Quasi-trees and geodesic trees

Bonk, Mario; Meyer, Daniel March 11, 2019

Contents

0	Abstract						
1	Introduction 1.1 Preliminaries	2 2 2 3 4 4 5 5 5					
2	Auxiliary facts						
3	Sun and shadow						
4	Good double points 1						
5	5 Subdividing the tree 5.1 Vertices and tiles						
6	Weights and main vertices of tiles						
7	Construction of the geodesic metric						
8	Quasisymmetry						

Q	Lowering	the	Hausdorff	dima	nsion
IJ	Lowering	une	Hausuulii	ume	

2121

10 Remarks and open problems

0 Abstract

This paper study the quasisymmetric uniformization problem for metric trees.

1 Introduction

1.1 Preliminaries

An important question in geometric analysis is whether a given metric space is geometrically equivalent to a model space in a natural way.

- (X, d_X) and (Y, d_Y) : metric spaces
- $f: X \to Y$ is said to be **quasisymmetric** if there exists a homeomorphism $\eta: [0, \infty) \to [0, \infty)$ (playing the role of a control function for distortion) s.t.

$$\frac{d_Y(f(x), f(y))}{d_Y(f(y), f(z))} \le \eta(\frac{d_X(x, y)}{d_X(y, z)}).$$

- Two metric spaces X and Y are quasisymmetrically equivalent if there exists a quasisymmetry $f: X \to Y$.
- Note that bi-Lipschitz is stronger than quasisymmetric. Check that

$$\frac{d_Y(f(x), f(y))}{d_Y(f(x), f(z))} \le C^2 \frac{d_X(x, y)}{d_X(x, z)}.$$

• Quasisymmetric uniformization problem: what conditions when a given metric space X from a class of spaces is quasisymmetrically equivalent to some model space Y.

1.2 Tukia-Vaisala theorem

- metric arc J: a metric space J homeomorphic to the unit interval [0,1]
- quasi-arc: it is quasisymmetrically equivalent to [0, 1]

- bounded turning: (X, d) is K bounded turning if there exists $K \ge 1$ s.t. for all $x, y \in X$ there exists a compact connected set $E \subset X$ containing x, y s.t. diam $(E) \le Kd(x, y)$.
- doubling: (X, d) is called doubling if there exists $N \in \mathbb{N}$ (called the doubling constant of X) s.t. each ball B(R) can be covered by N or fewer balls B(R/2).

Tukia-Vaisala theorem: a metric arc is a quasi-arc iff it is doubling and of bounded turning. (In order words, one can "straighten out" such an arc (which may well have Hausdorff dimension > 1) to the interior [0,1] by a quasisymmetry.)

1.3 Theorem 1.1

This paper study the quasisymmetric uniformization problem for metric tress.

- **metric tree** (sometimes called dendrites): a compact connected and locally connected metric space (T, d) that contains at least two distinct points and there is no closed curve (that is, for any $x, y \in T$, there is a unique arc connecting x and y in T).
- [x, y]: the arc connecting x and y in T
- an arc [x, y] is degenerate if x = y
- quasi-tree: a tree is doubling and of bounded turning (inspired by T-V theorem)

Question 1 Can all arcs in a quasi-tree be out straightened out simultaneously by a quasisymmetry?

Theorem 1.1 Every quasi-tree is quasisymmetrically equivalent to a geodesic tree.

Idea of theorem 1.1 is defining a geodesic metric ϱ on (T, d) s.t. the identity map $\mathrm{id}_T: (T, d) \to (T, \varrho)$ is a quasisymmetry.

- 1. (Section 5) Choose a sequence of decompositions $\{X^n\}$ of T into subtrees.
- 2. (Section 6) Assign a weight $w(X^n)$ to each X^n .

- 3. (Section 7) Define a distance ϱ_n on T w.r.t. $w(X^n)$.
- 4. (Lemma 7.3) The limit $\varrho := \lim_n \varrho_n$ exists and (Lemma 7.6) it defines a geodesic metric on T.
- 5. (Proposition 7.7 (i)) $\operatorname{diam}_{\rho}(X) \simeq w(X)$.
- 6. The metric ϱ is a "conformal" deformation of d on T controlled by weight w(X) near each tile X.
- 7. (Lemma 8.2) The map $id_T: (T,d) \to (T,\varrho)$ is a quasisymmetry.

The main difficulty: how to define the decompositions X^n ?

1.4 Theorem 1.2

Question 2 How small we can make the quasisymmetric image of a quasitree?

The **conformal dimension** of a metric space X, denoted by confdim(X), is the infimum of all Hausdorff dimensions of metric spaces Y that are quasisymmetrically equivalent to X.

Theorem 1.2 The conformal dimension of a quasi-tree is 1.

Idea of theorem 1.2: The construction of ϱ involves a parameter $\epsilon_0 > 0$. Show that, if ϵ_0 close to 0, then the Hausdorff dimension of (T, ϱ) is close to 1.

