第二单元学习笔记

yinxuhao [xuhao_yin@163.com]

January 11, 2023

Contents

1	引音	2
2	信息存储	2
	2.1 十六进制表示法	2
	2.2 字数据大小	3
	2.3 寻址和字节顺序	3
	2.4 布尔代数	5
	2.5 移位运算	5
3	整数表示	6
	3.1 无符号数的编码	6
	3.2 补码编码	7
	3.3 有符号和无符号数之间的转换	8
	3.4 扩展一个数字的位表示	9
		10
		11
4		11
	4.1 无符号加法	11
	4.2 补码加法	12
		14
	4.3.1 补码非的两种快速求法	15
		15
	4.5 补码乘法	15
		16
		16
5		17
	5.1 二进制小数	17
		18
		20

信息的表示和处理

1 引言

孤立地讲,**单个的位不是非常有用,将位组合在一起,再加上某种解释** (interpretation),即赋予不同的可能位模式以含意。我们就能表示任何有限 集合的元素。

- 三种重要的数字表示:
- 1. 无符号unsigned编码给予传统的二进制表示法
- 2. 补码two's-complement编码是表示有符号整数的最常见的方式。
- 3. **浮点数**floating-point编码是表示实数的科学计数法的以 2 为基数的版本。

数据**溢出**overflow是产生 bug 的一大原因。负数下溢产生极大的正数;正数上溢产生极小的负数。

浮点运算有完全不同的数学属性。

1. 由于表示的精度有限, 浮点运算是不可结合的。例如

$$(3.14 + 1e_{20}) - 1e_{20} = 0.0$$

but

$$(3.14 + 1e_{20} - 1e_{20}) = 3.14$$

2. 该属性不同的原因,是处理数字表示有限性的方式不同——整数虽只能编码一个相对较小的数值范围,然该表示法是精确的; 浮点数虽可以编码相对较大的数值范围,但这种表示只是近似的。 书中建议的本章学习方式:

深入学习数学语言

学习编写公式和方程式

以及重要属性的推导

2 信息存储

大多数计算机**使用 8 位的块或者字节作为最小的可寻址内存单位**,而不是内存中单独的比特。

机器级程序将内存视为一个非常大的字节数组,称为**虚拟内存**,所有可能的 地址的集合称为**虚拟地址空间**virtual address space.

每个程序对象可以简单地视为一个字节块,而程序本身就是一个字节序列。

2.1 十六进制表示法

Hex digit	0	1	2	3	4	5	6	7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0000	0001	0010	0011	0100	0101	0110	0111
Hex digit	8	9	Α	В	C	D	E	F
Hex digit Decimal value	8 8	9 9	A 10	В 11	C 12	D 13	E 14	F 15

Figure 1: 十六进制表示法。每个十六进制数字都对 16 个值中的一个进行了编码

十六进制转二进制:将十六进制的每一位转换为二进制格式,然后拼接。例如:

十六进制 1 7 3 A 4 C 二进制 0001 0111 0011 1010 0100 1100

所以 $binary_{0x173a4c_{16}} = 000101110011101001001100_2$ 。

二进制转十六进制:将二进制从右到左做4个一组的划分,如最左侧不足4位则以0补之。然后将每个4位转换为对应的十六进制数字拼接即可。例如:

二进制 11 1100 1010 1101 1011 0011 十六进制 3 C A D B 3

所以, $hex_{111100101011011011011_2} = 3cadb3_{16}$

2.2 字数据大小

每台计算机都有一个字长,指明指针数据的标称大小。

C 数据类型的典型大小见下图:

C dec	Bytes			
Signed	Unsigned	32-bit	64-bit	
[signed] char	unsigned char	1	1	
short	unsigned short	2	2	
int	unsigned	4	4	
long	unsigned long	4	8	
int32_t	uint32_t	4	4	
int64_t	uint64_t	8	8	
char *		4	8	
float		4	4	
double		8	8	

Figure 2: 基本 C 数据类型的典型大小 (以字节为单位)

2.3 寻址和字节顺序

小端法little endian: 最低有效字节在最前面放着。 大端法big endian: 最高有效字节在最前面放着。 具体示例见下图:

Big endian					
	0x100	0x101	0x102	0x103	
	01	23	45	67	
Little endian					
	0x100	0x101	0x102	0x103	
	67	45	23	01	

Figure 3: 大端法与小端法

```
#include <stdio.h>
typedef unsigned char *byte_pointer;
void show_bytes(byte_pointer start, size_t len) {
    size_t i;
    for(i = 0; i < len; i++) {</pre>
        printf(" %.2x", start[i]);
    printf("\n");
 }
 void show_int(int x) {
    show_bytes((byte_pointer) &x, sizeof(int));
void show_float(float x);
void show_pointer(void *x);
void test_show_bytes(int val) {
    int ival = val;
    float fval = (float) val;
    int *pval = &ival;
    show_int(ival);
    show_float(fval);
    show_pointer(pval);
}
```

