In [1]:

```
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [2]:

```
dataset=sns.load_dataset('titanic')
dataset
```

Out[2]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_n
0	0	3	male	22.0	1	0	7.2500	S	Third	man	7
1	1	1	fema l e	38.0	1	0	71.2833	С	First	woman	Fi
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	Fi
3	1	1	female	35.0	1	0	53.1000	S	First	woman	Fi
4	0	3	ma l e	35.0	0	0	8.0500	S	Third	man	٦
886	0	2	ma l e	27.0	0	0	13.0000	S	Second	man	٦
887	1	1	fema l e	19.0	0	0	30.0000	S	First	woman	Fi
888	0	3	fema l e	NaN	1	2	23.4500	S	Third	woman	Fi
889	1	1	male	26.0	0	0	30.0000	С	First	man	٦
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	٦

891 rows × 15 columns

→

In [3]:

```
dataset.isnull().sum()
```

Out[3]:

survived	0
pclass	0
sex	0
age	177
sibsp	0
parch	0
fare	0
embarked	2
class	0
who	0
adult_male	0
deck	688
embark_town	2
alive	0
alone	0
dtype: int64	

```
In [4]:
```

```
dataset['age']=dataset["age"].ffill()
dataset['age']
Out[4]:
0
       22.0
1
       38.0
2
       26.0
3
       35.0
4
       35.0
       . . .
886
       27.0
887
       19.0
       19.0
888
889
       26.0
890
       32.0
Name: age, Length: 891, dtype: float64
In [5]:
dataset['deck']=dataset["deck"].bfill()
dataset['deck']
Out[5]:
         C
         C
1
2
         C
3
         C
         Ε
4
         В
886
         В
887
         C
888
         C
889
890
       NaN
Name: deck, Length: 891, dtype: category
```

Categories (7, object): ['A', 'B', 'C', 'D', 'E', 'F', 'G']

```
In [6]:
```

```
dataset['embarked']=dataset["embarked"].bfill()
dataset['embarked']
Out[6]:
0
       S
       C
1
2
       S
       S
3
       S
4
       S
886
       S
887
       S
888
       C
889
890
Name: embarked, Length: 891, dtype: object
In [7]:
dataset['embark_town']=dataset["embark_town"].bfill()
dataset['embark_town']
Out[7]:
       Southampton
0
1
         Cherbourg
2
       Southampton
3
```

In [8]:

dataset

Out[8]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_m
0	0	3	male	22.0	1	0	7.2500	S	Third	man	7
1	1	1	female	38.0	1	0	71.2833	С	First	woman	Fŧ
2	1	3	female	26.0	0	0	7.9250	s	Third	woman	Fŧ
3	1	1	female	35.0	1	0	53.1000	S	First	woman	Fŧ
4	0	3	male	35.0	0	0	8.0500	S	Third	man	7
886	0	2	male	27.0	0	0	13.0000	S	Second	man	7
887	1	1	female	19.0	0	0	30.0000	S	First	woman	Fŧ
888	0	3	female	19.0	1	2	23.4500	S	Third	woman	Fŧ
889	1	1	male	26.0	0	0	30.0000	С	First	man	1
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	1
891 rows × 15 columns											

In [9]:

dataset.isnull().sum()

Out[9]:

survived 0 pclass 0 0 sex age sibsp parch 0 fare 0 embarked 0 class who 0 adult_male deck 1 embark_town alive alone 0 dtype: int64

1) Find the female those who are not alone with fare value is less than 60000and greater then 20000.

In [10]:

```
data1=dataset.iloc[:,[2,6,14]]
data1
```

Out[10]:

	sex	fare	alone
0	male	7.2500	False
1	female	71.2833	False
2	female	7.9250	True
3	female	53.1000	False
4	male	8.0500	True
886	male	13.0000	True
887	female	30.0000	True
888	female	23.4500	False
889	male	30.0000	True
890	male	7.7500	True

891 rows × 3 columns

```
In [11]:
```

```
FARE=[]
for x in data1["fare"]:
    if x>=20 and x<60:
       FARE.append(0)
    else:
       FARE.append(1)
print(FARE)</pre>
```

