Analytic Pricing of Options on Compounded Rates

Conference Paper · March 2020		
CITATION		READS
1		1,368
1 author:		
	Colin Turfus	
	Quantitative Finance	
	73 PUBLICATIONS 361 CITATIONS	
	SEE PROFILE	

Analytic Pricing of Options on Compounded Rates

Colin Turfus

Quantitative Analyst, Model Risk Management, Deutsche Bank, London

March, 2020

Overview of the presentation

- 1 Hull-White pricing kernel
- 2 Hull-White kernel extension for compounded rates
- 3 Hull-White caplet pricing for compounded rates
- 4 Extension to Black-Karasinski model
- 6 Conclusions

Definition of Hull-White model

Under the Hull-White model the short rate r_t can be expressed as

$$r_t = \overline{r}(t) + r^*(t) + x_t$$

=: $r(x_t, t)$, (1)

where the auxiliary variable x_t satisfies the following canonical Ornstein–Uhlenbeck process:

$$dx_t = -\alpha_r(t)x_tdt + \sigma_r(t)dW_t$$
 (2)

and $r^*(t)$ is a convexity adjustment function to be determined by calibration to fit the instantaneous forward curve given by $\overline{r}(t)$.

C. Turfus

H-W pricing kernel

0000

Let the time-t price of a derivative paying $P(x_T)$ at time T>t be denoted

$$f(x_t, t) = E\left[\left.e^{-\int_t^T r_u du}P(x_T)\right|\mathcal{F}_t\right] \tag{3}$$

From the Feynman-Kac theorem, f(x, t) emerges as the solution to the following Kolmogorov backward diffusion equation:

$$\frac{\partial f}{\partial t} - \alpha_r(t)x\frac{\partial f}{\partial x} + \frac{1}{2}\sigma_r^2(t)\frac{\partial^2 f}{\partial x^2} - r(x,t)f = 0,$$
 (4)

for $t \ge 0$, with f(x, T) = P(x).

Notation for Hull-White pricing

We can write the zero coupon bond price under this model

$$F^{T}(x,t) = D(t,T)e^{-\mu^{*}(x,t,T)}$$
 (5)

where we define

$$D(t_1, t_2) := e^{-\int_{t_1}^{t_2} \overline{r}(t)dt}$$
 (6)

$$\phi_r(t,T) = e^{-\int_t^T \alpha_r(u)du},\tag{7}$$

$$B^*(t,T) = \int_t^T \phi_r(t,u)du,$$
 (8)

$$\Sigma_r(t,T) = \int_t^T \phi_r^2(u,T)\sigma_r^2(u)du, \tag{9}$$

$$I^*(t,T) = \int_t^T \phi_r(u,T) \Sigma_r(t,u) du, \qquad (10)$$

$$\mu^*(x,t,T) = B^*(t,T)(x+r^*(t)) + \frac{1}{2}B^{*2}(t,T)\Sigma_r(0,t)$$
 (11)

ill-vvnite pricing kernel

From [Turfus (2019)], the Hull-White pricing kernel can be written:

$$G(x, t; \xi, T) = F^{T}(x, t)N(\xi + I^{*}(t, T) - x\phi_{r}(t, T); \Sigma_{r}(t, T)),$$
(12)

where

H-W pricing kernel

$$N(x; \Sigma) := \frac{e^{-\frac{x^2}{2\Sigma}}}{\sqrt{2\pi\Sigma}}.$$

Derivative prices are obtained from

$$f(x,t) = \int_{\mathbb{R}} P(\xi)G(x,t;\xi,T)d\xi,$$

with PV resulting from setting x = t = 0.

- 1 Hull-White pricing kernel
- 2 Hull-White kernel extension for compounded rates
- 3 Hull-White caplet pricing for compounded rates
- 4 Extension to Black-Karasinski model
- **6** Conclusions

The payoff at T_2 for compounded interest over $[T_1, T_2]$ can conveniently be modelled as

$$P = e^{\int_{T_1}^{T_2} r(x_t, t) dt} - 1.$$

Problem: P is now path-dependent. So we introduce a new integrated variable z_t defined by

$$z_t = \int_0^t (r^*(s) + x_s) \, ds, \tag{13}$$

in terms of which we can write the payoff at T_2 as

$$P(z_{T_1}, z_{T_2}) = D(T_1, T_2)^{-1} e^{z_{T_2} - z_{T_1}} - 1.$$
 (14)

We are thus led to consider derivative contracts whose payoff at time T has the general form $P(x_T, z_T)$.

