Cours: Continuité, Limites

Table des matières

1	Fon	ctions numériques, topologie élémentaire	1
	1.1	Symétries, fonctions lipschitziennes	1
	1.2	Fonctions réelles et ordre sur $\mathbb R$	2
	1.3	Topologie élémentaire	2
	1.4	Voisinages	3
2	Limites		
	2.1	Définition, propriétés élémentaires	4
	2.2	Limites et ordre sur \mathbb{R}	Ę
	2.3	Limite à gauche, à droite	6
3	Continuité		
	3.1	Continuité	7
	3.2	Prolongement par continuité	8
	3.3	Théorème des valeurs intermédiaires	8
	3.4	Image continue d'un segment	
	3.5	Continuité uniforme	10

1 Fonctions numériques, topologie élémentaire

Définition 1. On appelle fonction numérique toute application à valeurs réelles (ou complexes) dont le domaine de définition \mathcal{D}_f est une partie de \mathbb{R} .

Remarques:

- ⇒ Il arrive que l'on définisse une fonction par son expression. C'est alors au lecteur de déterminer son domaine de définition en analysant l'expression de l'intérieur vers l'extérieur.

Définition 2. Soit f une fonction numérique dont le domaine de définition est \mathcal{D}_f . Si A est une partie de \mathcal{D}_f , on dit que f vérifie la propriété \mathcal{P} sur A lorsque la restriction de f à A vérifie la propriété \mathcal{P} .

1.1 Symétries, fonctions lipschitziennes

Définition 3. Soit f une fonction dont le domaine de définition est symétrique par rapport à 0, c'est-à-dire tel que :

$$\forall x \in \mathcal{D}_f \quad -x \in \mathcal{D}_f$$

On dit que f est

— paire lorsque :

$$\forall x \in \mathcal{D}_f \quad f(-x) = f(x)$$

— impaire lorsque :

$$\forall x \in \mathcal{D}_f \quad f\left(-x\right) = -f\left(x\right)$$

Définition 4. Soit $T \in \mathbb{R}$ et f une fonction dont le domaine de définition vérifie :

$$\forall x \in \mathcal{D}_f \quad \forall k \in \mathbb{Z} \quad x + kT \in \mathcal{D}_f$$

On dit que f est T-périodique, ou que T est une période de f, lorsque :

$$\forall x \in \mathcal{D}_f \quad f(x+T) = f(x)$$

Lorsque f admet une période non nulle, on dit que f est périodique.

Remarques:

 \Rightarrow L'ensemble G des périodes d'une fonction f est un sous-groupe de $(\mathbb{R}, +)$. En particulier, si T est une période de f et si $k \in \mathbb{Z}$, alors kT est une période de f. Lorsque f admet une plus petite période strictement positive, notée T_0 , ont dit que T_0 est la période de f. On montre dans ce cas que $G = T_0\mathbb{Z}$.

Définition 5. Soit $k \in \mathbb{R}_+$. On dit qu'une fonction f est k-lipschitzienne lorsque :

$$\forall x, y \in \mathcal{D}_f \quad |f(x) - f(y)| \leq k |x - y|$$

Exemples:

⇒ Montrer que les fonctions valeur absolue et sinus sont 1-lipschitziennes.

Remarques:

 \Rightarrow L'ensemble des fonctions lipschitziennes est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$, mais ce n'est pas une sous-algèbre. En effet, la fonction $f: x \mapsto x$ est lipschitzienne, mais f^2 ne l'est pas.

1.2 Fonctions réelles et ordre sur $\mathbb R$

Définition 6. On dit qu'une fonction réelle f est :

 $--\ croissante\ lorsque\ :$

$$\forall x_1, x_2 \in \mathcal{D}_f \quad x_1 \leqslant x_2 \Longrightarrow f(x_1) \leqslant f(x_2)$$

-- décroissante lorsque :

$$\forall x_1, x_2 \in \mathcal{D}_f \quad x_1 \leqslant x_2 \Longrightarrow f(x_1) \geqslant f(x_2)$$

- monotone lorsqu'elle est croissante ou décroissante.
- strictement croissante lorsque :

$$\forall x_1, x_2 \in \mathcal{D}_f \quad x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$$

— strictement décroissante lorsque :

$$\forall x_1, x_2 \in \mathcal{D}_f \quad x_1 < x_2 \Longrightarrow f(x_2) > f(x_1)$$

— strictement monotone lorsqu'elle est strictement croissante ou strictement décroissante.

Remarques:

- \Rightarrow Une fonction réelle f est strictement monotone si et seulement si elle est monotone et injective.
- \Rightarrow Si f est une fonction réelle strictement croissante, alors :

$$\forall x_1, x_2 \in \mathcal{D}_f \quad f(x_1) \leqslant f(x_2) \Longrightarrow x_1 \leqslant x_2$$

Cette propriété caractérise d'ailleurs les fonctions strictement croissantes.

Proposition 1.

- La somme de deux fonctions croissantes (resp. décroissantes) est croissante (resp. décroissante).
- Le produit de deux fonctions croissantes (resp. décroissantes) positives est croissant (resp. décroissant).
- L'inverse d'une fonction croissante (resp. décroissante) de signe constant est décroissante (resp. croissante).
- La composée de deux fonctions monotone est monotone; elle est croissante si les fonctions ont même sens de variations et décroissante si leurs sens de variation sont opposés.
- La bijection réciproque d'une fonction strictement croissante (resp. décroissante) est strictement croissante (resp. décroissante).

