Mathematical Preliminaries(Types and Programming Languages)

Kwanghoon Choi

Software Languages and Systems Laboratory Chonnam National University

Week 2

2.1 Sets, Relations, and Functions: Sets

Standard notation for sets

- \blacktriangleright by enumeration, e.g., as $\{0, 2, 4, 6, \cdots\}$, or
- by comprehension, e.g., as $\{x \in \mathbb{N} \mid x \text{ is even}\}$ where \mathbb{N} is the set of natural numbers $\{0, 1, 2, 3, \dots\}$.

Ø for the empty set

 $S \setminus T$ for the set difference of S and T

|S| for the size of a set S

 $\mathcal{P}(S)$ for the powerset of S, i.e., the set of all the subsets of S.

ightharpoonup Q. $\mathcal{P}(\{1,2,3\}) =$

2.1 Sets, Relations, and Functions: Relations

An *n*-place relation over sets S_1 , S_2 , ..., S_n is a set $R \subseteq S_1 \times S_2 \times \cdots \times S_n$ of tuples of elements from S_1 through S_n .

We say that the elements $s_1 \in S_1$ through $s_n \in S_n$ are *related* by R if the tuple $(s_1, \dots, s_n) \in R$.

Q. By $MyRelation = \{(1,2), (2,4), (3,6), (4,8), (5,10), \cdots\}$, how the elements are related?

Q. Define your relation and explain how elements are related by your relation?

2.1 Sets, Relations, and Functions: Relations

A 1-place relation on a set S is called *a predicate on S*.

- ► Even = $\{(0), (2), (4), \dots\} \simeq \{0, 2, 4, \dots\} \subseteq \mathbb{N}$ is a relation.
- Even is regarded as a predicate on N as Even(elem) is true iff elem ∈ Even. E.g., Even(2) is true, Even(3) is false, and so on.

A 2-place relation on S and T is called a binary relation. We often write s R t instead of $(s, t) \in R$.

A 2-place relation on the same sets S and S is simply called a binary relation on S.

For readability, three- or more place relations are often written using a "mixfix" concrete syntax. For example, for the typing relation for the simply typed lambda calculus in Ch.9, we write $\Gamma \vdash s : T$ to mean "the triple (Γ, s, T) is in the typing relation." E.g., $(x : int, x + 1, int) \in TypeSystem$ but $(x : bool, x + 1, ?) \notin TypeSystem$

2.1 Sets, Relations, and Functions: Functions

Suppose a relation R on sets S and T. The *domain* of R, written dom(R), is $\{s \mid (s,t) \in R\}$, and the *range* of R, written range(R), is $\{t \mid (s,t) \in R\}$. E.g., dom(MyRelation) and range(MyRelation).

Such a relation R is called a *(partial) function* from S to T if $(s, t_1) \in R$ and $(s, t_2) \in R$, we have $t_1 = t_2$.

Such a relation R is called a *total function* if R is a partial function and dom(R) = S.

A partial function R is is defined on s if $s \in dom(R)$, which is denoted by $R(x) \downarrow$. Otherwise it is undefined, denoted by $R(x) \uparrow$.

Q. Show an example of a partial function that is not a total one.

2.2 Ordered Sets

Suppose a binary relation R on a set S.

Q. Find out three definitions that R is *reflexive*, R is *symmetric*, and R is *transitive*, respectively.

R is an equivalence on S if it is reflexive, symmetric, and transitive.

The reflexive closure of R is $R \cup \{(s, s) \mid s \in S\}$.

The transitive closure of R is $R^+ = \bigcup_i R_i$ where

$$R_0 = R$$

 $R_{i+1} = R_i \cup \{(s, u) \mid (s, t) \in R_i \text{ and } (t, u) \in R_i \text{ for some } t \}$

The reflexive and transitive closure of R is R^* .

Q. MyRelation*

2.2 Ordered Sets

A predicate P on a set S is preserved by a binary relation R on S

P : S

 $R : S \times S$

for all $s_1 R s_2$, if $\mathcal{P}(s_1)$ then $\mathcal{P}(s_2)$.