The relevant pricing equation for derivative prices f(x, z, t) is in this case:

$$\frac{\partial f}{\partial t} - \alpha_r(t)x\frac{\partial f}{\partial x} + (r^*(t) + x)\frac{\partial f}{\partial z} + \frac{1}{2}\sigma_r^2(t)\frac{\partial^2 f}{\partial x^2} - r(x, t)f = 0, (15)$$

for $t \ge 0$, with f(x, z, T) = P(x, z).

The two-factor pricing kernel for this problem is implicitly addressed through the derivation by [Turfus (2018b)] of a rates-equity kernel (setting the equity volatility to zero).

This result was originally derived by [Van Steenkiste and Foresi(1999)].

C. Turfus

Hull-White pricing kernel for RFR

We infer the Hull-White pricing kernel for compounded backward-looking rates can be written:

$$G(x, z, t; \xi, \zeta, T) = F^{T}(x, t)N_{2}(\xi + I^{*}(t, T) - x\phi_{r}(t, T),$$

$$\zeta + \frac{1}{2}K^{*}(t, T) - \mu^{*}(x, t, T) - z; \Sigma^{+}(t, T)), (16)$$

with $N_2(\cdot,\cdot;\Sigma)$ a bivariate Gaussian with covariance Σ and

$$K^*(t,T) = 2 \int_t^T I^*(t,u) du,$$
 (17)

$$\Sigma^{+}(t,T) = \begin{pmatrix} \Sigma_{r}(t,T) & I^{*}(t,T) \\ I^{*}(t,T) & K^{*}(t,T) \end{pmatrix}.$$
 (18)

In this case, derivatives prices are obtained from

$$f(x,z,t) = \iint_{\mathbb{D}^2} P(\xi,\zeta)G(x,z,t;\xi,\zeta,T)d\xi d\zeta.$$

C. Turfus

- Hull-White pricing kernel
- 2 Hull-White kernel extension for compounded rates
- 3 Hull-White caplet pricing for compounded rates
- 4 Extension to Black-Karasinski model
- **6** Conclusions

The caplet payoff at time T_2 with strike K for rates compounded over $[T_1, T_2]$ can be written

$$P_{\text{caplet}}(z_1, z_2) = \left[D(T_1, T_2)^{-1} e^{z_{T_2} - z_{T_1}} - \kappa^{-1} \right]^+, \quad (19)$$

where we define $\kappa = (1 + K\delta(T_1, T_2))^{-1}$. Applying (16), we can price $P_{\text{caplet}}(\cdot)$ as of time T_1 :

$$f(x, z, T_1) = \iint_{\mathbb{R}^2} P_{\mathsf{caplet}}(z, \zeta) G(x, z, T_1; \xi, \zeta, T_2) d\xi d\zeta$$
$$= \Phi\left(-\hat{d}_2(x)\right) - \kappa^{-1} F^{T_2}(x, T_1) \Phi\left(-\hat{d}_1(x)\right),$$

with $\Phi(\cdot)$ a Gaussian cumulative distribution function. [Note how the z-dependence drops out.]

C. Turfus

Caplet payoff for compounded rates - II

Here

H-W pricing kernel

$$\hat{d}_2(x) := \frac{\Delta z^* - \mu^*(x, T_1, T_2) - \frac{1}{2}K^*(T_1, T_2)}{\sqrt{K^*(T_1, T_2)}},$$
 (20)

$$\hat{d}_1(x) := \hat{d}_2(x, t) + \sqrt{K^*(T_1, T_2)}. \tag{21}$$

with Δz^* the critical value of $z_{T_2} - z_{T_1}$, namely

$$\Delta z^* := \ln \left(\kappa^{-1} D(T_1, T_2) \right). \tag{22}$$

Caplet price for compounded rates

Taking the T_1 -price as a payoff at time T_1 , we can price this as of t=0 by applying $G(0,0,0;\xi,\zeta,T_1)$, to obtain

$$PV_{\text{caplet}} = D(0, T_1)\Phi(-d_2) - \kappa^{-1}D(0, T_2)\Phi(-d_1), \qquad (23)$$

where

H-W pricing kernel

$$d_2 = \frac{\Delta z^* - \frac{1}{2} \left(B^{*2}(T_1, T_2) \Sigma_r(0, T_1) + K^*(T_1, T_2) \right)}{\sqrt{B^{*2}(T_1, T_2) \Sigma_r(0, T_1) + K^*(T_1, T_2)}}, \qquad (24)$$

$$d_1 = d_2 + \sqrt{B^{*2}(T_1, T_2)\Sigma_r(0, T_1) + K^*(T_1, T_2)}.$$
 (25)

We see that setting the convexity adjustment $K^*(T_1, T_2) \equiv 0$ recovers the well-known Hull-White caplet formula.

