A CLUSTER-BASED TRIP PREDICTION GRAPH NEURAL NETWORK FOR BIKE SHARING SYSTEMS

By

Bárbara Tavares, Cláudia Soares & Manuel Marques

BSS: A MOBILITY SYSTEM EMERGING WORLDWIDE

Usage

- Rent a bike on the departure local/station
- Ride to the destination local/station
- Return the bike to the destination local/dock

SBSS

THE CURRENT BSS PROBLEM & PRESENTATION OUTLINE

Bike Imbalance

Analogous Transition Patterns

Customer Loss In The Long Term

System Operation

System Prediction

Rebalancing Strategies We Propose: An Accurate Prediction of Bike Traffic

- 1 Main Challenges
- 2 Proposed Solution
 - AdaTC to Cluster the Stations
 - Bicycle Trips Predictor with GNN Embeddings
- 3 Experimental Results
 - Clustering Pertinence
 - Best Technique for the Problem

Main Challenges

when Predicting Bike Traffic

DEMAND CHANGES TEMPORALLY AND SPATIALLY

Weekly And Hourly Seasonality In Different Locations

DEMAND IS INFLUENCED BY WEATHER CONDITIONS

DEMAND IS INFLUENCED BY WEATHER CONDITIONS

Temperature and Precipitation

Conducive to Cycling

- Precipitation $\approx 0 \, mm/h$
- Precipitation $\approx 0 \ mm/h \ \& \uparrow$ Temperature

Not Conducive to Cycling

• Precipitation > 10 mm/h

RIDES RANDOMNESS

RIDES RANDOMNESS

RIDES RANDOMNESS

January 1, 2018 7:00 am - 12:00 pm

Inter-Station Random Trips Inter/Intra-Cluster Frequent Trips

Apparently Random Trips
Between Individual Stations show
a Pattern when Stations are
Clustered

WHY IS CLUSTERING CRUCIAL?

Reduce the Complexity of Random Trips

System Prediction

Traffic Prediction

- Consider the StationSimilarity to NeighborStations
- Bike Usage more Stable and Regular

System Operation

Bike Reposition

- Inter/Intra-Cluster Dynamics
- Derive Efficient Rebalancing Strategies

COVID-19 IMPACT ON CITIBIKE

Proposed Solution

Grouping Stations: AdaTC

Before clustering...

Remove Potential Outlier Stations

$$S^g = \{s_i : s_i \in S, \% \ t_{S_i} \ge 0.001\%\},$$
 such that, $\# S^g = 801$

Assess Cluster Tendency

 H_0 : the data is uniformly distributed

Define 5 Time Slots

ADAPTIVE TRANSITION CONSTRAINT CLUSTERING

Stations in the same cluster are expected to:

- Be Geographically Close
- With Similar Check-outs and Inter-cluster Transitions

AdaTC: GEO-CLUSTERING

$$diss_{GC}(S_h, S_k) = \rho_1 \times gd_{hk} + out_{hk}$$
 Trade-off Geographical Distance between S_h and S_k Check-out Difference between S_h and S_k

AdaTC: GEO-CLUSTERING (cont.)

 $\widehat{TL}_{i,t}^{S}$ Estimation

Number of Bikes Available:

Exact Flow:

Using CitiBike Historical Trips and Open Bus 2

"Offset" Method:

Using only CitiBike Historical Trips

avail_bikes_cum +

OpenBus

CitiBike Historical Trips Scores:

- -1 for rents
- +1 for returns

Number of Bikes Available

					₩	+
	station_id	balance	dock_time_time	dock_time_date	avail_bikes_cum	avail_bikes_cum_offset
0	3536.0	-1	09:08:01.358000	2018-01-01	-1	2855
1	3536.0	1	09:18:34.010000	2018-01-01	0	2856
2	3536.0	1	11:23:17.156000	2018-01-01	1	2857
3	3536.0	-1	11:31:55.385000	2018-01-01	0	2856
4	3536.0	1	12:58:13.333000	2018-01-01	1	3 2857
						- <u> -</u>
22461	3536.0	-1	13:24:09.036000	2018-12-31	-2854	2
22462	3536.0	1	13:48:14.227000	2018-12-31	-2853	3
22463	3536.0	1	13:48:15.943000	2018-12-31	-2852	4
22464	3536.0	-1	14:07:47.898000	2018-12-31	-2853	3
22465	3536.0	1	16:49:42.485000	2018-12-31	-2852	4

min.

