Predicting metawebs: transfer of graph embeddings can help alleviate spatial data deficiencies

Tanya Strydom ^{1,2,‡} Salomé Bouskila ^{1,‡} Francis Banville ^{1,3,2} Ceres Barros ⁴ Dominique Caron ^{5,2} Maxwell J Farrell ⁶ Marie-Josée Fortin ⁶ Victoria Hemming ⁷ Benjamin Mercier ^{3,2} Laura J. Pollock ^{5,2} Rogini Runghen ⁸ Giulio V. Dalla Riva ⁹ Timothée Poisot ^{1,2,‡}

¹ Département de Sciences Biologiques, Université de Montréal, Montréal, Canada ² Quebec Centre for Biodiversity Science, Montréal, Canada ³ Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada ⁴ Department of Forest Resources Management, University of British Columbia, Vancouver, B.C., Canada ⁵ Department of Biology, McGill University, Montréal, Canada ⁶ Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada ⁷ Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada ⁸ Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Canterbury, New Zealand ⁹ School of Mathematics and Statistics, University of Canterbury, Canterbury, New Zealand

(i)

Correspondance to:

Timothée Poisot — timothee.poisot@umontreal.ca

Last revision: February 11, 2022

[‡] These authors contributed equally to the work

- 1. Metawebs, i.e. networks of potential interactions within a species pool, are a powerful abstraction to understand how large-scales species interaction networks are structured.
- 2. Because metawebs are typically expressed at large spatial and taxonomic scales, assembling them is a tedious and costly process; predictive methods can help circumvent the limitations in data deficiencies, by providing 'draft' metawebs.
- 3. One way to improve the predictive ability is to maximize the information used for prediction, by using graph embeddings rather than the list of species interactions. Graph embedding is an emerging field in machine learning that holds great potential for ecological problems.
- 4. In this perspective, we outline how the challenges associated with inferring metawebs line-up with the advantages of graph embeddings; furthermore, because metawebs are inherently spatial objects, we discuss how the choice of the species pool has consequences on the reconstructed network, but also embeds hypotheses about which human-made boundaries are ecologically meaningful.

- Being able to infer *potential* interactions could be the catalyst for significant breakthroughs in our ability
- 2 to start thinking about species interaction networks over large spatial scales (Hortal et al., 2015).
- 3 Understanding species interactions holds enormous potential to not only understand and more rapidly
- 4 learn about species interactions and metawebs, but also how changes in management of a single species
- 5 may impact non-target species. In a recent overview of the field of ecological network prediction, Strydom,
- 6 Catchen, et al. (2021) identified two challenges of interest to the prediction of interactions at large scales.
- First, there is a relative scarcity of relevant data in most places globally paradoxically, this restricts our
- 8 ability to infer interactions for locations where inference is perhaps the least required (and leaves us
- 9 unable to make inference in regions without interaction data); second, accurate predictions often demand
- accurate predictors, and the lack of methods that can leverage small amount of accurate data is a serious
- impediment to our global predictive ability. In most places, our most reliable biodiversity knowledge is
- that of a species pool (i.e. a set of potentially interacting species in a given area): through the analysis of
- databases like GBIF or IUCN, it is possible to construct a list of species in a region of interest; but inferring
- the potential interactions between these species is difficult.
- Following the definition of Dunne (2006), a metaweb is the ecological network analogue to the species
- pool; specifically, it inventories all potential interactions between species for a spatially delimited area (and
- so captures the γ diversity of interactions). The metaweb is not a prediction of the network at a specific
- point within the spatial area it covers: it will have a different structure, notably by having a larger
- connectance (see e.g. Wood et al., 2015) and complexity (see e.g. Galiana et al., 2022), from any of these
- local networks. These local networks (which capture the α diversity of interactions) are a subset of the
- metaweb's species and their interactions, and have been called "metaweb realizations" (Poisot et al., 2015).
- 22 Differences between local networks and their metawebs are due to chance, species abundance and
- 23 co-occurrence, local environmental conditions, and local distribution of functional traits, among others.
- 24 Yet, recent results by Saravia et al. (2021) strongly suggest that the local realizations only respond weakly
- to local conditions: instead, they reflect constraints inherited by the structure of their metaweb. This
- establishes the metaweb structure as the core goal of predictive network ecology, as it is a required
- 27 information to accurately produce downscaled, local predictions.
- 28 Because the metaweb represents the joint effect of functional, phylogenetic, and macroecological
- 29 processes (Morales-Castilla et al., 2015), it holds valuable ecological information. Specifically, it is the
- 30 "upper bounds" on what the composition of the local networks, given the local species pool, can be (see

- e.g. McLeod et al., 2021); this information can help evaluate the ability of ecological assemblages to
- withstand the effects of, for example, climate change (Fricke et al., 2022). These local networks may be
- reconstructed given an appropriate knowledge of local species composition and provide information on
- the structure of food webs at finer spatial scales. This has been done for example for tree-galler-parasitoid
- systems (Gravel et al., 2018), fish trophic interactions (Albouy et al., 2019), tetrapod trophic interactions
- 36 (Braga et al., 2019; O'Connor et al., 2020), and crop-pest networks (Grünig et al., 2020). In this
- contribution, we highlight the power in viewing (and constructing) metawebs as probabilistic objects in
- the context of rare interactions, discuss how a family of machine learning tools (graph embeddings and
- transfer learning) can be used to overcome data limitations to metaweb inference, and highlight how the
- use of metawebs introduces important questions for the field of network ecology.

