自动控制理论

(二) 现代控制理论

自动化系 尚超 中央主楼418A 010-62782459 c-shang@tsinghua.edu.cn

模块2 线性连续定常系统状态方程的解

TD2-1-1 齐次方程的解(课本2.7)

- TD2-1-2 非齐次方程的解(课本2.7)
- TD2-2-1 状态转移矩阵的定义性质(课本2.8)
- TD2-2-2 状态转移矩阵的性质(课本2.8)
- TD2-2-3 状态转移矩阵的计算方法(课本2.7)

• 线性定常系统的状态方程为:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \ t \ge t_0$$
$$\mathbf{x}(t_0) = \mathbf{x}_0$$

其中, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^r$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times r}$ 。这里讨论上述微分方程的求解方法。

• 一、齐次方程的解: 首先考虑简单的情形, 即输入 u 为零的齐次方程

$$\dot{x} = Ax$$

的解。此时系统处于由初始状态引起的自由运动状态,**所以齐次方程式的解也称**自由解。

• 有如下命题:

若初始时刻 t_0 时的状态给定为 $x(t_0) = x_0$, 则微分方程

$$\dot{x} = Ax$$

存在唯一解:

$$\boldsymbol{x}(t) = e^{A(t-t_0)} \boldsymbol{x}_0, \quad t \ge t_0$$

• 若初始时刻从 t=0 开始,即 $x(0)=x_0$,则方程 $\dot{x}=Ax$ 的解为:

$$\boldsymbol{x}(t) = e^{At} \boldsymbol{x}_0, \quad t \ge 0$$

其中, $e^{At} \in \mathbb{R}^{n \times n}$ 或 $e^{A(t-t_0)} \in \mathbb{R}^{n \times n}$ 称为矩阵指数, 表达式为

$$e^{\mathbf{A}t} \triangleq \mathbf{I} + \mathbf{A}t + \frac{1}{2!}\mathbf{A}^2t^2 + \dots + \frac{1}{k!}\mathbf{A}^kt^k + \dots = \sum_{k=0}^{\infty} \frac{\mathbf{A}^kt^k}{k!}$$

- 证明思路1: 直接法

$$x(t) = b_0 + b_1 t + b_2 t^2 + \dots + b_k t^k + \dots = \sum_{k=0}^{\infty} b_k t^k, \quad t \ge 0$$

将上式代入 $\dot{x} = Ax$ 可得: $b_1 + 2b_2t + 3b_3t^2 + \dots + kb_kt^{k-1} + \dots$ = $A(b_0 + b_1t + b_2t^2 + \dots + b_kt^k + \dots)$ $t \ge 0$

因为上式对 $t \ge 0$ 均成立,因此等式两边 t 的同次幂项的系数应相等,

可得

$$\begin{cases} \boldsymbol{b}_{1} = \boldsymbol{A}\boldsymbol{b}_{0} \\ \boldsymbol{b}_{2} = \frac{1}{2}\boldsymbol{A}\boldsymbol{b}_{1} = \frac{1}{2!}\boldsymbol{A}^{2}\boldsymbol{b}_{0} \\ \vdots \\ \boldsymbol{b}_{k} = \frac{1}{k}\boldsymbol{A}\boldsymbol{b}_{k-1} = \frac{1}{k!}\boldsymbol{A}^{k}\boldsymbol{b}_{0} \end{cases}$$

 \therefore 上述命题得证。令 t=0,可得:

$$\boldsymbol{b}_0 = \boldsymbol{x}(0) = \boldsymbol{b}_0$$

代入可得:

$$\mathbf{x}(t) = \left(\mathbf{I} + \mathbf{A}t + \frac{1}{2!}\mathbf{A}^{2}t^{2} + \dots + \frac{1}{k!}\mathbf{A}^{k}t^{k} + \dots\right)\mathbf{x}_{0}$$

$$= \left(\sum_{k=0}^{\infty} \frac{1}{k!}\mathbf{A}^{k}t^{k}\right)\mathbf{x}_{0}$$
(*)

• 仿照标量指数的定义

$$e^{at} \triangleq 1 + at + \frac{1}{2!}a^2t^2 + \dots + \frac{1}{k!}a^kt^k + \dots = \sum_{k=0}^{\infty} \frac{a^kt^k}{k!}$$

可定义矩阵指数为:

$$e^{At} \triangleq \mathbf{I} + At + \frac{1}{2!}A^2t^2 + \dots + \frac{1}{k!}A^kt^k + \dots = \sum_{k=0}^{\infty} \frac{A^kt^k}{k!}$$

