

¡Absteneos!—Hay hombres nefastos que, en lugar de resolver un problema, lo oscurecen para todos los que se ocupan de él y le hacen más difícil de resolver. El que no sepa dar en el blanco que se abstenga de tirar.

El viajero y su sombra, Federico Nietzsche.

Estructuras Discretas III CI-2527 Sep-Dic 2017 Tarea 4—Subgrupos Normales, Lagrange y Permutaciones

NOMBRE CARNET NOTA

- 1. básico Demostrar que la intersección de dos subgrupos normales de G es un subgrupo normal de G.
- 2. instructivo Si $n \ge 2$ pruebe que:
 - a) Toda permutación en \mathfrak{S}_n puede ser escrita como un producto de a lo sumo n-1 transposiciones.
 - b) Toda permutación en \mathfrak{S}_n que no es un ciclo puede ser escrita como un producto de a lo sumo n-2 transposiciones.
 - c) Toda permutación impar en \mathfrak{S}_n puede ser escrita como un producto de 2n+3 transposiciones, y toda permutación par puede ser escrita como un producto de 2n+8 transposiciones.
- 3. unforgetable Demuestre que si σ es un ciclo de longitud impar, entonces σ^2 es un ciclo.
- 4. interesante Demuestre que todo grupo de orden p^r , con p primo, contiene un subgrupo de orden p.
- 5. Sea H un subgrupo cíclico de G tal H es normal en G. Demuestre que si K es un subgrupo propio de H, entonces K es normal en G.
- 6. **bonito** Denotemos por \mathfrak{S}_n al conjunto de las permutaciones del conjunto $[n] = \{1, 2, \dots, n\}$. Demuestre que si H es un subgrupo de $\langle \mathfrak{S}_n, \circ \rangle$ y $n \geq 2$, entonces o bien todas las permutaciones en H son pares o bien exactamente la mitad son pares.
- 7. **cool** Demuestre que si G es un grupo abeliano de orden 2n y n es impar, entonces G contiene exactamente un elemento de orden 2.
- 8. Función φ de Euler Si n es un entero positivo mayor que 1, la función $\varphi(n)$ de Euler cuenta el número de enteros positivos menores o iguales que n que son coprimos con n.
 - a) Demuestre que si m es un entero que divide a n, el número de múltiplos de m menores o iguales que n es $\frac{n}{m}$.
 - b) Use el principio de inclusión-exclusión para hallar una expresión para la Función φ de Euler en base a los primos en la descomposición en primos de n. Sug.: Si $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ es la descomposición en primos de n y los p_i 's son distintos, tome como conjunto base todos enteros positivos menores o iguales que n como i-ésima propiedad: "es múltiplo del primo p_i .
 - c) Invoque al Espirito Santo y use la propiedad distributiva de los números enteros, para compactar la fórmula anterior a un producto de k + 1 factores.

Ejercicios Complementarios

- 1. **fija conceptos** Sea $\langle \mathfrak{S}(A), \circ \rangle$ el grupo de las permutaciones del conjunto A, se dice que una permutación $\sigma \in \mathfrak{S}(A)$ mueve a un elemento $a \in A$ si y sólo si $\sigma(a) \neq a$ y se dice que una permutación fija a a si y sólo si $\sigma(a) = a$. Diga:
 - a) ¿Cuántas de las permutaciones de \mathfrak{S}_6 fijan al 1 y al 2?
 - b) ¿Cuántas de las permutaciones de \mathfrak{S}_6 mueven al 1 y al 2?
 - c) La permutación identidad ι , ¿cuántos elementos de \mathfrak{S}_6 fija y cuántos mueve?
 - d) Si una permutación mueve a k elementos, ¿cuántos mueve su inversa?
 - e) ¿Cuántos elementos de A mueve un ciclo de longitud k?
 - f) ¿Si $\sigma=(124)(14)$ y $\sigma\in\mathfrak{S}_6$, cuántos elementos mueve y cuántos fija? ¿Cuál es su inversa?
 - g) ¿Cuántas de las permutaciones que fijan al 1 son ciclos de longitud 4?

- 2. de subgrupos Sea X un conjunto infinito y H el conjunto de todas las permutaciones de S_X que mueven sólo un número finito de elementos de X. Demuestre que H es subgrupo de S_X . Aclaratoria: Dada $\sigma \in S_X$ y $x \in X$ se dice que σ mueve a x si y sólo si $\sigma(x) \neq x$.
- 3. Para $n \geq 2$ fijo sea $\langle S_n, \circ \rangle$ el grupo de las permutaciones de [n] y sea σ una permutación impar fija. Demuestre que toda permutación impar en S_n se puede expresar como el producto de σ por alguna permutación en A_n (el grupo alternador)
- 4. ilustrativo y mecánico Llamaremos D_4 al subgrupo de permutaciones que resulta de rotar un cuadrado con vértices consecutivos etiquetados con los números 1, 2, 3, 4 en torno a alguno de sus ejes de simetría. Las rotaciones son:

simetría. Las rotaciones son:
$$\sigma_0 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$
$$\mu_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \mu_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \delta_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \delta_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

- a) Construir la tabla de la operación.
- b) Hallar todos los subgrupos.
- c) Mostrar subgrupos no cíclicos y cíclicos de orden cuatro.
- d) Construir el diagrama de Hasse de los subgrupos de $\langle D_4, \circ \rangle$.
- e) Halle las clases laterales a la derecha y a la izquierda de uno de los subgrupos de D_4 que no sea normal en G y hallar el conjunto cociente a la derecha de dicho subgrupo en D_4 y el conjunto cociente a la izquierda de dicho subgrupo en D_4 .
- f) Halle un subgrupo de D_4 de orden 2 que sea normal en en D_4 y ordenando los elementos en base a la clase a la que pertenecen reescribir la tabla del grupo. Halle además el grupo de cocientes y compare.
- 5. Si A es un conjunto, entonces un subgrupo H de S_A es transitivo en A si y sólo sí para cada $a, b \in A$ existe $\sigma \in H$ tal que $\sigma(a) = b$. Demuestre que si A es un conjunto finito no vacío, entonces existe un subgrupo cíclico finito H de S_A con |H| = |A| el cual es transitivo en A.
- 6. **fácil** Halle las clases laterales del subgrupo $Z_2 \times Z_2 \times \{0\}$ de $Z_2 \times Z_2 \times Z_3$. ¿Cuál es el índice de $Z_2 \times Z_2 \times \{0\}$ en $Z_2 \times Z_2 \times \{0\}$ es normal en $Z_2 \times Z_2 \times \{0\}$, halle el conjunto cociente.
- 7. **fascinante** Dado un grupo $\langle G, * \rangle$ y un sub-conjunto A de G se llama normalizador de A y se denota por N(A) al conjunto de los elementos de $g \in G$ tales que gA = Ag. Demuestre que N(A) un sub-grupo G; y que si A es un sub-grupo de G, entonces A es normal de N(A). Además demuestre que si A es un sub-grupo de G, A es normal en A es A es normal en
- 8. fácil Dadas las siguientes permutaciones de [8]:

$$\sigma_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix} \qquad \sigma_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 3 & 4 & 1 & 6 & 8 & 7 & 2 \end{pmatrix}
\sigma_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7 \end{pmatrix} \qquad \sigma_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 1 & 5 & 6 & 4 & 8 & 7 \end{pmatrix}$$

- a) Escribirlas como producto de ciclos disjuntos y luego como producto de transposiciones y diga cuáles son pares y cuáles son impares.
- b) Halle el orden de cada una de ellas.
- c) ¿Cuántos elementos fija cada una y cuántos mueve?