Example 2.4.9 *Solve the inequality* $2x + 4 \le x - 8$

Subtract 2x from both sides to yield $4 \le -x - 8$. Next add 8 to both sides to get $12 \le -x$. Then multiply both sides by (-1) to obtain $x \le -12$. Alternatively, subtract x from both sides to get $x+4 \le -8$. Then subtract 4 from both sides to obtain $x \le -12$.

Example 2.4.10 *Solve the inequality* $(x + 1)(2x - 3) \ge 0$.

If this is to hold, either both of the factors, x+1 and 2x-3 are nonnegative or they are both non-positive. The first case yields $x+1\geq 0$ and $2x-3\geq 0$ so $x\geq -1$ and $x\geq \frac{3}{2}$ yielding $x\geq \frac{3}{2}$. The second case yields $x+1\leq 0$ and $2x-3\leq 0$ which implies $x\leq -1$ and $x\leq \frac{3}{2}$. Therefore, the solution to this inequality is $x\leq -1$ or $x\geq \frac{3}{2}$.

Example 2.4.11 Solve the inequality $(x)(x+2) \ge -4$

Here the problem is to find x such that $x^2 + 2x + 4 \ge 0$. However, $x^2 + 2x + 4 = (x+1)^2 + 3 \ge 0$ for all x. Therefore, the solution to this problem is all $x \in \mathbb{R}$.

Example 2.4.12 *Solve the inequality* $2x + 4 \le x - 8$

This is written as $(-\infty, -12]$.

Example 2.4.13 Solve the inequality $(x+1)(2x-3) \ge 0$.

This was worked earlier and $x \leq -1$ or $x \geq \frac{3}{2}$ was the answer. In terms of set notation this is denoted by $(-\infty, -1] \cup [\frac{3}{2}, \infty)$.

Example 2.4.14 Solve the equation |x-1|=2

This will be true when x - 1 = 2 or when x - 1 = -2. Therefore, there are two solutions to this problem, x = 3 or x = -1.

Example 2.4.15 Solve the inequality |2x-1| < 2

From the number line, it is necessary to have 2x - 1 between -2 and 2 because the inequality says that the distance from 2x - 1 to 0 is less than 2. Therefore, -2 < 2x - 1 < 2 and so -1/2 < x < 3/2. In other words, -1/2 < x and x < 3/2.

Example 2.4.16 Solve the inequality |2x-1| > 2.

This happens if 2x-1>2 or if 2x-1<-2. Thus the solution is x>3/2 or x<-1/2. Written in terms of intervals this is $\left(\frac{3}{2},\infty\right)\cup\left(-\infty,-\frac{1}{2}\right)$.

Example 2.4.17 *Solve* |x+1| = |2x-2|

There are two ways this can happen. It could be the case that x + 1 = 2x - 2 in which case x = 3 or alternatively, x + 1 = 2 - 2x in which case x = 1/3.

Example 2.4.18 *Solve* $|x+1| \le |2x-2|$

In order to keep track of what is happening, it is a very good idea to graph the two relations, y = |x+1| and y = |2x-2| on the same set of coordinate axes. This is not a hard job. |x+1| = x+1 when x > -1 and |x+1| = -1-x when $x \le -1$. Therefore, it is not hard to draw its graph. Similar considerations apply to the other relation. Functions and their graphs are discussed formally later but I assume the reader has seen these things. The result is