Capítulo 2

Determinantes

O determinante é um número que se associa a uma matriz quadrada. Neste capítulo começa-se por definir determinante, deduzindo-se a seguir algumas das suas propriedades. Duas dessas propriedades merecem especial destaque. A primeira estabelece uma relação entre o determinante de uma matriz A e o determinante da matriz que resulta de A após aplicação do método de eliminação de Gauss. A outra propriedade diz-nos que é possível utilizar o determinante de uma matriz como teste de invertibilidade (uma matriz é invertível se e só se o seu determinante é diferente de zero).

Na Secção 2.3 é apresentado o chamado *desenvolvimento de Laplace* para o cálculo do determinante de uma matriz. Com base no desenvolvimento de Laplace deduz-se uma fórmula para o cálculo da inversa de uma matriz envolvendo determinantes, bem como a *regra de Cramer* para resolver sistemas possíveis e determinados.

A interpretação geométrica do conceito de determinante é diferida para o Capítulo 5, onde veremos que o módulo do determinante de uma matriz 2×2 (resp. 3×3) corresponde à área de um paralelogramo (resp. volume de um paralelipípedo) definido pelos vectores coluna da matriz.

2.1 Definição de determinante

Comecemos por apresentar alguns resultados preliminares sobre permutações, necessários para a compreensão da definição de determinante. O leitor interessado em aprofundar a teoria das permutações poderá consultar Cohn [4].

Uma permutação do conjunto X é uma função bijectiva σ de X em si próprio. Uma permutação σ do conjunto $\{1, 2, \ldots, n\}$ pode ser representada por uma matriz com duas linhas, em que na primeira linha aparecem os números $1, 2, \ldots, n$ e na segunda linha as imagens $\sigma(1), \sigma(2), \ldots, \sigma(n)$. Isto é,

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{array}\right).$$

Uma outra representação da permutação σ é considerando o n-uplo:

$$\sigma = (\sigma(1), \sigma(2), \dots, \sigma(n)) = (\sigma_1, \sigma_2, \dots, \sigma_n).$$

Passamos a adoptar esta notação para σ . Saliente-se que dada a bijectividade de σ , os números $1, 2, \ldots, n$ ocorrem sem repetições em $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_n)$.

Exemplo 2.1. a) É óbvio que só existem 2 permutações de $\{1,2\}$, nomeadamente (1,2) e (2,1). Logo, o conjunto Π de todas as permutações de $\{1,2\}$ é

$$\Pi = \{(1,2), (2,1)\}.$$

b) Para determinar o conjunto das permutações de $\{1, 2, 3\}$, considere-se o esquema seguinte correspondente às possíveis escolhas de 1, 2 e 3 para a primeira, segunda e terceira posições de uma permutação de $\{1, 2, 3\}$.

É claro que não existem outras permutações de $\{1,2,3\}$ para além das indicadas. O conjunto de todas as permutações de $\{1,2,3\}$ é

$$\Pi = \left\{ (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1) \right\}.$$

 $^{-1}$ A função $\sigma: X \to X$ é bijectiva se aplica elementos distintos de X em elementos distintos, e todo o elemento de X é imagem por σ de algum elemento de X (se necessitar, consulte o Capítulo 6).

O cardinal do conjunto de todas as permutações de $\{1,2,\ldots,n\}$ é facilmente calculado, uma vez que temos n escolhas possíveis para a primeira componente do n-uplo, pelo que a seguir apenas dispomos de (n-1) escolhas para a segunda componente, (n-2) para a terceira , etc. Por conseguinte, o cardinal do conjunto Π de todas as permutações de $\{1,2,\ldots,n\}$ é n! (n factorial):

$$n(n-1)(n-2)\cdots 2\cdot 1=n!.$$

Dada uma permutação (j_1, j_2, \ldots, j_n) de $\{1, 2, \ldots, n\}$ dizemos que ocorreu uma *inversão* sempre que um inteiro na permutação é seguido de um inteiro menor. A permutação $(1, 2, \ldots, n)$ tem zero inversões e é designada por *permutação identidade*.

Definimos o *número total de inversões* em (j_1, j_2, \ldots, j_n) como sendo a soma dos números obtidos da seguinte forma: determinar o número de inteiros menores que j_1 que lhe sucedem na permutação; determinar o número de inteiros menores que j_2 que lhe sucedem na permutação; continuar esta contagem para j_3, \ldots, j_{n-1} .

Exemplo 2.2. Determinar o número total de inversões das permutações seguintes.

(a)
$$(3,4,1,2,6,5,7)$$
 (b) $(1,3,2,4)$ (c) $(1,4,3,9,8,2,5,7,6)$.

- (a) O número total de inversões é: 2+2+0+0+1+0=5.
- (b) O número total de inversões é: 0 + 1 + 0 = 1.
- (c) O número total de inversões é: 0 + 2 + 1 + 5 + 4 + 0 + 0 + 1 = 13.

A composição de permutações de $\{1,2,\ldots,n\}$, bem como a inversa de uma permutação, são ainda permutações de $\{1,2,\ldots,n\}$. É habitual designar-se a composição de permutações por *produto* de permutações. Por exemplo se $\sigma=(2,4,1,3)$ e $\pi=(1,4,3,2)$ são permutações de $\{1,2,3,4\}$, a composição $\sigma\pi$ e a inversa σ^{-1} de σ são, respectivamente, $\sigma\pi=(2,3,1,4)$ e $\sigma^{-1}=(3,1,4,2)$.

Chama-se transposição a uma permutação que se obtém trocando a posição de dois números na permutação identidade $(1,2,\ldots,n)$, deixando os restantes fixos. Por exemplo, a permutação (3,2,1,4) é uma transposição. Note-se que o número total de inversões de uma transposição é um número ímpar.

