La fonction $f : x \mapsto 2^x$

x	-2	-1	0	1	2	3	4	5
$f(x) = 2^x$								

La fonction $f: x \mapsto 2^x$

Ne pas confondre $f: x \mapsto 2^x$ et $g: x \mapsto x^2$

Tracer à main levée sur le même repère les représentations graphiques de $x\mapsto 3^x, \, x\mapsto 2^x$ et $x\mapsto 1.5^x$:

Tracer à main levée sur le même repère les représentations graphiques de

$$f \colon x \mapsto 2^x \text{ et } g \colon x \mapsto \left(\frac{1}{2}\right)^{\bar{x}} = 0.5^x :$$

Tracer à main levée sur le même repère la représentation graphique de

Problématique : étude de variation et dérivation

Ci contre la représentation graphique de $f: x \mapsto x2^{-x}$. Comment déterminer les coordonnées du point critique? Comment dresser le tableau de variation?

	I
f(x)	f'(x)
1^x	0
1.5^x	
2^x	
2.5^x	
3^x	
3.5^x	

f(x)	f'(x)
1^x	0
1.5^x	0.41×1.5^x
2^x	
2.5^x	
3^x	
3.5^x	

f(x)	f'(x)
1^x	0
1.5^x	0.41×1.5^x
2^x	0.69×2.5^x
2.5^x	
3^x	
3.5^x	

f(x)	f'(x)
1^x	0
1.5^x	0.41×1.5^x
2^x	0.69×2.5^x
2.5^x	0.92×2.5^x
3^x	
3.5^x	

f(x)	f'(x)
1^x	0
1.5^x	0.41×1.5^x
2^x	0.69×2.5^x
2.5^x	0.92×2.5^x
3^x	1.10×2.5^x
3.5^x	

f(x)	f'(x)
1^x	0
1.5^x	0.41×1.5^x
2^x	0.69×2.5^x
2.5^x	0.92×2.5^x
3^x	1.10×2.5^x
3.5^x	1.25×3.5^x

f(x)	f'(x)
1^x	0
1.5^x	0.41×1.5^x
2^x	0.69×2.5^x
2.5^x	0.92×2.5^x
e^x	$1 \times e^x$
3^x	1.10×2.5^x
3.5^x	1.25×3.5^x

$$f(x) = e^x$$
 est dérivable et sa dérivée est $f'(x) = e^x$

La fonction exponentielle est la fonction f définie sur \mathbb{R} par $f(x) = e^x$.

Elle est positive sur \mathbb{R} , et sa dérivée est elle même $f'(x) = e^x$.

$$g(x) = e^{5x} g'(x) = \dots$$

La fonction exponentielle est la fonction f définie sur \mathbb{R} par $f(x) = e^x$.

Elle est positive sur \mathbb{R} , et sa dérivée est elle même $f'(x) = e^x$.

$$g(x) = e^{5x}$$

$$h(x) = e^{-x}$$

$$g'(x) = \dots$$

$$h'(x) = \dots$$

La fonction exponentielle est la fonction f définie sur \mathbb{R} par $f(x) = e^x$.

Elle est positive sur \mathbb{R} , et sa dérivée est elle même $f'(x) = e^x$.

$$g(x) = e^{5x}$$

$$h(x) = e^{-x}$$

$$u(x) = 4e^{3x}$$

$$g'(x) = \dots$$

$$h'(x) = \dots$$

$$u'(x) = \dots$$

La fonction exponentielle est la fonction f définie sur \mathbb{R} par $f(x) = e^x$.

Elle est positive sur \mathbb{R} , et sa dérivée est elle même $f'(x) = e^x$.

$$g(x) = e^{5x}$$

$$h(x) = e^{-x}$$

$$u(x) = 4e^{3x}$$

$$v(x) = 5e^{-x}$$

$$g'(x) = \dots \dots \dots \dots$$

$$h'(x) = \dots$$

$$u'(x) = \dots$$

$$v'(x) = \dots$$

La fonction exponentielle est la fonction f définie sur \mathbb{R} par $f(x) = e^x$.

