

Redes de Computadores II EEL 879

Luís Henrique M. K. Costa

luish@gta.ufrj.br

Universidade Federal do Rio de Janeiro DEL/Poli - PEE/COPPE P.O. Box 68504 - CEP 21941-972 - Rio de Janeiro - RJ http://www.gta.ufrj.br

Roteiro

- Conceitos Básicos
- Roteamento Unicast
 - > Intra-domínio
 - > Inter-domínio
- Roteamento Multicast
- Trabalhos de Pesquisa

Bibliografia

 Christian Huitema, Routing in the Internet, Prentice Hall, 2nd. Edition

- Network Routing Deepankar Medhi e Karthikeyan Ramasamy
- Redes de Computadores Andrew Tanenbaum
- Redes de Computadores e a Internet James Kurose e Keith Ross
- Williamson, B. Developing IP Multicast Networks, Vol. 1, Cisco Press
- Artigos em alguns dos tópicos

Parte I Conceitos Básicos: A Internet

Princípios de Projeto da Internet

- Datagramas x circuitos virtuais
- Inteligência nos terminais
- A rede fornece a *conectividade*, nada mais

Envio de informação

- Internet Protocol IP
- Internet Program
 - Redes são interconectadas através de "programas interredes"
 - Cada sistema conectado à Internet executa uma instância deste programa inter-redes, ou internet
 - Aplicações geralmente acessam este programa através de um programa de transporte (ex. TCP, UDP)

Operação do IP

Transmissão de um Pacote IP

Endereçamento IP

- Cada interface de rede é identificada por um endereço IP de 32 bits
- Formato do Endereço IP
 - Dividido em duas partes, "identificador de rede" e "identificador de estação"
- o 3 classes de "números de rede", A, B e C
- Mais tarde, classe D definida para endereços multicast
- A classe E possui endereços reservados para utilização experimental

Classes de Endereços IP

Classe	Bits mais significativos	Formato		
A	0	7 bits de redes	24 bits de estações	
В	10	14 bits de redes	16 bits de estações	
С	110	21 bits de redes	8 bits de estações	
D	1110	28 bits de endereços de grupo multicast		
E	1111	reservados para testes		

Classes A, B e C

Estrutura de Endereçamento

Quando o IP foi padronizado, em 1981

Número de rede Número de estação

- Números de rede (netid) são alocados por uma autoridade de numeração Internet
- Números de estação (hostid) são alocados pelo gerente de rede
- A unicidade dos números de rede associada à unicidade dos números de estação garantem a unicidade global dos endereços IP unicast

Estrutura de Endereçamento

- Com a maior utilização de redes locais, estações de trabalho, e PCs, tornou-se necessário estruturar a rede dentro de cada organização
- Em 1984, o conceito de sub-rede (subnet id) foi adicionado ao endereço IP

Máscaras de sub-rede

Máscara	Endereço	Rede	Sub-rede	Estação
255.255.0.0 0x FF FF 00 00	10.27.32.100	A: 10	27	32.100
255.255.254.0 0x FF FF FE 00	136.27.33.100	B: 136.27	16 (33)	1.100
255.255.254.0 0x FF FF FE 00	136.27.34.141	B: 136.27	17 (34)	0.141
255.255.255.192 0x FF FF FF C0	193.27.32.197	C: 193.27.32	3 (192)	5

n-ésima rede da máscara (número da rede)

Endereços e Interfaces

- Endereços IP identificam interfaces de rede, não identificam estações
- Uma estação com várias interfaces de rede possui vários endereços IP (a estação é dita multi-homed)
 - Ex. roteadores, estações que balanceiam o tráfego entre diversas redes
- Cada endereço pertence a uma sub-rede, que geralmente corresponde a uma "rede física"

Endereços e Interfaces

- Entradas na tabela de roteamento dos roteadores normalmente apontam para sub-redes
 - Eventualmente, podem apontar para endereços de máquinas
- Porque não um endereço por estação?
 - Um endereço por interface permite escolher o caminho utilizado para chegar a uma estação
 - Endereços por interface permitem a agregação de endereços nas tabelas de roteamento
 - Se os endereços não fossem ligados à topologia, seria necessária uma entrada na tabela de roteamento para cada estação

