

CS 372 Lecture #35

Multiple Access

- links
- protocols

Note: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach*, 6th edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.

Two types of links to adjacent nodes

- point-to-point (not the same as peer-to-peer)
 - e.g., point-to-point link between host and Ethernet switch

switched network (e.g., Ethernet)

- broadcast (shared medium)
 - Multiple Access protocol required
 - e.g., old Ethernet, 802.11 wireless LAN

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

Multiple access protocols

- For <u>broadcast</u> links, need <u>Multiple Access protocol</u>
 - distributed algorithm that determines how nodes share channel
 - single shared broadcast channel
 - protocol determines when node can transmit
 - protocol communication <u>about</u> channel sharing must use channel itself!
 - no out-of-band channel for coordination
 - two or more simultaneous transmissions by nodes cause interference
 - collision if node receives two or more signals at the same time
- "Ideal" multiple access protocol criteria, for broadcast channel of rate *R* bps:
 - 1. when only one node wants to transmit, it can send at rate R.
 - 2. when M nodes want to transmit, each can send at average rate R/M
 - 3. fully decentralized:
 - no special node to coordinate transmissions
 - 4. simple

Multiple Access Protocols

Three classes, no "ideal"

- Channel Partitioning (discussed in earlier lecture)
 - divide channel into smaller "pieces"
 - TDM (time-division), FDM (frequency-division)
 - allocate piece to node for exclusive use
 - easy to implement, but does not satisfy criterion #1

Random Access

- allow collisions
- recover from collisions
- difficult to guarantee criterion #2
- "Taking turns"
 - nodes with more to send can take longer turns
 - supervisor required, does not satisfy criterion #3

Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no supervised coordination among nodes
- two or more nodes transmitting simultaneously causes collision
- random access MA protocol specifies
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
 - example: CSMA

CSMA (Carrier Sense Multiple Access)

- CSMA listen before transmit
 - If channel sensed idle: transmit entire frame
 - If channel sensed busy: defer transmission

- Collisions can still occur:
 - propagation delay means two nodes may not sense each other's transmission
 - entire packet transmission time wasted

CSMA with Collision Detection

CSMA/CD

- carrier sensing, deferral as in CSMA
- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- used in wired LANs

Collision detection:

- easy in wired LANs
 - measure signal strengths, compare transmitted, received signals
- difficult in wireless LANs
 - received signal strength overwhelmed by local transmission strength

CSMA with Collision Avoidance

- CSMA/CA carrier sensing, deferral as in CSMA
- Wireless uses collision avoidance (CA) instead of collision detection (CD)
 - Transmitting computer sends very short "reservation" message to receiver
 - Destination responds with short message reserving slot for sender
- Response from destination is <u>broadcast</u> so all potential senders are notified of the reservation
- More later on wireless

"Taking Turns" protocols

Polling

- master node "invites" slave nodes to transmit in turn
- typically used with "dumb" terminals
- concerns:
 - polling overhead, latency
 - single point of failure (master)

slaves

"Taking Turns" MA protocols

- Token passing
- token message
 - control token passed from one node to next sequentially.
- concerns
 - token overhead, latency
 - single point of failure (token)

Summary Lecture #35

- Broadcast links
- Multiple Access protocols
 - Channel partitioning (already covered)
 - Random access
 - CSMA, CSMA/CD, CSMA/CA
 - Taking turns
 - polling, token passing