AdaTC: TRANSIT-MATRIX GENERATION

Transit-Matrix: Describes the intra and inter-cluster transitions patterns of a specific station in all time slots

Dimensions: $5 \times 2K_1$

where for a given i = 1, ..., 5

•
$$rt_{1,j,i}=rac{\#\ trips\ starting\ in\ S\ ending\ in\ C_{1,j}}{\#\ trips\ in\ ts_i}$$
, with $\sum_{j=1}^{K_1}rt_{1,j,i}=1$

•
$$rf_{1,j,i}=rac{\#\ trips\ ending\ in\ S\ starting\ in\ C_{1,j}}{\#\ trips\ in\ ts_i}$$
, with $\sum_{j=1}^{K_1}rf_{1,j,i}=1$

AdaTC: TRANSIT-MATRIX GENERATION (cont.)

Transit-Matrix Generation Step

Iteration n_{it}

0.5443

0.6862

0.8035

0.085

0.0691

0.0173

0.3689

0.2394

0.1676

0.0018

0.0053

0.0116

0.187

0.3106

0.1786

0.6451

0.8

0.0444

AdaTC: TRANSIT-CLUSTERING

Clusters stations into K_2 groups by K-Medoids, such that $K_1 \ge K_2$

$$diss_{TC}(S_h, S_k) = ||A_h - A_k||_F = ||A_{(h-k)}||_F$$
 T-Matrix of Station S_h Element-By-Element Subtraction of A_h with A_k

AdaTC: INTRINSIC PARAMETERS VALIDATION

Intrinsic **Parameters**

 ρ_1

 $\rho_1 \in \{0, 5 \times 10^{-4}, 10^{-3}, 5.5 \times 10^{-3}, 10^{-2},$ $5.5 \times 10^{-2}, 10^{-1}, 5.05 \times 10^{-1}, 1, 5.5, 10$

 K_1

 $K_1 \in \{50, 60, 70, 80, 90, 100\}$

 K_2

 $K_2 \in \{10, 20, 30, 40, 50\}$

AGD_{inner}, ACOD_{inner}, AGD_{inter}, ACOD_{inter}

Cluster Geographical **Distance**

Cluster **Check-Out Dissimilarity**

Average Inner Average Inner Average Inter Cluster Geographical **Distance**

Cluster Check-Out Dissimilarity

		$K_2 = 10$	$K_2 = 20$	$K_2 = 30$	$K_2 = 40$	$K_2 = 50$
	$K_1 = 50$	$1, 2, 4, 5^{*1}$	3, 4, 2, 2	3, 5, 1, 3	5, 3, 3, 1	2, 1, 5, 4
	$K_1 = 60$	1, 2, 5, 2	4, 5, 3, 1	2, 4, 1, 2	3, 3, 2, 5	4, 1, 4, 3
0 - 0 1	$K_1 = 70$	2, 4, 4, 3	1, 1, 5, 2	4, 4, 2, 1	5, 3, 1, 5	3, 2, 3, 4
$ \rho_1 = 0.1 $	$K_1 = 80$	1, 1, 5, 3	5, 5, 1, 5	2, 3, 3, 4	3, 4, 4, 2	4, 2, 2, 1
	$K_1 = 90$	2, 3, 2, 2	4, 1, 3, 1	5, 5, 1, 2	3, 4, 2, 1	1, 2, 5, 3
	$K_1 = 100$	1, 1, 5, 3	3, 4, 4, 2	2, 3, 2, 5	4, 2, 2, 1	5, 5, 1, 3
	$K_1 = 50$	1, 3, 4, 1	2, 5, 1, 4	2, 4, 2, 2	5, 2, 3, 5	1, 1, 5, 3
	$K_1 = 60$	2, 3, 4, 4	1, 1, 5, 1	5, 3, 2, 3	3, 2, 3, 5	3, 5, 1, 4
a = 0.505	$K_1 = 70$	1, 3, 4, 4	4, 5, 1, 1	3, 4, 3, 3	2, 2, 2, 2	5, 1, 5, 5
$\rho_1=0.505$	$K_1 = 80$	1, 1, 5, 3	2, 2, 3, 1	3, 5, 1, 1	4, 3, 4, 4	5, 4, 2, 5
	$K_1 = 90$	1, 2, 2, 2	4, 1, 1, 1	2, 2, 3, 1	3, 1, 5, 4	5, 2, 2, 1
	$K_1 = 100$	1, 2, 5, 5	4, 1, 1, 1	2, 2, 4, 1	3, 5, 1, 5	5, 2, 2, 1