C. Turfus

Adjustment for daily compounding

If instead the compounding is daily with fixing on dates $t_0, t_1, \ldots, t_{n-1}$, following [Henrard(2007)], we must replace

$$K^*(T_1, T_2) \longrightarrow \sum_{i=0}^{n-1} (B^{*2}(t_i, t_n) - B^{*2}(t_i, t_{n-1})) \Sigma_r(t_{i-1}, t_i),$$

which is effectively a quadrature formula for, so very close in value to, the continuously compounded value.

C. Turfus

If instead of compounding the daily rates an average is used, we obtain a Bachelier formula:

$$PV_{\text{caplet}} = D(0, T_2) \sqrt{B^{*2}(T_1, T_2) \Sigma_r(t, T_1) + K^*(T_1, T_2)}$$

$$(N(-d_0) - d_0 \Phi(-d_0)), (26)$$

where

H-W pricing kernel

$$d_0 := \frac{\Delta z_B^* - K^*(T_1, T_2)}{\sqrt{B^{*2}(T_1, T_2)\Sigma_r(0, T_1) + K^*(T_1, T_2)}}$$

and the critical value of $z_{T_2} - z_{T_1}$ is now redefined to be

$$\Delta z_B^* = K\delta(T_1, T_2) - \int_{T_1}^{T_2} \overline{r}(t_1) dt_1.$$
 (27)

C. Turfus

- 1 Hull-White pricing kernel
- 2 Hull-White kernel extension for compounded rates
- 3 Hull-White caplet pricing for compounded rates
- 4 Extension to Black-Karasinski model
- Conclusions

Definition of Black-Karasinski model

Under the Black-Karasinski model the short rate r_t can be expressed as

$$r_t = \tilde{r}(t)e^{x_t - \frac{1}{2}\Sigma_r(0,t)}$$

=: $r(x_t, t)$, (28)

where the auxiliary variable x_t satisfies the Ornstein–Uhlenbeck process (2) and $\tilde{r}(t)$ is to be determined by calibration to fit the instantaneous forward curve given by $\bar{r}(t)$.

The pricing equation is given by (4) as for the Hull-White case, subject to the redefinition of r(x, t).

We offer a sketch proof of the B-K caplet price derivation. For more details, see [Turfus (2020)].

C. Turfus

We follow [Turfus (2018a)] and [Turfus (2020)] in defining $\epsilon = \|\tilde{r}(\cdot)\|$ for some suitable norm and writing the corresponding pricing kernel in the limit as $\epsilon \to 0$ as

$$G(x,z,t;\xi,\zeta,T) = D(t,T)e^{-F_1(x,t,T)(1-\partial_z)}G_0(x,z,t;\xi,\zeta,T) + D(t,T)\sum_{n=1}^{\infty} (-1)^n (1-\partial_z)^n G_n(x,z,t;\xi,\zeta,T),$$
(29)

with $G_n(\cdot) = \mathcal{O}(\epsilon^n)$,

$$G_0(x,z,t;\xi,\zeta,T) := \frac{1}{\sqrt{\Sigma_r(t,T)}} N\left(\frac{\xi - \phi_r(t,T)x}{\sqrt{\Sigma_r(t,T)}}\right) \delta(\zeta - z)$$

$$F_1(x,T_1,T_2) := \int_{T_1}^{T_2} (R(x,T_1,t_1) - \overline{r}(t_1)) dt_1,$$

and $R(x, t_1, t_2) = \mathcal{O}(\epsilon)$ defined as in [Turfus (2018a)].

C. Turfus

Black-Karasinski caplet payoff

As in the Hull-White case we have

$$V_{\text{caplet}}(x, T_1) = \int_{z+\Delta z^*}^{\infty} \int_{\infty}^{\infty} P_{\text{caplet}}(z, \zeta)$$
$$G(x, z, T_1; \xi, \zeta, T_2) d\xi d\zeta. \tag{30}$$

Problem: the leading order *z*-dependence is singular (a step function)!