通过以上代码,可以打印出数据的两位十六进制格式输出。对比结果可以发现,int和float的结果一样,只是排列的大小端不同,而指针值不同,与机器相关。

二进制代码是不兼容的。

2.4 布尔代数

~		&	0	1	1	0	1	^	0	1
0	1	0	0	0	0	0	1	0	0	1
1	0	1	0	1	1	1	1	1	1	0

Figure 4: 布尔代数的运算。二进制 0 和 1 代表逻辑值 TRUE 和 FALSE. 以上四张图依次是逻辑运算符 NOT AND OR EXCLUSIVE-OR

位向量一个很有用的应用就是**表示有限集合**。利用位向量 $[a_{w-1}, \ldots, a_1, a_0]$ 可以编码任何子集 $A \in \{0, 1, \ldots, w-1\}$ 。

例如, 定义规则 $a_i = 1 \iff i \in A$ 。

位向量 $a \doteq [01101001]$ 表示集合 A = 0, 3, 5, 6,而位向量 $b \doteq [01010101]$ 表示集合 B = 0, 2, 4, 6。

编码集合的使用方法是使用布尔运算。

例如: $a\&b \rightarrow [010000001]$, 对应于 $A \cap B = 0, 6$ 。

它的实际应用,还有使用位向量作为掩码有选择地使用或屏蔽一些信号,该掩码就是设置为有效信号的集合。

C 语言中的位级运算, 其实是按照各个位对应的位运算来的。

而 C 语言中的逻辑运算 (||、&&、!) 则是把所有的非零参数都表示 TRUE, 参数 0 表示为 FALSE。它们只返回 1 或 0. 而位级运算只在参数特殊时才与之有相同的结果。

2.5 移位运算

x<<k: 左移 k 位, 即丢弃最高 k 位, 右端补充 k 个 0.

x>>k: 右移 k 位,支持逻辑右移和算术右移。逻辑右移在左端补充 k 个 0,算术右移则在左端补充 k 个最高有效位 (符号位)。

对无符号数,右移必须是逻辑的。

移位运算符是从左至右可结合的。

3 整数表示

0 1 1	TD.	
Symbol	Type	Meaning
$B2T_w$	Function	Binary to two's complement
$B2U_w$	Function	Binary to unsigned
$U2B_w$	Function	Unsigned to binary
$U2T_w$	Function	Unsigned to two's complement
$T2B_w$	Function	Two's complement to binary
$T2U_w$	Function	Two's complement to unsigned
$TMin_w$	Constant	Minimum two's-complement value
$TMax_w$	Constant	Maximum two's-complement value
$UMax_w$	Constant	Maximum unsigned value
$+_{w}^{t}$	Operation	Two's-complement addition
$+_{w}^{\mathrm{u}}$	Operation	Unsigned addition
$*_w^t$	Operation	Two's-complement multiplication
$*_w^{\mathrm{u}}$	Operation	Unsigned multiplication
$-\frac{t}{w}$	Operation	Two's-complement negation
$-{}^{\mathrm{u}}_{w}$	Operation	Unsigned negation

Figure 5: 整数的数据与算术操作术语。下标 w 表示数据中表示中的位数

3.1 无符号数的编码

原理 1 无符号数编码的定义 对向量 $\vec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$:

$$B2U_w(\vec{x}) = \sum_{i=0}^{w-1} x_i 2^i \tag{1}$$

形象的展示如下图:

Figure 6: w=4 的无符号数示例。当二进制表示中位 i 为 1,数值就会相应加上 2^i

原理 2 无符号数编码的唯一性 函数 $B2U_w$ 是一个双射

3.2 补码编码

原理 3 补码编码的定义 对向量 $\vec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$:

$$B2T_w(\vec{x}) = -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$
 (2)

形象地展示如下图:

Figure 7: w=4 的补码示例。把位 3 作为符号位,因此当它为 1 时,对数值的 影响是 $-2^3 = -8$ 。这个权重在图中用带向左箭头的条表示

原理 4 补码编码的唯一性

函数 $B2T_w$ 是一个双射。

- 1. 补码的范围是不对称的: |TMin| = |TMax| + 1, 即 TMin 没有与之对应的正数。这是因为 0 是非负数。
- 2. 最大的无符号数值刚好比补码的最大值的两倍大一点: $UMax_w = 2TMax_w + 1$

3.3 有符号和无符号数之间的转换

原理 5 补码转换为无符号数

对满足 $TMin_w \le x \le TMax_w$ 的 x 有:

$$T2U_w(x) = \begin{cases} x + 2^w, & x < 0 \\ x, & x \ge 0 \end{cases}$$
 (3)

推导 1 补码转换为无符号数

比较式1和2, 我们发现对于位模式 \vec{x} , 如果我们计算 $B2U_w(\vec{x}) - B2T_w(\vec{x})$ 之差, 得到:

$$B2U_w(\vec{x}) - B2T_w(\vec{x}) = x_{w-1}2^w$$

由此得到一个关系:

$$B2U_w(\vec{x}) = x_{w-1}2^w + B2T_w(\vec{x}) \tag{4}$$

由此可得:

$$B2U_w(T2B_w(x)) = T2U_w(x) = x + x_{w-1}2^w$$
(5)

