	Date / 4 · /0.30
\bigcirc	H16-14-005
	Very informal journal club
7 Tev 8 Tev	Higgs boson → leptons
88 15 19	TT: 6% → 31ev @ 5+20f5"
VBF 1.2 1.6	MM: 0.02% - 0.1 ev G ".
VH 0.9 (.1	
th 0, 1 0, 1	T- AT 11 1 (0 10 44 1 / C) 1 (0 10 1/11)
17.4 22.1	TT ATL M=1.42±0.44 4.50 evidence (88, VB, VH)
~20fb	CMS M=0.91 t0.27, 3.80 evidence (" + EEH) MM ATL M< 7.0 (95%) (gg, VB, VH)
(57 fb @ 14 TOU)	
	·H → TM?
	CMS: 2.5 T excess (UTh 0; : +0.080
All one side for	12 : +0.100
6-regions	2; +1.230
$2 \times (\frac{1}{2})^6 = 1.6\%$	(2.150) MTe 0; +0.890
	13: +0.690
,	$(2j+0.160 \rightarrow 2.60!!$
	· What is this?
	· statistical dispersion!
	· But it is good time to review this exp. & theories.
·	
	· · · · · · · · · · · · · · · · · · ·

Date

	i e e e e e e e e e e e e e e e e e e e
CMS PAS	DEXPERIMENT
HIG-14-005	
	o target signal
	Madron De [11 3 G/OC]
	H Tte W Te M)
	MT Lews [H -) Tell]
C→e: 18%	· BKG
M:17%	DH - Th M: T-misid in QCD, te, W+0, Z-CZ, Z-j, Z-EE
1p 30%	HUGE BK S !
3p:15%	(DH → TeM: Z→ TeTu, fake leptons in te, W+j,QCD)
	ΔΦ, MT jet veto, b-veto, ΔΦ, M7
	- C-id hadron plus strips' (HPS): discurs afect selection!
1	o trigger to M: 1 Missol 24 (M) < 2.1)
	Tem: 1M17 11 8 (191<2.5,2.4)
	*Reco. PF, antiko -0.5, T-id w. hadyon plus strip" (HPS)
	b-tag w. "combined secondary verter"
	······································
T of MUZ	0 10 (1, (4)
てっかり=	$\frac{0.19 83(4)}{0.19 83(4)} = 0.996(4)$
SM: Post	$\frac{m_t^2}{m_t^2}$) w. $f(x)=1-8x+8x^3-x^4-12x^2\ln x$ perhe is kinerties.
	÷ 0.9720 ⇒ 0.9729
	7

Date · · No.

	- Event selection
	H → tell 0330 OS USO e10 - S\$ >2.7, δΦet < 0.5, MTW>5
j: [n]<4.7	1,36 OSM45e10 -DØ>1.0,06, " (0.5, e<6
2:11/23	VBF 05M25e10 - 4 (0.3, eg)
1: 17/ < 2.1	H → T, M 0,30 OS M40, 35-00>27, MT(Tn) <50
	1330 05 M35 740 - , " <35
	VBF 05M30T40 -, 4 C35
	(VBE: 2330 W 07 >3,5& M33 >550 GeV)
p-veto notapplied for	
That 1 j because	
Tid® Bid is	099F 03 → G9F
	0 VBF 13 = 33 F & VH
VAI- be cause	·ZH, WH 2j = VBF
0.1	Th/e Tallings and a
700	oggF Collinear 10920
	The boosted
3	max =
3	lowP7 P
	(5.20) opposite
	*ð <i>ϕ</i> ~ ₹
	(with ISR/FSR,
	(WILL 13N F3K)
· · · · · · · · · · · · · · · · · · ·	i =] collinear
	· VBF
	20-100 GeV PT

 $= M_0^2$

o Transverse mass

Assuming
$$P_{\nu} // P_{\overline{\nu}}$$
,

$$(E_{\ell} + E_{\nu} + E_{\overline{\nu}})^{2} - ||P_{\ell} + P_{\nu} + P_{\overline{\nu}}||^{2}$$

$$\sim m_{\ell}^{2} + 2P_{\ell} \not\equiv (1 - \cos\theta_{\ell}) \xrightarrow{\text{transverse}} 2P_{\tau}(\ell) \not\equiv (1 - \cos\theta_{\ell})$$

