Efficient Discovery of Concise Association Rules from Large Databases

Vikram Pudi vikram@iiit.ac.in **IIIT Hyderabad**

Talk Outline

- Introduction
- Mining Association Rules
- Conciseness of Mining Results
- Conclusions

Talk Outline

- Introduction
 - Define Association Rules
 - Applications
 - Types of Association Rules
 - Interestingness Measures
 - Privacy
- Mining Association Rules
- Conciseness of Mining Results
- Conclusions

3

What is Data Mining?

Automated extraction of interesting patterns from large databases

Types of Patterns

- Associations
 - Coffee buyers usually also purchase sugar
- Sequence Patterns
 - After seeing Superman, people usually see Star Wars
- Clustering
 - Segments of customers requiring different promotion strategies
- Classification
 - Customers expected to be loyal

Association Rules

D:	Transaction ID	Items
	1	Tomato, Potato, Onions
	2	Tomato, Potato, Brinjal, Pumpkin
	3	Tomato, Potato, Onions, Chilly
	4	Lemon, Tamarind

Rule: Tomato, Potato → Onion (confidence: 66%, support: 50%)

Support(X) = |transactions containing X| / |D| Confidence(R) = support(R) / support(LHS(R))

Problem proposed in [AIS 93]: Find all rules satisfying user given minimum support and minimum confidence.

7

Typical Solution Strategy

- STEP 1: Find all frequent itemsets (computationally expensive)
 - Itemset X is frequent iff $support(X) \ge minsup$
- STEP 2: Find rules from the frequent itemsets (computationally inexpensive)
 - Rule quantity: too many rules are usually generated
 - Rule quality: not all rules are interesting

8

Difficulty

- Extremely computationally expensive
- Naïve solution
 - exponential time and memory w.r.t. |I|
 - linear time w.r.t. |D|
- Typically, |I| is in thousands, |D| is in billions...

9

Applications

- E-commerce
 - People who have bought Sundara Kandam have also bought Srimad Bhagavatham
- Census analysis
 - Immigrants are usually male
- Sports
 - A chess end-game configuration with "white pawn on A7" and "white knight dominating black rook" typically results in a "win for white".
- Medical diagnosis
 - Allergy to latex rubber usually co-occurs with allergies to banana and tomato

Killer Apps

Classification

Idea: Model of each class consists of frequent itemsets for that class. Compare new transactions with each model and select "nearest" one.

Advantages: Scales well to thousands of attributes and billions of rows.

Recommendation Systems

- People who listen to songs that you listen, have also listened to these other songs...
- People who have bought these books, have also bought these other books...

Types of Association Rules

- Boolean association rules
- Hierarchical rules

clothes indian modern dhoti saree jeans t-shirt

dhoti, saree \rightarrow t-shirt

- Quantitative & Categorical rules
 - (Age: 30...39), (Married: Yes) \rightarrow (NumCars: 2)

12

More Types of Association Rules

- Cyclic / Periodic rules
 - Sunday → vegetables
 - Christmas → gift items
 - lacktriangle Summer, rich, jobless ightarrow ticket to Hawaii
- Constrained rules
 - Show itemsets whose average price > Rs.10,000
 - Show itemsets that have television on RHS
- Sequential rules
 - \blacksquare Star wars, Empire Strikes Back \rightarrow Return of the Jedi

13

Interestingness Measures

14

Traditional Measures

- Confidence: Likelihood of a rule being true
- Support:
 - Statistical significance: Data supports rule
 - Applicability: Rule with high support is applicable in large number of transactions

15

Problem with Confidence

- Researcher → Coffee (confidence: 90%)
- This rule intuitively means:
 - Researchers have a strong tendency to drink coffee.
- But if 95% of general population drinks coffee, then this is a bad rule.
- Solution: For, $X \rightarrow Y$,
 - Interest = P(X,Y) / P(X) P(Y)
 - Conviction = $P(X) P(\neg Y) / P(X, \neg Y)$ Reason: $X \rightarrow Y \Leftrightarrow \neg X \lor Y \Leftrightarrow \neg (X \land \neg Y)$

16

Surprising Patterns

- An itemset is uninteresting if its support can be estimated based on:
 - supports of its subsets
 - its support at earlier points in time
- Key Idea:
 - For an itemset X, remove items in each transaction that are not in X
 - If resulting database can be compressed well, then X is uninteresting (as it encodes less information)

Current Status of Interestingness

- minsup is required.
- So, get frequent itemsets first.
- Other interestingness measures can be applied later.
- Open Problem: How to select a good minimum support?

