System Analysis and Design

Eighth Edition

Alan Dennis, Barbara Wixom, Roberta M. Roth

Chapter 5

Data Modeling

Objectives

- Explain the rules and style guidelines for creating entity relationship diagrams (ERDs).
- Create an ERD.
- Describe the use of a data dictionary and metadata.
- Explain how to balance ERDs and data fl ow diagrams.
- Describe the process of normalization.

Introduction

- A data model is a formal way of representing the data that are used and created by a business system
 - Shows the people, places and things about which data is captured and the relationships among them
- Logical data model shows the organization of data without indicating how it is stored, created, or manipulated
- Physical data model shows how the data will actually be stored in databases or files

The Entity Relationship Diagram

- Entity relationship diagram (ERD) is a popular way to depict the data model
- On an ERD, similar kinds of information are listed together and placed inside boxes called *entities*
 - Lines are drawn between entities to represent relationships among the data
 - Special symbols are added to the diagram to communicate high-level business rules that need to be supported by the system
- The ERD implies no order

Reading an Entity Relationship Diagram

Using the ERD to Show Business Rules

- Business rules are constraints that are followed when the system is in operation
- ERD symbols can show when one instance of an entity must exist for an instance of another to exist
 - The customer instance must exist before custom drone order instances can be created for that customer
 - The drone component instance must exist before ordered drone components instances can be created for that drone component

Using the ERD to Show Business Rules Continued

- ERD symbols can show when one instance of an entity can be related to only one or to many instances of another entity
 - One customer instance can create many custom drone order instances; each custom drone order instance is created by only one customer instance
 - A drone can be included on many chemical requests; a chemical request is for only one chemical
- ERD symbols show when the existence of an entity instance is optional for a related entity instance
 - A customer instance may exist without being included on any custom drone order instances

An ERD Example

Elements of an Entity Relationship Diagram

- Entity
- Attribute
- Relationships
- Cardinality
- Modality

Entity

- A person, place, event, or thing about which data is collected
- Must be multiple occurrences to be an entity

Person	Place	Object	Event	Concept
STUDENT	DORM	ВООК	LIBRARY CHECK OUT	COURSE

CASE Entry for Entity

Copyright ©2022 John Wiley & Sons, Inc.

Attributes

- Information captured about an entity
- Only those used by the organization should be included in the model
- Attribute names are nouns
- Sometimes entity name is added at the beginning of the attribute name for clarity

CASE Entry for Attribute

Attributes - Understand Them!

Identifier Types

- One or more attributes can serve as the entity *identifier*, uniquely identifying each entity instance
- Concatenated identifier consists of several attributes
- An identifier may be "artificial," such as creating an I D number
- Final decision on identifiers may postponed to the Design Phase

Relationships

- Associations between entities
- The first entity in the relationship is the parent entity; the second entity in the relationship is the child entity
- Relationships should have active verb names
- Relationships go in both directions

Cardinality

- Cardinality refers to the number of times instances in one entity can be related to instances in another entity
- One instance in an entity refers to one and only one instance in the related entity (1:1)
- One instance in an entity refers to one or more instances in the related entity (1:N)
- One or more instances in an entity refer to one or more instances in the related entity (M:N)

CASE Entry for Relationships

Binary Relationships

Modality

- Refers to whether or not an instance of a child entity can exist without a related instance in the parent entity
- Not Null an instance in the related entity must exist for an instance in another entity to be valid
- Null no instance in the related entity is necessary for an instance in another entity to be valid

The Data Dictionary and Metadata

- Every CASE tool has a data dictionary
 - Where the analyst goes to define or look up information about the entities, attributes, and relationships on the ERD
- The information you see in the data dictionary is called metadata
 - Data about data
- Metadata are stored in the data dictionary so that they can be shared

Types of Metadata Captured by the Data Dictionary

ERD Element	Kinds of Metadata	Example	
Entity	Name	Item	
	Definition	Represents any item carried in inventory in the supermarket	
	Special notes	Includes produce, bakery, and deli items	
	User contact	Nancy Keller (x6755) heads up the item coding department	
	Analyst contact	John Michaels is the analyst assigned to this entity	
Attribute	Name	Item_UPC	
	Definition	The standard Universal Product Code for the item based on Global Trade Item Numbers developed by GS1	
	Alias	Item Bar Code	
	Sample values	036000291452; 034000126453	
	Acceptable values	Any 12-digit set of numerals	
	Format	12 digit, numerals only	
	Туре	Stored as alphanumeric values	
	Special notes	Values with the first digit of 2 are assigned locally, represent ing items packed in the store, such as meat, bakery, produc or deli items. See Nancy Keller for more information.	
Relationship	Verb phrase	Included in	
	Parent entity	Item	
	Child entity	Sold item	
	Definition	An item is included in zero or more sold items. A sold item includes one and only one item.	
	Cardinality	1:N	
	Modality	Null	
	Special notes		