The metaweb is an inherently probabilistic object

- Treating interactions probabilistic (as opposed to binary) is a more nuanced and realistic way to represent
- interactions. Dallas et al. (2017) suggested that most links in ecological networks are cryptic, i.e.
- 44 uncommon or hard to observe. This argument echoes Jordano (2016): sampling ecological interactions is
- difficult because it requires first the joint observation of two species, and then the observation of their
- interaction. In addition, it is generally expected that weak or rare links to be more prevalent in networks
- than common or rare links (Csermely, 2004), compared to strong, persistent links; this is notably the case
- in food chains, wherein many weaker links are key to the stability of a system (Neutel et al., 2002). In the
- light of these observations, we expect to see an over-representation of low-probability interactions under a
- 50 model that accurately predicts interaction probabilities. Yet the original metaweb definition, and indeed
- most past uses of metawebs, was based on the presence/absence of interactions. Moving towards
- 52 probabilistic metawebs, by representing interactions as Bernoulli events (see e.g. Poisot et al., 2016), offers
- the opportunity to weigh these rare interactions appropriately. The inherent plasticity of interactions is
- 54 important to capture: there have been documented instances of food webs undergoing rapid
- collapse/recovery cycles over short periods of time (e.g. Pedersen et al., 2017). These considerations
- emphasize why metaweb predictions should focus on quantitative (preferentially probabilistic)
- predictions; this should constrain the suite of appropriate models.
- Yet it is important to recall that a metaweb is intended as a catalogue of all potential interactions, which is

then filtered (Morales-Castilla et al., 2015). In a sense, that most ecological interactions are elusive can call
for a slightly different approach to sampling: once the common interactions are documented, the effort
required in documenting each rare interaction will increase exponentially. Recent proposals suggest that
machine learning algorithms, in these situations, can act as data generators (Hoffmann et al., 2019): high
quality observational data can generate the core rules underpinning the network structure, and be
supplemented with synthetic data coming from predictive models, increasing the volume of information
available for inference. Indeed, Strydom, Catchen, et al. (2021) suggested that knowing the metaweb may
render the prediction of local networks easier, because it fixes an "upper bound" on which interactions
can exist. In this context a probabilistic metaweb represents an aggregation of informative priors on the
interactions, elusive information with the potential to boost our predictive ability (Bartomeus et al., 2016).

[Figure 1 about here.]

70 Graph embedding offers promises for the inference of potential

interactions

69

Graph embedding (fig. 1) is a varied family of machine learning techniques aiming to transform nodes and edges into a vector space (Arsov & Mirceva, 2019), usually of a lower dimension, whilst maximally 73 retaining key properties of the graph (Yan et al., 2005). Ecological networks are an interesting candidate for the widespread application of embeddings, as they tend to possess a shared structural backbone (Bramon Mora et al., 2018), which hints at structural invariants that can be revealed at lower dimensions. 76 Indeed, food webs are inherently low-dimensional objects, and can be adequately represented with less 77 than ten dimensions (Braga et al., 2019; Eklöf et al., 2013). Simulation results by Botella et al. (2022) 78 suggest that there is no best method to identify architectural similarities between networks, and that multiple approaches need to be tested and compared to the network descriptor of interest. This matches 80 previous, more general results on graph embedding, which suggest that the choice of embedding algorithm matters for the results (Goyal & Ferrara, 2018). In tbl. 1, we present a selection of common graph embedding methods, alongside examples of their use to predict species interactions.

Table 1: Overview of some common graph embedding approaches, by time of publication, alongside examples of their use in the prediction of species interactions. These methods have not yet been routinely used to predict species interactions; most examples that we identified were either statistical associations, or analogues to joint species distribution models. ^a: statistical interactions; ^b: joint-SDM-like approach.

