Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports année scolaire 2021-2022Professeur : $Zakaria\ Haouzan$ Établissement : $Lyc\acute{e}e\ SKHOR\ qualifiant$

Devoir surveillé N°2 1BAC Sciences Mathématiques Durée 2h00

Fiche Pédagogique _____

I Introduction

Le programme d'études de la matière physique chimie vise à croître un ensemble de compétences visant à développer la personnalité de l'apprenant. Ces compétences peuvent être classées en Compétences transversales communes et Compétences qualitatives associées aux différentes parties du programme.

II cadre de référence

L'épreuve a été réalisée en adoptant des modes proches à des situations d'apprentissages et des situations problèmes, qui permettent de compléter les connaissances et les compétences contenues dans les instructions pédagogiques et dans le programme de la matière physique chimie et aussi dans le cadre de référence de l'examen national.

Tout en respectant les rapports d'importance précisés dans les tableaux suivants :

Restitution des Connaissances	Application des Connaissances	Situation Problème
50%	25%	25%

III tableau de spécification

Niveau d'habileté	Restitution des Connaissances	Application des Connaissances	Situation Problème	la somme
Le travail : mode de transfert d'énergie	35% 7pts 42min	18% 4pts 22min	17% 3pts 20min	70% 14pts 84min
Les solutions	9%	4%	4%	17%
électrolytiques et les concentrations	2pts 12min	1pt 4min	1pt 4min	4pts 20min
Suivi d'une transformation chimique - Bilan de la matière	6% 1pt 10min	3% 0.5pts 3min	3% 0.5pts 3min	13% 2pt 16min
	50% 10pts 64min	25% 5.5pts 29min	25% 4.5pts 27min	100% 20pts 120min

Devoir surveillé $N^{\circ}2$ Semestre I

		Chir	nie				(7pts)
Partie 1 : Le	s solutions électro	olytiques					(4pts)
N° Question			Réponse				Note
1.	la masse d'hydrox		contenu dans 5 $n_{NaOH} = 120g$	$00 \text{mL} \ m_{NaOH}$	$q = d.\rho_{ea}$	u.20%.V	1pt
2.	la	la concentration $C_0 = \frac{m_{NaOH}}{M(NaOH).V} = 4mol/L$			1pt		
3.a	$C_1 = \frac{C_0}{20} = 0.2 mol/L$			1pt			
3.b		n(NaOI	$C_1 = C_1 \cdot V_1 = 0.0$	05mol			0.5pt
3.c			$C_0.V_0 = C_1.V_1$ $= \frac{V_1}{20} = 12.5mL$				0.5pt
Partie 2 : Su	ivi d'une transfor	mation chim	ique				(2pts)
1.	Equation de létats Etat initial Etat de transformation Etat final	la réaction avancement 0 x x_{max}				$\begin{bmatrix} 0 \\ x \end{bmatrix}$	1pt
2	l'avancement ma	$ximal x_{max} =$	1.4mol et le réa	ctif limitant l	e carbor	ne C(s)	0.5pt
3	$n_f(CuO) = 9.58m$		natière dans l'éta $0 \mod \text{ et } n_f(Cu)$		$f(CO_2) =$	= 1.4 <i>mol</i>	0.5pt

Physique (13			
Partie 1: Tra	avail mécanique et énergie(11pts)	
N° Question	Réponse	Note	
1.a	Bilan des forces : \vec{P} poids du corps.	1pt	
	et $ec{R}$: réaction du plan , le contact se fait sans frottement.		
	$ec{F}$: la force motrice .		
1. <i>b</i>	$\Delta E_c = \sum W(\vec{f})$	1pt	
	En appliquant le théorème de l'énergie cinétique sur le corps S entre A et B		
1. <i>c</i>	$\Delta E_{cA\to B} = W(\vec{P})_{A\to B} + W(\vec{R})_{A\to B}W(\vec{F})_{A\to B}$	1.20+	
	$E_{cB} = -mg.sin\alpha + F.AB$	$\parallel 1pt$	
	$F = \frac{E_{cB} + mg.AB.sin\alpha}{AB} = 5.2N$		
2.a	variation de l'énergie potentielle de pesanteur du corps S entre B et C :	1.00+	
z.a	$\Delta E_{ppB\to C} = E_{ppC} - E_{ppB} = mg(z_c - z_B) = mg.BC.sin\alpha$	$\parallel 1pt$	
2.b	$\Delta E_{mB\to C} = \frac{1}{2}m(v_c^2 - v_B^2) + mg.BC.sin\alpha$	$\parallel 1pt$	
	Le contact se fait avec frottement sur le trajet BC , donc la variation de		
2.c	l'énergie mécanique est égale au travail de la force de frottement. $\Delta E_{mB\to C} = W(\vec{f})_{B\to C}$		
2.0			
	donc: $f = -\frac{\Delta E_m}{BC} = 2.8N$		
3.a	$E_{mc} = E_c + E_p = \frac{1}{2}mv_c^2 + mg(z_C - z_B) = \frac{1}{2}mv_c^2 + mg.BCsin\alpha = 1.54J$	1pt	
3.b	$E_{mm} = E_c + E_p = \frac{1}{2}mv_m^2 + mg(z_m - z_B) = mg(z_m - z_B)$	2pt	
3.0	$E_m = mg(BC.sin\alpha + r(cos\alpha - cos(\alpha + \theta)))$		
3.c	$\theta = 19.1^{\circ}$	$\parallel 2pt$	
Partie 2 : Mo	ode de transfert d'énergie	(3pts)	
1	$Z_{max} = 6.5m$	$\parallel 1.5pt$	
1	$V_f = 12.6m/s$	1.5pt	