This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt European Patent Office

Office européen des brevets

Document AN3 Appl. No. 09/482,682

(11) EP 0 892 047 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag: 20.01.1999 Patentblatt 1999/03
- (21) Anmeldenummer: 98112470.4
- (22) Anmeldetag: 06.07.1998

(51) Int. Cl.⁶: **C12N 15/12**, C07K 14/47, A61K 48/00, G01N 33/50

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT.LV MK RO SI

(30) Priorität: 09.07.1997 DE 19729211 11.02.1998 DE 19805371 (71) Anmelder:

Hoechst Marion Roussel Deutschland GmbH 65929 Frankfurt am Main (DE)

(72) Erfinder:

- Fleckenstein, Bernhard, Prof. Dr. 91369 Wiesenthau (DE)
- Ensser, Armin, Dr. 90419 Nürnberg (DE)

(54) Humanes und murines Semaphorin L

(57) Humanes Semaphorin L(H-SemaL) und korrespondierende Semaphorine in anderen Spezies.

Gegenstand der Erfindung sind neuen Semaphorine, die sich durch eine besondere Domänenstruktur auszeichnen und deren Derivate, Nukleinsäuren (DNA, RNA, cDNA), die für diese Semaphorine kodieren und deren Derivate sowie die Verwendung derselben.

Gegenstand der vorliegenden Erfindung sind Semaphorine mit einer neuen, bisher nicht bekannten und nicht zu erwartenden Domänenstruktur, denen eine biochemische Funktion im Immunsystem zukommt (immunmodulierende Semaphorine). Die erfindungsgemäßen Semaphorine werden als Semaphorine vom Typ L (SemaL) bezeichnet. Sie enthalten ein N-terminales Signalpeptid, eine charakteristische Sema-Domäne und im C-terminalen Bereich des Proteins eine Immunglobulin-ähnliche Domäne und eine hydrophobe Domäne, die eine potentielle Transmembrandomäne darstellt.

Beschreibung

40

Humanes Semaphorin L(H-SemaL) und korrespondierende Semaphorine in anderen Spezies.

Gegenstand der Erfindung sind neue Semaphorine, die sich durch eine besondere Domänenstruktur auszeichnen und deren Derivate, Nukleinsäuren (DNA, RNA, cDNA), die für diese Semaphorine kodieren und deren Derivate sowie die Herstellung und Verwendung derselben.

Semaphorine wurden erstmals von Koldokin (Kolodkin et al. (1993) Cell 75:1389-1399) als Mitglieder einer konservierten Genfamilie beschrieben.

Inzwischen wurden die Gene bzw. Teile der Gene weiterer Semaphorine kloniert und teilweise charakterisiert. Bisher waren insgesamt 5 humane (H-Sema III, H-Sema V, H-Sema IV, H-SemaB und H-SemaE) (Koldokin et al. (1993); Roche et al. (1996) Onkogene 12:1289-1297; Sekido et al. (1996) Proc. Natl. Acad. Sci. USA 93:4120-4125; Xiang et al. (1996) Genomics 32:39-48; Hall et al. (1996) Proc. Natl. Acad. Sci. USA 39:11780-11785; Yamada et al. (1997) (GenBank Zuordnungs-Nr. AB000220)), 8 rnurine (Gene der Maus; M-Sema A bis M-SemaH) (Püschel et al. (1995) Neuron 14:941-948; Messerschmidt et al. (1995) Neuron 14:949-959; Inigaki et al. (1995) FEBS Letters 370:269-272; Adams et al. (1996) Mech. Dev. 57:33-45; Christensen et al. (1996) (Genbank Zuordnungs-Nr. Z80941, Z93948)), 5 galline (Huhn) (Collapsin-1 bis -5) (Luo et al. (1993); Luo et al. (1995) Neuron 14:1131-1140), und Gene von Ratte (R-Sema III) (Giger et al. (1996) J. Comp. Neurol. 375:378-392), Zebrafisch, Insekten (Fruchtfliege (Drosophila melanogaster: D-Sema I und D-Sema II), Käfer (Tribolium confusum: T-Sema I), Grasshüpfer (Schistocerca americana: G-Sema II)) (Kolodkin et al. (1993)), und Nematoden (C.elegans: Ce-Sema) (Roy et al. (1994) (GenBank Zuordnungs-Nr. U15667)) bekannt. Weiterhin besitzen zwei Poxviren (Vaccinia (ORF-A39) und Variola (ORFA39-homolog)) (Kolodkin et al. (1993)) sowie der Alcelaphine Herpesvirus Typ 1 (AHV-1) (AHV-Sema) (Ensser und Fieckenstein (1995) Gen. Virol. 76:1063-1067) zu Semaphorinen homologe Gene.

Einen Überblick über die bisher identifizierten Semaphorine in verschiedenen Spezies gibt Tabelle 1. In Tabelle 1 sind die Namen der Semaphorine (Spalte 1), die verwendeten Synonyme (Spalte 2), die Spezies aus der das jeweilige Semaphorin isoliert wurde (Sparte 3) sowie, soweit bekannt, Daten zur Domänenstruktur des kodierten Proteins und zur chromosomalen Lokalisation (Spalte 4 in Tabelle 1), die Zuordnungsnummer unter der die Sequenz des Gens in Gendatenbanken, z.B. in einer EST (expressed sequence tags) Datenbank, EMBL (European Molecular Biology Laboratory, Heidelberg) oder NCBI (National Center for Biotechnology Information, Maryland, USA) gespeichert ist und die entsprechende Referenz unter der diese Daten publiziert wurden (Spalte 5 in Tabelle 1), angegeben.

Alle Genprodukte (kodierte Semaphorine) der bisher bekannten Semaphorin Gene weisen ein N-terminales Signalpeptid auf, an dessen C-terminalem Ende sich eine charakteristische Sema-Domäne mit einer Länge von etwa 450 bis 500 Aminosäuren befindet Innerhalb der Sema-Domäne finden sich stark konservierte Aminosäuremotive und eine Anzahl hochkonservierter Cysteinreste. Die Genprodukte (Semaphorine) unterscheiden sich in den auf die Sema-Domäne folgenden C-terminalen Sequenzen, die aus einer oder mehreren Domänen aufgebaut sind. Sie weisen beispielsweise in diesen C-terminalen Aminosäuresequenzen Transmembrandomänen (TM), Immunoglobulin-ähnliche Domänen (Ig) (konstanter Teil des Immunoglobulins), zytoplasmatische Sequenzen (CP), Prozessierungssignale (P) (beispielsweise mit der Konsensussequenz (RXR), wobei R für die Aminosäure Arginin und X für eine beliebige Aminosäure steht) und/oder hydrophile C-Termini (HPC) auf. Auf der Basis der unterschiedlichen Domänenstruktur im C-Terminus lassen sich die bisher bekannten Semaphorine in 5 verschiedene Untergruppen einteilen (I bis V):

Sezerniert, ohne weitere Domäne (z.B. ORF-A49)

II lg Sezerniert (ohne Transmembrandomäne) (z.B. AHV-Sema)

III lg, TM, CP Membranverankert mit zytoplasmatischer Sequenz (z.B. CD100)

IV lg, (P), HPCSezerniert mit hydrophilem C-Terminus (z.B. H-Sema III, M-SemaD, Collapsin-1)

45 V lg, TM, CP Membranverankert mit C-terminalem 7 Thrombospondin-Motiv (z.B. M-SemaF und G)

Ein Rezeptor oder extrazellulärer Ligand für Semaphorine wurde bisher nicht beschrieben. Im Zusamrnenhang mit Semaphorin-vermittelten Effekten wurden intrazelluläre, heterotrimere GTP-bindende Proteinkomplexe beschrieben. Als ein Bestandteil dieser Proteinkomplexe wurden bei Hühnern sogenannte CRMP-Proteine (Collapsin response mediator protein) identifiziert, welche vermutlich Bestandteil der Semaphorin-induzierten intrazellulären Signalkaskade sind (Goshima et al. (1995) Nalure 376: 509-514). Das CRMP62 beispielsweise besitz: Homologie zu unc-33, einem für das gerichtete Axonwachstum essentiellen Nemaloden-Protein. Ein humanes Protein mit 98% Aminosäure-Identität zu CRMP62 ist ebenfalls bekannt (Hamajima et al. (1996) Gene 180: 157-163. In Ratten wurden ebenfalls mehrere CRMP-verwandte Gene beschrieben (Wang et al. (1996) Neurosci. 16: 6197-6207.

Die sezernierten oder transmembrahen Semaphorine vermitteln repulsive Signale für wachsende Nervenknospen. Sie spielen eine Rolle bei der Entwicklung des zentralen Nervensystems (ZNS) und werden vor allem in Muskel- und Nervengewebe exprimiert (Koldokin et al. (1993); Luo et al. (1993) Cell 75:217-227.

Außer im ZNS konnte eine deutliche Expression von M-SemaG auch auf Zellen des lymphatischen und hämato-

poetischen Systems beobachtet werden, im Gegensatz zum nahe verwandten M-SemaF (Furuyima et al. (1996) J. Biol. Chem. 271: 33376-33381).

Kürzlich wurden zwei weitere humane Semaphorine identifiziert, H-Sema IV und H-Sema V und zwar in einer Region auf Chromosom 3p21.3, deren Deletion mit verschiedenen Formen von Bronchialkarzinomen assoziiert ist H-Sema IV {Roche et al. (1996), Xiang et al. (1996), Sekido et al. (1996)} ist auf Aminosäureebene etwa zu 50% identisch mit M-SemaE, während H-Sema V {Sekido et al. (1996)} das direkte Homolog zu M-Sema-A ist (86% Aminosäureidentität). Da diese Gene (H-Sema IV und V) im Rahmen von DNA-Sequenzierungs-Projekten der deletierten 3p21.3 Loci gefunden wurden, ist die komplexe Intron-Exon-Struktur dieser beiden Gene bekannt. Die beiden Gene werden in verschiedenen neuronalen und nicht neuronalen Geweben exprimiert.

Ebenfalls erst vor kurzem wurde das zelluläre Oberflächenmolekül CD100 (human), exprimiert und induziert auf aktivierten T-Zellen, als Semaphorin identifiziert (ebenfalls in Tabelle 1 aufgeführt). Es unterstützt die Interaktion mit B-Zellen über den Rezeptor CD40 und den entsprechenden Liganden CD40L. CD100 ist ein membranverankertes Glykoprotein-Dimer von 150kd (Kilodalton). Es wurde eine Assoziation des intrazytoplasmatischen C-Terminus von CD100 mit einer noch unbekannten Kinase beschrieben {Hall et al. (1996)}. Damit ist CD100 das erste und bisher einzige Semaphorin, dessen Expression in Zellen des Immunsystems nachgewiesen werden konnte.

10

25

35

45

Unter der Fragestellung "Transformierende Gene von Rhadinoviren" wurde das komplette Genom des Alcelaphinen Herpesvirus Typ 1 (AHV-1) kloniert und sequenziert {Ensser et al. (1995)}. AHV-1 ist der Erreger des bösartigen Katarrhalfiebers, einer mit einem lymphoproliferativen Syndrom einhergehenden, meist fatalen Erkrankung verschiedener Wiederkäuer. Bei der Analyse wurde an einem Ende des viralen Genoms ein offener Leserahmen mit entfernter, aber signifikanter Homologie zu einem Gen von Vacciniavirus (ORF-A39 entspricht VAC-A39 in Ensser et al. (1995)) J. Gen. Virol. 76:1063-1067), welches der Genfamilie der Semaphorine zugerechnet wurde, gefunden. Während das AHV-1 Semaphorin (AHV-Sema) eine gut konservierte Semaphorin-Struktur besitzt, sind die Poxvirus-Gene (ORF-A39 und ORF-A39-homolog, siehe Tabelle 1) C-terminal verkürzt, d.h. bei ihnen ist die konservierte Sema-Domäne nur unvollständig vorhanden.

Ein Datenbankvergleich des gefundenen AHV-Sema mit dbEST (EST (expressed sequence tags)-Datenbank (db)) lieferte jeweils 2 EST-Sequenzen von 2 unabhängigen cDNA-Klonen aus humaner Plazenta (Zuordnungsnummern H02902, H03806 (Klon 151129), Zuordnungsnummern R33439 und R33537 (Klon 135941)). Diese wiesen deutlich höhere Homologie zum AHV-1 Semaphorin auf, als zu den bis dahin beschriebenen neuronalen Semaphorinen.

Gegenstand der vorliegenden Erfindung sind Semaphorine mit einer neuen, bisher nicht bekannten und nicht zu erwartenden Domänenstruktur, denen eine biochemische Funktion im Immunsystem zukommt (immunmodulierende Semaphorine). Die erfindungsgemäßen Semaphorine werden als Semaphorine vom Typ L (SemaL) bezeichnet. Sie enthalten ein N-terminales Signalpeptid, eine charakteristische Sema-Domäne und im C-terminalen Bereich des Proteins eine Immunglobulinähnliche Domäne und eine hydrophobe Domäne, die eine potentielle Transmembrandomäne darstellt

Die Aminosäure-Sequenz des Signalpeptids kann weniger als 70, vorzugsweise weniger als 60 Aminosäuren und mehr als 20, vorzugsweise mehr als 30 Aminosäuren aufweisen, besonders bevorzugt ist eine Länge von etwa 40 bis 50 Aminosäuren. In einer speziellen Ausführungsform der Erfindung hat das Signalpeptid eine Länge von 44 Aminosäuren, d.h. zwischen den Aminosäuren 44 und 45 befindet sich eine Spaltstelle für eine Signalpeptidase.

Die Sema-Domäne kann eine Länge von 300 bis 700 oder mehr, vorzugsweise von etwa 400 bis 600 Aminosäuren aufweisen. Bevorzugt sind Sema-Domänen mit einer Länge von 450 bis 550 Aminosäuren, vorzugsweise von etwa 500 Aminosäuren. In einer besonderen Ausführungsform der Erfindung schließt sich die Sema-Domäne an das Signalpeptid an, wobei sich die Sema-Domäne vorzugsweise bis zur Aminosäure 545 erstreckt.

Die Immunglobulin-ähnliche Domäne kann eine Länge von etwa 30 bis 110 oder mehr Aminosäuren aufweisen, bevorzugt sind Längen zwischen 50 und 90, besonders bevorzugt etwa 70 Aminosäuren.

Die Transrnembrandomäne kann eine Länge von etwa 10 bis 35, vorzugsweise von etwa 15 bis 30, besonders bevorzugt von etwa 20 bis 25 Aminosäuren aufweisen.

Gegenstand der Erfindung sind Semaphorine vom Typ L aus verschieden Spezies, insbesondere aus Wirbeltieren, beispielsweise aus Vögeln und/oder Fischen, vorzugsweise aus Säugetieren, beispielsweise aus Primaten, Ratte, Kanninchen, Hund, Katze, Schaf, Ziege, Kuh, Pferd, Schwein, besonders bevorzugt aus Mensch und Maus. Gegenstand der Erfindung sind auch entsprechende Semaphorine aus Mikroorganismen, insbesondere aus pathogenen Mikroorganismen, beispielsweise aus Bakterien, Hefen und/oder Viren, z.B. aus Retroviren, insbesondere aus humanpathogenen Mikroorganismen.

Eine Ausführungsform der Erfindung ist ein entsprechendes humanes Semaphorin (H-SemaL), das ein Signalpeptid, eine Sema-Domäne, eine Immunglobulin-ähnliche Domäne und eine Transmembrandomäne aufweist Eine spezielle Ausführungsform ist das Semaphorin, das durch die Aminosäuresequenz gemäß Tabelle 4 gegeben ist.

Eine weitere Ausführungsform der Erfindung sind korrespondierende Semaphorine in anderen Spezies, die im Bereich der Sema-Domäne eine Aminosäureidentität größer als 40 %, vorzugsweise größer 50 %, besonders bevorzugt größer 60 % im Bezug auf die Sema-Domäne von H-SemaL (Aminosäuren 45 bis 545 der Sequenz in Tabelle 4)

aufweisen. Aus näher verwandten Spezies (z.B. Primaten, Maus) können die korrespondierenden Semaphorine durchaus Aminosäureidentitäten größer als 70%, vorzugsweise größer als 80 %, besonders bevorzugt größer als 90 % aufweisen. Prozentuale Homologien können beispielsweise mit dem Programm GAP (GCG Programm-Paket, Genetic Computer Group (1991)) bestimmt bzw. berechnet werden.

Eine derartige Ausführungsform der Erfindung ist ein korrespondierendes Semaphorin der Maus (murines Semaphorin (M-SemaL)). Beispielsweise enthält dieses die partielle Aminosäuresequenz gemäß Tabelle 5 (murines Semaphorin (M-SemaL)).

5

25

50

Die Erfindung betrifft auch korrespondierende Semaphorine, die eine Aminosäureidentität (über die Gesamtlänge der Aminosäuresequenz des Protein betrachtet) von nur etwa 15 bis 20% bei wenig verwandten Spezies (phylogenetisch weit voneinander entfernt), vorzugsweise 25 bis 30%, besonders bevorzugt 35 bis 40 % oder eine höhere Identität im Bezug auf die gesamte Aminosäuresequenz von H-SemaL gemäß Tabelle 4 aufweisen.

Die Gene, die für Semaphorine von Typ L kodieren, weisen eine komplexe Exon-Intron-Struktur auf. Diese Gene können beispielsweise zwischen 10 und 20 Exons, vorzugsweise etwa 11 bis 18, besonders bevorzugt 12 bis 16 Exons und eine entsprechende Anzahl von Introns aufweisen. Sie können aber auch die gleiche Anzahl Exons und Introns aufweisen wie das Gen von H-SemaL (13 oder 15 Exons, vorzugsweise 14 Exons). Eine besondere Ausführungsform der Erfindung betrifft das Gen von H-SemaL. Dieses Gen hat vorzugsweise eine Länge von 8888 bis 10000 oder mehr Nukleotiden. Das humane Semaphorin-Gen enthält vorzugsweise die Nukleotid-Sequenz, die in Tabelle 14 gegeben ist oder die Nukleotidsequenz, die in der Datenbank GenBank[®] unter der Zugangsnummer AF030697 hinterlegt wurde. Diese Nukleotidsequenzen enthalten mindestens 13 Introns. Darüber hinaus weist das humane Semaphorin-Gen am 5'-Ende einen zusätzlichen Sequenzbereich auf. Dieser Bereich enthält gegebenfalls weitere kodierende und nichkodierende Sequenzen, z.B. ein oder zwei weitere introns bzw. Exons.

Die Versuche zur chromosomalen Lokalisation des humanen Semaphorins vom Typ L ergaben, daß das entsprechende Gen an Position 15q22.3-23 lokalisiert ist Entsprechend wurde das Gen für M-SemaL an Position 9A3.3-B lokalisiert.

Als Folge der komplexen Intron-Exon Struktur kann das Primärtranskript der Semaphorin mRNA unterschiedlich gespliced werden, wodurch unterschiedliche Splicevarianten der Semaphorine entstehen. Die aus diesen Splicevarianten translatierten Proteine sind Derivate der erfindungsgemäßen Semaphorine. Sie entsprechen in ihrer Aminosäure-sequenz und auch weitgehend in ihrer Domänenstruktur den beschriebenen, erfindungsgemäßen Semaphorinen vom Typ L, sind jedoch gegebenenfalls gegenüber diesen verkürzt. Beispielsweise können Splicevarianten, denen die Transmembrandomäne ganz oder teilweise fehlt, gebildet werden. Ein Semaphorin-Derivat, welches keine oder keine vollständige Transmembrandomäne, aber ein Signalpeptid enthält, kann sezerniert werden und auf diese Weise außerhalb der Zelle lokal oder auch über größere Entfernungen wirken, beispielsweise auf andere Zellen. Eine andere Splicevariante kann beispielsweise keine Sequenz mehr enthalten, die für ein Signalpeptid kodiert und gegebenfalls auch keine Sequenz, die für eine für hydrophobe Aminosäuresequenz kodiert, die eine potentielle Transmembrandomäne darstellt. Eine Folge wäre, daß dieses Semaphorin-Derivat weder in die Membran eingebaut, noch sezerniert wird (es sei denn über sekretorische Vesikel). Ein solches Semaphorin-Derivat kann an intrazellulären Prozessen, beispielsweise an Signaltransduktionsprozessen beteiligt sein. Auf diese Weise können mit dem gleichen Grundmoleküle (Semaphorine vom Typ L) und den davon abgeleiteten Derivaten (beispielsweise Splicevarianten) vielfälltige intra- und extrazelluläre Prozesse reguliert und/oder aufeinander abgestimmt werden.

Eine besondere Ausführungsform der Erfindung betrifft: Semaphorin-Derivate, die sich von den erfindungsgemäßen Semaphorinen vom Typ L ableiten, die aber keine oder keine vollständige Transmembrandomäne enthalten. Eine weitere Ausführungsform der Erfindung betrifft Semaphorin-Derivate, die sich von den erfindungsgemäßen Semaphorinen vom Typ L ableiten, die aber kein Signalpeptid enthalten.

Das Signalpeptid kann auch posttranslational abgespalten werden. Dadurch wird ein membranständiges (mit TM-Domäne) oder ein sezerniertes (Splicevariante ohne TM-Domäne) Semaphorin-Derivat mit verkürzter Domänenstruktur gebildet. Ein auf diese Weise posttranslational prozessiertes Semaphorin-Derivat enthält nur noch Sema-Domäne, Ig-Domäne und gegebenfalls Transmembrandomäne. Eine Signalpeptidschnittstelle kann beispielsweise direkt am Ende des Signalpeptids liegen, sie kann z.B. 40 bis 50 Aminosäuren oder weiter vom Aminoterminus entfernt lokalisiert sein

Ein "verkürztes" (d.h. weniger Domänen enthaltendes) Semaphorin L-Derivat ist von anderen Semaphorinen, die sich nicht von den Semaphorinen vom Typ L ableiten, dadurch zu unterscheiden, daß es eine sehr große (> 90 %) Aminosäureidentität oder eine identische Aminosäuresequenz mit den Semaphorinen vom Typ L in den vorhandenen Domänen aufweist.

Die erfindungsgemäßen Semaphorine können auch in anderer Weise posttranslational modifiziert sein. Beispielsweise können sie ein-, zwei-, drei-, vier- fünf, sechs-, sieben-, acht-, neun- zehn- oder mehrfach glykosyliert (Nund/oder O-glykosyliert) vorliegen. Die Aminosäuresequenzen der Semaphorine können dann ebenso viele oder mehr Konsensussequenzen für potentielle Glykosylierungsstellen aufweisen, vorzugsweise fünf derartige Stellen. Eine Ausführungsform der Erfindung betrifft Semaphorine, bei denen die Glykosylierungsstellen an Positionen lokalisiert sind, die den Positionen 105, 157, 258, 330 und 602 der H-SemaL Aminosäuresequenz entsprechen (Tabelle 4).

Darüber hinaus können die Semaphorine in Form ihrer phosphorylierten Derivate vorliegen. Semaphorine können die Substrate unterschiedlicher Kinasen sein, beispielsweise können die Aminosäuresequenzen Konsensussequenzen für Protein Kinase C, Tyrosin Kinase und/oder Kreatin Kinasen aufweisen. Weiterhin können die Aminosäuresequenzen der Semaphorine Konsensussequenzen für potentielle Myristylierungsstellen aufweisen. An diesen Stellen können entsprechende Semaphorin-Derivate mit Myristinsäure verestert sein.

Die erfindungsgemäßen Semaphorine vom Typ L und deren Derivate können in Form von Monomeren, Dimeren und/oder Multimeren vorliegen, beispielsweise können zwei oder mehr Semaphorine bzw. deren Derivate über intermolekulare Disulfidbrücken miteinander verbunden sein. Darüber hinaus können sich intramolekulare Disulfidbrücken ausbilden.

Derivate der erfindungsgemäßen Semaphorine sind weiterhin Fusionsproteine. Ein solches Fusionsprotein enthält einerseits ein Semaphorin vom Typ L oder Teile desselben und darüber hinaus ein weiteres Peptid oder Protein bzw. ein Teil desselben. Peptide oder Proteine bzw. Teile derselben können z.B. Epitope-Tags (z.B. His-Tag (6xHistidin), Myc-Tag, flu-Tag), die z.B. zur Aufreinigung der Fusionsproteine verwendet werden können, oder solche, die zur Markierung der Fusionsproteine verwendet werden können, z.B. GFP (green fluorescent protein), sein. Beispiele für Derivate der Semaphorine vom Typ L sind z. B. durch die in den Beispielen beschriebenen Konstrukte gegeben. Die Sequenzen dieser Konstrukte können aus den Tabellen 7 bis 15 gegebenenfalls unter Berücksichtigung der Annotationen zu den Plasmiden entnommen werden.

Weiterer Gegenstand der Erfindung sind Nukleinsäure-Sequenzen, vorzugsweise DNA- und RNA-Sequenzen, die für die erfindungsgemäßen Semaphorine vom Typ L und/oder deren Derivate kodieren, beispielsweise die entsprechenden Gene, die unterschiedlichen Splicevarianten der mRNA, die dazu korrespondierenden cDNAs sowie deren Derivate, z.B. Salze der DNA bzw. RNA Derivate im Sinne der Erfindungen sind Sequenzen oder Teile davon, die z.B. mit molekularbiologischen Methoden verändert und an die jeweiligen Anforderungen angepaßt werden, beispielsweise verkürzte Gene oder Teile der Gene (z. B. Promotorsequenzen, Terminatorsequenzen), cDNAs oder Chimäre derselben, Konstrukte für Expressionen und Klonierungen und deren Salze.

Eine Ausführungsforrn betrifft die genomischen Sequenzen (Gene) der Semaphorine vom Typ L. Die Erfindung betrifft die Intron- und Exon-Sequenzen und genregulatorische Sequenzen, beispielsweise Promotor-, Enhancer- und Silencer-Sequenzen.

Ein Gegenstand dieser Ausführungsform ist das Gen von H-SemaL bzw. dessen Derivate. Ein Gegenstand der Erfindung ist ein Gen, das die Nukleotidsequenz, die in Tabelle 14 gegeben ist, enthält. Ein weiterer Gegenstand der Erfindung ist das Gen, das die Nukleotidsequenz, die in der Datenbank GenBank[®] unter der Zugangsnummer AF030697 hinterlegt ist, enthält.

Ein weiterer Gegenstand dieser Ausführungsform ist das Gen von M-SemaL bzw. dessen Derivate.

Ein weiterer Gegenstand der Erfindung ist die cDNA von H-SemaL oder deren Derivate (z. B. Teile der cDNA). Eine besondere Ausführungsform ist die cDNA von H-SemaL gemäß der Nukleotidsequenz in Tabelle 2. Ein weiterer Gegenstand der Erfindung ist die cDNA von H-SemaL, die in der Datenbank GenBank[®] unter der Zugangsnummer AF030698 hinterlegt ist Gegenstand der Erfindung sind auch die zu diesen cDNAs korrespondierenden mRNAs bzw. Teile derselben.

Ein weiterer Gegenstand der Erfindung ist die cDNA von M-SemaL oder deren Derivate (z. B. Teile der cDNA). Eine besondere Ausführungsform ist die partielle cDNA-Sequenz von M-SemaL gemäß Tabelle 3 sowie cDNA-Sequenzen, die diese partielle cDNA-Sequenz enthalten. Eine weitere Ausführungsform der Erfindung betrifft die cDNA von M-SemaL, die in der Datenbank GenBank unter der Zugangsnummer AF030699 hinterlegt ist. Gegenstand der Erfindung sind auch die zu diesen cDNAs korrespondierenden mRNAs bzw. Teile derselben.

Die Erfindung beinhaltet auch Allele und/oder individuelle Ausprägungsformen der Gene/mRNAs/cDNAs, die sich nur geringfügig von den hier beschriebenen Semaphorin-Sequenzen unterscheiden und für ein identisches oder nur geringfügig verändertes Protein (Abweichung in der Aminosäure-Sequenz kleiner oder gleich 10%) kodieren (weiteres Beispiel für Derivate). Weitere Beispiele für die Derivate sind durch die in den Beispielen angegebenen Konstrukte gegeben. Die Sequenzen dieser Konstrukte sind in den Tabellen 7 bis 14 dargestellt und können unter Berücksichtigung der Annotation für Plasmide interpretiert werden.

Ein weiterer Gegenstand der Erfindung sind Plasmide, die DNA, die für die Semaphorine des Typs L bzw. deren Derivate kodiert, enthalten. Solche Plasmide können beispielsweise Plasmide mit hohen Replikationsraten sein, die für eine Amplifikation der DNA, z.B. in E. coli geeignet sind.

50

Eine spezielle Ausführungsform sind Expressionsplasmide, mit denen die Semaphorine bzw. Teile davon oder deren Derivate in prokaryoten und/oder eukaryoten Expressions-Systemen exprimiert werden können. Es sind sowohl Expressionsplasmide die konstitutive als auch solche, die induzierbare Promotoren enthalten, geeignet.

Gegenstand der Erfindung sind auch Verfahren zur Herstellung von Nukleinsäuren₁ die für Semaphorine vom Typ L oder Derivate derselben kodieren.

Beispielsweise können diese Nukleinsäuren, z B. DNA oder RNA auf chemischem Weg synthetisiert werden. Insbeson-

dere können diese Nukleinsäuren, z. B. die entsprechenden Gene oder cDNAs bzw. Teile derselben mit der PCR unter Verwendung von spezifischen Primern und geeignetem Ausgangsmaterial als Template (z. B. cDNA aus einem geeigneten Gewebe oder genomische DNA) amplifiziert werden.

Ein konkretes Verfahren zur Herstellung von Semophorin L cDNA bzw. des H SemaL Gens ist in den Beispielen beschrieben.

Die Erfindung betrifft auch Verfahren zur Herstellung der Semaphorine vom Typ L. Beispielsweise kann ein Semaphorin L oder ein Derivat desselben dadurch hergestellt werden, daß eine entsprechende Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L oder ein Derivat desselben kodiert, in einen Expressionsvektor kloniert und mit diesem rekombinanten Vektor eine geeignete Zelle transformiert wird. Es können beispielsweise prokaryote oder eukaryote Zellen verwendet werden. Die Semaphorine vom Typ L oder deren Derivate können gegebenenfalls auch auf chemischem Weg hergestellt werden.

Darüber hinaus können die Semaphorine vom Typ L bzw. deren Derivate als Fusionsproteine exprimiert werden, beispielsweise mit Proteinen oder Peptiden, die einen Nachweis des exprimierten Fusionsproteins erlauben, z.B. als Fusionsprotein mit GFP (green fluorescent protein). Die Semaphorine können auch als Fusionsproteine mit einem, zwei, drei oder mehreren Epitop-Tags, beispielsweise mit Myc- und/oder His-(6xHistidin) und/oder flu-Tags exprimiert werden. Entsprechend können Plasmide verwendet oder hergestellt werden, die DNA-Sequenzen enthalten, die für diese Fusionsproteine kodieren. Beispielsweise können Semaphorin kodierende Sequenzen in Plasmide kloniert werden, die DNA-Sequenzen enthalten, die für GFP und/oder Epitop-Tags, z.B. Myc-Tag, His-Tag, flu-Tag kodieren. Konkrete Beispiele dafür sind durch die Beispiele und die in den Tabellen aufgeführten Sequenzen ggfs. unter Zuhilfenahme der Annotation zu den Plasmiden gegeben.

Ein weiterer Gegenstand der Erfindung sind Antikörper, die spezifisch die Semaphorine vom Typ L, deren Derivate oder Teile davon binden bzw. erkennen. Dies können beispielsweise polyklonale oder monoklonale Antikörper, die z.B. in Maus, Kaninchen, Ziege, Schaf, Huhn usw. hergestellt werden können, sein.

Eine besondere Ausführungsforrn dieses Gegenstandes der Erfindung sind Antikörper, die gegen die Epitope die den Aminosäuresequenzen von Position 179 bis 378 bzw. 480 bis 666 der H-SemaL Sequenz gemäß Tabelle 4 entsprechen, gerichtet sind. Die Erfindung betrifft auch ein Verfahren zur Herstellung von spezifischen Anti-Semaphorin L Antikörpern, wobei für die Herstellung Antigene verwendet werden, die genannten Epitope enthalten.

Die Erfindung betrifft auch Verfahren zur Herstellung der Antikörper, vorzugsweise wird dazu ein Fusionsprotein, bestehend aus einem charakteristischen Semaphorin Epitop und einem Epilop-Tag, welches für die anschließende Aufreinigung des rekombinanten Fusionsproteins verwendet werden kann. Das aufgereinigte Fusionsprotein kann anschließend für die Immunisierung verwendet werden. Zur Herstellung des rekombinanten Fusionsproteins wird ein entsprechender rekombinanter Expressionsvektor hergestellt und mit diesem eine geeignete Zelle transformiert. Aus dieser Zelle kann das rekombinante Fusionsprotein isoliert werden. Die Durchführung kann beispielsweise wie in Beispiel 8 beschrieben erfolgen.

Diese Antikörper können beispielsweise zur Aufreinigung der entsprechenden Semaphorine, z.B. von H-Semalund dessen Derivaten z.B. über Affinitätssäulen oder zum immunologischen Nachweis der Proteine, z.B. im ELISA, im Western-Blot und/oder in der Immunhistochemie verwendet werden. Die Antikörper können auch zur Analyse der Expression von H-Semal, z.B. in verschiedenen Zelltypen bzw. Zellinien verwendet werden.

Die cDNA von H-SemaL hat eine Länge von 2636 Nukleotiden (Tabelle 2). Das Genprodukt der H-SemaL-cDNA hat eine Länge von etwa 666 Aminosäuren (Tabelle 4) und weist die typische Domänenstruktur eines Semaphorins vom Typ L auf. Das Genprodukt weist ein N-terminales Signalpeptid (Aminosäuren 1 bis 44), Sema-Domäne (Aminosäure 45 bis ungefähr Aminosäure 545) und Ig (Immunglobulin)-Domäne (etwa Aminosäuren 550 bis 620) sowie am C-terminalen Ende eine hydrophobe Aminosäuresequenz auf, die eine potentielle Transmembrandomäne darstellt. Diese Domänen-Struktur wurde bisher für Semaphorine noch nie beschrieben. Es handelt sich um ein membranassoziiertes, wahrscheinlich an der Zelloberfläche lokalisiertes Glykoprotein einer neuen Untergruppe. Aufgrund dieser bisher nicht bekannten Domänenstruktur können die Semaphorine nun in VI Untergruppen eingeteilt werden:

```
Sezerniert, ohne weitere Domäne (z.B. ORF-A49)

II lg Sezerniert (ohne Transmembrandomäne) (z.B. AHV-Sema)

III lg, TM, CP Membranverankert mit zytoplasmatischer Sequenz (z.B. CD100)

IV lg, (P), HPCSezerniert mit hydrophilem C-Terminus (z.B. H-Sema III, M-SemaD, Collapsin-1)

V lg, TM, CP Membranverankert mit C-terminalem 7 Thrombospondin-Motiv (z.B. M-Sema-F und G)

VI lg, TM Membranverankert (z.B. H-SemaL, M-SemaL)
```

55

Die nichtglykosylierte, nichtprozessierte Form von H-SemaL hat ein errechnetes Molekulargwicht von etwa 74,8 kD (74823 Dalton) (berechnet mit PeptideSort, GCG-Programm-Paket). Der Isoelektrische Punkt berechnet sich zu pH= 7.56.

Eine mögliche Signalpeptid-Schnittstelle liegt zwischen den Aminosäuren 44 und 45 (Tabelle 3; berechnet mit SignalP

(http://www.cbs.dtu.dk/services/Signal P), einem auf neuronalen Netzwerken basierenden Programm zur Analyse von Signalsequenzen (Nielsen H. et al. (1997) Protein Engineering 10:1-6}). Dies ergibt für das prozessierte Protein (ohne Signalpeptid) ein Molekulargewicht (MW) von 70,3 kD (70323 Dalton) und einen Isoelektrischen Punkt von pH=7.01.

Die genomische Struktur ist ebenfalls weitgehend geklärt. Das H-SemaL-Gen weist 13 oder 15 oder mehr Exons, vorzugsweise 14 Exons und 12 oder 14 Introns, vorzugsweise 13 Introns auf. Aufgrund dieser komplexen Exon-Intron-Struktur sind unterschiedliche Splice-Varianten möglich. Die mRNA des transkribierten H-SemaL-Gens findet sich im Northern-Blot vor allem in Placenta, Keimdrüsen, Thymus und Milz. Es wurde keine mRNA in neuronalem Gewebe oder in Muskelgewebe nachgewiesen. Ein Hinweis auf eine spezifisch regulierte Expression in Endothelzellen liegt vor.

Durch alternatives Splicing können auch Formen von H-SemaL mit intrazytoplasmatischen Sequenzen entstehen, die eine Rolle in der intrazellulären Signaltransduktion spielen, ähnlich wie z.B. bei CD100.

Ebenfalls möglich wären durch alternatives Splicing entstehende, sezernierte Formen von H-SemaL, analog zum viralen AHV-Sema.

Nukleotid- und Aminosäuresequenzanalysen wurden mit Hilfe des GCG Programm-Pakets (Genetics Computer Group (1991) Program manual for the GCG package, version 7, 575 Science Drive, Wisconsin, USA 53711), FASTA (Pearson und Lipman (1988) Proc. Natl. Acad. Sci. 85, 2444-2448) und BLAST-Program (Gish und States (1993) Nat. Genet.3, 266-272; Altschul et al. (1990) J. Mol. Biol. 215, 403-410) durchgeführt. Diese Programme wurden auch für Sequenzvergleiche mit GenBank (Version 102.0) und Swiss Prof (Version 34.0) verwendet.

Posttranslationale Modifikationen wie Glykosylierung und Myristylierung von H-SemaL sind ebenfalls möglich. Konsensus-Sequenzen für N-Glykosylierungsstellen wurden mit Hilfe des Programms Prosite (GCG Programm-Paket) an den Positionen 105, 157, 258, 330, 602 der Aminosäuresequenz von H-SemaL (gemäß Tabelle 4) gefunden, solche für Myristylierung an den Positionen 114, 139, 271, 498, 499, 502, 654 (Konsensus-Sequenz: G~(E. D. R. K. H. P. F. Y. W) x (S, T, A,G, C, N)~(P)). Darüber hinaus enthält die Aminosäuresequenz von H-SemaL mehrere Konsensus-Sequenzen für potentielle Phosphorylierungsstellen durch unterschiedliche Kinasen. Deshalb kann davon ausgegangen werden, daß H-SemaL das Substrat unterschiedlicher Kinasen sein kann, z.B. Phosphorylierungsstellen für Kreatin-Kinase 2, Protein-Kinase C und Tyrosin-Kinase.

Vorausgesagte Kreatin-Kinase 2-Phosphorylierungs-Stellen (Konsensussequenz Ck2: (S,T)x2(D,E)) (Prosite, GCG) an den Positionen 119, 131, 173, 338, 419, 481 der Aminosäuresequenz. Vorausgesagte Protein-Kinase-C-Phosphorylierungs-Stellen (Konsensussequenz PkC: (S,T)x(R,K)) (Prosite, GCG) an den Positionen 107, 115, 190, 296, 350, 431, 524, 576 der Aminosäuresequenz. Vorausgesagte Tyrosin-Kinase-Phosphorylierungs-Stelle (Konsensussequenz: (R,K)x{2,3}(D,E)x{2,3}Y) (Prosite GCG) an Position 205 der Aminosäuresequenz. Die Konsensussequenzen sind im Einbuchstabencode für Aminosäuren angegeben.

Ein für Integrine charakteristisches "RGD"-Motiv (Arginin-Glycin-Asparaginsäure) findet sich an Position 267. Die Glykosylierungsstellen sind gut konserviert zwischen viralem AHV-Sema, H-SemaL und (soweit bekannt) M-Semal

Eine Di- oder Multimerisierung von H-SemaL ist möglich und wurde bei anderen Semaphorinen wie CD100 beschrieben {Hall et al. (1996)}. Das CD100 Molekül ist ebenfalls ein membranverankertes Glykoprotein-Dimer von 150kd. CD100 ist jedoch nicht nahe verwandt mit dem erfindungsgemäßen humanen Semaphorin (H-SemaL).

35

Die partielle cDNA-Sequenz von M-SemaL hat eine Länge von 1195 Nukleotiden. Diese Sequenz kodiert für ein Protein mit 394 Aminosäuren. Diese 394 Aminosäuren entsprechen den Aminosäuren 1 bis 396 von H-SemaL. Das Signalpeptid im M-SemaL ersteckt sich über die Aminosäuren 1 bis 44 (genau wie im H-SemaL). Die Sema-Domäne beginnt bei der Aminosäure 45 und erstreckt sich bis zum Ende bzw. wahrscheinlich über das Ende der Sequenz gemäß Tabelle 4 hinaus.

Multiple Alignments wurden mit Hilfe des Programms Clustal W (Thompson et al. (1994)) durchgeführt Diese Alignments wurden manuell weiterbearbeitet mit Hilfe von SEAVIEW (Galtier et al. (1996) Comput Appl. Biosci 12, 543-548). Die phylogenetischen Entfernungen wurden mit Clustal W (Thompson et al. (1994)) bestimmt.

Ein Vergleich der Proteinsequenzen der bekannten und der neuen Semaphorine und eine phylogenetische Analyse dieser Sequenzen zeigt, daß sich die Gene entsprechend ihrer phylogenetischen Verwandschalt einteilen lassen. Hier fließt natürlich die C-terminale Domänenstruktur der entsprechenden Semaphorin-Subtypen als entscheidender Faktor mit ein, weshalb Semaphorine der gleichen Untergruppen in der Regel auch phylogenetisch näher verwandt sind, als Semaphorine unterschiedlicher Untergruppen. Einfluß hat auch, aus welcher Spezies das Semaphorin isoliert wurde, d.h. ob die entsprechenden Spezies phylogenetisch nahe miteinander verwandt sind oder nicht.

Eine phylogenetische Analyse (vergl. Figur 3) der bekannten Semaphorin Aminosäuresequenzen (vollständige Sequenzen und/oder Teilsequenzen, wobei die Aminosäuresequenzen für H-SemaL und M-SemaL gemäß den Tabellen 4 und 5 verwendet wurden, für alle anderen Sequenzen, die unter den Zugangsnummern gespeicherten Sequenzen bzw. die von diesen Sequenzen abgeleiteten Aminosäuresequenzen)) mittels des Programms CLUSTALW (Thompson J.D. et al. (1994) Nucleic Acids Res. 22:4673-4680) zeigt, daß die Aminosäuresequenzen von H-SemaL und M-SemaL phylogenetisch nahe miteinander verwandt sind und eine eigene phylogenetische Gruppe bilden. H-SemaL und M-SemaL wiederum sind phylogenetisch am nächsten verwandt mit AHV-Sema und Vac-A39. Sie sind

untereinander deutlich näher verwandt, als mit irgendeinem anderen bisher bekannten Semaphorin. Die Analyse zeigt weiterhin, daß auch andere Semaphorine phylogenetisch nahe miteinander verwandt sind und eigene Gruppen innerhalb der Semaphorine bilden. Beispielsweise fallen die Semaphorine, die sezerniert werden, z.B. H-Sema III, IV, V, und E in eine phylogenetische Gruppe. Zu dieser Subfamilie gehören auch deren Homologe in anderen Spezies, während das humane (transmembrane) CD100 mit dem entsprechenden Maus-Homologen (M-Sema G2) und mit Collapsin-4 in eine phylogenetische Gruppe fällt.

