ソフトウェア工学入門

FU14 ソフトウェア工学概論 第1回 吉岡 廉太郎

今日の内容

- ソフトウェア工学とは何か
 - 主要な要素と対象範囲

- 要求定義工程
 - ユースケース分析

対象となるソフトウェア

https://news.microsoft.com/jajp/windows 10 anniversary update desktop/

全国の新幹線、JRの特急列車がインターネットで予約できる 便利でおトクなサービスです

https://www.eki-net.com/top/jrticket/about/

http://www.jrewater.com/pdf/100810jisedai-jihanki.pdf

http://www.volvocars.com/jp/cars/concept-cars/concept26

ソフトウェア開発の将来は挑戦であふれている

ビジネスのスピードが 加速

短時間で高い品質を実現す る

価値の変化

モノは安くなり開発・管理コストが増加

コンピュータの処理能力向上

ソフトウェアに対する要求が 複雑化

ネットワークの高速化

新しい技術や方法に柔軟に 対応

ユーザインタフェースの 進化

様々な機器、利用の場面、 ユーザに対応

ソフトウェア工学は誰の役に立つのか?

プロジェクトの利害関係者

...ソフトウェアに関わる全ての人に役に立つ!

ソフトウェア開発の基本プロセス

上流工程

- どのような目的でどのようなソフトウェアが必要か明確にする
- ソフトウェアを構成するコンポーネントやそのやりとりの方法などを決める

開発チームの構成

ほとんどのソフトウェアはチームで開発する

メンバーの連携が成 功のカギ!

ソフトウェア開発はバランスが重要!

品質を確保するために必要なこと

対率の良い開発 ミスが生まれにくい技術© 人の技量に左右されない 誰がやってもできる技術©

これらの要素の追求=ソフトウェア工学

コンピュータ理工学との関係

課題を解決すること

ソフトウェアを通して人が抱える課題を解決する

・ソフトウェア開発=課題の解決

- 与えられた課題を解決するとは
 - 課題を理解する
 - 解決策を構築する

大規模な課題、 複雑な課題、

課題を解決する:問題の分割

• 理解しやすい大きさに分割する

- 抽象化が鍵

課題を解決する:統合

- 個別の解決策を組み合わせる
 - くっつけるときに問題が起きやすい

課題を解決する知恵

- テクニック
 - 形式的な手順のこと
 - ツールには依存しない、何かを達成するためのレシピ

- ツール
 - 目的の達成を容易にする道具や自動化されたシステム

- ・プローシージャ
 - 成果物を得るためのツールとテクニックの組み合わせ方

- ・パラダイム
 - 成果物を構築するための哲学や取り組み方

要求定義工程

- ソフトウェア開発の最初の工程
 - 開発プロジェクトの最初に行う活動

- ・顧客から要求を導き出す
 - 何が必要かを明らかにする

- 要求をモデリングする
 - 全ての利害関係者に分かるように表現する

4.1.1

要求定義とは

- 要求とは、必要としている動作を表現したもの
- ・ 要求の構成
 - オブジェクトや現象
 - それらの状態
 - オブジェクトや状態の変化のきっかけとなる活動
- 顧客が必要としている動作・能力に着目する
 - どのように実現するかを言うことなく、 どのような動作が必要かを表現する
 - システムとしての実現方法とは違う

要求の種類

機能要求

• 求める振る舞いを動作として表現

品質要求 (非機能要求)

ソフトウェアが満たさなければならない 品質に関わる性質

デザイン要件

ソフトウェアが動作するプラットフォーム やインタフェースの指定

プロセス要件

システム開発の方法やリソースについての要件

利害関係者=ステークホルダ

顧客

• ソフトウェア開発の費用を払う人

ユーザ

• システムを使う人

ドメインの専門家

• システムが自動化する業務を良く知る人

マーケティング担当者

• 将来の動向やユーザについて調査する人

弁護士など

• 政府、安全、法律・規則等に精通した人

専門家

• ソフトウェア開発者など技術に精通した人

要求の導出と定義

- 何が必要なのか、顧客自身も分からないことがある
- 要求は、そのシステムに関与するすべての人と話合うことが重要
 - 要求を持つのはステークホルダである
 - ステークホルダごとに要求することや要求の重要性が異なる
- 要求の決定に当たっては必ず合意すること
 - 要求について合意できなければプロジェクトは必ず失敗 する!

要求を導き出す手順

- 担当者:要求アナリスト、システムアナリスト
- 成果物:要求定義書

要求を導き出す手段

- 情報収集
 - 利害関係者へのインタビュー
 - 既存資料の調査
 - 現行システムを参考にする
 - ユーザの業務を習う
 - ユーザや利害関係者をグループでインタビュー
 - ドメイン(業務分野)特有の手法に着目する
- 発想支援
 - ユーザとのブレインストーミング
- 合意形成

ユースケース分析

- ・ユースケース
 - 要求されるシステムの利用のされ方
 - 対象とするシステムの範囲(サブジェクト)とそれに関わる外部の役割(アクター)で表す
- ユースケースを考える目的
 - 動作や機能を明らかにする
 - 動作に関与する人や物を明らかにする
- ユースケース図
 - システムの使われ方を大雑把に捉える
 - 機能をすべて詳細に列挙しなくていい

ユースケース図

- ユースケースとの関係を記述した図
 - <u>アクター</u>:ユースケースに関わる人や物
 - <u>関連</u>:アクターとユースケースの関係を示す線
 - <u>ユースケース</u>:対象となる活動

本日のまとめ

- 与えられた課題に対して
 - 分析する
 - 解決策を構築する
- 品質と効率を制御する
 - 異なる複数の観点・立場で捉える
- 要求を形作る(モデリング)
- システムの境界に留意する
 - ユーザの立場で考える(ユースケース)

次回講義の事前学習:

8.1, 8.2.1, 8.2.2, 8.2.5, 4.1.1, 4.1.2

授業の進め方

- 配点
 - クイズ 5%
 - 期末試験 60%
 - 演習 35%
- ・ 講義担当のTA
 - 遠藤俊大 m5221201、新井雅裕 5201202
- ウェブページ
 - moodleサイト http://sealpv0.u-aizu.ac.jp/moodle/
 - 授業ウェブサイト http://borealis.u-aizu.ac.jp/classes/se1/

- 講義資料は予習し、自分で用意(印刷等)してください

学内アクセス限定

• 教科書 · 参考文献

書名	著者	出版社
ソフトウェア工学	岸知二, 野田夏子	近代科学者
Software Engineering Theory and Practice I	Shari Lawrence Pfleeger, Joane M.Atlee	Prentice Hall
UML Distilled	Martin Fowler	Addison-Wesley

授業の受け方

予習

• 教科書の指定範囲と講義資料を授業前に読む/分からないことは自分で調べてみる

講義(7限)

講義資料の解説を聞いて理解を深める/分からない事は、クイズの質問欄で聞く

講義内演習(8限)

• クイズや小課題を個人またはグループで解いて理解を深める

演習(9限)

• 演習課題で手を動かして理解する

復習

教科書を再度読んで理解を確認する