Package 'SoilR'

November 12, 2019

Title Models of Soil Organic Matter Decomposition

Version 1.1-93 **Date** 2017-05-04

Author Carlos A. Sierra, Markus Mueller

Maintainer Markus Mueller <mamueller@bgc-jena.mpg.de>

Description Functions for modeling Soil Organic Matter decomposition in terrestrial ecosystems with linear and nonlinear models.

License GPL-3

Depends R (>= 3.5.0), deSolve,methods

Imports igraph,assertthat,parallel,expm,setsSuggests FME,lattice,MASS,knitr,rmarkdown

LazyData TRUE

VignetteBuilder knitr

Collate setGlobalVariables.R setOldClasses.R genericFunctions.R

S4ClassDefinitions.R TimeMap.R ScalarTimeMap.R PoolId.R

PoolIndex.R PoolName.R

InFlux_by_PoolIndex.R InFlux_by_PoolName.R

OutFlux_by_PoolIndex.R OutFlux_by_PoolName.R

 $Internal Flux_by_Pool Index. R\ Internal Flux_by_Pool Name. R$

PoolConnection_by_PoolIndex.R

 $PoolConnection_by_PoolName.R\ ConstantInFluxRate_by_PoolIndex.R$

ConstantInFluxRate_by_PoolName.R InFluxes.R ConstInFluxes.R

ConstantInFlux_by_PoolIndex.R

 $ConstantInternalFluxRate_by_PoolIndex.R$

 $ConstantInternalFluxRate_by_PoolName.R$

 $ConstantOutFluxRate_by_PoolIndex.R$

 $ConstantOutFluxRate_by_PoolName.R\ InFluxList_by_PoolIndex.R$

 $InFluxList_by_PoolName.R$

StateIndependentInFluxList by PoolIndex.R

StateDependentInFluxVector.R OutFluxList_by_PoolIndex.R

OutFluxList_by_PoolName.R InternalFluxList_by_PoolIndex.R

InternalFluxList_by_PoolName.R

ConstantInFluxList_by_PoolIndex.R

 $ConstantInternalFluxRateList_by_PoolIndex.R$

ConstantInternalFluxRateList by PoolName.R

ConstantOutFluxRateList_by_PoolIndex.R

ConstantOutFluxRateList_by_PoolName.R Fc.R HelperFunctions.R

BoundInFluxes.R deSolve.lsoda.wrapper.R

RespirationCoefficients.R TransportDecompositionOperator.R

SoilR.F0__deprecated_in_1.2.R MCSim.R DecompOp.R

 $Unbound Influx. R\ UnBound Lin Decomp Op. R\ Bound Lin Decomp Op. R$

UnBoundNonLinDecompOp.R

 $Decomposition Operator_deprecated_in_1.2.R\ Model_by_PoolNames.R$

Model.R Model_14.R NlModel.R AutonomousLinearModel.R

 $Non Autonomous Linear Model. R\ AWB model. R\ bacwave Model. R$

 $bind. C14 curves. R\ BoundFc. R\ Century Model. R\ Century Model_new. R$

ConstFc.R ConstLinDecompOp.R

ConstLinDecompOpWithLinearScaleFactor. R

UnBoundNonLinDecompOp_by_PoolNames.R cycling.R euler.R

example.2DBoundInFluxesFromFunction.R

example.2DBoundLinDecompOpFromFunction.R

 $example. 2DC onstFC. Args. R\ example. 2DC onstInFluxes From Vector. R$

 $example. 2DG eneral Decomp Op Args. R\ example. 2DIn Fluxes. Args. R$

example.2DUnBoundLinDecompOp.R

example. Bound Lin Decomp Op From Function. R

example. Constlin Decomp Op From Matrix. R

example.nested Time 2D Matrix List. R

 $example.nested Time 3DArray List. R\ example. Time 2DArray List. R$

 $example. Time 3DArray List. R\ example. Time Map From Array. R$

 $FcAtm_deprecated_in_1.2.R\ fT.Arrhenius.R\ fT.Century 1.R$

 $fT.Century 2.R\ fT.Daycent 1.R\ fT.Daycent 2.R\ fT.Demeter.R\ fT.KB.R$

fT.LandT.R fT.linear.R fT.Q10.R fT.RothC.R fT.Standcarb.R

function.R fW.Candy.R fW.Century.R fW.Daycent1.R fW.Daycent2.R

fW.Demeter.R fW.Gompertz.R fW.Moyano.R fW.RothC.R fW.Skopp.R

fW.Standcarb.R GeneralModel.R GaudinskiModel14.R

GeneralModel_14.R GeneralNlModel.R ICBMModel.R linesCPool.R

 $linMaker.R\ list.R\ listProduct.R\ makelink.R\ MeanAge.R\ MeanTT.R$

NpYdot.R OnepModel.R OnepModel14.R ParallelModel.R

plotC14Pool.R plotCPool.R RothCModel.R SeriesLinearModel.R

SeriesLinearModel14.R solver.R spectralNorm.R systemAge.R

ThreepairMMmodel.R ThreepFeedbackModel.R

ThreepFeedbackModel14.R ThreepParallelModel.R

ThreepParallelModel14.R ThreepSeriesModel.R

ThreepSeriesModel14.R transitTime.R tupelList.R turnoverFit.R

makeListInstance.R pe.R pp.R plotPoolGraphFromTupleLists.R

checkTargetClassOfElements.R TimeRangeIntersection.R

TwopFeedbackModel.R TwopFeedbackModel14.R TwopMMmodel.R

TwopParallelModel.R TwopParallelModel14.R TwopSeriesModel.R

TwopSeriesModel14.R vecFuncMaker.R warnings.R Yasso07Model.R

YassoModel.R C14Atm_NH.R C14Atm.R Hua2013.R

IntCal09.R IntCal13.R incubation_experiment.R HarvardForest14CO2.R getTransferMatrix.R

RoxygenNote 6.1.99.9001

Encoding UTF-8

R topics documented:

AbsoluteFractionModern
AbsoluteFractionModern,BoundFc-method
AbsoluteFractionModern,ConstFc-method
AbsoluteFractionModern_from_Delta14C
AbsoluteFractionModern_from_Delta14C,matrix-method
AbsoluteFractionModern_from_Delta14C,numeric-method
add_plot
add_plot,TimeMap-method
as.character,TimeMap-method
availableParticleProperties
availableParticleProperties,MCSim-method
availableParticleSets
availableParticleSets,MCSim-method
availableResidentSets
availableResidentSets,MCSim-method
AWBmodel
bacwaveModel
bind.C14curves
BoundFc
BoundFc, character-method
BoundFc,missing-method
BoundFc-class
BoundInFluxes
BoundInFluxes-class
BoundLinDecompOp
BoundLinDecompOp,ANY-method
BoundLinDecompOp,UnBoundLinDecompOp-method
BoundLinDecompOp-class
by_PoolIndex
by_PoolIndex,ConstantInFluxRate_by_PoolName,ANY,ANY-method 29
by_PoolIndex,ConstantInternalFluxRateList_by_PoolName,ANY,ANY-method 29
by_PoolIndex,ConstantInternalFluxRate_by_PoolName,ANY,ANY-method 30
by_PoolIndex,ConstantOutFluxRateList_by_PoolName,ANY,ANY-method 30
by_PoolIndex,ConstantOutFluxRate_by_PoolName,ANY,ANY-method
by_PoolIndex,function,character,character-method
by_PoolIndex,InFluxList_by_PoolName,character,character-method
by_PoolIndex,InFlux_by_PoolName,character,character-method
by_PoolIndex,InternalFluxList_by_PoolName,character,character-method
by_PoolIndex,InternalFlux_by_PoolName,character,character-method
by PoolIndex,OutFluxList by PoolName.character.character-method

by_PoolIndex,OutFlux_by_PoolName,character,character-method	. 35
by_PoolIndex,PoolConnection_by_PoolName,ANY,ANY-method	
by_PoolName	
by_PoolName,ConstantInFluxRate_by_PoolIndex-method	
by_PoolName,ConstantInternalFluxRateList_by_PoolIndex-method	
by_PoolName,ConstantInternalFluxRate_by_PoolIndex-method	
by_PoolName,ConstantOutFluxRateList_by_PoolIndex-method	
by_PoolName,ConstantOutFluxRate_by_PoolIndex-method	
C14Atm	
C14Atm_NH	
CenturyModel	
CenturyModel_new	
check_duplicate_pool_names	
check_id_length	
check_pool_ids	
check_pool_ids,PoolConnection_by_PoolIndex,integer-method	
computeResults	
computeResults,MCSim-method	
computeResults,NIModel-method	
ConstantInFluxList_by_PoolIndex	
ConstantInFluxList_by_PoolIndex,ConstInFluxes-method	
ConstantInFluxList_by_PoolIndex,list-method	
ConstantInFluxList_by_PoolIndex,numeric-method	
ConstantInFluxList_by_PoolIndex-class	. 49
ConstantInFluxList_by_PoolName	. 49
ConstantInFluxRate_by_PoolIndex-class	. 50
ConstantInFluxRate_by_PoolName-class	. 50
ConstantInFlux_by_PoolIndex-class	. 50
ConstantInternalFluxRateList_by_PoolIndex	
ConstantInternalFluxRateList_by_PoolIndex,list-method	
ConstantInternalFluxRateList_by_PoolIndex,numeric-method	
ConstantInternalFluxRateList_by_PoolIndex-class	
ConstantInternalFluxRateList_by_PoolName	
ConstantInternalFluxRateList_by_PoolName,list-method	
ConstantInternalFluxRateList_by_PoolName-class	
ConstantInternalFluxRate_by_PoolIndex	
ConstantInternalFluxRate_by_PoolIndex,missing,missing,character,numeric-method .	
ConstantInternalFluxRate_by_PoolIndex,numeric,numeric,missing,numeric-method .	
ConstantInternalFluxRate_by_PoolIndex-class	
ConstantInternalFluxRate_by_PoolName	
ConstantInternalFluxRate_by_PoolName,character,character,missing,numeric-method	
ConstantInternalFluxRate_by_PoolName,missing,missing,character,numeric-method .	
ConstantInternalFluxRate_by_PoolName-class	
ConstantOutFluxRateList_by_PoolIndex	
· · · · · · · · · · · · · · · · · · ·	
ConstantOutFluxRateList_by_PoolIndex,list-method	
ConstantOutFluxRateList_by_PoolIndex,numeric-method	
ConstantOutFluxRateList_by_PoolIndex-class	
ConstantOutFluxRateList_by_PoolName	. 59

ConstantOutFluxRateList_by_PoolName,list-method
ConstantOutFluxRateList_by_PoolName,numeric-method 60
ConstantOutFluxRateList_by_PoolName-class
ConstantOutFluxRate_by_PoolIndex
ConstantOutFluxRate_by_PoolIndex,numeric,numeric-method 61
ConstantOutFluxRate_by_PoolIndex-class
ConstantOutFluxRate_by_PoolName-class
ConstFc
ConstFc-class
ConstInFluxes
ConstInFluxes,ConstantInFluxList_by_PoolIndex,numeric-method 63
ConstInFluxes, numeric, ANY-method
ConstInFluxes-class
ConstLinDecompOp
ConstLinDecompOp,matrix,missing,missing,missing,missing-method 65
ConstLinDecompOp,missing,ConstantInternalFluxRateList_by_PoolIndex,ConstantOutFluxRateList_by_PoolIndex,not a constant in the
method
ConstLinDecompOp,missing,ConstantInternalFluxRateList_by_PoolIndex,missing,numeric,missing-
method
ConstLinDecompOp,missing,ConstantInternalFluxRateList_by_PoolName,ConstantOutFluxRateList_by_PoolName,rateList_by_
method
ConstLinDecompOp,missing,missing,ConstantOutFluxRateList_by_PoolIndex,numeric,missing-
method
ConstLinDecompOp-class
ConstLinDecompOpWithLinearScalarFactor
ConstLinDecompOpWithLinearScalarFactor,matrix,missing,missing,ScalarTimeMap-
method
ConstLinDecompOpWithLinearScalarFactor-class
ConstLinDecompOp_by_PoolName
cycling
DecompOp-class
DecompositionOperator-class
Delta14C
Delta14C,BoundFc-method
Delta14C,ConstFc-method
Delta14C_from_AbsoluteFractionModern
Delta14C_from_AbsoluteFractionModern,matrix-method
Delta14C_from_AbsoluteFractionModern,numeric-method
deSolve.lsoda.wrapper
eCO2
euler
· · · · · · · · · · · · · · · · · · ·
example.2DBoundLinDecompOpFromFunction
example.2DConstFc.Args
example.2DConstInFluxesFromVector
example.2DGeneralDecompOpArgs
example.2DInFluxes.Args
example.2DUnBoundLinDecompOpFromFunction

example.ConstlinDecompOpFromMatrix	
example.nestedTime2DMatrixList	
example.Time2DArrayList	
example.Time3DArrayList	79
example.TimeMapFromArray	79
Fc-class	79
FcAtm.from.Dataframe	80
fT.Arrhenius	80
fT.Century1	81
fT.Century2	82
fT.Daycent1	82
fT.Daycent2	83
fT.Demeter	84
fT.KB	84
fT.LandT	
fT.linear	85
fT.Q10	
fT.RothC	
fT.Standcarb	
fW.Candy	
fW.Century	
fW.Daycent1	
fW.Daycent2	
fW.Demeter	
fW.Gompertz	
fW.Moyano	
fW.RothC	
fW.Skopp	
fW.Standcarb	
GaudinskiModel14	
GeneralDecompOp	
GeneralDecompOp,DecompOp-method	
GeneralDecompOp, function-method	
GeneralDecompOp,list-method	
GeneralDecompOp,matrix-method	
GeneralDecompOp,TimeMap-method	
GeneralModel	
GeneralModel_14	
GeneralNIModel	
GeneralPoolId	
GeneralPoolId,character-method	
GeneralPoolId,numeric-method	
getAccumulatedRelease	
getAccumulatedRelease,Model-method	
getC	
getC,Model-method	
getC,Model_by_PoolNames-method	
getC,NIModel-method	

getC14	109
getC14,Model_14-method	109
getCompartmentalMatrixFunc	110
getCompartmentalMatrixFunc,BoundLinDecompOp,ANY,ANY-method	110
getCompartmentalMatrixFunc,ConstLinDecompOp,ANY,ANY-method	
getCompartmentalMatrixFunc,TransportDecompositionOperator,ANY,ANY-method	
getCompartmentalMatrixFunc,UnBoundNonLinDecompOp,ANY,ANY-method	
getCompartmentalMatrixFunc,UnBoundNonLinDecompOp_by_PoolNames,character,ch	
method	
getConstantCompartmentalMatrix	
getConstantCompartmentalMatrix,ConstLinDecompOp-method	
getConstantCompartmentalMatrix,ConstLinDecompOpWithLinearScalarFactor-method	
getConstantInFluxVector	
getConstantInFluxVector,ConstInFluxes-method	
getConstantInternalFluxRateList_by_PoolIndex	
getConstantInternalFluxRateList_by_PoolIndex,ConstLinDecompOp-method	
getConstantOutFluxRateList_by_PoolIndex	
getConstantOutFluxRateList_by_PoolIndex,ConstLinDecompOp-method	
getConstLinDecompOp	
getConstLinDecompOp,ConstLinDecompOpWithLinearScalarFactor-method	
getCumulativeC	
getCumulativeC,NIModel-method	
getDecompOp	
getDecompOp,Model-method	
getDecompOp,NIModel-method	
getDotOut	
getDotOut, TransportDecompositionOperator-method	
getF14	
getF14,Model_14-method	
getF14C	
getF14C,Model_14-method	
-	
getF14R	
getFormat	
getFormat,Fc-method	
getFunctionDefinition	
getFunctionDefinition,ConstInFluxes-method	
getFunctionDefinition,ConstLinDecompOp-method	
getFunctionDefinition,ConstLinDecompOpWithLinearScalarFactor-method	
getFunctionDefinition,DecompositionOperator-method	
getFunctionDefinition,InFluxList_by_PoolIndex-method	
getFunctionDefinition,InFluxList_by_PoolName-method	
getFunctionDefinition,StateDependentInFluxVector-method	
getFunctionDefinition,TimeMap-method	
getFunctionDefinition,TransportDecompositionOperator-method	
getFunctionDefinition,UnBoundInFluxes-method	
getFunctionDefinition,UnBoundLinDecompOp-method	
oetInFluxes	133

getInFluxes,Model-method	133
getInFluxes,NIModel-method	134
getInitialValues	. 134
getInitialValues,NlModel-method	. 135
getLinearScaleFactor	
getLinearScaleFactor,ConstLinDecompOpWithLinearScalarFactor-method	
getMeanTransitTime	136
getMeanTransitTime,ConstLinDecompOp-method	
getNumberOfPools	
getNumberOfPools,MCSim-method	
getNumberOfPools,NlModel-method	
getNumberOfPools,TransportDecompositionOperator-method	
getOutputFluxes	
getOutputFluxes,NlModel-method	
getOutputReceivers	
getOutputReceivers, TransportDecompositionOperator, numeric-method	
getParticleMonteCarloSimulator	
getParticleMonteCarloSimulator,NlModel-method	
getReleaseFlux	
getReleaseFlux,Model-method	
getReleaseFlux,Model_by_PoolNames-method	
getReleaseFlux,NIModel-method	
getReleaseFlux14	
getReleaseFlux14,Model_14-method	
getRightHandSideOfODE	
getRightHandSideOfODE,Model-method	
getRightHandSideOfODE,Model_by_PoolNames-method	
getTimeRange	
getTimeRange,ConstInFluxes-method	
getTimeRange,ConstLinDecompOp-method	
getTimeRange,ConstLinDecompOpWithLinearScalarFactor-method	
getTimeRange,DecompositionOperator-method	
getTimeRange,TimeMap-method	
getTimeRange,UnBoundInFluxes-method	
getTimes	
getTimes,Model-method	
getTimes,NIModel-method	
getTransferCoefficients	
getTransferCoefficients,NIModel-method	
getTransferCoefficients,TransportDecompositionOperator-method	
getTransferMatrix	
getTransferMatrixFunc	
getTransferMatrixFunc,TransportDecompositionOperator-method	
getTransitTimeDistributionDensity	
$get Transit Time Distribution Density, Const Lin Decomp Op-method \\ \dots \\ $	
getValues	
getValues,ConstFc-method	157

InternalFlux_by_PoolName,function,character,character,missing-method	186
InternalFlux_by_PoolName,function,missing,missing,character-method	186
InternalFlux_by_PoolName-class	187
linesCPool	187
listProduct	187
MCSim-class	
Model	
Model-class	
Model_14	
Model_by_PoolNames-class	
NIModel-class	
OnepModel	
OnepModel14	
OutFlux	
OutFluxList_by_PoolIndex	
OutFluxList_by_PoolIndex,list-method	
OutFluxList_by_PoolIndex-class	
OutFluxList_by_PoolName	
OutFluxList_by_PoolName,list-method	
OutFluxList_by_PoolName-class	
OutFlux_by_PoolIndex	
OutFlux_by_PoolIndex,function,numeric-method	
OutFlux_by_PoolIndex-class	
OutFlux_by_PoolName	
OutFlux_by_PoolName,function,character-method	
OutFlux_by_PoolName-class	
ParallelModel	
plot,MCSim-method	204
plot,Model-method	205
plot,NlModel-method	206
plot,TimeMap-method	206
plotC14Pool	207
plotCPool	
plotPoolGraph	
plotPoolGraph,Model-method	
PoolConnection_by_PoolIndex	
PoolConnection_by_PoolIndex,ANY,ANY,missing-method	
PoolConnection_by_PoolIndex,missing,missing,character-method	
PoolConnection_by_PoolIndex-class	
PoolConnection_by_PoolName	
PoolConnection_by_PoolName,ANY,ANY,missing-method	
PoolConnection by PoolName-class	
- · -	
PoolId-class	
PoolIndex	
PoolIndex, character-method	
PoolIndex,numeric-method	
PoolIndex,PoolIndex-method	213

PoolIndex,PoolName-method	
PoolIndex-class	
PoolName	
PoolName, character-method	
PoolName,PoolIndex-method	
PoolName,PoolName-method	
PoolName-class	
predefinedModels	
print, Model-method	
print,NlModel-method	
RespirationCoefficients	
RothCModel	
ScalarTimeMap	
ScalarTimeMap,missing,missing,missing,numeric-method	
ScalarTimeMap-class	
SeriesLinearModel	
SeriesLinearModel14	
show,Model-method	
show,NIModel-method	
SoilR.F0.new	
StateDependentInFluxVector-class	
StateIndependentInFluxList_by_PoolIndex	
StateIndependentInFluxList_by_PoolIndex,list-method	
StateIndependentInFluxList_by_PoolIndex-class	
StateIndependentInFluxList_by_PoolName	
StateIndependentInFlux_by_PoolIndex-class	
summary,Model-method	
systemAge	
ThreepairMMmodel	
ThreepFeedbackModel	
ThreepFeedbackModel14	
ThreepParallelModel	
ThreepParallelModel14	
ThreepSeriesModel	
ThreepSeriesModel14	
TimeMap	
TimeMap,data.frame,missing,missing,missing,missing-method	
TimeMap,function,missing,missing,missing,missing-method	
TimeMap,function,numeric,numeric,missing,missing-method	
TimeMap,list,missing,missing,missing,method	
TimeMap,missing,missing,missing,numeric,array-method	
TimeMap,missing,missing,missing,numeric,list-method	
TimeMap,missing,missing,missing,numeric,matrix-method)
TimeMap,missing,missing,missing,numeric,numeric-method	
TimeMap,TimeMap,ANY,ANY,ANY,ANY-method	
TimeMap-class	
TimeMap.from.Dataframe	
TimeMap.new	

12 AbsoluteFractionModern

TransportDecompositionOperator-class
turnoverFit
TwopFeedbackModel
TwopFeedbackModel14
TwopMMmodel
TwopParallelModel
TwopParallelModel14
TwopSeriesModel
TwopSeriesModel14
UnBoundInFluxes
UnBoundInFluxes,function-method
UnBoundInFluxes-class
UnBoundLinDecompOp
UnBoundLinDecompOp,function-method
UnBoundLinDecompOp-class
UnBoundNonLinDecompOp
UnBoundNonLinDecompOp,function,missing,missing,missing,ANY,ANY,ANY-method 270
UnBoundNonLinDecompOp,missing,missing,missing,missing,character,character,UnBoundNonLinDecommethod
UnBoundNonLinDecompOp,missing,vector,vector,numeric,ANY,ANY,ANY-method 271
UnBoundNonLinDecompOp-class
UnBoundNonLinDecompOp_by_PoolNames
$\label{lem:compop} UnBoundNonLinDecompOp_by_PoolNames, InternalFluxList_by_PoolName, OutFluxList_by_PoolName method \\ \dots $
UnBoundNonLinDecompOp_by_PoolNames-class
Yasso07Model
YassoModel
[,Model,character,missing,missing-method
[,NIModel,character,ANY,ANY-method
[[,MCSim-method
[[<-,MCSim-method
\$,NIModel-method
279

Description

automatic title

Usage

AbsoluteFractionModern(F)

Arguments

F : see method arguments

S4 methods for this generic

- AbsoluteFractionModern,BoundFc-method
- AbsoluteFractionModern,ConstFc-method

 ${\it Absolute Fraction Modern, Bound Fc-method} \\ {\it automatic\ title}$

Description

automatic title

Usage

S4 method for signature 'BoundFc'
AbsoluteFractionModern(F)

Arguments

F

object of class:BoundFc, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 $Absolute Fraction Modern, ConstFc-method\\ automatic\ title$

Description

automatic title

Usage

```
## S4 method for signature 'ConstFc'
AbsoluteFractionModern(F)
```

Arguments

F

object of class:ConstFc, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

AbsoluteFractionModern_from_Delta14C

conversion param delta14C Object to be converted to AbsoluteFractionModern

Description

conversion param delta14C Object to be converted to AbsoluteFractionModern

Usage

AbsoluteFractionModern_from_Delta14C(delta14C)

Arguments

delta14C

see method arguments

AbsoluteFractionModern_from_Delta14C, matrix-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'matrix'
AbsoluteFractionModern_from_Delta14C(delta14C)
```

Arguments

delta14C

object of class:matrix, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 $Absolute Fraction Modern_from_Delta 14C, numeric-method\\ automatic\ title$

Description

automatic title

Usage

```
## S4 method for signature 'numeric'
AbsoluteFractionModern_from_Delta14C(delta14C)
```

Arguments

delta14C

object of class:numeric, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

add_plot

automatic title

Description

automatic title

Usage

```
add_plot(x, ...)
```

Arguments

x : see method arguments... : see method arguments

S4 methods for this generic

• add_plot, TimeMap-method

add_plot,TimeMap-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'TimeMap'
add_plot(x, ...)
```

Arguments

. . .

x object of class:TimeMap, : : no manual documentation

: no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

as.character,TimeMap-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'TimeMap'
as.character(x, ...)
```

Arguments

. . .

x object of class:TimeMap, :: no manual documentation

: no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

availableParticleProperties

automatic title

Description

automatic title

Usage

availableParticleProperties(object)

Arguments

object : see method arguments

S4 methods for this generic

• availableParticleProperties,MCSim-method

availableParticleProperties,MCSim-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'MCSim'
availableParticleProperties(object)
```

Arguments

object

object of class:MCSim, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

availableParticleSets automatic title

Description

automatic title

Usage

availableParticleSets(object)

Arguments

object : see method arguments

S4 methods for this generic

• availableParticleSets,MCSim-method

availableParticleSets,MCSim-method *automatic title*

Description

automatic title

Usage

```
## S4 method for signature 'MCSim'
availableParticleSets(object)
```

Arguments

object

object of class:MCSim, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

availableResidentSets 19

availableResidentSets automatic title

Description

automatic title

Usage

availableResidentSets(object)

Arguments

object : see method arguments

S4 methods for this generic

• availableResidentSets,MCSim-method

availableResidentSets,MCSim-method *automatic title*

Description

automatic title

Usage

```
## S4 method for signature 'MCSim'
availableResidentSets(object)
```

Arguments

object

object of class:MCSim, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

20 AWBmodel

AWBmode1

Implementation of the microbial model AWB (Allison, Wallenstein, Bradford, 2010)

Description

This function implements the microbial model AWB (Allison, Wallenstein, Bradford, 2010), a four-pool model with a microbial biomass, enzyme, SOC and DOC pools. It is a special case of the general nonlinear model.

Usage

```
AWBmodel(
  t,
 V_M = 1e + 08,
 V_m = 1e + 08,
  r_B = 2e-04,
  r_E = 5e-06,
  r_L = 0.001,
  a_BS = 0.5,
  epsilon_0 = 0.63,
  epsilon_s = -0.016,
 Km_0 = 500,
 Km_u0 = 0.1,
 Km_s = 0.5,
 Km_us = 0.1,
 Ea = 47,
 R = 0.008314,
 Temp1 = 20,
 Temp2 = 20,
  ival = c(B = 2.19159, E = 0.0109579, S = 111.876, D = 0.00144928),
  I_S = 0.005,
  I_D = 0.005
)
```

Arguments

t	vector of times (in hours) to calculate a solution.
V_M	a scalar representing the maximum rate of uptake (mg DOC cm-3 h-1). Equivalent to $V_{\rm max}$ uptake 0 in original paper.
V_m	a scalar representing the maximum rate of decomposition of SOM (mg SOM cm-3 h-1). Equivalent to V_{max0} in original paper.
r_B	a scalar representing the rate constant of microbial death (h-1). Equivalent to r_{death} in original publication.
r_E	a scalar representing the rate constant of enzyme production (h-1). Equivalent to r_EnzProd in original publication.

AWBmodel 21

r_L	a scalar representing the rate constant of enzyme loss (h-1). Equivalent to r_EnzLoss in original publication.
a_BS	a scalar representing the fraction of the dead microbial biomass incorporated to SOC. MICtoSOC in original publication.
epsilon_0	a scalar representing the intercept of the CUE function (mg mg-1). CUE $_0$ in original paper.
epsilon_s	a scalar representing the slope of the CUE function (degree-1). CUE_slope in original paper.
Km_0	a scalar representing the intercept of the half-saturation constant of SOC as a function of temperature (mg cm-3).
Km_u0	a scalar representing the intercept of the half saturation constant of uptake as a function of temperature (mg cm-3).
Km_s	a scalar representing the slope of the half saturation constant of SOC as a function of temperature (mg cm-3 degree-1).
Km_us	a scalar representing the slope of the half saturation constant of uptake as a function of temperature (mg cm-3 degree-1).
Ea	a scalar representing the activation energy (kJ mol-1).
R	a scalar representing the gas constant (kJ mol-1 degree-1).
Temp1	a scalar representing the temperature in the output vector.
Temp2	a scalar representing the temperature in the transfer matrix.
ival	a vector of length 4 with the initial values for the pools (mg cm-3).
I_S	a scalar with the inputs to the SOC pool (mg cm-3 h-1).
I_D	a scalar with the inputs to the DOC pool (mg cm-3 h-1).

Details

This implementation containts default parameters presented in Allison et al. (2010).

Value

An object of class NlModel that can be further queried.

References

Allison, S.D., M.D. Wallenstein, M.A. Bradford. 2010. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience 3: 336-340.

Examples

```
hours=seq(0,800,0.1)

#Run the model with default parameter values
bcmodel=AWBmodel(t=hours)
Cpools=getC(bcmodel)

##Time solution
# fixme mm:
```

22 bacwaveModel

```
# the next line causes trouble on Rforge Windows patched build
matplot(hours,Cpools,type="1",ylab="Concentrations",xlab="Hours",lty=1,ylim=c(0,max(Cpools)*1.2))
##State-space diagram
plot(as.data.frame(Cpools))
```

bacwaveModel

Implementation of the microbial model Bacwave (bacterial waves)

Description

This function implements the microbial model Bacwave (bacterial waves), a two-pool model with a bacterial and a substrate pool. It is a special case of the general nonlinear model.

Usage

```
bacwaveModel(
    t,
    umax = 0.063,
    ks = 3,
    theta = 0.23,
    Dmax = 0.26,
    kd = 14.5,
    kr = 0.4,
    Y = 0.44,
    ival = c(S0 = 0.5, X0 = 1.5),
    BGF = 0.15,
    ExuM = 8,
    ExuT = 0.8
)
```

Arguments

t	vector of times (in hours) to calculate a solution.
umax	a scalar representing the maximum relative growth rate of bacteria (hr-1)
ks	a scalar representing the substrate constant for growth (ug C /ml soil solution)
theta	a scalar representing soil water content (ml solution/cm3 soil)
Dmax	a scalar representing the maximal relative death rate of bacteria (hr-1)
kd	a scalar representing the substrate constant for death of bacteria (ug C/ml soil solution)
kr	a scalar representing the fraction of death biomass recycling to substrate (unitless)
Υ	a scalar representing the yield coefficient for bacteria (ug C/ugC)
ival	a vector of length 2 with the initial values for the substrate and the bacterial pools (ug C/cm3)
BGF	a scalar representing the constant background flux of substrate (ug C/cm3 soil/hr)

bind.C14curves 23

ExuM a scalar representing the maximal exudation rate (ug C/(hr cm3 soil))

ExuT a scalar representing the time constant for exudation, responsible for duration of

exudation (1/hr).

Details

This implementation containts default parameters presented in Zelenev et al. (2000). It produces nonlinear damped oscillations in the form of a stable focus.

Value

An object of class NIModel that can be further queried.

References

Zelenev, V.V., A.H.C. van Bruggen, A.M. Semenov. 2000. "BACWAVE," a spatial-temporal model for traveling waves of bacterial populations in response to a moving carbon source in soil. Microbail Ecology 40: 260-272.

See Also

There are other predefinedModels and also more general functions like Model.

Examples

```
hours=seq(0,800,0.1)
#
#Run the model with default parameter values
bcmodel=bacwaveModel(t=hours)
Cpools=getC(bcmodel)
#
#Time solution
matplot(hours,Cpools,type="1",ylab="Concentrations",xlab="Hours",lty=1,ylim=c(0,max(Cpools)*1.2))
legend("topleft",c("Substrate", "Microbial biomass"),lty=1,col=c(1,2),bty="n")
#
#State-space diagram
plot(Cpools[,2],Cpools[,1],type="1",ylab="Substrate",xlab="Microbial biomass")
#
#Microbial biomass over time
plot(hours,Cpools[,2],type="1",col=2,xlab="Hours",ylab="Microbial biomass")
```

bind.C14curves

Binding of pre- and post-bomb Delta14C curves

Description

This function takes a pre- and a post-bomb curve, binds them together, and reports the results back either in years BP or AD.

24 BoundFc

Usage

```
bind.C14curves(prebomb, postbomb, time.scale)
```

Arguments

prebomb A pre-bomb radiocarbon dataset. They could be either IntCal09 or IntCal13.

A post-bomb radiocarbon dataset. They could be any of the datasets in Hua2013.

A character indicating whether to report the results in years before present BP or

anno domini AD.

Value

A data.frame with 3 columns: years in AD or BP, the atmospheric Delta14C value, the standard deviation of the Delta14C value.

BoundFc

automatic title

Description

automatic title

Usage

```
BoundFc(format, ...)
```

Arguments

format : see method arguments
... : see method arguments

S4 methods for this generic

- BoundFc, character-method
- BoundFc, missing-method

BoundFc, character-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'character'
BoundFc(format, ...)
```

Arguments

format

object of class:character, : : no manual documentation

. . .

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

BoundFc, missing-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'missing'
BoundFc(format, ...)
```

Arguments

format

object of class:missing, :: no manual documentation

. . .

