

Defesa de mestrado

Estratégias bio-inspiradas aplicadas em problemas discretos com muitos objetivos

Autor: Tiago Peres França

Orientadora: Gina Maira Barbosa de Oliveira Co-orientador: Luiz Gustavo Almeida Martins

Introdução

- Otimização: maximizar ou minimizar um aspecto do problema.
- Análise combinatória: alto custo computacional:
- Algoritmos gulosos, programação dinâmica, algoritmos bioinspirados.
- Otimização multiobjetivo:
 - múltiplas funções para minimizar ou maximizar;
 - Qual solução é melhor? Dominância de Pareto;
 - Fronteira de Pareto
 - Otimização many-objective
- Este trabalho faz uma análise comparativa entre diversos métodos de otimização multiobjetivo e propõe um novo framework ACO.

Problemas de teste

- Problemas discretos:
 - Caixeiro viajante
 - Roteamento de veículos com janelas de tempo
 - Sequenciamento de proteínas
 - Problema da mochila multiobjetivo
 - Problema do roteamento multicast

Problema da mochila

\$6

10KG

25KG

8KG

\$10

20KG

7KG

12KG

14KG

9KG

Problema da mochila multiobjetivo (PMM)

- Cada item é associado a múltiplos valores de lucro (array de lucros);
- Apenas uma restrição de peso (capacidade da mochila);
- Objetivo: arranjar os itens na mochila de forma a obter os maiores valores de lucro considerando todos os objetivos. Não exceder a capacidade da mochila.
- Formulações de objetivos (problemas): relacionado ao número de posições no *array* de lucro.
- Instâncias: variação na cardinalidade dos conjuntos de itens: 30, 40, 50, 100, 200.

Problema do roteamento multicast (PRM)

Problema do roteamento multicast (PRM)

PRM multiobjetivo

- quatro valores de peso para um enlace da rede: custo, delay, capacidade de tráfego e tráfego corrente, representados respectivamente pelas funções: c(), d(), z() e t().
- Objetivos:
 - Custo total
 - 2. Delay fim-a-fim médio
 - 3. Delay fim-a-fim máximo
 - 4. Hops count
 - 5. Utilização máxima de enlaces
 - 6. Utilização média dos enlaces

PRM multiobjetivo

- Formulações de objetivos (problemas):
 - P_2 : formado pelos objetivos 1 e 3.
 - P_3 : formado pelos objetivos 1, 3 e 4.
 - P_4 : formado pelos objetivos 1, 3, 4 e 5.
 - P_5 : formado pelos objetivos 1, 3, 4, 5 e 6.
 - P_6 : formado pelos objetivos 1, 2, 3, 4, 5 e 6.
- Instâncias de redes

Nome	Destinos	Vértices	Arestas
Rede 1 (R1)	10	33	106
Rede $2 (R2)$	18	75	188
Rede 3 (R3)	37	75	188
Rede $4 (R5)$	12	75	300
Rede 5 (R5)	16	100	250

Otimização bio-inspirada (AGs)

Otimização bio-inspirada (ACOs)

Algoritmos multiobjetivos

- AGs clássicos:
 - NSGA-II, SPEA2
- AGs many-objective
 - MOEA/D, MEAMT (AEMMT), MEANDS (AEMMD), NSGA-III, SPEA2-SDE
- ACOs many-objective
 - MOACS, MOEA/D-ACO, MACO/NDS

Construindo um AG para o PMM

- Representação da solução
 - Vetor binário. Ex.: [1,0,0,1,0,1,1,0,0,0].
- Geração da população inicial
 - Vetores aleatórios com correção de soluções inválidas.
- Cruzamento
 - Crossover uniforme

• Mutação: inversão binária

Construindo um AG para o PRM

- Representação da solução: árvore
- Geração da população inicial
 - 1. Inicia-se um grafo S apenas com o vértice raíz r.
 - 2. Extrair um destino aleatório $d \in D$
 - 3. Com base no grafo de entrada G, criar um caminho em S entre qualquer um de seus vértices atuais e d.
 - 4. Repete até que todos os nós destinos estejam no grafo S.
 - 5. Remove os ciclos de S
 - 6. Poda a árvore *S*

Construindo um AG para o PRM

• Cruzamento por caminho e mutação:

Construindo um AG para o PRM

Construindo um ACO para o PMM

- Construção da solução
 - Depósito de feromônios nos itens
 - Uma heurística para cada valor de lucro (objetivo) + uma heurística para o peso.