Endereços e Interfaces

Desvantagens

- Todos os endereços de uma estação devem ser incluídos no servidor de nomes
- O "melhor endereço" deve ser escolhido para uma conexão
- O endereço fonte deve ser cuidadosamente escolhido pela aplicação
 - determina o caminho seguido pelos pacotes de resposta

- "0" pode ser utilizado como endereço fonte, quando o número de rede é desconhecido, portanto:
 - 0.0.0.0 significa "esta estação nesta rede"
 - 0.x.y.z significa "a estação x.y.z nesta rede"
 - utilizado por ex. quando uma estação está iniciando
- Difusão limitada (*limited broadcast*)
 - ➤ Formado por todos os bits em "1" 255.255.255.255
 - só pode ser utilizado como endereço destino
 - o pacote é enviado a todas as estações da sub-rede
 - não é retransmitido por um roteador

- Difusão direcionada (directed broadcast)
 - Todos os bits da "parte estação" do endereço são colocados em "1"
 - **Ex.** "A.255.255.255", "C.C.C.255"
 - Com sub-redes a mesma regra é válida (todos os bits do complemento da máscara são colocados em "1")
- Conseqüências
 - Não existe sub-rede identificada apenas por 0's,
 - assim como n\u00e3o existe sub-rede identificada apenas por 1's
 - O tamanho da sub-rede é maior ou igual a 2 bits

- Endereço de loopback
 - Na verdade, existe um número de rede de loopback: Rede Classe A 127
- Qualquer endereço da forma 127.X.Y.Z deve ser considerado local e não é transmitido para fora da estação
- Também existem diversos endereços de grupo multicast (classe D) reservados
 - ➤ Ex. 224.0.0.1 todos os sistemas nesta sub-rede

Endereço	Significado	
0.0.0.0	Alguma estação desconhecida (fonte)	
255.255.255	Qualquer estação (destino)	
129.34.0.3	Estação número 3 na rede classe B 129.34	
129.34.0.0	Alguma estação na rede 129.34 (fonte)	
129.34.255.255	Qualquer estação na rede 129.34 (destino)	
0.0.0.3	Estação número 3 "nesta rede"	
127.0.0.1	Esta estação (loop local)	

Alocação de Endereços IP

- ICANN (The Internet Corporation for Assigned Names and Numbers)
- Organização sem fins lucrativos responsável pela
 - alocação do espaço de endereçamento IP,
 - atribuição de parâmetros de protocolos,
 - gerenciamento do sistema de nomes de domínios e
 - gerenciamento dos servidores raiz
- Estas funções eram atribuições do IANA (Internet Assigned Numbers Authority) e outras entidades através de contratos com o governo americano

Alocação de Endereços IP

- Os endereços IP são alocados através de delegações. Usuários recebem endereços IP de um provedor de serviço (ISP - Internet Service Provider). Os ISPs obtêm faixas de endereços IP de uma autoridade de registro local (LIR - Local Internet Registry), nacional (NIR - National Internet Registry), ou regional (RIR - Regional Internet Registry)
 - > APNIC (Asia Pacific Network Information Centre) Região Ásia/Pacífico
 - ARIN (American Registry for Internet Numbers) América do Norte e partes do Caribe
 - LACNIC (Regional Latin-American and Caribbean IP Address Registry)
 América Latina e partes do Caribe
 - RIPE NCC (Réseaux IP Européens) Europa, Oriente Médio, Ásia Central
 - > African Network Information Centre (AfriNIC) África

IP - O Cabeçalho

0 0 1 2 3	4 5 6 7	1 7 8 9 0 1 2 3 4 5	6 7 8	2 9 0 1 2 3	3 4 5 6 7 8 9 0 1
Version	IHL	Type of service		Total L	ength
Identification			Flags	Fragr	ment Offset
Time to Live Protocol		Header Checksum			
	Source Address				
Destination Address					
	Options				Padding

o Todos os campos, exceto o de opções, são fixos

- Versão (4bits)
 - Versão atual = 4
 - Versão 5 = Protocolo ST-2
 - Versão 6 = "A próxima geração"
 - Versões 7 e 8
- IHL (Internet header's length) (4bits)
 - > comprimento do cabeçalho, em palavras de 32 bits
 - varia de 5 (quando não há opções) a 15
 - ou seja, podem haver 40 bytes de opções, no máximo

