Update on NFPT and SCRI: We're off to the races

Update at NCP Summer Meeting for SCRI NFPT Subcommittee
Walla Walla WA, June 25, 2013

Update on acrylamide and human health

- Neurotoxicity
- Carcinogenesis
- Reproductive and developmental defects

Expanded proposition 65 warning

OEHHA

Office of Environmental Health Hazard Assessment

Acrylamide [2011]

Acrylamide is on the Proposition 65 list of chemicals known to the state to cause cancer or reproductive toxicity (such as birth defects and other reproductive harm).

Research on prenatal development and acrylamide

Birth Weight, Head Circumference, and Prenatal Exposure to Acrylamide from Maternal Diet: The European Prospective Mother—Child Study (NewGeneris)

Environmental Health Perspectives 2012 vol. 120 (12) pp. 1739-1745

Conclusions of the authors:

- Dietary exposure to acrylamide was associated with reduced birth weight and head circumference.
- Consumption of specific foods during pregnancy was associated with higher acrylamide exposure in utero.
- If confirmed, these findings suggest that dietary intake of acrylamide should be reduced among pregnant women.

Potato breeding in the 21st century

- Molecular markers linked to high value traits
- Association mapping using less structured populations
- Specific mapping populations
- Accurate characterization of traits is the biggest challenge

Potato breeders have selected for carbohydrate synthesis, degradation, transport, and regulatory genes

Retrospective View of North American Potato (Solanum tuberosum L.) Breeding in the 20th and 21st Centuries

Candice N. Hirsch,* Cory D. Hirsch,* Kimberly Felcher,† Joseph Coombs,† Dan Zarka,† Allen Van Deynze,‡ Walter De Jong,§ Richard E. Veilleux,** Shelley Jansky,††,‡‡ Paul Bethke,††,‡‡ David S. Douches,†

and C. Robin Buell*,1

Strong enrichment for carbohydrate-related genes

Chromosome position

Developing molecular markers for lowacrylamide fry processing clones

- Premier Russet x Rio Grand Russet mapping population developed in SolCAP project
- Selected 45 clones for asparagine and acrylamide analysis
- Replicate plots in Idaho and Michigan
- Use data to identify genetic loci linked to acrylamide content

Reducing sugars are a strong determinant of fry acrylamide

Reducing sugars don't explain all variation in acrylamide

Fries processed at East Grand Forks

NFPT database is on the web

http://hort-fms.cals.wisc.edu/fmi/iwp/res/iwp_home.html

AF300	11-6											Breeding	_		M-ME			
AI 300	71-0												le pare		1668-60			
ield, Specific	gravity, \$	Sugars	Acrylamide and	d asparagin	e	QSR e	valuations					Fem	ale par	ent: Silv	erton F	lusset		
			Breeder	Tuber sh		Tc	tal yield	(lbs)	Marke	table yie	eld (%)			Specific	gravity			
Trial	Year	State	Merit	flesh co	olor	Clone		Ranger	Total		>10 oz	Hai	vest	Early s	season	Mid se	ason	_
NFPT	2011	I D	marginal	long, w	nite	72	73	90	94	83	53	9/22	1.084	10/19	1.078	1/12	1.091	Ĥ
NFPT	2011	ND	keep	long, w	nite	80	89	80	92	76	31	10/8	1.097	10/20	1.088	1/11	1.089	
NFPT	2011	WA	outstanding	round, w	hite	147	128	125	92	80	52		1.082	10/11	1.067	1/12	1.074	
NFPT	2012	ID	marginal	long, w	nite	86	57	77	92	88	61	9/20	1.078	10/25	1.079	2/20	1.079	
NFPT	2012	ND	keep	long, b	uff	77	79	75	81	72	54	9/20	1.096	11/1	1.089	2/26	1.099	
NFPT	2012	WA	keep	oval, wl	nite	202	138	211	97	94	81	9/25	1.079	10/24	1.083	2/20	1.083	
NFPT SCRI	2012	WI	keep	long		135	159	98	83	67	35	9/24	1.073	11/1	1.073	2/26	1.079	
NFPT SCRI	2012	ME	outstanding	long, w	nite	94	70	62	80	65	29	10/3	1.075	11/7	1.073	3/5	1.072	
Average acro	ss site-y	ears		Sucros	se (ma/	112 g fresh v	99 veight)	102	89	78	49	fresh we	1.083		1.079		1.083	
Trial	Year	State	Early	season	Mid se		Late se	ason	Early se		Mid sea		Late sea	uson				
	2011	ID	10/19	1.033	1/10	0.508	5/12	0.757	10/19	0.123	1/10	0.066	5/12	0.175				
NFPT	2011	ND	10/20	1.810	1/11	1.226	5/12	0.463	10/20	0.400	1/11	0.091	5/12	0.108				
NFPT NFPT		WA	10/11	0.650	1/12	0.693	5/12	0.520	10/11	0.033	1/12	0.043	5/12	0.250				
	2011		11/00	0.675	2/20	0.317			11/26	0.048	2/20	0.056						
NFPT	2011 2012	ID	11/26						11/26	0.101	2/26	0.054						
NFPT NFPT		ID ND	11/26	1.385	2/26	0.630				0.261	2/20	0.212						
NFPT NFPT NFPT	2012			1.385 1.115	2/26 2/20	0.630 0.784			11/26	0.201								1
NFPT NFPT NFPT	2012 2012	ND	11/26						11/26 11/27	1.586	2/26	0.671						
NFPT NFPT NFPT NFPT	2012 2012 2012	ND WA	11/26 11/26	1.115	2/20	0.784					2/26 3/5	0.671 0.029						
NFPT NFPT NFPT NFPT NFPT NFPT SCRI	2012 2012 2012 2012	ND WA WI	11/26 11/26 11/27	1.115 1.141	2/20 2/26	0.784 1.114			11/27	1.586								

