California Housing Price Prediction

```
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.special import boxcox1p
from scipy.stats import boxcox_normmax
from scipy.stats import boxcox
import math
from scipy import stats
from scipy.stats import skew
from sklearn import preprocessing
from sklearn.preprocessing import MinMaxScaler
In [2]:
train=pd.read_csv('train.csv')
test=pd.read_csv('test.csv')
In [3]:
train.shape
Out[3]:
```

```
In [3]:
train.shape
Out[3]:
(1460, 81)
In [4]:
test.shape
```

```
Out[4]:
(1459, 80)
```

In [5]:

```
#train.options.display.max_columns = None
train.head()
```

Out[5]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	U1
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	,
2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI	,
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	,
4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	,

5 rows × 81 columns

→

In [6]:

test.head()

Out[6]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour
0	1461	20	RH	80.0	11622	Pave	NaN	Reg	Lvl
1	1462	20	RL	81.0	14267	Pave	NaN	IR1	Lvl
2	1463	60	RL	74.0	13830	Pave	NaN	IR1	Lvl
3	1464	60	RL	78.0	9978	Pave	NaN	IR1	Lvl
4	1465	120	RL	43.0	5005	Pave	NaN	IR1	HLS

5 rows × 80 columns

→

In [7]:

test_id = test['Id']

Skewness of target Feature

```
In [8]:
```

```
#Checking Skewness
fig=plt.figure(figsize=(12,16))
fig.tight_layout()
ax1 = fig.add_subplot(3, 1, 1)
sns.set_style("darkgrid")
sns.histplot(train.loc[:, 'SalePrice'],kde=True,ax=ax1)
ax2 = fig.add_subplot(3, 1, 2)
stats.probplot(train.loc[:,'SalePrice'],plot=ax2)
ax3 = fig.add_subplot(3, 1, 3)
sns.boxplot(x=train.loc[:, 'SalePrice'],ax=ax3)
Out[8]:
<AxesSubplot:xlabel='SalePrice'>
In [9]:
#checking skewness
print("Skewness of the SalesPrice is", train['SalePrice'].skew())
Skewness of the SalesPrice is 1.8828757597682129
In [ ]:
In [10]:
#train["SalePrice"] = np.log1p(train["SalePrice"])
train['SalePrice']= stats.boxcox(train['SalePrice'])[0]
```

In [11]:

```
#checking skewness

fig=plt.figure(figsize=(12,16))
fig.tight_layout()

ax1 = fig.add_subplot(3, 1, 1)
sns.set_style("darkgrid")
sns.histplot(train.loc[:, 'SalePrice'],kde=True,ax=ax1)

ax2 = fig.add_subplot(3, 1, 2)
stats.probplot(train.loc[:,'SalePrice'],plot=ax2)

ax3 = fig.add_subplot(3, 1, 3)
sns.boxplot(x=train.loc[:, 'SalePrice'],ax=ax3)
```

Out[11]:

<AxesSubplot:xlabel='SalePrice'>

In [12]:

```
#checking skewness
print("Skewness of the SalesPrice is", train['SalePrice'].skew())
```

Skewness of the SalesPrice is -0.008652893640830044

In [13]:

train.head(100)

Out[13]:

∍у	LotShape	LandContour	Utilities	 PoolArea	PoolQC	Fence	MiscFeature	MiscVal	MoSol
ιN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	0	:
ιN	Reg	LvI	AllPub	 0	NaN	NaN	NaN	0	ţ
ιN	IR1	LvI	AllPub	 0	NaN	NaN	NaN	0	!
ιN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	0	
ιN	IR1	LvI	AllPub	 0	NaN	NaN	NaN	0	1:
ιN	IR2	Lvl	AllPub	 0	NaN	NaN	Shed	480	4
ιN	IR1	LvI	AllPub	 0	NaN	NaN	NaN	0	1
ιN	Reg	HLS	AllPub	 0	NaN	NaN	NaN	0	!
ιN	Reg	LvI	AllPub	 0	NaN	NaN	Shed	400	ţ
ιN	IR1	Lvl	AllPub	 0	NaN	NaN	Shed	400	

