

Grundzüge der Informatik 1

Vorlesung 10

Überblick

Überblick

- Wiederholung
 - Laufzeit rekursive Berechnung der Fibonacci-Zahlen
 - Verbesserung durch Speichern der Lösungen
 - Iterative Lösung
 - Prinzip der dynamischen Programmierung
 - Ein erstes einfaches Beispiel
- Partition und SubsetSum
 - Problemdefinition
 - Erstellen der Rekursionsgleichung
 - Entwicklung des Algorithmus

Fib2(n)

- 1. if n=1 then return 1
- 2. if n=2 then return 1
- 3. **return** Fib2(n-1) + Fib2(n-2)

Fibonacci Zahlen

- Fib(1)=1
- Fib(2)=1
- Fib(n) = Fib(n-1) + Fib(n-2)

Warum ist die Laufzeit so schlecht?

Betrachte Rekursionsbaum von Fib2(6)

Bei der Berechnung von Fib2(6) wird Fib2(3) dreimal aufgerufen!

Zwischenspeichern von Rechenergebnisse

Idee: Wir speichern die Ergebnisse, die wir bereits kennen

Beobachtung

Die Tabelle wird bottom-up ausgefüllt

Vereinfachter Code

Fib1(n)

- 1. F = new array[1...n]
- 2. F[1] = 1
- 3. F[2] = 1
- 4. **for** i=3 to n **do**
- 5. F[i] = F[i-1] + F[i-2]
- 6. **return** F[n]

Dynamische Programmierung

- Beschreibe optimale Lösung einer gegebenen Instanz durch optimale Lösungen "kleinerer" Instanzen (hier kleinere Fibonacci-Zahlen)
- Beschreibe Rekursionsabbruch
- Löse die Rekursion "bottom-up" durch schrittweises Ausfüllen einer Tabelle der benötigten Teillösungen

Wann verbessert der Ansatz die Laufzeit?

- Die Anzahl unterschiedlicher Funktionsaufrufe (Größe der Tabelle) ist klein
- Bei einer "normalen Ausführung" des rekursiven Algorithmus ist mit vielen Mehrfachausführungen zu rechnen

Entwicklung der Rekursionsgleichung

- Eingabe besteht aus n Elementen
- Idee: Ordne die Elemente von 1 bis n (das Eingabefeld A gibt z.B. eine solche Ordnung)
- Drücke optimale Lösung für die ersten i Elemente als Funktion der optimalen Lösung ersten i-1 Elemente aus

Beispiel

- Sei Max(i) = $\max_{1 \le j \le i} \{A[j]\}$
- Dann gilt Max(1) = A[1] (Rekursionsabbruch)
- Max(i) = max {Max(i-1), A[i])}

MaxSucheDP(A,n)

- 1. Max = **new array** [1...n]
- 2. Max[1] = A[1]
- 3. for i=2 to n do
- 4. $Max[i] = max\{Max[i-1], A[i]\}$
- 5. return Max[n]

- Partition

Partition

- Gegeben: Menge M von natürlichen Zahlen
- Aufgabe: Entscheide, ob M in zwei Menge L und R aufgeteilt werden kann, so dass $\sum_{x \in L} x = \sum_{y \in R} y$ (Antwort ist *true* oder *false*)

Beispiel

4, 7, 9, 10, 23, 13

- Partition

Partition

- Gegeben: Menge M von natürlichen Zahlen
- Aufgabe: Entscheide, ob M in zwei Menge L und R aufgeteilt werden kann, so dass $\sum_{x \in L} x = \sum_{y \in R} y$ (Antwort ist *true* oder *false*)

Beispiel

- **4**, **7**, **9**, 10, 23, **13**
- 4+7+9+13=33
- 10+23 =33
- Ausgabe: true

- Partition

Hintergrund

- Partition ist NP-vollständig
- Die Frage, ob man Partition in polynomieller Laufzeit lösen kann, ist äquivalent zur Frage ob P gleich NP ist
- Dies ist eines der wichtigsten offenen Probleme der Theoretischen Informatik
- Das Problem gehört zu den 7 Millennium Problems des Clay Mathematics Institute auf deren Lösung ein Preisgeld von je einer Million Dollar ausgesetzt ist

- Partition

Beobachtung

- Sei M eine Menge von natürlichen Zahlen
- Sei W die Summe der Zahlen aus M, d.h. W= $\sum_{x \in M} x$
- M kann genau dann in zwei Mengen L und R aufgeteilt werden kann, so dass $\sum_{x \in L} x = \sum_{y \in R} y$ gilt, wenn es eine Teilmenge L von M gibt mit $\sum_{x \in L} x = W/2$

Neue Frage

- Gibt es L \subseteq M mit $\sum_{x \in L} x = W/2$?
- Allgemeiner: Für gegebenes U, gibt es L⊆M mit $\sum_{x \in L} x = U$?

