## An ECU Design for an Anti-Lock Braking System

Xu, Daniel

Revature

October 6, 2023

#### Intended End Result

The design of an anti-lock braking system (ABS) should prevent the wheels from locking up while braking, allowing the driver to retain tractive contract with the road, as well as control of the car.

### Skidding

- ► The most common reason why vehicles skid is due to tires receiving more force than they're meant to take, leading to the surface of tire sliding across the road
- ► The most force is usually applied to tires when braking, accelerating, or cornering

#### How our ECU achieves its function

- Our ECU monitors the speed sensors constantly. It is looking for sudden decelerations in the wheel that are not normal. Right before a wheel locks up, it experiences a rapid deceleration. If not checked, the wheel would suddenly stop faster than any car could.
- 2. The ABS ECU decreases pressure to the brake via a valve until it sees an acceleration, and then raises the pressure until it sees a deceleration again. The ECU is capable of doing this before the wheel experiences a significant change in speed.

#### Components of an ABS

- ▶ Wheel Speed Sensor The faster a wheel is spinning, the higher the voltage of a wheel speed sensor; this info is sent to the ECU so that the speed and then acceleration can be detected
- ▶ Valves Helps regulate the pressure in a brake, giving it a degree of control over the acceleration. Some valves have three positions:
  - ▶ **Open** pressure from master cyclinder is can flow to brake
  - Blocking prevents pressure from master cylinder to getting to brakes
  - ▶ **Released** releases pressure from the brake
- ▶ Pump Returns pressure to brakes after the valves have released some pressure
- ► **ECU** Microcontroller responsible for coordinating the entire ABS

### Converting Sensor Data into Real Information

Let V be voltage and s be speed. According to [2], the Bendix WS-24 antilock wheel lock speed sensor produces a voltage of 0.350 VAC at a minimum of 100 Hz (about 7 mph) at a gap of 0.28 inches. So for every 7 mph increase in speed, the wheel speed sensor should produce 0.350 higher volts. 7 mph is 3.12928 m/s, so for a given voltage produced by the speed sensor, the speed of a wheel can be calculated as so:

$$\frac{8.9408\,\mathrm{m}\,/\,\mathrm{s}}{1\,\mathrm{VAC}}\cdot V = s$$

### Wheel Speed Sensor



## Circuit Diagram



#### Potential DTC Codes involving an ABS

- U0121 Lost Communication with ABS Control Module
- P0863 TCM Communication Circuit
- P0883 TCM Power Input Signal High
- P0864 TCM Communication Circuit Range/Performance
- P215A Vehicle Speed Wheel Speed Correlation

# Pseudocode (1 of 4)

```
enum abs_status { ABS_NORMAL, ABS_DECEL, ABS_ACCEL }:
 3
      typedef enum abs_status AbsStatus;
 4
 5
      // speed should be in m/s and time should be in s
 6
      struct wheel_sensor {
        int pin;
 8
        double prev_speed;
 9
        double prev_time;
10
        double curr_speed:
        double curr_time:
11
        AbsStatus status;
13
      };
14
15
      typedef struct wheel_sensor WheelSensor;
16
17
      void ws_init(WheelSensor *ws. int pin) {
18
        ws->pin = pin;
19
        ws->prev\_speed = 0.0, ws->curr\_speed = 0.0;
20
        ws->prev_time = 0.0, ws->curr_time = 0.0:
        ws->status = ABS_NORMAL:
22
24
```

## Pseudocode (2 of 4)

29

```
#define VOLTS_TO_METERS_PERS_SECOND_CONV_CONST 8.9408
 3
      static inline double ws_voltage_to_meters_per_second(double volts) {
        return VOLTS TO METERS PERS SECOND CONV CONST * volts:
 6
      static inline double millis_to_seconds(double mil) {
 8
        return mil / 1000.0;
 9
10
      void ws_status_update(WheelSensor *ws) {
12
        double accel = ws_acceleration(ws):
13
14
        if (ws->status == ABS_NORMAL) {
         if (accel < WS_DECEL_THRESHOLD) {
16
          ws->status = WS_DECEL:
18
        } else if (ws->status == ABS_DECEL) {
19
         if (accel > 0.0) {
20
          ws->status = WS\_ACCEL;
        } else { // currently accelerating, want to decelerate until normal
         if (accel < 0.0) {
24
          ws->status = WS NORMAL:
25
26
28
```

# Pseudocode (3 of 4)

```
void ws_update(WheelSensor *ws) {
 2
        ws->prev_speed = ws->curr_speed:
        ws->prev_time = ws->curr_time;
        ws->curr_speed = ws_voltage_to_meters_per_second(AnalogRead(ws->pin));
        ws->curr_time = millis_to_seconds((double) millis());
 8
        ws_status_update(ws);
 9
11
      inline double ws_acceleration(WheelSensor *ws) {
13
        return (ws->curr_speed - ws->prev_speed) / (ws->curr_time - ws->prev_time);
14
15
16
      WheelSensor fl_ws, fr_ws, bl_ws, br_ws;
17
18
      void ABS_setup() {
19
        ws_init(&fl_ws, FRONT_LEFT_WS_PIN);
20
        ws_init(&fr_ws, FRONT_RIGHT_WS_PIN);
21
        ws_init(&bl_ws. BACK_LEFT_WS_PIN):
22
        ws_init(br_ws, BACK_RIGHT_WS_PIN);
```

# Pseudocode (4 of 4)

```
void ABS_loop() {
 3
        if (fl_ws.status == ABS_DECEL) {
         valve_set_position(FRONT_LEFT_VAVLE_PIN, VALVE_RELEASE):
 5
        } else if (fl_ws.status == ABS_ACCEL) {
 6
         valve_set_position(FRONT_LEFT_VALVE_PIN, VALVE_OPEN);
 7
 8
 9
        if (fl_ws.status == ABS_DECEL) {
         valve_set_position(FRONT_RIGHT_VALVE_PIN, VALVE_RELEASE):
10
        } else if (fl_ws.status == ABS_ACCEL) {
         valve_set_position(FRONT_RIGHT_VALVE_PIN, VALVE_OPEN);
13
14
15
        if (fl_ws.status == ABS_DECEL) {
16
         valve_set_position(BACK_LEFT_VALVE_PIN, VALVE_RELEASE);
17
        } else if (fl_ws.status == ABS_ACCEL) {
18
         valve_set_position(BACK_LEFT_VALVE_PIN, VALVE_OPEN);
19
20
21
        if (fl_ws.status == ABS_DECEL) {
22
         valve_set_position(BACK_RIGHT_VALVE_PIN, VALVE_RELEASE);
23
        } else if (fl_ws.status == ABS_ACCEL) {
24
         valve_set_position(BACK_RIGHT_VALVE_PIN, VALVE_OPEN):
25
26
27
        ws_update(&fl_ws):
28
        ws_update(&fr_ws);
29
        ws_update(&bl_ws);
30
        ws_update(&br_ws):
31
32
```

#### References

- Nice, Karim. "How Anti-Lock Brakes Work." HowStuffWorks, August 23, 2000. https://auto.howstuffworks.com/auto-parts/brakes/brake-types/anti-lock-brake.htm.
- "Bendix WS-24 Antilock Wheel Speed Sensor." Bendix, April 2019. https://static.nhtsa.gov/odi/tsbs/2019/MC-10163232-9999.pdf.
- "Bendix EC-80 ABS/ATC Electronic Controllers." Bendix, April 2019. https://static.nhtsa.gov/odi/tsbs/2022/ MC-10208811-0001.pdf