関数のグラフ

関数 y = f(x) のグラフとは関係式 b = f(a) を満たす点 (a,b) の集まり(集合)である.

- (1) y = c f(x) のグラフは y = f(x) のグラフを縦方向(y 軸方向)に c 倍したものである.
- (2) y = f(cx) のグラフは y = f(x) のグラフを横方向(x 軸方向)に $\frac{1}{c}$ 倍したものである.

(例) $y = \sin x \, \, \xi \, \, y = 2\sin x \, \, \xi \, \, y = \sin(2x)$

- (3) y = f(x) + q のグラフは y = f(x) のグラフを縦方向(y 軸方向)に (+q) だけ平 行移動したものである.
- (4) y = f(x p) のグラフは y = f(x) のグラフを横方向(x 軸方向)に (+p) だけ平 行移動したものである.

(5) y = -f(x) のグラフは y = f(x) のグラフを x 軸(直線 y = 0)に関して対称変換したものである*1.

(6) y = f(-x) のグラフは y = f(x) のグラフを y 軸(直線 x = 0)に関して対称変換したものである*2.

(7) g(x) が f(x) の逆関数*3のとき,y = g(x) のグラフは y = f(x) のグラフを直線 y = x に関して対称変換したものである.

(例) $y = a^x \ge y = \log_a x$

この授業に関する情報

http://www.math.sie.dendai.ac.jp/hiroyasu/2010/bm.html

^{*} 1 (1) の特別な場合 (c=-1).

 $^{*^{2}(2)}$ の特別な場合 (c=-1).

 $^{^{*3}}b = f(a)$ を満たす (a,b) に対して常に a = g(b) が成り立つとき, g(x) は f(x) の逆関数であるという.