Datenstrukturen & Algorithmen

Peppo Brambilla Universität Bern Frühling 2018

Übersicht

- Untere Schranken für Sortieren
- Sortieren mit linearem Aufwand
- Mediane und Ranggrössen

Wie schnell können wir sortieren?

- Bis jetzt: sortieren durch vergleichen
 - Verwenden ausschliesslich paarweise
 Vergleiche zur Bestimmung der Reihenfolge
 - Beispiele: sortieren durch Einfügen, Mischen, Heapsort, Quicksort
- Kein Algorithmus hat worst-case Laufzeit besser als $O(n \lg n)$
- Gibt es schnellere Algorithmen?
 - Worst-case Laufzeit schneller als $O(n \lg n)$

Entscheidungsbäume

- Beschreibt Ausführung beliebiger Verfahren zum Sortieren durch Vergleiche von Elementen
- Jeder (deterministische) Algorithmus hat einen immer gleichen Baum für jede Eingabelänge *n*
- Sortieren: traversieren des Baums entlang eines Ausführungspfades von Wurzel zu Blatt
- Ausführung nimmt einen von zwei möglichen Pfaden bei jedem Vergleich
- Baum enthält Vergleiche entlang allen möglichen Ausführungspfaden
- Laufzeit = Länge des Ausführungspfades
- Worst-case Laufzeit = Höhe des Baumes

Beispiel (Insertion Sort)

• Sortiere $\langle a_1, a_2, a_3 \rangle = \langle 9, 4, 6 \rangle$

- i:j bedeutet Vergleich zwischen a_i und a_j
- Linker Teilbaum falls $a_i \leq a_j$
- Rechter Teilbaum falls $a_i > a_i$

Untere Schranke für Sortieren durch Vergleichen

- Theorem: Jeder Entscheidungsbaum, der n Elemente sortiert, muss mindestens Höhe $\Omega(n \lg n)$ haben (untere Schranke!)
- Beweis: Baum hat $\geq n!$ Blätter, weil es n! Permutationen gibt. Binärbaum der Höhe h hat $\leq 2^h$ Blätter. Also muss $2^h \geq n!$ sein.

$$h \ge \lg(n!)$$

$$\ge \lg((n/e)^n) \quad \text{(Stirlingsche Näherung)}$$

$$= n \lg n - n \lg e$$

$$= \Omega(n \lg n)$$

Untere Schranke für Sortieren durch Vergleichen

Folgerungen

- Jeder vergleichende Sortieralgorithmus braucht im schlechtesten Fall mindestens $\Omega(n \lg n)$ Vergleichsoperationen
- Heapsort und Sortieren durch Mischen sind asymptotisch optimale vergleichende Sortieralgorithmen
- Quicksort?

Übersicht

- Untere Schranken für Sortieren
- Sortieren mit linearem Aufwand
- Mediane und Ranggrössen

Sortieren mit linearem Aufwand

Countingsort: keine Vergleiche zwischen Elementen!

- Eingabe: A[1 ... n], wobei $A[j] \in \{1, 2, ..., k\}$
 - Ganze Zahlen zwischen 1 und k
- Ausgabe: B[1 ... n], sortiert
- Zwischenspeicher: C[1 ... k]

Countingsort

for
$$i=1$$
 to k

$$C[i]=0$$
for $j=1$ to n

$$C[A[j]]=C[A[j]]+1$$
for $i=2$ to k

for
$$i = 2$$
 to k

$$C[i] = C[i] + C[i-1]$$

for
$$j = n$$
 downto 1

$$B[C[A[j]]] = A[j]$$

$$C[A[j]] = C[A[j]] - 1$$

C initialisieren

Vorkommnisse der Zahlen 1 ... k zählen

Berechne Anzahl der Zahlen $\leq i$

Einordnen der Werte

for
$$i = 1$$
 to k

$$C[i] = 0$$

for
$$j = 1$$
 to n
$$C[A[j]] = C[A[j]] + 1 \quad \triangleright C[i] = |\{ \text{key} = i \}|_{12}$$

