Análisis tiempo-frecuencia y descomposición de señales Guía 1

2024

- 1. Dada una función x(t), demuestre que si ésta es real entonces el módulo de su transformada de Fourier es una función par.
- 2. Dada una función x(t) real, demuestre que si ésta es una función par entonces su transformada de Fourier es una función real pura.
- 3. Dadas una función x(t), y su transformada de Fourier $\mathcal{F}\{x(t)\}=\hat{x}(f)$, explique cómo se modifica el módulo de $\mathcal{F}\{x(t-a)\}$, con $a\in\mathbb{R}$, cuando se lo compara con $|\hat{x}(f)|$.
- 4. Dadas una función x(t), y su transformada de Fourier $\mathcal{F}\{x(t)\}=\hat{x}(f)$, determine $\mathcal{F}\{x'(t)\}$.
- 5. Dadas una función x(t), y su transformada de Fourier $\mathcal{F}\{x(t)\}=\hat{x}(f)$, determine $\mathcal{F}\{t|x(t)\}$.
- 6. Dadas una función x(t), y su transformada de Fourier $\mathcal{F}\{x(t)\}=\hat{x}(f)$, determine $\mathcal{F}\{\cos(2\pi f_0 t)\,x(t)\}$.
- 7. Dadas una función x(t), y su transformada de Fourier $\mathcal{F}\{x(t)\} = \hat{x}(f)$, determine $\mathcal{F}\{x(a\,t)\}$, con $a \in \mathbb{R}$.
- 8. Dada una función $x(t) = e^{-kt^2}$, con $k \in \mathbb{C}$ y Re(k) > 0, encuentre su transformada de Fourier.
- 9. Muestree el segmento $0 \le t \le 1$ a 1000 Hz y defina $x_1(t) = e^{-2000(t-1/2)^2}$. Calcule la FFT y grafique su módulo. Repita el mismo procedimiento para $x_2(t) = e^{-2000(t-1/4)^2}$ y $x_3(t) = e^{-2000(t-3/4)^2}$. ¿Cómo resultan los módulos de las FFTs? Comente los resultados.
- 10. Considere $x_1(t)$ del punto anterior. Calcule la FFT de $\cos(2\pi 250t)\,x_1(t)$, y grafique el módulo. Repita el mismo procedimiento para $e^{i2\pi 350t}\,x_1(t)$. Comente los resultados.