Functions

Summary

- 1. Functions take a single input value and produce a single output value.
- 2. Interval notation can be used in place of inequalities.
- 3. When finding domain, you can't divide by 0 or take the square root of a negative number.

Think of a function as a machine.

You give the function (machine) a value (input), it will process that value, and then return a value back to you (output).

For instance, if you input 10 into the x^2 function, it will return 10^2 , or 100:

A function can be described using function notation.

f(x) represents the value of the function when the value of x is substituted into it.

We can use other notations for functions including, but not limited to,

$$g(x)$$
 $h(x)$ $f(n)$ $f(\odot)$

When we substitute a value for the variable and evaluate it, that is called evaluating the function.

Example 1. Evaluate f(2), f(-2), and f(0) for each.

(a)
$$f(x) = 2x + 3$$

(b)
$$f(x) = 3x^2 - 1$$

(c)

(d)

x x	-3	-2	-1	0	1	2	3
f(x)	-6	3	4	-3	-8	6	-5

Interval Notation

We often use interval notation to denote the domain and range of a function.

Interval Notation	Set-Builder Notation	Graph
(4, 9)	${x \mid 4 < x < 9}$	←
[4, 9]	$\{x \mid 4 \le x \le 9\}$	4 9
[4, 9)	$\{x \mid 4 \le x < 9\}$	← ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
(4, 9]	$\{x \mid 4 < x \le 9\}$	← • • • • • • • • • • • • • • • • • • •
(4, ∞)	$\{x \mid x > 4\}$	← ○ → 4
[4, ∞)	$\{x \mid x \ge 4\}$	4
$(-\infty, 9)$	$\{x \mid x < 9\}$	← • • • • • • • • • • • • • • • • • • •
$(-\infty, 9]$	$\{x \mid x \le 9\}$	← • • • • • • • • • • • • • • • • • • •
$(-\infty, \infty)$	\mathbb{R}	← →
Ø	{}	←

Domain of a Function

The **domain** of a function is the set of all possible *input* values that we are allowed to plug in to a function.

The range of a function is the set of all possible *output* values that we get from the function.

2 Domain Issues:

- Can't divide by 0. $\frac{1}{\neq 0}$
- ullet Can't take the square root of a negative number. $\sqrt{\geq 0}$

Example 2. Determine the domain of each. Write your answer using interval notation.

(a)
$$f(x) = \sqrt{5x - 2}$$

(b)
$$g(x) = \frac{3}{x^2 - 4x}$$