CS 498ABD Spring 2019 — Midterm Solutions

Problem 1 Let $h:[n] \to [m]$ be a random hash function chosen from a 3-wise independent family of hash functions. For a fixed item i let Y be the number of items $i' \neq i$ that collide with i under h.

- What is E[Y]?
- What is Var[Y] as a function of m, n? Hint: Use 3-wise independence here.
- Using Chebyshev, what is $P[Y \ge a]$ where $a \ge 1$ is some integer. Express this as a function of a, m, n.

Solution:

- Let X_j be the indicator random variable for the event that h(j) = h(i). Since h is pairwise independent, $\mathrm{E}[X_i] = \mathrm{P}[X_j = 1] = \frac{1}{m}$. Then $Y = \sum_{j \neq i} X_i$, so $\mathrm{E}[Y] = \boxed{\frac{n-1}{m}}$.
- Since h is 3-wise independent, the variables X_j are pairwise independent even after fixing i. Then since the X_i 's are indicator random variables,

$$\operatorname{Var} Y = \sum_{j \neq i} \operatorname{Var}[X_i] = \sum_{j \neq i} (\operatorname{E}[X_i] - \operatorname{E}[X_i]^2) = \boxed{(n-1)\left(\frac{1}{m} - \frac{1}{m^2}\right)}.$$

• Using Chebyshev, we get

$$P[Y \ge a] = P[|Y - E[Y]| \ge a - E[Y]]$$

$$\le Var[Y]/(a - E[Y])^2$$

$$= \boxed{\frac{n-1}{(a-(n-1)/m)^2} \cdot \left(\frac{1}{m} - \frac{1}{m^2}\right)}$$

Problem 2 We have seen the use of the median trick for improving the probability of success. Suppose we have an estimator X for a quantity α of interest such that $\mathbb{E}[X] = \alpha$ and $\mathbb{P}[|X - \alpha| \ge \epsilon \alpha] < \rho$ for some $\rho < 1/2$. We wish to improve the error probability to δ for some desired δ . We have seen the use of the median trick for this. We compute independent estimators X_1, X_2, \dots, X_h in parallel and output the median Z of the computed estimators. How large should h be to guarantee that $P[|Z - \alpha| \ge \epsilon \alpha] \le \delta$ (as a function of ρ and δ)? Use one of the Chernoff inequalities and briefly justify your bound.

Solution: So set Y_i be the indicator random variable for the event that $|X - \alpha| \ge \epsilon \alpha$, and set $Y = \sum_{i=1}^{n} Y_i$. Recall that $|Z - \alpha| \ge \epsilon \alpha$ only if $Y \ge \frac{h}{2}$. $E[Y_i] < \rho$, so $E[Y] < h\rho$. Then since $\frac{h}{2} = h\rho(1 + (\frac{1}{2\rho} - 1))$, setting $\lambda = \frac{1}{2\rho} - 1$ and $\mu = h\rho$,

$$P\left[Y \ge \frac{h}{2}\right] \le P[Y \ge (1+\lambda)\mu] \le \left(\frac{e^{\lambda}}{(1+\lambda)^{1+\lambda}}\right)^{\mu}$$

which is at most δ if $h \ge \frac{\ln \frac{1}{\delta}}{\rho - \ln \sqrt{2e\rho}}$.

Problem 3 Let A[1..n] be a sorted array of n integers. Given an integer x, one way to decide if $x \in A$ is to use binary search. In this problem, we analyze a randomized version of binary search to find x.

Consider a randomized variant of binary search where one picks a random index $i \in [n]$ and compares A[i] with x. If A[i] = x, then it terminates with the answer "yes"; if $A[i] \neq x$, then it recurses appropriately.

- Write down a formal description of randomized binary search including taking care of base cases.
- Prove that the expected running time for searching any given item x is $O(\log n)$.
- Extra credit: Prove that the running time of the algorithm is $O(\log n)$ with high probability.

Solution:

• The algorithm is as follows:

RANDBINSEARCH(
$$A[1..n], x$$
)

if $|A| = 0$:

return "not found"

pick i uniformly at random in $[1, n]$

if $A[i] < x$:

return RANDBINSEARCH($A[1..i-1], x$)

else if $A[i] > x$:

return RANDBINSEARCH($A[i+1..n], x$)

else: $//A[i] = x$

return "found"

• Let T(n) be the worst-case expected number of comparisons on an array of size $\leq n$. Let X_i be the indicator random variable for the event that i as the pivot index. Then T(n) satisfies the recurrence

$$T(n) \le 1 + \sum_{i=1}^{n} P[X_i = 1] \max\{T(i-1), T(n-i-1)\} \le 1 + \frac{2}{n} \sum_{i=n/2+1}^{n} T(i-1).$$

We will show that $T(n) \le 1 + c \lg i$ for some c > 0. The base case is n = 1: after 1 comparison, the algorithm either terminates (found) or recurses once and terminates immediately (not found). Otherwise,

$$T(n) \le 1 + \frac{2}{n} \sum_{i=n/2+1}^{n} (1 + c \lg i)$$

$$\le 2 + \frac{2}{n} \sum_{i=n/2+1}^{3n/4} c \lg \frac{3n}{4} + \frac{2}{n} \sum_{i=3n/4+1}^{n} c \lg n$$

$$= 2 - \frac{1}{2} c \lg \frac{4}{3} + c \lg n$$

$$\le c \lg n$$

for $c \ge 4/\lg \frac{4}{3} \approx 10$.

