计算物理第二次作业

2000012425 张弛

2022年10月11日

1.编写高斯消元法和Cholesky方法的代码,特别是求解如下线性方程组:

$$0.05x_1 + 0.07x_2 + 0.06x_3 + 0.05x_4 = 0.23$$

$$0.07x_1 + 0.10x_2 + 0.08x_3 + 0.07x_4 = 0.32$$

$$0.06x_1 + 0.08x_2 + 0.10x_3 + 0.09x_4 = 0.33$$

$$0.05x_1 + 0.07x_2 + 0.09x_3 + 0.10x_4 = 0.31.$$

请将两种方法的计算结果以及Cholesky分解得到的上三角矩阵写到答案文档中。

答. 这次使用的是不完全支点遴选。代码见"HW2计物第一题"。两种方法计算得到的结果如下。

index	1	2	3	4
GEM	0.999999999999328	1.0000000000000395	1.00000000000000195	0.999999999999879
Cholesky	0.9999999999998956	1.000000000000000624	1.00000000000000278	0.999999999999836

表 1: 两种方法的计算结果

上三角矩阵如下。

(0.22360679774997896	0.3130495168499706	0.2683281572999748	0.223606797749979
0	0.04472135954999535	-0.08944271909999287	-3.103167691559122e - 16
0	0	0.14142135623730867	0.2121320343559652
0	0	0	0.07071067811865184

2.对 $f(x) = \cos(x^2), x_0 = 0, x_1 = 0.6, x_2 = 0.9$,采用三次样条插值,分别考虑如下两种边界条件 (a) $x_0 = 0$ 和 $x_2 = 0.9$ 端点处的二次导数值为0;

解. 设

$$y_0 = \cos(x_0^2) = 1, y_1 = \cos(x_1^2) = 0.935897, y_2 = \cos(x_2^2) = 0.689498.$$

再设

$$S_{01}'' = M_1 \frac{x - x_0}{x_1 - x_0} + M_0 \frac{x_1 - x}{x_1 - x_0},$$

$$S_{12}'' = M_2 \frac{x - x_1}{x_2 - x_1} + M_1 \frac{x_2 - x}{x_2 - x_1},$$

$$S_{01}' = \frac{M_1}{2} \frac{(x - x_0)^2}{x_1 - x_0} - \frac{M_0}{2} \frac{(x_1 - x)^2}{x_1 - x_0} + A_0,$$

$$S_{12}' = \frac{M_2}{2} \frac{(x - x_1)^2}{x_2 - x_1} - \frac{M_1}{2} \frac{(x_2 - x)^2}{x_2 - x_1} + A_1,$$

$$S_{01} = \frac{M_1}{6} \frac{(x - x_0)^3}{x_1 - x_0} - \frac{M_0}{6} \frac{(x - x_1)^3}{x_1 - x_0} + A_0(x - x_0) + B_0,$$

$$S_{12} = \frac{M_2}{6} \frac{(x - x_1)^3}{x_2 - x_1} - \frac{M_1}{6} \frac{(x - x_2)^3}{x_2 - x_1} + A_1(x - x_1) + B_1.$$

