Atlfast parametrisation for FCC fast simulation

# **Bibliography:**

### 12/97:

"Parameterisation of the Inner Detector Performance"

E. J. Buis, R. J. Dankers, S. Haywood and A. Reichold

ATL-INDET-97-195

http://cds.cern.ch/record/686050/files/indet-97-195.pdf

## 09/98:

"Update of Inner Detector Performance Parameterisations"

E. J. Buis, R. J. Dankers, N. Labanca S. Haywood, A. Reichold and F. Tartarelli

ATL-INDET-98-215 http://cds.cern.ch/record/683708/files/indet-98-215.pdf

### 2001:

"A New Hadronic-Track Parameterisation for Fast Simulation of the ATLAS Inner Detector"

B. Epp; V. M. Ghete ans A. Nairz

ATL-PHYS-2001-009

http://cds.cern.ch/record/684235/files/phys-2001-009.pdf

### 2003:

"A Parametrization for Fast Simulation of Muon Tracks in the ATLAS Inner Detector and Muon System"

A. Salzburger; D. Kuhn

CERN-THESIS-2004-051

http://cds.cern.ch/record/813003/files/thesis-2004-051.pdf

How to extract parametrisation

Input event file

stores tracks: 4-momentum vector vertex coordinates particle type



stores tracks: 4-momentum vector vertex coordinates particle type







particle type





























# AtlFast: residuals fit range



# AtlFast: residuals fit range



# AtlFast: residuals fit range



#### AtlFast: residuals fit function $|\eta|, r_T$ binning Calculation of track parameters Calculation of track parameters Input $\tau = (d_0, z_0, \phi_0, \operatorname{ctg}\theta, q/p_T)$ Reconstruction $\tau$ for reconstructed particles event file for true (=original) particles stores tracks: 4-momentum vector vertex coordinates particle type single or double Gaussian? Single Gaussian $c_i = 0 (mean)$ $5 \times \sigma$ ; (standard deviation) $4 \times \text{cov}_{ii}$ $cov_{ii} = \rho_{ii}\sigma_i\sigma_i$ Filling histograms with residuals Fitting $\Delta \tau_i = \tau_i^{true} - \tau_i^{rec}$ histograms Double Gaussian ('core' and 'tail') (for each $\tau_i$ and $p_T$ , $|\eta|$ , $r_T$ bin) $5 \times (\sigma_1, \sigma_2, c_1, c_2, P)_i$ $2 \times cov_{ii}$ P - probability that fit function τ; lies inside 'core' fit range $r_f$ $f(p_T)$ Creating ASCII output:

coefficients of function  $f(p_T)$ saved for each  $\tau_i$ 

and  $|\eta|$ ,  $r_T$  bin

Fitting

#### AtlFast: residuals fit function $|\eta|, r_T$ binning Calculation of track parameters Calculation of track parameters Input $\tau = (d_0, z_0, \phi_0, \operatorname{ctg}\theta, q/p_T)$ Reconstruction $\tau$ for reconstructed particles event file for true (=original) particles stores tracks: 4-momentum vector vertex coordinates single Gaussian where energy loss and large particle type single or double Gaussian? angle scattering can be omitted: muons Single Gaussian $c_i = 0 (mean)$ $5 \times \sigma$ ; (standard deviation) $4 \times \text{cov}_{ii}$ $cov_{ii} = \rho_{ii}\sigma_i\sigma_i$ Filling histograms with residuals Fitting $\Delta \tau_i = \tau_i^{true} - \tau_i^{rec}$ histograms Double Gaussian ('core' and 'tail') (for each $\tau_i$ and $p_T$ , $|\eta|$ , $r_T$ bin) $5 \times (\sigma_1, \sigma_2, c_1, c_2, P)_i$ $2 \times cov_{ii}$ P - probability that fit function fit range $r_f$ τ; lies inside 'core' $f(p_T)$ Creating ASCII output: Fitting coefficients of function $f(p_T)$

saved for each  $\tau$ ;

