Simultaneous Localization and Mapping

Feature based approach

SLAM vs Odometry

- Past: Odometry had no loop closure
- Now: closing gap
- Odometry focuses on localization
- SLAM focuses on both mapping and localization

Measurements, Sensors

- Camera (RGB, RGB-D, TOF, infra, wide-narrow, stereo...)
- Inertial Measurement Unit IMU
 - accelerometer, gyroscope, magnetometer
- GPS
- Lidar
- Ultrasonic sensor
- Augmented environment (MoCap, AprilTag...)
- Microphone, Rotary sensor, WiFi, LiFi, Bluetooth...

Maps

- Metric vs Topological
- Implicit representations
 - Occupancy grids
 - Depth fields
 - Light fields, radiance fields
- Explicit representations
 - Point clouds
 - Keyframes
 - Meshes
- Graphs
 - Pose graph, factor graph, covisibility graph, scene graph...
- Grids
 - Voxel grid, Multi resolution, Hierarchical, Octree, k-d tree

Basic formulation

- Probabilistic model
 - Y noisy measurements
 - X unknown model parameters (map, trajectory)
- Maximum Likelihood approach
 - $X_{opt} = argmax P(Y|X)$
 - Only the (approx.) best solution
- Maximum A Posteriori approach
 - P(X|Y) = P(Y|X) * P(X) * c
 - Complete distribution over the parameters
 - Prior often unfeasible

EKF vs Keyframe based SLAM

- EKF: Extended Kalman Filter
 - Strict probabilistic approach
 - Hard to detect/incorporate loop closures
 - Marginalization is difficult
 - Better suited to factor graphs
- Keyframe based
 - Sparser approach
 - Easier long-term association for loop closure and bundle adjustment
 - More robust

V/VI-SLAM

- Visual vs Visual+Inertial Odometry
- Most common
- IMU measurements
 - More information, higher accuracy
 - More complexity
- Differences
 - Pose graph optimization
 - Initialization, calibration
 - Local/global Bundle adjustment

V/VI-SLAM Approaches

- Direct vs Indirect
 - Indirect: raw measurements preprocessed -> Y
 (e.g. features, optical flow, line detection)
 typically geometric error
 - Direct: light (radiant energy or radiance) as Y
 typically photometric error (geometric for depth measurements)
- Dense vs Sparse
 - Dense: all pixels are used during the estimation keeps geometrical prior: notion of neighborhood, leads to dense Hessians
 - Sparse: "special" pixels are selected (corners, line segments) keypoint positions conditionally independent given the camera parameters
 - (Semi-dense: not all pixels, but larger patches)

Sparse + Indirect

- Most common
- Map
 - Keyframes, keyframe descriptors
 - Feature points (2D and 3D) with descriptors
 - Pose graph
- Localization
 - Feature point extraction
 - Feature/frame descriptor generation
 - Image retrieval
 - Feature matching
 - Ransac+PnP

Basic steps

Tracking – Taking new measurements

- Undistort image
- Color, exposure balancing...
- Rectify (stereo): epipolar lines parallel
- Pinhole camera model

$$segin{bmatrix} u\v\1\end{bmatrix} = egin{bmatrix} f_x & 0 & c_x\0 & f_y & c_y\0 & 0 & 1\end{bmatrix} egin{bmatrix} r_{11} & r_{12} & r_{13} & t_x\r_{21} & r_{22} & r_{23} & t_y\r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} egin{bmatrix} X_w\Y_w\Z_w\1\end{bmatrix}$$

$$(k_1,k_2,p_1,p_2[,k_3[,k_4,k_5,k_6[,s_1,s_2,s_3,s_4[, au_x, au_y]]]])$$

Tracking-Feature extraction

- High gradient points: edges, corners
- Optionally multi scale and oriented
- Shi-Tomasi, Harris corner detection: fast, inaccurate
- FAST: fast, single scale, not oriented
- SIFT: slowest, multi scale, oriented, patented
- SURF: slow, multi scale, oriented (inaccurate), patented
- ORB: fast, multi scale, oriented, free

