Llista 3

1 Integrals dobles i triples sobre rectangles

1. Sigui $f:[0,1]\times[0,1]\longrightarrow\mathbf{R}$ definida per

$$f(x,y) = \begin{cases} 0, & \text{si } x \in \mathbf{R} \setminus \mathbf{Q} ;\\ 0, & \text{si } x \in \mathbf{Q} \text{ i } y \in \mathbf{R} \setminus \mathbf{Q};\\ \frac{1}{q}, & \text{si } x = \frac{p}{q} \text{ irreductible i } y \in \mathbf{Q} . \end{cases}$$

Proveu que f és integrable a $[0,1] \times [0,1]$ però per cada $x \in [0,1] \cap \mathbf{Q}$ la funció $g_x : [0,1] \longrightarrow \mathbf{R}$ definida per $g_x(y) = f(x,y)$ no és integrable a [0,1].

2. Calculeu el volum dels cossos

$$C = \{(x, y, z) : -1 \le x, y \le 1, 0 \le z \le f(x, y)\}\$$

quan

- $f(x,y) = ax^2 + by^2.$
- $f(x,y) = \sqrt{x^2 + y^2}$.
- $f(x,y) = \sqrt{2 x^2 y^2}$

3. Demostreu que el volum del cos de \mathbb{R}^3

$$C = \{(x, y, z), 0 \le z \le \frac{1}{1 + x^2 + x^2 y^4 + 2x^2 y^2}\}$$

és finit.

- 4. Suposant que el quadrat $[-1,1]^2$ del pla té densitat de massa en P=(x,y) proporcional a la distància a la recta 2x+2y=1, calculeu la massa i el centre de masses.
 - Suposant que el cub $[-1,1]^3$ de \mathbb{R}^3 té densitat de massa en P=(x,y,z) proporcional a la distància de P al pla 2x+2y+2z=1, calculeu la massa i el centre de gravetat

5. Calculeu les integrals sobre $Q = [0,1]^2$ de

- $f(x,y) = x^2 y^2 e^{xy}.$
- $f(x,y) = xy \sin \pi xy$.

6. Calculeu les integrals sobre $Q = [0, 1]^3$ de

- $f(x, y, z) = \log(x + y + z)$.
- $f(x, y, z) = xyz \log(1 + xyz)$.

2 Integrals sobre conjunts generals

7. Canvieu l'ordre d'integració, dibuixeu la regió d'integració i calculeu les integrals iterades següents

(a)
$$\int_0^{\sqrt{2}} \int_{-\sqrt{4-2y^2}}^{\sqrt{4-2y^2}} y \, dx dy$$
 (b) $\int_0^1 \int_{x^3}^{x^2} y^2 \, dy dx$

(c)
$$\int_0^4 \int_{y/2}^2 e^{x^2} dx dy$$
 (d) $\int_{-1}^0 \int_0^{x+1} e^{x+y} dy dx + \int_0^1 \int_0^{1-x} e^{x+y} dy dx$

(e)
$$\int_0^4 \int_{y/2}^{\sqrt{y}} x^2 y^2 dx dy$$
 (f) $\int_0^{\pi} \int_x^{\pi} \frac{\sin y}{y} dy dx$

8. Expresseu , en cada cas , $\int_D f \, dx dy$ com integral iterada i calculeu-la

(a)
$$f(x,y) = \frac{y}{x^2 + y^2}$$
 i D és el triangle limitat per les rectes $y = x, y = 2x, x = 2$.

(b) f(x,y)=x i D és el sector circular del primer quadrant limitat per la circumferència $y=\sqrt{25-x^2}$ i les rectes $y=0,\,3x-4y=0$

(c)
$$f(x,y) = xe^y$$
 i D és el triangle limitat per les rectes $y = 4 - x$, $y = 0$, $x = 0$.

