23. BREAK - LOOP CONTROL STATEMENT

EXAMPLE 1

```
for(int \ i = 1; i \le n; i + +) \{
for(int \ j = 1; j \le n; j + +) \{
if \ (j = -\frac{n}{2}) \{
break;
\}
```

SOLUTION

At each $\frac{n}{2}$ loop statement will break, hence the inner loop will run $\frac{n}{2}-1$ times and outer loop runs n times.

hence

$$total\ rumtime = \frac{n^2 - 2n}{2} = O(n^2)$$

EXAMPLE 2

```
for(int \ i = 1; i \le n; i + +) \{
for(int \ j = 1; j \le n; j + +) \{
print("*");
break;
\}
```

SOLUTION

The inner loop executes only 1 time at each n time of outer loop, hence it run $1 \times n = n$ times gives O(n) complexity.

EXAMPLE 3

```
for(int \ i = 1; i \le n; i + +) \{
for(int \ j = 1; j \le n; j + +) \{
if(j = 5) \{
break;
\}
\}
```

SOLUTION

SOLUTION

The inner loop executes only 4 time at each n time of outer loop, hence it run $4 \times n = 4n$ times gives O(n) complexity.

EXAMPLE 4

```
for(int i = 1; i \le n; i + +) \{
for(int j = 1; j \le n; j + +) \{
if \left(j = \frac{i}{2}\right) \{
break;
\}
print("Hello")
\}
```

The inner most statement executes like =

when i = 1, $j = \frac{1}{2} = 0$, so no break and j runs from 1 to n.

and inner most statement prints 1 to n. n times

when
$$i = 2$$
, $j = \frac{2}{2} = 1$,

so no print of inner most statement, as break statement, executes.

when
$$i = 3$$
, $j = \frac{3}{2} = 1$,

so no print of inner most statement, as break statement, executes.

when
$$i=4$$
, $j=\frac{4}{2}=1$,

print of inner most statement, executes 1 time.

It looks like:

$$n+0+0+1+1+2+2+3+3+\cdots+k$$
 times

$$n+0+0+\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+\frac{6}{2}+\frac{7}{2}+\cdots+\frac{n}{2}$$
 times

$$n+0+0+\sum_{i=2}^n\frac{i}{2}$$

$$\sum_{i=2}^{n} \frac{i}{2} = \sum_{i=1}^{n} \frac{i}{2} - \sum_{i=1}^{1} \frac{i}{2}$$

$$\sum_{i=2}^{n} \frac{i}{2} = \frac{1}{2} \left(\frac{n(n+1)}{2} \right) - \frac{1}{2}$$

$$\sum_{i=2}^{n} \frac{i}{2} = \frac{n^2 + n}{4} - \frac{1}{2}$$

$$\sum_{i=2}^{n} \frac{i}{2} = \frac{n^2 + n - 2}{4}$$

Hence if we exclude n =then the approximate time the loop will run

$$=\left(\left\lfloor\frac{n^2+n-2}{4}\right\rfloor+1\right)$$
, note this will give near value or exact

 $number\ of\ times\ the\ inner\ most\ statement\ will\ get\ printed\ .$

Or if we proceed according to iteration:

we get a series like:
$$\frac{1}{2} + \frac{2}{2} + \frac{3}{2} + \cdots + \frac{n}{2}$$

$$\Rightarrow \frac{1}{2}(1+2+3+\cdots+n)$$

$$\Longrightarrow \frac{1}{2} \times \left(\frac{n(n+1)}{2} \right)$$

$$\Rightarrow \frac{n^2+n}{4}$$

There fore in both the ways approach is correct.

And Time complexity is : $O(n^2)$.

......