EECS240 - Spring 2010

Lecture 3: MOS Models for Design

Elad Alon Dept. of EECS

Why Not Square Law?

• Square law model most widely known:

$$I_{D,sat} = \frac{1}{2} \cdot \mu_n \cdot C_{ox} \cdot \frac{W}{L} \cdot \left(V_{GS} - V_{th}\right)^2$$

- But, totally inadequate for "short-channel" behavior
- Also doesn't capture moderate inversion
 - (i.e., in between sub-threshold and strong inversion)

EECS240 Lecture 3

Why Modeling?

- Analog circuits more sensitive to detailed transistor behavior
 - · Precise currents, voltages, etc. matter
 - Digital circuits have much larger "margin of error"
- · Models allow us to reason about circuits
 - Provide window into the physical device and process
 - "Experiments" with SPICE much easier to do

EECS240 Lecture 3

Square Law Model Assumptions

- · Charge density determined only by vertical field
- · Drift velocity set only by lateral field
- Neglect diffusion currents ("magic" V_{th})
- Constant mobility
- · And many more...

EECS240 Lecture 3

Levels of Abstraction

- Best abstraction depends on questions you want to answer
- Digital functionality:
 - · MOSFET is a switch
- Digital performance:
 - · MOSFET is a current source and a switch
- Analog characteristics:
 - MOSFET described by BSIM with 100's of parameters?
 - MOSFET described by measurement results?

EECS240 Lecture 3 3

To Make Matters Worse...

- Run-to-run parameter variations:
 - . E.g. implant doses, layer thickness, dimensions
 - Affect V_{TH} , μ , C_{ox} , R_{\square} , ...
- In SPICE use device "corners": nominal / slow / fast parameters (tt, ss, ff)
 - E.g. fast: low $V_{TH},$ high $\mu,$ high $C_{ox},$ low R_{\square}
 - Combine with supply & temperature extremes
 - · Pessimistic but numerically tractable

→ improves chances for working Silicon

EECS240 Lecture 3

Now What?

- · Rely purely on simulator to tell us how devices behave?
 - · Models not always based on real measurements
 - · Model extraction is hard
 - · Models inherently compromise accuracy for speed
- · Need to know about important effects
 - · So that know what to look for
 - · Model might be wrong, or doesn't automatically include some effects
 - · E.g., gate leakage

EECS240 Lecture 3

I_D: Vertical Field Mobility Reduction

- · Mobility actually depends on gate field
 - "Hard to run when there is wind blowing you sideways (into a wall)"
- More technical explanation:
 - . E-field pushes carriers close to the surface
 - · Enhanced scattering lowers mobility

$$\mu = \frac{\mu_0}{1 + \theta(V_{GS} - V_T) + \theta_B V_{SB}}$$

EECS240 Lecture 3

In: Weak Inversion Current

• Current set by diffusion - borrow BJT equation:

$$I_{ds} = \frac{W}{L} I_{ds,0} e^{\frac{q(V_{gs} - V_T)}{nkT}} \left(\mathbf{1} - e^{\frac{-qV_{DS}}{kT}} \right)$$

CS240 Lecture 3 16

I_D: Sub-Threshold Region

- Current doesn't really go to 0 at V_{GS} = V_{th}
- Lateral BJT:

EECS240 Lecture 3 14

I_D: Operating in Weak Inversion

- Usually considered "slow":
 - "large" C_{GS} for "little" current drive (see later)
- But, weak (or moderate) inversion becoming more common:
 - · Low power
 - Submicron L means "high speed" even in weak inversion
- · Not well modeled, matching poor:
 - V_{TH} mismatch amplified exponentially
 - Avoid in mirrors

EECS240 Lecture 3 17

I_D: Weak Inversion Channel Potential

· "Base" controlled through capacitive divider

$$\delta V_{ch} \approx \frac{C_{ox}}{C_{dep} + C_{ox}} \delta V_g = \frac{\delta V_g}{n}$$

• Non-ideality factor of channel control n > 1:

$$n = 1 + \frac{C_{dep}}{C_{ox}} = 1 + \frac{\epsilon_{dep}t_{ox}}{\epsilon_{ox}t_{dep}}$$

 (n varies somewhat with bias – const. approx. usually OK)

EECS240 Lecture 3 15

I_D: Moderate Inversion

- Moderate inversion: both drift and diffusion contribute to the current.
- Closed form equations for this region don't really exist.

EECS240 Lecture 3 18

I_D: Patching Models?

