# getUsgs

# Retrieve Real Time Gage Data from the United States Geological Survey

#### Overview

The getUsgs program is used to retrieve real time stream flow and other gaged data from the National Water Information Service (NWIS) of the United States Geological Survey (USGS) and output the data in a variety of formats. Data may be output in any or all of the following manners:

- output as USGS RDB format text (as retrieved from NWIS)
- output as Standard Hydrometeorological Exchange Format (SHEF) messages
- stored to a HEC-DSS file
- stored to a CWMS Oracle database

The data to be retrieved is controlled by a list of locations to retrieve and a specification of the number of hours prior to the current time to retrieve.

#### **Time Zones**

Gage data retrieved from the NWIS system is time stamped in one of the following time zones:

- EST Eastern Standard Time (UTC-5 hours)
- CST Central Standard Time (UTC-6 hours)
- MST Mountain Standard Time (UTC-7 hours)
- PST Pacific Standard Time (UTC-8 hours)
- AKST Alaska Standard Time (UTC-9 hours)
- HST Hawaii Standard Time (UTC-10 hours)

Unless specified otherwise, data output as SHEF messages or stored to a HEC-DSS file will be in the time zone of the retrieved data. The program allows outputting SHEF messages and storing to a HEC-DSS in any of the listed time zones, as well as in Coordinated Universal Time, which may be specified as UTC, GMT, or Z.

# **Input Files**

The program requires three input files to specify:

- locations
- parameters
- parameter aliases

Each of these files is required to be in Comma-Separated Variable (CSV) format with a header line specifying the order of fields within the file. This format provides for easy editing using a spreadsheet

program such as Microsoft Excel. Fields in CSV format files are separated by the comma (,) character, and need not be quoted unless the field contains embedded comma characters. The first field in each file is a USGS Identifier, which must be enclosed in square brackets ([]) to prevent a spreadsheet program from treating the identifiers as integer numbers and removing leading zeros. Each file has a default filename in the directory from which the program is executed, which may be overridden by a command line option.

#### **Locations Input File**

The locations input file contains information necessary to generate output locations from the USGS location identifiers. Field names in the header line that are used by the program are:

- **[USGS\_LOC]** USGS location identifier. This field is always required in the file, must be the first field, and must be enclosed in square brackets. The field may not be empty.
- **SHEF\_LOC** SHEF location identifier. This field must be included in the file if data is to be output as SHEF messages. The field may not be empty.
- **DSS\_A-Part** HEC-DSS "A" pathname part. This field is required in the file if data is to be stored to a HEC-DSS file. The field may be empty.
- **DSS\_B-Part** HEC-DSS "B" pathname part. This field is required in the file if data is to be stored to a HEC-DSS file. The field may not be empty.
- **DSS\_F-Part** HEC-DSS "F" pathname part. This field is required in the file if data is to be stored to a HEC-DSS file. The field may be empty.
- **CWMS\_LOC** CWMS location identifier, including the base location and any sub-location. This field is required in the file if data is to be stored to a CWMS Oracle database. The field may not be empty.
- **CWMS\_VER** CWMS version identifier. This field is required in the file if data is to be stored to a CWMS Oracle database. The field may be empty.
- PARAMETERS Location parameters. This field is always required. It contains a commaseparated list of parameters to be processed for the location. The parameters may be specified as USGS parameter identifiers or as parameter aliases specified in the parameter aliases file. This field may be empty.

The default name of the locations input file is Locations.csv in the directory from which the program is executed. A sample locations input file is shown in <u>Figure 1</u>.

#### **Parameters Input File**

The parameters input file contains information necessary to generate output parameters from the USGS parameter identifiers. Field names in the header line that are used by the program are:

• **[USGS\_PARAMETER]** – USGS parameter identifier. This field is always required in the file, must be the first field, and must be enclosed in square brackets. This field specifies the USGS parameter identifier the field must not be empty.