Breeder merit and total yield

Yield, Specific	gravity,	Sugars	Acrylamide ar	nd asparagine	QSR e	valuations		
		•	Breeder	Tuber shape,	То	tal yield (lbs)	
Trial	Year	State	Merit	flesh color	Clone	Burbank	Ranger	
NFPT	2011	ID	marginal	long, white	72	73	90	
NFPT	2011	ND	keep	long, white	80	89	80	
NFPT	2011	WA	outstanding	round, white	147	128	125	
NFPT	2012	ID	marginal	long, white	86	57	77	
NFPT	2012	ND	keep	long, buff	77	79	75	
NFPT	2012	WA	keep	oval, white	202	138	211	
NFPT SCRI	2012	WI	keep	long	135	159	98	
NFPT SCRI	2012	ME	outstanding	long, white	94	70	62	

Marketable yield and sp. gravity

Breeding Program: UoM-ME

Male parent: AF1668-60

Female parent: Silverton Russet

Market	able yie	eld (%)			Specific	gravity			
Total	>6 oz	>10 oz	Har	vest	Early	season	Mid se	ason	<u>. </u>
94	83	53	9/22	1.084	10/19	1.078	1/12	1.091	
92	76	31	10/8	1.097	10/20	1.088	1/11	1.089	
92	80	52		1.082	10/11	1.067	1/12	1.074	
92	88	61	9/20	1.078	10/25	1.079	2/20	1.079	
81	72	54	9/20	1.096	11/1	1.089	2/26	1.099	
97	94	81	9/25	1.079	10/24	1.083	2/20	1.083	
83	67	35	9/24	1.073	11/1	1.073	2/26	1.079	
80	65	29	10/3	1.075	11/7	1.073	3/5	1.072	
89	78	49		1.083		1.079		1.083	

Sugar data from NFPT database

	Sucros	se (mg/	g fresh v	weight)		Glucose (mg/g fresh weight)						
Early season		Mid s	eason	Late s	season	Early s	Early season		Mid season		eason	
10/19	1.033	1/10	0.508	5/12	0.757	10/19	0.123	1/10	0.066	5/12	0.175	
10/20	1.810	1/11	1.226	5/12	0.463	10/20	0.400	1/11	0.091	5/12	0.108	
10/11	0.650	1/12	0.693	5/12	0.520	10/11	0.033	1/12	0.043	5/12	0.250	
11/26	0.675	2/20	0.317			11/26	0.048	2/20	0.056			
11/26	1.385	2/26	0.630			11/26	0.101	2/26	0.054			
11/26	1.115	2/20	0.784			11/26	0.261	2/20	0.212			
11/27	1.141	2/26	1.114			11/27	1.586	2/26	0.671			
11/29	1.219	3/5	0.677			11/29	0.060	3/5	0.029			
	1.128		0.744		0.580		0.326		0.153		0.178	

