Final Exam (NN&DL 5720)

Exam is of 100 marks containing 80 Multiple choice questions. You have 60 minutes to attempt the exam.

sxv45170@ucmo.edu Switch account

Your email will be recorded when you submit this form

* Required

First Name , Last Name *

Your answer

User ID (SSO) *

Your answer

Find the reasons for Deep Learning recent take off? *

1 point

We have access to a lot more computational power.

Neural Networks are a brand new field.

We have access to a lot more data.

Deep learning has resulted in significant improvements in important applications such as online advertising, speech recognition, and image recognition.

If you want to cluster seven data points into three clusters using K-Means. * 1 point After 1st iteration clusters, C1, C2, C3 has following observations:

C1: {(2,2), (4,4), (6,6)}

C2: {(0,4), (4,0)}

C3: {(5,5), (9,9)}

Find the cluster centroids for the second iteration?

- C1: (6,6), C2: (4,4), C3: (9,9)
- C1: (2,2), C2: (0,0), C3: (5,5)
- C1: (4,4), C2: (2,2), C3: (7,7)
- None of the above

An experienced deep learning engineer working on a naïve problem, usually * 1 point use insight from previous problems to train a good model on the first try, without needing to iterate through different models.

True

Why the Recurrent Neural Network used for machine translation, like translating English to French? (Mark all that apply.)

* 1 point

F

It can be trained as a supervised learning problem.

- It is strictly more powerful than a Convolutional Neural Network (CNN).
- It is applicable when the input/output is a sequence (e.g., a sequence of words).
- RNNs represent the recurrent process of Idea->Code->Experiment->Idea->....

We have a 64x64 input with RGB channel represented as img = (64,64,3). * 1 point Reshape this array into a column vector.

x= img.reshape((64*64*3,1))

- \bigcirc x= img.reshape((64*64*3))
- \bigcirc x= img.reshape((1,64*64*3))
- \bigcirc x= img.reshape((3*64*64))

Consider the two following random arrays "a" and "b": *

1 point

- a = np.random.randn(2, 3) # a.shape = (2, 3)
- b = np.random.randn(2, 1) # b.shape = (2, 1)
- c = a + b

What will be the shape of "c"?

c.shape = (3,2)

- c.shape = (2,1)
- Error
- c.shape = (2,3)

Consider the two following random arrays "a" and "b": *

1 point

- a = np.random.randn(4, 3) # a.shape = (4, 3)
- b = np.random.randn(3, 2) # b.shape = (3, 2)
- c = a + b

What will be the shape of "c"?

- \bigcirc c.shape = (4,2)
- error
- \bigcirc c.shape = (4,3)

Calculate the precision when the true positive value is 10 and the false positive value is 15.

* 1 point

- 0.5
- 0.4
- 0.6
- 0.8

Suppose you have n_x input features per example. Recall that $X=[x^{(1)}, x^{(2)}...x^{(m)}]$. What is the dimension of X?

- (1, m)
- (n_x, m)
 - (m, n_x)
 - (m, 1)

The tanh activation usually works better than sigmoid activation function * 1 point for hidden units because the mean of its output is closer to zero, and so it centers the data better for the next layer. True/False?

True

 \bigcirc

False

You are building a binary classifier for recognizing banana (y=1) vs. * 1 point watermelons (y=0). Which one of these activation functions would you recommend using for the output layer?
○ ReLU
C Leaky ReLU
sigmoid
○ tanh
Suppose you have built a neural network. You decide to initialize the * 2 points weights and biases to be zero. Which of the following statements are True? (Check all that apply)
Each neuron in the first hidden layer will compute the same thing, but neurons in different layers will compute different things, thus we have accomplished "symmetry breaking".
The first hidden layer's neurons will perform different computations from each other even in the first iteration; their parameters will thus keep evolving in their own way.
Each neuron in the first hidden layer will perform the same computation. So even after multiple iterations of gradient descent each neuron in the layer will be computing the same thing as other neurons.
Each neuron in the first hidden layer will perform the same computation in the first iteration. But after one iteration of gradient descent they will learn to compute different things because we have "broken symmetry".
Logistic regression's weights w should be initialized randomly rather than * 2 points to all zeros, because if you initialize to all zeros, then logistic regression will fail to learn a useful decision boundary.
O True
○ False

Which of the following statements is true? *	1 point
The deeper layers of a neural network are typically computing more complex of the input than the earlier layers. Correct	features
The earlier layers of a neural network are typically computing more complex for of the input than the deeper layers.	eatures
During forward propagation, in the forward function for a layer I you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer I, since the gradient depends on it. True/False?	* 1 point
True	
O False	
The effectiveness of an SVM depends upon:	1 point
Selection of Kernel	
Kernel Parameters	
Soft Margin Parameter C	
All of the above	
Which one is correct? *	1 point
The most positively correlated features are good features	
The most negatively correlated features are good features	
The features with correlation zero are good features	
○ A, B	

