Фундаментальные теоремы машинного обучения

2020

Содержание

1	Teo	рема о связи распределений в экспонентном семействе (Бернштейн фон	
	Миз	sec)	2
	1.1	Асимптотическая нормальность	2
	1.2	Теорема Бернштейна фон Мизеса	2
2	Сло	Сложность моделей	
	2.1	Колмогоровская сложность моделей	4
	2.2	Принцип минимальной длины описания	(
	2.3	Вероятностная интерпретация минимальной длины описания	(

1 Теорема о связи распределений в экспонентном семействе (Бернштейн фон Мизес)

1.1 Асимптотическая нормальность

Пусть заданы объекты из некоторого распределения:

$$\mathbf{X}^n = \{X_i\}_{i=1}^n,$$

где n число объектов.

Пусть задано некоторое открытое подмножество $\Theta \in \mathbb{R}^d$. Подмножество Θ задает множество статистических моделей $\mathcal{P}^n = \{P^n_\theta | \theta \in \Theta\}$. Пусть для каждого n существует мера P^n_0 которая доминирует все меры из множества \mathcal{P}^n . Пусть также все меры задаются своей плотностью p^n_a .

Определение 1. Рассмотрим некоторую внутреннюю точку $\theta^* \in \Theta$ и последовательность $\delta_n \to 0$. Пусть существует вектор $\Delta_{\theta^*}^n$ и невырожденная матрица V_{θ^*} , такие, что последовательность $\{\Delta_{\theta^*}^n\}$ ограничена по вероятностной мере, а также для любого компакта $K \subset \mathbb{R}^d$ выполняется:

$$\sup_{h \in K} \left| \log \frac{p_{\theta^* + \delta_n h}^n}{p_{\theta^*}^n} \left(\boldsymbol{X}^n \right) - h^\mathsf{T} \boldsymbol{V}_{\theta^*} \Delta_{\theta^*}^n - \frac{1}{2} h^\mathsf{T} \boldsymbol{V}_{\theta^*} h \right| \overset{P_0^n}{\to} 0.$$

Тогда модель \mathcal{P}^n удовлетворяет условия локальной асимптотической нормальности в точке θ^* (local asymptotic normality).

Априорное распределение заданное на множестве Θ обозначим Π , а его плотность π . Предположим, что π положительно в некоторой окрестности точки θ^* .

Апостериорное распределение построенное на основе множестве объектов \mathbf{X}^n обозначим $\Pi_n(A|\mathbf{X}^n)$, где A некоторое борелевское множество. Будем обозначать случайную величину из апостериорного распределения как ϑ .

1.2 Теорема Бернштейна фон Мизеса

Теорема 1. Пусть для некоторой точки θ^* выполено условия локальной асимптотической нормальности (Onp.1). Пусть задано априорное распределение Π . Пусть для некоторой последовательности чисел $M_n \to \infty$ выполняется следующее условие:

$$P_0^n \Pi_n(||\theta - \theta^*|| > \delta_n M_n | \mathbf{X}^n) \to 0. \tag{1.1}$$

Tогда последовательность апостериорных распределений сходится κ последовательности нормальных:

$$\sup_{B} \left| \Pi_n \left(\frac{\vartheta - \theta^*}{\delta_n} \in B | \mathbf{X}^n \right) - N_{\Delta_{\theta^*}^n, V_{\theta^*}^{-1}} (B) \right| \stackrel{P_0^n}{\to} 0.$$

Доказательство. Апостериорное распределение для величины $H=\frac{\vartheta-\theta^*}{\delta_n}$ полученное для выборки \mathbf{X}^n обозначим Π_n . Также обозначим $N_{\Delta_{\theta^*}^n,V_{\theta^*}^{-1}}$ как Φ_n . Рассмотрим некоторый компакт $K\subset\mathbb{R}^d$. Рассмотрим условное апостериорное распределение:

$$\Pi_n^K(B|\mathbf{X}^n) = \Pi_n(B \cap K|\mathbf{X}^n)/\Pi_n(K|\mathbf{X}^n),$$

$$\Phi_n^K(B) = \Phi_n(B \cap K)/\Phi_n(K).$$

Рассмотрим некоторый компакт $K \subset \mathbb{R}^d$. Для любой окрестности $U(\theta^*) \subset \Theta$ существует некоторый номер n, такой, что $\theta^* + K\delta_n \subset U(\theta^*)$.

