Субградиентный спуск. AdaGrad, Adam, DoG. Регуляризация ℓ_1 , ℓ_2 . Проксимальный оператор

Александр Безносиков

ИСП РАН

20 ноября 2024

• **Вопрос**: функция f(x) = |x| выпукла?

• Вопрос: функция f(x) = |x| выпукла? Безусловно. А дифференцируемая и гладкая?

- **Вопрос:** функция f(x) = |x| выпукла? Безусловно. А дифференцируемая и гладкая? Нет.
- Получается, что даже довольно простые выпуклые задачи могут быть негладким. До этого мы смотрели только на гладкие задачи.

- Вопрос: функция f(x) = |x| выпукла? Безусловно. А дифференцируемая и гладкая? Нет.
- Получается, что даже довольно простые выпуклые задачи могут быть негладким. До этого мы смотрели только на гладкие задачи.
- Будем рассматривать следующее предположение вместо гладкости (Липшицевости градиента):

Определение М-Липшецевой функции

Пусть дана функция $f: \mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является M-Липшицева, если для любых $x,y\in\mathbb{R}^d$ выполнено

$$|f(x) - f(y)| \le M||x - y||_2.$$

- Вопрос: функция f(x) = |x| выпукла? Безусловно. А дифференцируемая и гладкая? Нет.
- Получается, что даже довольно простые выпуклые задачи могут быть негладким. До этого мы смотрели только на гладкие задачи.
- Будем рассматривать следующее предположение вместо гладкости (Липшицевости градиента):

Определение М-Липшецевой функции

Пусть дана функция $f: \mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является M-Липшицева, если для любых $x,y\in\mathbb{R}^d$ выполнено

$$|f(x)-f(y)|\leq M\|x-y\|_2.$$

Понятие (и все результаты далее) можно перенести на некоторое ограниченное выпуклое множество \mathcal{X} . Связано этом в том числе с тем, что не бывает сильно выпуклых и Липшецевых на \mathbb{R}^d функций.

Вопрос: почему?

20 ноября 2024

2/38

Негладкие задачи

- Вопрос: функция f(x) = |x| выпукла? Безусловно. А дифференцируемая и гладкая? Нет.
- Получается, что даже довольно простые выпуклые задачи могут быть негладким. До этого мы смотрели только на гладкие задачи.
- Будем рассматривать следующее предположение вместо гладкости (Липшицевости градиента):

Определение М-Липшецевой функции

Пусть дана функция $f: \mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является M-Липшицева, если для любых $x,y\in\mathbb{R}^d$ выполнено

$$|f(x) - f(y)| \le M||x - y||_2.$$

Понятие (и все результаты далее) можно перенести на некоторое ограниченное выпуклое множество \mathcal{X} . Связано этом в том числе с тем, что не бывает сильно выпуклых и Липшецевых на \mathbb{R}^d функций.

Вопрос: почему? Линейный и квадратичный рост не сочетаются

Субградиент и субдифференциал

Если функция не дифференцируема в точке, а значит градиента нет. Что может существовать вместо градиента?

Субградиент и субдифференциал

Если функция не дифференцируема в точке, а значит градиента нет. Что может существовать вместо градиента?

Субградиент и субдифференциал

Пусть дана выпуклая функция $f:\mathbb{R}^d o \mathbb{R}$. Вектор g будем называть субградиентом этой функции f в точке $x \in \mathbb{R}^d$, если для любого $y \in \mathbb{R}^d$ выполняется:

$$f(y) \ge f(x) + \langle g, y - x \rangle.$$

Множество $\partial f(x)$ всех субградиентов f в x будем называть субдифференциалом.

Условие оптимальности

Теорема (условие оптимальности)

 x^* – минимум выпуклой функции f тогда и только тогда, когда

$$0 \in \partial f(x^*)$$
.

Условие оптимальности

Теорема (условие оптимальности)

 x^* – минимум выпуклой функции f тогда и только тогда, когда

$$0 \in \partial f(x^*).$$

Доказательство:

 \leftarrow Если $0 \in \partial f(x^*)$, то по выпуклости и определению субградиента: $f(x) \ge f(x^*) + (0, x - x^*) = f(x^*)$. Доказано по определению глобального минимума.

Условие оптимальности

Теорема (условие оптимальности)

 x^* – минимум выпуклой функции f тогда и только тогда, когда

$$0 \in \partial f(x^*)$$
.

Доказательство:

- \leftarrow Если $0 \in \partial f(x^*)$, то по выпуклости и определению субградиента: $f(x) \ge f(x^*) + (0, x - x^*) = f(x^*)$. Доказано по определению глобального минимума.
- \Rightarrow Если $f(x) > f(x^*)$ для любых $x \in \mathbb{R}^d$, то для вектора 0 выполнено $f(x) > f(x^*) + \langle 0, x - x^* \rangle$ для любого $x \in \mathbb{R}^d$. Доказано по определению субградиента.

Свойство М-Липшицевой функции

Лемма (свойство М-Липшицевой функции)

Пусть дана выпуклая функция $f: \mathbb{R}^d \to \mathbb{R}$. Тогда функция f является M-Липшицевой тогда и только тогда, когда для любого $x \in \mathbb{R}^d$ и $g \in \partial f(x)$ имеем $\|g\|_2 < M$.

