פתרון תרגיל מספר 4 - תורת המשחקים

שם: מיכאל גרינבאום, ת.ז: 211747639

2021 במאי 7

```
ו. פתרון:
                                                                                                                                                                                                                                                                                               \operatorname{sg}_{G_1}(y_1) \oplus \operatorname{sg}_{G_2}(y_2) = 0 (א) צ"ל: יש מעבר ל־
                                                                                                                         . נשים לב כי \operatorname{sg}_{G_1}\left(x_1\right) \oplus \operatorname{sg}_{G_2}\left(x_2\right) = 0 אחרת \operatorname{sg}_{G_1}\left(x_1\right) \neq \operatorname{sg}_{G_2}\left(x_2\right) בסתירה לנתון.
                                                                                                                                                                                                                                                                       \mathrm{sg}_{G_1}\left(x_1
ight) < \mathrm{sg}_{G_2}\left(x_2
ight) נניח בלי הגבלת הכלליות כי
                                                                                                                                                                                 \mathrm{sg}_{G_2}\left(x_2
ight)=\max\left\{\mathrm{sg}_{G_2}\left(y_2
ight)\mid y_2\in S_{G_2}\left(x_2
ight)
ight\} נשים לב כי \mathrm{sg}_{G_2}\left(y_2
ight)
eq \mathrm{sg}_{G_1}\left(x_1
ight) מתקיים \forall y_2\in S_{G_2}\left(x_2
ight), כלומר נניח בשלילה שי
                                                                                   \operatorname{sg}_{G_2}(x_2) = \operatorname{mex} \left\{ \operatorname{sg}_{G_2}(y_2) \mid y_2 \in S_{G_2}(x_2) \right\} \le \operatorname{sg}_{G_1}(x_1) < \operatorname{sg}_{G_2}(x_2)
                                                                                                                      \operatorname{ssg}_{G_{2}}\left(y_{2}
ight)=\operatorname{sg}_{G_{1}}\left(x_{1}
ight) כך ש<br/>י \exists y_{2}\in S_{G_{2}}\left(x_{2}
ight) לכן מעצמו, לכן
                                                                                                                                           Gנשים לב ש־(y_1,y_2)=(x_1,y_2) הינה פעולה חוקית שמעבירה למצב ב־
                                                                         \operatorname{sg}_{G_1}(y_1) \oplus \operatorname{sg}_{G_2}(y_2) = \operatorname{sg}_{G_1}(x_1) \oplus \operatorname{sg}_{G_2}(y_2) = \operatorname{sg}_{G_1}(x_1) \oplus \operatorname{sg}_{G_1}(x_1) = 0
                                                   . כנדרש, \operatorname{sg}_{G_1}(y_1) \oplus \operatorname{sg}_{G_2}(y_2) = 0 כלומר הראנו שקיימת פעולה חוקית שמעבירה למצב (x_1,y_2) כלומר
                                                                                                                                                                                                                         @.ש.ל.א.©
                                                                                                                                                                                                                                                                             \operatorname{sg}_{G_1}(y_1) \oplus \operatorname{sg}_{G_2}(y_2) \neq 0 ב) (ב)
                                                                                                                  \operatorname{sg}_{G_1}(y_1) \oplus \operatorname{sg}_{G_2}(y_2) = 0 כך ש־(y_1, y_2) כל שמעבירה שמעבירה למצב (y_1, y_2
                                                                                                                                                                                                                                                                           x_2=y_2 או ש־ x_1=y_1 מחוקיות הפעולה מתקיים
                                                                                                                                                                  נניח בלי הגבלת הכלליות כי x_1=y_1, כלומר המצב הוא (x_1,y_2), נשים לב כי
                              \operatorname{sg}_{G_2}(y_2) = \operatorname{sg}_{G_2}(y_2) \oplus \operatorname{sg}_{G_1}(x_1) \oplus \operatorname{sg}_{G_1}(x_1) = \operatorname{sg}_{G_2}(y_2) \oplus \operatorname{sg}_{G_1}(y_1) \oplus \operatorname{sg}_{G_1}(x_1) = \operatorname{sg}_{G_2}(y_2) \oplus \operatorname{sg}_{G_1}(y_2) \oplus \operatorname{sg}_{G_2}(y_2) \oplus \operatorname{sg}_{G_2}
                                                                          = 0 \oplus \operatorname{sg}_{G_1}(x_1) = (\operatorname{sg}_{G_1}(x_1) \oplus \operatorname{sg}_{G_2}(x_2)) \oplus \operatorname{sg}_{G_1}(x_1) = 0 \oplus \operatorname{sg}_{G_2}(x_2) = \operatorname{sg}_{G_2}(x_2)
                                                                                                                                    , \operatorname{sg}_{G_2}\left(x_2\right)=\operatorname{sg}_{G_2}\left(y_2\right) כלומר קיבלנו כי \operatorname{sg}_{G_2}\left(z_2\right)\neq\operatorname{sg}_{G_2}\left(x_2\right) מתקיים כי לכל z_2\in S_{G_2}\left(x_2\right) מתקיים כי לכל מהגדרת \operatorname{sg}_{G_2}\left(x_2\right) מתקיים כי לכל
נשים לב כי \operatorname{sg}_{G_2}(y_2) = \operatorname{sg}_{G_2}(x_2) וגם כי (G_2 וואס במשחק חוקית פעולה אוקית מעבר של מעבר של פעולה חוקית אואס וואס y_2 \in S_{G_2}(x_2)
                                        . אינה \operatorname{sg}_{G_1}(y_1) \oplus \operatorname{sg}_{G_2}(y_2) = 0 כך ש־ (y_1,y_2) אינה נכונה שמעבירה שקיימת פעולה שמעבירה למצב
                                                                                                                                         \operatorname{sg}_{G_1}(y_1) \oplus \operatorname{sg}_{G_2}(y_2) 
eq 0 מתקיים ש־ מתקיים למצב (y_1, y_2) מעבירה מעבירה למצב
                                                                                                                                                                                                                         מ.ש.ל.ב.©
                                                                                                                                                                                                                                                           \operatorname{sg}_{G_1}(x_1) \oplus \operatorname{sg}_{G_2}(x_2) = 0 אם"ם (x_1, x_2) \in P (ג) צ"ל:
```