因此, (*)式可以表示为 $|x(t) = e^{At}x_0|$ 。

• 若用 $(t - t_0)$ 代替 t,即初始时刻为 t_0 ,同样可证明 $|x(t) = e^{A(t-t_0)}x_0, t \ge t_0|$ 。

- 证明思路2: Laplace 变换
- 对 $\dot{x} = Ax$ 两边进行 Laplace 变换,可得

$$s \cdot x(s) - x_0 = A \cdot x(s)$$

其中 x(s) = L[x(t)] 为状态向量 x(t) 的 Laplace 变换, 经整理有:

$$(s\boldsymbol{I} - \boldsymbol{A})\boldsymbol{x}(s) = \boldsymbol{x}_0$$

两边同乘 $(sI - A)^{-1}$,从而有:

$$\boldsymbol{x}(s) = (s\boldsymbol{I} - \boldsymbol{A})^{-1} \boldsymbol{x}_0$$

将上式作 Laplace 反变换,即得齐次方程的解:

$$\mathbf{x}(t) = L^{-1} \left[(s\mathbf{I} - \mathbf{A})^{-1} \mathbf{x}_0 \right]$$
$$= L^{-1} \left[(s\mathbf{I} - \mathbf{A})^{-1} \right] \mathbf{x}_0 \qquad (拉氏反变换的线性性质)$$

• 注意到:
$$(sI - A)$$
 $\left(\frac{I}{s} + \frac{A}{s^2} + \frac{A^2}{s^3} + \dots + \frac{A^k}{s^{k+1}} + \dots\right) = I$

• 代入到 $x(t) = L^{-1} \left[(sI - A)^{-1} \right] x_0$ 即得:

$$\mathbf{x}(t) = L^{-1} \left(\frac{\mathbf{I}}{s} + \frac{\mathbf{A}}{s^2} + \frac{\mathbf{A}^2}{s^3} + \dots + \frac{\mathbf{A}^k}{s^{k+1}} + \dots \right) \mathbf{x}_0$$

$$= \left(\mathbf{I} + \mathbf{A}t + \frac{\mathbf{A}^2 t^2}{2!} + \dots + \frac{\mathbf{A}^k t^k}{k!} + \dots \right) \mathbf{x}_0$$

$$= e^{\mathbf{A}t} \mathbf{x}_0$$

二得证。

- 线性定常系统的渐近稳定性及判据
- 状态方程为:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \ t \ge t_0$$

$$\mathbf{x}(t_0) = \mathbf{x}_0$$
(*)

其中, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^r$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times r}$ 。当输入信号 u 为零时,若系统对任意初始状态 x_0 的自由解

$$\boldsymbol{x}(t) = e^{A(t-t_0)} \boldsymbol{x}_0, \quad t \ge t_0$$

总满足 $\lim_{t\to\infty} x(t) = 0$, 那么则称线性系统(*) 是渐近稳定的。

- 判据:系统(*)是渐近稳定的,当且仅当 A 的特征值均具有负实部。
- 分析: 可以根据矩阵指数的性质证明。

模块2 线性连续定常系统状态方程的解

- TD2-1-1 齐次方程的解(课本2.7)
- TD2-1-2 非齐次方程的解(课本2.7)
- TD2-2-1 状态转移矩阵的定义性质(课本2.8)
- TD2-2-2 状态转移矩阵的性质(课本2.8)
- TD2-2-3 状态转移矩阵的计算方法(课本2.7)

- 这里我们讨论线性定常系统在控制作用 u(t) 下的强制运动。
- 考虑一般的非齐次方程

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} \tag{*}$$

在初始时刻 t_0 时,初始状态为 $x(t_0) = x_0$,则其解为

$$\boldsymbol{x}(t) = e^{A(t-t_0)} \boldsymbol{x}_0 + \int_{t_0}^t e^{A(t-\tau)} \boldsymbol{B} \boldsymbol{u}(\tau) d\tau, \qquad (**)$$

初始时刻 $t_0 = 0$ 时的状态为 $x(t_0) = x(0)$, 其解为:

$$\boldsymbol{x}(t) = e^{At} \boldsymbol{x}(0) + \int_0^t e^{A(t-\tau)} \boldsymbol{B} \boldsymbol{u}(\tau) d\tau, \qquad (***)$$

显然,线性系统(*)式的解由两部分组成:

- (**)和(***)的第一项表示由初始状态引起的自由运动
- (**)和(***)的第二项表示由控制作用引起的强制运动

- 证明: 将(*)写为: $\dot{x} Ax = Bu(t)$
- 上式两边同时左乘 e^{-At} 可得: $e^{-At}(\dot{x}-Ax)=e^{-At}Bu(t)$
- 即:

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[e^{-At} \mathbf{x}(t) \Big] = e^{-At} \mathbf{B} \mathbf{u}(t) \qquad (****)$$

• 对 t 在 $t \sim t_0$ 之间进行积分,可得: $e^{-At} \mathbf{x}(t) \Big|_{t_0}^t = \int_{t_0}^t e^{-A\tau} \mathbf{B} \mathbf{u}(\tau) d\tau$

即:

$$e^{-At}\mathbf{x}(t) = e^{-At_0}\mathbf{x}(t_0) + \int_{t_0}^t e^{-A\tau}\mathbf{B}\mathbf{u}(\tau)d\tau$$

上式两边同乘 e^{At} 可得:

$$\boldsymbol{x}(t) = e^{\boldsymbol{A}(t-t_0)} \boldsymbol{x}_0 + \int_{t_0}^t e^{\boldsymbol{A}(t-\tau)} \boldsymbol{B} \boldsymbol{u}(\tau) d\tau,$$

(**)式得证!

- 重写(****)式: $\frac{\mathrm{d}}{\mathrm{d}t} \Big[e^{-At} \mathbf{x}(t) \Big] = e^{-At} \mathbf{B} \mathbf{u}(t)$
- 对 τ 在 $0 \sim t$ 之间进行积分,可得:

$$\mathbf{x}(t) = e^{At}\mathbf{x}(0) + \int_0^t e^{A(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

- 定义状态转移矩阵: $\phi(t) = e^{At}$
- (**)式和(***)式可分别写成如下形式:

$$\mathbf{x}(t) = \boldsymbol{\phi}(t - t_0)\mathbf{x}(t_0) + \int_{t_0}^t \boldsymbol{\phi}(t - \boldsymbol{\tau}) \boldsymbol{B} \boldsymbol{u}(\boldsymbol{\tau}) d\boldsymbol{\tau}$$

$$\mathbf{x}(t) = \boldsymbol{\phi}(t)\mathbf{x}(0) + \int_0^t \boldsymbol{\phi}(t-\tau)\boldsymbol{B}\boldsymbol{u}(\tau)d\tau$$

- 在特殊的控制信号(如脉冲函数、阶跃函数或斜坡函数)的 作用下,非齐次方程的解可简化为:
- ① u(t) 为脉冲函数时, $u(t) = k\delta(t), x(0^-) = x(0)$,有:

$$\boldsymbol{x}(t) = e^{At}\boldsymbol{x}(0) + e^{At}\boldsymbol{B}\boldsymbol{k}$$

其中 k 为常数向量,与 u(t) 具有相同的维数。

• ② u(t) 为阶跃函数时, $u(t) = k \cdot 1(t)$, $x(0^{-}) = x(0)$

$$\boldsymbol{x}(t) = e^{At} \boldsymbol{x}(0) + \boldsymbol{A}^{-1} \left(e^{At} - \boldsymbol{I} \right) \boldsymbol{B} \boldsymbol{k}$$

• ③ u(t) 为斜坡函数时, $u(t) = k \cdot t \cdot 1(t)$, $x(0^{-}) = x(0)$

$$\boldsymbol{x}(t) = e^{At} \boldsymbol{x}(0) + \left[\boldsymbol{A}^{-2} \left(e^{At} - \boldsymbol{I} \right) - \boldsymbol{A}^{-1} t \right] \boldsymbol{B} \boldsymbol{k}$$

- 与齐次方程类似,非齐次方程也可利用 Laplace 变换求解
- 对非齐次方程 $\dot{x} = Ax + Bu$ 两边进行 Laplace 变换

$$s\mathbf{x}(s) - \mathbf{x}(0) = A\mathbf{x}(s) + B\mathbf{u}(s)$$

• 化简为:

$$(sI - A)x(s) = x(0) + Bu(s)$$

- 所以有: $x(s) = (sI A)^{-1} [x(0) + Bu(s)]$
- 进一步进行 Laplace 反变换,可得:

$$\mathbf{x}(t) = L^{-1}\left\{ \left(s\mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{x}(0) \right\} + L^{-1}\left\{ \left(s\mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{B} \mathbf{u}(s) \right\}$$
 频域相乘 时域卷积
$$= \phi(t)\mathbf{x}(0) + \int_0^t \phi(t - \tau) \mathbf{B} \mathbf{u}(\tau) d\tau$$

