Let X_n , $n = 0, 1, \cdots$ be a sequence of discrete random variables taking values in S.

- Let X_n , $n = 0, 1, \cdots$ be a sequence of discrete random variables taking values in S.
- ► We say it is a Markov chain if

$$Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1} \cdots X_0 = x_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n]$$

- Let X_n , $n = 0, 1, \cdots$ be a sequence of discrete random variables taking values in S.
- ▶ We say it is a Markov chain if

$$Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1} \cdots X_0 = x_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n]$$

We can write it as

$$f_{X_{n+1}|X_n,\dots X_0}(x_{n+1}|x_n,\dots,x_0) = f_{X_{n+1}|X_n}(x_{n+1}|x_n), \ \forall x_i$$

- Let X_n , $n = 0, 1, \cdots$ be a sequence of discrete random variables taking values in S.
- ▶ We say it is a Markov chain if

$$Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1} \cdots X_0 = x_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n]$$

We can write it as

$$f_{X_{n+1}|X_n,\cdots X_0}(x_{n+1}|x_n,\cdots,x_0) = f_{X_{n+1}|X_n}(x_{n+1}|x_n), \ \forall x_i$$

► For a Markov chain, given the current state, the future evolution is independent of the history of how you reached the current state

▶ Transition probabilities: $P(x,y) = Pr[X_{n+1} = y | X_n = x]$

► Transition probabilities: $P(x,y) = Pr[X_{n+1} = y | X_n = x]$ Chain is homogeneous:

$$Pr[X_{n+1} = y | X_n = x] = Pr[X_1 = y | X_0 = x], \ \forall n$$

► Transition probabilities: $P(x,y) = Pr[X_{n+1} = y | X_n = x]$ Chain is homogeneous: $Pr[X_{n+1} = y | X_n = x] = Pr[X_1 = y | X_0 = x], \forall n$

▶ Initial probabilities $\pi_0(x) = Pr[X_0 = x]$

- Transition probabilities: $P(x,y) = Pr[X_{n+1} = y | X_n = x]$ Chain is homogeneous:
 - $Pr[X_{n+1} = y | X_n = x] = Pr[X_1 = y | X_0 = x], \ \forall n$
- ▶ Initial probabilities $\pi_0(x) = Pr[X_0 = x]$
- ightharpoonup Similarly, $\pi_n(x) = Pr[X_n = x]$

Recap: Chapman-Kolmogorov Equations

▶ *n*-step transition probabilities:

$$P^n(x,y) = Pr[X_n = y | X_0 = x]$$

Recap: Chapman-Kolmogorov Equations

► *n*-step transition probabilities: $P^n(x, y) = Pr[X_n = y | X_0 = x]$

► These satisfy Chapman-Kolmogorov equations:

$$P^{m+n}(x,y) = \sum_{x} P^m(x,z)P^n(z,y)$$

Recap: Chapman-Kolmogorov Equations

► *n*-step transition probabilities: $P^n(x, y) = Pr[X_n = y | X_0 = x]$

► These satisfy Chapman-Kolmogorov equations:

$$P^{m+n}(x,y) = \sum_{z} P^{m}(x,z)P^{n}(z,y)$$

► For a finite chain, the *n*-step transition probability matrix is *n*-fold product of the transition probability matrix

▶ Hitting time for y: $T_y = \min\{n > 0 : X_n = y\}$

- ▶ Hitting time for y: $T_y = \min\{n > 0 : X_n = y\}$
- $P_{xy} = P_x(T_y < \infty).$

- ▶ Hitting time for y: $T_y = \min\{n > 0 : X_n = y\}$
- $P_{xy} = P_x(T_y < \infty).$
- A state y is called transient if $\rho_{yy} < 1$; it is called recurrent if $\rho_{yy} = 1$.

- ▶ Hitting time for y: $T_y = \min\{n > 0 : X_n = y\}$
- $P_{xy} = P_x(T_y < \infty).$
- A state y is called transient if $\rho_{yy} < 1$; it is called recurrent if $\rho_{yy} = 1$.
- ightharpoonup N(y) total number of visits to y

- ▶ Hitting time for y: $T_y = \min\{n > 0 : X_n = y\}$
- $P_{xy} = P_x(T_y < \infty).$
- A state y is called transient if $\rho_{yy} < 1$; it is called recurrent if $\rho_{yy} = 1$.
- ightharpoonup N(y) total number of visits to y
- $G(x,y) = E_x[N(y)]$

Theorem:

Theorem:

(i). Let y be transient. Then

$$P_x(N(y)<\infty)=1, \ \forall x \ \text{ and } \ G(x,y)=\frac{\rho_{xy}}{1-\rho_{yy}}<\infty, \ \forall x$$

Theorem:

(i). Let y be transient. Then

$$P_x(N(y)<\infty)=1, \ \forall x \ \text{ and } \ G(x,y)=\frac{\rho_{xy}}{1-\rho_{yy}}<\infty, \ \forall x$$

(ii) Let y be recurrent. Then

$$P_y[N(y)=\infty]=1, \ \ \text{and} \ \ G(y,y)=E_y[N(y)]=\infty$$

Theorem:

(i). Let y be transient. Then

$$P_x(N(y) < \infty) = 1, \ \forall x \ \text{ and } \ G(x,y) = \frac{\rho_{xy}}{1 - \rho_{yy}} < \infty, \ \forall x$$

(ii) Let y be recurrent. Then

$$P_y[N(y)=\infty]=1, \ \text{ and } \ G(y,y)=E_y[N(y)]=\infty$$

$$P_x[N(y)=\infty]=\rho_{xy}, \quad \text{and} \quad G(x,y)=\left\{ \begin{array}{ll} 0 & \text{if} \quad \rho_{xy}=0 \\ \infty & \text{if} \quad \rho_{xy}>0 \end{array} \right.$$

► Transient states are visited only finitely many times while recurrent states are visited infinitely often

- ► Transient states are visited only finitely many times while recurrent states are visited infinitely often
- ▶ A finite chain should have at least one recurrent state

- ► Transient states are visited only finitely many times while recurrent states are visited infinitely often
- ▶ A finite chain should have at least one recurrent state
- ▶ We say, x leads to y if $\rho_{xy} > 0$

- ► Transient states are visited only finitely many times while recurrent states are visited infinitely often
- ▶ A finite chain should have at least one recurrent state
- ▶ We say, x leads to y if $\rho_{xy} > 0$ Theorem: If x is recurrent and x leads to y then y is recurrent and $\rho_{xy} = \rho_{yx} = 1$.

▶ A set of states, $C \subset S$ is said to be irreducible if x leads to y for all $x, y \in C$

- A set of states, $C \subset S$ is said to be irreducible if x leads to y for all $x,y \in C$
- ▶ An irreducible set is also called a communicating class

- A set of states, $C \subset S$ is said to be irreducible if x leads to y for all $x,y \in C$
- ▶ An irreducible set is also called a communicating class
- A set of states, $C \subset S$, is said to be closed if $x \in C, \ y \notin C$ implies $\rho_{xy} = 0$.

- A set of states, $C \subset S$ is said to be irreducible if x leads to y for all $x,y \in C$
- ▶ An irreducible set is also called a communicating class
- ▶ A set of states, $C \subset S$, is said to be closed if $x \in C$, $y \notin C$ implies $\rho_{xy} = 0$.
- Once the chain visits a state in a closed set, it cannot leave that set.

Recap: Partition of state space

 $ightharpoonup S = S_T + S_R$, transient and recurrent states

Recap: Partition of state space

 $ightharpoonup S = S_T + S_R$, transient and recurrent states and

$$S_R = C_1 + C_2 + \cdots$$

where C_i are closed and irreducible

Recap: Partition of state space

 $ightharpoonup S = S_T + S_R$, transient and recurrent states and

$$S_R = C_1 + C_2 + \cdots$$

where C_i are closed and irreducible

ightharpoonup We can calculate absorption probabilities for C_i using

$$\rho_C(x) = \sum_{y \in C} P(x, y) + \sum_{y \in S_T} P(x, y) \ \rho_C(y)$$

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

lacktriangledown is said to be a stationary distribution for the Markov chain with transition probabilities P if

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

► For finite chains, $P^T\pi = \pi$

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \quad \forall y \in S$$

- ▶ For finite chains, $P^T\pi = \pi$
- When π is stationary distribution, $\pi_0 = \pi \implies \pi_n = \pi, \ \forall n$

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

- ▶ For finite chains, $P^T\pi = \pi$
- When π is stationary distribution, $\pi_0 = \pi \implies \pi_n = \pi, \ \forall n$
- ▶ If $\pi_n = \pi$, $\forall n$ then π is a stationary distribution

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \quad \forall y \in S$$

- ▶ For finite chains, $P^T\pi = \pi$
- When π is stationary distribution, $\pi_0 = \pi \implies \pi_n = \pi, \ \forall n$
- ▶ If $\pi_n = \pi$, $\forall n$ then π is a stationary distribution
- For a finite chain, a stationary distribution always exists.

