1. Introduction

- mathematical optimization
- least-squares and linear programming
- convex optimization
- course goals and topics

Mathematical optimization

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i = 1, \dots, m$

- $x = (x_1, \dots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}$, $i=1,\ldots,m$: constraint functions

solution or **optimal point** x^* has smallest value of f_0 among all vectors that satisfy the constraints

Solving optimization problems

general optimization problem

- very difficult to solve
- \bullet methods involve some compromise, e.g., very long computation time, or not always finding the solution (which may not matter in practice)

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems convex optimization problems

Least-squares

minimize

$$\|Ax - b\|_2^2$$

solving least-squares problems

- analytical solution: $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k ($A \in \mathbb{R}^{k \times n}$); less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_1 or ℓ_∞ -norms, piecewise-linear functions)

Convex optimization problem

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq b_i, \quad i=1,\ldots,m$

• objective and constraint functions are convex:

$$\underline{f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)} \quad (i=0,1,\ldots,M)$$

(if
$$\alpha + \beta = 1$$
, $\alpha \ge 0$, $\beta \ge 0$)

• includes least-squares problems and linear programs as special cases

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m(F)\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
 - surprisingly many problems can be solved via convex optimization

2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine set

line through x_1 , x_2 : all points

- # affine set: contains the line through any two distinct points in the set
- **example**: solution set of linear equations $\{x \mid Ax = b\}$ (conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta) x_2 \in C$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form $\mathcal{M}_{\mathcal{I}}$

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k = \sum_{k=1}^{k} \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \ge 0$, $\theta_2 \ge 0$

convex
$$\Rightarrow$$
 convex convex \Rightarrow convex \Rightarrow convex \Rightarrow convex \Rightarrow cone

convex cone: set that contains all conic combinations of points in the set

 $x \in \mathbb{R}^n$

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

onvex affine

halfspace: set of the form $\{x \mid a^Tx \leq b\}\ (a \neq 0)$

 $a^{T}x \geq b$ Convex $a^{T}x = b$

- ullet a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

R(X, r):

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

- 2) z 1/2 > 0, Yz

other representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular

$$f(x) = |1 \times 1|$$
:

 $f(x) = |1| \times |1| : \qquad |1| \times |1|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{7}!} \cdot \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{7}!}$

norm: a function $\|\cdot\|$ that satisfies

$$||x|| \ge 0; ||x|| = 0 \text{ if and only if } x = 0,$$

育欠性●
$$||tx|| = |t| ||x||$$
 for $t \in \mathbb{R}$

次习加性
$$\|x+y\| \leq \|x\| + \|y\|$$

norm ball with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$

norm cone: $\{(x,t) \mid ||x|| \le t\}$

Euclidean norm cone is called secondorder cone

norm balls and cones are convex

11×110≤1

$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \qquad \text{Polyhedra}$$

$$\begin{cases} x \mid Ax \leq b, Cx = d \end{cases}$$
solution set of finitely many linear inequalities and equalities

$$helfspace (x = d) hyperplane$$

polyhedron is intersection of finite number of halfspaces and hyperplanes

(PSP) $0 \times_{1} + (1-P) \times_{2} \in C$ Positive semidefinite cone

notation:

- S^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}_{+}^{n} \mid X \geq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 \mathbf{S}_{\perp}^{n})s a convex cone

•
$$\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$$
: positive definite $n \times n$ matrices

example:
$$\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_{+}^{2}$$

Convex sets
$$= 0$$
 $\Rightarrow eX + (1-f)Y \in S_{+}^{N}$

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

• the intersection of (any number of) convex sets is convex

Paly hedra

example:

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m=2:

Affine function

suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ convex}$$

examples $\langle x \in S \rangle$ $\langle x + 2 | x \in S \rangle$ $\langle x, x \rangle \in C \rangle$

scaling, translation, projection

- solution set of linear matrix inequality $\{x \mid \underline{x_1A_1 + \cdots + x_mA_m \subseteq B}\}$ (with $A_i, B \in \mathbf{S}^p$)
 - hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

$$f(x) = B - A(x)$$
. affine func.

)= < × 6 Rn B-Ax 20}

2-13

 $\begin{array}{c}
X = \theta_1 X_1 + \theta_2 X_2 \\
\theta_1, \theta_2 = 0
\end{array}$ Generali

Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

C = bol U int

- K is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbf{R}^n + \{x \in \mathbf{R}^n \mid x_i \geq 0, i = 1, \dots, n\}$
- positive semidefinite cone $K = \mathbf{S}^n_{\pm}$
- \bullet nonnegative polynomials on [0,1]:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1]\}$$

generalized inequality defined by a proper cone K:

$$\underbrace{x \preceq_K y} \iff \underbrace{y - x \in K}, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

$$\underbrace{(\ \mathcal{Y} - \times \geqslant_{\boldsymbol{\nu}} \ 0 \)}$$
examples

• matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq \mathbf{S}_{+}^{n} Y \iff Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in \leq_K **properties:** many properties of \leq_K are similar to \leq on **R**, e.g.,

$$x \leq_K y, \quad u \leq_K v \implies x + u \leq_K y + v$$

Separating hyperplane theorem

 $C \cap D = \emptyset$

if C and D are nonempty disjoint convex sets, there exist $a \neq 0$, b s.t.

$$a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$$

the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

C, D \ ♦ 0

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual cones and generalized inequalities

dual cone of a cone K:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

- $\bullet \ K = \mathbf{R}^n_+ : \ K^* = \mathbf{R}^n_+$
- $K = \mathbf{S}_{+}^{n}$: $K^{*} = \mathbf{S}_{+}^{n}$
- $K = \{(x,t) \mid ||x||_2 \le t\}$: $K^* = \{(x,t) \mid ||x||_2 \le t\}$
- $K = \{(x,t) \mid ||x||_1 \le t\}$: $K^* = \{(x,t) \mid ||x||_\infty \le t\}$

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$