

HAtNet: Hardware Attestation of Neural Networks

Nojan Sheybani¹, Huili Chen¹, Xinqiao Zhang¹, Siam Hussain¹, and Farinaz Koushanfar¹ {nsheyban, huc044, x5zhang, siamumar, farinaz}@ucsd.edu

¹University of California San Diego

Abstract

- ❖ Presenting HAtNet, an <u>on-device DNN attestation</u> method that certifies the legitimacy of underlying hardware for running a given DL model
- Leveraging Algorithm/Software/Hardware co-design approach to develop HAtNet. HAtNet binds the parameter distribution of the trained model with a legitimate hardware platform
- Enabling <u>usage control</u> and <u>intellectual property (IP)</u>
 <u>protection</u> of DL platforms
- Corroborating HatNet's <u>effectiveness, reliability</u>, and <u>efficiency</u> on various DNN benchmarks

Motivation

- Developing high-performance, large-scale DL models (e.g., Transformer, BERT, GPT-3) is both <u>time-</u> and <u>resource-consuming</u>
- ❖ <u>Functional DL model</u> shall be considered as <u>IP</u> of the designer and needs to be <u>protected</u> to preserve the commercial advantage of the DL model owner

Methodology

- HAtNet consists of two stages:
- Off-line marking phase: Hardware provider generates a <u>unique</u>, <u>device-specific FP</u> and finetunes the model with the <u>FP-regularized loss</u>:

$$\mathcal{L} = \mathcal{L}_0 + \gamma MSE(f_j - Xw), f_j = \sum_{i=1}^v b_{ij} u_j.$$

FP is stored in secure memory of the target hardware

Online attestation phase: <u>Extracts FP</u> from the unknown/queried device when the trigger is activated:

$$f'_{j} = Xw', \ b_{j}' = f'_{j}^{T} * U$$

- ❖ HAtNet deploys a <u>hybrid trigger mechanism</u>:
- Static trigger: OS detects DNN program's start request
- Dynamic trigger: Two sources: (1) memory change signal from OS monitor, and (2) fixed-frequency timer

Hardware Optimization

- HAtNet incorporates multiple HW optimization techniques for security and overhead consideration
- Shredder storage: <u>shuffle weight</u> data before storing it in untrusted memory

- Data pipeline: Hide the data communication latency
- Early stopping: Skip unnecessary computation

HAtNet's Global Flow

Threat Model

- The company is the IP holder. He / She sells the pre-trained DNNs together with the legitimate DL device.
- The attacker could be a malicious user who wants to run the DNN on an unauthorized hardware platform
- ❖ HAtNet generates device-specific fingerprint (FP) and binds device's FP to the DNN by embedding the FP in the weight distribution of the DL model

Experimental Results

❖ We evaluate HAtNet on various DNN benchmarks to corroborate its properties:

o **Fidelity:** Test accuracy of the marked DNN is comparable as the corresponding baseline

Benchmark	Dataset	Model Size (MB)	Multiply-Add Operations (Mops)	Marked Layer Size (MB)	Baseline Accuracy (%)	Marked Accuracy (%)	
MNIST-CNN	MNIST [34]	1.3	24	0.13 (10.1%)	99.52	99.66	
CIFAR-WRN	CIFAR10 [35]	2.4	198	0.29 (12.3%)	91.85	92.03	
VGG16	ImageNet [36]	276.7	25180	28.3 (10.2%)	91.2	92.23	
MobileNet	ImageNet [36]	8.4	569	1.05 (12.6%)	85.83	85.75	

Efficiency: (a) Low runtime and energy overhead of online attestation, (b) data pipeline speedup

Security and Reliability analysis:

Conclusion

- ❖ Devising HAtNet, an effective, lightweight, reliable and secure on-device attestation framework that authenticates the legitimacy of the hardware to run the protected DL model
- Leveraging Algorithm/Software/Hardware <u>co-design</u> principle to achieve <u>hardware-bounded</u>
 <u>IP protection</u> and <u>device usage control</u> of DL hardware.