1.5 Organization

- Section 2: review some basic topological facts about trees.
- Section 3: prove a general fact that is of independent interest: we show that if on an arc some points cast a "shadow" satisfying suitable conditions, then one can always find a "place in the sun".
- Section 4: introduce the concept of a (β, γ) good double point at scale $\Lambda > 0$
- Section 5: define the subdivisions of T into tiles.
- Section 6: define weights of tiles.
- Section 7: define the metric ϱ and show that it is a geodesic metric.

- Section 9: prove theorem 1.2.
- Section 10: conclude with remarks and open problems.

1.6 Notation

- $a \times b$: there is a constant $C \ge 1$ s.t. $C^{-1}a \le b \le Ca$.
- \mathbb{N} and \mathbb{N}_0
- #X: the cardinality of a set X.
- open ball $B_d(a,r) := \{x \in X : d(a,x) < r\}$ and closed ball $\bar{B}_d(a,r)$

For $A, B \subset X$

- $\operatorname{diam}_d(A)$: $\operatorname{diameter}$ of A w.r.t. d
- \bar{A} : the closure of A in X
- int(A): the interior of A in X
- $dist_d(A, B) := \inf\{d(x, y) : x \in A, y \in B\}$

1.7 Something about Quasisymmetry

1.7.1 Quasisymmetric map and quasiconformal map

• If f is quasisymmetric, then it is quasiconformal.

(Check the f image every small circle.)

• If f is quasiconformal in B(r), then it is quasisymmetric in B(r/2). (Proof?)

1.7.2 Quasicircle curve and Jordan curve

A Jordan curve cuts a sphere into two John domains iff it is quasicircle.

- A Jordan curve is a plain curve which is topologically equivalent to a homeomorphic image of a circle.
- John domain is a region in the Riemann sphere satisfies that every point can be reach from a fixed base point by a flexible cone at a definite angle at its vertex.
- A quasicircle is the image of a circle under a quasiconformal map of a plane onto itself.

2 Auxiliary facts

- $S \subset X$ is s separated for some s > 0 if d(x, y) > s for all $x, y \in S$.
- S is **maximal** s separated set if it is not contained in a strictly larger subset which is also s separated.
- If X is compact, then s separated set is finite.
- The space (X, d) is **doubling** iff $\forall \lambda \in (0, 1), \exists N' = N'(\lambda, N)$ where N is the doubling number of X s.t. if s > 0 and $S \subset X$ is a λs separated set contained in a ball B(x, s) with $x \in X$, then S contains at most N' points.
- (if. Assume that S is maximal λS separated set. Then any $x \in X$ is contained in $B(y, \lambda s)$ for some $y \in S$. We have $\{B(y, \lambda s)\}$ covers B(x, s) and its number is bounded above by N'.
- only if. Assume that the number of S is unbounded. It is easy to show that (X, d) is not doubling.
 - Doubling is a bi-Lipschitz invariant property.

(Let f is a L bi-Lipschitz map from (X, d) to (Y, d'). Assume (X, d) is doubling. Need to show that (Y, d) is also doubling.

For any unit ball $B_{d'}(y,1)$, there exists a ball $B_d(x,K)$ s.t. $B_{d'}(y,1) \subset f(B_d(x,K))$. Since (X,d) is doubling, there are bounded number of balls $B_d(x',\frac{1}{2K})$ covering $B_d(x,K)$. Note that the f image of each $B_d(x',\frac{1}{2K})$ is contained in some $B_{d'}(y',\frac{1}{2})$. Then there are also bounded number of $B_{d'}(y',\frac{1}{2})$ covering $B_{d'}(x,1)$.

- An arc $J \subset X$: homeomorphic to $[0,1] \subset \mathbb{R}$
- The **endpoints** ∂J of J
- The interior points of J: $int(J) := J \setminus \partial J$

Lemma 2.1 Let (J,d) be an arc and $n \ge 2$. Then we can decompose J into n non-overlapping subacres of equal diameter $\Delta \ge \frac{1}{n} \operatorname{diam}(J)$.

Proof. A decomposition of J into n non-overlapping subarcs of equal dimeter exists. (Lemma 2 of [Mel1]) Denote their diameter by Δ . We have $\operatorname{diam}(J) \leq n\Delta$ by the triangle inequality.

- A tree T and two points $x, y \in T$
- [x, y]: the unique (closed) arc joining x and y
- (x, y], [x, y), (x, y)
- A subtree X of T if X equipped with the restriction of d is also a tree.
 X is a subtree of T iff X contains at least two points and is closed and connected.

Lemma 2.2 Let (T,d) be a tree and $V \subset T$ be a finite set. Then the following statements are true:

- 1. $x, y \in T \setminus V$ lie in the same component of $T \setminus V$ iff $[x, y] \cap V = \emptyset$
- 2. If U is component of $T \setminus V$, then U is open and \bar{U} is a subtree of T with $\partial \bar{U} \subset \partial U \subset V$.
- 3. If U and W are two distinct components of $T \setminus V$, then \bar{U} and \bar{W} have at most one point in common. Such a common point belongs to V, and is a boundary point of both \bar{U} and \bar{W} .

