Package 'EvaluateCore'

February 16, 2021

```
Title Quality Evaluation of Core Collections
Version 0.1.1.9000
Description Implements various quality evaluation statistics to assess the
      value of plant germplasm core collections using qualitative and
     quantitative phenotypic trait data according to Odong et al. (2015)
      <doi:10.1007/s00122-012-1971-y>.
License GPL-2 | GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
URL https://github.com/aravind-j/EvaluateCore
     https://CRAN.R-project.org/package=EvaluateCore
     https://aravind-j.github.io/EvaluateCore/
     https://doi.org/10.5281/zenodo.3875930
\pmb{BugReports} \  \, \texttt{https://github.com/aravind-j/EvaluateCore/issues}
RdMacros mathjaxr,
     Rdpack
Depends R (>= 3.5.0)
Imports agricolae,
     car,
     cluster,
     dplyr,
     entropy,
     ggcorrplot,
     ggplot2,
     grDevices,
     gridExtra,
     kSamples,
     mathjaxr,
     psych,
     reshape2,
     Rdpack,
     stats,
     vegan
```

2 bar.evaluate.core

Suggests ccChooser, corehunter, rJava (>= 0.9-8)

R topics documented:

	bar.evaluate.core
	box.evaluate.core
	chisquare.evaluate.core
	corr.evaluate.core
	coverage.evaluate.core
	cr.evaluate.core
	dist.evaluate.core
	freqdist.evaluate.core
	iqr.evaluate.core
	levene.evaluate.core
	pca.evaluate.core
	pdfdist.evaluate.core
	percentdiff.evaluate.core
	qq.evaluate.core
	shannon.evaluate.core
	signtest.evaluate.core
	snk.evaluate.core
	ttest.evaluate.core
	vr.evaluate.core
	wilcox.evaluate.core
Index	34

bar.evaluate.core Bar Plots

Description

Plot Bar plots to graphically compare the frequency distributions of qualitative traits between entire collection (EC) and core set (CS).

Usage

bar.evaluate.core(data, names, qualitative, selected)

Arguments

data	The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data.	
names	Name of column with the individual names as a character string	
qualitative	Name of columns with the qualitative traits as a character vector.	
selected	Character vector with the names of individuals selected in core collection and present in the names column.	

box.evaluate.core 3

Value

A list with the ggplot objects of relative frequency bar plots of CS and EC for each trait specified as qualitative.

See Also

```
barplot, geom_bar
```

Examples

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
# EvaluateCore
bar.evaluate.core(data = ec, names = "genotypes",
               qualitative = qual, selected = core)
```

box.evaluate.core

Box Plots

Description

Plot Box-and-Whisker plots (Tukey 1970; McGill et al. 1978) to graphically compare the probability distributions of quantitative traits between entire collection (EC) and core set (CS).

Usage

```
box.evaluate.core(data, names, quantitative, selected)
```

4 box.evaluate.core

Arguments

data The data as a data frame object. The data frame should possess one row per

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string

quantitative Name of columns with the quantitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

Value

A list with the ggplot objects of box plots of CS and EC for each trait specified as quantitative.

References

McGill R, Tukey JW, Larsen WA (1978). "Variations of box plots." *The American Statistician*, **32**(1), 12.

Tukey JW (1970). Exploratory Data Analysis. Preliminary edition. Addison-Wesley.

See Also

```
boxplot, geom_boxplot
```

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] \leftarrow lapply(ec[, c("X1", "X6", "X7")],
                              function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                               function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
# EvaluateCore
box.evaluate.core(data = ec, names = "genotypes",
               quantitative = quant, selected = core)
```

chisquare.evaluate.core 5

chisquare.evaluate.core

Chi-squared Test for Homogeneity

Description

Compare the distribution frequencies of qualitative traits between entire collection (EC) and core set (CS) by Chi-squared test for homogeneity (Pearson 1900; Snedecor and Irwin 1933).

Usage

chisquare.evaluate.core(data, names, qualitative, selected)

Arguments

data The data as a data frame object. The data frame should possess one row per

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string qualitative Name of columns with the qualitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

Value

A a data frame with the following columns.

Trait The qualitative trait.

EC_No.Classes The number of classes in the trait for EC.

