THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A pest controlling composition comprising at least one compound of formula (I) or a tautomer thereof:

5

15

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_5
 R_7
 R_8

wherein:

X is selected from the group consisting of O, S or N-R₄;

when ____ is a single bond attached to Y, Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

when ____ is a double bond attached to Y, Y is O;

when $\underline{\hspace{1cm}}$ is a single bond attached to R_1 , R_1 is selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

when $\underline{\hspace{0.1cm}}$ is a double bond attached to R_1 , R_1 is $CR_{1a}R_{1b}$ wherein R_{1a} and R_{1b} are independently selected from C_1 - C_{10} alkyl;

 R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 -

25

 C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ (C=O) R_6 , $[C(R_7)_2]_n$ (C=S) R_6 , $[C(R_7)_2]_n$ N(R_4)₂, $[C(R_7)_2]_n$ (C=NR₄) R_6 , $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

each R₄ is independently selected from the group consisting of H, OH, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₅-C₁₃ heterocyclyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₁₀ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl, C₁-C₁₀ alkoxy and C₂-C₁₀ alkenyloxy;

R₅ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇
10 C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀

cycloalkylalkyl, C₃-C₁₀ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl,

(C=O)R₆, PO₃R₈, SO₃R₈ and SO₂R₈;

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

R₇ is selected from the group consisting of H, halogen, OR₅, SR₅, N(R₄)₂, (C=O)R₆, (C=S)R₆, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₃-C₁₀ heterocyclyl, C₃-C₆ cycloalkyl, C₇-C₁₂ arylalkyl, C₄-C₁₂ heterocyclylalkyl, C₄-C₁₀ cycloalkylalkyl, C₈-C₁₃ arylalkenyl, C₅-C₁₃ heterocyclylalkenyl, and NO₂;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkylalkyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

2. A composition according to claim 1 wherein the compound of formula (I) is a compound of formula (II):

$$R_1$$
 R_2
 R_3
 R_2
 R_3
 R_4
 R_5
 R_7
 R_8

5

10

15

20

25

wherein:

X is selected from the group consisting of O, S or N-R₄;

Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

 R_1 , R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

each R₄ is independently selected from the group consisting of H, OH, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₅-C₁₃ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl, C₁-C₁₀ alkoxy and C₂-C₁₀ alkenyloxy;

 R_5 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_6 - C_{13} heterocyclylalkenyl, C_7 - C_{14} heterocyclylalkyl, C_7 - C_{15} heterocyclylalkenyl, C_7 - $C_$

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_3 - C_{10} heterocyclyl, C_3 - C_6 cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} heterocyclylalkyl, C_4 - C_{10} cycloalkylalkyl, C_8 - C_{13} arylalkenyl, C_5 - C_{13} heterocyclylalkenyl, and NO_2 ;

R₈ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀ cycloalkylalkenyl, C₅-C₁₀ heterocyclyl, C₄-C₁₂ heteocyclylalkyl and C₅-C₁₃ heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

15 ----- represents a single or double bond; and

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

3. A composition according to claim 1 wherein

4. A composition according to claim 1 comprising at least one compound of formula (III):

$$R_{11}$$
 R_{12}
 R_{13}
 R_{11}
 R_{12}
 R_{13}
 R_{11}
 R_{12}
 R_{13}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

20

wherein R_{11} is selected from the group consisting of C_2 - C_{10} alkenyl, C_7 - C_{12} arylalkyl, C_6 - C_{12} heteroarylalkyl and C_2 - C_{10} alkenyloxy wherein each C_2 - C_{10} alkenyl or C_2 - C_{10} alkenyloxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups; and

 R_{12} and R_{13} are independently selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} heteroaryl, C_6 - C_{12} heteroarylalkyl and C_1 - C_{10} alkoxy, wherein each C_1 - C_{10} alkyl and C_1 - C_{10} alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

- 5. A composition according to claim 4, wherein R_{11} is C_2 - C_{10} alkenyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups, and R_{12} and R_{13} are independently selected from C_1 - C_{10} alkyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups.
- 6. A composition according to claim 1 wherein at least one compound of formula (I) is eremophilone.
- 7. A composition according to claim 1 wherein represents
- 8. A composition according to claim 1 comprising at least one compound of formula (IV):

$$R_{21}$$
 R_{22}
 R_{23}
 R_{23}
 R_{21}
 R_{22}
 R_{23}
 R_{24}
 R_{25}
 R

wherein R_{21} , R_{22} and R_{23} are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ (C=O) R_6 , $[C(R_7)_2]_n$ (C=S) R_6 , $[C(R_7)_2]_n$ N(R₄)₂,

10

 $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy and C_2 - C_{10} alkenyloxy;

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyloxy, C_3 - C_6 cycloalkyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_3 - C_{10} heterocyclyl, C_3 - C_6 cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} heterocyclylalkyl, C_4 - C_{10} cycloalkylalkyl, C_8 - C_{13} arylalkenyl, C_5 - C_{13} heterocyclylalkenyl, and NO_2 ;

