CS310: Automata Theory 2019

Lecture 2: Deterministic finite automaton (DFA)

Instructor: Ashutosh Gupta

IITB, India

Compile date: 2019-01-07

What we know?

- Alphabet Σ
- ightharpoonup Words from Σ^*
- ► States Q
- ▶ Transitions
- Accepting states

Better names for our running example

Let us use shorter symbols for our running example.

Topic 2.1

Deterministic finite automaton

At every step exactly one move possible!

Deterministic finite automaton

Q is finite

Now let us see the formal definition and learn to read math!

Deterministic finite automaton

Definition 2.1

A deterministic finite automaton(DFA) A is a five-tuple

$$(Q, \Sigma, \delta, q_0, F)$$

where

- Q is a finite set of states,
- $ightharpoonup \Sigma$ is a finite set of input symbols,
- $\delta: Q \times \Sigma \to Q$ is a function that takes a state and an input symbol as input and returns the next state,
- $ightharpoonup q_0 \in Q$ is the start/initial state, and
- ▶ $F \subseteq Q$ is a set of accepting states.

Exercise 2.1

a. Can Q be empty?

c. Can F be empty?

b. Can Σ be empty?

representing the transition graph

Notation alert: declaring and representing functions

The following notation declares a function f that takes N inputs of various types and returns output of type OutputType.

$$f: Input_1_Type \times \cdots \times Input_N_Type \rightarrow OutputType$$

If all types are finite, the functions may be called maps.

Notation alert: maps as tables

A map can be give to us as a table.

Example 2.1

and : $\mathcal{B} \times \mathcal{B} \to \mathcal{B}$ can be defined as follows.

We can also write the function in the following notation

- ightharpoonup and (0, 0) = 0
- ightharpoonup and (0,1)=0
- ▶ and(1,0) = 0
- ightharpoonup and (1,1)=1

Example: deterministic finite automaton

Example 2.2

We write the above automaton according to the formal definition as follows.

$$A = (\{q_i, q_t, q_f\}, \{r, e\}, \delta, q_i, \{q_f\})$$
, where δ is the following table

States

δ	qi	q _t	q_f	
e	qt	q_f	q_f	
r	qi	qi	q _t	

Run of automaton

Definition 2.2

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. A run of A on a word $a_1 \dots a_n$ is a sequence of states $q_0 \dots q_n$ such that $q_i = \delta(q_{i-1}, a_i)$ for each $1 \le i \le n$.

Example 2.3

Instructor: Ashutosh Gupta

Consider word w = erree

Run on the word $q_i q_t q_i q_i q_t q_f$

10

Extending the transition function to words

Definition 2.3

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Let $\hat{\delta} : Q \times \Sigma^* \to Q$ be defined as follows.

$$\hat{\delta}(q,\epsilon) \triangleq q$$

$$\hat{\delta}(q,wa) \triangleq \delta(\hat{\delta}(q,w),a)$$
More general notion than "run" (how?)

Example 2.4

Consider transition function

δ	qi	q_t	q_f
e	q _t	q_f	q_f
r	qi	qi	qt

$$\hat{\delta}(q_t, eer) = \delta(\hat{\delta}(q_t, ee), r) = \delta(\delta(\hat{\delta}(q_t, e), e), r) = \delta(\delta(\delta(\hat{\delta}(q_t, e), e), e), r) \\
= \delta(\delta(\delta(q_t, e), e), r) = \delta(\delta(q_f, e), r) = \delta(q_f, r) = q_t$$

Exercise 2.2

Give value of the following function applications

$$\triangleright \hat{\delta}(q_f, eer) =$$

$$\hat{\delta}(q_f, rr) =$$

$$\triangleright \hat{\delta}(q_i, eer) =$$

$$\hat{\delta}(q_i, rree) =$$
Instructor: Ashutosh Gupta

Accepted word

Definition 2.4

A word w is accepted by a DFA $A = (Q, \Sigma, \delta, q_0, F)$ if $\hat{\delta}(q_0, w) \in F$.

Example 2.5

Consider the following DFA

Since $\hat{\delta}(q_i, rree) = q_f$, rree is accepted by the above DFA.

Language of a DFA

Definition 2.5

The language of a DFA $A = (Q, \Sigma, \delta, q_0, F)$ is the set of words that are accepted by A. We denote the language by L(A). In set notation,

$$L(A) = \{w | \hat{\delta}(q_0, w) \in F\}.$$

We also say that A recognizes language L(A).

Definition 2.6

A language L is a regular language if there is a DFA A such that L = L(A).

Example: DFA recognizing languages

Example 2.6

Let $L = \{w | w \text{ ends with } 01\}$

We choose three states

- q₀ interpretation "nothing matched yet"
- ▶ q₁ interpretation "recently seen 0"
- ▶ q₂ interpretation "recently seen 01"

Example: DFA recognizing languages

Example 2.7

Let $L = \{w | w \text{ ends with } 101\}$

We choose three states

- ▶ q₀ interpretation "nothing matched yet"
- $ightharpoonup q_1$ interpretation "recently seen 1"
- ▶ q₂ interpretation "recently seen 10"
- ▶ q₃ interpretation "recently seen 101"

First non-trivial question

Are there languages that are not regular?

If yes, how do we recognize they are regular or not?

To be continued...

End of Lecture 2