- Type of Service (8 bits)
 - Define a precedência e o tipo de roteamento desejado para o pacote
- Total Length (16 bits)
 - Comprimento total do pacote, incluindo o cabeçalho
 - Limita o tamanho do pacote a 65.535 bytes
- Identification, Flags e Fragment Offset
 - Utilizados no processo de fragmentação e remontagem

Time to Live

- > Tempo de vida máximo do pacote na rede, em segundos
- RFC-791: Um roteador deve sempre decrementar o TTL antes de retransmitir um pacote
 - O TTL deve ser decrementado de 1, se o tempo gasto nas filas e na transmissão ao próximo nó for menor que 1 segundo
 - Ou do número de segundos estimado
- Na prática, estimar este tempo é difícil e o tempo de transmissão nos enlaces dificilmente ultrapassa 1 s
- A maioria dos roteadores simplesmente decrementa o TTL de 1
- Se o TTL atinge o valor 1, o pacote deve ser descartado
 - sinal de que o pacote já trafegou por mais tempo que o devido...

- Source Address e Destination Address (32bits cada)
 - Identificam a fonte e destino do pacote
- Protocol (8 bits)
 - Determina o programa para o qual o pacote é passado, no destino

Decimal	Sigla	Protocolo
0		Reservado
1	ICMP	Internet Control Message
2	IGMP	Internet Group Management
4	IP	IP em IP (encapsulação)
6	TCP	Transmission Control

Decimal	Sigla	Protocolo
17	UDP	User Datagram
29	ISO-TP4	ISO Transport Prot Class 4
80	ISO-IP	ISO Internet Protocol (CLNP)
89	OSPF	Open Shortest Path First
255		Reservado

- Header Checksum (16 bits)
 - Proteção do cabeçalho contra erros
- Calculado como "o complemento a 1 da soma em complemento a 1 de todas as palavras de 16 bits do cabeçalho, considerando os bits do checksum em 0."
- Não protege contra inserção de palavras em zero (16 bits iguais a zero) ou inversão de palavras
- Mas é de simples implementação

Precedência e Tipo de Serviço

- Precedence (3 bits)
 - Indica a prioridade do pacote
 - Valores maiores, maior prioridade
 - RFC791 diz que a precedência é válida apenas dentro de uma rede

0 1 2 3 4 5 6 7

Precedence	Type of Service				
	D	Т	R	С	

- Type of Service (5 bits)
 - Indicação para o roteamento
 - Útil quando existem múltiplas rotas

- Rota com o melhor
 - ▶ D delay
 - > T throughput
 - R reliability
 - \rightarrow C cost
- O campo foi depois revisto, de acordo com a definição dos Serviços Diferenciados (DiffServ)

Serviços Diferenciados

DS field

- DSCP field (6 bits)(RFC2474)
 - Differentiated Services Code Points
 - Diferentes classes de serviço no encaminhamento de pacotes
- ECN field (2 bits)(RFC3168)
 - Explicit Congestion Notification
 - Auxílio à camada de transporte para o controle de congestionamento

Nomenclatura do DSCP

Prioridade de tráfego

- OCS: Class Selector
 - Equivalentes a 8 prioridades do IP Precedence

Classes de Serviço do DiffServ

- AF: Assured Forwarding
 - Garantia de entrega, desde que não se exceda taxa contratada
 - Em caso de congestionamento, pacotes são descartados com diferentes probabilidades
- EF: Expedited Forwarding
 - Prioridade estrita de enfileiramento sobre todas as outras classes

Códigos do Campo DS

Nome do DSCP	Valor do campo DS	IP Precedence
CS0	0	0: best effort
CS1, AF11-AF13	8, 10, 12, 14	1: priority
CS2, AF21-AF23	16, 18, 20, 22	2: immediate
CS3, AF31-AF33	24, 26, 28, 30	3: flash
CS4, AF41-AF43	32, 34, 36, 38	4: flash override
CS5, EF	40, 46	5: critical
CS6	48	6: internetwork control
CS7	56	7: network control

Classes do Serviço AF

	Classe 1	Classe 2	Classe 3	Classe 4
Prob. de descarte baixa	AF11	AF21	AF11	AF11
	(DSCP 10)	(DSCP 18)	(DSCP 26)	(DSCP 34)
Prob. de descarte média	AF12	AF22	AF12	AF12
	(DSCP 12)	(DSCP 20)	(DSCP 28)	(DSCP 36)
Prob. de descarte alta	AF13	AF23	AF13	AF13
	(DSCP 14)	(DSCP 22)	(DSCP 30)	(DSCP 38)