 x_0, x_1, x_2 处的值为 y_0, y_1, y_2 , 共四个方程

$$\frac{M_0}{6}(x_1 - x_0)^2 + B_0 = y_0,$$

$$\frac{M_1}{6}(x_1 - x_0)^2 + A_0(x_1 - x_0) + B_0 = y_1,$$

$$\frac{M_1}{6}(x_2 - x_1)^2 + B_1 = y_1,$$

$$\frac{M_2}{6}(x_2 - x_1)^2 + A_1(x_2 - x_1) + B_1 = y_2.$$

可以得到用 M_0, M_1, M_2 表示的 A_0, A_1, B_0, B_1

$$B_0 = y_0 - \frac{M_0}{6} (x_1 - x_0)^2,$$

$$A_0 = \frac{y_1 - y_0}{x_1 - x_0} - \frac{(M_1 - M_0)(x_1 - x_0)}{6},$$

$$B_1 = y_1 - \frac{M_1}{6} (x_2 - x_1)^2,$$

$$A_1 = \frac{y_2 - y_1}{x_2 - x_1} - \frac{(M_2 - M_1)(x_2 - x_1)}{6}.$$

x1处一阶导数连续

$$\frac{M_1}{2}(x_1 - x_0) + A_0 = \frac{M_1}{2}(x_1 - x_2) + A_1.$$

端点二阶导数为0

$$M_0 = 0,$$

$$M_2 = 0.$$

整理得到三个关于 M_0, M_1, M_2 的方程

$$0.1M_0 + 0.3M_1 + 0.05M_2 = -0.714489,$$

 $M_0 = 0,$
 $M_2 = 0.$

解得

$$M_0 = 0,$$

 $M_1 = -2.38163,$
 $M_2 = 0,$
 $B_0 = 1,$
 $A_0 = 0.131324,$
 $B_1 = 0.971621,$
 $A_1 = -0.940410.$

得到三次样条插值

$$S_{01} = -0.661564x^3 + 0.131324x + 1,$$

$$S_{12} = 1.32313x^3 - 3.57245x^2 + 2.27479x + 0.571307.$$

(b)利用f(x)得到 $x_0 = 0$ 和 $x_2 = 0.9$ 端点处的一次导数值。

解. 要求端点一阶导数满足

$$S'_{01}(x_0) = 0, S'_{12}(x_2) = -1.30372.$$

也即

$$-\frac{M_0}{2}(x_1 - x_0) + A_0 = 0,$$

$$\frac{M_2}{2}(x_2 - x_1) + A_1 = -1.30372.$$

所以关于 M_0, M_1, M_2 的三个方程是

$$0.1M_0 + 0.3M_1 + 0.05M_2 = -0.714489,$$

$$0.2M_0 + 0.1M_1 = -0.106839,$$

$$0.05M_1 + 0.1M_2 = -0.482392$$

解得

$$M_0 = 0.398857,$$

 $M_1 = -1.866104,$
 $M_2 = -3.890868,$
 $B_0 = 0.976069,$
 $A_0 = 0.119657,$
 $B_1 = 0.963888,$
 $A_1 = -0.72009.$

得到三次样条插值

$$S_{01} = -0.629156x^3 + 0.199429x^2 + 3.72797 \times 10^{-7}x + 1,$$

$$S_{12} = -1.12487x^3 + 1.09171x^2 - 0.53537x + 1.10707.$$

3.在区间[1,2]内利用0-4阶和0-6阶Chebyshev多项式展开 $\log_2(x)$,对结果和误差作图并分析。

解. 换元x' = 2x - 3, 有

$$f(x') = \log_2\left(\frac{x'}{2} + \frac{3}{2}\right).$$

最佳平方近似有

$$c_k = \frac{2 - \delta_{0k}}{\pi} \int_{-1}^1 \frac{T_k(x)f(x)}{\sqrt{1 - x^2}} dx.$$

另一种近似方法

$$c_{N,m} = \frac{2 - \delta_{0m}}{N} \sum_{k=0}^{N-1} T_m(x_{N,k}) f(x_{N,k}).$$

数值计算无原则困难,没有必要展示代码,得到系数如下。

index	0	1	2	3	4
最佳平方近似	0.543107	0.495055	-0.042469	0.00485768	-0.000625085
另一种近似	0.543107	0.495055	-0.0424687	0.00485588	-0.000612818

表 2: 4阶展开系数

index	0	1	2	3	4	5	6
最佳平方近似	0.543107	0.495055	-0.042469	0.00485768	-0.000625085	0.0000857981	-0.0000122672
另一种近似	0.543107	0.495055	-0.042469	0.00485768	-0.000625079	0.0000857568	-0.0000119964

在绘图时换元换回来。也即

$$g(x) = \sum_{k=0}^{N-1} c_k T_k (2x - 3).$$

对于四阶展开式得到下图。不完整的绘图代码见"HW2计物第三题"。其中"func1"为4阶最佳平方近似,"func2"为4阶另一种近似,"func3"为6阶最佳平方近似,"func4"为6阶另一种近似。

图 1: 4阶

图 2: 6阶

从图上看来, 曲线完全重合, 误差极小。下面把它们与原函数的差值分别画出来。

图 3: 4阶误差[$func(x) - \log_2 x$]

图 4: 6阶误差[$func(x) - \log_2 x$]

可以看出同一阶的两种近似方法的误差很近,而6阶比4阶的误差要小很多。

- **4.Runge效应** 考虑Runge函数 $f(x) = 1/(1+25x^2)$ 在区间[-1,+1]上的行为。本题中将分别利用等间距的多项式内插、Chebyshev内插以及三次样条函数来近似f(x)的数值。
- (a) 考虑 $x \in [-1, +1]$ 之间21个均匀分布的节点(包括端点,相隔0.1一个点)的20阶多项式 $P_{20}(x)$ 之内插(你可以利用各种方法,例如拉格朗日内插、牛顿内插或者Neville方法)。给出一个表分别列出 $x, f(x), P_{20}(x)$ 以及两者差的绝对值。为了看出两者的区别请在这21个点分成的每个小段的中点也取一个数据点并一起列出(因此共有41个点),同时画图显示之。
- 答. 考虑使用Neville方法, 借助程序"HW2计物第四题a"得到需要的一切。

