CHƯƠNG II. HỆ SINH DỤC NAM

Bài 2.

NHIỆM SẮC THỂ Y

Âu Nhưt Luân

Bô môn Sản Phu, Khoa Y, Đại học Y Dược TP. Hồ Chí Minh, e-mail: aunhutluan@ump.edu.vn.

Mục tiêu bài giảng

- 1. Trình bày được các đặc điểm cấu trúc của nhiễm sắc thể Y.
- 2. Trình bày được các chức năng sinh lý của nhiễm sắc thế Y.

NHIỆM SẮC THỂ Y LÀ MỘT ALLOSOME

Bộ nhiễm sắc thể của người có 23 cặp nhiễm sắc thể, gồm 22 cặp nhiễm sắc thể thường (autosome) và 1 cặp nhiễm sắc thể giới tính (allosome).

Ở người nam, cặp nhiễm sắc thể giới tính được tạo từ hai nhiễm sắc thể không tương đồng: nhiễm sắc thể X và nhiễm sắc thể Y. Nhiễm sắc thể Y là nhiễm sắc thể nhỏ nhất của bộ nhiễm sắc thể người, với kích thước chỉ khoảng 60 Mb.

Hình II.2.1. Nhiễm sắc thể X (lớn, trái) và nhiễm sắc thể Y (nhỏ, phải) tạo ra cặp nhiễm sắc thể giới tính ở người nam 46,XY. Nhiễm sắc thể Y là một allosome với các vùng có tính năng giả autosome (PAR).

Nguồn: sciencenewsforstudents.org.

Nhiễm sắc thể Y có vùng giả autosome (PAR).

Trên allosome Y, người ta đã xác định được có sự tồn tại của 2 vùng giả autosome (pseudoautosomal) (PAR), nằm ở 2 đầu cùng của nhiễm sắc thể này. Các PAR này có kích thước rất nhỏ (PAR1 có kích thước 2600 kb và PAR2 có kích thước 320 kb). Chức năng của các PAR là trao đổi vật chất di truyền với nhiễm sắc thể X đồng hành, trong tiến trình phân bào giảm nhiễm tạo tinh trùng. Như vậy, các gene thuộc PAR được di truyền theo kiểu của các gene thuộc nhiễm sắc thể thường.

Vùng bình sắc (euchromatin) trên nhiễm sắc thể Y có tổng độ dài khoảng 23 Mb, trải từ khu vực cận trung thể của nhánh ngắn, cho đến khu vực cận trung thể của nhánh dài. Vùng này có chứa một số gene chức năng quan trọng.

Vùng di sắc (heterochromatin) trên nhiễm sắc thể Y rất rộng, có tổng độ dài khoảng 40 Mb, tương ứng với Yq12, có tính đa hình và bất hoạt.

Nhiễm sắc thể Y chứa rất ít gene

Nhiễm sắc thể Y chứa rất ít gene. Điều này củng cố giả thuyết cho rằng cả 2 nhiễm sắc thể X và Y đều có nguồn gốc xa xưa là các nhiễm sắc thể thường, với các gene bị mất dần trong quá trình phát triển.

Trên nhiễm sắc thể X, vẫn còn lại các gene có chức năng của nhiễm sắc thể tiền thân. Ngược lại, trên nhiễm sắc thể Y, các gene tiền thân đã bị bất hoạt và thoái giáng trong một vùng có kích thước rộng lớn của nhiễm sắc thể Y.

Hình II.2.2. Cấu tạo của nhiễm sắc thể Y.

Nhận diện các vùng PAR có tương tác với nhiễm sắc thể X. Vùng bình sắc chiếm ¼ dung lượng của nhiễm sắc thể Y, có chứa các gene quan trọng trong đó có gene SRY và các gene AZF.

Vùng dị sắc rất rộng, chiếm gần ¾ dung lượng của nhiễm sắc thể Y.

Nguồn: sciencedirect.com

GENE SRY

SRY là một gene chủ, mã hóa một protein ngắn mang cùng tên (SRY).

SRY có chức năng điều hòa sự biểu hiện gene của các gene

Gene được đề cập nhiều nhất của nhiễm sắc thể Y là vùng xác định giới tính trên nhiễm sắc thể Y (Sex-determining Region on the Y chromosome) (SRY).

SRY là một gene có kích thước nhỏ, nằm trên nhánh ngắn của nhiễm sắc thể Y, giáp giới với vùng PAR1. SRY chỉ có một exon, mã hóa một protein ngắn (204 amino acids), được gọi là protein SRY.

SRY được xếp vào nhóm các HMG-box (high mobility group), có nhiệm vụ kiểm soát chuyển mã DNA của các gene khác. Như vậy SRY là gene chủ, thông qua SRY, có nhiệm vụ điều hòa biểu hiện gene của các gene khác.

