Deep learning Lab3: EEG classification

1. Introduction:

這次作業要用 pytorch 實作 EEGNet 和 DeepConvNet 替 EEG signals 分類。我利用 dictionary 儲存 activation(acts = {name: function}),可以直接用迴圈執行完所有組合。

2. Experiment:

- A. The detail of your model
 - **♦** EEGNet

模型架構完全採用作業簡報的說明文件,而 loss function 選擇 cross entropy,因為 pytorch 的 cross entropy 有包含 softmax,所以不需要再使用 softmax 分類,optimizer 則 是用 Adam (A METHOD FOR STOCHASTIC OPTIMIZATION)

```
EEGNet(
  (firstconv): Sequential(
     (0): Conv2d(1, 16, kernel_size=(1, 51), stride=(1, 1), padding=(0, 25), bias=False)
     (1): BatchNorm2d(16, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
}
(depthwiseConv): Sequential(
     (0): Conv2d(16, 32, kernel_size=(2, 1), stride=(1, 1), groups=16, bias=False)
     (1): BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
     (2): ELU(alpha=1.0)
     (3): AvgPool2d(kernel_size=(1, 4), stride=(1, 4), padding=0)
     (4): Dropout(p=0.25)
}
(separableConv): Sequential(
     (0): Conv2d(32, 32, kernel_size=(1, 15), stride=(1, 1), padding=(0, 7), bias=False)
     (1): BatchNorm2d(32, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
     (2): ELU(alpha=1.0)
     (3): AvgPool2d(kernel_size=(1, 8), stride=(1, 8), padding=0)
     (4): Dropout(p=0.25)
}
(classify): Sequential(
     (0): Linear(in_features=736, out_features=2, bias=True)
}
```

DeepConvNet

DeepConvNet 和 EEG 一樣完全使用簡報的模型架構, loss

function 選擇 cross entropy, optimizer 用 Adam

Layer	# filters	size	# params	Activation	Options
Input		(C, T)			
Reshape		(1, C, T)			
Conv2D	25	(1, 5)	150	Linear	mode = valid, max norm = 2
Conv2D	25	(C, 1)	25 * 25 * C + 25	Linear	mode = valid, max norm = 2
BatchNorm			2 * 25		epsilon = 1e-05, $momentum = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	50	(1, 5)	25 * 50 * C + 50	Linear	mode = valid, max norm = 2
BatchNorm			2 * 50		epsilon = 1e-05, $momentum = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	100	(1, 5)	50 * 100 * C + 100	Linear	mode = valid, max norm = 2
BatchNorm			2 * 100		epsilon = 1e-05, $momentum = 0.1$
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	200	(1, 5)	100 * 200 * C + 200	Linear	mode = valid, max norm = 2
BatchNorm			2 * 200		epsilon = $1e-05$, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Flatten					
Dense	N			softmax	max norm = 0.5

B. Explain the activation function (ReLU, Leaky ReLU, ELU)

◆ ReLU

把負數都改成 0,正數保持不變。缺點是產生負數的 neuron 不會再對 loss 有貢獻

◆ Leaky ReLU

在 ReLU 的基礎上,對負數乘上一個較小的值,保留負數對 loss 的影響

♦ ELU

在 ReLU 的基礎上,對負數做 exponential

3. Experimental results:

A. The highest testing accuracy

下表(圖)是 learning rate = 0.1, batch size = 135, epoch = 1000 的 結果

	ReLU	Leaky ReLU	ELU
EEG	0.83	0.88	0.89
DeepConv	0.82	0.84	0.83

B. Comparison figures

♦ EEGNet

DeepConvNet

4. Discussion:

比較不同 batch size 對 accuracy 的影響

