Homework 1

Aiden Kenny STAT GR5204: Statistical Inference Columbia University

November 10, 2020

Question 1

When rolling two dice, there are six possible ways for their total to sum up to seven: (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1), so the probability of the sum being seven is 6/36 = 1/6. If X is the number of trials where the total of both rolls is seven, then we can think of $X \sim \text{Bin}(120,1/6)$, and so $\mathbb{E}X = 20$ and VarX = 50/3. Using the Central Limit Theorem, we then have

$$\Pr\left(|X-20| \le k\right) = \Pr\left(\left|\frac{X-20}{\sqrt{50/3}}\right| \le k\sqrt{\frac{3}{50}}\right) = 2\Phi\left(k\sqrt{\frac{3}{50}}\right) - 1 \stackrel{\text{set}}{=} 0.95 \implies \Phi\left(k\sqrt{\frac{3}{50}}\right) = 0.975.$$

Using a table of values for $\Phi(z)$, we can see that $k\sqrt{3/50} = 1.96$, and so $k = 1.96\sqrt{50/3} \approx 8$.

Question 2

Let $X \sim \text{Pois}(10)$, and so $\mathbb{E}X = \text{Var}X = 10$. Using the CLT without any continuity correction, we have $(X - 10)/\sqrt{10} \approx \text{N}(0, 1)$, and so

$$\Pr(8 \le X \le 12) = \Pr\left(\frac{8 - 10}{\sqrt{10}} \le Z \le \frac{12 - 10}{\sqrt{10}}\right) = \Pr(|Z| \le \sqrt{2/5}) \approx 2\Phi(\sqrt{2/5}) - 1 = 0.4714.$$

If we do use continuity correction, then we have

$$\Pr(8 \le X \le 12) \approx \Pr(7.5 \le X \le 12.5)$$

$$= \Pr\left(\frac{7.5 - 10}{\sqrt{10}} \le Z \le \frac{12.5 - 10}{\sqrt{10}}\right) = \Pr(|Z| \le 2.5/\sqrt{10}) \approx 2\Phi(2.5/\sqrt{10}) - 1 = 0.5704.$$

Question 3

We are assuming that when a program is run, an execution error will occur with probability $\theta \in [0, 1]$. If X is whether or not an execution error occurs, we have $X \sim \text{Ber}(\theta)$, and $f(x \mid \theta) = \theta^x (1 - \theta)^{1-x}$ for $x = \{0, 1\}$. We also believe that $\theta \sim \text{Unif}(0, 1)$, and so $\xi(\theta) = 1$ for $0 \le \theta \le 1$.

(a) After 25 runs of the program we have 10 erros, so $f(\mathbf{x} \mid \theta) = \theta^{10}(1 - \theta)^{15}$. The marginal distribution of X is given by

$$g_{\mathbf{X}}(\mathbf{x}) = \int_{\Theta} f(\mathbf{x} \mid \theta) \cdot \xi(\theta) \, d\theta = \int_{0}^{1} \theta^{10} (1 - \theta)^{15} \cdot 1 \, d\theta = \int_{0}^{1} \theta^{11-1} (1 - \theta)^{16-1} \, d\theta = B(11, 16),$$

and so the posterior pdf of θ is

$$\xi(\theta \mid \mathbf{x}) = \frac{f(\mathbf{x} \mid \theta) \cdot \xi(\theta)}{g_{\mathbf{X}}(\mathbf{x})} = \frac{\theta^{10} (1 - \theta)^{15} \cdot 1}{B(11, 16)} = \frac{\theta^{11 - 1} (1 - \theta)^{16 - 1}}{B(11, 16)}.$$

That is, $\theta \mid \mathbf{x} \sim \text{Beta}(11, 16)$.

(b) If we are using squared error loss, then our Bayes' estimate is $\delta^*(\mathbf{x}) = \mathbb{E}(\theta \mid \mathbf{x}) = 11/27$.

