

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

<p>(51) Internationale Patentklassifikation 7 : H01J 61/40, 61/44, 61/12, 61/35, 61/52, 61/34, 65/04</p>		A1	<p>(11) Internationale Veröffentlichungsnummer: WO 00/28575 (43) Internationales Veröffentlichungsdatum: 18. Mai 2000 (18.05.00)</p>
<p>(21) Internationales Aktenzeichen: PCT/DE99/02364</p>			<p>(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p>
<p>(22) Internationales Anmeldedatum: 29. Juli 1999 (29.07.99)</p>			<p>(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): SPEC- TROMETRIX OPTOELECTRONIC SYSTEMS GMBH [DE/DE]; Rudower Chaussee 5, D-12489 Berlin (DE).</p>
<p>(30) Prioritätsdaten: 198 52 524.9 6. November 1998 (06.11.98) DE</p>			<p>(72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): STIRNER, Rolf [DE/DE]; Kaiserin-Augusta-Allee 91, D-10589 Berlin (DE).</p>
<p>(74) Anwalt: EFFERT, BRESSEL UND KOLLEGEN; Radickestrasse 48, D-12489 Berlin (DE).</p>			<p>Veröffentlicht <i>Mit internationalem Recherchenbericht.</i></p>

(54) Title: RADIATION DEVICE FOR THERAPEUTIC AND COSMETIC PURPOSES

(54) Bezeichnung: BESTRAHLUNGSEINRICHTUNG FÜR THERAPEUTISCHE UND KOSMETISCHE ZWECKE

(57) Abstract

The invention relates to a radiation device for therapeutic and cosmetic purposes, for treating primarily T-cell-transmitted skin diseases, especially atopic dermatitis (neurodermitis), cutaneous T-cell lymphomas, lichen ruber, alopecia areata, systematic lupus erythematoses and psoriasis and for cosmetic tanning. The device comprises at least one optical radiation source that produces a radiation intensity of at least 2 mW/cm² in the wavelength range of 400-440 nm and a radiation intensity of less than 21 % of the radiation intensity in the wavelength range of 400-440 nm in the wavelength range 300-400 nm on a surface to be irradiated.

(57) Zusammenfassung

Die Erfindung betrifft eine Bestrahlungseinrichtung für therapeutische und kosmetische Zwecke zur Behandlung von primär T-Zell-vermittelten Hauterkrankungen, insbesondere von atopischer Dermatitis (Neurodermitis), cutanem T-Zell-Lymphom, Lichen ruber, Alopecia areata, systemischen Lupus erythematoses und Psoriasis und zur kosmetischen Bräunung, umfassend mindestens eine optische Strahlungsquelle, die auf einer zu bestrahlenden Fläche im Wellenlängenintervall von 400-440 nm eine Bestrahlungsstärke von mindestens 2 mW/cm² erzeugt und im Wellenlängenintervall von 300-400 nm eine Bestrahlungsstärke von weniger als 21 % der Bestrahlungsstärke im Wellenlängenbereich von 400-440 nm erzeugt.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauritanien	UA	Ukraine
BR	Brazilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

Bestrahlungseinrichtung für therapeutische und kosmetische Zwecke

Die Erfindung betrifft eine Bestrahlungseinrichtung für therapeutische und kosmetische Zwecke.

5

Primär T-Zell-vermittelte Hauterkrankungen wie beispielsweise atopische Dermatitis (Neurodermitis), cutane T-Zell-Lymphom, Alopecia areata, Lichen ruber und Psoriasis beruhen auf einem Hautinfiltrat von aktivierte T-Lymphozyten des eigenen Körpers. Insbesondere von Neurodermitis sind verstärkt immer mehr Neugeborene und Kinder betroffen. Aufgrund der entzündeten Hautpartien, sowie des damit verbundenen Juckreizes ist diese Erkrankung sowohl physiologisch als auch psychologisch eine schwere Belastung.

10

Die bisher bekannten Therapien zur Behandlung von Neurodermitis lassen sich im wesentlichen in zwei Klassen unterteilen, nämlich die Chemotherapie und die UVA1- bzw. UVB-Lichttherapie.

15

Bei der Chemotherapie ist der derzeitige Goldstandard in der Behandlung der atopischen Dermatitis die Glukokortikoidtherapie. Bei dieser Therapie kommt es sowohl nach systemischer als auch nach topischer Anwendung zu zum Teil schwerwiegenden Nebenwirkungen. Alternative Verfahren zur Behandlung der Neurodermitis beinhalten die Therapie mit stark immunmodulierenden Pharmaka, wie beispielsweise FK 506 oder Cyclosporin A, über deren Langzeitfolgen noch keine Erfahrungen vorliegen.

20

Die UVA 1- Lichttherapie hat sich als effektiv zur Behandlung von akuten Neurodermitisschüben, der Urticaria pigmentosa und lokализierten Sklerodermie erwiesen. Zur Zeit werden für die UVA 1 - Therapie nach Meffert und die UVA 1 - Therapie nach Krutmann zwei Gerätetypen angeboten. Die UVA 1-Therapie nach Meffert arbeitet brandbandig zwischen 340 und 500 nm, die UVA-Therapie nach Krutmann bei 340 - 400 nm.

Einen sehr guten Überblick über den Stand der Technik in der UVA 1-Therapie bietet "Stellung zur Qualitätssicherung in der UVA 1-Phototherapie, Fassung der Untergruppe Foto-(Chemo)Therapie und -Diagnostik der Subkommission physikalische Verfahren in der Dermatologie, Mai 1998", sowie die "Richtlinien 5 zur Qualitätssicherung in der Foto-(Chemo)Therapie und Diagnostik", die in "Krutmann, S., Höningmann, H.: Handbuch der Dermatologischen Phototherapie und -Diagnostik, Springer-Verlag, Heidelberg, pp. 392 -395" veröffentlicht ist. Als Langzeitrisiken sind dort eine vorzeitige Hautalterung und Karzinogenität aufgeführt. Aufgrund dieser Sachlage ist dort explizit ausgeführt, 10 daß eine Anwendung von mittleren und hohen Dosen von UVA1 im Kindesalter nicht zu empfehlen sind. Damit ist jedoch gerade die größte betroffene Gruppe von Neurodermitis ausgenommen.

