Dimensinality Reduction

Main References

Ameet Talwalkar and Henry Chai, ML with Large Datasets, CMU

Outline

- Data Preprocessing
- Data Visualization
- Dimensionality Reduction
- PCA
- Distributed PCA

Data Pre-processing

- ETL (extract-transfer-load)
- Cleaning data
 - Missing features/labels
 - Duplicated observations
 - Formatting errors
- Understanding data
 - Summarization
 - Exploration
 - Visualization

What questions can you ask better understand the data?

- Whats are features and data types?
- What are the units?
- How many observations?
- How data is collected?
- Are features are correlated?

• ...

Data Visualization

- Visualizations can be used to
 - Provide insight about trends/groups/relationships
 - Reveal systematic errors
 - Aid in model selection
 - Evaluate training (e.g., measure convergence)
 - Interpret/explain predictions

Data Visualization

Common Data Visualizations

- Summary statistics
- Box plots
- Histograms
- Scatter plots

Big Data Visualizations

- Large *n*
 - Computationally expensive to render
 - Dense/complex
 - Address via subsampling or parallelization
- Large d
 - Difficult to represent more than a few dimensions
 - Address via dimensionality reduction = learning a latent (typically lower-dimensional) representation

Feature Elimination

Dimensionality Reduction

Which projection do you prefer?

Goal: minimize the reconstruction error

Goal: maximize the variance of the projections

Centering the Data

- To be consistent, we will constrain principal components to be orthonormal vectors (orthogonal unit vectors) that begin at the origin
- Preprocess data to be centered around the origin:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

$$\tilde{x}^{(i)} = x^{(i)} - \mu$$

$$X = \begin{bmatrix} \tilde{\chi}^{(1)}^T \\ \vdots \\ \tilde{\chi}^{(n)}^T \end{bmatrix} \in \mathbb{R}^{n \times d}$$

Reconstruction Error

• The projection of $\tilde{x}^{(i)}$ onto a vector v is

$$z^{(i)} = \left(\frac{v^T \tilde{x}^{(i)}}{\|v\|_2}\right) \frac{v}{\|v\|_2}$$
 Length of projection Direction of projection

Reconstruction Error

• The projection of $\tilde{x}^{(i)}$ onto a unit vector v is

$$\begin{split} z^{(i)} &= \left(v^T \tilde{x}^{(i)} \right) v \\ \hat{v} &= \underset{v: \|v\|_2^2 = 1}{\operatorname{argmin}} \left(the \ resstruction \ error \right) \\ &= \underset{v: \|v\|_2^2 = 1}{\operatorname{argmin}} \sum_{i=1}^n \left\| \tilde{x}^{(i)} - z^{(i)} \right\|_2^2 \\ &= \underset{v: \|v\|_2^2 = 1}{\operatorname{argmin}} \sum_{i=1}^n \left\| \tilde{x}^{(i)} - \left(v^T \tilde{x}^{(i)} \right) v \right\|_2^2 \\ &= \underset{v: \|v\|_2^2 = 1}{\operatorname{argmin}} \sum_{i=1}^n \left\| \tilde{x}^{(i)} \right\|_2^2 - \left(v^T \tilde{x}^{(i)} \right)^2 \end{split}$$

Minimizing the Reconstruction Error

$$\hat{v} = \underset{v:||v||_2^2=1}{\operatorname{argmin}} \sum_{i=1}^n \left\| \tilde{x}^{(i)} \right\|_2^2 - \left(v^T \tilde{x}^{(i)} \right)^2 = \underset{v:||v||_2^2=1}{\operatorname{argmin}} - \sum_{i=1}^n \left(v^T \tilde{x}^{(i)} \right)^2 = \underset{v:||v||_2^2=1}{\operatorname{argmax}} \sum_{i=1}^n \left(v^T \tilde{x}^{(i)} \right)^2$$

$$= \underset{v:||v||_{2}=1}{\operatorname{argmax}} \sum_{i=1}^{n} v^{T} \tilde{x}^{(i)} \tilde{x}^{(i)^{T}} v = \underset{v:||v||_{2}=1}{\operatorname{argmax}} v^{T} \left(\sum_{i=1}^{n} \tilde{x}^{(i)} \tilde{x}^{(i)^{T}} \right) v$$

=
$$\underset{v:||v||_2^2=1}{\operatorname{argmax}} v^T (X^T X) v = \underset{v:||v||_2^2=1}{\operatorname{argmax}} v^T C_X v$$

