(19) 日本国特許庁 (JP)

(12) 特 許 公 報(B2)

(11)特許出願公告番号

特公平7-55055

(24) (44)公告日 平成7年(1995)6月7日

(51) Int.Cl.6

識別記号 庁内整理番号

F 9181-5H

FΙ

技術表示箇所

H02M 7/48

M 9181-5H

発明の数1(全 6 頁)

(21)出願番号

特膜阳60-258777

(22) 出顧日

昭和60年(1985)11月20日

(65)公開番号

特開昭62-123965

(43)公開日

昭和62年(1987)6月5日

(71)出願人 999999999

富士電機株式会社

神奈川県川崎市川崎区田辺新田1番1号

(72) 発明者 柳瀬 孝雄

神奈川県川崎市川崎区田辺新田1番1号

富士電機株式会社内

(72) 発明者 藤田 光悦

神奈川県川崎市川崎区田辺新田1番1号

當士電機株式会社内

(74)代理人 弁理士 並木 昭夫 (外1名)

審査官 及川 孝嘉

(56)参考文献 実開 昭56-7493 (JP, U)

(54) 【発明の名称】 電圧形PWMインパータの出力電流制限方法

1

【特許請求の範囲】

【請求項1】出力電圧指令信号を変調周波数を決めるキ ャリヤ信号と比較して得られるパルス幅変調(PWM)信 号に基づいてその電圧制御が行われる電圧形PMMインバ ータの出力電流制限方法において、

前記PMMインバータの出力電流が所定電流制限値を超え るとき、その超えた偏差分と、超えるときの極性方向 と、を前記PMMインバータ出力の各相毎に検出し、

検出した前記偏差分に応じた電圧信号を、前記偏差分を 検出した当該相の出力電圧指令信号に、検出した前記極 10 性方向と逆の極性方向において加算することにより前記 当該相の出力電圧指令信号を補正し、

それによって出力電圧が制御されることから前記当該相 の出力電流を前記所定電流制限値以下に制限することを 特徴とする電圧形PMMインバータの出力電流制限方法。

2

【発明の詳細な説明】

[産業上の利用分野] この発明は、電圧形PWM(パルス幅変調)インバータの 出力電流制限方法に関する。

〔従来の技術〕

従来技術として、こゝでは電圧形PMMインバータを使用 して誘導電動機を可変速駆動する場合について説明す る。第4図はかゝる制御方式を示す構成図である。

その主回路は同図(イ)の如く6個のスイツチング素子 (Cゝでは、トランジスタT,1~T,6の例が示されている が、これに限らない。)および無効分を処理するための 6個のダイオードD, ~D, からなる通常の電圧形3相イン バータ1と、負荷となる例えば3相誘導電動機2とから 構成されている。また、このようなシステムでは特に電 流制御は行なわれないが、装置保護のために電流検出器

3を備えているのが普通である。

ところで、このようなシステムで誘導電動機を可変速駆 動する一般的な例として、V/F(電圧/周波数)一定制 御方式が知られている。この方式は既に良く知られてい るのでとゝでは詳細は省略するが、基本的な動作を第4 図(口)を参照して説明する。

同図(ロ)において、まず周波数設定器10により周波数 指令が設定されると、それに応じてインパータ1の出力 すべき3相の電圧の大きさと周波数を与える出力電圧指 令値√。* ,√。* ,√。* が演算回路11により演算され、U,V, 10 w相のPMMパターン発生回路20,30,40亿それぞれ入力され る。PMMバターン発生回路20,30,40はそれぞれ加算器2 1、コンパレータ22および反転器23等より構成され、電 圧指令値演算回路11より与えられる電圧指令値以*,、W * ,V,* をキャリア信号発生器12からのキャリア信号と 比較し、その結果によつて対応する相の上、下のアーム トランジスタをオン,オフ制御すべく、その出力信号を 図示されない各トランジスタ対応のベース駆動回路へ与 える。

