

# Acharya Narendra Dev College

## University of Delhi

Name:-Hemant Singh

College Roll.No: AC-721

Course:-B.Sc.(Hons).Mathematics

Semester: 2nd semester

Session: 2020-23

Subject:-Differential Equations (Lab Practical)

Submitted to: Dr.K.R Meena Sir

Mr.Gurudatt Rao Sir

Last date of submission: before 26

july 2021

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_

#### **SN** Practical Name

- 1) Plotting of second and third order respective solution family of differential equation.
- 2) Growth and decay model

- (exponential case only)
- 3)(i) Lake pollution model (with constant/seasonal flow and pollution concentration).
- (ii) Case of single cold pill and a course of cold pills.
- (iii) Limited growth of population (with and without harvesting).
- 4) (i) Predatory-prey model (basic Volterra model, with density dependence, effect of DDT, two prey one predator).
- (ii) Epidemic model of influenza (basic epidemic model, contagious for life, disease with carriers).

- (iii) Battle model (basic battle model, jungle warfare, long range weapons).
- 5). Plotting of recursive sequences, and study of the convergence.
- 6)Find a value m ∈ N that will make the following inequality holds for all n>m:
- 7) Verify the Bolzano–Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot.
- 8) Study the convergence/divergence of infinite series of real numbers by plotting their sequences of partial

sum.

- 9) Cauchy's root test by plotting nth roots.
- 10) D'Alembert's ratio test by plotting the ratio of nth and (n+1)th term of the given series of Positive terms. 11)For the following sequence <a\_n>  $\epsilon = 1/2$  k,p=10 i,k=0,1,2,4... find m  $\in$  N such that:-For the following sequence <a\_n> ,Given p $\epsilon$ N find m $\epsilon$ N Such that (i) $|a_{m+p}-a_m| < \epsilon$ ,(ii) $|a_{2m+p}-a_{2m}| < \epsilon$ 12) For the following series  $\sum_{n=1}^{n} a_n$ , calculate i) $\left|\frac{a_{n+1}}{a_n}\right|$ ,

ii)( $|a_n|$ ), for n=10, j=1,2,3,..... and identify the convergent series, where n a is given as:

\_\_\_\_

1Q.)Plotting of second and third order respective solution family of differential equation.(Solve a differential for equation for the function y with independent variable x).

#### Plotting of second first differential equation

In[@]:= Plot[y[t] /. dpp, {t, -10, 10}]



$$ln[*]:= aas = DSolve[{y'[x] == -y[x]^2 + x^2, y[0] == 1}, y[x], x]$$

$$\begin{aligned} & \text{Out} [*] = \left\{ \left\{ y \left[ x \right] \right. \right. \\ & \left. \left( \left( \frac{1}{2} + \frac{\dot{\mathbb{I}}}{2} \right) \left( \left( 1 + \dot{\mathbb{I}} \right) \right. x^2 \, \mathsf{BesselJ} \left[ -\frac{3}{4} , \, \frac{\dot{\mathbb{I}} \, x^2}{2} \right] \, \mathsf{Gamma} \left[ \frac{1}{4} \right] + \dot{\mathbb{I}} \, \sqrt{2} \, \, x^2 \, \mathsf{BesselJ} \left[ -\frac{5}{4} , \, \frac{\dot{\mathbb{I}} \, x^2}{2} \right] \, \mathsf{Gamma} \left[ \frac{3}{4} \right] + \\ & \sqrt{2} \, \, \mathsf{BesselJ} \left[ -\frac{1}{4} , \, \frac{\dot{\mathbb{I}} \, x^2}{2} \right] \, \mathsf{Gamma} \left[ \frac{3}{4} \right] - \dot{\mathbb{I}} \, \sqrt{2} \, \, x^2 \, \mathsf{BesselJ} \left[ \frac{3}{4} , \, \frac{\dot{\mathbb{I}} \, x^2}{2} \right] \, \mathsf{Gamma} \left[ \frac{3}{4} \right] \right) \right) / \\ & \left( x \, \left( \mathsf{BesselJ} \left[ \frac{1}{4} , \, \frac{\dot{\mathbb{I}} \, x^2}{2} \right] \, \mathsf{Gamma} \left[ \frac{1}{4} \right] + \left( 1 + \dot{\mathbb{I}} \right) \, \sqrt{2} \, \, \mathsf{BesselJ} \left[ -\frac{1}{4} , \, \frac{\dot{\mathbb{I}} \, x^2}{2} \right] \, \mathsf{Gamma} \left[ \frac{3}{4} \right] \right) \right) \right\} \right\} \end{aligned}$$



#### Second Differential equation

In[\*]:= Plot[y[x] /. zs, {x, -5, 5}]



$$\begin{split} & \text{In[e]:= fg = DSolve} \big[ \big\{ \, f''[t] \, \big/ \, f[t] = -4 \, \text{Exp} \big[ -t \big/ 4 \big] \, , \, f[0] = 1 \, , \, f'[0] = 1 \, / 2 \big\} \, , \, f[t] \, , \, t \big] \\ & \text{Out[e]:= } \big\{ \big\{ f[t] \rightarrow \bigg( \text{BesselJ} \big[ 0 \, , \, 16 \, \sqrt{\text{e}^{-\text{t}/4}} \, \big] \, \text{BesselY[0, 16] - BesselJ[0, 16] BesselY[0, 16} \, \sqrt{\text{e}^{-\text{t}/4}} \, \big] \, + \\ & \text{4 BesselJ[1, 16] BesselY[0, 16} \, \sqrt{\text{e}^{-\text{t}/4}} \, \big] \, - \, 4 \, \text{BesselJ[0, 16} \, \sqrt{\text{e}^{-\text{t}/4}} \, \big] \, \text{BesselY[1, 16]} \, \big) \, \Big/ \\ & \big( 4 \, \big( \text{BesselJ[1, 16] BesselY[0, 16] - BesselJ[0, 16] \, BesselY[1, 16] \big) \, \big) \, \big\} \big\} \end{split}$$



$$ln[*]:=$$
 $sx = DSolve[{y''[x] - 2y'[x] + y[x] == 0, y[0] == 3, y'[0] == 1}, y[x], x]$ 

$$ln[*] = \left\{ \left\{ y[x] \rightarrow -e^{x} \left( -3 + 2 x \right) \right\} \right\}$$

$$Plot[y[x] /. sx, \{x, 1, 10\}]$$

$$Out[*] = \left\{ \left\{ y[x] \rightarrow -e^{x} \left( -3 + 2 x \right) \right\} \right\}$$



#### Third Differential equation

$$\begin{split} & \text{In}[*] := \text{ th = DSolve} \Big[ \Big\{ Y'''[s] + Y[s] := \Big( e^s + 2 \Big) \,^2, \, Y[\emptyset] := 3, \, Y'[\emptyset] := 2, \, Y''[\emptyset] := 1 \Big\}, \, Y[s], \, s \Big] \\ & \text{Out}[*] := \Big\{ \Big\{ Y[s] \to \frac{1}{9} \, e^{-s} \left[ -13 + 12 \, e^s + 6 \, e^{2\,s} + e^{3\,s} - 15 \, e^{3\,s/2} \, \text{Cos} \Big[ \frac{\sqrt{3} \, s}{2} \Big] + 24 \, e^s \, \text{Cos} \Big[ \frac{\sqrt{3} \, s}{2} \Big]^2 + \\ & 12 \, e^{2\,s} \, \text{Cos} \Big[ \frac{\sqrt{3} \, s}{2} \Big]^2 - 5 \, \sqrt{3} \, e^{3\,s/2} \, \text{Sin} \Big[ \frac{\sqrt{3} \, s}{2} \Big] + 24 \, e^s \, \text{Sin} \Big[ \frac{\sqrt{3} \, s}{2} \Big]^2 + 12 \, e^{2\,s} \, \text{Sin} \Big[ \frac{\sqrt{3} \, s}{2} \Big]^2 \Big\} \Big\} \Big\} \end{split}$$

In[\*]:= Plot[Y[s] /. th, {s, -8, 8}]



$$\{g'''[x] + 3g''[x] + 3g'[x] + g[x] = 0, g[0] = 10, g'[0] = -7, g''[0] = 11\}, g[x], x\}$$

$$\mbox{Out[s]=} \ \Big\{ \, \Big\{ \, g \, [\, x \, ] \, \, \to \, \frac{1}{2} \, \, e^{-x} \, \, \Big( \, 20 \, + \, 6 \, \, x \, + \, 7 \, \, x^2 \Big) \, \Big\} \, \Big\}$$

In[\*]:= Plot[g[x] /. tcs, {x, -10, 10}]



In[\*]:= ClearAll

Out[\*]= ClearAll

In[\*]:= ClearAll

Out[ • ]= ClearAll

# 2. Growth and decay model (exponential case only)

#Study the growth of modal

$$log_{\mathscr{F}} = h12 = DSolve[\{g'[t] == k * g[t], g[0] == r0\}, g[t], t]$$

$$Out[\mathscr{F}] = \left\{ \left\{ g[t] \to \mathbb{C}^{kt} r0 \right\} \right\}$$

$$log_{\mathscr{F}} = Plot[g[t] /. h12 /. \left\{ k \to 1 / 5800, r0 \to 5 \right\},$$

$$\{t, 0, 100000\}, AxesOrigin \to \{0, 0\}, PlotRange \to All]$$

$$1.5 \times 10^{8} - \frac{1.0 \times 10^{8}}{1.0 \times 10^{7}} - \frac{1.0 \times 10^{8}}{1.0 \times 10^$$

#Study of Decay modal

```
In[*]:= ClearAll
Out[*]= ClearAll
```

Out[ • ]= ClearAll

# 3. (i) Lake pollution model (with constant/seasonal flow and pollution concentration).

```
F = 4 * 10^6;
        V = 28 * 10^6;
        cin = 4 * 10^6;
        re = DSolve[{P'[t] == (cin - P[t]) * F / V, P[0] == p}, P[t], t]
Out[\circ] = \left\{ \left\{ P[t] \rightarrow e^{-t/7} \left( -4000000 + 4000000 e^{t/7} + p \right) \right\} \right\}
In[ • ]:=
        Plot[Evaluate[Table[P[t] /. re /. p \rightarrow i, {i, 10^6, 10^7, 10^6}]],
          \{t, 0, 100\}, AxesOrigin \rightarrow \{0, 0\}, PlotRange \rightarrow All]
        1 \times 10^{7}
        8 \times 10^{6}
        6 \times 10^{6}
Out[ • ]=
        4 \times 10^{6}
        2 \times 10^{6}
                                                                                         100
In[ • ]:= ClearAll
```

#### #Study the Lake Pollution modal with zero Pollution in lake

```
In[*]= F = 4 * 10^6;
V = 28 * 10^6;
cin = 0;
rb = DSolve[{A'[t] == (cin - A[t]) * F / V, A[0] == a}, A[t], t]

Out[*]= {{A[t] → a e<sup>-t/7</sup>}}

In[*]= Plot[Evaluate[Table[A[t] /. rb /. a → j, {j, 10^6, 10^7, 10^6}]],
{t, 0, 100}, AxesOrigin → {0, 0}, PlotRange → All]

1 × 10<sup>7</sup>
8 × 10<sup>6</sup>
0 × 10<sup>6</sup>
2 × 10<sup>6</sup>
2 × 10<sup>6</sup>
```

