Problem 1.1 (25 %)

Consider the following polynomial regression scheme of degree m, with the predictions $\hat{y}_{(i)}$ for a scalar input $x_{(i)}$ given by:

$$\hat{y}_{(i)} = w_0 + w_1 x_{(i)} + w_2 x_{(i)}^2 + \dots + w_m x_{(i)}^m. \tag{1.1.1}$$

We can fit this regressor to a given training dataset $T_{train} = \{x_{(i)}, y_{(i)}\}_{i=1}^n$, by minimizing the loss $J_{LS}(\mathbf{w})$ through the corresponding least squares problem:

$$\begin{bmatrix}
\hat{y}_{(1)} \\
\hat{y}_{(2)} \\
\hat{y}_{(3)} \\
\vdots \\
\hat{y}_{(n)}
\end{bmatrix} = \begin{bmatrix}
1 & x_{(1)} & x_{(1)}^{2} & \dots & x_{(1)}^{m} \\
1 & x_{(2)} & x_{(2)}^{2} & \dots & x_{(2)}^{m} \\
1 & x_{(3)} & x_{(3)}^{2} & \dots & x_{(3)}^{m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{(n)} & x_{(n)}^{2} & \dots & x_{(n)}^{m}
\end{bmatrix} \begin{bmatrix}
w_{0} \\
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{bmatrix}$$
(1.1.2)

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J_{LS}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} \|X\mathbf{w} - \mathbf{y}\|^{2}. \tag{1.1.3}$$

While least squares provides a weight configuration $\hat{\mathbf{w}}$ that minimizes the error on T_{train} , it lacks a dedicated scheme to control the *qeneralization* to unseen data.

Ridge regression is an extension to least squares that introduces an additional regularization parameter $\lambda \geq 0$. The adapted loss is then given by:

$$J_{\text{Ridge}}(\mathbf{w}) = ||X\mathbf{w} - \mathbf{y}||^2 + \lambda ||\mathbf{w}||^2. \tag{1.1.4}$$

In the following we will examine the role this regularization parameters plays in addressing over-&underfitting, by evaluating how least squares and Ridge regression perform on the test dataset $T_{test} = \{x_{(i)}, y_{(i)}\}_{i=n+1}^{N}$.

1.1.1 Download the files $regression_train.csv$ and $regression_test.csv$ from TUWEL and use $pandas^1$ to extract the data. Generate a scatterplot of T_{train} and T_{test} combined and highlight each dataset through a distinct color.

1.1.2 Implement the code to fit the weight vector $\hat{\mathbf{w}}$ to the training dataset T_{train} . I.e., minimize (1.1.3) for an arbitrary degree m. Use the trained regressor and calculate the MSE² of your predictions over T_{test} with $m = [0,1,\ldots,10]$. Provide a stem plot showing the values over m. Which degree m leads to the smallest error?

Hint: Use the numpy function pinv for numerically stable matrix inversions.

[1.1.3] Additionally compute the predictions \hat{y} of the regressor for inputs in the interval $x \in [0,2]$ for all the configurations of m from Task 1.1.2. Depict the predictions as a line plot ontop of the scatter plots from Task 1.1.1. What do you observe for high and low values of m?

¹https://pandas.pydata.org/

²Mean Squared Error

1.1.4 Use matrix calculus rules to derive the analytical solution for the weight vector, which minimizes the Ridge regression loss given in (1.1.4). I. e., find $\hat{\mathbf{w}}$, such that $\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J_{\operatorname{Ridge}}(\mathbf{w})$. Use your result, to extent the code from Task 1.1.2 to Ridge regression. We have that the results should be equivalent to least squares for $\lambda = 0$.

1.1.5 Fit a Ridge regressor with m=5 to T_{train} and use the trained model to calculate the MSE on T_{test} . Plot the MSE over λ for $\lambda=[0,0.1,1,5,10,100,500,1000]$. Again depict the predictions for $x \in [0,2]$ ontop of the scatter plots from Task 1.1.1. What to you observe for high and low values of λ ?

