大学数学实验

Experiments in Mathematics

第11讲

统计方法II 统计推断

统计推断

- 一.示例
- 二.参数估计
- 三.假设检验
- 四.示例分析

示例1:一组学生身高数据

50名17岁城市男生身高(单位: cm):
170.1 179.0 171.5 173.1 174.1 177.2 170.3 176.2 163.7 175.4 163.3 179.0 176.5 178.4 165.1 179.4 176.3 179.0 173.9 173.7 173.2 172.3 169.3 172.8 176.4 163.7 177.0 165.9 166.6 167.4 174.0 174.3 184.5 171.9 181.4 164.6 176.4 172.4 180.3 160.5 166.2 173.5 171.7 167.9 168.7 175.6 179.6 171.6 168.1 172.2

假设学生的身高服从正 态分布 $N(\mu,\sigma^2)$ 即样本来自正态总体 $N(\mu,\sigma^2)$ 估计参数 μ,σ^2

示例2: 吸烟对血压有影响吗?

对吸烟和不吸烟两组人群进行24小时动态监测 吸烟组66人,不吸烟组62人,分别测量 24小时收缩压 (24hSBP) 和舒张压 (24hDBP) 白天 (6Am-10Pm) 收缩压 (dSBP) 和舒张压 (dDBP) 夜间 (10Pm-6Am) 收缩压 (nSBP) 和舒张压 (nDBP)

	吸烟组均值	吸烟组标准差	不吸烟组均值	不吸烟组标准差
24hSBP(mmHg)	119.35	10.77	114.79	8.28
24hDBP(mmHg)	76.83	8.45	72.87	6.20
dSBP(mmHg)	122.70	11.36	117.60	8.71
dDBP(mmHg)	79.52	8.75	75.44	6.80
nSBP(mmHg)	109.95	10.78	107.10	10.11
nDBP(mmHg)	69.35	8.60	65.84	7.03

问题:

- 假设血压服从正态分布,三种情况下,吸烟和不吸烟群体的血压总体的分布参数分别是多少?
 (参数估计)
- 2) 吸烟和不吸烟群体的血压是否有区别? (假设检验)
- 3) 是否可以认为血压服从正态分布? (假设检验)

示例3: 如何制定汽油供货合同?

某炼油厂(甲方)向加油站(乙方)成批(车次)供货,双方制定了相关的产品质量监控合同,要求含硫量不超过0.08%。若双方商定每批抽检10辆车,10个含硫量数据(%):

- 0. 0864 0. 0744 0. 0864 0. 0752 0. 0760
- 0. 0954 0. 0936 0. 1016 0. 0800 0. 0880
- 1) 只根据这些数据推断乙方是否应接受该批汽油;如果甲方是可靠的供货商,并且对产品的稳定性提供了进一步的信息,乙方对应的策略有什么变化? (假设检验)
- 2) 现乙方与一新炼油厂(丙方)谈判,并且了解到丙方有用含硫量0.086%的汽油顶替合格品的前科,那么如果乙方沿用与甲方订的合同,会有什么后果? (假设检验)

示例4: 左右手习惯是否与性别相关

	男	女	合
右	2780	3281	6061
左	311	300	611
合	3091	3581	6672

$$Y = 5.65,$$
 $\chi_{0.95}^2(1) = 3.841,$ $\chi_{0.99}^2(1) = 6.635$

女性左手率 0.08, 男性左手率 0.10

二.参数估计

参数估计: 利用样本统计量对总体参数进行估计,

分点估计和区间估计两种。

- 点估计
- 区间估计——总体均值和总体方差
- · 参数估计的MATLAB实现
- 点估计的评价标准

参数的点估计

• 设一个盒子里装有一定量的白球和黑球,试估计其中黑球比例。

• 假定进行10次有放回的抽取,抽到3个黑球。

$$X \sim \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$$

矩估计的基本想法

$$X \sim \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$$

- 设一个盒子里装有一定量的白球和黑球,试估计其中黑球比例。
- 假定进行10次有放回的抽取,抽到3个黑球。
- 用抽出的球中黑球的比例近似盒子中黑球的比例。

(以样本矩近似理论矩)