←

In [14]:

y = train['SalePrice']

In [15]:

test.head()

Out[15]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour
0	1461	20	RH	80.0	11622	Pave	NaN	Reg	Lvl
1	1462	20	RL	81.0	14267	Pave	NaN	IR1	Lvl
2	1463	60	RL	74.0	13830	Pave	NaN	IR1	Lvl
3	1464	60	RL	78.0	9978	Pave	NaN	IR1	Lvl
4	1465	120	RL	43.0	5005	Pave	NaN	IR1	HLS

5 rows × 80 columns

In [16]:

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

Data		81 columns):	
#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMat1	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd	1460 non-null	object
25	MasVnrType	1452 non-null	object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
30	BsmtQual	1423 non-null	object
31	BsmtCond	1423 non-null	object
32	BsmtExposure	1422 non-null	object
33	BsmtFinType1	1423 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1422 non-null	object
36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object
40	HeatingQC	1460 non-null	object
41	CentralAir	1460 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1460 non-null	int64
44	2ndF1rSF	1460 non-null	int64
45	LowQualFinSF	1460 non-null	int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64

```
51
    BedroomAbvGr
                    1460 non-null
                                    int64
52
    KitchenAbvGr
                    1460 non-null
                                    int64
53
    KitchenQual
                    1460 non-null
                                    object
 54
    TotRmsAbvGrd
                    1460 non-null
                                    int64
55
                                    object
    Functional
                    1460 non-null
    Fireplaces
                    1460 non-null
                                    int64
56
57
    FireplaceQu
                    770 non-null
                                    object
58
    GarageType
                    1379 non-null
                                    object
59
    GarageYrBlt
                    1379 non-null
                                    float64
    GarageFinish
                    1379 non-null
                                    object
60
    GarageCars
                    1460 non-null
                                    int64
61
62
    GarageArea
                    1460 non-null
                                    int64
                                    object
63
    GarageQual
                    1379 non-null
64
    GarageCond
                    1379 non-null
                                    object
65
    PavedDrive
                    1460 non-null
                                    object
    WoodDeckSF
66
                    1460 non-null
                                    int64
67
    OpenPorchSF
                    1460 non-null
                                    int64
68
    EnclosedPorch
                    1460 non-null
                                    int64
    3SsnPorch
69
                    1460 non-null
                                    int64
70
    ScreenPorch
                    1460 non-null
                                    int64
71
    PoolArea
                    1460 non-null
                                    int64
72
    PoolQC
                    7 non-null
                                    object
73
    Fence
                    281 non-null
                                    object
    MiscFeature
                    54 non-null
                                    object
74
75
    MiscVal
                    1460 non-null
                                    int64
76
    MoSold
                    1460 non-null
                                    int64
77
    YrSold
                    1460 non-null
                                    int64
78
    SaleType
                    1460 non-null
                                    object
79
    SaleCondition 1460 non-null
                                    object
    SalePrice
                    1460 non-null
                                    float64
dtypes: float64(4), int64(34), object(43)
```

memory usage: 924.0+ KB

In []:

In [17]:

```
full_data=pd.concat((train,test))
full_data=full_data.drop('Id',axis="columns")
full_data
```

Out[17]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Uti
0	60	RL	65.0	8450	Pave	NaN	Reg	LvI	Þ
1	20	RL	80.0	9600	Pave	NaN	Reg	LvI	Þ
2	60	RL	68.0	11250	Pave	NaN	IR1	LvI	Þ
3	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	٨
4	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	Þ
1454	160	RM	21.0	1936	Pave	NaN	Reg	LvI	Þ
1455	160	RM	21.0	1894	Pave	NaN	Reg	LvI	Þ
1456	20	RL	160.0	20000	Pave	NaN	Reg	Lvl	٨
1457	85	RL	62.0	10441	Pave	NaN	Reg	Lvl	Þ
1458	60	RL	74.0	9627	Pave	NaN	Reg	LvI	٨