			Application in species
Method	Embedding approach	Reference	interactions
tSNE	nodes through statistical	Hinton &	Cieslak et al. (2020) ^a
	divergence	Roweis (2002)	
RDPG	graph through SVD	Young &	Poisot et al. (2021); Dalla Riva &
		Scheinerman	Stouffer (2016)
		(2007)	
DeepWalk	graph walk	Perozzi et al.	Wardeh et al. (2021)
		(2014)	
FastEmbed	graph through PCA/SVD	Ramasamy &	
	analogue	Madhow (2015)	
LINE	nodes through statistical	Tang et al.	
	divergence	(2015)	
SDNE	nodes through auto-encoding	D. Wang et al.	
		(2016)	
node2vec	nodes embedding	Grover &	
		Leskovec (2016)	
graph2vec	sub-graph embedding	Narayanan et al.	
		(2017)	
DMSE	joint nodes embedding	D. Chen et al.	D. Chen et al. (2017) b
		(2017)	
HARP	nodes through a meta-strategy	H. Chen et al.	
		(2017)	
GraphKKE	graph embedding	Melnyk et al.	Melnyk et al. (2020) a
		(2020)	
Joint	multiple graphs	S. Wang et al.	
methods		(2021)	

The popularity of graph embedding techniques in machine learning is more than the search for structural invariants: graphs are discrete objects, and machine learning techniques tend to handle continuous data better. Bringing a sparse graph into a continuous, dense vector space (Xu, 2020) opens up a broader variety of predictive algorithms, notably of the sort that are able to predict events as probabilities (Murphy, 2022). Furthermore, the projection of the graph itself is a representation that can be learned; Runghen et al. (2021), for example, used a neural network to learn the embedding of a network in which not all interactions were known, based on nodes metadata. This example has many parallels in ecology (see fig. 2), in which node metadata can be given by phylogeny or functional traits. Rather than directly predicting biological rules (see *e.g.* Pichler et al., 2020 for an overview), which may be confounded by the sparse nature of graph data, learning embeddings works in the low-dimensional space that maximizes information about the network structure. This approach is further justified by the observation, for example, that the macro-evolutionary history of a network is adequately represented by some graph embeddings (RDPG; see Dalla Riva & Stouffer, 2016).

[Figure 2 about here.]

The metaweb embeds ecological hypotheses and practices

97

The goal of metaweb inference is to provide information about the interactions between species at a large spatial scale. But as Herbert (1965) rightfully pointed out, "[y]ou can't draw neat lines around planet-wide 100 problems"; any inference of a metaweb at large scales must contend with several novel, and interwoven, 101 families of problems. 102 The first is the taxonomic and spatial limit of the metaweb to embed and transfer. If the initial metaweb is 103 too narrow in scope, notably from a taxonomic point of view, the chances of finding another area with 104 enough related species (through phylogenetic relatedness or similarity of functional traits) to make a reliable inference decreases; this would likely be indicated by large confidence intervals during estimation 106 of the values in the low-rank space, or by non-overlapping trait distributions in the known and unknown 107 species. Alternatively a metaweb is too large (taxonomically), then the resulting embeddings would have interactions relative to taxonomic groups that not present in the new location, resulting in the potential 109 under or over estimation of the strength of new predicted interactions. The lack of well documented

metawebs is currently preventing the development of more concrete guidelines. The question of phylogenetic relatedness and dispersal is notably true if the metaweb is assembled in an area with mostly 112 endemic species (e.g. a system that has undergone recent radiation and might not have an analogous 113 system with which to draw knowledge from), and as with every predictive algorithm, there is room for the application of our best ecological judgement. 115 The second series of problems relate to determining which area should be used to infer the new metaweb 116 in, as this determines the species pool that must be used. Metawebs can be constructed by assigning interactions in a list of species within geographic boundaries. The upside of this approach is that 118 information at the country level is likely to be required for biodiversity assessments, as countries set goals 119 at the national level (Buxton et al., 2021), and as quantitative instruments are designed to work at these scales (Turak et al., 2017); specific strategies are often enacted at smaller scales, nested within a specific 121 country (Ray et al., 2021). But there is no guarantee that these boundaries are meaningful. In fact, we do 122 not have a satisfying answer to the question of "where does a food web stop?"; the most promising 123 solutions involve examining the spatial consistency of network area relationships (Fortin et al., 2021; see 124 e.g. Galiana et al., 2018, 2019, 2021), which is impossible in the absence of enough information about the 125 network itself. This suggests that inferred metawebs should be further downscaled to allow for a posteriori 126 analyses. 127 The final family of problems relates less to ecological concepts and more to the praxis of ecological 128 research. Operating under the context of national divisions, in large parts of the world, reflects nothing more than the legacy of settler colonialism, which not only drive a disparity in available ecological data, 130 but can entrench said biases with the machine learning models that make predictions with them. Indeed, 131 the use of ecological data is not an apolitical act (Nost & Goldstein, 2021), as data infrastructures tend to 132 be designed to answer questions within national boundaries, and their use often draws upon and 133 reinforces territorial statecraft. As per Machen & Nost (2021), this is particularly true when the output of 134 "algorithmic thinking" (e.g. relying on machine learning to generate knowledge) can be re-used for 135 governance (e.g. enacting conservation decisions at the national scale). We therefore recognize that 136 predictive approaches deployed at the continental scale, no matter their intent, originate in the framework 137 that contributed to the ongoing biodiversity crisis (Adam, 2014), reinforced environmental injustice (Choudry, 2013; Domínguez & Luoma, 2020), and e.g. as on Turtle Island, should be replaced by Indigenous principles of land management (Eichhorn et al., 2019; No'kmaq et al., 2021). As we see