Question 4

We believe that $\theta \sim \text{Beta}(3,4)$, where $\theta \in [0,1]$ is the proportion of bad apples in the lot. Choosing apples from the lot is essentially sampling from a Bernoulli distribution with parameter θ , and we know that Beta distributions are closed under sampling from a Bernoulli distribution. After choosing 10 apples, we find that three of them are bad, so our posterior distribution becomes $\theta \mid \mathbf{x} \sim \text{Beta}(3+3,4+7) = \text{Beta}(6,11)$. If we use squared error loss, our Bayes' estimate is then $\delta^*(\mathbf{x}) = \mathbb{E}(\theta \mid \mathbf{x}) = 6/17$.

Question 5

Let $\mathbf{X} = (X_1, \dots, X_n)^T$ be a random sample from $X \sim \text{Unif}(\theta, 2\theta)$, where $\theta > 0$. The likelihood function is then given by $f(\mathbf{x} \mid \theta) = 1/\theta^n$ when $\theta \leq x_i \leq 2\theta$ for $i \in \{1, \dots, n\}$. We can re-frame the boundaries of the likelihood function using order statistics. Since we need every observation $x_i \in [\theta, 2\theta]$, it follows that $\theta \leq x_{(1)} \leq \cdots \leq x_{(n)} \leq 2\theta$, where $x_{(j)}$ is the jth order statistics; namely, we have $\theta \leq x_{(1)}$ and $x_{(n)} \leq 2\theta$. From the second inequality, we have $x_{(n)}/2 \leq \theta$, and so the possible values of θ are $x_{(n)}/2 \leq \theta \leq x_{(1)}$. In other words, even though we had the original parameter space $\Theta = (0, \infty)$, because the bounds of the density functions depended on θ , we were able to restrict θ to a new parameter space $\tilde{\Theta} = [x_{(n)}/2, x_{(1)}]$. We can see that our likelihood function is monotone decreasing, and so it will be maximized by the smallest possible value of θ . Therefore, the MLE of θ is $\hat{\theta}(\mathbf{X}) = X_{(n)}/2$.

Question 6

Suppose that $X = (X_1, X_2, X_3)^T$ are each exponentially distributed with $\mathbb{E}X_i = i\theta$, where $\theta > 0$. This implies that $X_i \sim \text{Exp}(1/i\theta)$, and so $f(x_i | \theta) = e^{-x_i/i\theta}/i\theta$.

(a) The likelihood function is given by

$$f(\mathbf{x} \mid \theta) = \prod_{i=1}^{3} f(x_i \mid \theta) = \prod_{i=1}^{3} \frac{e^{-x_i/i\theta}}{i\theta} = \frac{1}{6\theta^3} \exp\left(-\frac{1}{\theta} \sum_{i=1}^{3} \frac{x_i}{i}\right),$$

and the corresponding log-likelihood function is given by $\ell(\mathbf{x} \mid \theta) = -3\log(6\theta) - \frac{1}{\theta} \sum_{i=1}^{3} x_i/i$. Differentiating $\ell(\mathbf{x} \mid \theta)$ with respect to θ , setting to 0, and solving for θ gives us the MLE:

$$\frac{\partial \ell}{\partial \theta} = -\frac{3}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^{3} \frac{x_i}{i} \stackrel{\text{set}}{=} 0 \implies \hat{\theta}(\boldsymbol{X}) = \frac{1}{3} \sum_{i=1}^{3} \frac{X_i}{i}$$

(b) Let $\psi = 1/\theta$, and we believe that $\psi \sim \text{Gamma}(\alpha, \beta)$, i.e. $\xi(\psi) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \psi^{\alpha} e^{-\beta \psi}$ for $\psi > 0$. For notational ease, let $\varphi(\mathbf{x}) = \sum_{i=1}^{3} x_i/i$; the likelihood function of ψ is then given by $f(\mathbf{x} \mid \psi) = \psi^3 e^{-\varphi(\mathbf{x})\psi}/6$. We have

$$\xi(\psi \mid \mathbf{x}) \propto f(\mathbf{x} \mid \psi) \cdot \xi(\psi) = \frac{1}{6} \psi^3 e^{-\varphi(\mathbf{x})\psi} \cdot \frac{\beta^{\alpha}}{\Gamma(\alpha)} \psi^{\alpha - 1} e^{-\beta\psi} \propto \psi^{\alpha + 3 - 1} e^{-(\beta + \varphi(\mathbf{x}))\psi}.$$

