Task 7 - Traffic Accident Analysis

Description: City collects traffic accident data including location (lat,lon), vehicle_type, cause, severity (numeric or categorical), timestamp, traffic_volume, vehicle_speed, traffic_density, and citizen reports (text). Authorities want to identify accident hotspots and improve road safety.

DATASET:

	١ .	В	C	U	E	F	G	н		J	K L M N O P Q
1 lat	lo	on	vehicle_typ	cause	severity	timestamp	traffic_volι	vehicle_sp tra	ffic_den	zone	intersectio report_text
2 17.4	0618	78.42777	Truck	Distracted	3	06-09-2024 14:09	575	75.38	0.76	Central	Junction_1 Road construction without sign
3 17.4	9261	78.48129	Bus	Speeding	3	15-06-2024 11:18	182	71.3	0.86	Central	Junction_4 Pedestrian crossing issue
4 17.	4598	78.53094	Truck	Bad Weath	3	31-07-2024 09:28	209	48.14	0.59	North	Junction_7 Road construction without sign
5 17.	4398	78.50983	Pedestrian	Mechanica	2	11-06-2024 10:45	289	102.22	0.18	South	Junction_1 Poor lighting
6 17.	3734	78.52098	Bike	Mechanica	1	10-06-2024 18:19	899	95.28	0.31	West	Junction_1 Road construction without sign
7 17.	3734	78.49882	Pedestrian	Mechanica	1	01-03-2024 08:24	350	93.29	0.25	West	Junction_8 Over speeding vehicles
8 17.3	5871	78.50384	Bike	Drunk Drivi	4	24-02-2024 00:44	823	107.62	0.21	South	Junction_2 Road construction without sign
9 17.4	7993	78.52738	Car	Speeding	4	06-10-2024 07:42	390	92.28	0.43	East	Junction_1 Over speeding vehicles
10 17.4	4017	78.43745	Auto	Bad Weath	2	11-07-2024 23:19	744	43.18	0.31	North	Junction_1 Pedestrian crossing issue
11 17.4	5621	78.47341	Pedestrian	Drunk Driv	5	08-03-2024 17:51	300	90.56	0.3	South	Junction_1 Pedestrian crossing issue
12 17.3	5309	78.43318	Truck	Signal Jum	1	25-10-2024 01:57	896	50.77	0.15	West	Junction_2 Pedestrian crossing issue
13 17.4	9549	78.54815	Car	Bad Weath	4	22-10-2024 20:01	425	44.22	0.12	Central	Junction_1 Road construction without sign
14 17.4	7487	78.54161	Auto	Distracted	1	28-02-2024 17:11	610	27.3	0.19	West	Junction_1 Pedestrian crossing issue
15 17.3	8185	78.40591	Truck	Bad Weath	2	24-04-2024 08:31	508	94.4	0.25	Central	Junction_1 Road construction without sign
16 17.3	7727	78.50584	Bus	Bad Weath	2	15-02-2024 10:54	706	91.1	0.49	North	Junction_1 Road construction without sign
17 17.3	7751	78.53879	Truck	Mechanica	5	01-05-2024 04:14	889	43.45	0.56	Central	Junction_9 Signal not working
18 17.3	9564	78.42709	Bike	Bad Weath	5	06-09-2024 13:47	936	94.94	0.23	South	Junction_3 Signal not working
19 17.4	2871	78.48519	Bike	Distracted	2	09-09-2024 02:37	607	111.78	0.48	Central	Junction_1 Road construction without sign
20 17.4	1479	78.53732	Bus	Distracted	4	28-01-2024 19:56	830	30.8	0.41	East	Junction_9 Over speeding vehicles
21 17.3	9368	78.40509	Car	Speeding	1	04-08-2024 13:13	700	43.26	0.27	South	Junction_1 Poor lighting
22 17.4	4178	78.50461	Auto	Bad Weath	3	10-04-2024 17:13	171	95.03	0.11	North	Junction_1 Pothole issue
23 17.3	7092	78.4446	Truck	Mechanica	5	20-06-2024 02:12	346	47.45	0.52	South	Junction_1 Signal not working
24 17.3	9382	78.53866	Bike	Bad Weath	3	10-08-2024 01:06	740	82.47	0.72	East	Junction_1 Road construction without sign

