	WHAT IS CLAIMED IS:
r d	1. A cardioplegia catheter for inducing cardioplegic arrest comprising:
2 2	a shaft with a distal end, a proximal end, an opening near the distal end, a port
3	at the proximal end, and an inner lumen fluidly connecting the port and the opening, a distal
94	portion of the shaft being configured to extend into the ascending aorta with a proximal
7-57	portion of the shaft extending into a left chamber of the heart through the aortic valve and out
b'/6	of the heart through a penetration in a wall thereof; and
7	an occlusion member mounted to the shaft distally of the opening and
8	configured to occlude the ascending aorta between the brachiocephalic artery and the
9	coronary ostia.
	2. The cardioplegia catheter of claim 1 further comprising a sealing

- 2. The cardioplegia catheter of claim 1 further comprising a sealing device for sealing the penetration in the wall of the heart around the shaft to inhibit blood flow therethrough.
- 3. The cardioplegia catheter of claim 2 wherein the sealing device comprises a purse string suture applicable to the wall of the heart around the penetration.
- 4. The cardioplegia catheter of claim 1 wherein the shaft is at least about 25 cm in length.
- 5. The cardioplegia catheter of claim 1 wherein the distal portion is preshaped for positioning the distal end in the ascending aorta with the proximal end extending through a left ventricle, a mitral valve and a left atrium of the heart.

2

3

1

2

3

1

2

- 6. The cardioplegia catheter of claim 1 further comprising a guiding device for guiding the distal end of the shaft into the ascending aorta with the proximal end extending through a left ventricle, a mitral valve and a left atrium of the heart.
- 7. The cardioplegia catheter of claim 6 wherein the guiding device comprises a guidewire positionable in the ascending aorta from the left chamber of the heart.
- 1 8. The cardioplegia catheter of claim 6 wherein the guiding device 2 comprises a stylet removably positionable in a lumen within the shaft, the stylet having an 3 end portion for shaping the shaft.

2

proximal to the occlusion member.

i	The cardioplegia catheter of claim 8 wherein the stylet has a shaping
2	mechanism for shaping the end portion, the shaping mechanism having an actuator at a
3	proximal end of the stylet.
1	10. The cardioplegia catheter of claim 6 wherein the guiding device
2	comprises a flow directed catheter positionable through a lumen in the shaft and having an
3	expandable member at a distal end thereof for being carried by blood flow into the ascending
4	aorta.
1	11. The cardioplegia catheter of claim 1 further comprising a source of
2	cardioplegic fluid in communication with the port at the proximal end of the shaft.
1	12. The cardioplegia catheter of claim 1 wherein the inner lumen is
2	configured to deliver cardioplegic fluid at a rate of at least about 150 ml/min and a pressure
3	less than about 350 mmHg.
1	13. The cardioplegia catheter of claim 1 wherein the inner lumen has a
2	cross-sectional area of at least about 2.2 mm2 between the port and the opening.
1	14. The cardioplegia catheter of claim 1 further comprising a delivery
2	opening distal to the occlusion member, a delivery port at the proximal end of the shaft, and a
3	delivery lumen extending between the delivery port and the delivery opening.
1	15. The cardiople is catheter of claim 14 wherein the delivery lumen is
2	configured to deliver blood at sufficient rates to maintain the patient under full
3	cardiopulmonary bypass with cardioplegic arrest.
1	16. The cardioplegia catheter of claim 15 wherein the delivery lumen is
2	configured to deliver blood at a rate of at least about 4 liters/min at a pressure no more than
3	about 350 mmHg.
1	17. The cardioplegia catheter of claim 1 further comprising a pressure

monitoring device coupled to the shaft for monitoring pressure in the ascending aorta

	`	U
	_	
=	-	
	2	-
놸	#	
	1	
ŀ	ī	
-	j	1
4	=	
16. 6 18.11	7	10
ď	į	
	z.	10
= =	_	
L	j	1.
	į	12 12
F	Ŀ	12
	j	
=	1	
= =	# #]
<u>_</u>	J	
		2
		_
		3
		4

1	18. The cardioplegia catheter of claim 17 further comprising a pressure				
2	opening in the shaft proximal to the occlusion member, a pressure port at the proximal end of				
3	the shaft, and a pressure lumen extending between the pressure port and the pressure opening,				
4	the pressure monitoring device being in communication with the pressure port at the proximal				
5	end of the shaft.				
Q,	A 10 A catheren of C 1 A 1				
Day	19. A catheter system for inducing cardioplegic arrest comprising:				
\mathcal{Q}	a cardioplegia catheter including:				
3	a shaft with a distal end, a proximal end, an opening near the distal end, a port				
4	at the proximal end, and an inner lumen fluidly connecting the port and the opening, a distal				
5	portion of the shaft being configured to extend into the ascending aorta with a proximal				
6	portion of the shaft extending into a left chamber of the heart through the aortic valve and out				
7	of the heart through a penetration in a wall thereof; and				
8	an occlusion member mounted to the shaft distally of the opening and				
9	configured to occlude the ascending aorta between the brachiocephalic artery and the				
10	coronary ostia; and				
11	a guiding device for guiding the distal portion of the shaft into the ascending				
12	aorta from the left chamber of the heart.				
1	20. A catheter system for inducing cardioplegic arrest comprising:				
2	a cardioplegia catheter including:				
3	a shaft with a distal end, a proximal end, an opening at the distal end, a port at				
4	the proximal end, and an inner lumen fluidly connecting the port and the opening, a distal				
5	portion of the shaft being configured to extend into the ascending aorta with a proximal				
6	portion of the shaft extending into a left chamber of the heart through the aortic valve and out				
7	of the heart through a penetration in a wall thereof; and				
8	an occlusion member mounted near the distal end of the shaft and configured				
9	to occlude the ascending aorta between the brachiocephalic artery and the coronary ostia;				
10	a source of cardioplegic fluid in communication with the port at the proximal				
11	end of the shaft; and				
12	a blood flow device positionable in an artery downstream of the occlusion				
13	member for maintaining circulation of oxygenated blood in the patient's arterial system.				