${\bf Remarques:}$

 \Rightarrow Une fonction f est décroissante si et seulement si -f est croissante. En utilisant la proposition précédente, on en déduit par exemple que le produit d'une fonction croissante positive et d'une fonction décroissante négative est décroissante négative.

Exemples:

 \Rightarrow Étudier la monotonie de la fonction $x \mapsto \sin((e^{-x} - 1)\pi/2)$ sur \mathbb{R}_+ .

Définition 7. On dit qu'une fonction réelle f est :

— majorée lorsque :

$$\exists M \in \mathbb{R} \quad \forall x \in \mathcal{D}_f \quad f(x) \leqslant M$$

— minorée lorsque :

$$\exists m \in \mathbb{R} \quad \forall x \in \mathcal{D}_f \quad f(x) \geqslant m$$

Exemples:

 \Rightarrow Montrer que la fonction d'expression xe^{-x} est majorée sur \mathbb{R} .

Définition 8. On dit qu'une fonction réelle ou complexe f est bornée lorsque :

$$\exists M \in \mathbb{R}_{+} \quad \forall x \in \mathcal{D}_{f} \quad |f(x)| \leqslant M$$

Exemples:

 \Rightarrow Montrer que la fonction d'expression $\frac{x}{1+x^2}$ est bornée par 1/2 sur \mathbb{R} .

Remarques:

 \Rightarrow Une fonction réelle est bornée si et seulement si elle est minorée et majorée.

Définition 9. Soit f et g deux fonctions ayant le même domaine de définition \mathcal{D} On dit que f est inférieure à g et on note $f \leq g$ lorsque :

$$\forall x \in \mathcal{D} \quad f\left(x\right) \leqslant g\left(x\right)$$

Remarques:

 \Rightarrow La négation de $f\leqslant g$ s'écrit

$$\exists x \in \mathcal{D} \quad f\left(x\right) > g\left(x\right)$$

 \Rightarrow La relation \leq est une relation d'ordre sur $\mathcal{F}(\mathbb{R},\mathbb{R})$ qui n'est pas totale.

1.3 Topologie élémentaire

Définition 10. Soit A une partie de \mathbb{R} . On dit que A est dense dans \mathbb{R} lorsque :

$$\forall x \in \mathbb{R} \quad \forall \varepsilon > 0 \quad \exists a \in A \quad |x - a| \leqslant \varepsilon$$

Remarques:

Arr Une partie A est dense dans $\mathbb R$ si et seulement si pour tout $x,y\in\mathbb R$ tels que x< y, il existe $a\in A$ tel que $x\leqslant a\leqslant y$.

Proposition 2. Une partie A est dense dans \mathbb{R} si et seulement si pour tout $x \in \mathbb{R}$, il existe une suite d'éléments de A convergeant vers x.

Proposition 3. \mathbb{Q} est dense dans \mathbb{R} .

Remarques:

- ⇒ Tout réel est limite d'une suite de rationnels.
- \Rightarrow L'ensemble $\mathcal D$ des nombres décimaux et $\mathbb R\setminus\mathbb Q$ sont denses dans $\mathbb R.$

Exemples:

 \Rightarrow En remarquant que $(\sqrt{2}-1)^n$ tend vers 0 lorsque n tend vers $+\infty$, montrer que

$$A = \left\{ a + b\sqrt{2} : a, b \in \mathbb{Z} \right\}$$

est dense dans \mathbb{R} .

Définition 11. On dit qu'une partie O de \mathbb{R} est un ouvert lorsque c'est une réunion d'intervalles ouverts.

Définition 12. On dit qu'un réel x_0 est intérieur à une partie A de \mathbb{R} lorsqu'il existe $\eta > 0$ tel que $[x_0 - \eta, x_0 + \eta] \subset A$.

Remarques:

- \Rightarrow Si x_0 est intérieur à A, alors $x_0 \in A$. Cependant, la réciproque est fausse; par exemple $0 \in \{0\}$ mais 0 n'est pas intérieur à A.
- ⇒ Excepté les bornes, tous les points d'un intervalle sont intérieurs à celui-là.
- \Rightarrow Si A est un ouvert, tous les points de A sont intérieurs à A.

Définition 13. Soit f une fonction et $a \in \overline{\mathbb{R}}$. On dit que f est définie au voisinage de a lorsqu'il existe une suite d'éléments de \mathcal{D}_f qui tend vers a.

Remarques:

 \Rightarrow Si la fonction f est définie sur un intervalle I, f est définie au voisinage de tous les points de I et de ses bornes.

Théorème 1. Soit $([a_n, b_n])$ une suite de segments non vides telle que :

— La suite est décroissante au sens de l'inclusion :

$$\forall n \in \mathbb{N} \quad [a_{n+1}, b_{n+1}] \subset [a_n, b_n]$$

— La longueur des segments converge vers 0 :

$$b_n - a_n \xrightarrow[n \to +\infty]{} 0$$

Alors l'ensemble $\cap_{n\in\mathbb{N}} [a_n, b_n]$ contient un unique élément $l\in\mathbb{R}$.

Théorème 2. Toute suite réelle bornée admet une sous-suite convergente.

Exemples:

Soit $x \in \mathbb{R} \setminus \mathbb{Q}$, (p_n) une suite d'entiers relatifs et (q_n) une suite d'entiers naturels non nuls tels que $\frac{p_n}{q_n} \xrightarrow[n \to +\infty]{} x$. Montrer que $q_n \xrightarrow[n \to +\infty]{} +\infty$.