- artificial intelligence/machine learning being increasingly mobilized to generate knowledge that is
 lacking for conservation decisions (*e.g.* Lamba et al., 2019; Mosebo Fernandes et al., 2020) and drive policy
 decisions (Weiskopf et al., 2022), our discussion of these tools need to go beyond the technical, and into
 the governance consequences they can have.
- **Acknowledgements:** We acknowledge that this study was conducted on land within the traditional 145 unceded territory of the Saint Lawrence Iroquoian, Anishinabewaki, Mohawk, Huron-Wendat, and Omàmiwininiwak nations. TP, TS, DC, and LP received funding from the Canadian Institute for Ecology & Evolution. FB is funded by the Institute for Data Valorization (IVADO). TS, SB, and TP are funded by a 148 donation from the Courtois Foundation. CB was awarded a Mitacs Elevate Fellowship no. IT12391, in 149 partnership with fRI Research, and also acknowledges funding from Alberta Innovates and the Forest 150 Resources Improvement Association of Alberta. M-JF acknowledges funding from NSERC Discovery 151 Grant and NSERC CRC. RR is funded by New Zealand's Biological Heritage Ngā Koiora Tuku Iho National 152 Science Challenge, administered by New Zealand Ministry of Business, Innovation, and Employment. BM 153 is funded by the NSERC Alexander Graham Bell Canada Graduate Scholarship and the FRQNT master's 154 scholarship. LP acknowledges funding from NSERC Discovery Grant (NSERC RGPIN-2019-05771). TP 155 acknowledges financial support from NSERC through the Discovery Grants and Discovery Accelerator 156 Supplement programs. MJF is supported by an NSERC PDF and an RBC Post-Doctoral Fellowship 157
- 158 **Conflict of interest:** The authors have no conflict interests to disclose
- Authors' contributions: TS, and TP outlined the key concepts discussed in the manuscript. All authors contributed to writing and editing the manuscript.
- Data availability: There is no data associated with this manuscript.

References

- Adam, R. (2014). Elephant treaties: The Colonial legacy of the biodiversity crisis. UPNE.
- Albouy, C., Archambault, P., Appeltans, W., Araújo, M. B., Beauchesne, D., Cazelles, K., Cirtwill, A. R.,
- Fortin, M.-J., Galiana, N., Leroux, S. J., Pellissier, L., Poisot, T., Stouffer, D. B., Wood, S. A., & Gravel, D.
- (2019). The marine fish food web is globally connected. *Nature Ecology & Evolution*, 3(8, 8),
- 1153-1161. https://doi.org/10.1038/s41559-019-0950-y

- Arsov, N., & Mirceva, G. (2019, November 26). Network Embedding: An Overview.
- http://arxiv.org/abs/1911.11726
- Bartomeus, I., Gravel, D., Tylianakis, J. M., Aizen, M. A., Dickie, I. A., & Bernard-Verdier, M. (2016). A
- common framework for identifying linkage rules across different types of interactions. Functional
- Ecology, 30(12), 1894–1903.
- Botella, C., Dray, S., Matias, C., Miele, V., & Thuiller, W. (2022). An appraisal of graph embeddings for
- comparing trophic network architectures. *Methods in Ecology and Evolution*, 13(1), 203–216.
- https://doi.org/10.1111/2041-210X.13738
- Braga, J., Pollock, L. J., Barros, C., Galiana, N., Montoya, J. M., Gravel, D., Maiorano, L., Montemaggiori,
- A., Ficetola, G. F., Dray, S., & Thuiller, W. (2019). Spatial analyses of multi-trophic terrestrial vertebrate
- assemblages in Europe. Global Ecology and Biogeography, 28(11), 1636–1648.
- https://doi.org/10.1111/geb.12981
- Bramon Mora, B., Gravel, D., Gilarranz, L. J., Poisot, T., & Stouffer, D. B. (2018). Identifying a common
- backbone of interactions underlying food webs from different ecosystems. *Nature Communications*,
- 9(1), 2603. https://doi.org/10.1038/s41467-018-05056-0
- Buxton, R. T., Bennett, J. R., Reid, A. J., Shulman, C., Cooke, S. J., Francis, C. M., Nyboer, E. A., Pritchard,
- G., Binley, A. D., Avery-Gomm, S., Ban, N. C., Beazley, K. F., Bennett, E., Blight, L. K., Bortolotti, L. E.,
- Camfield, A. F., Gadallah, F., Jacob, A. L., Naujokaitis-Lewis, I., ... Smith, P. A. (2021). Key
- information needs to move from knowledge to action for biodiversity conservation in Canada.
- Biological Conservation, 256, 108983. https://doi.org/10.1016/j.biocon.2021.108983
- ¹⁸⁸ Chen, D., Xue, Y., Fink, D., Chen, S., & Gomes, C. P. (2017). Deep Multi-species Embedding. 3639–3646.
- ¹⁸⁹ Chen, H., Perozzi, B., Hu, Y., & Skiena, S. (2017, November 16). HARP: Hierarchical Representation
- Learning for Networks. http://arxiv.org/abs/1706.07845
- ¹⁹¹ Choudry, A. (2013). Saving biodiversity, for whom and for what? Conservation NGOs, complicity,
- colonialism and conquest in an era of capitalist globalization. In NGOization: Complicity,
- contradictions and prospects (pp. 24–44). Bloomsbury Publishing.
- ¹⁹⁴ Cieslak, M. C., Castelfranco, A. M., Roncalli, V., Lenz, P. H., & Hartline, D. K. (2020). T-Distributed
- Stochastic Neighbor Embedding (t-SNE): A tool for eco-physiological transcriptomic analysis. *Marine*

```
Genomics, 51, 100723. https://doi.org/10.1016/j.margen.2019.100723
```

