CSE 211: Discrete Mathematics

(Due: 17/01/21)

Homework #4

Instructor: Dr. Zafeirakis Zafeirakopoulos Name: Yakup Talha Yolcu Student Id: 1801042609
Assistant: Gizem Süngü 1801042609

Problem 1 (15+15=30 points)

Consider the nonhomogeneous linear recurrence relation $a_n = 3a_{n-1} + 2^n$.

(a) Show that whether $a_n = -2^{n+1}$ is a solution of the given recurrence relation or not. Show your work step by step.

(Solution)

If we replace $a_n = -2^{n+1}$ we will get :

$$-2^{n+1} = 3 (-2^n) + 2^n$$

 $-2^{n+1} = -2^{n+1}$ we can't have a solution by this equation

(b) Find the solution with $a_0 = 1$.

(Solution)

if we replace $a_n = x$

characteristic equation = x-3 roots is x=3

my particular guess is $A2^n$ if I replace $a_n = A2^n$

$$A2^n = 3 A2^n - 1 + 2^n$$

We have A=-2

so $a_n = \alpha 3^n$ - 22^n

If we try $a_0 = 1$ we will get:

$$1=\alpha$$
-2 so α =3

 $a_n = 3 \ 3^n - 2 \ 2^n$

Problem 2 (35 points)

Solve the recurrence relation $f(n) = 4f(n-1) - 4f(n-2) + n^2$ for f(0) = 2 and f(1) = 5.

(Solution)

 $a_n = 4 \ a_{n-1} - 4 \ a_{n-2} + n^2 \text{ for } a_0 = 2 \text{ and } a_1 = 5$

Characteristic equation: $x^2 - 4x + 4 = 0$

Roots are 2 and 2 so homogenius $a_n = \alpha 2^n + \beta n 2^n$

Particular guess is : $a_n = A_2 n^2 + A_1 n + A_0$

So
$$n^2 = A_2 n^2 + A_1 n + A_0 - 4 (A_2 (n-1)^2 + A_1 (n-1) + A_0) + 4 (A_2 (n-2)^2 + A_1 (n-2) + A_0)$$

 $n^2 = A_2 n^2 + A_1 n + A_0 - 4A_2 n^2 + 8A_2 n - 4A_2 - 4 A_1 n + 4A_1 - 4A_0 + 4A_2 n^2 - 16 A_2 n + 16A_2 + 4 A_1 n - 8A_1 + 4A_0$

If we compare the n^2 's coefficients $1=A_2-4A_2+4A_2$ so $A_2=1$

If we compare n's coefficients $0 = A_1 + 8A_2 - 4A_1 - 16A_2 + 4A_1$

 $0=A_1+8-4A_1-16+4A_1$

 $8 = A_1$

If we compare the constants coefficients: $0=A_0-4A_2-4A_0+16A_2-8A_1+4A_0$

 $0=A_0-4-4A_0+16-64+4A_0$ 52= A_0

so our guess is become : $a_n = n^2 + 8n + 52$

 $a_n = \alpha 2^n + \beta n 2^n + n^2 + 8n + 52$

 α = -50 and β = 22 so a_n = (-50)2ⁿ + 22n2ⁿ + n² + 8n + 52

Problem 3 (20+15 = 35 points)

Consider the linear homogeneous recurrence relation $a_n=2a_{n-1}$ - $2a_{n-2}$.

(a) Find the characteristic roots of the recurrence relation.

(Solution) characteristic equation is:
$$x^2 - 2x + 2 = 0$$

$$\Delta = b^2$$
 - $4ac$ =- 4 j 0

$$a_n = \alpha (1-i)^n + \beta (1+i)^n$$

(b) Find the solution of the recurrence relation with $a_0 = 1$ and $a_1 = 2$.

(Solution)
$$a_n = \alpha (1-i)^n + \beta (1+i)^n$$

if we try for $a_0 = \alpha + \beta = 1$

if we try for
$$a_0 = \alpha + \beta = 1$$

if we try for
$$a_1 = \alpha(1 - i) + \beta(1 + i) = 2$$

if we replace
$$\alpha=1-\beta$$
 1- β (1-i) + β (1+i)=2

 $2\beta i=1+i$ multiply both sides with i

$$-2\beta = i - 1$$
 so $\beta = (1-i)/2$

$$\alpha = 1 - (1 - i)/2 = (1 + i)/2$$

$$\alpha = 1 - (1 - i)/2 = (1 + i)/2$$

so $a_n = \frac{1+i}{2}(1-i)^n + \frac{1-i}{2}(1+i)^n$