CLAIMS

What is claimed is:

1	1.	A method of obtaining a parameter of interest of an earth formation using
2		a tool conveyed within a borehole in the earth formation, the tool having a body
3		with a finite, non-zero conductivity, said method comprising:
4		(a) using a transmitter on the tool for producing a first electromagnetic signal
5		in the earth formation;
6		(b) using at least one receiver axially separated from said transmitter on said
7		tool for receiving a second temporal signal resulting from interaction of
8		said first signal with the earth formation, said second temporal signal
9		dependent upon said conductivity and said parameter of interest; and
10		(c) using a processor for obtaining from said second signal a third temporal
11		signal indicative of said parameter of interest and substantially
12		independent of said conductivity.
1	2.	The method of claim 1, further comprising using said processor for determining
2		from said third signal said parameter of interest.
1	3.	The method of claim 1, wherein said parameter of interest is at least one of (i) a
2		resistivity of said formation, and, (ii) a distance to a bed boundary in said
3		formation.

- The method of claim 1, wherein a sensitivity of said third temporal signal to said
 earth formation is substantially independent of a spacing between said transmitter
 and said at least one receiver.
- The method of claim 4, wherein said spacing between said transmitter and said at
 least one receiver is approximately 2 meters.
- 1 6. The method of claim 1, wherein using said processor in (c) further comprises
 2 representing said second signal by a Taylor series expansion.
- The method of claim 6, wherein said Taylor series expansion is in one half of odd
 integer powers of time.
- The method of claim 7, further comprising subtracting from said second signal at
 least one leading term of the Taylor series expansion.
- The method of claim 1, wherein using said processor in (c) further comprises
 applying a filter operation to said second signal.
- 1 10. The method of claim 9, wherein said filtering operation further comprises a
 2 differential filtering operation.

1 11. The method of claim 10, wherein said differential filtering operation is of the

$$2 \qquad \qquad \text{form} \qquad \qquad \frac{\partial \left(t^{1/2} H_z\right)}{\partial t}$$

- 3 wherein t is time and H_z is a representation of said second signal.
- 1 12. The method of claim 9, wherein said filtering operation further comprises an
- 2 integral filtering operation.
- 1 13. The method of claim 12, wherein said integral filtering operation further
- 2 comprises defining a first and a second specified time.
- 1 14. The method of claim 1 wherein said tool is conveyed into the earth formation on
- one of (i) a drilling tubular, and, (ii) a wireline.
- 1 15. A system for determining a parameter of interest of an earth formation having a
- 2 borehole therein, comprising:
- 3 (a) a tool for use within said borehole, said tool having a body with a finite,
- 4 non-zero conductivity;
- 5 (b) a transmitter for producing a first electromagnetic signal in the earth
- 6 formation;
- 7 (c) at least one receiver axially separated from said transmitter on said tool for
- 8 receiving a second temporal signal resulting from interaction of said first

414-34865-US 31

9		signal with the earth formation, said second temporal signal dependent
10		upon said conductivity and said parameter of interest; and
11		(d) a processor for obtaining from said second signal a third temporal signal
12		indicative of said parameter of interest and substantially independent of
13		said conductivity.
1	16.	The system of claim 15, wherein said processor determines from said third signal
2		said parameter of interest.
1	17.	The system of claim 15, wherein said parameter of interest is at least one of (i) a
2		resistivity of said formation, and, (ii) a distance to a bed boundary in said
3		formation.
1	18.	The system of claim 15, wherein a sensitivity of said third temporal signal to said
2		earth formation is substantially independent of a spacing between said transmitter
3		and said at least one receiver.
1	19.	The system of claim 18, wherein said spacing between said transmitter and said at
2		least one receiver is approximately 2 meters.
1	20.	The system of claim 15, wherein said processor represents said second signal by
2		a Taylor series expansion.

414-34865-US 32

- 1 21. The system of claim 20, wherein said Taylor series expansion is in one half of odd
- 2 integer powers of time.
- 1 22. The system of claim 21, wherein said processor further subtractins from said
- 2 second signal at least one leading term of said Taylor series expansion.
- 1 23. The system of claim 15, wherein said processor in further applies a filtering
- 2 operation to said second signal.
- 1 24. The system of claim 23, wherein said filtering operation further comprises a
- 2 differential filtering operation.
- 1 25. The system of claim 24, wherein said differential filtering operation is of the form

$$\frac{\partial \left(t^{1/2}H_z\right)}{\partial t}$$

- 3 wherein t is time and H_z is a representation of said second signal.
- 1 26. The system of claim 23, wherein said filtering operation further comprises an
- 2 integral filtering operation.
- 1 27. The system of claim 26, wherein said integral filtering operation further
- 2 comprises defining a first and a second specified time.

- 1 28. The system of claim 15 further comprising a drilling tubular for conveying said
- 2 tool into the earth formation.
- 1 29. The system of claim 15 further comprising a wireline for conveying said tool into
- 2 the earth formation.