Es ist weiter bekannt, daß Akne, eine im Gegensatz zu Neurodermitis aufgrund 15 von Bakterienwachstum in verstopften Follikeln talgdrüsenreicher Hautbezirke mit Verhorngungsstörungen hervorgerufene Hauterkrankung mit blauem Licht im Bereich von 400 - 440 nm ohne wesentliche UVA-Anteile zu behandeln, wobei die Erfolge beschränkt blieben. Hierzu sei auf den Fachartikel "V. Sigurdsson et al., Phototherapy of Acne Vulgaris with visible Light, Dermatology 1997; 194; 20 Bd.3, 256 - 260" mit weiteren Literaturhinweisen verwiesen. Angestoßen wurde diese Form der Therapie, daß Aknefollikel im Rahmen der dermatologischen Untersuchung mit einer sogenannten "woodlamp" rot fluoreszieren. Als Quelle der Fluoreszenz wurde die Speicherung großer Mengen von Porphyrinen im Propionbakterium acne nachgewiesen (Mc Ginley 25 et al., Facial follicular porphyrin fluorescence. Correlation with age and density of propionibacterium acnes, Br. J. Dermatol Vol.102., Bd.3, 437-441, 1980). Da Porphyrine ihre Hauptabsorption (Soret-Band) um 420 nm haben, war es für Meffert et al. naheliegend, bakterienhaltige Aknefollikel mit blauem Licht zu behandeln.

30 Die langwelligste Absorptionsbande der Porphyrine liegt bei 630 nm mit einer Eindringtiefe von 4mm, die für eine photodynamische Follikelbehandlung am günstigen ist und auch verwendet wird.

Der Erfindung liegt daher das technische Problem zugrunde, eine Bestrahlungseinrichtung zur Behandlung von primär T-Zell-vermittelten Hauterkrankungen zu schaffen, die weniger Nebenwirkungen aufweist und insbesondere auch zur Behandlung von Kindern geeignet ist.

5

Die Lösung des technischen Problems ergibt sich aus den Merkmalen des Patentanspruches 1. Durch die überraschende Wirksamkeit der Strahlung im Bereich von 400 - 440 nm auf die T-Zellen ist es somit möglich, eine Bestrahlungseinrichtung zur Behandlung von primär T-Zell vermittelten Hauterkrankungen zu schaffen, die einerseits bisher kaum behandelbare Hautkrankheiten wie Lichen ruber zu behandeln ermöglicht und andererseits aufgrund der um Zehnerpotenzen geringeren Karziogenität gegenüber UVA auch eine Behandlung von Kindern ermöglicht. Die Wirksamkeit ist in klinischen Versuchen bereits eindrucksvoll bestätigt worden. Dabei sind die

10 15 Versuchspersonen mit Bestrahlungsdosen zwischen 10 und 200 Joule behandelt worden, wobei eine bevorzugte Bestrahlungsdosis bei 50 J im Wellenlängenbereich von 400-440 nm liegt. Ein weiterer überraschender Effekt ist also, daß bereits bei 8 % im Vergleich zu den bisher verordneten Bestrahlungsdosen sich ein therapeutischer Effekt einstellt. Dadurch können 20 25 einerseits geringere Bestrahlungsstärken als auch kürzere Behandlungszeiten erreicht werden. Dabei hat sich weiter herausgestellt, daß im Gegensatz zu den bisher üblichen 15 Tagessitzungen bereits 3-5 Tage Behandlung ausreichen und bereits laut Auskunft der Patienten bereits nach der ersten Behandlung eine spürbare Verbesserung eingetreten ist. Die zu bestrahlende Fläche des Patienten ist dabei zwischen 0,2-3 m von der Bestrahlungseinrichtung entfernt.

30 Da nicht auszuschließen ist, daß für die therapeutische Wirkungsweise des blauen Lichts patientenspezifische Schwellwerte für die Bestrahlungsstärken existieren, vermutlich aufgrund des unterschiedlichen Gehaltes an Melanin und/oder Antioxidantien der Haut, wird vorzugsweise eine Bestrahlungsstärke von größer 20 mW/cm² für den Wellenlängenbereich zwischen 400-440 nm gewählt. Allgemein gilt jedoch, daß zur Verkürzung der Behandlungszeiten versucht wird, mit einer möglichst hohen Bestrahlungsstärke im

Wellenlängenbereich von 400-440 nm zu arbeiten. Hierbei wurden bereits Versuche mit Bestrahlungsstärken größer 60 mW/cm² und größer 100 mW/cm² durchgeführt. Umgekehrt wird versucht, die Bestrahlungsstärken der anderen Wellenlängen soweit als möglich zu unterdrücken. Derzeit wird mit Gallium-
5 Plasma-Strahlern gearbeitet, die üblicherweise ein Intensitätsverhältnis von 400-440 nm:UVA:UVB von 100:20:0,5 aufweisen.

Bei den verwendeten Gallium-Plasma-Strahlern wird die Bestrahlungsstärke im Wellenlängenbereich von 300-400 nm im wesentlichen durch die Spektrallinien
10 bei 313 nm und 364 nm hervorgerufen, wobei die Bestrahlungsstärke im Bereich von 313 nm kleiner als 0,5 % im Verhältnis zur Bestrahlungsstärke im Wellenlängenbereich 400-440 nm ausmacht.

Durch aktive Filtermaßnahmen kann dabei das Verhältnis der Intensitäten
15 verschoben werden, so daß eine derzeit im Betrieb befindliche Bestrahlungseinrichtung im Wellenlängenbereich von 400-440 nm eine Bestrahlungsstärke von 58 mW/cm², im UVA-Bereich von 3 mW/cm² und im UVB-Bereich von 140 µW/cm² aufweist, was einem Intensitätsverhältnis von 100: 5,2 : 0,25 entspricht.

20 Bei einer verabreichten Strahlendosis von 50 J im Wellenlängenbereich von 400-440 nm schwankte die Strahlendosis im UVB-Bereich zwischen 25-150 mJ. Trotz dieser Schwankungsbreiten sind die damit verabreichten UVB-Dosen erheblich unter den Strahlendosen der klassischen UVB-Therapien die mit
25 Startdosen von 200 mJ beginnen und sich im Laufe der mehrwöchigen Behandlung auf 800 mJ steigern. Gleiches gilt im viel stärkeren Maße für die UVA-Bereiche um 364 nm. Es ist jedoch nicht auszuschließen, daß geringe Anteile des UVB-Bereiches um 313 nm einen synergetischen Effekt auf die Therapie im Wellenlängenbereich von 400-440 nm bewirken. Dies ist zur Zeit
30 Gegenstand weiterer klinischer Versuche, bei denen die Wirkung und gegebenenfalls Schwellwerte für die Bestrahlungsstärke und/oder Bestrahlungsdosis für die Wellenlänge 313 nm ermittelt werden sollen. Gleiches gilt sinngemäß für die UVA-Anteile, für die ein synergetischer Effekt

jedoch eher auszuschließen ist.

Darüber hinaus hat sich bei den Versuchspersonen überraschend eine nachhaltige Bräunung eingestellt, so daß sich die Bestrahlungseinrichtung auch für kosmetische Zwecke einsetzen läßt und auch dort die bekannten UV-Geräte mit den Problemen hinsichtlich der Gefahr von Hautkrebs ersetzen kann. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.