Elle est positive sur \mathbb{R} , et sa dérivée est elle même $f'(x) = e^x$.

$$g(x) = e^{5x}$$

$$h(x) = e^{-x}$$

$$u(x) = 4e^{3x}$$

$$v(x) = 5e^{-x}$$

$$w(x) = 2 + e^{\frac{1}{3}x}$$

$$g'(x) = \dots \dots \dots \dots$$

$$h'(x) = \dots$$

$$u'(x) = \dots$$

$$v'(x) = \dots$$

$$w'(x) = \dots$$

La fonction exponentielle est la fonction f définie sur \mathbb{R} par $f(x) = e^x$.

Elle est positive sur \mathbb{R} , et sa dérivée est elle même $f'(x) = e^x$.

$$g(x) = e^{5x}$$
 $g'(x) = \dots$ $h(x) = e^{-x}$ $h'(x) = \dots$ $u(x) = 4e^{3x}$ $u'(x) = \dots$ $v(x) = 5e^{-x}$ $v'(x) = \dots$ $v'(x) = \dots$

$$puissance_2(8) = 3$$

$$puissance_3(27) = \dots$$

$$puissance_{10}(100) = \dots$$

$$puissance_4(16) = \dots$$

$$puissance_4(64) = \dots$$

puissance₇
$$(\frac{1}{7}) = \dots$$

puissance₃
$$(\frac{1}{9}) = \dots$$

$$puissance_5(25) = 2$$

puissance
$$\frac{1}{3}(9) = \dots$$

$$puissance_{10}(1000000) = ...$$

$$puissance_{73}(1) = \dots$$

$$puissance_{100}(10) = \dots$$

$$puissance_{0.01}(100) = \dots$$

$$puissance_1(5) = \dots$$

$$puissance_2(8) = 3$$

$$puissance_5(25) = 2$$

$$puissance_3(27) = 3$$

$$puissance_{10}(100) = 2$$

$$puissance_4(16) = 2$$

$$puissance_4(64) = 3$$

puissance₇
$$(\frac{1}{7}) = -1$$

puissance₃
$$(\frac{1}{9}) = -2$$

puissance
$$\frac{1}{3}(9) = -2$$

$$puissance_{10}(1000000) = 6$$

$$puissance_{73}(1) = 0$$

$$\mathrm{puissance}_{100}(10) = 0.5$$

$$puissance_{0.01}(100) = -1$$

$$puissance_1(5) = ?$$

Les fonctions logarithmes:

le logarithme de base b de y est le nombre $\log_b(y)=x$ tel que $b^x=y.$ $\log_2(8)=3$

$$\log_5(25) = 2$$

$$\log_3(27) = 3$$

$$\log_{10}(100) = 2$$

$$\log_4(16) = 2$$

$$\log_{4}(64) = 3$$

$$\log_7(\frac{1}{7}) = -1$$

$$\log_3(\frac{1}{9}) = -2$$

$$\log_{\frac{1}{3}}(9) = -2$$

$$\log_{10}(1000000) = 6$$

$$\log_{73}(1) = 0$$

$$\log_{100}(10) = 0.5$$

$$\log_{0.01}(100) = -1$$

$$\log_1(5) = ?$$

Les fonctions logarithmes

La fonction logarithme de base b servent à calculer les antécédents par la fonction exponentielle de base b.

le logarithme de base b de y est le nombre $\log_b(y) = x$ tel que $b^x = y$.

Pour
$$x = \log_{\dots}(\dots) \approx \dots$$
, on a $2^x = 10$

Pour
$$x = \log_{\dots}(\dots) \approx \dots$$
, on a $3^x = 10$

Pour
$$x = \log_{\dots}(\dots) \approx \dots$$
, on a $5^x = 0.2$

Les fonctions logarithmes

$$g \colon x \mapsto \log(x) = \log_{10}(x).$$

$$\log(1) = 0$$

$$\log(10) = 1 ,$$

$$\log(100) = 2 ,$$

$$\log(1) = 0$$
, $\log(10) = 1$, $\log(100) = 2$, $\log(2) \approx 0.30103$

$$10^{x+1} = 10^x 10^1 = 10 \times 10^x$$

$$10^{0.30103} \approx 2$$

$$10^{x+0.30103} = 10^x 10^{0.30103} = 2 \times 10^x$$