Mostra-se que qualquer permutação $\sigma=(j_1,j_2,\ldots,j_n)$ é igual ao produto de um número finito de transposições. Embora este número de transposições não seja único, a sua paridade é única (ver [4]). Assim, uma permutação σ diz-se par (resp. ímpar) se for possível escrever σ como um produto de um número par (resp. ímpar) de transposições. Uma permutação par diz-se que tem sinal +1 e uma permutação ímpar que tem sinal -1. Podemos desde já enunciar que

Toda a permutação muda de sinal quando se trocam entre si duas quaisquer das suas componentes.

O número total de inversões de uma permutação σ corresponde a um possível número de transposições sucessivas que permitem obter σ a partir da permutação identidade. Por conseguinte, adoptamos a seguinte definição de paridade.

Definição 2.1. Uma permutação diz-se *par* se o respectivo número total de inversões é um número par, e *ímpar* se esse número é ímpar.

O sinal de uma permutação é +1 se a permutação é par e -1 se é ímpar. Designamos por sign σ o sinal da permutação σ .

Definição de determinante.

Comecemos por definir o conceito de produto elementar de entradas de uma matriz quadrada. Um produto elementar de entradas de uma matriz A do tipo $n \times n$, é um produto de n entradas da matriz no qual não existem dois factores provenientes da mesma linha ou da mesma coluna da matriz.

Um produto elementar da matriz $A = [a_{ij}]_{i,j=1,\dots,n}$ pode escrever-se na forma:

$$a_{1j_1}a_{2j_2}\cdots a_{nj_n}, \tag{2.1}$$

onde (j_1, j_2, \ldots, j_n) é uma permutação de $\{1, 2, \ldots, n\}$. O facto de (j_1, j_2, \ldots, j_n) ser uma permutação corresponde precisamente ao facto dos factores no produto (2.1) pertencerem a colunas distintas. De igual modo, podemos escrever um produto elementar de entradas de A na forma

$$a_{i_1} a_{i_2} \cdots a_{i_n}, \tag{2.2}$$

onde (i_1, i_2, \ldots, i_n) é uma permutação de $\{1, 2, \ldots, n\}$.

Exemplo 2.3. Determinar todos os produtos elementares das matrizes

(a)
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 (b)
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
.

Para a matriz da alínea (a) só existem dois produtos elementares, nomeadamente $a_{11}a_{22}$ e $a_{12}a_{21}$. Estes dois produtos elementares são da forma indicada em (2.1), já que usando o conjunto das permutações de $\{1,2\}$, determinado no Exemplo 2.1-(a), temos

Permutação	Produto elementar de A
(1,2)	$a_{11}a_{22}$
(2, 1)	$a_{12}a_{21}$

Para a matriz da alínea (b) o número de produtos elementares é igual ao número de permutações de $\{1,2,3\}$. Assim, usando a expressão (2.1) e o conjunto Π de todas as permutações de $\{1,2,3\}$, determinado no Exemplo 2.1-(b), tem-se

П	Produto elementar de A
(1,2,3)	$a_{11}a_{22}a_{33}$
(1, 3, 2)	$a_{11}a_{23}a_{32}$
(2, 1, 3)	$a_{12}a_{21}a_{33}$
(2, 3, 1)	$a_{12}a_{23}a_{31}$
(3, 1, 2)	$a_{13}a_{21}a_{32}$
(3, 2, 1)	$a_{13}a_{22}a_{31}$

Definimos sinal de um produto elementar como sendo o sinal da permutação que lhe está associada. Ou seja, o sinal do produto elementar $a_{1j_1}a_{2j_2}\cdots a_{nj_n}$ é o sinal de (j_1,j_2,\ldots,j_n) , enquanto que o sinal de $a_{i_11}a_{i_22}\cdots a_{i_nn}$ é o de (i_1,i_2,\ldots,i_n) .

Definição 2.2. O determinante de uma matriz A do tipo $n \times n$, é igual à soma de todos os seus produtos elementares multiplicados pelo sinal respectivo. Ou seja, para $A = [a_{ij}]$ o determinante de A é

$$\det(A) = \sum_{\substack{\sigma \in \Pi \\ \sigma = (j_1, j_2, \dots, j_n)}} \operatorname{sign}(\sigma) a_{1j_1} a_{2j_2} \cdots a_{nj_n}, \tag{2.3}$$

onde Π designa o conjunto das permutações de $\{1, 2, \dots, n\}$.

O determinante de uma matriz A é designado por $\det(A)$ ou por |A|.

Note-se que, quando $\sigma=(p_1,p_2,\ldots,p_n)$ varia no conjunto Π de todas as permutações de $\{1,2,\ldots,n\}$, o conjunto de todos os produtos elementares da forma $\mathrm{sign}(\sigma)\,a_{1p_1}a_{2p_2}\cdots a_{np_n}$ é igual ao conjunto de todos os produtos da forma $\mathrm{sign}(\sigma)a_{p_11}a_{p_22}\cdots a_{p_nn}$. Por conseguinte, o determinante da matriz $A=[a_{ij}]_{i,j=1,\ldots,n}$ pode ser igualmente escrito na forma

$$\det(A) = \sum_{\substack{\sigma \in \Pi \\ \sigma = (i_1, i_2, \dots, i_n)}} \operatorname{sign}(\sigma) a_{i_1 1} a_{i_2 2} \cdots a_{i_n n}. \tag{2.4}$$

Os cálculos efectuados nos exemplos anteriores permitem obter o determinante de uma matriz 2×2 e 3×3 .