Q. Show a concrete example of P and S.

Q. Show that if P is preserved by R, then P is also preserved by R^* .

2.3 Sequences

A *sequence* is written by listing its elements, separated by commas, such as 1,2,3.

Suppose *a* is 3,2,1 and *b* is 5,6.

- 0,a denotes 0,3,2,1
- a,0 denotes 3,2,1,0
- b,a denotes 5,6,3,2,1

1..n is the sequence of numbers from 1 to n

|a| is the length of the sequence a.

The empty sequence is written either as \bullet or as a blank.

Q. Write down all *permutation*s of the sequence 1,2,3.

To prove the infinite cases of a predicate, principles of induction may be useful.

[Principle of Induction on Natural Numbers] Suppose a predicate \mathcal{P} on the natural numbers \mathbb{N} .

```
If \mathcal{P}(0) and, for all i \in \mathbb{N}, \mathcal{P}(i) implies \mathcal{P}(i+1), then \mathcal{P}(n) is true for all n \in \mathbb{N}.
```

To prove "infinite cases", principles of induction may be useful.

Q. Let $\mathcal{P}_j \triangleq \sum_{i=0}^j i = \frac{j(j+1)}{2}$. We want to show \mathcal{P}_j is true for all $j \in \mathbb{N}$.

- 1 (Base case) Prove \mathcal{P}_0 is true.
- 2-1 Assume \mathcal{P}_4 is true. Then show \mathcal{P}_5 is provable using the assumption.
- 2-2 (Inductive case) Generalize (2-1). Assume \mathcal{P}_k is true for an arbitrary natural number k. Then show \mathcal{P}_{k+1} is true using the assumption.
 - 3 Verify you have proved \mathcal{P}_j for all (infinite cases) $j \in \mathbb{N}$ by (1) and (2-2).

It is enough to prove the base and the inductive cases rather than to prove the infinite ones!

[Principle of Induction on Natural Numbers] Suppose a predicate \mathcal{P} on the natural numbers \mathbb{N} .

```
If \mathcal{P}(0) and, for all i \in \mathbb{N}, \mathcal{P}(i) implies \mathcal{P}(i+1), then \mathcal{P}(n) is true for all n \in \mathbb{N}.
```

Q. Explain why a proof in the previous exercise can be viewed as the principle of induction.

Sometimes we need another principle stronger than the "plain" principle of induction.

- Q. We want to show that any positive number integer n greater than or equal to 2 is either a prime or a product of primes.
 - Let \mathcal{P}_j be either j is a prime or j is a product of primes.
 - 1 (Base case) Show \mathcal{P}_2 is true.
- 2-1 Assume \mathcal{P}_{16} and \mathcal{P}_{64} are true. Then show \mathcal{P}_{1024} is provable using the assumptions.
- 2-2 (Inductive case) Generalize (2-1). Assume \mathcal{P}_i is true for an arbitrary natural number $i \leq k$. Then show \mathcal{P}_{k+1} is true using the assumptions.
 - 3 Verify you have proved \mathcal{P}_j for all (infinite cases) $2 \le j$ by (1) and (2-2).

To prove \mathcal{P}_{k+1} , not only we may need \mathcal{P}_k but we may also need more as: \mathcal{P}_k , \mathcal{P}_{k-1} , \mathcal{P}_{k-2} , \mathcal{P}_{k-3} , ..., \mathcal{P}_{2} , \mathcal{P}_{k-3} , \mathcal{P}_{k-2} , \mathcal{P}_{k-3} , ...

[Principle of the complete induction on Natural Numbers] Suppose a predicate \mathcal{P} on the natural numbers \mathbb{N} .

If $\mathcal{P}(0)$

and, for all $i \in \mathbb{N}$, $\mathcal{P}(j)$ for all $j \leq i$ implies $\mathcal{P}(i+1)$, then $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.

More induction principles exist, for example, as

- the principle of lexicographic induction
- the principle of structural induction