for
$$i = 2$$
 to k

$$C[i] = C[i] + C[i-1]$$

for
$$j = n$$
 downto 1

$$B[C[A[j]]] = A[j]$$

$$C[A[j]] = C[A[j]] - 1$$

1 2 3 4

$$\Theta(n+k)$$

Laufzeit

- Laufzeit $\Theta(n+k)$
- Wenn k = O(n), dann sogar $\Theta(n)$
- Besser als untere Schranke $\Omega(n \lg n)$?!
- Countingsort ist kein vergleichender Sortieralgorithmus!
 - Keine Vergleiche im gesamten Algorithmus
 - Nützt aus, dass Werte direkt verwendet werden können, um sortierte Position zu bestimmen

Stabiles Sortieren

- Countingsort ist stabil
 - Reihenfolge gleich grosser Elemente wird nicht verändert

Radixsort

- Zahlen mit mehreren Ziffern: Ziffer um Ziffer sortieren
- Schlechte Idee: bei der höchstwertigen Ziffer anfangen
- Besser: bei der niederwertigsten Ziffer anfangen und eine stabile Sortiermethode verwenden

↓	↓	↓	
3 2 9	7 2 0	7 2 0	3 2 9
4 5 7	3 5 5	3 2 9	3 5 5
6 5 7	436	4 3 6	4 3 6
839	$45\frac{1}{7}$	8 3 9	4 5 7
4 3 6	$65\frac{1}{7}$	3 5 5	6 5 7
720	3 2 9	4 5 7	7 2 0
3 5 5	8 3 9	6 5 7	8 3 9

Korrektheit

Induktion über Position der Ziffern

→ korrekte Reihenfolge

• Annahme: Zahlen sind bis zu Ziffer t-1 sortiert

 Induktionsschritt: 	72()	3	2 9
Sortiere Ziffer t	3 2 9)	3	5 5
- Zwei Zahlen, die sich in Ziffer t unterscheiden	436	•	4	3 6
werden korrekt sortiert	8 3 9)	4	5 7
 Wegen Stabilität: Reihenfolge von Zahlen, die in Ziffer t 	3 5 5			5 7
gleich sind, wird nicht verändert	457	7	7	20

Sortieren von Binärzahlen

- Sortiere n Binärzahlen mit je b Bit
- Interpretiere Zahl als $^b/_r$ stellige Zahl mit Ziffern zur Basis 2^r
- Countingsort zum stabilen Sortieren
- Beispiel: 32-Bit Zahl
 - $-r = 8 \Rightarrow b/r = 4$ Countingsort Schritte, vier Ziffern zur Basis 2^8
 - Alternative: $r = 16 \Rightarrow b/r = 2$ Countingsort Schritte, zwei Ziffern zur Basis 2^{16}

- Zur Erinnerung: Countingsort braucht $\Theta(n+k)$ um n Zahlen im Bereich 0 bis k-1 zu sortieren
- b-Bit Zahlen mit r-Bit Ziffern
 - Jeder Countingsort Schritt braucht $\Theta(n+2^r)$
 - -b/r Schritte (entspricht Anzahl Ziffern)
 - Aufwand T(n,b) = $\Theta(b/r(n+2^r))$
- Finde bestes r um T(n,b) zu minimieren
 - Grösseres r heisst weniger Countingsort Schritte (Ziffern), aber exponentielles Wachstum in 2^r

Wahl von r

$$T(n,b) = \Theta\left(\frac{b}{r}(n+2^r)\right)$$

- Ableiten nach r, Minimum wo Ableitung 0
- Beste Wahl $r = \lg n \Rightarrow T(n, b) = \Theta(bn/\lg n)$

$$\Theta\left(\frac{b}{\lg n}\left(n+2^{\lg n}\right)\right) = \Theta\left(\frac{b}{\lg n}\left(n+n\right)\right) = \Theta\left(\frac{bn}{\lg n}\right)$$

