

Dependable Systems Winter term 2015/2016

Dependable Systems

4. Chapter **Impairments**

Prof. Matthias Werner

Operating Systems Group

Dependable Systems – Impairments 4.1 Technical Terms

Characterization of Faults

High diversity in possible sources and types

- Fault nature:
 - Accidental faults vs. intentional faults
- Fault origin viewpoints
 - ► Phenomenological causes: physical faults vs. human-made faults
 - ► System boundaries: internal faults vs. external faults
 - Phase of creation: design faults vs. operational faults
- ► Temporal persistence:
 - ► Permanent faults vs. temporary faults

Dependable Systems – Impairments 4.1 Technical Terms

4.1 Technical Terms

Failure / Fault / Error

- ► In general: Behavior differs from specification or expectation
- Impairment: Holistic view, considers also load, weaknesses etc. .

Definitions by LAPRIE

- ► Failure: Occurs when the delivered service deviates from the specified service. Failures are caused by errors
- **Error:** Derivation of the system's state from expected state (program or data); deviation from the expected result of computation (incorrect result).
- Fault: Adjudged or hypothesized cause of an error
- * Beachten Sie bitte, dass in der deutschen (Umgangs-)Sprache alle Konzepte mit "Fehler" bezeichnet werden.

Winter term 2015/2016 · M. Werner

2 / 27

osg.informatik.tu-chemnitz.de

Dependable Systems – Impairments 4.1 Technical Terms

Temporal Characterization

- A fault is active when it produces an error
- ► A non-active internal fault is a dormant fault
 - often cycling between dormant and active
- ► Temporary external accidental physical faults are also called transient faults
- ► Temporary internal accidental faults are also called intermittent faults
- Examples:
 - Pattern-sensitive memory hardware, system overload
 - Arbitrary concept-dependent faults with unknown activation condition

Fault Automaton

► The temporal relations can be described by a fault automaton

A Winter term 2015/2016 · M. Werner

5 / 27

osg.informatik.tu-chemnitz.de

Dependable Systems – Impairments 4.1 Technical Terms

Sources of Error

(Siewiorek/Swarz)

Dependable Systems – Impairments 4.1 Technical Terms

Discussion

- ► An external fault is a design fault inability or refusal to foresee all situations
 - **Example**: performance or timing faults (derivation from expected load / timing)
- Design faults are created during system development, system modification, or operational procedure creation and establishment
- ► Physical faults are accidental faults
- Intentional and design faults are human-made faults
- Many specialized versions of the term "fault", e.g. bug
 - ► Heisenbug Intermittent software fault
 - ► Bohrbug Permanent software fault
 - Mandelbugs Appear chaotic due to many dependencies

Winter term 2015/2016 · M. Werner

6 / 27

osg.informatik.tu-chemnitz.de

Dependable Systems – Impairments 4.1 Technical Terms

Errors

- State of the system, not an event
- Escalates to failure depending on
 - Intentional / unintentional redundancy
 - System activity
 - User's definition of a failure

Examples: maximum outage time, acceptable delay, retransmission rate

Latent (not recognized) vs. detected error coming from an active fault

Error Messages (Hansen & Siewiorek)

- Same fault can lead to different errors.
- Detected errors might not be logged

A Winter term 2015/2016 · M. Werner

9 / 27

osg.informatik.tu-chemnitz.de

Dependable Systems – Impairments 4.1 Technical Terms

Fault Failure Model

Alternative view: KOPETZ

No states are considered, but events only

- fault: undesired event
- failure: event of derivation in function; may constitute fault in the next level of abstraction

Dependable Systems – Impairments 4.1 Technical Terms

Propagation

▶ Source: Algirdas Avizienis et al. "Basic Concepts and Taxonomy of Dependable and Secure Computing". In: IEEE Transactions on Dependable and Secure Computing 1.1 (2004), pp. 1–23

A Winter term 2015/2016 · M. Werner

10 / 27

osg.informatik.tu-chemnitz.de

Dependable Systems – Impairments 4.2 Impairment Models

4.2 Impairment Models

System and Fault Model

- ► Fault tolerant system design: Seems to be a contradiction in terms:
 - ► Design requires specification (what to expect)?
 - ► Faults are deviations from specification
- ▶ Solution: Specification for fault free case + additional fault
- ► Caution: Interdependencies between system model and fault specification => fault model

Coverage

Coverage

Coverage of a fault model is the ratio of the number of faults that can be described by the model to the number of faults that occur in reality.