Im Bezug auf die gesamten Aminosäuresequenzen liegen die beobachteten Homologien innerhalb der phylogenetischen Gruppen zwischen etwa 90% und 80% Aminosäureidentität im Bezug auf sehr nahe verwandte Gene wie z.B. H- und M-SemaE oder -III/D und etwas weniger als 40% bei wenig verwandten Genen der Semaphorine. Innerhalb der Sema-Domäne liegt die beobachtete Aminosäureidentität um einige Prozent höher, und durch ihren großen Anteil am Gesamtprotein (50-80% des Proteins gehören zur Sema-Domäne) der Aminosäuresequenz beinflußt diese wesentlich die Gesamtidentität.

H-SemaL ist, über das Gesamtprotein berechnet, zu 46% identisch mit AHV-Sema, wird dagegen die Sema-Domäne allein betrachtet, dann beträgt die Aminosäureidentität 53%. Dies ist höher als z.B. zwischen den verwandten M-SemaB und -C (37% Identität im Bezug auf das Gesamtprotein, 43% Identität im Bezug auf die Sema-Domäne), ähnlich wie M-SemaA und -E (43% Gesamtprotein, 53% Sema-Domäne). Die Aminosäureidentität zwischen der partiellen M-SemaL Sequenz (Tabelle 6) und H-SemaL (Tabelle 5) liegt im Bereich der Sema-Domäne bei 93%, so daß davon ausgegangen werden kann, daß es sich um das entsprechend homologe Gen der Maus handelt.

Korrespondierende Semaphorine zu H-SemaL und M-SemaL in anderen Spezies können innerhalb der Sema-Domäne eine Aminosäureidentität größer als 40% im Bezug auf H-SemaL aufweisen. Bei den nahe verwandten Wirbeltieren (Säuger, Vögel) können sogar Aminosäureidentitäten über 70% angetroffen werden.

Es handelt sich um eine neue Subfamilie von Semaphorinen mit größerer Aminosäureidentität zu dem viralen AHV-Sema als zu den bisher bekannten humanen bzw. murinen Semaphorinen, und mit einer für humane Semaphorine bisher nicht bekannten C-terminalen Struktur. Diese neuen Semaphorine (Mitglieder der Subfamilie) zeichnen sich dadurch aus, daß sie aufgrund ihrer Domänen-struktur in die Untergruppe IV fallen und/oder die gleiche phylogenetische Gruppe fallen wie H-SemaL und M-SemaL und/oder im Bezug auf die gesamte Aminosäuresequenz zu H-SemaL eine Aminosäureidentität von mindestens 30 bis 40 %, vorzugsweise 50 bis 60 %, besonders bevorzugt 70 bis 80 % oder eine größere Identität aufweisen und/oder im Bezug auf die Sema-Domäne eine Aminosäureidentität mit H-SemaL von mindestens 70 %, vorzugsweise größer 80 %, besonders bevorzugt größer 90 % aufweisen.

Den Semaphorinen vom Typ L kommt auch eine andersartige biochemische Funktion zu. Eine neue Funktion dieser Semaphorine liegt in der Modulation des Immunsystems.

30

40

45

50

55

Das nächste Verwandte von H-SemaL ist das virale AHV-Semaphorin (AHV-Sema). Dieses ist von ähnlicher Größe, besitzt aber im Gegensatz zum H-SemaL keine Transmembrandomäne. Das AHV-Sema wird vermutlich von virusinfizierten Zellen sezerniert, um den H-SemaL äquivalenten Rezeptor (Semaphorin von Typ L im Streifengnu) im natürlichen Wirt (Streifengnu) zu blockieren, und so dem Angriff des Immunsystems zu entgehen. Ferner ist eine Funktion als repulsives Agens (Chemorepellent) für Zellen des Immunsystems denkbar.

Die biochemische Funktion der neuen Semaphorine vom Typ L und deren Derivate ist als generell immunmodulierend und/oder entzündungsmodulierend anzusehen. Einerseits können sie

A) als die Immunantwort hemmende Moleküle entweder lokal, z.B. als Transmembranprotein an der Oberfläche von Zellen oder auch über größere Entfernungen, z.B. wenn sie durch Prozessierung (z.B. Proteasen) oder alternatives Splicing sezerniert werden, z.B. durch Diffusion im Gewebe, ihre Wirkung als Chemorepellent und/oder Immunsuppressivum entfalten.

Beispielsweise kann die Expression dieser neuen Semaphorine vom Typ L z.B. an der Oberfläche der Zellen der Gefäßendothelien das Leukozyten-Attachment und deren Migration durch die Gefäßwand verhindern. Den neuen Semaphorinen kann eine Rolle bei der Aufrechterhaltung von Schrankenwirkungen, z.B. zur Verhindung von Infektionen in besonders "wichtigen" oder exponierten Organen, beispielsweise zur Aufrechterhaltung der Blut-Hirn-Schranke, des Plazentarkreislaufs und/oder anderen immunologisch priviligierten Orten (z.B. Pancreas-Inseln) und/oder beim Schutz vor Autoimmunerkrankungen zukommen. Darüber hinaus können die neuen Semaphorine und/oder ihre Derivate in verschiedenen Geweben auch an repulsiven Signalen, beispielsweise für Zellen des Immunsystems (z.B. Leukozyten) als Schutz gegen versehentliche Aktivierung von Abwehrmechanismen beteiligt sein.

B) Weiterhin können den neuen Semaphorinen und/oder deren Derivaten Funktionen als akzessorische Moleküle zukommen. An der Zelloberfläche exprimiert können sie beispielsweise an der Interaktion mit Zellen des Immunsystems im Rahmen der Aktivierung von Abwehrmechanismen z. B. bei Virusinfektionen beteiligt sein.

Dadurch ergeben sich mehrere Verwendungsmöglichkeiten für die neuen Sempahorine vom Typ L und deren Deri-

vaten sowie den für diese Proteine kodierenden Nukleinsäuren.

30

Funktion A): Es handelt sich um ein immunsuppressives und/oder entzündungshemmendes Prinzip: Zahlreiche potentielle Anwendungsmöglichkeilen liegen in den Bereichen Organtransplantation, Entzündungstherapie, Immuntherapie und Gentherapie.

Beispielsweise können mit Hilfe der Semaphorin-kodierenden DNA oder Derivaten derselben nichthumane, transgene Tiere hergestellt werden.

Eine Anwendungsmöglichkeit dieser Tiere liegt in der Hemmung der Transplantatabstoßung in transgenen Modellen für Organtransplantationen. Beispielsweise können transgene, gegen Abstoßung geschützte tierische Organe für Xenotransplantationen hergestellt werden. Dies sollte z.B. auch zusammen mit anderen Transgenen (z.B. Komplementregulatoren wie DAF oder CD59)-möglich sein.

Eine weitere Anwendung liegt in der Herstellung von nicht-humanen Knock-out Tieren, beispielsweise von Knock-out Mäusen("Laboratory Protocols for Gene-Targeting". Torres and Kühn (1997) Oxford University Press, ISBN 0-19-963677-X): Durch Knock-out des Mausgens M-SemaL können z.B. weitere Funktionen des Gens aufgefunden werden. Sie stellen auch potentielle Modellsysteme für entzündliche Erkrankungen dar, falls die Mäuse ohne Semaphorin-Gen lebensfähig sind. Sollte M-SemaL für die Immunmodulation wichtig sein, so sind vermehrt solche Mäuse zu erwarten. Weiterhin können nicht-humane Knock-in-Tiere, beispielsweise Mäuse, hergestellt werden. Dabei wird z.B. M-SemaL durch normales/verändertes H-SemaL oder verändertes M-SemaL (z.B. Integration der neuen Semaphorin-Subtypen unter der Kontrolle von konstitutiven und/oder induzierbaren Promotoren) ersetzt. Solche Tiere können z.B. für die Suche nach weiteren Funktionen der neuen Semaphorine, z.B. Funktionen des humanen Gens oder Derivaten dieser Gene dienen oder zur Identifizierung und Charakterisierung von immunmodulierenden Wirkstoffen benutzt werden.

Verwendung von z. B. Nukleinsäuren, die für Semaphorine vom Typ L oder Derivate derselben kodieren, zur Herstellung von z.B. rekombinanten Immunsuppressiven, anderen löslichen Proteinen oder Peptiden die sich von der Aminosäuresequenz der Semaphorine vom Typ L, z.B. Von H-SemaL oder den entsprechenden Nukleinsäuren, z.B. Genen ableiten. In ähnlicher Weise können auch Agonisten mit struktureller Ähnlichkeit hergestellt werden. Diese immunsuppressiven Wirkstoffe/Agonisten können bei Autoimmunerkrankungen und entzündlichen Erkrankungen und/oder Organtransplantationen eingesetzt werden.

Gentherapie mit Semaphorinen vom Typ L, z.B. mit Nukleinsäuren, die für H-SemaL oder deren Derivate kodieren, z.B. mittels viraler oder nichtviraler Methoden. Einsatz bei Autoimmunerkrankungen und entzündlichen Erkrankungen, der Transduktion von Organen sowie vor/während/nach Transplantationen zur Verhinderung der Transplantatabstoßung.

Insbesondere können die neuen Semaphorine und/oder die für diese Semaphorine kodierenden Nukleinsäuren und Derivate derselben, insbesondere H-SemaL, für H-SemaL kodierende DNA und Derivate derselben in einem Verfahren zum Screening von Wirkstoffen, insbesondere zur Identifizierung und Charakterisierung von immunnodulierenden Wirkstoffen, eingesetzt werden.

Funktion B): H-SemaL ist ein akzessorisches Molekül, das an der Zelloberfläche exprimiert wird und an der Interaktion mit Zellen, z.B. des Immunsystems, z.B. als akzessorisches Molekül in der Aktivierung von Signalwegen, beteiligt ist Ein virales Gen bzw. das Genprodukt eines viralen oder anderen pathogenen Gens z.B. mikrobilogischen Ursprunges könnte z.B. als kompetitiver Inhibitor dieses akzessorischen Moleküls wirken. Eine Anwendung für die neuen Semaphorine liegt bei dieser Funktion ebenfalls im Bereich der Organtransplantation, Entzündungstherapie, Irnmuntherapie und/oder Gentherapie.

Beispielsweise können die neuen Semaphorine in einem Verfahren zum Screening von antagonistischen Wirkstoffen bzw. Inhibitoren verwendet werden. Auf diese Weise identifizierte Wirkstoffe können dann z.B. zur Blockade des Semaphorin-Rezeptors eingesetzt werden. Lösliche und/oder sezernierte H-Semal. Antagonisten bzw. Inhibitoren können beispielsweise chemische Substanzen oder die neuen Semaphorine bzw. Derivate derselben selbst sein (z.B. Teile/verkürzte Formen derselben, beispielsweise ohne Membrandomäne oder als Ig-Fusionsproteine oder von diesen abgeleitete Peptide, die geeignet sind, den korrespondierenden Rezeptor zu blockieren). Auf diese Weise identifizierte, spezifische Antagonisten und/oder Inhibitoren können beispielsweise kompetitiv wirken und bei der Hemmung der Abstoßung z.B. in transgenen-Modellen für Organtransplantationen und bei Autoimmunerkrankungen, entzündlichen Erkrankungen und Organtransplantationen eingesetzt werden. Nukleinsäuren, z.B. DNA, die für die neuen Semaphorine kodieren bzw. deren mit Hilfe von molekularbiologischen Methoden erzeugte Derivate können beispielsweise für die Herstellung nichthumaner, transgener Tiere verwendet werden. Eine Überexpression von H-Semal. kann in diesen transgenen Tieren zu vermehrter Anfälligkeit für Autoimmunerkrankungen und/oder entzündlichen Erkrankungen führen. Solche transgenen Tiere eignen sich damit zum Screening von neuen, spezifischen, immunmodulierenden Wirkstoffen.

Solche Nukleinsäuren können ebenso für die Herstellung von nicht-humanen Knock-out Tieren, beispielsweise Knockout Mäusen, bei denen das Mausgen M-SemaL ausgeschaltet wird, verwendet werden. Solche Knock-out Tiere können für die Suche nach weiteren biochemischen Funktionen des Gens eingesetzt werden. Sie stellen auch potentielle
Modellsysteme für entzündliche Erkrankungen dar, falls die Mäuse ohne das M-SemaL Gen lebensfähig sind.

Diese DNA kann ebenso zur Herstellung von nicht-humanen Knock-in Tieren, beispielsweise Mäusen verwendet werden. Dabei wird das M-SemaL-Gen durch ein verändertes M-SemaL Gen/cDNA oder ein gegebenfalls verändertes, z.B. mutiertes Semaphorin Typ L Gen/cDNA einer anderen Spezies, z.B. von H-SemaL ersetzt, Solche transgenen Tiere können für die Suche nach weiteren Funktionen der erfindungsgemäßen Semaphorine verwendet werden.

Die Erfindung betrifft auch die Verwendung der Semaphorine vom Typ L und deren Derivate, sowie der für diese Proteine kodierenden Nukleinsäuren, z. B. Gene/cDNAs und deren Derivate und/oder mit Hilfe dieser Semaphorine identifizierter Wirkstoffe zur Herstellung von Arzneimitteln. Beispielsweise können Arzneimittel hergestellt werden, die in der Gentherapie angewendet werden können und die Agonisten und/oder Antagonisten der Expression der Semaphorine vom Typ L, beispielsweise von H-SemaL, enthalten. Dazu können z. B. virale und/oder nichtvirale Methoden verwendet werden. Diese Arzneimittel können z.B. bei Autoimmunerkrankungen und entzündliche Erkrankungen, Organtransplantationen vor und/oder während und/oder nach der Transplantation zur Verhinderung der Abstoßung eingesetzt werden.

Die für die neuen Semaphorine kodierenden Nukleinsäuren, z. B. Gene, cDNAs und deren Derivate können auch als Hilfsmittel in der Molekularbiologie eingesetzt werden.

Darüberhinaus können die neuen Semaphorine, insbesondere H-SemaL und Nukleinsäuren, z. B. Gene/cDNAs derselben in Verfahren zum Screening neuer Wirkstoffe eingesetzt werden. Modifizierte Proteine und/oder Peptide, die sich z. B. von H-SemaL und/oder M-SemaL ableiten, können zur Suche nach dem entsprechenden Rezeptor und/oder dessen Antagonisten bzw. Agonist in funktionellen Tests, beispielsweise mittels Expressionskonstrukten von H-SemaL und Homologen eingesetzt werden.

Die Erfindung betrifft auch die Verwendung eines Semaphorins vom Typ L oder einer Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L kodiert in einem Verfahren zur Identifizierung von pharmakologischen Wirkstoffen, insbesondere von immunmodulierenden Wirkstoffen.

Die Erfindung betrifft auch Verfahren zur Identifizierung von Wirkstofen, wobei ein Semaphorin vomTyp L oder ein Derivat derselben bzw. eine Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L kodiert oder ein Derivat derselben eingesetzt wird, um pharmakologische Wirkstoffe, z. B. immunmodulierende Wirkstoffe zu identifizieren. Beispielsweise betrifft die Erfindung ein Verfahren, bei dem ein Semaphorin vom Typ L unter definierten Bedingungen mit einem zu untersuchenden Wirkstoff inkubiert wird und parallel ein zweiter Ansatz ohne den zu untersuchenden Wirkstoff, aber unter ansonsten gleichen Bedingungen durchgeführt wird und dann die inhibierende bzw. aktivierende Wirkung des zu untersuchenden Wirkstoffs bestimmt wird.

Beispielsweise betrifft die Erfindung auch Verfahren zur Identifizierung von Wirkstoffen, wobei eine Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L kodiert oder ein Derivat derselben unter definierten Bedingungen in Gegenwart eines zu untersuchenden Wirkstoffs exprimiert wird und das Ausmaß der Expression bestimmt wird. Gegebenenfalls können auch in einem solchen Verfahren zwei oder mehrere Ansätze parallel unter gleichen Bedingungen durchgeführt werden, wobei die Ansätze aber unterschiedliche Mengen des zu untersuchenden Wirkstoffs enthalten. Beispielsweise kann der zu untersuchende Wirkstoff die Transkription und/oder die Translation inhibieren oder aktivieren.

Das Semaphorin vom Typ L kann wie seine viralen Homologen an das neu beschriebene Rezeptormolekül VESPR (Comeau et al., (1998) Immunity, Vol. 8, 473-482) binden und kann vermutlich in Monozyten eine Induktion von Zell-Adhäsionsmolekülen wie ICAM-1 und Zytokinen wie Interleukin-6 und Interleukin-8 bewirken. Dies kann zu deren Aktivierung und zur Zellaggregation führen. Das Expressionsmuster des VESPR-Rezeptors zeigt teilweise interessante Paralleln zu H-Senal, z.B. eine starke Expression in Placenta und eine deutliche Expression in Milzgewebe. Interaktionen mit weiteren, noch unbekannten Rezeptoren der Plexin-Familie, oder anderen Rezeptoren sind möglich. Auch eine Interaktion mit sich selbst oder anderen semaphorinähnlichen Molekülen ist möglich. Eine Interaktion der Semaphorine vom Typ L kann insbesondere Ober eine konservierte Domäne im C-terminalen Bereich der Sema-Domäne stattfinden.

Zu den Annotation Plasmiden:

45

50

55

pMelBacA-H-SemaL (6622bp) in pMelBacA (Invitrogen, De Schelp, NL)(SEQ ID NO.42). Nukleotid 96-98 ATG - Startkodon, Nukleotid 96-168 Mellitin Signal-Sequenz, Nukleotid 168-173 BamHI Schnittstelle (PCR/Klonierung), Nukleotid

171-1998 Leserahmen SemaL Aminosäuren 42-649 (ohne eigene Signal-Sequenz und ohne Transmembransequenz), Nukleotid 1993-1998 EcoRI Schnittstelle (PCR/Klonierung) und Nukleotid 1992-1994 Stop Codon

Plasmid pCDNA3.1-H-SemaL-MychisA (7475 bp) (SEQ ID NO. 35):

Nukleotid 954-959 BamHI Schnittstelle (Klonierung),

Nukleotid 968-970 ATG SemaL, Nukleotid 968-2965 Leserahmen SemaL, Nukleotid 2963-2968 Pml I Schnittstelle, Nukleotid 2969-2974 HindIII Schnittstelle,

Nukleotid 2981-3013 Myc-Tag, Nukleotid 3026-3033 6xHis-Tag, Nukleotid 3034-3036 Stop Codon,

Plasmid pCDNA3.1-H-SemaL-EGFP-MychisA (8192 bp): (SEQ ID NO. 36):

Nukleotid 954-959 BamHI Schnittstelle (Klonierung), Nukleotid 968-970 ATG SemaL, Nukleotid 968-2965 Leserahmen SemaL, Nukleotid 2963-2965 halbe Pml I Schnittstelle, Nukleotid 2966-3682 Leserahmen EGFP (in Pml I Kloniert), Nukleotid 3683-3685 halbe Pml I Schnittstelle, Nukleotid 3685-3691 HindIII, Nukleotid 3698-3730 Myc-Tag, Nukleotid 3743-3760 6xHis-Tag, und Nukleotid 3761-3763 Stop Codon

Plasmid pIND-H-SemaL-EA (7108 bp) in Vektor pIND (Invitrogen, De Schelp, NL) (SEQ ID No. 38): Nukleotid 533-538 BamHI Schnittstelle (Klonierung), Nukleotid 546-548 ATG SemaL, Nukleotid 546-Leserahmen SEMAL, Nukleotid 2542-2547 Pml I Schnittstelle, Nukleotid 2546-2553 HindIII Schnittstelle und Nukleotid 2563-2565 Stop Codon.

Plasmid plND-H-SemaL-EE (Gesamtlänge 7102 bp) in Vektor plND (Invitrogen, De Schelp, NL) (SEQ ID No. 37): Nukleotid 533-538 BamHI Schnittstelle (Klonierung), Nukleotid 546-548 ATG SemaL, Nukleotid 546-Leserahmen SemaL, Nukleotid 2542-2547 Pml I Schnittstelle, Nukleotid 2548-2553 HindIII Schnittstelle, Nukleotid 2560-2592 Myc-Tag, Nukleotid 2605-2622 6xHis-Tag und Nukleotid 2623-2625 Stop Codon.

Plasmid pQE30-H-SemaL-179-378.seq (4019 bp) in Vektor pQE30 (Qiagen, Hilden) entspricht pQE30-H-SemaLBH (SEQ ID No. 39):

Nukleotid 115-117 ATG, Nukleotid 127-144 6xHis-Tag, Nukleotid 145-750 BamHI-HindIII PCR-Fragment SemaL Aminosäuren (aa) 179-378 und Nukleotid 758-760 Stop Codon.

Plasmid pQE31-H-SemaL- (SH (3999-bp) in Vektor pQE31 (Qiagen, Hilden) (SEQ ID No. 40): Nukleotid 115-117 ATG, Nukleotid 127-144 6xHis-Tag, Nukleotid 147-152 BamHI, Nukleotid 159-729 SacI-HindIII Fragment SemaL (C-terminal) aa480-666 und Nukleotid 734-736 Stop Codon.

Beispiele:

5

10

15

20

25

Versuchsbedingungen, die in den Beispielen Anwendung finden:

30 Verwendete PCR-Programme:

96°C/60s

70°C/60s

55

96°C/15s-62°C/20s-70°C/40s

Taq52-60 (mit Ampli-Taq^R-Polymerase, Perkin Elmer, Weil der Stadt, Deutschland)

96°C/60s 1 Zyklus 96°C/15s-52°C/20s-70°C/60s 35 40 Zyklen 70°C/60s 1 Zyklus Taq60-30 40 1 Zyklus 96°C/15s-60°C/20s-70°C/30s 35 Zyklen 70°C/60s 1 Zyklus 1.2 Taq60-60 45 96°C/60s 1 Zyklus 96°C/15s-60°C/20s-70°C/60s 35 Zyklen 70°C/60s : 1271 1 Zyklus 50 Taq62-40

1 Zyklus

35 Zyklen

1 Zyklus

Verwendete Reaktionsbedingungen für PCR mit Taq-Polymerase:

50μl Reaktionsansätze mit 100-200ng Template, 200μM dNTP, 0,2-0,4 μM je Primer, 2.5U Ampli-Taq^R, 5μl des mit-

gelieferten 10x Reaktionspuffers

Verwendete Programme für:

5

10

15

20

25

35

40

1. XL62-6 (mit Expand-Long Template PCR System^R, Boehringer Mannheim, Deutschland)

94°C/60s 1 Zyklus 94°C/15s-62°C/30s-68°C/6min 10 Zyklen 94°C/15s-62°C/30s-68°C/(6min+15s/Zyklus) 25 Zyklen 68°C/7min 1 Zyklus

2. XL62-12 (mit Expand-Long Template PCR System^R, Boehringer Mannheim, Deutschland)

94°C/60s 1 Zyklus 94°C/15s-62°C/30s-68°C/12min 10 Zyklen 94°C/15s-62°C/30s-68°C/(12min+15s/Zyklus) 25 Zyklen 68°C/7min 1 Zyklus

Reaktionsbedingungen für PCR mit Expand-Long Template PCR System

50μl Reaktionsansätze mit 100-200ng Template, 500μM dNTP, 0,2-0,4 μM je Primer, 0,75μl Enzym-Mix, 5μl des mitgelieferten 10x Reaktionspuffers Nr. 2.

Beispiel 1:

Ausgehend von Sequenzen des AHV-Sema (Ensser u. Fleckenstein (1995), J. General Virol. 76: 1063-1067) wurden PCRs und RACE-PCRs durchgeführt. Als Ausgangsmaterial hierfür diente humane cDNA aus Plazenta-Gewebe, an welche Adapter zur RACE-Amplifikation ligiert wurden (Marathon™-cDNA Amplification Kit, Clontech Laboratories GmbH, Tullastraße 4, 69126 Heidelberg, Deutschland). Zunächst wurde mittels spezifischer Primer (Nr. 121234 + Nr. 121236, Tabelle 6) ein PCR-Fragment mit einer Länge von etwa 800bp (Basenpaaren) amplifiziert (PCR-Programm: (Taq60-60)). Dieses wurde kloniert und sequenziert (Taq-Dye-Deoxy-Terminator Sequenzierungs-Kit, Applied Biosystems, Foster: City, CA USA) Brunnenweg 13, Weilderstadt). Die Sequenzierung des PCR-Produkts ergab eine Sequenz, die eine hohe Homologie zu der DNA-Sequenz von AHV-Sema aufweist, identisch zu der Sequenz der beiden ESTs.

Ein PCR-Fragment von 600bp wurde mit dem Primerpaar (Nr. 121237 + Nr. 121239, Tabelle 6) identifiziert. Es zeigte sich, das es sich um Klone mit DNA-Sequenzen des selben Gens handelte.

Beispiel 2:

Das 800bp PCR-Fragment aus Beispiel 1 wurde radioaktiv markiert (Random-Priming nach der Methode von {Feinberg (1983) Anal. Biochem. 132:6-13}, mit ³²P-α-dCTP) und als Sonde für einen Multi-Tissue Northern-Blot (Human Multiple Tissue Northern Bot II, Clontech, Heidelberg, Germany), der mRNA-Proben aus den Geweben Milz, Thymus, Prostata, Testis, Ovarien, Dünndarm, Dickdarm und Leukozyten (PBL) enthält, verwendet. Dabei Zeigte sich deutlich die Expression einer mRNA mit einer Länge von etwa 3.3kb in Milz und Keimdrüsen (Hoden, Eierstöcken), sowie schwächer in Thymus und Darm. Eine Hybridisierung eines Master-Blots (Dotblot mit RNA aus zahlreichen Geweben (Human RNA Master Blot™, Clontech) bestätigte dieses Ergebnis und zeigte auch eine starke Expression in Plazenta-Gewebe.

Die Hybridisierung wurde für 16 Stunden unter stringenten Bedingungen (5xSSC, 50 mM Na-Phosphat pH 6.8, 50 % Formamid, 100 μg/ml Hefe-RNA) bei 42°C durchgeführt. Die Blots wurden stringent gewaschen (65°C, 0,2XSSC, 0.1 % SDS) und einem Fuji BAS2000 Phosphoimager ™ exponiert

Beispiel 3:

Eine cDNA-Bibliothek aus humaner Milz, kloniert in dem Bakteriophagen Lambda gt10 (Human Spleen 5' STRETCH PLUS cDNA, Clontech) wurde mit dieser Sonde durchsucht und ein Lambda-Klon identifiziert. Die in diesem Klon inserierte cDNA mit einer Länge von 1.6kb wurde mittels PCR (Expand™ Long Template PCR System, Boehringer Mannheim GmbH, Sandhofer Straße 116, 68305 Mannheim) amplifiziert wobei die vektorspezifischen Primer Nr. 207608 + Nr. 207609 (Tabelle 6) verwendet wurden (flankierend der EcoRI-Klonierungsstelle) und das erhaltene PCR-

Fragment sequenziert. Dieser Klon enthielt das 5' Ende der cDNA und erweiterte die bekannte cDNA Sequenz auch nach 3'. Ausgehend von den neuen Teilsequenzen der cDNA wurden neue Primer für die RACE-PCR entwickelt (Nr. 232643, Nr. 232644, Nr. 233084, Tabelle 6). Zusammen mit einer verbesserten Thermocyclertechnik (PTC-200 von MJ-Research, Biozym Diagnostik GmbH, 31833 Hess. Oldendorf) mit deutlich besseren Leistungsdaten (Heiz- und Kühlrate) wurde ein 3'-RACE PCR-Produkt amplifiziert wobei die Primer Nr. 232644 bzw. Nr. 232643 und AP1 verwendet wurden und in den Vektor pCR2.1 (Invitrogen, De Schelp 12, 9351 NV Leek, Niederlande) kloniert. Das 3'-RACE PCR-Produkt wurde Sequenziert und auf diese Weise das 3'Ende der cDNA identifiziert. Eine RACE-Amplifikation nach 5' (Primer Nr. 131990 bzw. Nr. 233084 und AP1) erweiterte das 5' Ende der cDNA um wenige Nukleotide und bestätigte den im identifizierten Lambda-Klon gefundenen Aminoterminus des H-SemaL.

Beispiel 4:

10

Ausgehend von einem kurzen murinen EST (Zuordnungs-Nr. AA260340) und einem daraus abgeleiteten Primer Nr. 260813 (Tabelle 6) und dem H-SemaL spezifischen Primern Nr. 121234 (Tabelle 6) wurde mittels PCR (Bedingungen: Taq52-60) ein DNA-Fragment mit einer Länge von ca. 840 bp muriner cDNA amplifiziert und in den Vektor pCR2.1 kloniert. Das dieses DNA-Fragment enthaltende Gen wurde M-SemaL genannt. Mit dem erhaltenen M-SemaL DNA-Fragment eine cDNA-Bank aus Mäuse-Milz (Mouse Spleen 5' STRETCH cDNA, Clontech) untersucht, wobei bereits mehrere Klone identifiziert werden konnten.

PCR (Taq60-30) mit den Primern Nr. 260812, Nr. 260813 aus muriner, endothelialer cDNA lieferte ein PCR-Fragment mit einer Länge von 244 Basenpaaren. Die PCR-Ergebnisse zeigten, daß eine deutliche basale Expression in murinen Endothelzellen vorhanden ist, welche nach Stimulation mit dem Zytokin Interferon-γ und Lipopolysacchariden zurückgeht.

Beispiel 5:

25

Untersuchungen zur Chromosomalen Lokalisation wurden mittels Fluoreszenz in-situ Hybridisierung (FISH) durchgeführt. Dazu wurden Metaphase Chromosomen von Mensch und Maus, ausgehend von einer humanen Blutprobe bzw. der Mauszellinie BINE 4.8 (Keyna et al. (1995) J. Immunol. 155, 5536-5542), hergestellt (Kraus et al. (1994) Genomics 23, 272-274). Die Objektträger wurden mit RNase und Pepsin behandelt (Liehr et al. (1995) Appl. Cytogenetics 21, 185-188). Für die Hybridisierung wurden 120 mg humane Nick-translatierte Semaphorin-Probe bzw. 200 mg einer entsprechenden Mausprobe verwendet. Die Hybridisierung wurde jeweils in Gegenwart von 4.0 µg COT1-DNA und 20 µg STD bei 37°C (3 Tage) in einer befeuchteten Kammer durchgeführt.

Die Objektträger wurden mit 50% Formamid/2x SSC (3 mal je 5 min bei 45°C) und dann mit 2 x SSC (3 mal je 5 min bei 37°C) gewaschen und die biotinylierte Probe mit dem FITC-Avidin-System (Liehr et al. (1995)), detektiert. Die Objektträger wurden mit Hilfe eines Fluoreszenz-Mikroskops ausgewertet. Es wurden 25 Metaphasen/Probe ausgewertet, wobei jedes Experiment doppelt durchgeführt wurde. Es zeigt sich, daß H-SemaL auf Chromosom 15q23 lokalisiert ist Chromosomal benachbart liegen der Locus für das Bardet-Biedl-Sydrom und Tay-Sachs Erkrankung (Hexosaminidase A).

40 Beispiel 6:

Die genomische Intron-Exon Struktur des H-SemaL Gens ist zum größten Teil aufgeklärt.

Genomische DNA Fragmente wurden ausgehend von 250 mg humaner genomischer DNA, die aus PHA stimmulierten pheripheren Lymphozyten (Blut) isoliert worden waren, amplifiziert. Kürzere Fragmente wurden mit Ampli Taq^R (Perkin Elmer), längere Fragmente mit dem Expanded Long Templat PCR System^R (Boehringer Mannheim) amplifiziert.

Durch PCR-Amplifikation konnte bisher fast der vollständige genomische Locus des H-SemaL kloniert und charakterisiert werden. Insgesamt konnten bereits mehr als 8888 bp der genomischen Sequenz bestimmt werden und so die Intron-Exon-Struktur des Gens weitgehend aufgeklärt werden.

Beispiel 7:

50

Expressionsklonierungen:

Da kein kompletter Klon des Semaphoringens aus der Lambda-gt10 cDNA-Bank isoliert werden konnte, und auch mittels PCR ein vollständiger Klon nicht zu erhalten war, wurde der kodierende Bereich der cDNA in 2 überlappenen Subfragmenten mittels PCR (XL62-6) mit Hilfe der Primer Nr. 240655 und Nr. 121339 für das N-terminale DNA-Fragment, sowie den Primern Nr. 240656 (enthält HindIII und Pmel Schnittstellen) und Nr. 121234 für das C-terminale DNA-Fragment amplifiziert. Die erhaltenen DNA-Fragmente (Subfragmente) wurden in den Vektor pCR21 kloniert. Die beiden

Subfragmente wurden komplett sequenziert und schließlich die vollständige H-SemaL cDNA durch Insertion eines 0.6kb C-terminalen Sstl-HindIII Restriktions-Fragments in das mit den Restriktionsenzymen Sstl und HindIII geschnittene, das N-terminale DNA-Fragment enthaltende Plasmid, hergestellt. Aus diesem Plasmid pCR2.1-H-SemaL (gemäß Sequenz in Tabelle 7, SEQ ID NO. 34) wurde das komplette Gen mittels der EcoRI-Schnittstelle (in pCR2.1) und Hindill-Schnittstelle (in Primer Nr. 240656, Tabelle 6) herausgeschnitten und in einen entsprechend geschnittenen, konstitutiven Expressionsvektor pCDNA3.1(-)MycHisA (Invitrogen) ligiert. Aus dem resultierenden rekombinanten Plasmid pCDNA3.1(-)H-SemaL-MycHisA (gemäß Sequenz in Tabelle 8) wurde das EcoRI-Apal Fragment (ohne Myc-His-Tag) herausgeschnitten und in den induzierbaren Vektor pIND ligiert (Ecdysone-Inducible Mammalian Expression System, Invitrogen), der zuvor ebenfalls mit EcoRI-Apal geschnitten worden war. Das rekombinante Plasmid wurde mit pIND-H-SemaL-EA (Sequenz gemäß Tabelle 11) bezeichnet Ein EcoRI-Pmel-Fragment (mit Myc-His-Tag) aus pCDNA3.1(-)H-SemaL-Myc-HisA (Sequenz gemäß Tabelle 9) wurde in einen mit EcoRI-EcoRV geschnittenen Vektor pIND eingesetzt. Das rekombinante Plasmid wurde mit pIND-H-SemaL-EE (Sequenz gemäß Tabelle 10) bezeichnet. Ein Fusionsgen von H-SemaL mit Enhanced Green Fluorescent Protein (EGFP) wurde hergestellt durch Ligation des mit PCR amplifizierten EGFP-Leserahmens (aus dem Vektor pEGFP-C1 (Clontech), mit Hilfe der Primer Nr. 243068 + Nr. 243069, Taq52-60) in die Pmel-Schnittstelle des Plasmids pCDNA3.1(-)H-SemaL-MycHisA wodurch das Plasmid pCDNA3.1(-)H-SemaL-EGFP-MycHisA (Sequenz gemäß Tabelle 9) erhalten wurde.

In den Tabellen 7 bis 13 bedeuten kleine Buchstaben die Sequenz von H-SemaL, Teilen oder Derivaten derselben und große Buchstaben die Sequenz des Plasmids.

O Beispiel 8:

Zur Herstellung von H-SemaL spezifischen Antikörpern wurden cDNA-Fragmente von H-SemaL in prokaryotische Expressionsvektoren integriert, in E. coli exrimiert und die Semaphorin-Derivate aufgereinigt. Die Semaphorin-Derivate wurden als Fusionsproteine mit einem His-Tag exprimiert Dementsprechend wurden Vektoren verwendet, die die Sequenz für ein His-Tag enthalten und eine Integration des Semaphorin cDNA-Fragments im Leserahmen ermöglichten. Ein N-terminales 6xHistidin-Tag ermöglicht z.B. eine Aufreinigung mittels Nickel-Chelat-Affinitätschromalographie (Qiagen GmbH, Max-Volmer Straße 4, 40724 Hilden):

- 1. Der für die Aminosäuren 179-378 kodierende Teil der H-SemaL cDNA wurde mittels PCR mit den Primern Nr. 150788 und Nr. 150789 amplifiziert und dieses DNA-Fragment in den Vektor pQE30 (Qiagen), der zuvor mit den Restriktionsenzymen BamHl und HindIII geschnitten worden war, ligiert (Konstrukt pQE39-H-SemaL-BH (Sequenz gemäß Tabelle 12)).
- 2. Der für die C-terminalen Aminosäuren 480-666 kodierende Abschnitt der H-SemaL cDNA wurde mit den Restriktionsenzymen Sstl und HindIII aus dem Plasmid pCR 2.1 geschnitten und in den Vektor pQE31 (Qiagen), der zuvor mit Sstl und HindIII geschnitten worden war ligiert (Konstrukt pQE31-H-SemaL-SH (Sequenz gemäß Tabelle 13)).

Die korrekte Integration der Sequenzen im richtigen Leserahmen wurde durch DNA-Sequenzierung überprüft. Die Fusionsproteine, bestehend aus einem N-terminalen 6xHistidin-Taq und einem Teil des Semaphorins H-SemaL wurden mittels Ni²⁺-Affinitätschromatographie aufgereinigt. Die aufgereinigten Fusionsproteine wurden zur Immunisierung von verschiedenen Tieren (Hase, Huhn, Maus) benutzt

Beispiel 9:

45

30

35

FACS-Analyse verschiedener Zelltypen (Figuren 4 und 5)

Die Zellen (ca. 0.2-0.5 x 10⁶) wurden mit FACS-Puffer gewaschen (Phosphate-buffered Saline (PBS) mit 5% fötalem Kälberserum (FCS) und 0.1% Na-Azid) und dann jeweils (auf Eis) für 1 Stunde mit den Antiseren inkubiert.

Als primäre Antikörper dienten für die Kontrolle (Overlay Hühner-Präimmunserum (1 : 50) und für den spezifischen Nachweis (Spezifische Färbung) ein H-SemaL spezifisches Hühner-Antiserum (1 : 50).

Das spezifische Antiserum mit Antikörpern gegen Aminosäuren (Aa) 179-378 (mit N-terminalem His-Tag) von H-SemaL wurde durch Immunisierung von Hühnern mit dem durch Ni-Chelat-Affinitätschromatographie gereinigten Protein erzeugt (wie in Beispiel 8 beschrieben).

Als zweiter Antikörper wurde ein FITC-markierter anti-Huhn F(ab') Antikörper aus Kaninchen verwendet (Dianova Jackson Laboratories, Best.-Nr. 303-095-006, Hamburg, Deutschland) (1mg/ml).

Für die CD100-Färbung: wurde ein Rabbit-anti-Maus IgG, FITC-markiert verwendet. Der zweite Antikörper wurde jeweils in 1:50 Verdünnung in FACS-Puffer eingesetzt.

Dann wurden die Zellen gewaschen, in PBS resuspendiert und im FACS analysiert. Die FACS-Analyse wurde mit

einem FACS-Trak Gerät (Becton—Dickinson) durchgeführt Prinzip: Eine Einzelzellsuspension wird in einen Messkanal vorbeigeleitet, dort werden die Zellen mit Laserlicht von 488nm bestrahlt und so Fluoreszenzfarbstoffe (FITC) angeregt. Gemessen werden Streulicht nach vorne (forward scatter, FSC: korreliert mit der Zellgröße), zur Seite (sideward scatter, SSC: korreliert mit dem Granulargehalt: bei unterschiedlichen Zelltypen unterschiedlich) und Fluoreszenz im Kanal 1 (FL 1) (für Wellenlängen im FITC Emissionsbereich, max. bei 530nm). Auf diese Weise wurden je 10000 Ereignisse (Zellen) gemessen.

Der Dotplot (Figuren 4a - k) (jeweils linke Abbildung): FSC gegen SSC (Größe gegen Granulargehalt/Streuung), darin eingegrenzt ist die im rechten Fenster (jeweils zugehörige rechte Abbildung) analysierte (einheitliche) Zellpopulation von ähnlicher Größe und Granulargehalt. Das rechte Fenster zeigt die Intensität von FL1 (X-Achse) gegen die Zahl der

Ereignisse (Y-Achse), also eine Häufigkeitsverteilung.

Hierbei istjeweils das Ergebnis mit dem Kontrollserum (nichtgefüllte Kurve) dem Ergebnis der spezifischen Färbung (ausgefüllte Kurve) überlagert. Eine Verschiebung der Kurve für die spezifische Färbung gegenüber der Kontrolle nach rechts entspricht einer Expression von H-SemaL in den entsprechenden Zellen. Je weiter die Verschiebung, desto stärker ist die Expression.

15 Für FACS Analyse verwendete Zellinien:

a) Zellinie U937

American Type Culture Collection ATCC; ATCC Nummer: CRL-1593 Name: U-937

Gewebe: lymphoma; histiocytic; Monozytenähnlich

20 Species: human;

Hinterleger: H. Koren

b) Zellinie THP-1

ATCC Nummer: TIB-202

Gewebe: monocyte; acute monocytic leukemia

25 Species: human

Hinterleger: S. Tsuchiya

c) Zellinie K-562

ATCC Nummer: CCL-243

Gewebe: chronic myelogenous leukemia

30 Species: human;

Hinterleger H.T. Holden

d) Zellinie L-428

DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, DSMZ Nr: ACC 197

Zelltyp: human Hodgkin's lymphoma

e) Zellinie Jurkat

DSMZ-Deutsche Sammlung von Mikroorganismen und zellkulturen GmH, DSMZ Nr: ACC 282

Zelltyp: human T cell leukemia

f) Zellinie Daudi

ATCC Number: CCL-213

40 Gewebe: Burkitt's lymphoma; B lymphoblast; B Zellen

Species : human Hinterleger: G. Klein

g) Zellinie LCL

EBV-transformierte lymphoblastoide B-Zellinie.

h) Zellinie Jiyoye (P-2003)

ATCC Number: CCL-87

Gewebe: Burkitt's lymphoma; B Zellen; B lymphocyte

Species: human

Hinterleger: W. Henle

50 i) CBL-Mix57

humane T-Zellinie (isoliert aus Blut) transformiert mit rekombinantem H. Saimiri (Wild-typ ohne Deletion)

j) CBL-Mix59

humane T-Zellinie (isoliert aus Blut) transformiert mit H. Samiri (Deletion von ORF71).

Beispiel 10: Proteingel und Western-Blot

Sekretierbare humane SemaL (Aminosäuren 42-549 in Tabelle 4 (ohne Signalpeptid und ohne Transmembrandomäne) wurde in das Plasmid pMelBac-A (Invitrogen, De Sehelp, Leck, Niederlande, Cv 1950-20) kloniert und auf diese

Weise das Plasmid pMelBacA-H-SemaL (Länge 6622bp) erzeugt (Tabelle 15,Figur 8). Das H-SemaL Derivat wurde im Baculovirus-System (Bac-N-Blue, Invitrogen) exprimiert. Die Expression wurde in den Insekten-Eizellen abgeleiteten Zellinien Sf9 (von Spodoptera flugiperda) und High Five™ (von Trichoplusia ni, U.S. Pat. No. 5,300,435, gekauft von Invitrogen) durch Infektion mit den rekombinanten, plaquegereinigten Baculoviren ausgeführt.

