Algorísmia QT 2021–2022

Examen Parcial

4 de novembre de 2021

Durada: 1h 25mn

Instruccions generals:

- Entregueu per separat les solucions de cada exercici (Ex 1, Ex 2, Ex 3 i Ex 4).
- Heu de donar i argumentar la correctesa i l'eficiència dels algorismes que proposeu. Per fer-ho podeu donar una descripció d'alt nivell de l'algorisme suficient per tal que, amb les explicacions i aclariments oportuns, justifiqueu que l'algorisme és correcte i té el cost indicat.
- Podeu fer crides a algorismes que s'han vist a classe, però si la solució és una variació, n'haureu de donar els detalls.
- Es valorarà especialment la claredat i concisió de la presentació.
- La puntuació total d'aquest examen és de 10 punts.

- Exercici 1 (2.5 punts). Tenim un vector A[1, ..., n] no ordenat amb claus no necessàriament numèriques, però que pertanyen a un conjunt totalment ordenat de claus. Sigui x_i el 2^i -èsim element més petit en A. Doneu un algorisme per calcular la suma dels valors x_i , per $1 \le 2^i \le n$, en $\Theta(n)$ passos.
- **Exercici 2 (2.5 punts)**. Et donen un immens graf G = (V, E) amb pesos w a les arestes i has de calcular el MST. Quan finalitzes el càlcul te n'adones que has fet un error copiant el pes d'una aresta $e \in E$. Li has donat un pes w'(e) i havia de ser w(e). Dona un algorisme que trobi el MST correcte en temps lineal.
- **Exercici 3 (3 punts)** Un grup de n amics ha de comprar un regal que val C euros, on C és un enter no negatiu. Tenim una llista amb els pressupostos B_i de cadascun dels amics, és a dir, una llista \mathbf{B} de n enters positius $\mathbf{B} = (B_1, \ldots, B_n)$.

Per fer la compra hem de determinar (si és possible) una aportació, una llista de quantitats $X = (x_1, ..., x_n)$, essent x_i la quantitat que aporta l'amic i. L'aportació ha de cobrir el cost del regal, és a dir, $\sum_{i=1}^{n} x_i = C$. A més, l'aportació particular de cap amic no pot superar mai el seu pressupost, és a dir, per $1 \le i \le n$, $x_i \le B_i$.

El cost d'una aportació X és $c(X) = \max\{x_i \mid 1 \le i \le n\}$. Diem que una aportació \mathbf{x}^* es equitativa si el seu cost és mínim amb relació al conjunt de totes les possibles aportacions.

Per exemple, supossem que C=100, n=3 i $\mathbf{B}=(3,45,100)$. Llavors és possible comprar el regal i una aportació equitativa és $\mathbf{x}^*=(3,45,52)$. Si els pressupostos foren $\mathbf{B}=(3,100,100)$, una aportació equitativa seria $\mathbf{x}^*=(3,48,49)$, però en canvi $\mathbf{x}^*=(3,45,52)$ no ho seria .

- 1. (1 punt) Sigui B_{\min} el pressupost més baix. Demostra que si el regal es pot comprar i $nB_{\min} < C$ hi ha una aportació equitativa en la qual tots els amics amb pressupost B_{\min} aporten B_{\min} .
- 2. (2 punts) Proporciona un algorisme golafre que determini si es pot o no comprar el regal i, en cas afirmatiu, retorni una aportació equitativa.
- **Exercici 4 (2 punts)** Tenim un graf no dirigit G = (V, E). Com és habitual, d_u denota el grau del vèrtex u. Diem que una partició dels vèrtexs en V_1 i $\overline{V}_1 = V \setminus V_1$ és equilibrada quan $\sum_{u \in V_1} d_u = \sum_{v \notin V_1} d_v$.

Doneu un algorisme de programació dinàmica per a determinar si un graf donat té o no té una partició equilibrada.