$$h_k(item, cr) = lucro_k(item) \times (1 - \frac{peso(item)}{cr})$$

$$h_{peso}(item) = 1 - \frac{peso(item)}{peso_maximo}$$

Construindo um ACO para o PMM

- Para decidir qual item incorporar na solução:
 - Considera-se todos os itens possíveis (que ainda não foram incluídos e que não ultrapassariam a capacidade da mochila).
 - Calcula-se a probabilidade de acordo com a quantidade de feromônio em cada item e com a heurística relativa ao mesmo.

$$p(exp_i) = \frac{\tau_i^{\alpha} + h(exp_i)^{\beta}}{\sum_{j \leftarrow 0}^{tamanho(Exp)} \tau_j^{\alpha} + h(exp_j)^{\beta}}$$

Construindo um ACO para o PMM

 Amostragem: A fim de reduzir a complexidade do algoritmo de construção da solução para o PMM, ao invés de se utilizar a lista completa de itens possíveis (Exp), utiliza-se uma amostra desse conjunto (Exp').

Construindo um ACO para o PRM

- O PRM já trabalha com grafos, o que facilita a representação.
- Soluções: árvores
- Feromônios nas arestas.
- Uma heurística para cada valor de peso nas arestas.

$$p(i,j) = \frac{\tau_{i,j}^{\alpha} \times \eta_{i,j}^{\beta}}{\sum_{v \in adj(i)} \tau_{i,v}^{\alpha} \times \eta_{i,v}^{\beta}}$$

Construindo um ACO para o PRM

Construção da solução:

- Many-objective Ant Colony Optimization based on Non-Dominated Sets / Otimização em colônia de formigas para muitos objetivos baseada em conjuntos de não dominância.
- Usa o conceito de decomposição em conjuntos de não dominância (AEMMD) aplicado ao framework de colônia de formigas.

- Como representar os diferentes objetivos no depósito de feromônio?
 - Decomposição em subproblemas (NDS)
 - O número de subproblemas é determinado pelo número de objetivos. 2 a 2, 3 a 3, ..., m a m.
 - Cada subproblema possui uma tabela de feromônios
- Como compor as múltiplas heurísticas em uma única função?
 - Pesos aleatórios (RIVEROS et al., 2016)

- Um subproblema é composto de:
 - Objetivos: objetivos representados pelo subproblema.
 - Feromônios: matriz/array de feromônios com a quantidade de feromônios em cada aresta/item.
 - Arquivo: soluções não dominadas encontradas até o momento considerando apenas os objetivos do subproblema.
 - Convergência: quantidade de iterações seguidas em que o arquivo não foi modificado.
 - β : Valor do parâmetro β para este subproblema.

Algoritmo geral do MACO/NDS

Experimentos

- Etapa 1:
 - Analisar o comportamento dos algoritmos de acordo com o número de objetivos tratados
- Etapa 2:
 - Estratégias para a construção de uma solução em um ACO mono-objetivo.
- Etapa 3
 - 4 a 6 objetivos
 - Testar o MACO/NDS contra os algoritmos many-objective vistos até então
- Etapa 4:
 - 5 AEMOs + 3 ACOs
 - Testar instâncias mais complexas dos problemas.

Experimentos

- Métricas de desempenho
 - Taxa de erro (ER)
 - Generational Distance (GD)
 - GDp
 - Pareto Subset (PS)
 - Tempo de execução
 - Hipervolume

Experimentos: Etapa 1

- NSGA-II, NSGA-III, SPEA2, MOEA/D e AEMMT
- Resultados PRM: Thiago Fialho
- Artigo publicado no 6th Brazilian Conference on Intelligent Systems (BRACIS) (FRANÇA et al., 2017).
- PMM: 5 formulações de objetivos (2 a 6) e 3 instâncias (30, 50 e 100 itens).
- PRM: 5 formulações de objetivos (P2 a P6) e 3 redes (R1, R2 e R3).
- Para cada um dos cenários foi obtida uma fronteira de Pareto aproximada.
- 100 execuções de cada algoritmo

Experimentos: Etapa 1

Parâmetro	(A) PRM	(B) PMM
Tamanho da população	90	150
Número de gerações*	100 (9000*)	100 (7500*)
Taxa de crossover	100%	100%
Taxa de mutação	20%	variável
Tamanho da vizinhança (MOEA/D)	10	10
Tamanho das tabelas (AEMMT)	30	50
Tamanho da tabela de dominância (AEMMT)	90	150
Número de subdivisões (NSGA-III)	8	8

Experimentos: Etapa 1 (PMM, ER)

Experimentos: Etapa 1 (PMM, GD)

Experimentos: Etapa 1 (PMM, PS)

Experimentos: Etapa 1 (PRM, ER)

Experimentos: Etapa 1 (PRM, GD)

Experimentos: Etapa 1 (PRM, PS)

Experimentos: Etapa 2

- Análise das estratégias e configurações para o PRM no MACO/NDS.
- Fase 1: construção da solução para o PRM simplificado mono-objetivo $(f(x) = custo(x) \times delay(x))$.
- Foram testadas 4 estratégias para construir a árvore multicast:
 - 1. Formiga única;
 - 2. múltiplas formigas;
 - 3. formiga com sobreposição quântica;
 - 4. formigas invertidas.