```
[1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0,
  1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1,
                                  1, 1, 0, 0,
                  1,
                               1,
                                                1, 1,
                                                      1,
      1,
            1,
                      1,
                         0, 0,
                                                         1, 1,
                                                                1, 0, 1, 1, 0,
            1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0,
                  1,
                                             1,
            1, 1,
                      1, 1,
                            0, 0,
                                  1, 1, 1,
                                                1, 1,
                                                      0, 1, 0,
                                                                1, 1, 0, 1, 1,
                         0,
                                   0,
                                                   1,
                1,
                   1,
                      1,
                             1,
                                1,
                                      0,
                                         1,
                                             1,
                                                1,
                                                       1,
                                                          1,
                                                             1,
               1,
                   1,
                               1,
                                   1,
                                      1,
                                         1,
                                             0,
                                                0,
                                                   0,
                                                      0,
                                                         0,
                      1,
                         1,
                            1,
                                                             0,
                                                      1,
                            0,
                                0,
                                   1,
                                      0, 1,
                                             1,
                                                1,
                                                   1,
                1,
                   1,
                                   0,
                                             1,
                                                      0,
            1,
                      1,
                         1,
                             0,
                                1,
                                      1,
                                         1,
                                                1,
                                                   1,
                                                                1,
                                                                   1,
                                                                       1,
                                                          1,
         1,
                1,
                   1,
                         0,
                            1,
                                1,
                                   0,
                                      0,
                                         1,
                                             1,
                                                1,
                                                   1,
                                                       1,
                                                             1,
                                                                1,
                                                                   1,
                      1,
                                                          1,
                                  0,
                   1,
                                                   0,
            0, 1,
                      1, 1, 0, 1,
                                      1, 1,
                                            1,
                                                1,
                                                      1,
                                                          1, 1,
                                                                0, 1, 1,
            0, 1,
                   1,
                         1, 0, 1,
                                  1,
                                         1, 1,
                                                1,
                                                   1,
                                                      1,
                                                          1,
                                      1,
                                                                0, 1,
                                1,
                                   1,
                                                   0,
                1,
                   1,
                         0,
                            0,
                                      0,
                                             0,
                                                1,
                                                       1,
                                                             1,
                                                                1,
                                                                       1,
                      1,
                                         1,
                                                          1,
                                   1,
                                             0,
                      1,
                         1,
                            1,
                                1,
                                      1,
                                         1,
                                                0,
                                                   1,
                                                      1,
                                                          1,
                                                                1,
                               0,
                                  0,
                                                   1,
                      1,
                         1, 1,
                                      1, 1, 1,
                                                1,
                                                      1,
                         0,
                                             1,
                                                      1,
                                                                   1,
                   1,
                      1,
            1,
                1,
                            1,
                                1,
                                   0,
                                      1, 1,
                                                1,
                                                   1,
                                                          1,
                                                             1,
                                                                1,
         1,
            1,
                0,
                   1,
                      1,
                         1,
                            0,
                                1,
                                   1,
                                      1,
                                         1,
                                             1,
                                                1,
                                                   0,
                                                      1,
                                                          1,
                                                                1,
                                                                   1,
                                                                       1,
                  1,
         1,
               0,
                      0, 1, 0, 1,
                                   0,
                                      1, 1, 1,
                                                0, 1,
                                                      1,
                                                                1, 1,
            1,
                                                         1, 1,
                   0,
                      0, 1,
                            1,
                               0, 1, 0, 1, 1, 1, 1, 0, 1, 1,
               0,
                            1,
                                  1,
                                                   1,
                                                      0, 0,
                   1,
                         1,
                                0,
                                      0,
                                         1,
                                             1,
                                                1,
                                                             1,
                                                                1,
                                                                   1,
                                                                       1, 1,
                      1,
                      0,
                         0,
                            0,
                                1,
                                   1,
                                      0,
                                         0,
                                             1,
                                                0,
                                                   1,
                                                      0,
                                                         0,
                                                             1,
                                                                1,
                                                                   1,
            1, 0, 1,
                     1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1,
                                   1,
                      1, 1, 1, 1,
                                      1, 1, 1, 0, 1,
                                                      0, 1, 1,
                                                                1, 0, 0, 1, 1,
         1,
            1,
                0,
                   1,
                      0,
                         0,
                            1,
                                1,
                                   1,
                                      1,
                                         1,
                                             1,
                                                1,
                                                   1,
                                                      1,
                                                          1, 0,
                                                                0,
                                                                   0,
                                                                      1, 1, 0,
         1,
                   1,
                      0,
                               0, 1,
                                                1, 1,
            0.
               1.
                         0, 1,
                                      1, 1, 1,
                                                      1,
                                                         0, 1,
                                                                1,
                                                                   0, 1,
               0, 1,
                      0, 1, 0, 1,
                                  1,
                                      0, 0, 1,
                                               1, 1,
                                                      0, 0, 1,
                                                                   1, 0, 1, 1,
                   1,
                                1,
                                  1,
                                                      1,
               1,
                         1,
                            1,
                                      0,
                                         1,
                                             1,
                                                1,
                                                   1,
                                                          1, 0,
                                                                0,
                                                                   0, 1, 1, 1,
         1,
                      1,
                1,
                                   0,
                   1,
                      1,
                            0,
                                0,
                                      1,
                                         1,
                                             1,
                                                0,
                                                   1,
                                                       0,
                                                          1,
                                  0,
                  1,
                     0, 1, 1, 0,
                                      0, 1, 1,
                                               1, 1,
                                                      1, 1, 1, 0, 1, 1,
                      1, 1, 1, 1,
                                   0,
                                      1, 1, 1, 0, 1,
                                                      1,
                                                          1, 1,
         1,
                   1,
                            1,
                                1,
                                   1,
                                                   0,
                                                                       1,
            1,
                1,
                      1,
                         1,
                                      1,
                                         1,
                                             1,
                                                1,
                                                      1,
                                                          0, 1,
                                                                1,
                                                                   1,
                                                                          1, 0,
                               1,
                                   1,
                                                   0,
                                                      1,
                                                         0, 1,
               1,
                   0,
                         0, 1,
                                      0, 0, 1,
                                               1,
                                                                   0, 1,
         1,
            1,
                      0,
                                                                1,
                     1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0,
            1, 1,
                  1,
            1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1,
            0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1]
```