Recap: Stationary distribution

lacktriangledown is said to be a stationary distribution for the Markov chain with transition probabilities P if

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \quad \forall y \in S$$

- For finite chains, $P^T\pi = \pi$
- When π is stationary distribution, $\pi_0 = \pi \implies \pi_n = \pi, \ \forall n$
- ▶ If $\pi_n = \pi$, $\forall n$ then π is a stationary distribution
- For a finite chain, a stationary distribution always exists.
- ► The stationary distribution, when it exists, is related to expected fraction of time spent in different states.

▶ Let $I_y(X_n)$ be indicator of $[X_n = y]$

- ▶ Let $I_y(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_m)$

- ▶ Let $I_y(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_m)$

$$G_n(x,y) \triangleq E_x[N_n(y)]$$

- ▶ Let $I_y(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_m)$

$$G_n(x,y) \triangleq E_x[N_n(y)] = \sum_{n=1}^n E_x[I_y(X_m)]$$

- ▶ Let $I_{\nu}(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_m)$

$$G_n(x,y) \triangleq E_x[N_n(y)] = \sum_{m=1}^n E_x[I_y(X_m)] = \sum_{m=1}^n P^m(x,y)$$

- ▶ Let $I_v(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_m)$

$$G_n(x,y) \triangleq E_x[N_n(y)] = \sum_{m=1}^n E_x[I_y(X_m)] = \sum_{m=1}^n P^m(x,y)$$

ightharpoonup Expected fraction of time spent in y till n is

$$\frac{G_n(x,y)}{n} = \frac{1}{n} \sum_{n=1}^{n} P^m(x,y)$$

- ▶ Let $I_{\nu}(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_m)$

$$G_n(x,y) \triangleq E_x[N_n(y)] = \sum_{m=1}^n E_x[I_y(X_m)] = \sum_{m=1}^n P^m(x,y)$$

Expected fraction of time spent in y till n is

$$\frac{G_n(x,y)}{n} = \frac{1}{n} \sum_{m=1}^n P^m(x,y)$$

 \blacktriangleright We will first establish a limit for the above as $n \to \infty$

ightharpoonup Suppose y is transient. Then we have

$$\lim_{n\to\infty} N_n(y) = N(y)$$

$$\lim_{n\to\infty}N_n(y)=N(y)$$
 and
$$Pr[N(y)<\infty]=1 \quad \lim_{n\to\infty}G_n(x,y)=G(x,y)<\infty$$

$$\lim_{n\to\infty} N_n(y) = N(y)$$
 and
$$Pr[N(y) < \infty] = 1 \quad \lim_{n\to\infty} G_n(x,y) = G(x,y) < \infty$$

$$\Rightarrow \quad \lim_{n\to\infty} \frac{N_n(y)}{n} = 0 \ (w.p.1) \quad \text{and} \quad \lim_{n\to\infty} \frac{G_n(x,y)}{n} = 0$$

$$\begin{split} &\lim_{n\to\infty}N_n(y)=N(y)\\ \text{and} &⪻[N(y)<\infty]=1 \quad \lim_{n\to\infty}G_n(x,y)=G(x,y)<\infty\\ \Rightarrow &&\lim_{n\to\infty}\frac{N_n(y)}{n}=0\;(w.p.1)\quad\text{and}\quad \lim_{n\to\infty}\frac{G_n(x,y)}{n}=0 \end{split}$$

► The expected fraction of time spent in a transient state is zero.

 \triangleright Suppose y is transient. Then we have

$$\begin{split} &\lim_{n\to\infty}N_n(y)=N(y)\\ \text{and} &⪻[N(y)<\infty]=1 \quad \lim_{n\to\infty}G_n(x,y)=G(x,y)<\infty\\ \Rightarrow &&\lim_{n\to\infty}\frac{N_n(y)}{n}=0\;(w.p.1)\quad\text{and}\quad \lim_{n\to\infty}\frac{G_n(x,y)}{n}=0 \end{split}$$

- ► The expected fraction of time spent in a transient state is zero.
- ► This is intuitively obvious

ightharpoonup Now, let y be recurrent

- ▶ Now, let *y* be recurrent
- ▶ Then, $P_y[T_y < \infty] = 1$

- ▶ Now, let *y* be recurrent
- ▶ Then, $P_y[T_y < \infty] = 1$
- ▶ Define $m_y = E_y[T_y]$

- ▶ Now, let *y* be recurrent
- ▶ Then, $P_y[T_y < \infty] = 1$
- ▶ Define $m_y = E_y[T_y]$
- $ightharpoonup m_y$ is mean return time to y

- ▶ Now, let *y* be recurrent
- ▶ Then, $P_{u}[T_{u} < \infty] = 1$
- ▶ Define $m_y = E_y[T_y]$
- $ightharpoonup m_y$ is mean return time to y
- ▶ We will show that $\frac{N_n(y)}{n}$ converges to $\frac{1}{m_y}$ if the chain starts in y.

- ▶ Now, let *y* be recurrent
- ▶ Then, $P_y[T_y < \infty] = 1$
- ▶ Define $m_y = E_y[T_y]$
- $ightharpoonup m_y$ is mean return time to y
- ▶ We will show that $\frac{N_n(y)}{n}$ converges to $\frac{1}{m_y}$ if the chain starts in y.
- ► Convergence would be with probability one.

ightharpoonup Consider a chain started in y

- Consider a chain started in y
- let T_y^r be time of r^{th} visit to y, $r \ge 1$

- Consider a chain started in y
- ▶ let T_y^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- Consider a chain started in y
- ▶ let T_y^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r - T_y^{r-1}, \quad r > 1$

- Consider a chain started in y
- let T_u^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- ▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r T_y^{r-1}, r > 1$
- lacksquare Note that $E_y[W_y^1]=E_y[T_y]=m_y$

- Consider a chain started in y
- let T_y^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- ▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r T_y^{r-1}, r > 1$
- Note that $E_y[W_y^1] = E_y[T_y] = m_y$
- ightharpoonup Also, $T_y^r = W_y^1 + \cdots + W_y^r$

- Consider a chain started in y
- let T_y^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- ▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r T_y^{r-1}, r > 1$
- Note that $E_y[W_y^1] = E_y[T_y] = m_y$
- $\blacktriangleright \text{ Also, } T_y^r = W_y^1 + \dots + W_y^r$
- $ightharpoonup W_u^r$ are the "waiting times"

- Consider a chain started in y
- let T_y^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- ▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r T_y^{r-1}, r > 1$
- Note that $E_y[W_y^1] = E_y[T_y] = m_y$
- ightharpoonup Also, $T_y^r = W_y^1 + \cdots + W_y^r$
- $ightharpoonup W_u^r$ are the "waiting times"
- By Markovian property we should expect them to be iid

- Consider a chain started in y
- let T_y^r be time of r^{th} visit to y, $r \geq 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- ▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r T_y^{r-1}, r > 1$
- Note that $E_y[W_y^1] = E_y[T_y] = m_y$
- ightharpoonup Also, $T_y^r = W_y^1 + \cdots + W_y^r$
- $ightharpoonup W_u^r$ are the "waiting times"
- ▶ By Markovian property we should expect them to be iid
- ► We will prove this.

- Consider a chain started in y
- let T_y^r be time of r^{th} visit to y, $r \ge 1$

$$T_y^r = \min\{n \ge 1 : N_n(y) = r\}$$

- ▶ Define $W_y^1 = T_y^1 = T_y$ and $W_y^r = T_y^r T_y^{r-1}, r > 1$
- Note that $E_y[W_y^1] = E_y[T_y] = m_y$
- ightharpoonup Also, $T_y^r = W_y^1 + \cdots + W_y^r$
- $ightharpoonup W_u^r$ are the "waiting times"
- ▶ By Markovian property we should expect them to be iid
- ► We will prove this.
- ▶ Then T_u^r/r converges to m_y by law of large umbers

We have

$$Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] =$$

$$Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] = \\ Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1+k_2+k_3} = y \mid B] \\ \text{where } B = [X_{k_1+k_2} = y, \ X_{k_1} = y, \ X_j \neq y, j < k_1 + k_2, j \neq k_1]$$

$$\begin{split} Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] &= \\ Pr[X_{k_1 + k_2 + j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1 + k_2 + k_3} = y \mid B] \end{split}$$
 where $B = [X_{k_1 + k_2} = y, \ X_{k_1} = y, \ X_j \neq y, j < k_1 + k_2, j \neq k_1]$

