2

Vector Spaces (向量空间)

2.6

LINEAR TRANSFORMATION

(线性变换)

Definition & Examples
Matrix representations
Kernel (核)

I. Linear Transformation: Definition & Examples

A **function** (函数) f from a set A to a set B is a rule that assigns to each element of A a *single* element of B. We often write

$$f: A \to B$$
$$a \mapsto f(a)$$

where f(a) is often defined by some equation, with range(f) = { $f(a) | a \in A$ } $\subseteq B$. (range: 值域; domain: 定义域)

For example,

- $f(x) = \sin x$ is a function from **R** to [-1, 1].
- $f:(x, y) \mapsto (2x, 3y)$ maps \mathbb{R}^2 to \mathbb{R}^2 .
- $f: (x, y) \mapsto (x, y, x + y)$ maps \mathbb{R}^2 to \mathbb{R}^3 .
- $f: (x, y, z) \mapsto (x, z)$ maps \mathbb{R}^3 to \mathbb{R}^2 .

Definition 1 A function f from a vector space V to a vector space W is called a **linear transformation** (线性变换) if

- $(1) f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$ for all vectors $\mathbf{u}, \mathbf{v} \in V$;
- (2) f(cv) = cf(v) for all vectors $v \in V$ and all $c \in \mathbf{R}$.

 $(1)\&(2) \Leftrightarrow f(c\mathbf{u} + d\mathbf{v}) = cf(\mathbf{u}) + df(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in V$ and all $c, d \in \mathbf{R}$.

Examples

- $f:(x, y) \mapsto (2x, 3y)$ maps \mathbb{R}^2 to \mathbb{R}^2 .
- $f:(x, y) \mapsto (x, y, x + y)$ maps \mathbb{R}^2 to \mathbb{R}^3 .
- $f: (x, y, z) \mapsto (x, z)$ maps \mathbb{R}^3 to \mathbb{R}^2 .

Linear transformations preserve the operations of vector addition and scalar multiplication.
(线性变换保持加法和数乘运算)

Examples

- $f(x) = x^2$ is not a linear transformation from **R** to **R**, since $f(x + y) = (x + y)^2 \neq x^2 + y^2 = f(x) + f(y)$, except xy = 0.
- $f(x) = \sin x$ is not a linear transformation from **R** to **R**, since $f(x + y) = \sin(x + y) \neq \sin x + \sin y = f(x) + f(y)$ does not always hold.

Other examples

We take as examples the spaces P_n , in which the vectors are polynomials p(t) of degree n.

$$p(t) = a_0 + a_1t + a_2t^2 + \dots + a_nt^n,$$

and the dimension of the vector space is n + 1.

• The operation of *differentiation* is linear

$$\frac{d}{dt}p(t) = a_1 + 2a_2t + \dots + na_nt^{n-1}.$$

• *Integration* from 0 to t is also linear (it takes P_n to P_{n+1})

$$\int_0^t p(s)ds = a_0t + \frac{1}{2}a_1t^2 + \dots + \frac{a_n}{n+1}t^{n+1}.$$

• *Multiplication* by a fixed polynomial like 2 + 3t is linear (*it also takes* \mathbf{P}_n *to* \mathbf{P}_{n+1}):

$$(2+3t)p(t) = 2a_0 + \dots + 3a_n t^{n+1}.$$

II. Transformations Represented by Matrices

Let

$$m{A} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ dots & dots & dots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

For any vector $x \in \mathbb{R}^n$, the product Ax is a vector in \mathbb{R}^m :

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix} \in \mathbf{R}^m$$

This defines a function f from \mathbb{R}^n to \mathbb{R}^m : $f: x \mapsto Ax$.

Suppose x is an n-dimensional vector.

When A multiplies x, it *transforms* that vector into a new vector Ax, which is an m-dimensional vector.

For instance,

$$\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix} \qquad \begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad 0$$

It is a *linear transformation* as, for all $v, w \in \mathbb{R}^n$ and $c \in \mathbb{R}$,

$$f(v + w) = A(v + w) = Av + Aw = f(v) + f(w),$$

 $f(cv) = A(cv) = cAv = cf(v).$

That is to say, matrix multiplication satisfies *the rule of linearity* (线性性).

Remark: If A is square (n by n):

Suppose x is an n-dimensional vector, then Ax is also an n-dimensional vector.

This happens at every point x of the n-dimensional space \mathbb{R}^n .

