Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

8 Settembre 2020 - 9:00 ESAME ONLINE

2. Sia assegnata la funzione

$$f(x) = \frac{1}{1 + 900x^2}, \quad x \in [-1, 1].$$

Scrivere lo script Matlab es2_parte1.m in cui

a) si determinano i due polinomi di interpolazione di grado n=5:5:30 della funzione f (rispettivamente detti $p_n^{(e)}(x)$ e $p_n^{(c)}(x)$) che si ottengono dalla formula di Newton sui nodi equispaziati $x_i^{(e)} = -1 + \frac{2(i-1)}{n}, \ i=1,...,n+1$ e sui nodi di Chebyshev $x_i^{(c)} = \cos\left(\frac{(2i-1)\pi}{2(n+1)}\right), \ i=n+1,...,1;$

Punti: 4

b) dopo aver creato la Figura 1 e suddiviso la finestra grafica in 2×3 sottofinestre, si disegnano nelle 6 sottofinestre i grafici di $r^{(e)}(x) = |f(x) - p_n^{(e)}(x)|, x \in [-1, 1]$ al variare di n;

Punti: 2

c) dopo aver creato la Figura 2 e suddiviso la finestra grafica in 2×3 sottofinestre, si disegnano nelle 6 sottofinestre i grafici di $r^{(c)}(x) = |f(x) - p_n^{(c)}(x)|, x \in [-1, 1]$ al variare di n;

Punti: 2

d) si calcolano le approssimazioni della costante di Lebesgue sia nel caso di nodi equispaziati che di Chebyshev, e si rappresentano in un grafico in scala semilogaritmica su y (comando semilogy eventualmente preceduto da set(gca,'yscale','log')) al variare di n (Figura 3).

Punti: 4

Scrivere lo script Matlab es2_parte2.m in cui

e) Si generi un segnale $\mathbf{x}(\mathbf{t})$, box di durata \mathbf{s} sec ed ampiezza A=1. Si campioni nel dominio temporale con un passo \mathbf{dt} =100 ms. L'asse temporale su cui è definito il segnale è \mathbf{t} =[0: \mathbf{dt} : \mathbf{Lt}]. Si calcoli in MATLAB la trasformata di Fourier del segnale $\mathbf{x}(\mathbf{t})$, e si verifichi la proprietà di scalatura nel dominio reale, facendo variare la durata \mathbf{s} del segnale box tra 0.3s e 0.9s con passo 0.2, e la lunghezza dell'asse temporale \mathbf{Lt} tra 4 e 10 con passo 2. Cosa succede variando \mathbf{s} ? Cosa succede al variare di \mathbf{Lt} ? Commentare i risultati alla luce della proprietà.

(N.B. Per generare il segnale box di di ampiezza 1, di durata \mathbf{s} secondi sull'asse temporale definito dal vettore \mathbf{t} , usare le seguenti istruzioni matlab,

 $- \gg R = rectangular Pulse(0.0, s, t);$

$- \gg R = ceil(R);$ (rectangular Pulse(0.0,s,t) funzione built-in di Matlab che genera un segnal di durata s secondi, sull'asse temporale t)	e box
Punti: 4	
Totale: 16	