$$E(X) = p$$

$$E(X) \approx \overline{x}$$

$$p \approx \overline{x} = \frac{x_1 + \dots + x_{10}}{10} = 0.3$$

$$Var(X) = p(1-p)$$

$$Var(X) \approx S^{2} = \sum_{k=1}^{n} \frac{\left(x_{k} - \overline{x}\right)^{2}}{n-1}$$

$$p(1-p) \approx S^{2} = \frac{3 \times 0.7^{2} + 7 \times 0.3^{2}}{9}$$

$$P(X_1 = 1, X_5 = 1, X_{10} = 1, 其他为0) = p^3(1-p)^7$$

p = 0.3: $p^3 (1-p)^7 = 2.2 \times 10^{-3}$

p = 0.2: $p^3 (1-p)^7 = 1.7 \times 10^{-3}$

$$p = 0.6$$
: $p^3 (1-p)^7 = 3.5 \times 10^{-4}$

极大似然估计的基本想法

- 极大似然估计(MLE) maximum likelihood estimation
- 以最大概率解释样本数据。
- 相对于其他参数,所考虑的样本数据更像 (more likely) 是来自于这组参数。

$$X \sim \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$$
 最大化: $p^3 (1-p)^7$

参数的区间估计

总体 $N(\mu,\sigma^2)$, σ^2 已知, μ 未知, $x_1,x_2,...,x_n$ 是简单随机样本,求 μ 的1- α 置信区间。

解:
$$\mu$$
的点估计 $\bar{x} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$, $\bar{x} - \mu$ 的分布与 μ 无关,

$$\frac{\overline{x} - \mu}{\sqrt{\frac{\sigma^2}{n}}}$$
可作为枢轴量,
$$Z = \frac{\overline{x} - \mu}{\sqrt{\frac{\sigma^2}{n}}} = \frac{\sqrt{n}(\overline{x} - \mu)}{\sigma} \sim N(0,1)$$

$$P\left(u_{\frac{\alpha}{2}} \leq \frac{\sqrt{n}\left(\overline{x} - \mu\right)}{\sigma} \leq u_{1 - \frac{\alpha}{2}}\right) = 1 - \alpha \implies \overline{x} - \frac{\sigma}{\sqrt{n}} u_{1 - \frac{\alpha}{2}} \leq \mu \leq \overline{x} + \frac{\sigma}{\sqrt{n}} u_{1 - \frac{\alpha}{2}}$$

总体 $X\sim N(\mu,\sigma^2),\sigma^2$ 未知,求参数 μ 的 $1-\alpha$ 置信区间

$$\overline{x} \sim N\left(\mu, \frac{\sigma^2}{n}\right), \qquad \frac{\sqrt{n}\left(\overline{x} - \mu\right)}{\sigma} \sim N\left(0, 1\right)$$

$$\frac{\sqrt{n}(\overline{x}-\mu)}{s} \sim t(n-1)$$

$$P\left(-t_{1-\frac{\alpha}{2}}(n-1) \leq \frac{\sqrt{n}(\overline{x}-\mu)}{s} \leq t_{1-\frac{\alpha}{2}}(n-1)\right) = 1-\alpha$$

$$\Rightarrow \overline{x} - \frac{s}{\sqrt{n}} t_{1 - \frac{\alpha}{2}} (n - 1) \le \mu \le \overline{x} + \frac{s}{\sqrt{n}} t_{1 - \frac{\alpha}{2}} (n - 1)$$