```
In [12]:
```

```
data1.insert(2,"FARE",FARE)
```

```
In [13]:
```

```
del data1["fare"]
```

In [14]:

data1

Out[14]:

	sex	FARE	alone
0	male	1	False
1	female	1	False
2	female	1	True
3	female	0	False
4	male	1	True
886	male	1	True
887	female	0	True
888	female	0	False
889	male	0	True
890	male	1	True

891 rows × 3 columns

In [15]:

```
data2=data1.loc[(data1["sex"]=="female")&(data1["FARE"]==0)]
data2
```

Out[15]:

	sex	FARE	alone
3	female	0	False
9	female	0	False
11	female	0	True
24	female	0	False
25	female	0	False
874	female	0	False
880	female	0	False
885	female	0	False
887	female	0	True
888	female	0	False

100 rows × 3 columns

In [16]:

```
from sklearn.preprocessing import LabelEncoder
l1=LabelEncoder()
data2["alone"]=l1.fit_transform(data2["alone"])
data2["alone"]
```

C:\Users\sujat\AppData\Local\Temp\ipykernel_10044\2886656297.py:3: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

data2["alone"]=11.fit transform(data2["alone"])

Out[16]:

```
3
        0
9
        0
11
         1
        0
24
25
        0
        . .
874
        0
880
        0
885
        0
         1
887
        0
888
```

Name: alone, Length: 100, dtype: int64

```
10/14/22, 9:32 AM
                                             titanic problem statement 13-10-22 - Jupyter Notebook
  In [17]:
  data3=data2.loc[(data2["alone"]==0)]
  data3
  Out[17]:
          sex FARE alone
     3 female
                   0
                          0
       female
    24
       female
       female
        female
   871
        female
   874
       female
   880
       female
                   0
   885 female
                          0
                   0
   888 female
                   0
                          0
  88 rows × 3 columns
  In [18]:
  data2["sex"].unique()
  Out[18]:
  array(['female'], dtype=object)
  In [19]:
```

```
data2["alone"].unique()
Out[19]:
array([0, 1], dtype=int64)
In [20]:
data2["FARE"].unique()
Out[20]:
```

2) Find the Third class travled people and find the count of teenage and adult age and old age.

array([0], dtype=int64)

In [48]:

dataset

Out[48]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_m
0	0	3	male	22.0	1	0	7.2500	S	Third	man	7
1	1	1	fema l e	38.0	1	0	71.2833	С	First	woman	Fŧ
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	Fŧ
3	1	1	female	35.0	1	0	53.1000	S	First	woman	F٤
4	0	3	male	35.0	0	0	8.0500	S	Third	man	T
	•••										
886	0	2	male	27.0	0	0	13.0000	S	Second	man	T
887	1	1	female	19.0	0	0	30.0000	S	First	woman	Fŧ
888	0	3	female	19.0	1	2	23.4500	S	Third	woman	F٤
889	1	1	male	26.0	0	0	30.0000	С	First	man	T
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	7

891 rows × 15 columns

In [49]:

data1=dataset.iloc[:,[8,3]]
data1

Out[49]:

	class	age
0	Third	22.0
1	First	38.0
2	Third	26.0
3	First	35.0
4	Third	35.0
886	Second	27.0
887	First	19.0
888	Third	19.0
889	First	26.0
890	Third	32.0

891 rows × 2 columns