Bằng cơ chế kiểm soát phức tạp, SRY khởi đông và kiểm soát dòng thác các tiến trình xác định và phát triển tinh hoàn từ tuyến sinh dục sơ khai chưa định hướng.

Thông qua SRY, SRY định hướng cho tuyến sinh dục là tinh hoàn.

Một mặt, SRY trực tiếp tác động trên tiến trình bật các gene chi phối tinh hoàn và tiến trình tắt các gene chi phối buồng trứng.

Khi không có gene SRY, đồng nghĩa với không có protein SRY, các gene chi phối tinh hoàn không được bật, và các gene chi phối buồng trứng không bị tắt.

Mặt khác, SRY cũng gián tiếp tác động trên tiến trình bật các gene chi phối tinh hoàn và tiến trình tắt các gene chi phối buồng trứng, bằng cách chi phối các gene SOX¹.

Khi không có gene SRY, đồng nghĩa với không có protein SRY, SOX9 cũng không có biểu hiện gene. Do không có biểu hiện của SOX9, các gene chi phối tinh hoàn sẽ không được bật, hoặc sẽ không giữ được trạng thái mở. Cũng do

không có biểu hiện của SOX9 mà gene chi phối buồng trứng sẽ không giữ được trang thái tắt.

Hình II.2.3. SRY gene là một gene chủ của tiến trình xác định giới tính tuyến sinh dục, tác động trực tiếp hay thông qua điều hòa hoạt động các gene SOX (trong đó có SOX9). Khi có SRY, SRY protein sẽ trực tiếp bật các gene tinh hoàn và đồng thời tắt các gene buồng trứng. Bên cạnh đó, SRY protein mở SOX 9. Hoạt động của SOX 9 protein là giữ cho các gene kiểm soát buồng trứng ở trạng thái tắt, đồng thời bật hay giữ cho các gene kiểm soát tinh hoàn ở trạng thái mở.

Nguồn: Khoa Y, Đại học UCSF

Như vậy, sự hiện diện của gene SRY sẽ định hướng cho tuyến sinh dục sơ khai phát triển thành tinh hoàn.

Ngược lại, sư vắng mặt của SRY sẽ làm cho tuyến sinh dục phát triển, với các điều kiện xác định, theo hướng buồng

SRY và SOX9 không phải là các yếu tố duy nhất can thiệp vào hình thành tuyến sinh duc. Tham gia vào tiến trình này còn có DAX1. DAX1 có tác dung đối kháng với tác đông chuyển mã của SOX9 trên các gene tùy thuộc.

WNT4 là một gene thuộc nhiễm sắc thể 1, biểu hiện bằng protein WNT4. WNT4 điều hòa gene NR0B1 thuộc nhiễm sắc thể X. Biểu hiện của NROB1 chính là protein DAX1. Cần phải có hai copies của NROB1 để gene này có thể được biểu hiện qua DAX1.

¹ SOX gene (SRY related HMG-box). Như tên gọi, SOX là các gene chịu sự chi phối của protein SRY. SOX được phiên mã và dịch mã thành các

HMG-box trực tiếp điều hòa các tuyến sinh dục. Trong các SOX, thì SOX9 là gene được khảo sát nhiều nhất, thuộc nhiễm sắc thể 17.

Như vậy buồng trứng được hình thành khi thỏa hai điều kiện là vắng mặt của SRY-SOX9 và đồng thời có sự hiện diên của WNT4-DAX1.

Tinh hoàn sơ khai chế tiết AMH. AMH là hormone định hình đường sinh dục phát triển theo hướng nam.

Tuyến sinh dục sẽ kiểm soát tiến trình biệt hóa đường sinh dục. Sự kiểm soát này được thực hiện thông qua Anti-Mullerian Hormone (AMH), là hormone chủ của tuyến sinh duc so khai.

Ở phôi thai nam, ngay từ thời điểm 8 tuần tuổi phôi, AMH đã được chế tiết từ các tế bào Sertoli của tinh hoàn. AMH gây ra hiện tượng thoái triển của hệ thống ống Müller, cho phép ống Wolff phát triển thành đường sinh dục nam dưới tác dụng của testosterone. Vì thế, AMH còn được gọi là chất ức chế Müller (Müllerian-inhibiting substance) (MIS).

Hình II.2.4. SRY can thiệp vào tiến trình biệt hóa đường sinh dục thông qua hoạt động của tinh hoàn sơ khai.

Tinh hoàn sơ khai được xác định bằng gene SRY, sẽ chế tiết AMH và testosterone. AMH sẽ tác động lên hệ thống ống Müller, làm thoái triển hệ thống này. Testosterone tác động trên hệ thống ống Wolff, làm hệ thống này phát triển thành đường tinh.

Khi vắng mặt gene SRY, tuyến sinh dục sẽ phát triển theo hướng "mặc định" là buồng trứng. Buồng trứng sơ khai không sản xuất AMH. Vắng mặt AMH, hệ thống Müller tiếp tục phát triển, tạo ra đường sinh dục nữ.

