TP 1 d'analyse numérique

1. Ecrire un programme en C qui affiche sur l'écran le mot "Azul".

<u>Note</u>: Si votre programme C se trouve par exemple dans le fichier prog1.c, alors vous le compilez avec la commande

cc prog1.c -o prog1 -lm

Vous obtenez ainsi un fichier executable qui s'appelle prog1

- 2. Ecrire un programme en C qui affiche sur l'écran 20 lignes, chaque ligne contenant la phrase "Azul, Salam, Bonjour, Hello, Hola".
- **3.** Ecrire un programme en C qui calcule, avec une précision de $\epsilon = 10^{-10}$, la racine de 17.3 (vous utiliserez l'algorithme de Newton avec une valeur initiale $x_0 = 4.0$). Ce programme doit afficher sur l'écran :
 - le nombre d'itérations n,
 - la valeur approchée obtenue de $\sqrt{17.3}$ (avec 16 chiffres significatifs),
 - l'erreur relative obtenue (avec 2 chiffres significatifs),
 - la valeur donnée par la fonction sqrt(17.3) de la bibliothèque standard libm.so
 (Standard library). (avec 16 chiffres significatifs)
 - Recompilez ce programme en prenant pour valeur initiale $x_0 = 10.0$, -100.0, 10000.0 Comparez vos différents résultats. Quelle est votre conclusion?

<u>Rappel</u>: l'algorithme de Newton pour calculer la racine carrée d'un nombre A est donné par la relation : $x_{n+1} = (x_n + A/x_n)/2$

4. Ecrire un programme intéractif en C qui lie (en utilisant la fonction scanf) les valeurs des nombres réels A, ϵ , et x_0 , et qui calcule la racine carrée de A, avec une précision de ϵ , la valeur initiale dans l'algorithme de Newton étant x_0 . L'affichage doit être comme celui de la question 3.

5. Ecrire en C une fonction $f(A, \epsilon, x_0)$ qui calcule la racine carrée de A, avec une précision de ϵ , la valeur initiale dans l'algorithme de Newton étant x_0 . La fonction f doit retourner le résultat approchée de \sqrt{A} (c'est une nombre réel en double précision).

Réécrire le programme de la question 4. en utilisant cette fonction f.

Ecrire ensuite un programme qui utilise la fonction f pour calculer les racines carrées des 1000 premiers nombres entiers $1, 2, \ldots, 1000$, avec une précision de $\epsilon = 10^{-6}$. Vous afficherez les résultats avec 10 chiffres significatifs.