EEE3097S 2023 ASSIGNMENT 1: PAPER DESIGN

1 TABLE OF CONTENTS

2	Con	tributions	2
3	Req	uirement Analysis	2
	3.1	Requirements	2
	3.2	Specifications	2
	3.3	Possible Implementations	3
	3.4	Feasibility Analysis	3
	3.5	Possible Bottlenecks	4
4	Sub	system Design	5
	4.1	Subsystem and Sub-Subsystem Breakdown	5
	4.2	Subsystem and Sub-Subsystem Requirements	5
	4.3	Subsystem and Sub-Subsystem Specifications	6
	4.4	Inter-Subsystem and Inter-Sub-Subsystems Interactions	8
	4.5	UML Diagram	9
5	Acce	eptance Test Procedure	. 10
6	Dev	elopment timeline	. 13
7	Bibl	ography	. 15

2 CONTRIBUTIONS

Student Name	Student Number	Contribution
Md Shaihan Islam	ISLMDS002	Acceptance Test Procedure
		Development Timeline
Tilal Mukhtar	MKHTIL001	Subsystem Design
Aimee Simons	SMNAIM002	Requirement Analysis

3 REQUIREMENT ANALYSIS

3.1 REQUIREMENTS

The objective of this project is to design and implement an acoustic triangulation system using Time Difference of Arrival (TDoA) to accurately locate the position of a sound source within a rectangular grid.

The following system requirements have been identified:

- 1. The system shall be capable of determining the position of a stationary sound source within a rectangular grid.
- 2. The system shall provide two-dimensional coordinates relative to the rectangular grid.
- 3. The system shall utilize two Raspberry Pi (RPi) microcontrollers.
- 4. The system shall operate the RPi microcontrollers in parallel.
- 5. The system shall ensure that the RPi microcontrollers are time synchronized.
- 6. The system shall utilize four microphones.
- 7. The system shall be capable of simultaneously capturing audio signals from all microphones.
- 8. The system shall incorporate noise reduction techniques to improve the signal-to-noise ratio (SNR) of the captured audio signals.
- 9. The system shall calculate the TDoA of the audio signals between all microphones.
- 10. The system shall employ an appropriate triangulation algorithm to convert the TDoA data into two-dimensional coordinates.
- 11. The system shall provide a graphical user interface (GUI) for displaying the predicted location of the sound source.
- 12. The system should ensure that the time synchronization error between the RPi microcontrollers and calculated TDoA values are accurate within 10 microseconds.
- 13. The system should be capable of capturing audio signals within the audible spectrum.
- 14. The system should ensure that the sample rate of the microphones is greater than 40kHz.
- 15. The system should ensure that SNR of the captured audio signals are greater than 60dB.
- 16. The system should provide the location of the sound source within a 1cm accuracy.
- 17. The GUI should be intuitive and user-friendly.

3.2 Specifications

The following specifications can be derived from the system requirements:

- 1. The system will use two Raspberry Pi Zero W modules.
- 2. The system will use four Adafruit I2S MEMS microphone breakout boards.
- 3. The system will use an A1 size (59.4 x 84.1 cm) printed grid.
- 4. The sound source will be generated using an Android smartphone.

- 5. The RPi microcontrollers will be powered via their micro-USB ports.
- 6. The RPi microcontrollers will receive an input voltage of 5V DC at an input current of 2.5A.
- 7. The RPi microcontrollers will be connected to the local network of a host device via Wi-Fi.
- 8. The RPi microcontrollers will communicate with the host via the Secure Shell (SSH) and Secure Copy (SCP) protocols.
- 9. The microphone breakout boards will be powered via power connections to the RPi microcontrollers.
- 10. The microphone breakout boards will receive an input voltage of 3.3V DC.
- 11. The microphone breakout boards will communicate with the RPi microcontrollers via the I2S serial communication protocol.
- 12. A Generalized Cross-Correlation Phase Transform (GCC-PHAT) algorithm will be applied to pairs of audio recordings, to determine TDoA data.
- 13. A Least Squares Estimation (LSE) algorithm will be applied to the TDoA data to determine the estimated coordinates of the sound source
- 14. The system will be programmed using the Python programming language.
- 15. The GUI will be programmed using the Tkinter library for Python.

