

# STORAGE CONCEPTS

David López v 2.4.4 **Updated spring 2021** 



## **Hard Disk situation**

Hard disks are "living dinosaurs"

- According to Moore's law, the density of microelectronics doubles every 18 months
- In hard disks, this only applies to:
  - Process speed of the controller (which never was much of a problem anyway)
  - Increased speed of read/write operations because more data is packed onto each track
  - Increased capacity of the disk (that means more accesses per
- The problem is that it does not affect nor to the rotational speed neither to the actuators moving speed
  - And several actuators on the same rack does not work due to the high density and dilatation

BIG PROBLEM: HDD can store gigantic amounts of data, but the transactions per second are tied to the mechanical internals



# STORAGE SYSTEMS

## Magnetic vs. Optical vs. Solid State

Three basic storage technology:

- Magnetic
  - Tapes (1952-Today)
  - Hard Disk (1956-Today)



Optical Disc Archive (2013 – Today)









http://www.violin-memory.com/assets/Violin-WP-Disk-Storage-Shortfall.pdf?d=1



# in Queue

http://www.violin-memory.com/assets/Violin-WP-Disk-Storage-Shortfall.pdf?d=1



## **LUNs and JBOD**

- Divided in LUNs (Logical UNits)
  - For the host computer, there are not differences between LUNs and physical disks
- Easy to work for the host computer
  - · Partitions or (more often) aggregation
  - · Saw as an unique disk for backup
- Example a JBOD (Just a Bunch Of Disks)
  - Example: three 2TB disks
  - · Build a 6TB LUN
  - Saw as one disk, just one read or write operation at a time
  - One block following the next on the same disk (not like RAID 0)
  - NON BLOCK

STORAGE SYSTEMS

Storage triangle



# JBOD

|      | Space      | Fault     | Read        | Write       |
|------|------------|-----------|-------------|-------------|
|      | Efficiency | tolerance | Performance | Performance |
| JBOD | 1          | 0         | 1           | 1           |



STORAGE SYSTEMS

Fault tolerant

Speed





**Physical Disks** 

B3 B7

B1

B2

В3

В4

B5

В6

В7

В8

В9

Image by Agustín Fernández (AC)

RAID 0 (stripping) & RAID 1 (mirroring)

B8 B9

B2 B6

B1 B5 B9

# STORAGE SYSTEMS B1 B2 В3 В4 B5 В6 В7 В8 В9

• RAID offers redundancy, BUT ALSO SPEED (at a certain cost) Let's calculate # of parallel R/W in

• RAID 0

First solution: RAID

RAID 1

• RAID 5

• RAID 6

• RAID 10, 01

• RAID 51, 15

• Important question: WHAT ABOUT THE STRIPE SIZE?

Cost

**JBOD** 

RAID 1

RAID 0

4KB-128KB?

Storage triangle

11



|        | Space      | Fault     | Read        | Write          |
|--------|------------|-----------|-------------|----------------|
|        | Efficiency | tolerance | Performance | Performance    |
| RAID 5 | n-1        | 1         | n<br>(n/2)  | (n-1)<br>(n/2) |

**RAID 10 & RAID 01** 

**RAID** 

10/01

n/mirrors

Image by Agustín Fernández (AC)

(n/mirrors)

13

15

#### Write Space Fault Read Efficiency tolerance Performance Performance 2 RAID 6 n-2 (n-2)n (n/3)(n/3)

В0

Q(4-7) P(8-11)

DISK 3

B1

B5

→ Q(8-11)

RAID 6: Block-level striping with double distributed parity

Q(0-3)

P(4-7) B9

DISK 0

P(0-3)

B4 B8

Parity information

Image by Agustín Fernández (AC)

Physical disks

В3

B7 B11

B2

B6 B10

# STORAGE SYSTEMS RAID 1 **RAID 0+1** RAID 0 RAID 0 B3 B7 **RAID 1+0** RAID 0 RAID 1 RAID 1 Fault Read Write Space Efficiency tolerance Performance Performance

n

mirrors

Image by Agustín Fernández (AC)

n/mirrors



# onion .

## Second solution: storage networks (in the back end can be RAID too)

- DAS (Direct Attached Storage)
- NAS (Network Attached Storage)
- SAN (Storage Area Network)







Further reading:

IBM. Demystifying Storage Networking: DAS, SAN, NAS, NAS Gateways, Fibre Channel, and I SCSI. David Sacks

www-03.ibm.com/industries/ca/en/education/k12/technical/whitepapers/storagenetworking.pdf



