Project III: Robot-Arm Kinematics

MiniBOT6-R — Report

Charles Friley

May 1, 2025

Project Overview

This report addresses Questions 1 and 2 of the *Robot-Arm Kinematics* project. Question 3 (MuJoCo validation) was not attempted. The goals are:

- Q1a. Derive the position-level forward kinematics (FK) using the Denavit–Hartenberg (DH) convention and evaluate the end-effector pose for a specified joint configuration.
- Q1b. Obtain the closed-form inverse-kinematics (IK) solutions and compute all joint-angle sets with a given target pose.
- Q2. Derive the spatial Jacobian and solve for the joint rates $\dot{\mathbf{q}}$ that achieve a desired endeffector twist $\boldsymbol{\nu}$ at one of the IK configurations.

1 Question 1 — Position-Level Kinematics

1.1 DH Parameters

Using the DH convention, the following coordinate systems were constructed. (see fig 1 below)
The DH Table can be constructed using fig 1:

$\overline{\text{Link } i}$	$\alpha_i \text{ (rad)}$	$a_i (\mathrm{mm})$	$d_i \text{ (mm)}$	θ_i (variable)	Comment
1	$\frac{\pi}{2}$	27.5	339	$ heta_1$	
2	$\bar{0}$	250	0	$ heta_2$	
3	$\frac{\pi}{2}$	70	0	θ_3	
4	$-\frac{\pi}{2}$	0	250	$ heta_4$	
5	$\frac{\pi}{2}$	0	0	$ heta_5$	
6	$\tilde{0}$	0	95	$ heta_6$	

The homogeneous transformation of link i with respect to i-1 is

$$\mathbf{A}_{i} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad c_{\theta_{i}} = \cos \theta_{i}, \ s_{\theta_{i}} = \sin \theta_{i}.$$
 (1)

Figure 1: Robot Arm DH Frames

1.2 Forward Kinematics Evaluation

For the configuration $\boldsymbol{\theta}^{(1)} = [0, 90^{\circ}, 0, 0, -90^{\circ}, 0]$, Python evaluation (robotics-toolbox) produced the pose and Euler ZYX angles.

$${}^{0}T_{6}(\boldsymbol{\theta}^{(1)}) = \begin{bmatrix} 1 & 0 & 0 & 277.5 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 564 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad \boldsymbol{\xi}^{(1)} = \begin{bmatrix} 277.5 & 0 & 564 & \pi & 0 & 0 \end{bmatrix}^{\top}. \tag{2}$$

Under the hood, the robotics toolbox is simply constructing all homogeneous transformations for each joint and multiplying them together.

1.3 Closed-Form Inverse Kinematics

A geometric approach was used:

- 1. Compute the wrist-centre $\mathbf{p}_{c} = \mathbf{p}_{e} d_{6}\mathbf{z}_{e}$.
- 2. Solve θ_1 from the projection of \mathbf{p}_c on the base xy-plane. (see fig 2)
- 3. Treating links 2–3–4 as a planar 2-DoF mechanism in the r-z half-plane, intersect two circles to find θ_2 and θ_3 (elbow-up/down, shoulder-left/right). (see fig 3, 4, and 5)
- 4. Recover $\theta_4, \theta_5, \theta_6$ from ${}^3R_6 = {}^0R_3^{\top 0}R_6$ via ZYZ Euler angles.

The intersecting circles method works as follows (see fig 5):

- 1. First, draw a circle c_1 around the wrist center with a radius of $h = \sqrt{l_4^2 + l_3^2}$. This circle perimeter shows the possible locations for joint 3 (l_i values defined in fig 1).
- 2. Second, draw a circle c_2 around joint 2 at origin 1 with a radius of l_2 . This circle perimeter shows the possible locations for joint 3.
- 3. Where these two circles c_1 and c_2 intersect represents the only two locations that joint 3 can be located. This will later be used to find our two possible θ_2 values. (Note: there are two more possible θ_2 values once you consider the other possible θ_1 value.
- 4. Draw a circle c_3 and c_4 about each possible location for Joint 3 with a radius of l_3 . This circle perimeter shows the possible locations for joint 4.
- 5. Draw a circle c_5 about the wrist center with a radius of l_4 . this circle perimeter shows the possible locations for joint 4.
- 6. Where c_3 and c_4 intersect with c_5 shows the four possible locations for joint 4. This will later be used to find our four possible θ_3 values. (Note: there are four more possible θ_3 values once you consider the other possible θ_1 value.
- 7. Once all the possible locations are known for every single point, finding the corresponding joint angles is simple geometry. (see fig 4)

Figure 2: Projection on x_0 and y_0 plane.