х	-1.00	-0.95	-0.90	-0.85	-0.80	-0.75	-0.70
f(x)	3.846e-02	4.244e-02	4.706e-02	5.246 e-02	5.882 e-02	6.639 e-02	7.547e-02
$P_{20}(x)$	3.846 e - 02	-3.995e+01	4.706e-02	3.455e + 00	5.882 e-02	-4.471e-01	7.547e-02
$ f(x) - P_{20}(x) $	1.388e-17	3.999e+01	6.939 e-18	3.402e+00	9.714e-17	5.134e-01	0.000e+00
х	-0.65	-0.60	-0.55	-0.50	-0.45	-0.40	-0.35
f(x)	8.649 e-02	1.000e-01	1.168e-01	1.379 e - 01	1.649 e - 01	2.000e-01	2.462 e-01
$P_{20}(x)$	2.024 e-01	1.000e-01	8.066e-02	1.379 e-01	1.798 e-01	2.000e-01	2.384 e-01
$ f(x) - P_{20}(x) $	5.551e-17	1.159e-01	3.613e-02	1.110e-16	1.481e-02	5.551e-17	7.708e-03
х	-0.30	-0.25	-0.20	-0.15	-0.10	-0.05	0.00
f(x)	3.077e-01	3.902 e-01	5.000e-01	6.400 e-01	8.000e-01	9.412e-01	1.000e+00
$P_{20}(x)$	3.077e-01	3.951e-01	5.000e-01	6.368 e-01	8.000e-01	9.425 e-01	1.000e+00
$ f(x) - P_{20}(x) $	2.220e-16	4.849 e-03	4.441e-16	3.245 e-03	2.220 e-16	1.314e-03	6.661 e-16
Х	0.05	0.10	0.15	0.20	0.25	0.30	0.35
x f(x)	0.05 9.412e-01	0.10 8.000e-01	0.15 6.400e-01	0.20 5.000e-01	0.25 3.902e-01	0.30 3.077e-01	0.35 2.462e-01
f(x)	9.412e-01	8.000e-01	6.400e-01	5.000e-01	3.902e-01	3.077e-01	2.462e-01
$f(x)$ $P_{20}(x)$	9.412e-01 9.425e-01	8.000e-01 8.000e-01	6.400e-01 6.368e-01	5.000e-01 5.000e-01	3.902e-01 3.951e-01	3.077e-01 3.077e-01	2.462e-01 2.384e-01
$f(x) P_{20}(x) f(x) - P_{20}(x) $	9.412e-01 9.425e-01 1.314e-03	8.000e-01 8.000e-01 1.443e-15	6.400e-01 6.368e-01 3.245e-03	5.000e-01 5.000e-01 1.110e-16	3.902e-01 3.951e-01 4.849e-03	3.077e-01 3.077e-01 3.886e-16	2.462e-01 2.384e-01 7.708e-03
$ \begin{array}{c} f(x) \\ P_{20}(x) \\ f(x) - P_{20}(x) \end{array} $	9.412e-01 9.425e-01 1.314e-03	8.000e-01 8.000e-01 1.443e-15	6.400e-01 6.368e-01 3.245e-03	5.000e-01 5.000e-01 1.110e-16	3.902e-01 3.951e-01 4.849e-03	3.077e-01 3.077e-01 3.886e-16	2.462e-01 2.384e-01 7.708e-03
$f(x)$ $P_{20}(x)$ $ f(x) - P_{20}(x) $ x $f(x)$	9.412e-01 9.425e-01 1.314e-03 0.40 2.000e-01	8.000e-01 8.000e-01 1.443e-15 0.45 1.649e-01	6.400e-01 6.368e-01 3.245e-03 0.50 1.379e-01	5.000e-01 5.000e-01 1.110e-16 0.55 1.168e-01	3.902e-01 3.951e-01 4.849e-03 0.60 1.000e-01	3.077e-01 3.077e-01 3.886e-16 0.65 8.649e-02	2.462e-01 2.384e-01 7.708e-03 0.70 7.547e-02
