CÁLCULO DIFERENCIAL E INTEGRAL I LEEC, LEGI, LEIC (Tagus) e LERC

1º TESTE (Versão A)

18 /Abril /2009

Duração: 1h30m

Ι

Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{x \in \mathbb{R}: \frac{x^2+x-1}{x} \geq 1\right\}, \quad B = \left\{x \in \mathbb{R}: \frac{|x+2|}{x^2-1} \leq 0\right\}, \quad C = \left\{x \in \mathbb{R}: \log x = 1\right\}$$

1. Mostre que $A \cap B =]-1, 0[$.

Resolução:

$$\frac{x^2 + x - 1}{x} \ge 1 \iff \frac{x^2 - 1}{x} \ge 0$$

 \mathbf{e}

		-1		0		1	
$x^2 - 1$	+	0	_	//	_	0	+
x	_		_	//	+		+
$\frac{x^2-1}{x}$	_	0	+	//	_	0	+

donde se conclui que

$$A = [-1, 0] \cup [1, +\infty[$$
.

Por outro lado,

		-2		-1		1	
x+2	+	0	+		+		+
$x^2 - 1$	+		+	//	_	//	+
$\frac{ x+2 }{x^2-1}$	+	0	+	//	-	//	+

$$\log_{B} B =]-1, 1[\cup \{-2\}.$$

Então,

$$A \cap B =]-1,0[.$$

2. Indique, caso existam em \mathbb{R} , inf $(A \cap B)$, sup A, min B, min $((A \cap B) \cup C)$, max $((A \cap B) \cup C)$ $e \sup(A \cap B \cap \mathbb{R} \setminus \mathbb{Q}).$

Resolução:

 $\inf(A \cap B) = -1$, não existe $\sup A$, $\min B = -2$.

Como $C=\{e\}$, não existe $\min((A\cap B)\cup C)$ e $\max((A\cap B)\cup C)=e$. Por fim, $\sup(A\cap B\cap \mathbb{R}\backslash \mathbb{Q})=0$.

 \mathbf{II}

1. Calcule (caso existam em $\overline{\mathbb{R}}$):

$$\lim \frac{\sqrt{n} - n^3}{n + 4n^3 + 2}$$
, $\lim \left(1 - \frac{2}{n!}\right)^{n!}$, $\lim \frac{\pi + n \sin n}{n^2 + 1}$, $\lim \sqrt[n]{n + 2^n}$

Resolução:

$$\lim \frac{\sqrt{n} - n^3}{n + 4n^3 + 2} = \lim \frac{\frac{1}{n^{3 - \frac{1}{2}}} - 1}{4 + \frac{1}{n^2} + \frac{2}{n^3}} = -\frac{1}{4} \qquad ; \qquad \lim \left(1 - \frac{2}{n!}\right)^{n!} = \lim \left(1 - \frac{2}{n}\right)^n = e^{-2}$$

$$\lim \frac{\pi + n \sin n}{n^2 + 1} = \lim \frac{\frac{\pi}{n^2} + \frac{\sin n}{n}}{1 + \frac{1}{n^2}} = 0,$$

uma vez que $\lim \frac{\sin n}{n} = 0$ (produto da sucessão limitada $\sin n$ pelo infinitésimo1/n).

Porque se tem

$$\lim \frac{(n+1)+2^{n+1}}{n+2^n} = \lim \frac{\frac{n+1}{2^n}+2}{\frac{n}{2^n}+1} = 2,$$

sabemos que

$$\lim \sqrt[n]{n+2^n} = 2.$$

2. Mostre por indução que se tem, para todo o $n \in \mathbb{N}$,

$$\sum_{k=1}^{n} 9k4^{k-1} = 1 + 4^{n} (3n - 1)$$

Resolução:

(i) Com n=1, tem-se

$$\sum_{k=1}^{1} 9k4^{k-1} = 1 + 4^{1}(3.1 - 1) = 9$$

(ii) Supondo o resultado válido para n, provemos para n+1:

$$\sum_{k=1}^{n+1} 9k4^{k-1} = \sum_{k=1}^{n} 9k4^{k-1} + 9(n+1)4^{n} = 1 + 4^{n}(3n-1) + 9(n+1)4^{n} = 1 + 4^{n}(3n-1 + 9n + 9) = 1 + 4^{n+1}(3n+2) = 1 + 4^{n+1}(3(n+1) - 1),$$

o que termina a demonstração.

Considere a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} \frac{e^{x+2}-1}{x-1} & \text{se } x < 1\\ \frac{x-1}{1+e^{-x}} & \text{se } x \ge 1 \end{cases}$$

a) Estude o sinal de f e determine os seus zeros.

Resolução:

Dado que

$$e^{x+2} - 1 = 0 \iff x = -2$$

vem

		-2		1	
$e^{x+2} - 1$	_	0	+	//	//
x-1	_		_	0	+
$1 + e^{-x}$	//	//	//		+
f	+	0	_	0	+

e, portanto,

$$f(x) = 0 \iff x = -2 \lor x = 1$$

 $f(x) > 0 \text{ se } x \in]-\infty, -2[\cup]1, +\infty[$
 $f(x) < 0 \text{ se } x \in]-2, 1[.$

b) Justificando, diga se f é contínua, contínua à direita ou contínua à esquerda no ponto 1.

Resolução:

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{x-1}{1+e^{-x}} = 0 = f(1)$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{e^{x+2}-1}{x-1} = -\infty$$

logo f é contínua à direita e não é contínua à esquerda no ponto 1; portanto não é contínua em 1.

c) Calcule, se existirem em $\overline{\mathbb{R}}$, $\lim_{x \to -\infty} f(x)$ e $\lim_{x \to +\infty} f(x)$.

Resolução:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^{x+2} - 1}{x - 1} = 0$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x - 1}{1 + e^{-x}} = +\infty.$$

d) A função f é majorada? E minorada? Justifique a resposta.

Resolução:

Como, por exemplo,

$$\lim_{x \to +\infty} f(x) = +\infty,$$

a função f não é majorada. Por b),

$$\lim_{x \longrightarrow 1^{-}} f(x) = -\infty,$$

o que mostra que a função f não é minorada.

IV

Seja φ uma função contínua no ponto 0. Se

$$g(x) = \varphi(1 - \sin x)$$

em que pontos pode garantir que a função g é contínua? Justifique.

Resolução:

Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ a função dada por

$$f(x) = 1 - \sin x \qquad \forall x \in \mathbb{R}$$

Então, $g = \varphi \circ f$

Da continuidade da função composta e dado que φ é contínua no ponto 0, g é necessariamente contínua em todo o ponto x tal que $1 - \sin x = 0$. Porque se tem

$$1 - \sin x = 0 \iff x = \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$$

concluímos que g é contínua em todos os pontos da forma $\frac{\pi}{2}+2k\pi$, com $k\in\mathbb{Z}.$