Periodic Functions

Definition:

A function f(x) is (alled a periodic function with a Period T of there exists a real number T>0Such that for each (x) in the domain of numbers (x-T) & (x+T) are also in the domain of (x+T) & (x+T) = f(x) (x+T) = f(x) (x+T) = f(x)

f(x+T) = f(x)

Sin(X+T) = Sin X

(2714)

T=(T) 4T, 6T, 8T, 15T,

fundamental period of Swiction

fundamental period of function.

C.g. $f(x) = \{x\}$.

Substituted (1) 2,3 4,5,

Note: The amalest value of which f(x+7)=f(n) in domain

of f. Then 7 is (alled
the fundamental period of f(x)

Potentian of periods. Books.

(i) Cond of discolars Southers

Final (bolomout)

(ii) Long, (alix I)

(iii) Long, (alix I)

(iii) Long, (alix I)

(iv) $X - \{x\} = \{x\}$ (v) Alphon, (by, I)

(v) Alphon, (by, I)

(v) $\{x\} = \{x\}$ (v) Alphon, (by, I)

(v) $\{x\} = \{x\}$ (v) Alphon, (by, I)

(v) $\{x\} = \{x\}$ (vi) Long, (by, I)

(vi) $\{x\} = \{x\}$ (vi) Alphon, (by, I)

(vii) Long, (by, I)

(viii) Long,

3 If $\frac{f(x)}{f(x)}$ has period T than $\frac{1}{f(x)}$ and $\frac{1}{f(x)}$ also has period T.

(3) $\frac{f(x)}{f(x)}$ has period T $\frac{f(x)}{f(x)}$ has period T $\frac{f(x)}{f(x)}$ has a period T $\frac{$

 $\Rightarrow \sin(-3xn) \Rightarrow \frac{2\pi}{1-31} = \frac{2\pi}{3}$ $\Rightarrow \begin{cases} 2x3 \Rightarrow \sqrt{3} \\ \Rightarrow (5x^3(5x)) = \sqrt{3} \end{cases}$ $\Rightarrow |\sin(6x)| = \sqrt{3}$ $|\sin(6x)| = \sqrt{3}$ $|\sin(6x)| = \sqrt{3}$

(4) If f(x) has period T_1 and g(x) has period T_2 then, $f(x) \pm g(x), f(x) \cdot g(x) \text{ or } \underline{f(x)} \left(g(x) \pm a \right)$ is the term of T_1 and T_2 .

Provided their term (xiSB).

Frought of f(x) + f(x) + f(x) = f(x)The f(x) + f(x) = f(x) + f(x) = f(x)The f(x) + f(x) = f(x)The f(x

 $\begin{cases}
\frac{1}{2}, \frac{3}{4}, \frac{4}{5} \\
\frac{1}{2}, \frac{3}{4}, \frac{4}{5}
\end{cases} = \frac{1}{1} \underbrace{\operatorname{Comof}(a_1 c_1 e_2)}_{\text{Held}(a_1 b_2)}$

\$-1 5 2 SHPS } [.(.M) \$2 (3 SHPS) [.(.M)

o) $f(n) = \sin x$ $f(x) + \tan(x)$ $f(x) = \sin x$ $f(x) + \tan(x)$ $f(x) = \sin x$ $f(x) = \sin$

 $y = [n] \otimes$ $y = [n] \otimes$ y =