Questions:

1) How color schemes can indicate accident severity

Visualization guidance / explanation:

Use a sequential \rightarrow diverging \rightarrow categorical strategy depending on data:

If severity is ordinal/numeric (e.g., 0–5): use a sequential palette from light (low severity) \rightarrow dark (high severity) (e.g., YlOrRd or Turbo/viridis), so intensity maps to danger.

If you want to emphasize a critical threshold (e.g., fatal vs non-fatal): use a diverging palette with neutral center and strong warning color for the high-severity side (e.g., gray \rightarrow yellow \rightarrow red).

For multiple nominal severity classes (minor, major, fatal): use distinct categorical colors but keep high-severity color perceptually dominant (e.g., grey, orange, deep red).

Use consistent color semantics across maps, charts, legends, and interactive tooltips.Include accessibility: colorblind-safe palettes and redundant encodings (size or icon) for critical # severity: 0-5 numeric

code:

df = pd.read csv('/content/Traffic Accident Analysis Dataset.csv')

import seaborn as sns

import matplotlib.pyplot as plt

severity: 0-5 numeric

sns.scatterplot(x='lon', y='lat', hue='severity', palette='YlOrRd', size='severity', sizes=(10,200), data=df)

plt.title('Accident locations (color+size ~ severity)')

Visuvalization:

Inference: Color intensity + size quickly directs attention to the most dangerous locations and reduces cognitive load when scanning maps/dashboards.

2) Visualization pipeline from raw accident data to dashboards

Pipeline steps (end-to-end):

Data ingestion

 \rightarrow Validation \rightarrow Cleaning

 \rightarrow Enrichment \rightarrow Feature engineering

 \rightarrow Spatial aggregation \rightarrow Analytics

→ Visualization generation → Dashboard assembly

 \rightarrow Delivery.

Inference: A reproducible ETL + enrichment pipeline ensures dashboards are trustworthy and supports model training.

3) Apply Gestalt principles to quickly identify high-risk zones

Proximity, Similarity, Continuity, Figure-Ground, Enclosure, Common Fate principles guide visualization.

- **Proximity:** group nearby accident points into clusters.
- Similarity: use consistent color/shape for same severity.
- Continuity: connect accidents along major roads to show continuous high-risk corridors.
- **Figure-Ground:** highlight hotspots by bright color; fade background map.
- **Enclosure:** draw cluster boundaries or district polygons.
- Common Fate: animate accidents over time to show temporal motion.

Combine color, size, opacity cues for fast recognition.

4) Univariate analysis

a. Histogram of accident severity

CODE:

plt.hist(df['severity'], bins=6, edgecolor='black')
plt.title('Histogram of Accident Severity')
plt.xlabel('Severity')
plt.ylabel('Count')

Visuvalization:

Inference: Shows distribution of severity levels.

b. Pie chart of vehicle types involved

CODE:

plt.pie(df['vehicle_type'].value_counts(), labels=df['vehicle_type'].value_counts().index, autopct='%1.1f%%') plt.title('Vehicle Types Involved in Accidents')

Visuvalization:

Inference: Identifies dominant vehicle categories (e.g., motorcycles, cars).

5) Bivariate analysis

a. Scatterplot of accidents vs. traffic volume

CODE:

```
sns.scatterplot(x='traffic_volume', y='severity', data=df, alpha=0.6)

plt.title('Accident Severity vs Traffic Volume')

plt.xlabel('Traffic Volume (vehicles/hour)')

plt.ylabel('Severity')
```


Inference: Checks whether severity correlates with volume; may reveal thresholds where severity spikes.

b. Box plot of severity by cause

CODE:

```
sns.boxplot(x='cause', y='severity', data=df)
plt.title('Severity Distribution by Cause')
plt.xticks(rotation=45)
```


Inference: Shows which causes (speeding, poor visibility, intoxication) have larger median severity and spread — useful for targeted enforcement.

