

Incorporating Chlorophyll-a Levels Into a Model of Gizzard Shad (*Dorosoma cepedianum*) in the Mississippi River

Raquel Castromonte¹, Gregory Sandland^{2,3}, James Peirce^{2,3}

¹Cornell University, ²University of Wisconsin - La Crosse, ³River Studies Center, La Crosse, WI

Introduction Gizzard Shad, Dorosoma cepedianum, are native fish in the United States. Consume phytoplankton, zooplankton, and detritus¹ Phytoplankton and IA Pool 13 Bellevue zooplankton are higher quality food than detritus² —La Grange Phytoplankton Pool 26

- Zooplankton -Age-0 Gizzard Shad Use chlorophyll-a as an
- https://tinyurl.com/yet8b4tm estimate of phytoplankton Figure 1: Map of Upper abundance Mississippi River Pools

Open River Reach— Cape Girardeau

Figure 2: Age-Length Range and Diet

Objectives

- 1) Incorporate the consumption of phytoplankton at age-0 into a model for gizzard shad.
- 2) How do chlorophyll-a levels influence the remainder of the fish population?

Model Equation

Life-history traits summarize by length dependence

$$n(z', t+1) = \int_{I}^{U} K(z', z) * n(z, t) dz$$

With K(z',z) as:

$$K(z',z) = p_b * egg(z) * v * s_0(d) * C_1(z') + S(z) * G(z',z)$$

https://tpwd.texas.gov/huntwild/wild/species/gsh/ Figure 3: D. cepedianum

Integral Projection Model

Results

Assuming a linear relationship between mean length of age-1 and chlorophyll-a levels

Age-1 Distributions

Table 1: Chlorophyll-a levels and

Discussion

Chlorophyll-a levels are inversely associated with age-1 mean

In a low chlorophyll-a pool:

- Trade-off between length and density of age-1
- Pools with low chlorophyll-a levels may imply higher competition
- Patchy distribution of zooplankton may explain age-0 length distribution patterns

Future work should employ statistical methods to compare models across pools in Upper Mississippi River and other locations!

Acknowledgements

Thanks to USGS researcher, Dr. Richard Erickson, for his mentorship. This research was supported by NSF-DMS Grant #1852224, "REU Site: Ecological Modeling of the Mississippi River Basin". The data was funded by the U.S. Army Corps of Engineers' Upper Mississippi River Restoration Program.

Literature Cited

- [1] Bodola A. The Life History of Gizzard Shad, Dorosoma cepedianum (LESUEUR), in Western Lake Erie, 1955
- [2] Mundahl N. T., Wissing D. E., Nutritional Importance of Detrivory in the Growth and Condition of Gizzard Shad, 1987
- [3] Lagler K. F., Applegate V. C., Age and Growth of Dorosoma cepedianum, 1943
- [4] Garland, Cliff R. A Comparative Study of the Trophic Relationships of the Gizzard Shad (Dorosoma cepedianum) in Acton Lake and Four-Mile Creek., 1972

Email: rc757@cornell.edu