1.4 Voisinages

Définition 14.

— Soit $a \in \mathbb{R}$. On dit qu'une partie \mathcal{V} de \mathbb{R} est un voisinage de a lorsqu'il existe $\varepsilon > 0$ tel que

$$\mathcal{V} = \{x \in \mathbb{R} : |x - a| \leqslant \varepsilon\} = [a - \varepsilon, a + \varepsilon]$$

— On dit qu'une partie V de \mathbb{R} est un voisinage de $+\infty$ lorsqu'il existe $m \in \mathbb{R}$ tel que :

$$\mathcal{V} = [m, +\infty[$$

— On dit qu'une partie V de \mathbb{R} est un voisinage de $-\infty$ lorsqu'il existe $M \in \mathbb{R}$ tel que :

$$\mathcal{V} =]-\infty, M]$$

— Soit $a \in \mathbb{C}$. On dit qu'une partie V de \mathbb{C} est un voisinage de a lorsqu'il existe $\varepsilon > 0$ tel que :

$$\mathcal{V} = \{ z \in \mathbb{C} : |z - a| \leqslant \varepsilon \}$$

Remarques:

- ⇒ Une intersection de deux voisinages d'un même élément est un voisinage. Plus généralement, une intersection d'un nombre fini de voisinages est un voisinage.
- \Rightarrow Une suite réelle (ou complexe) (u_n) converge vers $l \in \overline{\mathbb{R}}$ (ou \mathbb{C}) si et seulement si pour tout voisinage \mathcal{V} de l, il existe un voisinage \mathcal{W} de $+\infty$ tel que :

$$\forall n \in \mathbb{N} \quad n \in \mathcal{W} \Longrightarrow u_n \in \mathcal{V}$$

 \Rightarrow En seconde année, vous verrez une autre définition des voisinages d'un élément $a \in \mathbb{R}$ (ou \mathbb{C}). Les voisinages, tels qu'ils sont définis dans ce cours, seront toujours des voisinages l'année prochaine, mais la réciproque est fausse.

Définition 15. Soit f une fonction et $a \in \overline{\mathbb{R}}$. On dit que f vérifie la propriété \mathcal{P} au voisinage de a lorsqu'il existe un voisinage \mathcal{V} de a tel que la restriction de f à $\mathcal{D}_f \cap \mathcal{V}$ vérifie la propriété \mathcal{P} .

Exemples:

- \Rightarrow La fonction sin est croissante sur $[-\pi/2,\pi/2]$. Elle est donc croissante au voisinage de 0.
- \Rightarrow Une fonction f est bornée au voisinage de $a \in \mathbb{R}$ si et seulement si

$$\exists \eta > 0 \quad \exists M \in \mathbb{R}_+ \quad \forall x \in \mathcal{D}_f \quad |x - a| \leqslant \eta \Longrightarrow |f(x)| \leqslant M$$

Une fonction f est bornée au voisinage de $+\infty$ si et seulement si

$$\exists m \in \mathbb{R} \quad \exists M \in \mathbb{R}_+ \quad \forall x \in \mathcal{D}_f \quad x \geqslant m \Longrightarrow |f(x)| \leqslant M$$

$$\mathcal{D}_g \cap \mathcal{V} \subset \mathcal{D}_f \ et \ [\forall x \in \mathcal{D}_g \cap \mathcal{V} \ g(x) = f(x)]$$

alors
$$\mathcal{P}(f) \Longrightarrow \mathcal{P}(g)$$
.

Remarques:

⇒ Toute personne comprenant les subtilités de cette définition gagnera une sucette géante.

2 Limites

2.1 Définition, propriétés élémentaires

Proposition 4. Soit f une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$ et $l \in \overline{\mathbb{R}}$ (ou \mathbb{C}). On dit que f(x) tend vers l lorsque x tend vers a et on note

$$f(x) \xrightarrow[x \to a]{} l$$

lorsque

— Pour
$$a \in \mathbb{R}$$
 et $l \in \mathbb{R}$ (ou \mathbb{C}):

$$\forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall x \in \mathcal{D}_f \quad |x - a| \leqslant \eta \Longrightarrow |f(x) - l| \leqslant \varepsilon$$

— Pour $a \in \mathbb{R}$ et $l = -\infty$:

$$\forall M \in \mathbb{R} \quad \exists \eta > 0 \quad \forall x \in \mathcal{D}_f \quad |x - a| \leqslant \eta \Longrightarrow f(x) \leqslant M$$

— Pour $a \in \mathbb{R}$ et $l = +\infty$:

$$\forall m \in \mathbb{R} \quad \exists \eta > 0 \quad \forall x \in \mathcal{D}_f \quad |x - a| \leqslant \eta \Longrightarrow f(x) \geqslant m$$

— Pour $a = -\infty$ et $l \in \mathbb{R}$ (ou \mathbb{C}):

$$\forall \varepsilon > 0 \quad \exists A \in \mathbb{R} \quad \forall x \in \mathcal{D}_f \quad x \leqslant A \Longrightarrow |f(x) - l| \leqslant \varepsilon$$

— Pour $a = -\infty$ et $l = -\infty$:

$$\forall M \in \mathbb{R} \quad \exists A \in \mathbb{R} \quad \forall x \in \mathcal{D}_f \quad x \leqslant A \Longrightarrow f(x) \leqslant M$$