- SubsetSum

Allgemeinere Fragestellung (SubsetSum)

• Gibt es L \subseteq M mit $\sum_{x \in L} x = U$?

Herangehensweise

- Sei M ={ x₁,...,x_n } (wir definieren eine Reihenfolge der Elemente,
 z.B. Reihenfolge im Eingabefeld)
- Definiere Indikatorfunktion Ind(U,m) mit

•
$$Ind(U, \underline{m}) = \begin{cases} true, & \text{wenn } L \subseteq \{x_1, \dots, x_m\} \text{ gibt mit } \sum_{y \in L} y = U \end{cases}$$

$$\overbrace{false, \text{ sonst}}$$

Gesucht ist Rekursion f
ür Ind(U,m)

- SubsetSum

Schritt 1 – Die Rekursion finden

- Wir starten mit unserem Beispiel 4, 7, 9, 10, 23, 13
- Sei $x_1 = 4$, $x_2 = 7$, $x_3 = 9$, $x_4 = 10$, $x_5 = 23$, $x_6 = 13$
- Wir wollen Partition lösen, d.h. wir wollen wissen, ob eine Teilmenge mit Summe 33 existiert
- also sei U = 33
- In unserem Fall gibt es eine Lösung, z.B. L = {x₁, x₂, x₃, x₆}
- Da wir 6 Zahlen in M haben, setzen wir n=6
- Wir wollen also Ind(U,n) = Ind(33,6) bestimmen

- SubsetSum

Herangehensweise

- Wie können wir die Lösung rekursiv formulieren, indem wir auf Teillösungen zurückgreifen?
- Wir betrachten das letzte Element der Eingabe nach unserer Ordnung (also x₆)
- Wir wissen nicht, ob x₆ zu einer Lösung gehört
- Es gibt zwei Fälle:
 - x₆ gehört zu einer Lösung
 - x₆ gehört nicht zu einer Lösung
- Wir machen eine Fallunterscheidung

- SubsetSum

Fall 1:

- x₆ gehört zu einer Lösung L
- Dann können wir L schreiben als L = $\{x_6\} \cup (L \setminus \{x_6\}) = \{x_6\} \cup \{x_1, x_2, x_3\}$
- Da L eine Lösung ist, muss die Summe der Zahlen aus L gleich U = 33 sein
- Damit ist die Summe der Zahlen aus L\{x₆} gerade U- x₆= 33-13 = 20 sein

Fazit

- Wir suchen also eine neue Teilmenge L' aus {x₁,..., x₅} mit Summe U'=20
- Wir müssen also nur noch die ersten 5 Elemente betrachten und auf diesen ein Teilproblem lösen

Dynamische Programmierung - SubsetSum

Fall 2:

- x₆ gehört nicht zu einer Lösung L
- Dann müssen wir x₆ nicht weiter betrachten
- Wir suchen also eine Teilmenge L' aus {x₁,..., x₅} mit Summe U
- Wir müssen also nur noch die ersten 5 Elemente betrachten

- SubsetSum

Allgemeine Formulierung

- Sei M={ x₁,...,x_n } eine Menge mit n natürlichen Zahlen
- Sei L(U,n) eine Teilmenge von { x₁,...,x_n } mit Summe U
- Ist $x_n \in L(U,n)$, dann gilt $L(U,n) = L(U-x_n, n-1) \cup \{x_n\}$
- Ist x_n ∉ L(U,n), dann gilt L(U,n) = L(U, n-1)

Formulierung der Rekursion

- Wir wissen also: Ist Ind(U,n) = true, dann ist entweder Ind(U,n-1) = true oder Ind(U-x_n, n-1) = true
- Umgekehrt gilt auch: Ist Ind(U,n-1) = true oder Ind(U-x_n, n-1) = true dann ist Ind(U,n) = true

- SubsetSum

Die Rekursion

Wenn n>1, dann gilt:

$$Ind(U,n) = \begin{cases} true, & \text{wenn } U \ge x_n \text{ und } Ind(U-x_n,n-1) = true \\ & \text{oder } Ind(U,n-1) = true \\ & false, & \text{sonst} \end{cases}$$

Rekursionsabbruch:

Wenn U>0 und n=1, dann gilt:

•
$$Ind(U,1) = \begin{cases} true, & \text{wenn } x_1 = U \\ false, & \text{sonst } \end{cases}$$

- Wenn U=0 und n=1 dann gilt:
- Ind(0,1) = true

Dynamische Programmierung - SubsetSum

SubsetSum(A, U, n)

- Ind = new array [0..U] [1..n]
- 2. **for** j=1 **to** n **do**
- 3. Ind[j,1] = false
- 4. Ind[0,1] = true * leere Menge
- 5. Ind[A[1],1] = true * Menge {A[1]}
- 6. **for** i=2 **to** n **do**
- 7. for u=0 to U do
- 8. Ind[u,i] = false
- 9. **if** Ind[u,i-1] = true**then**<math>Ind[u,i] = true
- 10. **if** $u \ge A[i]$ und Ind[u-A[i], i-1] = true **then** Ind[u,i] = true
- 11. return Ind[U,n]

- SubsetSum

	U=0	1	2	3	4	5	6	7	8
i=1	J	V							
2	V	V	V	V					
3		V	J		V	V	V		
4	V	V	V	V	/	V	V	V	

• M= {1,2,3,5}

- SubsetSum

Laufzeitanalyse

 Die Laufzeit wird durch die zwei geschachtelten for-Schleifen dominiert und ist höchstens O(1)·n·U.

