Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [152]:
          # Dependencies and Setup
          import pandas as pd
          import numpy as np
          # File to Load (Remember to Change These)
          school data to load = "Resources/schools complete.csv"
          student_data_to_load = "Resources/students_complete.csv"
          # Read School and Student Data File and store into Pandas Data Frames
          school_data = pd.read_csv(school_data_to_load)
          student data = pd.read csv(student data to load)
          # Combine the data into a single dataset
          school data complete = pd.merge(student data, school data, how="left", o
          n=["school_name", "school_name"])
          #school data complete.head()
          #student data.head(20)
          #school data complete.head(20)
```

District Summary

- · Calculate the total number of schools
- · Calculate the total number of students
- Calculate the total budget
- Calculate the average math score
- Calculate the average reading score
- Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2
- Calculate the percentage of students with a passing math score (70 or greater)
- Calculate the percentage of students with a passing reading score (70 or greater)
- · Create a dataframe to hold the above results
- Optional: give the displayed data cleaner formatting

```
In [153]: # District Summary
          # Total Schools
          total schools = school data['school name'].count()
          # Total Students
          total students = student data['student name'].count()
          #total students = "{:,}".format(total students)
          # Total Budget
          total_budget = school_data['budget'].sum()
          total budget = "${:,.2f}".format(total budget)
          # Average Math Score
          average_math = student_data['math_score'].sum() / student_data['math_sco
          re'].count()
          # Average Reading Score
          average reading = student data['reading score'].sum() / student data['re
          ading score' | .count()
          # Students with a passing Math
          passing students math = student data.loc[student data['math score'] >= 7
          0, :]['math score'].count()
          percent_math = (passing_students_math / total_students) * 100
          # Students with a passing Reading
          passing students reading = student data.loc[student data['reading score'
          ] >= 70, :]['reading score'].count()
          percent reading = (passing students reading / total students) * 100
          # % Overall Passing Rate
          overall passing = (average math + average reading) / 2
          # Dataframe to hold all the results
          district summary = pd.DataFrame({"Total Schools":total schools, "Total S
          tudents":["{:,}".format(total students)],
                                            "Total Budget":total budget, "Average M
          ath Score":[average math],
                                            "Average Reading Score": average reading
          , "% Passing Math":percent math,
                                            "% Passing Reading":percent reading,"%
           Overall Passing Rate":overall passing})
          # Display the dataframe
          district summary.head()
```

Out[153]:

	Total Schools	Total Students	Total Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
0	15	39.170	\$24,649,428.00	78.985371	81.87784	74.980853	85.805463	80.431606

School Summary

- Create an overview table that summarizes key metrics about each school, including:
 - School Name
 - School Type
 - Total Students
 - Total School Budget
 - Per Student Budget
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - Overall Passing Rate (Average of the above two)
- · Create a dataframe to hold the above results

Top Performing Schools (By Passing Rate)

· Sort and display the top five schools in overall passing rate