- **SHEF\_PARAMETER** SHEF parameter identifier. This field must be included in the file if data is to be output as SHEF messages. The field may not be empty.
- **SHEF\_FACTOR** Parameter conversion factor from USGS to SHEF. This field must be included in the file if data is to be output as SHEF messages. The field may not be empty.
- **SHEF\_UNIT** Unit system for SHEF message. Must be SI or ENGLISH. This field must be included in the file if data is to be output as SHEF messages. The field may not be empty.
- **DSS\_PARAMETER** HEC-DSS "C" pathname part. This field is required in the file if data is to be stored to a HEC-DSS file. The field may be empty.
- **DSS\_FACTOR** Parameter conversion factor from USGS to HEC-DSS. This field must be included in the file if data is to be stored to a HEC-DSS file. The field may not be empty.
- **DSS\_UNIT** Data stored to a HEC-DSS will be marked as having this unit. This field must be included in the file if data is to be stored to a HEC-DSS file. The field may not be empty.
- **DSS\_TYPE** Data stored to a HEC-DSS will be marked as having this type. Must be one of INST-VAL, INST-CUM, PER-AVER, PER-CUM. This field must be included in the file if data is to be stored to a HEC-DSS file. The field may not be empty.
- **CWMS\_PARAMETER** CWMS parameter identifier, including base parameter and any subparameter. This field is required in the file if data is to be stored to a CWMS Oracle database. The field may be empty.
- **CWMS\_FACTOR** Parameter conversion factor from USGS to CWMS. This field must be included in the file if data is to be stored to a CWMS Oracle database. The field may not be empty.
- CWMS\_UNIT Data stored to a CWMS Oracle database will be marked as having this unit. This
  field must be included in the file if data is to be stored to a CWMS Oracle database. The field
  may not be empty.
- **CWMS\_TYPE** CWMS parameter type identifier. This field must be included in the file if data is to be stored to a CWMS Oracle database. The field may not be empty.

The default name of the parameters input file is Parameters.csv in the directory from which the program is executed. A sample parameters input file is shown in Figure 2.

## **Parameter Aliases Input File**

The parameter aliases input file contains text aliases for USGS parameter identifiers. Field names in the header line that are used by the program are:

- **[USGS\_PARAMETER]** USGS parameter identifier. This field is always required in the file, must be the first field, and must be enclosed in square brackets. This field specifies the USGS parameter identifier the field must not be empty.
- ALIAS Parameter alias to be used in PARAMETERS field of the location input file. This field
  must be included in the file and may not be empty.

The default name of the parameter aliases input file is Parameter\_Aliases.csv in the directory from which the program is executed. A sample parameter aliases input file is shown in Figure 3.

#### Usage

The getUsgs program is a Jython script named getUsgs.py which can be executed in any environment in which hec.jar and heclib.jar are available on the classpath. In order to store data to a CWMS Oracle database, dbiClient.jar and cwmsdb.jar are also required.

The program includes a "shebang" for automatic interpreter loading on UNIX-like environments, allowing execution using the "getUsgs.py" command or, if renamed, "getUsgs". On Windows the program can be executed using the command "jython getUsgs.py", which also works on UNIX-like environments. On Windows client installations of HEC-DSSVue, the program can also be executed using the HEC-DSSVue.cmd file as "HEC-DSSVue getUsgs.py". In the discussion below, "getUsgs" is used for simplicity.

The program writes to the standard output device (stdout), as well as the standard error device (stderr). Any output of USGS RDB format text or SHEF messages is written to stdout. All other output, including program status and error messages are written to stderr. In Windows and on most shells in UNIX-like environments, these two output streams can be separated and redirected to different files by using the following redirection command at the end of the command line:

- > filename or 1> filename redirect stdout to file, overwriting existing content
- >> filename or 1>> filename redirect stdout to file, appending to existing content
- 2> filename redirect stderr to file, overwriting existing content
- 2>> filename redirect stderr to file, appending to existing content
- 2> &1 redirect stderr to stdout, used to combine stdout and stderr to a single output stream, can be combined with stdout redirection to redirect both streams to a file (e.g., > filename 2> &1)

The C-Shell (csh) and its work-alikes (tcsh, etc...) on UNIX-like environments provide the following output redirection commands, which do not support separation of stdout and stderr:

- filename redirect stdout to file, overwriting existing content
- >& filename redirect stdout to file, appending to existing content
- >> filename redirect stdout and stderr to file, overwriting existing content
- >>& filename redirect stdout and stderr to file, appending to existing content

Since the CWMS execution environment uses the tcsh shell be default, it is necessary to explicitly execute the program from a different shell in order to capture stdout and stderr to different files in the CWMS environment.

