课程代码 1272005 课程名称 高等数学 BII 考试时间 90 分钟

注意: 本试卷共三大题, 15 小题。请一律将答案写在指定的答题卡上, 在本 试卷上作答视为无效。考试结束后将答题卡交回, 本试卷自行留存。

一、选择题(每小题 5 分, 共 30 分)

1、直线
$$l: \begin{cases} 2x-y=0 \\ 3y-2z=0 \end{cases}$$
与平面 $\Pi: x+y-z=1$ 的位置关系为().

- (A) 垂直;
- (B) 平行; (C) 直线在平面上;

2、二元函数
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 在点 $(0,0)$ 处 ().

- (A) 偏导数存在; (B) 极限存在; (C) 连续; (D) 可全微.

- 3、设 $z = \arctan(xy)$,则全微分 $dz|_{(1,2)} = ($
- (A) 3; (B) $\frac{3}{5}$; (C) $\frac{1}{5}dx + \frac{2}{5}dy$; (D) $\frac{2}{5}dx + \frac{1}{5}dy$.

4、设 $u = f(xy, \frac{yz}{x})$, 其中函数f 具有二阶连续偏导数,则 $\frac{\partial^2 u}{\partial y \partial z} = ($

(A) $yf_{12}'' + \frac{1}{r}f_{22}''$;

- (B) $\frac{1}{r}f_2' + \frac{yz}{r^2}f_{22}''$;
- (C) $yf_{12}'' + \frac{yz}{r^2}f_{22}''$;
- (D) $yf_{12}'' + \frac{1}{r}f_2' + \frac{yz}{r^2}f_{22}''$.
- 5、设函数 $f(x,y) = x^3 + y^3 3xy$, 则点(1,1) (
 - (A) 不是 f(x,y) 的极值点; (B) 是 f(x,y) 的极大值点;
- - (C) 是 f(x,y) 的极小值点;
- (D) 无法判断是否为 f(x,y) 的极值点.
- 6、交换二次积分 $\int_0^1 dy \int_0^{\sqrt{1-y}} f(x,y) dx$ 的积分顺序,结果为 (
 - (A) $\int_0^1 dx \int_0^{\sqrt{1-x}} f(x, y) dy$;
 - (B) $\int_0^1 dx \int_0^{\sqrt{1+x}} f(x,y) dy;$
 - (C) $\int_0^1 dx \int_0^{1+x^2} f(x,y) dy$; (D) $\int_0^1 dx \int_0^{1-x^2} f(x,y) dy$.

二、填空题(每小题5分,共20分)

7、以曲线
$$\begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = 0 \end{cases}$$
 为准线,母线平行于 z 轴的柱面方程为_______.

- 8、函数 $u = x^2 + y^2 + z^2$ 在点 A(1,-1,1) 处的方向导数最大值是______.
- 9、设D是由直线x=2,y=x以及曲线xy=1所围成的平面闭区域,则二重积分 $\iint_D \frac{x^2}{y^2} d\sigma = \underline{\qquad}$
- 10、设空间区域 $\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1, z \ge 0\}$,则三重积分 $\iint_{\Omega} (1 + xyz) dv = _____.$

三. 解答题(每小题10分,共50分)

- 11、求曲面 $x^2 + 2y^2 + 3z^2 = 6$ 的切平面, 使得该切平面与曲线 $\begin{cases} x = t \\ y = t^2 \text{ 在 } t = 1$ 处的切线垂直. $z = t^3$
- 12、设 z = z(x,y) 是由方程 $e^{2yz} + x + y^2 + z = \frac{7}{4}$ 确定的函数,计算 $\frac{\partial z}{\partial x}\Big|_{(\frac{1}{2},\frac{1}{2})}$ 和 $\frac{\partial z}{\partial y}\Big|_{(\frac{1}{2},\frac{1}{2})}$.
- 13、求函数 $f(x,y) = x^2 + y^2 6x + 8y$ 在闭区域 $D = \{(x,y) | x^2 + y^2 \le 100\}$ 上的最大值.
- 14、计算二重积分 $\iint_D (x^2 + y^2) dx dy$,其中 D 是圆 $x^2 + (y-1)^2 = 1$ 与y 轴围成的右半部分 区域.
- 15、由抛物面 $z=1-x^2-y^2$ 与 xOy 面围成立体 Ω ,已知其内任意点 (x,y,z) 处的密度为 $\rho(x,y,z)=x^2+y^2+z$,求其质量 m .