Table of Contents

- 2. Univariate Random Variables
 - 2.1 Introduction to probability model
 - 2.2 Discrete random variable
 - 2.3 Continuous random variable
 - 2.4 Expectation
 - 2.5 Moment generating function
- 3. Joint Distribution
 - 3.1 Joint and Marginal cdfs
 - 3.2 Joint Discrete r.v.s
 - 3.3 Joint Continuous r.v.s
 - 3.4 Independent of random variables
 - 3.5 Joint expectation
 - 3.6 Conditional distribution
 - 3.7 Conditional expectation
 - 3.8 Joint Moment Generating Function
 - 3.9 Multinomial Distribution
 - 3.10 Bivariate Normal Distribution
- 4. Functions of Random Variables
 - 4.1 CDF Technique
 - 4.2 One-to-One Bivariate Transformation

2 Univariate Random Variables

2.1 Introduction to probability model

• **Probability model** is used to describe a random exprienment.

It consists of three important components:

- i. Sample space S: a collection of all possible outcomes of one random experiment.
 - e.g. Toss a coin: $S = \{H, T\}$
 - e.g. Toss a coin twice: $S = \{(H,H),(H,T),(T,H),(T,T)\}$
- ii. **Event**: denoted by A, B, C, etc. It is a subset pf sample space.
 - e.g. Toss a coin twice:

Define A as 1st toss is tail, $A = \{(T, T), (T, H)\} \subseteq S$

iii. **Probability function** P: It is a function of events.

It satisfies properties (axioms):

- a. $0 \le P(A) \le 1$ for any event A.
- b. P(S)=1
- c. Countable additivity: If A_1,A_2,\ldots are assumed to be pairwise multually exclusive

events (i.e.
$$A_i\cap A_j=\emptyset$$
 for $i
eq j$), $P\left(igcup_{i=1}^\infty A_i
ight)=\sum_{i=1}^\infty P(A_i).$

We can now prove the following properties:

a. $P(\emptyset) = 0$.

Proof: Let $A_i=\emptyset$ for $i\geq 1$, $A_i\cap A_j=\emptyset$ for $i\neq j$, by axioms we have

$$P\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}P(A_i),$$
 or in other words, $P(\emptyset)=\sum_{i=1}^{\infty}P(\emptyset).$ Additionally, $0< P(\emptyset)<1,$ therefore, $P(\emptyset)=0.$

- b. Let A denote an event. Let \bar{A} denote the complementary event of A, which means \bar{A} saitifies two conditions:
 - a. $ar{A}\cap A=\emptyset$, and
 - b. $ar{A} \cup A = S$.

Prove $P(A)+P(ar{A})=1$:

Proof: Define
$$A_1=A$$
, $A_2=ar{A}$, $A_i=\emptyset$ for $i\geq 3$, so $A_i\cap A_j=\emptyset$ for $i\neq j$, by axioms we have $P\left(\bigcup_{i=1}^\infty A_i\right)=\sum_{i=1}^\infty P(A_i)$, in other words, $P(S)=P(A)+$

$$P(ar{A}) + \sum_{i=3}^{\infty} 0$$
, therefore, $P(A) + P(ar{A}) = 1$.

c. If A_1 and A_2 are mutually exclusive, then $P(A_1 \cup A_2) = P(A_1) + P(A_2)$.

Proof: Define
$$A_i=\emptyset$$
 for $i\geq 3$, so $S=A_i\cap A_j=\emptyset$, for $i\neq j$. Then $P\left(\bigcup_{i=1}^\infty A_i\right)=\sum_{i=1}^\infty P(A_i)$, or in other words, $P(A_1\cup A_2)=P(A_1)+P(A_2)+0$.

d. In general, $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$.

Proof: Define $B=\{\omega|\omega\in A_1, \omega\notin A_2\}$, since $A_1=B\cup(A_1\cap A_2)$, we can get $B\cap(A_1\cap A_2)=\emptyset$, $B\cup(A_1\cap A_2)=A_1$, $B\cap(A_1\cap A_2)=\emptyset$, $B\cap A_2=\emptyset$, and therefore $B\cup A_2=A_1\cup A_2$.

Then $P(A_1 \cup A_2) = P(B \cup A_2) = P(B) + P(A_2)$. Note $P(A_1 \cup A_2) = P(A_2) + P(B)$ and $P(B) = P(A_1) - P(A_1 \cap A_2)$. Hence, $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$.

e. If $A_1 \subseteq A_2$, then $P(A_1) \leq P(A_2)$

Proof:
$$A_2\setminus A_1:=B=\{\omega|\omega\in A_2, \omega\notin A_1\}$$
, we have $B\cap A_1=\emptyset$, $B\cup A_1=A_2$. Then $P(A_2)=P(A_1\cup B)=P(A_1)+P(B)\geq P(A_1)$.

e.g. Toss a coin twice

Then $S = \{(H, H), (H, T), (T, H), (T, T)\}$ for any event A,

$$P(A) := \frac{\# \text{ of elements in } A}{4}$$

Verify P is a probability function.

Conditional probability

Suppose A and B denote two events. Provided P(B)>0, then the conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Independence of two events

Suppose A and B denotes two events. We say A and B are independent if and only if

$$P(A \cap B) = P(A)P(B)$$

 ${\color{red} \bullet}$ Proposition: If A and B are independent, then P(A|B) = P(A) (We assume P(B) > 0)

Proof:
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

e.g. Toss a coin twice

 $A := 1st toss is a head = \{(H, T), (H, H)\}$

 $B:= 2\mathrm{nd}\ \mathrm{toss}\ \mathrm{is}\ \mathrm{a}\ \mathrm{head} = \{(T,H),(H,H)\}$ For any event $C,P(C) = rac{\#\ \mathrm{of\ elements\ in}\ C}{4}$

Verify A and B are independent.

$$P(A \cap B) = P(A)P(B)$$
?

By definition, $A\cap B=\{(H,H)\} \implies P(A\cap B)=rac{1}{4}$

$$P(A) = \frac{2}{4}, P(B) = \frac{2}{4}.$$

Hence, $P(A \cap B) = P(A)P(B)$.

• Random variable (r.v.) X,Y,ζ,η

Random variable is a function from sample space to real line.

$$X:S o\mathbb{R}$$

Specifically, given any $\omega \in S$, $X(\omega) \in \mathbb{R}$.

This function satisfies that for any $x \in \mathbb{R}$, $\{X \leq x\} = \{\omega | X(\omega) \leq x\}$ is an event.

e.g. Toss a coin twice

X: # of heads in two tosses.

 $X:(H,H)\mapsto 2.$

We need to check for any x, $\{X \leq x\}$ is an event.

1.
$$x\geq 2$$
, $\{X\leq x\}=\{\omega|X(\omega)\leq x\}=S$

2.
$$x \in [1, 2)$$
, what is $\{X \le x\}$?

3.
$$x \in [0, 1)$$
, what is $\{X \le x\}$?

4.
$$x < 0$$
, what is $\{X \le x\}$?

• Cumulative distribution of X (c.d.f.)

For any $x \in \mathbb{R}$, the c.d.f. of X is defined as $F(x) = P(X \leq x)$.

It satisfies the following property:

i. F(x) is a non-decreasing fucntion, i.e., if $x_1 \leq x_2$, then $F(x_1) \leq F(x_2)$.

Proof:
$$\{X \leq x_1\}$$
 is an event. $\{X \leq x_1\} \subseteq \{X \leq x_2\}$ if $x_1 < x_2$, since $\{\omega | X(\omega) \leq x_1\} \leq \{\omega | X(\omega) \leq x_2\}$.

ii.
$$\lim_{x \to -\infty} F(x) = 0$$
, $\lim_{x \to \infty} F(x) = 1$.

iii. F(x) is a right-continuous function, i.e., for any $a\in\mathbb{R}$, $\lim_{x o a^+}F(x)=F(a)$.

1, 2 and 3 are three basic properties of a c.d.f.

Some extra properties of a c.d.f.:

iv.
$$P(a < X \le b) = F(b) - F(a)$$
.

Proof: Define $A=\{X\leq b\}, B:=\{X\leq a\}, C=\{a< x\leq b\},$ we want to prove: $P(a< X\leq b)=P(X\leq b)=P(X\leq a)\iff P(C)=P(A)-P(B).$ Note $B\cap C=\emptyset, B\cup C=A.$ Then $P(A)=P(B\cup C)=P(B)+P(C).$

v.
$$P(X=a) = P(X \leq a) - P(x < a) = F(a) - F(a^-).$$

Proof: $P(X=a)=P(X\leq a)-P(X< a)=F(a)-\lim_{x\to a^-}F(x)=\lim_{x\to a^+}F(x)-\lim_{x\to a^-}F(x).$

2.2 Discrete random variable

Definition:

If a random variable X can only take on a finite or countably infinite number of values, then X is called a discrete random variable.

• cdf of a discrete r.v. is a right continuous step funciton

- Probability function (pf): f(x)=P(X=x). For a discrete r.v., f(x) $\begin{cases} >0 & \text{if } X \text{ can take value } x \\ =0 & \text{if } X \text{ cannot take value } x \end{cases}$
- Support: The set $A = \{x : f(x) > 0\}$ is called the support of X. These are all the possible values that X can take.
- ullet Properties of a p.f. f for a discrete r.v. X.

i.
$$f(x) \geq 0$$
 for any $x \in \mathbb{R}$.

ii.
$$\sum f(x) = 1$$
.

Proof: The support of X is a countable set, $A=\{x_1,\ldots,x_n\}$. Let $B_i=\{X=x_i\}$ is an event for $i=1,\ldots,n$. B_i are pairwise mutually exclusive events, i.e. $B_i\cap B_j=\emptyset$ for $i\neq j$. Then, $\bigcup_{i=1}^n B_i=S$. Then, $1=P(S)=P\left(\bigcup_{i=1}^n B_i\right)=\sum_{i=1}^n P(B_i)=\sum_{i=1}^n P(X=x_i)$.

- Some commonly used discrete r.v.
 - i. Bernoulli r.v. $X \sim \mathrm{Bern}(p)$.

X can only take two possible values, 0 and 1. $A=\{0,1\}$.

$$f(1) = P(X = 1) = p.$$

ii. Binomial distribution

Toss a coin n times.

a. different tosses are indepedent

b. probability of getting a head is fixed, which is denoted by p.

X: # of heads across n tosses, then $X \sim \mathrm{Bin}(n,p)$.

Hence the support of X, $A = \{0, 1, 2, \dots, n\}$.

The p.f. of
$$X$$
 is $f(x)=P(X=x)=inom{n}{x}p^x(1-p)^{n-x},$ $x\in A.$

$$\sum_{x=0}^{n} \binom{n}{x} p^x (1-p)^{n-x} = [p+(1-p)]^n = 1$$

iii. Geometric distribution

X: # of failures before the first success.

The support of X is $A=\{0,1,\ldots\}.$

$$f(x) = P(X = x) = (1 - p)^x p, x \in A.$$

$$\sum_{x=0}^{\infty} (1-p)^x p = \frac{p}{1-(1-p)} = 1$$

iv. Negative binomial r.v. $X \sim \mathrm{NegBin}(r,p)$

X: # of failures before the rth success.

v. Poisson r.v. $X \sim \mathrm{Poisson}(\mu)$

The support of X, $A = \{0, 1, \dots\}$.

The probability function $f(x)=P(X=x)=rac{\mu^x}{x!}e^{-\mu}$, $x\in A$.

$$\sum_{x \in A} f(x) = \sum_{x=0}^{\infty} \frac{\mu^x}{x!} e^{-\mu} = e^{-\mu} \sum_{x=0}^{\infty} \frac{\mu^x}{x!} = e^{-\mu} e^{\mu} = 1.$$

Aside:
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
.

2.3 Continuous random variable

Definition: If the collection of all possible values X can take is an interval or the real line, then X is called a continuous r.v.

- Remark: If X is continuous r.v., its cdf F(x) is continuous everywhere. Moreover, F is differentiable almost everywhere. It is not differentiable at atmost countable locations.
- Probability density function (pdf):

$$f(x) = egin{cases} F'(x) & ext{if F is differentiable at } x \ 0 & ext{otherwise} \end{cases}$$

- Support of X: $A = \{x | f(x) > 0\}$.
- Basic property of f:

i.
$$f(x) \geq 0$$
 for any $x \in \mathbb{R}$.

ii.
$$\int_{-\infty}^{\infty} f(x) dx = 1$$
.

Extra properties of f:

i.
$$F(x)=\int_{-\infty}^x f(t)dt=F(x)-F(-\infty)$$
 (find cdf from pdf).

i.
$$F(x)=\int_{-\infty}^x f(t)dt=F(x)-F(-\infty)$$
 (find cdf from pdf).
ii. $f(x)=\begin{cases} F'(x) & \text{if F is differentiable at } x \\ 0 & \text{otherwise} \end{cases}$ (find pdf from cdf).

iii.
$$P(X=x)=0$$
 and $f(x)
eq P(X=x)$ for any x .

If
$$F$$
 is differentiable at x , then $f(x) = \lim_{h o 0} \frac{F(x+h) - F(x)}{h}$

$$\implies F(x+h) - F(x) \approx f(x) \cdot h$$

$$\implies P(x < X \le x + h) \approx f(x) \cdot h.$$

iv.
$$P(a < X \leq b) = F(b) - F(a) = P(a < X < b) = P(a \leq X \leq b)$$

Example (Uniform distribution):

Suppose the cds if

$$F(x) = egin{cases} 0 & x \leq a \ rac{x-a}{b-a} & a < x < b \ 1 & x \geq b \end{cases}$$

Find pdf f(x):

The pdf is:
$$f(x) egin{cases} 0 & x \leq a \ rac{1}{b-a} & a < x < b \ 0 & x \geq b \end{cases}$$

Example:

Define a function

$$f(x) = egin{cases} rac{ heta}{x^{ heta+1}} & x \geq 1 \ 0 & ext{otherwise} \end{cases}$$

i. Find for what values of θ , f is a pdf?

Solution: $f(x)\geq 0$ for any $x\in\mathbb{R}$, therefore $\theta\geq 0$. $\int_{-\infty}^{\infty}f(x)dx=\int_{1}^{\infty}\frac{\theta}{x^{\theta+1}}dx$. Case 1: $\theta=0$, $\int_{-\infty}^{\infty}f(x)dx=0\neq 1$.

Case 1:
$$\theta = 0$$
, $\int_{-\infty}^{\infty} f(x) dx = 0 \neq 1$.

Case 2:
$$heta>0$$
, $\int_{-\infty}^{\infty}f(x)dx=\int_{1}^{\infty}rac{ heta}{x^{ heta+1}}dx=-rac{1}{x^{ heta}}\Big|_{1}^{\infty}=1$.

ii. Find F(x) if f is a pdf.

Solution: $F(x) = \int_{-\infty}^x f(t) dt$

Case 1: $x \leq 1$, $F(x) = \int_{-\infty}^x f(t) dt = 0$.

Case 2:
$$x>1$$
, $F(x)=\int_{-\infty}^x f(t)dt=\int_1^x rac{ heta}{t^{ heta+1}}dt=-rac{1}{t^{ heta}}ig|_1^x=1-rac{1}{x^{ heta}}$

iii. Find P(2 < X < 3) and P(-2 < X < 3).

Solution:

$$egin{aligned} P(2 < X < 3) &= F(3) - F(2) = \left(1 - rac{1}{3^{ heta}}
ight) - \left(1 - rac{1}{2^{ heta}}
ight) = rac{1}{2^{ heta}} - rac{1}{3^{ heta}}. \ P(-2 < X < 3) &= F(3) - F(-2) = \left(1 - rac{1}{3^{ heta}}
ight) - 0 = 1 - rac{1}{3^{ heta}}. \ P(-2 < X < 3) &= \int_{-2}^{3} f(x) dx = \int_{-2}^{1} f(x) dx + \int_{1}^{3} f(x) dx = \int_{-2}^{1} 0 dx + \int_{1}^{3} rac{ heta}{x^{ heta+1}} dx = -rac{1}{x^{ heta}} \Big|_{1}^{3} = 1 - rac{1}{3^{ heta}}. \end{aligned}$$

 \circ Gamma function, $\Gamma(\alpha), \alpha > 0$.

$$\Gamma(lpha) = \int_0^\infty x^{lpha-1} e^{-x} dx$$

a.
$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$
.

b.
$$\Gamma(n)=(n-1)!$$
 when n is a positive integer, $\Gamma(1)=1$.

c.
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
.

Example (Gamma distribution):

The pdf is

$$f(x) = egin{cases} rac{x^{lpha-1}e^{-x/eta}}{eta^lpha\Gamma(lpha)} & x>0 \ 0 & ext{otherwise} \end{cases}$$

if $\alpha > 0, \beta > 0$ are constants.

Verify f is a pdf.

a.
$$f(x) \geq 0$$
 for any $x \in \mathbb{R}$.

b.
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx = 0 + \int_{0}^{\infty} \frac{x^{\alpha-1} e^{-x/\beta}}{\beta^{\alpha} \Gamma(\alpha)} dx.$$
 Here, note $\int_{0}^{\infty} x^{\alpha-1} e^{-x} dx = \Gamma(\alpha).$ Let $y = \frac{x}{\beta} \implies x = \beta y, \, dx = \beta dy.$

Then,
$$\int_0^\infty \frac{x^{\alpha-1}e^{-x/\beta}}{\beta^\alpha\Gamma(\alpha)}dx = \int_0^\infty \frac{(\beta y)^{\alpha-1}e^{-y}}{\beta^\alpha\Gamma(\alpha)}\beta dy = \frac{1}{\Gamma(\alpha)}\int_0^\infty y^{\alpha-1}e^{-y}dy = \frac{1}{\Gamma(\alpha)}\Gamma(\alpha) = 1.$$

Example (Weibull distribution):

The pdf is

$$f(x) = egin{cases} rac{eta}{ heta^eta} x^{eta-1} \mathrm{exp}\left\{-\left(rac{x}{ heta}
ight)^eta
ight\} & x > 0 \ 0 & x < 0 \end{cases}$$

where $\alpha>0, \beta>0$ are constants, $X\sim \mathrm{Weibull}(\theta,\beta).$ Verify f is a pdf.

Solution:

a.
$$f(x) \geq 0$$
 for any $x \in \mathbb{R}$.

b.
$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{0} f(x)dx + \int_{0}^{\infty} f(x)dx = 0 + \int_{0}^{\infty} \frac{\beta}{\theta^{\beta}} x^{\beta-1} \exp\left\{-\left(\frac{x}{\theta}\right)^{\beta}\right\} dx.$$
 Let $y = \left(\frac{x}{\theta}^{\beta} \implies x = \theta y^{\frac{1}{\beta}}, dx = \theta \frac{1}{\beta} y^{\frac{1}{\beta}-1} dy.$ Then,
$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{\infty} \frac{\beta}{\theta^{\beta}} (\theta y^{\frac{1}{\beta}})^{\beta-1} \exp\left\{-y\right\} \theta \frac{1}{\beta} y^{\frac{1}{\beta}-1} dy = \Gamma(1) = 1.$$

Exmaple (Normal distribution/Gaussian distribution):

The pdf is

$$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

for $x \in \mathbb{R}$,

where $\mu \in \mathbb{R}$, $\sigma > 0$ are constants, $X \sim \mathrm{Normal}(\mu, \sigma)$. Verify f is a pdf.

a.
$$f(x) \geq 0$$
 for any $x \in \mathbb{R}$.

b.
$$\int_{-\infty}^{\infty} f(x)dx = 1$$
.

To verify 2, we start from a special case, where $\mu=0, \sigma=1$.

$$\begin{array}{l} f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\text{, i.e., } \int_{-\infty}^{\infty}f(x)dx=\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx=1.\\ \int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx=2\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx\text{. Let }y=\frac{x^2}{2}\implies x=\sqrt{2y}\text{, }dx=\sqrt{2}dy. \end{array}$$

Then,
$$2\int_0^\infty \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx=\frac{1}{\sqrt{\pi}}\int_0^\infty e^{-y}y^{1-1/2}dy=\frac{1}{\sqrt{\pi}}\Gamma(1/2)=1.$$

Prove $f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$ is a pdf for any $\mu\in\mathbb{R},\,\sigma>0.$

a.
$$f(x) \geq 0$$
 for any $x \in \mathbb{R}$.

b.
$$\int_{-\infty}^{\infty} f(x) dx = 1$$
?

$$\int_{-\infty}^{\infty}f(x)dx=\int_{-\infty}^{\infty}rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}dx.$$
 Let $z=rac{x-\mu}{2\sigma^2}\Longrightarrow x=\mu+\sigma z$, $dx=\sigma dz$

Let
$$z=rac{x-\mu}{\sigma} \implies x=\mu+\sigma z, dx=\sigma dz$$

$$\int_{-\infty}^{\infty} rac{1}{\sqrt{2\pi}\sigma} e^{-rac{z^2}{2}} dz = \int_{-\infty}^{\infty} rac{1}{\sqrt{2\pi}\sigma} e^{-rac{x^2}{2}} dx = 1.$$

2.4 Expectation

• Definition of expectation for discrete r.v.

Suppose that X is a discrete r.v. with support A and p.f. f(x).

Then,
$$E(X) = \sum_{x \in A} x f(x)$$
 provided $\sum_{x \in A} |x| f(x) < \infty$.

• Definition of expectation for continuous r.v.

Suppose that X is a continuous r.v. with support A and pdf f(x).

Then
$$E(X)=\int_{-\infty}^{\infty}xf(x)dx$$
 provided $\int_{-\infty}^{\infty}|x|f(x)dx<\infty.$

Example (Cauchy distribution):

The pdf of X is $f(x)=rac{1}{\pi(1+x^2)}$ for $x\in\mathbb{R}.$

Find E(X).

Solution:

$$\int_{-\infty}^{\infty} |x| f(x) dx = \int_{-\infty}^{\infty} |x| \frac{1}{\pi(1+x^2)} dx = 2 \int_{0}^{\infty} \frac{x}{\pi(1+x^2)} dx = \left. \frac{\ln(1+x^2)}{\pi} \right|_{0}^{\infty} = \infty.$$

Therefore, E(X) does not exist.

Example:

Suppose p.f.
$$f(x)=rac{1}{x(x+1)}$$
 for $x=1,2,3,\ldots$, the support of X is $A=\{1,2,3,\ldots\}$.

i. Show f is a p.f.

i.
$$f(x) \geq 0$$
 for any $x \in \mathbb{R}$.

ii.
$$\sum_{x\in A} f(x) = \sum_{x\in A} \frac{1}{x(1+x)} = \sum_{x=1}^{\infty} \left(\frac{1}{x} - \frac{1}{x+1}\right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots = 1.$$

ii. Find E(X).