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

BoundFc-class

automatic title

Description

automatic title

BoundInFluxes

constructor for BoundInFluxes

Description

The method internally calls TimeMap and expects the same kind of arguments

Usage

```
BoundInFluxes(...)
```

Arguments

... passed on to TimeMap

BoundInFluxes-class

automatic title

Description

automatic title

BoundLinDecompOp

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
BoundLinDecompOp(map, ...)
```

Arguments

map see method arguments
... see method arguments

BoundLinDecompOp, ANY-method *automatic title*

Description

automatic title

Usage

```
## S4 method for signature 'ANY'
BoundLinDecompOp(map, ...)
```

Arguments

map :: no manual documentation

... : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

 ${\tt BoundLinDecompOp-method}\\ A\ converter$

Description

The destinction between the classes BoundLinDecompOp and UnboundLinDecompOp exist for those functions, that should be only defined for objects of class UnBoundLinDecomp.

Many functions however do not need extra methods for objects of class UnBoundLinDecompOp and just treat it as a BoundLinDecompOp which is defined on the complete timeline (-Inf,+Inf). With its default arguments this function converts its map argument to a BoundLinDecompOp with just this domain. This is the most frequent internal use case. If starttime and endtime are provided the domain of the operator will be restricted [starttime,endtime].

Usage

```
## S4 method for signature 'UnBoundLinDecompOp'
BoundLinDecompOp(map, starttime = -Inf, endtime = Inf)
```

28 by_PoolIndex

Arguments

map object of class:UnBoundLinDecompOp, An object of class UnBoundLinDecom-

pOp

starttime Begin of time interval map will be restricted to endtime End of time interval map will be restricted to

BoundLinDecompOp-class

A S4 class to represent a linear compartmental operator defined on

time interval

Description

A S4 class to represent a linear compartmental operator defined on time interval

by_PoolIndex

automatic title

Description

automatic title

Usage

```
by_PoolIndex(obj, poolNames, timeSymbol)
```

Arguments

obj : see method arguments poolNames : see method arguments timeSymbol : see method arguments

S4 methods for this generic

- $\bullet \ \ by _PoolIndex, ConstantInFluxRate_by_PoolName, ANY, ANY-method$
- $\bullet \ \ by \verb|-PoolIndex|, ConstantInternalFluxRate_by \verb|-PoolName|, ANY, ANY-method| \\$
- by_PoolIndex,ConstantInternalFluxRateList_by_PoolName,ANY,ANY-method
- by_PoolIndex,ConstantOutFluxRate_by_PoolName,ANY,ANY-method
- by_PoolIndex,ConstantOutFluxRateList_by_PoolName,ANY,ANY-method
- by_PoolIndex,function,character,character-method
- by_PoolIndex,InFlux_by_PoolName,character,character-method
- by_PoolIndex,InFluxList_by_PoolName,character,character-method

- by_PoolIndex,InternalFlux_by_PoolName,character,character-method
- by_PoolIndex,InternalFluxList_by_PoolName,character,character-method
- by_PoolIndex,OutFlux_by_PoolName,character,character-method
- by_PoolIndex,OutFluxList_by_PoolName,character,character-method
- by_PoolIndex,PoolConnection_by_PoolName,ANY,ANY-method

Description

new object with the source pool id converted to a PoolIndex if necessary

Usage

```
## S4 method for signature 'ConstantInFluxRate_by_PoolName,ANY,ANY'
by_PoolIndex(obj, poolNames)
```

Arguments

obj object of class:ConstantInFluxRate_by_PoolName, no manual documentation

poolNames no manual documentation

Description

convert to a list indexed by pool names

Usage

```
## S4 method for signature 'ConstantInternalFluxRateList_by_PoolName,ANY,ANY'
by_PoolIndex(obj, poolNames)
```

Arguments

obj object of class:ConstantInternalFluxRateList_by_PoolName, no manual doc-

umentation

poolNames no manual documentation

 $\label{eq:constant} by \verb|PoolIndex|, ConstantInternalFluxRate_by \verb|PoolName|, ANY|, ANY-method \\ new object with the source pool id converted to a PoolName if necessary$

Description

new object with the source pool id converted to a PoolName if necessary

Usage

```
## S4 method for signature 'ConstantInternalFluxRate_by_PoolName,ANY,ANY'
by_PoolIndex(obj, poolNames)
```

Arguments

obj object of class:ConstantInternalFluxRate_by_PoolName, no manual docu-

mentation

poolNames no manual documentation

Description

convert to a list indexed by pool names

Usage

```
## S4 method for signature 'ConstantOutFluxRateList_by_PoolName,ANY,ANY'
by_PoolIndex(obj, poolNames)
```

Arguments

obj object of class:ConstantOutFluxRateList_by_PoolName, no manual documen-

tation

poolNames no manual documentation

 $\label{local-pollindex} by \verb|PoolIndex|, ConstantOutFluxRate_by_PoolName, ANY, ANY-method \\ new \ object \ with \ the \ source \ pool \ id \ converted \ to \ a \ PoolIndex \ if \ necessary$

Description

new object with the source pool id converted to a PoolIndex if necessary

Usage

```
## S4 method for signature 'ConstantOutFluxRate_by_PoolName,ANY,ANY'
by_PoolIndex(obj, poolNames)
```

Arguments

obj object of class:ConstantOutFluxRate_by_PoolName, no manual documenta-

tion

poolNames no manual documentation

 $\label{eq:convert} by \texttt{_PoolIndex}, function, character, character-method \\ convert\ a\ function\ f\ of\ to\ f_vec$

Description

convert a function f of to f_vec

Usage

```
## S4 method for signature '`function`,character,character'
by_PoolIndex(obj, poolNames, timeSymbol)
```

Arguments

obj object of class:function, For this method a function, whose formal arguments

must have names that are elements of the union of poolNames and timeSymbol

poolNames object of class:character, The ordered poolnames

timeSymbol object of class:character, The name of the argument of obj that represents

time.

Value

f_vec(vec,t) A new function that extracts the arguments of obj from a complete vector of state variables and the time argument t and applies the original function to these arguments. The ode solvers used by SoilR expect a vector valued function of the state vector and time that represents the derivative. The components of this vector are scalar functions of a vector argument and time. It is possible for the user to define such functions directly, but the definition always depends on the order of state variables. Furthermore these functions usually do not use the complete state vector but only some parts of it. It is much clearer more intuitive and less error prone to be able to define functions that have only formal arguments that are used. This is what this method is used for.

Examples

```
leaf_resp=function(leaf_pool_content){leaf_pool_content*4}
leaf_resp(1)
poolNames=c(
    "some_thing"
    ,"some_thing_else"
    ,"some_thing_altogther"
    ,"leaf_pool_content"
)
leaf_resp_vec=by_PoolIndex(leaf_resp,poolNames,timeSymbol='t')
# The result is the same since the only the forth position in the vector leaf_resp_vec(c(1,27,3,1),5)
```

Description

automatic title

Usage

```
## S4 method for signature 'InFluxList_by_PoolName, character, character'
by_PoolIndex(obj, poolNames, timeSymbol)
```

Arguments

obj object of class:InFluxList_by_PoolName, : : no manual documentation

poolNames object of class:character, : : no manual documentation

 ${\tt timeSymbol} \qquad {\tt object \ of \ class:character, : : no \ manual \ documentation \ inspection \ of \ the}$

code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "up-

date_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'InFlux_by_PoolName, character, character'
by_PoolIndex(obj, poolNames, timeSymbol)
```

Arguments

obj object of class:InFlux_by_PoolName, : : no manual documentation

poolNames object of class:character, : : no manual documentation

timeSymbol object of class:character, : : no manual documentation inspection of the

code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "up-

date_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'InternalFluxList_by_PoolName, character, character'
by_PoolIndex(obj, poolNames, timeSymbol)
```

Arguments

obj object of class:InternalFluxList_by_PoolName, : : no manual documentation

poolNames object of class:character, : : no manual documentation

timeSymbol

object of class:character, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 $\label{eq:by_PoolIndex} by _PoolIndex, InternalFlux_by_PoolName, character_method \\ \textit{automatic title}$

Description

automatic title

Usage

S4 method for signature 'InternalFlux_by_PoolName, character, character'
by_PoolIndex(obj, poolNames, timeSymbol)

Arguments

obj object of class:InternalFlux_by_PoolName, : : no manual documentation

poolNames object of class:character, : : no manual documentation

timeSymbol object of class:character, : : no manual documentation inspection of the

code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "up-

date autocomment roclet".

 $\label{eq:by_PoolIndex} by _PoolIndex, OutFluxList_by_PoolName, character_method\\ automatic\ title$

Description

automatic title

Usage

```
## S4 method for signature 'OutFluxList_by_PoolName,character,character'
by_PoolIndex(obj, poolNames, timeSymbol)
```

Arguments

obj object of class:OutFluxList_by_PoolName, : : no manual documentation

poolNames object of class:character, : : no manual documentation

timeSymbol object of class:character, : : no manual documentation inspection of the

code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "up-

date_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'OutFlux_by_PoolName, character, character'
by_PoolIndex(obj, poolNames, timeSymbol)
```

Arguments

obj object of class:OutFlux_by_PoolName, : : no manual documentation

poolNames object of class:character, : : no manual documentation

timeSymbol object of class:character, : : no manual documentation inspection of the

code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "up-

date_autocomment_roclet".

36 by_PoolName

by_PoolIndex,PoolConnection_by_PoolName,ANY,ANY-method

constructor from strings of the form 'x->y' new object with the source

pool id and the destination pool id guranteed to be of class PoolIndex

Description

converts the ids if necessary otherwise returns an identical object

Usage

```
## S4 method for signature 'PoolConnection_by_PoolName,ANY,ANY'
by_PoolIndex(obj, poolNames)
```

Arguments

obj object of class:PoolConnection_by_PoolName, no manual documentation

poolNames no manual documentation

by_PoolName automatic title

Description

automatic title

Usage

```
by_PoolName(obj, poolNames)
```

Arguments

obj : see method arguments poolNames : see method arguments

S4 methods for this generic

- by_PoolName,ConstantInFluxRate_by_PoolIndex-method
- by_PoolName,ConstantInternalFluxRate_by_PoolIndex-method
- by_PoolName,ConstantInternalFluxRateList_by_PoolIndex-method
- by_PoolName,ConstantOutFluxRate_by_PoolIndex-method
- by_PoolName,ConstantOutFluxRateList_by_PoolIndex-method

 $\label{local_policy} \verb|by_PoolName, ConstantInFluxRate_by_PoolIndex-method| \\ new \ object \ with \ the \ source \ pool \ id \ converted \ to \ a \ PoolIndex \ if \ necessary$

Description

new object with the source pool id converted to a PoolIndex if necessary

Usage

```
## S4 method for signature 'ConstantInFluxRate_by_PoolIndex'
by_PoolName(obj, poolNames)
```

Arguments

obj object of class:ConstantInFluxRate_by_PoolIndex, no manual documenta-

tion

poolNames no manual documentation

 ${\it by_PoolName\,}, {\it ConstantInternalFluxRateList_by_PoolIndex-method} \\ {\it convert to \ a \ list \ indexed \ by \ pool \ names}$

Description

convert to a list indexed by pool names

Usage

```
## S4 method for signature 'ConstantInternalFluxRateList_by_PoolIndex'
by_PoolName(obj, poolNames)
```

Arguments

obj object of class:ConstantInternalFluxRateList_by_PoolIndex, no manual

documentation

poolNames no manual documentation

 $\label{local_polline} \verb|by_PoolName|, ConstantInternalFluxRate_by_PoolIndex-method| \\ new \ object \ with \ the \ source \ pool \ id \ converted \ to \ a \ PoolIndex \ if \ necessary$

Description

new object with the source pool id converted to a PoolIndex if necessary

Usage

```
## S4 method for signature 'ConstantInternalFluxRate_by_PoolIndex'
by_PoolName(obj, poolNames)
```

Arguments

obj object of class:ConstantInternalFluxRate_by_PoolIndex, no manual docu-

mentation

poolNames no manual documentation

by_PoolName,ConstantOutFluxRateList_by_PoolIndex-method convert to a list indexed by pool names

Description

convert to a list indexed by pool names

Usage

```
## S4 method for signature 'ConstantOutFluxRateList_by_PoolIndex'
by_PoolName(obj, poolNames)
```

Arguments

obj object of class:ConstantOutFluxRateList_by_PoolIndex, no manual docu-

mentation

poolNames no manual documentation

```
by_PoolName,ConstantOutFluxRate_by_PoolIndex-method
```

new object with the source pool id converted to a PoolName if necessary

Description

This method exists only for classes that do not contain functions of the state_variables since we cannot automatically translate functions with a state vector arguments to functions of the respective state variables which would require symbolic computations. The reverse direction is always possible and is therefore the preferred way to input rate functions that depend on state variables.

Usage

```
## S4 method for signature 'ConstantOutFluxRate_by_PoolIndex'
by_PoolName(obj, poolNames)
```

Arguments

obj object of class:ConstantOutFluxRate_by_PoolIndex, no manual documenta-

tion

poolNames no manual documentation

C14Atm

Atmospheric 14C fraction

Description

Atmospheric 14C fraction in units of Delta14C for the bomb period in the northern hemisphere. @note This dataset will be deprecated soon. Please use C14Atm NH or Hua2013 instead.

Usage

```
data(C14Atm)
```

Format

A data frame with 108 observations on the following 2 variables.

1. V1 a numeric vector

40 CenturyModel

Examples

```
#Notice that C14Atm is a shorter version of C14Atm_NH
require("SoilR")
data("C14Atm_NH")
plot(C14Atm_NH, type="l")
lines(C14Atm, col=2)
```

C14Atm_NH

Post-bomb atmospheric 14C fraction

Description

Atmospheric 14C concentrations for the post-bomb period expressed as Delta 14C in per mile. This dataset contains a combination of observations from locations in Europe and North America. It is representative for the Northern Hemisphere.

Usage

```
data(C14Atm_NH)
```

Format

A data frame with 111 observations on the following 2 variables.

- 1. YEAR a numeric vector with year of measurement.
- 2. Atmosphere a numeric vector with the Delta 14 value of atmospheric CO2 in per mil.

Examples

```
plot(C14Atm_NH, type="1")
```

CenturyModel

Implementation of the Century model

Description

This function implements the Century model as described in Parton et al. (1987).

CenturyModel 41

Usage

```
CenturyModel(
    t,
    ks = c(k.STR = 0.094, k.MET = 0.35, k.ACT = 0.14, k.SLW = 0.0038, k.PAS = 0.00013),
    C0 = c(0, 0, 0, 0, 0),
    In,
    LN,
    Ls,
    clay = 0.2,
    silt = 0.45,
    xi = 1,
    xi_lag = 0,
    solver = deSolve.lsoda.wrapper
)
```

Arguments

t	A vector containing the points in time where the solution is sought.
ks	A vector of lenght 5 containing the values of the decomposition rates for the different pools. Units in per week.
C0	A vector of length 5 containing the initial amount of carbon for the 5 pools.
In	A scalar or data.frame object specifying the amount of litter inputs by time (mass per area per week).
LN	A scalar representing the lignin to nitrogen ratio of the plant residue inputs.
Ls	A scalar representing the fraction of structural material that is lignin.
clay	Proportion of clay in mineral soil.
silt	Proportion of silt in mineral soil.
xi	A scalar, data.frame, function or anything that can be converted to a scalar function of time ScalarTimeMap #' object specifying the external (environmental and/or edaphic) effects on decomposition rates.
xi_lag	A time shift/delay for the automatically created time dependent function xi(t)
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.

Value

A Model Object that can be further queried

References

Parton, W.J, D.S. Schimel, C.V. Cole, and D.S. Ojima. 1987. Analysis of factors controlling soil organic matter levels in Great Plain grasslands. Soil Science Society of America Journal 51: 1173–1179. Sierra, C.A., M. Mueller, S.E. Trumbore. 2012. Models of soil organic matter decomposition: the SoilR package version 1.0. Geoscientific Model Development 5, 1045-1060.

42 CenturyModel_new

See Also

RothCModel. There are other predefinedModels and also more general functions like Model.

Examples

```
t=seq(0,52*200,1) #200 years
LNcorn=0.17/0.004 # Values for corn clover reported in Parton et al. 1987
Ex=CenturyModel(t,LN=0.5,Ls=0.1,In=0.1)
Ct=getC(Ex)
Rt=getReleaseFlux(Ex)
matplot(t,Ct,type="l", col=1:5,lty=1,ylim=c(0,max(Ct)*2.5),
ylab=expression(paste("Carbon stores (kg C", ha^-1,")")),xlab="Time (weeks)")
lines(t,rowSums(Ct),lwd=2)
legend("topright", c("Structural litter", "Metabolic litter",
"Active SOM", "Slow SOM", "Passive SOM", "Total Carbon"),
lty=1,lwd=c(rep(1,5),2),col=c(1:5,1),bty="n")
matplot(t,Rt,type="1",lty=1,ylim=c(0,max(Rt)*3),ylab="Respiration(kg C ha-1 week-1)",xlab="Time")
lines(t,rowSums(Rt),lwd=2)
legend("topright", c("Structural litter","Metabolic litter",
"Active SOM", "Slow SOM", "Passive SOM", "Total Respiration"),
lty=1,lwd=c(rep(1,5),2),col=c(1:5,1),bty="n")
```

CenturyModel_new

Implementation of the Century model

Description

This function implements the Century model as described in Parton et al. (1987).

Usage

```
CenturyModel_new(
    t,
    ks = c(k.STR = 0.094, k.MET = 0.35, k.ACT = 0.14, k.SLW = 0.0038, k.PAS = 0.00013),
    C0 = c(0, 0, 0, 0, 0),
    In,
    LN,
    Ls,
    clay = 0.2,
    silt = 0.45,
    xi = 1,
    xi_lag = 0,
    solver = deSolve.lsoda.wrapper
)
```

CenturyModel_new 43

Arguments

t	A vector containing the points in time where the solution is sought.
ks	A vector of lenght 5 containing the values of the decomposition rates for the different pools. Units in per week.
C0	A vector of length 5 containing the initial amount of carbon for the 5 pools.
In	A scalar or data.frame object specifying the amount of litter inputs by time (mass per area per week).
LN	A scalar representing the lignin to nitrogen ratio of the plant residue inputs.
Ls	A scalar representing the fraction of structural material that is lignin.
clay	Proportion of clay in mineral soil.
silt	Proportion of silt in mineral soil.
xi	A scalar, data.frame, function or anything that can be converted to a scalar function of time (TimeMap object) specifying the external (environmental and/or edaphic) effects on decomposition rates.
xi_lag	A time shift/delay for the automatically created time dependent function xi(t)
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.

Value

A Model Object that can be further queried

References

Parton, W.J, D.S. Schimel, C.V. Cole, and D.S. Ojima. 1987. Analysis of factors controlling soil organic matter levels in Great Plain grasslands. Soil Science Society of America Journal 51: 1173–1179. Sierra, C.A., M. Mueller, S.E. Trumbore. 2012. Models of soil organic matter decomposition: the SoilR package version 1.0. Geoscientific Model Development 5, 1045-1060.

See Also

RothCModel. There are other predefinedModels and also more general functions like Model.

Examples

```
t=seq(0,52*200,1) #200 years
LNcorn=0.17/0.004 # Values for corn clover reported in Parton et al. 1987
Ex=CenturyModel(t,LN=0.5,Ls=0.1,In=0.1)
Ct=getC(Ex)
Rt=getReleaseFlux(Ex)

matplot(t,Ct,type="l", col=1:5,lty=1,ylim=c(0,max(Ct)*2.5),
ylab=expression(paste("Carbon stores (kg C", ha^-1,")")),xlab="Time (weeks)")
lines(t,rowSums(Ct),lwd=2)
legend("topright", c("Structural litter","Metabolic litter",
"Active SOM","Slow SOM","Passive SOM","Total Carbon"),
lty=1,lwd=c(rep(1,5),2),col=c(1:5,1),bty="n")
```

check_id_length

```
\label{limits} $$  \mbox{matplot(t,Rt,type="l",lty=1,ylim=c(0,max(Rt)*3),ylab="Respiration (kg C ha-1 week-1)",xlab="Time") $$  lines(t,rowSums(Rt),lwd=2)$$  legend("topright", c("Structural litter","Metabolic litter", "Active SOM","Slow SOM","Passive SOM","Total Respiration"), $$  lty=1,lwd=c(rep(1,5),2),col=c(1:5,1),bty="n")$$
```

```
check_duplicate_pool_names
```

helper function

Description

Check that poolNames are unique

Usage

```
check_duplicate_pool_names(poolNames)
```

Arguments

poolNames

character vector which will be tested for duplicats

check_id_length

helper function to check that the length of the argumetn is exactly 1

Description

helper function to check that the length of the argumetn is exactly 1

Usage

```
check_id_length(id)
```

Arguments

id

Either a string or a number

check_pool_ids 45

check_pool_ids

automatic title

Description

automatic title

Usage

```
check_pool_ids(obj, pools)
```

Arguments

obj : see method arguments pools : see method arguments

S4 methods for this generic

• check_pool_ids,PoolConnection_by_PoolIndex,integer-method

```
check\_pool\_ids, PoolConnection\_by\_PoolIndex, integer-method\\ automatic\ title
```

Description

automatic title

Usage

```
## S4 method for signature 'PoolConnection_by_PoolIndex,integer'
check_pool_ids(obj, pools)
```

Arguments

obj pools object of class:PoolConnection_by_PoolIndex,:: no manual documentation object of class:integer,: no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

computeResults

automatic title

Description

automatic title

Usage

```
computeResults(object)
```

Arguments

object

: see method arguments

S4 methods for this generic

- computeResults,MCSim-method
- computeResults,NlModel-method

computeResults, MCSim-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'MCSim'
computeResults(object)
```

Arguments

object

object of class:MCSim, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
computeResults(object)
```

Arguments

object

object of class:NlModel, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

ConstantInFluxList_by_PoolIndex

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
ConstantInFluxList_by_PoolIndex(object)
```

Arguments

object see method arguments

ConstantInFluxList_by_PoolIndex,ConstInFluxes-method constructor from ConstInFluxes

Description

constructor from ConstInFluxes

Usage

```
## S4 method for signature 'ConstInFluxes'
ConstantInFluxList_by_PoolIndex(object)
```

Arguments

object of class:ConstInFluxes, An object of class ConstInFluxes

Value

An object of class ConstantInFluxList_by_PoolIndex

```
ConstantInFluxList_by_PoolIndex,list-method 
 constructor from a normal list
```

Description

constructor from a normal list

Usage

```
## S4 method for signature 'list'
ConstantInFluxList_by_PoolIndex(object)
```

Arguments

object

object of class:list, A list. Either a list of elements of type ConstantInFlux_by_PoolIndex or a list where the names of the elements are strings of the form '1->3' (for the flux rate from pool 1 to 2

Value

An object of class ConstantInFluxList_by_PoolIndex

The function checks if the elements are of the desired type or can be converted to it. It is mainly used internally and usually called by the front end functions to convert the user supplied arguments.

ConstantInFluxList_by_PoolIndex,numeric-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'numeric'
ConstantInFluxList_by_PoolIndex(object)
```

Arguments

object

object of class:numeric, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

ConstantInFluxList_by_PoolIndex-class

Subclass of list that is guaranteed to contain only elements of type ConstantInFlux_by_PoolIndex

Description

Subclass of list that is guaranteed to contain only elements of type ConstantInFlux_by_PoolIndex

ConstantInFluxList_by_PoolName

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
ConstantInFluxList_by_PoolName(object)
```

Arguments

object see method arguments

 ${\tt ConstantInFluxRate_by_PoolIndex-class} \\ automatic \ title$

Description

automatic title

ConstantInFluxRate_by_PoolName-class automatic title

Description

automatic title

ConstantInFlux_by_PoolIndex-class

class for a constan influx to a single pool identified by index

Description

class for a constan influx to a single pool identified by index

 ${\it ConstantInternalFluxRateList_by_PoolIndex} \\ {\it Generic\ constructor\ for\ the\ class\ with\ the\ same\ name}$

Description

Generic constructor for the class with the same name

Usage

ConstantInternalFluxRateList_by_PoolIndex(object)

Arguments

object see method arguments

ConstantInternalFluxRateList_by_PoolIndex,list-method constructor from a normal list

Description

constructor from a normal list

Usage

```
## S4 method for signature 'list'
ConstantInternalFluxRateList_by_PoolIndex(object)
```

Arguments

object

object of class:list, A list. Either a list of elements of type ConstantInternalFluxRate_by_PoolIndex or a list where the names of the elements are strings of the form '1->3' (for the flux rate from pool 1 to 2

Value

An object of class ConstantInternalFluxRateList_by_PoolIndex

The function checks if the elements are of the desired type or can be converted to it. It is mainly used internally and usually called by the front end functions to convert the user supplied arguments.

 ${\tt ConstantInternalFluxRateList_by_PoolIndex,numeric-method} \\ automatic\ title$

Description

automatic title

Usage

```
## S4 method for signature 'numeric'
ConstantInternalFluxRateList_by_PoolIndex(object)
```

Arguments

object

object of class:numeric, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

ConstantInternalFluxRateList_by_PoolIndex-class

Subclass of list that is guaranteed to contain only elements of type ConstantInternalFluxRate_by_PoolIndex

Description

Subclass of list that is guaranteed to contain only elements of type ConstantInternalFluxRate_by_PoolIndex

ConstantInternalFluxRateList_by_PoolName

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

ConstantInternalFluxRateList_by_PoolName(object)

Arguments

object

see method arguments

 ${\tt ConstantInternalFluxRateList_by_PoolName,list_method} \\ constructor\ from\ a\ normal\ list$

Description

constructor from a normal list

Usage

```
## S4 method for signature 'list'
ConstantInternalFluxRateList_by_PoolName(object)
```

Arguments

object

object of class:list, A list. Either a list of elements of type ConstantInternalFluxRate_by_PoolName or a list where the names of the elements are strings of the form 'somePool->someOtherPool' (for the flux rate from pool somePool to someOtherPool)

Value

An object of class ConstantInternalFluxRateList_by_PoolName

The function checks if the elements are of the desired type or can be converted to it. It is mainly used internally and usually called by the front end functions to convert the user supplied arguments.

```
ConstantInternalFluxRateList_by_PoolName-class
```

Subclass of list that is guaranteed to contain only elements of type ConstantInternalFluxRate_by_PoolName

Description

Subclass of list that is guaranteed to contain only elements of type ConstantInternalFluxRate_by_PoolName

```
ConstantInternalFluxRate_by_PoolIndex
```

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
ConstantInternalFluxRate_by_PoolIndex(
  sourceIndex,
  destinationIndex,
  src_to_dest,
  rate_constant
)
```

Arguments

```
sourceIndex see method arguments
destinationIndex
see method arguments
src_to_dest see method arguments
rate_constant see method arguments
```

ConstantInternalFluxRate_by_PoolIndex,missing,missing,character,numeric-method constructor from strings of the form '1 to 2'

Description

constructor from strings of the form '1_to_2'

Usage

```
## S4 method for signature 'missing,missing,character,numeric'
ConstantInternalFluxRate_by_PoolIndex(src_to_dest, rate_constant)
```

Arguments

```
src_to_dest object of class:character, no manual documentation object of class:numeric, no manual documentation
```

 $\label{local_constant} Constant Internal Flux Rate_by_Pool Index, numeric, numeric, missing, numeric-method \\ \textit{automatic title}$

Description

automatic title

Usage

```
## S4 method for signature 'numeric,numeric,missing,numeric'
ConstantInternalFluxRate_by_PoolIndex(
   sourceIndex,
   destinationIndex,
   rate_constant
)
```

Arguments

```
sourceIndex object of class:numeric, : : no manual documentation
destinationIndex
```

object of class:numeric, : : no manual documentation

rate_constant

object of class:numeric, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

ConstantInternalFluxRate_by_PoolIndex-class

S4 class representing a constant internal flux rate

Description

The class is used to dispatch specific methods for the creation of the compartmental matrix which is simplified in case of constant rates.

ConstantInternalFluxRate_by_PoolName

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
ConstantInternalFluxRate_by_PoolName(
  sourceName,
  destinationName,
  src_to_dest,
  rate_constant
)
```

Arguments

```
sourceName see method arguments

destinationName see method arguments

src_to_dest see method arguments

rate_constant see method arguments
```

ConstantInternalFluxRate_by_PoolName, character, character, missing, numeric-method constructor with argument conversion

Description

constructor with argument conversion

Usage

```
## S4 method for signature 'character,character,missing,numeric'
ConstantInternalFluxRate_by_PoolName(
   sourceName,
   destinationName,
   rate_constant
)
```

Arguments

```
sourceName object of class:character, no manual documentation
destinationName
object of class:character, no manual documentation
rate_constant object of class:numeric, no manual documentation
```

ConstantInternalFluxRate_by_PoolName, missing, missing, character, numeric-method constructor from strings of the form 'a->b'

Description

constructor from strings of the form 'a->b'

Usage

```
## S4 method for signature 'missing,missing,character,numeric'
ConstantInternalFluxRate_by_PoolName(src_to_dest, rate_constant)
```

Arguments

```
src_to_dest object of class:character, no manual documentation rate_constant object of class:numeric, no manual documentation
```

ConstantInternalFluxRate_by_PoolName-class

S4-class to represent a constant internal flux rate with source and target indexed by name

Description

S4-class to represent a constant internal flux rate with source and target indexed by name

ConstantOutFluxRateList_by_PoolIndex

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

ConstantOutFluxRateList_by_PoolIndex(object)

Arguments

object

see method arguments

ConstantOutFluxRateList_by_PoolIndex,list-method constructor from a normal list

Description

constructor from a normal list

Usage

```
## S4 method for signature 'list'
ConstantOutFluxRateList_by_PoolIndex(object)
```

Arguments

object

object of class:list, A list. Either a list of elements of type ConstantOut-FluxRate_by_PoolIndex or a list where the names of the elements are integer strings of the form '3' (for the flux rate from pool 3)

Value

An object of class ConstantOutFluxRateList_by_PoolIndex

The function checks if the elements are of the desired type or can be converted to it. It is mainly used internally and usually called by the front end functions to convert the user supplied arguments.

ConstantOutFluxRateList_by_PoolIndex,numeric-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'numeric'
ConstantOutFluxRateList_by_PoolIndex(object)
```

Arguments

object

object of class:numeric, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

ConstantOutFluxRateList_by_PoolIndex-class

Subclass of list that is guaranteed to contain only elements of type ConstantOutFluxRate_by_PoolIndex

Description

The main purpose of the class is to be used in method signatures which would otherwise only indicate an object of class 'list' in their signature an then check that the list contains the right kind of elements inside the function. Using this class the method signature becomes much more informative.

ConstantOutFluxRateList_by_PoolName

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
ConstantOutFluxRateList_by_PoolName(object)
```

Arguments

object see method arguments

ConstantOutFluxRateList_by_PoolName,list-method constructor from a normal list

Description

constructor from a normal list

Usage

```
## S4 method for signature 'list'
ConstantOutFluxRateList_by_PoolName(object)
```

Arguments

object

object of class:list, A list. Either a list of elements of type ConstantOut-FluxRate_by_PoolName or a list where the names of the elements are integer strings of the form '3' (for the flux rate from pool 3)

Value

An object of class ConstantOutFluxRateList_by_PoolName

The function checks if the elements are of the desired type or can be converted to it. It is mainly used internally and usually called by the front end functions to convert the user supplied arguments.

 ${\tt ConstantOutFluxRateList_by_PoolName, numeric-method} \\ automatic\ title$

Description

automatic title

Usage

S4 method for signature 'numeric'
ConstantOutFluxRateList_by_PoolName(object)

Arguments

object

object of class:numeric, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

ConstantOutFluxRateList_by_PoolName-class

Subclass of list that is guaranteed to contain only elements of type ConstantOutFluxRate_by_PoolName

Description

The main purpose of the class is to be used in method signatures which would otherwise only indicate an object of class 'list' in their signature an then check that the list contains the right kind of elements inside the function. Using this class the method signature becomes much more informative.

ConstantOutFluxRate_by_PoolIndex

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

ConstantOutFluxRate_by_PoolIndex(sourceIndex, rate_constant)

Arguments

sourceIndex see method arguments rate_constant see method arguments

ConstantOutFluxRate_by_PoolIndex,numeric,numeric-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'numeric,numeric'
ConstantOutFluxRate_by_PoolIndex(sourceIndex, rate_constant)
```

Arguments

sourceIndex object of class:numeric, :: no manual documentation

rate_constant object of class:numeric, : : no manual documentation inspection of the code.

You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "up-

date_autocomment_roclet".

62 ConstFc

ConstantOutFluxRate_by_PoolIndex-class

S4 Class to represent a single constant out-flux rate with the source pool specified by an index

Description

S4 Class to represent a single constant out-flux rate with the source pool specified by an index

ConstantOutFluxRate_by_PoolName-class

S4 Class to represent a single constant out-flux rate with the source pool specified by name

Description

S4 Class to represent a single constant out-flux rate with the source pool specified by name

ConstFc

creates an object containing the initial values for the 14C fraction needed to create models in SoilR

Description

The function returns an object of class ConstFc which is a building block for any 14C model in SoilR. The building blocks of a model have to keep iformation about the formats their data are in, because the high level function dealing with the models have to know. This function is actually a convienient wrapper for a call to R's standard constructor new, to hide its complexity from the user.

Usage

```
ConstFc(values = c(0), format = "Delta14C")
```

Arguments

values a numeric vector

format a character string describing the format e.g. "Delta14C"

Value

An object of class ConstFc that contains data and a format description that can later be used to convert the data into other formats if the conversion is implemented.

ConstFc-class 63

ConstFc-class

S4 class representing a constan ^14C fraction

Description

S4 class representing a constan ^14C fraction

ConstInFluxes

automatic title

Description

automatic title

Usage

ConstInFluxes(map, numberOfPools)

Arguments

map : see method arguments numberOfPools : see method arguments

S4 methods for this generic

- $\bullet \ {\tt ConstInFluxes,ConstantInFluxList_by_PoolIndex,numeric-method}$
- ConstInFluxes, numeric, ANY-method

 ${\tt ConstInFluxes,ConstantInFluxList_by_PoolIndex,numeric-method} \\ automatic\ title$

Description

automatic title

Usage

```
## S4 method for signature 'ConstantInFluxList_by_PoolIndex,numeric'
ConstInFluxes(map, numberOfPools)
```

64 ConstInFluxes-class

Arguments

map object of class:ConstantInFluxList_by_PoolIndex,: no manual documen-

tation

numberOfPools object of class:numeric, : : no manual documentation inspection of the code.

You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "up-

date_autocomment_roclet".

ConstInFluxes, numeric, ANY-method automatic title

Description

automatic title

Usage

S4 method for signature 'numeric,ANY'
ConstInFluxes(map)

Arguments

map

object of class:numeric, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update autocomment roclet".

ConstInFluxes-class

S4 class for a constant influx vector

Description

It is mainly used to dispatch S4-methods for computations that are valid only if the influx is constant. This knowledge can either be used to speed up computations or to decide if they are possible at all. E.g. the computation of equilibria for a model run requires autonomy of the model which requires the influxes to be time independent. If the model is linear and compartmental then the (unique) equilibrium can be computed. Accordingly a method with ConstInFluxes in the signature can be implemented, whereas none would be available for a general InFluxes argument.

ConstLinDecompOp 65

ConstLinDecompOp

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
ConstLinDecompOp(
  mat,
  internal_flux_rates,
  out_flux_rates,
  numberOfPools,
  poolNames
)
```

Arguments

```
mat see method arguments
internal_flux_rates
see method arguments
out_flux_rates see method arguments
numberOfPools see method arguments
poolNames see method arguments
```

 ${\it ConstLinDecompOp, matrix, missing, missing,$

Description

Constructor

Usage

```
## S4 method for signature 'matrix,missing,missing,missing,missing'
ConstLinDecompOp(mat)
```

Arguments

mat

object of class:matrix, no manual documentation

 $ConstLin Decomp Op, missing, Constant Internal Flux Rate List_by_Pool Index, Constant Out Flux Rate List_by_Pool Index, Constant Out Flux Rate List_by_Pool Index, Constructor$

Description

Constructor

Usage

```
## S4 method for signature
## 'missing,
## ConstantInternalFluxRateList_by_PoolIndex,
## ConstantOutFluxRateList_by_PoolIndex,
## numeric,
## missing'
ConstLinDecompOp(internal_flux_rates, out_flux_rates, numberOfPools)
```

Arguments

 $ConstLinDecompOp, \verb|missing|, ConstantInternalFluxRateList_by_PoolIndex|, \verb|missing|, numeric|, \verb|missing|, missing|, missin$

Description

Constructor

Usage

```
## S4 method for signature
## 'missing,
## ConstantInternalFluxRateList_by_PoolIndex,
## missing,
## numeric,
## missing'
ConstLinDecompOp(internal_flux_rates, numberOfPools)
```

 $ConstLinDecompOp, missing, ConstantInternalFluxRateList_by_PoolName, ConstantOutFluxRateList_by_PoolName, missing, change of the constant of$

Arguments

 $\label{lem:constLinDecompOp,missing,ConstantInternalFluxRateList_by_PoolName,ConstantOutFluxRateList_by_PoolName, ConstantOutFluxRateList_by_PoolName, Consta$

Description

alternative Constructor with pool names

Usage

```
## S4 method for signature
## 'missing,
## ConstantInternalFluxRateList_by_PoolName,
## ConstantOutFluxRateList_by_PoolName,
## missing,
## character'
ConstLinDecompOp(internal_flux_rates, out_flux_rates, poolNames)
```

Arguments

 ${\tt ConstLinDecompOp, missing, missing, ConstantOutFluxRateList_by_PoolIndex, numeric, missing_method} \\ {\tt Constructor}$

Description

Constructor

Usage

```
## S4 method for signature
## 'missing,missing,ConstantOutFluxRateList_by_PoolIndex,numeric,missing'
ConstLinDecompOp(out_flux_rates, numberOfPools)
```

Arguments

```
out_flux_rates object of class:ConstantOutFluxRateList_by_PoolIndex, no manual documentation

numberOfPools object of class:numeric, no manual documentation
```

ConstLinDecompOp-class

A class to represent a constant (=nonautonomuous,linear) compartmental matrix or equivalently a combination of ordered constant internal flux rates and constant out flux rates.

Description

A class to represent a constant (=nonautonomuous,linear) compartmental matrix or equivalently a combination of ordered constant internal flux rates and constant out flux rates.

ConstLinDecompOpWithLinearScalarFactor

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
ConstLinDecompOpWithLinearScalarFactor(
  mat,
  internal_flux_rates,
  out_flux_rates,
  numberOfPools,
  xi
)
```

Arguments

```
mat see method arguments internal_flux_rates see method arguments out_flux_rates see method arguments numberOfPools see method arguments xi see method arguments
```

ConstLinDecompOpWithLinearScalarFactor, matrix, missing, missing, missing, ScalarTimeMap-method

convert names of vectors or lists to class ConstantOutFluxRate convert

names of vectors or lists to class ConstantInternalFluxRate

Description

convert names of vectors or lists to class ConstantOutFluxRate convert names of vectors or lists to class ConstantInternalFluxRate

Usage

S4 method for signature 'matrix,missing,missing,missing,ScalarTimeMap'
ConstLinDecompOpWithLinearScalarFactor(mat, xi)

Arguments

mat	object of class:matrix, no manual documentation
xi	object of class:ScalarTimeMap, no manual documentation

 ${\tt ConstLinDecompOpWithLinearScalarFactor-class}$

A class to represent a constant (=nonautonomuous,linear) compartmental matrix with a time dependent (linear) scalar pre factor This is a special case of a linear compartmental operator/matrix

Description

A class to represent a constant (=nonautonomuous,linear) compartmental matrix with a time dependent (linear) scalar pre factor This is a special case of a linear compartmental operator/matrix

ConstLinDecompOp_by_PoolName

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

ConstLinDecompOp_by_PoolName(internal_flux_rates, out_flux_rates, poolNames)

Arguments

```
internal_flux_rates
see method arguments
out_flux_rates see method arguments
poolNames see method arguments
```

cycling

Cycling analysis of compartmental matrices

Description

Computes the fundamental matrix N, and the expected number of steps from a compartmental matrix A

Usage

cycling(A)

Arguments

Α

A compartmental linear square matrix with cycling rates in the diagonal and transfer rates in the off-diagonal.

