

JOINT U.S. NAVY/U.S. AIR FORCE CLIMATIC STUDY OF THE UPPER ATMOSPHERE

VOLUME 3 - MARCH

NOVEMBER, 1989

AD-A227 124

PREPARED BY
NAVAL OCEANOGRAPHY COMMAND DETACHMENT
ASHEVILLE, N.C.

PREPARED UNDER THE AUTHORITY OF
COMMANDER, NAVAL OCEANOGRAPHY COMMAND
STENNIS SPACE CENTER, MS 39529-5000

DTIC
ELECTED
OCT 04 1990
S E D

90 10 02 093

0850LP0156000

DTAIP TR-89-10-1

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

JOINT U.S. NAVY/U.S. AIR FORCE CLIMATIC STUDY OF THE UPPER ATMOSPHERE

VOLUME 3 - MARCH

NOVEMBER, 1989

PREPARED BY
NAVAL OCEANOGRAPHY COMMAND DETACHMENT
ASHEVILLE, N.C.

DTIC
ELECTED
OCT 04 1990
S E D

PREPARED UNDER THE AUTHORITY OF
COMMANDER, NAVAL OCEANOGRAPHY COMMAND
STENNIS SPACE CENTER, MS 39529-5000

90

0850LP0156000

NAVAIR 50-1C-3

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION Unclassified		1b RESTRICTIVE MARKINGS	
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION / AVAILABILITY OF REPORT Public Release/Distribution Unlimited	
2b DECLASSIFICATION / DOWNGRADING SCHEDULE			
4 PERFORMING ORGANIZATION REPORT NUMBER(S)		5 MONITORING ORGANIZATION REPORT NUMBER(S) NAVAIR 50-1C-3 S/N 0850-LP-015-6000, AWS/TR-89/003	
6a NAME OF PERFORMING ORGANIZATION National Climatic Data Center Global Analysis Branch	6b OFFICE SYMBOL (If applicable) E/CC22	7a NAME OF MONITORING ORGANIZATION Naval Oceanography Command Detachment Asheville	
6c ADDRESS (City, State, and ZIP Code) Federal Building Asheville, NC 28801-2696		7b ADDRESS (City, State, and ZIP Code) Federal Building Asheville, NC 28801-2696	
8a NAME OF FUNDING/SPONSORING ORGANIZATION Commander, Naval Oceanography Command Headquarters, Air Weather Service		9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
8c ADDRESS (City, State, and ZIP Code) Stennis Space Center, MS 39529-5000 Scott AFB, IL 62225-5008		10 SOURCE OF FUNDING NUMBERS	
11 TITLE (Include Security Classification)	Joint U.S. Navy/U.S. Air Force Climatic Study of the Upper Atmosphere Volume 3-March		
12 PERSONAL AUTHOR(S) NCDC - Michael J. Changery, Claude N. Williams NAVOCEANCOMDET - Michael L. Dickenson, Brian L. Wallace			
13a TYPE OF REPORT Final	13b TIME COVERED FROM _____ TO _____	14 DATE OF REPORT (Year, Month, Day) November 1989	15 PAGE COUNT 236
16 SUPPLEMENTARY NOTATION			
17 COSATI CODES		18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)	
FIELD	GROUP	SUB-GROUP	
19 ABSTRACT (Continue on reverse if necessary and identify by block number)			
<p>This study of the upper atmosphere is based on 1980-85 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. Included are global analyses of (1) Mean Temperature/Standard Deviation, (2) Mean Geopotential Height/Standard Deviation, (3) Mean Density/Standard Deviation, (4) Height and Vector Standard Deviation. All for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb. In addition, analyses of (5) Mean Dew Point/Standard Deviation - levels 1000 through 300 mb, (6) jet stream (mean scalar speed) - levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.</p>			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION Unclassified	
22a. NAME OF RESPONSIBLE INDIVIDUAL Brian L. Wallace		22b TELEPHONE (Include Area Code) (704) 252-7865	22c. OFFICE SYMBOL

TABLE OF CONTENTS

	PAGE
INTRODUCTION	iv
REFERENCES	vii
ELEMENTS	
PRESSURE-HEIGHT.	1-27
WIND ROSE.	29-107
JET STREAM	109-129
TEMPERATURE.	131-157
DEW POINT.	159-171
DENSITY.	173-199
HEIGHT/WIND STANDARD DEVIATION	201-227

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input checked="" type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

The Joint U.S. Navy/U.S. Air Force Climatic Study of the Upper Atmosphere was prepared by the Officer in Charge, Naval Oceanography Command Detachment, Asheville, North Carolina under the authority of Commander, Naval Oceanography Command. Additional funding was provided by the Air Weather Service as a result of Tri-Services Climatology initiatives. The work was performed at the National Climatic Data Center (NCDC). Specific acknowledgement of the NCDC staff is made to Mr. M.J. Changery, project leader; Mr. C.N. Williams, Jr. for data processing and software development; and Messrs. M.G. Burgin and D.A. McKittrick for drafting skills. Special acknowledgement is made to the European Centre for Medium-range Weather Forecasts for providing the basic gridded analyses.

