

OUTCOMES-BASED EDUCATION (OBE) COURSE SYLLABUS

Stat 145 Multivariate Statistics

Quality Goals of the Faculty of Natural and Mathematical Sciences

- 1. Provide quality instruction, research, extension, and innovation for global competitiveness;
- 2. Develop knowledgeable, skilled, and innovative individuals who value and pursue the advancement of scientific knowledge for the betterment of society; and
- 3. Produce future- proof graduates and workforce in biology, biotechnology, chemistry, mathematics, meteorology, physics, and statistics.

Quality Objectives of the Department Statistics

- 1. Produce highly trained graduates in Statistics;
- 2. Undertake quality instruction, research, and extension activities in statistics and allied fields:
- 3. Actively promote the appropriate utilization of statistics among scientists, technologists, and development workers; and
- 4. Maintain productive linkages and cooperation with statistical units and agencies locally and internationally.

I. PROGRAM INFORMATION

1. Name of the Program	Bachelor of Science in Statistics
2. CHED CMO Reference	CMO No. 42 s2017
3. BOR Approval	BOR Resolution No. 61 s2018

4. Program Educational Objectives and Relationship to Institution Mission

Program Educational Objectives	N	/lissio	n*
Program Educational Objectives	а	b	С
A number of graduates hold key statistical positions in government line agencies.	√	<	✓
2. Some of the graduates become regular instructors in High School.	✓	✓	✓
3. The top-ranking graduates are teaching in HEIs with at least an MS degree.	√	✓	√
4. A fraction of the graduates are employed as statisticians and/or researchers in research centers and private companies with research units.	√	✓	>
5. Some of the graduates are engaged in consultancy services in market research and project monitoring, and evaluation work.	✓	✓	√

^{*}a - produce graduates equipped with advanced knowledge and lifelong learning skills, b - ethical standards through high-quality instruction and innovative research, c – impactful community engagements

III. COURSE INFORMATION

1. Course Code	STAT 145
2. Course Title	Multivariate Statistics
3. Pre-requisite	Stat 134 (Regression Analysis)
4. Co-requisite	None
5. Credit	4 units
6. Semester Offered	1 st Semester
7. Number of hours	3 hours lecture & 3 hours laboratory per week
8. Course Description	Multivariate normal distribution; inference on mean vector and dispersion matrices; principal component analysis; canonical correlation analysis; discriminant analysis; factor analysis; cluster analysis; other multivariate techniques; applications
9. Sustainable	SDG 4 - Ensure Inclusive and Equitable Quality Education and
Development Goals	Promote Lifelong Learning Opportunities for All
10. 4th Industrial	Artificial Intelligence (AI) Gemini
Revolution (4IR)	
11. Education 5.0	Collaborative Learning, Technology at its Core, and Lifelong Learning.

12. Progra	12. Program Outcomes and Relationship to Program Educational Objectives							
	Program Outcomes (POs)	Program Educationa Objectives						
		1	2	3	4	5		
Common	to All Baccalaureate Programs							
а	Articulate and discuss the latest developments in the practice of Statistics (PQF Level 6 descriptor)			√	✓	✓		
b	Effectively communicate orally and in writing using both the English and Filipino languages.	>		√	✓	✓		
С	Work effectively and independently in multi-disciplinary and multi-cultural teams (PQF Level 6 descriptor)	>		✓	✓	✓		
d	Demonstrate professional, social, and ethical responsibility, especially in practicing intellectual property rights and sustainable development.	>		✓	<	✓		
е	Preserve and promote "Filipino historical and cultural heritage" (based on RA 7722)							
Common	to the Science and Mathematics Programs							
f	Demonstrate broad and coherent knowledge and understanding in the core areas of the physical and natural sciences and mathematics							
g	Apply critical and problem-solving skills using the scientific method	>		\	✓	✓		
h	Interpret scientific data and make judgments that include reflection on relevant scientific and ethical issues	√		✓	✓	✓		
i	Carry out basic mathematical and statistical computations and use appropriate technologies in the analysis of data	\		√	√	√		
j	Communicate information, ideas, problems, and solutions, both orally and in writing, to other scientists, decision-makers, and the public	>		1	✓	√		
k	Relate science and mathematics to the other disciplines			√	√	√		

A global green university providing progressive leadership in agriculture, science & technology, education and allied fields for societal transformation. Vision:

Mission: To produce graduates equipped with advanced knowledge and lifelong learning skills with ethical standards through high quality instruction, innovative research, and impactful community engagements.

