IDO HAKIMI DISTRIBUTED DEEP NEURAL NETWORKS

PROBLEM DECOMPOSITION

DOMAIN DECOMPOSITION

- The data is partitioned across tasks and each task only works on its portion of the data.
- SPMD (single program, multiple data)

FUNCTIONAL DECOMPOSITION

- The focus is on partitioning the computations rather than the data. The problem itself is decomposed and each task performs a portion of the overall work.
- Typically used when pieces of data require different processing times

DISTRIBUTED DEEP NEURAL NETWORKS

DOMAIN DECOMPOSITION (DATA PARALLELISM)

- This strategy is straightforward; partition the work of the batch across different machines.
- Different machines have a complete copy of the model.
- Each machine simply gets a different portion of the batch, and results from each are combined.

DOMAIN DECOMPOSITION (DATA PARALLELISM)

- Scaling the performance of data parallelism requires increasing the "effective batch size".
- The increased batch size can result in a decrease of the model's final accuracy.

FUNCTIONAL DECOMPOSITION (MODEL PARALLELISM)

- This strategy divides the work according to the neurons in each layer.
- Different machines in the distributed system are responsible for the computations in different parts of a single network.
- For example, each layer in the neural network may be assigned to a different machine.

FUNCTIONAL DECOMPOSITION (MODEL PARALLELISM)

- While model parallelism can work well in practice, data parallelism is arguably the preferred approach for distributed systems and has been the focus of more research.
- For one thing, implementation, fault tolerance and good cluster utilization is easier for data parallelism than for model parallelism.
- Furthermore, model parallelism requires massive amount of communication.

HYBRID PARALLELISM

The combination of multiple parallelism schemes can overcome the drawbacks of each scheme.

DISTRIBUTED TRAINING

SYNCHRONOUS TRAINING

SYNCHRONOUS ALGORITHM

- 1. Each worker computes gradients on its part of the data.
- 2. Average gradients from all workers.
- 3. Update the model.

SYNCHRONOUS SCHEME

source: "TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems"

ASYNCHRONOUS TRAINING

ASYNCHRONOUS SCHEME

source: "TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems"

GRADIENT STALENESS

ASGD suffers from **gradient staleness**: gradients sent by workers are often based on parameters that are older than the master's (parameter server) current parameters.

GRADIENT STALENESS

This gradient staleness is a major obstacle to scaling ASGD since the it grows as we increase the number of workers, which decreases gradient accuracy, and ultimately reduces the accuracy of the trained model.

STALENESS AWARENESS

- Adjust the learning rate to the staleness magnitude.
- Softsync Instead of updating the parameters immediately, the master waits to collect a number of updates from any of workers, and only then updates the parameters.

PARAMETER SERVER

SHARDING

If one parameter server is used, it will likely become a networking or computational bottleneck.

ALLREDUCE

AllReduce

RING-ALLREDUCE EXAMPLE

source: https://eng.uber.com/horovod/

DECENTRALIZED TRAINING

DECENTRALIZED SCHEME

- One bottleneck of centralized algorithms lies on high communication cost to the parameter server.
- No centralized parameter server is present in the system. Instead a peer to peer communication is used to transmit model updates between workers.

