3. 非線形方程式の解法

非線形方程式 f(x)=0 の根を求める。

3.1 Newton 法

【アルゴリズム】

```
x := 与えられた初期値 for k=0,1,2,… {収束するまで繰り返す} \Delta x := -f(x)/f'(x) x := x + \Delta x end
```

【問題】 $f(x) = \exp(-x) - \sin x = 0$ の根は無数にあるが、その根を一つづつニュートン法により求める。 下図より、x を大きくすると、根はx $(k=1, 2, 3, \cdots)$ に近づいていくことがわかる。

【プログラム3.1.1】

```
1 /* Newton's Method to solve f(x)=0 */
 3 #include <stdio.h>
                        /* いつものおまじない:標準入出力用ヘッダーファイル */
 4 #include <math.h>
                         /* 数学関数用ヘッダーファイル:関数 fabs() 等を使用しているので必要となる */
 6 #define KMAX 20
                         /* マクロにより、Newton 法における最大反復回数を定義する */
 8 void eval(float, float *, float *); /* 関数をmain 関数の後に置く場合, 関数のプロトタイプ宣言が必要 */
10 void main(void)
                                  /* ANSI 規格では main 関数の記述は void main(void) */
11 {
      float x. eps. f. df. d;
                                         /* 変数の型宣言 */
12
      int k;
13
14
      printf("initial guess and tolerance: x, eps?"); /* 変数の入力の際は、予め printf 文などで促す */
15
      scanf ("%g%g", &x, &eps);
                                                /* x の初期値と収束判定値εの値の読み込み */
16
17
                /* 注意: 日本語キーボードの¥は、US キーボードのバックスラッシュ\となる: \n. \t 等 */
18
      printf("\n k\tx\t(x)\t(x)\t(x)\t(x)\t(x));
19
                /* 上の文は、以下のようにタブ(\t)を使わずに書いてもよい */
20
                                                          f'(x)
21
                /* printf(" k
                                            f(x)
                                                                       correction\n"); */
22
      for (k=0; k< KMAX; k++) {
                                         /* Newton 法の反復により、根を求めるためのループ */
         eval(x, &f, &df);
                                                 /* 関数 eval で f(x) と f'(x) の値を計算する */
23
                                                    \Delta x = f(x)/f'(x) の計算 */
         d = -f/df;
                                                /*
24
         printf("%2d %15.6e %15.6e %15.6e \n", k, x, f, df, d);
25
26
                                                /* \quad \chi \leftarrow \chi + \Delta \chi \quad */
```

```
/* |f(x)| < \varepsilonならば、ループを出る
27
         if(fabs(f)<eps) break;
28
      }
      if(k>=KMAX) printf("not convergent?\n"); /* k=KMAX のときは、収束していない恐れがある旨を出力 */
29
      printf("\nroot=%g\n", x);
                                          /* f(x)=0の根xを出力 */
30
31 }
32
33 void eval(float x, float *f, float *df) /* ANSI 規格では、引数欄に変数の型宣言を記述 */
34 {
                                   /* 変数の型宣言 */
      float e;
35
36
      e= exp(-x);
                                           /* f(x) = exp(-x) - sin x */
37
      *f = e - \sin(x);
38
      *df = -e - cos(x);
                                           /* f'(x) = -exp(-x) - cos x */
39 }
```

1) 初期値を 0.5, 収束判定値を 10⁻⁶ とする。

一実行開始-

initial guess and tolerance: x, eps ? 0.5 1.0e-6

```
k
                           f(x)
                                             f'(x)
                                                                correction
        Χ
0
     5. 000000e-01
                     1. 271051e-01
                                   -1. 484113e+00
                                                     8. 564382e-02
     5. 856438e-01
                     4. 011282e-03
                                   -1. 390104e+00
                                                     2. 885599e-03
1
2
     5. 885294e-01
                     4. 611285e-06
                                   -1. 386901e+00
                                                     3. 324884e-06
     5. 885327e-01 -1. 274799e-08
                                   -1. 386897e+00 -9. 191734e-09
```

root=0.588533

------おしまい------

2) 初期値を3.0とする。

-実行開始-----

initial guess and tolerance: x, eps ? 3.0 1.0e-6

```
f'(x)
k
                           f(x)
        Χ
                                                                 correction
                                      9. 402055e-01
0
     3. 000000e+00
                   -9. 133294e-02
                                                      9. 714147e-02
     3. 097142e+00
                     7. 416478e-04
                                      9. 538341e-01 -7. 775439e-04
     3. 096364e+00
                     8. 331214e-08
                                      9. 537641e-01 -8. 735089e-08
```

