COMPUTATIONAL TOOLS FOR MODELS OF CURVES: NORMALIZATION

Our Project: Algorithmic methods for arithmetic surfaces and regular, minimal models.

2—dimensional, irreducible, reduced schemes $\pi:X\Longrightarrow S$ are arithmetic surfaces if S is a Dedekindscheme and π is projective and flat. They are models of algebraic curves over number fields.

One of our main topics is Lipmans desingularization algorithm: Let X be an excellent, Noetherian, reduced and 2-dimensional scheme. Then the following sequence

$$\cdots X_{i+1} \to X_i' \to X_i \to \cdots \to X_1 \to X_0 = X$$

with normalizations $X'_i \to X_i$ and blow-ups $X_{i+1} \to X'_i$ along $\operatorname{Sing}(X'_i)$ is finite and X has a strong desingularization.

Lipman also works for arithmetic surfaces because they are of finite type over S and hence Noetherian and excellent. The bottleneck of the algorithm are the normalizations. Let us look at three different normalization algorithms:

Let I be a radical ideal in a Noetherian ring R and A = R/I (reduced Noetherian ring). We want to compute the normalization \overline{A} of A.

1. Grauert-Remmert-de Jong: Computation through an increasing chain of rings. The theoretical background comes from the inclusions

$$A \subseteq \operatorname{Hom}_A(J,J) \cong \frac{1}{x}(xJ,J) \subseteq \overline{A} \subseteq Q(A)$$

where (J, x) is a so called test pair for A. That means $A = \overline{A} \iff A = \operatorname{Hom}_A(J, J)$. The computation of the radical J (test ideal) and the increasing number of variables in the computation of $\operatorname{Hom}_A(J, J)$ can become unpractical.

Implemented in Singular for reduced rings over the integers.

2. Greuel-Laplagne-Seelisch: Computation through an increasing chain of ideals. We compute ideals $U_1, \ldots, U_N \subset A$ and non-zerodivisors d_1, \ldots, d_N on A, such that

$$A \subset \frac{1}{d_1}U_1 \subset \cdots \subset \frac{1}{d_N}U_N = \overline{A} \subset Q(A)$$

In general more effective than algorithm 1, the only computation in $\operatorname{Hom}_A(J,J)$ is the radical of the test ideal.

Works whenever Gröbner bases, radicals and ideal quotients can be computed in rings of the form $R[t_1, \dots, t_s]$.

Also implemented in Singular for reduced rings over the integers.

3. Böhm-Decker-Pfister-Laplagne-Steenpass-Steidel: Parallelization by stratifying $\operatorname{Sing}(A)$. (Non-normal-locus $N(A) \subset \operatorname{Sing}(A)$.)

Used techniques: Normalization via localization and modular methods.

In general even faster than algorithm 2, next thing to look at for polynomial rings over the integers!