The whole space is transformed, or "mapped into itself," by the matrix A. (整个空间 \mathbb{R}^n 在方阵A的作用下, 变换/映射到自身: \mathbb{R}^n)

Matrix representation - Examples in Geometry

What if -- reflections in other mirrors? What if -- projections onto other lines?

Can you find the matrix representation? https://www.geogebra.org/m/guhhgudj

Projection (投影)

Projection onto the θ -line

In general, we may find the projection to the θ -line (the line at the angle θ from the x-axis). Thus the linear transformation p is such that

$$p: \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow c \begin{bmatrix} c \\ s \end{bmatrix} \qquad c = \cos \theta$$

$$s = \sin \theta$$
The point $\begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is
$$projected to: x \cdot p \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) + y \cdot p \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

$$= x \begin{bmatrix} c^2 \\ cs \end{bmatrix} + y \begin{bmatrix} cs \\ s^2 \end{bmatrix}$$

$$= \begin{bmatrix} c^2 & cs \\ cs & s^2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

P: projection matrix

$$\mathbf{P} = \begin{bmatrix} c^2 & cs \\ cs & s^2 \end{bmatrix}$$

Projection onto the θ -line

 $P = \begin{bmatrix} c^2 & cs \\ cs & c^2 \end{bmatrix}$ has some natural properties.

- This matrix has no inverse $(\det(\mathbf{P})=0)$, because the transformation has no inverse.
- Points on the perpendicular line are projected onto the origin; that line is the nullspace of \boldsymbol{P} .
- Points on the θ -line are projected to themselves!
- Projecting twice is the same as projecting once, and $P^2 = P$ (幂等矩阵, idempotent matrix), i.e., a projection matrix equals its own square.(投影矩 阵等于自身的平方)

What 3 by 3 matrices represent the transformations that project every vector onto the x_1 - x_2 plane?

If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
,

then the transformation

$$x \mapsto Ax$$

projects points in \mathbb{R}^3 onto the x_1 - x_2 plane because

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}.$$

Reflection (反射)

In general, we may find reflection along θ -line in a similar way:

H has some remarkable properties:

- $\mathbf{H}^2 = \mathbf{I}$. Two reflections bring back the original. $(\mathbf{H}^2 = (2\mathbf{P} - \mathbf{I})^2 = 4\mathbf{P}^2 - 4\mathbf{P} + \mathbf{I} = \mathbf{I}$, since $\mathbf{P}^2 = \mathbf{P}$.)
- $H^{-1} = H$. A reflection is its own inverse.

Rotation (旋转)

Rotation through θ

$$Q_{\theta} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$$
: rotation matrix

is a perfect example showing the correspondence between transformations and matrices:

- $Q_{\theta}Q_{-\theta} = I$ The inverse of Q_{θ} equals $Q_{-\theta}$ (rotation backward through θ)
- $Q_{\theta}^2 = Q_{2\theta}$ The square of Q_{θ} equals $Q_{2\theta}$ (rotation through a double angle)
- $m{Q}_{ heta}m{Q}_{\phi} = m{Q}_{ heta+\phi}$ The product of $m{Q}_{ heta}$ and $m{Q}_{\phi}$ equals $m{Q}_{\theta+\phi}$ (rotation through ϕ then θ)

Matrix Representations of Linear Transformations

(线性变换的矩阵表示: general case)

Example 1 Let f be a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 such that

$$f\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}, \quad f\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\-1\\2\end{bmatrix},$$

Determine $f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)$.

Solution

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = f\left(x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$$

$$= xf\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) + yf\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$$

$$= x\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + y\begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} x \\ 2x - y \\ 3x + 2y \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

Theorem 1 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(x) = Ax$$
 for all x in \mathbb{R}^n .

In fact, A is the $m \times n$ matrix whose j-th column is the vector $T(e_j)$, where e_j is the j-th column of the identity matrix in \mathbb{R}^n :

$$A = [T(e_1) \dots T(e_n)].$$

Proof Write $x = I_n x = [e_1 \dots e_n] x = x_1 e_1 + \dots + x_n e_n$, and use the linearity of T to compute

$$T(\mathbf{x}) = T(x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n) = x_1 T(\mathbf{e}_1) + \dots + x_n T(\mathbf{e}_n)$$

$$= [T(\mathbf{e}_1) \dots T(\mathbf{e}_n)] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \mathbf{A} \mathbf{x}.$$

The matrix A is called the standard matrix for the linear transformation T.

