MA 203: Tutorial Sheet 4: Probability Assignment Submission Deadline: 28/09/2018

* Problems to be submitted as Assignment

- 1. Find the cdf and pdf of $Y = \cos(X)$ where X is uniform on $(0, 2\pi]$.
- 2. Find the pdf of X = -log(1 U) where U is a uniform random variable in (0, 1).
- *3. Let Y = |X| where X is an arbitrary continuous random variable.
 - (a) Find the cdf of Y by finding the equivalent event of $\{Y \leq y\}$. Find the pdf of Y by differentiation of the cdf.
 - (b) Find the pdf of Y by finding the equivalent event of $\{y < Y < y + dy\}$. Does the answer agree with part (a)?
 - (c) What is the pdf of Y if $f_X(x)$ is an even function of x?
- 4. Let $Y = e^X$ where X is an arbitrary continuous random variable.
 - (a) Find the cdf and pdf of Y in terms of the cdf and pdf of X.
 - (b) Find the pdf of Y when X is a Gaussian random variable.
- 5. Compare the Chebyshev inequality and the exact probability for the event $\{|X-m| > a\}$ as a function of a for:
 - *(a) X is a uniform random variable in the interval [-b, b].
 - (b) X is a Poission random variable with parameter α .
 - (c) X is a zero-mean Gaussian random variable.
 - *(d) X is a binomial random variable with n = 10, p = 0.5.
- 6. Suppose that light bulbs have exponentially distributed lifetimes with unknown mean E[X]. Suppose we measure the lifetime of n light bulbs, and we estimate the mean E[X] by the arithmetic average Y of the measurements. Apply the Chebyshev inequality to the event $\{|Y E(X)| > a\}$. What happens as $n \to \infty$?
- *7. Find the Chernoff bound for the exponential random variable with $\lambda = 1$. Compare the bound to the exact value for P(X > 5).
- 8. Let X be a Poisson random variable with parameter $\alpha = 1$. Compare the Chernoff bound and the exact value for $P(X \ge 5)$.
- *9. Show that the Chernoff bound for X, a Poisson random variable with mean α , is $P[X \ge a] \le e^{-a \log(a/\alpha) + a \alpha}$ for $a > \alpha$.
- 10. Show that the Chernoff bound for X, a Gaussian random variable with mean μ and variance σ^2 is $P[X \ge a] \le e^{-(a-\mu)/2\sigma^2}$, $a > \mu$.

- *11. Let $\Phi_X(\omega)$ be the characteristic function of an exponential random variable. What random variable does $\Phi_X^n(\omega)$ correspond to?
 - 12. The Laplace transform of the pdf of a random variable X is given by:

$$X^*(s) = \frac{ab}{(s+a)(s+b)}.$$

Find the pdf of X.