Субградиентный метод

Рассматриваем задачу:

$$\min_{x\in\mathbb{R}^d} f(x),$$

где f выпуклая и M-Липшицева.

Субградиентный метод

Рассматриваем задачу:

$$\min_{x\in\mathbb{R}^d}f(x),$$

где f выпуклая и M-Липшицева.

 Простая идея – вместо градиента использовать какой-то субградиент в текущей точке:

Алгоритм 2 Субградиентный метод

Вход: размеры шага $\gamma > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- Вычислить $g^k \in \partial f(x^k)$
- $x^{k+1} = x^k \gamma \sigma^k$
- 4: end for

Выход: $\frac{1}{K} \sum_{k=0}^{K-1} x^k$

• Ничего сверхъестественного:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma g^k - x^*||_2^2$$

= $||x^k - x^*||_2^2 - 2\gamma \langle g^k, x^k - x^* \rangle + \gamma^2 ||g^k||_2^2$

Ничего сверхъестественного:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma g^k - x^*||_2^2$$
$$= ||x^k - x^*||_2^2 - 2\gamma \langle g^k, x^k - x^* \rangle + \gamma^2 ||g^k||_2^2$$

Из М-Липшицевости f следует, что субградиентый ограничены:

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma \langle g^k, x^k - x^* \rangle + \gamma^2 M^2$$

• Ничего сверхъестественного:

$$||x^{k+1} - x^*||_2^2 = ||x^k - \gamma g^k - x^*||_2^2$$
$$= ||x^k - x^*||_2^2 - 2\gamma \langle g^k, x^k - x^* \rangle + \gamma^2 ||g^k||_2^2$$

Из М-Липшицевости f следует, что субградиентый ограничены:

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma \langle g^k, x^k - x^* \rangle + \gamma^2 M^2$$

• Из выпуклости и определения субградиента:

$$||x^{k+1} - x^*||_2^2 \le ||x^k - x^*||_2^2 - 2\gamma(f(x^k) - f(x^*)) + \gamma^2 M^2$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

С предыдущего слайда:

$$2\gamma(f(x^k) - f(x^*)) \le ||x^k - x^*||_2^2 - ||x^{k+1} - x^*||_2^2 + \gamma^2 M^2$$

С предыдущего слайда:

$$2\gamma(f(x^k) - f(x^*)) \le ||x^k - x^*||_2^2 - ||x^{k+1} - x^*||_2^2 + \gamma^2 M^2$$

Суммируем по всем k и усредняем:

$$\frac{2\gamma}{K} \sum_{k=0}^{K-1} (f(x^k) - f(x^*)) \le \frac{\|x^0 - x^*\|_2^2}{K} + \gamma^2 M^2$$

• С предыдущего слайда:

$$2\gamma(f(x^k) - f(x^*)) \le ||x^k - x^*||_2^2 - ||x^{k+1} - x^*||_2^2 + \gamma^2 M^2$$

Суммируем по всем k и усредняем:

$$\frac{2\gamma}{K} \sum_{k=0}^{K-1} (f(x^k) - f(x^*)) \le \frac{\|x^0 - x^*\|_2^2}{K} + \gamma^2 M^2$$

Откуда

$$\frac{1}{K} \sum_{k=0}^{K-1} (f(x^k) - f(x^*)) \le \frac{\|x^0 - x^*\|_2^2}{2\gamma K} + \frac{\gamma M^2}{2}$$

• С предыдущего слайда:

Негладкие задачи

$$\frac{1}{K} \sum_{k=0}^{K-1} (f(x^k) - f(x^*)) \le \frac{\|x^0 - x^*\|_2^2}{2\gamma K} + \frac{\gamma M^2}{2}$$

• Гладкости нет, поэтому не получится доказать, что $f(x^k) \leq f(x^{k-1})$. Поэтому просто неравенство Йенсена для выпуклой функции:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*}) \leq \frac{\|x^{0}-x^{*}\|_{2}^{2}}{2\gamma K}+\frac{\gamma M^{2}}{2}$$

• С предыдущего слайда:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*})\leq \frac{\|x^{0}-x^{*}\|_{2}^{2}}{2\gamma K}+\frac{\gamma M^{2}}{2}$$

Вопрос: как подобрать шаг?

• С предыдущего слайда:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*})\leq \frac{\|x^{0}-x^{*}\|_{2}^{2}}{2\gamma K}+\frac{\gamma M^{2}}{2}$$

Вопрос: как подобрать шаг? минимизировать правую часть по γ : $\gamma = \frac{\|x^0 - x^*\|_2}{M \cdot \sqrt{K}}$. Откуда

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*})\leq \frac{M\|x^{0}-x^{*}\|_{2}}{\sqrt{K}}$$

Можно более практично: $\gamma_k \sim \frac{1}{\sqrt{L}}$.