Die Expression wurde nach den Angaben des Herstellers durchgeführt.

Anschließend wurden die Proteine in einem Gel aufgetrennt und das H-SemaL Derivat im Western-Blot nachgewiesen. Die Detektion wurde mit dem H-SemaL spezifischen Hühnerantiserum (vergl. Beispiel 8 und Figur 7) (Verdünnung: 1:100) durchgeführt. Der spezifische Hühnerantikörper wurde mit anti-IgY-HRP Konjugat (Verdünnung: 1:3000, vom Kaninchen; Dianova Jackson Laberatories) nach Angaben des Herstellers nachgewiesen.

Beispiel 11: Herstellung von pMelBacA-HSEMAL

Der rekombinante Vektor (pMelBacA-HSEMAL, 6622bp) wurde hergestellt, indem ein entsprechendes DNA-Fragment, das für die Aminosäuren 42-649 von H-SemaL kodiert, in den Vektor pMelBacA (4,8 kb, Invitrogen) kloniert wurde (vergl. Annotation zu pMelBacA-H-SemaL). Die Klonierung erfolgte über BamHI und EcoRI in frame hinter die in dem Vektor vorliegende Signalsequenz ("honeybee melittin signal sequence"). Ein entsprechendes H-SemaL DNA-Fragment wurde mit dem Primerpaar H-Sema 1 baculo 5' und H-Sema 1 baculo 3' amplifiziert.

Primer zur Amplifikation (TaKaRa Ex Taq-Polymerase) und Klonierung:

"H-Sema 1 baculo 5', zur Amplifikation ohne Signalsequenz und zur Einführung einer BamHI-Schnittstelle 5'-CCGGATCCGCCCAGGGCCACCTAAGGAGCGG-3' (SEQ ID NO: 43)

"H-Sema 1 baculo 3', zur Amplifikation ohne Transmembrandomäne und zur Einführung einer EcoRI-Schnittstelle 5'-CTGAATTCAGGAGCCAGGCACAGGCATG-3' (SEQ ID NO: 44).

Abbildungen:

25

30

35

10

Figur 1:

Gewebespezifische Expression von H-SemaL

A) Mehrfach-Gewebe Northern Blot (Clontech, Heidelberg, Deutschland). Von links nach rechts sind aufgetragen: Je 2 μg Poly-A-RNA pro Spur aus Milz, Thymus, Prostata, Hoden, Eierstöcken, Dünndarm, Dickdarm Mukosa, pheripheren (Blut-) Leukozyten. Größenstandards sind markiert.

Die Blots wurden unter stringenten Bedingungen mit einer 800 Basenpaaren langen H-SemaL Probe hybridisiert.

Figur 2:

Schematische Darstellung der Klonierung der H-SemaL cDNA und der genomischen Organisation der H-SemaL kodierenden Sequenzen (H-SemaL Gen)

Oben: Lokalisation der EST-Sequenzen (Zugangsnummern; Lage der EST-Sequenzen ist relativ zur AHV-Sema Sequenz dargestellt).

Darunter: Amplifizierte PCR- und RACE-Produkte sowie die Position der cDNA Klone im Bezug auf die Lokalisation in der vollständigen H-SemaL cDNA und dem offenen Leserahmen (ORF) für das kodierte Protein.

Unten: Relative Position der Exons im H-SemaL Gen im Bezug auf die genomische Sequenz.

45 Die Position der verwendeten Oligonukleotid Primer ist durch Pfeile angezeigt

Figur 3:

Phylogenetischer Baum: Erhalten durch mehrfaches Alignment der aufgeführten Semaphorin Sequenzen. Aufgrund der Gruppierung der Semaphorine in dem phylogenetischen Baum kann auf deren phylogenetische Verwandtschaft geschlossen werden.

Figur 4:

FACS Analyse der H-SemaL Expression in verschiedenen Zellinien bzw. verschiedenen Zelltypen (vergl. Beispiel 8).

Figur 5:

Vergleichende Analyse der CD 100 und H-SemaL Expression (vergl. Beispiel 9).

⁵ Figur 6: Expression von sekretierbarem humanen SEMAL (H-SemaL) in HiFive und Sf3-Zellen (vergl. Beispiel 10).

(Aa 42-649 in pMelBac-A (Invitrogen) im Baculovirus-System (Bac-N-Blue, Invitrogen) Detektion mit spezifischem Hühner-Antiserum (1:100) und anti-lgY-HRP Konjugat (1:3000, vom Kaninchen, Jackson Lab.) 1,4,6 uninfizierte HiFive Zellen (serumfrei)

2,3,5,7,8 mit rekombinantem Baculovirus infizierte HiFive Zellen (serumfrei)

M Rainbow molecular weight marker (Amersham RPN756)

9,10 infizierte Sf9 Zellen (serumhaltiges Medium).

Figur 7: Spezifität des Antiserums

15

20

Spuren 1-3: Huhn 1; Spuren 4-6: Huhn 2

14

Spuren 1 und 4: Präimmunserum

Spuren 2 und 5: 60. Immunisierungstag

Spuren 4 und 6: 105. Immunisierungstag

Immunisiert wurde mit den Aminosäuren 179-378 von H-SemaL (mit aminoterminalem His-Tag) (vergl. Beispiel 8, Punkt 1.)

Figur 8: Abbildung der Plasmidkarte von pMelBacA-HSEMAL.

Das rekombinante Plasmid wurde wie in Beispiel 11 beschrieben, hergestellt.

30

35

40

45

50

Tabelle 1: Verschiedene Subtypen von Semaphorinen aus verschiedenen Spezies

S S S S S S S S S S S S S S S S S S S	Synonym	Spezies		Referenz
H-Sema III	(H-SemaD)	Mensch	Sez.	(Kolodkin et al. 1993)
CD-100		Mensch	TM, IC, CD45 assoziert, in T-Zellen exprimiert	(Hall et al. 1996)
H-Sema V	(H-SemaA)	Mensch	Sez.; Locus 3p21.3	(Sekido et al. 1996; Roche et al. 1996)
H-Sema IV	(H-Sema 3F)	Mensch	Sez.; Locus 3p21.3	(Xiang et al. 1996; Sekido et al. 1996)
H-SemaE		Mensch	Sez.; am 3'Ende von M-SemaE divergierend (Leserahmen im Alignment verbessert)	AB000220 (Yamada 1997 unpublished)
H-SemaK	KIAA0331	Mensch	Sez.;	(Nagase et al. 1997)
H-Semal	SEMAL	Mensch	TM, kein IC	Diese Anmeldung
M-SemaA		Maus	Sez.	(Püschel et al. 1995)
М-ЅетаВ		Maus	ТМ, ІС	(Püschel et al. 1995)
М-ЅетаС		Maus	TM, IC	(Püschel et al. 1995)
M-SemaD	M-Sema III	Maus	Sez	(Messersmith et al. 1995; Püschel et al. 1995)
M-SemaE		Maus	Sez.; 5'partielle Sequenz	(Püschel et al. 1995)
M-SemaF1	M-SemaF	Maus	ТМ, ІС	(Inagaki et al. 1995)
M-SemaG2	M-SemaG	Maus	TM, IC; exprimiert in Lymphoiden Zellen, Maus-Homolog zu CD100	(Furuyama et al. 1996)

					,							_						
5				0941										d)				5)
10	2	(Adams et al. 1996)	(Adams et al. 1996)	(Christensen 1996 unpub) Z80941	(Zhou et al. 1997)	Diese Anmeldung	(Luo et al. 1993)	(Luo et al. 1995)	(Giger et al. 1996)	(Kolodkin et al. 1993)	U15667 (Roy1994 unpublished)	(Kolodkin et al. 1992)	(Kolodkin et al. 1993)	(Kolodkin et al. 1993)	(Ensser and Fleckenstein, 1995)			
15	Referenz	(Adams	(Adams	(Christe	е поц2)	Diese A	(Luo et	(Giger e	(Kolodki	U15667	(Kolodki	(Kolodki	(Kolodkir	(Ensser				
20																		
25		ospondin-Motiv	ospondin-Motiv			21				2								
30		TM, IC; Thrombospondin-Motiv	TM, IC; Thrombospondin-Motiv	Sez.	TM, IC	Partielle Sequenz	Sez.	Sez.	Sez.	Partielle Sequenz	Sez.	Sez.	TM, IC	TM, IC	TM, IC	TM, IC	Sez	Sez.
35	Spezies	Maus	Maus	Maus	Maus	Maus	Huhn	Huhn	Huhn	Huhn	Huhn	Ratte	Tribolium confusum	C.elegans	Grashüpfer	Drosophila	Drosophila	AHV-1
40	Synonym	M-Sema-F	M-SemaG			Semal									Fascidin-IV			
45									_					!				
50	Name	M-Sema-F2	M-SemaG1	М-ЅетаН	M-SemaVla	M-Semal	Collapsin-1	Collapsin-2	Collapsin-3	Collapsin-4	Collapsin-5	R-Sema III	T-Sema I	Ce-Sema I	G-Sema l	D-Sema l	D-Sema II	AHV-Sema

Name	Synonym	Spezies		Referenz
ORF-A39		Vaccinia	Sez.	(Kolodkin et al. 1993)
ORF-A39-homolog		Variola	Sez.;	(Kolodkin et al. 1993)
•		******		

Transmembrandomäne JA. Sez:

sezernieri

vermullich intrazelluläres zytoplasmatisches Sequenz-Motiv

Tabelle 2: cDNA-Sequenz von H-SemaL (2636 Nukleotide) (SEQ ID NO.: 1)

_						
5	1				ggacgtgccg	
	51				tcggttgggg	
	101	ggctgcggct	gctgctgctg	ctctgggcgg	ccgccgcctc	cgcccagggc
10	151	cacctaagga	gcggaccccg	catcttcgcc	gtctggaaag	gccatgtagg
	201	gcaggaccgg	gtggactttg	gccagactga	gccgcacacg	gtgcttttcc
	251	acgagccagg	cagctcctct	gtgtgggtgg	gaggacgtgg	caaggtctac
	301	ctctttgact	tccccgaggg	caagaacgca	tctgtgcgca	cggtgaatat
15	351	cggctccaca	aaggggtcct	gtctggataa	gcgggactgc	gagaactaca
	401	tcactctcct	ggagaggcgg	agtgaggggc	tgctggcctg	tggcaccaac
	451				aatggcactg	
00	501	tggcgagatg	agaggctacg	ccccttcag	cccggacgag	aactccctgg
20	551	ttctgtttga	aggggacgag	gtgtattcca	ccatccggaa	gcaggaatac
	601	aatgggaaga	tccctcggtt	ccgccgcatc	cggggcgaga	gtgagctgta
	651	caccagtgat	actgtcatgc	agaacccaca	gttcatcaaa	gccaccatcg
25 ·	701	tgcaccaaga				
	751	gacaatcctg				
	801	ccagttgtgc				
	851	agtggaacac				
30	901	aacaagaact				
	951				tgttttctcc	
	1001	actactcagc				
35	1051	cgtacctcct				
	1101	tggcaagtgc				
	1151	tggctgaccg	tcacccagag	gtggcgcaga	gggtggagcc	catggggcct
	1201	ctgaagacgc				
40	1251	tcaccgcatg	caagccagcc	acggggagac	ctttcatgtg	ctttacctaa
	1301	ctacagacag	gggcactatc	cacaaggtgg	tggaaccggg	ggagcaggag
	1351	cacagcttcg				
	1401	tgccatccag				
45	1451	gctcccagtg				
	1501	ggcgggggct				
	1551	ggaccagggc				
50	1601	aatccattaa				
•	1651	gacaaggccc				
	1701	cctgagctgc				
						-

```
1751
                   aggagaacgt ggagcagagc tgcgaacctg gtcaccagag ccccaactgc
             1801
                   atcctgttca tcgagaacct cacggcgcag cagtacggcc actacttctg
             1851
                   cgaggcccag gagggctcct acttccgcga ggctcagcac tggcagctgc
5
                   tgcccgagga cggcatcatg gccgagcacc tgctgggtca tgcctgtgcc
             1901
                   ctggctgcct ccctctggct gggggtgctg cccacactca ctcttggctt
             1951
             2001
                   gctggtccac tagggcctcc cgaggctggg catgcctcag gcttctgcag
             2051
                   cccagggcac tagaacgtct cacactcaga gccggctggc ccgggagctc
10
                   cttgcctgcc acttcttcca ggggacagaa taacccagtg gaggatgcca
             2101
                   ggcctggaga cgtccagccg caggcggctg ctgggcccca ggtggcgcac
             2151
                   ggatggtgag gggctgagaa tgagggcacc gactgtgaag ctggggcatc
             2201
                   gatgacccaa gactttatct tctggaaaat atttttcaga ctcctcaaac
             2251
15
                   ttgactaaat gcagcgatgc tcccagccca agagcccatg ggtcggggag
             2301
                   tgggtttgga taggagaget gggactecat etegaceetg gggetgagge
             2351
                   ctgagtcctt ctggactctt ggtacccaca ttgcctcctt ccctccctc
             2401
                   totcatggot gggtggotgg tgttcctgaa gacccagggo taccctctgt
             2451
20
                   ccaqccctgt cctctgcagc tccctctctg gtcctgggtc ccacaggaca
             2501
                   qccqccttqc atgtttattg aaggatgttt gctttccgga cggaaggacg
             2551
                   gaaaaaagctc tgaaaaaaaa aaaaaaaaa aaaaaa
             2601
```

25

30

Tabelle 3: Nukleotidsequenz der cDNA von M-SemaL (partiell, 1195 Nukleotide) (SEQ ID NO.: 2)

eggggetgeg ggatgaegee tecteeteee ggaegtgeeg eeeceagege 1 accycgcycc cycytectea yectyccyyc tegyttegyy etcecyctyc 51 agetgegget tetgetggtg ttetgggtgg cegeegeete egeecaagge 35 101 cactogagga goggaccog catotocgoc gtotggaaag ggcaggacca 151 tgtggacttt agccagcctg agccacacac cgtgcttttc catgagccgg 201 gcagettete tgtetgggtg ggtggaegtg gcaaggteta ceaetteaac 251 40 ttccccqaqq qcaaqaatgc ctctgtgcgc acggtgaaca tcggctccac 301 aaaggggtcc tgtcaggaca aacaggactg tgggaattac atcactcttc 351 tagaaaggcg gggtaatggg ctgctggtct gtggcaccaa tgcccggaag 401 cccagctgct ggaacttggt gaatgacagt gtggtgatgt cacttggtga 451 45 gatgaaaggc tatgccccct tcagcccgga tgagaactcc ctggttctgt 501 ttgaaggaga tgaagtgtac tctaccatcc ggaagcagga atacaacggg 551 aagatccctc ggtttcgacg cattcggggc gagagtgaac tgtacacaag 601 tgatacagtc atgcagaacc cacagttcat caaggccacc attgtgcacc 651 50 aagaccaagc ctatgatgat aagatctact acttcttccg agaagacaac 701 cctgacaaga accccgaggc tcctctcaat gtgtcccgag tagcccagtt 751

```
gtgcaggggg gaccagggtg gtgagagttc gttgtctgtc tccaagtgga
                acacetteet gaaageeatg ttggtetgea gegatgeage caccaacagg
         851
         901
                aacttcaatc ggctgcaaga tgtcttcctg ctccctgacc ccagtggcca
5
         951
                gtggagagat accagggtct atggcgtttt ctccaacccc tggaactact
         1001
               cagctgtctg cgtgtattcg cttggtgaca ttgacagagt cttccgtacc
                tcatcgctca aaggctacca catgggcctt tccaaccctc gacctggcat
         1051
               gtgcctccca aaaaagcagc ccatacccac agaaaccttc caggtagctg
         1101
10
               atagtcaccc agaggtggct cagagggtgg aacctatggg gcccc
         1151
15
         Tabelle 4:
                     Aminosāuresequenz von H-SemaL (666 Aminosāuren)
                     (SEQ ID NO.: 3)
                MTPPPPGRAA PSAPRARVPG PPARLGLPLR LRLLLLLWAA AASAQGHLRS
         1
20
                GPRIFAVWKG HVGQDRVDFG QTEPHTVLFH EPGSSSVWVG GRGKVYLFDF
         51
         101
                PEGKNASVRT VNIGSTKGSC LDKRDCENYI TLLERRSEGL LACGTNARHP
                SCWNLVNGTV VPLGEMRGYA PFSPDENSLV LFEGDEVYST IRKQEYNGKI
         151
                PRFRRIRGES ELYTSDTVMQ NPQFIKATIV HQDQAYDDKI YYFFREDNPD
         201
25
         251
                KNPEAPLNVS RVAQLCRGDQ GGESSLSVSK WNTFLKAMLV CSDAATNKNF
               NRLQDVFLLP DPSGQWRDTR VYGVFSNPWN YSAVCVYSLG DIDKVFRTSS
         301
               LKGYHSSLPN PRPGKCLPDQ QPIPTETFQV ADRHPEVAQR VEPMGPLKTP
         351
               LFHSKYHYQK VAVHRMQASH GETFHVLYLT TDRGTIHKVV EPGEQEHSFA
30
         401
               FNIMEIQPFR RAAAIQTMSL DAERRKLYVS SQWEVSQVPL DLCEVYGGGC
         451
         501
               HGCLMSRDPY CGWDQGRCIS IYSSERSVLQ SINPAEPHKE CPNPKPDKAP
         551
               LQKVSLAPNS RYYLSCPMES RHATYSWRHK ENVEQSCEPG HQSPNCILFI
35
               ENLTAQQYGH YFCEAQEGSY FREAQHWQLL PEDGIMAEHL LGHACALAAS
         601
         651
               LWLGVLPTLT LGLLVH
40
         Tabelle 5:
                     (Partielle) Aminosäuresequenz von M-SemaL (394 Aminosäuren, entspricht Position 1-396 von
                     H-SemaL) (SEQ ID NO.: 4)
45
         1
               MTPPPPGRAA PSAPRARVLS LPARFGLPLR LRLLLVFWVA AASAQGHSRS
               GPRISAVWKG QDHVDFSQPE PHTVLFHEPG SFSVWVGGRG KVYHFNFPEG
         51
         101
               KNASVRTVNI GSTKGSCQDK QDCGNYITLL ERRGNGLLVC GTNARKPSCW
               NLVNDSVVMS LGEMKGYAPF SPDENSLVLF EGDEVYSTIR KQEYNGKIPR
         151
50
               FRRIRGESEL YTSDTVMQNP QFIKATIVHQ DQAYDDKIYY FFREDNPDKN
         201
               PEAPLNVSRV AQLCRGDQGG ESSLSVSKWN TFLKAMLVCS DAATNRNFNR
         251
```

301	LQDVFLLPDP	SGQWRDTRVY	GVFSNPWNYS	AVCVYSLGDI	DRVFRTSSLK

351 GYHMGLSNPR PGMCLPKKQP IPTETFQVAD SHPEVAQRVE PMGP

Tabelle 6: Synthetische Oligonukleotide, (Eurogentec	. Seraina, E	3elaien)
--	--------------	----------

10			
	Nummer des	Nukleotidsequenz des Primers	(der synthetischen
	Primers/Bezeichnung	Oligonukleotide)	
	91506/AP2	actcactatagggctcgagcggc	(SEQ ID NO.: 5)
15	121234	agccgcacacggtgcttttc	(SEQ ID NO.: 6)
	121235/Est 2	gcacagatgcgttcttgccc	(SEQ ID NO.: 7)
	121236/Est 3	accatagaccctggtgtccc	(SEQ ID NO.: 8)
20	121237/Est 4	gcagtgatgctgccaccaac	(SEQ ID NO.: 9)
20	121238	ccagaccatgtcgctggatg	(SEQ ID NO.: 10)

```
121239/Est 6
                              acatgaggcaaccgtggcag
                                                             (SEQ ID NO.: 11)
          131989/AP1
                              ccatcctaatacgactcactatagggc
                                                             (SEQ ID NO.: 12)
          131990/Est 7
                              aggtagaccttgccacgtcc
5
                                                             (SEQ ID NO.: 13)
          131991
                              gaacttcaacaggctgcaagacg
                                                             (SEQ ID NO.: 14)
          131992
                              atgctgagcggaggaagctg
                                                             (SEQ ID NO.: 15)
          131993
                              ccgccatacacctcacacag
                                                             (SEQ ID NO.: 16)
          150788
                              ctggaagctttctgtgggtatcggctgc
10
                                                             (SEQ ID NO.: 17)
          150789
                              tttggatccctggttctgtttgaag
                                                             (SEQ ID NO.: 18)
          167579/cDNA
          15
          Synthese Primer
                              (SEQ ID NO.: 19)
          168421
                             ggggaaagttcactgtcagtctccaag
                                                             (SEQ ID NO.: 20)
          168422
                              gggaatacacacagacggctgagtag
                                                             (SEQ ID NO.: 21)
          207608/
                             agcaagttcagcctggttaagt
                                                             (SEQ ID NO.: 22)
20
         Amplifikation von lgt10 Insert
          207609/
                               ttatgagtatttcttccaggg
                                                             (SEQ ID NO.: 23)
         Amplifikation von lgt 10 Insert
         232643/Est 13
                               ccattaatccagccgagccacacaag
                                                             (SEQ ID NO.: 24)
25
         232644/Est 14
                               catctacagctccgaacggtcagtg
                                                             (SEQ ID NO.: 25)
         233084
                             cagcggaagccccaaccgag
                                                             (SEQ ID NO.: 26)
         240655/hs 5
                              gggatgacgcctcctccgcccgg
                                                            (SEQ ID NO.: 27)
         240656/hs 3
                              aagcttcacgtggaccagcaagccaagagtg (SEQ ID NO.: 28)
30
         240657/hs 3c
                               aagctttttccgtccttccgtccgg
                                                            (SEQ ID NO.: 29)
         243068
                             atggtgagcaagggcgaggagctg
                                                            (SEQ ID NO.: 30)
         243069
                             cttgtacagctcgtccatgccgag
                                                            (SEQ ID NO.: 31)
         260812
                             GGGTGGTGAGAGTTCGTTGTCTGTC
35
                                                            (SEQ ID NO.: 32)
         260813
                             GAGCGATGAGGTACGGAAGACTCTG
                                                            (SEQ ID NO.: 33)
         Tabelle 7:
                    Nukleotidsequenz des rekombinanten Plasmids pCR2.1-H-SemaL (SEQ ID NO.: 34)
40
             1 AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA
            51 TGCAGCTGGC ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA
           101 CGCAATTAAT GTGAGTTAGC TCACTCATTA GGCACCCCAG GCTTTACACT
45
           151 TTATGCTTCC GGCTCGTATG TTGTGTGGAA TTGTGAGCGG ATAACAATTT
           201 CACACAGGAA ACAGCTATGA CCATGATTAC GCCaagcttc acgtggacca
           251 gcaagccaag agtgagtgtg ggcagcaccc ccagccagag ggaggcagcc
           301 agggcacagg catgacccag caggtgctcg gccatgatgc cgtcctcggg
50
           351 cagcagetge cagtgetgag cetegeggaa gtaggageee teetgggeet
           401 cgcagaagta gtggccgtac tgctgcgccg tgaggttctc gatgaacagg
```

```
451 atgcagttgg ggctctggtg accaggttcg cagctctgct ccacgttctc
              501 cttgtggcgc catgagtagg tgqcqtqqcq qqattccatq qqqcaqctca
              551 ggtagtagcg agagtttggg gccagggaaa ccttctgcag tggggccttg
5
              601 totggtttgg ggttgggaca otoottgtgt ggctcggctg gattaatgga
              651 ttgcagcact gaccgttcgg agctgtagat ggagatgcag cggccctggt
              701 cccagccgca gtaggggtct cgggacatga ggcaaccgtg gcagcccccg
              751 ccatagacct cacacaggtc caggggcacc tggctcacct cccactggga
10
              801 gctcacatac agcttcctcc gctcagcatc cagcgacatg gtctggatgg
              851 cagccgcgcg gcggaagggc tggatctcca tgatgttgaa ggcgaagctg
              901 tgctcctgct cccccggttc caccaccttg tggatagtgc ccctgtctgt
15
              951 agttaggtaa agcacatgaa aggtctcccc gtggctggct tgcatgcggt
             1001 gaacggccac tttctggtag tggtatttag agtggaacaa tggcgtcttc
             1051 agaggececa tgggetecae cetetgegee acetetgggt gaeggteage
            1101 cacctggaag gtctctgtgg gtatcggctg ctggtctggg aggcacttgc
20
            1151 caggccgcgg gttgggaagg cttgagtggt agcccttgag tgaggaggta
            1201 cggaagacct tgtcaatgtc accgagggaa tacacacaga cggctgagta
            1251 gttccagggg ttggagaaaa caccatagac cctggtgtcc ctccactggc
            1301 cgctggggtc agggagcagg aagacgtctt gcagcctgtt gaagttcttg
25
             1351 ttggtggcag catcactgca taccagcatg gctttcagaa aagtgttcca
             1401 cttggagact gacagtgaac tttccccacc ctggtcccc ctgcacaact
             1451 gggccacacg ggacacattg agaggagcct caggattctt gtcaggattg
             1501 tcctctcgga agaagtagta gatcttgtca tcgtaagcct ggtcttggtg
30
             1551 cacqatqqtq qctttqatqa actqtqqqtt ctqcatqaca qtatcactqq
             1601 tgtacagete aetetegeee eggatgegge ggaacegagg gatetteeca
             1651 ttgtattcct gcttccggat ggtggaatac acctcgtccc cttcaaacag
35
             1701 aaccagggag ttctcgtccg ggctgaaggg ggcgtagcct ctcatctcgc
             1751 caagtggcac cacagtgcca ttcaccaggt tccagcagct ggggtgccgg
             1801 gcgttggtgc cacaggccag cagccctca ctccgcctct ccaggagagt
             1851 gatgtagttc tcgcagtccc gcttatccag acaggacccc tttgtggagc
40
             1901 cgatattcac cgtgcgcaca gatgcgttct tgccctcggg gaagtcaaag
             1951 aggtagacct tgccacgtcc tcccacccac acagaggagc tgcctggctc
             2001 gtggaaaagc accgtgtgcg gctcagtctg gccaaagtcc acccggtcct
             2051 gccctacatg gcctttccag acggcgaaga tgcggggtcc gctccttagg
45
             2101 tggccctggg cggaggcggc ggccgcccag agcagcagca gcagccgcag
             2151 ccgcagcgga agccccaacc gagccggcgg gccagggacg cgggcgcgcg
             2201 gtgcgctqqq qqcgqcacqt ccqqqcqqaq qaqqcqtcat cccaaqccqa
             2251 attcTGCAGA TATCCATCAC ACTGGCGGCC GCTCGAGCAT GCATCTAGAG
50
             2301 GGCCCAATTC GCCCTATAGT GAGTCGTATT ACAATTCACT GGCCGTCGTT
             2351 TTACAACGTC GTGACTGGGA AAACCCTGGC GTTACCCAAC TTAATCGCCT
```

	2401	TGCAGCACAT	CCCCCTTTCG	CCAGCTGGCG	TAATAGCGAA	GAGGCCCGCA
	2451	CCGATCGCCC	TTCCCAACAG	TTGCGCAGCC	TGAATGGCGA	ATGGGACGCG
5	2501	CCCTGTAGCG	GCGCATTAAG	CGCGGCGGGT	GTGGTGGTTA	CGCGCAGCGT
	2551	GACCGCTACA	CTTGCCAGCG	CCCTAGCGCC	CGCTCCTTTC	GCTTTCTTCC
						TCTAAATCGG
						TCGACCGCAA
10						CCCTGATAGA
						TAGTGGACTC
						ATTCTTTTGA
	2851	TTTATAAGGG	ATTTTGCCGA	TTTCGGCCTA	TTGGTTAAAA	AATGAGCTGA
15	2901	TTTAACAAAT	TCAGGGCGCA	AGGGCTGCTA	AAGGAACCGG	AACACGTAGA
	2951	AAGCCAGTCC	GCAGAAACGG	TGCTGACCCC	GGATGAATGT	CAGCTACTGG
	3001	GCTATCTGGA	CAAGGGAAAA	CGCAAGCGCA	AAGAGAAAGC	AGGTAGCTTG
20					GGCGGTTTTA	
20	3101	GCGAACCGGA	ATTGCCAGCT	${\tt GGGGGGGCCCT}$	CTGGTAAGGT	TGGGAAGCCC
	3151	TGCAAAGTAA	ACTGGATGGC	TTTCTTGCCG	CCAAGGATCT	GATGGCGCAG
	3201	GGGATCAAGA	TCTGATCAAG	AGACAGGATG	AGGATCGTTT	CGCATGATTG
25	3251	AACAAGATGG	ATTGCACGCA	GGTTCTCCGG	CCGCTTGGGT	GGAGAGGCTA
	3301	TTCGGCTATG	ACTGGGCACA	ACAGACAATC	GGCTGCTCTG	ATGCCGCCGT
	3351	GTTCCGGCTG	TCAGCGCAGG	GGCGCCCGGT	TCTTTTTGTC	AAGACCGACC
	3401	TGTCCGGTGC	CCTGAATGAA	CTGCAGGACG	AGGCAGCGCG	GCTATCGTGG
30	3451	CTGGCCACGA	CGGGCGTTCC	TTGCGCAGCT	GTGCTCGACG	TTGTCACTGA
					AGTGCCGGGG	
					TATCCATCAT	
					ACCTGCCCAT	
35					TCGGATGGAA	
					AGGGGCTCGC	
					GACGGCGAGG	
					CATGGTGGAA	
40	3851	TTTCTGGATT	CAACGACTGT	GGCCGGCTGG	GTGTGGCGGA	CCGCTATCAG
					GAAGAGCTTG	
	3951	GGCTGACCGC	TTCCTCGTGC	TTTACGGTAT	CGCCGCTCCC	GATTCGCAGC
45					TCTTCTGAAT	
45 .					CCCTTATTCC	
					GAAACGCTGG	
					GGGTTACATC	
50					GCCCCGAAGA	
					CATACACTAT	
	4301	TGACGCCGGG	CAAGAGCAAC	TCGGTCGCCG	GGCGCGGTAT	TCTCAGAATG

	4351	ACTTGGTTGA	GTACTCACCA	GTCACAGAAA	AGCATCTTAC	GGATGGCATG
	4401	ACAGTAAGAG	AATTATGCAG	TGCTGCCATA	ACCATGAGTG	ATAACACTGC
5	4451	GGCCAACTTA	CTTCTGACAA	CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT
	4501	TTTTGCACAA	CATGGGGGAT	CATGTAACTC	GCCTTGATCG	TTGGGAACCG
	4551	GAGCTGAATG	AAGCCATACC	AAACGACGAG	AGTGACACCA	CGATGCCTGT
	4601	AGCAATGCCA	ACAACGTTGC	GCAAACTATT	AACTGGCGAA	CTACTTACTC
10	4651	TAGCTTCCCG	GCAACAATTA	ATAGACTGGA	TGGAGGCGGA	TAAAGTTGCA
	4701	GGACCACTTC	TGCGCTCGGC	CCTTCCGGCT	GGCTGGTTTA	TTGCTGATAA
	4751	ATCTGGAGCC	GGTGAGCGTG	GGTCTCGCGG	TATCATTGCA	GCACTGGGGC
	4801	CAGATGGTAA	GCCCTCCCGT	ATCGTAGTTA	TCTACACGAC	GGGGAGTCAG
15	4851	GCAACTATGG	ATGAACGAAA	TAGACAGATC	GCTGAGATAG	GTGCCTCACT
	4901	GATTAAGCAT	TGGTAACTGT	CAGACCAAGT	TTACTCATAT	ATACTTTAGA
	4951	TTGATTTAAA	ACTTCATTTT	TAATTTAAAA	GGATCTAGGT	GAAGATCCTT
	5001	TTTGATAATC	TCATGACCAA	AATCCCTTAA	CGTGAGTTTT	CGTTCCACTG
20	5051	AGCGTCAGAC	CCCGTAGAAA	AGATCAAAGG	ATCTTCTTGA	GATCCTTTTT
	5101	TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	AAAAACCACC	GCTACCAGCG
	5151	GTGGTTTGTT	TGCCGGATCA	AGAGCTACCA	ACTCTTTTTC	CGAAGGTAAC
	5201	TGGCTTCAGC	AGAGCGCAGA	TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT
25	5251	AGTTAGGCCA	CCACTTCAAG	AACTCTGTAG	CACCGCCTAC	ATACCTCGCT
	5301	CTGCTAATCC	TGTTACCAGT	GGCTGCTGCC	AGTGGCGATA	AGTCGTGTCT
	5351	TACCGGGTTG	GACTCAAGAC	GATAGTTACC	GGATAAGGCG	CAGCGGTCGG
20	5401	GCTGAACGGG	GGGTTCGTGC	ACACAGCCCA	GCTTGGAGCG.	AACGACCTAC
30	5451	ACCGAACTGA	GATACCTACA	GCGTGAGCAT	TGAGAAAGCG	CCACGCTTCC
	5501	CGAAGGGAGA	AAGGCGGACA	GGTATCCGGT	AAGCGGCAGG	GTCGGAACAG
	5551	GAGAGCGCAC	GAGGGAGCTT	CCAGGGGGAA	ACGCCTGGTA	TCTTTATAGT
35	5601	CCTGTCGGGT	TTCGCCACCT	CTGACTTGAG	CGTCGATTTT	TGTGATGCTC
	5651	GTCAGGGGG	CGGAGCCTAT	GGAAAAACGC	CAGCAACGCG	GCCTTTTTAC
	5701	GGTTCCTGGC	CTTTTGCTGG	CCTTTTGCTC	ACATGTTCTT	TCCTGCGTTA
	5751	TCCCCTGATT	CTGTGGATAA	CCGTATTACC	GCCTTTGAGT	GAGCTGATAC
40	5801	CGCTCGCCGC	AGCCGAACGA	CCGAGCGCAG	CGAGTCAGTG	AGCGAGGAAG
	5851	CGGAAG				

Tabelle 8: Nukleotidsequenz des rekombinanten Expressionsplasmids pCDNA3.1(-)H-SemaL-MycHisA (SEQ ID NO.: 35)

50 1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC
51 TGCTCTGATG CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT
101 GGAGGTCGCT GAGTAGTGCG CGAGCAAAAT TTAAGCTACA ACAAGGCAAG

```
151 GCTTGACCGA CAATTGCATG AAGAATCTGC TTAGGGTTAG GCGTTTTGCG
              201 CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT GATTATTGAC
              251 TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA
5
              301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG
              351 CCCAACGACC CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT
              401 AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAC TATTTACGGT
              451 AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC
10
              501 CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA
              551 CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA
              601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA
15
              651 TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA
              701 TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA
              751 ACAACTCCGC CCCATTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG
              801 GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA CTGCTTACTG
20
              851 GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
              901 GTTTAAACGG GCCCTCTAGA CTCGAGCGGC CGCCACTGTG CTGGATATCT
              951 GCAgaattcg gcttgggatg acgcctcctc cgcccggacg tgccqcccc
             1001 agegeacege gegeeegegt eeetggeeeg eeggeteggt tggggettee
             1051 gctgcggctg cggctgctgc tgctgctctg ggcggccgcc gcctccgccc
             1101 agggccacct aaggagcgga ccccgcatct tcgccgtctg gaaaggccat
             1151 gtagggcagg accgggtgga ctttggccag actgagccgc acacggtgct
             1201 tttccacgag ccaggcagct cctctgtgtg ggtgggagga cgtggcaagg
30
             1251 totacctott tgacttocco gagggcaaga acgcatctgt gcgcacggtg
             1301 aatatcggct ccacaaaggg gtcctgtctg gataagcggg actgcgagaa
             1351 ctacatcact ctcctggaga ggcggagtga ggggctgctg gcctgtggca
             1401 ccaacgcccg gcaccccagc tgctggaacc tggtgaatgg cactgtggtg
35
             1451 ccacttggcg agatgagagg ctacgccccc ttcagcccgg acgagaactc
             1501 cctggttctg tttgaagggg acgaggtgta ttccaccatc cggaagcagg
             1551 aatacaatgg gaagatccct cggttccgcc gcatccgggg cgagagtgag
             1601 ctgtacacca gtgatactgt catgcagaac ccacagttca tcaaagccac
40
             1651 catcgtgcac caagaccagg cttacgatga caagatctac tacttcttcc
             1701 gagaggacaa tootgacaag aatootgagg otoototoaa tgtgtooogt
             1751 gtggcccagt tgtgcagggg ggaccagggt ggggaaagtt cactgtcagt
45
             1801 ctccaagtgg aacacttttc tgaaagccat gctggtatgc agtgatgctg
             1851 ccaccaacaa gaacttcaac aggctgcaag acgtcttcct gctccctgac
             1901 cccagcggcc agtggaggga caccagggtc tatggtgttt tctccaaccc
             1951 ctggaactac tcagccgtct gtgtgtattc cctcggtgac attgacaagg
50
             2001 tetteegtae etecteacte aagggetace acteaageet teccaaceeg
             2051 cggcctggca agtgcctccc agaccagcag ccgataccca cagagacctt
```

```
2101 ccaqqtqqct qaccqtcacc caqaqqtqqc qcaqaqqqtq qaqcccatqq
             2151 ggcctctgaa gacgccattg ttccactcta aataccacta ccagaaagtg
             2201 gccgttcacc gcatgcaagc cagccacggg gagacctttc atgtgcttta
5
             2251 cctaactaca gacaggggca ctatccacaa ggtggtggaa ccgggggagc
             2301 aggagcacag cttcgccttc aacatcatgg agatccagcc cttccgccgc
             2351 gcggctgcca tccagaccat gtcgctggat gctgagcgga ggaagctgta
             2401 tgtgagctcc cagtgggagg tgagccaggt gcccctggac ctgtgtgagg
10
             2451 totatggcgg gggctgccac ggttgcctca tgtcccgaga cccctactgc
             2501 ggctgggacc agggccgctg catctccatc tacagctccg aacggtcagt
             2551 gctgcaatcc attaatccag ccgagccaca caaggagtgt cccaacccca
             2601 aaccagacaa ggccccactg cagaaggttt ccctggcccc aaactctcgc
15
             2651 tactacctga gctgccccat ggaatcccgc cacgccacct actcatggcg
             2701 ccacaaggag aacgtggagc agagctgcga acctggtcac cagagcccca
             2751 actgcatcct gttcatcgag aacctcacgg cgcagcagta cggccactac
20
             2801 ttctqcqaqq cccaqqaqqq ctcctacttc cgcqaqqctc aqcactqqca
             2851 gctgctgccc gaggacggca tcatggccga gcacctgctg ggtcatgcct
             2901 qtqccctqqc tqcctccctc tggctggggg tqctqcccac actcactctt
             2951 ggcttgctgg tccacgtgaa gcttGGGCCC GAACAAAAAC TCATCTCAGA
25
             3001 AGAGGATCTG AATAGCGCCG TCGACCATCA TCATCATCAT CATTGAGTTT
             3051 AAACCGCTGA TCAGCCTCGA CTGTGCCTTC TAGTTGCCAG CCATCTGTTG
             3101 TTTGCCCCTC CCCCGTGCCT TCCTTGACCC TGGAAGGTGC CACTCCCACT
             3151 GTCCTTTCCT AATAAAATGA GGAAATTGCA TCGCATTGTC TGAGTAGGTG
30
             3201 TCATTCTATT CTGGGGGGTG GGGTGGGGCA GGACAGCAAG GGGGAGGATT
             3251 GGGAAGACAA TAGCAGGCAT GCTGGGGATG CGGTGGGCTC TATGGCTTCT
             3301 GAGGCGGAAA GAACCAGCTG GGGCTCTAGG GGGTATCCCC ACGCGCCCTG
             3351 TAGCGGCGCA TTAAGCGCGG CGGGTGTGGT GGTTACGCGC AGCGTGACCG
35
             3451 TTTCTCGCCA CGTTCGCCGG CTTTCCCCGT CAAGCTCTAA ATCGGGGCAT
             3501 CCCTTTAGGG TTCCGATTTA GTGCTTTACG GCACCTCGAC CCCAAAAAAC
             3551 TTGATTAGGG TGATGGTTCA CGTAGTGGGC CATCGCCCTG ATAGACGGTT
40
             3601 TTTCGCCCTT TGACGTTGGA GTCCACGTTC TTTAATAGTG GACTCTTGTT
             3651 CCAAACTGGA ACAACACTCA ACCCTATCTC GGTCTATTCT TTTGATTTAT
             3701 AAGGGATTTT GGGGATTTCG GCCTATTGGT TAAAAAATGA GCTGATTTAA
45
             3751 CAAAAATTTA ACGCGAATTA ATTCTGTGGA ATGTGTGTCA GTTAGGGTGT
             3801 GGAAAGTCCC CAGGCTCCCC AGGCAGGCAG AAGTATGCAA AGCATGCATC
             3851 TCAATTAGTC AGCAACCAGG TGTGGAAAGT CCCCAGGCTC CCCAGCAGGC
             3901 AGAAGTATGC AAAGCATGCA TCTCAATTAG TCAGCAACCA TAGTCCCGCC
50
             3951 CCTAACTCCG CCCATCCCGC CCCTAACTCC GCCCAGTTCC GCCCATTCTC
             4001 CGCCCCATGG CTGACTAATT TTTTTTATTT ATGCAGAGGC CGAGGCCGCC
```

```
4051 TCTGCCTCTG AGCTATTCCA GAAGTAGTGA GGAGGCTTTT TTGGAGGCCT
             4101 AGGCTTTTGC AAAAAGCTCC CGGGAGCTTG TATATCCATT TTCGGATCTG
             4151 ATCAAGAGAC AGGATGAGGA TCGTTTCGCA TGATTGAACA AGATGGATTG
5
             4201 CACGCAGGTT CTCCGGCCGC TTGGGTGGAG AGGCTATTCG GCTATGACTG
             4251 GGCACAACAG ACAATCGGCT GCTCTGATGC CGCCGTGTTC CGGCTGTCAG
             4301 CGCAGGGGCG CCCGGTTCTT TTTGTCAAGA CCGACCTGTC CGGTGCCCTG
             4351 AATGAACTGC AGGACGAGGC AGCGCGGCTA TCGTGGCTGG CCACGACGGG
10
             4401 CGTTCCTTGC GCAGCTGTGC TCGACGTTGT CACTGAAGCG GGAAGGGACT
             4451 GGCTGCTATT GGGCGAAGTG CCGGGGCAGG ATCTCCTGTC ATCTCACCTT
             4501 GCTCCTGCCG AGAAAGTATC CATCATGGCT GATGCAATGC GGCGGCTGCA
15
             4551 TACGCTTGAT CCGGCTACCT GCCCATTCGA CCACCAAGCG AAACATCGCA
             4601 TCGAGCGAGC ACGTACTCGG ATGGAAGCCG GTCTTGTCGA TCAGGATGAT
             4651 CTGGACGAAG AGCATCAGGG GCTCGCGCCA GCCGAACTGT TCGCCAGGCT
             4701 CAAGGCGCGC ATGCCCGACG GCGAGGATCT CGTCGTGACC CATGGCGATG
20
             4751 CCTGCTTGCC GAATATCATG GTGGAAAATG GCCGCTTTTC TGGATTCATC
             4801 GACTGTGGCC GGCTGGGTGT GGCGGACCGC TATCAGGACA TAGCGTTGGC
             4851 TACCCGTGAT ATTGCTGAAG AGCTTGGCGG CGAATGGGCT GACCGCTTCC
             4901 TCGTGCTTTA CGGTATCGCC GCTCCCGATT CGCAGCGCAT CGCCTTCTAT
25
             4951 CGCCTTCTTG ACGAGTTCTT CTGAGCGGGA CTCTGGGGTT CGAAATGACC
             5001 GACCAAGCGA CGCCCAACCT GCCATCACGA GATTTCGATT CCACCGCCGC
             5051 CTTCTATGAA AGGTTGGGCT TCGGAATCGT TTTCCGGGAC GCCGGCTGGA
             5101 TGATCCTCCA GCGCGGGGAT CTCATGCTGG AGTTCTTCGC CCACCCCAAC
30
             5151 TTGTTTATTG CAGCTTATAA TGGTTACAAA TAAAGCAATA GCATCACAAA
             5201 TTTCACAAAT AAAGCATTTT TTTCACTGCA TTCTAGTTGT GGTTTGTCCA
             5251 AACTCATCAA TGTATCTTAT CATGTCTGTA TACCGTCGAC CTCTAGCTAG
35
             5301 AGCTTGGCGT AATCATGGTC ATAGCTGTTT CCTGTGTGAA ATTGTTATCC
             5351 GCTCACAATT CCACACAACA TACGAGCCGG AAGCATAAAG TGTAAAGCCT
             5401 GGGGTGCCTA ATGAGTGAGC TAACTCACAT TAATTGCGTT GCGCTCACTG
             5451 CCCGCTTTCC AGTCGGGAAA CCTGTCGTGC CAGCTGCATT AATGAATCGG
40
             5501 CCAACGCGCG GGGAGAGGCG GTTTGCGTAT TGGGCGCTCT TCCGCTTCCT
             5551 CGCTCACTGA CTCGCTGCGC TCGGTCGTTC GGCTGCGGCG AGCGGTATCA
             5601 GCTCACTCAA AGGCGGTAAT ACGGTTATCC ACAGAATCAG GGGATAACGC
             5651 AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA AAAGGCCAGG AACCGTAAAA
45
             5701 AGGCCGCGTT GCTGGCGTTT TTCCATAGGC TCCGCCCCCC TGACGAGCAT
             5751 CACAAAAATC GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA
             5801 AAGATACCAG GCGTTTCCCC CTGGAAGCTC CCTCGTGCGC TCTCCTGTTC
             5851 CGACCCTGCC GCTTACCGGA TACCTGTCCG CCTTTCTCCC TTCGGGAAGC
50
             5901 GTGGCGCTTT CTCAATGCTC ACGCTGTAGG TATCTCAGTT CGGTGTAGGT
             5951 CGTTCGCTCC AAGCTGGGCT GTGTGCACGA ACCCCCGTT CAGCCCGACC
```