- 197 Csermely, P. (2004). Strong links are important, but weak links stabilize them. Trends in Biochemical
- Sciences, 29(7), 331-334. https://doi.org/10.1016/j.tibs.2004.05.004
- Dalla Riva, G. V., & Stouffer, D. B. (2016). Exploring the evolutionary signature of food webs' backbones
- using functional traits. *Oikos*, *125*(4), 446–456. https://doi.org/10.1111/oik.02305
- Dallas, T., Park, A. W., & Drake, J. M. (2017). Predicting cryptic links in host-parasite networks. PLOS
- 202 Computational Biology, 13(5), e1005557. https://doi.org/10.1371/journal.pcbi.1005557
- 203 Domínguez, L., & Luoma, C. (2020). Decolonising Conservation Policy: How Colonial Land and
- 204 Conservation Ideologies Persist and Perpetuate Indigenous Injustices at the Expense of the
- 205 Environment. Land, 9(3, 3), 65. https://doi.org/10.3390/land9030065
- Dunne, J. A. (2006). The Network Structure of Food Webs. In J. A. Dunne & M. Pascual (Eds.), Ecological
- networks: Linking structure and dynamics (pp. 27–86). Oxford University Press.
- Eichhorn, M. P., Baker, K., & Griffiths, M. (2019). Steps towards decolonising biogeography. Frontiers of
- 209 *Biogeography*, 12(1), 1–7. https://doi.org/10.21425/F5FBG44795
- Eklöf, A., Jacob, U., Kopp, J., Bosch, J., Castro-Urgal, R., Chacoff, N. P., Dalsgaard, B., de Sassi, C., Galetti,
- M., Guimarães, P. R., Lomáscolo, S. B., Martín González, A. M., Pizo, M. A., Rader, R., Rodrigo, A.,
- Tylianakis, J. M., Vázquez, D. P., & Allesina, S. (2013). The dimensionality of ecological networks.
- 213 Ecology Letters, 16(5), 577–583. https://doi.org/10.1111/ele.12081
- Fortin, M.-J., Dale, M. R. T., & Brimacombe, C. (2021). Network ecology in dynamic landscapes.
- Proceedings of the Royal Society B: Biological Sciences, 288(1949), rspb.2020.1889, 20201889.
- https://doi.org/10.1098/rspb.2020.1889
- Fricke, E. C., Ordonez, A., Rogers, H. S., & Svenning, J.-C. (2022). The effects of defaunation on plants'
- capacity to track climate change. *Science*.
- Galiana, N., Barros, C., Braga, J., Ficetola, G. F., Maiorano, L., Thuiller, W., Montoya, J. M., & Lurgi, M.
- (2021). The spatial scaling of food web structure across European biogeographical regions. *Ecography*,
- n/a(n/a). https://doi.org/10.1111/ecog.05229
- Galiana, N., Hawkins, B. A., & Montoya, J. M. (2019). The geographical variation of network structure is
- scale dependent: Understanding the biotic specialization of hostparasitoid networks. Ecography, 42(6),

```
1175-1187. https://doi.org/10.1111/ecog.03684
    Galiana, N., Lurgi, M., Bastazini, V. A. G., Bosch, J., Cagnolo, L., Cazelles, K., Claramunt-López, B., Emer,
225
       C., Fortin, M.-J., Grass, I., Hernández-Castellano, C., Jauker, F., Leroux, S. J., McCann, K., McLeod, A.
226
       M., Montoya, D., Mulder, C., Osorio-Canadas, S., Reverté, S., ... Montoya, J. M. (2022). Ecological
227
       network complexity scales with area. Nature Ecology & Evolution, 1–8.
228
       https://doi.org/10.1038/s41559-021-01644-4
229
    Galiana, N., Lurgi, M., Claramunt-López, B., Fortin, M.-J., Leroux, S., Cazelles, K., Gravel, D., & Montoya,
230
       J. M. (2018). The spatial scaling of species interaction networks. Nature Ecology & Evolution, 2(5),
231
       782-790. https://doi.org/10.1038/s41559-018-0517-3
232
    Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey.
233
       Knowledge-Based Systems, 151, 78-94. https://doi.org/10.1016/j.knosys.2018.03.022
234
    Gravel, D., Baiser, B., Dunne, J. A., Kopelke, J.-P., Martinez, N. D., Nyman, T., Poisot, T., Stouffer, D. B.,
235
       Tylianakis, J. M., Wood, S. A., & Roslin, T. (2018). Bringing Elton and Grinnell together: A quantitative
236
       framework to represent the biogeography of ecological interaction networks. Ecography, 0(0).
237
       https://doi.org/10.1111/ecog.04006
238
    Grover, A., & Leskovec, J. (2016). Node2vec: Scalable Feature Learning for Networks. Proceedings of the
239
       22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864.
240
       https://doi.org/10.1145/2939672.2939754
241
    Grünig, M., Mazzi, D., Calanca, P., Karger, D. N., & Pellissier, L. (2020). Crop and forest pest metawebs
       shift towards increased linkage and suitability overlap under climate change. Communications Biology,
243
       3(1, 1), 1-10. https://doi.org/10.1038/s42003-020-0962-9
244
    Herbert, F. (1965). Dune (1st ed.). Chilton Book Company.
245
    Hinton, G., & Roweis, S. T. (2002). Stochastic neighbor embedding. NIPS, 15, 833-840.
246
    Hoffmann, J., Bar-Sinai, Y., Lee, L. M., Andrejevic, J., Mishra, S., Rubinstein, S. M., & Rycroft, C. H. (2019).
247
       Machine learning in a data-limited regime: Augmenting experiments with synthetic data uncovers
248
       order in crumpled sheets. Science Advances, 5(4), eaau6792.
249
       https://doi.org/10.1126/sciadv.aau6792
250
```

Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. (2015). Seven

224

251

- Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annual Review of Ecology, Evolution, and
- 253 Systematics, 46(1), 523-549. https://doi.org/10.1146/annurev-ecolsys-112414-054400
- Jordano, P. (2016). Sampling networks of ecological interactions. Functional Ecology, 30(12), 1883–1893.
- 255 https://doi.org/10.1111/1365-2435.12763
- Lamba, A., Cassey, P., Segaran, R. R., & Koh, L. P. (2019). Deep learning for environmental conservation.
- 257 Current Biology, 29(19), R977-R982. https://doi.org/10.1016/j.cub.2019.08.016
- Machen, R., & Nost, E. (2021). Thinking algorithmically: The making of hegemonic knowledge in climate
- governance. Transactions of the Institute of British Geographers, 46(3), 555–569.
- 260 https://doi.org/10.1111/tran.12441
- McLeod, A., Leroux, S. J., Gravel, D., Chu, C., Cirtwill, A. R., Fortin, M.-J., Galiana, N., Poisot, T., & Wood,
- S. A. (2021). Sampling and asymptotic network properties of spatial multi-trophic networks. Oikos,
- n/a(n/a). https://doi.org/10.1111/oik.08650
- Melnyk, K., Klus, S., Montavon, G., & Conrad, T. O. F. (2020). GraphKKE: Graph Kernel Koopman
- embedding for human microbiome analysis. Applied Network Science, 5(1), 96.
- https://doi.org/10.1007/s41109-020-00339-2
- Morales-Castilla, I., Matias, M. G., Gravel, D., & Araújo, M. B. (2015). Inferring biotic interactions from
- 268 proxies. *Trends in Ecology & Evolution*, *30*(6), 347–356.
- https://doi.org/10.1016/j.tree.2015.03.014
- 270 Mosebo Fernandes, A. C., Quintero Gonzalez, R., Lenihan-Clarke, M. A., Leslie Trotter, E. F., & Jokar
- Arsanjani, J. (2020). Machine Learning for Conservation Planning in a Changing Climate.
- 272 Sustainability, 12(18, 18), 7657. https://doi.org/10.3390/su12187657
- ²⁷³ Murphy, K. P. (2022). *Probabilistic machine learning: An introduction*. MIT Press.
- Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., & Jaiswal, S. (2017, July 17).
- 275 Graph2vec: Learning Distributed Representations of Graphs. http://arxiv.org/abs/1707.05005
- Neutel, A.-M., Heesterbeek, J. A. P., & de Ruiter, P. C. (2002). Stability in Real Food Webs: Weak Links in
- 277 Long Loops. Science, 296(5570), 1120–1123. https://doi.org/10.1126/science.1068326
- No'kmaq, M., Marshall, A., Beazley, K. F., Hum, J., joudry, shalan, Papadopoulos, A., Pictou, S., Rabesca,
- J., Young, L., & Zurba, M. (2021). "Awakening the sleeping giant": Re-Indigenization principles for