式5的计算:将 $T2B_w(x)$ 当作 x 代入4后得到。由于运算 $T2B_w$ 与 $B2T_w$ 是对 \vec{x} 的逆运算,故

 $\therefore B2U_w(T2B_w(x)) = x_{w-1}2^w + B2T_w(T2B_w(x)) \therefore T2U_w(x) = x + x_{w-1}2^w$

根据3的两种情况,在x的补码中,位 x_{w-1} 决定了x是否为负。

Figure 8: 比较当 w=4 时无符号数表示和补码表示 (对补码和无符号数来说,最高有效位的权重分别是-8 和 +8,因此产生一个差为 16)

原理 6 无符号数转换为补码

对满足 $0 \le x \le UMax_w$ 的 u 有:

$$U2T_w(u) = \begin{cases} u, & u \le TMax_w \\ u - 2^w, & u > TMax \end{cases}$$
 (6)

推导 2 设 $\vec{x} = U2B_w(u)$, 则这个位向量也是 $U2T_w(u)$ 的补码表示。式1和式2结合起来有

$$U2T_w(u) = -u_{w-1}2^w + u (7)$$

在 u 的无符号表示中,对式6的两种情况来说,位 u_{w-1} 决定了 u 是否大于 $TMax_w=2^{w-1}-1$ 。

以下图说明了函数 U2T 的行为。对于小的数,从无符号到有符号保留原值;一旦大于 $TMax_w$,数字将被转换为一个负数值。

Figure 9: 无符号数和补码的转换

3.4 扩展一个数字的位表示

用于将数据类型转换为一个更大的数据类型,例如32位→64位。

原理7 无符号数的零扩展

定义宽度为 w 的位向量 $\vec{u} = [u_{w-1}, u_{w-2}, \ldots, u_0]$ 和宽度为 w' 的位向量 $\vec{u}' = [0, \ldots, 0, u_{w-1}, u_{w-1}, \ldots, u_0]$, 其中, w' > w。则 $B2U_w(\vec{u}) = B2U_{w'}(\vec{u}')$ 。

原理 8 补码数的符号扩展

定义宽度为 w 的位向量 $\vec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$ 和宽度为 w 的位向量 $\vec{x}' = [x_{w-1}, \dots, x_{w-1}, x_{w-1}, x_{w-2}, \dots, x_0]$, 其中 w' > w。则 $B2T_w(\vec{x}) = B2T_{w'}(\vec{x}')$ 。

推导 3 补码数值的符号扩展

令 w' = w + k, 证明

$$B2T_{w+k}(\underbrace{[x_{w-1},\ldots,x_{w-1},x_{w-1},x_{w-2},\ldots,x_0]}) = B2T_w([x_{w-1},x_{w-2},\ldots,x_0])$$
k times

下面的证明是对 k 进行归纳。即: 如果我们能够证明符号扩展一位保持了数值不变,那么符号扩展任意位都能保持这种属性。即:

$$B2T_{w+1}([x_{w-1}, x_{w-1}, x_{w-2}, \dots, x_0]) = B2T_w([x_{w-1}, x_{w-2}, \dots, x_0])$$

用式2展开左边的表达式, 得:

$$B2T_{w+1}([x_{w-1}, x_{w-1}, x_{w-2}, \dots, x_0]) = -x_{w-1}2^w + \sum_{i=0}^{w-1} x_i 2^i$$

$$= -x_{w-1}2^w + x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$

$$= -x_{w-1}(2^w - 2^{w-1}) + \sum_{i=0}^{w-2} x_i 2^i$$

$$= -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$

$$= B2T_w([x_{w-1}, x_{w-2}, \dots, x_0]).$$

其中使用的关键属性是 $2^w - 2^{w-1} = 2^{w-1}$ 。

3.5 截断数字

原理 9 截断无符号数

令 \vec{x} 等于位向量 $[x_{w-1}, x_{w-2}, \dots, x_0]$, 而 \vec{x}' 是将其截断为 k 位的结果: $\vec{x}' = [x_{k-1}, x_{k-2}, \dots, x_0]$ 。令 $x = B2U_w(\vec{x}')$ 。则 $\vec{x}' = x \mod 2^k$ 。

推导 4 截断补码数值

使用无符号数截断相同参数,则有

$$B2U_w([x_{w-1}, x_{w-2}, \dots, x_0]) \mod 2^k = B2U_k[x_{k-1}, x_{k-2}, \dots, x_0]$$

即, $x \mod 2^k$ 能够被一个位级表示为 $[x_{k-1}, x_{k-2}, \ldots, x_0]$ 的无符号数表示。将其转换为补码数则有 $x' = U2T_k(x \mod 2^k)$ 。

总结:

无符号数的截断结果:

$$B2U_k[x_{k-1}, x_{k-2}, \dots, x_0] = B2U_w([x_{w-1}, x_{w-2}, \dots, x_0]) \mod 2^k$$

补码数字的截断结果:

$$B2T_{l}[x_{k-1}, x_{k-2}, \dots, x_{0}] = U2T_{k}(B2U_{w}([x_{w-1}, x_{w-2}, \dots, x_{0}]) \mod 2^{k})$$