Рассмотрим функцию $f_n: K \times K \to \mathbb{R}$:

$$f_n(g,h) = \left(1 - \frac{\phi_n(h)s_n(g)\pi_n(g)}{\phi_n(g)s_n(h)\pi_n(h)}\right)_+,$$

где ϕ_n, π_n — распределение Φ_n и Π_n соответственно, s_n является отношением правдоподобия:

$$s_n(h) = \frac{p_{\theta^* + h\delta_n}^n}{p_{\theta^*}^n}.$$

Рассмотрим две произвольные последовательности $\{h_n\}, \{g_n\} \subset K$:

$$\log \frac{\phi_n(h_n)s_n(g_n)\pi_n(g_n)}{\phi_n(g_n)s_n(h_n)\pi_n(h_n)} =$$

$$= (g_n - h_n)^{\mathsf{T}} \mathbf{V}_{\theta^*} \Delta_{\theta^*}^n + \frac{1}{2} h^{\mathsf{T}} \mathbf{V}_{\theta^*} h_n - \frac{1}{2} g_n^{\mathsf{T}} \mathbf{V}_{\theta^*} g_n + o(1) -$$

$$= -\frac{1}{2} (h_n - \Delta_{\theta^*}^n)^{\mathsf{T}} \mathbf{V}_{\theta^*} (h_n - \Delta_{\theta^*}^n) + \frac{1}{2} (g_n - \Delta_{\theta^*}^n)^{\mathsf{T}} \mathbf{V}_{\theta^*} (g_n - \Delta_{\theta^*}^n) = o(1),$$

$$(1.2)$$

где первое слагаемое получено используя локальную асимптотическую нормальность (Опр.1), а второе с плотности нормального распределения. Тогда из (1.2) получаем, что:

$$\sup_{g,h\in K} f_n(g,h) \xrightarrow{P_0}_{n\to\infty} 0. \tag{1.3}$$

Обозначим за Ξ_n событие, что $\Pi_n(K) > 0$. Рассмотрим некоторое $\eta > 0$, которое задает следующее множество:

$$\Omega_n = \{ \sup_{g,h \in K} f_n(g,h) \le \eta \}_*, \tag{1.4}$$

где * обозначает измеримое покрытие множества. Из (1.3) и (1.4) получаем следующее неравенство:

$$P_0^n || \Pi_n^K - \Phi_n^K || \mathbb{I}_{\Xi_n} \le P_0^n || \Pi_n^K - \Phi_n^K || \mathbb{I}_{\Xi_n \cap \Omega_n} + 2P_0^n || \Pi_n^K - \Phi_n^K || \mathbb{I}_{\Xi_n \setminus \Omega_n}, \tag{1.5}$$

где \mathbb{I}_{Ξ_n} — индикаторная функция, $||\cdot||$ является вариационной нормой (total-variational norm). Второе слагаемое равняется нулю в силу (1.3). Используя свойство данной нормы первое слагаемое принимает следующий вид:

$$\frac{1}{2}P_0^n||\Pi_n^K - \Phi_n^K||\mathbb{I}_{\Xi_n \cap \Omega_n} = P_0^n \int_K \left(1 - \frac{d\Phi_n^K}{d\Pi_n^K}\right)_+ d\Pi_n^K \mathbb{I}_{\Xi_n \cap \Omega_n} = \\
= P_0^n \int_K \left(1 - \int_K \frac{s_n(g)\pi_n(g)\phi_n^K(h)}{s_n(h)\pi_n(h)\phi_n^K(g)} d\Phi_n^K(g)\right)_+ d\Pi_n^K \mathbb{I}_{\Xi_n \cap \Omega_n}.$$

Используя неравенство Йенсена, а также (1.3) получаем следующее:

$$\frac{1}{2}P_0^n||\Pi_n^K - \Phi_n^K||\mathbb{I}_{\Xi_n \cap \Omega_n} \le P_0^n \int \left(1 - \frac{s_n(g)\pi_n(g)\phi_n^K(h)}{s_n(h)\pi_n(h)\phi_n^K(g)}\right)_+ d\Phi_n^K(g)d\Pi_n^K \mathbb{I}_{\Xi_n \cap \Omega_n} \le \eta.$$

Подставляя в (1.5) получаем, что для любого компакта $K \subset \mathbb{R}^d$ выполняется, что $P_0^n || \Pi_n^K - \Phi_n^K || \mathbb{I}_{\Xi_n} \to 0$.