Solution:
$$E(X) = \sum_{x \in A} x f(x) = \sum_{x \in A} x \frac{1}{x(x+1)} = \sum_{x \in A} \frac{1}{x+1} = \sum_{x=1}^{\infty} \frac{1}{x+1} = \infty$$
.

E(X) does not exist.

More examples of expectations:

i. Binomial Distribution, $X \sim \text{Bin}(n, p)$.

Solution 1:
$$E(X) = \sum_{x \in A} x f(x) = \sum_{x=0}^n x \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} = \sum_{x=1}^n x \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} = \sum_{x=1}^n \frac{n!}{(x-1)!(n-x)!} p^x (1-p)^{n-x}.$$
 Let $y = x-1$, then $\sum_{x=1}^n \frac{n!}{(x-1)!(n-x)!} p^x (1-p)^{n-x} = np \sum_{y=0}^{n-1} \frac{(n-1)!}{y!(n-1-y)!} p^y (1-p)^{n-1-y} = np$, since $\sum_{y=0}^{n-1} \frac{(n-1)!}{y!(n-1-y)!} p^y (1-p)^{n-1-y}$ is a pf of $Bin(n-1,p)$.

Solution 2: For the
$$i$$
th trial, $X_i = \begin{cases} 1 & \text{if the } i \text{th outcome is a success} \\ 0 & \text{otherwise} \end{cases}$ Then, $P(X_i = 1) = p$. Let $X = \sum_{i=1}^n X_i$, then $X \sim \text{Bin}(n,p)$. $E(X) = E(\sum_{i=1}^n X_i) = \sum_{i=1}^n E(X_i) = \sum_{i=1}^n 1 \cdot P(X_i = 1) = np$.

ii. Suppose
$$X$$
 is a continuous r.v. with pdf $f(x)=egin{cases} rac{ heta}{x^{ heta+1}} & x\geq 1 \ 0 & ext{otherwise} \end{cases}$, where $heta>0$ is

a constant. Find E(X), and determine the values of θ for which E(X) exists.

Solution:
$$\int_{-\infty}^{\infty} |x| f(x) dx = \int_{1}^{\infty} x \frac{\theta}{x^{\theta+1}} dx = \int_{1}^{\infty} \frac{\theta}{x^{\theta}} dx < \infty \text{ iff } \theta > 1.$$
 When $\theta > 1$, $E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{1}^{\infty} \frac{\theta x}{x^{\theta+1}} dx = \theta \int_{1}^{\infty} \frac{1}{x^{\theta}} dx = \left(\frac{\theta}{1-\theta} x^{1-\theta}\right) \Big|_{1}^{\infty} = \frac{\theta}{\theta-1}.$

When $\theta < 1$, E(X) does not exist.

Expectation of a function of X

Suppose thar X is a r.v., what is E(g(X)), where g is a real function? For example, $q(x) = x^2$.

Let Y = q(X), find E(Y).

- \circ Case 1: If X is a discrete r.v. with support A and p.f. f(x), then E(g(X)) = $\sum_{x \in A} g(x) f(x)$ provided $\sum_{x \in A} |g(x)| f(x) < \infty$.
- \circ Case 2: If X is a continuous r.v. with support A and pdf f(x), then E(g(X)) = $\int_{-\infty}^{\infty}g(x)f(x)dx$ provided $\int_{-\infty}^{\infty}|g(x)|f(x)dx<\infty.$
- Linearity Property: If a and b are two constants, then E[ag(X) + bg(X)] = aE(g(X)) + bg(X)bE(h(X)).

- Variance: $Var(X)=E[(X-\mu)]^2=E(X^2)-\mu^2=E(X^2)-[E(X)]^2$ where $\mu=0$ E(X).
- Moments:
 - kth moment about 0: $E(X^k)$.
 - kth moment about mean: $E[(X \mu)^k]$, where $\mu = E(X)$.

Example (Poission distribution):

Suppose $X \sim \text{Poisson}(\mu)$, where $\mu > 0$ is a constant.

Find E(X) and Var(X).

Solution:
$$E(X) = \sum_{x=0}^{\infty} x \frac{\mu^x}{x!} e^{-\mu} = \mu e^{-\mu} \sum_{x=1}^{\infty} \frac{\mu^{x-1}}{(x-1)!}.$$
 Let $y = x-1$, then $E(X) = \mu e^{-\mu} \sum_{y=0}^{\infty} \frac{\mu^y}{y!} = \mu e^{-\mu} e^{\mu} = \mu.$ $E(X^2) = \sum_{x=0}^{\infty} x^2 \frac{\mu^x}{x!} e^{-\mu} = \sum_{x=1}^{\infty} \frac{x\mu^x}{(x-1)!} e^{-\mu} = \sum_{x=1}^{\infty} \frac{(x-1)\mu^x}{(x-1)!} e^{-\mu} = \sum_{x=1}^{\infty} \frac{(x-1)\mu^x}{(x-1)!} e^{-\mu} = \sum_{x=2}^{\infty} \frac{\mu^x}{(x-1)!} e^{-\mu} = \sum_{x=2}^{\infty} \frac{\mu^x}{(x-2)!} e^{-\mu}.$ Let $y = x-2$, then $\sum_{y=0}^{\infty} \frac{\mu^{y+2}}{y!} e^{-\mu} = \mu^2 e^{-\mu} \sum_{y=0}^{\infty} \frac{\mu^y}{y!} = \mu^2.$ That means $E(X^2) = \mu^2 + \mu$, and $Var(X) = E(X^2) - [E(X)]^2 = \mu^2 + \mu - \mu^2 = \mu.$

Example (Gamma distribution):

Suppose $X \sim \operatorname{Gamma}(\alpha, \beta)$. Find $E(X^k)$, k > 0.

pdf of
$$X$$
 is $f(x)=egin{cases} rac{x^{lpha-1}e^{-x/eta}}{eta^{lpha}\Gamma(lpha)} & x>0 \ 0 & ext{otherwise} \end{cases}$

Solution:
$$E(X^k)=\int_{-\infty}^\infty x^k f(x)dx=\int_0^\infty x^k \frac{x^{\alpha-1}e^{-x/\beta}}{\beta^\alpha\Gamma(\alpha)}dx$$
. Let $y=\frac{x}{\beta}\implies x=\beta y$, $dx=\beta dy$.

Then,
$$E(X^k)=\int_0^\infty \frac{(\beta y)^k (\beta y)^{\alpha-1}e^{-y}}{\beta^\alpha \Gamma(\alpha)}\beta dy=\frac{\beta^k}{\Gamma(\alpha)}\int_0^\infty y^{k+\alpha-1}e^{-y}dy=\frac{\beta^k}{\Gamma(\alpha)}\Gamma(k+\alpha)=\frac{\beta^k\Gamma(k+\alpha)}{\Gamma(\alpha)}.$$

In paticular, if
$$k=1$$
, $E(X)=rac{\beta\Gamma(1+lpha)}{\Gamma(lpha)}=rac{\beta\alpha\Gamma(lpha)}{\Gamma(lpha)}=lpha\beta$.

In paticular, if
$$k=1$$
, $E(X)=rac{\beta\Gamma(1+\alpha)}{\Gamma(\alpha)}=rac{\beta\alpha\Gamma(\alpha)}{\Gamma(\alpha)}=\alpha\beta$. $k=2$, $E(X^2)=rac{\beta^2\Gamma(2+\alpha)}{\Gamma(\alpha)}=rac{\beta^2(\alpha+1)\alpha\Gamma(\alpha)}{\Gamma(\alpha)}=\alpha(\alpha+1)\beta^2$.

$$Var(X) = E(X^2) - [E(X)]^2 = \alpha(\alpha + 1)\beta^2 - (\alpha\beta)^2 = \alpha\beta^2.$$

Alternatively:

$$\begin{split} E(X^k) &= \int_{-\infty}^\infty x^k f(x) dx = \int_0^\infty x^k \frac{x^{\alpha-1} e^{-x/\beta}}{\beta^\alpha \Gamma(\alpha)} dx = \int_0^\infty \frac{x^{k+\alpha-1} e^{-x/\beta}}{\beta^\alpha \Gamma(\alpha)} dx \\ \text{Define } \alpha^* &= k + \alpha \text{, then } E(X^k) = \int_0^\infty \frac{x^{\alpha^*-1} e^{-x/\beta}}{\beta^\alpha \Gamma(\alpha)} dx = \int_0^\infty \frac{x^{\alpha^*-1} e^{-x/\beta}}{\beta^\alpha^* \Gamma(\alpha^*)} \frac{\beta^{\alpha^*} \Gamma(\alpha^*)}{\beta^\alpha \Gamma(\alpha)} dx = \frac{\beta^{\alpha^*} \Gamma(\alpha^*)}{\beta^\alpha \Gamma(\alpha)} \int_0^\infty \frac{x^{\alpha^*-1} e^{-x/\beta}}{\beta^\alpha^* \Gamma(\alpha^*)} dx = \frac{\beta^{k+\alpha} \Gamma(k+\alpha)}{\beta^\alpha \Gamma(\alpha)} = \frac{\beta^k \Gamma(k+\alpha)}{\beta^\alpha \Gamma(\alpha)}. \end{split}$$

2.5 Moment generating function

• Definition: Suppose X is a random variable, then $M(t)=E(E^{tx})$ is called the moment generating function (mgf) of X if M(t) exists for $t\in (-h,h)$ for some h>0.

Example (Gamma distribution):

Suppose $X \sim \operatorname{Gamma}(\alpha, \beta)$. Find the mgf of X.

Solution:
$$M(t)=E(e^{tX})=\int_{-\infty}^{\infty}e^{tx}f(x)dx=\int_{0}^{\infty}e^{tx}\frac{x^{\alpha-1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}dx=\int_{0}^{\infty}\frac{x^{\alpha-1}e^{-(1/\beta-t)x}}{\beta^{\alpha}\Gamma(\alpha)}dx.$$
 (Note: $1/\beta>t$, otherwise the integral diverges.) Let $y=(1/\beta-t)x$, then $x=\frac{y}{1/\beta-t}=\frac{\beta y}{1-t\beta}, dx=\frac{\beta}{1-t\beta}dy.$ Then, $M(t)=\int_{0}^{\infty}\frac{(\beta y)^{\alpha-1}e^{-y}}{\beta^{\alpha}\Gamma(\alpha)}\frac{\beta}{1-t\beta}dy=\frac{\beta^{\alpha-1}}{\Gamma(\alpha)(1-t\beta)}\int_{0}^{\infty}y^{\alpha-1}e^{-y}dy=\frac{\beta^{\alpha-1}}{\Gamma(\alpha)(1-t\beta)}\Gamma(\alpha)=\frac{\beta^{\alpha-1}\Gamma(\alpha)}{\Gamma(\alpha)(1-t\beta)}=\frac{\beta^{\alpha-1}}{1-t\beta}.$

Example (Poisson distribution):

Suppose $X \sim \operatorname{Poisson}(\mu)$. Find the mgf of X.

Solution:
$$M(t)=E(e^{tX})=\sum_{x=0}^{\infty}e^{tx}\frac{\mu^x}{x!}e^{-\mu}=e^{-\mu}\sum_{x=0}^{\infty}\frac{(\mu e^t)^x}{x!}=e^{-\mu}e^{\mu e^t}\sum_{x=0}^{\infty}\frac{(\mu e^t)^x}{x!}e^{-e^t\mu}=e^{\mu(e^t-1)}.$$

Example (Normal distribution):

Suppose $X \sim N(0,1)$. Find the mgf of X.

Solution:
$$M(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{tx - \frac{x^2}{2}} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{tx - \frac{x^2}{2}} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x^2 - 2tx + t^2) + \frac{1}{2}t^2} dx = e^{\frac{1}{2}t^2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x - t)^2} dx = e^{\frac{1}{2}t^2}.$$

Question: How to find the mgf of $N(\mu, \sigma^2)$?

- Three important properties of mgf
 - i. Suppose the mgf of X is M(t). If Y=aX+b, where a and b are constants, then the mgf of Y is $M_Y(t)=e^{bt}M(at)$.

If
$$Y \sim N(\mu, \sigma^2)$$
, then $X = \frac{Y - \mu}{\sigma} \sim N(0, 1)$. $\Longrightarrow Y = \mu + \sigma X$, where $X \sim N(0, 1)$.

$$M_Y(t)=e^{\mu t}M_X(\sigma t)=e^{\mu t}e^{rac{1}{2}\sigma^2t^2}.$$

ii. Find the kth moment of X about 0 from M(t):

$$\begin{split} E(X^k) &= M^{(k)}(0) = \left. \frac{d^k}{dt^k} M(t) \right|_{t=0}. \\ M(t) &= E(e^{tX}), M'(t) = E(Xe^{tX}). \\ \text{In particular, } E(X) &= M'(0), E(X^2) = M''(0). \text{ Then, } Var(X) = E(X^2) - [E(X)]^2 = M''(0) - [M'(0)]^2. \end{split}$$

Example (Gamma distribution):

If
$$X\sim \mathrm{Gamma}(\alpha,\beta)$$
, $M(t)=\left(\frac{1}{1-t\beta}\right)^2$, where $t<\frac{1}{\beta}$. Find $E(X)$ and $Var(X)$.

Solution:
$$M'(t) = \alpha \beta (1 - \beta t)^{-\alpha - 1}$$
, $M''(t) = \alpha (\alpha + 1) \beta^2 (1 - \beta t)^{-\alpha - 2}$. Then, $E(X) = M'(0) = \alpha \beta$, $E(X^2) = M''(0) = \alpha (\alpha + 1) \beta^2$.

iii. Uniqueness of mgf.

Namely, X and Y have the same distribution iff X and Y have the same mgf.

Example: X has $\operatorname{mgf} M(t) = e^{t^2/2}$

a. Find mgf of Y = 2X - 1.

Solution: $M_Y(t)=e^{-t}M_X(2t)=e^{-t}e^{2t^2}$

b. Find E(Y) and Var(Y).

Solution:
$$M_Y'(t)=(4t-1)e^{2t^2-t}$$
. $E(X)=M'Y(0)=-1$. $M_Y''(t)=4e^{2t^2-t}+(4t-1)^2e^{2t^2-t}$. $E(Y^2)=M_Y''(0)=1+4=5$. $Var(Y)=E(Y^2)-[E(Y)]^2=5-(-1)^2=4$.

c. What is the distribution of Y?

Solution: $Y \sim N(-1,4)$, since $M_Y(t) = e^{-t}e^{2t^2}$.

3 Joint distribution

3.1 Joint and Marginal cdfs

· Definition of joint cdf

Suppose that X and Y are two r.v.s. The joint cdf of X and Y is defined by $F(x,y)=P(X\leq x,Y\leq y)$ for $x,y\in\mathbb{R}.$

Remark: This definition can be extended to n r.v.s. X_1, X_2, \ldots, X_n . Joint cdf is $F(x_1, x_2, \ldots, x_n) = P(X_1 \leq x_1, X_2 \leq x_2, \ldots, X_n \leq x_n)$. However, we will focus on the case of n=2.

- Properties of joint cdf
 - i. Fix y, F(x,y) is monotone increasing function of x, i.e., $F(x_1,y) \leq F(x_2,y)$ if $x_1 < x_2$. Proof: $F(x_1,y) = P(X \leq x_1, Y \leq y)$, since $\{X \leq x_1, Y \leq y\} \subset \{X \leq x_2, Y \leq y\}$, $F(x_1,y) \leq F(x_2,y)$.
 - ii. Fix x, F(x,y) is monotone increasing function of y, i.e., $F(x,y_1) \leq F(x,y_2)$ if $y_1 < y_2$.

iii.
$$\lim_{x \to -\infty} F(x,y) = 0 = \lim_{y \to -\infty} F(x,y)$$
.

Proof: $F(x,y)=P(X\leq x,Y\leq y)\leq P(X\leq x)$, and consider $\lim_{x\to -\infty}P(X\leq x)=0$, additionally, by property of joint cdf, $F(x,y)\geq 0$, then by squeeze theorem, $\lim_{x\to -\infty}F(x,y)=0$.

iv.
$$\lim_{x \to \infty, y \to \infty} F(x,y) = 1$$
.

Proof: Consider set $Axy=\{X\leq x\}\cup\{Y\leq y\}$, then as $x,y\to\infty$, $P(\overline{Axy})\to 0$, then $F(x,y)=P(Axy)\to 1$.

v. How to find marginal cdf from the joint one?

$$F_1(x) = P(X \leq x) = \lim_{y o \infty} F(x,y).$$

Define
$$Ax = \{X \leq x\}, By = \{Y \leq y\}.$$

As
$$y \to \infty$$
, $Ax \cup By \to Ax$.

$$F_2(y) = P(Y \leq y) = \lim_{x o \infty} F(x,y).$$

3.2 Joint Discrete r.v.s

- Definition: If both X and Y are discrete r.v.s, then as a pair, $X\&Y_{(X,Y)}$ are joint discrete r.v.s X and Y.
- Definition of joint p.f.:

The joint p.f. of X and Y is given by f(x,y)=P(X=x,Y=y) for any $x,y\in\mathbb{R}$.

- Definition of join support: The support of (X,Y) is the set $A=\{(x,y)\in\mathbb{R}^2: f(x,y)>0\}.$
- Basic properties of joint p.f.:

i.
$$f(x,y) \geq 0$$
 for any $(x,y) \in \mathbb{R}^2$.

ii.
$$\sum_{(x,y)\in A} f(x,y) = 1$$
.

Question: How to find probability over a region $C\subseteq \mathbb{R}^2$?

iii.
$$P((X,Y) \in C) = \sum_{(x,y) \in C} f(x,y)$$
.

Question: How to find marginal p.f. from the joint one?

iv.
$$f_1(x) = P(X=x) = P(X=xY < \infty) = \sum_{y \in \mathbb{R}} f(x,y)$$
.

E.g. Suppose X and Y are independent discrete r.v.s with joint p.f. $f(x,y)=kq^2p^{x+y}$ for x=0,1,... and y=0,1,..., and 0 elsewhere. Here $p\in(0,1)$ is a constant, q=1-p.

a. Find k.

Solution: Since $f(x,y) \geq 0$ for any $(x,y) \in \mathbb{R}^2$, k>0.Since $\sum_{x=0}^\infty f(x,y)=1$, Then,

$$k\left(\sum_{x=0}^{\infty}p^{x+y}q^2
ight)=kq^2\left(\sum_{x=0}^{\infty}p^x
ight)\left(\sum_{x=0}^{\infty}p^y
ight)=kq^2\left(rac{1}{1-p}
ight)\left(rac{1}{1-p}
ight)=k$$

Therefore, k=1

b. Find the marginal p.f. of X and find marginal p.f. of Y.

Solution: The support of X is $Ax = \{0, 1, 2, ...\}$.

Here,
$$f_1(x) = \sum_{y \in \mathbb{R}} f(x,y) = 0$$
 if $x
otin Ax$

Given
$$X\in Ax$$
, then $f_1(x)=\sum_{y\in\mathbb{R}}f(x,y)=\sum_{y=0}^\infty f(x,y)=\sum_{y=0}^\infty f(x,y)=\sum_{y=0}^\infty p^{x+y}q^2=q^2p^x\sum_{y=0}^\infty p^y=q^2p^x\frac{1}{1-p}=qp^x.$

$$\sum_{y=0}^{\infty} p^{x+y} q^2 = q^2 p^x \sum_{y=0}^{\infty} p^y = q^2 p^x rac{1}{1-p} = q p^x$$

c.
$$P(X \leq Y)$$

Solution: $P(X \leq Y) = \sum_{(x,y) \in C} f(x,y)$ where $C = \{(x,y) \in \mathbb{R}^2 = x \leq y\}$, therefore, $P(X \leq Y) = \sum_{y=0}^{\infty} \sum_{x=0}^{y} p^{x+y} q^2 = \sum_{x=0}^{\infty} p^x q^2 \sum_{y=x}^{\infty} p^y = \sum_{x=0}^{\infty} p^x q^2 \frac{p^x}{1-p} = q \sum_{x=0}^{\infty} p^{2x} = q \frac{1}{1-p^2} = \frac{1}{1+p}.$

3.3 Joint Continuous r.v.s

• Definition: If joint cdf of (X,Y) can be written as $F(x,y)=\int_{-\infty}^x\int_{-\infty}^yf(u,v)dudv$ then Xand Y are joint continuous r.v.s with joint pdf f(x,y).

Namely,
$$f(x,y)=egin{cases} rac{\partial^2}{\partial x\partial y}F(x,y) & ext{if exists} \ 0 & ext{o.w.} \end{cases}$$

- Definition of joint support: $A=\{(x,y)\in\mathbb{R}^2: f(x,y)>0\}$.
- Properties of joint pdf:

i.
$$f(x,y) \geq 0$$
 for any $(x,y) \in \mathbb{R}^2$.

ii.
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1.$$

Question: How to find probability over a region $C \subseteq \mathbb{R}^2$?

iii.
$$P((X,Y) \in C) = \iint_{(x,y) \in C} f(x,y) dx dy$$
.

Question: How to find marginal pdf from the joint one?

iv.
$$f_1(x)=\int_{-\infty}^{\infty}f(x,y)dy$$
 and $f_2(y)=\int_{-\infty}^{\infty}f(x,y)dx$.

E.g. X and Y are joint continuous r.v.s with joint pdf f(x,y)=

$$\begin{cases} x+y & \text{if } 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{o.w.} \end{cases}$$

a. Show f is a joint pdf.

