Grupos Y Anillos

 $-\ Alto,\ polic\'ia,\ ha\ cometido\ usted\ un\ crimen.$

- Lo asumo.

- Lo arresto.

Índice de Contenidos

1 Resolucion Ejercicios

1

1 Resolucion Ejercicios

Caulquiera podrá interpretar el propósito de esta sección a partir del encabezado. Se redactaran solo aquellos ejercicios que susciten un interés especial (bajo mi criterio).

- **1.1.7** Demostrar que si (X,*) es un monoide finito $y \ x \in X$ entonces las siguientes condiciones son equivalentes:
 - (i) x es cancelable por un lado.
 - (ii) x es cancelable.
 - (iii) x tiene simétrico por un lado.
 - (iv) x es simétrico.

DEMOSTRACIÓN: El flujo de la prueba va a ser el siguiente: suponer x cancelable por la izquierda y concluir que x tiene simétrico por la derecha, para deducir, seguidamente, que x es cancelable por la derecha. Queda a las necesidades de cada uno convencerse de la suficiencia de este argumento.

Supongamos x cancelable por la izquierda y definamos la aplicación $f: X \to X$ dada por

$$f(a) = x * a.$$

Bajo estas hipótesis, f es biyectiva. En efecto, para probar la inyectividad aplicamos el ser x cancelable y llegamos a que

$$f(a) = f(a') \Rightarrow x * a = x * a' \Rightarrow a = a'.$$

Más aún, gracias a un resultado del ejercicio 1.1.2, como X es un conjunto finito f es además sobreyectiva (o, si me permites, biyectiva). En consecuencia, para e el nuetro de X, existe $a \in X$ cumpliendo f(a) = e, por lo que, en definitiva, nos queda

$$x * a = f(a) = e$$

es decir, x tiene simétrico por la derecha.

Siguiendo esta línea, veamos que x es cancelable por la derecha, suponiendo para ello $y, z \in X$ arbitrarios tales que y * x = z * x. El único paso restante es comprobar que

$$y = y * e = y * x * a = z * x * a = z * e = z.$$

Q.e.d.

1.1.8 Sea * una operación en un conjunto X y supongamos que * tiene un neutro y tres elementos a, b, c tales que $a \neq c$, b es el simétrico por la izquierda de a y c es el simétrico por la izquierda de b. Demostrar que * no es asociativa.

DEMOSTRACIÓN: Es un razonamiento directo, únicamente es necesario examinar la expresión c*b*a:

$$(c*b)*a = e*a = a \neq c = c*e = c*(b*a).$$

Q.E.D.

Concluir que si (M,*) es un monoide en el que todo elemento tiene simétrico por la izquierda, entonces (M,*) es un grupo.

DEMOSTRACIÓN: Sea $a \in M$ arbitrario. Por hipótesis, a tiene simétrico por la izquierda, digámosle b, y este, a su vez, tiene también simétrico por la izquierda c. No obstante, como * es conmutativa, para no llegar a contradicción al aplicar el resultado anterior, se debe dar a = c. En consecuencia, para terminar, nos queda que

$$a * b = c * b = e,$$
$$b * a = e,$$

por lo que a es invertible.

Q.E.D.

1.2.2 Sea $m \in \mathbb{Z}$. Demostrar que si m no es cuadrado en \mathbb{Z} , entonces tampoco es un cuadrado en \mathbb{Q} .

DEMOSTRACIÓN: Nos ocuparemos, en su lugar, de probar el contrarrecíproco de la proposición del enunciado. Suponemos $m=q^2$ donde $q=a/b\in\mathbb{Q}, a,b\in\mathbb{Z}$ y $\operatorname{mcd}(a,b)=1$. En consecuencia, deducimos que

$$m = \frac{a^2}{b^2},$$

y al despejar $a^2 = b^2 m$ notamos que

$$a^2 = b(bm) \Longrightarrow b \mid a^2,$$

donde invocamos el Lema de Euclides para obtener $b \mid a$. No obstante, como a y b eran coprimos, la única causa justificada es que b = 1, por lo que concluimos finalmente que $m = a^2$. Q.E.D.