Сходимость

Теорема сходимость субградиентного спуска для M-Липшицевых и выпуклых функций

Пусть задача безусловной оптимизации с M-Липшицевой, выпуклой целевой функцией f решается с помощью субградиентного спуска. Тогда справедлива следующая оценка сходимости

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*})\leq \frac{M\|x^{0}-x^{*}\|_{2}}{\sqrt{K}}$$

Более того, чтобы добиться точности ε по функции, необходимо

$$K = O\left(rac{M^2\|x^0 - x^*\|_2^2}{arepsilon^2}
ight)$$
 итераций.

◆ロト ◆回ト ◆恵ト ◆恵ト ・恵 ・ 夕久(*)

• Обобщение градиентного спуска на негладкие задачи.

- Обобщение градиентного спуска на негладкие задачи.
- Оценки сходимости в выпуклом случае: $\sim \frac{1}{\sqrt{K}}$, в сильно выпуклом случае: $\sim \frac{1}{K}$. Вопрос: какие были у градиентного спуска в гладком случае?

- Обобщение градиентного спуска на негладкие задачи.
- Оценки сходимости в выпуклом случае: $\sim \frac{1}{\sqrt{K}}$, в сильно выпуклом случае: $\sim \frac{1}{K}$. Вопрос: какие были у градиентного спуска в гладком случае? $\sim \frac{1}{K}$ и линейная соответственно. Сходимость медленнее.

- Обобщение градиентного спуска на негладкие задачи.
- Оценки сходимости в выпуклом случае: $\sim \frac{1}{\sqrt{K}}$, в сильно выпуклом случае: $\sim \frac{1}{K}$. Вопрос: какие были у градиентного спуска в гладком случае? $\sim \frac{1}{K}$ и линейная соответственно. Сходимость медленнее.
- Может возможно улучшить результат? Например, улучшить анализ или использовать моментум.

- Обобщение градиентного спуска на негладкие задачи.
- Оценки сходимости в выпуклом случае: $\sim \frac{1}{\sqrt{K}}$, в сильно выпуклом случае: $\sim \frac{1}{\kappa}$. Вопрос: какие были у градиентного спуска в гладком случае? $\sim \frac{1}{\kappa}$ и линейная соответственно. Сходимость медленнее.
- Может возможно улучшить результат? Например, улучшить анализ или использовать моментум. В общем случае результат для субградиентного метода является неулучшаемым для выпуклых и сильно-выпуклых задач, т.е. он оптимален.

- Обобщение градиентного спуска на негладкие задачи.
- Оценки сходимости в выпуклом случае: $\sim \frac{1}{\sqrt{K}}$, в сильно выпуклом случае: $\sim \frac{1}{\kappa}$. Вопрос: какие были у градиентного спуска в гладком случае? $\sim \frac{1}{\kappa}$ и линейная соответственно. Сходимость медленнее.
- Может возможно улучшить результат? Например, улучшить анализ или использовать моментум. В общем случае результат для субградиентного метода является неулучшаемым для выпуклых и сильно-выпуклых задач, т.е. он оптимален. Вопрос: а что в невыпуклом случае?

- Обобщение градиентного спуска на негладкие задачи.
- Оценки сходимости в выпуклом случае: $\sim \frac{1}{\sqrt{K}}$, в сильно выпуклом случае: $\sim \frac{1}{K}$. Вопрос: какие были у градиентного спуска в гладком случае? $\sim \frac{1}{K}$ и линейная соответственно. Сходимость медленнее.
- Может возможно улучшить результат? Например, улучшить анализ или использовать моментум. В общем случае результат для субградиентного метода является неулучшаемым для выпуклых и сильно-выпуклых задач, т.е. он оптимален. Вопрос: а что в невыпуклом случае? С этого мы начинали курс лучше, чем полный перебор там ничего не придумать.

AdaGradNorm

- Для субградиентного метода был взят шаг $\gamma = \frac{\|x^0 x^*\|_2}{M\sqrt{K}}$.
- Как уже было сказано, что можно взять k вместо K: $\gamma_k = rac{\|x^0 - x^*\|_2}{M \sqrt{k}}.$ Вопрос: как заменить его более практично – убрать M и $\|x^0 - x^*\|_2$, не теряя их физический смысл?

Адаптивные методы

AdaGradNorm

- Для субградиентного метода был взят шаг $\gamma = \frac{\|\mathbf{x}^{\mathsf{U}} \mathbf{x}^*\|_2}{M_*/K_*}$.
- Как уже было сказано, что можно взять k вместо K: $\gamma_k = \frac{\|x^0 - x^*\|_2}{M\sqrt{k}}$. Вопрос: как заменить его более практично – убрать M и $\|x^0 - x^*\|_2$, не теряя их физический смысл?

Адаптивные методы

• М – ограничение нормы (суб)градиента, тогда можно использовать сам (суб)градиент в качестве этого ограничения, кроме этого $||x^0 - x^*||_2 < D$:

$$\gamma_k = \frac{D}{\sqrt{\sum_{t=0}^k \|g^t\|_2^2}}.$$

AdaGradNorm

Получился метод AdaGradNorm. Ada – адаптивность под локальные свойства задачи (в данном случае локальные значения M).