6) Multivariate analysis

A&B Pair plot of severity, vehicle speed, and traffic density, Suggest combined visualization technique

- **Small-multiples linked dashboard**: map (points sized by count & colored by severity), left panel pair-plot/heatmap, right panel boxplots and time series.
- **Glyph-maps** (star glyphs / radar at intersections): encode multiple metrics (severity, count, avg speed, density) into a single glyph per intersection.
- **Hexbin map** + **linked scatter** + **violin plots**: hexbin for spatial density, clicking a hex shows bivariate and multivariate plots.

•

CODE:

```
sns.pairplot(df[['severity','vehicle_speed','traffic_density']])
plt.suptitle('Pair Plot: Severity, Speed, Traffic Density', y=1.02)
```


Inference: Visual inspection for correlations (e.g., high speed + low density → higher severity).

7) Hierarchical visualization by city zone and intersection

Technique: Treemap or sunburst for hierarchical counts (Zone \rightarrow Subzone \rightarrow Intersection) combined with map drill-down.

Code sketch (plotly treemap):

```
import plotly.express as px
agg = df.groupby(['zone','intersection']).agg(count=('severity','size')).reset_index()
fig = px.treemap(agg, path=['zone','intersection'], values='count', color='count')
fig.show()
```


Inference: Quickly see which zones dominate accident counts and drill into problematic intersections.

8) Network graph of accident-prone intersections

Approach:

- Build a graph where **nodes** = **intersections**, **edges** = **road segments**. Node attributes: accident_count, mean_severity.
- Layout by geographic coordinates or force layout. Size nodes by accident_count, color by mean_severity. Use community detection to find clusters.

Code sketch (networkx + plotly):

```
import networkx as nx
G = nx.Graph()
for idx, row in nodes_df.iterrows():
    G.add_node(row['id'], pos=(row.lon,row.lat), accidents=row['count'], severity=row['mean_sev'])
```

add edges from road network

nx.set_node_attributes(G, node_attr_dict)

Plot with node size ~ accidents, color ~ severity

Visuvalization:

Inference: Network view highlights central intersections with many or severe crashes, exposing systemic problems (e.g., poor intersection design).

9) Analyze citizen reports (text data)

CODE:

from sklearn.feature_extraction.text import TfidfVectorizer

import matplotlib.pyplot as plt

from wordcloud import WordCloud

- # Assuming 'df_reports' is already defined and contains 'report_text'
- # If not, you might need to create df_reports from your main DataFrame (df)
- # Example: df_reports = df[['report_text']].copy()
- # TF-IDF Vectorization

```
# Using a placeholder DataFrame 'df_reports' based on the provided code

# Make sure to adjust this based on your actual DataFrame containing 'report_text'

# For demonstration, let's assume 'df' contains 'report_text'

# Create a temporary DataFrame with 'report_text'

df_reports = df[['report_text']].copy()

vec = TfidfVectorizer(stop_words='english', max_features=2000)

X_text = vec.fit_transform(df_reports['report_text'].dropna()) # Handle potential NaN values

# Word cloud of common complaints

text = '' ''.join(df_reports['report_text'].dropna())

wc = WordCloud(width=800, height=400).generate(text)

plt.figure(figsize=(10, 5)) # Add figure size for better visualization

plt.imshow(wc, interpolation='bilinear')

plt.axis('off')

plt.title('Word Cloud of Common Accident Report Text') # Add a title

plt.show()
```


Inference: Extract top n-grams, themes (bad lighting, potholes, speeding) and use topic clusters to prioritize infrastructure fixes.

