Collaborative Filtering

- Collaborative filtering is the process of selecting information or patterns using techniques involving collaboration among multiple agents, viewpoints, data sources, etc.
- The main advantage of this method is that the recommender system *does not need to have additional information about the users or content of the items*
- Users' rating or purchase history is the only information that is needed to work

Rating Matrix: An Example

Value	Graphic representation	Textual representation
5	* * * * *	Excellent
4	***	Very good
3	* * *	Good
2	44	Fair
1	\$	Poor

Table 9.1: User-Item Matrix

	Lion King	Aladdin	Mulan	Anastasia
John	3	0	3	3
Joe Jill	5	4	0	2
Jill	1	2	4	2
Jane Jorge	3	?	1	0
Jorge	2	2	0	1

Rating Matrix

Users rate (rank) the items (purchased, watched)

- Explicit ratings: entered by a user directly
 - (i.e., "Please rate this on a scale of 1-5")

- Implicit ratings: inferred from other user behavior
 - Play lists or music listened to, for a music Rec system
 - The amount of time users spent on a webpage

Collaborative Filtering

Types of Collaborative Filtering Algorithms:

- **Memory-based**: Recommendation is directly based on previous ratings in the stored matrix that describes user-item relations
- **Model-based**: Alternatively, one can assume that an underlying model (hypothesis) governs the way users rate items.

This model can be approximated and learned. The model is then used to recommend ratings.

A model, for example, is that users rate low budget movies poorly

Memory-Based Collaborative Filtering

The most important assumptions of collaborative filtering are:

User-based CF

Users with similar **previous** ratings for items are likely to rate future items similarly

	11	12	13	14
U1	1	2	4	4
42	1	2	4	<u>ب</u>
U3	2	5	2	2
U4	5	2	3	3

Item-based CF

Items that have received similar ratings **previously** from users are likely to receive similar ratings from future users (*item-based CF*)

	11	12	/3	IX
U1	1	2	4	4
U2	1	2	4	5.
U3	2	5	2	2
U4	5	2	3	3

Collaborative Filtering: Algorithm

- 1. Weigh all users/items with respect to their similarity with the current user/item
- Select a subset of the users/items (neighbors) as recommenders
- Predict the rating of the user for specific items using neighbors' ratings for the same (or similar) items
- 4. Recommend items with the highest predicted rank

Collaborative Filtering: Illustration

- A and B are following C, and B is following D
 - A might be interested in following D

Measure Similarity between Users (or Items)

Cosine Similarity

$$sim(U_i, U_j) = cos(U_i, U_j) = \frac{U_i \cdot U_j}{||U_i|| ||U_j||} = \frac{\sum_k r_{i,k} r_{j,k}}{\sqrt{\sum_k r_{i,k}^2} \sqrt{\sum_k r_{j,k}^2}}.$$

Pearson Correlation Coefficient

$$sim(U_i, U_j) = \frac{\sum_k (r_{i,k} - \bar{r}_i)(r_{j,k} - \bar{r}_j)}{\sqrt{\sum_k (r_{i,k} - \bar{r}_i)^2} \sqrt{\sum_k (r_{j,k} - \bar{r}_j)^2}}.$$

User-based Collaborative Filtering

- In user-based collaborative filtering, the system finds the most **similar user** (**users**) to the current user and uses their preferences for recommendation
- The user-based approach is *not as popular* as the item-based approach
 - For a system that handles a large user base,
 even the smallest change in the user data is
 likely to reset the entire group of similar users

User-based CF

Updating the ratings:

User v's mean rating
User u's mean rating

$$r_{u,i} = \bar{r}_u + \frac{\sum_{v \in N(u)} sim(u,v)(r_{v,i} - \bar{r}_v)}{\sum_{v \in N(u)} sim(u,v)},$$

Predicted rating of user *u* for item *i*

Observed rating of user *v* for item *i*

User-based CF, Example

	Lion King	Aladdin	Mulan	Anastasia
John	3	0	3	3
Joe	5	4	0	2
Jill	1	2	4	2
Jane	3	? —	1	0
Jorge	2	2	0	1

$$r_{u,i} = \bar{r}_u + \frac{\sum_{v \in N(u)} sim(u, v)(r_{v,i} - \bar{r}_v)}{\sum_{v \in N(u)} sim(u, v)}$$

Predict Jane's rating for Aladdin

3- Calculate Jane's rating for Aladdin, Assume that neighborhood size = 2

1- Calculate average ratings

$$ar{r}_{John} = rac{3+3+0+3}{4} = 2.25$$
 $ar{r}_{Joe} = rac{5+4+0+2}{4} = 2.75$
 $ar{r}_{Jill} = rac{1+2+4+2}{4} = 2.25$
 $ar{r}_{Jane} = rac{3+1+0}{3} = 1.33$
 $ar{r}_{Jorge} = rac{2+2+0+1}{4} = 1.25$

2- Calculate user-user similarity

$$sim(Jane, John) = \frac{3 \times 3 + 1 \times 3 + 0 \times 3}{\sqrt{10}\sqrt{27}} = 0.73$$