- (d) $f(x,y) = \frac{x}{y}$ i D és la regió limitada per les rectes $y=x, \ y=2x, \ x=1, \ x=2.$
- 9. Calculeu el volum del sòlid R en cada cas
 - (a) la base de R és la regió del pla XY limitada per la paràbola $y=4-x^2$ i la recta y=3x i la seva cara superior està limitada pel pla z=x+4.
 - (b) R és la part del sòlid dintre de la superfície $z=x^2+y^2$ entre els plans z=0 i z=10.
 - (c) R és el sòlid del primer octant limitat per la superfície $z=4-x^2-y$
 - (d) la base de R és la regió del pla XY limitada per les rectes $y=x,\,y=1$ i R està limitat superiorment per la superfície z=1-xy.
 - (e) R és la regió del primer octant limitada superiorment per la superfície $z=1-y^2$ i compresa entre els plans verticals x+y=1 i x+y=3.
 - (f) R és la regió limitada inferiorment per $z=x^2+y^2$ i superiorment per l'esfera $x^2+y^2+z^2=6$.
- 10. Calculeu la integral triple $\int_R f(x,y,z) \, dx dy dz$ en cada cas

- (a) $f(x, y, z) = x^2 \cos z$, R és el sòlid limitat pels plans z = 0, $z = \pi$, y = 0, y = 1, x = 0, x + y = 1.
- (b) f(x, y, z) = xyz, $R = \{(x, y, z) : 0 \le x \le 1, 0 \le y \le x, 0 \le z \le 3\}$
- (c) $f(x, y, z) = x^2y^2$, R és el sòlid limitat superiorment per la superfície $y^2 + z = 4$, inferiorment pel pla y + z = 2 i lateralment pels plans x = 0, x = 2.
- 11. Les expressions següents representen el volum de tres sòlids. Dibuixeu-los, canvieu l'ordre d'integració i calculeu els seus volums.

(a)
$$\int_{-1}^{1} \int_{0}^{1-x^2} \int_{-\sqrt{1-x^2-z}}^{\sqrt{1-x^2-z}} dy dz dx$$

(b)
$$\int_{0}^{2} \int_{2\pi}^{4} \int_{0}^{\sqrt{y^{2}-4x^{2}}} dz dy dx$$

(c)
$$\int_0^6 \int_{z/2}^3 \int_{z/2}^y dx dy dz + \int_0^6 \int_3^{(12-z)/2} \int_{z/2}^{6-y} dx dy dz$$

- 12. Es considera el polinomi $P = ax^2 + bx + c$, on $a, b, c \in [0, 1]$. És més probable que P tingui les dues arrels reals o complexes? Quina és la probabilitat que tingui una arrel real doble?
- 13. Calculeu la integral triple $\int_R f(x,y,z) dxdydz$ en cada cas

(a)
$$f(x, y, z) = x^2$$
, $R = \{(x, y, z) : x \ge 0, x^2 + y^2 + (z - 1)^2 \le 1 \ 4z^2 \ge 3(x^2 + y^2)\}$

(b)
$$f(x,y,z) = zy\sqrt{x^2 + y^2}$$
, $R = \{(x,y,z) : 0 \le z \le x^2, 0 \le y \le \sqrt{2x - x^2}\}$

(c)
$$f(x,y,z) = z$$
, $R = \{(x,y,z): x^2 + y^2 + z^2 \le 2, x^2 + y^2 \le z\}$

14. Calculeu la integral triple $\int_R f(x, y, z) dx dy dz$ en cada cas

(a)
$$f(x, y, z) = z^2$$
, $R = \{(x, y, z) : x^2 + y^2 + z^2 \le R^2, x^2 + y^2 + z^2 \le 2Rz\}$

(b)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
, $R = \{(x, y, z) : \sqrt{x^2 + y^2} \le z \le 3\}$

(c)
$$f(x, y, z) = z$$
, $R = \{(x, y, z) : 2z^2 \le x^2 + y^2 \le z^2 + 1, z \ge 0\}$

15. Sigui $V_n(r)$ el volum de la bola n-dimensional de radi r. Demostreu que:

(a)
$$V_n(r) = r^n V_n(1)$$

(b)
$$V_n(1) = 2V_{n-1}(1)\alpha_n \text{ on } \alpha_n = \int_0^{\pi/2} \cos^n \theta d\theta$$

(c) $V_n(1) = \frac{2\pi}{n} V_{n-2}(1)$.