EC_Classes The frequency of the classes in the trait for EC.

CS_No.Classes The number of classes in the trait for CS.

CS_Classes The frequency of the classes in the trait for CS.

chisq_statistic

The χ^2 test statistic.

chisq_pvalue The p value for the test statistic.

chisq_significance

The significance of the test statistic (*: $p \le 0.01$; **: $p \le 0.05$; ns: p > 0.05).

References

Pearson K (1900). "X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling." *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, **50**(302), 157–175.

Snedecor G, Irwin MR (1933). "On the chi-square test for homogeneity." *Iowa State College Journal of Science*, **8**, 75–81.

6 corr.evaluate.core

See Also

```
chisq.test
```

Examples

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
# EvaluateCore
chisquare.evaluate.core(data = ec, names = "genotypes",
                    qualitative = qual, selected = core)
```

corr.evaluate.core

Phenotypic Correlations

Description

Compute phenotypic correlations (Pearson 1895) between traits, plot correlation matrices as correlograms (Friendly 2002) and calculate mantel correlation (Legendre and Legendre 2012) between them to compare entire collection (EC) and core set (CS).

Usage

```
corr.evaluate.core(data, names, quantitative, qualitative, selected)
```

Arguments

data

The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data.

corr.evaluate.core 7

names Name of column with the individual names as a character string
quantitative Name of columns with the quantitative traits as a character vector.

Name of columns with the qualitative traits as a character vector.

Selected Character vector with the names of individuals selected in core collection and

present in the names column.

Value

A list with the following components.

Correlation Matrix

The matrix with phenotypic correlations between traits in EC (below diagonal)

and CS (above diagonal).

Correologram A correlogram of phenotypic correlations between traits in EC (below diagonal)

and CS (above diagonal) as a ggplot object.

Mantel Correlation

A data frame with Mantel correlation coefficient (r) between EC and CS phenotypic correlation matrices, it's p value and significance (*: p \leq 0.01; **: p \leq 0.05; ns: p > 0.05).

References

Friendly M (2002). "Corrgrams." The American Statistician, 56(4), 316–324.

Legendre P, Legendre L (2012). "Interpretation of ecological structures." In *Developments in Environmental Modelling*, volume 24, 521–624. Elsevier.

Pearson K (1895). "Note on regression and inheritance in the case of two parents." *Proceedings of the Royal Society of London*, **58**, 240–242.

See Also

```
cor, cor_pmat ggcorrplot, mantel
```

8 coverage.evaluate.core

qualitative = qual, selected = core)

coverage.evaluate.core

Class Coverage

Description

Compute the Class Coverage (Kim et al. 2007) to compare the distribution frequencies of qualitative traits between entire collection (EC) and core set (CS).

Usage

```
coverage.evaluate.core(data, names, qualitative, selected)
```

Arguments

data The data as a data frame object. The data frame should possess one row per

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string

qualitative Name of columns with the qualitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

Details

Class Coverage (Kim et al. 2007) is computed as follows.

$$Class\,Coverage = \left(\frac{1}{n}\sum_{i=1}^{n}\frac{A_{CS_i}}{A_{EC_i}}\right) \times 100$$

Where, A_{CS_i} is the sets of categories in the CS for the *i*th trait, A_{EC_i} is the sets of categories in the EC for the *i*th trait and n is the total number of traits.

Value

The Class Coverage value.

cr.evaluate.core 9

References

Kim K, Chung H, Cho G, Ma K, Chandrabalan D, Gwag J, Kim T, Cho E, Park Y (2007). "PowerCore: A program applying the advanced M strategy with a heuristic search for establishing core sets." *Bioinformatics*, **23**(16), 2155–2162.

Examples

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
# EvaluateCore
coverage.evaluate.core(data = ec, names = "genotypes",
                   qualitative = qual, selected = core)
```

cr.evaluate.core

Coincidence Rate of Range

Description

Compute the Coincidence Rate of Range (CR) (Diwan et al. 1995; Hu et al. 2000) to compare quantitative traits of the entire collection (EC) and core set (CS).