Value

A list with 2 objects: the fundamental matrix N, and the expected number of steps Et.

See Also

systemAge

DecompOp-class

S4-class to represent compartmental operators

Description

S4-class to represent compartmental operators

DecompositionOperator-class

automatic title

Description

automatic title

Delta14C 71

Delta14C

automatic title

Description

automatic title

Usage

Delta14C(F)

Arguments

F

: see method arguments

S4 methods for this generic

- Delta14C,BoundFc-method
- Delta14C,ConstFc-method

Delta14C,BoundFc-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'BoundFc'
Delta14C(F)
```

Arguments

F

object of class:BoundFc, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Delta14C, ConstFc-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'ConstFc'
Delta14C(F)
```

Arguments

F

object of class:ConstFc, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

 ${\tt Delta14C_from_AbsoluteFractionModern(AbsoluteFractionModern)}$

Arguments

AbsoluteFractionModern : see method arguments

S4 methods for this generic

- Delta14C_from_AbsoluteFractionModern,matrix-method
- Delta14C_from_AbsoluteFractionModern,numeric-method

Delta14C_from_AbsoluteFractionModern,matrix-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'matrix'
Delta14C_from_AbsoluteFractionModern(AbsoluteFractionModern)
```

Arguments

AbsoluteFractionModern

object of class:matrix, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Delta14C_from_AbsoluteFractionModern,numeric-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'numeric'
Delta14C_from_AbsoluteFractionModern(AbsoluteFractionModern)
```

Arguments

AbsoluteFractionModern

object of class:numeric, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

74 eCO2

deSolve.lsoda.wrapper deSolve.lsoda.wrapper

Description

The function serves as a wrapper for Isoda using a much simpler interface which allows the use of matrices in the definition of the derivative. To use Isoda we have to convert our vectors to lists, define tolerances and so on. This function does this for us, so we don't need to bother about it.

Usage

```
deSolve.lsoda.wrapper(t, ydot, startValues)
```

Arguments

t A row vector containing the points in time where the solution is sought.

ydot The function of y and t that computes the derivative for a given point in time and

a column vector y.

startValues A column vector with the starting values.

Value

A matrix. Every column represents a pool and every row a point in time

eCO2

Soil CO2 efflux from an incubation experiment

Description

A dataset with soil CO2 efflux measurements from a laboratory incubation at controlled temperature and moisture conditions.

Usage

data(eCO2)

Format

A data frame with the following 3 variables.

Days A numeric vector with the day of measurement after the experiment started.

eCO2mean A numeric vector with the release flux of CO2. Units in ug C g-1 soil day-1.

eCO2sd A numeric vector with the standard deviation of the release flux of CO2-C. Units in ug C g-1 soil day-1.

euler 75

Details

A laboratory incubation experiment was performed in March 2014 for a period of 35 days under controlled conditions of temperature (15 degrees Celsius), moisture (30 percent soil water content), and oxygen levels (20 percent). Soil CO2 measurements were taken using an automated system for gas sampling connected to an infrared gas analyzer. The soil was sampled at a boreal forest site (Caribou Poker Research Watershed, Alaska, USA). This dataset presents the mean and standard deviation of 4 replicates.

Examples

```
head(eCO2)

plot(eCO2[,1:2],type="o",ylim=c(0,50),ylab="CO2 efflux (ug C g-1 soil day-1)")

arrows(eCO2[,1],eCO2[,2]-eCO2[,3],eCO2[,1],eCO2[,2]+eCO2[,3], angle=90,length=0.3,code=3)
```

euler euler

Description

This function can solve arbitrary first order ode systems with the euler forward method and an adaptive time-step size control given a tolerance for the deviation of a coarse and fine estimate of the change in y for the next time step. It is an alternative to <code>deSolve.lsoda.wrapper</code> and has the same interface. It is much slower than ode and should probably be considered less capable in solving stiff ode systems. However it has one main advantage, which consists in its simplicity. It is quite easy to see what is going on inside it. Whenever you don't trust your implementation of another (more efficient but probably also more complex) ode solver, just compare the result to what this method computes.

Usage

```
euler(times, ydot, startValues)
```

Arguments

times A row vector containing the points in time where the solution is sought.

ydot The function of y and t that computes the derivative for a given point in time and

a column vector y.

startValues A column vector with the initial values.

 $example. 2D Bound In Fluxes From Function \\ example. 2D Bound In Fluxes From Function$

Description

Create a 2-dimensionsonal example of a BoundInFluxes object

Usage

```
example.2DBoundInFluxesFromFunction()
```

Value

The returned object represents a time dependent Influx into a two pool model.

 $example. 2D Bound Lin Decomp Op From Function \\ example. 2D Bound Lin Decomp Op From Function$

Description

An example used in tests and other examples.

Usage

```
example.2DBoundLinDecompOpFromFunction()
```

example.2DConstFc.Args

example.2DConstFc.Args

Description

Create a 2-dimensionsonal examples of a Influx objects from different arguments

```
example.2DConstFc.Args()
```

 ${\it example. 2DC} onst In Fluxes From Vector \\ {\it 2D example for constant Influx}$

Description

An example used in tests and other examples.

Usage

```
example.2DConstInFluxesFromVector()
```

Value

The returned object represents a time invariant constant influx into a two pool model.

```
example.2DGeneralDecompOpArgs

example.2DGeneralDecompOpArgs
```

Description

We present all possibilities to define a 2D DecompOp-class

Usage

```
example.2DGeneralDecompOpArgs()
```

```
example. 2DIn Fluxes. Args \\ example. 2DIn Fluxes. Args
```

Description

Create a 2-dimensionsonal examples of Influxes objects from different arguments

```
example.2DInFluxes.Args()
```

 $example. 2 {\tt DUnBoundLinDecompOpFromFunction}\\ example. 2 {\tt DUnBoundLinDecompOpFromFunction}$

Description

An example used in tests and other examples.

Usage

example.2DUnBoundLinDecompOpFromFunction()

 $example. {\tt ConstlinDecompOpFromMatrix}\\ example. {\tt ConstlinDecompOpFromMatrix}$

Description

An example used in tests and other examples.

Usage

example.ConstlinDecompOpFromMatrix()

 $example.nested {\it Time 2DMatrix List}$ create~an~example~nested~list~that~can~be

Description

An example used in tests and other examples.

Usage

example.nestedTime2DMatrixList()

```
example.Time2DArrayList
```

create an example TimeMap from 2D array

Description

An example used in tests and other examples.

Usage

```
example.Time2DArrayList()
```

```
example.Time3DArrayList
```

create an example TimeFrame from 3D array

Description

An example used in tests and other examples.

Usage

```
example.Time3DArrayList()
```

```
example.TimeMapFromArray
```

create an example TimeFrame from 3D array

Description

The function creates an example TimeMap that is used in other examples and tests.

Usage

```
example.TimeMapFromArray()
```

Fc-class

automatic title

Description

automatic title

80 fT.Arrhenius

Description

This function is deprecated constructor of the deprecatied class FcAtm

Usage

```
FcAtm.from.Dataframe(dframe, lag = 0, interpolation = splinefun, format)
```

Arguments

dframe	A data frame containing exactly two columns: the first one is interpreted as time the secon one is interpreted as atmospheric C14 fraction in the format mentioned
lag	a scalar describing the time lag. Positive Values shift the argument of the interpolation function forward in time. (retard its effect)
interpolation	A function that returns a function the default is splinefun. Other possible values are the linear interpolation approxfun or any self made function with the same interface.
format	a string that specifies the format used to represent the atmospheric fracton. Possible values are "Delta14C" which is the default or "afn" the Absolute Fraction Normal representation

Value

An object of the new class BoundFc that replaces FcAtm

fT.Arrhenius	Effects of temperature on decomposition rates according the Arrhenius equation
--------------	--

Description

Calculates the effects of temperature on decomposition rates according to the Arrhenius equation.

```
fT.Arrhenius(Temp, A = 1000, Ea = 75000, Re = 8.3144621)
```

fT.Century1

Arguments

Temp	A scalar or vector containing values of temperature (in degrees Kelvin) for which the effects on decomposition rates are calculated.
Α	A scalar defining the pre-exponential factor.
Ea	A scalar defining the activation energy in units of J mol^-1.
Re	A scalar defining the universal gas contant in units of J K^-1 mol^-1.

Value

A scalar or a vector containing the effects of temperature on decomposition rates (unitless).

fT.Century1	Effects of temperature on decomposition rates according the the CEN-TURY model

Description

Calculates the effects of temperature on decomposition rates according to the CENTURY model.

Usage

```
fT.Century1(Temp, Tmax = 45, Topt = 35)
```

Arguments

Temp	A scalar or vector containing values of temperature for which the effects on decomposition rates are calculated.
Tmax	A scalar defining the maximum temperature in degrees C.
Topt	A scalar defining the optimum temperature for the decomposition process in degrees C.

Value

A scalar or a vector containing the effects of temperature on decomposition rates (unitless).

References

Burke, I. C., J. P. Kaye, S. P. Bird, S. A. Hall, R. L. McCulley, and G. L. Sommerville. 2003. Evaluating and testing models of terrestrial biogeochemistry: the role of temperature in controlling decomposition. Pages 235-253 in C. D. Canham, J. J. Cole, and W. K. Lauenroth, editors. Models in ecosystem science. Princeton University Press, Princeton.

82 fT.Daycent1

fT.Century2	Effects of temperature on decomposition rates according the the CEN-TURY model

Description

Calculates the effects of temperature on decomposition rates according to the CENTURY model.

Usage

```
fT.Century2(Temp, Tmax = 45, Topt = 35)
```

Arguments

Temp A scalar or vector containing values of temperature for which the effects on

decomposition rates are calculated.

Tmax A scalar defining the maximum temperature in degrees C.

Topt A scalar defining the optimum temperature for the decomposition process in

degrees C.

Value

A scalar or a vector containing the effects of temperature on decomposition rates (unitless).

References

Adair, E. C., W. J. Parton, S. J. D. Grosso, W. L. Silver, M. E. Harmon, S. A. Hall, I. C. Burke, and S. C. Hart. 2008. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Global Change Biology 14:2636-2660.

fT.Daycent1	Effects of temperature on decomposition rates according to the DAY-CENT model
-------------	---

Description

Calculates the effects of temperature on decomposition rates according to the DAYCENT model.

Usage

```
fT.Daycent1(Temp)
```

Arguments

Temp A scalar or vector containing values of soil temperature for which the effects on

decomposition rates are calculated

fT.Daycent2

Value

A scalar or a vector containing the effects of temperature on decomposition rates (unitless).

References

Kelly, R. H., W. J. Parton, M. D. Hartman, L. K. Stretch, D. S. Ojima, and D. S. Schimel (2000), Intra-annual and interannual variability of ecosystem processes in shortgrass steppe, J. Geophys. Res., 105.

fT.Daycent2

Effects of temperature on decomposition rates according to the DAY-CENT model

Description

Calculates the effects of temperature on decomposition rates according to the Daycent/Century models.

Usage

fT.Daycent2(Temp)

Arguments

Temp

A scalar or vector containing values of soil temperature for which the effects on decomposition rates are calculated.

Value

A scalar or a vector containing the effects of temperature on decomposition rates (unitless).

References

Del Grosso, S. J., W. J. Parton, A. R. Mosier, E. A. Holland, E. Pendall, D. S. Schimel, and D. S. Ojima (2005), Modeling soil CO2 emissions from ecosystems, Biogeochemistry, 73(1), 71-91.

84 fT.KB

	fT.Demeter	Effects of temperature on decomposition rates according to the DEMETER model
--	------------	--

Description

Calculates the effects of temperature on decomposition rates according to the DEMETER model.

Usage

```
fT.Demeter(Temp, Q10 = 2)
```

Arguments

Temp A scalar or vector containing values of temperature for which the effects on

decomposition rates are calculated

Q10 A scalar. Temperature coefficient Q10

Value

A scalar or a vector containing the effects of temperature on decomposition rates (unitless).

References

Foley, J. A. (1995), An equilibrium model of the terrestrial carbon budget, Tellus B, 47(3), 310-319.

fT.KB	Effects of temperature on decomposition rates according to a model
	proposed by M. Kirschbaum (1995)

Description

Calculates the effects of temperature on decomposition rates according to a model proposed by Kirschbaum (1995).

Usage

```
fT.KB(Temp)
```

Arguments

Temp a scalar or vector containing values of soil temperature for which the effects on

decomposition rates are calculated

Value

A scalar or a vector containing the effects of temperature on decomposition rates (unitless).

fT.LandT

References

Kirschbaum, M. U. F. (1995), The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage, Soil Biology and Biochemistry, 27(6), 753-760.

fT.LandT	Effects of temperature on decomposition rates according to a function proposed by Lloyd and Taylor (1994)

Description

Calculates the effects of temperature on decomposition rates according to a function proposed by Lloyd and Taylor (1994).

Usage

```
fT.LandT(Temp)
```

Arguments

Temp

A scalar or vector containing values of soil temperature for which the effects on decomposition rates are calculated

Value

A scalar or a vector containing the effects of temperature on decomposition rates (unitless).

References

Lloyd, J., and J. A. Taylor (1994), On the Temperature Dependence of Soil Respiration, Functional Ecology, 8(3), 315-323.

fT.linear Effects of temperature on decomposition rain model	es according to a linear
--	--------------------------

Description

Calculates the effects of temperature on decomposition rates according to a linear model.

```
fT.linear(Temp, a = 0.198306, b = 0.036337)
```

86 fT.Q10

Arguments

Temp	A scalar or vector containing values of temperature for which the effects on decomposition rates are calculated.
a	A scalar defining the intercept of the linear function.
b	A scalar defining the slope of the linear function.

Value

A scalar or a vector containing the effects of temperature on decomposition rates (unitless).

References

Adair, E. C., W. J. Parton, S. J. D. Grosso, W. L. Silver, M. E. Harmon, S. A. Hall, I. C. Burke, and S. C. Hart. 2008. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Global Change Biology 14:2636-2660.

fT.Q10	Effects of temperature on decomposition rates according to a $Q10$ function

Description

Calculates the effects of temperature on decomposition rates according to the modified Van't Hoff function (Q10 function).

Usage

```
fT.Q10(Temp, k_ref = 1, T_ref = 10, Q10 = 2)
```

Arguments

Temp	A scalar or vector containing values of temperature for which the effects on decomposition rates are calculated.
k_ref	A scalar representing the value of the decomposition rate at a reference temperature vaule.
T_ref	A scalar representing the reference temperature.
Q10	A scalar. Temperature coefficient Q10.

Value

A scalar or a vector containing the effects of temperature on decomposition rates (unitless).

fT.RothC 87

fT.RothC	Effects of temperature on decomposition rates according to the functions included in the RothC model

Description

Calculates the effects of temperature on decomposition rates according to the functions included in the RothC model.

Usage

```
fT.RothC(Temp)
```

Arguments

Temp

A scalar or vector containing values of temperature for which the effects on decomposition rates are calculated.

Value

A scalar or a vector containing the effects of temperature on decomposition rates (unitless).

Note

This function returns NA for Temp <= -18.3

References

Jenkinson, D. S., S. P. S. Andrew, J. M. Lynch, M. J. Goss, and P. B. Tinker (1990), The Turnover of Organic Carbon and Nitrogen in Soil, Philosophical Transactions: Biological Sciences, 329(1255), 361-368.

fT.Standcarb	Effects of temperature on decomposition rates according to the Stand-Carb model

Description

Calculates the effects of temperature on decomposition rates according to the StandCarb model.

```
fT.Standcarb(Temp, Topt = 45, Tlag = 4, Tshape = 15, Q10 = 2)
```

fW.Candy

Arguments

Temp	A scalar or vector containing values of temperature for which the effects on decomposition rates are calculated.
Topt	A scalar representing the optimum temperature for decomposition.
Tlag	A scalar that determines the lag of the response curve.
Tshape	A scalar that determines the shape of the response curve.
Q10	A scalar. Temperature coefficient Q10.

Value

A scalar or a vector containing the effects of temperature on decomposition rates (unitless).

References

Harmon, M. E., and J. B. Domingo (2001), A users guide to STANDCARB version 2.0: A model to simulate carbon stores in forest stands. Oregon State University, Corvallis.

fW.Candy	Effects of moisture on decomposition rates according to the Candy model
----------	---

Description

Calculates the effects of water content and pore volume on decomposition rates.

Usage

```
fW.Candy(theta, PV)
```

Arguments

theta A scalar or vector containing values of volumetric soil water content.

PV A scalar or vector containing values of pore volume.

References

J. Bauer, M. Herbst, J.A. Huisman, L. Weiherm\"uller, H. Vereecken. 2008. Sensitivity of simulated soil heterotrophic respiration to temperature and moisture reduction functions. Geoderma, Volume 145, Issues 1-2, 15 May 2008, Pages 17-27.

fW.Century 89

ede	fW.Century	Effects of moisture on decomposition rates according to the CENTURY model
-----	------------	---

Description

Calculates the effects of precipitation and potential evapotranspiration on decomposition rates.

Usage

```
fW.Century(PPT, PET)
```

Arguments

PPT A scalar or vector containing values of monthly precipitation.

PET A scalar or vector containing values of potential evapotranspiration.

Value

A scalar or a vector containing the effects of precipitation and potential evapotranspiration on decomposition rates (unitless).

References

Adair, E. C., W. J. Parton, S. J. D. Grosso, W. L. Silver, M. E. Harmon, S. A. Hall, I. C. Burke, and S. C. Hart (2008), Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates, Global Change Biology, 14(11), 2636-2660. Parton, W. J., J. A. Morgan, R. H. Kelly, and D. S. Ojima (2001), Modeling soil C responses to environmental change in grassland systems, in The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect, edited by R. F. Follett, J. M. Kimble and R. Lal, pp. 371-398, Lewis Publishers, Boca Raton.

fW.Daycent1 Effects of moisture on decomposition rates according model	to the DAYCENT
--	----------------

Description

Calculates the effects of Soil Water Content on decomposition rates according to the Daycent Model.

90 fW.Daycent2

Usage

```
fW.Daycent1(
   swc,
   a = 0.6,
   b = 1.27,
   c = 0.0012,
   d = 2.84,
   partd = 2.65,
   bulkd = 1,
   width = 1
)
```

Arguments

SWC	A scalar or vector with soil water content of a soil layer (cm).
a	Empirical coefficient. For fine textured soils $a = 0.6$. For coarse textured soils $a = 0.55$.
b	Empirical coefficient. For fine textured soils $b = 1.27$. For coarse textured soils $b = 1.70$.
С	Empirical coefficient. For fine textured soils $c = 0.0012$. For coarse textured soils $c = -0.007$.
d	Empirical coefficient. For fine textured soils $d = 2.84$. For coarse textured soils $d = 3.22$.
partd	Particle density of soil layer.
bulkd	Bulk density of soil layer (g/cm ³).
width	Thickness of a soil layer (cm).

Value

A data frame with values of water filled pore space (wfps) and effects of soil water content on decomposition rates. Both vectors are unitless.

References

Kelly, R. H., W. J. Parton, M. D. Hartman, L. K. Stretch, D. S. Ojima, and D. S. Schimel (2000), Intra-annual and interannual variability of ecosystem processes in shortgrass steppe, J. Geophys. Res., 105.

fW.Daycent2	Effects of moisture on decomposition rates according to the DAYCENT model

Description

Calculates the effects of volumetric water content on decomposition rates according to the Daycent/Century models.

fW.Demeter 91

Usage

```
fW.Daycent2(W, WP = 0, FC = 100)
```

Arguments

W A scalar or vector of volumetric water content in percentage.

WP A scalar representing the wilting point in percentage.

FC A scalar representing the field capacity in percentage.

Value

A data frame with values of relative water content (RWC) and the effects of RWC on decomposition rates (fRWC).

References

Del Grosso, S. J., W. J. Parton, A. R. Mosier, E. A. Holland, E. Pendall, D. S. Schimel, and D. S. Ojima (2005), Modeling soil CO2 emissions from ecosystems, Biogeochemistry, 73(1), 71-91.

fW.Demeter Effects of moisture on decomposition rates according to the Da TER model	EME-
--	------

Description

Calculates the effects of soil moisture on decomposition rates according to the DEMETER model.

Usage

```
fW.Demeter(M, Msat = 100)
```

Arguments

M A scalar or vector containing values of soil moisture for which the effects on

decomposition rates are calculated.

Msat A scalar representing saturated soil moisture.

Value

A scalar or a vector containing the effects of moisture on decomposition rates (unitless).

References

Foley, J. A. (1995), An equilibrium model of the terrestrial carbon budget, Tellus B, 47(3), 310-319.

92 fW.Moyano

fW.Gompertz Effect functi	s of moisture on decomposition rates according to the Gompertz on
------------------------------	---

Description

Calculates the effects of water content on decomposition rates.

Usage

```
fW.Gompertz(theta, a = 0.824, b = 0.308)
```

Arguments

theta A scalar or vector containing values of volumetric soil water content.

a Empirical parameterb Empirical parameter

References

I. Janssens, S. Dore, D. Epron, H. Lankreijer, N. Buchmann, B. Longdoz, J. Brossaud, L. Montagnani. 2003. Climatic Influences on Seasonal and Spatial Differences in Soil CO2 Efflux. In Valentini, R. (Ed.) Fluxes of Carbon, Water and Energy of European Forests. pp 235-253. Springer.

fW.Moyano	Effects of moisture on decomposition rates according to the function
	proposed by Moyano et al. (2013)

Description

Calculates the effects of water content on decomposition rates.

Usage

```
fW.Moyano(theta, a = 3.11, b = 2.42)
```

Arguments

theta	A scalar or vector	containing values of	of volumetric soil	water content.

a Empirical parameterb Empirical parameter

References

F. E. Moyano, S. Manzoni, C. Chenu. 2013 Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biology and Biochemistry, Volume 59, April 2013, Pages 72-85

fW.RothC

model	fW.RothC	Effects of moisture on decomposition rates according to the RothC model
-------	----------	---

Description

Calculates the effects of moisture (precipitation and pan evaporation) on decomposition rates according to the RothC model.

Usage

```
fW.RothC(P, E, S.Thick = 23, pClay = 23.4, pE = 0.75, bare = FALSE)
```

Arguments

Р	A vector with monthly precipitation (mm).
Е	A vector with same length with open pan evaporation or evapotranspiration (mm).
S.Thick	Soil thickness in cm. Default for Rothamsted is 23 cm.
pClay	Percent clay.
pE	Evaporation coefficient. If open pan evaporation is used pE=0.75. If Potential evaporation is used, pE=1.0.
bare	Logical. Under bare soil conditions, bare=TRUE. Dafault is set under vegetated soil.

Value

A data.frame with accumulated top soil moisture deficit (Acc.TSMD) and the rate modifying factor b.

References

Coleman, K., and D. S. Jenkinson (1999), RothC-26.3 A model for the turnover of carbon in soil: model description and windows user guide (modified 2008), 47 pp, IACR Rothamsted, Harpenden.

fW.Skopp	Effects of moisture on decomposition rates according to the function proposed by Skopp et al. 1990

Description

Calculates the effects of relative soil water content on decomposition rates.

94 fW.Standcarb

Usage

```
fW.Skopp(rwc, alpha = 2, beta = 2, f = 1.3, g = 0.8)
```

Arguments

rwc	relative water content
alpha	Empirical parameter
beta	Empirical parameter
f	Empirical parameter
g	Empirical parameter

References

J. Skopp, M. D. Jawson, and J. W. Doran. 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J., 54(6):1619-1625

fW.Standcarb	Effects of moisture on decomposition rates according to the StandCarb
	model

Description

Calculates the effects of moisture on decomposition rates according to the StandCarb model.

Usage

```
fW.Standcarb(
  Moist,
  MatricShape = 5,
  MatricLag = 0,
  MoistMin = 30,
  MoistMax = 350,
  DiffuseShape = 15,
  DiffuseLag = 4
)
```

Arguments

Moist A scalar or vector containing values of moisture content of a litter or soil pool

(%).

MatricShape A scalar that determines when matric limit is reduced to the point that decay can

begin to occur.

MatricLag A scalar used to offset the curve to the left or right.

MoistMin A scalar determining the minimum moisture content.

GaudinskiModel14 95

MoistMax	A scalar determining the maximum moisture content without diffusion limitations.
DiffuseShape	A scalar that determines the range of moisture contents where diffusion is not limiting.
DiffuseLag	A scalar used to shift the point when moisture begins to limit diffusion.

Value

A data frame with limitation due to water potential (MatricLimit), limitation due to oxygen diffusion (DiffuseLimit), and the overall limitation of moisture on decomposition rates (MoistDecayIndex).

References

Harmon, M. E., and J. B. Domingo (2001), A users guide to STANDCARB version 2.0: A model to simulate carbon stores in forest stands. Oregon State University, Corvallis.

GaudinskiModel14	Implementation of a the six-pool C14 model proposed by Gaudinski et al. 2000
	al. 2000

Description

This function creates a model as described in Gaudinski et al. 2000. It is a wrapper for the more general functions GeneralModel_14 that can handle an arbitrary number of pools.

```
GaudinskiModel14(
    t,
    ks = c(kr = 1/1.5, koi = 1/1.5, koeal = 1/4, koeah = 1/80, kA1 = 1/3, kA2 = 1/75, kM =
        1/110),
    C0 = c(FR0 = 390, C10 = 220, C20 = 390, C30 = 1370, C40 = 90, C50 = 1800, C60 = 560),
    F0_Delta14C = rep(0, 7),
    LI = 150,
    RI = 255,
    xi = 1,
    inputFc,
    lambda = -0.0001209681,
    lag = 0,
    solver = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

96 GaudinskiModel14

Arguments

t	A vector containing the points in time where the solution is sought. It must be specified within the same period for which the Delta 14 C of the atmosphere is provided. The default period in the provided dataset C14Atm_NH is 1900-2010.
ks	A vector of length 7 containing the decomposition rates for the 6 soil pools plus the fine-root pool.
C0	A vector of length 7 containing the initial amount of carbon for the 6 pools plus the fine-root pool.
F0_Delta14C	A vector of length 7 containing the initial amount of the radiocarbon fraction for the 7 pools as Delta14C values in per mil.
LI	A scalar or a data.frame object specifying the amount of litter inputs by time.
RI	A scalar or a data.frame object specifying the amount of root inputs by time.
xi	A scalar or a data.frame specifying the external (environmental and/or edaphic) effects on decomposition rates.
inputFc	A Data Frame object containing values of atmospheric Delta14C per time. First column must be time values, second column must be Delta14C values in per mil.
lambda	Radioactive decay constant. By default lambda=-0.0001209681 y^-1 . This has the side effect that all your time related data are treated as if the time unit was year.
lag	A positive integer representing a time lag for radiocarbon to enter the system.
solver	A function that solves the system of ODEs. An alternative to the default is euler or any other user provided function with the same interface.
pass	if TRUE Forces the constructor to create the model even if it is invalid

Value

A Model Object that can be further queried

References

Gaudinski JB, Trumbore SE, Davidson EA, Zheng S (2000) Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning fluxes. Biogeochemistry 51: 33-69

See Also

There are other predefinedModels and also more general functions like Model.

Examples

```
years=seq(1901,2010,by=0.5)

Ex=GaudinskiModel14(
t=years,
ks=c(kr=1/3, koi=1/1.5, koeal=1/4, koeah=1/80, kA1=1/3, kA2=1/75, kM=1/110),
```

GeneralDecompOp 97

```
inputFc=C14Atm_NH
R14m=getF14R(Ex)
C14m=getF14C(Ex)
plot(
C14Atm_NH,
type="1",
xlab="Year",
ylab=expression(paste(Delta^14,"C ","(\u2030)")),
xlim=c(1940,2010)
lines(years,C14m,col=4)
points(HarvardForest14C02[1:11,1], HarvardForest14C02[1:11,2], pch=19, cex=0.5)
points(HarvardForest14C02[12:173,1],HarvardForest14C02[12:173,2],pch=19,col=2,cex=0.5)
points(HarvardForest14C02[158,1],HarvardForest14C02[158,2],pch=19,cex=0.5)
lines(years,R14m,col=2)
legend(
"topright",
c("Delta 14C Atmosphere",
"Delta 14C SOM",
"Delta 14C Respired"
lty=c(1,1,1),
col=c(1,4,2),
bty="n"
## We now show how to bypass soilR s parameter sanity check if nacessary
## (e.g in for parameter estimation ) in functions
## wchich might call it with unreasonable parameters
years=seq(1800,2010,by=0.5)
Ex=GaudinskiModel14(
ks=c(kr=1/3,koi=1/1.5,koeal=1/4,koeah=1/80,kA1=1/3,kA2=1/75,kM=1/110),
inputFc=C14Atm_NH,
pass=TRUE
)
```

GeneralDecompOp

A generic factory for subclasses of GeneralDecompOp

Description

The class of the output depends on the provided arguments

```
GeneralDecompOp(object)
```

Arguments

object

see method arguments

Description

automatic title

Usage

```
## S4 method for signature 'DecompOp'
GeneralDecompOp(object)
```

Arguments

object

object of class:DecompOp, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature '`function`'
GeneralDecompOp(object)
```

Arguments

object

object of class:function, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

GeneralDecompOp,list-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'list'
GeneralDecompOp(object)
```

Arguments

object

object of class:list, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'matrix'
GeneralDecompOp(object)
```

Arguments

object

object of class:matrix, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

100 GeneralModel

Description

automatic title

Usage

```
## S4 method for signature 'TimeMap'
GeneralDecompOp(object)
```

Arguments

object

object of class:TimeMap, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

GeneralModel

additional function to create Models

Description

In previous SoilR Version GeneralModel was the function to create linear models, a task now fulfilled by the function Model. To ensure backward compatibility this function remains as a wrapper. In future versions it might take on the role of an abstract factory that produces several classes of models (i.e linear or non-linear) depending on different combinations of arguments. It creates a Model object from any combination of arguments that can be converted into the required set of building blocks for a model for n arbitrarily connected pools.

```
GeneralModel(
    t,
    A,
    ivList,
    inputFluxes,
    solverfunc = deSolve.lsoda.wrapper,
    pass = FALSE,
    timeSymbol
)
```

GeneralModel_14 101

Arguments

t	A vector containing the points in time where the solution is sought.
A	Anything that can be converted by GeneralDecompOp to any of the available DecompositionOperator classes
ivList	A vector containing the initial amount of carbon for the n pools. The length of this vector is equal to the number of pools and thus equal to the length of k. This is checked by an internal function.
inputFluxes	something that can be converted to any of the available InFluxes classes
solverfunc	The function used by to actually solve the ODE system. This can be deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	Forces the constructor to create the model even if it is invalid
timeSymbol	A string (character vector of lenght 1) identifying the variable name

Value

A model object that can be further queried.

See Also

TwopParallelModel, TwopSeriesModel, TwopFeedbackModel

GeneralModel_14 create objects of class Model_14

Description

At the moment this is just a wrapper for the actual constructor Model_14 with additional support for some now deprecated parameters for backward compatibility. This role may change in the future to an abstract factory where the actual class of the created model will be determined by the supplied parameters.

```
GeneralModel_14(
    t,
    A,
    ivList,
    initialValF,
    inputFluxes,
    Fc = NULL,
    inputFc = Fc,
    di = -0.0001209681,
    solverfunc = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

GeneralNIModel GeneralNIModel

Arguments

t	A vector containing the points in time where the solution is sought.
A	something that can be converted by GeneralDecompOp to any of the available subclasses of DecompOp.
ivList	A vector containing the initial amount of carbon for the n pools. The length of this vector is equal to the number of pools and thus equal to the length of k. This is checked by an internal function.
initialValF	An object equal or equivalent to class ConstFc containing a vector with the initial values of the radiocarbon fraction for each pool and a format string describing in which format the values are given.
inputFluxes	something that can be converted by InFluxes to any of the available subclasses of InFluxes.
Fc	deprecated keyword argument, please use inputFc instead
inputFc	An object describing the fraction of C_14 in per mille (different formats are possible)
di	the rate at which C_14 decays radioactivly. If you don't provide a value here we assume the following value: k =-0.0001209681 y ^-1 . This has the side effect that all your time related data are treated as if the time unit was year. Thus beside time itself it also affects decay rates the input rates and the output
solverfunc	The function used by to actually solve the ODE system. This can be deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	Forces the constructor to create the model even if it is invalid

Value

A model object that can be further queried.

See Also

 ${\bf TwopParallelModel, TwopSeriesModel, TwopFeedbackModel}$

GeneralNlModel	Use this function to create objects of class NlModel.

Description

The function creates a numerical model for n arbitrarily connected pools. It is one of the constructors of class NIModel. It is used by some more specialized wrapper functions, but can also be used directly.

GeneralNIModel 103

Usage

```
GeneralNlModel(
    t,
    TO,
    ivList,
    inputFluxes,
    solverfunc = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

Arguments

t A vector containing the points in time where the solution is sought.

TO A object describing the model decay rates for the n pools, connection and feed-

back coefficients. The number of pools n must be consistent with the number of

initial values and input fluxes.

ivList A numeric vector containing the initial amount of carbon for the n pools. The

length of this vector is equal to the number of pools.

inputFluxes A TimeMap object consisting of a vector valued function describing the inputs

to the pools as funtions of time TimeMap.new.

solverfunc The function used by to actually solve the ODE system.

pass Forces the constructor to create the model even if it is invalid. If set to TRUE,

does not enforce the requirements for a biologically meaningful model, e.g. does

not check if negative values of respiration are calculated.

Value

Tr=getTransferMatrix(Anl) #this is a function of C and t

build the two models (linear and nonlinear) mod=GeneralModel(t, A,iv, inputrates, deSolve.lsoda.wrapper) modnl=GeneralNlModel(t, Anl, iv, inputrates, deSolve.lsoda.wrapper)

Ynonlin=getC(modnl) lt1=2 lt2=4 plot(t,Ynonlin[,1],type="l",lty=lt1,col=1, ylab="Concentrations",xlab="Time",ylim=c(milines(t,Ynonlin[,2],type="l",lty=lt2,col=2) legend("topleft",c("Pool 1", "Pool 2"),lty=c(lt1,lt2),col=c(1,2))

See Also

GeneralModel.