3.3 Possible Implementations

A possible implementation includes:

- Setting up each of the four microphones at each of the four corners of the A1 grid provided.
- Creating an acoustic sound within the grid.
- Obtaining and recording the audio received from each the microphones.
- Passing these audio recordings to the RPi's.
- Filtering the audio recordings to reduce the noise present in the sound.
- Determining the TDoA between each microphone by performing a cross-correlation function on two microphones at a time.
- Set up 2-4 equations in the form:

$$\sqrt{(x-xi)^2+(y-yi)^2}-\sqrt{(x-xii)^2+(y-yii)^2}$$
 - ct_{TDOA}=0

Where (xi,yi) and (xii,yii) represent the coordinates of two separate microphones, (x,y) represent the coordinates of the sound source, c which is the speed of sound and t_{TDOA} , which is the time delay between two microphones.

• Solve for (x,y) using matrix calculations.

3.4 FEASIBILITY ANALYSIS

3 Points of Feasibility will be discussed:

1. Technical Feasibility:

Insofar as technical resources available, two RPi Zero W modules were provided, along with 4 microphones, 2 SD cards and an A1 grid. It can therefore be said that this design project is technically feasible as the majority of the equipment/materials needed were, in fact, provided. The members of the project are also equipped with the skills needed in order to solve the problem.

2. Financial Feasibility:

As mentioned previously, two RPi Zero W modules, 4 microphones, 2 SD cards and an A1 grid were all provided and, as such, did not require any financial input from the members of the design team. The software available that will be used for the algorithms are free to use

and readily available. The only expense is the connectors need for the RPi microcontrollers, in order to provide power to the boards as well as display the operating system on a monitor. As such, the project is financially feasible as not a lot of funds are needed to execute the solution.

3. Scheduling Feasibility:

With reference to the fact that there are no required class test or exams scheduled for the design course, it will allow the members to focus solely on the design and implementation, with minimal distractions. It will, therefore, ensure that scheduling the milestones are more conducive to everyone's schedule. The project is, therefore, feasible with regards to scheduling and time constraints.

3.5 Possible Bottlenecks

- 1. Hardware Limitations:
 - 1.1. The system is constrained to make use of two RPi Zero W microcontrollers which limits the options available to synchronise the microcontrollers.
 - 1.2. The system is constrained to make use of four Adafruit I2S MEMS microphone breakout boards. This limits the possible accuracy of the TDoA and Triangulation algorithms.
 - 1.3. The system is constrained to an A1 grid size which limits the accuracy of the system.
- 2. Software Limitations:
 - 3.4. The system will make use of the Python programming language which has worse performance than other suitable programming languages such as C++.
- 3. Time Limitations:
 - 3.1. The project must be completed over the course of a semester.
- 4. Information Limitations:
 - 4.1. As this is a relatively new topic to the some of the members, it might be initially difficult to grasp the concept and implement the solution correctly.

4 SUBSYSTEM DESIGN

4.1 SUBSYSTEM AND SUB-SUBSYSTEM BREAKDOWN

The following subsystems and sub-subsystems were identified:

- 1. Pi Synchronization
 - 1.1. Pi Communication
 - 1.2. Pi Timing
- 2. Signal Acquisition
 - 2.1. Signal Capture
 - 2.2. Signal Preprocessing
- 3. Time Delay Estimation
- 4. Triangulation
- 5. User Interface
 - 5.1. User Interface Functionality
 - 5.2. User Interface Design