参数的区间估计(指数分布总体)

 x_1, \dots, x_n 来自指数总体 $Exp(\lambda)$,求参数 λ 的区间估计,可以证明 $X = 2\lambda(x_1 + \dots + x_n) \sim \chi^2(2n) \Rightarrow 2n\lambda \overline{x} \sim \chi^2(2n)$

$$P\left(\chi_{\frac{\alpha}{2}}^{2}(2n) \leq 2n\lambda \,\overline{x} \leq \chi_{1-\frac{\alpha}{2}}^{2}(2n)\right) = 1 - \alpha$$

$$\Rightarrow \chi_{\frac{\alpha}{2}}^{2}(2n) \leq 2n\lambda \,\overline{x} \leq \chi_{1-\frac{\alpha}{2}}^{2}(2n)$$

$$\Rightarrow \lambda \in \left[\chi_{\frac{\alpha}{2}}^{2}(2n) / 2n \, \overline{x}, \chi_{1-\frac{\alpha}{2}}^{2}(2n) / 2n \, \overline{x} \right]$$

参数估计的MATLAB实现

```
[mu sigma muci sigmaci]=normfit(x,alpha)
[muhat,muci] = expfit(data,alpha)
```

• • • • •

其中: x为样本 alpha为显著性水平(缺省时为0.05)

返回值:mu-- 均值μ的点估计 sigma---标准差σ的点估计 muci--均值μ的区间估计 sigmaci---标准差σ的区间估计。

示例1----学生身高数据处理

50名17岁城市男性学生身高(单位: cm):

170.1 179.0 171.5 173.1 174.1 177.2 170.3 176.2 163.7 175.4

163.3 179.0 176.5 178.4 165.1 179.4 176.3 179.0 173.9 173.7

173.2 172.3 169.3 172.8 176.4 163.7 177.0 165.9 166.6 167.4

174.0 174.3 184.5 171.9 181.4 164.6 176.4 172.4 180.3 160.5

166.2 173.5 171.7 167.9 168.7 175.6 179.6 171.6 168.1 172.2

计算结果 (α=0.05)

身高

均值点估计

均值区间估计

标准差点估计

标准差区间估计

172.7040

(171.1777, 174.2303)

5.3707

(4.4863, 6.6926)

Exp11.m

alpha=0.05;

[mu sigma muci

sigmaci]=normfit(x,alpha)

点估计的评价标准

1.无偏性:

 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 是总体参数 θ 的1个估计量,若有 $E(\hat{\theta}) = \theta$, 则称ê为参数 B 的无偏估计量

2.有效性

如果 $\hat{\theta}_1$ 与 $\hat{\theta}_2$ 均为参数 θ 的无偏估计量,且 $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$, 则称估计量ê,比ê,更有效。

对于参数 θ , 其无偏估计量的方差越小, 估计越有效。

3.一致性(相合性):

如果当样本容量 $n \to \infty$ 时,估计量 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 依概率 收敛到参数 θ ,则称 $\hat{\theta}$ 为参数 θ 的一致估计量或相合估计量。

例. 对于均匀总体
$$X \sim U(0,\theta)$$
, 样本均值 $\overline{x} = \frac{x_1 + x_2 + \cdots + x_n}{n}$

与 $\frac{n+1}{n}$ max $\{x_1, x_2, \dots, x_n\}$ 都是参数 θ 的无偏估计量,比较它们的有效性。

- a=5; n=100; m=1000; % X~U(0,5), 样本容量n=100
- For k=1:m % 将2个估计量重复使用m=1000次
- x=5*rand(n,1);
- a1(k)=2*mean(x);
- a2(k)=max(x)*(n+1)/n;
- End
- [std(a1),std(a2)]
- subplot(1,2,1), hist(a1,15)
- subplot(1,2,2), hist(a2,15)

Exp11.m

例.对于均匀总体 $X \sim U(0,\theta)$, 取定 $\theta = 5$,

比较 \overline{x} 与 $\frac{n+1}{n}$ max $\{x_1, x_2, \dots, x_n\}$ 的有效性。

[std(a1),std(a2)] ans = 0.2882 0.0461

三.假设检验

- 假设检验基本原理
- 总体均值的假设检验
- 两总体的假设检验
- 假设检验的MATLAB实现

假设检验的提法与基本步骤

• 1. 建立假设:

$$H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_1: \theta \in \Theta_1$$