Proof of 1). Since V is finite, it is closed. Then $T \setminus V$ is open. Since T is locally path-connected (Lemma 3.1 of [BT18]), each component U of $T \setminus V$ is open and path-connected. If x and y are in U, then there exists a path γ connecting x and y which stays in U. Since T is a tree, we have $[x,y] \subset \gamma \subset U$. Then $[x,y] \cap U = \emptyset$.

Conversely, omitted.

Proof of 2). \bar{U} is a subtree: only need to prove it contains more than one point which follows from the fact that T has no isolated points.

 $\partial \bar{U} \subset \partial U$: Why not =? $\partial A = \bar{A} \setminus A$.

 $\partial U \subset T$: for any $x \in \partial U$, then x does not belong to $T \setminus V$. Then $x \in V$ since $x \in T$.

Proof of 3). Assume that \bar{U} and \bar{V} has two common points. Let γ_U and γ_V be two arcs connecting u and v in \bar{U} and \bar{V} respectively. Then $\gamma_U \cup \gamma_V$ is a closed curve in T. Contradiction arises.

- $p \in T$ and U a component of $T \setminus \{p\}$
- A branch of p in T is a subtree $B := \bar{U} = U \cup \{p\}$.
- There are only countable many distinct branches B of p. Only finite of these branches can have a diameter exceeding a given positive number. This is given by Lemma 3.8 of [BT18]. (It needs assumption that T is compact.)

(*Proof.* Assume there are infinite B_n with $\operatorname{diam}(B_n) > \delta > 0$. Take $x_n \in B_n$ s.t. $d(x_i, p) > \delta/2$. Since T is compact, there is a acumulation point x of $\{x_n\}_n$. Let N be the $\delta/4$ neighborhood of x. Any $x_i, x_j \in N$ satisfies $d(x_i, p) \geq \delta/4 > 0$. So x_i and x_j are in the same component containing N. However they are in different components.)

• It implies that we can label the branches B_n s.t. for all $n \in \mathbb{N}$

$$diam(B_n) \ge diam(B_{n+1}).$$

- If p has precisely two branches, then p is called **double point** of T and the diameter of the smallest branch is denoted by $D_T(p) := \text{diam}(B_2)$.
- If p has at least three branches, then p is called a **branch point** of T and the diameter of the third largest branch is denoted by $H_T(p) := \text{diam}(B_3)$.

Lemma 2.3 (A criterion how to detect branch points) A tree (T,d) and $b, x_1, x_2, x_3 \in T$. Arcs $[x_i, b)$ are pairwise disjoint. Then x_i lie in different components of $T \setminus \{b\}$ and b is a branch point of T.

- A tree (T,d) is K bounded turning with $K \geq 1$ iff diam $[x,y] \leq Kd(x,y)$. (Take [x,y] as the compact set in the definition.)
- The diameter distance on T is defined as dd(x,y) := diam[x,y].

Lemma 2.4 (Properties of dd)

- 1. dd is a metric on T.
- 2. For each arc $J \subset T$ we have $diam_{dd}(J) = diam(J)$.
- 3. (T, dd) is of 1 bounded turning.
- 4. (T,d) is K boundard turning iff $id_T:(T,d)\to (T,dd)$ is K bi-Lipschitz.

Proof of 1). Check the followings.

- 1. $dd(x,y) = diam[x,y] \ge 0$ and diam[x,y] = 0 iff x = y.
- 2. dd(x,y) = diam[x,y] = dd(y,x).

3.

$$dd(x, z) = \operatorname{diam}[x, z] \le \operatorname{diam}[x, y] \cup [y, z]$$

$$\le \operatorname{diam}[x, y] + \operatorname{diam}[y, z] = dd(x, y) + dd(y, z).$$

Proof of 2).

- 1. \geq : Since $dd \geq d$, we have diam_{dd} \geq diam.
- 2. \leq : for any $x, y \in J$, we have $[x, y] \subset J$. Then $dd(x, y) = \text{diam}[x, y] \leq \text{diam}J$. Then $\text{diam}_{dd}(J) = \sup_{x,y \in J} dd(x,y) \leq \text{diam}J$.

Proof of 3). By 2), $dd(x, y) = \text{diam}[x, y] = \text{diam}_{dd}[x, y]$. Proof of 4). if: K bounded turning implies that $dd(x, y) = \text{diam}[x, y] \le Kd(x, y)$. Combining $d \le dd$, we have id_T is K Lips. only if: $\text{diam}[x, y] = dd(x, y) \le Kd(x, y)$.

• A metric d is called a **diameter metric** if d(x, y) = diam[x, y]. Then d = dd.

Suppose (T,d) is quasi-tree. Then Lemma 2.4 implies that (T,dd) is bi-Lipschitz equivalent to (T,d). Moreover, (T,dd) is of 1 bounded turning. Note that doubling is a bi-Lipschitz invariant property. So (T,dd) is still a quasi-tree.

Assumption: (T, d) carries a diameter metric. **Assumption**: diam(T) = 1. (Rescale metric if needed)

3 Sun and shadow

In this section we will prove the following proposition, which allow us to find double points in T that stay away from the branch points of T in a geometrically controlled manner.