4.2 Subsystem and Sub-Subsystem Requirements

Subsystem		Requirements
1.	Pi Synchronization	
	1.1. Pi Communication	The Pi Communication sub-subsystem shall provide
		communication between the RPi microcontrollers and user device.
		The sub-subsystem shall utilize bidirectional communication
		The sub-subsystem should ensure minimal latency in data
		transmission and reception between the microcontrollers.
		The sub-subsystem should include mechanisms to detect and
		recover from communication failures.
	1.2. Pi Timing	The Pi timing sub-subsystem shall establish precise time
ļ		synchronization between the two RPi microcontrollers.
		The sub-subsystem should ensure that the time synchronization
		error between the RPi microcontrollers is within 10 microseconds.
		The sub-subsystem should include mechanisms to detect and
		recover from synchronization failures.
2.	Signal Acquisition	
	2.1. Signal Capture	The signal capture sub-subsystem shall capture audio signals from
		the 4 microphones simultaneously.
		The sub-subsystem shall ensure synchronization between
ļ		microphone sampling and microcontroller timing.
		The sub-subsystem should be capable of capturing audio signals
		within the audible spectrum.
	2.2. Signal	The signal preprocessing sub-subsystem shall provide a timestamp
Preprocessing		for all captured audio signals
		The system shall in savnersta maior yed cation tooks is week.
		The system shall incorporate noise reduction techniques to
		improve the SNR of the captured audio signals.
		The sub-subsystem should ensure that SNR of the captured audio
		signals are greater than 60dB.

		The sub-subsystem should handle variations in sound source		
		intensity and frequency without significant degradation.		
3.	Time Delay Estimation	The time delay estimation subsystem shall implement Time-		
		Difference-of-Arrival (TDoA) algorithms to calculate the time		
		differences between audio signal captures from different		
		microphones.		
		The subsystem should be computationally efficient.		
		The subsystem should ensure that the calculated TDoA values are		
		accurate within 10 microseconds.		
4.	Triangulation	The triangulation subsystem shall employ an appropriate		
		triangulation algorithm to convert the TDoA data into two-		
		dimensional coordinates.		
		The subsystem shall be capable of determining the position of a		
		stationary sound source within a rectangular grid.		
Ī		The subsystem should provide the location of the sound source		
		within a 1cm accuracy.		
5.	User Interface			
	5.1. User Interface	The user interface functionality sub-subsystem should provide		
	Functionality	real-time updates to the coordinate representation of the sound		
		source's location.		
1		The sub-subsystem shall be capable of accepting user input.		
Ī		The sub-subsystem should be capable applying user input to the		
		system.		
	5.2. User Interface	The user interface design shall be graphical.		
	Design	The user sub-subsystem shall display a coordinate representation		
		of the sound source's location.		
		The sub-subsystem should be intuitive and user-friendly.		
		The sub-subsystem should be designed to facilitate user		
		interaction		
		·		

4.3 SUBSYSTEM AND SUB-SUBSYSTEM SPECIFICATIONS

Subsystem		Specifications
1. Pi Synchronization		
	1.1. Pi Communication	The RPi microcontrollers will be connected to the local network of
		a host device via Wi-Fi.
		The host device will use the SSH protocol to transmit Unix
		commands simultaneously to the RPi microcontrollers
		The host device will use the SCP protocol to retrieve data from the
		RPi microcontrollers.
1.2. Pi Timing		The audio signals captured by the RPi microcontrollers will be time
		synchronised using a calibration signal.
		The calibration audio signal will be positioned at the centre of the
		grid.
2.	Signal Acquisition	
2.1. Signal Capture		The audio signals will be captured by the four Adafruit I2S MEMS
		microphone breakout boards.
		The microphones are omnidirectional.
		The microphones have a frequency range of 50Hz - 15KHz.

