Analyse et équations

transport non linéaire

aux dérivées partielles

L'équation de

Question 1/5

Solutions de $\partial_t u + a(u) \partial_x u = 0$, $u_{|t=0} = u_0$ avec a et u_0 de classe \mathcal{C}^1 et $u \in \mathcal{C}^1([0, T] \times \mathbb{R})$

Réponse 1/5

Si
$$||u_0||_{L^{\infty}} + ||u_0'||_{L^{\infty}} < +\infty$$
 et T est tel que $1 + T \inf_{y \in \mathbb{R}} (a'(u_0(y)) \cdot u_0'(y)) > 0^{1}$ alors

l'équation admet une unique solutions dans

$$\mathcal{C}^1([0,T]\times\mathbb{R})$$

1.
$$T = \frac{1}{2} \frac{1}{\|u_0'\|_{L^{\infty}} \times \max_{\|y\| \le \|u_0\|_{L^{\infty}}} (|a(y)|)}$$
 convient

Question 2/5

Solutions faibles de
$$\partial_t u + \partial_x f(u) = 0$$
, $u_{|t=0} = u_0$ avec f de classe \mathcal{C}^1 $u_0 \in L^{\infty}(\mathbb{R})$

Réponse 2/5

$$u$$
 et $f(u)$ sont dans $L^1_{loc}(\mathbb{R}_+ \times \mathbb{R})$ et pour tout $\varphi \in \mathcal{C}^1_c(\mathbb{R}_+ \times \mathbb{R})$, $\int_{\mathbb{R}_+ \times \mathbb{R}} u \, \partial_t \varphi + f(u) \, \partial_x \varphi \, dt dx + \int_{\mathbb{R}} u_0 \varphi(0, \cdot) \, dx = 0$ La solution n'est pas nécessairement unique Si de plus $u \in \mathcal{C}(\mathbb{R}_+, L^1_{loc}(\mathbb{R}))$ alors $u_0 = u(0, \cdot)$ presque partout

Question 3/5

Solutions de
$$\dot{X}(t) = a(u(t, X(t))), X(0) = x_0$$

avec a de classe \mathcal{C}^1 et $u \in \mathcal{C}^1([0, T[\times \mathbb{R})$

Réponse 3/5

$$X$$
 admet une unique solution $X(t) = x_0 + a(u(x_0)) \times t$ (droite caractéristique de $\partial_t u + a(u) \partial_x u = 0$), et $u(t, X(t)) = u_0(x_0)$

Question 4/5

Théorème de Kruzkov

Réponse 4/5

Soit
$$f \in \mathcal{C}^1(\mathbb{R})$$
 et $u_0 \in L^{\infty}(\mathbb{R})$, il existe une unique solution entropique à $\partial_t u + \partial_x f(u) = 0$, $u_{|t=0} = u_0$ dans la classe $L^{\infty}(\mathbb{R}_+ \times \mathbb{R}) \cap \mathcal{C}(\mathbb{R}_+ \times \mathbb{R})$

De plus, $\inf(u_0) \leq u \leq \sup(u_0)$ presque

partout dans $\mathbb{R}_+ \times \mathbb{R}$

Question 5/5

Solutions entropiques de $\partial_t u + \partial_x f(u) = 0$, $u_{|t=0} = u_0$ avec f de classe \mathcal{C}^1 $u_0 \in L^{\infty}(\mathbb{R})$

Réponse 5/5

Pour tout $\eta \in \mathcal{C}^2(\mathbb{R}_+ \times \mathbb{R})$ telle que $\eta'' > 0$ et q est telle que $q' = \eta' f'$, $\eta(u)$ et q(u) sont dans $\int_{\mathbb{R}_{+}\times\mathbb{R}} \eta(u) \,\partial_{t}\varphi + q(u) \,\partial_{x}\varphi \,\mathrm{d}t\mathrm{d}x$ $+ \int_{\mathbb{D}} \eta(u_0) \varphi(0,\cdot) \, \mathrm{d}x = 0$