Step-1

Consider that S is the subspace of \mathbb{R}^n .

The objective is to explain the meaning of $(S^{\perp})^{\perp} = S$ and why it is true.

Step-2

Here, the meaning of $(S^{\perp})^{\perp} = S$ is that the orthogonal compliment of any given subspace is uniquely determined.

That is if S^{\perp} is the orthogonal compliment subspace of S and S is the orthogonal compliment subspace of S^{\perp} .

Step-3

Recall the following:

If S is the orthogonal compliment subspace of S^{\perp} then, $x \cdot y = 0$ for all $x \in S^{\perp}$, $y \in S$,

Step-4

Consider, that, $x \in S^{\perp}$, $y \in S$, $z \in (S^{\perp})^{\perp}$, none of them is 0. then, observe the following;

As S and S^{\perp} are orthogonal compliment of each other.

So, $x \cdot y = 0, \forall x \in S^{\perp}, y \in S$, {By the defination of *orthogonal* compliment subspace}

Also, $x \cdot z = 0, x \in S^{\perp}, z \in (S^{\perp})^{\perp}$ {By the defination of *orthogonal* compliment subspace}.

Step-5

Note that, orthogonal compliment of any given subspace is uniquely determined.

So, the orthogonal compliment of the element x is also unique.

But here, y and z are both the orthogonal compliment. Which is the contradiction.

So, y = z.

As, y and z were chosen arbitrary.

So, it is true for all the elements of $x \in S^{\perp}$, $y \in S$, $z \in (S^{\perp})^{\perp}$.

Therefore, $(S^{\perp})^{\perp} = S$.