$$Q_{1}$$

$$S_{0}[utian: Fina] 2010, ELECU42-660]$$

$$H(2) = \frac{1-\frac{1}{3}z^{-1}}{1+z^{-1}-2z^{-1}} = \frac{1-\frac{1}{3}z^{-1}}{(1-z^{-1})(1+2z^{-1})}$$

$$2eros: o \text{ and } \frac{1}{3} \quad \text{Poles: } 1 \text{ and } -2$$

$$H(2) = \frac{y(2)}{X(2)} = \frac{1-\frac{1}{3}z^{-1}}{1+z^{-1}-2z^{-2}} \Rightarrow \frac{y(z)+z^{-1}}{y(z)-2}\frac{1}{z^{-1}}\frac{1}{y(z)-2}\frac{1}{z^{-1}}\frac{1}{y(z)}$$

$$H(2) = \frac{y(2)}{X(2)} = \frac{1-\frac{1}{3}z^{-1}}{1+z^{-1}-2z^{-2}} \Rightarrow \frac{y(z)+z^{-1}}{y(z)-2}\frac{1}{z^{-1}}\frac{1}{z^{-1}}\frac{1}{z^{-1}}\frac{$$

h[n] = = = u[n] += (-2) u[n]

= & [n-i] x h, [n] + 2 & [n] * h, [n] + f [n+i] x h, [i] h[h]= h2[n-1] + 2 h2[n)+ h2[n+1] h2[n]= 8[n-2]+8[n-1]+8[n]+8[n+1]+8[n+2] h(n)=|8[n-3]+S[h-2]+S[n-1]+8[n]+8[n])+ +2/8(n-2)+8(n-1)+8(n)+8(n+1) +8(n+2) + + { S[n-1] + S[n] + S[n+1] + S[n+2] + 8 [n+2] + 8 [n+3]? h[n]=8[n-3]+38[n-2]+48[n-1]+48[n]+48[n71] $\frac{+38[n+2]+8[n+3]}{+(e^{i}w)=-33w} + 8[n+3]$ $\frac{-33w}{+3e} + 4e + 4 + 4e + 3e + e$ $\frac{+3e}{+3e} + 4e + 4 + 4e + 3e + e$ $\frac{-32w}{+3(e+e)} + 4(e+e) + 3(e+e) + (e+e)$ H(e) = 4+3 G W + 16 G 2W + 100 3 JW we shift the impulse response by three samples 94 to have no component was Brown for no. T[n]= 8[n]+38[n-1]+\$8[in-2]+48[n3] +48[n-4]+38[n-5]+8[n-6]/h(n)i! D(Ln) - y[h]

$$\frac{\partial S}{\partial s} = \frac{|H(s)n|}{|h(s)n|} = \frac{|A|}{|h(s)n|} = \frac{|A|}{|h($$

y [n] + = y [n-1] + = y [n-2] = = = = 4 x [n] + n [n-1] 7(2) + = = 7(2) + = = + x(3) + = x(3) $H(2) = \frac{1}{(2)} = \frac{1}{(2+\frac{1}{2})} = \frac{1}{(2+\frac{1}{2})(2+\frac{1}{2})} = \frac{1}{(2+\frac{1}{2})(2+\frac{1}{2})}$ Poles: - \frac{1}{2} & - \frac{1}{4} Jora minimum phase systema, the system and its inverse should be stable and Cansal, Therefor, all pole and zeros should be inside unit This system is not min phase siace zeroal-L is outside unit circle. $\frac{4+2}{(1+\frac{1}{2}z^{-1})(1+4z^{-1})} = \frac{6(z)}{allpall} + \frac{1}{min}(z)$ we choose $G(z) = \frac{z+4}{1+4z}$, to remove the 3 cross? -4 from H(2). We know that |G(e) = 1 1+2 x1)(1+2 x-1) = 2-1+2 1. Hmin(2) Hmin (2) = 1 / 1+ 22-1 / hmin (n) = (-2) win

Question 9:

$$x_{d}[n] = x_{c}(nT) \longleftrightarrow X_{d}(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(\frac{\omega}{T} - j\frac{2k\pi}{T}\right)$$

$$x[n] = \begin{cases} x_{d}\left[\frac{n}{7}\right] & n = \pm 7k \longleftrightarrow X(e^{j\omega}) = X_{d}(e^{j7\omega}) \\ 0 & otherwise \end{cases}$$

$$y[n] = x[n] * h[n] \longleftrightarrow Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

$$y_{d}[n] = y[4n] \longleftrightarrow Y_{d}(e^{j\omega}) = \frac{1}{4} \sum_{k=0}^{3} Y\left(e^{j\left(\frac{\omega-2k\pi}{4}\right)}\right)$$

$$y_{c}(t) = \left\{\sum_{n=-\infty}^{\infty} y_{d}[n]\delta(t - \frac{4nT}{7})\right\} * h_{DC}(t) \longleftrightarrow Y_{c}(j\Omega) = \left\{\frac{4T}{7}Y_{d}\left(e^{\frac{j4\Omega T}{7}}\right) \mid \Omega \mid < \frac{\pi}{10T}\right\}$$

$$0 & otherwise$$

Question 10:

$$y_c(t) = \frac{7}{4T} x_c(t) \longleftrightarrow Y_c(j\Omega) = \frac{7}{4T} X_c(j\Omega)$$

