Лабораторная работа 2.1.6 «Определение энергии активации по температурной зависимости вязкости жидкости»

Комкин Михаил, Б01-303 8 апреля 2024 г.

Цель работы: 1) измерение скорости падения шариков при разной температуре жидкости; 2) вычисление вязкости жидкости по закону Стокса и расчёт энергии активации.

В работе используются: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; горизонтальный компаратор; микроскоп; мелкие шарики (диаметром около 1 мм).

1 Теоретическая часть

По своим свойствам жидкости сходны как с газами, так и с твердыми телами. Подобно газам, жидкости принимают форму сосуда, в котором они находятся. Подобно твердым телам, они обладают сравнительно большой плотностью, с трудом поддаются сжатию. Двойственный характер свойств жидкостей связан с особенностями движения их молекул. В газах молекулы движутся хаотично, в их расположении отсутствует порядок. В кристаллических твердых телах частицы колеблются около определенных положений равновесия – узлов кристаллической решетки. В жидкостях, как и в кристаллах, каждая молекула находится в потенциальной яме электрического поля, создаваемого окружающими молекулами. Молекулы колеблются со средней частотой, близкой к частоте колебаний атомов в кристаллических телах. Глубина потенциальной ямы в жидкостях больше средней кинетической энергии колеблющейся молекулы, поэтому молекулы колеблются вокруг более или менее стабильных положений равновесия. Однако у жидкостей различие между этими двумя энергиями невелико, так что молекулы нередко выскакивают из своей потенциальной ямы и занимают место в другой. В отличие от твердых тел, жидкости обладают рыхлой структурой. В них имеются свободные места – дырки, благодаря чему молекулы могут перемещаться, покидая свое место и занимая одну из соседних дырок. Таким образом, молекулы медленно перемещаются внутри жидкости, пребывая часть времени около определенных мест равновесия и образуя картину меняющейся со временем пространственной решетки. На современном языке принято говорить, что в жидкости присутствует ближний, но не дальний порядок, расположение молекул упорядочено в небольших объемах, но порядок перестает замечаться при увеличении расстояния.

Отмеченный характер движения молекул объясняет как медленность диффузии в жидкостях, так и большую (по сравнению с газами) их вязкость. В газах вязкость объясняется

происходящим при тепловом движении молекул переносом количества направленного движения. В жидкостях такие переходы существенно замедлены. Количество молекул, имеющих энергии больше W, в соответствии с формулой Больцмана экспоненциально зависит от W. Температурная зависимость вязкости жидкости выражается формулой:

$$\eta \approx Ae^{\frac{W}{kT}}$$

Из формулы (1) следует, что при повышении температуры вязкость должна резко понижаться.

Для исследования температурной зависимости вязкости жидкости в данной работе используется метод Стокса, основанный на измерении скорости свободного падения шарика в жидкости. Суть его заключается в следующем.

На всякое тело, двигающееся в вязкой жидкости, действует сила сопротивления. В общем случае величина этой силы зависит от многих факторов: от вязкости жидкости, от формы тела, от характера обтекания и т. д. Стоксом было получено строгое решение задачи о ламинарном обтекании шарика безграничной жидкостью. В этом случае сила сопротивления F определяется формулой

$$F = 6\pi \eta r v$$
,

где η - вязкость жидкости, v- скорость шарика, r- радиус шарика. Рассматривая свободное падение шарика в вязкой жидкости, получаем уравнение:

$$Vg\left(\rho - \rho_{\mathsf{x}}\right) - 6\pi\eta rv = V\rho \frac{dv}{dt}$$

Решая данное уравнение относительно скорости, получаем:

$$v(t) = v_{yct} - [v_{yct} - v(0)] e^{\frac{-t}{\tau}}$$

$$v_{\rm ycr} = \frac{2}{9}gr^2 \frac{\rho - \rho_{\rm xc}}{\eta} \tag{1}$$

$$v_{\rm ycr} = \frac{S}{t} \frac{\rm M}{c} \tag{2}$$

$$tau = \frac{2}{9} \frac{r^2 \rho}{\eta} \tag{3}$$

2 Экспериментальная установка

Экспериментальная установка. Для измерений используется стеклянный цилиндрический сосуд B, наполненный исследуемой жидкостью. Диаметр сосуда 3 см, длина 40 см. На стенках сосуда нанесены две метки на некотором расстоянии друг от друга. Верхняя метка должна располагаться ниже уровня жидкости с таким расчётом, чтобы скорость шарика к моменту прохождения этой метки успевала установиться. Измеряя расстояние между метками с помощью линейки, а время падения с помощью секундомера, определяют скорость шарика $v_{\text{уст}}$. Сам сосуд B помещён в рубашку D, омываемую водой из термостата. При работающем термостате температура воды в рубашке D, а потому и температура жидкости 12 равна температуре воды в термостате. Радиусы шариков измеряются горизонтальным компаратором или микроскопом. Для каждого шарика рекомендуется измерить несколько различных диаметров и вычислить среднее значение. Такое усреднение целесообразно, поскольку в работе используются шарики, форма которых может несколько отличаться от сферической.