	6001	GCTGCGCCTT	ATCCGGTAAC	TATCGTCTTG	AGTCCAACCC	GGTAAGACAC
	6051	GACTTATCGC	CACTGGCAGC	AGCCACTGGT	AACAGGATTA	GCAGAGCGAG
5	6101	GTATGTAGGC	GGTGCTACAG	AGTTCTTGAA	$\mathtt{GTGGTGGCCT}$	AACTACGGCT
	6151	ACACTAGAAG	GACAGTATTT	GGTATCTGCG	CTCTGCTGAA	GCCAGTTACC
	6201	TTCGGAAAAA	GAGTTGGTAG	CTCTTGATCC	GGCAAACAAA	CCACCGCTGG
	6251	TAGCGGTGGT	TTTTTTGTTT	GCAAGCAGCA	GATTACGCGC	AGAAAAAAAG
10	6301	GATCTCAAGA	AGATCCTTTG	ATCTTTTCTA	CGGGGTCTGA	CGCTCAGTGG
	6351	AACGAAAACT	CACGTTAAGG	GATTTTGGTC	ATGAGATTAT	CAAAAAGGAT
	6401	CTTCACCTAG	ATCCTTTTAA	ATTAAAAATG	AAGTTTTAAA	TCAATCTAAA
	6451	GTATATATGA	GTAAACTTGG	TCTGACAGTT	ACCAATGCTT	AATCAGTGAG
15	6501	GCACCTATCT	CAGCGATCTG	TCTATTTCGT	TCATCCATAG	TTGCCTGACT
	6551	CCCCGTCGTG	TAGATAACTA	CGATACGGGA	GGGCTTACCA	TCTGGCCCCA
	6601	GTGCTGCAAT	GATACCGCGA	GACCCACGCT	CACCGGCTCC	AGATTTATCA
	6651	GCAATAAACC	AGCCAGCCGG	AAGGGCCGAG	CGCAGAAGTG	GTCCTGCAAC
20	6701	TTTATCCGCC	TCCATCCAGT	CTATTAATTG	TTGCCGGGAA	GCTAGAGTAA
	6751	GTAGTTCGCC	AGTTAATAGT	TTGCGCAACG	TTGTTGCCAT	TGCTACAGGC
	6801	ATCGTGGTGT	CACGCTCGTC	GTTTGGTATG	GCTTCATTCA	GCTCCGGTTC
•	6851	CCAACGATCA	AGGCGAGTTA	CATGATCCCC	CATGTTGTGC	AAAAAAGCGG
25	6901	TTAGCTCCTT	CGGTCCTCCG	ATCGTTGTCA	GAAGTAAGTT	GGCCGCAGTG
	6951	TTATCACTCA	TGGTTATGGC	AGCACTGCAT	AATTCTCTTA	CTGTCATGCC
	7001	ATCCGTAAGA	TGCTTTTCTG	TGACTGGTGA	GTACTCAACC	AAGTCATTCT
20	7051	GAGAATAGTG	TATGCGGCGA	CCGAGTTGCT	CTTGCCCGGC	GTCAATACGG
30	7101	GATAATACCG	CGCCACATAG	CAGAACTTTA	AAAGTGCTCA	TCATTGGAAA
	7151	ACGTTCTTCG	GGGCGAAAAC	TCTCAAGGAT	CTTACCGCTG	TTGAGATCCA
	7201	GTTCGATGTA	ACCCACTCGT	GCACCCAACT	GATCTTCAGC	ATCTTTTACT
35	7251	TTCACCAGCG	TTTCTGGGTG	AGCAAAAACA	GGAAGGCAAA	ATGCCGCAAA
	7301	AAAGGGAATA	AGGGCGACAC	GGAAATGTTG	AATACTCATA	CTCTTCCTTT
	7351	TTCAATATTA	TTGAAGCATT	TATCAGGGTT	ATTGTCTCAT	GAGCGGATAC
	7401	ATATTTGAAT	GTATTTAGAA	AAATAAACAA	ATAGGGGTTC	CGCGCACATT
40	7451	TCCCCGAAAA	GTGCCACCTG	ACGTC		•
	Tabelle 9): Nukleotik	dsequenz des reko	ombinanten Plasm	ids pcDNA 3.1-H-	SemaL-EGFP-Mychis
45		(SEQ ID	NO.: 36)			
	1	•	•	GATCCCCTAT	GGTCGACTCT	CAGTACAATC
	51	TGCTCTGATG	CCGCATAGTT	AAGCCAGTAT	CTGCTCCCTG	CTTGTGTGTT
	101	GGAGGTCGCT	GAGTAGTGCG	CGAGCAAAAT	TTAAGCTACA	ACAAGGCAAG
50	151	CCERCACCCA	C	እ እ ር እ አመር ጥ ርር	ጥጥ እ <i>ርርር</i> ጥጥ እ <i>ር</i>	ここのではない。

201 CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT GATTATTGAC

```
251 TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA
              301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG
              351 CCCAACGACC CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT
5
              401 AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAC TATTTACGGT
              451 AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC
              501 CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA
              551 CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA
10
              601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA
              651 TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA
              701 TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA
15
              751 ACAACTCCGC CCCATTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG
              801 GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA CTGCTTACTG
              851 GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC
              901 GTTTAAACGG GCCCTCTAGA CTCGAGCGGC CGCCACTGTG CTGGATATCT
20
              951 GCAgaattcg gcttgggatg acgcctcctc cgcccggacg tgccgcccc
             1001 agegeacege gegeeegegt ecetggeeeg eeggeteggt tggggettee
             1051 gctgcggctg cggctgctgc tgctgctctg ggcggccgcc gcctccgccc
             1101 agggccacct aaggagcgga ccccgcatct tcgccgtctg gaaaggccat
25
             1151 gtagggcagg accgggtgga ctttggccag actgagccgc acacggtgct
             1201 tttccacgag ccaggcagct cctctgtgtg ggtgggagga cgtggcaagg
             1251 totacctott tgacttocco gagggcaaga acgcatctgt gcgcacggtg
             1301 àatatcggct ccacaaaggg gtcctgtctg gataagcggg actgcgagaa
30
             1351 ctacatcact ctcctggaga ggcggagtga ggggctgctg gcctgtggca
             1401 ccaacgcccg gcaccccage tgctggaacc tggtgaatgg cactgtggtg
             1451 ccacttggcg agatgagagg ctacgccccc ttcagcccgg acgagaactc
             1501 cctggttctg tttgaagggg acgaggtgta ttccaccatc cggaagcagg
35
             1551 aatacaatgg gaagatccct cggttccgcc gcatccgggg cgagagtgag
             1601 ctgtacacca gtgatactgt catgcagaac ccacagttca tcaaagccac
             1651 catcgtgcac caagaccagg cttacgatga caagatctac tacttcttcc
40
             1701 gagaggacaa tcctgacaag aatcctgagg ctcctctcaa tgtgtcccgt
             1751 gtggcccagt tgtgcagggg ggaccagggt ggggaaagtt cactgtcagt
             1801 ctccaagtgg aacacttttc tgaaagccat gctggtatgc agtgatgctg
             1851 ccaccaacaa gaacttcaac aggctgcaag acgtcttcct gctccctgac
45
             1901 cccaqcggcc agtggaggga caccagggtc tatggtgttt tctccaaccc
             1951 ctggaactac tcagccgtct gtgtgtattc cctcggtgac attgacaagg
             2001 tottoogtac ctcctcactc aagggctacc actcaagcct toccaacccg
             2051 cggcctggca agtgcctccc agaccagcag ccgataccca cagagacctt
50
             2101 ccaggtggct gaccgtcacc cagaggtggc gcagagggtg gagcccatgg
             2151 ggcctctgaa gacgccattg ttccactcta aataccacta ccagaaagtg
```

```
2201 gccgttcacc gcatgcaagc cagccacggg gagacctttc atgtgcttta
             2251 cctaactaca gacaggggca ctatccacaa ggtggtggaa ccgggggagc
             2301 aggaggagag cttcgccttc aacatcatgg agatccagcc cttccgccgc
5
             2351 gcqqctqcca tccagaccat gtcqctqqat qctqaqcqqa gqaaqctqta
             2401 tqtqaqctcc cagtgggagg tgaqccaggt gcccctggac ctgtgtgagg
             2451 totatggcgg gggctgccac ggttgcctca tgtcccgaga cccctactgc
             2501 ggctgggacc agggccgctg catctccatc tacagctccg aacggtcagt
10
             2551 gctgcaatcc attaatccag ccgagccaca caaggagtgt cccaacccca
             2601 aaccagacaa ggccccactg cagaaggttt ccctggcccc aaactctcgc
             2651 tactacetga getgeeccat ggaateeege caegeeacet aeteatggeg
             2701 ccacaaqqag aacgtggagc agagctgcga acctggtcac cagagcccca
15
             2751 actgcatcct gttcatcgag aacctcacgg cgcagcagta cggccactac
              2801 ttctgcgagg cccaggaggg ctcctacttc cgcgaggctc agcactggca
              2851 gctgctgccc gaggacggca tcatggccga gcacctgctg ggtcatgcct
20
              2901 gtgccctggc tgcctccctc tggctggggg tgctgcccac actcactctt
              2951 ggcttgctgg tccacATGGT GAGCAAGGGC GAGGAGCTGT TCACCGGGGT
              3001 GGTGCCCATC CTGGTCGAGC TGGACGGCGA CGTAAACGGC CACAAGTTCA
              3051 GCGTGTCCGG CGAGGGCGAG GGCGATGCCA CCTACGGCAA GCTGACCCTG
25
              3101 AAGTTCATCT GCACCACCGG CAAGCTGCCC GTGCCCTGGC CCACCCTCGT
              3151 GACCACCCTG ACCTACGGCG TGCAGTGCTT CAGCCGCTAC CCCGACCACA
              3201 TGAAGCAGCA CGACTTCTTC AAGTCCGCCA TGCCCGAAGG CTACGTCCAG
              3251 GAGCGCACCA TCTTCTTCAA GGACGACGGC AACTACAAGA CCCGCGCCGA
30
              3301 GGTGAAGTTC GAGGGCGACA CCCTGGTGAA CCGCATCGAG CTGAAGGGCA
              3351 TCGACTTCAA GGAGGACGGC AACATCCTGG GGCACAAGCT GGAGTACAAC
              3401 TACAACAGCC ACAACGTCTA TATCATGGCC GACAAGCAGA AGAACGGCAT
              3451 CAAGGTGAAC TTCAAGATCC GCCACAACAT CGAGGACGGC AGCGTGCAGC
35
              3501 TCGCCGACCA CTACCAGCAG AACACCCCCA TCGGCGACGG CCCCGTGCTG
              3551 CTGCCGACA ACCACTACCT GAGCACCCAG TCCGCCCTGA GCAAAGACCC
              3601 CAACGAGAAG CGCGATCACA TGGTCCTGCT GGAGTTCGTG ACCGCCGCCG
              3651 GGATCACTCT CGGCATGGAC GAGCTGTACA Aggtgaagct tGGGCCCGAA
 40
              3701 CAAAAACTCA TCTCAGAAGA GGATCTGAAT AGCGCCGTCG ACCATCATCA
              3751 TCATCATCAT TGAGTTTAAA CCGCTGATCA GCCTCGACTG TGCCTTCTAG
              3801 TTGCCAGCCA TCTGTTGTTT GCCCCTCCCC CGTGCCTTCC TTGACCCTGG
              3851 AAGGTGCCAC TCCCACTGTC CTTTCCTAAT AAAATGAGGA AATTGCATCG
 45
               3901 CATTGTCTGA GTAGGTGTCA TTCTATTCTG GGGGGTGGGG TGGGGCAGGA
               3951 CAGCAAGGG GAGGATTGGG AAGACAATAG CAGGCATGCT GGGGATGCGG
               4001 TGGGCTCTAT GGCTTCTGAG GCGGAAAGAA CCAGCTGGGG CTCTAGGGGG
 50
               4051 TATCCCCACG CGCCCTGTAG CGGCGCATTA AGCGCGGCGG GTGTGGTGGT
               4101 TACGCGCAGC GTGACCGCTA CACTTGCCAG CGCCCTAGCG CCCGCTCCTT
```

						TCCCCGTCAA
						CTTTACGGCA
5	4251	CCTCGACCCC	AAAAAACTTG	ATTAGGGTGA	TGGTTCACGT	AGTGGGCCAT
			GACGGTTTTT			
			TCTTGTTCCA			
			GATTTATAAG			
10			GATTTAACAA			
			AGGGTGTGGA			
			ATGCATCTCA			
			AGCAGGCAGA			
15			TCCCGCCCCT			
			CATTCTCCGC			
			GGCCGCCTCT			
20			GAGGCCTAGG			
			GGATCTGATC			
			TGGATTGCAC			
			ATGACTGGGC			
25			CTGTCAGCGC			
			TGCCCTGAAT			
			CGACGGGCGT			
•			AGGGACTGGC			
30			TCACCTTGCT			
			GGCTGCATAC			
			CATCGCATCG			
-			GGATGATCTG			
35			CCAGGCTCAA			
			GGCGATGCCT			
			ATTCATCGAC			
			CGTTGGCTAC			
40			CGCTTCCTCG			
			CTTCTATCGC			
			AATGACCGAC			
45			CCGCCGCCTT			
			GGCTGGATGA			
			CCCCAACTTG			
			TCACAAATTT			
50			TTGTCCAAAC			
			TAGCTAGAGC			
	6051	GTGTGAAATT	GTTATCCGCT	CACAATTCCA	CACAACATAC	GAGCCGGAAG

	6101	CATAAAGTGT	AAAGCCTGGG	GTGCCTAATG	AGTGAGCTAA	CTCACATTAA
	6151	TTGCGTTGCG	CTCACTGCCC	GCTTTCCAGT	CGGGAAACCT	GTCGTGCCAG
5	6201	CTGCATTAAT	GAATCGGCCA	ACGCGCGGG	AGAGGCGGTT	TGCGTATTGG
	6251	GCGCTCTTCC	GCTTCCTCGC	TCACTGACTC	GCTGCGCTCG	GTCGTTCGGC
	6301	TGCGGCGAGC	GGTATCAGCT	CACTCAAAGG	CGGTAATACG	GTTATCCACA
	6351	GAATCAGGGG	ATAACGCAGG	AAAGAACATG	TGAGCAAAAG	GCCAGCAAAA
10	6401	GGCCAGGAAC	CGTAAAAAGG	CCGCGTTGCT	GGCGTTTTTC	CATAGGCTCC
	6451	GCCCCCTGA	CGAGCATCAC	AAAAATCGAC	GCTCAAGTCA	GAGGTGGCGA
	6501	AACCCGACAG	GACTATAAAG	ATACCAGGCG	TTTCCCCCTG	GAAGCTCCCT
	6551	CGTGCGCTCT	CCTGTTCCGA	CCCTGCCGCT	TACCGGATAC	CTGTCCGCCT
15	6601	TTCTCCCTTC	GGGAAGCGTG	GCGCTTTCTC	AATGCTCACG	CTGTAGGTAT
	6651	CTCAGTTCGG	TGTAGGTCGT	TCGCTCCAAG	CTGGGCTGTG	TGCACGAACC
	6701	CCCCGTTCAG	CCCGACCGCT	GCGCCTTATC	CGGTAACTAT	CGTCTTGAGT
	6751	CCAACCCGGT	AAGACACGAC	TTATCGCCAC	TGGCAGCAGC	CACTGGTAAC
20	6801	AGGATTAGCA	GAGCGAGGTA	TGTAGGCGGT	GCTACAGAGT	TCTTGAAGTG
	6851	GTGGCCTAAC	TACGGCTACA	CTAGAAGGAC	AGTATTTGGT	ATCTGCGCTC
	6901	TGCTGAAGCC	AGTTACCTTC	GGAAAAAGAG	TTGGTAGCTC	TTGATCCGGC
05	6951	AAACAAACCA	CCGCTGGTAG	CGGTGGTTTT	TTTGTTTGCA	AGCAGCAGAT
25	7001	TACGCGCAGA	AAAAAAGGAT	CTCAAGAAGA	TCCTTTGATC	TTTTCTACGG
	7051	GGTCTGACGC	TCAGTGGAAC	GAAAACTCAC	GTTAAGGGAT	TTTGGTCATG
	7101	AGATTATCAA	AAAGGATCTT	CACCTAGATC	CTTTTAAATT	AAAAATGAAG
30	7151	TTTTAAATCA	ATCTAAAGTA	TATATGAGTA	AACTTGGTCT	GACAGTTACC
	7201	AATGCTTAAT	CAGTGAGGCA	CCTATCTCAG	CGATCTGTCT	ATTTCGTTCA
	7251	TCCATAGTTG	CCTGACTCCC	CGTCGTGTAG	ATAACTACGA	TACGGGAGGG
	7301	CTTACCATCT	GGCCCCAGTG	CTGCAATGAT	ACCGCGAGAC	CCACGCTCAC
35	7351	CGGCTCCAGA	TTTATCAGCA	ATAAACCAGC	CAGCCGGAAG	GGCCGAGCGC
	7401	AGAAGTGGTC	CTGCAACTTT	ATCCGCCTCC	ATCCAGTCTA	TTAATTGTTG
					TAATAGTTTG	
					GCTCGTCGTT	
40					CGAGTTACAT	
*						GTTGTCAGAA
						ACTGCATAAT
						CTGGTGAGTA
45						AGTTGCTCTT
						AACTTTAAAA
						CAAGGATCTT
50						CCCAACTGAT
						AAAAACAGGA
	8001	L AGGCAAAAT	CCGCAAAAA	A GGGAATAAG	GCGACACGGA	AATGTTGAAT

8051 ACTCATACTC TTCCTTTTC AATATTATTG AAGCATTTAT CAGGGTTATT
8101 GTCTCATGAG CGGATACATA TTTGAATGTA TTTAGAAAAA TAAACAAATA
8151 GGGGTTCCGC GCACATTTCC CCGAAAAGTG CCACCTGACG TC

Tabelle 10: Nukleotidsequenz des rekombinanten Plasmids pIND-H-SemaL-EE (SEQ ID NO.: 37)

```
1 AGATCTCGGC CGCATATTAA GTGCATTGTT CTCGATACCG CTAAGTGCAT
               51 TGTTCTCGTT AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC
              101 GATGGACAAG TGCATTGTTC TCTTGCTGAA AGCTCGATGG ACAAGTGCAT
15
              151 TGTTCTCTTG CTGAAAGCTC AGTACCCGGG AGTACCCTCG ACCGCCGGAG
              201 TATAAATAGA GGCGCTTCGT CTACGGAGCG ACAATTCAAT TCAAACAAGC
              251 AAAGTGAACA CGTCGCTAAG CGAAAGCTAA GCAAATAAAC AAGCGCAGCT
              301 GAACAAGCTA AACAATCTGC AGTAAAGTGC AAGTTAAAGT GAATCAATTA
20
              351 AAAGTAACCA GCAACCAAGT AAATCAACTG CAACTACTGA AATCTGCCAA
              401 GAAGTAATTA TTGAATACAA GAAGAGAACT CTGAATACTT TCAACAAGTT
              451 ACCGAGAAAG AAGAACTCAC ACACAGCTAG CGTTTAAACT TAAGCTTGGT
              501 ACCGAGCTCG GATCCACTAG TCCAGTGTGG TGgaattcgg cttgggatga
25
              551 cgcctcctcc gcccggacgt gccgcccca gcgcaccgcg cgcccgcgtc
              601 cctggcccgc cggctcggtt ggggcttccg ctgcggctgc ggctgctgct
              651 gctgctctgg gcggccgccg cctccgccca gggccaccta aggagcggac
              701 cccgcatctt cgccgtctgg aaaggccatg tagggcagga ccgggtggac
30
              751 tttggccaga ctgagccgca cacggtgctt ttccacgagc caggcagctc
              801 ctctgtgtgg gtgggaggac gtggcaaggt ctacctcttt gacttccccg
              851 agggcaagaa cgcatctgtg cgcacggtga atatcggctc cacaaagggg
35 .
              901 tcctgtctgg ataagcggga ctgcgagaac tacatcactc tcctggagag
              951 gcggagtgag gggctgctgg cctgtggcac caacgcccgg caccccagct
             1001 gctggaacct ggtgaatggc actgtggtgc cacttggcga gatgagaggc
             1051 tacgccccct tcagcccgga cgagaactcc ctggttctgt ttgaagggga
40
             1101 cgaggtgtat tccaccatcc ggaagcagga atacaatggg aagatccctc
             1151 ggttccgccg catccggggc gagagtgagc tgtacaccag tgatactgtc
       ű.
             1201 atgcagaacc cacagttcat caaagccacc atcgtgcacc aagaccagge
             1251 ttacgatgac aagatctact acttcttccg agaggacaat cctgacaaga
45
             1301 atcctgaggc tcctctcaat gtgtcccgtg tggcccagtt gtgcaggggg
             1351 gaccagggtg gggaaagttc actgtcagtc tccaagtgga acacttttct
             1401 gaaagccatg ctggtatgca gtgatgctgc caccaacaag aacttcaaca
             1451 ggctgcaaga cgtcttcctg ctccctgacc ccagcggcca gtggagggac
50
             1501 accagggtct atggtgtttt ctccaacccc tggaactact cagccgtctg
             1551 tgtgtattcc ctcggtgaca ttgacaaggt cttccgtacc tcctcactca
```

5

```
1601 agggetacca etcaageett eccaaceege ggeetggeaa gtgeeteeca
            1651 gaccagcage egataceeac agagacette caggtggetg accgteacec
            1701 agaggtggcg cagagggtgg agcccatggg gcctctgaag acgccattgt
5
            1751 tocactotaa ataccactac cagaaagtgg ccgttcaccg catgcaagcc
            1801 agccacgggg agacctttca tgtgctttac ctaactacag acaggggcac
            1851 tatccacaag gtggtggaac cgggggagca ggagcacagc ttcqccttca
            1901 acatcatgga gatccagccc ttccgccgcg cggctgccat ccagaccatg
10
            1951 tcgctggatg ctgagcggag gaagctgtat gtgagctccc agtgggaggt
            2001 gagccaggtg cccctggacc tgtgtgaggt ctatggcggg ggctgccacg
            2051 gttgcctcat gtcccqaqac ccctactgcg gctgggacca gggccgctgc
            2101 atotocatot acagotocga acggtcagtg ctgcaatoca ttaatccago
15
            2151 cgagccacac aaggagtgtc ccaaccccaa accagacaag gccccactgc
             2201 agaaggtttc cctggcccca aactctcgct actacctgag ctgccccatg
            2251 gaatcccgcc acgccaccta ctcatggcgc cacaaggaga acgtggagca
20
            2301 gagetgegaa cetggteace agageceeaa etgeateetg tteategaga
             2351 acctcacggc gcagcagtac ggccactact tctgcgaggc ccaggagggc
             2401 tectaettee gegaggetea geaetggeag etgetgeeeg aggaeggeat
             2451 catggccgag cacctgctgg gtcatgcctg tgccctggct gcctcctct
25
             2501 ggctgggggt gctgcccaca ctcactcttg gcttgctggt ccacqtgaag
             2551 cttgggcccg tttaaacccg ctgatcagcc tcgactgtgc cttctagttg
             2601 CCAGCCATCT GTTGTTTGCC CCTCCCCGT GCCTTCCTTG ACCCTGGAAG
             2651 GTGCCACTCC CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGCATCGCAT
30
             2751 CAAGGGGAG GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG
             2801 GCTCTATGGC TTCTGAGGCG GAAAGAACCA GCTGGGGCTC TAGGGGGTAT
             2851 CCCCACGCGC CCTGTAGCGG CGCATTAAGC GCGGCGGGTG TGGTGGTTAC
35
             2901 GCGCAGCGTG ACCGCTACAC TTGCCAGCGC CCTAGCGCCC GCTCCTTTCG
             2951 CTTTCTTCCC TTCCTTTCTC GCCACGTTCG CCGGCTTTCC CCGTCAAGCT
             3001 CTAAATCGGG GCATCCCTTT AGGGTTCCGA TTTAGTGCTT TACGGCACCT
             3051 CGACCCCAAA AAACTTGATT AGGGTGATGG TTCACGTAGT GGGCCATCGC
40
             3101 CCTGATAGAC GGTTTTTCGC CCTTTGACGT TGGAGTCCAC GTTCTTTAAT
             3151 AGTGGACTCT TGTTCCAAAC TGGAACAACA CTCAACCCTA TCTCGGTCTA
             3201 TTCTTTTGAT TTATAAGGGA TTTTGGGGAT TTCGGCCTAT TGGTTAAAAA
45
             3251 ATGAGCTGAT TTAACAAAAA TTTAACGCGA ATTAATTCTG TGGAATGTGT
             3301 GTCAGTTAGG GTGTGGAAAG TCCCCAGGCT CCCCAGGCAG GCAGAAGTAT
             3351 GCAAAGCATG CATCTCAATT AGTCAGCAAC CAGGTGTGGA AAGTCCCCAG
             3401 GCTCCCCAGC AGGCAGAAGT ATGCAAAGCA TGCATCTCAA TTAGTCAGCA
50
             3451 ACCATAGTCC CGCCCCTAAC TCCGCCCATC CCGCCCCTAA CTCCGCCCAG
             3501 TTCCGCCCAT TCTCCGCCCC ATGGCTGACT AATTTTTTT ATTTATGCAG
```

		3551	AGGCCGAGGC	CGCCTCTGCC	TCTGAGCTAT	TCCAGAAGTA	GTGAGGAGGC
		3601	TTTTTTGGAG	GCCTAGGCTT	TTGCAAAAAG	CTCCCGGGAG	CTTGTATATC
5		3651	CATTTTCGGA	TCTGATCAAG	AGACAGGATG	AGGATCGTTT	CGCATGATTG
		3701	AACAAGATGG	ATTGCACGCA	GGTTCTCCGG	CCGCTTGGGT	GGAGAGGCTA
		3751	TTCGGCTATG	ACTGGGCACA	ACAGACAATC	GGCTGCTCTG	ATGCCGCCGT
		3801	GTTCCGGCTG	TCAGCGCAGG	GGCGCCCGGT	TCTTTTTGTC	AAGACCGACC
10		3851	TGTCCGGTGC	CCTGAATGAA	CTGCAGGACG	AGGCAGCGCG	GCTATCGTGG
		3901	CTGGCCACGA	CGGGCGTTCC	TTGCGCAGCT	GTGCTCGACG	TTGTCACTGA
		3951	AGCGGGAAGG	GACTGGCTGC	TATTGGGCGA	AGTGCCGGGG	CAGGATCTCC
		4001	TGTCATCTCA	CCTTGCTCCT	GCCGAGAAAG	TATCCATCAT	GGCTGATGCA
15		4051	ATGCGGCGGC	TGCATACGCT	TGATCCGGCT	ACCTGCCCAT	TCGACCACCA
		4101	AGCGAAACAT	CGCATCGAGC	GAGCACGTAC	TCGGATGGAA	GCCGGTCTTG
		4151	TCGATCAGGA	TGATCTGGAC	GAAGAGCATC	AGGGGCTCGC	GCCAGCCGAA
		4201	CTGTTCGCCA	GGCTCAAGGC	GCGCATGCCC	GACGGCGAGG	ATCTCGTCGT
20		4251	GACCCATGGC	GATGCCTGCT	TGCCGAATAT	CATGGTGGAA	AATGGCCGCT
		4301	TTTCTGGATT	CATCGACTGT	GGCCGGCTGG	GTGTGGCGGA	CCGCTATCAG
		4351	GACATAGCGT	TGGCTACCCG	TGATATTGCT	GAAGAGCTTG	GCGGCGAATG
		4401	GGCTGACCGC	TTCCTCGTGC	TTTACGGTAT	CGCCGCTCCC	GATTCGCAGC
25		4451	GCATCGCCTT	CTATCGCCTT	CTTGACGAGT	TCTTCTGAGC	GGGACTCTGG
		4501	GGTTCGAAAT	GACCGACCAA	GCGACGCCCA	ACCTGCCATC	ACGAGATTTC
		4551	GATTCCACCG	CCGCCTTCTA	TGAAAGGTTG	GGCTTCGGAA	TCGTTTTCCG
30		4601	GGACGCCGGC	TGGATGATCC	TCCAGCGCGG	GGATCTCATG	CTGGAGTTCT
00		4651	TCGCCCACCC	CAACTTGTTT	ATTGCAGCTT	ATAATGGTTA	CAAATAAAGC
		4701	AATAGCATCA	CAAATTTCAC	AAATAAAGCA	TTTTTTTCAC	TGCATTCTAG
		4751	TTGTGGTTTG	TCCAAACTCA	TCAATGTATC	TTATCATGTC	TGTATACCGT
35		4801	CGACCTCTAG	CTAGAGCTTG	GCGTAATCAT	GGTCATAGCT	GTTTCCTGTG
		4851	TGAAATTGTT	ATCCGCTCAC	AATTCCACAC	AACATACGAG	CCGGAAGCAT
		4901	AAAGTGTAAA	GCCTGGGGTG	CCTAATGAGT	GAGCTAACTC	ACATTAATTG
		4951	CGTTGCGCTC	ACTGCCCGCT	TTCCAGTCGG	GAAACCTGTC	GTGCCAGCTG
40	41-	5001	CATTAATGAA	TCGGCCAACG	CGCGGGGAGA	GGCGGTTTGC	GTATTGGGCG
	-	5051	CTCTTCCGCT	TCCTCGCTCA	CTGACTCGCT	GCGCTCGGTC	GTTCGGCTGC
		5101	GGCGAGCGGT	ATCAGCTCAC	TCAAAGGCGG	TAATACGGTT	ATCCACAGAA
		5151	TCAGGGGATA	ACGCAGGAAA	GAACATGTGA	GCAAAAGGCC	AGCAAAAGGC
45		5201	CAGGAACCGT	AAAAAGGCCG	CGTTGCTGGC	GTTTTTCCAT	AGGCTCCGCC
		5251	CCCCTGACGA	GCATCACAAA	AATCGACGCT	CAAGTCAGAG	GTGGCGAAAC
	•	5301	CCGACAGGAC	TATAAAGATA	CCAGGCGTTT	CCCCCTGGAA	GCTCCCTCGT
		5351	GCGCTCTCCT	GTTCCGACCC	TGCCGCTTAC	CGGATACCTG	TCCGCCTTTC
50		5401	TCCCTTCGGG	AAGCGTGGCG	CTTTCTCAAT	GCTCACGCTG	TAGGTATCTC
	•	5451	AGTTCGGTGT	AGGTCGTTCG	CTCCAAGCTG	GGCTGTGTGC	ACGAACCCCC

		5501	CGTTCAGCCC	GACCGCTGCG	CCTTATCCGG	TAACTATCGT	CTTGAGTCCA	
		5551	ACCCGGTAAG	ACACGACTTA	TCGCCACTGG	CAGCAGCCAC	TGGTAACAGG	
	5	5601	ATTAGCAGAG	CGAGGTATGT	AGGCGGTGCT	ACAGAGTTCT	TGAAGTGGTG	
		5651	GCCTAACTAC	GGCTACACTA	GAAGGACAGT	ATTTGGTATC	TGCGCTCTGC	
5 10 15 20 25 30		5701	TGAAGCCAGT	TACCTTCGGA	AAAAGAGTTG	GTAGCTCTTG	ATCCGGCAAA	
5651 GCCTAACTAC GGCTACACTA 5701 TGAAGCCAGT TACCTTCGGA 5751 CAAACCACCG CTGGTAGCGC 5751 CAAACCACCG CTGGTAGCGC 5801 GCGCAGAAAA AAAGGATCTC 5851 CTGACGCTCA GTGGAACGAA 5901 TTATCAAAAA GGATCTTCAC 5951 TAAATCAATC TAAAGTATAA 5951 TAAATCAATC TAAAGTATAA 6051 ATAGTTGCCT GACTCCCCGA 6101 ACCATCTGGC CCCAGTGCTC 6101 ACCATCTGGC CAACTTTATC 6201 AGTGGTCCTG CAACTTTATC 6251 GGAAGCTAGA GTAAGTAGTA 6301 CCATTGCTAC AGGCATCGTC 6351 TTCAGCTCCG GTTCCCAACCA 6351 TTCAGCTCCG GTTCCCAACCA 6351 AGTTGGCCGC AGTGTTATCA 6501 CTTACTGTCA TGCCATCCGA 6551 AACCAAGTCA TTCTGAGAAA 6651 CTCATCATTG GAAAACGTTC 6701 GCTGTTGAGA TCCAGTTCGA 6751 CAGCATCTTT TACTTTCACCA	TGGTTTTTTT	GTTTGCAAGC	AGCAGATTAC					
	10	5801	GCGCAGAAAA	AAAGGATCTC	AAGAAGATCC	TTTGATCTTT	TCTACGGGGT	
		5851	CTGACGCTCA	GTGGAACGAA	AACTCACGTT	AAGGGATTTT	GGTCATGAGA	
		5901	TTATCAAAAA	GGATCTTCAC	CTAGATCCTT	TTAAATTAAA	AATGAAGTTT	
		5951	TAAATCAATC	TAAAGTATAT	ATGAGTAAAC	TTGGTCTGAC	AGTTACCAAT	
	15	6001	GCTTAATCAG	TGAGGCACCT	ATCTCAGCGA	TCTGTCTATT	TCGTTCATCC	
		6051	ATAGTTGCCT	GACTCCCCGT	CGTGTAGATA	ACTACGATAC	GGGAGGGCTT	
		6101	ACCATCTGGC	CCCAGTGCTG	CAATGATACC	GCGAGACCCA	CGCTCACCGG	
		6151	CTCCAGATTT	ATCAGCAATA	AACCAGCCAG	CCGGAAGGGC	CGAGCGCAGA	
	20	6201	AGTGGTCCTG	CAACTTTATC	CGCCTCCATC	CAGTCTATTA	ATTGTTGCCG	
		6251	GGAAGCTAGA	GTAAGTAGTT	CGCCAGTTAA	TAGTTTGCGC	AACGTTGTTG	
		6301	CCATTGCTAC	AGGCATCGTG	GTGTCACGCT	CGTCGTTTGG	TATGGCTTCA	
		6351	TTCAGCTCCG	GTTCCCAACG	ATCAAGGCGA	GTTACATGAT	CCCCCATGTT	
	25	6401	GTGCAAAAAA	GCGGTTAGCT	CCTTCGGTCC	TCCGATCGTT	GTCAGAAGTA	
		6451	AGTTGGCCGC	AGTGTTATCA	CTCATGGTTA	TGGCAGCACT	GCATAATTCT	
		6501	CTTACTGTCA	TGCCATCCGT	AAGATGCTTT	TCTGTGACTG	GTGAGTACTC	
		6551	AACCAAGTCA	TTCTGAGAAT	AGTGTATGCG	GCGACCGAGT	TGCTCTTGCC	
	30	6601	CGGCGTCAAT	ACGGGATAAT	ACCGCGCCAC	ATAGCAGAAC	TTTAAAAGTG	
		6651	CTCATCATTG	GAAAACGTTC	TTCGGGGCGA	AAACTCTCAA	GGATCTTACC	
		6701	GCTGTTGAGA	TCCAGTTCGA	TGTAACCCAC	TCGTGCACCC	AACTGATCTT	
	35	6751	CAGCATCTTT	TACTTTCACC	AGCGTTTCTG	GGTGAGCAAA	AACAGGAAGG	
		6801	CAAAATGCCG	CAAAAAAGGG	AATAAGGGCG	ACACGGAAAT	GTTGAATACT	
		6851	CATACTCTTC	CTTTTTCAAT	ATTATTGAAG	CATTTATCAG	GGTTATTGTC	
		6901	TCATGAGCGG	ATACATATTT	GAATGTATTT	AGAAAAATAA	ACAAATAGGG	
	40	6951	GTTCCGCGCA	CATTTCCCCG	AAAAGTGCCA	CCTGACGTCG	ACGGATCGGG	

Tabelle 11: Nukleotidsequenz des rekombinanten Plasmids pIND-H-SemaL-EA (SEQ ID NO.: 38)

1 AGATCTCGGC CGCATATTAA GTGCATTGTT CTCGATACCG CTAAGTGCAT
51 TGTTCTCGTT AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC
101 GATGGACAAG TGCATTGTTC TCTTGCTGAA AGCTCGATGG ACAAGTGCAT
151 TGTTCTCTTG CTGAAAGCTC AGTACCCGGG AGTACCCTCG ACCGCCGGAG
201 TATAAATAGA GGCGCTTCGT CTACGGAGCG ACAATTCAAT TCAAACAAGC

