# Low Light Depth Enhancement for UAV Applications

Shane Allan Sophia Wagner Almas Sahar





## **Table of Contents**

| 01 | Motivations and Introduction                                                                                                      |
|----|-----------------------------------------------------------------------------------------------------------------------------------|
|    | A project definition with relation to real world applications, including a brief summary of previous research directives.         |
| 02 | Data Collection                                                                                                                   |
|    | A summary of processes taken to obtain a trainable dataset, the data types used, and environment conditions.                      |
| 03 | Model Architecture                                                                                                                |
|    | Brief overview of machine learning, particularly convolutional neural network architecture and the model adapted for the project. |
|    | Results                                                                                                                           |
| 04 | Discussion addressing the effectiveness of the model to artificially enhance depth in low light conditions                        |
|    | Real Time Implementation                                                                                                          |
| 05 | Overview of the prototype unmanned aerial vehicle structure used to deploy the model                                              |
| 06 | Conclusion                                                                                                                        |
|    | Summary of the project deliverables, the results obtained, and the                                                                |

effectiveness of implementation in real time .

2

[1] M. Chu, "Edmonton LRT Tunnel," Flickr, 02-Sep-2013. [Online]. Available: https://www.flickr.com/photos/mikechu/9648389099. [Accesse 03-Dec-2022].



[2] D. Uria, "Drones to the Rescue: Public Safety Officials Invest in UAVs," UPI, 11-Mar-2019. [Online]. Available: https://www.upi.com/Top\_News/US/2019/03/11/Drones-to-the-rescue-Public-safety-officials-invest-in-UAVs/31815518

#### **Problem Definition**

A prototype unmanned aerial vehicle (UAV) tasked with autonomously mapping and exploring its environment using stereo depth estimation.

Environments include mine shafts, light rail tunnels (LRTs), search and rescue, and unstable infrastructure

#### **Motivation**

Suboptimal mapping and exploration performance in low lighting conditions

Various depth modes from camera unavailable with current firmware

## Introduction

**Depth Estimation** → **Autonomous Navigation** → **Driverless Cars, UAVs etc.** 



[4] (Google Researchers Released New State-of-the-Art Method For Depth Estimation from Single Image, n.d.)





#### **Related Work**

The study done by Rafael, Nicola and Nicolai proposed a stereo matching method called MTStereo 2.0 for limited resource systems that require efficient and accurate depth estimation. It is based on a Max tree hierarchical representation of image pairs which is used to identify matching regions among image scanlines. The proposed approach was tested on several benchmark datasets like KITTI, Driving, Flyingthing 3D and achieved competitive accuracy and efficiency. [8] (Brandt et al., 2020)

Amit, Noam, David and Ron proposed a refinement network for depth estimation and processed Depth rather than Disparity. This depth refinement of stereo matching algorithms attempts to tackle and reduce the quadratic relation between the depth and the error within the depth estimate. [9] (Bracha et al., 2021)

#### **Data Collection**

**Ultra Depth Mode** 



Neural Depth Mode



Zed 2 stereo camera from Stereolabs to collect low light, left and right stereo image pairs in addition to low light, low quality depth images and high light high quality depth images.

Factory Claim regarding depth image qualities: "The new Neural Depth mode generates a dense, high-fidelity depth map up to 2k resolution. The map is able to accurately capture challenging environments such as reflective surfaces and untextured areas. It also delivers high Depth completeness with unprecedented edge accuracy for advanced spatial segmentation. [3]"

Depth Range: 0.5 m to 20 m

Depth Data Type: 32 bit floating point

Left/Right Stereo Image Pairs: 8 bit 4 channel integers

Images: 100 - 80% Training 20% Testing

Stereo Image





## **Evolution of CNN Models**







## **Model Architecture**



## Results

Low-light depth input image



Low-light left input image



Low-light right input image



Output of the model



Ground truth depth image









#### **Model Architecture**



## **Results**



## **Results Continued**





Ground Truth: The high light, high quality image Input Depth: The low light, low quality image Model Output Depth: The CNN predicted output depth

Stereolabs claims that the Zed 2 camera can report depth accuracies **within 1%** of the true depth at low distances. Additionally, This error will and will increase exponentially **up to 9%** at high depths.

## **Real Time Implementation**

## **Hardware**



איהראוק







## **Software**















## **Real Time Implementation Continued**



#### References

- [1] M. Chu, "Edmonton LRT Tunnel," *Flickr*, 02-Sep-2013. [Online]. Available: https://www.flickr.com/photos/mikechu/9648389099. [Accessed: 03-Dec-2022].
- [2] D. Uria, "Drones to the Rescue: Public Safety Officials Invest in UAVs," *UPI*, 11-Mar-2019. [Online]. Available: https://www.upi.com/Top\_News/US/2019/03/11/Drones-to-the-rescue-Public-safety-officials-invest-in-UAVs/3181551831983/. [Accessed: 03-Dec-2022].
- [3] "Introducing next-generation stereo depth sensing," *Stereolabs*, 29-Sep-2022. [Online]. Available: https://www.stereolabs.com/blog/neural-depth-sensing/. [Accessed: 07-Dec-2022].
- [4] Google Researchers Released New State-of-the-art Method For Depth Estimation from Single Image. (n.d.). Retrieved December 6, 2022, from https://neurohive.io/en/news/researchers-from-google-released-new-state-of-the-art-method-for-depth-estimation-from-single-image/
- [5] 3D LiDAR sensors | MRS1000 | SICK. (n.d.). Retrieved December 6, 2022, from https://www.sick.com/ca/en/detection-and-ranging-solutions/3d-lidar-sensors/mrs1000/c/g387152
- [6] ZED 2 Al Stereo Camera | Stereolabs. (n.d.). Retrieved December 6, 2022, from https://www.stereolabs.com/zed-2/
- [7] The next step in machine learning: deep learning University of York. (n.d.). Retrieved December 6, 2022, from <a href="https://online.york.ac.uk/the-next-step-in-machine-learning-deep-learning/">https://online.york.ac.uk/the-next-step-in-machine-learning-deep-learning/</a>
- [8] Brandt, R., Strisciuglio, N., & Petkov, N. (2020). MTStereo 2.0: improved accuracy of stereo depth estimation withMax-trees. <a href="http://arxiv.org/abs/2006.15373">http://arxiv.org/abs/2006.15373</a>
- [9] Bracha, A., Rotstein, N., Bensaïd, D., Slossberg, R., & Kimmel, R. (2021). Depth Refinement for Improved Stereo Reconstruction. http://arxiv.org/abs/2112.08070





# **Questions?**