• Laufzeit in Anzahl Ziffern, statt Anzahl Bit: Für Zahlen mit d Ziffern à r Bit (Bereich 0 bis $2^{rd}-1$), und optimale Wahl $r=\lg n$

$$b = rd = (\lg n)d \Rightarrow T(n, b) = \Theta(dn)$$

• Falls sogar $b = O(\lg n)$, dann $T(n, b) = \Theta(n)$

- 2000 32-Bit Zahlen, n = 2000, b = 32
 - Bit pro Ziffer $r = \lceil \lg n \rceil = \lceil \lg 2000 \rceil = 11$
 - Anzahl Ziffern d = [b/r] = [32/11] = 3
 - Höchstens 3 Schritte
- Sortieren durch Mischen, Quicksort haben mindestens $\lceil \lg 2000 \rceil = 11$ Schritte (d.h. Durchläufe über alle n Zahlen)

- 2^{20} (1 Mio.) 32-Bit Zahlen, $n = 2^{20}$, b = 32
 - Bit pro Ziffer: $r = \lceil \lg n \rceil = \lceil \lg 2^{20} \rceil = 20$
 - Anzahl Ziffern: d = [b/r] = [32/20] = 2
 - Höchstens 2 Schritte
- Sortieren durch Mischen, Quicksort haben mindestens $[\lg 2^{20}] = 20$ Schritte
- Aber: "ein Schritt" in Radixsort beinhaltet zwei Durchläufe über alle n Zahlen
 - Siehe Countingsort Pseudocode

Zusammenfassung

- Radixsort gilt als schnell f
 ür grosse Eingaben
 - Falls $b = O(\lg n)$ asymptotische Laufzeit $\Theta(n)$
 - Besser als Quicksort, Heapsort, Mergesort
 - Kein vergleichender Sortieralgorithmus!
 - Nicht in-place
- Nachteil
 - Geringe Lokalität der Speicherzugriffe
 - "versteckte Konstanten" in asymptotischer Laufzeit relativ gross
 - Optimierter Quicksort ist häufig schneller in Praxis

Ursprung

- Lochkartensortierer
- Erfunden von Herman Hollerith
- Amerikanische Volkszählung 1890

• Seine Firma war Teil der Gründung von IBM http://en.wikipedia.org/wiki/Herman Hollerith

Bucketsort

• Annahme: Eingabe sind n reelle Zahlen zufällig und gleichmässig verteilt in [0,1)

Idee

- Unterteile [0,1) in n gleich grosse Teilintervalle
- Verteile *n* Eingabewerte auf Teilintervalle
- Sortiere jedes Teilintervall
- Gehe der Reihe nach durch Intervalle und gib Werte sortiert aus

Bucketsort

Input: $A[1 \dots n]$, where $0 \le A[i] < 1$ for all i.

Auxiliary array: B[0...n-1] of linked lists, each initially empty.

```
BUCKET-SORT(A, n)
```

- 1 **for** i = 1 **to** n
- 2 insert A[i] into list $B \mid \lfloor n \cdot A[i] \rfloor \mid$
- 3 **for** i = 0 **to** n 1
- 4 sort list B[i] with insertion sort
- 5 cancatenate lists $B[0], B[1], \ldots, B[n-1]$ together in order
- 6 return the concatenated lists

Korrektheit

- Zwei Elemente A[i], A[j]
- Sei $A[i] \leq A[j]$
- Für Indizes der Teilintervalle gilt $[n \cdot A[i]] \leq [n \cdot A[j]]$
 - A[i] ist in Intervall mit kleinerem oder gleichem Index wie A[j]
- Falls gleicher Index, Reihenfolge korrekt wegen Sortieren durch Einfügen
- Sonst korrekt wegen Auflistung der Intervalle am Schluss

- Intuition
 - Funktioniert effizient wenn jedes Teilintervall etwa gleichviele Werte hat
- Z.B. n Intervalle für n Werte
 - Durchschnitt ist ein Wert pro Intervall
 - Im Durchschnitt kostet Sortieren pro Intervall O(1)
 - Für alle n Intervalle zusammen O(n)
- Erwartete Laufzeit ist $\Theta(n)$
 - Einschränkung: gilt nur, falls Eingabe "genügend gleichmässig verteilt"