3.6 关于有符号数和无符号数的建议

有符号数到无符号数的隐式转换,会导致错误或者漏洞。避免这类错误的一种方法是绝不使用无符号数。(例如除 C 语言外,少有语言支持无符号整数。)

但是当我们想要把字仅仅看做是位的集合而没有任何数字意义时,无符号数值是非常有用的。

所以, 见机行事。

4 整数运算

4.1 无符号加法

原理 10 无符号数加法

对满足 $0 \le x, y \le 2^w$ 的 x 和 y 有:

$$x +_w^u y = \left\{ \begin{array}{ll} x+y, & x+y < 2^w & Normal \\ x+y-2^w, & 2^w \leq x+y < 2^{w+1} & Overflow \end{array} \right.$$

推导 5 无符号数加法

一般而言,我们可以看到,如果 $x+y<2^w$,和的 w+1 位表示中最高位会等于 0,因此丢弃它不会改变这个数值。

另一方面,如果 $2^w \le x + y < 2^{w+1}$,和的 w+1 位表示中的最高位会等于 1,因此丢弃它就相当于从和中减去了 2^w 。

形象表示见下图:

Figure 10: 无符号加法 (4 位字长,加法是模 16 的)

整数加法和无符号加法着急拿的关系见下图:

原理 11 检测无符号数加法中的溢出

对在范围 $0 \le x, y \le UMax_w$ 中的 x 和 y, 令 $s = x + u^w y$ 。则对计算 s,当且 仅当 s < x(或者等价的 s < y) 时,发生了溢出。

Figure 11: 整数加法和无符号加法间的关系。当 x+y 大于 2^w-1 时,其和溢出

推导 6 检测无符号数加法中的溢出

通过观察发现 $x+y \ge x$,因此如果 s 没有溢出,我们能够肯定 $s \ge x$ 。 另一方面,如果 s 确实溢出了,我们就有 $s=x+y-2^w$ 。假设 $y<2^w$,我们就有 $y-2^w<0$,因此 $s=x+(y-2^w)< x$ 。

模数加法形成了一种数学结构,称为阿贝尔群 (Abelian goup),它是<u>可交换的和可结合的</u>。它有一个单位元 0,并且每个元素有一个加法逆元。

原理 12 无符号数求反

对满足 $0 \le x < 2^w$ 的任意 x, 其 w 位的无符号逆元 $-\frac{u}{w}x$ 由下式给出:

$$-\frac{u}{w}x = \begin{cases} x, & x = 0\\ 2^w - x, & x > 0 \end{cases}$$

推导 7 无符号数求反

当 x = 0 时, 加法逆元显然是 0。对于 x > 0,考虑值 $2^w - x$ 。我们观察到这个数字在 $0 < 2^w - x < 2^w$ 范围之内,并且 $(x + 2^w - x) \mod 2^w = 2^w \mod 2^w = 0$ 。因此,它就是 x 在 $+^u_w$ 下的逆元。

4.2 补码加法

定义 $x +_w^t y$ 为整数和 x + y 被截断为 w 位的结果,并将这个结果看做是**补码数**。

原理 13 补码加法

对满足 $-2^{w-1} \le x, y \le 2^{w-1} - 1$ 的整数 x 和 y, 有:

$$x + _w^t y = \left\{ \begin{array}{ll} x + y - 2^w, & 2^{w-1} \leq x + y & Positive \ overflow \\ x + y, & -2^{w-1} \leq x + y < 2^{w-1} & Normal \\ x + y + 2^w, & x + y < -2^{w-1} & Negative \ overflow \end{array} \right.$$

推导 8 补码加法

由于补码加法和无符号数加法有相同的位级表示,故可以按照如下步骤表示运算 $+_w^t$:

- 1. 将参数转换为无符号数
- 2. 执行无符号数加法
- 3. 将结果转换为补码

$$x +_{w}^{t} y \doteq U2T_{w}(T2U_{w}(x) +_{w}^{u} T2U_{w}(y))$$

由式 $5,T2U_w(x) \iff x_{w-1}2^w + x, T2U_w(y) \iff y_{w-1}2^w + y$ 。使用属性 \mathbb{L}_w^u 是模 2^w 的加法,以及模数加法的属性,我们得到:

$$x +_{w}^{t} y = U2T_{w}(T2U_{w}(x) +_{w}^{u} T2U_{w}(y)$$

$$= U2T_{w}[(x_{w-1}2^{w} + x + y_{w-1}2^{w} + y) \ mod \ 2^{w}]$$

$$= U2T_{w}[(x + y) \ mod \ 2^{w}]$$

定义 $z\doteq x+y$, $z'\doteq z \mod 2^w$, $z''\doteq U2T_w(z')$, $z''=x+^t_wy$ 。下面分 4 种情况讨论:

 $1. -2^w \le z < -2^{w-1}$,则 $z' = z + 2^w$ 。于是得出 $0 \le z' < -2^{w-1} + 2^w = 2^{w-1}$ 。检查式6可以看到 z' 在满足 z'' = z' 的范围之内。这种情况称作**负溢出** (negative overflow)。将两个负数 x 和 y 相加 (这是得到 $z < -2^{w-1}$ 的唯一方式),得到一个非负的结果 $z'' = x + y + 2^w$ 。

