10/A/C/5-19

EE24BTECH11040 - Mandara Hosur

C. MCQs with One Correct Answer

5. If f(x) = cos(lnx), then

$$f(x)f(y) - \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right]$$

has the value

(1983 - 1 Mark)

- (a) -1
- (b) $\frac{1}{2}$
- (c) -2
- (d) none of these
 - **6.** The domain of definition of the function

$$y = \frac{1}{\log_{10}{(1-x)}} + \sqrt{x+2}$$

is

(1983 - 1 Mark)

- (a) (-3, -2) excluding -2.5
- (b) [0, 1] excluding 0.5
- (c) [-2, 1) excluding 0
- (d) none of these
 - 7. Which of the following functions is periodic?

(1983 - 1 Mark)

- (a) f(x) = x [x] where [x] denotes the largest integer less than or equal to the real number x
- (b) $f(x) = \sin \frac{1}{x}$ for $x \neq 0$, f(0) = 0
- (c) $f(x) = x \cos x$
- (d) none of these
- **8.** Let $f(x) = \sin x$ and $g(x) = \ln |x|$. If the ranges of the composition functions $f \circ g$ and $g \circ f$ are R_1 and R_2 respectively, then

(1994 - 2 Marks)

- (a) $R_1 = \{u : -1 \le u < 1\}, R_2 = \{v : -\infty < v < 0\}$
- (b) $R_1 = \{u : -\infty < u < 0\}, R_2 = \{v : -1 \le v \le 0\}$
- (c) $R_1 = \{u : -1 < u < 1\}, R_2 = \{v : -\infty < v < 0\}$
- (d) none of these
- **8.** Let f(x) = sinx and g(x) = ln|x|. If the ranges of the composition functions $f \circ g$ and $g \circ f$ are R_1 and R_2 respectively, then

(1994 - 2 Marks)

- (a) $R_1 = \{u : -1 \le u < 1\}, R_2 = \{v : -\infty < v < 0\}$
- (b) $R_1 = \{u : -\infty < u < 0\}, R_2 = \{v : -1 \le v \le 0\}$

- (c) $R_1 = \{u : -1 < u < 1\}, R_2 = \{v : -\infty < v < 0\}$
- (d) $R_1 = \{u : -1 \le u \le 1\}, R_2 = \{v : -\infty < v \le 0\}$
- **9.** Let $f(x) = (x+1)^2 1$, $x \ge -1$. Then the set ${x: f(x) = f^{-1}(x)}$ is

(1995)

- (a) $\{0, -1, \frac{-3+i\sqrt{3}}{2}, \frac{-3-i\sqrt{3}}{2}\}$ (b) $\{0, 1, -1\}$
- (c) $\{0, -1\}$
- (d) empty
- **10.** The function $f(x) = |px-q|+r|x|, x \in (-\infty, \infty)$ where p > 0, q > 0, r > 0 assumes its minimum value only on one point if

(1995)

- (a) $p \neq q$
- (b) $r \neq q$
- (c) $r \neq p$
- (d) p = q = r
- **11.** Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{y}\right) = f(x) - f(y)$ for all x, y and f(e) = 1. Then

(1995S)

- (a) f(x) is bounded
- (b) $f\left(\frac{1}{x}\right) \to 0$ as $x \to 0$ (c) $xf(x) \to 1$ as $x \to 0$
- (d) f(x) = lnx
- **12.** If the function $f:[1,\infty)\to[1,\infty)$ is defined by $f(x) = 2^{x(x-1)}$, then $f^{-1}(x)$ is

(1999 - 2 Marks)

- (a) $\left(\frac{1}{2}\right)^{x(x-1)}$ (b) $\frac{1}{2}\left(1 + \sqrt{1 + 4log_2x}\right)$ (c) $\frac{1}{2}\left(1 \sqrt{1 + 4log_2x}\right)$
- (d) not defined
- **13.** Let $f: R \to R$ be any function. Define g: $R \to R$ by g(x) = |f(x)| for all x. Then g is

(2000S)

- (a) onto if f is onto
- (b) one-one if f is one-one
- (c) continuous if f is continuous
- (d) differentiable if f is differentiable
- **14.** The domain of definition of the function f(x)given by the equation $2^x + 2^y = 2$ is

(2000S)

(a)
$$0 < x \le 1$$

(b)
$$0 \le x \le 1$$

(c)
$$-\infty < x \le 0$$

(d)
$$-\infty < x < 1$$

15. Let
$$g(x) = 1 + x - [x]$$
 and

$$f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0. \\ 1, & x > 0 \end{cases}$$
 (1)

Then for all x, f(g(x)) is equal to

(2001S)

- (a) *x*
- (b) 1
- (c) f(x)
- (d) g(x)

16. If $f:[1,\infty)\to [2,\infty)$ is given by $f(x)=x+\frac{1}{x}$ then $f^{-1}(x)$ equals

(2001S)

- (a) $\frac{(x+\sqrt{x^2-4})}{2}$ (b) $\frac{x}{(1+x^2)}$ (c) $\frac{(x-\sqrt{x^2-4})}{2}$ (d) $1+\sqrt{x^2-4}$

17. The domain of definition of $f(x) = \frac{\log_2(x+3)}{x^2+3x+2}$ is (2001S)

- (a) $R \setminus \{-1, -2\}$
- (b) (-2, ∞)
- (c) $R \setminus \{-1, -2, -3\}$
- (d) $(-3, \infty) \setminus \{-1, -2\}$

18. Let $E = \{1, 2, 3, 4\}$ and $F = \{1, 2\}$. Then the number of onto functions from E to F is

(2001S)

- (a) 14
- (b) 16
- (c) 12
- (d) 8

19. Let $f(x) = \frac{\alpha x}{x+1}$, $x \neq -1$. Then, for what value of α is f(f(x)) = x?

(2001S)

- (a) $\sqrt{2}$
- (b) $-\sqrt{2}$
- (c) 1
- (d) -1