Solution: $f(x,y) \geq 0$ for any $(x,y) \in \mathbb{R}^2$.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = \int_{0}^{1} \int_{0}^{1} (x+y) dx dy = \int_{0}^{1} \left(rac{x^{2}}{2} + xy
ight) igg|_{x=0}^{x=1} dy = \int_{0}^{1} \left(rac{1}{2} + y
ight) dy = rac{1}{2} + rac{1}{2} = 1.$$

b. Find

a.
$$P(X \le 1/3, Y \le 1/2)$$

Solution:
$$P(X \le 1/3, Y \le 1/2) = \int_0^{1/3} \int_0^{1/2} (x+y) dy dx = \int_0^{1/3} \left(xy + \frac{y^2}{2} \right) \Big|_{x=0}^{y=1/2} dx = \int_0^{1/3} \left(\frac{x}{2} + \frac{1}{8} \right) dx = \frac{1}{36} + \frac{1}{24} = \frac{5}{72}.$$

b.
$$P(X < Y)$$

Solution:
$$P(X \leq Y) = \iint_C f(x,y) dx dy = \int_0^1 dx \int_x^1 (x+y) dy = \int_0^1 dy \int_0^y (x+y) dx = \int_0^1 \left(\frac{x^2}{2} + xy\right) \Big|_{x=0}^{x=y} dy = \int_0^1 \left(\frac{y^2}{2} + y^2\right) dy = \frac{1}{2}.$$

c.
$$P(X + Y \le 1/2)$$

Then,
$$P(X+Y\leq 1/2)=\iint_C f(x,y)dxdy=\int_0^{1/2}\int_0^{1/2-x}(x+y)dydx=\int_0^{1/2}\left(xy+rac{y^2}{2}
ight)igg|_{y=0}^{y=1/2-x}dx=$$

$$\int_0^{1/2} \left(rac{x}{2} - rac{x^2}{+}rac{1}{2}(x^2 - x + rac{1}{4})^d dx = \int_0^{1/2} \left(-rac{x^2}{2} + rac{1}{8}
ight) dx = \left(-rac{x^3}{16} + rac{x}{8}
ight)igg|_0^{1/2} = rac{1}{24}.$$

d.
$$P(XY \le 1/2)$$

Solution: Find
$$P(XY>1/2)$$
 first.
$$P(XY>1/2)=\int_0^{1/2}\int_0^{1/2/x}(x+y)dydx=\\ \int_0^{1/2}\left(xy+\frac{y^2}{2}\right)\left|_{y=0}^{y=1/2x}dx=\int_0^{1/2}\left(x-\frac{1}{8x^2}\right)dx=\left(\frac{x^2}{2}+\frac{1}{8x}\right)\right|_0^{1/2}=\frac{1}{4}.$$
 Therefore, $P(XY\le 1/2)=1-P(XY>1/2)=1-\frac{1}{4}=\frac{3}{4}$

c. Find marginal pdf of X and Y.

Solution: The support of X is [0,1].

Solution: The support of
$$X$$
 is $[0,1]$. Given $x\in [0,1]$, $f_1(x)=\int_{-\infty}^{\infty}f(x,y)dy=\int_0^1(x+y)dy=\left(xy+\frac{y^2}{2}\right)\Big|_{y=0}^{y=1}=x+\frac{1}{2}.$

E.g. Suppose
$$f(x) = egin{cases} ke^{-x-y} & 0 < x < y < \infty \\ 0 & ext{o.w.} \end{cases}$$
 is the joint pdf of (X,Y) .

a. Find k.

Solution:
$$f(x,y)\geq 0$$
 for any $(x,y)\in\mathbb{R}^2$, therefore, $k\geq 0$. Now, $\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)dxdy=\int_{0}^{\infty}\int_{x}^{\infty}ke^{-x-y}dydx=\int_{0}^{\infty}ke^{-x}\left(-e^{-y}\right)|_{x}^{\infty}dx=\int_{0}^{\infty}ke^{-2x}dx=-\frac{k}{2}e^{-2x}\Big|_{0}^{\infty}=\frac{k}{2}=1$, therefore, $k=2$.

b. Find:

a.
$$P(X \leq \frac{1}{3}, Y \leq \frac{1}{2})$$
 Solution: Let $C = \{(x,y)|x \leq 1/3, y \leq 1/2, 0 < x < y\}$. Then, $P(X \leq \frac{1}{3}, Y \leq \frac{1}{2}) = \iint_C f(x,y) dx dy = \int_0^{1/3} \int_x^{1/2} 2e^{-x-y} dy dx = \int_0^{1/3} 2e^{-x} \left(-e^{-y}\right) \Big|_x^{1/2} dx = \int_0^{1/3} 2e^{-x} \left(-e^{-1/2} + e^{-x}\right) dx = \int_0^{1/3} 2e^{-x} \left(e^{-x} - e^{-1/2}\right) dx = \int_0^{1/3} 2e^{-2x} - 2e^{-1/2}e^{-x} dx = -e^{-2x} + 2e^{-1/2}e^{-x} \Big|_0^{1/3} = 1 - 2e^{-1/2} - e^{-2/3} - e^{-5/6}.$

b. P(X < Y)

Solution:
$$P(X \leq Y) = 1$$

c.
$$P(X + Y \ge 1)$$

Solution: Let $C = \{(x, y) | x + y \ge 1, 0 < x < y\}$

Let's find P(X + Y < 1) first.

$$P(X+Y<1) = \iint_{x,y\in\mathbb{R}} 2e^{-x-y} dy dx = \int_0^{1/2} \int_x^{1-x} 2e^{-x-y} dy dx = \int_0^{1/2} 2e^{-x} \left(-e^{-y}
ight)igg|_x^{1-x} dx = \int_0^{1/2} 2e^{-x} \left(-e^{x-1} + e^{-x}
ight) dx =$$

$$\int_0^{1/2} 2e^{-2x} - 2e^{-1} dx = -e^{-2x} - 2e^{-1}x\big|_0^{1/2} = 1 - 2e^{-1}.$$
 Hence, $P(X+Y\geq 1)=1-P(X+Y<1)=2e^{-1}.$

c. Find marginal pdf of X and Y.

Joint support is $A = \{(x,y) | 0 < x < y < \infty\}$. The support of X is $A_X = \{0 < x < \infty\}$.

Given
$$x\in(0,\infty)$$
, $f_1(x)=\int_{-\infty}^\infty f(x,y)dy=\int_x^\infty 2e^{-x-y}dy=2e^{-x}\left(-e^{-y}\right)|_x^\infty=2e^{-2x}.$

The support of Y is $A_Y = \{0 < y < \infty\}$.

Given
$$y\in (0,\infty)$$
, $f_2(y)=\int_{-\infty}^\infty f(x,y)dx=\int_0^y 2e^{-x-y}dx=2e^{-y}\left(-e^{-x}\right)|_0^y=2e^{-y}-2e^{-2y}.$

d. Find the distribution of T = X + Y.

Solution: The support of T is $A_T = \{0 < t < \infty\}$.

a. If
$$t \le 0$$
, $P(T \le t) = 0$.

b. If
$$t>0$$
, $F_T(t)=P(T\leq t)=P(X+Y\leq t)=\int_{(x,y)\in C}2e^{-x-y}dxdy=\int_0^{t/2}\int_x^{t-x}2e^{-x-y}dydx=\int_0^{t/2}\left(-2e^{-x}e^{-y}\right)\big|_x^{t-x}=-e^{-2x}-2e^{-t}x\big|_0^{t/2}=1-e^{-t}-te^{-t}.$ The pdf of T is $f_T(t)=\frac{d}{dt}F_T(t)=e^{-t}+te^{-t}=e^{-t}-e^{-t}+te^{-t}=te^{-t}$ for $t>0$ and 0 otherwise.

3.4 Independent of random variables

• Definition: For any two r.v.s X and Y, we say X and Y are independent if and only if $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ for any $A, B \subseteq \mathbb{R}$.

Here, $X \in A$ is an event, meaning $\{\omega \in \Omega : X(\omega) \in A\}$.

e.g. Let
$$A=(-\infty,x), B=(-\infty,y), x,y\in\mathbb{R}.$$

Therefore, if X and Y are independent, $P(X \leq x, Y \leq y) = P(X \leq x)P(Y \leq y) = F_1(x)F_2(y)$ for any $x,y \in \mathbb{R}$.

Conclusion: X and Y are independent if and only if $F(x,y)=F_1(x)F_2(y)$ for any $x,y\in\mathbb{R}$. (Above shows this is a necessary condition, proof of this is a sufficient condition is beyond the scope of this course.)

Suppose X and Y has joint p.f. or joint p.d.f, which is denoted by f(x,y), and marginal p.f. or marginal p.d.f, denoted by $f_1(x)$ and $f_2(y)$, then X and Y are independent iff $f(x,y)=f_1(x)f_2(y)$ for every $x,y\in\mathbb{R}$.

Remark: If X and Y are independent, then g(X) and h(Y) must be independent for any real functions g and h.

e.g. If X is independent of Y, then X^2 is independent of Y^2 . But X^2 is independent of Y^2 , we cannot conclude X is independent of Y.

Suppose
$$P(X=1)=P(X=-1)=\frac{1}{2}$$
. Let $Y=X$. $P(X=1,Y=1)=P(X=1)=\frac{1}{2}$, but $P(X=1)P(Y=1)=\frac{1}{4}$. $P(Y^2=1)=P(X^2=1)=1$.

Example: (Joint Discrete r.v.s)

Consider the joint p.f. of X and Y is $f(x,y)=q^2p^{x+y}$ for x=0,1,... and y=0,1,..., and 0 elsewhere. Here $p\in(0,1)$ is a constant, q=1-p.

Marginal p.f. of X is $f_1(x) = qp^x$ for x = 0, 1, ... and 0 elsewhere.

Marginal p.f. of Y is $f_2(y) = qp^y$ for y = 0, 1, ... and 0 elsewhere.

Thus, $f(x,y)=f_1(x)f_2(y)$ for every $x,y\in\mathbb{R}$ therefore, X and Y are independent.

Example (Joint Continuous r.v.s)

Suppose the joint pdf of
$$X$$
 and Y is $f(x,y) = \begin{cases} x+y & \text{if } 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \text{o.w.} \end{cases}$

The marginal pdf of X is $f_1(x)=x+rac{1}{2}$ for $x\in[0,1]$ and 0 otherwise.

The marginal pdf of Y is $f_2(y)=y+rac{1}{2}$ for $y\in[0,1]$ and 0 otherwise.

Hence, $f(x,y) \neq f_1(x)f_2(y)$ for $x \in (0,1)$ and $y \in (0,1)$, therefore, X and Y are not independent.

• Factorization theorem for independence

Condition 1: f(x,y) = g(x)h(y) for every $x,y \in \mathbb{R}$ for some function g and h where f(x,y) denotes the joint p.f. or joint p.d.f. of X and Y.

Condition 2: Let A be the joint support of X and Y, and let A_1 be the marginal support of X and A_2 be the marginal support of Y. Then, $A=A_1\times A_2=\{(x,y)\in\mathbb{R}^2:x\in A_1,y\in A_2\}$. (Interpretation: A is a ractangle or the range of X and Y are independent.)

Conditions 1 and 2 are satisfied if and only if X and Y are independent.

Example: If the joint p.f. of X and Y is $f(x,y)=\frac{\mu^{x+y}e^{-2\mu}}{x!y!}$ for x=0,1,... and y=0,1,... and 0 elsewhere.

i. Is X independent of Y?

Solution: Condition 1:
$$f(x,y) = \frac{\mu^{x+y}e^{-2\mu}}{x!y!} = \frac{\mu^x e^{-\mu}}{x!} \frac{\mu^y e^{-\mu}}{y!}$$
. If we take $g(x) = \begin{cases} \frac{\mu^x e^{-\mu}}{x!} & \text{if } x = 0,1,\dots\\ 0 & \text{o.w.} \end{cases}$ and $h(y) = \begin{cases} \frac{\mu^y e^{-\mu}}{y!} & \text{if } y = 0,1,\dots\\ 0 & \text{o.w.} \end{cases}$, then $f(x,y) = \frac{1}{2} \int_0^1 \frac{\mu^y e^{-\mu}}{y!} dx$

g(x)h(y) for every $x,y\in\mathbb{R}.$

Condition 2: $A=\{(x,y)\in\mathbb{R}^2:x\in A_1,y\in A_2\}$, where $A_1=\{0,1,...\}$ and $A_2=\{0,1,...\}$.

Therefore, by factorization theorem, X and Y are independent.

ii. Find the marginal p.f. of X and Y.

Solution: A shortcut: $f_1(x) = C \cdot g(x)$ for some constant C.

Property 1:
$$f_1(x)\geq 0$$
 for any $x\in\mathbb{R}.$ Here $g(x)=egin{cases} rac{\mu^xe^{-\mu}}{x!} & ext{if } x=0,1,... \ 0 & ext{o.w.} \end{cases}$

therefore, C > 0.

Property 2: The support of X is $A_1 = \{0, 1, ...\}$. Therefore, $\sum_{0}^{\infty} f_1(x) =$

$$\sum_0^\infty C rac{\mu^x e^{-\mu}}{x!} = C \sum_0^\infty rac{\mu^x e^{-\mu}}{x!}$$
 , then $C=1$.

Therefore,
$$f_1(x)=egin{cases} \sum_0\frac{\omega_x!}{x!}, \text{ then }C\equiv 1. \\ 0 & \text{o.w.} \end{cases}$$
 Similarly, $f_2(y)=egin{cases} \frac{\mu^ye^{-\mu}}{x!} & \text{if }x=0,1,... \\ 0 & \text{o.w.} \\ 0 & \text{o.w.} \end{cases}$

Similarly,
$$f_2(y)=egin{cases} \frac{\dot{\mu}^y e^{-\mu}}{y!} & ext{if } y=0,1,... \ 0 & ext{o.w.} \end{cases}$$

Example (Joint Continuous r.v.s)

Suppose the joint pdf of X and Y is f(x,y) =

$$\begin{cases} \frac{3}{2}y(1-x^2) & -1 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{o.w.} \end{cases}$$

i. Is X independent of Y?

Solution: Condition 1:
$$f(x,y) = \left(\frac{3}{2}y\right)(1-x^2)$$
, then $g(x) = \int_0^x dx \, dx$

$$\begin{cases} 1 - x^2 & \text{if } -1 \le x \le 1 \\ 0 & \text{o.w.} \end{cases} \text{ and } h(y) = \begin{cases} \frac{3}{2}y & \text{if } 0 \le y \le 1 \\ 0 & \text{o.w.} \end{cases}.$$

Then f(x,y) = g(x)h(y) for every $x,y \in \mathbb{R}$.

Condition 2: $A=\{(x,y)\in\mathbb{R}^2:x\in A_1,y\in A_2\}$, where $A_1=[-1,1]$ and $A_2=[-1,1]$ [0, 1].

Therefore, by factorization theorem, X and Y are independent.

ii. Find the marginal pdf of X and Y.

Solution: A shortcut: $f_1(x) = C \cdot g(x)$ for some constant C, the support of X is $A_1 = [-1, 1].$

Property 1:
$$f_1(x) \geq 0$$
 for any $x \in \mathbb{R}$. Here $g(x) = egin{cases} 1 - x^2 & ext{if } -1 \leq x \leq 1 \ 0 & ext{o.w.} \end{cases}$

therefore, C > 0.

Property 2:
$$\int_{-\infty}^{\infty}f_1(x)dx=\int_{-1}^1C(1-x^2)dx=C\left(x-rac{x^3}{3}
ight)igg|_{-1}^1=$$

$$2C\left(1-rac{1}{3}
ight)=1$$
, therefore, $C=rac{3}{4}$.

$$2C\left(1-rac{1}{3}
ight)=1$$
, therefore, $C=rac{3}{4}$. Therefore, $f_1(x)=egin{cases} rac{3}{4}(1-x^2) & ext{if } -1\leq x\leq 1 \ 0 & ext{o.w.} \end{cases}$

Support of
$$Y$$
 is $A_2=[0,1]$, given $y\in [0,1]$, $f_2(y)=\frac{f(x,y)}{f_1(x)}=\frac{\frac{3}{2}y(1-x^2)}{\frac{3}{4}(1-x^2)}=2y.$ Therefore, $f_2(y)=\begin{cases} 2y & \text{if } 0\leq y\leq 1\\ 0 & \text{o.w.} \end{cases}$

Example (Uniform distribution over a region)

Suppose (X,Y) follows a uniform distribution over $C=\{(x,y)|x\geq 0, x^2+y^2\leq 1\}.$

Namely,
$$f(x,y) = egin{cases} c & ext{if } (x,y) \in C \ 0 & ext{o.w.} \end{cases}$$

Here, by graph, $c = \frac{2}{\pi}$.

i. Is X independent of Y?

Solution: Given $x\in[0,1]$, Y can take value in $[-\sqrt{1-x^2},\sqrt{1-x^2}]$, therefore, X and Y are not independent.

ii. Find the marginal pdf of X and Y.

Solution: The support of X is $A_1=[0,1]$, given $x\in[0,1]$, $f_1(x)=$

$$\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{2}{\pi} dy = \frac{4}{\pi} \sqrt{1-x^2}.$$

The support of Y is $A_2=[-1,1]$, given $y\in[-1,1]$, $f_2(y)=\int_0^{\sqrt{1-y^2}}\frac{2}{\pi}dx=\frac{2}{\pi}\sqrt{1-y^2}$.

3.5 Joint expectation

• Definition: Suppose h(x,y) is a bivariate function, then E[h(x,y)]=

$$\begin{cases} \sum_x \sum_y h(x,y) f(x,y) & \text{if } X \text{ and } Y \text{ are joint discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f(x,y) dx dy & \text{if } X \text{ and } Y \text{ are joint continuous} \end{cases}, \text{ provided } E[|h(x,y)|] < \infty.$$

$$\text{e.g. } E[XY] = \begin{cases} \sum_x \sum_y (xy) f(x,y) & \text{if } X \text{ and } Y \text{ are joint discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (xy) f(x,y) dx dy & \text{if } X \text{ and } Y \text{ are joint continuous} \end{cases}$$
 provided $E[|XY|] < \infty$.

e.g.
$$E[X]$$
 (i.e. $h(x,y) = x$))

o Method 1:

$$E(X) = egin{cases} \sum_x \sum_y x f(x,y) & ext{ joint discrete} \ \iint_{\mathbb{R}^2} x f(x,y) dx dy & ext{ joint continuous} \end{cases}$$

 \circ Method 2: find the marginal distribution, i.e., the marginal p.f. or marginal p.d.f. of X first, denoted by $f_1(x)$, then

$$E(X) = egin{cases} \sum_x x f_1(x) & ext{ joint discrete} \ \int_{\mathbb{R}^2} x f_1(x) dx & ext{ joint continuous} \end{cases}$$

- Properties of joint expectation:
 - i. linearity: E[ag(X,Y)+bh(X,Y)]=aE[g(X,Y)]+bE[h(X,Y)] where a,b are constants, g,h are bivariate functions.
 - ii. Under independence assumption (X is independent of Y), E(XY)=E(X)E(Y) and E[g(X)h(Y)]=E[g(X)]E[h(Y)]. Further, if $X_1,...,X_n$ are independent, then $E\left[\prod_{i=1}^n h_i(X_i)\right]=\prod_{i=1}^n E[h_i(X_i)].$
- Covariance of X and Y

Definition: Covariance of X and Y is defined as Cov(X,Y)=E[(X-E(X))(Y-E(Y))]=E(XY)-E(X)E(Y).

If X and Y are independent, then Cov(X,Y)=0.

An example where X and Y are uncorrlated, but not independent. Let $X \sim N(0,1)$ and $Y = X^2$, then E(X) = 0, $E(XY) = E(X^3)$, Cov(X,Y) = 0. Now, we find a pair of a and b such that $P(X \le a, Y \le b) \ne P(X \le a)P(Y \le b)$. Consider a = -2, b = 1, then $P(X \le a) = P(X \le -2) > 0$, $P(Y \le b) = P(X^2 \le 1) = P(-1 \le X \le 1) > 0$, but $P(X \le a, Y \le b) = P(X \le -2, Y \le 1) = 0$.

· Results for covariance

i.
$$Cov(X,X) = E[(X - \mu_X)(X - \mu_X)] = E[(X - \mu_X)^2] = Var(X).$$

ii.
$$Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)$$
.

Variance formula

i.
$$Var(aX+bY)=Cov(aX+bY,aX+bY)$$

$$Cov(aX,aX)+Cov(aX,bY)+Cov(bY,aX)+Cov(bY,bY)=Var(aX)+2abCov(X,Y)+Var(bY)=a^2Var(X)+2abCov(X,Y)+b^2Var(Y)$$

ii.
$$Var\left(\sum_{i=1}^n
ight) = \sum_{i=1}^n Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$

iii. If $X_1, ..., X_n$ are independent,

$$Var\left(\sum_{i=1}^n
ight)=\sum_{i=1}^n Var(X_i)$$

Example 1: Suppose the joint p.f. of X and Y is f(x,y) =

$$egin{cases} rac{\mu^{x+y}e^{-2\mu}}{x!y!} & ext{if } x=0,1,... ext{ and } y=0,1,... \ 0 & ext{o.w.} \end{cases}$$
 . Find $Var(2X+3Y)=4Var(X)+12Cov(X,Y)+9Var(Y)$.

Solution: Since X and Y are independent, Cov(X,Y)=0, therefore, Var(2X+3Y)=4Var(X)+9Var(Y).

Previously, we find $X \sim Poisson(\mu)$, $Y \sim Poisson(\mu)$, therefore $Var(X) = \mu$, $Var(Y) = \mu$.

Hence, $Var(2X + 3Y) = 4\mu + 9\mu = 13\mu$.

Example 2: Suppose the joint p.f. of
$$X$$
 and Y is $f(x,y)=\begin{cases} x+y & \text{if } 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \text{o.w.} \end{cases}$. Find $Var(X+Y)$.

$$Var(X + Y) = Var(X) + 2Cov(X, Y) + Var(Y)$$

= $2Var(X) + 2Cov(X, y)$

the marginal pdf of
$$X$$
 is $f_1(x)=egin{cases} x+1/2 & \text{if } 0\leq x\leq 1 \\ 0 & \text{o.w.} \end{cases}$ then, $E(X)=\int_0^1 x\left(x+\frac{1}{2}\right)dx=\int_0^1 \left(x^2+\frac{x}{2}\right)dx=\left(\frac{x^3}{3}+\frac{x^2}{4}\right)\Big|_0^1=\frac{7}{12}.$

$$\begin{split} E(X^2) &= \int_0^1 x^2 \left(x + \frac{1}{2} \right) dx = \int_0^1 \left(x^3 + \frac{x^2}{2} \right) dx = \left(\frac{x^4}{4} + \frac{x^3}{6} \right) \Big|_0^1 = \frac{5}{12}. \\ Var(X) &= E(X^2) - (E(X))^2 = \frac{5}{12} - \left(\frac{7}{12} \right)^2 = \frac{11}{144}. \\ Cov(X,Y) &= E(XY) - E(X)E(Y), \text{ where } E(X)E(Y) = \left(\frac{7}{12} \right)^2 = \frac{49}{144}. \\ E(XY) &= \int_0^1 \int_0^1 (xy)(x+y) dx dy \\ &= \int_0^1 \int_0^1 (x^2y + xy^2) dx dy \\ &= \int_0^1 \left(\frac{x^3y}{3} + \frac{x^2y^2}{2} \right) \Big|_{x=0}^{x=1} dy \\ &= \int_0^1 \left(\frac{y}{3} + \frac{y^2}{2} \right) dy \end{split}$$

$$Cov(X,Y)=1/3-49/144=-1/144.$$

$$Var(X+Y)=2Var(X)+2Cov(X,Y)=2\frac{11}{144}+2\frac{-1}{144}=\frac{20}{144}.$$
 Alternatively: Let $T=X+Y$, we can calculate the moment generating function:
$$E(e^{t(X+Y)}).$$

 $=\frac{1}{2}$

 $=\left(\frac{y^2}{6}+\frac{y^3}{6}\right)^{y=1}$

Corrlation coefficient

Definition: Correlation coefficient of X and Y is defined as $ho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$.

