ECEN 5053-002

Developing the Industrial Internet of Things

Week 9 - Lecture

Sensors, Drives, File Systems

Dave Sluiter - Spring 2018

Material

- Sensors
- Storage: Hard Drives and Solid State Drives
- File Systems

Learning Outcomes

- Thermistors
 - How to calibrate
 - How to filter
 - How to sample
- Understand how block and object drives function
- Understand how hard drives and solid state drives operate
- Grasp how traditional file systems fail to meet the needs of large data sets
- Gain initial insight into file systems:
 - NFS
 - Hadoop
 - Lustre

Sensors

- One of the key skills to acquire is understanding sensors: how to calibrate them, and the filtering required.
- We will look at temperature sensors
 - Thermocouples
 - Resistive Temperature Devices (RDT)
 - Thermistors

Thermistor

- Is a 2-wire device that changes resistance as a function of temperature
- For example:
 - -40C to +200C
 - 220K to 10K ohms

Temperature Coefficient

- Some have negative temperature coefficients
- Some have positive temperature coefficients

Terminology

- Before we get into this, we have to understand the terms:
 - Resolution
 - Precision
 - Accuracy
 - Tolerance

Resolution

- Is the "fineness" to which an instrument (sensor) can be read
 - Analog stopwatch can be read to 1/10 of a second
 - Digital stopwatch can be read to 1/100 of a second

Source: http://www.tutelman.com/golf/measure/precision.php

Electrical, Computer & Energy Engineering

Precision

- Humans take about 1/10 of a second to respond to stimulus
 - So this means that the digital stopwatch, even though it has 1/100 second resolution, only has 1/10 second precision. What?
- Precision: How repeatable a measurement is
- Because of the human factor, the digital stopwatch is only repeatable to 1/10 second. Testing would show that the digit in the 1/100 place would be close to random.

Accuracy (correctness)

Improved precision (repeatability) Accuracy remained the same, average is still just as far away from the center.

Improved accuracy with the same precision.

Improved accuracy + improved precision.

Tolerance

 Combines precision (repeatability) and accuracy (correctness)

Basic Sensor Circuit

Basic Sensor Circuit

Accuracy

- So say we had a 16-bit ADC (unsigned)
- and a 0.01% tolerance Vref part
- What is the accuracy of the ADC?
 - (2^16) * 0.0001 = 6.554
- This means any measurement we take is +/- 3.277, say +/- 3.3 units from the actual (correct) voltage
- If we wanted to save money and substituted a 0.2% tolerance Vref part for \$0.40, we get
 - (2^16) * 0.002 = 131 or +/- 65.5 units from the actual (correct) voltage

Accuracy

Advanced Sensor Circuit

Calculating Rtherm

- Measure Vdd = MVdd
- Measure Vtherm = MVtherm
- Compute current Ic = (MVdd MVtherm) / Rfixed
- Ic = MVdd / (Rfixed + Rtherm), solving for Rtherm
 - Rtherm = (MVdd/Ic) Rfixed
- Rtherm is looked up in the manufacturer's data sheet (a table)
 - produce a temperature value

Note: A divide operation is required. So your CPU needs a divide instruction or you can use a software library.

Calculating Rtherm (con't)

- What about tolerances T?
- Measure Vdd = MVdd + T
- Measure Vtherm = MVtherm + T
- Compute (MVdd + T) (MVtherm + T)
 - the tolerance term cancels out, and we have:
 - (MVdd MVtherm)

Validating Temperature Readings

Filtering

- Some applications require filtering out as much noise as possible from our ADC samples
- Pass Vtherm through a low-pass filter
 - F_c = Cutoff frequency is the
 -3 dB down point
 - Divides the passband from the stopband

Simple Passive Filter


```
Cutoff frequency is given by: fc = 1 / (2*pi*R*C) Hz
```

We choose:

R = 100 ohms fc = 1 Khz

1000 = 1 /2 *pi*R*C C*R*pi*2 = 1/1000 C = 1/1000*R*pi*2 C = 1.6 uF

Vout = Vin in steady state, lout = 0
Also doesn't provide any buffering

Simple Active Filter

Source: Filter Pro Desktop: http://www.ti.com/lsds/ti/analog/webench/webench-filters.page

Min GBW regd.:

71 kHz

Digital FIR Filter

Finite Impulse Response Filter

Note: There is a clock, samples are input/processed at the filter sample frequency, FFs

Digital FIR Filter Response

Source: http://www.cypress.com/forum/psoc-creator-software

But wait, doesn't the FIR filter operate on digital samples?

What should these frequencies be?

Demos

- TI FilterPro
- Cypress PSoC Creator

Top Sensor Manufacturers in 2017

- STMicroelectronics (Switzerland),
- NXP Semiconductors N.V. (Netherlands),
- TE Connectivity Ltd. (U.S.),
- Infineon Technologies AG (Germany),
- Texas Instruments Incorporated (U.S.),
- Robert Bosch GmbH (Germany),
- Analog Devices, Inc. (U.S.),
- ams AG (Austria),
- Honeywell International, Inc. (U.S.),
- Sensirion AG (Switzerland),
- Knowles Electronics, LLC. (U.S.),
- InvenSense, Inc. (U.S.),
- Omron Corporation (Japan),
- ARM Holdings Plc. (U.K.),
- ABB Ltd. (Switzerland),
- Emerson Electric Company (U.S.),
- Siemens AG (Germany), Broadcom Limited (U.S.), and
- Asahi Kasei Corporation (Japan).