Proposition 3.1 There exists a constant $\gamma = \gamma(N) > 0$ with the following property: if $\Delta > 0$ and $J \subset T$ is an arc with $diam(J) \geq \Delta$, then there exists a double point $x \in J$ of T s.t.

$$d(x,b) \ge \gamma \cdot \min\{H_T(b), \Delta\}$$

for all branch points $b \in T$.

To prove this proposition, we require two auxiliary facts.

Lemma 3.1 Let (J.d) be a metric arc with a diameter metric d, $J' \subset J$ and $A \subset J$ be a set with $\#(A \cap J') \leq M$. Then there exists an arc $I \subset J'$ s.t.

$$diam(I) = \frac{1}{6M} diam(J')$$

and

$$dist(I, A \cup \partial J') \ge \frac{1}{6M} diam(J).$$

Proof. By Lemma 2.1, there exists a decomposition $\{J_i|i=1,...,2M\}$ of J s.t. diam $J_i = \Delta \geq \frac{1}{2M} \text{diam } J'$. By $\#(A \cap J') \leq M$, there exists J_i does not intersect A. Take the middle subarc I of this arc of length $\frac{1}{6M} \text{diam } J'$. Then the distance between I and the boundary of this arc is larger $\frac{1}{3}\Delta = \frac{1}{6M} \text{diam } J$.

Lemma 3.2 (Ein Platz an der Sonne) Let (J,d) be a diameter metric arc and $S: J \to [0, diam(J)]$ be a function. Suppose there is a constant M s.t. for all subarcs $I \subset J$ we have

$$\#\{p \in I : S(p) \ge diam(I)\} \le M. \tag{3.2}$$

There exists a constant $\sigma = \sigma(M) > 0$ and a point $x \in J$ s.t. $d(x,p) \ge \sigma S(p)$ for all $p \in J$.

In other words, the set $J \setminus \bigcup_{p \in J} B(p, \sigma S(p))$ is non-empty. If we think of each point $p \in J$ with S(p) > 0 as "casting a shadow" of radius $\sigma S(p)$ around p, then the lemma says that the union of all shadows does not cover J, and so there is a "place in the sun".

Proof. WLOG, assume that diam J = 1. Let $\lambda := \frac{1}{6M}$ and

$$A_n := \{ p \in A : S(p) \ge \lambda^n \}.$$

Then $A := \bigcup_n A_n$ is all points in J with S(p) > 0.

Init: Set $J_0 := J$. Then diam $J_0 = 1 = \lambda^0$.

n+1 step: Assume that J_n satisfies diam $J_n=\lambda^n$. We have $A_n\cap J_n$ is

$${p \in J_n : S(p) \ge \lambda^n = \operatorname{diam} J_n}.$$

By the condition (3.2), we have $\#(A_n \cap J_n) \leq M$. By Lemma 3.2, we can take a subarc $J_{n+1} \subset J_n$ satisfies

$$\operatorname{diam} J_{n+1} = \frac{1}{6M} \operatorname{diam} J_n = \lambda \operatorname{diam} J_n = \lambda^{n+1}$$

and

$$\operatorname{dist}(J_{n+1}, A_n) \ge \frac{1}{6M} \operatorname{diam} J_n = \lambda^{n+1}.$$

Then $\cap_n J_n \neq \emptyset$. Pick x from it. For p with S(p) > 0, there exists an n with $\lambda^n \leq S(p) < \lambda^{n-1}$ which implies that $p \in A_n$. Since $x \in J_{n+1}$, we have

$$d(x,p) \ge \operatorname{dist}(x,A_n) \ge \lambda^{n+1} > \lambda^2 S(p).$$

Take $\sigma = \lambda^2 = \frac{1}{36M^2}$, then x is a point as desired.

We close this section by proving Proposition 4.1.

Proof of Proposition 3.1.

Let $\Delta > 0$ and J = [u, v] with diam $J \geq \Delta$. Define a function $S : J \rightarrow [0, \text{diam } J]$ as follows:

- $S(p) = \Delta$ if p = u or v
- $S(p) = \min\{H_T(p), \Delta\}$ if p is a branch point
- S(p) = 0 otherwise

Claim. (Condition of Lemma 3.3) There exists a constant M=M(N) s.t. for all arcs $I\subset J$ we have

$$\#\{p \in I : S(p) \ge \operatorname{diam} I\} \le M.$$

By Lemma 3.3, there exists a constant σ and $x \in J$ s.t. for all $p \in J$ we have

$$d(x,p) \ge \sigma S(p)$$
.

Assume that $0 < \sigma \le 1$. (so that $\sigma^2 \le \sigma$)

Let $\gamma := \frac{\sigma^2}{2}$. Check that x is a desired point for proposition. Let $b \in T$ be a branch point and r be the first point in $J \cap [b, x]$. Consider two cases depending on the location of r.