The NFPT database contains data from QSR runs

Acrylamide (nph)	Color	A STATE OF THE PARTY OF THE PAR	Color variation (# per 1.5 lb)	Acrylami	ide rank	Processing rank	Sensory rank
44	79	0	0	3/	31	/ 32	26/32
52	77	0	0	5/	31	/ 32	32/32
80	73	3	3	4/	39	25 / 38	23 / 38
218	63	3	30	22 /	39	38 / 38	25 / 38
102	71	4	16	8 /	39	31 / 38	26 / 38

The NFPT database contains data from QSR runs

	0.	-	Jnits	- C	72 0 0
Test	Limp /	Hollow	Fluffy	Firm/	Good
date	bendovers	internal	internal	wet	exterior shell
3/29					
3/29					
10/29	28	8	48	16	68
10/29	38	14	38	10	60
10/29	24	4	52	20	66

The NFPT database contains data from QSR runs

Raw or fry attributes needing improvement

15 bend overs

23 bend overs, Increase crispness, Increase toughness, Increase mealiness, Decrease moistness, Reduce texture variation, Increase

Higher sugar ends, High texture variation, Poor shell, Moderate asparagine, Low crispness, Low persistence of crispness, Dissolves

Lots of partial color variation

Lower gravity, High sugar ends, High color variation, High texture variation, Poor shell, Low crispness, Too tender

Outcomes from Caldwell meeting

- Identified need to begin moving select lines to pivot-scale trials
- Identified need for additional data on promising clones
- Identified late season storage as a high value trait for new varieties
- Refined list of attributes
- Identified need for database of results

Progress since Caldwell

- Began moving select lines to pivot-scale trials
- SCRI trials initiated to generate additional data on promising clones
- Conducted late-season QSR tests
- Developed a database of results

Moving select lines to pivot-scale trials in SCRI

- Identified clones for NFT minituber production
- Targeting 2014 as first seed field year
- Large trials begin in 2015

Minituber production is underway for five clones

- Sklarczyk Seed Farms: AF4296-3, ND8229-3
- CSU: AC96052-1RU
- CSS: A02507-2LB, A02138-2
- Seed is available for W6234

Procedures for initiating seed production need to be streamlined

- Resources are needed for contractual seed production
- Variety protection
- Many institutions have a stake
- Delays have cost us a year for some clones

Generate expanded data set using replicated trials

SCRI Agronomic trials are in the ground

- 6 sites
- 14 clones plus Russet Burbank check
- Replicated plots
- Provide material for multiple QSR sample time periods

In-season and harvest data collection

In-season

- 50% emergence date, tuber set date, 100% canopy closure date, pre-harvest stem count
- Vine maturity

Harvest

- Specific gravity of (6-10 oz tubers)
- Individual tuber specific gravity
- Tuber size/yield distribution
- Internal defects of (10-13 oz) tubers
- Length to width ratio of (8-10 oz) tubers
- Fry color and sugar-end defect screening
- Bud- and stem-end sucrose and glucose

Post-harvest storage data

- Tubers are stored @ 55°F for three weeks and ramped to 48°F
- Storage samples will be collected every 16 weeks:
 16 wk (Feb), 32 wk (May) post harvest
- Data of fry color, sugar-end defect, bud- and stemend sucrose and glucose will be collected

Additional QSR tests conducted this year by Simplot

32 clones in June 2013

Improvements in data collection for 2013

- NFPT
- SCRI
- Processor involvement

Top ten priority traits

Attribute	Total votes	QSR	Processor	Grower
% Sugar ends	14	2	4	8
Bruise free	9	0	4	5
Acrylamide	9	1	5	3
Resist Cold- sweetening	9	1	0	8
Specific gravity	8	2	5	1
Yield	8	1	4	3
Consistent solids	8	2	5	1
Size profile	7	1	4	2
% high sugar	6	2	2	2
Stores to summer	5	1	3	1

