ميدان

r با دو عمل جمع و ضرب که دارای خواص زیر است: r با دو عمل جمع و ضرب که دارای خواص زیر است:

ا) (F , +) گروه آبلی

یک گروه آبلی است. o عضو همانی جمع میباشد. $(F - \{o\}, \times)$ (۲

(وی جمع) به ازای هر a , b , c $\in F$ برقرار است. $a \times (b+c) = ab + ac$ رابطه a , b , c $\in F$ به ازای هر

میدان مرتب

r تعریف: یک میدان مرتب، میدانی است مانند r که یک مجموعه ی مرتب است و دارای دو خاصیت زیر می باشد:

$$(x < y \implies x + z < y + Z) \quad \forall x, y, z \in F$$

 $\forall x > 0, y > 0 \implies x \times y > 0 \quad \forall x, y \in F$

مثال:

۱- $(\mathbb{R}\,,+\,, imes)$ مجموعه اعداد حقیقی با دو عمل جمع و ضرب معمولی یک میدان است.

۲- $(X, +_{\varrho} \mathbb{Q})$ ، مجموعه اعداد گویا با دو عمل جمع و ضرب معمولی یک میدان است.

حال به ویژگی از اعداد حقیقی میپردازیم که اعداد گویا دارای این ویژگی نیستند.

اصل كمال:

هر زیر مجموعهی غیر تهی و از بالا کران دار در مجموعهی اعداد حقیقی دارای کوچکترین کران بالا میباشد.

قضیه: هر زیر مجموعهی غیر تهی و از پایین کراندار در مجموعهی اعداد حقیقی دارای بزرگترین کران پایین میباشد.

اثبات:

حل: مجموعه مخالف تهی واز بالا کران دار $L=\{\,y\in\mathbb{Q}\mid y\leq x\,\,$, $\forall\,x\in E\}$ صل: مجموعه مخالف تهی واز بالا کران دار است.(چرا؟)

تمرین ۱.۱: نشان دهید مجموعه ی و از بالا کراندار $E = \{x \in \mathbb{Q} \mid x > \cdot, x^{\mathsf{r}} < \mathsf{r}\}$ یک زیر مجموعه ی و از بالا کراندار است که سوپریممی در مجموعه ی اعداد گویا ندارد.

حل: برهان خلف فرض می کنیم $p = \sup E$ قرار می دهیم:

$$q = p - \frac{p^{\mathsf{Y}} - \mathsf{Y}}{p + \mathsf{Y}}$$

واضح است که $\mathbb{Q} \in \mathbb{Q}$ و داريم:

$$q^{\tau} - \tau = \frac{\tau(p^{\tau} - \tau)}{(p + \tau)^{\tau}}$$

از اینکه معادله p دو حالت بررسی میشود. گویا دارای جواب نیست پس برای p دو حالت بررسی میشود.

p حالت اول: ۲ $q^{ ext{ iny Y}}$ از (۱) نتیجه میشود q>p و از (۲) نتیجه میشود q>p و از (۲) خالت اول: ۲

کران بالایی برای E میباشد.

حالت دوم : ۲ $p^{\tau}>1$. از (۱) نتیجه می شود q>p و از (۲) نتیجه می شود q>1 که این متناقض است با سوپریمم بودن q>1

نتیجه : مجموعهی اعداد گویا خاصیت کوچکترین کران بالایی را ندارد.(مجموعه اعداد گویا کامل نیست)

قضیه بعدی نتیجهای از اصل کمال در مجموعهی اعداد حقیقی است.

قضیه: خاصیت ارشمیدسی

x>y هرگاه x>0 دو عدد حقیقی که x>0 آنگاه عدد طبیعی مانند x>0 وجود دارد بطوری که x>0

y بنابراین $nx \leq y$ داریم $n \in \mathbb{N}$ داریم $n \in \mathbb{N}$ بنابراین $n \in \mathbb{N}$ بنابراین $n \in \mathbb{N}$ دان بالا برای مجموعه غیر تهی $n \in \mathbb{N}$ که $n \in \mathbb{N}$ میباشد. بنا بر اصل کمال وجود دارد $n \in \mathbb{N}$ که

 $m \in \mathbb{N}$ از اینکه $x > \cdot$ داریم $\alpha - x$ بنابراین $\alpha - x$ بنابراین $\alpha - x < \alpha$ در نتیجه $\alpha - x < \alpha$ در نتیجه $\alpha < (m+1)x$ در نتیجه $\alpha - x < \alpha$ در نتیجه $\alpha < (m+1)x$

چون n + 1)، این نامساوی با اینکه α کران بالایی برای A است تناقض دارد. بنابراین عدد طبیعی مانند n وجود دارد بطوری که n > y.

تمرین ۲.۱:

۱- مجموعه اعداد طبیعی از بالا کران دار نیست.

 $n \leq x < n+1$ به ازای هر عدد حقیقی x وجود دارد عدد صحیح -7

 $rac{1}{n} < x$ به ازای هر عدد حقیقی مثبت x وجود دارد عدد طبیعی n بطوری که x - ۳-

قضیه: چگال بودن اعداد گویا در مجموعه اعداد حقیقی

بین هر دو عدد حقیقی متمایز، عددی گویا وجود دارد..

 $y-x>\cdot$ بنابراین x< y دو عدد حقیقی و y,x بنابراین

 $m \in \mathbb{N}$ ابنابر خاصیت ارشمیدسی وجود دارد $n \in \mathbb{N}$ که $n \in \mathbb{N}$ در نتیجه وجود دارد y = x > 0 در $x < \frac{m}{n} < y$ (چرا؟) پس داریم: $x < \frac{m}{n} < y$ (چرا؟) پس داریم: $x < \frac{m}{n} < y$

تمرین ۳۰۱: ثابت کنید بین هر دو عدد حقیقی متمایز، عددی گنگ وجود دارد.

تمرین ۴.۱.: مجموعه اعدادمختلط میدان هست اما میدان مرتب نیست.

(برای دیدن میدان بودن اعداد مختلط به کتاب رودین مراجعه کنید)