OClasses 1 a 4

- Possuem a mesma prioridade
- Em cada classe, três probabilidades de descarte crescentes
- Se houver congestionamento entre tráfegos de diferentes classes:
 - Tráfego na classe mais alta tem prioridade

Explicit Congestion Notification

Explicit Congestion Notification

- ECT(0) ou ECT (1)
 - Os terminais utilizam um protocolo de transporte capaz de usar a notificação de congestionamento
 - Se o Transporte n\u00e3o souber diferenciar entre ECT(0) e ECT(1), usase o ECT(0)

> CE

 O pacote foi marcado com a indicação de que há congestionamento iminente (o roteador utiliza gerenciamento ativo de fila com RED (random early detection)

ECN field	Significado
00	Prot. de Transporte não capaz de ECN
01	ECN Capable Transport, ECT(1)
10	ECN Capable Transport, ECT(0)
11	Congestion Encountered, CE

Fragmentação e Remontagem

- A fragmentação é necessária quando um roteador conecta duas tecnologias de rede com tamanho máximo de pacote diferentes
- Identification (16 bits), Flags (3 bits) e Fragment
 Offset (13 bits)
- Flags
 - Bit 0 reservado
 - Bit 1 don't fragment (DF)
 - Bit 2 more fragments (MF)
- Cada fragmento possui um cabeçalho completo, igual ao do pacote original, exceto pelos campos de comprimento, offset e o bit MF

Fragmentação e Remontagem

Campos do Cabeçalho					Campo de Dados
Pacote Original	ld = X	L = 4020	DF=0, MF=0	Offset = 0	
Fragmento 1	ld = X	L = 1520	DF=0, MF=1	Offset = 0	
Fragmento 2	ld = X	L = 1520	DF=0, MF=1	Offset = 1500	
Fragmento 3	ld = X	L = 1020	DF=0, MF=0	Offset = 3000	

O bit MF é sempre 1, exceto no último fragmento

Fragmentação e Remontagem

	Campos do Cabeçalho				Campo de Dados
Fragmento 2	ld = X	L = 1520	DF=0, MF=1	Offset = 1500	
Fragmento 2a	ld = X	L = 520	DF=0, MF=1	Offset = 1500	
Fragmento 2b	ld = X	L = 520	DF=0, MF=1	Offset = 2000	
Fragmento 2c	ld = X	L = 520	DF=0, MF=1	Offset = 2500	

 Os campos MF e offset são calculados com relação ao pacote original

Fragmentação e Remontagem

- O campo identificação (16 bits) associado ao endereço de origem identifica o pacote
- O receptor deve "expirar" pacotes parcialmente remontados, após um certo período de espera
 - > Por ex., decrementando o campo TTL a cada segundo
- O emissor só pode reutilizar um identificador após o período igual ao TTL utilizado

Evitando a Fragmentação

- A reutilização dos identificadores limita a taxa de transmissão possível
 - 16 bits = 65.536 pacotes por TTL
 - TTL recomendado pelo TCP = 2 min
 - Limite de 544 pacotes por segundo
 - 17Mbps com pacotes de 4kbytes
- A fragmentação é ineficiente combinada com o TCP
 - > Perda de um fragmento implica retransmissão do pacote inteiro
- O TCP implementa um mecanismo de descoberta da MTU (Maximum Transmission Unit) do caminho
 - Tentativas com diferentes tamanhos de pacote, com o DF em 1

Opções do IP

- Definido para criação de funcionalidades especiais, através do roteamento específico de alguns pacotes
- Options
 - Pode transportar vários parâmetros
 - Cada opção começa por um byte de 'tipo de opção"

- Flag C (Copied)
 - Indica que a opção deve ser copiada em todos os fragmentos
- Class
 - 0 − opções de controle
 - 2 opções de *debug* e medidas
- Number
 - Identifica uma opção dentro de cada classe
- O segundo byte normalmente indica o comprimento da opção

