Analysis

Gaotang Li

July 24, 2022

Contents

Ι	Foundations
1	Groups and Homomorphism
	1.1 Basics
	1.2 Subgroup
	1.3 Cosets
	1.4 Homomorphisms
2	Rings, Fields and Polynomials
	2.1 Rings
	2.2 Consequence of Ring Definitions
	2.3 Field
	2.4 Ordered Field
	2.5 Formal Power Series
	2.6 Polynomials

Part I Foundations

Chapter 1

Groups and Homomorphism

1.1 Basics

Definition 1.1.1 (Group). A pair (G, \odot) consisting of a nonempty set G and an operation \odot is called a **group** if the following holds:

- G is closed under the operation \odot
- ⊙ is associative
- ullet \odot has an identity element e
- Each $g \in G$ has an **inverse** $h \in G$ such that $g \odot h = h \odot g = e$

Definition 1.1.2 (Abelian group). A group G, \odot is called **commutative** or **Abelian** if \odot is a commutative operation on G.

Remark. Let $G = (G, \odot)$

- (a) the identity element e is unique
- (b) Each $g \in G$ has a unique inverse which we denote by g^b . In particular $e^b = e$.
- (c) For each $g \in G$, we have $(g^b)^b = g$.
- (d) For arbitrary group elements g and h, $(g \odot h)^b = h^b \odot g^b$

Example. (a) Let $G := \{e\}$ be a one element set. Then $\{G, \odot\}$ is an Abelian group, the **trivial** group, with the (only possible) operation $e \odot e = e$.

- (b) Let X be a nonempty set, and S_X be the set of all bijections from X to itself. Then $S_X := (S_X, \circ)$ is a group with identity element id_X when \circ denotes the composition of functions. Further, the inverse function f^{-1} is the inverse of $f \in S_X$ in the group. When X is finite, the element of S_X are called permutations and S_X is called the **permutation group** of X.
- (c) Let X be a nonempty set and G, \odot a group. With the induced operation \odot , (G^X, \odot) is a group. The inverse of $f \in G^X$ is the function

$$f^b \colon X \to G, \ x \mapsto (f(x))^b$$

(d) Let G_1, \ldots, G_m be groups. Then $G_1 \times \cdots \times G_m$ with the operation defined analogously to (d) is a group called the **direct product** of G_1, \ldots, G_m .

1.2 Subgroup

Definition 1.2.1 (Subgroup). Let $G = (G, \odot)$ be a group and H a nonempty subset of G, if

- $H \odot H \subseteq H$
- $h^b \in H$ for all $h \in H$

then $H := (H, \odot)$ is itself a group and is called a **subgroup** of G.

Remark. Here we use the same symbol \odot for the restriction of the operation to H. Since H is nonempty, there is some $h \in H$ and so, from the two axioms above, $e = h^b \odot h$ is also in H.

Example. Let $G = (G, \odot)$ be a group.

- (a) The trivial subgroup $\{e\}$ and G itself are subgroups of G, the smallest and largest subgroups with respect to inclusion
- (b) If H_{α} , $\alpha \in A$ are subgroups of G, then $\bigcap_{\alpha} H_{\alpha}$ is also a subgroup of G.

1.3 Cosets

Definition 1.3.1 (Coset). Let N be a subgroup of G and $g \in G$. Then $g \odot N$ is the **left coset** and $N \odot g$ is the **right coset** of $g \in G$ with respect to N.

Remark. The definition of coset is related to the particular element.

Note. If we define

$$g \sim h \Leftrightarrow g \in h \odot N \tag{1.1}$$

Then \sim is an equivalence on G.

Proof. \sim is reflexive because $e \in N$ Let $g \in h \odot N$ and $h \in k \odot N$, then

$$q \in (k \odot N) \odot N = k \odot (N \odot N) = k \odot N$$

Let $g \in h \odot N$, then there is some $n \in N$ with $g = h \odot n$. Then it follows that $h = g \odot n^b \in N$.