```
In [154]: # School Summary
          # Group the complete data by School Name
          grouped_school = school_data_complete.groupby(["school_name"])
          # School Type
          school type = school data.set index("school name")[("type")]
          # Total Students in each school
          total_students_each = school_data_complete.groupby(["school_name"]).coun
          t()["Student ID"]
          # Each School Budget
          total budget_each = school_data.groupby(["school_name"]).sum()["budget"]
          # Per Student Budget
          per student budget = round(total budget each / total students each)
          # Average Math Score
          avg_math_score = school_data_complete.groupby(["school_name"]).mean()["m
          ath_score"]
          # Average Reading Score
          avg reading score = school data complete.groupby(["school name"]).mean()
          ["reading_score"]
          # Percentage Passing Math
          passing_math = school_data_complete[(school_data_complete["math_score"]
          math pass = passing math.groupby(["school name"]).count()["Student ID"]
          / total students each * 100
          # Percentage Passing Reading
          passing_reading = school_data_complete[(school_data_complete["reading_sc")]
          ore"] >= 70)]
          reading pass = passing reading.groupby(["school name"]).count()["Student
          ID"] / total students each * 100
          #Overall Passing Rate (Average of the above two)
          overall_pass = (math_pass + reading_pass) / 2
          # Dataframe to hold all the results
          school summary = pd.DataFrame({"School Type":school type, "Total Student
          s":total students each,
                                          "Per Student Budget":per student budget,
          "Total School Budget":total_budget_each,
                                          "Average Math Score": avg math score, "Aver
          age Reading Score":avg_reading_score,
                                          "% Passing Math": math pass, "% Passing Re
          ading":reading pass,
                                          "% Overall Passing Rate":overall pass})
          # Display the Top 5 Performing schools as per the Overall Score
          best sort = school summary.sort values(by='% Overall Passing Rate', asce
```

nding=False)
best_sort.head(5)

Out[154]:

	School Type	Total Students	Per Student Budget	Total School Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Ov Pas
Cabrera High School	Charter	1858	582.0	1081356	83.061895	83.975780	94.133477	97.039828	95.586
Thomas High School	Charter	1635	638.0	1043130	83.418349	83.848930	93.272171	97.308869	95.290
Pena High School	Charter	962	609.0	585858	83.839917	84.044699	94.594595	95.945946	95.270
Griffin High School	Charter	1468	625.0	917500	83.351499	83.816757	93.392371	97.138965	95.26
Wilson High School	Charter	2283	578.0	1319574	83.274201	83.989488	93.867718	96.539641	95.203

Bottom Performing Schools (By Passing Rate)

• Sort and display the five worst-performing schools

Out[155]:

	School Type	Total Students	Per Student Budget	Total School Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% (Pi
Rodriguez High School	District	3999	637.0	2547363	76.842711	80.744686	66.366592	80.220055	73.2
Figueroa High School	District	2949	639.0	1884411	76.711767	81.158020	65.988471	80.739234	73.3
Huang High School	District	2917	655.0	1910635	76.629414	81.182722	65.683922	81.316421	73.5
Johnson High School	District	4761	650.0	3094650	77.072464	80.966394	66.057551	81.222432	73.6
Ford High School	District	2739	644.0	1763916	77.102592	80.746258	68.309602	79.299014	73.8

Math Scores by Grade

- Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school.
 - Create a pandas series for each grade. Hint: use a conditional statement.
 - Group each series by school
 - Combine the series into a dataframe
 - Optional: give the displayed data cleaner formatting

```
In [156]: # Math scores by Grade
          # Using the loc and group by functions to group schools and grades
          nineth math = school_data_complete.loc[(school_data_complete["grade"] ==
          "9th")].groupby("school_name")["math_score"].mean()
          tenth math = school data complete.loc[(school data complete["grade"] ==
          "10th")].groupby("school_name")["math_score"].mean()
          eleventh math = school data complete.loc[(school data complete["grade"]
          == "11th")].groupby("school name")["math score"].mean()
          twelfth math = school data complete.loc[(school data complete["grade"] =
          = "12th")].groupby("school name")["math score"].mean()
          # Dataframe to hold all the results
          math scores = pd.DataFrame({"9th Grade": nineth_math, "10th Grade": tent
          h math,
                                                "11th Grade": eleventh math, "12th
           Grade": twelfth math})
          # Display Math scores by Grade
          math_scores.head(20)
```

9th Grade 10th Grade 11th Grade 12th Grade

Out[156]:

school_name				
Bailey High School	77.083676	76.996772	77.515588	76.492218
Cabrera High School	83.094697	83.154506	82.765560	83.277487
Figueroa High School	76.403037	76.539974	76.884344	77.151369
Ford High School	77.361345	77.672316	76.918058	76.179963
Griffin High School	82.044010	84.229064	83.842105	83.356164
Hernandez High School	77.438495	77.337408	77.136029	77.186567
Holden High School	83.787402	83.429825	85.000000	82.855422
Huang High School	77.027251	75.908735	76.446602	77.225641
Johnson High School	77.187857	76.691117	77.491653	76.863248
Pena High School	83.625455	83.372000	84.328125	84.121547
Rodriguez High School	76.859966	76.612500	76.395626	77.690748
Shelton High School	83.420755	82.917411	83.383495	83.778976
Thomas High School	83.590022	83.087886	83.498795	83.497041
Wilson High School	83.085578	83.724422	83.195326	83.035794
Wright High School	83.264706	84.010288	83.836782	83.644986

Reading Score by Grade

· Perform the same operations as above for reading scores