50

```
251 AAAGTGAACA CGTCGCTAAG CGAAAGCTAA GCAAATAAAC AAGCGCAGCT
              301 GAACAAGCTA AACAATCTGC AGTAAAGTGC AAGTTAAAGT GAATCAATTA
              351 AAAGTAACCA GCAACCAAGT AAATCAACTG CAACTACTGA AATCTGCCAA
5
              401 GAAGTAATTA TTGAATACAA GAAGAGAACT CTGAATACTT TCAACAAGTT
              451 ACCGAGAAAG AAGAACTCAC ACACAGCTAG CGTTTAAACT TAAGCTTGGT
              501 ACCGAGCTCG GATCCACTAG TCCAGTGTGG TGgaattcgg cttgggatga
              551 cgcctcctcc gcccggacgt gccgcccca gcgcaccgcg cgcccgcgtc
10
              601 cctggcccgc cggctcggtt ggggcttccg ctgcggctgc ggctgctgct
              651 gctgctctgg gcggccgccg cctccgccca gggccaccta aggagcggac
              701 cccgcatctt cgccgtctgg aaaggccatg tagggcagga ccgggtggac
15
              751 tttggccaga ctgagccgca cacggtgctt ttccacgagc caggcagctc
             801 ctctgtgtgg gtgggaggac gtggcaaggt ctacctcttt gacttccccg
             851 agggcaagaa cgcatctgtg cgcacggtga atatcggctc cacaaagggg
             901 tcctgtctgg ataagcggga ctgcgagaac tacatcactc tcctggagag
20
             951 gcggagtgag gggctgctgg cctgtggcac caacgcccgg caccccagct
            1001 gctggaacct ggtgaatggc actgtggtgc cacttggcga gatgagaggc
            1051 tacgccccct tcagcccgga cgagaactcc ctggttctgt ttgaagggga
            1101 cgaggtgtat tccaccatcc ggaagcagga atacaatggg aagatccctc
25
            1151 ggttccgccg catccggggc gagagtgagc tgtacaccag tgatactgtc
            1201 atgcagaacc cacagttcat caaagccacc atcgtgcacc aagaccaggc
            1251 ttacgatgac aagatctact acttcttccg agaggacaat cctgacaaga
            1301 atcctgaggc tcctctcaat gtgtcccgtg tggcccagtt gtgcaggggg
30
            1351 gaccagggtg gggaaagttc actgtcagtc tccaagtgga acacttttct
            1401 gaaagccatg ctggtatgca gtgatgctgc caccaacaag aacttcaaca
            1451 ggctgcaaga cgtcttcctg ctccctgacc ccagcggcca gtggagggac
35
            1501 accagggtct atggtgtttt ctccaacccc tggaactact cagccgtctg
            1551 tgtgtattcc ctcggtgaca ttgacaaggt cttccgtacc tcctcactca
            1601 agggctacca ctcaagcctt cccaacccgc ggcctggcaa gtgcctccca
            1651 gaccagcage egataceeac agagacette caggtggetg accgtcacec
40
            1701 agaggtggcg cagagggtgg agcccatggg gcctctgaag acgccattgt
            1751 tccactctaa ataccactac cagaaagtgg ccgttcaccg catgcaagcc
            1801 agccacgggg agacctttca tgtgctttac ctaactacag acaggggcac
            1851 tatccacaag gtggtggaac cgggggagca ggagcacagc ttcgccttca
45
            1901 acatcatgga gatccagccc ttccgccgcg cggctgccat ccagaccatg
            1951 tcgctggatg ctgagcggag gaagctgtat gtgagctccc agtgggaggt
            2001 gagccaggtg cccctggacc tgtgtgaggt ctatggcggg ggctgccacg
            2051 gttgcctcat gtcccgagac ccctactgcg gctgggacca gggccgctgc
50
            2101 atotocatot acagotocga acggtcagtg ctgcaatoca ttaatccago
            2151 cgagccacac aaggagtgtc ccaaccccaa accagacaag gccccactgc
```

```
2201 agaaggtttc cctggcccca aactctcgct actacctgag ctgccccatg
             2251 gaatcccgcc acgccaccta ctcatggcgc cacaaggaga acgtggagca
             2301 qagctgcgaa cctggtcacc agagccccaa ctgcatcctg ttcatcgaga
5
             2351 acctcacggc gcagcagtac ggccactact tctgcgaggc ccaggagggc
             2401 tectaettee gegaggetea geactggeag etgetgeeeg aggacggeat
             2451 catggccgag cacctgctgg gtcatgcctg tgccctggct gcctccctct
             2501 ggctggggt gctgcccaca ctcactcttg gcttgctggt ccacgtgaag
10
             2551 cttgggcccg aacaaaaact catctcagaa gaggatctga atagcgccgt
             2601 CGACCATCAT CATCATCATC ATTGAGTTTA TCCAGCACAG TGGCGGCCGC
             2651 TCGAGTCTAG AGGGCCCGTT TAAACCCGCT GATCAGCCTC GACTGTGCCT
15
             2701 TCTAGTTGCC AGCCATCTGT TGTTTGCCCC TCCCCGTGC CTTCCTTGAC
             2751 CCTGGAAGGT GCCACTCCCA CTGTCCTTTC CTAATAAAAT GAGGAAATTG
             2851 CAGGACAGCA AGGGGGAGGA TTGGGAAGAC AATAGCAGGC ATGCTGGGGA
20
             2901 TGCGGTGGGC TCTATGGCTT CTGAGGCGGA AAGAACCAGC TGGGGCTCTA
             2951 GGGGGTATCC CCACGCGCCC TGTAGCGGCG CATTAAGCGC GGCGGGTGTG
             3001 GTGGTTACGC GCAGCGTGAC CGCTACACTT GCCAGCGCCC TAGCGCCCGC
             3051 TCCTTTCGCT TTCTTCCCTT CCTTTCTCGC CACGTTCGCC GGCTTTCCCC
25
             3101 GTCAAGCTCT AAATCGGGGC ATCCCTTTAG GGTTCCGATT TAGTGCTTTA
             3151 CGGCACCTCG ACCCCAAAAA ACTTGATTAG GGTGATGGTT CACGTAGTGG
             3201 GCCATCGCCC TGATAGACGG TTTTTCGCCC TTTGACGTTG GAGTCCACGT
             3251 TCTTTAATAG TGGACTCTTG TTCCAAACTG GAACAACACT CAACCCTATC
30
             3301 TCGGTCTATT CTTTTGATTT ATAAGGGATT TTGGGGATTT CGGCCTATTG
             3351 GTTAAAAAAT GAGCTGATTT AACAAAAATT TAACGCGAAT TAATTCTGTG
             3401 GAATGTGTGT CAGTTAGGGT GTGGAAAGTC CCCAGGCTCC CCAGGCAGGC
             3451 AGAAGTATGC AAAGCATGCA TCTCAATTAG TCAGCAACCA GGTGTGGAAA
35
             3501 GTCCCCAGGC TCCCCAGCAG GCAGAAGTAT GCAAAGCATG CATCTCAATT
             3551 AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC GCCCCTAACT
             3601 CCGCCCAGTT CCGCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTAT
             3651 TTATGCAGAG GCCGAGGCCG CCTCTGCCTC TGAGCTATTC CAGAAGTAGT
40
             3701 GAGGAGGCTT TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT CCCGGGAGCT
             3751 TGTATATCCA TTTTCGGATC TGATCAAGAG ACAGGATGAG GATCGTTTCG
             3801 CATGATTGAA CAAGATGGAT TGCACGCAGG TTCTCCGGCC GCTTGGGTGG
45
             3851 AGAGGCTATT CGGCTATGAC TGGGCACAAC AGACAATCGG CTGCTCTGAT
             3901 GCCGCCGTGT TCCGGCTGTC AGCGCAGGGG CGCCCGGTTC TTTTTGTCAA
             3951 GACCGACCTG TCCGGTGCCC TGAATGAACT GCAGGACGAG GCAGCGCGGC
             4001 TATCGTGGCT GGCCACGACG GGCGTTCCTT GCGCAGCTGT GCTCGACGTT
             4051 GTCACTGAAG CGGGAAGGGA CTGGCTGCTA TTGGGCGAAG TGCCGGGGCA
             4101 GGATCTCCTG TCATCTCACC TTGCTCCTGC CGAGAAAGTA TCCATCATGG
```

		4151	CTGATGCAAT	GCGGCGGCTG	CATACGCTTG	ATCCGGCTAC	CTGCCCATTC
		4201	GACCACCAAG	CGAAACATCG	CATCGAGCGA	GCACGTACTC	GGATGGAAGC
5		4251	CGGTCTTGTC	GATCAGGATG	ATCTGGACGA	AGAGCATCAG	GGGCTCGCGC
		4301	CAGCCGAACT	GTTCGCCAGG	CTCAAGGCGC	GCATGCCCGA	CGGCGAGGAT
		4351	CTCGTCGTGA	CCCATGGCGA	TGCCTGCTTG	CCGAATATCA	TGGTGGAAAA
		4401	TGGCCGCTTT	TCTGGATTCA	TCGACTGTGG	CCGGCTGGGT	GTGGCGGACC
10	**	4451	GCTATCAGGA	CATAGCGTTG	GCTACCCGTG	ATATTGCTGA	AGAGCTTGGC
		4501	GGCGAATGGG	CTGACCGCTT	CCTCGTGCTT	TACGGTATCG	CCGCTCCCGA
		4551	TTCGCAGCGC	ATCGCCTTCT	ATCGCCTTCT	TGACGAGTTC	TTCTGAGCGG
		4601	GACTCTGGGG	TTCGAAATGA	CCGACCAAGC	GACGCCCAAC	CTGCCATCAC
15		4651	GAGATTTCGA	TTCCACCGCC	GCCTTCTATG	AAAGGTTGGG	CTTCGGAATC
		4701	GTTTTCCGGG	ACGCCGGCTG	GATGATCCTC	CAGCGCGGG	ATCTCATGCT
		4751	GGAGTTCTTC	GCCCACCCCA	ACTTGTTTAT	TGCAGCTTAT	AATGGTTACA
00		4801	AATAAAGCAA	TAGCATCACA	AATTTCACAA	ATAAAGCATT	TTTTTCACTG
20		4851	CATTCTAGTT	GTGGTTTGTC	CAAACTCATC	AATGTATCTT	ATCATGTCTG
		4901	TATACCGTCG	ACCTCTAGCT	AGAGCTTGGC	GTAATCATGG	TCATAGCTGT
		4951	TTCCTGTGTG	AAATTGTTAT	CCGCTCACAA	TTCCACACAA	CATACGAGCC
25		5001	GGAAGCATAA	AGTGTAAAGC	CTGGGGTGCC	TAATGAGTGA	GCTAACTCAC
		5051	ATTAATTGCG	TTGCGCTCAC	TGCCCGCTTT	CCAGTCGGGA	AACCTGTCGT
		5101	GCCAGCTGCA	TTAATGAATC	GGCCAACGCG	CGGGGAGAGG	CGGTTTGCGT
		5151	ATTGGGCGCT	CTTCCGCTTC	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT
30		5201	TCGGCTGCGG	CGAGCGGTAT	CAGCTCACTC	AAAGGCGGTA	ATACGGTTAT
		5251	CCACAGAATC	AGGGGATAAC	GCAGGAAAGA	ACATGTGAGC	AAAAGGCCAG
						TTGCTGGCGT	
						TCGACGCTCA	
35						AGGCGTTTCC	
						CCGCTTACCG	
						TTCTCAATGC	
						CCAAGCTGGG	
40	•					TTATCCGGTA	
						GCCACTGGCA	
						GCGGTGCTAC	
45						AGGACAGTAT	
						AAGAGTTGGT	
						GTTTTTTTGT	
50	•					GAAGATCCTT	
						CTCACGTTAA	
	**.					AGATCCTTTT	
		6051	TGAAGTTTTA	AATCAATCTA	AAGTATATAT	GAGTAAACTT	GGTCTGACAG

6101 TTACCAATGC TTAATCAGTG AGGCACCTAT CTCAGCGATC TGTCTATTTC 6151 GTTCATCCAT AGTTGCCTGA CTCCCCGTCG TGTAGATAAC TACGATACGG 6201 GAGGGCTTAC CATCTGGCCC CAGTGCTGCA ATGATACCGC GAGACCCACG 5 6251 CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC GGAAGGGCCG 6301 AGCGCAGAAG TGGTCCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAT 6351 TGTTGCCGGG AAGCTAGAGT AAGTAGTTCG CCAGTTAATA GTTTGCGCAA 6401 CGTTGTTGCC ATTGCTACAG GCATCGTGGT GTCACGCTCG TCGTTTGGTA 10 6451 TGGCTTCATT CAGCTCCGGT TCCCAACGAT CAAGGCGAGT TACATGATCC 6501 CCCATGTTGT GCAAAAAAGC GGTTAGCTCC TTCGGTCCTC CGATCGTTGT 6551 CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG GCAGCACTGC 6601 ATAATTCTCT TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT 15 6651 GAGTACTCAA CCAAGTCATT CTGAGAATAG TGTATGCGGC GACCGAGTTG 6701 CTCTTGCCG GCGTCAATAC GGGATAATAC CGCGCCACAT AGCAGAACTT 6751 TAAAAGTGCT CATCATTGGA AAACGTTCTT CGGGGCGAAA ACTCTCAAGG 20 6801 ATCTTACCGC TGTTGAGATC CAGTTCGATG TAACCCACTC GTGCACCCAA 6851 CTGATCTTCA GCATCTTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAAA 6901 CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT 6951 TGAATACTCA TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG 25 7001 TTATTGTCTC ATGAGCGGAT ACATATTTGA ATGTATTTAG AAAAATAAAC 7051 AAATAGGGGT TCCGCGCACA TTTCCCCGAA AAGTGCCACC TGACGTCGAC 7101 GGATCGGG

30

Tabelle 12: Sequenz des rekombinanten Plasmids pQE30-H-SemaL-BH (SEQ ID NO.: 39)

35 1 CTCGAGAAAT CATAAAAAAT TTATTTGCTT TGTGAGCGGA TAACAATTAT AATAGATTCA ATTGTGAGCG GATAACAATT TCACACAGAA TTCATTAAAG 51 AGGAGAAATT AACTATGAGA GGATCGCATC ACCATCACCA TCACGGAtcc ctggttctgt ttgaagggga cgaggtgtat tccaccatcc ggaagcagga 40 201 atacaatggg aagatccctc ggttccgccg catccggggc gagagtgagc tgtacaccag tgatactgtc atgcagaacc cacagttcat caaagccacc 251 atcgtgcacc aagaccaggc ttacgatgac aagatctact acttcttccg 301 agaggacaat cctgacaaga atcctgaggc tcctctcaat gtgtcccgtg 351 45 tggcccagtt gtgcaggggg gaccagggtg gggaaagttc actgtcagtc tccaagtgga acacttttct gaaagccatg ctggtatgca gtgatgctgc 451 caccaacaag aacttcaaca ggctgcaaga cgtcttcctg ctccctgacc 501 ccagcggcca gtggagggac accagggtct atggtgtttt ctccaacccc 551 50 tggaactact cagccgtctg tgtgtattcc ctcggtgaca ttgacaaggt 601 651 cttccgtacc tcctcactca agggctacca ctcaagcctt cccaacccgc

		701	_				
		701	ggcctggcaa	gtgcctccca	gaccagcagc	cgatacccac	agaAAGCTTA
		751	ATTAGCTGAG	CTTGGACTCC	TGTTGATAGA	TCCAGTAATG	ACCTCAGAAC
5		801	TCCATCTGGA	TTTGTTCAGA	ACGCTCGGTT	GCCGCCGGGC	GTTTTTTATT
		851	GGTGAGAATC	CAAGCTAGCT	TGGCGAGATT	TTCAGGAGCT	AAGGAAGCTA
		901	AAATGGAGAA	AAAAATCACT	GGATATACCA	CCGTTGATAT	ATCCCAATGG
		951	CATCGTAAAG	AACATTTTGA	GGCATTTCAG	TCAGTTGCTC	AATGTACCTA
10	÷	1001					ACCGTAAAGA
		1051	AAAATAAGCA	CAAGTTTTAT	CCGGCCTTTA	TTCACATTCT	TGCCCGCCTG
	•	1101					GTGAGCTGGT
		1151					GAGCAAACTG
15		1201					CCGGCAGTTT
		1251	CTACACATAT	ATTCGCAAGA	TGTGGCGTGT	TACGGTGAAA	ACCTGGCCTA
	••	1301	TTTCCCTAAA	GGGTTTATTG	AGAATATGTT	TTTCGTCTCA	GCCAATCCCT
20		1351	GGGTGAGTTT	CACCAGTTTT	GATTTAAACG	TGGCCAATAT	GGACAACTTC
20	s =====	1401	TTCGCCCCCG	TTTTCACCAT	GGGCAAATAT	TATACGCAAG	GCGACAAGGT
	•	1451	GCTGATGCCG	CTGGCGATTC	AGGTTCATCA	TGCCGTCTGT	GATGGCTTCC
		1501	ATGTCGGCAG	AATGCTTAAT	GAATTACAAC	AGTACTGCGA	TGAGTGGCAG
25		1551	GGCGGGGCGT	AATTTTTTA	AGGCAGTTAT	TGGTGCCCTT	AAACGCCTGG
		1601	GGTAATGACT	CTCTAGCTTG	AGGCATCAAA	TAAAACGAAA	GGCTCAGTCG
		1651	AAAGACTGGG	CCTTTCGTTT	TATCTGTTGT	TTGTCGGTGA	ACGCTCTCCT
		1701	GAGTAGGACA	AATCCGCCGC	TCTAGAGCTG	CCTCGCGCGT	TTCGGTGATG
30		1751	ACGGTGAAAA	CCTCTGACAC	ATGCAGCTCC	CGGAGACGGT	CACAGCTTGT
		1801	CTGTAAGCGG	ATGCCGGGAG	CAGACAAGCC	CGTCAGGGCG	CGTCAGCGGG
		1851		TGTCGGGGCG			
		1901		TGGCTTAACT			
35		1951	TGCACCATAT	GCGGTGTGAA	ATACCGCACA	GATGCGTAAG	GAGAAAATAC
		2001	CGCATCAGGC	GCTCTTCCGC	TTCCTCGCTC	ACTGACTCGC	TGCGCTCGGT
		2051	CTGTCGGCTG	CGGCGAGCGG	TATCAGCTCA	CTCAAAGGCG	GTAATACGGT
		2101	TATCCACAGA	ATCAGGGGAT	AACGCAGGAA	AGAACATGTG	AGCAAAAGGC
40	****	2151	CAGCAAAAGG	CCAGGAACCG	TAAAAAGGCC	GCGTTGCTGG	CGTTTTTCCA
	Ÿ.	2201		CCCCTGACG			
	gera compr	2251		CCCGACAGGA			
		2301	AGCTCCCTCG	TGCGCTCTCC	TGTTCCGACC	CTGCCGCTTA	CCGGATACCT
45		2351	GTCCGCCTTT	CTCCCTTCGG	GAAGCGTGGC	GCTTTCTCAA	TGCTCACGCT
		2401		CAGTTCGGTG			
	:	2451		CCGTTCAGCC			
50		2501		AACCCGGTAA			
50		2551		GATTAGCAGA			
		2601		GGCCTAACTA			

	2701 2751			GCTGGTAGCG AAAAGGATCT		
5	2801					
	2851			AGTGGAACGA		
	2901			AGGATCTTCA		•
	2951			CTAAAGTATA		
10	3001			GTGAGGCACC		
	3051			TGACTCCCCG		
	3101			CCCCAGTGCT		
46				TATCAGCAAT		
15	3151			GCAACTTTAT		
	3201			AGTAAGTAGT		
	3251			CAGGCATCGT		
20	3301			GGTTCCCAAC		
20	3351			AGCGGTTAGC		
	3401	•		CAGTGTTATC		
	3451			ATGCCATCCG		
25	3501			ATTCTGAGAA		
23	3551			TACGGGATAA		
	3601			GGAAAACGTT		
	3651			ATCCAGTTCG		
30	3701			TTACTTTCAC		
	3751			GCAAAAAAGG		
	3801			CCTTTTTCAA		
	3851	GGGTTATTGT	CTCATGAGCG	GATACATATT	TGAATGTATT	TAGAAAAATA
35	3901			ACATTTCCCC		
	3951			GACATTAACC	TATAAAAATA	GGCGTATCAC
	4001	GAGGCCCTTT	CGTCTTCAC			
40						
	Tabelle 13:	Sequenz des r	ekombinanten Pla	smids pQE31-H-S	emaL-SH (SEQ IC	NO.: 40)
	1	CTCGAGAAAT	CATAAAAAAT	TTATTTGCTT	TGTGAGCGGA	TAACAATTAT
45	51			GATAACAATT		
						,

1 CTCGAGAAAT CATAAAAAAT TTATTTGCTT TGTGAGCGGA TAACAATTAT
51 AATAGATTCA ATTGTGAGCG GATAACAATT TCACACAGAA TTCATTAAAG
101 AGGAGAAATT AACTATGAGA GGATCGCATC ACCATCACCA TCACACGGAT
151 CCGCATGCga gctcccagtg ggaggtgagc caggtgcccc tggacctgtg
50 201 tgaggtctat ggcgggggct gccacggttg cctcatgtcc cgagacccct
251 actgcggctg ggaccagggc cgctgcatct ccatctacag ctccgaacgg
301 tcagtgctgc aatccattaa tccagccgag ccacacaagg agtgtcccaa

```
351 ccccaaacca gacaaggccc cactgcagaa ggtttccctg gccccaaact
                   ctcgctacta cctgagctgc cccatggaat cccgccacgc cacctactca
                   tggcgccaca aggagaacgt ggagcagagc tgcgaacctg gtcaccagag
              451
5
              501 ccccaactgc atcctgttca tcgagaacct cacggcgcag cagtacggcc
                   actacttctg cgaggcccag gagggctcct acttccgcga ggctcagcac
              551
                   tggcagctgc tgcccgagga cggcatcatg gccgagcacc tgctgggtca
              601
                   tgcctgtgcc ctggctgcct ccctctggct gggggtgctg cccacactca
10
              701
                  ctcttggctt gctggtccac gtgaagcttA ATTAGCTGAG CTTGGACTCC
                  TGTTGATAGA TCCAGTAATG ACCTCAGAAC TCCATCTGGA TTTGTTCAGA
              751
                  ACGCTCGGTT GCCGCCGGGC GTTTTTTATT GGTGAGAATC CAAGCTAGCT
15
                  TGGCGAGATT TTCAGGAGCT AAGGAAGCTA AAATGGAGAA AAAAATCACT
              851
              901 GGATATACCA CCGTTGATAT ATCCCAATGG CATCGTAAAG AACATTTTGA
                   GGCATTTCAG TCAGTTGCTC AATGTACCTA TAACCAGACC GTTCAGCTGG
              951
             1001 ATATTACGGC CTTTTTAAAG ACCGTAAAGA AAAATAAGCA CAAGTTTTAT
20
             1051 CCGGCCTTTA TTCACATTCT TGCCCGCCTG ATGAATGCTC ATCCGGAATT
                   TCGTATGGCA ATGAAAGACG GTGAGCTGGT GATATGGGAT AGTGTTCACC
             1101
             1151 CTTGTTACAC CGTTTTCCAT GAGCAAACTG AAACGTTTTC ATCGCTCTGG
             1201 AGTGAATACC ACGACGATTT CCGGCAGTTT CTACACATAT ATTCGCAAGA
25
                   TGTGGCGTGT TACGGTGAAA ACCTGGCCTA TTTCCCTAAA GGGTTTATTG
             1251
                  AGAATATGTT TTTCGTCTCA GCCAATCCCT GGGTGAGTTT CACCAGTTTT
             1301
             1351 GATTTAAACG TGGCCAATAT GGACAACTTC TTCGCCCCCG TTTTCACCAT
             1401 GGGCAAATAT TATACGCAAG GCGACAAGGT GCTGATGCCG CTGGCGATTC
30
                  AGGTTCATCA TGCCGTCTGT GATGGCTTCC ATGTCGGCAG AATGCTTAAT
             1451
                  GAATTACAAC AGTACTGCGA TGAGTGGCAG GGCGGGGCGT AATTTTTTTA
             1501
                   AGGCAGTTAT TGGTGCCCTT AAACGCCTGG GGTAATGACT CTCTAGCTTG
             1551
             1601 AGGCATCAAA TAAAACGAAA GGCTCAGTCG AAAGACTGGG CCTTTCGTTT
35
                   TATCTGTTGT TTGTCGGTGA ACGCTCTCCT GAGTAGGACA AATCCGCCGC
             1651
                  TCTAGAGCTG CCTCGCGCGT TTCGGTGATG ACGGTGAAAA CCTCTGACAC
             1701
             1751 ATGCAGCTCC CGGAGACGGT CACAGCTTGT CTGTAAGCGG ATGCCGGGAG
                  CAGACAAGCC CGTCAGGGCG CGTCAGCGGG TGTTGGCGGG TGTCGGGGCG
             1801
40
                  CAGCCATGAC CCAGTCACGT AGCGATAGCG GAGTGTATAC TGGCTTAACT
             1851
                  ATGCGGCATC AGAGCAGATT GTACTGAGAG TGCACCATAT GCGGTGTGAA
             1901
                  ATACCGCACA GATGCGTAAG GAGAAAATAC CGCATCAGGC GCTCTTCCGC
             1951
45
             2001 TTCCTCGCTC ACTGACTCGC TGCGCTCGGT CTGTCGGCTG CGGCGAGCGG
                  TATCAGCTCA CTCAAAGGCG GTAATACGGT TATCCACAGA ATCAGGGGAT
             2051
             2101 AACGCAGGAA AGAACATGTG AGCAAAAGGC CAGCAAAAGG CCAGGAACCG
             2151 TAAAAAGGCC GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC CCCCCTGACG
50
             2201 AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA CCCGACAGGA
             2251 CTATAAAGAT ACCAGGCGTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC
```

	2301	TGTTCCGACC	CTGCCGCTTA	CCGGATACCT	GTCCGCCTTT	CTCCCTTCGG
	2351	GAAGCGTGGC	GCTTTCTCAA	TGCTCACGCT	GTAGGTATCT	CAGTTCGGTG
5	2401	TAGGTCGTTC	GCTCCAAGCT	GGGCTGTGTG	CACGAACCCC	CCGTTCAGCC
	2451	CGACCGCTGC	GCCTTATCCG	GTAACTATCG	TCTTGAGTCC	AACCCGGTAA
	2501	GACACGACTT	ATCGCCACTG	GCAGCAGCCA	CTGGTAACAG	GATTAGCAGA
	2551	GCGAGGTATG	TAGGCGGTGC	TACAGAGTTC	TTGAAGTGGT	GGCCTAACTA
10	2601	CGGCTACACT	AGAAGGACAG	TATTTGGTAT	CTGCGCTCTG	CTGAAGCCAG
	2651	TTACCTTCGG	AAAAAGAGTT	GGTAGCTCTT	GATCCGGCAA	ACAAACCACC
	2701	GCTGGTAGCG	GTGGTTTTTT	TGTTTGCAAG	CAGCAGATTA	CGCGCAGAAA
	2751	AAAAGGATCT	CAAGAAGATC	CTTTGATCTT	TTCTACGGGG	TCTGACGCTC
15	2801	AGTGGAACGA	AAACTCACGT	TAAGGGATTT	TGGTCATGAG	ATTATCAAAA
	2851	AGGATCTTCA	CCTAGATCCT	TTTAAATTAA	AAATGAAGTT	TTAAATCAAT
	2901	CTAAAGTATA	TATGAGTAAA	CTTGGTCTGÀ	CAGTTACCAA	TGCTTAATCA
20	2951	GTGAGGCACC	TATCTCAGCG	ATCTGTCTAT	TTCGTTCATC	CATAGCTGCC
20	3001	TGACTCCCCG	TCGTGTAGAT	AACTACGATA	CGGGAGGGCT	TACCATCTGG
	3051	CCCCAGTGCT	GCAATGATAC	CGCGAGACCC	ACGCTCACCG	GCTCCAGATT
	3101	TATCAGCAAT	AAACCAGCCA	GCCGGAAGGG	CCGAGCGCAG	AAGTGGTCCT
25	3151	GCAACTTTAT	CCGCCTCCAT	CCAGTCTATT	AATTGTTGCC	GGGAAGCTAG
	3201	AGTAAGTAGT	TCGCCAGTTA	ATAGTTTGCG	CAACGTTGTT	GCCATTGCTA
	3251	CAGGCATCGT	GGTGTCACGC	TCGTCGTTTG	GTATGGCTTC	ATTCAGCTCC
	3301	GGTTCCCAAC	GATCAAGGCG	AGTTACATGA	TCCCCCATGT	TGTGCAAAAA
30	3351	AGCGGTTAGC	TCCTTCGGTC	CTCCGATCGT	TGTCAGAAGT	AAGTTGGCCG
	3401	CAGTGTTATC	ACTCATGGTT	ATGGCAGCAC	TGCATAATTC	TCTTACTGTC
	3451	ATGCCATCCG	TAAGATGCTT	TTCTGTGACT	GGTGAGTACT	CAACCAAGTC
	3501	ATTCTGAGAA	TAGTGTATGC	GGCGACCGAG	TTGCTCTTGC	CCGGCGTCAA
35	3551	TACGGGATAA	TACCGCGCCA	CATAGCAGAA	CTTTAAAAGT	GCTCATCATT
	3601	GGAAAACGTT	CTTCGGGGCG	AAAACTCTCA	AGGATCTTAC	CGCTGTTGAG
	3651	ATCCAGTTCG	ATGTAACCCA	CTCGTGCACC	CAACTGATCT	TCAGCATCTT
40	3701	TTACTTTCAC	CAGCGTTTCT	GGGTGAGCAA	AAACAGGAAG	GCAAAATGCC
	3751	GCAAAAAAGG	GAATAAGGGC	GACACGGAAA	TGTTGAATAC	TCATACTCTT
	3801	CCTTTTTCAA	TATTATTGAA	GCATTTATCA	GGGTTATTGT	CTCATGAGCG
	3851	GATACATATT	TGAATGTATT	TAGAAAAATA	AACAAATAGG	GGTTCCGCGC
45	3901	ACATTTCCCC	GAAAAGTGCC	ACCTGACGTC	TAAGAAACCA	TTATTATCAT
	3951	GACATTAACC	TATAAAAATA	GGCGTATCAC	GAGGCCCTTT	CGTCTTCAC

Tablelle 14: (Partielle) Nukleotidsequenz des humanen Semaphorin L Gens. (8888 Nukleotide) (SEQ ID NO.: 41):

GGCAAGGTCTACCTCTTTGACTTCCCCGAGGGCAAGAACGCATCTGTGCGCACGGTGAGC CTCTCTCTCCCCCAACACCCCCCCTACCCTCTTATCTCCCCTCTGGCCCTGCCAAGGGT 5 CCTCAGGGAATCCGAGGGAGCTGGCTTCTCTTCCTAAACTGCCCCCACCTCCGTATCCTA TAAATGGCTCCTGGGGGAGGCTCCCTAAAGGTAGTCCAGATTGGAGTGGGGAGCTGGGGC GGTGTGGAGAAAAACAGGAGCTAATGGGCCTGGCCAGCTGGGCAGCGCTGCTGCGGAAAG CCCAGGCTGGAAGCTGGGCCCAGAGCCCATGCCTGGTCTTCTGAACCCTCTGGGCCTCA 10 TTGCTCATCTGTCAGATGAGAATAATGGTTGCTTCCTTTGGGGCTTATCCTGAGGCTGTG TGGAAAGCATTTCAGGGGTACCTCACCCCTGGCAGATTGAACTAATGCTTCTCCCCTTCC 15 CCAGGTGAATATCGGCTCCACAAAGGGGTCCTGTCTGGATAAGCGGGTGAGCGGGGGGAGG GAAGCATGGCCCTGCCCCACGAGTCCCAGACTGATGGGGAGACGTGGTCCTCTGTGCTTA GGGGATGGCGTCAGCTGCACACTCTGGGCTGTCCCGGGAGGCTGTCACCTATGCTAAG 20 CCCTTCTGACACCTTCTTCCCTGATCCTGGGGGTCCTAGTGCTAGGCTTGCCAGGGCCTT CCAGCAACCAATTTCTCTCCCCCTTCTCTCTCTCCCGGGCAGGACTGCGAGAACTACAT $\tt CACTCTCCTGGAGAGGGGGGTGAGGGGCTGCTGGCCTGTGGCACCAACGCCCGGCACCC$ CAGCTGCTGGAACCTGGTGAGAAGGCTGCTCCCCATGTGCCTGATCAGCTCACCTTCTAC 25 TGCGTGGGCTTCTGCCCCTCATGGTGGGAAGGAGATGGCGAGACTCCAATGCTGGCCTTG CCCTGGGAGGATGGGCCTCCTGGCCGAGAAACTGGCCGTCATGGGAGGCAGTGGCTGTGG GATTATGTGGCCATCCAACCCTCTGGATCTCCCACAGGTGAATGGCACTGTGGTGCCACT TGGCGAGATGAGAGGCTACGCCCCTTCAGCCCGGACGAGAACTCCCTGGTTCTGTTTGA 30 AGGTTGGGGCATGCTTCGGAACTGGGCTGGGAGCAGGATGGTCAGCTCTTTGTCCAGTGT AGGGGACGÂGGTGTATTCCACCATCCGGAAGCAGGAATACAATGGGAAGATCCCTCGGTT 35 AGGCTCCGGCTGGGGTGAGGGTGGGCAAGGGGGTGTGAGCACTTAAGGTGGCAGATGGGA TCCTGATGTTTCTGGGAGGGCTCCCTGAGGGCCGCTGGGGCCATGCAGGAAAGCAGGACC TTGGTATAGGCCTGAGAAGTTAGGGTTGGCTGGGAGCAGAGAACAAGGTATAGCA 40 GTGGGATGGGCCCAGCCCTCTTCAGGAACACAAACAGAGGGAGCCCCAGACCCAGTGCAG GGTCCCCAGGAGCCAAAGTTTATCCTCTGCTGAGTTCACGTGGAGGCAGCCCCCCAACTC CCTCCTCATCAGGGCTCTGCCAATTGAGCAGAAGTGACATAGGGGCCCCCAGGGACCTTC CCCCACTCCCCAGGCATGAAGTCATTGCTCCTGGGCCGATGACATCTTTGTAGGAAGAGG GCAAAACAGGTGTGGGGTGGAGGTGCAGGGTCTAGGGCCCCTCGGGGAGTTGGACCTGAT AGAGTGTGCAGGGTTGGAATGGTCTCCCGGGCAAGCTTCCCAGCCTTACGCCCATTCGCT TCTGTGCCCTGGCAGACCCACAGTTCATCAAAGCCACCATCGTGCACCAAGACCAGGCTT ACGATGACAAGATCTACTTCTTCCGAGAGGACAATCCTGACAAGAATCCTGAGGCTC CTCTCAATGTGTCCCGTGTGGCCCAGTTGTGCAGGGTGAACACGGGCGTGAGGGCTGCTG

45

GCTACGTGTCTGTGCATGAATAGGCCTGAGTGAGGGTGAGTTCTGTGTGTCCGTGTGCAT GTAGAAGTTGTGTGGATGTATGAGTGGGTCTGTGTCAGGGACTGTGGGAGCAGCTGTGTG TGCATGGAGCATCATGTGTGTGTGTGTGGGTAAAGGTGGCTGAGCTCCTGTGCACGTATG GTGTGAATGTGCCACGTATGTGGGTGCGTGAGTCAGTAAATGTGTGTCTGAGTCC GTCTGCTCTGTGGGGACCTGGCACTCTCACCTGCCCTGACCCTGGGCACTGCTGGCCCTG GGCTCTGGATCAGCCAGGCCTGCTTGCAGGAGTCTCATCTGGAGACCTGCCCTGAGTCCT GGGGCACCCCGGCAGGTCCTGGCCCCTCGCAGCCTGCCTTCCTCCTCTGGGCCCAGGTG TTGATATTGCTGGCAGTGGTTTCCTGGGGTGTGTGGGGAAGCCCGGGCAGGTGCTGAGGG GCCTCTTCTCCCCTCTACCCTTCCAGGGGGACCAGGGTGGGGAAAGTTCACTGTCAGTCT CCAAGTGGAACACTTTTCTGAAAGCCATGCTGGTATGCAGTGATGCTGCCACCAACAAGA ACTTCAACAGGCTGCAAGACGTCTTCCTGCTCCCTGACCCCAGCGGCCAGTGGAGGGACA CCAGGGTCTATGGTGTTTTCTCCAACCCTGGTGAGTGGCCCTTGTCCTGGGGCCGGGGC TGGCATTGGTTCAGTGTCCAGTAGGGACAGGAGGCCTTGGGCCCTGCTGAGGGCCTCCCT GGTGTGGCAGGAGCAGGGGCTGCAGGCTCAAGAGGCTGGGCTGTTGCTGGGTGTGGGGTG TGTGCATGCCCTATATGCACACTCATGACTGCACTTGTGCCTGTGTGTCCCACCACCTGC TTGTGCCGAGAGTGGACACTGGGCCCAGGAGGAAGCTGCTGAAGCATCTCTCGGGGAGCT GGGTGCTATTACACCTGCTCAGGCACTGCCTGAGCCCGATAATTCACACTTCTTAATCAC TCTCATTGATTGAACACGGCAGGCGGAAGTGTTGGGTGTGTGGGGAGAGTTAGGGA TAGAGTGGAGGAAGCCAAGACCTGCTCTGTGGCTCCTGGGTGAGTGGGTCCCCCAGGCT GGGAAGGGGTTGGGGTCTGGCCTCCTGGGGCATCAGCACCCCACAGCCTGTGCCCAGGG AGGGCTAGAGAACTGCTCAGCCTATGATGGGGTTCCTCCTGCCTTGGGGTTGGGTAGAGC AGATGGCCTCTAGACTCAGTGATTCTGTAACAGGATACAAGTTTGTGGTTTTAAATTGCA TGGTGGTTGGCAACTCAGTGCCAGGCACAAGGCTGGCCTGGGTGAGTGGAGGTGGATGGG TGGGTTCTGGGCCCCCATTGAGCTGGTCTCCATGTCACTGCAGGAACTACTCAGCCGTC CACTCAAGCCTTCCCAACCCGCGGCCTGGCAAGGTGAGCGTGACACCAGCCGTGGCCCAG GCCCAGCCCTCCTTCTGCCTCACCTCCCACCACCCACTGACCTGGGCCTGCTCTCCTTG CCCAGTGCCTCCCAGACCAGCAGCCGATACCCACAGAGACCTTCCAGGTGGCTGACCGTC ACCCAGAGGTGGCGCAGAGGGTGGAGCCCATGGGGCCTCTGAAGACGCCATTGTTCCACT TTCATGTGCTTTACCTAACTACAGGTGAGAGGCTACCCCGGGACCCTCAGTTTGCTTTGT **AAAAACGGGCATGAAAGGTGTAAGGAATAATGTAGTTAACATCTGGTTGGATCTTTACAT** GCCAGGCAGGGAGAGCTTCCTGGAGGAGGTAGGGGCAAGAGGGGAAAGGGGGATGGGAGAA AAGCAAGCACTGGGATTTGGAGGCGGAAATCTGGAGAGTCTGAGCAAAGCCAGGTGCACC TTTGGTCCAGATGTCTGACTCAGGGAAGAAGATGGTAGGAAGACGTGGCAAATGAGGA

5

10

15

20

25

30

35

40

45

GGAGGGGCCTGAACCACAGGGATACTGGCCTCTGCCAGGCAGAATGAGGGAGTCAGGCCC TGCGCCTGTCTTTGGGATTGTGCAGGTGAGAAGAACATTTGAGGAGTTGATGGGGCACA AATTAGGTATGGGGAAGGAGTTCCAGGGGGGCAGAACCTTTGCCATCTCACAGAGGACAGG GGCAGCTTCTCTTCCCTGGAGTAGGCCCTGCTGGGGGAAGCTGGGTGGAATGCCGTG GGAGATGCTCCTGCTTTCTGGAAAGCCACAGGACACGGAGGAGCCAGTCCTGAGTTGGGT TTGTCGCAGCTTCCCATGCCAGCTGCCTTCCTTGAGACTGGAAAGGGCCTCTAGCACCCC TGGGGCCATTCAATTCAGGCCCAGGCGCCCAACCTCAGTTGTTCACATTCCCCATGTGAT CTCCTGTTGCTGCTTCACCTTGGGACTGTCTCGGCTTTGGTGACCTTGTAGGAAACTGGA GGCCTGGGTCCTGATTCCCTGCCTCTTTACTCCCTATTCATCCCGGCTACACCCTTGGGC CCCCATCCTTGCTTGGCTCCAGTACTGGCTGGCACAGCTGTTGTGGTCATCCAGGGATGG CAGGGCACTGGGGAACAGAAGAGAGAGGTCACACAGTGCGGAACTGGGAGCAGGAGCTAG GACAAGGAAGGCTGGACTTGGGCCATGGATTCCCTTCCTGCAGACTTGGGAAGTGAGCAC ACTTGAGTGATTAGAGAAGGTGTCTTCGTTCTAAGGGCAGTGGAGGAGGCACCATTTTGG AGCCTGCATCATTCGTATTTGGGCTAGATTGAAAAATAGAGCTTTCTAAGTCCTCTGCAG AGAATGGGAGGCTCTCACAACTGGGAGAAGTATTGGCTCTTTTCCTGAGAATTTTGCCAA GGGTATGCTGTTACTGGGGCTGGTTTGGAAGGAGTATAGGGCATTATGTCTGTGAAGGCA GTGGCTGGGGTGGGGCCTTATCAGGCCCAAGGAGCATCTGGCCACATCTCAGAGTCCACA AGAAACTGGGAGAGCAGGTGAGGTAGGATTGGGAGGACCAGGGGTCAGGGTCCCCATTGG TTGGGAACTCTTGATTTAGAATCCAAGATCCTTTTTAGATCTAGGATTTTATAAAATTAA GATATCCCCTAAGATCAAATGCAACGTGGAGTCCTGAATTGGATCCTAGAACAGAAGAAG GACATTTGTGGAAAAACTAGTGAAATCCAAATAAAGTCTGTAGTTTTGTTAATAGTAATG CACCAATGTCAGTTGCCTAGTTGTGACAAATATACCGTGGTTATGTAAGATGGTAACATT AGGGGGAACTGGAGAAGGGTAGATTGGAGCTCTCTGTACTATCTTTGCAACTTTTCTGGG AATCTAAAATTACTCCAAAATAAAAAAAAATGTATTTAAAGTAAATATATTCCCTAAGA GTCCAGGAGGCAGGGGAGTTGTAGAAGCAGCTGAGTGGTTGGGTTCTGACAGATTTGGTT CCAACTCGGTCTCTGCTGCTCACCAGCTGTGTGACCTTGAGCAAGTGGCTTAGCCTTTCT GAGCCTGATTTCCTTATCTGTGGAGTGGGGAAGATGACAGCCACCTCGCAGGGCTGTGGA GGGTTAAACGAGGTGATGCATGGACAGCCGCACTGACCTTGCTGGTGTGGGGCTCCT GCTTCTGTTCTCCCGTGCAGCCTTGGGAATGTTGGAGGCCCGTATCCAGGGACCCCTGGG CCTCCTGGGATGGCCTCTCTGGATCAGCCTTGGAAGGTTCCAGGCTGCCCTTAGGCTCCC ACATTCTTCCCCAGTCACGCTCTCCTCGCCCTGCCCACACCAGTCCTGTGACCCTTGCCT GAGTTGTGACTTCCCACCCCTCCCGGCCTAGAGGAAAGCTGCCTGGCCCCTCAGTGGGA CTCCCGCCCACTGACCCTCTGTCCACCATACACAGACAGGGGGCACTATCCACAAGGTGGT GGAACCGGGGGAGCAGGAGCACAGCTTCGCCTTCAACATCATGGAGATCCAGCCCTTCCG CCGCGCGCGCTGCCATCCAGACCATGTCGCTGGATGCTGAGCGGGTGAGCCTTCCCCCACT

50

5

10

15

20

25

30

35

40

GCGTCCCATGGGCTATGCAGTGACTGCAGCTGAGGACAGGGCTCCTTTGCATGTGATTTG TGTGTTCTTTTAAGAGCTTCTAGGCCTTAGGGCCTGGACATTTAGGACTGAGTGTGGGGT GGGGCCCGGGCCTGACCCAATCCTGCTGTCCTTCCAGAGGAAGCTGTATGTGAGCTCCCA GTGGGAGGTGAGCCAGGTGCCCCTGGACCTGTGTGAGGTCTATGGCGGGGGCTGCCACGG TTGCCTCATGTCCCGAGACCCCTACTGCGGCTGGGACCAGGGCCGCTGCATCTCATCTA CAGCTCCGAACGGTACGTTGGCCGGGATCCCTCCGTCCCTGGGACAAGGTGGGCATGGGA CAGGGGGAGGTGTTGTCGGGCTGGAAGAGGTGGCGGTACTGGGCCTTTCTTGTGGGACCT CCTCTCTACTGGAACTGCACTAGGGGTAAGGATATGAGGGTCAGGTCTGCAGCCTTGTAT CTGCTGATCCTCTTTCGTCCTTCCCACTCCAGGTCAGTGCTGCAATCCATTAATCCAGCC GAGCCACACAAGGAGTGTCCCAACCCCAAACCAGGTACCTGATCTGGCCCTGCTGGCGGC TGTGGCCCAATGAGTGGGGTACTGCCCTGCCCTGATTGTCCTGGTCTGAGGGAAACATGG CCTTGTCCTGTGGGCCCCAGGTACATGGGGCAGGATACAGTCCTGCAGAGGGAGCCCTCT TGGTGGGATGAGCGAGACGGGAGAAAAAAGGAGGACGCTGAGGGCTGGGTTCCCCACGTT CATTCAGAAGCCTTGTCCTGGGATCCCAGTCGGTGGGGAGACACATCCTCCCCTGGGAG CTCTTTGTCCCTCACGGCTGCTTCCCCACTGCCTCCCCAGACAAGGCCCCACTGCAG AAGGTTTCCCTGGCCCCAAACTCTCGCTACTACCTGAGCTGCCCCATGGAATCCCGCCAC GCCACCTACTCATGGCGCCACAAGGAGAACGTGGAGCAGAGCTGCGAACCTGGTCACCAG AGCCCCAACTGCATCCTGTTCATCGAGAACCTCACGGCGCAGCAGTACGGCCACTACTTC TGCGAGGCCCAGGAGGGCTCCTACTTCCGCGAGGCTCAGCACTGGCAGCTGCTGCCCGAG CTGGGGGTGCTGCCCACACTCACTCTTGGCTTGCTGGTCCACTAGGGCCTCCCGAGGCTG GGCATGCCTCAGGCTTCTGCAGCCCAGGGCACTAGAACGTCTCACACTCAGAGCCGGCTG GCCCGGGAGCTCCTTGCCTGCCACTTCTTCCAGGGGACAGAATAACCCAGTGGAGGATGC CAGGCCTGGAGACGTCCAGCCGCAGGCGGCTGCTGGGCCCCAGGTGGCGCACGGATGGTG AGGGGCTGAGAATGAGGGCACCGACTGTGAAGCTGGGGCATCGATGACCCAAGACTTTAT CTTCTGGAAAATATTTTTCAGACTCCTCAAACTTGACTAAATGCAGCGATGCTCCCAGCC CAAGAGCCCATGGGTCGGGGAGTGGGTTTGGATAGGAGAGCTGGGACTCCATCTCGACCC TGGGGCTGAGGCCTGAGTCCTTCTGGACTCTTGGTACCCACATTGCCTCCTTCCCCTCCC TCTCTCATGGCTGGGTGGCTGTTTCCTGAAGACCCAGGGCTACCCTCTGTCCAGCCCT GTCCTCTGCAGCTCCCTCTCTGGTCCTGGGTCCCACAGGACAGCCGCCTTGCATGTTTAT AAAAAAA