Using the Markovian property, we get

We have

$$\begin{split} Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] &= \\ Pr[X_{k_1 + k_2 + j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1 + k_2 + k_3} = y \mid B] \\ \text{where} \ B = [X_{k_1 + k_2} = y, \ X_{k_1} = y, \ X_j \neq y, j < k_1 + k_2, j \neq k_1] \end{split}$$

▶ Using the Markovian property, we get

$$Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] =$$

$$Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1+k_2+k_3} = y \mid X_{k_1+k_2} = y]$$

$$\begin{split} Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] &= \\ Pr[X_{k_1 + k_2 + j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1 + k_2 + k_3} = y \mid B] \\ \text{where} \ B = [X_{k_1 + k_2} = y, \ X_{k_1} = y, \ X_j \neq y, j < k_1 + k_2, j \neq k_1] \end{split}$$

▶ Using the Markovian property, we get

$$Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] =$$

$$Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1+k_2+k_3} = y \mid X_{k_1+k_2} = y]$$

$$= Pr[X_j \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_3} = y \mid X_0 = y]$$

► We have

$$\begin{split} Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] &= \\ Pr[X_{k_1 + k_2 + j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1 + k_2 + k_3} = y \mid B] \end{split}$$
 where $B = [X_{k_1 + k_2} = y, \ X_{k_1} = y, \ X_j \neq y, j < k_1 + k_2, j \neq k_1]$

▶ Using the Markovian property, we get

$$Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] =$$

$$Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1+k_2+k_3} = y \mid X_{k_1+k_2} = y]$$

$$= Pr[X_j \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_3} = y \mid X_0 = y]$$

$$= P_y[W_y^1 = k_3]$$

We have

$$\begin{split} Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] &= \\ Pr[X_{k_1 + k_2 + j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1 + k_2 + k_3} = y \mid B] \\ \text{where } &B = [X_{k_1 + k_2} = y, \ X_{k_1} = y, \ X_j \neq y, j < k_1 + k_2, j \neq k_1] \end{split}$$

▶ Using the Markovian property, we get

$$Pr[W_y^3 = k_3 | W_y^2 = k_2, W_y^1 = k_1] =$$

$$Pr[X_{k_1+k_2+j} \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_1+k_2+k_3} = y \mid X_{k_1+k_2} = y]$$

$$= Pr[X_j \neq y, \ 1 \leq j \leq k_3 - 1, \ X_{k_3} = y \mid X_0 = y]$$

$$= P_y[W_y^1 = k_3]$$

▶ In general, we get

$$Pr[W_y^r = k_r \mid W_y^{r-1} = k_{r-1}, \cdots, W_y^1 = k_1] = P_y[W_y^1 = k_r]$$

$$P_y[W_y^2 = k_2] = \sum_{k} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] P_y[W_y^1 = k_1]$$

$$P_y[W_y^2 = k_2] = \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] P_y[W_y^1 = k_1]$$
$$= \sum_{k_1} P_y[W_y^1 = k_2] P_y[W_y^1 = k_1]$$

$$\begin{split} P_y[W_y^2 = k_2] &= \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] \; P_y[W_y^1 = k_1] \\ &= \sum_{k_1} P_y[W_y^1 = k_2] \; P_y[W_y^1 = k_1] \\ &= P_y[W_y^1 = k_2] \end{split}$$

$$P_y[W_y^2 = k_2] = \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] P_y[W_y^1 = k_1]$$

$$= \sum_{k_1} P_y[W_y^1 = k_2] P_y[W_y^1 = k_1]$$

$$= P_y[W_y^1 = k_2]$$

$$P_y[W_y^2 = k_2] = \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] P_y[W_y^1 = k_1]$$

$$= \sum_{k_1} P_y[W_y^1 = k_2] P_y[W_y^1 = k_1]$$

$$= P_y[W_y^1 = k_2]$$

$$P_y[W_y^2 = k_2, \ W_y^1 = k_1] \ = \ P_y[W_y^2 = k_2 \mid W_y^1 = k_1]P_y[W_y^1 = k_1]$$

$$\begin{split} P_y[W_y^2 = k_2] &= \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] \; P_y[W_y^1 = k_1] \\ &= \sum_{k_1} P_y[W_y^1 = k_2] \; P_y[W_y^1 = k_1] \\ &= P_y[W_y^1 = k_2] \end{split}$$

$$\begin{split} P_y[W_y^2 = k_2, \ W_y^1 = k_1] &= P_y[W_y^2 = k_2 \mid W_y^1 = k_1] P_y[W_y^1 = k_1] \\ &= P_y[W_y^1 = k_2] \ P_y[W_y^1 = k_1] \end{split}$$

$$\begin{split} P_y[W_y^2 = k_2] &= \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] \; P_y[W_y^1 = k_1] \\ &= \sum_{k_1} P_y[W_y^1 = k_2] \; P_y[W_y^1 = k_1] \\ &= P_y[W_y^1 = k_2] \end{split}$$

$$\begin{split} P_y[W_y^2 = k_2, \ W_y^1 = k_1] &= P_y[W_y^2 = k_2 \mid W_y^1 = k_1] P_y[W_y^1 = k_1] \\ &= P_y[W_y^1 = k_2] \ P_y[W_y^1 = k_1] \\ &= P_y[W_y^2 = k_2] \ P_y[W_y^1 = k_1] \end{split}$$

$$P_y[W_y^2 = k_2] = \sum_{k_1} P_y[W_y^2 = k_2 \mid W_y^1 = k_1] P_y[W_y^1 = k_1]$$

$$= \sum_{k_1} P_y[W_y^1 = k_2] P_y[W_y^1 = k_1]$$

$$= P_y[W_y^1 = k_2]$$

⇒ identically distributed

$$P_{y}[W_{y}^{2} = k_{2}, W_{y}^{1} = k_{1}] = P_{y}[W_{y}^{2} = k_{2} | W_{y}^{1} = k_{1}]P_{y}[W_{y}^{1} = k_{1}]$$

$$= P_{y}[W_{y}^{1} = k_{2}] P_{y}[W_{y}^{1} = k_{1}]$$

$$= P_{y}[W_{y}^{2} = k_{2}] P_{y}[W_{y}^{1} = k_{1}]$$

⇒ independent

▶ We have shown W_y^r , $r = 1, 2, \cdots$ are iid

- ▶ We have shown W_u^r , $r = 1, 2, \cdots$ are iid
- ▶ Since $E[W_u^1] = m_y$, by strong law of large numbers,

$$\lim_{k \to \infty} \frac{T_y^k}{k} = \lim_{k \to \infty} \frac{1}{k} \sum_{r=1}^k W_y^r = m_y, \quad (w.p.1)$$

- ▶ We have shown W_u^r , $r = 1, 2, \cdots$ are iid
- ▶ Since $E[W_u^1] = m_y$, by strong law of large numbers,

$$\lim_{k \to \infty} \frac{T_y^k}{k} = \lim_{k \to \infty} \frac{1}{k} \sum_{r=1}^k W_y^r = m_y, \quad (w.p.1)$$

▶ Note that this is true even if $m_y = \infty$

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

 $ightharpoonup N_n(y)$ is the number of visits to y till time step n

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

- $ightharpoonup N_n(y)$ is the number of visits to y till time step n
- ▶ Suppose $N_{50}(y) = 8$

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

- $ightharpoonup N_n(y)$ is the number of visits to y till time step n
- ▶ Suppose $N_{50}(y) = 8$ Visited y 8 times till time 50.

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

- $ightharpoonup N_n(y)$ is the number of visits to y till time step n
- ▶ Suppose $N_{50}(y) = 8$ Visited y 8 times till time 50.
- ightharpoonup So, the 8^{th} visit occurred at or before time 50.

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

- $ightharpoonup N_n(y)$ is the number of visits to y till time step n
- ▶ Suppose $N_{50}(y) = 8$ Visited y 8 times till time 50.
- ▶ So, the 8^{th} visit occurred at or before time 50.
- ▶ The 9^{th} visit has not occurred till 50.