Usando a definição de determinante, para a matriz $A = [a_{ij}]_{i,j=1,2}$ temos

Π	Paridade	Produto elementar	
		com sinal	
(1,2)	par	$a_{11}a_{22}$	
(2,1)	ímpar	$-a_{12}a_{21}$	

Logo,

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}. \tag{2.5}$$

Da mesma forma, para a matriz $A = [a_{ij}]_{i,j=1,2,3}$ tem-se

Π	Paridade	Produto elementar	
		com sinal	
(1,2,3)	par	$a_{11}a_{22}a_{33}$	
(1, 3, 2)	ímpar	$-a_{11}a_{23}a_{32}$	
(2, 1, 3)	ímpar	$-a_{12}a_{21}a_{33}$	
(2, 3, 1)	par	$a_{12}a_{23}a_{31}$	
(3, 1, 2)	par	$a_{13}a_{21}a_{32}$	
(3, 2, 1)	ímpar	$-a_{13}a_{22}a_{31}$	

Assim,

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}.$$

$$(2.6)$$

Podemos usar uma mnemónica² para a expressão do determinante de uma matriz 3×3 : os produtos elementares positivos são os produtos das entradas da diagonal principal e das entradas situadas nos vértices de dois triângulos com um lado paralelo à diagonal principal (a vermelho na Figura 2.1), enquanto que os de sinal negativo são os produtos das entradas da diagonal oposta à diagonal principal e das entradas situadas nos vértices de dois triângulos com um lado paralelo a essa diagonal (a azul na Figura 2.1).

²Esta mnemónica é conhecida pela designação de regra de Sarrus (Pierre Frédéric Sarrus, 1798-1861, matemático francês).

Figura 2.1: Para uma matriz 3×3 : a vermelho os produtos elementares com sinal positivo e a azul os produtos elementares com sinal negativo.

2.2 Propriedades do determinante

A partir da definição de determinante vamos deduzir algumas propriedades. Como o determinante de uma matriz $n \times n$ é a soma de todos os produtos elementares com o respectivo sinal, e um produto elementar é um produto de n entradas da matriz extraídas de linhas e colunas distintas, podemos concluir:

- Se uma matriz tem uma linha de zeros o seu determinante é igual a zero, já que os produtos elementares são todos nulos. De facto, cada produto elementar tem um factor pertencente à linha nula.
- Como os factores de um produto elementar correspondem a uma escolha de n entradas da matriz de tal forma que não haja duas da mesma linha nem da mesma coluna, numa matriz triangular apenas um dos produtos elementares poderá ser não nulo. Este é o produto das entradas da diagonal principal. Logo, o determinante de uma matriz triangular é igual ao produto das entradas da diagonal principal.
- Se a matriz B é obtida da matriz A multiplicando uma linha de A por uma constante k, por exemplo a linha i, então

$$\det B = \sum_{\substack{\sigma \in \Pi \\ \sigma = (j_1, j_2, \dots, j_n)}} \operatorname{sign}(\sigma) a_{1j_1} a_{2j_2} \cdots (k a_{ij_i}) \cdots a_{nj_n}$$

$$= k \sum_{\substack{\sigma \in \Pi \\ \sigma = (j_1, j_2, \dots, j_n)}} \operatorname{sign}(\sigma) a_{1j_1} a_{2j_2} \cdots a_{ij_i} \cdots a_{nj_n} = k \det A.$$

Se A é uma matriz de ordem n, então $\det(kA) = k^n \det(A)$.

 Como uma permutação muda de sinal se trocarmos a posição de duas das suas componentes, o determinante de uma matriz muda de sinal se trocarmos duas colunas da matriz. De facto, se a matriz B é obtida de A por troca da coluna p com a coluna r tem-se

$$\det B = \sum_{\substack{\sigma \in \Pi \\ \sigma = (j_1, \dots, j_n)}} \operatorname{sign}(\sigma) a_{1j_1} \cdots a_{pj_p} \cdots a_{rj_r} \cdots a_{nj_n}$$

$$= \sum_{\substack{\sigma \in \Pi \\ \sigma = (j_1, \dots, j_n)}} -\operatorname{sign}(\sigma) a_{1j_1} \cdots a_{rj_r} \cdots a_{pj_p} \cdots a_{nj_n} = -\det A.$$

• Uma matriz A e a sua transposta, A^T , possuem os mesmos produtos elementares. Além disso, se $A^T = [a'_{ij}]$ e $A = [a_{ij}]$ tem-se $a'_{1j_1} a'_{2j_2} \cdots a'_{nj_n} = a_{j_1 1} a_{j_2 2} \cdots a_{j_n n}$. Por conseguinte, os sinais dos produtos elementares de A^T são iguais aos sinais dos produtos elementares de A. Assim, usando as expressões (2.3) e (2.4), tem-se $\det(A) = \det(A^T)$.

Uma vez que $\det(A) = \det(A^T)$, todas as propriedades válidas para as linhas de uma matriz são igualmente válidas substituindo a palavra linha por coluna. Resumimos no quadro que se segue as propriedades do determinante já deduzidas.

Propriedades do determinante

Seja A uma matriz $n \times n$.

- P1. $\det(A) = \det(A^T)$.
- P2. Se uma matriz tem uma linha (ou coluna) nula, então o seu determinante é igual a zero.
- P3. O determinante de uma matriz triangular é igual ao produto das entradas da diagonal principal. Em particular, o determinante da matriz identidade é igual a 1.
- P4. Trocando duas linhas (ou colunas) de uma matriz, muda o sinal do determinante.
- P5. Se uma linha (ou coluna) de uma matriz for multiplicada por uma constante k, o determinante vem multiplicado por k. Em particular,

$$\det(kA) = k^n \det(A). \tag{2.7}$$

Exercício 2.1. Mostrar que $det(-I_2) = 1$ e $det(-I_3) = -1$, onde I_2 e I_3 são respectivamente as matrizes identidade de ordem 2 e 3.

As propriedades P4 e P5 dizem respeito ao comportamento do determinante de uma matriz relativamente a duas das três operações elementares sobre as linhas da matriz. Vamos deduzir novas propriedades com o objectivo de determinar o comportamento do determinante relativamente à operação elementar em falta.