— Pour $a = -\infty$ et $l = +\infty$:

$$\forall m \in \mathbb{R} \quad \exists A \in \mathbb{R} \quad \forall x \in \mathcal{D}_f \quad x \leqslant A \Longrightarrow f(x) \geqslant m$$

— Pour $a = +\infty$ et $l \in \mathbb{R}$ (ou \mathbb{C}):

$$\forall \varepsilon > 0 \quad \exists B \in \mathbb{R} \quad \forall x \in \mathcal{D}_f \quad x \geqslant B \Longrightarrow |f(x) - l| \leqslant \varepsilon$$

— Pour $a = +\infty$ et $l = -\infty$:

$$\forall M \in \mathbb{R} \quad \exists B \in \mathbb{R} \quad \forall x \in \mathcal{D}_f \quad x \geqslant B \Longrightarrow f(x) \leqslant M$$

— Pour $a=+\infty$ et $l=+\infty$:

$$\forall m \in \mathbb{R} \quad \exists B \in \mathbb{R} \quad \forall x \in \mathcal{D}_f \quad x \geqslant B \Longrightarrow f(x) \geqslant m$$

${\bf Remarques:}$

 \Rightarrow On montre que f(x) tend vers $l \in \mathbb{R}$ (ou \mathbb{C}) lorsque x tend vers $a \in \mathbb{R}$ si et seulement si pour tout voisinage \mathcal{W} de l, il existe un voisinage \mathcal{V} de a tel que :

$$\forall x \in \mathcal{D}_f \cap \mathcal{V} \quad f(x) \in \mathcal{W}$$

Exemples:

 \Rightarrow Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction croissante telle que

$$f(n) \xrightarrow[n \to +\infty]{} +\infty$$

Montrer que f(x) tend vers $+\infty$ lorsque x tend vers $+\infty$. Que dire si f n'est pas croissante?

Proposition 5. Soit f une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$ et $l \in \overline{\mathbb{R}}$ (ou \mathbb{C}). Alors

$$f(x) \xrightarrow[x \to a]{} l$$

si et seulement si, pour toute suite (u_n) d'éléments de \mathcal{D}_f tendant vers a, la suite $(f(u_n))$ tend vers l.

Remarques:

- \Rightarrow Si f est définie en $a \in \mathbb{R}$ et admet une limite en a, cette limite est f(a).
- \Rightarrow Cette proposition est utile pour prouver qu'une fonction f n'a pas de limite en a. Pour cela, il suffit de trouver deux suites (u_n) et (v_n) telles que

$$u_n \xrightarrow[n \to +\infty]{} a \text{ et } v_n \xrightarrow[n \to +\infty]{} a$$

et telles que les suites de terme général $f(u_n)$ et $f(v_n)$ aient des limites distinctes.

Exemples:

- Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique admettant une limite finie en $+\infty$. Montrer que f est constante.
- \Rightarrow Montrer que la fonction d'expression $\sin\left(\frac{1}{x}\right)$ n'a pas de limite en 0.

Proposition 6. Si f admet une limite $l \in \mathbb{R}$ (ou \mathbb{C}) en $a \in \mathbb{R}$, alors cette limite est unique; si tel est le cas, on écrit:

$$\lim_{x \to a} f\left(x\right) = l$$

Proposition 7. Soit f une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$ et $l \in \mathbb{C}$ (ou \mathbb{R}). On suppose que :

$$f(x) \xrightarrow[x \to a]{} l$$

Alors:

$$|f(x)| \xrightarrow[x \to a]{} |l| \ et \ \overline{f}(x) \xrightarrow[x \to a]{} \overline{l}$$

Proposition 8. Soit f une fonction complexe définie au voisinage de $a \in \overline{\mathbb{R}}$ et $l \in \mathbb{C}$. Alors:

$$f\left(x\right) \xrightarrow[x \to a]{} l \iff \left[\operatorname{Re}\left[f\left(x\right)\right] \xrightarrow[x \to a]{} \operatorname{Re}\left(l\right) \ et \ \operatorname{Im}\left[f\left(x\right)\right] \xrightarrow[x \to a]{} \operatorname{Im}\left(l\right)\right]$$

Proposition 9.

- Les théorèmes usuels portant sur les combinaisons linéaires, les produits et les quotients de limites de suites restent vrais pour les fonctions.
- Soit f une fonction définie au voisinage de a tendant vers $l_1 \in \overline{\mathbb{R}}$ en a et g une fonction définie au voisinage de l_1 tendant vers $l_2 \in \overline{\mathbb{R}}$ (ou \mathbb{C}) en l_1 . Si $g \circ f$ est définie au voisinage de a, alors :

$$(g \circ f)(x) \xrightarrow[x \to a]{} l_2$$

Remarques:

- \Rightarrow Comme pour les suites, la somme d'une fonction admettant une limite finie en a et d'une fonction n'admettant pas de limite en a n'admet pas de limite en a. Les autres théorèmes de ce type sont souvent faux; par exemple, il est possible qu'une fonction f n'admette pas de limite en a bien que $g \circ f$ admette une limite en a.
- \Rightarrow Soit f et g sont deux fonctions réelles définies sur \mathcal{D} . On définit les fonctions sup (f,g) et inf (f,g) par :

$$\forall x \in \mathcal{D} \quad \sup(f, g)(x) = \max(f(x), g(x)) \text{ et inf}(f, g)(x) = \min(f(x), g(x))$$

Si f et g admettent pour limite respectives l_f et $l_g \in \mathbb{R}$ en $a \in \overline{\mathbb{R}}$, alors

$$\sup (f,g)(x) \xrightarrow[x \to a]{} \max (l_f,l_g) \text{ et } \inf (f,g)(x) \xrightarrow[x \to a]{} \min (l_f,l_g)$$

Exemples:

⇒ Déterminer la limite, si elle existe de

$$\frac{\sqrt{1+\sin x} - \sqrt{1-\sin x}}{x}$$

en 0.