Opções do IP

Classe	Número	Compr.	Significado	
0	0	-	End of Option list. Indica o fim da lista de opções, possui apenas 1 byte. Não há byte de comprimento.	
0	1	-	No Operation. Possui apenas 1 byte. Não há byte de comprimento.	
0	2	11	Security. Utilizada para carregar parâmetros de segurança definidos pelo dep. de defesa americano.	
0	3	var.	Loose Source Routing. Utilizada para rotear o pacote IP de acordo com a informação fornecida pela fonte.	
0	7	var.	Record Route. Utilizada para registrar a rota atravessada pelo pacote IP.	
0	8	4	Stream ID. Utilizada para carregar o identificador do stream.	
0	9	var.	Strict Source Routing. Utilizada para rotear o pacote IP de acordo com a informação fornecida pela fonte.	
2	4	var.	Internet Timestamp.	

Opções do IP

No operation

Utilizada para enchimento entre opções, de forma que o início da opção está alinhado em 32 bits

End of option

- Indica o ponto onde a opção termina, mesmo se o campo comprimento total indicar mais espaço alocado para opções
- A maioria das opções não é usada
 - Stream ID foi usada apenas no experimento Satnet
 - Security codifica necessidades militares do final dos anos 70
 - Timestamp e route record visavam serviços que o programa traceroute implementa
- Apenas loose e strict source routing foram utilizadas

Loose e Strict Source Routing

Sintaxe
 1 byte
 1 byte

Route data

Contém a lista de endereços pelos quais o pacote deve passar

Funcionamento

- O campo destination possui o próximo nó pelo qual o pacote deve passar
- Quando este destino é atingido, a opção é examinada
- O pointer indica um número de octetos a partir do início da opção, de onde deve ser lido o próximo endereço
- Se pointer > comprimento da opção, o destino final foi atingido
- No strict source routing, o próximo endereço deve ser um roteador vizinho, enquanto no loose source routing, não

Processamento do Cabeçalho IP

- Operações
 - Verificação da versão, do checksum, tamanho do pacote, e leitura das opções (se houver)
 - Consultar a tabela de roteamento para o destino e tipo de serviço do pacote, obter a interface e endereço no meio físico
- Roteadores otimizam as operações mais comuns (fastpath)
 - Ex. caches com rotas mais utilizadas
- Pacotes sem opções possuem cabeçalho de tamanho fixo, passam pelo fast-path
- Pacotes com opções seguem o caminho "normal"
 - Além disso, em alguns roteadores, pacotes com opções possuem menos prioridade para aumentar o desempenho global

Evitando a opção Source Routing

 Envio de um pacote de A para B, passando pelo roteador C

Cabeçalho IP(1) Cabeçalho IP(2)

A > B, TCP cabeçalho TCP + dados

Cabeçalho IP (2)

Internet Control Message Protocol

- Objetivo
 - Diagnóstico de condições de erro da rede
- Executado em cima do IP
 - Protocol type = 1
- Parte integrante do Internet Program
 - > Todo sistema que roda IP deve rodar o ICMP
- Não provê confiabilidade, apenas informação sobre problemas na rede
- Erros de transmissão de pacotes IP geram mensagens ICMP
 - Exceto erros nas próprias mensagens ICMP
 - Evita-se a recursividade e avalanche de mensagens de controle

Mensagens ICMP

Cabeçalho

> Toda mensagem ICMP possui uma parte do cabeçalho em comum

O checksum do cabeçalho é calculado como para o IP

Tipo	Significado		
0	Echo Reply		
3	Destination Unreachable		
4	Source Quench		
5	Redirect		
8	Echo		
9	Router Advertisement		

10	Router Solicitation		
11	Time Exceeded		
12	Parameter Problem		
13	Timestamp		
14	Timestamp Reply		
15	Information Request		
16	Information Reply		

Diagnóstico com o ICMP

Problemas operacionais

- Time Exceeded
- Destination Unreachable
- Source Quench

Formato comum

- Cabeçalho básico do ICMP +
- 32 bits de enchimento +
- Primeiros bytes do pacote que causou o envio do ICMP

Diagnóstico com o ICMP

- Destination Unreachable
 - Código
 - 0 = net unreachable
 - 1 = host unreachable
 - 2 = protocol unreachable
 - 4 = fragmentaion needed but DF set
 - 5 = source route failed
- Time Exceeded
 - TTL estourado
 - Código
 - 0 = em trânsito
 - 1 = durante remontagem
- Source Quench
 - > Enviado pelo roteador para sinalizar congestionamento
 - Não utiliza código (code = 0)