Nguồn: embryology.ch.

Khi vắng mặt tinh hoàn, tức không có AMH, đường sinh dục sẽ phát triển theo hướng nữ.

Ở phôi thai nữ, tại các thời điểm rất sớm, không có hoạt đông chế tiết AMH. Vắng mặt của AMH cho phép duy trì sự tồn tại và phát triển của ống Müller trở thành phần trên của đường sinh dục nữ: vòi Fallope, tử cung và phần trên âm đao.

LOCUS AZF

AZF là các loci nằm trên Yq11, có vai trò trong hoàn tất tiến trình sinh tinh.

Vùng AZF được xem như là một vùng chứa các gene tham gia vào tiến trình sinh tinh.

AZF gồm có 3 tiểu vùng AZFa (1-3 Mb), AZFb (1-3 Mb) và AZFc (500kb).

Các gene AZF tham gia vào các giai đoạn khác nhau của tiến trình sinh tinh, từ sản sinh giao tử đến biệt hóa và trưởng thành giao tử. Tuy nhiên, vai trò chính xác của các gene này trong tiến trình sinh tinh chưa được hiểu rõ.

Các đột biến vi mất đoạn mới phát sinh (de novo microdeletions) của vùng này sẽ ảnh hưởng đến chức năng sinh sản của người nam.

Hình II.2.5. Locus AZF.

Locus này là một vùng chứa rất nhiều gene tham gia vào tiến trình sinh tinh. Cho đến nay, trách vụ cụ thể của các gene này vẫn chưa được hiểu biết một cách thấu đáo.

Người ta biết rằng các đột biến de novo của các gene này ảnh hưởng đến sinh tinh và biệt hóa trưởng thành tinh trùng. Các đột biến này thường rất nhỏ, được gọi là các vi mất đoạn (microdeletion).

Nauồn: slideshare.net

CÁC GENE KHÁC CỦA NHIỄM SẮC THỂ Y

Nhiễm sắc thể Y có tương tác với nhiễm sắc thể X.

Khảo sát người nữ với hội chứng Turner 45,X0 cung cấp nhiều thông tin hữu ích về "vai trò ngoài giới tính" của nhiễm sắc thể Y.

Người nữ với hội chứng Turner (45,X0) thể hiện ra ngoài là kiểu hình nữ, với bất thường tăng trưởng, vô sinh, bất thường giải phẫu học và khiếm khuyết nhận thức chọn lọc.

Cấu tao của nhiễm sắc thể X ở người nữ bình thường (46,XX), ở người nam (46,XY) bình thường và ở người nữ

Turner (45,X0) là hoàn toàn giống nhau. Vậy người nam 46,XY và người nữ 45,X0 có gì khác biệt? Vì sao cả người nam 46,XY lẫn người nữ 45,X0 cùng là các cá thể không có nhiễm sắc thể X thứ nhì, nhưng lại có các biểu hiện khác biệt? Vì sao người nữ 46,XX cũng như người nam 46,XY lại không có các biểu hiện bất thường thấy ở người nữ 45,X0?

Để giải thích, các gene tham gia vào tiến trình này phải thỏa cả 2 điều kiện: (1) chúng phải hiện diện trên cả 2 nhiễm sắc thể X và Y, và (2) chúng phải có tương tác lên nhau, như trong một cặp nhiễm sắc thể thường.

Các gene trên nhiễm sắc Y đóng vai trò là yếu tố kích hoat các gene tương đồng thuộc nhiễm sắc thể X.

Ở người nữ bình thường 46,XX, các gene thuộc nhiễm sắc thể X thứ nhất được kích hoạt bởi các gene tương đồng với nó thuộc nhiễm sắc thể X thứ nhì. Tương tự, ở người nam bình thường, các gene thuộc nhiễm sắc thể X duy nhất được kích hoạt bởi các gene tương đồng tìm thấy trên nhiễm sắc thể Y. Các gene tương đồng thuộc nhiễm sắc thể Y tương tác và kích hoạt các gene tương đồng thuộc nhiễm sắc thể X.

Người nữ 45,X khác người nam 46,XY ở chỗ người nữ 45,X không có các gene kiểm soát và kích hoạt các gene chức năng trên nhiễm sắc thể X thứ nhất. Các gene này, hoặc nằm trên nhiễm sắc thể X thứ nhì, hoặc nằm trên nhiễm sắc thể Y. Các gene trên nhiễm sắc thể X không được kích hoạt, dẫn đến biểu hiện kiểu hình của hội chứng Turner.

TÀI LIỆU THAM KHẢO CHÍNH

- 1. Thompson & Thompson Genetics in Medicine 8th edition. Tác giả Nussbaum. Nhà xuất bản Elsevier 2016.
- 2. The human Y chromosome: the biological role of a "functional wasteland". Journal of Biomedicine and Biotechnology.