## **Command Line**

Program execution via the command line has the form "getUsgs program\_options redirection\_options", where redirection\_options are discussed above and program\_options is comprised of the follwing

- -1 *locations\_filename* (or --locations *locations\_filename*) specifies locations input file. Defaults to Locations.csv in the directory the program is executed from.
- -p parameters\_filename (or -- parameters parameters\_filename) -- specifies
  parameters input file. Defaults to Parameters.csv in the directory the program is executed
  from.
- -a parameter\_aliases\_filename (or -- aliases parameter\_aliases\_filename) -- specifies parameter aliases input file. Defaults to Locations.csv in the directory the program is executed from.
- -u (or -- usgs) specifies outputting data as USGS RDB format text.
- -s (or -- shef) specifies storing data to a HEC\_DSS file.
- -- tzshef time\_zone -- specifies time zone to use for SHEF messages. See Time Zone section above for list of valid time zones. If not specified, the SHEF messages will be in the time zone specified in the USGS text.
- - d dss\_filename (or -- dss dss\_filename) specifies storing data to a HEC-DSS file. dss filename specifies the HEC-DSS file to use.
- --tzdss time\_zone-specifies time zone to use for data stored to a HEC-DSS file. See Time
  Zone section above for list of valid time zones. If not specified, the data will be stored to a HECDSS file will be in the time zone specified in the USGS text.
- - c (or - cwms) specifies storing data to a CWMS Oracle database
- -- rul e store\_rul e -- specifies CWMS store rule to use for data stored to the CWMS Oracle database. If not specified, DELETE INSERT will be used. Valid values for store\_rul e are:
  - o REPLACE ALL
  - o DO NOT REPLACE
  - O REPLACE WITH MISSING VALUES ONLY
  - O REPLACE WITH NON MISSING
  - o DELETE INSERT
- - h *hours\_to\_retri eve* (or - hours *hours\_to\_retrei eve*) specifies the number of hours of data to retrieve from the USGS. Defaults to 24 hours
- - o *output\_level* (or - output *output\_level*) specifies the level of output generated by the program. Defaults to NORMAL. Valid values for *output\_level* are:
  - o NONE
  - o NORMAL
  - o VERBOSE