こゝで、PMMインバータの出力電流が或る制限値を越え る、いわゆる過電流が発生する原因について説明する。 第4図の如きシステムで過電流が発生するのは、大別し て次の2通りの場合がある。その1つは出力の短絡の如 き故障電流が流れる場合であり、この場合は直ちにトラ ンジスタをオフにしてインバータの運転を停止し、電流 を減少させることが必要である。もう1つは電動機の負 荷が急変する場合のように、制御上で過電流が発生する 場合である。との場合は電流を減少させたりインバータ を停止させたりすることなく、過電流レベル以上となら ないように制御することが望ましい。その制御方法とし て、設定値の急変に対しては、例えば過電流の発生と、 もに演算回路11の内部で速度設定値を一度急変前の値に 戻し、過電流が解消されると、もに徐々にこの設定値を 変えて行く方法が考えられる。また、負荷の急変に対し ては、同じく演算回路11の内部で誘導機2のすべりSを 小さくすべく、S>Oのときは一度速度設定値を下げ、 その後過電流が解消されるにつれてこれを徐々に上げて 行く一方、すべりSがS<0のときはその反対の制御を 行なう方法が考えられる。

[発明が解決しようとする問題点]

ところで、上記の如き方法はいずれも電流の変化に充分 に見合つた速度で実行されることが要求されるが、演算 回路11が例えばマイクロプロセツサ等で構成されている 場合はかゝる制御のために可成りの時間を必要とし、実 際には過電流を抑制することができない場合も多いの で、従来はこのような場合でも故障の場合と同様に全ト ランジスタをバルスオフして電流をしや断するようにし ているのが普通である。つまり、制御上や負荷変化によ つて過電流が生じる場合でもインバータを停止させるよ うにしているので、モータの電流は直ちに零となり、イ 50 とのようにすると、例えばU相において正の電流が流れ

ンバータの運転開始により再び電流が立ち上がるという 電流断続が繰り返されることになる。したがつて、この ような電流断続が生じることまたはこれが頻繁に繰り返 されることを好ましいシステムでは、大容量のインバー タに取り換えなければならないと云う問題点を有してい る。

したがつて、この発明は設定値の急変、負荷急変等の制 御上で発生する過電流に対して制限を加えて過電流レベ ル以上にならないように抑制することにより、少なくと も制御上の過電流に対しては電流を断続させず、連続し た制御を行なうことが可能な電圧形PMMインバータの出 力電流制限方法を提供することを目的とする。

〔問題点を解決するための手段〕

インバータ出力電流の所定電流制限値を越える偏差分を その極性とゝもに検出する検出手段と、この偏差分とそ の極性に応じて出力電圧指令値を補正する補正手段とを 設ける。

〔作用〕

PWMインバータの出力電流が所定電流制限値を超えると き、その超えた偏差分と、超えるときの極性方向と、を PMMインバータ出力の各相毎に前記検出手段により検出

検出した前記偏差分に応じた電圧信号を、前記偏差分を 検出した当該相の出力電圧指令信号に、検出した前記極 性方向と逆の極性方向において前記補正手段によって加 算することにより前記当該相の出力電圧指令信号を補正 し、

それによって出力電圧が制御されることから前記当該相 の出力電流を前記所定電流制限値以下に制限する。

〔実施例〕

第1図はこの発明の実施例を説明するための電圧形PMM インバータを示す構成図である。同図からも明らかなよ うに、この実施例は係数器25,35,45と、その各々の出力 を電圧指令演算回路11からの電圧指令v,*,v,*,v,*に 対して図示の如き極性にて加算する加算器24とを設けた 点が特徴であり、その他は第4図と同様である。なお、 PMMバターン発生回路はU相だけが具体的に示されてい るが(符号20参照)、V,W相についても同様に構成され るととは云う迄もない。

40 係数器25,35,45は電流制限値に相当する不感帯を有する 増幅器、またはこれと同等の機能を有するものからな り、その各々はインバータの各相出力電流を検出する電 流検出器3に接続されている。したがつて、係数器25,3 5,45はインバータ出力電流の上記電流制限値を越える偏 差分をその極性とゝもに検出し、その出力を各相のPWM バターン発生回路20,30,40内の加算器24へ図示の如き極 性にて印加する。なお、各係数器にて検出される電流の 極性を出力電圧信号の極性と一致させるものとし、とゝ では、例えばモータに流れる方向の電流を正とする。

