Calculus of Constructions with Recursive Types

Last modified: April 16, 2015 at 10:20am

1. Calculus of Constructions

Our language is based on the *Calculus of Constructions*, a special case of the *Pure Type System*. We give the definition as follows:

- (i) A Calculus of Constructions (λC) is a triple tuple ($\mathcal{S}, \mathcal{A}, \mathcal{R}$) where
 - (a) $S = \{\star, \Box\}$ is a set of *sorts*;
 - (b) $A = \{(\star, \Box)\} \subseteq S \times S$ is a set of axioms;
 - (c) $\mathcal{R} = \{(\star, \star), (\star, \square), (\square, \star), (\square, \square)\} \subseteq \mathcal{S} \times \mathcal{S}$ is a set of *rules*.
- (ii) Raw expressions A and raw environments Γ are defined in Figure 1.

Figure 1. Syntax of λC

We use s, t to range over *sorts*, x, y, z to range over *variables*, and A, B, C, a, b, c to range over *expressions*.

- (iii) Π and λ are used to bind variables. Let FV(A) denote free variable set of A. Let A[x := B] denote the substitution of x in A with B. We use $A \to B$ as a syntactic sugar for $(\Pi_- : A, B)$.
- (iv) The β -reduction (\rightarrow_{β}) is the smallest binary relation on raw expressions satisfying

$$(\lambda x : A.M)N \rightarrow_{\beta} M[x := N]$$

which can be used to define the notation $\twoheadrightarrow_{\beta}$ and $=_{\beta}$ by convention. Reduction rules are given in Figure 2. Highlighted premises and rules are only for *call-by-value* evaluation.

(v) Type assignment rules for (S, A, R) are given in Figure 3.

$$\begin{array}{ll} \textbf{Values: } v ::= & \lambda x : A.B \mid \Pi x : A.B \\ \hline (\text{R-Beta}) & N \in \textit{Value} \\ \hline (\lambda x : A.M) N \longrightarrow M[x := N] \\ \hline (\text{R-AppL}) & \frac{M \longrightarrow M'}{MN \longrightarrow M'N} \\ \hline (\text{R-AppR}) & \frac{v \in \textit{Value} \quad M \longrightarrow M'}{vM \longrightarrow vM'} \\ \hline \end{array}$$

Figure 2. Reduction rules for λC

$$(Ax) \qquad \overline{\varnothing \vdash \star : \square}$$

$$(Var) \qquad \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \qquad x \not\in \text{dom}(\Gamma)$$

$$(Weak) \qquad \frac{\Gamma \vdash b : B}{\Gamma, x : A \vdash b : B} \qquad x \not\in \text{dom}(\Gamma)$$

$$(App) \qquad \frac{\Gamma \vdash f : (\Pi x : A.B) \qquad \Gamma \vdash a : A}{\Gamma \vdash f a : B[x := a]}$$

$$(Lam) \qquad \frac{\Gamma, x : A \vdash b : B}{\Gamma \vdash (\lambda x : A.b) : (\Pi x : A.B) : t} \qquad t \in \{\star, \square\}$$

$$(Pi) \qquad \frac{\Gamma \vdash A : s}{\Gamma \vdash (\Pi x : A.B) : t} \qquad (s, t) \in \mathcal{R}$$

$$(Conv) \qquad \frac{\Gamma \vdash a : A}{\Gamma \vdash B : s} \qquad A =_{\beta} B$$

Figure 3. Typing rules for λC

2. Extend with recursive types

2.1 Core language

We extend Calculus of Constructions (λC) with recursive types, namely λC_{μ} . Differences with λC are highlighted. Figure 4 shows the extended syntax.

Figure 4. Syntax of λC_{μ}

Since recursive types are introduced and due to the practical concern, we use the *call-by-name* reduction strategy, i.e. iteratively reducing the *left-most outer-most* redex. Figure 5 shows the dynamic semantics with no call-by-value specific premises or rules.