Examples

```
t_start=0
t_end=20
tn=100
timestep=(t_end-t_start)/tn
t=seq(t_start,t_end,timestep)
k1=1/2
k2=1/3
```

104 GeneralPoolId

```
Km=0.5
nr=2
alpha=list()
alpha[["1_to_2"]]=function(C,t){
1/5
alpha[["2_to_1"]]=function(C,t){
1/6
}
f=function(C,t){
# The only thing to take care of is that we release a vector of the same
# size as C
S=C[[1]]
M=C[[2]]
O=matrix(byrow=TRUE,nrow=2,c(k1*M*(S/(Km+S)),
k2*M))
return(0)
Anl=new("TransportDecompositionOperator",t_start,Inf,nr,alpha,f)
c01=3
c02=2
iv=c(c01,c02)
inputrates=new("TimeMap",t_start,t_end,function(t){return(matrix(
nrow=nr,
ncol=1,
c(2, 2)
))})
# we check if we can reproduce the linear decomposition operator from the
# nonlinear one
```

GeneralPoolId

automatic title

Description

automatic title automatic title

```
GeneralPoolId(id)
GeneralPoolId(id)
```

Arguments

id : see method arguments

S4 methods for this generic

- GeneralPoolId, character-method
- GeneralPoolId, numeric-method
- GeneralPoolId, character-method
- GeneralPoolId, numeric-method

GeneralPoolId, character-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'character'
GeneralPoolId(id)
```

Arguments

id

object of class:character, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

GeneralPoolId, numeric-method

generic factory for this virtual class

Description

the class returned depends on the method dispached depending on the supplied arguments

```
## S4 method for signature 'numeric'
GeneralPoolId(id)
```

Arguments

id

object of class:numeric, no manual documentation

getAccumulatedRelease automatic title

Description

automatic title

Usage

getAccumulatedRelease(object)

Arguments

object

: see method arguments

S4 methods for this generic

• getAccumulatedRelease, Model-method

Description

automatic title

Usage

```
## S4 method for signature 'Model'
getAccumulatedRelease(object)
```

Arguments

object

object of class:Model, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getC 107

getC

Generic Function to obtain the contents of the pools for all time steps

Description

Generic Function to obtain the contents of the pools for all time steps

Usage

```
getC(object, as.closures = F)
```

Arguments

object see method arguments as.closures see method arguments

getC,Model-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model'
getC(object)
```

Arguments

object

object of class:Model, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'Model_by_PoolNames'
getC(object)
```

Arguments

object

object of class:Model_by_PoolNames, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update autocomment roclet".

getC,NlModel-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
getC(object, as.closures = FALSE)
```

Arguments

object

object of class:N1Model, : : no manual documentation

as.closures

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getC14 109

getC14

Generic that yields the ^14C content for all pools and all times

Description

Generic that yields the ^14C content for all pools and all times

Usage

```
getC14(object)
```

Arguments

object

see method arguments

```
getC14,Model_14-method
```

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model_14'
getC14(object)
```

Arguments

object

object of class:Model_14, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 ${\tt getCompartmentalMatrixFunc}$

automatic title

Description

automatic title

Usage

```
getCompartmentalMatrixFunc(object, timeSymbol, state_variable_names)
```

Arguments

state_variable_names

: see method arguments

S4 methods for this generic

- getCompartmentalMatrixFunc,BoundLinDecompOp,ANY,ANY-method
- getCompartmentalMatrixFunc,ConstLinDecompOp,ANY,ANY-method
- getCompartmentalMatrixFunc,TransportDecompositionOperator,ANY,ANY-method
- getCompartmentalMatrixFunc,UnBoundNonLinDecompOp_by_PoolNames,character,character-method
- getCompartmentalMatrixFunc,UnBoundNonLinDecompOp,ANY,ANY-method

 ${\tt getCompartmentalMatrixFunc,BoundLinDecompOp,ANY,ANY-method} \\ automatic\ title$

Description

automatic title

Usage

```
## S4 method for signature 'BoundLinDecompOp, ANY, ANY'
getCompartmentalMatrixFunc(object)
```

Arguments

object

object of class:BoundLinDecompOp, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 $\label{lem:composition} {\it getCompartmentalMatrixFunc,ConstLinDecompOp,ANY,ANY-method} \\ automatic\ title$

Description

automatic title

Usage

S4 method for signature 'ConstLinDecompOp, ANY, ANY'
getCompartmentalMatrixFunc(object)

Arguments

object

object of class:ConstLinDecompOp, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 ${\tt getCompartmentalMatrixFunc,TransportDecompositionOperator,ANY,ANY-method} \\ automatic\ title$

Description

automatic title

Usage

S4 method for signature 'TransportDecompositionOperator,ANY,ANY'
getCompartmentalMatrixFunc(object)

Arguments

object

object of class:TransportDecompositionOperator, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 $\label{lem:getCompartmentalMatrixFunc,UnBoundNonLinDecompOp,ANY,ANY-method} automatic \ title$

Description

automatic title automatic title

Usage

```
## $4 method for signature 'UnBoundNonLinDecompOp, ANY, ANY'
getCompartmentalMatrixFunc(object)

## $4 method for signature 'UnBoundNonLinDecompOp, ANY, ANY'
getCompartmentalMatrixFunc(object)
```

Arguments

object

object of class:UnBoundNonLinDecompOp, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 $get Compartmental Matrix Func, Un Bound Non Lin Decomp 0 p_by_Pool Names, character, character-method \\ Compartmental \ Matrix \ as \ function \ of \ the \ state \ vector \ and \ time$

Description

Compartmental Matrix as function of the state vector and time

Usage

```
## S4 method for signature
## 'UnBoundNonLinDecompOp_by_PoolNames,character,character'
getCompartmentalMatrixFunc(object, timeSymbol, state_variable_names)
```

Arguments

object

object of class:UnBoundNonLinDecompOp_by_PoolNames, An object of the class UnBoundNonLinDecompOp_by_PoolNames which is a representation equivalent to the compartmental matrix but independent of the order of state variables (pools) which therefore can be translated to any such ordering.

timeSymbol

object of class:character, The name of the argument representing time in the functions defining the fluxes in object

state_variable_names

object of class:character, The vector of the names of the state variables. The argument object is a representation of the compartmental system as #' lists of fluxes (internal fluxes and out-fluxes) as functions of the state variables and time. This method translates it to a matrix based formulation specific to a given ordering of the state variables. It is assumed (and checked) that the names formal arguments of the flux functions in object are a subset of the names of state_variable_names The metod is used internally to translate the more intuitive (and more general) flux based description to the matrix based description required by the ode solvers.

Description

automatic title

Usage

getConstantCompartmentalMatrix(object)

Arguments

object : see method arguments

S4 methods for this generic

- getConstantCompartmentalMatrix,ConstLinDecompOp-method
- getConstantCompartmentalMatrix,ConstLinDecompOpWithLinearScalarFactor-method

 ${\it getConstantCompartmentalMatrix, ConstLinDecompOp-method} \\ automatic \ title$

Description

automatic title

Usage

S4 method for signature 'ConstLinDecompOp'
getConstantCompartmentalMatrix(object)

Arguments

object

object of class:ConstLinDecompOp, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 ${\tt getConstantCompartmentalMatrix,ConstLinDecompOpWithLinearScalarFactor-method} \\ automatic\ title$

Description

automatic title

Usage

S4 method for signature 'ConstLinDecompOpWithLinearScalarFactor'
getConstantCompartmentalMatrix(object)

Arguments

object

object of class:ConstLinDecompOpWithLinearScalarFactor, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getConstantInFluxVector

automatic title

Description

automatic title

Usage

getConstantInFluxVector(object)

Arguments

object : see method arguments

S4 methods for this generic

• getConstantInFluxVector,ConstInFluxes-method

Description

automatic title

Usage

```
## S4 method for signature 'ConstInFluxes'
getConstantInFluxVector(object)
```

Arguments

object

object of class:ConstInFluxes, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

getConstantInternalFluxRateList_by_PoolIndex(object)

Arguments

object : see method arguments

S4 methods for this generic

• getConstantInternalFluxRateList_by_PoolIndex,ConstLinDecompOp-method

 $\label{local_policy} get Constant Internal Flux Rate List_by_Pool Index, ConstLin Decomp Op-method \\ automatic \ title$

Description

automatic title

Usage

```
## S4 method for signature 'ConstLinDecompOp'
getConstantInternalFluxRateList_by_PoolIndex(object)
```

Arguments

object

object of class:ConstLinDecompOp, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

getConstantOutFluxRateList_by_PoolIndex(object)

Arguments

object : see method arguments

S4 methods for this generic

• getConstantOutFluxRateList_by_PoolIndex,ConstLinDecompOp-method

 ${\tt getConstantOutFluxRateList_by_PoolIndex,ConstLinDecompOp-method} \\ automatic\ title$

Description

automatic title

Usage

```
## S4 method for signature 'ConstLinDecompOp'
getConstantOutFluxRateList_by_PoolIndex(object)
```

Arguments

object

object of class:ConstLinDecompOp, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getConstLinDecompOp

automatic title

Description

automatic title

Usage

getConstLinDecompOp(object)

Arguments

object

: see method arguments

S4 methods for this generic

getConstLinDecompOp,ConstLinDecompOpWithLinearScalarFactor-method

 ${\tt getConstLinDecompOp,ConstLinDecompOpWithLinearScalarFactor-method} \\ automatic\ title$

Description

automatic title

Usage

S4 method for signature 'ConstLinDecompOpWithLinearScalarFactor'
getConstLinDecompOp(object)

Arguments

object

object of class:ConstLinDecompOpWithLinearScalarFactor, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getCumulativeC 119

getCumulativeC

automatic title

Description

automatic title

Usage

```
getCumulativeC(object)
```

Arguments

object

: see method arguments

S4 methods for this generic

• getCumulativeC,NlModel-method

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
getCumulativeC(object)
```

Arguments

object

object of class:NlModel, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getDecompOp

automatic title

Description

automatic title

Usage

```
getDecompOp(object)
```

Arguments

object

: see method arguments

S4 methods for this generic

- getDecompOp, Model-method
- getDecompOp, N1Model-method

getDecompOp,Model-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model'
getDecompOp(object)
```

Arguments

object

object of class:Model, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
getDecompOp(object)
```

Arguments

object

object of class:NlModel, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getDotOut

automatic title

Description

automatic title

Usage

```
getDotOut(object)
```

Arguments

object

: see method arguments

S4 methods for this generic

• getDotOut, TransportDecompositionOperator-method

122 getF14

 ${\it getDotOut}, {\it TransportDecompositionOperator-method}\\ {\it automatic\ title}$

Description

automatic title

Usage

S4 method for signature 'TransportDecompositionOperator'
getDotOut(object)

Arguments

object

object of class:TransportDecompositionOperator, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getF14

Generic that yields the ^14C fraction for the content all pools and all times

Description

Generic that yields the ^14C fraction for the content all pools and all times

Usage

```
getF14(object)
```

Arguments

object

```
getF14,Model_14-method
```

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model_14'
getF14(object)
```

Arguments

object

object of class:Model_14, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getF14C

Generic that yields the ^14C fraction for the cumulative content of all pools and all times

Description

Generic that yields the ^14C fraction for the cumulative content of all pools and all times

Usage

```
getF14C(object)
```

Arguments

object

124 getF14R

```
getF14C, Model_14-method
```

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model_14'
getF14C(object)
```

Arguments

object

object of class:Model_14, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getF14R

Generic that yields the ^14C fraction for the release flux of all pools and all times

Description

Generic that yields the ^14C fraction for the release flux of all pools and all times

Usage

```
getF14R(object)
```

Arguments

object

```
getF14R,Model_14-method
```

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model_14'
getF14R(object)
```

Arguments

object

object of class:Model_14, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getFormat

automatic title

Description

automatic title

Usage

```
getFormat(object)
```

Arguments

object

: see method arguments

S4 methods for this generic

• getFormat,Fc-method

126 getFunctionDefinition

getFormat,Fc-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Fc'
getFormat(object)
```

Arguments

object

object of class:Fc, : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getFunctionDefinition automatic title

Description

automatic title

Usage

```
getFunctionDefinition(object, timeSymbol, poolNames, numberOfPools)
```

Arguments

object : see method arguments
timeSymbol : see method arguments
poolNames : see method arguments
numberOfPools : see method arguments

S4 methods for this generic

- getFunctionDefinition,ConstInFluxes-method
- getFunctionDefinition,ConstLinDecompOp-method
- getFunctionDefinition,ConstLinDecompOpWithLinearScalarFactor-method
- getFunctionDefinition,DecompositionOperator-method
- getFunctionDefinition,InFluxList_by_PoolIndex-method
- getFunctionDefinition,InFluxList_by_PoolName-method
- getFunctionDefinition,StateDependentInFluxVector-method
- getFunctionDefinition,TimeMap-method
- getFunctionDefinition,TransportDecompositionOperator-method
- getFunctionDefinition,UnBoundInFluxes-method
- getFunctionDefinition,UnBoundLinDecompOp-method

Description

automatic title

Usage

S4 method for signature 'ConstInFluxes'
getFunctionDefinition(object)

Arguments

object

object of class:ConstInFluxes, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update autocomment roclet".

 ${\it getFunctionDefinition,ConstLinDecompOp-method}\\ automatic\ title$

Description

automatic title

Usage

S4 method for signature 'ConstLinDecompOp'
getFunctionDefinition(object)

Arguments

object

object of class:ConstLinDecompOp, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 ${\it getFunction} Definition, {\it ConstLinDecompOpWithLinearScalarFactor-method} \\ {\it helper function}$

Description

helper function

Usage

S4 method for signature 'ConstLinDecompOpWithLinearScalarFactor'
getFunctionDefinition(object)

Arguments

object

 $object\ of\ class: {\tt ConstLinDecompOpWithLinearScalarFactor},\ no\ manual\ documentation$

 ${\it getFunctionDefinition, DecompositionOperator-method} \\ automatic \ title$

Description

automatic title

Usage

S4 method for signature 'DecompositionOperator'
getFunctionDefinition(object)

Arguments

object

object of class:DecompositionOperator, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'InFluxList_by_PoolIndex'
getFunctionDefinition(object, numberOfPools)
```

Arguments

object

object of class:InFluxList_by_PoolIndex, : : no manual documentation

numberOfPools

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 ${\it getFunctionDefinition, InFluxList_by_PoolName-method} \\ automatic\ title$

Description

automatic title automatic title

Usage

```
## S4 method for signature 'InFluxList_by_PoolName'
getFunctionDefinition(object, timeSymbol, poolNames)
## S4 method for signature 'InFluxList_by_PoolName'
getFunctionDefinition(object, timeSymbol, poolNames)
```

Arguments

object of class:InFluxList_by_PoolName, : : no manual documentation

timeSymbol :: no manual documentation

poolNames : : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

 ${\it getFunctionDefinition,StateDependentInFluxVector-method} \\ automatic\ title$

Description

automatic title

Usage

```
## S4 method for signature 'StateDependentInFluxVector'
getFunctionDefinition(object)
```

Arguments

object

object of class:StateDependentInFluxVector, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

S4 method for signature 'TimeMap'
getFunctionDefinition(object)

Arguments

object

object of class:TimeMap, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 ${\it getFunctionDefinition, TransportDecompositionOperator-method} \\ automatic\ title$

Description

automatic title

Usage

S4 method for signature 'TransportDecompositionOperator'
getFunctionDefinition(object)

Arguments

object

object of class:TransportDecompositionOperator, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

S4 method for signature 'UnBoundInFluxes'
getFunctionDefinition(object)

Arguments

object

object of class:UnBoundInFluxes, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

S4 method for signature 'UnBoundLinDecompOp'
getFunctionDefinition(object)

getInFluxes 133

Arguments

object

object of class:UnBoundLinDecompOp, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getInFluxes

automatic title

Description

automatic title

Usage

```
getInFluxes(object)
```

Arguments

object

: see method arguments

S4 methods for this generic

- getInFluxes, Model-method
- getInFluxes,NlModel-method

getInFluxes,Model-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model'
getInFluxes(object)
```

134 getInitialValues

Arguments

object

object of class:Model, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update autocomment roclet".

getInFluxes, NlModel-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
getInFluxes(object)
```

Arguments

object

object of class:NlModel, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getInitialValues

automatic title

Description

automatic title

Usage

getInitialValues(object)

Arguments

object

S4 methods for this generic

• getInitialValues, N1Model-method

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
getInitialValues(object)
```

Arguments

object

object of class:NlModel, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

```
getLinearScaleFactor automatic title
```

Description

automatic title

Usage

```
getLinearScaleFactor(object)
```

Arguments

object : see method arguments

S4 methods for this generic

 $\bullet \ \ \texttt{getLinearScaleFactor}, Const Lin Decomp Op With Linear Scalar Factor-method$

136 getMeanTransitTime

 ${\it getLinearScaleFactor}, {\it ConstLinDecompOpWithLinearScalarFactor-method} \\ automatic\ title$

Description

automatic title

Usage

S4 method for signature 'ConstLinDecompOpWithLinearScalarFactor'
getLinearScaleFactor(object)

Arguments

object

object of class:ConstLinDecompOpWithLinearScalarFactor, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getMeanTransitTime

automatic title

Description

automatic title

Usage

```
getMeanTransitTime(object, inputDistribution)
```

Arguments

object : see method arguments

inputDistribution

: see method arguments

S4 methods for this generic

• getMeanTransitTime,ConstLinDecompOp-method

Description

automatic title

Usage

```
## S4 method for signature 'ConstLinDecompOp'
getMeanTransitTime(object, inputDistribution)
```

Arguments

 $object \qquad object of \ class: ConstLinDecompOp, :: no \ manual \ documentation \\ inputDistribution$

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getNumberOfPools

automatic title

Description

automatic title

Usage

getNumberOfPools(object)

Arguments

object : see method arguments

S4 methods for this generic

- getNumberOfPools,MCSim-method
- getNumberOfPools, NlModel-method
- getNumberOfPools, TransportDecompositionOperator-method

Description

automatic title

Usage

```
## S4 method for signature 'MCSim'
getNumberOfPools(object)
```

Arguments

object

object of class:MCSim, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
getNumberOfPools(object)
```

Arguments

object

object of class:NlModel, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 ${\it getNumberOfPools, TransportDecompositionOperator-method} \\ automatic \ title$

Description

automatic title

Usage

```
## S4 method for signature 'TransportDecompositionOperator'
getNumberOfPools(object)
```

Arguments

object

object of class:TransportDecompositionOperator, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getOutputFluxes

Generic Function to obtain the fluxes out of of the pools

Description

Generic Function to obtain the fluxes out of of the pools

Usage

```
getOutputFluxes(object, as.closures = F)
```

Arguments

object see method arguments as.closures see method arguments

140 getOutputReceivers

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
getOutputFluxes(object, as.closures = F)
```

Arguments

object of class:NlModel, : : no manual documentation

as.closures : : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
getOutputReceivers(object, i)
```

Arguments

object : see method argumentsi : see method arguments

S4 methods for this generic

• getOutputReceivers, TransportDecompositionOperator, numeric-method

 ${\tt getOutputReceivers, TransportDecompositionOperator, numeric-method} \\ automatic \ title$

Description

automatic title

Usage

```
## S4 method for signature 'TransportDecompositionOperator,numeric'
getOutputReceivers(object, i)
```

Arguments

object of class:TransportDecompositionOperator,:: no manual documenta-

tion

i object of class:numeric, : : no manual documentation inspection of the code.

You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "up-

date_autocomment_roclet".

Description

automatic title

Usage

getParticleMonteCarloSimulator(object)

Arguments

object : see method arguments

S4 methods for this generic

• getParticleMonteCarloSimulator,NlModel-method

142 getReleaseFlux

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
getParticleMonteCarloSimulator(object)
```

Arguments

object

object of class:NlModel, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getReleaseFlux

Generic Function to obtain the vector of release fluxes out of the pools for all times.

Description

Generic Function to obtain the vector of release fluxes out of the pools for all times.

Usage

```
getReleaseFlux(object)
```

Arguments

object

Description

automatic title

Usage

```
## S4 method for signature 'Model'
getReleaseFlux(object)
```

Arguments

object

object of class:Model, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'Model_by_PoolNames'
getReleaseFlux(object)
```

Arguments

object

object of class:Model_by_PoolNames, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

144 getReleaseFlux14

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
getReleaseFlux(object)
```

Arguments

object

object of class:NlModel, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getReleaseFlux14

automatic title

Description

automatic title

Usage

```
getReleaseFlux14(object)
```

Arguments

object : see method arguments

S4 methods for this generic

• getReleaseFlux14,Model_14-method

Description

automatic title

Usage

```
## S4 method for signature 'Model_14'
getReleaseFlux14(object)
```

Arguments

object

object of class:Model_14, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getRightHandSideOfODE automatic title

Description

automatic title

Usage

```
getRightHandSideOfODE(object, timeSymbol, poolNames, numberOfPools)
```

Arguments

object : see method arguments timeSymbol : see method arguments poolNames : see method arguments numberOfPools : see method arguments

S4 methods for this generic

- getRightHandSideOfODE,Model-method
- getRightHandSideOfODE,Model_by_PoolNames-method

Description

automatic title

Usage

S4 method for signature 'Model'
getRightHandSideOfODE(object)

Arguments

object

object of class:Model, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'Model_by_PoolNames'
getRightHandSideOfODE(object)
```

Arguments

object

object of class:Model_by_PoolNames, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getTimeRange 147

getTimeRange

automatic title

Description

automatic title

Usage

getTimeRange(object)

Arguments

object

: see method arguments

S4 methods for this generic

- getTimeRange,ConstInFluxes-method
- getTimeRange,ConstLinDecompOp-method
- getTimeRange,ConstLinDecompOpWithLinearScalarFactor-method
- getTimeRange, DecompositionOperator-method
- getTimeRange,TimeMap-method
- getTimeRange, UnBoundInFluxes-method
- getTimeRange, UnBoundLinDecompOp-method

Description

automatic title

Usage

```
## S4 method for signature 'ConstInFluxes'
getTimeRange(object)
```

Arguments

object

object of class:ConstInFluxes, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

S4 method for signature 'ConstLinDecompOp'
getTimeRange(object)

Arguments

object

object of class:ConstLinDecompOp, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 $\label{eq:constLinDecompOpWithLinearScalarFactor-method} automatic \ title$

Description

automatic title

Usage

S4 method for signature 'ConstLinDecompOpWithLinearScalarFactor'
getTimeRange(object)

Arguments

object

object of class:ConstLinDecompOpWithLinearScalarFactor, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 ${\it getTimeRange, Decomposition Operator-method} \\ automatic \ title$

Description

automatic title

Usage

```
## S4 method for signature 'DecompositionOperator'
getTimeRange(object)
```

Arguments

object

object of class:DecompositionOperator,:: no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getTimeRange,TimeMap-method

The time interval where the function is defined

Description

The time interval where the function is defined

Usage

```
## S4 method for signature 'TimeMap'
getTimeRange(object)
```

Arguments

object

object of class:TimeMap, no manual documentation

Description

automatic title

Usage

```
## S4 method for signature 'UnBoundInFluxes'
getTimeRange(object)
```

Arguments

object

object of class:UnBoundInFluxes, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'UnBoundLinDecompOp'
getTimeRange(object)
```

Arguments

object

object of class:UnBoundLinDecompOp, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getTimes 151

getTimes

automatic title

Description

automatic title

Usage

```
getTimes(object)
```

Arguments

object

: see method arguments

S4 methods for this generic

- getTimes, Model-method
- getTimes,NlModel-method

getTimes,Model-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model'
getTimes(object)
```

Arguments

object

object of class:Model, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

```
getTimes,NlModel-method
```

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
getTimes(object)
```

Arguments

object

object of class:NlModel, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

```
getTransferCoefficients
```

automatic title

Description

```
automatic title automatic title
```

Usage

```
getTransferCoefficients(object, as.closures = F)
getTransferCoefficients(object, as.closures = F)
```

Arguments

object : see method arguments as.closures : see method arguments

S4 methods for this generic

- getTransferCoefficients,NlModel-method
- $\bullet \ \ getTransferCoefficients, TransportDecompositionOperator-method$
- getTransferCoefficients,NlModel-method
- getTransferCoefficients,TransportDecompositionOperator-method

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
getTransferCoefficients(object, as.closures = F)
```

Arguments

object of class:NlModel, : : no manual documentation

as.closures

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

 ${\it getTransferCoefficients, TransportDecompositionOperator-method} \\ automatic\ title$

Description

automatic title

Usage

```
## S4 method for signature 'TransportDecompositionOperator'
getTransferCoefficients(object)
```

Arguments

object

object of class:TransportDecompositionOperator, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getTransferMatrix

deprecated, use getTransferMatrixFunc instead

Description

deprecated, use getTransferMatrixFunc instead

Usage

getTransferMatrix(object)

Arguments

object

A compartmental operator

getTransferMatrixFunc automatic title

Description

automatic title

Usage

getTransferMatrixFunc(object)

Arguments

object

: see method arguments

S4 methods for this generic

• getTransferMatrixFunc,TransportDecompositionOperator-method

Description

automatic title

Usage

S4 method for signature 'TransportDecompositionOperator'
getTransferMatrixFunc(object)

Arguments

object

object of class:TransportDecompositionOperator, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

getTransitTimeDistributionDensity(object, inputDistribution, times)

Arguments

object : see method arguments

inputDistribution

: see method arguments

times : see method arguments

S4 methods for this generic

 $\bullet \ \texttt{getTransitTimeDistributionDensity}, \texttt{ConstLinDecompOp-method}$

156 getValues

 ${\it getTransitTimeDistributionDensity,ConstLinDecompOp-method} \\ automatic\ title$

Description

automatic title

Usage

```
## S4 method for signature 'ConstLinDecompOp'
getTransitTimeDistributionDensity(object, inputDistribution, times)
```

Arguments

object of class:ConstLinDecompOp, : : no manual documentation

inputDistribution

: : no manual documentation

times

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

getValues

automatic title

Description

automatic title

Usage

getValues(object)

Arguments

object : see method arguments

S4 methods for this generic

• getValues,ConstFc-method

 ${\tt getValues}$, ${\tt ConstFc-method}$

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'ConstFc'
getValues(object)
```

Arguments

object

object of class:ConstFc, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

HarvardForest14C02

Delta14C in soil CO2 efflux from Harvard Forest

Description

Measurements of Delta14C in soil CO2 efflux conducted at Harvard Forest, USA, between 1996 and 2010.

Usage

HarvardForest14C02

Format

A data frame with the following 3 variables.

- 1. Year A numeric vector with the date of measurement in years
- 2. D14C A numeric vector with the value of the Delta 14C value measured in CO2 efflux in per mil
- 3. Site A factor indicating the site where measurements were made. NWN: Northwest Near, Drydown: Rainfall exclusion experiment.

158 Hua2013

Details

Samples for isotopic measurements of soil CO2 efflux were collected from chambers that enclosed an air headspace in contact with the soil surface in the absence of vegetation using a closed dynamic chamber system to collect accumulated CO2 in stainless steel traps with a molecular sieve inside. See Sierra et al. (2012) for additional details.

References

Sierra, C. A., Trumbore, S. E., Davidson, E. A., Frey, S. D., Savage, K. E., and Hopkins, F. M. 2012. Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil, Biogeosciences, 9, 3013-3028, doi:10.5194/bg-9-3013-2012

Examples

plot(HarvardForest14C02[,1:2])

Hua2013

Atmospheric radiocarbon for the period 1950-2010 from Hua et al. (2013)

Description

Atmospheric radiocarbon for the period 1950-2010 reported by Hua et al. (2013) for 5 atmospheric zones.

Usage

data(Hua2013)

Format

A list containing 5 data frames, each representing an atmospheric zone. The zones are: NHZone1: northern hemisphere zone 1, NHZone2: northern hemisphere zone 2, NHZone3: northern hemisphere zone 3, SHZone12: southern hemisphere zones 1 and 2, SHZone3: southern hemisphere zone 3. Each data frame contains a variable number of observations on the following 5 variables.

Year.AD Year AD

mean.Delta14C mean value of atmospheric radiocarbon reported as Delta14C sd.Delta14C standard deviation of atmospheric radiocarbon reported as Delta14C mean.F14C mean value of atmospheric radiocarbon reported as fraction modern F14C sd.F14 standard deviation of atmospheric radiocarbon reported as fraction modern F14C

Details

This dataset corresponds to Table S3 from Hua et al. (2013). For additional details see the original publication.

ICBMModel 159

Source

https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/16177

References

Hua Q., M. Barbetti, A. Z. Rakowski. 2013. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55(4):2059-2072.

Examples

```
plot(Hua2013$NHZone1$Year.AD, Hua2013$NHZone1$mean.Delta14C,
     type="1",xlab="Year AD",ylab=expression(paste(Delta^14,"C (\u2030)")))
lines(Hua2013$NHZone2$Year.AD, Hua2013$NHZone2$mean.Delta14C,col=2)
lines(Hua2013$NHZone3$Year.AD, Hua2013$NHZone3$mean.Delta14C,col=3)
lines(Hua2013$SHZone12$Year.AD, Hua2013$SHZone12$mean.Delta14C,col=4)
lines(Hua2013$SHZone3$Year.AD, Hua2013$SHZone3$mean.Delta14C,col=5)
legend(
"topright",
"Norther hemisphere zone 1",
"Norther hemisphere zone 2",
"Norther hemisphere zone 3",
                "Southern hemisphere zones 1 and 2",
"Southern Hemispher zone 3"
),
lty=1,
col=1:5,
bty="n"
)
```

ICBMModel

Implementation of the Introductory Carbon Balance Model (ICBM)

Description

This function is an implementation of the Introductory Carbon Balance Model (ICBM). This is simply a two pool model connected in series.

Usage

```
ICBMModel(
    t,
    ks = c(k1 = 0.8, k2 = 0.00605),
    h = 0.13,
    r = 1.32,
    c0 = c(Y0 = 0.3, 00 = 3.96),
    In = 0,
```

160 ICBMModel

```
solver = deSolve.lsoda.wrapper,
pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sougth.
ks	A vector of length 2 with the decomposition rates for the young and the old pool.
h	Humufication coefficient (transfer rate from young to old pool).
r	External (environmental or edaphic) factor.
c0	A vector of length 2 with the initial value of carbon stocks in the young and old pool.
In	Mean annual carbon input to the soil.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE forces the constructor to create the model even if it is invalid

References

Andren, O. and T. Katterer. 1997. ICBM: The Introductory Carbon Balance Model for Exploration of Soil Carbon Balances. Ecological Applications 7:1226-1236.

See Also

There are other predefinedModels and also more general functions like Model.

Examples

```
# examples from external files
# inst/examples/exICBMModel.R exICBMModel_paper:
   # This example reproduces the simulations
   # presented in Table 1 of Andren and Katterer (1997).
   # First, the model is run for different values of the
   # parameters representing different field experiments.
   times=seq(0,20,by=0.1)
   Bare=ICBMModel(t=times) #Bare fallow
   pNpS=ICBMModel(t=times, h=0.125, r=1,
                                            c0=c(0.3,4.11), In=0.19+0.095) #+N +Straw
   mNpS=ICBMModel(t=times, h=0.125, r=1.22, c0=c(0.3, 4.05), In=0.19+0.058) #-N +Straw
   mNmS=ICBMModel(t=times, h=0.125, r=1.17, c0=c(0.3, 3.99), In=0.057) #-N -Straw
   pNmS=ICBMModel(t=times, h=0.125, r=1.07, c0=c(0.3, 4.02), In=0.091) #+N -Straw
   FM=ICBMModel(t=times, h=0.250, r=1.10, c0=c(0.3, 3.99), In=0.19+0.082) #Manure
   SwS=ICBMModel(t=times, h=0.340, r=0.97, c0=c(0.3, 4.14), In=0.19+0.106) #Sewage Sludge
   SS=ICBMModel(t=times, h=0.125, r=1.00, c0=c(0.25, 4.16), In=0.2) #Steady State
   #The amount of carbon for each simulation is recovered with the function getC
   CtBare=getC(Bare)
   CtpNpS=getC(pNpS)
   CtmNpS=getC(mNpS)
```

incubation_experiment 161

```
CtmNmS=getC(mNmS)
CtpNmS=getC(pNmS)
CtFM=getC(FM)
CtSwS=getC(SwS)
CtSS=getC(SS)
#This plot reproduces Figure 1 in Andren and Katterer (1997)
plot(times,
  rowSums(CtBare),
  type="1",
  ylim=c(0,8),
  xlim=c(0,20),
  ylab="Topsoil carbon mass (kg m-2)",
  xlab="Time (years)"
lines(times,rowSums(CtpNpS),lty=2)
lines(times,rowSums(CtmNpS),lty=3)
lines(times,rowSums(CtmNmS),lty=4)
lines(times,rowSums(CtpNmS),lwd=2)
lines(times,rowSums(CtFM),lty=2,lwd=2)
lines(times,rowSums(CtSwS),lty=3,lwd=2)
#lines(times,rowSums(CtSS),lty=4,lwd=2)
legend("topleft",
  c("Bare fallow",
    "+N +Straw",
    "-N +Straw",
    "-N -Straw"
    "+N -Straw",
    "Manure",
   "Sludge"
  lty=c(1,2,3,4,1,2,3),
  lwd=c(1,1,1,1,2,2,2),
  bty="n"
)
```

incubation_experiment Soil CO2 efflux from an incubation experiment, along with the soil mass and carbon concentration measurements.

Description

A dataset with soil CO2 efflux measurements from a laboratory incubation at controlled temperature and moisture conditions.

Usage

```
data(incubation_experiment)
```

162 InFlux

Format

```
A list with 3 variables.
```

eC02 A data frame with the flux data.

 ${\tt c_concentrations}$ a vector with 3 measurement of the concentration of carbon in th soil.

soil_mass the mass of the soil column in g

Details

The data.frame incubation_experiment\$eCO2 has 3 columns.

Days A numeric vector with the day of measurement after the experiment started.

eCO2mean A numeric vector with the release flux of CO2. Units in ug C g-1 soil day-1.

eCO2sd A numeric vector with the standard deviation of the release flux of CO2-C. Units in ug C g-1 soil day-1.

A laboratory incubation experiment was performed in March 2014 for a period of 35 days under controlled conditions of temperature (15 degrees Celsius), moisture (30 percent soil water content), and oxygen levels (20 percent). Soil CO2 measurements were taken using an automated system for gas sampling connected to an infrared gas analyzer. The soil was sampled at a boreal forest site (Caribou Poker Research Watershed, Alaska, USA). This dataset presents the mean and standard deviation of 4 replicates.

Examples

```
eCO2=incubation_experiment$eCO2 head(eCO2)  
plot(eCO2[,1:2],type="o",ylim=c(0,50),ylab="CO2 efflux (ug C g-1 soil day-1)") arrows(eCO2[,1],eCO2[,2]-eCO2[,3],eCO2[,1],eCO2[,2]+eCO2[,3], angle=90,length=0.3,code=3)
```

InFlux

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
InFlux(map, ...)
```

Arguments

```
map see method arguments
... see method arguments
```

InFluxes 163

InFluxes

A generic factory for subclasses of InFluxes

Description

The actual class of the returned object depends on the arguments provided

Usage

```
InFluxes(object, numberOfPools)
```

Arguments

object see method arguments numberOfPools see method arguments

 $In Fluxes, Constant In Flux List_by_Pool Index-method\\ automatic\ title$

Description

automatic title

Usage

```
## S4 method for signature 'ConstantInFluxList_by_PoolIndex'
InFluxes(object, numberOfPools)
```

Arguments

object of class:ConstantInFluxList_by_PoolIndex,:: no manual documen-

tation

numberOfPools

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

InFluxes, function-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature '`function`'
InFluxes(object)
```

Arguments

object

object of class:function, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

InFluxes, InFluxes-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'InFluxes'
InFluxes(object)
```

Arguments

object

object of class:InFluxes, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

InFluxes, list-method 165

InFluxes,list-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'list'
InFluxes(object)
```

Arguments

object

object of class:list, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

InFluxes, numeric-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'numeric'
InFluxes(object)
```

Arguments

object

object of class:numeric, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

InFluxes, TimeMap-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'TimeMap'
InFluxes(object)
```

Arguments

object

object of class:TimeMap, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

InFluxes-class

A virtual S4-class representing (different subclasses) of in-fluxes to the system

Description

A virtual S4-class representing (different subclasses) of in-fluxes to the system

InFluxList_by_PoolIndex

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
InFluxList_by_PoolIndex(object)
```

Arguments

object see method arguments

Description

after checking the elements

Usage

```
## S4 method for signature 'list'
InFluxList_by_PoolIndex(object)
```

Arguments

object

object of class:list, no manual documentation

Description

automatic title

```
InFluxList_by_PoolName
```

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
InFluxList_by_PoolName(object)
```

Arguments

object

see method arguments

InFlux_by_PoolIndex

