西安邮电大学期末考试试题 (A卷)

(2022-2023 学年第二学期)

课程名称: 高等数学 A2

考试专业、年级:通工、电子、计算机、自动化等专业 2022 级

考核方式: 闭卷 可使用计算器: 否

题号	_	1 1	111	四	五	六	七	总分
得分								
评卷人								

得分 一、判断题:每小题 2 分,共 8 分.请在试题预留的括号内对正确陈述打"√" 对错误陈述打"×".

- 1、 向量a与b平行的充分与必要条件是 $a \times b = 0$. ()
- 2、如果 $f(x,y) \ge g(x,y)$,则 $\int_{\mathcal{C}} f(x,y) dx \ge \int_{\mathcal{C}} g(x,y) dy$.
- 3、级数 $\sum_{n=1}^{\infty} a_n$ 收敛的必要条件是 $\lim_{n\to\infty} a_n = 0$. ()
- 4、设Σ为椭圆柱面 $x^2 + 2y^2 = 4(0 \le z \le 1)$ 的外侧,则 $\iint_{\Sigma} z dx dy = 0$. ()

得分_____二、填空题:每空2分,共8分.请将答案写在试题指定位置上.

- 5、函数 $z = x^2 + y^2$ 的全微分 dz =
- 6、 函数 $z = xy^2 x$ 在点(1,2)处的最大方向导数为______

得分 三、选择题:每小题 2 分,共 10 分.下列每小题给出的四个选项 A、B、C、D 中, 只有一个选项符合题目要求,请将所选项前面的字母填在试题预留的括号内.

9、与直线
$$\frac{x-1}{2} = \frac{y-3}{2} = \frac{z+5}{-1}$$
平行的平面的方程是 ()

- A. 2x+2y-z-13=0; B. x+y+4z-16=0;
- C. 2x+2y-z+13=0; D. x+y+4z+16=0.
- 10、 xOz 面内的抛物线 $z = 2 + x^2$ 绕 z 轴旋转一周所得曲面的方程是(
- A. $z = 2 + x^2 + y^2$; B. $\sqrt{y^2 + z^2} = 2 + x^2$;
- C. $z = 2 + \sqrt{x^2 + y^2}$; D. $\sqrt{x^2 + z^2} = 2 + x^2$.
- 11、设Σ为有向光滑曲面,则符号 $\iint_{\mathbb{R}} f(x,y) dx dy$ 表示 ()
- A. 对坐标的曲面积分; B. 对面积的曲面积分;
- C. 二重积分:
- D. 第一类曲面积分.

12、幂级数
$$\sum_{n=1}^{\infty} \frac{1}{n+1} x^{n-1}$$
 的收敛域为 ()

- A. [-1,1]; B. (-1,1]; C. [-1,1); D. (-1,1).
- 13、 设函数 $f(x,y) = \sqrt{|xy|}$, 则下列结论中正确的是 ()
- A. f(x, y) 在点(0,0) 不连续;
- B. f(x,y) 在点(0,0) 连续但偏导数不存在;
- C. f(x,y) 在点(0,0) 偏导数存在但不可微;
- D. f(x,y) 在点(0,0) 可微.

学号

奸名

专业班级

得分______四、解答题:每小题 6 分,共 24 分.解答应写出文字说明及演算步骤.请将答案写在试题预留的空白处.

得分_____14、计算 $\lim_{(x,y)\to(2,0)} \frac{\sin xy}{y}$.

得分_____15、判定级数 $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ 的收敛性.

得分_____16、设函数 f(u,v) 具有二阶连续的偏导数, z = f(x+y,x-y),求 $\frac{\partial^2 z}{\partial x \partial y}$.

得分_____17、试将函数 $f(x) = \frac{1}{x+3}$ 展开为关于 x 的幂级数.

得分_____五、解答题:每小题 6 分,共 18 分.解答应写出文字说明及演算步骤.请将答案写在试题预留的空白处.