_			
		The microphones will be set a sampling rate of 48kHz	
		The microphones will be placed on the corners of the rectangular grid.	
		The microphones breakout boards will be connected to the RPi	
		microcontrollers via the I2S serial communication protocol.	
		Two microphones breakout boards will be connected to each RPi	
		microcontroller.	
	The captured audio signals will be stored on microSD cards connected to the RPi microcontrollers.		
	2.2. Signal	The microphone breakout board has a rated SNR of 65dB.	
i	Preprocessing	The captured audio signals will be passed through a lowpass filter,	
		to filter out any frequencies higher than 15kHz	
		The audio signal data will be timestamped using the start of audio	
		capturing as a reference point.	
3.	Time Delay Estimation	A Generalized Cross-Correlation Phase Transform (GCC-PHAT)	
	•	algorithm will be applied to pairs of audio recordings, to determine	
		the time delay between the arrival time of sound at each	
		microphone.	
		The four audio signals will be synchronised using the calibration	
		signal as a reference.	
4.	Triangulation	A Least Squares Estimation (LSE) algorithm will be applied to the	
		TDoA data using the coordinates of the microphones as reference	
┢	points.		
5.	User Interface		
	5.1. User Interface	The GUI will be programmed using the Python programming	
	Functionality	language.	
		The GUI will be programmed using the Tkinter library for Python.	
		The GUI will allow the user to start and stop the acoustic	
		triangulation process.	
		The GUI will allow the user to set the coordinates of the reference	
		grid. The GUI will allow the user to set the positions of the microphones	
		within the reference grid.	
		The GUI will allow the user to set the recording time of the audio	
		signals.	
	5.2. User Interface	The GUI will display a coordinate grid with the predicted location	
	Design	of the sound source.	
		The GUI coordinate grid will reference the coordinates of the	
		physical grid used.	
		The GUI will display the predicted two-dimensional Cartesian	
		coordinates of the sound source.	
		The GUI will allow the user to view the audio signals captured by	
		the microphone.	
		coordinates of the sound source. The GUI will allow the user to view the audio signals captured by	
		the microphone.	

4.4 INTER-SUBSYSTEM AND INTER-SUB-SUBSYSTEMS INTERACTIONS

Subsystem		Interactions
1.	Pi Synchronization	
	1.1. Pi Communication	The sub-subsystem depends on sub-subsystems 2.2 and 5.1.
		Sub-subsystem 2.2. transmits the audio signal data of the audio
		signals captured and preprocessed by subsystem 2. This transfer is
		done via SCP.
		Sub-subsystem 5.1 transmits the user input data captured by
		subsystem 5. This transfer is done wirelessly via the SSH protocol
		over a local network.
	1.2. Pi Timing	The subs-subsystem depends on sub-subsystem 1.1.
		Sub-subsystem 1.1. transmits the time synchronization data. This
<u> </u>		data is used to time synchronize the two RPi microcontrollers.
2.	Signal Acquisition	
]	2.1. Signal Capture	The subs-subsystem depends on subsystem 1.2.
		Sub-subsystem 1.2. transmits the command to simultaneously
		capture the audio signals from all four microphones. The
		transmission to the microphones is done via the I2S protocol.
	2.2. Signal	The subs-subsystem depends on sub-subsystem 2.1.
	Preprocessing	Sub-subsystem 2.1 transmits the captured audio signal data for
		preprocessing on the RPi microcontrollers. This transmission is
<u> </u>		down via the I2S protocol.
3.	Time Delay Estimation	The subsystem depends on sub-subsystem 5.1.
		Sub-subsystem 5.1 transmits the audio signal data captured and
		preprocessed by subsystem 2. The audio signal data is used to
		calculate the TDoA of the captured audio signals at each
-	Tuis as a lation	microphone.
4.	Triangulation	The subsystem depends on subsystem 3 and sub-subsystem 5.1. Subsystem 3 transmits the TDoA data of the captured audio signals
		at each microphone. The TDoA data is used to calculate the two-
		dimensional Cartesian coordinates of the sound source.
l		Subsystem 5.1 transmits the user input data. The user input data is
		used to set the coordinates of the grid and microphones.
5.	User Interface	8
 •	5.1. User Interface	The sub-subsystem depends on subsystem 4 and sub-subsystem
	Functionality	1.1.
i	, ,	Subsystem 4 transmits the localization data. This data provides the
		estimated position of the sound source.
		Sub-subsystem 1.1 transmits the audio signal data captured and
		preprocessed by subsystem 2. This transfer is done wirelessly via
		the SCP protocol over a local network. The audio signal data is
	then retransmitted to subsystem 3 for further processing.	
	5.2. User Interface	The subsystem depends on sub-subsystem 5.1.
	Design	Sub-subsystem 5.1 transmits the data to be displayed to the user
		by the GUI.

