MA3205 Set Theory

AY2022/23 Semester 1 · Prepared by Tian Xiao @snoidetx

Morse-Kellev Set Rules

- 1. Everything is a class.
- 2. Every set is a class; every class is a collection of sets; a class is a Relations and Functions set if and only if it is a member of some class.
- 3. Every collection of sets is a class.
- 4. If A is a class and x is a set, then $A \cap x$ is a set.
- 5. The image of a set under a function is a set.
- 6. If A and B are sets, then so are A, B, $\cup A$ and $\mathcal{P}(A)$.
- 7. (Axiom of Choice) If $\langle A_i : i \in I \rangle$ is any sequence of sets such that $\forall i \in I [A_i \neq \emptyset], \text{ then } \prod_{i \in I} A_i \neq \emptyset.$
- 8. (Axiom of Infinity) \mathbb{N} is a set.
- 9. (Axiom of Extensibility) $A = B \Leftrightarrow \forall x [x \in A \Leftrightarrow x \in B]$.

Set Operations

$Subset \subseteq$

D1.6. $A \subseteq B$ if $\forall x [x \in A \Rightarrow x \in B]$.

Empty Set \emptyset

- **D1.7.** A set x is empty if $\forall y [y \notin x]$.
- **F1.8.** If $x = \emptyset$ and A is any collection, then $x \subseteq A$.
- **F1.9.** If x and y are empty sets, then x = y.

$Union \cup and Intersection \cap$

D1.11.
$$\begin{cases} x \cup y = \{z : z \in x \lor z \in y\} \\ x \cap y = \{z : z \in x \land z \in y\} \end{cases}$$
D1.13.
$$\begin{cases} \bigcup A = \{x : \exists y \ [y \in A \land x \in y]\} \\ \bigcap A = \begin{cases} 0 & \text{if } A = \emptyset; \\ \{x : \forall y \ [y \in A \Rightarrow x \in y]\} \end{cases} \text{ otherwise} \end{cases}$$

Other Operators \setminus , \triangle , \mathcal{P}

D1.11.
$$\begin{cases} x \backslash y = \{z : z \in x \land z \notin y \\ x \triangle y = x \backslash y \cup y \backslash x \\ \mathcal{P}(x) = \{z : z \subseteq x\} \end{cases}$$

Commutativity	$x \cup y = y \cup x$
	$x \cap y = y \cap x$
Associativity	$x \cup (y \cup z) = (x \cup y) \cup z$
	$x \cap (y \cap z) = (x \cap y) \cap z$
Distributivity	$x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$
	$x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$
De Morgan	$x \backslash (y \cup z) = (x \backslash y) \cap (x \backslash z)$
	$x\backslash (y\cap z)=(x\backslash y)\cup (x\backslash z)$

E1.16.
$$\begin{cases} x \triangle \emptyset = x; x \triangle x = \emptyset \\ x \triangle y = y \triangle x \\ (x \triangle y) \triangle z = x \triangle (y \triangle z) \end{cases}$$
E1.18.
$$x \cap (y \triangle z) = (x \cap y) \triangle (x \cap z).$$

Ordered Pair $\langle a, b \rangle$

- **D2.1.** An ordered pair $\langle a, b \rangle$ is the set $\{\{a\}, \{a, b\}\}$.
- **L2.2.** $\langle x,y\rangle = \langle a,b\rangle \Leftrightarrow (x=a) \wedge (y=b).$
- **D2.3.** $A \times B = \{z : \exists a \in A \ \exists b \in B \ [z = \langle a, b \rangle] \}.$