Erweiterung der O-Notation auf zwei Variablen

■ O(f(n,m)) = { g(n,m) | \exists n₀, m₀, c>0 so dass für alle n≥n₀, m≥m₀ gilt, dass g(n,m) ≤ c · f(n,m)}

Bemerkung

 Diese Definition kann in konstruierten Fällen zu nicht gewünschten Aussagen führen! (z.B. wenn g(1,m) = m² ist und g(n,m)=m für n>1)

- SubsetSum

Satz 10.1

Die Laufzeit von Algorithmus SubsetSum(A,U,n) ist O(nU).

Beweis

Die Laufzeit ist offensichtlich O(nU).

- SubsetSum

Satz 10.2

Algorithmus SubsetSum(A,n,U) löst das SubsetSum Problem.

Beweis

- Wir zeigen per Induktion über i die folgende Schleifeninvariante:
- Ind[u,i]= true, gdw. es eine Teilmenge der ersten i Zahlen aus A gibt, die sich zu u aufsummieren
- Induktionsanfang:
- Ind[0,1] wird in Zeile 4 auf true gesetzt.
- Ind[A[1],1] wird in Zeile 5 auf true gesetzt.
- Damit gilt Ind[u,1] = true, gdw. es eine Teilmenge der ersten Zahl gibt, die sich zu u aufsummiert (die leere Menge oder die Menge {A[1]})

Universitä

- SubsetSum

Satz 10.2

Algorithmus SubsetSum(A,n,U) löst das SubsetSum Problem.

Beweis

- Induktionsannahme:
- Ind[u,i-1]= true, gdw. es eine Teilmenge der ersten i-1 Zahlen aus A gibt, die sich zu u aufsummieren

- SubsetSum

Satz 10.2

Algorithmus SubsetSum(A,n,U) löst das SubsetSum Problem.

Beweis

- Induktionsschluss:
- **,**<="
- Gibt es eine Teilmenge von A[1..i], die sich zu u aufsummiert, so kann man u entweder als Summe einer Teilmenge von A[1..i-1] darstellen oder als Summe von A[i] vereinigt mit einer Teilmenge von A[1..i-1].
- Im ersten Fall folgt aus der Induktionsannahme dass Ind[u,i-1]=true ist und somit auch Ind[u,i]=true.
- Im zweiten Fall muss die Teilmenge von A[1..i-1] Summe u-A[i] haben. Nach Induktionsannahme ist dann aber Ind[u-A[i],i]=true und somit Ind[u,i] = true.

- SubsetSum

Satz 10.2

Algorithmus SubsetSum(A,n,U) löst das SubsetSum Problem.

Beweis

- **.** "=>"
- Ist Ind[u,i]=true, so war entweder Ind[u,i-1]=true oder Ind[u-A[i],i-1]=true.
- Nach Induktionsannahme kann man entweder u oder u-A[i] als Summe einer Teilmenge von A[1..i-1] darstellen.
- Somit kann man u als Summe einer Teilmenge von A[1..i] darstellen.

Aufgabe

- Wir haben bisher nur das Entscheidungsproblem gelöst
- Wie kann man mit Hilfe der erstellten Tabelle die Teilmenge finden, die sich zu U aufsummiert?

- SubsetSum

Die Rekursion

Wenn n>1, dann gilt:

$$Ind(U,n) = \begin{cases} true, & \text{wenn } U \ge x_n \text{ und } Ind(U-x_n, n-1) = true \\ & \text{oder } Ind(U, n-1) = true \\ & false, & \text{sonst} \end{cases}$$

Rekursionsabbruch:

Wenn U>0 und n=1, dann gilt:

•
$$Ind(U,1) = \begin{cases} true, & \text{wenn } x_1 = U \\ false, & \text{sonst } \end{cases}$$

- Wenn U=0 und n=1 dann gilt:
- Ind(0,1) = true

Zusammenfassung

- Partition und SubsetSum
 - Problemdefinition
 - Erstellen der Rekursionsgleichung
 - Entwicklung des Algorithmus

Referenzen

T. Cormen, C. Leisserson, R. Rivest, C. Stein. Introduction to Algorithms.
 The MIT press. Second edition, 2001.