	9.412e-01 9.425e-01 1.314e-03 0.40 2.000e-01 2.000e-01	8.000e-01 8.000e-01 1.443e-15 0.45 1.649e-01 1.798e-01	6.400e-01 6.368e-01 3.245e-03 0.50 1.379e-01 1.379e-01	5.000e-01 5.000e-01 1.110e-16 0.55 1.168e-01 8.066e-02	3.902e-01 3.951e-01 4.849e-03 0.60 1.000e-01 1.000e-01	3.077e-01 3.077e-01 3.886e-16 0.65 8.649e-02 2.024e-01	2.462e-01 2.384e-01 7.708e-03 0.70 7.547e-02 7.547e-02
$f(x) P_{20}(x) f(x) - P_{20}(x) x f(x) P_{20}(x) f(x) - P_{20}(x) $	9.412e-01 9.425e-01 1.314e-03 0.40 2.000e-01 2.000e-01 8.327e-17	8.000e-01 8.000e-01 1.443e-15 0.45 1.649e-01 1.798e-01 1.481e-02	6.400e-01 6.368e-01 3.245e-03 0.50 1.379e-01 1.379e-01 1.943e-16	5.000e-01 5.000e-01 1.110e-16 0.55 1.168e-01 8.066e-02 3.613e-02	3.902e-01 3.951e-01 4.849e-03 0.60 1.000e-01 1.000e-01 8.327e-17	3.077e-01 3.077e-01 3.886e-16 0.65 8.649e-02 2.024e-01 1.159e-01	2.462e-01 2.384e-01 7.708e-03 0.70 7.547e-02 7.547e-02
$f(x) \\ P_{20}(x) \\ f(x) - P_{20}(x) \\ \hline x \\ f(x) \\ P_{20}(x) \\ f(x) - P_{20}(x) \\ \hline x$	9.412e-01 9.425e-01 1.314e-03 0.40 2.000e-01 2.000e-01 8.327e-17	8.000e-01 8.000e-01 1.443e-15 0.45 1.649e-01 1.798e-01 1.481e-02	6.400e-01 6.368e-01 3.245e-03 0.50 1.379e-01 1.379e-01 1.943e-16	5.000e-01 5.000e-01 1.110e-16 0.55 1.168e-01 8.066e-02 3.613e-02	3.902e-01 3.951e-01 4.849e-03 0.60 1.000e-01 1.000e-01 8.327e-17	3.077e-01 3.077e-01 3.886e-16 0.65 8.649e-02 2.024e-01 1.159e-01	2.462e-01 2.384e-01 7.708e-03 0.70 7.547e-02 7.547e-02
$f(x) \\ P_{20}(x) \\ f(x) - P_{20}(x) \\ \hline x \\ f(x) \\ P_{20}(x) \\ f(x) - P_{20}(x) \\ \hline x \\ f(x)$	9.412e-01 9.425e-01 1.314e-03 0.40 2.000e-01 2.000e-01 8.327e-17 0.75 6.639e-02	8.000e-01 8.000e-01 1.443e-15 0.45 1.649e-01 1.798e-01 1.481e-02 0.80 5.882e-02	6.400e-01 6.368e-01 3.245e-03 0.50 1.379e-01 1.379e-01 1.943e-16 0.85 5.246e-02	5.000e-01 5.000e-01 1.110e-16 0.55 1.168e-01 8.066e-02 3.613e-02 0.90 4.706e-02	3.902e-01 3.951e-01 4.849e-03 0.60 1.000e-01 1.000e-01 8.327e-17 0.95 4.244e-02	3.077e-01 3.077e-01 3.886e-16 0.65 8.649e-02 2.024e-01 1.159e-01 1.00 3.846e-02	2.462e-01 2.384e-01 7.708e-03 0.70 7.547e-02 7.547e-02