I	Design and perform safe and responsible techniques and procedures in laboratory or field practices	✓		✓	✓	✓
m	Critically evaluate inputs from others	✓		✓	✓	√
n	Appreciate the limitations and implications of science in everyday life	>		√	√	✓
0	Commit to the integrity of data					
Specific t	o the BS Statistics Program					
р	Demonstrate broad and coherent knowledge and understanding in the core areas of statistics, computing, and mathematics	>	✓	✓	✓	✓
q	Generate information involving the conceptualization of a strategy for generating timely and accurate/reliable data, organizing a process for putting together or compiling the needed data, and transforming available data into relevant and useful forms	>		✓	<	✓
r	Translate real-life problems into statistical problems	✓		✓	✓	✓
s	Identify appropriate statistical tests and methods and use these properly for the given problems, select optimal solutions to problems, and make decisions in the face of uncertainty	✓		✓	✓	✓

13. Course Outcomes (COs) an	d R	elat	tion	shij	o to	Pro	ogra	am (Out	con	nes	(PC	s)				
Program Outcomes							Pro	gra	m C	Outo	om	es							
Addressed by the Course Outcomes By the end of the course, the students	а	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	s
must be able to: CO1: Describe multivariate data and the multivariate normal distribution	L	P	P	P		L	L	P	L	P	0			L		L	L	L	L
CO2: Perform inference on mean vectors and variance-covariance matrices	L	P	P	P		L	L	P	L	P	0			L		L	L	L	L
CO3: Apply various multivariate statistical methods to real-life data	L	P	P	P		L	L	P	L	P	0			L		L	L	L	L

Level:

L: facilitates learning of competency
P: allows student to practice competency (no input, but competency is evaluated)
O: opportunity for development (no input or evaluation, but competency is practiced)

14. OBTL Course Content and Plan								
Wook	Tonico	Learning	_	nd Learning vities	Assess- ment			
Week	Topics	Outcomes	Teaching Activities	Learning Activities	Tasks			

A global green university providing progressive leadership in agriculture, science & technology, education and allied fields for societal transformation. Vision:

Mission: To produce graduates equipped with advanced knowledge and lifelong learning skills with ethical standards through high quality instruction, innovative research, and impactful community engagements.

1	 Class Orientation VSU Vision Mission, and Quality Policy Statement OBE Course Syllabus (Course Content, Class Policies, Requirements, Grading System, etc.) Values Integration: Open-mindedness and proper netiquette 	2.	State the VSU Vision, Mission and Quality Policy. Describe and explain the important features of the course Apply proper netiquette during virtual classes	 Conduct virtual lecture classes/ meetings Conduct face-to-face (f2f) laborator y classes Solicit questions and feedback from students 	Asking question s about the course Sharing of expectati ons	Quiz No. 0 (warm- up essay- type quiz)
CO1: D	escribe multivariate data ar	l nd th	ne multivariate no	l ormal distributi	l ion	
2-5	Introduction to Multivariate Data Analysis and the Multivariate Normal Distribution Introduction to Multivariate Analysis The Multivariate Normal Distribution Distribution of Functions of Multivariate Normal Random Variables Marginal and Conditional Distribution of Multivariate Normal Random Variables	•	Enumerate real-life applications of multivariate data analysis Compute the mean vector and variance-covariance matrix of multidimensio nal random variables Describe the properties of the multivariate normal distribution Derive the marginal and conditional distribution of functions of multivariate normal random variables	Weekly virtual lectures Weekly (f2f) laborator y class	 Answerin g quizzes Doing the laborator y exercises in pairs 	 Quiz No. 1 Quiz No. 2 Lab Exercise No. 1 Lab Exercise No. 2 First Long Exam
CO2: P	erform inference on mean v	/ecto		-covariance m	atrices	<u> </u>
6-10	Inference on Mean Vectors Inference on One Mean Vector Inference on Two Mean Vectors		Test hypothesis on one and two mean vectors Construct simultaneous	Weekly virtual lectures Weekly (f2f)	Answerin g quizzesDoing the laborator y	• Quiz No. 3 • Quiz No. 4 • Lab

A global green university providing progressive leadership in agriculture, science & technology, education and allied fields for societal transformation. Vision:

Mission: To produce graduates equipped with advanced knowledge and lifelong learning skills with ethical standards through high quality instruction, innovative research, and impactful community engagements. Page 4 of 9 **TP-IMD-08** V04 01-23-2025