INTRODUCTION

During the past decade, improvements in the collection and assimilation of data required for more accurate representations of the atmosphere have resulted in data sets useful for developing a more definitive climatology of the global atmosphere. Such a climatology has uses in aircraft operations and planning, indirect assessments of atmospheric transport as well as a standard state from which atmospheric anomalies can be analyzed.

Prior climatologies, U.S. Navy (1959), U.S. Navy (1966), Naval Weather Service Command (1969), and Naval Weather Service Command (1970), were produced from individual station data with varying periods of record, and the resulting summarized data were analyzed. A serious deficiency was the lack of reporting locations in the major ocean basins. Analyses over the oceans were derived by extrapolating from known analyses over coastal regions as well as the few island or ocean vessels available. An additional complication was the manually intensive effort required to ensure horizontal and vertical consistency of the data.

With the advent, in the 1970s, of more powerful computers and data collection and assimilation systems, the initial analyses used for input into forecast models had a three-fold advantage over the station analyses utilized in the prior climatologies. First, the data assimilation system utilized a greater variety of information for construction of an analysis. The normal array of land-based upper air reporting stations was supplemented by ship-based reporting stations, cloud reports, pilot reports and, most importantly, satellite-derived temperature, moisture and wind data. Consequent analyses more accurately represented the state of the atmosphere at a given observation time. Second, the assimilation system quality-controlled all incoming data and ensured the horizontal and vertical consistency of the resulting analyses. Finally, through the computer-based system, global data were available and archived in grid-point form.

A number of analysis sets produced by various national and international meteorological services were investigated. It is recognized that improvements to the data assimilation and analysis systems occurred within any analysis set produced, and that current analyses more accurately reflect the atmosphere's state than do the earlier analyses. It is also recognized that specific parameter or geographic-based deficiencies exist in all analysis sets. However, the intent of this upper-air climatology effort is the production of analyses to serve the needs of the operational meteorologist. A climatology derived from global analyses achieves this goal. Based on known capabilities and technical reviews of the various systems, as well as recommendations from the professional numerical modeling community, the analyses produced by the European Centre for Medium-range Forecasts were selected for processing.

ECMWF DATA

The European Centre for Medium-range Weather Forecasts (ECMWF) is an international organization established in 1973 and supported by 17 member states. It is responsible for providing global forecasts to the European community. Their data assimilation system consists of multivariate optimal interpolation analysis allowing the incorporation of a variety of observations with differing error characteristics and spatial distributions. A relatively comprehensive coverage of global data is ensured through the data collection schedule. A unique feature of the ECMWF system is the method of grid point analysis. Rather than analyzing individual grid points, varying sized boxes (depending on data density) are created containing groups of grid points. Grid point analysis uses data from within the box as well as adjacent boxes, thereby assuring a consistent analysis between all the grid points.

The system also includes internal quality control which examines the climatological reasonability of incoming data as well as the internal consistency of the data.

In addition, the system utilizes a model initialization process which ensures that harmful gravity waves, caused by imbalances in the analysis, with the potential to create problems in subsequent forecast fields, are suppressed. Through the initialization process, the atmosphere's mass and wind fields are adjusted so that only a portion of the gravity wave balanced by dynamic and physical processes is retained. Further information on the ECMWF system is available in Lorenc (1981), Shaw, et al. (1984), Lonnberg, et al. (1986), and ECMWF (1988).

The resulting initialized analyses are vertically interpolated to these 13 standard pressure levels: 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, and 30 mb, and include the geopotential height, temperature, and wind for all levels with moisture included for the 1000 through 300 mb levels.

Six years (1980-1985) of individual analysis were obtained from ECMWF on a 2.5° global grid. Although the analyses were permanently archived as spherical harmonic coefficients, ECMWF reconstituted the analyses for use in the data processing. Synoptic analyses at six-hour intervals were received for the six-year period, but only the 00 and 12Z analyses were re-sorted into a grid point sort. Given the quality control performed by ECMWF on collected data and the requirements for horizontal and vertical data consistency imposed by the assimilation system, minimal quality control was performed prior to summarization. Primary quality control was limited to comparison of level data against known/estimated climatological extremes.

The summarized grid point data were objectively analyzed, machine-contoured by parameter and level on polar stereographic (0°-90°N and S) and cylindrical equidistant (0°-60°N and S) projections with resulting contours machine-labeled. In addition, individual wind observations were consolidated into eight 45° segments centered on directions north, northeast, through northwest for display as wind roses on a series of cylindrical equidistant projections.