2919 rows × 80 columns

Corelationship

In [18]:

```
plt.figure(figsize=(18,18))
sns.heatmap(train.corr(),annot=True,cmap="Reds",fmt='.2f',square=True)
```

Out[18]:

<AxesSubplot:>


```
In [19]:
```

```
correlation = train.corr()['SalePrice']
correlation
```

Out[19]:

Id	-0.017327
MSSubClass	-0.072481
LotFrontage	0.354339
LotArea	0.255397
OverallQual	0.815044
OverallCond	-0.032282
YearBuilt	0.588037
YearRemodAdd	0.566884
MasVnrArea	0.425364
BsmtFinSF1	0.369564
BsmtFinSF2	0.006244
BsmtUnfSF	0.221045
TotalBsmtSF	0.609149
1stFlrSF	0.593533
2ndFlrSF	0.317707
LowQualFinSF	-0.038494
GrLivArea	0.697018
BsmtFullBath	0.235705
BsmtHalfBath	-0.003649
FullBath	0.594022
HalfBath	0.314675
BedroomAbvGr	0.211745
KitchenAbvGr	-0.147274
TotRmsAbvGrd	0.532020
Fireplaces	0.488518
GarageYrBlt	0.542682
GarageCars	0.680203
GarageArea	0.649638
WoodDeckSF	0.333121
OpenPorchSF	0.318872
EnclosedPorch	-0.149878
3SsnPorch	0.055339
ScreenPorch	0.121459
PoolArea	0.068403
MiscVal	-0.019930
MoSold	0.057452
YrSold	-0.037891
SalePrice	1.000000
Name: SalePrice,	dtype: float64

Name: SalePrice, dtype: float64

Handling Missing Values

In [20]:

```
df=full_data
#df=df.drop(['SalePrice'],axis='columns')
df.isnull().sum()
```

Out[20]:

MSSubClass 0 MSZoning 4 LotFrontage 486 LotArea Street 0 MoSold 0 YrSold 0 SaleType 1 SaleCondition 1459 SalePrice Length: 80, dtype: int64

In [21]:

```
#checking for missing values
sns.heatmap(df.isnull(),yticklabels=False,cbar=False)
```

Out[21]:

<AxesSubplot:>

Replacing incorrect values to nan

In [22]:

```
pd.set_option("display.max_rows", None, "display.max_columns", None)
#df
```

In [23]:

```
#The garage year built is greater is older than the built year of house, which cannot be po
df.replace(df['GarageYrBlt'].values[2592],np.NaN,inplace=True)
df.replace(df['GarageYrBlt'].values[2549],np.NaN,inplace=True)
```

In [24]:

```
#2592
#print(df['GarageYrBlt'].values[2592])
```

Checking Missing Percent

In [25]:

```
#checking missing values
#pd.set_option('display.max_rows')

null_values=df.isnull().sum().values
l=df.shape[0]
percent=[]

for i in null_values:
    percent.append((i/1)*100)

d={'Columns':df.columns,'Missing_Count':null_values, 'Missing_Percent':percent}
data=pd.DataFrame(data=d)
data=data[data.Missing_Count>0]
data=data.sort_values(by="Missing_Percent",ascending=False)
style = data.style.set_properties(**{'text-align':'left'}).set_table_styles([dict(selector=style)])
```

Out[25]:

	Columns	Missing_Count	Missing_Percent
71	PoolQC	2909	99.657417
73	MiscFeature	2814	96.402878
5	Alley	2721	93.216855
72	Fence	2348	80.438506
79	SalePrice	1459	49.982871
56	FireplaceQu	1420	48.646797
2	LotFrontage	486	16.649538
58	GarageYrBlt	221	7.571086
63	GarageCond	159	5.447071
59	GarageFinish	159	5.447071
62	GarageQual	159	5.447071
57	GarageType	157	5.378554
31	BsmtExposure	82	2.809181
30	BsmtCond	82	2.809181
29	BsmtQual	81	2.774923
34	BsmtFinType2	80	2.740665
32	BsmtFinType1	79	2.706406
24	MasVnrType	24	0.822199
25	MasVnrArea	23	0.787941
1	MSZoning	4	0.137033
54	Functional	2	0.068517
47	BsmtHalfBath	2	0.068517
46	BsmtFullBath	2	0.068517
8	Utilities	2	0.068517