 $2. -2^{w-1} \le z < 0$,则 $z' = z + 2^w$ 。于是得出 $-2^{w-1} + 2^w = 2^{w-1} \le z' < 2^w$ 。 检查式6可以看到 z' 在满足 $z'' = z' - 2^w$ 的范围之内。因此 $z'' = z' - 2^w = z + 2^w - 2^w = z$ 。即,补码和 z'' 等于整数和 x + y。

 $z+2^w-2^w=z$ 。即,补码和 z'' 等于整数和 x+y。 3. $0 \le z < 2^{w-1}$,则 z'=z。于是得出 $0 \le z' < 2^{w-1}$,因此 z''=z'=z。于是补码和 z'' 又等于整数和 x+y。

4. $2^{w-1} \le z < 2^w$,则 z' = z。于是得出 $2^{w-1} \le z' < 2^w$ 。在这个范围内, $z'' = z' - 2^w$ 。因此得到 $z'' = x + y - 2^w$ 。这种情况称作**正溢出 (positive overflow)**。将整数 x 和 y 相加 (这是得到 $z \ge 2^{w-1}$ 的唯一方式),得出一个负数结果 $z'' = x + y - 2^w$ 。

补码加法的形象表示见下图:

Figure 12: 补码加法 (字长为 4 位的情况下,当 x + y < -8 时,产生负溢出; $x + y \ge 8$ 时,产生正溢出)

原理 14 检测补码加法中的溢出

对满足 $TMin_w \le x, y \le TMax_w$ 的 x 和 y, 令 $s = x +_w^t y$ 。当且仅当 x > 0, y > 0,但 $s \le 0$ 时,计算 s 发生了正溢出。当且仅当 x < 0, y < 0,但 $s \ge 0$ 时,计算 s 发生了负溢出。

推导 9 检测补码加法中的溢出

1. 分析正溢出: 若 x > 0, y > 0, 而 $s \le 0$, 那么显然发生了正溢出。反过来, 正溢出的条件为 1) x > 0, y > 0(或者 $x + y < TMax_w$), 2) $s \le 0$ 。

2. 分析负溢出: 若 x < 0, y < 0, 而 $s \ge 0$, 那么显然发生了负溢出。反过来,负溢出的条件为 1) x < 0, y < 0(或者 $x + y > TMin_w$), 2) $s \ge 0$ 。

4.3 补码的非

原理 15 补码的非

对满足 $TMin_w \le x \le TMax_w$ 的 x, 其补码的非 $-\frac{t}{w}$ 由下式给出:

$$-_{w}^{t}x = \begin{cases} TMin_{w}, & x = TMin_{w} \\ -x, & x > TMin_{w} \end{cases}$$

即,对 w 位的补码加法来说, $TMin_w$ 是自己的加法的逆,其他任何数值 x 都有-x 作为其加法的逆。

推导 10 补码的非

观察发现 $TMin_w + TMin_w = -2^{w-1} + (-2^{w-1}) = -2^w$ 。这将导致负溢出,因此 $TMin_w +_w^t TMin_w = -2^w + 2^w = 0$ 。对满足 $x > TMin_w$ 的 x,数值-x 可以表示为一个 w 位的补码,它们的和 -x + x = 0。

4.3.1 补码非的两种快速求法

- 1. 执行位级补码非可以对每一位求补,再对结果加 1. 即, $-x = \sim x + 1$.
- 2. 将位向量分为两部分: 假设 k 是最右边的 1 的位置, 故 x 可表示为 $[x_{w-1}, x_{w-2}, \dots, x_{k+1}, 1, 0, \dots, 0]$ 。这个值的非写成二进制格式就是 $[\sim x_{w-1}, \sim x_{w-2}, \dots, \sim x_{k+1}, 1, 0, \dots, 0]$ 。即, 对 k 左边的所有位取反。

4.4 无符号乘法

原理 16 无符号数乘法

对满足 $0 \le x, y \le UMax_w$ 的 x 和 y 有:

$$x *_w^u y = (x \cdot y) \mod 2^w \tag{8}$$

4.5 补码乘法

原理 17 补码乘法

对满足 $TMin_w \le x, y \le TMax_w$ 的 x 和 y 有:

$$x *_w^t y = U2T_w((x \cdot y) \bmod 2^w) \tag{9}$$

原理 18 无符号数和补码乘法的位级等价性

给定长度为 w 的位向量 \vec{x} 和 \vec{y} ,用补码形式的位向量表示来定义整数 x 和 y: $x=B2T_w(\vec{x}), y=B2T_w(\vec{y})$ 。用无符号数形式的位向量表示来定义非负整数 x' 和 y': $x'=B2U_w(\vec{x}), \ y'=B2U_w(\vec{y})$ 。则

$$T2B_w(x *_w^t y) = U2B_w(x' *_w^u y')$$

推导 11 无符号和补码乘法的位级等价性

据式6, 我们有 $x' = x + x_{w-1}2^w$ 和 $y' = y + y_{w-1}2^w$ 。这些值的乘积模 2^w 可得:

$$(x' \cdot y') mod \ 2^{w} = [(x + x_{w-1}2^{w}) \cdot (y + y_{w-1}2^{w})] mod \ 2^{w}$$

$$= [x \cdot y + (x_{w-1}y + y_{w-1}x)2^{w} + x_{w-1}y_{w-1}2^{2w}] mod \ 2^{w}$$

$$= (x \cdot y) \ mod \ 2^{w}$$

$$(10)$$

由于模运算符,所有带有权重 2^w 和 2^{2w} 的项都丢掉了。根据等式9,我们有 $x*_w^ty=U2T_w((x\cdot y)\ mod\ 2^w)$ 。对等式两边应用操作 $T2U_w$ 有:

$$T2U_w(x *_w^t y) = T2U_w(U2T_w((x \cdot y) \mod 2^w)) = (x \cdot y) \mod 2^w$$

由该结果与式8和式10结合得到 $T2U_w(x*_w^t y) = (x'\cdot y') \ mod \ 2^w = x'*_w^t y'$ 。对该式两边应用 $U2B_w$,得:

$$U2B_w(T2U_w(x *_w^t y)) = T2B_w(x *_w^t y) = U2B_w(x' *_w^u y')$$

4.6 乘以常数

编译器使用移位和加法运算组合来代替乘以常数因子的乘法。

原理 19 乘以 2 的幂

设 x 为位模式 $[x_{w-1}, x_{w-2}, ..., x_0]$ 表示的无符号整数。那么,对于任何 $k \geq 0$,我们都认为 $[x_{w-1}, x_{w-2}, ..., x_0, 0, ..., 0]$ 给出了 $x2^k$ 的 w+k 位的无符号表示,这里右边增加了 $k \wedge 0$.

推导 12 乘以 2 的幂

$$B2U_{w+k}([x_{w-1}, x_{w-2}, \dots, x_0, 0, \dots, 0]) = \sum_{i=0}^{w-1} x_i 2^{i+k}$$
$$= \left[\sum_{i=0}^{w-1} x_i 2^i\right] \cdot 2^k$$
$$= x2^k$$

原理 20 与 2 的幂相乘的无符号乘法

C 变量 x 和 k 有无符号数值 x 和 k, 且 $0 \le k < w$, 则 C 表达式 $x \ll k$ 产生数值 $x*_w^u 2^k$ 。

原理 21 与 2 的幂相乘的补码乘法

C 变量 x 和 k 有补码值 x 和无符号数值 k, 且 $0 \le k < w$, 则 C 表达式 $x \ll k$ 产生数值 $x *_{t_n}^k 2^k$ 。

4.7 除以 2 的幂

原理 22 除以 2 的幂的无符号除法

C变量 x 和 k 有无符号数值 x 和 k, 且 $0 \le k < w$, 则 C 表达式 $x \gg k$ 产生数值 $|x/2^k|$

推导 13 除以 2 的幂的无符号除法

设 x 为位模式 $[x_{w-1}, x_{w-2}, \ldots, x_0]$ 表示的无符号整数,而 k 的取值范围为 $0 \le k < w$ 。设 x' 为 w-k 位位表示 $[x_{w-1}, x_{w-2}, \ldots, x_k]$ 的无符号数,而 x'' 为 k 位位表示 $[x_{k-1}, \ldots, x_0]$ 的无符号数。由此, $x = 2^k x' + x''$,而 $0 \le x'' < 2^k$ 。因此可得 $|x/2^k| = x'$ 。

对位向量 $[x_{w-1}, x_{w-2}, \ldots, x_0]$ 逻辑右移 k 位会得到向量

$$[0,\ldots,0,x_{w-1},x_{w-2},\ldots,x_k]$$

这个位向量有数值 x', 该值可以通过计算 $x \gg k$ 得到。

原理 23 除以 2 的幂的补码除法,向下舍入

C 变量 x 和 k 分别有补码值 x 和无符号数值 k,且 $0 \le k < w$,则当执行算术移位时, C 表达式 $x \gg k$ 产生数值 $|x/2^k|$ 。

推导 14 除以 2 的幂的补码除法, 向下舍入

设 x 的位模式 $[x_{w-1}, x_{w-2}, \ldots, x_0]$ 表示的补码整数,而 k 的取值范围为 $0 \le k < w$ 。设 x' 为 w - k 位 $[x_{w-1}, x_{w-2}, \ldots, x_k]$ 表示的补码数,而 x'' 为 低 k 位 $[x_{k-1}, \ldots, x_0]$ 表示的无符号数。通过与对无符号数情况类似的分析,可得 $x = 2^k x' + x''$,而 $0 \le x'' < 2^k$,得到 $x' = \left\lfloor x/2^k \right\rfloor$ 。算术右移位向量 $[x_{w-1}, x_{w-2}, \ldots, x_0]k$ 位,得

$$[x_{w-1},\ldots,x_{w-1},x_{w-1},x_{w-2},\ldots,x_k]$$

它刚好就是将 $[x_{w-1},x_{w-2},\ldots,x_k]$ 从 w-k 位符号扩展到 w 位。故这个移位后的位向量就是 $|x/2^k|$ 的补码表示。

