2022년도 연구보고서

미시 교통시뮬레이션 기반 교통량 추정 알고리즘 개발 및 검증 보고서

2022. 11. 한국과학기술원

제 1 장 연구 개요

1.1. 연구 목적

- 교통량 추정은 여행자가 출발지에서 목적지로 이동할 때, 이용하게 될 경로 나 수단을 예상하는 데에 그 목적이 있음
- 본 과업에서는 교통량 배정 알고리즘 개발을 통하여 미시 시뮬레이션 및 향후 연구에서 쓰일 차량의 이동 경로 데이터를 얻고자 함
- 최종적으로 개발된 알고리즘의 적합도는 시뮬레이션에서 추정된 교통량의 값
 과 실제 교통량의 값을 비교 분석하여 평가하고자 함

1.2. 연구 목표

○ 해당연도 실측값 15% 이내에서 교통량 추정을 할 수 있는 교통량 배정 알고리 즘의 개발

제 2 장 교통량 추정 방법론 및 검증방안 설계

2.1. 교통량 추정 방법론

2.1.1. 교통량 배정의 주요 고려 요소

- 비용함수
 - 비용함수(비효용 함수)는 여행자가 이동하면서 발생하는 유형, 무형의 비용을 망라 하여 동일한 단위로 표시한 함수로써, 여행자는 총 비용을 최소화 하는 방향으로 수단과 경로를 선택
 - 비용함수에는, 이동시간, 거리, 통행료, 유류비 등이 고려
 - 본 연구에서는 『도로·철도 부문 사업의 예비타당성조사 표준지침』에 이용된 값을 기초로 함
- 이 이용자 평형과 시스템 최적화
 - 이용자 평형과 시스템 최적화는 서로 다른 개념
 - 이용자 평형은 이용자 개개인이 어떠한 경로를 택하여도, 현재의 선택한 경로에 비해 비용 상에서 이득을 볼 수 없는 상태를 뜻함
 - 시스템 최적화는 모든 이용자들의 이익이 최대가 되는 상태를 의미
 - 시스템 최적화는 경우에 따라서 이용자 평형에 비하여 이득을 보는 이용자도 있으나. 손해를 보는 이용자 역시 발생 가능
- 워드롭 원리(Wardrop's Principle)
 - 워드롭 원리는, 모든 여행자들이 본인의 비용을 최소화하는 상태로 평형을 이룬다는 가정 하에 성립된, 교통량 배정의 핵심 요소로써 다음 두가지 원리가 존재
 - 1. 임의의 OD 간에서 여행자들이 이용하는 모든 경로의 소요시간(비용)은 동일하여야 한다. 이용하지 않는 경로의 비용은 이용하는 경로보다 소요시간(비용)이 비싸야한다
 - 2. 평균 소요시간은 최소여야 한다

2.1.2. 교통량 배정 알고리즘의 주요 요소

- Beckmann's transformation
 - 워드롭 원리 중 첫 번째 부분을 수학적으로 표현한 형태로 다음과 같다.

 $\min z(x) = \sum \int_0^{x_a} t_a(w) dw$

제약조건

 $\sum_{k} f_{k}^{rs} = q_{rs} \,\forall \, r,s \tag{a}$

 $f_k^{rs} \ge 0 \,\forall \, k, r, s \tag{b}$

 $x_a = \sum_r \sum_s \sum_k f_k^{rs} \delta_{a,k}^{rs} \, \forall \, a \quad \text{(c)}$

r,s : 기종점

k : 기종점을 잇는 경로의 번호

 f_k^{rs} : r-s를 잇는 k번째 경로를 이용하는 수요

 q_{rs} : 기종점 간의 총 수요

a : 링크 번호

 x_a : 링크 a의 교통량

 $\delta_{a,k}^{rs}$: r-s를 잇는 k번째 경로가 링크 a를

이용하는지에 대해 판별하는 변수,

이용할 경우 1, 아닐 경우 0

 $t_a(x_a)$: x_a 에 따른 링크 a의 통행시간

- 식(a)는 r,s간을 이동하는 모든 경로의 수요의 합은, r,s간의 OD 총 수요와 같음을 의미
- 식(b)는 경로를 이용하는 차량 수가 음수가 될 수 없음을 의미
- 식(c)는 링크 교통량은 해당 링크를 이용하는 모든 경로들의 수요의 합과 같음을 의미
- Frank-Wolfe algorithm
 - Frank-Wolfe algorithm은 convex combination algorithm이라고도 하며 Marguerite Frank와 Philip Wolfe가 1956년에 개발한 알고리즘
 - Frank-Wolfe algorithm은 다음과 같은 과정을 반복하여 최적해를 추정함
 - 1. 제약조건을 만족하는 임의의 해 X^n 에서 목적함수 z를 최대한 drop을 시킬 수 있는 Y"을 찾는다. (n은 n번째 반복에서 얻어진 해를 의미한다.)
 - $2. \ z[Y^n+a(Y^n-X^n)]$ 을 최소화 시키는, [0,1] 사이에 존재하는 a_n 을 찾는다.
 - 3. 다음 해 $X^{n+1} = X^n + a(Y^n X^n)$ 를 구한다.
 - 4. 만약 $X^{n+1} X^n$ 값이 수렴 조건을 만족하면 알고리즘은 최종적으로 종료되며 그렇지 않으면 1의 step부터 다시 재반복한다.