Опыты проводятся при нескольких температурах в интервале от комнатной до 50-60 °C. Ванна представляет собой ёмкость из нержавеющей стали, установленную в наружный кожух. В блоке терморегулирования расположены насос для обеспечения перемешивания рабочей жидкости и перекачки её во внешний контур, нагреватель, датчик температуры, датчик уровня жидкости, элементы управления и индикации, необходимые для надёжной работы.

Рис. 1: Схема экспериментальной установки

3 Ход работы

1. Будем проводить измерения при пяти различных температурах. Для каждой возьмем по два металлических и два стеклянных шарика. Измеряем их с помощью микроскопа. Внесем результаты в таблицу.

$t, ^{\circ}C$	27.29	33	38	43	48
$d_{\text{металл}_1}$, мм	0.6	0.6	0.85	0.85	0.7
$d_{\text{металл}_2}$, мм	0.6	0.65	0.65	0.7	0.75
$d_{\text{стекл}_1}$, мм	2,1	2.1	2.1	2.1	2.1
$d_{\text{стекл}_2}$, мм	2.1	2.105	2.15	2.1	2.15
d_{cp} , mm	1.35	1.36	1.425	1.4375	1.425

Таблица 1: Размеры шариков

2. Будем проводить измерять время, за которое шарики проходят первый и второй участки пути, когда их скорость $v=v_{\rm ycr}$

	$t,^{\circ}C$	27.29	33	38	43	48
	$\rho, \frac{\Gamma}{\mathrm{CM}^3}$	1.26	1.26	1.25	1.25	1.25
первый шарик	t_1	29.11	23.46	14.83	8.60	8.32
	t_2	29.03	23.50	14.95	8.60	8.23
второй шарик	t_1	29.24	23.50	20.08	10.93	7.33
	t_2	29.13	23.52	19.63	11.13	7.41
третий шарик	t_1	19.27	13.21	9.43	6.58	4.54
	t_2	19.26	13.16	9.36	6.64	4.51
четвертый шарик	t_1	19.05	13.13	9.31	6.52	4.85
	t_2	19.13	13.18	9.36	6.48	4.86

Таблица 2: измерение времени

Найдем среднее значение времени для каждой из температур.

$t, {}^{\circ}C$	27.29	33	38	43	48
t_{1cp}	24.17	18.33	13.42	8.23	6.26
t_{2cp}	24.13	18.34	13.33	8.21	6.25
$t_{\rm cp}$	24.15	18.43	13.18	8.22	6.26

Таблица 3: Измерение среднего времени

3. Измеряем установившуюся скорость падения шариков по формуле 1. Подставим полученное значение в формулу 1, из приведенного в лабораторном практикуме графика зависимости $\rho(T)$ найдем плотнсть воды, выразим η .

$t, ^{\circ}C$	$\rho, \frac{\Gamma}{\text{cm}^3}$	$v_{ m yct},{ m cm/c}$	η
27.29	1.26	0.41	3.10
33	1.26	0.54	2.35
38	1.25	0.76	1.67
43	1.25	1.22	1.04
48	1.25	1.6	0.79

Таблица 4: Caption

4. Вычислим число Рейнольдса для каждого опыта, оценим путь и время релаксации с помощью формул 1, $S=v_{\rm ycr} \tau$ и $Re=rac{\rho v d}{\eta}$

$t,^{\circ}C$	η	$v_{ m yct}, { m cm/c}$	τ , c	S, cm	Re
27.29	3.10	0.41	0.33	0.14	0.02
33	2.35	0.54	0.43	0.23	0.035
38	1.67	0.76	0.61	0.46	0.07
43	1.04	1.22	0.99	1.20	0.18
48	0.79	1.6	1.29	2.06 7	0.31

Таблица 5: Caption

Как мы видим число Рейнольдса крайне мало, следовательно мы можем применять формулу Стокса.

5. Построим график зависимости $ln\eta$ от T. Зная его коэффициент наклона с помощью формулы

$$W = k \frac{d(\ln(\eta))}{d(\frac{1}{T})}$$

Предварительно оценим погрешности:

$$\Delta t_{\text{пад}} = 0.2 c, \qquad \Delta T = 0.5 K$$

$$\Delta v_{\text{уст}} = \Delta t_{\text{пад}} \frac{h}{t_{\text{пад}}^2}$$

$$\Delta \eta = \frac{2}{9} g r^2 \frac{\rho - \rho}{v^2} \Delta v$$

Рис. 2: График зависимости $ln(\eta)(\frac{1}{T})$

$$\left(\frac{d(\ln \eta)}{d(1/T)}\right) = (6524 \pm 162), K \implies W/k = (6524 \pm 162) K$$

4 Вывод

В каждом из опытов значение числа Рейнольдса Re было мало, а следовательно обтекание шарика жидкостью действительно имело ламинарный характер и формула Стокса справедлива в данной лабораторной работе. По ней был расчитана вязкость глицерина, а также найдена его энергия активации Так же мы вычислили вязкость исследуемой жидкости (глицерина) по закону Стокса. Получившиеся значения совпадают с табличными.

Также была найдена энергия активации глицерина $W = (90 \pm 2)$ зДж.