output $f(z) =$	pts] Problem 1: Backprop in a simple MLP roblem asks you to derive all the steps of the backpropagation algorithm for a simple classification network. Consider a fully-connected neural network, also known as a multi-layer perceptron (MLP), with a single hidden layer and a one-node output layer. It nodes use an elementwise sigmoid activation function and the loss layer uses cross-entropy loss:
The coshows $h_1^{(0)}$	$y) = -yln(\hat{y}) - (1-y)ln(1-\hat{y})$ computation graph for an example network is shown below. Note that it has an equal number of nodes in the input and hidden layer (3 each), but, in general, they need not be equal. Also, to make the application of backprop easier, we show the <i>computation</i> the dot product and activation functions as their own nodes, rather than the usual graph showing a single node for both. $W^{(1)}, b^{(1)}$ $a_1^{(1)}$
$\begin{pmatrix} h_2^{(0)} \\ h_3^{(0)} \\ \text{Layer 2} \end{pmatrix}$	$a_3^{(1)}$ $a_3^$
Requi Requi Requi Requi Requi	where i in the second state i is a second state i in the second state i in the second state i is a second state i in the second state i in the second state i is a second state i in the second state i i
$egin{aligned} \mathbf{for} & oldsymbol{a} \ oldsymbol{a} \ oldsymbol{h} \ \mathbf{end} \ & \hat{oldsymbol{y}} = \ J = \ & \ & \ & \ & \ & \ & \ & \ & \ & \$	$egin{align} k = 1, \dots, l & \mathbf{do} \ k^{(k)} &= oldsymbol{b}^{(k)} + oldsymbol{W}^{(k)} oldsymbol{h}^{(k-1)} \ k^{(k)} &= f(oldsymbol{a}^{(k)}) \ \mathbf{d} & \mathbf{for} \ \end{pmatrix}$
After $g \leftarrow for f$ Composite $g \leftarrow for f$ Composite $for f$ Composite $for f$ Composite $for for f$ Composite $for for f$ Composite $for for for for for for for for for for $	er the forward computation, compute the gradient on the output layer: $-\nabla_{\hat{y}}J = \nabla_{\hat{y}}L(\hat{y},y)$ $k = l, l - 1, \ldots, 1 \text{ do}$ convert the gradient on the layer's output into a gradient into the pre- conlinearity activation (element-wise multiplication if f is element-wise): $\leftarrow \nabla_{a^{(k)}}J = g \odot f'(a^{(k)})$ compute gradients on weights and biases (including the regularization term,
∇_{t} ∇_{t} ∇_{t} Pr g end Write of	where needed): $T_{b(k)}J = g + \lambda \nabla_{b(k)}\Omega(\theta)$ $T_{b(k)}J = g + h(k-1)^{T} + \lambda \nabla_{b(k)}\Omega(\theta)$ ropagate the gradients w.r.t. the next lower-level hidden layer's activations: $\nabla_{b(k)}J = g + h(k-1)^{T} + h(k)^{T} + h(k)^$
$ abla_{\hat{y}}L(\hat{y})$ Next, p	$\hat{y},y)= abla_{\hat{y}}[-yln(\hat{y})-(1-y)ln(1-\hat{y})]=rac{\hat{y}-y}{(1-\hat{y})\hat{y}}=rac{\hat{y}-y}{(1-h^2)h^2}$ please derive the following. For a should substitute the updated values for the gradient g in each step and simplify as much as possible. If information about vectorized chain rule and backpropagation:
If you a lt also $oldsymbol{(5pts)}$ $oldsymbol{ abla}_{h^2}J$:	are struggling with computing the vectorized version of chain rule for the backpropagation question in problem set 4, you may find this example helpful: https://web.stanford.edu/class/cs224n/readings/gradient-notes.pdf contains some helpful shortcuts for computing gradients.