| RAID 0 | RAID 10             | RAID 5                       | RAID 51                                                                                                                                   | RAID 6                                                                                                                                                                                            | RAID 61                                                                                                                                                                                                                                             |
|--------|---------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1W     | 2W                  | 2R+2W                        | (2R+2W)<br>x2                                                                                                                             | 3R+3W                                                                                                                                                                                             | (3R+3W)<br>x2                                                                                                                                                                                                                                       |
| 1      | 2                   | 4                            | 8                                                                                                                                         | 6                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                  |
| X*C    | (X/2)*C             | (X-1)*C                      | ((X-<br>1)/2)*C                                                                                                                           | (X-2)*C                                                                                                                                                                                           | ((X-<br>2)/2*C                                                                                                                                                                                                                                      |
| 2      | 4                   | 3                            | 6                                                                                                                                         | 4                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                   |
| Y/C    | 2*Y/C               | Y/C +1                       | 2*Y/C +1                                                                                                                                  | Y/C +2                                                                                                                                                                                            | 2*Y/C +2                                                                                                                                                                                                                                            |
|        | 1W<br>1<br>X*C<br>2 | 1W 2W  1 2  X*C (X/2)*C  2 4 | 1W         2W         2R+2W           1         2         4           X*C         (X/2)*C         (X-1)*C           2         4         3 | 1W         2W         2R+2W         (2R+2W)           1         2         4         8           X*C         (X/2)*C         (X-1)*C         ((X-1)/2)*C           2         4         3         6 | 1W         2W         2R+2W         (2R+2W)         3R+3W           1         2         4         8         6           X*C         (X/2)*C         (X-1)*C         ((X-1)/2)*C         (X-2)*C           2         4         3         6         4 |

Let's assume X discs, homogeneous, each one of capacity C



# DAS (Direct Attached Storage)

The simplest form

- · A single disk drive or tape connected to a computer
- Can have some features like RAID, partitions, ...
- Can be accessed by others?
  - Yes. Not directly but through the host computer
  - There is no network device between the data storage device and the computer
- Direct connection, usually using SCSI protocol
  - Also ATA, SATA, and Fiber Channel
- · Low cost solution
  - · The problem is the data sharing
    - Data distribution (balanced)
    - Data access penalty
    - Data replication (access / security)



### NAS and SAN

Image from NAS-SAN.com







## IOPS (Input / Output Operations Per Second)

- Pronounced eye-ops
- · Common performance measurement for storage devices
- · There are applications to measure it
  - Iometer (Intel)
  - IOzone
  - FIO
- Not easy to define / compare
  - Mix of read / write operations
  - · Sequential and random accesses
  - Data block sizes
- Typical values
  - Total IOPS (mix of R/W, Seg/RND)
  - · Random read IOPS
  - Random write IOPS
  - Seguential read IOPS
  - Seguential write IOPS
- IOPS \* TransferSizeInBytes = MBps

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

STORAGE SYSTEMS

SYSTEMS

NAS

- · TCP / IP networks: Ethernet, AT
- Almost any machine can connect to the LAN using NFS, CIFS or HTTP, and sharing files
- NAS identifies data by file name and byte offsets, transfers file data or file meta-data, and handles security, user authentication, file locking
- File system managed by NAS head unit

### SAN

- Fiber Channel protocol
- Only servers with SCSI FC can connect to the SAN
- Address data by disk blocks, and transfers raw disk blocks
- · File system managed by servers

Will they converge? FCoE and other advances can merge SAN & NAS in simply a storage network (ASN? ③ )

Experts does not agree!



SSD performance

Many IOPS? Solid State Disks can offer the solution!

- · In our project
  - HDD IOPS: 640 5210
  - SSD IOPS (RD/WR): 90k/10k 540k / 205k

And the cost? Fa\$t di\$k\$ co\$t money!

- · In our project
  - HDD cost: 0,029 /G (8 TB=235€) 0,15€/G (2.4TB=360€)
  - SSD cost: 0,155 €/GB (2TB=310€) 0,21€/GB (7,68TB=1545€)







David López



# Consumer vs Enterprise

# HDD

| Model          | Seagate Barracuda<br>ST8000DM0004 | Toshiba<br>MG07ACA14TA | Seagate<br>ST10000NM009G | HPE 765466-B21 | HPE<br>EG002400JWJNN |
|----------------|-----------------------------------|------------------------|--------------------------|----------------|----------------------|
| Tipus          | Consumer                          | Enterprise             | Enterprise               | Enterprise     | Enterprise           |
| Capacitat (TB) | 8                                 | 14                     | 10                       | 2              | 2,4                  |
| Consum (W)     | 6.8                               | 7.8                    | 9.5                      | 7              | 7.1                  |
| Preu (€)       | 235                               | 520                    | 350                      | 250            | 360                  |
| IOPS R/W       | 640                               | 800                    | 710                      | 3360           | 5210                 |
| RPM            | 5400                              | 7200                   | 7200                     | 10000          | 10000                |
| € / GB         | 0,029375                          | 0,037142857            | 0,035                    | 0,125          | 0,15                 |

# SSD

| Model          | Samsung 860 EVO | Intel Optane H10 | Kingston SEDC100M | WD Gold<br>S768T1D0D | WD Ultrastar DC<br>SN640 |
|----------------|-----------------|------------------|-------------------|----------------------|--------------------------|
| Tipus          | Consumer        | Consumer         | Enterprise        | Enterprise           | Enterprise               |
| Capacitat (TB) | 2               | 1                | 1,92              | 7,68                 | 3,8                      |
| Consum (W)     | 2.2             | 5,8              | 9                 | 12                   | 8                        |
| Preu (€)       | 310             | 195              | 372               | 1545                 | 750                      |
| IOPS R/W       | 90k / 10k       | 330K /250k       | 540K /205K        | 467k/ 65K            | 511K / 82K               |
| Tecnologia     | 3D QLC NAND     | 3D QLC NAND      | 3D TLC NAND       | 3D TLC NAND          | 3D TLC NAND              |
| € / GB         | 0,155           | 0,195            | 0,19375           | 0,201171875          | 0,197368421              |