This is very similar to a Gamma distribution with parameters $\tilde{\alpha} = \alpha + 3$ and $\tilde{\beta} = \beta + \varphi(\mathbf{x})$, and adding in the normalizing constants would make it so. Therefore, we conclude that $\psi \mid \mathbf{x} \sim \text{Gamma}(\alpha + 3, \beta + \varphi(\mathbf{x}))$.

Question 7

We assume that our parameter θ has a prior density $\xi(\theta) = \theta e^{-\theta}$ for $\theta > 0$. Let $X \sim \text{Unif}(0, \theta)$, and so $f(x | \theta) = 1/\theta$ for $0 \le x \le \theta$. We note that while the original parameter space was $\Theta = (0, \infty)$, sampling from a uniform distribution who's bound depended on θ resulted in a new parameter space $\tilde{\Theta} = [x, \infty)$. The marginal distribution of X is given by

$$g_X(x) = \int_{\tilde{\Theta}} f(x \mid \theta) \cdot \xi(\theta) d\theta = \int_x^{\infty} \frac{1}{\theta} \cdot \theta e^{-\theta} d\theta = \int_x^{\infty} e^{-\theta} d\theta = \left[-e^{-\theta} \right]_x^{\infty} = e^{-x},$$

and so our posterior density for θ is given by

$$\xi(\theta \mid x) = \frac{f(x \mid \theta) \cdot \xi(\theta)}{g_X(x)} = \frac{1}{\theta} \cdot \theta e^{-\theta} \cdot \frac{1}{e^{-x}} = e^{-(\theta - x)}.$$

This denisty corresponds to a "shifted" exponential distribution with $\lambda = 1$; instead of starting at zero, we are starting at x.

(a) Using squared error loss, our Bayes' estimate is the mean of the posterior distribution:

$$\delta^*(x) = \mathbb{E}(\theta \mid x) = \int_x^\infty \theta \cdot e^{-(\theta - x)} d\theta = \left[-\theta e^{-(\theta - x)} \right]_x^\infty + \int_x^\infty e^{-(\theta - x)} d\theta = x + 1.$$

(b) Using absolute error loss, our Bayes' estimate is the median of the posterior distribution. The posterior cdf is easily seen to be $\Xi(\theta \mid x) = 1 - e^{-(\theta - x)}$. To get the median, we need $\Xi(\delta^*(x)) = 1 - e^{-(\delta^*(x) - x)} = 1/2$, and solving for $\delta^*(x)$ gives us $\delta^*(x) = x + \log 2$.

Question 8

Because $0 \le \beta \le 1$, we have $1/3 \le \theta \le 2/3$. If we are sampling from $X \sim \text{Ber}(\theta)$, then the likelihood and log-likelihood functions are given by $f(\mathbf{x} \mid \theta) = \theta^{n\bar{x}} (1-\theta)^{n(1-\bar{x})}$ and $\ell(\mathbf{x} \mid \theta) = n\bar{x} \log \theta + n(1-\bar{x}) \log(1-\theta)$. Differentiating $\ell(\mathbf{x} \mid \theta)$, setting equal to zero, and solving for θ gives the MLE as

$$\frac{\partial \ell(\mathbf{x} \mid \theta)}{\partial \theta} = \frac{n\bar{x}}{\theta} - \frac{n(1 - \bar{x})}{1 - \theta} = n\left(\frac{\bar{x} - \theta}{\theta(1 - \theta)}\right) \stackrel{\text{set}}{=} 0 \implies \hat{\theta} = \bar{x}.$$