Work-around: noting that

$$e^{a\frac{\partial}{\partial x}}f(x)=f(x+a),$$

we can write

$$\begin{split} e^{-F_1(x,T_1,T_2)(1-\partial_z)}G_0(x,z,T_1;\xi,\zeta,T_2) = \\ e^{-F_1(x,T_1,T_2)}G_0(x,z+F_1(x,T_1,T_2),T_1;\xi,\zeta,T_2). \end{split}$$

H-W pricing kernel

To obtain $V_{\text{caplet}}(x, T_1)$, a similar shift is needed in the *variance* of z by

$$F_2(x, T_1, T_2) := \int_{T_1}^{T_2} R(x, T_1, t_2) \int_{T_1}^{t_2} R(x, T_1, t_1) \left(e^{\phi_r(t_1, t_2) \sum_r (T_1, t_1)} - 1 \right) dt_1 dt_2$$

This can be incorporated into a composite second-order accurate expansion for the marginal

$$\int_{\mathbb{R}} G(x,z,T_1;\xi,\zeta,T_2)d\xi.$$

Problem: this adjustment is not deterministic, but depends on the state variable x!

C. Turfus

21/26

Small volatility approximation

For tractability, approximate $F_2(x, T_1, T_2) \approx 2K_{B-K}^*(T_1, T_2)$ with

$$K_{\mathsf{B-K}}^*(T_1, T_2) := 2 \int_{T_1}^{T_2} \overline{r}(t_2) \int_{T_1}^{t_2} \overline{r}(t_1) \left(e^{\phi_r(t_1, t_2) \Sigma_r(T_1, t_1)} - 1 \right) \\
e^{\Delta x^*(T_1, t_1, t_2)} dt_1 dt_2, \quad (31)$$

with

H-W pricing kernel

$$\Delta x^*(T_1, t_1, t_2) := \phi_r(T_1, t_1)\phi_r(T_1, t_2)\Sigma_r(0, T_1). \tag{32}$$

and adjust by expanding the result in a Taylor series w.r.t. $F_2(x, T_1, T_2) - \frac{1}{2} K_{B-K}^*(T_1, T_2)$.

H-W pricing kernel

In this way the caplet price can be obtained as

$$PV_{\mathsf{caplet}} = PV_{\mathsf{caplet}}^{(0)} + \Delta PV_{\mathsf{caplet}}, \tag{33}$$

where $PV_{\text{caplet}}^{(0)}$ is essentially the LIBOR caplet price (see [Turfus (2020)]) with the substitution

$$\Sigma_r(0, T_1) \to \Sigma_r(0, T_1) + K_{B-K}^*(T_1, T_2),$$

and

 $\Delta PV_{\mathsf{caplet}} \sim$

$$\begin{split} &\frac{2D(0,T_1)}{K_{\text{B-K}}^*(T_1,T_2)} \int_{T_1}^{T_2} \overline{r}(t_2) \int_{T_1}^{t_2} \overline{r}(t_1) \left(e^{\phi_r(t_1,t_2)\Sigma_r(T_1,t_1)} - 1 \right) e^{\Delta x^*(T_1,t_1,t_2)} \\ & \qquad \qquad \left(N(-d_2(x^* - \Delta x^*(T_1,t_1,t_2),0,T_1)) - N(-d_2(x^*,0,T_1)) \right) dt_1 dt_2 \end{split}$$

with errors = $\mathcal{O}(\Sigma_r^2(T_1, T_2))$.

Conclusions

H-W pricing kernel

- 1. Backward-looking rates impact on caplet pricing through a small positive adjustment to the effective term variance: $K^*(T_1, T_2)$ in the case of Hull-White and $K^*_{B-K}(T_1, T_2)$ for Black-Karasinski.
- 2. The main difference between the two models is in the appearance of the Black-Karasinski adjustment term ΔPV_{caplet}. The effect of this is to increase the value of OTM caplets and of ITM floorlets. [Intuitively, why should this be so?]

C. Turfus

Thank you!

References

Henrard, M. (2007) Skewed Libor Market Model and Gaussian HJM explicit approaches to rolled deposit options. The Journal of Risk, **9**(4). Available online at https://ssrn.com/abstract=956849.

Turfus, C. (2018a) 'Exact Arrow-Debreu Pricing for the Black-Karasinski Short Rate Model' Working Paper, https://ssrn.com/abstract=3253839.

Turfus, C. (2018b) 'Closed-Form Arrow-Debreu Pricing for Equity Options with Hull-White Stochastic Rates' Working Paper, https://ssrn.com/abstract=3255212.

Turfus, C. (2019) 'Closed-Form Arrow-Debreu Pricing for the Hull-White Short Rate Model' Quantitative Finance, **19**(12), pp. 2087–2094, available online at https://ssrn.com/abstract=3252805.

Turfus, C. (2020) 'Perturbation Methods in Credit Derivatives: Strategies for efficient risk management' Wiley Finance (in production).

Van Steenkiste, R. J., Foresi, S. (1999) Arrow-Debreu Prices for Affine Models, Working Paper, http://dx.doi.org/10.2139/ssrn.158630.