10 In einer bevorzugten Ausführungsform ist die optische Strahlungsquelle der Bestrahlungseinrichtung als mindestens eine Quicksilberniederdruckentladungslampe mit vorzugsweise $\text{Sr}_2\text{P}_2\text{O}_7:\text{Eu}$ - oder $(\text{SrMg})_2\text{P}_2\text{O}_7:\text{Eu}$ -Phosphor als Leuchtstoff ausgebildet. Mit diesen lassen sich bereits Bestrahlungsstärken größer 50 mW/cm² in einem Abstand von 50 cm realisieren. Durch entsprechende Fokusierung der von den optischen Strahlungsquellen emittierten Strahlung auf die Bestrahlungsfläche kann die effektive Bestrahlungsstärke noch weiter erhöht werden, was prinzipiell auch für die nachfolgenden optischen Strahlungsquellen gilt.

15 20 In einer weiteren bevorzugten Ausführungsform ist die optische Strahlungsquelle als Quecksilber-Hochdruckentladungslampe mit Metallhalogenidadditiven Gallium-Indium-Iodid und/oder Galliumiodid ausgebildet, wobei das Gewichtsverhältnis zwischen dem Quicksilber und den Metallhalogenidadditiven 10-100 beträgt. Zur Erhöhung des Wirkungsgrades ist der Quarzkolben im Bereich der Elektroden mit Zirkoniumoxid teilverspiegelt.

25 Zur Unterdrückung der aufgrund des Quecksilbers emittierten Strahlungsanteile im UVB-Bereich ist der Bestrahlungseinrichtung ein UVB-Filter zugeordnet, der im einfachsten Fall aus einer Glasscheibe besteht. Vorzugsweise ist der UVB-Filter als Hüllrohr ausgebildet, der um die optische Strahlungsquelle angeordnet ist und der Bereich zwischen Hüllrohr und Quarzkolben auf einen Gasdruck von 10-500 Torr evakuiert ist. Zur Unterdrückung der UVA-Anteile kommen vorzugsweise UV-undurchlässige transparente Kunststoffe zur

Anwendung, die vorzugsweise als Folien ausgebildet sind und neben dem UVA- auch den UVB-Bereich herausfiltern. Durch entsprechende Dotierungen der Kunststoffe kann deren Filtervermögen weitgehend verändert werden, so daß verschiedene Intensitätsverteilungen einstellbar sind. Dies ist

5 insbesondere dann von großem Interesse, falls es sich herausstellen sollte, daß gewisse UVB- und/oder UVA-Anteile oder -Intensitäten einen therapeutischen Effekt verstärken.

In einer weiteren bevorzugten Ausführungsform ist optische Strahlungsquelle
10 als elektrodenlose Quecksilberhochdruckentladungslampe ausgebildet, wodurch dann die aufgrund ihres höheren Dampfdruckes zu bevorzugenden Metallhalogenide Galliumchlorid und/oder -bromid vorrangig als Dotierung zur Anwendung kommen. Die elektromagnetische Energie für die Entladung wird
15 dann mittels eines Magnetrons mit zugeordneter Antenne in einen durch eine metallische Abschirmung gebildeten Resonator eingekoppelt.

Des weiteren ist vorzugsweise ein IR-Filter vorgesehen, um die unerwünschte Wärmestrahlung zu unterdrücken. Um gleichzeitig eine gute Wärmeabfuhr aus dem IR-Filter zu gewährleisten, wird den optischen Strahlungsquellen ein
20 Kühlaggregat mit Flüssigkeitskühlung zugeordnet, wobei die Flüssigkeit als IR-Filter ausgebildet ist. Vorzugsweise besteht das Kühlaggregat aus zwei Strahlungskühlerfassungen mit integrierten Zu- und Abläufen zwischen denen ein transparentes Hüllrohr angeordnet ist. Der Vorteil dieser Anordnung ist, daß
25 die Strahlungskühlerfassungen lösbar mit der optischen Strahlungsquelle verbunden sind, was deren Wiederverwendung bei defekten optischen Strahlungsquellen erlaubt. Als Kühlmittel kommen insbesondere Wasser und für die elektrodenlose Hochdrucklampe Silikonöl in Betracht. Das Silikonöl weist dabei eine Vielzahl von weiteren Vorteilen auf. Neben einem großen
30 stabilen Temperaturbereich sind Kühlungen bis auf 4°C möglich. Silikonöl weist eine geringe Absorption von Mikrowellenenergie auf und wirkt gleichzeitig als IR-Filter.

Die Erfindung wird nachfolgend anhand eines bevorzugten

Ausführungsbeispiele näher erläutert. Die Fig. zeigen:

- Fig.1 einen Querschnitt durch eine Quecksilber-Hochdruckentladungslampe,
- Fig.2 einen Querschnitt durch eine Quecksilber-Hochdruckentladungslampe mit integrierter Wasserkühlung,
- 5 Fig.3 Dampfdruckkurven von Gallium und Galliumhalogeniden,
- Fig.4 einen Querschnitt durch einen elektrodenlose Hochdruckentladungslampe mit Kühlaggregat und einem Magnetron,
- Fig.5 einen Querschnitt durch eine elektrodenlose Hochdruckentladungslampe mit Kühlaggregat und zwei Magnetrons,
- 10 Fig.6 ein Spektrum eines Gallium-Plasma-Strahlers,
- Fig.7 ein Spektrum einer Hochdruckentladungslampe mit einem Gewichtsverhältnis zwischen Quecksilber und Galliumiodid von 44,
- Fig.8 ein Spektrum einer Hochdruckentladungslampe mit einem Gewichtsverhältnis zwischen Quecksilber und Galliumiodid von 22,
- 15 Fig.9 ein Spektrum einer Hochdruckentladungslampe mit einem Gewichtsverhältnis von Quecksilber und Galliumiodid von 8,8,
- Fig.10 ein Spektrum einer bekannten Gallium-Indium-Effektleuchte,
- Fig.11 ein schematische Querschnittsdarstellung einer Ganzkörperbestrahlungseinrichtung und
- 20 Fig.12 eine schematischer Querschnitt durch eine Bestrahlungsanordnung mit einem Hochleistungsplasmastrahlers.

Die optische Strahlungsquelle der Bestrahlungseinrichtung zur Behandlung von primär T-Zell-vermittelten Hauterkrankungen kann sowohl als Nieder- als auch 25 als Hochdruckentladungslampe ausgebildet sein. Wie später jedoch noch näher erläutert, weist eine Quecksilber-Hochdruckentladungslampe 1 im Spektrum einige Vorteile gegenüber den bekannten Niederdruckentladungslampen für den interessierenden Spektralbereich auf.

