2 Functional Analysis over Cones 2.1 Order Structures

Ryota Iwamoto

June 9, 2023

We use the book; Variational Methods in Partially Ordered Spaces (author: A.Gopfert, H.Riahi, C.Tammer, and C.Zalinescu).

p.13

As seen in the introduction, we are concerned with certain sets M with order structures. In the sequel we give the basic definitions. As usual, when M is a nonempty set, $M \times M$ is the set of ordered paris elements of M:

$$M \times M := \{(x_1, x_2) \mid x_1, x_2 \in M\}.$$

- Definition 2.1.1 -

Let M be a nonempty set and \mathcal{R} a nonempty subset of $M \times M$. Then \mathcal{R} is called a binary relation or an order structure on M, and (X, \mathcal{R}) is a set M with order structure \mathcal{R} . The fact that $(x_1, x_2) \in \mathcal{R}$ will be denoted by $x_1 \mathcal{R} x_2$. We say that \mathcal{R} is

- (a) reflexive if $\forall x \in M : x \mathcal{R} x$,
- (b) transitive if $\forall x_1, x_2, x_3 \in M : x_1 \mathcal{R} x_2, x_2 \mathcal{R} x_3 \Rightarrow x_1 \mathcal{R} x_3$,
- (c) antisymmetric if $\forall x_1, x_2 \in M : x_1 \mathcal{R} x_2, x_2 \mathcal{R} x_1 \Rightarrow x_1 = x_2$.