Linear Algebra II: Problem Set I

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set I of Linear Algebra II 2016 at Courant Institute of Mathematical Sciences.

Question 1.

Exercise 1 (Uniquess of Spectral Decompositions): Suppose $T:V\to V$ is diagonalizable on an arbitrary vector space (not necessarily an inner product space), so $T=\sum_{i=1}^r \lambda_i P_{\lambda_i}$ where $\operatorname{sp}(T)=\{\lambda_1,\ldots,\lambda_r\}$ and P_{λ_i} is the projection onto the λ_i -eigenspace. Now suppose $T=\sum_{j=1}^s \mu_j Q_j$ is some other decomposition such that

$$Q_j^2 = Q_j$$
 $Q_j = Q_k Q_j = 0$ if $j \neq k$ $\sum_{j=1}^s Q_j = I$

Prove that

- (a) r = s and if the μ_j are suitably relabeled we have $\mu_i = \lambda_i$ for $1 \le i \le r$.
- (b) $Q_i = P_{\lambda_i}$ for $1 \le i \le r$.

Hint: First show $\{\mu_1, \ldots, \mu_s\} \subseteq \{\lambda_1, \ldots, \lambda_r\} = \operatorname{sp}(T)$; then relabel.

Solution. ((a) Firstly, note that u_j is an eigenvalue of T. To see this, let $v \neq 0 \in Q_j$. Then, as $Q_j v = v$, it follows that

$$Tv = \sum_{i=1}^{s} u_i Q_i v$$
$$= \sum_{i=1}^{s} u_i Q_i Q_j v$$
$$= u_j Q_j^2 v$$
$$= u_j v.$$

Therefore, we have shown that $\operatorname{Im}(Q_j) \subset \operatorname{Im}(P_{u_j})$. Next, suppose w is an arbitrary eigenvector of T, It follows that $w = \sum_{i=1}^s Q_i w$, which expresses w as a sum of zero-vectors and eigenvectors. But, since eigenvectors corresponding to distinct eigenvalues are linearly independent, the only possibility is that $w \in \operatorname{Im}(Q_i) = \operatorname{Im}(P_{\lambda_i})$ for some i. Hence, we have shown that

$$\{u_1, ..., u_r\} = \operatorname{sp}(T).$$

(b) We have shown that $\mathrm{Im}(Q_i)=\mathrm{Im}(P_{\lambda_i})$ for all i after relabeling. As they are both projections, the proof of uniqueness will be established, if we show that they possess the same kernel. By assumption, we have

$$\begin{array}{rcl} \ker(P_{\lambda_i}) & = & \displaystyle \sum_{j \neq i} \operatorname{Im}(P_{\lambda_j}) \\ \\ & = & \displaystyle \sum_{j \neq i} \operatorname{Im}(Q_j). \end{array}$$

Let $v \in \ker(P_{\lambda_i})$. Then, it follows that

$$v = \sum_{j \neq i} Q_j x_j$$

for $x_j \in V$ with $j \neq i$. Furthermore, we have

$$Q_i v = Q_i \sum_{j \neq i} Q_j x_j = 0.$$

Converse holds true with the same logic.

Question 2.

Exercise 2: Let $V = \mathcal{C}_{c}^{\infty}(\mathbb{R})$ be the space of real-valued functions f(t) on the real line that have continuous derivatives $D^k f$ of all orders, and have "bounded support" – each f is zero off of some bounded interval (which is allowed to vary with f). Because all such functions are "zero near ∞ " there is a well defined inner product

$$(f,h)_2 = \int_{-\infty}^{\infty} f(t) \overline{h(t)} dt$$

The derivative Df = df/dt is a linear operator on this infinite dimensional space.

- 1. Prove that the adjoint of D is skew-adjoint, with $D^* = -D$.
- 2. Prove that the second derivative $D^2 = d^2/dt^2$ is self-adjoint.

Hint: Integration by parts.

Solution. (a) Let $f, g \in V$. By integration by parts, we have

$$\int_{-\infty}^{\infty} Df \overline{g} dt + \int_{-\infty}^{\infty} f \overline{Dg} dt = [f \overline{g}]_{-\infty}^{\infty}$$
$$= 0,$$

as f, g have bounded supports. Therefore, it follows that

$$(Df, g) = -(f, Dg).$$

Since f, g were arbitrary, we have shown that $D^* = D$.

