Chapter 16

Acid-Base Equilibria

1. Which one of the following is a Brønsted-Lowry acid? _____E

- A) $(CH_3)_3NH^+$
- B) CH₃COOH
- C) HF
- D) HNO₂
- E) all of the above

2. Which one of the following statements regarding K_w is false?

- A) pK_w is 14.00 at 25 °C.
- B) The value of K_w is always 1.0×10^{-14} .
- C) K_w changes with temperature.
- D) K_w is known as the ion product of water.

3. Which one of the following is the weakest acid? _______

A) HF
$$(K_a = 6.8 \times 10^{-4})$$

B) HClO
$$(K_a = 3.0 \times 10^{-8})$$

C)
$$HNO_2$$
 ($K_a = 4.5 \times 10^{-4}$)

D) HCN
$$(K_a = 4.9 \times 10^{-10})$$

E)
$$CH_3COOH (K_a = 1.8 \times 10^{-5})$$

4. Which of the following acids will be the strongest? _____A

- A) H_2SO_4
- B) HSO₄-
- C) H₂SO₃
- D) H₂SeO₄
- E) HSO₃-

5. The Ka of hypochlorous acid (HClO) is 3.0×10^{-8} at 25 °C. What is the percent ionization (%) of hypochlorous acid in a 0.015 M aqueous solution of HClO at 25 °C? D

- A) 4.5×10^{-8}
- B) 14
- C) 2.1×10^{-5}
- D) 0.14
- E) 1.4×10^{-3}

$$x^2=4.5*10^{-10}$$

 $x= 2.1*10^{-5}$
Ionization= $(2.1*10^{-5} / 0.015)*100\%$

6. A⁻ is a weak base. Which equilibrium corresponds to the equilibrium constant Ka for HA? _____C

A)
$$HA(aq) + H_2O(1) \rightleftharpoons H_2A^+(aq) + OH^-(aq)$$

B)
$$A^{-}(aq) + H_{3}O^{+}(aq) \rightleftharpoons HA(aq) + H_{2}O(1)$$

C) HA (aq) + H₂O (l)
$$\rightleftharpoons$$
 H₃O⁺ (aq) + A⁻ (aq)

D)
$$A^{-}$$
 (aq) + H_2O (l) \rightleftharpoons HA (aq) + OH^{-} (aq)

$$E) A^{-}(aq) + OH^{-}(aq) \rightleftharpoons HOA_{2}^{-}(aq)$$

7. Using the data in the table, which of the conjugate acids below is the strongest acid? C

\	HC	10
AJ	\mathbf{H}	

- B) HCO₃-
- $C) H_2S$
- D) NH₃CH₃⁺
- E) H₂S and HClO

Base	Kb	
ClO-	3.3×10^{-7}	
CO_3^{-2}	1.8×10^{-4}	
HS-	1.8 × 10 ⁻⁷	
NH ₂ CH ₃	4.4×10^{-4}	

8. Which of the following aqueous solutions has the highest [OH⁻]?

- A) a solution with a pH of 3.0 pH = 3
- B) a 1×10^{-4} M solution of HNO₃ pH = 4
- C) a solution with a pOH of 12.0 pH = 2
- D) pure water pH = 7
- E) a 1 × 10⁻³ M solution of NH₄Cl pH \sim 5.6

- 9. A 0.0035M aqueous solution of a particular compound has pH = 2.46. The compound is _____.
- A) a weak base
- B) a weak acid
- C) a strong acid
- D) a strong base
- E) a salt

10. Of the compounds below, a 0.1 M aqueous solution of A will have the highest pH.

A) KCN,
$$K_a$$
 of HCN = 4.0×10^{-10}

B)
$$NH_4NO_3$$
, K_b of $NH_3 = 1.8 \times 10^{-5}$

C) NaOAc,
$$K_a$$
 of HOAc = 1.8×10^{-5}

D) NaClO,
$$K_a$$
 of HClO = 3.2×10^{-8}

E) NaHS,
$$K_b$$
 of HS⁻ = 1.8 × 10⁻⁷

$$K_a = 4.0 \times 10^{-10}$$

$$K_a = 10^{-14} / 1.8 \times 10^{-5} = 5.6 \times 10^{-10}$$

$$K_a = 1.8 \times 10^{-5}$$

$$K_a = 3.2 \times 10^{-8}$$

$$K_a = 10^{-14} / 1.8 \times 10^{-7} = 5.6 \times 10^{-8}$$