Multi-User Security of Short Schnorr Signatures

in the ROM+GGM

where $p \simeq 2^{2k}$.

pk_1,\ldots,pk_N (m, i) — sign message m with key i $\sigma_{m,i} = \mathsf{Sign}(sk_i, m)$

$$(x,j) - \text{sign message } x \text{ with key } j$$

$$\sigma_{x,j} = \text{Sign}(sk_j,x)$$

$$\dots(\text{more signing oracle queries})\dots$$

$$(j',m',\sigma')$$
Signature Sch
$$(pk_i,sk_i) \leftarrow \text{Kg}$$

Signature Scheme: $\Pi = (Kg, Sign, Vfy)$ $(pk_i, sk_i) \leftarrow \mathsf{Kg}(1^k), 1 \le i \le N$

 $\mathsf{SigForge}_{\mathcal{A},\Pi}^{\mathtt{RO},\mathtt{GO},N}(k) = \left\{ \begin{array}{ll} 1 & \mathsf{if} \ \mathsf{Vfy}(pk_{i'},m',\sigma') = 1 \ \textit{and} \ (m',i') \ \mathsf{is} \ \mathsf{fresh} \\ 0 & \mathsf{otherwise} \end{array} \right.$

$$\mathsf{Pr}\left[\mathsf{SigForge}^{\mathtt{RO},\mathtt{GO},N}_{\mathcal{A},\Pi}(k)=1
ight] \leq \mathsf{Pr}[\mathsf{BRIDGE}] + \mathsf{Pr}[\mathsf{Bad}]$$

$$\leq \mathcal{O}\left(\frac{q^2 + qN}{p} + \frac{q}{2^k}\right)$$

$$\leq \mathcal{O}\left(\frac{q + N}{2^k}\right),$$

authors observed (personal communication) that their analysis extends to short Schnorr signa-▶ The GGM used in [KMP16] is not equivalent to Shoup's model and is not suitable for analyzing preprocessing attacks

Note: Kiltz et al. [KMP16] proved a similar bound for regular Schnorr signatures though the

tures

Multi-User Security of Short Schnorr Signatures

in the ROM+GGM

$$\begin{split} \Pr\Big[\mathsf{SigForge}^{\mathsf{RO},\mathsf{GO},N}_{\mathcal{A},\Pi}(k) &= 1\Big] &\leq \Pr[\mathsf{BRIDGE}] + \Pr[\mathsf{Bad}] \\ &\leq \mathcal{O}\left(\frac{q^2 + qN}{p} + \frac{q}{2^k}\right) \\ &\leq \mathcal{O}\left(\frac{q + N}{2^k}\right), \end{split}$$

where $p \simeq 2^{2k}$.

Note: Kiltz et al. [KMP16] proved a similar bound for *regular* Schnorr signatures though the authors observed (personal communication) that their analysis extends to short Schnorr signatures

The GGM used in [KMP16] is not equivalent to Shoup's model and is not suitable for analyzing preprocessing attacks

Modeling Preprocessing Attacks

Auxiliary-Input Model/Bit-Fixing Model

Auxiliary-Input Model

- ▷ Offline attacker \mathcal{A}_{pre} is unbounded and outputs an S-bit hint for online attacker \mathcal{A}_{on}
- $\triangleright A_{on}$ will try to win security games using the hint

Bit-Fixing Model (ROM)

- $\triangleright \mathcal{A}_{\mathsf{pre}}$ fixes random oracle $\mathsf{H}(\cdot)$ at P locations
- $\triangleright A_{on}$ initially knows nothing about remaining unfixed values (picked uniformly at random)