- P6. Se uma matriz tem duas linhas (ou colunas) iguais, então o seu determinante é igual a zero.
- P7. Se A, B e C são matrizes $n \times n$ que diferem apenas na linha (resp. coluna) número i, e a linha (resp. coluna) i de C é igual à soma da linha (resp. coluna) i de A com a linha (resp. coluna) i de B, então $\det(C) = \det(A) + \det(B)$. Isto é,

$$\begin{vmatrix} a_{11} & \cdots & a_{nn} \\ \vdots & \cdots & \vdots \\ a_{i1} + a'_{i1} & \cdots & a_{in} + a'_{in} \\ \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \cdots & a_{nn} \\ \vdots & \cdots & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \cdots & a_{nn} \\ \vdots & \cdots & \vdots \\ a'_{i1} & \cdots & a'_{in} \\ \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}.$$

- P8. Se B é uma matriz obtida de A substituindo uma linha (resp. coluna) de A pela sua soma com outra linha (resp. coluna) multiplicada por uma constante, então $\det(B) = \det(A)$.
- Demonstração. P6: Suponha-se que a matriz A tem a linha i igual à linha r. Se trocarmos a linha i de A com a linha r obtemos de novo a matriz A. Assim, usando a propriedade P4, temos

$$det(A) = -det(A) \iff det(A) = 0.$$

P7: Seja

$$C = \begin{bmatrix} a_{11} & \cdots & a_{nn} \\ \vdots & \cdots & \vdots \\ a_{i1} + a'_{i1} & \cdots & a_{in} + a'_{in} \\ \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}.$$

Por definição de determinante, tem-se

$$\det(C) = \sum_{\substack{\sigma \in \Pi \\ \sigma = (j_1, j_2, \dots, j_n)}} \operatorname{sign}(\sigma) a_{1j_1} a_{2j_2} \cdots (a_{ij_i} + a'_{ij_i}) \cdots a_{nj_n}$$

$$= \sum_{\substack{\sigma \in \Pi \\ \sigma = (j_1, j_2, \dots, j_n)}} \operatorname{sign}(\sigma) a_{1j_1} a_{2j_2} \cdots a_{ij_i} \cdots a_{nj_n}$$

$$+ \sum_{\substack{\sigma \in \Pi \\ \sigma = (j_1, j_2, \dots, j_n)}} \operatorname{sign}(\sigma) a_{1j_1} a_{2j_2} \cdots a'_{ij_i} \cdots a_{nj_n} = \det(A) + \det(B).$$

P8: Considere-se a matriz $A = [a_{ij}]_{i,j=1,\dots,n}$ e a matriz B que se obtém de A substituindo a linha i pela sua soma com a linha r multiplicada por k. Então,

$$\det(B) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & & \vdots \\ a_{i1} + ka_{r1} & a_{i2} + ka_{r2} & \cdots & a_{in} + ka_{rn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$\stackrel{P7,P5}{=} \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + k \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + k \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$\stackrel{P6}{=} \det(A) + 0.$$

As propriedades P5 e P7 traduzem o que se designa por *propriedade de li*nearidade do determinante em cada linha (ou coluna) da matriz. De facto, se

encararmos o determinante de uma matriz A como uma função que ao conjunto das linhas (resp. das colunas) de A faz corresponder o valor do determinante de A, as propriedades P5 e P7 abreviam-se dizendo que esta função é linear³ em cada linha (resp. coluna) quando se conservam as outras linhas (resp. colunas) fixas. O estudo de funções lineares é efectuado no Capítulo 6.

Exemplo 2.4. Usando apenas as propriedades do determinante até agora enunciadas, vamos calcular o determinante de uma matriz 2×2 . Pela propriedade P7 podemos escrever o determinante de uma matriz 2 × 2 como a soma de 4 determinantes.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & d \end{vmatrix}$$
 por P7
$$= \begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix}$$
 por P7
$$= 0 + ad - bc + 0 = ad - bc$$
 por P2, P3 e P4.

Na antepenúltima igualdade há dois determinantes que valem zero pois as matrizes têm uma coluna nula; o segundo determinante é igual ao produto das entradas da diagonal principal (determinante de uma matriz diagonal); no terceiro determinante se trocarmos duas linhas da matriz obtemos uma matriz diagonal e portanto o determinante da matriz inicial é igual a (-bc).

Nota 13. A propriedade P7 não diz que o determinante da soma de duas quaisquer matrizes seja igual à soma dos determinantes. Deixamos como exercício encontrar duas matrizes quadradas A e B que verifiquem

$$\det(A+B) \neq \det(A) + \det(B).$$

Exercício 2.2. Mostrar que se uma matriz tem duas linhas proporcionais, então o seu determinante é zero.

As propriedades P4, P5 e P8 referem-se ao comportamento do determinante de uma matriz relativamente a operações elementares sobre as suas linhas. Estas

92

³Uma função de várias variáveis que seja linear em cada uma das variáveis diz-se uma função multilinear.

propriedades podem resumir-se do seguinte modo:

$$A \xrightarrow{L_i \leftrightarrow L_j} B \implies \det(B) = -\det(A)$$

$$A \xrightarrow{\alpha L_i} B \implies \det(B) = \alpha \det(A)$$

$$A \xrightarrow{L_i + \alpha L_j} B \implies \det(B) = \det(A),$$

$$(2.8)$$

onde L_i e L_j são linhas (distintas) da matriz A.

Tendo em conta estas propriedades, é imediato o cálculo do determinante de matrizes elementares.

E obtida de I _n por	Propriedade	$\det(\mathbf{E})$
Troca de duas linhas	P4	$\det(E) = -1$
Multiplicação de uma linha por $\alpha \neq 0$	P5	$\det(E) = \alpha$
Substituição de uma linha pela sua soma com outra linha multiplicada pelo escalar α	P8	$\det(E) = 1$

Relembremos que se E é uma matriz elementar, a matriz EA é a matriz que se obtém de A efectuando sobre A a operação elementar que permitiu obter E da identidade (conforme Proposição 1.8). Assim, tendo em conta as relações (2.8) e o valor do determinante de uma matriz elementar E podemos enunciar a proposição que se segue.