Рассмотрим последовательность шаров $\{K_m\}$ с центом в нуле с радиусом M_m , причем $M_m \to \infty$.

Рассмотрим множество $\{\Xi_n|\Xi_n=\{\Pi_n(K_n)>0\}\}$, по условию теоремы (1.1) получим, что $P_0^n(\Xi_n)\to 0$. Также получаем, что $P_0^n||\Pi_n^{K_n}-\Phi_n^{K_n}||\to 0$.

Теперь рассмотрим $P_0^n ||\Pi_n - \Phi_n||$:

$$|P_0^n||\Pi_n - \Phi_n|| \le |P_0^n||\Pi_n - \Pi_n^{K_n}|| + |P_0^n||\Phi_n - \Phi_n^{K_n}||$$

$$\le 2(\Pi(\mathbb{R}^d \setminus K_n)) + 2(\Phi(\mathbb{R}^d \setminus K_n)) \to 0,$$
(1.6)

так как увеличивая радиус компакта в бесконечность мы покроем все множество \mathbb{R}^d . Выражение (1.6) заканчивает доказательство данной теоремы.

Список литературы

[1] Kleijn, B. J. K., and van der Vaart, A. W. (2012). The Bernstein-Von-Mises theorem under misspecification. Electronic Journal of Statistics, 6, 354-381. https://doi.org/10.1214/12-EJS675

2 Сложность моделей

2.1 Колмогоровская сложность моделей

ТООО: обозначения

Одним из фундаментальных способов определить сложность произвольного математического объекта является колмогоровская сложность. Ниже представлено формальеное определине колмогоровской сложности и основные ее соуйства.

Определение 2. Способом описания назовем вычислимое частинчо определенное отображение из множества бинарных слов в себя:

$$D: \{0,1\}^* \to \{0,1\}^*.$$

Определение 3. Пусть задан некоторый способ описания D. Колмогоровской сложностью бинарной строки x назовем минимальную длину описания относительно D:

$$K_D(x) = \min_{p \in \{0,1\}^*} \{|p| : D(p) = x\},$$

Перечислим некоторые свойства колмогоровской сложности [1].

Независимости от способа написания.

Теорема (без доказательств) 1. Пусть заданы отображения D_1 , D_2 , такие что существуют константы c_1, c_2 такие что для любого другого отображения D' и для любой строки x:

$$K_{D_1}(x) \le K_{D'}(x) + c_1, \quad K_{D_2}(x) \le K_{D'}(x) + c_2.$$

Тогда $K_{D_1}(x) = K_{D_2}(x) + O(1)$.

Т.к. колмогоровская сложность независима от способа написания, зафиксируем некоторый способ описания D и положим $K(x) = K_D(x)$.

Невычислимость

Теорема (без доказательств) 2. Пусть k - nроизвольная вычислимая функция. Если $k(x) \le K(x)$ для всех x, для которых определена k, то k - oграничена.

Из теоремы следует, что колмогровская сложность в общем случае невычислима: любая оценка сложности будет ограничена, и потому тривиальна.

Условная сложность Обобщим понятие колмогоровскорй сложности на случай двух бинарных строк.

Определение 4. Пусть задано вычисилмое и частично определенное отображение из декартового произведения двух множеств бинарных слов в себя:

$$D: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*.$$

Условной колмогоровской сложностью бинарной строки у при условии x назовем минимальную длину описания относительно D:

$$K_D(y|x) = \min_{p \in \{0,1\}^*} \{|p| : D(p,y) = x\},$$

Оценка условной Колмогоровской сложности [1]

$$K(x,y) \le K(x) + K(y|x) + O(\log K(x,y)).$$

Разность I(x:y) = K(y) - K(y|x) задает количество информации в x об объекте y. Количество информации в паре x,y симметрично c точностью до константы:

$$I(x:y) = I(y:x) + O(\log K(x,y)).$$

Отметим, что схожими свойствами обладает взаимная информация, определение которой дано ниже.