Адаптивные методы 00000000000000000

Алгоритм 3 AdaGradNorm

Вход: D > 0, стартовая точка $x^0 \in \mathbb{R}^d$, сумма квадратов градиентов $G^0=0$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- Вычислить $g^k \in \partial f(x^k)$ 2:
- Вычислить $G^{k+1} = G^k + \|g^k\|_2^2$ 3:
- $x^{k+1} = x^k \frac{D}{\sqrt{C^{k+1}}} g^k$
- 5: end for

Выход: $\frac{1}{K} \sum_{k=0}^{K} x^k$

AdaGrad

 Пойдем дальше и сделаем адаптивность по каждой координате (индивидуальный шаг). Получится AdaGrad:

$$\gamma_{k,i} = rac{D_i}{\sqrt{\sum\limits_{t=0}^{k}(g_i^t)^2}},$$
 где $\|x_i - x_i^*\|_2 \leq D_i.$

AdaGrad

Алгоритм 4 AdaGrad

Вход: $D_i > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, сумма квадратов градиентов $G_{i}^{0}=0$, количество итераций K

Адаптивные методы

- 1: **for** k = 0, 1, ..., K 1 **do**
- Вычислить $g^k \in \partial f(x^k)$ 2:
- Для каждой координаты: $G_i^{k+1} = G_i^k + (g_i^k)^2$
- Для каждой координаты: $x_i^{k+1} = x_i^k \frac{D_i}{\sqrt{G^{k+1}}} g_i^k$ 4:
- 5: end for

Выход: $\frac{1}{K} \sum_{k=0}^{K} x^k$

Доказательство сходимости AdaGrad

Распишем шаг по каждой координате:

$$(x_i^{k+1} - x_i^*)^2 = (x_i^k - \gamma_{k,i} g_i^k - x_i^*)^2$$

= $(x_i^k - x_i^*)^2 - 2\gamma_{k,i} g_i^k (x_i^k - x_i^*) + \gamma_{k,i}^2 (g_i^k)^2.$

Адаптивные методы 00000000000000000

Откуда:

$$g_i^k(x_i^k - x_i^*) = \frac{1}{2\gamma_{k,i}}(x_i^k - x_i^*)^2 - \frac{1}{2\gamma_{k,i}}(x_i^{k+1} - x_i^*)^2 + \frac{\gamma_{k,i}}{2}(g_i^k)^2.$$

Сходимость AdaGrad

Теорема сходимость AdaGrad для M-Липшицевых и выпуклых функций

Пусть задача оптимизации с M-Липшицевой, выпуклой целевой функцией f решается с помощью AdaGrad на ограниченном множестве. Тогда справедлива следующая оценка сходимости:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^k\right)-f(x^*)\leq \frac{3M\tilde{D}}{2\sqrt{K}},$$

где $\tilde{D} = \sum_{i=1}^d D_i$.

Более того, чтобы добиться точности arepsilon по функции, необходимо

$$K = O\left(rac{9M^2 ilde{D}^2}{4arepsilon^2}
ight)$$
 итераций.

RMSProp

• Проблема AdaGrad, что старые градиенты в шаге могут быть уже не особо релевантны. **Вопрос:** как можно попробовать их «забывать»?

Адаптивные методы

RMSProp

- Проблема AdaGrad, что старые градиенты в шаге могут быть уже не особо релевантны. Вопрос: как можно попробовать их «забывать»?
- Может помочь техника моментума с $\beta_2 \in (0,1)$ (вспомните, как она работала в случае тяжелого шарика):

$$G_i^{k+1} = \beta_2 G_i^k + (1 - \beta_2)(g_i^k)^2,$$

 $\gamma_{k,i} = \frac{D_i}{\sqrt{G_i^{k+1}}} g_i^k.$

Получился метод RMSProp.

RMSProp

Негладкие задачи

Алгоритм 5 RMSProp

Вход: $D_i>0$, моментум $\beta_2\in(0,1)$, стартовая точка $x^0\in\mathbb{R}^d$, сглаженная сумма квадратов градиентов $G_i^0=0$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $g^k \in \partial f(x^k)$
- 3: Для каждой координаты: $G_i^{k+1} = \beta_2 G_i^k + (1-\beta_2)(g_i^k)^2$
- 4: Для каждой координаты: $x_i^{k+1} = x_i^k \frac{D_i}{\sqrt{G_i^{k+1}}} g_i^k$
- 5: end for

Выход:
$$\frac{1}{K} \sum_{k=0}^{K} x^k$$

Адаптивные методы

ocionoconocióno

Adam

• Почему бы не добавить и классический моментум вида тяжелого шарика для ускорения? Получится метод Adam:

тяжелый шарик:
$$v^{k+1}=\beta_1 v^k+(1-\beta_1)g^k,$$
 RMSProp: $G_i^{k+1}=\beta_2 G_i^k+(1-\beta_2)(g_i^k)^2,$ $x_i^{k+1}=x_i^k-\frac{D_i}{\sqrt{G_i^{k+1}}}v_i^{k+1}.$

Адаптивные методы

Adam

• Почему бы не добавить и классический моментум вида тяжелого шарика для ускорения? Получится метод Adam:

тяжелый шарик:
$$v^{k+1}=\beta_1 v^k+(1-\beta_1)g^k,$$
 RMSProp: $G_i^{k+1}=\beta_2 G_i^k+(1-\beta_2)(g_i^k)^2,$ $x_i^{k+1}=x_i^k-\frac{D_i}{\sqrt{G_i^{k+1}}}v_i^{k+1}.$

• Можно еще чуть-чуть доработать — например, обезопасить себя от деления на 0 с помощью небольшой добавки $e \sim 10^{-6}-10^{-8}$:

$$x_i^{k+1} = x_i^k - \frac{D_i}{\sqrt{G_i^{k+1} + e}} v_i^{k+1}$$

Adam

Алгоритм 6 Adam

Вход: $D_i>0$, моментумы $eta_1\in(0,1)$ и $eta_2\in(0,1)$, стартовая точка $x^0\in$ \mathbb{R}^d , сглаженная сумма квадратов градиентов $G_i^0=0$, сглаженная сумма градиентов $v^0 = 0$, добавка e > 0, количество итераций K

Адаптивные методы 00000000000000000

- 1: for k = 0, 1, ..., K 1 do
- Вычислить $g^k \in \partial f(x^k)$ 2:
- Вычислить $v^{k+1} = \beta_1 v^k + (1 \beta_1) g^k$ 3:
- 4:
- Для каждой координаты: $G_i^{k+1} = \beta_2 G_i^k + (1-\beta_2)(g_i^k)^2$ Для каждой координаты: $x_i^{k+1} = x_i^k \frac{D_i}{\sqrt{G_i^{k+1} + e}} v_i^{k+1}$ 5:
- 6: end for

Выход:
$$\frac{1}{K} \sum_{k=0}^{K} x^k$$

• Ситуация в общем случае даже ухудшилась по сравнению с AdaGrad: кроме шагов D_i , нужно подбирать еще моментумы β_1, β_2 .

- Ситуация в общем случае даже ухудшилась по сравнению с AdaGrad: кроме шагов D_i , нужно подбирать еще моментумы β_1,β_2 .
- Часто рекомендуют брать $\beta_1=0.9$, а $\beta_2=0.99$, и $D_i=D$ для всех i, но все равно нужно подбирать D.

- Ситуация в общем случае даже ухудшилась по сравнению с AdaGrad: кроме шагов D_i , нужно подбирать еще моментумы β_1, β_2 .
- Часто рекомендуют брать $\beta_1=0.9$, а $\beta_2=0.99$, и $D_i=D$ для всех i, но все равно нужно подбирать D.
- Проблема поиска D или D_i исконно пришла от того, что мы не знали $\|x^0-x^*\|_2$. Вопрос: мы знаем x^0 , какая точка (в некотором смысле) является хорошим выбором в качестве приближения x^* ?

- Ситуация в общем случае даже ухудшилась по сравнению с AdaGrad: кроме шагов D_i , нужно подбирать еще моментумы β_1, β_2 .
- Часто рекомендуют брать $\beta_1=0.9$, а $\beta_2=0.99$, и $D_i=D$ для всех i, но все равно нужно подбирать D.
- Проблема поиска D или D_i исконно пришла от того, что мы не знали $\|x^0 x^*\|_2$. Вопрос: мы знаем x^0 , какая точка (в некотором смысле) является хорошим выбором в качестве приближения x^* ?
- Можно предположить, что $x^k \approx x^*$ (метод приближается к решению):

$$\|x^0 - x^*\|_2 \to \|x^0 - x^k\|_2 \to d_k = \max_{t \in [k-1]} \|x^0 - x^t\|_2.$$

или

$$|x_i^0 - x_i^*| \to |x_i^0 - x_i^k| \to d_{k,i} = \max_{t \in [k-1]} |x_i^0 - x_i^t|.$$

Александр Безносиков Лекция 4 20 ноября 2024 23 / 38

DoG

• Имеем метод DoG:

$$\gamma_k = rac{d_k}{\sqrt{\sum\limits_{t=0}^k \|g^t\|_2^2}}$$
 или $\gamma_{k,i} = rac{d_{k,i}}{\sqrt{\sum\limits_{t=0}^k (g_i^t)^2}}$

Адаптивные методы

ocicococococico

DoG

Негладкие задачи

Имеем метод DoG:

$$\gamma_k = rac{d_k}{\sqrt{\sum\limits_{t=0}^k \|g^t\|_2^2}}$$
 или $\gamma_{k,i} = rac{d_{k,i}}{\sqrt{\sum\limits_{t=0}^k (g_i^t)^2}}.$

Почему DoG? Distance over Gradients:

$$d_k = \max_{t \in [k-1]} \| \sum_{\tau=0}^t \gamma_\tau \nabla f(x^\tau) \|_2.$$

Алгоритм 7 DoG v1

Вход: стартовая точка $x^0 \in \mathbb{R}^d$, сумма квадратов норм градиентов $G^0=0$, расстояние от точки старта $d_0=0$, количество итераций K

Адаптивные методы 000000000000000000

- 1: **for** k = 0, 1, ..., K 1 **do**
- Вычислить $g^k \in \partial f(x^k)$ 2:
- Вычислить $G^{k+1} = G^k + \|g^k\|_2^2$ 3:
- Вычислить $d_{k+1} = \max\{d_k; ||x^0 x^k||\}$ 4:
- $x^{k+1} = x^k \frac{d_{k+1}}{\sqrt{g_{k+1}}} g^k$ 5:
- 6: end for