Since the ECMWF analyses were archived as spectral harmonic coefficients, the grid point reconstitution process provides data for all global 2.5° grid points. This naturally includes (for the 1000 through 700 mb levels) selected grid points at which the land elevations exceed the height of the pressure surface. For these grid points, a blanking program was used to eliminate both contours and grid point wind roses.

ANALYSES

1. Pressure-Height

Grid point geopotential height values (in dekameters) are summarized by month for 13 levels from 1000 mb to 30 mb with solid and dashed contours of mean values presented on pressure height charts. Standard deviation of height is calculated from the individual daily values with contours presented on a separate chart series including the standard deviation of vector mean wind. Local points of highest and lowest pressure are designated with H's and L's on the analyzed charts. Not all pressure centers are enclosed by closed contours. Vector mean wind in 5-knot increments are calculated for selected grid points considered adequate to depict flow for the hemisphere with wind shaft orientation related to specific latitude/longitude lines. Vector mean winds less than 2.5 knots are depicted as a shaft with no barbs. Contours of mean geopotential height and vector mean wind barbs are presented for the northern/southern hemispheres on polar stereographic projection and for 0° to 60° north and south on cylindrical equidistant projections with blanking for appropriate high elevation land areas on the 1000 through 700 mb charts.

2. Wind Roses

Wind roses for 10° grid points from 5° to 85° north and south are presented by month for all levels from 1000 mb to 30 mb. Each hemisphere is divided into three longitudinal zones: 60°W to 60°E, 60°E to 180°E, and 180°W to 60°W. Each rose presents:

- a) Scalar mean speed
- b) Percent frequency of occurrence from each of 8 cardinal point wind directions proportional to shaft length with dots on the shafts representing 5 percentile intervals.
- c) Mean speed for each of the 8 cardinal wind directions rounded to the nearest 5 knots.

Roses for grid points on the 1000 mb through 700 mb level charts are blanked whenever the land elevation exceeds the mean geopotential height of the specified level.

3. Temperature

Grid point temperature data (in °C) are summarized by month for 13 levels from 1000 mb to 30 mb with solid and dashed contours of mean values presented on pressure height charts. Temperature standard deviation derived from the individual observations are shown on the same charts with dotted contours. Contours are presented for both the northern and southern hemispheres on a polar stereographic projection and for the zone from 0° to 60° north and south on cylindrical equidistant projections with blanking for appropriate high elevation land areas on the 1000 through 700 mb charts.

4. Dew Point

Grid point moisture data were received as mixing ratios for the period through April 19, 1982 and as relative humidity thereafter for the 1000 through 300 mb levels. All moisture data were converted to dew point values. These are summarized by month with solid and dashed contours of mean values presented on pressure height charts. Dew point standard deviation derived from the individual observations are shown on the same charts with dotted contours. Contours are presented for both the northern and southern hemispheres on a polar stereographic projection and for the zone from 0° to 60° north and south on cylindrical equidistant projections with blanking for appropriate high elevation land areas on the 1000 through 700 mb charts.

5. Density

Grid point density data were computed from the daily values of temperature and pressure from the equation of state in the form

$$\rho = \frac{P}{RT}$$

where ρ is the density, P is the pressure, T is the temperature, and R is the gas constant. Density was computed for moist air through 300 mb and for dry air from 250 mb to 30 mb. Density data (in Kg/m³) are summarized by month for all 13 levels with solid and dashed contours of mean values presented on pressure height charts. Density standard deviation derived from individual observations are shown on the same charts with dotted contours. Contours are presented for both the northern and southern hemispheres on a polar stereographic projection and for the zone from 0° to 60° north and south on cylindrical equidistant projections with blanking for appropriate high elevation land areas on the 1000 through 700 mb charts.

6. Standard Deviation of Height and Vector Mean Wind

Standard deviation of the height and vector mean wind data presented on the pressure height charts are presented on monthly charts for the 1000 through 30 mb levels. Height standard deviations (in dekameters) are presented as solid contours and vector wind standard deviations (in knots) as dashed contours. Contours are presented for both the northern and southern hemispheres on a polar stereographic projection and for the zone from 0° to 60° north and south on cylindrical equidistant projections with blanking for appropriate high elevation land areas on the 1000 through 700 mb charts.

7. Jet Stream

Grid point scalar mean wind speed (in knots), as presented by the value in the center of the wind rose octagons, are summarized by month and analyzed for 500 through 30 mb. All speeds exceeding 50 knots are shaded with shading intensity increasing by 25-knot increments. Contours are presented for both the northern and southern hemispheres on a polar stereographic projection and for the zone from 0° to 60° north and south on cylindrical equidistant projections.

DATA AVAILABILITY

Monthly summarized grid point data for the period of record for all levels from 1000 through 30 mb have been retained on magnetic tape. Data available, per level, include:

Number of observations
Mean zonal wind component and standard deviation
Mean meridional wind component and standard deviation
Vector mean wind and standard deviation
Mean temperature and standard deviation
Mean dew point (through 300 mb) and standard deviation
Mean geopotential height and standard deviation
Mean density and standard deviation
Mean scalar wind speed and percentage of observations for each designated direction

Similarly summarized data for each half-month of the 1980-85 period are also available on magnetic tape. Summaries can be provided on magnetic media or in listing form by the National Climatic Data Center.