Estratégia	Rede	Resultado	Tempo (s)
Prim	R_1	3,28	0,02
1	R_1	3,04	2,49
2	R_1	3,03	5,94
3	R_1	3,00	3,88
4	R_1	3,00	3,16
Prim	R_2	3,13	0,01
1	R_2	3,34	4,94
2	R_2	3,26	13,22
3	R_2	3,13	10,69
4	R_2	3,30	5,549
Prim	R_3	7,96	0,024
1	R_3	8,13	4,212
2	R_3	8,23	25,60
3	R_3	7,48	9,82
4	R_3	8,11	6,93

Estratégia	Rede	Resultado	Tempo (s)
Prim	R_4	1,80	0,02
1	R_4	2,34	4,71
2	R_4	2,32	12,47
3	R_4	1,85	11,01
4	R_4	1,97	4,93
Prim	R_5	6,34	0,01
1	R_5	6,12	6,87
2	R_5	6,33	17,38
3	R_5	5,85	14,76
4	R_5	5,85	8,42

Amostragem	Rede	Resultado	Tempo (s)
s/ amostragem	R_1	3	3,88
c/ amostragem	R_1	3	3,41
s/ amostragem	R_2	3,13	10,69
c/ amostragem	R_2	3,13	7,60
s/ amostragem	R_3	7,48	9,82
c/ amostragem	R_3	7,48	7,26
s/ amostragem	R_4	1,85	11,01
c/ amostragem	R_4	1,78	7,28
s/ amostragem	R_5	5,85	14,76
c/ amostragem	R_5	5,76	10,03

- Melhorias para problemas many-objective:
 - Depósito de feromônio baseado na qualidade da aresta (ou do item, no caso do PMM).
 - Dinamização do parâmetro de entrada eta.

Algoritmo	Rede	ER	GDp	PS
AEMMD	R_1	$6,\!59$	$0,\!38$	502,8
MACO/NDS-alpha	R_1	18,42	$0,\!30$	337,6
MACO/NDS	R_1	$11,\!57$	$0,\!36$	424,2
AEMMD	R_2	7,58	0,49	296,6
MACO/NDS-alpha	R_2	11,75	$0,\!47$	284,4
MACO/NDS	R_2	11,18	$0,\!37$	300
AEMMD	R_3	11,73	0,19	388,6
MACO/NDS-alpha	R_3	$36,\!47$	$0,\!16$	206
MACO/NDS	R_3	30,20	$0,\!25$	232,4

Algoritmo	Rede	ER	GDp	PS
AEMMD	R_4	35,88	0,17	234
MACO/NDS-alpha	R_4	$54,\!48$	$0,\!11$	150,2
MACO/NDS	R_4	$50,\!57$	$0,\!15$	186,6
AEMMD	R_5	32,67	0,20	181,2
MACO/NDS-alpha	R_5	32,95	$0,\!22$	168,6
MACO/NDS	R_5	32,67	$0,\!30$	160,8

- Análise comparativa entre o MACO/NDS e os AEMOs many-objective.
- NSGA-III, MOEA/D, AEMMT, AEMMD e MACO/NDS
- 4 a 6 objetivos
- PMM: 30, 40 e 50 itens
- PRM: Redes 1, 2 e 3

Parâmetro	PRM	PMM
Tamanho da população	90	150
Número de gerações*	100	100
Taxa de crossover	100%	100%
Taxa de mutação	20%	5%
Tamanho da vizinhança (MOEA/D)	10	10
Tamanho das tabelas (MEAMT)	30	50
Tamanho da tabela de dominância (MEAMT)	90	150
Número de divisões (NSGA-III)	8	8
$\alpha, \beta, \rho \text{ (MACO/NDS)}$	1, 2, 0,3	1, 4,3; 0,3
Intervalo de valores para os feromônios (MACO/NDS)	[0,1; 0,9]	[0,1; 0,9]
Tamanho das amostras (MACO/NDS)	10	25% do nº de itens
Tamanho do grupo de estruturas ativas (MACO/NDS)	5	5

Experimentos: Etapa 3 (PMM, ER)

Experimentos: Etapa 3 (PMM, GDp)