• 2. 选择检验统计量,给出拒绝域形式。

(使原假设被拒绝的样本观测值所在的区域称为拒绝域,

通常记为 W。)

$$\alpha = P(拒绝H_0|H_0为真)$$

• 3. 选择显著性水平α,

$$\alpha = P($$
拒绝 $H_0 | H_0$ 为真 $) = P_{\theta}(X \in W)$

假设检验的两类错误

第一类错误: $\alpha = P(\text{拒绝}H_0 | H_0 \text{为真}) = P_{\theta}(X \in W), \ \theta \in \Theta_0$

第二类错误: $\beta = P(接受H_0 | H_0 \overline{\Lambda}) = P_{\theta}(X \in \overline{W}), \ \theta \in \Theta_1$

	原假设成立	原假设不成立
接受	~	第二类错误(受伪)
拒绝	第一类错误(<mark>拒真</mark>)	

例: 甲方的某产品质量指标 $X \sim N(50,1)$, 批量供给乙方。 对于每批产品 $\mu=50$ 是否成立, 双方商定检验方案。

每批产品抽取25件测量, 计算均值 \overline{x}

- 1. 制订数量标准 δ , $|\overline{x}-50| \leq \delta$,则认为 $\mu=50$ 可以接受,否则拒绝
- 2. 商定水平 α , 使合格品被错误拒绝的概率不超过 α (通常 $\alpha = 0.05$)。

 $H_0: \mu = 50$ VS $H_1: \mu \neq 50$, \bar{x} 是检验统计量, 显著性水平 $\alpha = 0.05$

解:
$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1), \quad P(|\overline{x} - \mu| < \delta | \mu = 50) = P(\frac{|\overline{x} - 50|}{\sigma / \sqrt{n}} < \frac{\delta}{\sigma / \sqrt{n}}) = 0.95$$

$$\frac{\delta}{\sigma/\sqrt{n}} = u_{0.975} \Rightarrow \delta = \frac{\sigma \cdot u_{0.975}}{\sqrt{n}} = \frac{norminv(0.975)}{sqrt(25)} = 0.392$$

当|x-50|≤0.4时接受,否则拒绝

总体均值的假设检验

已有样本(容量n,均值 \bar{x} ,标准差s),要对总体均值 μ 是 否等于给定值µ₀进行检验(假定总体服从正态分布)

原假设与备择假设分别为 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$

显著性水平 α : H。成立时被错误拒绝的概率。

σ²已知

总体方差
$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$
 $z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$ $z = \frac{|z| \le u_{1-\alpha/2}}{\sigma / \sqrt{n}} \sim N(0,1)$ 否则拒绝 H_0 .

称z检验或u检验

原假设与备择假设分别为 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$

 $|t| \le t_{1-\alpha/2}$ 时接受 H_0 ;否则拒绝 H_0 . t 检验

常用: $\alpha = 0.05 \rightarrow u_{1-\alpha/2} = 1.96$; $\alpha = 0.01 \rightarrow u_{1-\alpha/2} = 2.575$

当n较大时(n>30) $t_{1-\alpha/2}$ 与 $u_{1-\alpha/2}$ 相近.

思考 设从一个样本得到 z=2.2, 那么若取 $\alpha=0.05$, 将拒绝 H_0 ;

若取 α =0.01,将接受 H₀。你怎样评价这两个不同的结果?

α是错误地拒绝 H₀的概率, α不是越小越好吗?

总体均值的假设检验

双侧检验与单侧检验

双侧检验
$$H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$$

单侧检验
$$H_0: \mu \geq \mu_0; H_1: \mu < \mu_0$$

$$-u_{1-\alpha/2}$$

$$u_{1-\alpha/2}$$

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1) \qquad t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \sim t(n-1)$$

$$z \ge u_{\alpha} (= -u_{1-\alpha})$$
时接受 H_0 ;

否则拒绝H。.

单侧检验
$$H_0: \mu \leq \mu_0; H_1: \mu > \mu_0$$

$$H_1: \mu > \mu_0$$

总体均值假设检验小结

总体方差o²已知

$$H_0: \mu = \mu_0; \quad H_1: \mu \neq \mu_0$$

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$
 $|z| \leq u_{1-\alpha/2}$ 时接受 H_0 ; 否则拒绝 H_0 .

$$H_0: \mu \geq \mu_0; H_1: \mu < \mu_0$$
 $z \geq u_\alpha (= -u_{1-\alpha})$ 时接受 H_0 ;否则拒绝 H_0 .

