INTERPOLATION

Homer's Rule: Instead of evaluating $P(X) = a_0 + a_1 X + a_2 X^2 + ... + a_n X^n$ [3n flops] Eval $P(X) = a_0 + X(a_1 + X(a_3 + ... + X(a_n))...)$ [2n flops]

Polynomial Interpolation: Given $S = \{(t_i, y_i)\}_{i=1}^m$, find unique $P_{m-1}(t) = C_1 + C_2 + \dots + C_{m-1} + \dots + C_{m-1} + \dots + C_m +$

Solving $\begin{cases} C_1 + C_2 t_1 + C_3 t_1^2 + ... + C_m t_1^{m-1} = y_1 \\ C_1 + C_2 t_2 + C_3 t_2^2 + ... + C_m t_2^{m-1} = y_2 \\ C_1 + C_2 t_3 + C_3 t_3^2 + ... + C_m t_3^{m-1} = y_3 \end{cases}$

is the same as $\begin{bmatrix}
1 & t_1 & t_1^2 & \cdots & t_n^{m-1} \\
1 & t_2 & t_1^2 & \cdots & t_n^{m-1}
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_2 \\
C_3
\end{bmatrix} = \begin{bmatrix}
Y_1 \\
Y_2
\end{bmatrix}$ (vandermonde montrix) $\begin{bmatrix}
1 & t_3 & t_3^2 & \cdots & t_n^{m-1} \\
1 & t_3 & t_3^2 & \cdots & t_n^{m-1}
\end{bmatrix}
\begin{bmatrix}
C_n \\
C_n
\end{bmatrix}$ $\begin{bmatrix}
Y_1 \\
Y_2
\end{bmatrix}$

Using IEEE double precision gets Cs to about 4 digits of accuracy.

- difficult to be accurate.

Another approach.

 $P_{m-1}(t) = C_1 + C_2 + C_3 + C_3 + \dots + C_m + t^{m-1}$ is expressed using monomial basis $\{1, t, t^2, \dots, t^{m-1}\}$

Suppose { ti(t)} is a basis for Pm-1

$$\begin{bmatrix} b_1(t_1) & b_2(t_1) & \cdots & b_m(t_1) \\ b_1(t_2) & b_2(t_2) & \cdots & b_m(t_2) \\ \vdots & \vdots & \ddots & \vdots \\ b_1(t_m) & b_2(t_m) & \cdots & b_m(t_m) \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{bmatrix} = \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_m \end{bmatrix}$$

Choose B=I (identity matrix), then L=y LAGRANGE BASIS

Construct Dasis s.t. b; (tj) = { | when i=j

We want $b_1(t_2) = 0$ —D includes $(t \cdot t_1)$ $b_1(t_m) = 0$ —D includes $(t - t_m)$

so for $b_1(t_1) = (t-t_2)(t-t_3)...(t-t_m)$

we wont $b_1(t_1)=1$ so scale by $\frac{1}{(t_1-t_2)(t_1-t_3)...(t_1-t_m)}$ So $b_1(t)=\frac{(t-t_2)(t-t_3)...(t-t_m)}{(t_1-t_2)(t_1-t_3)...(t_1-t_m)}$

 $b_{R}(t) = \prod_{\substack{j=1\\j \neq R}}^{m} \frac{(t-t_{j})}{(t_{R}-t_{j})}$

$$Y = \lambda = I$$

$$\lambda = Y$$

Choose B = Lower triangular

Newton Basis

ERROR

$$f(t) - P_{m-1}(t) = \frac{1}{m!} \cdot f^{(m)}(c_t) \cdot w_m(t)$$

- Ct some point in (t, tm) that depends on t

$$-W_{m}(t) = (t-t_{1})(t-t_{2})...(t-t_{m}) = \prod_{i=1}^{m} (t-t_{i})$$

$$\max_{t \in [t, t_m]} \left| f(t) - p_{m-1}(t) \right| \leq \frac{1}{m!} \max_{t \in [t, t_m]} \left| f^{m}(t) \right| \max_{t \in [t, t_m]} \left| w_m(t) \right|$$

 $max|w_n(t)|$ is messy for m>4, but we can show $t(Et,t_n)|w_n(t)| = \frac{h^m(m-1)!}{4}$ - $h=max|t_{i+1}-t_i|$

NONLINEAR EQUATIONS

Intermediate Value Theorem (IVT)

Bisection Method

given continuous f(x), L, R s.t. $f(L) \cdot f(R) \cdot co$, $L \cdot cR$ While $\frac{1}{2}(R-L) > ABSTOL$: m = L + (R-L)/2if sign(f(L)) == sign(f(M)): L = Melse: R = M $X^* = L + (R-L)/2$

After n intervals, error is $e_n = |m_n - x^*| \le \frac{1}{2^n} |R_r - L_r|$

Fixed Point Iteration: find p* s.t. g(p*)=p* where g(x)= x-f(x)

Compute $x_0 = 0$ then $x_{i+1} = g(x_i)$

until |X1+1-X1 | < 5 × 10-7

 $g\in C[a,b]$, $\forall x\in [a,b]$, $g(x)\in [a,b]=> g(x)$ has fixed point in [a,b]

g'(x) exists on $(a,b) \land lg'(x) \mid \leq K < l \forall x \in (a,b) = \}$ fixed point is unique

Newton's Method

 $\begin{cases} x^{i+1} = x^i - \frac{f(x^i)}{f(x^i)} \\ x^o = g(xe) \text{ initial gives} \end{cases}$

Fixed partition with $g(x) = x - \frac{f(x)}{f(x)}$

Secant Method

 $\begin{cases} x_{i+1} = x_i - \frac{f(x_i)(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})} \\ \text{where } x_{o_i} x_i \text{ is given} \end{cases}$

Rate Of Convergence: lim + eith (ei) = c = 0

Bisection: $e_{i+1} = \frac{1}{2}e_i \rightarrow \lim_{x_i \to x_i} \frac{e_{i+1}}{e_i} = \frac{1}{2}$ and v = 1

r=1 means linear convergence

121 meus supertineur converyence

Newton:
$$e_{i+1} = \left| \frac{f''(\theta)}{2f'(x_i)} \right| e_i^2 \longrightarrow \lim_{x_i \to x_*} \frac{e_{i+1}}{e_i^2} = \left| \frac{f''(\theta)}{2f'(x_i)} \right| = Constant$$

r=2 quadratic convergence

if $f'(x^{*}) = 0$, x^{*} is a multiple root and convergence is linear

Securt:
$$\frac{1}{x_{i}} \frac{e_{i+1}}{e_{i}e_{i+1}} = \frac{1}{x_{i}} \frac{e_{i+1}}{e_{i}} = C \neq 0$$
 for $r = \frac{1}{2} = 1.618$