Issue: Privacy

- Users provide inaccurate data to protect their privacy.
- How can inaccurate data be effectively mined?
- How can data be modified in such a way as to ensure data privacy and rule accuracy?
- How can data be modified in such a way as to ensure rule privacy? – hide sensitive rules
- Can mined results be used to retrieve original data transactions?

19

Talk Outline

- Introduction
- Mining Association Rules
 - Apriori
 - Partition
 - Sampling
 - Incremental Mining
 - FP-Growth (Frequent Pattern Growth)
 - Optimal Infeasible Algorithm: Oracle
 - ARMOR (Association Rule Mining Based on ORacle)
- Conciseness of Mining Results
- Conclusions

Analysis of Apriori

- Minimum number of candidates possible (more or less)
- * i/o intensive: too many database scans
- cpu intensive: counting technique traverses data-structures for each transaction

25

Analysis of Partition

- ✓ Only two i/o scans over database
- Frequent itemset mining is mostly cpu-intensive
- * Partition is cpu intensive
 - * same counting technique as Apriori
 - Number of candidates in both scans similar to that of Apriori
 - So, does double the work
- Starts fresh Apriori for each partition instead of using previous partitions' results
- * Sensitive to skew in data distribution
 - Some partitions may be very different and can contribute spurious candidates

27

Analysis of Sampling

- Estimate of frequent itemsets is usually quite accurate
 - Exact frequent itemsets not needed in many applications
- Sampling itself may require one database scan if random access is not possible (due to lack of index)
- * If exact frequent itemsets are required, the cpu-cost is more than Apriori because
 - * same counting technique as Apriori
 - * first scan counts similar number of candidates as Apriori
 - cpu-cost of second scan is extra

Incremental Mining Mining **Data Business Strategy** (feedback) Idea 1: Treat DB and db as two partitions. Apply partition ■ Database = $DB \cup db$ technique. DB - original database db - increment Idea 2: Treat DB as a sample. Find rules for $DB \cup db$ and for dbApply sampling (negative border) technique. Input: FDB, NDB Output: FDB U db, NDB U db, Fdb, Ndb Idea 3: Idea 1 + Idea 2 30

Practice Problem

Show the steps of Apriori on the following dataset with mincount = 3. Clearly show candidate and frequent itemsets of each length. Dataset: facdgimp, abcflmo, bfhjo, bcksp, afcelpmn.

31

Analysis of FP-Growth

- Reuses work done for processing transactions that share a common prefix
- Counting technique is thus different from Apriori
- ✓ No explicit data-structure traversal for each transaction
- ✓ Very effective for dense datasets
- * Not effective for *sparse* datasets
 - * If a sequence of items appears in even one transaction, it will be represented in the fp-tree
 - * For a large random sparse dataset, every sequence is likely to appear in at least one transaction
 - * The fp-tree then grows linearly with database size
- Invalid claims of "no candidates"
 - Every candidate that is counted in Apriori is also counted in FP-growth (and a counter is maintained for it)

Optimal Algorithm: Oracle

- Magically knows identities of frequent itemsets before mining begins. Therefore, has to only determine the counts of these itemsets in one pass over the database
- Minimum work required from any algorithm
- Careful design of data structures to ensure optimal access and enumeration of itemsets

No wasted Enumeration

- All 1-itemsets are either frequent or in -ve border
- Only combinations of *frequent* 1-itemsets enumerated for pairs
- Depth-first search ensures each itemset is visited only once

