MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type (Cost):
J#: In-Clas		s (1AP)
Date: 2017 July 19		
Standard: This student is able to C10: Polar. Convert and sketch polar and Cartesian coordinates and equations.	-	Mark:
Extra2	empt due on:	

Give an inequality involving polar coordinates that describes the fourth quadrant of the xy plane (where x is positive and y is negative).

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type (Cost):
J#:	In-Class (1AP)
Date: 2017 July 19	
	·

Standard: This student is able to...

S13: RatioRoot. Use the ratio and root tests to determine series convergence.

3/3 * reattempt due on:

Use either the Ratio or Root Test to determine whether $\sum_{n=0}^{\infty} \frac{4^n}{3^{2n+1}} = \frac{1}{3} + \frac{4}{27} + \frac{16}{243} + \dots$ converges or diverges.

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type (Cost):
J#:	In-Class (1AP)
Date: 2017 July 19	

Standard: This student is able to...

S14: CompTests. Use the comparison tests to determine series convergence.

2/3 * reattempt due on:

Does
$$\sum_{m=0}^{\infty} \frac{1}{\sqrt[3]{m^2+1}} = 1 + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[3]{5}} + \dots$$
 converge or diverge?

Name:		Exercise Type (Cost):	
J#:		In-Class (1AP)	
Date: 2017 July 19			
v	series as convergent or divergent hniques to determine convergence		
gence/divergence. (There r	e technique that would be app may be multiple correct response gent. You do not need to show yo	es.) Then choose whether the	
$\sum_{k=1}^{\infty} \frac{k}{4+k^2}$	$\sum_{m=0}^{\infty} \frac{8^m}{3^{m+1}}$	$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n^2}$	
Partial Sum Sequence	Partial Sum Sequence	Partial Sum Sequence	
• Divergence Test	• Divergence Test	• Divergence Test	
• Geometric Series Test	• Geometric Series Test	• Geometric Series Test	
• Alternating Series Test	• Alternating Series Test	• Alternating Series Test	
• Integral Test	• Integral Test	• Integral Test	
• p-Series Test	• p-Series Test	• p-Series Test	
• Ratio Test	• Ratio Test	• Ratio Test	
• Root Test	• Root Test	• Root Test	
• Direct/Limit Comp. Test	• Direct/Limit Comp. Test	• Direct/Limit Comp. Test	
• Converges	• Converges	• Converges	

• Diverges

• Diverges

• Diverges