ORB: Oriented Fast and Rotated BRIEF

- FAST threshold for circular ring around center -> involves edges too
- Harris corner filtering, top N points
- Scale pyramid for multi scale
- Orientation from center of mass
- BRIEF (Binary robust independent elementary feature)
 - Binary intensity tests in the patch
- Rotate tests according to feature orientation
- Use greedy algorithm to find best test pairs

$$m_{pq} = \sum_{x,y} x^p y^q I(x,y)$$

$$C = \left(\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}}\right)$$

$$\theta = \text{atan2}(m_{01}, m_{10})$$

Tracking- Pose estimation

- Current keyframe with feature points
- Feature matching based on descriptors (cosine similarity)
- RANSAC + PnP
- Inliers, outliers
- If fails
 - relocalization
- If succeeds
 - Keyframe optimization

Relocalization

- Input: map, measurements
- Output: T pose estimation
- Keyframe based approach:
 - Image retrieval with BoW
 - Pose estimation with feature matching
- DBoW2: Bags of Binary Words for Fast Place Recognition in Image Sequence
 - General visual vocabulary
 - Inverted index
 - Updated recognition database
 - Multiple solutions

Tracking- Keyframe selection

- Based on heuristics
 - Time, distance, failed tracking, unbalanced map, feature density...
- Previous keyframe fixed
- New keyframe added to map

Local Mapping – Keyframe insertion

- Update Pose graph
- Calculate BoW descriptor
- Find covisible keyframes
- Match features points
- Discard duplicate feature points
- Triangulate depth
- Project 3D keypoints

Local Mapping – Local Bundle Adjustment

- New keyframe optimized (camera pose Sim(3) or SE(3), 3D features)
- Based on correspondences
- Moving window of keyframes
- Projection (j-th image to i-th)
- Energy term
- Loss function
- Reprojection error (geometric)
- Covariance as weight associated with feature scale
- Usually first-order approximations (Levenberg–Marquardt alg.)

$$\pi_i(\mathbf{T}_{iw},\mathbf{X}_{w,j}) = \begin{bmatrix} f_{i,u} rac{x_{i,j}}{z_{i,j}} + c_{i,u} \ f_{i,v} rac{y_{i,j}}{z_{i,j}} + c_{i,v} \end{bmatrix}$$

$$\begin{bmatrix} x_{i,j} & y_{i,j} & z_{i,j} \end{bmatrix}^T = \mathbf{R}_{iw} \mathbf{X}_{w,j} + \mathbf{t}_{iw}$$

$$\mathbf{e}_{i,j} = \mathbf{x}_{i,j} - \pi_i(\mathbf{T}_{iw}, \mathbf{X}_{w,j})$$

$$C = \sum_{i,j} \rho_h(\mathbf{e}_{i,j}^T \mathbf{\Omega}_{i,j}^{-1} \mathbf{e}_{i,j})$$

Local Mapping – Keyframe culling

- Discard duplicated keyframes, feature points
- Balance map density
- Keep current environment densely mapped to help tracking
- Sparsify later

Drift

- Odometry contains inaccuracies
- Even with IMU with perfect calibration
 - dead reckoning
- GPS helps but not accurate enough
- EKF solutions suffer from drift as well
- Limitation: maximum mid-term data association
- Global consistency not enforced

Loop Closing – Loop detection

- BoW
- Cosine similarity
- Multiple candidates, local window
- Inlier based verification
- Estimate relative **T** (Sim(3) or SE(3)) transformation
 - E.g. Ransac + Horn algorithm (3D to 3D)
- Refine relative pose with feature matching-based optimization
- Merge keyframes
- Update factor graph or pose graph optimization
- Full BA

Loop Closing – Pose graph optimization

- Optimize only the keyframe poses
- Optionally expressed by a factor graph (preferred if uncertainty is modelled)

$$\mathbf{e}_{i,j} = \log_{\mathrm{Sim}(3)}(\mathbf{S}_{ij}\,\mathbf{S}_{jw}\,\mathbf{S}_{iw}^{-1})$$

$$C = \sum_{i,j} (\mathbf{e}_{i,j}^T \mathbf{\Lambda}_{i,j} \mathbf{e}_{i,j})$$

Full Bundle adjustment

- Formulation similar to Local BA
- Computationally demanding
- All keyframe poses and keypoint positions are optimized

$$\{\mathbf{X}^{i}, \mathbf{R}_{l}, \mathbf{t}_{l} | i \in \mathcal{P}_{L}, l \in \mathcal{K}_{L}\} = \underset{\mathbf{X}^{i}, \mathbf{R}_{l}, \mathbf{t}_{l}}{\operatorname{argmin}} \sum_{k \in \mathcal{K}_{L} \cup \mathcal{K}_{F}} \sum_{j \in \mathcal{X}_{k}} \rho\left(E_{kj}\right)$$
$$E_{kj} = \left\|\mathbf{x}_{(\cdot)}^{j} - \pi_{(\cdot)}\left(\mathbf{R}_{k}\mathbf{X}^{j} + \mathbf{t}_{k}\right)\right\|_{\Sigma}^{2}$$

