CS61B Lecture #15

Announcements:

- Please use bug-submit for code problems.
- Watch the newsgroup and class web site for updates, hints, useful new utilities, etc.

Readings for Today: Data Structures (Into Java), Chapter 1;

Readings for next Topics: Data Structures, Chapter 2-4

What Are the Questions?

Cost is a principal concern throughout engineering:

"An engineer is someone who can do for a dime what any fool can do for a dollar."

- Cost can mean
 - Operational cost (for programs, time to run, space requirements).
 - Development costs: How much engineering time? When delivered?
 - Costs of failure: How robust? How safe?
- Is this program fast enough? Depends on:
 - For what purpose;
 - What input data.
- How much space (memory, disk space)?
 - Again depends on what input data.
- How will it scale, as input gets big?

Enlightening Example

Problem: Scan a text corpus (say 10^7 bytes or so), and find and print the 20 most frequently used words, together with counts of how often they occur.

- Solution 1 (Knuth): Heavy-Duty data structures
 - Hash Trie implementation, randomized placement, pointers galore, several pages long.
- Solution 2 (Doug McIlroy): UNIX shell script:

```
tr -c -s '[:alpha:]' '[\n*]' < FILE | \
sort | \
uniq -c | \
sort -n -r -k 1,1 | \
sed 20q
```

- Which is better?
 - #1 is much faster,
 - but #2 took 5 minutes to write and processes 20MB in 1 minute.
 - I pick #2.
- In most cases, anything will do: Keep It Simple.

Cost Measures (Time)

- Wall-clock or execution time
 - You can do this at home:

time java FindPrimes 1000

- Advantages: easy to measure, meaning is obvious.
- Appropriate where time is critical (real-time systems, e.g.).
- Disadvantages: applies only to specific data set, compiler, machine, etc.
- Number of times certain statements are executed:
 - Advantages: more general (not sensitive to speed of machine).
 - Disadvantages: doesn't tell you actual time, still applies only to specific data sets.
- Symbolic execution times:
 - That is, formulas for execution times or statement counts in terms of input size.
 - Advantages: applies to all inputs, makes scaling clear.
 - Disadvantage: practical formula must be approximate, may tell very little about actual time.

Asymptotic Cost

- Symbolic execution time lets us see shape of the cost function.
- Since we are approximating anyway, pointless to be precise about certain things:
 - Behavior on small inputs:
 - * Can always pre-calculate some results.
 - * Times for small inputs not usually important.
 - Constant factors (as in "off by factor of 2"):
 - * Just changing machines causes constant-factor change.
- How to abstract away from (i.e., ignore) these things?

Handy Tool: Order Notation

- Idea: Don't try to produce specific functions that specify size, but rather families of similar functions.
- ullet Say something like "f is bounded by g if it is in g's family."
- ullet For any function g(x), the functions 2g(x), 1000g(x), or for any K>0, $K \cdot g(x)$, all have the same "shape". So put all of them into g's family.
- ullet Any function h(x) such that $h(x) = K \cdot g(x)$ for x > M (for some constant M) has g's shape "except for small values." So put all of these in g's family.
- If we want upper limits, throw in all functions that are everywhere \leq some other member of g's family. Call this family O(g) or O(g(n)).
- Or, if we want lower limits, throw in all functions that are everywhere \geq some other member of g's family. Call this family $\Omega(g)$.
- ullet Finally, define $\Theta(g) = O(g) \cap \Omega(g)$ —the set of functions bracketed by members of g's family.

Big Oh

Goal: Specify bounding from above.

- \bullet Here, $f(x) \leq 2g(x)$ as long as x > 1,
- ullet So f(x) is in g's upper-bound family, written

$$f(x) \in O(g(x)),$$

ullet ... even though f(x) > g(x) everywhere.

Big Omega

• Goal: Specify bounding from below:

- \bullet Here, $f'(x) \geq \frac{1}{2}g(x)$ as long as x > 1,
- \bullet So f'(x) is in g's lower-bound family, written

$$f'(x) \in \Omega(g(x)),$$

- ullet ... even though f(x) < g(x) everywhere.
- \bullet In fact, we also have $f'(x) \in O(g(x))$ and $f(x) \in \Omega(g(x))$ and so we can also write

$$f(x), f'(x) \in \Theta(g(x)).$$

Why It Matters

- Computer scientists often talk as if constant factors didn't matter at all, only the difference of $\Theta(N)$ vs. $\Theta(N^2)$.
- In reality they do, but we still have a point: at some point, constants get swamped.

