ARP-RARP

David Bromberg

Le protocole ARP

- Au niveau physique :
 - Deux machines communiquent
 - Elles connaissent leurs @Physiques respectives.
- Au niveau application
 - Deux machines communiquent.
 - ⇔ Elles connaissent leurs @IP respectives.
- @IP indépendante de la partie matérielle.
 - ⇔ Comment établir un lien entre ces deux constituants.
- Comment établir le lien adresse IP / adresse physique?

Le protocole ARP

 Mise en place dans TCP/IP d'un protocole de bas niveau appelé Adress Resolution Protocol (ARP)

Rôle de ARP

 Fournir à une machine donnée l'adresse physique d'une autre machine située sur le même réseau à partir de l'adresse IP de la machine destinatrice

Le protocole ARP Fonctionnement

- La station Ethernet A a besoin de connaître l'adresse physique de la station Ethernet B :
 - A diffuse une requête ARP qui contient l'adresse IP de B vers toutes les machines.
 - Toutes les machines du LAN écoutent cet échange et peuvent mettre à jour leur table de conversion (@IP\@Phys) pour la machine A.
 - La machine B répond avec un message ARP unicast qui contient la paire (@IP B, @Phys B).

Le protocole ARP Algorithme

- 1. Diffusion d'@IP sur le réseau physique
- 2. La machine qui se reconnaît répond par un message contenant le couple (@IP,@phys) lui correspondant.
- 3. Les machines non concernées ne répondent pas.
- 4. Gestion de cache pour ne pas effectuer de requête ARP à chaque émission

Le protocole ARP Protocole

0	8	16	24	31
Type de matériel		Type de protocole		
Lg-@Phys	Lg-@IP		Opération	
@ Physique émetteur (octets 0-3)				
@Physique émetteur (octets 4,5)		@ IP éı	netteur (octets 0,1)	
@ IP émetteur (octets 4,5)		@ Physique cible (octets 0,1)		,1)
@ Physique cible (octets 2,5)				
@ IP cible (octets 0-3)				

Le protocole ARP Type de matériel et protocole

0		8	16	24	31
Type de matériel		Type de protocole			
	Lg-@Phys	Lg-@IP		Opération	

Type de matériel

- Permet de spécifier le type d'adresse physique dans les champs @Physique cible et @Physique emetteur
- La valeur est à 1 pour Ethernet.

Type de protocole

- Permet de spécifier le type logique dans les champs @Emetteur @Cible,
- 0x0800 (même valeur que dans la trame Ethernet) pour des adresses IP.

Le protocole ARP Longueur @ et opérations

0		8	16	24	31
Type de matériel		Т	ype de protocole		
Lg-(a)Phys	Lg-@IP		Opération	

- Lg-@Phys.
 - Spécifie la longueur de l'adresse physique (6 octets pour Ethernet).
- Lg-@IP
 - Spécifie la longueur de l'adresse logique (4 octets pour IP).
- OPERATION
 - Précise le type de l'opération,
 - ⇔ La trame est la même pour toutes les opérations des deux protocoles qui l'utilisent.
 - Question-réponse : ARP :1-2, RARP: 3-4

Le protocole

@ Physique émetteur (octets 0-3)		
@Physique émetteur (octets 4,5)	@ IP émetteur (octets 0,1)	
@ IP émetteur (octets 4,5)	@ Physique cible (octets 0,1)	
@ Physique cible (octets 2,5)		
@ IP cible (octets 0-3)		

- Physique émetteur Adresse physique de l'émetteur
- @ IP émetteur
 - Adresse logique de l'émetteur
- @ Physique cible
 - Adresse physique du destinataire
- @ IP cible
 - Adresse logique du destinataire

Le protocole RARP

- Normalement une machine qui démarre obtient son @ IP :
 - Par lecture d'un fichier sur son disque dur
 - Ou depuis sa configuration figée dans une mémoire non volatile
- Pour certains équipements cette opération n'est pas possible voire même non souhaitée par l'administrateur du réseau :
 - Terminaux X Windows
 - Stations de travail "diskless"
 - Imprimante en réseau
 - "Boites noires" sans disque dur
 - PC en réseau

Le protocole RARP

Le protocole RARP

- Pour communiquer en TCP/IP une machine a besoin d'au moins une adresse IP,
 - L'idée de ce protocole est de la demander au réseau.
- Le protocole RARP est adapté de ARP :
 - L'émetteur envoie une requête RARP spécifiant son adresse physique dans un datagramme de même format que celui de ARP et avec une adresse de "broadcast" physique.
 - Le champ OPERATION contient alors le code de "RARP question"
- Toutes les stations en activité reçoivent la requête
 - Celles qui sont habilités à répondre (serveurs RARP) complètent le datagramme et le renvoient directement (``unicast") à l'émetteur de la requête puisqu'elle connaissent son adresse physique.