Proposição 2.1. Se
$$E$$
 é uma matriz elementar da mesma ordem de A , então

$$\det(EA) = \det(E)\det(A).$$

Determinante e método de eliminação de Gauss

As propriedades P4, P5 e P8 permitem relacionar o determinante de uma matriz A com o determinante de uma matriz B obtida de A usando o método de eliminação de Gauss. Em particular, se na aplicação do método de eliminação de Gauss não for efectuada a operação "multiplicação de uma linha por $\alpha \neq 0$ ", então $\det(B) = \pm \det(A)$. Neste caso, o sinal -1 ocorre sempre que o número de troca de linhas efectuado for ímpar, e o sinal +1 se for par. Caso não haja troca de linhas, nem multiplicação de linhas por um escalar, então $\det(A) = \det(B)$. Em

resumo: o determinante de uma matriz B obtida de A por aplicação do método de eliminação de Gauss é um múltiplo (não nulo) do determinante de A.

No exemplo que apresentamos a seguir aplicamos o método de eliminação de Gauss-Jordan para obter a inversa de uma matriz e usamos as propriedades P4, P5 e P8 para relacionar o determinante da matriz com o da sua inversa.

Exemplo 2.5. Relacionemos o determinante da matriz (invertível)

$$A = \begin{bmatrix} 0 & 0 & 3 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}$$

com o da sua inversa.

Apliquemos o método de eliminação de Gauss-Jordan para obter A^{-1} .

$$[A|I] = \begin{bmatrix} 0 & 0 & 3 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_3} [B|J] = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 1 & 0 & 0 \end{bmatrix}$$

$$\stackrel{L_2-L_1}{\longrightarrow} [C|K] = \left[\begin{array}{ccc|c} 1 & 2 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 3 & 1 & 0 & 0 \end{array} \right] \stackrel{-L_2}{\longrightarrow} [D|L] = \left[\begin{array}{ccc|c} 1 & 2 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 3 & 1 & 0 & 0 \end{array} \right]$$

$$\frac{\frac{1}{3}L_3}{\longrightarrow} [E|M] = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & \frac{1}{3} & 0 & 0 \end{bmatrix} \xrightarrow{L_1 - 2L_2} [I|A^{-1}] = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & \frac{1}{3} & 0 & 0 \end{bmatrix}.$$

Calculando $\det(A)$ e $\det(A^{-1})$ mediante a expressão (2.6) obtemos $\det(A^{-1}) = \frac{1}{3}$ e $\det(A) = 3$. Confirmemos este resultado usando as propriedades do determinante.

- $\det J = -\det I = -1$ (por P4).
- $\det K = \det J = -1$ (por P8).
- $\det L = -\det K = 1$ e $\det M = \frac{1}{3} \det L = \frac{1}{3}$ (por P5).
- $\det(A^{-1}) = \det M = \frac{1}{3}$ (por P8).

Como veremos seguidamente o determinante de uma matriz proporciona um teste de invertibilidade da matriz.

P9. Uma matriz A é invertível se e só se $det(A) \neq 0$.

Demonstração. Se a matriz quadrada A é invertível, a aplicação do método de eliminação de Gauss-Jordan reduz A à matriz identidade. Concluímos assim que o determinante da matriz A é um múltiplo não nulo de 1 e portanto diferente de zero.

Para mostrar a implicação recíproca, suponha-se que $\det(A) \neq 0$. Seja U a matriz triangular superior que se obtém de A por aplicação do método de eliminação de Gauss. O determinante de U é um múltiplo não nulo de $\det(A)$, portanto $\det(U) \neq 0$. Como a matriz em escada U é triangular superior, o seu determinante é igual ao produto das entradas da diagonal principal, portanto a matriz U não tem linhas nulas. Logo, $\operatorname{car}(A) = \operatorname{car}(U) = n$. Sendo $\operatorname{car}(A) = n$, a Proposição 1.12 (pág. 62) garante que A é invertível.

P10. det(AB) = det(A) det(B).

Demonstração. Recorde-se que o produto AB é invertível se e só se as matrizes A e B são invertíveis (Teorema 1.5, pág. 61). Logo, se uma das matrizes, por exemplo A, não é invertível o produto AB não é invertível e $\det(AB)$ =0 e $\det(A)$ = 0, pelo que o resultado fica provado para o caso de não invertibilidade de uma das matrizes.

Suponha-se agora que A e B são ambas invertíveis. Pelo Teorema 1.4-(iv), página 57, uma matriz invertível pode exprimir-se como um produto de matrizes elementares. Seja $A = E_1 \cdots E_r$ com E_i matrizes elementares. Pela Proposição 2.1 a propriedade do enunciado é válida quando um dos factores é uma matriz elementar. Logo,

$$\det(AB) = \det(E_1 \cdots E_r B) = \det(E_1) \det(E_2 \cdots E_r B)$$

=
$$\det(E_1) \det(E_2) \det(E_3 \cdots E_r B) = \cdots = \det(E_1 \cdots E_r) \det(B)$$

=
$$\det(A) \det(B).$$

Finalizamos esta secção enunciando duas proposições que nos serão úteis mais tarde.

Proposição 2.2. Seja A é uma matriz quadrada. O sistema homogéneo $A\mathbf{x} = \mathbf{0}$ possui soluções não nulas se e só se $\det(A) = 0$.

Demonstração. A Proposição 1.10 (pág. 59) garante que $\mathbf{x} = \mathbf{0}$ é solução única do sistema $A\mathbf{x} = \mathbf{0}$ se e só se A é invertível. Como $A\mathbf{x} = \mathbf{0}$ tem sempre a solução nula, conclui-se da propriedade P9 que existem soluções não nulas se e só se $\det(A) = 0$.

Proposição 2.3. Se
$$A$$
 é invertível, então $\det(A^{-1}) = \frac{1}{\det A}$.