and  $|\eta|$ ,  $r_T$  bin

#### AtlFast: residuals fit function $|\eta|, r_T$ binning Calculation of track parameters Calculation of track parameters Input $\tau = (d_0, z_0, \phi_0, \operatorname{ctg}\theta, q/p_T)$ Reconstruction $\tau$ for reconstructed particles event file for true (=original) particles stores tracks: 4-momentum vector vertex coordinates single Gaussian where energy loss and large particle type single or double Gaussian? angle scattering can be omitted: muons Single Gaussian double Gaussian a more $c_i = 0 (mean)$ complicated scenario: pions, electrons $5 \times \sigma$ ; (standard deviation) $4 \times \text{cov}_{ii}$ $cov_{ii} = \rho_{ii}\sigma_i\sigma_i$ Filling histograms with residuals Fitting $\Delta \tau_i = \tau_i^{true} - \tau_i^{rec}$ histograms Double Gaussian ('core' and 'tail') (for each $\tau_i$ and $p_T$ , $|\eta|$ , $r_T$ bin) $5 \times (\sigma_1, \sigma_2, c_1, c_2, P)_i$ $2 \times cov_{ii}$ P - probability that fit function fit range $r_f$ τ; lies inside 'core' $f(p_T)$ Creating ASCII output: Fitting coefficients of function $f(p_T)$

saved for each  $\tau$ ;

and  $|\eta|$ ,  $r_T$  bin

# AtlFast: residuals fit function



## AtlFast: residuals fit function



# AtlFast: non-zero correlations



# AtlFast: $p_T$ dependence fit function









Creating ASCII output:

coefficients of function  $f(p_T)$ saved for each  $\tau_i$ 

and  $|\eta|$ ,  $r_T$  bin

Fitting

















# example of ASCII output

Example data file (based on Atlfast/AtlfastAlgs/AtlfastAlgs-00-05-09/atlfastDatafiles/Atlfast\_MuonResParam\_CSC.dat)





Fitting residuals :  $\Delta d_0$ ,  $\Delta z_0$ ,  $\Delta \phi_0$ ,  $\Delta \cot \theta$ ,  $\Delta q/p_T$  ( $\Delta \tau$ )

### Single Gaussian



CERN-THESIS-2004-051 Fig. 6.3.



Smearing algorithm - Atlfast implementation

stores tracks: 4-momentum vector vertex coordinates particle type

Input event file





Input data file

 $\overline{\eta_{\min},\,N_{\eta}\,,\atop C_{0,\,d_{0}},\,\ldots,}$ 

 $c_{0,\rho(d_0,\phi_0)}$ ....













































#### **Tools:**

- ▶ plots of residuals:  $d_0^{true} d_0^{rec}$ ,  $z_0^{true} z_0^{rec}$ ,  $\phi_0^{true} \phi_0^{rec}$ ,  $ctg\theta^{true} ctg\theta^{rec}$  and  $q/\rho_T^{true} q/\rho_T^{rec}$ ;
- **•** plots of correlations:  $\rho_{d_0,z_0}^{rec}(\rho_{d_0,z_0}^{tru})$ , etc.;
- $\blacktriangleright$   $\chi^2$  test:

$$\chi_{\tau_i}^2 = \sum_{bins} \frac{\Delta \tau_i^{fast} - \Delta \tau_i^{full}}{\tau_i^{full}}$$

#### Parametrisation tests:

- 1. Binning in  $|\eta|$ ,  $p_T$  and  $r_T$ ;
- 2. Fit ranges on residuals' plots;
- 3. Fit formula to residuals' plots: single/double Gaussian;
- 4. Decide which correlations are significant;
- 5. Fit formula to describe  $p_T$  dependence;
- 6. Linear interpolation or functional  $|\eta|$  dependence;

#### Validation:

- Cross-check against the full simulation (and fast with reconstruction) using the same event sample as for parameters' extraction;
- 2. Cross-check against the full simulation (and fast with reconstruction) using different event sample (H $\to$ ZZ\* $\to$  4 $\mu$  ?);



Residual of track parameters:  $\Delta d_0$ ,  $\Delta z_0$ ,  $\Delta \phi_0$ ,  $\Delta \cot\theta$ ,  $\Delta q/p_T$  ( $\mu^{\pm}$   $p_T=25$  GeV)



## Gaussian standard deviation $\sigma(p_T)$



### Gaussian standard deviation $\sigma(p_T)$

