s_0 \in S$ je vrchol, který není incidentní s žádnou červenou hranou. Pak

∃ jednoduchá cesta P liché délky, procházka, začínající v s₀ modrou hranou, používající střídavě červené a modré hrany, a končící modrou hranou ve vrcholu v D, který nemá červenou hranu.

- \blacksquare Prohod barvy hran v P
 - ⇒ # červených hran v dosavadním párování se zvýší o 1
 - \implies obdržíme párování s m+1 hranami.

Parovani s 3 hranami

Prochazka

Parovani s 4 hranami

Hyperkubické sítě

On-line permutační směrování na síti motýlek

Nechť $N=2^n$. Permutace = bitově definované operace na n-bitových řetězcích.

- lacksquare Otočení $\pi_{\mathbf{r}}:u_{n-1}\ldots u_0\mapsto u_0\ldots u_{n-1}.$
- Prohození $\pi_t : u_{n-1} \dots u_k u_{k-1} \dots u_0 \mapsto u_{k-1} \dots u_0 u_{n-1} \dots u_k$, je-li n = 2k $\pi_t : u_{n-1} \dots u_{k+1} u_k u_{k-1} \dots u_0 \mapsto u_{k-1} \dots u_0 u_k u_{n-1} \dots u_{k+1}$, je-li n = 2k+1
- Přeložení (posun) do w, $\pi^w_{\mathrm{p}}: i \to i \, \mathrm{XOR} \, w$ pro daný n-bitový řetězec w.
- Doplněk $\pi_d: u_{n-1} \dots u_0 \mapsto \overline{u}_{n-1} \dots \overline{u}_0$ (= speciální případ přeložení).
- Cyklický posun o δ , $\pi_{\mathbf{s}}^{\delta}: i \mapsto i \oplus_{p} \delta$, $i \in \{1, \dots, p\}$.

Otočení a prohození

Věta 8. Permutace otočení π_r a prohození π_t ve všeportovém SF nepřímém motýlku $indBF_n$ potřebuje při minimálním on-line směrování $\Theta(\sqrt{N})$ kroků, kde $N=2^n$.

Permutace otočení (a) a prohození (b) při minimálním směrování na $indBF_4$.

Důkaz

- Nechť n = 2k. (Pro liché n podobné.)
- Nechť U_{k-1} je výstupní port $(k-1,u_{n-1}\dots u_{k+1}u_ku_ku_{k+1}\dots u_{n-1})$, U_k je vstupní port $(k,u_{n-1}\dots u_{k+1}u_ku_ku_{k+1}\dots u_{n-1})$ a $e_k=\langle U_{k-1},U_k\rangle$ je střední kanál.
- 2^k uzlů $(0, u_{n-1} \dots u_k *^k) = \text{listy } CBT_k$ s kořenem U_{k-1} .
- Všechny pakety z CBT_k směřují k střednímu kanálu e_k :

$$(0,u) \to (1, u_{n-1} \dots u_1 u_{n-1}) \to (2, u_{n-1} \dots u_2 u_{n-2} u_{n-1}) \to \dots \to (k-1, u_{n-1} \dots u_k u_k \dots u_{n-1}) \to (k, u_{n-1} \dots u_k u_k \dots u_{n-1}) \to (k+1, u_{n-1} \dots u_k u_k u_k u_{k+1} \dots u_{n-1}) \to \dots \to (n-1, u_0 \dots u_{n-1}).$$

- lacktriangle První paket překročí hranu e_k v kroku k+1 a poslední paket v kroku $k+2^k$.
- Tento poslední paket pak potřebuje k kroků, aby se dostal do sloupce nejvíce vpravo \implies spodní mez na počet kroků je $2k + 2^k = \log N + \sqrt{N}$.
- lacksquare \exists \sqrt{N} CBTs \implies \exists \sqrt{N} středních kanálů pro přenos N paketů zleva doprava.
- Paměťové požadavky:
 - 1. $\beta = O(2^{k-1}) = \sqrt{N/8}$ (záplavový algoritmus),
 - 2. $\beta = 0$ (priorita zleva).

(b)+(c) 3. a 6. krok v CBT_n s kořenem U_{k-1} při $\beta = \Theta(\sqrt{N})$.

(d)+(e) 3. a 6. krok v CBT_n s kořenem U_{k-1} při $\beta=0$.

Lemma 9. Věta 8 platí pro každou permutaci

$$\pi(u_{n-1}\ldots u_{\frac{n}{2}}u_{\frac{n}{2}-1}\ldots u_0)=\pi_1(u_{\frac{n}{2}-1}\ldots u_0)\pi_2(u_{n-1}\ldots u_{\frac{n}{2}}).$$

Nejhorší případ časové složitosti při minimálním permutačním směrování

Permutace otočení a prohození = nejhorší případy permutací pro minimální směrování na hyperkubických sítích.

