Relatório Exercício Programa 1

Nome: Luís Henrique Puhl de Souza

RA: 1141565

Objetivo

Realizar a execução de um *job* no cluster OpenHPC da UFSCar, bem como configurar experimentos de escalabilidade e gerar relatórios.

Método

Com o programa exemplo que calcula o a constante Pi pelo método iterativo.

O programa, por ser uma aproximação iterativa.

Para esta avaliação utiliza-se 1000000000 (um bilhão). Três tipos de implementação são fornecidas: sequêncial, paralela com Pthread e paralela com OpenMP. Para cada versão paralela deve-se avaliar com 1, 2, 5, 10, 20 e 40 *threads*.

Resultados

Tabela de tempos de execução

Implementação	Processadores	tempo (segundos)	Speedup	Trabalho	Eficiência
Sequencial	-	16.061297	-	-	-
Pthread	01	16.047649	1.000850467	16.047649	1.000850467
Pthread	02	8.03185	1.999700816	16.0637	0.9998504081
Pthread	05	3.429154	4.683749111	17.14577	0.9367498223
Pthread	10	1.855043	8.65818043	18.55043	0.865818043
Pthread	20	0.9308	17.2553685	18.616	0.862768425
Pthread	40	0.510899	31.43732323	20.43596	0.7859330807
OpenMP	01	16.050153	1.000694324	16.050153	1.000694324
OpenMP	02	8.031462	1.999797422	16.062924	0.9998987108
OpenMP	05	3.511448	4.573981161	17.55724	0.9147962322
OpenMP	10	1.855881	8.654270937	18.55881	0.8654270937
OpenMP	20	0.93232	17.22723636	18.6464	0.8613618178

Implementação	Processadores	tempo (segundos)	Speedup	Trabalho	Eficiência
OpenMP	40	0.480989	33.3922335	19.23956	0.8348058376

Onde:

- Processadores é o número (parâmetro p) de processadores (threads) utilizado;
- Speedup é definido como o tempo sequencial (serial) dividido pelo tempo paralelo
 (S_time/P_time), neste caso o tempo sequencial é 16.061297 e o tempo paralelo depende da
 implementação e do número de processadores. Indica o ganho de tempo em relação à
 implementação serial;
- Trabalho (Work(n,p)) é o número de processadores utilizados multiplicado pelo tempo utilizado (p
 * P_time). Indica o custo do processamento paralelo;
- Eficiência (*Efficiency(n,p)*), similar ao *speedup*, é o tempo serial dividido pelo trabalho (s_time / work). Indica o quão bem utilizado foi o tempo de processamento.

Gráfico de Speedup

Conclusão

Esta implementação, quando executada no ambiente HPC da UFSCar, mostra o comportamento comum no *speedup* para problemas paralelizáveis, ou seja, o *speedup* melhora com a adição de cada processador com exclusão de um pequeno custo, também proporcional, da parte serial do programa. No caso a versão com OpenMP foi marginalmente mais eficiente para os experimentos com mais de 10 processadores.