• 例:已知系统的状态方程为:

$$\dot{\mathbf{x}} = \begin{bmatrix} -12 & 2/3 \\ -36 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1/3 \\ 1 \end{bmatrix} u, \quad u(t) = \mathbf{1}(t)$$
 为单位阶跃函数

初始条件为 $x(0) = [2, 1]^T$,求此非齐次状态方程的解 x(t)。

• 解:

$$(s\mathbf{I} - \mathbf{A})^{-1} = \begin{bmatrix} s+12 & -2/3 \\ 36 & s+1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{s+1}{(s+4)(s+9)} & \frac{2/3}{(s+4)(s+9)} \\ \frac{-36}{(s+4)(s+9)} & \frac{s+12}{(s+4)(s+9)} \end{bmatrix}$$

此外,

$$\boldsymbol{x}(0) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \ u(s) = \frac{1}{s}, \ \boldsymbol{b}u(s) = \begin{bmatrix} 1/3s \\ 1/s \end{bmatrix}, \ \boldsymbol{x}(0) + \boldsymbol{b}u(s) = \begin{bmatrix} \frac{6s+1}{3s} \\ \frac{s+1}{s} \end{bmatrix}$$

从而有:

$$\mathbf{x}(s) = (s\mathbf{I} - \mathbf{A})^{-1} \left[\mathbf{x}(0) + \mathbf{b}u(s) \right]$$

$$= \begin{bmatrix} \frac{s+1}{(s+4)(s+9)} & \frac{2/3}{(s+4)(s+9)} \\ \frac{-36}{(s+4)(s+9)} & \frac{s+12}{(s+4)(s+9)} \end{bmatrix} \begin{bmatrix} \frac{6s+1}{3s} \\ \frac{s+1}{s} \end{bmatrix} = \begin{bmatrix} \frac{2s^2 + 3s + 1}{s(s+4)(s+9)} \\ \frac{s-59}{(s+4)(s+9)} \end{bmatrix}$$

• 部分分式分解:

$$\mathbf{x}(s) = \begin{bmatrix} \frac{1}{36s} - \frac{21/20}{s+4} + \frac{136/45}{s+9} \\ -\frac{63/5}{s+4} + \frac{68/5}{s+9} \end{bmatrix} \xrightarrow{\text{Laplace}} \mathbf{x}(t) = \begin{bmatrix} \frac{1}{36} - \frac{21}{20}e^{-4t} + \frac{136}{45}e^{-9t} \\ -\frac{63}{5}e^{-4t} + \frac{68}{5}e^{-9t} \end{bmatrix}$$

模块2 线性连续定常系统状态方程的解

- TD2-1-1 齐次方程的解(课本2.7)
- TD2-1-2 非齐次方程的解(课本2.7)
- TD2-2-1 状态转移矩阵的定义性质(课本2.8)
- TD2-2-2 状态转移矩阵的性质(课本2.8)
- TD2-2-3 状态转移矩阵的计算方法(课本2.7)

• 齐次方程 $\dot{x} = Ax$ 的自由解为:

上式的物理意义是系统在 $t \ge 0$ 或 $t \ge t_0$ 的任意瞬时的状态 x(t),仅仅是初始状态向量 x_0 的一种变换关系,变换矩阵为 e^{At} 或 $e^{A(t-t_0)}$ 。指数矩阵 e^{At} 或 $e^{A(t-t_0)}$ 是一个大小为 $n \times n$ 的函数矩阵。这意味着,它使得状态向量随着时间的推移在不断地作坐标变换,即不断地在状态空间中作转移。

• 因此指数矩阵 e^{At} 或 $e^{A(t-t_0)}$ 也称为状态转移矩阵,通常表示为:

$$\phi(t) = e^{At} \quad \text{if} \quad \phi(t - t_0) = e^{A(t - t_0)}$$

其中, $\phi(t)$ 表示从 x(0) 到 x(t) 的状态转移矩阵, $\phi(t-t_0)$ 表示从 $x(t_0)$ 到 x(t) 的状态转移矩阵.