Routage Statique

Le routage statique Qu'est ce que le routage ?

 Le routage est le processus permettant à un datagramme d'être acheminé vers le destinataire lorsque celui-ci n'est pas sur le même réseau physique que l'émetteur.

 Le chemin parcouru est le résultat du processus de routage qui effectue les choix nécessaires afin d'acheminer le datagramme.

Le routage statique Qu'est ce que le routage ? (1)

• Les routeurs forment une structure coopérative de telle manière qu'un datagramme transite de routeur en routeur jusqu'à ce que l'un d'entre eux le délivre à son destinataire.

Le routage statique Qu'est ce que le routage ? (2)

 Un routeur possède deux ou plusieurs connexions réseaux tandis qu'une machine possède généralement qu'une seule connexion.

Le routage statique Coordination station/routeur

Machines et routeurs participent au routage :

– Routage direct :

• Si les machines déterminent que le datagramme doit être délivré sur le réseau physique sur lequel elles sont connectées.

– Routage indirect :

- Si les machines déterminent que le datagramme doit être acheminé vers une passerelle \Leftrightarrow elle doit identifier la passerelle appropriée.
- Les routeurs effectuent le choix de routage vers d'autres routeurs afin d'acheminer le datagramme vers sa destination finale.

Le routage statique Cas pratique

M est mono-domiciliée et doit acheminer les datagrammes vers un des routeurs R1 ou R2;

Elle effectue donc le premier routage. Dans cette situation, aucune solution n'offre un meilleur choix.

• Le routage indirect :

- Repose sur une table de routage IP,
- Une table de routage IP :
 - Présente sur toute machine et routeur,
 - Indique la manière d'atteindre un ensemble de destinations.

Le routage statique Table de routage (1)

Les tables de routage IP

- Renseignent seulement les adresses réseaux et non pas les adresses machines.
- => pour des raisons évidentes d'encombrement,
- Une table de routage contient des couples (R, P)
 - R est l'adresse IP d'un réseau destination
 - P est l'adresse IP du routeur correspondant au prochain saut dans le cheminement vers le réseau destinataire.

Le routage statique Table de routage (2)

- Un routeur
 - Ne connaît pas le chemin complet pour atteindre la destination.

Le routage statique Table de routage (3)

- Pour une table de routage contenant des couples (R, P) et appartenant à la machine M,
 - P et M sont connectés sur le même réseau physique dont l'adresse de niveau réseau (partie Netid de l'adresse IP) est P.

Le routage statique table de routage : cas pratique

Le routage statique Algorithme (1)

- Route_Datagramme_IP(datagramme, table_de_routage)
 - Extraire du datagramme l'adresse IP destination, ID
 - Calculer l'adresse du réseau de destination, IN
 - Si IN correspond à une adresse de réseau directement accessible
 ⇔ Envoyer le datagramme vers sa destination, sur ce réseau
 - Sinon si dans la table de routage, il existe une route vers ID
 ⇔Router le datagramme selon les informations contenues dans la table de routage.
 - Sinon si IN apparaît dans la table de routage,
 ⇔Router le datagramme selon les informations contenues dans la table de routage.
 - Sinon s'il existe une route par défaut
 ⇔Router le datagramme vers la passerelle par défaut.
 - Sinon déclarer une erreur de routage.

Le routage statique Algorithme (2)

- Après exécution de l'algorithme de routage, IP transmet le datagramme ainsi que l'adresse IP determinée, à l'interface réseau vers lequel le datagramme doit être acheminé.
- L'interface physique détermine alors l'adresse physique associée à l'adresse IP et achemine le datagramme sans l'avoir modifié (l'adresse IP du prochain saut n'est sauvegardée nulle part).
- Si le datagramme est acheminé vers une autre routeur, il est à nouveau géré de la même manière, et ainsi de suite jusqu'à sa destination finale.

Le routage statique Algorithme (1)

 Les datagrammes entrants sont traités différemment selon qu'il sont reçus par une machine ou un routeur

Le routage statique Algorithme (2)

- Machine : le logiciel IP examine l'adresse destination à l'intérieur du datagramme
 - si cette adresse IP est identique à celle de la machine,
 IP accepte le datagramme et transmet son contenu à la couche supérieure.
 - sinon, le datagramme est rejeté; une machine recevant un datagramme destiné à une autre machine ne doit pas router le datagramme.