| Home        | Insert   | Page Layout Formulas Data Review | w View Developer Add-Ins  | ApproveIt  | Acrobat              |                      | <b>◎</b> −                                                             |  |  |  |  |  |
|-------------|----------|----------------------------------|---------------------------|------------|----------------------|----------------------|------------------------------------------------------------------------|--|--|--|--|--|
| L41         | ▼ ()     | f <sub>x</sub>                   |                           |            |                      |                      |                                                                        |  |  |  |  |  |
| Α           | В        | С                                | D                         | Е          | F                    | G                    | Н                                                                      |  |  |  |  |  |
| [USGS_LOC]  | SHEF_LOC | DSS_A-PART                       | DSS_B-PART                | DSS_F-PART | CWMS_LOC             | CWMS_VER             | PARAMETERS                                                             |  |  |  |  |  |
| [02178400]  | G178400  | TALLULAH RIVER                   | CLAYTON                   | USGS       | Clayton              | Usgs-raw             | Flow, Stage, Precip                                                    |  |  |  |  |  |
| [02181580]  | G181580  | TALLULAH RIVER AB POWERHOUSE     | TALLULAH FALLS            | USGS       | Tallulah Falls       | Usgs-raw             | Flow,Precip                                                            |  |  |  |  |  |
| [02186699]  | G186699  | EIGHTEENMILE CREEK               | PENDLETON                 | USGS       | Pendleton<br>Liberty | Usgs-raw<br>Usgs-raw | Flow<br>Flow,Precip                                                    |  |  |  |  |  |
| [02186000]  | G186000  | TWELVEMILE CREEK                 | LIBERTY                   | USGS       |                      |                      |                                                                        |  |  |  |  |  |
| [02187010]  | G187010  | HARTWELL LAKE                    | ANDERSON                  | USGS       | Anderson             | Usgs-raw             | Elevation, Air Temp, Precip, Wind Speed, Wind Dir, Sol Rad, Rel Humidi |  |  |  |  |  |
| [02187910]  | G187910  | ROCKY RIVER                      | STARR                     | USGS       | Starr                | Usgs-raw             | Flow                                                                   |  |  |  |  |  |
| [02188100]  | G188100  | RUSSELL LAKE                     | CALHOUN FALLS             | USGS       | Calhoun Falls        | Usgs-raw             | Elevation, Air Temp, Precip, Rel Humidity                              |  |  |  |  |  |
| [02188600]  | G188600  | BEAVERDAM CREEK                  | ELBERTON                  | USGS       | Elberton             | Usgs-raw             | Stage,Flow                                                             |  |  |  |  |  |
| [02191300]  | G191300  | BROAD RIVER                      | CARLTON                   | USGS       | Carlton              | Usgs-raw             | Flow,Precip                                                            |  |  |  |  |  |
| [02192000]  | G192000  | BROAD RIVER                      | BELL                      | USGS       | Bell                 | Usgs-raw             | Flow                                                                   |  |  |  |  |  |
| [02192500]  | G192500  | LITTLE RIVER                     | MT CARMEL                 | USGS       | Mt Carmel            | Usgs-raw             | Flow,Precip                                                            |  |  |  |  |  |
| [02192830]  | G192830  | BLUE HILL CREEK                  | ABBEVILLE                 | USGS       | Abbeville            | Usgs-raw             | Precip                                                                 |  |  |  |  |  |
| [02193500]  | G193500  | LITTLE RIVER                     | WASHINGTON                | USGS       | Washington           | Usgs-raw             | Flow, Stage                                                            |  |  |  |  |  |
| [02193900]  | G193900  | THURMOND LAKE                    | PLUM BRANCH               | USGS       | Plum Branch          | Usgs-raw             | Elevation, Rel Humidity, Air Temp, Precip, Wind Dir, Wind Speed,       |  |  |  |  |  |
| [02195320]  | G195320  | KIOKEE CREEK                     | GA 104                    | USGS       | Ga 104               | Usgs-raw             | Flow                                                                   |  |  |  |  |  |
| [02195520]  | G195520  | SAVANNAH RIVER                   | SAVANNAH RIVER NEAR EVANS | USGS       | Savannah River N     | Usgs-raw             | Stage                                                                  |  |  |  |  |  |
| [02196000]  | G196000  | STEVENS CREEK                    | MODOC                     | USGS       | Modoc                | Usgs-raw             | Stage,Flow                                                             |  |  |  |  |  |
| [02196483]  | G196483  | SAVANNAH RIVER                   | SAVANNAH RIVER            | USGS       | Savannah River       | Usgs-raw             | Stage                                                                  |  |  |  |  |  |
