Agrupamiento

Tipos de algoritmos de agrupamiento

- ► Basados en particiones
- Jerárquicos
- Espectrales
- ► Basados en densidad
- Probabilísticos

Agrupamiento

Tipos de algoritmos de agrupamiento

- ► Basados en particiones
- Jerárquicos
- Espectrales
- ► Basados en densidad
- Probabilísticos

Agrupamiento

Elegir el número de clústeres (K)

Un continuo de particiones de los datos

Se particiona el dataset desde K=1 hasta K=n

** ¿Cuál es la mejor partición?

Un continuo de particiones de los datos

Se particiona el dataset desde K = 1 hasta K = n

** ¿Cuál es la mejor partición?

Algoritmos:

- ► Aglomerativo
- Divisivo

Dendrograma

Representación gráfica de un agrupamiento jerárquico

- ► Cada nodo, es un conjunto de ejemplos (clúster)
- ► Los clústeres se van uniendo/separando según criterios de distancia
- La longitud de las líneas verticales indica la distancia entre los clústeres que se unen/separan

Intuición

Si no conozco cuántos grupos/clústeres hay, de entrada no voy a elegir el número ${\cal K}$

Los clústeres se forman de ejemplos que están cercanos entre ellos

El concepto de cercanía puede ser relativo:

- 1. **Términos absolutos**: La similitud entre estos dos clústeres es...
- 2. **Términos relativos**: Los dos clústeres más similares entre sí son...
- ** De manera equivalente, podemos hablar de lejanía/diferencia

Aglomerativo

Aglomeración

Partiendo de K = n, se van uniendo iterativamente pares de clústeres hasta K = 1 de manera voraz

- 0. Al principio, cada ejemplo tiene su propio clúster
- 1. Tras la primera unión, existen K=n-1 clústeres (todos unitarios, menos uno clúster que tiene 2 elementos)

...

i. Tras la i-ésima unión, existen K = n - i clústeres

...

n-1. El algoritmo acaba cuando K=1 (se unen los dos últimos clústeres en un clúster con todos los ejemplos)

Aglomerativo

Dos cuestiones

A medida que avanza el algoritmo...

¿qué dos clústeres se deben unir en cada paso?

Dos cuestiones

A medida que avanza el algoritmo...

¿qué dos clústeres se deben unir en cada paso?

Al final del algoritmo, si queremos un partición concreta,

¿con qué partición nos quedamos?

Primera cuestión

A medida que avanza el algoritmo...

¿qué dos clústeres se deben unir en cada paso?

El par de clústeres, S_A^* y S_B^* , con menor disimilitud interclúster:

$$\{S_A^*, S_B^*\} = \arg\min_{\{S_A, S_B\}} d(S_A, S_B)$$

Primera cuestión

A medida que avanza el algoritmo...

¿qué dos clústeres se deben unir en cada paso?

El par de clústeres, S_A^* y S_B^* , con menor disimilitud interclúster:

$$\{S_A^*, S_B^*\} = \arg\min_{\{S_A, S_B\}} d(S_A, S_B)$$

¿cómo se mide la disimilitud interclúster?

 ${\sf Aglomerativo}$

Criterios de unión

$$d(S_A, S_B) = \min_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud mínima

 ${\sf Aglomerativo}$

Criterios de unión

$$d(S_A, S_B) = \min_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud mínima

Agrupamiento Jerárquico Aglomerativo

Criterios de unión

$$d(S_A, S_B) = \max_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud máxima

 ${\sf Aglomerativo}$

Criterios de unión

$$d(S_A, S_B) = \max_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud máxima

Aglomerativo

Criterios de unión

$$d(S_A, S_B) = \frac{1}{|S_A| \cdot |S_B|} \sum_{x_a \in S_A} \sum_{x_b \in S_B} d(x_a, x_b)$$