```
\label{list_by_PoolName,list_method} In Flux List\_by\_PoolName, list\_method \\ constructor from \ a \ normal \ list
```

Description

after checking the elements

Usage

```
## S4 method for signature 'list'
InFluxList_by_PoolName(object)
```

Arguments

object

object of class:list, no manual documentation

 $In Flux List_by_PoolName-class$

Class for a list of influxes indexed by the names of the target pools

Description

Class for a list of influxes indexed by the names of the target pools

InFlux_by_PoolIndex

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
InFlux_by_PoolIndex(func, destinationIndex)
```

Arguments

 $\begin{array}{ll} \text{func} & \text{see method arguments} \\ \text{destinationIndex} & \text{see method arguments} \end{array}$

Description

constructor from an ordered pair of PoolIndex (integer like) objects

Usage

```
## S4 method for signature '`function`,numeric'
InFlux_by_PoolIndex(func, destinationIndex)
```

Arguments

func

object of class:function, A function f(X,t) where X is a vector of the state variables. This form is required internally by the solvers and supported for backward compatibility with earlier versions of SoilR. Note that the function func given in this form can not be tranformed to a different ordering of state variables, since the location of a state variable in the vector argument depends on a specific order and will be 'hardcoded' into your function. See InFlux_by_PoolName for the new, more powerful interface which allows subsequent reordering of the state variables by using the names of the state variables as formal arguments for func. In this case SoilR can infer (and later adapt) the vector argument form needed for the solvers.

destinationIndex

object of class:numeric, no manual documentation

InFlux_by_PoolIndex-class

S4 class for the influx to a single pool identified by theindex

Description

S4 class for the influx to a single pool identified by theindex

InFlux_by_PoolName

Generic constructor for an influx to a single pool from an ordered pair of PoolName (string like) and function objects

Description

Generic constructor for an influx to a single pool from an ordered pair of PoolName (string like) and function objects

Usage

```
InFlux_by_PoolName(func, destinationName)
```

Arguments

func see method arguments destinationName

see method arguments

InFlux_by_PoolName,function,character-method

Constructor from an ordered pair of PoolName (string like) and function objects

Description

Constructor from an ordered pair of PoolName (string like) and function objects

Usage

```
## S4 method for signature '`function`,character'
InFlux_by_PoolName(func, destinationName)
```

Arguments

func

object of class:function, A function. The names of the formal arguments have to be a subset of the state variable names and the time symbol This allows subsequent automatic reordering of the state variables. In the presence of a vector of state-variable-names the formulation can automatically be transformed to a function of a s tate VECTOR argument and time

destinationName

object of class:character, PoolName (string like) object and a function

InFlux_by_PoolName-class

S4 class for the influx to a single pool identified by the name

Description

S4 class for the influx to a single pool identified by the name

Description

automatic title

Usage

```
## S4 method for signature 'ConstLinDecompOp'
initialize(.Object, mat = matrix())
```

Arguments

.Object

 $object\ of\ class{:} ConstLinDecompOp, :: no\ manual\ documentation$

mat

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'DecompositionOperator'
initialize(
  .Object,
  starttime = numeric(),
  endtime = numeric(),
 map = function(t) {
                          t },
 lag = 0
)
```

Arguments

.Object object of class:DecompositionOperator, : : no manual documentation

starttime : : no manual documentation endtime : : no manual documentation : : no manual documentation map

lag : : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

initialize, MCSim-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'MCSim'
initialize(.Object, model = new(Class = "NlModel"), tasklist = list())
```

Arguments

.Object object of class:MCSim, : : no manual documentation

model : : no manual documentation

tasklist : : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

initialize,Model-method 173

```
initialize, Model-method
```

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model'
initialize(
   .Object,
   times = c(0, 1),
   mat = ConstLinDecompOp(matrix(nrow = 1, ncol = 1, 0)),
   initialValues = numeric(),
   inputFluxes = BoundInFluxes(function(t) {      return(matrix(nrow = 1, ncol = 1, 1)) },
      0, 1),
   solverfunc = deSolve.lsoda.wrapper,
   pass = FALSE
)
```

Arguments

.Object of class:Model, : : no manual documentation

times :: no manual documentation
mat :: no manual documentation
initialValues :: no manual documentation
inputFluxes :: no manual documentation
solverfunc :: no manual documentation

pass : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will be larger he touched by the "undote outcomment replet"

Description

automatic title

Usage

```
## S4 method for signature 'Model_14'
initialize(
  .Object,
  times = c(0, 1),
  mat = ConstLinDecompOp(matrix(nrow = 1, ncol = 1, 0)),
  initialValues = numeric(),
  initialValF = ConstFc(values = c(0), format = "Delta14C"),
 inputFluxes = BoundInFluxes(function(t) {
                                             return(matrix(nrow = 1, ncol = 1, 1)) },
    0, 1),
 c14Fraction = BoundFc(function(t) {
                                        return(matrix(nrow = 1, ncol = 1, 1)) }, 0, 1),
  c14DecayRate = 0,
  solverfunc = deSolve.lsoda.wrapper,
 pass = FALSE
)
```

Arguments

.Object of class:Model_14, :: no manual documentation

times : : no manual documentation : : no manual documentation mat initialValues : : no manual documentation initialValF : : no manual documentation inputFluxes : : no manual documentation c14Fraction : : no manual documentation c14DecayRate : : no manual documentation solverfunc : : no manual documentation

pass : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source

code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

```
initialize, Model_by_PoolNames-method
                        automatic title
```

Description

automatic title

Usage

```
## S4 method for signature 'Model_by_PoolNames'
initialize(
  .Object,
  times,
 mat,
  initialValues,
  inputFluxes,
  solverfunc,
  pass,
  timeSymbol
)
```

Arguments

.Object object of class:Model_by_PoolNames, : : no manual documentation

times : : no manual documentation mat : : no manual documentation initialValues : : no manual documentation inputFluxes : : no manual documentation solverfunc : : no manual documentation : : no manual documentation pass

timeSymbol : : no manual documentation inspection of the code. You can use the "up-

> date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

```
initialize, NlModel-method
```

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
initialize(
   .Object,
   times = c(0, 1),
   DepComp = new(Class = "TransportDecompositionOperator", 0, 1, function(t) {
    return(matrix(nrow = 1, ncol = 1, 0)) }, function(t) {
        return(matrix(nrow = 1, ncol = 1, 0)) }),
        initialValues = numeric(),
        inputFluxes = BoundInFluxes(function(t) {
            return(matrix(nrow = 1, ncol = 1, 1)) },
            0, 1),
            solverfunc = deSolve.lsoda.wrapper,
            pass = FALSE
)
```

Arguments

pass

. Object of class:N1Model, : : no manual documentation

times :: no manual documentation

DepComp :: no manual documentation

initialValues :: no manual documentation

inputFluxes :: no manual documentation

solverfunc :: no manual documentation

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

```
initialize, TimeMap-method
```

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'TimeMap'
initialize(
   .Object,
   starttime = numeric(),
   endtime = numeric(),
   map = function(t) {      t }
)
```

Arguments

.Object of class:TimeMap, : : no manual documentation

starttime :: no manual documentation endtime :: no manual documentation

map : : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

 $initialize, Transport Decomposition Operator-method\\ automatic\ title$

Description

automatic title

Usage

```
## S4 method for signature 'TransportDecompositionOperator'
initialize(
   .Object,
   starttime = numeric(),
   endtime = numeric(),
   numberOfPools = 1,
   alpha = list(),
   f = function(t, 0) { t },
   lag = 0
)
```

Arguments

.Object object of class:TransportDecompositionOperator,:: no manual documenta-

tion

starttime :: no manual documentation
endtime :: no manual documentation
numberOfPools :: no manual documentation
alpha :: no manual documentation
f :: no manual documentation

lag : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'UnBoundInFluxes'
initialize(.Object, map = function() {
})
```

Arguments

.Object

object of class:UnBoundInFluxes, : : no manual documentation

map

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Description

automatic title

Usage

```
## S4 method for signature 'UnBoundLinDecompOp'
initialize(.Object, matFunc = function() {
})
```

Arguments

.Object

object of class:UnBoundLinDecompOp, : : no manual documentation

matFunc

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

IntCal09

Northern Hemisphere atmospheric radiocarbon for the pre-bomb period

Description

Northern Hemisphere atmospheric radiocarbon calibration curve for the period 0 to 50,000 yr BP.

Usage

```
data(IntCal09)
```

IntCal13

Format

```
A data frame with 3522 observations on the following 5 variables.

CAL.BP Calibrated age in years Before Present (BP).

C14.age C14 age in years BP.

Error Error estimate for C14.age.

Delta.14C Delta.14C value in per mil.

Sigma Standard deviation of Delta.14C in per mil.
```

Details

Deltal.14C is age-corrected as per Stuiver and Polach (1977). All details about the derivation of this dataset are provided in Reimer et al. (2009).

References

P. Reimer, M.Baillie, E. Bard, A. Bayliss, J. Beck, P. Blackwell, C. Ramsey, C. Buck, G. Burr, R. Edwards, et al. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0 - 50,000 years cal bp. Radiocarbon, 51(4):1111 - 1150.

M. Stuiver and H. A. Polach. 1977. Rerporting of C-14 data. Radiocarbon, 19(3):355 - 363.

Examples

```
par(mfrow=c(2,1))
plot(IntCal09$CAL.BP, IntCal09$C14.age, type="l")
polygon(x=c(IntCal09$CAL.BP,rev(IntCal09$CAL.BP)),
y=c(IntCal09$C14.age+IntCal09$Error,rev(IntCal09$C14.age-IntCal09$Error)),
col="gray",border=NA)
lines(IntCal09$CAL.BP,IntCal09$C14.age)

plot(IntCal09$CAL.BP,IntCal09$Delta.14C,type="l")
polygon(x=c(IntCal09$CAL.BP,rev(IntCal09$CAL.BP)),
y=c(IntCal09$Delta.14C+IntCal09$Sigma,rev(IntCal09$Delta.14C-IntCal09$Sigma)),
col="gray",border=NA)
lines(IntCal09$CAL.BP,IntCal09$Delta.14C)
par(mfrow=c(1,1))
```

IntCal13

Atmospheric radiocarbon for the 0-50,000 yr BP period

Description

Atmospheric radiocarbon calibration curve for the period 0 to 50,000 yr BP. This is the most recent update to the internationally agreed calibration curve and superseds IntCal09.

IntCal13 181

Usage

```
data(IntCal13)
```

Format

A data frame with 5140 observations on the following 5 variables.

```
CAL.BP Calibrated age in years Before Present (BP).
```

C14. age C14 age in years BP.

Error Error estimate for C14. age.

Delta.14C Delta.14C value in per mil.

Sigma Standard deviation of Delta. 14C in per mil.

Details

Deltal.14C is age-corrected as per Stuiver and Polach (1977). All details about the derivation of this dataset are provided in Reimer et al. (2013).

References

Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatte C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, van der Plicht J. 2013. IntCal13 and MARINE13 radiocarbon age calibration curves 0-50000 years calBP. Radiocarbon 55(4): 1869-1887. DOI: 10.2458/azu_js_rc.55.16947

M. Stuiver and H. A. Polach. 1977. Rerporting of C-14 data. Radiocarbon, 19(3):355 - 363.

Examples

InternalFluxList_by_PoolIndex

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
InternalFluxList_by_PoolIndex(object)
```

Arguments

object

see method arguments

Description

after checking the elements

Usage

```
## S4 method for signature 'list'
InternalFluxList_by_PoolIndex(object)
```

Arguments

object

object of class:list, no manual documentation

InternalFluxList_by_PoolIndex-class

S4-class for a list of internal fluxes with source and destination pool inidices

Description

S4-class for a list of internal fluxes with source and destination pool inidices

InternalFluxList_by_PoolName

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
InternalFluxList_by_PoolName(object)
```

Arguments

object see method arguments

Description

constructor from a normal list

Usage

```
## S4 method for signature 'list'
InternalFluxList_by_PoolName(object)
```

Arguments

object

object of class:list, A list. Either a list of elements of type InternalFlux_by_PoolName or a list where the names of the elements are strings of the form '1->3' (for the flux rate from pool 1 to 2

Value

An object of class ConstantInFluxList_by_PoolIndex

The function checks if the elements are of the desired type or can be converted to it. It is mainly used internally and usually called by the front end functions to convert the user supplied arguments.

InternalFluxList_by_PoolName-class

S4-class for a list of internal fluxes with indexed by (source and destination pool) names

Description

S4-class for a list of internal fluxes with indexed by (source and destination pool) names

InternalFlux_by_PoolIndex

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

InternalFlux_by_PoolIndex(func, sourceIndex, destinationIndex, src_to_dest)

Arguments

func see method arguments sourceIndex see method arguments

destinationIndex

see method arguments

src_to_dest see method arguments

InternalFlux_by_PoolIndex, function, numeric, numeric, missing-method

constructor from an ordered pair of PoolIndex (integer like) objects

and a function with vector argument

Description

constructor from an ordered pair of PoolIndex (integer like) objects and a function with vector argument

Usage

```
## S4 method for signature '`function`,numeric,numeric,missing'
InternalFlux_by_PoolIndex(func, sourceIndex, destinationIndex)
```

Arguments

func

object of class:function, A function f(X,t) where X is a vector of the state variables. This form is required internally by the solvers and supported for backward compatibility with earlier versions of SoilR. Note that the function func given in this form can not be tranformed to a different ordering of state variables, since the location of a state variable in the vector argument depends on a specific orderand will be 'hardcoded' into your function. See InternalFlux_by_PoolName for the new more powerful interface which allows subsequent reordering of the state variables by using the names of the state variables as formal arguments for func. In this case SoilR can infer (and later adapt) the vector argument form needed for the solvers. constructor from an ordered pair of PoolIndex (integer

like) objects

sourceIndex

object of class:numeric, no manual documentation

destinationIndex

object of class:numeric, no manual documentation

InternalFlux_by_PoolIndex-class

S4-class for a single internal flux with source and destination pools specified by indices

Description

S4-class for a single internal flux wiht source and destination pools specified by indices

InternalFlux_by_PoolName

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

InternalFlux_by_PoolName(func, sourceName, destinationName, src_to_dest)

Arguments

func see method arguments sourceName see method arguments

destinationName

see method arguments

src_to_dest see method arguments

InternalFlux_by_PoolName, function, character, character, missing-method

constructor from an ordered pair of PoolName (string like) objects and a function with the set of formal argument names forming a subset of the state variable names

Description

constructor from an ordered pair of PoolName (string like) objects and a function with the set of formal argument names forming a subset of the state_variable_names

Usage

```
## S4 method for signature '`function`,character,character,missing'
InternalFlux_by_PoolName(func, sourceName, destinationName)
```

Arguments

func object of class:function, A real valued function describing the flux (mass/time)

as function of the state variables and time.

sourceName object of class:character, A string identifying the source pool of the flux

destinationName

object of class:character, A string identifying the destination pool of the flux

 $Internal Flux_by_PoolName, function, missing, missing, character-method \\ automatic \ title$

Description

automatic title

Usage

```
## S4 method for signature '`function`,missing,missing,character'
InternalFlux_by_PoolName(func, src_to_dest)
```

Arguments

func object of class:function, :: no manual documentation

code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "up-

date_autocomment_roclet".

InternalFlux_by_PoolName-class

S4-class for a single internal flux with source and destination pools specified by name

Description

S4-class for a single internal flux wiht source and destination pools specified by name

linesCPool	Add lines with the output of getC14, getC, or getReleaseFlux to an
	existing plot

Description

This function adds lines to a plot with the C content, the C release, or Delta 14C value of each pool over time. Needs as input a matrix obtained after a call to getC14, getC, or getReleaseFlux.

Usage

```
linesCPool(t, mat, col, ...)
```

Arguments

t	A vector containing the time points for plotting.
mat	A matrix object obtained after a call to getC14, getC, or getReleaseFlux.
col	A color palette specifying color lines for each pool (columns of mat).
	Other arguments passed to plot.

listProduct	tensor product of lists

Description

Creates a list of all combinations of the elements of the inputlists (like a "tensor product list" The list elements can be of any class. The function is used in examples and tests to produce all possible combinations of arguments to a function. look at the tests for example usage

Usage

```
listProduct(...)
```

Model Model

Arguments

```
... lists
```

Value

a list of lists each containing one combinations of the elements of the input lists

Examples

```
listProduct(list('a','b'),list(1,2))
```

MCSim-class

automatic title

Description

automatic title

Model

Constructor for class Model

Description

This function creates an object of class Model, The arguments can be given in different form as long as they can be converted to the necessary internal building blocks. (See the links)

Usage

```
Model(
    t,
    A,
    ivList,
    inputFluxes,
    solverfunc = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

Arguments

t A vector containing the points in time where the solution is sought.

A something that can be converted by GeneralDecompOp to any of the available subclasses of DecompOp.

ivList A numeric vector containing the initial amount of carbon for the n pools. The length of this vector is equal to the number of pools. This is checked by an

internal function.

Model 189

inputFluxes something that can be converted by InFluxes to any of the available subclasses

of InFluxes.

solverfunc The function used to actually solve the ODE system. The default is deSolve.lsoda.wrapper

but you can also provide your own function that the same interface.

pass Forces the constructor to create the model even if it does not pass internal sanity

checks

Details

This function Model wraps the internal constructor of class Model. The internal constructor requires the argument A to be of class DecompOp and argument inputFluxes to be of class InFluxes. Before calling the internal constructor Model calls GeneralDecompOp on its argument A and InFluxes on its argument inputFluxes to convert them into the required classes. Both are generic functions. Follow the links to see for which kind of inputs conversion methods are available. The attempted conversion allows great flexibility with respect to arguments and independence from the actual implementation. However if your code uses the wrong argument the error will most likely occur in the delegate functions. If this happens analyse the errormassage (or use traceback()) to see which function was called and try to call the constructor of the desired subclass explicitly with your arguments. The subclasses are linked in the class documentation DecompOp or InFluxes respectively.

Note also that this function checks its arguments quite elaborately and tries to detect accidental unreasonable combinations, especially concerning two kinds of errors.

- 1. unintended extrapolation of time series data
- 2. violoations of massbalance by the DecompOp argument.

SoilR has a lot of unit tests which are installed with the package and are sometimes instructive as examples. To see example scenarios for parameter check look at:

Value

An object of class Model that can be queried by many methods to be found there.

See Also

This function is called by many of the predefinedModels.

Package functions called in the examples:

```
example.2DInFluxes.Args, example.2DGeneralDecompOpArgs,
```

Examples

```
# examples from external files
# inst/tests/requireSoilR/runit.all.possible.Model.arguments.R test.all.possible.Model.arguments:
# This example shows different kinds of arguments to the function Model.
# The model objects we will build will share some common features.
# - two pools
```

190 Model-class

```
# - initial values
      iv < -c(5,6)
# - times
      times <- seq(1,10,by=0.1)
# The other parameters A and inputFluxes will be different
# The function Model will transform these arguments
# into objects of the classes required by the internal constructor.
# This leads to a number of possible argument types.
# We demonstrate some of the possibilities here.
# Let us first look at the choeices for argument 'A'.
possibleAs <- example.2DGeneralDecompOpArgs()</pre>
# Since "Model" will call "InFluxes" on its "inputFluxes"
# argument there are again different choices
# we have included a function in SoilR that produces 2D examples
possibleInfluxes <- example.2DInFluxes.Args()</pre>
print(possibleInfluxes$I.vec)
# We can build a lot of models from the possible combinations
# for instance
#m1 \leftarrow Model(
          t=times,
          A=matrix(nrow=2,byrow=TRUE,c(-0.1,0,0,-0.2)),
          ivList=iv,
          inputFluxes=possibleInfluxes$I.vec)
## We now produce that all combinations of As and InputFluxes
combinations <- listProduct(possibleAs,possibleInfluxes)</pre>
print(length(combinations))
# an a Model for each
models <- lapply(</pre>
             combinations,
             function(combi){
               #Model(t=times,A=combi$A,ivList=iv,inputFluxes=combi$I)
               Model(t=times,A=combi[[1]],ivList=iv,inputFluxes=combi[[2]])
           )
## lets check that we can compute something#
lapply(models,getC)
```

Model_14 191

Description

S4 class representing a model run

Model_14 general constructor for class Model_14

Description

This method tries to create an object from any combination of arguments that can be converted into the required set of building blocks for the Model_14 for n arbitrarily connected pools.

Usage

```
Model_14(
    t,
    A,
    ivList,
    initialValF,
    inputFluxes,
    inputFc,
    c14DecayRate = -0.0001209681,
    solverfunc = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought.
A	something that can be converted by GeneralDecompOp to any of the available subclasses of DecompOp.
ivList	A vector containing the initial amount of carbon for the n pools. The length of this vector is equal to the number of pools and thus equal to the length of k. This is checked by an internal function.
initialValF	An object equal or equivalent to class ConstFc containing a vector with the initial values of the radiocarbon fraction for each pool and a format string describing in which format the values are given.
inputFluxes	something that can be converted by InFluxes to any of the available subclasses of InFluxes.
inputFc	An object describing the fraction of C_14 in per mille (different formats are possible)
c14DecayRate	the rate at which C_14 decays radioactivly. If you don't provide a value here we assume the following value: $k=-0.0001209681\ y^-1$. This has the side effect that all your time related data are treated as if the time unit was year. Thus beside time itself it also affects decay rates the input rates and the output
solverfunc	The function used by to actually solve the ODE system. This can be deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	Forces the constructor to create the model even if it is invalid

192 Model_14

Value

A model object that can be further queried.

See Also

TwopParallelModel, TwopSeriesModel, TwopFeedbackModel

Examples

```
# examples from external files
# inst/tests/requireSoilR/runit.all.possible.Model.arguments.R test.all.possible.Model.arguments:
 # This example shows different kinds of arguments to the function Model.
 # The model objects we will build will share some common features.
 # - two pools
 # - initial values
       iv < -c(5,6)
 # - times
       times <- seq(1,10,by=0.1)
 \ensuremath{\text{\#}} The other parameters A and inputFluxes will be different
 # The function Model will transform these arguments
 # into objects of the classes required by the internal constructor.
 # This leads to a number of possible argument types.
 # We demonstrate some of the possibilities here.
 # Let us first look at the choeices for argument 'A'.
 #)
 possibleAs <- example.2DGeneralDecompOpArgs()</pre>
 # Since "Model" will call "InFluxes" on its "inputFluxes"
 # argument there are again different choices
 # we have included a function in SoilR that produces 2D examples
 possibleInfluxes <- example.2DInFluxes.Args()</pre>
print(possibleInfluxes$I.vec)
 # We can build a lot of models from the possible combinations
 # for instance
 #m1 \leftarrow Model(
           t=times,
           A=matrix(nrow=2,byrow=TRUE,c(-0.1,0,0,-0.2)),
           ivList=iv,
           inputFluxes=possibleInfluxes$I.vec)
 ## We now produce that all combinations of As and InputFluxes
 combinations <- listProduct(possibleAs,possibleInfluxes)</pre>
 print(length(combinations))
 # an a Model for each
 models <- lapply(</pre>
              combinations,
```

Model_14 193

```
function(combi){
                #Model(t=times,A=combi$A,ivList=iv,inputFluxes=combi$I)
               Model(t=times,A=combi[[1]],ivList=iv,inputFluxes=combi[[2]])
              }
           )
 ## lets check that we can compute something#
 lapply(models,getC)
# inst/examples/ModelExamples.R CorrectNonautonomousLinearModelExplicit:
 # This example describes the creation and use of a Model object that
 # is defined by time dependent functions for decomposition and influx.
 # The constructor of the Model-class (see ?Model)
 # works for different combinations of
 # arguments.
 # Although Model (the constructor function for objects of this class
 # accepts many many more convienient kinds of arguments,
 # we will in this example call the constructor whith arguments which
 # are of the same type as one of hte current internal
 # representations in the
 # Model object and create these arguments explicitly beforehand
 # to demonstrate the approach with the most flexibility.
 # We start with the Decomposition Operator.
 # For this example we assume that we are able to describe the
 # decomposition ofperator by explicit R functions that are valid
 # for a finite time interval.
 # Therefore we choose the appropriate sub class BoundLinDecompOp
 # of DecompOp explicitly. (see ?'BoundLinDecompOp-class')
 A=BoundLinDecompOp(
   ## We call the generic constructor (see ?BoundLindDcompOp)
   ## which has a method
   ## that takes a matrix-valued function of time as its first argument.
   ## (Although Model accepts time series data directly and
   ## will derive the internally used interpolating for you,
   ## the function argument could for instance represent the result
   ## of a very sophisticated interpolation performed by yourself)
   function(t){
     matrix(nrow=3,ncol=3,byrow=TRUE,
          -1,
                 0,
         0.5,
                 -2,
                 1, \sin(t)-1
           0,
       )
     )
   ## The other two arguments describe the time interval where the
   ## function is valid (the domain of the function)
   ## The interval will be checked against the domain of the InFlux
   ## argument of Model and against its 't' argument to avoid
   ## invalid computations outside the domain.
   ## (Inf and -Inf are possible values, but should only be used
   ## if the function is really valid for all times, which is
   ## especially untrue for functions resulting from interpolations,
```

```
## which are usually extremely misleading for arguments outside the
  ## domain covered by the data that has been used for the interpolation.)
 ## This is a safety net against wrong results origination from unitendet EXTRApolation )
  starttime=0,
  endtime=20
I=BoundInFluxes(
   ## The first argument is a vector-valued function of time
   function(t){
     matrix(nrow=3,ncol=1,byrow=TRUE,
                  0,
         c(-1,
                        0)
   },
   ## The other two arguments describe the time interval where the
   ## function is valid (the domain of the function)
   starttime=0.
   endtime=40
)
## No we specify the points in time where we want
## to compute results
t_start=0
t_end=10
tn=50
timestep <- (t_end-t_start)/tn</pre>
times <- seq(t_start,t_end,timestep)</pre>
## and the start values
sv=c(0,0,0)
mod=Model(t=times,A,sv,I)
## No we use the model to compute some results
getC(mod)
getReleaseFlux(mod)
#also look at the methods section of Model-class
```

Model_14-class

S4-class to represent a ^14C model run

Description

S4-class to represent a ^14C model run

```
Model_by_PoolNames-class

automatic title
```

Description

automatic title

NIModel-class 195

NlModel-class	deprecated class for a non-linear model run.	
---------------	--	--

Description

deprecated class for a non-linear model run.

Model Implementation of a one pool model
--

Description

This function creates a model for one pool. It is a wrapper for the more general function GeneralModel.

Usage

```
OnepModel(t, k, C0, In, xi = 1, solver = deSolve.lsoda.wrapper, pass = FALSE)
```

Arguments

t	A vector containing the points in time where the solution is sought.
k	A scalar with the decomposition rate of the pool.
C0	A scalar containing the initial amount of carbon in the pool.
In	A scalar or a data frame object specifying the amount of litter inputs by time.
хi	A scalar or a data.frame specifying the external (environmental and/or edaphic) effects on decomposition rates.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE forces the constructor to create the model even if it is invalid

References

Sierra, C.A., M. Mueller, S.E. Trumbore. 2012. Models of soil organic matter decomposition: the SoilR package version 1.0. Geoscientific Model Development 5, 1045-1060.

See Also

There are other predefinedModels and also more general functions like Model.

196 OnepModel14

Examples

```
t_start=0
t_end=10
tn=50
timestep=(t_end-t_start)/tn
t=seq(t_start, t_end, timestep)
k=0.8
C0=100
In = 30
Ex=OnepModel(t,k,C0,In)
Ct=getC(Ex)
Rt=getReleaseFlux(Ex)
Rc=getAccumulatedRelease(Ex)
plot(
t,
Ct,
type="1",
ylab="Carbon stocks (arbitrary units)",
xlab="Time (arbitrary units)",
1wd=2
)
plot(
t,
Rt,
ylab="Carbon released (arbitrary units)",
xlab="Time (arbitrary units)",
1wd=2
plot(
t,
Rc,
type="1",
ylab="Cummulative carbon released (arbitrary units)",
xlab="Time (arbitrary units)",
1wd=2
)
```

OnepModel14

Implementation of a one-pool C14 model

Description

This function creates a model for one pool. It is a wrapper for the more general function GeneralModel_14.

OnepModel14 197

Usage

```
OnepModel14(
    t,
    k,
    C0,
    F0_Delta14C,
    In,
    xi = 1,
    inputFc,
    lambda = -0.0001209681,
    lag = 0,
    solver = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought. It must be specified within the same period for which the Delta 14 C of the atmosphere is provided. The default period in the provided dataset C14Atm_NH is 1900-2010.
k	A scalar with the decomposition rate of the pool.
C0	A scalar containing the initial amount of carbon in the pool.
F0_Delta14C	A scalar containing the initial amount of the radiocarbon fraction in the pool in Delta_14C format.
In	A scalar or a data frame object specifying the amount of litter inputs by time.
xi	A scalar or a data.frame specifying the external (environmental and/or edaphic) effects on decomposition rates.
inputFc	A Data Frame object consisting of a function describing the fraction of C_14 in per mille. The first column will be assumed to contain the times.
lambda	Radioactive decay constant. By default lambda=-0.0001209681 y^-1. This has the side effect that all your time related data are treated as if the time unit was year.
lag	A (positive) scalar representing a time lag for radiocarbon to enter the system.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE Forces the constructor to create the model even if it is invalid

See Also

There are other predefinedModels and also more general functions like Model_14.

Examples

```
years=seq(1901,2009,by=0.5)
LitterInput=700
```

```
Ex=OnepModel14(t=years,k=1/10,C0=500, F0=0,In=LitterInput, inputFc=C14Atm_NH)
C14t=getF14(Ex)

plot(C14Atm_NH,type="1",xlab="Year",ylab="Delta 14C (per mil)",xlim=c(1940,2010))
lines(years, C14t[,1], col=4)
legend(
"topright",
c("Delta 14C Atmosphere", "Delta 14C in SOM"),
lty=c(1,1),
col=c(1,4),
lwd=c(1,1),
bty="n"
)
```

OutFlux

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
OutFlux(map, ...)
```

Arguments

map see method arguments
... see method arguments

OutFluxList_by_PoolIndex

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
OutFluxList_by_PoolIndex(object)
```

Arguments

object see method arguments

OutFluxList_by_PoolIndex,list-method constructor from a normal list

Description

after checking the elements

Usage

```
## S4 method for signature 'list'
OutFluxList_by_PoolIndex(object)
```

Arguments

object

object of class:list, no manual documentation

OutFluxList_by_PoolIndex-class

automatic title

Description

automatic title

OutFluxList_by_PoolName

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
OutFluxList_by_PoolName(object)
```

Arguments

object

see method arguments

 ${\it OutFluxList_by_PoolName,list-method} \\ {\it constructor\,from\,\,a\,\,normal\,\,list}$

Description

constructor from a normal list

Usage

```
## S4 method for signature 'list'
OutFluxList_by_PoolName(object)
```

Arguments

object

object of class:list, A list. Either a list of elements of type OutFlux_by_PoolName or a list where the names of the elements are integer strings.

Value

An object of class ConstantInFluxList_by_PoolIndex

The function checks if the elements are of the desired type or can be converted to it. It is mainly used internally and usually called by the front end functions to convert the user supplied arguments.

OutFluxList_by_PoolName-class

S4 class for a list of out-fluxes indexed by source pool name

Description

S4 class for a list of out-fluxes indexed by source pool name

OutFlux_by_PoolIndex Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
OutFlux_by_PoolIndex(func, sourceIndex)
```

Arguments

func see method arguments sourceIndex see method arguments

OutFlux_by_PoolIndex, function, numeric-method

constructor from a PoolIndex (integer like) objects and a function with vector argument

Description

constructor from a PoolIndex (integer like) objects and a function with vector argument

Usage

```
## S4 method for signature '`function`,numeric'
OutFlux_by_PoolIndex(func, sourceIndex)
```

Arguments

func

object of class:function, A function f(X,t) where X is a vector of the state varaibles. This form is required internally by the solvers and supported for backward compatibility with earlier versions of SoilR. Note that the function func given in this form can not be tranformed to a different ordering of state variables, since the location of a state variable in the vector argument depends on a specific orderand will be 'hardcoded' into your function. See OutFlux_by_PoolName for the new, more powerful interface which allows subsequent reordering of the state variables by using the names of the state variables as formal arguments for func. In this case SoilR can infer (and later adapt) the vector argument form needed for the solvers. constructor from an ordered pair of PoolIndex (integer

like) objects

sourceIndex

object of class:numeric, no manual documentation

OutFlux_by_PoolIndex-class

S4 class for a single out-flux with source pool index

Description

S4 class for a single out-flux with source pool index

OutFlux_by_PoolName

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
OutFlux_by_PoolName(func, sourceName)
```

Arguments

func see method arguments sourceName see method arguments

OutFlux_by_PoolName, function, character-method

constructor from a PoolName (integer like) object and a function

Description

constructor from a PoolName (integer like) object and a function

Usage

```
## S4 method for signature '`function`,character'
OutFlux_by_PoolName(func, sourceName)
```

Arguments

func object of class:function, A function. The names of the formal aguemnts have

to be a subset of the state variable names and the time symbol This allows subsequent automatic reordering of the state variables. In the presence of a vector of stave variabl names the formulation can automatically be transformed to a function of a s tate VECTOR argument and #' time constructor from an ordered

pair of PoolName (integer like) objects

sourceName object of class:character, no manual documentation

```
OutFlux_by_PoolName-class

S4 class for a single out-flux with source pool name
```

Description

S4 class for a single out-flux with source pool name

ParallelModel models for unconnected pools

Description

This function creates a (linear) numerical model for n independent (parallel) pools that can be queried afterwards. It is used by the convinient wrapper functions TwopParallelModel and ThreepParallelModel but can also be used independently.

Usage

```
ParallelModel(
   times,
   coeffs_tm,
   startvalues,
   inputrates,
   solverfunc = deSolve.lsoda.wrapper,
   pass = FALSE
)
```

Arguments

times	A vector containing the points in time where the solution is sought.
coeffs_tm	A TimeMap object consisting of a vector valued function containing the decay rates for the n pools as function of time and the time range where this function is valid. The length of the vector is equal to the number of pools.
startvalues	A vector containing the initial amount of carbon for the n pools. «The length of this vector is equal to the number of pools and thus equal to the length of k. This is checked by the function.
inputrates	An object consisting of a vector valued function describing the inputs to the pools as funtions of time TimeMap.new
solverfunc	The function used to actually solve the ODE system. This can be deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE forces the constructor to create the model even if it is invalid

204 plot,MCSim-method

Examples

```
t_start=0
t_end=10
tn=50
timestep=(t_end-t_start)/tn
t=seq(t_start,t_end,timestep)
k=TimeMap(
function(times)\{c(-0.5,-0.2,-0.3)\},\
t_start,
t_end
)
c0=c(1, 2, 3)
#constant inputrates
inputrates=BoundInFluxes(
function(t){matrix(nrow=3,ncol=1,c(1,1,1))},
t_start,
t_end
)
mod=ParallelModel(t,k,c0,inputrates)
Y=getC(mod)
lt1=1 ;lt2=2 ;lt3=3
col1=1; col2=2; col3=3
plot(t,Y[,1],type="1",lty=lt1,col=col1,
ylab="C stocks",xlab="Time")
lines(t,Y[,2],type="l",lty=lt2,col=col2)
lines(t,Y[,3],type="1",lty=lt3,col=col3)
legend(
"topleft",
c("C in pool 1",
"C in 2",
"C in pool 3"
lty=c(lt1,lt2,lt3),
col=c(col1,col2,col3)
Y=getAccumulatedRelease(mod)
plot(t,Y[,1],type="l",lty=lt1,col=col1,ylab="C release",xlab="Time")
lines(t,Y[,2],lt2,type="l",lty=lt2,col=col2)
lines(t,Y[,3],type="l",lty=lt3,col=col3)
legend("topright", c("R1", "R2", "R3"), lty = c(lt1, lt2, lt3), col = c(col1, col2, col3))
```

 ${\tt plot}, {\tt MCSim-method}$

automatic title

Description

automatic title

plot,Model-method 205

Usage

```
## S4 method for signature 'MCSim'
plot(x, y, ...)
```

Arguments

x object of class:MCSim, : : no manual documentation

y : : no manual documentation

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

plot, Model-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model'
plot(x)
```

Arguments

Х

object of class:Model, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

plot,NlModel-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
plot(x)
```

Arguments

Х

object of class:NlModel, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

plot, TimeMap-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'TimeMap'
plot(x, y, ...)
```

Arguments

x object of class:TimeMap, : : no manual documentation

y : : no manual documentation

:: no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

plotC14Pool 207

plotC14Pool	Plots the output of getF14 for each pool over time	

Description

This function produces a plot with the Delta14C in the atmosphere and the Delta14C of each pool obtained after a call to getF14.

Usage

```
plotC14Pool(t, mat, inputFc, col, ...)
```

Arguments

t	A vector containing the time points for plotting.
mat	A matrix object obtained after a call to getF14
inputFc	A Data Frame object containing values of atmospheric Delta14C per time. First column must be time values, second column must be Delta14C values in per mil.
col	A color palette specifying color lines for each pool (columns of mat).
	Other arguments passed to plot.

plotCPool	Plots the output of getC or getReleaseFlux for each pool over time	

Description

This function produces a plot with the C content or released C for each pool over time. Needs as input a matrix obtained after a call to \mathtt{getC} or $\mathtt{getReleaseFlux}$.

Usage

```
plotCPool(t, mat, col, ...)
```

Arguments

t	A vector containing the time points for plotting.
mat	A matrix object obtained after a call to getC or getReleaseFlux
col	A color palette specifying color lines for each pool (columns of mat).
	Other arguments passed to link{plot}.

plotPoolGraph

Generic plotter

Description

Generic plotter

Usage

plotPoolGraph(x)

Arguments

х

An argument containing sufficient information about the connections between the pools as well as from and to the exterior.