| [02196690]  | G196690  | HORSE CREEK                      | CLEARWATER                | USGS       | Clearwater           | Usgs-raw             | Stage,Flow,Precip                                                      |  |  |  |  |  |
| [02196999]  | G196999  | SAVANNAH RIVER                   | NEW SAVANNAH L&D          | USGS       | New Savannah L&D     | Usgs-raw             | Stage, Precip                                                          |  |  |  |  |  |
| [02197000]  | G197000  | SAVANNAH RIVER                   | AUGUSTA                   | USGS       | Augusta              | Usgs-raw             | Flow, Stage                                                            |  |  |  |  |  |
| [021973269] | G197326  | SAVANNAH RIVER                   | WAYNESBORO                | USGS       | Waynesboro           | Usgs-raw             | Stage                                                                  |  |  |  |  |  |
| [02197500]  | G197500  | SAVANNAH RIVER                   | MILLHAVEN                 | USGS       | Millhaven            | Usgs-raw             | Stage                                                                  |  |  |  |  |  |
| [021973269] | G197326  | SAVANNAH RIVER                   | WAYNESBORO                | USGS       | Waynesboro           | Usgs-raw             | Flow                                                                   |  |  |  |  |  |
| [02197500]  | G197500  | SAVANNAH RIVER                   | MILLHAVEN                 | USGS       | Millhaven            | Usgs-raw             | Flow                                                                   |  |  |  |  |  |
| [021973269] | G197326  | SAVANNAH RIVER                   | WAYNESBORO                | USGS       | Waynesboro           | Usgs-raw             | Precip                                                                 |  |  |  |  |  |
| [02197500]  | G197500  | SAVANNAH RIVER                   | MILLHAVEN                 | USGS       | Millhaven            | Usgs-raw             | Precip                                                                 |  |  |  |  |  |
| [02197598]  | G197598  | BRUSHY CREEK                     | WRENS                     | USGS       | Wrens                | Usgs-raw             | Stage,Flow,Precip                                                      |  |  |  |  |  |
| [02198000]  | G198000  | BRIER CREEK                      | MILLHAVEN                 | USGS       | Millhaven            | Usgs-raw             | Stage, Precip                                                          |  |  |  |  |  |
| [02198100]  | G198100  | BEAVERDAM CREEK                  | SARDIS                    | USGS       | Sardis               | Usgs-raw             | Flow,Precip                                                            |  |  |  |  |  |
| [02198500]  | G198500  | SAVANNAH RIVER                   | CLYO                      | USGS       | Clyo                 | Usgs-raw             | Flow, Stage                                                            |  |  |  |  |  |
| [02198690]  | G198690  | EBENEZER CREEK                   | SPRINGFIELD               | USGS       | Springfield          | Usgs-raw             | Flow,Stage                                                             |  |  |  |  |  |
| [02198760]  | G198760  | SAVANNAH RIVER                   | HARDEEVILLE               | USGS       | Hardeeville          | Usgs-raw             | Stage                                                                  |  |  |  |  |  |
| [02198840]  | G198840  | SAVANNAH RIVER                   | PORT WENTWORTH            | USGS       | Port Wentworth       | Usgs-raw             | Stage, Precip                                                          |  |  |  |  |  |
| [02198977]  | G198977  | SAVANNAH RIVER                   | BROAD STREET              | USGS       | Broad Street         | Usgs-raw             | Stage                                                                  |  |  |  |  |  |
| [02198980]  | G198980  | SAVANNAH RIVER                   | FORT PULASKI              | USGS       | Fort Pulaski         | Usgs-raw             | Stage, Precip                                                          |  |  |  |  |  |
| [02217475]  | G217475  | MIDDLE OCONEE RIVER              | ARCADE                    | USGS       | Arcade               | Usgs-raw             | Flow,Stage,Precip                                                      |  |  |  |  |  |
| [02217500]  | G217500  | MIDDLE OCONEE RIVER              | ATHENS                    | USGS       | Athens               | Usgs-raw             | Flow,Stage                                                             |  |  |  |  |  |
| [02218300]  | G218300  | OCONEE RIVER                     | PENFIELD                  | USGS       | Penfield             | Usgs-raw             | Flow.Precip                                                            |  |  |  |  |  |
|             |          |                                  |                           |            |                      | 9- / 400             | <del>-</del>                                                           |  |  |  |  |  |

