S9 - IS-LM problem

Problem 1

Determine:

Consider the case of an economy described by the IS-LM model, for which we know the following data: the propensity of consumption c=0,9; the tax rate t= 1/3 (33.3%); b=1000; k=1; h= 10000; autonomous consumption C₀=90 mil. ϵ ; autonomous investments I₀=200 mil. ϵ ; G= 710 mil. ϵ ; autonomous taxes T₀=0 mil. ϵ ; real money supply= 500 mil. ϵ ; transfers to households are zero and the trade balance is balanced (NX = 0).

- a) The IS and LM equations both analytically and numerically.
- b) The equilibrium point (Y^*, r^*) , as well as the budgetary deficit (BD_0) .
- c) The budgetary policy Γ_{BP} and the monetary policy Γ_{MP}
- d) The change in the money supply $(\frac{\Delta M}{p} = ?)$ that could lead to a balanced budgetary deficit (BD₁=0).
- e) The effects of a budgetary policy $(\Delta G = -50 \text{ mil. } \epsilon)$ upon the initial equilibrium point (Y^*, r^*) .
- f) The new level of the tax rate t₁ that could lead to an increase of the GDP by 100 mil.€

Solution

a) The equations that describe the IS-LM model are the following:

$$\begin{cases} Y = C + I + G + NX \\ C = C_0 + c \cdot Y^D, & c \in (0,1) \\ Y^D = Y - T + TR \\ T = T_0 + t \cdot Y, & t \in (0,1) \\ I = I_0 - b \cdot r, & b > 0 \\ \frac{M}{p} = kY - hr, & k, h > 0 \end{cases}$$

We rewrite the IS equation in analytical form, which describes the equilibrium in the goods and services market:

$$Y = \frac{1}{1-c(1-t)} \cdot [C_0 - cT_0 + cTR + G + I_0 - b \cdot r]$$

Substituting the numerical values, we obtain the numerical IS equation:

$$Y = 2500 - 2500 r$$

Then we write the equilibrium between the real money demand and the real money supply:

$$Y = \frac{1}{k} \frac{M}{p} + \frac{h}{k} r$$

Substituting the numerical values, we obtain the numerical LM equation:

$$Y = 500 + 10000 r$$

b) Solving the system:

The equilibrium point (Y^*, r^*) is thus: (2100; 0.16)

Substituting in the functions of investment and budget deficit we obtain:

$$I = 200 - 1000 \times 0.16 = 40 \text{ mil. } \in$$
.

BD = G -T = 710- $1/3 \times 2100 = 10 \text{ mil.} \in \mathbb{C}$. (the economy is facing a budget deficit of 10 mil. \in)

From the LM equation we extract the interest rate: $r = \frac{k}{h}Y - \frac{1}{h}\frac{M}{n}$

After solving the IS-LM system by substituting the interest rate in the IS equation we can determine the level of the total income Y and respectively, the level of the real interest rate, depending on the exogenous variables:

$$\begin{cases} Y^* = \frac{1}{1 - c(1 - t) + \frac{b \cdot k}{h}} \Big[C_0 + cTR - cT_0 + G + I_0 + \frac{b \cdot M}{h \cdot p} \Big] \\ r^* = \frac{k}{h} Y^* - \frac{1}{h} \frac{M}{p} \end{cases}$$

Based on these equations, we can now determine:

- The budgetary/fiscal policy multiplier $\Gamma_{BP} = \frac{1}{1 c(1 t) + \frac{bk}{h}} = \frac{1}{1 0.9\frac{2}{3} + \frac{1000}{10000}} = 2$
- The monetary policy multiplier: $\Gamma_{\text{MP}} = \frac{\Delta Y}{\frac{\Delta M}{p}} = \Gamma_{\text{BP}} \cdot \frac{b}{h} = \frac{1000}{10000} 2 = 0.2$

Comparing the two multipliers, we can conclude that the budgetary policy is much more efficient than the monetary one, since $\Gamma_{BP} > \Gamma_{MP}$.

d) In order to have a balanced budgetary deficit (BD₁ =0), the budgetary deficit has to drop by 10 mil. \in (\triangle BD= -10 mil. \in)

$$\Delta BD = -t \Delta Y$$
.

It results that
$$\Delta Y = 30 \text{ mil.} \in$$

$$\Delta Y = \Gamma_{MP} \cdot \Delta(M/p) = 30 \text{ mil. } \in$$
.

So
$$\Delta(M/P) = 150 \text{ mil. } \in$$
.

In order to balance the budget deficit it is necessary to increase the volume of taxes by \in 10 million. Therefore GDP should increase by \in 30 million. As the monetary policy multiplier is 0.2, the money supply must increase by \in 150 million.

e) In case the government spendings decrease by 50 mil. € then:

$$\Delta Y = \Gamma_{BP} \times \Delta G = 2 \times (-50) = -100 \text{ mil. } \in$$

$$\Delta r = \frac{k}{h} \Delta Y = (-100)/10000 = -0.01$$

Under the conditions of the decrease of the governmental expenses by 50 million \in , the level of the GDP diminishes by 100 million \in , while the interest rate decreases by 1%.

f) To determine the new tax rate t₁, which will lead to an increase of the GDP level by 100 million €, the following relation is used:

$$\Delta Y = \frac{-c\Delta t \, Y_0}{1 - (c(1 - t_1) + \frac{bk}{h})} = 100 \text{ mil.}$$

Then:

$$100 \times (1-0.9+0.9 t_1+0.1) = (-0.9) \times (t_1-1/3) 2100 =>$$

$$=> 0.2 + 0.9 t_1 = -0.9 \times 21 \times t_1 + 0.3 \times 21$$

Thus we get the new tax rate $t_1 = 0.305$ (ie 30.5%, which is lower than t_0 of 33.3%). This aspect is also confirmed graphically.