Figure 5. Reduction rules for λC

The extended typing rules are shown in Figure 6. Compared with λC , the original *Conv* rule is replaced by the new *Beta* rule where the latter only performs one step of reduction defined in Figure 5.

Figure 6. Typing rules for λC_{μ}

2.2 Soundness of core language

We show the soundness of the core language by subject reduction and progress theorems.

Theorem 2.1 (Subject Reduction)

If $\Gamma \vdash A : B$ and $A \longrightarrow A'$ then $\Gamma \vdash A' : B'$ for some B' such that either $B \equiv B'$ or $B \longrightarrow B'$.

Theorem 2.2 (Progress)

If $\cdot \vdash A : B$ then either A is a value v or there exists A' such that $A \longrightarrow A'$.

Proof. See Appendix A.
$$\Box$$

2.3 Examples of typable terms

- Polymorphic identity function: if $\Gamma \vdash e : \tau$, we have $(\lambda \alpha : \star . \lambda x : ((\lambda y : \star . y)\alpha).x) \tau$ (beta $e) \longrightarrow$ beta $e \longrightarrow e$.
- A polymorphic fixed-point constructor fix : $(\Pi\alpha:\star.(\alpha\to\alpha)\to\alpha)$ can be defined as follows:

$$\begin{split} \operatorname{fix} = & \lambda \alpha : \star.\lambda f : \alpha \to \alpha. \\ & (\lambda x : (\mu \sigma.\sigma \to \alpha).f((\operatorname{unfold} x)x)) \\ & (\operatorname{fold}[\mu \sigma.\sigma \to \alpha] \left(\lambda x : (\mu \sigma.\sigma \to \alpha).f((\operatorname{unfold} x)x))\right) \end{split}$$

Note that this is the so called call-by-name fixed point combinator. It is useless in a call-by-value setting, since the expression fix α g diverges for any g.

• Using fix, we can build recursive functions. For example, given a "hungry" type $H = \mu \sigma.\alpha \to \sigma$, the "hungry" function h where

$$h = \lambda \alpha : \star . \mathsf{fix} (\alpha \to H) (\lambda f : \alpha \to H.\lambda x : \alpha . \mathsf{fold}[H] f)$$

can take arbitrary number of arguments.

3. Formal Elaboration of Datatypes and Case Analysis

3.1 Extended Language

We extend λC_{μ} with simple datatypes and case analysis, namely $\lambda C_{\mu c}$. Differences with λC_{μ} are highlighted in Figure 7.

Figure 7. Syntax of $\lambda C_{\mu c}$

The extended typing rules are shown in Figure 8. To save space, we only show the new typing rules.

3.2 Translation Overview

We use a type-directed translation. The typing relations have the form:

$$\Gamma \vdash e : \tau \leadsto E$$

It states that λC_{μ} expression E is the translation of $\lambda C_{\mu c}$ expression e of type τ . Figure 9 shows the

Figure 8. Typing rules for $\lambda C_{\mu}c$

translation rules, which are the typing rules of the previous section extended with the resulting expression E.

3.3 Examples of Simple Datatypes

• We can encode the type of natural numbers as follows:

$$\mathbf{data}\,\mathsf{Nat} = \mathsf{zero}\mid\mathsf{suc}\,\mathsf{Nat}$$

$$\mathsf{Nat} ::= \mu X.\,\Pi(a:\star).\,a \to (X \to a) \to a$$

zero and suc are encoded as follows:

$$\begin{split} \mathsf{zero} &::= \mathsf{fold}[\mathsf{Nat}] \ (\lambda(a:\star)(z:a)(f:\mathsf{Nat} \to a). \ z) \\ \mathsf{suc} &::= \lambda(n:\mathsf{Nat}). \ \mathsf{fold}[\mathsf{Nat}] \ (\lambda(a:\star)(z:a)(f:\mathsf{Nat} \to a). \ f \ n) \end{split}$$