```
{\it plotPoolGraph}, {\it Model-method} \\ automatic\ title
```

Description

automatic title

Usage

```
## S4 method for signature 'Model'
plotPoolGraph(x)
```

Arguments

Χ

object of class:Model, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

PoolConnection_by_PoolIndex

automatic title

Description

automatic title

Usage

```
PoolConnection_by_PoolIndex(source, destination, src_to_dest)
```

Arguments

source : see method arguments
destination : see method arguments
src_to_dest : see method arguments

S4 methods for this generic

- PoolConnection_by_PoolIndex,ANY,ANY,missing-method
- PoolConnection_by_PoolIndex,missing,missing,character-method

PoolConnection_by_PoolIndex,ANY,ANY,missing-method constructor from an ordered pair of PoolId objects

Description

constructor from an ordered pair of PoolId objects

Usage

```
## S4 method for signature 'ANY,ANY,missing'
PoolConnection_by_PoolIndex(source, destination)
```

Arguments

source no manual documentation destination no manual documentation

PoolConnection_by_PoolIndex,missing,missing,character-method constructor from strings of the form '1_to_2'

Description

constructor from strings of the form '1_to_2'

Usage

```
## S4 method for signature 'missing,missing,character'
PoolConnection_by_PoolIndex(src_to_dest)
```

Arguments

src_to_dest object of class:character, no manual documentation

PoolConnection_by_PoolIndex-class

Objects that have a source and a destination described by integer like objects (of class PoolIndex)

Description

Examples are internal Fluxes and Fluxrates Their 'topologic' part and many related sanity checks are implemented here rather than in every function that uses fluxes or rates The methods are also essential for the translation from (internal) flux lists to the respective parts of compartmental matrices and back

PoolConnection_by_PoolName

automatic title

Description

automatic title

Usage

PoolConnection_by_PoolName(source, destination, src_to_dest)

Arguments

source : see method arguments
destination : see method arguments
src_to_dest : see method arguments

S4 methods for this generic

• PoolConnection_by_PoolName, ANY, ANY, missing-method

PoolConnection_by_PoolName, ANY, ANY, missing-method constructor from an ordered pair of PoolName objects

Description

constructor from an ordered pair of PoolName objects

Usage

```
## S4 method for signature 'ANY,ANY,missing'
PoolConnection_by_PoolName(source, destination)
```

Arguments

source no manual documentation destination no manual documentation

PoolConnection_by_PoolName-class

Objects that have a source and a destination determined by a string like object of class PoolName

Description

Examples are internal Fluxex and Fluxrates Their 'topologic' part and many related sanity checks are implemented here rather than in every function that uses fluxes or rates The methods are also essential for the translation from (internal) flux lists to the respective parts of compartmental matrices and back

PoolId-class

common class for pool ids

Description

examples for ids are index or name

PoolIndex

automatic title

Description

automatic title

Usage

```
PoolIndex(id, ...)
```

Arguments

id : see method arguments... : see method arguments

S4 methods for this generic

- PoolIndex, character-method
- PoolIndex, numeric-method
- PoolIndex, PoolIndex-method
- PoolIndex, PoolName-method

PoolIndex, character-method

construct from number string like '1' or '3'

Description

```
construct from number string like '1' or '3'
```

Usage

```
## S4 method for signature 'character'
PoolIndex(id)
```

Arguments

id

object of class:character, no manual documentation

PoolIndex,numeric-method

PoolIndex, numeric-method

construct from number

Description

construct from number

Usage

```
## S4 method for signature 'numeric'
PoolIndex(id)
```

Arguments

id

object of class:numeric, no manual documentation

PoolIndex, PoolIndex-method

pass throug constructor fron an object of the same class

Description

This is here to be able to call PoolIndex on a PoolIndex ojbect without having to chech before if it is necessary, the unnecessary poolNames argument will be ignored

Usage

```
## S4 method for signature 'PoolIndex'
PoolIndex(id, poolNames)
```

Arguments

id object of class:PoolIndex, no manual documentation

poolNames no manual documentation

214 PoolName

```
PoolIndex, PoolName-method
```

convert to number like object

Description

convert to number like object

Usage

```
## S4 method for signature 'PoolName'
PoolIndex(id, poolNames)
```

Arguments

id object of class:PoolName, no manual documentation

poolNames no manual documentation

PoolIndex-class 3

S4 class for pool indices

Description

used to dispatch pool index specific methods like conversion to names.

PoolName

automatic title

Description

automatic title

Usage

```
PoolName(id, ...)
```

Arguments

id : see method arguments... : see method arguments

S4 methods for this generic

- PoolName, character-method
- PoolName, PoolIndex-method
- PoolName, PoolName-method

PoolName, character-method

construct from string with checks

Description

construct from string with checks

Usage

```
## S4 method for signature 'character'
PoolName(id)
```

Arguments

id object of class:character, no manual documentation

PoolName, PoolIndex-method

convert to string like object

Description

convert to string like object

Usage

```
## S4 method for signature 'PoolIndex'
PoolName(id, poolNames)
```

Arguments

id object of class:PoolIndex, no manual documentation

poolNames no manual documentation

216 predefinedModels

PoolName, PoolName-method

pass throug constructor fron an object of the same class

Description

This is here to be able to call PoolName on a PoolName ojbect without having to test before if we have to.

Usage

```
## S4 method for signature 'PoolName'
PoolName(id, poolNames)
```

Arguments

id object of class:PoolName, no manual documentation

poolNames no manual documentation

PoolName-class class for pool-name-strings

Description

used to control the creation of PoolName objects which have to be valid R identifiers and to dispatch pool name specific methods like conversion to pool indices

predefined Models

PREDEFINED MODELS

Description

GaudinskiModel14
ICBMModel
OnepModel
OnepModel14
RothCModel
ThreepFeedbackModel
ThreepFeedbackModel14
ThreepParallelModel
ThreepParallelModel14
ThreepSeriesModel

print,Model-method 217

ThreepSeriesModel14
TwopFeedbackModel
TwopFeedbackModel14
TwopParallelModel
TwopParallelModel14
TwopMmmodel
ThreepairMmmodel
TwopSeriesModel
TwopSeriesModel14
YassoModel
bacwaveModel
Yasso07Model
SeriesLinearModel14
CenturyModel

print,Model-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model'
print(x)
```

Arguments

Х

object of class:Model, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

print,NlModel-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
print(x)
```

Arguments

Х

object of class:NlModel, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

RespirationCoefficients

helper function to compute respiration coefficients

Description

This function computes the respiration coefficients as function of time for all pools according to the given matrix function A(t)

Usage

RespirationCoefficients(A)

Arguments

Α

A matrix valued function representing the model.

Value

A vector valued function of time containing the respiration coefficients for all pools.

RothCModel 219

othCModel Implementation of the RothCModel	RothCModel
--	------------

Description

This function implements the RothC model of Jenkinson et al. It is a wrapper for the more general function GeneralModel.

Usage

```
RothCModel(
    t,
    ks = c(k.DPM = 10, k.RPM = 0.3, k.BIO = 0.66, k.HUM = 0.02, k.IOM = 0),
    C0 = c(0, 0, 0, 0, 2.7),
    In = 1.7,
    FYM = 0,
    DR = 1.44,
    clay = 23.4,
    xi = 1,
    solver = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought.
ks	A vector of lenght 5 containing the values of the decomposition rates for the different pools
C0	A vector of length 5 containing the initial amount of carbon for the 5 pools.
In	A scalar or data.frame object specifying the amount of litter inputs by time.
FYM	A scalar or data.frame object specifying the amount of Farm Yard Manure inputs by time.
DR	A scalar representing the ratio of decomposable plant material to resistant plant material (DPM/RPM).
clay	Percent clay in mineral soil.
xi	A scalar or data.frame object specifying the external (environmental and/or edaphic) effects on decomposition rates.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE forces the constructor to create the model even if it is invalid

Value

A Model Object that can be further queried

220 ScalarTimeMap

References

Jenkinson, D. S., S. P. S. Andrew, J. M. Lynch, M. J. Goss, and P. B. Tinker. 1990. The Turnover of Organic Carbon and Nitrogen in Soil. Philosophical Transactions: Biological Sciences 329:361-368. Sierra, C.A., M. Mueller, S.E. Trumbore. 2012. Models of soil organic matter decomposition: the SoilR package version 1.0. Geoscientific Model Development 5, 1045-1060.

See Also

There are other predefinedModels and also more general functions like Model.

Examples

```
t=0:500
Ex=RothCModel(t)
Ct=getC(Ex)
Rt=getReleaseFlux(Ex)
matplot(t,Ct,type="l",col=1:5, ylim=c(0,25),
ylab=expression(paste("Carbon stores (Mg C ", ha^-1,")")),
xlab="Time (years)", lty=1)
lines(t,rowSums(Ct),lwd=2)
legend("topleft",
c("Pool 1, DPM",
"Pool 2, RPM",
"Pool 3, BIO",
"Pool 4, HUM",
"Pool 5, IOM",
"Total Carbon"),
1ty=1,
lwd=c(rep(1,5),2),
col=c(1:5,1),
bty="n"
)
```

ScalarTimeMap

automatic title

Description

automatic title

Usage

```
ScalarTimeMap(
map,
starttime,
endtime,
times,
data,
```

```
lag = 0,
interpolation = splinefun,
...
)
```

Arguments

map : see method arguments
starttime : see method arguments
endtime : see method arguments
times : see method arguments
data : see method arguments
lag : see method arguments
interpolation : see method arguments
... : see method arguments

S4 methods for this generic

• ScalarTimeMap, missing, missing, missing, missing, numeric-method

```
{\it Scalar Time Map, missing, missing, missing, missing, numeric-method} \\ {\it constructor}
```

Description

special case for a time map from a constant

Usage

```
## S4 method for signature 'missing,missing,missing,missing,numeric'
ScalarTimeMap(starttime = -Inf, endtime = +Inf, data, lag = 0)
```

Arguments

starttime	object of class:missing, no manual documentation
endtime	object of class:missing, no manual documentation
data	object of class:numeric, no manual documentation

lag no manual documentation

222 SeriesLinearModel

ScalarTimeMap-class

S4 class for a scalar time dependent function on a finite time interval

Description

S4 class for a scalar time dependent function on a finite time interval

SeriesLinearModel

General m-pool linear model with series structure

Description

This function creates a model for m number of pools connected in series. It is a wrapper for the more general function GeneralModel.

Usage

```
SeriesLinearModel(
    t,
    m.pools,
    ki,
    Tij,
    C0,
    In,
    xi = 1,
    solver = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought.
m.pools	An integer with the total number of pools in the model.
ki	A vector of lenght m containing the values of the decomposition rates for each pool i.
Tij	A vector of length m-1 with the transfer coefficients from pool j to pool i. The value of these coefficients must be in the range [0, 1].
C0	A vector of length m containing the initial amount of carbon for the m pools.
In	A scalar or data.frame object specifying the amount of litter inputs by time.
хi	A scalar or data.frame object specifying the external (environmental and/or edaphic) effects on decomposition rates.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE Forces the constructor to create the model even if it is invalid

SeriesLinearModel14 223

References

Sierra, C.A., M. Mueller, S.E. Trumbore. 2012. Models of soil organic matter decomposition: the SoilR package version 1.0. Geoscientific Model Development 5, 1045-1060.

See Also

There are other predefinedModels and also more general functions like Model.

Examples

```
#A five-pool model
t_start=0
t_end=10
tn=50
timestep=(t_end-t_start)/tn
t=seq(t_start,t_end,timestep)
ks=c(k1=0.8,k2=0.4,k3=0.2,k4=0.1,k5=0.05)
Ts=c(0.5,0.2,0.2,0.1)
C0=c(C10=100,C20=150, C30=50, C40=50, C50=10)
In = 50
Ex1=SeriesLinearModel(t=t,m.pools=5,ki=ks,Tij=Ts,C0=C0,In=In,xi=fT.Q10(15))
Ct=getC(Ex1)
matplot(t,Ct,type="1",col=2:6,lty=1,ylim=c(0,sum(C0)))
lines(t,rowSums(Ct),lwd=2)
legend("topright",c("Total C","C in pool 1", "C in pool 2","C in pool 3",
"C in pool 4", "C in pool 5"),
lty=1,col=1:6,lwd=c(2,rep(1,5)),bty="n")
```

SeriesLinearModel14 General m-pool linear C14 model with series structure

Description

This function creates a radiocarbon model for m number of pools connected in series. It is a wrapper for the more general function GeneralModel_14.

Usage

```
SeriesLinearModel14(
   t,
   m.pools,
   ki,
   Tij,
   C0,
   F0_Delta14C,
   In,
```

224 SeriesLinearModel14

```
xi = 1,
inputFc,
lambda = -0.0001209681,
lag = 0,
solver = deSolve.lsoda.wrapper,
pass = FALSE
)
```

Arguments

A vector containing the points in time where the solution is sought.
An integer with the total number of pools in the model.
A vector of lenght m containing the values of the decomposition rates for each pool i.
A vector of length m-1 with the transfer coefficients from pool j to pool i. The value of these coefficients must be in the range [0, 1].
A vector of length m containing the initial amount of carbon for the m pools.
A vector of length m containing the initial amount of the radiocarbon fraction for the m pools.
A scalar or data.frame object specifying the amount of litter inputs by time.
A scalar or data.frame object specifying the external (environmental and/or edaphic) effects on decomposition rates.
A Data Frame object containing values of atmospheric Delta14C per time. First column must be time values, second column must be Delta14C values in per mil.
Radioactive decay constant. By default lambda= $-0.0001209681 \text{ y}^{-1}$. This has the side effect that all your time related data are treated as if the time unit was year.
A positive scalar representing a time lag for radiocarbon to enter the system.
A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
if TRUE Forces the constructor to create the model even if it is invalid

References

Sierra, C.A., M. Mueller, S.E. Trumbore. 2014. Modeling radiocarbon dynamics in soils: SoilR version 1.1. Geoscientific Model Development 7, 1919-1931.

See Also

There are other predefinedModels and also more general functions like Model.

show,Model-method 225

Examples

```
years=seq(1901,2009,by=0.5)
LitterInput=700
Ex=SeriesLinearModel14(
t=years,ki=c(k1=1/2.8, k2=1/35, k3=1/100), m.pools=3,
C0=c(200,5000,500), F0_Delta14C=c(0,0,0),
In=LitterInput, Tij=c(0.5, 0.1),inputFc=C14Atm_NH
R14m=getF14R(Ex)
C14m=getF14C(Ex)
C14t=getF14(Ex)
par(mfrow=c(2,1))
plot(C14Atm_NH, type="1", xlab="Year",
ylab="Delta 14C (per mil)",xlim=c(1940,2010))
lines(years, C14t[,1], col=4)
lines(years, C14t[,2],col=4,lwd=2)
lines(years, C14t[,3],col=4,lwd=3)
legend(
"topright",
c("Delta 14C Atmosphere", "Delta 14C pool 1", "Delta 14C pool 2", "Delta 14C pool 3"),
lty=rep(1,4), col=c(1,4,4,4), lwd=c(1,1,2,3), bty="n")
plot(C14Atm_NH,type="1",xlab="Year",ylab="Delta 14C (per mil)",xlim=c(1940,2010))
lines(years,C14m,col=4)
lines(years,R14m,col=2)
legend("topright",c("Delta 14C Atmosphere","Delta 14C SOM", "Delta 14C Respired"),
lty=c(1,1,1), col=c(1,4,2),bty="n")
par(mfrow=c(1,1))
```

show, Model-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model'
show(object)
```

Arguments

object

object of class:Model, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags

226 SoilR.F0.new

with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

show, NlModel-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'NlModel'
show(object)
```

Arguments

object

object of class:NlModel, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update autocomment roclet".

SoilR.F0.new

deprecated function that used to create an object of class SoilR.F0

Description

The function internally calls the constructor of the replacement class ConstFc-class.

Usage

```
SoilR.F0.new(values = c(0), format = "Delta14C")
```

Arguments

values a numeric vector

format a character string describing the format e.g. "Delta14C"

Value

An object of class ConstFc-class that contains data and a format description that can later be used to convert the data into other formats if the conversion is implemented.

 ${\it State Dependent In Flux Vector-class} \\ automatic\ title$

Description

automatic title

StateIndependentInFluxList_by_PoolIndex

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

StateIndependentInFluxList_by_PoolIndex(object)

Arguments

object

see method arguments

StateIndependentInFluxList_by_PoolIndex,list-method constructor from a normal list

Description

constructor from a normal list

Usage

```
## S4 method for signature 'list'
StateIndependentInFluxList_by_PoolIndex(object)
```

Arguments

object

object of class:list, A list. Either a list of elements of type StateIndependentIn-Flux_by_PoolIndex or a list where the names of the elements are strings of the form '3' (for an in flux connected to pool 3)

Value

An object of class StateIndependentInFluxList_by_PoolIndex

The function checks if the elements are of the desired type or can be converted to it. It is mainly used internally and usually called by the front end functions to convert the user supplied arguments.

StateIndependentInFluxList_by_PoolIndex-class

Subclass of list that is guaranteed to contain only elements of type StateIndependentInFlux_by_PoolIndex

Description

Subclass of list that is guaranteed to contain only elements of type StateIndependentInFlux_by_PoolIndex

StateIndependentInFluxList_by_PoolName

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

StateIndependentInFluxList_by_PoolName(object)

Arguments

object

see method arguments

StateIndependentInFlux_by_PoolIndex-class

Constructor for the class with the same name

Description

Constructor for the class with the same name

Slots

destinationIndex

flux

summary,Model-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model'
summary(object)
```

Arguments

object

object of class:Model, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

systemAge

System and pool age for compartment models

Description

Computes the density distribution and mean for the system and pool ages of a SoilR model or a matrix representation of a compartmental model

Usage

```
systemAge(A, u, a = seq(0, 100), q = c(0.05, 0.5, 0.95))
```

Arguments

- A A compartmental linear square matrix with cycling rates in the diagonal and transfer rates in the off-diagonal.
- u A one-column matrix defining the amount of inputs per compartment.
- a A sequence of ages to calculate density functions
- q A vector of probabilities to calculate quantiles of the system age distribution

Value

A list with 5 objects: mean system age, system age distribution, quantiles of system age distribution, mean pool-age, and pool-age distribution.

230 ThreepairMMmodel

See Also

transitTime

ThreepairMMmodel Implementation of a 6-pool Michaelis-Menten model

Description

This function implements a 6-pool Michaelis-Meneten model with pairs of microbial biomass and substrate pools.

Usage

```
ThreepairMMmodel(t, ks, kb, Km, r, Af = 1, ADD, ival)
```

Arguments

t	vector of times to calculate a solution.
ks	a vector of length 3 representing SOM decomposition rate (m3 d-1 (gCB)-1)
kb	a vector of length 3 representing microbial decay rate (d-1)
Km	a vector of length 3 representing the Michaelis constant (g m-3)
r	a vector of length 3 representing the respired carbon fraction (unitless)
Af	a scalar representing the Activity factor; i.e. a temperature and moisture modifier (unitless)
ADD	a vector of length 3 representing the annual C input to the soil (g m-3 d-1)
ival	a vector of length 6 with the initial values of the SOM pools and the microbial biomass pools (g m -3)

Value

An object of class NlModel that can be further queried.

See Also

There are other predefinedModels and also more general functions like Model.

Examples

ThreepFeedbackModel

```
ylim=c(0,max(Cpools)*1.2),col=rep(1:3,each=2),
main="Multi-substrate microbial model")
legend("topright",c("Substrate 1", "Microbial biomass 1",
    "Substrate 2", "Microbial biomass 2",
    "Substrate 3", "Microbial biomass 3"),
lty=rep(1:2,3),col=rep(1:3,each=2),
bty="n")
#State-space diagram
plot(Cpools[,2],Cpools[,1],type="1",ylab="Substrate",xlab="Microbial biomass")
lines(Cpools[,4],Cpools[,3],col=2)
lines(Cpools[,6],Cpools[,5],col=3)
legend("topright",c("Substrate-Enzyme pair 1","Substrate-Enzyme pair 2",
    "Substrate-Enzyme pair 3"),col=1:3,lty=1,bty="n")
#Microbial biomass over time
plot(days,Cpools[,2],type="1",col=2,xlab="Days",ylab="Microbial biomass")
```

ThreepFeedbackModel

Implementation of a three pool model with feedback structure

231

Description

This function creates a model for three pools connected with feedback. It is a wrapper for the more general function GeneralModel.

Usage

```
ThreepFeedbackModel(
    t,
    ks,
    a21,
    a12,
    a32,
    a23,
    C0,
    In,
    xi = 1,
    solver = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

Arguments

t	F	\ vector	containing t	the point	s in time	where t	he solu	ition is soug	ht.

A vector of lenght 3 containing the values of the decomposition rates for pools

1, 2, and 3.

A scalar with the value of the transfer rate from pool 1 to pool 2.

A scalar with the value of the transfer rate from pool 2 to pool 1.

a32	A scalar with the value of the transfer rate from pool 2 to pool 3.
a23	A scalar with the value of the transfer rate from pool 3 to pool 2.
C0	A vector containing the initial concentrations for the 3 pools. The length of this vector is 3
In	A data frame object specifying the amount of litter inputs by time.
xi	A scalar or data.frame object specifying the external (environmental and/or edaphic) effects on decomposition rates.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE forces the constructor to create the model even if it is invalid

References

Sierra, C.A., M. Mueller, S.E. Trumbore. 2012. Models of soil organic matter decomposition: the SoilR package version 1.0. Geoscientific Model Development 5, 1045-1060.

See Also

There are other predefinedModels and also more general functions like Model.

Examples

```
t_start=0
t_end=10
tn=50
timestep=(t_end-t_start)/tn
t=seq(t_start,t_end,timestep)
ks=c(k1=0.8, k2=0.4, k3=0.2)
C0=c(C10=100,C20=150, C30=50)
In = 60
Temp=rnorm(t,15,1)
TempEffect=data.frame(t,fT.Daycent1(Temp))
\texttt{Ex1=ThreepFeedbackModel(t=t,ks=ks,a21=0.5,a12=0.1,a32=0.2,a23=0.1,C0=C0,In=In,xi=TempEffect)}
Ct=getC(Ex1)
Rt=getReleaseFlux(Ex1)
plot(
t,
rowSums(Ct),
type="1",
ylab="Carbon stocks (arbitrary units)",
xlab="Time (arbitrary units)",
ylim=c(0,sum(Ct[51,]))
lines(t,Ct[,1],col=2)
lines(t,Ct[,2],col=4)
lines(t,Ct[,3],col=3)
```

```
legend(
"topleft"
c("Total C", "C in pool 1", "C in pool 2", "C in pool 3"),
lty=c(1,1,1,1),
col=c(1,2,4,3),
lwd=c(2,1,1,1),
bty="n"
plot(
t,
rowSums(Rt),
type="1",
ylab="Carbon released (arbitrary units)",
xlab="Time (arbitrary units)",
1wd=2,
ylim=c(0,sum(Rt[51,]))
)
lines(t,Rt[,1],col=2)
lines(t,Rt[,2],col=4)
lines(t,Rt[,3],col=3)
legend(
"topleft"
c("Total C release",
"C release from pool 1",
"C release from pool 2",
"C release from pool 3"),
1ty=c(1,1,1,1),
col=c(1,2,4,3),
1wd=c(2,1,1,1),
bty="n"
)
Inr=data.frame(t,Random.inputs=rnorm(length(t),50,10))
plot(Inr,type="1")
Ex2=ThreepFeedbackModel(t=t,ks=ks,a21=0.5,a12=0.1,a32=0.2,a23=0.1,C0=C0,In=Inr)
Ctr=getC(Ex2)
Rtr=getReleaseFlux(Ex2)
plot(
t,
rowSums(Ctr),
type="1",
ylab="Carbon stocks (arbitrary units)",
xlab="Time (arbitrary units)",
1wd=2,
ylim=c(0,sum(Ctr[51,]))
)
lines(t,Ctr[,1],col=2)
lines(t,Ctr[,2],col=4)
lines(t,Ctr[,3],col=3)
legend("topright",c("Total C","C in pool 1", "C in pool 2","C in pool 3"),
```

```
lty=c(1,1,1,1),col=c(1,2,4,3),lwd=c(2,1,1,1),bty="n")
plot(t,rowSums(Rtr),type="l",ylab="Carbon released (arbitrary units)",
xlab="Time (arbitrary units)",lwd=2,ylim=c(0,sum(Rtr[51,])))
lines(t,Rtr[,1],col=2)
lines(t,Rtr[,2],col=4)
lines(t,Rtr[,3],col=3)
legend(
"topright",
c("Total C release",
"C release from pool 1",
"C release from pool 2",
"C release from pool 3"
),
lty=c(1,1,1,1),
col=c(1,2,4,3),
lwd=c(2,1,1,1),
bty="n")
```

ThreepFeedbackModel14 Implementation of a three-pool C14 model with feedback structure

Description

This function creates a model for three pools connected with feedback. It is a wrapper for the more general function GeneralModel_14 that can handle an arbitrary number of pools with arbitrary connections. GeneralModel_14 can also handle input data in different formats, while this function requires its input as Delta14C. Look at it as an example how to use the more powerful tool GeneralModel_14 or as a shortcut for a standard task!

Usage

```
ThreepFeedbackModel14(
  t,
  ks,
 C0,
 F0_Delta14C,
  In,
  a21,
  a12,
  a32,
  a23,
 xi = 1,
  inputFc,
  lambda = -0.0001209681,
  lag = 0,
  solver = deSolve.lsoda.wrapper,
  pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought. It must be specified within the same period for which the Delta 14 C of the atmosphere is provided. The default period in the provided dataset C14Atm_NH is 1900-2010.
ks	A vector of length 3 containing the decomposition rates for the 3 pools.
C0	A vector of length 3 containing the initial amount of carbon for the 3 pools.
F0_Delta14C	A vector of length 3 containing the initial fraction of radiocarbon for the 3 pools in Delta14C format. The format will be assumed to be Delta14C, so please take care that it is.
In	A scalar or a data.frame object specifying the amount of litter inputs by time.
a21	A scalar with the value of the transfer rate from pool 1 to pool 2.
a12	A scalar with the value of the transfer rate from pool 2 to pool 1.
a32	A scalar with the value of the transfer rate from pool 2 to pool 3.
a23	A scalar with the value of the transfer rate from pool 3 to pool 2.
xi	A scalar or a data.frame specifying the external (environmental and/or edaphic) effects on decomposition rates.
inputFc	A Data Frame object containing values of atmospheric Delta14C per time. First column must be time values, second column must be Delta14C values in per mil.
lambda	Radioactive decay constant. By default lambda=-0.0001209681 y^-1. This has the side effect that all your time related data are treated as if the time unit was year.
lag	A positive scalar representing a time lag for radiocarbon to enter the system.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE forces the constructor to create the model even if it is invalid. This is sometimes useful when SoilR is used by externel packages for parameter estimation.

See Also

There are other predefinedModels and also more general functions like Model_14.

Examples

```
#years=seq(1901,2009,by=0.5)
years=seq(1904,2009,by=0.5)
LitterInput=100
k1=1/2; k2=1/10; k3=1/50
a21=0.9*k1
a12=0.4*k2
a32=0.4*k2
a23=0.7*k3
```

Feedback=ThreepFeedbackModel14(

```
t=years,
ks=c(k1=k1, k2=k2, k3=k3),
C0=c(100,500,1000),
F0_Delta14C=c(0,0,0),
In=LitterInput,
a21=a21,
a12=a12,
a32=a32,
a23=a23,
inputFc=C14Atm_NH
F.R14m=getF14R(Feedback)
F.C14m=getF14C(Feedback)
F.C14t=getF14(Feedback)
Series=ThreepSeriesModel14(
t=years,
ks=c(k1=k1, k2=k2, k3=k3),
C0=c(100,500,1000),
F0_Delta14C=c(0,0,0),
In=LitterInput,
a21=a21,
a32=a32,
inputFc=C14Atm_NH
S.R14m=getF14R(Series)
S.C14m=getF14C(Series)
S.C14t=getF14(Series)
Parallel=ThreepParallelModel14(
t=years,
ks=c(k1=k1, k2=k2, k3=k3),
C0=c(100,500,1000),
F0_Delta14C=c(0,0,0),
In=LitterInput,
gam1=0.6,
gam2=0.2,
inputFc=C14Atm_NH,
lag=2
)
P.R14m=getF14R(Parallel)
P.C14m=getF14C(Parallel)
P.C14t=getF14(Parallel)
par(mfrow=c(3,2))
plot(
C14Atm_NH,
type="1",
xlab="Year",
ylab=expression(paste(Delta^14,"C ","(\u2030)")),
xlim=c(1940,2010)
lines(years, P.C14t[,1], col=4)
```

```
lines(years, P.C14t[,2],col=4,lwd=2)
lines(years, P.C14t[,3],col=4,lwd=3)
legend(
"topright",
c("Atmosphere", "Pool 1", "Pool 2", "Pool 3"),
lty=rep(1,4),
col=c(1,4,4,4),
lwd=c(1,1,2,3),
bty="n"
plot(C14Atm_NH, type="1", xlab="Year",
ylab=expression(paste(Delta^14, "C ","(\u2030)")),xlim=c(1940,2010))
lines(years,P.C14m,col=4)
lines(years,P.R14m,col=2)
legend("topright",c("Atmosphere","Bulk SOM", "Respired C"),
lty=c(1,1,1), col=c(1,4,2),bty="n")
plot(C14Atm_NH, type="1", xlab="Year",
ylab=expression(paste(Delta^14, "C ","(\u2030)")),xlim=c(1940,2010))
lines(years, S.C14t[,1], col=4)
lines(years, S.C14t[,2],col=4,lwd=2)
lines(years, S.C14t[,3],col=4,lwd=3)
legend("topright",c("Atmosphere", "Pool 1", "Pool 2", "Pool 3"),
lty=rep(1,4),col=c(1,4,4,4),lwd=c(1,1,2,3),bty="n")
plot(C14Atm_NH, type="l", xlab="Year",
ylab=expression(paste(Delta^14,"C ","(\u2030)")),xlim=c(1940,2010))
lines(years, S.C14m, col=4)
lines(years,S.R14m,col=2)
legend("topright",c("Atmosphere","Bulk SOM", "Respired C"),
lty=c(1,1,1), col=c(1,4,2),bty="n")
plot(C14Atm_NH, type="1", xlab="Year",
ylab=expression(paste(Delta^14, "C ","(\u2030)")),xlim=c(1940,2010))
lines(years, F.C14t[,1], col=4)
lines(years, F.C14t[,2],col=4,lwd=2)
lines(years, F.C14t[,3],col=4,lwd=3)
legend("topright",c("Atmosphere", "Pool 1", "Pool 2", "Pool 3"),
lty=rep(1,4),col=c(1,4,4,4),lwd=c(1,1,2,3),bty="n")
plot(C14Atm_NH, type="1", xlab="Year",
ylab=expression(paste(Delta^14,"C ","(\u2030)")),xlim=c(1940,2010))
lines(years,F.C14m,col=4)
lines(years,F.R14m,col=2)
legend("topright",c("Atmosphere","Bulk SOM", "Respired C"),
lty=c(1,1,1), col=c(1,4,2),bty="n")
par(mfrow=c(1,1))
```

238 ThreepParallelModel

Description

The function creates a model for three independent (parallel) pools. It is a wrapper for the more general function ParallelModel that can handle an arbitrary number of pools.

Usage

```
ThreepParallelModel(
   t,
   ks,
   C0,
   In,
   gam1,
   gam2,
   xi = 1,
   solver = deSolve.lsoda.wrapper,
   pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought.
ks	A vector of length 3 containing the decomposition rates for the 3 pools.
C0	A vector of length 3 containing the initial amount of carbon for the 3 pools.
In	A scalar or a data frame object specifying the amount of litter inputs by time.
gam1	A scalar representing the partitioning coefficient, i.e. the proportion from the total amount of inputs that goes to pool 1.
gam2	A scalar representing the partitioning coefficient, i.e. the proportion from the total amount of inputs that goes to pool 2.
xi	A scalar or a data.frame specifying the external (environmental and/or edaphic) effects on decomposition rates.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	Logical that forces the Model to be created even if the chect suggest problems.

References

Sierra, C.A., M. Mueller, S.E. Trumbore. 2012. Models of soil organic matter decomposition: the SoilR package version 1.0. Geoscientific Model Development 5, 1045-1060.

See Also

There are other predefinedModels and also more general functions like Model.

Examples

```
t_start=0
t_end=10
tn=50
timestep=(t_end-t_start)/tn
t=seq(t_start,t_end,timestep)
Ex=ThreepParallelModel(t,ks=c(k1=0.5,k2=0.2,k3=0.1),
C0=c(c10=100, c20=150,c30=50), In=20, gam1=0.7, gam2=0.1, xi=0.5)
Ct=getC(Ex)
plot(t,rowSums(Ct),type="1",lwd=2,
ylab="Carbon stocks (arbitrary units)",xlab="Time",ylim=c(0,sum(Ct[1,])))
lines(t,Ct[,1],col=2)
lines(t,Ct[,2],col=4)
lines(t,Ct[,3],col=3)
legend("topright",c("Total C","C in pool 1", "C in pool 2","C in pool 3"),
lty=c(1,1,1,1), col=c(1,2,4,3), lwd=c(2,1,1,1), bty="n")
Rt=getReleaseFlux(Ex)
plot(t,rowSums(Rt),type="l",ylab="Carbon released (arbitrary units)",
xlab="Time",lwd=2,ylim=c(0,sum(Rt[1,])))
lines(t,Rt[,1],col=2)
lines(t,Rt[,2],col=4)
lines(t,Rt[,3],col=3)
legend("topright",c("Total C release","C release from pool 1",
"C release from pool 2", "C release from pool 3"),
lty=c(1,1,1,1), col=c(1,2,4,3), lwd=c(2,1,1,1), bty="n")
```

ThreepParallelModel14 Implementation of a three-pool C14 model with parallel structure

Description

This function creates a model for two independent (parallel) pools. It is a wrapper for the more general function GeneralModel_14 that can handle an arbitrary number of pools.

Usage

```
ThreepParallelModel14(
    t,
    ks,
    C0,
    F0_Delta14C,
    In,
    gam1,
    gam2,
    xi = 1,
    inputFc,
```

```
lambda = -0.0001209681,
lag = 0,
solver = deSolve.lsoda.wrapper,
pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought. It must be specified within the same period for which the Delta 14 C of the atmosphere is provided. The default period in the provided dataset C14Atm_NH is 1900-2010.
ks	A vector of length 3 containing the decomposition rates for the 3 pools.
C0	A vector of length 3 containing the initial amount of carbon for the 3 pools.
F0_Delta14C	A vector of length 3 containing the initial amount of the radiocarbon fraction for the 3 pools in Delta14C values in per mil.
In	A scalar or a data.frame object specifying the amount of litter inputs by time.
gam1	A scalar representing the partitioning coefficient, i.e. the proportion from the total amount of inputs that goes to pool 1.
gam2	A scalar representing the partitioning coefficient, i.e. the proportion from the total amount of inputs that goes to pool 2.
хi	A scalar or a data.frame specifying the external (environmental and/or edaphic) effects on decomposition rates.
inputFc	A Data Frame object containing values of atmospheric Delta14C per time. First column must be time values, second column must be Delta14C values in per mil.
lambda	Radioactive decay constant. By default lambda=-0.0001209681 y^-1. This has the side effect that all your time related data are treated as if the time unit was year.
lag	A positive scalar representing a time lag for radiocarbon to enter the system.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE Forces the constructor to create the model even if it is invalid

See Also

There are other predefinedModels and also more general functions like Model_14.