Demonstração.

$$1 \stackrel{P3}{=} \det(I) = \det(A^{-1}A) \stackrel{P10}{=} \det(A^{-1}) \det A.$$

A igualdade anterior é equivalente a $\det(A^{-1}) = \frac{1}{\det A}$, já que $\det(A) \neq 0$. \square

2.3 Desenvolvimento de Laplace

O desenvolvimento de Laplace⁴ permite-nos calcular de forma recursiva o determinante de uma qualquer matriz. Baseados neste desenvolvimento deduzimos duas fórmulas, uma para o cálculo da inversa e outra, conhecida por regra de Cramer, para o cálculo de soluções de certos sistemas de equações lineares.

Uma vez que a dedução da fórmula de Laplace a partir da definição de determinante requer algumas manipulações algébricas cujas expressões podem parecer complicadas, optámos por apresentar um exemplo a partir do qual é fácil deduzir o desenvolvimento de Laplace no caso geral.

Exemplo 2.6. Relembremos a expressão do determinante de uma matriz 3×3 obtida em (2.6).

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Pondo em evidência nesta expressão as entradas da primeira linha (por exemplo) da matriz A, obtemos

$$\det(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}).$$

⁴Pierre-Simon (1749 -1827), marquês de Laplace, matemático, astrónomo e físico francês.

Nesta expressão os valores entre parênteses são iguais ao determinante de uma matriz 2×2 . Assim,

$$\det(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= (-1)^{1+1} a_{11} M_{11} + (-1)^{1+2} a_{12} M_{12} + (-1)^{1+3} a_{13} M_{13}.$$
 (2.9)

Da expressão anterior, conclui-se que o determinante da matriz é a soma dos produtos das entradas da primeira linha por um determinante de uma matriz de ordem inferior. Os determinantes M_{ij} nessa expressão são os determinantes das matrizes que se obtêm da matriz dada eliminando a linha i e a coluna j. Por exemplo, M_{12} é obtido eliminando a linha 1 e a coluna 2 de A.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \rightsquigarrow M_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}.$$

Se tivéssemos escolhido pôr em evidência as entradas de uma outra linha (ou mesmo de uma coluna) resultaria uma expressão do mesmo tipo para o determinante da matriz. De facto, o que obtivemos em (2.9) é conhecido como o desenvolvimento de Laplace segundo a primeira linha da matriz A.

 \blacklozenge

Exercício 2.3. Usar o mesmo procedimento do último exemplo para obter uma expressão para $\det(A)$ análoga a (2.9) onde figurem agora as entradas da segunda coluna.

Como verificamos na definição seguinte, os determinantes M_{ij} do Exemplo 2.6 recebem uma designação particular.

Definição 2.3. Se A é uma matriz quadrada, o *menor-ij*, ou *menor da entrada* a_{ij} , é o determinante da matriz que se obtém de A suprimindo a linha i e a coluna j. Este menor denota-se por M_{ij} .

Ao número $C_{ij} = (-1)^{i+j} M_{ij}$ chamamos cofactor-ij, ou cofactor da entrada a_{ij} .

Em certos textos é usada a designação de *complemento algébrico* para cofactor.

A expressão (2.9) do determinante de A pode reescrever-se na forma

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13},$$

indicando que este determinante \acute{e} a soma dos produtos das entradas da primeira linha de A pelos respectivos cofactores.

A fórmula de Laplace que enunciamos a seguir permite calcular o determinante de uma matriz como a soma de produtos das entradas de uma qualquer linha (ou de uma qualquer coluna) da matriz pelos respectivos cofactores. Esta fórmula exprime o determinante de uma matriz à custa de determinantes de matrizes de ordem inferior.

Fórmula de Laplace para o cálculo do determinante Seja

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn} \end{bmatrix}.$$

Sendo C_{ij} o cofactor da entrada a_{ij} , o desenvolvimento de Laplace

a) ao longo da linha i de A é

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}; \tag{2.10}$$

b) ao longo da coluna j de A é

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}.$$
 (2.11)

Usamos as expressões 'ao longo da linha...' e 'segundo a linha...' com o mesmo significado.

Exemplo 2.7. Apliquemos a fórmula de Laplace para calcular o determinante da matriz

$$A = \begin{bmatrix} 1 & 0 & 4 & 2 \\ -2 & 0 & 0 & 0 \\ 10 & 3 & -2 & -1 \\ 3 & 2 & 6 & 3 \end{bmatrix}.$$

Observando que a terceira coluna é o dobro da quarta, o determinante desta matriz é zero (ver Exercício 2.2). Vamos confirmar este resultado usando o desenvolvimento de Laplace.

Da análise das expressões (2.10) e (2.11) é evidente que para efectuarmos o desenvolvimento de Laplace é vantajoso escolher uma linha (ou coluna) da matriz que tenha o maior número de zeros. Neste caso, a segunda linha de A. Assim,

$$\det(A) = -2C_{21} = -2 (-1)^{1+2} M_{21} \quad \text{(usando a 2}^{\text{a}} \text{ linha de } A)$$

$$= -2(-1)^{1+2} \begin{vmatrix} 0 & 4 & 2 \\ 3 & -2 & -1 \\ 2 & 6 & 3 \end{vmatrix}$$

$$= 2 \left(-3 \begin{vmatrix} 4 & 2 \\ 6 & 3 \end{vmatrix} + 2 \begin{vmatrix} 4 & 2 \\ -2 & -1 \end{vmatrix} \right) \quad \text{(usando a 1}^{\text{a}} \text{ coluna da matriz } 3 \times 3)$$

$$= -6 \times 0 + 4 \times 0 = 0.$$

O exemplo anterior ilustra como aplicações sucessivas da fórmula de Laplace permitem reduzir o cálculo do determinante de uma matriz de qualquer ordem ao cálculo de determinantes de matrizes 2×2 (ou até de matrizes 1×1).

2.3.1 Matriz adjunta e cálculo de A^{-1}

O desenvolvimento de Laplace segundo uma linha (ou coluna) de uma matriz fornece o valor do determinante da matriz em termos dos cofactores e das entradas da linha (ou coluna) escolhida. Deduzimos agora a expressão da inversa de uma matriz em termos do seu determinante e de uma matriz construída com os cofactores das entradas da matriz.

