

Active Learning the pool-based selective sampling (part 1)

Andrzej Janusz Daniel Kałuża

THE PLAN

- A recap of the previous lecture.
- Uncertainty sampling.
- Exemplary measures.
- Use-cases.
- Evaluation in active learning experiments.
- Summary.

The three main Active Learning scenarios

Based on Burr Settles: Active Learning Literature Survey (2010)

The three main Active Learning scenarios

Based on Burr Settles: Active Learning Literature Survey (2010)

Active Learning as an optimization task

Formal task definition - we search for $U^* \subset DP$ such that:

$$U^* = \underset{U:|U|=K}{\operatorname{arg\,max}} \mathbb{E}_{(X,Y)}[q(Y, f^U(X))]$$

where f^U is a model trained on a subset $U \subset DP$ whose size is K and q is a predefined quality metric.

Pool-based selective sampling

- We have a large pool of unlabeled instances U.
 - We evaluate the usefulness of the instances from U for the learner at each iteration of the AL cycle.
 - We may choose one or more instances to query the oracle.
 - The unlabeled data pool may grow in time but we assume that it is static in each iteration.
- An informativeness measure is used to evaluate all instances from the pool.
 - If the pool size is very large, some subsampling can be used...
- How do we evaluate the informativeness of an instance?

The active learning cycle - revisited

An example - Cancer tissue classification

- Rączkowski et al. (2019) describe an application of the pool-based active learning in the field of medical diagnostics.
 - Active learning framework chooses uncertain samples.
 - Instances small tiles with tissues stained with hematoxylin and eosin (H&E).
 - Histopathologists annotate pixels of the image with tissue classes.
 - Deep neural network is used to learn from the annotated examples.
- The active learning approach resulted in 45% speed-up of the model learning process.

Original image

Classification result

Image taken from Rączkowski et al. (2019): ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning.

Image: Freepik.com

An exemplary application - AAIA'19 DMC

- Janusz et al. (2019) proposed a method based on a combination of informativeness density and diversity sampling for active learning of deck win-rates in a popular mobile video game Clash Royale.
- Historical win-rates were available for a large pool of decks. How will the win-rates change in a new season?
- Active learning outperformed random sampling and nu-SVR baselines.
 https://knowledgepit.ml/clash-royale-challenge/

Informativeness and uncertainty - again

- The informativeness can be considered from several perspectives:
 - Proximity to a decision boundary ≈ prediction uncertainty.
 - Representativeness.
 - Expected impact on the learner.
 - Expected influence on the lerner's generalization quality.

Uncertainty sampling

- The simplest and very popular approach:
 - We evaluate the prediction uncertainty for each instance.
 - For the classification task, it boils down to querying near the decision boundary region.
 - We want to minimize the epistemic uncertainty of the learner.
 - Measuring the epistemic uncertainty is not easy...
- All we need is a good measure.
 - How can we measure the proximity to the decision boundary?
 - What about the regression task?
 - What changes for the multi-label classification?
 - Other ML tasks?

Classification uncertainty sampling

- Popular classification uncertainty sampling methods:
 - Least confidence: $u_{LC}^* = \arg \max_u (1 P_{\theta}(\hat{y}|u))$
 - Minimum margin: $u_M^* = \arg\min_u \left(P_{\theta}(\hat{y}_1|u) P_{\theta}(\hat{y}_2|u) \right)$
 - Shannon entropy: $u_H^* = \arg\max_u \left(-\sum_i P_{\theta}(y_i|u) \log P_{\theta}(y_i|u) \right)$
- Many other measures are vailable...
- But most of the commonly used measures assume uniformly distributed decision thresholds!

Classification uncertainty - analysis

Image taken from Burr Settles: Active Learning Literature Survey (2010)

Imbalanced classification problems

- What if the class distribution is imbalanced and the quality measure gives different weights to classes?
 - We may want to shift the decision thresholds!

Informativeness for imbalanced classification

- Standard uncertainty measures can be adjusted so that they take their maximum at any given class distribution.
 - A simple rescaling trick!

$$< p_1, \ldots, p_i, \ldots, p_k >$$
 - predicted distribution

$$< r_1, \ldots, r_i, \ldots, r_k > - target distribution$$

Let
$$c = \sum_{i=1,\dots,k} \frac{p_i}{r_i}$$
, then $p_i \longrightarrow \frac{1}{c} \cdot \frac{p_i}{r_i}$

How to choose the right decision boundary?