Using fix, we can define a recursive function plus as follow:

$$\begin{aligned} \mathsf{plus} : \mathsf{Nat} &\to \mathsf{Nat} \to \mathsf{Nat} \\ \mathsf{plus} &= \mathsf{fix} \, (\mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Nat}) \, (\lambda(p : \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Nat}) (n : \mathsf{Nat}) (m : \mathsf{Nat}). \\ & (\mathsf{unfold} \, n) \, \mathsf{Nat} \, m \, (\lambda(n' : \mathsf{Nat}). \, \mathsf{suc} \, (p \, n' \, m))) \end{aligned}$$

• We can encode the type of lists of natural numbers:

$$\mathbf{data}\,\mathsf{List} = \mathsf{nil}\mid\mathsf{cons}\,\mathsf{Nat}\,\mathsf{List}$$

$$\mathsf{List} ::= \mu X.\,\Pi(a:\star).\,a \to (\mathsf{Nat}\to X\to a)\to a$$

Figure 9. Type-directed translation from $\lambda C_{\mu}c$ to λC_{μ}

nil and cons are encoded as follows:

$$\begin{split} \mathsf{nil} ::= \mathsf{fold}[\mathsf{List}] \, (\lambda(a:\star)(z:a)(f:\mathsf{Nat} \to \mathsf{List} \to a). \, z) \\ \mathsf{cons} ::= \lambda(x:\mathsf{Nat})(xs:\mathsf{List}). \\ \mathsf{fold}[\mathsf{List}] \, (\lambda(a:\star)(z:a)(f:\mathsf{Nat} \to \mathsf{List} \to a). \, f \, x \, xs) \end{split}$$

Using fix, we can define a recursive function length as follows:

$$\begin{aligned} \mathsf{length} : \mathsf{List} &\to \mathsf{Nat} \\ \mathsf{length} &= \mathsf{fix} \left(\mathsf{List} &\to \mathsf{Nat} \right) \left(\lambda(l : \mathsf{List} &\to \mathsf{Nat}) (xs : \mathsf{List}). \\ & \left(\mathsf{unfold} \ xs \right) \mathsf{Nat} \, \mathsf{zero} \left(\lambda(y : \mathsf{Nat}) (ys : \mathsf{List}) . \, \mathsf{suc} \left(l \ ys \right) \right) \end{aligned}$$

References

- [1] Herman Geuvers. The church-scott representation of inductive and coinductive data. Types, 2014.
- [2] Simon Peyton Jones and Erik Meijer. Henk: a typed intermediate language. TIC, 97, 1997.
- [3] J-W Roorda and JT Jeuring. Pure type systems for functional programming. 2007.
- [4] Morten Heine Sørensen and Pawel Urzyczyn. *Lectures on the Curry-Howard isomorphism*, volume 149. Elsevier, 2006.

A. Appendix

Lemma A.1 (Substitutions)

Assume we have

$$\Gamma, x : A \vdash B : C \tag{1}$$

$$\Gamma \vdash D : A,\tag{2}$$

then

$$\Gamma[x := D] \vdash B[x := D] : C[x := D].$$

Proof. This is trivial by induction on the typing derivation of (1) by typing rules in Fig.6. We only discuss two cases for example. Let E^* denote E[x:=D]. Consider following cases

- The last applied rule to obtain (1) is *Var*. There are 2 sub-cases:
 - 1. It is derived by

$$\frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A},$$

then we have $(B:C)\equiv (x:A)$. And $\Gamma\vdash (x:A)^*\equiv (D:A)$ which holds by (2).