- transforming biodiversity conservation in Canada and beyond. FACETS, 6(1), 839–869.
- Nost, E., & Goldstein, J. E. (2021). A political ecology of data. Environment and Planning E: Nature and
- 282 Space, 25148486211043503. https://doi.org/10.1177/25148486211043503
- O'Connor, L. M. J., Pollock, L. J., Braga, J., Ficetola, G. F., Maiorano, L., Martinez-Almoyna, C.,
- Montemaggiori, A., Ohlmann, M., & Thuiller, W. (2020). Unveiling the food webs of tetrapods across
- Europe through the prism of the Eltonian niche. *Journal of Biogeography*, 47(1), 181–192.
- 286 https://doi.org/10.1111/jbi.13773
- Pedersen, E. J., Thompson, P. L., Ball, R. A., Fortin, M.-J., Gouhier, T. C., Link, H., Moritz, C., Nenzen, H.,
- Stanley, R. R. E., Taranu, Z. E., Gonzalez, A., Guichard, F., & Pepin, P. (2017). Signatures of the
- collapse and incipient recovery of an overexploited marine ecosystem. Royal Society Open Science, 4(7),
- 290 170215. https://doi.org/10.1098/rsos.170215
- Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: Online learning of social representations.
- 292 Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
- 293 *Mining*, 701–710. https://doi.org/10.1145/2623330.2623732
- ²⁹⁴ Pichler, M., Boreux, V., Klein, A.-M., Schleuning, M., & Hartig, F. (2020). Machine learning algorithms to
- infer trait-matching and predict species interactions in ecological networks. Methods in Ecology and
- 296 Evolution, 11(2), 281-293. https://doi.org/10.1111/2041-210X.13329
- Poisot, T., Cirtwill, A. R., Cazelles, K., Gravel, D., Fortin, M.-J., & Stouffer, D. B. (2016). The structure of
- probabilistic networks. *Methods in Ecology and Evolution*, 7(3), 303–312.
- 299 https://doi.org/10.1111/2041-210X.12468
- Poisot, T., Ouellet, M.-A., Mollentze, N., Farrell, M. J., Becker, D. J., Albery, G. F., Gibb, R. J., Seifert, S. N.,
- & Carlson, C. J. (2021, May 31). Imputing the mammalian virome with linear filtering and singular
- value decomposition. http://arxiv.org/abs/2105.14973
- Poisot, T., Stouffer, D. B., & Gravel, D. (2015). Beyond species: Why ecological interaction networks vary
- through space and time. Oikos, 124(3), 243–251. https://doi.org/10.1111/oik.01719
- Ramasamy, D., & Madhow, U. (2015). Compressive spectral embedding: Sidestepping the SVD. In C.
- Cortes, N. Lawrence, D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information
- processing systems (Vol. 28). Curran Associates, Inc.

