Subset Construction Algorithm Animation

Bernd Burgstaller Yonsei University

Example: Simulating an NFA ``on the fly"

- On-the-fly simulation of an NFA is useful in scenarios where a regular expression is used only once (example: in a text editor or IDE).
- In a compiler, the regular expressions for the programming language's tokens are used over and over again → need a more efficient approach → next slide.

Algorithm: NFA →DFA with Subset Construction

Subset construction works on sets of NFA states.

Each set of NFA states becomes a DFA state.

Two key functions

- Move (S, <u>a</u>): set of states reachable from set S by <u>a</u>
- ε -closure (S): set of states reachable from set S by ε

The algorithm:

- Start state derived from s₀ of the NFA:
 - Take its ε -closure $S_0 = \varepsilon$ -closure($\{s_0\}$)
- Compute Move(S_0 , α) for each $\alpha \in \Sigma$, and take its ε -closure
- Iterate until no more states are added

Sounds more complex than it is...

Dstates ← {}; **add** ε -closure(s_0) as an unmarked state to Dstates; while (there is an unmarked state T in Dstates) { mark T; for each $\alpha \in \Sigma$ { $U \leftarrow \varepsilon$ -closure(Move(T, α)) if (U ∉ Dstates) then add U as an unmarked state to Dstates; $\delta[T,\alpha] \leftarrow U$

Note:

- here δ refers to the transition function of the DFA.
- δ takes a set of NFA-states (= a DFA state) and a symbol α as input, and returns a set of NFA-states (= a DFA state).


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {}

 ε -closure(s_0) = { s_0 , s_1 }


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = $\{ \{ s_0, s_1 \} \}$

Dstates contains now one element, i.e., the state $\{s_0, s_1\}$.

Note1: unmarked states are printed in red.

Note2: Dstates means "deterministic states, the states that will make up the DFA".


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = $\{ \{ s_0, s_1 \} \}$

Now we pick state $\{s_0, s_1\}$ from Dstates and mark it.

Note: marked states are printed in green.


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { { s_0, s_1 }

$$T = \{ s_0, s_1 \}$$
 $\Sigma = \{ \underline{a}, \underline{b} \}$

The for loop is going to iterate over all symbols in Σ .

First iteration: a

Second iteration: <u>b</u>.


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
       add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { { s_0, s_1 }

$$T = \{ s_0, s_1 \}$$
 $\Sigma = \{ \underline{a}, \underline{b} \}$

The for loop is going to iterate over all symbols in Σ .

First iteration: $\alpha = \underline{\mathbf{a}}$

Second iteration: $\alpha = \underline{b}$.

Move $(T, \underline{a}) = \{ s_1, s_2 \}$

 ε -closure({ s1, s2 }) = { s₁, s₂ }

$$U=\{s_1, s_2\}$$


```
Dstates \leftarrow {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T:
 for each \alpha \in \Sigma {
      U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                    state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { { s_0, s_1 }

$$T = \{ s_0, s_1 \}$$
 $\Sigma = \{ \underline{a}, \underline{b} \}$

The for loop is going to iterate over all symbols in Σ .

First iteration: $\alpha = \underline{\mathbf{a}}$

Second iteration: $\alpha = \underline{b}$.

$$U=\{ s_1, s_2 \}$$

State U is not contained in Dstates yet, so we add it as an unmarked state.


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { $\{ s_0, s_1 \}, \{ s_1, s_2 \} \}$

$$T = \{ s_0, s_1 \}$$

$$\Sigma = \{ \underline{a}, \underline{b} \}$$

$$U = \{ s_1, s_2 \}$$

Here we start assembling the transition function δ for our DFA.

If we read an <u>a</u> in state T, then the DFA will move to state $\{s_1, s_2\}$:

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { $\{ s_0, s_1 \}, \{ s_1, s_2 \} \}$

$$T = \{ s_0, s_1 \}$$

$$\Sigma = \{ \underline{a}, \underline{b} \}$$

$$U=\{ s_1, s_2 \}$$

Second iteration of the **for** loop: $\alpha = \underline{b}$.

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