	Columns	Missing_Count	Missing_Percent
52	KitchenQual	1	0.034258
37	TotalBsmtSF	1	0.034258
36	BsmtUnfSF	1	0.034258
60	GarageCars	1	0.034258
61	GarageArea	1	0.034258
35	BsmtFinSF2	1	0.034258
33	BsmtFinSF1	1	0.034258
23	Exterior2nd	1	0.034258
22	Exterior1st	1	0.034258
77	SaleType	1	0.034258
41	Electrical	1	0.034258

In [26]:

```
data.plot.bar(x="Columns", y="Missing_Percent", title="Missing percentage",bottom=0.1)
plt.show()
```


Dropping columns with missing values > 75%

In [27]:

```
# Dropping columns with missing_percent>75
#data=data.drop(['SalePrice'],axis=0)
while True:
    if data.iloc[0:len(data),2].values[0]>75:
        df=df.drop([data.iloc[0:len(data),0].values[0]],axis='columns')
        data.drop(index=data.index[0], axis=0, inplace=True)
    else:
        break
```

In [28]:

```
data = data.iloc[1: , :]
data
```

Out[28]:

	Columns	Missing_Count	Missing_Percent
56	FireplaceQu	1420	48.646797
2	LotFrontage	486	16.649538
58	GarageYrBlt	221	7.571086
63	GarageCond	159	5.447071
59	GarageFinish	159	5.447071
62	GarageQual	159	5.447071
57	GarageType	157	5.378554
31	BsmtExposure	82	2.809181
30	BsmtCond	82	2.809181
29	BsmtQual	81	2.774923
34	BsmtFinType2	80	2.740665
32	BsmtFinType1	79	2.706406
24	MasVnrType	24	0.822199
25	MasVnrArea	23	0.787941
1	MSZoning	4	0.137033
54	Functional	2	0.068517
47	BsmtHalfBath	2	0.068517
46	BsmtFullBath	2	0.068517
8	Utilities	2	0.068517
52	KitchenQual	1	0.034258
37	TotalBsmtSF	1	0.034258
36	BsmtUnfSF	1	0.034258
60	GarageCars	1	0.034258
61	GarageArea	1	0.034258
35	BsmtFinSF2	1	0.034258
33	BsmtFinSF1	1	0.034258
23	Exterior2nd	1	0.034258
22	Exterior1st	1	0.034258
77	SaleType	1	0.034258
41	Electrical	1	0.034258

In []:

Filtering categorical and numerical values in missing values

In [29]:

Out[29]:										
	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	Lo
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	
2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI	AllPub	
3	4	70	RL	60.0	9550	Pave	NaN	IR1	LvI	AllPub	
4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	AllPub	
5	6	50	RL	85.0	14115	Pave	NaN	IR1	LvI	AllPub	
6	7	20	RL	75.0	10084	Pave	NaN	Reg	Lvl	AllPub	
7	8	60	RL	NaN	10382	Pave	NaN	IR1	Lvl	AllPub	
8	9	50	RM	51.0	6120	Pave	NaN	Reg	Lvl	AllPub	
9	10	190	RL	50.0	7420	Pave	NaN	Reg	Lvl	AllPub	

In []:

In [30]:

```
missing_cate=[]
missing_num=[]
```

In [31]:

```
#Appending categorical values to missing_cate and non-cate values to missing_num inorder to
i=0
data_rows=data.iloc[0:len(data),0]
while i!=len(data):
    x=data_rows.values[i]
    if df.dtypes[x] == object:
        missing_cate.append(x)
    else:
        missing_num.append(x)
i+=1
```

```
In [32]:
```

```
print(missing_cate,"\n",missing_num)

['FireplaceQu', 'GarageCond', 'GarageFinish', 'GarageQual', 'GarageType', 'B
smtExposure', 'BsmtCond', 'BsmtQual', 'BsmtFinType2', 'BsmtFinType1', 'MasVn
rType', 'MSZoning', 'Functional', 'Utilities', 'KitchenQual', 'Exterior2nd'
```

rType', 'MSZoning', 'Functional', 'Utilities', 'KitchenQual', 'Exterior2nd', 'Exterior1st', 'SaleType', 'Electrical']
['LotFrontage', 'GarageYrBlt', 'MasVnrArea', 'BsmtHalfBath', 'BsmtFullBath', 'TotalBsmtSF', 'BsmtUnfSF', 'GarageCars', 'GarageArea', 'BsmtFinSF2', 'BsmtFinSF1']

Filling Missing Values

```
In [33]:
```

```
#filling missing categorical values with mode of the column
for i in missing_cate:
    df[i].fillna(df[i].mode()[0], inplace=True)

#filling missing non-categorical values with mean of the column
for i in missing_num:
    df[i].fillna(df[i].mean(), inplace=True)
```

```
In [34]:
```

#df

In [35]:

#df["YrSold"] = df["YrSold"].astype(str)

```
In [36]:
#checking for missing values
sns.heatmap(df.isnull(),yticklabels=False,cbar=False)
Out[36]:
```

<AxesSubplot:>

```
MSSubClass
LotArea
LandSlope
Condition2
OverallQual
YearRemodAdd
Exterior1st
MasVnrArea
Foundation
BsmtFinType2
TotalBsmtSF
CentralAir
2ndFIrSF
BsmtFullBath
HaifBath
KitchenQual
Freplaces
GarageYrBit
GarageArea
PavedDrive
EnclosedPorch
PoolArea
YrSold
SalePrice
```

Feature Engineering

```
In [37]:
```

```
df.loc[df['YearRemodAdd'] ==0, 'YearRemodAdd'] = df['YearBuilt']

df['age'] = df['YrSold']-df['YearRemodAdd']

df['Garage_age'] = df['YrSold']-df['GarageYrBlt']
```

```
In [ ]:
```

Correlationship

```
correlation
Out[38]:
MSSubClass
                -0.072481
                 0.334042
LotFrontage
LotArea
                 0.255397
OverallQual
                 0.815044
OverallCond
                 -0.032282
YearBuilt
                 0.588037
YearRemodAdd
                 0.566884
MasVnrArea
                 0.424118
BsmtFinSF1
                 0.369564
BsmtFinSF2
                 0.006244
BsmtUnfSF
                 0.221045
TotalBsmtSF
                 0.609149
1stFlrSF
                 0.593533
2ndFlrSF
                 0.317707
LowQualFinSF
                -0.038494
GrLivArea
                 0.697018
BsmtFullBath
                 0.235705
BsmtHalfBath
                -0.003649
FullBath
                 0.594022
HalfBath
                 0.314675
BedroomAbvGr
                 0.211745
KitchenAbvGr
                -0.147274
TotRmsAbvGrd
                 0.532020
Fireplaces
                 0.488518
GarageYrBlt
                 0.475276
GarageCars
                 0.680203
GarageArea
                 0.649638
WoodDeckSF
                 0.333121
OpenPorchSF
                 0.318872
EnclosedPorch
                -0.149878
3SsnPorch
                 0.055339
ScreenPorch
                 0.121459
PoolArea
                 0.068403
                -0.019930
MiscVal
MoSold
                 0.057452
YrSold
                -0.037891
SalePrice
                 1.000000
                 -0.569453
age
                -0.476171
Garage_age
Name: SalePrice, dtype: float64
In [39]:
df = df.drop(columns = ['GarageYrBlt', 'YrSold', 'YearBuilt', 'SalePrice', 'YearRemodAdd'],axis
```