root=3.09636

-----おしまい-------

3) 初期値を6.0とする。

-実行開始------

initial guess and tolerance: x, eps ? 6.0 1.0e-6

```
f'(x)
k
                           f(x)
                                                                 correction
        Х
0
     6. 000000e+00
                     2. 818942e-01
                                     -9. 626490e-01
                                                       2. 928318e-01
     6. 292832e+00
                   -7. 796926e-03
                                    -1. 001803e+00 -7. 782893e-03
1
     6. 285049e+00
                     3. 122672e-07
                                    -1.001862e+00
                                                       3. 116868e-07
```

root=6. 28505

-----おしまい-----

3.2 二分法

【アルゴリズム】

```
x_1, x_2 := 初期区間の端点(x_1 < x_2 ) while (x_2-x_1) > \varepsilon do x_m := (x_1+x_2)/2 if f(x_1) • f(x_m) <0 then x_2 := x_m else x_1 := x_m end end
```

【問題】3.1 節と同じ問題 f(x)=0 の根を、一つづつ二分法により求める。

プログラム 3.2.1 は、 $f(x_1)$ と $f(x_m)$ が異符号かどうかの判定を、 $f(x_1)$ ・ $f(x_m)$ く 0 かどうかで行っている。 ただし、 $f(x_1)$ と $f(x_m)$ の値が非常に大きい(あるいは非常に小さい)とき、乗算 $f(x_1)$ ・ $f(x_m)$ はオーバーフロー(あるいはアンダーフロー)を招く恐れがある。 これを防ぐため、プログラム 3.2.2 では、符号を設定する関数 sign() を定義し、異符号かどうかの判定を $sign(f(x_1))$ ・ $sign(f(x_m))$ <0 で行う。

数値計算の実用プログラムは、このような細部にまで配慮が行き届いているものが多い。 が、最初はあまり気にしないで始めましょう!

【プログラム3.2.1】

```
1 /* bisectional method to solve f(x)=0 */
3 \text{ \#include } \langle \text{stdio.h} \rangle
                           /* いつものおまじない:標準入出力用ヘッダーファイル */
 4 #include <math.h>
                           /* 数学関数用ヘッダーファイル : 関数 sin を使用しているので必要 */
 5
                           /* 関数をmain 関数よりも前に置けば、関数のプロトタイプ宣言は必要なし */
6
7 float f(float x)
                           /* 関数 f(x)= exp(-x) - sin x ; ANSI 規格では,引数欄に変数の型宣言を記述 */
 8 {
9
      return(exp(-x) - sin(x));
10 }
11
12 void main(void)
                                    /* ANSI 規格では main 関数の記述は void main(void) */
13 {
14
      float x1, x2, eps, f1, xm, fm;
      int i:
15
16
      printf("initial interval [x1, x2] (x1<x2) and tolerance: x1, x2, eps ? "); /* 入力促し */
17
18
      scanf ("%g%g%g", &x1, &x2, &eps);
                                                                   /* x1, x2, eps の入力 */
19
             /* 注意: 日本語キーボードの¥は, US キーボードのバックスラッシュ\となる: \n. \t 等 */
20
      printf("\n i\tx1\tx2\t\txm\t\tf(xm)\n");
21
      i=0;
22
                                           /* カウンター(i)の零設定 */
23
      while ((x2-x1)) eps ) {
                                   /* 区間幅が eps 以下になるまで区間分割を繰り返す */
24
            i+=1:
                                                   /* カウンター(i)に1 を加える */
25
            xm=(x_1+x_2)/2; f_1=f(x_1); f_2=f(x_2);
                                                   /* xm: x1 と x2 の中点座標 */
26
            printf ("%2d %15. 6e %15. 6e %15. 6e \n", i, x1, x2, xm, fm);
27
28
                                           /* f(x1)とf(xm)が異符号ならば、解は区間[x1, xm]にある */
29
            if(f1*fm < 0){
```

```
30
              x2=xm;
                                                   /* 区間[x1, xm]を新たに区間[x1, x2]とする */
                                           /* f(x1)とf(xm)が同符号ならば、解は区間[xm, x2]にある */
31
            }else{
32
              x1=xm;
                                                   /* 区間[xm, x2]を新たに区間[x1, x2]とする */
33
            }
34
      printf("\nA root found between %g and %g\n", x1, x2);
35
                                                                   /* 解の出力 */
36 }
```