Traits receiving greater attention

Attribute	Total votes	QSR	Processor	Grower
% Sugar ends	14	2	4	8
Bruise free	9	0	4	5
Acrylamide	9	1	5	3
Resist Cold- sweetening	9	1	0	8
Specific gravity	8	2	5	1
Yield	8	1	4	3
Consistent solids	8	2	5	1
Size	7	1	4	2
% high sugar	6	2	2	2
Stores to summer	5	1	3	1

Sugar-end defect screening

- A method to assess sugar ends in material fried at East Grand Forks is being developed
- Lightness of fried slabs from replicated SCRI Agronomic trials will he quantified at bud and stem end

Assessing consistency of solids in SCRI Agronomic trials

Assessing consistency of solids in SCRI Agronomic trials

Long term storage is a priority. Are we addressing this properly?

- Few options for storage with sprout inhibitor
- Difficulty planning next season based on May-August data
- Restricted choices. Few clones have low sugars in late storage
- How do we breed for long-term storage? Parents, methods, priorities.

Data analysis – using the data we already have for discussion and planning

- What have we learned so far?
- What don't we know?
- What can we do better?

Many clones have low acrylamideforming potential

How likely is it that one variety will meet industry requirements across locations?

- NFPT data from 2011 and 2012
- 3 locations in 2011; 5 locations in 2012
- Specific gravity, % >6 oz weight, % >10 oz weight, glucose, acrylamide
- Two traits were removed from joint probability calculations due to high correlation with other traits

Probability of success in 2011

Rank	Clone	SG	6 oz	Gluc	Joint Probability
1	A02507-2LB	0.9952	0.2568	0.9964	0.2547
2	A0073-2	1.0000	0.2230	0.9778	0.2181
3	AC99375-1RU	0.7667	0.1746	0.9848	0.1319
4	AF4281-3	0.7995	0.1827	0.7042	0.1029
5	MN15620 (MonDak Gold)	0.9128	0.1358	0.7909	0.0981
6	AC96052-1RU	0.9252	0.1052	0.9318	0.0907
7	ND060735-4Russ	0.8993	0.0967	1.0000	0.0870
8	ND8229-3	0.6254	0.1427	0.8531	0.0761
9	W7449-1rus	0.5087	0.1658	0.8578	0.0724
10	AF4320-17	1.0000	0.0700	1.0000	0.0700
11	W8152-1rus	0.5296	0.1407	0.9292	0.0693
12	A02424-83LB	0.7367	0.2650	0.3460	0.0676
13	A02138-2	0.4836	0.1113	1.0000	0.0538
14	ND8068-5Russ	0.9012	0.0624	0.9335	0.0525
15	Alpine Russset	0.8273	0.1749	0.3596	0.0520
16	AF4040-2	0.7086	0.1122	0.5297	0.0421
17	ND049546b-10Russ	0.6766	0.0936	0.6476	0.0410
18	MN02467	0.7133	0.0654	0.8023	0.0374
19	A02060-3TE	1.0000	0.1576	0.2345	0.0370
20	AF3001-6	0.6444	0.0491	0.9973	0.0315
28	Ranger	0.7697	0.5493	0.0612	0.0259
74	Burbank	0.2494	0.1133	0.0001	0.00000383

81 clones tested in 2011

Criteria used:

Specific gravity: 1.080-1.095

%>6oz weight: 68-74% %>10oz weight: 28-40% Glucose: 0-0.5 mg/g FW Acrylamide: 0-250 ppb

In minituber production
In agronomic trials
Both in minituber production
and agronomic trials
Checks

