Complexity

$$\Omega(m)$$

$$\theta$$
 (n^2)

$$\bigcirc (\mathfrak{n}^2) ; \bigcirc (\mathfrak{n}^3)$$

$$T(m) = 2m^2 + m$$

1)
$$n^2 \in O(n^3)$$
 - true 6) $2^n \in O(n!)$ - true

2)
$$m^3 \in O(n^2)$$
 - Jalse
3) $2^{n+1} \in \Theta(2^n)$ - true

8)
$$O(N) + O(N_s) = O(N_s)$$

9)
$$\theta(m) + O(m^2) = O(m^2)$$

$$10) O(1) + O(9) = O(max(1,9))$$

(3)	(Runtine				Space Complexity
(,			w.C.	1 '	Total	1 0
	Linear Search	0(1)	0(n)	Ø(X)	0(n)	B(1)
	Binary Search	8(1)	O(lagg)	Olgg	O(logel)	Q(r)
	Selection Sort					(1) = in-place
	Bubble Sort	(m)	0(n2)	9(n2)	O(u ²)	8(1)
	0	C 07			0 (u ²)	0(1)
	Merge Sort	(Anlagi)	O(nlgn)	O(nlogi)	O(nlogn)	0 (m)
	0	t (Ĭ			

B(nlogn) end-subalgarithun $T(m) = \Theta(m \log m)$ Zlogi=logz1+loge2+...+loge1 = logzi $\theta(\log_2 m!)$ end-subalgarithum $T(m) = \Theta(\log(m!)) = \Theta(n\log m)$ (Sterling approximation) Subalgorithm (x, m, a) is: found - Jalse for i = 1, n execute:

if x; = a then:

found = true

end-if

end-for. O(M)

Seminar 02 Page 2

Subalgorithm (x, n, a) is:

found = false

lie-1

while i = n execute:

if x; = a then:

found = true

end-jor

end-subalgorithm

a) is: $BC: \Theta(1) \quad \text{Total}: O(n)$ $wC: \Theta(n)$ $wL: \Theta(n)$ $en: \quad \frac{AC: T(n) = C_1 P_{C_1} + C_2 P_{C_2} + ... + C_n P_{C_n} = \frac{1}{n} (1+2+...+n) = \frac{n(n+1)}{2n} = \frac{n+1}{2}$ $= S\Theta(n)$