Audio Pitch Shifting and Transmission through Optical Fiber

Emmanuel Havugimana and Wings Yeung

Motivation

- + Pitch shifting is cool
- + Explore optics
- + Learn to make a PCB board
 - + Less wires and more reliable
 - + Neater
 - + Cool

3 Major Components

Single Sideband Mixer (SSB)

- Normal Mixer output sum and differences of input frequencies
- SSB will be used to select output without using filters

SSB: mixer

SSB: Summer

$$Vout = -\frac{R3}{R1}Vin1 - \frac{R3}{R2}Vin2$$

SSB: Wein Bridge Oscillator

- Outputs both the cosine an the sine waveform
- Vary frequency by changing R1 and R3

SSB: 90° Phase Shifter using an All Pass Filter

 Issue: Only works for one specific frequency, therefore, for different frequencies, we need to tune the R1 component in the all-pass filter

Audio is transmitted and received optically

Optical Receiver circuit

Speaker Driver from Lab 5

Timeline

Optics and Sub-Components

- Test and build optical component
- Build SBB sub components

SBB and PCB Design

- Put SBB together
- Start PCB design

Speaker Driver Module

- Finish PCB design and send it in
- Build and test speaker driver

Finishing Up

- Project Demo
- Write final report

Summary and Challenges

Finished

- Sub-components of the SBB filter
- Tested optical fibers

To Do

- Create speaker driver module
- Put the SBB filter together and test it
- Build PCB board

Challenges

- Expanding our SBB filter functionality
 - 90 degrees phase shifter that works for a wide bad of frequency
 - Putting it all together
- Time constraint due to PCB board