• Goals

- Saw examples of how to calibrate, filter, sample and validate temperature sensors
 - Remember: This was a key skill our Industry Advisory Board wants to see in our ESE graduates
- For more in-depth learning take Jimmy Zweighaft's course "Embedding Sensors and Actuators"

File Systems

- Block based vs. Object based drives
- File Systems:
 - NFS
 - Apache Hadoop (HDFS)
 - Lustre (LFS)
- Others (not covered)
 - ZFS
 - Quantcast
 - Ceph
 - Gluster
 - PVFS

Block Devices

- * Drives store data in **blocks**, also called **sectors**.
- * Each block has an address, referred to as the Logical Block Address, or LBA.
- * A drive can only transfer in units of sectors.
- * Block sizes vary from **512 bytes** up to **4224 bytes**.

31

Block Device File Read

- Say we have 512 byte sectors
 - fh = fopen ("myfile", "r");
 - buf_ptr = malloc (4000);
 - amount_read = fread(buf_ptr, 1000, 1, fh);

Object Devices

- * In object based drives, data is referred to by an **objectID**.
- * Objects can be of arbitrary size.

Object Device File Read

- fh = objopen ("myfile", "r");
- buf_ptr = malloc (4000);
- amount_read = objread(buf_ptr, 1000, fh);

Key-Value Devices

- * In key-value based drives, data is referred to by a **key**.
- * Values can be of arbitrary size.

Sources: http://www.enterprisestorageforum.com/storage-management/is-key-value-data-storage-in-your-future-1.html

https://en.wikipedia.org/wiki/NoSQL#Key-value_store

http://www.project-voldemort.com/voldemort/

How Does a File System Track Files?

Warning: Cartoon Drawing!

- Disk sectors are used to store:
 - User data (file contents)
 - File system data (directory structure and file metadata)

A File on a Hard Drive

A file on a hard drive is stored in multiple sectors, on multiple tracks, spread around the surface of the disk.

Image Source: https://www.researchgate.net/profile/Jawhar-Ghommam

A File on a Solid State Drive

A File on a Solid State Drive (con't)

Firmware on the drive maintains a table that maps LBAs to physical locations in the NAND array.

NFS

- NFS = Network File System
- Created by Sun for Solaris
- Client-Server model
 - Allows remote directories to be accessed as though they were local directories
- Runs over TCP/IP
- OS and architecture of the server can be different from the client
 - MS Windows client and a Linux server
 - A folder that contains files resides on a single server (or NAS box)
 - It may be a RAID system for data protection, but generally not for access speed

Drive Speeds

- A hard drive can stream at ~4Gb/s
 - ~ 500 MB/s, limited by the media channel speed
- A Gen4 (1600 MT/s) PCIe/NMVe SSD can stream at 1970 MB/s per lane
 - 4-lane PCIe SSD = ~7 GB/s
 - Assuming the NAND flash array can keep up

So how big is big?

- A manufacturing plant with 30,000 sensors, sampling at 100ms producing 16 bytes of data/sample yields:
 - 30,000 sensors * 1 sample/sensor/100ms * 16 bytes/sample
 - = 48,000 bytes/sec or 4.1 GB/day, 1.5 TB/year
- Multi-wave Infrared Atlas of the Galactic plane, 45 TB
- Pratt and Whitney's Geared Turbo Fan engine has 5000 sensors, generates up to 10GB of data per second. 2 hour flight generates 72 TB
- One Watson typically has 16TB of RAM

Pratt and Whitney source: http://aviationweek.com/connected-aerospace/internet-aircraft-things-industry-set-be-transformed

Sizes

- Terabyte (TB) = 1000 GB
- Petabyte (PB) = 1000 TB
- Exabyte (EB) = 1000 PB
 - Estimate today (Q1 2018), the internet contains ~170 EB
- Zetabyte (ZB) = 1000 EB

Bottlenecks of Traditional File Systems

NetApp FAS3200 2880 TB (2.88 PB)

100G ethernet

Transfer 2880 TB / 11.25E9 B/sec

= 256,000 sec

= 4267 minutes

= 71 hours

Bottlenecks (con't)

128 NetApp FAS3200's

Better Scheme

Parallel Distributed File Systems

- Hadoop File System (HDFS)
- Lustre (LFS)

Note: This is a very similar notion to "Storage Compute", which also aims to push compute out to where data resides.

Primary driver in Storage Compute is:

- 1) Throughput, parallel access to data
- 2) Dramatically reduced power consumption, reduce the power cost for moving the data to the compute

Footnote/Reference

Hadoop

- Goals
 - Plan for and mitigate hardware failures
 - Streaming access to data and batch processing
 - Large data files, a typical file in Hadoop is GB's to TB's
 - Is a write-once, read-many scheme. Does support append and truncate. Not a good fit for general purpose file IO.
 - Supported and portable across heterogeneous hardware and software systems.

Source: http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Data_Organization

Example Hadoop cluster

NameNodes perform file: open close renaming

Lustre

- Goals
 - Run on linux
 - Scale capacity and performance
 - Number of Clients = 100 to 1,000,000; Installations today with 50,000+ clients
 - Client performance
 - Single client = 90% of network bandwidth
 - Aggregate client bandwidth can reach up to 10 TB/s
 - File sizes
 - 32 PB max file size
 - 512 PB, with over 1 trillion files
 - General file IO, not write-once read-many like Hadoop
 - Replication not a focus, but can support

Source: http://doc.lustre.org/lustre_manual.xhtml#understandinglustre
http://wiki.lustre.org/File_Level_Replication_High_Level_Design

Example Lustre cluster

Stores:

Lustre at scale

End