- i. Used to describe linear association between X and Y.
- ii. Unit free

iii.
$$-1 \le \rho(X,Y) \le 1$$
. (not required): Use the fact $|E(XY)| \le \sqrt{E(X^2)} \sqrt{E(Y^2)}$ to prove $-1 \le \rho(X,Y) \le 1$.

• Properties of corrlation corfficient:

i.
$$\rho(X,Y)=1 \implies Y=aX+b$$
 for some constants $a>0$ and b .

ii.
$$ho(X,Y)=-1 \implies Y=aX+b$$
 for some constants $a<0$ and b .

Example: Suppose (X,Y) has joint pdf $f(x,y)=egin{cases} x+y&0\leq x\leq y, 0\leq y\leq 1\\ 0&\text{o.w.} \end{cases}$. Find ho(X,Y) .

Solution:
$$Cov(X,Y)=-\frac{1}{144}$$
, $Var(X)=Var(Y)=\frac{11}{144}$, therefore, $\rho(X,Y)=\frac{-1/144}{\sqrt{11/144}\sqrt{11/144}}=-\frac{1}{11}$.

3.6 Conditional distribution

• Definition (Joint Discrete Case)

Suppose X and Y are joint discrete random variable with joint p.f. denoted by f(x,y). Then, conditional p.f. of X given Y=y is $f_1(x|y)=\frac{f(x,y)}{f_2(y)}$, provided that $f_2(y)>0$.

Idea: Let event
$$A=\{X=x\}, B=\{Y=y\}$$
, then $f_1(x|y)=P(X=x|Y=y)=\frac{P(A\cap B)}{P(B)}=\frac{f(x,y)}{f_2(y)}$.

Similarly, the conditional p.f. of Y given X=x is $f_2(y|x)=rac{f(x,y)}{f_1(x)}$, provided that $f_1(x)>0$.

- \circ Property: Conditional p.f.s $f_1(x|y)$ and $f_2(x|y)$ are probability functions, i.e.:
 - a. $f_1(x|y) \geq 0$ for any $x \in \mathbb{R}$, and y is fixed. Additionally, $\sum_{x \in \mathbb{R}} f_1(x|y) = 1$ for any y, where R is the conditional support of x and may depend on y.
 - b. $f_2(y|x) \geq 0$ for any $y \in \mathbb{R}$, and x is fixed. Additionally, $\sum_{y \in \mathbb{R}} f_2(y|x) = 1$ for any x.
- Definition (Joint Continuous Case)

Suppose X and Y are joint continuous random variable with joint p.d.f. denoted by f(x,y).

Then, conditional p.d.f. of X given Y=y is $f_1(x|y)=rac{f(x,y)}{f_2(y)}$, provided that $f_2(y)>0$.

Similarly, the conditional p.d.f. of Y given X=x is $f_2(y|x)=rac{f(x,y)}{f_1(x)}$, provided that $f_1(x)>0$.

- \circ Property: Conditional p.d.f.s $f_1(x|y)$ and $f_2(x|y)$ are probability density functions, i.e.:
 - a. $f_1(x|y) \geq 0$ for any $x \in \mathbb{R}$, and y is fixed. Additionally, $\int_{-\infty}^{\infty} f_1(x|y) dx = 1$ for any y
 - b. $f_2(y|x) \geq 0$ for any $y \in \mathbb{R}$, and x is fixed. Additionally, $\int_{-\infty}^{\infty} f_2(y|x) dy = 1$ for any x

Example 1: Let
$$f(x,y) = egin{cases} 8xy & 0 < y < x < 1 \ 0 & ext{o.w.} \end{cases}$$

Find:

1. $f_1(x|y)$

Solution:
$$f_1(x|y) = \frac{f(x,y)}{f_2(y)}$$
. The support of Y is $A_2 = (0,1)$, given $y \in (0,1)$, $f_2(y) = \int_{-\infty}^{\infty} f(x,y) dx = \int_{y}^{1} 8xy dx = 4x^2y \Big|_{y}^{1} = 4y - 4y^3$. Therefore, $f_1(x|y) = \frac{f(x,y)}{f_2(y)} = \frac{8xy}{4y - 4y^3}$ for $0 < y < x < 1$ and 0 otherwise.

2. $f_2(y|x)$

Solution: $f_2(y|x) = \frac{f(x,y)}{f_1(x)}$. The support of X is $A_1 = (0,1)$, given $x \in (0,1)$, $f_1(x) = \int_{-\infty}^{\infty} f(x,y) dy = \int_0^x 8xy dy = 4xy^2 \Big|_0^x = 4x^3$. Therefore, $f_2(y|x) = \frac{f(x,y)}{f_1(x)} = \frac{8xy}{4x^3}$ for 0 < y < x < 1 and 0 otherwise.

Example 2: The joint pdf is $f(x,y)=egin{cases} x+y&0\leq x\leq 1, 0\leq y\leq 1\ 0& ext{o.w.} \end{cases}$ Find $f_1(x|y)$ and $f_2(y|x)$.

Solution: The marginal pdf of Y is $f_2(y)=\begin{cases} \frac{1}{2}+y & 0\leq y\leq 1\\ 0 & \text{o.w.} \end{cases}$. Given $y\in[0,1]$ $f_1(x|y)=\frac{f(x,y)}{f_2(y)}=\frac{x+y}{\frac{1}{2}+y}$ for $0\leq x\leq 1$ and 0 otherwise. The marginal pdf of X is $f_1(x)=\begin{cases} x+\frac{1}{2} & 0\leq x\leq 1\\ 0 & \text{o.w.} \end{cases}$. Given $x\in[0,1]$ $f_2(y|x)=\frac{f(x,y)}{f_1(x)}=\frac{x+y}{x+\frac{1}{2}}$ for $0\leq y\leq 1$ and 0 otherwise.

Example 3: The joint p.f. of X and Y is $f(x,y)=\begin{cases}q^2p^{x+y}&x=0,1,...\text{ and }y=0,1,...\\0&\text{o.w.}\end{cases}$ where $p\in(0,1)$ is a constant, q=1-p. Find $f_1(x|y)$ and $f_2(y|x)$.

Solution: The marginal p.f. of Y is $f_2(y) = \begin{cases} qp^y & y = 0, 1, \dots \\ 0 & \text{o.w.} \end{cases}$. Given $y \in \{0, 1, \dots\}$, $f_1(x|y) = \frac{f(x,y)}{f_2(y)} = \frac{q^2p^{x+y}}{qp^y} = qp^x$ for $x = 0, 1, \dots$ and 0 otherwise. The marginal p.f. of X is $f_1(x) = \begin{cases} qp^x & x = 0, 1, \dots \\ 0 & \text{o.w.} \end{cases}$. Given $x \in \{0, 1, \dots\}$, $f_2(y|x) = \frac{f(x,y)}{f_1(x)} = \frac{q^2p^{x+y}}{qp^x} = qp^y$ for $y = 0, 1, \dots$ and 0 otherwise.

- Applications of conditional distribution:
 - i. Check independence:

X and Y are independent if and only if $f_1(x|y)=f_1(x)$ for any $x\in\mathbb{R}$, or $f_2(y|x)=f_2(y)$ for any $y\in\mathbb{R}$.

Proof sketch: X and Y are independent $\iff f(x,y)=f_1(x)f_2(y)$ for any $x,y\in\mathbb{R}$. Then, $f_1(x|y)=\frac{f(x,y)}{f_2(y)}=\frac{f_1(x)f_2(y)}{f_2(y)}=f_1(x)$ for any $x,y\in\mathbb{R}$.

ii. Use ocnditional distribution to find joint disteibution:

$$f(x,y)=f_1(x|y)f_2(y)=f_2(y|x)f_1(x)$$
 as $f_1(x|y)=rac{f(x,y)}{f_2(y)}$ and $f_2(y|x)=rac{f(x,y)}{f_1(x)}$.

Example 1: $Y \sim \operatorname{Poisson}(\mu)$. $X|Y = y \sim \operatorname{Binomial}(y,p)$, where $p \in (0,1)$ is a constant. Find the marginal p.f. of X.

Solution: The joint pf of (X,Y) is $f(x,y)=f_2(y)f_1(x|y)=\frac{\mu^y e^{-\mu}}{y!}\binom{y}{x}p^x(1-p)^{y-x}$ for x=0,1,...,y and y=0,1,... The support of X is $A=\{0,1,...\}$, given $x\in\{0,1,...\}$, $f_1(x)=\sum_{y=x}^{\infty}f(x,y)=\sum_{y=x}^{\infty}\frac{\mu^y e^{-\mu}}{y!}\binom{y}{x}p^x(1-p)^{y-x}=\sum_{y=x}^{\infty}\frac{\mu^y e^{-\mu}}{y!}\frac{y!}{x!(y-x)!}p^x(1-p)^{y-x}=\sum_{y=x}^{\infty}\frac{(\mu(1-p))^y-x}{y!}\int_{-\infty}^$

 $\frac{(\mu p)^x}{x!}e^{-\mu p}\sum_{y=x}^{\infty}\frac{(\mu(1-p))^{y-x}}{(y-x)!}. \text{ Let } t=y-x, \text{ then, } f_1(x)=\frac{(\mu p)^x}{x!}e^{-\mu p}\sum_{t=0}^{\infty}\frac{(\mu(1-p))^t}{t!}=\frac{(\mu p)^x}{x!}e^{-\mu p}e^{\mu(1-p)}=\frac{(\mu p)^x}{x!}e^{-\mu p}. \text{ Then, } X\sim \text{Poisson}(\mu p).$

Example 2: Suppose Y has pdf $f_2(y)=\frac{y^{\alpha-1}e^{-y}}{\Gamma(\alpha)}$ for y>0, i.e. $Y\sim \mathrm{Gamma}(\alpha,1)$, and the conditional pdf of X given Y=y is $f_1(x|y)=ye^{-xy}$ for x>0, i.e. $X|Y=y\sim \mathrm{Gamma}(1,1/y)$. Find the marginal pdf of X.

Solution: $f(x,y)=f_2(y)f_1(x|y)=\frac{y^{\alpha-1}e^{-y}}{\Gamma(\alpha)}ye^{-xy}$ for x>0 and y>0. The support of X is $(0,\infty)$ Given x>0, $f_1(x)=\int_{-\infty}^{\infty}f(x,y)dy=\int_0^{\infty}\frac{y^{\alpha-1}e^{-y}}{\Gamma(\alpha)}ye^{-xy}dy=\int_0^{\infty}\frac{y^{(\alpha+1)-1}e^{-(x+1)y}}{\Gamma(\alpha)}$. Aside: If $Y\sim \operatorname{Gamma}(\alpha,\beta)$, then $f(x)=\frac{x^{\alpha-1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}$ for x>0. Let $\bar{\alpha}=\alpha+1$, $\beta=\frac{1}{x+1}$, then, $f_1(x)=\int_0^{\infty}\frac{y^{\bar{\alpha}-1}e^{-y/\beta}}{\Gamma(\bar{\alpha})\beta^{\bar{\alpha}}}=\frac{\beta^{\bar{\alpha}}}{\Gamma(\bar{\alpha})}\int_0^{\infty}\frac{y^{\bar{\alpha}-1}e^{-y/\beta}}{\beta^{\bar{\alpha}}}=\frac{(\frac{1}{x+1})^{\alpha+1}\Gamma(\alpha+1)}{\Gamma(\alpha)}=\frac{\alpha\Gamma(\alpha)}{\Gamma(\alpha)}\frac{1}{(x+1)^{\alpha+1}}=\frac{\alpha}{(x+1)^{\alpha+1}}$, x>0.

3.7 Conditional expectation

Since $f_2(y|x)$ is a probability function (if X and Y are joint discrete) or probability density function (if X and Y are joint continuous). We can define expectation with respect to $f_2(y|x)$.

Definition of conditional expectation (mean):

The conditional expectation of g(y) given X=x is defined as E[g(Y) | X=x]=

$$\begin{cases} \sum_y g(y) f_2(y|x) & ext{if } X ext{ and } Y ext{ are joint discrete} \ \int_{-\infty}^{\infty} g(y) f_2(y|x) dy & ext{if } X ext{ and } Y ext{ are joint continuous} \end{cases}$$

In particular, we are particularly intrested in:

i.
$$E[Y|X=x](g(y)=y)$$

ii.
$$Var(Y|X=x) = E[Y^2|X=x] - (E[Y|X=x])^2$$
.

iii.
$$E(e^{tY}|X=x)(g(y)=e^{ty})$$
.

Example: The joint pdf of X and Y is $f(x,y) = \begin{cases} 8xy & 0 < y < x < 1 \\ 0 & \text{o.w.} \end{cases}$. Find E[X|Y=y] and Var(X|Y=y).

Solution: The conditional pdf of X given Y=y is $f_1(x|y)=\frac{2x}{1-y^2}, 0< y< x<1$. Given $y\in (0,1), E(X|Y=y)=\int_{-\infty}^{\infty}x\cdot f_1(x|y)dx=\int_{y}^{1}x\cdot \frac{2x}{1-y^2}dx=\frac{2}{1-y^2}\int_{y}^{1}x^2dx=\frac{1}{1-y^2}\left(\frac{2x^3}{3}\right)\Big|_{y}^{1}=\frac{2(1-y^3)}{3(1-y^2)}.$ Given $y\in (0,1), E(X^2|Y=y)=\int_{-\infty}^{\infty}x^2\cdot f_1(x|y)dx=\int_{y}^{1}x^2\cdot \frac{2x}{1-y^2}dx=\frac{2}{1-y^2}\int_{y}^{1}x^3dx=\frac{1}{1-y^2}\left(\frac{2x^4}{4}\right)\Big|_{y}^{1}=\frac{2(1-y^4)}{4(1-y^2)}=\frac{1+y^2}{2}.$ $Var(X|Y=y)=E(X^2|Y=y)-(E(X|Y=y))^2=\frac{1+y^2}{2}-\left(\frac{2(1-y^3)}{3(1-y^2)}\right)^2=\frac{1+y^2}{2}-\left(\frac{2(1-y^3)}{3(1-y^2)}\right)^2$

- · Some useful results regarding conditional expectation
 - i. If X and Y are independent, then E[g(Y)|X=x]=E[g(Y)] and E[h(X)|Y=y]=E[h(X)].
 - ii. Substitution rule: E[h(X,Y)|X=x]=E[h(x,Y)|X=x]=h(x,Y). e.g. E[X+Y|X=x]=E[x+Y|X=x]=E[x|X=x]+E[Y|X=x]=x+E[Y|X=x].

e.g.
$$E(XY|X=x)=E(xY|X=x)=xE(Y|X=x).$$

iii. Double Expectation Theorem: E[E[g(Y)|X]] = E[g(Y)].

Note: $E[g(Y)|X] \neq E[g(Y)|X = x]$.

Two step method to find E[q(Y)|X]:

Step 1: For any x taken from the support of X, calculate E[g(Y)|X=x], denoted by h(x).

i.e.
$$h(x)=E[g(Y)|X=x]=$$

$$\begin{cases} \sum_y g(y)f_2(y|x) & \text{if } X \text{ and } Y \text{ are joint discrete} \\ \int_{-\infty}^{\infty} g(y)f_2(y|x)dy & \text{if } X \text{ and } Y \text{ are joint continuous} \end{cases}.$$
 Step 2: $E[g(Y)|X]=h(X)$.

Hence, E[g(y)|X] is a function of X, that is why it is a random variable.

Example 1: Suppose $Y \sim \operatorname{Poisson}(\mu)$, $X|Y = y \sim \operatorname{Binomial}(y,p)$, where $p \in (0,1)$ is a constant.

a. Find E[X].

Method 1: We've found $X \sim \operatorname{Poisson}(\mu p)$, therefore, $E[X] = \mu p$. It is computationally intensive.

Method 2: E[X] = E[E[X|Y]].

Apply the two step method:

Step 1: Given $y \in \{0,1,...\}$, E[X|Y=y]=yp.

Step 2: E[X|Y] = Yp.

Therefore, $E[X] = E[E[X|Y]] = E[Yp] = pE[Y] = p\mu$.

Method 3: $E(e^{tX}) = E[E(e^{tX}|Y)].$

Apply the two step method:

Step 1: Given $y \in \{0, 1, ...\}$, $E(e^{tX}|Y=y) = [pe^t + (1-p)]^y$.

Step 2: $E(e^{tX}|Y) = [pe^t + (1-p)]^Y$.

b. Find Var(X).

Method 1: We've found $X \sim \operatorname{Poisson}(\mu p)$, therefore, $Var(X) = \mu p$.

Method 2: By double expectation theorem, Var(X) = E[Var(X|Y)] + Var[E(X|Y)].

As E(X|Y)=Yp, $Var[E(X|Y)]=Var(Yp)=p^2Var(Y)=p^2\mu$. ($Y\sim ext{Poisson}(\mu)$)

For E(Var(X|Y)), apply the two step method:

Step 1: Given $y \in \{0, 1, ...\}$, Var(X|Y = y) = yp(1 - p).

Step 2: Var(X|Y) = Yp(1-p).

Therefore, $E[Var(X|Y)] = E[Yp(1-p)] = p(1-p)E[Y] = p(1-p)\mu$.

 $Var(X) = E[Var(X|Y)] + Var[E(X|Y)] = p(1-p)\mu + p^2\mu = p\mu.$

Example 2 (Random variables of different types):

Suppose $X \sim \mathrm{Unif}[0,1], Y|X = x \sim \mathrm{Binomial}(10,x)$, find E(Y) and Var(Y).

Solution: By double expectation theorem, E(Y) = E[E(Y|X)].

Step 1: Given $x \in [0, 1], E(Y|X = x) = 10x$.

Step 2: E(Y|X) = 10X.

Therefore, $E(Y) = E[E(Y|X)] = E(10X) = 10E(X) = 10 \cdot \frac{1}{2} = 5.$

Var(Y) = E[Var(Y|X)] + Var[E(Y|X)].

Var[E(Y|X)] = Var(10X) = 100Var(X)

For any $x \in [0,1]$

Step 1: Var(Y|X = x) = 10x(1 - x).

Step 2: Var(Y|X) = 10X(1-X).

Therefore, $E[Var(Y|X)] = E[10X(1-X)] = E(10X) - 10E(X^2) =$

 $10E(X) - 10(Var(X) + (E(X))^2) = 10 \cdot \frac{1}{2} - 10 \left(\frac{1}{12} + \frac{1}{4}\right) = 5 - 10 \cdot \frac{1}{3}$

 $Var(Y) = E[Var(Y|X)] + Var[E(Y|X)] = 5 - 10 \cdot \frac{1}{3} + 100 \cdot \frac{1}{12} = \frac{5}{3}.$

3.8 Joint Moment Generating Function

- Definition: If X and Y are two r.v.s, then $M(t_1,t_2)=E(e^{t_1X+t_2Y})$ is called the joint moment generating function (mgf) of X and Y, if M(t_1,t_2) exists($M(t_1,t_2)<\infty$) for $|t_1|< h_1$, $|t_2|< h_2$, where $h_1,h_2>0$.
- · Application of joint mgf
 - i. Find marginal mgf from joint mgf.

Given
$$M(t_1,t_2)<\infty$$
 for $|t_1|< h_1$ and $|t_2|< h_2$. Then, $M_X(t_1)=E(e^{t_1X})=M(t_1,0)$ for $|t_1|< h_1$ and $M_Y(t_2)=E(e^{t_2Y})=M(0,t_2)$ for $|t_2|< h_2$.

ii. Independence of r.v.s

X and Y are independent if and only if $M(t_1,t_2)=M_X(t_1)M_Y(t_2)$ for $|t_1|< h_1$ and $|t_2|< h_2.$

Example 1 (Joint mgf):

Suppose the joint pdf of
$$X$$
 and Y is given by $f(x,y) = \begin{cases} e^{-y} & 0 < x < y \\ 0 & \text{o.w.} \end{cases}$

i. Find the joint mgf of X and Y.

Solution:
$$M(t_1,t_2) = E(e^{t_1X+t_2Y}) = \iint_{\mathbb{R}} e^{t_1x+t_2y} f(x,y) dx dy = \int_0^\infty \int_x^\infty e^{t_1x+t_2y} e^{-y} dy dx = \int_0^\infty e^{t_1x} \int_x^\infty e^{(t_2-1)y} dy dx = \int_0^\infty e^{t_1x} \left(\frac{e^{(t_2-1)y}}{t_2-1}\right) \Big|_x^\infty dx = \int_0^\infty e^{t_1x} \left(\frac{e^{(t_2-1)x}}{t_2-1}\right) dx = \frac{1}{t_2-1} \int_0^\infty e^{(t_1+t_2-1)x} dx = \frac{1}{t_2-1} \left(\frac{e^{(t_1+t_2-1)x}}{t_1+t_2-1}\right) \Big|_0^\infty = \frac{1}{1-t_2} \left(\frac{1}{1-(t_1+t_2)}\right).$$

ii. Are they independent?

Solution:
$$M_X(t_1)=M(t_1,0)=\frac{1}{1-t_1}, M_Y(t_2)=M(0,t_2)=\frac{1}{1-t_2}.$$
 Therefore, $M_X(t_1)M_Y(t_2)=\frac{1}{(1-t_1)(1-t_2)}\neq M(t_1,t_2),$ therefore, X and Y are not independent.

Example 2 (Additivity of Poisson r.v.s):

Suppose $X \sim \operatorname{Poisson}(\mu_1), Y \sim \operatorname{Poisson}(\mu_2), X$ is independent of Y. Prove $X + Y \sim \operatorname{Poisson}(\mu_1 + \mu_2)$.

Solution: We first find the mgf of X+Y.

