MID TERM EXAMINATION-September 2023 Analysis and Design of Algorithm

Time: 01Hr

Maximum marks: 30

Note: Attempt questions as per Instructions

SECTION-A (Attempt Any Two questions out of three, Each of 05 Marks)

Q.1 Indicate, for each pair of expressions (A,B) in the table below, whether A is O, Ω , Θ , o, or ω of B. Your answer should be in the form of the table with "yes" or "no" written in each box.

	A	В	0	Ω	Θ	0	ω
a.	n ² logn	$n(logn)^{10}$		B. S. S. S. S.			
b.	$3n^{\sqrt{n}}$	2√n logn					
C.	(logn)logn	$(n)^{\frac{1}{\log n}}$					

Q.2 Consider a weighted complete graph G of 5 vertex set $\{V_1, V_2, V_3, V_4, V_5\}$ such that the weight of the edge (V_i, V_j) is 2|i-j|. Find a minimum cost spanning tree (MCST) of G using Prim's Algorithm. Find the generalized formula for MCST for the same complete graph G having n vertices $\{V_1, V_2, ..., V_n\}$.

Q.3 Find the optimal solution of the following instance of knapsack problem (fractional):

Number of objects n=7. Capacity of Knapsack (M)=14

Items (I _i)	11	I ₂	13	I ₄	Is	16	17
Profits (p _i)	4	9	7	8	15	5	10
Weights (w _i)	2	3	4	1	5	1	3

SECTION-B (Attempt Any One question, out of two, Each of 10 Marks)

Q.4.(a) Write a PARTITION(A, p, r) algorithm of Quicksort which partition the given input array A[p, ..., r] to set pivot element (say A/r). Find its time complexity also.

(b) Explain how V. Strassen's matrix multiplication method is used to multiply 2 matrices of size $(n \times n)$ in less than $O(n^3)$ time. Consider 2 matrices A and B of size (16×16) . Find the total number of multiplications for multiplying A and B using V. Strassen's method.

Q.5 Apply Dijkstra's algorithm on the following graph G to find shortest path from vertex [P] to other vertices of G. Step by step calculate shortest path estimate of d[] value for each vertex of G and order of vertices gets included in set S.

SECTION-C (Compulsory, 10 Marks)

Q.6(a) Solve the following recurrences:

(i)
$$T(n) = 2T(\frac{n}{2}) + \frac{n^2}{\log^2 n}$$

(ii) $T(n) = \sqrt{n}T(\sqrt{n}) + n$

[6+4=10]

(b) Write the recurrence relation and time complexity of the problem listed below

S. No.	Problem	Recurrence relation (Worst Case)	Time complexity
1	Binary search		
2	V. Strassen's Matrix multiplication		
3	Quicksort		
	Suppose the running time of Mod Find the time complexity of the form Repeat for I = 1 to N. Repeat for J = 1 to I: Repeat for J = 1 to I: Repeat for K = 1 Module A. [End of Step 3 loc.] [End of Step 1 loop.] Septiment		