总体方差σ²未知

$$H_0: \mu = \mu_0; \quad H_1: \mu \neq \mu_0 \quad |t| \leq t_{1-\alpha/2}$$
 时接受 H_0 ; 否则拒绝 H_0 .

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \sim t(n-1) \quad \Box$$

$$H_0: \mu \ge \mu_0; \ H_1: \mu < \mu_0 \ z \ge t_{\alpha} (=-t_{1-\alpha}) \text{ theorem is a partial of } H_0$$
.

两总体的假设检验——均值

$$X \sim N(\mu_1, \sigma_1^2)$$

$$Y \sim N(\mu_2, \sigma_2^2)$$

若H。成立

给定显著性水平α

取N(0,1)的 $1-\alpha/2$ 口 分位数 $u_{1-\alpha/2}$

总体方差
$$\sigma_1^2$$
, σ_2^2 已知 $H_0: \mu_1 = \mu_2$, $H_1: \mu_1 \neq \mu_2$

$$\frac{(\bar{x} - \bar{y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}} \sim N(0,1)$$

$$z = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

 $|z| \leq u_{1-\alpha/2}$ 时接受 H_0 ; 否则拒绝H。.

总体方差 σ_1^2 , σ_2^2 未知, $H_0: \mu_1 = \mu_2$, $H_1: \mu_1 \neq \mu_2$ $\sigma_1^2 = \sigma_2^2$

$$\frac{(\overline{x}-\overline{y})-(\mu_1-\mu_2)}{\sqrt{\frac{s^2}{n_1}+\frac{s^2}{n_2}}}\sim t(n_1+n_2-2), \ s^2=\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}$$

取分位数 $t_{1-\alpha/2}$, $|t| \leq t_{1-\alpha/2}$ 时接受 H_0 ; 否则拒绝 H_0 .

统计检验中的P值

p值 在一个假设检验问题中,利用观测值能够做出拒绝原假设的最 小显著性水平; 即原假设成立条件下, 样本量出现在观测值以外的概 率的最大值,称为检验的p值。利用p值做检验比较方便。

$$X \sim N(50,1), \quad n = 25;$$

$$H_0: \mu = 50 \quad VS \quad H_1: \mu \neq 50$$

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

$$\overline{x} = 49.1$$
的p值为 $P(|\overline{x} - 50| > 0.9) = P(\left|\frac{\overline{x} - 50}{1/\sqrt{25}}\right| > \frac{0.9}{1/5}) = 2(1 - \Phi(4.5))$

假设检验的MATLAB实现

假	设检验	统计量	检验规则	MATLAB 命令
单个总	$H_0: \mu = \mu_0$	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$	$ z \le u_{1-\alpha/2}$	h=ztest(x,mu,sigma)
体均值 (σ² 已	$H_0: \mu < \mu_0$	σ/\sqrt{n}	 接受 <i>H</i> 0	[h,sig,ci,zval]=
知)	$H_0: \mu > \mu_0$		(z 检验)	ztest(x,mu,sigma,
ZH)				alpha,tail)
单个总	$H_0: \mu = \mu_0$	$\overline{x} - \mu_{\circ}$	$ t \le t_{1-\alpha/2}$	h=ttest(x,mu)
体均值	$H_0: \mu < \mu_0$	$t = \frac{x - \mu_0}{s / \sqrt{n}} \sim t(n - 1)$	$\begin{vmatrix} \cdot - \cdot -\alpha/2 \end{vmatrix}$	
$(\sigma^2 未$,	S / \sqrt{n}	接受 H ₀	[h,sig,ci]=ttest(x,mu,alpha
知)	$H_0: \mu > \mu_0$		(t 检验)	,tail)
单个总	$H \cdot \sigma^2 = \sigma^2$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \sim$	$\chi_{\alpha/2}^2 \le \chi^2 \le \chi_{1-\alpha/2}^2$	无
体方差	$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	σ_0^2	$ \lambda_{\alpha/2} - \lambda - \lambda_{1-\alpha/2} $	
	$H_1: O \neq O_0$	$\chi^2(n-1)$	接受 H ₀	