#### #Lake Pollution Model with seasonal flow

```
\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
```



# (ii) Case of single cold pill and a course of cold pills.

```
ln[*]:= eq1 = x'[t] == -1.3860 x[t];
         eq2 = y'[t] = 1.3860 x[t] - 0.1386 y[t];
         sol = DSolve[{eq1, eq2, x[0] == 1, y[0] == 0}, {x[t], y[t]}, t]
\textit{Out[*]} = \left\{ \left\{ x[t] \rightarrow \textbf{1.} \ e^{-\textbf{1.386}\,t}, \ y[t] \rightarrow -\textbf{1.11111} \ e^{-\textbf{1.5246}\,t} \ \left( \textbf{1.} \ e^{\textbf{0.1386}\,t} - \textbf{1.} \ e^{\textbf{1.386}\,t} \right) \right\} \right\}
 lo[\cdot\cdot]:= Plot[Evaluate[x[t] /. sol], {t, 0, 15}, PlotStyle \rightarrow Orange]
         0.07
         0.06
         0.05
         0.04
Out[ • ]=
         0.03
         0.02
         0.01
                                                                       10
                         2
                                                                                  12
                                                                                              14
```





 $ln[*]:= Plot[Evaluate[{x[t], y[t]} /. sol], {t, 0, 15}]$ 



#### #(iii) Limited growth of population (with and without harvesting).

$$\begin{split} & \text{In[*]:= eq3 = x'[t] == 1 - 2x[t];} \\ & \text{eq4 = y'[t] == 2x[t] - 4y[t];} \\ & \text{sol1 = DSolve[\{eq3, eq4, x[0] == 0, y[0] == 0\}, \{x[t], y[t]\}, t]} \\ & \text{Out[*]:= } \left\{ \left\{ x[t] \rightarrow \frac{1}{2} \, \text{e}^{-2\,t} \, \left( -1 + \text{e}^{2\,t} \right), \, y[t] \rightarrow \frac{1}{4} \, \text{e}^{-4\,t} \, \left( -1 + \text{e}^{2\,t} \right)^2 \right\} \right\} \end{split}$$





ln[\*]:= Plot[Evaluate[y[t] /. sol1], {t, 0, 15}, PlotStyle  $\rightarrow$  Blue]



 $los_{[a]} = Plot[Evaluate[\{x[t], y[t]\} /. soll], \{t, 0, 15\}, PlotLegends \rightarrow "Expressions"]$ 



#### (iii) Limited growth of population (with and without harvesting)

In[\*]:=
 ClearAll
Out[\*]= ClearAll

#### **#Study the Logistic growth modal**

```
In[s]:= S = 1;

C = 1000;

n = 0;

Sol = DSolve[{F'[x] == (S * F[x] * (1 - F[x] / c)) - n, F[0] == f0}, F[x], x]
```

Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information.

$$\textit{Out[*]} = \left\{ \left\{ F\left[\, x\,\right] \right. \right. \rightarrow \frac{1000 \,\, e^x \,\, f0}{1000 - f0 + e^x \,\, f0} \right\} \right\}$$

 $\label{eq:local_local_local_local_local} $$\inf[s] = \text{Plot}[\text{Table}[F[x] /. sol8 /. f0 \to j, \{j, 100, 1500, 100\}], \\ \{x, 0, 10\}, \, \text{PlotRange} \to \text{All, AxesLabel} \to \{X, Y\}, \, \text{PlotStyle} \to \text{Red}]$$ 



In[@]:= ClearAll

Out[\*]= ClearAll

Study the Predatory-prey modal

```
 \begin{array}{lll} & \text{$r$1 = 1$;} \\ & \text{$r$2 = 0.5$;} \\ & \text{$c$1 = 0.01$;} \\ & \text{$c$2 = 0.005$;} \\ & \text{$s$010 = NDSolve}[\{X'[t] == r1 * X[t] - c1 * X[t] * S[t], \\ & \text{$S'[t] == c2 * X[t] * S[t] - r2 * S[t], X[0] == 200, X[0] == 80\}, \{X[t], S[t]\}, \{t, 0, 50\}] \\ & \text{$Out[*]$= } \left\{ \left\{ X[t] \rightarrow \text{InterpolatingFunction} \left[ \begin{array}{c} & & \text{Domain: } \{\{0, 50.\}\} \\ & \text{Output: scalar} \end{array} \right] [t], \right. \\ & \text{$S[t]$} \rightarrow \text{InterpolatingFunction} \left[ \begin{array}{c} & & \text{Domain: } \{\{0, 50.\}\} \\ & & \text{Output: scalar} \end{array} \right] [t] \right\} \right\} \\ \end{array}
```



#### Density Dependent growth Modal

```
 \begin{split} & \text{In} [\circ] = \text{ r1 = 1;} \\ & \text{ r2 = 0.5;} \\ & \text{ c1 = 0.01;} \\ & \text{ c2 = 0.005;} \\ & \text{ k = 1000;} \\ \\ & \text{ In} [\circ] = \text{ h7 = NDSolve} \Big[ \Big\{ \text{V'[t]} == \text{r1} * \text{V[t]} \left( 1 - \text{V[t]} \middle/ \text{k} \right) - \text{c1} * \text{V[t]} * \text{P[t]}, \\ & \text{P'[t]} == \text{c2} * \text{V[t]} * \text{P[t]} - \text{r2} * \text{P[t]}, \text{V[0]} == 200, \text{P[0]} == 80 \Big\}, \text{ {V[t], P[t]}}, \text{ {t, 0, 50}} \Big] \\ & \text{Out} [\circ] = \Big\{ \Big\{ \text{V[t]} \to \text{InterpolatingFunction} \Big[ \text{ } \bigoplus \text{ Domain: $\{0., 50.\}} \\ & \text{Output: scalar} \\ \Big] \text{ [t]} \Big\} \\ & \text{P[t]} \to \text{InterpolatingFunction} \Big[ \text{ } \bigoplus \text{ Domain: $\{0., 50.\}} \\ & \text{Output: scalar} \\ \Big] \text{ [t]} \Big\} \Big\}
```





In[\*]: ParametricPlot[{V[t], P[t]} /. h7, {t, 0, 50}, AxesOrigin → {0, 0}, PlotRange → All, PlotStyle → Orange]



In[@]:= clearAll

Out[\*]= clearAll

#### Predator Prey Model with DDT Effect

10

20

30

```
In[*]:= r5 = 1;
                            r6 = 0.5;
                            c5 = 0.01;
                            c6 = 0.005;
                            p5 = 0.1;
                            p6 = 0.1;
                            sol11 = NDSolve[{F'[t] == r5 * F[t] - c5 * F[t] * Y[t] - p5 * F[t], Y'[t] == r5 * F[t] + r5 * F[t] +
                                                      c6 * F[t] * Y[t] - r6 * Y[t] - p6 * Y[t], F[0] == 200, Y[0] == 80\}, \{F[t], Y[t]\}, \{t, 0, 50\}]
                                                                                                                                                                                                                                                                  Domain: {{0., 50.}}
Out[\circ] = \{ \{ F[t] \rightarrow InterpolatingFunction | \} \}
                                                                                                                                                                                                                                                                                                                                                             [t],
                                                                                                                                                                                                                                                                  Output: scalar
                                                                                                                                                                                                                                                                  Domain: {{0., 50.}}
                                        Y[t] \rightarrow InterpolatingFunction
                                                                                                                                                                                                                                                                                                                                                          [t]}
                                                                                                                                                                                                                                                                  Output: scalar
  ln[*]:= Plot[{F[t], Y[t]} /. sol11, {t, 0, 50},
                                   AxesOrigin \rightarrow {0, 0}, PlotRange \rightarrow All, PlotStyle \rightarrow Blue]
                            200
                              150
Out[ • ]= 100
                                50
```

40



#### **Battle Model**

#### Normal





#### Long-Range





30 000

#### Jungle Warfare

10 000

20 000

5000

40 000

50 000

60 000

#### Epidemic Model on influenza

```
 \begin{split} & \text{In} [*] \coloneqq \beta = 0.002; \\ & \gamma = 0.4; \\ & \text{sol15} = \text{NDSolve} [\{S'[t] == -\beta * S[t] * H[t]\}, \\ & \text{H'[t]} \coloneqq \beta * S[t] * H[t] - \gamma * H[t], S[0] == 500, H[0] == 1\}, \{S[t], H[t]\}, \{t, 0, 20\}] \\ & \text{Out} [*] \coloneqq \left\{ \left\{ S[t] \to \text{InterpolatingFunction} \right[ \begin{array}{c} & \text{Domain:} \{\{0., 20.\}\} \\ \text{Output: scalar} \end{array} \right] [t], \end{aligned}
```









# 5. Plotting of recursive sequences, and study of the convergence

#### **#Plotting of recursive sequences**

```
In[*]:= a[1] = 1;
    a[2] = 1;
    a[n_] := a [n - 2] + a [n - 1];
    aa = Table[a[n], {n, 1, 20}]
Out[*]= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765}
```

```
ln[*]:= ListPlot[aa, PlotStyle \rightarrow {Blue, PointSize[0.02]}, PlotRange \rightarrow All,
       PlotLegends → "grap[ for the sequence a[n]-a[n-2]-a[n-1]", Background → LightBlue]
      7000 |
      6000
      5000
      4000
                                                                    grap [ for the sequence a[n]-a[n-2]-a[n
Out[ • ]=
     3000
     2000
      1000
                                                                20
In[ • ]:=
     b[2] = 2;
     b[3] = 3;
     b[s_{-}] := b[s-1] + b[s-2];
     sn = Table[b[s], \{s, 2, 15\}]
Out[*]= {2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987}
In[ • ]:=
      ListPlot[sn, PlotStyle → {Orange, PointSize[0.03]},
       PlotRange \rightarrow All, PlotLegends \rightarrow "Grap for the sequence b[s-1]+b[s-2]"]
      1000
      800
      600
Out[ • ]=
                                                                    Grap for the sequence b[s-1]+b[s-2]
      400
      200
ln[-]:= W[1] = 5;
     w[2] = 10;
     w[x_{-}] := w[x-2] + w[x-1];
     cd = Table[w[x], \{x, 1, 15\}]
```

 $Out[e] = \{5, 10, 15, 25, 40, 65, 105, 170, 275, 445, 720, 1165, 1885, 3050, 4935\}$ 

```
In[*]:= ListPlot[cd, PlotStyle → {Blue, PointSize[0.02]},
       PlotRange \rightarrow All, PlotLegends \rightarrow "Grap for the sequence w[x-2]+w[x-1]"]
      5000
      4000
      3000
                                                                      Grap for the sequence w[x-2]+w[x-1]
Out[ • ]=
      2000
      1000
In[*]:= ClearAll
Out[*]= ClearAll
      "Ques:Define Recurrence Sequence and Find its first 20 terms and Plot"
In[*]:= f[1] = 2;
ln[*]:= f[n_] := 3 * f[n-1] + 11;
      ff = Table[f[n], {n, 1, 20}]
Out[*]= {2, 17, 62, 197, 602, 1817, 5462, 16397, 49202, 147617, 442862, 1328597, 3985802,
       11957417, 35872262, 107616797, 322850402, 968551217, 2905653662, 8716960997}
log_{[a]} = ListPlot[ff, PlotStyle \rightarrow \{Red, PointSize[0.02]\}, PlotRange \rightarrow All,
       PlotLegends \rightarrow "Grap for the sequence f[n_{]}:=3*f[n-1]+11"]
      8 \times 10^{9}
      6 \times 10^{9}
Out[ • ]=
                                                                      Grap for the sequence f[n_{-}]:=3*f[n_{-}1]
      4 \times 10^{9}
      2 \times 10^{9}
```

### Q1.study the convergence of sequence $a[n_]=(4*n+3)/(3*n+2)$ through Plotting

$$ln[*]:= a[n_] = \frac{(4*n+3)}{(3*n+2)};$$

hemant = Table[{n, a[n]}, {n, 30}]