Relation R

- **D2.6.** A relation R is a collection of ordered pairs $(\forall x \in R \exists a \exists b [x =$ $\langle a, b \rangle$]).
 - R is a relation on A if $R \subseteq A \times A$.
 - dom $(R) = \{a : \exists b \ [\langle a, b \rangle \in R] \}.$
 - $ran(R) = \{b : \exists a \ [\langle a, b \rangle \in R] \}.$
 - $\bullet R^{-1} = \{x : \exists a \ \exists b \ [\langle a, b \rangle \in R \land x = \langle b, a \rangle] \}.$
- **F2.9.** If R is a relation and $S \subseteq R$, then S is a relation.
- **D2.10.** If R is a relation and A is any collection, then R restricted to $A, R \upharpoonright A$, is $R \cap (A \times \operatorname{ran} R)$.
- **D2.12.** $\text{Im}_{R}(A) = \{b : \exists a \in A \ [\langle a, b \rangle \in R] \}.$
- **L2.15.** Let R be a relation and A be a collection, then $\text{Im}_{R}(|A|) =$ $\bigcup (I: \exists a \in A [I = \operatorname{Im}_{R}(a)]).$
- **L2.16.** Let R be a relation such that $\forall x, z \ [x \neq z \Rightarrow \operatorname{Im}_{R}(\{x\}) \cap$ $\operatorname{Im}_{R}(\{y\}) = \emptyset$. Let A and B be any collections, then:
 - $\operatorname{Im}_{R}(\bigcap A) = \bigcap \{I : \exists a \in A \ [I = \operatorname{Im}_{R}(a)]\}.$
 - $\operatorname{Im}_R(B \backslash A) = \operatorname{Im}_R(B) \backslash \operatorname{Im}_R(A)$.

Function f

- **D2.8.** A function is a relation such that no two of its elements have the same 1^{st} coordinate $(\forall a, b, c [(\langle a, b \rangle \in f \land \langle a, c \rangle \in f) \Rightarrow b = c])$.
 - $f: A \to B$ if dom(f) = A and $ran(f) \subseteq B$.
- **F2.9.** If f is a function and $g \subseteq f$, then g is a function.
- **F2.11.** If f is a function and A is any collection, then $f \upharpoonright A$ is also a function.
 - If $A \subseteq \text{dom}(f)$, then $\text{dom}(f \upharpoonright A) = A$
- **D2.21.** $X^Y = \{ f : f \text{ is a function } \land f : Y \to X \}.$

Inverse of Function f^{-1}

- **D2.14.** If f is a function and B is a collection, $f^{-1}(B) = \operatorname{Im}_{f^{-1}}(B) =$ $\{a: \exists b \in B \ [\langle a,b \rangle \in f]\}.$
- **C2.17.** Let f be any function and A and B be any collections of sets. Then:
 - $\bullet f^{-1}(|A|) = |A| = I : \exists a \in A : I = f^{-1}(a).$
 - $f^{-1}(\bigcap A) = \bigcap \{I : \exists a \in A \mid I = f^{-1}(a).$
 - $f^{-1}(B \setminus A) = f^{-1}(B) \setminus f^{-1}(A)$.

Composite Function $g \circ f$

- **D2.18.** f composed with $g, g \circ f = \{x : \exists a \exists b \exists c [(\langle a, b \rangle \in f) \land (\langle b, c \rangle \in f)\}$ $q) \wedge (x = \langle a, c \rangle)$].
- **L2.19.** Let f, q, h be functions, then:
 - $q \circ f$ is a function.
 - If $f: A \to B$ and $g: B \to C$, then $g \circ f: A \to C$.
 - (Associativity) $h \circ (q \circ f) = (h \circ q) \circ f$.

Injection, Surjection and Bijection

D2.20. Let $f: A \to B$ be a function, then:

- $\bullet (1-1) \ \forall a, a' \in A \ [f(a) = f(a') \Rightarrow a = a'].$
- (onto) ran(f) = B.
- (bijective) 1-1 and onto.
- **L2.22.** If $f: A \to B$ is 1-1 and onto B, then f^{-1} is 1-1 and onto A.

Directed Collection

D2.39. A collection G is called directed if

$$\forall a, b \in G \ \exists c \in G \ [a \subseteq c \land b \subseteq c]$$

L2.40. Let G be a directed collection of functions, then $f = \bigcup G$ is a function. Moreover, $dom(f) = \bigcup \{dom(\sigma) : \sigma \in G\}$ and $ran(f) = \bigcup \{ran(\sigma) : \sigma \in G\}.$

Cartesian Product \prod

Conv. A function f such that $\forall f \in I = \text{dom}(f) [f(i) = A_i]$ is equivalent as a sequence $F = \langle A_i : i \in I \rangle$.