Experimentos: Etapa 3 (PMM, PS)

Experimentos: Etapa 3 (PMM, Tempo)

Experimentos: Etapa 3 (PRM, ER)

Experimentos: Etapa 3 (PRM, GDp)

Experimentos: Etapa 3 (PRM, PS)

Experimentos: Etapa 3 (PRM, Tempo)

Experimentos: Etapa 3 (z-test)

Tabela 9 – Testes de hipótese entre o MACO/NDS e o AEMMT para os problemas investigados

	4 ob	jective	S	5 objectives			6 objectives		
Instance	$\mathbf{E}\mathbf{R}$	GDp	\mathbf{PS}	$\mathbf{E}\mathbf{R}$	GDp	PS	$\mathbf{E}\mathbf{R}$	GDp	PS
30 items	=	<	>	>	<	>	>	<	>
40 items	<	<	>	<	<	>	>	<	>
50 i tems	<	=	>	<	<	>	>	<	>
Rede 1	>	<	<	>	<	>	>	<	>
Rede 2	>	<	>	>	<	>	<	<	>
Rede 3	>	<	<	>	<	>	>	>	>

Experimentos: Etapa 3 (z-test)

Tabela 10 – Testes de hipótese entre o MACO/NDS e o AEMMD para os problemas investigados

	4 objectives			5 objectives			6 objectives		
Instance	$\mathbf{E}\mathbf{R}$	GDp	PS	$\mathbf{E}\mathbf{R}$	GDp	PS	$\mathbf{E}\mathbf{R}$	GDp	PS
30 items	<	<	>	<	>	>	<	>	>
40 items	<	>	>	<	>	>	<	>	>
50 i tems	<	<	>	<	<	>	<	<	>
Rede 1	>	<	<	>	<	<	>	<	<
Rede 2	>	=	>	>	<	<	>	<	>
Rede 3	>	<	<	>	=	<	>	>	<

- Análise baseada no hypervolume
- NSGA-III, MOEA/D, AEMMT, AEMMD, MOEA/D-ACO, MOACS e MACO/NDS
- PMM: 50, 100 e 200 itens
- PRM: Redes 3, 4 e 5
- 4, 5 e 6 objetivos
- Hipervolume
- NSGA-III e SPEA2 com limites ajustados (média dos Paretos obtidos pelos outros algoritmos)

Parâmetro	PRM	PMM
Tamanho da população	90	150
Número de comparações	9000	15000
Taxa de crossover	100%	100%
Taxa de mutação	20%	5%
Tamanho da vizinhança (MOEA/D e MOEA/D-ACO)	10	10
Tamanho das tabelas (MEAMT)	30	50
Tamanho da tabela de dominância (MEAMT)	90	150
Número de divisões (NSGA-III)	8	8
$\alpha, \beta, \rho \text{ (ACOs)}$	1; 2; 0,3	1; 4,3; 0,3
Intervalo de valores para os feromônios (ACOs)	[0,1; 0,9]	[0,1; 0,9]
$\delta \text{ (MOEA/D-ACO)}$	0,2	0,2
H, relacionado à quantidade de formigas (MOEA/D-ACO)*	6	variável
K, relacionado à quantidade de grupos (MOEA/D-ACO)*	3	3
Taxa de elitismo (MOEA/D-ACO)	0,9	0
Tamanho das amostras (MACO/NDS)	10	10
Tamanho do grupo de estruturas ativas (MACO/NDS)	5	5

Experimentos: Etapa 4 (PMM, 4 obj.)

Experimentos: Etapa 4 (PMM, 5 obj.)

Experimentos: Etapa 4 (PMM, 6 obj.)

Experimentos: Etapa 4 (PRM, 4 obj.)

Experimentos: Etapa 4 (PRM, 5 obj.)

Experimentos: Etapa 4 (PRM, 6 obj.)

Conclusão

Comparação entre AGs

 Proposição de um novo ACO e um modelo de construção de soluções para o PRM

• Comparação entre AGs e ACO.

Conclusão

Trabalhos futuros:

- Inclusão da métrica IGD
- Investigar estratégias para a limitação do tamanho do conjunto de soluções não dominadas no PMM.
- Avaliar os algoritmos em um espaço de tempo pré-definido ao invés de número de avaliações.
- Investigar redes mais complexas no PRM com muitos objetivos.
- Testar o PMM com múltiplas restrições.
- Testar o MACO/NDS em outros problemas multiobjetivos a fim de validá-lo como framework.
- Adaptar a ideia de decomposição dos conjuntos de não dominância (sufixo NDS) para o PSO.

Obrigado!

Perguntas?