R₈ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀ cycloalkylalkenyl, C₅-C₁₀ heterocyclyl, C₄-C₁₂ heteocyclylalkyl and C₅-C₁₃ heterocyclylalkenyl; and

n is 0 or an integer selected from 1 to 5;

- wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.
 - 9. A composition according to claim 8 wherein R_{21} is selected from the group consisting of C_2 - C_{10} alkenyl, C_7 - C_{12} arylalkyl, C_6 - C_{12} heteroarylalkyl and C_2 - C_{10} alkenyloxy wherein each C_2 - C_{10} alkenyl or C_2 - C_{10} alkenyloxy is optionally substituted with 1 to 3 halo,

25 hydroxy, thiol or nitro groups; and

 R_{22} and R_{23} are independently selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} heteroaryl, C_6 - C_{12} heteroarylalkyl and C_1 - C_{10} alkoxy, wherein each C_1 - C_{10} alkyl and C_1 - C_{10} alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

20 ·

- 10. A composition according to claim 8 wherein R_{21} is C_2 - C_{10} alkenyl, optionally substituted with a hydroxy, thiol or nitro group or 1 to 3 halo groups, and R_{22} and R_{23} are independently selected from C_1 - C_{10} alkyl, optionally substituted with a hydroxy, thiol or nitro group or 1 to 3 halo groups.
- 5 11. A composition according to claim 1 wherein at least one compound of formula (I) is 8-hydroxy-1(10)dihydroeremophilone.
 - 12. A composition according to claim 1 wherein represents.
 - 13. A composition according to claim 1 comprising at least one compound of formula (V):

wherein R_{31} is selected from the group consisting of C_2 - C_{10} alkenyl, C_7 - C_{12} arylalkyl, C_6 - C_{12} heteroarylalkyl and C_2 - C_{10} alkenyloxy wherein each C_2 - C_{10} alkenyl or C_2 - C_{10} alkenyloxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups; and

 R_{32} and R_{33} are independently selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} heteroaryl, C_6 - C_{12} heteroarylalkyl and C_1 - C_{10} alkoxy, wherein each C_1 - C_{10} alkyl and C_1 - C_{10} alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

14. A composition according to claim 13 wherein R_{31} is C_2 - C_{10} alkenyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups, and R_{32} and R_{33} are independently selected from C_1 - C_{10} alkyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups.

- 15. A composition according to claim 1 wherein at least one compound of formula (I) is 8-hydroxyeremophila-1,11-dienone.
- 16. A composition according to claim 1 comprising an extract containing at least one compound of formula (I) obtained from a volatile oil bearing plant from the Myoporaceae family.
- 17. A composition according to claim 16 wherein the extract is obtained from Eremophila, Myoporum and Bonita genera.
- 18. A composition according to claim 17 wherein the extract is obtained from E. alternifolia, E. duttonii, E. Freelingii, E. longifolia, E. cuneifolia, E. dalayana, E. abietina,
 10 E. caerulea, E. virgata, E. interstans, E. flaccida, E. leucophylla, E. metallicorum, E. georgei, E. subteritifolia.
 - 19. A composition according to claim 1 further comprising one or more of an adjuvant, additive or carrier.
- 20. A pest controlling composition comprising more than one compound of formula (I) or a tautomer thereof:

$$R_1$$
 R_2
 R_3
 R_2
 R_3
 R_4
 R_5
 R_7
 R_8

wherein:

X is selected from the group consisting of O, S or N-R₄;

when ____ is a single bond attached to Y, Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_nOR_5$, $[C(R_7)_2]_nSR_5$, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

when ____ is a double bond attached to Y, Y is O;

when ____ is a single bond attached to R₁, R₁ is selected from the group consisting of H,

OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

when $\underline{\hspace{0.1cm}}$ is a double bond attached to R_1 , R_1 is $CR_{1a}R_{1b}$ wherein R_{1a} and R_{1b} are independently selected from C_1 - C_{10} alkyl;

R₂ and R₃ are independently selected from the group consisting of H, OH, SH, C₁-C₁₀
10 alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀ cycloalkylalkyl, C₄-C₁₀ cycloalkenylalkyl, C₃C₁₀ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl, C₁-C₁₀ alkoxy, C₂C₁₀ alkenyloxy, C₁-C₁₀ alkylthio, C₂-C₁₀ alkenylthio, [C(R₇)₂]_nhalo, [C(R₇)₂]_n(C=O)R₆,
[C(R₇)₂]_n(C=S)R₆, [C(R₇)₂]_nN(R₄)₂, [C(R₇)₂]_n(C=NR₄)R₆, [C(R₇)₂]_nNO₂ and
15 [C(R₇)₂]_nNR₄OR₈;

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy and C_2 - C_{10} alkenyloxy;

R₅ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₁₀ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl, (C=O)R₆, PO₃R₈, SO₃R₈ and SO₂R₈;