(b) By (a), we have

$$(D^2 f, g) = -(Df, Dg)$$
$$= (f, D^2 g),$$

for $f, g \in V$. Therefore, D^2 is self-adjoint.

Question 3.

Exercise 3:

If $T: V \to V$ is a linear operator on an inner product space and $\lambda \in \operatorname{sp}(T)$, prove that

- 1. $E_{\overline{\lambda}}(T^*) = K(T^* \overline{\lambda}I)$ is equal to $R(T \lambda I)^{\perp}$.
- 2. dim $E_{\bar{\lambda}}(T^*)$ = dim $E_{\lambda}(T)$.

Solution. (1) We first claim that for $K(T^*) = R(T)^{\perp}$. We prove it by showing the following series of equivalence.

$$\begin{aligned} w \in K(T^*) &\iff T^*w = 0 \\ &\iff &< v, T^*w >= 0 \quad \forall v \in V \\ &\iff &< Tv, w >= 0 \quad \forall v \in V \\ &\iff &w \in R(T)^{\perp}, \end{aligned}$$

as required. Now, by the elementary properties of adjoint, it follows that

$$(T - \lambda I)^* = T^* - (\lambda I)^*$$

= $T^* - \overline{\lambda} I^*$
= $T^* - \overline{\lambda} I$.

Therefore, combining the two results together, we have shown that

$$E_{\overline{\lambda}}(T^*) = R(T - \lambda I)^{\perp}$$

(2) By definition of eigenspace, and the rank-nullity theorem, we have

$$\begin{aligned} \dim & E_{\lambda}(T) &= \dim & N(T-\lambda I) \\ &= \dim & V - \dim & R(T-\lambda I). \end{aligned}$$

As a subspace of a linear space forms a direct sum with its orthogonal complement, we have that $\dim R(T-\lambda I)=\dim V-\dim R(T-\lambda I)^{\perp}$. By (1), it follows that $\dim R(T-\lambda I)=\dim V-\dim E_{\overline{\lambda}}(T^*)$. Substituting to the result to the previous equation, we obtain

$$\dim E_{\lambda}(T) = \dim E_{\overline{\lambda}}(T^*),$$

as required.

Question 4.

Exercise 4:

If m < n and the coordinate spaces \mathbb{K}^m , \mathbb{K}^n are equipped with the standard inner products, consider the linear operator

$$T: \mathbb{K}^m \to \mathbb{K}^n$$
 $T(x_1, \dots, x_m) = (x_1, \dots, x_m, 0, \dots, 0)$

This is an isometry from \mathbb{K}^m into \mathbb{K}^n , with trivial kernel K(T) = (0) and range $R(T) = \mathbb{K}^m \times (\mathbf{0})$ in $\mathbb{K}^n = \mathbb{K}^m \oplus \mathbb{K}^{n-m}$.

- 1. Provide an explicit description of the adjoint operator $T^*: \mathbb{K}^n \to \mathbb{K}^m$ and determine $K(T^*), R(T^*)$.
- 2. Compute the matrices of [T] and $[T^*]$ with respect to the standard orthonormal bases in \mathbb{K}^m , \mathbb{K}^n .
- 3. How is the action of T^* related to the subspaces K(T), $R(T^*)$ in \mathbb{K}^m and R(T), $K(T^*)$ in \mathbb{K}^n ? Can you give a geometric description of this action?

Unitary operators can be described in several different ways, each with its own advantages in applications.

Solution. (1) Let (e_i) and (f_j) denote the standard bases for \mathbb{K}^m and \mathbb{K}^n respectively. Let $v \in \mathbb{K}^n$. For i = 1, 2, ..., m, it follows that

$$(T^*v)_i = (T^*v, e_i)$$

= (v, Te_i)
= (v, f_i)
= v_i .

Therefore, we have shown that T^* is the projection onto the first m coordinates. It easily follows that $K(T^*) = (0) \times \mathbb{K}^{n-m}$ and $R(T^*) = \mathbb{K}^m$.

(2) [T] can be written as $[I_{m\times m}; 0_{n-m\times m}]$, and $[T^*]$ can be written as $[I_{m\times m}0_{m\times n-m}]$.

(3) We can relate them as both pairs form a direct sum of \mathbb{K}^m , and \mathbb{K}^n respectively. Geometrically, we can describe this action as an orthogonal projection.

Question 5.

