Mechanics of Machining Processes Prof. S. S. Pande Mechanical Engineering Department Indian Institute of Technology, Bombay

Outline

- Mechanics of Chip formation
- Merchant's Analysis Circle diagram
- Cutting Forces, Power, Energy
- Stress, Strain, Specific cutting energy

2

Machining Process video ME338-Pradeep Diat S

Characteristics Cutting edge is perpendicular to cutting velocity Plain Strain 2 D planar phenomena Simple analysis,: gives consistent and good results close to actual

Shear zone deformation Thick Zone Thick Zone Shear deformation along a zone – Tool tip to Free surface Thick Zone: Wedge shaped Thin Zone: Shear Plane Material does not deform until the shear plane is reached Primary shear zone – Shear plane Secondary shear zone – Chip Tool interface

For simple analysis, a single shear plane (Thin zone) is

Estimation of Cutting Forces

Shear Force on Shear Plane

$$F_s = \tau_s A_s$$

$$= \tau_s \frac{w t}{\sin \phi}$$

From Merchant's Circle , Resultant Force R

$$R = \frac{\tau_{s.w.t}}{\sin \phi \cos(\phi + \beta - \gamma)} = \frac{Fs}{\cos (\phi + \beta - \gamma)}$$

Other components of resultant force R can be calculated

13

Merchant's Theory

- Nature always tries to take the path of least resistance -
 - Minimize Cutting Energy
- During machining process, shear angle φ assumes a value such that least amount of energy is consumed
 - Cutting force F_c should be minimum; V is Constant
- Assumption
 - Friction between Chip-Tool is independent of Shear angle φ
 - Shear yield stress τ of the work material is constant

16

Force Relationships

Shear Plane decomposition of Resultant Force:

$$\begin{aligned} F_s &= F_c \cos \emptyset - F_t \sin \emptyset \\ N_s &= F_t \cos \emptyset + F_c \sin \emptyset = F \tan (\emptyset + \beta - \gamma) \end{aligned}$$

Tool Chip Interface decomposition of resultant force:

$$F = F_c \sin \gamma + F_t \cos \gamma$$

$$N = F_c \cos \gamma - F_t \sin \gamma$$

Tool-chip interface friction coefficient

$$\mu = \tan \beta = \frac{F}{N} = \frac{F_t + F_c \tan \gamma}{F_c - F_t \tan \gamma}$$

14

Optimum Shear Angle ϕ

Merchant's Theory

Shear angle ϕ assumes a value to Minimize P

$$P = \frac{\tau_{s.w.t} \cos(\beta - \gamma).V}{\sin \phi \cos(\phi + \beta - \gamma)}$$

$$\frac{dp}{dq} = 0$$

$$\frac{d \left(\sin \emptyset \cos(\phi + \beta - \gamma) \right)}{d\emptyset} = 0$$

$$\cos \emptyset . \cos(\phi + \beta - \gamma) - \sin \emptyset . \sin(\phi + \beta - \gamma) = 0$$

$$Cos(2\phi+\beta-\gamma)=0=Cos\frac{\pi}{2}$$

$$2\phi+\beta-\gamma=\frac{\pi}{2}$$

$$\phi = \frac{\pi}{4} - \frac{1}{2}(\beta - \gamma)$$

17

Cutting Force and Power

Cutting Force

$$F_c = RCos(\beta - \gamma)$$

$$= \frac{\tau_s.w.t \cos(\beta - \gamma)}{\sin \emptyset \cos(\phi + \beta - \gamma)}$$

Power in cutting P

$$P = F_c \cdot V$$

$$\mathsf{P} = \frac{\tau_{s.w.t} \cos(\beta - \gamma).V}{\sin \emptyset \; Cos(\phi + \beta - \gamma)}$$

How to choose shear angle ϕ ?

Experimental Verification of shear angle

Better correlation for soft materials e.g., plastic, but <u>not</u> for metals.

