# ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГИМНАЗИЯ №3 Г. ГРОДНО»

# Секция «Алгебра, геометрия и математический анализ»

## «Склеивания»

#### Автор работы:

Вертинская Елена Андреевна, 8 класс ГУО «Гимназия №3 г. Гродно»,

Руководитель работы:

Разумов Евгений Владимирович, учитель математики, магистр педагогических наук, ГУО «Гимназия №3 г. Гродно»

# ОГЛАВЛЕНИЕ

| ВВЕДЕНИЕ                         | 3  |
|----------------------------------|----|
| ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ          |    |
| ЗАКЛЮЧЕНИЕ                       | 14 |
| СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ | 15 |

#### **ВВЕДЕНИЕ**

Задачи на разрезание увлекались многие ученые с древнейших времен. Решения многих простых задач на разрезания были найдены еще древними греками, китайцами, персами. Геометры всерьез занялись исследованием задач на разрезание фигур и последующим склеиванием из них той или иной фигуры только в начале XX века. Задачи на данную тему являются актуальными и встречаются в олимпиадах и математических боях [1].

На седьмом Минском городском открытом турнире юных математиков (младшая лига – 5-7 классы) в 2020 году была предложена задача «Склеивания». В данной работе предложено решение и обобщение этой задачи [2].

Склеивание нескольких маленьких многоугольников в один большой многоугольник эквивалентно разрезанию этого большого многоугольника на маленькие.

Объект исследования: задачи на разрезания, разбиения, замощения.

Предмет исследования: разрезание многоугольников.

**Цель работы:** исследовать, при каких k существуют несколько k-угольников, из которых можно склеить n-угольник.

На основании поставленной цели определим ряд задач исследования:

- 1. Доказать, что для любого k>2 существует два k-угольника, которые можно склеить в треугольник.
- 2. Найти все k, что существуют два k-угольника, из которых можно склеить выпуклый n-угольник (n>3).
- 3. Найти все k>2, при которых существуют три k-угольника, которые можно склеить в треугольник.
- 4. Найти для каких k и m (m>2) существует m k-угольников, из которых можно склеить выпуклый n-угольник?

### ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

Склеивание m k-угольников в n-угольник эквивалентно разрезанию n – угольника на m k-угольников. Далее в задаче будем рассматривать разрезание выпуклого n-гольника.

Очевидно, что проведя чевиану  $AA_1$ ,  $A_1 \in BC$  в любом треугольнике ABC, мы разрезаем треугольник на два треугольника.

*Утверждение 1.* Треугольник *ABC* можно разрезать на два k-угольника,  $k \ge 4$  разрезом, проходящим через точки A и  $A_1$ .

Докажем это с помощью метода математической индукции.

База индукции. k = 4.



Разрезание треугольника ABC на два четырехугольника строится следующим образом: выберем на  $AA_1$  точку  $A_2$ , отличную от концов отрезка  $AA_1$ , сдвинем точку  $A_2$ на величину  $\varepsilon>0$ . Получим два четырехугольника:  $CA_1A_2A$  и  $BA_1A_2A$ .

Такая величина  $\varepsilon$  найдется для любого треугольника, чтобы точка  $A_2$  осталась внутри него.

База доказана.

Шаг индукции.

Пусть треугольник *ABC* можно разрезать на два k-угольника, при всех  $k \le t$  разрезом, проходящим через точки A и  $A_1$ .

Докажем, что это возможно и для k = (t + 1).



Пронумеруем вершины разреза (ломанной)  $B_1$ ,  $B_2$ , ... ,  $B_{(t-3)}$  так, что  $A_1 CAB_1$ ...  $B_{(t-3)}$  и  $A_1 BAB_1$ ...  $B_{(t-3)}$  два t-угольника.

Рассмотрим треугольник  $AB_1B_2$  и его сторону  $B_1B_2$ . Выберем точку  $B_0$ ,  $B_0 \in B_1B_2$ , отличную от  $B_1$  и  $B_2$ . Сдвинем точку  $B_0$  по перпендикуляру, восстановленному в точке  $B_0$  так, чтобы точка A и точка  $B_0$  оказались в одной полуплоскости относительно  $B_1B_2$ , на величину  $\varepsilon > 0$ . Получим два (t+1)-угольника:  $A_1CAB_1B_0B_2 \dots B_{(t-3)}$  и  $A_1BAB_1B_0B_2 \dots B_{(t-3)}$ .

Такая величина  $\varepsilon$  найдется для любого треугольника  $AB_1B_2$ , чтобы точка  $B_0$  осталась внутри него.

