THE UNIVERSITY OF RHODE ISLAND

Emoji Prediction Using Bidirectional LSTM

- Arup Mazumder
- Piriyankan Kirupaharan

Introduction

- Emoticon is a symbol that represents a face expression, like . It enables the users to convey feelings, moods, and emotions and enhances written communication with non-verbal cues.
- Text suggestion is a feature that improves the user experience. Similarly we can have emoji suggestion for given text that will improve the user experience.

Goal

 We wanted to build a machine learning model that will accurately predict contextual emoji on a given text.

Data

- Twitter Emoji data consists of 70,000 records with 20 classes.
- Data consist of special characters and tagging usernames. So we cleaned the data to remove those specific words from the sentence.

B	efore preprocessing TEXT	Label
0	Vacation wasted ! #vacation2017 #photobomb #ti	0
1	Oh Wynwood, you're so funny! : @user #Wynwood	1
2	Been friends since 7th grade. Look at us now w	2
3	This is what it looks like when someone loves \dots	3
4	RT @user this white family was invited to a Bl	3

After preprocessing Text		
vacation wasted vacation photobomb tired vaca	0	
oh wynwood you're so funny wynwood art itwas	1	
been friends since th grade look at us now we	2	
this is what it looks like when someone loves \dots	3	
rt this white family was invited to a black b	3	

Data

18,♥,18 (love, support, close bonds, and admiration for things that have some relation 15,♥,15 love 14,♥,14 love, support, admiration, happiness, and excitement 6,™,6 classic camera

- Since the data is not distributed normally, we removed few records randomly (Eg: records from class 9).
- Some of the emojis had the same meaning, so we removed similar emoji classes. (Eg: ♥, ♥, ♥, ♠, ♠,
- After doing all the preprocessing, we got 43, 910 data points with 16 classes.
- We split the data such that training data is 80% and testing data is 20%

Data

Class	Emoji	Emoji Name/Mean ing
0	\(\rightarrow\)	Fun, joking, or cheeky
1		Photography
2	•	Love or adoration
3	8	Extreme happiness or laughter
4	&	Joking or being cheeky
5	*	Christmas
6	•	Cool or confident
7	&	Hot or excellent

Class	Emoji	Emoji Name/Mean ing
8	3	Kissing someone, or general expression of love
9	•	Gratitude, love, happiness, hope
10		Glowing, beaming happiness
11		Country flag (USA)
12	*	Snowflake
13	*	Positive, happy, or celebration
14	<u> </u>	Positive or happy
15	100	100 percent approval

Experiment: Transfer Learning

Source: https://lisaong.github.io/mldds-courseware/03_TextImage/transfer-learning.slides.html

Experiment: Glove6B50D

- Words to vectors: The model is available as text file Glove 6B 50D.
- Each word will have 50 values.
- We restricted the maximum number of words in a sentence can be of 20 words.
- We used Glove vectors to convert our words to embedded vectors. So our input matrix will be of size (43,910*20*50)

```
print(embeddings_index['happy'])
print(embeddings_index['happy'].shape)
           0.2571
         -0.58714
 1.247
           0.30571
           0.20914
                               1.1228
 0.7261
          -0.61392
                     2.4225
                               1.0142
           0.3807
                             -0.323
-0.42242
           0.055069 0.38267
                               0.037415 -0.4302
 0.87286 ]
(50,)
```


Experiment

 Long-Short Term Memory(LSTM): Is a type of Recurrent Neural Network(RNN), designed for application where input is an ordered sequence where information from earlier in the sequence is used.

- Used LSTM:
 - Single Layer LSTM
 - Two Layers LSTM
 - Bidirectional LSTM

Experiment: Single Layer LSTM

- 1 LSTM layer with 512 units
- Dropout layer
- Dense Layer with 128 units
- Output layer: Softmax function with 16 units

Experiment: Two Layers LSTM

- 1 LSTM layer with 512 units
- Dropout layer
- 1 LSTM layer with 256 units
- Dropout layer
- Dense Layer with 128 units
- Output layer: Softmax function with 16 units

Experiment: Bidirectional LSTM

- 1 bidirectional LSTM layer with 1024 units
- Dropout layer
- 1 bidirectional LSTM layer with 512 units
- Dropout layer
- Dense Layer with 128 units
- Output layer: Softmax function with 16 units

Results (Single Layer LSTM)

Precision: 0.41

Recall : 0.42

• F1 score: 0.42

Accuracy: 0.42

Results (Two Layers LSTM)

Precision: 0.41

• Recall: 0.42

F1 score : 0.41

Accuracy: 0.42

Results (Bidirectional LSTM)

Precision: 0.50

Recall : 0.50

F1 score : 0.50

Accuracy: 0.50

Deployment

 We developed a simple web interface, which calls a rest API written in python flask. This flask API calls the model predict function from the pre stored weights file.

Conclusion and Future work

- Bidirectional LSTM works better than Single layer LSTM and 2 layer stacked LSTM.
- We can try to implement this with CNN model(Conv1D) and see whether CNN performs better than LSTM.
- People have different interpretations of emojis, and often combine multiple emojis without much organization. May be removing the noisy data can improve the accuracy.
- Glove embedding has different types like 100D and 200D, trying with different embedding may improve the accuracy.

Thank you

