

### Introduction

Theoretical Deep Learning #2: generalization ability

Eugene Golikov MIPT, fall 2019

Neural Networks and Deep Learning Lab., MIPT

Classic "bias-variance trade-off" curve:



The figure is borrowed from Belkin et al.  $(2018)^1$ .

<sup>&</sup>lt;sup>1</sup>https://arxiv.org/abs/1812.11118

#### The same curve for neural networks:



The figure is borrowed from Neyshabur et al.  $(2014)^2$ .

<sup>&</sup>lt;sup>2</sup>https://arxiv.org/abs/1412.6614

#### Where is the sweet spot?



The figure is borrowed from Belkin et al. (2018).

### Similar curves for random forest and boosting:



Left: random forest, right: boosting on decision trees.

Figures are borrowed from Belkin et al. (2018).

#### General "double descent" curve:



The figure is borrowed from Belkin et al. (2018).

Neural networks appear to be in interpolating regime; what phenomena do we observe there?

- 1. SGD achieves zero training risk (TDL #1);
- 2. Test risk decreases as complexity grows (this course).

## TDL #1 recap

**Assume** fully-connected feed-forward network with single output neuron and  $l_2$  loss.

#### **Define:**

- n = #training samples;
- H = #hidden layers;
- *m* = width of the widest hidden layer;
- *d* = total number of parameters;
- $\sigma(\cdot)$  activation function.

## TDL #1 recap

- Observation: SGD achieves zero training risk.
- Natural hypothesis: All local minima of training risk are global.
- Results:
  - 1. **Kawaguchi (2016)**<sup>3</sup>: True, if  $\sigma$  is identity map.
  - 2. Yu & Chen  $(1995)^4$ : True, if H = 1,  $m \ge n$  and if  $\sigma$  is real analytic.
  - 3. **Nguyen & Hein (2017)**<sup>5</sup>: (Almost) true for H > 1, if  $m \ge n$ , if net contracts after the widest layer and if  $\sigma$  is real analytic.
  - 4. **Nguyen (2019)**<sup>6</sup>: True for any  $H \ge 1$ , if  $m \ge n$ , if net contracts after the widest layer and if  $\sigma$  is leaky ReLU.

<sup>3</sup>http://www.mit.edu/~kawaguch/publications/kawaguchi-nips16.pdf

<sup>4</sup>https://ieeexplore.ieee.org/document/410380/

<sup>&</sup>lt;sup>5</sup>https://arxiv.org/abs/1704.08045

<sup>6</sup>http://proceedings.mlr.press/v97/nguyen19a/nguyen19a.pdf

## TDL #1 recap

- Problem: Globality of local minima is not sufficient for SGD to converge fast!
- Hypothesis: SGD converges to a global minimum in linear time whp over initialization.
- Results for H=1:
  - 1. **Du et al.** (2018)<sup>7</sup>: True wp  $\geq 1 \delta$ , if  $m = \Omega(n^6/\delta^3)$  and  $\sigma$  is ReLU.
  - 2. **Song & Yang (2019)**<sup>8</sup>: True wp  $\geq 1 \delta$ , if  $m = \Omega(n^4 \text{ poly log}(n/\delta))$  and  $\sigma$  is ReLU.
  - 3. Kawaguchi & Huang (2019)<sup>9</sup>: True wp  $\geq 1 \delta$ , if  $d = \Omega(n \log(n/\delta))$  and  $\sigma$  is real analytic.

<sup>&</sup>lt;sup>7</sup>https://openreview.net/forum?id=S1eK3i09YQ

<sup>&</sup>lt;sup>8</sup>https://arxiv.org/abs/1906.03593

<sup>&</sup>lt;sup>9</sup>https://arxiv.org/abs/1908.02419

- **Observation:** Test risk of networks found by SGD decreases as width grows.
- **Hypothesis:** There is a network complexity measure with following properties:
  - 1. It correlates with test risk;
  - 2. It is implicitly minimized by SGD.
- Possible candidates are specific parameter norms.

#### Our goal is to bound the risk difference:

$$R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \leq \mathrm{bound}(N(\hat{f}_n), n, \delta)$$
 w.p.  $\geq 1 - \delta$  over dataset  $S_n$ ,

#### where

- R(f) risk of predictor f,
- $\hat{f}_n$  solution found by SGD,
- N(f) is the complexity measure of predictor f.

#### Usual form of bound:

bound
$$(N, n, \delta) = \tilde{O}\left(\sqrt{\frac{N + \log(1/\delta)}{n}}\right)$$
.

$$R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \leq \mathrm{bound}(N(\hat{f}_n), n, \delta)$$
 w.p.  $\geq 1 - \delta$  over dataset  $S_n$ .

#### Worst-case bounds:

bound = 
$$\sup_{f \in \mathcal{F}} (R(f) - \hat{R}_n(f)).$$

Lead to complexity measures that depend on  $\mathcal{F}$  —  $\mathbf{dimension}$  of space of predictors.

$$R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \leq \mathrm{bound}(N(\hat{f}_n), n, \delta)$$
 w.p.  $\geq 1 - \delta$  over dataset  $S_n$ .

#### **PAC-Bayes bounds:**

$$N(\hat{f}_n) = KL(Q(S_n)||P), \quad \hat{f}_n \sim Q(S_n).$$

Here  $Q(S_n)$  — "posterior" over predictors, P — "prior" over predictors.

#### **Hypothesis:**

SGD prefers predictors that minimize some complexity measure N(f):

$$\hat{f}_n = \operatorname{SGD}(S_n) \in \underset{f: \hat{R}_n(f)=0}{\operatorname{Arg min}} N(f).$$

#### Results:

- Linear regression: for zero init GD chooses minimum *l*<sub>2</sub>-norm solution.
- Neural network: depends on magnitude of init (Woodworth et al., 2019)<sup>10</sup>.

<sup>10</sup>https://arxiv.org/abs/1906.05827

## Organization

#### Lectures:

1 per week,  $\sim$  8 lectures total.

## Lab(s) ( $\sim 40\%$ of final grade):

We use pytorch; GPU is desirable.

#### Theoretical assignments:

Possibly, no theoretical assignments this time.

### Oral exam ( $\sim 60\%$ of final grade):

In the form of interview.

Main resource: https://github.com/deepmipt/tdl2

Link to **telegram chat** and **homework submission rules** are on github page.