Technical Team

Applicant: VortexChem

Inventors: P. Shruti Sekhar, Shantanu Prakash

Chemical Formula: C₂₈H₂₂Cl₂FNO₃

Chemical Name: Flumethrin

Cyano(4-fluoro-3-phenoxyphenyl)methyl 3-[(Z)-2-chloro-2-(4-chlorophenyl)ethenyl]-2,2-dimethylcyclopropane-1-carboxylate

Process Title: Industrial Production of Flumethrin

Raw materials and chemicals required: 4-Fluoro-3-Phenoxybenzaldehyde, Bayticol P Acid Chloride, Sodium Cyanide (NaCN), Thionyl Chloride, Toluene, DMF, NaOH, HCl, SO₂, Water.

Process Description:

Flumethrin is synthesized through a multi-step reaction involving chlorination, cyanation, and purification.

- 1. Stirred Tank Reactor-1: Bayticol P Acid reacts with Thionyl Chloride in Toluene and DMF to form the acid chloride. Water is added to control excess SOCl₂.
- 2. Scrubbing Unit: Acidic gases (SO₂, HCI) are neutralized using NaOH to prevent environmental release.
- 3. Filtration & Distillation: Solid impurities are removed, and Toluene is recovered for reuse.
- 4. Stirred Tank Reactor-2: The acid chloride reacts with NaCN and 4-Fluoro-3-Phenoxybenzaldehyde in Toluene to form Flumethrin.
- 5. Final Purification: Filtration removes residual solids, and the purified product undergoes crystallization and drying. The final product purity is ~ 98%.

Process Flowsheet for the production of Flumethrin:

Reactions Involved:

Reaction 1:

Reactor Type: Stirred Tank Reactor

Operating Temperature: 80 C

Product Yield: 95 %

Reaction 2:

Reactor Type: Stirred Tank Reactor

Operating Temperature: 60 C

Product Yield: 90 %

Material Balance:

```
Basis: 1000 kg Flumethrin / day
     Assuming a yield of 90% for Reaction - 2,
    Let 'x' be the flow rate (molar) of Flumethrun exiting STR-2,
                   N = 1000 kg MW (Fumethoun) = 510.49
                        MWFumethin
                   7 = 1000 kg = 1.96 kmol/day
      Required 4F3P × 0.9 (yield) = 1.96 km of /day
               .. 4- FINO 10-3- PHINOXY = 2.177 Kmal/day = 2.2 Kmal/day
                 Benzaldehyde
     Required Baytico 1 P- Add Coloride = 2.2 kmal/day
            Mass of 4F3P = 2.2×216.2 kg = 471 kg/day
                         MW (4F3P) = 216.29
            Mass of Bayticol
            Mass of Bayhor = 2.2 × 303.6 kg = 661 kg lday
            (input to STR-2)
                        MW (Bayticol P = 303.6 g
          Mars of Nach = 2.2 x 49 kg/day = 108 kg/day
Assuming a yield of 98% for Reaction - 1,
      Required Bayticol x 0,95 (yield) = 2.2 kmol/day
           P- Aud
                     Reg Baytical = 2.31 kmol/day
                  MW (Bayticol P- Add) = 288.29
                       Mars of
                Bayticol P-Aud = 653 kg/day
                    (Input to STR-1)
```

Reg SOU2 = 2.31 2mol/h

Mars of SOU2 = 2.81 × 118.97 kg/h = 27 to kg/day cinput to STR-1)

MW (SOU2) = 118,979

MASS BALANCE AROUND STR-1

Man of HU = 2.2 × 36.5kg 1h = 80 kg 1 Hay (Output from STR-1)

[Stoichiometric value of Batical P Acid Chloride, HU and SDZ [4:4:4]

Mars of SO2 = 2.2 × 64 kg/h = 141 kg/hay

Mass of unreacted reactants = 653+276-80-141-661 kg = 47 kg/day (Output from STR-1)

MASS BALANCE AROUND SCRUBBER

Sumbling. Hu + NaOH --- NaU + H2D SO2 + NADH - NAHSO2 vuactions

NaOH reg = 2.2 + 2.2 kmol/day = 4.4 kmol/day

Mars of NaOH = 4.4 × 40 kg/day = 176 kg/day

:. Mars of Neutralized products = = = (141 + 80 + 176) kg = + = kg | day

PER DAY MATERIAL BALANCE :

TERIAL BALAN	VCE .	OUTPUTS	MASS
	MASS	0017013	661kg
Bayticol P Acid		Bayticol P Acid Chloride Neutralized products	397 129
Thionyl Worlde	276 49	1	47 kg
NaUH	176kg	Unreacted reactants	71.3
TOTAL	1105 kg	TOTAL	1105 kg

Hence, Material balance around unit operations STR-1 and Scrubber is shown.

