Materials & Mathematics

Solubility

Zihui(Andy) Liu Ruei-Lun(Johnson) Chiang Owen Chang-Chien Vinsensius Raymond Doerr

Sections

- 1. Overview
- 2. Hypothesis
- 3. Linear Regression (brief) + Neural Network (NN)
- 4. PCA + NN
- 5. KMC + NN
- 6. Discussion
- 7. Conclusion

Overview

- The importance of solution?
 - We cannot live without talking about solutions

- Dataset: A curated aqueous solubility dataset
 - 9,982 unique compounds
 - o 26 columns
 - 70% Training; 20% Validation; 10% Testing

- Methods: Linear regression, Neural Network, PCA, and K-Means Clustering
 - o graph comparison
 - MSE
 - Covariance

Hypothesis

Linear Regression

HeavyAtomCount	-5.837487
NumValenceElectrons	5.074606
BertzCT	2.490288
MolLogP	-1.604043
MolWt	-0.847045
LabuteASA	-0.796701
NumHeteroatoms	-0.654110
MoIMR	0.633050
NumAromaticRings	-0.481419
RingCount	-0.462177
NumHAcceptors	0.382826
TPSA	-0.254843
NumHDonors	0.207370
NumRotatableBonds	0.188156
NumSaturatedRings	0.124834
NumAliphaticRings	-0.124710
BalabanJ	-0.021462

The Value of the Weights in the Linear Model for Predicting Solubility

Linear Regression

 Linear approach to modeling the relationship between a scalar response and one or more explanatory variables

- Covariance: 0.5071677649499687

- MSE: 2.6412435958194704

NN

- Both classification and regression
- Neural networking combines many different ideas
 - Linear and nonlinear regression
 - Ensemble methods
 - The input features often live in a higher-dimensional space
- Covariance: 0.6963961390293855
- MSE: 1.627108976289455

PCA + NN

- PCA is a unsupervised machine learning method
- Reduce the data so that we can focus on more important features of the data.
- To preserve 90% of the original data, we chose 5 components for PCA.
- After reducing the data size, we will train neural network using the reduced training data.

Interpretation: PCA result vs Regression Result

Parameter Weights of the First and Second Principle Component Vector

Plot of the first two components of PCA in terms of features

Plot of the first two components against the solubility

Discussion:

PCA+NN

Parity Data:

Covariance: 0.6819

- MSE: 1.7048

- Most of the data is concentrated near the line.
- Few outliers are available in the plot due to loss of information from PCA.

KMC + NN

- Neural network prediction over grouped data by K-Mean Cluster (KMC+NN)
- Motivation

$$\forall i \ \text{Var}(\text{Group } i) < \text{Var}(\text{All Data})$$

- Easier to make prediction on grouped data
- Pipeline
 - 1. Using K-Mean Cluster to group data. (k=5)
 - 2. Run Regular Neural Network on each Group
 - a. Different Hidden Layer for each Group
 - 3. Merge the Group Prediction

KMC + NN Result

 By SSE vs k plot, k=5 is a good trade-off

- Final MSE: 1.3191 (not always)
- Parity plot
 - o Covariance: 0.7539
 - Data distributed evenly
 - No extreme outliers

Sum of Standard Error (SSE) vs. Number of Clusters (k)

KMC + NN, Interpretation On Clusters

• The group contribute part of the parity plot

- Group 0 and Group 1 are important
 - Group 0: More Negative Region
 - Group 1: Less Negative Region

KMC + NN, Interpretation On Clusters

- First 6 parameter from Linear Regression
- Group 0 and Group 1 opposite parameter mean values
- Results are consistent with the linear regression

Discussion: Chemistry

Based on the value of the weights in the linear model for predicting the solubility I ruled these factors important and decided to evaluate these:

There is a trend in which positive correlation between **number of valence electrons** and **solubility**, the more full an electrons shell is the more stable that element is, and the less likely it will dissolve in water.

Additionally, with the topological complexity, **BertzCT**, the more surface area that a molecule has exposed the more water molecules that are available to interact, causing an increase in **solubility**.

Heavy Atom Count - with non H atoms, there are no hydrogen bonds, and with water and solubility, like dissolves like, and with this, this is a strong factor against **solubility**.

The **Octanol water partition coefficient(MolLogP)** serves as a relationship between fat solubility and water solubility of a substance. Greater than one if it is more soluble in fat like solvents and less than one if it is more soluble in water. This tells us that because there is a negative correlation some of the compounds are more soluble in Octanol than water.

For **LabuteASA**, it describes the approximate accessible surface area of the molecule. It is slightly positive correlation because the more surface area accessible the higher the solubility is.

Conclusion: Models

Final note about All models

- Linear Model
 - Underperforming due to its model simplicity
- Neural Network
 - Doing as good as we expected
- PCA+NN
 - Performing slightly worse than plain neural network due to reduced dimensional data
- KMC+NN
 - Sometimes performs better, but highly depending on the group separation by KMC

Mean Square Error Comparison of All Models

Conclusion: Predictors

Most important parameters

- HeavyAtomCount
- NumValanceElectrons
- BertzCT
- MolLogP
- MolWt
- LabuteASA

Thank you

Reference:

<u>AqSoIDB:</u> A curated aqueous solubility dataset https://www.kaggle.com/datasets/sorkun/aqsoldb-a-curated-aqueous-solubility-datase

<u>Python:</u> Feature/Variable importance after a PCA analysis https://pyquestions.com/feature-variable-importance-after-a-pca-analysis

Keras API reference: https://keras.io/api/

<u>Derivation and Applications of Molecular Descriptors Based on Approximate Surface Area:</u> https://link.springer.com/protocol/10.1385/1-59259-802-1:261