30 Die Quecksilber-Hochdruckentladungslampe 1 umfaßt einen Quarzkolben 2, in dem zwei Elektroden 3 angeordnet sind. An die Elektroden 3 sind elektrische Anschlußleitungen 4 für die Spannungszuführung angeschlossen, die zu einer Schraubfassung 5 geführt sind. Um den Quarzkolben 2 ist ein Hüllrohr 6

angeordnet, das an seinem einem Ende geschlossen ausgebildet ist und an seinem anderen Ende hermetisch dicht mit der Schraubfassung 5 verbunden ist. Der Raum zwischen Hüllrohr 6 und Quarzkolben 2 ist auf einen Gasdruck von 10-500 Torr evakuiert. In dem Quarzkolben 2 befinden sich Quecksilber, 5 Argon und ein Metallhalogenidadditiv wie beispielsweise Galliumiodid und/oder Gallium-Indiumiodid, das bevorzugt im Wellenlängenbereich von 400-440 nm emittiert. Auf die Bestrahlungsstärke und die Spektren wird später noch näher eingegangen. Das Gewichtsverhältnis von Quecksilber zu den Metallhalogenidadditiven beträgt dabei 10-100. Im Leistungsbereich von 400 W 10 kommt dabei vorzugsweise ein Mischungsverhältnis von 1-5 mg Metallhalogenidadditiv auf 44 mg Quecksilber zur Anwendung. Der Quarzkolben 2 ist darüber hinaus im Bereich 8 der Elektroden 3 mittels Zirkoniumoxid teilverspiegelt, um die Temperatur im elektrodennahen Raum 15 des Quarzkolbens 2 zu erhöhen. Das Hüllrohr 6 hat dabei im wesentlichen zwei Funktionen. Zum einen dient es als UVB-Filter, um diesen unerwünschten Spektralanteil soweit als möglich zu reduzieren. Zum anderen dient das Hüllrohr 6 zur Wärmeisolation, da im Laufe des Betriebes die Oberfläche des Quarzkolbens 2 sehr heiß wird. Ein weiterer Vorteil des Hüllrohrs 6 ist der 20 Schutz der eigentlichen Hochdruckentladungslampe gegen äußere Temperaturänderungen.

In Fig.2 ist ein Querschnitt durch die Quecksilber-Hochdruckentladungslampe 1 gemäß Fig.1 mit integriertem Kühlmittelaggregat dargestellt. Das Kühlmittelaggregat umfaßt eine erste und eine zweite Strahlungskühlerfassung 25 9,10 und ein transparentes Hüllrohr 11. In die beiden Strahlungskühlerfassungen 9, 10 ist jeweils ein Zu- bzw. Ablauf 12, 13 integriert, an die dann jeweils ein Schlauch anschließbar ist. Die erste Strahlungskühlerfassung 9 ist einfach auf die Schraubfassung 5 aufgeschoben. Das transparente Hüllrohr 11 ist dann in die Strahlungskühlerfassung 9 eingeschoben und ist an der Schraubfassung 5 entgegengesetzten Seite durch die zweite Strahlungskühlerfassung 10 abgeschlossen. Mittels O-förmigen Dichtringen 14, 15, 16 wird ein hermetisch dichter Kreislauf für das Kühlmittel 30 17 zwischen dem Zulauf 12 und dem Ablauf 13 gebildet. Das Kühlmittel 17

kann dabei im einfachsten Fall Wasser sein. In diesem Fall dient das Kühlmittel 17 überwiegend der Abführung der entstehenden Wärme an dem evakuierten Hüllrohr 6, um dieses auf eine Temperatur von 40 - 60°C zu halten.

5 Da die Eindringtiefe des blauen Lichtes begrenzt ist, gleichwohl bei Erkrankungen der tieferliegenden Hautschichten bzw. Hautanhangsorganen, wie den Haarwurzeln, oder bei entzündungsbedingten Verdickungen der Haut, wie bei der Psoriasis und der Sklerodermie die Strahlung sehr tief eindringen muß, ist eine Bestrahlungseinrichtung vorteilhaft, bei der das umlaufende
10 Kühlmittel 17 deutlich kühler als die Hauttemperatur ist. Dann kann das gekühlte Hüllrohr 11 direkt auf die befallene Haut aufgelegt werden, wobei dann mit Bestrahlungsstärken in der Größenordnung von ca. 1-2 W/cm² bei einer elektrischen Anschlußleistung von 1000 W appliziert werden kann, da höhere Bestrahlungsstärken zu einer kürzeren Behandlungszeit führen. In
15 Folge der hohen Gewebsabsorption des blauen Lichtes kommt es in den oberen Gewebsschichten zu einer sehr starken Wärmeentwicklung, die ohne diese Kühlung auf beispielsweise 4°C ansonsten zu Verbrennungen führen würde. Durch diese Kühlung kann die durch eine Schwellendosis begrenzte Tiefenwirkung bis auf mehrere Millimeter und somit in den Follikelbereich
20 ausgedehnt werden. Bevorzugtes Kühlmittel 17 bei Elektrodenlampen ist Wasser. Gleichzeitig dient das Kühlmittel 17 als IR-Absorber.

Zusätzlich kann das Hüllrohr 6 an seiner Innenseite mit den von den Niederdruckentladungslampen bekannten Leuchtstoffen beschichtet werden, um so zusätzliche Anteile der vom Quecksilber emittierten UVC-Strahlung in den interessierenden Wellenlängenbereich von 400-440 nm zu transformieren. Da der Leuchtstoff im Bereich von 400-440 nm selbst nur eine geringe Absorption aufweist, ist somit eine effektive Erhöhung der Emission in diesem Wellenlängenbereich möglich. Voraussetzung für den Einsatz von blauen Leuchtstoffen im evakuierten, gegebenenfalls mit Edelgas gefüllten Hüllrohr ist die Kühlung des Leuchtstoffes. Unter normalen Betriebsbedingungen ohne Kühlung erreicht das Hüllrohr bis zu 600°C. Der Wirkungsgrad von den blauen Leuchtstoffen fällt jedoch bei Temperaturen oberhalb von 100°C stark ab, so

daß deren Verwendung erst bei Verwendung einer Thermostatisierung auf unterhalb 100°C sinnvoll ist, wie sie durch das zuvor beschriebene Kühlmittelaggregat erreichbar ist. Durch Einsatz von Leuchtstoffen in Verbindung mit anderen Dotierungen im Quarzbrenner, die bevorzugt im UV-5 Bereich abstrahlen, kann der Wirkungsgrad der optischen Strahlungsquelle weiter gesteigert werden. Hierzu eignen sich Halogenidverbindungen der Metalle Selen, Antimon Zink und Kadmium.