Examples

```
years=seq(1903,2009,by=0.5) # note that we
LitterInput=700
Ex=ThreepParallelModel14(
t=years,
ks=c(k1=1/2.8, k2=1/35, k3=1/100),
C0=c(200,5000,500),
```

ThreepSeriesModel 241

```
F0_Delta14C=c(0,0,0),
In=LitterInput,
gam1=0.7,
gam2=0.1,
inputFc=C14Atm_NH,
lag=2
R14m=getF14R(Ex)
C14m=getF14C(Ex)
C14t=getF14(Ex)
par(mfrow=c(2,1))
plot(C14Atm_NH,type="1",xlab="Year",ylab="Delta 14C (per mil)",xlim=c(1940,2010))
lines(years, C14t[,1], col=4)
lines(years, C14t[,2],col=4,lwd=2)
lines(years, C14t[,3],col=4,lwd=3)
legend(
"topright",
c(
"Delta 14C Atmosphere",
"Delta 14C pool 1",
"Delta 14C pool 2",
"Delta 14C pool 3"
lty=rep(1,4),
col=c(1,4,4,4),
lwd=c(1,1,2,3),
bty="n"
)
plot(C14Atm_NH,type="1",xlab="Year",ylab="Delta 14C (per mil)",xlim=c(1940,2010))
lines(years,C14m,col=4)
lines(years,R14m,col=2)
legend("topright",c("Delta 14C Atmosphere","Delta 14C SOM", "Delta 14C Respired"),
lty=c(1,1,1), col=c(1,4,2),bty="n")
par(mfrow=c(1,1))
```

ThreepSeriesModel

Implementation of a three pool model with series structure

Description

This function creates a model for three pools connected in series. It is a wrapper for the more general function GeneralModel.

Usage

```
ThreepSeriesModel(
  t,
  ks,
```

242 ThreepSeriesModel

```
a21,
a32,
C0,
In,
xi = 1,
solver = deSolve.lsoda.wrapper,
pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought.
ks	A vector of lenght 3 containing the values of the decomposition rates for pools 1, 2, and 3.
a21	A scalar with the value of the transfer rate from pool 1 to pool 2.
a32	A scalar with the value of the transfer rate from pool 2 to pool 3.
C0	A vector of length 3 containing the initial amount of carbon for the 3 pools.
In	A scalar or data.frame object specifying the amount of litter inputs by time.
xi	A scalar or data.frame object specifying the external (environmental and/or edaphic) effects on decomposition rates.
solver	A function that solves the system of ODEs. This can be euler or $deSolve.lsoda.wrapper$ or any other user provided function with the same interface.
pass	if TRUE Forces the constructor to create the model even if it is invalid

Value

A Model Object that can be further queried

References

Sierra, C.A., M. Mueller, S.E. Trumbore. 2012. Models of soil organic matter decomposition: the SoilR package version 1.0. Geoscientific Model Development 5, 1045-1060.

See Also

There are other predefinedModels and also more general functions like Model.

Examples

```
t_start=0
t_end=10
tn=50
timestep=(t_end-t_start)/tn
t=seq(t_start,t_end,timestep)
ks=c(k1=0.8,k2=0.4,k3=0.2)
C0=c(C10=100,C20=150, C30=50)
In = 50
```

```
Ex1=ThreepSeriesModel(t=t,ks=ks,a21=0.5,a32=0.2,C0=C0,In=In,xi=fT.Q10(15))
Ct=getC(Ex1)
Rt=getReleaseFlux(Ex1)

plot(t,rowSums(Ct),type="1",ylab="Carbon stocks (arbitrary units)",
xlab="Time (arbitrary units)",lwd=2,ylim=c(0,sum(Ct[1,])))
lines(t,Ct[,1],col=2)
lines(t,Ct[,2],col=4)
lines(t,Ct[,3],col=3)
legend("topright",c("Total C","C in pool 1", "C in pool 2","C in pool 3"),
lty=c(1,1,1,1),col=c(1,2,4,3),lwd=c(2,1,1,1),bty="n")
```

ThreepSeriesModel14

Implementation of a three-pool C14 model with series structure

Description

This function creates a model for three pools connected in series. It is a wrapper for the more general function GeneralModel_14 that can handle an arbitrary number of pools.

Usage

```
ThreepSeriesModel14(
    t,
    ks,
    C0,
    F0_Delta14C,
    In,
    a21,
    a32,
    xi = 1,
    inputFc,
    lambda = -0.0001209681,
    lag = 0,
    solver = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought. It must be specified within the same period for which the Delta 14 C of the atmosphere is provided. The default period in the provided dataset C14Atm_NH is 1900-2010.
ks	A vector of length 3 containing the decomposition rates for the 3 pools.
C0	A vector of length 3 containing the initial amount of carbon for the 3 pools.
F0_Delta14C	A vector of length 3 containing the initial amount of the radiocarbon fraction for the 3 pools.

In	A scalar or a data.frame object specifying the amount of litter inputs by time.
a21	A scalar with the value of the transfer rate from pool 1 to pool 2.
a32	A scalar with the value of the transfer rate from pool 2 to pool 3 as Delta14C values in per mil.
xi	A scalar or a data.frame specifying the external (environmental and/or edaphic) effects on decomposition rates.
inputFc	A Data Frame object containing values of atmospheric Delta14C per time. First column must be time values, second column must be Delta14C values in per mil.
lambda	Radioactive decay constant. By default lambda=-0.0001209681 y^-1. This has the side effect that all your time related data are treated as if the time unit was year.
lag	A positive scalar representing a time lag for radiocarbon to enter the system.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE Forces the constructor to create the model even if it is invalid

Value

A Model Object that can be further queried

See Also

There are other predefinedModels and also more general functions like Model_14.

Examples

```
years=seq(1901,2009,by=0.5)
LitterInput=700
Ex=ThreepSeriesModel14(
t=years, ks=c(k1=1/2.8, k2=1/35, k3=1/100),
C0=c(200,5000,500), F0_Delta14C=c(0,0,0),
In=LitterInput, a21=0.1, a32=0.01,inputFc=C14Atm_NH
)
R14m=getF14R(Ex)
C14m=getF14C(Ex)
C14t=getF14(Ex)
par(mfrow=c(2,1))
plot(C14Atm_NH, type="1", xlab="Year",
ylab="Delta 14C (per mil)",xlim=c(1940,2010))
lines(years, C14t[,1], col=4)
lines(years, C14t[,2],col=4,lwd=2)
lines(years, C14t[,3],col=4,lwd=3)
legend(
"topright",
c("Delta 14C Atmosphere", "Delta 14C pool 1", "Delta 14C pool 2", "Delta 14C pool 3"),
lty=rep(1,4),col=c(1,4,4,4),lwd=c(1,1,2,3),bty="n")
```

TimeMap 245

```
plot(C14Atm_NH,type="1",xlab="Year",ylab="Delta 14C (per mil)",xlim=c(1940,2010))
lines(years,C14m,col=4)
lines(years,R14m,col=2)
legend("topright",c("Delta 14C Atmosphere","Delta 14C SOM", "Delta 14C Respired"),
lty=c(1,1,1), col=c(1,4,2),bty="n")
par(mfrow=c(1,1))
```

TimeMap

constructor for TimeMap-class

Description

```
constructor for TimeMap-class
```

Usage

```
TimeMap(
   map,
   starttime,
   endtime,
   times,
   data,
   lag = 0,
   interpolation = splinefun,
   ...
)
```

Arguments

```
map see method arguments
starttime see method arguments
endtime see method arguments
times see method arguments
data see method arguments
lag see method arguments
interpolation see method arguments
... see method arguments
```

TimeMap, data.frame, missing, missing,

Description

automatic title

Usage

```
## S4 method for signature 'data.frame,missing,missing,missing,missing'
TimeMap(map, lag = 0, interpolation = splinefun)
```

Arguments

map object of class:data.frame, :: no manual documentation

lag :: no manual documentation

interpolation : : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

TimeMap, function, missing, missing, missing, missing, method manual constructor for just a function

Description

The interval will be set to [-Inf,Inf]

Usage

```
## S4 method for signature '`function`,missing,missing,missing,missing'
TimeMap(map, lag = 0)
```

Arguments

map object of class:function, no manual documentation

lag no manual documentation

TimeMap, function, numeric, numeric, missing, missing-method

manual constructor for a function and an interval

Description

manual constructor for a function and an interval

Usage

```
## S4 method for signature '`function`,numeric,numeric,missing,missing'
TimeMap(map, starttime, endtime, lag = 0)
```

Arguments

map object of class:function, no manual documentation starttime object of class:numeric, no manual documentation endtime object of class:numeric, no manual documentation

lag no manual documentation

TimeMap, list, missing, missing, missing, missing-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'list,missing,missing,missing,missing'
TimeMap(map, lag = 0, interpolation = splinefun)
```

Arguments

map object of class:list, :: no manual documentation

lag :: no manual documentation

interpolation :: no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

TimeMap, missing, missing, numeric, array-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'missing,missing,missing,numeric,array'
TimeMap(times, data, lag = 0, interpolation = splinefun)
```

Arguments

times object of class:numeric, : : no manual documentation

data object of class:array, : : no manual documentation

lag :: no manual documentation

interpolation : : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

TimeMap, missing, missing, numeric, list-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'missing,missing,missing,numeric,list'
TimeMap(times, data, lag = 0, interpolation = splinefun)
```

Arguments

times object of class:numeric, :: no manual documentation

data object of class:list, :: no manual documentation

lag :: no manual documentation

interpolation : : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

TimeMap, missing, missing, missing, numeric, matrix-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'missing,missing,missing,numeric,matrix'
TimeMap(times, data, lag = 0, interpolation = splinefun)
```

Arguments

times object of class:numeric, : : no manual documentation

data object of class:matrix, :: no manual documentation

lag :: no manual documentation

interpolation : : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

TimeMap, missing, missing, numeric, numeric-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'missing,missing,missing,numeric,numeric'
TimeMap(times, data, lag = 0, interpolation = splinefun)
```

Arguments

times object of class:numeric, : : no manual documentation object of class:numeric, : : no manual documentation

lag :: no manual documentation

interpolation : : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

TimeMap, TimeMap, ANY, ANY, ANY, ANY-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'TimeMap, ANY, ANY, ANY, ANY'
TimeMap(map)
```

Arguments

map

object of class:TimeMap, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

TimeMap-class 251

TimeMap-class S4 class for a time dependent function
--

Description

The class represents functions which are defined on a (possibly infinite) interval from [starttime,endtime] Instances are usually created internally from data frames or lists provided by the user in the high level interfaces.

Details

The class is necessary to be able to detect unwanted extrapolation of time line data which might otherwise occur for some of the following reasons: SoilR allows to specify measured data for many of its arguments and computes the interpolating functions automatically. The functions returned by the standard R interpolation mechanisms like splinefun or approxfun do not provide a safeguard against accidental extrapolation. Internally SoilR converts nearly all data to time dependent functions e.g. to be used in ode solvers. So the information of the domain of the function has to be kept.

TimeMap.from.Dataframe

TimeMap.from.Dataframe

Description

This function is a deprecated constructor of the class TimeMap.

Usage

```
TimeMap.from.Dataframe(dframe, lag = 0, interpolation = splinefun)
```

Arguments

dtrame	A data frame containing exactly two columns: the first one is interpreted as time
lag	a scalar describing the time lag. Positive Values shift the argument of the interpolation function forward in time. (retard its effect)
interpolation	A function that returns a function the default is splinefun. Other possible values are the linear interpolation approxfun or any self made function with the same interface.

Value

An object of class TimeMap that contains the interpolation function and the limits of the time range where the function is valid. Note that the limits change according to the time lag this serves as a saveguard for Model which thus can check that all involved functions of time are actually defined for the times of interest

252 TimeRangeIntersection

TimeMap.new

deprecated constructor of the class TimeMap.

Description

deprecated functions ######################## use the generic TimeMap(...) instead

Usage

```
TimeMap.new(t_start, t_end, f)
```

Arguments

t_start A number marking the begin of the time domain where the function is validt_end A number the end of the time domain where the function is valid

f The time dependent function definition (a function in R's sense)

Value

An object of class TimeMap that can be used to describe models.

TimeRangeIntersection The time interval where both functions are defined

Description

The time interval where both functions are defined

Usage

```
TimeRangeIntersection(obj1, obj2)
```

Arguments

obj1	An object on which getTimeRange can be called
obj2	An object on which getTimeRange can be called

transitTime 253

+	rai	10	i	+ T	·i	mo

Transit times for compartment models

Description

Computes the density distribution and mean for the transit time of a compartmental model

Usage

```
transitTime(A, u, a = seq(0, 100), q = c(0.05, 0.5, 0.95))
```

Arguments

A	A compartmental linear square matrix with cycling rates in the diagonal and transfer rates in the off-diagonal.
u	A one-column matrix defining the amount of inputs per compartment.
a	A sequence of ages to calculate density functions
q	Vector of probabilities to calculate quantiles of the transit time distribution

Value

A list with 3 objects: mean transit time, transit time density distribution, and quantiles.

See Also

systemAge

TransportDecompositionOperator-class automatic title

Description

automatic title

254 turnoverFit

turnoverFit

Estimation of the turnover time from a soil radiocarbon sample.

Description

This function finds the best possible value of turnover time from a soil radiocarbon sample assuming a one pool model and annual litter inputs.

Usage

```
turnoverFit(
  obsC14,
  obsyr,
  In,
  C0 = 0,
  yr0 = 1900,
  Zone = "NHZone2",
  plot = TRUE,
  by = 0.5
)
```

Arguments

obsC14	a scalar with the observed radiocarbon value in Delta14C of the soil sample.
obsyr	a scalar with the year in which the soil sample was taken.
In	a scalar or data.frame with the annual amount of litter inputs to the soil.
C0	a scalar with the initial amount of carbon stored at the begning of the simulation.
yr0	The year at which simulations will start.
Zone	the hemispheric zone of atmospheric radiocarbon. Possible values are NHZone1: northern hemisphere zone 1, NHZone2: northern hemisphere zone 2, NHZone3: northern hemisphere zone 3, SHZone12: southern hemisphere zones 1 and 2, SHZone3: southern hemisphere zone 3. See Hua2013 for additional information.
plot	logical. Should the function produce a plot?
by	numeric. The increment of the sequence of years used in the simulations.

Details

This algorithm takes the observed values and a given amount of litter inputs, runs OnepModel14, calculates the squared difference between predictions and observations, and uses optimize to find the minimum difference. If the turnover time is relatively short (< 50 yrs), it is safe to assume C0=0 because the soil will reach steady state within the simulation time. However, for longer turnover times it is recommended to use a value of C0 close to the steady state value.

TwopFeedbackModel 255

Value

A scalar with the value of the turnover time that minimizes the difference between the prediction of a one pool model and the observed radiocarbon value.

TwopFeedbackModel

Implementation of a two pool model with feedback structure

Description

This function creates a model for two pools connected with feedback. It is a wrapper for the more general function GeneralModel.

Usage

```
TwopFeedbackModel(
   t,
   ks,
   a21,
   a12,
   C0,
   In,
   xi = 1,
   solver = deSolve.lsoda.wrapper,
   pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought.
ks	A vector of length 2 with the values of the decomposition rate for pools 1 and 2.
a21	A scalar with the value of the transfer rate from pool 1 to pool 2.
a12	A scalar with the value of the transfer rate from pool 2 to pool 1.
C0	A vector of length 2 containing the initial amount of carbon for the 2 pools.
In	A data.frame object specifying the amount of litter inputs by time.
xi	A scalar or data.frame object specifying the external (environmental and/or edaphic) effects on decomposition rates.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE forces the constructor to create the model even if it is invalid

Value

A Model Object that can be further queried

References

Sierra, C.A., M. Mueller, S.E. Trumbore. 2012. Models of soil organic matter decomposition: the SoilR package version 1.0. Geoscientific Model Development 5, 1045-1060.

See Also

There are other predefinedModels and also more general functions like Model.

Examples

```
#This example show the difference between the three types of two-pool models
times=seq(0,20,by=0.1)
ks=c(k1=0.8, k2=0.00605)
C0=c(C10=5,C20=5)
Temp=rnorm(times, 15, 2)
WC=runif(times, 10, 20)
TempEffect=data.frame(times,fT=fT.Daycent1(Temp))
MoistEffect=data.frame(times, fW=fW.Daycent2(WC)[2])
Inmean=1
InRand=data.frame(times,Random.inputs=rnorm(length(times),Inmean,0.2))
InSin=data.frame(times,Inmean+0.5*sin(times*pi*2))
Parallel=TwopParallelModel(t=times,ks=ks,C0=C0,In=Inmean,gam=0.9,
xi=(fT.Daycent1(15)*fW.Demeter(15)))
Series=TwopSeriesModel(t=times,ks=ks,a21=0.2*ks[1],C0=C0,In=InSin,
xi=(fT.Daycent1(15)*fW.Demeter(15)))
Feedback=TwopFeedbackModel(t=times,ks=ks,a21=0.2*ks[1],a12=0.5*ks[2],C0=C0,
In=InRand,xi=MoistEffect)
CtP=getC(Parallel)
CtS=getC(Series)
CtF=getC(Feedback)
RtP=getReleaseFlux(Parallel)
RtS=getReleaseFlux(Series)
RtF=getReleaseFlux(Feedback)
par(mfrow=c(2,1), mar=c(4,4,1,1))
plot(times,rowSums(CtP),type="l",ylim=c(0,20),ylab="Carbon stocks (arbitrary units)",xlab=" ")
lines(times,rowSums(CtS),col=2)
lines(times,rowSums(CtF),col=3)
legend("topleft",c("Two-pool Parallel","Two-pool Series","Two-pool Feedback"),
lty=c(1,1,1),col=c(1,2,3),bty="n")
plot(times,rowSums(RtP),type="1",ylim=c(0,3),ylab="Carbon release (arbitrary units)", xlab="Time")
lines(times,rowSums(RtS),col=2)
lines(times,rowSums(RtF),col=3)
par(mfrow=c(1,1))
```

TwopFeedbackModel14 Implem

Implementation of a two-pool C14 model with feedback structure

Description

This function creates a model for two pools connected with feedback. It is a wrapper for the more general function GeneralModel_14 that can handle an arbitrary number of pools.

Usage

```
TwopFeedbackModel14(
    t,
    ks,
    C0,
    F0_Delta14C,
    In,
    a21,
    a12,
    xi = 1,
    inputFc,
    lambda = -0.0001209681,
    lag = 0,
    solver = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought. It must be specified within the same period for which the Delta 14 C of the atmosphere is provided. The default period in the provided dataset C14Atm_NH is 1900-2010.
ks	A vector of length 2 containing the decomposition rates for the 2 pools.
C0	A vector of length 2 containing the initial amount of carbon for the 2 pools.
F0_Delta14C	A vector of length 2 containing the initial amount of the radiocarbon fraction for the 2 pools as Delta14C values in per mil.
In	A scalar or a data.frame object specifying the amount of litter inputs by time.
a21	A scalar with the value of the transfer rate from pool 1 to pool 2.
a12	A scalar with the value of the transfer rate from pool 2 to pool 1.
xi	A scalar or a data.frame specifying the external (environmental and/or edaphic) effects on decomposition rates.
inputFc	A Data Frame object containing values of atmospheric Delta14C per time. First column must be time values, second column must be Delta14C values in per mil.

258 TwopMMmodel

lambda	Radioactive decay constant. By default lambda=-0.0001209681 y^-1. This has the side effect that all your time related data are treated as if the time unit was year.
lag	A positive integer representing a time lag for radiocarbon to enter the system.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	Forces the constructor to create the model even if it is invalid

Value

A Model Object that can be further queried

See Also

There are other predefinedModels and also more general functions like Model_14.

Examples

```
years=seq(1901,2009,by=0.5)
LitterInput=700
Ex=TwopFeedbackModel14(t=years,ks=c(k1=1/2.8, k2=1/35),C0=c(200,5000),
F0_Delta14C=c(0,0),In=LitterInput, a21=0.1,a12=0.01,inputFc=C14Atm_NH)
R14m=getF14R(Ex)
C14m=getF14C(Ex)
C14t=getF14(Ex)
par(mfrow=c(2,1))
plot(C14Atm_NH, type="l", xlab="Year", ylab="Delta 14C (per mil)", xlim=c(1940, 2010))
lines(years, C14t[,1], col=4)
lines(years, C14t[,2],col=4,lwd=2)
legend("topright",c("Delta 14C Atmosphere", "Delta 14C pool 1", "Delta 14C pool 2"),
lty=c(1,1,1),col=c(1,4,4),lwd=c(1,1,2),bty="n")
plot(C14Atm_NH,type="1",xlab="Year",ylab="Delta 14C (per mil)",xlim=c(1940,2010))
lines(years,C14m,col=4)
lines(years,R14m,col=2)
legend("topright",c("Delta 14C Atmosphere","Delta 14C SOM", "Delta 14C Respired"),
lty=c(1,1,1), col=c(1,4,2),bty="n")
par(mfrow=c(1,1))
```

TwopMMmodel

Implementation of a two-pool Michaelis-Menten model

Description

This function implements a two-pool Michaelis-Meneten model with a microbial biomass and a substrate pool.

TwopMMmodel 259

Usage

```
TwopMMmodel(
    t,
    ks = 1.8e-05,
    kb = 0.007,
    Km = 900,
    r = 0.6,
    Af = 1,
    ADD = 3.2,
    ival
)
```

Arguments

t	vector of times (in days) to calculate a solution.
ks	a scalar representing SOM decomposition rate (m3 d-1 (gCB)-1)
kb	a scalar representing microbial decay rate (d-1)
Km	a scalar representing the Michaelis constant (g m-3)
r	a scalar representing the respired carbon fraction (unitless)
Af	a scalar representing the Activity factor; i.e. a temperature and moisture modifier (unitless) $$
ADD	a scalar representing the annual C input to the soil (g m-3 d-1)
ival	a vector of length 2 with the initial values of the SOM pool and the microbial biomass pool (g m-3)

Details

This implementation is similar to the model described in Manzoni and Porporato (2007).

Value

Microbial biomass over time

References

Manzoni, S, A. Porporato (2007). A theoretical analysis of nonlinearities and feedbacks in soil carbon and nitrogen cycles. Soil Biology and Biochemistry 39: 1542-1556.

See Also

There are other predefinedModels and also more general functions like Model.

260 TwopParallelModel

Examples

```
days = seq(0, 1000, 0.5)
MMmodel=TwopMMmodel(t=days,ival=c(100,10))
Cpools=getC(MMmodel)
matplot(days,Cpools,type="1",ylab="Concentrations",xlab="Days",lty=1,ylim=c(0,max(Cpools)*1.2))
legend("topleft",c("SOM-C", "Microbial biomass"),lty=1,col=c(1,2),bty="n")
ks=0.000018
kb=0.007
r=0.6
ADD=3.2
#Analytical solution of fixed points
#Cs_=kb/((1-r)*ks) wrong look at the sympy test print twopMModel.pdf
Km=900
Af=1
Cs=kb*Km/(Af*ks*(1-r)-kb)
abline(h=Cs,lty=2)
Cb=(ADD*(1-r))/(r*kb)
abline(h=Cb,lty=2,col=2)
#State-space diagram
plot(Cpools[,2],Cpools[,1],type="l",ylab="SOM-C",xlab="Microbial biomass")
plot(days,Cpools[,2],type="1",col=2,xlab="Days",ylab="Microbial biomass")
#The default parameterization exhaust the microbial biomass.
#A different behavior is obtained by increasing ks and decreasing kb
MMmodel=TwopMMmodel(t=days,ival=c(972,304),Af=3,kb=0.0000001)
Cpools=getC(MMmodel)
matplot(days,Cpools,type="1",ylab="Concentrations",xlab="Days",lty=1,ylim=c(0,max(Cpools)*1.2))
legend("topleft",c("SOM-C", "Microbial biomass"),lty=1,col=c(1,2),bty="n")
plot(Cpools[,2],Cpools[,1],type="l",ylab="SOM-C",xlab="Microbial biomass")
plot(days,Cpools[,2],type="l",col=2,xlab="Days",ylab="Microbial biomass")
```

TwopParallelModel

Implementation of a linear two pool model with parallel structure

Description

This function creates a model for two independent (parallel) pools. It is a wrapper for the more general function ParallelModel that can handle an arbitrary number of pools.

Usage

```
TwopParallelModel(
   t,
   ks,
   C0,
   In,
```

TwopParallelModel 261

```
gam,
  xi = 1,
  solver = deSolve.lsoda.wrapper,
  pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought.
ks	A vector of length 2 containing the decomposition rates for the 2 pools.
C0	A vector of length 2 containing the initial amount of carbon for the 2 pools.
In	A scalar or a data frame object specifying the amount of litter inputs by time.
gam	A scalar representing the partitioning coefficient, i.e. the proportion from the total amount of inputs that goes to pool 1.
xi	A scalar or a data.frame specifying the external (environmental and/or edaphic) effects on decomposition rates.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	Forces the constructor to create the model even if it is invalid

Value

A Model Object that can be further queried

References

Sierra, C.A., M. Mueller, S.E. Trumbore. 2012. Models of soil organic matter decomposition: the SoilR package version 1.0. Geoscientific Model Development 5, 1045-1060.

See Also

There are other predefinedModels and also more general functions like Model.

Examples

```
t_start=0
t_end=10
tn=50
timestep=(t_end-t_start)/tn
t=seq(t_start,t_end,timestep)
Ex=TwopParallelModel(t,ks=c(k1=0.5,k2=0.2),C0=c(c10=100, c20=150),In=10,gam=0.7,xi=0.5)
Ct=getC(Ex)
plot(t,rowSums(Ct),type="1",lwd=2,
ylab="Carbon stocks (arbitrary units)",xlab="Time",ylim=c(0,sum(Ct[1,])))
lines(t,Ct[,1],col=2)
lines(t,Ct[,2],col=4)
legend("topright",c("Total C","C in pool 1", "C in pool 2"),
lty=c(1,1,1),col=c(1,2,4),lwd=c(2,1,1),bty="n")
```

```
Rt=getReleaseFlux(Ex)
plot(t,rowSums(Rt),type="l",ylab="Carbon released (arbitrary units)",
xlab="Time",lwd=2,ylim=c(0,sum(Rt[1,])))
lines(t,Rt[,1],col=2)
lines(t,Rt[,2],col=4)
legend("topleft",c("Total C release","C release from pool 1", "C release from pool 2"),
lty=c(1,1,1),col=c(1,2,4),lwd=c(2,1,1),bty="n")
```

Description

This function creates a model for two independent (parallel) pools. It is a wrapper for the more general function GeneralModel_14 that can handle an arbitrary number of pools.

Usage

```
TwopParallelModel14(
    t,
    ks,
    C0,
    F0_Delta14C,
    In,
    gam,
    xi = 1,
    inputFc,
    lambda = -0.0001209681,
    lag = 0,
    solver = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought. It must be specified within the same period for which the Delta 14 C of the atmosphere is provided. The default period in the provided dataset C14Atm_NH is 1900-2010.
ks	A vector of length 2 containing the decomposition rates for the 2 pools.
C0	A vector of length 2 containing the initial amount of carbon for the 2 pools.
F0_Delta14C	A vector of length 2 containing the initial amount of the fraction of radiocarbon for the 2 pools as Delta14C values in per mil.
In	A scalar or a data.frame object specifying the amount of litter inputs by time.
gam	A scalar representing the partitioning coefficient, i.e. the proportion from the total amount of inputs that goes to pool 1.

xi	A scalar or a data.frame specifying the external (environmental and/or edaphic) effects on decomposition rates.
inputFc	A Data Frame object containing values of atmospheric Delta14C per time. First column must be time values, second column must be Delta14C values in per mil.
lambda	Radioactive decay constant. By default lambda= $-0.0001209681\ y^-1$. This has the side effect that all your time related data are treated as if the time unit was year.
lag	A positive scalar representing a time lag for radiocarbon to enter the system.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE Forces the constructor to create the model even if it is invalid

Value

A Model Object that can be further queried

See Also

There are other predefinedModels and also more general functions like Model_14.

Examples

```
lag <- 2
years=seq(1901+lag,2009,by=0.5)
LitterInput=700
Ex=TwopParallelModel14(t=years,ks=c(k1=1/2.8, k2=1/35),C0=c(200,5000),
F0_Delta14C=c(0,0), In=LitterInput, gam=0.7, inputFc=C14Atm_NH, lag=lag)
R14m=getF14R(Ex)
C14m=getF14C(Ex)
C14t=getF14(Ex)
par(mfrow=c(2,1))
plot(C14Atm_NH,type="l",xlab="Year",ylab="Delta 14C (per mil)",xlim=c(1940,2010))
lines(years, C14t[,1], col=4)
lines(years, C14t[,2],col=4,lwd=2)
legend("topright",c("Delta 14C Atmosphere", "Delta 14C pool 1", "Delta 14C pool 2"),
lty=c(1,1,1),col=c(1,4,4),lwd=c(1,1,2),bty="n")
plot(C14Atm_NH,type="l",xlab="Year",ylab="Delta 14C (per mil)",xlim=c(1940,2010))
lines(years,C14m,col=4)
lines(years,R14m,col=2)
legend("topright",c("Delta 14C Atmosphere","Delta 14C SOM", "Delta 14C Respired"),
lty=c(1,1,1), col=c(1,4,2),bty="n")
par(mfrow=c(1,1))
```

264 TwopSeriesModel

TwopSeriesModel	Implementation of a two pool model with series structure

Description

This function creates a model for two pools connected in series. It is a wrapper for the more general function GeneralModel.

Usage

```
TwopSeriesModel(
   t,
   ks,
   a21,
   C0,
   In,
   xi = 1,
   solver = deSolve.lsoda.wrapper,
   pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought.
ks	A vector of length 2 with the values of the decomposition rate for pools 1 and 2.
a21	A scalar with the value of the transfer rate from pool 1 to pool 2.
C0	A vector of length 2 containing the initial amount of carbon for the 2 pools.
In	A scalar or a data frame object specifying the amount of litter inputs by time.
xi	A scalar or a data.frame specifying the external (environmental and/or edaphic) effects on decomposition rates.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE Forces the constructor to create the model even if it is invalid

Value

A Model Object that can be further queried

References

Sierra, C.A., M. Mueller, S.E. Trumbore. 2012. Models of soil organic matter decomposition: the SoilR package version 1.0. Geoscientific Model Development 5, 1045-1060.

See Also

There are other predefinedModels and also more general functions like Model.

TwopSeriesModel14 265

Examples

```
t_start=0
t_end=10
tn=50
timestep=(t_end-t_start)/tn
t=seq(t_start,t_end,timestep)
ks=c(k1=0.8, k2=0.4)
a21=0.5
C0=c(C10=100,C20=150)
In = 30
Temp=rnorm(t,15,1)
TempEffect=data.frame(t,fT.Daycent1(Temp))
Ex1=TwopSeriesModel(t,ks,a21,C0,In,xi=TempEffect)
Ct=getC(Ex1)
Rt=getReleaseFlux(Ex1)
plot(t,rowSums(Ct),type="l",ylab="Carbon stocks (arbitrary units)",
xlab="Time (arbitrary units)",lwd=2,ylim=c(0,sum(Ct[1,])))
lines(t,Ct[,1],col=2)
lines(t,Ct[,2],col=4)
legend("bottomright",c("Total C","C in pool 1", "C in pool 2"),
lty=c(1,1,1),col=c(1,2,4),lwd=c(2,1,1),bty="n")
```

TwopSeriesModel14

Implementation of a two-pool C14 model with series structure

Description

This function creates a model for two pools connected in series. It is a wrapper for the more general function GeneralModel_14 that can handle an arbitrary number of pools.

Usage

```
TwopSeriesModel14(
    t,
    ks,
    C0,
    F0_Delta14C,
    In,
    a21,
    xi = 1,
    inputFc,
    lambda = -0.0001209681,
    lag = 0,
    solver = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

266 TwopSeriesModel14

Arguments

t	A vector containing the points in time where the solution is sought. It must be specified within the same period for which the Delta 14 C of the atmosphere is provided. The default period in the provided dataset C14Atm_NH is 1900-2010.
ks	A vector of length 2 containing the decomposition rates for the 2 pools.
C0	A vector of length 2 containing the initial amount of carbon for the 2 pools.
F0_Delta14C	A vector of length 2 containing the initial amount of the radiocarbon fraction for the 2 pools as Delta14C values in per mil.
In	A scalar or a data frame object specifying the amount of litter inputs by time.
a21	A scalar with the value of the transfer rate from pool 1 to pool 2.
xi	A scalar or a data.frame specifying the external (environmental and/or edaphic) effects on decomposition rates.
inputFc	A Data Frame object containing values of atmospheric Delta14C per time. First column must be time values, second column must be Delta14C values in per mil.
lambda	Radioactive decay constant. By default lambda=-0.0001209681 y^-1. This has the side effect that all your time related data are treated as if the time unit was year.
lag	A (positive) scalar representing a time lag for radiocarbon to enter the system.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE Forces the constructor to create the model even if it is invalid

Value

A Model Object that can be further queried

See Also

There are other predefinedModels and also more general functions like Model_14.

