Statistics 452: Statistical Learning and Prediction

Chapter 4, Part 1: Introduction and Logistic Regression

Brad McNeney

2017-09-26

Introduction

Classification Problems

Instead of a quantitative response, we have a categorical (qualitative) response, such as yes/no.

```
library(ISLR)
data(Default)
head(Default)
```

```
##
     default student
                       balance
                                  income
## 1
          Nο
                  Nο
                     729.5265 44361.625
                 Yes 817, 1804 12106, 135
## 2
          Nο
## 3
          No
                  No 1073.5492 31767.139
          Nο
                  No 529.2506 35704.494
## 4
## 5
          No
                  No 785.6559 38463.496
## 6
          No
                 Yes 919.5885 7491.559
```

Classification Problems, cont.

- Predicting a categorical response is called classifying.
 - ▶ We are assigning the observation to a category or class.
- Classification methods may be based on modelling the probability of class membership.
 - Assign to class with highest probability
 - Modelling class probabilities can be cast as a regression.
- Most popular classifiers are logistic regression, linear discriminant analysis and K-nearest neighbors.

Overview of Classification

- ▶ Will use a set of training observations, $\{(x_1, y_1), \dots, (x_n, y_n)\}$ to build the classifier.
- Use the Default data to illustrate.
- ► The response is default on credit card payment (Yes/No), to be predicted by credit card balance, annual income and student status (Yes/No).

summary(Default)

```
default
              student
                            balance
##
                                             income
##
   No :9667
             No :7056
                        Min.
                                   0.0
                                         Min.
                                                : 772
   Yes: 333
##
              Yes: 2944
                         1st Qu.: 481.7 1st Qu.:21340
##
                         Median: 823.6 Median: 34553
                         Mean : 835.4 Mean :33517
##
##
                         3rd Qu.:1166.3
                                         3rd Qu.:43808
##
                         Max.
                               :2654.3
                                         Max.
                                                :73554
```

Default data

```
dtab <- xtabs(~ default + student,data=Default)</pre>
dtab
##
          student
## default
             No Yes
       No 6850 2817
##
##
       Yes
            206 127
prop.table(dtab,margin=2)
##
          student
## default
                   No
                             Yes
##
       No 0.97080499 0.95686141
##
       Yes 0.02919501 0.04313859
```

```
library(tidyverse)
ggplot(Default,aes(x=default,y=balance)) + geom_boxplot()
```


Overplotting is a problem with a data set this large.

ggplot(Default,aes(x=balance,y=income,color=default)) + geom_point(alpha=0.1)

ggplot(Default,aes(x=balance,y=income,color=default)) + geom_density2d()

Why Not Linear Regression?

- Numerical codings of categorical variables have no real meaning.
 - ▶ Recall origin variable in Auto data.
- ▶ What does it mean for a one unit increase in X_i to be associated with a β_i increase in a categorical response?
- ▶ Binary response (success/failure) may be the exception.
 - ▶ Say we code success=1, failure=0.
 - Can show that a linear regression predicts the probability of success given X.
 - ▶ But probabilities not constrained to be between 0 and 1.

Logistic Regression

Notation and Use as Classifier

- ▶ Model Pr(success|X) as a function p(X) of X.
 - ► E.G., for the Default data, model Pr(default = yes|balance) = p(balance).
- ▶ Predict response for new x_0 to be success if $p(x_0) > c$ for some constant c, such as 1/2.

The Logistic Model.

▶ Model is linear in the log-odds (logit) of success:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = X\beta = \beta_0 + X_1\beta_1 + \ldots + X_p\beta_p.$$

- A one unit increase in X_j holding all others fixed is associated with a β_j change in the log-odds.
- ▶ Can show that the logit model implies $p(\cdot)$ is the logistic function of $X\beta$:

$$p(X) = \frac{e^{X\beta}}{1 + e^{X\beta}}.$$

The Logistic Function

```
seqLen <- 100
x <- seq(from=-5,to=5,length=seqLen)
dd <- data.frame(x=x,logist = exp(x)/(1+exp(x)))
ggplot(dd,aes(x=x,y=logist)) + geom_line()</pre>
```


Estimating β by Maximum Likelihood

- Choose $\hat{\beta}$ to maximize the likelihood.
- ▶ The likelihood is the probability of the observed data, viewed as a function of β .
- We assume independent observations, which means the probability of the data is the product of the probabilities of each observation.
- For the i^{th} , the probability of a success is $p(x_i)$ and the probability of a failure is $1 p(x_i)$.
- ► Thus

$$L(\beta) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i)) = \prod_i p(x_i)_i^y (1 - p(x_i))^{1-y_i}$$

Maximizing the Log-Likelihood

The maximizer of the likelihood is the same as the maximizer of the log-likelihood

$$I(\beta) = \log L(\beta) = \sum_{i} y_{i} \log p(x_{i}) + (1 - y_{i}) \log(1 - p(x_{i})).$$

In many problems, maximizing the log-likelhood is an easier optimization problem.

Fitting a Logistic Regression in R

0.0000

studentYes -0.6468

income

► Use the glm() function (generalized linear models, with logistic as a special case).

0.0000 0.3698

0.2363 - 2.7376

0.7115

0.0062

▶ Income does not predict default; no evidence of interaction between students status and balance (not shown)

Software notes

- glm() interface is very similar to lm().
- New argument family specifies the type of GLM.
 - binomial() is for binary outcomes, or outcomes that are sums of binary variables.

Confounding

- Including balance reverses the effect of student:
 - Without balance, students look more likely to default (why?).
 - Adjusting for balance, students are less likely to default; i.e., given a student and a non-student with the same balance, the student is less likely to default.

We Do Not Test for Confounding

► Find the percentage change in the coefficient with and without balance:

$$\frac{0.405 - (-0.715)}{|-0.715|} \times 100\% = 156.6$$

- ▶ If the change is more than some threshold (e.g., 10%) we say balance confounds the association between default and student.
- ▶ By contrast, we **do** test for interaction.

Cause of Confounding

- ► For a variable like balance to confound the association between default and student, it must be associated with both.
 - ▶ Higher balance, higher default rate.
 - ▶ Higher balance, more likely student.
 - Looks like students have higher default rate.

Predictions of p(X).

▶ Plug in the values of a new x_0 into the fitted equation to get $\hat{p}(x_0)$.

```
balance student
##
                             pred
## 1
      0.00000
                 Yes 1.049739e-05
## 2 26.81134
                 Yes 1.224320e-05
## 3 53.62268
                 Yes 1.427936e-05
## 4 80.43402
                 Yes 1.665415e-05
## 5 107.24536
                 Yes 1.942387e-05
## 6 134.05670
                 Yes 2.265421e-05
```


Logistic Regression for > 2 Response Categories

- ► Instead of a logistic model we fit a polytomous or multinomial logistic regression.
- Functions such as multinom() in the nnet package can fit.
 - We won't go into details.
- ► Text suggests such models are less popular than discriminant analysis, to be discussed in the next set of notes.