2.2 Limites et ordre sur \mathbb{R}

Proposition 10. Soit f une fonction réelle ou complexe admettant une limite finie en a. Alors f est bornée au voisinage de a.

Proposition 11. Soit f une fonction réelle telle que f(x) tende vers $l \in \mathbb{R}$ lorsque x tend vers $a \in \overline{\mathbb{R}}$.

- Si f est majorée par $M \in \mathbb{R}$, alors $l \leq M$.
- Si f est minorée par $m \in \mathbb{R}$, alors $l \geqslant m$.

Proposition 12. Soit f une fonction réelle telle que f(x) tende vers $l \in \mathbb{R}$ lorsque x tend vers $a \in \mathbb{R}$.

— Si M est un réel tel que l < M, il existe un voisinage V de a tel que :

$$\forall x \in \mathcal{D}_f \quad x \in \mathcal{V} \Longrightarrow f(x) \leqslant M$$

— Si m est un réel tel que l > m, il existe un voisinage V de a tel que :

$$\forall x \in \mathcal{D}_f \quad x \in \mathcal{V} \Longrightarrow f(x) \geqslant m$$

Remarques:

 \Rightarrow En pratique, il conviendra d'expliciter les voisinages. Par exemple, si f(x) tend vers l < Mlorsque x tend vers $a \in \mathbb{R}$, il existe $\varepsilon > 0$ tel que

$$\forall x \in \mathcal{D}_f \quad |x - a| \leqslant \varepsilon \Longrightarrow f(x) \leqslant M$$

 \Rightarrow Si une fonction complexe f admet une limite $l \in \mathbb{C}$ non nulle en $+\infty$, il existe $m \in \mathbb{R}$ tel que

$$\forall x \in \mathcal{D}_f \quad x \geqslant m \Longrightarrow f(x) \neq 0$$

Proposition 13. Soit a, b et f des fonctions réelles telles que :

$$\forall x \in \mathcal{D}_f \quad a(x) \leqslant f(x) \leqslant b(x)$$

On suppose que a et b admettent la même limite finie $l \in \mathbb{R}$ en $a \in \overline{\mathbb{R}}$. Alors :

$$f(x) \xrightarrow[x \to a]{} l$$

Exemples:

Déterminer la limite, si elle existe, de la fonction d'expression $\frac{x}{2+\sin(\frac{1}{x})}$ en 0.

Proposition 14. Soit f et q deux fonctions réelles telles que

$$\forall x \in \mathcal{D} \quad f(x) \leqslant q(x)$$

$$-Si f(x) \longrightarrow +\infty, \ alors \ g(x) \longrightarrow +\infty$$

$$\begin{array}{ll} - Si \; f\left(x\right) \xrightarrow[x \to a]{} + \infty, \; alors \; g\left(x\right) \xrightarrow[x \to a]{} + \infty. \\ - Si \; g\left(x\right) \xrightarrow[x \to a]{} - \infty, \; alors \; f\left(x\right) \xrightarrow[x \to a]{} - \infty. \end{array}$$

Proposition 15. Soit f une fonction, $a \in \overline{\mathbb{R}}$, $l \in \mathbb{R}$ (ou \mathbb{C}) et q une fonction réelle positive telle que :

$$- \forall x \in \mathcal{D} \quad |f(x) - l| \leqslant g(x)$$

$$-g(x) \xrightarrow[x \to a]{} 0$$

Alors:

$$f(x) \xrightarrow[x \to a]{} l$$

Limite à gauche, à droite

Définition 17.

— Soit f une fonction définie au voisinage à gauche de $a \in \mathbb{R}$ et $l \in \overline{\mathbb{R}}$ (ou \mathbb{C}). On dit que f admet l pour limite à gauche en a lorsque la restriction de f à $\mathcal{D}_f \cap]-\infty, a[$ admet l pour limite en a. Si tel est le cas, on note:

$$f(x) \xrightarrow[x < a]{x \to a} l$$

La propriété « tend vers l lorsque x tend vers a par la quuche » est locale à

— Soit f une fonction définie au voisinage à droite de $a \in \mathbb{R}$ et $l \in \overline{\mathbb{R}}$ (ou \mathbb{C}). On dit que f admet l pour limite à droite en a lorsque la restriction de f à $\mathcal{D}_f \cap [a, +\infty[$ admet l pour limite en a. Si tel est le cas, on note:

$$f\left(x\right) \xrightarrow[x>a]{x \to a \atop x>a} l$$

La propriété « tend vers l lorsque x tend vers a par la droite » est locale à droite en a.

Proposition 16. Soit f une fonction définie au voisinage de a et $l \in \mathbb{R}$ (ou \mathbb{C}). Alors f(x) tend vers l lorsque x tend vers a si et seulement si, les objets ci-dessous susceptibles d'avoir un sens

$$\lim_{\substack{x \to a \\ x < a}} f(x), \quad f(a) \ et \ \lim_{\substack{x \to a \\ x > a}} f(x)$$

existent et sont égaux à l.

Exemples:

Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R} \quad f(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ e^{-1/x} & \text{si } x > 0 \end{cases}$$

Montrer que $f(x) \xrightarrow[x \to 0]{} 0$.

