CyberSecurity Data Sources

Classification of Cybersecurity Data Sources

Data Type	Description	Examples	Advantages	Limitations
Static (Offline) Data	Pre-collected and labeled datasets stored in files. Used for training ML models.	KDD Cup 1999, NSL- KDD, CICIDS2017, UNSW-NB15	Easy to access, standardized, labeled	May not represent the latest attack patterns
Dynamic (Live) Data	Real-time data captured from active networks or simulated environments.	Captured via Wireshark, Zeek, or network sensors	Reflects real- world, current threats	Hard to label, privacy risks, high setup cost

Overview of Commonly Used Datasets

Dataset	Year	Source	Key Features	Suitable For
KDD Cup 1999	1999	DARPA Intrusion Detection Evaluation	41 features, labeled attacks	Basic intrusion detection research
NSL-KDD	2009	University of New Brunswick	Improved KDD dataset with reduced redundancy	Educational use, ML benchmarks
UNSW-NB15	2015	Australian Centre for Cyber Security	49 features, modern attacks	Deep learning- based IDS

CICIDS2017	2017	Canadian Institute for Cybersecurity	80+ features, realistic network traffic	Realistic enterprise-level intrusion detection
TON_IoT	2020	UNSW Canberra	IoT device traffic, telemetry & attacks	IoT security AI models

Static vs Live Data: In-depth Comparison

Criteria	Static Dataset	Live Data Capture
Data Collection	Already available	Requires sensors, packet capture tools
Cost	Free / Open source	Expensive setup
Data Labeling	Pre-labeled	Manual or semi-automated
Privacy Risk	None	Possible data exposure
AI Compatibility	Directly usable for supervised ML	Requires preprocessing
Best Use	Training & validation	Real-time testing & monitoring