Let
$$Z=X+Y$$
, then the mgf of Z is $M_Z(t)=E(e^{tZ})=E(e^{t(X+Y)})=E(e^{tX}e^{tY})=E(e^{tX})E(e^{tY})=e^{(\mu_1(e^t-1)+\mu_2(e^t-1+)}=e^{(\mu_1+\mu_2)(e^t-1)}$, which is the mgf of $Poisson(\mu_1+\mu_2)$.

By the uniqueness property of mgf, $X + Y \sim \text{Poisson}(\mu_1 + \mu_2)$.

3.9 Multinomial Distribution

- Definition: $(X_1,...,X_n)$ are joint discrete r.v.s with joint p.f. $f(x_1,...,x_k)=P(X_1=x_1,...,X_k=x_k)=\frac{n!}{x_1!...x_k!}p_1^{x_1}...p_k^{x_k}$, where $x_i=0,1,...,n$ for i=1,...,k. $\sum_i=1^kx_i=n$, $0< p_i<1$ and $\sum_i=1^kp_i=1$. Then, $(X_1,...,X_k)$ follows multinomial distribution, with notation $(X_1,...,X_k)\sim \operatorname{Mult}(n,p_1,...,p_k)$.
- Properties of $\operatorname{Mult}(n,p_1,...,p_k)$:
 - i. Joint mgf

a.
$$M(t_1,...,t_k)=E(e^{t_1X_1+...+t_kX_k})$$

b. $M(t_1,...,t_{k-1})=E(e^{t_1X_1+...+t_{k-1}X_{k-1}})=(p_1e^{t_1}+...+p_{k-1}e^{t_{k-1}}+p_k)^n$
e.g. $k=2, M(t_1)=E(e^{t_1X_1})=(p_1e^{t_1}+p_2)^n$, where $p_1+p_2=1$.

ii. Marginal distribution

$$X_i \sim \text{Binomial}(n, p_i) \text{ for } i = 1, ..., k.$$

iii. Let
$$T=X_i+x_j, i\neq j$$
. Then, $T\sim \mathrm{Binomial}(n,p_i+p_j)$.

e.g. Suppose $i=1,j=2$, set $t_1=t_2=t, t_3=...=t_k=0$ in the joint mgf of $\mathrm{Mult}(n,p_1,...,p_k)$, then, $M_T(t)=[(p_1+p_2)e^t+(1-p_1-p_2)]^n$.

iv. Joint Moment

$$E(X_i)=np_i$$
 and $Var(X_i)=np_i(1-p_i)$ for $i=1,...,k$. Question: What is $Cov(X_i,X_j)$ for $i\neq j$?
$$Var(X_i+X_j)=Var(X_i)+Var(X_j)+2Cov(X_i,X_j).$$
 We know $Var(X_i)=np_i(1-p_i)$, $Var(X_j)=np_j(1-p_j)$, $Var(X_i+X_j)=n(p_i+p_j)[1-(p_i+p_j)]$. Therefore, $Cov(X_i,X_i)=-np_ip_i$.

v. Conditional distribution

$$X_i|X_i+X_j=t \sim \mathrm{Binomial}(t,p_i/(p_i+p_j)).$$
vi. $X_i|X_j=t \sim \mathrm{Binomial}(n-t,p_i/(1-p_j)).$

3.10 Bivariate Normal Distribution

• Definition:

Suppose that
$$X_1$$
 and X_2 are joint continuous r.v.s with joint pdf $f(x_1,x_2)=\frac{1}{2\pi|\Sigma|^{\frac{1}{2}}}\exp\{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\}$, where $x=\begin{pmatrix}x_1\\x_2\end{pmatrix}$, $\mu=\begin{pmatrix}\mu_1\\\mu_2\end{pmatrix}$, $\Sigma=\begin{pmatrix}\sigma_1^2&\rho\sigma_1\sigma_2\\\rho\sigma_1\sigma_2&\sigma_2^2\end{pmatrix}$, $\rho\in(-1,1)$, and $|\Sigma|$ denotes the determinant of Σ , i,.e. $|\Sigma|=\frac{1}{2\pi|\Sigma|^{\frac{1}{2}}}\exp\{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\}$

$$\sigma_1^2 \sigma_2^2 (1 - \rho^2)$$
.

Then, (X_1,X_2) follows bivariate normal distribution, with notation $X\sim \mathrm{BVN}(\mu,\Sigma)$.

• Properties:

i. Joint mgf

$$M(t_1,t_2) = E(e^{t_1X_1 + t_2X_2}) = E(e^{t^TX}) = e^{t^T\mu + rac{1}{2}t^T\Sigma t}$$
 , where $t = inom{t_1}{t_2}$.

ii. Marginally

$$M_{X_1}(t_1)=M(t_1,t_2=0)=e^{t_1\mu_1+rac{1}{2}\sigma_1^2t_1^2}, M_{X_2}(t_2)=M(t_1=0,t_2)=e^{t_2\mu_2+rac{1}{2}\sigma_2^2t_2^2}.$$
 Then, $X_1\sim \mathrm{N}(\mu_1,\sigma_1^2)$ and $X_2\sim \mathrm{N}(\mu_2,\sigma_2^2), E(X_1)=\mu_1, Var(X_1)=\sigma_1^2, E(X_2)=\mu_2, Var(X_2)=\sigma_2^2.$

$$Cov(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2).$$

What is $E(X_1X_2)$?

iii. We find the conditional distribution of X_1 given X_2 , $X_1 | X_2 = x_2$.

Conclusion: $X_1|X_2=x_2$ is normally distributed.

Then, to find $E(X_1|X_2=x_2)$ and $Var(X_1|X_2=x_2)$.

$$E(X_1|X_2=x_2)=\mu_1+
horac{\sigma_1}{\sigma_2}(x_2-\mu_2).$$

$$Var(X_1|X_2=x_2)=\sigma_1^2(1-
ho^2).$$

Finding $X_2|X_1=x_1$ is normal.

$$E(X_2|X_1=x_1)=\mu_2+
horac{\sigma_2}{\sigma_1}(x_1-\mu_1).$$

$$Var(X_2|X_1=x_1)=\sigma_2^2(1-\rho^2).$$

iv. $Cov(X_1,X_2)=
ho\sigma_1\sigma_2.$

Proof: To find $E(X_1X_2)$, we apply double expectation theorem.

$$E(X_1X_2) = E(E(X_1X_2|X_2))$$

Step 1:
$$E(X_1X_2|X_1=x_1)=x_1E(X_2|X_1=x_1)$$
 = $x_1(\mu_2+
horac{\sigma_2}{\sigma_1}(x_1-\mu_1))$

Step 2:
$$E(X_1X_2) = E(x_1(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x_1 - \mu_1))) = \mu_2 E(X_1) + \rho \frac{\sigma_2}{\sigma_1} E(X_1^2) - \mu_1 E(X_1) - \rho \frac{\sigma_2}{\sigma_1} \mu_1 E(X_1) = \mu_2 \mu_1 + \rho \frac{\sigma_2}{\sigma_1} (\sigma_1^2 + \mu_1^2) - \mu_1^2 - \rho \frac{\sigma_2}{\sigma_1} \mu_1^2 = \mu_1 \mu_2 + \mu_1^2 + \mu_1^2 + \mu_1^2 = \mu_1 \mu_2 + \mu_1^2 + \mu_1^2 + \mu_1^2 = \mu_1 \mu_1 + \mu_1^2 + \mu_1$$

 $ho\sigma_1\sigma_2$

Therefore, $Cov(X_1,X_2)=E(X_1X_2)-E(X_1)E(X_2)=\mu_1\mu_2+\rho\sigma_1\sigma_2-\mu_1\mu_2=\rho\sigma_1\sigma_2.$

Furthermore,
$$ho(X_1,X_1)=
ho=rac{Cov(X_1,X_2)}{\sqrt{Var(X_1)}\sqrt{Var(X_2)}}=rac{
ho\sigma_1\sigma_2}{\sigma_1\sigma_2}.$$

v. ho=0 if and only if X_1 and X_2 are independent.

Common Mistake: If Y_1 and Y_2 are normally distributed, and $Cov(Y_1,Y_2)=0$, then Y_1 and Y_2 are independent.

Counter Example: $Y_1 \sim N(0,1)$, $Y_2 = RY_1$, where P(R=1) = P(R=-1) = 1/2, R is independent of X.

Show that $Y_2 \sim \mathrm{N}(0,1)$ and $Cov(Y_1,Y_2) = 0$.

If joint distribution (Y_1,Y_2) follows BVN, then Y_1+Y_2 follows normal distribution, then

 $P(Y_1+Y_2=0)=0$, however, $P(Y_1+Y_2=0)=P(R=-1)=1/2$, then the joint distribution of (Y_1,Y_2) is not BVN.

vi. If $X\sim \mathrm{BVN}(\mu,\Sigma)$ and $C=\begin{pmatrix}c_1\\c_2\end{pmatrix}$ is a constant vector, then $C^TX=c_1X_1+c_2X_2$ is normally distributed with mean $E(C^TX)=c_1\mu_1+c_2\mu_2=C^T\mu$ and variance $Var(C^TX)=C^T\Sigma C$.

Here we only consider a single linear combination of X_1 and X_2 .

Furthermore, such a fact can be extend, and used to prove normal tests, i.e., if $X_1,...,X_k$ are normally distributed with mean μ and variance σ^2 , then $\bar{X}=\frac{1}{k}\sum_{i=1}^k X_i$ is normally distributed with mean μ and variance $\frac{\sigma^2}{k}$.

Common Mistake: For normally distributed r.v.s Y_1 and Y_2 , $c_1Y_1+c_2Y_2$ is normally distributed.

vii. If $A\in\mathbb{R}^{2 imes2},b\in\mathbb{R}^{2 imes1}$, then $Y=AX+b\sim \mathrm{BVN}$, with mean vector $E(Y)=AE(X)+b=A\mu+b$, and variance $Var(Y)=Cov(AX+b,AX+b)=A\Sigma A^T$. viii. $(X-\mu)^T\Sigma^{-1}(X-\mu)\sim\chi_2^2$

We define $\chi_1^2=Z^2$, where $Z\sim N(0,1)$, and $\chi_k^2=\sum_{i=1}^k Z_i^2$, where $Z_1,...,Z_k$ are independent and identically distributed as N(0,1).

Proof: Since Σ is symmatric, then $\Sigma=Q\Lambda Q^T$, where Q is orthogonal (i.e. $QQ^T=Q^TQ=I$), and $\Lambda=\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, where λ_1,λ_2 are eigenvalues of Σ . Let $\Sigma^{1/2}=Q\Lambda^{1/2}Q^T$, where $\Lambda^{1/2}=\begin{pmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{pmatrix}$, then $\Sigma^{1/2}\Sigma^{1/2}=\Sigma$, and $\Sigma^{-1/2}=Q\Lambda^{-1/2}Q^T$, where $\Lambda^{-1/2}=\begin{pmatrix} \frac{1}{\sqrt{\lambda_1}} & 0 \\ 0 & \frac{1}{\sqrt{\lambda_2}} \end{pmatrix}$. Now, $(X-\mu)^T\Sigma^{-1}(X-\mu)=(X-\mu)^T\Sigma^{-1/2}\Sigma^{-1/2}(X-\mu)$. Let $Z=\Sigma^{-1/2}(X-\mu)$, then Z is normally distributed with mean $E(Z)=\Sigma^{-1/2}E(X-\mu)=\Sigma^{-1/2}(\mu-\mu)=0$, and variance $Var(Z)=\Sigma^{-1/2}Var(X-\mu)\Sigma^{-1/2}=\Sigma^{-1/2}\Sigma\Sigma^{-1/2}=I$, so Z_1,Z_2 are independent and identically distributed as N(0,1).

Therefore, $(X-\mu)^T\Sigma^{-1}(X-\mu)=Z^TZ=Z_1^2+Z_2^2\sim\chi_2^2$. A simple fact: if $X\sim \mathrm{N}(\mu,\sigma^2)$, then $\left(\frac{X-\mu}{\sigma}\right)^2\sim\chi_1^2$.

That also means if $X_1,...,X_n$ are iid $\mathrm{N}(\mu,\sigma^2)$, then $\frac{\sum_{i=1}^n(X_i-\mu)^2}{\sigma^2}\sim\chi^2_n$.

4 Functions of Random Variables

Problems we want to answer:

• Given $X_1,...,X_n$, which are continuous r.v., and their pdf is known, we are interested in finding the distribution of $Y=h(X_1,...,X_n)$, where h is a function.

Three main methods to be introduced:

- 1. cdf technique
- 2. one-to-one bivariate transformation
- 3. mgf technique

4.1 CDF Technique

Define $Y = h(X_1, ..., X_n)$, where h is a function.

Main idea:

- Step 1: Find the cdf of Y, $F_Y(y) = P(Y \le y)$.
- Step 2: Find the pdf of Y , $f_Y(y) = rac{d}{dy} F_Y(y)$.

Case 1: Y is a function of one single random variable (n=1), i.e. Y=h(X), where the distribution of X is known.

Example (χ^2_1) : If $X \sim \mathrm{N}(0,1)$, find the distribution of $Y = X^2$.

Solution: The support of Y is $A_Y = [0, \infty)$.

1.
$$y \le 0$$
, $F_Y(y) = P(Y \le y) = 0$.

2.
$$y>0$$
, $F_Y(y)=P(Y\leq y)=P(X^2\leq y)=P(-\sqrt{y}\leq X\leq \sqrt{y})=\int_{-\sqrt{y}}^{\sqrt{y}}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx.$

The for $y \to 0$, the pdf of y us $f_Y(y)=\frac{d}{dy}F_Y(y)=\frac{1}{\sqrt{2\pi}}e^{-\frac{y}{2}}\frac{1}{2\sqrt{y}}+\frac{1}{\sqrt{2\pi}}e^{-\frac{y}{2}}\frac{1}{2\sqrt{y}}=\frac{1}{\sqrt{2\pi}}e^{-\frac{y}{2}}\frac{1}{\sqrt{y}}.$

Therefore, $f^Y(y)=egin{cases} \frac{1}{\sqrt{2\pi}}e^{-rac{y}{2}}\frac{1}{\sqrt{y}} & y>0 \ 0 & ext{o.w.} \end{cases}$, which is the pdf of $\mathrm{Gamma}(lpha=rac{1}{2},eta=rac{1}{2}).$

Example 2: The pdf of X is $f(x)=\frac{\theta}{x^{\theta+1}}$ for $x\geq 1$, where $\theta>0$ is a constant. Find the distribution of $Y=\log X(\ln X)$.

Solution: The support of Y is $A_Y = [0, \infty)$.

1.
$$y < 0$$
, $F_Y(y) = P(Y < y) = 0$.

2.
$$y>0$$
, $F_Y(y)=P(Y\leq y)=P(\ln X\leq y)=P(X\leq e^y)=\int_1^{e^y}\frac{\theta}{x^{\theta+1}}dx=$ $\left(-\frac{1}{x^{\theta}}\right)\Big|_1^{e^y}=1-e^{-\theta y}.$ Therefore, $f_Y(y)=egin{cases} \theta e^{-\theta y} & y\geq 0 \ 0 & \text{o.w.} \end{cases}$, which is the pdf of $\operatorname{Exponential}(\lambda=\theta).$

Case 2: Y is a function of more than one random variable (n > 1), i.e. $Y = h(X_1, ..., X_n)$, where the distribution of $X_1, ..., X_n$ is known.

• Case 2.1: $n = 2, Y = h(X_1, X_2)$

Example: Joint pdf of X and Y is f(x,y)=3y if $0\leq x\leq y\leq 1$, and 0 otherwise. Find the distribution of T=XY and S=Y/X.

Solution: The support of T is $A_T=[0,1]$. Now we consider the cdf:

i.
$$t \le 0$$
, $F_T(t) = P(T \le t) = 0$.

ii.
$$t \geq 1$$
, $F_T(t) = P(T \leq t) = 1$.

iii.
$$0 < t < 1$$
, $F_T(t) = P(T \le t) = P(XY \le t)$.

We calculate P(T > t) instead.

$$\begin{array}{l} P(T>t) = \int_{\sqrt{t}}^1 \int_{t/y}^y 3y dx dy = \int_{\sqrt{t}}^1 3y (y-\tfrac{t}{y}) dy = \int_{\sqrt{t}}^1 3y^2 - 3t dy = (1-3t) - (t^{3/2}-3t^{1/2}) = 1-3t+2t^{3/2}. \\ P(T\leq t) = 1-P(T>t) = 3t-2t^{3/2}. \text{ Therefore, the p.d.f. of } T \text{ is } f_T(t) = 3-3t^{1/2} \text{ when } 0 < t < 1 \text{, and 0 otherwise.} \end{array}$$

For S, the support of S is $A_S=[1,\infty).$ Now we consider the cdf: iv. $s\leq 1,$ $F_S(s)=P(S\leq s)=0.$

v.
$$s>1$$
, $F_S(s)=P(S\le s)=P(Y/X\le s)=P(Y\le sX)=\int_0^1\int_{y/s}^y 3y dx dy=\int_0^13y(y-y/s) dy=\int_0^1(3y^2-3y^2/s) dy=(y^3-3y^3/2s)\big|_0^1=1-1/s.$

Hence, the pdf of S is $f_S(s) = \frac{1}{s^2}$ when s > 1, and 0 otherwise.

• Case 2.2: $n > 2, Y = h(X_1, ..., X_n)$

In particular, we are interested in the distribution of order statistics. More specifically, assume $X_1,...,X_n$ are iid r.v.s with pdf f(x). Define the order statistics $Y_1=\min\{X_1,...,X_n\}$, denoted as X(1), and $Y_n=\max\{X_1,...,X_n\}$, denoted as X(n).

Example (Order Statistics): Suppose $X_1,...,X_n \overset{iid}{\sim} \mathrm{Unif}[0,\theta]$. Find the distribution of X(1) and X(n).

Solution: For X(n), $the support of X(n) is A_{X(n)} = [0, the ta]$. Now we consider the cdf:

i.
$$x \leq 0$$
, $F_{X(n)}(x) = P(X(n) \leq x) = 0$.
ii. $x \geq \theta$, $F_{X(n)}(x) = P(X(n) \leq x) = 1$.

iii. $0 < x < \theta$, $F_{X(n)}(x) = P(X(n) \le x) = P(\max\{X_1, ..., X_n\} \le x) =$ $P\left(\bigcap_{i=1}^n \{X_i \leq x\}\right) = \prod_{i=1}^n P(X_i \leq x) = \prod_{i=1}^n \frac{x}{\theta} = \left(\frac{x}{\theta}\right)^n.$ Then the pdf of X(n) is $f_{X(n)}(x) = \frac{nx^{n-1}}{\theta^n}$ when $0 < x < \theta$, and 0 otherwise. For X(1), the support of X(1) is $A_{X(1)} = [0, \theta]$. Now we consider the cdf: iv. $x \leq 0$, $F_{X(1)}(x) = P(X(1) \leq x) = 0$. v. $x \geq \theta$, $F_{X(1)}(x) = P(X(1) \leq x) = 1$. vi. 0 < x < heta , $F_{X(1)}(x) = P(X(1) \le x) = P(\min\{X_1,...,X_n\} \le x) = 1$ — $P(\min\{X_1,...,X_n\}>x)=1-P\left(igcap_{i=1}^n\{X_i>x\}
ight)=1-\prod_{i=1}^n P(X_i>x)$ $f(x) = 1 - \prod_{i=1}^n \left(\int_x^{ heta} rac{1}{ heta} dx_i
ight) = 1 - \left(rac{ heta - x}{ heta}
ight)^n.$

Then the pdf of X(1) is $f_{X(1)}(x) = \frac{n(\theta-x)^{n-1}}{\theta n}$ when $0 < x < \theta$, and 0 otherwise.

4.2 One-to-One Bivariate Transformation

Problem we are going to solve:

Given the joint pdf of (X,Y) denoted by f(x,y), we want to find $U=h_1(X,Y)$ and V= $h_2(X,Y)$.

- Definition of one-to-one function: These two transformations (h_1 and h_2) is one-to-one bivariate transformation if there exist other two functions (ω_1 and ω_2) such that $x=\omega_1(U,V)$ and y= $\omega_2(U,V)$. Note: $U=h_1(x,y)$ and $V=h_2(x,y)$.
- Notation: Jacobian of $U = h_1(x, y)$ and $V = h_2(x, y)$:

$$rac{\partial (U,V)}{\partial (x,y)} = egin{bmatrix} rac{\partial x}{\partial u} & rac{\partial x}{\partial v} \ rac{\partial y}{\partial u} & rac{\partial y}{\partial v} \end{bmatrix}$$

, determinet of 2×2 matrix.

Theorem: The p.d.f. of U and V is $f_{U,V}(u,v)=f_{X,Y}(\omega_1(u,v),\omega_2(u,v))\left|rac{\partial(U,V)}{\partial(x,u)}\right|$.

Example 1: $X \sim N(0,1)$ and $Y \sim N(0,1)$, assume X and Y are independent. Find the joint pdf of U = X + Y and V = X - Y.

Solution: Since U=X+Y and V=X-Y, then support of U and V is $A_{U}=$ $(-\infty,\infty)$ and $A_V=(-\infty,\infty)$.

then,
$$x = \frac{U+V}{2}$$
 and $y = \frac{U-V}{2}$.
$$\frac{\partial(U,V)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{vmatrix} = -\frac{1}{2}.$$

Then, the joint pdf of U and V is $g(u,v)=f(x,y)\cdot |J|=f_1(x)\cdot f_2(y)\cdot 1/2=rac{1}{2\pi}e^{-\frac{x^2}{2}}\cdot rac{1}{2\pi}e^{-\frac{y^2}{2}}\cdot rac{1}{2}=rac{1}{4\pi}e^{-\frac{u^2+v^2}{4}}.$

Example 2: Suppose the joint pdf of X and Y is $f(x,y) = e^{-x-y}$ for $0 < X < \infty$ and $0 < Y < \infty$, and 0 elsewhere. Find the pdf of U = X + Y.

Solution: Define V=X, then U=X+Y and V=X, therefore, x=v and y=u-v, i.e., v>0, u-v>0. Therefore, 0< v< u is the joint support of U and V.

The Jacbian of x and y with respect to u and v is $J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ 1 & -1 \end{vmatrix} = -1.$

Therefore, the joint pdf of U and V is $g(u,v)=f(x,y)\cdot |J|=e^{-x-y}=e^{-u}$ for $0< v< u<\infty.$ The support of U is $A_U=(0,\infty).$

Given $u\in(0,\infty)$, $f_U(u)=\int_{-\infty}^\infty g(u,v)dv=\int_0^u e^{-u}dv=ue^{-u}.$

• How to find the support of transformations?

$$egin{cases} U = h_1(x,y) \ V = h_2(x,y) \end{cases}$$
 , what is the support of U and V ?