Which of these about a set is not true? *	1 point
Mutable data type	
Allows duplicate values	
O Data type with unordered values	
Immutable data type	
The validation and test set should *	1 point
The validation and test set should	Тропп
Come from the different distribution	
Come from the same distribution	
be identical to each other	
Error as display function requires additional argument	
have same number of instances	
Which of these techniques are useful for reducing variance (reducing overfitting)? (Check all that apply.)	* 2 points
Data augmentation	
Exploding gradient	
Dropout	
vanishing gradient	
increasing number of layers in model	
L2 regularization	

Why do we normalize the inputs x? *	1 point
It makes the parameter initialization faster	
It makes the cost function faster to optimize	
O It makes it easier to visualize the data	
If searching among a large number of hyperparameters, you should try values in a grid rather than random values, so that you can carry out the search more systematically and not rely on chance. True or False?	* 1 point
○ True	
False	
Every hyperparameter, if set poorly, can have a huge negative impact on training, and so all hyperparameters are about equally important to tune well.	* 1 point
O True	
False	
O Not applicable	
It is not necessary to have a target variable for applying dimensionality reduction algorithms.	* 1 point
O True	
○ False	

Which of the following techniques would perform better for reducing dimensions of a data set?	* 1 point
Removing columns which have too many missing values	
Removing columns which have high variance in data	
Removing columns with dissimilar data trends	
O None of these	
Which of these statements about deep learning programming frameworks are true? (Check all that apply) A programming framework allows you to code up deep learning algorithms w typically fewer lines of code than a lower-level language such as Python. Even if a project is currently open source, good governance of the project help ensure that the it remains open even in the long term, rather than become clo modified to benefit only one company. Deep learning programming frameworks require cloud-based machines to run	ith os sed or

A company needs an algorithm that can:	* 2 points
let us know a bird is flying over a bridge as accurately as possible takes no more than 10sec to classify a new image fit in 10MB of memory	
If you had three following models with provided performance, which o would you choose?	ne
test accuracy: 97%, runtime: 1sec, memory size:3MB	
test accuracy: 99%, runtime: 13sec, memory size:9MB	
test accuracy: 98%, runtime: 9sec, memory size:9MB	
test accuracy: 97%, runtime: 3sec, memory size:2MB	
Which of the following do you typically see as you move to deeper layer a ConvNet?	ers in * 2 points
nH and nW increases, while nC decreases	
nH and nW decreases, while nC also decreases	
nH and nW increases, while nC also increases	
nH and nW decrease, while nC increases	
The measure of the randomness in the information being processed in Decision Tree by	n the * 1 point
Entropy	
EntropyInformation gain	

(III) Reapply the split to every part recursively (IV) Stop when meeting desired criteria (V) Cut the tree when we went too far while doing splits (I), (II),(V),(IV),(III). (V),(I),(III),(IV),(IV).	
(III) Reapply the split to every part recursively(IV) Stop when meeting desired criteria(V) Cut the tree when we went too far while doing splits	
(III) Reapply the split to every part recursively (IV) Stop when meeting desired criteria	
Select the correct sequence of typical decision tree structure down below: (I) Take the entire data set as input (II) Divide the input data into two part	* 2 points
FC layers in the first few layers	
FC layers in the last few layers	
Multiple POOL layers followed by a CONV layer	
Multiple CONV layers followed by a POOL layer	
Which of the following do you typically see in a ConvNet? (Check all that apply.)	* 2 points
Recurrent Neural architecture	
O Undercomplete autoencoder	
O Sparse autoencoder	
Convolution Neural Network	

In order to be able to build very deep networks, we usually only use pooling * 1 point layers to downsize the height/width of the activation volumes while convolutions are used with "valid" padding. Otherwise, we would downsize the input of the model too quickly.

True

Training a deeper network (for example, adding additional layers to the * 1 point network) allows the network to fit more complex functions and thus almost always results in lower training error.

True

False

 \bigcap N/A

To which of these tasks would you apply a many-to-one RNN architecture? * 2 points (Check all that apply).

