در این تمرین قصد داریم یک شبیه سازی از پیاده سازی چهار روش Sampling در شبکه های Bayesian داشته باشیم. این چهار روش عبارت اند از:

- Prior Sampling •
- Rejection Sampling •
- Likelihood Sampling
 - Gibbs Sampling •

درون فایل bn_utils تعدادی تابع از قبل پیاده سازی شده فراهم شده است. توابع کمکی برای پیاده سازی روش Inference.

شما باید توابع مورد نیاز درون فایل Bayesian_Net را کامل کنید.

💠 پکیچ های مورد نیاز داخل فایل requirements.txt قرار دارند.

:Loading Model

path میباشد. شما باید این جداول را از مسیری که به عنوان Bayesian Network وظیفه اصلی این تابع خواندن cpt های cpt های cpt و cpt میباشد. شما باید این جداول را از مسیری که به عنوان cpt و cp

• CPTs: این متغیر به شکل List of List of Dictionary میباشد. یعنی هر row از هر cpt را به شکل CPTs: این متغیر به شکل row های cpt یک variable را به یک لیست اضافه میکنیم و در آخر یک Dictionary در نظر میگیریم و تمام row های آن Bayesian Network میباشد. هر Dictionary بیانگر یک Cpt متغیر Cpt متغیر Cpt میباشد. یعنی به عنوان مثال اگر A و B والد های راس C در شبکه بیزی باشند، و یک ردیف از cpt متغیر C به شکل زیر باشد:

C=T	A=T	B=F	0.66

آنگاه این ردیف در Dictionary به شکل زیر نمایش داده میشود:

که بیانگر احتمال P(C=T|A=T,B=F) و یا به عبارتی یک مضربی از احتمال P(C=T, A=T, B=F) میباشد.

● Graph: این متغیر به شکل Dictionary of List of List میباشد. در اصل این Dictionary دو key به اسم:

- parents_nodes o
- children nodes o

میباشد. Value هر کدام هم به شکل:

- oparents_nodes: نگهدارنده parent های یک راس به صورت لیست.
- children_nodes : نگهدارنده children های یک راس به صورت لیست.

به عنوان مثال اگر راس A را با D و راس B را با D و راس D را با D نمایش دهیم:

V: که بیانگر تعداد متغیر های این Bayesian Network میباشد.

:Reading Queries

در این تابع باید query و evidence هایی که داخل یک فایل قرار دارند را از path که به عنوان ورودی به تابع داده میشود بخوانید و دو متغیر queries و evidences را به شکل زیر خروجی دهید:

queries: این متغیر به شکل List of Dictionary میباشد.

evidences: این متغیر هم به شکل List of Dictionary میباشد.

به عنوان مثال اگر دو query در فایل مدنظر موجود باشد:

آنگاه queries و evidences به شکل زیر میباشند:

queries = [{A: T, C: T}, {B: T}] evidences = [{B: F}, {A: F, C: T}]

در مرحله بعد باید تابع های Sampling را پیاده سازی کنید.

:Prior Sampling

این روش به صورت کلی به شکل زیر میباشد:

- For i=1, 2, ..., n (in topological order)
 - Sample X_i from $P(X_i \mid parents(X_i))$
- Return (x₁, x₂, ..., x_n)

برای مشاهده جزییات بیشتر پیاده سازی به توضیحات ارائه شده در فایل Bayesian_Net مراجعه کنید.

:Rejection Sampling

این روش شامل مراحل زیر میباشد:

- Input: evidence e₁,..,e_k
- For i=1, 2, ..., n
 - Sample X_i from $P(X_i \mid parents(X_i))$
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
- Return (x₁, x₂, ..., x_n)

برای مشاهده جزییات بیشتر پیاده سازی به توضیحات ارائه شده در فایل Bayesian_Net مراجعه کنید.

:Likelihood Sampling

اين الگوريتم از مراحل زير تشكيل شده است:

- Input: evidence e₁,...,e_k
- w = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - x_i = observed value, for X_i
 - Set $w = w * P(x_i \mid parents(X_i))$
 - else
 - Sample x_i from P(X_i | parents(X_i))
- return (x₁, x₂, ..., x_n), w

برای مشاهده جزییات بیشتر پیاده سازی به توضیحات ارائه شده در فایل Bayesian_Net مراجعه کنید.

:Gibbs Sampling

این روش سه گام اصلی دارد:

- Step 1: Fix evidence
- Step 2: Initialize other variables (randomly)
- Step 3: Repeat (Resample a non-evidence variable)

برای مشاهده جزییات بیشتر پیاده سازی به توضیحات ارائه شده در فایل Bayesian_Net مراجعه کنید.

در مرحله آخر معیار (AE(Average Error را برای هر متد نمایش دهید.