Mono vs Stereo

- Depth uncertainty
- Scale drift
- SE(3) Sim(3)
- Mono
 - scale calibration
 - scale optimization during pose graph optimization
- Stereo
 - image rectification
 - Y contains inverse depth
 - Stereo keypoint: (u_L, v_L, u_R)
 - RGB-D can replace
 - Meaningful only for close observations (for translation at least)

Visual-Inertial SLAM

- Measurements:
 - Acceleration (a_R)
 - Angular velocity (ω_{R})
- Needed:
 - Velocity (v_R)
 - Position (p_B)
 - Rotation (R_R)
- Extra parameters
 - Biases (b_a, b_g)
 - Gravity (g_w)
- Euler integration (or Runge-Kutta)
- IMU preintegration

Pre-Int. IMU:

$$\begin{aligned} \mathbf{R}_{\mathtt{WB}}^{k+1} &= \mathbf{R}_{\mathtt{WB}}^{k} \operatorname{Exp}\left(\left(\boldsymbol{\omega}_{\mathtt{B}}^{k} - \boldsymbol{b}_{g}^{k}\right) \Delta t\right) \\ _{\mathtt{W}} \mathbf{v}_{\mathtt{B}}^{k+1} &= _{\mathtt{W}} \mathbf{v}_{\mathtt{B}}^{k} + \mathbf{g}_{\mathtt{W}} \Delta t + \mathbf{R}_{\mathtt{WB}}^{k} \left(\boldsymbol{a}_{\mathtt{B}}^{k} - \boldsymbol{b}_{a}^{k}\right) \Delta t \\ _{\mathtt{W}} \mathbf{p}_{\mathtt{B}}^{k+1} &= _{\mathtt{W}} \mathbf{p}_{\mathtt{B}}^{k} + _{\mathtt{W}} \mathbf{v}_{\mathtt{B}}^{k} \Delta t + \frac{1}{2} \mathbf{g}_{\mathtt{W}} \Delta t^{2} + \frac{1}{2} \mathbf{R}_{\mathtt{WB}}^{k} \left(\boldsymbol{a}_{\mathtt{B}}^{k} - \boldsymbol{b}_{a}^{k}\right) \Delta t^{2} \end{aligned}$$

$$\mathbf{R}_{\text{WB}}^{i+1} = \mathbf{R}_{\text{WB}}^{i} \Delta \mathbf{R}_{i,i+1} \text{Exp} \left(\left(\mathbf{J}_{\Delta R}^{g} \mathbf{b}_{g}^{i} \right) \right)$$

$$\mathbf{v}_{\text{B}}^{i+1} = \mathbf{w} \mathbf{v}_{\text{B}}^{i} + \mathbf{g}_{\text{W}} \Delta t_{i,i+1}$$

$$+ \mathbf{R}_{\text{WB}}^{i} \left(\Delta \mathbf{v}_{i,i+1} + \mathbf{J}_{\Delta v}^{g} \mathbf{b}_{g}^{i} + \mathbf{J}_{\Delta v}^{a} \mathbf{b}_{a}^{i} \right)$$

$$\mathbf{v}_{\text{B}}^{i+1} = \mathbf{w} \mathbf{p}_{\text{B}}^{i} + \mathbf{w} \mathbf{v}_{\text{B}}^{i} \Delta t_{i,i+1} + \frac{1}{2} \mathbf{g}_{\text{W}} \Delta t_{i,i+1}^{2}$$

$$+ \mathbf{R}_{\text{WB}}^{i} \left(\Delta \mathbf{p}_{i,i+1} + \mathbf{J}_{\Delta p}^{g} \mathbf{b}_{g}^{i} + \mathbf{J}_{\Delta p}^{a} \mathbf{b}_{a}^{i} \right)$$

Visual-Inertial SLAM- Calibration

- IMU initialization
- Gyroscope bias estimation
- Scale and gravity estimation
- Accelerometer Bias Estimation
- Scale and Gravity Direction Refinement