In der Fig. 3 sind die Dampfdruckkurven in Torr über der absoluten Temperatur 10 für das reine Metall Gallium sowie dessen Halogenid-Salze Galliumiodid, Galliumchlorid und Galliumbromid dargestellt. Bei den zulässigen Wandtemperaturen ohne Flüssigkeitskühlung ist das reine Gallium den Halogeniden um mehrere Größenordnungen unterlegen, so daß eine effiziente Entladung mit Gallium nur bei extrem-hohen Wandtemperaturen erreicht 15 werden kann, wozu wiederum eine stärkere Kühlung mit beispielsweise Silikonöl notwendig ist. Von den dargestellten Gallium-Halogeniden hat Galliumiodid den niedrigsten Dampfdruck. Um Größenordnungen besser aus dieser Sicht ist Galliumbromid. Diese Bromide oder Chloride sind jedoch derart aggressiv, daß diese die Elektroden 3 in den Ausführungsbeispielen gemäß 20 Fig. 1 und 2 schnell zerstören würden.

Daher wird bei Verwendung von Galliumbromiden oder -chloriden eine Bestrahlungseinrichtung ohne Elektroden 3 wie in Fig. 4 dargestellt bevorzugt. Die Bestrahlungseinrichtung 1 umfaßt einen Quarzkolben 2, in dem das 25 Gallium oder die Galliumhalogenide verteilt sind. Um den Quarzkolben 2 ist das bereits beschriebene Kühlaggregat angeordnet. An mindestens einer Stirnfläche einer Strahlungskühlerfassung 9 ist ein Magnetron 18 mit zugeordneter Antenne 19 angeordnet. Weiter ist um das Kühlaggregat herum eine metallische Abschirmung 20 angeordnet, die für die von der Antenne 19 30 abgestrahlten elektromagnetischen Wellen einen Resonator bildet. Die Verwendung von Wasser als Kühlmittel 17 scheidet bei dieser Anordnung aus, da Wasser zu stark die elektromagnetischen Wellen des Magnetrons 18 absorbieren würde, so daß hier vorzugsweise Silikonöl als Kühlmittel

verwendet wird.

Elektrodenlose Lampen haben mit Nutzungs dauern von 10.000 - 20.000

Stunden und einem besseren Wirkungsgrad Vorteile gegenüber

5 konventionellen Lichtquellen mit Elektroden 3. Die Emission dieser Lampen wird jedoch durch Temperaturunterschiede innerhalb der Lampe beeinflußt. Werden Teile des Quarzkolbens 2 (Plasmaampulle) nicht gleichförmig erhitzt, so kommt es zu dunklen Bändern, die durch Selbstabsorption des Plasmas hervorgerufen werden. Die Temperaturunterschiede innerhalb der

10 Plasmaquelle sind oft das Ergebnis einer ungleichmäßigen Feldverteilung der Mikrowellenenergie im Resonator. Hierdurch kommt es zu einer ungleichmäßigen Entladung und einer Verschlechterung der Lampenleistung. Die Kontrolle über die elektromagnetische Feldverteilung wird in einer bevorzugten Ausführungsform durch einen Resonanzzyylinder erreicht, der die

15 E_{01} -Mode unterstützt. In diesem Fall ist die Feldverteilung derart, daß das elektrische Feld in der Resonatorachse seinen höchsten Wert hat und der elektrische Feldvektor in Radialrichtung zeigt. Zu den leitenden Wänden des Resonators fällt die Feldstärke ab, um an der leitenden Oberfläche der zylindrischen Abschirmung 20 zu verschwinden. Die erforderliche Leistung ist

20 abhängig von der erzielbaren Plasmadichte. Das Plasma konzentriert sich in der Mitte des Entladungsgefäßes. Bei koaxialer Ausrichtung befindet sich der gesamte Zylindermantel des Quarzkolbens 2 im Bereich der gleichen Feldstärke, so daß diesbezügliche Ungleichmäßigkeiten ausgeschlossen werden. Der Resonanzhohlleiter hat bei der E_{01} -Mode und der bevorzugten

25 Anregungsfrequenz von 2450 MHZ einen Durchmesser von 9,37 cm. Unter diesen Bedingungen ist für den Resonator jede Länge zulässig, ohne daß die E_{01} -Resonanzbedingung verändert würde, wodurch der Resonator so einfach an unterschiedliche Leistungen durch Veränderung der Länge angepaßt werden kann.

30 Ein weiterer Vorteil der E_{01} -Mode ist, daß aufgrund der Symmetrie von zwei Seiten elektromagnetische Energie eingekoppelt werden kann, wie dies in Fig. 5 dargestellt ist, was insbesondere bei größeren Längen des Quarzkolbens 2

wichtig ist. Wegen der stehenden Welle ist lediglich der Durchmesser des Hohlleiters genau einzuhalten. Der Abstand der beiden Magnetrons 18 voneinander ist vergleichsweise unkritisch. Es ist lediglich darauf zu achten, daß die Energieabsorption im Plasma ausreichend hoch ist, so daß keine 5 ungedämpften Wellen auf das jeweils andere Magnetron 18 treffen, da dies zur Zerstörung führen könnte.

Wie bereits ausgeführt, scheidet Wasser als Kühlmittel aus. Vorzugsweise kommen daher Silikonöle wie beispielsweise Dimethyl-Polysiloxan zur 10 Anwendung, die nur eine geringe Mikrowellenabsorption von weniger als 0,2 W/cm pro Kilowatt Leistung aufweisen. Silikonöl ist transparent im sichtbaren Bereich und absorbiert einen signifikanten IR-Anteil im Wellenlängenbereich größer 1 µm. Dadurch kann entweder auf separate IR-Filter ganz verzichtet bzw. können diese unkritischer dimensioniert werden. Des weiteren ist 15 Dimethyl-Polysiloxan über einen weiten Temperaturbereich von -70°C - 250 °C einsetzbar. Mit dieser Anordnung ist es möglich, bis zu 300 W/cm³ Plasma einzukoppeln, ohne daß es zum Einschmelzen des Quarzkolbens 2 kommen würde. Im Vergleich zur üblichen Luftkühlung einer Plasmaquelle entfallen die sonst bei hohem Luftstrom auftretenden Geräusche, was für den Patienten 20 psychologisch angenehmer ist.

Möchte man im elektrodenlosen System auf die Silikonölkühlung verzichten, so kann eine rotierende Plasmaquarzkugel Anwendung finden, die beispielsweise an einem Schaft angeordnet ist und bei der Rotation in einem 25 E_{111} -oder E_{112} -Mode-Resonator sich im Mittel eine gleichmäßige Feldverteilung ergibt. Darüber hinaus wird dadurch die effektive Oberfläche für eine Konvektionskühlung vergrößert. Vorzugsweise findet die Kugelrotation dabei in zwei Ebenen statt, so daß es im Mittel zu einer vollkommenen 30 Feldvermischung kommt. Alternativ und technisch einfacher zu realisieren ist eine sogenannte Taumelrotation, d.h. während einer Rotation um die z-Achse rotiert der Stab selbst um einen Kegelmantel.

In der Fig.6 ist ein Spektrum eines typischen Gallium-Quecksilber-

Plasmastrahlers dargestellt. Die Bestrahlungsstärke im Wellenlängenbereich zwischen 300-400 nm wird dabei im wesentlichen durch einen Peak bei 364 nm und einen Peak bei 313 nm bestimmt, wobei ersterer den UVA-Anteil und letzterer den UVB-Anteil bildet. Diese Peaks stellen typische Spektralbereiche des Quecksilbers dar. Die Ausprägungen der Peaks schwanken dabei erheblich mit den Herstellungstoleranzen, wobei jedoch in guter Näherung der UVA-Anteil kleiner 20 % und der UVB-Anteil kleiner 0,5 % im Verhältnis zur Bestrahlungsstärke des Wellenlängenbereiches zwischen 400-440 nm beträgt. Aufgrund der absolut geringen Bestrahlungsstärken im UVA- und UVB-Bereich werden diese Bereiche in den nachfolgenden Spektren nicht dargestellt.

In den Fig.7-10 sind verschiedene Spektren bei unterschiedlicher Dotierungen dargestellt, wobei auf der Y-Achse die Bestrahlungsstärke in mW/cm^2 pro 0,5nm bei 50cm Abstand aufgetragen ist. Die abgebildeten Spektren zeigen, daß bei einem Gewichtverhältnis Quecksilber zu Galliumiodid von 8,8 die Emission im Spektralbereich zwischen 400-440 nm erheblich abnimmt. Bei den Gewichtverhältnissen 22 bzw. 44 ist die Ausbeute im interessierenden Spektralbereich wesentlich besser. Eine weitere Steigerung der Emission im Bereich zwischen 400-440 nm ist durch Zugabe von Indiumiodid im Verhältnis Quecksilber/Indiumiodid von 20-200 möglich. Mit Hilfe des Zusatzes geringer Mengen Indiumiodid ist eine Anhebung der Indiumemission im Bereich 405 nm möglich, ohne daß die blaue Emission im Bereich 500 nm die Energieausbeute in dem interessierenden Spektralbereich zwischen 400-440 nm sich verschlechtert.

In Fig.11 ist eine schematische Darstellung einer Ganzkörperbestrahlungseinrichtung für einen Patienten 21 dargestellt. Dazu sind eine Vielzahl der optischen Strahlungsquellen arrayförmig zueinander angeordnet, wobei jeder optischer Strahlungsquelle ein Parabolreflektor 22 zugeordnet ist. Bei Verwendung der beschriebenen Kühlaggregate können diese mäanderförmig miteinander verbunden werden. Alternativ können jedoch nur einzelne Kühlaggregate der Strahlungsquellen zusammengefaßt werden, so daß dann mehrere Kühlkreisläufe mit Pumpen zur Anwendung kommen. Vorzugsweise

werden die oberen und unteren Parabolreflektoren 22 sowie die Seitenwände um ca. 5° nach unten bzw. nach oben verkippt, um eine gleichmäßige Bestrahlungsleistung über die Bestrahlungsfläche zu erhalten. Bei einer Strahlerlänge von 190 cm und einem Reflektoröffnungswinkel von 8° ergibt sich 5 die optimale Strahlungsebene im Abstand von 45-50 cm. Aufgrund der hohen Bestrahlungsleistungen wird der Raum zwischen der Bestrahlungsanordnung und dem Patienten vorzugsweise mit Umluftklimatisierung gekühlt.

In der Fig.12 ist eine weitere bevorzugte Ausführungsform der 10 Bestrahlungseinrichtung 1 im Querschnitt dargestellt. Die Bestrahlungseinrichtung 1 umfaßt einen Gallium-Plasmastrahler 20 mit einem Quarzrohr 21. Das Quarzrohr 21 weist dabei beispielsweise einen Durchmesser von ca.20 mm auf. Das Quarzrohr 21 ist vorzugsweise aus UVC absorbierendem Quarz gebildet, um die Bildung von Ozon zu verhindern. Um 15 das Quarzrohr 21 ist ein erstes Hüllrohr 22 angeordnet, wobei das Hüllrohr beispielsweise aus Duranglas besteht. Das Hüllrohr 22 ist dabei beispielsweise 20 mm von dem Quarzrohr 21 beabstandet und mit einer Wandstärke von ca. 3 mm ausgebildet. Zwischen dem Quarzrohr 21 und dem Hüllrohr 22 befindet sich Luft. Um das erste Hüllrohr 22 ist ein zweites äußeres Hüllrohr 23 angeordnet, das ebenfalls vorzugsweise aus Duranglas besteht und eine Wandstärke von 3 mm aufweist, wobei der Abstand zwischen dem ersten Hüllrohr 22 und dem zweiten Hüllrohr 23 ca. 10 mm beträgt. Zwischen den 20 beiden Hüllrohren 22, 23 befindet sich Wasser, wobei zur Erzielung eines geschlossenen Kühlkreislaufes die Strahlungskühlerfassungen der 25 vorangegangenen Ausführungsbeispiele zur Anwendung kommen können. Der Vorteil dieser indirekten Kühlung des Quarzrohres 21 ist, daß dadurch Schwärzungen aufgrund von Niederschlägen von Quecksilberverbindungen am Quarzrohr 21 vermieden werden und das Quarzrohr 21 bei optimalen Betriebstemperaturen zwischen 600-900° C betrieben werden kann.

Bestrahlungseinrichtung für therapeutische und kosmetische Zwecke

Patentansprüche:

- 5 1. Bestrahlungseinrichtung für therapeutische und kosmetische Zwecke
zur Behandlung von primär T-Zell-vermittelten Hauterkrankungen,
insbesondere von atopischer Dermatitis (Neurodermitis), cutanem T-
Zell-Lymphom, Lichen ruber, Alopecia areata, systemischen Lupus
erythematos und Psoriasis und zur kosmetischen Bräunung,
- 10 10. dadurch gekennzeichnet, daß
die Bestrahlungseinrichtung mindestens eine optische Strahlungsquelle
umfaßt, die auf einer zu bestrahlenden Fläche im Wellenlängenintervall
von 400 - 440 nm eine Bestrahlungsstärke von mindestens 2 mW/cm²
erzeugt und im Wellenlängenintervall von 300 - 400 nm eine
15 15. Bestrahlungsstärke von weniger als 21 % der Bestrahlungsstärke im
Wellenlängenbereich von 400-440 nm erzeugt.
- 20 2. Bestrahlungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß
die optische Strahlungsquelle als
Quecksilberniederdruckentladungslampe mit einem der nachfolgenden
Leuchtstoffe Sr₂P₂O₇:Eu, (SrMg)₂P₂O₇:Eu, Sr₅Cl(PO₄)₃:Eu,
BaMg₂Al₁₆O₂₇:Eu, SrMgAl₁₈O₃₉:Eu, BaMg₂Al₁₆O₂₇:Eu:Mn, Sr₃(PO₄)₂:Eu,
Ba₃(PO₄)₂:Eu, CaWO₄:Pb oder CaWO₄ ausgebildet ist.
- 25 3. Bestrahlungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß
die optische Strahlungsquelle als Metallhalogenidlampe mit einem
Zündgas und Quecksilber sowie mit Metallhalogenidadditiven Gallium-
Indium-Iodid, Galliumiodid, Selen, Antimon, Zink und/oder Kadmium
ausgebildet ist.
- 30 4. Bestrahlungseinrichtung nach Anspruch 3, dadurch gekennzeichnet, daß
das Gewichtsverhältnis zwischen dem Quicksilber und dem
Metallhalogenidadditiv 10-100 beträgt.

5. Bestrahlungseinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß das Entladungsrohr in einem Elektrodenbereich (8) mittels Zirkoniumoxid teilverspiegelt ausgebildet ist.

5

6. Bestrahlungseinrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß zwischen der optischen Strahlungsquelle und der zu bestrahlenden Fläche eine Glasscheibe als UVB-Filter oder ein transparenter, UV-undurchlässiger Kunststoff, insbesondere Acryl

10

GS oder Polykarbonat als UV-Filter angeordnet ist.

7. Bestrahlungseinrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der UVB-Filter als evakuiertes Hüllrohr (6) um die optische Strahlungsquelle herum ausgebildet ist.

15

8. Bestrahlungseinrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Innenseite des Hüllrohrs (6) mit einem Leuchtstoff gemäß Anspruch 2 beschichtet ist.

20

9. Bestrahlungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die optische Strahlungsquelle als elektrodenlose Quecksilber-Metallhalogenid-Lampe ausgebildet ist, die mit Gallium, Galliumiodid, Gallium-Bromid und/oder -Chlorid gefüllt ist und der mindestens ein Magnetron (18) mit Antenne (19) zugeordnet ist, über die elektromagnetische Energie in einen durch eine metallische Abschirmung (20) gebildeten Resonator einkoppelbar ist und in dem ein die Dotierstoffe beinhaltende Quarzkolben (2) angeordnet ist.

25

10. Bestrahlungseinrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der Resonator als E_{01} -Moden-Resonator für die vom Magnetron (18) eingekoppelte elektromagnetische Strahlung ausgebildet ist.

30

11. Bestrahlungseinrichtung nach einem der vorangegangenen Ansprüche,

dadurch gekennzeichnet, daß die Bestrahlungseinrichtung mit einem IR-Filter ausgebildet ist.

12. Bestrahlungseinrichtung nach einem der vorangegangenen Ansprüche,
5 dadurch gekennzeichnet, daß der Bestrahlungseinrichtung ein
Kühlaggregat zugeordnet ist.

13. Bestrahlungseinrichtung nach Anspruch 12, dadurch gekennzeichnet,
10 daß das Kühlaggregat als transparentes Hüllrohr (11) mit einem Zu- und
einem Ablauf (12, 13) ausgebildet ist, das um die optische
Strahlungsquelle herum angeordnet ist, wobei über den Zu- und Ablauf
(12, 13) ein IR-Strahlung absorbierendes Kühlmittel (17) zirkuliert.

14. Bestrahlungseinrichtung nach Anspruch 13, dadurch gekennzeichnet,
15 daß das Kühlmittel (17) Wasser oder Silikonöl ist.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

7/12

Fig.

7

8/12

Fig.
8

9/12

Fig. 9

10/12

Fig. 10

Fig. 11

Fig. 12

INTERNATIONAL SEARCH REPORT

In International Application No

PCT/DE 99/02364

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 H01J61/40 H01J61/44 H01J61/12 H01J61/35 H01J61/52
H01J61/34 H01J65/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	SIGURDSSON V ET AL: "PHARMACOLOGY AND TREATMENT. PHOTOTHERAPY OF ACNE VULGARIS WITH VISIBLE LIGHT" DERMATOLOGY, vol. 194, no. 3, page 256-260 XP000863088 ISSN: 1018-8665 cited in the application	1,6, 11-14
Y A	page 257, left-hand column, line 21 - line 31; figure 2	5,7 3
Y	EP 0 682 356 A (IWASAKI ELECTRIC CO LTD) 15 November 1995 (1995-11-15) abstract; figure 1 page 5, line 8 - line 11 page 15, line 46 - line 47	5,11

	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "Z" document member of the same patent family

Date of the actual completion of the international search

25 January 2000

Date of mailing of the international search report

10/02/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Martin Vicente, M

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 99/02364

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 3 753 019 A (HELLMAN W) 14 August 1973 (1973-08-14) abstract; figures 1-3 column 6, line 10 - line 25 ---	5,11
Y	DE 43 17 252 C (BLV LICHT- UND VAKUUMTECHNIK GMBH) 5 May 1994 (1994-05-05) column 3, line 16 - line 31 ---	7
Y	DE 196 08 042 A (IMAB STIFTUNG) 4 September 1997 (1997-09-04) column 2, line 49 - line 53; claim 7 ---	7
A	US 4 410 828 A (ERNEST PAUL W) 18 October 1983 (1983-10-18) column 1, line 10 - line 24 column 1, line 64 -column 2, line 14 ---	2,7
A	PHILIPS ELECTRONICS N.V.: "Lamps & Accessories - Special fluorescent - Reprography" PHILIPS LIGHTING EUROPE - PRODUCT CATALOGUE, 'Online! 1998, XP002128581 Retrieved from the Internet: <URL: http://www.eur.lighting.philips.com/products/group_1/products/5284.shtml > 'retrieved on 2000-01-20! -& "Special fluorescent lamps - Reprography" PHILIPS CATALOGUE - 5284.PDF, 'Online! XP002128586 Retrieved from the Internet: <URL: http://www.eur.lighting.philips.com/products/group_1/products/5284.pdf > 'retrieved on 2000-01-20! ---	2
A	DE 40 26 022 A (MUTZHAS MAXIMILIAN F) 20 February 1992 (1992-02-20) abstract ---	1
P,A	WO 99 32575 A (PHILIPS PATENTVERWALTUNG ;KONINKL PHILIPS ELECTRONICS NV (NL); PHI) 1 July 1999 (1999-07-01) page 1, line 5 - line 8 ---	2
	-/-	