2. It is derived by

$$\frac{\Gamma, x: A \vdash E: s}{\Gamma, x: A, y: E \vdash y: E},$$

then we need to show $\Gamma^*,y:E^*\vdash y:E^*.$ And it directly follows the induction hypothesis, i.e. $\Gamma^*\vdash E^*:s.$

• The last applied rule to obtain (1) is App, i.e.

$$\frac{\Gamma, x : A \vdash B_1 : (\Pi y : C_1. C_2) \qquad \Gamma, x : A \vdash B_2 : C_1}{\Gamma, x : A \vdash (B_1 B_2) : C_2[y := B_2]}.$$

By the induction hypothesis, we can obtain $\Gamma^* \vdash B_1^* : (\Pi y : C_1^*, C_2^*)$ and $\Gamma^* \vdash B_2^* : C_1^*$. Thus, $\Gamma^* \vdash (B_1^*B_2^*) : (C_2^*[y := B_2^*])$, i.e. $\Gamma^* \vdash (B_1B_2)^* : (C_2[y := B_2])^*$.

If $\Gamma \vdash A : B$ and $A \longrightarrow A'$ then $\Gamma \vdash A' : B'$ for some B' such that either $B \equiv B'$ or $B \longrightarrow B'$.

Proof. Let \mathcal{D} be the derivation of $\Gamma \vdash A : B$. The proof is by induction on dynamic semantics shown in Fig.5.

case R-AppLam:
$$(\lambda x : A.M)N \longrightarrow M[x := N]$$

Derivation \mathcal{D} has the following form

$$\frac{\Gamma, x: A \vdash M: A'}{\Gamma \vdash (\lambda x: A.M): (\Pi x: A.A')} Lam \qquad \Gamma \vdash N: A}{\Gamma \vdash (\lambda x: A.M)N: A'} App$$

Thus, by Lemma A.1 we can obtain $\Gamma \vdash M[x := N] : A'$.

case R-AppL:
$$\frac{M \longrightarrow M'}{MN \longrightarrow M'N}$$
.

Derivation \mathcal{D} has the following form

$$\frac{\Gamma \vdash M : (\Pi x : A.A') \qquad \Gamma \vdash N : A}{\Gamma \vdash MN : A'} App$$

By the induction hypothesis we have $\Gamma \vdash M' : (\Pi x : A.A')$. Hence,

$$\frac{\Gamma \vdash M' : (\Pi x : A.A') \qquad \Gamma \vdash N : A}{\Gamma \vdash M'N : A'} \mathit{App}$$

Derivation \mathcal{D} has the following form

$$\frac{\Gamma \vdash M : \mu x.A}{\Gamma \vdash (\mathsf{unfold}\ M) : A[x := \mu x.A]} \ \mathit{Unfold}$$

By the induction hypothesis we have $\Gamma \vdash M' : \mu x.A$. Hence,

$$\frac{\Gamma \vdash M' : \mu x.A}{\Gamma \vdash (\mathsf{unfold}\ M') : A[x := \mu x.A]} \ \mathit{Unfold}$$

case *R-Unfold-Fold*: $unfold (fold[\mu x.A] M) \longrightarrow M$.

Derivation $\mathcal D$ has the following form

$$\frac{\frac{\Gamma \vdash M : (A[x := \mu x.A])}{\Gamma \vdash (\mathsf{fold}[\mu x.A] \: M) : \mu x.A} \: \mathit{Fold}}{\Gamma \vdash \mathsf{unfold} \: (\mathsf{fold}[\mu x.A] \: M) : (A[x := \mu x.A])} \: \mathit{Unfold}$$

case R-Mu:
$$\mu x.M \longrightarrow M[x := \mu x.M]$$
.

Derivation \mathcal{D} has the following form

$$\frac{\Gamma, x : s \vdash M : s}{\Gamma \vdash (\mu x.M) : s} Mu$$

Hence, by Lemma A.1 we have $\frac{\Gamma,x:s\vdash M:s}{\Gamma\vdash (M[x:=\mu x.M]):s}\,.$

case *R-Beta*: $\overline{\text{beta }M\longrightarrow M}$.

