

Title Page

Contents

Page 27 of 55

Go Back

Full Screen

Close

Quit

The 'KLT': Introduction

[1907-1966]

1943

K. Karhunen [1915-1992] 1945

M. Loève [1907-1979] 1948

H. Hotelling [1895-1973]

https://upload.wikimedia.org/wikipedia/commons/0/0f/Kosambi-dd.jpg

https://upload.wikimedia.org/wikipedia/commons/d/d0/Michel_Lo%C3%A8ve.jpg

https://upload.wikimedia.org/wikipedia/en/4/49/Harold_Hotelling.jpg

People call it names!

- Karhunen-Loeve Transform
- Hotelling Transform
- Principal Component Analysis
- Eigenvalue-Eigenvector Transform

Title Page

Contents

Page 28 of 55

Go Back

Full Screen

Close

Quit

Pattern Recognition Terms

- A 'pattern' is a $k \times 1$ column vector a 1-D signal can be represented as a 'pattern'. A $k_1 \times k_2$ 2-D signal (an image) can be represented as a 'pattern' by taking all pixels in raster scan order (row major order) to form a $k \times 1$ 'pattern', $k = k_1 \cdot k_2$.
- k-dimensional 'patterns' \mathbf{p}_i^* , $1 \leq i \leq n$
- Stack them up together (in any order) to form a $k \times n$ Pattern Matrix P^*

Title Page

Contents

Page 29 of 55

Go Back

Full Screen

Close

Quit

- Normalise each pattern: $\mathbf{p}_i \stackrel{\triangle}{=} \mathbf{p}_i^*$ \mathbf{m}
- $\mathbf{A} \stackrel{\triangle}{=} \frac{1}{n} \mathbf{P} \mathbf{P}^T$: The Covariance Matrix
- Stack together EigenVectors \mathbf{u}_i of \mathbf{A} in decreasing order of the corresponding EigenValues to get the $k \times k$ matrix $\mathbf{U}_{\mathbf{I}}$

Title Page

Contents

Page 30 of 55

Go Back

Full Screen

Close

Quit

Zinear Algebra Fundamentalsı

- Phys significance of Eigenvalues & Eigenvectors
- Similar Matrices
- Diagonalisation of a k × k matrix
- Gram-Schmidt Orthogonalisation
- Eigenvalues of a symmetric real matrix are real
- Eigenvecs of a symmetric matrix: orthonormality
 Phys Sig of E'values, E'vectors
- For a $k \times k$ matrix **B**, if $\mathbf{B}\mathbf{u_i} = \lambda_i \mathbf{u_i}$, λ_i are the eigenvalues, and $\mathbf{u_i}$, the corresponding eigenvectors
 - Phys sig: matrix × vector ≡ scaling it!
 - Computing eigenvalues: $\mathbf{B}\mathbf{u} \lambda\mathbf{u} = \mathbf{0} \Longrightarrow (\mathbf{B} \lambda\mathbf{I})\mathbf{u} = \mathbf{0} \Longrightarrow \text{non-trival solution: } |\mathbf{B} \lambda\mathbf{I}| = 0$
 - E'vecs: not unique! scaled versions also e'vecs.