Diagnóstico com o ICMP

Parameter Problem

- Enviado por um roteador ao encontrar um erro de codificação no cabeçalho do pacote IP
- O ponteiro identifica o byte no datagrama original onde foi encontrado o erro

Ping

- Testa se uma estação está "viva"
- Utiliza a função echo do ICMP
 - Type = 8 − Echo
 - Type = 0 Echo Reply

0 1 2 3 4 5 6 7	3	6789012345678901		
Type = 8 (0) Code = 0		Checksum		
Ident	fier	Sequence Number		
Data				

- Resposta
 - Endereços fonte e destino são trocados
 - Troca do valor do tipo da mensagem
 - Checksums IP e ICMP recalculados
 - Dados inalterados

3

Ping

- Campos identificação e número de seqüência possibilitam estatísticas
- Outras mensagens ICMP com funcionalidade semelhante
 - ➤ Type = 15 Information Request
 - ➤ Type = 16 Information Reply

Exemplo de Ping

```
PING angra (146.164.69.1) from 146.164.69.2 : 56(84) bytes of data.
recreio::luish [ 31 ] ping angra
64 bytes from angra (146.164.69.1): icmp_seq=1 ttl=64 time=0.471 ms
64 bytes from angra (146.164.69.1): icmp seg=2 ttl=64 time=0.404 ms
64 bytes from angra (146.164.69.1): icmp seg=3 ttl=64 time=0.544 ms
64 bytes from angra (146.164.69.1): icmp seg=4 ttl=64 time=0.388 ms
64 bytes from angra (146.164.69.1): icmp_seq=5 ttl=64 time=0.398 ms
64 bytes from angra (146.164.69.1): icmp_seq=6 ttl=64 time=0.398 ms
64 bytes from angra (146.164.69.1): icmp_seq=7 ttl=64 time=0.495 ms
64 bytes from angra (146.164.69.1): icmp seg=8 ttl=64 time=0.436 ms
64 bytes from angra (146.164.69.1): icmp seg=9 ttl=64 time=0.413 ms
64 bytes from angra (146.164.69.1): icmp_seq=10 ttl=64 time=0.407 ms
64 bytes from angra (146.164.69.1): icmp seg=11 ttl=64 time=0.393 ms
64 bytes from angra (146.164.69.1): icmp seg=12 ttl=64 time=0.391 ms
--- angra ping statistics ---
12 packets transmitted, 12 received, 0% loss, time 11109ms
rtt min/avg/max/mdev = 0.388/0.428/0.544/0.049 ms
```

Traceroute

- Identificação dos roteadores entre uma fonte e um destino
- Funcionamento
 - Envio sucessivo de pacotes para o destino, variando o TTL
 - UDP numa porta n\u00e3o utilizada
 - TTL inicial = 1
 - Primeiro roteador decrementa o TTL, descarta o pacote, e envia uma mensagem ICMP TTL Exceeded
 - Endereço fonte identifica o roteador
 - A fonte continua o processo incrementando o TTL de 1
 - Até chegar ao destino, ou um enlace com problemas ser identificado
 - O destino é identificado, pois este envia uma mensagem ICMP port unreachable