Data Transformation

In [38]:

correlation = df.corr()['SalePrice']

```
In [40]:
\# cate = [\ 'Overall Qual', 'Overall Cond', 'Half Bath', 'Garage Cars', 'Fireplaces', 'TotRms Abv Grd', 'Kit', 'Garage Cars', 'Fireplaces', 'TotRms Abv Grd', 'With Cartest Cond', 'Half Bath', 'Garage Cars', 'Fireplaces', 'TotRms Abv Grd', 'Kit', 'Garage Cars', 'G
                                                                                                                  'HalfBath', 'FullBath', 'BsmtHalfBath', 'BsmtFullBath']
i=0
while i<df.shape[1]:</pre>
```

```
x=df.columns[i]
\#df[x] = scaler.fit\_transform(df[[x]])
if df[x].dtypes!=object and abs(df[x]).skew() >0.5:
    \#df[x] = boxcox1p(df[x], boxcox_normmax(df[x]+1))
    df[x]=stats.boxcox(df[x]+1)[0]
    \#df[x] = np.log1p(df[x])
i+=1
```

Encoding Categorical values

```
In [41]:
```

```
#Finding ctegorical values from df
categorical=[]
for i in df:
    if df.dtypes[i] == object:
        categorical.append(i)
print(categorical)
```

['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseS tyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposur e', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'E lectrical', 'KitchenQual', 'Functional', 'FireplaceQu', 'GarageType', 'Garag eFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'SaleType', 'SaleConditi on']

In [42]:

```
#convert categorical to numerical
label_encoder = preprocessing.LabelEncoder()
#for i in categorical:
df['MSZoning']= label_encoder.fit_transform(df['MSZoning'])
```

In [43]:

df.head()

Out[43]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utilities	L
0	2.664197	3	15.967598	17.222846	Pave	Reg	Lvl	AllPub	
1	2.192747	3	18.053783	17.639401	Pave	Reg	LvI	AllPub	
2	2.664197	3	16.400996	18.166916	Pave	IR1	LvI	AllPub	
3	2.722440	3	15.224624	17.622218	Pave	IR1	LvI	AllPub	
4	2.664197	3	18.579309	18.976035	Pave	IR1	Lvl	AllPub	
4									•

In [44]:

df.shape

Out[44]:

(2919, 73)

In [45]:

```
df = pd.get_dummies(df).reset_index(drop=True)
df.shape
```

Out[45]:

(2919, 269)

```
In [46]:
df.head(100)
Out[46]:
    MSSubClass MSZoning LotFrontage
                                          LotArea OverallQual OverallCond MasVnrArea BsmtFinSF1
                                                           7
  0
        2.664197
                         3
                              15.967598
                                       17.222846
                                                                 3.009505
                                                                              2.961482
                                                                                          15.065113
  1
        2.192747
                         3
                              18.053783
                                       17.639401
                                                           6
                                                                  4.193354
                                                                              0.000000
                                                                                         16.552706
  2
        2.664197
                         3
                              16.400996
                                       18.166916
                                                           7
                                                                 3.009505
                                                                              2.908403
                                                                                         13.490633
                                                           7
  3
        2.722440
                         3
                                                                 3.009505
                                                                              0.000000
                                                                                         10.499547
                              15.224624
                                       17.622218
        2.664197
                         3
                              18.579309
                                       18.976035
                                                                 3.009505
                                                                              3.108887
                                                                                         14.738148
  4
                                                           8
  5
                                                           5
        2.592851
                         3
                              18.708904
                                       18.940639
                                                                 3.009505
                                                                              0.000000
                                                                                         15.224820
  6
        2.192747
                         3
                              17.379807
                                       17.801833
                                                           8
                                                                 3.009505
                                                                              2.947131
                                                                                         18.207643
  7
        2.664197
                         3
                              16.586930
                                       17.898500
                                                           7
                                                                 3.429547
                                                                              3.015319
                                                                                         15.947275
  8
        2.592851
                              13.812805 16.199985
                                                           7
                                                                 3.009505
                                                                              0.000000
                                                                                          0.000000
                         4
In [ ]:
Spliting data
In [47]:
X = df.iloc[:len(y), :]
test = df.iloc[len(y):, :]
In [48]:
In [49]:
X.shape , test.shape, y.shape
Out[49]:
((1460, 269), (1459, 269), (1460,))
In [50]:
#Split Data for Training and Testing
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error,r2_score
```