REFERENCES

- ECMWF, 1988: User guide to ECMWF products.
- Lorenc, A.C., 1981: A global three-dimensional multivariate statistical interpretation scheme. Monthly Weather Review, **109**, 701-721.
- Lonnberg, P., J. Pailleux, and A. Hollingsworth, 1985: The new analyses system. ECMWF Technical Memorandum No. 125.
- Naval Weather Service Command, 1969: Climate of the Upper Air - Southern Hemisphere, VOL I, Temperature, Dewpoint and Heights at Selected Pressure Levels, NAVAIR 50-1C-55.
- Naval Weather Service Command, 1970: Selected Level Heights, Temperatures and Dewpoints for the Northern Hemisphere, NAVAIR 50-1C-52.
- Shaw, D.B., P. Lonnberg, and A. Hollingsworth, 1984: The 1984 revision of the ECMWF Analysis System. ECMWF Technical Memorandum, No. 92.
- U.S. Navy, 1959: Upper Wind Statistics Charts of the Northern Hemisphere, VOL I-III, NAVAIR 50-1C-535.
- U.S. Navy, 1966: Components of the 1000 mb Winds of the Northern Hemisphere, NAVAIR 50-1C-51.

PRESSURE - HEIGHT
(13 LEVELS, 1000 TO 30 MB)

- Contours of mean height (solid and dashed lines) in geopotential dekameters; example: 580 is 5800 geopotential meters; solids labeled, dashed intermediates unlabeled
- Height labeled interval:

6 dekameters (60 meters) - 1000 MB to 400 MB
12 dekameters (120 meters) - 300 MB to 200 MB
8 dekameters (80 meters) - 150 MB to 30 MB
- Vector mean wind in knots
- Contours blanked for geographic areas with elevations exceeding specified geopotential heights

ELEVATION SCALE

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

850 MB

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

1000 Mb

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

850 MB

Upper Air Climatology

Northern Hemisphere

Fig. 32. *Amphibolite* of Shallow Harbour

Maze Response and Motor Skills

$$W_{2,2}(x_1)W_{2,2}(x_2)W_{2,2}(x_3)$$

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

500 mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Northern Hemisphere

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

200 mb

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

510 MB

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology Southern Hemisphere

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

Mech

500 MB

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

40° N

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Geopotential Height (dkm)
Vector Mean Wind (kt)
March
600 MB

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

810 Mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology

Southern Hemisphere

Mean Geopotential Height (dm)

Vector Mean Wind (m/s)

March

300 mb

Mean Geopotential Height (dkm)

Upper Air Climatology

Vector Mean Wind (kr)

Northern Hemisphere

March

500 mb

Upper Air Climatology
Southern Hemisphere

Mean Geopotential Height (Gpm)

Vector Mean Wind (m/s)

March

250 MB

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

500 mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

850 mb

Mean Geopotential Height (dkm)

Vector Mean Wind (km)

Digitized by

卷之三

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology

Northern Hemisphere

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

100 hPa

Upper Air Climatology
Northern Hemisphere

Mean Geopotential Height (dkm)
Vector Mean Wind (kt)
March
100 hPa

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

70 MB

Upper Air Climatology

Northern Hemisphere

Topics in Climatology
Southern Hemisphere

Mean Geopotential Height (d.h.m)

Vector Mean Wind (kts)

March

70° N

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

50 MB

Upper Air Climatology Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Geopotential Height (dkm)
Vector Mean Wind (kt)
March
50 Mb

Upper Air Climatology
Southern Hemisphere

Mean Geopotential Height (dkm)

Vector Mean Wind (kt)

March

1000 hPa

WIND ROSES
(13 LEVELS, 1000 TO 30 MB)

- Wind roses at 10 degree latitude/longitude grid points
- Directional mean wind speed in 5 knot increments
- Frequency proportional to barb length with individual dots representing 5% increments. Values greater than 30% are plotted directly on the barb.
- Roses blanked at grid points with elevations exceeding specified geopotential heights.
- Sample rose explanation:

