

Multi-frequency Radio Study of the Dissociative Merger Cluster CIZA J0107.7+5408

E. Schwartzman^{1,2}, T. Clarke², S. Giacintucci², S. Randall³, R. Van Weeren⁴, W. Dawson⁵, J. ZuHone³, A.Zitrin⁶, P. Nulsen³, G. Alvarez⁷, A. Stroe³, E. Blanton⁸, E. Bulbul³, K. Finner⁹

¹George Mason University, Fairfax, VA, ²U.S. Naval Research Laboratory, Washington, DC, ³Harvard-Smithsonian Center for Astrophysics, Boston, MA, ⁴Leiden University, Leiden, Netherlands, ⁵Lawrence Livermore National Laboratory, Livermore, CA, ⁶Ben-Gurion University, Beersheba, Israel, ⁷Vanderbilt University, Nashville, TN, ⁸Boston University, Boston, MA, ⁹Yonsei University, Seoul, Republic of Korea

Galaxy Cluster Mergers

- Largest bound objects in the universe
- Clusters merge at the high density points of the filaments of galaxies

- Highly energetic events that drive shocks, turbulence, and magnetic field compressions
 - All three accelerate/reaccelerate particles
- Possibly home to radio relics, radio halos, shock edges, fossils, etc.

Emma Schwartzman: AAS 237 Meeting: 13 January 2021

CIZA J0107.7+5408

- Large, post core passage, dissociative, binary merger, with (possibly) two, roughly equal mass subclusters
- Each subcluster has an optical density peak, offset from their associated X-ray density peak (diffuse gas responds to pressure forces, collisionless galaxies do not)
- X-ray morphology shows an elongated, disturbed system, with two identifiable BCGs
- System hosts double-peaked, diffuse radio emission (possibly a double radio relic)

Chandra image, with point sources removed

Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

Randall, et al. 2018.

X-ray morphology shows an elongated, disturbed system, with two identifiable BCGs

1.4 GHz WSRT Radio Image

Emma Schwartzman: AAS 237 Meeting: 13 January 2021

Randall et al. 2018

VLA (Radio) Observations

Emma Schwartzman: AAS 237 Meeting: 13 January 2021

Spectral index map w/ 74 MHz VLSSr contours (steep spectrum emission)

Emma Schwartzman: AAS 237 Meeting: 13 January 2021

Next Steps

- Deeper, more accurate representations
- Removing point sources for diffuse radio emission analysis
- Polarization studies halos versus relics
- More detailed Spectral Index Maps two-component resolution
- High resolution, A configuration, P
 band data ultrasteep spectrum
- Newer X-ray data (Randall, et al.)