Proposition 17. Soit f une fonction réelle croissante sur un intervalle I.

— Si $a \in I$ n'est pas une borne de I, f admet une limite finie à gauche et une limite finie à droite en a. De plus :

$$\lim_{\substack{x \to a \\ x < a}} f(x) \leqslant f(a) \leqslant \lim_{\substack{x \to a \\ x > a}} f(x)$$

- Si a est la borne supérieure de I, f admet une limite en a. Cette limite est finie si f est majorée, et est égale à $+\infty$ sinon.
- Si a est la borne inférieure de I, f admet une limite en a. Cette limite est finie si f est minorée, et est égale à $-\infty$ sinon.

Remarques:

- ⇒ Une proposition similaire existe pour les fonctions décroissantes.
- \Rightarrow Si f est une fonction définie sur \mathbb{R} , croissante et majorée, alors elle admet une limite $l \in \mathbb{R}$ en $+\infty$ et

$$\forall x \in \mathbb{R} \quad f(x) \leqslant l$$

Si de plus f est strictement croissante

$$\forall x \in \mathbb{R} \quad f(x) < l$$

3 Continuité

3.1 Continuité

Définition 18. On dit qu'une fonction f est continue en $x_0 \in \mathcal{D}_f$ lorsque :

$$f\left(x\right) \xrightarrow[x \to x_0]{} f\left(x_0\right)$$

La propriété « est continue en x_0 » est locale en x_0 . On appelle domaine de continuité de f l'ensemble des $x_0 \in \mathcal{D}_f$ en lesquels f est continue.

${\bf Remarques:}$

 \Rightarrow La continuité de f en x_0 s'écrit

$$\forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall x \in \mathcal{D}_f \quad |x - x_0| \leqslant \eta \Longrightarrow |f(x) - f(x_0)| \leqslant \varepsilon$$

- \Rightarrow Une fonction f est continue en $x_0 \in \mathcal{D}_f$ si et seulement si elle admet une limite en x_0 .
- \Rightarrow Une fonction continue en x_0 est bornée au voisinage de x_0 .
- \Rightarrow On dit qu'une fonction f est continue à droite en x_0 lorsque

$$f\left(x\right) \xrightarrow[x \to x_0]{x \to x_0} f\left(x_0\right)$$

De même, on définit la notion de continuité à gauche. Une fonction est continue en x_0 si et seulement si elle est continue à droite et à gauche en x_0 .

 \Rightarrow On dit qu'une fonction f admet une discontinuité de première espèce en x_0 lorsqu'elle admet des limites à droite et à gauche et lorsque l'une de ces limite est différente de $f(x_0)$. Par exemple, la fonction partie entière admet une discontinuité de première espèce en tout point $x_0 \in \mathbb{Z}$.

Exemples:

- \Rightarrow Toute fonction lipschitzienne est continue en tout point de son domaine de définition.
- \Rightarrow Les fonctions valeur absolue, puissance (en particulier les puissances entières et les racines n-ièmes), ln, exp, les fonctions trigonométriques circulaires et hyperboliques, directes et réciproques sont continues en tout point de leur domaine de définition.
- Arr La fonction f définie sur \mathbb{R} par $f(x) = \sin(1/x)$ si $x \neq 0$ et f(0) = 0 est discontinue en 0. Cette discontinuité n'est pas une discontinuité de première espèce.

Définition 19. On dit qu'une fonction est continue lorsqu'elle est continue en tout point de son domaine de définition.

Remarques:

- \Rightarrow Une fonction f est continue sur une partie A de \mathcal{D}_f lorsque sa restriction à A est continue.
- \Rightarrow Soit g une restriction de f et $x_0 \in \mathcal{D}_g$. Si f est continue en x_0 , alors il en est de même pour g. Cependant, il est possible que g soit continue en x_0 sans que f le soit. Par exemple la restriction de la partie entière à [0,1[est nulle donc continue en 0. Cependant, la partie entière n'est pas continue en 0.
- \Rightarrow On reprend les notations de la remarque précédente. Si x_0 est intérieur à \mathcal{D}_g , la continuité de g en x_0 implique celle de f.
- \Rightarrow En conclusion des deux remarques précédentes, si f est une fonction définie sur \mathcal{D}_f et $A \subset \mathcal{D}_f$, la continuité de f en tout point de A implique sa continuité sur A. Par contre, la continuité f sur A implique seulement la continuité de f en tout point intérieur à A.

Proposition 18. Soit f une fonction et $x_0 \in \mathcal{D}_f$. Alors f est continue en x_0 si et seulement si pour toute suite (u_n) d'éléments de \mathcal{D}_f convergeant vers x_0 :

$$f\left(u_{n}\right)\xrightarrow[n\to+\infty]{}f\left(x_{0}\right)$$

Remarques:

 \Rightarrow Soit f une fonction continue sur l'intervalle I et (u_n) une suite telle que

$$\forall n \in \mathbb{N} \quad u_{n+1} = f(u_n)$$

Alors, si (u_n) admet une limite $l \in \mathbb{R}$, c'est une borne de I ou un point fixe de f.

- \Rightarrow Soit f et g deux fonctions continues sur \mathbb{R} . Si elles coïncident sur \mathbb{Q} , alors f = g.
- \Rightarrow Cette proposition est utile pour prouver qu'une fonction f n'est pas continue en x_0 . Pour cela, il suffit de trouver une suite (u_n) convergeant vers x_0 telle que la suite de terme général $f(u_n)$ ait une limite différente de $f(x_0)$.