$ abla_{a^2}J=$ [5pts] $ abla_{b^2}J=$	$egin{align} &= abla_{h^2} J \cdot abla_{a^2} h^2 = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 + exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 + exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 + exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 + exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 + exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 + exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 + exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - \hat{y}) \hat{y}} \cdot rac{exp(-a^2)}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = rac{\hat{y} - y}{(1 - exp(-a^2))^2} \ &= abla_{a^2} J = a$
Hint: th $ abla_{W^2}J$ $a^2=b^2$ $ abla_{W^2}a^2$	How the should be a vector, since W^2 is a vector. $U= abla_a^2 J \cdot abla_{W^2} a^2$ $a^2 d^2 d^2 d^2 d^2 d^2 d^2 d^2 d^2 d^2 d$
[5pts] $ abla_{h^1}J = abla_{h^1}a^2$	$egin{align} T &= rac{\hat{y}-y}{(1-\hat{y})\hat{y}} \cdot rac{exp(-a^2)}{(1+exp(-a^2))^2} \cdot (h^1)^T \ &= Q_1 A \colon abla_h^{-1} J \ &= \nabla_{a^2} J \cdot abla_h^{-1} a^2 \ &= (W^2)^T [\hat{y}-y] exp(-a^2) [\mathbf{q}] \ &= (W^2)^T [\hat{y}-y] exp(-a^2) [\mathbf{q}] \ &= (W^2)^T [\mathbf{q}] [\mathbf$
[5pts] $ abla_{a^1}J = abla_{a^1}h^1$	$egin{align} &= (W^2)^T \cdot ig[rac{\hat{y}-y}{(1-\hat{y})\hat{y}} \cdot rac{exp(-a^2)}{(1+exp(-a^2))^2}ig] \ &= Q_{1}.5: abla_{b^1}J, abla_{W^1}J \ &= \nabla_{h^1}J \cdot abla_{a^1}h^1 \ &= rac{exp(-a^1)}{(1+exp(-a^1))^2} \ &= \nabla_{h^1}J \cdot abla_{a^1}J \cdot abla_{a^2}J \cdot abla_{$
$egin{aligned} abla_{W^1}J \ abla_{W^1}a^2 \ abla_{W^1}J \end{aligned}$	$egin{align*} &= abla_{b^1} J = (W^2)^T \cdot [rac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot rac{exp(-a^2)}{(1 + exp(-a^2))^2}] \odot rac{exp(-a^1)}{(1 + exp(-a^1))^2} \ &= abla_{a^1} J \cdot abla_{W^1} a^1 \ &= (h^0)^T \ &= [(W^2)^T \cdot [rac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot rac{exp(-a^2)}{(1 + exp(-a^2))^2}] \odot rac{exp(-a^1)}{(1 + exp(-a^1))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [rac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot rac{exp(-a^2)}{(1 + exp(-a^2))^2}] \odot rac{exp(-a^1)}{(1 + exp(-a^1))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [rac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot rac{exp(-a^2)}{(1 + exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [rac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot rac{exp(-a^2)}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [rac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot rac{exp(-a^2)}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [rac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot rac{exp(-a^2)}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [rac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot rac{exp(-a^2)}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [rac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot rac{exp(-a^2)}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [rac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot rac{exp(-a^2)}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [\frac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot \frac{exp(-a^2)}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [\frac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot \frac{exp(-a^2)}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [\frac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot \frac{exp(-a^2)}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [\frac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot \frac{exp(-a^2)}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [\frac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot \frac{exp(-a^2)}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [\frac{\hat{y} - y}{(1 - \hat{y})\hat{y}} \cdot \frac{exp(-a^2)}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [\frac{\hat{y} - y}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [\frac{\hat{y} - y}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [\frac{\hat{y} - y}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [\frac{\hat{y} - y}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [\frac{\hat{y} - y}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2)^T \cdot [\frac{\hat{y} - y}{(1 - exp(-a^2))^2}] \odot (h^0)^T \ &= [(W^2$
We have [35]	Q1.6 Briefly, explain how the computational speed of backpropagation would be affected if it did not include a forward pass we to compute the values again for each iteration of backprop. This will exponentially increase the runtime pts] Problem 2: Logistic Regression part of the exercise, you will build a logistic regression model to predict whether a student gets admitted into a university. pose that you are the administrator of a university department and you want to determine each applicant's chance of admission based on their results on two exams. You have historical data from previous applicants in ex2data1.txt that you can use as a train
