Couplages

© N. Brauner, 2019, M. Stehlik 2020

Plan

Couplages

2 Couplages dans les graphes bipartis

2

Plan

Couplages

2 Couplages dans les graphes bipartis

3

Couplage

Définitions

 Un couplage dans un graphe G = (V, E) est un sous-ensemble d'arêtes M ⊆ E disjointes telles que tout sommet de V est incident à au plus une arête de M.

[Matching]

- La cardinalité maximale d'un couplage de G est notée $\nu(G)$.
- Un couplage est parfait s'il est incident à tous les sommets de V.

Couplage: exemples

couplage M

Couplage: exemples

couplage M

Couplage: exemples

couplage parfait M'

5

Couplage maximum vs couplage maximal

Définition

- Un couplage <u>maximum</u> dans un graphe G = (V, E) est un couplage contenant le plus grand nombre possible d'arêtes (c'est-à-dire de cardinalité maximale)
- Un couplage <u>maximal</u> dans un graphe G = (V, E) est un couplage M qui est maximal au sens de l'inclusion, c'est-à-dire que le graphe induit par les sommets non couverts est un stable (toute arête du graphe possède au moins une extrémité commune avec M).

6

Couplage maximum vs couplage maximal : exemple

Exemple

On considère le graphe G ci-contre. On s'intéresse au couplage M matérialisé en rouge sur le graphe G.

- le couplage *M* est-il maximum?
- le couplage *M* est-il maximal?

Couplage maximum vs couplage maximal : exemple

Exemple

Le couplage *M* est-il maximum?

Le couplage M' représenté en bleu ci-contre contient strictement plus d'arêtes que le couplage M.

Donc le couplage M n'est pas maximum.

Couplage maximum vs couplage maximal : exemple

Exemple

Le couplage M est-il maximal?

On dessine ci-contre le sous-graphe de G induit par les sommets de V(G) non couverts par le couplage M.

Le graphe ainsi obtenu est un stable, donc le couplage M est maximal.

La différence symétrique

Définition

La différence symétrique de A et B, notée $A \triangle B$, est l'ensemble des éléments qui sont dans A ou dans B, mais pas dans les deux.

$$A\triangle B=(A\setminus B)\cup (B\setminus A)=(A\cup B)\setminus (A\cap B).$$

Chaînes alternées et augmentantes

Définition

Pour un couplage *M* donné :

- Chaîne M-alternée: chaîne simple dont les arêtes alternent entre celles de M et celles de E \ M.
- Chaîne M-augmentante : chaîne
 M-alternée entre deux sommets non
 couplés dans M
 (ie aucune arête de M n'est incidente à
 une extrémité de la chaîne).

couplage *M*

Observation

Soit M un couplage dans un graphe et supposons P une chaîne M-augmentante. Alors, $M \triangle P$ est un couplage de taille |M|+1.

Chaînes alternées et augmentantes

Définition

Pour un couplage *M* donné :

- Chaîne M-alternée: chaîne simple dont les arêtes alternent entre celles de M et celles de E \ M.
- Chaîne M-augmentante : chaîne
 M-alternée entre deux sommets non
 couplés dans M
 (ie aucune arête de M n'est incidente à
 une extrémité de la chaîne).

couplage $M \triangle P$

Observation

Soit M un couplage dans un graphe et supposons P une chaîne M-augmentante. Alors, $M \triangle P$ est un couplage de taille |M|+1.

Une caractérisation des couplages maximums

Théorème

Un couplage M dans un graphe G est maximum si et seulement si il n'y a pas de chaîne M-augmentante dans G.

S'il existe une chaîne M-augmentante alors on peut trouver un couplage de cardinalité supérieure. Donc si M est un couplage maximum alors, il n'existe pas de chaîne M-augmentante.

Une caractérisation des couplages maximums

 \Leftarrow On suppose que M n'est pas maximum. On démontre qu'il existe alors une chaîne M-augmentante.

- Soit N un couplage maximum, alors |N| > |M|
- Soit $G' = (V, M \triangle N)$
- Tous les sommets de G' sont de degré inférieur ou égal à 2 (N et M sont des couplages)
- Les composantes connexes de G' sont
 - des sommets isolés,
 - des cycles avec autant d'arêtes de M que de N,
 - des chaînes où les arêtes de *M* et *N* alternent.
- Comme |N| > |M|, on a aussi davantage d'arêtes de N que de M dans G'. On a donc au moins une des chaînes de G' qui contient plus d'arêtes de N que de M.
- Cette chaîne est alors une chaîne *M*-augmentante.

Couplages et transversaux

Définition

- Un transversal dans un graphe G = (V, E) est un ensemble de sommets T incident à toutes les arêtes du graphe : $\forall e \in E \ \exists v \in T$ tel que v est incident à e
- La cardinalité minimum d'un transversal dans G est notée $\tau(G)$.

Remarque : V est un transversal trivial de G.

Si T est un transversal de G = (V, E), que peut-on dire de $G[V \setminus T]$?

Soit M un couplage et T un transversal. Comparez |M| et |T|. ¹

1. indice : chaque arête de M est incidente à au moins un sommet de T.

Lien entre couplage maximum et transversal minimum

- Dans les graphes quelconques : $\nu(G) \le \tau(G)$
- Dans les graphes bipartis : $\nu(G) = \tau(G)$ (preuve tout de suite après...)

Montrer que, pour tout graphe G, on a $\nu(G) \leq \tau(G)$

Trouver un graphe pour lequel $\nu(G) < \tau(G)$

Corollaire de $\nu(G) \leq \tau(G)$

Soit un graphe G. Si M est un couplage de G et T un transversal de G tels que |M| = |T|, alors M est un couplage maximum de G et T est un transversal minimum de G.

Attention : la réciproque n'est pas vraie puisqu'on peut avoir $\nu(G) < \tau(G)$!

Plan

Couplages

2 Couplages dans les graphes bipartis

```
Algorithme 1: Augmenter un couplage dans G = (A \cup B, E)
biparti
Données: un couplage M
Résultat: un couplage strictement plus grand que M ou "M
           est maximum"
orienter chaque arête de M de B vers A
orienter chaque arête de E \setminus M de A vers B
Soit A_M \subset A et B_M \subset B les sommets qui ne sont pas couverts
 par M
si il v a un chemin P de A_M à B_M alors
  retourner M\Delta E(P)
sinon
   retourner M est optimal
```

Théorème de Kőnig

Dans un graphe biparti G, on a $\nu(G) = \tau(G)$.

On donne ici une démonstration, mais elle n'est pas considérée comme étant au programme de l'UE.

On a vu que $\nu(G) \leq \tau(G)$, pour rappel :

Chaque arête du couplage doit être couverte par tout transversal. Comme deux arêtes ne sont pas incidentes à un même sommet, il faut au moins un sommet par arête. Donc $\tau(G) \geq \nu(G)$.

On exhibe un transversal qui a la même cardinalité qu'un couplage (cela permettra de conclure) :

- Soit M un couplage maximum, et (A, B) une bipartition de G.
- Orienter chaque arête de M de B vers A
- Orienter chaque arête de E \ M de A vers B
- Soient A_1 et B_1 les sommets de A et B non touchés par M
- Soient A₂ et B₂ les sommets v touchés par M tels qu'il existe un chemin d'un sommet de A₁ à v
- Soient A_3 et B_3 les autres sommets (touchés par M et non atteignables depuis A_1)

On veut démontrer que

- $A_3 \cup B_2$ est un transversal de G.
- $|A_3 \cup B_2| = |M|$

pas de chaîne augmentante \Rightarrow

- pas d'arête entre A₁ et B₁:
 car sinon on pourrait l'ajouter au couplage
- pas d'arête entre A_2 et B_1 : S'il existe une telle arête ab ($a \in A_2$ et $b \in B_1$), alors $ab \notin M$ car $b \in B_1$ non touché par M. Donc elle se retrouve orientée dans le sens $a \to b$. Or, comme il existe un chemin P de A_1 vers a (car $a \in A_2$), alors en prolongeant P par l'arc ab, on aurait un chemin entre deux sommets non couverts par M (de A_1 vers B_1) et donc une chaîne augmentante.

Les sommets de A_3 et B_3 ne sont pas atteignables \Rightarrow

- pas d'arête entre A₁ et B₃ :
 S'il existe une telle arête ab, alors ab ∉ M car a ∈ A₁ donc non touché par M. Donc, dans le graphe orienté, on a l'arc :
 a → b. Et donc on aurait un chemin de A₁ vers B₃.
- pas d'arête de M entre A₃ et B₂:
 S'il existe une telle arête ab ∈ M. Alors, dans le graphe orienté, on a l'arc b → a. b atteignable depuis A₁ par définition de B₂. Donc en prolongeant par l'arc ba on aurait un chemin de A₁ vers a ∈ A₃.

Les sommets de A_3 et B_3 ne sont pas atteignables \Rightarrow (suite)

- pas d'arête entre A₂ et B₃ :
 S'il existe une telle arête ab :
 - Cas 1 : si $ab \notin M$ arc orienté dans le sens $a \to b$. $a \in A_2$ donc il existe un chemin P de A_1 vers a et (P,ab) est un chemin de A_1 vers $b \in B_3$. On aurait donc un chemin de A_1 vers B_3 .
 - Cas 2: si ab ∈ M
 Dans ce cas, ab est la seule arête de M incidente à a (par définition d'un couplage). Dans le graphe orienté, b → a est donc le seul arc entrant dans a. Comme a ∈ A₂, il existe un chemin P de A₁ vers a. Et ba est forcément le dernier arc de P, ce qui implique que b atteignable depuis A₁ ce qui est en contradiction avec la définition de B₃.

On a donc

- Toutes les arêtes sont incidentes à au moins un sommet de A₃ ∪ B₂ (voir tout ce qui précède)
 - $\Rightarrow A_3 \cup B_2$ est un transversal de G.
- Toutes les arêtes de M sont entre A_2 et B_2 ou entre A_3 et B_3 (et chaque sommet de A_2 , A_3 , B_2 et B_3 est incident à exactement une arête de M)

$$\Rightarrow |A_3 \cup B_2| = \nu(G)$$

Exemple de l'utilisation du théorème de Kőnig

- Nous avons trouvé un couplage de taille 3 que nous pensons être maximum.
- Pour être sûr que nous avons trouvé un couplage maximum, il suffit de trouver un transversal de taille 3.
- Si nous trouvons un transversal de taille 3, nous pouvons être sûr que le couplage trouvé est maximum (et le transversal minimum), que le graphe soit biparti ou non.
- Sinon, le couplage n'est pas maximum; il faut mieux chercher (soit pour le transversal, soit pour le couplage) ou vérifier si le graphe est bien biparti (sinon, on n'a pas forcément $\nu(G) = \tau(G)$)!

Exemple de l'utilisation du théorème de Kőnig

- Nous avons trouvé un couplage de taille 3 que nous pensons être maximum.
- Pour être sûr que nous avons trouvé un couplage maximum, il suffit de trouver un transversal de taille 3.
- Si nous trouvons un transversal de taille 3, nous pouvons être sûr que le couplage trouvé est maximum (et le transversal minimum), que le graphe soit biparti ou non.
- Sinon, le couplage n'est pas maximum; il faut mieux chercher (soit pour le transversal, soit pour le couplage) ou vérifier si le graphe est bien biparti (sinon, on n'a pas forcément $\nu(G) = \tau(G)$)!

Exemple de l'utilisation du théorème de Kőnig

- Nous avons trouvé un couplage de taille 3 que nous pensons être maximum.
- Pour être sûr que nous avons trouvé un couplage maximum, il suffit de trouver un transversal de taille 3.
- Si nous trouvons un transversal de taille 3, nous pouvons être sûr que le couplage trouvé est maximum (et le transversal minimum), que le graphe soit biparti ou non.
- Sinon, le couplage n'est pas maximum; il faut mieux chercher (soit pour le transversal, soit pour le couplage) ou vérifier si le graphe est bien biparti (sinon, on n'a pas forcément $\nu(G) = \tau(G)$)!

Théorème de Hall

- Si $G = (A \cup B, E)$ est un graphe biparti tel que G admet un couplage qui couvre tous les sommets de A, alors forcément $|N(X)| \ge |X|$ pour tout $X \subseteq A$.
- Hall a montré que cette condition nécessaire triviale est aussi suffisante.
- Son théorème est l'un des résultats les plus importants de la théorie des couplages.

Théorème de Hall

Soit $G = (A \cup B, E)$ un graphe biparti. Alors G a un couplage couvrant tous les sommets de A ssi $|N(X)| \ge |X|$ pour tout $X \subset A$.

Théorème de Hall

- Si $G = (A \cup B, E)$ est un graphe biparti tel que G admet un couplage qui couvre tous les sommets de A, alors forcément $|N(X)| \ge |X|$ pour tout $X \subseteq A$.
- Hall a montré que cette condition nécessaire triviale est aussi suffisante.
- Son théorème est l'un des résultats les plus importants de la théorie des couplages.

Théorème de Hall

Soit $G = (A \cup B, E)$ un graphe biparti. Alors G a un couplage couvrant tous les sommets de A ssi $|N(X)| \ge |X|$ pour tout $X \subset A$.

Démonstration du théorème de Hall (1/2)

Démonstration

- La nécessité est évidente.
- Inversement, supposons que $|N(X)| \ge |X|$ pour tout $X \subseteq A$.
- Soit T un transversal minimum de G, càd, $|T| = \tau(G)$.
- On a $|T| \le |A|$.

Démonstration du théorème de Hall (1/2)

Démonstration

- La nécessité est évidente.
- Inversement, supposons que $|N(X)| \ge |X|$ pour tout $X \subseteq A$.
- Soit T un transversal minimum de G, càd, $|T| = \tau(G)$.
- On a $|T| \le |A|$.

Démonstration du théorème de Hall (2/2)

Démonstration (suite)

- Supposons par l'absurde que |T| < |A|.
- Comme $|T| = |A \cap T| + |B \cap T|$, on a $|A \setminus T| = |A| |A \cap T| = |A| |T| + |B \cap T| > |B \cap T|$.
- Donc $|N(A \setminus T)| \ge |A \setminus T| > |B \cap T|$.
- Donc $|A \setminus T|$ ne peut pas avoir tous ses voisins dans $|B \cap T|$.
- Donc il existe au moins une arête avec une extrémité dans A \ T et l'autre dans B \ T, contradiction avec l'hypothèse que T est un transversal.

Conséquences du théorème de Hall

Le lemme des mariages

Soit $G = (A \cup B, E)$ un graphe biparti. Alors G a un couplage parfait ssi |A| = |B| et $|N(X)| \ge |X|$ pour tout $X \subseteq A$.

Couplages dans les graphes bipartis réguliers (1/2)

Corollaire

Soit $G = (A \cup B, E)$ un graphe biparti k-régulier (tous les sommets sont de degré k), pour un entier $k \ge 1$. Alors G a un couplage parfait.

Démonstration

- Comme $k|A| = |\delta(A)| = |\delta(B)| = k|B|$, on a |A| = |B|.
- Soit $X \subseteq A$.
- Grâce à la régularité de G, $|\delta(X)| = k|X|$.

Rappel: soit $X \subseteq V(G), \delta(X)$ désigne le cocycle de X (ensemble des arêtes avec une extrémité dans X et l'autre dans $V(G) \setminus X$).

Couplages dans les graphes bipartis réguliers (2/2)

Démonstration (suite)

- Comme $\delta(X) \subseteq \delta(N(X))$, on obtient $k|X| = |\delta(X)| \le |\delta(N(X))| = k|N(X)|$.
- Donc $|N(X)| \geq |X|$.
- Donc, d'après le lemme des mariages, G a un couplage parfait.