Věta 10. Libovolné permutační směrování v oBF_n může být provedeno v $O(\sqrt{N})$ krocích použitím minimálního algoritmu, jestliže $\beta = \Theta(\sqrt{N})$.

- lacktriangle $e_i = jakákoli hrana na úrovni <math>i$
- $\blacksquare g_i = \mathsf{počet}$ nejkratších cest jdoucích skrz e_i
- $g_i \le \min(2^i, 2^{n-i-1})$
- lacktriangle paket může být zpožděn ve sloupci i nejvýše g_i-1 ostatními pakety
- lacksquare zpoždění v nejhorším případě je $S=\Sigma_{i=1}^n(g_i-1)$
- $S \leq \begin{cases} 3\sqrt{N/2} n 2 & \text{je-li } n \text{ liché,} \\ 2\sqrt{N} n 2 & \text{je-li } n \text{ sudé.} \end{cases}$

Permutace s optimálním minimálním směrováním na oBF_n

Zhušťovací (packing) neúplná permutace

■ Směrování paketů z libovolného podmnožiny vstupů $\mathcal M$ do prvních $m=|\mathcal M|$ výstupních uzlů tak, že

relativní pořadí paketů se nezmění.

- Výpočet relativního pořadí paketů v \mathcal{M} : paralelní prefixový součet.
- Aplikace: VLSI návrh, kolektivní komunikační problémy 1-mnoha, cyklický k-posun.

Věta 11. Minimální směrování na oBF_n poskytuje uzlově disjunktní cesty pro libovolnou zhušťovací permutaci.

- Žádné 2 pakety se nemohou srazit na uzlu v sloupci 1, viz jediné dva možné případy na obr. (a) a (b). (dva za sebou následující pakety zůstanou těsně za sebou i na výstupech, pouze se můžou posunout a tudíž změnit paritu (hodnotu posledního bitu)).
- Indukce: na žádném dalším stupni nemůže dojít k soupeření o linku, protože pakety se rozdělí na ty se sudým číslem (červené) a s lichým číslem (zelené).

23

■ Zřeďovací permutace = otočení zhušťovací permutace.

Každá permutace na $oBF_n=$ seřazení paketů podle cílových adres + zředění v čase $T_{\rm sort}(N)+O(n)$, kde $N=2^n$ a $T_{\rm sort}(N)$ je čas seřazení N položek na oBF_n .

V přednášce #8 jsme viděli, že $T_{\rm sort}(N) = O(n^2)$.

Monotónní permutace

Libovolná monotónní permutace = složení zhušťovací permutace a zřeďovací permutace

Cyklický posun (CP)

Cyklický posun o δ je permutace $\pi_{\rm s}^{\delta}: i \mapsto i \oplus_p \delta$.

(a) CP o
$$\delta=5~(=0101_2)$$
 na $indBF_4$

(b) CP o $\delta = 10 \ (= 1010_2)$ na $indBF_4$.

Věta 12. Minimální směrování na oBF_n poskytuje uzlově disjunktní cesty pro permutaci cyklický posun π_s^{δ} .

Idea důkazu (indukcí přes n, podobný jako u zhuštění)

- Cesty jsou disjunktní v 1. sloupci, cyklický posun je složení 2 částečných permutací zahuštění, v 1. stupni motýlka se použijí buď pouze přímé nebo pouze křížové linky (stejný argument jako u permutace zhuštění).
- Od 2. stupně se permutace rozpadá na 2 samostatné permutace cyklický posun na disjunktních podmotýlcích oBF_{n-1} .

Permutace přeložení a doplněk

Věta 13. Minimální směrování na oBF_n poskytuje pro permutaci přeložení π_p^w , $0 \le w \le N-1$, uzlově disjunktní cesty.

Důkaz. Všechny cesty začínají v různých vstupních uzlech. Na každém stupni oBF_n , všechny cesty používají buď hrany přímé nebo křížové. Proto tyto cesty nikdy nesoupeří o žádnou hranu.

Bezkolizní směrování pro permutaci přeložení $\pi_{\rm p}^w$ pro w=011 na oBF_3 .

Permutace doplněk $\pi_c \implies$ všechny pakety používají ve všech stupních pouze křížové hrany.

Permutační směrování na binární hyperkrychli

- Všechny algoritmy pro minimální permutační směrování na SF všeportové nepřímé síti oBF_n jsou normální hyperkubické
 - \implies mohou být prováděny na kterékoli hyperkubické síti s O(1) zpomalením.
- Libovolné hranově disjunktní permutační směrování na SF oBF_n \iff permutační směrování s nulovým zahlcením na WH plně-duplexní všeportové Q_n .