Le routage statique Algorithme (3)

Passerelle :

- 1. IP détermine si le datagramme est arrivé à destination et dans ce cas le délivre à la couche supérieure.
- 2. Si le datagramme n'a pas atteint sa destination finale, il est routé selon l'algorithme de routage

Le protocole ICMP Introduction (1)

- ICMP : acronyme de "Internet Control Message Protocol"
 - Le protocole IP ne vérifie pas si les paquets émis sont arrivés à leur destinataire dans de bonnes conditions.
 - ✓ Les paquets circulent d'un routeur à l'autre jusqu'à en trouver un qui puisse les délivrer directement à un hôte.
- Si un routeur
 - Ne peut router ou délivrer directement un paquet
 - Ou si un événement anormal arrive sur le réseau comme un trafic trop important ou une machine indisponible

⇔ Il faut pouvoir en informer l'hôte qui a émis le paquet. Celui-ci pourra alors réagir en fonction du type de problème rencontré.

Le protocole *ICMP*Introduction (2)

- Echanges routeurs-hôtes, ou entre hôtes de :
 - Messages de contrôle
 - Messages d'erreur
- ICMP rapporte les messages d'erreur à l'émetteur initial.

Le protocole *ICMP*Introduction (3)

- Si une passerelle détecte un problème sur un datagramme IP, elle le détruit et émet un message ICMP pour informer l'émetteur initial.
- Les messages ICMP sont véhiculés à l'intérieur de datagrammes IP et sont routés comme n'importe quel datagramme IP sur l'internet.

Le protocole *ICMP*Introduction (4)

 Une erreur engendrée par un message ICMP ne peut donner naissance à un autre message ICMP (évite l'effet cumulatif, ou l'effet de boucle).

Le protocole *ICMP*Format

Le protocole *ICMP*Type

•	<u>TYPE</u> - 0	Message ICMP Echo Reply
	- 3	Destination Unreachable
	_ 4	Source Quench
	- 5	Redirect (change a route)
	- 8	Echo Request
	- 11	Time Exceeded (TTL)
	- 12	Parameter Problem with a Datagram
	- 13	Timestamp Request
	- 14	Timestamp Reply
	_ 15	Information Request (obsolete)
	- 16	Information Reply (obsolète)
	- 17	Address Mask Reques
	- 18	Address Mask Reply

Le protocole *ICMP*Host unreachable

 Lorsqu'un routeur émet un message ICMP de type destination inaccessible le champ code décrit la nature de l'erreur :

- 0 Network Unreachable
- 1 Host Unreachable
- 2 Protocol Unreachable
- 3 Port Unreachable
- 4 Fragmentation Needed and DF set
- 5 Source Route Failed
- 6 Destination Network Unknown
- 7 Destination Host Unknown
- 8 Source Host Isolated
- 9 Communication with desination network administratively prohibited
- 10 Communication with desination host administratively prohibited
- 11 Network Unreachable for type of Service
- 12 Host Unreachable for type of Service

Le protocole *ICMP*Indication de redirection (1)

- Le champ type vaut 5
- Le champ données complémentaires contient l'@ du routeur qui offre une meilleure route.
- Le champ code indique la nature de la redirection.

CODE SIGNIFICATION

- **0** Redirect datagrams for the Network
- 1 Redirect datagrams for the Host
- 2 Redirect datagrams for the Type of Service and Network
- 3 Redirect datagrams for the Type of Service and Host

Le protocole *ICMP*Indication de redirection

Le protocole ICMP Source quench

Source Quench

- Quand un datagramme IP arrive trop vite pour une passerelle ou un hôte, il est rejeté.
- Routeur congestionné, trop de trafic.
- L'émetteur ralenti le rythme d'envoi de ses paquets jusqu'à ce qu'il cesse de recevoir ce message d'erreur.
- La vitesse est donc ajustée par une sorte d'apprentissage rustique.
- Puis graduellement il augmente le débit, aussi longtemps que le message « source quench » ne revient pas .

Le protocole ICMP Durée de vie !

• Durée de vie

- Chaque datagramme contient un champ TTL dit "TIME TO LIVE" appelé aussi "hop count".
- Afin de prévenir le cas ou un paquet circulerait à l'infini d'un routeur à une autre, chaque passerelle décrémente ce compteur et rejette le paquet quand le compteur arrive à zéro et envoie un message ICMP à l'émetteur pour le tenir au courant.