$$\hat{P} = \{(x_1, x_2) \mid \operatorname{sg}_{G_1}(x_1) \oplus \operatorname{sg}_{G_2}(x_2) = 0\}$$

$$\hat{N} = \{(x_1, x_2) \mid \operatorname{sg}_{G_1}(x_1) \oplus \operatorname{sg}_{G_2}(x_2) \neq 0\}$$

הוכחה: נגדיר נבחין שבסעיף הראשון הוכחנו שקיימת פעולה שמעבירה מ־ \hat{N} ל־ \hat{N} . נבחין שבסעיף השני הוכחנו שכל פעולה מעבירה מ־ \hat{P} ל־ \hat{N} . בנוסף לכך, נבחין שכל מצב סופי שבו השחקן מפסיד הינו ב־ \hat{P} . בנוסף לכך, נבחין שכל מצב סופי שבו השחקן מפסיד הינו ב־ \hat{N} . נראה אסטרטגיה מנצחת לשחקן הראשון כשהמצב ההתחלתי הוא ב־ \hat{N} . השחקן הראשון תמיד יעביר מ־ \hat{N} ל־ \hat{P} והשחקן השני יהיה חייב להחזיר את המצב ל־ \hat{N} . נשים לב שהמשחק חסום ולכן מתישהו המשחק יסתיים ואחד השחקנים ינצח, נשים לב כי השחקן שיגיע למצב הסופי הוא המנצח, ומהגדרת \hat{P} , \hat{N} , השחקן שיגיע למצב הסופי יעבור מ־ \hat{N} ל־ \hat{N} כמבחירת האסטרטגיה של השחקן הראשון הוא יהיה האחד שיגיע למצב הסופי ולכן יהיה האחד שינצח. כלומר \hat{N}