Your ta 2.1 Imp	c regression. For each training example, you have the applicant's scores on two exams and the admissions decision. ask is to build a classification model that estimates an applicant's probability of admission based on the scores from those two exams. This outline and code framework will guide you through the exercise. applementation but sys to numpy as np
impos impos prin- prin- prin- Teste Pytho [Clan	<pre>port matplotlib port matplotlib.pyplot as plt port ('Tested with:') port ('Python', sys.version) port ((xname: xversion for x in [np, matplotlib]}) port matplotlib port matplotlib.pyplot as plt port ma</pre>
2.1.1 V Before negative def	/isualizing the data e starting to implement any learning algorithm, it is always good to visualize the data if possible. This first part of the code will load the data and display it on a 2-dimensional plot by calling the function plotData. The axes are the two exam scores, and the provided examples are shown with different markers. read_classification_csv_data(fn, add_ones=False): # read_comma_separated_data
	<pre>data = np.loadtxt(fn, delimiter=',') X_, y_ = data[:, :-1], data[:, -1, None] # a fast way to keep last dim print(Xshape, Xmin(), Xmax(), Xdtype) print(yshape, ymin(), ymax(), ydtype) # note that y is float! # insert the column of I's into the "X" matrix (for bias) X = np.insert(X_, Xshape[1], 1, axis=1) if add_ones else X</pre>
X_dar prin- prin- (100,	<pre>y = yastype(np.int32) return X, y ata, y_data = read_classification_csv_data('ex2data1.txt', add_ones=True) at(X_data.shape, X_data.min(), X_data.max(), X_data.dtype) at(y_data.shape, y_data.min(), y_data.max(), y_data.dtype)</pre>
# how # ht def	<pre>pw does the *X[y.ravel()==1, :2].T trick work? ttps://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists plot_data(X, y, labels, markers, xlabel, ylabel, figsize=(10, 6), ax=None): if figsize is not None: plt.figure(figsize=figsize)</pre>
stude	<pre>ax = ax or plt.gca() for label_id, (label, marker) in enumerate(zip(labels, markers)): ax.plot(*X[y.ravel()==label_id, :2].T, marker, label=label) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) plt.legend() ax.grid(True) dent_plotting_spec = {</pre>
}	'X': X_data, 'y': y_data, 'xlabel': 'Exam 1 score', 'ylabel': 'Exam 2 score', 'labels': ['Not admitted', 'Admitted'], 'markers': ['yo', 'k+'], 'figsize': (10, 6) :_data(**student_plotting_spec)
plt.	show()
m 2 score 2	30
5	50 + + + + + + + + + + + + + + + + + + +
2.1.2 [30 40 50 60 70 80 90 100 Exam 1 score [5pts] Sigmoid function e you start with the actual cost function, recall that the logistic regression hypothesis is defined as:
where $g(z) =$	$= g(\theta^T x)$ function g is the sigmoid function. The sigmoid function is defined as: $= \frac{1}{1+e^{-z}}$ irst step is to implement/find a sigmoid function so it can be called by the rest of your program. Your code should also work with vectors and matrices. For a matrix, your function should perform the sigmoid function on every element.
# che	you are finished, (a) plot the sigmoid function, and (b) test the function with a scalar, a vector, and a matrix. For scalar large positive values of x, the sigmoid should be close to 1, while for scalar large negative values, the sigmoid should be close to 0. Eval id(0) should give you exactly 0.5. The content of the sigmoid function, and (b) test the function with a scalar, a vector, and a matrix. For scalar large positive values of x, the sigmoid should be close to 1, while for scalar large negative values, the sigmoid should be close to 0. Evaluation are content to the sigmoid function are content to the sigmoid should be close to 1, while for scalar large negative values, the sigmoid should be close to 1. Evaluation are content to the sigmoid function are content to the
from sigmo	<pre>cort scipy a scipy import special anoid = special.expit check_that_sigmoid_f(f): x_test = np.linspace(-10, 10, 50) sigm_test = f(x_test) plt.plot(x_test, sigm_test) plt.title("Sigmoid function") plt.grid(True)</pre>
]	plt.show() ck_that_sigmoid_f(sigmoid) Sigmoid function
0.8 -	
	-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 [15pts] Cost function and gradient
regress $J(heta)=$ and the	$=rac{1}{m}\;\sum_{i=1}^m\;[\;-y^{(i)}log(h_ heta(x^{(i)}))\;-\;(1-y^{(i)})log(1-h_ heta(x^{(i)}))\;]$ the gradient of the cost is a vector of the same length as $ heta$ where the j^{th} element (for $j=0,1,\ldots,n$) is defined as follows:
where what s	$=rac{1}{m}\sum_{i=1}^{m}\left(h_{ heta}(x^{(i)})-y^{(i)} ight)x_{j}^{(i)}$ m is the number of points and n is the number of features. Note that while this gradient looks identical to the linear regression gradient, the formula is actually different because linear and logistic regression have different definitions of $h_{ heta}(x)$. Should be the value of the loss for $ heta=\overline{0}$ regardless of input? Why? Make sure your code also outputs this value.