Out[\*]= 
$$\{\{1, \frac{7}{5}\}, \{2, \frac{11}{8}\}, \{3, \frac{15}{11}\}, \{4, \frac{19}{14}\}, \{5, \frac{23}{17}\}, \{6, \frac{27}{20}\}, \{7, \frac{31}{23}\}, \{8, \frac{35}{26}\}, \{9, \frac{39}{29}\}, \{10, \frac{43}{32}\}, \{11, \frac{47}{35}\}, \{12, \frac{51}{38}\}, \{13, \frac{55}{41}\}, \{14, \frac{59}{44}\}, \{15, \frac{63}{47}\}, \{16, \frac{67}{50}\}, \{17, \frac{71}{53}\}, \{18, \frac{75}{56}\}, \{19, \frac{79}{59}\}, \{20, \frac{83}{62}\}, \{21, \frac{87}{65}\}, \{22, \frac{91}{68}\}, \{23, \frac{95}{71}\}, \{24, \frac{99}{74}\}, \{25, \frac{103}{77}\}, \{26, \frac{107}{80}\}, \{27, \frac{111}{83}\}, \{28, \frac{115}{86}\}, \{29, \frac{119}{89}\}, \{30, \frac{123}{92}\}\}$$





In[@]:= ListLinePlot[hemant, PlotRange → {1.3, 1.48}]



```
ln[-]:= TableForm[Table[{n, a[n]}, {n, 30}]]
         2
                   <u>15</u>
        3
                   <u>31</u>
                   <u>43</u>
        10
        11
        12
        13
                   <u>59</u>
        14
        15
        16
                   50
71
        17
        18
        19
                   59
                   <u>83</u>
        20
        21
        22
        23
        24
        25
        27
        28
                   <u>119</u>
        29
ln[\cdot]:= Limit[a[n], n \rightarrow Infinity]
Out[\circ]= \frac{4}{3}
```

Q2 Study the convergence of Sequence  $a[n_]=(4*x^3+5x)/(3*x^2+8)$ 

#### through Plotting

$$b[n_{-}] = \frac{5 n + 4 n^{3}}{8 + 3 n^{2}};$$
raja = Table[{n, b[n]}, {n, 20}]
ListPlot[b[n]]

Out[\*]= 
$$\left\{\left\{1, \frac{9}{11}\right\}, \left\{2, \frac{21}{10}\right\}, \left\{3, \frac{123}{35}\right\}, \left\{4, \frac{69}{14}\right\}, \left\{5, \frac{525}{83}\right\}, \left\{6, \frac{447}{58}\right\}, \left\{7, \frac{1407}{155}\right\}, \left\{8, \frac{261}{25}\right\}, \left\{9, \frac{2961}{251}\right\}, \left\{10, \frac{2025}{154}\right\}, \left\{11, \frac{5379}{371}\right\}, \left\{12, \frac{1743}{110}\right\}, \left\{13, \frac{8853}{515}\right\}, \left\{14, \frac{5523}{298}\right\}, \left\{15, \frac{13575}{683}\right\}, \left\{16, \frac{2058}{97}\right\}, \left\{17, \frac{19737}{875}\right\}, \left\{18, \frac{11709}{490}\right\}, \left\{19, \frac{27531}{1091}\right\}, \left\{20, \frac{8025}{302}\right\}\right\}$$



In[\*]:= ListLinePlot[raja]



### 

#observation : sequence is not convergent

## 3Q.study the convergence of sequence a[n\_]= $\frac{4*n^{3}+3*n}{n^{3}-6}$ through Plotting

$$In[*]:= d[n_{-}] = \frac{4 * n^3 + 3 * n}{n^3 - 6};$$

$$fb = Table[\{n, d[n]\}, \{n, 20\}]$$

$$Out[*]:= \{\{1, -\frac{7}{5}\}, \{2, 19\}, \{3, \frac{39}{7}\}, \{4, \frac{134}{29}\}, \{5, \frac{515}{119}\}, \{6, \frac{21}{5}\}, \{7, \frac{1393}{337}\}, \{8, \frac{1036}{253}\}, \{9, \frac{981}{241}\}, \{10, \frac{2015}{497}\}, \{11, \frac{5357}{1325}\}, \{12, \frac{1158}{287}\}, \{13, \frac{1261}{313}\}, \{14, \frac{5509}{1369}\}, \{15, \frac{4515}{1123}\}, \{16, \frac{8216}{2045}\}, \{17, \frac{19703}{4907}\}, \{18, \frac{3897}{971}\}, \{19, \frac{27493}{6853}\}, \{20, \frac{2290}{571}\}\}$$



# 6.Find a value m ∈ N that will make the following inequality holds for all n>m:

Ques1:Inequality holds for all n>m:

For 
$$[n = 1, Abs[(0.5)^{(1/n)} - 1] \ge (10)^{(-3)}, n = n + 1]$$
Print  $[n]$ 
693

```
m[\cdot] = \text{If}[Abs[(0.5)^{(1/n)} - 1] < (10)^{(-3)}, \text{Print}["The inequality does hold for n"],}
      Print["The Inequality does not hold for n"]]
     The inequality does hold for n
     Obervation: "The inequality does hold for n"
Ques2:Inequality holds for all n> m:
ln[a] = For[n = 1, Abs[n^{(1/n)} - 1] < 10^{(-3)}, n = n + 1]
In[*]:= Print[n]
     2
ln[\cdot] = If[Abs[n^{(1/n)} - 1] < (10)^{(-3)}, Print["The inequality does hold for n"],
      Print["The Inequality does not hold for n"]]
     The Inequality does not hold for n
     Obervation: "The Inequality does not hold for n"
Ques3:Inequality holds for all n> m:
ln[\cdot]:= For[n = 1, Abs[(0.9)^n] < 10^(-3), n = n + 1]
     Print[n]
Out[ • ]= Null
 l_{l_{i}=i}= If[Abs[(0.9)^n] < (10)^(-3), Print["The inequality does hold for n"],
      Print["The Inequality does not hold for n"]
     The Inequality does not hold for n
     Obervation: "The Inequality does not hold for n"
Ques4:Inequality holds for all n> m:
ln[\circ] := For[n = 1, Abs[2^n/n!] < 10^(-7), n = n + 1]
In[@]:= Print[n]
 ln[*]:= If[Abs[2^n/n!] < (10)^(-7), Print["The inequality does hold for n"],
      Print["The Inequality does not hold for n"]]
     The Inequality does not hold for n
     Obervation: "The Inequality does not hold for n"
```

#### 7. Verify the Bolzano-Weierstrass

ques1):Verify the Bolzano–Weierstrass theorem through plotting of sequences a[n\_]:=(-1)^n and identify the convergence

```
In[@]:= a[n_] := (-1)^n;
     ra = Table[a[n], {n, 1, 2000}];
     lb = Min[ra];
     ub = Max[ra];
     If (-Infinity < lb) && (ub < Infinity), Print[" Bolzano weirstrass thm is applicable "],</pre>
      Print[" Bolzano weirstress thm is not applicable"]]
      Bolzano weirstrass thm is applicable
ln[a] := bs = Table[{n, a[n]}, {n, 1, 200}];
     ListPlot[bs, PlotLegends → "Grap of sequence -1^n",
      PlotStyle → Red, PlotRange → All, Background → LightBlue]
      1.0
      0.5
Out[ • ]=
                                                              Grap of sequence -1^n
                    50
                                 100
                                              150
     -0.5
     -1.0
```

Observation: "Bolzano weirstrass theorem is applicable "and "sequence is not convergent"

## ques2:Verify Bolzano Weirstrass theorem through plotting of the sequence a[n\_]:=(1/n) and identify the convergence

```
In[*]:= a[n_] := 1/n;
    ra = Table[a[n], {n, 1, 2000}];
    lb = Min[ra];
    ub = Max[ra];
    If[(-Infinity < lb) && (ub < Infinity), Print[" Bolzano weirstrass thm is applicable "],
        Print[" Bolzano weirstress thm is not applicable"]]</pre>
```

Bolzano weirstrass thm is applicable

```
ln[\cdot]:= aa = Table[\{n, a[n]\}, \{n, 1, 50\}];
     ListPlot[aa, PlotLegends → "Grap of sequence -1^n",
      PlotStyle → Red, PlotRange → All, Background → LightMagenta]
     1.0
     0.8
     0.6
Out[ • ]=
                                                                Grap of sequence -1^n
     0.4
     0.2
ln[*]:= b[j_] := 1/(2*j);
     c[j_] := 1/(2*j+1);
     d[j_] := 1/(2*j+2);
     bb = Table[{j, b[j]}, {j, 1, 20}];
     cc = Table[{j, c[j]}, {j, 1, 20}];
     dd = Table[{j, d[j]}, {j, 1, 20}];
In[*]:= ListPlot[{bb, cc, dd, aa},
      PlotLegends \rightarrow {"subsequence 1/2j", "subsequence 1/(2j+1)", "sequence 1/n"},
      PlotStyle → {Red, Brown, Blue, Magenta}, PlotRange → All,
      Background → LightYellow, PlotRange → { { }, {0, 0.6}}]
     1.0

    subsequence 1/2j

     0.6
Out[ • ]=
                                                                   subsequence 1/(2j+1)

    sequence 1/n
```

Observation: "Bolzano weirstrass thm is applicable" and "sequence is convergent"

### 8. Study the convergence/divergence

## of infinite series of real numbers by plotting their sequences of partial sum.

```
In[ • ]:= ClearAll
Out[ • ]= ClearAll
```

1Q.Study the convergence or divergence of the infinite series  $a[n_{-}] = \sum_{i=1}^{n} \frac{1}{(4*i^2)-1}$  by Plotting the sequence of Partial sum

```
ln[*]:=b[n_{]}:=\sum_{i=1}^{n}\frac{1}{(4*i^{2})-1};
ln[@] = mk = Table[{n, N[b[n]]}, {n, 15}];
ln[*]:= TableForm[mk, TableHeadings \rightarrow {None, {"n", "nth Partial sum"}}]
```

| n  | nth Partial sum |
|----|-----------------|
| 1  | 0.333333        |
| 2  | 0.4             |
| 3  | 0.428571        |
| 4  | 0.44444         |
| 5  | 0.454545        |
| 6  | 0.461538        |
| 7  | 0.466667        |
| 8  | 0.470588        |
| 9  | 0.473684        |
| 10 | 0.47619         |
| 11 | 0.478261        |
| 12 | 0.48            |
| 13 | 0.481481        |
| 14 | 0.482759        |
| 15 | 0.483871        |



 $ln[\bullet]:=$ Limit[b[n], n  $\rightarrow$  Infinity]

Out[
$$\circ$$
]=  $\frac{1}{2}$ 

#Obervation: Series is convergent

2Q-Study the convergence or divergence of the infinite series  $a[n_{i,j}] = 1/(\sqrt{i(1+i)})$  by Plotting the sequence of Partial sum

$$ln[*]:= a[n_] := \sum_{i=1}^{n} \left(1 / \left(\sqrt{i(1+i)}\right)\right);$$

```
ln[*]:= abc = Table[\{n, N[a[n]]\}, \{n, 20\}];

TableForm[abc, TableHeadings \rightarrow \{None, \{"n", "nth Partial sum"\}\}]
```