5

てその値が電流制限値以上になると、係数器25はそれ迄 の出力零の状態からこの電流制限値を越える偏差分に比 例した正の信号を出力する。この出力は、電圧指令値v。 * それ自身の極性とは無関係に、負のオフセツト分とし て加算器24に与えられる。一方、負の方向の電流がその 制限値を越えたときは、電圧指令値v,* に対して正のオ フセツト分として与えられる。なお、これはV,w相につ いても同様である。とうして、電圧指令値が電流偏差と その極性に応じて補正され、これによつて従来と同様の 電圧制御を行なうことにより、出力電流を抑制する。 と、で、以上の如き制御により過電流が抑制できる根拠 について説明する。

一般に、PMMインバータ主回路は定常状態ではその1相 分で考えることができ、その等価回路は第2図(イ)の 如く、交流電圧源v。(= v。*)とリアクトルしと逆起電 圧もで表わされる誘導電動機のモデルと考えることがで きる。また、この等価回路ではv』とe」との差電圧によっ て電流が流れるので、同図(イ)の等価回路は、さらに 同図(ロ)の如く差電圧源v, - e, とリアクトルしからな 1図と同じくモータに流れる方向を正とするので、第2 図の矢印の向きが正となる。

こゝで、正方向の電流がその制限値を越えた場合につい て考える。この場合は上述の如く、係数器25を介して負 のオフセツト分が電圧指令値v,* に重畳され、これによ り略キヤリア周波数の速さで出力電圧を制御できるの で、この場合、第2図(ロ)の等価回路は第3図(イ) のようになるものと考えて良い。つまり、第3図(イ) の如く、負のオフセツト電圧△ v は正の電流に対して電 流を減少させる方向(-)に働くので、電流の増加を抑 制できることになる。同様に、負方向の電流が制限値を 越えた場合は正のオフセツト分 Δ vが電圧指令値 v_{ν} * に 重畳されるので、その等価回路は第3図(ロ)の如くな る。この場合も、正のオフセツト電圧Δ v が負の電流を 減少させる方向に働くことになるので、これをもつて電 流を制限することができる。

とうして、差電圧v₁ - e₁の大きさ、極性とは無関係に、 出力電流の極性だけで電流を制限できることがわかる。 そして、差電圧に無関係であると云うことはインパータ の出力電圧v,*、負荷の逆起電力a,の大きさ,位相にも 無関係であると云うことであり、第1図の如き電動機負 荷では駆動や制動にか、わらず電流制限ができると云う ことを意味している。

6

[発明の効果]

以上のように、この発明によれば、電圧形PWMインバー 10 夕のいずれかの出力相の電流がその制限値を超えると、 略キャリヤ周波数の速さで瞬時に、過電流を検出した相 の制限値以上の電流増加のみを抑制し、その間に演算回 路が制限値を超えないような電流値となるように電流値 を与える電圧指令値を演算することになるので、電流を 断続させることなく、過電流を検出した相の制御を速や かに通常の制御に戻すことができ、更に本発明による出 力電流制限方法を電気車の電動機制御に適用した場合に は、駆動時、制動時の別なく電流制限ができるという効 果が得られるのである。なお、上記の演算を行なう場 る回路に変換することができる。なお、電流の極性は第 20 合、誘導電動機ではすべりSの極性を判別する必要があ るが、これは電圧指令値の演算と同じ速さで行なえば良 く、充分に実現可能であることは云う迄もない。

【図面の簡単な説明】

第1図はこの発明の実施例を説明するための電圧形PWM インバータを示す構成図、第2図は定常状態におけるイ ンバータ1相分の等価回路を示す回路図、第3図は電流 制限時におけるインバータ1相分の等価回路を示す回路 図、第4図は電圧形PWMインバータ制御方式の従来例を 示す構成図である。

符号説明

1 ·····・電圧形PMMインバータ、2 ····・誘導電動機、3 ··· …電流検出器、10……周波数設定器、11……電圧指令値 演算回路、12……キヤリア信号発生器、20,30,40……PW Mパターン発生回路、21,24·····加算器、22·····コンパレ ータ、23……反転器、25,35,45……係数器。

【第1図】

【第2図】

【第3図】

【第4図】