	$\overline{}$					
- 1		Image classification	/:		d a	المماما
- 1	- 1	imane ciassilication	unnuu an	imane an	топпош а	Tanen
		minage classification	(III) Pat all	minage and	a output u	IUDCI,

Speech recognition (input an audio clip and output a transcript)

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

Which of the following is not an application of CNN? *

2 points

- Face Detection and Recognition
- Image Classification
- Image Segmentation
- Edge detection
- O Document Analysis
- Image Colorization
- Recommendation Systems
- O Not applicable

Suppose, you have given the following data where x and y are the 2 input * 5 points variables and Class is the dependent variable. Suppose, you want to predict the class of new data point x=1 and y=1 using Euclidean distance in 7NN. In which class this data point belong to?

x	y	Class
-1	1	-
0	1	+
0	2	-
1	-1	-
1	0	+
1	2	+
2	2	-
2	3	-+

- + Class
- Class
- Oan't say
- None of these

Primary advantage of using CNN over ANN are: *

2 points

- A CNN can solve classification problems with higher accuracy as compared to ANN.
- A CNN architecture can detect the important features in an image on its own and does not require human intervention.
- None of above
- O Both of above

Select option that explains better the Pooling? *	2 points
O Decrease the features size, in order to decrease the computional power that a needed.	re
Creates a pool of data in order to improve the accuracy of the alghorithm pred images.	licting
It assists in the detection of distorted features, in order to find dominant attrib	outes.
It assists in the detection of features, even if they are distorted, in addition to decreasing the attribute sizes, resulting in decreased computational need. It is also very useful for extracting dominant attributes.	
One way to implement undercomplete autoencoder is to constrain the number of nodes present in hidden layer(s) of the neural network.	* 1 point
O True	
○ False	
○ N/A	
Autoencoders are incapable of learning nonlinear manifolds *	1 point
O True	
○ False	
○ N/A	

Sparse autoencoders introduces information bottleneck by reducing the * 1 point number of nodes at hidden layers
O True
○ False
O Not applicable
Select the correct statement(s) from the following * 1 point
The clusters formed by k-means algorithm do not depend on the initial selection of cluster centers.
The results of k-means algorithm get impacted by outliers and range of the attributes.
K-means clustering automatically selects the most optimum value of k
k-means algorithm can be applied to both categorical and numerical variables.

2 points

Select the centroid of the following 5 data points	*

X	Y	Z	
12	23	45	
31	31	31	
17	15	25	
19	27	45	
13	11	27	

- 18.4, 21.4, 32.1
- 18.4, 21.4, 34.6
- 34.6, 21.4, 18.4
- 21.4, 32.1, 18.4

- True
- False

Denoising autoencoders can be used as a tool for feature extraction. * 1 point

- True
- False
- Not relevent

In a classification system, a patient with the disease is * classified as not having the disease. This is an example of a:	1 point
True positive	
True negative	
○ False positive	
False negative	
Generative adversarial network is an application of ? *	1 point
O CNN	
○ LSTM	
Autoencoder	
None of the above	
The benefit of Naïve Bayes includes: *	1 point
Naïve Bayes is one of the fast and easy ML algorithms to predict a class of da	atasets.
It is the most popular choice for text classification problems.	
It can be used for Binary as well as Multi-class Classifications.	
All of the above	

For what RNN is used and achieve the best results *	1 point
Financial predictions	
Handwriting and images recognition	
Handwriting and speech recognition	
Speech and images recognition	
What is 'gradient' when we are talking about RNN? *	1 point
The most important step of RNN algorithm	
A parameter that can help you improve the algorhitm's accuracy	
A gradient is a partial derivative with respect to its inputs	
It is how RNN calls it's features	
Which one is correct? select the relevant option/options *	1 point
Which one is correct? select the relevant option/options * LSTM networks are an extension for recurrent neural networks, which basic extends their memory. Therefore it is not recommended to use it, unless you using a small Dataset.	ally
LSTM networks are an extension for recurrent neural networks, which basic extends their memory. Therefore it is not recommended to use it, unless you	ally u are
LSTM networks are an extension for recurrent neural networks, which basic extends their memory. Therefore it is not recommended to use it, unless you using a small Dataset. LSTM networks are an extension for recurrent neural networks, which basic shorten their memory. Therefore it is well suited to learn from important exp	ally u are ally periences
LSTM networks are an extension for recurrent neural networks, which basic extends their memory. Therefore it is not recommended to use it, unless you using a small Dataset. LSTM networks are an extension for recurrent neural networks, which basic shorten their memory. Therefore it is well suited to learn from important expetite that have very low time lags in between LSTM networks are an extension for recurrent neural networks, which basic extends their memory. Therefore it is well suited to learn from important expectations.	eally are eally periences eally periences

Using the kernel trick, one can get non-linear decision boundaries using algorithms designed originally for linear models.	* 1 point
○ True	
○ False	
Which option is correct about the ROC curve? *	1 point
You can see that there is a tradeoff between recall and specificity	
The ROC curve plots sensitivity (recall) on the y-axis against specificity on the	x-axis
The ideal classifier would classify the 1s without misclassifying more 0s as 1s	6
The ROC curves are especially useful in evaluating data with highly unbalance outcomes	d
All of the above	

The plot below is a ROC curve of a model. What is the recall in this case if * 1 point we want a classifier with a specificity of at least 50%?