R₆ is selected from the group consisting of H, OH, C₁-C₁₀ alkoxy, C₁-C₁₀ alkyl, C₂-C₁₀
25 alkenyloxy, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₆-C₁₀ aryloxy, C₃-C₆ cycloalkyl, C₃-C₆
cycloalkenyl, C₃-C₆ cycloalkyloxy, C₃-C₆ cycloalkenyloxy, C₃-C₁₀ heterocyclyl, C₃-C₁₀
heterocyclyloxy, C₁-C₁₀ alkylthio, C₁-C₁₀ alkenylthio, C₆-C₁₀ arylthio, C₃-C₆
cycloalkylthio, and C₃-C₁₀ heterocyclylthio;

R₇ is selected from the group consisting of H, halogen, OR₅, SR₅, N(R₄)₂, (C=O)R₆,

(C=S)R₆, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_3 - C_{10} heterocyclyl, C_3 - C_6 cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} heterocyclylalkyl, C_4 - C_{10} cycloalkylalkyl, C_8 - C_{13} arylalkenyl, C_5 - C_{13} heterocyclylalkenyl, and NO_2 ;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

- wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.
 - 21. A composition according to claim 20 wherein at least one compound of formula (I) is a compound of formula (II):

$$R_1$$
 R_2
 R_3
 (II)

15 wherein:

X is selected from the group consisting of O, S or N-R₄;

Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

R₁, R₂ and R₃ are independently selected from the group consisting of H, OH, SH, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀ cycloalkylalkyl, C₄-C₁₀ cycloalkenylalkyl, C₃-C₁₀ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl, C₁-C₁₀ alkoxy, C₂-C₁₀ alkenyloxy, C₁-C₁₀ alkylthio, C₂-C₁₀ alkenylthio, [C(R₇)₂]_nhalo, [C(R₇)₂]_n(C=O)R₆,

15

 $[C(R_7)_2]_n (C=S)R_6, \qquad [C(R_7)_2]_n N(R_4)_2, \qquad [C(R_7)_2]_n (C=NR_4)R_6, \qquad [C(R_7)_2]_n NO_2 \qquad \text{and}$ $[C(R_7)_2]_n NR_4 OR_8;$

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy and C_2 - C_{10} alkenyloxy;

 R_5 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_6 - C_{10} heterocyclylalkenyl, C_7 - C_{10} heterocyclylalkyl, C_7 - C_7 -

 R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_3 - C_{10} heterocyclyl, C_3 - C_6 cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} heterocyclylalkyl, C_4 - C_{10} cycloalkylalkyl, C_8 - C_{13} arylalkenyl, C_5 - C_{13} heterocyclylalkenyl, and NO_2 ;

R₈ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀ cycloalkylalkenyl, C₅-C₁₀ heterocyclyl, C₄-C₁₂ heteocyclylalkyl and C₅-C₁₃ heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

25 _____ represents a single or double bond; and wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

- 22. A composition according to claim 20 comprising an extract obtained from a volatile oil bearing plant from the Myoporaceae family.
- 23. A composition according to claim 22 wherein the extract is obtained from Eremophila, Myoporum and Bonita genera.
- 5 24. A composition according to claim 23 wherein the extract is obtained from E. alternifolia, E. duttonii, E. Freelingii, E. longifolia, E. cuneifolia, E. dalayana, E. abietina, E. caerulea, E. virgata, E. interstans, E. flaccida, E. leucophylla, E. metallicorum, E. georgei, E. subteritifolia.
- 25. A composition according to claim 20 further comprising one or more of an adjuvant additive or carrier.
 - 26. A method for controlling pests, said method comprising exposing said pests to a pest-controlling effective amount of a compound of formula (I) or a tautomer thereof or a composition comprising at least one compound of formula (I) or a tautomer thereof:

$$R_1$$
 R_2
 R_3
 R_2
 R_3
 R_4
 R_4
 R_5
 R_7
 R_7

15 wherein:

X is selected from O, S or N-R₄;

when ____ is a single bond attached to Y, Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

20 when ____ is a double bond attached to Y, Y is O;

when $\underline{\hspace{0.5cm}}$ is a single bond attached to R_1 , R_1 is selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10}

cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

- when $\underline{\hspace{0.1cm}}$ is a double bond attached to R_1 , R_1 is $CR_{1a}R_{1b}$ wherein R_{1a} and R_{1b} are independently selected from C_1 - C_{10} alkyl;
- R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;
- each R₄ is independently selected from the group consisting of H, OH, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₅-C₁₃ cycloalkenyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₁₀ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl, C₁-C₁₀ alkoxy and C₂-C₁₀ alkenyloxy;
- R₅ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₁₀ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl, (C=O)R₆, PO₃R₈, SO₃R₈ and SO₂R₈;
 - R_6 is selected from the group consisting of H, OH, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;
 - R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_3 - C_{10} heterocyclyl, C_3 - C_6 cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} heterocyclylalkyl, C_4 - C_{10} cycloalkylalkyl, C_8 - C_{13} arylalkenyl, C_5 -