Example 1: Suppose the support of X and Y is 0 < x < y < 1. Let U = X and V = XY.

Question: Find the support of \boldsymbol{U} and \boldsymbol{V} .

Solution:
$$\begin{cases} u=x \\ x=xy \end{cases} \implies \begin{cases} x=u \\ y=v/u \end{cases}$$

Therefore, $0 < u < v/u < 1 \implies 0 < u^2 < v < u$ is the support of U and V.

Example 2: Suppose the support of X and Y is 0 < x < 1 and 0 < y < 1. Find the support of U = X/Y and V = XY.

Solution:
$$\begin{cases} u = x/y \\ v = xy \end{cases} \implies \begin{cases} x = \sqrt{uv} \\ y = \sqrt{v/u} \end{cases}$$

Therefore, $0 < \sqrt{uv} < 1$ and $0 < \sqrt{v/u} < 1$, which tells us uv < 1, v/u < 1.

Thus, 0 < v < u < 1/v is the joint support.

4.3 MGF Technique

Main idea:

- 1. Find the mgf of the random variable of interest.
- 2. By the uniqueness property of mgf, we can identify the distribution of the random variable of interest.
- Highlight one special case where the mgf technique is useful: Suppose $X_1,...,X_n$ are independent and $T=\sum_{i=1}^n X_i$. Then, the mgf of T is $M_T(t)=E(e^{tT})=E(e^{t\sum_{i=1}^n X_i})=E(\prod_{i=1}^n e^{tX_i})=\prod_{i=1}^n E(e^{tX_i})=\prod_{i=1}^n M_{X_i}(t)$.

In particular, if $X_1, ..., X_n$ are iid, i.e., they have a common distribution, then having a common mgf, denoted by M(t), then $M_T(t) = [M(t)]^n$.

Next, we introduce properties of some important distributions (normal, χ^2 , t, F).

1. Normal Distribution

- If $X\sim N(\mu,\sigma^2)$, then $aX+b\sim N(a\mu+b,a^2\sigma^2)$.

 Proof: Let Y=aX+b, then $M_Y(t)=M_X(at)e^{bt}=e^{bt}e^{a\mu t+\frac{1}{2}a^2\sigma^2t^2}=e^{(a\mu+b)t+\frac{1}{2}a^2\sigma^2t^2}$.

 Hence, by the uniqueness property of mgf, $Y\sim N(a\mu+b,a^2\sigma^2)$.

 An immediate result (z-score): If $X\sim N(\mu,\sigma^2)$, then $\frac{X-\mu}{a}\sim N(0,1)$.
- If $X_i \sim N(\mu_i, \sigma_i^2)$ for i=1,...,n and $X_1,...,X_n$ are independent, then $\sum_{i=1}^n a_i X_i \sim N\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$.

 Proof: Let $T=\sum_{i=1}^n a_i X_i$, then the mgf of T is $M_T(t)=\prod_{i=1}^n M_{a_i X_i}(t)=\prod_{i=1}^n M_{X_i}(a_i t)=\prod_{i=1}^n e^{a_i \mu_i t+\frac{1}{2}a_i^2 \sigma_i^2 t^2}=e^{\sum_{i=1}^n (a_i \mu_i) t+\frac{1}{2}\sum_{i=1}^n a_i^2 \sigma_i^2 t^2}$. By the uniqueness property of mgf, $T\sim N\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$. In particular, if $X_1,...,X_n\stackrel{iid}{\sim} N(\mu,\sigma^2)$, then $\bar(X)=1/n\sum_{i=1}^n X_i \sim N(\mu,\sigma^2/n)$. Hence $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}\sim N(0,1)$.

2. χ^2 distribution

• $\chi_1^2=Z^2$, where $Z\sim N(0,1)$. $\chi_k^2=\sum_{i=1}^k Z_i^2$, where $Z_i\stackrel{iid}{\sim} N(0,1)$.

An immediate result:

If
$$X \sim \mathrm{N}(\mu, \sigma^2)$$
, then $\left(rac{X-\mu}{\sigma}
ight)^2 \sim \chi_1^2$.

• If $Y_i\sim\chi^2_{k_i}$, where $k_i\in\mathbb{N}^+$ and $Y_1,...,Y_n$ are independent. Then $T=\sum_{i=1}^nY_i\sim\chi^2_d$, where $d=\sum_{i=1}^nk_i$.

Proof:

- $\circ~$ Step 1: χ_1^2 is the same as $\mathrm{Gamma}(\alpha=\frac{1}{2},\beta=\frac{1}{2})$ (See example of $Y=Z^2$ in 4.1).
- $\text{Step 2: for } \chi_n^2 = \sum_{i=1}^n Z_i \text{, where } Z_i \overset{iid}{\sim} N(0,1) \text{. Let } S = \sum_{i=1}^n Z_i^2 \text{, then } S \sim \\ \chi_n^2 \text{. So the mgf of } S \text{ is } M_S(t) = E(e^{tS}) = E(e^{t\sum_{i=1}^n Z_i^2}) = \prod_{i=1}^n M_{Z_i^2}(t) = \\ [M_{Z_i^2}(t)]^n \text{. Since } Z_i^2 \sim \operatorname{Gamma}(\alpha = \frac{1}{2}, \beta = \frac{1}{2}) \text{, then } M_{Z_i^2}(t) = \left(\frac{1}{1-\beta t}\right)^{\alpha} = \\ \left(\frac{1}{1-2t}\right)^{\frac{1}{2}} \text{. Then, } M_S(t) = \left(\frac{1}{1-2t}\right)^{\frac{n}{2}} \text{.}$
- \circ Step 3: Since $Y_i\sim\chi^2_{k_i}$, then mgf of Y_i is $M_{Y_i}(t)=\left(rac{1}{1-2t}
 ight)^{rac{k_i}{2}}$. Now $T=\sum_{i=1}^nY_i$ and Y_i s are independent, then $M_T(t)=\prod_{i=1}^nM_{Y_i}(t)=\prod_{i=1}^n\left(rac{1}{1-2t}
 ight)^{rac{k_i}{2}}=$

 $\left(rac{1}{1-2t}
ight)^{rac{d}{2}}$. Therefore, by uniquesness property of mgf, $T\sim\chi_d^2$.

3. t distribution

Definition: If $X\sim N(0,1)$ and $Y\sim \chi^2_n$, $n\in\mathbb{N}^+$, and X and Y are independent, then $\frac{X}{\sqrt{Y/n}}\sim t_n.$

Note the support of t_n is $A_{t_n} = (-\infty, \infty)$.

• Conclusion:

If $X_i \stackrel{iid}{\sim} N(\mu,\sigma^2)$ for i=1,...,n, let $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$ and $S^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X})^2$, then

a. \bar{X} is independent of S^2 .

Proof: To show this, we only need to prove \bar{X} is independent of $(X_1-\bar{X},...,X_n-\bar{X})^T$. Consider $\begin{pmatrix} \bar{X} \\ X_1-\bar{X} \\ ... \\ X_n-\bar{X} \end{pmatrix}=A\begin{pmatrix} X_1 \\ ... \\ X_n \end{pmatrix}$, where $A\in\mathbb{R}^{(n+1)\times n}$ and first row of A is

Here $\begin{pmatrix} X_1 \\ \dots \\ X_n \end{pmatrix}$ follows MVN, the joint distribution of $\begin{pmatrix} \bar{X} \\ X_1 - \bar{X} \\ \dots \\ X_n - \bar{X} \end{pmatrix}$ is also MVN.

Hence, it suffices to prove \bar{X} and $(X_1-\bar{X},...,X_n-\bar{X})^T$ are uncorrelated, i.e., we need to show $Cov(\bar{X},X_i-\bar{X})=0$ for i=1,...,n.

for $i=1,...,n, Cov(\bar{X},X_i-\bar{X})=Cov(\bar{X},X_i)-Cov(\bar{X},\bar{X})=\frac{1}{n}\sum_{j=1}^n Cov(X_j,X_i)-Var(X)=\sigma^2/n-\sigma^2/n=0.$ Hence, \bar{X} is independent of $(X_1-\bar{X},...,X_n-\bar{X})^T$, which implies \bar{X} is independent of S^2 .

b. $\frac{(n-1)S^2}{\sigma^2}=rac{\sum_{i=1}^n(X_1-ar{X})^2}{\sigma^2}\sim \chi^2_{n-1}.$

Proof: Firstly, note $\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\sigma^{2}}\sim\chi_{n}^{2}$. (let $Z_{i}=\frac{X-i-\bar{X}}{\sigma}$, then $\Sigma Z_{i}=0$, thus $\sum_{i=1}^{n}(X_{i}-\bar{X})=\sum_{i=1}^{n}X_{i}-\sum_{i=1}^{n}\bar{X}=0$). $\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}(X_{i}-\bar{X}+\bar{X}-\mu)^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}}{\sigma^{2}}+2\frac{\sum_{i=1}^{n}(X_{i}-\bar{X})(\bar{X}-\mu)}{\sigma^{2}}+\frac{\sum_{i=1}^{n}(\bar{X}-\mu)^{2}}{\sigma^{2}}$. Now, $\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\sigma^{2}}(A)=\frac{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}}{\sigma^{2}}(B)+\frac{n(\bar{X}-\mu)}{sigma^{2}}(C)$.

Facts: $A\sim\chi^2_n=\mathrm{Gamma}(\alpha=n/2,\beta=2), C\sim\chi^2_1=\mathrm{Gamma}(\alpha=1/2,\beta=2)$, and B and C are independent.

Question: $B \sim \chi^2_{n-1}$?

We use the mgf technique. The mgf of A is $M_A(t)=\left(\frac{1}{1-2t}\right)^{n/2}$, and the mgf of C is $M_C(t)=\left(\frac{1}{1-2t}\right)^{1/2}$. In addition, $M_A(t)=M_B(t)M_C(t)$, then $M_B(t)=0$

$$\begin{pmatrix} \left(\frac{1}{1-2t}\right)^{(n-1)/2}, \text{ which is the mgf of } \chi^2_{n-1}. \text{ Thus, by the uniqueness property of mgf,} \\ B \sim \operatorname{Gamma}(\alpha=n,\beta=2) = \chi^2_{n-1}. \\ \text{c. } \frac{(\bar{X}-\mu)}{S/\sqrt{n}} \sim t_{n-1} \\ \text{Proof: Rewrite } \frac{(\bar{X}-\mu)}{S/\sqrt{n}} \text{ as } \frac{\sqrt{n}(\bar{X}-mu)/\sigma}{\sqrt{S^2/\sigma^2}} = \frac{\sqrt{n}(\bar{X}-\mu)/\sigma}{\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}} \sim t_{n-1}. \end{pmatrix}$$

iv. F distribution

Definition: If $X\sim \chi^2_n$ and $Y\sim \chi^2_m$, where $n,m\in\mathbb{N}^+$ and X and Y are independent, then $\frac{X/n}{Y/m}\sim F_{n,m}$.

Question: If $X\sim\chi^2_n$, $Y\sim\chi^2_m$ and X and Y are independent, then $X+Y\sim\chi^2_{n+m}$. Does $\frac{X/n}{(X+Y)/(n+m)}\sim F_{n,n+m}$?

Solution: No. Consider Cov(X,X+Y)=Cov(X,X)+Cov(X,Y)>0. Hence, X and X+Y are not independent. Therefore, $\frac{X/n}{(X+Y)/(n+m)}\sim F_{n,n+m}$ is not true.

If
$$X_1,...,X_n \overset{iid}{\sim} N(\mu_1,\sigma_1^2), Y_1,...,Y_m \overset{iid}{\sim} N(\mu_2,\sigma_2^2)$$
 are independent, let $S_1^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2$ and $S_2^2=\frac{1}{m-1}\sum_{i=1}^m(Y_i-\bar{Y})^2$, then $\frac{(n-1)S_1^2}{\sigma_1^2}\sim\chi_{n-1}^2$, $\frac{(m-1)S_2^2}{\sigma_2^2}\sim\chi_{n-1}^2$, and $\frac{\frac{(n-1)S_1^2}{\sigma_1^2}/n-1}{\frac{(m-1)S_2^2}{\sigma_2^2}/m-1}=\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}\sim F_{n-1,m-1}$.

5 Limiting (Asymptotic) Distribution

Problem: We are interested in the distribution of $\sqrt{n}(\bar{X}-\mu)$, where $X_1,...,X_n \stackrel{iid}{\sim} f(X)$ with $E(X_i)=\mu, Var(X_i)=\sigma^2, \bar{X}=\frac{1}{n}\sum_{i=1}^n X_i.$

• Note f is unknown. Therefore, it's impossible to find the exact distribution of T. Solution: Find a approximate distribution of T. Roughly speaking, we find a cdf F such that when n is sufficiently large, $F(x) \approx P(\sqrt{n}(\bar{X} - \mu) \leq x)$.

5.1 Convergence in Distribution

- Definition: Let $X_1, X_2, ...$ be a sequence of r.v.s with cdf $F_1(x), F_2(x), ...$. Let X be a r.v. with cdf F(x). If $\lim_{n \to \infty} F_n(x) = F(x)$ for all x at which F is continuous, then we say X_n converges in distribution to X, denoted by $X_n \stackrel{d}{\to} X$.
- Remark:
 - i. F(x) is called the limiting distribution of X_n as $n o \infty$.

ii. Note it's the convergence of cdf, rather than X_n .

Assume $X_1=...=X_N=Z\sim N(0,1).$ Take $X=-Z\sim N(0,1).$ Then $X_n\stackrel{d}{
ightarrow} X.$

iii. We only need to require $\lim_{n o \infty} F_n(x) = F(x)$ holds for continuous points of F.

e.g. If
$$F(x)=egin{cases} 1 & x\geq a \\ 0 & x< a \end{cases}$$
 denotes the cdf of X , then $P(X=a)=1$. Obviously the cdf F is not continuous at $x=a$. Hence, if we want to prove $X_n\stackrel{d}{\to} X$, where $P(X=a)=1$, we only need to prove $\lim_{n\to\infty}F_n(x)=egin{cases} 1 & x\geq a \\ 0 & x< a \end{cases}$, we are not

interested in $\lim_{n\to\infty} F_n(a) = F(a)$.

iv. This definition applies to both discrete and continuous r.v.s

E.g. Suppose $X_1,...,X_n\stackrel{iid}{\sim} \mathrm{Unif}[0,1]$. Let $X_{(1)}=\min_{1\leq i\leq n}X_i$ and $X_{(n)}=\max_{1\leq i\leq n}X_i$. Find the limiting distribution of

i.
$$nX_{(1)}$$
 and $n(1-X_{(n)})$.

ii.
$$X_{(1)}$$
 and $X_{(n)}$.

Solution:

i. The support of $nX_{(1)}$ is [0,n]. Now we consider the cdf:

For
$$x \leq 0$$
, $F_n(x) = P(nX_{(1)} \leq x) = 0$.

For
$$x \geq n$$
, $F_n(x) = P(nX_{(1)} \leq x) = 1$.

For
$$0 < x < n$$
, $F_n(x) = P(nX_{(1)} \le x) = P(X_{(1)} \le x/n) = 1 - P(X_{(1)} > x/n) = 1 - \prod_{i=1}^n P(X_i > x/n) = 1 - \prod_{i=1}^n (1 - x/n) = 1 - \prod_{i=1}^n P(X_i > x/n) = 1 - \prod_{i=1}^n P(X_$

 $(1 - x/n)^n$.

Thus,
$$F_n(x) = egin{cases} 0 & x \leq 0 \ 1 - (1 - x/n)^n & 0 < x < n \,. \ 1 & x \geq n \end{cases}$$

Therefore,
$$\lim_{n o\infty}F_n(x)=egin{cases}0&x\leq0\1-e^{-x}&x>0\end{cases}$$

Thus the limiting distribution of $nX_{(1)}$ is $F(x)=egin{cases} 0 & x\leq 0 \ 1-e^{-x} & x>0 \end{cases}$

The support of $n(1-X_{(n)})$ is [0,n]. Now we consider the cdf:

For
$$x \leq 0$$
, $F_n(x) = P(n(1 - X_{(n)}) \leq x) = 0$.

For
$$x \ge n$$
, $F_n(x) = P(n(1 - X_{(n)}) \le x) = 1$.

For
$$0 < x < n$$
, $F_n(x) = P(n(1 - X_{(n)}) \le x) = P(1 - X_{(n)} \le x/n) = P(X_{(n)} \ge 1 - x/n) = 1 - P(X_{(n)} < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - \prod_{i=1}^n P(X_i < 1 - x/n) = 1 - x/n = 1 -$

$$x/n)=1-(1-x/n)^n.$$
 Thus, $F_(x)=egin{cases} 0&x\leq 0\ 1-(1-x/n)^n&0< x< n$. (i.e., same as $nX_{(1)}$) $1&x\geq n \end{cases}$

Thus the limiting distribution of
$$n(1-X_{(n)})$$
 is $F(x)=egin{cases} 0 & x\leq 0 \\ 1-e^{-x} & x>0 \end{cases}$

Note: This result is because if $X \sim \mathrm{Unif}[0,1]$, then $1-X \sim \mathrm{Unif}[0,1]$. Then,

$$X_{(i)} = \min_{1 \le i \le n} X_i \stackrel{d}{=} \min_{1 \le i \le n} (1 - X_i) = 1 - \max_{1 \le i \le n} X_i = 1 - X_{(n)}.$$

ii. The support of $X_{(1)}$ is [0,1]. Now we consider the cdf:

For
$$x \le 0$$
, $F_n(x) = P(X_{(1)} \le x) = 0$.

For
$$x \ge 1$$
, $F_n(x) = P(X_{(1)} \le x) = 1$.

For
$$0 < x < 1$$
, $F_n(x) = P(X_{(1)} \le x) = 1 - P(X_{(1)} > x) = 1 - \prod_{i=1}^n P(X_i > x) = 1 - \prod_{i=1}^n (1-x) = 1 - (1-x)^n$.

Thus,
$$F_(x)=egin{cases} 0 & x \leq 0 \ 1-(1-x)^n & 0 < x < 1. \ 1 & x \geq 1 \end{cases}$$

Therefore,
$$\lim_{n o\infty}F_n(x)=egin{cases} 0 & x\leq 0 \ 1 & x>0 \end{cases}$$

Thus the limiting distribution of $X_{(1)}$ is $F(x)=egin{cases} 0 & x<0 \ 1 & x\geq 0 \end{cases}$, or we can say

 $X_{(1)}\stackrel{d}{
ightarrow} 0$ (equivalently, $X_{(1)}\stackrel{d}{
ightarrow} X$ for P(X=0)=1).

(Since $\lim_{n o\infty}F_n(x)=F(x)$ for any x
eq 0 and F(x) is not continuous at x=0, we do not require $\lim_{n o\infty}F_n(0)=F(0)$.)

The support of $X_{(n)}$ is [0,1]. Now we consider the cdf:

For
$$x \le 0$$
, $F_n(x) = P(X_{(n)} \le x) = 0$.

For
$$x \ge 1$$
, $F_n(x) = P(X_{(n)} \le x) = 1$.

For
$$0 < x < 1$$
, $F_n(x) = P(X_{(n)} \le x) = P(X_{(n)} < x) = \prod_{i=1}^n P(X_i < x) = \prod_{i=1}^n x = x^n$.

Thus,
$$F_(x) = egin{cases} 0 & x \leq 0 \ x^n & 0 < x < 1. \ 1 & x \geq 1 \end{cases}$$

Therefore,
$$\lim_{n o\infty}F_n(x)=egin{cases} 0 & x<1\ 1 & x\geq 1 \end{cases}$$

Thus the limiting distribution of
$$X_{(n)}$$
 is $F(x)=egin{cases} 0 & x<1 \\ 1 & x\geq 1 \end{cases}$, or we can say $X_{(n)}\stackrel{d}{ o}1$ (equivalently, $X_{(n)}\stackrel{d}{ o}X$ for $P(X=1)=1$).

5.2 Convergence in Probability

- Definition: Let X_1, X_2, \ldots be a sequence of r.v.s with cdf $F_1(x), F_2(x), \ldots$ Let X be a r.v. with cdf F(x). If for any (given) $\epsilon > 0$, $\lim_{n \to \infty} P(|X_n X| > \epsilon) = 0$ or equivalently $\lim_{n \to \infty} P(|X_n X| \le \epsilon) = 1$, then we say X_n converges in probability to X, denoted by $X_n \stackrel{p}{\to} X$.
- · Remark:
 - i. It is the limit for a probability. That is why we call it convergence in probability.
 - ii. Interpretation of $X_n \stackrel{p}{\to} X$: as $n \to \infty$, X_n cannot be ϵ away from X, that is, X_n is close to X as $n \to \infty$. Because of this, we expect that $F_n(x)$ becomes close to F(x) if $X_n \stackrel{p}{\to} X$.

Theorem: If $X_n \stackrel{p}{\to} X$, then $X_n \stackrel{d}{\to} X$, that is to say, convergence in probability implies convergence in distribution.

However, the converse is not true:

Example: if we take $X_1=...=X_n=Z\sim N(0,1)$, let $X=-Z\sim N(0,1)$ then $X_n\stackrel{p}{\to} X$.

Next we show $X_n \not\to X$.

For $\epsilon=1$, $P(|X_n-X|>\epsilon)=P(|2Z|>\epsilon)=P(|Z|>1/2)=2P(Z>1/2)>0$ for all n.

• Convergence in probability to a constant: Let $X_1, X_2, ...$ be a sequence of r.v.s and a be a constant. If $\lim_{n\to\infty} P(|X_n-a|>\epsilon)=0$ for any (given) $\epsilon>0$, then we say X_n converges in probability to a, denoted by $X_n\stackrel{p}{\to}a$.

Theorem: $X_n \stackrel{p}{\to} a \Longleftrightarrow X_n \stackrel{d}{\to} a$. We say $X_n \stackrel{d}{\to} a$ if $\lim_{n \to \infty} P(X_n \le x) = \begin{cases} 0 & x < a \\ 1 & x \ge a \end{cases}$, or $X_n \stackrel{d}{\to} X$, where P(X = a) = 1.

Proof: Since convergence in probability implies convergence in distribution, we only need to show $F_n(x) \to F(x)$ for all x at which F is continuous.