(寻找矩阵A的关键, 是知道线性变换T对于标准基各列的作用)

Example 2 Define the linear transformation $L: \mathbb{R}^3 \to \mathbb{R}^2$ by $L(\mathbf{x}) = (x_1 + x_2, x_2 + x_3)^T$.

for each $x = (x_1, x_2, x_3)^T$ in \mathbb{R}^3 .

We wish to find a matrix A such that L(x) = Ax for each $x \in \mathbb{R}^3$.

Solution: To do this, we calculate

$$L(\boldsymbol{e}_1) = L((1,0,0)^T) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$L(\boldsymbol{e}_2) = L((0,1,0)^T) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$L(\boldsymbol{e}_3) = L((0,0,1)^T) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

We choose these vectors to be the columns of the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

To check the result, we compute
$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_2 + x_3 \end{bmatrix}$$
.

What if - general case: 非自然基

To transform a space to itself, one basis is enough.

A transformation from one space to another requires a basis for each. They can be bases other than the standard bases.

Theorem 2 Suppose the vectors $E = \{v_1, v_2, \dots, v_n\}$ are a basis for the space V, and vectors $F = \{w_1, w_2, \dots, w_m\}$ are a basis for W.

Each linear transformation T from V to W is represented by a matrix A. The jth column of A is found by applying T to the jth basis vector v_i , and writing $T(v_i)$ as a combination of the w's:

Column *j* of *A* is the coordinate vector of $T(v_j)$ with respect to $\{w_1, w_2, \dots, w_m\}$, which means

$$T(\boldsymbol{v}_j) = \boldsymbol{A}\boldsymbol{v}_j = \boldsymbol{a}_{1j}\boldsymbol{w}_1 + \boldsymbol{a}_{2j}\boldsymbol{w}_2 + \cdots + \boldsymbol{a}_{mj}\boldsymbol{w}_m.$$

$$E = \{\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_n\}$$
 are a basis for V ,

$$F = \{ \mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m \}$$
 are a basis for W .

$$T(\mathbf{v}_j) = \mathbf{A}\mathbf{v}_j = a_{1j}\mathbf{w}_1 + a_{2j}\mathbf{w}_2 + \dots + a_{mj}\mathbf{w}_m$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ [T(v_1)]_F [T(v_2)]_F [T(v_n)]_F$$

where

$$T(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$T(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m$$

$$\vdots$$

$$T(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m$$

Example 3 Define the linear transformation $L: \mathbb{R}^3 \to \mathbb{R}^2$ by $L(x) = x_1 b_1 + (x_2 + x_3) b_2$

for each
$$\mathbf{x} = (x_1, x_2, x_3)^T$$
 in \mathbf{R}^3 , where $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Find the matrix \boldsymbol{A} representing L with respect to the ordered bases $\{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}$ and $\{\boldsymbol{b}_1,\boldsymbol{b}_2\}$.

Solution:

$$L(e_1) = 1b_1 + 0b_2$$

 $L(e_2) = 0b_1 + 1b_2$
 $L(e_3) = 0b_1 + 1b_2$

The *j*th column of \boldsymbol{A} is determined by the coordinates of $L(\boldsymbol{e}_j)$ with respect to $\{\boldsymbol{b}_1, \boldsymbol{b}_2\}$ for i=1,2,3. Thus

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

Example 4 Let L be a linear transformation mapping \mathbb{R}^2 into itself defined by

$$L(\alpha \boldsymbol{b}_1 + \beta \boldsymbol{b}_2) = (\alpha + \beta)\boldsymbol{b}_1 + 2\beta \boldsymbol{b}_2.$$

where
$$\boldsymbol{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\boldsymbol{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Find the matrix \boldsymbol{A} representing L with respect to $\{\boldsymbol{b}_1, \boldsymbol{b}_2\}$.

Solution:

$$L(\mathbf{b}_1) = 1\mathbf{b}_1 + 0\mathbf{b}_2$$

 $L(\mathbf{b}_2) = 1\mathbf{b}_1 + 2\mathbf{b}_2$

Thus

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}.$$

Example 5 Let $L: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by $L(\mathbf{x}) = (x_2, x_1 + x_2, x_1 - x_2)^T$.

Find the matrix representation of L with respect to the ordered bases $\{u_1, u_2\}$ and $\{b_1, b_2, b_3\}$, where

$$\mathbf{u}_1 = (1,2)^T, \mathbf{u}_2 = (3,1)^T$$

and

$$\boldsymbol{b}_1 = (1,0,0)^T, \boldsymbol{b}_2 = (1,1,0)^T, \boldsymbol{b}_3 = (1,1,1)^T.$$

Solution 1

$$L(\mathbf{u}_1) = (2, 3, -1)^T, \qquad L(\mathbf{u}_2) = (1, 4, 2)^T.$$

We need to write them as combinations of $\{b_1, b_2, b_3\}$:

$$\begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = a_{11} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_{21} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + a_{31} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} = a_{12} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + a_{22} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + a_{32} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

Thus
$$A = \begin{bmatrix} -1 & -3 \\ 4 & 2 \\ -1 & 2 \end{bmatrix}$$
.