Out[ • ]//TableForm=

| n  | nth Partial sum |
|----|-----------------|
| 1  | 0.707107        |
| 2  | 1.11536         |
| 3  | 1.40403         |
| 4  | 1.62764         |
| 5  | 1.81021         |
| 6  | 1.96451         |
| 7  | 2.09815         |
| 8  | 2.216           |
| 9  | 2.32141         |
| 10 | 2.41675         |
| 11 | 2.50379         |
| 12 | 2.58385         |
| 13 | 2.65798         |
| 14 | 2.72699         |
| 15 | 2.79154         |
| 16 | 2.85217         |
| 17 | 2.90934         |
| 18 | 2.96341         |
| 19 | 3.01471         |
| 20 | 3.0635          |
|    |                 |

log[a]:= ListPlot[abc, PlotStyle  $\rightarrow$  Orange, Background  $\rightarrow$  LightRed]



 $ln[\circ]:=$  Limit[a[n],  $n \to \infty$ ]

$$\text{Out} \textit{f} \circ \textit{J} = \lim_{n \to \infty} \left( \sum_{i=1}^{n} \frac{1}{\sqrt{i \left(1+i\right)}} \right)$$

Observation : Series is Divergent

Q3: Study the convergence or divergence of the infinite series

$$ln[\cdot]:=a[n]=\sum_{i=1}^{n}\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{i+1}}\right);$$

 $ln[*]:= sol16 = Table[{n, N[a[n]]}, {n, 14}];$ 

TableForm[sol16, TableHeadings → {None, {"n", "nth Partial sum"}}]

Out[ • ]//TableForm=

| n  | nth Partial sum |
|----|-----------------|
| 1  | 0.292893        |
| 2  | 0.42265         |
| 3  | 0.5             |
| 4  | 0.552786        |
| 5  | 0.591752        |
| 6  | 0.622036        |
| 7  | 0.646447        |
| 8  | 0.666667        |
| 9  | 0.683772        |
| 10 | 0.698489        |
| 11 | 0.711325        |
| 12 | 0.72265         |
| 13 | 0.732739        |
| 14 | 0.741801        |

TLiListPlot[abc, PlotStyle → Orange, Background → LightRed] ×

ListPlot[abc, PlotStyle → Orange, Background → LightRed] ×

stPlot[abc, PlotStyle → Orange, Background → LightRed] ×

 $TableForm[abc, TableHeadings \rightarrow \{None, \{"n", "nth \ Partial \ sum"\}\}] \times$ 

ableForm[abc, TableHeadings → {None, {"n", "nth Partial sum"}}]

#### ln[\*]:= ListPlot[abc, PlotStyle → Blue, Background → LightRed]



$$ln[\circ]:=$$
 Limit[a[n], n  $\rightarrow$  Infinity]
Out[ $\circ$ ]: 1

Observation: Series is Convergent

## Q4 : Study the convergence or divergence of the infinite series $a[n_{-}] = \sum_{i=1}^{n} (Log[i+1]-Log[i])$ by plotting the sequence of Partial sum

$$ln[\cdot]:= a[n_] = \sum_{i=1}^{n} (Log[i+1] - Log[i]);$$

ln[\*]:= sol16 = Table[{n, N[a[n]]}, {n, 12}]; TableForm[sol16, TableHeadings  $\rightarrow$  {None, {"n", "nth Partial sum"}}]

Out[ • ]//TableForm=

| abioi oiiii |             |     |
|-------------|-------------|-----|
| n           | nth Partial | sum |
| 1           | 0.693147    |     |
| 2           | 1.09861     |     |
| 3           | 1.38629     |     |
| 4           | 1.60944     |     |
| 5           | 1.79176     |     |
| 6           | 1.94591     |     |
| 7           | 2.07944     |     |
| 8           | 2.19722     |     |
| 9           | 2.30259     |     |
| 10          | 2.3979      |     |
| 11          | 2.48491     |     |
| 12          | 2.56495     |     |

ln[\*]:= ListPlot[sol16, PlotStyle  $\rightarrow$  Red, Background  $\rightarrow$  LightBlue]



 $ln[\circ]:=$  Limit[a[n], n  $\rightarrow$  Infinity]

Out[ • ]= 0

Observation: Series is divergent

```
In[@]:= ClearAll
Out[*]= ClearAll
```

### 9. Cauchy's root test by plotting nth roots

QCheck the convergence for the series a[n] by plotting the nth term

```
ln[\circ]:=\mathbf{a[n_]}:=\frac{\mathbf{n}}{\mathbf{n}^n};
ln[*]:= caRoot[n_] := \sqrt[n]{Abs[a[n]]};
In[*]:= ans = Table[{n, caRoot[n]}, {n, 1, 30}];
In[@]:= TableForm[Table[{n, N[caRoot[n]]}, {n, 1, 20}],
        TableHeadings \rightarrow {{}, {"n", "\sqrt[n]{Abs[a[n]]}}"}}
```

| n  | √ Abs [ a [ n ] ] |
|----|-------------------|
| 1  | 1.                |
| 2  | 0.707107          |
| 3  | 0.48075           |
| 4  | 0.353553          |
| 5  | 0.275946          |
| 6  | 0.224668          |
| 7  | 0.188638          |
| 8  | 0.162105          |
| 9  | 0.141835          |
| 10 | 0.125893          |
| 11 | 0.113052          |
| 12 | 0.102506          |
| 13 | 0.0937011         |
| 14 | 0.0862459         |
| 15 | 0.0798573         |
| 16 | 0.0743254         |
| 17 | 0.0694913         |
| 18 | 0.0652326         |
| 19 | 0.0614539         |
| 20 | 0.0580793         |
|    |                   |

m[\*]:= ListPlot[ans, PlotStyle → Red, Background → LightYellow, PlotRange → All, PlotLegends → "Graph of  $\sqrt[n]{\text{Abs}[a[n]]}$ " , AxesLabel →  $\{"n", "\sqrt[n]{\text{Abs}[a[n]]}"\}$ ]



Graph of  $\sqrt[n]{Abs[a[n]]}$ 

In[\*]:= Limit[caRoot[n], n → Infinity]

Out[ • ]= **0** 

$$ln[\circ] := \left(\frac{n^3}{3^n}\right);$$

 $In[*]:= cauch[n_] := ((a[n])^{(1/n)});$ 

 $ln[*]:= sol18 = Table[{n, cauch[n]}, {n, 1, 50}];$ 

 $ln[*]:= TableForm[Table[{n, N[cauch[n]]}, {n, 1, 20}], TableHeadings <math>\rightarrow \{{\}, {"n", "((a[n])^(1/n))"}\}}]$ 

| n  | ((a[n])^(1/n)) |
|----|----------------|
| 1  | 0.333333       |
| 2  | 0.942809       |
| 3  | 1.             |
| 4  | 0.942809       |
| 5  | 0.875509       |
| 6  | 0.816497       |
| 7  | 0.767474       |
| 8  | 0.727005       |
| 9  | 0.693361       |
| 10 | 0.665087       |
| 11 | 0.641054       |
| 12 | 0.620403       |
| 13 | 0.60248        |
| 14 | 0.586783       |
| 15 | 0.572924       |
| 16 | 0.560598       |
| 17 | 0.549562       |
| 18 | 0.539623       |
| 19 | 0.530624       |
| 20 | 0.522436       |

ln[\*]:= ListPlot[sol18, PlotStyle  $\rightarrow$  Blue, Background  $\rightarrow$  LightYellow, PlotRange  $\rightarrow$  All, PlotLegends  $\rightarrow$  "Graph of  $((a[n])^{(1/n)})$ ", AxesLabel  $\rightarrow$  {"n", " $((a[n])^{(1/n)})$ "}]



Graph of  $((a[n])^{(1/n)})$ 

 $ln[\cdot]:=$  Limit[cauch[n], n  $\rightarrow$  Infinity]

Out[
$$\circ$$
]=  $\frac{1}{3}$ 

$$ln[a]:= a[n] := \left(1 + \frac{1}{\sqrt{n}}\right)^{\left(-n^{\left(\frac{3}{2}\right)}\right)};$$

$$ln[-]:= caroot[n_] := ((a[n])^{(1/n)});$$

In[\*]:= TableForm[Table[{n, N[caroot[n]]}, {n, 1, 20}], TableHeadings  $\rightarrow \{\{\}, \{"n", "((a[n])^(1/n))"\}\}]$ 

| 0, 0, |    |                |
|-------|----|----------------|
|       | n  | ((a[n])^(1/n)) |
|       | 1  | 0.5            |
|       | 2  | 0.46939        |
|       | 3  | 0.454128       |
|       | 4  | 0.444444       |
|       | 5  | 0.437561       |
|       | 6  | 0.432326       |
|       | 7  | 0.428165       |
|       | 8  | 0.424748       |
|       | 9  | 0.421875       |
|       | 10 | 0.419413       |
|       | 11 | 0.417272       |
|       | 12 | 0.415386       |
|       | 13 | 0.413708       |
|       | 14 | 0.412202       |
|       | 15 | 0.41084        |
|       | 16 | 0.4096         |
|       | 17 | 0.408465       |
|       | 18 | 0.40742        |
|       | 19 | 0.406455       |
|       | 20 | 0.405559       |
|       |    |                |

ln[\*]:= ListPlot[sol19, PlotStyle  $\rightarrow$  Black, Background  $\rightarrow$  LightGreen, PlotRange  $\rightarrow$  All, PlotLegends  $\rightarrow$  "Graph of  $((a[n])^{(1/n)})$ ", AxesLabel  $\rightarrow$  {"n", " $((a[n])^{(1/n)})$ "}]



Graph of  $((a[n])^{(1/n)})$ 

 $ln[\circ]:=$  Limit[caroot[n], n  $\rightarrow$  Infinity]

$$ln[*]:= a[n_] := \left(\frac{e^n}{n^n}\right);$$

 $\begin{array}{l} \mbox{${\it ln}_{\rm c}$} := \mbox{$\left( a[n] \right) ^ (1/n) \right);} \\ \mbox{$\rm sol20 = Table[\{n, cac[n]\}, \{n, 1, 100\}];} \\ \mbox{$\rm TableForm[Table[\{n, N[cac[n]]\}, \{n, 1, 20\}],$} \\ \mbox{$\rm TableHeadings} \to \{\{\}, \{"n", "((a[n])^(1/n))"\}\}] \end{array}$ 

| 1 2.71828<br>2 1.35914<br>3 0.906094<br>4 0.67957 |
|---------------------------------------------------|
| 3 0.906094<br>4 0.67957                           |
| 4 0.67957                                         |
|                                                   |
| F 0 F436F6                                        |
| 5 0.543656                                        |
| 6 0.453047                                        |
| 7 0.388326                                        |
| 8 0.339785                                        |
| 9 0.302031                                        |
| 10 0.271828                                       |
| 11 0.247117                                       |
| 12 0.226523                                       |
| 13 0.209099                                       |
| 14 0.194163                                       |
| 15 0.181219                                       |
| 16 0.169893                                       |
| 17 0.159899                                       |
| 18 0.151016                                       |
| 19 0.143067                                       |
| 20 0.135914                                       |

# 10. D'Alembert's ratio test by plotting the ratio of nth and (n+1)th term of the given series of positive terms

$$ln[*]:= a[n_{-}] := \frac{n!}{n^{n}};$$

$$DalRatio[n_{-}] := \frac{a[n+1]}{a[n]};$$

TableForm[Table[{n, N[DalRatio[n]]}, {n, 1, 20}], TableHeadings  $\rightarrow$  {{}, {"n", " $\frac{a[n+1]}{a[n]}$ "}}]

Out[ • ]//TableForm=

| n  | <u>a[n+1]</u><br>a[n] |
|----|-----------------------|
| 1  | 0.5                   |
| 2  | 0.444444              |
| 3  | 0.421875              |
| 4  | 0.4096                |
| 5  | 0.401878              |
| 6  | 0.396569              |
| 7  | 0.392696              |
| 8  | 0.389744              |
| 9  | 0.38742               |
| 10 | 0.385543              |
| 11 | 0.383995              |
| 12 | 0.382697              |
| 13 | 0.381592              |
| 14 | 0.38064               |
| 15 | 0.379812              |
| 16 | 0.379085              |
| 17 | 0.378442              |
| 18 | 0.377868              |
| 19 | 0.377354              |
| 20 | 0.376889              |

$$\begin{aligned} &\mathit{In[*]} := \text{ListPlot} \Big[ \text{hemant, PlotRange} \to \{\{\}, \{0.5, 1\}\}, \text{Background} \to \text{LightYellow,} \\ & \text{PlotStyle} \to \text{Blue, PlotLegends} \to \text{"Graph of } \frac{a[n+1]}{a[n]} \text{", AxesLabel} \to \left\{\text{"n", "} \frac{a[n+1]}{a[n]} \text{"}\right\} \Big] \end{aligned}$$

ListPlot: Value of option PlotRange -> {{}, {0.5, 1}} is not All, Full, Automatic, a positive machine number, or an appropriate list of range specifications.



