HW6- Advanced Data Analysis

1. (6pt) Suppose T is a life time and it satisfies

$$\log(T) = \mu + \sigma\epsilon$$

where $\epsilon \sim N(0,1)$.

- (a) (2pt) Give the density of T. What is the name of this distribution?
- (b) (2pt) Find E(T) and Var(T) (hint: see HW 1)
- (c) (2pt) If $\mu = 4$ and $\sigma = 3$, find $P(T \le 100)$.
- 2. (4pt) Suppose T is a life time and it satisfies

$$\log(T) = \mu + W/\alpha$$

where $\alpha > 0$ and

$$F_W(w) = 1 - e^{-e^w}$$

Show that T has Weibull distribution and specify it paramters.

3. (10pt) Suppose that T has a Weibull distribution with a survival function is given by

$$S(t) = e^{-(\alpha t)^{\beta}}$$

where $\alpha > 0$ and $\beta > 0$. (Hint: compute $P(T \le t)$)

- (a) (2pt) Find the density, $f_T(t)$ of T
- (b) (2pt) Find the hazard function $\lambda(t)$ of T
- (c) (2pt) Show that

$$\log(-\log(S(t))) = \beta \log(\alpha) + \beta \log(t)$$

Based on this, describe a graphical method for checking whether or not the data is from a Weibull distribution.

(d) (2pt) Consider the following data

and use as an estimate of $S(t_{(i)})$

$$\hat{S}(t_{(i)}) = 1 - (i - 0.5)/n$$

were $t_{(i)}$ is the ith ordered value and n is the sample size. Use the graphical technique in the previous question to check if a Weibull distribution is appropriate for these data

(e)) (t	(2pt) to est	Ass ima	ume te it:	tha s pa	t th ram	ne V nete	Vei ers.	bull	dis	strik	outi	ion	is a	a go	od	fit,	use	least	squar	es	appro	oach