 $sim(Jane, Joe) = \frac{3 \times 5 + 1 \times 0 + 0 \times 2}{\sqrt{10}\sqrt{29}} = 0.88$
 $sim(Jane, Jill) = \frac{3 \times 1 + 1 \times 4 + 0 \times 2}{\sqrt{10}\sqrt{21}} = 0.48$
 $sim(Jane, Jorge) = \frac{3 \times 2 + 1 \times 0 + 0 \times 1}{\sqrt{10}\sqrt{5}} = 0.84$

User-based CF, Example-continued

3- Calculate Jane's rating for Aladdin, Assume that neighborhood size = 2

$$r_{Jane,Aladdin} = \bar{r}_{Jane} + \frac{sim(Jane, Joe)(r_{Joe,Aladdin} - \bar{r}_{Joe})}{sim(Jane, Joe) + sim(Jane, Jorge)} + \frac{sim(Jane, Jorge)(r_{Jorge,Aladdin} - \bar{r}_{Jorge})}{sim(Jane, Joe) + sim(Jane, Jorge)} = 1.33 + \frac{0.88(4 - 2.75) + 0.84(2 - 1.25)}{0.88 + 0.84} = 2.33$$

Item-based CF

Calculate the similarity between items and then predict new items based on the past ratings for similar items

Item-based CF, Example

1- Calculate average ratings

$$\bar{r}_{Lion \, King} = \frac{3+5+1+3+2}{5} = 2.8$$

$$\bar{r}_{Aladdin} = \frac{0+4+2+2}{4} = 2.$$

$$\bar{r}_{Mulan} = \frac{3+0+4+1+0}{5} = 1.6$$

$$\bar{r}_{Anastasia} = \frac{3+2+2+0+1}{5} = 1.6$$

2- Calculate item-item similarity

$$sim(Aladdin, Lion King) = \frac{0 \times 3 + 4 \times 5 + 2 \times 1 + 2 \times 2}{\sqrt{24}\sqrt{39}} = 0.84$$

$$sim(Aladdin, Mulan) = \frac{0 \times 3 + 4 \times 0 + 2 \times 4 + 2 \times 0}{\sqrt{24}\sqrt{25}} = 0.32$$

$$sim(Aladdin, Anastasia) = \frac{0 \times 3 + 4 \times 2 + 2 \times 2 + 2 \times 1}{\sqrt{24}\sqrt{18}} = 0.67$$

3- Calculate Jane's rating for Aladdin, Assume that neighborhood size = 2

$$r_{Jane,Aladdin} = \bar{r}_{Aladdin} + \frac{sim(Aladdin, Lion King)(r_{Jane,Lion King} - \bar{r}_{Lion King})}{sim(Aladdin, Lion King) + sim(Aladdin, Anastasia)} + \frac{sim(Aladdin, Anastasia)(r_{Jane,Anastasia} - \bar{r}_{Anastasia})}{sim(Aladdin, Lion King) + sim(Aladdin, Anastasia)} = 2 + \frac{0.84(3 - 2.8) + 0.67(0 - 1.6)}{0.84 + 0.67} = 1.40$$

Model-Based Collaborative Filtering

- In memory-based methods (either item-based or user-based), we aim to predict the missing ratings based on similarities between users or items.
- In model-based collaborative filtering, we assume that an underlying model governs the way users rate.
- We aim to learn the model and then use that model to predict the missing ratings.
 - Among a variety of model-based techniques, we focus on a well-established model-based technique that is based on singular value decomposition (SVD).

Models in Collaborative Filtering

- What is a model?
 - "Readers rate a low budget movie poorly."
 - A latent model that governs the way users rate
 - Singular Value Decomposition is a method to find it
- SVD is a linear algebra technique of lossless matrix factorization to
 - Decompose X into 3 matrices $(U\Sigma V^T)$
- Obtain a low-rank (k) approximation C of X
 - Minimizes Frobenius norm of (X-C)
 - Maps X into a k-d space $X_k (=C)$
- Recommend using X_k

Singular Value Decomposition (SVD)

• SVD is a linear algebra technique that, given a real matrix $X \in R^{m \times n}$, $m \ge n$, and factorizes it into three matrices,

$$X = U\Sigma V^T$$

where $U \in R^{m \times m}$ and $V \in R^{n \times n}$ are orthogonal matrices and $\Sigma \in R^{m \times n}$ is a diagonal matrix.

• The product of these matrices is equivalent to the original matrix; therefore, no information is lost.

Low-rank Matrix Approximation

- A Low-rank matrix approximation of matrix X is another matrix $C \subseteq \mathbb{R}^{m \times n}$.
- C approximates X, and C's rank (the maximum number of linearly independent columns) is a fixed number k << min(m, n)

$$Rank(C) = k$$

- The best low-rank matrix approximation is a matrix C that minimizes $||\mathbf{X} \mathbf{C}||_{\mathbf{F}}$ $||\mathbf{X}||_{\mathbf{F}} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}^2}$
 - Low-rank approximations of matrices remove noise by assuming that the matrix is not generated at random and has an underlying structure.
 - SVD can help remove **noise** by computing a low-rank approximation of a matrix.

