Représentation temporelle des signaux

I - Signaux périodiques

1) Définition

Un signal périodique est un signal qui se répète dans le temps suivant le même motif.

2) Période et fréquence

La **période** T (en s) est **la durée d'un motif** du signal.

La fréquence f (en Hz) est le nombre de répétition du motif par seconde.

Ces deux grandeurs sont liées par la relation :

$$f = \frac{1}{T}$$

3) Valeur moyenne

La valeur moyenne d'un signal périodique est la valeur que prend en moyenne ce signal sur une période.

$$\langle u \rangle = \frac{Aire}{T}$$
 ou $\langle u \rangle = \frac{1}{T} \int_{t_0}^{t_0+T} u(t) dt$

Mesure: une tension moyenne se mesure au voltmètre numérique en position DC.

4) Valeur efficace

La valeur efficace d'un signal périodique est la valeur équivalente en continu qui transporterait la même puissance à une résistance.

La valeur efficace RMS (Root Mean Square) est donnée par la relation :

$$\boxed{U = \sqrt{\langle u^2 \rangle}} \qquad \text{ou} \qquad U = \sqrt{\frac{Aire'}{T}} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} u^2(t) dt}$$

Mesure: une tension efficace se mesure au voltmètre numérique TRMS en position AC.

5) Composante continue et composante alternative

Un signal périodique se décompose toujours en un **composante continue** (valeur moyenne) et une **composante alternative**.

Mesure : la composante alternative s'obtient à l'oscilloscope par un **couplage AC** de la voie. Le couplage **DC** (par défaut) affiche le signal avec sa composante continue!

D. THERINCOURT 4/8 Lycée Roland Garros

II - Signaux particuliers

1) Signal carré

Un signal carré est un signal périodique à deux niveaux différents sur la même durée.

2) Signal rectangulaire

Un signal rectangulaire est un signal carré dont les deux niveaux n'ont pas la même durée.

Le **rapport cyclique** est défini par la relation :

$$\alpha = \frac{T_H}{T}$$

3) Signal triangulaire

Un signal triangulaire possède la forme suivante :

III - Signaux sinusoïdaux

Cas d'une tension sinusoïdale

Une tension sinusoïdale est un cas particulier d'une tension périodique telle que :

$$u(t) = \hat{U} \cdot \sin(\omega \cdot t + \theta_u)$$

Amplitude ou valeur maximale:

$$\hat{U}$$
 (V)

Fréquence :

$$f = \frac{1}{T}$$
 (Hz)

Pulsation:

$$\boxed{\boldsymbol{\omega} = 2\pi f} \quad (\text{rad} \cdot \text{s}^{-1})$$

Phase à l'origine :

$$\frac{\theta_u = \boldsymbol{\omega} \cdot \boldsymbol{\tau}_u}{\theta_u = \boldsymbol{\omega} \cdot \boldsymbol{\tau}_u} \quad \text{(rad)} \qquad \text{avec} \quad \begin{cases} \theta_u > 0 & \text{si la tension est en avance.} \\ \theta_u < 0 & \text{si la tension est en retard.} \end{cases}$$

Pour un courant sinusoïdal, l'expression sera de la forme :

$$i(t) = \hat{I} \cdot \sin(\omega \cdot t + \theta_i)$$

Valeur moyenne

On montre que:

$$\boxed{\langle u \rangle = 0}$$

Une grandeur sinusoïdale est donc alternative!

Valeur efficace

On montre que:

$$U = \frac{\hat{U}}{\sqrt{2}}$$

Cette formule est un cas particulier du régime sinusoïdal!

Il est donc possible d'écrire les équations précédentes avec la valeur efficace :

$$u(t) = U\sqrt{2} \cdot \sin(\omega \cdot t + \theta_u)$$
 et $i(t) = I\sqrt{2} \cdot \sin(\omega \cdot t + \theta_i)$

Déphasage

La différence de phases ou déphasage entre u(t) et v(t) est l'angle tel que :

$$\varphi = \theta_u - \theta_v$$
 (rad ou °)

IV - Puissance transportée par un signal

1) Puissance instantanée

A tout instant, la **puissance instantanée** p(t) (en watt) transportée par un signal est donnée par la relation :

2) Puissance active

La **puissance active** P est la valeur moyenne de la puissance instantanée p(t).

 $P = \langle p(t) \rangle$

(W)