Visual-Inertial SLAM- ORB-SLAM 3

Up-to-scale parameters

Inertial residual Random Walk

residual

Reproj. residual

Prior residual

Fixed parameters

Visual-Inertial SLAM- Tracking

 $\mathbf{X}_{\mathtt{C}}^{k} = \mathbf{R}_{\mathtt{CB}}\mathbf{R}_{\mathtt{BW}}^{j}\left(\mathbf{X}_{\mathtt{W}}^{k} - {}_{\mathtt{W}}\mathbf{p}_{\mathtt{B}}^{j}
ight) + {}_{\mathtt{C}}\mathbf{p}_{\mathtt{B}}$

 $-\left(\Delta\mathbf{p}_{ij}+\mathbf{J}_{\Delta p}^{g}\mathbf{b}_{g}^{j}+\mathbf{J}_{\Delta p}^{a}\mathbf{b}_{a}^{j}
ight)$

 $\mathbf{e}_b = \mathbf{b}^j - \mathbf{b}^i$

Visual-Inertial SLAM- Tracking

if map changes (Local BA, Loop Closure)

$$= \left\{ \mathbf{R}_{\mathtt{WB}}^{J}, \mathbf{p}_{\mathtt{W}}^{J}, \mathbf{v}_{\mathtt{W}}^{J}, \mathbf{b}_{g}^{J}, \mathbf{b}_{a}^{J}, \mathbf{R}_{\mathtt{WB}}^{J+1}, \mathbf{p}_{\mathtt{W}}^{J+1}, \mathbf{v}_{\mathtt{W}}^{J+1}, \mathbf{b}_{g}^{J+1}, \mathbf{b}_{a}^{J+1} \right\}$$

$$\theta^{*} = \operatorname*{argmin}_{\theta} \left(\sum_{k} \mathbf{E}_{\mathrm{proj}}(k, j + 1) + \mathbf{E}_{\mathrm{IMU}}(j, j + 1) \quad \mathbf{E}_{\mathrm{prior}}(j) = \rho \left(\left[\mathbf{e}_{R}^{T} \, \mathbf{e}_{v}^{T} \, \mathbf{e}_{p}^{T} \, \mathbf{e}_{b}^{T} \right] \mathbf{\Sigma}_{p} \left[\mathbf{e}_{R}^{T} \, \mathbf{e}_{v}^{T} \, \mathbf{e}_{p}^{T} \, \mathbf{e}_{b}^{T} \right]^{T} \right)$$

$$\mathbf{e}_{R} = \operatorname*{Log} \left(\mathbf{\bar{R}}_{\mathtt{BW}}^{J} \mathbf{R}_{\mathtt{WB}}^{J} \right) \quad \mathbf{e}_{v} = {}_{\mathtt{W}} \mathbf{\bar{v}}_{\mathtt{B}}^{J} - {}_{\mathtt{W}} \mathbf{v}_{\mathtt{B}}^{J}$$

$$\mathbf{e}_{p} = {}_{\mathtt{W}} \mathbf{\bar{p}}_{\mathtt{B}}^{J} - {}_{\mathtt{W}} \mathbf{p}_{\mathtt{B}}^{J} \qquad \mathbf{e}_{b} = \mathbf{\bar{b}}^{J} - \mathbf{b}^{J}$$

Visual-Inertial SLAM — Local BA

Fixed Window (connected to local window in the covisibility graph)

Local Window (connected to last keyframe in the covisibility graph)