Usage

```
cr.evaluate.core(data, names, quantitative, selected)
```

10 cr.evaluate.core

Arguments

data The data as a data frame object. The data frame should possess one row per

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string quantitative Name of columns with the quantitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

Details

The Coincidence Rate of Range (CR) is computed as follows.

$$CR = \left(\frac{1}{n} \sum_{i=1}^{n} \frac{R_{CS_i}}{R_{EC_i}}\right) \times 100$$

Where, R_{CS_i} is the range of the *i*th trait in the CS, R_{EC_i} is the range of the *i*th trait in the EC and n is the total number of traits.

Value

The CR value.

References

Diwan N, McIntosh MS, Bauchan GR (1995). "Methods of developing a core collection of annual *Medicago* species." *Theoretical and Applied Genetics*, **90**(6), 755–761.

Hu J, Zhu J, Xu HM (2000). "Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops." *Theoretical and Applied Genetics*, **101**(1), 264–268.

See Also

```
wilcox.test
```

dist.evaluate.core 11

dist.evaluate.core

Distance Measures

Description

Compute average Entry-to-nearest-entry distance (E-EN), Accession-to-nearest-entry distance (A-EN) and Entry-to-entry distance (E-E) (Odong et al. 2013) to evaluate a core set (CS) selected from an entire collection (EC).

Usage

```
dist.evaluate.core(data, names, quantitative, qualitative, selected, d = NULL)
```

Arguments

data	The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data.	
names	Name of column with the individual names as a character string	
quantitative	Name of columns with the quantitative traits as a character vector.	
qualitative	Name of columns with the qualitative traits as a character vector.	
selected	Character vector with the names of individuals selected in core collection and present in the names column.	
d	A distance matrix of class "dist" with individual names in the names column in data as labels. If NULL (default), then a distance matrix is computed using Gower's metric. (Gower 1971).	

Value

A data frame with the average values of E-EN, A-EN and E-E.

12 dist.evaluate.core

References

Gower JC (1971). "A general coefficient of similarity and some of its properties." *Biometrics*, **27**(4), 857–871.

Odong TL, Jansen J, van Eeuwijk FA, van Hintum TJL (2013). "Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation." *Theoretical and Applied Genetics*, **126**(2), 289–305.

See Also

evaluateCore

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] \leftarrow lapply(ec[, c("X1", "X6", "X7")],
                               function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                               function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")</pre>
# EvaluateCore
dist.evaluate.core(data = ec, names = "genotypes", quantitative = quant,
                qualitative = qual, selected = core)
# Compare with corehunter
library(corehunter)
# Prepare phenotype dataset
dtype <- c(rep("RD", length(quant)),</pre>
         rep("NS", length(qual)))
rownames(ec) <- ec[, "genotypes"]</pre>
ecdata <- corehunter::phenotypes(data = ec[, c(quant, qual)],</pre>
                            types = dtype)
```

freqdist.evaluate.core 13

freqdist.evaluate.core

Frequency Distribution Histogram

Description

Plot stacked frequency distribution histogram to graphically compare the probability distributions of traits between entire collection (EC) and core set (CS).

Usage

```
freqdist.evaluate.core(
   data,
   names,
   quantitative,
   qualitative,
   selected,
   highlight = NULL,
   include.highlight = TRUE,
   highlight.se = NULL,
   highlight.col = "red"
)
```

Arguments

data The data as a data frame object. The data frame should possess one row per

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string

quantitative Name of columns with the quantitative traits as a character vector.

Name of columns with the qualitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

highlight Individual names to be highlighted as a character vector.

include.highlight

If TRUE, the highlighted individuals are included in the frequency distribution histogram. Default is TRUE.

14 freqdist.evaluate.core

highlight. se Optional data frame of standard errors for the individuals specified in highlight. It should have the same column names as in data.

highlight.col The colour(s) to be used to highlighting individuals in the plot as a character vector of the same length as higlight. Must be valid colour values in R (named colours, hexadecimal representation, index of colours [1:8] in default R palette() etc.).

Value

A list with the ggplot objects of stacked frequency distribution histograms plots for each trait specified as quantitative and qualitative.

See Also