```
Dstates = { { s_0, s_1 }, { s_1, s_2 } }
```

$$T = \{ s_0, s_1 \}$$
 $\Sigma = \{ \underline{a}, \underline{b} \}$

Second iteration of the **for** loop: $\alpha = \underline{b}$.

Move
$$(T, \underline{b}) = \{ s_1 \}$$

$$\varepsilon$$
-closure($\{s1\}$) = $\{s_1\}$

$$U=\{s_1\}$$


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T:
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { { s_0, s_1 }, { s_1, s_2 } }

$$T = \{ s_0, s_1 \} \qquad \Sigma = \{ \underline{a}, \underline{b} \}$$

Second iteration of the **for** loop: $\alpha = \underline{b}$.

$$U=\{s_1\}$$

State U is not contained in Dstates yet, so we add it as an unmarked state.


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { $\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \} \}$

$$T = \{ s_0, s_1 \}$$
 $\Sigma = \{ \underline{a}, \underline{b} \}$

$$\Sigma = \{ \underline{a}, \underline{b} \}$$

$$U=\{s_1\}$$

Second iteration of the **for** loop: $\alpha = \underline{b}$.

If we read a \underline{b} in state T, then the DFA will move to state $\{s_1\}$:

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	$\{s_1\}$


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \} \}$$

Dstates contains now two unmarked states, $\{ s1, s2 \}$ and $\{ s1 \}$.

We pick state { s1, s2 } next.

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ S ₁ }


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \} \}$$

$$T = \{ s_1, s_2 \}$$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \} \}$$

$$T = \{ s_1, s_2 \}$$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T,\alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \} \}$$

$$T = \{ s_1, s_2 \}$$

$$U=\{s_1,s_2\}$$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ S ₁ }


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \} \}$$

$$T = \{ s_1, s_2 \}$$

$$U=\{ s_1, s_2 \}$$

State U is already contained in Dstates (we are currently working on it!). Nothing to be done here...

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ S ₁ }


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \} \}$$

$$T = \{ s_1, s_2 \}$$

$$U=\{s_1, s_2\}$$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \} \}$$

$$T = \{ s_1, s_2 \}$$

$$\alpha = \underline{b}$$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ S ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \} \}$$

$$T = \{ s_1, s_2 \}$$

$$\alpha = \underline{b}$$

$$U=\{s_1,s_3\}$$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T,\alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \} \}$$

$$T = \{ s_1, s_2 \}$$

$$\alpha = \underline{b}$$

$$U = \{ s_1, s_3 \}$$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	

 $\alpha = b$

```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { {
$$s_0, s_1$$
 }, { s_1, s_2 }, { s_1 }, { s_1, s_3 }

$$U = \{ s_1, s_3 \}$$

 $T = \{ s_1, s_2 \}$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \}, \{ s_1, s_3 \} \}$$

$$T = \{ s_1, s_2 \}$$

$$\alpha = \underline{b}$$

{ s1 } is the next unmarked state in Dstates.

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$

 $T = \{ s_1 \}$

 $\Sigma = \{ \underline{a}, \underline{b} \}$

 α = a

```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { {
$$s_0, s_1$$
 }, { s_1, s_2 }, { s_1 }, { s_1, s_3 }

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ S ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \}, \{ s_1, s_3 \} \}$$

$$T = \{ s_1 \}$$

$$U = \{ s_1, s_2 \}$$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { {
$$s_0, s_1$$
 }, { s_1, s_2 }, { s_1 }, { s_1, s_3 }

$$T = \{ s_1 \}$$
 $\alpha = \underline{a}$

 $U=\{s_1, s_2\}$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	

 $T = \{ s_1 \}$

```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { {
$$s_0, s_1$$
 }, { s_1, s_2 }, { s_1 }, { s_1, s_3 } }
$$\alpha = b$$

δ	<u>a</u>	<u>b</u>
{s ₀ ,s ₁ }	$\{s_1, s_2\}$	{ S ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ S ₁ }	$\{s_1, s_2\}$	


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T,\alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \}, \{ s_1, s_3 \} \}$$

$$T = \{ s_1 \}$$
 $\alpha = \underline{b}$

$$U=\{s_1\}$$

δ	<u>a</u>	<u>b</u>
{s ₀ ,s ₁ }	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \}, \{ s_1, s_3 \} \}$$

$$T = \{ s_1 \}$$

$$\alpha = \underline{b}$$

$$U=\{s_1\}$$

δ	<u>a</u>	<u>b</u>
{s ₀ ,s ₁ }	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	{ s ₁ }