D2.36. $\prod F = \{ \text{func } f : \text{dom}(f) = I \land \forall i \in I \ [f(i) \in A_i] \}.$

T2.46. (General Distributive Laws) Let I be a set and $\langle J_i : i \in I \rangle$ be a sequence of sets. Suppose that $I \neq \emptyset$ and $\forall i \in I \ [J_i \neq \emptyset]$. For each $i \in I$, let $\langle A_{i,j} : j \in J_i \rangle$ be a sequence of sets. Then:

$$\begin{split} &\bigcup_{i\in I}\bigcap_{j\in J_i}A_{i,j}=\bigcap\{\bigcup_{i\in I}A_{i,f(i)}:f\in\prod_{i\in I}J_i\}\\ &\bigcap_{i\in I}\bigcup_{j\in J_i}A_{i,j}=\bigcup\{\bigcap_{i\in I}A_{i,f(i)}:f\in\prod_{i\in I}J_i\}\\ &\prod_{i\in I}(\bigcup_{j\in J_i}A_{i,j})=\bigcup\{\prod_{i\in I}A_{i,f(i)}:f\in\prod_{i\in I}J_i\}\\ &\prod_{i\in I}(\bigcap_{j\in J_i}A_{i,j})=\bigcap\{\prod_{i\in I}A_{i,f(i)}:f\in\prod_{i\in I}J_i\} \end{split}$$

T2.47. Fix n > 1. Let X be a set and let $A_1, A_2, ..., A_n$ be subsets of X. Then there are at most 2^{2^n} different sets that can be formed from A_1, A_2, \ldots, A_n using the operations $X \setminus \cdot, \cup$ and \cap (number of regions in a Venn diagram).

Russell's Paradox

- **T3.1.** (Russell) $R = \{x : x \text{ is a set } \land x \notin x\}$ is not a set.
- **T3.3.** $V = \{x : x \text{ is a set}\}\$ is not a set.
- **E3.4.** If A and B are sets, then $A \times B$ is also a set.

E3.5. If A and B are sets, then dom(A), ran(A), $\bigcap A$, A^B are sets.

E3.6. I is a set and $\langle A_i : i \in I \rangle$ is a sequence. Then $\prod A_i$ is a set.

E3.7. R and A are sets. If R is a relation, then $Im_R(A)$ is a set.

E3.8. The class $\mathbf{U} = \{x : \exists a \exists b \ [x = \langle a, b \rangle] \}$ is a set.

E3.9. If f is a function and dom(f) is a set, then f is a set.

E3.x. $\mathbb{U} = \{A : A \text{ is a set and } \mathbb{N} \approx A\}$ is not a set. Suppose \mathbb{U} is a set. Fix any $x \in \mathbb{V}$. Then x is a set, so $A_x = \{x\} \times \mathbb{N}$ is a set. $\mathbb{N} \approx A_x$ since $\exists f(n) = \langle x, n \rangle$ that is bijective. For any $x \in \mathbf{V}$, we have $x \in \{x\} \in \langle x, 0 \rangle \in A_x \in \mathbb{U}$. Hence $\mathbf{V} \subseteq \bigcup \bigcup \bigcup \mathbf{U}$, contradiction.

The Natural Numbers

F4.1. (Peano Axioms) L4.6 + L4.7 + L4.14 + E4.15(6)

$Natural\ Number\ Set\ \mathbb{N}$

D4.3. 0 is the empty set \emptyset .

D4.2. $S(x) = x \cup \{x\}$. $1 = S(0) = \{0\}$.

D4.4. A class A is called inductive if $0 \in A$ and $\forall x \in A [S(x) \in A]$. A set n is called a natural number if it belongs to every inductive class.

L4.6.
$$\begin{cases} 0 \in \mathbb{N} \\ n \in \mathbb{N} \Rightarrow S(n) \in \mathbb{N} \end{cases}$$

L4.7. If X is any set of natural numbers such that $0 \in X$ and $\forall x \in X [S(x) \in X]$, then X is the set of all natural numbers.

F4.8. (Principle of Mathematical Induction) P is some property. Suppose that 0 has property P and $\forall n \in \mathbb{N} [n \text{ has property } P \Rightarrow$ S(n) has property P]. Then all natural numbers have property P.

L4.9.
$$\begin{cases} \forall x \in n \ [x \subseteq n] \\ n \subseteq \mathbb{N} \end{cases}$$

$$\forall x \ [(x \subseteq n \land x \neq \emptyset) \Rightarrow \exists m \in x \ [x \cap m = \emptyset]]$$

$$m \subseteq n \Rightarrow (m \in n \lor m = n)$$

$$(m \subseteq n \land n \in k) \Rightarrow m \in k$$
Either $m = n$ or $m \in n$ or $n \in m$

L4.11. Let $X \subseteq \mathbb{N}$. If $X \neq \emptyset$, then $\exists n \in X [X \cap n = \emptyset]$.