```
hist, geom_histogram
```

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL
ec[, c("X1", "X6", "X7")] \leftarrow lapply(ec[, c("X1", "X6", "X7")],
                                function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                                function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")</pre>
# EvaluateCore
freqdist.evaluate.core(data = ec, names = "genotypes",
                    quantitative = quant, qualitative = qual,
                    selected = core)
checks <- c("D120559", "D120773")
freqdist.evaluate.core(data = ec, names = "genotypes",
                    quantitative = quant, qualitative = qual,
                    selected = core,
                    highlight = checks, highlight.col = "red")
```

igr.evaluate.core 15

```
quant.se <- data.frame(genotypes = checks, X2 = c(0.275, 0.25), X3 = c(0.1, 0.081), X4 = c(0.002, 0.002), X5 = c(0.093, 0.087), X8 = c(0.125, 0.074))

freqdist.evaluate.core(data = ec, names = "genotypes", quantitative = quant, selected = core, highlight = checks, highlight.col = "red", highlight.se = quant.se)
```

igr.evaluate.core

Interquartile Range

Description

Compute the Interquartile Range (IQR) (Upton and Cook 1996) to compare quantitative traits of the entire collection (EC) and core set (CS).

Usage

```
iqr.evaluate.core(data, names, quantitative, selected)
```

Arguments

data The data as a data frame object. The data frame should possess one row per

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string

quantitative Name of columns with the quantitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

Value

A data frame with the IQR values of the EC and CS for the traits specified as quantitative.

References

Upton G, Cook I (1996). "General summary statistics." In *Understanding statistics*. Oxford University Press.

See Also

IQR

16 levene.evaluate.core

Examples

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
# EvaluateCore
iqr.evaluate.core(data = ec, names = "genotypes",
               quantitative = quant, selected = core)
```

levene.evaluate.core Levene's Test

Description

Test for of variances of the entire collection (EC) and core set (CS) for quantitative traits by Levene's test (Levene 1960).

Usage

levene.evaluate.core(data, names, quantitative, selected)

Arguments

data The data as a data frame object. The data frame should possess one row per

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string

quantitative Name of columns with the quantitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

levene.evaluate.core 17

Value

A data frame with the following columns

Trait	The quantitative trait.	
EC_V	The variance of the EC.	
CS_V	The variance of the CS.	
EC_CV	The coefficient of variance of the EC.	
CS_CV	The coefficient of variance of the CS.	
Levene_Fvalue	The test statistic.	
Levene_pvalue	The p value for the test statistic.	
Levene_significance		
	The significance of the test statistic (*: $p \le 0.01$; **: $p \le 0.05$; ns: $p > 0.05$).	

References

Levene H (1960). "Robust tests for equality of variances." In Olkin I, Ghurye SG, Hoeffding W, Madow WG, Mann HB (eds.), *Contribution to Probability and Statistics: Essays in Honor of Harold Hotelling*, 278–292. Stanford University Press, Palo Alto, CA.

See Also

leveneTest

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] \leftarrow lapply(ec[, c("X1", "X6", "X7")],
                              function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
# EvaluateCore
levene.evaluate.core(data = ec, names = "genotypes",
                  quantitative = quant, selected = core)
```

18 pca.evaluate.core

pca.evaluate.core

Principal Component Analysis

Description

Compute Principal Component Analysis Statistics (Mardia et al. 1979) to compare the probability distributions of quantitative traits between entire collection (EC) and core set (CS).

Usage

```
pca.evaluate.core(
  data,
  names,
  quantitative,
  selected,
  center = TRUE,
  scale = TRUE,
  npc.plot = 6
)
```

Arguments

data The data as a data frame object. The data frame should possess one row per

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string

quantitative Name of columns with the quantitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

center either a logical value or numeric-alike vector of length equal to the number of

columns of x, where 'numeric-alike' means that as.numeric(.) will be applied

successfully if is.numeric(.) is not true.

scale either a logical value or a numeric-alike vector of length equal to the number of

columns of x.

npc.plot The number of principal components for which eigen values are to be plotted.

The default value is 6.

Value

A list with the following components.

EC PC Importance

A data frame of importance of principal components for EC

EC PC Loadings A data frame with eigen vectors of principal components for EC

CS PC Importance

A data frame of importance of principal components for CS

pdfdist.evaluate.core 19

CS PC Loadings A data frame with eigen vectors of principal components for CS

Scree Plot The scree plot of principal components for EC and CS as a ggplot object.