Case 1. $r \in B(u, \sigma\Delta/2) \cup B(v, \sigma\Delta/2)$. Assume that $r \in B(u, \sigma\Delta/2)$. We have

$$\begin{split} d(x,b) &= \operatorname{diam}[x,b] \geq d(x,r) \\ &\geq d(x,u) - d(r,u) \\ &\geq \sigma S(u) - \sigma \Delta/2 \quad \text{(choice of } x \text{ and } r \in B(u,\Delta/2)) \\ &= \sigma \Delta/2 \quad \text{(definite of } S) \\ &\geq \sigma \min\{H_T(b), \Delta\}/2 \\ &\geq \gamma \min\{H_T(b), \Delta\} \quad \text{(definition of } \gamma \text{ and } 0 < \sigma < 1). \end{split}$$

Case 2. $r \notin B(u, \sigma \Delta/2) \cup B(v, \sigma \Delta/2)$. See Figure 3 of the paper. There exists a component U of $T \setminus \{b\}$ disjoint from J and satisfies

$$\operatorname{diam} U \geq H_T(b)$$
.

Let V_1 be a component of $T \setminus \{r\}$ containing U. Hence

$$\operatorname{diam} V_1 \geq \operatorname{diam} U \geq H_T(b).$$

Let V_2 and V_3 be the components containing [u, r) and [v, r) respectively. We have

$$\operatorname{diam} V_2 \ge \operatorname{diam}[u, r) \ge d(u, r)$$

> $\sigma \Delta / 2$ (assumption of case)

and diam $V_3 \geq \sigma \Delta/2$. Then

$$H_T(r) \ge \min\{\operatorname{diam} V_i : i = 1, 2, 3\}$$

$$\ge \min\{H_T(b), \sigma \Delta/2\}$$

$$\ge \frac{\sigma}{2} \min\{H_T(b), \Delta\}.$$

It follows that

$$d(x,b) \ge d(x,r)$$

$$\ge \sigma S(r) \quad \text{(choice of } x)$$

$$= \sigma \min\{H_T(r), \Delta\} \quad \text{(def of } S)$$

$$\ge \frac{\sigma^2}{2} \min\{H_T(b), \Delta\} \quad \text{(result above)}$$

$$= \gamma \min\{H_T(b), \Delta\},$$

as desired.

It remains to check to x is a double point. Indeed, x is not a branch point since d(x, b) > 0 for all branch b.

Here is the proof of the claim in the proof Proposition 3.1: There exists M = M(N) s.t.

$$\#\{p \in I : S(p) \ge \operatorname{diam} I\} \le M.$$

Proof of Claim. Fix $I \subset J$. Let $R := \{p \in \text{int} I : S(p) \geq \rho\}$ where $\rho := \text{diam} I > 0$. By the definition of S, each $r \in R$ is a branch point and there exists a large component U_r of $T \setminus \{r\}$ s.t. $U_r \cap I = \emptyset$ and

 $\operatorname{diam} U_r \geq H_T(r)$. Let $\mathcal{U}_R := \{U_r : r \in R\}$. It is sufficient to give a upper bound for $\#\mathcal{U}_R$.

Let B_I be a $\frac{3\rho}{2}$ ball containing I of diameter ρ . We will define pairwise disjoint ball B_r containing $r \in R$ of diameter $\rho/4$. Then $\#\{B_r\} = \#R$ is bounded by the double number N. It is sufficient to construct such B_r .

Consider arbitrary $r \in R$. Then

$$H_T(r) \ge S(r)$$
 (def of S)
 $\ge \rho > 0$ (def of R).

Take U_r be a component of $T \setminus \{r\}$ and of diameter $\operatorname{diam}(U_r) \geq H_T(r) \geq \rho$. Take $q_r \in U_R$ s.t.

$$d(q_r, x) = \rho/2.$$

Check that $B_{q_r}(\rho/2)$ and $B_{q_{r'}}(\rho/2)$ are disjoint. It follows from

$$d(q_r, q_{r'}) = diam[q_r, q_{r'}]$$

> $d(q_r, r) + d(r' + q_{r'}) = \rho$.

4 Good double points

In this section we introduce the concept of a "good" double point of T. Attached to this concept are certain numerical parameters. The goal of this section is to show that with appropriate choices of these parameters, one can use a maximal set V of good double points to obtain a decomposition of T with some desired geometric properties (see Proposition 4.2).

Fix a scale $0 < \Delta \leq \operatorname{diam}(T) = 1$.

Consider double point $x \in T$ with property that both components of $T \setminus \{x\}$ are large, that is,

$$D_T(x) \ge \beta \Delta \tag{4.1}$$

for some constant $\beta \geq 1$.

Proposition 4.1 There is a constant $\beta = \beta(N) \geq 1$ s.t. the following statement is true:

- if $V \subset T$ is a set of double points of T that are Δ separated and satisfy $D_T(x) \geq \beta \Delta$, then either
 - i) for each component X of $T \setminus V$ we have

$$diam(X) < 3\beta\Delta$$

or

ii) there is an arc $I \subset T$ with

$$diam(I) \ge \Delta$$
 and $dist(I, V) \ge \Delta$

and so that $D_T(x) \ge \beta \Delta$ for each double point $x \in I$ of T.

Proposition 3.1 implies that each arc $I \subset T$ contains double points of T. So in case 2 of the previous statement, we can add a double point of V and get a new set of double points which still satisfies the conditions of Proposition 4.1. This implies that for a maximal set in the proposition, statement i) will always be true.