Theorem 3 (An equivalent way to find the matrix A)

Let $E = \{u_1, ..., u_n\}$ and $F = \{b_1, ..., b_m\}$ be ordered bases for \mathbb{R}^n and \mathbb{R}^m , respectively.

If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and $A = [a_1, \dots, a_n]$ is the matrix representing L with respect to E and F, then

$$\mathbf{a}_j = \mathbf{B}^{-1} L(\mathbf{u}_j) \text{ for } j = 1, \dots, n$$

where $B = [b_1, ..., b_m]$.

Proof. If A is representing L with respect to E and F, then, for $j = 1, \ldots, n$,

$$L(\boldsymbol{u}_j) = a_{1j}\boldsymbol{b}_1 + a_{2j}\boldsymbol{b}_2 + \cdots + a_{mj}\boldsymbol{b}_m = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_m] \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

 $= Ba_i$

The matrix B is nonsingular since its column vectors form a basis for \mathbf{R}^m . Hence

$$a_i = B^{-1}L(u_i) \text{ for } j = 1,...,n.$$

The way to find the matrix representation of the transformation is:

by computing the reduced row echelon form of an augmented matrix.

Remark. If A is the matrix representing the linear transformation $L: \mathbb{R}^n \to \mathbb{R}^m$ with respect to the bases $E = \{u_1, \dots, u_n\}$ and $F = \{b_1, \dots, b_m\}$, then the reduced row echelon form of $[b_1, \dots, b_m \mid L(u_1), \dots, L(u_n)]$.

is

$$[I \mid A]$$
.

Example 5 (continued)

Let $L: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by $L(\mathbf{x}) = (x_2, x_1 + x_2, x_1 - x_2)^T$.

Find the matrix representations of L with respect to the ordered bases $\{\boldsymbol{u}_1, \boldsymbol{u}_2\}$ and $\{\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3\}$, where $\boldsymbol{u}_1 = (1,2)^T$, $\boldsymbol{u}_2 = (3,1)^T$ and $\boldsymbol{b}_1 = (1,0,0)^T$, $\boldsymbol{b}_2 = (1,1,0)^T$, $\boldsymbol{b}_3 = (1,1,1)^T$.

<u>Solution 2</u> We must compute $L(u_1)$ and $L(u_2)$ and then transform the augmented matrix $[\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3 \mid L(\boldsymbol{u}_1), L(\boldsymbol{u}_2)]$ to reduced row echelon form:

$$L(\boldsymbol{u}_1) = (2,3,-1)^T, \qquad L(\boldsymbol{u}_2) = (1,4,2)^T.$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 3 & 4 \\ 0 & 0 & 1 & -1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 & -3 \\ 0 & 1 & 0 & 4 & 2 \\ 0 & 0 & 1 & -1 & 2 \end{bmatrix}.$$

The matrix representing L with respect to the given ordered bases is

$$\mathbf{A} = \begin{bmatrix} -1 & -3 \\ 4 & 2 \\ -1 & 2 \end{bmatrix}.$$

Next we find matrices that represent differentiation.

Basis for
$$P_3$$
: $E = \{p_1, p_2, p_3, p_4\}$. $p_1 = 1, p_2 = t, p_3 = t^2, p_4 = t^3$.

The derivatives of those four basis vectors

Action of
$$\frac{d}{dt}: \frac{d}{dt}p_1 = 0, \frac{d}{dt}p_2 = p_1, \frac{d}{dt}p_3 = 2p_2, \frac{d}{dt}p_4 = 3p_3.$$

Coordinate vectors:
$$[p_1]_E = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $[p_2]_E = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $[p_3]_E = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $[p_4]_E = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

Differentiation matrix

$$A_{\text{diff}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$Ap_1 Ap_2 Ap_3 Ap_4$$

$$p_1 = 1$$
, $p_2 = t$, $p_3 = t^2$, $p_4 = t^3$

For the matrix
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$N(\mathbf{A}) = \operatorname{Span}\{p_1\}, \text{ nullity}(\mathbf{A}) = 1;$$

$$C(A) = \text{Span}\{p_1, p_2, p_3\}, \text{ rank}(A) = 3.$$

For any vector in the vector space P_3 , the derivative is decided by linearity.

