Uniwersytet w Białymstoku Instytut Informatyki

Przedmiot: Optymalizacja globalna

Sprawozdanie z projektu: Rozwiązanie problemu komiwojażera przy pomocy algorytmu genetycznego w reprezentacji porządkowej

Wykonali:

Natalia Radomska Adrian Połubiński Rafał Rak

> Prowadzący: dr Marta Kapturczak

1. Opis problemu komiwojażera

Problem komiwojażera polega na odwiedzeniu przez niego każdego z miast dokładnie raz - w kodzie miasta są punktami w układzie współrzędnych. Między miastami wyliczany jest koszt przejazdu - w kodzie zostało to zaprogramowane na podstawie obliczeniu odległości pomiędzy dwoma punktami na płaszczyźnie. Wszystkie możliwe rozwiązania dla tego zadania są zbiorem permutacji n miast. Optymalnym rozwiązaniem jest permutacja dla której koszt (w przypadku reprezentacji w kodzie suma odległości pomiędzy wszystkimi punktami) jest najmniejszy.

2. Reprezentacja porządkowa

Trasa w reprezentacji porządkowej to ciąg n miast (n punktów). Trasa w programie to ciąg punktów. Reprezentacja dla konkretnego osobnika to liczby z zakresu od 0 do n-1 tak by 0 oznaczało pierwsze miasto (punkt) z trasy w postaci ArrayList. Przykład poniżej:

```
----Punkty/Miasta----
(1,-4) (-2,3) (-5,-4) (-7,6) (-6,-1) (-1,10) (5,1) (-9,-7) (1,5) (8,-1)
0 1 2 3 4 5 6 7 8 9

----Osobnik w reprezentacji porządkowej---
[1, 8, 3, 6, 2, 1, 3, 0, 1, 0]
----Trasa---
[(-2,3), (8,-1), (-6,-1), (1,5), (-7,6), (-5,-4), (-9,-7), (1,-4), (5,1), (-1,10)]
```

Kolejne liczby w reprezentacji osobnika oznaczają numer indeks miasta który na i-tej pozycji (gdzie zakres *i* to od 0 do n-1) ma wartość z zakresu od 0 do n-i-1. W tym przypadku pierwszy gen(miasto) w reprezentacji wskazuje na miasto(punkt) pod indeksem 1 czyli (-2,3), i poniżej w trasie faktycznie na pierwszym miejscu wyświetlony jest ten punkt. Z dostępnych punktów znika już wybrany, a wszystkie pozostałe przesuwają się o jeden w lewo zmieniając swoje indeksy. Na kolejnym miejscu w reprezentacji osobnika znajduje się 8, oznacza

to że z listy miast wybieramy miasto o indeksie 8. W tym wypadku jest to element i = 1 w reprezentacji co oznacza, że w tym miejscu może przyjąć wartość od 0 do (n-i-1 = 10-1-1) 8, więc będzie to ostatni punkt z wylosowanych - (8, -1). W trasie na drugim miejscu znajduje się właściwy punkt, dalsze zapełnienie osobnika i trasy odbywa się analogicznie.

3. Zaimplementowane elementy algorytmu genetycznego

- a. Metody selekcji turniejowa, rankingowa, ruletki
- b. Operatory genetyczne mutacja, inwersja, transpozycja, krzyżowanie (w tym równomierne, wielopunktowe)
- c. Metody sukcesji trywialna, z częściowym zastępowaniem z mechanizmami usuwania osobników takimi jak elitarne, ze ściskiem oraz losowe

4. Interfejs aplikacji realizującej zadanie projektu

a. Widok 1 (1 sekcja wyboru rodzaju selekcji dla algorytmu, 2 sekcja zaznaczenia operatorów genetycznych dla algorytmu, 3 wybranie rodzaju krzyżowania dla algorytmu, 4 sekcja wyboru rodzaju sukcesji dla algorytmu)

b. Widok 2 (1 pole do wpisania ilości osobników, 2 pole do wpisania ilości punktów(miast/genów), 3 przycisk tworzący strukturę n osobników podanych w polu 1 oraz m ilościach genów(kolejnych punktów na trasie) podanych w polu 2, 4 pola do wpisania ilości

epok po której ma iterować algorytm, 5 przycisk służący wykonaniu na populacji początkowej algorytmu genetycznego stosując zaznaczone wcześniej operatory genetyczne oraz rodzaje selekcji i sukcesji, 6 pole wyświetlające macierz początkową po wciśnięciu przycisku w polu 3 oraz wyświetleniu populacji ostatecznej po przejściu przez algorytm genetyczny)