- 50%
- 25%
- 0 100%
- 75%
- 0%

Costco is using a Computer Vision application to detect whether customers * 1 point wear face masks or not. You as a Data Scientist, got a ROC curve and AUC of the classifier. Our goal is to get as high as possible on successfully detecting customers who do not wear face masks (True Positive) and get as low as possible on False Negative. According to the goal, which threshold on the ROC curve should we take?

- (A
- B
- \bigcirc c
- \bigcap D
- (E
- O F
- \bigcirc

Он

What will be output of following code? *

2 points

```
import pandas as pd

data = [['Anuj',21],['Rama',25],['Kapil',22]]

df = pd.DataFrame(data,columns=['Name','Age'])

print (df)
```

Name Age

- 0 Anuj 21
- 1 Rama 25
- 2 Kapil 22

Name Age

- 0 Anuj 21
- 1 Kapil 22
- 2 Rama 25

Option 1

Option 2

Name Age

- 0 Kapil 22
- 1 Rama 25
- 2 Anuj 21

Option 3

Name Age
Rama 25
Anuj 21

2 Kapil 22

Option 4

The execution of following code will result in: * 1 point import pandas as pd s =pd.Series([1,2,3,4,5],index= ['a','b','c','d','e']) print(s['f']) KeyError IndexError ValueError None of the above mentioned Which rule is followed by the Backpropagation algorithm? * 1 point Dynamic Rule Chain Rule Static Rule None Dataframe object is value mutable. * 1 point False

Suppose that you are given two lists:

*

1 point

- a = [1,2,3]
- b = [4,5,6]

Your task is to create a list which contains all the elements of a and b in a single dimension.

Output:

a = [1,2,3,4,5,6]

Which of the following functions will you use?

a

a.append(b)

- a.extend(b)
- any one of the above
- none of the above

What will be output for the following code? *

1 point

import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(4))
print s.ndim

- \bigcirc 2
- 03

To import pyplot module we can write *	1 point
Import matplotlib.pyplot	
Import matplotlib.pyplot as plt	
Import pyplot as plt	
O Both (A) and (B)	
Which of the following activities are performed by TensorFlow? *	1 point
O Data automation	
Model tracking	
Model retraining	
Performance monitoring	
All of the above	
is a regularization technique for neural network models, where randomly selected neurons are ignored during training process.	* 1 point
Callout	
Feature Scaling	
Dropout	
L2	

A requires shape of the input (input_shape) to understand the structure of the input data.	* 1 point
Keras Module	
Keras Model	
C Keras layer	
○ Keras Time	
function that propagates errors from nodes of output to input?	* 1 point
Channel Propagation	
○ gradient	
Oloss	
dropout	
backpropagation	
There is feedback in final stage of backgronagation algorithm *	1 point
There is feedback in final stage of backpropagation algorithm. *	1 point
True	
False	

What of the following is true regarding backpropagation rule? *	1 point
Hidden layers output is not all important, they are only meant for supporting inp output layers	out and
Actual output is determined by computing the outputs of units for each hidden	layer
It is a feedback neural network	
None of the above	
The network that involves backward links from output to the input and hidden layers is	* 1 point
LSTM	
RNN	
Autoencoder	
Perceptron	
Prediction Accuracy of a Neural Network depends * on and	1 point
Input and Output	
Weight and Bias	
Linear and Logistic Function	
Activation and Threshold	

Gradient at a given layer is the sum of all * gradients at the previous layers	1 point
False	
works best for Image Data. *	1 point
AutoEncoders	
Convolution Networks	
Single Layer Perceptrons	
Naïve Bayes	
The rate at which cost changes with respect to * weight or bias is called	2 points
O Derivative	
Gradient	
Rate of Change	
O Loss	
Why is the Pooling Layer used in a Convolution * Neural Network?	2 points
O Padding	
O Dimension Reduction	
Object Recognition	
O Image Sensing	

```
for i in range(1, 10):
                                                                             1 point
  plt.subplot(3, 3, i)
  # Insert ith image with the color map 'grap'
  plt.imshow(trainX[i], cmap=plt.get_cmap('gray'))
plt.show()
The output grid would contain?
    6 images
    7 images
    9 images
    10 images
model = model_arch()
                                                                             1 point
model.compile(optimizer=Adam(_____=1e-3),
       loss='sparse_categorical_crossentropy',
       metrics=['sparse_categorical_accuracy'])
model.summary()
What comes in blank as keyword argument?
    lambda
    Tearning_rate
```

epsilon

value

What is true regarding backpropagation rule? *	1 point
it is a feedback neural network actual output is determined by computing the outputs of units for each hidder hidden layers output is not all important, they are only meant for supporting is output layers onumber of the mentioned	
By default, Plot() function plots a * Bar chart Line chart Pie chart Horizontal bar chart	1 point

Submit Clear form

Never submit passwords through Google Forms.

This form was created inside of University of Central Missouri. Report Abuse

Google Forms