Title Page

Contents

Page 31 of 55

Go Back

Full Screen

Close

Quit

Some Less Important Properties

- Rank(B) = # of non-zero eigenvals
- $\sum \lambda_i = \text{Trace}(\mathbf{B})$ (sum of main diag), $\prod \lambda_i = |\mathbf{B}|$
- A square matrix \mathbf{A} and \mathbf{A}^T have the same eigenvalues (but usually, different eigenvectors) $\|\mathbf{A}^T \lambda \mathbf{I}\| = \|\mathbf{A}^T \lambda \mathbf{I}^T\| = \|(\mathbf{A} \lambda \mathbf{I})^T\| = \|\mathbf{A} \lambda \mathbf{I}\|$
- The eigenvalues of a diagonal matrix are those! eigenvalues: $|\mathbf{B} \lambda \mathbf{I}| = 0$, $\Pi(b_{ii} \lambda_i) = 0$
- $\mathbf{B}_{k \times k}$ is invertible iff 0 isn't an eigenvalue. Leigenvalue 0 iff $|\mathbf{B} 0\mathbf{I}| = 0$ iff $|\mathbf{B}| = 0$ i.e., non-invertible.
- If **B** has an eigenvalue-eigenvector pair (λ, \mathbf{u}) , then \mathbf{B}^n $(n \in \mathcal{N})$ has the pair (λ^n, \mathbf{u}) . $\mathbf{B}_{k \times k} \mathbf{u}_{k \times 1} = \lambda \mathbf{u}_{k \times 1}$, $\mathbf{B} \mathbf{B} \mathbf{u} = \lambda \mathbf{B} \mathbf{u}$, $\mathbf{B}^2 \mathbf{u} = \lambda^2 \mathbf{u}$, etc.
- If **B** has an eigenvalue-eigenvector pair (λ, \mathbf{u}) , then \mathbf{B}^{-1} has the pair $(\lambda^{-1}, \mathbf{u})$.

$$\mathbf{B}_{k\times k}\mathbf{u}_{k\times 1} = \lambda\mathbf{u}_{k\times 1}, \ \mathbf{B}^{-1}\mathbf{B}\mathbf{u} = \lambda\mathbf{B}^{-1}\mathbf{u}, \ (1/\lambda)\mathbf{u} = \mathbf{B}^{-1}\mathbf{u}$$

Title Page

Contents

Page 32 of 55

Go Back

Full Screen

Close

Quit

- Eigenvectors of a matrix with distinct eigenvalues are linearly independent: Can form a basis Proof by Contradiction: Suppose not. 'Thin out' this to l indep eigenvectors $\mathbf{u}_1, \dots \mathbf{u}_l \equiv \lambda_1, \dots \lambda_l$ Suppose \mathbf{u} was 'thinned out' $\mathbf{u} = \sum_{j=1}^{l} c_j \mathbf{u_j}$ (1)
 - 1. Multiply (1) by **B**: $\mathbf{B}\mathbf{u} = \sum c_j(\mathbf{B}\mathbf{u_j})$, $\lambda \mathbf{u} = \sum c_j \lambda_j \mathbf{u_j}$
 - 2. Multiply (1) by λ : $\lambda \mathbf{u} = \sum_i c_i \lambda \mathbf{u}_i$

Subtract: $\mathbf{0} = \sum c_j (\lambda - \lambda_j) \mathbf{u}_j$. Hence, $\forall j$:

 $c_j = 0$ (no!) or $\mathbf{u}_j = \mathbf{0}$ (no, as eigenvector is a nontrival solution) or $\lambda = \lambda_j$ (no!): Contradiction!

• Eigenvalues of a symmetric real matrix are real $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$ and $\mathbf{A}^*\mathbf{u}^* = \lambda^*\mathbf{u}^*$, $\mathbf{A}^* = \mathbf{A}$: real Pre-multiply by \mathbf{u}^{*T} and \mathbf{u}^T , and subtract: $\mathbf{u}^{*T}\mathbf{A}\mathbf{u} - \mathbf{u}^T\mathbf{A}\mathbf{u}^* = \lambda \mathbf{u}^{*T}\mathbf{u} - \lambda^*\mathbf{u}^T\mathbf{u}^*$ LHS: Consider $(\mathbf{u}^{*T}\mathbf{A}\mathbf{u})^T$, scalar's transpose. $\mathbf{u}^T\mathbf{A}\mathbf{u}^*$. LHS = 0 RHS: $\mathbf{u}^{*T}\mathbf{u}$: sum-of-sq $\mathbf{u}^T\mathbf{a}$ 0 unless all 0, e'vec $\mathbf{u}^T\mathbf{a}$ 0 e.g., $[a-jb\ c-jd][a+jb\ c+jd]^T = a^2+b^2+c^2+d^2$ Hence $\mathbf{u}^T\mathbf{a}$ 1, only possible if $\mathbf{u}^T\mathbf{a}$ 2 is real. QED