Deduïu un valor per $V_n(r)$

- 16. Calculeu el volum dels següents cossos de \mathbb{R}^3 .
 - (a) $\{(x, y, z): 0 \le z \le x^2 + y^2, x + y \le 1, 0 \le x, 0 \le y\}$
 - (b) $\{(x, y, z): 0 \le z \le \sqrt{x^2 + y^2}, x^2 + y^2 \le 2y\}$
 - (c) $\{(x, y, z): 0 \le z \le 4 y^2, 0 \le x \le 6\}$
 - (d) $\{(x, y, z) : \sqrt{x} + \sqrt{y} \le 1, \ 0 \le z \le \sqrt{xy}\}$
 - (e) $\{(x, y, z): \sqrt{x} \le y \le 2\sqrt{x}, \ 0 \le z \le 9 x\}$

3 Integrals amb coordenades no cartesianes

- 17. Calculeu l'àrea d'un pètal de la corba $r = \cos(3\theta)$, fent un canvi de variable a coordenades polars.
- 18. Calculeu l'àrea limitada per la cardioide $r=1+\cos\theta$ en el pla.
- 19. Calculeu el volum del cos que genera la cardioide quan gira entorn de l'eix x.
- 20. Feu servir coordenades convenients per a calcular el volum dels sòlids següents:
 - (a) l'interior de l'hemisferi $z = \sqrt{16 x^2 y^2}$ i el cilindre $x^2 + y^2 4x = 0$.
 - (b) el sòlid limitat per les equacions $z = x^2 + y^2 + 3$, z = 0 i $x^2 + y^2 = 1$.
 - (c) l'interior de l'hemisferi $z = \sqrt{16 x^2 y^2}$ i exterior al cilindre $x^2 + y^2 = 1$.
- 21. (a) Calculeu $\int_{D_R} e^{-(x^2+y^2)} dxdy$ on D_R és el cercle centrat a l'origen de radi R.
 - (b) Si C_R és el quadrat $[-R, R] \times [-R, R]$, deduïu de (a) el valor de $\lim_{R \to \infty} \int_{C_R} e^{-(x^2+y^2)} dx dy$.
 - (c) Apliqueu Fubini a l'apartat anterior per calcular $\int_{-\infty}^{\infty} e^{-x^2}\,dx$
- 22. Sigui R la regió del primer quadrant limitada per les corbes $xy=1,\ xy=9,\ y=x,\ y=4x.$ Calculeu l'àrea de R fent servir el canvi de variables $u=\sqrt{xy},\ v=\sqrt{\frac{y}{x}}.$
- 23. Calculeu , en cada cas, el volum de R fent servir coordenades cilíndriques o esfèriques si resulta convenient

- (a) R és el sòlid interior a l'esfera $x^2+y^2+z^2=16$ i al cilindre $(x-2)^2+y^2=4$.
- (b) R és el sòlid interior a $x^2 + y^2 + z^2 = 16$ i exterior a $z = \sqrt{x^2 + y^2}$.
- (c) R és la regió del primer octant interior als cilindres $x^2 + y^2 = a^2$ i $x^2 + z^2 = a^2$.
- (d) R és la regió limitada pel pla z=2 i l'esfera $x^2+y^2+z^2=8$.
- (e) R és la regió interior al cilindre $x^2 + y^2 = 1$, i limitada per les superfícies $z = x^2 + y^2$ i $z = x^2 + y^2 + 1$.
- 24. Si un recipient semiesfèric de 5 cm. de radi conté aigua fins a 3cm. de la part superior, calculeu el volum d'aigua dintre del recipient.
- 25. Calculeu la massa el centre de massa dels següents sòlids amb densitat constant:
 - (a) el primer octant de la bola $x^2 + y^2 + z^2 \le R^2$
 - (b) $\{(x, y, z): x^2 + y^2 \le 1, 0 \le z \le 2y\}$
 - (c) $\{(x, y, z): x^2 + y^2 + z^2 \le R^2, x^2 + y^2 + z^2 \le 2Rz, \}$
- 26. Calculeu la massa del sòlid indicat:
 - (a) la part interior de l'el.lipsoide $4x^2 + 4y^2 + z^2 = 16$ amb $z \ge 0$ si la densitat és proporcional a la distància al pla XY.
 - (b) un con circular recte de base R i alçada h si la densitat és proporcional a la distància al vèrtex.
- 27. D'acord amb la llei de Newton, el potencial gravitatori que una partícula de massa m_1 situada al punt (x_1, y_1, z_1) exerceix sobre una altra de massa m_0 situada al punt (x_0, y_0, z_0) és

$$V = \frac{Gm_0m_1}{\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}}$$

on G és la constant de gravitació universal. Si l'objecte atractor és un sòlid S amb densitat de massa uniforme podem pensar-lo com format per masses puntuals infinitesimals.