ELEVATION SCALE

MARCH
1000 MS

JULY 1968
WIND ROSES

Upper Air Climatology
Northern Hemisphere

MARCH

故人不以爲子也。故曰：「子」者，子孫也。故曰：「子」者，子孫也。

Upper Air Climatology Southern Hemisphere

MARCH
85° MIS

3000 ft.
WIND. ROSE

1980 ft.
NORTHERN HEMISPHERE

March
850 M²

2000 m²
1000 m²

Top 2000 m²
Bottom 1000 m²

Fig. 3: Raman Cross Sections
Spectra 1-100, 700 MHz

Spectra 101-200
700 MHz

Matrix
700 MHz

References
700 Mats

Chemical
Compounds

Figure 2
Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

500 mb 500 mb
500 mb 500 mb

Merid.
500 mb

Type A Climatology
Northern Hemisphere

2000
1000
0000

1000
800
600

0° 20° 40° 60° 80° 100° 120° 140° 160° 180°

Upper Air Climatology
Southern Hemisphere

1950-51, 1951-52
1952-53, 1953-54

MARCH
500 MB

Map 2: Arctic Glaciology
Northern Hemisphere

C. 1950
Scale 1:2,500,000

Upper Air Climatology
Southern Hemisphere

Climatic Data
Volume 1
Part 1

March
1971

Wind roses

Northern Hemisphere

MARCH
400 MM.

1930
1930

1930
1930
1930
1930

THREE-ARM TRIAL DESIGN

卷之三

四三

March
25, 1911

Chemical
Section
U. S. Bureau
of Standards

Report of the
Committee on
Standard Reference
Compounds

Fig. 3.2. *Chemical structures of 90 compounds*
in the *bioassay* of 2,6-naphthalimide.

Fig. 3.3.

Fig. 3.4.

Upper Air Climatology
Southern Hemisphere

Climatic Summary
1951-1955

March
2000 Met.

۱۰۷

卷之三

Notes on the Author's Geography

19
10
19
10
19
10
19
10

57
57
59
59
59
59
59
59

49
51
54
54
54
54
54
54

56
56
56
56
56
56
56
56

53
53
53
53
53
53
53
53

51
51
51
51
51
51
51
51

51
51
51
51
51
51
51
51

51
51
51
51
51
51
51
51

NMR AND CHROMATOGRAPHIC
CHARACTERISTICS OF POLYENE

TABLE 4

REFERENCES

METHOD
70 MB

DATA CLASSIFICATION
WIND ROSE

TYPE AND CHARTS
Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

McKee, J. C.
1955

McKee
1955

MARSHALL
EG. 1971

Southern Hemisphere
Upper Air Climatology
1971

YERGIN & CO. CHART OF
Northern Hemisphere

Chart No. 25
Scale 1:25,000,000

No. 2522
50 Miles

Map 21. All Countries
Northern Hemisphere

卷之三

卷之三

Fig. 10
Winged Process

Upper and Lower
Metathem Henning

March
30 M.

Upper Air Climatology
Southern Hemisphere

500E T62 1801B
Wind Rose

March
30 MB

**JET STREAM
(10 LEVELS, 500 TO 30 MB)**

- Contours of mean scalar wind speed in knots
- Minimum mean scalar speed: 50 knots
- Contour interval of mean scalar speed: 25 knots

ELEVATION SCALE

1000000

1000000000

10000000000

100000000000

Vogel And Schindler

Northland Memory Home

Upper Air Climatology

Southern Hemisphere

Jet Stream

51st + 49th Ave

March

500 MB

Jet Stream
50kt + 25kt inc
March
400 MB

Upper Air Climatology
Northern Hemisphere

Upper Air Climatology
Cochrane Holdings Inc.

Jet Stream
Cochrane Holdings Inc.
Marcon
601 MI

For Discussion

Chief of Air Weather Service

Memorandum

To: [unclear]

Upper Air Climatology

Northern Hemisphere

Types of the Elementary

Conclusions

卷之三

—
—
—

卷之三

— 10 —

Journal of Arctic Climatology Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Jet Stream
50°S + 70°S 1200
1000
1500 1800

Jet Streams

Clouds & Cloud Phys.

Marine

Atmos.

Upper Air Climatology

Northern Hemisphere

Viggo Karrer
Viggo Karrer

Scandinavian Biochemistry

Det Danske

Forskningsrådet og

Mærket

120 MHz

Jet Stream

500 mb 1000 mb

March

850 mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Jet Stream
50kt + 25kt inc
March
250 MI

Jet Stream

1000-500 mb

Merid.

10-30°

Upper Air Climatology

Northern Hemisphere

Type 50 Airex Chromotherapy

Dr William Klemmapham

Set Dimension

Chromotherapy

Dimension

Dimension

50

50

90° SW

SW

SE

SE

50

50

90° S 20° E 90° W 5° N 90° E 70° N

9:00 AM 8/20

Cloud Cover 100%

Altitude

10,000'

Upper And Ozoneology

Midtrop. Hemisphere

Wind

W 20°

Temp

50° F

Humidity

50%

Pressure

1010 mb

Clouds

Scattered

Wind

W 20°

Temp

50° F

Humidity

50%

Pressure

1010 mb

Clouds

Scattered

Wind

W 20°

Temp

50° F

Humidity

50%

Pressure

1010 mb

Clouds

Scattered

Wind

W 20°

Temp

50° F

Humidity

50%

Pressure

1010 mb

1930-1931 - 1932-1933

2. The 2nd Major Opus

92-22254-12

SOMMARIO

100

1041

Wind \leftarrow 50kt

21

Met Service

Environment Canada

Montreal

20 May

Upper Air Climatology

Northern Hemisphere

10³ hPa

Wind < 50kt

Type of Air Masses
Southern Hemisphere

Jet Stream
Cold & Warm air
Monsoon
OC. 220

Jet Stream

50kt + 25kt inc

March

21 1973

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Jet Stream
50kt + 25kt inc
March
30 MB