(Proof of Proposition 4.1) Since T is doubling, there exists a constant N' = N'(N) s.t. any ball B(6r) contains at most N' r separated points. We set

$$\beta = 6N'$$
.

Let V be a Δ separated set of double points satisfying (4.1) i.e.

$$D_T(v) \ge \beta \Delta$$
.

We check all components X of $T \setminus V$ for i) or ii). If all X satisfy i), then the proposition is proved. It is sufficient to consider the component X which do not satisfies i), that is,

$$\operatorname{diam} X > 3\beta\Delta.$$

Let $x, z \in X$ with $d(x, z) > 3\beta \Delta$ and J := [x, z]. Take J' be the "middle" subarc of J as in Lemma 3.2, that is,

$$\operatorname{diam} J' = \beta \Delta$$

and

$$\operatorname{dist}(J', \partial J) > \beta \Delta$$
.

Then any double point $x \in J'$ satisfies (4.1), that is,

$$D_T(x) \geq \beta \Delta$$
.

It remains to find an subarc $I \subset J'$ satisfying diam $I \geq \Delta$ and dist $(I, V) \geq \Delta$. Fix $a \in J'$ as a base point. Let $v \in V$ with dist $(v, J') < \Delta$. (If there is no such v, then all subarc I satisfies 2nd condition of ii), that is dist $(I, V) \geq \Delta$.)

Let $r_v \in J'$ be the first point from v to a and

$$R := \{r_v : v \in V, \operatorname{dist}(v, J') < \Delta\}.$$

Claim: $\#R \leq N'$.

Applying Claim to Lemma 3.2, we have there exists a subarc $I \subset J'$ with

$$\operatorname{diam} I = \frac{1}{6N'}\operatorname{diam} J' = \Delta(\text{then 1st cond of ii}) \text{ follows})$$

and

$$\operatorname{dist}(I, R \cup \partial J') \ge \frac{1}{6N'} \operatorname{diam} J' = \Delta.$$

Check that $\operatorname{dist}(I, V) \geq \Delta$. Consider $v \in V$.

Case 1. $\operatorname{dist}(v, J') \geq \Delta$: then

$$\operatorname{dist}(v, I) \ge \operatorname{dist}(v, J') \ge \Delta.$$

Case 2. $\operatorname{dist}(v, J') < \Delta$: then

$$\operatorname{dist}(v, I) \ge \operatorname{dist}(r_v, I) \ge \Delta.$$

So I is a desired subarc.

Proof of the claim above: $\#R \leq N'$.

For any $v \in V$ corresponding to $r_v \in R$, there is a component U of $T \subset \{v\}$ which does not contain J'. Then

$$\operatorname{diam} U \geq D_T(v) \quad (\text{def of } D_T)$$

 $\geq \beta \Delta \quad (V \text{ satisfies (4.1)}).$

Take $q \in U$ with $d(q, v) = \frac{\beta \Delta}{2}$. Denote $v_r := v$ and $q_r := q$. Then

$$d(q_r, a) \le d(q_r, v_r) + \operatorname{dist}(v_r, J') + \operatorname{diam} J'$$

$$\le \frac{\beta \Delta}{2} + \Delta + \beta \Delta$$

$$(\text{def of } q_r, v_r \in V \text{ and } J')$$

$$\le 3\beta \Delta \quad (\beta = 6N' \text{ is large})$$

It follows that $q_r \in B(a, 3\beta\Delta)$.

For any $r \neq r' \in R$, we have

$$d(q_r, q_{r'}) = \operatorname{diam}[q_r, q_{r'}] \ge d(q_r, v_r) \ge \frac{\beta \Delta}{2}.$$

Then $Q := \{q_r : r \in R\}$ is a $\frac{\beta \Delta}{2}$ separated set in $B(a, 3\beta \Delta)$. There exits an upper bound for #R = #Q since T is doubling.

In addition of (4.1), we want to choose double points $x \in T$ that are separated from the branch points of T in a controlled way:

$$d(x,b) \ge \gamma \cdot \min\{H_T(b), \Delta\} \tag{4.2}$$

for all branch points b, where $\gamma = \gamma(N)$ in Proposition 3.1. A double point $x \in T$ is called (β, γ) good at scale Δ if it satisfies (4.1) and (4.2).

Proposition 4.2 (Proposition 4.1 restrict to good double point)

Let $\beta = \beta(N) \ge 1$ in Proposition 4.1, $\gamma = \gamma(N) > 0$ in Proposition 3.1 and $0 < \Delta < 1$. If $V \subset T$ is a maximal Δ separated set of (β, γ) good double points at scale Δ , then

$$diam(X) \le 3\beta\Delta$$

for each component X of $T \setminus V$.

Again, the "maximal" part is easy to get. However V may be empty. In this case, the proposition showed that $1 = \text{diam}X \leq 3\beta\Delta$. Set $\Delta < \frac{1}{3\beta}$ to avoid this.

Assume that there is a component X of $T \setminus V$ with $\operatorname{diam} X > 3\beta\Delta$. By Proposition 4.1, there is a subarc I satisfies ii) of Proposition 4.1, that is,

$$\operatorname{diam} I > \Delta$$
,

$$dist(I, V) > \Delta$$

 $D_T(x) \geq \beta \Delta$ for all double point $x \in I$.

By Proposition 3.1, we find a double point $x \in I$ s.t.

$$d(x,b) \geq \gamma \min\{H_T(b), \Delta\}$$
 for all branch point $b \in T$.

Then x satisfies (4.1) and (4.2). Therefore, x is a (β, γ) good double point at scale Δ .

Point x also satisfies

$$dist(x, V) > dist(I, V) > \Delta$$
 (def of I).

Hence $V' := V \cup \{x\}$ is also a Δ separated (β, γ) good double point at scale Δ . It contradicts the maximality of V

5 Subdividing the tree

We want to subdivide our quasi-tree T. As before, assume that T is equipped with a diameter metric d and $\operatorname{diam}(T)=1$. Fix $\beta\geq 1$ and $\gamma>0$ depending on doubling constant N of T and a small constant $0<\delta<1/(3\beta)$.

5.1 Vertices and tiles

We will inductively construct set $V^n \subset T$ s.t.

$$V^1 \subset V^2 \subset \dots \tag{5.1}$$

where each V^n is a maximal δ^n separated set consisting of (β, γ) good double points at scale δ^n . Each set V^n is finite since T is compact.

We construct V^n inductively. Take V^1 as a maximal δ separated subset consisting of (β, γ) good double points at scale δ . Note that $V^1 \neq \emptyset$ as $\delta < 1/(3\beta)$ and the remark after Proposition 4.2. Assume that $V^1 \subset ... \subset V^n$ have been constructed. It is easy to check that V^n is also a δ^{n+1} separated subset which consists of (β, γ) good double points at scale δ^{n+1} . So there exists a maximal such set containing V^n , which is called V^{n+1} .

- Each point $v \in V^n$ is called n vertex.
- The closure of a component of $T \setminus V^n$ is called an n tile.
- X^n : the set of n tiles.

Lemma 5.1 (topological properties of vertices and tiles)

- 1. Each n tile X is a subtree of T with $\partial X \subset V^n$.
- 2. For $X \in X^n$ and $x \in V^n$, X is contained in the closure of one of the two components of $T \setminus \{v\}$ and disjoint from the other component of $T \setminus \{v\}$.
- 3. $\partial X \neq \emptyset$ for $X \in X^n$.
- 4. $X \neq Y \in X^n$ have at most one point in common. Such a common point of X and Y is an n vertex and a boundary point of both X and Y.
- 5. Each n vertex v is contained in precisely two distinct $X, Y \in X^n$.
- 6. X^n is a finite set.
- 7. Each $X' \in X^{n+1}$ is contained in a unique $X \in X^n$.
- 8. Each n tile $X = \bigcup_{\{X' \in X^n : X' \subset X\}} X'$.
- 9. If v is n vertex and $X \in X^n$ containing v, then $v \in \partial X$. Moreover, there exists precisely one (n+1) tile $X' \subset X$ containing v.

10. If $X \in X^n$ and $\partial X = \{v\} \subset V^n$ is a singleton set, then $X = \overline{W}$ where W is a component of $T \setminus \{v\}$.

Lemma (metric properties of vertices and tiles)

i) For $X^n \in \mathbf{X}^n$, we have

$$diam X^n \simeq \delta^n. \tag{5.3}$$

ii) \mathbf{X}^n is separated, that is, if $X^n, Y^n \in \mathbf{X}^n$ are disjoint, then

$$\operatorname{dist}(X^n, Y^n) \ge \delta^n. \tag{5.4}$$

iii) Both components of $D_T(v)$ are large, that is,

$$D_T(v) \ge \beta \delta^n. \tag{5.5}$$

iv) Each n vertex stays away from branch points, that is, for all branch point b,

$$d(v,b) \ge \gamma \min\{H_T(b), \delta^n\}. \tag{5.6}$$

Proof of i). V^n consists of δ^n separated points that is

$$d(u,v) \ge \delta^n \tag{5.2}$$

for all $u, v \in V^n$. Proposition 4.2 implies that

$$\operatorname{diam}(X) \leq 3\beta\delta^n$$
.

Proof of ii). Pick $x \in X^n$ and $y \in Y^n$ s.t. $d(x,y) = \operatorname{dist}(X^n,Y^n)$. As travelling from x to y, let u and v be the first points meeting ∂X and ∂Y respectively. Since both ∂X and ∂Y are n vertices,

$$\operatorname{dist}(x,y) = d(x,y) = \operatorname{diam}[x,y] \ge d(u,v)$$

 $\ge \delta^n \quad (n \text{ vertices are } \delta^n \text{ separated})$

Proof of iii). Since v is (β, γ) good double point, we have $D_T(v) \geq \beta \delta^n$. Proof of iv). Again v is (β, γ) good double point. For convenience, set $V^0 := \emptyset$ and $X^0 := T$.

