4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.5 PIEZOELEKTRISCHE UND WEITERE ELEKTRISCHE SENSORPRINZIPIEN (1)

Seebeck-Effekt $U = k \cdot \Delta T$

⇒ Temperaturmessung

$$\Delta T = \frac{U}{k}$$

Thermoelektrische Spannungsreihe gegen Platin

(Messstellen- ϑ : 100 °C; Vergleichsstellen- ϑ : 0 °C)

[WIKA]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.5 PIEZOELEKTRISCHE UND WEITERE ELEKTRISCHE SENSORPRINZIPIEN (2)

Typ E: NiCr-CuNi

Typ J: Fe-CuNi

Typ K: NiCr-NiAl

Typ N: NiCrSi-NiSi

Typ T: Cu-CuNi

Typ R: Pt13%Rh-Pt

Typ S: Pt10%Rh-Pt

Typ B: Pt30%Rh-Pt6%Rh

Thermoelement-Kennlinien

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.5 PIEZOELEKTRISCHE UND WEITERE ELEKTRISCHE SENSORPRINZIPIEN (3)

Klasse	1	2	3	
Toleranz	Max (0,5 °C; 0,004 · θ)	Max (1 °C; 0,0075 ⋅ θ)	Max (1 °C; 0,015 · <i>θ</i>)	
für Typ T im Temperaturbereich:	-40 °C 350 °C	-40 °C 350 °C	-200 °C 40 °C	
Toleranz	Max (1,5 °C; 0,004 · θ)	Max (2,5 °C; 0,0075 · θ)	Max (2,5 °C; 0,015 · β)	
für Typ E im Temperaturbereich:	-40 °C 800 °C	-40 °C 900 °C	-200 °C 40 °C	
für Typ J im Temperaturbereich:	-40 °C 750 °C	-40 °C 750 °C	-	
für Typ K im Temperaturbereich:	-40 °C 1000 °C	-40 °C 1200 °C	-200 °C 40 °C	
Toleranz	Max (1 °C; 0,003· (β-1100 °C))	Max (1,5 °C; 0,0025 β)	Max (4 °C; 0,005 · θ)	
für Typen R , S im Temperaturbereich:	0 °C 1600 °C	0 °C 600 °C	-	
für Typ B im Temperaturbereich:	-	600 °C 1700 °C	600 °C 1700 °C	

Thermoelement-Toleranzklassen

[DIN IEC 584-2]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.5 PIEZOELEKTRISCHE UND WEITERE ELEKTRISCHE SENSORPRINZIPIEN (4)

Piezokristall

[P. Hauptmann: Sensoren – Prinzipien und Anwendungen]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.5 PIEZOELEKTRISCHE UND WEITERE ELEKTRISCHE SENSORPRINZIPIEN (5)

Piezoelektrischer Effekt
$$Q = k_p \cdot F$$

$$\Rightarrow$$
 Kraft-, Druckmessung $F = \frac{Q}{k_{\rm p}}$

Material	K _p (Längseffekt)/ 10 ⁻¹² A·s/N	$\frac{k_{\mathrm{O}}}{10^{-4}}\mathrm{A\cdot s/(K\cdot m^2)}$	Er
Quarz (SiO ₂)	2,3	-	4,5
Triglyzinsulfat (TGS)	-	3,5	30
Lithiumtantalat (LiTaO ₃)	5,7	2	45
Bariumtitanat (BaTiO ₃)	374	4	1000
Bleititanat (PbTiO ₃)	51	2,3	200
Bleizirkontitanat (PZT, Pb(Zr,Ti)O ₃)	374	4,2	1600
Polyvinylidendifluorid (PVDF)	30	0,4	12

Piezoelektrische Konstanten und pyroelektrische Koeffizienten verschiedener Materialien

[E. Schrüfer: Elektrische Messtechnik]

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.5 PIEZOELEKTRISCHE UND WEITERE ELEKTRISCHE SENSORPRINZIPIEN (6)

Piezoelektrischer Zählsensor

[S. Hesse, G. Schnell: Sensoren für die Prozess- und Fabrikautomation]

1: Werkstück, Zählobjekt

3: Zylinder

2: Prallplatte
4: PVDF-Folie

5: Kontaktblech

Piezoelektrischer Vibrationssensor [BOSCH 0 261 231 153]

1: Seismische Masse

4: Schraube

7: Maschinenblock

2: Gehäuse

5: Kontaktierungen

3: Sensorelement

6: Anschlüsse

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.5 PIEZOELEKTRISCHE UND WEITERE ELEKTRISCHE SENSORPRINZIPIEN (7)

Ferroelektrische Hysterese

Pyroelektrischer Effekt:

$$\Delta Q = A \cdot k_{O}(T) \cdot \Delta T = A \cdot \pi_{P}(T) \cdot \Delta T$$

⇒ Temperatur, Bewegungs- und Präsenzmeldung

Pyroelektrischer IR-Sensor

[E. Schrüfer: Elektrische Messtechnik]

- 1: IR-Strahlung 2: IR-durchlässiges Fenster
- 3: Absorber 4: pyroelektrisches Material
- 5: Transistorgehäuse

4. SENSORPRINZIPIEN DER ELEKTROSTATIK UND -DYNAMIK 4.5 PIEZOELEKTRISCHE UND WEITERE ELEKTRISCHE SENSORPRINZIPIEN (8)