Выход: $\frac{1}{\kappa} \sum_{k=0}^{K} x^k$

Алгоритм 8 DoG v2

Вход: стартовая точка $x^0 \in \mathbb{R}^d$, сумма квадратов градиентов $G_i^0 = 0$, координатные расстояния от точки старта $d_{0.i}$, количество итераций K

Адаптивные методы

- 1: for k = 0, 1, ..., K 1 do
- Вычислить $g^k \in \partial f(x^k)$ 2:
- Для каждой координаты: $G_i^{k+1} = G_i^k + (g_i^k)^2$ 3:
- Вычислить $d_{k+1,i} = \max\{d_{k,i}; |x_i^0 x_i^k|\}$ 4:
- Для каждой координаты: $x_i^{k+1} = x_i^k \frac{d_{k,i}}{\sqrt{G^{k+1}}} g_i^k$ 5:
- 6: end for

Выход:
$$\frac{1}{K} \sum_{k=0}^{K} x^k$$

Адаптивные методы: итог

- Суть подбирать шаг, исходя из локальных свойств задачи, что кажется более эффективным и удобным подходом.
- Adam и его модификации являются самым популярным методами решения задач оптимизации, лежащих в основе обучения нейронных сетей. Но в нем подбор параметров все еще нужен.

Адаптивные методы

ocionononononi on

Адаптивные методы: итог

- Суть подбирать шаг, исходя из локальных свойств задачи, что кажется более эффективным и удобным подходом.
- Adam и его модификации являются самым популярным методами решения задач оптимизации, лежащих в основе обучения нейронных сетей. Но в нем подбор параметров все еще нужен.
- Но эта проблема сейчас решена в так называемых parameter-free методах: кроме DoG можно обратить внимание на D-Adaptation/Prodigy.

Адаптивные методы: сравнение на практике

• Для наглядности мы поставили эксперименты для задачи классификации на датасете CIFAR10 на модели RESNET18 (популярная модель глубокого обучения).

Адаптивные методы

acidonacanacacidea

Parameter-free методы: сравнение на практике

Аналогично сравним результаты работы DoG, рассмотренного ранее с одним из топовых беспараметрических методов - Prodigy.

Адаптивные методы

acionananananina

Проксимальный оператор

Негладкие задачи

- Поняли, что негладкие задачи «более сложные» по сравнению с гладкими задачами.
- Может быть получится «спрятать под ковер» отсутствие гладкости?

Проксимальный оператор

Негладкие задачи

- Поняли, что негладкие задачи «более сложные» по сравнению с гладкими задачами.
- Может быть получится «спрятать под ковер» отсутствие гладкости?
- Такую возможность дает проксимальный оператор:

Определение проксимального оператора

Для функции $r: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ проксимальный оператор определяется следующим образом:

$$\operatorname{prox}_r(x) = \arg\min_{\tilde{x} \in \mathbb{R}^d} \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|^2 \right).$$

Лемма (свойство проксимального оператора)

Пусть $r: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ выпуклая функция, для которой определен ргох $_r$. Если существует такая $\hat{x} \in \mathbb{R}^d$, что $r(x) < +\infty$. Тогда проксимальный оператор однозначно определен (т.е. всегда возвращает единственное уникальное значение).

Негладкие задачи

Лемма (свойство проксимального оператора)

Пусть $r: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ выпуклая функция, для которой определен ргох $_r$. Если существует такая $\hat{x} \in \mathbb{R}^d$, что $r(x) < +\infty$. Тогда проксимальный оператор однозначно определен (т.е. всегда возвращает единственное уникальное значение).

Доказательство: Проксимальный оператор возвращает минимум некоторой задачи оптимизации. Вопрос: что можно сказать про эту задачу?

Лемма (свойство проксимального оператора)

Пусть $r:\mathbb{R}^d o \mathbb{R} \cup \{+\infty\}$ выпуклая функция, для которой определен ргох $_r$. Если существует такая $\hat{x} \in \mathbb{R}^d$, что $r(x) < +\infty$. Тогда проксимальный оператор однозначно определен (т.е. всегда возвращает единственное уникальное значение).

Доказательство: Проксимальный оператор возвращает минимум некоторой задачи оптимизации. Вопрос: что можно сказать про эту задачу? Она сильно выпуклая, а значит имеет строго один уникальный минимум (существование \hat{x} необходимо для того, чтобы $r(\tilde{x}) + \frac{1}{2} ||x - \tilde{x}||^2$ где-то принимала конечное значение).

Негладкие задачи

• $r(x) = \lambda ||x||_1$, где $\lambda > 0$. Тогда

Негладкие задачи

$$[\mathsf{prox}_r(x)]_i = [|x_i| - \lambda]_+ \cdot \mathsf{sign}(x_i)$$

Такой проксимальный оператор еще называют трешхолдом.