Probability of success in 2012

Rank	Clone	SG	6 oz	Gluc	Joint Probability	
1	ND8229-3	0.5912	0.1892	0.7295	0.0816	
2	A02507-2LB	0.5986	0.1264	0.9817	0.0743	
3	W7449-1rus	0.5492	0.1428	0.9002	0.0706	88 clones tested in 2012
4	ND071387C-2Russ	0.9983	0.1222	0.4510	0.0550	Criteria used:
5	W8152-1rus	0.5459	0.1341	0.6913	0.0506	Specific gravity: 1.080-1.095
6	AO02183-2	0.5044	0.1122	0.8814	0.0499	%>6oz weight: 68-74%
7	AF3001-6	0.4596	0.1671	0.6369	0.0489	%>10oz weight: 28-40%
8	GemStar Russet	0.5500	0.1034	0.7107	0.0404	Glucose: 0-0.5 mg/g FW
9	A02138-2	0.6344	0.1110	0.5518	0.0389	Acrylamide: 0-250 ppb
10	AC99375-1RU	0.4709	0.0911	0.8119	0.0348	
11	A0012-5	0.3790	0.1767	0.5098	0.0341	
12	ND060735-4Rus	0.6155	0.0790	0.6791	0.0330	
13	AF3317-15	0.5396	0.2475	0.2323	0.0310	
14	A0073-2	0.6731	0.0818	0.5552	0.0306	
15	ND071078B-1Russ	0.6609	0.1366	0.3372	0.0305	In minituber production
16	Clearwater Russet	0.4401	0.1553	0.4026	0.0275	·
17	W9162-3rus	0.3702	0.0808	0.8779	0.0262	In agronomic trials
18	AF3008-3	0.6841	0.1618	0.2187	0.0242	Both in minituber production
19	W9604-1rus	0.3487	0.0709	0.8504	0.0210	and agronomic trials
20	AO96141-3	0.4784	0.1214	0.3566	0.0207	en a signant a trans
49	Ranger	0.4831	0.1117	0.1491	0.0080	Checks
53	Burbank	0.3187	0.1201	0.1900	0.0073	

Joint probability rank in NFPT for varieties in NFT or seed production

Clone	Joint probability rank in 2011	Joint probability rank in 2012
ND8229-3	8	1
AC96052-1RU	6	27
W6234-4rus	79	65
AF4296-3	69	38
A02507-2LB	1	2
A02138-2	13	9

Refining yield estimations to more efficiently screen clones

- Data from replicated plots in SCRI Agronomic trials
- Do NFPT data provide useful estimates of yield?

Total yield of clones in NFPT

Highest yielding clones in NFPT

Breeder ID In umber	Average Pield		
AC99375-1RU	119	ND049423b-1Russ	106
AO02183-2?	119	AC00395-2RU	105
A9305-10	116	A03921-2	105
ND060742C-1Russ	115	A82360-7	104
ND049289-1Russ	112	AR98-9	104
AF4347-1	112	ND071078B-1Russ	103
AF3001-6	112	A01010-1	103
AF4342-3	111	A7411-22	102
AO96141-3	110	A02424-83LB	102
A01325-1	110	AND99362-1Russ	101
Agila	109	AF4124-7	101
CO97087-2RU	109	A9045-7	100
AO82611-72	108	MN15620	99
A01025-4	108	W9604-1rus	99
W1836-3rus	107	AOA95154-1	99
AF4296-3	107	Russet ® urbank	99

Relative yield of varieties in NFPT compared with other regional trials

Low yields increase costs and decrease profit potential

Should we invest resources in clones that yield less than 90% of Russet Burbank?

Developing an estimate for fry processing quality

- Useful for assessing trial clones
- Minimal training requirements
- Uses available facilities
- Incorporate processor and end-user criteria sooner in the decision making process

Fry color is a good predictor of acrylamide rank...

...but not a good predictor of processing quality rank

A QA estimate based on three easily scored parameters

A QA estimate based on four parameters

Improving the decision making process

- What assessments need to be included in agronomic trials
- Selection of lines for seed increase. How should we make decisions?
- How much asparagine and acrylamide testing is needed and for what samples?
- How do we assess long-term storage potential?
- Can we cover seed production costs?

Future NFPT and SCRI trials

- Where can we make improvements?
- Where can we reduce expenditures or decrease effort?
- Where is greater effort needed?
- Can we maximize value from existing data by including regional trials in assessments

Thanks

Why are we doing multi-site variety evaluations?

Breeders develop clones best suited for local conditions.

...or do they?