# hy # go # re # # bu # eq	vposesis_function describes parametric family of functions that we are poing to pick our "best fitting function" from. It is parameterized by eal-valued vector theta, i.e. we are going to pick h_best = argmin_{h \ in H} logistic_loss_h(x, y, h) at because there exist a bijection between theta's and h's it is quivalent to choosing theta_best = argmin_{theta \ in H} logistic_loss_theta(x, y, theta)
# ne # y' # re # to # us	hyposesis_function(x, theta): return sigmoid(np.dot(x, theta)) egative log likelihood of observing sequence of integer 's given probabilities y_pred's of each Bernoulli trial ecommentation: convert both variables to floats to avoid scenarios like -l*y != -y for uint8 se np.mean and broadcasting binary_logistic_loss(y, y_pred):
	<pre>assert y_pred.shape == y.shape y, y_pred = y.astype(np.float64), y_pred.astype(np.float64) # When y_pred = 0, log(0) = -inf, # we could add a small constant to avoid this case CONSTANT = 0.0000001 y_pred = np.clip(y_pred, 0+CONSTANT, 1-CONSTANT) m = y.size J = 0</pre>
def	<pre>J = 1/m * np.sum((-y * np.log(y_pred)) + (-(1 - y) * np.log(1 - y_pred))) return J logistic_loss_theta_grad(x, y, h, theta): """ Arguments (np arrays of shape): x : [m, n] ground truth data</pre>
; - - 1	<pre>y: [m, 1] ground truth prediction h: [m, n] -> [m, 1] our guess for a prediction function """ # reshape theta: n by 1 theta = theta.reshape((-1,1)) y_pred = h(x, theta) point_wise_grads = (y_pred - y)*x grad = np.mean(point_wise_grads, axis=0)[:, None]</pre>
def :	<pre>assert grad.shape == theta.shape return grad.ravel() logistic_loss_theta(x, y, h, theta): # reshape theta: n by 1 theta = theta.reshape((-1,1)) return binary_logistic_loss(y, h(x, theta))</pre>
pring pring 0.693 [-12.	neck that with theta as zeros, cost is about 0.693: ta_init = np.zeros((X_data.shape[1], 1)) nt(logistic_loss_theta(X_data, y_data, hyposesis_function, theta_init)) nt(logistic_loss_theta_grad(X_data, y_data, hyposesis_function, theta_init)) nt(logistic_loss_theta_grad(X_dat
The fin	d of taking gradient descent steps, use a scipy.optimize built-in function called <i>scipy.optimize.minimize</i> . In this case, we will use the <i>conjugate gradient algorithm</i> . nal θ value will then be used to plot the decision boundary on the training data, as seen in the figure below. put scipy.optimize a functools import partial
	<pre>optimize(theta_init, loss, loss_grad, max_iter=10000, print_every=1000, optimizer_fn=None, show=False): theta = theta_init.copy() opt_args = {'x0': theta_init, 'fun': loss, 'jac': loss_grad, 'options': {'maxiter': max_iter}} loss_curve = [] def scipy_callback(theta): f_value = loss(theta) loss_curve.append(f_value)</pre>
	<pre>if optimizer_fn is None: optimizer_fn = partial(scipy.optimize.minimize, method='CG', callback=scipy_callback) opt_result = optimizer_fn(**opt_args) if show: plt.plot(loss_curve) plt.show()</pre>
thetaloss loss theta	return opt_result['x'].reshape((-1, 1)), opt_result['fun'] ca_init = np.zeros((3, 1)) s = partial(logistic_loss_theta, X_data, y_data, hyposesis_function) s = partial(logistic_loss_theta_grad, X_data, y_data, hyposesis_function) ca, best_cost = optimize(theta_init, loss, loss_grad, show=True) tt(best_cost)
0.6 - 0.5 -	
0.4 - 0.3 - 0.2 -	
# Plo # Dec # th	0 10 20 30 40 50 60 349770231805456 Rotting the decision boundary: two points, draw a line between secision boundary occurs when h = 0, or when neta_0*x1 + theta_1*x2 + theta_2 = 0
plot plt.	<pre>e_xs = np.array([np.min(X_data[:,0]), np.max(X_data[:,0])]) e_ys = (-1./theta[1])*(theta[2] + theta[0]*line_xs) c_data(**student_plotting_spec) e_plot(line_xs, line_ys, 'b-', lw=10, alpha=0.2, label='Decision Boundary') e_legend() e_show()</pre>
8	90
Exam 2 score	50 + + + + + + + + + + + + + + + + + + +
	Not admitted + Admitted + Admitted Decision Boundary 30 40 50 60 70 80 90 100 Exam 1 score
3	[15pts] Evaluating logistic regression earning the parameters, you can use the model to predict whether a particular student will be admitted. pts] Show that for a student with an Exam 1 score of 45 and an Exam 2 score of 85, you should expect to see an admission probability of 0.776.