假	设检验	统计量	检验规则	MATLAB 命令
两个总 体均值 (σ ₁ ² ,σ ₂ ² 己知)	$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$z = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$	$ z \le u_{1-\alpha/2}$ 接受 H_0	无
两个总 体均值 (σ ₁ ² =σ ₂ ² 未知)	$H_0: \mu_1 = \mu_2$ $H_0: \mu_1 < \mu_2$ $H_0: \mu_1 > \mu_2$	$t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s^2 + s^2}{n_1} + \frac{s^2}{n_2}}} \sim t(n_1 + n_2 - 2)$ $s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	$ t \le t_{1-\alpha/2}$ 接受 H_0	h=ttest2(x,y) [h,sig,ci]=ttest2 (x,y,alpha,tail)
两个总 体方差	$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$	$F = \frac{s_1^2}{s_2^2} \sim F(n_1 - 1, n_2 - 1), s_1^2 \ge s_2^2$	$F \leq F_{1-\alpha/2}$ 接受 H_0	无

MATLAB命令使用说明

输入参数 x 是样本 (n 维数组), mu 是 H_0 中的 μ_0 , sigma 是总体标准差 σ , alpha 是显著性水平 α (缺省时设定为 0.05), tail 是对双侧检验和两个单侧检验的标识,:

'both' (0) — Test against the alternative hypothesis that the population mean is not m.

'right'(1) — Test against the alternative hypothesis that the population mean is greater than m.

'left' (-1) — Test against the alternative hypothesis that the population mean is less than m.

输出参数h=0表示接受 H_0 , h=1表示拒绝 H_0 ,

sig标示对假设的接受和拒绝程度,p值。

ci给出的置信区间, zval是样本统计量z的值。

用N(5,1)随机数产生n=100的样本,在总体方差未知的情况下分别取 $\alpha=0.05$ 和 $\alpha=0.01$ 检验总体均值 $\mu \geq 5.2$ 。

$$H_0: \mu \ge 5.2, H_1: \mu < 5.2$$

Exp11.m

```
x = normrnd(5,1,100,1);

m = mean(x),

[h1,sig1,ci1] = ttest(x,5.2,0.05,-1)

[h2,sig2,ci2] = ttest(x,5.2,0.01,-1)
```

计算结果

```
m = 5.0111,

[h1,sig1,ci1] = 1 0.0343 -Inf 5.1815

[h2,sig2,ci2] = 0 0.0343 -Inf 5.2537
```

可知在 α =0.05下拒绝 H_0 (此时 $sig1<\alpha$) , μ 的区间估计 (- ∞ 5.1815]不包含5.2;

而在 α =0.01下接受 H_0 (此时 $sig2>\alpha$) , μ 的区间估计 (- ∞ 5.2537]包含5.2。

四. 示例求解与分析

示例: 吸烟对血压的影响

测量了吸烟组(66人)和不吸烟组(62人)

两组人群的6项血压指标

	吸烟组均值	吸烟组标准差	不吸烟组均值	不吸烟组标准差
24hSBP(mmHg)	119.35	10.77	114.79	8.28
24hDBP(mmHg)	76.83	8.45	72.87	6.20
dSBP(mmHg)	122.70	11.36	117.60	8.71
dDBP(mmHg)	79.52	8.75	75.44	6.80
nSBP(mmHg)	109.95	10.78	107.10	10.11
nDBP(mmHg)	69.35	8.60	65.84	7.03