原理 24 除以 2 的幂的补码除法,向上舍入

C 变量 x 和 k 分别有补码值 x 和无符号数值 k, 且 $0 \le k < w$, 则当执行算术移位时,C 表达式 $(x + (1 \ll k) - 1) \gg k$ 产生数值 $\lceil x/2^k \rceil$ 。

推导 15 除以 2 的幂的补码除法, 向上舍入

查看 $\lceil x/y \rceil = \lfloor (x+y-1)/y \rfloor$,假设 x=qy+r,其中 $0 \le r < y$,得到 (x+y-1)/y = q+(r+y-1)/y,因此 $\lfloor (x+y-1)/y \rfloor = q+\lfloor (r+y-1)/y \rfloor$ 。当 r=0 时,后面一项等于 0,而当 r>0 时,等于 1. 即,通过给 x 增加一个偏量 y-1,然后再将除法向下舍入,当 y 整除 x 时,我们得到 q,否则得到 q+1。

故当 $y=2^k$, C 表达式 $x+(1 \ll k)-1$ 得到数值 $x+2^k-1$ 。将这个值算术右移 k 位即产生 $|x/2^k|$ 。

5 浮点数

浮点表示对形如 $V = x \times 2^y$ 的有理数进行编码。

5.1 二进制小数

十进制的小数表示法如下:

$$d_m d_{m-1} \dots d_1 d_0 . d_{-1} d_{-2} \dots d_{-n}$$

每个十进制数 d_i 的取值范围是 $0 \sim 9$ 。故该表达描述的数值 d 定义为:

$$d = \sum_{i=-n}^{m} 10^i \times d_i$$

类似的,一个形如

$$b_m b_{m-1} \dots b_1 b_0 \dots b_{-1} b_{-2} \dots b_{-n-1} b_{-n}$$

的表示法定义的01串数字定义如下:

$$b = \sum_{i=-n}^{m} 2^i \times b_i$$

 $0.111...1_2$ 这样的数刚好是小于 1 的数。例如, 0.1111111_2 表示 $\frac{63}{64}$,我们通常用简单的表达法 $1.0-\epsilon$ 来表示这样的数值。

小数的二进制表示法只能表示那些能够表示成 $x \times 2^y$ 的数。其他的值只能够被近似表示。

例如, $\frac{1}{5}=0.20_{10}$ 可以被十进制小数 0.20 精确表示,却不能被精确地表示为一个二进制小数。增加二进制表示的长度可以提高其表示精度:

表示	值	十进制
0.0_{2}	$\frac{0}{2}$	0.0_{10}
0.01_2	$\frac{1}{4}$	0.25_{10}
0.010_2	$\frac{2}{8}$	0.25_{10}
0.0011_2	$\frac{8}{16}$	0.1875_{10}
0.001101_2	$\frac{13}{64}$	0.203125_{10}
0.00110011_2	$\frac{51}{256}$	0.19921875_{10}

5.2 IEEE 浮点表示

IEEE 浮点标准用 $V = (-1)^s \times M \times 2^E$ 的形式来表示一个数:

- 符号 (sign) s 决定数字的正 (s=0) 负 (s=1), 对于数值 0 的符号位作为特殊情况处理。
- 尾数 (significand) M 是一个二进制小数,它的范围是 $1 \sim 2 \epsilon$,或者是 $0 \sim 1 \epsilon$ 。
- 阶码 (exponent) E 的作用是对浮点数加权,这个权重是 2 的 E 次幂 (可能为 负数)。

对浮点数的位表示划分为三个字段,分别对这些值进行编码:

- 一个单独的符号位 s 直接编码符号 s。
- k 位的阶码字段 $exp = e_{k-1} \dots e_1 e_0$ 编码阶码 E。

• n 位小数字段 $frac = f_{n-1} \dots f_1 f_0$ 编码尾数 M, 但是编码出来的值也依赖于编码字段的值是否等于 0。

Figure 14: 标准浮点格式 (浮点数由 3 个字段表示。两种最常见的格式是他们被封装到 32 位 (单精度) 和 64 位 (双精度) 的字中)

给定位表示,根据 exp 的值,被编码的值可以分成三种不同的情况 (最后一种情况有两个变种)。下图说明的是单精度格式的情况。

Figure 15: 单精度浮点数值的分类 (阶码的值决定了这个数是规格化的、非规格化的或特殊值)

情况 1: 规格化的值

最普遍的情况。当 exp 的位模式既不全为 0(数值 0), 也不全为 1(单精度数值 255, 双精度数值 2047) 时的情况。

阶码字段被解释为以偏置 (biased) 形式表示的有符号整数。阶码的值是 E = e - Bias, 其中 e 是无符号数,其位表示为 $e_{k-1} \dots e_1 e_0$,而 Bias 是一个等于 $2^{k-1} - 1$ (单精度是 127, 双精度是 1023) 的偏置值。

小数字段 frac 被解释为描述小数值 f,其中 $0 \le f < 1$,其二进制表示为 $0.f_{n-1} \dots f_1 f_0$,即二进制小数点在最高有效位的左边。尾数定义为 M = 1 + f。有时,该方式也被称为隐含的以 1 开头的 (implied leading 1) 表示,因为 M 可看成是二进制表示为 $1.f_{n-1}f_{n-2}\dots f_0$ 的数字。