Tabelle 15: Nukleotidsequenz von pMelBacA-HSEMAL (6622bp) (SEQ ID NO: 42)

1 GATATCATGG AGATAATTAA AATGATAACC ATCTCGCAAA TAAATAAGTA \sqcap

51 TTTTACTGTT TTCGTAACAG TTTTGTAATA AAAAAACCTA TAAATATGAA

5

10

15

20

25

30

35

40

45

50

		101	ATTCTTAGTC	AACGTTGCCC	TTGTTTTTAT	GGTCGTATAC	ATTTCTTACA
5		151	TCTATGCGGA		tccgcccagg	gccacctaag	gageggaeee
		201	cgcatcttcg			gggcaggacc	
		251				ccacgagcca	
10	S.	301				acctctttga	
		351				atcggctcca	
		401				catcactctc	
15		451					
						acgcccggca	
	•	501				cttggcgaga	
20		551				ggttctgttt	
	**	601	aggtgtattc	caccatccgg	aagcaggaat	acaatgggaa	gatccctcgg
		651	ttccgccgca	tccggggcga	gagtgagctg	tacaccagtg	atactgtcat
25		701	gcagaaccca	cagttcatca	aagccaccat	cgtgcaccaa	gaccaggctt
25		751	acgatgacaa	gatctactac	ttcttccgag	aggacaatcc	tgacaagaat
		801	cctgaggctc	ctctcaatgt	gtcccgtgtg	gcccagttgt	gcagggggga
30		851	ccagggtggg	gaaagttcac	tgtcagtctc	caagtggaac	acttttctga
50		901	aagccatgct	ggtatgcagt	gatgctgcca	ccaacaagaa	cttcaacagg
		951	ctgcaagacg	tcttcctgct	ccctgacccc	agcggccagt	ggagggacac
35		1001	cagggtctat	ggtgttttct	ccaacccctg	gaactactca	gccgtctgtg
		1051	tgtattccct	cggtgacatt	gacaaggtct	tccgtacctc	ctcactcaag
		1101	ggctaccact	caagccttcc	caacccgcgg	cctggcaagt	gcctcccaga
40		1151	ccagcagccg	atacccacag	agaccttcca	ggtggctgac	cgtcacccag
		1201	aggtggcgca	gagggtggag	cccatggggc	ctctgaagac	gccattgttc
		1251	cactctaaat	accactacca	gaaagtggcc	gttcaccgca	tgcaagccag
45		1301				aactacagac	
		1351	tccacaaggt	ggtggaaccg	ggggagcagg	agcacagctt	cgccttcaac
	*	1401				gctgccatcc	
50		1451				gagctcccag	
	***	1501				atggcggggg	

	1221	tgcctcatgt	cccgagaccc	ctactgcggc	tgggaccagg	gccgctgcat
	1601	ctccatctac	agctccgaac	ggtcagtgct	gcaatccatt	aatccagccg
5	1651	agccacacaa	ggagtgtccc	aaccccaaac	cagacaaggc	cccactgcag
	1701	aaggtttccc	tggccccaaa	ctctcgctac	tacctgagct	gccccatgga
	1751	atcccgccac	gccacctact	catggcgcca	caaggagaac	gtggagcaga
10	1801	gctgcgaacc	tggtcaccag	agccccaact	gcatcctgtt	catcgagaac
	1851	ctcacggcgc	agcagtacgg	ccactacttc	tgcgaggccc	aggagggctc
15	1901	ctacttccgc	gaggctcagc	actggcagct	gctgcccgag	gacggcatca
15	1951	tggccgagca	cctgctgggt	catgcctgtg	ccctggctgc	ctgaattc GA
	2001	AGCTTGGAGT	CGACTCTGCT	GAAGAGGAGG	AAATTCTCCT	TGAAGTTTCC
20	2051 .	CTGGTGTTCA	AAGTAAAGGA	GTTTGCACCA	GACGCACCTC	TGTTCACTGG
	2101	TCCGGCGTAT	TAAAACACGA	TACATTGTTA	TTAGTACATT	TATTAAGCGC
	2151	TAGATTCTGT	GCGTTGTTGA	TTTACAGACA	ATTGTTGTAC	GTATTTTAAT
25	2201	AATTCATTAA	ATTTATAATC	TTTAGGGTGG	TATGTTAGAG	CGAAAATCAA
	2251	ATGATTTTCA	GCGTCTTTAT	ATCTGAATTT	AAATATTAAA	TCCTCAATAG
	2301	ATTTGTAAAA	TAGGTTTCGA	TTAGTTTCAA	ACAAGGGTTG	TTTTTCCGAA
30	2351	CCGATGGCTG	GACTATCTAA	TGGATTTTCG	CTCAACGCCA	CAAAACTTGC
	2401	CAAATCTTGT	AGCAGCAATC	TAGCTTTGTC	GATATTCGTT	TGTGTTTTGT
35	2451	TTTGTAATAA	AGGTTCGACG	TCGTTCAAAA	TATTATGCGC	TTTTGTATTT
	2501	CTTTCATCAC	TGTCGTTAGT	GTACAATTGA	CTCGACGTAA	ACACGTTAAA
	2551	TAAAGCCTGG	ACATATTTAA	CATCGGGCGT	GTTAGCTTTA	TTAGGCCGAT
40	2601	TATCGTCGTC	GTCCCAACCC	TCGTCGTTAG	AAGTTGCTTC	CGAAGACGAT
	2651	TTTGCCATAG	CCACACGACG	CCTATTAATT	GTGTCGGCTA	ACACGTCCGC
	2701	GATCAAATTT	GTAGTTGAGC	TTTTTGGAAT	TATTTCTGAT	TGCGGGCGTT
45	2751	TTTGGGCGGG	TTTCAATCTA	ACTGTGCCCG	ATTTTAATTC	AGACAACACG
	2801	TTAGAAAGCG	ATGGTGCAGG	CGGTGGTAAC	ATTTCAGACG	GCAAATCTAC
	2851	TAATGGCGGC	GGTGGTGGAG	CTGATGATAA	ATCTACCATC	GGTGGAGGCG
50	2901	CAGGCGGGGC	TGGCGGCGGA	GGCGGAGGCG	GAGGTGGTGG	CGGTGATGCA
	2951	GACGGCGGTT	TAGGCTCAAA	TTGTCTCTTT	CAGGCAACAC	AGTCGGCACC

	3001	TCAACTATTG	TACTGGTTTC	GGGCGTATGG	TGCACTCTCA	GTACAATCTG
_	3051	CTCTGATGCC	GCATAGTTAA	GCCAGCCCCG	ACACCCGCCA	ACACCCGCTG
5	3101	ACGCGCCCTG	ACGGGCTTGT	CTGCTCCCGG	CATCCGCTTA	CAGACAAGCT
	3151	GTGACCGTCT	CCGGGAGCTG	CATGTGTCAG	AGGTTTTCAC	CGTCATCACC
10	3201	GAAACGCGCG	AGACGAAAGG	GCCTCGTGAT	ACGCCTATTT	TTATAGGTTA
	3251	ATGTCATGAT	AATAATGGTT	TCTTAGACGT	CAGGTGGCAC	TTTTCGGGGA
	3301	AATGTGCGCG	GAACCCCTAT	TTGTTTATTT	TTCTAAATAC	ATTCAAATAT
15	3351	GTATCCGCTC	ATGAGACAAT	AACCCTGATA	AATGCTTCAA	TAATATTGAA
	3401	AAAGGAAGAG	TATGAGTATT	CAACATTTCC	GTGTCGCCCT	TATTCCCTTT
	3451	TTTGCGGCAT	TTTGCCTTCC	TGTTTTTGCT	CACCCAGAAA	CGCTGGTGAA
20	3501	AGTAAAAGAT	GCTGAAGATC	AGTTGGGTGC	ACGAGTGGGT	TACATCGAAC
	3551	TGGATCTCAA	CAGCGGTAAG	ATCCTTGAGA	GTTTTCGCCC	CGAAGAACGT
	3601	TTTCCAATGA	TGAGCACTTT	TAAAGTTCTG	CTATGTGGCG	CGGTATTATC
25	3651	CCGTATTGAC	GCCGGGCAAG	AGCAACTCGG	TCGCCGCATA	CACTATTCTC
	3701	AGAATGACTT	GGTTGAGTAC	TCACCAGTCA	CAGAAAAGCA	TCTTACGGAT
	3751	GGCATGACAG	TAAGAGAATT	ATGCAGTGCT	GCCATAACCA	TGAGTGATAA
30	3801	CACTGCGGCC	AACTTACTTC	TGACAACGAT	CGGAGGACCG	AAGGAGCTAA
	3851	CCGCTTTTTT	GCACAACATG	GGGGATCATG	TAACTCGCCT	TGATCGTTGG
	3901	GAACCGGAGC	TGAATGAAGC	CATACCAAAC	GACGAGCGTG	ACACCACGAT
35	3951	GCCTGTAGCA	ATGGCAACAA	CGTTGCGCAA	ACTATTAACT	GGCGAACTAC
	4001	TTACTCTAGC	TTCCCGGCAA	CAATTAATAG	ACTGGATGGA	GGCGGATAAA
40	4051	GTTGCAGGAC	CACTTCTGCG	CTCGGCCCTT	CCGGCTGGCT	GGTTTATTGC
40	4101	TGATAAATCT	GGAGCCGGTG	AGCGTGGGTC	TCGCGGTATC	ATTGCAGCAC
· •	4151	TGGGGCCAGA	TGGTAAGCCC	TCCCGTATCG	TAGTTATCTA	CACGACGGGG
45	4201	AGTCAGGCAA	CTATGGATGA	ACGAAATAGA	CAGATCGCTG	AGATAGGTGC
	4251	CTCACTGATT	AAGCATTGGT	AACTGTCAGA	CCAAGTTTAC	TCATATATAC
	4301	TTTAGATTGA	TTTAAAACTT	CATTTTTAAT	TTAAAAGGAT	CTAGGTGAAG
50	4351	ATCCTTTTTG	ATAATCTCAT	GACCAAAATC	CCTTAACGTG	AGTTTTCGTT
	4401	CCACTGAGCG	TCAGACCCCG	TAGAAAAGAT	CAAAGGATCT	TCTTGAGATC
	4451	CTTTTTTTCT	GCGCGTAATC	TGCTGCTTGC	АААСААААА	ACCACCGCTA

	4501	CCAGCGGTGG	TTTGTTTGCC	GGATCAAGAG	CTACCAACTC	TTTTTCCGAA
	4551	GGTAACTGGC	TTCAGCAGAG	CGCAGATACC	AAATACTGTT	CTTCTAGTGT
5	4601	AGCCGTAGTT	AGGCCACCAC	TTCAAGAACT	CTGTAGCACC	GCCTACATAC
	4651	CTCGCTCTGC	TAATCCTGTT	ACCAGTGGCT	GCTGCCAGTG	GCGATAAGTC
10	4701	GTGTCTTACC	GGGTTGGACT	CAAGACGATA	GTTACCGGAT	AAGGCGCAGC
	4751	GGTCGGGCTG	AACGGGGGGT	TCGTGCACAC	AGCCCAGCTT	GGAGCGAACG
	4801	ACCTACACCG	AACTGAGATA	CCTACAGCGT	GAGCTATGAG	AAAGCGCCAC
15	4851	GCTTCCCGAA	GGGAGAAAGG	CGGACAGGTA	TCCGGTAAGC	GGCAGGGTCG
	4901	GAACAGGAGA	GCGCACGAGG	GAGCTTCCAG	GGGGAAACGC	CTGGTATCTT
	4951	TATAGTCCTG	TCGGGTTTCG	CCACCTCTGA	CTTGAGCGTC	GATTTTTGTG
20	5001	ATGCTCGTCA	GGGGGGCGGA	GCCTATGGAA	AAACGCCAGC	AACGCGGCCT
	5051	TTTTACGGTT	CCTGGCCTTT	TGCTGGCCTT	TTGCTCACAT	GTTCTTTCCT
	5101	GCGTTATCCC	CTGATTCTGT	GGATAACCGT	ATTACCGCCT	TTGAGTGAGC
25	5151	TGATACCGCT	CGCCGCAGCC	GAACGACCGA	GCGCAGCGAG	TCAGTGAGCG
	5201	AGGAAGCATC	CTGCACCATC	GTCTGCTCAT	CCATGACCTG	ACCATGCAGA
	5251	GGATGATGCT	CGTGACGGTT	AACGCCTCGA	ATCAGCAACG	GCTTGCCGTT
30	5301	CAGCAGCAGC	AGACCATTTT	CAATCCGCAC	CTCGCGGAAA	CCGACATCGC
	5351	AGGCTTCTGC	TTCAATCAGC	GTGCCGTCGG	CGGTGTGCAG	TTCAACCACC
35	5401	GCACGATAGA	GATTCGGGAT	TTCGGCGCTC	CACAGTTTCG	GGTTTTCGAC
33	5451	GTTCAGACGT	AGTGTGACGC	GATCGGTATA	ACCACCACGC	TCATCGATAA
	5501	TTTCACCGCC	GAAAGGCGCG	GTGCCGCTGG	CGACCTGCGT	TTCACCCTGC
40	5551	CATAAAGAAA	CTGTTACCCG	TAGGTAGTCA	CGCAACTCGC	CGCACATCTG
	5601	AACTTCAGCC	TCCAGTACAG	CGCGGCTGAA	ATCATCATTA	AAGCGAGTGG
	5651	CAACATGGAA	ATCGCTGATT	TGTGTAGTCG	GTTTATGCAG	CAACGAGACG
45	5701	TCACGGAAAA	TGCCGCTCAT	CCGCCACATA	TCCTGATCTT	CCAGATAACT
	5751	GCCGTCACTC	CAACGCAGCA	CCATCACCGC	GAGGCGGTTT	TCTCCGGCGC
	5801	GTAAAAATGC	GCTCAGGTCA	AATTCAGAC	GCAAACGACT	GTCCTGGCCG
50	5851	TAACCGACCC	AGCGCCCGTT	GCACCACAGA	TGAAACGCCG	AGTTAACGCC
	5901	ATCAAAAATA	ATTCGCGTCT	GGCCTTCCT	TAGCCAGCTT	TCATCAACAT

	5951	TAAATGTGAG	CGAGTAACAA	CCCGTCGGAT	TCTCCGTGGG	AACAAACGGC
5	6001	GGATTGACCG	TAATGGGATA	GGTCACGTTG	GTGTAGATGG	GCGCATCGTA
	6051	ACCGTGCATC	TGCCAGTTTG	AGGGGACGAC	GACAGTATCG	GCCTCAGGAA
	6101	GATCGCACTC	CAGCCAGCTT	TCCGGCACCG	CTTCTGGTGC	CGGAAACCAG
10	6151	GCAAAGCGCC	ATTCGCCATT	CAGGCTGCGC	AACTGTTGGG	AAGGGCGATC
	6201	GGTGCGGGCC	TCTTCGCTAT	TACGCCAGCT	GGCGAAAGGG	GGATGTGCTG
	6251	CAAGGCGATT	AAGTTGGGTA	ACGCCAGGGT	TTTCCCAGTC	ACGACGTTGT
15	6301	AAAACGACGG	GATCTATCAT	TTTTAGCAGT	GATTCTAATT	GCAGCTGCTC
	6351	TTTGATACAA	CTAATTTTAC	GACGACGATG	CGAGCTTTTA	TTCAACCGAG
20	6401	CGTGCATGTT	TGCAATCGTG	CAAGCGTTAT	CAATTTTTCA	TTATCGTATT
	6451	GTTGCACATC	AACAGGCTGG	ACACCACGTT	GAACTCGCCG	CAGTTTTGCG
	6501	GCAAGTTGGA	CCCGCCGCGC	ATCCAATGCA	AACTTTCCGA	CATTCTGTTG
25	6551	CCTACGAACG	ATTGATTCTT	TGTCCATTGA	TCGAAGCGAG	TGCCTTCGAC
	6601	TTTTTCGTGT	CCAGTGTGGC	TT		

SEQUENZPROTOKOLL

5	(1) ALLGEMEINE INFORMATION:	
	(i) ANMELDER:(A) NAME: Hoechst Marion Roussel Deutschland GmbH	
	(B) STRASSE: -	
10	(C) ORT: Frankfurt	
10	(D) BUNDESLAND: -	
	(E) LAND: Deutschland	
	(F) POSTLEITZAHL: 65926	
	(G) TELEPHON: 069-305-7072	
	(H) TELEFAX: 069-35-7175 (I) TELEX: -	
15	(I) IELEX: -	
	(ii) ANMELDETITEL: Humanes Semaphorin L (H-Sema-L) und korrespondierende Semaphorine in anderen Spezies	
20	(iii) ANZAHL DER SEQUENZEN: 44	
	(iv) COMPUTÉR-LESBARE FORM:	
	(A) DATENTRÅGER: Floppy disk	
	(B) COMPUTER: IBM PC compatible	
25	(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS	
25	(D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)	
	(2) INFORMATION ZU SEQ ID NO: 1:	
30	(i) SEQUENZ CHARAKTERISTIKA:	
	(A) LÄNGE: 2636 Basenpaare	
	(B) ART: Nukleinsäure	
	(C) STRANGFORM: Einzel	
	(D) TOPOLOGIE: linear	
35	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
	(11) ART DES MODEROLS: DNS (genomisch)	
	(ix) MERKMALE:	
40	(A) NAME/SCHLÜSSEL: exon	
40	(B) LAGE: 12636	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:	
45	CGGGGCCACG GGATGACGCC TCCTCCGCCC GGACGTGCCG CCCCCAGCGC ACCGCGCGCC	60
	CGCGTCCCTG GCCCGCCGGC TCGGTTGGGG CTTCCGCTGC GGCTGCGGCT GCTGCTGCTG	120
	CTCTGGGCGG CCGCCGCCTC CGCCCAGGGC CACCTAAGGA GCGGACCCCG CATCTTCGCC	180
50		
	GTCTGGAAAG GCCATGTAGG GCAGGACCGG GTGGACTTTG GCCAGACTGA GCCGCACACG	240
	GTGCTTTTCC ACGAGCCAGG CAGCTCCTCT GTGTGGGTGG GAGGACGTGG CAAGGTCTAC	306

	CTCTTTGACT	TCCCCGAGGG	CAAGAACGCA	TCTGTGCGCA	CGGTGAATAT	CGGCTCCACA	360
5	AAGGGGTCCT	GTCTGGATAA	GCGGGACTGC	GAGAACTACA	TCACTCTCCT	GGAGAGGCGG	420
5	AGTGAGGGGC	TGCTGGCCTG	TGGCACCAAC	GCCCGGCACC	CCAGCTGCTG	GAACCTGGTG	480
	AATGGCACTG	TGGTGCCACT	TGGCGAGATG	AGAGGCTACG	CCCCCTTCAG	CCCGGACGAG	540
10	AACTCCCTGG	TTCTGTTTGA	AGGGGACGAG	GTGTATTCCA	CCATCCGGAA	GCAGGAATAC	600
	AATGGGAAGA	TCCCTCGGTT	CCGCCGCATC	CGGGGCGAGA	GTGAGCTGTA	CACCAGTGAT	660
	ACTGTCATGC	AGAACCCACA	GTTCATCAAA	GCCACCATCG	TGCACCAAGA	CCAGGCTTAC	720
15	GATGACAAGA	TCTACTACTT	CTTCCGAGAG	GACAATCCTG	ACAAGAATCC	TGAGGCTCCT	780
	CTCAATGTGT	CCCGTGTGGC	CCAGTTGTGC	AGGGGGGACC	AGGGTGGGGA	AAGTTCACTG	840
	TCAGTCTCCA	AGTGGAACAC	TTTTCTGAAA	GCCATGCTGG	TATGCAGTGA	TGCTGCCACC	900
20	AACAAGAACT	TCAACAGGCT	GCAAGACGTC	TTCCTGCTCC	CTGACCCCAG	CGGCCAGTGG	960
	AGGGACACCA	GGGTCTATGG	TGTTTTCTCC	AACCCCTGGA	ACTACTCAGC	CGTCTGTGTG	1020
25	TATTCCCTCG	GTGACATTGA	CAAGGTCTTC	CGTACCTCCT	CACTCAAGGG	CTACCACTCA	1080
23	AGCCTTCCCA	ACCCGCGGCC	TGGCAAGTGC	CTCCCAGACC	AGCAGCCGAT	ACCCACAGAG	1140
	ACCTTCCAGG	TGGCTGACCG	TCACCCAGAG	GTGGCGCAGA	GGGTGGAGCC	CATGGGGCCT	1200
30	CTGAAGACGC	CATTGTTCCA	CTCTAAATAC	CACTACCAGA	AAGTGGCCGT	TCACCGCATG	1260
	CAAGCCAGCC	ACGGGGAGAC	CTTTCATGTG	CTTTACCTAA	CTACAGACAG	GGGCACTATC	1320
	CACAAGGTGG	TGGAACCGGG	GGAGCAGGAG	CACAGCTTCG	CCTTCAACAT	CATGGAGATC	1380
35	CAGCCCTTCC	GCCGCGCGGC	TGCCATCCAG	ACCATGTCGC	TGGATGCTGA	GCGGAGGAAG	1440
	CTGTATGTGA	GCTCCCAGTG	GGAGGTGAGC	CAGGTGCCCC	TGGACCTGTG	TGAGGTCTAT	1500
·	GGCGGGGGCT	GCCACGGTTG	CCTCATGTCC	CGAGACCCCT	ACTGCGGCTG	GGACCAGGGC	1560
40	CGCTGCATCT	CCATCTACAG	CTCCGAACGG	TCAGTGCTGC	AATCCATTAA	TCCAGCCGAG	1620
	CCACACAAGG	AGTGTCCCAA	CCCCAAACCA	GACAAGGCCC	CACTGCAGAA	GGTTTCCCTG	1680
45	GCCCCAAACT	CTCGCTACTA	CCTGAGCTGC	CCCATGGAAT	CCCGCCACGC	CACCTACTCA	1740
	TGGCGCCACA	AGGAGAACGT	GGAGCAGAGC	TGCGAACCTG	GTCACCAGAG	CCCCAACTGC	1800
	ATCCTGTTCA	TCGAGAACCT	CACGGCGCAG	CAGTACGGCC	ACTACTTCTG	CGAGGCCCAG	1860
50	GAGGGCTCCT	ACTTCCGCGA	GGCTCAGCAC	TGGCAGCTGC	TGCCCGAGGA	CGGCATCATG	1920
*****	GCCGAGCACC	TGCTGGGTCA	TGCCTGTGCC	CTGGCTGCCT	CCCTCTGGCT	GGGGGTGCTG	1980

	CCCACACTCA CTCTTGGCTT GCTGGTCCAC TAGGGCCTCC CGAGGCTGGG CATGCCTCAG	2040
_	GCTTCTGCAG CCCAGGGCAC TAGAACGTCT CACACTCAGA GCCGGCTGGC CCGGGAGCTC	2100
5	CTTGCCTGCC ACTTCTTCCA GGGGACAGAA TAACCCAGTG GAGGATGCCA GGCCTGGAGA	2160
	CGTCCAGCCG CAGGCGGCTG CTGGGCCCCA GGTGGCGCAC GGATGGTGAG GGGCTGAGAA	2220
10	TGAGGGCACC GACTGTGAAG CTGGGGCATC GATGACCCAA GACTTTATCT TCTGGAAAAT	2280
	ATTTTTCAGA CTCCTCAAAC TTGACTAAAT GCAGCGATGC TCCCAGCCCA AGAGCCCATG	2340
	GGTCGGGGAG TGGGTTTGGA TAGGAGAGCT GGGACTCCAT CTCGACCCTG GGGCTGAGGC	2400
15	CTGAGTCCTT CTGGACTCTT GGTACCCACA TTGCCTCCTT CCCCTCCCTC TCTCATGGCT	2460
	GGGTGGCTGG TGTTCCTGAA GACCCAGGGC TACCCTCTGT CCAGCCCTGT CCTCTGCAGC	2520
20	TCCCTCTCTG GTCCTGGGTC CCACAGGACA GCCGCCTTGC ATGTTTATTG AAGGATGTTT	2580
20	GCTTTCCGGA CGGAAGGACG GAAAAAGCTC TGAAAAAAAA AAAAAAAAA AAAAAA	2636
25	(2) INFORMATION ZU SEQ ID NO: 2: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 1195 Basenpaare (B) ART: Nukleinsäure	
30	(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKŪLS: DNS (genomisch)	
35	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 11195	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:	
40	CGGGGCTGCG GGATGACGCC TCCTCCTCCC GGACGTGCCG CCCCCAGCGC ACCGCGCGCC	60
	CGCGTCCTCA GCCTGCCGGC TCGGTTCGGG CTCCCGCTGC GGCTGCGGCT TCTGCTGGTG	120
45	TTCTGGGTGG CCGCCGCCTC CGCCCAAGGC CACTCGAGGA GCGGACCCCG CATCTCCGCC	180
	GTCTGGAAAG GGCAGGACCA TGTGGACTTT AGCCAGCCTG AGCCACACC CGTGCTTTTC	240
	CATGAGCCGG GCAGCTTCTC TGTCTGGGTG GGTGGACGTG GCAAGGTCTA CCACTTCAAC	300
50	TTCCCCGAGG GCAAGAATGC CTCTGTGCGC ACGGTGAACA TCGGCTCCAC AAAGGGGTCC	360
	TGTCAGGACA AACAGGACTG TGGGAATTAC ATCACTCTTC TAGAAAGGCG GGGTAATGGG	420

	CTGCTGGTCT GTGGCACCAA TGCCCGGAAG CCCAGCTGCT GGAACTTGGT GAATGACAGT 480
5	GTGGTGATGT CACTTGGTGA GATGAAAGGC TATGCCCCCT TCAGCCCGGA TGAGAACTCC 540
	CTGGTTCTGT TTGAAGGAGA TGAAGTGTAC TCTACCATCC GGAAGCAGGA ATACAACGGG 600
	AAGATCCCTC GGTTTCGACG CATTCGGGGC GAGAGTGAAC TGTACACAAG TGATACAGTC 660
10	ATGCAGAACC CACAGTTCAT CAAGGCCACC ATTGTGCACC AAGACCAAGC CTATGATGAT 720
	AAGATCTACT ACTTCTTCCG AGAAGACAAC CCTGACAAGA ACCCCGAGGC TCCTCTCAAT 780
	GTGTCCCGAG TAGCCCAGTT GTGCAGGGGG GACCAGGGTG GTGAGAGTTC GTTGTCTGTC 840
15	TCCAAGTGGA ACACCTTCCT GAAAGCCATG TTGGTCTGCA GCGATGCAGC CACCAACAGG 900 .
	AACTTCAATC GGCTGCAAGA TGTCTTCCTG CTCCCTGACC CCAGTGGCCA GTGGAGAGAT 960
20	ACCAGGGTCT ATGGCGTTTT CTCCAACCCC TGGAACTACT CAGCTGTCTG CGTGTATTCG 1020
	CTTGGTGACA TTGACAGAGT CTTCCGTACC TCATCGCTCA AAGGCTACCA CATGGGCCTT 1080
	TCCAACCCTC GACCTGGCAT GTGCCTCCCA AAAAAGCAGC CCATACCCAC AGAAACCTTC 1140
25	CAGGTAGCTG ATAGTCACCC AGAGGTGGCT CAGAGGGTGG AACCTATGGG GCCCC 1195
	(2) INFORMATION ZU SEQ ID NO: 3:
30	(i) SEQUENZ CHARAKTERISTIKA:
	(A) LÄNGE: 666 Aminosäuren (B) ART: Aminosäure
35	(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear
55	(ii) ART DES MOLEKŪLS: Protein
	(ix) MERKMALE:
40	(A) NAME/SCHLÜSSEL: Protein (B) LAGE: 1666
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:
45	
	Met Thr Pro Pro Pro Pro Gly Arg Ala Ala Pro Ser Ala Pro Arg Ala 1 5 10 15
	Arg Val Pro Gly Pro Pro Ala Arg Leu Gly Leu Pro Leu Arg Leu Arg
50	20 25 30
	Leu Leu Leu Leu Trp Ala Ala Ala Ser Ala Gln Gly His Leu 35 40 45

	Arg	Ser 50	Gly	Pro	Arg	Ile	Phe 55	Ala	Val	Trp	Lys	Gly 60	His	Val	Gly	Gln
5	Asp 65	Arg	Val	Asp	Phe	Gly 70	Gln	Thr	Glu	Pro	His 75	Thr	Val	Leu	Phe	His 80
	Glu	Pro	Gly	Ser	Ser 85	Ser	Val	Trp	Val	Gly 90	Gly	Arg	Gly	Lys	Val 95	Tyr
	Leu	Phe	Asp	Phe 100	Pro	Glu	Gly	Lys	Asn 105	Ala	Ser	Val	Arg	Thr 110	Val	Asn
15	Ile	Gly	Ser 115	Thr	Lys	Gly	Ser	Cys 120	Leu	Asp	Lys	Arg	Asp 125	Сув	Glu	Asn
	Tyr	Ile 130	Thr	Leu	Leu	Glu	Arg 135	Arg	Ser	Glu	Gly	Leu 140	Leu	Ala	Суз	Gly
20	Thr 145	Asn	Ala	Arg	His	Pro 150	Ser	Cys	Trp	Asn	Leu 155	Val	Asn	Gly	Thr	Val 160
	Val	Pro	Leu	Gly	Glu 165	Met	Arg	Gly	Tyr	Ala 170	Pro	Phe	Ser	Pro	Asp 175	Glu
25	Asn	Ser	Leu	Val 180	Leu	Phe	Glu	Gly	Asp 185	Glu	Val	Tyr	Ser	Thr 190	Ile	Arg
30	Lys	Gln	Glu 195	Tyr	Asn	Gly	Lys	Ile 200	Pro	Arg	Phe	Arg	Arg 205	Ile	Arg	Gly
	Glu	Ser 210	Glu	Leu	Tyr	Thr	Ser 215	Asp	Thr	Val	Met	Gln 220	Asn	Pro	Gln	Phe
35	Ile 225	Lys	Ala	Thr	Ile	Val 230	His	Gln	Asp	Gln	Ala 235	Tyr _.	Asp	Asp	ГÀЗ	Ile 240
	Tyr	Tyr	Phe	Phe	Arg 245	Glu	Asp	Asn	Pro	Asp 250	Lys	Asn	Pro	Glu	Ala 255	Pro
40	Leu	Asn	Val	Ser 260	Arg	Val	Ala		Leu 265		Arg	Gly	Asp	Gln 270	Gly	Gly
4-	Glu	Ser	Ser 275	Leu	Ser	Val	Ser	Lys 280	Trp	Asn	Thr	Phe	Leu 285	Lys	Ala	Met
45	Leu	Val 290	Суз	Ser	Asp	Ala	Ala 295	Thr	Asn.	Lys	Asn	Phe 300	Asn	Arg	Leu	Gln
50	Asp 305	Val	Phe	Leu	Leu	Pro 310	Asp	Pro	Ser	Gly	Gln 315	Trp	Arg	Asp	Thr	Arg 320
	Val	Tyr	Gly	Val	Phe 325	Ser	Asn	Pro	Trp	Asn 330	Tyr	Ser	Ala	Val	Cys 335	Val

		Tyr	Ser	Leu	Gly 340	Asp	Ile	Asp	Lys	Val 345	Phe	Arg	Thr	Ser	Ser 350	Leu	Lys
5		Gly	Tyr	His 355	Ser	Ser	Leu	Pro	Asn 360	Pro	Arg	Pro	Gly	Lys 365	Cys	Leu	Pro
10		Asp	Gln 370	Gln	Pro	Ile	Pro	Thr 375	Glu	Thr	Phe	Gln	Val 380	Ala	Asp	Arg	His
		Pro 385	Glu	Val	Ala	Gln	Arg 390	Val	Glu	Pro	Met	Gly 395	Pro	Leu	Lys	Thr	Pro 400
15		Leu	Phe	His	Ser	Lys 405	Tyr	His	Tyr	Gln	Lys 410	Val	Ala	Val	His	Arg 415	Met
		Gln	Ala	Ser	His 420	Gly	Glu	Thr	Phe	His 425	Val	Leu	Tyr	Leu	Thr 430	Thr	Asp
20		Arg	Gly	Thr 435	Ile	His	Lys	Val	Val 440	Glu	Pro	Gly	Glu	Gln 445	Glu	His	Ser
		Phe	Ala 450	Phe	Asn	Ile	Met	Glu 455	Ile	Gln	Pro	Phe	Arg 460	Arg	Ala	Ala	Ala
25		Ile 465	Gln	Thr	Met	Ser	Leu 470	Asp	Ala	Glu	Arg	Arg 475	Lys	Leu	Tyr	Val	Ser 480
30		Ser	Gln	Trp	Glu	Val 485	Ser	Gln	Val	Pro	Leu 490	Asp	Leu	Cys	Glu	Val 495	Tyr
		Gly	Gly	Gly	Cys 500	His	Gly	Суѕ	Leu	Met 505	Ser	Arg	Asp	Pro	Tyr 510	Cys	Gly
35		Trp	Asp	Gln 515	Gly	Arg	Cys	Ile	Ser 520	Ile	Tyr	Ser	Ser	Glu 525	Arg	Ser	Val
		Leu	Gln 530	Ser	Ile	Asn	Pro	Ala 535	Glu	Pro	His	Lys	Glu 540	Cys	Pro	Asn	Pro
40		Lys 545	Pro	Asp	Lys	Ala	Pro 550	Leu	Gln	Lys	Val	Ser 555	Leu	Ala	Pro	Asn	Ser 560
	4	Arg	Tyr	Tyr	Leu	Ser 565	Cys	Pro	Met	Glu	Ser 570	Arg	His	Ala	Thr	Tyr 575	Ser
45		Trp	Arg	His	Lys 580	Glu	Asn	Val	Glu	Gln 5 85	Ser	Суз	Glu	Pro	Gly 590	His	Gln
50		Ser	Pro	Asn 595	Cys	Ile	Leu	Phe	Ile 600	Glu	Asn	Leu	Thr	Ala 605	Gln.	Gln	Tyr
		Gly -	His 610	Tyr	Phe	Cys	Glu	Ala 615	Gln	Glu	Gly	Ser	Tyr 620	Phe	Arg	Glu	Ala

	Gln 625	His	Trp	Gln	Leu	Leu 630	Pro	Glu	Asp	Gly	Ile 635	Met	Ala	Glu	His	Leu 640
5	Leu	Gly	His	Ala	Cys 645	Ala	Leu	Ala	Ala	Ser 650	Leu	Trp	Leu	Gly	Val 655	Leu
. 10	Pro	Thr		Thr 660	Leu	Gly	Leu	Leu	Val 665	His						
	(2) INFOR	ITAMS	on z	U SE	Q II	NO:	4:						٠			
15	(i)	(B) (C)	LÄN ART STR	GE: ': An 'ANGF	394 ninos ORM:	RIST Amin aure Ein line	osāu : :zel	ren					1.			
20	(ii)	ART	DES	MOLE	KŪLS	S: Pr	otei	n								
25	(ix)	(A)		E/SC		SSEL:	Pro	tein	ì							
	(xi)	SEQU	ENZE	BESCH	REI	BUNG:	SEC	ID	NO:	4:						
30	Met 1	Thr	Pro	Pro	Pro 5	Pro	Gly	Arg	Ala	Ala 10	Pro	Ser	Ala	Pro	Arg 15	Ala
	Arg	Val	Leu	Ser 20	Leu	Pro	Ala	Arg	Phe 25	Gly	Leu	Pro	Leu	Årg 30	Leu	Arg
35	Leu	Leu	Leu 35	Val	Phe	Trp	Val	Ala 40	Ala	Ala	Ser	Ala	Gln 45	Gly	His	Ser
	Arg	Ser 50	Gly	Pro	Arg	Ile	Ser 55	Ala	Val	Trp	Lys	Gly 60	Gln	Asp	His	Val
40	Asp 65	Phe	Ser	Gln	Pro	Glu 70		His	Thr	Val	Leu 75	Phe	His	Glu	Pro	Gly 80
	Ser	Phe	Ser	Val	Trp 85	Val	Gly	Gly	Arg	Gly 90	Lys	Val	Tyr	His	Phe 95	Asn
45	Phe	Pro	Glu	Gly 100		Asn	Ala	Ser	Val 105		Thr	Val	Asn	Ile 110	Gly	Ser
50	Thr	Lys	Gly 115		Cys	Gl'n	Asp	Lys 120		Asp	Суз	Gly	Asn 125		Ile	Thr
	Lev	Leu 130		Arg	Arg	Gly	Asn 135		Leu	Leu	Val	Cys		Thr	Asn	Ala

5							•				159	5				t Ser 160
Ĭ										170)				17	
10									103	,				19)	s Gln
								200	,				205	•		ı Ser
15							213	,,				220				. Lys
20											235					Tyr 240
20									Lys	250					255	
25	Val	Ser	Arg	7 Val 260	Ala	Gln	Leu	Сув	Arg 265	Gly	Asp	Gln	Gly	Gly 270	Glu	Ser
								280	Thr				285			
30	Сув	Ser 290	Asp	Ala	Ala	Thr	Asn 295	Arg	Asn	Phe	Asn	Arg 300	Leu	Gln	Asp	Val
<i>35</i>									Gln		315					320
	Gly	Val	Phe	Ser	Asn 325	Pro	Trp	Asn	Туг	Ser . 330	Ala '	Val	Сув	Val	Tyr 335	Ser
40	Leu	Gly	Asp	Ile 340	Asp	Arg	Val	Phe	Arg '	Thr :	Ser :	Ser		Lys 350	Gly	Tyr
	His	Met	Gly 355	Leu	Ser	Asn	Pro .	Arg 360	Pro (Gly 1	Met (Leu :	Pro	Lys	Lys
45	Gln	Pro 370	Ile	Pro	Thr	Glu '	Thr	Phe	Gln v	/al /		Asp 5	Ser 1	His	Pro	Glu
50	Val . 385	Ala	Gln	Arg	Val (31u 1 390	Pro I	Met (Gly i	Pro						

(2) INFORMATION ZU SEQ ID NO: 5:

5	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 23 Basenpaare (B) ART: Nukleinsâure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
10	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
15	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 123	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:	
	ACTCACTATA GGGCTCGAGC GGC	23
20	(2) INFORMATION ZU SEQ ID NO: 6:	·
25	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
30	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
35	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:	
	AGCCGCACAC GGTGCTTTTC	20
40	(2) INFORMATION ZU SEQ ID NO: 7:	
45	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel 	
	(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch)	• •
50	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	

	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	
5	GCACAGATGC GTTCTTGCCC	20
	(2) INFORMATION ZU SEQ ID NO: 8:	
10	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 20 Basenpaare (B) ART: Nukleinsāure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
15	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
20	(ix) MERKMALE: (A) NAME/SCHLŪSSEL: exon (B) LAGE: 120	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:	
25	ACCATAGACC CTGGTGTCCC	20
	(2) INFORMATION ZU SEQ ID NO: 9:	
30 .	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
35	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
40	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:	
45	GCAGTGATGC TGCCACCAAC	20
	(2) INFORMATION ZU SEQ ID NO: 10:	
50	(i) SEQUENZ CHARAKTERISTIKA:(A) LÄNGE: 20 Basenpaare(B) ART: Nukleinsäure	

	(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
5	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
10	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:	
15	CCAGACCATG TCGCTGGATG	20
	(2) INFORMATION ZU SEQ ID NO: 11:	
20	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
25	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
30	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:	
35	ACATGAGGCA ACCGTGGCAG	20
40	(2) INFORMATION ZU SEQ ID NO: 12: (i) SEQUENZ CHARAKTERISTIKA:	
45	(A) LÄNGE: 27 Basenpaare(B) ART: Nukleinsäure(C) STRANGFORM: Einzel(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
50	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:	
	CCATCCTAAT ACGACTCACT ATAGGGC	27

	(2) INFORMATION ZU SEQ ID NO: 13:	
5	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
10	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
15	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:	
20	AGGTAGACCT TGCCACGTCC	20
	(2) INFORMATION ZU SEQ ID NO: 14:	
25	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 23 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
30	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
35	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 123	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:	
40 .	GAACTTCAAC AGGCTGCAAG ACG	23
	(2) INFORMATION ZU SEQ ID NO: 15:	
45	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	·
50	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
	· (3	

(2) INFORMATION ZU SEQ ID NO: 16: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16: CCGCCATACA CCTCACACAG (2) INFORMATION ZU SEQ ID NO: 17: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 28 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 128 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: CTGGAAGCTT TCTGTGGGTA TCGGCTGC (2) INFORMATION ZU SEQ ID NO: 18: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel		(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
ATGCTGAGCG GAGGAAGCTG (2) INFORMATION ZU SEQ ID NO: 16: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 20 Basenpaare (B) AFT: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (xi) SEQUENZEESCHREIBUNG: SEQ ID NO: 16: CCGCCATACA CCTCACACAG (2) INFORMATION ZU SEQ ID NO: 17: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 28 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 128 (xi) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) LAGE: 128 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: NUKLeinsäure (C) STRANGFORM: Einzel	5		
(2) INFORMATION ZU SEQ ID NO: 16: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16: CCGCCATACA CCTCACACAG 25 (2) INFORMATION ZU SEQ ID NO: 17: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 28 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 128 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: CTGGAAGCTT TCTGTGGGTA TCGGCTGC 45 (2) INFORMATION ZU SEQ ID NO: 18: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel		(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:	
(2) INFORMATION ZU SEQ ID NO: 16: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16: CCGCCATACA CCTCACACAG (2) INFORMATION ZU SEQ ID NO: 17: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 28 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 128 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: CTGGAAGCTT TCTGTGGGTA TCGGCTGC (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel		ATGCTGAGCG GAGGAAGCTG	20
(i) SEQUENZ CHARAKTERISTIKA:	10		
(A) LÂNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16: CCGCCATACA CCTCACACAG (2) INFORMATION ZU SEQ ID NO: 17: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 28 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 128 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: CTGGAAGCTT TCTGTGGGTA TCGGCTGC 45 (2) INFORMATION ZU SEQ ID NO: 18: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel		(2) INFORMATION ZU SEQ ID NO: 16:	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16: CCGCCATACA CCTCACACAG (2) INFORMATION ZU SEQ ID NO: 17: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 28 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 128 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: CTGGAAGCTT TCTGTGGGTA TCGGCTGC 45 (2) INFORMATION ZU SEQ ID NO: 18: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORN: Einzel	15	(A) LĀNGE: 20 Basenpaare(B) ART: Nukleinsāure(C) STRANGFORM: Einzel	
CCGCCATACA CCTCACACAG 25 (2) INFORMATION ZU SEQ ID NO: 17: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 28 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 128 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: CTGGAAGCTT TCTGTGGGTA TCGGCTGC 45 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel	20	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
(2) INFORMATION ZU SEQ ID NO: 17: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 28 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 128 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: CTGGAAGCTT TCTGTGGGTA TCGGCTGC (2) INFORMATION ZU SEQ ID NO: 18: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel		(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:	
(i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 28 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch) (ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 128 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: CTGGAAGCTT TCTGTGGGTA TCGGCTGC (2) INFORMATION ZU SEQ ID NO: 18: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel	25	CCGCCATACA CCTCACACAG	20
(A) LÂNGE: 28 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKŪLS: DNS (genomisch) (ix) MERKMALE: (A) NAME/SCHLŪSSEL: exon (B) LAGE: 128 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: CTGGAAGCTT TCTGTGGGTA TCGGCTGC (2) INFORMATION ZU SEQ ID NO: 18: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel		(2) INFORMATION ZU SEQ ID NO: 17:	
(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 128 40 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: CTGGAAGCTT TCTGTGGGTA TCGGCTGC 45 (2) INFORMATION ZU SEQ ID NO: 18: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel	30	(A) LÂNGE: 28 Basenpaare(B) ART: Nukleinsaure(C) STRANGFORM: Einzel	
(A) NAME/SCHLÜSSEL: exon (B) LAGE: 128 40 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: CTGGAAGCTT TCTGTGGGTA TCGGCTGC 45 (2) INFORMATION ZU SEQ ID NO: 18: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel	35	(ii) ART DES MOLEKŪLS: DNS (genomisch)	÷
(B) LAGE: 128 40 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: CTGGAAGCTT TCTGTGGGTA TCGGCTGC 45 (2) INFORMATION ZU SEQ ID NO: 18: (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel			
CTGGAAGCTT TCTGTGGGTA TCGGCTGC (2) INFORMATION ZU SEQ ID NO: 18: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel	40		
(2) INFORMATION ZU SEQ ID NO: 18: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel		(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:	
(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel	45	CTGGAAGCTT TCTGTGGGTA TCGGCTGC	28
(A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel		(2) INFORMATION ZU SEQ ID NO: 18:	•
(D) TOPOLOGIE: linear	50	(A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure	

	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
5	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 125	
10	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:	
	TTTGGATCCC TGGTTCTGTT TGAAG	25
15	(2) INFORMATION ZU SEQ ID NO: 19:	
20	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 50 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
25	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 150	
30	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:	
	TTCTAGAATT CAGCGGCCGC TTTTTTTTTT TTTTTTTTT TTTTTTTTT	50
35	(2) INFORMATION ZU SEQ ID NO: 20:	
4 0	(A) LÄNGE: 27 Basenpaare(B) ART: Nukleinsäure(C) STRANGFORM: Einzel(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
45	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 127	
50	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:	
•	GGGGAAAGTT CACTGTCAGT CTCCAAG	27

	(2) INFORMATION ZU SEQ ID NO: 21:	
5	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 26 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
10	(ii) ART DES MOLEKŪLS: DNS (genomisch)	-
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 21:	
15	GGGAATACAC ACAGACGGCT GAGTAG	26
	(2) INFORMATION ZU SEQ ID NO: 22:	
20	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 22 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
25	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
30	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 122	
35	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 22:	
	AGCAAGTTCA GCCTGGTTAA GT	22
40	(2) INFORMATION ZU SEQ ID NO: 23: (i) SEQUENZ CHARAKTERISTIKA:	
45	(A) LÄNGE: 21 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
50	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 121	

	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:	
5	TTATGAGTAT TTCTTCCAGG G	21
	(2) INFORMATION ZU SEQ ID NO: 24:	
10	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 26 Basenpaare (B) ART: Nukleinsaure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
15	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
20	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 126	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 24:	
25	CCATTAATCC AGCCGAGCCA CACAAG	26
	(2) INFORMATION ZU SEQ ID NO: 25:	
30	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
35	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
	(ix) MERKMALE:	
40	(A) NAME/SCHLÜSSEL: exon (B) LAGE: 125	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 25:	
	CATCTACAGC TCCGAACGGT CAGTG	25
45	(2) INFORMATION ZU SEQ ID NO: 26:	
	(i) SEQUENZ CHARAKTERISTIKA:	
50	(A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	

	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
5	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
10	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 26:	
	CAGCGGAAGC CCCAACCGAG	20
15	(2) INFORMATION ZU SEQ ID NO: 27:	
20	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 23 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
20	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
25	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 123	
30	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 27:	
	GGGATGACGC CTCCTCCGCC CGG	23
35	(2) INFORMATION ZU SEQ ID NO: 28: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 31 Basenpaare	
40	(B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(11) ART DES MOLEROLS: DNS (GENOMISCH)	٠ يشر ٠
45	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 131	
50	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 28:	
	AAGCTTCACG TGGACCAGCA AGCCAAGAGT G	31

	(2) INFORMATION 20 SEQ ID NO: 29:	
5	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
10	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
15	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 125	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 29:	
20	AAGCTTTTTC CGTCCTTCCG TCCGG	25
	(2) INFORMATION ZU SEQ ID NO: 30:	
25	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 24 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
30	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
35	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 124	
40	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 30: ATGGTGAGCA AGGGCGAGGA GCTG	24
		24
45	(2) INFORMATION ZU SEQ ID NO: 31:	
45 50	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 24 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	

	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 124	
5		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 31:	
	CTTGTACAGC TCGTCCATGC CGAG	24
10		
	(2) INFORMATION ZU SEQ ID NO: 32:	
15	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
20	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
25	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 125	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 32:	
30	GGGTGGTGAG AGTTCGTTGT CTGTC	25
	(2) INFORMATION ZU SEQ ID NO: 33:	
35	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
40	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
45	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 125	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 33:	
50	GAGCGATGAG GTACGGAAGA CTCTG	25

(2) INFORMATION ZU SEQ ID NO: 34:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 5856 Basenpaare

(B) ART: Nukleinsäure

(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear

(ii) ART DES MOLEKŪLS: DNS (genomisch)

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: exon

(B) LAGE: 1..5856

15

10

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 34:

AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA TGCAGCTGGC 60 20 ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT GTGAGTTAGC 120 TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA 180 TTGTGAGCGG ATAACAATTT CACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTTC 240 25 ACGTGGACCA GCAAGCCAAG AGTGAGTGTG GGCAGCACCC CCAGCCAGAG GGAGGCAGCC 300 AGGGCACAGG CATGACCCAG CAGGTGCTCG GCCATGATGC CGTCCTCGGG CAGCAGCTGC 360 CAGTGCTGAG CCTCGCGGAA GTAGGAGCCC TCCTGGGCCT CGCAGAAGTA GTGGCCGTAC 30 420 TGCTGCGCCG TGAGGTTCTC GATGAACAGG ATGCAGTTGG GGCTCTGGTG ACCAGGTTCG 480 540 GGGCAGCTCA GGTAGTAGCG AGAGTTTGGG GCCAGGGAAA CCTTCTGCAG TGGGGCCTTG 600 TCTGGTTTGG GGTTGGGACA CTCCTTGTGT GGCTCGGCTG GATTAATGGA TTGCAGCACT 660 GACCGTTCGG AGCTGTAGAT GGAGATGCAG CGGCCCTGGT CCCAGCCGCA GTAGGGGTCT 720 CGGGACATGA GGCAACCGTG GCAGCCCCCG CCATAGACCT CACACAGGTC CAGGGGCACC 780 TGGCTCACCT CCCACTGGGA GCTCACATAC AGCTTCCTCC GCTCAGCATC CAGCGACATG 840 GTCTGGATGG CAGCCGCGCG GCGGAAGGGC TGGATCTCCA TGATGTTGAA GGCGAAGCTG 900 TGCTCCTGCT CCCCCGGTTC CACCACCTTG TGGATAGTGC CCCTGTCTGT AGTTAGGTAA 960 AGCACATGAA AGGTCTCCCC GTGGCTGGCT TGCATGCGGT GAACGGCCAC TTTCTGGTAG 1020 TGGTATTTAG AGTGGAACAA TGGCGTCTTC AGAGGCCCCA TGGGCTCCAC CCTCTGCGCC 1080 ACCTCTGGGT GACGGTCAGC CACCTGGAAG GTCTCTGTGG GTATCGGCTG CTGGTCTGGG 1140

35

40

45

	AGGCACTTGC	CAGGCCGCGG	GTTGGGAAGG	CTTGAGTGGT	AGCCCTTGAG	TGAGGAGGTA	1200
5	CGGAAGACCT	TGTCAATGTC	ACCGAGGGAA	TACACACAGA	CGGCTGAGTA	GTTCCAGGGG	1260
	TTGGAGAAAA	CACCATAGAC	CCTGGTGTCC	CTCCACTGGC	CGCTGGGGTC	AGGGAGCAGG	1320
	AAGACGTCTT	GCAGCCTGTT	GAAGTTCTTG	TTGGTGGCAG	CATCACTGCA	TACCAGCATG	1380
10	GCTTTCAGAA	AAGTGTTCCA	CTTGGAGACT	GACAGTGAAC	TTTCCCCACC	CTGGTCCCCC	1440
	CTGCACAACT	GGGCCACACG	GGACACATTG	AGAGGAGCCT	CAGGATTCTT	GTCAGGATTG	1500
	TCCTCTCGGA	AGAAGTAGTA	GATCTTGTCA	TCGTAAGCCT	GGTCTTGGTG	CACGATGGTG	1560
15	GCTTTGATGA	ACTGTGGGTT	CTGCATGACA	GTATCACTGG	TGTACAGCTC	ACTCTCGCCC	1620
	CGGATGCGGC	GGAACCGAGG	GATCTTCCCA	TTGTATTCCT	GCTTCCGGAT	GGTGGAATAC	1680
20	ACCTCGTCCC	CTTCAAACAG	AACCAGGGAG	TTCTCGTCCG	GGCTGAAGGG	GGCGTAGCCT	1740
	CTCATCTCGC	CAAGTGGCAC	CACAGTGCCA	TTCACCAGGT	TCCAGCAGCT	GGGGTGCCGG	1800
	GCGTTGGTGC	CACAGGCCAG	CAGCCCCTCA	CTCCGCCTCT	CCAGGAGAGT	GATGTAGTTC	1860
25	TCGCAGTCCC	GCTTATCCAG	ACAGGACCCC	TTTGTGGAGC	CGATATTCAC	CGTGCGCACA	1920
	GATGCGTTCT	TGCCCTCGGG	GAAGTCAAAG	AGGTAGACCT	TGCCACGTCC	TCCCACCCAC	1980
20	ACAGAGGAGC	TGCCTGGCTC	GTGGAAAAGC	ACCGTGTGCG	GCTCAGTCTG	GCCAAAGTCC	2040
30	ACCCGGTCCT	GCCCTACATG	GCCTTTCCAG	ACGGCGAAGA	TGCGGGGTCC	GCTCCTTAGG	2100
	TGGCCCTGGG	CGGAGGCGGC	GGCCGCCCAG	AGCAGCAGCA	GCAGCCGCAG	CCGCAGCGGA	2160
35	AGCCCCAACC	GAGCCGGCGG	GCCAGGGACG	CGGGCGCGCG	GTGCGCTGGG	GGCGGCACGT	2220
	CCGGGCGGAG	GAGGCGTCAT	CCCAAGCCGA	ATTCTGCAGA	TATCCATCAC	ACTGGCGGCC	2280
	GCTCGAGCAT	GCATCTAGAG	GGCCCAATTC	GCCCTATAGT	GAGTCGTATT	ACAATTCACT	2340
40	GGCCGTCGTT	TTACAACGTC	GTGACTGGGA	AAACCCTGGC	GTTACCCAAC	TTAATCGCCT	2400
	TGCAGCACAT	CCCCCTTTCG	CCAGCTGGCG	TAATAGCGAA	GAGGCCCGCA	CCGATCGCCC	2460
45	TTCCCAACAG	TTGCGCAGCC	TGAATGGCGA	ATGGGACGCG	CCCTGTAGCG	GCGCATTAAG	2520
	CGCGGCGGGT	GTGGTGGTTA	CGCGCAGCGT	GACCGCTACA	CTTGCCAGCG	CCCTAGCGCC	2580
	CGCTCCTTTC	GCTTTCTTCC	CTTCCTTTCT	CGCCACGTTC	GCCGGCTTTC	CCCGTCAAGC	2640
50	TCTAAATCGG	GGGCTCCCTT	TAGGGTTCCG	ATTTAGAGCT	TTACGGCACC	TCGACCGCAA	2700
	AAAACTTGAT	TTGGGTGATG	GTTCACGTAG	TGGGCCATCG	CCCTGATAGA	CGGTTTTTCG	2760

	CCCTTTGACG	TTGGAGTCCA	CGTTCTTTAA	TAGTGGACTC	TTGTTCCAAA	CTGGAACAAC	2820
5	ACTCAACCCT	ATCGCGGTCT	ATTCTTTTGA	TTTATAAGGG	ATTTTGCCGA	TTTCGGCCTA	2880
J	TTGGTTAAAA	AATGAGCTGA	TTTAACAAAT	TCAGGGCGCA	AGGGCTGCTA	AAGGAACCGG	2940
	AACACGTAGA	AAGCCAGTCC	GCAGAAACGG	TGCTGACCCC	GGATGAATGT	CAGCTACTGG	3000
10	GCTATCTGGA	CAAGGGAAAA	CGCAAGCGCA	AAGAGAAAGC	AGGTAGCTTG	CAGTGGGCTT	3060
	ACATGGCGAT	AGCTAGACTG	GGCGGTTTTA	TGGACAGCAA	GCGAACCGGA	ATTGCCAGCT	3120
	GGGGCGCCCT	CTGGTAAGGT	TGGGAAGCCC	TGCAAAGTAA	ACTGGATGGC	TTTCTTGCCG	3180
15	CCAAGGATCT	GATGGCGCAG	GGGATCAAGA	TCTGATCAAG	AGACAGGATG	AGGATCGTTT	3240
	CGCATGATTG	AACAAGATGG	ATTGCACGCA	GGTTCTCCGG	CCGCTTGGGT	GGAGAGGCTA	3300
	TTCGGCTATG	ACTGGGCACA	ACAGACAATC	GGCTGCTCTG	ATGCCGCCGT	GTTCCGGCTG	3360
20	TCAGCGCAGG	GGCGCCCGGT	TCTTTTTGTC	AAGACCGACC	TGTCCGGTGC	CCTGAATGAA	3420
	CTGCAGGACG	AGGCAGCGCG	GCTATCGTGG	CTGGCCACGA	CGGGCGTTCC	TTGCGCAGCT	3480
25	GTGCTCGACG	TTGTCACTGA	AGCGGGAAGG	GACTGGCTGC	TATTGGGCGA	AGTGCCGGGG	3540
	CAGGATCTCC	TGTCATCTCG	CCTTGCTCCT	GCCGAGAAAG	TATCCATCAT	GGCTGATGCA	3600
	ATGCGGCGGC	TGCATACGCT	TGATCCGGCT	ACCTGCCCAT	TCGACCACCA	AGCGAAACAT	3660
30	CGCATCGAGC	GAGCACGTAC	TCGGATGGAA	GCCGGTCTTG	TCGATCAGGA	TGATCTGGAC	3720
•	GAAGAGCATC	AGGGGCTCGC	GCCAGCCGAA	CTGTTCGCCA	GGCTCAAGGC	GCGCATGCCC	3780
	GACGGCGAGG	ATCTCGTCGT	GATCCATGGC	GATGCCTGCT	TGCCGAATAT	CATGGTGGAA	3840
35	AATGGCCGCŢ	TTTCTGGATT	CAACGACTGT	GGCCGGCTGG	GTGTGGCGGA	CCGCTATCAG	3900
	GACATAGCGT	TGGATACCCG	TGATATTGCT	GAAGAGCTTG	GCGGCGAATG	GGCTGACCGC	3960
40	TTCCTCGTGC	TTTACGGTAT	CGCCGCTCCC	GATTCGCAGC	GCATCGCCTT	CTATCGCCTT	4020
40	CTTGACGAGT	TCTTCTGAAT	TGAAAAAGGA	AGAGTATGAG	TATTCAACAT	TTCCGTGTCG	4080
	CCCTTATTCC	CTTTTTTGCG	GCATTTTGCC	TTCCTGTTTT	TGCTCACCCA	GAAACGCTGG	4140
45	TGAAAGTAAA	AGATGCTGAA	GATCAGTTGG	GTGCACGAGT	GGGTTACATC	GAACTGGATC	4200
	TCAACAGCGG	TAAGATCCTT	GAGAGTTTTC	GCCCCGAAGA	ACGTTTTCCA	ATGATGAGCA	4260
	CTTTTAAAGT	TCTGCTATGT	CATACACTAT	TATCCCGTAT	TGACGCCGGG	CAAGAGCAAC	4320
50	TCGGTCGCCG	GGCGCGGTAT	TCTCAGAATG	ACTTGGTTGA	GTACTCACCA	GTCACAGAAA	4380
	AGCATCTTAC	GGATGGCATG	ACAGTAAGAG	AATTATGCAG	TGCTGCCATA	ACCATGAGTG	4440

	ATAACACTGC	GGCCAACTTA	CTTCTGACAA	CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT	4500
_	TTTTGCACAA	CATGGGGGAT	CATGTAACTC	GCCTTGATCG	TTGGGAACCG	GAGCTGAATG	4560
5	AAGCCATACC	AAACGACGAG	AGTGACACCA	CGATGCCTGT	AGCAATGCCA	ACAACGTTGC	4620
	GCAAACTATT	AACTGGCGAA	CTACTTACTC	TAGCTTCCCG	GCAACAATTA	ATAGACTGGA	4680
10	TGGAGGCGGA	TAAAGTTGCA	GGACCACTTC	TGCGCTCGGC	CCTTCCGGCT	GGCTGGTTTA	4740
	TTGCTGATAA	ATCTGGAGCC	GGTGAGCGTG	GGTCTCGCGG	TATCATTGCA	GCACTGGGGC	4800
	CAGATGGTAA	GCCCTCCCGT	ATCGTAGTTA	TCTACACGAC	GGGGAGTCAG	GCAACTATGG	4860
15	ATGAACGAAA	TAGACAGATC	GCTGAGATAG	GTGCCTCACT	GATTAAGCAT	TGGTAACTGT	4920
	CAGACCAAGT	TTACTCATAT	ATACTTTAGA	TTGATTTAAA	ACTTCATTTT	TAATTTAAAA	4980
20	GGATCTAGGT	GAAGATCCTT	TTTGATAATC	TCATGACCAA	AATCCCTTAA	CGTGAGTTTT	5040
20	CGTTCCACTG	AGCGTCAGAC	CCCGTAGAAA	AGATCAAAGG	ATCTTCTTGA	GATCCTTTTT	5100
	TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	AAAAACCACC	GCTACCAGCG	GTGGTTTGTT	5160
25	TGCCGGATCA	AGAGCTACCA	ACTCTTTTTC	CGAAGGTAAC	TGGCTTCAGC	AGAGCGCAGA	5220
	TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT	AGTTAGGCCA	CCACTTCAAG	AACTCTGTAG	5280
	CACCGCCTAC	ATACCTCGCT	CTGCTAATCC	TGTTACCAGT	GGCTGCTGCC	AGTGGCGATA	5340
30	AGTCGTGTCT	TACCGGGTTG	GACTCAAGAC	GATAGTTACC	GGATAAGGCG	CAGCGGTCGG	5400
	GCTGAACGGG	GGGTTCGTGC	ACACAGCCCA	GCTTGGAGCG	AACGACCTAC	ACCGAACTGA	5460
35	GATACCTACA	GCGTGAGCAT	TGAGAAAGCG	CCACGCTTCC	CGAAGGGAGA	AAGGCGGACA	5520
	GGTATCCGGT	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC	GAGGGAGCTT	CCAGGGGGAA	5580
	ACGCCTGGTA	TCTTTATAGT	CCTGTCGGGT	TTCGCCACCT	CTGACTTGAG	CGTCGATTTT	5640
40	TGTGATGCTC	GTCAGGGGG	CGGAGCCTAT	GGAAAAACGC	CAGCAACGCG	GCCTTTTTAC	5700
	GGTTCCTGGC	CTTTTGCTGG	CCTTTTGCTC	ACATGTTCTT	TCCTGCGTTA	TCCCCTGATT	5760
45	CTGTGGATAA	CCGTATTACC	GCCTTTGAGT	GAGCTGATAC	CGCTCGCCGC	AGCCGAACGA	5820
43	CCGAGCGCAG	CGAGTCAGTG	AGCGAGGAAG	CGGAAG			. 5856

(2) INFORMATION ZU SEQ ID NO: 35:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 7475 Basenpaare

(B) ART: Nukleinsäure

(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear

5 (ii) ART DES MOLEKŪLS: DNS (genomisch)

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: exon

(B) LAGE: 1..7475

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 35:

GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG 60 15 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG 120 CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAATCTGC 180 20 TTAGGGTTAG GCGTTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT 240 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA 300 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC 360 25 CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC 420 ATTGACGTCA ATGGGTGGAC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT 480 ATCATATGCC AAGTACGCCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT 540 30 ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA 600 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG 660 35 ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC 720 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGGCG 780 GTAGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA 840 40 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC 900 GTTTAAACGG GCCCTCTAGA CTCGAGCGGC CGCCACTGTG CTGGATATCT GCAGAATTCG 960 GCTTGGGATG ACGCCTCCTC CGCCCGGACG TGCCGCCCCC AGCGCACCGC GCGCCCGCGT 45 1020 CCCTGGCCCG CCGGCTCGGT TGGGGCTTCC GCTGCGGCTG CGGCTGCTGC TGCTGCTCTG 1080 GGCGGCCGCC GCCTCCGCCC AGGGCCACCT AAGGAGCGGA CCCCGCATCT TCGCCGTCTG 1140 50 GAAAGGCCAT GTAGGGCAGG ACCGGGTGGA CTTTGGCCAG ACTGAGCCGC ACACGGTGCT 1200 TTTCCACGAG CCAGGCAGCT CCTCTGTGTG GGTGGGAGGA CGTGGCAAGG TCTACCTCTT 1260

	TGACTTCCCC GAGGGCAAGA ACGCATCTGT GCGCACGGTG AATATCGGCT CCACAAAGGG	1220
•	GTCCTGTCTG GATAAGCGGG ACTGCGAGAA CTACATCACT CTCCTGGAGA GGCGGAGTGA	
5	GGGGCTGCTG GCCTGTGGCA CCAACGCCCG GCACCCCAGC TGCTGGAACC TGGTGAATGG	1380
	CACTGTGGTG CCACTTGGCG AGATGAGAGG CTACGCCCCC TTCAGCCCGG ACGAGAACTC	1440
10	CCTGGTTCTG TTTGAAGGGG ACGAGGTGTA TTCCACCATC CGGAAGCAGG AATACAATGG	1500
10	GAAGATCCCT CGGTTCCGCC CCATGGGGGG ATACAATGG	1560
	GAAGATCCCT CGGTTCCGCC GCATCCGGGG CGAGAGTGAG CTGTACACCA GTGATACTGT	1620
4.5	CATGCAGAAC CCACAGTTCA TCAAAGCCAC CATCGTGCAC CAAGACCAGG CTTACGATGA	1680
15	CAAGATCTAC TACTTCTTCC GAGAGGACAA TCCTGACAAG AATCCTGAGG CTCCTCTAA	1740
	TGTGTCCCGT GTGGCCCAGT TGTGCAGGGG GGACCAGGGT GGGGAAAGTT CACTGTCAGT	1800
20	CTCCAAGTGG AACACTTTTC TGAAAGCCAT GCTGGTATGC AGTGATGCTG CCACCAACAA	1860
20	GAACTTCAAC AGGCTGCAAG ACGTCTTCCT GCTCCCTGAC CCCAGCGGCC AGTGGAGGGA	1920
	CACCAGGGTC TATGGTGTTT TCTCCAACCC CTGGAACTAC TCAGCCGTCT GTGTGTATTC	
25	CCTCGGTGAC ATTGACAAGG TCTTCCGTAC CTCCTCACTC AAGGGCTACC ACTCAAGCCT	1980
23	TCCCAACCCG CGGCCTGGCA AGTGCCTCCC AGACCAGCAG CCGATACCCA CAGAGACCTT	2040
	CCAGGTGGCT GACCGTCACC CAGAGGTGGC GCAGAGGGTG GAGCCCATGG GGCCTCTGAA	2100
30	GACGCCATTG TTCCACTCTA AATACCACTA CCAGAAAGTG GCCGTTCACC GCATGCAAGC	2160
		2220
	CAGCCACGGG GAGACCTTTC ATGTGCTTTA CCTAACTACA GACAGGGGCA CTATCCACAA	2280
35	GGTGGTGGAA CCGGGGGAGC AGGAGCACAG CTTCGCCTTC AACATCATGG AGATCCAGCC	2340
	CTTCCGCCGC GCGGCTGCCA TCCAGACCAT GTCGCTGGAT GCTGAGCGGA GGAAGCTGTA	2400
	TGTGAGCTCC CAGTGGGAGG TGAGCCAGGT GCCCCTGGAC CTGTGTGAGG TCTATGGCGG	2460
40	GGGCTGCCAC GGTTGCCTCA TGTCCCGAGA CCCCTACTGC GGCTGGGACC AGGGCCGCTG	2520
	CATCTCCATC TACAGCTCCG AACGGTCAGT GCTGCAATCC ATTAATCCAG CCGAGCCACA	2580
	CAAGGAGTGT CCCAACCCCA AACCAGACAA GGCCCCACTG CAGAAGGTTT CCCTGGCCCC	2640
45	AAACTCTCGC TACTACCTGA GCTGCCCCAT GGAATCCCGC CACGCCACCT ACTCATGGCG	2700
	CCACAAGGAG AACGTGGAGC AGAGCTGCGA ACCTGGTCAC CAGAGCCCCA ACTGCATCCT	
	GTTCATCGAG AACCTCACGG CGCAGCAGTA CGGCCACTAC TTCTGCGAGG CCCAGGAGGG	2760
50	CTCCTACTTC CGCGAGGCTC AGCACTGGCA GCTGCTGCCC GAGGACGGCA TCATGGCCGA	2820
	GCACCTGCTG GGTCATGCCT GTGCCCTGGC TGCCTCCCTC TGGCTGGGGG TGCTGCCCAC	2880
	TGCTCCCTC TGGCTGGGGG TGCTGCCCAC	2940

	ACTUACICIT	GGCTTGCTGG	ICCACG IGAA	GCTTGGGCCC	GAACAAAAAC	TCATCTCAGA	300
5	AGAGGATCTG	AATAGCGCCG	TCGACCATCA	TCATCATCAT	CATTGAGTTT	AAACCGCTGA	306
	TCAGCCTCGA	CTGTGCCTTC	TAGTTGCCAG	CCATCTGTTG	TTTGCCCCTC	CCCCGTGCCT	312
	TCCTTGACCC	TGGAAGGTGC	CACTCCCACT	GTCCTTTCCT	AATAAAATGA	GGAAATTGCA	318
10	TCGCATTGTC	TGAGTAGGTG	TCATTCTATT	CTGGGGGGTG	GGGTGGGGCA	GGACAGCAAG	324
	GGGGAGGATT	GGGAAGACAA	TAGCAGGCAT	GCTGGGGATG	CGGTGGGCTC	TATGGCTTCT	330
	GAGGCGGAAA	GAACCAGCTG	GGGCTCTAGG	GGGTATCCCC	ACGCGCCCTG	TAGCGGCGCA	3360
15	TTAAGCGCGG	CGGGTGTGGT	GGTTACGCGC	AGCGTGACCG	CTACACTTGC	CAGCGCCCTA	3420
	GCGCCCGCTC	CTTTCGCTTT	CTTCCCTTCC	TTTCTCGCCA	CGTTCGCCGG	CTTTCCCCGT	3480
20	CAAGCTCTAA	ATCGGGGCAT	CCCTTTAGGG	TTCCGATTTA	GTGCTTTACG	GCACCTCGAC	3540
	CCCAAAAAAC	TTGATTAGGG	TGATGGTTCA	CGTAGTGGGC	CATCGCCCTG	ATAGACGGTT	3600
	TTTCGCCCTT	TGACGTTGGA	GTCCACGTTC	TTTAATAGTG	GACTCTTGTT	CCAAACTGGA	3660
25	ACAACACTCA	ACCCTATCTC	GGTCTATTCT	TTTGATTTAT	AAGGGATTTT	GGGGATTTCG	3720
	GCCTATTGGT	TAAAAAATGA	GCTGATTTAA	CAAAAATTTA	ACGCGAATTA	ATTCTGTGGA	3780
30	ATGTGTGTCA	GTTAGGGTGT	GGAAAGTCCC	CAGGCTCCCC	AGGCAGGCAG	AAGTATGCAA	3840
	AGCATGCATC	TCAATTAGTC	AGCAACCAGG	TGTGGAAAGT	CCCCAGGCTC	CCCAGCAGGC	3900
	AGAAGTATGC	AAAGCATGCA	TCTCAATTAG	TCAGCAACCA	TAGTCCCGCC	CCTAACTCCG	3960
35	CCCATCCCGC	CCCTAACTCC	GCCCAGTTCC	GCCCATTCTC	CGCCCCATGG	CTGACTAATT	4020
	TTTTTTATTT	ATGCAGAGGC	CGAGGCCGCC	TCTGCCTCTG	AGCTATTCCA	GAAGTAGTGA	4080
40	GGAGGCTTTT	TTGGAGGCCT	AGGCTTTTGC	AAAAAGCTCC	CGGGAGCTTG	TATATCCATT	4140
40	TTCGGATCTG	ATCAAGAGAC	AGGATGAGGA	TCGTTTCGCA	TGATTGAACA	AGATGGATTG	4200
	CACGCAGGTT	CTCCGGCCGC	TTGGGTGGAG	AGGCTATTCG	GCTATGACTG	GGCACAACAG	4260
45	ACAATCGGCT	GCTCTGATGC	CGCCGTGTTC	CGGCTGTCAG	CGCAGGGGCG	CCCGGTTCTT	4320
	TTTGTCAAGA	CCGACCTGTC	CGGTGCCCTG	AATGAACTGC	AGGACGAGGC	AGCGCGGCTÀ	4380
		CCACGACGGG				•	4440
		GGCTGCTATT					4500
	GCTCCTGCCG	AGAAAGTATC	CATCATGGCT	GATGCAATGC	GGCGGCTGCA	TACGCTTGAT	4560

	CCGGCIACCI G	CCCATICGA	CCACCAAGCG	AMACAICOCA	redadedade	ACOTACTCOO	1020
	ATGGAAGCCG G	TCTTGTCGA	TCAGGATGAT	CTGGACGAAG	AGCATCAGGG	GCTCGCGCCA	4680
5	GCCGAACTGT T	CGCCAGGCT	CAAGGCGCGC	ATGCCCGACG	GCGAGGATCT	CGTCGTGACC	4740
	CATGGCGATG C	CTGCTTGCC	GAATATCATG	GTGGAAAATG	GCCGCTTTTC	TGGATTCATC	4800
10	GACTGTGGCC G	GCTGGGTGT	GGCGGACCGC	TATCAGGACA	TAGCGTTGGC	TACCCGTGAT	4860
	ATTGCTGAAG A	GCTTGGCGG	CGAATGGGCT	GACCGCTTCC	TCGTGCTTTA	CGGTATCGCC	4920
	GCTCCCGATT C	GCAGCGCAT	CGCCTTCTAT	CGCCTTCTTG	ACGAGTTCTT	CTGAGCGGGA	4980
15	CTCTGGGGTT C	GAAATGACC	GACCAAGCGA	CGCCCAACCT	GCCATCACGA	GATTTCGATT	5040
	CCACCGCCGC C	TTCTATGAA	AGGTTGGGCT	TCGGAATCGT	TTTCCGGGAC	GCCGGCTGGA	5100
	TGATCCTCCA G	GCGCGGGGAT	CTCATGCTGG	AGTTCTTCGC	CCACCCCAAC	TTGTTTATTG	5160
20	CAGCTTATAA T	rggttacaaa	TAAAGCAATA	GCATCACAAA	TTTCACAAAT	AAAGCATTTT	5220
	TTTCACTGCA T	TTCTAGTTGT	GGTTTGTCCA	AACTCATCAA	TGTATCTTAT	CATGTCTGTA	5280
25	TACCGTCGAC (CTCTAGCTAG	AGCTTGGCGT	AATCATGGTC	ATAGCTGTTT	CCTGTGTGAA	5340
23	ATTGTTATCC (GCTCACAATT	CCACACAACA	TACGAGCCGG	AAGCATAAAG	TGTAAAGCCT	5400
	GGGGTGCCTA I	ATGAGTGAGC	TAACTCACAT	TAATTGCGTT	GCGCTCACTG	CCCGCTTTCC	5460
30	AGTCGGGAAA (CCTGTCGTGC	CAGCTGCATT	AATGAATCGG	CCAACGCGCG	GGGAGAGGCG	5520
	GTTTGCGTAT	TGGGCGCTCT	TCCGCTTCCT	CGCTCACTGA	CTCGCTGCGC	TCGGTCGTTC	5580
	GGCTGCGGCG	AGCGGTATCA	GCTCACTCAA	AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	5640
35	GGGATAACGC	AGGAAAGAAC	ATGTGAGCAA	AAGGCCAGCA	AAAGGCCAGG	AACCGTAAAA	5700
	AGGCCGCGTT	GCTGGCGTTT	TTCCATAGGC	TCCGCCCCCC	: TGACGAGCAT	CACAAAAATC	5760
40	GACGCTCAAG	TCAGAGGTGG	CGAAACCCGA	CAGGACTATA	AAGATACCAG	GCGTTTCCCC	5820
40	CTGGAAGCTC	CCTCGTGCGC	TCTCCTGTTC	CGACCCTGCC	GCTTACCGG#	ATACCTGTCCG	5880
	CCTTTCTCCC	TTCGGGAAGC	GTGGCGCTTT	CTCAATGCTC	CACGCTGTAGO	TATCTCAGTT	5940
45	CGGTGTAGGT	CGTTCGCTCC	AAGCTGGGCT	GTGTGCACG	A ACCCCCCGT	CAGCCCGACC	6000
	GCTGCGCCTT	ATCCGGTAAC	TATCGTCTTG	AGTCCAACCO	GGTAAGACA	GACTTATCGC	6060
	CACTGGCAGC	AGCCACTGGT	AACAGGATTA	GCAGAGCGAG	G GTATGTAGG	C GGTGCTACAG	6120
50	AGTTCTTGAA	GTGGTGGCCT	AACTACGGCT	ACACTAGAA	G GACAGTATT	r GGTATCTGCG	6186
	ርተርተርሞርልል	GCCAGTTACC	TTCGGAAAAA	GAGTTGGTA	G CTCTTGATC	C GGCAAACAAA	624

	CCACCGCTGG	TAGCGGTGGT	TTTTTTGTTT	GCAAGCAGCA	GATTACGCGC	AGAAAAAAG	6300
5	GATCTCAAGA	AGATCCTTTG	ATCTTTTCTA	CGGGGTCTGA	CGCTCAGTGG	AACGAAAACT	6360
	CACGTTAAGG	GATTTTGGTC	ATGAGATTAT	CAAAAAGGAT	CTTCACCTAG	ATCCTTTTAA	6420
	ATTAAAAATG	AAGTTTTAAA	TCAATCTAAA	GTATATATGA	GTAAACTTGG	TCTGACAGTT	6480
10	ACCAATGCTT	AATCAGTGAG	GCACCTATCT	CAGCGATCTG	TCTATTTCGT	TCATCCATAG	6540
	TTGCCTGACT	CCCCGTCGTG	TAGATAACTA	CGATACGGGA	GGGCTTACCA	TCTGGCCCCA	6600
15	GTGCTGCAAT	GATACCGCGA	GACCCACGCT	CACCGGCTCC	AGATTTATCA	GCAATAAACC	6660
	AGCCAGCCGG	AAGGGCCGAG	CGCAGAAGTG	GTCCTGCAAC	TTTATCCGCC	TCCATCCAGT	6720
	CTATTAATTG	TTGCCGGGAA	GCTAGAGTAA	GTAGTTCGCC	AGTTAATAGT	TTGCGCAACG	6780
20	TTGTTGCCAT	TGCTACAGGC	ATCGTGGTGT	CACGCTCGTC	GTTTGGTATG	GCTTCATTCA	6840
	GCTCCGGTTC	CCAACGATCA	AGGCGAGTTA	CATGATCCCC	CATGTTGTGC	AAAAAAGCGG	6900
05	TTAGCTCCTT	CGGTCCTCCG	ATCGTTGTCA	GAAGTAAGTT	GGCCGCAGTG	TTATCACTCA	6960
25	TGGTTATGGC	AGCACTGCAT	AATTCTCTTA	CTGTCATGCC	ATCCGTAAGA	TGCTTTTCTG	7020
	TGACTGGTGA	GTACTCAACC	AAGTCATTCT	GAGAATAGTG	TATGCGGCGA	CCGAGTTGCT	7080
30	CTTGCCCGGC	GTCAATACGG	GATAATACCG	CGCCACATAG	CAGAACTTTA	AAAGTGCTCA	7140
	TCATTGGAAA	ACGTTCTTCG	GGGCGAAAAC	TCTCAAGGAT	CTTACCGCTG	TTGAGATCCA	7200
	GTTCGATGTA	ACCCACTCGT	GCACCCAACT	GATCTTCAGC	ATCTTTTACT	TTCACCAGCG	7260
35	TTTCTGGGTG	AGCAAAAACA	GGAAGGCAAA	ATGCCGCAAA	AAAGGGAATA	AGGGCGACAC	7320
	GGAAATGTTG	AATACTCATA	CTCTTCCTTT	TTCAATATTA	TTGAAGCATT	TATCAGGGTT	7380
40	ATTGTCTCAT	GAGCGGATAC	ATATTTGAAT	GTATTTAGAA	AAATAAACAA	ATAGGGGTTC	7440
	CGCGCACATT	TCCCCGAAAA	GTGCCACCTG	ACGTC			7475

(2) INFORMATION ZU SEQ ID NO: 36:

45

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 8192 Basenpaare
- (B) ART: Nukleinsäure
- (C) STRANGFORM: Einzel
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: DNS (genomisch)

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: exon

(B) LAGE: 1..8192

5

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 36:

		GACGGATCGG	GAGATCTCCC	GATCCCCTAT	GGTCGACTCT	CAGTACAATC	TGCTCTGATG	60
•	10	CCGCATAGTT	AAGCCAGTAT	CTGCTCCCTG	CTTGTGTGTT	GGAGGTCGCT	GAGTAGTGCG	120
		CGAGCAAAAT	TTAAGCTACA	ACAAGGCAAG	GCTTGACCGA	CAATTGCATG	AAGAATCTGC	180
	15	TTAGGGTTAG	GCGTTTTGCG	CTGCTTCGCG	ATGTACGGGC	CAGATATACG	CGTTGACATT	240
	15	GATTATTGAC	TAGTTATTAA	TAGTAATCAA	TTACGGGGTC	ATTAGTTCAT	AGCCCATATA	300
		TGGAGTTCCG	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG	CCCAACGACC	360
	20	CCCGCCCATT	GACGTCAATA	ATGACGTATG	TTCCCATAGT	AACGCCAATA	GGGACTTTCC	420
		ATTGACGTCA	ATGGGTGGAC	TATTTACGGT	AAACTGCCCA	CTTGGCAGTA	CATCAAGTGT	480
		ATCATATGCC	AAGTACGCCC	CCTATTGACG	TCAATGACGG	TAAATGGCCC	GCCTGGCATT	540
	25	ATGCCCAGTA	CATGACCTTA	TGGGACTTTC	CTACTTGGCA	GTACATCTAC	GTATTAGTCA	600
		TCGCTATTAC	CATGGTGATG	CGGTTTTGGC	AGTACATCAA	TGGGCGTGGA	TAGCGGTTTG	660
	30	ACTCACGGGG	ATTTCCAAGT	CTCCACCCCA	TTGACGTCAA	TGGGAGTTTG	TTTTGGCACC	720
		AAAATCAACG	GGACTTTCCA	AAATGTCGTA	ACAACTCCGC	CCCATTGACG	CAAATGGGCG	780
		GTAGGCGTGT	ACGGTGGGAG	GTCTATATAA	GCAGAGCTCT	CTGGCTAACT	AGAGAACCCA	840
	35	CTGCTTACTG	GCTTATCGAA	ATTAATACGA	CTCACTATAG	GGAGACCCAA	GCTGGCTAGC	. 900
		GTTTAAACGG	GCCCTCTAGA	CTCGAGCGGC	CGCCACTGTG	CTGGATATCT	GCAGAATTCG	960
		GCTTGGGATG	ACGCCTCCTC	CGCCCGGACG	TGCCGCCCCC	AGCGCACCGC	GCGCCCGCGT	1020
	40	CCCTGGCCCG	CCGGCTCGGT	TGGGGCTTCC	GCTGCGGCTG	CGGCTGCTGC	TGCTGCTCTG	1080
		GGCGGCCGCC	GCCTCCGCCC	AGGGCCACCT	AAGGAGCGGA	CCCCGCATCT	TCGCCGTCTG	1140
	45	GAAAGGCCAT	GTAGGGCAGG	ACCGGGTGGA	CTTTGGCCAG	ACTGAGCCGC	ACACGGTGCT	1200
		TTTCCACGAG	CCAGGCAGCT	CCTCTGTGTG	GGTGGGAGGA	CGTGGCAAGG	TCTACCTCTT	1260
		TGACTTCCCC	GAGGGCAAGA	ACGCATCTGT	GCGCACGGTG	AATATCGGCT	CCACAAAGGG	1320
	50	GTCCTGTCTG	GATAAGCGGG	ACTGCGAGAA	CTACATCACT	CTCCTGGAGA	GGCGGAGTGA	1380
		GGGGCTGCTG	GCCTGTGGCA	CCAACGCCCG	GCACCCCAGC	TGCTGGAACC	TGGTGAATGG	1440