Exercise 5:

Let $\mathfrak{X} = \{e_1, \dots, e_n\}$ be an arbitrary basis (not necessarily orthonormal) in a finite dimensional inner product space V.

- (a) Use induction on n to prove that there exist vectors $\mathfrak{Y} = \{f_1, \ldots, f_n\}$ such that $(e_i, f_j) = \delta_{ij}$.
- (b) Explain why the f_j are uniquely determined and a basis for V.

Note: If the initial basis \mathfrak{X} is orthonormal then $f_i = e_i$ and the result trivial; we are interested in *arbitrary* bases in an inner product space.

Solution.

Question 6.

Exercise 6:

Let V be an inner product space and T a linear operator that is diagonalizable in the ordinary sense, but not necessarily orthogonally diagonalizable. Prove that

- (a) The adjoint operator T^* is diagonalizable. What can you say about its eigenvalues and eigenspaces?
- (b) If T is orthogonally diagonalizable so is T^* .

Hint: If $\{e_i\}$ diagonalizes T what does the "dual basis" $\{f_j\}$ of Exercise 5 do for T^* ?

Solution. (a) As T^* is diagonalizable, we can express V as a direct sum of eigenspaces, which we denote as $E_{\lambda}(T^*)$ for $\lambda \in sp(T^*)$. The same logic aapplies to T being diagonalizable with $\lambda \in sp(T)$. Hence, they will be conjugate transpose of each other, with the corresponding eigenspaces.

(b) Assume T is orthogonally diagonalizable. Then, there exists an orthonormal basis B such that $[T]_B$ is diagonal. As B is orthonormal, we have that $[T^*]_B = [T]_B^*$. Since a conjugate transpose of a diagonal matrix is diagonal, we see that $[T^*]_B$ is a diagonal matrix. Therefore, there exists an orthonormal basis, namely B such that the matrix representation of T^* with respect to the orthonormal basis is diagonal. Hence, T^* is diagonalizable.

Question 7.

Exercise 7: Here $V = \mathbb{R}^3$ and $f_1, f_2, f_3 \in V^*$ are the linear functionals $f_k : V \to \mathbb{R}$ given by (**) $f_1(x, y, z) = x - 2y$, $f_2(x, y, z) = x + y + z$ and $f_3(x, y, z) = y - 3z$;

- 1. Prove $\mathcal{Y} = \{f_1, f_2, f_3\}$ is a basis in V^* .
- 2. Find a basis $\mathcal{X} = \{e'_1, e'_2, e'_3\} \subseteq V$ whose dual basis \mathcal{X}^* in V is equal to \mathcal{Y} .

Solution. (1) As the dimension of the dual space for a finite dimensional linear space equals the dimension of the linear space, it suffices to show that f_1 , f_2 , and f_3 are linearly independent. Let $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$, such that $\lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3 = 0$. By substitutions, it follows that

$$\lambda_1 f_1(x, y, z) + \lambda_2 f_2(x, y, z) + \lambda_3 f_3(x, y, z) = \lambda_1 (x - 2y) + \lambda_2 (x + y + z) + \lambda_3 (y - 3z) = (\lambda_1 + \lambda_2) x + (-2\lambda_1 + \lambda_2 + \lambda_3) y + (\lambda_2 - \lambda_3) z.$$

Since the above equation holds for all $x,y,z\in\mathbb{R}$ and \mathbb{R} is an integral domain, we obtain that

$$\lambda_1 + \lambda_2 = 0$$

$$-2\lambda_1 + \lambda_2 + \lambda_3 = 0$$

$$\lambda_2 - \lambda_3 = 0.$$

It immediately follows that $\lambda_1 = \lambda_2 = \lambda_3 = 0$. Therefore, \mathscr{Y} is linearly independent, thus a basis in V^* .

(2) We wish to find vectors $v_i = (x_i, y_i, z_i)$, for $1 \le i \le 3$, such that $f_i(v_i) = \delta_{ij}$. For v_1 we have

$$\begin{aligned}
 x_1 - 2y_1 &= 0 \\
 x_1 + y_1 + z_1 &= 0 \\
 y_1 - 3z_1 &= 0.
 \end{aligned}$$

Solving the system, we obtain $x_1 = \frac{4}{10}$, $y_1 = \frac{-3}{10}$, and $z_1 = \frac{-1}{10}$. The rest can be computed in the exact same manner.