We must be cautious; because each $x_i \in \{0, 1\}$, we can have $\bar{x} \in [0, 1]$, and so the maximum of $\ell(\mathbf{x} \mid \theta)$ can occur at $\hat{\theta} \in [0, 1]$. However, because of the contraints placed on θ by β , this maximum can potentially fall outside the range of possible values. To remedy this, we will consider two cases:

- 1. $\bar{x} < 1/3$: for all values $\theta \in [1/3, 2/3]$, we have $\partial \ell/\partial \theta < 0$, so $\ell(\mathbf{x} \mid \theta)$ is a decreasing function. Then the maximum value of $\ell(\mathbf{x} \mid \theta)$ is obtained when $\theta = 1/3$.
- 2. $\bar{x} > 2/3$: for all values $\theta \in [1/3, 2/3]$, we have $\partial \ell/\partial \theta > 0$, so $\ell(\mathbf{x} \mid \theta)$ is an increasing function. Then the maximum value of $\ell(\mathbf{x} \mid \theta)$ is obtained when $\theta = 2/3$.

Therefore, the MLEs for both θ and β are given by

$$\hat{\theta} = \begin{cases} \bar{X} & \text{if } 1/3 \le \bar{X} \le 2/3, \\ 1/3 & \text{if } \bar{X} < 1/3, \\ 2/3 & \text{if } \bar{X} > 2/3. \end{cases} \quad \text{and} \quad \hat{\beta} = 3\hat{\theta} - 1 = \begin{cases} 3\bar{X} - 1 & \text{if } 1/3 \le \bar{X} \le 2/3, \\ 0 & \text{if } \bar{X} < 1/3, \\ 1 & \text{if } \bar{X} > 2/3. \end{cases}$$

This is because $\beta = 3\theta - 1$, which means the MLE of β is given by $\hat{\beta} = 3\hat{\theta} - 1$.

Question 9

We are sampling from a "shifted" exponential distribution, i.e. its density is given by $f(x \mid \beta, \theta) = \beta e^{-\beta(x-\theta)}$ for $x \geq \theta$. The likelihood function is then given by $f(\mathbf{x} \mid \beta, \theta) = \beta^n e^{-n\beta(\bar{x}-\theta)}$ when $x_i \geq \theta$ for $i \in \{1, \dots, n\}$. If every observation $x_i \geq \theta$, then it is also true that the lowest value for each observation is as well, so $x_{(1)} \geq \theta$. We can incorporate this condition into the likelihood function using an indicator function:

$$f(\mathbf{x} \mid \beta, \theta) = \beta^n e^{-n\beta(\bar{x}-\theta)} \cdot \mathbb{I}_{[\theta,\infty)}(x_{(1)}).$$

By the Factorization Theorem, \bar{X} and $X_{(1)}$ are a pair of jointly sufficient statistics for β and θ .

Question 10

Let $x_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \operatorname{Pareto}(\alpha, x_0)$, where $\alpha > 0$ is known and $x_0 > 0$ is unknown. The likelihood function is given by

$$f(\mathbf{x} \mid \alpha, x_0) = \prod_{i=1}^n \frac{\alpha x_0^\alpha}{x_i^{\alpha+1}} = \alpha^n x_0^{\alpha n} \left(\prod_{i=1}^n \frac{1}{x_i} \right)^{\alpha+1} = C(\mathbf{x}, \alpha) \cdot x_0^{\alpha n}, \quad \text{where} \quad C(\mathbf{x}, \alpha) = \alpha^n \left(\prod_{i=1}^n \frac{1}{x_i} \right)^{\alpha+1},$$

when $x_i \geq x_0$ for $i \in \{1, ..., n\}$. This is the same as saying $x_{(1)} \geq x_0$, where $x_{(1)}$ is the first order statistic, and so our new parameter space for x_0 is $(0, x_{(1)}]$ (it was originally $(0, \infty)$). In the likelihood function, $C(\mathbf{x}, \alpha)$ is a constant (with respect to x_0) that depends on \mathbf{x} and α . We can see that for $x_0 \in (0, x_{(1)}]$, $f(\mathbf{x} \mid \alpha, x_0)$ is an increasing function, so its maximum will be obtained at the largest possible value, $x_{(1)}$. Therefore, our MLE is $\hat{x}_0 = X_{(1)}$.