C₁₃ heterocyclylalkenyl, and NO₂;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

27. A method according to claim 26 wherein the compound of formula (I) is a compound of formula (II):

$$R_1$$
 R_2
 R_3
 R_3
 R_3
 R_4
 R_5
 R_7
 R_8

wherein:

X is selected from the group consisting of O, S or N-R₄;

Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

 R_1 , R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy and C_2 - C_{10} alkenyloxy;

R₅ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₁₀ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl, (C=O)R₆, PO₃R₈, SO₃R₈ and SO₂R₈;

R₆ is selected from the group consisting of H, OH, C₁-C₁₀ alkoxy, C₁-C₁₀ alkyl, C₂-C₁₀

alkenyloxy, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₆-C₁₀ aryloxy, C₃-C₆ cycloalkyl, C₃-C₆

cycloalkenyl, C₃-C₆ cycloalkyloxy, C₃-C₆ cycloalkenyloxy, C₃-C₁₀ heterocyclyl, C₃-C₁₀

heterocyclyloxy, C₁-C₁₀ alkylthio, C₁-C₁₀ alkenylthio, C₆-C₁₀ arylthio, C₃-C₆

cycloalkylthio, and C₃-C₁₀ heterocyclylthio;

R₇ is selected from the group consisting of H, halogen, OR₅, SR₅, N(R₄)₂, (C=O)R₆, (C=S)R₆, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₃-C₁₀ heterocyclyl, C₃-C₆ cycloalkyl, C₇-C₁₂ arylalkyl, C₄-C₁₂ heterocyclylalkyl, C₄-C₁₀ cycloalkylalkyl, C₈-C₁₃ arylalkenyl, C₅-C₁₃ heterocyclylalkenyl, and NO₂;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkylalkyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

20

----- represents a single or double bond; and

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

29. A method according to claim 26, wherein at least one compound of formula (I) is a compound of formula (III):

$$R_{11}$$
 R_{12}
 R_{13}
 R_{11}
 R_{12}
 R_{13}
 R_{11}
 R_{12}
 R_{13}
 R_{12}
 R_{13}
 R_{11}
 R_{12}
 R_{13}
 R_{12}
 R_{13}
 R_{13}
 R_{12}
 R_{13}
 R_{13}
 R_{14}
 R_{15}
 R

wherein

15

5

R₁₁ is selected from the group consisting of C₂-C₁₀ alkenyl, C₇-C₁₂ arylalkyl, C₆-C₁₂

10 heteroarylalkyl and C₂-C₁₀ alkenyloxy wherein each C₂-C₁₀ alkenyl or C₂-C₁₀ alkenyloxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups; and

 R_{12} and R_{13} are independently selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_3 - C_{10} cycloalkyl, C_5 - C_{10} heteroaryl, C_6 - C_{12} heteroarylalkyl and C_1 - C_{10} alkoxy, wherein each C_1 - C_{10} alkyl and C_1 - C_{10} alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

- 30. A method according to claim 29, wherein R_{11} is C_2 - C_{10} alkenyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups, and R_{12} and R_{13} are independently selected from C_1 - C_{10} alkyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups.
- 31. A method according to claim 26 wherein at least one compound of formula (I) is eremophilone.
 - 32. A method according to claim 26 wherein represents in the compound of formula (I).
- 33. A method according to claim 26 wherein at least one compound of formula (I) is a compound of formula (IV):

$$R_{21}$$
 R_{22}
 R_{23}
 R_{24}
 R_{25}
 R

wherein R_{21} , R_{22} and R_{23} are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} eycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

each R₄ is independently selected from the group consisting of H, OH, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₅-C₁₃ cycloalkenyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₁₀ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl, C₁-C₁₀ alkoxy and C₂-C₁₀ alkenyloxy;

R₆ is selected from the group consisting of H, OH, C₁-C₁₀ alkoxy, C₁-C₁₀ alkyl, C₂-C₁₀

alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

- R₇ is selected from the group consisting of H, halogen, OR₅, SR₅, N(R₄)₂, (C=O)R₆, (C=S)R₆, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₃-C₁₀ heterocyclyl, C₃-C₆ cycloalkyl, C₇-C₁₂ arylalkyl, C₄-C₁₂ heterocyclylalkyl, C₄-C₁₀ cycloalkylalkyl, C₈-C₁₃ arylalkenyl, C₅-C₁₃ heterocyclylalkenyl, and NO₂;
- R₈ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇
 C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀

 cycloalkylalkyl, C₅-C₁₀ cycloalkylalkenyl, C₃-C₁₀ heterocyclyl, C₄-C₁₂ heteocyclylalkyl

