trees!

-> classification + regression.

Skep!.
Build the

y-response variable x, 2 [...] - predictors

Step? Use the free to forecost y

y x 7

The response

variable

Example (x>5)

x = 3 7 = 7 y = 7 y = 1

 $\hat{y} = 20$ $|\hat{z} > 2|$ $|\hat{x} > 2|$

>2 no

Step! Now to construct a tree?
Mossification took. response variable y falles finitely many values (non-nume-
vical Valus response productors expele 20 5 conge 10 1 Ban 20 3 7>7 7>7
son 10 4 $+ 5$ $+ 5$ $+ 6$ $+$
of the procedure. P(B)=0.2 P(apple)=0.7 P(bound of the node is procedure) P(B)=0.2 P(B)=0.
Which function is aptimized? 2. When we should stop the splitting process. 3. How the tree processes missing values of spreedictoes?
of predictions. y x 17 orange 20 - y. Should we cut the tree after construction? And how?
1. pear à tree 2. cert the tree.

al. Now to split a node in two nooles? two viileria: entropy, Trui impureity
index predictor > surth. x>7 2>3 x>25 2>1.7... A 20 1 A 10 2 H(y) =117 $\int = -\left[\frac{2}{6} \cdot \ln \frac{2}{6} + \frac{4}{6} \cdot \ln \frac{4}{6}\right]$ 10 15 17 20 25 Possible questions are (x>/2.J) Calculak oll possible Condition entroptes H(y|q)

Second viiterion: Jini impurity indes if y that two players

lify that two players

will choose values of Y of they

choose indep-by one observation each 3(4)= P(N/chA,N2chB) + P(N/chB,N2chA)= $= \frac{2}{6} \cdot \frac{4}{6} + \frac{4}{6} \cdot \frac{2}{6} = 2 \cdot \frac{2}{6} \cdot \frac{4}{7} =$ $= \left| -\left(\frac{2}{6}\right)^{2} - \left(\frac{4}{6}\right)^{2} \right|$ a possible quest-s 3(Y(Q) the question with lowers $\frac{1}{2}$ $\frac{1}{2}$ min 7 (410) Q (410) N = 1 (410) Q = 1 (410) NO A 20 1 A 10 2 B 15 3 B 17 Y 7(4. (C= Yes)=0 $\int (||Q = ||v_0||) = \frac{2}{4} \cdot \frac{2}{4} + \frac{2}{4} \cdot \frac{2}{4} = \frac{1}{2}$ $\frac{3(Y|Q) = \frac{N_Y}{N} \cdot \frac{3(Y|Q = Yes) + \frac{Mno}{N} \cdot \frac{3(Y|Q = Mo)}{1}}{\frac{2}{6} \cdot 01 \cdot \frac{3}{6} \cdot \frac{3}{2} = \frac{4}{3}}$

regression Residual siem of squares tuo possible questions. SOS ResSS 10 x >1.5 (X>5.5 x>2.5 100 | 7 ŷ=10 $\hat{y} = 150$ Res SS = Z (y:-ŷi)² = (10-10) + $+(100-150)^2+$ $(200-150)^2=2.50^2$ =5000 should [alb.] Uhere Splot if there WL cases many x>5 w > 73>7) Consider all possible split places and choose the place where the sentropy drop is man.

Q2. Where should we stop?
Possible answers: > Stop after (3) split
> Stop when the free has 2 levels of questions.
> Salot the node if there more than 5 observations inside.
3. What to do with missing values in predictors?
A: Choose the Best side (Yes/No)
Az: choose (Y/No) side randomly. Az: Remove missing obs-s.
$(\chi > 1)$
100 X 100
- Missing

Q4. Should we cut the tree! If yes then how? Storge fero. Cut bod Blanches. Stage one. 3H=0.2 Ah=0.1 R & h = 0.01 cut bad part
of the tree classif: entropy drop Jinjing drop

regussion: pers) drop regression: Resss deap Q14: How to split a node in two! Q1: When should we splot?

Q2: When should we stop?

Q3: How to precess missing values?

Q4: How to cal the free? -> split the node of it contains more than I obs. -> see answ to Qla/QlB > compare the interpy drop with a beauch