Exemples:

- \Rightarrow Montrer que la fonction caractéristique de $\mathbb Q$ est discontinue en tout point.
- \Rightarrow Quelles sont les fonctions continues de $\mathbb R$ dans $\mathbb R$ telles que

$$\forall x \in \mathbb{R} \quad f(x+y) = f(x) + f(y)$$

Proposition 19. Soit f et g deux fonctions continues en x_0 . Alors :

- $Si \lambda, \mu \in \mathbb{R} \ (ou \mathbb{C}), \lambda f + \mu g \ est \ continue \ en \ x_0.$
- $f \cdot g$ est continue en x_0 .
- Si $g(x_0) \neq 0$, alors g ne s'annule pas au voisinage de x_0 et f/g est continue en x_0 .

Remarques:

 \Rightarrow Si \mathcal{D} est une partie de \mathbb{R} , l'ensemble $\mathcal{C}^0(\mathcal{D}, \mathbb{R})$ des fonctions continues de \mathcal{D} dans \mathbb{R} est une \mathbb{R} -algèbre.

Proposition 20. Soit f et g deux fonctions telles que $g \circ f$ soit défini au voisinage de x_0 . Si f est continue en x_0 et g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

Remarques:

- ⇒ Les deux propositions précédentes sont regroupées sous la dénomination de « théorèmes usuels ».
- \Rightarrow La somme d'une fonction continue en x_0 et d'une fonction discontinue en x_0 est discontinue en x_0 . Les autres propositions de ce type peuvent être fausses. Par exemple, si f et g sont les fonctions définies sur \mathbb{R} par

$$\forall x \in \mathbb{R} \quad f(x) = x \text{ et } g(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

alors f est continue en 0 et g ne l'est pas. Pourtant $f \cdot g$ l'est. On retiendra que les réciproques des théorèmes usuels peuvent être fausses.

Proposition 21. Soit f une fonction continue en x_0 . Alors \overline{f} et |f| sont continues en x_0 .

Proposition 22. Soit f une fonction à valeurs dans \mathbb{C} et $x_0 \in \mathcal{D}_f$. Alors:

 $[f \ est \ continue \ en \ x_0] \iff [\operatorname{Re}(f) \ et \ \operatorname{Im}(f) \ sont \ continues \ en \ x_0]$

Remarques:

 \Rightarrow Si f est une fonction à valeurs dans \mathbb{C} continue en x_0 , alors e^f est continue en x_0 .

Exemples:

 \Rightarrow Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R} \quad f(x) = \begin{cases} \frac{e^{ix} - 1}{x} & \text{si } x \neq 0\\ i & \text{si } x = 0 \end{cases}$$

Montrer que f est continue en tout point de \mathbb{R} .

3.2 Prolongement par continuité

Définition 20. Soit f une fonction définie au voisinage d'un point $a \in \mathbb{R}$ n'appartenant pas à \mathcal{D}_f . Lorsque f(x) admet une limite finie $l \in \mathbb{R}$ (ou \mathbb{C}) lorsque x tend vers a, on dit que f est prolongeable par continuité en a. La fonction

$$\hat{f}: \mathcal{D}_f \cup \{a\} \longrightarrow \mathbb{R} \ (ou \ \mathbb{C})$$

$$x \longmapsto \begin{cases} f(x) & si \ x \neq a \\ l & si \ x = a \end{cases}$$

est alors appelée prolongement par continuité de f en a. C'est une fonction continue en a.

3.3 Théorème des valeurs intermédiaires

Théorème 3. Soit f une fonction réelle continue sur l'intervalle I, $a,b \in I$ et $y_0 \in \mathscr{C}[f(a), f(b)] \gg A$ lors il existe $x_0 \in \mathscr{C}[a,b] \gg t$ el que $f(x_0) = y_0$.

Remarques:

- \Rightarrow Une fonction réelle continue ne s'annulant pas sur un intervalle I est de signe constant.
- \Rightarrow Soit f une fonction continue sur un intervalle I telle que

$$\forall x \in I \quad [f(x) = 0 \text{ ou } f(x) = 1]$$

Alors f est constante. Plus généralement, si sur un intervalle, une fonction continue prend un nombre fini de valeurs, alors elle est constante.

Exemples:

- \Rightarrow Soit f une fonction continue de [0, 1] dans [0, 1]. Alors f admet un point fixe.
- ⇒ Sur un intervalle, une fonction continue injective est strictement monotone.

Proposition 23. Soit f une fonction réelle continue sur]a,b[où $a,b\in \overline{\mathbb{R}}$. On suppose que :

$$f(x) \xrightarrow[x \to a]{} l_a \in \overline{\mathbb{R}} \ et \ f(x) \xrightarrow[x \to b]{} l_b \in \overline{\mathbb{R}}$$

Alors, si $y_0 \in \text{``}[l_a, l_b[\text{``}, il \text{ existe } x_0 \in]a, b[\text{ tel que } f(x_0) = y_0.$

Exemples:

 \Rightarrow Tout polynôme réel de degré impair admet une racine réelle.

Proposition 24. L'image d'un intervalle par une fonction réelle continue est un intervalle.