得分_____18、计算 $\iint_{D} (x+2y) dxdy$, 其中 D 是由两坐标轴及直线 x+y=2 所围成的闭区域.

得分_____19、 求曲面 $z=1-x^2-y^2$ ($z \ge 0$)的面积.

得分_____20、 求曲线 x=t, $y=t^2+t$, $z=t^3-2t$ 上点 P(1,2,-1) 处的切线和法平面方程.

姓名

得分_____六、解答题:每小题 8 分,共 24 分.解答应写出文字说明及演算步骤.请将答案写在试题预留的空白处.

得分_____21、求函数 $z = 3x^2 + 3y^2 - y^3$ 的极值.

得分_____23、一物体在力 $f = (1 + ye^x)i + (x + e^x)j$ 的作用下,从点 A(1,0) 沿半圆 $y = \sqrt{1 - x^2}$ 运动至点 B(-1,0),试计算力 f 所作的功.

得分_____22、 计算 $\oint_{\Sigma} z^3 dx dy$,其中 Σ 为圆柱体 Ω : $0 \le z \le 1$, $x^2 + y^2 \le 4$ 表面的外侧.

得分_____七、证明题: 共 8 分. 证明应写出文字说明及证明过程. 请将答案写在试题预留的空白处.

24、设函数 f(x) 在 $[0,+\infty)$ 上连续,且 f(0)=0, $f'_{+}(0)=3$,试证:

$$\lim_{t\to 0^+} \frac{1}{t^3} \iint_D f\left(\sqrt{x^2 + y^2}\right) d\sigma = 2\pi,$$

其中 D 是由圆 $x^2 + y^2 = t^2(t > 0)$ 所围成的闭区域.

西安邮电大学试题卷标准答案专用纸

₩,

西安邮电大学 2022----2023 学年第二学期期末试题(A)卷 标准答案

课程: 高等数学 A2 类型: A 卷 专业、年级: 通工、电子、计科、自动化等专业 2022 级

题号	_	=	Ξ	四	五	六	七	总分
得分	8	8	10	24	18	24	8	100

一、 判断题(每小题 2 分, 共 8 分)

 $1, \sqrt{2}, \times; 3, \sqrt{2}, \sqrt{2}$

二、填空题(每空2分,共8分)

 $5, 2xdx + 2ydy; 6, 5; 7, s > 0; 8, 2\pi.$

三、选择题(每小题2分,共10分)

9, B; 10, A; 11, A; 12, C; 13, C.

四、解答题 (每小题 6 分, 共 24 分)

15、**解:** 这是一个正项级数,其一般项为
$$u_n = \frac{n!}{n^n} (n = 1, 2, \cdots)$$
. •••••• 1 分

及正项级数的比值审敛法知所给级数收敛. •••••• 1分

$$\frac{\partial^2 z}{\partial x \partial y} = f_{11}'' + f_{12}'' \cdot (-1) + f_{21}'' + f_{22}'' \cdot (-1) = f_{11}'' - f_{22}''.$$

17、解:
$$f(x) = \frac{1}{3} \cdot \frac{1}{1 - \left(-\frac{x}{3}\right)}$$

$$= \frac{1}{3} \sum_{n=0}^{\infty} \left(-\frac{x}{3}\right)^{n}$$

$$= \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n}}{3^{n+1}} x^{n} \left(|x| < 3\right)$$
 1 分

五、解答题 (每小题 6 分, 共 18 分)

