

Arquitectura de computadoras

Aritmética de números de coma flotante

Revisión de notación científica

- Forma normalizada, sin ceros a la izquierda. Exactamente un dígito a la izquierda de la coma decimal.
- Alternativas de representación de normalizada de 1/1.000.000.000.
 - Normalizada: $1,0 \times 10^{-9}$
 - No normalizada: 0.1×10^{-8} ; 10.0×10^{-10}

Notación científica para números binarios

Representación en coma flotante

- Formato normal +1, $xxxxx_2 \times 2^{yyy_2}$
- Múltiplos del tamaño de una palabra (32 bits).

- S representa signo.
- Exponente representa yyyy.
- Mantisa representa xxxxx.
- Representa números tan chicos como $2,0\times 10^{-38}$ hasta tan grandes como $2,0\times 10^{38}$

Representación en coma flotante

- Si el numero es demasiado grande ($> 2,0 \times 10^{38}$).
 - Overflow!
 - El exponente a representar es mayor al máximo representable posible.
- Si el numero es demasiado pequeño ($< 2, 0 \times 10^{-38}$).
 - Underflow!
 - El exponente a representar es menor al mínimo representable posible.
- Como reducir las chances de que ocurra overflow o underflow?

Representación en doble precisión

- Formato normal +1, $xxxxx_2 \times 2^{yyy_2}$
- Múltiplos del tamaño de una palabra (64 bits).

- Doble vs simple precisión.
 - Variables en C declaradas como double.
 - La principal ventaja es la mayor precisión debido a una mantisa mas grande.
 - Representa números tan chicos como $2,0\times 10^{-308}$ hasta tan grandes como $2,0\times 10^{308}$

IEEE 754 Estándar de coma flotante

- Bit de signo: 1 negativo, 0 positivo.
- Mantisa:
 - Para ganar un bit el primer 1 (izq.) esta implícito.
 - 1 + 23 bits simple, 1 + 52 bits doble.
- $(-1)^{signo} \times (1 + significando) \times 2^{exponente}$
- Diseñado para realizar comparaciones rápidas: primero se compara por signo, luego por exponente y luego por mantisa.
- Es deseable que el exponente de menor valor (negativo) se represente como 00000000 y el de mayor valor (positivo) se represente como 11111111
- En IEEE 754 se utiliza exceso 127 para simple precisión y 1023 para doble precisión.

Aritmética de coma flotante

	1	8	23
signo	S	E	M
	Exponente: exceso 127		Mantisa: signo + magnitud. 1,M

Exponente real es e = E - 127

$$N = (-1)^{S} \times 2^{E-127} \times 1, M$$

Rango 2^{-126} a 2^{127} que es aproximadamente $1,8\times 10^{-38}$ a $3,4\times 10^{38}$

Convertir IEEE 754 a decimal

- 0 | 01101000 | 10101010100001101000010
 - Signo: 0 (positivo)
 - Exponente:
 - $01101000_2 = 104_{10}$
 - Ajuste exceso: 104 127 = -23
 - Significando:

$$1+1\times2^{-1}+0\times2^{-2}+1\times2^{-3}+0\times2^{-4}+1\times2^{-5}+\dots$$

= 1+2⁻¹+2⁻³+2⁻⁵+2⁻⁷+2⁻⁹+2⁻¹⁴+2⁻¹⁵+2⁻¹⁷+2⁻²²
1+0,666115

• Representa: $1,666115 \times 2^{-23} \approx 1,986 \times 10^{-7} \approx \frac{2}{10.000.000}$

Características de los números IEEE754

Concepto	Simple precision	Doble precision	
Bits para el signo	1	1	
Bits para el exponente	8	11	
Bits para la mantisa	23	52	
Total de bits	32	64	
Sistema del exponente	Exceso 127	Exceso 1023	
Rango del exponente	-126 a 127	-1022 a 1023	
Normalizado mas pequeño	2^{-126}	2^{-1022}	
Normalizado mas grande	$\approx 2^{127}$	$\approx 2^{1023}$	
Rango decimal	$pprox 10^{-38}$ a 10^{38}	$pprox 10^{-308}$ a 10^{308}	
Desnormalizado mas pequeño	$\approx 10^{-45}$	$\approx 10^{-324}$	