עתה נראה כי לשחקן השני יש אסטרטגיה מנצחת כשהמצב ההתחלתי הוא ב־ \hat{P} . השחקן הראשון יהיה חייב בעקבות הסעיף הקודם להעביר את המצב ל־ \hat{N} . מפה ראינו שלשחקן הנוכחי יש אסטרטגיה מנצחת (כשבמקרה שלנו השחקן הנוכחי הוא השני). לכר $\hat{P} \subseteq P$.

 $\hat{N}\subseteq N$ נשים לב כי $\hat{P}=P$ וגם $\hat{N}\cap P=\emptyset$ וגם $\hat{N}\cap P=\emptyset$ וגם $\hat{N}\cap \hat{P}=\emptyset$ וגם $\hat{N}\cup \hat{P}=V$ מכל אלה נסיק כי חייב להתקיים $\hat{P}=\hat{P}$ וגם $\hat{N}=\hat{N}$ וגם $\hat{N}=\hat{N}$ מלך אלה נסיק כי חייב להתקיים $\hat{N}=\hat{N}=\{(x_1,x_2)\mid \mathrm{sg}_{G_1}(x_1)\oplus \mathrm{sg}_{G_2}(x_2)=0\}$ ולכן $\hat{N}=\{(x_1,x_2)\mid \mathrm{sg}_{G_1}(x_1)\oplus \mathrm{sg}_{G_2}(x_2)=0\}$

מ.ש.ל.ג.©

2. פתרון:

$$sg\left(0\right),sg\left(1\right),sg\left(2\right),sg\left(3\right),sg\left(4\right),sg\left(5\right)$$
 (א) **צ"ל:** הוכחה: נשים לב כי

$$\begin{split} & \operatorname{sg}\left(0\right) = \operatorname{mex}\left\{\operatorname{sg}\left(y\right) \mid y \in S\left(0\right)\right\} = \operatorname{mex}\left\{\operatorname{sg}\left(y\right) \mid y \in \emptyset\right\} = \operatorname{mex}\emptyset = 0 \\ & \operatorname{sg}\left(1\right) = \operatorname{mex}\left\{\operatorname{sg}\left(y\right) \mid y \in S\left(1\right)\right\} = \operatorname{mex}\left\{\operatorname{sg}\left(y\right) \mid y \in \left\{0\right\}\right\} = \operatorname{mex}\left\{0\right\} = 1 \\ & \operatorname{sg}\left(2\right) = \operatorname{mex}\left\{\operatorname{sg}\left(y\right) \mid y \in S\left(2\right)\right\} = \operatorname{mex}\left\{\operatorname{sg}\left(y\right) \mid y \in \left\{0,1\right\}\right\} = \operatorname{mex}\left\{0,1\right\} = 2 \\ & \operatorname{sg}\left(3\right) = \operatorname{mex}\left\{\operatorname{sg}\left(y\right) \mid y \in S\left(3\right)\right\} = \operatorname{mex}\left\{\operatorname{sg}\left(y\right) \mid y \in \left\{0,1,2\right\}\right\} = \operatorname{mex}\left\{0,1,2\right\} = 3 \end{split}$$

 $sg(4) = mex\{sg(y) \mid y \in S(4)\} = mex\{sg(y) \mid y \in \{0, 1, 2, 3\}\} = mex\{0, 1, 2, 3\} = 4$

 $\operatorname{sg}\left(5\right) = \operatorname{mex}\left\{\operatorname{sg}\left(y\right) \mid y \in S\left(5\right)\right\} = \operatorname{mex}\left\{\operatorname{sg}\left(y\right) \mid y \in \left\{1, 2, 3, 4\right\}\right\} = \operatorname{mex}\left\{1, 2, 3, 4\right\} = 0$

 $0 \le x \le 5$ לכל אכל אונ מי $\operatorname{sg}(x) = x \mod 5$ כי שהראנו נבחין שהראנו