Exemplo - Traceroute

```
recreio::luish [ 38 ] traceroute sphinx.lip6.fr
traceroute to sphinx.lip6.fr (132.227.74.253), 30 hops max, 38 byte packets
   angra (146.164.69.1) 0.596 ms 0.349 ms 0.341 ms
 2 rt-ct-bloco-H.ufrj.br (146.164.5.193) 175.723 ms 203.553 ms 30.226 ms
 3 rt-nce2.ufrj.br (146.164.1.5) 51.432 ms 3.994 ms 4.137 ms
 4 rederio2-atm-cbpf.rederio.br (200.20.94.58) 3.495 ms 4.421 ms 4.664 ms
 5 200.143.254.66 (200.143.254.66) 4.184 ms 12.224 ms 200.143.254.78
   (200.143.254.78) 13.372 ms
 6 rj7507-fast6_1.bb3.rnp.br (200.143.254.93) 4.473 ms 4.135 ms 4.550 ms
   ds3-rnp.ampath.net (198.32.252.237) 110.658 ms 106.239 ms 107.241 ms
   abilene.ampath.net (198.32.252.254) 125.393 ms 135.971 ms 127.111 ms
   washng-atla.abilene.ucaid.edu (198.32.8.66) 143.388 ms 154.348 ms 144.619 ms
   abilene.de2.de.geant.net (62.40.103.253) 234.914 ms 235.300 ms 239.316 ms
10
   de2-1.de1.de.geant.net (62.40.96.129) 234.644 ms 238.821 ms 236.147 ms
11
12
   de.fr1.fr.geant.net (62.40.96.50) 231.422 ms 232.743 ms 232.437 ms
   renater-gw.fr1.fr.geant.net (62.40.103.54) 234.984 ms 234.233 ms 231.723 ms
13
   jussieu-a1-1-580.cssi.renater.fr (193.51.179.154) 230.906 ms 231.090 ms
14
   233.714 ms
   rap-jussieu.cssi.renater.fr (193.51.182.201) 232.602 ms 232.125 ms 238.066 ms
15
16 cr-jussieu.rap.prd.fr (195.221.126.77) 235.182 ms 239.903 ms 276.221 ms
   jussieu-rap.rap.prd.fr (195.221.127.182) 234.955 ms 237.264 ms 234.210 ms
17
18 r-scott.reseau.jussieu.fr (134.157.254.10) 233.992 ms 238.306 ms 239.047 ms
19 olympe-qw.lip6.fr (132.227.109.1) 236.396 ms !N 235.261 ms !N 234.322 ms !N
                                                                        GTA/UFRJ
```

Exemplo – Ping -R

```
recreio::luish [ 35 ] ping -R sphinx.lip6.fr
PING sphinx.lip6.fr (132.227.74.253) from 146.164.69.2 : 56(124) bytes of data.
64 bytes from sphinx.lip6.fr (132.227.74.253): icmp seg=1 ttl=237 time=252 ms
RR:
        recreio (146.164.69.2)
        gtagw (146.164.5.210)
        rt-ct2.ufrj.br (146.164.1.3)
        ufri-atm.rederio.br (200.20.94.9)
        200.143.254.65
        rj-fast4_1.bb3.rnp.br (200.143.254.94)
        rnp.ampath.net (198.32.252.238)
        abilene-oc3.ampath.net (198.32.252.253)
        atla-washng.abilene.ucaid.edu (198.32.8.65)
64 bytes from sphinx.lip6.fr (132.227.74.253): icmp_seq=2 ttl=237 time=289 ms
        recreio (146.164.69.2)
RR:
64 bytes from sphinx.lip6.fr (132.227.74.253): icmp_seq=3 ttl=237 time=247 ms
        recreio (146.164.69.2)
RR:
--- sphinx.lip6.fr ping statistics ---
3 packets transmitted, 3 received, 0% loss, time 2021ms
rtt min/avg/max/mdev = 247.821/263.167/289.150/18.477 ms
```

Gerenciamento de Tempo

Mensagens

- ➤ Type = 13 Timestamp
- ➤ Type = 14 Timestamp reply
- > Tempos expressos em ms desde 0:00hs Greenwich time

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type = 8 (0)	Code = 0	Checksum		
Identifier Sequence Number				
Originate Timestamp				
Receive Timestamp				
Transmit Timestamp				

Cálculo da defasagem entre 2 estações

Funcionamento

- Estação A preenche o tempo de origem (To)
- Na recepção, a estação B preenche o tempo de recepção (Tr)
 - A estação B prepara a resposta
- Antes do envio da resposta, B preenche o tempo de transmissão (Tt)
- Ao receber a resposta, A armazena o tempo de chegada (Tc)
- Defasagem = Diferença medida de relógios tempo de transmissão
- Tempo de transmissão = RTT/2 (Round Trip Time)

$$TT = Tc - To - (Tt - Tr)$$

 \bigcirc **Defasagem** = Tr – To – RTT/2

Envio de Pacotes IP

- No IP, existem
 - Roteadores (executam um protocolo de roteamento)
 - Estações (não, necessariamente, executam um protocolo de roteamento)
- O Porque...
 - Complexidade de protocolos de roteamento modernos
 - Variedade de protocolos de roteamento
 - Poderia-se apenas "ouvir" as mensagens de roteamento
 - Algumas vezes este processo pode n\u00e3o ser f\u00e1cil
 - Ex. mecanismos de segurança (autenticação, criptografia)
- Para enviar pacotes, a estação deve
 - Descobrir um roteador de saída
 - Ouvir mensagens de redirecionamento