In
$$H \rightarrow T_{eM}$$
, $M_{\tau}(e) \sim M_{\tau}$
 $M_{\tau}(M)^{2} = 2 P_{\tau}(M) \not E_{\tau} (1 - cos \Phi_{ME})$
 $\sim 2 P_{\tau}(\tau) \not E_{\tau} (1 - cos (\pi - \Delta \Phi_{\tau E}))$
 $= 2 P_{\tau}(\tau) \not E_{\tau} (1 + cos \Delta \Phi_{\tau E})$
 $= M_{\tau}(M) \gtrsim 2 \sqrt{P_{\tau}(\tau) \not E_{\tau}}$

$$M_{\tau}^{2} = (\Sigma E_{\tau i})^{2} - \|\Sigma P_{\tau i}\|^{2} = (i=2) M_{1}^{2} + M_{2}^{2} + 2(E_{\tau 1} \cdot E_{\tau 2} - P_{\tau_{1}} \cdot P_{\tau 2})$$

$$\frac{P}{\sqrt{m^{2} + \|P_{\tau}\|^{2}}} \qquad (m=0) (2 \|P_{\tau}\| \|P_{\tau i}\| - 2 P_{\tau_{1}} \cdot P_{\tau 2})$$

$$= 2 P_{\tau_{1}} P_{\tau_{2}} (1 - (\omega, 0))$$

$$= (L \nu \nu) M_{2}^{2} + 2 E_{\tau_{2}} (P_{\nu} + P_{\nu}) + 2 P_{\nu} P_{\nu} - 2 P_{\nu} \cdot P_{\nu} - 2 P_{2} \cdot (P_{2} + P_{\nu})$$

$$= M_{2}^{2} + 2 E_{\tau_{2}} (P_{\nu} + P_{\nu}) + (P_{2} \tau P_{\nu})^{2} - \|P_{\tau}\|^{2} - 2 P_{2} \cdot P_{\tau}$$

	o Z → TT : Z → MM deta ® Mr		, 7 ± W.M.
	NsR, Sake = NsR but one-kepton not isolated	(- Nac]	X New (extra M) New (extra M) Per (extra M)
		~ Naco+ws;	trisjan
	After oll cuts,		correction.
VAR. 1	H → M Te	H -> M Ch	
	• 7777 syst 6~13%	・そってて	- 6~13%
	• fake 1 - 40%. • VV - 15%	· felce C	30-40%
	DResults Br(H→ TM) < 1.57% [Br(H→ TM) = 0.89±0.39 9		>8 %]
	Br $(H \rightarrow TM) < 1.50\%$ [Br $(H \rightarrow TM) = 0.89 \pm 0.40\%$] split SR into GSR and assume	/_	ट ६
	Br $(H \rightarrow TM) < 1.50\%$ [Br $(H \rightarrow TM) = 0.89 \pm 0.40\%$] split SR into GSR and assume	d 'correlated' Bl	ट ६
	Br $(H \rightarrow TM) < 1.50\%$ [Br $(H \rightarrow TM) = 0.89 \pm 0.40\%$] split SR into GSR and assume	d 'correlated' Bl	ट ६
	Br $(H \rightarrow TM) < 1.50\%$ [Br $(H \rightarrow TM) = 0.89 \pm 0.40\%$] split SR into GSR and assume	d 'correlated' Bl	ट ६

. Date

@UNDERLYING THEORIES

$$L = \begin{pmatrix} v_{l} \\ l_{l} \end{pmatrix}$$

$$H = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

SM:
$$\mathcal{L} \supset Y_{ij} H^{\alpha} L^{\alpha}_{i} \overline{E}_{j}$$
 $(+Y'_{ij} \mathcal{E}^{\alpha b} H^{\alpha} L^{b}_{i}; \overline{N}_{j})$

can be a "mass eigenstate" @ 126 GN

[higher-ador terms (with , say In) are not included]