 and C₅-C₁₃ heterocyclylalkenyl; and

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

- 34. A method according to claim 33 wherein R_{21} is selected from the group consisting of C_2 - C_{10} alkenyl, C_7 - C_{12} arylalkyl, C_6 - C_{12} heteroarylalkyl and C_2 - C_{10} alkenyloxy wherein each C_2 - C_{10} alkenyl or C_2 - C_{10} alkenyloxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups; and
- R₂₂ and R₂₃ are independently selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ heteroarylalkyl and C₁-C₁₀ alkoxy, wherein each C₁-C₁₀ alkyl and C₁-C₁₀ alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.
 - 35. A method according to claim 34 wherein R₂₁ is C₂-C₁₀ alkenyl, optionally substituted with a hydroxy, thiol or nitro group or 1 to 3 halo groups, and R₂₂ and R₂₃ are independently selected from C₁-C₁₀ alkyl, optionally substituted with a hydroxy, thiol or nitro group or 1 to 3 halo groups.

36. A method according to claim 26 wherein at least one compound of formula (I) is 8-hydroxy-1(10)dihydroeremophilone.

38. A composition according to claim 1 comprising at least one compound of formula (V):

5

15

wherein R_{31} is selected from the group consisting of C_2 - C_{10} alkenyl, C_7 - C_{12} arylalkyl, C_6 - C_{12} heteroarylalkyl and C_2 - C_{10} alkenyloxy wherein each C_2 - C_{10} alkenyl or C_2 - C_{10} alkenyloxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups; and

R₃₂ and R₃₃ are independently selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ heteroaryl, C₆-C₁₂ heteroarylalkyl and C₁-C₁₀ alkoxy, wherein each C₁-C₁₀ alkyl and C₁-C₁₀ alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

- 39. A composition according to claim 38 wherein R_{31} is C_2 - C_{10} alkenyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups, and R_{32} and R_{33} are independently selected from C_1 - C_{10} alkyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups.
- 40. A composition according to claim 1 wherein at least one compound of formula (I) is 8-hydroxyeremophila-1,11-dienone.

£

- 41. A method according to claim 26 wherein the composition comprises an extract containing at least one compound of formula (I) obtained from a volatile oil bearing plant from the Myoporaceae family.
- 42. A method according to claim 41 wherein the extract is obtained from *Eremophila*, *Myoporum* and *Bonita* genera.
 - 43. A method according to claim 42 wherein the extract is obtained from E. alternifolia, E. duttonii, E. Freelingii, E. longifolia, E. cuneifolia, E. dalayana, E. abietina, E. caerulea, E. virgata, E. interstans, E. flaccida, E. leucophylla, E. metallicorum, E. georgei, E. subteritifolia.
- 44. A method according to claim 26 wherein the pest-controlling effective amount is a pesticidally effective amount.
 - 45. A method according to claim 26 wherein the pest-controlling effective amount is a pest-repelling effective amount.
- 46. A method according to claim 26 wherein the pest-controlling effective amount is a antifeedant effective amount.
 - 47. A method according to claim 26 wherein the pests are selected from the group consisting of insects, arachnids, helminths and molluscs.
 - 48. A method according to claim 26 wherein the pests are selected from the group consisting of termites, earwigs, cockroaches and wood borer beetles and their larvae.
- 20 49. A method according to claim 26 wherein the pests are wood associated pests.
 - 50. A method according to claim 49 wherein the wood associated pests are selected from the group consisting of termites and wood borer beetles.
 - 51. A method according to claim 50 wherein the wood associated pests are termites.
- 52. A method according to claim 26 wherein pests are exposed to the pest-controlling effective amount of a compound of formula (I) or a composition comprising at least one

compound of formula (I) by applying the compound or composition to a site of infestation, a potential site of infestation, a habitat of the pest or a potential habitat of the pest.

- 53. A method according to claim 52 wherein the compound or composition is applied to a surface or impregnated into a material or article of manufacture.
- 5 54. A method according to claim 53 wherein the compound or composition is applied to a surface by spraying, coating or painting the surface.
 - 55. A method according to claim 54 wherein the surface is a soil surface, timber, buildings, wooden articles of manufacture or a physical barrier.
- 56. A method according to claim 55 wherein the material or article of manufacture is soil, timber, timber or wooden products or buildings or parts of buildings.
 - 57. A method according to claim 52 wherein the compound or composition is applied in a band or furrow around a site of infestation or potential infestation or is mixed with a layer of soil at a site of infestation or a potential site of infestation.
- 58. A material or article of manufacture for use in pest control that is coated or impregnated with at least one compound of formula (I) or a tautomer thereof or with a composition containing at least one compound of formula (I) or a tautomer thereof:

$$R_1$$
 R_2
 R_3
 R_2
 R_3
 R_4
 R_4
 R_5

wherein:

X is selected from the group consisting of O, S or N-R₄;

when ____ is a single bond attached to Y, Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

cycloalkylthio, and C₃-C₁₀ heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_3 - C_{10} heterocyclyl, C_3 - C_6 cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} heterocyclylalkyl, C_4 - C_{10} cycloalkylalkyl, C_8 - C_{13} arylalkenyl, C_5 - C_{13} heterocyclylalkenyl, and NO_2 ;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkylalkyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cyclolkenyl, aryl and heterocyclyl group is optionally substituted.