Creating an Entity Relationship Diagram

- Drawing the ERD is an iterative process of trial and revision
- ERDs can become quite complex
- Steps in building ERDs...
 - 1. Identify the entities
 - 2. Add appropriate attributes for each entity
 - 3. Draw the relationships that connect associated entities

Identify the Entities

- Identify major categories of information
 - If available, check the process models for data stores, external entities, and data flows
 - Check the major inputs and outputs from the use cases
- Verify that there is more than one instance of the entity that occurs in the system

Add Attributes and Assign Identifiers

- Identify attributes of the entity that are relevant to the system under development
 - Check the process model repository entries for details on data flows and data stores
 - Check the data requirements of the requirements definition
 - Interview knowledgeable users
 - Perform document analysis on existing forms and reports
- Select the entity's candidate identifier (final decision may be postponed until Design phase)

Notice the Identifiers Selected for each Entity

Identify Relationships

- Start with an entity and identify all entities with which it shares relationships
- Describe the relationship with the appropriate verb phrase
- Determine the cardinality and modality by discussing the business rules with knowledgeable users

ERD Building Tips

- Data stores of the D F D generally correspond to entities
- Only include entities with more than one instance
- Do not include entities associated with implementation of the system (e.g., archive files of older data)
 - They will be added later

Advanced Syntax - Intersection Entities

- A new entity is created to store information about two entities sharing an M:N relationship
- Remove the M:N relationship between two entities and insert new entity between them
- Create two 1:N relationships: original entities are parents to the new child intersection entity
- Name the intersection entity
- Migrate parent entity primary keys to new entity as foreign keys (possibly also concatenated primary key)

Resolving M:N with an Intersection Entity

Resolving M:N Relationship

Other Syntax

- An independent entity is an entity that can exist without the help of another entity
- When a relationship includes an independent child entity, it is called a non-identifying relationship
- There are situations when a child entity requires attributes from the parent entity to uniquely identify an instance
 - Called a dependent entity
- When relationships have a dependent child entity, they are called identifying relationships

Validating an Entity Relationship Diagram

- Creating ERDs is pretty tough
- There are some general design guidelines that you can keep in mind as you build ERDs
- Once the ERDs are drawn, you can use a technique called normalization to validate that your models are well formed

Design Guidelines

- Best practices rather than rigid rules
- Entities should have many occurrences
- Avoid unnecessary attributes
- Clearly label all components
- Apply correct cardinality and modality
- Break attributes into lowest level needed
- Labels should reflect common business terms
- Assumptions should be clearly stated

Data Modeling Guidelines Summary

Normalization

- Normalization is a process whereby a series of rules are applied to a logical data model or a fi le to determine how well formed it is
- Normalization rules help analysts identify entities that are not represented correctly in a logical data model, or entities that can be broken out from a file
- Three normalization rules described in the appendix

Balancing ERDs with Data Flow Diagrams

- All analysis activities are interrelated
- Process models contain two data components
- Data flows and data stores
- The D F D data components need to balance the ERD's data stores (entities) and data elements (attributes)
- Many CASE tools provide features to check for imbalance
- Check that all data stores and elements correspond between models
- Data that is not used is unnecessary
- Data that has been omitted results in an incomplete system
- Do not follow thoughtlessly -- check that the models make sense!

Use of a CRUD Matrix

	Process C	Process D	Process E
Data Entity M			
Attribute M-1	CRUD	R	R
Attribute M-2	CRUD		R
Attribute M-3	CRUD	R	
Attribute M-4	CRUD		R
Data Entity P			
Attribute P-1		С	R
Attribute P-2		С	
Attribute P-3		С	R

Chapter Review

- Define the meaning and purpose of the entity and relationship shown on an entity relationship diagram (ERD).
- Explain the meaning and purpose of attributes included in a data model.
- Explain what is meant by an entity's identifier.
- Explain the meaning of the cardinality and modality of a relationship.
- Explain the concept of metadata and how it is compiled in the project repository.
- Discuss the process used to create a data model.
- Describe how to ensure that the process model and data model are balanced through the use of the CRUD matrix.
- Discuss how the normalization process is performed and how it contributes to the quality of the data model (from chapter appendix).

Key Terms

- 1:1 relationships
- 1:N relationships
- Assumptions
- Attribute
- Balance
- Business rules
- Cardinality
- Child entity
- Clients
- Concatenated identifier
- Create, read, update, delete (CRUD) matrix

- Data dictionary
- Data model
- Dependent
- Dependent entity
- Derived attributes
- Entity
- Entity relationship diagram (ERD)
- First normal form (1NF)
- Identifier
- Identifying relationships

- Independent entity
- Instances
- Intersection entity
- Logical data model
- Metadata
- M:N relationship
- Non-identifying relationship
- Normalization
- Parent entity
- Partial dependency
- Physical data model

- Relationships
- Repeating attributes
- Repeating attribute groups
- Second normal form
- (2NF)
- Subject area
- Third normal form (3NF)
- Transitive dependency