Here 1.1 defines an equivalence relation on G. For the equivalence classes $[\cdot]$ with respect to \sim , we have

$$[g] = g \odot N, \ g \in G. \tag{1.2}$$

For this reason, we denote G/\sim by G/N, and call G/N the set of left cosets of G modulo N. Particularly, we have subgroups N such that

$$g \odot N = N \odot g, \quad g \in G.$$
 (1.3)

Such a subgroup 1.3 is called a **normal subgroup** of G. We call $g \odot N$ the **coset of** g **modulo** N since each left coset is a right coset and vice versa. We have a well-defined operation on G/N where N is the normal subgroup of G, induced from \odot , such that

$$(G/N) \times (G/N) \to G/N, \quad (g \odot N, h \odot N) \mapsto (g \odot h) \odot N$$
 (1.4)

Proposition 1.3.1. Let G be a group and N a normal subgroup of G. Then G/N with the induced

operation is a group, the quotient group of G modulo N.

Proof. It is easy to check that the operation is associative. Since $(e \odot N) \odot (g \odot N) = (e \odot g) \odot N = g \odot N$, the identity element of G/N is $N = e \odot N$. Also

$$(g^b \odot N) \odot (g \odot N) = (g^b \odot g) \odot N = N$$

Remark. (a) In notion of 1.1, [e] = N is the identity element of G/N and $[g]^b = [g^b]$ is the inverse of $[g] \in G/N$. We also have $[g] \odot h = [g \odot h], g, h \in G$.

(b) Any subgroup N of an Abelian group G is normal and so G/N is a group. Meanwhile, G/N is Abelian.

1.4 Homomorphisms

Definition 1.4.1 (Homomorphism). Let $G = (G, \odot)$ and $G' = (G', \circledast)$ be groups...A function $\varphi \colon G \to G'$ is called a **(group) homomorphism** if

$$\varphi(g \odot h) = \varphi(g) \circledast \varphi(h), \quad g, h \in G$$

Definition 1.4.2 (Endomorphism). A homomorphism from G to itself

Remark. (a) Let e and e' be the identity elements of G and G' respectively, and let $\varphi \colon G \to G'$ be a homomorphism. Then

$$\varphi(e) = e'$$
 and $(\varphi(g))^b = \varphi(g^b)$, $g \in G$

$$\begin{array}{l} \textbf{Proof.} \ e' \circledast \varphi \left(e \right) = \varphi \left(e \right) = \varphi \left(e \odot e \right) = \varphi \left(e \right) \circledast \varphi \left(e \right) \\ e' = \varphi \left(e \right) = \varphi \left(g^b \odot g \right) = \varphi \left(g^b \right) \circledast \varphi \left(g \right) \end{array}$$

(b) Let $\varphi \colon G \to G'$ be a homomorphism. The **kernel** of φ , $\ker(\varphi)$, defined by

$$\ker(\varphi) := \varphi^{-1}(e') = \{ g \in G : \varphi(g) = e' \}$$

is a normal subgroup of G.

Proof. First, try to prove $\ker(\varphi)$ is a subgroup of G. For all $g, h \in G$,

- $\varphi(g \odot h) = \varphi(g) \circledast \varphi(h) = e' \circledast e' = e'$
- $\varphi(g^b) = (\varphi(g))^b = (e')^b = e'$

Second, try to prove it is a normal subgroup. Let $h \in g \odot \ker(\varphi)$. Then we there is some $n \in G$ such that $\varphi(n) = e'$ and $h = g \odot n$. For $m := g \odot n \odot g^b$, we have

$$\varphi(m) = \varphi(g) \circledast \varphi(n) \circledast \varphi(g^b) = \varphi(g) \circledast \varphi(g^b) = e'$$

and hence $m \in \ker(\varphi)$. Since $m \odot g = g \odot m = h$, this implies that $h \in \ker(\varphi) \odot g$. So $\ker(\varphi) \odot g \subseteq g \odot \ker(\varphi)$. Similarly one can show $g \odot \ker(\varphi) \subset \ker(\varphi) \odot g$.

(c) Let $\varphi \colon G \to G'$ be a homomorphism and $N := \ker(\varphi)$. Then

$$g \odot N = \varphi^{-1}(\varphi(g)), \quad g \in G,$$

5

and so

$$g \sim h \Leftrightarrow \varphi(g) = \varphi(h), \quad g, h \in G,$$

where \sim denotes the equivalence relation 1.1.

- (d) A homomorphism is injective if and only if its kernel is trivial, that is, $\ker(\varphi) = \{e\}$
- (e) The image $\operatorname{im}(\varphi)$ of a homomorphism $\varphi \colon G \to G'$ is a subgroup of G'.