• 因此,齐次方程 $\dot{x} = Ax$ 的解可以表示为:

$$\mathbf{x}(t) = \boldsymbol{\phi}(t)\mathbf{x}_0$$
 $\mathbf{x}(t) = \boldsymbol{\phi}(t-t_0)\mathbf{x}_0$

可以看出,系统作自由运动时,它的运动形态将由状态转移矩阵唯一决定,包含了系统自由运动的全部信息。其几何意义表示如下:

• 图中设 t = 0 时,状态的初态为 $x(0) = [x_1(0) \ x_2(0)]^T$,若已 知状态转移矩阵 $\phi(t_1)$,则 $t = t_1$ 的状态为 :

$$\boldsymbol{x}(t_1) = \begin{bmatrix} x_1(t_1) & x_2(t_1) \end{bmatrix}^{\mathrm{T}} = \boldsymbol{\phi}(t_1)\boldsymbol{x}(0)$$

若已知状态转移矩阵 $\phi(t_2)$,则 $t = t_2$ 的状态为: $\mathbf{x}(t_2) = \begin{bmatrix} x_1(t_2) & x_2(t_2) \end{bmatrix}^T = \phi(t_2)\mathbf{x}(0)$

- 表明状态从 x(0) 开始,随着时间的推移,它将按 $\phi(t_1)$ 或 $\phi(t_2)$ 作自由运动,最后状态转移到 $x(t_1)$ 或 $x(t_2)$,相应地在状态空间中描绘出一条如下图所示的运动轨线。
- 若 t_1 为初始时刻, $x(t_1)$ 为初始状态,则 $t = t_2$ 的状态为: $x(t_2) = \phi(t_2 t_1) \cdot x(t_1)$

$$\boldsymbol{x}(t_1) = \begin{bmatrix} x_1(t_1) & x_2(t_1) \end{bmatrix}^{\mathrm{T}} = \boldsymbol{\phi}(t_1)\boldsymbol{x}(0)$$

$$\boldsymbol{x}(t_2) = \begin{bmatrix} x_1(t_2) & x_2(t_2) \end{bmatrix}^{\mathrm{T}} = \boldsymbol{\phi}(t_2 - t_1)\boldsymbol{x}(t_1)$$

• 将 $x(t_1)$ 代入上式,则得 $x(t_2) = \phi(t_2 - t_1) \cdot \phi(t_1) \cdot x(0)$

表示从x(0) 转移到 $x(t_1)$, 再由 $x(t_1)$ 转移到 $x(t_2)$ 的运动轨线。

模块2 线性连续定常系统状态方程的解

- TD2-1-1 齐次方程的解(课本2.7)
- TD2-1-2 非齐次方程的解(课本2.7)
- TD2-2-1 状态转移矩阵的定义性质(课本2.8)
- TD2-2-2 状态转移矩阵的性质(课本2.8)
- TD2-2-3 状态转移矩阵的计算方法(课本2.7)

• 注意到:

$$\phi(t_2-t_1)\phi(t_1) = \phi(t_2)$$
 或 $e^{A(t_2-t_1)}e^{At_1} = e^{At_2}$

这种关系称为组合性质。

- 在经典控制理论中,求解高阶微分方程时,对初始条件的处理相当困难。通常假定初始时刻 t = 0, x(0) = 0,即从零初始条件出发去计算系统的输出响应。
- 而从以上分析中可以看出,在现代控制理论中,利用状态转移矩阵,对任意时刻的状态量 x(t),可以由任意指定的初始时刻 t_0 的初始向量 $x(t_0)$ 求得。
- 换言之,矩阵微分方程的解,在时间上可以任意分段求取。这是状态空间模型描述的又一优点。

- 性质1: $\phi(t-t) = \phi(0) = I$ 或 $e^{A(t-t)} = e^{A0} = I$
- 证明: 由

$$e^{\mathbf{A}t} \triangleq \mathbf{I} + \mathbf{A}t + \frac{1}{2!}\mathbf{A}^2t^2 + \dots + \frac{1}{k!}\mathbf{A}^kt^k + \dots = \sum_{k=0}^{\infty} \frac{\mathbf{A}^kt^k}{k!}$$

直接可证得。意味着状态向量从 t 时刻又转移到 t 时刻,显然状态向量是不变的。

• 性质2: $\phi(t)\cdot\phi(\tau) = \phi(t+\tau)$ 或 $e^{At}\cdot e^{A\tau} = e^{A(t+\tau)}$

