

Триботехника

Лекция на тему: «Физика контакта твердых тел»

Докт.техн.наук, профессор кафедры мехатроники, механики и робототехники Корнаев Алексей Валерьевич

План лекции

План лекции:

Напоминание

- 1. Суть и практическая значимость контактных задач
- 2. Методы решения контактных задач
- 3. Контактная задача Герца
- 4. Современное программное обеспечение решения контактных задач

			Сумма	арное
Вид	Тензорная	Скалярная	количество	
уравнения	форма записи	форма записи	неизвест	уравне
			ных	ний
Уравнение движения	$\nabla \cdot T_{\sigma} + \rho \vec{f} = \rho \frac{d\vec{V}}{dt}$	$\frac{\partial c_{ij}}{\partial x_i} + pf_i = p \frac{dV_i}{dt}$	9 шт.	3 шт.
			σ_{ij}, V_i	
Обобщенный закон Р.Гука	$D_{\sigma} = 2\mu D_{\xi},$ $S_{\sigma} = (3\lambda + 2\mu)S_{\xi}$	$ \left(\sigma_{ij} - \delta_{ij} \frac{\sigma_{mm}}{3} \right) = 2\mu \left(\xi_{ij} - \delta_{ij} \frac{\xi_{kk}}{3} \right), $ $\sigma_{mm} = (3\lambda + 2\mu)\xi_{kk} $	17 шт.	
			+ ξ _{ij} ,	9 шт.
			σ_0	
Уравнение неразрывности	$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{V}) = 0$	$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho V_i)}{\partial r_i} = 0$	16 шт.	10 шт.
	u	33 334		
Формула Дж.Стокса	$T_{\xi} = \frac{1}{2} (\nabla \otimes \vec{V} + \vec{V} \otimes \nabla)$	$\xi_{ij} = \frac{1}{2} \left(\frac{\partial V_i}{\partial x_j} + \frac{\partial V_j}{\partial x_i} \right)$	16 шт.	16 шт.
Уравнение баланса тепла	$\frac{d\theta}{dt} = \frac{1}{c\rho} \nabla \cdot (k\Delta\theta) + \frac{T_{\sigma} \cdot T_{\xi}}{c\rho}$		17 шт.	17 шт.
	$\frac{dt}{dt} = \frac{c\rho}{c\rho} + \frac{(\kappa \Delta 0)}{c\rho} + \frac{c\rho}{c\rho}$		+0	17Ш1.
Реологическое уравнение	-	$\mu = \mu(T_{\xi}, S_{\sigma}, \theta).$	18 шт.	18 шт.

1. Суть и практическая значимость контактных задач

Контактная задача - задача исследования силового и деформационного взаимодействия твердых тел по поверхности контакта.