Graph of 
$$\frac{a[n+1]}{a[n]}$$

 $ln[\circ]:=$  Limit[DalRatio[n], n  $\rightarrow$  Infinity]

$$\begin{array}{cc} \text{Out}[\, \circ \, ] = & \frac{\mathbf{1}}{\mathbb{C}} \end{array}$$

### Ques2

$$\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_$$

| l n | <u>a [n+1]</u> |
|-----|----------------|
| • • | a [ n ]        |
| 1   | 0.8            |
| 2   | 1.             |
| 3   | 1.17647        |
| 4   | 1.30769        |
| 5   | 1.40541        |
| 6   | 1.48           |
| 7   | 1.53846        |
| 8   | 1.58537        |
| 9   | 1.62376        |
| 10  | 1.65574        |
| 11  | 1.68276        |
| 12  | 1.70588        |
| 13  | 1.72589        |
| 14  | 1.74336        |
| 15  | 1.75875        |
| 16  | 1.77241        |
| 17  | 1.78462        |
| 18  | 1.79558        |
| 19  | 1.80549        |
| 20  | 1.81448        |
|     |                |

ListPlot: Value of option PlotRange -> {{}, {0.5, 1}} is not All, Full, Automatic, a positive machine number, or an appropriate list of range specifications.



Graph of  $\frac{b[n+1]}{b[n]}$ 

In[⊕]:= Limit[DalRatio1[n], n → Infinity]

Out[ • ]= 2

#Observation := From the above plot it is observed that the ration of
 nth and (n + 1) th term of given series is convergent to a limit i.e 2, hence
applying Dal embert ration test the series is divergent since
Limit[DalRatio[n], n → Infinity] is 2 which is less then 1

### Ques3

$$ln[*]:= c[n_{]} := \frac{2^{n} + n!}{n^{n}};$$

$$lo[e]:= DalRatio12[n_] := \frac{c[n+1]}{c[n]}$$
;

TableHeadings 
$$\rightarrow$$
  $\left\{\{\}, \left\{"n", "\frac{c[n+1]}{c[n]}"\right\}\right\}\right]$ 

Out[ • ]//TableForm=

| iei oii | 11- |                         |
|---------|-----|-------------------------|
|         | n   | <u>c [n+1]</u><br>c [n] |
|         | 1   | 0.5                     |
|         | 2   | 0.345679                |
|         | 3   | 0.301339                |
|         | 4   | 0.311296                |
|         | 5   | 0.345474                |
|         | 6   | 0.373446                |
|         | 7   | 0.385401                |
|         | 8   | 0.387832                |
|         | 9   | 0.386984                |
|         | 10  | 0.385454                |
|         | 11  | 0.383979                |
|         | 12  | 0.382694                |
|         | 13  | 0.381591                |
|         | 14  | 0.38064                 |
|         | 15  | 0.379812                |
|         | 16  | 0.379085                |
|         | 17  | 0.378442                |
|         | 18  | 0.377868                |
|         | 19  | 0.377354                |
|         | 20  | 0.376889                |
|         |     |                         |

$$\begin{aligned} &\mathit{In[*]} = \text{ListPlot} \Big[ \text{hemant3, PlotRange} \rightarrow \{\{\}, \{0.5, 1\}\}, \text{Background} \rightarrow \text{LightPurple,} \\ & \text{PlotStyle} \rightarrow \text{Blue, PlotLegends} \rightarrow \text{"Graph of } \frac{c \, [n+1]}{c \, [n]} \text{", AxesLabel} \rightarrow \left\{\text{"n", "} \frac{c \, [n+1]}{c \, [n]} \text{"}\right\} \Big] \end{aligned}$$

ListPlot: Value of option PlotRange -> {{}, {0.5, 1}} is not All, Full, Automatic, a positive machine number, or an appropriate list of range specifications.



Graph of  $\frac{c[n+1]}{c[n]}$ 

 $ln[\circ]:=$  Limit[DalRatio12[n], n  $\rightarrow$  Infinity]

# 11Q.For the following sequence $<a_n>$ , $\epsilon=1/2^k$ , $p=10^j$ , k=0,1,2,4... find m $\epsilon$ N such that:-

Ques1):For the following sequence  $<a_n>$ , Given  $p \in \mathbb{N}$  find  $m \in \mathbb{N}$  Such that (i) $|a_{m+p}-a_m|<\epsilon$ , (ii) $|a_{2m+p}-a_{2m}|<\epsilon$ 

For p=100 and 
$$\in 1 \mid a_{2\,m+p} - a_{2\,m} \mid < \in \text{when m=1}$$

For p=1000 and 
$$\in 1 \mid a_{2m+p} - a_{2m} \mid < \in \text{when m=1}$$

For p=10000 and 
$$\in 1 \mid a_{2m+p}-a_{2m} \mid < \in \text{when m=1}$$

For p=10 and 
$$\epsilon \frac{1}{2} |a_{2\,m+p}-a_{2\,m}| < \epsilon \text{when m=2}$$

For p=100 and 
$$\in \frac{1}{2} \mid a_{2m+p} - a_{2m} \mid < \in \text{when m=2}$$

For p=1000 and 
$$\in \frac{1}{2} \mid a_{2\, m+p} - a_{2\, m} \mid < \in \text{when m=2}$$

For p=10000 and 
$$\in \frac{1}{2} |a_{2m+p} - a_{2m}| < \in \text{when m} = 2$$

For p=10 and 
$$\in \frac{1}{4} \mid a_{2\, \text{m+p}} - a_{2\, \text{m}} \mid < \in \text{when m=4}$$

For p=100 and 
$$\in \frac{1}{4} \mid a_{2\, m+p} - a_{2\, m} \mid < \in \text{when m=4}$$

For p=1000 and 
$$\epsilon = \frac{1}{4} |a_{2\,m+p} - a_{2\,m}| < \epsilon \text{when m=4}$$

For p=10000 and 
$$\in \frac{1}{4} |a_{2m+p} - a_{2m}| < \in \text{when m=4}$$

#### $ln[\cdot]:=$ For [k = 1, k < Length [ $\epsilon$ ], k++,

For 
$$[j = 1, j < Length[p], j++,$$

Print["For p=", p[[j]], " and 
$$\epsilon$$
",  $\epsilon$ [[k]], " $|a_{2m+p}-a_{2m}|<\epsilon$ ", "when m=", m]]]

For p=10 and 
$$\in 1 \mid a_{2m+p}-a_{2m} \mid < \in \text{when m=1}$$

For p=100 and 
$$\in 1 \mid a_{2m+p} - a_{2m} \mid < \in \text{when m=1}$$

For p=1000 and 
$$\in 1 \mid a_{2m+p} - a_{2m} \mid < \in \text{when m=1}$$

For p=10000 and 
$$\in 1 | a_{2m+p} - a_{2m} | < \in \text{when m} = 1$$

For p=10 and 
$$\in \frac{1}{2} \mid a_{2\,m+p}-a_{2\,m}\mid <\in \text{when m=1}$$

For p=100 and 
$$\in \frac{1}{2} |a_{2m+p} - a_{2m}| < \in \text{when m=1}$$

For p=1000 and 
$$\in \frac{1}{2} \mid a_{2\, m+p} - a_{2\, m} \mid < \in \text{when m=1}$$

For p=10000 and 
$$\in \frac{1}{2} |a_{2m+p} - a_{2m}| < \in \text{when m=1}$$

For p=10 and 
$$\in \frac{1}{4} | a_{2m+p} - a_{2m} | < \in \text{when m=2}$$

For p=100 and 
$$\epsilon \frac{1}{4} |a_{2m+p} - a_{2m}| < \epsilon \text{when m=2}$$

For p=1000 and 
$$\in \frac{1}{4} |a_{2m+p} - a_{2m}| < \in \text{when m=2}$$

For p=10000 and 
$$\epsilon \frac{1}{4} |a_{2m+p} - a_{2m}| < \epsilon \text{when m=2}$$

```
In[*]:= ClearAll
Outf*]= ClearAll
```

Ques2:For the following sequence  $\langle a_n \rangle$ , given  $\epsilon > 0$  and p $\epsilon N$  find me N such that (i)  $a_{m+p} - a_m \mid \langle \epsilon, (ii) \mid a_{2m+p} - a_{2m} \mid a_{2m+p} - a_{2m} \mid a_{2m+p} - a_{2m+p} -$ 

```
In[\bullet]:= a[n_] := 1/n;
       \epsilon = Table[1/2^k, \{k, \{0, 1, 2, 5\}\}];
       p = Table[10^{j}, {j, {1, 2, 3, 4, 5}}];
       For [k = 1, k < Length[\epsilon], k++,
        For [j = 1, j < Length[p], j++,
           For [m = 1, Abs[a[m + p[[j]]] - a[m]] \ge \varepsilon[[k]], m++] \times
             Print["For p=", p[[j]], " and \epsilon", \epsilon[[k]], "|a_{m+p}-a_m|<\epsilon", "when m=", m]]]
       For p=10 and \in1 | a_{m+p}-a_{m} | <\in when m=1
       For p=100 and \in 1 \mid a_{m+p}-a_m \mid < \in \text{when m=1}
       For p=1000 and \in 1 \mid a_{m+p} - a_m \mid < \in \text{when m=1}
       For p=10000 and \in 1 | a_{m+p} - a_m | < \in when m=1
       For p=10 and \epsilon \frac{1}{2} |a_{m+p} - a_m| < \epsilon \text{when m} = 2
       For p=100 and \in \frac{1}{2} |a_{m+p} - a_m| < \in \text{when m} = 2
       For p=1000 and \in \frac{1}{2} |a_{m+p} - a_m| < \in \text{when m} = 2
       For p=10000 and \in \frac{1}{2} |a_{m+p} - a_m| < \in \text{when m} = 2
       For p=10 and \in \frac{1}{4} |a_{m+p} - a_m| < \in \text{when m=4}
       For p=100 and \in \frac{1}{4} |a_{m+p} - a_m| < \in \text{when m} = 4
       For p=1000 and \in \frac{1}{4} |a_{m+p} - a_m| < \in \text{when m=4}
       For p=10000 and \in \frac{1}{4} | a_{m+p} - a_m | < \in \text{when m=4}
ln[\cdot]:= For [k = 1, k < Length [\epsilon], k++,
         For [j = 1, j < Length [p], j++,
           For [m = 1, Abs[a[2m + p[[j]]] - a[2m]] \ge \varepsilon[[k]], m++] \times
            Print["For p=", p[[j]], " and \epsilon", \epsilon[[k]], "|a_{2m+p}-a_{2m}|<\epsilon", "when m=", m]]]
```

```
For p=10 and \in 1 | a_{2m+p} - a_{2m} | < \in when m=1
For p=100 and \in 1 \mid a_{2m+p} - a_{2m} \mid < \in \text{when m=1}
For p=1000 and \in 1 \mid a_{2\,m+p} - a_{2\,m} \mid < \in \text{when m=1}
For p=10000 and \in 1 \mid a_{2m+p} - a_{2m} \mid < \in when m=1
For p=10 and \in \frac{1}{2} | a_{2m+p} - a_{2m} | < \in \text{when m=1}
For p=100 and \in \frac{1}{2} |a_{2m+p} - a_{2m}| < \in \text{when m} = 1
For p=1000 and \in \frac{1}{2} |a_{2m+p} - a_{2m}| < \in \text{when m} = 1
For p=10000 and \in \frac{1}{2} |a_{2m+p} - a_{2m}| < \in \text{when m=1}
For p=10 and \in \frac{1}{4} |a_{2m+p} - a_{2m}| < \in \text{when m} = 2
For p=100 and \in \frac{1}{4} |a_{2m+p} - a_{2m}| < \in \text{when m} = 2
For p=1000 and \in \frac{1}{4} |a_{2m+p} - a_{2m}| < \in \text{when m} = 2
For p=10000 and \in \frac{1}{4} \mid a_{2\,m+p} - a_{2\,m} \mid < \in \text{when m=2}
```

