

Diskrete Strukturen Tutorium

Jay Zhou Technische Universität München Garching b. München, 13. November 2023

Funktionen

$$f: A \to B$$

 $f \subseteq A \times B$ eine Funktion von A nach B ist

Dom(f)

Urbildmenge, also A

Rng(f)

Bildmenge, also $\{f(a) \mid a \in A\}$

Total

Für jedem $a \in A$ wird ein Bild f(a) zugewiesen

Funktionen

Komposition

```
Sei f:A\to B und g:B\to C zwei Funktionen, dann gilt es (g\circ f):A\to C, a\to g(f(a)) (g\circ f)(a)=g(f(a))
```

Komposition ist assoziativ: $(h \circ (g \circ f)) = ((h \circ g) \circ f)$

Funktionen

Injektiv

$$f: A \rightarrow B$$

$$\forall x \in A. \exists y \in B. f(x) = y$$

$$f: A \rightarrow B$$

$$\forall y \in B. \exists x \in A. f(x) = y$$

$$f: A \rightarrow B$$

$$\forall x \in A . \exists y \in B . f(x) = y$$

$$\forall x \in A . \exists y \in B . f(x) = y$$

und $\forall y \in B . \exists x \in A . f(x) = y$

Sei $f: X \to Y$ eine Funktion mit $X \neq \emptyset$. Zeigen Sie:

(a) Für alle $C \subseteq Y$ gilt $f^{-1}(f(f^{-1}(C))) = f^{-1}(C)$.

Def:
$$f: X \to Y$$
 $f(x) = \{f(x') \mid x' \in x\}$ Trivial $f^{-1}(y) = \{x \in X \mid f(x) \in y\}$

Sei $f\colon X\to Y$ eine Funktion mit $X\neq\emptyset$. Zeigen Sie: (b) Sei $g\colon Y\to Z$ eine weitere Funktion. Dann gilt $(g\circ f)^{-1}(E)=f^{-1}(g^{-1}(E))$ für alle $E\subseteq Z$.

Def:
$$f: X \to Y$$
 $f'(y) = \{x \in X \mid f(x) \in y\}$
 $(g \circ f)(x) = g(f(x))$

Sei $f\colon X\to Y$ eine Funktion mit $X\neq\emptyset$. Zeigen Sie: (b) Sei $g\colon Y\to Z$ eine weitere Funktion. Dann gilt $(g\circ f)^{-1}(E)=f^{-1}(g^{-1}(E))$ für alle $E\subseteq Z$.

Def:
$$f: X \to Y$$
 $f'(y) = \{x \in X \mid f(x) \in y\}$
 $(g \circ f)(x) = g(f(x))$

Sei $f: X \to Y$ eine Funktion mit $X \neq \emptyset$. Zeigen Sie:

(c) Zeigen Sie: f ist genau dann surjektiv, falls es eine Funktion $g: Y \to X$ mit $f \circ g = \mathsf{Id}_Y$ gibt. *Hinweis*: Sie dürfen annehmen, dass es eine Funktion $r: X \to X$ mit $r(x) \equiv_f x$ und $(r(x) = r(x') \text{ gdw. } x \equiv_f x') \text{ gibt.}$

Surjektion $f: X \rightarrow Y$ $\forall y \in Y . \exists x \in X . f(x) = y$ $A \leftarrow B$?

$$A \leftarrow B$$
?

$$A \rightarrow B$$
 ?

Beweis: Genau dann wenn Zu Zeigen A gdw. B wenn A stimmt, stimmt B (A→B) UND wenn B stimmt, stimmt A (A←B)

Für jedes $i \in \mathbb{N}$ sei A_i eine abzählbare, nicht leere Menge.

Zeigen Sie, dass dann auch $A:=\bigcup_{i\in\mathbb{N}}A_i$ abzählbar ist.

A ist abzählbar, falls IAI ≤ INI

Hinweis: Falls es eine surjektive Abbildung $\mathbb{N} \to A$ gibt, dann gibt es auch eine injektive Abbildung $A \to \mathbb{N}$. Weiterhin gibt es nach Vorlesung eine Bijektion von \mathbb{N} nach $\mathbb{N} \times \mathbb{N}$.

Annahme: Vi∈IN. Ai abzählbar

Zu zeigen: $A = \bigcup_{i \in \mathbb{N}} A_i$ abzählbar

Ziel: abzählbar > |A| < |IN| >

A Beim Beweis sollte man am Anfang immer bestimmen, was man zeigen wollte (zu Zeigen), damit man eine grobe Orientierung hat.

=> Surjektivität

Daher wollen wir eine surjektive Funktion $g(n): IN \rightarrow A$ erzeugen.

Für $R \subseteq A \times A$ eine binäre Relation sei $H_R := (R \setminus \mathsf{Id}_A) \setminus (R \setminus \mathsf{Id}_A)^2$.

Wir betrachten hier $A = \{a, b\}^2 \cup \{a, b\}^3$.

Die zu betrachtenden Elementen sind also:

{aa, ab, ba, bb, aaa, aab, aba, baa, abb, bab, bba, bbb}

Vorlage

Für $R \subseteq A \times A$ eine binäre Relation sei $H_R := (R \setminus \mathsf{Id}_A) \setminus (R \setminus \mathsf{Id}_A)^2$.

(a) Für $A = \{a, b\}^2 \cup \{a, b\}^3$ sei $R = \{(uv, vu) \in A \times A \mid u, v \in \{a, b\}^*\}.$

Stellen Sie R, $R \setminus \mathsf{Id}_A$, $(R \setminus \mathsf{Id}_A)^2$ und H_R graphisch dar.

rb ∈ R →

aab ER -

 H_R = $(R) \operatorname{Id}_A (R) \operatorname{Id}_A^*$

Für $R \subseteq A \times A$ eine binäre Relation sei $H_R := (R \setminus \mathsf{Id}_A) \setminus (R \setminus \mathsf{Id}_A)^2$.

(b) Für $A = \{a, b\}^2 \cup \{a, b\}^3$ sei $R = \{(u, uv) \in A \times A \mid u, v \in \{a, b\}^*\}.$

Stellen Sie R, $R \setminus \mathsf{Id}_A$, $(R \setminus \mathsf{Id}_A)^2$ und H_R graphisch dar.

J ab ∈ R →

aab∈R →

= (R) Ida) (R) Ida)

Für $R \subseteq A \times A$ eine binäre Relation sei $H_R := (R \setminus \mathsf{Id}_A) \setminus (R \setminus \mathsf{Id}_A)^2$.

(c) Bestimmen Sie H_R für $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \leq y\}$.

$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \leqslant y\}$$

$$(R \setminus Id_A)^2 =$$

$$H_R = (R \cdot Id_A) \cdot (R \cdot Id_A)^2 =$$

Fragen?