	 Multivariate analysis of variance Test on a Single Variance-Covariance Matrix Test on a Single Variance-Covariance Matrix Test for Equality of Several Variance-Covariance Matrices 	confidence intervals for one and two mean vectors 3. Explain the principles behind multivariate analysis of variance 4. Apply multivariate analysis of variance to commonly used experimental designs 5. Perform a test of the hypothesis about variance- covariance matrices	laborator y class	exercises in pairs	Exercise No. 3 Lab Exercise No. 4 Lab Exercise No. 5 Second Long Exam
1	Multivariate Methods for Data Reduction • Principal Component Analysis (PCA) • Exploratory Factor Analysis (EFA) • Confirmatory Factor Analysis (CFA)	 Explain the purpose of data reduction Discuss the concepts and principles of PCA, EFA, and CFA Apply PCA, EFA, and CFA to real-life data sets using freeware 	Weekly virtual lectures Weekly (f2f) laborator y class	 Answerin g quizzes Doing the laborator y exercises in pairs 	 Quiz No. 5 Quiz No. 6 Quiz No. 7 Lab Exercise No. 6 Lab Exercise No. 7 Lab Exercise No. 7
16-18 I	ply various multivariate sta Multivariate Methods for Classification • Linear Discriminant Analysis (LDA) • Logistic Regression Analysis (LRA)	atistical methods to real attribution 1. Explain the classification problem 2. Discuss the concepts and principles of	eal-life data. • Weekly virtual lectures • Weekly (f2f)	 Answerin g quizzes Doing the laborator y 	• Third Long Exam • Quiz No. 8 • Quiz No. 9

A global green university providing progressive leadership in agriculture, science & technology, education and allied fields for societal transformation. Vision:

Mission: To produce graduates equipped with advanced knowledge and lifelong learning skills with ethical standards through high quality instruction, innovative research, and impactful community engagements. Page 5 of 9 **TP-IMD-08** V04 01-23-2025

 Cluster Analysis (CA) Special Topic: Canonical Correlation Analysis (CCA) 	LDA, LRA, and CA, and CCA 3. Apply LDA, LRA, and CA, and CCA using freeware	laborator y class	exercises in pairs	Lab Exercise Set 9Lab Exercise Set 10
	Ç			Fourth Long Exam

15. Life-long Learning Opportunities

Students are encouraged to apply the knowledge they gained in the course in industry-related applications, such as predictive analytics and machine learning.

16. Contribution of Course to Meeting the Professional Component

General Education: 0 % Mathematical Component: 0% Statistical Component: 100%

17. References and Other Learning Resources

A. Textbooks

- 1. Hair, J. F., Black, W. C., Babin, B. J., and Anderson, R. E. (2019). *Multivariate Data Analysis*, 8th Ed. Cengage Learning EMEA.
- 2. Johnson, R. and Wichern, D. (2014). *Applied Multivariate Statistical Analysis*, 6th Ed.
- 3. Schumacker, R. E. (2016). *Using R With Multivariate Statistics*. SAGE Publications, Inc.
- 4. James, G., Witten, D., Hastie, T., and Tibshirani, R. (2021). *An Introduction to Statistical*
- Learning with Applications in R, 2nd Ed. Springer.

 5. Hastie, T., Tibshirani, R., and Friedman, J. (2021). Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Ed. Springer.

B. Learning Guide

- 1. Milla, N. E. (2025). Student Learning Guide in Stat 145 (Multivariate Analysis)
- **C. Other Learning Resources** (Journals, Videos, Websites, Webinars, Open Educational Resources, etc.)
 - 1. https://online.stat.psu.edu/stat505/
 - 2. https://rich-d-wilkinson.github.io/MATH3030/index.html

18. Course Assessment and Evaluation

The performance of students will be assessed and evaluated based on the following:

Item No.	Assessment Tasks	Percentage Contribution (1)	No. of Times in the Semester (2)	Individual Task % Contribution (1/2)
1	Quizzes (Q)	15	6	2.5/Q
2	Laboratory Exercises (Lab)	25	10	2.5/PS
3	Long Examinations (LE)	60	4	15/LE

Vision: A global green university providing progressive leadership in agriculture, science & technology,

education and allied fields for societal transformation.

lission: To produce graduates equipped with advanced knowledge and lifelong learning skills with ethical standards through high quality instruction, innovative research, and impactful community engagements.