Limitations in Merchants analysis – Assu,ptions

- Shear stress τ is constant and is independent of normal stress,
- Simplified friction conditions on chip-tool interface

18

Modified Merchant theory

· With modified Merchant theory:-

$\tau_S = \tau_{S0} + K\sigma$	Work material (hot rolled steel)		$C_{\rm m}$ (degrees)
$\sigma = \frac{N_s}{wt/Sin\Phi}$	AISI	1010	69.8
	AISI	1020	69.6
$\tau_S = \tau_{S0} + K \frac{N_s}{wt/Sin\Phi}$	AISI	1045	78.0
	AISI	2340	76.2
$2\emptyset + \beta - \gamma = C_m$	AISI	3140	70.6
$C_m = \cot^{-1}K$	AISI	4340	74.5
	Stainless	303	92
Machining constant: C_m (degree)	Stainless	304	82

Angle CAB = $45 + \beta$

 Φ +Angle CAB = 90 + γ

Thus Shear Angle Φ is

 $\Phi = 45 - (\beta - \gamma)$

22

Lee and Shaffer Shear model

Based on the Theory of *Plasticity* Slip Line Filed Model of zone of deformation

Assumptions

- Material is Ideal Rigid Plastic
- Shear plane has the maximum shear stress.
- Effect of strain and strain rate on flow stress is neglected
- Effect of Temperature rise during deformation is negligible.

Limitations of Lee and Shaffer model

Shear angle relation

$$\Phi = \frac{\pi}{4} - (\beta - \gamma)$$

Impracticable cases

- γ = 0, β = 45, Very High friction, BUE
- Negative Rake angle γ with High friction angle β

Limitations of the model

- Not good correlation with experimental results for many work materials
- Considers material to be Ideally Rigid Plastic
- Effect of Strain rate and temperature neglected

Slip Line Field for Deformation zone

AC – Shear Plane - Maximum Shear Stress CB - Free Surface - at 45 degrees to AC

CAB - Zone of Deformation

R - Resultant Cutting Force $\boldsymbol{\beta}\,$ - Chip Tool interface Friction Angle Shear Angle relations

 $2\emptyset + \beta - \gamma = \frac{\pi}{2}$ Ernst & Merchant equation:

 $2\emptyset + \beta - \gamma = C_m$ Merchant's Second solution:

Lee & Shaffer equation:

 $\emptyset + \beta - \frac{\gamma}{2} = \frac{\pi}{4}$ Stabler equation:

Effect of Shear angle variation

Shear Force Fs = τ . Area of Shear plane $= \tau \cdot \frac{wt}{\sin \varphi}$

 $\emph{Increase}$ of shear angle ϕ causes

- Smaller shear zone areaSmaller chip sizeLess energy consumptionLower Temperatures and forces

Machining process becomes more efficient

Velocity and Strain Rate

V - Cutting velocity, V $_{\rm s}$ - Shear velocity along shear plane, V $_{\rm c}$ - Chip velocity along the rake surface

$$\frac{V}{\cos(\emptyset - \gamma)} = \frac{V_S}{\cos \gamma} = \frac{V_C}{\sin \varphi}$$

 $Vc = V.rc \quad \text{ rc-chip thickness ratio} = \frac{\sin \emptyset}{\cos (\emptyset - \gamma)}$

Shear strain rate (γ ') = V_S/d ; where d is shear plane thickness (0.001 – 0.01 mm)

• Typical shear strain rates, $\gamma = 10^4{\sim}10^6 s^{-1}$

28

Controlling shear angle

Merchant's Shear angle relation

$$\Phi = \frac{\pi}{4} - \frac{1}{2} (\beta - \gamma)$$

To increase shear angle Φ

- Increase tool rake angle $\boldsymbol{\gamma}$
 - Use of Positive rake angle tools
- Reduce friction angle $\boldsymbol{\beta}$
 - Use of cutting fluid / lubricant

Tool Work Interaction

- Tool has a Finite Nose radius
- Cuttingl Force Fc comprises of
 - Cutting Force component Fct and
 - Ploughing force Fp— Rubbing of Tool Nose

29

Shear strain in machining

Specific Cutting Energy

Power consumption during machining

 $\begin{aligned} \mathbf{P} &= \mathbf{Cutting} \ \mathbf{Force} \ \mathbf{x} \ \mathbf{Cutting} \ \mathbf{velocity} \\ &= \mathbf{F_c} \ \mathbf{V} \end{aligned}$

Material Removal Rate MRR = w.t.V

Specific Cutting energy = P/MRR $= F_c/wt$ = (Fct +Fp)/w.t $= Constant + \frac{Fp}{w.t}$

Specific Cutting Energy

30