Определение 5. Пусть задана дискретная случайная величина x c вероятностным распределением p, принимающая значения x_1, \ldots, x_n , Энтропией распределения случайной величины x назовем:

$$H(x) = -\sum_{i=1}^{n} p(x = x_i) \log p(x = x_i).$$

Bзаимной информацией I двух случайных величин x, y назовем следующее выражение:

$$I(x,y) = H(x) - H(x|y), \quad H(x) = -\sum_{i} p_x(x_i) \log p_x(x_i)$$

$$I(x,y) = I(y,x).$$

Таким образом, свойства количества информации I(x:y) и взаимной информации, во многом совпадают. Докажем теорему о связи колмогоровской сложности и энтропии распределения, подытоживающую связь этих двух математических объектов.

Теорема 2. [2] Пусть задано семейство частично-определенных отображений $\mathfrak{D} = \{D: \{0,1\}^* \to \{0,1\}^*\}$, такое что для любого отображения $D \in \mathfrak{D}$ и элемента из области определения D в области определения не содержится префиксов этого элемента. Пусть f — вычислимая функция вероятности на пространстве бинарных векторов произвольной длины. Тогда

$$0 \le (\mathsf{E}_f K(X) - H(x)) \le K(f) + O(1). \tag{2.1}$$

Для доказательства предварительно приведем две теоремы из [2] без доказательства.

Теорема (без доказательств) 3. Пусть задано семейство частично-определенных отображений $\mathfrak{D} = \{D: \{0,1\}^* \to \{0,1\}^*\}$, такое что для любого отображения $D \in \mathfrak{D}$ и элемента из области определения D в области определения не содержится префиксов этого элемента.

Тогда для минимальной средней длины описания слова:

$$L = \min_{D \in \mathfrak{D}} \sum_{i} |D(x_i)| p(x = x_i)$$

справедливо неравенсвто:

$$H(x) < L < H(x) + 1$$
.

Теорема (без доказательств) 4. Пусть f — вычислимое распределение на бинарных словах. Тогда справедлива следующие оценки:

$$2^{K(f)\pm O(1)-K(x)} > f(x),$$

 $\operatorname{гde} O(1) - \operatorname{длина}$ некоторой программы, не зависящей от f,x.

Перейдем к доказательству основной теоремы.

Доказательство. Т.к. K(X) — это длина кода для x, то по теореме 3:

$$H(X) \leq L \leq \mathsf{E}_f K(X)$$
.

Таким образом левая часть неравенства (??) доказана.

По теореме 4:

$$f(x) \le 2^{K(f) \pm O(1) - K(x)}$$
.

Тогда

$$\log \frac{1}{f(x)} \ge K(f) - O(1) - K(x)$$
:

Посчитаем матожидание данной величины по всем x:

$$H(x) \ge \sum_x f(x)K(f) - \sum_x O(1) - \sum_x K(x).$$

Пользуясь тем, что $\sum_{x} f(x) = 1$ получим итоговую формулу для правой части неравенства:

$$H(x) + O(1) + K(x) \ge \sum_{x} f(x)K(f),$$

что и т.д.

2.2 Колмогоровская сложность и принцип минимальной длины описания

Рассмотрим частный случай колмогоровской сложности, называемый префиксной колмогоровской сложностью. Эта сложность задается машиной Тьюринга специального вида, имеющей две ленты: однонаправленную ленту для чтения и двунаправленную рабочую ленту. Будем полагать что машина Тьюринга T останавливается на p с выводом x: T(p) = x, если вся запись p осталась слева от читающей каретки, x осталась слева от пишушщей каретки и T остановлена.

Определение 6. Префиксная Колмогоровская сложность:

$$K(x) = \min_{p \in \{0,1\}^*, i \in \mathcal{N}} \{|i| + |p| : T_i(p) = x\},\$$

 $\mathit{rde}\ |i|\ -\ \mathit{dлинa}\ \mathit{onucahus}\ i$ -й префиксной машины Тьюринга.

2.3 Вероятностная интерпретация минимальной длины описания

Список литературы

- [1] Успенский В., Шень А., Верещагин Н. Колмогоровская сложность и алгоритмическая случайность. Litres, 2017
- [2] Grunwald P., Vitányi P. Shannon information and Kolmogorov complexity //arXiv preprint cs/0410002. 2004.