```
In [157]: # Reading scores by Grade
          # Using the loc and group by functions to group schools and grades
          nineth reading = school data complete.loc[(school data complete["grade"]
          == "9th")].groupby("school name")["reading_score"].mean()
          tenth reading = school data complete.loc[(school data complete["grade"]
          == "10th")].groupby("school_name")["reading_score"].mean()
          eleventh_reading = school_data_complete.loc[(school_data_complete["grad")]
          e"] == "11th")].groupby("school_name")["reading_score"].mean()
          twelfth reading = school data complete.loc[(school data complete["grade"
          ] == "12th")].groupby("school_name")["reading_score"].mean()
          # Dataframe to hold all the results
          reading_scores = pd.DataFrame({"9th Grade": nineth_reading, "10th Grade"
          : tenth reading,
                                                "11th Grade": eleventh reading, "12
          th Grade": twelfth_reading})
          # Display Reading scores by Grade
          reading scores.head(20)
```

9th Grade 10th Grade 11th Grade 12th Grade

Out[157]:

	Jui Grade	iotii diade	Titil Grade	izui diade
school_name				
Bailey High School	81.303155	80.907183	80.945643	80.912451
Cabrera High School	83.676136	84.253219	83.788382	84.287958
Figueroa High School	81.198598	81.408912	80.640339	81.384863
Ford High School	80.632653	81.262712	80.403642	80.662338
Griffin High School	83.369193	83.706897	84.288089	84.013699
Hernandez High School	80.866860	80.660147	81.396140	80.857143
Holden High School	83.677165	83.324561	83.815534	84.698795
Huang High School	81.290284	81.512386	81.417476	80.305983
Johnson High School	81.260714	80.773431	80.616027	81.227564
Pena High School	83.807273	83.612000	84.335938	84.591160
Rodriguez High School	80.993127	80.629808	80.864811	80.376426
Shelton High School	84.122642	83.441964	84.373786	82.781671
Thomas High School	83.728850	84.254157	83.585542	83.831361
Wilson High School	83.939778	84.021452	83.764608	84.317673
Wright High School	83.833333	83.812757	84.156322	84.073171

Scores by School Spending

- Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following:
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - Overall Passing Rate (Average of the above two)

```
In [158]: # Sample bins. Feel free to create your own bins.
spending_bins = [0, 585, 615, 645, 675]
group_names = ["<$585", "$585-615", "$615-645", "$645-675"]</pre>
```

```
In [159]: # Scores by School Spending
          # Using bins
          school summary["Per Student Budget"] = pd.cut(school summary["Per Studen
          t Budget"], spending bins, labels=group names)
          # Calculate the ask
          scores_spending_math = school_summary.groupby(["Per Student Budget"]).me
          an()["Average Math Score"]
          scores_spending_reading = school_summary.groupby(["Per Student Budget"])
          .mean()["Average Reading Score"]
          scores spending passing math = school summary.groupby(["Per Student Budg
          et"]).mean()["% Passing Math"]
          scores_spending_passing_reading = school_summary.groupby(["Per Student B
          udget"]).mean()["% Passing Reading"]
          scores spending_overall_passing_rate = (scores_spending_passing_math + s
          cores spending passing reading) / 2
          # Dataframe to hold all the results
          scores by school spending summary = pd.DataFrame({"Average Math Score":
          scores_spending_math,
                                                         "Average Reading Score": s
          cores_spending_reading,
                                                         "% Passing Math": scores s
          pending passing math,
                                                         "% Passing Reading": score
          s spending passing reading,
                                                         "Overall Passing Rate": sc
          ores spending overall passing rate})
          # Display Scores by School Spending
          scores by school spending summary
```

Out[159]:

		Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
ı	Per Student Budget					
	<\$585	83.455399	83.933814	93.460096	96.610877	95.035486
	\$585-615	83.599686	83.885211	94.230858	95.900287	95.065572
	\$615-645	79.079225	81.891436	75.668212	86.106569	80.887391
	\$645-675	76.997210	81.027843	66.164813	81.133951	73.649382

Scores by School Size

Perform the same operations as above, based on school size.