Přeložení π^w_{p} pro w=011 na WH plně-duplexní všeportové Q_3 používající e-cube směrování.

Off-line permutační směrování na Benešově síti

- Benešova síť $BN_n=2$ motýlkové zády k sobě.
- $lacksquare BN_n$ má 2n+1 sloupců uzlů a 2n úrovní hran.
- lacksquare Hierarchicky rekurzivní: BN_n obsahuje horní BN_{n-1}^0 a spodní BN_{n-1}^1 .
- Přestavitelná úplná permutační síť:

pro libovolnou permutaci vstupů na výstupy, ∃ bezkolizní permutační směrování.

lacksquare 3 2 varianty: přímá oBN a nepřímá indBN

Off-line hranově disjunktní permutační směrování

Věta 14. Nechť $N=2^{n+1}$, $\mathcal{N}=\{0,\ldots,N-1\}$, a nechť $\pi:\mathcal{N}\to\mathcal{N}$ je libovolná permutace. Pak v $indBN_n$ \exists množina N hranově disjunktních cest spojující vstupní kanál i s výstupním kanálem $\pi(i)$ pro všechna $i\in\mathcal{N}$.

Konstrukce prvních úseků hranově disjunktních cest v $indBN_4$ pro permutaci prohození $\pi_{\rm t}$.

Konstruktivní důkaz indukcí

Pozorování:

- Spřažené vstupní/výstupní kanály i a j \iff i a j se liší v nejnižším bitu.
- Podobně se definují spřažené cesty $i \to \pi(i)$ a $j \to \pi(j)$.
- lacktriangle Každý vst./výst. přepínač má přesně 1 kanál do $indBN_{n-1}^0$ a 1 kanál do $indBN_{n-1}^1$.
- lacksquare Jestliže daná cesta použije $indBN_{n-1}^0 \implies$ s ní spřažené cesty musí použít $indBN_{n-1}^1$.

Konstrukce (rekurzivní):

- 1. Tvrzení platí pro n=0. Předpokládejme, že $n\geq 1$ a že tvrzení platí pro n-1.
- 2. Vezmi jakékoli $i \in \mathcal{N}$ a zvolme např. $indBN_{n-1}^0$ pro vedení cesty $i \to \pi(i)$ doprava.
- 3. Odpovídající výstupní spřaženou cestu veďme zpátečním směrem přes $indBN_{n-1}^1$.
- 4. Jestliže odpovídající spřažená vstupní cesta již byla rozhodnuta, dokončili jsme 1 cyklus permutace a začneme s jakoukoli dosud nezrealizovanou cestou stejně jako v kroku (2).
- 5. Jinak, pokračujeme doprava přes $indBN_{n-1}^0$ a doleva přes $indBN_{n-1}^1$, dokud neuzavřeme cyklus (tím, že se dostaneme do výchozího vstupního přepínače).
- 6. !!!! Teprve po nastavení všech přepínačů v nejlevějším a nejpravějším sloupci, známe indukované permutace v $indBN_{n-1}^0$ a $indBN_{n-1}^1$ a rekurzivně je vyřešíme. !!!!

Počet různých řešení: závisí na n a počtu cyklů v permutaci π a indukovaných permutacích.

Off-line uzlově disjunktní permutační směrování

Věta 15. Uzlově-disjunktní směrování. Nechť $N=2^n$, $\mathcal{N}=\{0,\ldots,N-1\}$, a nechť $\pi:\mathcal{N}\to\mathcal{N}$ je libovolná permutace. Pak v oBN_n \exists množina uzlově-disjunktních cest, spojujících dvojice uzlů (0,i) a $(2n,\pi(i))$ pro všechna $i\in\mathcal{N}$.

Důkaz. Induktivní a konstruktivní jako předchozí, až na jinou definici spřaženosti.

- Vstupní (výstupní) spřažené uzly = uzly lišící se v nejvýznamnějším bitu.
- Pozorování: Jestliže daná cesta vede přes oBN_{n-1}^0 , pak její jak vstupní tak výstupní spřažená cesta vedou přes oBN_{n-1}^1 , a naopak.

Off-line optimální směrování pro libovolnou permutaci na oBF_n

1 průchod skrz o $BN_n = 1$ průchod tam a 1 průchod zpět v o BF_n nebo w BF_n .

Věta 16. Nechť $N=n2^n$ a $\mathcal{N}=\{0,\ldots,N-1\}$. Uvažujme všeportovou plně-duplexní přímou síť wBF_n s nejvýše 1 paketem na 1 uzel. Pak pro libovolnou permutaci $\pi: \mathcal{N} \to \mathcal{N}$ \exists off-line deterministické permutační směrování na wBF_n v nejvýše 3n krocích a s $\beta = O(1)$.

Důkaz. (konstrukční) analogie off-line permutačního směrování na 2-D mřížkách: $oBF_n \approx$ $M(2^n) \times T(n)$ s 2^n horizontálními kružnicemi o n uzlech a n vertikálními sloupci o 2^n uzlech.

(a) Fáze 2.

(b) Fáze 3, dopředná vlna. (c) Fáze 3, zpětná vlna.

(d) Fáze 4.

Důkaz

- **Fáze 1:** Předpočítej permutace uvnitř horizontálních kružnic: Hallova věta o párování aplikovaná na n-regulární směrovací bipartitní graf s $|S| = |D| = 2^n$ vrcholy \approx čísla zdrojových a cílových kružnic $\implies n$ dokonalých párování i, kde $i \in \{1,\ldots,n\} = n$ množin paketů, která budou srovnány do jednotlivých sloupců i v wBF_n tak, aby adresy všech cílových kružnic paketů v rámci 1 sloupce byly odlišné.
- **Fáze 2:** Paralelně ve \forall horizontálních kružnicích , proveď tyto permutace (n/2 kroků). V každém sloupci \exists nejvýše 1 paket určený pro libovolnou horizontální kružnici.
- **Fáze 3:** Paralelně ve \forall virtuálních sloupcích, permutuj pakety do správných horiz. kružnic. Protože ve sloupcích wBF_n neexistují vertikální hrany \implies off-line uzlově disjunktní permutační směrování na Benešově síti.
 - 1. Předpočítej off-line uzlově disjunktní cesty pro permutaci každého sloupce zvlášť.
 - 2. $wBF_n = \text{uzlově symetrický} \implies \text{spusť permutační směrování ve všech sloupcích současně jako } n za sebou jdoucích synchronních vln tam a pak zpět (<math>n$ kroků).

Počet komunikačních kroků je 2n. Po Fázi 3: \forall pakety jsou v cílových kružnicích.

Fáze 4: Paralelně ve \forall kružnicích, zpermutuj pakety do *správných sloupců* (n/2 kroků).

Off-line simulace libovolné topologie na oBF_n

Věta 17. Nechť $N = n2^n$. Nechť G je libovolná N-uzlová všeportová plně-duplexní SF propojovací síť s maximálním stupněm uzlu d. Pak přímá všeportová plně-duplexní SF síť wBF_n může simulovat G se zpomalením $O(d \log N)$, je-li dovolen předvýpočet.

Jeho rozklad do castecnych permutaci

Důkaz

- Protože topologie G je libovolná, můžeme použít libovolné 1-1 zobrazení V(G) na $V(wBF_n)$.
- Protože stupeň uzlů G je omezen konstantou d, každý uzel v G může poslat nejvýše d paketů a obdržet nejvýše d paketů v 1 komunikačním kroku.

Jeden globální krok komunikace mezi sousedními uzly v G

budeme simulovat pomocí

d permutačních směrování na w BF_n .

- \blacksquare Tato simulace je tudíž serializací: 1 globální krok je serializován do nejvýše d permutací.
- Permutace nejsou nutně úplné, protože G není nutně d-regulární a všechny uzly nepoužívají nutně všechny své kanály v každém komunikačním kroku.

Důsledky

Důsledek 18. N-uzlový všeportový plně-duplexní wBF_n může simulovat N-uzlovou hyperkrychli se zpomalením $O(\log^2 N)$, je-li dovolen předvýpočet.

Důkaz. Plyne z předchozí lemmatu, kde G je hyperkrychle velikosti N.

Co je ještě důležitější, z Věty 17 plyne, že hyperkrychle sama je schopna optimálně simulovat jakoukoli topologii s omezeným stupněm uzlu.

Důsledek 19. Je-li dovolen předvýpočet, pak libovolnou $(N \log N)$ -uzlovou síť G s omezeným stupněm uzlu lze simulovat na N-uzlové hyperkrychli se zpomalením $O(d \log N)$, kde d je maximální stupeň uzlu G.

Důkaz. wBF_n s horizontálními kružnicemi zredukovanými na uzly = Q_n . Tudíž,

- každý uzel Q_n simuluje výpočet n uzlů wBF_n a 1 uzel wBF_n simuluje výpočet 1 uzlu G \implies výpočetní zpomalení je $O(n) = O(\log N)$.
- 1 hyperkubická hrana může simulovat O(1) hran wBF_n a wBF_n simuluje komunikaci v G se zpomalením $O(d \log N)$ \Longrightarrow zpomalení komunikace je $O(d \log N)$.