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

- $ightharpoonup N_n(y)$ is the number of visits to y till time step n
- ▶ Suppose $N_{50}(y) = 8$ Visited y 8 times till time 50.
- ▶ So, the 8^{th} visit occurred at or before time 50.
- ▶ The 9^{th} visit has not occurred till 50.
- ▶ So, time of 9^{th} visit is beyond 50.

$$T_y^{N_n(y)} \leq n < T_y^{N_n(y)+1}$$

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

$$\frac{T_y^{N_n(y)}}{N_n(y)} \le \frac{n}{N_n(y)} < \frac{T_y^{N_n(y)+1}}{N_n(y)}$$

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

$$\frac{T_y^{N_n(y)}}{N_n(y)} \le \frac{n}{N_n(y)} < \frac{T_y^{N_n(y)+1}}{N_n(y)}$$

► We know that

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

$$\frac{T_y^{N_n(y)}}{N_n(y)} \le \frac{n}{N_n(y)} < \frac{T_y^{N_n(y)+1}}{N_n(y)}$$

- ▶ We know that
 - As $n \to \infty$, $N_n(y) \to \infty$, w.p.1

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

$$\frac{T_y^{N_n(y)}}{N_n(y)} \le \frac{n}{N_n(y)} < \frac{T_y^{N_n(y)+1}}{N_n(y)}$$

- ▶ We know that
 - ightharpoonup As $n \to \infty$, $N_n(y) \to \infty$, w.p.1
 - \blacktriangleright As $n \to \infty$, $\frac{T_y^n}{r} \to m_y$, w.p.1

$$T_y^{N_n(y)} \le n < T_y^{N_n(y)+1}$$

$$\frac{T_y^{N_n(y)}}{N_n(y)} \le \frac{n}{N_n(y)} < \frac{T_y^{N_n(y)+1}}{N_n(y)}$$

- We know that
 - ightharpoonup As $n \to \infty$, $N_n(y) \to \infty$, w.p.1
 - \blacktriangleright As $n \to \infty$, $\frac{T_y^n}{m} \to m_y$, w.p.1
- ► Hence we get

$$\lim_{n \to \infty} \frac{n}{N_n(y)} = m_y, \quad w.p.1$$

or

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{1}{m_n}, \quad w.p.1$$

▶ All this is true if the chain started in *y*.

- ▶ All this is true if the chain started in *y*.
- ▶ That means it is true if the chain visits *y* once.

- ▶ All this is true if the chain started in *y*.
- ▶ That means it is true if the chain visits *y* once.
- ► So, we get

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

- ▶ All this is true if the chain started in *y*.
- ► That means it is true if the chain visits *y* once.
- ► So, we get

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

 \blacktriangleright Since $0 \leq \frac{N_n(y)}{n} \leq 1$, almost sure convergence implies convergence in mean

- ightharpoonup All this is true if the chain started in y.
- ► That means it is true if the chain visits *y* once.
- ► So, we get

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

Since $0 \le \frac{N_n(y)}{n} \le 1$, almost sure convergence implies convergence in mean

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \lim_{n \to \infty} E_x \left[\frac{N_n(y)}{n} \right]$$

- ightharpoonup All this is true if the chain started in y.
- ▶ That means it is true if the chain visits *y* once.
- ► So, we get

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

Since $0 \le \frac{N_n(y)}{n} \le 1$, almost sure convergence implies convergence in mean

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \lim_{n \to \infty} E_x \left[\frac{N_n(y)}{n} \right] = \lim_{n \to \infty} \frac{P_x[T_y < \infty]}{m_y}$$

- ightharpoonup All this is true if the chain started in y.
- ► That means it is true if the chain visits *y* once.
- ► So, we get

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

▶ Since $0 \le \frac{N_n(y)}{n} \le 1$, almost sure convergence implies convergence in mean

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \lim_{n \to \infty} E_x \left[\frac{N_n(y)}{n} \right] = \lim_{n \to \infty} \frac{P_x[T_y < \infty]}{m_y} = \frac{\rho_{xy}}{m_y}$$

- ightharpoonup All this is true if the chain started in y.
- ▶ That means it is true if the chain visits *y* once.
- ► So, we get

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

▶ Since $0 \le \frac{N_n(y)}{n} \le 1$, almost sure convergence implies convergence in mean

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \lim_{n \to \infty} E_x \left[\frac{N_n(y)}{n} \right] = \lim_{n \to \infty} \frac{P_x[T_y < \infty]}{m_y} = \frac{\rho_{xy}}{m_y}$$

► The fraction of time spent in each recurrent state is inversely proportional to the mean recurrence time

▶ Thus we have proved the following theorem

- ► Thus we have proved the following theorem
- ► **Theorem**: Let *y* be recurrent. Then

- ► Thus we have proved the following theorem
- ► Theorem:

Let y be recurrent. Then

1

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

- ► Thus we have proved the following theorem
- ► Theorem:

Let y be recurrent. Then

1

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{I_{[T_y < \infty]}}{m_y}, \quad w.p.1$$

2

$$\lim_{n \to \infty} \frac{G_n(x, y)}{n} = \frac{\rho_{xy}}{m_y}$$

▶ The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.
- ▶ We first note that we can have $m_y = \infty$.

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.
- ▶ We first note that we can have $m_y = \infty$. Though $P_y[T_y < \infty] = 1$, we can have $E_y[T_y] = \infty$.

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.
- ▶ We first note that we can have $m_y = \infty$. Though $P_u[T_u < \infty] = 1$, we can have $E_u[T_u] = \infty$.
- ▶ What if $m_y = \infty$, $\forall y$?

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.
- ▶ We first note that we can have $m_y = \infty$. Though $P_u[T_u < \infty] = 1$, we can have $E_u[T_u] = \infty$.
- ▶ What if $m_y = \infty$, $\forall y$?
- ▶ Does not seem reasonable for a finite chain.

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.
- ▶ We first note that we can have $m_y = \infty$. Though $P_u[T_u < \infty] = 1$, we can have $E_u[T_u] = \infty$.
- ▶ What if $m_y = \infty$, $\forall y$?
- ▶ Does not seem reasonable for a finite chain.
- ▶ But for infinite chains??

- The limiting fraction of time spent in a state is inversely proportional to m_y , the mean return time.
- ► Intuitively, the stationary probability of a state could be the limiting fraction of time spent in that state.
- ▶ Thus $\pi(y) = \frac{1}{m_y}$ is a good candidate for stationary distribution.
- ▶ We first note that we can have $m_y = \infty$. Though $P_u[T_u < \infty] = 1$, we can have $E_u[T_u] = \infty$.
- ▶ What if $m_y = \infty$, $\forall y$?
- ▶ Does not seem reasonable for a finite chain.
- ▶ But for infinite chains??
- ▶ Let us characterize y for which $m_y = \infty$

▶ A recurrent state y is called **null recurrent** if $m_y = \infty$.

- ▶ A recurrent state y is called **null recurrent** if $m_y = \infty$.
- ▶ y is called **positive recurrent** if $m_y < \infty$

- ▶ A recurrent state y is called **null recurrent** if $m_y = \infty$.
- ▶ y is called **positive recurrent** if $m_y < \infty$
- ► We earlier saw that the fraction of time spent in a transient state is zero.

- ▶ A recurrent state y is called **null recurrent** if $m_y = \infty$.
- ▶ y is called **positive recurrent** if $m_y < \infty$
- We earlier saw that the fraction of time spent in a transient state is zero.
- ► Suppose *y* is null recurrent. Then

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{1}{m_y} = 0$$

- ▶ A recurrent state y is called **null recurrent** if $m_y = \infty$.
- ▶ y is called **positive recurrent** if $m_y < \infty$
- We earlier saw that the fraction of time spent in a transient state is zero.
- ► Suppose *y* is null recurrent. Then

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{1}{m_y} = 0$$

► Thus the limiting fraction of time spent by the chain in transient and null recurrent states is zero.

► **Theorem:** Let *x* be positive recurrent and let *x* lead to *y*. Then *y* is positive recurrent.

► Theorem: Let x be positive recurrent and let x lead to y. Then y is positive recurrent.
Proof

- ► Theorem: Let x be positive recurrent and let x lead to y. Then y is positive recurrent.
 Proof
- ▶ Since x is recurrent and x leads to y we know $\exists n_0, n_1$ s.t. $P^{n_0}(x,y)>0$, $P^{n_1}(y,x)>0$ and

- ► Theorem: Let x be positive recurrent and let x lead to y. Then y is positive recurrent.
 Proof
- ▶ Since x is recurrent and x leads to y we know $\exists n_0, n_1$ s.t. $P^{n_0}(x,y) > 0$, $P^{n_1}(y,x) > 0$ and

$$P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x)P^m(x,x)P^{n_0}(x,y), \ \forall m$$

- ► Theorem: Let x be positive recurrent and let x lead to y. Then y is positive recurrent.
 Proof
- ▶ Since x is recurrent and x leads to y we know $\exists n_0, n_1$ s.t. $P^{n_0}(x,y) > 0$, $P^{n_1}(y,x) > 0$ and

$$P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x)P^m(x,x)P^{n_0}(x,y), \ \forall m$$

Summing the above for $m=1,2,\cdots n$ and dividing by n

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \quad \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) \quad P^{n_0}(x,y), \ \forall n$$

► Theorem: Let x be positive recurrent and let x lead to y. Then y is positive recurrent.
Proof

▶ Since x is recurrent and x leads to y we know $\exists n_0, n_1$ s.t. $P^{n_0}(x,y) > 0$, $P^{n_1}(y,x) > 0$ and

$$P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x)P^m(x,x)P^{n_0}(x,y), \ \forall m$$

Summing the above for $m=1,2,\cdots n$ and dividing by n

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \quad \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) \quad P^{n_0}(x,y), \ \forall n$$

If we now let $n \to \infty$, the RHS goes to $P^{n_1}(y,x) \stackrel{1}{\xrightarrow{m}} P^{n_0}(x,y) > 0$.

