Second order fractional mean-field SDEs with singular kernels

Zimo Hao

Bielefeld University

(This is a joint work with Michael Röckner and Xicheng Zhang.)

Paris, Institut Henri Poincaré

18–22 December, 2023

- Background and motivation
- Main results

- 3 Applications
 - Fractional Vlasov-Poisson-Fokker-Planck equation
 - Fractional Navier-Stocks equation
 - Fractional kinetic porous medium equation with viscosity

Background and motivation

N-particle systems

▶ Consider the following N-particle systems:

$$\begin{cases} \mathrm{d}X_t^{N,i} = V_t^{N,i} \mathrm{d}t, \\ \mathrm{d}V_t^{N,i} = \frac{1}{N} \sum_{j \neq i} K(X_t^{N,i} - X_t^{N,j}) \mathrm{d}t + L_t^{(\alpha),i}. \end{cases}$$

- $ightharpoonup \frac{1}{N}$: mean-field scaling;
- $K = \nabla U : \mathbb{R}^d \to \mathbb{R}^d$: interaction kernel with some potential U (e.g. $U(x) = |x|^{2-d}$, $\ln |x|$);
- ▶ $\{L_t^{(\alpha),i}\}_{i=1}^\infty$ is a family of i.i.d. α -stable processes: collision and background medium.

N-particle systems

Consider the following N-particle systems:

$$\begin{cases} \mathrm{d}X_t^{N,i} = V_t^{N,i} \mathrm{d}t, \\ \mathrm{d}V_t^{N,i} = \frac{1}{N} \sum_{j \neq i} K(X_t^{N,i} - X_t^{N,j}) \mathrm{d}t + L_t^{(\alpha),i}. \end{cases}$$

- $ightharpoonup \frac{1}{N}$: mean-field scaling;
- $K = \nabla U : \mathbb{R}^d \to \mathbb{R}^d$: interaction kernel with some potential U (e.g. $U(x) = |x|^{2-d}$, $\ln |x|$);
- ▶ $\{L_t^{(\alpha),i}\}_{i=1}^\infty$ is a family of i.i.d. α -stable processes: collision and background medium.
- ▶ Plasma physics (Vlasov 1968, Carrillo-Choi-Salem 2019,...); Biosciences (Simon-Olivera 2018, Flandoli-Leimbach-Olivera 2019,...); . . .

Second order mean-field SDEs

- ▶ Propagation of chaos (Kac 1956, McKean 1967,..., Sznitman 1991, ..., Jabin-Wang 2016, 2018, Lacker 2018, 2021,...)
- $(X_t^{N,i}, V_t^{N,i})$ converges to the solution of the following mean-field SDEs:

$$\begin{cases} dX_t = V_t dt, \\ dV_t = (K * \mu_{X_t})(X_t) dt + dL_t^{(\alpha)}, \end{cases}$$

where μ_{X_t} is the time marginal law of X_t .

Second order mean-field SDEs

- ► Propagation of chaos (Kac 1956, McKean 1967,..., Sznitman 1991, ..., Jabin-Wang 2016, 2018, Lacker 2018, 2021,...)
- $(X_t^{N,i}, V_t^{N,i})$ converges to the solution of the following mean-field SDEs:

$$\begin{cases} \mathrm{d}X_t = V_t \mathrm{d}t, \\ \mathrm{d}V_t = (K * \mu_{X_t})(X_t) \mathrm{d}t + \mathrm{d}L_t^{(\alpha)}, \end{cases}$$

where μ_{X_t} is the time marginal law of X_t .

▶ It can be rephrased as the following second order mean-field SDE:

$$\ddot{X}_t = (K * \mu_t)(X_t) + \dot{L}_t^{(\alpha)}. \tag{1.1}$$

Nonlinear Fokker-Planck equations

▶ Consider the following second order mean-field SDE:

$$\mathrm{d}\dot{X}_t = (b*\mu_t)(X_t,\dot{X}_t)\mathrm{d}t + \mathrm{d}L_t^{(lpha)},$$
 (M-SDE)

where μ_t is the time marginal distribution of (X_t, \dot{X}_t) .