Definição 2.4. Dada uma matriz A do tipo $n \times n$, chama-se *matriz adjunta* de A à matriz transposta da matriz dos cofactores de A. Designando por $\mathrm{adj}(A)$ a matriz adjunta de A, tem-se

$$\operatorname{adj}(A) = [C_{ij}]_{i,j=1,\dots,n}^{T} = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \cdots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix},$$

onde C_{ij} designa o cofactor da entrada a_{ij} de A.

Por vezes, usamos $cof(A) = [C_{ij}]_{i,j=1,\dots,n}$ para designar a matriz dos cofactores de A.

Exemplo 2.8. Determinar a matriz adjunta da matriz $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \\ 0 & 3 & 4 \end{bmatrix}$.

Usando a definição de cofactor de uma determinada entrada, vem

$$C_{11} = \begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} = 5$$
 $C_{12} = -\begin{vmatrix} 3 & 1 \\ 0 & 4 \end{vmatrix} = -12$ $C_{13} = \begin{vmatrix} 3 & 2 \\ 0 & 3 \end{vmatrix} = 9$

$$C_{21} = -\begin{vmatrix} 2 & 0 \\ 3 & 4 \end{vmatrix} = -8$$
 $C_{22} = \begin{vmatrix} 1 & 0 \\ 0 & 4 \end{vmatrix} = 4$ $C_{23} = -\begin{vmatrix} 1 & 2 \\ 0 & 3 \end{vmatrix} = -3$

$$C_{31} = \begin{vmatrix} 2 & 0 \\ 2 & 1 \end{vmatrix} = 2$$
 $C_{32} = -\begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} = -1$ $C_{33} = \begin{vmatrix} 1 & 2 \\ 3 & 2 \end{vmatrix} = -4$

Logo,

$$\operatorname{adj}(A) = \begin{bmatrix} 5 & -12 & 9 \\ -8 & 4 & -3 \\ 2 & -1 & -4 \end{bmatrix}^{T} = \begin{bmatrix} 5 & -8 & 2 \\ -12 & 4 & -1 \\ 9 & -3 & -4 \end{bmatrix}.$$

Antes de prosseguirmos, mostremos que é nula a soma dos produtos das entradas de uma linha pelos correspondentes cofactores de uma outra linha. Provamos este facto para o caso de uma matriz 3×3 , embora a demonstração apresentada indique claramente qual o procedimento a seguir no caso geral de uma matriz $n\times n$.

Consideremos a matriz

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

Usando o desenvolvimento de Laplace segundo a primeira linha de A, temos

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}.$$

Suponha-se que em vez de multiplicar as entradas da 1^a linha de A pelos respectivos cofactores, se multiplicam estas entradas pelos cofactores das entradas de uma outra linha, por exemplo da 3^a linha. Ou seja,

$$a_{11}C_{31} + a_{12}C_{32} + a_{13}C_{33}.$$
 (2.12)

Para mostrar que esta expressão vale zero construa-se uma matriz A' cujas primeira e segunda linhas são iguais às de A e a terceira linha é igual à primeira linha de A, isto é,

$$A' = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \end{bmatrix}.$$

Os cofactores C'_{3j} das entradas da terceira linha de A', são iguais aos cofactores das entradas da terceira linha de A (já que as duas primeiras linhas de A e A' são iguais), ou seja,

$$C'_{31} = C_{31}$$
 $C'_{32} = C_{32}$ $C'_{33} = C_{33}$

O determinante de A' é igual a zero visto que A' tem duas linhas iguais. Por outro lado, usando o desenvolvimento de Laplace segundo a terceira linha de A', tem-se

$$0 = \det(A') = a_{11}C'_{31} + a_{12}C'_{32} + a_{13}C'_{33} = a_{11}C_{31} + a_{12}C_{32} + a_{13}C_{33}.$$

Ou seja, a expressão (2.12) é igual a zero, como pretendíamos mostrar.

A soma dos produtos das entradas da linha i de $A=[a_{ij}]$ pelos cofactores das entradas da linha $j\neq i$ é igual a zero. Isto é,

$$0 = a_{i1}C_{j1} + a_{i2}C_{j2} + \dots + a_{in}C_{jn} = \sum_{k=1}^{n} a_{ik}C_{jk} \quad \text{para} \quad i \neq j$$
 (2.13)

Exercício 2.4. Mostrar que a expressão (2.13) é válida para qualquer matriz A do tipo $n \times n$.

A matriz adjunta vai desempenhar um papel importante no cálculo da inversa de uma matriz. De facto, calculando o produto $A \operatorname{adj}(A) = [b_{ij}]_{i,j=1,\dots n}$,

$$A \operatorname{adj}(A) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ C_{j1} & C_{j2} & \cdots & C_{jn} \\ \vdots & \vdots & \vdots & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}^{T}$$

$$= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} C_{11} & \cdots & C_{j1} & \cdots & C_{n1} \\ \vdots & \vdots & \vdots & \vdots \\ C_{1i} & \cdots & C_{ji} & \cdots & C_{ni} \\ \vdots & \vdots & \vdots & \vdots \\ C_{1n} & \cdots & C_{jn} & \cdots & C_{nn} \end{bmatrix}.$$

tem-se

$$b_{ij} = a_{i1}C_{j1} + a_{i2}C_{j2} + \dots + a_{in}C_{jn} = \sum_{k=1}^{n} a_{ik}C_{jk}$$
 para todo $i, j = 1, \dots, n$.

Notemos agora que:

- Se i = j, então $b_{ii} = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in} = \det(A)$ (pela fórmula de Laplace (2.10)).
- Se $i \neq j$, então b_{ij} é a soma dos produtos de entradas da linha i pelos cofactores de uma outra linha. Portanto, de (2.13) segue que $b_{ij} = 0$ se $i \neq j$.