The role of the regularization parameter also becomes apparent when considering a probabilistic interpretation of least squares. Let's consider the following Bayesian approach

$$p(\mathbf{y}|\mathbf{w}) = \mathcal{N}(\mathbf{y}; \mathbf{X}\mathbf{w}, \mathbf{I}\sigma_n^2) \qquad p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \mathbf{0}, \mathbf{I}\sigma_w^2),$$
 (1.1.5)

with a Gaussian likelihood and an i.i.d. zero-mean Gaussian prior for \mathbf{w} with variance σ_w^2 . Using Bayes's rule we can then optimize for $\hat{\mathbf{w}}$ by minimizing $J(\mathbf{w}) = -\log p(\mathbf{w}|\mathbf{y})$.

[1.1.6] Find an analytical expression for $J(\mathbf{w})$ under the Bayesian interpretation given in (1.1.5) and compare the result to the loss function from (1.1.4). Then, repeat the step for a Laplacian prior with $p(\mathbf{w}) = \prod_{i=0}^{m} \frac{1}{2\pi\sigma_w} e^{-\frac{|w_i|}{\sigma_w}}$. Briefly discuss which solutions for $\hat{\mathbf{w}}$ are promoted by the different priors. Hint: Note, that you can discard all terms not depending on \mathbf{w} .

Problem 1.2 (25 %)

In the following, we will evaluate the use of linear least squares for a classification problem. As such, we are given a dataset $T_{data} = \{\mathbf{x}_{(i)}, y_{(i)}\}_{i=1}^{N}$ consisting of inputs $\mathbf{x} = [x_0, x_1]^T$ and their respective labels $y \in \{-1, 1\}$. For each input $\mathbf{x}_{(i)}$, the classifier generates a soft-label prediction $\tilde{y}_{(i)}$ according to:

$$\tilde{y} = w_0 x_0 + w_1 x_1 + w_2. \tag{1.2.1}$$

Following a least squares approach, the model can be trained by minimizing the corresponding loss function to obtain the weight estimate $\hat{\mathbf{w}}$:

$$J_{LS}(\mathbf{w}) = ||X\mathbf{w} - \mathbf{y}||^2 = ||\tilde{\mathbf{y}} - \mathbf{y}||^2 \qquad \hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J_{LS}(\mathbf{w}).$$
 (1.2.2)

Subsequently, we use the following rule to transform the soft-label output $\tilde{y}_{(i)}$ into a hard-label $\hat{y}_{(i)}$:

$$\hat{y}_{(i)} = \begin{cases} 1, & \text{if } \tilde{y}_{(i)} \ge 0\\ -1, & \text{otherwise.} \end{cases}$$
 (1.2.3)

We can then examine the performance of the trained classifier by comparing the predictions $\hat{y}_{(i)}$ with the given labels $y_{(i)}$.

1.2.1 Download the files $data_blob_train.csv$ and $data_blob_test.csv$ from TUWEL and generate a scatterplot of each T_{train} and T_{test} . Highlight the respective class labels by color.

1.2.2 Fit the classifier to the training data, i.e., obtain the least squares solution for $\hat{\mathbf{w}}$ with X and \mathbf{y} from the training dataset. Provide the accuracy of your trained classifier for T_{train} and T_{test} . Further, generate a heatmap of the soft-label output \tilde{y} in the interval $x_0 \in [-3,3]$ and $x_1 \in [-3,3]$.

1.2.3 Find an expression for the decision surface, i.e., the line separating the two classes $\hat{y} = 1$ and $\hat{y} = -1$. Plot this line ontop of the scatter plots from Task 1.2.1.

