

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

## «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

## ОТЧЕТ

к лабораторной работе №4

По курсу: «Моделирование»

Тема: «Обслуживающий аппарат»

Студентка ИУ7-75Б Оберган Т.М Вариант 14 (2)

Преподаватель Рудаков И.В.

## Оглавление

| Задание                                           | 3 |
|---------------------------------------------------|---|
| Распределения                                     | 3 |
| Равномерное распределение:                        | 3 |
| Нормальное распределение:                         | 4 |
| Формализация задачи                               | 5 |
| Пошаговый подход                                  | 5 |
| Событийная модель                                 | 5 |
| Результаты работы                                 | 6 |
| Без повторов, 1000 заявок                         | 6 |
| 10% повторов, 1000 заявок                         | 6 |
| 10% повторов, 10000 заявок                        | 7 |
| 50% повторов, 10000 заявок                        | 7 |
| 100% повторов, 10000 заявок                       | 8 |
| Равномерный закон ОА, 0% повторов, 10000 заявок   | 8 |
| Равномерный закон ОА, 100% повторов, 10000 заявок | 8 |

## Задание

Необходимо промоделировать систему, состоящую из генератора, памяти, и обслуживающего аппарата. Генератор подает сообщения, распределенные по равномерному закону, они приходят в память и выбираются на обработку по закону из ЛР2. Количество заявок конечно и задано. Предусмотреть случай, когда обработанная заявка возвращается обратно в очередь. Необходимо определить оптимальную длину очереди, при которой не будет потерянных сообщений. Реализовать двумя способами: используя пошаговый и событийный подходы.

## Распределения

## Равномерное распределение:

Равномерное распределение — распределение случайной величины, принимающей значения, принадлежащие некоторому промежутку конечной длины, характеризующееся тем, что плотность вероятности на этом промежутке всюду постоянна.

Равномерное распределение обозначают  $X \sim R(a, b)$ , где  $a, b \in R$ .

Функция распределения равномерной непрерывной случайной величины:

$$F(x) = \begin{cases} 0 & \text{при } x \le a \\ \frac{x-a}{b-a} & \text{при } a \le x \le b \\ 1 & \text{при } x > b \end{cases}$$

Плотность распределения равномерной непрерывной случайной величины:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{при } a \le x \le b \\ 0 & \text{иначе} \end{cases}$$

## Нормальное распределение:

Нормальное распределение - распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

где параметр  $\mu$  — математическое ожидание (среднее значение), медиана и мода распределения, а параметр  $\sigma$  - среднеквадратическое отклонение ( $\sigma^2$  - дисперсия) распределения.

Функция распределения:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

Обозначают нормальное распределение  $X \sim N(\mu, \sigma^2)$ .

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием  $\mu=0$  и стандартным отклонением  $\sigma=1$ .

Математическое ожидание  $\mu$  характеризует положение «центра тяжести» вероятностной массы нормального распределения. Получается, что график плотности распределения случайной величины, имеющей нормальное распределение, симметричен относительно  $x = \mu$ . Дисперсия  $\sigma$  характеризует разброс значений случайной величины относительно «центра тяжести».

## Формализация задачи

## Пошаговый подход

Заключается в последовательном анализе состояний всех блоков системы в момент  $t+\Delta t$ . Новое состояние определяется в соответствии с их алгоритмическим описанием с учетом действия случайных факторов. В результате этого анализа принимается решение о том, какие системные события должны имитироваться на данный момент времени. Основной недостаток: значительные затраты и опасность пропуска события при больших  $\Delta t$ .

## Событийная модель

Состояния отдельных устройств изменяются в дискретные моменты времени. При использовании событийного принципа, состояния всех блоков системы анализируются лишь в момент возникновения какого либо события. Момент наступления следующего события, определяется минимальным значением из списка событий.

## Результаты работы

## Без повторов, 1000 заявок

## Входные данные:

```
a, b = 1, 10
generator = EvenDistribution(a, b)

mu, sigma = 4, 0.2 # диапазон +- [3;5]
processor = NormalDistribution(mu, sigma)

total_tasks = 1000
repeat_percentage = 0
step = 0.01
```

## Выходные данные:

Максимальная длина очереди в event\_model: 4

Максимальная длина очереди в step\_model: 4

## 10% повторов, 1000 заявок

## Входные данные:

```
a, b = 1, 10
generator = EvenDistribution(a, b)

mu, sigma = 4, 0.2 # диапазон +- [3;5]
processor = NormalDistribution(mu, sigma)

total_tasks = 1000
repeat_percentage = 10
step = 0.01
```

## Выходные данные:

Максимальная длина очереди в event\_model: 6

Максимальная длина очереди в step\_model: 7

## 10% повторов, 10000 заявок

## Входные данные:

```
a, b = 1, 10
generator = EvenDistribution(a, b)

mu, sigma = 4, 0.2 # диапазон +- [3;5]
processor = NormalDistribution(mu, sigma)

total_tasks = 10000
repeat_percentage = 10
step = 0.01
```

## Выходные данные:

Максимальная длина очереди в event\_model: 7

Максимальная длина очереди в step\_model: 7

## 50% повторов, 10000 заявок

## Входные данные:

```
a, b = 1, 10
generator = EvenDistribution(a, b)

mu, sigma = 4, 0.2 # диапазон +- [3;5]
processor = NormalDistribution(mu, sigma)

total_tasks = 10000
repeat_percentage = 50
step = 0.01
```

## Выходные данные:

Максимальная длина очереди в event\_model: 2271

Максимальная длина очереди в step\_model: 2217

## 100% повторов, 10000 заявок

#### Входные данные:

```
a, b = 1, 10
generator = EvenDistribution(a, b)

mu, sigma = 4, 0.2 # диапазон +- [3;5]
processor = NormalDistribution(mu, sigma)

total_tasks = 10000
repeat_percentage = 100
step = 0.01
```

#### Выходные данные:

Максимальная длина очереди в event\_model: 7223

Максимальная длина очереди в step\_model: 7365

## Равномерный закон ОА, 0% повторов, 10000 заявок

## Входные данные:

```
generator = EvenDistribution(5, 6)
processor = EvenDistribution(3, 6)

total_tasks = 10000
repeat_percentage = 0
step = 0.01
```

#### Выходные данные:

Максимальная длина очереди в event\_model: 1

Максимальная длина очереди в step\_model: 1

## Равномерный закон ОА, 100% повторов, 10000 заявок

## Входные данные:

```
generator = EvenDistribution(5, 6)
processor = EvenDistribution(3, 6)

total_tasks = 10000
repeat_percentage = 100
step = 0.01
```

#### Выходные данные:

Максимальная длина очереди в event\_model: 8173

Максимальная длина очереди в step\_model: 8199