5. Badania

Podstawowe parametry algorytmu:

• Ilość osobników: 10

Ilość miast/punktów/genów: 10

• Ilość epok: 10

• Metoda selekcji: turniejowa

 Operatory genetyczne: mutacja, inwersja, transpozycja, krzyżowanie wielopunktowe

Metoda sukcesji - elitarna

Przykładowy wynik działania programu wraz ze średnią uzyskaną z populacji oraz wyliczoną przy pomocy permutacji najniższą odległością dla osobnika przy zastosowaniu powyższych parametrów:

Punkty:

Minimum z permutacji: 41.8640

Średnia z populacji po 1 uruchomieniu: 59.3352

a. Badanie wpływu mutacji, inwersji, transpozycji na skuteczność algorytmu przy zwiększającej się liczbie osobników.

(krzyżowanie wielopunktowe)

op. gen. / il. osob.	brak	mutacja	inwersja	transpozycja	mutacja + inwersja	mutacja + transpozycja	inwersja + transpozycja	mutacja + transpozycja + inwersja
10	72.8453	63.8102	79.3831	72.4543	70.4821	61.4892	74.8831	60.0832
25	73.3456	61.5026	67.5941	73.3800	64.2844	57.4105	61.9108	56.9276
50	74.8124	64.1417	69.6473	69.1874	60.8682	58.9169	67.1995	62.8030
100	93.7218	59.2261	68.2829	74.3811	59.1201	58.8389	71.7623	58.6930

Przy uśrednieniu wyników z 10 uruchomień programu, z powyższej tabeli można zauważyć, że wykorzystanie operatorów genetycznych znacznie poprawia wyniki algorytmu. Najlepsze rezultaty otrzymujemy przy wykorzystaniu mutacji, zarówno pojedynczo jak również z wykorzystaniem pozostałych operatorów genetycznych. Ponadto, na poprawę tychże wyników wpływa zwiększenie liczby osobników. Sytuacja wygląda inaczej w przypadku pominięcia operatorów - im większa liczba osobników, tym wynik jest gorszy. Wykorzystanie pozostałych operatorów bez użycia mutacji, nie wpływa znacząco na polepszenie wyniku.

b. Badanie wpływu ilości epok przy zwiększającej się liczbie osobników.

il. epok/ il. osob.	10	25	50	100	250	500
10	60.0832	54.9132	53.6849	51.5782	47.4512	52.9989
25	56.9276	53.2307	52.5396	49.8950	48.7353	48.3942
50	62.8030	51.1284	45.3644	47.9303	48.8000	45.6084
100	58.6930	49.8327	51.7753	46.5771	46.8198	47.5037

Powyższe badanie wykazało, że zarówno przy większej liczbie osobników, jak i większej liczbie epok, wyniki ulegają poprawie. Dużo bardziej korzystne wyniki otrzymamy już przy 100 epokach. Większe ilości jedynie nieznacznie je zmieniają.

c. Badanie wpływu metod selekcji przy zwiększającej się liczbie osobników.

(mutacja + krzyżowanie wielopunktowe, sukcesja elitarna, 10 punktów, 25 epok)

metoda selekcji/ ilość osobników	turniejowa	rankingowa	ruletki	
10	56.4284	54.2808	55.4125	
25	49.2203	49.2953	48.6141	
50	46.7965	47.0400	49.8137	
100	48.3465	46.1381	49.8972	

Kolejne badanie wykazało poprawę wyników algorytmu przy wykorzystaniu metod selekcji dla większej ilości osobników. Wyniki na każdym etapie są dość zbliżone, jednak można zauważyć, że w tym wypadku najlepsze rezultaty otrzymamy przy użyciu metody rankingowej oraz turniejowej.

d. Badanie wpływu metod selekcji w zależności od ilości epok.
 (mutacja, krzyżowanie równomierne, sukcesja elitarna, 10 osobników, 10 punktów)

metoda selekcji/ ilość epok	turniejowa	rankingowa	ruletki	
10	59.9240	61.7271	69.5462	
25	51.7027	54.6114	55.4760	
50	50.6075	50.2543	49.2144	
100	48.2433	46.0787	47.2771	
250	43.9201	46.2205	44.1941	
500	44.7944	46.4230	44.0689	