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3,random_state=0)

#from sklearn import metrics

Training

Metric Evaluation

```
In [51]:
```

In [52]:

```
from sklearn.linear_model import Lasso
model = Lasso(alpha=1.0)
model.fit(x_train, y_train)
model.score(x_test,y_test)
```

Out[52]:

0.4946075988475276

Linear Regression

```
In [53]:
```

```
from sklearn.linear_model import LinearRegression

regressor = LinearRegression()
model=regressor.fit(x_train, y_train)

#y_pred_test_Forestreg=model.predict(x_test)
model.score(x_test,y_test)
```

Out[53]:

0.7939131162314993

```
In [54]:
```

```
evaluation(model, x_test, y_test, rms , mse, mae, r2)
```

Result

Root Mean Squared Error: 0.0703301703553051

Mean Squared Error: 0.004946332862206237

Mean Absolute Error: 0.03880783145285173

R2 Score: 0.7939131162314993

In []:

KNN

In [55]:

```
from sklearn.neighbors import KNeighborsRegressor
knn=KNeighborsRegressor(n_neighbors=18)
x=knn.fit(x_train,y_train)
```

In [56]:

```
evaluation(x, x_test, y_test, rms , mse, mae, r2)
```

Result

Root Mean Squared Error: 0.09322253607260549

Mean Squared Error: 0.00869044123180823

Mean Absolute Error: 0.06909841459225842

R2 Score: 0.6379164116266517

SVR

In [57]:

```
from sklearn import svm

svr = svm.SVR()
model_svr=svr.fit(x_train, y_train)
```

In [58]:

```
evaluation(model_svr, x_test, y_test, rms , mse, mae, r2)
```

Result

Root Mean Squared Error: 0.08154467179330871

Mean Squared Error: 0.006649533497878438

Mean Absolute Error: 0.06252627208902889

R2 Score: 0.7229499762212146

XGBOOST

In [59]:

```
import xgboost as xgb
xgb_regress = xgb.XGBRegressor(n_estimators = 1000, learning_rate = 0.1)
l=xgb_regress.fit(x_train, y_train)
evaluation(l, x_test, y_test, rms, mse, mae, r2)
```

Result

Root Mean Squared Error: 0.051257055089208546

Mean Squared Error: 0.0026272856964181597

Mean Absolute Error: 0.03230945967949397

R2 Score: 0.8905352435778314

ADABOOST

In [60]:

```
from sklearn import ensemble

regr = ensemble.AdaBoostRegressor(random_state=0, n_estimators=1000)
l=regr.fit(x_train, y_train)
```

```
In [61]:
```

```
evaluation(1, x_test, y_test, rms , mse, mae, r2)
```

Result

Root Mean Squared Error: 0.06896396227244583

Mean Squared Error: 0.004756028092315333

Mean Absolute Error: 0.0530700465556499

R2 Score: 0.8018420846381271

GradientBoost

In [62]:

```
params = {
    "n_estimators": 1000,
    "max_depth": 4,
    "min_samples_split": 5,
    "learning_rate": 0.1
}

reg = ensemble.GradientBoostingRegressor(**params)
l=reg.fit(x_train, y_train)
```