10) Steps to design effective dashboards combining hierarchical, network, and text data

Design steps:

- 1. **Define user tasks** (engineer—where to fix roads; planner—where to allocate enforcement; public—overview).
- 2. **Top-level KPIs**: total accidents, fatalities, hotspots, month-on-month change.
- 3. **Left: Map & filters** (time range, severity, vehicle type, cause).
- 4. **Center: Hierarchical panel** (treemap or sunburst) to drill zones → intersections.
- 5. **Right: Network panel** (graph of intersections) with node details on hover/click.
- 6. Bottom: Text analytics: recent citizen reports, word cloud, most frequent complaint topics.
- 7. **Interaction**: clicking a district highlights nodes and updates time-series and text panels (linked brushing).
- 8. Accessibility & export: colorblind palettes, keyboard navigation, CSV export for selected sets.
- 9. **Alerts**: automatic creation of high-priority tickets for new hotspots.

Inference: Linking spatial, hierarchical and text views allows multi-angle decision-making and operational follow-up.

11) Point data: Map accident locations

Technique: interactive map (Leaflet / Deck.gl / Mapbox). Use clustering for dense areas; show severity color and count in popups.

Code sketch (folium):

```
import folium
# Calculate the mean latitude and longitude to center the map
city_lat = df['lat'].mean()
city_lon = df['lon'].mean()
# Define a function to determine marker color based on severity
def severity_color(severity):
   if severity >= 4:
      return 'red'
   elif severity == 3:
      return 'orange'
   else:
      return 'yellow'
```

```
# Create a Folium map centered on the mean coordinates

m = folium.Map(location=[city_lat, city_lon], zoom_start=12)

# Add circle markers for each accident location

for _, r in df.iterrows():

folium.CircleMarker(
    location=[r.lat, r.lon],
    radius=3 + r.severity, # Size based on severity
    color=severity_color(r.severity), # Color based on severity

fill=True,
    fill_opacity=0.6

).add_to(m)

# Display the map
```


Inference: Point maps are intuitive for precise location inspection; cluster markers reduce clutter.

12) Line data: Show accident-prone routes

Technique: plot polylines of road segments with weight = accident count; thicker/darker lines denote dangerous corridors.

Code sketch (folium polyline):

import folium

```
from sklearn.cluster import DBSCAN
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
# --- Re-run DBSCAN Clustering ---
# Coordinates for clustering
coords = df[['lat', 'lon']].to_numpy()
# Spatial clustering (roughly 0.5 km radius)
kms_per_radian = 6371.0088
epsilon = 0.5 / kms_per_radian
                        DBSCAN(eps=epsilon,
                                                         min_samples=5,
                                                                                    algorithm='ball_tree',
metric='haversine').fit(np.radians(coords))
# Assign cluster labels
df['cluster'] = db.labels_
# --- End of DBSCAN Clustering ---
# --- Generate Line Data for Accident-Prone Routes ---
# Create a graph
G = nx.Graph()
# Add nodes with positions and cluster information
for idx, row in df.iterrows():
  G.add_node(idx, pos=(row.lon, row.lat), cluster=row['cluster'])
# Add edges between nodes in the same cluster
for cluster_id in df['cluster'].unique():
  if cluster_id != -1: # Exclude noise points
    cluster_nodes = df[df['cluster'] == cluster_id].index.tolist()
    # Add edges between all pairs of nodes within the cluster
     for i in range(len(cluster_nodes)):
       for j in range(i + 1, len(cluster_nodes)):
          G.add_edge(cluster_nodes[i], cluster_nodes[i])
# Get positions for plotting
```

```
pos = nx.get_node_attributes(G, 'pos')
# Create a Folium map
m = folium.Map(location=[df['lat'].mean(), df['lon'].mean()], zoom_start=12)
# Add edges to the map
for u, v in G.edges():
  p1 = pos[u]
  p2 = pos[v]
  folium.PolyLine([p1[::-1], p2[::-1]], color='blue', weight=1.5, opacity=0.7).add_to(m)
# Add nodes (accident locations) to the map
for idx, row in df.iterrows():
  color = 'red' if row['severity'] >= 4 else 'orange' if row['severity'] == 3 else 'yellow'
  folium.CircleMarker(
     location=[row.lat, row.lon],
    radius=3 + row.severity,
     color=color,
     fill=True,
     fill_opacity=0.6,
     popup=f"Cluster: {row['cluster']}, Severity: {row['severity']}, Cause: {row['cause']}"
  ).add_to(m)
# Display the map
m
# --- End of Line Data Generation ---
```