表 4: Neville方法的内插结果与误差

图 5: Neville方法的内插结果

(b)现在选取n=20并将上问中均匀分布的节点换为标准的Chebyshev节点:

$$x_k = \cos\left(\frac{\pi(k+1/2)}{20}\right), k = 0, 1, \dots, 19.$$

然后构造f(x)在[-1,+1]上的近似式,

$$f(x) \approx C(x) \equiv -\frac{c_0}{2} + \sum_{k=0}^{19} c_k T_k(x).$$

其中在各个Chebyshev的节点处我们要求它严格等于f(x)。同样列出上问的表并画图,与上问结果比较。

答. 似乎不能使用最佳平方近似, 相关数值计算借助程序 "HW2计物第四题b"。展开系数如下

index	0	1	2	3	4	5	6	7
c	1.960e-01	-6.939e-19	-2.633e-01	1.041e-17	1.768e-01	-1.166e-16	-1.186e-01	1.457e-16
index	8	9	10	11	12	13	14	15
С	7.932e-02	-2.082e-18	-5.275e-02	-5.135e-17	3.463e-02	-3.678e-17	-2.205e-02	1.972e-16
index	16	17	18	19				
c	1.299e-02	-3.157e-17	-6.014e-03	-4.766e-17				

表 5: Chebyshev展开系数

决定还是取上题41个点,得到如下结果。

X	-1.00	-0.95	-0.90	-0.85	-0.80	-0.75	-0.70
f(x)	3.846e-02	4.244e-02	4.706e-02	5.246e-02	5.882e-02	6.639 e-02	7.547e-02
$P_{20}(x)$	3.702 e-02	4.085 e-02	4.869 e-02	5.226 e-02	5.671 e-02	6.717e-02	7.825 e-02
$ f(x) - P_{20}(x) $	1.446e-03	1.592e-03	1.626e-03	1.981e-04	2.110e-03	7.792e-04	2.780e-03
X	-0.65	-0.60	-0.55	-0.50	-0.45	-0.40	-0.35
f(x)	8.649 e-02	1.000e-01	1.168e-01	1.379 e-01	1.649 e - 01	2.000e-01	2.462 e-01
$P_{20}(x)$	8.653 e-02	9.641 e-02	1.141e-01	1.405 e-01	1.711e-01	2.028e-01	2.402 e-01
$ f(x) - P_{20}(x) $	4.721e-05	3.587e-03	2.663e-03	2.592e-03	6.176e-03	2.763e-03	5.979e-03
X	-0.30	-0.25	-0.20	-0.15	-0.10	-0.05	0.00
f(x)	3.077e-01	3.902 e-01	5.000e-01	6.400 e-01	8.000e-01	9.412e-01	1.000e+00
$P_{20}(x)$	2.963e-01	3.853 e-01	5.119e-01	6.639 e-01	8.126e-01	9.221 e-01	9.624 e-01
$ f(x) - P_{20}(x) $	1.136e-02	4.909e-03	1.189e-02	2.385e-02	1.261e-02	1.910e-02	3.759e-02
X	0.05	0.10	0.15	0.20	0.25	0.30	0.35
f(x)	9.412e-01	8.000e-01	6.400 e-01	5.000e-01	3.902 e-01	3.077e-01	2.462 e-01
$P_{20}(x)$	9.221 e-01	8.126e-01	6.639 e-01	5.119e-01	3.853 e-01	2.963e-01	2.402 e-01
$ f(x) - P_{20}(x) $	1.910e-02	1.261e-02	2.385e-02	1.189e-02	4.909e-03	1.136e-02	5.979e-03
X	0.40	0.45	0.50	0.55	0.60	0.65	0.70
f(x)	2.000e-01	1.649 e - 01	1.379 e-01	1.168e-01	1.000e-01	8.649e-02	7.547e-02
$P_{20}(x)$	2.028e-01	1.711e-01	1.405 e-01	1.141e-01	9.641 e-02	8.653 e-02	7.825 e-02
$ f(x) - P_{20}(x) $	2.763e-03	6.176e-03	2.592e-03	2.663e-03	3.587e-03	4.721e-05	2.780e-03

表 6: Chebyshev内插结果与误差

х	0.75	0.80	0.85	0.90	0.95	1.00
f(x)	6.639 e-02	5.882 e-02	5.246 e-02	4.706e-02	4.244 e-02	3.846 e-02
$P_{20}(x)$	6.717 e - 02	5.671 e-02	5.226 e-02	4.869 e-02	4.085 e-02	3.702 e-02
$ f(x) - P_{20}(x) $	7.792e-04	2.110e-03	1.981e-04	1.626 e - 03	1.592 e-03	1.446 e-03

表 7: Chebyshev内插结果与误差 (续表)

两个函数的图像和误差如下。

图 6: Chebyshev内插图像

图 7: 误差[f(x) - P20(x)]