【プログラム3.2.2】

```
1 /* bisectional method to solve f(x)=0 */
3 #include <stdio.h>
                          /* いつものおまじない:標準入出力用へッダーファイル */
4 #include <math.h>
                          /* 数学関数用ヘッダーファイル: 関数 sin, cos を使用しているので必要 */
                          /* 関数をmain 関数よりも前に置けば、関数のプロトタイプ宣言は必要なし */
7 float f(float x)
                          /* 関数 f(x)= exp(-x) - sin x ; ANSI 規格では,引数欄に変数の型宣言を記述 */
8 {
9
      return(\exp(-x) - \sin(x));
10 }
12 float sign(float r)
                         /* 符号を設定する関数 */
13 {
14
      if(r=0)
15
        return (0.0);
16
      else if(r>0)
        return (1.0);
17
18
      }else{
        return (-1.0);
19
20
      }
21 }
22
23 void main(void)
                                    /* ANSI 規格では main 関数の記述は void main(void) */
24 \{
25
      float x1, x2, eps, f1, xm, fm;
26
      int i:
27
      printf("initial interval [x1, x2] (x1<x2) and tolerance: x1, x2, eps ? ");
                                                                         /* 入力促し */
28
29
      scanf ("%g%g%g", &x1, &x2, &eps);
                                                                  /* x1, x2, eps の入力 */
                /* 注意: 日本語キーボードの¥は、US キーボードのバックスラッシュ\となる: \n, \t 等 */
30
      printf("\n i\tx1\tx2\t\txm\t\tf(xm)\n");
31
32
      i=0;
                                          /* カウンター(i)の零設定 */
33
34
      while ((x2-x1) > eps)
                                 /* 区間幅が eps 以下になるまで区間分割を繰り返す */
                                                  /* カウンター(i)に1 を加える */
35
            i+=1:
            xm=(x1+x2)/2; f1=f(x1); fm=f(xm);
                                                  /* xm: x1とx2の中点座標 */
36
            printf ("%2d %15. 6e %15. 6e %15. 6e %15. 6e \n", i, x1, x2, xm, fm);
37
38
            if (sign(f1)*sign(fm) < 0)
                                          /* f(x1)とf(xm)が異符号ならば、解は区間[x1, xm]にある */
39
                                                  /* 区間[x1, xm]を新たに区間[x1, x2]とする */
40
              x2=xm;
            }else{
                                          /* f(x1)とf(xm)が同符号ならば、解は区間[xm, x2]にある */
41
              x1=xm;
                                                  /* 区間[xm, x2]を新たに区間[x1, x2]とする */
42
            }
43
44
      printf("\nA root found between %g and %g\n", x1, x2);
45
                                                                  /* 解の出力 */
```

46 }

【実行例】

初期区間幅を[0,1], 収束判定区間値を 10^{-6} とすると、プログラム3.2.1, 3.2.2とも以下の結果を得る。

------実行開始------

initial interval [x1, x2] $(x1 \le x2)$ and tolerance: x1, x2, eps ? 0.0 1.0 1.0e-6

i	x1 x2	xm	1	F(xm)
1	0.000000e+00	1.000000e+00	5. 000000e-01	1. 271051e-01
2	5.000000e-01	1.000000e+00	7. 500000e-01	-2. 092722e-01
3	5. 000000e-01	7. 500000e-01	6. 250000e-01	-4. 983585e-02
4	5. 000000e-01	6. 250000e-01	5. 625000e-01	3.648015e-02
5	5. 625000e-01	6. 250000e-01	5. 937500e-01	-7. 220681e-03
6	5. 625000e-01	5. 937500e-01	5. 781250e-01	1. 449455e-02
7	5. 781250e-01	5. 937500e-01	5. 859375e-01	3.603075e-03
8	5.859375e-01	5. 937500e-01	5. 898438e-01	-1.817276e-03
9	5.859375e-01	5.898438e-01	5. 878906e-01	8. 907820e-04
10	5.878906e-01	5.898438e-01	5. 888672e-01	-4. 637767e-04
11	5.878906e-01	5. 888672e-01	5. 883789e-01	2. 133703e-04
12	5.883789e-01	5. 888672e-01	5. 886230e-01	-1. 252363e-04
13	5. 883789e-01	5. 886230e-01	5. 885010e-01	4. 405871e-05
14	5.885010e-01	5.886230e-01	5. 885620e-01	-4. 059087e-05
15	5.885010e-01	5. 885620e-01	5. 885315e-01	1. 733402e-06
16	5.885315e-01	5. 885620e-01	5. 885468e-01	-1. 942886e-05
17	5.885315e-01	5.885468e-01	5.885391e-01	-8.847763e-06
18	5.885315e-01	5.885391e-01	5. 885353e-01	-3. 557188e-06
19	5.885315e-01	5.885353e-01	5. 885334e-01	-9. 118950e-07
20	5.885315e-01	5.885334e-01	5. 885324e-01	4. 107532e-07

