Advanced Coding

Q1. Problem statement:

Given two non-negative integers n1 and n2, where n1 < n2. The task is to find the total number of integers in the range interval [n1, n2] [both inclusive] which have no repeated digits.

For e.g.

Suppose n1 = 11 and n2 = 15.

There is the number 11, which has repeated digits, but 12, 13, 14, and 15 have no repeated digits. So, the output is 4.

Input	Output
11 Value of n1	
15 Value of n2	4
101 Value of n1	
200 Value of n2	72

```
def checkRepetitive(start: int, end: int) -> list:
    count = 0
    for i in range(start, end+1):
        if len(list(set(str(i)))) == len(str(i)):
            count += 1

    return count

print(checkRepetitive(int(input()), int(input())))
```

Q2. Problem statement:

Given an array Arr[] of N integers and a positive integer K. The task is to cyclically rotate the array clockwise by K.

Note: Keep the first position of the array unaltered.

Example	Input	Output	Explanation
Example 1	5 Value of N {10, 20, 30, 40, 50} Elements of Arr[] 2 Value of K	40 50 10 20 30	Arr[] = {10, 20, 30, 40, 50} and K = 2 (Two cyclical rotations) After 1st rotation = {10, 50, 20, 30, 40}
			After 2nd rotation = {10, 40, 50, 20, 30}
Example 2	4 Value of N {10, 20, 30, 40} Elements of Arr[] 1 Value of K	40 10 20 30	Arr[] = {10, 20, 30, 40} and K=1 (One cyclical rotation)
	I - Value of K		After 1st rotation = {10, 40, 20, 30}

```
def rotate(arr: list, k: int) -> list:
    for i in range(k):
        arr.insert(0, arr.pop())
    return arr

print(rotate(list(map(int, input().split())), int(input())))
```

Advanced Coding

Q1. Given an array Arr[] of N integer numbers. The task is to rewrite the array by putting all multiples of 10 at the end of the given array.

Note: The order of the numbers which are not multiples of 10 should remain unaltered, and similarly, the order of all multiples of 10 should be unaltered.

For e.g.

Suppose N = 9 and $Arr[]=\{10, 12, 5, 40, 30, 7, 50, 9, 10\}$

You have to push all multiple of 10 at the end of the Arr[]

Hence, the output is 12 5 7 9 10 40 30 50 10.

Input	Output
9 Value of N 10 12 5 40 30 7 50 9 10 Elements of Arr[]	12 5 7 9 10 40 30 50 10
9 Value of N 100 21 5 6 3 7 11 89 10 Elements of Arr[]	21 5 6 3 7 11 89 100 10

```
def pushMultiples(arr: list) -> list:
    final = []
    multiples = []
    for ele in arr:
        if ele % 10 == 0:
            multiples.append(ele)
        else:
            final.append(ele)

    final.extend(multiples)
    return final

if __name__ == '__main__':
    print(pushMultiples(list(map(int, input().split()))))
```

Q2. Given an array Arr[N] of N integers and a positive integer K. The task is to divide the array into two sub-arrays from right after the Kth position and slide the left sub-array of K elements to the end.

Input	Output	Explanation
5 Value of N {10, 20, 30, 40, 50} Elements of Arr [] 2 Value of K	30 40 50 10 20	Arr[] = {10,20,30,40,50} and K=2 (2nd position) Divide array from after 2nd position and add left sub-array {10,20} to the end. So the output is 30 40 50 10 20
4 Value of N {10, 20, 30, 40} Elements of Arr [] 1 Value of K	20 30 40 10	Arr[] = {10, 20, 30, 40} and K=1 (1st position) Divide array from after 1st position and add left sub-array {10} to the end. So the output is 20 30 40 10
4 Value of N {10, 20, 30, 40} Elements of Arr[] 3 Value of K	40 10 20 30	Arr[] = {10, 20, 30, 40} and K=3 (3rd position) Divide array from after 3rd position and add left sub-array {10, 20, 30} to the end. So the output is 40 10 20 30

```
def pushAtEnd(arr: list, k: int) -> list:
    return arr[k:] + arr[:k]

if __name__ == '__main__':
    print(pushAtEnd(list(map(int, input().split())), int(input())))
```

Advanced Coding

Q1. For hiring a car, a travel agency charges R1 rupees per hour for the first N hours and then R2 rupees per hour. Given the total time of travel in minutes is X. The task is to find the total traveling cost in rupees.

Note: While converting minutes into hours, ceiling value should be considered as the total number of hours

For example: If the total travelling time is 90 minutes,

i.e. 1.5 hours, it must be considered as 2 hours.

Input	Output	EXplanation
20Value of R1 4 Value of N in hours		Total travelling hours = 300/60 = 5 hours
		Rupees 20/hours for first 4 hours = 20 * 4 = 80 rupees
40 Value of R2	120	Rupees 40/hours in 5th hour = 40 * 1 = 40 rupees
Value of 74 minutes		Hence, the total travelling cost = 80 + 40 = 120 rupees
30 Value of R1		Total travelling hours = 500/60 = 8.33, Ceiling value of 8.33 = 9 hours
5 Value of N in hours.	290	Rupees 30/hours for first 5th hours = 30 * 5 = 150 rupees
35 Value of R2 500 Value of X in minutes	290	Rupees 35/hours in 5th hour = 35 * 4 = 140 rupees
		Hence, the total travelling cost = 150 + 140 = 290 rupees
30 Value of R1		Total travelling hours = 3/60 =
10 Value of N in hours	30	0.05, Ceiling value of 0.05 = 1 hour
35 Value of R2 5 Value of X in minutes	30	Rupees 30/hour for first 10 hours = 30 * 1 = 30 rupees

```
import math

def calculateCost(r1: int, n: int, r2: int, x: int) -> int:
    x = math.ceil(x / 60)
    if x>=n:
        cost = n * r1
        x -= n
        cost += x * r2
    else:
        cost = x * r1
    return cost

if __name__ == '__main__':
    print(calculateCost(int(input()), int(input()), int(input()), int(input())))
```

Q2. There is a bag with three types of gemstones: Ruby of type R, Garnet of type g, and Topaz of type T. Write a program to find the total number of possible arrangements to make a series of gemstones where no two gemstones of the same type are adjacent to each other.

Input	Output	Explanation
1-Count of R i.e. Ruby 1-Count of G i.e. Garnet 0-Count of T i.e.	2	Arrangements are RG and GR.
1-Count of R i.e. Ruby 1-Count of G i.e .Garnet 1-Count of T i.e. Topaz	6	Arrangements are RGTR, GRTR, RGRT, RTGR, RTRG AND TRGR

```
def gemstoneArrangement(R: int, G: int, T: int, Last='') -> int:
    if R == 0 and G == 0 and T == 0:
        return 1

count = 0

if last != 'R' and R>0:
    count += gemstoneArrangement(R-1, G, T, 'R')

if last != 'G' and G > 0:
    count += gemstoneArrangement(R, G-1, T, 'G')

if last != 'T' and T > 0:
    count += gemstoneArrangement(R, G, T-1, 'T')

return count

if __name__ == '__main__':
    print(gemstoneArrangement(int(input()), int(input())))
```