- Sei n_i Anzahl Elemente in Intervall B[i]
- Laufzeit von Bucketsort

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

- Da quadratische Laufzeit für Sortieren durch Einfügen
- Analysiere erwartete Laufzeit (d.h. Erwartungswert der Laufzeit)

$$E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$

$$E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} E[O(n_i^2)] \qquad \text{(Erwartungswert ist linear)}$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2]) \qquad (E[aX] = aE[X])$$

Behauptung

$$E[n_i^2] = 2 - (1/n)$$
 für $i = 0, \dots, n-1$

Beweis

Definiere für i = 0, 1, ..., n - 1 und j = 1, 2, ..., n Indikatorfunktionen $X_{ij} = I\{A[j] \text{ wird in Bucket } i \text{ eingefügt}\}$

Also
$$n_i = \sum_{j=1}^{n} X_{ij}$$

$$E[n_i^2] = E\left[\left(\sum_{j=1}^n X_{ij}\right)^2\right]$$

$$= E\left[\sum_{j=1}^n X_{ij}^2 + 2\sum_{j=1}^{n-1} \sum_{k=j+1}^n X_{ij}X_{ik}\right]$$

$$= \sum_{j=1}^n E\left[X_{ij}^2\right] + 2\sum_{j=1}^n \sum_{k=j+1}^n E[X_{ij}X_{ik}]$$

$$E[X_{ij}^2] = 0^2 \cdot \text{Wkt}\{A[j] \text{ wird nicht in Bucket i eingefügt}\} + 1^2 \cdot \text{Wkt}\{A[j] \text{ wird in Bucket i eingefügt}\}$$

$$= 0 \cdot \left(1 - \frac{1}{n}\right) + 1 \cdot \frac{1}{n}$$

$$= \frac{1}{n}$$

Für $k \neq j$ sind die Variablen X_{ij} und X_{ik} unabhängig, also

$$E[X_{ij}X_{ik}] = \underbrace{E[X_{ij}]}_{\frac{1}{n}} \cdot \underbrace{E[X_{ik}]}_{\frac{1}{n}}$$
$$= \frac{1}{n^2}$$

$$E[n_i^2] = \sum_{j=1}^n E[X_{ij}^2] + 2\sum_{j=1}^{n-1} \sum_{k=j+1}^n E[X_{ij}X_{ik}]$$

$$= \sum_{j=1}^n \frac{1}{n} + 2\sum_{j=1}^{n-1} \sum_{k=j+1}^n \frac{1}{n^2}$$

$$= n \cdot \frac{1}{n} + 2\binom{n}{2} \frac{1}{n^2}$$

$$= 1 + 2 \cdot \frac{n(n-1)}{2} \cdot \frac{1}{n^2}$$

$$= 1 + \frac{n-1}{n}$$

$$= 2 - \frac{1}{n}$$

$$E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2])$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O\left(2 - \frac{1}{n}\right)$$

$$= \Theta(n) + O(n)$$

$$= \Theta(n)$$

Übersicht

- Untere Schranken für Sortieren
- Sortieren mit linearem Aufwand
- Mediane und Ranggrössen

Mediane und Ranggrössen

- i-te Ranggrösse ist das i-kleinste Element einer Menge mit n Elementen
- Minimum ist die erste Ranggrösse (i = 1)
- Maximum ist die n-te Ranggrösse (i = n)
- Median ist der "Mittelpunkt"
 - Unterer Median [i = (n+1)/2]
 - Oberer Median [i = (n+1)/2]
 - Identisch falls n ungerade

Auswahlproblem

- Eingabe: Menge A aus n (paarweise versch.) Zahlen und eine Zahl $1 \le i \le n$
- Ausgabe: Das Element x in A, das grösser als genau i-1 andere Elemente von A ist
- Mögliche Lösung: mittels Sortieren
 - 1. Sortiere A
 - 2. Gib i-tes Element zurück
- Laufzeit ist $O(n \lg n)$
- Kann aber in linearer Zeit gelöst werden!

