Lunar Eclipse

Solar Eclipse

Apocalypse

When the Earth's shadow hits the Moon we have a...

When the Moon's shadow hits the Earth, we have a

Eclipses occur ONLY when the Moon crosses the plane of Earth's orbit around the Sun AND ONLY during the NEW or FULL phases

Two Important Properties of the Moon's Orbit

Earth

5°

Ecliptic Plane

The Relative Size and Distance of the Earth and Moon

Solar eclipse - when the moon passes in front of the Sun as seen from the Earth

They are spectacular but not common.

Partial Solar Eclipse

Annular Solar Eclipse

.....

NOTE -----

Map of solar eclipses

Lunar eclipses are more common than solar eclipses - its geometry

The eclipse frequency is related to distances and sizes of Sun, Earth and Moon.

Now let's do a demo...

Which positions cause which eclipses

When the	1s 1n the	phase a	and 1s
directly in line	e with the	and the	_ , you get
aeclip	ose.		

• When the ____ is in the ____ phase and is directly in line with the ____ and the ____, you get a ____ eclipse.

Which positions cause which eclipses

• When the Moon is in the full phase and is directly in line with the Earth and the Sun, you get a lunar eclipse.

• When the Moon is in the new phase and is directly in line with the Earth and the Sun, you get a solar eclipse.

The Origin and Nature of Light

But, what is light?

- In the 17th Century, Isaac Newton argued that light was composed of little particles while Christian Huygens suggested that light travels in the form of waves.
- In the 19th and 20th Century Maxwell, Young, Einstein and others were able to show that light behaves both like a particle and a wave depending on how you observe it.

Scottish physicist James Clerk Maxwell showed mathematically in the 1860s that light must be a combination of electric and magnetic fields.

Light is produced by accelerating charges, and can travel through empty space - electromagnetic radiation

 Unlike sound, light waves do not require a medium and thus can travel through a vacuum.

Electromagnetic radiation is a wave phenomenon.

 That is, it is associated with a periodically repeating disturbance (a wave) that carries energy.

• Imagine waves in water.

• If you disturb a pool of water, waves spread across the surface.

DO NOT confuse radioactivity with the term EM radiation!

The distance between peaks of a light wave is the wavelength

• Astronomers use nano-meters (10⁻⁹ m), Angstroms (10⁻¹⁰ m) or microns (10⁻⁶ m) as the unit of a wavelength of light

- Light waves travel through space at about 300,000 kilometers per second (186,000 miles per second).
 - It is the speed of ALL electromagnetic radiation.

The number of repeating events per unit time = frequency

Unit = Hertz (Hz)

Longer the wavelength, smaller the frequency

Although light behaves as a wave, under certain conditions, it also behaves as a particle.

- A particle of light is called a photon.
- You can think of a photon as a minimum-sized bundle of electromagnetic waves.

The amount of energy a photon carries depends on its wavelength.

- Shorter-wavelength photons carry more energy.
- Longer-wavelength photons carry less energy.

Light waves travel at the same speed as sound waves?

A) True

B) False

Light waves travel at the same speed as sound waves?

False: This is why you see the lightening and then hear the thunder.

Speed of light >> speed of sound

Light follows an inverse square law

Amount of light hitting each square foot/meter goes down as $1/d^2$.

(d = distance from central source)