- Ray, J. C., Grimm, J., & Olive, A. (2021). The biodiversity crisis in Canada: Failures and challenges of federal and sub-national strategic and legal frameworks. FACETS, 6, 1044–1068. 309 https://doi.org/10.1139/facets-2020-0075 310 Runghen, R., Stouffer, D. B., & Dalla Riva, G. V. (2021). Exploiting node metadata to predict interactions in 311 large networks using graph embedding and neural networks. 312 https://doi.org/10.1101/2021.06.10.447991 313 Saravia, L. A., Marina, T. I., Kristensen, N. P., De Troch, M., & Momo, F. R. (2021). Ecological network 314 assembly: How the regional metaweb influences local food webs. *Journal of Animal Ecology*, n/a(n/a). 315 https://doi.org/10.1111/1365-2656.13652 316 Strydom, T., Bouskila, S., Banville, F., Barros, C., Caron, D., Farrell, M. J., Fortin, M.-J., Hemming, V., 317 Mercier, B., Pollock, L., Runghen, R., Riva, G. V. D., & Poisot, T. (2021). Food web reconstruction through 318 phylogenetic transfer of low-rank network representation. https://doi.org/10.32942/osf.io/y7sdz 319 Strydom, T., Catchen, M. D., Banville, F., Caron, D., Dansereau, G., Desjardins-Proulx, P., Forero-Muñoz, 320 N. R., Higino, G., Mercier, B., Gonzalez, A., Gravel, D., Pollock, L., & Poisot, T. (2021). A roadmap 321 towards predicting species interaction networks (across space and time). Philosophical Transactions of 322 the Royal Society B: Biological Sciences, 376(1837), 20210063. 323 https://doi.org/10.1098/rstb.2021.0063 324 Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). LINE: Large-scale Information Network 325 Embedding. Proceedings of the 24th International Conference on World Wide Web, 1067–1077. 326 https://doi.org/10.1145/2736277.2741093 327 Turak, E., Brazill-Boast, J., Cooney, T., Drielsma, M., DelaCruz, J., Dunkerley, G., Fernandez, M., Ferrier, 328 S., Gill, M., Jones, H., Koen, T., Leys, J., McGeoch, M., Mihoub, J.-B., Scanes, P., Schmeller, D., & 329 Williams, K. (2017). Using the essential biodiversity variables framework to measure biodiversity 330 change at national scale. *Biological Conservation*, 213, 264–271. 331 https://doi.org/10.1016/j.biocon.2016.08.019 332 Wang, D., Cui, P., & Zhu, W. (2016). Structural Deep Network Embedding. Proceedings of the 22nd ACM 333 SIGKDD International Conference on Knowledge Discovery and Data Mining, 1225–1234. 334 https://doi.org/10.1145/2939672.2939753 335
- Wang, S., Arroyo, J., Vogelstein, J. T., & Priebe, C. E. (2021). Joint Embedding of Graphs. *IEEE*

```
Transactions on Pattern Analysis and Machine Intelligence, 43(4), 1324–1336.
337
       https://doi.org/10.1109/TPAMI.2019.2948619
338
    Wardeh, M., Baylis, M., & Blagrove, M. S. C. (2021). Predicting mammalian hosts in which novel
339
       coronaviruses can be generated. Nature Communications, 12(1, 1), 780.
340
       https://doi.org/10.1038/s41467-021-21034-5
341
    Weiskopf, S. R., Harmáčková, Z. V., Johnson, C. G., Londoño-Murcia, M. C., Miller, B. W., Myers, B. J. E.,
342
       Pereira, L., Arce-Plata, M. I., Blanchard, J. L., Ferrier, S., Fulton, E. A., Harfoot, M., Isbell, F., Johnson,
343
       J. A., Mori, A. S., Weng, E., & Rosa, I. M. D. (2022). Increasing the uptake of ecological model results in
344
       policy decisions to improve biodiversity outcomes. Environmental Modelling & Software, 149, 105318.
       https://doi.org/10.1016/j.envsoft.2022.105318
346
    Wood, S. A., Russell, R., Hanson, D., Williams, R. J., & Dunne, J. A. (2015). Effects of spatial scale of
347
       sampling on food web structure. Ecology and Evolution, 5(17), 3769–3782.
348
       https://doi.org/10.1002/ece3.1640
349
    Xu, M. (2020, December 14). Understanding graph embedding methods and their applications.
350
       http://arxiv.org/abs/2012.08019
351
    Yan, S., Xu, D., Zhang, B., & Zhang, H.-J. (2005). Graph embedding: A general framework for
352
       dimensionality reduction. 2005 IEEE Computer Society Conference on Computer Vision and Pattern
353
       Recognition (CVPR'05), 2, 830-837 vol. 2. https://doi.org/10.1109/CVPR.2005.170
354
    Young, S. J., & Scheinerman, E. R. (2007). Random Dot Product Graph Models for Social Networks. In A.
       Bonato & F. R. K. Chung (Eds.), Algorithms and Models for the Web-Graph (pp. 138-149). Springer.
356
```

https://doi.org/10.1007/978-3-540-77004-6_11

357

Figure 1: Overview of the embedding process. A network (A), represented as its adjacency matrix (B), is converted into a lower-dimensional object (C) where nodes, subgraphs, or edges have specific values (see tbl. 1). For the purposes of prediction, this low-dimensional object encodes feature vectors for e.g. the nodes. Embedding also allows to visualize the structure in the data differently (D), much like with a principal component analysis.

Figure 2: From a low-dimensional feature vector (see fig. 1), it is possible to develop predictive approaches. Nodes in an ecological network are species, for which we can leverage phylogenetic relatedness (e.g. Strydom, Bouskila, et al., 2021) or functional traits to fill the values of additional species we would like to project in this space (here, I, J, K, and L) from the embedding of known species (here, A, B, C, and D). Because embeddings can be projected back to a graph, this allows us to reconstruct a network with these new species. This approach constitutes an instance of transfer learning.