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) P^{n_0}(x,y), \forall n$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \quad \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) \quad P^{n_0}(x,y), \ \forall n$$

▶ We can write the *LHS* of above as

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) P^{n_0}(x,y), \forall n$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) = \frac{1}{n} \sum_{m=1}^{n_1+n+n_0} P^m(y,y) - \frac{1}{n} \sum_{m=1}^{n_1+n_0} P^m(y,y)$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) P^{n_0}(x,y), \forall n$$

$$\begin{split} \frac{1}{n} \sum_{m=1}^{n} P^{n_1 + m + n_0}(y, y) &= \frac{1}{n} \sum_{m=1}^{n_1 + n + n_0} P^m(y, y) - \frac{1}{n} \sum_{m=1}^{n_1 + n_0} P^m(y, y) \\ &= \frac{n_1 + n + n_0}{n} \frac{1}{n_1 + n + n_0} \sum_{m=1}^{n_1 + n + n_0} P^m(y, y) - \frac{1}{n} \sum_{m=1}^{n_1 + n_0} P^m(y, y) \end{split}$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) P^{n_0}(x,y), \forall n$$

$$\begin{split} \frac{1}{n} \sum_{m=1}^{n} P^{n_1 + m + n_0}(y, y) &= \frac{1}{n} \sum_{m=1}^{n_1 + n + n_0} P^m(y, y) - \frac{1}{n} \sum_{m=1}^{n_1 + n_0} P^m(y, y) \\ &= \frac{n_1 + n + n_0}{n} \frac{1}{n_1 + n + n_0} \sum_{m=1}^{n_1 + n + n_0} P^m(y, y) - \frac{1}{n} \sum_{m=1}^{n_1 + n_0} P^m(y, y) \end{split}$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{\infty} P^{n_1 + m + n_0}(y, y) = \frac{1}{m_y}$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \quad \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) \quad P^{n_0}(x,y), \ \forall n$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) = \frac{1}{n} \sum_{m=1}^{n_1+n+n_0} P^m(y,y) - \frac{1}{n} \sum_{m=1}^{n_1+n_0} P^m(y,y)$$
$$= \frac{n_1+n+n_0}{n} \frac{1}{n_1+n+n_0} \sum_{m=1}^{n_1+n+n_0} P^m(y,y) - \frac{1}{n} \sum_{m=1}^{n_1+n_0} P^m(y,y)$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{n_1 + m + n_0}(y, y) = \frac{1}{m_y}$$

$$\Rightarrow \frac{1}{m_y} \ge P^{n_1}(y, x) \frac{1}{m_x} P^{n_0}(x, y) > 0$$

$$\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) \ge P^{n_1}(y,x) \quad \frac{1}{n} \sum_{m=1}^{n} P^m(x,x) \quad P^{n_0}(x,y), \ \forall n$$

▶ We can write the *LHS* of above as

$$1^{n_1+n+n_0}$$

 $\frac{1}{n} \sum_{m=1}^{n} P^{n_1+m+n_0}(y,y) = \frac{1}{n} \sum_{m=1}^{n_1+n+n_0} P^m(y,y) - \frac{1}{n} \sum_{m=1}^{n_1+n_0} P^m(y,y)$

 $=\frac{n_1+n+n_0}{n}\frac{1}{n_1+n+n_0}\sum_{m=1}^{n_1+n+n_0}P^m(y,y)-\frac{1}{n}\sum_{m=1}^{n_1+n_0}P^m(y,y)$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{n_1 + m + n_0}(y, y) = \frac{1}{m_y}$$

$$\Rightarrow \frac{1}{m_y} \geq P^{n_1}(y,x) \, \frac{1}{m_x} \, P^{n_0}(x,y) > 0$$
 which implies y is positive recurrent

► Thus, in a closed irreducible set of recurrent states, if one state is positive recurrent then all are positive recurrent.

- ► Thus, in a closed irreducible set of recurrent states, if one state is positive recurrent then all are positive recurrent.
- ▶ Hence, in the partition: $S_R = C_1 + C_2 + \cdots$, each C_i is either wholly positive recurrent or wholly null recurrent.

- ► Thus, in a closed irreducible set of recurrent states, if one state is positive recurrent then all are positive recurrent.
- ▶ Hence, in the partition: $S_R = C_1 + C_2 + \cdots$, each C_i is either wholly positive recurrent or wholly null recurrent.
- We next show that a finite chain cannot have any null recurrent states.

▶ Let C be a finite closed set of recurrent states.

- ▶ Let *C* be a finite closed set of recurrent states.
- ightharpoonup Suppose all states in C are null recurrent. Then

- ▶ Let C be a finite closed set of recurrent states.
- ▶ Suppose all states in C are null recurrent. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = 0, \quad \forall x, y \in C$$

- ▶ Let *C* be a finite closed set of recurrent states.
- ▶ Suppose all states in *C* are null recurrent. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = 0, \quad \forall x, y \in C$$

▶ Since C is closed, $\sum_{y \in C} P^m(x, y) = 1, \ \forall m, \ \forall x \in C.$

- ▶ Let *C* be a finite closed set of recurrent states.
- ▶ Suppose all states in *C* are null recurrent. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = 0, \quad \forall x, y \in C$$

- ▶ Since *C* is closed, $\sum_{y \in C} P^m(x, y) = 1$, $\forall m, \forall x \in C$.
- ► Thus we get

$$1 = \frac{1}{n} \sum_{n=1}^{n} \sum_{x \in C} P^{m}(x, y)$$

- ▶ Let C be a finite closed set of recurrent states.
- ▶ Suppose all states in *C* are null recurrent. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = 0, \quad \forall x, y \in C$$

- ▶ Since C is closed, $\sum_{y \in C} P^m(x, y) = 1, \forall m, \forall x \in C$.
- ► Thus we get

$$1 = \frac{1}{n} \sum_{m=1}^{n} \sum_{y \in C} P^{m}(x, y) = \sum_{y \in C} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y), \ \forall n$$

- ▶ Let *C* be a finite closed set of recurrent states.
- ▶ Suppose all states in *C* are null recurrent. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = 0, \quad \forall x, y \in C$$

- ▶ Since *C* is closed, $\sum_{y \in C} P^m(x, y) = 1$, $\forall m, \forall x \in C$.
- ► Thus we get

$$1 = \frac{1}{n} \sum_{m=1}^{n} \sum_{y \in C} P^{m}(x, y) = \sum_{y \in C} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y), \ \forall n$$

$$\Rightarrow 1 = \lim_{n \to \infty} \sum_{x \in C} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$$

- ▶ Let C be a finite closed set of recurrent states.
- ▶ Suppose all states in *C* are null recurrent. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = 0, \quad \forall x, y \in C$$

- ▶ Since *C* is closed, $\sum_{y \in C} P^m(x, y) = 1$, $\forall m, \forall x \in C$.
- ► Thus we get

$$1 = \frac{1}{n} \sum_{m=1}^{n} \sum_{y \in C} P^{m}(x, y) = \sum_{y \in C} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y), \ \forall n$$

$$\Rightarrow 1 = \lim_{n \to \infty} \sum_{y \in C} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = \sum_{y \in C} \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = 0$$

- ▶ Let *C* be a finite closed set of recurrent states.
- ▶ Suppose all states in *C* are null recurrent. Then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = 0, \quad \forall x, y \in C$$

- ▶ Since *C* is closed, $\sum_{y \in C} P^m(x, y) = 1$, $\forall m, \forall x \in C$.
- ► Thus we get

$$1 = \frac{1}{n} \sum_{m=1}^{n} \sum_{y \in C} P^{m}(x, y) = \sum_{y \in C} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y), \ \forall n$$

$$\Rightarrow 1 = \lim_{n \to \infty} \sum_{y \in C} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = \sum_{y \in C} \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = 0$$

where we could take the limit inside the sum because ${\cal C}$ is finite.

▶ If C is a finite closed set of recurrent states then all states in it cannot be null recurrent.

- ▶ If C is a finite closed set of recurrent states then all states in it cannot be null recurrent.
- Actually what we showed is that any closed finite set must have at least one positive recurrent state.

- ▶ If C is a finite closed set of recurrent states then all states in it cannot be null recurrent.
- ► Actually what we showed is that any closed finite set must have at least one positive recurrent state.
- ► Hence, in a finite chain, every closed irreducible set of recurrent states contains only positive recurrent states.

