

Hindsight Experience Replay with Workspace Relabeling

Supervisor:

Johannes Tenhumberg

Presenter:

Ferenc Török Katharina Hermann

Advanced Deep Learning in Robotics (IN2349) Technical University of Munich Munich, 20.08.2020

- 1. Recap Motivation & Problem Statement
- 2. Relabeling Methods
- 3. Training and Test Setup
- 4. Results
- 5. Summary & Outlook

Motivation & Problem Statement

Goal:

Train a RL agent being able to find a trajectory from start to goal through challenging and changing environments (workspace with obstacles)

Idea:

Related work

Relabeling a failure trajectory (goal and reward) as a success in hindsight

No relabeling but inserting expert demonstrations via traditional MP algorithms in Replay buffer

- 1. Recap Motivation & Problem Statement
- 2. Relabeling Methods
- 3. Training and Test Setup
- 4. Results
- 5. Summary & Outlook

Experiment setup

Workspace:

32x32 grid with random obstacles

Reduced workspace:

 WS representation reduced through a Convolutional Autoencoder to {w}.

Start (pink) & Goal (yellow)

Created randomly for a given WS

Agent

2D circle robot of radius 1 with:

- a_t: 2 DOF movement in x and y direction
- $s_t = \{c_t, w, g\}$

•
$$r_t^T = \begin{cases} -0.06 (c_t, c_{t+1}) \in T_{free}, \\ 8 (c_t, c_{t+1}) \in T_{goal}, \\ -7 (c_t, c_{t+1}) \in T_{col}. \end{cases}$$

Relabeling methods: Cutting trajectory - Warmup

Relabeling methods: Cutting trajectory - Training

Relabeling methods: Random passage - Warmup

Relabeling methods: Random passage - Training

Relabeling methods – Jitter movement

Problem

- Suboptimal trajectories relabeled and saved in RB as "perfect" samples
- Robot will not learn to avoid jitter movement

Idea

- Check Zig-Zaging of a trajectory (avg angle)
- Train with & without removement of Zig-Zagtrajectories from relabeling

- 1. Recap Motivation & Problem Statement
- 2. Relabeling Methods
- 3. Training and Test Setup
- 4. Results
- 5. Summary & Outlook

Baseline training in WS without obstacles

Training parameters

Workspace:

- Empty WS
- No maximun goal distance

Actor and Critic network architecture:

2 layer (400 & 300 hidden units)

Training:

- 800 k steps (max 50 steps/ episode)
- Warmup: 10k steps
- Policy Update every step
- Evaluation every 10k steps (for 100 episodes)
- Weight decay of 0.001
- Batch size: 256

Baseline methods: Expert trajectories vs Relabeling

Training in WS with obstacles

Training parameters

Workspace:

- Mid level: 4 5 obstacles & avg_size 8 (buffer with 100 WS)
- No maximun goal distance

Actor and Critic network architecture:

2 layer (400 & 300 hidden units)

Training:

- 800 k steps (max 50 steps/ episode)
- Warmup: 10k steps
- Policy Update every step
- Evaluation every 10k steps (for 100 episodes)
- Weight decay of 0.001
- Batch size: 256

Evaluation on 3 different workspace levels

- 2-3 objects
- Avg objects size: 8 (normal distributed)
- Object centers uniformly distibuted
- Max goal distance: 15

Medium

- 4 5 objects
- Avg objects size: 8 (normal distributed)
- Object centers uniformly distibuted

Hard

- 5 6 objects
- Avg objects size: 8
- Object centers uniformly distibuted
- Narrow passage of 2 objects

- 1. Recap Motivation & Problem Statement
- 2. Relabeling Methods
- 3. Training and Test Setup
- 4. Results
- 5. Summary & Outlook

Baseline - Empty WS Training and Evaluation

Obstacle WS Training

Obstacle WS Evaluation: Easy

Obstacle WS Evaluation: Medium

Obstacle WS Evaluation: Hard

- 1. Recap Motivation & Problem Statement
- 2. Relabeling Methods
- 3. Training and Test Setup
- 4. Results
- 4. Summary and Outlook

Summary

- Slight improvement with relabeling over no relabeling: comparable to HER
- Relabeling success limited due to zig-zaging or too easy (straight-line) trajectories.

Comparison to DDPG-MP with expert trajectories:

Not as good results since expert trajectories are more optimal to solve complex tasks

Outlook

Creating more complex trajectories (but no jitter movement) first and a challenging environment around it

Thanks for your attention!