Random Access Memory (RAM)

Overview

- Memory is a collection of storage cells with associated input and output circuitry
 - Possible to read and write cells
- Random access memory (RAM) contains words of information
- ° Data accessed using a sequence of signals
 - Leads to timing waveforms
- ° Decoders are an important part of memories
 - Selects specific data in the RAM
- ° Static RAM loses values when circuit power is removed.

Preliminaries

- RAMs contain a collection of data bytes
 - A collection of bytes is called a word
 - A sixteen bit word contains two bytes
 - Capacity of RAM device is usually described in bytes (e.g. 16 MB)
- Write operations write data to specific words
- Read operations read data from specific words
- Note: new notation for OR gate

Fig. 7-1 Conventional and Array Logic Diagrams for OR Gate

RAM Interface Signals

- Data input and output lines carry data
- Memory contains 2^k words
 - k address lines select one word out of 2^k
- Read asserted when data to be transferred to output
- Write asserted when data input to be stored

Fig. 7-2 Block Diagram of a Memory Unit

Random Access Memory Fundamentals

° Lets consider a simple RAM chip

- 8 words of 2 bytes each (each word is 16 bits)
- How many address bits do we need?

Pick one of 8 locations			
Dec	Binary		
0	000		
1	001		
2	010		
3	011		
4 5	100		
5	101		
6	110		
7	111		

Each bit stored in a binary cell

RAM Size

- ° If memory has 2^k words, k address bits are needed
 - ° 2³ words, 3 address bits
- Address locations are labelled 0 to 2^k-1
- ° Common subscripts:
 - ° Kilo 2¹⁰
 - ° Mega 2²⁰
 - ° Giga 2³⁰

Memory address

Binary	decimal	Memory contest
0000000000	0	1011010101011101
0000000001	1	1010101110001001
000000010	2	0000110101000110
	•	•
1111111101	1021	1001110100010100
1111111110	1022	0000110100011110
1111111111	1023	11011111000100101

Fig. 7-3 Content of a 1024×16 Memory

Write Operation

- 1. Apply binary address of word to address lines
- 2. Apply data bits to data input lines
- 3. Activate write input

Data output lines unused

Read input signal should be inactive

Delay associated with write

Fig. 7-2 Block Diagram of a Memory Unit

Read Operation

1. Apply binary address of word to address lines

2. Activate read input

Data input lines unused Write input signal should be inactive

Delay associated with read

Memory enable used to allow read and writes

Fig. 7-2 Block Diagram of a Memory Unit

Memory Timing – write operation

- Memory does not use a clock
 - Control signals may be generated on clock edges
- Cycle time time needed to write to memory
- If cycle time is 50 ns, 3 clock edges required (T1, T2, T3)

Timing Waveforms – read operation

- Access time indicates time to read
- Address indicates location
- Data valid on Data Output following access time

Fig. 7-4 Memory Cycle Timing Waveforms

Multiple clock signals needed for data read in this example

* Note ordering of signals (address, mem enable)

Comments about Memory Access and Timing

- Most computers have a central processing unit (CPU)
 - Processor generates control signals, address, and data
 - Values stored and then read from RAM
- The timing of the system is very important.
 - Processor provides data for the cycle time on writes
 - Processor waits for the access time for reads

Types of Random Access Memories

Static random access memory (SRAM)

- Operates like a collection of latches
- Once value is written, it is guaranteed to remain in the memory as long as power is applied
- Generally expensive
- Used inside processors (like the Pentium)

Dynamic random access memory (DRAM)

- Generally, simpler internal design than SRAM
- Requires data to be rewritten (refreshed), otherwise data is lost
- Often hold larger amount of data than SRAM
- Longer access times than SRAM
- Used as main memory in computer systems

Inside the RAM Device

Fig. 7-6 Diagram of a 4×4 RAM

Inside the SRAM Device

- ° Basis of each SRAM cell is an S-R latch
- ° Note that data goes to both S and R
- Select enables operation
- ° Read/write enables read or write, but not both

Fig. 7-5 Memory Cell

Inside the SRAM Device

Delay not effected by size of words

 How many address bits would I need for 16 words?

Fig. 7-6 Diagram of a 4×4 RAM

Summary

- Memories provide storage for computers
- ° Memories are organized in words
 - Selected by addresses
- SRAMs store data in latches
 - Accessed by surrounding circuitry
- RAM waveforms indicate the control signals needed for access
- Words in SRAMs are accessed with decoders
 - Only one word selected at a time