- Have "good" models for weak inversion and strong inversion.
 - · Why not just interpolate in between?
- Example (EKV):

$$I_{DS} = \frac{W}{L} \mu C_{ox}(2n) \left(\frac{kT}{q}\right)^2 \left(\left(\ln\left(1 + e^{\frac{\sqrt{(V_{CB} - V_{TB} - nV_{SB})}}{2nkT}}\right)\right)^2 - \left(\ln\left(1 + e^{\frac{\sqrt{(V_{CB} - V_{TB} - nV_{SB})}}{2nkT}}\right)\right)^2 \right)$$

EECS240

Lecture 3

Output Resistance: SCBE

- "Substrate Current Body Effect"
- · At high electric fields, get "hot" electrons
 - · Have enough energy to knock electrons off Si lattice (impact ionization)
- Extra e- h+ pairs extra (substrate) current

$$I_{sub} = \frac{A_i}{B_i} I_{ds} (V_{ds} - V_{dsat}) exp \left(-\frac{B_i l}{V_{ds} - V_{dsta}} \right)$$
 Lecture 3

Output Resistance: CLM

- "Channel Length Modulation"
 - Depletion region varies with V_{DS}
 - Changes effective channel length
- · If perturbation is small:

$$I \propto \frac{1}{L - \delta L(V_{ds})} \approx \frac{1}{L} \left(1 + \frac{\delta L(V_{ds})}{L} \right) \longrightarrow \frac{I_{ds}}{I_{ds0}} = (1 + \lambda V_{ds})$$

Output Resistance Mechanisms

- All effects active simultaneously
- **CLM** at relatively low fields
- **DIBL** dominates for high fields
- SCBE at very high fields

23

EECS240 Lecture 3

Output Resistance: DIBL

- "Drain Induced Barrier Lowering"
- · Drain controls the channel too
 - Charge gets imaged lowers effective V_{th}
 - Model with $V_{th} = V_{th0} \eta V_{DS}$

EECS240 21

Comprehensive Model: BSIM

- Berkeley Short-channel IGFET Model (BSIM)
 - · Industry standard model for modern devices
 - . BSIM3v3 is model for this course
- Typically 40-100+ parameters
 - · Advanced software and expertise needed to perform extraction

EECS240 Lecture 3 24

BSIM "Hand Calculation" Model

- Requires many, many, many... assumptions
- · Vertical mobility degradation:

Define:
$$u_d = \frac{UA}{t}$$

mobility degradation coefficient

$$u_d \approx 0.5 \text{V}^{-1}$$
 for $t_{ox} = 10 \text{nm}$

· Velocity saturation:

$$E_C = \frac{2v_{sat}}{UO}$$

Define: $E_c = \frac{2v_{\text{sat}}}{U0}$ critical *E*-field for velocity saturation

 $E_C \approx 2 \times 10^4 \text{ V/cm}$ (typical value)

EECS240

Strong Inversion Current

$$V_{Dtat} = (V_G - V_T) \frac{1 + u_d (V_G - V_T)}{1 + (u_d + \frac{1}{V_F} I_T)(V_G - V_T)}$$

$$I_{Din} = \mu_0 C_{co} \frac{W}{L} \left(V_G - V_T - \frac{V_D}{2} \right) V_D \left[\frac{1}{1 + u_d (V_G - V_T) + \left(\frac{V_D}{E.L.} \right)} \right] = I_{Dincloseg} \left[\frac{1}{1 + u_d (V_G - V_T) + \left(\frac{V_D}{E.L.} \right)} \right]$$

$$I_{Door} = \mu_0 C_{cc} \frac{W}{2L} \left[\frac{(V_G - V_T)^2}{1 + \left(u_d + \frac{1}{2} E_{C,L}\right) (V_G - V_T)} \right] = I_{Door(tong)} \left[\frac{1}{1 + \left(u_d + \frac{1}{2} E_{C,L}\right) (V_G - V_T)} \right]$$

EECS240 Lecture 3

Weakness of Model First Derivatives

Equations of Derivatives

$$g_{mast} = \frac{I_{Dout}}{(V_G - V_T)} \left[1 + \frac{I_{Dout}}{I_{Dout(long)}} \right] = \frac{I_{Dout}}{(V_G - V_T)} \left[1 + \frac{1}{1 + \left(u_d + \frac{1}{E_C L}\right) (V_G - V_T)} \right]$$

$$\begin{split} r_{out} &= \frac{2\{\!(V_D - \!V_{Dout}) \!+\! [1 \!+\! u_d(V_G - \!V_T)]\!(V_G - \!V_T)\}\!L^2}{\mu_0 C_{out} W\!IP_{CLM} [1 \!+\! u_d(V_G - \!V_T)]\!(V_G - \!V_T)^2} \\ &= \frac{\{\!(V_D \!-\! V_{Dout}) \!+\! [1 \!+\! u_d(V_G - \!V_T)]\!(V_G - \!V_T)\}\!L}{I_{Dout(long)} I\!P_{CLM} [1 \!+\! u_d(V_G - \!V_T)]} \end{split}$$

with $l = \sqrt{3t_{ox}x_j}$

• Required parameters W, L, TOX, U0, UA, VSAT, VTH0, PCLM, XJ

EECS240 Lecture 3

"Hand Model" Conclusion

- Even "simple" model is not convenient
 - · ro is key for gain, but really hard to model
 - Missing important regions such as moderate inversion
- · Hand models really best to build intuition
- But for design (i.e., how to choose W, L, etc.):
 - Will learn how to use the simulator as a "calculator"

EECS240 Lecture 3 30