1.2.4 Calculate the least squares error of your trained classifier for the samples $s_1 \& s_2$. I.e., obtain the loss $J_{LS}(\hat{\mathbf{w}})$ between the given label y and the soft-label \tilde{y} for each of the two samples. Which of the samples contributes the higher loss to the optimization?

$$s_1 = \{ [-10,10]^T, 1 \}$$
 $s_2 = \{ [0,1.5]^T, -1 \}$ (1.2.4)

Now assume, that the hard-labels \hat{y} are used for the loss calculation and compare the results. I.e., again calculate $J_{LS}(\hat{\mathbf{w}})$ for both samples, but replace \tilde{y} with \hat{y} . Why is the optimization of the soft-labels via least squares not ideal?

1.2.5 Download the file data_moon_train.csv and data_moon_test.csv from TUWEL and again provide a scatterplot highlighting the respective class labels. Then repeat Task 1.2.2-1.2.3. Is a linear classifier an appropriate choice for this dataset?

Problem 1.3 (25 %)

The california housing dataset was derived from the 1990 US census and consists of the features shown in table 1.3.1. As such, each entry includes data for a distinct californian district with the median house value in 100 000 USD as the target variable.

Input: x								Target: y
MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal

Table 1.3.1: California Housing Data

In the following, you will develop a regressor operating on this real world dataset. I.e., you will train a model that can predict the median house price for a given configuration of features. For this, we will use the Python machine learning library *scikit-learn*. The dataset is available via:

from sklearn.datasets import fetch california housing

Note, that you might want to set the following optional parameters:

as frame = True, download if missing = False

- [1.3.1] Download the california housing dataset and collect the inputs and targets in a pandas dataframe. Examine the output of .describe() and .corr(). Which feature has the highest correlation with the target value?
- 1.3.2 Conduct basic visual data analysis by generating histograms for single features. Further, expose the relations between different features through scatter plots. Include a selection of plots in your report and briefly discuss your findings. *Hint: You might want to use the function relplot from the seaborn library.*
- 1.3.3 Use the pandas function $.sample(frac = 1, random_state = 1)$ to shuffle the dataset and split it into training and test data. Use the first 15 000 elements of the shuffled dataset as T_{train} and the remaining ones as T_{test} .
- 1.3.4 Fit a Ridge regressor³ with alpha = 1 to the training dataset T_{train} . Extract the weight vector and the intercept of your trained regressor and provide a list of the features sorted by their weights. Which features have a positive/negative impact on the house price? Hint: Check the scikit-learn documentation for details.
- 1.3.5 Compute the MAE⁴ in USD between the predictions \hat{y} of your model and the targets y for T_{train} and T_{test} separately. Visualize the error $(\hat{y}_i y_i)$ through histograms for both subsets. Further generate a scatter plot of your predictions \hat{y} and the respective ground truth values y for the samples in T_{test} . What would the plot look like for a model without any error?

³from sklearn.linear model import Ridge

⁴Mean Absolute Error

[1.3.6] Implement 10-fold cross-validation and compute mean and standard deviation of your estimation error over all evaluation runs. Select MAE as the metric and make sure to use all available data by concatenating T_{train} and T_{test} . What do the results tell you about your regressor? Hint: An additional resource on cross-validation is provided on TUWEL.

1.3.7 Fit a random forest regressor⁵ from *scikit-learn* to the training dataset and repeat Task 1.3.5 and 1.3.6. Briefly discuss how the outcomes for the random forest regressor differ from Ridge regression.

 $^{^5} sklearn.ensemble.RandomForestRegressor(n_estimators{=}50)$

Problem 1.4 (25 %)

In a previous problem we showed, that the naive least squares approach is not well suited for classification due to the lack of a squashing function. For a given dataset $T = \{\mathbf{x}_{(i)}, y_{(i)}\}_{i=1}^{N}$ with $y_{(i)} \in \{-1, 1\}$, the perceptron considers the classification objective:

$$\mathbf{x}_{(i)}^T \mathbf{w} + b \ge 0 \qquad \text{if } y_{(i)} = 1$$

$$\mathbf{x}_{(i)}^T \mathbf{w} + b < 0 \qquad \text{if } y_{(i)} = -1,$$

$$(1.4.1)$$

which is enforced through the following loss function:

$$\tilde{J}(\mathbf{w}, b) = \frac{1}{N} \sum_{i=1}^{N} \max(0, -y_{(i)}(\mathbf{x}_{(i)}^{T} \mathbf{w} + b)). \tag{1.4.2}$$