Derivation \mathcal{D} has the following form

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : s \qquad B \longrightarrow A}{\Gamma \vdash (\mathsf{beta}\,M) : B} \; \textit{Beta}$$

By the induction hypothesis we have $\Gamma \vdash M' : A$ and $B \longrightarrow A$. Hence,

$$\frac{\Gamma \vdash M' : A \qquad \Gamma \vdash B : s \qquad B \longrightarrow A}{\Gamma \vdash (\mathsf{beta}\ M') : B} \ \textit{Beta}$$

Theorem A.3 (Progress)

If $\cdot \vdash A : B$ then either A is a value v or there exists A' such that $A \longrightarrow A'$.

Proof. We can give the proof by induction on the derivation of $\cdot \vdash A : B$ by typing rules in Fig.6:

case Var:
$$\frac{\cdot \vdash A : s}{\cdot, x : A \vdash x : A}$$
.

This case cannot be reached. Proof is by contradiction. If we have $\cdot \vdash x : A$ then x is assigned with type A from a context " \cdot " without A, which is not possible.

$$\textbf{case Weak:} \ \frac{\cdot \vdash b : B \qquad \cdot \vdash A : s}{\cdot, x : A \vdash b : B} \, .$$

The result is trivial by induction hypothesis.

case
$$App$$
:
$$\frac{\cdot \vdash M : (\Pi x : A.B) \qquad \cdot \vdash N : A}{\cdot \vdash MN : B}$$

By induction hypothesis on $\cdot \vdash M : (\Pi x : A.B)$, there are two possible cases.

- 1. M=v is a value. Hence $v=\lambda x:A.M'$ where $\cdot \vdash M':B.$ Then $MN=vN=(\lambda x:A.M')N=M'[x:=N].$ By the substitution lemma, $\cdot \vdash (M'[x:=N]):B$ which is just $\cdot \vdash MN:B.$
- 2. $M \longrightarrow M'$. The result is obvious by the operational semantic $\frac{M \longrightarrow M'}{MN \longrightarrow M'N}$ R-AppL.

case Lam:
$$\frac{\cdot \cdot \cdot}{\cdot \vdash (\lambda x : A.M) : (\Pi x : A.B)}$$
.

The result is trivial if let $v = \lambda x : A.M.$

$$\mathbf{case}\, \mathbf{\textit{Pi:}}\, \, \frac{\,\cdot \vdash A:s \qquad \cdot, x:A \vdash B:t}{\,\cdot \vdash (\Pi x:A.B):t} \,.$$

The result is trivial if let $v = \Pi x : A.B$.

case Mu:
$$\frac{\cdots}{\cdot \vdash (\mu x.A) : s}$$
.

The result is trivial since we always have such reduction $\mu x.A \longrightarrow A[x := \mu x.A]$.

case Fold:
$$\frac{\dots}{\dots \vdash (\mathsf{fold}[\mu x.A] \ M) : \mu x.A}$$
 .

The result is trivial if let $v = \text{fold}[\mu x.A] M$.

$$\textbf{case Unfold:} \ \frac{\cdot \vdash a: \mu x.A \qquad \cdot \vdash A[x:=\mu x.A]: s}{\cdot \vdash (\mathsf{unfold}\ a): A[x:=\mu x.A]} \ .$$

By induction hypothesis on $\cdot \vdash a : \mu x.A$, there are two possible cases.

- 1. a=v is a value. Hence $a=\operatorname{fold}[\mu x.A]\,b$ where $\cdot\vdash b:(A[x:=\mu x.A])$. Then by the R-Unfold-Fold rule, unfold $a=\operatorname{unfold}(\operatorname{fold}[\mu x.A]\,b)=b$. Thus $\cdot\vdash(\operatorname{unfold}a):A[x:=\mu x.A]$.
- 2. $a \longrightarrow a'$. The result is obvious by the reduction rule $\dfrac{M \longrightarrow M'}{\text{unfold } M \longrightarrow \text{unfold } M'}$ R-Unfold .

case Beta:
$$\frac{\dots}{\dots \vdash (\mathsf{beta}\, a) : B}$$
.

The result is trivial since we always have such reduction beta $a \longrightarrow a$.