Instructor: Tatsunari Watanabe

TA: Carlos Salinas

Name:	
Ivaliic.	•

MA 26500-215 Quiz 10

July 25, 2016

1. Let *V* and *W* be subspaces of \mathbb{R}^n such that dim $V \leq \dim W$. Show that there exists linear map $L \colon V \to W$ with full rank.

Solution: Since V and W are subspaces of \mathbb{R}^n , V and W have a basis, say, $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and $\{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ where $n = \dim V$, $m = \dim W$ and $m \leq m$. Now, let $L \colon V \to W$ be the map

$$L(\mathbf{v}_i) = \begin{cases} L(\mathbf{w}_i) & \text{if } 1 \le i \le n, \\ 0 & \text{if } n < i \le m. \end{cases}$$

2. Does there exist a linear transformation $L: V \to W$ such that

$$||L(x)|| \le 1$$

for all $x \in V$? How can you change the statement $L \colon V \to W$ so that it changes the outcome of the last theorem.