- ▶ If C is a finite closed set of recurrent states then all states in it cannot be null recurrent.
- ► Actually what we showed is that any closed finite set must have at least one positive recurrent state.
- ► Hence, in a finite chain, every closed irreducible set of recurrent states contains only positive recurrent states.
- ▶ Hence, a finite chain cannot have a null recurrent state.

lacktriangle Consider the chain with state space $\{0,1,\cdots\}$ given by

lacktriangle Consider the chain with state space $\{0,1,\cdots\}$ given by

lacktriangle Consider the chain with state space $\{0,1,\cdots\}$ given by

$$P_0[T_0 = j + 1] = q(j)$$

lacktriangle Consider the chain with state space $\{0,1,\cdots\}$ given by

$$P_0[T_0 = j+1] = q(j) \implies m_0 = \sum_{j=2}^{\infty} j \ P_o[T_0 = j]$$

lacktriangle Consider the chain with state space $\{0,1,\cdots\}$ given by

$$P_0[T_0=j+1]=q(j) \ \Rightarrow m_0=\sum_{j=2}^{\infty} j \ P_o[T_0=j]=\sum_{j=2}^{\infty} j \ q(j-1)$$
 (Note that $P_0[T_0=1]=0$)

ightharpoonup Consider the chain with state space $\{0,1,\cdots\}$ given by

▶ Here, $q(k) \ge 0, \forall k \text{ and } \sum_{k=1}^{\infty} q(k) = 1$. We have

$$P_0[T_0 = j+1] = q(j) \implies m_0 = \sum_{j=2}^{\infty} j \ P_o[T_0 = j] = \sum_{j=2}^{\infty} j \ q(j-1)$$

(Note that $P_0[T_0 = 1] = 0$)

▶ So, $m_0 = \infty$ if the $q(\cdot)$ distribution has infinite expectation.

lacktriangle Consider the chain with state space $\{0,1,\cdots\}$ given by

▶ Here, $q(k) \ge 0, \forall k \text{ and } \sum_{k=1}^{\infty} q(k) = 1$. We have

$$P_0[T_0 = j+1] = q(j) \implies m_0 = \sum_{j=2}^{\infty} j \ P_o[T_0 = j] = \sum_{j=2}^{\infty} j \ q(j-1)$$

(Note that $P_0[T_0 = 1] = 0$)

▶ So, $m_0 = \infty$ if the $q(\cdot)$ distribution has infinite expectation. For example, if $q(k) = \frac{c}{k^2}$

lacktriangle Consider the chain with state space $\{0,1,\cdots\}$ given by

▶ Here, $q(k) \ge 0, \forall k \text{ and } \sum_{k=1}^{\infty} q(k) = 1$. We have

$$P_0[T_0 = j+1] = q(j) \implies m_0 = \sum_{j=2}^{\infty} j \ P_o[T_0 = j] = \sum_{j=2}^{\infty} j \ q(j-1)$$

(Note that $P_0[T_0 = 1] = 0$)

- ▶ So, $m_0 = \infty$ if the $q(\cdot)$ distribution has infinite expectation. For example, if $q(k) = \frac{c}{k^2}$
- ► Then state 0 is null recurrent.

lacktriangle Consider the chain with state space $\{0,1,\cdots\}$ given by

$$P_0[T_0 = j+1] = q(j) \implies m_0 = \sum_{j=2}^{\infty} j \ P_o[T_0 = j] = \sum_{j=2}^{\infty} j \ q(j-1)$$

- (Note that $P_0[T_0 = 1] = 0$)
- ▶ So, $m_0 = \infty$ if the $q(\cdot)$ distribution has infinite expectation. For example, if $q(k) = \frac{c}{k^2}$
- ▶ Then state 0 is null recurrent. Implies chain is null

▶ Suppose π is a stationary distribution.

- ightharpoonup Suppose π is a stationary distribution.
- ▶ Then $\pi(y) = 0$ if y is transient or null recurrent

- ▶ Suppose π is a stationary distribution.
- ▶ Then $\pi(y) = 0$ if y is transient or null recurrent
- ► We prove this as follows

- \triangleright Suppose π is a stationary distribution.
- ▶ Then $\pi(y) = 0$ if y is transient or null recurrent
- ► We prove this as follows

$$\pi(y) = \sum_{x} \pi(x) P^{m}(x, y) \ \forall m$$

- ightharpoonup Suppose π is a stationary distribution.
- ▶ Then $\pi(y) = 0$ if y is transient or null recurrent
- ► We prove this as follows

$$\pi(y) = \sum_{x} \pi(x) P^m(x, y) \ \forall m$$

$$\Rightarrow \pi(y) = \frac{1}{n} \sum_{m=1}^{n} \sum_{x} \pi(x) P^{m}(x, y)$$

- \triangleright Suppose π is a stationary distribution.
- ▶ Then $\pi(y) = 0$ if y is transient or null recurrent
- ► We prove this as follows

$$\pi(y) = \sum_{m} \pi(x) P^m(x, y) \ \forall m$$

$$\Rightarrow \ \pi(y) = \frac{1}{n} \sum_{m=1}^{n} \sum_{x} \pi(x) P^{m}(x, y) = \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$$

- ightharpoonup Suppose π is a stationary distribution.
- ▶ Then $\pi(y) = 0$ if y is transient or null recurrent
- ► We prove this as follows

$$\pi(y) = \sum \pi(x) P^m(x,y) \ \forall m$$

$$\Rightarrow \pi(y) = \frac{1}{n} \sum_{m=1}^{n} \sum_{x} \pi(x) P^{m}(x, y) = \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$$

$$\Rightarrow \pi(y) = \lim_{n \to \infty} \sum_{x} \pi(x) \frac{1}{n} \sum_{x=1}^{n} P^{m}(x, y)$$

- ▶ Suppose π is a stationary distribution.
- ▶ Then $\pi(y) = 0$ if y is transient or null recurrent
- ► We prove this as follows

$$\pi(y) = \sum_{x} \pi(x) P^{m}(x, y) \ \forall m$$

$$\Rightarrow \pi(y) = \frac{1}{2} \sum_{x} \pi(x) P^{m}(x, y) - \sum_{x} \pi(x) \frac{1}{2} \sum_{x} P^{m}(x, y)$$

$$\Rightarrow \ \pi(y) = \frac{1}{n} \sum_{m=1}^{n} \sum_{x} \pi(x) P^{m}(x, y) = \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$$

$$\Rightarrow \pi(y) = \lim_{n \to \infty} \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$$

► The proof is complete if we can take the limit inside the sum

► Bounded Convergence Theorem: Suppose

 $a(x) \geq 0, \ \forall x \in S \ \text{and} \ \sum_{x} a(x) < \infty. \ \text{Let} \ b_n(x), \ x \in S$ be such that $|b_n(x)| \leq K, \ \forall x, n \ \text{and suppose}$ $\lim_{n \to \infty} b_n(x) = b(x), \forall x \in S. \ \text{Then}$

$$\lim_{n \to \infty} \sum_{x \in S} a(x) \ b_n(x) = \sum_{x \in S} a(x) \ \lim_{n \to \infty} b_n(x) = \sum_{x \in S} a(x) \ b(x)$$

▶ Bounded Convergence Theorem: Suppose $a(x) \ge 0, \ \forall x \in S \ \text{and} \ \sum_x a(x) < \infty.$ Let $b_n(x), \ x \in S$ be such that $|b_n(x)| \le K, \ \forall x, n$ and suppose $\lim_{n \to \infty} b_n(x) = b(x), \forall x \in S$. Then

$$\lim_{n \to \infty} \sum_{x \in S} a(x) \ b_n(x) = \sum_{x \in S} a(x) \ \lim_{n \to \infty} b_n(x) = \sum_{x \in S} a(x) \ b(x)$$

► We had

$$\pi(y) = \lim_{n \to \infty} \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$$

▶ Bounded Convergence Theorem: Suppose $a(x) \geq 0, \ \forall x \in S \ \text{and} \ \sum_x a(x) < \infty. \ \text{Let} \ b_n(x), \ x \in S$ be such that $|b_n(x)| \leq K, \ \forall x, n \ \text{and suppose}$ $\lim_{n \to \infty} b_n(x) = b(x), \forall x \in S. \ \text{Then}$

$$\lim_{n \to \infty} \sum_{x \in S} a(x) \ b_n(x) = \sum_{x \in S} a(x) \ \lim_{n \to \infty} b_n(x) = \sum_{x \in S} a(x) \ b(x)$$

► We had

$$\pi(y) = \lim_{n \to \infty} \sum_{x \to \infty} \pi(x) \frac{1}{n} \sum_{x \to \infty}^{n} P^{m}(x, y)$$

► We have

$$\pi(x) \ge 0; \quad \sum \pi(x) = 1; \quad 0 \le \frac{1}{n} \sum_{i=1}^{n} P^{m}(x, y) \le 1, \forall x$$

► Bounded Convergence Theorem: Suppose

 $a(x) \geq 0, \ \forall x \in S \ \text{and} \ \sum_{x} a(x) < \infty. \ \text{Let} \ b_n(x), \ x \in S$ be such that $|b_n(x)| \leq K, \ \forall x, n \ \text{and suppose}$ $\lim_{n \to \infty} b_n(x) = b(x), \forall x \in S. \ \text{Then}$

$$\lim_{n\to\infty} \sum_{x\in S} a(x)\ b_n(x) = \sum_{x\in S} a(x)\ \lim_{n\to\infty} b_n(x) = \sum_{x\in S} a(x)\ b(x)$$

► We had

$$\pi(y) = \lim_{n \to \infty} \sum_{x \to \infty} \pi(x) \frac{1}{n} \sum_{x \to \infty}^{n} P^{m}(x, y)$$

► We have

$$\pi(x) \ge 0; \quad \sum_{x} \pi(x) = 1; \quad 0 \le \frac{1}{n} \sum_{x=1}^{n} P^{m}(x, y) \le 1, \forall x$$

► Hence, if *y* is transient or null recurrent, then

$$\pi(y) = \sum_{x} \pi(x) \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y) = 0$$

In any stationary distribution π , we would have $\pi(y)=0$ is y is transient or null recurrent.