A root found between 0.588532 and 0.588533

-----おしまい------

先にニュートン法の実行例 1) で求めた数値解と同じ値が得られる。

3.3 多項式の効率的な計算アルゴリズム

n 次多項式

$$f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$$
 · · · · · · · ① の値を効率的に求めるアルゴリズムには以下のものがある。

ホーナー法: ①式は

$$f(x) = ((\cdots (((a_0 x + a_1) x + a_2) x + a_3) \cdots + a_{n-1}) x + a_n) \cdots$$
 ② と書き直されることから、以下のアルゴリズムにより $f(\alpha) = p_n$ の値を計算できる。

$$\left\{
 p_0 = a_0 \\
 p_i = p_{i-1} \quad \alpha + a_i \quad (i=1, 2, \dots, n)
 \right\}$$

組立て除法: ①式は

$$f(x) = a_0^{(n)} (x-\alpha)^n + a_1^{(n)} (x-\alpha)^{n-1} + a_2^{(n-1)} (x-\alpha)^{n-2} + \cdots + a_{n-1}^{(2)} (x-\alpha) + a_n^{(1)} \cdots$$
 ③ と書き直すことができ、 $a_n^{(1)}$, $a_{n-1}^{(2)}$ いは以下のアルゴリズムにより求まる。

$$\left\{
\begin{array}{l}
a_{0}^{(1)} = a_{0} \\
a_{i}^{(1)} = a_{i-1}^{(1)} \alpha + a_{i} \quad (i=1, 2, \dots, n)
\end{array}
\right\} \qquad \Rightarrow \quad a_{n}^{(1)}$$

$$\left\{
\begin{array}{l}
a_{0}^{(2)} = a_{0}^{(1)} \\
a_{i}^{(2)} = a_{i-1}^{(2)} \alpha + a_{i}^{(1)} \quad (i=1, 2, \dots, n-1)
\end{array}
\right\} \qquad \Rightarrow \quad a_{n-1}^{(2)}$$

これは以下のように組立除法を二回行うことに相当する。

③式より,

$$f(\alpha) = a_n^{(1)}$$

 $f'(\alpha) = a_{n-1}^{(2)}$

であるから、結局 $f(\alpha)=p$, $f'(\alpha)=q$ の値は次のアルゴリズムにより計算できる。

【アルゴリズム】

組立て除法:

p:=
$$a_0$$

q:= p
for i=1 to n-1
p:=p* α + a_i
q:=q* α + p
end
p:= p* α + a_n

なお、ホーナー法のアルゴリズムは、組立除法により p を求めるアルゴリズムと同一のものである。

【問題】n 次多項式 f(x) とその導関数 f'(x) を組立除法により求め、x の区間 $[x_{min}, x_{max}]$ におけるグラフをエクセル等で描く。

まず,多項式 f(x)の次数 n と係数 a_0 , a_1 , …, a_n を読み込んで関数を決定し,x の最小値 x_{min} と最大値 x_{max} およびその区間の分割数 m を読み込んで Δ $x=(x_{max}-x_{min})$ /m を算出し,

$$x_k = x_{min} + k \Delta x$$
 (k=0, 1, 2, ..., m)