Figure 3: 3D view of Manipulator from Base Frame to Wrist Center

Figure 4: Projection from Base Frame onto $r - z_0$ frame

Eight candidate solutions were generated for each $\theta_1 - \theta_6$ value:

$$\begin{bmatrix} 0.524 & 1.047 & -0.000 & 2.356 & 0.873 & -2.749 \\ 0.524 & 1.047 & -2.596 & 0.597 & 1.842 & 0.002 \\ 0.524 & -0.279 & 2.596 & 2.531 & 1.903 & 2.739 \\ 0.524 & -0.279 & 0.000 & 0.833 & 0.822 & -0.821 \\ 3.665 & 1.047 & -0.000 & -2.562 & 1.423 & -0.275 \\ 3.665 & 1.047 & -2.596 & -0.605 & 1.262 & -3.113 \\ 3.665 & -0.279 & 2.596 & -2.191 & 2.413 & 0.629 \\ 3.665 & -0.279 & 0.000 & -1.675 & 0.576 & -1.625 \end{bmatrix}$$

Verifying each set via FK revealed two exact matches:

$$\mathbf{q}^{(a)} = [0.524, 1.047, -0.000, 2.356, 0.873, -2.749]^{\top}, \qquad \mathbf{q}^{(b)} = [0.524, -0.279, 2.596, 2.531, 1.903, 2.739]^{\top}$$

Numerical Validation Levenberg–Marquardt (LM), Newton–Raphson (NR) and Gauss–Newton (GN) solvers, implemented with built in functions in robotics toolbox, converged to the same two solutions, confirming correctness.

2 Question 2 — Velocity-Level Kinematics

2.1 Spatial Jacobian

For a revolute joint i with axis \mathbf{z}_{i-1} and origin \mathbf{o}_{i-1} , the i-th column of the spatial Jacobian is $\mathbf{J}_i = \left[\mathbf{z}_{i-1} \times (\mathbf{o}_6 - \mathbf{o}_{i-1}); \ \mathbf{z}_{i-1}\right]$. Stacking \mathbf{J}_i yields $\mathbf{J}(\mathbf{q}) \in \mathbb{R}^{6 \times 6}$.

2.2 Joint Rates for a Desired Twist

Given the target twist $\nu = [100, -200, -300, 2, -1, 0.5]^{\mathsf{T}}$ (mm/s, rad/s) and the two IK configurations above, the solved joint rates were

¹All vectors are expressed in the base frame.

Figure 5: Intersecting Circles Method to find Joint Angles θ_2 and θ_3

Joint	$\dot{\mathbf{q}}^{(a)} \; (\mathrm{rad/s})$	$\dot{\mathbf{q}}^{(b)} \; (\mathrm{rad/s})$
$\dot{ heta}_1$	-0.815	-0.815
$\dot{ heta}_2$	0.425	-1.407
$\dot{ heta}_3$	-1.779	1.779
$\dot{ heta}_4$	-0.460	2.056
$\dot{ heta}_5$	-3.518	-1.299
$\dot{ heta}_6$	1.352	0.792

The reconstruction error $\|\mathbf{J}\dot{\mathbf{q}} - \boldsymbol{\nu}\|$ was below 10^{-6} for both cases, confirming correctness.

Conclusions

The report presented a complete analytical FK and IK solution for the miniBOT6-R, verified numerically, and derived the manipulator Jacobian to compute the required joint rates for a specified spatial twist. All results satisfied the accuracy criteria defined in the project brief.