In[ • ]:= ClearAll

Out[ • ]= ClearAll

Ques3:For the following sequence  $\langle a_n \rangle$ , given  $\epsilon > 0$  and  $p \in \mathbb{N}$  find me N such that (i)  $a_{m+p} - a_m \mid < \epsilon$ ,(ii)  $\mid a_{2m+p} - a_{2m} \mid < \epsilon$ .

```
ln[*]:= a[n_{-}] := \sum_{i=1}^{n} \frac{1}{i!};
ln[a]:= \epsilon = Table \left[ \frac{1}{2^k}, \{k, \{0, 1, 2\}\} \right];
       p = Table[10^{j}, {j, {1, 2, 3}}];
        For [k = 1, k < Length[\epsilon], k++,
         For [j = 1, j < Length[p], j++,
           For [m = 1, Abs[a[m + p[[j]]] - a[m]] \ge \varepsilon[[k]], m++] \times
             Print["For p=", p[[j]], " and \epsilon", \epsilon[[k]], "|a_{m+p}-a_m|<\epsilon", "when m=", m]]]
        For p=10 and \in 1 \mid a_{m+p}-a_m \mid < \in \text{when m=1}
       For p=100 and \in 1 \mid a_{m+p}-a_m \mid < \in \text{when m=1}
       For p=10 and \in \frac{1}{2} |a_{m+p}-a_m| < \in \text{when m=2}
       For p=100 and \in \frac{1}{2} |a_{m+p} - a_m| < \in \text{when m} = 2
```

Ques4:For the following sequence  $\langle a_n \rangle$ , given  $\epsilon > 0$  and  $p \in \mathbb{N}$  find me N such that (i)  $a_{m+p} - a_m \mid \langle \epsilon, (ii) \mid a_{2m+p} - a_{2m} \mid \langle \epsilon, (ii) \mid a_{m+p} - a_{m+p} \mid \langle \epsilon, (ii) \mid a_{m+p} - a_{m+p} \mid \langle \epsilon, (ii) \mid a_{m+p} \mid a_{m+p}$ 

$$a[n_{-}] := \frac{\left(-1\right)^{n} n!}{n!}; \\ \epsilon = Table \left[\frac{1}{2^{k}}, \left\{k, \left\{0, 1, 2, 5\right\}\right\}\right]; \\ p = Table \left[10^{j}, \left\{j, \left\{1, 2, 3, 4\right\}\right\right]; \\ For [k = 1, k < Length [\epsilon], k++, \\ For [j = 1, j < Length [p], j++, \\ For [m = 1, Abs [a [m+p [[j]]] - a [m]] \ge \epsilon [[k]], m++] \times \\ Print ["For p=", p [[j]], " and \epsilon", \epsilon [[k]], "|a_{m+p}-a_{m}| < \epsilon", "when m=", m]]] \\ For p=10 and \epsilon 1 |a_{m+p}-a_{m}| < \epsilon when m=1 \\ For p=100 and \epsilon 1 |a_{m+p}-a_{m}| < \epsilon when m=1 \\ For p=1000 and \epsilon \frac{1}{2} |a_{m+p}-a_{m}| < \epsilon when m=2 \\ For p=100 and \epsilon \frac{1}{2} |a_{m+p}-a_{m}| < \epsilon when m=2 \\ For p=1000 and \epsilon \frac{1}{2} |a_{m+p}-a_{m}| < \epsilon when m=2 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m=3 \\ For p=1000 and \epsilon \frac{1}{4} |a_{m+p}-a_{m}| < \epsilon when m$$

```
For [k = 1, k < Length[\epsilon], k++, For [j = 1, j < Length[p], j++, For [m = 1, Abs[a[2m+p[[j]]] - a[2m]] <math>\geq \epsilon[[k]], m++] \times Print["For p=", p[[j]], " and \epsilon", \epsilon[[k]], "|a_{2m+p}-a_{2m}| < \epsilon", "when m=", m]]]

For p=10 and \epsilon 1 |a_{2m+p}-a_{2m}| < \epsilon when m=1

For p=100 and \epsilon 1 |a_{2m+p}-a_{2m}| < \epsilon when m=1

For p=100 and \epsilon 1 |a_{2m+p}-a_{2m}| < \epsilon when m=1

For p=10 and \epsilon 1 |a_{2m+p}-a_{2m}| < \epsilon when m=1

For p=100 and \epsilon 1 |a_{2m+p}-a_{2m}| < \epsilon when m=1

For p=100 and \epsilon 1 |a_{2m+p}-a_{2m}| < \epsilon when m=1

For p=1000 and \epsilon 1 |a_{2m+p}-a_{2m}| < \epsilon when m=1

For p=1000 and \epsilon 1 |a_{2m+p}-a_{2m}| < \epsilon when m=2

For p=1000 and \epsilon 1 |a_{2m+p}-a_{2m}| < \epsilon when m=2

For p=1000 and \epsilon 1 |a_{2m+p}-a_{2m}| < \epsilon when m=2

For p=1000 and \epsilon 1 |a_{2m+p}-a_{2m}| < \epsilon when m=2
```

Ques5:For the following sequence  $\langle a_n \rangle$ , given  $\epsilon > 0$  and  $p \in \mathbb{N}$  find me N such that (i)  $a_{m+p} - a_m \mid \langle \epsilon, (ii) \mid a_{2m+p} - a_{2m} \mid \langle \epsilon.$ 

```
\begin{split} & \text{In[s]= a[n_{-}] := } \sum_{i=1}^{n} \frac{\left(-1\right)^{i}}{i!}; \\ & \epsilon = \text{Table}\Big[\frac{1}{2^{k}}, \left\{k, \left\{0, 1, 2, 6, 7\right\}\right\}\Big]; \\ & p = \text{Table}\Big[10^{j}, \left\{j, \left\{1, 2, 3, 4\right\}\right\}\Big]; \\ & \text{For[k = 1, k < Length[e], k++,} \\ & \text{For[j = 1, j < Length[p], j++,} \\ & \text{For[m = 1, Abs[a[m+p[[j]]] - a[m]] } \ge \epsilon[[k]], m++] \times \\ & \text{Print["For p=", p[[j]], " and } \epsilon", \epsilon[[k]], "|a_{m+p}-a_{m}| < \epsilon", "when m=", m]]] \end{split}
```

For p=100 and 
$$\in 1 \mid a_{\mathit{m+p}} - a_{\mathit{m}} \mid < \in \mathsf{when} \ \mathsf{m=1}$$

For p=1000 and 
$$\in 1 \mid a_{m+p}-a_m \mid < \in \text{when m=1}$$

For p=10 and 
$$\epsilon \frac{1}{2} |a_{m+p} - a_m| < \epsilon \text{ when m=1}$$

For p=100 and 
$$\in \frac{1}{2} |a_{m+p}-a_m| < \in \text{when m=1}$$

For p=1000 and 
$$\in \frac{1}{2} \mid a_{m+p} - a_m \mid < \in \text{when m=1}$$

For p=10 and 
$$\in \frac{1}{4} \mid a_{m+p} - a_m \mid < \in \text{when m=2}$$

For p=100 and 
$$\in \frac{1}{4} |a_{m+p}-a_m| < \in \text{when m=2}$$

For p=1000 and 
$$\in \frac{1}{4} \mid a_{m+p} - a_m \mid < \in \text{when m=2}$$

For p=10 and 
$$\in \frac{1}{64} \mid a_{m+p} - a_m \mid < \in \text{when m=4}$$

For p=100 and 
$$\epsilon \frac{1}{64} |a_{m+p}-a_m| < \epsilon \text{when m=4}$$

For p=1000 and 
$$\in \frac{1}{64} \mid a_{m+p} - a_m \mid < \in \text{when m=4}$$

 $ln[\phi]:=$  For [k = 1, k < Length [ $\epsilon$ ], k++,

For 
$$[j = 1, j < Length[p], j++,$$

For 
$$[m = 1, Abs[a[2m + p[[j]]] - a[2m]] \ge \epsilon[[k]], m++] \times$$
  
Print ["For p=", p[[j]], " and  $\epsilon$ ",  $\epsilon[[k]]$ , " $|a_{2m+p}-a_{2m}| < \epsilon$ ", "when m=", m]]]

For p=10 and 
$$e1 |a_{2\,m+p}-a_{2\,m}| < e$$
when m=1

For p=100 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=1

For p=1000 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=1

For p=1000 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=1

For p=100 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=1

For p=1000 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=1

For p=1000 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=1

For p=100 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=1

For p=100 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=1

For p=1000 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=1

For p=1000 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=2

For p=100 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=2

For p=1000 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=2

For p=1000 and  $e1 |a_{2\,m+p}-a_{2\,m}| < e$ when m=2

In[ • ]:= ClearAll

Out[ • ]= ClearAll

Ques6:For the following sequence  $\langle a_n \rangle$ , given  $\epsilon > 0$  and  $p \in \mathbb{N}$  find me N such that (i)  $a_{m+p} - a_m \mid < \epsilon$ ,(ii)  $\mid a_{2m+p} - a_{2m} \mid < \epsilon$ .

```
ln[*]:= a[n_] := \sum_{i=1}^{n} \frac{n^2}{2^n};
      \epsilon = \text{Table}\left[\frac{1}{2^{k}}, \{k, \{0, 1, 2, 4\}\}\right];
       p = Table[10^{j}, {j, {1, 2, 3, 4}}];
       For [k = 1, k < Length[\epsilon], k++,
         For [j = 1, j < Length[p], j++,
          For [m = 1, Abs[a[m + p[[j]]] - a[m]] \ge \varepsilon[[k]], m++] \times
            Print["For p=", p[[j]], " and \epsilon", \epsilon[[k]], "|a_{m+p}-a_m|<\epsilon", "when m=", m]]]
```

For p=10 and 
$$\varepsilon 1 | a_{m,p} - a_m | < \varepsilon$$
when m=1

For p=100 and  $\varepsilon 1 | a_{m,p} - a_m | < \varepsilon$ when m=1

For p=1000 and  $\varepsilon 1 | a_{m,p} - a_m | < \varepsilon$ when m=1

For p=1000 and  $\varepsilon 1 | a_{m,p} - a_m | < \varepsilon$ when m=1

For p=100 and  $\varepsilon \frac{1}{2} | a_{m,p} - a_m | < \varepsilon$ when m=1