における関数値 $f(x_k)$ を計算し、出力する。

これよりエクセル等によりグラフを作成し、関数の分布を視覚的に確認する。

【プログラム 3.3.1】

```
1 /* Efficient evaluation for polynomial and its derivative */
 3 #include <stdio.h>
 5 #define NMAX 10
 6 #define KMAX 20
 8 float a[NMAX+1];
                           /* external variables can be accessed by any function */
 9 int n;
10
11 void eval(float x, float *f, float *df)
                                                /* computes p(x) and q(x)=p'(x) */
12 {
13
       int i;
14
       float p, q;
15
16
       p= a[0];
       for (q=p, i=1; i < n; i++) {
17
18
            p=p*x+a[i];
19
            q=q*x+p;
20
21
       p=p*x+a[n];
22
       *f = p;
       *df = q;
23
24 }
25
26 void main(void)
27 {
       float x, xmin, xmax, dx, f, df;
28
29
       int i, m, k;
30
       printf("degree of polynomial: n ? ");
31
32
       scanf ("%d", &n);
       printf("coefficients of polynomial:\n");
33
34
       for (i=0; i<=n; i++) {
35
                printf("a[%d] ? ", i);
                scanf("%g", &a[i]);
36
37
       printf("x range [xmin, xmax] and division number m: xmin, xmax, m ? ");
38
39
       scanf("%g%g%d", &xmin, &xmax, &m);
40
       dx = (xmax - xmin)/m;
41
42
       printf("\n k\t x\t f(x)\t f'(x)\n");
43
       for (k=0;k<=m;k++) {
44
45
          x=xmin+k*dx;
          eval(x, &f, &df);
46
47
          printf("%2d\t%12.5f\t%15.6f\t%15.6f\n", k, x, f, df);
48
       }
49 }
```

3次多項式 $f(x)=x^3+x^2-3x-3$ とその導関数の値を、区間[-2,2]、分割数100で出力する。

-----実行開始------

degree of polynomial: n ? 3
coefficients of polynomial:

a[0] ? 1

a[1] ? 1

a[2] ? -3

a[3] ? -3

x range [xmin, xmax] and division number m: xmin, xmax, m ? -2 2 100

k	x f(x)	f' (x)	
0	-2. 00000	-1. 000000	5. 000000
1	-1. 96000	-0. 807936	4. 604800
2	-1. 92000	-0. 631488	4. 219200
3	-1. 88000	-0. 470272	3. 843200
4	-1. 84000	-0. 323904	3. 476800
5	-1.80000	-0. 192000	3. 120000
6	-1. 76000	-0. 074176	2. 772800
7	-1. 72000	0.029952	2. 435200
8	-1. 68000	0. 120768	2. 107200
9	-1. 64000	0. 198656	1. 788800
10	-1. 60000	0. 264000	1. 480000
	:	:	:
	:	:	:
	:	:	:
95	1. 80000	0. 671999	10. 319999
96	1. 84000	1. 095103	10. 836799
97	1. 88000	1. 539071	11. 363199
98	1. 92000	2. 004287	11. 899199
99	1. 96000	2. 491135	12. 444799
100	2. 00000	2. 999999	12. 999999
		おしまい	

