Nov 8, 2022

Due: 11pm on Tue/Nov 15, 2022

Weight is 12% of the total grade points

In each problem state all the assumptions/choices and show the necessary steps Submissions must be made on Gradescope

Refer to the following link for necessary input files and updates: https://www.scorec.rpi.edu/~sahni/MANE6760/F22/HWs/HW3/question/

Consider the formulation and Python code provided in the course for the stabilized finite element (FE) method for steady, 1D, non-linear, scalar AD equation.

1. (10 points) Consider $\kappa = \kappa_0 (1 + \frac{1}{1 + \phi_{,x}^2})$ (i.e., instead of $\kappa = \kappa_0 \phi$ or $\kappa = \kappa_0 \phi^2$). The non-linear weak residual is given as:

$$G_A = \int_0^L \left(\dots + \dots + \frac{N_{A,x} \kappa \bar{\phi}_{,x} + \dots + \dots \right) dx$$

Find the contribution (only) of the term shown above to the tangent/LHS matrix $\frac{\partial G_A}{\partial \hat{\phi}_B}$. Hint: note that $\kappa = \kappa(\phi_{,x})$ (instead of $\kappa = \kappa(\phi)$) and thus, consider $\frac{\partial \kappa}{\partial \phi_{,x}}$.

2. (20 points) Update the code for the above equation (i.e., $\kappa = \kappa_0(1 + \frac{1}{1 + \phi_{,x}^2})$). Keep all the other settings the same (e.g., a_x , κ_0 , s, N_e , etc.). Provide the updated solution plot and the updated Python code.