L4.14. $\forall n, m \in \mathbb{N} [n \neq m \Rightarrow S(n) \neq S(m)].$

$Less\ Than\ Relation <$

D4.12. $\forall n, m \in \mathbb{N} [m < n \Leftrightarrow m \subset n].$

F4.13. (Principle of Strong Induction) P is some property. Suppose that $\forall n \in \mathbb{N}$ [if P holds for all $m \in \mathbb{N}$ less than n, then P holds for n]. Then P holds for all $n \in \mathbb{N}$.

24.15.
$$\begin{cases} m \in n \in k \Rightarrow m \in k \\ m \in n \in S(m) \text{ is impossible.} \\ n \neq 0 \Rightarrow n = S(\bigcup n) \\ n \leq m \Leftrightarrow n \subseteq m \\ \max\{n, m\} = n \cup m \\ \text{Either } n = 0 \text{ or } \exists k \in n [S(k) = n]. \end{cases}$$

E4.16. $X \subseteq \mathbb{N}$. Suppose X has the property that $\forall n \in X [n \subseteq X]$, **E5.13.** $f: X \to Y$ is a 1-1 function. Then $\forall Z \subseteq X [Z \approx \operatorname{Im}_f(Z)]$. then either $X = \mathbb{N}$ or $\exists n \in \mathbb{N} [X = n]$.

Extender \mathbf{E} , Addition + and Multiplication ·

D4.17. Let **FN** denote the class of all functions whose domain is some natural number (FN is a proper class):

$$\mathbf{FN} = \{ \sigma : \sigma \text{ is a function} \land \exists n \in \mathbb{N} \left[\text{dom}(\sigma) = n \right] \}$$

An extender is a function $\mathbf{E}: \mathbf{FN} \to \mathbf{V}$.

T4.19. Suppose $\mathbf{E}: \mathbf{FN} \to \mathbf{V}$ is any extender. Then $\exists ! f: \mathbb{N} \to \mathbf{V}$ $\mathbf{V} [\forall n \in \mathbb{N} [f(n) = \mathbf{E}(f \upharpoonright n)]].$

D4.25. Define
$$\mathbf{E}(\sigma) = \begin{cases} m & \text{dom}(\sigma) = 0 \\ S(\sigma(\bigcup \text{dom}(\sigma))) & \text{dom}(\sigma) \neq 0 \end{cases}$$

 $\exists ! f_m \text{ corresponds to } \mathbb{E}. \text{ Define } m+n=f_m(n).$

$$\exists ! f_m \text{ corresponds to } \mathbb{E}. \text{ Define } m+n=f_m(n).$$
 Define
$$\mathbf{E}(\sigma) \ = \begin{cases} 0 & \text{dom}(\sigma)=0 \vee \sigma(\bigcup \text{dom}(\sigma)) \notin \mathbb{N} \\ f_{\sigma(\bigcup \text{dom}(\sigma))}(m) & \text{dom}(\sigma) \neq 0 \wedge \sigma(\bigcup \text{dom}(\sigma)) \in \mathbb{N} \end{cases}.$$

$$\exists ! g_m \text{ corresponds to } \mathbb{E}. \text{ Define } m \cdot n=g_m(n).$$

More generally, suppose we have a function $f: \mathbb{N} \to B$ that is defined recursively as $f(0) = b_0$ and f(n+1) = h(f(n)), then the extender corresponding to f should be defined as

$$\mathbb{E}(\sigma) = \begin{cases} b_0 & \operatorname{dom}(\sigma) = 0\\ h(\sigma(\bigcup \operatorname{dom}(\sigma))) & \operatorname{dom}(\sigma) \neq 0 \land \sigma(\bigcup \operatorname{dom}(\sigma)) \in B\\ \emptyset & \operatorname{dom}(\sigma) \neq 0 \land \sigma(\bigcup \operatorname{dom}(\sigma)) \notin B \end{cases}$$

E4.26.
$$\begin{cases} n + (m+k) = (n+m) + k \\ n + m = m + n \\ n + n = 2 \cdot n \\ 2 \cdot n = 2 \cdot m \Rightarrow n = m \\ n \cdot (m+k) = n \cdot m + n \cdot k \\ n \cdot (m \cdot k) = (n \cdot m) \cdot k \\ n \cdot m = m \cdot n \end{cases}$$

E4.27.
$$\begin{cases} n < k \Rightarrow m+n < m+k \\ m \neq 0 \land n < k \Rightarrow m \cdot n < m \cdot k \end{cases}$$

Set Sizes

D5.1. $A \approx B \Leftrightarrow \exists f : A \to B$ which is both 1-1 and onto.

