Quantitative BOLD modeling of brain oxygenation during vasodilation

ISMRM-Endorsed Workshop – Quantitative Imaging

Linh Le

UC Davis

Oxygen Extraction Fraction

OEF is a measurement of oxygen consumed by metabolism

- Function of perfusion and oxygen metabolism
- Can be combined with perfusion to measure oxygen metabolism
- Arterial-venous difference in blood oxygen saturation

OEF is dimensionless

• Healthy resting brain range: 0.3-0.4

¹⁵O PET OEF measurements

Bremmer JP, et al. Mol. Imaging Biol. 2011; 13:759-768

Oxygen Extraction Fraction

OEF consumption in brain

Altered during disease/activity

Current benchmark

- Triple oxygen PET
- Highly specialized, invasive, expensive and difficult to perform

Alternative quantitative technique

Clinical applicable

Quantitative BOLD (qBOLD)

Quantitative BOLD

- Models MR signal decay in microvessels
- qBOLD signal is influenced by concentration of deoxyhemoglobin, which is relatively sensitive to OEF
- Quantified through the reversible transverse relaxation rate R2'

Cherukara et al., Neuroimage 2019; 202: 116106

Methods

ASE data: Asymmetric Spin Echo

- Acquires only a single TE
- Refocusing pulse is moved

Participants

- 3 healthy controls
- Received ASE before and after acetazolamide (dose of 15mg/kg) (i.e. vasodilator)

How do we quantify OEF?

1. Acquire R2'-weighted data

- Asymmetric Spin Echo
- Achieve gradient echo sampling of spin echo

2. Estimate R2' from long tau data

- Log-linear fit to tau>15ms data

3. Estimate DBV from spin echo

Difference between intercept and measured SE signal

4. Estimate OEF from R2' and DBV

Known constants of proportionality used to quantify OEF

Stone and Blockley, NeuroImage (2017); 147:79-88

ASE Images during vasodilation

 $\tau = 16 \qquad \tau = 20 \qquad \tau = 24 \qquad \tau = 28 \qquad \tau = 32 \qquad \tau = 36 \qquad \tau = 40$

POST -ACZ

PRE-

SE

Results - OEF decreased during vasodilation

Results – Whole brain analysis

Conclusion

- qBOLD is efficient in computational time, noninvasive
- There was a downward trend of OEF with increasing acetazolamide response

Future steps:

- Linear model is noisy
 - Consider Bayesian framework

Acknowledgement

Thanks to

Prof. Nick Blockley (University of Nottingham)

UC Davis Fan's Lab

Corinne Alison Donnay (UC Davis)

Emily Holy (UC Davis)

Greg Wheeler (UC Davis)