可以看出Chebyshev比多项式内插有更强的稳定性,节点之外没有出现离谱的偏离。

(c)仍然考虑第一问中均匀分布的21个节点的内插。但这次利用21点的三次样条函数。重复上面的列表、画图并比较。

答. 决定使用 f(x)的一阶导作为边界条件。设

$$S''_{m,m+1} = \frac{M_{m+1}(x - x_m)}{x_{m+1} - x_m} + \frac{M_m(x_{m+1} - x)}{x_{m+1} - x_m},$$

$$S'_{m,m+1} = \frac{M_{m+1}}{2} \frac{(x - x_m)^2}{x_{m+1} - x_m} - \frac{M_m}{2} \frac{(x_{m+1} - x)^2}{x_{m+1} - x_m} + A_m,$$

$$S_{m,m+1} = \frac{M_{m+1}}{6} \frac{(x - x_m)^3}{x_{m+1} - x_m} - \frac{M_m}{6} \frac{(x - x_{m+1})^3}{x_{m+1} - x_m} + A_m(x - x_m) + B_m.$$

使用每段两端的节点值得到

$$A_m = \frac{y_{m+1} - y_m}{x_{m+1} - x_m} - \frac{M_{m+1} - M_m}{6} (x_{m+1} - x_m),$$

$$B_m = y_m - \frac{M_m}{6} (x_{m+1} - x_m)^2.$$

每段的端点处一阶导连续,得到

$$\frac{x_{m+2}-x_{m+1}}{6}M_{m+2}+\frac{x_{m+2}-x_m}{3}M_{m+1}+\frac{x_{m+1}-x_m}{6}M_m=\frac{y_{m+2}-y_{m+1}}{x_{m+2}-x_{m+1}}-\frac{y_{m+1}-y_m}{x_{m+1}-x_m}, m=0,\cdots,19.$$

端点给定一阶导数, 得到

$$\frac{x_1 - x_0}{3} M_0 + \frac{x_1 - x_0}{6} M_1 = -f'(x_0) + \frac{y_1 - y_0}{x_1 - x_0},$$
$$\frac{x_{21} - x_{20}}{6} M_{20} + \frac{x_{21} - x_{20}}{3} M_{21} = f'(x_{20}) - \frac{y_{21} - y_{20}}{x_{21} - x_{20}}.$$

借由程序"HW2计物第四题c"解出线性方程组,得到20个三次样条的系数如下。

index	0	1	2	3	4	5	6	7
M	2.072e-01	3.060e-01	4.692e-01	7.474e-01	1.269e+00	2.217e+00	4.344e+00	7.781e+00
A	8.433e-02	1.149e-01	1.618e-01	2.366e-01	3.635 e-01	5.852 e-01	1.020e+00	1.798e + 00
В	3.812e-02	4.655 e-02	5.804e-02	7.423e-02	9.788e-02	1.342e-01	1.928e-01	2.947e-01
index	8	9	10	11	12	13	14	15
M	1.530e+01	-4.372e+00	-5.781e+01	-4.372e+00	1.530e + 01	7.781e+00	4.344e+00	2.217e+00
A	3.328e+00	2.891e+00	-2.891e+00	-3.328e+00	-1.798e+00	-1.020e+00	-5.852e-01	-3.635e-01
В	4.745 e-01	8.073 e-01	1.096e+00	8.073 e-01	4.745 e - 01	2.947e-01	1.928e-01	1.342e-01
index	16	17	18	19	20	21		
Μ	1.270e+00	7.443e-01	4.809e-01	2.620e-01	3.714e-01	-4.662e-01		
A	-2.365e-01	-1.621e-01	-1.140e-01	-8.780e-02	-5.066e-02			
В	9.788e-02	7.423 e-02	5.802 e-02	4.662 e-02	3.784 e-02			