2.2. 방법론 구축

<그림 1> 방법론 및 검증방안 모식도

2.2.1. 데이터 수집 및 활용

- 현재 데이터는 총 4가지의 방식으로 수집이 가능함
 - 스마트 교차로, VDS 데이터는 특정 지점에서 총 통행량 정보 등을 알 수 있으나, 차량이 지나간 궤적을 파악하기는 어려움
 - DSRC 및 네비게이션 데이터는 개별차량이 지나간 경로 등의 정보는 수집 가능하나, 모든 차량에 대한 정보의 수집은 불가능함 (전수조사 불가)
- 데이터의 특성에 따라 스마트 교차로, VDS 데이터를 교통량 추정의 데이터
 로 활용하고, DSRC 및 네비게이션은 사후 검증용 데이터로 활용

2.2.2. 교통량 추정의 추정 및 실측값과의 비교

- 교통량 추정 이용 데이터
 - 도로별 이용률에 따른 소요시간 및 실제 통행 차량 등의 제약 조건 필요
 - VDS 데이터를 교통량 추정값의 데이터로 이용하여 통행 시간 및 구간별 교통량 추정

2.3. 시범지역 적용 대상 및 평가방안

〈그림	2>	시범지역	내	VDS	설치	현황
-----	----	------	---	-----	----	----

패턴	패턴 시간	기준시간	시간대
S1	07:30 ~ 09:00, 17:00 ~ 19:00	08:00 ~ 09:00	(오전첨두)오전첨두
S2	07:00 ~ 07:30, 10:00 ~ 15:30, 19:00 ~ 19:30	15:00 ~ 16:00	(비첨두)오후비첨두
S3	09:00 ~ 10:00, 16:00 ~ 17:00	16:00 ~ 17:00	(오후첨두)오후첨두
S4	19:30 ~ 21:30	19:00 ~ 20:00	(평상)오후첨두 종료
S5	06:00 ~ 07:00, 21:30 ~ 23:30	21:00 ~ 22:00	(한산)오전첨두 진입 , 야간비첨두 진입
S6	23:30 ~ 06:00	23:00 ~ 24:00	(심야)야간비첨두

〈표 1〉 교통 수요 추정 시간대

- 추정방법론 적용 대상지역 : 대전 도안신도시 내 SALT로 구현된 지역
- 검증방안 : 도안신도시 내 VDS 교통량 대비 15% 이내 추정
- VDS 지점에서 추정된 통행량을 실제 통행량과 비교
- 검증시기 및 시각 : 2021년, 6개 시간대(S1~S6)에 대한 교통량
- 해당시기 검지기 오류 없이 지속적으로 데이터가 수집된 5개소의 VDS 데이터만 이 용하여 MAPE 값을 추출하는 방식으로 시행

제 3 장 검증 결과

○ MAPE 평균 12.7%(VDS 오차율 7.3% ~ 24.1%) 달성으로, 금년도 목표인 15% 이내를 만족하는 것으로 나타남

⟨표 2⟩ 교통 수요 추정 정확도

연번	도로명	시간대	MAPE	MAPE 평균	
1	유성대로 (상행)	S1	2.8		
		S2	6.5		
		S3	18.8	11%	
		S4	23.6		
		S5	3		
		S6	11.3		
2	유성대로 (하행)	S1	2.5	9.05%	
		S2	0.7		
		S3	4.3		
	표정대도 (여행)	S4	7.2	9.03%	
		S5	10.2		
		S6	29.4		
3	가정로 (상행)	S1	2.3	11.9%	
		S2	1.9		
		S3	26.5		
		S4	26.4	11.5%	
		S5	13.1		
		S6	1.1		
		S1	9.7	24.1%	
		S2	27.2		
4	가정로 (하행)	S3	53.8		
		S4	10.4		
		S5	18.8		
		S6	24.7		
5	도안대로 (하행)	S1	2	7.3%	
		S2	9.3		
		S3	14.9		
		S4	2.8		
		S5	10.9		
		S6	3.8		

표 2 VDS 5개지점 실측 교통량 및 추정 교통량과의 시간대별 MAPE 결과