Things you must have memorized

The Momentum Principle	The Energy Principle	The Angular Momentum Principle					
Definition of Momentum	Definition of Velocity	Definition of Angular Momentum					
Definitions of angular velocity, particle energy, kinetic energy, and work							

Other potentially useful relationships and quantities

$$\begin{split} \gamma &\equiv \frac{1}{\sqrt{1 - \left(\frac{|\vec{v}|}{c}\right)^2}} \\ \frac{d\vec{p}}{dt} &= \frac{d|\vec{p}|}{dt} \hat{p} + |\vec{p}| \frac{d\hat{p}}{dt} \\ \vec{F}_{\parallel} &= \frac{d|\vec{p}|}{dt} \hat{p} \text{ and } \vec{F}_{\perp} = |\vec{p}| \frac{d\hat{p}}{dt} = |\vec{p}| \frac{|\vec{v}|}{R} \hat{n} \\ \vec{F}_{grav} &= -G \frac{m_1 m_2}{|\vec{r}|^2} \hat{r} \\ |\vec{F}_{grav}| &\approx mg \text{ near Earth's surface} \\ \vec{F}_{elec} &= \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\vec{r}|^2} \hat{r} \\ |\vec{F}_{spring}| &= k_s s \\ U_{i} &\approx \frac{1}{2} k_s i s^2 - E_M \\ \vec{F}_{int} &= \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + \cdots}{m_1 + m_2 + \cdots} \\ \vec{F}_{int} &= \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2 + \cdots}{m_1 + m_2 + \cdots} \\ \vec{F}_{int} &= \frac{L_{rot}}{2I} \\ \vec{F}_{int} &= \frac{L_{r$$

 $E_N = N\hbar\omega_0 + E_0$ where N = 0, 1, 2... and $\omega_0 = \sqrt{\frac{k_{si}}{m_o}}$ (Quantized oscillator energy levels)

Moment of intertia for rotation about indicated axis

c	$3 \times 10^8 \text{ m/s}$
	0 \ 10 m/s
G	$6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
g	9.8 N/kg
m_e	$9 \times 10^{-31} \text{ kg}$
m_p	$1.7 \times 10^{-27} \text{ kg}$
m_n	$1.7 \times 10^{-27} \text{ kg}$
$\frac{1}{4\pi\epsilon_0}$	$9\times 10^9~{\rm N}\cdot {\rm m}^2/{\rm C}^2$
e	$1.6 \times 10^{-19} \text{ C}$
eV	$1.6 \times 10^{-19} \text{ J}$
N_A	$6.02 \times 10^{23} \text{ atoms/mol}$
h	6.6×10^{-34} joule · second
\hbar	1.05×10^{-34} joule · second
C	4.2 J/g/K
k	$1.38 \times 10^{-23} \text{ J/K}$
1	m_e m_p m_n $\frac{1}{4\pi\epsilon_0}$ e e N_A h \hbar

milli	\mathbf{m}	1×10^{-3}	kilo	K	1×10^3
micro	μ	1×10^{-6}	mega	\mathbf{M}	1×10^6
nano	\mathbf{n}	1×10^{-9}	giga	G	1×10^{9}
pico	p	1×10^{-12}	tera	\mathbf{T}	1×10^{12}