• $r(x) = \frac{\lambda}{2} ||x||_2^2$, где $\lambda > 0$. Тогда

$$\operatorname{prox}_r(x) = \frac{x}{1+\lambda}.$$

• $r(x) = \frac{\lambda}{2} ||x||_2^2$, где $\lambda > 0$. Тогда

$$\operatorname{prox}_r(x) = \frac{x}{1+\lambda}.$$

• $r(x) = \mathbb{I}_{\mathcal{X}}(x)$, где \mathcal{X} – выпуклое множество, и

$$\mathbb{I}_{\mathcal{X}}(x) = \begin{cases} 0, & x \in \mathcal{X} \\ +\infty, & x \notin \mathcal{X} \end{cases}.$$

Вопрос: чему равен prox?

Негладкие задачи

• $r(x) = \frac{\lambda}{2} ||x||_2^2$, где $\lambda > 0$. Тогда

$$\operatorname{prox}_r(x) = \frac{x}{1+\lambda}.$$

• $r(x) = \mathbb{I}_{\mathcal{X}}(x)$, где \mathcal{X} – выпуклое множество, и

$$\mathbb{I}_{\mathcal{X}}(x) = \begin{cases} 0, & x \in \mathcal{X} \\ +\infty, & x \notin \mathcal{X} \end{cases}.$$

Вопрос: чему равен prox?

$$\operatorname{prox}_r(x) = \operatorname{proj}_{\mathcal{X}}(x).$$

• $r(x) = \frac{\lambda}{2} \|x\|_2^2$, где $\lambda > 0$. Тогда

$$\operatorname{prox}_r(x) = \frac{x}{1+\lambda}.$$

• $r(x) = \mathbb{I}_{\mathcal{X}}(x)$, где \mathcal{X} – выпуклое множество, и

$$\mathbb{I}_{\mathcal{X}}(x) = \begin{cases} 0, & x \in \mathcal{X} \\ +\infty, & x \notin \mathcal{X} \end{cases}.$$

Вопрос: чему равен prox?

$$\operatorname{prox}_r(x) = \operatorname{proj}_{\mathcal{X}}(x).$$

• И еще множество других примеров и их комбинаций.

Лемма (свойство проксимального оператора)

Пусть $r:\mathbb{R}^d o \mathbb{R} \cup \{+\infty\}$ выпуклая функция, для которой определен prox_r . Тогда для любых $x,y\in\mathbb{R}^d$ следующие три условия являются эквивалентными:

- $\operatorname{prox}_r(x) = y$,
- $x y \in \partial r(y)$.
- $\langle x-y,z-y\rangle \leq r(z)-r(y)$ для любого $z\in\mathbb{R}^d$.

• Первое условие переписывается, как

$$y = \arg\min_{\tilde{x} \in \mathbb{R}^d} \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right).$$

Негладкие задачи

Первое условие переписывается, как

$$y = \arg\min_{\tilde{\mathbf{x}} \in \mathbb{R}^d} \left(r(\tilde{\mathbf{x}}) + \frac{1}{2} \|\mathbf{x} - \tilde{\mathbf{x}}\|_2^2 \right).$$

Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

Негладкие задачи

Доказательство

Первое условие переписывается, как

$$y = \arg\min_{\tilde{x} \in \mathbb{R}^d} \left(r(\tilde{x}) + \frac{1}{2} ||x - \tilde{x}||_2^2 \right).$$

Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

$$0 \in \partial \left(r(\tilde{x}) + \frac{1}{2} ||x - \tilde{x}||_2^2 \right) \bigg|_{\tilde{x} = y} = \partial r(y) + y - x.$$

Первое условие переписывается, как

$$y = \arg\min_{ ilde{x} \in \mathbb{R}^d} \left(r(ilde{x}) + \frac{1}{2} \|x - ilde{x}\|_2^2 \right).$$

Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

$$0 \in \partial \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right) \bigg|_{\tilde{x} = y} = \partial r(y) + y - x.$$

Получили эквивалентность первого и второго условий.

Первое условие переписывается, как

$$y = \arg\min_{ ilde{x} \in \mathbb{R}^d} \left(r(ilde{x}) + \frac{1}{2} \|x - ilde{x}\|_2^2 \right).$$

Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

$$0 \in \partial \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right) \bigg|_{\tilde{x} = y} = \partial r(y) + y - x.$$

Получили эквивалентность первого и второго условий.

• Из определения субдифференциала, для любого субградиента $g \in \partial f(y)$ и для любого $z \in \mathbb{R}^d$:

$$\langle g, z - y \rangle \leq r(z) - r(y).$$

Первое условие переписывается, как

$$y = \arg\min_{ ilde{x} \in \mathbb{R}^d} \left(r(ilde{x}) + \frac{1}{2} \|x - ilde{x}\|_2^2 \right).$$

Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

$$0 \in \partial \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right) \bigg|_{\tilde{x} = y} = \partial r(y) + y - x.$$

Получили эквивалентность первого и второго условий.

• Из определения субдифференциала, для любого субградиента $g \in \partial f(y)$ и для любого $z \in \mathbb{R}^d$:

$$\langle g, z - y \rangle \leq r(z) - r(y).$$

В частности справедливо и для g = x - y.