Шаг доказан.

Таким образом, основываясь на базе индукции и из справедливости доказываемого утверждения для  $k \le t$ , следует, справедливость данного утверждения для k = (t+1). На основании принципа математической индукции, можем сделать вывод, что утверждение справедливо для любого  $k \ge 4$ ,  $k \in \mathbb{N}$ .

Следовательно, утверждение 1 доказано.

Рассмотрим выпуклый n-угольник. Найдём  $k_{min}$  - минимальное k такое, что n-угольник можно разрезать на два k-угольника.

Пусть каким-то разрезом разделили n-угольник на два k-угольника. Посчитаем количество сторон у каждого k-угольника.

Пусть у первого k-угольника  $n_1$  сторон, не лежащих на линии разреза (эти $n_1$  стороны лежат на сторонах исходного n-угольника), а у второго k-угольника  $n_2$  таких сторон. Пусть на линии разреза лежат t сторон, которые являются общими для двух k-угольников.

Тогда,

$$n_1+n_2+2t=2k$$
 Так как  $n_1+n_2\geq n$ , и  $t\geq 1$ , то  $n_1+n_2+2t=2k\geq n+2$ 

$$2k \ge n+2$$
$$k \ge \frac{n}{2}+1.$$

Так как 
$$k$$
 — целое, то  $k_{min} = \left[\frac{n+1}{2}\right] + 1$ .

Приведём примеры разрезания n-угольника на два  $k_{min}$ -угольника.

1) 
$$n = 2m$$



 $A_1 A_{m+1}$  является диагональю, соединяющей противоположные вершины n-угольника.

2) 
$$n = 2m - 1$$



Разрез  $A_1A$  проходит через вершину  $A_1$  и точку A на противолежащей стороне  $A_1A_{m+1}$  n-угольника. Таким образом n-угольник можно разрезать на два  $k_{min}$ -угольника, где  $k_{min} = \left\lceil \frac{n+1}{2} \right\rceil + 1$ .

Покажем, что n-угольник можно разрезать на два k-угольника, где  $k \geq k_{min}.$ 

Рассмотрим *п*-угольник.



 $A_0$  совпадает либо с A (при n=2m-1) либо с  $A_{m+1}$  (при n=2m),  $B=A_1A_0\cap A_2A_n$ .

Согласно утверждению 1  $\triangle A_1A_2A_n$  можно разрезать на два p-угольника,  $p \ge 4$  разрезом, проходящим через точки  $A_1$  и B. Таким образом, n-угольник можно разрезать на два k-угольника,  $k \ge k_{min}$ .

Утверждение 2. Треугольник можно разрезать на три k-угольника, где  $k = 2m + 1, m \in \mathbb{N}, m \ge 1$ . Будем разрезать тремя ломанными с равным количеством звеньев (при k = 2m + 1 по m звеньев), каждая из них проходит через вершину треугольника ABC и точку M внутри него.

Докажем это с помощью метода математической индукции. База индукции. k=3.



База верна.

Шаг индукции. Пусть треугольник ABC можно разрезать на три k-угольника. Для k=2t+1 тремя ломанными, в каждой из которой по t звеньев, проходящими через вершины треугольника и точку M внутри треугольника ABC.

Докажем, что это возможно и для k = 2(t+1) + 1 = 2t + 3.

Пронумеруем вершины разреза (ломаной)  $A_1,A_2,\dots,A_{(t-1)};$   $B_1,B_2,\dots,B_{(t-1)};$   $C_1,C_2,\dots,C_{(t-1)}$  так, что  $BB_1B_2\dots B_{(t-1)}$  M  $A_{(t-1)}\dots A_1A;$   $BB_1\dots B_{(t-1)}$  M  $C_{(t-1)}\dots C_1C;$  C  $C_1\dots C_{(t-1)}$  M  $A_{(t-1)}\dots A_1A$  — три (2t+1)- угольника.



Докажем, что к ломаной  $AA_1$  ...  $A_{(t-1)}M$  можно добавить вершину  $A_0$ , так что получится ломаная  $AA_1A_0A_2$  ...  $A_{(t-1)}M$ .

Построим прямую параллельную BC и проходящую через точку M; пусть ее точки пересечения с AB и AC — точки B' и C' соответственно.