TEMPERATURE
(13 LEVELS, 1000 TO 30 MB)

- Contours of mean temperature (solid and dashed lines) in °C; solids labeled, dashed intermediates unlabeled
- Temperature labeled interval: 5°C
- Contours of standard deviation of temperature (dotted lines) in °C
- Standard deviation of temperature labeled interval: 2.5°C
- Contours blanked for geographic areas with elevations exceeding specified geopotential heights

ELEVATION SCALE

Mean Temperature (°C)

Std Dev (Dotted)

March

1000 mb

Upper Air Climatology
Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Temperature (°C)
Std Dev (Dotted)
March
1000 Mb

Mean Temperature (°C)

Std Dev < Dotted >

March

850 MB

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Temperature (°)

Std Dev <Dotted>

March

350 Mb

Mean Temperature (°C)

500 mb <Dotted>

March

850 mb

Upper Air Climatology

Northern Hemisphere

Fig. 2. A New Suborder

2. What is Management?

Mean Temperature (c)

Std Dev < Dotted >

March

500 Mb

Upper Air Climatology
Northern Hemisphere

Upper Air Climatology Southern Hemisphere

Mean Temperature (c)
Std Dev <Dotted>
March
500 Mb

第2回 第3回 第4回 第5回 第6回 (2)

REFERENCES

1000 K.

卷之三

Figure 3.3 Risk Classification

REFERENCES

Upper Air Climatology

Station Readings

Mean Temperature (°C)

Std Dev < 2.5

Mean

41.1 MM

Mean Temperature (°C)

Std Dev < Dotted >

March

300 Mb

Upper Air Climatology
Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Temperature (°C)
Std Dev <Dotted>
March
300 MB

Middle Ground section (c)

2000 ft. thick section (c)

Marl

2000 ft.

Top of Marl Shale

Marl Shale, Middle Ground

1970-71 Annual Summary

2000 ft. Mean Sea Level

1970-71 Mean Sea Level (C)

2000 ft. Mean Sea Level

Mean Sea

Level

-60

-60

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

-50

Std.Dev < 2.5

-60

-60

-60

-60

-60

-60

-50

-50

-50

-50

-50

-50

-40

-40

-40

-40

-40

-40

-30

-30

-30

-30

-30

-30

-20

-20

-20

-20

-20

-20

Mean Temperature (°C)

2000 ft. above sea level

Mean S.L.

Upper Air Climatology

Mountain Meteorology

Wet Day Climatology

21 March 1968

Mean Temperature (°C)

Std Dev < 2.5

March

42.2 MSL

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

Mean Temperature (°C)

2000 m. (6600 ft.)

Mean

2000 m.

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Temperature (°)

Std Dev < Dotted >

March

150 MB

Std. Dev. < 2.5

Std. Dev. < 2.5

Mean Temperature (°C)

500 mb

Mean

200 mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Temperature (°C)
Std Dev < Dotted
March
100 MB

Std.Dev. < 2.5

Molar Temperatures (°)

CH₃OH + HCl →

Molar

T_m (°C)

Fig. 8.7 AND DISCUSSION

Thermal Conductivities

Upper Air Climatology
Southern Hemisphere

Mean Temperature (°C)

Std Dev < Dotted >

March

70 Mb

Mean Transportation (c)

201 Day 42 (cont'd)

四二六

G. H. DAVIS

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology

Northern Hemisphere

Mean Temperature (°)

Std Dev (°C)

March

50 mb

Std.Dev. < 2.5

-65

2.5

-55

25° N

70° N

0°

30° S

60° S

Mean Temperature (°C)

Std Dev <Dotted>

March

300 MBs

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology Southern Hemisphere

Mechanical Properties (c)

Dr. Dyer's Case?

2120

• 100 •

DEW POINT
(6 LEVELS, 1000 TO 300 MB)

- Contours of mean dew point (solid and dashed lines) in °C; solids labeled, dashed intermediates unlabeled.
- Dew point labeled interval: 5°C
- Contours of standard deviation of dew point (dotted lines) in °C
- Standard deviation of dew point labeled interval: 2.5°C
- Contours blanked for geographic areas with elevations exceeding specified geopotential heights

ELEVATION SCALE

Mean Dew Point (°C)

Std Dev <0.5°C

March

1000 MB

Upper Air Climatology
Northern Hemisphere

Report from Committee of 3

Mean Mass Function

Upper Air Climatology
Northern Hemisphere

Mean Dew Point (°C)

Sea Level (Dotted)

1000 mb

850 mb

700 mb

600 mb

500 mb

400 mb

300 mb

200 mb

100 mb

50 mb

20 mb

10 mb

0 mb

Mean Dew Point (°)

20 May 1950 (cont'd)

Map

500 mb

Upper Air Climatology

Northern Hemisphere

Type of Climate

British Columbia

Mean Dew Point (°C)

Dew Point (°C)

Max.

