

Applications: many - web crawling (how Google finds pages)
- social networking (Facebook friend finder) - network broadcast routing - garbage collection - model checking (finite state machine) - checking mathematical conjectures - solving puzzles & games Pocket Cube: 2×2×2 Rubik's cube configuration graph:

- vertex for each possible state

- edge for each basic move (e.g., 90° turn) trom one state to another — undirected: moves are reversible 11 for 2×2×2 Caiameter ('God's Number') hardest configs." breadth-O(n3/lg n) for nxuxn solved CX Demanes Demane, Eisenstoit, possible reachable in two steps but not one Lubiw, Winslow first moves [38 = 264,539,520]8 cubelet in reach cubelet arbitrary positions has 3 possible twists x 1/24 if we remove cube symmetries × 1/3 actually reachable (3 conn. components)

Graph representation: (data structures)
Adjacency lists: array Adj of IVI linked lists - for each vertex uev. Adj [u] stores u's neighbors, i.e. {veV (u.v) e E }
tor each vertex uel. Adjul stores us
neighbors, i.e. ?vev (u.v)et3
just outgoing edges if directed 5
e.g. a a compact Space:
e.g. a a compact Space:
b c c b c c c b c c c b c c c c b c
Adj
- in Python: Adj = dictionary of list/set values vertex = any hashable object (e.g., int. tuple) - advantage: multiple graphs on same vertices
vertex = any hashable object (e.g., int, tuple)
-advantage: multiple graphs on same vertices
Implicit graphs: Adj(u) is a function "Zero"
Implicit graphs: Adj(u) is a function "Zero" -compute local structure on the fly space e.g. Rubik's Cube
OI I I I I I I I I I I I I I I I I I I
Object-oriented variations:
- Object for each vertex a
- object for each vertex u - u.neighbors = list of neighbors i.e. Adj [u] (or method for implicit graphs)
-can also make edges objects 0 > 0
- u.edges = list of outoning edges from u
- can also make edges objects 0 > 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.