מ.ש.ל.א.©

$$\operatorname{sg}(x) = x \mod 5$$
 (ב)

הוכחה:

 $\operatorname{sg}\left(n
ight)=n\mod 5$ מתקיים לכל כי לכל מתקייה כי נוכיח

בסיס: $0 \le n \le 5$ נשים לב שהראנו את בסעיף הקודם

n נכונה לי נכונה שהיא נכונה n-4, n-3, n-2, n-1 לי נכונה שהיא נכונה לי

$$\begin{split} \operatorname{sg}(n) &= \operatorname{mex} \left\{ \operatorname{sg}(y) \mid y \in S\left(n\right) \right\} = \operatorname{mex} \left\{ \operatorname{sg}(y) \mid y \in \left\{ n-4, n-3, n-2, n-1 \right\} \right\} \\ &= \operatorname{mex} \left\{ \operatorname{sg}\left(n-4\right), \operatorname{sg}\left(n-3\right), \operatorname{sg}\left(n-2\right), \operatorname{sg}\left(n-1\right) \right\} \\ &\stackrel{\operatorname{induction}}{=} \operatorname{mex} \left\{ (n-4) \mod 5, (n-3) \mod 5, (n-2) \mod 5, (n-1) \mod 5 \right\} \\ &= \operatorname{mex} \left\{ \left\{ 0, 1, 2, 3, 4 \right\} \setminus \left\{ n \mod 5 \right\} \right\} \overset{\star}{=} n \mod 5 \end{split}$$

נשים לב שמעבר לפני נכון כי המספר הכי קטן שלא נמצא בקבוצה הוא בדיוק $\mod 5$ והמעבר לפני נכון מרציפות של שאריות חלוקה ב־ 5.

מ.ש.ל.ב.☺

N, P ג"ל: לחשב את (ג)

הוכחה:

. נשים לב שהמשחק הוא $G=G_1\oplus G_2$ כאשר כאשר המשחק הוא לב שהמשחק הוא הקודם. $G=G_1\oplus G_2$ הוא מתקיים לכן ממשפט שהראנו בהרצאה מתקיים

$$N = \{ sg((n,m)) \neq 0 \mid (n,m) \in V_G \} = \{ sg(n) \oplus sg(m) \neq 0 \mid (n,m) \in V_G \}$$
$$= \{ (n \mod 5) \oplus (m \mod 5) \neq 0 \mid (n,m) \in V_G \}$$

וגם

$$P = \{ sg((n,m)) = 0 \mid (n,m) \in V_G \} = \{ sg(n) \oplus sg(m) = 0 \mid (n,m) \in V_G \}$$
$$= \{ (n \mod 5) \oplus (m \mod 5) = 0 \mid (n,m) \in V_G \}$$

מ.ש.ל.ג.©

N, P את לי: לחשב את N, P

הוכחה:

נשים לב שהמשחק הוא $G=G_1\oplus\cdots\oplus G_k$ כאשר כאשר לב שהמשחק הוא המשחק מתקיים לב כאשר לכן ממשפט שהראנו בהרצאה מתקיים

$$N = \{ sg((n_1, ..., n_k)) \neq 0 \mid (n_1, ..., n_k) \in V_G \}$$

= \{ sg(n_1) \oplus \cdots \oplus sg(n_k) \neq 0 \cdot (n_1, ..., n_k) \in V_G \}
= \{ (n_1 \text{ mod } 5) \oplus \cdots \oplus (n_k \text{ mod } 5) \neq 0 \cdot (n_1, ..., n_k) \in V_G \}

וגם

$$P = \{ sg((n_1, ..., n_k)) = 0 \mid (n_1, ..., n_k) \in V_G \}$$

= \{ sg(n_1) \oplus \cdots \oplus sg(n_k) = 0 \quad (n_1, ..., n_k) \in V_G \}
= \{ (n_1 \text{ mod } 5) \oplus \cdots \oplus (n_k \text{ mod } 5) = 0 \quad (n_1, ..., n_k) \in V_G \}