Min.

Mean Dew Point (°C)

Sea Level < Dotted >

Max 300

1000 mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Dew Point (c)

Std Dev < Dotted >

March

500 mb

Mean Dew Point (°C)

Std. Dev. (Cels.)

Mean

Std. Dev.

Type of Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Dew Point (°C)
Std Dev (Dotted)
March
600 MB

Mean Dew Point (°C)

Off West Coast of U.S.

Marion

Galapagos

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Dew Point (c)

Std Dev < Dotted >

March

850 Mb

DENSITY
(13 LEVELS, 1000 TO 30 MB)

- Contours of mean density (solid and dashed lines) in kilograms/cubic meter; solids labeled, dashed intermediates unlabeled
- Density labeled interval:
 - .02 kilograms/cubic meter - 1000 MB to 400 MB
 - .01 kilograms/cubic meter - 300 MB to 200 MB
 - .006 kilograms/cubic meter - 150 MB to 30 MB
- Contours of standard deviation of density (dotted lines) in kilograms/cubic meter
- Standard deviation of density labeled interval:
 - .01 kilograms/cubic meter - 1000 MB to 400 MB
 - .005 kilograms/cubic meter - 300 MB to 200 MB
 - .003 kilograms/cubic meter - 150 MB to 30 MB
- Contours blanked for geographic areas with elevations exceeding specified geopotential heights

ELEVATION SCALE

Mean Density (kg/m^3)

Std Dev < Dotted >

March

1000 MB

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Density (kg/m^3)

Snd Dev < Dotted >

March

1010 MB

Mass Density (kg/m³)

2021 Day 20

M. G. S. K.

202 MRS

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Density (kg/m^3)

Std Dev < Dotted >

March

850 Mb

Mean Density (kg/m^3)

Std Dev < Dotted >

March

700 hPa

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Density (kg/m^3)
Std Dev < Dotted >
March
700 Mb

Std Dev < 0.010

Mean Density (kg/m^3)

Std Dev <Dotted>

March

500 Mb

Upper Air Climatology
Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Density (kg/m^3)
Std Dev < Dotted >
March
500 Mb

Std Dev < 0.010

Std Dev < 0.010

Mean Density (kg/m^3)

Std Dev <Dotted>

Minim.

4.11 kg/m^3

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Density (kg/m^3)

Std Dev (Dotted)

March

600 mb

Mean Density (kg/m^3)

Std Dev < Dotted >

March

300 MB

Upper Air Climatology

Northern Hemisphere

Std.Dev. < 0.005

Upper Air Climatology
Southern Hemisphere

Mean Density (kg/m^3)
Std Dev < 0.005
March
200 MB

Mean Density (kg/m^3)

2000 Bar < Dotted >

March

250 mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology

Southern Hemisphere

Mean Density (kg/m^3)

Std. Dev. < Dotted >

March

1000 mb

Std. Dev. < 0.005

Mean Density (kg/m³)

Std Dev <Dotted>

१८२

二〇一〇年

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology

Southern Hemisphere

Mean Density (kg/m^3)

Std Dev < 0.005

March

1971 MSL

Mean Density (kg/m^3)

Std Dev < Dotted >

March

150 Mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Density (kg/m^3)

Std Dev < Dotted >

March

150 Mb

Std.Dev. < 0.003

Mean Density (kg/m^3)

Std Dev < Dotted >

March

100 Mb

Upper Air Climatology
Northern Hemisphere

Upper Air Climatology

Southern Hemisphere

Mean Density (kg/m³)

Std Dev <Dotted>

March

100 Mb

Mean Density (kg/m^3)

Std Dev < Dotted >

March

70 Mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology Southern Hemisphere

Mean Density (kg/m³)

Std Dev S^Q (n=6)

M. S. RAO

71 M.

Digitized by srujanika@gmail.com

Std Dev < 0.003

3120 1.