- (a) Escriure el potencial gravitatori que exerceix un sòlid S sobre un punt fora del sòlid com una integral triple.
- (b) En els "Principia", Newton va demostrar que el camp gravitatori d'un planeta esfèric a l'exterior del planeta és el mateix que si tota la massa del planeta estigués concentrada al centre del planeta. Demostreu-ho fent servir coordenades esfèriques. (Sug: suposeu que el centre del planeta és l'origen i el punt exterior es troba a l'eix Z.)

- 28. (Una demostració de la fórmula d'Euler $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$)
 - (a) Desenvolupeu $\frac{1}{1-x^2y^2}$ en sèrie de potències de xy i justifiqueu la identitat

$$I = \int_0^1 \int_0^1 \frac{1}{1 - x^2 y^2} dx dy = \sum_{n=0}^\infty \frac{1}{(2n+1)^2}$$

- (b) Comproveu que el canvi de variables $x=\frac{\sin u}{\cos v}, \ y=\frac{\sin v}{\cos u}$ transforma el triangle limitat per les rectes $u=0,\ v=0,\ u+v=\pi/2$ en el quadrat $[0,1]\times[0,1].$
- (c) Demostreu que $I = \frac{\pi^2}{8}$
- (d) Deduïu la fórmula d'Euler.

4 Integrals sobre superficies

- 29. Calculeu l'àrea de les superfícies S següents:
 - (a) S és la part del paraboloide $z = x^2 + y^2$ interior al cilindre $x^2 + y^2 = 1$
 - (b) S és la part central de l'esfera de radi 2 compresa entre els plans z=-1 i z=1.
 - (c) S és la part del paraboloide hiperbòlic z = xy interior al cilindre $x^2 + y^2 = a^2$.
- 30. Calculeu la massa d'una superfície material amb forma de semiesfera $x^2 + y^2 + z^2 = a^2$, amb $z \ge 0$, si la densitat superficial és directament proporcional a la distància al pla XY.
- 31. Sigui S la superfície de l'esfera $x^2+y^2+z^2=1$ interior al con $z=\sqrt{3x^2+3y^2}$. Calculeu l'àrea de S.
- 32. Sigui S la superfície de l'el·lipsoide $ax^2+by^2+cz^2=1$ amb a,b,c>0. Calculeu

$$\int_{S} \frac{1}{\sqrt{a^2 x^2 + b^2 y^2 + c^2 z^2}} \, dS$$

- 33. Considerem la superfície $S=\{(x,y,z)\in {\bf R}^3\colon z=1-x^2-y^2, z\geq 0\}$. Calculeu l'área de S.
- 34. Calculeu l'àrea de les superficies indicades dins la bola de centre 0 i radi R.

• De l'hiperboloide d'una fulla

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

• De l'hiperboloide de dos fulls

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = \frac{z^2}{c^2}.$$

• Del con

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2.$$

• Del cilindre eliptic

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

• Del cilindre hiperbòlic

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

• Del paraboloide elíptic

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z.$$

• Del paraboloide hiperbòlic

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z.$$

5 Anàlisi Vectorial

35. Calculeu $\int_C \overrightarrow{F} \cdot d\overrightarrow{s}$ pels següents F i C:

- (a) $\overrightarrow{F}(x,y)=(y^2,-2x)$ i C és el triangle determinat pels punts (0,0), (1,0) i (1,1), recorregut en sentit horari.
- (b) $\overrightarrow{F}(x,y)=(x^2y,x^3y^2)$ i C és la corba tancada formada per trossos de la recta y=4 i la paràbola $y=x^2$, recorreguda en sentit anti-horari.
- (c) $\overrightarrow{F}(x,y)=(y^n,x^n)$, $n=0,1,2,\ldots$, i C és la circunferència centrada a l'origen i amb radi r>0, recorreguda en sentit anti-horari.
- 36. Sigui ${\cal C}$ una corba simple tancada de classe ${\cal C}^1$ que envolta l'origen sense passarhi. Quan val

$$\int_C \frac{(x,y)}{x^2 + y^2} \cdot d\overrightarrow{s} ?$$

37. Considerem el camp

$$\overrightarrow{F}(x,y) = \frac{(x,y)}{x^2 + y^2}, (x,y) \in \mathbf{R}^2 \setminus \{(0,0)\}.$$

