

CNN神經網路介紹

Estimated time: 45 min.

學習目標

• 10-1: CNN神經網路的優勢

10-2: Convolution

10-3: Maxpooling

10-1: CNN神經網路的優勢

- DNN網路的缺點
- CNN網路介紹
- CNN網路架構

DNN網路的缺點

- 缺點1:DNN網路隨著層數的增加,網路參數的數量也會增加非常快
 - 参數越多代表需要越多記憶體才能跑得動

DNN網路的缺點

- 缺點2:DNN網路在做圖片工作的時候,常常需要把一張圖表示成 一個向量,才能輸入網路當中
 - 這會破壞圖片裡物件的空間性,對於影像工作來說會受到不小影響

同一個物件在照片裡的像素彼此距 離應該很近

CNN網路的特性

- Convolutional Neural Networks(CNN)網路為一種非常著名的神經網路
 - 常被用來處理與圖像有關之工作
 - 此網路包含了很多卷積層以及池化層的運算

CNN網路架構

- CNN網路在經過多次的卷積層以及池化層後,最後會送入全連接層 做分類
 - 卷積層裡面包含了許多卷積的運算,用來提取圖片特徵
 - 池化層裡面包含了許多池化的運算,用來壓所圖片特徵

10-2: Convolution

- 圖片組成方式
- Convolution運算方式
- Convolution物理意義

designed by **'e' freepik**

圖片組成方式

- 一張照片是由多個像素所組成
 - 如果編碼方式是以RGB編碼的話,每個像素包含了RGB三個數值
- 每個RGB編碼數值介於0~255之間

圖片組成方式

- · 一張RGB彩色照片可以視為是一個三維度的數據組
 - 照片長*照片寬*照片深度
 - 或也可以想像成是3D張量

圖片組成方式

- · 在CNN網路裡,其輸入的照片格式需為3D的張量
- · 如果輸入是一個批次的照片,那麼在CNN網路裡,則被視為4D張量

3d-tensor

[照片長,照片寬,照片深度]

4d-tensor

[批次大小,照片長,照片寬,照片深度]

- 假設有一個單通道的圖片,我們可以設定一個濾波器的大小、步長來做來做Convolution
 - 傳統做Convolution時,濾波器裡面的數字通常都是人為設定好

Г					
	1	5	2	4	2
	3	2	2	1	2
	1	5	4	4	2
	2	1	3	2	4
	2	2	1	3	1

濾波器大小 = 3 * 3

1	0	-1
1	2	2
1	0	3

1*1+0*5+-1*2+ 1*3+2*2+2*2+ 1*1+0*5+3*4=23 特徵圖

• 做完一次計算以後,依據步長的大小往右/往下滑動,再做一次計算

原始圖片 步長 = 1

1	5	2	4	2
3	2	2	1	2
1	5	4	4	2
2	1	3	2	4
2	2	1	3	1

濾波器大小 = 3 * 3

1	0	-1
1	2	2
1	0	3

1*1+0*5+-1*2+ 1*3+2*2+2*2+ 1*1+0*5+3*4=23 特徵圖

23	26	

- 將每個位置都做完計算後,可以得到一張完整的特徵圖
 - 此特徵圖代表原是圖片某部分的特徵(後面會更詳細說明)

1	5	2	4	2
3	2	2	1	2
1	5	4	4	2
2	1	3	2	4
2	2	1	3	1

濾波器大小 = 3 * 3

1	0	-1
1	2	2
1	0	3

1*1+0*5+-1*2 + 1*3+2*2+ 2*2 + 1*1+0*5+ 3*4 = 23 特徵圖

23	26	18
31	29	31
10	23	21

Convolution的參數

- 濾波器大小
- 步長
 - 每次滑動多少步
- 填充
 - 將原始圖片在做卷積前,照片周圍加上幾圈0

濾波器大小 = 3*3 步長 =1

濾波器大小 = 3*3 步長 **=**2

Convolution的參數

- 濾波器大小
- 步長
 - 每次滑動多少步
- 填充
 - 將原始圖片在做卷積前,照片周圍加上幾圈0

濾波器大小 = 5*5, 步長 =1, 填充=2

Convolution的參數

原始圖片以及特徵圖大小的關係可以用以下式子來計算

$$O = \frac{(W - K + 2P)}{S} + 1$$

O: 輸出特徵圖長/寬

W: 輸入照片長/寬

K: 濾波器大小

P: 填充

S: 步長

- RGB照片做卷積
 - 每個濾波器是三維度數據組
 - 設定多少個濾波器就會產生多少張特徵圖

3 7 6

o[:,:,1]
2 0 -3
2 3 0

- · 假設有一個RGB彩色照片,我們把它與5個濾波器做卷積
 - 會得到5張相對應之特徵圖

- RGB做卷積時,也有不少文獻會喜歡畫成以下的圖
 - RGB照片與F個卷積做完運算後,得到多個特徵圖並把他們疊起來得到[長, 寬,F]的數據組

Convolution物理意義

- 一張照片做卷積是有物理意義的
 - 卷積就像是抽取原始圖片某部分的特徵
 - 不同卷積的數值會有不同的效果

Convolution物理意義

RGB彩色照片與不同濾波器做卷積的結果

0	0	0		0
0	0	-1	0	0
0	-1	5	-1	0
0	0	-1	0	0
0	0	0	0	0

尖化

邊緣偵測

10-3: Maxpooling

- Maxpooling運算
- Maxpooling物理意義

Maxpooling運算

- Maxpooling運算方法跟convolution相似
 - 均需定義濾波器大小、步長,但其運算方法是將掃到的區域中提取數值最大的數字做保留
 - 可以讓原始圖片變小,讓整個CNN網路加速

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

2*2濾波器且步長為2

6	8
3	4

Maxpooling運算

一個網路如果用太多Maxpooling,雖然有加速效果,但是準確度可以會往下掉,所以建議適當使用Maxpooling層就好

Maxpooling運算

 Maxpooling其實是這幾年大家習慣的做法,其實過去也有不少人 喜歡用Averagepooling

12	20	30	0
8	12	2	0
34	70	37	4
112	100	25	12

Average pooling

Maxpooling物理意義

- Maxpooling的意義就是將原始圖片做下採樣
 - 圖片或特徵會變更模糊

Demo 10-3

- Convolution用法
- Maxpooling用法
- 建構CNN神經網路

designed by **'©' freepik**

線上Corelab

- ◆ 題目1:Convolution的使用
 - 請針對範例圖片用以下的矩陣做Convolution運算並輸出結果
- 題目2:Maxpooling的使用
 - 請針對範例圖片做"4"次Maxpooling運算並輸出結果
- 題目3:建構與訓練CNN網路
 - 請用以下的4個子程式建構出一個完整的CNN網路以MNIST資料集訓練,並輸出準確率

本章重點精華回顧

- DNN網路的缺點
- 圖片的組成
- Convolution運算及物理意義
- Maxpooling運算及物理意義

Lab:Python 簡介

Lab01: Convolution用法

Lab02: Maxpooling用法

Lab03: 建構CNN神經網路

Estimated time: 20 minutes