Remarques:

- ⇒ Cette proposition est une reformulation du théorème des valeurs intermédiaires.
- \Rightarrow Lorsque f est une fonction continue et strictement croissante sur un intervalle I dont les bornes sont a et $b \in \overline{\mathbb{R}}$, f(I) est un intervalle de même nature et ses bornes sont respectivement

$$\lim_{\substack{x \to a \\ x > a}} f(x) \text{ et } \lim_{\substack{x \to b \\ x < b}} f(x)$$

- \Rightarrow En pratique, lorsque f est une fonction élémentaire (donc continue), on dresse son tableau de variations et on « lit » sur ce tableau l'image par f de l'intervalle étudié.
- \Rightarrow Il est possible que les intervalles I et f(I) ne soient pas de même nature (ouvert, fermé, ouvert à gauche et fermé à droite). Par exemple, si f est la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R} \quad f(x) = \frac{1}{1+x^2}$$

on a
$$f(]-\infty, +\infty[) =]0, 1].$$

Proposition 25. Soit I un intervalle de \mathbb{R} et f une fonction réelle continue strictement monotone sur I. Alors f induit une bijection de l'intervalle I sur l'intervalle J = f(I). De plus, sa bijection réciproque $f^{-1}: J \to I$ est continue sur J.

Remarques:

 \Rightarrow La fonction sin est strictement croissante sur $[-\pi/2, \pi/2]$. Comme sin $(-\pi/2) = -1$ et $\sin(\pi/2) = 1$, elle réalise une bijection de $[-\pi/2, \pi/2]$ sur [-1, 1]. Sa bijection réciproque, la fonction Arcsin est donc continue sur [-1, 1].

Exemples:

 \Rightarrow Soit f la fonction définie sur \mathbb{R}_+ par :

$$\forall x \in \mathbb{R}_+ \quad f(x) = xe^x$$

Montrer que f réalise une bijection continue de \mathbb{R}_+ sur \mathbb{R}_+ , que f^{-1} est continue et que $f^{-1}(x) \xrightarrow[r \to +\infty]{} +\infty$.

3.4 Image continue d'un segment

Définition 21. Soit f une fonction réelle définie sur un ensemble non vide X. Si f est majorée sur X, $\{f(x): x \in X\}$ est une partie non vide majorée de \mathbb{R} . Elle admet donc une borne supérieure notée :

$$\sup_{x \in X} f\left(x\right)$$

On dit que cette borne est atteinte lorsqu'il existe $x_0 \in X$ tel que

$$f\left(x_0\right) = \sup_{x \in X} f\left(x\right)$$

c'est-à-dire lorsque l'ensemble $\{f(x):x\in X\}$ admet un plus grand élément; si tel est le cas, la borne supérieure est notée :

$$\max_{x \in X} f\left(x\right)$$

Remarques:

⇒ On définit de même la notion de borne inférieure.

Exemples:

 \Rightarrow Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R} \quad f(x) = x(1-x)$$

Alors f est bornée et atteint ses bornes sur [0,1].

$$\sup_{x \in [0,1]} x (1-x) = f\left(\frac{1}{2}\right) = \frac{1}{4} \text{ et } \inf_{x \in [0,1]} x (1-x) = f(0) = f(1) = 0$$

 \Rightarrow Soit f la fonction définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_{+}^{*} \quad f(x) = \frac{1}{x}$$

Alors f n'est pas majorée sur \mathbb{R}_+^* . De plus, elle est minorée mais n'atteint pas sa borne inférieure sur \mathbb{R}_+^* .

$$\inf_{x \in \mathbb{R}_+^*} \frac{1}{x} = 0$$

Théorème 4. Sur un segment, une fonction continue est bornée et atteint ses bornes.

Exemples:

Soit f une fonction continue sur un segment [a, b] telle que $\forall x \in [a, b] \quad 0 \le f(x) < 1$. Montrer que si (u_n) est une suite d'éléments de [a, b], alors :

$$f(u_n)^n \xrightarrow[n \to +\infty]{} 0$$

Proposition 26. L'image d'un segment par une fonction réelle continue est un segment.

3.5 Continuité uniforme

Définition 22. On dit qu'une fonction f est uniformément continue lorsque :

$$\forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall x, y \in \mathcal{D}_f \quad |x - y| \leqslant \eta \Longrightarrow |f(x) - f(y)| \leqslant \varepsilon$$

Remarques:

⇒ Une fonction lipschitzienne est uniformément continue.

Exemples:

 \Rightarrow Montrer que la fonction $x \mapsto \sqrt{x}$ est uniformément continue mais n'est pas lipschitzienne.

Proposition 27. Si f est uniformément continue, alors elle est continue.

${\bf Remarques:}$

 \Rightarrow Soit f une fonction continue. Alors

$$\forall x \in \mathcal{D}_f \quad \forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall y \in \mathcal{D}_f \quad |x - y| \leqslant \eta \Longrightarrow |f(x) - f(y)| \leqslant \varepsilon$$

Les deux premiers quantificateurs étant de même nature, on peut les échanger, donc

$$\forall \varepsilon > 0 \quad \forall x \in \mathcal{D}_f \quad \exists \eta > 0 \quad \forall y \in \mathcal{D}_f \quad |x - y| \leqslant \eta \Longrightarrow |f(x) - f(y)| \leqslant \varepsilon$$

Une fonction est donc uniformément continue lorsqu'on peut échanger les quantificateurs portant sur x et η , c'est-à-dire lorsqu'il est possible de choisir η indépendamment de x.

Exemples:

 \Rightarrow Montrer que la fonction f définie sur \mathbb{R} par $f(x) = x^2$ n'est pas uniformément continue.

Théorème 5. Sur un segment, toute fonction continue est uniformément continue.