- (a) Calculeu $\int_C \overrightarrow{F}(x,y) \cdot \overrightarrow{n} ds$, on C és la circunferència unitat centrada a l'origen.
- (b) Calculeu div $\overrightarrow{F}(x,y)$ per $(x,y) \neq (0,0)$.
- (c) Expliqueu per què (a) i (b) no contradiuen el Teorema de la Divergència.
- 38. Calculeu les següents integrals de línia:
 - (a) $\int_C [x^2e^x+y-\log(1+x^2)]dx+[8x-\sin y]dy$, on C és la circunferència unitat recorreguda en sentit anti-horari.
 - (b) $\int_C (xy+x+y)dx + (xy+x-y)dy$, on C és l'el·lipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ recorreguda en sentit anti-horari.
- 39. Sigui C una corba tancada i simple, de C^1 a trossos, que envolta un domini D, i sigui $\overrightarrow{F}=(P,Q)$ un camp vectorial de C^1 a un obert que conté D. Si $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1$ a D, aleshores,

$$Area(D) = \int_C Pdx + Qdy.$$

Utilitza aquesta fórmula per calcular les àrees dels dominis tancats per les següents corbes:

- (a) El llaç del folium de Descartes $x^3 + y^3 = 3axy$, a > 0.
- (b) La lemniscata de Bernoulli $(x^2+y^2)^2=2a(x^2-y^2), a>0.$
- 40. (a) Dibuixa la corba sobre l'esfera unitat donada per la parametrització

$$x(t) = \sin(\frac{\pi}{2}(1-t))\cos 2\pi t, y(t) = \sin(\frac{\pi}{2}(1-t))\sin 2\pi t, z(t) = \cos(\frac{\pi}{2}(1-t)), 0 \le t \le 1.$$

- (b) Calcula la circulació del camp X=(x,y,z) al llarg de la corba anterior, orientada de (1,0,0) a (0,0,1).
- (c) Comprova el teorema de la divergència per al mateix camp vectorial X=(x,y,z) i el cos C intersecció de les boles $x^2+y^2+z^2\leq 1, x^2+y^2+(z-1)^2\leq 1$

8

41. Calculeu $\int_S \overrightarrow{F} \cdot d\overrightarrow{S}$, on

- (a) $\overrightarrow{F}(x,y,z)=(x^2,xy,yz)$ i S és la part del paraboloide $z=x^2+y^2$ amb $y\geq 0$ i $0\leq z\leq 1$.
- (b) $\overrightarrow{F}(x,y,z) = (x,0,0)$ i S és la part de l'esfera unitat interior al con $z = \sqrt{x^2 + y^2}$.
- 42. Si la temperatura d'un punt a \mathbb{R}^3 ve donada per $T(x,y,z)=3x^2+3z^2$, calculeu el flux de la calor a través de la superfície $x^2+z^2=2,\,0\leq y\leq 2$.
- 43. Considerem el camp de velocitat (mesurada en metres per segon) d'un fluid descrit per $\overrightarrow{F}(x, y, z) = \mathbf{i} + x\mathbf{j} + z\mathbf{k}$. Calculeu quants metres cúbics de fluid per segon travessen la superfície descrita per $x^2 + y^2 + z^2 = 1$, $z \ge 0$.
- 44. Verifiqueu el teorema de la divergència per a $\overrightarrow{F}(x,y,z)=(2x^2y,-y^2,4xz^2)$ a la regió del primer octant limitada per x=2 i $y^2+z^2=9$.
- 45. Si S és la part amb z positiva del paraboloide d'equació $z=9-x^2-y^2$ i γ la intersecció de S amb el pla z=0, verifiqueu el teorema de Stokes per al camp $\overrightarrow{F}(x,y,z)=(3z,4x,2y)$.
- 46. Sigui S la superfície de l'esfera $x^2 + y^2 + z^2 = 1$ interior al con $z = \sqrt{3x^2 + 3y^2}$.
 - (a) Calculeu l'àrea de S.
 - (b) Sigui $\overrightarrow{F}(x,y,z)=(z-y,0,y)$. Calculeu $\int_C F\cdot d\overrightarrow{s}$ on C és la corba intersecció de l'esfera i el con. (i) Directament. (ii) Utilitzant el teorema de Stokes.