Figure 1. Sample Locations Input File

| 8   | )   · (· · · · · · · · · · · · · · · · · | ₹ Parameters.csv - Microsoft Excel |             |            |                   |                                     |          |          |                |             |           |          | <b>-</b> 7 |
|-----|------------------------------------------|------------------------------------|-------------|------------|-------------------|-------------------------------------|----------|----------|----------------|-------------|-----------|----------|------------|
|     | Home Insert                              | Page Layout Formu                  | ulas Data I | Review Vie | w Developer Ad    | Developer Add-Ins Approveït Acrobat |          |          |                |             |           |          | <b>a</b>   |
|     | B20 <b>▼</b> 🕙                           | $f_{x}$                            |             |            |                   |                                     |          |          |                |             |           |          |            |
| 4   | Α                                        | В                                  | С           | D          | Е                 | F                                   | G        | Н        |                | J           | K         | L        |            |
| 1   | [USGS_PARAMETER]                         | SHEF_PARAMETER                     | SHEF_FACTOR | SHEF_UNIT  | DSS_PARAMETER     | DSS_FACTOR                          | DSS_UNIT | DSS_TYPE | CWMS_PARAMETER | CWMS_FACTOR | CWMS_UNIT | CWMS_TYF | ÞΕ         |
| 2   | [00010]                                  | TW                                 | 1           | SI         | TEMP-WATER        | 1                                   | DEG-C    | INST-VAL | Temp-Water     | 1           | C         | Inst     |            |
| 3   | [00021]                                  | TA                                 | 1           | ENGLISH    | TEMP-AIR          | 1                                   | DEG-F    | INST-VAL | Temp-Air       | 1           | F         | Inst     |            |
| 4   | [00035]                                  | US                                 | 1           | ENGLISH    | SPEED-WIND        | 1                                   | MPH      | INST-VAL | Speed-Wind     | 1           | mph       | Inst     |            |
| 5   | [00036]                                  | UD                                 | 1           | ENGLISH    | DIR-WIND          | 1                                   | DEG      | INST-VAL | Dir-Wind       | 1           | deg       | Inst     |            |
| 6   | [00045]                                  | PPC                                | 1           | ENGLISH    | PRECIP-INC        | 1                                   | IN       | PER-CUM  | Precip         | 1           | in        | Total    |            |
| 7   | [00052]                                  | XR                                 | 1           | ENGLISH    | HUMIDITY-RELATIVE | 1                                   | PERCENT  | INST-VAL | %-Humidity     | 1           | %         | Inst     |            |
| 8   | [00060]                                  | QR                                 | 0.001       | ENGLISH    | FLOW              | 1                                   | CFS      | PER-AVER |                | 1           | cfs       | Ave      |            |
| 9   | [00061]                                  | QR                                 | 0.001       | ENGLISH    | FLOW              | 1                                   | CFS      | INST-VAL | Flow           | 1           | cfs       | Inst     |            |
| 10  | [00065]                                  | HG                                 | 1           | ENGLISH    | STAGE             | 1                                   | FEET     | INST-VAL | Stage          | 1           | ft        | Inst     |            |
| 11  | [00095]                                  | WC                                 | 1           | ENGLISH    | CONDUCTANCE       | 1                                   | US/CM    | INST-VAL | Cond           | 1           | umho/cm   | Inst     |            |
| 12  | [00096]                                  | WS                                 | 1           | ENGLISH    | SALINITY          | 0.001                               | MG/L     | INST-VAL | Conc-Salinity  | 0.001       | mg/l      | Inst     |            |
| 13  | [00062]                                  | HP                                 | 1           | ENGLISH    | ELEV              | 1                                   | FEET     | INST-VAL | Elev           | 1           | ft        | Inst     |            |
| 14  | [72036]                                  | LS                                 | 1           | ENGLISH    | STOR              | 1000                                | ACFT     | INST-VAL | Stor           | 1000        | ac-ft     | Inst     |            |
| 15  | [62608]                                  | RW                                 | 1           | ENGLISH    | RADIATION-SOLAR   | 1                                   | W/M2     | INST-VAL | Irrad-Solar    | 1           | W/m2      | Inst     |            |
| 16  |                                          |                                    |             |            |                   |                                     |          |          |                |             |           |          |            |
| 4   | → → Parameters ✓                         |                                    |             |            |                   |                                     |          | 4        | :<br>          |             |           |          | <b>I</b>   |
| Rea | dy 🛅                                     |                                    |             |            |                   |                                     |          |          |                |             | 100% (=)  | U        | <b>+</b>   |

Figure 2. Sample Parameters Input File



Figure 3. Sample Parameter Alias Input File