Examples

```
years=seq(1901,2009,by=0.5)
LitterInput=700
#
Ex=TwopSeriesModel14(t=years,ks=c(k1=1/2.8, k2=1/35),
C0=c(200,5000), F0_Delta14C=c(0,0),
In=LitterInput, a21=0.1,inputFc=C14Atm_NH)
R14m=getF14R(Ex)
C14m=getF14C(Ex)
C14t=getF14(Ex)
#
par(mfrow=c(2,1))
plot(C14Atm_NH,type="l",xlab="Year",
ylab="Delta 14C (per mil)",xlim=c(1940,2010))
```

UnBoundInFluxes 267

```
lines(years, C14t[,1], col=4)
lines(years, C14t[,2],col=4,lwd=2)
legend("topright",c("Delta 14C Atmosphere", "Delta 14C pool 1", "Delta 14C pool 2"),
lty=c(1,1,1),col=c(1,4,4),lwd=c(1,1,2),bty="n")
#
plot(C14Atm_NH,type="l",xlab="Year",ylab="Delta 14C (per mil)",xlim=c(1940,2010))
lines(years,C14m,col=4)
lines(years,R14m,col=2)
legend("topright",c("Delta 14C Atmosphere","Delta 14C SOM", "Delta 14C Respired"),
lty=c(1,1,1), col=c(1,4,2),bty="n")
par(mfrow=c(1,1))
```

UnBoundInFluxes

automatic title

Description

automatic title

Usage

UnBoundInFluxes(map)

Arguments

map

: see method arguments

S4 methods for this generic

• UnBoundInFluxes, function-method

UnBoundInFluxes, function-method automatic title

Description

automatic title

Usage

```
## S4 method for signature '`function`'
UnBoundInFluxes(map)
```

Arguments

map

object of class:function, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

UnBoundInFluxes-class automatic title

Description

automatic title

UnBoundLinDecompOp

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

UnBoundLinDecompOp(matFunc)

Arguments

matFunc

see method arguments

Description

automatic title

Usage

```
## S4 method for signature '`function`'
UnBoundLinDecompOp(matFunc)
```

Arguments

matFunc

object of class:function, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

UnBoundLinDecompOp-class

automatic title

Description

automatic title

UnBoundNonLinDecompOp Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

```
UnBoundNonLinDecompOp(
  matFunc,
  internal_fluxes,
  out_fluxes,
  numberOfPools,
  state_variable_names,
  timeSymbol,
  operator
)
```

Arguments

```
matFunc see method arguments
internal_fluxes see method arguments
out_fluxes see method arguments
numberOfPools see method arguments
```

270UnBoundNonLinDecompOp, missing, missing, missing, character, character, UnBoundNonLinDecompOp_by_PoolNational Control of the Control of th

```
state_variable_names
```

see method arguments
timeSymbol see method arguments
operator see method arguments

 $\label{limits} \mbox{UnBoundNonLinDecompOp, function, missing, missing, any, ANY, ANY-method } \mbox{\it automatic title}$

Description

automatic title

Usage

S4 method for signature '`function`,missing,missing,missing,ANY,ANY'
UnBoundNonLinDecompOp(matFunc)

Arguments

matFunc

object of class:function, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

UnBoundNonLinDecompOp, missing, missing, missing, missing, character, character, UnBoundNonLinDecompOp_by_Poconvert to Indexed version

Description

convert to Indexed version

Usage

```
## S4 method for signature
## 'missing,
## missing,
## missing,
## character,
## character,
## UnBoundNonLinDecompOp_by_PoolNames'
UnBoundNonLinDecompOp(state_variable_names, timeSymbol, operator)
```

Arguments

state_variable_names

object of class:character, no manual documentation

timeSymbol object of class:character, no manual documentation

operator object of class:UnBoundNonLinDecompOp_by_PoolNames, no manual documen-

tation

 $\label{local_equation} \mbox{UnBoundNonLinDecompOp, missing, vector, vector, numeric, ANY, ANY-method} \\ constructor$

Description

constructor

Usage

S4 method for signature 'missing,vector,vector,numeric,ANY,ANY,ANY'
UnBoundNonLinDecompOp(internal_fluxes, out_fluxes, numberOfPools)

Arguments

internal_fluxes

object of class:vector, vector of elements of type InternalFlux_by_PoolName

out_fluxes

object of class:vector, vector of elements of type OutFlux_by_PoolName

numberOfPools obje

object of class:numeric, no manual documentation

UnBoundNonLinDecompOp-class

An S4 class to represent the operation nonlinear nonautonomuous compartmental matrix

Description

An S4 class to represent the operation nonlinear nonautonomuous compartmental matrix

UnBoundNonLinDecompOp_by_PoolNames

Generic constructor for the class with the same name

Description

Generic constructor for the class with the same name

Usage

UnBoundNonLinDecompOp_by_PoolNames(internal_fluxes, out_fluxes, timeSymbol)

Arguments

internal_fluxes

see method arguments

out_fluxes see method arguments
timeSymbol see method arguments

Description

automatic title

Usage

```
## S4 method for signature
## 'InternalFluxList_by_PoolName,OutFluxList_by_PoolName,character'
UnBoundNonLinDecompOp_by_PoolNames(internal_fluxes, out_fluxes, timeSymbol)
```

Arguments

internal_fluxes

object of class:InternalFluxList_by_PoolName, : : no manual documentation

out_fluxes object of class:OutFluxList_by_PoolName, : : no manual documentation

timeSymbol object of class:character, : : no manual documentation inspection of the

code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update outcomment rocket"

date_autocomment_roclet".

```
UnBoundNonLinDecompOp_by_PoolNames-class
```

An S4 class to represent the of nonlinear nonautonomuous compartmental system independently of the order of state variables

Description

An S4 class to represent the of nonlinear nonautonomuous compartmental system independently of the order of state variables

Yasso07Model

Implementation of the Yasso07 model

Description

This function creates a model for five pools as described in Tuomi et al. (2009)

Usage

```
Yasso07Model(
    t,
    ks = c(kA = 0.66, kW = 4.3, kE = 0.35, kN = 0.22, kH = 0.0033),
    p = c(p1 = 0.32, p2 = 0.01, p3 = 0.93, p4 = 0.34, p5 = 0, p6 = 0, p7 = 0.035, p8 = 0.005, p9 = 0.01, p10 = 5e-04, p11 = 0.03, p12 = 0.92, pH = 0.04),
    C0,
    In,
    xi = 1,
    solver = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought.
ks	A vector of lenght 5 containing the values of the decomposition rates for each pool.
р	A vector of length 13 containing transfer coefficients among different pools.
C0	A vector containing the initial amount of carbon for the 5 pools. The length of this vector must be 5.
In	A single scalar or data.frame object specifying the amount of litter inputs by time
xi	A scalar or data.frame object specifying the external (environmental and/or edaphic) effects on decomposition rates.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE forces the constructor to create the model even if it is invalid

274 YassoModel

Value

A Model Object that can be further queried

References

Tuomi, M., Thum, T., Jarvinen, H., Fronzek, S., Berg, B., Harmon, M., Trofymow, J., Sevanto, S., and Liski, J. (2009). Leaf litter decomposition-estimates of global variability based on Yasso07 model. Ecological Modelling, 220:3362 - 3371.

See Also

There are other predefinedModels and also more general functions like Model.

Examples

```
years=seq(0,50,0.1)
C0=rep(100,5)
In=0

Ex1=Yasso07Model(t=years,C0=C0,In=In)
Ct=getC(Ex1)
Rt=getReleaseFlux(Ex1)

plotCPool(years,Ct,col=1:5,xlab="years",ylab="C pool",
ylim=c(0,max(Ct)))
legend("topright",c("xA","xW","xE","xN","xH"),lty=1,col=1:5,bty="n")

plotCPool(years,Rt,col=1:5,xlab="years",ylab="Respiration",ylim=c(0,50))
legend("topright",c("xA","xW","xE","xN","xH"),lty=1,col=1:5,bty="n")
```

YassoModel

Implementation of the Yasso model.

Description

This function creates a model for seven pools as described in Liski et al. (2005). Model not yet implemented due to lack of data in original publication: values of vector p not completely described in paper. 0.1 was assumed.

Usage

```
YassoModel(
    t,
    ks = c(a_fwl = 0.54, a_cwl = 0.03, k_ext = 0.48, k_cel = 0.3, k_lig = 0.22, k_hum1 =
        0.012, k_hum2 = 0.0012),
    p = c(fwl_ext = 0.1, cwl_ext = 0.1, fwl_cel = 0.1, cwl_cel = 0.1, fwl_lig = 0.1,
        cwl_lig = 0.1, pext = 0.05, pcel = 0.24, plig = 0.77, phum1 = 0.51),
    C0,
```

YassoModel 275

```
In = c(u_fwl = 0.0758, u_cwl = 0.0866, u_nwl_cnwl_ext = 0.251 * 0.3, u_nwl_cnwl_cel =
    0.251 * 0.3, u_nwl_cnwl_lig = 0.251 * 0.3, 0, 0),
    xi = 1,
    solver = deSolve.lsoda.wrapper,
    pass = FALSE
)
```

Arguments

t	A vector containing the points in time where the solution is sought.
ks	A vector of lenght 7 containing the values of the exposure and decomposition rates for each pool.
р	A vector of containing transfer coefficients among different pools.
C0	A vector containing the initial amount of carbon for the 7 pools. The length of this vector must be 7.
In	A vector of constatn litter inputs.
хi	A scalar or data.frame object specifying the external (environmental and/or edaphic) effects on decomposition rates.
solver	A function that solves the system of ODEs. This can be euler or deSolve.lsoda.wrapper or any other user provided function with the same interface.
pass	if TRUE forces the constructor to create the model even if it is invalid

Value

A Model Object that can be further queried

References

Liski, J., Palosuo, T., Peltoniemi, M., and Sievanen, R. (2005). Carbon and decomposition model Yasso for forest soils. Ecological Modelling, 189:168-182.

See Also

There are other predefinedModels and also more general functions like Model.

Examples

```
years=seq(0,500,0.5)
C0=rep(100,7)
#
Ex1=YassoModel(t=years,C0=C0)
Ct=getC(Ex1)
Rt=getReleaseFlux(Ex1)
#
plotCPool(years,Ct,col=1:7,xlab="years",ylab="C pool",ylim=c(0,200))
legend("topright",c("fwl","cwl","ext","cel","lig","hum1","hum2"),lty=1,col=1:7,bty="n")
#
plotCPool(years,Rt,col=1:7,xlab="years",ylab="Respiration",ylim=c(0,50))
legend("topright",c("fwl","cwl","ext","cel","lig","hum1","hum2"),lty=1,col=1:7,bty="n")
```

[,Model,character,missing,missing-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'Model, character, missing, missing' x[i]
```

Arguments

x object of class:Model, : : no manual documentation

i object of class:character, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for pa-

rameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "up-

date_autocomment_roclet".

[,NlModel,character,ANY,ANY-method automatic title

Description

automatic title

Usage

```
## S4 method for signature 'NlModel,character,ANY,ANY' x[i]
```

Arguments

i

x object of class:N1Model, : : no manual documentation

object of class:character, : : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

[[,MCSim-method 277

[[,MCSim-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'MCSim'
x[[i]]
```

Arguments

x object of class:MCSim, : : no manual documentation

i : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

[[<-,MCSim-method</pre>

automatic title

Description

automatic title

Usage

```
## S4 replacement method for signature 'MCSim' x[[i, j, ...]] \leftarrow value
```

Arguments

x object of class:MCSim, : : no manual documentation

i : no manual documentationj : no manual documentation... : no manual documentation

value : no manual documentation inspection of the code. You can use the "up-

date_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your com-

ments will no longer be touched by the "update_autocomment_roclet".

\$,NIModel-method

\$,NlModel-method

automatic title

Description

automatic title

Usage

```
## S4 method for signature 'NlModel' xname
```

Arguments

Χ

object of class:N1Model, : : no manual documentation

name

: : no manual documentation inspection of the code. You can use the "update_auto_comment_roclet" to automatically adapt them to changes in the source code. This will remove '@param' tags for parameters that are no longer present in the source code and add '@param' tags with a default description for yet undocumented parameters. If you remove this '@autocomment' tag your comments will no longer be touched by the "update_autocomment_roclet".

Index

*Topic datasets	bacwaveModel, 22, 217
C14Atm, 39	bind.C14curves, 23
C14Atm_NH, 40	BoundFc, 24
eC02, 74	BoundFc, character-method, 25
HarvardForest14CO2, 157	BoundFc, missing-method, 25
Hua2013, 158	BoundFc-class, 26
incubation_experiment, 161	BoundInFluxes, 26
IntCal09, 179	BoundInFluxes-class, 26
IntCal13, 180	BoundLinDecompOp, 26
[,Model,character,missing,missing-method,	BoundLinDecompOp, ANY-method, 27
276	BoundLinDecompOp, UnBoundLinDecompOp-method,
[,NlModel,character,ANY,ANY-method,	27
276	BoundLinDecompOp-class, 28
[[,MCSim-method, 277	by_PoolIndex, 28
[[<-,MCSim-method, 277	by_PoolIndex,ConstantInFluxRate_by_PoolName,ANY,ANY-metho
\$,NlModel-method,278	29
	<pre>by_PoolIndex,ConstantInternalFluxRate_by_PoolName,ANY,ANY</pre>
AbsoluteFractionModern, 12	30
AbsoluteFractionModern,BoundFc-method,	<pre>by_PoolIndex,ConstantInternalFluxRateList_by_PoolName,ANY</pre>
13	29
AbsoluteFractionModern,ConstFc-method,	by_PoolIndex,ConstantOutFluxRate_by_PoolName,ANY,ANY-meth
13	31
AbsoluteFractionModern_from_Delta14C,	by_PoolIndex,ConstantOutFluxRateList_by_PoolName,ANY,ANY-
14	30
AbsoluteFractionModern_from_Delta14C,matrix	<pre> (-mleyth@dolIndex,function,character,character-method,</pre>
14	31
AbsoluteFractionModern_from_Delta14C, numeri	.c- bg_tAod lIndex,InFlux_by_PoolName,character,character-metho
15	33
add_plot, 15	<pre>by_PoolIndex,InFluxList_by_PoolName,character,character-m</pre>
add_plot,TimeMap-method, 16	32
as.character,TimeMap-method,16	<pre>by_PoolIndex,InternalFlux_by_PoolName,character,character</pre>
availableParticleProperties, 17	34
availableParticleProperties,MCSim-method,	<pre>by_PoolIndex,InternalFluxList_by_PoolName,character,chara</pre>
17	33
availableParticleSets, 18	by_PoolIndex,OutFlux_by_PoolName,character,character-meth
availableParticleSets,MCSim-method, 18	35
availableResidentSets, 19	by_PoolIndex,OutFluxList_by_PoolName,character,character-
availableResidentSets,MCSim-method, 19	34
AWBmodel, 20	<pre>by_PoolIndex,PoolConnection_by_PoolName,ANY,ANY-method,</pre>

```
36
                                                                                                                                                                                                          ConstantInternalFluxRate_by_PoolIndex-class,
by_PoolName, 36
by_PoolName,ConstantInFluxRate_by_PoolIndex-methnstantInternalFluxRate_by_PoolName,
                                                                                                                                                                                                                                               52, 53, 55
by \_PoolName, ConstantInternalFluxRate\_by\_PoolI \\ \textit{Odestmethod} \\ ernalFluxRate\_by\_PoolName, character, character, make the description of the property of 
by \_PoolName, Constant Internal Flux Rate List\_by \_PoolIndexInnethool Flux Rate\_by \_PoolName, missing, characterist for the property of the 
by \_PoolName, Constant OutFluxRate\_by\_PoolIndex- \textit{monther} internal FluxRate\_by\_PoolName-class, and the constant outFluxRate\_by\_PoolName-class, and the constant outFluxRat
by_PoolName,ConstantOutFluxRateList_by_PoolIndex,
                                                                                                                                                                                                                                               50.51
                                                                                                                                                                                                           ConstantInternalFluxRateList_by_PoolIndex,list-method,
C14Atm, 39
C14Atm_NH, 39, 40, 96, 197, 235, 240, 243,
                                                                                                                                                                                                           ConstantInternalFluxRateList_by_PoolIndex,numeric-method,
                                    257, 262, 266
CenturyModel, 40, 217
                                                                                                                                                                                                           ConstantInternalFluxRateList_by_PoolIndex-class,
CenturyModel_new, 42
check_duplicate_pool_names, 44
                                                                                                                                                                                                           ConstantInternalFluxRateList_by_PoolName,
check_id_length, 44
                                                                                                                                                                                                                                               52, 53
check_pool_ids, 45
Constant \\ Internal Flux \\ Rate \\ List\_by\_Pool \\ Name, \\ list\_method, \\ check\_pool\_ids, \\ Pool \\ Constant \\ Internal \\ Flux \\ Rate \\ List\_by\_Pool \\ Name, \\ list\_method, \\ Rate \\ List\_by\_Pool \\ Name, \\ Rate \\ Rate \\ List\_by\_Pool \\ Name, \\ Rate \\ Rate \\ Name, \\ Rate \\ Rate \\ Name, \\ Rate \\ Name, \\ Rate \\ Rate \\ Name, \\ Name, \\ Rate \\ Name, \\ N
                                    45
                                                                                                                                                                                                           ConstantInternalFluxRateList_by_PoolName-class,
computeResults, 46
computeResults, MCSim-method, 46
                                                                                                                                                                                                          ConstantOutFluxRate_by_PoolIndex, 57,
computeResults, NlModel-method, 47
ConstantInFlux_by_PoolIndex, 48, 49
                                                                                                                                                                                                           ConstantOutFluxRate_by_PoolIndex,numeric,numeric-method,
ConstantInFlux_by_PoolIndex-class, 50
ConstantInFluxList_by_PoolIndex, 47, 48,
                                                                                                                                                                                                           ConstantOutFluxRate_by_PoolIndex-class,
                                      183, 200
{\tt ConstantInFluxList\_by\_PoolIndex,ConstInFluxes-method,} {\tt 62}
                                                                                                                                                                                                            ConstantOutFluxRate_by_PoolName, 59, 60
                                                                                                                                                                                                          ConstantOutFluxRate_by_PoolName-class,
ConstantInFluxList_by_PoolIndex,list-method,
57. 58
                                                                                                                                                                                                           ConstantOutFluxRateList_by_PoolIndex,list-method,
ConstantInFluxList_by_PoolIndex-class,
                                                                                                                                                                                                           ConstantOutFluxRateList_by_PoolIndex, numeric-method,
ConstantInFluxList_by_PoolName, 49
ConstantInFluxRate_by_PoolIndex-class,
                                                                                                                                                                                                           ConstantOutFluxRateList_by_PoolIndex-class,
ConstantInFluxRate_by_PoolName-class,
                                                                                                                                                                                                            ConstantOutFluxRateList_by_PoolName,
                                    50
                                                                                                                                                                                                                                               59, 59
ConstantInternalFluxRate_by_PoolIndex,
                                                                                                                                                                                                            ConstantOutFluxRateList_by_PoolName, list-method,
                                    51, 52, 53
ConstantInternalFluxRate_by_PoolIndex, missing, missing5℃ haracter, numeric-method,
                                                                                                                                                                                                            ConstantOutFluxRateList_by_PoolName, numeric-method,
ConstantInternalFluxRate_by_PoolIndex,numeric,numeric6missing,numeric-method,
                                    54
                                                                                                                                                                                                           ConstantOutFluxRateList_by_PoolName-class,
```

```
60
                                                                                                                                              euler, 41, 43, 75, 96, 160, 195, 197, 219, 222,
ConstFc, 62
                                                                                                                                                                       224, 232, 235, 238, 240, 242, 244,
ConstFc-class, 63
                                                                                                                                                                       255, 258, 261, 263, 264, 266, 273,
ConstInFluxes, 48, 63
{\tt ConstInFluxes, ConstantInFluxList\_by\_PoolIndex} \\ \textbf{{\tt Name}} \\ \textbf{{\tt Let}} \\ \textbf{{\tt C2DBethod}} \\ \textbf{{\tt InFluxesFromFunction}}, \\ \textbf{{\tt ConstInFluxesFromFunction}}, \\ \textbf{{\tt C
                                                                                                                                              example.2DBoundLinDecompOpFromFunction,
ConstInFluxes, numeric, ANY-method, 64
                                                                                                                                                                       76
ConstInFluxes-class, 64
                                                                                                                                              example.2DConstFc.Args,76
ConstLinDecompOp, 65
ConstLinDecompOp, matrix, missing, missing, missing and sing and sing constLinDecompOp, matrix, missing, missing, missing and sing and sin
                                                                                                                                              example.2DGeneralDecompOpArgs, 77, 189
example.2DUnBoundLinDecompOpFromFunction,
ConstLinDecompOp, missing, ConstantInternalFluxRateList 78y_PoolIndex, missing, numeric, missing-method,
                                                                                                                                              example.ConstlinDecompOpFromMatrix, 78
ConstLinDecompOp, missing, ConstantInternalFluxRatePlstnestPoblmaReMethistahtouTfluxRateList_by_PoolName, n
                                                                                                                                              example.Time2DArrayList,79
ConstLinDecompOp, missing, missing, ConstantOutFq४୬៧% ትይኒ፲ጵሚይያላቸት ଅቴኢ? humeric, missing-method,
                                                                                                                                              example.TimeMapFromArray, 79
                         67
ConstLinDecompOp-class, 68
                                                                                                                                             Fc-class, 79
ConstLinDecompOp_by_PoolName, 69
                                                                                                                                              FcAtm.from.Dataframe, 80
ConstLinDecompOpWithLinearScalarFactor,
                                                                                                                                              fT.Arrhenius, 80
ConstLinDecompOpWithLinearScalarFactor, matrix, missing, missing, missing, ScalarTimeMap-method,
                                                                                                                                               fT.Century2, 82
                                                                                                                                              fT.Daycent1,82
ConstLinDecompOpWithLinearScalarFactor-class,
                                                                                                                                              fT.Daycent2,83
                                                                                                                                              fT.Demeter, 84
cycling, 70
                                                                                                                                              fT.KB, 84
                                                                                                                                              fT.LandT, 85
DecompOp, 102, 188, 189, 191
                                                                                                                                              fT.linear, 85
DecompOp-class, 70
                                                                                                                                              fT.010,86
DecompositionOperator-class, 70
                                                                                                                                              fT.RothC, 87
Delta14C, 71
                                                                                                                                              fT.Standcarb, 87
Delta14C, BoundFc-method, 71
                                                                                                                                              fW. Candy, 88
Delta14C, ConstFc-method, 72
                                                                                                                                              fW. Century, 89
Delta14C_from_AbsoluteFractionModern,
                                                                                                                                              fW.Daycent1, 89
                                                                                                                                              fW.Daycent2, 90
Delta14C_from_AbsoluteFractionModern,matrix-method_ter,91
                                                                                                                                              fW.Gompertz, 92
Delta14C_from_AbsoluteFractionModern,numeric-mathedano,92
                                                                                                                                              fW.RothC, 93
deSolve.lsoda.wrapper, 41, 43, 74, 75, 101,
                                                                                                                                              fW. Skopp, 93
                          102, 160, 189, 191, 195, 197, 203,
                                                                                                                                              fW. Standcarb, 94
                          219, 222, 224, 232, 235, 238, 240,
                         242, 244, 255, 258, 261, 263, 264,
                                                                                                                                              GaudinskiModel14, 95, 216
                         266, 273, 275
                                                                                                                                             GeneralDecompOp, 97, 101, 102, 188, 189, 191
                                                                                                                                              GeneralDecompOp, DecompOp-method, 98
                                                                                                                                              GeneralDecompOp, function-method, 98
eC02, 74
```

```
GeneralDecompOp, list-method, 99
                                                                                   getConstLinDecompOp,ConstLinDecompOpWithLinearScalarFactor
GeneralDecompOp, matrix-method, 99
                                                                                                  118
GeneralDecompOp, TimeMap-method, 100
                                                                                   getCumulativeC, 119
GeneralModel, 100, 103, 195, 219, 222, 231,
                                                                                   getCumulativeC, NlModel-method, 119
               241, 255, 264
                                                                                   getDecompOp, 120
GeneralModel_14, 95, 101, 196, 223, 234,
                                                                                   getDecompOp, Model-method, 120
              239, 243, 257, 262, 265
                                                                                   getDecompOp,NlModel-method, 121
GeneralNlModel. 102
                                                                                   getDotOut, 121
GeneralPoolId, 104
                                                                                   getDotOut,TransportDecompositionOperator-method,
GeneralPoolId, character-method, 105
                                                                                                  122
GeneralPoolId, numeric-method, 105
                                                                                   getF14, 122, 207
getAccumulatedRelease, 106
                                                                                   getF14, Model_14-method, 123
getAccumulatedRelease, Model-method,
                                                                                   getF14C, 123
                                                                                   getF14C, Model_14-method, 124
getC, 107, 187, 207
                                                                                   getF14R, 124
getC, Model-method, 107
                                                                                   getF14R, Model_14-method, 125
getC, Model_by_PoolNames-method, 108
                                                                                   getFormat, 125
getC,NlModel-method, 108
                                                                                   getFormat, Fc-method, 126
getC14, 109, 187
                                                                                   getFunctionDefinition, 126
getC14, Model_14-method, 109
                                                                                   getFunctionDefinition,ConstInFluxes-method,
getCompartmentalMatrixFunc, 110
getCompartmentalMatrixFunc,BoundLinDecompOp,A数省共和MethiothDefinition,ConstLinDecompOp-method,
getCompartmentalMatrixFunc,ConstLinDecompOp,AgytAWYemechhodfinition,ConstLinDecompOpWithLinearScalarFact
getCompartmentalMatrixFunc,TransportDecomposigetFnOpetatoDefANYiANYanDetboodpositionOperator-method,
getCompartmentalMatrixFunc,UnBoundNonLinDecompopF,uNVt,ANNOpmethod,on,InFluxList_by_PoolIndex-method,
                                                                                                   129
getCompartmentalMatrixFunc,UnBoundNonLinDecompepEboycPoolDefice; thamalttelyxhasacterPoolDefice.
               112
                                                                                                   130
getConstantCompartmentalMatrix, 113
                                                                                   getFunctionDefinition,StateDependentInFluxVector-method,
getConstantCompartmentalMatrix,ConstLinDecompOp-method30
                                                                                   getFunctionDefinition,TimeMap-method,
getConstantCompartmentalMatrix,ConstLinDecompOpWithLinDetarScalarFactor-method,
                                                                                   getFunctionDefinition,TransportDecompositionOperator-metho
              114
getConstantInFluxVector, 115
\verb|getConstantInFluxVector|, ConstInFluxes-method|, \verb|getFunctionDefinition|, UnBoundInFluxes-method|, \\
\tt getConstantInternalFluxRateList\_by\_PoolIndex, getFunctionDefinition, UnBoundLinDecompOp-method, and the control of the con
getConstantInternalFluxRateList_by_PoolIndex, getSttEinDesohpop-method,
                                                                                   getInFluxes,Model-method, 133
                                                                                   getInFluxes,NlModel-method, 134
getConstantOutFluxRateList_by_PoolIndex,
                                                                                   getInitialValues, 134
getConstantOutFluxRateList_by_PoolIndex,ConstgetDecompDyalmetsoNJModel-method, 135
                                                                                   getLinearScaleFactor, 135
getConstLinDecompOp, 118
                                                                                   getLinearScaleFactor,ConstLinDecompOpWithLinearScalarFacto
```

136	<pre>getTransferCoefficients,TransportDecompositionOperator-met</pre>
getMeanTransitTime, 136	153
<pre>getMeanTransitTime,ConstLinDecompOp-method,</pre>	getTransferMatrix, 154
137	getTransferMatrixFunc, 154
getNumberOfPools, 137	<pre>getTransferMatrixFunc,TransportDecompositionOperator-methor</pre>
getNumberOfPools,MCSim-method, 138	155
getNumberOfPools,NlModel-method,138	<pre>getTransitTimeDistributionDensity, 155</pre>
getNumberOfPools,TransportDecompositionOpera	at Set The ansit Time Distribution Density, ConstLin Decomp Op-method, 156
getOutputFluxes, 139	getValues, 156
getOutputFluxes,NlModel-method, 140 getOutputReceivers, 140	getValues,ConstFc-method,157
getOutputReceivers,TransportDecompositionOpo	eratorandEorest14CO2,157 Hua2013,24,39,158,254
getParticleMonteCarloSimulator, 141	TODAY 1.1.150.016
getParticleMonteCarloSimulator,NlModel-metho	ICBMModel, 159, 216
142	incubation_experiment, ioi
getReleaseFlux, 142, <i>187</i> , <i>207</i>	InFlux, 162
getReleaseFlux,Model-method,143	InFlux_by_PoolIndex, 168
getReleaseFlux,Model_by_PoolNames-method,	<pre>InFlux_by_PoolIndex, function, numeric-method,</pre>
getReleaseFlux,NlModel-method,144	<pre>InFlux_by_PoolIndex-class, 169</pre>
getReleaseFlux14, 144	<pre>InFlux_by_PoolName, 169, 170</pre>
getReleaseFlux14, Model_14-method, 145	<pre>InFlux_by_PoolName, function, character-method,</pre>
getRightHandSideOfODE, 145	170
	<pre>InFlux_by_PoolName-class, 171</pre>
getRightHandSideOfODE,Model-method, 146	InFluxes, 102, 163, 163, 189, 191
getRightHandSideOfODE,Model_by_PoolNames-me	<pre>InFluxes,ConstantInFluxList_by_PoolIndex-method, thod, 163</pre>
146	InFluxes, function-method, 164
getTimeRange, 147	InFluxes, InFluxes-method, 164
getTimeRange,ConstInFluxes-method,147	InFluxes, list-method, 165
getTimeRange,ConstLinDecompOp-method,	InFluxes, numeric-method, 165
148	InFluxes, TimeMap-method, 166
getTimeRange,ConstLinDecompOpWithLinearScal	arfartoxegethoss, 166
148	<pre>InFluxList_by_PoolIndex, 166</pre>
getTimeRange,DecompositionOperator-method, 149	<pre>InFluxList_by_PoolIndex,list-method,</pre>
getTimeRange,TimeMap-method,149	<pre>InFluxList_by_PoolIndex-class, 167</pre>
getTimeRange,UnBoundInFluxes-method,	InFluxList_by_PoolName, 167
150	<pre>InFluxList_by_PoolName, list-method,</pre>
getTimeRange,UnBoundLinDecompOp-method,	168
150	<pre>InFluxList_by_PoolName-class, 168</pre>
getTimes, 151	<pre>initialize,ConstLinDecompOp-method,</pre>
getTimes,Model-method, 151	171
getTimes,NlModel-method,152	<pre>initialize,DecompositionOperator-method,</pre>
getTransferCoefficients, 152	171
getTransferCoefficients,NlModel-method,	initialize,MCSim-method, 172
153	initialize.Model-method, 173

initialize, Model_14-method, 174	NlModel-class, 195
<pre>initialize,Model_by_PoolNames-method,</pre>	
175	OnepModel, 195, 216
initialize, NlModel-method, 176	OnepModel14, 196, 216, 254
initialize, TimeMap-method, 177	optimize, 254
initialize, Transport Decomposition Operator-measurement of the property of	ենթել lux, 198
177	OutFlux_by_PoolIndex, 200
<pre>initialize,UnBoundInFluxes-method, 178</pre>	OutFlux_by_PoolIndex,function,numeric-method,
<pre>initialize,UnBoundLinDecompOp-method,</pre>	201
179	OutFlux_by_PoolIndex-class, 201
IntCal09, 24, 179, 180	OutFlux_by_PoolName, 200, 201, 202
IntCal13, 24, 180	OutFlux_by_PoolName,function,character-method,
InternalFlux by PoolIndex. 184	202
<pre>InternalFlux_by_PoolIndex,function,numeric,n</pre>	unetiluxibsingolmameaclass, 203
184	OutFluxList_by_PoolIndex, 198
InternalFlux_by_PoolIndex-class, 185	OutFluxList_by_PoolIndex,list-method,
InternalFlux_by_PoolName, 183, 185, 185	199
<pre>InternalFlux_by_PoolName, function, character,</pre>	QutEluxListsby_Poolindex-class, 199
186	OutFluxList_by_PoolName, 199
<pre>InternalFlux_by_PoolName,function,missing,mi</pre>	SQutEluxList_by_PoolName, list-method,
186	200
InternalFlux_by_PoolName-class, 187	OutFluxList_by_PoolName-class, 200
InternalFluxList_by_PoolIndex, 182	
InternalFluxList_by_PoolIndex, list-method,	ParallelModel, 203, 238, 260
182	plot,MCSim-method, 204
InternalFluxList_by_PoolIndex-class,	plot, Model-method, 205
182	plot,NlModel-method,206
InternalFluxList_by_PoolName, 183	plot, TimeMap-method, 206
InternalFluxList_by_PoolName, 183 InternalFluxList_by_PoolName, list-method,	plotC14Pool, 207
183	plotCPool, 207
	plotPoolGraph, 208
<pre>InternalFluxList_by_PoolName-class,</pre>	plotPoolGraph,Model-method,208
104	PoolConnection_by_PoolIndex, 209
1: 00 1 107	PoolConnection_by_PoolIndex,ANY,ANY,missing-method,
linesCPool, 187	209
list, 158	PoolConnection_by_PoolIndex,missing,missing,character-meth
listProduct, 187	210
	PoolConnection_by_PoolIndex-class, 210
MCSim-class, 188	PoolConnection_by_PoolName, 210
Model, 23, 42, 43, 96, 100, 160, 188, 188, 189,	PoolConnection_by_PoolName, ANY, ANY, missing-method,
195, 220, 223, 224, 230, 232, 238,	211
242, 256, 259, 261, 264, 274, 275	PoolConnection_by_PoolName-class, 211
Model-class, 190	PoolId-class, 212
Model_14, 101, 191, 197, 235, 240, 244, 258,	PoolIndex, 212
263, 266	PoolIndex, character-method, 212
Model_14-class, 194	PoolIndex, numeric-method, 213
Model_by_PoolNames	PoolIndex, PoolIndex-method, 213
(Model_by_PoolNames-class), 194	PoolIndex, PoolName-method, 214
Model_by_PoolNames-class, 194	PoolIndex-class, 214

2001Name, 214	InreepFeedbackMode114, 216, 234
PoolName, character-method, 215	ThreepParallelModel, 203, 216, 238
PoolName, PoolIndex-method, 215	ThreepParallelModel14, 216, 239
PoolName, PoolName-method, 216	ThreepSeriesModel, 216, 241
PoolName-class, 216	ThreepSeriesModel14, 217, 243
predefinedModels, 23, 42, 43, 96, 160, 189,	TimeMap, 26, 43, 245
	····
195, 197, 216, 220, 223, 224, 230,	TimeMap, data.frame, missing, missing, missing, missing meth
232, 235, 238, 240, 242, 244, 256,	246
258, 259, 261, 263, 264, 266, 274,	TimeMap, function, missing, missing, missing, missing, method
275	246
orint,Model-method,217	TimeMap, function, numeric, numeric, missing, missing-method
orint,NlModel-method,218	247
,	TimeMap, list, missing, missing, missing, missing-method,
RespirationCoefficients, 218	247
RothCModel, 42, 43, 216, 219	TimeMap, missing, missing, numeric, array-method,
100110110001, 72, 73, 210, 219	248
ScalarTimeMap, 41, 220	
	TimeMap, missing, missing, numeric, list-method,
ScalarTimeMap,missing,missing,missing,missing	- · · · · · · · · · · · · · · · · · · ·
221	TimeMap, missing, missing, numeric, matrix-method,
ScalarTimeMap-class, 222	249
SeriesLinearModel, 217, 222	TimeMap, missing, missing, numeric, numeric-method,
SeriesLinearModel14, 217, 223	250
show, Model-method, 225	TimeMap, TimeMap, ANY, ANY, ANY, ANY-method,
show, NlModel-method, 226	250
SoilR.F0.new, 226	TimeMap-class, 245, 251
StateDependentInFluxVector	TimeMap.from.Dataframe, 251
(StateDependentInFluxVector-class),	
227	TimeMap.new, 103, 203, 252
	TimeRangeIntersection, 252
StateDependentInFluxVector-class, 227	transitTime, 230, 253
StateIndependentInFlux_by_PoolIndex,	TransportDecompositionOperator-class,
227, 228	253
StateIndependentInFlux_by_PoolIndex	turnoverFit, 254
(StateIndependentInFlux_by_PoolIndex-	- Фмар я edbackModel, 101, 102, 192, 217, 255
228	TwopFeedbackModel14, 217, 257
StateIndependentInFlux_by_PoolIndex-class,	TwopMMmodel, 217, 258
228	TwopParallelModel, 101, 102, 192, 203, 217,
StateIndependentInFluxList_by_PoolIndex,	260
227, 228	TwopParallelModel14, 217, 262
StateIndependentInFluxList_by_PoolIndex,list	
227	TwopSeriesModel14, 217, 265
StateIndependentInFluxList_by_PoolIndex-clas	
228	UnBoundInFluxes, 267
StateIndependentInFluxList_by_PoolName,	UnBoundInFluxes, function-method, 267
228	UnBoundInFluxes-class, 268
summary, Model-method, 229	UnBoundLinDecompOp, 268
systemAge, 70, 229, 253	UnBoundLinDecompOp, function-method,
5,5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	268
ThreepairMMmodel, 217, 230	UnBoundLinDecompOp-class, 269
ThreenFeedhackModel 216 231	UnboundNonLinDecompOn 269
eeeea.kroue//////31	

YassoModel, 217, 274

```
UnBoundNonLinDecompOp, function, missing, missing, missing, ANY, ANY, ANY-method, 270

UnBoundNonLinDecompOp, missing, missing, missing, missing, character, character, UnBoundNonLinDecompOp_by_Pool 270

UnBoundNonLinDecompOp, missing, vector, vector, numeric, ANY, ANY, ANY-method, 271

UnBoundNonLinDecompOp-class, 271

UnBoundNonLinDecompOp_by_PoolNames, 272

UnBoundNonLinDecompOp_by_PoolNames, InternalFluxList_by_PoolName, OutFluxList_by_PoolName, character-methology
272

UnBoundNonLinDecompOp_by_PoolNames-class, 273

Yasso07Model, 217, 273
```