1a Avaluació	Tecnologia i enginyeria	2n Batxillerat
Termodinàmica		Data:
Nom i cognoms:		Qualificació:

Instruccions: Feu els exercicis a l'espai que se us proporciona. Feu servir la cara posterior si necessiteu més espai, indiqueu-ho clarament en aquest cas. Heu d'identificar clarament les respostes i mostrar el procés per tal d'aconseguir la màxima puntuació. La puntuació dels exercicis es dona entre parèntesis.

- 1. Algú ens ha parlat d'una màquina tèrmica que treballa entre dues fonts a temperatures $T_c = 60^{\circ}\,C$ i $T_h = 800^{\circ}\,C$. Si ens diuen que aquesta màquina pot extreure $400\,J$ de calor de la font calenta i fer $150\,J$ de treball. Es demana:
 - (a) (1 pt) Feu els càlculs necessaris per tal de decidir si aquesta màquina tèrmica pot existir o no.
 - (b) (1 pt) Calculeu la calor que la màquina cedeix a la font freda.
- 2. A l'estiu, volem mantenir la temperatura d'un habitatge a $T_c = 24^{\circ} C$ mentre que a l'exterior és de $T_h = 34^{\circ} C$, amb una bomba de calor que té un COP = 4. Suposeu que cada segon entren des de l'exterior, per diferents punts mal tancats, 4224 J. Es demana:
 - (a) (1 pt) Calculeu la potència que ha de tenir la bomba (calculeu el treball que ha de fer cada segon tenint en compte el seu COP) per tal d'evacuar aquesta calor.
 - (b) (1 pt) Calculeu el COP que tindria la bomba si fos ideal.

3.	Suposem que un congelador que tenim a casa segueix el cicle de Carnot i refreda a un ritme de $850kJ/h$. La temperatura a l'interior del congelador ha de ser de $T_c=-20^\circC$ i a la cuina on es troba la temperatura val $T_h=21^\circC$. Es demana:
	(a) (1 pt) Calculeu la potència que ha de tenir aquest congelador.
	(b) (1 pt) La potència que hauria de tenir si volguéssim que el rendiment fos del 50% del corresponent frigorífic ideal.
4.	Es desitja climatitzar una nau industrial a $T=25^{\circ}C$ mitjançant una bomba de calor (que suposarem ideal) de potència $2,5kW$. Si la temperatura exterior és de $T=5^{\circ}C$, es demana:
	(a) (1 pt) Calculeu l'eficiència d'aquesta bomba de calor.
	(b) (1 pt) Calculeu la calor cedida al focus calent en una hora.
	(c) (1 pt) Calculeu la calor absorbida del focus fred en una hora.
5.	Calculeu el treball que fa un mol de gas $(\gamma=1,4,R=8,31Pam^3/molK)$ al expandir-se segons els següents processos
	(a) (1 pt) A pressió constant $(150000Pa)$ quan passa de $20L$ a $35L$.
	(b) (1 pt) A temperatura constant $(T = 300 K)$ quan passa de 71 L a 192 L .