Grading System (60% Passing)								
Range	Grade	Range	Grade					
98-100	1.00	53-59	3.25					
95-97	1.25	46-52	3.50					
90-94	1.50	39-45	3.75					
85-89	1.75	32-38	4.00					
80-84	2.00	25-21	4.25					
75-79	2.25	18-24	4.50					
70-74	2.50	11-17	4.75					
65-69	2.75	0-10	5.0					
60-64	3.00							

19. Course Policies

- A. Instructional materials such as lecture guides and assessment tasks are made available to all students via GitHub (https://github.com/bertmilla76/Stat-145-Multivariate-Data-Analysis). Students are encouraged to read the lecture guides before coming to class.
- B. Classes are conducted **face-to-face**, but under rare circumstances, class sessions may be delivered virtually using either ZOOM or Google Meet. The FB Messenger Chat Group will be used for easy and faster communication and consultations.
- C. **Submission of Course Requirements**. Quizzes, problem sets, and long examinations are administered during face-to-face class sessions. Instructions on how to submit the answers to quizzes, problem sets, and long examinations are provided in each course requirement.
- D. Queries and Clarifications. For queries, clarifications, or urgent questions, a student may contact the course instructor during the official class schedule, Monday to Friday only, using the contact information given at the last part of this document or via the FB Messenger Group Chat.
- E. All students are reminded to observe all policies, regulations, and rules of the university (particularly on attendance and cheating) and other related laws of the land and are advised to read, understand, and practice the provisions of the VSU Student Manual.
- F. **NO REMOVAL EXAMINATION!** INC mark shall be given to students per BOR-Approved Policies.

These class policies shall serve as our written agreement for the whole semester. The students will be informed immediately of any changes to these policies that may arise for reasons of improving the delivery of the quality of instruction for the betterment of the Teaching and Learning process.

20. Course Materials and Facilities Available

Student Learning Guide (online via GitHub)
Facebook Messenger Group Chat
Statistics Computing Laboratory

21. Revision History				
Revision	Date of	Date of	Highlights of	Revised by
number	Revision	implementation	Revision	

Vision: A global green university providing progressive leadership in agriculture, science & technology,

education and allied fields for societal transformation.

Mission: To produce graduates equipped with advanced knowledge and lifelong learning skills with ethical standards through high quality instruction, innovative research, and impactful community engagements.

1	August 7, 2025	1 st Sem., AY 2025- 2026	 Updated VSU's vision and mission, the course content, the references, and adjusted the class policies to suit flexible learning Revised the grading scheme Updated to conform with form TP-IMD-08 v04 01- 	Norberto E. Milla, Jr.
0	September 7, 2022	1 st Sem., AY 2022- 2023	Original OBEdized syllabus in Stat 145 (Multivariate Data Analysis) incorporating the topics indicated in the CMO for BS Statistics.	Norberto E. Milla, Jr.

22. Preparation			
Prepared by	Name	Signature	Date Signed
	NORBERTO E. MILLA, JR.		

IV. INSTRUCTOR/PROFESSOR INFORMATION

1. Name of Instructor/Professor	NORBERTO E. MILLA, JR.
2. Office and Department	Faculty Room No.1 (Annex), Department of Statistics
3. Telephone/Mobile Numbers	+63 9473941899
4. Email Address	bertmilla@vsu.edu.ph
5. Consultation Time	

23. Department Instructional Materials Review Committee:

Committee	Name	Signature	Date Signed
Member:	VIRGELIO M. ALAO		
Member:	NORBERTO E. MILLA, JR.		
Chairperson:	DONNA C. CUYNO		

	Name	Signature	Date Signed
Noted by:	REV RHIZZA L. AURE		
-	Dean, FNMS		
Verified by:	MARK GIL A. VEGA Head, IMDO		
Validated by:	MA. RACHEL KIM L. AURE Director, IEO		

A global green university providing progressive leadership in agriculture, science & technology, education and allied fields for societal transformation. Vision:

Mission: To produce graduates equipped with advanced knowledge and lifelong learning skills with ethical standards through high quality instruction, innovative research, and impactful community engagements. Page 8 of 9 **TP-IMD-08** V04 01-23-2025

Vision: A global green university providing progressive leadership in agriculture, science & technology, education and allied fields for societal transformation.

Mission: To produce graduates equipped with advanced knowledge and lifelong learning skills with ethical standards through high quality instruction, innovative research, and impactful community engagements.

Page 9 of 9 **TP-IMD-08** V04 01-23-2025