ORB-SLAM's Local BA

Visual-Inertial ORB-SLAM's Local BA

	SLAM or VO	Pixels used	Data association	Estimation	Relocali- zation	Loop	Multi Maps	Mono	Stereo	Mono IMU	Stereo IMU	Fisheye	Accuracy	Robustness	Open source
Mono-SLAM [13], [14]	SLAM	Shi Tomasi	Correlation	EKF	-	-	-	✓	-	-	-	-	Fair	Fair	[15] ¹
PTAM [16]–[18]	SLAM	FAST	Pyramid SSD	BA	Thumbnail	-	-	✓	-	-	-	-	Very Good	Fair	[19]
LSD-SLAM [20], [21]	SLAM	Edgelets	Direct	PG	-	FABMAP PG	-	✓	✓	-	-	-	Good	Fair	[22]
SVO [23], [24]	VO	FAST+ Hi.grad.	Direct	Local BA	-	-	-	✓	✓	-	-	✓	Very Good	Very Good	$[25]^2$
ORB-SLAM2	SLAM	ORB	Descriptor	Local BA	DBoW2	DBoW2 PG+BA	-	✓	✓	-	-	-	Exc.	Very Good	[26]
DSO [27]–[29]	VO	High grad.	Direct	Local BA	-	-	-	✓	✓	-	-	✓	Fair	Very Good	[30]
DSM [31]	SLAM	High grad.	Direct	Local BA	-	-	-	√	-	-	-	-	Very Good	Very Good	[32]
MSCKF [33]–[36]	vo	Shi Tomasi	Cross correlation	EKF	-	-	-	✓	-	✓	✓	-	Fair	Very Good	[37] ³
OKVIS [38], [39]	VO	BRISK	Descriptor	Local BA	-	-	-	-	-	✓	✓	✓	Good	Very Good	[40]
ROVIO [41], [42]	VO	Shi Tomasi	Direct	EKF	-	-	-	-	-	✓	✓	✓	Good	Very Good	[43]
ORBSLAM-VI	SLAM	ORB	Descriptor	Local BA	DBoW2	DBoW2 PG+BA	-	✓	-	✓	-	-	Very Good	Very Good	_
VINS-Fusion [7], [44]	VO	Shi Tomasi	KLT	Local BA	DBoW2	DBoW2 PG	✓	-	✓	✓	✓	✓	Good	Exc.	[45]
VI-DSO [46]	VO	High grad.	Direct	Local BA	-	-	-	-	-	✓	-	-	Very Good	Exc.	_
BASALT [47]	VO	FAST	KLT (LSSD)	Local BA	-	ORB BA	-	-	-	-	✓	✓	Very Good	Exc.	[48]
Kimera [8]	VO	Shi Tomasi	KLT	Local BA	-	DBoW2 PG	-	-	-	-	✓	-	Good	Exc.	[49]
ORB-SLAM3 (ours)	SLAM	ORB	Descriptor	Local BA	DBoW2	DBoW2 PG+BA	✓	✓	✓	✓	✓	✓	Exc.	Exc.	[5]

Out of scope

- Dense and direct approaches
- Deep learning-based solutions
- Multi map SLAM
- Image retrieval
- Map initialization

Sources

- 1. Engel, J., Koltun, V., & Cremers, D. (2016). Direct Sparse Odometry. ArXiv. /abs/1607.02565
- 2. Montiel, J. M., & Tardos, J. D. (2015). ORB-SLAM: A Versatile and Accurate Monocular SLAM System. *ArXiv*. https://doi.org/10.1109/TRO.2015.2463671
- 3. Tardos, J. D. (2016). Visual-Inertial Monocular SLAM with Map Reuse. ArXiv. https://doi.org/10.1109/LRA.2017.2653359
- 4. Tardos, J. D. (2016). ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. *ArXiv*. https://doi.org/10.1109/TRO.2017.2705103
- 5. Campos, C., Elvira, R., Rodríguez, J. J., Montiel, J. M., & Tardós, J. D. (2020). ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM. *ArXiv*. https://doi.org/10.1109/TRO.2021.3075644
- 6. Höll, M., & Lepetit, V. (2017). Monocular LSD-SLAM Integration within AR System. ArXiv. https://doi.org/10.13140/RG.2.2.10054.27205
- 7. E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: An efficient alternative to SIFT or SURF," *2011 International Conference on Computer Vision*, Barcelona, Spain, 2011, pp. 2564-2571, doi: 10.1109/ICCV.2011.6126544.
- 8. Calonder, M., Lepetit, V., Strecha, C., Fua, P. (2010). BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds) Computer Vision ECCV 2010. ECCV 2010. Lecture Notes in Computer Science, vol 6314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15561-1_56
- 9. Wikimedia Foundation. (2023, August 26). *Features from accelerated segment test*. Wikipedia. https://en.wikipedia.org/wiki/Features_from_accelerated_segment_test
- 10. Forster, C., Carlone, L., Dellaert, F., & Scaramuzza, D. (2015). On-Manifold Preintegration for Real-Time Visual-Inertial Odometry. *ArXiv*. https://doi.org/10.1109/TRO.2016.2597321