Minimum (erste Ranggrösse)

```
egin{aligned} 	ext{MINIMUM}(A,n) \ 1 & min = A[1] \ 2 & 	ext{for } i = 2 & 	ext{to } n \ 3 & 	ext{if } min > A[i] \ 4 & min = A[i] \ 5 & 	ext{return } min \end{aligned}
```

- Maximum ähnlich
- Geht nicht schneller als O(n)

Auswahl in linearer Zeit

Algorithmus "Select(A, i)"

- 1. Teile n Elemente in g=n/5 Gruppen von 5 Elementen (eine Gruppe enthält ev. weniger Elemente)
- 2. Bestimme Mediane $M = \{m_1, ..., m_g\}$ aller Gruppen
- 3. Bestimme rekursiv Median x von M aus Schritt 2 (Select $(M, {g+1/2})$)
- 4. Zerlege Feld um x (d.h. x ist Pivot). Resultat: sei x die k-te Ranggrösse von A.
- 5. Falls i = k: Fertig, gib x zurück Sonst: Finde i-te Ranggrösse in richtiger Seite der Zerlegung rekursiv (je nachdem ob i < k oder i > k)

• Finde untere Schranke für Anzahl Elemente

grösser als Pivotelement x

• x ist Median der Mediane: Mindestens Hälfte der Mediane ist $\geq x$

- Jede Gruppe mit Median
 ≥ x hat 3 Elemente > x
 - Ausnahmen: Gruppe, die x enthält; Gruppe, die weniger als 5 Elemente hat
- Anzahl Elemente > x ist mindestens

$$3\left(\left[\frac{1}{2}\left[\frac{n}{5}\right] - 2\right]\right) \ge \frac{3n}{10} - 6$$

• Symmetrisch: untere Schranke für Anzahl Elemente kleiner als Pivot x auch

$$3\left(\left[\frac{1}{2}\left[\frac{n}{5}\right] - 2\right]\right) \ge \frac{3n}{10} - 6$$

- D.h.: Schritt 5 ruft "Select" mit höchstens n (3n/10 6) = 7n/10 + 6 Elementen auf
- Rekursionsgleichung

$$T(n) \le \begin{cases} O(1) & \text{wenn } n < 140 \\ T(\lceil n/5 \rceil) + T(\lceil 7n/10 + 6) + O(n) & \text{wenn } n \ge 140 \end{cases}$$

• Beweise T(n) = O(n) mit Substitutionsmethode (Buch Abschnitt 9.3)

Zusammenfassung

- Vergleichende Sortieralgorithmen
 - Untere Schranke: $\Omega(n \lg n)$
 - Beweis mithilfe Entscheidungsbaum
- Countingsort
 - Zählen der Vorkommnisse
 - Positionen bestimmen
 - Rückwärts einsortieren
 - $-\Theta(n+k)$, falls $k \in O(n) \Rightarrow \Theta(n)$
 - Stabil
 - Kein vergleichender Sortieralgorithmus

Zusammenfassung

Radixsort

- Ziffer um Ziffer sortieren
- Bei kleinster Wertigkeit anfangen
- Stabilen inneren Sortieralgorithmus verwenden

Bucketsort

- Hier für Zahlen in [0,1)
- Input auf n Kübel verteilen
- Kübelweise sortieren
- Zusammenfügen
- Wenn Input gleichverteilt ist: $\Theta(n)$

Zusammenfassung

- Auswahlproblem in linearer Zeit $\mathcal{O}(n)$ gelöst
- Wie bei vergleichenden Sortieralgorithmen nur Vergleiche von Elementen benutzt
 - Keine zusätzlichen Annahmen über Eingabe wie bei Countingsort, Radixsort, etc.
- Nicht betroffen von der unteren Schranke $\Omega(n \lg n)$ der vergleichenden Sortier- verfahren
 - Sortieren nicht nötig zur Lösung des Problems

Nächstes Mal

Kapitel 10: Elementare Datenstrukturen

• Verkettete Listen, Stacks, Bäume