Le protocole *ICMP*Ping

Ping

- Une machine envoie un message ICMP "echo request" pour tester si son destinataire est accessible.
- N'importe quelle machine qui reçoit une telle requête doit formuler un message ICMP "echo reply" en retour.

Le protocole *ICMP* ETC.

- Demande de netmask
- Information sur les routeurs
- Découverte de MTU
 - Place le bit DF (Don't fragment) à 1
- Liste des messages définis :
 - www.iana.org/assignments/icmp-parameters

rappel

- Au niveau de la couche Internet les datagrammes sont routés d'une machine à une autre en fonction des bits de l'adresse IP qui identifient le numéro de réseau.
- ⇔ Aucune distinction n'est faite entre les services ou les utilisateurs qui émettent ou reçoivent des datagrammes
- Tous les datagrammes sont mélangés.

Définition

- UDP : protocole de transport sans connexion de service applicatif :
 - Emission de messages applicatifs : sans établissement de connexion au préalable.
 - L'arrivée des messages ainsi que l'ordonnancement ne sont pas garantis.

Les ports

- La couche UDP ajoute un mécanisme qui permet l'identification du service.
- L'idée est d'associer la destination à la fonction qu'elle remplie.
- Cette identification se fait à l'aide d'un entier positif que l'on baptise port.
- ⇔ Pour communiquer avec un service distant il faut donc avoir connaissance de son numéro de port, en plus de l'adresse IP de la machine elle-même.

Schéma

 L'émission d'un message se fait sur la base d'un port source et un port destinataire.

- La couche IP sépare les datagrammes TCP et UDP grâce au champ PROTO de son en-tête,
- l'association du protocole de transport et du numéro de port identifie un service sans ambiguïté.
- Rien ne s'oppose à ce qu'un même service (Numéro de port) soit attribué conjointement aux deux protocoles

Format

UDP est

 encapsulé dans
 un IP et permet
 un échange de
 données entre
 deux applications
 sans échange
 préliminaire

Format

UDP SOURCE PORT

Le numéro de port de l'émetteur du paquet. Ce champ est optionnel. (0 indique inutilisé)

UDP DESTINATION PORT

Le numéro de port du destinataire du paquet.

MESSAGE LENGTH

- C'est la longueur du paquet, donc comprenant l'en-tête et le message.
 - La longueur minimal est 8
 - La longueur maximale est 65 535 H(IP). Dans le cas courant (IP sans option) cette taille maximale est donc de 65 515

CHECKSUM

Le checksum est optionnel

Fonctionnement

- UDP multiplexe et démultiplexe les datagrammes en sélectionnant les numéros de ports :
 - une application obtient un numéro de port de la machine locale; dès lors que l'application émet un message via ce port, le champ PORT SOURCE du datagramme UDP contient ce numéro de port,
 - une application connaît (ou obtient) un numéro de port distant afin de communiquer avec le service désiré.
- Lorsque UDP reçoit un datagramme, il vérifie que celui-ci est un des ports actuellement actifs (associé à une application) et le délivre à l'application responsable (mise en queue)
- si ce n'est pas le cas, il émet un message ICMP port unreachable, et détruit le datagramme.

Ports réservés

Nom	Port	Proto	Commentaire
echo	7	tcp	
echo	7	udp	
ftp-data	20	tcp	#File Transfer [Default Data]
ftp-data	20	udp	#File Transfer [Default Data]
ftp	21	tcp	#File Transfer [Control]
ftp	21	udp	#File Transfer [Control]
telnet	23	tcp	
telnet	23	udp	
smtp	25	tcp	mail #Simple Mail Transfer

Ports réservés (suite)

smtp	25	udp	mail #Simple Mail Transfer
domain	53	tcp	#Domain Name Server
domain	53	uđp	#Domain Name Server
http	80	tcp	www www-http #World Wide Web HTTP
http	80	uđp	www www-http #World Wide Web HTTP
рорз	110	tcp	#Post Office Protocol - Version 3
рорз	110	udp	#Post Office Protocol - Version 3
sunrpc	111	tcp	rpcbind #SUN Remote Procedure Call
sunrpc	111	udp	rpcbind #SUN Remote Procedure Call
nntp	119	tcp	usenet #Network News Transfer Protocol
nntp	119	udp	usenet #Network News Transfer Protocol