—
—
—

0 154

20

Mean Density (kg/m^3)

Std Dev < Dotted >

March

50 Mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Mean Density (kg/m^3)
Std Dev < Dotted
March
50 MB

Mean Density (kg/m³)

Std Dev < Dotted >

March

90 Mb

Upper Air Climatology

Northern Hemisphere

120° E

0.043

0.040

0.038

0.036

0.034

0.032

0.030

0.028

0.026

0.024

0.022

0.020

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

Density > 0.048

Std Dev. < 0.003

0.048

0.048

0.048

0.048

Density > 0.048

Std.Dev. < 0.003

20° N

30° N

0°

30° S

40° S

Upper Air Climatology

Southern Hemisphere

Mean Density (kg/m^3)

Std Dev < Dotted >

March

30 MB

Density > 0.048

Std. Dev. < 0.003

Density > 0.048

Std. Dev. < 0.003

**STANDARD DEVIATION OF HEIGHT
STANDARD DEVIATION OF VECTOR MEAN WIND
(13 LEVELS, 1000 TO 30 MB)**

- Contours of standard deviation of height (solid lines) in geopotential dekameters
- Standard deviation of height labeled interval:
 - 3 dekameters (30 meters) - 1000 MB to 400 MB
 - 6 dekameters (60 meters) - 300 MB to 200 MB
 - 4 dekameters (40 meters) - 150 MB to 30 MB
- Contours of standard deviation of vector mean wind (dashed lines) in knots
- Standard deviation of vector mean wind labeled interval: 5 knots
- Contours blanked for geographic areas with elevations exceeding specified geopotential heights

ELEVATION SCALE

Height (km) vs Day <Solid>

Weighted Total Decay (km)

مکالمہ

100-3 101

Upper Air Climatology Northern Hemisphere

Upper Air Climatology
Northern Hemisphere

Height (dkm) Std Dev <Solid>

Vector Std Dev (ft)

March

1020 MB

Height (dkm) Std Dev <Solid>

Vector Std Dev (m)

March

850 MB

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Height (dkm) Std Dev <Solid>
Vector Std Dev (kt)
March
850 Mb

Height (dkm) Std Dev <Solid>

Vector Std Dev (kt)

March

200 hPa

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology
Southern Hemisphere

Height (km) Std Dev <Solid>

Vector Std Dev (kt)

March

700 Mb

Height (km) Std Dev <Solid>

Vector Std Dev (kt)

Meteo

500 mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology

Central Hemisphere

Height (km) Std Dev (Goddard)

Height Std Dev (mb)

MARSH

500 mb

50

50

50

50

50

Height (mm) CM Det (Solid)

Location (Lat, Long, Alt)

Metric

2000m

Upper Ann Glaciology

Northern Hemisphere

Page 32 of 42 Page 32 of 42

Chlorine Flushing Loss

Weight (kg) 21.23 ± 0.21

Wavelength Selection (g)

۱۷۰

卷之三

Height (km) Std Dev <Solid>

Weight Std Dev (kg)

Mean

SD

Upper Air Climatology
Northern Hemisphere

Type and Mineralogy

Geologic Map

Hemite (brown) 300 feet (C)

Pyrite (black) 200 feet (B)

Magnetite

100 feet (A)

Height (mm) Off Base (Off Grid)

Width 200' 100' (ft)

Material

150

Type and Geomorphology

Horizon, lithology

100% C. 100% H. 100% O.

100% C. 100% H. 100% O.

Height (cm) 100% C. 100% O.

Height (cm) 100% C. 100% O.

Region (km) 200 Lat (deg)

Longitude (deg)

Altitude

Wind (m/s)

35.0

10.0

Upper Air Climatology

Northern Hemisphere

Upper Trop. Thermatology
Northern Hemisphere

Height (km) Std Dev <Solid>

Vector Std Dev (km)

March

201 198

Height (km) Std Dev <Optim>

Vertical Std Dev (km)

Merid.

100 mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology

Northern Hemisphere

Height (dkm) Std Dev < Solid>

Vector Std Dev (km)

March

150 MB

Height (dkm) Std Dev < Solid>

Vector Std Dev (kt)

March

1000 mb

Upper Air Climatology

Northern Hemisphere

Upper Air - Standard Dev.

Standard Deviation

Height (ftm) Std.Dev < 12.0

Weight Std.Dev (kg)

Mean

SD

Max

Min

Height (dkm) Std Dev <Solid>

Vector Std Dev (kt)

March

1000 mb

Upper Air Climatology

Northern Hemisphere

Upper Air Climatology

Northern Hemisphere

Height (dkm) Std Dev < Solid>

Vector Std Dev (kt)

March

700 MB

王澤生(王澤生) 著《王澤生文集》

$$V_2 \approx 1.5 \times 10^{-2} \text{ eV}^2$$

三

卷之三

۱۰۷

1963 AND 1964

Matthew Hembree 3

Height (cm) Std Dev < 12

Weight (kg) Std Dev (kg)

Mean

S.D.

15.0

10.0

15.0

10.0

10.0

12.5

10.0

10.0

10.0

10.0

10.0 10.0

10.0

10.0

Height Std Dev < 12

10.0

10.0

10.0

10.0

15.0

Height Std.Dev. < 12

10.0

10.0

15.0

10.0

10.0

10.0

10.0

10.0

12

Height (km) Std Dev <Solid>

Westerl Std Dev (km)

March

12 May

Upper Air Climatology

Northern Hemisphere

