SECTION 4.9 ANTIDERIVATIVES

1. Find a particular antiderivative of $f(x) = 9 + x - x^2$.

$$F(x) = 9x + \frac{1}{2}x^2 - \frac{1}{3}x^3$$

2. Find all antiderivatives of $f(x) = 9 + x - x^2$.

$$F(x) = 9x + 2x^2 - 12x^3 + C$$
, C-general constant

3. Find an antiderivative of $f(x) = \frac{1}{x^2}$.

$$F(x) = -x^{-1}$$
Not just +c

4. To find *all* antiderivatives of a function f(x), do you always just add a +C?

Example:
$$F(x) = \begin{cases} -\frac{1}{x} + 10 & x > 0 \\ -\frac{1}{x} - \pi & x < 0 \end{cases}$$

5. For each of the following functions, find a particular antiderivative.

Function	Antiderivative
x	1 x2
x^2	1 x3
x^3	女×4
$x^k \ (k \neq -1)$	KH XKH
$x^{-1} \text{ for } x > 0$	ln(x)
$x^{-1} \text{ for } x < 0$	In(-x)
x^{-1} for all x	In(x)

Function	Antiderivative
$\sin(x)$	- CoSX
$\cos(x)$	Sinx
e^x	e ^x
$1/(1+x^2)$	arctan X
$\sec^2(x)$	tanx
$\sec(x)\tan(x)$	Secx
1	X

1

Section 4-9

6. Compute three different antiderivatives of
$$f(x) = 15x^{20} + 44x^{10} + 8$$

$$F(x) = \frac{15}{21} x^{21} + 4 x^{11} + 8x$$

7. Compute an antiderivative of
$$f(t) = \frac{5 \sec t \tan t}{3} - 4 \sin t - \frac{1}{t} + e^2$$

$$F(x) = \frac{5}{3} \operatorname{sect} + 4 \operatorname{cost} - \ln|x| + e^{2}x$$

8. Compute an antiderivative of
$$f(x) = \cos(3x)$$
.

$$F(x) = \frac{1}{3} \sin(3x)$$

9. Compute the antiderivative of
$$f(t) = t^2$$
 that equals 5 when $t = 2$.

$$F(2) = 5 = \frac{1}{3}(2)^3 + C$$

So
$$C=5-\frac{8}{3}=\frac{7}{3}$$

Answer:
$$F(t) = \frac{1}{3}t^3 + \frac{7}{3}$$