Linear FEM Assignment (1 EC)

Exercise 1 (1 pts.)

For the spring system shown below with $k_2=2k_1=2k_3=2k$ and given spring properties of $E_k=1GPa$ (Young's modulus), $L_k=1m$ and $A_k=1cm^2$ (cross section), note that $\mathbf{k}=\mathsf{EA/L}$, and boundary conditions of P=1N and $u_1=u_4=0$, find:

- 1. The global stiffness matrix
- 2. Displacements of nodes 2 and 3
- 3. The reaction forces at node 1 and 4
- 4. The force in the spring 2

Exercise 2 (2 pts.)

Consider a linear elastic bar of length L=1m with a cross section $A=1cm^2$ and a given Young's modulus E=1GPa. The bar is rigidly supported in the left end and in the right acts a concentrated force F=1N.

- 1. Solve this problem analytically.
- 2. Solve this problem numerically by making use of the finite element method. Consider that the bar is made out of three elements. And construct the global stiffness matrix.
- 3. Create a MatLab script for the given problem. Note that your script must be independent of number of elements.
- 4. Compare your analytical solution with the FEM result.
- 5. Discuss the effect of number of elements on the accuracy of FEM result.

Figure 1: Note that line load is equal to zero (n(x) = 0).

Exercise 3 (5+2 (optional) pts.)

Consider a 2D truss as shown in Fig.2. The horizontal and vertical truss elements have an initial length $L_0=1m$ and the diagonal elements have an initial length of $\sqrt{2}L_0$. All members have $E=1GPa, A=1cm^2$ and $\rho=1000kg/m^3$. Constrain all the bottom nodes in vertical direction only (free along X) and constrain all the left side nodes in horizontal direction (free along Y),

Figure 2: 2D truss model system with a concenterated force

1. Apply a load 10 kN to the top right node +Y direction and use a finite element method to compute the displacement of this node. Compute the lowest 6 eigenpairs

- (eigenvalues and eigenvectors (also called mode shapes) of the stiffness matrix, check Matlab 'eig' function for this). Plot the mode shapes and discuss your plots.
- 2. Considering the system as a solid structure, compute the Young's Modulus (E_{struc}), Shear Modulus (G_{struc}) and Poisson ratio (ν_{struc}) of the bulk structure using the following formula's ,
 - (a) Apply a 1 kN vertical load (+Y direction) on all the top nodes of the structure (Fig.3) measure the elongation (ΔL).

Figure 3: 2D truss model system to compute Young's modulus

$$E_{struc} = \frac{\text{Longitudinal Stress}}{\text{Longitudinal Strain}} = \frac{\text{TotalLoad}/(dW)}{\Delta L/L}$$

Where, TotalLoad is sum of all the loads on the top nodes, d is the cross-sectional diameter of the truss members (Compute using $A=\pi d^2/4$) and ΔL is the average displacement of the top row.

(b) Also measure the average change in width (ΔW) of the top row and compute Poisson ratio as,

$$\nu = \frac{\text{Change in transverse length}}{\text{Change in longitudinal length}} = \frac{\Delta W}{\Delta L}$$

(c) To measure shear modulus first remove all the constraints on side nodes and fix *all* the bottom nodes in Y-direction, also fix just *one* corner(bottom left) node in both X and Y directions (Fig.4). Now, apply a shear load (+X direction) of 1 kN on all the top nodes and compute G_{struc} as follows,

$$G_{struc} = \frac{\text{Shear Stress}}{\text{Shear Strain}} = \frac{\text{Total Load}/(dW)}{\Delta W/L}$$

here, ΔW is the average displacement of the top row nodes.

Figure 4: 2D truss model system to compute shear modulus

3. Optional: For extra points only (2 pts.)

Create an anisotropic structure by removing all horizontal elements.

- (a) Apply a 1 kN vertical load (+Y direction) on all the top nodes of the structure (Fig.5(a)). Measure the vertical Young's modulus E_v .
- (b) Apply a 1 kN horizontal load (+X direction) on all the right nodes of the structure (Fig.5(b)). Measure the horizontal Young's modulus E_h .
- (c) Apply a 1 kN horizontal load (+X direction) on all the top nodes of the structure (Fig.5(c)). Measure the horizontal Shear modulus G_h .

(d) Apply a 1 kN vertical load (+Y direction) on all the right nodes of the structure (Fig.5(d)). Measure the vertical Shear modulus G_v .

Figure 5: Anisotropic 2D truss structure under different loading conditions in order to compute elastic moduli: (a) E_v , (b) E_h , (c) G_h and (d) G_v .

Note that this exercise will be compared with its corresponding MD assignment which is given by Prof.Luding.

APIE Excercise – FEM for 2D Trusses (Hint)

This is a quick overview of the steps for solving the Exercise FEM for 2D Trusses. As usual, there are different ways to implement the code - some more and some less efficient. For extremely large networks (1000 x 1000 or more) efficient solution techniques also matter and involve using sparse matrices, preconditioners and iterative solvers such as conjugate gradient etc. (see script/lecture for more details).

General Instructions:

- A mass-spring network is given, which is similar to a network of bars in compression/tension only i.e. a truss. Each node in the truss can move in both x,y directions (except nodes that are fixed at the bottom).
- As shown in the script (and lecture) you can write the FEM stiffness matrix for each bar/spring in the network. Given case is simple since there are only two orientations (0, 90) in the network. We STRONGLY encourage you to write a -function- which returns an element stiffness matrix (and force vector) and not compute matrix for each member individually. Thus, in Matlab you can have a function as follows, function [Ke, Fe]= esf_2d(E,theta)
 - -compute element stiffness matrix-
 - —compute element force vector—

return Ke, Fe;

end You may want to code it for arbitrary orientation (θ) and stiffness E or keep matters simple for now.

• Call the above function from the main program and assemble the element matrices in a global (big) matrix and apply boundary conditions and solve.

Algorithm

Step 1: Create a global numbering for each node in the network, store node locations (x, y) in a matrix.

Step 2: Create a connectivity array for all the elements in the network for e.g.,

Elem(1,1) = 1;

Elem(1,2) = 7; %Element no. 1 is connected to global node number 1 and 7% etc. ...

Step 3: Initialize element stiffness matrix([Ke]) and element force vector ({Fe}) to zero.

Step 4: Initialize a global stiffness matrix ([K]) and global force vector ($\{F\}$). Determine the size based on total number of nodes \times 2.

Step 5: Loop over all the elements and compute element stiffness matrix ([Ke, Fe]=esf_-2d(200,90) etc.) and add [Ke] and {Fe} to [K] and {F} based on connectivity array.

Step 6: Apply boundary conditions i.e. remove rows and columns corresponding to the nodes which are fixed, this will reduce the size of your global stiffness matrix.

Step 7: Solve, $\{U\}=[K]\setminus \{F\}$.

If you have any question, please contact

i.ostanin@utwente.nl