PC Loadings Plot

A plot of the eigen vector values of principal components for EC and CS as specified by npc.plot as a ggplot2 object.

References

Mardia KV, Kent JT, Bibby JM (1979). *Multivariate analysis*. Academic Press, London; New York. ISBN 0-12-471250-9 978-0-12-471250-8 0-12-471252-5 978-0-12-471252-2.

See Also

prcomp

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                               function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                               function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")</pre>
# EvaluateCore
pca.evaluate.core(data = ec, names = "genotypes",
               quantitative = quant, selected = core,
               center = TRUE, scale = TRUE, npc.plot = 4)
```

20 pdfdist.evaluate.core

Description

Compute Kullback-Leibler (Kullback and Leibler 1951), Kolmogorov-Smirnov (Kolmogorov 1933; Smirnov 1948) and Anderson-Darling distances (Anderson and Darling 1952) between the probability distributions of collection (EC) and core set (CS) for quantitative traits.

Usage

pdfdist.evaluate.core(data, names, quantitative, selected)

Arguments

data The data as a data frame object. The data frame should possess one row per

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string

quantitative Name of columns with the quantitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

Value

A data frame with the following columns.

Trait The quantitative trait.

KL_Distance The Kullback-Leibler distance (Kullback and Leibler 1951) between EC and

CS.

KS_Distance The Kolmogorov-Smirnov distance (Kolmogorov 1933; Smirnov 1948) between

EC and CS.

KS_pvalue The p value of the Kolmogorov-Smirnov distance.

AD_Distance Anderson-Darling distance (Anderson and Darling 1952) between EC and CS.

AD_pvalue The p value of the Anderson-Darling distance.

KS_significance

The significance of the Kolmogorov-Smirnov distance (*: $p \le 0.01$; **: $p \le$

0.05; ns: p > 0.05).

AD_pvalue The significance of the Anderson-Darling distance (*: $p \le 0.01$; **: $p \le 0.05$;

ns: p > 0.05).

See Also

```
KL.plugin, ks.test, ad.test
```

```
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                                 function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                                 function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
# EvaluateCore
pdfdist.evaluate.core(data = ec, names = "genotypes",
                    quantitative = quant, selected = core)
```

percentdiff.evaluate.core

Percentage Difference of Means and Variances

Description

Compute the following differences between the entire collection (EC) and core set (CS).

- Percentage of significant differences of mean $(MD\%_{Hu})$ (Hu et al. 2000)
- Percentage of significant differences of variance $(VD\%_{Hu})$ (Hu et al. 2000)
- Average of absolute differences between means $(MD\%_{Kim})$ (Kim et al. 2007)
- Average of absolute differences between variances $(VD\%_{Kim})$ (Kim et al. 2007)
- Percentage difference between the mean squared Euclidean distance among accessions ($\bar{d}D\%$) (Studnicki et al. 2013)

Usage

```
percentdiff.evaluate.core(data, names, quantitative, selected, alpha = 0.05)
```

Arguments

data	The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data.
names	Name of column with the individual names as a character string
quantitative	Name of columns with the quantitative traits as a character vector.
selected	Character vector with the names of individuals selected in core collection and present in the names column.
alpha	Type I error probability (Significance level) of difference.

Details

The differences are computed as follows.

$$MD\%_{Hu} = \left(\frac{S_t}{n}\right) \times 100$$

Where, V_{EC_i} is the variance of the EC for the *i*th trait, V_{CS_i} is the variance of the CS for the *i*th trait and n is the total number of traits.

$$\overline{d}D\% = \frac{\overline{d}_{CS} - \overline{d}_{EC}}{\overline{d}_{EC}} \times 100$$

Where, \bar{d}_{CS} is the mean squared Euclidean distance among accessions in the CS and \bar{d}_{EC} is the mean squared Euclidean distance among accessions in the EC.

Value

A data frame with the values of $MD\%_{Hu}$, $VD\%_{Hu}$, $MD\%_{Kim}$, $VD\%_{Kim}$ and $\overline{d}D\%$.

References

Hu J, Zhu J, Xu HM (2000). "Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops." *Theoretical and Applied Genetics*, **101**(1), 264–268.

Kim K, Chung H, Cho G, Ma K, Chandrabalan D, Gwag J, Kim T, Cho E, Park Y (2007). "PowerCore: A program applying the advanced M strategy with a heuristic search for establishing core sets." *Bioinformatics*, **23**(16), 2155–2162.

Studnicki M, Madry W, Schmidt J (2013). "Comparing the efficiency of sampling strategies to establish a representative in the phenotypic-based genetic diversity core collection of orchardgrass (*Dactylis glomerata* L.)." Czech Journal of Genetics and Plant Breeding, **49**(1), 36–47.

See Also

snk.evaluate.core, snk.evaluate.core

qq.evaluate.core 23

qq.evaluate.core

Quantile-Quantile Plots

Description

Plot Quantile-Quantile (QQ) plots (Wilk and Gnanadesikan 1968) to graphically compare the probability distributions of quantitative traits between entire collection (EC) and core set (CS).

Usage