Title Page

Contents

Page 33 of 55

Go Back

Full Screen

Close

Quit

- Definiteness of a symmetric matrix depends on the sign of its eigenvalues Quadratic Form: for $\mathbf{B}_{k \times k}$ the scalar $\mathbf{x}^T \mathbf{B} \mathbf{x}$ is a quadratic form = $\sum_{i=1}^k \sum_{j=1}^k b_{ij} x_i x_j \mathbf{x}_j \mathbf{x}_$
 - (*) PSD matrix has non-negative eigenvalues: \blacksquare Let λ be an eigenvalue of $\mathbf{A}_{k \times k}$ with eigenvector \mathbf{u} . $\blacksquare \mathbf{A} \mathbf{u} = \lambda \mathbf{u}$: $\blacksquare \mathbf{A} \mathbf{u} = \lambda \mathbf{u}^T \mathbf{u}$. $\blacksquare \mathbf{S}$ ince $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0 \ \forall \mathbf{x}$, $\mathbf{u}^T \mathbf{A} \mathbf{u} \geq 0$. $\blacksquare \mathbf{u}^T \mathbf{u} \geq 0 \ \blacksquare \Rightarrow \lambda \geq 0 \ \blacksquare$ (*) Non-negative eigenvalues \Longrightarrow PSD: \blacksquare Symmetric matrix $\mathbf{A} = \mathbf{U} \Lambda \mathbf{U}^T$. $\blacksquare \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{U} \Lambda \mathbf{U}^T \mathbf{x} \blacksquare$ $\blacksquare \mathbf{y}^T \Lambda \mathbf{y} \blacksquare \sum_{i=1}^k \lambda_i y_i^2$. \blacksquare If all $\lambda_i \geq 0$, $\blacksquare \mathbf{x}^T \mathbf{A} \mathbf{x}$ is PSD.

Title Page

Contents

Page 34 of 55

Go Back

Full Screen

Close

Quit

Title Page

Contents

Page 35 of 55

Go Back

Full Screen

Close

Quit

Similar Matrices

- For a $k \times k$ matrix **B** and any invertible $k \times k$ matrix **E**, **EBE**⁻¹ and **B** are Similar Matrices
- Bu = λ u, \Longrightarrow EBu = λ Eu, \Longrightarrow EB E⁻¹E u = λ Eul \Longrightarrow EBE⁻¹ Eu = λ Eul \Longrightarrow EBE⁻¹ v = λ v

Diagonalisation of a $k \times k$ matrix B_I

- B: eigenvectors $\mathbf{u_i}$, stacked to get \mathbf{U} . $\mathbf{u_i}$'s not necessarily orthonormal, assume lin indep (non-repeated e'vals) \Longrightarrow basis of k-dim space
- What if accidentally end up with repeated eigenvalues? **BVD** always works. **Applications**: use eigenvectors as an orthonormal basis. Extend with extra orthonormal vectors to span the space
- Any k-dimensional pattern p_i can be written as a linear combination of these basis vectors
- $\mathbf{p_i} = \sum_{j=1}^k c_j \mathbf{u_j}$

Title Page

Contents

Page 36 of 55

Go Back

Full Screen

Close

Quit

If U is additionally orthonormal, $U^{-1} = U^T$

Title Page

Contents

Page 37 of 55

Go Back

Full Screen

Close

Quit

Gram-Schmidt Orthogonalisation

Orthonormalisation: compute all, then normalise!

