Binary adders and subtractors

- Half adder, full adder, parallel adder
- Half subtractor, full subtractor, parallel subtractor
- Subtraction using complements, parallel adder/subtractor
- Carry Look ahead adder, Decimal adder

Binary Addition

Ariknatic Operation

Half adder(HA)

• Adds 2, 1-bit numbers A and B, generated two outputs sum(S) and carry (C).

Expression for sum and carry:

HA circuit

Using basic logic gates

$$S = \overline{AB} + \overline{AB}$$

 $C = \overline{AB}$

Using XOR and AND gate

Full adder

Truth Table

₽sB	ABC LSS			Carry	Sum	
0+0+1	0	0	0	No	0	0
	0	0	\	₽	0	ı
	0	ι	O	۳ _ک	0	l
	0	١	1	Ø13	-	0
	١	0	0	64	0	1
	1	0	\\	ص	ι	0
	1	١	0	E)	1	۲
	(1	١	നു	1	1

FA circuit using basic logic gates

Full adder circuit using XOR operations

FA using 2 HA s and one external gate

Half Adder

$$S = A \oplus B$$
 $C = A \cdot B$
 $C = A \cdot B$

4-bit Parallel adder using FA blocks

Consider addition of 2, 4-bit numbers: (A₃ A₂ A₁ A₀) and (B₃ B₂ B₁ B₀)

4-bit parallel adder

Also called as Carry Propagation Adder (CPA)

7483 IC: 4-BIT PARALLEL ADDER

Half subtractor

-ve/

Write the truth table and circuit for half subtractor

A bit wise subtraction	AB	Tifference Borrow
$\frac{-3}{A-B} \qquad A \rightarrow 1-67 \qquad 0 \approx 1$ $\frac{-10}{A-B} \qquad A \rightarrow 1-67 \qquad 0 \approx 1$	w 0 1	0 0
	20,7 (0	\ 0
-0 00 11 01 00 Deference:	m3 1	$= \pi_0, 3$
B. 5000		= \(\int_{0}, 2, \frac{3}{3} \)

Full subtractor

DIFFERENCE (D) = X-Y-Z, Borrow (B)

X	Y	Z	D B
0	0	0	0 0
0	0	I	1-1
0	l	0	1 1
0	l	J	01
l	0	0	1 0
l	0	J	0 0
1	1	O	0 0
1	1	1	1 1

$$D = \sum_{m} 1, 2, 4, 7 = \prod_{m} 0, 3, 5, 6$$

$$B = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$B = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 4, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 5, 6$$

$$C = \sum_{m} 1, 2, 3, 7 = \prod_{m} 0, 3, 7 = \prod_{m} 0,$$

FS circuit

- (i) basic logic gates only
- (ii) XOR and basic logic gates

Full subtractor using 2 HS s and one external gate

$$B = \sum_{m} 1, 2, 3, 7 = (m) + (m_2) + (m_3) + (m_7)$$

FS

452

451

D

4-bit parallel subtractor using FS blocks

Consider subtraction of 2, 4-bit numbers: (A3 A2 A1 A0) and (B3 B2 B1 B0)

Subtraction using complements

Subtraction using complements

☐ Using 2's complement method

□Using 1's complement method

$$\frac{20000}{-8-1000} = \frac{15000}{4000} = \frac{15000}{000}$$

Questions?