Date

	
	° Constraints
1202,5704	
1209, 1397	Br(M→er) < 5.7×10 ⁻¹³ (90%) t13030754) [1209,1397)
	M — e + e
	M M
For Br < 2.4E-12,	=> \[\text{Yue} ^2 + \text{Yen} ^2 < 1.8 \times 10^6
√ <3.6E-6.	=> Br(u-ex) < 2×10-9
	Similarly tree = STret 2+ Tree = 0.014
	T→MY >> < 0.016 L, B, (H→Tl) 5%</td
<u></u>	Jr (11 - 22) 6/1 /6
	Br(H - lalb) = P(H - lalb) Frank P(H - lalb) Frank P(H - lalb) Frank P(H - lalb)
	4. meu
	=> \[Yest 24 \Ten 2 < 0.0036
	•
— <u>manus ta angara an angara an angara an an</u>	
	•

	ola→lb7	
	Me er + Miller er	M Tup e
	=) Yun J Yue 2+ Yen	1/2 => \ Yut Yeu 2 Yee Yz,
	° la → 3 lto	
	une >>	and (
	⇒ SAME as M → er	
	«EDM/9-2 «м-е»	Conversion
	Me MR N	-e N
-	-	MYeml24/ The/2
	o M-Mosc	M→er for "en" < 0(10.
	M+-;-e+	T-ly for "Te" < 0.01 T-1My " < 0.01
	e u-	
	= Yme + Yen 2	

(z~0.00)	Models for Y ~ 0.003 ([(H→=N) ~ 1% =0.04MeV)
Br	· Scalar lepto quaric ··· loop-level
MSSM: <0(10-4)	·vector-like lepton - tree
~	· Type 111 2HDM "
	·
S	· lepto quark △ (Scalar) ·· (△ EU) & (△Ē·T)
	$h = \begin{pmatrix} t & \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda$
	but induces THAY EXCLUPED
	7 M < 4.4e-8 = 2.3×10-6 Me U× 4 4e-1
	P(H+TM)- upper ~ 1. 04/0-13 Mev x mh = 7.6x 0-11 Mev board
	>> 0 (10 ^{f9}) stricten
1	(17.71~0(104) stricte
	=) loop-induced quies, is difficult
	Introduce VL top to Sine-tunedly cancel Comme
·	

o. Date

13/2,5329 ·VL - leptons Falkowski (SM l, e & LL, LR, EL, ER) & 3 gens Stranb Vicente -2 > MLI + M'EE + (YL, HER + Y'LRHEL +L,c) + M(l, le Lr + E, le Cr) I. e gets mass only from this mixing (No hisss coupling -- 17 51 h?) el LR II ER EC er PL Le Li Er Ei, Le Li Er Ec Pr mix m M M M M mix => 2 > v(Y, + 2/2) le + (1+ 3v2 /2) leh)

Sierra Allowing all Yakona HILE + HILE Vicenter HILN + HILN - de

Date

No.

1408.0138 Deny, Efrati, Nir, Sorea, Susic 1408. [37] · MFV (higher-dimensional) -- too small. 1408.1652 1409 1439 Campus, Hernández, Pas, Schumacher Sx-flavor symmetry 1410.0803 Repton-flavored DM: SU(3) = × SU(3) = × SU(3) n - sym, DM = (3,1,1)-SM singlet Scalar MFV 2 > 18512 + - + Hth Sts Flavor structure but to obtain 1%- Br, coupling must be 2-7 motiveed => Flu structur IF \$ a,b desenented w. \$ c. 0.89% is obtained. · LFV only w. T= Mtute = S4: 1 S3: 1,1', 2; Sq: 1, 1', 2, 3, 3' 1'01'=1 1'01'-1 289=1+1+2 (1,2) |-|0|+|203 = 203' = 303' 1'89 = 2 1'82=2 (1,2,3) 1 1 -1 209= 1+1+2 1'83 = 3' 30 3=303= 1+2+7+3' (1,2,3,4) 1-10-1 1'03'=3 303 ~ [+2+3+31 (1,2)(7,4)

~ 3 %

65%

urt

Date

```
o Collinear mass

• T-decay products in the same direction

• ₱ comes from v and v. (v)

In H→TT.
```

$$\begin{cases} P_{\tau^{\pm}} = (1+\alpha_{\pm}) P_{V^{\pm}} \\ \mathbb{E}_{T} = \alpha_{+} P_{T^{V^{+}}} + \alpha_{-} P_{T^{V^{-}}} \\ \vdots \\ \alpha_{+} = \frac{\|\mathbb{E}_{T} \times P_{T^{V^{-}}}\|}{\|P_{T^{V^{+}}} \times P_{T^{V^{-}}}\|} \\ \Rightarrow BAD \text{ if } P_{T^{-}} = \frac{\|P_{T^{-}} \times P_{T^{V^{-}}}\|}{\|P_{T^{-}} + P_{T^{-}}\|} \end{cases}$$