Inference: Visualizes continuous patterns along corridors (useful for corridor redesign).

13) Area data: Heatmap of accidents per district

Technique: choropleth by administrative polygons (districts) showing accident density per km² or per 10k population.

Code sketch (geopandas + folium/plotly):

```
import seaborn as sns
import matplotlib.pyplot as plt

# Calculate the number of accidents per district ('zone')
district_counts = df['zone'].value_counts().reset_index()
district_counts.columns = ['zone', 'accident_count']

# Pivot the data to create a matrix for the heatmap

# We need a dummy column to create a pivot table with one column
district_counts['dummy'] = 1
heatmap_data = district_counts.pivot_table(index='zone', values='accident_count', aggfunc='sum')

# Create the heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(heatmap_data, annot=True, fmt='d', cmap='YlOrRd')
plt.title('Heatmap of Accident Counts per District')
plt.xlabel('Accident Count')
```

```
plt.ylabel('District (Zone)')
plt.yticks(rotation=0)
plt.show()
```


Inference: Area aggregation highlights higher-level spatial patterns and supports policy decisions across jurisdictions.

14) Animated visualization of accidents over time

Technique: animated point map (e.g., Plotly Express animation_frame by day/hour) or animated heatmap (deck.gl). Animate severity and count changes.

Code sketch (plotly):

Inference: Reveals temporal propagation of hotspots (e.g., seasonal events, construction effects).

15) Time series of accident counts per month

Code:

```
import matplotlib.pyplot as plt
import seaborn as sns
# Convert 'timestamp' to datetime
df['timestamp'] = pd.to_datetime(df['timestamp'])
# Extract year and month
df['year_month'] = df['timestamp'].dt.to_period('M')
# Group by month and calculate the average severity
monthly_avg_severity = df.groupby('year_month')['severity'].mean().reset_index()
monthly_avg_severity['year_month'] = monthly_avg_severity['year_month'].astype(str)
# Create time series line plot of average severity
plt.figure(figsize=(12, 6))
sns.lineplot(data=monthly avg severity, x='year month', y='severity')
plt.title('Average Accident Severity per Month')
plt.xlabel('Month and Year')
plt.ylabel('Average Severity')
plt.xticks(rotation=45)
plt.grid(True) # Add grid here
plt.tight_layout()
plt.show()
```


Inference: Detect seasonality, trend, intervention impacts; feed into forecasting models (ARIMA / Prophet).

16) Compare accidents on weekdays vs. weekends

Code:

```
import matplotlib.pyplot as plt
import seaborn as sns
# Convert 'timestamp' to datetime
df['timestamp'] = pd.to_datetime(df['timestamp'])
# Extract the day of the week
df['day_of_week'] = df['timestamp'].dt.day_name()
# Categorize as weekday or weekend
weekday_weekend_map = {
  'Monday': 'Weekday',
  'Tuesday': 'Weekday',
  'Wednesday': 'Weekday',
  'Thursday': 'Weekday',
  'Friday': 'Weekday',
  'Saturday': 'Weekend',
  'Sunday': 'Weekend'
}
df['day_type'] = df['day_of_week'].map(weekday_weekend_map)
# Count accidents by day type
```

```
day_type_counts = df['day_type'].value_counts().reset_index()
day_type_counts.columns = ['day_type', 'accident_count']

# Create a bar plot to compare weekday vs. weekend accidents
plt.figure(figsize=(8, 6))
sns.barplot(data=day_type_counts, x='day_type', y='accident_count', palette='viridis')
plt.title('Accident Counts: Weekdays vs. Weekends')
plt.xlabel('Day Type')
plt.ylabel('Number of Accidents')
plt.tight_layout()
plt.show()
```


Inference: Identify temporal policy changes (e.g., enforcement on weekend nights if severity higher).

