2. In $\mathbb{Z}_3[x]$, show that the distinct polynomials $x^4 + x$ and $x^2 + x$ determine the same function from \mathbb{Z}_3 to \mathbb{Z}_3 .

x	$x^4 + x$	$x^2 + x$
0	$[x^4 + x](0) = 0 + 0 = 0$	$[x^2 + x](0) = 0 + 0 = 0$
1	$[x^4 + x](1) = 1^4 + 1 = 2$	$[x^2 + x](1) = 1^2 + 1 = 2$
2	$[x^4 + x](2) = 2^4 + 2 = 18 \mod 3 = 0$	$[x^2 + x](2) = 2^2 + 2 = 6 \mod 3 = 0$

3. Show that $x^2 + 3x + 2$ has four zeros in \mathbb{Z}_6 .

$$[x^2 + 3x + 2] (0) = 2 \mod 6 = 2$$

$$[x^2 + 3x + 2] (1) = 6 \mod 6 = 0$$

$$[x^2 + 3x + 2] (2) = 12 \mod 6 = 0$$

$$[x^2 + 3x + 2] (3) = 20 \mod 6 = 2$$

$$[x^2 + 3x + 2] (4) = 30 \mod 6 = 0$$

$$[x^2 + 3x + 2] (5) = 42 \mod 6 = 0$$

7. Find two distinct cubic polynomials over \mathbb{Z}_2 that determine the same function from \mathbb{Z}_2 to \mathbb{Z}_2 .

x	$x^3 + x$	$x^3 + x^2$
0	0 + 0 = 0	0 + 0 = 0
1	$1^3 + 1 = 2 \mod 2 = 0$	$1^3 + 1^2 = 2 \mod 2 = 0$

9. Let $f(x) = 5x^4 + 3x^3 + 1$ and $g(x) = 3x^2 + 2x + 1$ in $\mathbb{Z}_7[x]$. Determine the quotient and remainder upon dividing f(x) by g(x).

which implies that the quotient of f(x)/g(x) is $4x^2 + 3x + 6$ and the remainder is 6x + 2. I also learned about the polynom package, although it won't reduce polynomials over finite fields.

$$(5x^{4} + 3x^{3} + 1) : (3x^{2} + 2x + 1) = \frac{5}{3}x^{2} - \frac{1}{9}x - \frac{13}{27} + \frac{\frac{29}{27}x + \frac{40}{27}}{3x^{2} + 2x + 1} - \frac{1}{3}x^{3} - \frac{5}{3}x^{2} - \frac{1}{9}x - \frac{13}{27} + \frac{\frac{29}{27}x + \frac{40}{27}}{3x^{2} + 2x + 1} - \frac{\frac{13}{9}x^{2} + \frac{1}{9}x}{\frac{13}{9}x^{2} + \frac{1}{9}x} + 1 - \frac{\frac{13}{9}x^{2} + \frac{26}{27}x + \frac{13}{27}}{\frac{29}{27}x + \frac{40}{27}}$$

(12.) If the rings R and S are isomorphic, show that R[x] and S[x] are isomorphic.

Let ϕ be an isomorphism from R to S, and σ be a homomorphism from R[x] to S[x]. We know that $\ker \phi = \{0\}$, and we want to show that $\ker \sigma = \{0\}$. First of all, we should note that all coefficients of $a \in R$ of R[x] are equivalent to $\phi(a) \in S[x]$. We then define σ as the polynomial extension of ϕ , where a polynomial $f(x) = a_n x^n + \cdots + a_0$ in R[x] is mapped by σ to $\sigma(f(x)) = \phi(a_n) x^n + \cdots + \phi(a_0)$. Because ϕ is an

isomorphism, we know that ϕ^{-1} exists. Now we consider $\phi^{-1}(\phi(a_n))x^n + \cdots + \phi^{-1}(\phi(a_0)) = \sigma^{-1}(\sigma(f(x)))$, which shows that σ^{-1} exists. As a result of ϕ being onto and $\ker \phi = 0$, these attributes are immediately inherited by σ . **Note:** I'm pretty sure I need to show this, and can't immediately assume it.

15. Show that the polynomial 2x + 1 in $\mathbb{Z}_4[x]$ has a multiplicative inverse in $\mathbb{Z}_4[x]$.

2x + 1 is its own inverse in $\mathbb{Z}_4[x]$, observe that $(2x + 1)^2 = 4x^2 + 4x + 1 \mod 4 = 1$.

20. Prove that the ideal $\langle x \rangle$ in $\mathbb{Q}[x]$ is maximal.

By Theorem 14.4, we know that $\mathbb{Q}[x]/\langle x \rangle$ is a field if and only if $\langle x \rangle$ is maximal. We can see that $\mathbb{Q}[x]/\langle x \rangle = \mathbb{Q}$, and \mathbb{Q} is a field. This immediately implies that $\langle x \rangle$ is maximal.

24. Let \mathbb{F} be an infinite field and let $f(x), g(x) \in \mathbb{F}[x]$. If f(a) = g(a) for infinitely many elements a of \mathbb{F} , show that f(x) = g(x).

By the Remainder Theorem, we know that f(x)/(x-a) = f(a), or f(x) = f(a)(x-a). However, because f(a) = g(a), we can assert that f(x) = g(a)(x-a). Likewise, we know that g(x) = g(a)(x-a) by the remainder theorem, which implies that f(x) = g(x).

38. (Wilson's Theorem) For every integer n > 1, prove that $(n-1)! \mod n = n-1$ if and only if n is prime.

We can note that our operation is occurring in \mathbb{Z}_p , which has characteristic p.

46. Prove that $\mathbb{Q}[x]/\langle x^2-2\rangle$ is ring-isomorphic to $\mathbb{Q}[\sqrt{2}]=\{a+b\sqrt{2}\mid a,b\in\mathbb{Q}\}.$

Let γ be a mapping from $\mathbb{Q}[x]/\langle x^2-2\rangle$ to $\mathbb{Q}[\sqrt{2}]$