n	$\log n$	\sqrt{n}	n	$n \lg n$	n^2	n^3	2^n
2	16	1.4	2	2	4	8	4
4	32	2	4	8	16	64	16
8	48	2.8	8	24	64	512	256
16	64	4	16	64	256	4,096	65,636
32	80	5.7	32	160	1024	32,768	4.2×10^9
64	96	8	64	384	4,096	262, 144	1.8×10^{19}
128	112	11	128	896	16,384	2.1×10^9	3.4×10^{38}
•	:	:	:		•	•	:
1,024	160	32	1,024	10,240	1.0×10^{6}	1.1×10^9	1.8×10^{308}
•	:	:	:	:	•	•	•
2^{20}	320	1024	1.0×10^{6}	2.1×10^7	1.1×10^{12}	1.2×10^{18}	$6.7 \times 10^{315,652}$

Some Intuition on Meaning of Growth

- How big a problem can you solve in a given time?
- In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N.
- Entries show the size of problem that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
- \bullet N = problem size

Time (μ sec) for	Max N Possible in					
problem size N	1 second	1 hour	1 month	1 century		
$\lg N$	10^{300000}	$10^{10000000000}$	$10^{8\cdot 10^{11}}$	$10^{9 \cdot 10^{14}}$		
N	10^{6}	$3.6 \cdot 10^9$	$2.7\cdot 10^{12}$	$3.2 \cdot 10^{15}$		
$N \lg N$	63000	$1.3 \cdot 10^{8}$	$7.4 \cdot 10^{10}$	$6.9 \cdot 10^{13}$		
N^2	1000	60000	$1.6 \cdot 10^{6}$	$5.6 \cdot 10^7$		
N^3	100	1500	14000	150000		
2^N	20	32	41	51		

Using the Notation

- Can use this order notation for any kind of real-valued function.
- We will use them to describe cost functions. Example:

```
/** Find position of X in list L. Return -1 if not found */
int find (List L, Object X) {
  int c;
  for (c = 0; L != null; L = L.next, c += 1)
     if (X.equals (L.head)) return c;
  return -1;
}
```

- Choose representative operation: number of .equals tests.
- ullet If N is length of L, then loop does at most N tests: worst-case time is N tests.
- ullet In fact, total # of instructions executed is roughly proportional to N in the worst case, so can also say worst-case time is O(N), regardless of units used to measure.
- Use N>M provision (in defn. of $O(\cdot)$) to handle empty list.

Careful!

- ullet It's also true that the worst-case time is $O(N^2)$, since $N\in O(N^2)$ also: Big-Oh bounds are loose.
- ullet The worst-case time is $\Omega(N)$, since $N\in\Omega(N)$, but that does not mean that the loop always takes time N, or even $K \cdot N$ for some K.
- Instead, we are just saying something about the function that maps N into the largest possible time required to process an array of length N.
- To say as much as possible about our worst-case time, we should try to give a Θ bound: in this case, we can: $\Theta(N)$.
- But again, that still tells us nothing about best-case time, which happens when we find X at the beginning of the loop. Best-case time is $\Theta(1)$.

Effect of Nested Loops

Nested loops often lead to polynomial bounds:

```
for (int i = 0; i < A.length; i += 1)
    for (int j = 0; j < A.length; j += 1)
        if (i != j && A[i] == A[j])
           return true;
return false;</pre>
```

- ullet Clearly, time is $O(N^2)$, where $N={\tt A.length}$. Worst-case time is $\Theta(N^2)$.
- Loop is inefficient though:

```
for (int i = 0; i < A.length; i += 1)
    for (int j = i+1; j < A.length; j += 1)
        if (A[i] == A[j]) return true;
return false;</pre>
```

Now worst-case time is proportional to

$$N-1+N-2+\ldots+1=N(N-1)/2\in\Theta(N^2)$$

(so asymptotic time unchanged by the constant factor).

Recursion and Recurrences: Fast Growth

• Silly example of recursion:

```
/** True iff X is a substring of S */
boolean occurs (String S, String X) {
  if (S.equals (X)) return true;
  if (S.length () <= X.length ()) return false;
  return
    occurs (S.substring (1), X) ||
    occurs (S.substring (0, S.length ()-1), X);
}</pre>
```

- In the worst case, both recursive calls happen.
- ullet Define C(N) to be the worst-case cost of occurs(S,X) for S of length N, X of fixed size N_0 , measured in # of calls to occurs. Then

$$C(N) = \left\{ \begin{array}{ll} 1, & \text{if } N \leq N_0 \text{,} \\ 2C(N-1)+1 & \text{if } N > N_0 \end{array} \right. \label{eq:constraint}$$

ullet So C(N) grows exponentially:

$$C(N) = 2C(N-1) + 1 = 2(2C(N-2) + 1) + 1 = \dots = \underbrace{2(\dots 2 \cdot 1 + 1) + \dots + 1}_{N-N_0}$$
$$= 2^{N-N_0} + 2^{N-N_0-1} + 2^{N-N_0-2} + \dots + 1 = 2^{N-N_0+1} - 1 \in \Theta(2^N)$$