Conclui-se portanto que

$$A \operatorname{adj}(A) = [b_{ij}]_{i,j=1,\dots,n} = \det(A)I.$$

Em resumo.

Qualquer matriz quadrada A satisfaz a igualdade

$$A \operatorname{adj}(A) = \det(A) I. \tag{2.14}$$

Suponha-se agora que A é invertível. Multiplicando a expressão (2.14), à esquerda, pela matriz A^{-1} , obtemos

$$\operatorname{adj}(A) = \det(A)A^{-1} \Longleftrightarrow A^{-1} = \frac{1}{\det(A)}\operatorname{adj}(A).$$

Note-se que a equivalência anterior resulta do facto de $\det(A) \neq 0$ sempre que A é invertível. Obtemos assim o teorema que enunciamos a seguir referente à expressão da inversa de uma matriz A em termos da matriz adjunta.

Teorema 2.1. Se A é uma matriz invertível, a sua inversa é

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A).$$
 (2.15)

Exemplo 2.9. Calculemos a inversa de $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. A matriz A é invertível se e só se $\det(A) = ad - bc \neq 0$ e neste caso, usando (2.15), temos

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = \frac{1}{ad - bc} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}^{T}$$
$$= \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix},$$

expressão que já conhecíamos da Proposição 1.5.

Exemplo 2.10. Calculemos a inversa da matriz do Exemplo 2.8, ou seja de

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & 1 \\ 0 & 3 & 4 \end{bmatrix}.$$

No exemplo referido calculámos a matriz adjunta de A, e portanto usando (2.15) temos

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = \frac{1}{\det(A)} \begin{bmatrix} 5 & -8 & 2 \\ -12 & 4 & -1 \\ 9 & -3 & -4 \end{bmatrix} = \frac{-1}{19} \begin{bmatrix} 5 & -8 & 2 \\ -12 & 4 & -1 \\ 9 & -3 & -4 \end{bmatrix},$$

uma vez que $\det(A) = 8 - 3 - 24 = -19$ (por exemplo, pela regra de Sarrus).

Exercício 2.5. Use a expressão (2.15) para mostrar

$$(A^{-1})^T = (A^T)^{-1}.$$

2.3.2 Regra de Cramer

A regra de Cramer⁵ permite obter uma fórmula para a solução de um sistema $A\mathbf{x} = \mathbf{b}$, quando a matriz A é quadrada e invertível. Embora de valor computacional muito reduzido, esta fórmula pode ter interesse nomeadamente no estudo do comportamento das componentes da solução de um sistema $A\mathbf{x} = \mathbf{b}$ em função de variações no segundo membro \mathbf{b} .

Dado um sistema $A\mathbf{x} = \mathbf{b}$, com o mesmo número de equações que incógnitas, sabemos que o sistema tem solução única se e só se A é invertível, ou seja, se e só se $\det(A) \neq 0$. Neste caso, a solução é dada por $\mathbf{x} = A^{-1}\mathbf{b}$ (ver Proposição 1.10, pág. 59). A regra de Cramer usa a expressão (2.15) de A^{-1} para calcular a solução do sistema. De facto, se A é invertível, a solução de $A\mathbf{x} = \mathbf{b}$ é

$$\mathbf{x} = A^{-1}\mathbf{b} = \frac{1}{\det(A)}\operatorname{adj}(A)\mathbf{b} = \frac{1}{\det(A)}[C_{ij}]^T\mathbf{b}.$$

Tomando
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 e $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$, da expressão anterior resulta

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_j \\ \vdots \\ x_n \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ \vdots & \vdots & \cdots & \vdots \\ C_{1j} & C_{2j} & \cdots & C_{nj} \\ \vdots & \vdots & \cdots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Desta expressão, podemos concluir que cada componente x_i da solução x é dada

⁵Esta regra, publicada em 1750, recebe o nome de Gabriel Cramer (1704–1752), embora já em 1748 esta regra tivesse sido publicada por Colin Maclaurin.

por

$$x_{j} = \frac{1}{\det(A)} (b_{1}C_{1j} + b_{2}C_{2j} + \dots + b_{n}C_{nj})$$

$$= \frac{1}{\det(A)} \begin{vmatrix} a_{11} & a_{12} & \dots & b_{1} & \dots & a_{nn} \\ a_{21} & a_{22} & \dots & b_{2} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & b_{n} & \dots & a_{nn} \end{vmatrix}$$
 (usando a igualdade (2.11)).
$$\uparrow$$
 coluna j

O determinante que aparece no numerador da expressão da componente x_j da solução \mathbf{x} é o determinante da matriz que se obtém de A substituindo a coluna j de A pela coluna \mathbf{b} do termo independente do sistema.

Proposição 2.4. Regra de Cramer

Se $A\mathbf{x} = \mathbf{b}$ é um sistema de n equações a n incógnitas e $\det(A) \neq 0$, então o sistema tem solução (única) $\mathbf{x} = (x_1, \dots, x_n)$, dada por

$$x_1 = \frac{\det A_1}{\det A}, \ x_2 = \frac{\det A_2}{\det A}, \dots, \ x_n = \frac{\det A_n}{\det A},$$

onde A_j é a matriz que se obtém de A substituindo a coluna j de A pela coluna b.

Exemplo 2.11. Utilizemos a regra de Cramer para resolver o sistema

$$\begin{cases} x_1 - 2x_2 = -5 \\ x_1 + x_2 = 3. \end{cases}$$

Comecemos por calcular o determinante da matriz A dos coeficientes do sistema.

$$\det(A) = \begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} = 1 + 2 = 3.$$

Usando a regra de Cramer resulta

$$x_1 = \frac{1}{3} \begin{vmatrix} -5 & -2 \\ 3 & 1 \end{vmatrix} = \frac{1}{3}$$
 e $x_2 = \frac{1}{3} \begin{vmatrix} 1 & -5 \\ 1 & 3 \end{vmatrix} = \frac{8}{3}$.

A solução do sistema é $(x_1, x_2) = \frac{1}{3}(1, 8)$.