```
qq.evaluate.core(data, names, quantitative, selected)
```

Arguments

data The data as a data frame object. The data frame should possess one row per

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string

quantitative Name of columns with the quantitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

Value

A list with the ggplot objects of QQ plots of CS vs EC for each trait specified as quantitative.

References

Wilk MB, Gnanadesikan R (1968). "Probability plotting methods for the analysis for the analysis of data." *Biometrika*, **55**(1), 1–17.

See Also

qqplot

24 shannon.evaluate.core

Examples

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
# EvaluateCore
qq.evaluate.core(data = ec, names = "genotypes",
              quantitative = quant, selected = core)
```

shannon.evaluate.core Shannon-Weaver Diversity Index

Description

Compute the Shannon-Weaver Diversity Index (H'), Maximum diversity (H'_{max}) and Shannon Equitability Index (E_H) (Shannon and Weaver 1949) to compare the phenotypic diversity for qualitative traits between entire collection (EC) and core set (CS).

Usage

```
shannon.evaluate.core(data, names, qualitative, selected)
```

Arguments

data	The data as a data frame object. The data frame should possess one row per	
individual and columns with the individual names and multiple trait/cha		
data.		
names	Name of column with the individual names as a character string	
qualitative Name of columns with the qualitative traits as a character vector.		
selected Character vector with the names of individuals selected in core collect		

present in the names column.

shannon.evaluate.core 25

Details

Shannon-Weaver Diversity Index (H') is computed as follows.

$$H' = -\sum_{i=1}^{k} p_i log(p_i)$$

Where p_i denotes the proportion in the group k.

The maximum value of the index (H'_{max}) is $\ln(k)$. This value occurs when each group has the same frequency.

The Shannon equitability index (E_H) is the Shannon diversity index divided by the maximum diversity.

$$E_{H} = \frac{H}{\ln\left(k\right)}$$

Value

A data frame with the following columns.

######################################

Trait	The qualitative trait.
EC_H	The Shannon-Weaver Diversity Index (H') for EC.
EC_H	The Shannon-Weaver Diversity Index (H') for CS.
EC_Hmax	The Maximum diversity value (H'_{max}) for EC.
CS_Hmax	The Maximum diversity value (H'_{max}) for CS.
EC_EH	The Shannon Equitability Index (E_H) for EC.
CS_EH	The Shannon Equitability Index (E_H) for CS.

References

Shannon CE, Weaver W (1949). *The Mathematical Theory of Communication*, number v. 2 in The Mathematical Theory of Communication. University of Illinois Press.

See Also

shannon

26 signtest.evaluate.core

signtest.evaluate.core

Sign Test

Description

Test difference between means and variances of entire collection (EC) and core set (CS) for quantitative traits by Sign test (+ versus -) (Basigalup et al. 1995; Tai and Miller 2001).

Usage

```
signtest.evaluate.core(data, names, quantitative, selected)
```

Arguments

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string

quantitative Name of columns with the quantitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

Details

The test statistic for Sign test (χ^2) is computed as follows.

$$\chi^2 = \frac{(N_1 - N_2)^2}{N_1 + N_2}$$

Where, where N_1 is the number of variables for which the mean or variance of the CS is greater than the mean or variance of the EC (number of + signs); N_2 is the number of variables for which the mean or variance of the CS is less than the mean or variance of the EC (number of - signs). The value of χ^2 is compared with a Chi-square distribution with 1 degree of freedom.

signtest.evaluate.core 27

Value

A data frame with the following components.

