Sistemi Dinamici - Prova parziale 01/12/2023

voto massimo: 4 punti

Il voto finale sarà costituito dalla somma delle valutazioni conseguite nei due esercizi.

Table of Contents

Esercizio 1	1
Domanda 1	
Suggerimento	
Domanda 2	

Esercizio 1

Sono stati acquisiti, con frequenza di campionamento $f_S = 2.5 \text{ kHz}$, 5000 campioni di un segnale y(t) costituito da

$$y(t_k) = A \cdot \sin(\bar{\omega}_1 t_k + \delta_1) + \epsilon(t_k)$$
 $t_k = k T_s$, $k = 1, 2, ... N$, $T_s = \frac{1}{f_s}$

Del segnale è **noto** il seguente parametro:

• pulsazione $\overline{\omega}_1$: $\overline{\omega}_1 = 2 \pi \cdot 50 \text{ rad/s}$

mentre sono **incogniti** i valori dell'ampiezza A e della fase δ_1 .

I campioni acquisiti $y(t_k)$, i corrispondenti istanti di tempo t_k ed i valori dei parametri noti [ω_1] sono a disposizione nel MAT file "ESERCIZIO1_DATI.MAT".

Domanda 1

Si chiede di determinare i valori dei parametri incogniti A e δ_1 utilizzando uno **stimatore ai minimi quadrati**.

Suggerimento

L'espressione di $y(t_k)$ può essere riscritta nel modo seguente

$$y(t_k) = [A\cos(\delta_1)] \cdot \sin(\omega_1 t_k) + [A\sin(\delta_1)] \cdot \cos(\omega_1 t_k) + \epsilon(t_k)$$

A questo punto, ponendo

$$\vartheta_1 = [A\cos(\delta_1)], \qquad \vartheta_2 = [A\sin(\delta_1)]$$

si arriva all'espressione

$$y(t) = \varphi^{\top}(t) \cdot \vartheta + \epsilon(t)$$

dove

$$\varphi(t) = \begin{bmatrix} \varphi_1(t) \\ \varphi_2(t) \end{bmatrix} \qquad \vartheta = \begin{bmatrix} \vartheta_1 \\ \vartheta_1 \end{bmatrix}$$

```
clear
close all
clc

load ESERCIZIO1_DATI.MAT t_k y_t_k

Fs = 2.5e3; % kHz
Ts = 1/Fs;

omega1 = 2*pi*50;

figure('Units','normalized','Position',[0.1, 0.1, 0.8, 0.75]);
plot(t_k, y_t_k, 'LineWidth', 1.5);
grid on;
xlabel('tempo $t_k$ [s]','Interpreter','latex','FontSize',14);
ylabel('valori misurati $y(t_k)$','Interpreter','latex','FontSize',14);
```

```
% inserisci il codice che risolve il problema proposto
% usa dei brevi commenti nel codice, per rendere il codice più leggibile
```

Domanda 2

Quanto vale la varianza della stima?

$$\operatorname{var}\left[\widehat{\boldsymbol{\vartheta}}_{N}\right] = \lambda_{\epsilon}^{2} \cdot \left[\sum_{k=1}^{N} \varphi(t_{k}) \, \varphi(t_{k})^{\mathsf{T}}\right]^{-1}$$

- % inserisci il codice che risolve il problema proposto
- % usa dei brevi commenti nel codice, per rendere il codice più leggibile