Практическая значимость контактных задач

Расчет коэф. трения качения

Расчет коэф. трения покоя и скольжения

Граничное и смешанное трение

Эластогидродинамические задачи жидкостного трения

Методы и подходы к решению контактных задач

Механика сплошных сред

Гибридные методы

Молекулярная динамика

Свойства сред

MECHATRONICS MECHA

2. Методы решения контактных задач

Математическая постановка краевых задач механики сплошных сред

Начальные условия

Множество уравнений в математической постановке задачи

Граничные условия

			Сумма	арное
Вид	Тензорная Скалярная		количество	
уравнения	форма записи	форма записи	неизвест	уравне
			ных	ний
Уравнение движения	$\nabla \cdot T_{\sigma} + \rho \vec{f} = \rho \frac{d\vec{V}}{dt}$	$\frac{\partial \sigma_{ij}}{\partial x_i} + \rho f_i = \rho \frac{dV_i}{dt}$	9 шт.	3 шт.
			$\sigma_{ij},\ V_i$	
	D 1D	(17 шт.	
Обобщенный закон Р.Гука	$D_{\sigma} = 2\mu D_{\xi},$ $S_{\sigma} = (3\lambda + 2\mu)S_{\xi}$	$\left \left(\sigma_{ij} - \delta_{ij} \frac{\sigma_{mm}}{3} \right) = 2\mu \left(\xi_{ij} - \delta_{ij} \frac{\xi_{kk}}{3} \right), \right $	$+ \xi_{ij}$,	9 шт.
	$S_{\sigma} = (3\lambda + 2\mu)S_{\xi}$	$\sigma_{mm} = (3\lambda + 2\mu)\xi_{kk}$	σ_0	
Уравнение неразрывности	$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{V} \right) = 0$	$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho V_i)}{\partial x_i} = 0$	16 шт.	10 шт.
Формула Дж.Стокса	$T_{\xi} = \frac{1}{2} \left(\nabla \otimes \vec{V} + \vec{V} \otimes \nabla \right)$	$\xi_{ij} = \frac{1}{2} \left(\frac{\partial V_i}{\partial x_j} + \frac{\partial V_j}{\partial x_i} \right)$	16 шт.	16 шт.
Уравнение баланса тепла	$\frac{d\theta}{dt} = \frac{1}{c\rho} \nabla \cdot (k\Delta\theta) + \frac{T_{\sigma} \cdot T_{\xi}}{c\rho}$		17 шт.	17 шт.
			+0	
Реологическое уравнение		μ = $\mu(T_{\xi}, S_{\sigma}, \theta)$.	18 шт.	18 шт.

Методы и подходы к решению контактных задач

Механика сплошных сред Гибридные методы

Молекулярная динамика

time 0.0041 ps

Потенциал Леннарда-Джонса:

$$U_{i,j}(r_{i,j}) = 4\xi \left[\left(\frac{\sigma}{r_{i,j}} \right)^{12} - \left(\frac{\sigma}{r_{i,j}} \right)^{6} \right].$$

Уравнение движения каждого атома:

$$m_i \frac{d\vec{V}_i}{dt} = \sum_{j=1}^{N} \frac{dU_{i,j}}{dr_{i,j}} \frac{\vec{r}_{i,j}}{\|\vec{r}_{i,j}\|}.$$

Результаты расчета колебаний атома около равновесного положения

Методы молекулярной динамики

Достоинства

- возможность исследования на молекулярном уровне;
- возможность исследования свойств поверхностей трения;
- возможность исследования различных механизмов трения на молекулярном уровне;
- возможность исследования нестационарных, неизотермических задач.

Недостатки

- -сложность испытания свойств материалов на молекулярном уровне
- -ограниченное количество исследуемых частиц;
- -ограниченный временной интервал расчета;
- -сложность моделирования явления диссипации энергии.

i'd love to talk to you later, avogadro ... can i get your number?

Методы и подходы к решению контактных задач

Механика сплошных сред

Гибридные методы

Молекулярная динамика

Моделирование тел в виде множества шариков с упруго-вязкими связями

$$\vec{F}_i = \sum_{j=1}^{N_{\mathcal{I}}} (\vec{F}_{ij}^{\mathcal{Y}} + \vec{F}_{ij}^{\mathcal{B}})$$

$$M_i = F_i^X d \sin \varphi_i + F_i^Y d \cos \varphi_i$$

Метод решеточных уравнений Больцмана

Метод гидродинамики сглаженных частиц

http://www.youtube. com/watch?v=L5JY dbcBUSE

3. Контактная задача Герца (1882г.)

Допущения:

- контактирующие поверхности имеют форму эллипсоидов;
- деформации упругие;
- силы адгезии малы;
- взаимное проникновение тел отсутствует;
- трение на площадке контакта мало;

Геометрия контакта:

1 _	1	1
R_y	R_{ya}	R_{yb}

3. Контактная задача Герца (1882г.)

Допущения:

- контактирующие поверхности имеют форму эллипсоидов;
- деформации упругие;
- силы адгезии малы;
- взаимное проникновение тел отсутствует;
- трение на площадке контакта мало;

Characteristic elastic modulus and radius of curvature:

· Effective elastic modulus,

$$E' = 2 \left[\frac{\left(1 - v_1^2\right)}{E_1} + \frac{\left(1 - v_2^2\right)}{E_2} \right]^{-1}$$

· Combined radius,

$$R = \left[\frac{1}{R_x} + \frac{1}{R_y}\right]^{-1}$$

Load and load per unit length, w and w'

3. Контактная задача Герца (1882г.)

