∞ - cosmos

"universe in which ∞ -rats live as objects"

aniomatization of properties of operate + isofit, equiv, trivial fit \longrightarrow , $\stackrel{\sim}{\longrightarrow}$, $\stackrel{\sim}{\longrightarrow}$

Def ≈ - cosmos us a simplicially enriched category K i.e.

· objects A, B, ·· called ∞ - categories

· functor spaces Fun (A, B) which are quasi-categories

+ a specified class of <u>usofibrations</u> denoted " \rightarrow " satisfying:

(write $f: A \rightarrow B$ for a vertex in Fun (A,B))

i) <u>Completeness</u> It has a terminal object, products, bullbacks of isofibrations, limits of towers of isofibrations, cotensors with simplicial sets.

11) Isofibrations contain - isos, maps with rodomain I closed under - pullback, products, limits of towers,

· $f: A \longrightarrow B$ is $fib \Rightarrow Fun(X,A) \longrightarrow Fun(X,B)$ is of $U \hookrightarrow V$ solutions, $f \in Fun(A,B) \Rightarrow A^V \longrightarrow A^U \underset{B^U}{\times} B^V$

Def: A map $f A \rightarrow B \in Fun(A,B)$, is an equivalence iff $f_*: Fun(x,A) \longrightarrow Fun(x,B)$ is an equivalence.

Similarly for trivial fibration

111) Cofibrancy truval fibrations split

Examples of ∞ -reasmoi:

models of (
$$\infty$$
, 1) - categories

Examples which aren't $(\infty, 1)$:

Digression:

A simplicial category
$$K: \triangle^{\circ p} \longrightarrow \text{lat}$$

$$\mathcal{K}_0 \Longrightarrow \mathcal{K}_1 \Longrightarrow \mathcal{K}_2 \Longrightarrow \mathcal{K}_2 \Longrightarrow \mathcal{K}_1 \Longrightarrow \mathcal{K}_2 \Longrightarrow \mathcal$$

· face, degeneracy maps are id on objects

we think of
$$K_n$$
 as a category with $oly = olyiects$ of K arrows = n -arrows $\sim n$ -simplen in Fun (A,B)

Def : Cotensors

BEX UESSet

B" is defined by

¥A∈X, Fun (A,B") = Fun (A,B)"

Other limits are limits in the underlying category Ko with serriched universal properties.

eg: Fun $(x, A \times B) \xrightarrow{\cong} F(x, A) \times F(x, B)$ as $g(at \subseteq sSet)$

Profe g Cat is an ∞-cosmos.

Proof Leibniz exponential stuff \Rightarrow 'A,B qCat" then Fun (A,B) := B^A is a q Cat

Lemma For f A - B & Fun (A,B), TFAE:

1) f is an equivalence

 $\frac{1}{2}$ f is a homotopy equivalence relative to cotensoring with $\overline{\mathbb{J}}$ i.e. $\overline{\mathbb{J}}$ $g: B \longrightarrow A$ st and α, β

A Pevo

A Pevo

B B B B

evo

gf

A

Fg

evo

1)
$$\Rightarrow$$
 2)
Let f be an equiv \Rightarrow \exists an equiv \in g Cat
 $f_*: Fun (B,A) \longrightarrow Fun (B,B)$

Finuerse qCat
$$\Rightarrow$$
 \tilde{g} : Fun (B,B) \longrightarrow fun (B,A)
let $g = \tilde{g}$ (1B)

Similarly for the homotopy
$$B \longrightarrow B^{\overline{\perp}}$$

For the other homotopy we the maps Fun
$$(A,A) \xrightarrow{f_{*}} Fun (A,B)$$

$$1_{A} gf \longmapsto f \cong fgf$$

Def An
$$\infty$$
-cosmos is cartesian closed if \forall A,B,C \in K if \exists C^A, C^B \in K with natural isoms

Fun $(A \times B, C) \cong Fun (A, C^B) \cong Fun (B, C^A)$
and $(-)^A$ preserve isofit.

Prop Cat is an
$$\infty$$
-cosmos:

hom = newes of BA.

equivalences of categories

· usofil :