18、**解**: 在 D 上, $0 \le x \le 2$, $0 \le y \le 2 - x$, ••••••• 2 分 所以,

$$\iint_{D} (x+2y) d\sigma = \int_{0}^{2} dx \int_{0}^{2-x} (x+2y) dy \qquad 2$$

$$= \int_{0}^{2} (4-2x) dx = 4. \qquad 2$$

19、 **解**: 求导,得 $z_x = -2x$, $z_y = -2y$. •••••• 1 分

又,曲面在面上的投影区域为 $D: x^2 + y^2 \le 1$, ******************* 1分

故所求面积为
$$S = \iint_D \sqrt{1 + (-2x)^2 + (-2y)^2} \, dx dy = \iint_D \sqrt{1 + 4\rho^2} \, \rho d\rho d\theta$$

$$= \int_0^{2\pi} d\theta \int_0^1 \sqrt{1 + 4\rho^2} \, \rho d\rho = 2\pi \cdot \frac{1}{12} \left(1 + 4\rho^2 \right)^{\frac{3}{2}} \bigg|^1$$

$$=\frac{\pi}{6}\left(5\sqrt{5}-1\right). \quad \cdots \quad 4 \ \%$$

| 20、 **解**: 在点(1,2,-1)处 *t* = 1,

从而切向量为 $\tau = (x'(t), y'(t), z'(t)_z)\Big|_{t=1} = (1, 2t+1, 3t^2-2)\Big|_{t=1} = (1, 3, 1).$ ················ 3 分

法平面方程为(x-1)+3(y-2)+(z+1)=0, 即x+3y+z-6=0. •••••• 1分

西安邮电大学试题卷标准答案专用纸

摋

六、解答题(每小题8分,共24分)

21、由

$$\begin{cases} f_x = 6x = 0, \\ f_y = 6y - 3y^2 = 0 \end{cases}$$

得驻点为(0,0)及(0,2). ****************** 2 分

再求二阶偏导,得 $f_{xx} = 6$, $f_{xy} = 0$, $f_{yy} = 6 - 6y$. •••••• 2 分 列表分析:

(x, y)	A	В	С	$AC-B^2$
(0, 0)	6	0	6	36
(0,2)	6	0	-6	-36

22、解:由高斯公式,得

$$\bigoplus_{\Sigma} z^3 \mathrm{d}x \mathrm{d}y = \iiint_{\Omega} 3z^2 \mathrm{d}v ,$$

3 5

又, Ω 在xOy面上的投影区域为 $D: x^2 + y^2 \le 4$,所以

$$\iiint_{\Omega} 3z^2 dv = \iint_{D} dx dy \int_{0}^{1} 3z^2 dz$$
$$= \iint_{D} dx dy = 4\pi. \qquad 4$$

综上所述,

$$\oint_{\Sigma} z^3 dx dy = 4\pi . \quad \cdots \qquad 1 \ \text{?}$$

23、 \mathbf{M} : 力 \mathbf{f} 所做的功为

$$W = \int_{I} (1 + ye^{x}) dx + (x + e^{x}) dy. \qquad \cdots \qquad 1 \ \text{ff}$$

作有向线段 \overline{BA} : y=0 $(x:-1\to 1)$, 并记L与 \overline{BA} 所围成的闭区域为D, 由格林公式, 得

$$\oint_{L+\overline{BA}} (1+ye^x) dx + (x+e^x) dy = \iint_D dx dy = \frac{\pi}{2}. \quad \cdots \qquad 4 \text{ }$$

又

$$\int_{\overline{BA}} \left(1 + y e^x \right) dx + \left(x + e^x \right) dy = \int_{-1}^1 dx = 2, \quad \cdots \qquad 2 \text{ }$$

七、证明题(共8分)

24、**证**: 利用极坐标, D可表示为 $0 \le \theta \le 2\pi$, $0 \le \rho \le t$. 于是

$$\iint_{D} f\left(\sqrt{x^{2}+y^{2}}\right) d\sigma = \iint_{D} f\left(\rho\right) \rho d\rho d\theta = \int_{0}^{2\pi} d\theta \int_{0}^{t} f\left(\rho\right) \rho d\rho$$
$$= 2\pi \int_{0}^{t} f\left(\rho\right) \rho d\rho. \qquad 3$$

故