We only need to show $\lim_{n o\infty}P(|X_n-a|>\epsilon)=0$ for any $\epsilon>0$, if $X_n\stackrel{d}{ o}a$.

i.
$$P(|X_n-a|>\epsilon)\geq 0$$
 ii. $P(|X_n-a|>\epsilon)=P(X_n>a+\epsilon)+P(X_n< a-\epsilon)\leq 1-P(X_n\leq a+\epsilon)$

$$(\epsilon)+P(X_n\leq a-\epsilon)$$
. Since $X_n\stackrel{d}{ o}a$, then $\lim_{n o\infty}P(X_n\leq a+\epsilon)=1$ and

 $\lim_{n \to \infty} 1 - P(X_n \le a + \epsilon) + P(X_n \le a - \epsilon) = 0$. Hence, by sqeezing theorem, $\lim_{n \to \infty} P(|X_n - a| > \epsilon) = 0$, and therefore $X_n \stackrel{d}{ o} a \Longrightarrow X_n \stackrel{p}{ o} a$.

Example 1: $X_1,...,X_n \overset{iid}{\sim} Unif(0,1)$. Let $X_{(1)} = \min_{1 \leq i \leq n} X_i$ and $X_{(n)} = \max_{1 \leq i \leq n} X_i$. Find the limiting distribution of $X_{(1)}$ and $X_{(n)}$.

Solution: We have shown that $X_{(1)}\stackrel{d}{\to} 0$ and $X_{(n)}\stackrel{d}{\to} 1$. Hence, by the theorem above, $X_{(1)}\stackrel{p}{\to} 0$ and $X_{(n)}\stackrel{p}{\to} 1$.

Example 2: We assume $X_1,...,X_n \stackrel{iid}{\sim} f(x,\theta) = e^{-(x-\theta)}$ for $x \geq \theta$ and 0 elsewhere. Define $X_{(1)} = \min_{1 \leq i \leq n} X_i$ and $X_{(n)} = \max_{1 \leq i \leq n} X_i$. Prove $X_{(1)} \stackrel{p}{\to} \theta$.

Method 1: By definition, we only need to show for any $\epsilon>0$, $\lim_{n\to\infty}P(|X_{(1)}-\theta|>\epsilon)=0$.

i.
$$P(|X_{(1)} - \theta| > \epsilon) \geq 0$$

$$\begin{split} &\text{ii. } P(|X_{(1)} - \theta| > \epsilon) = P(\{X_{(1)} > \epsilon + \theta\} \cup \{X_{(1)} > \theta - \epsilon\}) = P(X_{(1)} > \epsilon + \theta) + P(X_{(1)} > \theta - \epsilon) = P(X_{(1)} > \epsilon + \theta) = P(\bigcup_{i=1}^n X_i > \epsilon + \theta) = P(X_1 > \epsilon + \theta)^n = (1 - P(X_1 \le \epsilon + \theta))^n = (1 - (1 - e^{-(\epsilon + \theta)}))^n = (e^{-(\epsilon + \theta)})^n = e^{-n(\epsilon + \theta)} \to 0 \text{ as } n \to \infty. \end{split}$$

Hence, $X_{(1)} \stackrel{p}{\to} \theta$.

Method 2: To show $X_{(1)} \stackrel{p}{\to} \theta$, we only need to show $X_{(1)} \stackrel{d}{\to} \theta$. In other words, we need to prove $\lim_{n\to 0} P(X_{(1)} \le x) = \begin{cases} 0 & x < \theta \\ 1 & x > \theta \end{cases}$.

For
$$x < \theta$$
, $P(X_{(1)} \le x) = 0$.

For
$$x \ge \theta$$
, $P(X_{(1)} \le x) = 1 - P(X_{(1)} > x) = 1 - P(\bigcap_{i=1}^n X_i > x) = 1 - \prod_{i=1}^n P(X_i > x) = 1 - \prod_{i=1}^n e^{-(x-\theta)} = 1 - e^{-n(x-\theta)} \to 1 \text{ as } n \to \infty.$

Hence,
$$F_n(x)=egin{cases} 0 & x< heta \ 1-e^{-n(x- heta)} & x\geq heta \end{cases}$$
 , thus $\lim_{n o 0}P(X_{(1)}\leq x)=$

$$\begin{cases} 0 & x \geq \theta \\ 1 & x > \theta \end{cases}.$$
 Therefore, the limiting cdf is: $F(x) = \begin{cases} 0 & x < \theta \\ 1 & x \geq \theta \end{cases}$ since F is not continuous at $x = \theta$.

A brief summary:

So far we have two convergence modes:

1. Convergence in distribution: $X_n \stackrel{d}{ o} X$.

2. Convergence in probability: $X_n \stackrel{p}{\to} X$.

Generally speaking: $X_n \stackrel{d}{\to} X \Longrightarrow X_n \stackrel{p}{\to} X$, but the converse is not true (consider previous example).

But there is one special case in which two modes are equivalent, i.e., $X_n \stackrel{d}{\to} X \Longleftrightarrow X_n \stackrel{p}{\to} X$, for this setting, we focus on $X_{(1)} = \min_{1 \leq i \leq n} X_i$ and $X_{(n)} = \max_{1 \leq i \leq n} X_i$.

- Next, we focus on convergence in distribution in probability for $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$, where we assume $X_1,...,X_n\stackrel{iid}{\sim} f(x,\theta)$, where θ is unknown.
 - i. Convergence in Probability: Does $ar{X_n} \stackrel{p}{ o} \mu$? (Weak Law of Large Numbers)
 - ii. Convergence in distribution: Does $\sqrt{n}(\bar{X_n}-\mu)\stackrel{d}{ o} N$? (Central Limit Theorem)
 - \circ To prove the WLLN, Markov inequality is useful. Suppose X is an r.v.. For any k>0 and C is a positive constant. Then we have $P(|X|\geq C)\leq \frac{E(|X|^k)}{C^k}$. (bound probability by the kth moment) In particular, we consider k=2 and replace X with $X-\mu$ where $\mu=E(X)$, then we have $P(|X-\mu|\geq C)\leq \frac{E(|X-\mu|^2)}{C^2}=\frac{Var(X)}{C^2}$.
 - The Weak Law of Large Numbers (WLLN)

Suppose $X_1,...,X_n$ are independent with a common mean $\mu<\infty$ and a common variance $\sigma^2<\infty$.

Then $ar{X_n} \stackrel{p}{ o} \mu$ where $ar{X_n} = rac{1}{n} \sum_{i=1}^n X_i$.

Proof: We only need to show for any $\epsilon>-$, $\lim_{n\to\infty}P(|\bar{X_n}-\mu|>\epsilon)=0$.

- a. $P(|\langle X_n \rangle \langle mu \rangle > epsilon) \geq 0$
- b. By the Markov inequality we have $P(|\bar{X}_n \mu| > \epsilon) \leq \frac{E[(\bar{X}_n \mu)^2]}{\epsilon^2} = \frac{Var(\bar{X}_n)}{\epsilon^2} = \frac{Var(\bar{X}_n)}{\epsilon^2} = \frac{Var(\bar{X}_n)}{\epsilon^2} = \frac{Var(\bar{X}_n)}{\epsilon^2} = \frac{Var(\bar{X}_n)}{\epsilon^2} = \frac{1}{n^2\epsilon^2} Var(\sum_{i=1}^n X_i) = \frac{1}{n^2\epsilon^2} \sum_{i=1}^n Var(X_i) = \frac{1}{n\epsilon^2} \sigma^2 \to 0$ as $n \to \infty$. By squeeze theorem, $\lim_{n \to \infty} P(|\bar{X}_n \mu| > \epsilon) = 0$, therefore $\bar{X}_n \stackrel{p}{\to} \mu$.

Example 3: (Application of WLLN) Suppose $X_1,...,X_n\stackrel{iid}{\sim}\chi_1^2$, then $\bar{X_n}\stackrel{p}{\to}1$.

Proof:

- a. $X_1,...,X_n$ are iid
- b. $E(X_1)=E(\chi_1^2)=E(Z^2)=Var(Z)+(E(Z))^2\leq \infty$, where $Z\sim N(0,1)$.
- c. $Var(X_1)=Var(\chi_1^2)=Var(Z^2)<\infty$. Then, 1st way, $Var(Z^2)=E(Z^4)-(E(Z^2))^2$. 2nd way, $\chi_1^2\stackrel{d}{=}Gamma(\alpha=1/2,\beta=2)Then$, $Var(\chi_1^2)=\alpha$ \beta^2 = 2 < \infty. Lastly, bytheWLLN, \bar{X_n} \overset{p}{\choose 1}.

Example 4: Suppose $Y_n \sim \chi_n^2$. Then, $\frac{Y_n}{n} \stackrel{\mathcal{P}}{\to} 1$.

Proof: Since
$$Y_n\sim\chi^2_n,Y_n=\sum_{i=1}^nZ^2_i,where Z_1,...,Z_n\stackrel{iid}{\sim}N(0,1)$$
, then $Y_n/n=rac{1}{n}\sum_{i=1}^nZ^2_i.$

- a. $Z_1^2,...,Z_n^2$ are iid. b. $E(Z_1^2) = 1 < \infty$.

 - c. $Var(Z_1^2) = 2 < \inf VLLN, \frac{Y_n}{n} \operatorname{SY_n}{n}$

Example 5: Suppose $X_1,...,X_n \stackrel{iid}{\sim} \mathrm{Poisson}\mu$, then $\bar{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{p}{\to} E(X_i) =$ μ .

Solution:

- a. $X_1,...,X_n$ are iid. b. $E(X_1)=\mu<\infty$. c. $Var(X_1)=\mu<\infty$. Then, by the WLLN, $ar{X_n} \stackrel{p}{ o} \mu$.

Practice 6: If $Y_n \sim \text{Poisson}(n), does \frac{Y_n}{n} \stackrel{p}{\to} \mu$?

5.3 Some Useful Limiting Theorems

In this section, we will discuss some theorems regarding the convergecne in distribution of $ar{X_n}$ and $g(\bar{X}_n)$, wherre g is a known function.

- The Central Limit Theorem (CLT) Let $X_1,X_2,...$ be iid with $E(X_i)=\mu<\infty$ and $Var(X_i)=\sigma^2<\infty$. Let $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$. Then, the limiting distribution of $\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}$ is the cdf of N(0,1), i.e., $\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}\stackrel{d}{\to} N(0,1)$. Proof of CLT relies on the following theorem:
 - $\circ~$ Theorem: Let $X_1,X_2,...$ be a sequence of r.v.s such that X_n has $\mathrm{mgf}~M_n(t)$ and X be a r.v. with mgf M(t). If there exist some h>0 such that $\lim_{h o\infty}M_n(t) o M(t)$ for any |t| < h, then $X_n \stackrel{d}{\rightarrow} X$.

In other words, convergence in mgf implies convergence in distribution.

Proof: By the theorem above, to show $\frac{\sqrt{n}(\bar{X_n}-\mu)}{\sigma}\stackrel{d}{\to} N(0,1)$, we only need to show the mgf of $\frac{\sqrt{n}(ar{X_n}-\mu)}{\sigma}$ converges to the mgf of N(0,1), which is $M(t)=e^{t^2/2}$. Step 1: Find the mgf of $\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}$, denoted by $M_n(t)$. Note: $\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}=\frac{\sqrt{n}(\frac{1}{n}\sum_{i=1}^n X_i-n\mu)}{\sigma}=\frac{(\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i-n\mu)}{\sigma}$. Let $Y_i=\frac{X_i-\mu}{\sigma}$, then $\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}=\frac{1}{\sqrt{n}}\sum_{i=1}^n Y_i$.

Obviously $Y_1, ..., Y_n$ are iid, and $E(Y_i) = 0$, $Var(Y_i) = 1$. Suppose the mgf of Y_i exists and is $M_Y(t)$, then $M_n(t)=E(e^{t\frac{1}{\sqrt{n}}\sum_{i=1}^n Y_i})=E(\prod_{i=1}^n e^{\frac{t}{\sqrt{n}}Y_i})=\prod_{i=1}^n E(e^{\frac{t}{\sqrt{n}}Y_i})=$ $\prod_{i=1}^n M_Y(\frac{t}{\sqrt{n}}) = (M_Y(\frac{t}{\sqrt{n}}))^n = [M_Y(0) + M_Y'(0) \cdot t/\sqrt{n} + \frac{M_Y''(0)}{2} \cdot (t/\sqrt{n})^2 +$ o(1/2)]ⁿ. Here, we have definition of small-o notation.

Aside: $\lim_{n \to \infty} (1 + rac{x}{n} + o(1/n))^n = e^x$. Then, $\lim_{n \to \infty} M_n(t) = e^{t^2/2}$, which is the mgf of N(0,1).

Step 2: Since $\lim_{n \to \infty} M_n(t) = M(t)$ for any |t| < h, by the theorem above, $\frac{\sqrt{n}(\bar{X_n}-\mu)}{\sigma} \stackrel{d}{ o} N(0,1).$

Examples of CLT:

Example 1: Suppose $X_1, X_2, ... \stackrel{iid}{\sim} \chi^2_1$. Let $Y_n = \sum_{i=1}^n X_i$. Show that $\frac{Y_n - n}{\sqrt{2n}} \stackrel{d}{\to} N(0, 1)$.

Solution: Let $\bar{X_n} = Y_n/n = \frac{1}{n} \sum_{i=1}^n X_i$.

i. X_1, X_2, \dots are iid.

ii. $E(X_1) = E(\chi_1^2) = E(Z^2) = Var(Z) + (E(Z))^2 < \infty$, where $Z \sim N(0,1)$

iii. $Var(X_1) = Var(\chi_1^2) = Var(Z^2) < \infty$.

By the CLT, $\frac{\sqrt{n}(\bar{X_n}-1)}{\sqrt{2}}\stackrel{d}{\to} N(0,1).$ Then, $\frac{Y_n-n}{\sqrt{2n}}=\frac{\sum_{i=1}^n X_i-n}{\sqrt{2n}}=\frac{\sqrt{n}(\bar{X_n}-1)}{\sqrt{2}}\stackrel{d}{\to} N(0,1).$

Practice 2: Suppose $Y_n \sim \chi_n^2$. Show that $\frac{Y_n - n}{\sqrt{2n}} \stackrel{d}{\to} N(0, 1)$.

Example 3: Suppose $X_1,...,X_n \stackrel{iid}{\sim} \operatorname{Poisson}(\mu)$. Let $Y_n = \sum_{i=1}^n X_i$. Find the limiting distribution of $\frac{Y_n - n\mu}{\sqrt{n\mu}}$.

Solution: Since $X_1,...,X_n \stackrel{iid}{\sim} \mathrm{Poisson}(\mu)$.

i. $X_1, ..., X_n$ are iid.

ii. $E(X_i) = \mu < \infty$.

iii. $Var(X_i) = \mu < \infty$.

Let $ar{X_n}=rac{1}{n}\sum_{i=1}^n X_i$, then by the CLT, $rac{\sqrt{n}(ar{X_n}-\mu)}{\sqrt{\mu}}\stackrel{d}{ o} N(0,1)$.

Note that $\frac{Y_n-n\mu}{\sqrt{n\mu}}=\frac{\sum_{i=1}^n X_i-n\mu}{\sqrt{n\mu}}=\frac{\sqrt{n}(\bar{X_n}-\mu)}{\sqrt{\mu}}\stackrel{d}{\to} N(0,1).$

Practice 4: Suppose $Y_n \sim \mathrm{Poisson}(n\mu)$. Find the limiting distribution of $\frac{Y_n - n\mu}{\sqrt{n\mu}}$.

Continuous mapping theorem:

Suppose that q is a continuous function,

1. If $X_n \stackrel{d}{\to} X$, then $g(X_n) \stackrel{d}{\to} g(X)$.

2. If $X_n \stackrel{p}{\to} X$, then $g(X_n) \stackrel{p}{\to} g(X)$.

Example 1: $X_n \stackrel{p}{\to} a \Longrightarrow X_n^2 \stackrel{p}{\to} a^2$, if $X_n \ge 0$, and $a \ge 0$, then $X_n \stackrel{p}{\to} a \Longrightarrow \sqrt{X_n} \stackrel{p}{\to} \sqrt{a}$.

Example 2: If $X_n \stackrel{d}{\to} Z \sim N(0,1)$, then 2X_n \overset{d}{\lambda}\to} 2Z \sim N(0,4), $X_n^2 \stackrel{d}{\to} Z^2 \sim \chi_1^2$.

· Slutsky's theorem:

Suppose that $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{p}{\to} a$, where a is a constant. Then,

1. $X_n + Y_n \stackrel{d}{\rightarrow} X + a$.

2. $X_nY_n\stackrel{d}{ o} aX$.

3. $\frac{X_n}{Y_n} \stackrel{d}{\to} \frac{X}{a}$, if $a \neq 0$.

Comment: If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{p}{\to} Y$, then $X_n + Y_n \stackrel{d}{\to} X + Y$ does not hold in general. Example 1: Take $X_1 = X_2 = ... = Z \sim N(0,1)$, $Y_1 = Y_2 = ... = Z \sim N(0,1)$, let $X = -Z \sim N(0,1)$, $Y = Z \sim N(0,1)$, then $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$, but $X_n + Y_n \stackrel{d}{\to} X + Y$, as X + Y = 0.

Example 2: If $X_n \stackrel{d}{\to} X \sim N(0,1)$ and $Y_n \stackrel{p}{\to} b \neq 0$, then $X_n + Y_n \stackrel{d}{\to} X + b \sim N(b,1)$, $X_n Y_n \stackrel{d}{\to} b X \sim N(0,b^2)$, $\frac{X_n}{Y_n} \stackrel{d}{\to} \frac{X}{b} \sim N(0,\frac{1}{b^2})$.

Example 3: Assume $X_1, X_2, ... \stackrel{iid}{\sim} \operatorname{Poisson}(\mu)$. Find the limiting distribution of $U_n = \frac{\sqrt{n}(X_n - \mu)}{\sqrt{X_n}}$ and $V_n = \sqrt{n}(X_n - \mu)$.

Solution: $U_n = \frac{\sqrt{n}(X_n - \mu)}{\sqrt{\bar{X}_n}} = \frac{\sqrt{n}(X_n - \mu)}{\sqrt{\bar{\mu}}} \cdot \frac{\sqrt{\mu}}{\sqrt{\bar{X}_n}}$. By the CLT, $\frac{\sqrt{n}(X_n - \mu)}{\sqrt{\bar{\mu}}} \stackrel{d}{\to} N(0, 1)$. By the WLLN, $\bar{X}_n \stackrel{p}{\to} \mu$. Now if we take $g(x) = \frac{\sqrt{\mu}}{\sqrt{x}}$, then by the continuous mapping theorem $g(\bar{X}_n) \stackrel{p}{\to} g(\mu) = 1$. Lastly, by Slutsky's Theorem, $U_n = \frac{\sqrt{n}(X_n - \mu)}{\sqrt{\bar{X}_n}} = \frac{\sqrt{n}(X_n - \mu)}{\sqrt{\mu}} \cdot \frac{\sqrt{\mu}}{\sqrt{\bar{X}_n}} \stackrel{d}{\to} N(0, 1) \cdot 1 = N(0, 1)$. $V_n = \sqrt{n}(X_n - \mu) = \frac{\sqrt{n}(X_n - \mu)}{\sqrt{\mu}} \cdot \sqrt{\mu}$. By the CLT, $\frac{\sqrt{n}(X_n - \mu)}{\sqrt{\mu}} \stackrel{d}{\to} N(0, 1)$. If we take $g(x) = \sqrt{\mu}x$, then by the continuous mapping theorem $g(\frac{\sqrt{n}(X_n - \mu)}{\sqrt{\mu}}) \stackrel{d}{\to} g(N(0, 1)) = \sqrt{mu}Z \sim N(0, \mu^2)$.

Note: This proof is identical to the proof of $P(-1.96<\frac{\sqrt{n}(\bar{X}_n-\theta)}{\sqrt{\bar{X}_n(1-\bar{X}_n)}}<1.96)\approx 0.95$ as $n\to\infty$. (Confidence interval for θ)

Example 4: Assume $X_1,X_2,...\overset{iid}{\sim} \mathrm{Unif}[0,1]$. Let $Y_n=\max_{1\leq i\leq n}X_i$ for $n\geq 1$. Find the limiting distribution of 1) e^{Y_n} , 2) $\sin(1-Y_n)$, 3) $e^{-n(1-Y_n)}$, 4) $(Y_n-1)^2[n(1-Y_n)]$.

Solution: $Y_n \stackrel{d}{\to} 1$, then by continuoud mapping theorem, 1) $e^{Y_n} \stackrel{d}{\to} e^1 = e, 2$) $\sin(1-Y_n) \stackrel{d}{\to} \sin(1-1) = 0.$ 3) $n(1-Y_n) \stackrel{d}{\to} X \sim \exp(1)$, then by the continuous mapping theorem, $e^{-n(1-Y_n)} \stackrel{d}{\to} e^{-X}$. We let $Y = e^{-X}$, then the support of Y is (0,1) for $y \leq 0$, $F_Y(y) = P(Y \leq y) = 0$; for $y \geq 1$, $F_Y(y) = P(Y \leq y) = 1$; for 0 < y < 1, $F_Y(y) = P(Y \leq y) = P(e^{-X} \leq y) = P(-X \leq \ln y) = P(X \geq -\ln y) = 1 - P(X \leq -\ln y) = 1 - F_X(-\ln y) = 1 - (1 - e^{-\ln y}) = y$. Therefore, $\begin{cases} 0 & y \leq 0 \\ y & 0 < y < 1 \text{, thus } Y \sim \text{Unif}[0,1]. \\ 1 & y \geq 1 \end{cases}$ 4) Take $g(x) = (1+x)^2$, by continuous mapping theorem, $(Y_n + 1)^2 \stackrel{p}{\to} 4$. Since $n(1-Y_n) \stackrel{d}{\to} X \sim \exp(1)$, By Slutsky's theorem, $(Y_n - 1)^2[n(1-Y_n)] \stackrel{d}{\to} 4X$, where $X \sim \exp(1)$. Let Y = 4X, the support of Y is $(0,\infty)$, for $y \leq 0$, $F_Y(y) = P(Y \leq y) = 0$; for y > 0, $F_Y(y) = P(Y \leq y) = P(4X \leq y) = P(X \leq \frac{y}{4}) = 1 - e^{-\frac{y}{4}}$. Therefore, $F_Y(y) = \begin{cases} 0 & y \leq 0 \\ 1 - e^{-\frac{y}{4}} & 0 < y < 1 \text{, thus } Y \sim 1 \end{cases}$ exp(4).

