

DPP: 8

Subject: Mathematics

Topic: Limits

Sandwich Theorem

- $\lim_{n\to\infty} \frac{\left[1^2x\right] + \left[2^2x\right] + \left[3^2x\right] + \dots + \left[n^2x\right]}{n^3}, \text{ where [.] denotes greatest integer function.}$ 1.
- Evaluate: $\lim_{x \to \infty} \frac{x^2 + x + 1}{[x^2]} = \dots$ (where [x] represents greatest integer function) 2.
- $\lim_{x \to \infty} \frac{\log x [x]}{[x]}$ 3.
- $\lim_{n\to\infty} \frac{[x]+[2x]+\ldots+[nx]}{n^2}$
- $\lim_{x \to 0} \left(\lim_{n \to \infty} \frac{[1^2 |\sin x|^x] + [2^2 |\sin x|^x] + \dots + [n^2 |\sin x|^x]}{n^3} \right),$ 5.
- 6. If f(x) is differentiable $\forall x > 0$ and f(x) > 0 which satisfies
 - $f(x) = \lim_{n \to \infty} \frac{[1^2(f(x))^X] + [2^2(f(x))^X] + \dots + [n^2(f(x))^X]}{n^3}, \text{ where [.] denotes greatest integer function,}$ find f'(x).
- Evaluate $\lim_{n\to\infty} \frac{a^n}{n!}$, $a \in \mathbb{R}^+$. 7.
- Solve $\lim_{n \to \infty} x_n$, when $x_n^2 = a + x_{n-1}$ and $x_0 = \sqrt{a}$ 8.
- If $a_n = 1$ and $a_{n+1} = \frac{4+3a_n}{3+2a_n}$, $n \ge 1$ then show $a_{n+2} > a_{n+1}$ and if a_n has a limit l as $n \to \infty$, then evaluate $\lim_{n \to \infty} a_n$. 9.

ANSWER KEY

- 3.has value -1 4. $\frac{x}{2}$ **2.**1

- 7.0 9. $\sqrt{2}$