Enumeration Cost = $\Theta(1)$

- Direct lookup arrays for 1&2-itemsets.
 Best in unit-cost RAM model
- For longer itemsets, $cost = \Theta(|X.childset|)$ resulting in $\Theta(1)$ cost per itemset overall
- All operations involve array and pointer lookups, which cannot be improved upon

41

Oracle Features

- Uses direct lookup arrays for 1-itemsets and 2itemsets
- Uses DAG structure for longer itemsets
- No wasted enumeration of itemsets
- Enumeration cost per itemset = $\Theta(1)$
- Caveat: Not really optimal
 - Doesn't share work for transactions that are significantly similar. E.g. if 2 transactions are identical, it does the same work for both

43

Performance of Current Algorithms

Performance Setup

- Algorithms: Oracle, VIPER, FP-growth, Apriori
- Variety of Databases
 - File-system backend
 - Integration with commercial RDBMS
 - Cache data to file-system and run algorithm
 - Implement algorithm as stored procedure
 - Implement algorithm in SQL
- Extreme and typical values of minsup

Online Algorithm

ARMOR: Association Rule Mining based on ORacle

ARMOR

- Minimal changes to Oracle
- Maximum two passes over database
- "Short and light" second pass
- Performance: Within twice of Oracle for a variety of real and synthetic databases

Conclusions: Is ARMOR++ Feasible?

- Number of candidates in ARMOR are only 10% more than minimum (all frequent itemsets+negative border)
- Number of passes is effectively less than two
- So, scope for improvement appears to be limited
- Caveat: Doesn't share work for transactions that are significantly similar. E.g. if 2 transactions are identical, it does the same work for both

Talk Outline

- Introduction
- First-time Mining of Association Rules
- Conciseness of Mining Results
 - Background
 - Closed Itemsets Framework
- Conclusions

Problem: Too many rules!

Dataset	minsup	#frequent
Sparse	0.1%	27,532
Dense	70%	48,969

Most are redundant

Post-mining Rule Pruning Schemes

- E.g. Output only rules that satisfy a usergiven minimum improvement.
 - Improvement: Minimum difference between confidence of a rule and any of its sub-rules with the same RHS.
- Problem: What if mining itself is infeasible due to large output size?

58

Constrained Association Rules

- User specifies constraints on what kind of rules he is looking for. E.g. RHS should contain milk.
- Problem:
 - User may not have any constraints in mind.
 - Artificial, if purpose is just to reduce number of rules.

Maximal Frequent Itemsets

- A maximal frequent itemset is one that has no frequent supersets. (Also, called positive border.)
- Problems:
 - Identity of subsets can be deduced, but not their supports.
 - Subsets may have unexpected supports and thus be interesting on their own.
 - Cannot be used to form rules, since supports of subsets is necessary for this.

60

Closed Itemsets [Zak00]

Closed Itemsets Definition

- Tidset of an itemset X:
 - t(X) = set of tids of transactions containing X
- Itemset of a tidset T:
 - i(T) = items common to all transactions in T
- Closure Operator c(X) = i(t(X)):
 - Extension: $X \subseteq c(X)$
 - Monotonicity: If $X \subseteq Y$, then $c(X) \subseteq c(Y)$
 - Idempotency: c(c(X)) = c(X)
- Closed Itemset X: Iff c(X) = X

62

Closed Itemsets Redefinition

support(A) = support(AB)
support(AC) = support(ABC)
Etc.

An itemset is closed iff it has no superset with same support.

63

Mining Frequent Closed Itemsets

In any algorithm for frequent itemset mining:

- If an itemset has a subset with same support, don't generate any of its supersets as candidates.
- E.g. in Apriori, remove such itemsets from F before applying AprioriGen(F)

64

Problem with Closed Set Approach

- Exact Support Equality: Requires supports of some itemsets and their supersets to be exactly equal.
- Mushroom Database Example: Addition of 438 tuples to 8,124 tuple database causes number of closed frequent itemsets at minsup=20% to increase from 1,390 to 15,541 11 times!

Talk Outline

- Introduction
- First-time Mining of Association Rules
- Conciseness of Mining Results
- Conclusions