Mans	of unreacted - Mar reactants = Flun	s ag + Mans	of input reactors		
	= -1000+ (471+661+108) kg/day				
unreacted reactants = 240 kg 1day					
	INPUTS	MASS	OUTPUTS	MASS	
	Baytico IP Acid Chloride	661 kg	Flumethoris	1000kg	
	Sodium Cyanide	708 kg	unreacted	240 kg	
	HF3P	471 kg			
	TOTAL	1240 29	TOTAL	1240kg	
Hence, Material balance around unit operation STR-2					

The previous calculations were based on stoichiometric assumptions. However, in large-scale industrial production, inefficiencies such as side reactions, incomplete conversions, and material losses must be considered. Based on data from existing patents and research papers, the actual material balance accounts for these factors, ensuring a more realistic estimation of reactant consumption and product yield. These adjustments help optimize raw material usage, minimize waste, and improve overall process efficiency.

Additionally, the market analysis and other teams have relied on this industrial material balance for their assessments, as it provides a more accurate representation of real-world production conditions compared to theoretical stoichiometric data.

Step-1: Preparation of Bayticol P acid chloride

Material Balance:

Input	kg	Outpu	ıt Kg
Bayticol P Acid	590	Bayticol P Acid Chloride	627
		Toluene with product to	
Thionyl Chloride	277	stage 2	941
Toluene	1805	HCl gas	76
DMF	1	SO2 gas	130
Water	1544	Rec. Toluene	835
Sodium hydroxide	69	Aq. Effluent	1648
		Residue	29
	4286		4286

Step-2: Preparation of Flumethrin

Material Balance:

Input	kg		Output	Kg
Bayticol P Acid	627		Flumethrin	1000
Toluene with prodcut to				
stage 2	941		Rec. Toluene	3026
4-Fluro 3-Phenoxy			Aq. Effluent	1605
Benzaldehyde	430			
Sodium Cynide	222		Residue	89
Toluene	2174			

Sodium Bisulphite	111		
Water	1213		
Tetraytyl ammonium			
Bromide	2		
	5720		5720

Energy Balance:

```
ENERGY BALANCE IN STR-1
 Assuming all treactants are initially at room temperature, T=25°C.
STR-1 opinates at T= 80°C
        mas (801 + 128
. Heat required to bring reactants to reaction temperature:
       DT= 55°C Cp (50 Cb) = 0.86 K3 lbg. K
                 Cp (Baytio) ~ 2.0 K5 1 kg. K
  Cp (nce cag) > ~ 4.18 K3 lkg. K
           another (802) ~ 0.62 KJ/kg·K
                         (Q=mCp DT) bla q dayland
  BBPA = 663 kg x 2 KS x 55 K = 7.830 K3/day
   Q Soa2 = 276 kg x 0.86 kg x 55 k = 18099 K 5 1 day
             ... Q tobal = 84929 KJ Iday ~ 85000 KJ Iday
  Hence material balance anound unit operation STR-2
 DHTXN-1 2-50 KJ/mol, 2.3 Kmol/day of Baytico I P Acid chemide
           :. AH = 60 KJ x 2.3 Kmol =- 11 6 000 K3/day
 This reaction is Exothermic.
          .. and = 85000 - 115000 K3/day = - 30000 K3/day
                     any = -30000x3/day
```

ENERGY BALANCE IN STR-2

Assuming all reactants are initially at room temperature, 7=25°C, STR-2 operates at T=60°C

. Heat orequired to bring reactants to treaction temperature:

Cp (4F3P) = 1.5 K5/kg. K

Cp (Baytico) = 1.3 KJ/kg.K P-Aid Chronides

Gp(NaCN) = 1.49 K3/kg. K

 $\left[\dot{Q} = \dot{m}C_{p}\Delta T\right]$ $\dot{a}_{4F3P} = 471 \frac{kg}{day} \times 1.5 \frac{KJ}{kg.K} \times 36K = 24727.5 \frac{KJ}{day}$

QBPAC = 661 kg × 1.8 KJ + 35 K = 300039.5 KJ /day

QNacN = 108 kg × 1.46 K5 + 35k = 5443.2 KJ Hay

& total ~ 60200 K5 1day

Aurxn-2 ~=75 KJ/mol 3 22 kmal ab 4F3P

". DH = -75 KJ x 2.2 kmol = -163350 KJ/day

: and = -1633 50 KJ + 6020049 KJ /day

103990 K5/day)

BPAC = 2.2 Km/ /360

List of Contributions of each author:

P. Shruti Sekhar : Identified the chemical Flumethrin and the reactions involved in its production. Designed the process flow sheet and did the stoichiometric mass balance and drafted the technical patent.

Shantanu Prakash : Identified reactor types and other unit operations, estimated yield. Complete Stoichiometric Material balance , Energy balance and drafted the technical patent .

Name	Roll No	Signature
Shantanu Prakash	230952	(harthy w
P Shruti Sekhar	230723	Souti Sekhan
Kumar Shubham	230587	Day