- Dot product definition: $\mathbf{v_2} \cdot \mathbf{u_1} = |\mathbf{v_2}| |\mathbf{u_1}| \cos \theta$ $\mathbf{v_2} |\cos \theta = \mathbf{v_2} \cdot \mathbf{u_1}/|\mathbf{u_1}|$
- This is the magnitude.
- Vector: magnitude × unit vector in that dirn
- unit vector in that dirn: $\mathbf{u_1}/|\mathbf{u_1}|$

• This vector:
$$|v_2 \cdot u_1| |u_1| = |\langle v_2, u_1 \rangle |u_1| |u_1|$$

- Triangle law: this + $\mathbf{u_2} = \mathbf{v_2}$
- Particular expression: $\mathbf{u_2} = \mathbf{v_2} \frac{\langle \mathbf{v_2}, \mathbf{u_1} \rangle}{\langle \mathbf{u_1}, \mathbf{u_1} \rangle} \mathbf{u_1}$
- General Expression: $\mathbf{u_k} = \mathbf{v_k} \sum_{j=1}^{k-1} \frac{\langle \mathbf{v_k}, \mathbf{u_j} \rangle}{\langle \mathbf{u_j}, \mathbf{u_j} \rangle} \mathbf{u_j}$

Title Page

Contents

Page 38 of 55

Go Back

Full Screen

Close

Quit

- Gram-Schmidt > 2-D: graphical proof clumsy!
- Given $\mathbf{v}_1, \dots \mathbf{v}_k$ linearly independent vectors (basis), to create an orthogonal set $\mathbf{u}_1, \dots \mathbf{u}_k$
- Step 1: Start with $\mathbf{u}_1 = \mathbf{v}_1$
- Step 2: $\mathbb{I}(\bot)$ \mathbf{u}_1 , \mathbf{u}_2 span same space as \mathbf{v}_1 , \mathbf{v}_2 \mathbb{I} Take $\mathbf{u}_2 = a_1\mathbf{u}_1 + \mathbf{v}_2$ (lin combo, $\mathbf{u}_1 = \mathbf{v}_1$) \mathbb{I} To find a_1 , take a dot product with \mathbf{u}_1 : (ortho) \mathbb{I} $a_1 = -\frac{\langle \mathbf{v}_2, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle}$: $\mathbf{u}_2 = \mathbf{v}_2 \frac{\langle \mathbf{v}_2, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1$
- Step 3: (\bot) $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ span same space as $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ Take $\mathbf{u}_3 = a_2\mathbf{u}_2 + a_1\mathbf{u}_1 + \mathbf{v}_3$ (lin combo, $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$) a_1 : Take a dot product with \mathbf{u}_1 : $a_1 = -\frac{\langle \mathbf{v}_3, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle}$ a_2 : Take a dot product with \mathbf{u}_2 : $a_2 = -\frac{\langle \mathbf{v}_3, \mathbf{u}_2 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle}$

$$\mathbf{u_3} = \mathbf{v_3} - \frac{\langle \mathbf{v_3}, \mathbf{u_1} \rangle}{\langle \mathbf{u_1}, \mathbf{u_1} \rangle} \mathbf{u_1} - \frac{\langle \mathbf{v_3}, \mathbf{u_2} \rangle}{\langle \mathbf{u_2}, \mathbf{u_2} \rangle} \mathbf{u_2}$$

• General Expression: $\mathbf{u_k} = \mathbf{v_k} - \sum_{j=1}^{k-1} \frac{\langle \mathbf{v_k}, \mathbf{u_j} \rangle}{\langle \mathbf{u_j}, \mathbf{u_j} \rangle} \mathbf{u_j}$

Title Page

Contents

Page 39 of 55

Go Back

Full Screen

Close

Quit

• Eigenvectors of a symmetric matrix are orthonormal (Assumes no repeated eigenvalues) Actually follows from the diagonalisation result: $\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{-1} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{T}$ for symmetric matrices Explicit proof: consider $\mathbf{u}_{i}^{T}\mathbf{u}_{j} = (1/\lambda_{j})\mathbf{u}_{i}^{T}\lambda_{j}\mathbf{u}_{j} = (1/\lambda_{j})\mathbf{u}_{i}^{T}\lambda_{j}\mathbf{u}_{j} = (1/\lambda_{j})(\mathbf{A}\mathbf{u}_{i})^{T}\mathbf{u}_{j} = (1/\lambda_{$