Residual Network

Residual capacity:

$$C_f(u,v) = CCu,v) - f(u,v)$$

Residual Graph

$$c_f(A,F) = 13-8 = 5$$
, $c_f(F,A) = 0 - f(F,A) = 0 - (-f(A,F))$

An Augmenting path is AFCD, path capacity = 4

New T. low:

con calculate a new nesidual capacity

Fact: If I was for G, If I was for Gf

|f+f'| = |f|+|f'|

Cut:
$$CS, +)$$

$$S \in S \qquad t \in T$$

$$f(S,V) = f(S,V-S+S) = f(S,T) + f(S,S)$$

= $f(S,V-S)$

$$f(S,T) = f(S,V-S)$$
= $f(S,Y) - f(S,S)$
= $f(S,Y) + f(S-S,V)$
= $f(S,Y) + f(S-S,V)$

fact:
$$f(s,T) = \sum_{n \in S} \sum_{v \in T} f(n,v)$$

$$< \sum_{n \in S} \sum_{v \in T} ccn,v$$

$$= ccs,T$$

$$= ccs,T$$

$$= varies$$

$$= tf \leq min ccs,T$$

SIT

Max-Feow- Min-aut

The following are exuivalent

of is a maximum flow in G

· residual Gf has no augmenting path

Ifl= CCS,T) for some cut (S,T) of G/

(2) \Rightarrow (1) say there exists an augmenting path in G_f f is not maximum then $|f + f'| = |f| + |f'| > |f| \Rightarrow$

(2) \Rightarrow (3) purch as much time boundary $S = \begin{cases} v \in V: \text{ there is a path from s to } V \text{ in } G_f \end{cases}$ $S = \begin{cases} v \in V: \text{ there is a path from s to } V \text{ in } G_f \end{cases}$ $S \neq V \in V: \text{ there is a path from s to } V \text{ in } G_f \end{cases}$ by any path. So definitely the is not in S)

by any path. So definitely the is not in S)

$$u \in S, v \in T$$

$$C_{f}(u,u) = 0$$

$$C_{f}(u,u) = C(u,v) - f(u,v)$$

$$f(u,u) = c(u,v)$$

$$f(u,v) = c(s,T)$$

$$|f| = f(s,T) = c(s,T)$$

(3) =) (1) equality is achieved =) flow is meximum

FORD- FULKER SON (G, 8,t)

for each edge $(u,v) \in E$ do $f(u,u) \leftarrow 0$ $f(v,u) \leftarrow 0$

where there exists a path from 5 to t in G_f do $C_f(p) \leftarrow \min S(f(u,u):(u,u))$ is in p?

for each eage (u,u) in p:

do $f(u,u) \leftarrow f(u,u) + C_f(p)$ $f(v,u) \leftarrow -f(u,v)$