מ.ש.ל.ד.☺

3. פתרון:

 $\operatorname{sg}\left(G
ight)=\operatorname{sg}\left(G_{1}
ight)\oplus\cdots\oplus\operatorname{sg}\left(G_{k}
ight)$ (א) צ"ל: להוכיח ש־

הוכחה

 $G_1 \oplus \cdots \oplus G_k$ ל־ מיפוי חח"ע ועל בין המצבים של מיפוי מיפוי חח"ע ועל החילה נראה

בהינתן גרפים T_1,\dots,T_k עם קודקודי רצפה x_1,\dots,x_k , נחליפם ב־x וניצור את הגרף המתאים ב־ x_1,\dots,x_k (קודקוד לכל נשים לב שהמיפוי הפוך כי בהינתן גרף ב־ x_1,\dots,x_k (נוכל לקחת את קודקוד הרצפה x_1,\dots,x_k (קודקוד לפי סדר עץ) ולקבל את המצב המקורי. **הערה**: עד כדי שמירת הסדר של העצים אך אפשר לדרוש שצלעות x_1,\dots,x_k יהיו לפי סדר ההופעה של x_1,\dots,x_k (הכי שמאלי x_1,\dots,x_k לדוגמא)

Gלכן המיפוי חח"ע ועל ולכן נותר רק להראות שיש מיפוי חח"ע ועל בין הפעולות של וער רק להראות שיש מיפוי חח"ע ועל בין המולות אחד הקודקודים שלה יהיו באחד הגרפים T_1,\dots,T_k (והשנייה גם או שתהיה T_1,\dots,T_k), לכן לכל לשעת מאיזה גרף מהגרפים T_1,\dots,T_k היא מורידה צלע, נסמן פונקציה זאת ב־ T_1,\dots,T_k

אחרת נוריד אותה מ־ G אם G אם אם G ל־ $G_1\oplus\cdots\oplus G_k$ המיפוי בין פעולות $G_1\oplus\cdots\oplus G_k$ ל־ $G_1\oplus\cdots\oplus G_k$ אחרת נוריד את הצלע ($e\setminus\{x_i\}$) את הצלע ($e\setminus\{x_i\}$) הצלע תחליף את הקודקוד אותה מ־ $G_1\oplus\cdots\oplus G_k$

 x_i פרט בקודקוד פרט ההה אוה אהר ב־ , שהוא הגרף במאיך שבנינו את מאיך מאיך מאיך מוגדר היטב מאיך מאיך את הגרף ב

 $(e \setminus \{x\}) \cup \{x_{f(e)}\}$ עתה נראה שהמיפוי הצלעות שהגדרנו הפיך, בהינתן פוריד את גדרנו הפיך, בהינתן את נראה שהמיפוי הצלעות שהגדרנו הפיך, בהינתן

נשים לב שהפעלת 2 המיפויים שהגדרנו מחזירה אותנו להורדת הצלע המקורית ולכן זה אכן הפיך.

כלומר הראנו שיש מיפוי חח"ע ועל בין הגרף המשחק של $G_1\oplus\cdots\oplus G_k$ ל־ $G_1\oplus\cdots\oplus G_k$ ולכן המייצג את המשחק זהה).

 $\operatorname{sg}(G)=\operatorname{sg}(G_1)\oplus\cdots\oplus\operatorname{sg}(G_k)$ ולכן לפי משפט שראינו בהרצאה מתקיים כי

מ.ש.ל.א.©

 $sg(G_1) = sg(G_2)$ 'ע להוכיח ש" (ב)

הוכחה:

. בשאלה מנצחת לבנו כמתואר השלי מהמצב (G_1,G_2) כשהגרפים נבנו כמתואר השחקן השני מראה אסטרטגיה עד כדי H_1,H_2 עד כדי סימטריים עד כדי

