

Changes in atmospheric deposition patterns due to land-use changes and biomass burning

Rain Acidity in Amazonian:

Pristine x Disturbed

pH

4.8 - 5.1

pH

4.4 - 4.7

Sources of Rain Acidity

Pristine areas:

- > DOC (Carbon)
- Organic acids: 60 %

Disturbed areas:

- Inorganic acids
- > DOC (Carbon)

Organic acids in disturbed and pristine regions in Amazonian

	Rondônia	Balbina		
	Season	Season		
	Dry	Dry	Wet	Annual
PH	4.6	5.1	4.8	4.9
H^+	26.6	12.9	18.3	14.7
Formate	4.3	2.9	2.1	2.5
Acetate	10.4	9.3	15.1	13.3
Oxalate	0.6	0.3	0.1	0.2
DOC	219	165	140	154
F/A	0.4	0.2	0.1	0.2
% H ⁺	54	38	60	47

CARBON IN RAIN WATER

Pristine areas

Biogenic Emissions

Disturbed Areas

Biomass burning

Soil Particles

VWM concentrations of DOC in Pristine and Disturbed areas

Disturbed areas: significant difference between dry and wet seasons !!!

N wet deposition (kg.N.ha⁻¹.yr⁻¹)

N wet deposition – kg N.ha ⁻¹ .yr ⁻¹					
Balbina *	2.9				
Central Amazon**	2.8				
Remote Southeastern *	3.2				
Rondônia *	5.7				
Disturbed Southeastern***	5.6				

* Lara et al., 2004; 2005, ** Willians et al., 1997, *** Lara et al., 2001

N wet deposition (kg.N/ha/yr) in Brazil

Data from: Lara et al., 2001; Williams et al., 1997; Lara et al., 2003; 2005.

N deposition in a transition from dry to wet season in Rondonia

N deposition and fire spots

- N deposition is linked to biomass burning!!
- The main form of N deposition is NH₄⁺ !!

N wet deposition in Amazonian: Pristine X Disturbed

Remote Areas in Brazil

Disturbed Areas in Brazil

N wet deposition:

2.9 - 3.2 kg.N/ha/yr

Dry season: N-NH₄⁺ < 40% N wet deposition:

4.8 - 6.3 kg.N/ha/yr

Lara et al., 2003; 2005.

Effects of aerosols on carbon balance

Smoke cloud over Amazonia

Rebio Jaru Rondonia - Forest area

 $\Delta AOT: 0.1 \text{ a } 1.2 \rightarrow \Delta \text{ f}_{B}: -20 \% \rightarrow \Delta \text{ NEE: } +50 \%$

Effects of aerosols and clouds over NEE Rebio Jaru Forest area

NEE increases to f_B values around 0.7 or AOT = 1.4

Rondonia Fazenda Nossa Senhora Pasture

Carbon Flux (FC)

 Δ AOT: 0.1 to 1.2 \rightarrow Δ f_B: - 20 % \rightarrow Δ FC: NOT statistically significant

Effects of aerosols and clouds over NEE

Pasture area

It is NOT possible to observe increase in FC for f_B between 1.0 and 0.7

Conclusions

- N and C deposition is closely linked to land use changes
- N and C deposition is increasing in the tropics (more than predicted)
- Biomass burning is changing the pattern of organic acids
- Changes in the main form of N deposition from NO_3^- to NH_4^+ (first data supporting this hypothesis)
- Aerosols influence strongly the carbon fluxes in the Forest site in Rondonia, and maybe in other areas in Amazonia