```
size bins = [0, 1000, 2000, 5000]
          group names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-500
          0)"]
In [161]: # Scores by School Size
          # Using bins
          school summary["School Size"] = pd.cut(school summary["Total Students"],
          size bins, labels=group names)
          # Calculate the ask
          scores_size math = school_summary.groupby(["School Size"]).mean()["Avera
          ge Math Score"]
          scores_size_reading = school_summary.groupby(["School Size"]).mean()["Av
          erage Reading Score"]
          scores_size passing_math = school_summary.groupby(["School Size"]).mean
          ()["% Passing Math"]
          scores size passing reading = school summary.groupby(["School Size"]).me
          an()["% Passing Reading"]
          scores size overall passing rate = (scores size passing math + scores si
          ze passing reading) / 2
```

In [160]: # Sample bins. Feel free to create your own bins.

Dataframe to hold all the results

es size math,

cores size reading,

s size passing reading,

ores size overall passing rate})

scores by school size summary

Display Scores by School Spending

ize passing math,

Out[161]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
School Size					
Small (<1000)	83.821598	83.929843	93.550225	96.099437	94.824831
Medium (1000- 2000)	83.374684	83.864438	93.599695	96.790680	95.195187
Large (2000- 5000)	77.746417	81.344493	69.963361	82.766634	76.364998

scores_by_school_size_summary = pd.DataFrame({"Average Math Score": scor

"Average Reading Score": s

"% Passing Math": scores s

"% Passing Reading": score

"Overall Passing Rate": sc

Scores by School Type

Perform the same operations as above, based on school type.

```
In [162]: # Calculate the ask
          scores type avg math = school summary.groupby(["School Type"]).mean()["A
          verage Math Score"]
          scores type avg reading = school summary.groupby(["School Type"]).mean()
          ["Average Reading Score"]
          scores type_passing_math = school_summary.groupby(["School Type"]).mean
          ()["% Passing Math"]
          scores type passing reading = school summary.groupby(["School Type"]).me
          an()["% Passing Reading"]
          scores overall passing rate = (scores type passing math + scores type pa
          ssing reading) / 2
          # Dataframe to hold all the results
          scores by school type summary = pd.DataFrame({"Average Math Score": scor
          es_type_avg_math,
                                                         "Average Reading Score": s
          cores type avg reading,
                                                         "% Passing Math": scores t
          ype passing math,
                                                         "% Passing Reading": score
          s_type passing reading,
                                                         "Overall Passing Rate": sc
          ores overall passing rate})
          # Display Scores by School Spending
          scores by school type summary
```

Out[162]:

		Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
	School Type					
	Charter	83.473852	83.896421	93.620830	96.586489	95.103660
	District	76.956733	80.966636	66.548453	80.799062	73.673757

PyCitySchools Conclusions

- Charter schools outperformed District schools.
- Medium-sized schools (1000-2000) performed better than small and large schools
- Higher per student budget doesn't really seem to have much impact on the overall performance. In fact, the lower the budget, the better the schools performed.
- Best Performing schools have higher percentage passing in math than in reading
- Worst Performing schools have higher percentage passing in reading than in math.
- There's no significant change in math or reading scores per school and they are almost the same throughout all grades (9th, 10th, 11th, and 12th)