Допущения:

- контактирующие поверхности имеют форму эллипсоидов;
- деформации упругие;
- силы адгезии малы;
- взаимное проникновение тел отсутствует;
- трение на площадке контакта мало;

The surfaces are deformed and an elliptical contact occurs

$$D_x = 2\left(\frac{6\varepsilon wR}{\pi kE'}\right)^{1/3}, D_y = 2\left(\frac{6k^2\varepsilon wR}{\pi E'}\right)^{1/3}$$

where ε and k are functions of R_x and R_y .

For a line contact $k \rightarrow \infty$ and

$$D_x = 2b = \sqrt{8w'R_x / \pi E'}$$

3. Контактная задача Герца (1882г.)

Допущения:

- контактирующие поверхности имеют форму эллипсоидов;
- деформации упругие;
- силы адгезии малы;
- взаимное проникновение тел отсутствует;
- трение на площадке контакта мало;

[From Hamrock and Brewe (1983)]

$$1 \le \alpha_r \le 100$$

$$\bar{k} = \alpha_r^2/\pi$$

$$\bar{\mathfrak{F}} = \frac{\pi}{2} + q_a \ln \alpha,$$

where
$$q_a = \frac{\pi}{2} - 1$$

$$\bar{\varepsilon} = 1 + \frac{q_a}{\alpha}$$

$$\bar{k} = 1 + 0.16 \operatorname{csch}\left(\frac{\bar{k}}{2}\right)$$

$$0.01 \le \alpha_r \le 1.0$$

$$\bar{k} = \alpha_{\bar{e}}^{2/\pi}$$

$$\bar{\mathfrak{F}} = \frac{\pi}{2} - q_a \ln \alpha,$$

where
$$q_a = \frac{\pi}{2} - 1$$

$$\bar{E} = 1 + q_a \alpha$$

$$\bar{k} = 1 + 0.16 \operatorname{csch}\left(\frac{\bar{k}}{2}\right)$$

Simplified equations

$$\alpha_r = \frac{R_y}{R_x}$$

$$k = \frac{D_y}{D_x}$$

3. Контактная задача Герца (1882г.)

Допущения:

- контактирующие поверхности имеют форму эллипсоидов;
- деформации упругие;
- силы адгезии малы;
- взаимное проникновение тел отсутствует;
- трение на площадке контакта мало;

Elliptical contact:

$$p = p \int_{0}^{h} \left[1 - \left(\frac{2x}{D_x}\right)^2 - \left(\frac{2y}{D_y}\right)^2\right]$$

$$p_h = \frac{6w}{\pi D_x D_y}$$

· Line contact:

$$p = p_h \sqrt{1 - \left(\frac{x}{b}\right)^2}$$

$$p_h = \sqrt{w'E'/2\pi R_X}$$

 p_h = the maximum "Hertz" pressure

3. Контактная задача Герца (1882г.)

Допущения:

- контактирующие поверхности имеют форму эллипсоидов;
- деформации упругие;
- силы адгезии малы;
- взаимное проникновение тел отсутствует;
- трение на площадке контакта мало;

Special case: Ball on plane Ball radius R_x, load w

$$p_{\text{max}} = p_h = \frac{3w}{2\pi a^2}$$

$$a = \left(\frac{3 wR_x}{2 E'}\right)^{1/3}$$

$$p_h = \frac{1}{\pi} \left(\frac{3}{2}\right)^{1/3} w^{1/3} \left(\frac{E'}{R_x}\right)^{2/3}$$

$$\delta = \frac{a^2}{R_x} = \left(\frac{3wE'}{2\sqrt{R_x}}\right)^{2/3}$$

Maximum pressure

Contact radius

Maximum (centre) deformation

4. Современное программное обеспечение решения контактных задач

http://www.youtube.com/watch?v=vPo6lOgLjPk&feature=related

http://www.youtube.com/watch?v=y2X3QRecTNs

http://www.youtube.com/watch?v=Ty_punt_Y50

http://www.youtube.com/watch?v=hLwaUoSaB-c