• Delta method:

Question: We want to find the limiting distribution of $\sqrt{n}[g(\bar{X_n})-g(\mu)]$, where g is a differentiable function. $X_1,...,X_N \overset{iid}{\sim} \exp(\lambda), f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases}$. The MLE for λ is $\hat{\lambda} = \frac{1}{2}$. How to establish $\sqrt{n}(\hat{\lambda} - \lambda) \overset{d}{\sim} N(0,1)$?

 $\hat{\lambda}=rac{1}{ar{X}}.$ How to establish $\sqrt{n}(\hat{\lambda}-\lambda)\stackrel{d}{
ightarrow} N(0,1)$?

Delta method: Suppose that $\sqrt{n}(\bar{X}_n-\mu)\stackrel{d}{\to} N(0,\sigma^2)$, and g is a differentiable at $x=\mu$, $g'(\mu)\neq 0$, then $\sqrt{n}[g(\bar{X}_n)-g(\mu)]\stackrel{d}{\to} N(0,\sigma^2[g'(\mu)]^2)$.

How to prove this result?

We consider the first-order Taylor expansion of g(x) around $x=\mu$, i.e., $g(\bar{X}_n)=g(\mu)+g'(\mu)(\bar{X}_n-\mu)+R_n$, where R_n is the remainder term and is ignigible, then $\sqrt{n}[g(\bar{X}_n)-g(\mu)]\approx \sqrt{n}g'(\mu)(\bar{X}_n-\mu)$. By continuous mapping theorem, let $h(x)=g'(\mu)x$, then $\sqrt{n}g'(\mu)(\bar{X}_n-\mu)\overset{d}{\to} g'(\mu)Z$, where $Z\sim N(0,\sigma^2)$. Therefore, $\sqrt{n}[g(\bar{X}_n)-g(\mu)]\overset{d}{\to} N(0,\sigma^2[g'(\mu)]^2)$.

Example 1: Suppose $X_1,...,X_n\stackrel{iid}{\sim} f(x)=\begin{cases} 0 & x\leq 0 \ \frac{1}{\theta}e^{-\frac{x}{\theta}} & x>0 \end{cases}$. Find the limiting distribution of 1) X_n , 2) $Z_n=\frac{\sqrt{n}(X_n-\theta)}{\bar{X}_n}$, 3) $U_n=\sqrt{n}(\bar{X}_n-\theta)$, 4) $V_n=\sqrt{n}(\ln \bar{X}_n-\ln \theta)$.

Solution:

- i. $X_1,...,X_n$ are iid; $E(X_1)=\theta<\infty$; $Var(X_1)=\theta^2<\infty$; By the CLT, $\bar{X_n}\stackrel{p}{\to}\theta$.
- ii. $Z_n=\frac{\sqrt{n}(X_n-\theta)}{\theta}\cdot\frac{\theta}{\bar{X_n}}$. By the CLT, \frac{\sqrt{n} (\sqrt{n} -\text{heta})}{\text{\text{theta}}}\\ \overset{d}{\text{\text{to}}} N(0,1). By the WLLN, $\bar{X_n} \stackrel{p}{\to} \theta$. By the continuous mapping theorem, $\frac{\theta}{\bar{X_n}} \stackrel{p}{\to} \frac{\theta}{\theta} = 1$. By Slutsky's theorem, $Z_n = \frac{\sqrt{n}(X_n-\theta)}{\theta}\cdot\frac{\theta}{\bar{X_n}} \stackrel{d}{\to} N(0,1)\cdot 1 = N(0,1)$.
- iii. $U_n=\sqrt{n}(\bar{X}_n-\theta)$. By the CLT, $\sqrt{n}(\bar{X}_n-\theta)\overset{d}{\to} N(0,\theta^2)$. By the continuous mapping theorem, $U_n=\sqrt{n}(\bar{X}_n-\theta)\overset{d}{\to} N(0,\theta^2)$.
- iv. $V_n=\sqrt{n}(\ln \bar{X_n}-\ln \theta)=\sqrt{n}(\ln \frac{\bar{X_n}}{\theta})=\sqrt{n}(\ln (1+\frac{\bar{X_n}-\theta}{\theta})).$ By the Taylor expansion, $\ln (1+\frac{\bar{X_n}-\theta}{\theta})\approx \frac{\bar{X_n}-\theta}{\theta}.$ By the CLT, $\sqrt{n}(\bar{X_n}-\theta)\stackrel{d}{\to} N(0,\theta^2).$ By the continuous mapping theorem, $\frac{\bar{X_n}-\theta}{\theta}\stackrel{d}{\to} \frac{N(0,\theta^2)}{\theta}=N(0,\frac{\theta^2}{\theta^2})=N(0,1).$ By Slutsky's theorem, $V_n=\sqrt{n}(\ln \bar{X_n}-\ln \theta)=\sqrt{n}(\ln \frac{\bar{X_n}}{\theta})=\sqrt{n}(\ln (1+\frac{\bar{X_n}-\theta}{\theta}))\stackrel{d}{\to} N(0,1)\cdot 1=N(0,1).$

Example 2: Suppose $X_1,...,X_n \overset{iid}{\sim} \operatorname{Poisson}(\mu)$. Find the limiting distribution of \$Z_n = $\frac{1}{2} \cdot \operatorname{Poisson}(\mu)$.

Solution: We have shown that $\sqrt{n}(\bar{X}_n-\mu)\stackrel{d}{\to} N(0,\mu)$. If we take $g(x)=\sqrt{x}$, then $g'(\mu)=\frac{1}{2\sqrt{\mu}}\neq 0$. By the Delta method, $\sqrt{n}(\sqrt{X_n}-\sqrt{\mu})=\sqrt{n}(g(\bar{X}_n-g(\mu)))\stackrel{d}{\to} N(0,\mu(g'(\mu))^2)=N(0,\frac{1}{4})$.

6 Point Estimation

6.1 Backgroud and Notation

Suppose $X_1,...,X_n$ are iid (is random sample) from $f(x;\theta)$. Here $f(x;\theta)$ is a p.f. for discrete r.v. or p.d.f. for continuous r.v. and θ is unknown and consist of finite number of parameters, i.e. $\theta = (\theta_1,...,\theta_k)^T$, θ can be a scalar (k=1) or a vector (k>1). > For example:

> 1. $X_1,...,X_n \overset{iid}{\sim} \operatorname{Poisson}(\mu)$, then $\theta = \mu$ is a scalar (k=1).

> 2.
$$X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$$
, then $heta = (\mu,\sigma^2)^T$ is a vector ($k>1$).

Some useful notations:

- Θ : parameter space. It consists of all possible values θ can take.
- 1. $X_1,...,X_n \overset{iid}{\sim} \operatorname{Poisson}(\mu)$, then $\Theta = \{\mu | \mu > 0\}$.
- 2. $X_1,...,X_n \overset{iid}{\sim} N(\mu,\sigma^2)$, then $\Theta = \{(\mu,\sigma^2)| \mu \in \mathbb{R}, \sigma^2 > 0\}$.
- Data: $X_1,...,X_n \stackrel{iid}{\sim} f(x; heta)$, are random variables
- Observation: $x_1, ..., x_n$ are observed values of $X_1, ..., X_n$, they are not random.
- Statistic: a function of data, and cannot depend on θ .
- > e.g. $ar{X_n}=rac{1}{n}\sum_{i=1}^n X_i$ is a statistic, but $\sqrt{n}(ar{X_n}-\mu)$ is not a statistic if μ is unknown.
- Estimator: If a statistic $T = T(X_1, ..., X_n)$ is used to estimate θ , then T is an estimator of θ , it is a random variable.
- Estimate: An observed value of $T=T(X_1,...,X_n)$, also known as realization of T, denoted by $t=T(x_1,...,x_n)$, it is not random.
- > e.g. $\bar{X_n}$ is an estimator of μ if $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$. If we observe $x_1,...,x_n$, then $\bar{x_n} = \frac{1}{n} \sum_{i=1}^n x_i$ is an estimate of μ .
- > Remark: In statistics, we use $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ to denote an estimator of θ . If $\hat{\theta}$ is an observed value, not a r.v., then $\hat{\theta} = \hat{\theta}(x_1, ..., x_n)$ to denote an estimate of θ .

6.2 Method of Moments

Problem Setup: Suppose $X_1,...,X_n \overset{iid}{\sim} f(x;\theta)$, we want to estimate $\theta = (\theta_1,...,\theta_k)^T$.

- 1. Let $\mu_j = E(X_i^j), j=1,...,k$ denote the jth moment of X_i . (population moment) i. μ_j is called the jth population moment.
 - ii. $\mu_j = \mu_j(\theta)$, i.e. μ_j is a function of θ .

e.g.
$$X_1,...,X_n\stackrel{iid}{\sim}N(\mu,\sigma^2)$$
. Here, $\theta=(\mu,\sigma^2)^T$. Then, $\mu_1=E(X_1)=\mu=\mu_1(\theta)$, $\mu_2=E(X_1^2)=\sigma^2+\mu^2=\mu_2(\theta)$.

- 2. Let $\hat{\mu_j}=rac{1}{n}\sum_{i=1}^n X_i^j, j=1,...,k$ denote the jth sample moment of X_i . (sample moment)
- 3. Idea of method of moment estimator (MM estimator)

Find estimator of θ , denoted by $\hat{\theta}$, such that $\hat{\mu_j} = \mu_j(\hat{\theta})$. Recall $\theta \stackrel{\mu_j}{\to} \mu_j(\theta) = \mu_j$. Intuitively speaking,

- i. $X_1 \sim \operatorname{Poisson}(\theta)$, $\mu_1 = E(X_1) = \theta = \mu_1(\theta)$. Then the MM estimator satisfies $\mu_1(\hat{\theta}) = \hat{\theta} = \frac{1}{n} \sum_{i=1}^n X_i$.
- ii. $X_i \sim \mathrm{Unif}[0, \hat{\theta}]$. Then, $\mu_1 = E(X_1) = \frac{\theta}{2} = g_1(\theta)$. So the MM estimator satisfies $g_1(\hat{\theta}) = \hat{\theta}/2 = \frac{1}{n} \sum_{i=1}^n X_i$, then the MM estimator of θ is $\hat{\theta} = 2\bar{X_n}$, where $\bar{X_n} = 2\bar{X_n}$

iv. Two parameter case:
$$X_i \sim N(\mu,\sigma^2)$$
. Hence $\theta=(\mu,\sigma^2)^T$. Then, $\mu_1=E(X_1)=\mu=g_1(\theta)$, $\mu_2=E(X_1^2)=\sigma^2+\mu^2=g_2(\theta)$. Then, the MM estimator of θ satisfies $g_1(\hat{\theta})=\hat{\mu}=\bar{X}_n$, $g_2(\hat{\theta})=(\hat{\mu})^2+\hat{\sigma^2}=\frac{1}{n}\sum_{i=1}^n X_i^2$. Then, $\hat{\mu}=\bar{X}_n$, $\hat{\sigma^2}=\frac{1}{n}\sum_{i=1}^n X_i^2-(\bar{X}_n)^2=\frac{1}{n}\sum_{i=1}^n (X_i-\bar{X}_n)^2$. Note $E(\hat{\sigma^2})\neq\sigma^2$, so $\hat{\sigma^2}$ is a biased estimator of σ^2 .

6.3 Maximum Likelihood Method

In this section we will introduce the most commonly used method for estimating unknown parameters.

- Likelihood function
 - i. Suppose that $X_1, ..., X_n$ are iid from $f(x; \theta)$, a p.f. if X_i is discrete, or a p.d.f. if X_i is continuous.
 - ii. Given $x_1, ..., x_n$, which denote the observed values of $X_1, ..., X_n$, we calculate the joint p.f. or p.d.f. of $(X_1, ..., X_n)$ wrt observed values $(x_1, ..., x_n)$
 - a. Discrete case: joint p.f. of $X_1,...,X_n$ wrt $x_1,...,x_n$ is $P(X_1=x_1,...,X_n=x_n)=\prod_{i=1}^n P(X_i=x_i)=\prod_{i=1}^n f(x_i;\theta).$
 - b. Continuous case: joint p.d.f. of $X_1,...,X_n$ wrt $x_1,...,x_n$ is $f(x_1,...,x_n;\theta)=\prod_{i=1}^n f(x_i;\theta).$
 - iii. We use $L(\theta;x_1,...,x_n)$ or $L(\theta)$ to denote the joint p.f. or pdf evaluated at $x_1,...,x_n$. That is to say, $L(\theta;x_1,...,x_n)=\begin{cases} P(X_1=x_1,...,X_n=x_n) & \text{discrete case} \\ f_{X_1,...,X_n}(x_1,...,x_n;\theta) & \text{continuous case} \end{cases}=$

 $\prod_{i=1}^n f(x_i; \theta)$. Here, $L(\theta; x_1, ..., x_n)$ is called the likelihood of θ .

Comments:

- i. Likelihood function measures how likely we get the observed data $x_1,...,x_n$ for a given θ .
- ii. Smaller $L(\theta)$ indicates it is less likely for such θ to generate the observed data $x_1,...,x_n$.
- iii. Larger $L(\theta)$ indicates it is more likely for such θ to generate the observed data $x_1,...,x_n$.
- \circ Idea of Maximum Likelihood Method: Choose θ to maximize $L(\theta)$. In other words, we choose θ such that it is most lilely to generate the observed data $x_1,...,x_n$.

- Maximum Likelihood Estimator (MLE)
 - i. MLE maximizes $L(\theta)$, i.e., if we use $\hat{\theta}=\hat{\theta}(x_1,...,x_n)$ to denote the ML estimate, then $\hat{\theta}=\arg\max_{\theta\in\Theta}L(\theta;x_1,...,x_n)$.
 - ii. ML estimator: $\hat{ heta} = \hat{ heta}(X_1,...,X_n)$.
 - iii. log-likelihood function: $l(\theta) = \ln L(\theta)$. Then the ML estimator satisfies $\hat{\theta} = \arg\max_{\theta \in \Theta} L(\theta) = \arg\max_{\theta \in \Theta} l(\theta)$.
 - iv. Invariance property of ML estimator: Let $\eta=g(\theta)$, i.e., η is a function of θ . Then, the MLE of η is given by $\hat{\eta}=g(\hat{\theta})$, where θ denotes the MLE of θ .

Examples of MLE

Suppose $X_1,...,X_n \overset{iid}{\sim}$

- i. $Poisson(\theta)$
- ii. $\mathrm{Unif}[0,\theta]$

iii.
$$f(x; heta) = egin{cases} heta x^{ heta - 1} & 0 < x < 1 \ 0 & ext{otherwise} \end{cases}$$

iv. $N(\mu, \sigma^2)$

Solution:

- i. Likelihood function for $x_1,...,x_n$ is $L(\theta;x_1,...,x_n)=\prod_{i=1}^n f(x_i;\theta)=\prod_{i=1}^n \frac{\theta^{x_i}}{x_i!}e^{-\theta}$, $x_i=0,1,2,...$. Then, the log-likelihood is, $l(\theta)=\ln L(\theta)=\sum_{i=1}^n \ln f(x_i;\theta)=\sum_{i=1}^n \ln \frac{\theta^{x_i}}{x_i!}e^{-\theta}=\sum_{i=1}^n \ln \theta^{x_i}-\sum_{i=1}^n \ln x_i!-n\theta$. Then the ML estimate of θ satisfies $\frac{dl(\theta)}{d\theta}=\sum_{i=1}^n \frac{x_i}{\theta}-n=0$, then $\hat{\theta}=\frac{1}{n}\sum_{i=1}^n x_i=\bar{x}_n$. Therefore, the MLE of θ is $\hat{\theta}=\bar{X}_n$.
- ii. Likelihood function for $x_1,...,x_n$ is $L(\theta;x_1,...,x_n)=1/\theta^n\prod_{i=1}^n1(0\leq x_i\leq\theta)=1/\theta^n1(x_{(1)}\geq0)1(x_{(n)}\leq\theta)$, where $x_{(1)}=\min\{x_1,...,x_n\}$, $x_{(n)}=\max\{x_1,...,x_n\}$. Then, when $\theta< x_{(n)},L(\theta)=0$, when $\theta\geq x_{(n)},L(\theta)$ is a monotone decreasing function of θ . Therefore, the ML estimate of θ is $\hat{\theta}=x_{(n)}$. Therefore, the MLE of θ is $\hat{\theta}=x_{(n)}=\max\{X_1,...,X_n\}$.
- iii. Likelihood function for $x_1,...,x_n$ is $L(\theta;x_1,...,x_n)=\prod_{i=1}^n f(x_i;\theta)=\prod_{i=1}^n \theta x_i^{\theta-1}=\theta^n(\prod_{i=1}^n x_i)^{\theta-1}.$ Then, the log-likelihood is, $l(\theta)=\ln L(\theta)=\ln \theta^n+(\theta-1)\sum_{i=1}^n \ln x_i.$ Then the ML estimate of θ satisfies $\frac{dl(\theta)}{d\theta}=\frac{n}{\theta}+\sum_{i=1}^n \ln x_i=0,$ then $\hat{\theta}=-\frac{n}{\sum_{i=1}^n \ln x_i}.$ Therefore, the MLE of θ is $\hat{\theta}=-\frac{n}{\sum_{i=1}^n \ln x_i}.$
- iv. Likelihood function for $x_1,...,x_n$ is $L(\mu,\sigma^2;x_1,...,x_n)=\prod_{i=1}^n f(x_i;\mu,\sigma^2)=\prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$. Then, the log-likelihood is, $l(\mu,\sigma^2)=\ln L(\mu,\sigma^2)=\sum_{i=1}^n \ln f(x_i;\mu,\sigma^2)=\sum_{i=1}^n \ln \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}=-\frac{n}{2}\ln 2\pi-\frac{n}{2}\ln \sigma^2-\frac{n}{2}\ln \sigma^2$

 $\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2. \text{ Then the ML estimate of } \mu \text{ satisfies } \frac{\partial l(\mu,\sigma^2)}{\partial \mu} = \frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu) = 0, \text{ then } \hat{\mu} = \frac{1}{n}\sum_{i=1}^nx_i = \bar{x_n} \text{ and the ML estimate of } \sigma^2 \text{ satisfies } \frac{\partial l}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4}\sum_{i=1}^n(x_i-\mu)^2 = 0, \text{ then } \hat{\sigma^2} = \frac{1}{n}\sum_{i=1}^n(x_i-\mu)^2 = \frac{1}{n}\sum_{i=1}^n(x_i-\bar{x_n})^2. \text{ Therefore, the MLE of } \mu \text{ is } \hat{\mu} = \bar{X_n} \text{ and the MLE of } \sigma^2 \text{ is } \hat{\sigma^2} = \frac{1}{n}\sum_{i=1}^n(X_i-\bar{X_n})^2.$

6.4 Properties of ML Estimator

In this section:

- 1. We consider θ is a scalar, i.e., k=1.
- 2. We consider the ML estimator (a r.v.)
- 3. The support of $X_1,...,X_n$ does not depend on θ . For example, if $X_1,...,X_n \overset{iid}{\sim} \mathrm{Unif}[0,\theta]$, then the support of $X_1,...,X_n$ depends on θ . Then the theories developed in this section do not apply.

We define some notation first:

- 1. Score function, dentoed as $S(\theta)$: $S(\theta) = \frac{dl(\theta)}{d\theta} = \frac{d \ln L(\theta; x_1, ..., x_n)}{d\theta}$. Typically, the MLE $\hat{\theta}$ satisfies $S(\hat{\theta}) = 0$, when the support of $X_1, ..., X_n$ does not depend on θ .
- 2. Information function, denoted as $I(\theta)$: $I(\theta) = -\frac{d^2l(\theta)}{d\theta^2} = -\frac{d^2\ln L(\theta;x_1,...,x_n)}{d\theta^2}$.
- 3. Fisher information, denoted as $J(\theta)$: $J(\theta) = E(I(\theta)) = E(-\frac{d^2l(\theta)}{d\theta^2}) = E(-\frac{d^2\ln L(\theta;x_1,\dots,x_n)}{d\theta^2})$

Example: If $X_1,...,X_n \stackrel{iid}{\sim} f(x;\theta)$. Then $L(\theta;x_1,...,x_n) = \prod_{i=1}^n f(x_i;\theta)$, $l(\theta) = \ln L(\theta) = \sum_{i=1}^n \ln f(x_i;\theta)$. Then, $S(\theta) = \frac{dl(\theta)}{d\theta} = \sum_{i=1}^n \frac{d \ln f(x_i;\theta)}{d\theta}$, $I(\theta) = -\frac{d^2l(\theta)}{d\theta^2} = -\sum_{i=1}^n \frac{d^2 \ln f(x_i;\theta)}{d\theta^2}$, $J(\theta) = -E(\frac{dl(\theta)}{d\theta})^2 = -E(\sum_{i=1}^n \frac{d \ln f(x_i;\theta)}{d\theta})^2 = \sum_{i=1}^n -E(\frac{d \ln f(x_i;\theta)}{d\theta})^2$. Let $J_1(\theta) = -E(\frac{dl(\theta)}{d\theta})^2 = -E(\frac{d \ln f(x_i;\theta)}{d\theta})^2$, then $J(\theta) = nJ_1(\theta)$.

Example: If $X_1,...,X_n \overset{iid}{\sim} \operatorname{Poisson}(\theta)$. Likelihood function: $L(\theta;x_1,...,x_n) = \prod_{i=1}^n f(x_i;\theta) = \prod_{i=1}^n \frac{\theta^{x_i}}{x_i!} e^{-\theta}$, log-likelihoodfunction: $l(\theta) = \ln L(\theta) = \sum_{i=1}^n \ln f(x_i;\theta) = \sum_{i=1}^n \ln \frac{\theta^{x_i}}{x_i!} e^{-\theta} = \sum_{i=1}^n \ln \theta^{x_i} - \sum_{i=1}^n \ln x_i! - n\theta$. Then, Score function $S(\theta) = \frac{dl(\theta)}{d\theta} = \sum_{i=1}^n \frac{x_i}{\theta} - n$, Information function $I(\theta) = -\frac{dS}{d\theta} = -\sum_{i=1}^n \frac{x_i}{\theta^2}$, Fisher information $J(\theta) = E(I(\theta)) = E(-\frac{dS}{d\theta}) = E(\sum_{i=1}^n \frac{x_i}{\theta^2}) = \sum_{i=1}^n E(\frac{x_i}{\theta^2}) = \sum_{i=1}^n \frac{1}{\theta^2} E(X_i) = \frac{n}{\theta^2} E(X_1) = \frac{n}{\theta^2} \theta = \frac{n}{\theta}$.