59. A material or article of manufacture for use in pest control according to claim 58 wherein the compound of formula (I) is a compound of formula (II):

$$R_1$$
 R_2
 R_3
 R_3
 R_1
 R_2
 R_3
 R_3

wherein:

X is selected from the group consisting of O, S or N-R₄;

Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

 R_1 , R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 -

cycloalkylthio, and C₃-C₁₀ heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_3 - C_{10} heterocyclyl, C_3 - C_6 cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} heterocyclylalkyl, C_4 - C_{10} cycloalkylalkyl, C_8 - C_{13} arylalkenyl, C_5 - C_{13} heterocyclylalkenyl, and NO_2 ;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cyclolkenyl, aryl and heterocyclyl group is optionally substituted.

59. A material or article of manufacture according to claim 58 wherein the compound of formula (I) is a compound of formula (II):

$$R_1$$
 R_2
 R_3
 R_3
 R_1
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_7
 R_7

wherein:

X is selected from the group consisting of O, S or N-R₄;

Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈;

 R_1 , R_2 and R_3 are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 -

 C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

each R_4 is independently selected from the group consisting of H, OH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy and C_2 - C_{10} alkenyloxy;

R₅ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀ cycloalkylalkyl, C₃-C₁₀ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl, (C=O)R₆, PO₃R₈, SO₃R₈ and SO₂R₈;

R₆ is selected from the group consisting of H, OH, C₁-C₁₀ alkoxy, C₁-C₁₀ alkyl, C₂-C₁₀

15 alkenyloxy, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₆-C₁₀ aryloxy, C₃-C₆ cycloalkyl, C₃-C₆

cycloalkenyl, C₃-C₆ cycloalkyloxy, C₃-C₆ cycloalkenyloxy, C₃-C₁₀ heterocyclyl, C₃-C₁₀

heterocyclyloxy, C₁-C₁₀ alkylthio, C₁-C₁₀ alkenylthio, C₆-C₁₀ arylthio, C₃-C₆

cycloalkylthio, and C₃-C₁₀ heterocyclylthio;

R₇ is selected from the group consisting of H, halogen, OR₅, SR₅, N(R₄)₂, (C=O)R₆, (C=S)R₆, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₃-C₁₀ heterocyclyl, C₃-C₆ cycloalkyl, C₇-C₁₂ arylalkyl, C₄-C₁₂ heterocyclylalkyl, C₄-C₁₀ cycloalkylalkyl, C₈-C₁₃ arylalkenyl, C₅-C₁₃ heterocyclylalkenyl, and NO₂;

R₈ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀ cycloalkylalkenyl, C₅-C₁₀ heterocyclyl, C₄-C₁₂ heteocyclylalkyl and C₅-C₁₃ heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

----- represents a single or double bond; and

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.

60. A material or article of manufacture for use in pest control according to claim 58, wherein represents in the compound of formula (I).

5 61. A material or article of manufacture for use in pest control according to claim 58, wherein at least one compound of formula (I) is a compound of formula (III):

$$R_{11}$$
 R_{12}
 R_{12}
 R_{13}
 R_{11}
 R_{12}
 R_{13}
 R_{11}
 R_{12}
 R_{13}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R

wherein R₁₁ is selected from the group consisting of C₂-C₁₀ alkenyl, C₇-C₁₂ arylalkyl, C₆-C₁₂ heteroarylalkyl and C₂-C₁₀ alkenyloxy wherein each C₂-C₁₀ alkenyl or C₂-C₁₀ alkenyloxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups; and R₁₂ and R₁₃ are independently selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ heteroarylalkyl and C₁-C₁₀ alkoxy, wherein each C₁-C₁₀ alkyl and C₁-C₁₀ alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

20

- 62. A material or article of manufacture for use in pest control according to claim 61, wherein R_{11} is C_2 - C_{10} alkenyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups, and R_{12} and R_{13} are independently selected from C_1 - C_{10} alkyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups.
- 5 63. A material or article of manufacture for use in pest control according to claim 58 wherein at least one compound of formula (I) is eremophilone.
 - 64. A material or article of manufacture for use in pest control according to claim 58 wherein represents in the compound of formula (I).
- 65. A material or article of manufacture for use in pest control according to claim 58 wherein at least one compound of formula (I) is a compound of formula (IV):