称之为组合性质,意味着从 $t=-\tau$ 转移到 t=0,再从 t=0 转移到 t=t 的组合,

即

$$\phi(t-0)\cdot\phi(0-(-\tau)) = \phi(t+\tau)$$

也可由 e^{At} 的定义得到。

- 性质3: $[\phi(t)]^{-1} = \phi(-t)$ 或 $(e^{At})^{-1} = e^{-At}$
- 证明: 根据 e^{At} 定义式

$$e^{-\mathbf{A}t}e^{\mathbf{A}t} = \left(\mathbf{I} - \mathbf{A}t + \frac{1}{2!}\mathbf{A}^2t^2 - \cdots\right)\left(\mathbf{I} + \mathbf{A}t + \frac{1}{2!}\mathbf{A}^2t^2 + \cdots\right) = \mathbf{I}$$

直接可证得。

- 这意味着转移矩阵总是非奇异的,必有逆矩阵。
- 利用该性质,在已知 x(t) 的情况下,可以反求出所有 t 时刻以前的状态 $x(t_0)$, $t_0 < t$

- 性质4: $\dot{\phi}(t) = \mathbf{A} \cdot \phi(t) = \phi(t) \cdot \mathbf{A}$ 或 $\frac{\mathrm{d}}{\mathrm{d}t} e^{\mathbf{A}t} = \mathbf{A} \cdot e^{\mathbf{A}t} = e^{\mathbf{A}t} \cdot \mathbf{A}$
- 证明: 根据状态转移矩阵 e^{At} 定义

$$e^{\mathbf{A}t} \triangleq \mathbf{I} + \mathbf{A}t + \frac{1}{2!}\mathbf{A}^2t^2 + \dots + \frac{1}{k!}\mathbf{A}^kt^k + \dots = \sum_{k=0}^{\infty} \frac{\mathbf{A}^kt^k}{k!}$$

由于此无穷级数对有限 t 值是绝对收敛的,所以上式两边可对 t 求导,得:

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{At} \triangleq A + A^2t + \frac{1}{2!}A^3t^2 + \frac{1}{3!}A^4t^3 \cdots$$

因此:

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{At} \triangleq A \cdot \left(I + At + \frac{1}{2!}A^2t^2 + \frac{1}{3!}A^3t^3 \cdots\right) = A \cdot e^{At}$$

或者:

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{At} \triangleq \left(\boldsymbol{I} + \boldsymbol{A}t + \frac{1}{2!}\boldsymbol{A}^2t^2 + \frac{1}{3!}\boldsymbol{A}^3t^3 \cdots\right) \cdot \boldsymbol{A} = e^{At} \cdot \boldsymbol{A}$$

即: $\dot{\phi}(t) = \mathbf{A} \cdot \phi(t) = \phi(t) \cdot \mathbf{A}$ 。证毕。

• 性质5: 设有 $n \times n$ 矩阵 A 和 B, 当且仅当 AB = BA 时(即: A 和 B 可交换),有

$$e^{At} \cdot e^{Bt} = e^{(A+B)t}$$

而当 $AB \neq BA$ 时,则有 $e^{At} \cdot e^{Bt} \neq e^{(A+B)t}$ 。

• 证明:根据定义,有:

$$e^{(A+B)t} - e^{At} \cdot e^{Bt}$$

$$= \frac{BA - AB}{2!}t^2 + \frac{BA^2 + ABA + B^2A + BAB - 2A^2B - 2AB^2}{3!}t^3 + \cdots$$

上式仅当AB = BA 时为0。

• 性质6: 若
$$A$$
 为对角阵,即 $A = A = \begin{bmatrix} \lambda_1 & 0 \\ \lambda_2 & \ddots \\ 0 & \lambda_n \end{bmatrix} = \operatorname{diag}\{\lambda_1, \dots, \lambda_n\}$

• 性质7: 若A 能通过非奇异变换进行对角化,即 $T^{-1}AT = A$,则有:

$$e^{At} = \boldsymbol{\phi}(t) = \boldsymbol{T}e^{At}\boldsymbol{T}^{-1}$$

• 证明:根据 e^{At} 的定义 $e^{At} \triangleq I + At + \frac{1}{2!}A^2t^2 + \cdots = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}$