 C_X : covariance matrix

Maximizing the Variance

$$\hat{v} = \underset{v:||v||_2^2=1}{\operatorname{argmax}} v^T C_X v$$

$$L(v,\lambda) = v^T C_X v + \lambda(\|v\|_2^2 - 1) = v^T C_X v + \lambda(v^T v - 1)$$

$$\frac{\partial L}{\partial v} = C_X v - \lambda v = 0$$

 $\Rightarrow \lambda$ is eigenvalue of C_X and its corresponding eigenvector is v

Maximizing the Variance

$$\hat{v} = \underset{v:||v||_2^2=1}{\operatorname{argmax}} v^T C_X v$$

$$C_X v = \lambda v \Rightarrow v^T C_X v = \lambda v^T v = \lambda$$

- The first principal component is the eigenvector \hat{v}_1 that corresponds to the largest eigenvalue λ_1
- The second principal component is the eigenvector \hat{v}_2 that corresponds to the second largest eigenvalue λ_2
- ...
- λ_i is a measure of how much variance falls along \hat{v}_i

PCA Algorithm

- Input: $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n, k$
- 1. Center the data
 - Optionally, normalize the data by features so that all features are of the same scale
- 2. Compute the covariance matrix $C_X = X^T X$
- 3. Collect the top k eigenvectors (corresponding to the largest eigenvalues), $P \in \mathbb{R}^{n \times k}$
- 4. Project the data into the space defined by P, Z = XP
- Output: Z, the latent representation (PCA scores)

PCA in a nutshell

1. correlated hi-d data ("urefu" means "height" in Swahili) want dimension of

3. compute covariance matrix

h u
h 2.0 0.8 cov(h,u) =
$$\frac{1}{n} \sum_{i=1}^{n} h_{i}u_{i}$$

u 0.8 0.6

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} e_h \\ e_u \end{bmatrix} = \lambda_e \begin{bmatrix} e_h \\ e_u \end{bmatrix}$$

$$\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{bmatrix} f_h \\ f_u \end{bmatrix} = \lambda_f \begin{bmatrix} f_h \\ f_u \end{bmatrix}$$

7. uncorrelated low-d data

height [inches]

project data points to those eigenvectors

highest variance

Copyright @ 2011 Victor Lavrenko

5. pick m<d eigenvectors w. highest eigenvalues

Choosing the number of PCs

Define a percentage of explained variance for the ith PC:

$$\frac{\lambda_i}{\sum_{j=1}^n \lambda_j}$$

- Select all PCs above some threshold of explained variance, e.g., 5%
- Keep selecting PCs until the total explained variance exceeds some threshold, e.g., 90%
- Evaluate on some downstream metric

PCA Example: MNIST Digits

PCA Example: MNIST Digits

Shortcomings of PCA

- Sometime we don't care about variance
- PCA only find linear combination of our features
- Principal components are expensive to compute
- Interpertability
- Principal components are orthonormal

PCA Algorithm: Computational Cost

- Input: $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n, k$
- 1. Center the data
 - Optionally, normalize the data by features so that all features are of the same scale
- 2. Compute the covariance matrix $C_X = X^T X \rightarrow O(nd^2)$
- 3. Collect the top k eigenvectors (corresponding to the largest eigenvalues), $P \in \mathbb{R}^{n \times k} \to O(d^3)$
- 4. Project the data into the space defined by P, $Z = XP \rightarrow O(ndk)$
- Output: Z, the latent representation (PCA scores)

Nonlinear Dimensionality Reduction

- Autoencoders (1987)
- Kernel PCA (1999)
- Locally linear embedding (2000)
- Isomap (2000)
- Laplacian Eigenmaps (2003)
- t-SNE (2008)
- ... many others

PCA: Large n, Small d

- Assume $O(d^3)$ computation and $O(d^2)$ storage is possible on a single machine
 - We can store and compute the eigenvalues of X^TX
 - We cannot compute X^TX
 - We cannot store X
- Approach: basically the same as distributed linear regression
 - 1. Center the data in a distributed way
 - 2. Store the rows of *X* across different machines
 - 3. Compute X^TX as the sum of outer products

Distributed Centering of the Data

O(nd) distributed storage (total)

O(d) O(d) local work local storage

O(nd) O(nd) distributed work (total) storage (total)