Disimilitud media

Aglomerativo

Criterios de unión

$$d(S_A, S_B) = \frac{1}{|S_A| \cdot |S_B|} \sum_{x_a \in S_A} \sum_{x_b \in S_B} d(x_a, x_b)$$

Disimilitud media

 ${\sf Aglomerativo}$

 ${\sf Aglomerativo}$

 ${\sf Aglomerativo}$

 ${\sf Aglomerativo}$

 ${\sf Aglomerativo}$

 ${\sf Aglomerativo}$

Aglomerativo

Tipos de clústeres obtenidos según criterio de unión

Definamos el concepto de **diámetro** de un clúster, S_K :

$$d(S_K) = \max_{x_i, x_i \in S_K} d(x_i, x_j)$$

Disimilitud máxima entre dos elementos del clúster S_K

Aglomerativo

Tipos de clústeres obtenidos según criterio de unión

Disimilitud mínima:

$$d(S_A, S_B) = \min_{x_a \in S_A: x_b \in S_B} d(x_a, x_b)$$

Disimilitud máxima:

$$d(S_A, S_B) = \max_{x_a \in S_A: x_b \in S_B} d(x_a, x_b)$$

$$d(S_A, S_B) = \frac{1}{|S_A| + |S_B|} \sum_{x_a \in S_A} \sum_{x_b \in S_B} d(x_a, x_b)$$

Tipos de clústeres obtenidos según criterio de unión

Disimilitud mínima:

$$d(S_A, S_B) = \min_{x_a \in S_A: x_b \in S_B} d(x_a, x_b)$$

- Clústeres de ejemplos similares que pueden no formar una unidad compacta Idea de la cadena
- ► El diámetro puede salir perjudicado

Disimilitud máxima:

$$d(S_A, S_B) = \max_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

$$d(S_A, S_B) = \frac{1}{|S_A| + |S_B|} \sum_{x_a \in S_a} \sum_{x_b \in S_B} d(x_a, x_b)$$

Tipos de clústeres obtenidos según criterio de unión

Disimilitud mínima:

$$d(S_A, S_B) = \min_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud máxima:

$$d(S_A, S_B) = \max_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

- Clústeres compactos con diámetro reducido
- ► Se minimiza el diámetro, precisamente

 La disimilitud máxima intraclúster es, tras la unión, el diámetro del nuevo clúster
- ▶ Puede separar en clústeres diferentes a ejemplos muy similares

$$d(S_A, S_B) = \frac{1}{|S_A| + |S_B|} \sum_{x_a \in S_B} \sum_{x_a \in S_B} d(x_a, x_b)$$

Tipos de clústeres obtenidos según criterio de unión

Disimilitud mínima:

$$d(S_A, S_B) = \min_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud máxima:

$$d(S_A, S_B) = \max_{x_a \in S_A: x_b \in S_B} d(x_a, x_b)$$

$$d(S_A, S_B) = \frac{1}{|S_A| + |S_B|} \sum_{x_a \in S_A} \sum_{x_b \in S_B} d(x_a, x_b)$$

- Escenario intermedio
- Clústeres relativamente compactos
- ▶ Junta elementos no necesariamente muy similares

Aglomerativo

Ventajas

- ► Intuitivo
- Conceptualmente sencillo
- ► Funciona con clústeres de diferente tamaño
- Una decisión de entrenamiento: criterio de unión
- Diferentes criterios
- ▶ Puede funcionar con diferentes medidas de distancia

Aglomerativo

Desventajas

- ► Lento
- ▶ Problemas al lidiar con clústeres de diferente densidad

 ${\sf Aglomerativo}$

Desventajas

- ▶ Lento
- ▶ Problemas al lidiar con clústeres de diferente densidad
- ¿Qué partición elegir?

Aglomerativo

Elección de una partición

Elegir una altura en la jerarquía donde cortar

- ► Número de clústeres concreto (fijando K)
- Máxima distancia en la unión de clústeres

