Filtering

With Convolution & Correlation

If we want to get something from an image

* What would be a good choice?

Getting what we want from an image

* Using mask or template

edges

combinations of edges

Having a mask, how would we get what we want?

- By finding relationship between
 - An image and our mask
 - Red -> high relationship
 - * Blue -> very low relationship

Template Matching

How to get mask?

- * Fix masks
 - Human Learning by experiments
 - * Mathematical model
- * Adaptive masks
 - * Eigen based
 - Machine Learning from training
 - Convolutional Neural Network (CNN)
 - * Try to learn optimum mask for training data

Relationship finding with

Template / mask Sliding Window

Sliding Window Technique

Sliding Window technique for Spatial Filtering

Convolution

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

Correlation

Linear Filter

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

Dot Product: Weighted sum

Arithmetic or Statistics

Non-Linear Filter

Nonlinear statistics

Convolution vs Correlation (Linear filtering)

A	В	C
D	E	F
G	Н	I

a	Ь	U
d	е	f
g	h	i

From I/P image

b

e

h

C

a

d

g

Template (window)

C

Sum
sum

g

A*i	B*h	C*g	
D*f	E*e	F*d	
G*c	H*b	l*a	

Correlation

(similarity measure)

Template (window)

180 degree rotated Template (window)

Convolution

What would be the case

which makes Correlation and Convolution given the same result?

How to deal with Boundary Problems

สำหรับการคำนวณ

Correlation and Convolution

Convolution: The Edge Problem

การจัดการปัญหาการคำนวณบริเวณขอบภาพ

- * ปัญหาการคำนวณ
 - * ต้องใช้ค่าจากตำแหน่งจุดภาพนอกกรอบภาพ ซึ่งไม่มีค่าจริง
- * เทคนิคการกำหนดค่าของตำแหน่งจุดภาพนอกกรอบภาพ
 - * เลือกค่า default เช่น กำหนดให้มีค่าเป็น 0
 - * Repeated boundary (ขยายค่าตำแหน่งจุดภาพที่ขอบนอกของภาพออกไป)
 - * Reflected Index (ขยายแบบสะท้อนตำแหน่งจุดภาพ)
 - * e.g. column[-1] = column[1], column[-2] = column[2]
 - Wrap the image values (Circular Index)
 - * e.g. column[-1] = column[width-1], column[-2] = column[width-2]

Image Padding Examples

Figure 6.5. (a) Zero padding, (b) circular indexing, and (c) reflected indexing.

Let's Play

WWW.KAHOOT.IT

ความแตกต่างของ Template มีผลอย่างไรต่อภาพผลลัพธ์หลัง Filtering

Excercise

$$w = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$w_x = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$w_x = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

With Gaussian Noise

Image sharpening

Sharpening TechniqueFirst-order derivative

- used to emphasize the boundary of the object

$$\nabla F = \begin{bmatrix} F_x \\ F_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Gradient vector

Value depends on the change in intensity

Magnitude of change

$$|\nabla F| = mag(\nabla F) = \sqrt{F_x^2 + F_y^2} = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Angle of change

$$\theta = \tan^{-1} \left(\frac{F_y}{F_x} \right)$$

First-order derivative

(Convolution)

$$g(x, y) = \nabla F(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

$$g(x, y) = w * f(x, y)$$

$$F_{x}(x, y) = w_{x} * f(x, y)$$

$$F_{y}(x, y) = w_{y} * f(x, y)$$

$$w_{x} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad w_{y} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$w_{y} = \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$$

Robert cross gradient operator

$$w_x = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$w_x = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \qquad w_y = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Sharpening (1st order derivative, Sobel filter)

Original image

Magnitude gradient image

Edge Detection Results

Second-order derivative

$$\nabla^{2}F = \begin{bmatrix} F_{x}^{2} \\ F_{y}^{2} \end{bmatrix} = \begin{bmatrix} \frac{\partial^{2}f}{\partial x^{2}} \\ \frac{\partial^{2}f}{\partial y^{2}} \end{bmatrix}$$

$$g(x,y) = \nabla^{2}F(x,y) = w * f(x,y)$$

$$g(x, y) = \nabla^2 F(x, y) = w * f(x, y)$$

Laplacian Operator

$$w = \begin{vmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{vmatrix} \quad \text{or} \quad w = \begin{vmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{vmatrix}$$

$$w = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{or} \quad w = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Edge detection

from Difference images between original and blur version

- Type equation here. Edge from intensity difference
 - Edge_diff(x,y) = f_original_image(x,y) f_blur_image(x,y)

$$f_{blur_{image}}(x, y) = f_{original_image}(x, y) * h_{gaussian}(x, y)$$

$$h_{gaussian}(x,y) = e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

```
0.0030
        0.0133
                 0.0219
                          0.0133
                                   0.0030
0.0133
        0.0596
                 0.0983
                          0.0596
                                   0.0133
0.0219
        0.0983
                 0.1621
                          0.0983
                                   0.0219
0.0133
        0.0596
                 0.0983
                          0.0596
                                   0.0133
0.0030
        0.0133
                 0.0219
                          0.0133
                                   0.0030
```

$$h_{gaussian}(\sigma = 1)$$

$$h_{gaussian}(\sigma = 3)$$

Edge detection

from Difference images between original and blur version

 $f_{original}(x,y) - f_{blur}(x,y) = Log(f_{original}(x,y)) - Log(f_{blur}(x,y))$

What template could be used

for Noise filtering?

Types of Spatial Filtering

Mean Filtering

Order-Statistics Filtering

Adaptive filtering

Mean Filtering

Arithmetic Mean

$$g(x, y) = \frac{1}{mn} \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x \pm s, y \pm t)$$

Geometric Mean

$$g(x, y) = \prod_{s,t} w(s,t) f(x \pm s, y \pm t)$$

Harmonic Mean

$$g(x, y) = \frac{mn}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} \frac{1}{w(s, t) f(x \pm s, y \pm t)}}$$

Contra-Harmonic Mean

$$g(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} f(x \pm s, y \pm t)^{q+1}}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} f(x \pm s, y \pm t)^{q}}$$

Examples of Average Filter Template (w(s,t))

Arithmetic Mean

$$g(x,y) = \frac{1}{mn} \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x \pm s, y \pm t)$$

	1	1	1	
$\frac{1}{9}X$	1	1	1	
9	1	1	1	
V.				

	1	2	1
$\frac{1}{16}$ X	2	4	2
	1	2	1

The most well-known average filter template

Image Addition

$$g(x, y) = w_1 f_1(x, y) + w_2 f_2(x, y)$$

Image Addition with

different weights

Image Subtraction

$$g(x, y) = f_1(x, y) - f_2(x, y)$$

Image Averaging

Image Averaging