Binary Search: Slow Growth

```
/** True X iff is an element of S[L .. U]. Assumes
 * S in ascending order, 0 <= L <= U-1 < S.length. */
boolean isIn (String X, String[] S, int L, int U) {
  if (L > U) return false;
  int M = (L+U)/2;
  int direct = X.compareTo (S[M]);
  if (direct < 0) return isIn (X, S, L, M-1);
  else if (direct > 0) return isIn (X, S, M+1, U);
  else return true;
}
```

- ullet Here, worst-case time, C(D), (as measured by # of string comparisons), depends on size D=U-L+1.
- We eliminate S[M] from consideration each time and look at half the rest. Assume $D=2^k-1$ for simplicity, so:

$$C(D) = \begin{cases} 0, & \text{if } D \leq 0, \\ 1 + C((D-1)/2), & \text{if } D > 0. \end{cases}$$
$$= \underbrace{1 + 1 + \ldots + 1}_{k} + 0$$
$$= k = \lceil \lg D \rceil \in \Theta(\lg D)$$

Another Typical Pattern: Merge Sort

```
List sort (List L) {
  if (L.length () < 2) return L;</pre>
  Split L into LO and L1 of about equal size; | gle, ordered list") takes
  LO = sort (LO); L1 = sort (L1); | time proportional to size of
  return Merge of LO and L1
```

Merge ("combine into a sinits result.

ullet Assuming that size of L is $N=2^k$, worst-case cost function, C(N), counting just merge time (\propto # items merged):

$$C(N) = \begin{cases} 1, & \text{if } N < 2; \\ 2C(N/2) + N, & \text{if } N \ge 2. \end{cases}$$

$$= 2(2C(N/4) + N/2) + N$$

$$= 4C(N/4) + N + N$$

$$= 8C(N/8) + N + N + N$$

$$= N \cdot 1 + \underbrace{N + N + N + N}_{k=\lg N}$$

$$= N + N \lg N \in \Theta(N \lg N)$$

ullet In general, $\Theta(N \lg N)$ for arbitrary N (not just 2^k).

Amortization: Expanding Vectors

- When using array for expanding sequence, best to double size of array to grow it. Here's why.
- ullet If array is size s, doubling its size and moving s elements to the new array takes time $\propto 2s$.
- ullet Cost of inserting N items into array, doubling size as needed, starting with array size 1:

To Insert	Resizing	Cumulative	Resizing Cost	Array Size
Item #	Cost	Cost	per Item	After Insertions
1	0	0	0	1
2	2	2	1	2
3 to 4	4	6	1.5	4
5 to 8	8	14	1.75	8
:	•	:	:	:
$2^m + 1$ to 2^{m+1}	2^{m+1}	$2^{m+2}-2$	≈ 2	2^{m+1}

- If we spread out (amortize) the cost of resizing, we average about 2 time units on each item: "amortized insertion time is 2 units."
- So even though worst-case time for adding one element to array of N elements is 2N, time to add N elements is $\Theta(N)$, not $\Theta(N^2)$.

Demonstrating Amortized Time: Potential Method

- To formalize the argument, associate a potential, $\Phi_i \geq 0$, to the $i^{\dagger h}$ operation that keeps track of "saved up" time from cheap operations that we can "spend" on later expensive ones. Start with $\Phi_0=0$.
- Now define the amortized cost of the i^{th} operation as

$$a_i = c_i + \Phi_{i+1} - \Phi_i,$$

where c_i is the real cost of the operation.

- ullet On cheap operations, we artificially set $a_i>c_i$ and increase Φ ($\Phi_{i+1}>$ Φ_i).
- ullet On expensive ones, we typically have $a_i \ll c_i$ and greatly decrease Φ (but don't let it go negative—may not be "overdrawn").
- \bullet We try to do all this so that a_i remains as we desired (e.g., O(1) for expanding array), without allowing $\Phi_i < 0$.
- ullet Requires that we choose a_i so that Φ_i always stays ahead of c_i .

Application to Expanding Arrays

- ullet When adding to our array, the cost, c_i , of adding element #i when the array already has space for it is 1 unit.
- The array does not initially have space when adding items 1, 2, 4, 8, 16,...—in other words at item 2^n for all $n \geq 0$. So,
 - $c_i = 1$ if $i \ge 0$ and is not a power of 2; and
 - $c_i = 3i + 1$ (allocate 2i items, copy i items, and then add item #i) when i is a power of 2.
- \bullet So on each operation #2ⁿ we're going to need to have saved up at least $3 \cdot 2^n$ units of potential to cover the expense, and we have the preceding 2^{n-1} operations to do it (the ones since the preceding doubling operation).
- ullet To do so, just choose $a_i=7$ (or could let $a_0=1,a_1=4$)
- Here's what happens: