BA. Mock Quix-1

$$E = \frac{m \times p}{D_0 - mp}$$
 =) $\frac{20 \times 50}{1500 - 20 \times 50}$

$$O_2$$
 satiating Pria, $P_a = \frac{D_0}{m}$

05>	# defects	04	E+	(0-E)2	(0-E)2/E
-	0	18	30	144	4·8
	1	12	18	36	2
	2	22	20	9	0.2
	3	16	20	16 805	0. 8
	4+	32	12	400	33.33
				900	5 = 41.12

$$\chi^2 = 41.13$$
 here calculate observed & Expected freq.
for 0 defects = $100 - (18 + 12 + 22 + 16 +$

32)

001		Brand A	EA)	Brand B	EB	Total
88	Chennai	288	303	124	109	412
	Mum bai		607	204	219	826
-	Total	910	0.93	328	1.000	1238

EA - expected frequency of A, EB - for B. Expected fung. of chunnai people preferring brand B Row total for chennai * col. total for brand B

Total

412X 328 1238

109

097	observed freq.	E	(0-E)2	(O-E)2/E
- /	288	303	225	0.742
	622	607	225	0.370
	124	109	225	2.064
	204 8-0	219	225	1.027
			38 6	£ = 4.203

 $\chi^2_{\text{compated}} = 4.203$

$$P(D) = P(D|A) \times P(A) + P(D|B) \times P(B) + P(D|C) \times P(C)$$

$$= 0.01 \times 0.65 + 0.02 \times 0.3 + 0.1 \times 0.05$$

$$= 0.0175$$

$$P(B|D) = \frac{P(D|B) \times P(B)}{P(D)}$$

$$= \frac{0.02 \times 0.3}{0.0175}$$

0147 Dates as	Product A	Product	Total Of	Expected = $(\bar{x} - 0_4)^2/\bar{x}$
Bins 1 2 3 4 5 6 7 8	62 42 32 14 26 16 16 16 12 42 24 14	60 82 97 113 98 95 99 88 101 104	122 124 129 127 124 111 115 130 133 118	0.013 0.003 0.263 0.111 0.003 1.227 0.558 0.364 0.763 0.227
16	290	943		$\chi^{2} = 3.53$

Expected total sales on a given day
$$\overline{X}A = \frac{290}{10} = 29 \qquad \overline{X}B = \frac{943}{10} = 94.3$$

$$= \overline{x} + + \overline{x}$$

$$= 29 + 94.3$$

hur
$$k = no$$
. of bins = 10

\$\delta = \text{parameter} = 2 (Normal dist*)

:.
$$df = 10-2-1$$

$$df = 7 As.$$

(810	= bde	A	EA	B	EB	Total
	AN	145	139.53	444	450.	589
	AM	145	151.46	499	492.53	644
70+	al	290	#=1	943		1233

0 1	E \	(O-E)2/E
145	138.53	0.302
145	151.41	0.275
444	450 .46	0.092
	492.53	0-084
499	-112	= 0.75

$$df = (r-1)(c-1)$$

$$= (2-1)(2-1)$$

$$df = 1$$

$$O207$$
 $P(A) = 0.65$ $P(B) = 0.35$

P (41A) = 0.7 (Prob. gradated given throm A)

EGE

$$P(A \cap G) = P(G|A) \times P(A)$$

$$= 0.65 \times 0.7$$

$$P(BNG) = P(GIB) \times P(B)$$

= 0.85 ×0.35

0227 find Prob. of Rejection from A 4 B resp.

$$P(R|A) = 1 - P(G|A)$$

$$P(R|A) = 1 - P(G|A)$$

$$P(R|B) = 1 - P(G|B)$$

= 1 - 0.80
= 0.20

since Rejection Prob. at centre A > centre B.

121)	0 1	EA	\ B \	EB.	Total
(26)	288	305	220	203	508
Chennai			204	221	557
Mumbai	353 336		1424	-35	1065
Total	641		1921	1	Zalal

tructing	fred.	Table	$9.0 = (9(2)^4)$
0	IE	(0-E)2	(O-E) =/E
288	305	289	0.947 = (200)
353	336	289	0.00
220	203	289	1.423
204	221	289	1. 307

0327 Demand (no. of units)	Price (=)
1.0	10
0.50	20
0.33	30 44
0.25	40
0.20	50
	is privatelesson the

sol7 we know constant elasticity corre is given by
$$[pp = Cp^{-E}]$$
 C

C→ constant P→ pui a

take any 2 vals from.
table & substitute in the eq.

Dp → demand E → elasticity

we get,

$$1.0 = C \times 10^{-\xi} - \bigcirc$$

$$0.50 = C \times 20^{-\xi} - \bigcirc$$

dividing 1 9 1 , we get

$$2 = \frac{10^{-\xi}}{20^{-\xi}} = 2 = (\gamma_2)^{\xi}$$

taking log on both sides,

$$ln(2) = \varepsilon ln(Y_2)$$

> substitute & value to find c.

Thus demand at price = 71 Dp = 10 x (1)-1 Elasticity = 181 Branch Him I Land Santanol work bankersh 4 gd et within to 3 (1) - 1-01x3 = 01 of July 3 States do