3.2.3 数据选择器

在多路数据传送过程中,能够根据需要将 其中任意一路挑选出来的电路,叫做数据选择 器,也称为多路选择器,其作用相当于多路开关。

常见的数据选择器有<u>四选一</u>、<u>八选一</u>、十 六选一电路。

在本节内容 中我们还将介绍数 据选择器的<u>应用</u>。

3.2.4 数据比较器

数据比较器: 能够比较数字大小的电路。

- 1. 两个一位数A和B相比较的情况:
- (1)**A>B**: 只有当**A=1、B=0**时,**A>B**才为真;
- (2)**A<B**: 只有当**A**=**0**、**B**=**1**时,**A<B**才为真;
- (3)**A** = **B**: 只有当**A**=**B**=**0**或**A**=**B**=**1**时,**A** = **B**才为真。
- 2. 如果要比较两个多位二进制数A和B的大小? 必须从高向低逐位进行比较。
 - (1) 四位并行数据比较器7485
 - (2) 数据比较器的扩展

3.2.5 全加器

算术运算是数字系统的基本功能,更是计算机 中不可缺少的组成单元。

本章前面的内容讨论过半加器电路,它是不考虑低位进位的加法器。这里我们介绍全加器。

- 1. 四位串行进位全加器
- 2. 四位超前进位全加器
- 3. 全加器的应用举例

内容回顾

- 有哪些数据选择器、数值比较器、全加器? 用途?
- ■注意和3.1节的关系。

四选一数据选择器

- ① 四选一MUX简化符
- ② 四选一MUX的功能
- ③ 四选一MUX的逻辑表达式
- 4 74153的简化逻辑符

八选一数据选择器

- ① 八选一MUX简化符
- ② 八选一MUX的功能表
- ③ 八选一MUX的卡诺图
- ④ 八选一MUX的逻辑表达式

简化符号

四选一MUX的功能

$$Y(A_1, A_0) = S(m_0D_0 + m_1D_1 + m_2D_2 + m_3D_3)$$

图 四选一数据选择器电路

$Y(A_1, A_0) = S(m_0D_0 + m_1D_1 + m_2D_2 + m_3D_3)$

(2) 四选一数据选择器的功能表

输入	输出
$S A_1 A_0$	Y
0 × ×	0
1 0 0	D_0
1 0 1	D_1
1 1 0	D_2
1 1 1	D_3

$$Y(A_1, A_0) = S \cdot \sum_{i=0}^{3} m_i D_i$$

м

四选一MUX的逻辑表达式

$$\begin{split} \left\{ \overline{\mathrm{EN}} &= 1, \, \mathrm{Y} = 0 \, ; \\ \overline{\mathrm{EN}} &= 0, \, \mathrm{Y} = \overline{\mathrm{A}}_1 \overline{\mathrm{A}}_0 \mathrm{D}_0 + \overline{\mathrm{A}}_1 \mathrm{A}_0 \mathrm{D}_1 + \mathrm{A}_1 \overline{\mathrm{A}}_0 \mathrm{D}_2 + \mathrm{A}_1 \mathrm{A}_0 \mathrm{D}_3 \\ &= \sum_{i=0}^3 m_i D_i \end{split}$$

74153的简化逻辑符号

简化符号

八选一MUX的功能表

使能输入	4	削し	输出	
ĒN	A_2	A ₁	A_0	Υ
1	Ø	Ø	Ø	0
0	0	0	0	D_0
0	0	0	1	D_1
0	0	1	0	D_2
0	0	1	1	D_3

