Corrigé du devoir maison 1.

Question préliminaire : On sait que $\lim_{X\to +\infty}\frac{e^X}{X}=+\infty$ par croissances comparées, et que $\lim_{X\to -\infty}\frac{e^X}{X}=0$ par quotient de limites.

- **1**°) **a**) Pour tout $x \in \mathbb{R} \setminus \{0, 1\}$, $f_k(x) = \frac{e^{kx}}{kx} \frac{kx}{1-x} = \frac{e^{kx}}{kx} \frac{k}{\frac{1}{2}-1}$.
 - Cas k > 0:
 On sait $\begin{cases} \frac{e^X}{X} \underset{X \to +\infty}{\longrightarrow} +\infty \\ kx \underset{x \to +\infty}{\longrightarrow} +\infty \end{cases}$, donc par composition de limites : $\frac{e^{kx}}{kx} \underset{x \to +\infty}{\longrightarrow} +\infty$.

Comme $\frac{k}{\frac{1}{x}-1} \xrightarrow[x \to +\infty]{} -k < 0$, on obtient que $f_k(x) \xrightarrow[x \to +\infty]{} -\infty$.

On sait $\begin{cases} \frac{e^X}{X} \underset{X \to -\infty}{\longrightarrow} 0 \\ kx \underset{x \to -\infty}{\longrightarrow} -\infty \end{cases}$, donc par composition de limites : $\frac{e^{kx}}{kx} \underset{x \to -\infty}{\longrightarrow} 0$.

Comme $\frac{k}{\frac{1}{x}-1} \xrightarrow{x \to -\infty} -k \in \mathbb{R}$, on obtient que $f_k(x) \xrightarrow{x \to -\infty} 0$.

• Cas k < 0:
On sait $\begin{cases} \frac{e^X}{X} \xrightarrow[X \to +\infty]{} 0 \\ kx \xrightarrow[X \to +\infty]{} -\infty \end{cases}$, donc par composition de limites : $\frac{e^{kx}}{kx} \xrightarrow[X \to +\infty]{} 0$.

Comme $\frac{k}{\frac{1}{x}-1} \xrightarrow{x \to +\infty} -k \in \mathbb{R}$, on obtient que $f_k(x) \xrightarrow[x \to +\infty]{} 0$.

On sait $\begin{cases} \frac{e^X}{X} \underset{X \to +\infty}{\longrightarrow} +\infty \\ kx \underset{x \to -\infty}{\longrightarrow} +\infty \end{cases}$, donc par composition de limites : $\frac{e^{kx}}{kx} \underset{x \to -\infty}{\longrightarrow} +\infty$.

Comme $\frac{k}{\frac{1}{x}-1} \xrightarrow[x \to -\infty]{} -k > 0$, on obtient que $f_k(x) \xrightarrow[x \to -\infty]{} +\infty$.

En 1, peu importe la valeur de $k \in \mathbb{Z}^*$, $e^{kx} \xrightarrow[x \to 1]{} e^k > 0$. Comme $\frac{1}{1-x} \xrightarrow[x \to 1^+]{} +\infty$ et $\frac{1}{1-x} \xrightarrow[x \to 1^+]{} -\infty$, on en tire que $f_k(x) \xrightarrow[x \to 1^-]{} +\infty$ et $f_k(x) \xrightarrow[x \to 1^+]{} -\infty$.

 $Remarque: f_k$ n'a pas de limite en 1.

- **b)** $a_k = 1 + \frac{1}{k}$, et $\frac{1}{k}$ a le même signe que k, donc $a_k > 1$ si k > 0 et $a_k < 1$ si k < 0.
- c) Par quotient et composition de fonction dérivables là où elles sont définies, f_k est dérivable sur $\mathbb{R}\setminus\{1\}$, et pour tout $x\in\mathbb{R}\setminus\{1\}$:

$$f'_k(x) = \frac{ke^{kx}(1-x) - e^{kx}(-1)}{(1-x)^2} = \frac{e^{kx}(k+1-kx)}{(1-x)^2}.$$

Comme pour tout $x \in \mathbb{R} \setminus \{1\}$, $(1-x)^2 > 0$ et $e^{kx} > 0$, $f'_k(x)$ a le signe de k+1-kx. Or, pour tout $x \in \mathbb{R} \setminus \{1\}$:

$$k+1-kx=0 \Longleftrightarrow kx=k+1$$

$$\Longleftrightarrow x=\frac{k+1}{k}=a_k$$

$$k+1-kx>0 \Longleftrightarrow kx< k+1$$
 Si $k>0: k+1-kx>0 \Longleftrightarrow x<\frac{k+1}{k}$ Si $k<0: k+1-kx>0 \Longleftrightarrow x>\frac{k+1}{k}$

D'où le tableau de variation de $f_k,$ d'après tout ce qui précède : Si k>0 :

x	$-\infty$	a_k	$+\infty$
$f'_k(x)$	+	+ 0	-
f_k	+∞	$f_k(a_k)$ $-\infty$	$-\infty$