4.5 UML DIAGRAM

Figure 1: Component UML diagram of the subsystems and sub-subsystems

5 Acceptance Test Procedure

For this project, the defined requirements listed previously will each undergo an acceptance test procedure, to ensure that these requirements are met to an acceptable degree. Acceptance test procedures are also vital for problem identification as well as debugging. After each acceptance test procedure, the test will be rated on a scale of 1-10, with a rating of 1 representing the test not achieving the desired outcome or behaviour at all, and with a rating of 10 representing the test working perfectly. The table below lists, in detail, the acceptance tests that will be performed, observed and critiqued:

Subsystem	Figures of Merit	Acceptance Test	Acceptable Performance
1. Pi synchronization			
1.1. Pi Communication	Test message	To ensure bidirectional communication, a test message will be sent from each of the RPi's to each other.	Both RPi modules can read messages sent to them from the other module and display the message.
1.2. Pi Timing 2. Signal acquisition	Response messages sent by the microcontroller when it has connected with the other microcontroller, as well as an indication of start of operation.	To ensure time synchronisation of the microcontrollers, two acceptance tests will be performed: • A test will be performed to ensure the microcontrollers only start the detection process once both have established bidirectional communication with each other. • A test will be performed to ensure that both the microcontrollers are functioning simultaneously to locate the sound source once the communication has been established.	If the appropriate response messages were returned at the appropriate times, performance will have been deemed acceptable.
Z. Signal acquisition			

	24 61 10	A - Note - 1	F	16.15 - 155 - 10
	2.1. Signal Capture	A switch combined with the microphone output can be used to keep an LED on when the microphone is able to record a sound.	For signal capture, an acceptance test will be performed to determine whether the microphone was able to capture the sound being emitted from the source. Furthermore, a test can be conducted to ensure the microcontroller sends a response message once it has been able to capture the sound signal.	If the LED is lit when the sound source is emitting sound, and the LED is off when the sound source is not emitting sound, acceptable performance is met. It is also met when the appropriate response message is outputted by the microcontroller.
	2.2. Signal	Timestamps	This sub-subsystem	Timestamps
	Preprocessing	Signal to noise ratio (SNR)	requires the timestamps to be captured for the audio signals, and this will be tested using the Pi microcontrollers, which will be outputting these timestamps. Tests will also be conducted to measure the signal-to-noise ratio (SNR). Information regarding the noise in the system will be taken from the filter that will be used to attenuate the noise from the signal, which can then be used to calculate the SNR.	accurately align with the audio signals SNR must be less than 60dB
3.	Time delay estimation	Timestamps	Correctness of the time delay will be tested for. Information regarding the time delay will be computed using the RPi microcontrollers, and the distance that was calculated using the Time-Difference-of-Arrival equations will be outputted by the microcontrollers.	Timestamps that produce an accurate distance estimation will be considered acceptable performance.
4.	Triangulation	Sound Source	This subsystem will be	For this
		Coordinates	involved in a detailed	experiment,

	1	outputted by the PD:	accontance test stated as	hoth tho y avic
		outputted by the RPi microcontroller.	acceptance test, stated as follows:	both the x-axis and y-axis
	• The sound source		coordinates	
				must be
			will be placed at	
			various positions	calculated and
			within the grid, for	outputted
			example: close to a	correctly. The
			microphone, at the	coordinates
			center of the grid,	must also have a
			as well as outside	maximum
			the grid. The	tolerance of 1
			system will then be	centimetre to
			tested to see if	ensure
			provides the	acceptable test
			appropriate	performance.
			coordinate	
			information	
5. U	Jser interface			
. 5	5.1. User Interface	Elements of the user	Each input and output	Each element in
	Functionality	interface, such as	element will be tested for	the interface
		buttons, text boxes	functionality and	needs to behave
		and display panels.	correctness. The inputs will	as desired, and
			be executed numerous	it must do so in
			times, and the output of	a responsive,
			these inputs will also be	fast manner.
			recorded, to determine	
			whether the input achieves	
			the desired	
			output/function.	
	5.2. User Interface	Overall layout and	The user interface will be	An average
	Design	outlook of the user	tested in its ergonomic	rating of 7 or
		interface, as well as	aspect and ease of use. A	above given by
		ergonomics	volunteer, with no prior	the volunteers
			knowledge of the project,	will be deemed
			will be asked to use the	acceptable
			program and	performance.
			comment/rate on how	
			easy or difficult the	
			interface is to use and	
			understand.	