- In any stationary distribution π , we would have $\pi(y) = 0$ is y is transient or null recurrent.
- ► Hence an irreducible transient or null recurrent chain would not have a stationary distribution.

► **Theorem** An irreducible positive recurrent chain has a unique stationary distribution given by

$$\pi(y) = \frac{1}{m_y}, \ \forall y \in S$$

► **Theorem** An irreducible positive recurrent chain has a unique stationary distribution given by

$$\pi(y) = \frac{1}{m_y}, \ \forall y \in S$$

▶ Suppose $\exists \pi$ such that $\pi(y) = \sum_{x} \pi(x) P(x, y)$. Then

► **Theorem** An irreducible positive recurrent chain has a unique stationary distribution given by

$$\pi(y) = \frac{1}{m_y}, \ \forall y \in S$$

▶ Suppose $\exists \pi$ such that $\pi(y) = \sum_x \pi(x) P(x, y)$. Then

$$\pi(y) = \sum_{x} \pi(x) P^{m}(x, y), \forall m$$

► **Theorem** An irreducible positive recurrent chain has a unique stationary distribution given by

$$\pi(y) = \frac{1}{m_y}, \ \forall y \in S$$

▶ Suppose $\exists \pi$ such that $\pi(y) = \sum_x \pi(x) P(x, y)$. Then

$$\pi(y) = \sum_{x} \pi(x) P^{m}(x, y), \forall m$$

$$\Rightarrow \pi(y) = \sum_{n=1}^{\infty} \pi(x) \frac{1}{n} \sum_{n=1}^{\infty} P^{m}(x, y), \forall n$$

► **Theorem** An irreducible positive recurrent chain has a unique stationary distribution given by

$$\pi(y) = \frac{1}{m_y}, \ \forall y \in S$$

▶ Suppose $\exists \pi$ such that $\pi(y) = \sum_{x} \pi(x) P(x, y)$. Then

$$\pi(y) = \sum_{x} \pi(x) P^{m}(x, y), \forall m$$

$$\Rightarrow \pi(y) = \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y), \forall n$$

$$\Rightarrow \pi(y) = \lim_{n \to \infty} \sum \pi(x) \frac{1}{n} \sum_{i=1}^{n} P^{m}(x, y)$$

► **Theorem** An irreducible positive recurrent chain has a unique stationary distribution given by

$$\pi(y) = \frac{1}{m_y}, \ \forall y \in S$$

▶ Suppose $\exists \pi$ such that $\pi(y) = \sum_{x} \pi(x) P(x, y)$. Then

$$\pi(y) = \sum_{x} \pi(x) P^{m}(x, y), \forall m$$

$$\Rightarrow \pi(y) = \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y), \forall n$$

$$\Rightarrow \pi(y) = \lim_{n \to \infty} \sum_{x} \pi(x) \frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$$

$$\Rightarrow \pi(y) = \sum \pi(x) \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} P^{m}(x, y)$$

► **Theorem** An irreducible positive recurrent chain has a unique stationary distribution given by

$$\pi(y) = \frac{1}{m_{rr}}, \ \forall y \in S$$

▶ Suppose $\exists \pi$ such that $\pi(y) = \sum_{x} \pi(x) P(x, y)$. Then

$$\pi(y) = \sum \pi(x) P^m(x, y), \forall m$$

$$\Rightarrow \pi(y) = \sum_{n} \pi(x) \frac{1}{n} \sum_{n=1}^{n} P^{m}(x, y), \forall n$$

$$\Rightarrow \ \pi(y) \ = \ \lim_{n \to \infty} \sum \pi(x) \ \frac{1}{n} \sum^n P^m(x,y)$$

$$\Rightarrow \pi(y) = \sum_{n \to \infty} \pi(x) \lim_{n \to \infty} \frac{1}{n} \sum_{n=1}^{m-1} P^{m}(x, y)$$

$$x) \frac{1}{m_y} = \frac{1}{m_y}$$

▶ To complete the proof, we need to show $\sum_{y} \frac{1}{m_y} = 1$.

- ▶ To complete the proof, we need to show $\sum_{y} \frac{1}{m_y} = 1$.
- ▶ We also need to show $\frac{1}{m_y} = \sum_x \frac{1}{m_x} P(x, y)$

- ▶ To complete the proof, we need to show $\sum_{y} \frac{1}{m_y} = 1$.
- ▶ We also need to show $\frac{1}{m_y} = \sum_x \frac{1}{m_x} P(x, y)$
- ▶ We skip these steps in the proof.

- ▶ To complete the proof, we need to show $\sum_{y} \frac{1}{m_y} = 1$.
- ▶ We also need to show $\frac{1}{m_y} = \sum_x \frac{1}{m_x} P(x, y)$
- ▶ We skip these steps in the proof.
- ► The theorem shows that an irreducible positive recurrent chain has a unique stationary distribution

- ▶ To complete the proof, we need to show $\sum_{y} \frac{1}{m_y} = 1$.
- ▶ We also need to show $\frac{1}{m_y} = \sum_x \frac{1}{m_x} P(x, y)$
- ▶ We skip these steps in the proof.
- ► The theorem shows that an irreducible positive recurrent chain has a unique stationary distribution
- Corollary: An irreducible chain has a stationary distribution if and only if it is positive recurrent

- ▶ To complete the proof, we need to show $\sum_{y} \frac{1}{m_y} = 1$.
- ▶ We also need to show $\frac{1}{m_y} = \sum_x \frac{1}{m_x} P(x, y)$
- ▶ We skip these steps in the proof.
- ► The theorem shows that an irreducible positive recurrent chain has a unique stationary distribution
- Corollary: An irreducible chain has a stationary distribution if and only if it is positive recurrent
- ► An irreducible finite chain has a unique stationary distribution

If π^1 and π^2 are stationary distributions, then so is $\alpha\pi^1+(1-\alpha)\pi^2$

If π^1 and π^2 are stationary distributions, then so is $\alpha \pi^1 + (1 - \alpha)\pi^2$ (easily verified)

- ▶ If π^1 and π^2 are stationary distributions, then so is $\alpha \pi^1 + (1 \alpha)\pi^2$ (easily verified)
- ▶ Let C be a closed irreducible set of positive recurrent states.

- If π^1 and π^2 are stationary distributions, then so is $\alpha \pi^1 + (1 \alpha)\pi^2$ (easily verified)
- ▶ Let *C* be a closed irreducible set of positive recurrent states.

Then there is a unique stationary distribution π that satisfies $\pi(y) = 0, \ \forall y \notin C$.

- If π^1 and π^2 are stationary distributions, then so is $\alpha \pi^1 + (1 \alpha)\pi^2$ (easily verified)
- ► Let C be a closed irreducible set of positive recurrent states.
 - Then there is a unique stationary distribution π that satisfies $\pi(y) = 0$, $\forall y \notin C$.
- Any other stationary distribution of the chain is a convex combination of the stationary distributions concentrated on each of the closed irreducible sets of positive recurrent states.

- If π^1 and π^2 are stationary distributions, then so is $\alpha \pi^1 + (1 \alpha)\pi^2$ (easily verified)
- ▶ Let *C* be a closed irreducible set of positive recurrent states.
 - Then there is a unique stationary distribution π that satisfies $\pi(y) = 0$, $\forall y \notin C$.
- Any other stationary distribution of the chain is a convex combination of the stationary distributions concentrated on each of the closed irreducible sets of positive recurrent states.
- ► This answers all questions about existence and uniqueness of stationary distributions

► Consider an irreducible positive recurrent chain.