17) Regression/clustering to find factors affecting accidents

Approaches:

- **Regression:** logistic regression or ordinal regression for severity classes; random forest / XGBoost for variable importance. Features: traffic_volume, vehicle_speed, weather, time_of_day, road_type, lighting, intersection_type.
- **Clustering:** spatial clustering (DBSCAN) to find hotspots, or feature clustering (KMeans / GMM) to find accident-type archetypes (speed-related, volume-related).

Code sketch (feature importance with random forest):

```
import matplotlib.pyplot as plt
import seaborn as sns
# Convert 'timestamp' to datetime
df['timestamp'] = pd.to_datetime(df['timestamp'])
# Extract the day of the week
df['day_of_week'] = df['timestamp'].dt.day_name()
# Categorize as weekday or weekend
weekday_weekend_map = {
  'Monday': 'Weekday',
  'Tuesday': 'Weekday',
  'Wednesday': 'Weekday',
  'Thursday': 'Weekday',
  'Friday': 'Weekday',
  'Saturday': 'Weekend',
  'Sunday': 'Weekend'
df['day_type'] = df['day_of_week'].map(weekday_weekend_map)
# Count accidents by day type
day_type_counts = df['day_type'].value_counts().reset_index()
```

```
day_type_counts.columns = ['day_type', 'accident_count']

# Create a bar plot to compare weekday vs. weekend accidents

plt.figure(figsize=(8, 6))

sns.barplot(data=day_type_counts, x='day_type', y='accident_count', palette='viridis')

plt.title('Accident Counts: Weekdays vs. Weekends')

plt.xlabel('Day Type')

plt.ylabel('Number of Accidents')

plt.tight_layout()

plt.show()
```


Inference: Model feature importances help prioritize interventions (e.g., speed enforcement if speed feature ranks highest).

18) Evaluate predictive models for accident severity

Evaluation steps:

- 1. **Define target**: binary (fatal vs non-fatal), ordinal (0–5), or continuous risk score.
- 2. Split: time-based train/test (e.g., train on older data, test on latest months) to mimic deployment.
- 3. **Metrics:** classification accuracy, precision, recall, F1, ROC-AUC; ordinal mean absolute error (MAE); regression RMSE, R². For public-safety, emphasize recall on high-severity class and calibration.
- 4. **Cross-validation:** stratified (and time-series CV when applicable).
- 5. **Calibration:** reliability curves, isotonic regression if probabilities miscalibrated.
- 6. **Explainability:** SHAP or permutation importance to interpret predictions.
- 7. **Operational validation:** test model on recent incidents and run what-if scenarios (e.g., reducing speed by 5 km/h).
- 8. **Deployment checks:** drift detection, monitoring confusion matrix, automated alerts on performance drop.

Quick code sketch (evaluation):

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

```
# Make predictions on the test set

y_pred = model.predict(X_test)

# Calculate evaluation metrics

mae = mean_absolute_error(y_test, y_pred)

mse = mean_squared_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

# Print the evaluation metrics

print(f"Mean Absolute Error (MAE): {mae}")

print(f"Mean Squared Error (MSE): {mse}")

print(f"R-squared (R2): {r2}")
```

OUTPUT:

Mean Absolute Error (MAE): 1.3049029060196835
Mean Squared Error (MSE): 2.280346986961468
R-squared (R2): -0.1107524382720042

Inference: Good model evaluation emphasizes public-safety priorities (catching severe incidents even at cost of false positives) and ongoing monitoring.