P2 de Álgebra Linear I – 2013.1

17 de maio de 2013.

Nome:	_ Matrícula:
Assinatura:	_ Turma:
Preencha CORRETA e COMPLETAMENTE todos cula, assinatura e turma).	os campos (nome, matrí-
Provas sem nome não serão corrigidas e terão nota campos matrícula, assinatura e turma não preench forma errada serão penalizadas com a perda de 1 po	idos ou preenchidos de
torma errada serão penanzadas com a perda de 1 po	шо рог сашро.

Duração: 1 hora 50 minutos

Ques.	1.a	1.b	1.c	1.d	1.e	2.a	2. b	2.c	3.a	3.b	3.c	4	soma
Valor	1.0	1.0	0.5	1.0	1.0	1.0	1.0	0.5	0.5	1.0	1.0	1.0	10.5
Nota													

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) <u>não serão corrigidos!!</u>.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento. cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado. fonte: mini-Aurélio

1) Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por:

$$T(1,1,0) = (2,2,0),$$

 $T(0,1,1) = (1,0,0),$
 $T(0,1,0) = (1,1,0).$

- (a) Determine a matriz [T] da transformação linear T na base canônica.
- (b) Determine uma base ortogonal da imagem de T. Lembre que imagem $(T) = \{ \vec{w} \in \mathbb{R}^3 \text{ tal que existe } \vec{v} \in \mathbb{R}^3 \text{ tal que } T(\vec{v}) = \vec{w} \}.$
- (c) Encontre todos os vetores \vec{u} de \mathbb{R}^3 tais que

$$T(\vec{u}) = (0, 0, 0).$$

- (d) Decida se a transformação linear T é injetora. Decida se a transformação linear T é sobrejetora. Justifique cuidadosamente.
- (e) Considere o triângulo \triangle de vértices

$$(1,-1,0), (1,3,4), (0,4,0).$$

Determine se a imagem $T(\Delta)$ de Δ pela transformação T é um triângulo ou um segmento. Se for um triângulo calcule sua área e se for um segmento calcule seu comprimento.

2) Considere as transformações lineares $S,\,M:\mathbb{R}^3\to\mathbb{R}^3$ definidas por:

$$\begin{array}{lll} S(1,1,0) &= (1,0,0), \\ S(0,1,1) &= (0,1,0), \\ S(0,1,0) &= (0,0,1), \end{array} \quad \text{e} \quad M(x,y,z) = (x,y-x,0)$$

- (a) Determine a matriz $[M \circ S]$ da composição $M \circ S$ na base canônica.
- (b) Determine se S e M possuem inversas. Em caso afirmativo determine as matrizes das suas inversas $[S^{-1}]$ e $[M^{-1}]$ na base canônica.
- (c) Determine todos os vetores não nulos tais que $S(\vec{u}) = S^{-1}(\vec{u})$

3) Considere a matriz

$$[T] = \left(\begin{array}{ccc} 0 & 1 & 1 \\ -1 & 2 & 1 \\ -1 & 1 & a \end{array}\right) .$$

cujo o polinômio carcterístico é

$$p(\lambda) = -\lambda^3 + 4\lambda^2 - 5\lambda + 2.$$

- (a) Determine o valor de a.
- (b) Determine os autovalores da matriz [T] e os autovetores associados.
- (c) Determine, se possível, uma base β de \mathbb{R}^3 formada por autovetores de T. Determine a primeira coordenada do vetor $\mathbf{i} = (1,0,0)$ (escrito na base canônica) na base β .

4) Considere a matriz

$$[T] = \left(\begin{array}{ccc} 0 & 0 & 1 \\ -1 & 2 & b \\ -1 & 2 & a \end{array}\right) .$$

Determine, se possível, valores para a e b tais que a matriz T represente (na base canônica) a projeção no plano de equação cartesiana y-z=0. Determine a direção da projeção.