Si k < 0:

x	$-\infty$	a_k	1	+∞
$f'_k(x)$	-	- 0	+	+
f_k	$+\infty$	$f_k(a_k)$	+∞	$-\infty$

2°) a) On a $g = f_{-1}$; comme -1 < 0, d'après la question 1.c, g est croissante sur $[a_{-1}, 1[$. Or $a_{-1} = 0$. Donc g est croissante sur $[0, \frac{1}{2}]$, donc pour tout $x \in [0, \frac{1}{2}]$, $g(0) \le g(x) \le g(\frac{1}{2})$. On a $g(0) = \frac{e^0}{1-0} = 1$ et $g(\frac{1}{2}) = \frac{e^{-\frac{1}{2}}}{1-\frac{1}{2}} = \frac{1}{\frac{1}{2}e^{\frac{1}{2}}} = \frac{2}{\sqrt{e}}$, d'où l'encadrement voulu :

$$\boxed{\forall\,x\in[0,\frac{1}{2}],\,\,1\leq g(x)\leq\frac{2}{\sqrt{e}}.}$$

b) Pour tout $x \in \left[0, \frac{1}{2}\right]$:

$$1 + x + \frac{x^2}{1 - x} = \frac{(1 + x)(1 - x) + x^2}{1 - x} = \frac{1 - x^2 + x^2}{1 - x}$$

$$1 + x + \frac{x^2}{1 - x} = \frac{1}{1 - x}$$

c) On a donc, pour tout $x \in \left[0, \frac{1}{2}\right]$, $\frac{e^{-x}}{1-x} = (1+x)e^{-x} + \frac{x^2e^{-x}}{1-x}$ i.e. $g(x) = (1+x)e^{-x} + x^2g(x)$. D'où, en utilisant la linéarité de l'intégrale :

$$I = \int_0^{\frac{1}{2}} \left((1+x)e^{-x} + x^2 g(x) \right) dx = \left[\int_0^{\frac{1}{2}} (1+x)e^{-x} dx + \int_0^{\frac{1}{2}} x^2 g(x) dx \right]$$

d) Les fonctions $u: x \mapsto 1+x$ et $v: x \mapsto -e^{-x}$ sont dérivables sur $\left[0, \frac{1}{2}\right]$ et pour tout $x \in \left[0, \frac{1}{2}\right]$:

$$u(x) = 1 + x$$
 $u'(x) = 1$
 $v(x) = -e^{-x}$ $v'(x) = e^{-x}$

Par intégration par parties :

$$\int_0^{\frac{1}{2}} (1+x)e^{-x} dx = \left[-(1+x)e^{-x} \right]_0^{\frac{1}{2}} - \int_0^{\frac{1}{2}} 1 \cdot (-e^{-x}) dx$$

$$= -\frac{3}{2}e^{-\frac{1}{2}} + 1 + \int_0^{\frac{1}{2}} e^{-x} dx$$

$$= 1 - \frac{3}{2}e^{-\frac{1}{2}} + \left[-e^{-x} \right]_0^{\frac{1}{2}}$$

$$= 1 - \frac{3}{2}e^{-\frac{1}{2}} - e^{-\frac{1}{2}} + 1$$

$$\int_0^{\frac{1}{2}} (1+x)e^{-x} dx = 2 - \frac{5}{2\sqrt{e}}$$

e) Pour tout $x \in [0, \frac{1}{2}]$, comme x^2 est positif : $x^2 \le x^2 g(x) \le x^2 \frac{2}{\sqrt{e}}$. Par croissance de l'intégrale sur le segment $[0, \frac{1}{2}]$:

$$\int_0^{\frac{1}{2}} x^2 \, \mathrm{d}x \le \int_0^{\frac{1}{2}} x^2 g(x) \, \mathrm{d}x \le \int_0^{\frac{1}{2}} x^2 \frac{2}{\sqrt{e}} \, \mathrm{d}x$$

$$\left[\frac{1}{3} x^3 \right]_0^{\frac{1}{2}} \le \int_0^{\frac{1}{2}} x^g(x) \, \mathrm{d}x \le \frac{2}{\sqrt{e}} \left[\frac{1}{3} x^3 \right]_0^{\frac{1}{2}}$$

$$\frac{1}{3} \frac{1}{8} \le \int_0^{\frac{1}{2}} x^g(x) \, \mathrm{d}x \le \frac{2}{\sqrt{e}} \frac{1}{3} \frac{1}{8}$$

$$\left[\frac{1}{24} \le \int_0^{\frac{1}{2}} x^2 g(x) \, \mathrm{d}x \le \frac{1}{12\sqrt{e}} \right]$$

f) En additionnant la valeur de $\int_0^{\frac{1}{2}} (1+x)e^{-x} dx$ à cet encadrement, on obtient :

$$2 - \frac{5}{2\sqrt{e}} + \frac{1}{24} \le I \le 2 - \frac{5}{2\sqrt{e}} + \frac{1}{12\sqrt{e}} \text{ i.e. } \frac{49}{24} - \frac{5}{2\sqrt{e}} \le I \le 2 - \frac{29}{12\sqrt{e}}$$

À l'aide d'une calculatrice, on trouve que $0.52 < \frac{49}{24} - \frac{5}{2\sqrt{e}}$ et que $2 - \frac{29}{12\sqrt{e}} < 0.54$. On a donc 0.52 < I < 0.54.

On en tire que -0.01 < I - 0.53 < 0.01 i.e. |I - 0.53| < 0.01.

Donc 0.53 est une valeur approchée de I à 10^{-2} près