 $\alpha =$

 $Dstates ← {};$ **add** ε -closure(s_0) as an unmarked state to Dstates; while (there is an unmarked state T in Dstates) { mark T; for each $\alpha \in \Sigma$ { $U \leftarrow \varepsilon$ -closure($Move(T, \alpha)$) if (U ∉ Dstates) then add U as an unmarked state to Dstates; $\delta[T,\alpha] \leftarrow U$

Dstates = { {
$$s_0, s_1$$
 }, { s_1, s_2 }, { s_1 }, { s_1, s_3 }

δ	<u>a</u>	<u>b</u>
{s ₀ ,s ₁ }	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	{ s ₁ }

 $\alpha =$

```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T,\alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \}, \{ s_1, s_3 \} \}$$

 $T = \{ s1, s3 \}$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ S ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	{ s ₁ }


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \}, \{ s_1, s_3 \} \}$$

$$T = \{ s_1, s_3 \}$$
 $\alpha = \underline{a}$

If we are in state T, reading an \underline{a} , we get to $\{s_1, s_2\}$. This transition is added to δ .

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_3\}$	$\{s_1, s_2\}$	

 $\alpha = b$

```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { {
$$s_0, s_1$$
 }, { s_1, s_2 }, { s_1 }, { s_1, s_3 }

$$T = \{ s_1, s_3 \}$$

If we are in state T, reading a \underline{b} , we get to $\{s_1, s_4\}$...

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_3\}$	$\{s_1, s_2\}$	

 $\alpha = b$

```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \}, \{ s_1, s_3 \} \}$$

$$U=\{s_1,s_4\}$$

 $T = \{ s_1, s_3 \}$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_3\}$	$\{s_1, s_2\}$	


```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

Dstates = { {
$$s_0, s_1$$
 }, { s_1, s_2 }, { s_1 }, { s_1, s_3 }

$$T = \{ s_1, s_3 \}$$
 $\alpha = \underline{b}$

$$U=\{ s_1, s_4 \}$$

U not yet in *Dstates* \rightarrow add.

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_3\}$	$\{s_1, s_2\}$	

Dstates = { $\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \}, \{ s_1, s_3 \}, \{ s_1, s_4 \} \}$

```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

$$T = \{ s_1, s_3 \}$$

$$\alpha = \underline{b}$$

$$U=\{ s_1, s_4 \}$$

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_3\}$	$\{s_1, s_2\}$	$\{s_1, s_4\}$

Dstates = { $\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \}, \{ s_1, s_3 \}, \{ s_1, s_4 \} \}$

```
Dstates \leftarrow {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
      U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                    state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

 $T=\{s_1, s_4\}$ is the last unmarked state.

Reading an <u>a</u> takes us to $\{s_1, s_2\}$.

Reading a <u>b</u> takes us to $\{s_1\}$.

Those two transitions are added to δ .

δ	<u>a</u>	<u>b</u>
{s ₀ ,s ₁ }	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_3\}$	$\{s_1, s_2\}$	$\{S_1, S_4\}$
$\{s_1, s_4\}$	$\{s_1, s_2\}$	{ s ₁ }

Dstates = {
$$\{ s_0, s_1 \}, \{ s_1, s_2 \}, \{ s_1 \}, \{ s_1, s_3 \}, \{ s_1, s_4 \} \}$$

```
Dstates ← {};
add \varepsilon-closure(s_0) as an
    unmarked state to Dstates;
while ( there is an unmarked
    state T in Dstates ) {
 mark T;
 for each \alpha \in \Sigma {
     U \leftarrow \varepsilon-closure(Move(T, \alpha))
     if ( U ∉ Dstates ) then
        add U as an unmarked
                   state to Dstates;
     \delta[T,\alpha] \leftarrow U
```

No more unmarked states in Dstates.

The algorithm stops.

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_3\}$	$\{s_1, s_2\}$	$\{s_1, s_4\}$
$\{s_1, s_4\}$	$\{s_1, s_2\}$	{ s ₁ }

δ	<u>a</u>	<u>b</u>
$\{s_0, s_1\}$	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_2\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
{ s ₁ }	$\{s_1, s_2\}$	{ s ₁ }
$\{s_1, s_3\}$	$\{s_1, s_2\}$	{ S ₁ , S ₄ }
$\{s_1, s_4\}$	$\{s_1, s_2\}$	{ S ₁ }

All DFA states that contain an accepting NFA state become accepting states in the DFA!

The DFA for the above transition function δ :