我们总是能够调整阶码 E,使得尾数 M 在范围 $1 \le M < 2$ 之中,(假设没有溢出),那么这种表示方法是一种轻松获得一个额外精度位的技巧。

既然第一位总是 1, 那么我们就不需要显式地表示它。

情况 2: 非规格化的值

当阶码域为全0时,所表示的数是非规格化形式。阶码值是E = 1 - Bias,而尾数的值是M = f,即小数字段的值,不包含隐含的开头的1。

非规格化数有两个用途。

- 1. 提供了一种表示 0 的方法。+0.0 的浮点表示位模式为全 0. 然而当符号为为 1, 其他域全为 0 时, 我们得到值 -0.0。IEEE 标准认为它们在某些方面不同, 其他方面相同。
- 2. 表示非常接近于 0.0 的数。它们提供了被称为逐渐溢出 (gradual underflow) 的属性, 其中, 可能的数值分布均匀地接近于 0.0。

情况 3: 特殊值

当阶码全为1时的情况。

- a. 小数域全为 0,得到的值表示无穷 ∞ : $s=0\to +\infty$, $s=1\to -\infty$ 。当我们把两个非常大的数相乘,或者除以零,无穷能够表示溢出的结果。
- b. 小数域为非零时,结果值被称为"NaN",即"不是一个数"一些运算结果不能是实数或无穷,这种返回值很有用处。

5.3 数学示例

在这个示例中,假定用 6 位格式来表示,有 k=3 的阶码位和 n=2 的尾数位。偏置量是 $2^{3-1}-1=3$ 。图中 a 部分显示了所有可表示的值 (除了 NaN)。两个无穷值在两个末端。最大数量值得规格化数是 ± 14 。非规格化数聚集在 0 的附近。图中 b 部分,我们只展示了介于 -1.0 和 +1.0 之间的数值。两个零是特殊的非规格化数。

那些可表示的数并非均匀分布,越靠近原点处越稠密。

(b) Values between -1.0 and +1.0

Figure 16: 6 位浮点格式可表示的值 (k=3 的阶码位和 k=2 的尾数位。偏置量是 3)

下图展示了假定的 8 位浮点格式的示例,有 k=4 的阶码位和 n=3 的小数位。偏置量是 $2^{4-1}=7$ 。图分为 3 个区域,来描述 3 类数字。

	Bit representation	E	xpone	nt	Fraction		Value			
Description		e	E	2^E	\overline{f}	M	$2^E \times M$	V	Decimal	
Zero	0 0000 000	0	-6	1 64	08	08	0 512	0	0.0	
Smallest positive	0 0000 001	0	-6	$\frac{1}{64}$	$\frac{1}{8}$ $\frac{2}{8}$	$\frac{1}{8}$	$\frac{1}{512}$	$\frac{1}{512}$	0.001953	
	0 0000 010	0	-6	$\frac{1}{64}$	$\frac{2}{8}$	$\frac{2}{8}$ $\frac{3}{8}$	$\frac{2}{512}$	$\frac{1}{256}$	0.003906	
	0 0000 011	0	-6	$\frac{1}{64}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{512}$	$\frac{3}{512}$	0.005859	
Largest denormalized	: 0 0000 111	0	-6	$\frac{1}{64}$	$\frac{7}{8}$	$\frac{7}{8}$	$\frac{7}{512}$	$\frac{7}{512}$	0.013672	
Smallest normalized	0 0001 000	1	-6	$\frac{1}{64}$	$\frac{0}{8}$	8/8	$\frac{8}{512}$	$\frac{1}{64}$	0.015625	
	0 0001 001	1	-6	$\frac{1}{64}$	$\frac{1}{8}$	$\frac{9}{8}$	$\frac{9}{512}$	$\frac{9}{512}$	0.017578	
	0 0110 110	6	-1	$\frac{1}{2}$	$\frac{6}{8}$	$\frac{14}{8}$	$\frac{14}{16}$	$\frac{7}{8}$	0.875	
	0 0110 111	6	-1	$\frac{1}{2}$	$\frac{7}{8}$	$\frac{15}{8}$	$\frac{15}{16}$	$\frac{15}{16}$	0.9375	
One	0 0111 000	7	0	1	$\frac{0}{8}$	8	8 8	1	1.0	
	0 0111 001	7	0	1	$\frac{1}{8}$	$\frac{9}{8}$	9 8	98	1.125	
	0 0111 010	7	0	1	$\frac{2}{8}$	$\frac{10}{8}$	$\frac{10}{8}$	$\frac{5}{4}$	1.25	
	:									
	0 1110 110	14	7	128	<u>6</u>	$\frac{14}{8}$	1792 8	224	224.0	
Largest normalized	0 1110 111	14	7	128	$\frac{7}{8}$	15 8	1920 8	240	240.0	
Infinity	0 1111 000	_	_	_	_	_	_	∞	_	

Figure 17: 8 位浮点格式的非负值示例 (k=4 的阶码位的和 n=3 的小数位。偏置量是 7)