O(d) communication

Distributed Eigendecomposition of X^TX

$$X^{T}X = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \chi^{(1)} & \cdots & \chi^{(n)} \\ \downarrow & \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} \leftarrow & \chi^{(1)} & \rightarrow \\ \vdots & \vdots & \vdots \\ \leftarrow & \chi^{(n)} & \rightarrow \end{bmatrix} = \sum_{i=1}^{n} \chi^{(i)} \chi^{(i)^{T}}$$

Distributed Eigendecomposition of X^TX

Worker	$\begin{bmatrix} \leftarrow & {\chi^{(1)}}^T & \rightarrow \\ \leftarrow & {\chi^{(4)}}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	$\begin{bmatrix} \leftarrow & \chi^{(2)}^T & \rightarrow \\ \leftarrow & \chi^{(3)}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	$\begin{bmatrix} \leftarrow & \chi^{(5)}^T & \rightarrow \\ \leftarrow & \chi^{(7)}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	O(nd) distributed storage (total)
Мар	$\widetilde{\chi}^{(i)}\widetilde{\chi}^{(i)}^T$	$ ilde{ ilde{\chi}}^{(i)} ilde{ ilde{\chi}}^{(i)}^T$	$ ilde{ ilde{\chi}}^{(i)} ilde{ ilde{\chi}}^{(i)}^T$	$O(nd^2)$ $O(d^2)$ distributed local work (total) storage
Reduce	$eigh\left(\sum_{i=1}^{n} \tilde{x}^{(i)} \tilde{x}^{(i)^{T}}\right)$			$egin{array}{cccc} O(d^3) & O(d^2) \ & & & & & & & & & & $

O(dk) communication

Distributed Computation of PCA Scores

Worker	$\begin{bmatrix} \leftarrow & {\chi^{(1)}}^T & \rightarrow \\ \leftarrow & {\chi^{(4)}}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	$\begin{bmatrix} \leftarrow & {\chi^{(2)}}^T & \rightarrow \\ \leftarrow & {\chi^{(3)}}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	$\begin{bmatrix} \leftarrow & \chi^{(5)}^T & \rightarrow \\ \leftarrow & \chi^{(7)}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	O(nd) distributed storage (total)
Мар	$P\widetilde{x}^{(i)}$	$P\widetilde{x}^{(i)}$	$P ilde{x}^{(i)}$	O(ndk) O(nk) distributed local work (total) storage

PCA: Large n, Large k

- Now, $O(d^3)$ computation and $O(d^2)$ storage is not possible on a single machine
 - We cannot store and compute the eigenvalues of X^TX
 - We cannot compute X^TX
 - We cannot store X
- Idea: use a different algorithm!
 - Turn to an iterative method for computing eigenvectors

PCA: Large n, Large k

- Now, $O(d^3)$ computation and $O(d^2)$ storage is not possible on a single machine
 - We cannot store and compute the eigenvalues of X^TX
 - We cannot compute X^TX
 - We cannot store X
- Idea: use a different algorithm!
 - Turn to an iterative method for computing eigenvectors the eigenvector associated with the largest eigenvalue $(k = 1) \rightarrow$ power iteration

• Fact: $A = X^T X$ is "diagonalizable", i.e., any d-dimensional vector can be written as a linear combination of A's eigenvectors:

$$b = c_1 v_1 + c_2 v_2 + \dots + c_d v_d$$

- This follows because X^TX is real and symmetric
- Assume $A = X^T X$ has one eigenvalue that is strictly larger than the others:

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_d$$

- Input: $A = X^T X$
- Initialize $b^{(0)}$ randomly and set t=0
- While not converged
 - Update the vector **b**:

$$b^{(t+1)} = \frac{Ab^{(t)}}{\|Ab^{(t)}\|_2}$$

- Increment t: t = t + 1
- Output: $b^{(t)}$, the eigenvector corresponding to the largest eigenvalue of A

$$\begin{split} b^{(0)} &= c_1 v_1 + c_2 v_2 + \dots + c_d v_d \\ Ab^{(0)} &= c_1 A v_1 + c_2 A v_2 + \dots + c_d A v_d \\ &= c_1 \lambda_1 v_1 + c_2 \lambda_2 v_2 + \dots + c_d \lambda_d v_d \\ A(Ab^{(0)}) &= c_1 \lambda_1 A v_1 + c_2 \lambda_2 A v_2 + \dots + c_d \lambda_d A v_d \\ &= c_1 \lambda_1^2 v_1 + c_2 \lambda_2^2 A v_2 + \dots + c_d \lambda_d^2 A v_d \\ A^t b^{(0)} &= c_1 \lambda_1^t v_1 + c_2 \lambda_2^t v_2 + \dots + c_d \lambda_d^t v_d \\ &= \lambda_1^t \left(c_1 v_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^t v_2 + \dots + c_d \left(\frac{\lambda_d}{\lambda_1} \right)^t v_d \right) \xrightarrow{t \to \infty} \lambda_1^t c_1 v_1 \end{split}$$