Example. (a) The constant function $G \to G'$, $g \mapsto e'$ is a homorphism, the **trivial** homomorphism.

- (b) The identity function $id_G: G \to G$ is an endomorphism.
- (c) Compositions of homomorphisms (endomorphisms) are homomorphisms (endomorphisms).
- (d) If $\varphi \colon G \to G'$ is a bijective homomorphism, then so is $\varphi^{-1} \colon G \to G'$

Definition 1.4.3 (Isomorphism). A homomorphism $\varphi \colon G \to G'$ is called a (**group**) **isomorphism** from G to G' if φ is bijective.

In this circumstance, we say that the groups G and G' are **isomorphic** and write $G \cong G'$.

Definition 1.4.4 (Automorphism). An isomorphism from G to itself.

Chapter 2

Rings, Fields and Polynomials

2.1 Rings

Definition 2.1.1 (Ring). A triple $(R, +, \cdot)$ consisting of a nonempty set R and operations, addition + and multiplication \cdot , is called a ring if

- (R, +) is an Abelian group
- Multiplication is associative
- The distributive law holds:

$$(a+b)\cdot c = a\cdot c + b\cdot, \ c\cdot (a+b) = c\cdot a + c\cdot b, \ a,b,c\in R$$

Note. A ring is called **commutative** if multiplication is commutative.

If there is an identity element with respect to multiplication, then it is written as 1_R or simply 1, and is called the **unity** (or **multiplicative identity**) of R, and we say $(R, +, \cdot)$ is a **ring with unity**.

When the addition and multiplication operations are clear from context, we write simply R instead of $(R, +, \cdot)$.

Example. (a) The **trivial ring** has exactly one element 0 and is itself denoted by 0. A ring with more than one element is **nontrivial**. If R is a ring with unity, then it follows from $1_R \cdot a = a$ for each $a \in R$, that R is trivial if and only if $1_R == 0_R$.

- (b) Suppose R is a ring and S is a nonempty subset of R that satisfies the following:
 - S is a subgroup of (R, +).
 - $S \cdot S \subseteq S$

Then S itself is a ring, a **subring** of R, and R is called an **overring** of S. If R is commutative then so is S, but the converse is not true in general.

(c) Intersections of subrings are subrings.

Definition 2.1.2 (Ring Homomorphism). Let R and R' be rings. A (**ring**) homomorphism is a function $\varphi: R \to R'$ which is compatible with the ring operations, that is,

$$\varphi(a+b) = \varphi(a) + \varphi(b), \quad \varphi(ab) = \varphi(a)\varphi(b), \ a, b \in R$$
 (2.1)

Note. If, in addition, φ is bijective, then φ is called a (ring) isomorphism and R and R' are isomorphic.

A homomorphism φ from R to itself is a (ring) endomorphism. If φ is an isomorphism, then it is a (ring) automorphism.

Example. (a) A ring homomorphism $\varphi \colon R \to R'$ is, in particular, a group homomorphism from (R,+) to (R',+). The **kernel**, $\ker(\varphi)$, of φ is defined to be the kernel of this group homomorphism, that is,

$$\ker(\varphi) = \{ a \in R; \varphi(a) = 0 \} = \varphi^{-1}(0)$$

- (b) The **zero function** $R \to R'$, $a \mapsto 0_{R'}$ is a homomorphism with $\ker(\varphi) = R$.
- (c) Let R and R' be rings with unity and $\varphi: R \to R'$ a homomorphism. As (b) shows, it does not necessarily follow that $\varphi(1_R) = 1_{R'}$. This can be seen as a consequence of the fact that, with respect to multiplication, a ring is not a group.

2.2 Consequence of Ring Definitions

Definition 2.2.1 (The Binomial Theorem). Let a and b be two commuting elements (ab = ba) of a ring R with unity. Then, for all $n \in \mathbb{N}$,

$$(a+b)^b = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}$$

Lemma 2.2.1. For $m \in \mathbb{N}$ with $m \geq 2$, an element $\alpha = (\alpha_1 \dots \alpha_m) \in \mathbb{N}^m$ is called a **multi-index**. The **length** $|\alpha|$ of a multi-index $\alpha \in \mathbb{N}^m$ is defined by

$$|\alpha| \coloneqq \sum_{j=1}^{m} \alpha_j$$

Set also

$$\alpha! \coloneqq \prod_{j=1}^{m} (\alpha_j)!,$$

and define the **natural** (partial) order on \mathbb{N}^m by

$$\alpha \le \beta \rightleftarrows (\alpha_j \le \beta_j, \ 1 \le j \le m).$$

for $a = (a_1, \ldots, a_m) \in \mathbb{R}^m$ and $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{N}^m$