Descoberta do próximo salto

- Dado um pacote IP a transmitir, a quem enviar?
 - Estação destino na rede
 - envio direto
 - Estação destino distante
 - envio a um roteador, que encaminhará o pacote
- Dado o endereço IP destino
 - > Teste da máscara de rede diz se a estação está na sub-rede
- Próximo passo
 - Descoberta do endereço "físico" do próximo salto

Address Resolution Protocol (ARP)

- A estação envia um ARP request (op. code 1) em broadcast
- A máquina que reconhece seu IP no request envia um ARP response (op. code 2)
- As máquinas implementam um cache para evitar o envio frequente de ARPs

0 1 2 3 4 5 6 7	8 9 0 1 2 3 4 5	
Destination Etl (48	Cabeçalho	
Source Ethe (48	Ethernet	
Protocol t	ype = ARP	
Hardware ty	pe (Ethernet)	•
Protocol	type (IP)	
H.len	P.len	
Operation	on Code	
Source "Hard (H.len		
Source "Prot (P.len		
Target "Hardware" adress (H.len bytes)		
•	ocol" adress bytes)	

Descoberta do Roteador

- Por configuração
- Usando o ICMP
 - Roteadores enviam mensagens ICMP router advertisement (type = 9) periodicamente
 - Estações podem disparar o envio de anúncios utilizando mensagens de solicitação (ICMP router solicitation, type = 10)
- O objetivo do procedimento é descobrir um roteador de saída, não necessariamente o melhor roteador de saída...
 - Mensagens ICMP redirect podem ser utilizadas para informar as estações de rotas melhores

Anúncios (Router advertisements)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type = 9	Code = 0	Checksum			
Num. Addrs Addr. Entry Size		Lifetime			
Router Address[1]					
Preference Level[1]					
Router Address[2]					
Preference Level[2]					

- Podem conter diversos endereços para o mesmo roteador
 - Várias interfaces conectadas à mesma rede
 - Uma interface de rede com dois endereços IP
 - Ex. duas sub-redes IP na mesma rede física (segmento Ethernet p. ex.)
 - Preference prioridade de escolha entre vários roteadores
 - Configurado pelo administrador da rede
 - Addr. Entry Size = 2

Anúncios (Router advertisements)

- São enviados ao endereço 224.0.0.1 (todas as máquinas) ou a 255.255.255.255
- Informação sobre o roteador de saída
 - Deve ser volátil para evitar o envio de dados a rotas "mortas"
 - Tempo de vida Lifetime
 - 30 min.
- Anúncios (router advertisements) enviados a cada 7 min.
 - Evitar congestionamento da rede
 - Como o período é longo, estações podem enviar solicitações

Reserved					
Type = 10	Code = 0	Checksum			
0 1 2 3 4 5 6 7	8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5 6	7 8 9 0 1		
0	1	2	3		

Escolha do Roteador

- Router solicitation
 - Enviadas a 224.0.0.2 ("todos os roteadores") ou 255.255.255.255
- O roteador envia a resposta
 - à estação, ou
 - > a todas as estações, se o momento do anúncio estiver próximo
- Estações podem receber várias respostas
 - Devem considerar apenas os roteadores em sua sub-rede
 - Selecionar o de maior valor de preferência
 - > Enviar todo o tráfego para este roteador

Redirecionamento ICMP

 Como evitar que o tráfego destinado a Estação B passe por R1? (e duas vezes no segmento Ethernet 1)

Redirecionamento ICMP

- Primeiro pacote é para B é enviado a R1
- R1 envia uma mensagem ICMP redirect à estação A
- Ao receber o redirect, a estação A deve mudar sua tabela de roteamento
 - Para o endereço contido no campo Internet Header, o próximo salto é dado por Internet Address
- O redirecionamento pode ser para uma rede
 - Indicado no campo código
 - Mas não existe espaço para uma máscara, portanto não é possível redirecionar o tráfego para uma sub-rede