由于 A 能通过非奇异变换进行对角线化

$$T^{-1}AT = \Lambda$$

$$T^{-1}A^{2}T = T^{-1}AT \cdot T^{-1}AT = \Lambda^{2}$$

$$\vdots$$

$$T^{-1}A^{k}T = (T^{-1}AT) \cdots (T^{-1}AT) = \Lambda^{k}$$

于是有:

$$T^{-1}e^{At}T = T^{-1}\left(\sum_{k=0}^{\infty} \frac{1}{k!} t^{k} A^{k}\right) T = \sum_{k=0}^{\infty} \frac{1}{k!} t^{k} T^{-1} A^{k} T$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!} t^{k} (T^{-1} A T)^{k} = \sum_{k=0}^{\infty} \frac{1}{k!} t^{k} A^{k}$$

$$= \begin{bmatrix} \sum_{k=0}^{\infty} \frac{1}{k!} t^{k} \lambda_{1}^{k} & 0 \\ & \sum_{k=0}^{\infty} \frac{1}{k!} t^{k} \lambda_{2}^{k} & \\ & \ddots & \\ 0 & & \sum_{k=0}^{\infty} \frac{1}{k!} t^{k} \lambda_{n}^{k} \end{bmatrix} = \begin{bmatrix} e^{\lambda_{1}t} & 0 \\ & e^{\lambda_{2}t} & \\ & \ddots & \\ 0 & & e^{\lambda_{n}t} \end{bmatrix} = e^{At}$$

$$\boldsymbol{T}^{-1}e^{At}\boldsymbol{T}=e^{At}$$

$$e^{At} = \phi(t) = Te^{At}T^{-1}$$

• 性质8: 若 A 为约当型矩阵

$$\mathbf{A} = \mathbf{J} = \begin{vmatrix} \lambda & 1 & & 0 \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ 0 & & \lambda \end{vmatrix}$$

则可得:

$$e^{Jt} = \phi(t) = e^{\lambda}$$

• 证明: 与性质6类似。

$$\begin{bmatrix} 1 & t & \frac{1}{2!}t^2 & \cdots & \frac{1}{(n-1)!}t^{n-1} \\ 1 & t & \frac{1}{2!}t^2 & \cdots & \frac{1}{(n-1)!}t^{n-1} \\ 0 & 1 & t & \cdots & \frac{1}{(n-2)!}t^{n-2} \\ \vdots & \vdots & 1 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \frac{1}{2!}t^2 \\ 0 & 0 & 0 & \cdots & t \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

• 性质9: 若A 能通过非奇异变换变成约当标准型,即 $T^{-1}AT = J$,则有:

$$e^{At} = \boldsymbol{\phi}(t) = \boldsymbol{T}e^{\boldsymbol{J}t}\boldsymbol{T}^{-1}$$

证明:与性质7类似。

模块2 线性连续定常系统状态方程的解

- TD2-1-1 齐次方程的解(课本2.7)
- TD2-1-2 非齐次方程的解(课本2.7)
- TD2-2-1 状态转移矩阵的定义性质(课本2.8)
- TD2-2-2 状态转移矩阵的性质(课本2.8)
- TD2-2-3 状态转移矩阵的计算方法(课本2.7)

- 在具体分析线性定常系统时,不可避免地要遇到计算 $\phi(t)$ 和 e^{At} 的问题。下面讨论状态转移矩阵的几种计算方法:
- 1. 直接利用 e^{At} 的级数展开。根据矩阵指数的定义, e^{At} 可以展开成幂级数:

$$e^{At} \triangleq I + At + \frac{1}{2!}A^2t^2 + \dots + \frac{1}{k!}A^kt^k + \dots = \sum_{k=0}^{\infty} \frac{A^kt^k}{k!}$$
 (*)

即:

$$= I + \frac{At}{1!} + \frac{At}{2} \left(\frac{At}{1!} \right) + \frac{At}{3} \left(\frac{A^2 t^2}{2!} \right) + \dots + \frac{At}{k} \left(\frac{A^{k-1} t^{k-1}}{(k-1)!} \right) + \dots$$
 (**)

显然,即使A结构简单,利用上式计算也并不容易。式(**)中圆括号内每一项完全等于前一项。它给出了一种方便的递推方案,易于编程实现。

• 然而,由于 e^{At} 的收敛较慢,与其它方法相比,这种方法计算时间较长。

• 2. 利用 Laplace 反变换法求 e^{At}

$$e^{\mathbf{A}t} = L^{-1} \left[(s\mathbf{I} - \mathbf{A})^{-1} \right]$$

这种方法归结为计算 $(sI - A)^{-1}$, $(sI - A)^{-1}$ 称为预解矩阵。根据如下公式计算:

$$(s\mathbf{I} - \mathbf{A})^{-1} = \frac{\operatorname{adj}(s\mathbf{I} - \mathbf{A})}{|s\mathbf{I} - \mathbf{A}|}$$

