B.CSE, 2ND YR. 1ST SEMS EXAM, 2016

Mathematics

(Paper-IV)

Full Marks 100

Time Them Hours

Answer Question number 1, and any six from the rest

A. Find a particular integral of the differential equation

(4)

 $\frac{d^2y}{dx^2} - 9y = e^{3\alpha}\cos x$

2. (a) Find the series for log(1+x) by integration and use Abel's Theorem to prove that (6)

 $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = log2$

(b) Find a power series solution of the initial value problem

(10)

 $(x^2 - 1)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + xy = 0,$ y(0) = 4, y'(0)' = 6

Write atleast first five terms of the series

 (a) Find Frobenius series solution about the regular singular point of the following differential equation

 $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 8(x^2 - 1)y = 0$

Write atleast first three terms of each series.

(b) State the orthogonality property of Chebyshev ploynomials of first kind. Use that property to find the expansion of f(x) = x³ + x, -1 ≤ x ≤ 1 in terms of the Chebyshev polynomials of first kind.

A. (a) Prove that

(10)

 $\int_{-1}^{1} P_{m}(x) P_{n}(x) dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$

where $P_n(x)$ is the Legendra polynomial of degree n.

(b) Write generating function of Legendre ploynomials. Use that function to prove

 $i. P_n(1) = 1$

(€)

ii. $P_{2n}(0) = (-1)^n \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2^n n!}$

(8) (a) Use the method of variation of parameters to find general solution of the equation

$$\frac{d^2y}{dx^2} + y = \tan x$$

(b) Solve (8)

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + 4y = 2x \ln x$$

- 6 (a) If $f(z) = e^z$, describe the image under f(z) of horizontal and vertical lines i.e. find the sets f(a+it) and f(t+ib), where a,b are constants and t runs through all real numbers.
 - (b) If the function analytic in its domain of definition?
 - (a) Suppose $f(z) = az^2 + bz\bar{z} + c\bar{z}^2$, where a, b, c are fixed complex numbers. By differentiating f(z), show that f(z) is complex differentiable at z iff $bz + 2c\bar{z} = 0$.
 - (d) Derive the polar form of the Cauchy-Riemann equations for u and v: $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$, (4)
- (a) Use Liouville's theorem to prove that every polynomial in z of degree n(≥ 1) has a zero.
 - (b) Find harmonic conjugate of $xy + 3x^2y y^3$. (4)
 - (c) Define $u(z) = Im(\frac{1}{z^2})$ for $z \neq 0$ and set u(0) = 0, then show that $i. \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$ (6)
 - ii. u is not harmonic on C.
 - iii. # does not exists at (0,0).
- 8 (a) Find $\int_{\nu} f(z)dz$ (6)

where $\nu = 3e^{it}$ for $t \in [0, 2\pi]$ and $f(z) = \overline{z}$.

- (b) Show that if z₀ is an isolated singularity of f(z) that is not removable, then z₀ is an essential singularity of e^{f(z)}.
- (c) By estimating the coefficient of the Laurent series, prove that if z₀ is an isolated singularity of f, and if (z − z₀)f(z) → 0 as z → z₀, then z₀ is removable.
- (a) Define Fourier series of a function f(x). Find the Fourier series generated by a periodic function f(x) = x² in -π ≤ x ≤ π and deduce that
 i. ¹/_{1³} + ¹/_{2³} + ¹/_{3²} + ... = ^{π²}/₆.
 - ii. $\frac{1}{12} + \frac{1}{22} + \frac{1}{22} + \dots = \frac{\pi^2}{8}$.
 - (b) Find the Fourier series for $f(x) = |x|, -\pi < x < \pi$ (8)