- Input: $A = X^T X$
- Initialize $b^{(0)}$ randomly and set t=0
- While not converged
 - Update the vector **b**:

$$b^{(t+1)} = \frac{X^T X b^{(t)}}{\|X^T X b^{(t)}\|_2}$$

- Increment t: t = t + 1
- Output: $b^{(t)}$, the eigenvector corresponding to the largest eigenvalue of A

- Input: $A = X^T X$
- Initialize $b^{(0)}$ randomly and set t=0
- While not converged
 - Update the vector **b**:

$$b^{(t+1)} = X^T X b^{(t)} = \left(\sum_{i=1}^n x^{(i)} x^{(i)^T}\right) b^{(t)}$$
$$b^{(t+1)} = \frac{b^{(t+1)}}{\|b^{(t+1)}\|_2}$$

- Increment t: t = t + 1
- Output: $b^{(t)}$, the eigenvector corresponding to the largest eigenvalue of A

- Input: $A = X^T X$
- Initialize $b^{(0)}$ randomly and set t=0
- While not converged
 - Update the vector **b**:

$$b^{(t+1)} = X^T X b^{(t)} = \sum_{i=1}^{n} x^{(i)} \left(x^{(i)^T} b^{(t)} \right)$$
$$b^{(t+1)} = \frac{b^{(t+1)}}{\|b^{(t+1)}\|_2}$$

- Increment t: t = t + 1
- Output: $b^{(t)}$, the eigenvector corresponding to the largest eigenvalue of A

- Input: $A = X^T X$
- Initialize $b^{(0)}$ randomly and set t=0
- While not converged
 - Update the vector **b**:

$$b^{(t+1)} = X^T X b^{(t)} = \sum_{i=1}^{n} x^{(i)} \left(\beta_i^{(t)} \right)$$
$$b^{(t+1)} = \frac{b^{(t+1)}}{\|b^{(t+1)}\|_2}$$

- Increment t: t = t + 1
- Output: $b^{(t)}$, the eigenvector corresponding to the largest eigenvalue of A

Distributed Power Iteration

	Worker	$\begin{bmatrix} \leftarrow & x^{(1)}^T & \rightarrow \\ \leftarrow & x^{(4)}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	$\begin{bmatrix} \leftarrow & {x^{(2)}}^T & \rightarrow \\ \leftarrow & {x^{(3)}}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	$\begin{bmatrix} \leftarrow & \chi^{(5)}^T & \rightarrow \\ \leftarrow & \chi^{(7)}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	O(nd) distributed storage (total)
	Мар	$\beta_i^{(t)} = \tilde{x}^{(i)}^T b^{(t)}$	$\beta_i^{(t)} = \tilde{x}^{(i)}^T b^{(t)}$	$\beta_i^{(t)} = \tilde{x}^{(i)}^T b^{(t)}$	$egin{array}{ccc} O(nd) & O(n) \\ ext{distributed} & ext{distributed} \\ ext{work (total)} & ext{storage} \\ \end{array}$
$b^{(t)}$	Мар	$ ilde{x}^{(i)}eta_i^{(t)}$	$ ilde{x}^{(i)}eta_i^{(t)}$	$ ilde{x}^{(i)}eta_i^{(t)}$	O(nd) $O(d)$ local distributed storage work (total)
	Reduce	$b^{(t+1)} = \sum_{i=1}^{n} \tilde{x}^{(i)} \beta_i^{(t)} / \left\ \sum_{i=1}^{n} \tilde{x}^{(i)} \beta_i^{(t)} \right\ _2$			$egin{array}{cccc} O(d) & O(d) & & & & & & & & & & & & & & \\ O(d) & & & & & & & & & & & & & & & & & & &$

O(d) communication To find more than one eigenvector, we need to use similar (but slightly more complicated methods), e.g., PySpark's MLlib uses Krylov subspace methods 41

Summay

- Distributed PCA very similar to distributed linear regression
 - If d is small, simply distribute the storage and computation of X^TX
 - If d is large, use iterative methods (e.g., power iteration) to compute eigenvector-eigenvalue pairs