Тогда, по утверждению 1 относительно треугольника B'AC', это возможно. Аналогично к ломаным  $BB_1 \dots M$  и  $CC_1 \dots M$  , можно добавить по 1 вершине. Таким образом  $AA_1A_0A_2 \dots A_{(t-1)} \ M \ B_{(t-1)} \dots \ B_2B_0B_1B$ ,  $BB_1B_0B_2 \dots B_{(t-1)} \ M \ C_{(t-1)} \dots \ C_2C_0C_1C$ ,  $CC_1C_0C_2 \dots C_{(t-1)} \ M \ A_{(t-1)} \dots A_2A_0A_1A$  три (2t+3)-угольника.

Шаг доказан.

Таким образом, основываясь на базе индукции и из справедливости доказываемого утверждения для k = (2t+1) следует справедливость данного утверждения для k = (2t+3). На основании принципа математической индукции, можем сделать вывод, что утверждение верно для любого нечетного  $k \ge 3$ .

Следовательно, утверждение доказано.

*Утверждение 3.* Треугольник можно разрезать на три k— угольника, где k=2m ,  $m \in \mathbb{N}$  ,  $m \geq 2$ .

Доказательство.

Отметим точки  $C_0$ ,  $B_0$ ,  $A_0$ на сторонах AB, AC, BC треугольника ABC соответственно.

Согласно утверждению 2, сформулированному и доказанному ранее, треугольник  $A_0B_0C_0$  можно разрезать тремя ломаными с равным количеством звеньев такими, что каждая из них проходит через вершины треугольника  $A_0B_0C_0$  и точку M внутри него. Тогда, треугольник  $A_0B_0C_0$  разрежем на три

$$2(m-1)+1=(2m-1)\text{-угольника}: \qquad \qquad A_0A_1\dots A_{(m-2)}\ M\ C_{(m-2)}\dots\ C_1C_0,$$
 
$$C_0C_1\dots C_{(m-2)}\ M\ B_{(m-2)}\dots\ B_1B_0,\ B_0B_1\dots B_{(m-2)}\ M\ A_{(m-2)}\dots\ A_1A_0.$$



Рассмотрим многоугольник  $AC_0C_1...C_{(m-2)}MB_{(m-2)}...B_1B_0$ .

Он содержит на 1 вершину больше, чем соответствующий ему (2m-1)-угольник, а значит, является 2m-угольником.

Аналогично получаем, что,  $BC_0C_1\dots C_{(m-2)}MA_{(m-2)}\dots A_1A_0$  и  $CB_0B_1\dots B_{(m-2)}MA_{(m-2)}\dots A_1A_0$  также являются 2m-угольниками.

Таким образом, мы получили требуемое разрезание, а следовательно, утверждение 3 доказано.

Доказательство.

Рассмотрим выпуклый k-угольник  $A_1A_2...A_k$ .

#### а) Пусть k = 2n.

Проведём диагональ  $A_1A_{m+1}$ , получим два выпуклых (m+1)-угольника. Проведём дугу  $A_1A_{m+1}$  такую, что все внутренние точки данной дуги лежат во внутренней области одного из (m+1)-угольников.

Расположим на дуге  $A_1A_{m+1}$  (m-1) точку  $B_1$ ,  $B_2$ , ...,  $B_{m-1}$ . Получим два k-угольника, один из которых выпуклый (выпуклым является k-угольник, который не содержит дугу).



#### б) Пусть k = 2m - 1.

Проведём отрезок  $A_1A$ , где  $A\in A_mA_{m+1}$ , получим два выпуклых (m+1)-угольника.



Проведём дугу  $A_1A$ , такую, что все внутренние точки дуги лежат во внутренней области одного из (m+1)-угольников.

Расположим на дуге  $A_1A$  (m-2) точки  $B_1$ ,  $B_2$ , ...,  $B_{m-2}$ . Получим два k-угольника, один из которых выпуклый (выпуклым является k-угольник, который не содержит дугу).

Что и требовалось доказать.

*Утверждение 4.* Минимальное количество k-угольников, из которых можно склеить n-угольник  $m_0$  равно  $m_0 = \left\lceil \frac{n-2}{k-2} \right\rceil$ .

Доказательство.

Пусть  $n_m$  - количество вершин фигуры, которую можно склеить из m некоторых k-угольников. Склеив (m-1) k-угольник мы получим фигуру с количеством вершин равным  $n_{m-1}$ .

Заметим, что присоединив к  $n_{m-1}$ -угольнику k-угольник, количество  $n_m$  вершин у получившейся фигуры увеличивается не более чем на (k-2), то есть  $n_m \le n_{m-1} + k - 2 \le n_{m-2} + 2(k-2) \le n_{m-3} + 3(k-2) \le \cdots \le n_1 + (m-1)(k-2)$ .

