Álgebra Universal e Categorias

Exercícios - Folha 6 —

36. Sejam $\mathcal{A}=(\{1,2,3,4,5\};*^{\mathcal{A}},c^{\mathcal{A}})$ e $\mathcal{B}=(\{1,2\};*^{\mathcal{B}},c^{\mathcal{B}})$ as álgebras de tipo (2,0) cujas operações nulárias são dadas por $c^{\mathcal{A}}=2$, $c^{\mathcal{B}}=1$ e cujas operações binárias são definidas por

$_{*}\mathcal{A}$					
1 2 3 4 5	2	2	2	5	2
2	2	3	3	2	2
3	2	3	2	2	2
4	5	2	2	4	2
5	2	2	2	2	2

Seja $\alpha:\{1,2\} \to \{1,2,3,4,5\}$ a aplicação definida por $\alpha(1)=2$ e $\alpha(2)=3$. Mostre que a aplicação α é um monomorfismo de $\mathcal B$ em $\mathcal A$. Justifique que $\mathcal B$ é isomorfa a uma subálgebra de $\mathcal A$.

- 37. Sejam \mathcal{A} , \mathcal{B} e \mathcal{C} álgebras do mesmo tipo. Mostre que se $\alpha \in \operatorname{Hom}(\mathcal{A},\mathcal{B})$ e $\beta \in \operatorname{Hom}(\mathcal{B},\mathcal{C})$, então $\beta \circ \alpha \in \operatorname{Hom}(\mathcal{A},\mathcal{C})$.
- 38. Sejam \mathcal{A} e \mathcal{B} álgebras do mesmo tipo. Mostre que se $\alpha: \mathcal{A} \to \mathcal{B}$ é um isomorfismo, então α^{-1} é um isomorfismo de \mathcal{B} em \mathcal{A} .
- 39. Sejam $\mathcal{A}=(A;F)$, $\mathcal{B}=(B;G)$ álgebras do mesmo tipo e $\alpha\in \mathrm{Hom}(\mathcal{A},\mathcal{B})$. Mostre que:
 - (a) Se A_1 é um subuniverso de \mathcal{A} , então $\alpha(A_1)$ é um subuniverso de \mathcal{B} .
 - (b) Se B_1 é um subuniverso de \mathcal{B} , então $\alpha^{\leftarrow}(B_1)$ é um subuniverso de \mathcal{A} .
- 40. Sejam \mathcal{A} e \mathcal{B} álgebras do mesmo tipo e $\alpha, \beta \in \text{Hom}(\mathcal{A}, \mathcal{B})$. Mostre que

$$Eq(\alpha, \beta) = \{ a \in A \mid \alpha(a) = \beta(a) \}$$

é um subuniverso de A. A este subuniverso chama-se equalizador de α e β .

- 41. Sejam $\mathcal{A} = (A; F)$ uma álgebra e θ , ψ relações binárias em A.
 - (a) Mostre que θ satisfaz a propriedade de substituição em \mathcal{A} se e só se θ é um subuniverso de $\mathcal{A} \times \mathcal{A}$.
 - (b) Mostre que se θ e ψ são subuniversos de $\mathcal{A} \times \mathcal{A}$, então $\theta \circ \psi$ é um subuniverso de $\mathcal{A} \times \mathcal{A}$.
- 42. Sejam \mathcal{A} , \mathcal{B} álgebras do mesmo tipo e $\alpha \in \text{Hom}(\mathcal{A}, \mathcal{B})$. Mostre que α é injetiva se e só se $\ker \alpha = \triangle_A$.
- 43. Sejam \mathcal{A} uma álgebra e $\theta, \rho \in \text{Con}\mathcal{A}$.
 - (a) Mostre que a aplicação $\alpha: \mathcal{A} \to \mathcal{A}/\theta \times \mathcal{A}/\rho$ definida por $\alpha(a) = ([a]_{\theta}, [a]_{\rho})$ é um homomorfismo.
 - (b) Mostre que $\ker \alpha = \theta \cap \rho$. Conclua que α é injetiva se e só se $\theta \cap \rho = \triangle_A$.
 - (c) Mostre que α é sobrejetiva se e só se $\theta \circ \rho = \nabla_A$.
- 44. Sejam $\mathcal{A}=(A;(f^{\mathcal{A}})_{f\in O}),\ \mathcal{B}=(B;(f^{\mathcal{B}})_{f\in O})$ e $\mathcal{C}=(C;(f^{\mathcal{C}})_{f\in O})$ álgebras de tipo $(O,\tau),$ $\alpha_1\in \mathrm{Hom}(\mathcal{A},\mathcal{B})$ e $\alpha_2\in \mathrm{Hom}(\mathcal{A},\mathcal{C}).$ Seja $\alpha:A\to B\times C$ a aplicação definida por $\alpha(a)=(\alpha_1(a),\alpha_2(a)),$ para todo $a\in A.$
 - (a) Mostre que α é um homomorfismo de \mathcal{A} em $\mathcal{B} \times \mathcal{C}$.
 - (b) Mostre que $\ker \alpha = \ker \alpha_1 \cap \ker \alpha_2$.
 - (c) Mostre que se α é um epimorfismo, então α_1 e α_2 são epimorfismos e

$$\mathcal{A}/(\ker \alpha_1 \cap \ker \alpha_2) \cong \mathcal{A}/\ker \alpha_1 \times \mathcal{A}/\ker \alpha_2.$$

45. Sejam \mathcal{A} uma álgebra, $\theta \in \operatorname{Con}(\mathcal{A})$ e $[\theta, \nabla_A] = \{\rho \in \operatorname{Con}(\mathcal{A}) \mid \theta \subseteq \rho\}$. Para $\phi \in \operatorname{Con}(\mathcal{A})$ tal que $\theta \subseteq \phi$, define-se a congruência ϕ/θ em \mathcal{A}/θ por

$$\phi/\theta = \{([a]_{\theta}, [b]_{\theta}) \in (A/\theta)^2 \mid (a, b) \in \phi\}.$$

(a) Determine a congruência ϕ/θ quando:

i.
$$\phi = \nabla_A$$
; ii. $\phi = \theta$.

(b) Mostre que os reticulados $([\theta, \nabla_A], \subseteq)$ e $(\operatorname{Con}(\mathcal{A}/\theta), \subseteq)$ são isomorfos. (Sugestão: prove que a aplicação $\alpha: [\theta, \nabla_A] \to \operatorname{Con}(\mathcal{A}/\theta)$ definida por $\alpha(\phi) = \phi/\theta$ é um isomorfismo de reticulados.)