Low-rank Matrix Approximation with SVD

- 1. Create Σ_k from Σ by keeping only the first k elements on the diagonal. This way, $\Sigma_k \in \mathbb{R}^{k \times k}$.
- 2. Keep only the first k columns of U and denote it as $U_k \in \mathbb{R}^{m \times k}$, and keep only the first k rows of V^T and denote it as $V_k^T \in \mathbb{R}^{k \times n}$.
- 3. Let $X_k = U_k \Sigma_k V_k^T$, $X_k \in \mathbb{R}^{m \times n}$.

X_k is the best low-rank approximation of a matrix X

Theorem 9.1 (Eckart-Young-Mirsky Low-Rank Matrix Approximation). Let X be a matrix and C be the best low-rank approximation of X; if $||X - C||_F$ is minimized, and rank(C) = k, then $C = X_k$.

Model-based CF, Example

Table 7.2. The Obel Hell Width	Table 9.2:	An U	ser-Item	Matrix
--------------------------------	------------	------	----------	--------

Table 7.2. Thi Osci-Itelli Matily				
	Lion King	Aladdin	Mulan	
John	3	0	3	
Joe Jill	5	4	0	
Jill	1	2	4	
Jorge	2	2	0	

$$U = \begin{bmatrix} -0.4151 & -0.4754 & -0.7679 & 0.1093 \\ -0.7437 & 0.5278 & 0.0169 & -0.4099 \\ -0.4110 & -0.6626 & 0.6207 & -0.0820 \\ -0.3251 & 0.2373 & 0.1572 & 0.9018 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 8.0265 & 0 & 0 \\ 0 & 4.3886 & 0 \\ 0 & 0 & 2.0777 \\ 0 & 0 & 0 \end{bmatrix}$$

$$V^{T} = \begin{bmatrix} -0.7506 & -0.5540 & -0.3600 \\ 0.2335 & 0.2872 & -0.9290 \\ -0.6181 & 0.7814 & 0.0863 \end{bmatrix}$$

Considering a rank 2 approximation (i.e., k = 2), we truncate all three matrices:

$$U_k = \begin{bmatrix} -0.4151 & -0.4754 \\ -0.7437 & 0.5278 \\ -0.4110 & -0.6626 \\ -0.3251 & 0.2373 \end{bmatrix}$$

$$\Sigma_k = \begin{bmatrix} 8.0265 & 0 \\ 0 & 4.3886 \end{bmatrix}$$

$$\Sigma_k = \begin{bmatrix} 8.0265 & 0 \\ 0 & 4.3886 \end{bmatrix}$$

$$V_k^T = \begin{bmatrix} -0.7506 & -0.5540 & -0.3600 \\ 0.2335 & 0.2872 & -0.9290 \end{bmatrix}$$

What is Jill's rating for Lion King?

Figure 9.1: Users and Items in the 2-D Space.

Recommendation to a Group

Recommendation to Groups

• Find content of interest to all members of a group of socially acquainted individuals

• Examples:

- A movie for friends to watch together
- A travel destination for a family to spend a holiday break
- A good restaurant for colleagues to have a working lunch
- A music to be played in a public area

Tasks of a Group Recommender System

- Acquiring preferences
- Generating recommendations
- Explaining recommendations
- Helping group members to achieve consensus

Aggregation Strategies

• Maximizing Average Satisfaction

 Average everyone's ratings and choose the max

$$R_i = \frac{1}{n} \sum_{u \in G} r_{u,i}$$

Least Misery

 This approach tries to minimize the dissatisfaction among group's members (Max of the mins of all)

$$R_i = \min_{u \in G} r_{u,i}$$

Most Pleasure

 The maximum of individuals' maximum ratings is taken as group's rating

$$R_i = \max_{u \in G} r_{u,i}$$

Recommendation to Group, an Example

Table 9.3: User-Item Matrix

Table 9.5. User-Helli Matrix					
	Soda	Water	Tea	Coffee	
John	1	3	1	1	
Joe	4	3	1	2	
Jill	2	2	4	2	
Jorge	1	1	3	5	
Juan	3	3	4	5	

Group: John Jill, Juan

Average Satisfaction

$$R_{Soda} = \frac{1+2+3}{3} = 2.$$

$$R_{Water} = \frac{3+2+3}{3} = 2.66$$

$$R_{Tea} = \frac{1+4+4}{3} = 3.$$

$$R_{Coffee} = \frac{1+2+5}{3} = 2.66$$

Least Misery

$$R_{Soda} = \min\{1, 2, 3\} = 1$$

$$R_{Water} = \min\{3, 2, 3\} = 2$$

$$R_{Tea} = \min\{1, 4, 4\} = 1$$

$$R_{Coffee} = \min\{1, 2, 5\} = 1$$

Most Pleasure

$$R_{Soda} = \max\{1, 2, 3\} = 3$$

$$R_{Water} = \max\{3, 2, 3\} = 3$$

$$R_{Tea} = \max\{1, 4, 4\} = 4$$

$$R_{Coffee} = \max\{1, 2, 5\} = 5$$

What to recommend? The maximum in each measure