Mathematics Paper - XII

1۔ ہر سوال کے سامنے چار دائرے دیے گئے ہیں، صرف صحیح جواب والادائرہ بھر دیں۔ 2۔ دائر وں کوشیر (بھرنے) کے لئے مٹیلے پاکا لے رنگ کامار کر استعال کریں۔

3-جواب میں ایک سے زائد دائرے بھرنے سے جواب فلط تصور ہوگا۔

Time Allowed: 20 Minutes			SECTION – A						Marks: 20
1	The range of $y = \frac{1}{x-3}$ is	\bigcirc	R	\bigcirc	R-{y y≠3}	\bigcirc	R-{y y≠0}	\bigcirc	R-{3}
2	The function $f(x) = \frac{ x }{x}$ is discontinuous at	\bigcirc	x = 1	\bigcirc	x = -1	\bigcirc	x = 0	\bigcirc	x = 2
3	$\frac{d}{dx}(3^x) = \dots$	\bigcirc	x3 ^{x-1}	\bigcirc	3 ^x In 3	\bigcirc	3x	\bigcirc	3x+1
4	$\frac{d}{dx}\left(Sinh^{-1}3x\right) = \dots$	\bigcirc	$\frac{3}{\sqrt{1+9x^2}}$	\bigcirc	$\frac{3}{\sqrt{1-9x^2}}$	\bigcirc	$\frac{-3}{\sqrt{1+9x^2}}$	\bigcirc	$\frac{-3}{\sqrt{1-9x^2}}$
5	$f(x) = 2^{3x}$ then $f(x) = \dots$	\bigcirc	3 ⁵ 2 ^{3x}	\bigcirc	3 ⁵ 2 ^{3x} log2	\bigcirc	3 ⁵ 2 ^{3x} log2 ⁵	\bigcirc	3 ⁵ 2 ^{3x} (log2) ⁵
6	The slope of the tangent line on a curve $y = f(x)$ at a particular point $P(x_1, y_1)$ is	\bigcirc	$^{\prime}f(x_1)$	\bigcirc	$^{\prime}$ f(y ₁)	\bigcirc	$f(x_1,y_1)$	\bigcirc	$f(x_1, y_1)$
7	A function $f(x)$ is defined at a number K and either ${}^{/}f(K) = 0$ or ${}^{/}f(K)$ does not exist. Then the number K is called a	\bigcirc	Maximum value	\bigcirc	Minimum value	\bigcirc	Stationary value	\bigcirc	Critical value
8	The vector function $f(x) = (\sin x, (1-x)^{-1}, \ln x)$ is continuous at	\bigcirc	R	\bigcirc	x ≠ 1	\bigcirc	R – {0}	\bigcirc	x > 0, x ≠1
9	$\int 5^{2x} dx = \dots$	\bigcirc	$\frac{5^{2x}}{2} + c$	\bigcirc	$\frac{5^{2x}}{2ln5} + c$	\bigcirc	$\frac{5^{2x}}{\ln 5} + c$	\bigcirc	$\frac{2.5^{2x}}{ln2} + c$
10	The eccentricity of an ellips lies between	\bigcirc	– 1 and 1	\bigcirc	0 and 1	\bigcirc	1 and 2	\bigcirc	None of these
11	$\ln \int \frac{1}{9+x^2} dx$ we substitute $x = \dots$	\bigcirc	Tan θ	\bigcirc	Sec θ	\bigcirc	3 Tan θ	\bigcirc	3 Sec θ
12	$\ln \int \frac{x^2}{(x+1)^2} dx$ we use the method of	\bigcirc	By Parts	\bigcirc	Logarithmic	\bigcirc	Partial Fraction	\bigcirc	None of these
13	$\int_{2}^{2} (x^{2} + 2) dx = \dots$	0	12	0	6	\bigcirc	2	\bigcirc	0
14	The slope of a straight line coincides or parallel to X-axis is	\bigcirc	1	\bigcirc	0	\bigcirc	-1	\bigcirc	∞
15	When the radius of a circle is zero then such a circle is calledcircle.	\bigcirc	Semi	\bigcirc	Point	\bigcirc	Virtual	\bigcirc	Imaginary
16	The slope of a line bisecting the 1st and 3rd quadrant is	\bigcirc	0	\bigcirc	1	\bigcirc	$\frac{\pi}{4}$	\bigcirc	-1
17	In parabola $y^2 - 12x = 0$ the length of focal chord is	\bigcirc	12	\bigcirc	-12	\bigcirc	$\frac{3}{4}$	\bigcirc	$\frac{4}{3}$
18	The equation of normal to the elips $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1 \text{ at a point P}(x_1, y_1) \text{ is } \dots$	\bigcirc	$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	\bigcirc	$\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1$	\bigcirc	$\frac{y - y_1}{y_1/b^2} = \frac{x - x_1}{x_1/a^2}$	\bigcirc	$\frac{xx_{1}}{a^{2}} - \frac{yy_{1}}{b^{2}} = 1$
	The differential equation	\bigcirc		\bigcirc		\bigcirc		\bigcirc	None of
19	$\frac{d^3y}{dx^3} - 3\left(\frac{d^2y}{dx^2}\right)^2 + x^2\left(\frac{dy}{dx}\right)^3 + 2y = 3 \text{ is of degree.}$	\cup	1	\bigcirc	2	\cup	3	\bigcirc	these
20	If the function values f(a) and f(c) at x=a and x=c have opposite signs then the root lies in the interval	\bigcirc	[c,a]	\bigcirc	[a,c]	\bigcirc	(c,a)	\bigcirc	(a,c)