4 3 2.1.5 [* After le	er way to evaluate the quality of the parameters we have found is to see how well the learned model predicts on our training set.
2.1.5 [7] After let (a) [5 p) Anothe (b) [10 accura	pts] In this part, your task is to complete the code in <i>makePrediction</i> . The predict function will produce "1" or "0" predictions given a dataset and a learned parameter vector θ. After you have completed the code, the script below will proceed to report the acy of your classifier by computing the percentage of examples it got correct. You should also see a Training Accuracy of 89.0. Our a student with an Exam 1 score of 45 and an Exam 2 score of 85, but should expect to see an admission probability of 0.776. Except data = np.array([[45., 85., 1]])
2.1.5 [7] After leading (a) [5 p. Another (b) [10 accura # For the check print print (1, 3 [10.7]) # use def [1]	Opts] In this part, your task is to complete the code in <i>makePrediction</i> . The predict function will produce "1" or "0" predictions given a dataset and a learned parameter vector θ. After you have completed the code, the script below will proceed to report the acy of your classifier by computing the percentage of examples it got correct. You should also see a Training Accuracy of 89.0. Or a student with an Exam 1 score of 45 and an Exam 2 score of 85, but should expect to see an admission probability of 0.776. St., data = np.array([[45., 85., 1]]) int(check_data.shape) int(hyposesis_function(check_data, theta))
2.1.5 [7] After let (a) [5 p Anothe (b) [10 accura # Formula you check pringering (1, 3 [[0.7] # use def in pring 0.89	pts] in this part, your task is to complete the code in makePrediction. The predict function will produce "" or "O" predictions given a dataset and a learned parameter vector θ . After you have completed the code, the script below will proceed to report the code in makePrediction. The predict function will produce "" or "O" predictions given a dataset and a learned parameter vector θ . After you have completed the code, the script below will proceed to report the code in makePrediction. The predict function will produce "" or "O" predictions given a dataset and a learned parameter vector θ . After you have completed the code, the script below will proceed to report the code in makePrediction. The predict function will produce "" or "O" predictions given a dataset and a learned parameter vector θ . After you have completed the code, the script below will proceed to report the code, the script below will proceed to report the code in makePrediction. The prediction of the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to script below will proceed to report the code, the script below will proceed to report the code, the script below will proceed to
2.1.5 [7] After leading and a coura # Formula for the coura for the cours for the cou	pts] in this part, your task is to complete the code in make/Prediction. The predict function will produce "1" or "0" predictions given a dataset and a learned parameter vector θ. After you have completed the code, the script below will proceed to report the scry of your classifier by computing the percentage of examples it got correct. You should also see a Training Accuracy of 89.0. or a student with as Exem 1 score of 15 and an Exem 2 score of 85, but should expect to see an admission probability of 0.776. Ext. data = ηη μεταχ[(15*, 5*, 5*, 1]1) in chook, data shope in prodictic, theta); see hyposesis function and broadcaset compare operators prodictic, theta); secturacy(x, y, theta); great = predictic(x, theta); secturacy(x, y, theta); great = predictic(x, theta); secturacy(x, data, y_data, theta)) seturn any bean great = "y") seturn any bean great = "y" bean great = "y") seturn any bean great = "y" bean gr
2.1.5 [7] After leading and terms of the care of the c	pts in this part, your task is to complete the code in <i>makePrediction</i> . The prodict function will produce "1" or "0" predictions given a dataset and a learned parameter vector <i>θ</i> . After you have completed the code, the script below will proceed to report the good of various above as a location of 43 and as <i>Bittal a screen of 43</i> and as