使能输入	有	俞 ノ	输出	
ĒΝ	A_2	A_1	A_0	Y
0	1	0	0	D_4
0	1	0	1	D_5
0	1	1	0	D_6
0	1	1	1	D_7

八选一MUX的卡诺图

M

八选一MUX的逻辑表达式

$$\begin{split} \left\{ \begin{aligned} \overline{\text{EN}} &= 1, \, \mathbf{Y} = 0 \, ; \\ \overline{\text{EN}} &= 0, \, \mathbf{Y} = \overline{A_2} \overline{A_1} \overline{A_0} \mathbf{D_0} + \overline{A_2} \, \overline{A_1} \mathbf{A_0} \mathbf{D_1} + \overline{A_2} \mathbf{A_1} \overline{A_0} \mathbf{D_2} \, + \\ \overline{A_2} \mathbf{A_1} \mathbf{A_0} \mathbf{D_3} \, + & \mathbf{A_2} \overline{A_1} \overline{A_0} \mathbf{D_4} + \mathbf{A_2} \, \overline{A_1} \mathbf{A_0} \mathbf{D_5} + \mathbf{A_2} \mathbf{A_1} \overline{A_0} \mathbf{D_6} \, + \\ \mathbf{A_2} \mathbf{A_1} \mathbf{A_0} \mathbf{D_7} \\ &= \sum_{i=0}^{7} m_i D_i \end{split}$$

数据选择器的应用

1. 功能扩展

例如用两片四选一MUX,可以构成八选一MUX;两片八选一数据选择器74LS151,可以构成十六选一数据选择器,等等。

实现组合逻辑函数

组合逻辑函数
$$F(A,B,C) = \sum m_i (i \in 0 \sim 7)$$

8选1

$$Y(A_2, A_1, A_0) = \sum_{i=0}^{\prime} m_i D_i$$

4选1

$$Y(A_1, A_0) = \sum_{i=0}^{3} m_i D_i$$

比较可知,表达式中都有最小项 m_i ,利 用数据选择器可以实现各种组合逻辑函数。 k7

例 试用八选一电路实现

$$F = \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC}$$

解:将A、B、C分别从 A_2 、 A_1 、 A_0 输入,作为输入变量,把Y端作为输出F。因为逻辑表达式中的各乘积项均为最小项,所以可以改写为

$$F(A,B,C) = m_0 + m_3 + m_5 + m_7$$

根据八选一数据选择器的功能,令

具体电路见下图:

电路图

例 试用八选一电路实现三变量多数表决电路。

解:假设三变量为A、B、C,表决结果为F,则

真值表如下表所示。

A B	C	F
0 0	0	0
0 0	1	0
0 1	0	0
0 1	1	1
1 0	0	0
1 0	1	1
1 1	0	1
1 1	1	1

真值表

则

$$F(A,B,C) = m_3 + m_5 + m_6 + m_7$$

在八选一电路中,将A、B、C从 A_2 、 A_1 、 A_0 输入,令

$$D_3 = D_5 = D_6 = D_7 = 1$$

$$D_0 = D_1 = D_2 = D_4 = 0$$

$$\overline{S} = 0$$

$$F = Y$$

则可实现三变量多数表决电路,具体电路图请行画出。

例: 用74151设计函数 $F = AB + A\overline{C}$ 。

A_1A	\mathbf{A}_0			
A	00	01	11	10
0	D_0	D_1	D_3	D_2
1	D_4	D_5	D_7	D_6

Y

F

比较两卡诺图,若A、B、C分别接A₂、A₁、A₀,再令D₀=D₁=D₂=D₃=D₅,D₄=D₆=D₇=1,则 Y=F,相应的电路图如下所示:

若C、B、A分别接 A_2 、 A_1 、 A_0 ,则Y、F的卡诺图分别如下,

再令 $D_0=D_2=D_4=D_5=D_6$, $D_1=D_3=D_7=1$,则 Y=F,相应的电路图如下所示:

例:用一片74153设计一个一位*全加器*。

解: 1/2 74153和一位全加器的卡诺图分别如下

B_iC	i-1 00	01	11	10	B_iC	i-1 00	01	11	10
0	0	1	0	1	0	0	0	1	0
1	1	0	1	0	1	0	1	1	1
S_i A_0 D_0 D_1 D_2 D_3 V									

用数据选择器设计组合逻辑电路的步骤:

- (1) 降维; (可选)
- (2) 比较;
- (3) 画逻辑图。

例3.2.4: 分别用一片74151和%74153 实现函数 $F = \overline{A}\overline{B}\overline{C} + \overline{A}BC + AB\overline{D} + A\overline{B}D + AC\overline{D}.$

解:这是一个四变量函数,对其一次降维后可用74151实现,两次降维后可用1/274153实现。

将A、B、C 分别接74151的 A_2 、 A_1 、 A_0 ; A、B 分别接% 74153的 A_1 、 A_0 ,然后与74151和% 74153的卡诺图比较,得74151的数据输入端为:

1/2 74153 的数据输入端为:

$$D_0 = \overline{C}$$
, $D_1 = C$, $D_2 = C + D$, $D_3 = \overline{D}$ 电路如下所示。

м

四位并行数据比较器7485

4位数据比较器7485功能表

		输)	\		输		出
$A_3 B_3$	$A_2 B_2$	A ₁ B ₁	$A_0 B_0$	(A>	$B)_{i}(A < B)_{i}(A$	A=B) _i	F _{A>B}	F _{A<b< sub=""></b<>}	$F_{A=B}$
A ₃ >B ₃	ØØ	ØØ	ØØ	Ø	Ø	Ø	1	0	0
A ₃ <b<sub>3</b<sub>	ØØ	ØØ	ØØ	Ø	Ø	Ø	0	1	0
$A_3 = B_3$	A ₂ >B ₂	ØØ	ØØ	Ø	Ø	Ø	1	0	0
$A_3 = B_3$	A ₂ <b<sub>2</b<sub>	ØØ	ØØ	Ø	Ø	Ø	0	1	0
$A_3 = B_3$	A ₂ =B ₂	A ₁ >B ₁	ØØ	Ø	Ø	Ø	1	0	0
$A_3 = B_3$	$A_2 = B_2$	A ₁ <b<sub>1</b<sub>	ØØ	Ø	Ø	Ø	0	1	0
$A_3 = B_3$	A ₂ =B ₂	A ₁ =B ₁	$A_0 > B_0$	Ø	Ø	Ø	1	0	0
$A_3 = B_3$	$A_2=B_2$	A ₁ =B ₁	$A_0 < B_0$	Ø	Ø	Ø	0	1	0

		输		入	•		输		出
$A_3 B_3$	$A_2 B_2$	A ₁ B ₁	$A_0 B_0$	(A>B)	_i (A <b)<sub>i (A</b)<sub>	λ=B) _i	F _{A>B}	F _{A<b< sub=""></b<>}	$F_{A=B}$
$A_3=B_3$	A ₂ =B ₂	A ₁ =B ₁	$A_0 = B_0$	1	0	0	1	0	0
$A_3 = B_3$	A ₂ =B ₂	A ₁ =B ₁	$A_0 = B_0$	0	1	0	0	1	0
$A_3 = B_3$	A ₂ =B ₂	A ₁ =B ₁	$A_0 = B_0$	0	0	1	0	0	1
$A_3 = B_3$	A ₂ =B ₂	A ₁ =B ₁	$A_0 = B_0$	0	0	0	1	1	0
$A_3 = B_3$	A ₂ =B ₂	A ₁ =B ₁	$A_0=B_0$	0	1	1	0	0	1
$A_3 = B_3$	A ₂ =B ₂	A ₁ =B ₁	$A_0=B_0$	1	0	1	0	0	1
$A_3 = B_3$	A ₂ =B ₂	A ₁ =B ₁	$A_0=B_0$	1	1	0	0	0	0
$A_3 = B_3$	A ₂ =B ₂	A ₁ =B ₁	$A_0 = B_0$	1	1	1	0	0	1

数据比较器的扩展

(1) 串联方式

(2) 并联方式

全加器能把本位两个加数 A_n 、 B_n 和来自低位的进位 C_{n-1} 三者相加,得到求和结果 S_n 和该位的进位信号 C_n 。

由真值表写 最小项之和 式,再稍加 变换得:

$A_{n} B_{n} C_{n-1}$	$S_{\rm n} C_{\rm n}$
0 0 0	0 0
0 0 1	1 0
0 1 0	1 0
0 1 1	0 1
1 0 0	1 0
1 0 1	0 1
1 1 0	0 1
1 1 1	1 1

$$S_{n} = \overline{A_{n}} \overline{B_{n}} C_{n-1} + \overline{A_{n}} B_{n} \overline{C_{n-1}} + A_{n} \overline{B_{n}} \overline{C_{n-1}} + A_{n} B_{n} C_{n-1}$$

$$= \overline{A_{n}} (B_{n} \oplus C_{n-1}) + A_{n} \overline{(B_{n} \oplus C_{n-1})}$$

$$= A_{n} \oplus B_{n} \oplus C_{n-1}$$

$A_{\rm n} B_{\rm n} C_{\rm n-1}$	$S_n C_n$
0 0 0	0 0
0 0 1	1 0
0 1 0	1 0
0 1 1	0 1
1 0 0	1 0
1 0 1	0 1
1 1 0	0 1
1 1 1	1 1

由真值表写 最小项之和 式,再稍加 变换得:

$$C_n = \overline{A_n} B_n C_{n-1} + A_n \overline{B_n} C_{n-1} + A_n B_n$$
$$= (A_n \oplus B_n) C_{n-1} + A_n B_n$$

$$S_n = A_n \oplus B_n \oplus C_{n-1}$$

$$C_n = (A_n \oplus B_n)C_{n-1} + A_nB_n$$

由表达式得逻辑图: page74

1. 四位串行进位全加器

2. 四位超前进位全加器

曲于
$$S_i = A_i \oplus B_i \oplus C_{i-1}$$

$$C_i = A_i B_i + A_i C_{i-1} + B_i C_{i-1}$$

$$III S_0 = A_0 \oplus B_0 \oplus CI = f_0 (A_0, B_0, CI)$$

$$C_0 = A_0 B_0 + A_0 CI + B_0 CI = g_0 (A_0, B_0, CI)$$

$$S_1 = A_1 \oplus B_1 \oplus C_0 = f_0 (A_1, B_1, C_0)$$

$$= f_0 (A_1, B_1, g_0 (A_0, B_0, CI))$$

$$= f_1 (A_1, B_1, A_0, B_0, CI)$$

$$C_{1} = A_{1}B_{1} + A_{1}C_{0} + B_{1}C_{0} = g_{0} (A_{1},B_{1},C_{0})$$

$$= g_{1} (A_{1},B_{1},A_{0},B_{0},CI)$$

$$\vdots$$

$$S_{3} = f_{3} (A_{3},A_{2},A_{1},A_{0},B_{3},B_{2},B_{1},B_{0},CI)$$

$$C_{3} = g_{3} (A_{3},A_{2},A_{1},A_{0},B_{3},B_{2},B_{1},B_{0},CI)$$

全加器的应用举例
 包知8421BCD码 (A₃A₂A₁A₀.a₃a₂a₁a₀)_{8421BCD}, 试设计一个电路将该数四舍五入。

м

例 已知8421BCD码 $(A_3A_2A_1A_0.a_3a_2a_1a_0)_{8421BCD}$, 试设计一个电路将该数四舍五入。

解: 当小数部分大于4时,整数部分应加1,即

$$\begin{array}{c}
A_{3}A_{2}A_{1}A_{0} \\
+ 1 \\
\hline
CO S_{3} S_{2} S_{1} S_{0}
\end{array}$$

当相加结果 $S_3S_2S_1S_0$ 为1010时,应进行修正。

例 已知8421BCD码 $(A_3A_2A_1A_0.a_3a_2a_1a_0)_{8421BCD}$,试设计一个电路将该数四舍五入。

因为1010不是 $(10)_{10}$ 的8421BCD码表示形式,正确结果应为00010000,所以:

电路图如下所示:

例 已知8421BCD码 $(A_3A_2A_1A_0.a_3a_2a_1a_0)_{8421BCD}$,试设计一个电路将该数四舍五入。

X3