Hash Tables

Another implementation for the dictionary ADT, but has (under suitable assumptions) constant time operations

H₂ Relevant sets

- the universe: $U = \{k : k \text{ is a possible key}\}$
- keys in use: $K = \{k : k \text{ is used to store something}\}$
 - size of the dictionary is n = |K|

H2 Naive Implementation - Direct Addressing

Have an array S of size |U|, then for a key $k \in \{0, \ldots, |U|-1\}$, store its value in S[k], or if that key is not present, store a flag in S[k] marking it empty

e.g. if
$$|U|=4$$
 and we [insert(2, 1)], then [arr = [-, -, 1, -]]

$_{ m H3}$ But what if |U| is too big?

- what if |U| is too big for an array of its size to be stored
- what if |U|>>|K| , so an array of size |U| would be incredibly wasteful

H2 Hash Functions

A hash function maps a large set of inputs to a small set of things to use as keys

If we have an array $\mathbb S$ of size m, we can use a hash function $h:U\to\{0,\dots,m-1\}$ to "hash" keys into places in $\mathbb S$

Don't worry about actual hash functions, they are mysterious.

"People go to Hogwarts for years to learn how to do this sort of thing."

H₃ Collisions

If $h: U \to K$ and |K| < |U|, then h cannot be injective, so there could be a *collision*: two different keys share the same hash

Solutions:

- chaining: each slot of array is a (doubly) linked list storing all keys that hash to that slot
- open addressing (commonly used)

H₃ Chaining

- [insert(S, k)]
 - if nothing else has taken slot h(k) thus far, store a node with k as the head of S[h(k)]
 - otherwise, store k at S[h(k)] and point to node that was previously there
- delete(S, k_ptr)
 - given a pointer to the node n storing k, set n.prev.next
 = n.next (linked list deletion)
- search(S, k)
 - check if S[h(k)] stores k
 - if not, check S[h(k)].next
 - if not, repeat this step
 - if the end of a linked list is reached, then k is not in the dictionary

H3 SUHA - Simple Uniform Hashing Assumption

We assume that h(k) is equally likely to take on all values in $\{0,\ldots,m-1\}$

H₄ Application to chaining

SUHA is equivalent to assuming that $\forall i,j \in \{0,\dots,m-1\}, n_i=n_j$ where n_x is the number of keys that are hashed to x

$$\sum_{i=0}^{m-1} E[n_i]=n$$
, and by SUHA all $n_ipprox n_j$, so each $n_ipprox rac{n}{m}$ (we call $lpha=n/m$ the $load$ factor)

Performance is bad if α gets too big (as n grows), but we can improve this by expanding the hash table (increasing m)