Linear systems

Numerical analysis - University of Luxembourg

Exercises

Direct solvers

Exercise 1. Triangular linear systems

Implement two routines that perform respectively forward and backward substitution. Test your function on two small triangular matrices of your choice.

Exercise 2. LU decomposition

Use scipy.linalg.lu to compute the L and U factors, and then use your functions from Exercise 1 to solve the linear system thanks to forward and backward substitution Test your code with the matrix

$$A = \begin{pmatrix} 6 & 3 & 4 & 8 \\ 3 & 6 & 5 & 1 \\ 4 & 5 & 10 & 7 \\ 8 & 1 & 7 & 25 \end{pmatrix}$$

and right hand side

$$b = \begin{pmatrix} 32\\23\\33\\31 \end{pmatrix}$$

Do it again but implement your own LU decomposition (without pivoting) thanks to the pseudo-code seen in class.

Exercise 3. Pivoting strategy

Run your linear system solver from Ex. 2 to solve the linear system Ax = b, with

$$A = \begin{pmatrix} 10^{-15} & 1\\ 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1\\ 2 \end{pmatrix}$$

Implement a pivoting strategy to handle the issue.

Exercise 4. QR factorization

The QR factorization or QR decomposition allows to split the matrix A of size $m \times n$ as a product of unitary $m \times m$ matrix Q with an upper triangular $m \times n$ matrix R, such as

$$A = QR, \quad QQ^T = I, \quad R = \begin{pmatrix} \hat{R} \\ 0 \end{pmatrix},$$

where \hat{R} is of size $n \times n$.

1. Thanks to a backward substitution, write how to solve a square linear system Ax = b in that case.

We will now implement the decomposition thanks to the following steps

1. From the columns $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ of the matrix A, write down the Gram-Schmidt procedure and create the orthogonal basis

$$\mathbf{u}_k = \mathbf{a}_k - \sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_j} \mathbf{a}_k.$$

- 2. The matrix Q is given by $Q = [\mathbf{e}_1 \cdots \mathbf{e}_n]$, where $\mathbf{e}_k = \frac{\mathbf{u}_k}{\|\mathbf{u}_k\|}$.
- 3. From Q, find how to easily get the matrix R

Finally, recall what are the normal equations (least square problem), and explain how to solve it thanks to QR decomposition. Would your use a QR decomposition rather than a LU decomposition in this case? Justify your answer

As an application, solve a least square problem and verify your implementation with the built-in scipy.linalg.qr.

Iterative solvers

Exercise 5. A small test Consider the linear system

$$7x_1 + 3x_2 + x_3 = 3$$
$$-3x_1 + 10x_2 + 2x_3 = 4$$
$$x_1 + 7x_2 - 15x_3 = 2$$

Questions:

- 1. write down the k-th Jacobi iteration in its pointwise and matrix form. Specify the matrix splitting of the method. Implement the Jacobi solver and test it,
- 2. do the same exercise for the Gauss-Seidel method. Comment and explain your results. Which method is fastest and why?
- 3. Implement relaxation techniques and experiment with it.