Question 11

From the previous question, by incorporating indicator functions, our likelihood function can be written as

$$f(\mathbf{x} \mid \alpha, x_0) = C(\mathbf{x}, \alpha) \cdot x_0^{\alpha n} \cdot \mathbb{I}_{[x_0, \infty)}(x_{(1)}).$$

By the Factorization Theorem, where $u(\mathbf{x}) = C(\mathbf{x}, \alpha)$ and $v(x_{(1)}, x_0) = x_0^{\alpha n} \cdot \mathbb{I}_{[x_0, \infty)}(x_{(1)})$, the first order statistic $X_{(1)}$ is a sufficient statistic. Since it is also the MLE of x_0 , is follows that $X_{(1)}$ is a minimal sufficient statistic.

Question 12

From question 10, we already know that $\hat{x}_0 = X_{(1)}$, the first order statistic; our likelihood function is already maximized with respect to x_0 . We have already derived the likelihood function in question 10, and the log-likelihood function is given by

$$\ell(\mathbf{x} \mid \alpha, x_0 \stackrel{\text{set}}{=} x_{(1)}) = n \log \alpha + \alpha n \log x_{(1)} - (\alpha + 1) \sum_{i=1}^{n} \log x_i.$$

Differentiating with respect to α and setting equal to zero gives us the MLE as

$$\frac{\partial \ell}{\partial \alpha} = \frac{n}{\alpha} + n \log x_{(1)} - \sum_{i=1}^{n} \log x_i = \frac{n}{\alpha} - \sum_{i=1}^{n} \log \left(\frac{x_i}{x_{(1)}}\right) \stackrel{\text{set}}{=} 0 \implies \hat{\alpha} = \frac{n}{\sum_{i=1}^{n} \log(X_i/X_{(1)})}.$$

Question 13

Looking at our likelihood function, and incorporating indicator functions, we see that

$$f(\mathbf{x} \mid \alpha, x_0) = \alpha^n x_0^{\alpha n} \left(\prod_{i=1}^n \frac{1}{x_i} \right)^{\alpha+1} \cdot \mathbb{I}_{[x_0, \infty)}(x_{(1)}) = \alpha^n x_0^{\alpha n} \left(r_2(\mathbf{x}) \right)^{\alpha+1} \cdot \mathbb{I}_{[x_0, \infty)} \left(r_1(\mathbf{x}) \right),$$

where $r_1(\mathbf{x}) = x_{(1)}$ and $r_2(\mathbf{x}) = \prod_{i=1}^n 1/x_i$. By the Factorization Theorem, $r_1(\mathbf{x})$ and $r_2(\mathbf{x})$ are jointly sufficient statistics, and we immediately see that $\hat{x}_0 = x_{(1)}$ is a sufficient statistic. When looking at $\hat{\alpha}$, we see that it can be written as

$$\hat{\alpha} = \frac{n}{\sum_{i=1}^{n} \log(x_i/x_{(1)})} = -\frac{n}{\sum_{i=1}^{n} \log(x_{(1)}/x_i)} = -\frac{n}{\log\left(\prod_{i=1}^{n} x_{(1)}/x_i\right)} = -\frac{n}{\log\left(x_{(1)}^n r_2(\mathbf{x})\right)}.$$

This means $\hat{\alpha}$ is an injective transformation of $r_2(\mathbf{x})$, and so it is a sufficient statistic, and $\hat{\alpha}$ and \hat{x}_0 form a pair of jointy sufficient statistics. Because the are the MLEs, then they are minimal jointly sufficient statistics.