这是一种最为常用的计算方法,在维数较小时非常实用、然而,在维数较大时计算比较复杂,需要熟悉常用的 Laplace 反变换。

- 3. 变换 A 为对角标准型或约当标准型来计算 e^{At}
- 情形 1: A 特征值互异。当 A 有两两相异特征值时,必能找到非奇异矩阵 T,使下式成立:

$$\mathbf{\Lambda} = \mathbf{T}^{-1} \mathbf{A} \mathbf{T}$$

由性质7可得: $e^{At} = \phi(t) = \mathbf{T} \cdot e^{At} \cdot \mathbf{T}^{-1}$

• 例: 已知
$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$
 , 求 e^{At} 。

•
$$\mathbf{M}$$
: $f(\lambda) = |\lambda \mathbf{I} - \mathbf{A}| = \begin{bmatrix} \lambda & -1 \\ 2 & \lambda + 3 \end{bmatrix} = \lambda^2 + 3\lambda + 2 \quad \Longrightarrow \quad \lambda_1 = -1, \quad \lambda_2 = -2$

•
$$\mathbf{H}$$
 $Ap_2 = \lambda_2 p_2 \Rightarrow \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} p_{12} \\ p_{22} \end{bmatrix} = (-2) \begin{bmatrix} p_{12} \\ p_{22} \end{bmatrix}$ \Rightarrow $\begin{bmatrix} p_{12} \\ p_{22} \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

于是得:

$$T = \begin{bmatrix} p_1 & p_2 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}, \quad T^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

$$e^{At} = Te^{At}T^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{-2t} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix}$$

• 情形 2: A 的特征值有重根。在特征值有重根的情况下, 根据性质 9 可知

$$e^{At} = T \cdot e^{Jt} \cdot T^{-1}$$
 其中: $J = T^{-1}AT$

• 例: 已知 $A = \begin{bmatrix} -3 & 1 & 0 \\ 0 & -3 & 1 \\ -4 & 0 & 0 \end{bmatrix}$, 求 e^{At} • 解: 先求 A 的特征值: $f(\lambda) = \begin{bmatrix} \lambda + 3 & -1 & 0 \\ 0 & \lambda + 3 & -1 \\ 4 & 0 & \lambda \end{bmatrix} = \lambda(\lambda + 3)^2 + 4 = (\lambda + 1)^2(\lambda + 4)$

即得: $\lambda_1 = \lambda_2 = -1$ $\lambda_3 = -4$

• **则**:
$$J = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -4 \end{bmatrix}$$
 , $e^{Jt} = \begin{bmatrix} e^{-t} & te^{-t} & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & e^{-4t} \end{bmatrix}$ (性质 8)

• 进一步可知:
$$T = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & -1 \\ 4 & 8 & 1 \end{bmatrix}$$
 $T^{-1} = \frac{1}{9} \begin{bmatrix} 11 & 7 & -4 \\ -6 & -3 & 3 \\ 4 & -4 & 1 \end{bmatrix}$

• 所以 $e^{At} = \mathbf{T} \cdot e^{\mathbf{J}t} \cdot \mathbf{T}^{-1}$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & -1 \\ 3 & 8 & 1 \end{bmatrix} \begin{bmatrix} e^{-t} & te^{-t} & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & e^{-4t} \end{bmatrix} \frac{1}{9} \begin{bmatrix} 11 & 7 & -4 \\ -6 & -3 & 3 \\ 4 & -4 & 1 \end{bmatrix} = \begin{bmatrix} e^{-t} & te^{-t} + e^{-t} & e^{-4t} \\ 2e^{-t} & 2e^{-t} + 3e^{-t} & -e^{-4t} \\ 4e^{-t} & 4te^{-t} + 8e^{-t} & e^{-4t} \end{bmatrix} \frac{1}{9} \begin{bmatrix} 11 & 7 & -4 \\ -6 & -3 & 3 \\ 4 & -4 & 1 \end{bmatrix}$$

$$= \frac{1}{9} \begin{bmatrix} 5e^{-t} - 6te^{-t} + 4e^{-4t} & 4e^{-t} - 3te^{-t} - 4e^{-4t} & -e^{-t} + 3te^{-t} + e^{-4t} \\ 4e^{-t} - 12te^{-t} - 4e^{-4t} & 5e^{-t} - 6te^{-t} + 4e^{-4t} & e^{-t} + 6te^{-t} - e^{-4t} \\ -4e^{-t} - 24te^{-t} + 4e^{-4t} & 4e^{-t} - 12te^{-t} - 4e^{-4t} & 8e^{-t} + 12te^{-t} + e^{-4t} \end{bmatrix}$$
 (性质 9)