Definition 2.2.2 (The Multinomial Theorem). Let R be a commutative ring with unity. Then for all $m \geq 2$,

$$(\sum_{j=1}^{m} \alpha)^k = \sum_{|\alpha|=k} \frac{k!}{\alpha!} a^{\alpha}, \quad a = (a_1, \dots, a_m) \in \mathbb{R}^m, \quad k \in \mathbb{N}.$$

2.3 Field

Definition 2.3.1 (Field). K is a **field** when the following are satisfied:

- K is a commutative ring with unity.
- $0 \neq 1$
- $K^{\times} := K \setminus \{0\}$ is an Abelian group with respect to multiplication.

Note. The Abelian group $K^{\times} := (K^{\times}, \cdot)$ is called the **multiplicative group** of K.

Remark. Let K be a field.

- (a) For all $a \in K^{\times}$, $(a^{-1}) 1 = a$
- (b) A field has no zero divisors
- (c) Let $a \in K^{\times}$ and $a \in K^{\times}$ and $b \in K$. Then there is an unique $x \in K$ with ax = b, namely the **quotient** $\frac{b}{a} \coloneqq b/a \coloneqq ba^{-1}$
- (d) Let K' be a field and $\varphi \colon K \to K'$ a homomorphism with $\varphi \neq 0$. Then

$$\varphi(1_K) = 1_{K'}$$
 and $\varphi(a^{-1}) = \varphi(a)^{-1}$, $a \in K^{\times}$

2.4 Ordered Field

Definition 2.4.1 (Ordered Ring). A ring R with an ordered \leq is called an **ordered ring** if the following holds:

- (R, \leq) is totally ordered.
- $x < y \Rightarrow x + z < y + z, z \in R$
- $x, y > 0 \Rightarrow xy > 0$

Note. This leads to a series of basic arithmetic rules.

We may define absolute value function from $K \mapsto K$.

Proposition 2.4.1. Let K be an ordered field and $x, y, a, \epsilon \in K$ with $\epsilon > 0$.

- (i) $x = |x| \operatorname{sign}(x), |x| = x \operatorname{sign}(x)$
- (ii) $|x| = |-x|, x \le |x|$
- (iii) |xy| = |x||y|
- (iv) $|x| \ge 0$ and $(|x| = 0 \Leftrightarrow x = 0)$
- (v) $|x a| < \epsilon \leftrightarrow a \epsilon < x < a + \epsilon$
- (vi) $|x+y| \le |x| + |y|$ (triangular inequality)

Corollary 2.4.1 (reversed triangular inequality). In any ordered field K we have

$$|x - y| \ge ||x| - |y||, \quad x, y \in K.$$

2.5 Formal Power Series

Definition 2.5.1 (formal power series). Let R be a nontrivial ring with unity. On the set $R^{\mathbb{N}} = \operatorname{Funct}(\mathbb{N}, R)$ define addition by

$$(p+q)_n := p_n + q_n, \quad n \in \mathbb{N},$$

and multiplication by convolution,

$$(pq)_n := (p \cdot q)_n := \sum_{j=0}^n p_j q_{n-1} = p_0 q_n + p_1 q_{n-1} + \dots + p_n q_0$$

for $n \in \mathbb{N}$. Here p_n denotes the value of $p \in R^{\mathbb{N}}$ at $n \in \mathbb{N}$ and is called the n^{th} coefficient of p. In this situation an element $p \in R^{\mathbb{N}}$ is called a **formal power series over** R, and we set $R[X] := (R^{\mathbb{N}}, +, \cdot)$

Proposition 2.5.1. R[X] is a ring with unity, the **formal power series ring over** R. If R is commutative, then so is R[X]

2.6 Polynomials

Definition 2.6.1 (Polynomial). A **polynomial over** R is a formal power seres $p \in R[X]$ such that $\{n; p_n \neq 0\}$ is finite, in other words, $p_n = 0$ "almost everywhere".