Так как  $n_1 = k$  (количество вершин фигуры, склеенной из одного k-угольника), то

$$n_m \le k + (m-1)(k-2).$$

Так как  $n_m = n$  по условию, то

$$n \le k + (m-1)(k-2)$$

$$n \le k + m(k-2) - k + 2$$

$$n \leq m(k-2)+2$$

$$m \ge \frac{n-2}{k-2}$$
, то есть

$$m_0 \ge \frac{n-2}{k-2}$$
 и  $m_0$ -минимальное целое, то

$$m_0 = \left\lceil \frac{n-2}{k-2} \right\rceil.$$

Что и требовалось доказать.

 $\mathit{Лемма}\ 2$ . К любому выпуклому i-угольнику можно достроить выпуклый k-угольник так, чтобы полученная фигура была выпуклым (i+k-2)-угольником.

Доказательство.

Рассмотрим і-угольник.



Выберем любую сторону i-угольника, не нарушая общности, пусть это будет сторона  $B_1B_2$ .

Проведем прямые  $B_3B_2$  и  $B_1B_i$ ,  $B_3B_2 \cap B_1B_i = X_1$ .

Построим дугу  $B_1B_2$ , такую, что все внутренние точки дуги лежат во внутренней области  $\Delta B_1B_2X_1$ . На дуге  $B_1B_2$  отметим (k-2) точки  $A_1$ ,  $A_2,\ldots,A_{k-2}$ , которые не совпадают с точками  $B_1$  и  $B_2$ .

 $\angle A_1B_1B_2 + \angle B_2B_1B_i < 180^\circ$  и  $\angle A_{k-2}B_2B_1 + \angle B_1B_2B_i < 180^\circ$ , а значит, полученный (i+k-2)-угольник  $A_1A_2\dots A_{k-2}B_2B_3\dots B_iB_1$  является выпуклым.

Что и требовалось доказать.

Таким образом, согласно *лемме* 2, последовательно пристраивая к выпуклому k-угольнику  $(m_0-1)$  k-угольников, получим выпуклый  $n_m$  -угольник, то есть искомый n-угольник.

Отметим, что последовательно пристраивать k-угольники можно к любой стороне получившейся фигуры на любом шаге.

Покажем что любой получившийся таким склеиванием n-угольник (который состоит из  $m_0$  k-угольников) можно составить из m-угольников, где  $m \ge m_0$ .

По *лемме* l любой выпуклый k-угольник можно разрезать на два k-угольника, один из которых выпуклый.

Таким образом, выбрав любой выпуклый k-угольник в фигуре и разрезав его на два k-угольника (один выпуклый и один не выпуклый), получим n-угольник, склеенный из  $(m_0+1)$  k-угольников (при этом количество выпуклых k-угольников не изменилось).

Последовательно выполняя данную операцию  $(m-m_0)$  раз получим n-угольник, склеенный из m k-угольников, где  $m \ge m_0$ .

Таким образом, для заданных k и n, мы можем найти все m , для которых существует m k-угольников, из которых можно склеить выпуклый n-угольник, то есть  $m \geq m_0 = \left\lceil \frac{n-2}{k-2} \right\rceil$ .

Для заданных n и m можно найти ограничение для k:

$$m \ge \frac{n-2}{k-2}$$
  $k \ge \frac{n-2}{m} + 2, k$  -целое.

#### **ЗАКЛЮЧЕНИЕ**

В ходе исследования получены следующие результаты:

- 1) Выведено и доказано с помощью метода математической индукции *утверждение 1*, что любой треугольник можно разрезать на два k–угольника,  $k \ge 4$ . Для k = 3 приведен пример разрезания.
- 2) Сформулированы и доказаны с помощью метода математической индукции утверждения, из которых следует, что при любом k > 2 существуют три k-угольника, которые можно склеить в треугольник.
- 3) Найдены все значения k такие, что существует два k-угольника, из которых можно склеить выпуклый n-угольник.
- 4) Найдены все значения k и m для которых существует m k-угольников, из которых можно склеить выпуклый n-угольник.

### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Екимова, М. А. Задачи на разрезание / М. А. Екимова, Г. П. Кукин. М. МЦНМО, 2002. 120 с.
- 2. Исследовательские задания VII Минского городского открытого турнира юных математиков (младшая лига 5-7 классы). Режим доступа: <a href="http://www.uni.bsu.by/arrangements/gtum57/index.html">http://www.uni.bsu.by/arrangements/gtum57/index.html</a> Дата доступа: 10.03.2020.