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 99/02364

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
T	<p>SIEGFRIED FISCHER: "The optimum marine aquarium and its technology; An introduction for beginners - Lighting Part 2"</p> <p>AQUARIUM HEUTE, 'Online! no. 4/97, pages 1/6-6/6, XP002128582 Retrieved from the Internet: <URL:http://www.dupla.com/e041.htm> 'retrieved on 2000-01-20! page 4, line 13 - line 15; figure</p> <p>-----</p>	
T	<p>PHILIPS ELECTRONICS N.V.: "Lamps & Accessories - Special H.I.D. - Metal halide reprography"</p> <p>PHILIPS LIGHTING EUROPE - PRODUCT CATALOGUE, 'Online! 1998, XP002128583 Retrieved from the Internet: <URL:http://www.eur.lighting.philips.com/products/group_1/products/5299.shtml> 'retrieved on 2000-01-20!</p> <p>-----</p>	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DE 99/02364

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 0682356	A 15-11-1995	JP	7307142 A	21-11-1995
		JP	7320688 A	08-12-1995
		DE	682356 T	02-05-1996
		US	5646472 A	08-07-1997
US 3753019	A 14-08-1973	NONE		
DE 4317252	C 05-05-1994	US	5576591 A	19-11-1996
DE 19608042	A 04-09-1997	WO	9732158 A	04-09-1997
		EP	0880657 A	02-12-1998
US 4410828	A 18-10-1983	BR	8203444 A	07-06-1983
		EP	0066736 A	15-12-1982
		JP	57202635 A	11-12-1982
		JP	63029940 B	15-06-1988
		MX	151743 A	18-02-1985
DE 4026022	A 20-02-1992	NONE		
WO 9932575	A 01-07-1999	EP	0924746 A	23-06-1999
		EP	0970160 A	12-01-2000

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 99/02364

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 7 H01J61/40 H01J61/44 H01J61/12 H01J61/35 H01J61/52
 H01J61/34 H01J65/04

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 H01J

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	SIGURDSSON V ET AL: "PHARMACOLOGY AND TREATMENT. PHOTOTHERAPY OF ACNE VULGARIS WITH VISIBLE LIGHT" DERMATOLOGY, Bd. 194, Nr. 3, Seite 256-260 XP000863088 ISSN: 1018-8665 in der Anmeldung erwähnt	1,6, 11-14
Y A	Seite 257, linke Spalte, Zeile 21 - Zeile 31; Abbildung 2 ---	5,7 3
Y	EP 0 682 356 A (IWASAKI ELECTRIC CO LTD) 15. November 1995 (1995-11-15) Zusammenfassung; Abbildung 1 Seite 5, Zeile 8 - Zeile 11 Seite 15, Zeile 46 - Zeile 47 ---	5,11 -/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

"8" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

25. Januar 2000

10/02/2000

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Martin Vicente, M

INTERNATIONALER RECHERCHENBERICHT

I. nationales Aktenzeichen

PCT/DE 99/02364

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	US 3 753 019 A (HELLMAN W) 14. August 1973 (1973-08-14) Zusammenfassung; Abbildungen 1-3 Spalte 6, Zeile 10 – Zeile 25 ---	5,11
Y	DE 43 17 252 C (BLV LICHT- UND VAKUUMTECHNIK GMBH) 5. Mai 1994 (1994-05-05) Spalte 3, Zeile 16 – Zeile 31 ---	7
Y	DE 196 08 042 A (IMAB STIFTUNG) 4. September 1997 (1997-09-04) Spalte 2, Zeile 49 – Zeile 53; Anspruch 7 ---	7
A	US 4 410 828 A (ERNEST PAUL W) 18. Oktober 1983 (1983-10-18) Spalte 1, Zeile 10 – Zeile 24 Spalte 1, Zeile 64 – Spalte 2, Zeile 14 ---	2,7
A	PHILIPS ELECTRONICS N.V.: "Lamps & Accessories – Special fluorescent – Reprography" PHILIPS LIGHTING EUROPE – PRODUCT CATALOGUE, 'Online! 1998, XP002128581 Retrieved from the Internet: <URL: http://www.eur.lighting.philips.com/products/group_1/products/5284.shtml > 'retrieved on 2000-01-20! -& "Special fluorescent lamps – Reprography" PHILIPS CATALOGUE – 5284.PDF, 'Online! XP002128586 Retrieved from the Internet: <URL: http://www.eur.lighting.philips.com/products/group_1/products/5284.pdf > 'retrieved on 2000-01-20! ---	2
A	DE 40 26 022 A (MUTZHAS MAXIMILIAN F) 20. Februar 1992 (1992-02-20) Zusammenfassung ---	1
P,A	WO 99 32575 A (PHILIPS PATENTVERWALTUNG ;KONINKL PHILIPS ELECTRONICS NV (NL); PHI) 1. Juli 1999 (1999-07-01) Seite 1, Zeile 5 – Zeile 8 ---	2
		-/-

INTERNATIONALER RECHERCHENBERICHT

In nationales Aktenzeichen

PCT/DE 99/02364

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
T	<p>SIEGFRIED FISCHER: "The optimum marine aquarium and its technology; An introduction for beginners - Lighting Part 2"</p> <p>AQUARIUM HEUTE, 'Online! Nr. 4/97, Seiten 1/6-6/6, XP002128582 Retrieved from the Internet: <URL:http://www.dupla.com/e041.htm> 'retrieved on 2000-01-20! Seite 4, Zeile 13 - Zeile 15; Abbildung</p> <p>---</p>	
T	<p>PHILIPS ELECTRONICS N.V.: "Lamps & Accessories - Special H.I.D. - Metal halide reprography"</p> <p>PHILIPS LIGHTING EUROPE - PRODUCT CATALOGUE, 'Online! 1998, XP002128583 Retrieved from the Internet: <URL:http://www.eur.lighting.philips.com/products/group_1/products/5299.shtml> 'retrieved on 2000-01-20!</p> <p>---</p>	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Ir. nationales Aktenzeichen

PCT/DE 99/02364

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
EP 0682356 A	15-11-1995	JP	7307142 A	21-11-1995	
		JP	7320688 A	08-12-1995	
		DE	682356 T	02-05-1996	
		US	5646472 A	08-07-1997	
US 3753019 A	14-08-1973	KEINE			
DE 4317252 C	05-05-1994	US	5576591 A	19-11-1996	
DE 19608042 A	04-09-1997	WO	9732158 A	04-09-1997	
		EP	0880657 A	02-12-1998	
US 4410828 A	18-10-1983	BR	8203444 A	07-06-1983	
		EP	0066736 A	15-12-1982	
		JP	57202635 A	11-12-1982	
		JP	63029940 B	15-06-1988	
		MX	151743 A	18-02-1985	
DE 4026022 A	20-02-1992	KEINE			
WO 9932575 A	01-07-1999	EP	0924746 A	23-06-1999	
		EP	0970160 A	12-01-2000	