# **Exponential Distribution Simulations**

#### Gabe Rudy

April 19, 2015

In this project, we will investigate through simulations the properties of the mean of samples of the exponential distribution.

The properties we are investigating are:

- 1. Sample mean versus the theoretical distribution mean
- 2. The sample variance versus the theoritcal distribution variance
- 3. The distribution of these means versus the normal distribution

The exponential distribution has a  $\lambda$  parameter. We will also need to choose how many samples we will be taking from this distribution n. Finally the number of simulations will be nosim.

For this exercise we will set:

```
lambda <- 0.2
n <- 40
nosim <- 1000
```

## Sample Mean versus Theoretical Mean

Lets investigate the sample mean first. We take nosim draws of n samples from the exponential distribution with rexp and take the mean of each.

The population mean is  $1/\lambda$  that we are comparing to.

```
sim_means <- replicate(nosim, { mean(rexp(n, rate=lambda)) })
population_mean <- 1/lambda

c(mean(sim_means), population_mean)</pre>
```

```
## [1] 5.03253 5.00000
```

The first number is mean of our sim\_means, which is very close to the second number, the population mean.



In **Figure 1** we show its distribution with the population mean of 5 drawn in a blue line. Note how close it is to the normal distribution. More on that in Distribution.

### Sample Variance versus Theoretical Variance

sim\_means

Now for investigating the sample variance we can compute the variance of our simulated means. From the *Central Limit Therom* we know the variance of the sample mean will be  $\sigma^2/n$ . The standard deviation ( $\sigma$ ) of the exponential distribution is  $1/\lambda$ .

```
sample_var <- var(sim_means)
population_var <- ((1/lambda)^2)/n
population_sd <- sqrt(population_var)

c(sample_var, population_var)</pre>
```

```
## [1] 0.6224973 0.6250000
```

Again we note the simulation value sample\_var is very close to expected\_var.

#### Distribution

Let's compare our sample  $sim_means$  to nosim random normals with the mean and sd parameters set to the values we have shown we expect of population\_mean and population\_sd.

```
sim_normals <- rnorm(nosim, mean=population_mean, sd=population_sd)</pre>
```

Now let's compare the histogram of sim means to our sim normals.



As expected by the *Central Limit Therom*, the means of our random exponential random variable in **Figure 2** are dstributed normally. **Figure 3** shows for comparison the same number of random variables taken from the normal distribution with the therom provided parameters.