Proposed Solution

Bike Trips Predictor

A GNN BICYCLE TRIP PREDICTOR

GNN ARCHITECTURE

Node Embedding

Link Embedding

Link Classification Layer

Inner Product of Node Embeddings

$$ip(u,v) = \sum_{i} u_i \times v_i$$

Dense Link Classification Layer

PROBLEM SETUP: DATA

2018

Link Prediction Model

Historical
Trips

Meteorology

Four Clustering Configurations

AdaTC and three baselines:

- K-Medoids (KM)
- Spectral Clustering (SC)
- Geo-Clustering (GC)

Train Five LP Models

Four Cluster-Based:

- AdaTC, KM, SC and GCOne Without Clustering:
- No Clustering (NC)

Evaluate
Performance on test
held out data

2019 NETWORK

2019

Infer Generalization on test data, trained

on 2018 data

KEEPING

- Clustering Results
- Weather

UPDATING

Historical CitiBike Trips ACCURACY IN THE TEST SET AFTER CALIBRATION. ADATC+ OUTPERFORMS THE BASELINES AND WHEN IN MISMATCH, THE PERFORMANCE DOES NOT DEGRADE SIGNIFICANTLY.

	$AdaTC_+$	GC	SC	KM	NC
2018	88%	87%	86%	83%	83%
2019 (Mismatch)	85%	86%	85%	83%	84%

ENTIRE GRAPH DIMENSIONS IN 2018 AND 2019.

2019_{restricted} REPRESENTS THE 2019 GRAPH RESTRICTED TO THE STATIONS (AND CORRESPONDING TRIPS) IN THE 2018 SETTING.

2	018	2019	9 _{restricted}	2019		
# nodes	nodes # links		# links	# nodes	# links	
801	17.526.058	762	18.674.518	1333	20.551.697	

AdaTC + GRAPHSAGE AS A BETTER PERFORMANT MODEL

Best Model

Performance on the Prediction Task

2018

	Without Clustering			
Our Predictor				
AdaTC	GC	SC	KM	NC
88%	87%	86%	83%	83%

Cluster Relevance

AdaTC Outperforms all the Baselines in the 2018 setting

AdaTC + GRAPHSAGE MODEL PERCENTAGE ERROR

$$PE = \frac{1}{x_t} |x_t - x_p| \times 100 \text{ (\%)}$$
Number of Positive Rides
Number of True Rides

cit	ibike_station_id	start_true	start_pred_true	stop_true	stop_pred_true	error_start	error_stop	
	72.0	4.0	9.0	4.0	6.0	125.00	50.0	←
	120.0	54.0	20.0	0.0	2.0	62.96	inf	
	127.0	359.0	356.0	8.0	15.0	0.84	87.5	

AdaTC + GRAPHSAGE MODEL PERCENTAGE ERROR

$$PE = \frac{1}{x_t} |x_t - x_p| \times 100 \text{ (\%)}$$
Number of Positive Rides
Number of True Rides

- 0% ≤ Percentage Error ≤ 5%
- 5% < Percentage Error ≤ 15%
- 15% < Percentage Error ≤ 30%
- 30% < Percentage Error ≤ 45%
- 45% < Percentage Error ≤ 60%
- 60% < Percentage Error ≤ 75%
- 75% < Percentage Error ≤ 90%
- Percentage Error > 90%
- Stations Removed

AdaTC + GRAPHSAGE MODEL PERCENTAGE ERROR

Outlier Stations

CONCLUSIONS AND LIMITATIONS

We Provide a Lower Bound on the Accuracy for the Model in this Predictive Task

Limitation: We cannot take advantage of the Indutive Nature of the Model

Future Work Redefine the Loss or Continual Learning Strategy