Breeder merit for 2012 NFPT

Breeding Program	Trial site						
	ID	ME	ND	WA	WI		
ID	2.3 + 0.8		2.1 + 0.2	2.6 + 0.8	2.2 + 0.8		
ME	2.6 + 1.0	2.4 + 0.8	2.0 + 0.6	3.1 + 0.9	2.5 + 0.9		
ND	3.3 + 1.1	3.3 + 1.0	1.8 + 0.9	3.0 + 1.3	3.0 + 1.0		
OR	2.4 + 1.4		2.1 + 0.9	2.9 + 0.9	2.2 + 1.0		
WI	3.2 + 0.9	3.4 + 0.9	1.8 + 0.7	3.5 + 0.8	2.8 + 0.9		
СО	3.0 + 0.9	2.9 + 0.8	2.1 + 0.3	3.3 + 0.7	2.2 + 0.6		

Breeder merit for 2012 NFPT

Breeding Program	Trial site							
	ID	ME	ND	WA	WI			
ID	2.3 + 0.8		2.1 + 0.2	2.6 + 0.8	2.2 + 0.8			
ME	2.6 + 1.0	2.4 + 0.8	2.0 + 0.6	3.1 + 0.9	2.5 + 0.9			
ND	3.3 + 1.1	3.3 + 1.0	1.8 + 0.9	3.0 + 1.3	3.0 + 1.0			
OR	2.4 + 1.4		2.1 + 0.9	2.9 + 0.9	2.2 + 1.0			
WI	3.2 + 0.9	3.4 + 0.9	1.8 + 0.7	3.5 + 0.8	2.8 + 0.9			
СО	3.0 + 0.9	2.9 + 0.8	2.1 + 0.3	3.3 + 0.7	2.2 + 0.6			

Specific gravity for 2012 NFPT

Breeding Program	Trial site						
	ID	ME	ND	WA	WI		
ID	1.081		1.096	1.088	1.075		
ME	1.077	1.082	1.087	1.087	1.073		
ND	1.085	1.083	1.100	1.085	1.077		
OR	1.082		1.093	1.089	1.077		
WI	1.086	1.101	1.074	1.081	1.069		
CO	1.084	1.089	1.079	1.091	1.077		

Specific gravity for 2012 NFPT

Breeding Program	Trial site							
	ID	ME	ND	WA	WI			
ID	1.081		1.096	1.088	1.075			
ME	1.077	1.082	1.087	1.087	1.073			
ND	1.085	1.083	1.100	1.085	1.077			
OR	1.082		1.093	1.089	1.077			
WI	1.086	1.101	1.074	1.081	1.069			
CO	1.084	1.089	1.079	1.091	1.077			

Mid-season tuber glucose for 2012 NFPT

Breeding Program	Trial site						
	ID	ME	ND	WA	WI		
ID	0.2		0.4	0.7	1.3		
ME	1.4	0.3	0.5	8.0	1.9		
ND	0.3	0.2	0.2	0.4	8.0		
OR	0.5		0.4	0.7	1.2		
WI	0.1	0.1	0.3	0.2	0.5		
CO	0.2	0.3	1.3	1.0	2.3		

Mid-season tuber glucose for 2012 NFPT

Breeding Program	Trial site						
	ID	ME	ND	WA	WI		
ID	0.2		0.4	0.7	1.3		
ME	1.4	0.3	0.5	8.0	1.9		
ND	0.3	0.2	0.2	0.4	8.0		
OR	0.5		0.4	0.7	1.2		
WI	0.1	0.1	0.3	0.2	0.5		
CO	0.2	0.3	1.3	1.0	2.3		

Clone selection at Potato Expo for NFT minituber production

NFPT minituber production

Clare		Sta	2011	2012		
Clone	ID	ME	WA	WI	QSR	QSR
ND8229-3					3	4
AC96052-1rus					3	1
W6234-4rus					3	1
AF4296-3					3	1
A02507-2LB					2	1
AF3001-6					3	3
A02138-2						1
AO01114-4						1
A0012-5					3	2
A0073-2					3	
A03921-2						
AC00395-2Ru						
AC99375-1Ru						
AF4342-3					3	
AO00057-2						
AO02183-2						1
Dakota Trailblazer					3	
ND049423b-1Russ						
ND060735-4Russ					3	
W7449-1rus						
W8152-1rus						
W9604-1Rus						