Rescaled decision boundaries

If we consider a decision threshold at 0.25,
 we get a "decision threshold-centered entropy" :-)

Other ideas

- What if we don't want to promote sampling from the decision boundary?
 - Cases very near to the boundary can be confusing to experts (i.e., our oracle).
 - Cases might be close to the boundary due to aleatoric uncertainty.

An example - a comparison on AAIA'15 data

- Initial batch size: 200 (1% of the pool) and 200 iterations.
- XGBoost learner with default settings.

Regression uncertainty sampling

Exemplary regression uncertainty sampling methods:

• Variance-based:
$$u_{Var}^* = \arg\max_u Var(\Phi(u))$$

- Variance-based: $u_{Var}^* = \arg\max_u Var(\Phi(u))$ Prior density-scaled: $u_{\mu}^* = \arg\max_u Var(\Phi(u)) \cdot \int_{E(\Phi(u)) \epsilon}^{E(\Phi(u)) + \epsilon} \Phi(x) dx$ Differential entropy: $u_H^* = \arg\max_u \left(-\int \Phi(u)(x) \log \Phi(u)(x) dx \right)$
- Our model Φ needs to return distributions (not only the predictions)...
- We may need to take into consideration the prior distribution of targets (ϕ) - but how can we do that?!?

An exemplary application - a regression task

- Initial batch size: 300 (1% of the pool), and 300 iterations.
- XGBoost trained using a natural gradient learner with a negative binomial prior.

Estimating the decision boundary

- Depending on the evaluation metric, it might be desirable to use a problem-specific decision boundary.
 - But we don't have to many labels...
 - and we don't want to do random sampling.
 - We may want to balance the predictions (e.g., to optimize the BAC metric).
- Instead of estimating the distribution of the target variable using known labels, <u>use the distribution of</u> <u>predictions</u>!
 - It works well for classification and regression problems.

Evaluation in active learning experiments

- We only simulate "real-life" problems.
- We don't have to rely on real oracle we have the labels.
 - We focus on testing the query selection methods...
 - or model updating techniques (more on this topic in future).
- The four main KPIs in active learning:
 - What performance level did we achieve after a fixed number of queries?
 - How many queries we needed to achieve the required performance level?
 - Area under the performance curve.
 - Stability of the model training process.

Summary

- We discussed the pool-based selective sampling approach to Active Learning.
- We focused on uncertainty sampling techniques.
- We discussed several uncertainty measures for classification and regression tasks which can be used to guide the AL process.
- We briefly talked about the performance evaluation in active learning experiments.
- We analyzed a few application examples for different ML tasks.

Literature:

- 1. B. Settles. Active Learning Literature Survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison, (2010).
- 2. R. Cassidy, E. S. Charles, J. D. Slotta, N. Lasry. Active Learning: Theoretical Perspectives, Empirical Studies and Design Profiles. Frontiers Media SA, (2019).
- 3. R. Monarch. Human-in-the-Loop Machine Learning: Active Learning and Annotation for Human-centered Al. Simon and Schuster, (2021).
- 4. Ł. Rączkowski, M. Możejko, J. Zambonelli, E. Szczurek. ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning. Scientific Reports 9, 14347 (2019).
- 5. D. Angluin. Queries revisited. In Proceedings of the International Conference on Algorithmic Learning Theory, pages 12–31. Springer-Verlag, (2001).
- 6. H. Wang, X. Chang, L. Shi, Y. Yang, Y.D. Shen. Uncertainty sampling for action recognition via maximizing expected average precision. IJCAI International Joint Conference on Artificial Intelligence, pages 964-970, (2018).
- 7. A. Janusz, Ł. Grad, M. Grzegorowski: Clash Royale Challenge: How to Select Training Decks for Win-rate Prediction. FedCSIS 2019: 3-6, (2019).

QUESTIONS OR COMMENTS?

a.janusz@mimuw.edu.pl

or

d.kaluza@mimuw.edu.pl

