

Algoritmos e Programação I

Operadores Relacionais, Lógicos e Aritméticos

Prof. Fernando Maia da Mota mota.fernandomaia@gmail.com CPCX/UFMS © Fernando Maia da Mota

Expressões

Uma expressão relacional, ou simplesmente relação, é uma comparação entre dois valores do mesmo tipo básico. Estes valores são representados na relação através de constantes, variáveis ou expressões aritméticas.

Expressões

Os operadores relacionais, que indicam a comparação a ser realizada entre os termos da relação, são conhecidos da matemática:

Operador	Descrição
=	Igual a
≠	Diferente de
>	Maior que
<	Menor que
≥	Maior ou igual a
≤	Menor ou igual a

Expressões

- O resultado da avaliação de uma relação é sempre um valor lógico, isto é, V ou F.
- Como exemplo, considere as variáveis a, b e c definidas a seguir:

Agora, suponha as seguintes atribuições:

$$c \leftarrow 4$$

Então, as expressões a = 2, a > b + c, $c \le 5 - a$ e $b \ne 3$ valem V, F, F e F, respectivamente.

- Uma proposição é qualquer sentença que possa ser avaliada como verdadeira ou falsa.
- Por exemplo, a sentença "a população de Campo Grande é de 500 mil habitantes" pode ser classificada como verdadeira ou falsa e, portanto, é uma proposição. Já a sentença "feche a porta!" não pode e, consequentemente, não é uma proposição.

- No nosso contexto, uma proposição é uma relação, uma variável e/ou uma constante do tipo lógico.
- As expressões condicionais ou lógicas são formadas por uma ou mais proposições.
- Quando há mais de uma proposição em uma expressão lógica, elas estão relacionadas através de um operador lógico.

Os operadores lógicos utilizados como conectivos nas expressões lógicas são os seguintes.

Operador	Descrição
E	Para a conjunção
OU	Para a disjunção
NÃO	Para a negação

- Duas proposições podem ser combinadas pelo conectivo E para formar uma única proposição denominada conjunção das proposições originais.
- \diamondsuit A conjunção das proposições p e q é representada por $p \land q$ e lemos "p e q".
- O resultado da conjunção de duas proposições é verdadeiro se e somente se ambas as proposições são verdadeiras, como mostrado na tabela a seguir:

р	q	p∧q
V	V	V
V	F	F
F	V	F
F	F	F

- Duas proposições quaisquer podem ser pelo conectivo OU (como sentido e/ou) para formar uma única proposição denominada disjunção das proposições originais.
- A disjunção das proposições $p \in q$ é representada por $p \vee q$ e lemos "p ou q".
- O resultado da disjunção de duas proposições é verdadeiro se e somente, pelo menos, uma delas for verdadeira, como mostrado na tabela a seguir:

р	q	pvq
V	V	V
V	F	V
F	V	V
F	F	F

- ❖ Dada uma proposição p qualquer, uma outra proposição, chamada negação de p, pode ser formada escrevendo "É falso que" antes de p ou, se possível, inserindo a palavra "não" em p.
- ❖ Simbolicamente, designamos a negação de p por ¬p e lemos "não p".
- ❖ Desta forma, podemos concluir que se p é verdadeira, então ¬p é falsa; se p é falsa, então ¬p é verdadeira, como mostrado na tabela a seguir:

р	¬р
V	F
F	V

Agora, vejamos alguns exemplos de expressões lógicas que utilizam os conectivos vistos antes. Considere as variáveis a, b, c e x definidas a seguir:

a, b, c: inteiro

x: lógico

Agora suponha as seguintes atribuições:

$$x \leftarrow F$$

Então, as expressões:

$$a = 2 \underline{\mathsf{E}} \ a > b + c$$

$$c \le 5 - a \underbrace{OU}_{b \ne 3}$$

valem F, F e V, respectivamente.

- Na primeira expressão, $a = 2 \, \underline{E} \, a > b + c$, $a = 2 \, e \, a > b + c$ são relações. Em particular, a > b + c contém uma expressão aritmética, b + c, que devemos resolver primeiro para daí podermos avaliar a relação a > b + c.
- ❖ De forma análoga, devemos primeiro resolver as relações a = 2 e a > b + c para podermos resolver a expressão lógica a = 2 E a > b + c.
- Isto significa que estamos realizando as operações em uma certa ordem: em primeiro lugar, fazemos as operações aritméticas, depois as operações relacionais e, por último, as operações lógicas.

A tabela a seguir ilustra a prioridade de todos os operadores vistos até aqui:

Operador	Prioridade
$/, *, \underline{\text{DIV}}, \underline{\text{MOD}}$	1 (máxima)
+, -	2
$=, \neq, \geq, \leq, >, <$	3
NÃO	4
<u>E</u>	5
OU	6 (mínima)

- Observe que entre os operadores lógicos existe níveis distintos de prioridade, assim como entre os operadores aritméticos.
- Na expressão $a = 2 \ \underline{OU} \ a > b + c \ \underline{E} \ c \le 5 a$, a operação lógica $a > b + c \ \underline{E} \ c \le 5 a$ é realizada primeiro e seu resultado é, então, combinado através do operador de disjunção (OU) com aquele da relação a = 2.
- Se quiséssemos mudar a ordem natural de avaliação, poderíamos escrever a expressão com o uso de parênteses: $(a = 2 OU a > b + c) E c \le 5 a$.

Referências

❖ SIQUEIRA, Marcelo F. Algoritmos e Estrutura de Dados. Mato Grosso do Sul: CCET/CPCX - UFMS, 2007.