OI 训练赛 Day3

[数据结构 & 算法基础]

题目名称	英文名	时间限制	内存限制	答案比较方式
赌徒	dice	1s	256MB	全文比较,忽略行尾空白和文末回车
盒子	box	1s	256MB	全文比较,忽略行尾空白和文末回车
楼房重建	building	1s	256MB	全文比较,忽略行尾空白和文末回车
弹飞绵羊	sheep	1s	256MB	全文比较,忽略行尾空白和文末回车

欢迎参加今天的训练赛! 本次考试注意事项如下:

- 评测在 Noi Linux 下使用 lemon 进行, 栈空间不限制。
- 每道题目的源代码命名为"题目英文名.cpp",输入文件为"题目英文名.in",输出文件为"题目英文名.out"。
- 所有题目均需要建立子文件夹,文件目录与 NOIP 一致。这也就是说: 您需要提交一个文件夹,这个文件夹中包含几个子文件夹,分别命名为题目英文名。在每个子文件夹下,需要有一份源码,命名为"题目英文名.cpp"。
- 如果对上述的规则有疑问,请直接询问讲师。答疑范围与 NOIP 一致:考场上只回答与具体题目内容无关的询问,或是解释模糊不清的题意。
- 建议在考试结束前 15 分钟停止编码,检查每一题的输入输出、所开的内存空间大小,以免翻车。
- 题目难度未必是递增的,个人擅长的方向也有所不同,故建议不要死磕某一题。智 慧人生,品味舍得。
- 友谊第一,比赛第二,无需计较比赛结果。能从比赛中锻炼手感、学点知识,就是好的 ^_^

那么,祝君好运!

Good luck, Have fun!

A. 赌徒(dice)

题目描述

作为一个赌徒, 你当然对骰子十分熟悉。1的对面是6; 2的对面是5; 3的对面是4.

今天,你想玩一点新花样。你扯了rxz来帮您记分。游戏规则如下:

最开始有一个骰子,1 朝上。此后,你每次可以将这个骰子翻转90°——也就是说,选择一个侧面,将它翻到顶上。在翻转骰子之后,rxz 会把骰子顶面的数加入您的得分。请注意,游戏刚开始时分数为0,初始顶面的那个1不算得分。

现在问题来了:给定 n,您至少需要翻转多少次骰子,才能得到 n 分?

输入格式

本题有多组数据。

第一行,一个正整数 T,表示数据组数。

接下来 T 行,每行一个正整数,表示 n.

输出格式

输出共 T 行,每行一个正整数,表示至少需要翻转多少次骰子。

样例数据

dice.in	dice.out
2	1
5	2
10	

第一组数据,直接把5转上来就行。

第二组数据, 先把4转上来, 再把6转上来。

数据规模与约定

对于所有数据, $T \le 200$.

对于 20% 的数据, $n \le 20$.

对于 40% 的数据, $n \le 10000$.

对于 100% 的数据, $n \le 1000000$.

B. 盒子(box)

题目描述

Alice 和 Bob 在玩游戏。

他们面前有 n 个盒子排成一行,第 i 个盒子里有一张卡片写着整数 a_i ,范围在 $[10^{-3},10^3]$. Alice 和 Bob 轮流取盒子,每次要么取最左边的,要么取最右边的。每个人都想 让自己拿到的卡片上的数的总和(也就是得分)最大。

已知 Alice 和 Bob 都采用最优策略,且由 Alice 先取。问最后 Alice 与 Bob 得分之差。

输入格式

本题有多组数据。

第一行,一个正整数 T,表示数据组数。

对于每组数据:第一行是一个正整数,表示n;接下来一行有n个数,表示 a_i 。

输出格式

对于每组数据,输出一个整数,表示 Alice 的得分减去 Bob 的得分。

样例数据

box.in	box.out
5	97
4	1000
3 1 100 5	92
1	-4
1000	0
4	
-1 100 4 -5	
1	
-4	
1	
0	

数据规模与约定

保证 $T \le 500$.

对于 30%的数据, 保证 $n \le 10$.

对于 100%的数据,保证 $n \le 10^3$.

C. 楼房重建(building)

题目背景

"眼看他起高楼,眼看他宴宾客,眼看他楼塌了。"

题目描述

小 A 的楼房外有一大片施工工地,工地上有 n 栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。

为了简化问题,我们考虑这些事件发生在一个二维平面上。小 A 在平面上 (0,0) 点的位置,第 i 栋楼房可以用一条连接 (i,0) 和 (i,H_i) 的线段表示,其中 Hi 为第 i 栋楼房的高度。如果这栋楼房上存在一个高度大于 0 的点与 (0,0) 的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。

施工队的建造总共进行了 m 天。初始时,所有楼房都还没有开始建造,它们的高度均为 0。在第 i 天,建筑队将会将横坐标为 X_i 的房屋的高度变为 Y_i (高度可以比原来大一修建,也可以比原来小一拆除,甚至可以保持不变一建筑队这天什么事也没做)。请你帮小 A 数数每天在建筑队完工之后,他能看到多少栋楼房?

输入格式

第一行,两个正整数,表示 n, m. 接下来 m 行,每行两个正整数 X_i, Y_i .

输出格式

m 行, 第 i 行一个整数表示第 i 天过后小 A 能看到的楼房有多少栋

样例数据

building.in	building.out			
3 4	1			
2 4	1			
3 6	1			
1 1000000000	2			
1 1				

数据规模与约定

测试点	1	2	3	4	5	6	7	8	9	10
n,m 不超过	100	5000	50000	100000	30000	50000	70000	80000	90000	100000

对于所有的数据, $1 \le X_i \le n$, $1 \le Y_i \le 10^9$.

测试点 1~4: 建筑队每天等概率随机选择一栋房屋将其改造成 1~10⁹ 内的等概率随机高度。

D. 弹飞绵羊(sheep)

题目描述

某天,Lostmonkey 发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请 小绵羊一起玩个游戏。

游戏一开始,Lostmonkey 在地上沿着一条直线摆上 n 个装置,每个装置设定初始弹力系数 k_i ,当绵羊达到第 i 个装置时,它会往后弹 k_i 步,达到第 $i+k_i$ 个装置,若不存在第 $i+k_i$ 个装置,则绵羊被弹飞。绵羊想知道当它从第 i 个装置起步时,被弹几次后会被弹飞。

为了使得游戏更有趣,Lostmonkey 可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。

输入格式

第一行,包含一个整数 n ,表示地上有 n 个装置,装置的编号从 0 到 n-1 。接下来一行有 n 个正整数,依次为那 n 个装置的初始弹力系数。

第三行有一个正整数 m ,接下来 m 行每行至少有两个数 i,j,若 i=1,你要输出从 j 出发被弹几次后被弹飞,若 i=2,则还会再输入一个正整数 k,表示第 j 个弹力装置的系数被修改成 k 。

输出格式

对于每个 i=1 的情况,你都要输出一个需要的步数,占一行。

样例数据

sheep.in	sheep.out
4	2
1 2 1 1	3
3	
1 1	
2 1 1	
1 1	

数据规模与约定

对于 20% 的数据, $n,m \le 10000$.

对于 100% 的数据, $n \le 200000, m \le 100000$.