两个总体均值的假设检验

$$H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$$


```
function
[h,sig]=pttest2(xbar,ybar,s1,s2,m,n,alpha,tail)
spower=((m-1)*s1^2+(n-1)*s2^2)/(m+n-2);
t=(xbar-ybar)/sqrt(spower/m+ spower/n);
if tail==0
  a=tinv(1-alpha/2,m+n-2);
  sig = 2*(1-tcdf(abs(t),m+n-2));
  if abs(t) \le a
    h=0;
  else
    h=1;
  end
end
```

```
if tail==1
  a=tinv(1-alpha,m+n-2);
  sig = 1 - tcdf(t, m + n - 2);
  if t \le a h=0;
  else h=1:
  end
end
if tail==-1
  a=tinv(alpha,m+n-2);
 sig = tcdf(t,m+n-2);
  if t \ge a h=0;
  else h=1:
  end
end
```

$$H_0$$
成立 \Box $t = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{s^2}{m} + \frac{s^2}{n}}} \sim t(m + n - 2)$ $s^2 = \frac{(m-1)s_1^2 + (n-1)s_2^2}{m+n-2}$

$$s^{2} = \frac{(m-1)s_{1}^{2} + (n-1)s_{2}^{2}}{m+n-2}$$

计算结果 $(\alpha=0.05)$

Exp11.m

	h	Sig	接受或拒绝H ₀
24hSBP(mmHg)	1	8.5097e-003	拒绝
24hDBP(mmHg)	1	3.1860e-003	拒绝
dSBP(mmHg)	1	5.3064e-003	拒绝
dDBP(mmHg)	1	3.9950e-003	拒绝
nSBP(mmHg)	0	1.2597e-001	接受
nDBP(mmHg)	1	1.3027e-002	拒绝

除夜间 (10Pm-6Am) 平均收缩压 (nSBP) 外,

其余5项指标都拒绝了 H_0 ,

于是综合起来可以认为,吸烟对血压的影响显著。

示例: 加油站合同制定问题

加油站(乙方)以含硫量不超过0.08%的标准决定是否接受

炼油厂(甲方)提供的一批汽油。

双方商定每批抽检10辆车,现得到了一批10个含硫量数据

 $0.0864 \ 0.0744 \ 0.0864 \ 0.0752 \ 0.0760$

0.0954 0.0936 0.1016 0.0800 0.0880 (%)

解: 假设检验 H_0 : $\mu \le \mu_0 = 0.08$; H_1 : $\mu > \mu_0 = 0.08$

1) 显著性水平 $\alpha=0.05$,方差未知的情况下

```
      x=[0.0864 ..... 0.0880];
      % 10个含硫量数据

      xbar=mean(x);
      % 样本均值

      [h,sig]=ttest(x,0.08,0.05,1)
      % t (单侧) 检验 (设α=0.05)
```

计算结果: [h,sig]= 1 0.0424 , 拒绝假设

2) 显著性水平 $\alpha = 0.05$,标准差为 $\sigma = 0.01$

[h, sig]=ztest(x,0.08,0.01,0.05,1) % z (单侧) 检验

计算结果: [h, sig] = 1 0.0357 <mark>拒绝假设,乙方不接受该批汽油。</mark>

3) 显著性水平 α =0.05, 标准差为 σ =0.015

[h, sig]=ztest(x,0.08,0.015,0.05,1) % z (单侧) 检验

计算结果: [h, sig]= 0 0.1147, 乙方接受该批汽油。

分析:由于数据量较小(10个),产生了随机性较大。生产的稳定性在接受和拒绝的决策中起非常重要的作用。如果生产稳定(标准差为 σ =0.01),出现这样的数据是不能接受的。生产稳定性略差,则由于随机性的原因,认为这样的结果可以接受。

4) 若对甲方产品的信任度很高,不妨将显著性水平 由 α =0.05改为 α =0.01,重新计算。

[h,sig]=ttest(x,0.08,0.01,1) 结果: [h,sig]=0 0.0424

同一个样本用于同样的假设检验,在不同的显著性 水平α下会得到不同的结论。

如何恰当地选取 α ? 因为 α 是原本成立的 H_0 被错误地拒绝的概率,而在假设检验中原假设 H_0 一般是受保护的,不轻易拒绝它,所以 α 一般取得很小,并且 H_0 越可靠, α 越小。在上面的问题中甲方一向信誉很好,减小 α 是合适的。