:בהינתן פעולה e של השחקן הראשון

- יימת סימטריים ונחזור משם ונחזור בגרף השני בגרף אז הצלע אז הצלע פיימת הצלע יונוריד אותה שני $e \notin E_{H_1} \cup E_{H_2}$.i
- $\operatorname{sg}(H_1)\oplus\operatorname{sg}(H_2)=0$ אז המצב החדש של הגרפים האלה יהיו $\hat{H_1},\hat{H_2}$ נשים לב כי $e\in E_{H_1}\cup E_{H_2}$.ii .ii .sg $\left(\hat{H_1}\right)\oplus\operatorname{sg}\left(\hat{H_2}\right)\neq0$ שהוכח בהרצאה יתקיים ש־ $\operatorname{sg}\left(\hat{H_2}\right)\oplus\operatorname{sg}\left(\hat{H_2}\right)\oplus\operatorname{sg}\left(\overline{H_2}\right)$ יפיימת פעולה שהשחקן השני יעשה כך שהמצב הבא $\operatorname{HI}_1,\overline{H_2}$ יקיים $\operatorname{sg}\left(\overline{H_1}\right)\oplus\operatorname{sg}\left(\overline{H_2}\right)$

נשים לב שלאחר כל פעולה של השחקן השני מתקיים ש:

- H_1, H_2 הגרפים סימטריים פרט ל- .i
 - $\operatorname{sg}(H_1) \oplus \operatorname{sg}(H_2) = 0$.ii

מהיות המשחק סופי, אחד השחקנים ינצח. נניח בשלילה שהשחקן הראשון ניצח:

- ובפרט יש עוד צלעות להוריד אם הצלע האחרונה שהוריד הייתה מ־ ב $E_{H_1} \cup E_{H_2}$ אז הארונה או ובפרט יש עוד צלעות הוריד הייתה מ־ בסתירה להנחה שהשחקן הראשון ניצח.
- אז מסימטריות מתקיים כי השחקן השני יכל להוריד את $E_{H_1}\cup E_{H_2}$, אז מסימטריות מתקיים כי השחקן השני יכל להוריד את .ii הצלע המתאימה בגרף השני והמשחק לא הסתיים בסתירה להנחה שהשחקן הראשון ניצח.

ולכן $(G_1,G_2)\in P$ ולכן השחקן השני הוא המנצח מהמצב הנ"ל השחקן השני הוא

$$0 = \operatorname{sg}((G_1, G_2)) = \operatorname{sg}(G_1) \oplus \operatorname{sg}(G_2)$$

. כנדרש, $\operatorname{sg}\left(G_{1}\right)=\operatorname{sg}\left(G_{2}\right)$ כי ולכן נקבל מיa=b אם"ם מ $a\oplus b=0$

מ.ש.ל.ב.©

 ${
m sg}\left(G_{1}
ight), {
m sg}\left(G_{2}
ight), {
m sg}\left(G_{3}
ight), {
m sg}\left(G\right)$ (ג) צ"ל: לחשב

הוכחה:

 G_1 נחשב קודם ל־

 $sg(G_1) = sg(1) = 1$ בעזרת הסעיף הקודם נקבל כי

 $\operatorname{sg}\left(G_{2}
ight)=\operatorname{sg}\left(8
ight)=8$ בעזרת הסעיף הקודם נקבל כי

 $\operatorname{sg}(G_3)=\operatorname{sg}(4)=4$ בעזרת הטעיף הקודם נקבל כי $\operatorname{sg}(G_1,G_2,G_3)=\operatorname{sg}(G_1)\oplus\operatorname{sg}(G_2)\oplus\operatorname{sg}(G_3)=1\oplus 8\oplus 4=13\neq 0$ ולכן , $\operatorname{sg}((G_1,G_2,G_3))=\operatorname{sg}(G_1)\oplus\operatorname{sg}(G_2)\oplus\operatorname{sg}(G_3)=1\oplus 8\oplus 4=13\neq 0$ כנדרש.

מ.ש.ל.ג.©