<u>Доказательство</u>

Первое условие переписывается, как

$$y = \arg\min_{\tilde{x} \in \mathbb{R}^d} \left(r(\tilde{x}) + \frac{1}{2} ||x - \tilde{x}||_2^2 \right).$$

 Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

$$0 \in \partial \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right) \bigg|_{\tilde{x} = y} = \partial r(y) + y - x.$$

Получили эквивалентность первого и второго условий.

• Из определения субдифференциала, для любого субградиента $g \in \partial f(y)$ и для любого $z \in \mathbb{R}^d$:

$$\langle g, z - y \rangle \leq r(z) - r(y).$$

В частности справедливо и для g = x - y. В обратную сторону тоже очевидно: для g = x - y выполнено соотношение выше, значит $g \in \partial r(y)$.

• Первое условие переписывается, как

$$y = \arg\min_{ ilde{x} \in \mathbb{R}^d} \left(r(ilde{x}) + \frac{1}{2} \|x - ilde{x}\|_2^2 \right).$$

 Из условия оптимальности для выпуклой функции r это эквивалентно вопрос: чему?

$$0 \in \partial \left(r(\tilde{x}) + \frac{1}{2} \|x - \tilde{x}\|_2^2 \right) \bigg|_{\tilde{x} = y} = \partial r(y) + y - x.$$

Получили эквивалентность первого и второго условий.

• Из определения субдифференциала, для любого субградиента $g \in \partial f(y)$ и для любого $z \in \mathbb{R}^d$:

$$\langle g, z - y \rangle \leq r(z) - r(y).$$

В частности справедливо и для g=x-y. В обратную сторону тоже очевидно: для g=x-y выполнено соотношение выше, значит $g\in\partial r(y)$. Лемма доказана.

Композитная задача

• Рассмотрим следующую задачу:

$$\min_{x \in \mathbb{R}^d} [f(x) + r(x)].$$

Композитная задача

Негладкие задачи

Рассмотрим следующую задачу:

$$\min_{x \in \mathbb{R}^d} [f(x) + r(x)].$$

- Такая задача называется композитной.
- Предположим, что f является L-гладкой выпуклой функцией, rвыпуклой (необязательно гладкой, но) проксимально дружественной функцией.

Композитная задача

Рассмотрим следующую задачу:

$$\min_{x \in \mathbb{R}^d} [f(x) + r(x)].$$

- Такая задача называется композитной.
- Предположим, что f является L-гладкой выпуклой функцией, rвыпуклой (необязательно гладкой, но) проксимально дружественной функцией.
- Получается целевая функция состоит из гладкой и в общем случае негладкой части. Если $r \equiv 0$, то получаем гладкую задачу, которую умеем решать. Если $f \equiv 0$, то получаем негладкую задачу.

Проксимальный градиентный метод

Алгоритм 9 Проксимальный градиентный метод

Вход: размер шага $\gamma>0$, стартовая точка $x^0\in\mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- Вычислить $\nabla f(x^k)$
- $x^{k+1} = \text{prox}_{\gamma r}(x^k \gamma \nabla f(x^k))$
- 4: end for

Выход: x^K

Проксимальный градиентный метод

Алгоритм 10 Проксимальный градиентный метод

Вход: размер шага $\gamma > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- Вычислить $\nabla f(x^k)$
- $x^{k+1} = \operatorname{prox}_{\gamma r}(x^k \gamma \nabla f(x^k))$
- 4: end for

Выход: x^K

Если r непрерывно дифференцируема, то условие оптимальности для подзадачи подсчета проксимального оператора записывается, как:

$$0 = \gamma \nabla r(x^{k+1}) + x^{k+1} - \gamma \nabla f(x^k).$$

Проксимальный градиентный метод

Алгоритм 11 Проксимальный градиентный метод

Вход: размер шага $\gamma > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- Вычислить $\nabla f(x^k)$
- $x^{k+1} = \text{prox}_{\gamma r}(x^k \gamma \nabla f(x^k))$
- 4: end for

Выход: x^K

• Если r непрерывно дифференцируема, то условие оптимальности для подзадачи подсчета проксимального оператора записывается, как:

$$0 = \gamma \nabla r(x^{k+1}) + x^{k+1} - \gamma \nabla f(x^k).$$

Откуда получаем так называемую неявную запись метода:

$$x^{k+1} = x^k - \gamma(\nabla f(x^k) + \nabla r(x^{k+1}))$$

Сходимость проксимального метода

Теорема

Пусть задача композитной оптимизации с L-гладкой, μ -сильно выпуклой целевой функцией f и выпуклой (необязательно гладкой, но) проксимально дружественной функцией r решается с помощью проксимального градиентного спуска. Тогда при $y_k = \frac{1}{L}$ справедлива следующая оценка сходимости:

$$\|x^k - x^*\|_2^2 \le \left(1 - \frac{\mu}{L}\right)^K \|x^0 - x^*\|_2^2.$$

т.е. для достижения точности ε по норме аргумента $(\|x^K - x^*\| \le \varepsilon)$ необходимо

$$K = \left(\frac{L}{\mu} \log \frac{\left\|x^0 - x^*\right\|_2}{\varepsilon}\right)$$
 итераций.