Powyższe badanie bez wątpienia wskazuje na znaczną poprawę rezultatów przy większej ilości epok. Finalnie, wszystkie trzy metody selekcji dają zbliżone wyniki, jednak warto zauważyć, że zwiększenie liczby epok miało największy wpływ na metodę ruletki. Co więcej, przy zadaniu mniejszych wartości epok, to metoda turniejowa radzi sobie najlepiej na tle pozostałych.

e. Badanie rodzaju krzyżowania w zależności od operatorów genetycznych.
(selekcja rankingowa, sukcesja elitarna, 10 osobników, 10 epok, 10 punktów)

op. gen. / r. krzyż.	brak	mutacja	inwersja	transp.	mutacja + inwersja	mutacja + transp.	inwersja + transp.	mutacja + inwersja + transpozycja
wielopkt.	82.9323	57.6367	73.7633	66.0881	61.9276	64.2284	69.9895	57.4063
równomierne	71.2273	63.1074	69.9349	67.3254	60.7864	59.3259	70.9001	60.4619

Przy otrzymanych wyżej rezultatach, nie da się zauważyć zależności między operatorami genetycznymi a wybranym rodzajem krzyżowania. Powyższe badanie utwierdziło jednak w poprzednich wnioskach - niezależnie od wybranego rodzaju krzyżowania, operatorem dającym najlepsze wyniki jest mutacja.

f. Badanie rodzaju krzyżowania w zależności od ilości epok.
 (selekcja rankingowa, mutacja, 10 osobników, 10 punktów, sukcesja elitarna)

r. krzyżowania/ ilość epok	wielopunktowe	równomierne
10	61.0519	63.5036
25	51.7957	54.4842
50	50.6507	52.1969
100	49.6649	51.4560
250	45.9178	48.0671
500	44.5409	45.7435

Wraz ze wzrostem ilości epok, wyniki krzyżowania są lepsze. Oba krzyżowania dają zbliżone wyniki, jednak da się zauważyć, że wielopunktowe delikatnie je poprawia, przy każdej z badanych ilości epok.

g. Badanie rodzajów sukcesji w zależności od liczby epok.

sukcesja / ilość epok	trywialna	elitarna	losowa	ze ściskiem
10	100.3029	62.8566	83.0624	96.1532
25	98.2012	53.3980	88.3925	93.5522
50	97.8097	51.0156	81.6751	94.1593
100	98.0515	48.4726	89.3468	84.9628
250	97.3777	45.2405	88.2694	84.3369
500	100.6774	44.7990	90.6580	87.6158

wszystkich sukcesji, najlepszą jest metoda Spośród sukcesji z częściowym zastępowaniem i eliminacją nadmiernych osobników mechanizmem elitarnym. Daje ona dwukrotnie lepsze wyniki niż pozostałe. Ponadto wraz ze wzrostem ilości epok, są one coraz lepsze. Dzieje się tak samo w przypadku sukcesji ze ściskiem, tzn. zwiększona liczba epok pomaga w uzyskaniu lepszych rezultatów, jednak na tle sukcesji elitarnej są one dużo gorsze. W przypadku sukcesji losowej, większa ilość epok wpływa na pogorszenie wyników. Przy sukcesji trywialnej, ciężko jest zauważyć zależność rezultatów od ilości epok.

6. Wnioski

Z powyższej analizy wynika, że wykorzystanie operatorów genetycznych poprawia wyniki naszego algorytmu, w szczególności mutacja. W tej sytuacji na poprawę wpływa także zwiększenie liczby osobników. Ponadto wraz ze wzrostem liczby osobników, warto zwiększyć ilość epok. Optymalną wartością będzie liczba 100, ponieważ większe wartości nie wpływają zauważalnie na zmianę wyników. Co więcej, dla większej liczby osobników, najlepszymi metodami selekcji będą rankingowa oraz turniejowa. Rodzaje krzyżowania, zaimplementowaliśmy W naszym programie, krzyżowanie tį. wielopunktowe i równomierne, przy zastosowaniu operatorów genetycznych nie wpłynęły w zauważalny sposób na wyniki, ponownie - uległy one polepszeniu dzięki zastosowaniu operatorów genetycznych, z naciskiem na mutację. W innym badaniu można zauważyć niewielką przewagę krzyżowania wielopunktowego nad równomiernym. Przechodząc do sukcesji, najlepszą okazała się sukcesja elitarna. Daje ona dwukrotnie lepsze wyniki od pozostałych.