For p=100 and  $\varepsilon \frac{1}{2} | a_{m,p} - a_m | < \varepsilon$ when m=1

For p=1000 and  $\varepsilon \frac{1}{2} | a_{m,p} - a_m | < \varepsilon$ when m=1

For p=100 and  $\varepsilon \frac{1}{4} | a_{m,p} - a_m | < \varepsilon$ when m=1

For p=100 and  $\varepsilon \frac{1}{4} | a_{m,p} - a_m | < \varepsilon$ when m=14

For p=1000 and  $\varepsilon \frac{1}{4} | a_{m,p} - a_m | < \varepsilon$ when m=14

For p=1000 and  $\varepsilon \frac{1}{4} | a_{m,p} - a_m | < \varepsilon$ when m=14

For p=1000 and  $\varepsilon \frac{1}{4} | a_{m,p} - a_m | < \varepsilon$ when m=14

For p=1000 and  $\varepsilon \frac{1}{4} | a_{m,p} - a_m | < \varepsilon$ when m=15

For [j = 1, j < Length[e], k++,

For[j = 1, j < Length[p], j++,

For[m = 1, Abs[a[2m+p[j]]] - a[2m]]  $\geq \varepsilon[[k]]$ , m++]  $\times$ 

Print["For p=", p[[j]]], " and  $\varepsilon$ ",  $\varepsilon[[k]]$ , " $|a_{2m+p} - a_{2m}| < \varepsilon$ ", "when m=", m]]]

For p=10 and  $\varepsilon 1 | a_{2m,p} - a_{2m}| < \varepsilon$ when m=5

For p=1000 and  $\varepsilon 1 | a_{2m,p} - a_{2m}| < \varepsilon$ when m=5

For p=1000 and  $\varepsilon 1 | a_{2m,p} - a_{2m}| < \varepsilon$ when m=6

For p=1000 and  $\varepsilon \frac{1}{2} |a_{2m,p} - a_{2m}| < \varepsilon$ when m=6

For p=1000 and  $\varepsilon \frac{1}{2} |a_{2m,p} - a_{2m}| < \varepsilon$ when m=6

For p=10 and  $\in \frac{1}{4} |a_{2m+p} - a_{2m}| < \in \text{when m=7}$ 

For p=100 and  $\in \frac{1}{4} | a_{2m+p} - a_{2m} | < \in \text{when m} = 7$ 

For p=1000 and  $\in \frac{1}{4} | a_{2m+p} - a_{2m} | < \in \text{when m} = 7$ 

Ques7:For the following sequence  $\langle a_n \rangle$ , given  $\epsilon > 0$  and p $\epsilon N$  find me N such that (i)  $a_{m+p} - a_m \mid < \epsilon$ ,(ii)  $\mid a_{2m+p} - a_{2m} \mid < \epsilon$ .

```
ln[\cdot] := a[n_{-}] := \sum_{i=1}^{n} \frac{(-1)^{(n-1)}}{n};
       \epsilon = Table\left[\frac{1}{2^{k}}, \{k, \{0, 1, 2, 4, 5\}\}\right];
        p = Table[10^{j}, {j, {1, 2, 3, 4}}];
        For [k = 1, k < Length[\epsilon], k++,
          For [j = 1, j < Length[p], j++,
            For [m = 1, Abs[a[m+p[[j]]] - a[m]] \ge \epsilon[[k]], m++] \times
              Print["For p=", p[[j]], " and \epsilon", \epsilon[[k]], "|a_{m+p}-a_m|<\epsilon", "when m=", m]]]
        For p=10 and \in 1 \mid a_{m+p} - a_m \mid < \in \text{when m=1}
        For p=100 and \in 1 \mid a_{m+p}-a_m \mid < \in \text{when m=1}
        For p=1000 and \in 1 \mid a_{m+p} - a_m \mid < \in \text{when m=1}
        For p=10 and \in \frac{1}{2} |a_{m+p} - a_m| < \in \text{when m=1}
       For p=100 and \in \frac{1}{2} |a_{m+p} - a_m| < \in \text{when m} = 1
       For p=1000 and \in \frac{1}{2} |a_{m+p} - a_m| < \in \text{when m} = 1
       For p=10 and \epsilon \frac{1}{4} |a_{m+p} - a_m| < \epsilon \text{ when m=1}
        For p=100 and \epsilon \frac{1}{a} |a_{m+p} - a_m| < \epsilon \text{ when m=1}
       For p=1000 and \in \frac{1}{4} |a_{m+p} - a_m| < \in \text{when m=1}
       For p=10 and \in \frac{1}{16} |a_{m+p} - a_m| < \in \text{when m=1}
       For p=100 and \in \frac{1}{16} |a_{m+p}-a_m| < \in \text{when m=1}
        For p=1000 and \in \frac{1}{16} |a_{m+p} - a_m| < \in \text{when m} = 1
ln[\cdot]:= For [k = 1, k < Length[\epsilon], k++,
          For [j = 1, j < Length[p], j++,
            For [m = 1, Abs[a[2m+p[[j]]] - a[2m]] \ge \varepsilon[[k]], m++] \times
              Print["For p=", p[[j]], " and \epsilon", \epsilon[[k]], "|a_{2m+p}-a_{2m}|<\epsilon", "when m=", m]]]
```

For p=10 and 
$$\in 1 \mid a_{2\,m+p}-a_{2\,m}\mid < \in$$
 when m=1

For p=100 and  $\in 1 \mid a_{2\,m+p}-a_{2\,m}\mid < \in$  when m=1

For p=1000 and  $\in 1 \mid a_{2\,m+p}-a_{2\,m}\mid < \in$  when m=1

For p=10 and  $\in \frac{1}{2} \mid a_{2\,m+p}-a_{2\,m}\mid < \in$  when m=1

For p=100 and  $\in \frac{1}{2} \mid a_{2\,m+p}-a_{2\,m}\mid < \in$  when m=1

For p=1000 and  $\in \frac{1}{2} \mid a_{2\,m+p}-a_{2\,m}\mid < \in$  when m=1

For p=100 and  $\in \frac{1}{4} \mid a_{2\,m+p}-a_{2\,m}\mid < \in$  when m=1

For p=100 and  $\in \frac{1}{4} \mid a_{2\,m+p}-a_{2\,m}\mid < \in$  when m=1

For p=1000 and  $\in \frac{1}{4} \mid a_{2\,m+p}-a_{2\,m}\mid < \in$  when m=1

For p=100 and  $\in \frac{1}{16} \mid a_{2\,m+p}-a_{2\,m}\mid < \in$  when m=1

For p=100 and  $\in \frac{1}{16} \mid a_{2\,m+p}-a_{2\,m}\mid < \in$  when m=1

For p=1000 and  $\in \frac{1}{16} \mid a_{2\,m+p}-a_{2\,m}\mid < \in$  when m=1

For p=1000 and  $\in \frac{1}{16} \mid a_{2\,m+p}-a_{2\,m}\mid < \in$  when m=1

12. For the following series  $\sum_{n=0}^{\infty} a_n$ , calculate i) $\left|\frac{a_{n+1}}{a_n}\right|$ , ii) $\left(|a_n|\right)^{\frac{1}{n}}$ , for  $n=10^j$ , j=1,2,3,... and identify the convergent series, where n a is given as:

Ques1 
$$\left(\frac{1}{n}\right)^{\frac{1}{n}}$$

Out[ ]= ClearAll

```
ln[\cdot]:= \left(\frac{1}{n}\right)^{\frac{1}{n}};
ln[\cdot]:= cauch[n_{]} := (a[n])^{\frac{1}{n}};
ln[a]:= dalembert[n_] := \frac{a[n+1]}{a[n]};
In[ø]:= l1 = Limit[cauch[n], n → Infinity];
ln[-]:= 12 = Limit[dalembert[n], n \rightarrow Infinity];
log_{ij} = If[11 < 1, Print["The seriers is convergent according to cauchy nth root test"],
      If[l1 > 1, Print["The seriers is divergent according to cauchy nth root test"],
        Print["The cauchy test fails "]]]
     The cauchy test fails
ln[*] = If[12 < 1, Print["The seriers is convergent according to dalembert nth ratio test"],
      If[l2 > 1, Print["The seriers is divergent according to dalembert nth ratio test"],
        Print["The dalembert test fails "]]]
     The dalembert test fails
ln[\cdot]:= For[j=1, j<7, j++, n=10^{j}]
      Print["For n=", n, "cauchy=", N[cauch[n]]]]
     For n=10cauchy=0.977237
     For n=100cauchy=0.99954
     For n=1000cauchy=0.999993
     For n=10000cauchy=1.
     For n=100000cauchy=1.
     For n=1000000cauchy=1.
ln[\cdot]:= For[j=1, j<7, j++, n=10^{j};
      Print["For n=", n, "Dalembert=", N[dalembert[n]]]]
     For n=10Dalembert=1.01234
     For n=100Dalembert=1.00036
     For n=1000Dalembert=1.00001
     For n=10000Dalembert=1.
     For n=100000Dalembert=1.
     For n=1000000Dalembert=1.
In[*]:= ClearAll
```

### Ques2 $\frac{1}{n}$

```
ln[\cdot]:=a[n_]:=\frac{1}{n};
ln[a]:= cauch1[n_] := (a[n])^{\frac{1}{n}};
     dalembert1[n_{_}] := \frac{a[n+1]}{a[n]};
     13 = Limit[cauch1[n], n → Infinity];
     14 = Limit[dalembert1[n], n → Infinity];
log_{i} = If[13 < 1, Print["The seriers is convergent according to cauchy nth root test"],
      If[14 > 1, Print["The seriers is divergent according to cauchy nth root test"],
        Print["The cauchy test fails "]]]
     The cauchy test fails
ln[\cdot] = \text{If}[13 < 1, \text{Print}[\text{"The seriers is convergent according to dalembert nth ratio test"}],}
      If[14 > 1, Print["The seriers is divergent according to dalembert nth ratio test"],
        Print["The dalembert test fails "]]]
     The dalembert test fails
ln[\cdot]:= For[j=1, j<7, j++, n=10^{j}]
      Print["For n=", n, "cauchy1=", N[cauch1[n]]]]
     For n=10cauchy1=0.794328
     For n=100cauchy1=0.954993
     For n=1000cauchy1=0.993116
     For n=10000cauchy1=0.999079
     For n=100000cauchy1=0.999885
     For n=1000000cauchy1=0.999986
ln[\cdot]:= For[j=1, j<7, j++, n=10^{j};
      Print["For n=", n, "Dalembert=", N[dalembert1[n]]]]
     For n=10Dalembert=0.909091
     For n=100Dalembert=0.990099
     For n=1000Dalembert=0.999001
     For n=10000Dalembert=0.9999
     For n=100000Dalembert=0.99999
     For n=1000000Dalembert=0.999999
In[ • ]:=
     ClearAll
Out[*]= ClearAll
```