For example, for $p = 2 + t - t^2 - t^3$,

$$\frac{dp}{dt} = \mathbf{A}p \to \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ -3 \\ 0 \end{bmatrix},$$

so the derivative for p is $1 - 2t - 3t^2$.

Example: Integration

Integration:
$$V(=P_3) \rightarrow W(=P_4)$$

Basis for P_3 : $x_1 = 1, x_2 = t, x_3 = t^2, x_4 = t^3$
Basis for P_4 : $y_1 = 1, y_2 = t, y_3 = t^2, y_4 = t^3, y_5 = t^4$

$$\int_{0}^{t} 1 ds = t \text{ or } Ax_{1} = y_{2}, Ax_{2} = \frac{1}{2}y_{3}, \int_{0}^{t} s^{3} ds = \frac{t^{4}}{4} \text{ or } Ax_{4} = \frac{1}{4}y_{5}$$

$$A_{\text{int}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 1/4 \end{bmatrix}$$

$$Ax_{3} = \frac{1}{3}y_{4}$$

Theorem 4 Suppose A and B are linear transformations from V to W and from U to V. Their product AB starts with a vector \mathbf{u} in U, goes to $B\mathbf{u}$ in V, and finishes with $AB\mathbf{u}$ in W. This "composition" AB is again a linear transformation (from U to W). Its matrix is the product of the individual matrices representing A and B.

$$U \xrightarrow{\mathbf{B}} V \xrightarrow{\mathbf{A}} W$$

$$\mathbf{u} \mapsto \mathbf{B}\mathbf{u} \mapsto \mathbf{A}\mathbf{B}\mathbf{u}$$

Example 6 Let T be a linear transformation of \mathbb{R}^2 such that

$$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}3\\4\end{bmatrix}, \quad T\left(\begin{bmatrix}2\\1\end{bmatrix}\right) = \begin{bmatrix}5\\6\end{bmatrix}.$$

Find the matrix for *T*.

Solution The matrix $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}^{-1}$ is such that $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The matrix
$$\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}$$
 is such that $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 5 \\ 6 \end{bmatrix}$.

Thus the matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{3} \begin{bmatrix} 7 & 1 \\ 8 & 2 \end{bmatrix}$$

is such that
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 and $\begin{bmatrix} 2 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 5 \\ 6 \end{bmatrix}$, and $T \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} = \frac{1}{3} \begin{bmatrix} 7 & 1 \\ 8 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

III. Ranges (值域)

We notice that, if f is a linear transformation, then $f(c\mathbf{u} + d\mathbf{v}) = f(c\mathbf{u}) + f(d\mathbf{v}) = cf(\mathbf{u}) + df(\mathbf{v}).$

Theorem 5 Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then the range of f is a subspace of \mathbb{R}^m .

Proof Let S = range(f). Then $f(\theta) = \theta \in S$,

because f(0) = f(0 - 0) = f(0) - f(0) = 0.

Let $x, y \in S$, i.e., x = f(u) and y = f(v) for some $u, v \in \mathbb{R}^n$.

Thus $x + y = f(u) + f(v) = f(u + v) \in S$.

Let $a \in \mathbf{R}$ and $x \in S$, i.e., x = f(u) for some $u \in \mathbf{R}^n$.

Thus $a\mathbf{x} = af(\mathbf{u}) = f(a\mathbf{u}) \in S$.

Therefore, S is a subspace of \mathbf{R}^m .

Note: A linear transformation is determined by the effect it has on a basis.

Rank-nullity theorem

Let f be a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

Definition 2 The kernel (核) ker(f) is the set $\{u \in \mathbb{R}^n \mid f(u) = 0\}$.

Example 7 Let f be a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 defined by

$$f(x, y) = (x + y, x + y).$$

Then the range

range(
$$f$$
) = {(a , a) | $a \in \mathbf{R}$ },

which is a line. The kernel is also a line:

$$\ker(f) = \{(a, -a) \mid a \in \mathbf{R}\}.$$

Theorem 6 (Rank-nullity theorem)

Let f be a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

Then the range of f is a subspace of \mathbf{R}^m , and the kernel of f is a subspace of \mathbf{R}^n . Moreover,

$$\dim(\ker(f)) + \dim(\operatorname{range}(f)) = n.$$

Key words:

Linear transformation: definition and examples; matrix of linear transformation; Range, kernel

Homework

See Blackboard