- ► Consider an irreducible positive recurrent chain.
- It has a unique stationary distribution and $\frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$ converges to $\pi(y)$.

- Consider an irreducible positive recurrent chain.
- It has a unique stationary distribution and $\frac{1}{n} \sum_{m=1}^{n} P^{m}(x, y)$ converges to $\pi(y)$.
- ▶ The next question is convergence of π_n

$$\lim_{n \to \infty} \pi_n(y) = \lim_{n \to \infty} \sum_{x} \pi_0(x) \ P^n(x, y) = ?$$

- Consider an irreducible positive recurrent chain.
- It has a unique stationary distribution and $\frac{1}{n}\sum_{m=1}^{n}P^{m}(x,y)$ converges to $\pi(y)$.
- ▶ The next question is convergence of π_n

$$\lim_{n \to \infty} \pi_n(y) = \lim_{n \to \infty} \sum_{x} \pi_0(x) \ P^n(x, y) = ?$$

▶ If $P^n(x,y)$ converges to g(y) then that would be the stationary distribution and π_n converges to it

- Consider an irreducible positive recurrent chain.
- It has a unique stationary distribution and $\frac{1}{n}\sum_{m=1}^{n}P^{m}(x,y)$ converges to $\pi(y)$.
- ▶ The next question is convergence of π_n

$$\lim_{n \to \infty} \pi_n(y) = \lim_{n \to \infty} \sum_{x} \pi_0(x) \ P^n(x, y) = ?$$

- ▶ If $P^n(x,y)$ converges to g(y) then that would be the stationary distribution and π_n converges to it
- ▶ But, $\frac{1}{n} \sum_{m=1}^{n} a_m$ may have a limit though $\lim_{n\to\infty} a_n$ may not exist.

- Consider an irreducible positive recurrent chain.
- It has a unique stationary distribution and $\frac{1}{n}\sum_{m=1}^{n}P^{m}(x,y)$ converges to $\pi(y)$.
- ▶ The next question is convergence of π_n

$$\lim_{n \to \infty} \pi_n(y) = \lim_{n \to \infty} \sum_x \pi_0(x) \ P^n(x, y) = ?$$

- ▶ If $P^n(x,y)$ converges to g(y) then that would be the stationary distribution and π_n converges to it
- ▶ But, $\frac{1}{n}\sum_{m=1}^n a_m$ may have a limit though $\lim_{n\to\infty} a_n$ may not exist.
 - For example, $a_n = (-1)^n$

► Consider a chain with transition probabilities

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1/3 & 0 & 2/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Consider a chain with transition probabilities

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1/3 & 0 & 2/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

▶ One can show $\pi^T = \begin{bmatrix} \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \end{bmatrix}$

Consider a chain with transition probabilities

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1/3 & 0 & 2/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- ▶ One can show $\pi^T = \begin{bmatrix} \frac{1}{8} & \frac{3}{8} & \frac{1}{8} \end{bmatrix}$
- ightharpoonup However, P^n goes to different limits based on whether n is even or odd

► The chain is the following

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1/3 & 0 & 2/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

► The chain is the following

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1/3 & 0 & 2/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

► We can return to a state only after even number of time steps

The chain is the following

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1/3 & 0 & 2/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- We can return to a state only after even number of time steps
- ightharpoonup That is why P^n does not go to a limit

The chain is the following

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1/3 & 0 & 2/3 & 0 \\ 0 & 2/3 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- We can return to a state only after even number of time steps
- ightharpoonup That is why P^n does not go to a limit
- ► Such a chain is called a periodic chain

ightharpoonup We define period of a state x as

$$d_x = \gcd\{n \ge 1 : P^n(x, x) > 0\}$$

 \triangleright We define period of a state x as

$$d_x = \gcd\{n \ge 1 : P^n(x, x) > 0\}$$

▶ If P(x,x) > 0 then $d_x = 1$

$$d_x = \gcd\{n \ge 1 : P^n(x, x) > 0\}$$

- ▶ If P(x,x) > 0 then $d_x = 1$
- ▶ If x leads to y and y leads to x, then $d_x = d_y$

$$d_x = \gcd\{n \ge 1 : P^n(x, x) > 0\}$$

- ▶ If P(x,x) > 0 then $d_x = 1$
- ▶ If x leads to y and y leads to x, then $d_x = d_y$
- Let $P^{n_1}(x,y) > 0$, $P^{n_2}(y,x) > 0$. Then $P^{n_1+n_2}(x,x) > 0 \Rightarrow d_x$ divides $n_1 + n_2$.

$$d_x = \gcd\{n \ge 1 : P^n(x, x) > 0\}$$

- ▶ If P(x,x) > 0 then $d_x = 1$
- ▶ If x leads to y and y leads to x, then $d_x = d_y$
- Let $P^{n_1}(x,y) > 0$, $P^{n_2}(y,x) > 0$. Then $P^{n_1+n_2}(x,x) > 0 \Rightarrow d_x$ divides $n_1 + n_2$.
- ▶ For any n s.t. $P^n(y,y) > 0$, we get $p^{n_1+n+n_2}(x,x) > 0$

$$d_x = \gcd\{n \ge 1 : P^n(x, x) > 0\}$$

- ▶ If P(x,x) > 0 then $d_x = 1$
- ▶ If x leads to y and y leads to x, then $d_x = d_y$
- Let $P^{n_1}(x,y) > 0$, $P^{n_2}(y,x) > 0$. Then $P^{n_1+n_2}(x,x) > 0 \Rightarrow d_x$ divides $n_1 + n_2$.
- ▶ For any n s.t. $P^n(y,y) > 0$, we get $p^{n_1+n+n_2}(x,x) > 0$
- ▶ Hence, d_x divides n for all n s.t. $P^n(y,y) > 0 \Rightarrow d_x \leq d_y$

$$d_x = \gcd\{n \ge 1 : P^n(x, x) > 0\}$$

- ▶ If P(x,x) > 0 then $d_x = 1$
- ▶ If x leads to y and y leads to x, then $d_x = d_y$
- Let $P^{n_1}(x,y) > 0$, $P^{n_2}(y,x) > 0$. Then $P^{n_1+n_2}(x,x) > 0 \Rightarrow d_x$ divides $n_1 + n_2$.
- ▶ For any n s.t. $P^n(y,y) > 0$, we get $p^{n_1+n+n_2}(x,x) > 0$
- ▶ Hence, d_x divides n for all n s.t. $P^n(y,y) > 0 \Rightarrow d_x \leq d_y$
- ▶ Similarly, $d_y \le d_x$ and hence $d_y = d_x$

$$d_x = \gcd\{n \ge 1 : P^n(x, x) > 0\}$$

- ▶ If P(x,x) > 0 then $d_x = 1$
- ▶ If x leads to y and y leads to x, then $d_x = d_y$
- Let $P^{n_1}(x,y) > 0$, $P^{n_2}(y,x) > 0$. Then $P^{n_1+n_2}(x,x) > 0 \Rightarrow d_x$ divides $n_1 + n_2$.
- ▶ For any n s.t. $P^n(y,y) > 0$, we get $p^{n_1+n+n_2}(x,x) > 0$
- ▶ Hence, d_x divides n for all n s.t. $P^n(y,y) > 0 \Rightarrow d_x \leq d_y$
- ▶ Similarly, $d_y \le d_x$ and hence $d_y = d_x$
- ▶ All states in an irreducible chain have the same period.

$$d_x = \gcd\{n \ge 1 : P^n(x, x) > 0\}$$

- ▶ If P(x,x) > 0 then $d_x = 1$
- ▶ If x leads to y and y leads to x, then $d_x = d_y$
- Let $P^{n_1}(x,y) > 0$, $P^{n_2}(y,x) > 0$. Then $P^{n_1+n_2}(x,x) > 0 \Rightarrow d_x$ divides $n_1 + n_2$.
- ▶ For any n s.t. $P^n(y,y) > 0$, we get $p^{n_1+n+n_2}(x,x) > 0$
- ▶ Hence, d_x divides n for all n s.t. $P^n(y,y) > 0 \Rightarrow d_x \leq d_y$
- ▶ Similarly, $d_y \le d_x$ and hence $d_y = d_x$
- ▶ All states in an irreducible chain have the same period.
- ▶ If the period is 1 then chain is called aperiodic

► The extra condition we need for convergence of π_n is aperiodicity

- ► The extra condition we need for convergence of π_n is aperiodicity
- For an aperiodic, irreducible, positive recurrent chain, there is a unique stationary distribution and π_n converges to it irrespective of what π_0 is.

- ► The extra condition we need for convergence of π_n is aperiodicity
- ▶ For an aperiodic, irreducible, positive recurrent chain, there is a unique stationary distribution and π_n converges to it irrespective of what π_0 is.
- ► An aperiodic, irreducible, positive recurrent chain is called an ergodic chain