Ques4. 
$$(1 + \frac{1}{n^{1/2}})^{-n^{\frac{7}{2}}};$$

Ques:5 
$$a[n_{-}] := \frac{n!}{n^{n}};$$

$$ln[@]:= a[n_] := \frac{n!}{n^n};$$

Out[ • ]= ClearAll

```
ln[\cdot]:= cauch4[n_] := (a[n])^{\frac{1}{n}};
      dalembert4[n_] := \frac{a[n+1]}{a[n]};
 In[⊕]:= 19 = Limit[cauch4[n], n → Infinity];
      110 = Limit[dalembert4[n], n → Infinity];
 l_{n[\cdot]}: If[19 < 1, Print["The seriers is convergent according to cauchy nth root test"],
       If[19 > 1, Print["The seriers is divergent according to cauchy nth root test"],
        Print["The cauchy test fails "]]]
      The seriers is convergent according to cauchy nth root test
 l_{n[\cdot]} If [110 < 1, Print ["The seriers is convergent according to dalembert nth ratio test"],
       If[l10 > 1, Print["The seriers is divergent according to dalembert nth ratio test"],
        Print["The dalembert test fails "]]]
      The seriers is convergent according to dalembert nth ratio test
 ln[\cdot]:= For[j=1, j<7, j++, n=10^{j};
       Print["For n=", n, "cauchy4=", N[cauch4[n]]]]
      For n=10cauchy4=0.452873
      For n=100cauchy4=0.379927
      For n=1000cauchy4=0.369492
      For n=10000cauchy4=0.368083
      For n=100000cauchy4=0.367904
      For n=1000000cauchy4=0.367882
      For [j = 1, j < 7, j++, n = 10^{j};
       Print["For n=", n, "Dalembert4=", N[dalembert4[n]]]]
      For n=10Dalembert4=0.385543
      For n=100Dalembert4=0.369711
      For n=1000Dalembert4=0.368063
      For n=10000Dalembert4=0.367898
      For n=100000Dalembert4=0.367881
      For n=1000000Dalembert4=0.36788
Ques6: \frac{n^3 + 5}{3^n + 2}
ln[\cdot]:=a[n_{-}]:=\frac{n^{3}+5}{3^{n}+2};
 ln[\cdot]:= cauch5[n_] := (a[n])^{\frac{1}{n}};
      dalembert5[n_] := \frac{a[n+1]}{a[n]};
```

```
In[@]:= l11 = Limit[cauch5[n], n → Infinity];
      112 = Limit[dalembert5[n], n → Infinity];
l_{n[\cdot]}= If[l11 < 1, Print["The seriers is convergent according to cauchy nth root test"],
       If[l11 > 1, Print["The seriers is divergent according to cauchy nth root test"],
        Print["The cauchy test fails "]]]
      The seriers is convergent according to cauchy nth root test
ln[*]:= If[l12 < 1, Print["The seriers is convergent according to dalembert nth ratio test"],
       If[l12 > 1, Print["The seriers is divergent according to dalembert nth ratio test"],
        Print["The dalembert test fails "]]]
      The seriers is convergent according to dalembert nth ratio test
ln[\cdot]:= For[j=1, j < 3, j++, n = 10^{j};
       Print["For n=", n, "cauchy5=", N[cauch5[n]]]]
      For n=10cauchy5=0.665417
      For n=100cauchy5=0.382718
ln[\cdot]:= For[j=1, j<7, j++, n=10^{j};
       Print["For n=", n, "Dalembert5=", N[dalembert5[n]]]]
      For n=10Dalembert5=0.443128
      For n=100Dalembert5=0.343434
      For n=1000Dalembert5=0.334334
      For n=10000Dalembert5=0.333433
      For n=100000Dalembert5=0.333343
      For n=1000000Dalembert5=0.333334
In[ • ]:= ClearAll
Out[ • ]= ClearAll
Ques7: \frac{1}{n^2+n};
ln[@]:= a[n_] := \frac{1}{n^2 + n};
ln[\cdot]:= cauch6[n_]:= (a[n])^{\frac{1}{n}};
     dalembert6[n_] := \frac{a[n+1]}{a[n]};
In[@]:= 113 = Limit[cauch6[n], n → Infinity];
      114 = Limit[dalembert6[n], n → Infinity];
l_{n[\cdot]}= If[113 < 1, Print["The seriers is convergent according to cauchy nth root test"],
       If[l13 > 1, Print["The seriers is divergent according to cauchy nth root test"],
        Print["The cauchy test fails "]]]
     The cauchy test fails
```

```
log_{ij} = \text{If}[114 < 1, Print["The seriers is convergent according to dalembert nth ratio test"],
       If[l14 > 1, Print["The seriers is divergent according to dalembert nth ratio test"],
         Print["The dalembert test fails "]]]
      The dalembert test fails
 ln[\cdot]:= For[j=1, j<7, j++, n=10^{j};
       Print["For n=", n, "cauchy6=", N[cauch6[n]]]]
      For n=10cauchy6=Null<sup>1/10</sup>
      For n=100cauchy6=Null<sup>1/100</sup>
      For n=1000 cauchy 6=Null^{1/1000}
      For n=10\,000 cauchy 6=Null^{1/10\,000}
      For n=100\,000 cauchy 6=Null^{1/100\,000}
      For n=1000000cauchy6=Null<sup>1/1000000</sup>
 ln[\phi] := For[j = 1, j < 7, j++, n = 10^{j}];
       Print["For n=", n, "Dalembert6=", N[dalembert6[n]]]]
      For n=10Dalembert6=1.
      For n=100Dalembert6=1.
      For n=1000Dalembert6=1.
      For n=10000Dalembert6=1.
      For n=100000Dalembert6=1.
      For n=1000000Dalembert6=1.
Ques8: \frac{1}{\sqrt{n+1}}
ln[*]:= a[n_] := \frac{1}{\sqrt{n+1}};
ln[-]:= cauch7[n_] := (a[n])^{\frac{1}{n}};
      dalembert7[n_] := \frac{a[n+1]}{a[n]};
 ln[\circ]:= 115 = Limit[cauch7[n], n \rightarrow Infinity];
      116 = Limit[dalembert7[n], n → Infinity];
 l_{n[\cdot]}:= If[l15 < 1, Print["The seriers is convergent according to cauchy nth root test"],
       If[l15 > 1, Print["The seriers is divergent according to cauchy nth root test"],
         Print["The cauchy test fails "]]]
      The cauchy test fails
 l_{n/e}:= If[116 < 1, Print["The seriers is convergent according to dalembert nth ratio test"],
       If[l16 > 1, Print["The seriers is divergent according to dalembert nth ratio test"],
         Print["The dalembert test fails "]]]
      The dalembert test fails
```

```
ln[-]:= For[j=1, j<7, j++, n=10^{j};
       Print["For n=", n, "cauchy7=", N[cauch7[n]]]]
     For n=10cauchy7=0.887014
     For n=100cauchy7=0.977189
     For n=1000cauchy7=0.996552
     For n=10000cauchy7=0.99954
     For n=100000cauchy7=0.999942
     For n=1000000cauchy7=0.999993
ln[-]:= For[j=1, j<7, j++, n=10^{j};
       Print["For n=", n, "Dalembert7=", N[dalembert7[n]]]]
     For n=10Dalembert7=0.957427
     For n=100Dalembert7=0.995086
     For n=1000Dalembert7=0.999501
     For n=10000Dalembert7=0.99995
     For n=100000Dalembert7=0.999995
     For n=1000000Dalembert7=1.
Ques 9: Cos[n]
ln[*]:= a[n_] := Cos[n];
ln[a]:= cauch8[n_] := (a[n])^{\frac{1}{n}};
     dalembert8[n_] := \frac{a[n+1]}{a[n]};
     117 = Limit[cauch8[n], n -> Infinity];
     118 = Limit[dalembert8[n], n -> Infinity];
l_{n[\cdot]}:= If[l17 < 1, Print["The seriers is convergent according to cauchy nth root test"],
       If[l17 > 1, Print["The seriers is divergent according to cauchy nth root test"],
        Print["The cauchy test fails "]]]
Out[\bullet] = If[Interval[\{0, 1\}] < 1,
       Print[The seriers is convergent according to cauchy nth root test],
       If[l17 > 1, Print[The seriers is divergent according to cauchy nth root test],
```

Print[The cauchy test fails ]]]

```
log_{ij} = \text{If}[118 < 1, Print["The seriers is convergent according to dalembert nth ratio test"],
       If[l18 > 1, Print["The seriers is divergent according to dalembert nth ratio test"],
        Print["The dalembert test fails "]]]
Out[*]= If[Indeterminate < 1,
       Print[The seriers is convergent according to dalembert nth ratio test],
       If[l18 > 1, Print[The seriers is divergent according to dalembert nth ratio test],
        Print[The dalembert test fails ]]]
ln[\cdot]:= For[j=1, j<7, j++, n=10^{j};
       Print["For n=", n, "cauchy8=", N[cauch8[n]]]]
      For n=10cauchy8=0.934515 + 0.303642 i
     For n=100cauchy8=0.99852
      For n=1000cauchy8=0.999425
      For n=10000cauchy8=0.999995 + 0.000314158 i
      For n=100000cauchy8=1. + 0.0000314159 i
     For n=1000000cauchy8=1.
ln[\cdot]:= For[j=1, j<7, j++, n=10^{j};
       Print["For n=", n, "Dalembert8=", N[dalembert8[n]]]]
      For n=10Dalembert8=-0.00527452
      For n=100Dalembert8=1.03443
     For n=1000Dalembert8=-0.696933
      For n=10000Dalembert8=0.270214
      For n=100000Dalembert8=0.570403
      For n=1000000Dalembert8=0.854696
Ques10. \frac{1}{n \log n};
ln[*]:= a[n_] := \frac{1}{n * Log[n]};
ln[a]:= cauch9[n_] := (a[n])^{\frac{1}{n}};
     dalembert9[n_] := \frac{a[n+1]}{a[n]};
In[*]:= 119 = Limit[cauch9[n], n → Infinity];
      120 = Limit[dalembert9[n], n → Infinity];
l_{m[\cdot,\cdot]}= If[l19 < 1, Print["The seriers is convergent according to cauchy nth root test"],
       If[l19 > 1, Print["The seriers is divergent according to cauchy nth root test"],
        Print["The cauchy test fails "]]]
     The cauchy test fails
```

```
log_{ij} = \text{If}[120 < 1, Print["The seriers is convergent according to dalembert nth ratio test"],
       If[120 > 1, Print["The seriers is divergent according to dalembert nth ratio test"],
        Print["The dalembert test fails "]]]
      The dalembert test fails
ln[\cdot]:= For[j=1, j<7, j++, n=10^{j}]
       Print["For n=", n, "cauchy9=", N[cauch9[n]]]]
      For n=10cauchy9=0.730766
      For n=100cauchy9=0.940519
      For n=1000cauchy9=0.991199
     For n=10000cauchy9=0.998858
      For n=100000cauchy9=0.99986
      For n=1000000cauchy9=0.999984
ln[\phi] := For[j = 1, j < 7, j++, n = 10^{j};
       Print["For n=", n, "Dalembert9=", N[dalembert9[n]]]]
      For n=10Dalembert9=0.872957
      For n=100Dalembert9=0.987964
      For n=1000Dalembert9=0.998856
     For n=10000Dalembert9=0.999889
     For n=100000Dalembert9=0.999989
      For n=1000000Dalembert9=0.999999
Ques11.
lo[a] := a[n_] := \frac{1}{n * (Log[n])^2};
ln[*]:= cauch10[n_] := (a[n])^{\frac{1}{n}};
     dalembert10[n_] := \frac{a[n+1]}{a[n]};
ln[\circ]:= 121 = Limit[cauch10[n], n \rightarrow Infinity];
      122 = Limit[dalembert10[n], n → Infinity];
log_{ij} = \text{If}[121 < 1, Print["The seriers is convergent according to cauchy nth root test"],
       If[l21 > 1, Print["The seriers is divergent according to cauchy nth root test"],
        Print["The cauchy test fails "]]]
     The cauchy test fails
l_{n/s} = \text{If}[122 < 1, Print["The seriers is convergent according to dalembert nth ratio test"],
       If[122 > 1, Print["The seriers is divergent according to dalembert nth ratio test"],
        Print["The dalembert test fails "]]]
     The dalembert test fails
```