エクセルによるグラフ

グラフより, $f(x) = x^3 + x^2 - 3x - 3 = 0$ は3根を持つことがわかる。

【応用例】多項式の効率的な計算アルゴリズムを用いて、n次多項式の根をニュートン法により求める。

【プログラム 3.3.2】

```
1 /* Newton's Method for f(x)=0 with efficient evaluation for a polynomial and its derivative */
 3 #include <stdio.h>
 4 #include <math.h>
 6 #define NMAX 10
 7 #define KMAX 20
 9 float a[NMAX+1];
                          /* external variables can be accessed by any function */
10 int n;
11
12 void eval(float x, float *f, float *df)
                                              /* computes p(x) and q(x)=p'(x) */
13 {
14
       int i;
15
       float p, q;
16
17
       p= a[0];
       for (q=p, i=1; i < n; i++)
18
19
           p=p*x+a[i];
20
            q=q*x+p;
21
22
       p=p*x+a[n];
23
       *f = p;
       *df= a;
24
25 }
26
27 void main(void)
28 {
29
       float x, f, df, d, eps;
30
       int i,k;
31
32
       printf("degree of polynomial: n ? ");
       scanf("%d", &n);
33
       printf("coefficients of polynomial:\n");
34
35
       for (i=0; i<=n; i++) {
               printf("a[%d] ? ", i);
36
               scanf("%g", &a[i]);
37
38
       }
39
       while(1) {
40
          printf("\ninitial guess and tolerance: x, eps?"); /* EOF: 入力終了コードを検出
41
          if ( scanf("%g%g", &x, &eps) == EOF ) break;
                                                                /* したときの関数scanfの戻り値 */
42
43
                                                          MS-DOSでは、終了コードの入力は、CTRL+Z*/
          printf("\n k \t x \t f(x) \t f'(x) \t correction \n");
44
          for (k=0; k< KMAX; k++) {
45
46
             eval(x, &f, &df);
             d= -f/df;
47
             printf("%2d\t%15.6e\t%15.6e\t%15.6e\t%15.6e\n", k, x, f, df, d);
48
             x += d;
49
50
             if(fabs(f) < eps) break;
51
          if (k)=KMAX) printf ("not convergent?\n");
52
          printf("\nroot=%g\n", x);
53
```

```
54 }
55 }
```

```
直前の問題の実行例で分布を確認した関数 f(x) = x^3 + x^2 - 3x - 3 = 0 の3個の根を求める。
                ------実行開始------
degree of polynomial: n ? 3
coefficients of polynomial:
a[0] ? 1
a[1] ? 1
a[2] ? -3
a[3] ? -3
initial guess and tolerance: x, eps ? 1.5 1.0e-6 ・・・・・・ 初期値1.5, 収束判定値10<sup>-6</sup>の入力
                           f(x) f'(x) correction
 k
 0
            1. 500000e+00
                           -1.875000e+00
                                              6. 750000e+00
                                                                  2.777778e-01

      1. 777778e+00
      4. 458163e-01
      1. 003704e+01
      -4. 441712e-02

      1. 733361e+00
      1. 240710e-02
      9. 480339e+00
      -1. 308719e-03

      1. 732052e+00
      1. 098788e-05
      9. 464116e+00
      -1. 161005e-06

      1. 732051e+00
      -2. 942129e-07
      9. 464101e+00
      3. 108725e-08

 1
 2
root=1.73205
initial guess and tolerance: x, eps ? -2 1.0e-6 …… 初期値-2.0, 収束判定値10<sup>-6</sup>の入力
                           f(x) f'(x) correction
 k
                             -1.000000e+00
           -2. 000000e+00
                                              5.00000e+00
                                                                  2. 000000e-01
 0
          1
 2
 3
root=-1. 73205
initial guess and tolerance: x, eps ? 0 1.0e-6 …… 初期値0, 収束判定値10<sup>-6</sup>の入力
                           f(x) f'(x) correction
 k
            0. 000000e+00 -3. 000000e+00 -3. 000000e+00 -1. 000000e+00
           -1. 000000e+00 0. 000000e+00
                                               -2.000000e+00
                                                                   0.000000e+00
 1
root=-1
x (initial guess), eps (tolerence) ? ^Z (controlとZを同時に押す) ↓ (Enter Keyを押す)
                                                                         …… 入力終了コードの入力
```

-----おしまい------

3.4 連立非線形方程式に対するニュートン法

2 変数の連立非線形方程式 f(x, y)=0 g(x, y)=0 の根を求める。

【アルゴリズム】

$$x, y := 与えられた初期値 \\ for k=0,1,2, \cdots \\ r := 1.0/(f_xg_y-f_yg_x) \\ \Delta x := -r(g_yf-f_yg) \\ \Delta y := -r(-g_xf+f_xg) \\ x := x + \Delta x \\ y := y + \Delta y \\ end$$
 {収束するまで繰り返す}

【問題】

下記の2曲線の4交点をニュートン法により求めよ。 初期値には、それぞれの交点に近い値を与えるよう留意せよ。

> 単位円: $f(x, y)=x^2+y^2-1=0$ 葉形線: $g(x, y)=x^2(a+x)-y^2(a-x)=0$ (ただし a=2)