In [63]:

```
evaluation(l, x_test, y_test, rms , mse, mae, r2)
```

Result

Root Mean Squared Error: 0.04942810103350073

Mean Squared Error: 0.002443137171777956

Mean Absolute Error: 0.03398502964027502

R2 Score: 0.8982077146085697

RandomForest

In [64]:

```
from sklearn.ensemble import RandomForestRegressor

# create regressor object
regressor = RandomForestRegressor(n_estimators = 100, random_state = 0)

# fit the regressor with x and y data
r=regressor.fit(x_train, y_train)
```

In [65]:

```
evaluation(r, x_test, y_test, rms , mse, mae, r2)
```

Result

Root Mean Squared Error: 0.05394573137845794

Mean Squared Error: 0.0029101419339567416

Mean Absolute Error: 0.03696946084269166

R2 Score: 0.8787501570960436

CatBoost

```
In [66]:
```

```
import catboost as cb
#from sklearn.inspection import permutation_importance
model = cb.CatBoostRegressor(iterations=1000,
                          learning_rate=0.1,
                          depth=8)
# Fit model
cat=model.fit(x_train, y_train)
0:
        learn: 0.1493480
                                total: 167ms
                                                remaining: 2m 46s
1:
        learn: 0.1404617
                                total: 187ms
                                                remaining: 1m 33s
        learn: 0.1326432
                                total: 207ms
                                                 remaining: 1m 8s
2:
3:
        learn: 0.1249758
                                total: 226ms
                                                remaining: 56.3s
4:
        learn: 0.1183172
                                total: 245ms
                                                remaining: 48.7s
        learn: 0.1125798
                                total: 265ms
5:
                                                remaining: 43.9s
                                total: 286ms
        learn: 0.1073468
6:
                                                remaining: 40.6s
7:
        learn: 0.1018173
                                total: 304ms
                                                remaining: 37.7s
8:
        learn: 0.0972322
                                total: 319ms
                                                remaining: 35.2s
                                total: 333ms
        learn: 0.0929331
                                                remaining: 32.9s
9:
10:
        learn: 0.0894323
                                total: 344ms
                                                remaining: 30.9s
       learn: 0.0855525
                                total: 358ms
                                                remaining: 29.5s
11:
       learn: 0.0820156
                                total: 375ms
                                                remaining: 28.5s
12:
       learn: 0.0788386
                                total: 390ms
                                                remaining: 27.5s
13:
        learn: 0.0756009
                                total: 403ms
                                                remaining: 26.5s
14:
15:
       learn: 0.0730286
                                total: 414ms
                                                remaining: 25.5s
       learn: 0.0707613
                                total: 427ms
16:
                                                remaining: 24.7s
        learn: 0.0685509
                                total: 438ms
17:
                                                 remaining: 23.9s
18:
        learn: 0.0664708
                                total: 450ms
                                                remaining: 23.2s
In [67]:
evaluation(cat, x_test, y_test, rms , mse, mae, r2)
Result
Root Mean Squared Error: 0.04729808701467888
                         0.002237109035248135
Mean Squared Error:
Mean Absolute Error:
                         0.03222136676989126
R2 Score:
                         0.9067917904904188
In [ ]:
```

In [68]:

```
df=pd.DataFrame()
df['Model']=["LR","KNN","SVM","XG","ADA","GRA","RF","CAT"]
df['RMSE']=rms
df['MSE']=mse
df['MAE']=mae
df['R2']=r2
```

Out[68]:

	Model	RMSE	MSE	MAE	R2
0	LR	0.070330	0.004946	0.038808	0.793913
1	KNN	0.093223	0.008690	0.069098	0.637916
2	SVM	0.081545	0.006650	0.062526	0.722950
3	XG	0.051257	0.002627	0.032309	0.890535
4	ADA	0.068964	0.004756	0.053070	0.801842
5	GRA	0.049428	0.002443	0.033985	0.898208
6	RF	0.053946	0.002910	0.036969	0.878750
7	CAT	0.047298	0.002237	0.032221	0.906792

In [69]:

```
sns.set(style="whitegrid")
ax=sns.barplot(y='Model',x='R2',data=df)
```


In []: