DHANAMANJURI UNIVERSITY

Examination- 2025 (June)

Four-year course B.A/B.Sc. 6th Semester (NEP)

Name of Programme : B.A. / B.Sc. Mathematics (Honours)

Paper Type : DSE

Paper Code : EMA-002

Paper Title : Number Theory

Full Marks : 80

Pass Marks : 32 Duration: 3 Hours

The figures in the margin indicate full marks for the questions.

Answer all the questions:

- 1. Choose and rewrite the correct answer for each of the following: $1\times 3=3$
 - a) The exponent of the highest power of 2 that divides 50! is
 - i) 45
 - ii) 47
 - iii) 50
 - 4v) 52
 - b) Consider the following statements:

 S_1 : 15 has a primitive root

s2: 18 has a primitive root.

Then

- i) both S₁ and S₂ are true.
- ii) neither S₁ nor S₂ is true.
- iii) only S1 is true.
- iv) only S2 is true.

c)	What is the	value of	the Legendre	symbol	(-1/p)	if $p \equiv$
	1 (mod 4?					

- i) -1
- ii) 0
- iii) 1
- iv) 4

2. Write very short answer for each of the following questions: $1\times 6=6$

- a) Evaluate $\tau(2200)$, where $\tau(n)$ denote the number of positive divisors of n.
- b) Find the order of the integer 5 modulo 13.
- c) Write the number of primitive roots of 17.
- d) State Euler's criterion.
- e) Write the quadratic residues of 11.
- f) Let a be an odd integer such that $x^2 \equiv a \pmod{32}$ has a solution. What can you say about the values of a?

3. Answer the following questions:

 $3 \times 5 = 15$

- a) Show that $\sqrt{2}$ is irrational.
- b) If F is a multiplicative function and $F(n) = \sum_{d|n} f(d)$, then show that f is also multiplicative.
- c) If the integer a has order k modulo n and h > 0, then prove that a^h has order k/gcd(h, k) modulo n.
- d) Show that the only incongruent solutions of $x^2 \equiv 1 \pmod{p}$ are 1 and p-1, where p is an odd prime.
- e) Find the value of the Legendre symbol (219/383).

4. Answer the following questions:

 $4 \times 5 = 20$

- a) Solve the linear Diophantine equation 172x + 20y = 1000.
- b) Show that $53^{103} + 103^{53}$ is divisible by 39.

- c) Prove that the integer 2^k , $k \ge 3$ has no primitive roots.
- d) Let p be an odd prime. Prove that

$$(2/p) = \begin{cases} 1, & \text{if } p \equiv 1 \pmod{8} \text{ or } p \equiv 7 \pmod{8} \\ -1, & \text{if } p \equiv 3 \pmod{8} \text{ or } p \equiv 5 \pmod{8} \end{cases}$$

- e) If p is an odd prime, then prove that $\sum_{a=1}^{p-1} (a/p) = 0$.
- 5. Answer any two of the following questions:

 $6 \times 2 = 12$

- a) State and prove Fundamental Theorem of Arithmetic.
- b) Solve the system of congruences

$$x \equiv 3 \pmod{5}$$
, $x \equiv 2 \pmod{7}$, $x \equiv 6 \pmod{11}$.

- c) State and prove Wilson's theorem.
- 6. Answer any two of the following questions:

 $6 \times 2 = 12$

a) If p is a prime and

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_n \not\equiv 0 \pmod{p}$$

is a polynomial of degree $n \ge 1$ with integral coefficients, then prove that the congruence $f(x) \equiv 0 \pmod{p}$ has at most n incongruent solutions modulo p.

- b) Let p be a prime number and d|p-1. Prove that there are exactly $\phi(d)$ incongruent integers having order d modulo p.
- c) Solve the quadratic congruence $3x^2 + 9x + 7 \equiv 0 \pmod{13}$.
- 7. Answer any two of the following questions:

 $6 \times 2 = 12$

- a) State and prove Gauss's lemma.
- b) If p is an odd prime and gcd(a, p) = 1, then prove that the congruence

$$x^2 \equiv a \pmod{p^n}, n \ge 1$$

has a solution if and only if (a/p) = 1.

c) Given the RSA algorithm parameters where p = 2, q = 11 and k = 3, calculate the public key (n, k) and the private key j. Also, encrypt the message M = 5 using the public key and then decrypt it using the private key to verify the correctness of the encryption and decryption process.