Tipos de numeros IEEE754

Normalizado	士	0 < Exp < Max	М
Desnormalizado	土	0	$M \neq 0$
Cero	土	0	0
Infinito	土	11111111	0
No numero	土	11111111	$M \neq 0$

Desnormalización

Redondeo

- Al mas cercano.
- Hacia $+\infty$
- Hacia $-\infty$
- Hacia 0

Suma de números decimal en notación científica

Ejemplo: 7	$7 \times 10^3 + 4 \times 10^2$
$7 \times 10^{3} + 4 \times 10^{2}$	Dado que tenemos números con diferentes potencias de base 10, buscamos la potencia con mayor exponente.
$7 \times 10^3 + 4 \times 10^2$	Expresaremos ambos valores en función de 10^3 , por ser la potencia de base $10\ \rm con\ mayor\ exponente$
$7 \times 10^{3} + 4 \times 10^{2}$ $7 \times 10^{3} + 0.4 \times 10^{3}$	La potencia la multiplicamos por 10 ¹ para convertirla a 10 ³ , y la mantisa la dividimos entre 10 ¹ .
$7 \times 10^3 + 0.4 \times 10^3$	Ahora tenemos ambos valores en función de la misma potencia de base 10.
$(7 + 0.4) \times 10^3$	Dado que ambos números tienen la misma po- tencia de base 10, sumamos los números que se encuentran delante de las potencias.
7.4×10^3	iY ya tenemos la respuesta en notación científica!

Suma de números flotantes

Ejemplo de suma de números IEEE754

- Sumamos 2 números flotantes IEEE754:
 - 1,1110010000000000000000010 $\times 2^4$
 - $1,10000100000000110000101 \times 2^2$
- Se debe normalizar el numero con el menor exponente para que tenga los dos numeros el mismo exponente.
 - $1,1000010000000110000101 \times 2^2 = 0.01100001000000001100001 \times 2^4$
- Sumamos los valores:
 - 1,111001000000000000000010 $\times 2^4$
 - $0.0110000100000001100001 \times 2^4$
 - 10.01000101000000001100011 $\times 2^4$
- La suma produce un acarreo, el resultado no esta normalizado.
- Normalizamos
 - $10,0100010100000001100011 \times 2^4$ $1,00100010100000000110001 \times 2^5$

UNIDAD ARITMÉTICA DE SUMA EN COMA FLOTANTE

Multiplicación de números flotantes

Ejemplo de multiplicación de números IEEE754

- Multiplicamos 2 números flotantes IEEE754:
 - \bullet -1,11010000100000010100001 \times 2⁻⁴
- A diferencia de la suma, se deben sumar los exponentes
 - \bullet (-4) + (-2) = -6
- Usando la representación en exceso: $E_z = E_x + E_y Exceso$
 - $E_{\times} = (-4) + 127 = 123$
 - $E_{\rm v} = (-2) + 127 = 125$
 - $E_z = 123 + 125 127 = -6$
- El signo del producto se calcula aparte mediante un XOR.

Ejemplo de multiplicación de números IEEE754

Multiplicamos las mantisas

111010000100000010100001

111010000100000010100001

1.11010000100000010100001

- Se duplica la cantidad de bits
- *Multiplicando* \times 0 = 0 Se ignoran esas filas.
- $Multiplicando \times 1 = Multiplicando$ Desplazado a la izquierda

Ejemplo de multiplicación de números IEEE754

- Resultado final: 1 01111010 01011100011111011111101

• Los números representados son aproximaciones

- La cantidad de números reales existentes entre 1.0 y 2.0 es infinita
- pero en IEEE 754, esta cantidad es limitada

 Se requieren hits extra para la realización de los pasos intermedios
- Se requieren bits extra para la realización de los pasos intermedios
- Este formato minimiza el hardware requerido pero sacrifica exactitud
- Las operaciones son más complicadas pero las comparaciones son sencillas
- Ademas de tener underflow, también se tiene underflow