Due to the fact, that $\mathbf{w} = \mathbf{0}$ and b = 0 are trivial solutions to the minimization of (1.4.2), the following approximated loss function is typically considered in practice:

$$J(\mathbf{w}, b) = \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{-y_{(i)} \left(\mathbf{x}_{(i)}^T \mathbf{w} + b \right)} \right). \tag{1.4.3}$$

The hard-label outputs $\hat{y}_{(i)}$ of the perceptron are then calculated from the soft-label predictions $\tilde{y}_{(i)} = \mathbf{x}_{(i)}^T \mathbf{w} + b$ according to:

$$\hat{y}_{(i)} = \begin{cases} 1, & \text{if } \tilde{y}_{(i)} \ge 0\\ -1, & \text{otherwise.} \end{cases}$$
 (1.4.4)

1.4.1 In (1.4.3) the maximum expression from (1.4.2) is approximated by the function $f(t) = \log(1 + e^t)$. Plot f(t) in the interval $t \in [-10, 10]$. For which combinations of $y_{(i)}$ and $\tilde{y}_{(i)}$ does $J(\mathbf{w}, b)$ saturate?

[1.4.2] Find an analytical expression for the gradient $\nabla J(\mathbf{w}, b)$ of the approximated loss function from (1.4.3). For that, assume a generic weight vector with two entries $\mathbf{w} = [w_0, w_1]^T$.

1.4.3 Use the result from Task 1.4.2 and implement gradient descent to find a weight $\hat{\mathbf{w}} = [\hat{w}_0, \hat{w}_1]^T$ and bias \hat{b} estimate, that minimizes the loss $J(\mathbf{w}, b)$ over a given training dataset. In gradient descent the update equation for the estimates is given by:

$$\begin{bmatrix} \hat{\mathbf{w}}^{(k)} \\ \hat{b}^{(k)} \end{bmatrix} \leftarrow \begin{bmatrix} \hat{\mathbf{w}}^{(k-1)} \\ \hat{b}^{(k-1)} \end{bmatrix} - \alpha \cdot \nabla J(\hat{\mathbf{w}}^{(k-1)}, \hat{b}^{(k-1)}). \tag{1.4.5}$$

Implement the scheme in a way, that allows for generic values of $\hat{\mathbf{w}}^{(0)}$, $\hat{b}^{(0)}$, the step size α as well as the overall iteration duration K. Note, that $k = [1, \dots, K]$.

[1.4.4] Use the code from Task 1.4.3 to fit your perceptron to the dataset classification.csv from TUWEL. For that use $\hat{\mathbf{w}}^{(0)} = [0, -2]$, $\hat{b}^{(0)} = 2$, K = 600 and $\alpha = 0.01$. Report the parameters $\hat{\mathbf{w}}^{(K)}$ and $\hat{b}^{(K)}$ and visualize the decision surface of your trained classifier. What is the accuracy of your classifier on the training dataset?

 $\boxed{1.4.5}$ Save the history of the weights $\hat{w}_0^{(k)}$, $\hat{w}_1^{(k)}$ and the bias term $\hat{b}^{(k)}$ during the optimization and visualize them over the gradient descent iterations $k = [1, \ldots, K]$. Also generate a plot of the optimization history of $J(\hat{\mathbf{w}}^{(k)}, \hat{b}^{(k)})$.

1.4.6 Finally, use your trained model to calculate the loss $J(\mathbf{w}, b)$ for each of the samples $s_1 \& s_2$. Why is the the given training objective superior to the least squares classifier from the previous problem?

$$s_1 = \{[-100,0]^T, 1\}$$
 $s_2 = \{[-1,0]^T, -1\}$ (1.4.6)