- ► Used to evaluate a test's performance
- ► Tests are always based (at least implicitly) on a specific fault model
- ▶ Usually one fault model is evaluated against another that covers more faults
- ► The actual coverage can only be derived empirically

13 / 27

osg.informatik.tu-chemnitz.de

Dependable Systems – Impairments 4.2 Impairment Models

Fault Models at Switching Level

- Fault models at switching level are mainly used in two areas:
 - Design of circuits (for us not very interesting)
 - Communication
- Logical faults at wires are considered:
 - **Stuck-at-**X faults: Signal is always X ($X \in \{0, 1, valid, ...\}$)
 - Bridging faults (short circuits)
 - Stuck-at-open faults (undefined signal)

Dependable Systems – Impairments 4.2 Impairment Models

Fault Models

Fault models can be described at different levels of abstractions:

- ► (Physics (unusual))
- Circuit level
- ► Switching [circuit] level
- Register transfer level
- PMS-level (processor-memory-switch)
- System level

Winter term 2015/2016 · M. Werner

14 / 27

osg.informatik.tu-chemnitz.de

Dependable Systems - Impairments 4.2 Impairment Models

Fault Models for Distributed Systems

- Crash fault
- Omission fault
- ► Timing fault
- ► Incorrect computation/communication
- Arbitrary/ byzantine fault[†]

Link faults are mapped onto component faults of the sender or receiver

[†]In case of authenticated Byzantine faults, one assumes that no message can be inwardly altered.

Fault Hierarchies in Distributed Systems

Dependable Systems – Impairments 4.2 Impairment Models

Statistical Assumptions

- ▶ Usually it is not sufficient to know the **impact** of faults
- Statements regarding occurence are necessary
 - ► How many faults at the same time (maximum)?
 - How often?
 - Independence of faults
- ► **Independence** of faults
 - Are faults occuring independent from each other?
 - Are faults correlated?
 - Are faults intended (attack)?

Dependable Systems – Impairments 4.2 Impairment Models

Partial Order of System Faults

- Arrows represent decreasing strictness of assumptions
- $\triangleright \mathcal{V}$: value domain, \mathcal{T} : time domain

P - permanent; O_k - sequential omission; O - omission; L - belate; E - premature; NC - coding; arb – arbitrary

A Winter term 2015/2016 · M. Werner

18 / 27

osg.informatik.tu-chemnitz.de

Dependable Systems - Impairments 4.2 Impairment Models

Statistical Assumptions (cont.)

- Statistical assumption usually consider mean values
 - ► Mean time to failure (MTTF, cf. Chapter 2):

Mean time to failure

f(t) is the densitiv of the probability that **no failure** occurs until time $t_0 + t$.

$$\bar{t}_F = \int\limits_0^\infty t \cdot f(t) dt$$

For failures with exponential distribution: $\bar{t} = MTTF = \frac{1}{\lambda}$

Definition 4.1 (Stochastic process)

A stochastic (or random) process is a set $\{X(t)\}$ of random variables with a shared value domain (state space) and a shared index parameter t.

Arrival of faults (or load/requests) is often described as stochastic process

- **Each** instance of index X(t) is a random variable for fixed t
- Usually, t is interpreted as time (especially for arrival processes)

21 / 27

osg.informatik.tu-chemnitz.de

Dependable Systems – Impairments 4.2 Impairment Models

Poisson Process (cont.)

- ightharpoonup N(t) represents numbers of faults in interval
- ► Special case: Time to the first fault

$$\Pr\{N(t) = m = 0\} = \frac{(a \cdot t)^m}{m!} e^{-a \cdot t}$$
$$= \frac{(a \cdot t)^0}{0!} e^{-a \cdot t}$$
$$= e^{-a \cdot t}$$

- equals known probability of survival for constant fault rate (exponential)
- → More in Chapter 7

Dependable Systems – Impairments 4.2 Impairment Models

Poisson Process

- ightharpoonup Counting events of a discrete process until $t_0 + t$
- ▶ Number is N(t)
- It holds:
 - $N(t_0) = 0$
 - ► Independence in not overlapping intervals
 - ightharpoonup Probability of an event only depends on t, not on t_0
 - $\lim_{t \to 0} \Pr\{ \text{event in } t \} \sim t$

Then this is called a **Poisson-Prozess** and for N(t) holds:

$$\Pr\{N(t) = m\} = \frac{(a \cdot t)^m}{m!} e^{-a \cdot t}$$

Winter term 2015/2016 · M. Werner

22 / 27

osg.informatik.tu-chemnitz.de

Dependable Systems - Impairments 4.2 Impairment Models

Discussion: Fault and Load

Interaction between load and classical failures

- Usually positive correlated:
 - Increasing load leads to wearout
 - Failure rate increases
 - Higher load shows cause of failure faster
 - → Pr{error|fault} increases
 - (Recognized) faults lead to recovery measures → Load increases
- ► Feedback possible
- Sometimes load decreases failure rate

4.3 Alternative Descriptions

Description of Behavior

- Considers computer as automaton
- States may include time
- Sequence of states describes correct or incorrect behavior

A Winter term 2015/2016 · M. Werner

25 / 27

osg.informatik.tu-chemnitz.de

Dependable Systems – Impairments 4.3 Alternative Descriptions

Multiple Causes (D. ORLANDELLA and J. REASON)

- ▶ Sometimes it is not possible to detect **the** root cause but the concurrence of several causes
- Description of potential impairments
- Swiss-Cheese-Model

osg.informatik.tu-chemnitz.de

Dependable Systems – Impairments 4.3 Alternative Descriptions

Holistic Model by Jonsson

system behaviour

environmental influence: fault introduction

- Attempt of standardization
- ► Includes security

A Winter term 2015/2016 · M. Werner

26 / 27

osg.informatik.tu-chemnitz.de