$$R_{21}$$
 R_{22}
 R_{23}
 R_{23}
 R_{21}
 R_{22}
 R_{23}
 R_{24}
 R_{25}
 R

wherein R_{21} , R_{22} and R_{23} are independently selected from the group consisting of H, OH, SH, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkenyl, C_4 - C_{10} cycloalkylalkyl, C_4 - C_{10} cycloalkenylalkyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heterocyclylalkyl, C_5 - C_{13} heterocyclylalkenyl, C_1 - C_{10} alkoxy, C_2 - C_{10} alkenyloxy, C_1 - C_{10} alkylthio, C_2 - C_{10} alkenylthio, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n(C=O)R_6$, $[C(R_7)_2]_n(C=S)R_6$, $[C(R_7)_2]_nN(R_4)_2$, $[C(R_7)_2]_n(C=NR_4)R_6$, $[C(R_7)_2]_nNO_2$ and $[C(R_7)_2]_nNR_4OR_8$;

each R₄ is independently selected from the group consisting of H, OH, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₅-C₁₃ heterocyclyl, C₄-C₁₂ heterocyclylalkyl, C₅-C₁₃ heterocyclylalkenyl, C₁-C₁₀ alkoxy and C₂-C₁₀ alkenyloxy;

R₆ is selected from the group consisting of H, OH, C₁-C₁₀ alkoxy, C₁-C₁₀ alkyl, C₂-C₁₀

alkenyloxy, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryloxy, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyloxy, C_3 - C_6 cycloalkenyloxy, C_3 - C_{10} heterocyclyl, C_3 - C_{10} heterocyclyloxy, C_1 - C_{10} alkylthio, C_1 - C_{10} alkenylthio, C_6 - C_{10} arylthio, C_3 - C_6 cycloalkylthio, and C_3 - C_{10} heterocyclylthio;

- R₇ is selected from the group consisting of H, halogen, OR₅, SR₅, N(R₄)₂, (C=O)R₆, (C=S)R₆, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₃-C₁₀ heterocyclyl, C₃-C₆ cycloalkyl, C₇-C₁₂ arylalkyl, C₄-C₁₂ heterocyclylalkyl, C₄-C₁₀ cycloalkylalkyl, C₈-C₁₃ arylalkenyl, C₅-C₁₃ heterocyclylalkenyl, and NO₂;
- R₈ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₅-C₁₀ cycloalkylalkenyl, C₃-C₁₀ heterocyclyl, C₄-C₁₂ heteocyclylalkyl and C₅-C₁₃ heterocyclylalkenyl; and
 - n is 0 or an integer selected from 1 to 5;
- wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl and heterocyclyl group is optionally substituted.
 - 66. A material or article of manufacture for use in pest control according to claim 65 wherein R_{21} is selected from the group consisting of C_2 - C_{10} alkenyl, C_7 - C_{12} arylalkyl, C_6 - C_{12} heteroarylalkyl and C_2 - C_{10} alkenyloxy wherein each C_2 - C_{10} alkenyl or C_2 - C_{10} alkenyloxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups; and
- R₂₂ and R₂₃ are independently selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀ heteroarylalkyl and C₁-C₁₀ alkoxy, wherein each C₁-C₁₀ alkyl and C₁-C₁₀ alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.
 - 67. A material or article of manufacture for use in pest control according to claim 66 wherein R₂₁ is C₂-C₁₀ alkenyl, optionally substituted with a hydroxy, thiol or nitro group or 1 to 3 halo groups, and R₂₂ and R₂₃ are independently selected from C₁-C₁₀ alkyl, optionally substituted with a hydroxy, thiol or nitro group or 1 to 3 halo groups.

- 68. A material or article of manufacture for use in pest control according to claim 58 wherein at least one compound of formula (I) is 8-hydroxy-1(10)dihydroeremophilone.
- 69. A material or article of manufacture for use in pest control according to claim 58 wherein represents
- 5 70. A material or article of manufacture for use in pest control according to claim 58 comprising at least one compound of formula (V):

wherein R₃₁ is selected from the group consisting of C₂-C₁₀ alkenyl, C₇-C₁₂ arylalkyl, C₆-C₁₂ heteroarylalkyl and C₂-C₁₀ alkenyloxy wherein each C₂-C₁₀ alkenyl or C₂-C₁₀ alkenyloxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups; and R₃₂ and R₃₃ are independently selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆-C₁₀ aryl, C₇-C₁₂ arylalkyl, C₃-C₁₀ cycloalkyl, C₅-C₁₀

heteroaryl, C_6 - C_{12} heteroarylalkyl and C_1 - C_{10} alkoxy, wherein each C_1 - C_{10} alkyl and C_1 - C_{10} alkoxy is optionally substituted with 1 to 3 halo, hydroxy, thiol or nitro groups.

- 71. A material or article of manufacture for use in pest control according to claim 70 wherein R₃₁ is C₂-C₁₀ alkenyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups, and R₃₂ and R₃₃ are independently selected from C₁-C₁₀ alkyl optionally substituted with a hydroxy, nitro or thiol group or 1 to 3 halo groups.
- 72. A material or article of manufacture for use in pest control according to claim 58 wherein at least one compound of formula (I) is 8-hydroxyeremophila-1,11-dienone.