5.2 Chains

- n chain is a sequence P of n tiles $X_1, ..., X_r$ with $X_i \cap X_{i+1} \neq \emptyset$. And r is called the **length** of P.
- P joins x and y if $x \in X_1$ and $y \in X_r$.
- P is **simple** if $X_i \cap X_j = \emptyset$ for $|i j| \ge 2$. The tiles in a simple chain P are all distinct.
- P is a simple n chain joining x and y if . . .
- $|P| := \bigcup_{i=1}^r X_i$
- P contains x if $x \in |P|$
- Q is a **subchain** of P: Q is obtained by deleting some tiles in P while keeping the order of the remaining tiles.

Lemma 5.2 1. There exists a unique simple n chain P joining x and y

2. If both P and P' joins x and y and P is simple, then $|P| \subset |P'|$.

Proof of lemma 5.2. Ommited.

By 2) of Lemma 5.2, we denote by P_{xy}^n the unique simple n chain joining x and y.

Lemma 5.3 (construct simple (n + 1) chains from simple n chain) Let $P = (X_1, ..., X_r)$ be a simple n chain joining x and y. Let v_i be the

Let $P = (X_1, ..., X_r)$ be a simple n chain joining x and y. Let v_i be the unique vertex in $X_{i-1} \cap X_i$, $v_0 = x$ and $v_r = y$. Denote by P'_i the simple (n+1) chain joining v_{i-1} and v_i . The followings are true:

- 1. P'_i consists of $X' \in \mathbf{X}^{(n+1)}$ with $X' \cap [v_{i-1}, v_i] \neq \emptyset$.
- 2. The simple (n+1) chain P' joining x and y is obtained by concatenating $P'_1, ..., P'_r$.

Proof of Lemma 5.3. Ommited.

5.3 Choosing δ

We now choose the parameter $0 < \delta < 1/(3\beta)$ used in the definition of vertices to make $V \neq \emptyset$ and tiles so that (n+1) tiles are contained in n tiles in a "controlled way".

Lemma 5.4 (number of (n+1) tiles) If $0 < \delta < 1/(3\beta)$ only depending on N, then the following hold for all n:

- 1. Each $X \in \mathbf{X}^n$ contains at least three (n+1) tiles.
- 2. If n vertices $u \neq v$, then the simple (n+1) chain joining u and v has length ≥ 3 .

The first statement implies that there are at least three 1 tiles. The second statement implies each (n+1) tile X' contains at most one n vertex.

Lemma 5.5 (location of (n+1) vertices) Let δ in Lemma 5.4. Let X be an n tile, $u \in \partial X \subset V^n$ and $X' \subset X$ be the unique (n+1) tile containing u. Then there exists an (n+1) vertex $u' \in \partial X' \setminus \{u\}$ s.t. $[u,u'] \subset [u,v]$ for all $v \in \partial X \setminus \{u\}$.

For the rest of the paper, we fix $0 < \delta < 1/(3\beta)$ s.t. Lemma 5.4 and Lemma 5.5 are true. As we see from the proofs, it is enough to take $\delta = \frac{1}{2} \min\{1/(9\beta), \gamma/(3\beta)\}$. Then δ depends only on N. The sets of vertices V^n and tiles X^n are fixed from now on since they depend on δ .

Lemma 5.6 Let X be an n tile and $u \neq v \in \partial X \subset V^n$. Then the simple (n+1) chain $P_{uv}^{(n+1)}$ joining u to v consists precisely of all (n+1) tiles $X' \subset X$ with $X' \cap [u,v] \neq \emptyset$. Moreover, $P_{uv}^{(n+1)}$ does not contain any point $w \in \partial X$ distinct from u and v.

Lemma 5.7 (uniform control for the local combinatorics of tiles) There is a constant $K \in \mathbb{N}$ s.t. the following statements hold for each $X \in \mathbf{X}^n$:

- 1. There are at most K n tiles that intersect X.
- 2. There are at most K (n+1) tiles contained in X.

6 Weights and main vertices of tiles

We will now define weight of tiles. Later they will be used to construct our desired geodesic metric ϱ .

• The w length of an n chain $P = (X_1, ..., X_r)$ is defined by

$$\operatorname{length}_w(P) := \sum_{i=1}^r w(X_i).$$

7 Construction of the geodesic metric

Based on weights defined in the previous section, we define a new metric ϱ on (T,d).

8 Quasisymmetry

In this section, we prove Theorem 1.1 by showing that (T, d) is quasisymmetrically equivalent to (T, ρ) .

9 Lowering the Hausdorff dimension

In this section we will prove Theorem 1.2.

10 Remarks and open problems

Question 3 For every quasi-tree T, is there a quasisymmetric embedding $\phi: T \to \mathbb{C}$ with good geometric properties?

• e.g. s.t. $\phi(T)$ is quasi-convex w.r.t. $d_{\mathbb{R}^2}$. (Then it is geodesic if equipped with its internal path metric) and $\mathbb{C} \setminus T$ is a nice domain (e.g. a John domain)

Question 4 How about quasi-trees which are not doubling?

Question 5 How about quasi-graphs?