表 8: 三次样条系数

上面41个点处的内插结果与误差如下。

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x	-1.00	-0.95	-0.90	-0.85	-0.80	-0.75	-0.70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f(x)	3.846e-02	4.244e-02	4.706e-02	5.246e-02	5.882e-02	6.639e-02	7.547e-02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SPL(x)	3.846 e-02	4.244 e-02	4.706 e-02	5.246 e-02	5.882e-02	6.639 e-02	7.547e-02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f(x) - SPL(x)	0.000e+00	9.228e-07	0.000e+00	2.322e-06	0.000e+00	2.796e-06	0.000e+00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X	-0.65	-0.60	-0.55	-0.50	-0.45	-0.40	-0.35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f(x)	8.649e-02	1.000e-01	1.168e-01	1.379 e-01	1.649 e - 01	2.000e-01	2.462 e-01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SPL(x)	8.648 e-02	1.000e-01	1.168e-01	1.379 e - 01	1.649 e-01	2.000e-01	2.463e-01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	f(x) - SPL(x)	1.103e-05	0.000e+00	1.935 e-06	0.000e+00	8.377e-05	0.000e+00	1.143e-04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X	-0.30	-0.25	-0.20	-0.15	-0.10	-0.05	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f(x)	3.077e-01	3.902e-01	5.000e-01	6.400e-01	8.000e-01	9.412e-01	1.000e+00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SPL(x)	3.077e-01	3.894 e-01	5.000 e-01	6.432 e-01	8.000e-01	9.389 e-01	1.000e+00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f(x) - SPL(x)	0.000e+00	8.243e-04	0.000e+00	3.169e-03	0.000e+00	2.310e-03	0.000e+00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X	0.05	0.10	0.15	0.20	0.25	0.30	0.35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f(x)	9.412e-01	8.000e-01	6.400e-01	5.000e-01	3.902e-01	3.077e-01	2.462e-01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SPL(x)	9.389 e-01	8.000e-01	6.432 e-01	5.000e-01	3.894 e-01	3.077e-01	2.463e-01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	f(x) - SPL(x)	2.310e-03	0.000e+00	3.169e-03	0.000e+00	8.243e-04	0.000e+00	1.142e-04
SPL(x) 2.000e-01 1.649e-01 1.379e-01 1.168e-01 1.000e-01 8.648e-02 7.547e-02	X	0.40	0.45	0.50	0.55	0.60	0.65	0.70
	f(x)	2.000e-01	1.649e-01	1.379e-01	1.168e-01	1.000e-01	8.649e-02	7.547e-02
$ f(x) - SPL(x) -0.000 \\ e + 00 -8.366 \\ e - 05 -0.000 \\ e + 00 -2.323 \\ e - 06 -0.000 \\ e + 00 -9.586 \\ e - 06 -0.000 \\ e + 00 -0.000 \\ e +$	SPL(x)	2.000e-01	1.649 e - 01	1.379 e-01	1.168e-01	1.000e-01	8.648 e-02	7.547e-02
	f(x) - SPL(x)	0.000e+00	8.366 e - 05	0.000e+00	2.323e-06	0.000e+00	9.586 e - 06	0.000e+00

表 9: 三次样条函数内插结果与误差

Х	0.75	0.80	0.85	0.90	0.95	1.00
f(x)	6.639 e-02	5.882 e-02	5.246 e-02	4.706 e-02	4.244 e-02	3.846 e - 02
$P_{20}(x)$	6.638 e-02	5.882 e- 02	5.248 e - 02	4.706 e-02	4.236 e-02	3.846 e - 02
$ f(x) - P_{20}(x) $	8.188e-06	0.000e+00	1.780 e - 05	0.000e+00	7.603 e-05	0.000e+00

表 10: 三次样条函数内插结果与误差(续表)

图像与误差如下。

0.002 0.001 -0.001 -0.002 -0.003 -1.0 -0.5 0.0 0.5 1.0

图 8: SPL内插图像

图 9: 误差[f(x) - SPL(x)]

三次样条插值比Chebyshev的稳定性更好,误差振幅更小,而且衰减更快。

5.样条函数在计算机绘图中的运用 本题中我们考虑Cubic spline在计算机绘图中的广泛运用。我们将尝试用三次样条函数平滑地连接若干个二维空间中已知的点。考虑二维空间的一系列点 $(x_i,y_i)i=0,1,\cdots,n$ 。我们现在希望按照顺序(由0到n)将它们平滑地连接起来。一个方便的办法是引入一个连续参数 $t\in[0,n]$,取节点为 $t_i=0,1,\cdots,n$,然后分别建立两个样条函数: $S_{\Delta}(X;t)$ 和 $S_{\Delta}(Y;t)$ 它们分别满足

$$S_{\Delta}(X;t_i) = x_i, \ S_{\Delta}(Y;t_i) = y_i.$$

这两个样条函数可以看做是(x(t),y(t))的内插近似。因此绘制参数曲线(x(t),y(t))的问题就化为求出两个样条函数并将它们画出的问题。我们考虑的函数是著名的心形线(cardioid)。它的极坐标方程是

$$r(\phi) = 2a(1 - \cos \phi) = 1(1 - \cos \phi).$$

为了方便起见我们取了2a=1。(请利用上一题中关于样条函数内插的相应代码来处理本题)

(a)选取 $\phi=t\pi/4,\ t=0,1,2,3,4,5,6,7,8$ 这九个点,给出 $x_t=r(\phi)\cos\phi$ 和 $y_t=r(\phi)\sin\phi$ 的数值。将这些数值作为精确的数值列在一个表里。