大学数学实验) 5) 现乙方与一新炼油厂(丙方)谈判,如沿用与甲方订的合同, 会有什么后果(风闻丙方有用含硫量0.086% 的汽油顶替合格 品的前科)。

假设检验
$$H_0: \mu \le \mu_0 = 0.08; H_1: \mu > \mu_0 = 0.08$$
 检验规则 $t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \le t_{1-\alpha}$ 接受

"原本不成立的 H_0 被接受"("取伪")称为第二类错误

$$\beta = P(t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} < t_{1-\alpha} | \mu = \mu_2 = 0.086) \quad \text{LEFT} \frac{\overline{x} - \mu_2}{s / \sqrt{n}} \sim t_{1-\alpha}$$

$$\beta = P(\overline{x} \le \mu_0 + t_{1-\alpha} s / \sqrt{n}) = P(\frac{\overline{x} - \mu_2}{s / \sqrt{n}} \le \frac{\mu_0 + t_{1-\alpha} s / \sqrt{n} - \mu_2}{s / \sqrt{n}})$$

$$= P(\frac{\overline{x} - \mu_2}{s / \sqrt{n}} \le \frac{\mu_0 - \mu_2}{s / \sqrt{n}} + t_{1-\alpha})$$

假设检验中的两类错误

第一类错误"弃真"——本应接受的 H_0 被拒绝,概率 α

第二类错误"取伪"——本应拒绝的Η。被接受, 概率β

当样本容量一定时,二者矛盾:α减小导致β增加.

通常 α 选得较小(0.05,0.01), β 则较大(具体数值取决于 μ_1).

原假设H₀和备选假设H₁是不平等的:

人们保护、偏爱 H_0 ; "歧视" H_{1_0}

实际问题中选择什么样H。的是重要的

实验目的

- 1、掌握参数估计和假设检验的基本理论与实现
- 2、根据数据的规律与问题的需求建立模型
- 3、对建立的模型,使用MATLAB求解

作业: 见网络学堂

- 1. 对一批产品抽样,测得质量指标分别为 9.23, 8.72, 10.31, 9.64, 9.51, 9.34, 9.08, 9.95,总体分布服从 $N(\mu,\sigma^2)$, σ^2 未知。
- (1) 求参数 μ 与 σ 的置信水平为 0.90 和 0.95 的置信区间,
- (2) 对参数 μ 做假设检验, H_0 : $\mu = 9.75$, H_1 : $\mu \neq 9.75$,以样本均值为检验统计量,求该检验的 p 值;若使显著性水平 $\alpha = 0.05$ 下接受原假设的 \overline{x} 取值范围不超过 0.1,则样本容量 n 至少应该达到多少。
- 2. 学校随机抽取 100 名学生,测量他们的身高和体重,所得数据如下表所示。假设分布均为正态。
 - 1) 对这些数据给出直观的图形描述;
 - 2) 根据这些数据对全校学生的平均身高和体重做出估计,并给出估计的误差范围;
 - 3)学校 10 年前作过普查,学生的平均身高为 167.5 厘米,平均体重为 60.2 公斤,根据这次抽查的数据,分别以 $\mu = \mu_0$, $\mu > \mu_0$, $\mu < \mu_0$ 为原假设,对学生的平均身高和体重有无明显变化做出结论,并对你的结论给出解释。
- 3. 某厂从机床甲生产的滚珠中随机抽取 9 个, 测得直径(毫米)如下:

14.6, 14.7, 15.1, 14.9, 14.8, 15.0, 15.1, 15.2, 14.8

从机床乙生产的滚珠中抽取 10 个, 测得直径(mm)如下:

15. 2, 15. 1, 15. 4, 14. 9, 15. 3, 15. 0, 15. 2, 14. 8, 15. 7, 15. 0

记两机床乙生产的滚珠直径分别为 μ_1, μ_2 , 试作 $\mu_1 = \mu_2$, $\mu_1 \leq \mu_2$, $\mu_1 \geq \mu_2$ 三种检验。