【プログラム3.4.1】

```
12 {
13
        float a=2.0;
14
15
        *f = x*x+y*y-1;
        *g= x*x*(a+x)-y*y*(a-x);
16
        *fx = 2*x;
17
18
        *fy= 2*y;
19
        *gx = 3*x*x+2*a*x+y*y;
20
        *gy=-2*y*(a-x);
21
        return;
22 }
23
24 void main(void)
25 {
26
        float eps, x, y, f, g, fx, fy, gx, gy, rden, dx, dy;
27
28
29
        printf("tolerance: eps ? "); scanf("%g", &eps);
        while (printf ("initial guess: x, y?"), scanf ("\%g\%g", &x, &y)!=EOF) {
30
            printf("\n k \t x \t y \t f(x, y) \t g(x, y) \n");
31
32
            for (k=0; k< KMAX; k++) {
                eval (x, y, &f, &g, &fx, &fy, &gx, &gy);
33
34
                printf("%2d\t%15.6e\t%15.6e\t%15.6e\t%15.6e\n", k, x, y, f, g);
                rden=1. 0/(fx*gy-fy*gx);
35
36
                dx = -rden*(f*gy-fy*g);
37
                dy = -rden*(fx*g-f*gx);
38
                x += dx;
39
                v += dv;
40
                 if (fabs (dx) + fabs (dy) < eps) break;
41
42
            if (k)=KMAX) printf ("not convergent ?\n");
43
            printf("Solutions%15.6g %15.6g\n\n", x, y);
44
        }
45 }
```

```
-実行開始-
                                                     ····· 収束判定値10<sup>-6</sup>の入力
tolerance: eps ? 1.0e-6
initial guess: x, y ? 1.0 0.5
                                                           初期値 (x, y)=(1.0, 0.5) の入力
 k
                           f(x, y) g(x, y)
 0
            1.000000e+00
                             5.000000e-01
                                               2.500000e-01
                                                                 2. 750000e+00
 1
            6. 756757e-01
                             8. 986486e-01
                                               2.641070e-01
                                                                 1.520629e-01
 2
            6.004339e-01
                             8. 082747e-01
                                               1.382882e-02
                                                                 2. 316294e-02
 3
            5. 931251e-01
                             8. 051496e-01
                                               6. 319632e-05
                                                                 2. 257559e-04
 4
            5. 930703e-01
                             8. 051507e-01
                                               4. 412852e-08
                                                                -7.691604e-08
                 0.59307
                                 0.805151
Solutions
initial guess: x, y ? 1.0 -0.5
                                                           初期値 (x, y)=(1.0, -0.5) の入力
 k
                           f(x, y) g(x, y)
                  У
                                               2.500000e-01
            1.000000e+00
                            -5.000000e-01
                                                                 2.750000e+00
 0
 1
            6. 756757e-01
                            -8. 986486e-01
                                               2.641070e-01
                                                                 1.520629e-01
 2
            6.004339e-01
                            -8. 082747e-01
                                               1.382882e-02
                                                                 2. 316294e-02
            5. 931251e-01
                            -8.051496e-01
                                               6. 319632e-05
                                                                 2. 257559e-04
```

```
5. 930703e-01
                         -8. 051507e-01 4. 412852e-08 -7. 691604e-08
Solutions
            0. 59307
                            -0. 805151
initial guess: x, y? -1.00.5
                                              ····· 初期値 (x, y)=(-1.0, 0.5) の入力
                        f(x, y) g(x, y)
         -1.000000e+00
                         5.000000e-01
                                         2. 500000e-01 2. 500000e-01
         -8. 518519e-01
                         5. 462963e-01
                                         2. 409127e-02 -1. 795011e-02
1
2
         -8. 430871e-01
                          5. 379139e-01
                                         1. 471392e-04 -3. 221282e-04
         -8. 430703e-01
                          5. 378034e-01
                                         2. 364374e-08
                                                        -8. 205114e-08
            -0. 84307
                           0. 537803
Solutions
                                              ····· 初期値 (x, y)=(-1.0, -0.5) の入力
initial guess: x, y ? -1.0 -0.5
                        f(x, y) g(x, y)
               У
                         -5. 000000e-01
         -1. 000000e+00
                                         2.500000e-01
                                                        2. 500000e-01
0
1
         -8. 518519e-01
                        -5. 462963e-01
                                        2. 409127e-02 -1. 795011e-02
         -8. 430871e-01 -5. 379139e-01
                                        1. 471392e-04 -3. 221282e-04
3
         -8. 430703e-01
                         -5. 378034e-01
                                         2. 364374e-08
                                                        -8. 205114e-08
             -0. 84307
                            -0. 537803
Solutions
initial guess: x, y ? ^Z (controlとZを同時に押す) ↓ (Enter Keyを押す)
                                                             …… 入力終了コードの入力
```

参考文献

高倉葉子:数値計算の基礎―解法と誤差―, コロナ社(2007)

-----おしまい------

森口繁一, 伊理正夫, 武市正人 編: Cによる算法痛論, 東京大学出版会(2000)

Heath, Michael T.: Scientific Computing, An Introductory Survey, McGraw-Hill (2002)