```
In [50]:
```

```
data1["age"].value_counts()
Out[50]:
24.0
                                    39
19.0
                                    38
21.0
                                    33
22.0
                                    32
28.0
                                    32
70.5
                                         1
36.5
                                         1
55.5
                                         1
20.5
                                         1
74.0
Name: age, Length: 88, dtype: int64
In [51]:
AGE=[]
for x in data1["age"]:
                  if x>0 and x<=15:
                                    AGE.append("child")
                  elif x>15 and x<=30:
                                    AGE.append("teenage")
                  elif x>30 and x<=50:
                                    AGE.append("adult")
                  else:
                                    AGE.append("old age")
print(AGE)
 ['teenage', 'adult', 'teenage', 'adult', 'adult', 'adult', 'old age', 'chi
ld', 'teenage', 'child', 'child', 'old age', 'teenage', 'adult', 'child',
 'old age', 'child', 'child', 'adult', 'adult', 'adult', 'adult', 'child', 'teenage', 'child', 'adult', 'teenage', 'teenage', 'ad
ult', 'adult', 'adult', 'old age', 'teenage', 'adult', 'adult', 'teenage',
'teenage', 'child', 'adult', 'teenage', 'teenage', 'child', 'teenage', 'teenage', 'teenage', 'teenage', 'teenage', 'teenage', 'adult', 'teenage', 'old age', 'old age', 'teenage', 'teenage', 'child', 'ch
ild', 'teenage', 'adult', 'adult', 'child', 'child', 'teenage',
 'teenage', 'teenage', 'teenage', 'teenage', 'teenage', 'teenage', 'adult', 'teenage', 't
'teenage', 'teenage', 'teenage', 'adult', 'teenage', 'teenage', 'teenage', 'teenage', 'teenage', 'teenage', 'adult', 'teenage', 'old age', 'old age', 'teenage', 'adult', 'teenage', 'teenage', 'teenage', 'teenage', 'teenage', 'adult', 'teenage', 'teenage', 'teenage', 'adult', 'adult', 'adult', 'adult', 'adult', 'teenage', 'te
ult', 'adult', 'child', 'teenage', 'teenage', 'teenage', 'teenage', 'old a ge', 'teenage', 'teenage', 'teenage', 'adult', 'adul
t', 'old age', 'child', 'child', 'teenage', 'teenage', 'adult', 'adult',
 'teenage', 'adult', 'teenage', 'teenage', 'teenage', 'teenage', 'adult',
In [52]:
data1.insert(0, "AGE", AGE)
```

```
In [53]:
```

```
del data1["age"]
```

In [54]:

data1

Out[54]:

	AGE	class
0	teenage	Third
1	adult	First
2	teenage	Third
3	adult	First
4	adult	Third
886	teenage	Second
887	teenage	First
888	teenage	Third
889	teenage	First
890	adult	Third

891 rows × 2 columns

In [55]:

```
data2=data1.loc[(data1["class"]=="Third")&(data1["AGE"]!="child")]
data2
```

Out[55]:

	AGE	class
0	teenage	Third
2	teenage	Third
4	adu l t	Third
5	adu l t	Third
8	teenage	Third
882	teenage	Third
884	teenage	Third
885	adu l t	Third
888	teenage	Third
890	adu l t	Third

419 rows × 2 columns

```
In [56]:
data2["AGE"].value_counts()
Out[56]:
teenage
           257
adult
           142
old age
           20
Name: AGE, dtype: int64
In [57]:
data2["class"].unique()
Out[57]:
['Third']
Categories (3, object): ['First', 'Second', 'Third']
In [58]:
data2["AGE"].unique()
Out[58]:
array(['teenage', 'adult', 'old age'], dtype=object)
```

3) Find the count of teenage and adult ade and old age.

```
In [30]:
```

data1

Out[30]:

	AGE	class
0	teenage	Third
1	adult	First
2	teenage	Third
3	adult	First
4	adult	Third
886	teenage	Second
887	teenage	First
888	teenage	Third
889	teenage	First
890	adult	Third

891 rows × 2 columns

In [31]:

data1["AGE"].value_counts()

Out[31]:

teenage 401 adult 307 child 106 old age 77

Name: AGE, dtype: int64

4) Find the Alive Man and chlids from 1st and second class with fare of above 25000.

In [32]:

dataset

Out[32]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_m
0	0	3	ma l e	22.0	1	0	7.2500	S	Third	man	T
1	1	1	fema l e	38.0	1	0	71.2833	С	First	woman	F٤
2	1	3	fema l e	26.0	0	0	7.9250	S	Third	woman	Fŧ
3	1	1	female	35.0	1	0	53.1000	S	First	woman	Fŧ
4	0	3	male	35.0	0	0	8.0500	S	Third	man	T
	•••										
886	0	2	ma l e	27.0	0	0	13.0000	S	Second	man	T
887	1	1	female	19.0	0	0	30.0000	S	First	woman	F٤
888	0	3	fema l e	19.0	1	2	23.4500	S	Third	woman	F٤
889	1	1	male	26.0	0	0	30.0000	С	First	man	Т
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	T

891 rows × 15 columns

In [33]:

```
data1=dataset.iloc[:,[6,8,9,13]]
data1
```

Out[33]:

	fare	class	who	alive
0	7.2500	Third	man	no
1	71.2833	First	woman	yes
2	7.9250	Third	woman	yes
3	53.1000	First	woman	yes
4	8.0500	Third	man	no
886	13.0000	Second	man	no
887	30.0000	First	woman	yes
888	23.4500	Third	woman	no
889	30.0000	First	man	yes
890	7.7500	Third	man	no

891 rows × 4 columns

In [34]:

```
data2=data1.loc[(data1["alive"]=="yes")]
data2
```

Out[34]:

	fare	class	who	alive
1	71.2833	First	woman	yes
2	7.9250	Third	woman	yes
3	53.1000	First	woman	yes
8	11.1333	Third	woman	yes
9	30.0708	Second	child	yes
875	7.2250	Third	child	yes
879	83.1583	First	woman	yes
880	26.0000	Second	woman	yes
887	30.0000	First	woman	yes
889	30.0000	First	man	yes

342 rows × 4 columns

In [35]:

```
data3=data2.loc[(data2["who"]=="man")|(data2["who"]=="child")]
data3
```

Out[35]:

	fare	class	who	alive
9	30.0708	Second	child	yes
10	16.7000	Third	child	yes
17	13.0000	Second	man	yes
21	13.0000	Second	man	yes
22	8.0292	Third	child	yes
	•••	•••		
839	29.7000	First	man	yes
857	26.5500	First	man	yes
869	11.1333	Third	chi l d	yes
875	7.2250	Third	child	yes
889	30.0000	First	man	yes

137 rows × 4 columns

In [36]:

```
data4=data3.loc[(data3["class"]=="First")|(data2["class"]=="Second")]
data4
```

Out[36]:

	fare	class	who	alive
9	30.0708	Second	child	yes
17	13.0000	Second	man	yes
21	13.0000	Second	man	yes
23	35.5000	First	man	yes
43	41.5792	Second	child	yes
827	37.0042	Second	child	yes
831	18.7500	Second	child	yes
839	29.7000	First	man	yes
857	26.5500	First	man	yes
889	30.0000	First	man	yes

74 rows × 4 columns

In [37]:

```
data5=data4.loc[(data4["fare"]>=25)]
data5
```

Out[37]:

	fare	class	who	alive
9	30.0708	Second	child	yes
23	35.5000	First	man	yes
43	41.5792	Second	child	yes
55	35.5000	First	man	yes
58	27.7500	Second	child	yes
802	120.0000	First	child	yes
827	37.0042	Second	child	yes
839	29.7000	First	man	yes
857	26.5500	First	man	yes
889	30.0000	First	man	yes

62 rows × 4 columns

```
In [38]:
```

```
data5["fare"].value_counts()
Out[38]:
26.5500
            7
26.0000
             4
30.5000
             4
26.2875
             3
30.0000
             3
35.5000
             3
120.0000
             3
26.2500
             2
             2
512.3292
             2
39.0000
             2
76.7292
52.5542
             2
56.9292
             1
133.6500
             1
30.0708
             1
26.3875
             1
211.3375
             1
57.0000
             1
52.0000
             1
33.0000
             1
53.1000
             1
37.0042
             1
79.2000
             1
89.1042
             1
110.8833
             1
36.7500
             1
91.0792
             1
81.8583
             1
             1
55.4417
151.5500
            1
90.0000
            1
31.0000
             1
63.3583
             1
             1
29.0000
27.7500
             1
41.5792
             1
29.7000
             1
Name: fare, dtype: int64
In [39]:
data5["class"].unique()
Out[39]:
['Second', 'First']
Categories (3, object): ['First', 'Second', 'Third']
```

```
In [40]:
data5["who"].unique()

Out[40]:
array(['child', 'man'], dtype=object)

In [41]:
data5["alive"].unique()

Out[41]:
array(['yes'], dtype=object)

In [ ]:
```