- 73. A material or article of manufacture for use in pest control according to claim 58 wherein the composition comprises an extract containing at least one compound of formula (I) obtained from a volatile oil bearing plant from the Myoporaceae family.
- 74. A material or article of manufacture for use in pest control according to claim 73 wherein the extract is obtained from *Eremophila*, *Myoporum* and *Bonita* genera.
 - 75. A material or article of manufacture for use in pest control according to claim 74 wherein the extract is obtained from E. alternifolia, E. duttonii, E. Freelingii, E. longifolia, E. cuneifolia, E. dalayana, E. abietina, E. caerulea, E. virgata, E. interstans, E. flaccida, E. leucophylla, E. metallicorum, E. georgei, E. subteritifolia.
- 76. A material or article of manufacture for use in pest control according to claim 58 which is selected from the group consisting of a pest shield, pest barrier, soil or a timber product.
 - 77. A pest control coating comprising a composition according to claim 1.
 - 78. A pest control coating comprising a composition according to claim 20.
- 79. A method of combating an already existing wood associated pest infestation comprising applying a composition according to claim 1 or claim 20 or a coating of claim 77 or claim 78 to wood associated pest affected surface.
 - 80. Use of at least one compound of formula (I) or a tautomer thereof in the manufacture of a composition for controlling pests:

$$R_1$$
 R_2
 R_3
 R_2
 R_3
 R_4
 R_5

wherein:

X is selected from the group consisting of O, S or N-R₄;

when $\underline{\hspace{0.5cm}}$ is a single bond attached to Y, Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆, $[C(R_7)_2]_n$ N(R₄)₂, $[C(R_7)_2]_n$ (C=NR₄)R₆, $[C(R_7)_2]_n$ NO₂ and $[C(R_7)_2]_n$ NR₄OR₈; cycloalkylthio, and C₃-C₁₀ heterocyclylthio;

R₇ is selected from the group consisting of H, halogen, OR₅, SR₅, N(R₄)₂, (C=O)R₆, (C=S)R₆, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₃-C₁₀ heterocyclyl, C₃-C₆ cycloalkyl, C₇-C₁₂ arylalkyl, C₄-C₁₂ heterocyclylalkyl, C₄-C₁₀ cycloalkylalkyl, C₈-C₁₃ arylalkenyl, C₅-C₁₃ heterocyclylalkenyl, and NO₂;

R₈ is selected from the group consisting of H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₆-C₁₀ aryl, C₇-C₁₀ arylalkyl, C₈-C₁₃ arylalkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkenyl, C₄-C₁₀ cycloalkylalkenyl, C₅-C₁₀ heterocyclyl, C₄-C₁₂ heteocyclylalkyl and C₅-C₁₃ heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cyclolkenyl, aryl and heterocyclyl group is optionally substituted.

81. Use of at least one compound of formula (I) or a composition containing at least one compound of formula (I) in the manufacture of an article or material for controlling pests:

$$R_1$$
 R_2
 R_3
 R_2
 R_3
 R_4
 R_5

20 wherein:

X is selected from the group consisting of O, S or N-R₄;

when $\underline{\hspace{0.5cm}}$ is a single bond attached to Y, Y is selected from the group consisting of H, $[C(R_7)_2]_n$ halo, $[C(R_7)_2]_n$ OR₅, $[C(R_7)_2]_n$ SR₅, $[C(R_7)_2]_n$ (C=O)R₆, $[C(R_7)_2]_n$ (C=S)R₆,

 $[C(R_7)_2]_nN(R_4)_2, \quad [C(R_7)_2]_n(C=NR_4)R_6, \quad [C(R_7)_2]_nNO_2 \quad \text{ and } \quad [C(R_7)_2]_nNR_4OR_8;$ cycloalkylthio, and C_3-C_{10} heterocyclylthio;

 R_7 is selected from the group consisting of H, halogen, OR_5 , SR_5 , $N(R_4)_2$, $(C=O)R_6$, $(C=S)R_6$, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_3 - C_{10} heterocyclyl, C_3 - C_6 cycloalkyl, C_7 - C_{12} arylalkyl, C_4 - C_{12} heterocyclylalkyl, C_4 - C_{10} cycloalkylalkyl, C_8 - C_{13} arylalkenyl, C_5 - C_{13} heterocyclylalkenyl, and NO_2 ;

 R_8 is selected from the group consisting of H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_6 - C_{10} aryl, C_7 - C_{12} arylalkyl, C_8 - C_{13} arylalkenyl, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkylalkyl, C_5 - C_{10} cycloalkylalkenyl, C_3 - C_{10} heterocyclyl, C_4 - C_{12} heteocyclylalkyl and C_5 - C_{13} heterocyclylalkenyl;

n is 0 or an integer selected from 1 to 5;

wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cyclolkenyl, aryl and heterocyclyl group is optionally substituted;

wherein the article or material is coated or impregnated with the at least one compound of formula (I) or composition containing the at least one compound of formula (I).