8^a Lista de Exercícios

Ygor Tavela Alves 10687642

3.2.25)

Seja $u \in \mathbb{R}^n$ com $||u||_2 = 1$ e, definindo $P = uu^T$ com $P \in \mathbb{R}^{n \times n}$, então:

a)
$$Pu = u(u^T u) = u||u||_2^2 = u \cdot 1 = u$$

b)
$$Pv = u(u^T v) = u(\langle u, v \rangle)^2$$

Assim, caso $\langle u, v \rangle = 0$, temos que, $Pv = u \cdot 0 = 0$

c)
$$P^2 = P \cdot P = uu^T uu^T = u||u||_2^2 u^T = uu^T = P$$

d)
$$P^T = (uu^T)^T = (u^T)^T u^T = uu^T = P$$

3.2.27)

Seja $u \in \mathbb{R}^n$ com $||u||_2 = 1$ e, definindo $Q = I - 2uu^T$ com $Q \in \mathbb{R}^{n \times n}$, então:

a)
$$Qu = Iu - 2uu^T u = u - 2u||u||_2^2 = u - 2u \cdot 1 = -u$$

b)
$$Qv = Iv - 2u(u^Tv) = v - 2u(\langle u, v \rangle)^2$$

Assim, caso $\langle u, v \rangle = 0$, temos que, $Qv = v - 2u \cdot 0 = v$

c)
$$Q = I - 2uu^T = I - 2(u^T)^T u^T = I - (2uu^T)^T = (I - 2uu^T)^T = Q^T$$

d) Seja $Q \cdot Q^{-1} = I$, temos:

$$Q \cdot Q^T = (I - 2uu^T)(I - 2uu^T)^T = (I - 2uu^T)(I - 2uu^T) = I - 2uu^T - 2uu^T + 4uu^Tuu^T$$

$$Q \cdot Q^T = I - 4uu^T + 4u\|u\|_2^2 u^T = I - 4uu^T + 4uu^T = I$$

$$Q\cdot Q^T = Q\cdot Q^{-1} \Rightarrow Q^T = Q^{-1}$$

e) Pelos itens (c) e (d), podemos obter trivialmente que $Q^{-1}=Q$