References

Basigalup DH, Barnes DK, Stucker RE (1995). "Development of a core collection for perennial *Medicago* plant introductions." *Crop Science*, **35**(4), 1163–1168.

Tai PYP, Miller JD (2001). "A Core Collection for *Saccharum spontaneum* L. from the World Collection of Sugarcane." *Crop Science*, **41**(3), 879–885.

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
# EvaluateCore
signtest.evaluate.core(data = ec, names = "genotypes",
                   quantitative = quant, selected = core)
```

28 snk.evaluate.core

.evaluate.core Student-Newman-Keuls Test
.core Student-Newman-Keuis Ie

Description

Test difference between means of entire collection (EC) and core set (CS) for quantitative traits by Newman-Keuls or Student-Newman-Keuls test (Newman 1939; Keuls 1952).

Usage

```
snk.evaluate.core(data, names, quantitative, selected)
```

Arguments

data The data as a data frame object. The data frame should possess one row per

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string

quantitative Name of columns with the quantitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

Value

A data frame with the following components.

Trait	The quantitative trait.
EC_Min	The minimum value of the trait in EC.
EC_Max	The maximum value of the trait in EC.
EC_Mean	The mean value of the trait in EC.
EC_SE	The standard error of the trait in EC.
CS_Min	The minimum value of the trait in CS.
CS_Max	The maximum value of the trait in CS.
CS_Mean	The mean value of the trait in CS.
CS_SE	The standard error of the trait in CS.
SNK_pvalue	The p value of the Student-Newman-Keuls test for equality of means of EC and CS.

SNK_significance

The significance of the Student-Newman-Keuls test for equality of means of EC and CS.

References

Keuls M (1952). "The use of the "studentized range" in connection with an analysis of variance." *Euphytica*, **1**(2), 112–122.

Newman D (1939). "The distribution of range in samples from a normal population, expressed in terms of an independent estimate of standard deviation." *Biometrika*, **31**(1-2), 20–30.

ttest.evaluate.core 29

See Also

```
SNK.test
```

Examples

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
# EvaluateCore
snk.evaluate.core(data = ec, names = "genotypes",
               quantitative = quant, selected = core)
```

ttest.evaluate.core Student's t Test

Description

Test difference between means of entire collection (EC) and core set (CS) for quantitative traits by Student's t test (Student 1908).

Usage

```
ttest.evaluate.core(data, names, quantitative, selected)
```

Arguments

data

The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data.

30 ttest.evaluate.core

names	Name of column with the individual names as a character string
quantitative	Name of columns with the quantitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

Value

Trait	The quantitative trait.	
EC_Min	The minimum value of the trait in EC.	
EC_Max	The maximum value of the trait in EC.	
EC_Mean	The mean value of the trait in EC.	
EC_SE	The standard error of the trait in EC.	
CS_Min	The minimum value of the trait in CS.	
CS_Max	The maximum value of the trait in CS.	
CS_Mean	The mean value of the trait in CS.	
CS_SE	The standard error of the trait in CS.	
ttest_pvalue	The p value of the Student's t test for equality of means of EC and CS.	
ttest_significance		

The significance of the Student's t test for equality of means of EC and CS.

References

Student (1908). "The probable error of a mean." *Biometrika*, **6**(1), 1–25.