 $\frac{\mathcal{T}^{t} \rightarrow \mathcal{H}^{t} \mathcal{V}_{h} (00\%)}{(27m)} \qquad p^{\mu}(z) = \begin{pmatrix} \|p^{z}\| \\ p^{z} \end{pmatrix} \qquad p^{\mu}(t) = \begin{pmatrix} \|p^{z}\| \\ p^{z} \end{pmatrix}$ $\frac{(27m)}{(0^{-0}sec} \qquad p^{\mu}(t) = \begin{pmatrix} \|p^{z}\| \\ p^{z} \end{pmatrix} \qquad p^{\mu}(t) = \begin{pmatrix} \|p^{z}\| \\ p^{z} \end{pmatrix}$

"to see all the decy products"

h To Vz: 260%

h To To Vz: 9.5%

hthh Vz: 9.5%

of ind most energetic e or or strip seed

hthrov: 45%

of ind most energetic e or or near the strip

and meyor (uccele strip) ---

re co 15 he un1! (DΦ,SM) = (0,2,0,05)

No. Date

· · · · · ·	
	· T→ h ~ 1h
	。 て ー h T で レ と 1 h + 1 s
	· T-) h た で 1h+25
	oて-1hhthン - 3h
	。こっんがれてのレ
	· reconstructed jet is id. as 7 if
	· therero momentum Phadis DR (0.1 from original PF) of
	* mass in resonance (50-200 MeV for π° 0.3-1.3 GeV for P
	6.8-1.5 GeV for Q!)
	= isolated - BRC&S
	E mis
	loose ~0.5 ~1% (faster better)
	med 10.4 20.01%
	type ~0.25 ~ 10-6
	· · · · · · · · · · · · · · · · · · ·

CMS Search for $H \to \mu \tau$

Sho Iwamoto*

3 Nov. 2014

A good presentation slides can be found in https://particles.golem.ph.utexas.edu/forum/forums/lhc-leptons-x/topics/discussion-session-102914 *1

Experiments

- CMS conf-note of $h \to \mu \tau$ [1]
- CMS τ -id (HPS) [2]

Constraints

• Refs. [3,4]

BSM Models (1)

- Leptoquark discussed in the above presentation
 - no refs found for leptoquark model with fine-tune suppression of $\tau \to \mu \gamma$
- Vector-like lepton [5]
- Type-III 2HDM [6]

BSM Models (2)

- Minimal flavor violation (MFV) or Froggatt-Nielsen (FN) [7]
- S_4 flavor symmetry with separated (e_R, μ_R) – (τ_R) [8]
- Lepton-flavored DM with MFV [9]

^{*}Physics Department, Technion; sho@physics.technion.ac.il

^{*1}Direct link: https://utexas.app.box.com/s/jxw5uogaj0d4fv3gc5ru

References

- [1] **CMS** Collaboration, Search for Lepton Flavour Violating Decays of the Higgs Boson, CMS-PAS-HIG-14-005 (2014).
- [2] **CMS** Collaboration, Performance of tau-lepton reconstruction and identification in CMS, JINST 7 (2012) P01001 [arXiv:1109.6034].
- [3] G. Blankenburg, J. Ellis, and G. Isidori, Flavour-Changing Decays of a 125 GeV Higgs-like Particle, Phys. Lett. **B712** (2012) 386–390 [arXiv:1202.5704].
- [4] R. Harnik, J. Kopp, and J. Zupan, Flavor Violating Higgs Decays, JHEP 1303 (2013) 026 [arXiv:1209.1397].
- [5] A. Falkowski, D. M. Straub, and A. Vicente, Vector-like leptons: Higgs decays and collider phenomenology, JHEP 1405 (2014) 092 [arXiv:1312.5329].
- [6] D. A. Sierra and A. Vicente, Explaining the CMS Higgs flavor violating decay excess, arXiv:1409.7690 (2014).
- [7] A. Dery, A. Efrati, Y. Nir, Y. Soreq, and V. Susi, Model building for flavor changing Higgs couplings, arXiv:1408.1371 (2014).
- [8] M. D. Campos, A. E. C. Hernndez, H. Ps, and E. Schumacher, $Higgs \to \mu\tau$ as an indication for S_4 flavor symmetry, arXiv:1408.1652 (2014).
- [9] C.-J. Lee and J. Tandean, Lepton-Flavored Scalar Dark Matter with Minimal Flavor Violation, arXiv:1410.6803 (2014).