6 DEVELOPMENT TIMELINE

The Work Breakdown Structure (WBS) of the project is displayed below:

Cod	e Activity	Duration	Dependency
	Proposition of project idea and commencement of	28/07/2023 -	
1	planning	31/07/2023	None
		31/07/2023 -	
2	Begin background research on aspects of project	01/08/2023	1
		05/08/2023 -	
3	Complete MATLAB Onramp courses	14/08/2023	1
		31/07/2023 -	
4	Identification of project requirements	02/08/2023	1
		02/08/2023 -	
5	Analysis of project requirements	04/08/2023	4
		07/08/20223 -	
6	Development of specifications	10/08/2023	4, 5
		10/08/2023 -	
7	Subsystem Breakdown	11/08/2023	4, 5, 6
		14/08/2023 -	
8	Write up of inter- and intra-subsystem interactions	16/08/2023	7
		16/08/2023 -	
9	Define acceptance test procedures	18/08/2023	8
		21/08/2023 -	
10	Setup of simulation using MATLAB	29/08/2023	3, 6, 8
		30/08/2023 -	
11	Testing of MATLAB simulation	01/09/2023	10
		11/09/2023 -	
12	Setup of physical system	12/09/2023	11
		13/09/2023 -	
13	Pi synchronisation setup	18/09/2023	12
	Development of code for signal acquisition and	13/09/2023 -	
14	preprocessing	22/09/2023	11
		13/09/2023 -	
15	Development of code for time delay estimation	22/09/2023	11
	Development of code for triangulation/localisation	13/09/2023 -	
16	algorithm	22/09/2023	11
		13/09/2023 -	
17	Development of user interface	22/09/2023	3
		14/09/2023-	
18	Testing and debugging of Pi synchronization	18/09/2023	13
	Testing and debugging of signal acquisition and	22/09/2023 -	
19	preprocessing	31/09/2023	14
· <u></u>		22/09/2023 -	
20	Testing and debugging of time delay estimation	31/09/2023	15
	Testing and debugging of triangulation/localisation	22/09/2023 -	
21	algorithm	31/09/2023	16
		22/09/2023 -	
22	Testing and debugging of user interface	29/09/2023	17

		31/09/2023 -	13, 14, 15, 16,
23	Overall performance evaluation	02/10/2023	17
		02/10/2023 -	
24	Final Testing	04/09/2023	23
		04/09/2023 -	
25	Final Report Write-up	18/09/2023	24

The Gantt chart for the development timeline is shown below:

The Project Management Page is shown below:

7 BIBLIOGRAPHY

- [1] Da Costa, D.G. (2022) Time Difference of Arrival Acoustic Triangulation Using a Distributed Sensor Network. Dissertation
- [2] "Raspberry pi documentation," Raspberry Pi. [Online]. Available: https://www.raspberrypi.com/documentation/
- [3] "Adafruit I2S MEMS microphone breakout," Adafruit Learning System, [Online]. Available: https://learn.adafruit.com/adafruit-i2s-mems-microphone-breakout/overview
- [4] B. Jin, X. Xu, and T. Zhang, "Robust time-difference-of-arrival (tdoa) localization using weighted least squares with cone tangent plane constraint," Sensors (Basel, Switzerland), vol. 18, 03 2018. [Online]. Available: https://www.mdpi.com/1424-8220/18/3/778
- [5] D. Dalskov and S. K. Olesen, 'Locating acoustic sources with multilateration', Master's, 2014. [Online]. Available: https://vbn.aau.dk/ws/files/198526294/Measurements/Source%20signals
- [6] M. Pollefeys and D. Nister, 'Direct computation of sound and microphone locations from timedifference-of-arrival data', in 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, pp. 2445–2448. [Online]. Available: https://cvg-pub.inf.ethz.ch/WebBIB/papers/2008/001 PollefeysICASSP08.pdf
- [7] T. Ho et al., "Acoustic Source Localization," Georgia Institute of Technology. [Online]. Available: https://eceseniordesign2022spring.ece.gatech.edu/sd22p11/finalwrittenreport.pdf
- [8] N. R. Kumarasiri, Development of novel algorithms for localization in wireless sensor networks. The University of Toledo, 2014.