Suppose that f = f(t, x, v) is the density of the time marginal distribution of (X_t, \dot{X}_t) . By Itô's formula, f solves the following kinetic nonlinear Fokker-Planck equation:

$$\partial_t f + v \cdot \nabla_x f = \Delta_v^{\frac{\alpha}{2}} f - \operatorname{div}_v((b * f) f).$$
 (FPE)

Nonlinear Fokker-Planck equations

▶ If b(x, v) = b(v) and then $V_t := \dot{X}_t$ solves the following first order meanfield SDE:

$$dV_t = (b * \mu_t)(V_t)dt + dL_t^{(\alpha)},$$

where μ_t is the time marginal distribution of V_t .

ightharpoonup The density of V_t solves the following non-degenerate nonlinear Fokker-Planck equation:

$$\partial_t \rho = \Delta^{\frac{\alpha}{2}} \rho - \operatorname{div}((b * \rho) \rho).$$

Motivation-examples

- ► (Vlasov-Poisson-Fokker-Planck equation) d = 3; $b = b(x) = x/|x|^{d-2}$.
- ► (Vorticity form of Navier-Stokes equation) d = 2, 3; b = b(v): Biot-Savart law.
- ► (Surface quasi-geostropic equation) d = 2; $b = b(v) = (-v_2/|v|^3, v_1/|v|^3)$: Riesz tranform.
- ► (Fractional porous medium equation with viscosity) $b = b(v) = v/|v|^{d-s}$ with $s \in (0, d)$.

Aims

▶ <u>Aim 1</u>: Well-posedness of the degenerate (nondegenerate) nonlinear Fokker-Planck equation (FPE) under a general condition of kernel *b*;

Aims

- ▶ <u>Aim 1</u>: Well-posedness of the degenerate (nondegenerate) nonlinear Fokker-Planck equation (FPE) under a general condition of kernel *b*;
- ► Aim 2: Strong and weak well-posedness of second (first) order mean-field SDE (M-SDE);

Aims

- Aim 1: Well-posedness of the degenerate (nondegenerate) nonlinear Fokker-Planck equation (FPE) under a general condition of kernel b;
- Aim 2: Strong and weak well-posedness of second (first) order mean-field SDE (M-SDE);
- ightharpoonup Aim 3: Smoothness and long time behavior of the solution f(t, x, v).

Anisotropic scaling

Consider the following simple second order SDE:

$$\mathrm{d}X_t = V_t \mathrm{d}t, \quad \mathrm{d}V_t = \mathrm{d}L_t^{(\alpha)}.$$

▶ We have the following scaling:

$$(X_t, V_t) = \left(\int_0^t L_s^{(\alpha)} \mathrm{d}s, L_t^{(\alpha)}\right) \sim \left(t^{\frac{1+\alpha}{\alpha}} X_1, t^{\frac{1}{\alpha}} V_1\right).$$

Anisotropic scaling

Consider the following simple second order SDE:

$$\mathrm{d}X_t = V_t \mathrm{d}t, \quad \mathrm{d}V_t = \mathrm{d}L_t^{(\alpha)}.$$

▶ We have the following scaling:

$$(X_t, V_t) = \left(\int_0^t L_s^{(\alpha)} \mathrm{d}s, L_t^{(\alpha)}\right) \sim \left(t^{\frac{1+\alpha}{\alpha}} X_1, t^{\frac{1}{\alpha}} V_1\right).$$

▶ For $\mathbf{p} = (p_x, p_v)$ and $\mathbf{a} = (1 + \alpha, 1)$, we introduce the anisotropic distance

$$|(x,v)|_a:=|x|^{\frac{1}{1+\alpha}}+|v|$$

and mixed-Lp norm

$$||f||_{L^p}:=\left(\int_{\mathbb{R}^d}\left(\int_{\mathbb{R}^d}|f(x,v)|^{\rho_X}\mathrm{d}x\right)^{\rho_V/\rho_X}\mathrm{d}v\right)^{1/\rho_V}.$$

Anisotropic scaling

Consider the following simple second order SDE:

$$\mathrm{d}X_t = V_t \mathrm{d}t, \quad \mathrm{d}V_t = \mathrm{d}L_t^{(\alpha)}.$$

▶ We have the following scaling:

$$(X_t, V_t) = \left(\int_0^t L_s^{(\alpha)} \mathrm{d}s, L_t^{(\alpha)}\right) \sim (t^{\frac{1+\alpha}{\alpha}} X_1, t^{\frac{1}{\alpha}} V_1).$$

▶ For $\mathbf{p} = (p_x, p_v)$ and $\mathbf{a} = (1 + \alpha, 1)$, we introduce the anisotropic distance

$$|(x, v)|_a := |x|^{\frac{1}{1+\alpha}} + |v|$$

and mixed-L^p norm

$$||f||_{L^p}:=\left(\int_{\mathbb{R}^d}\left(\int_{\mathbb{R}^d}|f(x,v)|^{\rho_X}\mathrm{d}x\right)^{\rho_v/\rho_X}\mathrm{d}v\right)^{1/\rho_v}.$$

Define

$$a\cdot\frac{1}{\boldsymbol{p}}:=\frac{1+\alpha}{p_{x}}+\frac{1}{p_{v}}.$$

Anisotropic Besov space

▶ For r > 0 and $z \in \mathbb{R}^{2d}$, we also introduce the ball

$$B_r^a := \{ z' \in \mathbb{R}^{2d} : |z|_a \leqslant r \}.$$

▶ Let χ_0^a be a symmetric C^∞ -function on \mathbb{R}^{2d} with

$$\chi_0^a(\xi) = 1$$
 for $\xi \in B_1^a$ and $\chi_0^a(\xi) = 0$ for $\xi \notin B_2^a$.

▶ For $j \in \mathbb{N}$, we define

$$\phi_j^a(\xi) := \begin{cases} \chi_0^a(2^{-ja}\xi) - \chi_0^a(2^{-(j-1)a}\xi), & j \geqslant 1, \\ \chi_0^a(\xi), & j = 0, \end{cases}$$

where for $s \in \mathbb{R}$ and $\xi = (\xi_1, \xi_2)$,

$$2^{sa}\xi = (2^{s(1+\alpha)}\xi_1, 2^s\xi_2).$$

$$\sum_{j\geqslant 0}\phi_j^a(\xi)=1.$$

- Let \mathcal{S} be the space of all Schwartz functions on \mathbb{R}^{2d} and \mathcal{S}' the dual space of \mathcal{S} , called the tempered distribution space.
- ▶ For given $j \ge 0$, the dyadic block operator \mathcal{R}_j^a is defined on \mathcal{S}' by

$$\mathcal{R}_{j}^{a}f(z) := (\phi_{j}^{a}\hat{f})\check{}(z) = \check{\phi}_{j}^{a} * f(z),$$

where the convolution is understood in the distributional sense.

Definition 1 (Anisotropic Besov spaces)

Let $s \in \mathbb{R}$ and $\boldsymbol{p} \in [1, \infty]^2$. The anisotropic Besov space is defined by

$$\mathbf{B}_{\boldsymbol{p},q,a}^{s} := \left\{ f \in \mathcal{S}' : \|f\|_{\mathbf{B}_{\boldsymbol{p},q,a}^{s}} := \left(\sum_{j \geqslant 0} \left(2^{jsq} \|\mathcal{R}_{j}^{a} f\|_{\boldsymbol{p}}^{q} \right) \right)^{1/q} < \infty \right\}.$$

Similarly, for any $p \in [1, \infty]$, one defines the isotropic Besov spaces $\mathbf{B}_{p,q}^s$ in \mathbb{R}^d .

lacksquare Set $\mathbf{B}^s_{oldsymbol{
ho},a}:=\mathbf{B}^s_{oldsymbol{
ho},\infty,a}$ and $\mathbf{B}^s_{oldsymbol{
ho}}:=\mathbf{B}^s_{oldsymbol{
ho},\infty}.$

Examples

- Any finite measure μ in \mathbb{R}^d belongs to \mathbf{B}_1^0 .
- For given $\gamma \in (0, d)$, let $K(x) = |x|^{-\gamma}$, $x \in \mathbb{R}^d$. Then for any $p \in (\frac{d}{\gamma}, \infty]$, it holds that

$$K \in \mathbf{B}_p^{d/p-\gamma}$$
.

• Suppose $K \in \mathbf{B}_p^s$ for some $s \in \mathbb{R}$ and $p \in [1, \infty]$. Let

$$K_1(x, v) = K(x), K_2(x, v) = K(v), p_1 = (p, \infty), p_2 = (\infty, p).$$

Then we have

$$\|K_1\|_{\mathsf{B}^{(1+\alpha)s}_{\boldsymbol{p}_1,a}} \asymp \|K\|_{\mathsf{B}^s_{\boldsymbol{p}}} \asymp \|K_2\|_{\mathsf{B}^s_{\boldsymbol{p}_2;a}}.$$

Well-posedness of SDE with singular drifts

Consider the following SDE:

$$dX_t = b(t, X_t)dt + dL_t^{(\alpha)}.$$
 (SDE)

Well-posedness of SDE with singular drifts

Consider the following SDE:

$$\mathrm{d}X_t = b(t, X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}.$$
 (SDE)

▶ Let $\varepsilon \in (0,1)$ and

$$b^{\varepsilon}(t,x) := \varepsilon^{\alpha-1}b(\varepsilon^{\alpha}t,\varepsilon x), \quad L_{t}^{(\alpha),\varepsilon} := \varepsilon^{-1}L_{\varepsilon^{\alpha}t}^{(\alpha)}, \quad X_{t}^{\varepsilon} := \varepsilon^{-1}X_{\varepsilon^{\alpha}t}.$$

Then

$$\mathrm{d}X_t^\varepsilon = b^\varepsilon(t, X_t^\varepsilon)\mathrm{d}t + \mathrm{d}L_t^{(\alpha),\varepsilon}$$

and

$$\|b^{\varepsilon}\|_{L^{q_b}_t \mathbf{B}^{\beta_b}_{\rho_b}} \sim \varepsilon^{\alpha - 1 + \beta_b - \frac{d}{\rho_b} - \frac{\alpha}{q_b}} \|b\|_{L^{q_b}_t \mathbf{B}^{\beta_b}_{\rho_b}}.$$

Well-posedness of SDE with singular drifts

Consider the following SDE:

$$dX_t = b(t, X_t)dt + dL_t^{(\alpha)}.$$
 (SDE)

▶ Let $\varepsilon \in (0,1)$ and

$$b^{\varepsilon}(t,x):=\varepsilon^{\alpha-1}b(\varepsilon^{\alpha}t,\varepsilon x),\quad L_{t}^{(\alpha),\varepsilon}:=\varepsilon^{-1}L_{\varepsilon^{\alpha}t}^{(\alpha)},\quad X_{t}^{\varepsilon}:=\varepsilon^{-1}X_{\varepsilon^{\alpha}t}.$$

Then

$$\mathrm{d}X_t^\varepsilon = b^\varepsilon(t, X_t^\varepsilon)\mathrm{d}t + \mathrm{d}L_t^{(\alpha),\varepsilon}$$

and

$$\|b^{\varepsilon}\|_{L^{q_b}_t \mathbf{B}^{\beta_b}_{\rho_b}} \sim \varepsilon^{\alpha - 1 + \beta_b - \frac{d}{\rho_b} - \frac{\alpha}{q_b}} \|b\|_{L^{q_b}_t \mathbf{B}^{\beta_b}_{\rho_b}}.$$

In the sense of this scaling, the sub-critical condition is:

$$-\beta_b + \frac{d}{\rho_b} + \frac{\alpha}{q_b} < \alpha - 1. \tag{A}$$

► (Krylov-Röckner 2005) $\alpha = 2$, $\beta_b = 0$. (A) \Rightarrow Strong well-posedness of (SDE);

- ► (Krylov-Röckner 2005) $\alpha = 2$, $\beta_b = 0$. (A) \Rightarrow Strong well-posedness of (SDE);
- ► (Flandoli-Issoglio-Russo 2016, Zhang-Zhao 2018) $\alpha = 2, \beta_b \in (-\frac{1}{2}, 0).$ (A) \Rightarrow Weak well-posedness of (SDE);

- (Krylov-Röckner 2005) $\alpha = 2$, $\beta_b = 0$. (A) \Rightarrow Strong well-posedness of (SDE);
- ► (Flandoli-Issoglio-Russo 2016, Zhang-Zhao 2018) $\alpha = 2, \beta_b \in (-\frac{1}{2}, 0).$ (A) \Rightarrow Weak well-posedness of (SDE);
- ▶ (Priola 2010, Zhang 2012, Xie-Zhang 2020,...) $\alpha \in (1,2), \beta_b \geq 0$ "(A)" \Rightarrow Strong well-posedness of (SDE);
- ► (Ling-Zhao 2021, Athreya-Butkovsky-Mytnik 2020...) $\alpha \in (1,2), \beta_b \in (\frac{1-\alpha}{2},0), p_b = q_b = \infty$ (A) \Rightarrow Weak and strong well-posedness of (SDE);
- ► (Chen-Zhang-Zhao 2021,...) $\alpha \in (0,1), \beta_b > 1-\alpha, p_b = q_b = \infty$ Strong well-posedness of (SDE);

- (Krylov-Röckner 2005) $\alpha = 2$, $\beta_b = 0$. (A) \Rightarrow Strong well-posedness of (SDE);
- ► (Flandoli-Issoglio-Russo 2016, Zhang-Zhao 2018) $\alpha = 2$, $\beta_b \in (-\frac{1}{2}, 0)$. (A) \Rightarrow Weak well-posedness of (SDE);
- ▶ (Priola 2010, Zhang 2012, Xie-Zhang 2020,...) $\alpha \in (1,2), \beta_b \ge 0$ "(A)" \Rightarrow Strong well-posedness of (SDE);
- ► (Ling-Zhao 2021, Athreya-Butkovsky-Mytnik 2020...) $\alpha \in (1,2), \beta_b \in (\frac{1-\alpha}{2},0), p_b = q_b = \infty$ (A) \Rightarrow Weak and strong well-posedness of (SDE);
- ► (Chen-Zhang-Zhao 2021,...) $\alpha \in (0,1), \beta_b > 1 \alpha, p_b = q_b = \infty$ Strong well-posedness of (SDE);
- ► (Chaudru de Raynal 2017,H.-Wu-Zhang 2020, Chaudru de Raynal-Menozzi 2022...) Second order case.

Mean-field SDEs case

Consider the following Mean-field SDE:

$$\mathrm{d}X_t = (b*\mu_t)(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}.$$

Mean-field SDEs case

Consider the following Mean-field SDE:

$$\mathrm{d}X_t = (b*\mu_t)(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}.$$

► (Chaudru de Raynal-Jabir-Menozzi 2022)

$$\beta_b \leq 0 + (A) \Rightarrow$$
 weak well-posedness;

$$-\beta_b + rac{d}{p_d} + rac{lpha}{q_b} < rac{3}{2}lpha - 2 \Rightarrow$$
 strong well-posedness.

Mean-field SDEs case

Consider the following Mean-field SDE:

$$\mathrm{d}X_t = (b*\mu_t)(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}.$$

► (Chaudru de Raynal-Jabir-Menozzi 2022)

$$\beta_b \leq 0 + (A) \Rightarrow$$
 weak well-posedness;

$$-\beta_b + rac{d}{p_d} + rac{lpha}{q_b} < rac{3}{2}lpha - 2 \Rightarrow$$
 strong well-posedness.

- ▶ $\beta_b > -\frac{1}{2}$ is dropped.
- ▶ It can not cover some singular kernels like $b(t,x) = x/|x|^d \in \dot{\mathbf{B}}_{p_b}^{\beta_b}$ with

$$-\beta_b + \frac{d}{p_b} = d - 1(> \alpha - 1).$$

Initial data and singular kernels

Consider the following Mean-field SDE:

$$\mathrm{d}X_t = (b*\mu_t)(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}.$$

▶ Assume $\mu_t \sim \mu_0 \in \mathbf{B}_{p_0}^{\beta_0}$ for some $\beta_0 \leq 0$. Then,

$$b*\mu \in L^{q_b}_t \mathbf{B}^{\beta}_{p,x}, \quad \text{with} \begin{cases} \beta = \beta_b + \beta_0 \\ 1 + 1/p = 1/p_b + 1/p_0. \end{cases}$$

Initial data and singular kernels

Consider the following Mean-field SDE:

$$\mathrm{d}X_t = (b*\mu_t)(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}.$$

▶ Assume $\mu_t \sim \mu_0 \in \mathbf{B}_{p_0}^{\beta_0}$ for some $\beta_0 \leq 0$. Then,

$$b*\mu \in L^{q_b}_t \mathbf{B}^{\beta}_{p,x}, \quad \text{with} egin{cases} eta = eta_b + eta_0 \ 1 + 1/p = 1/p_b + 1/p_0. \end{cases}$$

Sub-critical condition:

$$-\beta_0 + \frac{d}{\rho_0} - \beta_b + \frac{d}{\rho_b} + \frac{\alpha}{q_b} < d + \alpha - 1.$$
 (B)

Initial data and singular kernels

Consider the following Mean-field SDE:

$$\mathrm{d}X_t = (b*\mu_t)(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}.$$

▶ Assume $\mu_t \sim \mu_0 \in \mathbf{B}_{p_0}^{\beta_0}$ for some $\beta_0 \leq 0$. Then,

$$b*\mu \in L^{q_b}_t \mathbf{B}^{\beta}_{p,x}, \quad \text{with} egin{cases} eta = eta_b + eta_0 \ 1 + 1/p = 1/p_b + 1/p_0. \end{cases}$$

Sub-critical condition:

$$-\beta_0 + \frac{d}{\rho_0} - \beta_b + \frac{d}{\rho_b} + \frac{\alpha}{q_b} < d + \alpha - 1.$$
 (B)

▶ $(\beta_0, p_0) = (0, 1) \rightarrow \text{Chaudru de Raynal-Jabir-Menozzi 2022.}$

Examples

▶ Let $1 \le s < d$.

$$b(x) = \nabla |x|^{1-s} \in \dot{\mathbf{B}}_{\rho_b}^{-\beta_b}$$
 with $-\beta_b + \frac{d}{\rho_b} = s$.

Condition (B) is the following

$$-\beta_0 + \frac{d}{\rho_0} < d - s + \alpha - 1.$$

▶ Let $\theta \in [0, \alpha - 1)$.

$$b(x) = |\nabla|^{\theta} \delta \in \mathbf{B}_1^{-\theta}.$$

Condition (B) is the following

$$-\beta_0 + \frac{d}{\rho_0} < \alpha - 1 - \theta.$$

Main results

(H) Let $\alpha \in (1,2]$, $q_b \in (\frac{\alpha}{\alpha-1}]$ and $\boldsymbol{p}_0, \boldsymbol{p}_b \in [1,\infty]^2$ with $1 \le 1/\boldsymbol{p}_0 + 1/\boldsymbol{p}_b$. Let $\beta_0 \in (-\alpha + \frac{\alpha}{q_b}, 0)$. Assume that

$$-\beta_0 + \mathbf{a} \cdot \frac{\mathbf{d}}{\mathbf{p}_0} - \beta_b + \mathbf{a} \cdot \frac{\mathbf{d}}{\mathbf{p}_b} + \frac{\alpha}{\mathbf{q}_b} \leq (\alpha + 2)\mathbf{d} + \alpha - 1$$

and

$$-2\beta_0 + \mathbf{a} \cdot \frac{\mathbf{d}}{\mathbf{p}_0} - \beta_b + \mathbf{a} \cdot \frac{\mathbf{d}}{\mathbf{p}_b} + \frac{\alpha}{\mathbf{q}_b} < (\alpha + 2)\mathbf{d} + \alpha.$$

Set

$$\kappa_0 := \|f_0\|_{\mathbf{B}^{\beta_0}_{\boldsymbol{p}_0,a}}, \quad \kappa_b := \|b\|_{\mathbf{B}^{\beta_b}_{\boldsymbol{p}_b,a}}.$$

Theorem 2.1

Suppose (H) holds and $\kappa_b < \infty$. There are constants $\gamma > 0$ and $C_0 > 0$ such that for any T > 1 and

$$\kappa_0 \kappa_b \le C_0 T^{-\gamma}, \tag{2.1}$$

there is a unique smooth solution f to (FPE).

Theorem 2.1

Suppose (H) holds and $\kappa_b < \infty$. There are constants $\gamma > 0$ and $C_0 > 0$ such that for any T > 1 and

$$\kappa_0 \kappa_b \le C_0 T^{-\gamma}, \tag{2.1}$$

there is a unique smooth solution f to (FPE). Moreover,

(i) if $\mathbf{a} \cdot \mathbf{d}/\mathbf{p}_b > \alpha - \alpha/q_b - 1$ and $\mathbf{p}_0 \neq (1,1)$. Assume that $f_0 \in \mathbf{B}^{\beta_0}_{(1,1),1}$. Then we can take $\gamma = 0$ in (2.1) and the constant C_0 may depend on $\|f_0\|_{\mathbf{B}^{\beta_0}_{(1,1),1}}$, and there is a unique global solution f so that for any $\beta \geq 0$

$$\sup_{t\geq 1}\left(t^{\frac{(\alpha+2)d-a\cdot(d/p_0)}{\alpha}}\|f(t)\|_{\mathsf{B}^{\beta}_{p_0,a}}\right)<\infty.$$

Theorem 2.1

Suppose (H) holds and $\kappa_b < \infty$. There are constants $\gamma > 0$ and $C_0 > 0$ such that for any T > 1 and

$$\kappa_0 \kappa_b \le C_0 T^{-\gamma}, \tag{2.1}$$

there is a unique smooth solution f to (FPE). Moreover,

(i) if $\mathbf{a} \cdot \mathbf{d}/\mathbf{p}_b > \alpha - \alpha/q_b - 1$ and $\mathbf{p}_0 \neq (1,1)$. Assume that $f_0 \in \mathbf{B}^{\beta_0}_{(1,1),1}$. Then we can take $\gamma = 0$ in (2.1) and the constant C_0 may depend on $\|f_0\|_{\mathbf{B}^{\beta_0}_{(1,1),1}}$, and there is a unique global solution f so that for any $\beta > 0$

$$\sup_{t\geq 1}\left(t^{\frac{(\alpha+2)d-a\cdot(d/p_0)}{\alpha}}\|f(t)\|_{\mathsf{B}^{\beta}_{p_0,a}}\right)<\infty.$$

(ii) we can drop the smallness assumption (2.1) if $\boldsymbol{p}_0=(1,1)$ or $\operatorname{div} b\equiv 0$, $\boldsymbol{p}_0=(p_0,p_0)$ and $f_0\in \cup_{q\in [1,\infty)}\mathbf{B}_{p_0,q,a}^{\beta_0}$.

Second order mean-field SDE

Consider the following second order mean-field SDE:

$$d\dot{X}_t = (b * \mu_t)(X_t, \dot{X}_t)dt + dL_t^{(\alpha)}, \qquad (2.2)$$

where μ_t is the time marginal distribution of (X_t, \dot{X}_t) and assume $(X_0, \dot{X}_0) \sim u_0$.

Theorem 2.2

Under the same conditions as in Theorem 2.1,

if

$$-\beta_0 + a \cdot \frac{d}{\mathbf{p}_0} - \beta_b + a \cdot \frac{d}{\mathbf{p}_b} + \frac{\alpha}{q_b} < (\alpha + 2)d + \alpha - 1,$$

then there is a unique weak solution to (2.2);

if

$$-\beta_0 + a \cdot \frac{d}{\rho_0} - \beta_b + a \cdot \frac{d}{\rho_b} + \frac{\alpha}{q_b} < (\alpha + 2)d + \frac{3}{2}\alpha - 2$$

and $(1 - \Delta_x)^{\frac{2+\alpha}{4(1+\alpha)}} b \in \mathbf{B}_{\mathbf{p}_b,a}^{\beta_b}$, then there is a unique strong solution to (2.2).

Applications

Fractional Vlasov-Poisson-Fokker-Planck equation

▶ Let $d \ge 3$. Consider the following fractional Vlasov-Poisson-Fokker-Planck equation:

$$\partial_t f + v \cdot \nabla_x f = \Delta_v^{\frac{\alpha}{2}} f + \gamma \nabla U \cdot \nabla_v f,$$
 (VPFP)

where $\alpha \in$ (1,2], $\gamma = \pm 1$ stands for the attractive or repulsive force in physics, respectively, and

$$U(t,x):=\int_{\mathbb{R}^{2d}}\frac{f(t,x-y,v)}{|y|^{d-2}}\mathrm{d}y\mathrm{d}v.$$

► Two cases for well-posedness:

$$f_0 \in \mathbf{B}^0_{((1+\alpha)d/(2\alpha),1),a} \ (\alpha = 2 \ \text{Carrillo-Soler 1997}) \ \ \text{and} \ \ f_0 \in \mathbf{B}^{-(2\alpha+1)/2}_{(\infty,1),a}.$$

▶ Two cases for well-posedness:

$$f_0 \in \mathbf{B}^0_{((1+\alpha)d/(2\alpha),1),a} \ (\alpha = 2 \ \text{Carrillo-Soler 1997}) \ \text{ and } \ f_0 \in \mathbf{B}^{-(2\alpha+1)/2}_{(\infty,1),a}.$$

Decay estimate for the force:

$$\|\nabla U(t)\|_{\infty} \lesssim t^{-\frac{(1+\alpha)(d-1)}{\alpha}}, \quad t \geq 1.$$

When $\alpha=2$ and $\|f_0\|_{L^1}$ is small enough, it is obtained in Ono-Strauss 2000 (Here we only require $\|f_0\|_{\mathbf{B}^{\beta_0}_{p_0,a}}$ small enough. There is no any restriction on $\|f_0\|_{L^1}$).

▶ Well-posedness for the related mean-field SDE, which provides a microscopic probabilistic explanation.

Fractional Navier-Stocks equation

▶ Consider the following 2-dim and 3-dim vorticity fractional Navier-Stocks equation in \mathbb{R}^2 (\mathbb{R}^3):

$$\partial_t \omega = \Delta^{\frac{\alpha}{2}} \omega + u \cdot \nabla \omega, \quad d = 2;$$
 (2D)

$$\partial_t \omega = \Delta^{\frac{\alpha}{2}} \omega + u \cdot \nabla \omega + \omega \cdot \nabla u, \quad d = 3.$$
 (3D)

▶ Velocity u can be recovered from ω by the Biot-Savart law: $u = K_d * \omega$, d = 2, 3, where

$$K_2(x) = \frac{1}{2\pi} (\frac{-x_2}{|x|^2}, \frac{-x_1}{|x|^2}), \quad K_3(x)h = \frac{1}{4\pi} \frac{x \times h}{|x|^3}, \ h \in \mathbb{R}^3.$$

(Well-posedness)

▶ When $p_0 = 1$:

$$\begin{aligned} \omega_0 \in \cup_{q \in [1,\infty)} \mathbf{B}_{1,q}^{2-\alpha}, \quad \omega_0 \in \mathbf{L}^1 \ \ (\alpha = 2 \ \text{Ben-Artzi 1994}); \\ \\ \omega_0 \in \mathbf{B}_{1,\infty}^{2-\alpha} \text{(small enough)}. \end{aligned}$$

(Well-posedness)

▶ When $p_0 = 1$:

$$\omega_0\in \cup_{q\in [1,\infty)} \mathbf{B}_{1,q}^{2-lpha}, \quad \omega_0\in \mathbf{L}^1 \ \ (lpha=2 \ \ \mathrm{Ben ext{-}Artzi} \ 1994);$$

$$\omega_0\in \mathbf{B}_{1,\infty}^{2-lpha}(\mathrm{small} \ \mathrm{enough}).$$

- \triangleright It seems open to give a well-posedness result for any $\omega \in \mathbf{B}_{1,\infty}^0$.
- ▶ When $p_0 = \infty$:

$$\omega \in \mathbf{B}_{\infty}^{-\frac{1+\alpha}{2}+}$$
.

- \triangleright In this case, we can apply it to the two dimensional Brownian white noise initial data $\omega \in \mathbf{B}_{-}^{-1}$.
- Well-posedness for the related mean-field SDE.

Well-known results

- Giga, Miyakawa, Osada (1988) established the existence of 2d Navier-Stokes flow with measures as initial vorticity, the uniqueness only for atomic part of the initial measure being small.
- ► Gallagher and Gallay (2005) solved the uniqueness problem for the 2d Navier-Stokes equation with a measure as initial vorticity.
- ► Zhang (2021) obtain the existence of weak solutions for mean-field SDE with $b \in L^q L^p$ by the maximal principle, where $\frac{d}{p} + \frac{2}{q} < 2$.
- Giga, Y., Miyakawa, T., Osada, H.: Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal. 104, 223-250 (1988).
- Gallagher I. and Gallay T.: Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity Math. Ann. 332, 287-327 (2005).
- Zhang X.: Weak solutions of McKean-Vlasov SDEs with supercritical drifts. To appear in Commun. Math. Stat. Preprint version available at https://arxiv.org/abs/2010.15330 (2021).

▶ (Well-posedness) $\omega_0 \in \mathbf{B}^0_{3/\alpha}$ and $\omega_0 \in \mathbf{B}^{-(\alpha+1)/2+}_{\infty}$ small enough.

- ▶ (Well-posedness) $\omega_0 \in \mathbf{B}_{3/\alpha}^0$ and $\omega_0 \in \mathbf{B}_{\infty}^{-(\alpha+1)/2+}$ small enough.
- ▶ (Decay) for any $p \in [2, \infty]$ and $\beta \ge 0$:

$$\|\omega(t)\|_{\mathbf{B}^{\beta}_{p}} \lesssim t^{-\frac{3-3/p}{\alpha}}, \quad t \geq 1.$$

Well-posedness for the related mean-field SDE, which provides a microscopic probabilistic explanation.

Fractional kinetic PME with viscosity

▶ Let $\alpha \in (1,2]$, $s \in (0,1]$ and $d \ge 3$. Consider the following fractional kinetic porous medium equation with viscosity:

$$\partial_t f = \Delta_v^{\frac{\alpha}{2}} f - v \cdot \nabla_x f + \operatorname{div}_v((\nabla_v \Delta_v^{-s} f) f). \tag{3.1}$$

Fractional kinetic PME with viscosity

▶ Let $\alpha \in (1,2]$, $s \in (0,1]$ and $d \ge 3$. Consider the following fractional kinetic porous medium equation with viscosity:

$$\partial_t f = \Delta_v^{\frac{\alpha}{2}} f - v \cdot \nabla_x f + \operatorname{div}_v((\nabla_v \Delta_v^{-s} f) f). \tag{3.1}$$

▶ Let $\mathbf{p}_0 = (p_0, p_0) \in [1, \infty]^2$ and $\beta_0 \in (-\alpha, 0)$. Suppose that

$$(1+\alpha)\frac{d}{\rho_0} < \alpha + (2s-1-\frac{d}{\rho_0}) \wedge 0 + \beta_0 + \beta_0 \wedge (-1).$$

For any $f_0 \in \mathbf{B}_{\boldsymbol{p}_0,a}^{\beta_0}$, there is a unique smooth solution to (3.1).

Weak and strong well-posedness for related second order meanfield SDE.

Thank you for attention!

Merci beaucoup!