Resolução de Problemas do Livro

Numerical Methods in Physics with Python (Gezerlis, A)

por

Igo da Costa Andrade

GEZERLIS, A. Numerical Methods in Physics with Python. Cambridge, Cambridge University Press, 2020.

Capítulo 1: Idiomatic Python

1.7 Projeto: Visualizando Campos Elétricos

1.7.1 Campo Elétrico devido a uma distribuição de cargas pontuais

 ${f 1}$ Conforme a Lei~de~Coulomb, a força elétrica sobre uma carga de teste Q localizada no ponto P (posição \mathbf{r}), decido a uma única carga q_0 localizada em $\mathbf{r_0}$ é dada por:

$$\mathbf{F_0} = k \frac{q_0 Q}{(\mathbf{r} - \mathbf{r_0})^2} \frac{\mathbf{r} - \mathbf{r_0}}{|\mathbf{r} - \mathbf{r_0}|}$$

em que $k = 1/(4\pi\epsilon_0)$ é a constante de Coulomb em unidades do SI.

2 O Campo elétrico produzido por q_0 é

$$\mathbf{E_0}(\mathbf{r}) = kq_0 \frac{\mathbf{r} - \mathbf{r_0}}{|\mathbf{r} - \mathbf{r_0}|^3}$$

3 Consideremos um conjunto de n cargas pontuais q_0,q_1,\cdots,q_{n-1} localizadas em $\mathbf{r_0},\mathbf{r_1},\cdots,\mathbf{r_{n-1}}$ pode ser obtido por aplicação do *Princípio de Superposição*, conforme abaixo:

$$\mathbf{E}(\mathbf{r}) = \sum_{i=0}^{n-1} \mathbf{E_i}(\mathbf{r}) = \sum_{i=0}^{n-1} kq_i \frac{\mathbf{r} - \mathbf{r_i}}{|\mathbf{r} - \mathbf{r_i}|^3}$$

Plotando Linhas de Campo

