

Proyecto: Binary Variational Semantic Hashing

Francisco Mena

UTFSM - Departamento de Informática

27 de Noviembre

Motivación

 Búsqueda de contenido relevante en una colección gigante de datos puede ser bastante costoso

 Métodos tradicionales computan similaridad en el espacio original (BOW,TF-IDF) o en vector space, lo cual no escala computacionalmente

Problema

Problema: similarity search/proximity search

- Encontrar/Recuperar objetos similares dada un objeto como consulta
- También conocido como content-based retrieval

Solución: Hashing (hash-based similarity search)

- Acelera la búsqueda de objetos similares
- Asigna códigos binarios compactos (baja dimensionalidad) a cada objeto
- Propiedad Semántica: Objetos semánticamente similares generan códigos similare

Trabajos previos

Aprendizaje de función de hashing de manera no supervisada:

- Semantic Hashing (Salakhutdinov y Hinton, 2007)
 - RBM's para generar distribución de variables latentes binarias
 - Representación de documentos como word-count (TF)
- Spectral Hashing (Weiss et al. 2009)
 - Problema de grafo, solución asemeja a spectral clustering
 - Binariza los vectores propios con un treshold de cero
- Variational Deep Semantic Hashing (Chaidaroon, 2017)
 - Utiliza VAE's para generar una distribución sobre variable latentes continuas
 - 2 Binariza tomando como treshold la mediana

Propuesto

Objetivo

Mejorar el aprendizaje no supervisado de *hashing* semántico a través de un modelo probabilista que se adapte correctamente a la necesidad de generar códigos binarios

1	0	1	0	
1	0	1	1	
1	0	0	0	
1	0	0	1	

Métodos y Metodologías

¿Qué?

 Hashing semántico con redes neuronales utilizando Variational Autoencoder (VAE) para inferencia probabilísta de variable latente binaria

¿Técnicas?

- Representación de palabras como word count (TF) o binario
- Redes feed forward
- Variable latentes discretas en VAE
 - Gracias al truco de reparametrización Gumbel-Max suavizado

Modelo

Formulación

$$\ell(\vec{d}) = \mathbb{E}_Q \left[\sum_{i}^{N} \log P(w_i \mid \vec{b}; \theta) \right] - D_{KL} \left(Q(\vec{b} \mid \vec{d}; \phi) \mid\mid P(\vec{b}) \right)$$
 (1)

- \vec{d} : representación vectorial de documento (BOW)
- w_i : representación one-hot de la palabra (TF, binario)
- \vec{b} : código binario
- Q: encoder, P: decoder

Se asume que $Q(\vec{b} \mid \vec{d}; \phi)$ aproxima una distribución Bernoulli por cada componente (función sigmoidal)

Modelo Neuronal

Figure 1: modelo Binary Variational Semantic Hashing

Truco de reparametrización

Formulación

- \bullet $\vec{b}_d = (b_d^{(1)}, b_d^{(2)}, \dots, b_d^{(K)})$
- Truco Gumbel-Softmax (caso binario), con $U \sim \text{Uniform}(0,1)$

$$b_d^{(k)} = \sigma \left(\left(\log \frac{Q(b^{(k)} \mid \vec{d})}{1 - Q(b^{(k)} \mid \vec{d})} + \log \frac{U}{1 - U} \right) / \lambda \right), \quad \forall k$$

$$\mathcal{L} = \sum_{\vec{d} \in D} D_{KL} \left(Q(\vec{b} \mid \vec{d}) \mid\mid P(\vec{b}) \right) - \left(\sum_{w \in \vec{d}} w \cdot \log P(w \mid \vec{b}_d) \right)$$
 (2)

Forma de validación

- Métricas: precision y recall sobre conjunto de pruebas
 - Se recuperan objetos en base a distancia de hamming
- Variación de métricas vs el radio de búsqueda
- Curvas precision y recall variando radio de búsqueda
- Baseline: Variational Deep Semantic Hashing (VDSH)
- ¿Dónde?

Dataset	Documentos	Clases
20Newsgroup	18.828	20
Reuters Corpus I	800.000	103
Reuters Corpus II	804.414	103
Reuters21578	10.788	90
TMC	28.515	22
SearchSnippets	12.000	8

Proyecto: Binary Variational Semantic Hashing

Francisco Mena

UTFSM - Departamento de Informática

27 de Noviembre