答. 可以借助程序得到结果, 代码是trivial的, 这里不给出了。结果如下。

\mathbf{t}	0	1	2	3	4
x_t	0.000e+00	2.071e-01	6.123e-17	-1.207e+00	-2.000e+00
y_t	0.000e+00	2.071e-01	1.000e+00	1.207e+00	2.449e-16
t	5	6	7	8	
x_t	-1.207e+00	-1.837e-16	2.071e-01	0.000e+00	
y_t	-1.207e+00	-1.000e+00	-2.071e-01	-0.000e+00	

表 11: 心形线的几个点的坐标

(b)给出过这8个点的两个三次样条函数 $S_{\Delta}(X;t)$ 和 $S_{\Delta}(Y:t)$ 。

答. 形状依然是

$$S''_{m,m+1} = \frac{M_{m+1}(x - x_m)}{x_{m+1} - x_m} + \frac{M_m(x_{m+1} - x)}{x_{m+1} - x_m},$$

$$S'_{m,m+1} = \frac{M_{m+1}}{2} \frac{(x - x_m)^2}{x_{m+1} - x_m} - \frac{M_m}{2} \frac{(x_{m+1} - x)^2}{x_{m+1} - x_m} + A_m,$$

$$S_{m,m+1} = \frac{M_{m+1}}{6} \frac{(x - x_m)^3}{x_{m+1} - x_m} - \frac{M_m}{6} \frac{(x - x_{m+1})^3}{x_{m+1} - x_m} + A_m(x - x_m) + B_m.$$

借助程序"HW2计物第五题b"给出全部的M,A,B,结果如下。

m	0	1	2	3	4
M_{mx}	-1.077e-01	-3.457e-01	-2.539e+00	7.730e-01	3.476e+00
M_{my}	-4.929e-01	1.820e + 00	-1.088e+00	-3.167e+00	4.709e-04
A_{mx}	2.949e-01	2.335 e-02	-1.970e+00	-1.363e+00	$1.366e{+00}$
A_{my}	-3.900e-02	$1.390e{+00}$	5.359 e-01	-1.952e+00	-1.951e+00
B_{mx}	1.107e-02	2.426 e-01	2.610e-01	-1.287e + 00	-2.357e+00
B_{my}	5.067e-02	2.004 e-02	1.112e+00	1.533e+00	-4.842e-05
m	5	6	7	8	9
M_{mx}	5 7.495e-01	6 -2.445e+00	7 -6.983e-01	8 1.209e+00	9 -1.077e-01
			•		
M_{mx}	7.495e-01	-2.445e+00	-6.983e-01	1.209e+00	-1.077e-01
M_{mx} M_{my}	7.495e-01 3.165e+00	-2.445e+00 1.094e+00	-6.983e-01 -1.844e+00	1.209e+00 5.842e-01	-1.077e-01
M_{mx} M_{my} A_{mx}	7.495e-01 3.165e+00 1.955e+00	-2.445e+00 1.094e+00 3.512e-02	-6.983e-01 -1.844e+00 -5.133e-01	1.209e+00 5.842e-01 4.360e-01	-1.077e-01

表 12: SPL的系数M,A,B

(c)画出参数形式的曲线 $(x_t,y_t)=(S_{\Delta}(X;t),S_{\Delta}(Y;t))$,同时画出它所内插的严格的曲线进行比较,请标出相应的节点。

答. 借助程序"HW2计物第五题c"可以作图如下。

图 10: SPL内插心形线

原函数与相关节点均已标出。可以看出内插效果非常好。

(d)简要说明为什么这个算法可以平滑地连接所有的点(这实际上是很多画图软件中spline曲线所采用的的算法)。

答. 可以看出来各个节点的连接处, 至少到一阶导数都是连续的。由于三次样条内插, 一个节点的两端有

$$S'_{\Delta}(X;k-0) = S'_{\Delta}(X;k+0), \ S'_{\Delta}(Y;k-0) = S'_{\Delta}(Y;k+0).$$

那么就有

$$\left(\frac{dS_{\Delta}(X;t)}{dS_{\Delta}(Y;t)}\right)_{t=k-0} = \frac{S'_{\Delta}(X;k-0)}{S'_{\Delta}(Y;k-0)} = \frac{S'_{\Delta}(X;k+0)}{S'_{\Delta}(Y;k+0)} = \left(\frac{dS_{\Delta}(X;t)}{dS_{\Delta}(Y;t)}\right)_{t=k+0}.$$

一阶导数连续。就很平滑。