See Also

t.test

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                                 function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                                 function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
```

vr.evaluate.core 31

EvaluateCore

vr.evaluate.core

Variable Rate of Coefficient of Variation

Description

Compute the Variable Rate of Coefficient of Variation (VR) (Hu et al. 2000) to compare quantitative traits of the entire collection (EC) and core set (CS).

Usage

vr.evaluate.core(data, names, quantitative, selected)

Arguments

data The data as a data frame object. The data frame should possess one row per

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string

quantitative Name of columns with the quantitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

Details

The Variable Rate of Coefficient of Variation (VR) is computed as follows.

$$VR = \left(\frac{1}{n} \sum_{i=1}^{n} \frac{CV_{CS_i}}{CV_{EC_i}}\right) \times 100$$

Where, CV_{CS_i} is the coefficients of variation for the *i*th trait in the CS, CV_{EC_i} is the coefficients of variation for the *i*th trait in the EC and n is the total number of traits

Value

The VR value.

References

Hu J, Zhu J, Xu HM (2000). "Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops." *Theoretical and Applied Genetics*, **101**(1), 264–268.

32 wilcox.evaluate.core

Examples

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                              function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
quant <- c("X2", "X3", "X4", "X5", "X8")
qual <- c("X1", "X6", "X7")
# EvaluateCore
vr.evaluate.core(data = ec, names = "genotypes",
              quantitative = quant, selected = core)
```

wilcox.evaluate.core Wilcoxon Rank Sum Test

Description

Compare the medians of quantitative traits between entire collection (EC) and core set (CS) by Wilcoxon rank sum test or Mann-Whitney-Wilcoxon test or Mann-Whitney U test (Wilcoxon 1945; Mann and Whitney 1947).

Usage

```
wilcox.evaluate.core(data, names, quantitative, selected)
```

Arguments

data The data as a data frame object	. The data frame should possess one row per
--------------------------------------	---

individual and columns with the individual names and multiple trait/character

data.

names Name of column with the individual names as a character string quantitative Name of columns with the quantitative traits as a character vector.

selected Character vector with the names of individuals selected in core collection and

present in the names column.

wilcox.evaluate.core 33

Value

Trait The quantitative trait.

EC_Med The median value of the trait in EC.

CS_Med The median value of the trait in CS.

 $\label{power} \mbox{Wilcoxon test for equality of medians of EC and CS.}$

Wilcox_significance

The significance of the Wilcoxon test for equality of medians of EC and CS.

References

Mann HB, Whitney DR (1947). "On a test of whether one of two random variables is stochastically larger than the other." *The Annals of Mathematical Statistics*, **18**(1), 50–60.

Wilcoxon F (1945). "Individual comparisons by ranking methods." Biometrics Bulletin, 1(6), 80.

See Also

```
wilcox.test
```

```
# Use data from R package ccChooser
library(ccChooser)
data("dactylis_CC")
data("dactylis_EC")
ec <- cbind(genotypes = rownames(dactylis_EC), dactylis_EC[, -1])</pre>
ec$genotypes <- as.character(ec$genotypes)</pre>
rownames(ec) <- NULL</pre>
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                            function(x) cut(x, breaks = 4))
ec[, c("X1", "X6", "X7")] <- lapply(ec[, c("X1", "X6", "X7")],
                            function(x) factor(as.numeric(x)))
head(ec)
core <- rownames(dactylis_CC)</pre>
# EvaluateCore
wilcox.evaluate.core(data = ec, names = "genotypes",
                quantitative = quant, selected = core)
```

Index

```
ad.test, 20
as.numeric, 18
bar.evaluate.core, 2
barplot, 3
box.evaluate.core, 3
boxplot, 4
chisq.test, 6
chisquare.evaluate.core, 5
cor, 7
cor\_pmat, 7
corr.evaluate.core, 6
coverage.evaluate.core, 8
cr.evaluate.core, 9
dist.evaluate.core, 11
evaluateCore, 12
freqdist.evaluate.core, 13
geom_bar, 3
geom_boxplot, 4
geom_histogram, 14
ggcorrplot, 7
hist, 14
IQR, 15
iqr.evaluate.core, 15
is.numeric, 18
KL.plugin, 20
ks.test, 20
levene.evaluate.core, 16
leveneTest, 17
mantel, 7
pca.evaluate.core, 18
pdfdist.evaluate.core, 19
percentdiff.evaluate.core, 21
prcomp, 19
```

```
qq.evaluate.core, 23
qqplot, 23
shannon, 25
shannon.evaluate.core, 24
signtest.evaluate.core, 26
snk.evaluate.core, 22, 28
SNK.test, 29
t.test, 30
ttest.evaluate.core, 29
vr.evaluate.core, 31
wilcox.evaluate.core, 32
wilcox.test, 10, 33
```