Alternatively: We can view the choices of pivots as follows. Generate a random permutation σ of [n]. At each round, we take the next available value in σ to be the pivot index. When we recurse, we remove all values that are either larger than or smaller than the current index, as appropriate.

Let X_i be the indicator random variable for the event that the A[i] is chosen as a pivot while looking for x. There are three cases.

First suppose A[i] < x and let k be the largest index such that A[k] < x. Then A[i] is chosen as a pivot if and only if i comes before any of i+1..k in σ . Since each of [i,k] these has equal probability of being picked first, the probability of this happening is $\frac{1}{k-i+1}$.

Next, suppose A[i] > x and let ℓ be the smallest index such that $A[\ell] > x$. Then A[i] is chosen as a pivot if and only if i comes before any of ℓ ..., i-1 in σ . This happens with probability $\frac{1}{i-\ell+1}$.

Finally, if A[i] = x then the probability of being chosen is 1.

In summary, the running time is bounded above by

$$1 + \sum_{i:A[i] < x} \frac{1}{k - i + 1} + \sum_{i:A[i] > x} \frac{1}{i - \ell + 1} \le 1 + 2\sum_{i=1}^{n} \frac{1}{i} \le 1 + 2H_n = O(\log n).$$

Alternatively: As seen below, the algorithm runs in $O(\log n)$ time with probability at least $1 - \frac{1}{n^4}$. On the other hand, the running time of the algorithm cannot exceed O(n), since we can only pick n pivots in the worst case. So the expected running time is upper bounded by

$$\left(1 - \frac{1}{n^4}\right)O(\log n) + \frac{1}{n^4}O(n) = O(\log n).$$

• For each j, let S_j be the part of the array considered in the j-th level of recursion. Call the pivot picked in the j-th round *lucky* if its index is between $\frac{1}{4}|S_j|$ and $\frac{3}{4}|S_j|$. The probability of this happening is $\frac{1}{2}$.

We claim that if the pivot is lucky, $|S_{j+1}| \le \frac{3}{4}|S_j|$. If x is smaller than the pivot, the index of the pivot is at most $\frac{3}{4}|S_j|$ and we recurse left. If x is larger, the index of the pivot is at least $\frac{1}{4}|S_j|$ and we recurse right. In either case, $|S_{j+1}| \le \frac{3}{4}|S_j|$.

To get the base case, $4 \ln n$ lucky pivot choices suffices. Just as in the lecture/homework, a Chernoff bound gives us that the probability of not getting $4 \ln n$ lucky pivots in $32 \ln n$ is at most $\frac{1}{n^4}$.

Thus with probability $1 - \frac{1}{n^4}$, the algorithm finishes in $O(\log n)$ time.

Problem 4 Recall the algorithm to estimate the number of distinct elements in a stream using an ideal hash function $h:[n]\to[0,1]$. The algorithm maintains the minimum of the hash value seen in the stream, say z, and outputs $\frac{1}{z}-1$ as the estimator for the number of distinct elements. Suppose there was a mistake in the implementation and instead of storing the minimum hash value seen, z stored the *maximum* hash value. How would you use z now to estimate the number of distinct elements? Briefly justify your answer.

Solution: Let $g:[n] \to [0,1]$ be defined by g(x) = 1 - h(x). Then g is also an ideal hash function, and 1-z is the minimum hash value under g. So we can return $\frac{1}{1-z} - 1 = \boxed{\frac{z}{1-z}}$.

Problem 5 Consider F_2 estimation via the AMS algorithm using 4-wise independent hash functions. In this problem, the high-level goal is to process two different streams coming in at two different locations and use this estimator to estimate the F_2 distance between the streams.

Let σ_1 and σ_2 be two streams. Let $\{f_{1,i}: i \in [n]\}$ and $\{f_{2,i}: i \in [n]\}$ denote the frequencies of σ_1 and σ_2 , respectively. The F_2 distance between the streams is the sum

$$\sum_{i=1}^{n} (f_{1,i} - f_{2,i})^{2}.$$

Recall that the AMS estimator computes a value Z where the expected value of Z^2 is the F_2 of the stream. (One then takes averages and then medians of many copies to improve the accuracy.) The basic framework to estimate the F_2 distance of σ_1 and σ_2 is as follows. We first produce an estimate Z_1 for σ_1 and an estimate Z_2 for σ_2 . We then somehow combine Z_1 and Z_2 to estimate the distance. Here we have two design decisions.

- When producing Z_1 and Z_2 , should we use the same hash function, or two independent ones?
- How do we combine Z_1 and Z_2 so that the expected value is $\sum_{i=1}^n (f_{1,i} f_{2,i})^2$.

Answer the above with some brief justification.

Solution: Recall that the AMS sketch supports deletions via subtraction and works for negative frequencies. We can interpret the F_2 distance between σ_1 and σ_2 as the F_2 of a single stream consisting of inserting the elements in σ_1 and then deleting the elements in σ_2 . Thus we should use the same hash function and output $(Z_1 - Z_2)^2$.