F5.2. For any set A, $\mathcal{P}(A) \approx \{0,1\}^A$.

D5.4. $A \lesssim B$ if there exists $f: A \to B$ which is 1-1.

L5.5. If f and q are both 1-1, then $q \circ f$ is also 1-1.

L5.6.
$$\begin{cases} A \lessapprox A \\ (A \lessapprox B \land B \lessapprox C) \Rightarrow (A \lessapprox C) \\ (A \approx B \land B \approx C) \Rightarrow (A \approx C) \end{cases}$$

T5.7. (Cantor) For any set $X, X \nleq \mathcal{P}(X)$.

D5.12. (Schröder-Bernstein) $A \lesssim B \wedge B \lesssim A \Rightarrow A \approx B$.

E5.14. $I \subseteq A$ and $J \subseteq B$. If $I \approx J$ and $(A \setminus I) \approx (B \setminus J)$, then $A \approx B$.

$$\textbf{E5.15.} \ m,n \in \mathbb{N}. \begin{cases} f \ \text{is} \ 1\text{-}1 \Rightarrow f \ \text{is} \ onto. \\ m \in n \Rightarrow m \lesseqgtr n \\ x \subsetneq n \Rightarrow x \lessapprox n \\ n \lessapprox \mathbb{N} \\ (A \approx n \land B \approx m \land A \cap B = \emptyset) \Rightarrow (A \cup B \approx n + m) \end{cases}$$

E5.16. If $n \in \mathbb{N}$ and $A \approx S(n)$, then $\forall a \in A [A \setminus \{a\} \approx n]$.

L5.20. Suppose A and B are sets and $f: A \to B$ is a 1-1 function. Then $\forall X, Y \subseteq A [\operatorname{Im}_f(X) = \operatorname{Im}_f(Y) \Rightarrow X = Y].$

L5.21.
$$\begin{cases} A \lesssim B \Rightarrow \mathcal{P}(A) \lesssim \mathcal{P}(B) \\ A \lesssim B \Rightarrow A^C \lesssim B^C \\ (A \lesssim B \land C \lesssim D \land B \cap D = \emptyset) \Rightarrow A \cup C \lesssim B \cup D \end{cases}$$

L5.23. If $n \in \mathbb{N}$ and \exists onto function $\sigma : n \to A$, then $A \lesssim n$.

Finite Set

D5.19. A is finite if $\exists n \in \mathbb{N} \ [n \approx A]$, otherwise it is infinite. A is countable if $A \lesssim \mathbb{N}$, otherwise it is uncountable.

L5.22. If $n \in \mathbb{N}$ and $A \lesssim n$, then A is finite.

L5.24. If A and B are finite, then so is $A \cup B$.

T5.25. Let A be a finite set and f is a function with dom(f) = A, then:

• $X \subseteq A \Rightarrow X \lesssim A$.

• ran(f) is finite and $ran(f) \lesssim A$.

• If $\forall a \in A \ [a \text{ is finite}]$, then $\bigcup A$ is finite.

• $\mathcal{P}(A)$ is finite.

E5.26. If A is a finite non-empty subset of \mathbb{N} , then $\max(A) = \bigcup A$.

E5.27. $(A \lesssim C \land B \lesssim D) \Rightarrow (A \times B \lesssim C \times D).$

• If A and B are finite, then $A \times B$ is finite.

• If A and B are finite, then A^B is finite.

E5.28. If I is finite and $\forall i \in I [A_i \text{ is finite}]$, then $\prod A_i$ is finite.

E5.30. Suppose f is any function, then $dom(f) \approx f$.

Legends

C	Corollary
D	Definition
E	Exercise
F	Fact
L	Lemma
T	Theorem
Conv.	Convention