Assignment 6

due midnight (Eastern Time), Monday, November 2, 2020

Prove all statements in the questions below. You must TeX your solutions and submit your writeup as a pdf at www.gradescope.com. You can submit it any time until the deadline.

Question 1. (Folland 5.1.1) If \mathcal{X} is a normed vector space over $K (= \mathbb{R} \text{ or } \mathbb{C})$, then addition and scalar multiplication are continuous from $\mathcal{X} \times \mathcal{X}$ and $K \times \mathcal{X}$ to \mathcal{X} . Moreover, the norm is continuous from \mathcal{X} to $[0, \infty)$; in fact $||x| - ||y|| \le ||x - y||$.

Question 2. (Folland 5.1.2). $L(\mathcal{X}, \mathcal{Y})$ is a vector space and the function $||\cdot||$ defined by (5.3) is a norm on it. In particular, the three expressions on the right of (5.3) are always equal.

Question 3. (Folland 5.1.4) If \mathcal{X}, \mathcal{Y} are normed vector spaces, the map $(T, x) \mapsto Tx$ is continuous from $L(\mathcal{X}, \mathcal{Y}) \times \mathcal{X}$ to \mathcal{Y} . (That is, if $T_n \to T$ and $x_n \to x$, then $T_n x_n \to Tx$.)

Question 4. (Folland 5.1.5) If \mathcal{X} is a normed vector space, the closure of any subspace of \mathcal{X} is a subspace.