	CACTGTGGTG	CCACTTGGCG	AGATGAGAGG	CTACGCCCCC	TTCAGCCCGG	ACGAGAACTC	1500
5	CCTGGTTCTG	TTTGAAGGGG	ACGAGGTGTA	TTCCACCATC	CGGAAGCAGG	AATACAATGG	1560
	GAAGATCCCT	CGGTTCCGCC	GCATCCGGGG	CGAGAGTGAG	CTGTACACCA	GTGATACTGT	1620
	CATGCAGAAC	CCACAGTTCA	TCAAAGCCAC	CATCGTGCAC	CAAGACCAGG	CTTACGATGA	1680
10	CAAGATCTAC	TACTTCTTCC	GAGAGGACAA	TCCTGACAAG	AATCCTGAGG	CTCCTCTCAA	1740
	TGTGTCCCGT	GTGGCCCAGT	TGTGCAGGGG	GGACCAGGGT	GGGGAAAGTT	CACTGTCAGT	1800
	CTCCAAGTGG	AACACTTTTC	TGAAAGCCAT	GCTGGTATGC	AGTGATGCTG	CCACCAACAA	1860
15	GAACTTCAAC	AGGCTGCAAG	ACGTCTTCCT	GCTCCCTGAC	CCCAGCGGCC	AGTGGAGGGA	1920
	CACCAGGGTC	TATGGTGTTT	TCTCCAACCC	CTGGAACTAC	TCAGCCGTCT	GTGTGTATTC	1980
20	CCTCGGTGAC	ATTGACAAGG	TCTTCCGTAC	CTCCTCACTC	AAGGCTACC	ACTCAAGCCT	2040
20	TCCCAACCCG	CGGCCTGGCA	AGTGCCTCCC	AGACCAGCAG	CCGATACCCA	CAGAGACCTT	2100
	CCAGGTGGCT	GACCGTCACC	CAGAGGTGGC	GCAGAGGGTG	GAGCCCATGG	GGCCTCTGAA	2160
25	GACGCCATTG	TTCCACTCTA	AATACCACTA	CCAGAAAGTG	GCCGTTCACC	GCATGCAAGC	2220
	CAGCCACGGG	GAGACCTTTC	ATGTGCTTTA	CCTAACTACA	GACAGGGGCA	CTATCCACAA	2280
	GGTGGTGGAA	CCGGGGGAGC	AGGAGCACAG	CTTCGCCTTC	AACATCATGG	AGATCCAGCC	2340
30	CTTCCGCCGC	GCGGCTGCCA	TCCAGACCAT	GTCGCTGGAT	GCTGAGCGGA	GGAAGCTGTA	2400
	TGTGAGCTCC	CAGTGGGAGG	TGAGCCAGGT	GCCCCTGGAC	CTGTGTGAGG	TCTATGGCGG	2460
05	GGGCTGCCAC	GGTTGCCTCA	TGTCCCGAGA	CCCCTACTGC	GGCTGGGACC	AGGCCGCTG	2520
35	CATCTCCATC	TACAGCTCCG	AACGGTCAGT	GCTGCAATCC	ATTAATCCAG	CCGAGCCACA	2580
	CAAGGAGTGT	CCCAACCCCA	AACCAGACAA	GGCCCCACTG	CAGAAGGTTT	CCCTGGCCCC	2640
40	AAACTCTCGC	TACTACCTGA	GCTGCCCCAT	GGAATCCCGC	CACGCCACCT	ACTCATGGCG	2700
	CCACAAGGAG	AACGTGGAGC	AGAGCTGCGA	ACCTGGTCAC	CAGAGCCCCA	ACTGCATCCT	2760
	GTTCATCGAG	AACCTCACGG	CGCAGCAGTA	CGGCCACTAC	TTCTGCGAGG	CCCAGGAGGG	2820
45	CTCCTACTTC	CGCGAGGCTC	AGCACTGGCA	GCTGCTGCCC	GAGGACGGCA	TCATGGCCGA	2880
	GCACCTGCTG	GGTCATGCCT	GTGCCCTGGC	TGCCTCCCTC	TGGCTGGGGG	TGCTGCCCAC	2940
	ACTCACTCTT	GGCTTGCTGG	TCCACATGGT	GAGCAAGGGC	GAGGAGCTGT	TCACCGGGGT	3000
50	GGTGCCCATC	CTGGTCGAGC	TGGACGGCGA	CGTAAACGGC	CACAAGTTCA	GCGTGTCCGG	3060
	CGAGGGCGAG	GGCGATGCCA	CCTACGGCAA	GCTGACCCTG	AAGTTCATCT	GCACCACCGG	3120

		5150001650	CCACCCICGI	GACCACCCIG	ACCTACGGCG	TGCAGTGCTT	3180
· 5	CAGCCGCTAC	CCCGACCACA	TGAAGCAGCA	CGACTTCTTC	AAGTCCGCCA	TGCCCGAAGG	3240
	CTACGTCCAG	GAGCGCACCA	TCTTCTTCAA	GGACGACGGC	AACTACAAGA	CCCGCGCCGA	3300
	GGTGAAGTTC	GAGGGCGACA	CCCTGGTGAA	CCGCATCGAG	CTGAAGGGCA	TCGACTTCAA	3360
10	GGAGGACGGC	AACATCCTGG	GGCACAAGCT	GGAGTACAAC	TACAACAGCC	ACAACGTCTA	3420
	TATCATGGCC	GACAAGCAGA	AGAACGGCAT	CAAGGTGAAC	TTCAAGATCC	GCCACAACAT	3480
	CGAGGACGGC	AGCGTGCAGC	TCGCCGACCA	CTACCAGCAG	AACACCCCCA	TCGGCGACGG	3540
15	CCCCGTGCTG	CTGCCCGACA	ACCACTACCT	GAGCACCCAG	TCCGCCCTGA	GCAAAGACCC	3600
	CAACGAGAAG	CGCGATCACA	TGGTCCTGCT	GGAGTTCGTG	ACCGCCGCCG	GGATCACTCT	3660
20	CGGCATGGAC	GAGCTGTACA	AGGTGAAGCT	TGGGCCCGAA	CAAAAACTCA	TCTCAGAAGA	3720
	GGATCTGAAT	AGCGCCGTCG	ACCATCATCA	TCATCATCAT	TGAGTTTAAA	CCGCTGATCA	3780
	GCCTCGACTG	TGCCTTCTAG	TTGCCAGCCA	TCTGTTGTTT	GCCCTCCCC	CGTGCCTTCC	3840
?5	TTGACCCTGG	AAGGTGCCAC	TCCCACTGTC	CTTTCCTAAT	AAAATGAGGA	AATTGCATCG	3900
	CATTGTCTGA	GTAGGTGTCA	TTCTATTCTG	GGGGTGGGG	TGGGGCAGGA	CAGCAAGGG	3960
30	GAGGATTGGG	AAGACAATAG	CAGGCATGCT	GGGGATGCGG	TGGGCTCTAT	GGCTTCTGAG	4020
_	GCGGAAAGAA	CCAGCTGGGG	CTCTAGGGGG	TATCCCCACG	CGCCCTGTAG	CGGCGCATTA	4080
	AGCGCGGCGG	GTGTGGTGGT	TACGCGCAGC	GTGACCGCTA	CACTTGCCAG	CGCCCTAGCG	4140
35	CCCGCTCCTT	TCGCTTTCTT	CCCTTCCTTT	CTCGCCACGT	TCGCCGGCTT	TCCCCGTCAA	4200
	GCTCTAAATC	GGGGCATCCC	TTTAGGGTTC	CGATTTAGTG	CTTTACGGCA	CCTCGACCCC	4260
	AAAAAACTTG	ATTAGGGTGA	TGGTTCACGT	AGTGGGCCAT	CGCCCTGATA	GACGGTTTTT	4320
10	CGCCCTTTGA	CGTTGGAGTC	CACGTTCTTT	AATAGTGGAC	TCTTGTTCCA	AACTGGAACA	4380
	ACACTCAACC	CTATCTCGGT	CTATTCTTTT	GATTTATAAG	GGATTTTGGG	GATTTCGGCC	4440
15	TATTGGTTAA	AAAATGAGCT	GATTTAAC AA	AAATTTAACG	CGAATTAATT	CTGTGGAATG	4500
	TGTGTCAGTT	AGGGTGTGGA	AAGTCCCCAG	GCTCCCCAGG	CAGGCAGAAG	TATGCAAAGC	4560
	ATGCATCTCA	ATTAGTCAGC	AACCAGGTGT	GGAAAGTCCC	CAGGCTCCCC	AGCAGGCAGA	4620
50	AGTATGCAAA	GCATGCATCT	CAATTAGTCA	GCAACCATAG	TCCCGCCCCT	AACTCCGCCC	4680
	ATCCCGCCCC	TAACTCCGCC	CAGTTCCGCC	CATTCTCCGC	CCCATGGCTG	ACTAATTTTT	4740

	TITATITAL	CAGAGGCCGA	GGCCGCCTCT	GCCTCTGAGC	TATTCCAGAA	GTAGTGAGGA	4800
5	GGCTTTTTTG	GAGGCCTAGG	CTTTTGCAA	AAGCTCCCGG	GAGCTTGTAT	ATCCATTTTC	4860
	GGATCTGATC	AAGAGACAGG	ATGAGGATCG	TTTCGCATGA	TTGAACAAGA	TGGATTGCAC	4920
	GCAGGTTCTC	CGGCCGCTTG	GGTGGAGAGG	CTATTCGGCT	ATGACTGGGC	ACAACAGACA	4980
10	ATCGGCTGCT	CTGATGCCGC	CGTGTTCCGG	CTGTCAGCGC	AGGGGCGCCC	GGTTCTTTTT	5040
	GTCAAGACCG	ACCTGTCCGG	TGCCCTGAAT	GAACTGCAGG	ACGAGGCAGC	GCGGCTATCG	5100
	TGGCTGGCCA	CGACGGGCGT	TCCTTGCGCA	GCTGTGCTCG	ACGTTGTCAC	TGAAGCGGGA	5160
15	AGGGACTGGC	TGCTATTGGG	CGAAGTGCCG	GGGCAGGATC	TCCTGTCATC	TCACCTTGCT	5220
	CCTGCCGAGA	AAGTATCCAT	CATGGCTGAT	GCAATGCGGC	GGCTGCATAC	GCTTGATCCG	5280
	GCTACCTGCC	CATTCGACCA	CCAAGCGAAA	CATCGCATCG	AGCGAGCACG	TACTCGGATG	5340
20	GAAGCCGGTC	TTGTCGATCA	GGATGATCTG	GACGAAGAGC	ATCAGGGGCT	CGCGCCAGCC	5400
	GAACTGTTCG	CCAGGCTCAA	GGCGCGCATG	CCCGACGGCG	AGGATCTCGT	CGTGACCCAT	5460
25	GGCGATGCCT	GCTTGCCGAA	TATCATGGTG	GAAAATGGCC	GCTTTTCTGG	ATTCATCGAC	5520
	TGTGGCCGGC	TGGGTGTGGC	GGACCGCTAT	CAGGACATAG	CGTTGGCTAC	CCGTGATATT	5580
	GCTGAAGAGC	TTGGCGGCGA	ATGGGCTGAC	CGCTTCCTCG	TGCTTTACGG	TATCGCCGCT	5640
30	CCCGATTCGC	AGCGCATCGC	CTTCTATCGC	CTTCTTGACG	AGTTCTTCTG	AGCGGGACTC	5700
	TGGGGTTCGA	AATGACCGAC	CAAGCGACGC	CCAACCTGCC	ATCACGAGAT	TTCGATTCCA	5760
	CCGCCGCCTT	CTATGAAAGG	TTGGGCTTCG	GAATCGTTTT	CCGGGACGCC	GGCTGGATGA	5820
35	TCCTCCAGCG	CGGGGATCTC	ATGCTGGAGT	TCTTCGCCCA	CCCCAACTTG	TTTATTGCAG	5880
	CTTATAATGG	ттасааатаа	AGCAATAGCA	TCACAAATTT	CACAAATAAA	GCATTTTTT	5940
	CACTGCATTC	TAGTTGTGGT	TTGTCCAAAC	TCATCAATGT	ATCTTATCAT.	GTCTGTATAC	6000
10	CGTCGACCTC	TAGCTAGAGC	TTGGCGTAAT	CATGGTCATA	GCTGTTTCCT	GTGTGAAATT	6060
	GTTATCCGCT	CACAATTCCA	CACAACATAC	GAGCCGGAAG	CATAAAGTGT	AAAGCCTGGG	6120
15	GTGCCTAATG	AGTGAGCTAA	CTCACATTAA	TTGCGTTGCG	CTCACTGCCC	GCTTTCCAGT	6180
	CGGGAAACCT	GTCGTGCCAG	CTGCATTAAT	GAATCGGCCA	ACGCGCGGGG	AGAGGCGGTT	6240
	TGCGTATTGG	GCGCTCTTCC	GCTTCCTCGC	TCACTGACTC	GCTGCGCTCG	GTCGTTCGGC	6300
50	TGCGGCGAGC	GGTATCAGCT	CACTCAAAGG	CGGTAATACG	GTTATCCACA	GAATCAGGGG	6360
	ATAACGCAGG	AAAGAACATG	TGAGCAAAAG	GCCAGCAAAA	GGCCAGGAAC	CGTAAAAAGG	6420

	CCGCGTTGCT	GGCGIIIIC	CATAGGCTCC	deceector	CONGCATCAC	AUUNICONC	0.00
_	GCTCAAGTCA	GAGGTGGCGA	AACCCGACAG	GACTATAAAG	ATACCAGGCG	TTTCCCCCTG	6540
5	GAAGCTCCCT	CGTGCGCTCT	CCTGTTCCGA	CCCTGCCGCT	TACCGGATAC	CTGTCCGCCT	6600
	TTCTCCCTTC	GGGAAGCGTG	GCGCTTTCTC	AATGCTCACG	CTGTAGGTAT	CTCAGTTCGG	6660
10	TGTAGGTCGT	TCGCTCCAAG	CTGGGCTGTG	TGCACGAACC	CCCCGTTCAG	CCCGACCGCT	6720
	GCGCCTTATC	CGGTAACTAT	CGTCTTGAGT	CCAACCCGGT	AAGACACGAC	TTATCGCCAC	6780
	TGGCAGCAGC	CACTGGTAAC	AGGATTAGCA	GAGÇĠAGGTA	TGTAGGCGGT	GCTACAGAGT	6840
15	TCTTGAAGTG	GTGGCCTAAC	TACGGCTACA	CTAGAAGGAC	AGTATTTGGT	ATCTGCGCTC	6900
	TGCTGAAGCC	AGTTACCTTC	GGAAAAAGAG	TTGGTAGCTC	TTGATCCGGC	AAACAAACCA	6960
20	CCGCTGGTAG	CGGTGGTTTT	TTTGTTTGCA	AGCAGCAGAT	TACGCGCAGA	AAAAAAGGAT	7020
	CTCAAGAAGA	TCCTTTGATC	TTTTCTACGG	GGTCTGACGC	TCAGTGGAAC	GAAAACTCAC	7080
	GTTAAGGGAT	TTTGGTCATG	AGATTATCAA	AAAGGATCTT	CACCTAGATC	CTTTTAAATT	7140
25	AAAAATGAAG	TTTTAAATCA	ATCTAAAGTA	TATATGAGTA	AACTTGGTCT	GACAGTTACC	7200
	AATGCTTAAT	CAGTGAGGCA	CCTATCTCAG	CGATCTGTCT	ATTTCGTTCA	TCCATAGTTG	7260
22	CCTGACTCCC	CGTCGTGTAG	ATAACTACGA	TACGGGAGGG	CTTACCATCT	GGCCCCAGTG	7320
30	CTGCAATGAT	ACCGCGAGAC	CCACGCTCAC	CGGCTCCAGA	TTTATCAGCA	ATAAACCAGC	7380
	CAGCCGGAAG	GGCCGAGCGC	AGAAGTGGTC	CTGCAACTTT	ATCCGCCTCC	ATCCAGTCTA	7440
35	TTAATTGTTG	CCGGGAAGCT	AGAGTAAGTA	GTTCGCCAGT	TAATAGTTTC	GCGCAACGTTG	7500
	TTGCCATTGC	TACAGGCATC	GTGGTGTCAC	GCTCGTCGTT	TGGTATGGCT	TCATTCAGCT	7560
	CCGGTTCCC	ACGATCAAGG	CGAGTTACAT	GATCCCCCAT	GTTGTGCAA	A AAAGCGGTTA	7620
40	GCTCCTTCG	TCCTCCGATC	GTTGTCAGA	GTAAGTTGGC	CGCAGTGTT	A TCACTCATGG	7680
	TTATGGCAG	C ACTGCATAAT	TCTCTTACTC	TCATGCCATC	CGTAAGATG	C TTTTCTGTGA	7740
45	CTGGTGAGT	A CTCAACCAAG	TCATTCTGAG	AATAGTGTAT	GCGGCGACC	G AGTTGCTCTT	7800
	GCCCGGCGT	C AATACGGGAT	AATACCGCG	CACATAGCA	3 AACTTTAAA	A GTGCTCATCA	7860
	TTGGAAAAC	G TTCTTCGGGG	GGAAAACTC	r caaggatet	r accectett	G AGATCCAGTT	792
50	CGATGTAAC	C CACTCGTGCA	CCCAACTGA	T CTTCAGCAT	C TTTTACTTT	C ACCAGCGTTT	798
	CTGGGTGAG	C AAAAACAGGA	AGGCAAAAT	G CCGCAAAAA	A GGGAATAAG	G GCGACACGGA	804

	AATGTTGAAT ACTCATACTC TTCCTTTTTC AATATTATTG AAGCATTTAT CAGGGTTATT	8100
5	GTCTCATGAG CGGATACATA TTTGAATGTA TTTAGAAAAA TAAACAAATA GGGGTTCCGC	8160
3	GCACATTTCC CCGAAAAGTG CCACCTGACG TC	8192
10	(2) INFORMATION ZU SEQ ID NO: 37:	
10	(i) SEQUENZ CHARAKTERISTIKA:(A) LÂNGE: 7000 Basenpaare(B) ART: Nukleinsäure	
15	(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE:	
20	(A) NAME/SCHLÜSSEL: exon (B) LAGE: 17000	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 37:	
25	AGATCTCGGC CGCATATTAA GTGCATTGTT CTCGATACCG CTAAGTGCAT TGTTCTCGTT	60
	AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC GATGGACAAG TGCATTGTTC	120
30	TCTTGCTGAA AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC AGTACCCGGG	180
	AGTACCCTCG ACCGCCGGAG TATAAATAGA GGCGCTTCGT CTACGGAGCG ACAATTCAAT	240
35	TCAAACAAGC AAAGTGAACA CGTCGCTAAG CGAAAGCTAA GCAAATAAAC AAGCGCAGCT	300
33	GAACAAGCTA AACAATCTGC AGTAAAGTGC AAGTTAAAGT GAATCAATTA AAAGTAACCA GCAACCAAGT AAATCAACTG CAACTACTGA AATCTGCCAA GAAGTAATTA TTGAATACAA	360
	GAAGAGAACT CTGAATACTT TCAACAAGTT ACCGAGAAAG AAGAACTCAC ACACAGCTAG	420
40	CGTTTAAACT TAAGCTTGGT ACCGAGCTCG GATCCACTAG TCCAGTGTGG TGGAATTCGG	540
	CTTGGGATGA CGCCTCCTCC GCCCGGACGT GCCGCCCCCA GCGCACCGCG CGCCCGCGTC	600
45	CCTGGCCCGC CGGCTCGGTT GGGGCTTCCG CTGCGGCTGC GGCTGCTGCT GCTGCTCTGG	660
	GCGGCCGCCG CCTCCGCCCA GGGCCACCTA AGGAGCGGAC CCCGCATCTT CGCCGTCTGG	720
	AAAGGCCATG TAGGGCAGGA CCGGGTGGAC TTTGGCCAGA CTGAGCCGCA CACGGTGCTT	780
50	TTCCACGAGC CAGGCAGCTC CTCTGTGTGG GTGGGAGGAC GTGGCAAGGT CTACCTCTTT	840
	GACTTCCCCG AGGGCAAGAA CGCATCTGTG CGCACGGTGA ATATCGGCTC CACAAAGGGG	900

	TCCTGTCTGG	ATAAGCGGGA	CTGCGAGAAC	TACATCACTC	TCCTGGAGAG	GCGGAGTGAG	960
	GGGCTGCTGG	CCTGTGGCAC	CAACGCCCGG	CACCCCAGCT	GCTGGAACCT	GGTGAATGGC	1020
	ACTGTGGTGC	CACTTGGCGA	GATGAGAGGC	TACGCCCCCT	TCAGCCCGGA	CGAGAACTCC	1080
	CTGGTTCTGT	TTGAAGGGGA	CGAGGTGTAT	TCCACCATCC	GGAAGCAGGA	ATACAATGGG	1140
	AAGATCCCTC	GGTTCCGCCG	CATCCGGGGC	GAGAGTGAGC	TGTACACCAG	TGATACTGTC	1200
	ATGCAGAACC	CACAGTTCAT	CAAAGCCACC	ATCGTGCACC	AAGACCAGGC	TTACGATGAC	1260
	AAGATCTACT	ACTTCTTCCG	AGAGGACAAT	CCTGACAAGA	ATCCTGAGGC	TCCTCTCAAT	1320
	GTGTCCCGTG	TGGCCCAGTT	GTGCAGGGGG	GACCAGGGTG	GGGAAAGTTC	ACTGTCAGTC	1380
	TCCAAGTGGA	ACACTTTTCT	GAAAGCCATG	CTGGTATGCA	GTGATGCTGC	CACCAACAAG	1440
	AACTTCAACA	GGCTGCAAGA	CGTCTTCCTG	CTCCCTGACC	CCAGCGGCCA	GTGGAGGGAC	1500
	ACCAGGGTCT	ATGGTGTTTT	CTCCAACCCC	TGGAACTACT	CAGCCGTCTG	TGTGTATTCC	1560
	CTCGGTGACA	TTGACAAGGT	CTTCCGTACC	TCCTCACTCA	AGGGCTACCA	CTCAAGCCTT	1620
	CCCAACCCGC	GGCCTGGCAA	GTGCCTCCCA	GACCAGCAGC	CGATACCCAC	AGAGACCTTC	1680
	CAGGTGGCTG	ACCGTCACCC	AGAGGTGGCG	CAGAGGGTGG	AGCCCATGGG	GCCTCTGAAG	1740
	ACGCCATTGT	TCCACTCTAA	. ATACCACTAC	CAGAAAGTGG	CCGTTCACCG	CATGCAAGCC	1800
	AGCCACGGGG	AGACCTTTCA	. TGTGCTTTAC	CTAACTACAG	ACAGGGGCAC	TATCCACAAG	1860
	GTGGTGGAAC	CGGGGGAGCA	GGAGCACAGC	TTCGCCTTCA	ACATCATGGA	GATCCAGCCC	1920
	TTCCGCCGCG	CGGCTGCCAT	CCAGACCATO	TCGCTGGATG	CTGAGCGGAG	GAAGCTGTAT	1980
1	GTGAGCTCCC	AGTGGGAGG1	GAGCCAGGTG	CCCCTGGACC	TGTGTGAGGT	CTATGGCGGG	2040
	GGCTGCCACC	GTTGCCTCAT	GTCCCGAGAC	CCCTACTGCG	GCTGGGACCA	GGGCCGCTGC	2100
	ATCTCCATCT	r ACAGCTCCG	ACGGTCAGTC	G CTGCAATCC	TTAATCCAGC	CGAGCCACAC	2160
	AAGGAGTGT	CCAACCCCA	A ACCAGACAA	G GCCCACTGC	AGAAGGTTTC	CCTGGCCCCA	2220
	AACTCTCGC	r actacctga	CTGCCCCAT	GAATCCCGC	ACGCCACCT	A CTCATGGCGC	2280
;	CACAAGGAG	A ACGTGGAGC	A GAGCTGCGA	A CCTGGTCAC	AGAGCCCCA/	A CTGCATCCTG	2340
	TTCATCGAG	A ACCTCACGG	C GCAGCAGTA	C GGCCACTAC	r TCTGCGAGG	CCAGGAGGGC	2400
	TCCTACTTC	C GCGAGGCTC	A GCACTGGCA	G CTGCTGCCC	G AGGACGGCA	r CATGGCCGAG	2460
)	CACCTGCTG	G GTCATGCCT	G TGCCCTGGC	T GCCTCCCTC	r ggctgggg	r GCTGCCCACA	2520
	CTCACTCTT	G GCTTGCTGG	T CCACGTGAA	G CTTGGGCCC	G TTTAAACCC	G CTGATCAGCC	2580

	reomerator	CITCIAGITO	CCAGCCATC.	r Grigifico	CCTCCCCCG	r gccttccttg	2640
5	ACCCTGGAAG	GTGCCACTCC	CACTGTCCT	г тсстаатааа	ATGAGGAAA	T TGCATCGCAT	2700
•	TGTCTGAGTA	GGTGTCATTC	TATTCTGGG	GGTGGGGTGG	GGCAGGACAC	G CAAGGGGGAG	2760
	GATTGGGAAG	ACAATAGCAG	GCATGCTGGG	GATGCGGTGG	GCTCTATGGC	TTCTGAGGCG	2820
10	GAAAGAACCA	GCTGGGGCTC	TAGGGGGTAT	CCCCACGCGC	CCTGTAGCGG	GCATTAAGC	2880
	GCGGCGGTG	TGGTGGTTAC	GCGCAGCGTG	ACCGCTACAC	TTGCCAGCGC	CCTAGCGCCC	2940
	GCTCCTTTCG	CTTTCTTCCC	TTCCTTTCTC	GCCACGTTCG	CCGGCTTTCC	CCGTCAAGCT	3000
15	CTAAATCGGG	GCATCCCTTT	AGGGTTCCGA	TTTAGTGCTT	TACGGCACCT	CGACCCCAAA	3060
	AAACTTGATT	AGGGTGATGG	TTCACGTAGT	GGGCCATCGC	CCTGATAGAC	GGTTTTTCGC	3120
20	CCTTTGACGT	TGGAGTCCAC	GTTCTTTAAT	AGTGGACTCT	TGTTCCAAAC	TGGAACAACA	3180
	CTCAACCCTA	TCTCGGTCTA	TTCTTTTGAT	TTATAAGGGA	TTTTGGGGAT	TTCGGCCTAT	3240
	TGGTTAAAAA	ATGAGCTGAT	ТТААСАААА	TTTAACGCGA	ATTAATTCTG	TGGAATGTGT	3300
?5	GTCAGTTAGG	GTGTGGAAAG	TCCCCAGGCT	CCCCAGGCAG	GCAGAAGTAT	GCAAAGCATG	3360
	CATCTCAATT	AGTCAGCAAC	CAGGTGTGGA	AAGTCCCCAG	GCTCCCCAGC	AGGCAGAAGT	3420
30	ATGCAAAGCA	TGCATCTCAA	TTAGTCAGCA	ACCATAGTCC	CGCCCCTAAC	TCCGCCCATC	3480
	CCGCCCCTAA	CTCCGCCCAG	TTCCGCCCAT	TCTCCGCCCC	ATGGCTGACT	AATTTTTTT	3540
	ATTTATGCAG	AGGCCGAGGC	CGCCTCTGCC	TCTGAGCTAT	TCCAGAAGTA	GTGAGGAGGC	3600
35	TTTTTTGGAG	GCCTAGGCTT	TTGCAAAAAG	CTCCCGGGAG	CTTGTATATC	CATTTTCGGA	3660
	TCTGATCAAG	AGACAGGATG	AGGATCGTTT	CGCATGATTG	AACAAGATGG	ATTGCACGCA	3720
10	GGTTCTCCGG	CCGCTTGGGT	GGAGAGGCTA	TTCGGCTATG	ACTGGGCACA	ACAGACAATC	3780
	GGCTGCTCTG	ATGCCGCCGT	GTTCCGGCTG	TCAGCGCAGG	GGCGCCCGGT	TCTTTTTGTC	3840
	AAGACCGACC	TGTCCGGTGC	CCTGAATGAA	CTGCAGGACG	AGGCAGCGCG	GCTATCGTGG	3900
5	CTGGCCACGA	CGGGCGTTCC	TTGCGCAGCT	GTGCTCGACG	TTGTCACTGA	AGCGGGAAGG	3960
	GACTGGCTGC	TATTGGGCGA	AGTGCCGGGG	CAGGATCTCC	TGTCATCTCA	CCTTGCTCCT	4020
	GCCGAGAAAG	TATCCATCAT	GGCTGATGCA	ATGCGGCGGC	TGCATACGCT	TGATCCGGCT	4080
0	ACCTGCCCAT						4140
	GCCGGTCTTG	TCGATCAGGA	TGATCTGGAC	GAAGAGCATC	AGGGGCTCGC	GCCAGCCGAA	4200

	CTGTTCGCCA	GGCTCAAGGC	GCGCATGCCC	GACGGCGAGG	ATCTCGTCGT	GACCCATGGC	4260
	GATGCCTGCT	TGCCGAATAT	CATGGTGGAA	AATGGCCGCT	TTTCTGGATT	CATCGACTGT	4320
5	GGCCGGCTGG	GTGTGGCGGA	CCGCTATCAG	GACATAGCGT	TGGCTACCCG	TGATATTGCT	4380
	GAAGAGCTTG	GCGGCGAATG	GGCTGACCGC	TTCCTCGTGC	TTTACGGTAT	CGCCGCTCCC	4440
10	GATTCGCAGC	GCATCGCCTT	CTATCGCCTT	CTTGACGAGT	TCTTCTGAGC	GGGACTCTGG	4500
	GGTTCGAAAT	GACCGACCAA	GCGACGCCCA	ACCTGCCATC	ACGAGATTTC	GATTCCACCG	4560
	CCGCCTTCTA	TGAAAGGTTG	GGCTTCGGAA	TCGTTTTCCG	GGACGCCGGC	TGGATGATCC	4620
15	TCCAGCGCGG	GGATCTCATG	CTGGAGTTCT	TCGCCCACCC	CAACTTGTTT	ATTGCAGCTT	4680
	ATAATGGTTA	CAAATAAAGC	AATAGCATCA	CAAATTTCAC	AAATAAAGCA	TTTTTTCAC	4740
	TGCATTCTAG	TTGTGGTTTG	TCCAAACTCA	TCAATGTATC	TTATCATGTC	TGTATACCGT	4800
20	CGACCTCTAG	CTAGAGCTTG	GCGTAATCAT	GGTCATAGCT	GTTTCCTGTG	TGAAATTGTT	4860
	ATCCGCTCAC	AATTCCACAC	AACATACGAG	CCGGAAGCAT	AAAGTGTAAA	GCCTGGGGTG	4920
25	CCTAATGAGT	GAGCTAACTC	ACATTAATTG	CGTTGCGCTC	ACTGCCCGCT	TTCCAGTCGG	4980
23	GAAACCTGTC	GTGCCAGCTG	CATTAATGAA	TCGGCCAACG	CGCGGGGAGA	GGCGGTTTGC	5040
	GTATTGGGCG	CTCTTCCGCT	TCCTCGCTCA	CTGACTCGCT	GCGCTCGGTC	GTTCGGCTGC	5100
30	GGCGAGCGGT	ATCAGCTCAC	TCAAAGGCGG	TAATACGGTT	ATCCACAGAA	TCAGGGGATA	5160
	ACGCAGGAAA	GAACATGTGA	GCAAAAGGCC	AGCAAAAGGC	CAGGAACCGT	AAAAAGGCCG	5220
	CGTTGCTGGC	GTTTTTCCAT	AGGCTCCGCC	CCCCTGACGA	GCATCACAAA	AATCGACGCT	5280
35	CAAGTCAGAG	GTGGCGAAAC	CCGACAGGAC	TATAAAGATA	CCAGGCGTTT	CCCCCTGGAA	5340
	GCTCCCTCGT	GCGCTCTCCT	GTTCCGACCC	TGCCGCTTAC	CGGATACCTG	TCCGCCTTTC	5400
40	TCCCTTCGGG	AAGCGTGGCG	CTTTCTCAAT	GCTCACGCTG	TAGGTATCTC	AGTTCGGTGT	5460
40	AGGTCGTTCG	CTCCAAGCTG	GGCTGTGTGC	ACGAACCCCC	CGTTCAGCCC	GACCGCTGCG	5520
	CCTTATCCGG	TAACTATCGT	CTTGAGTCCA	ACCCGGTAAG	ACACGACTTA	TCGCCACTGG	5580
45	CAGCAGCCAC	TGGTAACAGG	ATTAGCAGAG	CGAGGTATGT	AGGCGGTGCT	ACAGAGTTCT	5640
	TGAAGTGGTG	GCCTAACTAC	GGCTACACTA	GAAGGACAGT	ATTTGGTATC	TGCGCTCTGC	5700
	TGAAGCCAGT	TACCTTCGGA	AAAAGAGTTG	GTAGCTCTTG	ATCCGGCAAA	CAAACCACCG	5760
50	CTGGTAGCGG	TGGTTTTTT	GTTTGCAAGC	AGCAGATTAC	GCGCAGAAAA	AAAGGATCTC	5820
	AAGAAGATCC	TTTGATCTTT	TCTACGGGGT	CTGACGCTCA	GTGGAACGAA	AACTCACGTT	5880

	AAGGGATTT	GGTCATGAGA	ТТАТСААДД	GGATCTTCAC	CTAGATCCTT	TTAAATTAAA	5940
5	AATGAAGTTT	TAAATCAATC	TAAAGTATAT	ATGAGTAAAC	TTGGTCTGAC	AGTTACCAAT	6000
-	GCTTAATCAG	TGAGGCACCT	ATCTCAGCGA	TCTGTCTATT	TCGTTCATCC	ATAGTTGCCT	6060
	GACTCCCCGT	CGTGTAGATA	ACTACGATAC	GGGAGGGCTT	ACCATCTGGC	CCCAGTGCTG	6120
10	" CAATGATACC	GCGAGACCCA	CGCTCACCGG	CTCCAGATTT	ATCAGCAATA	AACCAGCCAG	6180
	CCGGAAGGGC	CGAGCGCAGA	AGTGGTCCTG	CAACTTTATC	CGCCTCCATC	CAGTCTATTA	6240
15	ATTGTTGCCG	GGAAGCTAGA	GTAAGTAGTT	CGCCAGTTAA	TAGTTTGCGC	AACGTTGTTG	6300
,	CCATTGCTAC	AGGCATCGTG	GTGTCACGCT	CGTCGTTTGG	TATGGCTTCA	TTCAGCTCCG	6360
	GTTCCCAACG	ATCAAGGCGA	GTTACATGAT	CCCCCATGTT	GTGCAAAAAA	GCGGTTAGCT	6420
20	CCTTCGGTCC	TCCGATCGTT	GTCAGAAGTA	AGTTGGCCGC	AGTGTTATCA	CTCATGGTTA	6480
	TGGCAGCACT	GCATAATTCT	CTTACTGTCA	TGCCATCCGT	AAGATGCTTT	TCTGTGACTG	6540
	GTGAGTACTC	AACCAAGTCA	TTCTGAGAAT	AGTGTATGCG	GCGACCGAGT	TGCTCTTGCC	6600
25	CGGCGTCAAT	ACGGGATAAT	ACCGCGCCAC	ATAGCAGAAC	TTTAAAAGTG	CTCATCATTG	6660
	GAAAACGTTC	TTCGGGGCGA	AAACTCTCAA	GGATCTTACC	GCTGTTGAGA	TCCAGTTCGA	6720
30	TGTAACCCAC	TCGTGCACCC	AACTGATCTT	CAGCATCTTT	TACTTTCACC	AGCGTTTCTG	6780
	GGTGAGCAAA	AACAGGAAGG	CAAAATGCCG	CAAAAAAGGG	AATAAGGGCG	ACACGGAAAT	6840
	GTTGAATACT	CATACTCTTC	CTTTTTCAAT	ATTATTGAAG	CATTTATCAG	GGTTATTGTC	6900
35	TCATGAGCGG	ATACATATTT	GAATGTATTT	AGAAAAATAA	ACAAATAGGG	GTTCCGCGCA	6960
	CATTTCCCCG	AAAAGTGCCA	CCTGACGTCG	ACGGATCGGG			7000

(2) INFORMATION ZU SEQ ID NO: 38:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 7108 Basenpaare

(B) ART: Nukleinsäure

(C) STRANGFORM: Einzel

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: DNS (genomisch)

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: exon

(B) LAGE: 1..7108

40

45

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 38:

5	AGATCTCGGC	CGCATATTAA	GTGCATTGTT	CTCGATACCG	CTAAGTGCAT	TGTTCTCGTT	60
J	AGCTCGATGG	ACAAGTGCAT	TGTTCTCTTG	CTGAAAGCTC	GATGGACAAG	TGCATTGTTC	120
	TCTTGCTGAA	AGCTCGATGG	ACAAGTGCAT	TGTTCTCTTG	CTGAAAGCTC	AGTACCCGGG	180
10	AGTACCCTCG	ACCGCCGGAG	TATAAATAGA	GGCGCTTCGT	CTACGGAGCG	ACAATTCAAT	240
	TCAAACAAGC	AAAGTGAACA	CGTCGCTAAG	CGAAAGCTAA	GCAAATAAAC	AAGCGCAGCT	300
	GAACAAGCTA	AACAATCTGC	AGTAAAGTGC	AAGTTAAAGT	GAATCAATTA	AAAGTAACCA	360
15	GCAACCAAGT	AAATCAACTG	CAACTACTGA	AATCTGCCAA	GAAGTAATTA	TTGAATACAA	420
	GAAGAGAACT	CTGAATACTT	TCAACAAGTT	ACCGAGAAAG	AAGAACTCAC	ACACAGCTAG	480
20	CGTTTAAACT	TAAGCTTGGT	ACCGAGCTCG	GATCCACTAG	TCCAGTGTGG	TGGAATTCGG	540
	CTTGGGATGA	CGCCTCCTCC	GCCCGGACGT	GCCGCCCCA	GCGCACCGCG	CGCCCGCGTC	600
	CCTGGCCCGC	CGGCTCGGTT	GGGGCTTCCG	CTGCGGCTGC	GGCTGCTGCT	GCTGCTCTGG	660
25	GCGGCCGCCG	CCTCCGCCCA	GGGCCACCTA	AGGAGCGGAC	CCCGCATCTT	CGCCGTCTGG	720
	AAAGGCCATG	TAGGGCAGGA	CCGGGTGGAC	TTTGGCCAGA	CTGAGCCGCA	CACGGTGCTT	780
30	TTCCACGAGC	CAGGCAGCTC	CTCTGTGTGG	GTGGGAGGAC	GTGGCAAGGT	CTACCTCTTT	840
00	GACTTCCCCG	AGGGCAAGAA	CGCATCTGTG	CGCACGGTGA	ATATCGGCTC	CACAAAGGGG	900
	TCCTGTCTGG	ATAAGCGGGA	CTGCGAGAAC	TACATCACTC	TCCTGGAGAG	GCGGAGTGAG	960
35	GGGCTGCTGG	CCTGTGGCAC	CAACGCCCGG	CACCCCAGCT	GCTGGAACCT	GGTGAATGGC	1020
	ACTGTGGTGC	CACTTGGCGA	GATGAGAGGC	TACGCCCCCT	TCAGCCCGGA	CGAGAACTCC	1080
	CTGGTTCTGT	TTGAAGGGGA	CGAGGTGTAT	TCCACCATCC	GGAAGCAGGA	ATACAATGGG	1140
40	AAGATCCCTC	GGTTCCGCCG	CATCCGGGGC	GAGAGTGAGC	TGTACACCAG	TGATACTGTC	1200
	ATGCAGAACC	CACAGTTCAT	CAAAGCCACC	ATCGTGCACC	AAGACCAGGC	TTACGATGAC	1260
45	AAGATCTACT	ACTTCTTCCG	AGAGGACAAT	CCTGACAAGA	ATCCTGAGGC	TCCTCTCAAT	1320
	GTGTCCCGTG	TGGCCCAGTT	GTGCAGGGGG	GACCAGGGTG	GGGAAAGTTC	ACTGTCAGTC	1380
	TCCAAGTGGA	ACACTTTTCT	GAAAGCCATG	CTGGTATGCA	GTGATGCTGC	CACCAACAAG	1440
50	AACTTCAACA	GGCTGCAAGA	CGTCTTCCTG	CTCCCTGACC	CCAGCGGCCA	GTGGAGGGAC	1500
	ACCAGGGTCT	ATGGTGTTTT	CTCCAACCCC	TGGAACTACT	CAGCCGTCTG	TGTGTATTCC	1560

		CTCGGTGAC	TTGACAAGGT	CTTCCGTACC	TCCTCACTCA	AGGGCTACCA	CTCAAGCCTT	1620
5		CCCAACCCGC	GGCCTGGCAA	GTGCCTCCCA	GACCAGCAGC	CGATACCCAC	AGAGACCTTC	1680
		CAGGTGGCTG	ACCGTCACCC	AGAGGTGGCG	CAGAGGGTGG	AGCCCATGGG	GCCTCTGAAG	1740
		ACGCCATTGT	TCCACTCTAA	ATACCACTAC	CAGAAAGTGG	CCGTTCACCG	CATGCAAGCC	1800
10	٠.	AGCCACGGGG	AGACCTTTCA	TGTGCTTTAC	CTAACTACAG	ACAGGGGCAC	TATCCACAAG	1860
		GTGGTGGAAC	CGGGGGAGCA	GGAGCACAGC	TTCGCCTTCA	ACATCATGGA	GATCCAGCCC	1920
		TTCCGCCGCG	- CGGCTGCCAT	CCAGACCATG	TCGCTGGATG	CTGAGCGGAG	GAAGCTGTAT	1980
15		GTGAGCTCCC	AGTGGGAGGT	GAGCCAGGTG	CCCCTGGACC	TGTGTGAGGT	CTATGGCGGG	2040
	- 4.	GGCTGCCACG	GTTGCCTCAT	GTCCCGAGAC	CCCTACTGCG	GCTGGGACCA	GGGCCGCTGC	2100
20	***	ATCTCCATCT	ACAGCTCCGA	ACGGTCAGTG	CTGCAATCCA	TTAATCCAGC	CGAGCCACAC	2160
20		AAGGAGTGTC	CCAACCCCAA	ACCAGACAAG	GCCCCACTGC	AGAAGGTTTC	CCTGGCCCCA	2220
		AACTCTCGCT	ACTACCTGAG	CTGCCCCATG	GAATCCCGCC	ACGCCACCTA	CTCATGGCGC	2280
25		CACAAGGAGA	ACGTGGAGCA	GAGCTGCGAA	CCTGGTCACC	AGAGCCCCAA	CTGCATCCTG	2340
		TTCATCGAGA	ACCTCACGGC	GCAGCAGTAC	GGCCACTACT	TCTGCGAGGC	CCAGGAGGGC	2400
		TCCTACTTCC	GCGAGGCTCA	GCACTGGCAG	CTGCTGCCCG	AGGACGCCAT	CATGGCCGAG	2460
30		CACCTGCTGG	GTCATGCCTG	TGCCCTGGCT	GCCTCCCTCT	GGCTGGGGGT	GCTGCCCACA	2520
		CTCACTCTTG	GCTTGCTGGT	CCACGTGAAG	CTTGGGCCCG	AACAAAAACT	CATCTCAGAA	2580
		GAGGATCTGA	ATAGCGCCGT	CGACCATCAT	CATCATCATC	ATTGAGTTTA	TCCAGCACAG	2640
35		TGGCGGCCGC	TCGAGTCTAG	AGGGCCCGTT	TAAACCCGCT	GATCAGCCTC	GACTGTGCCT	2700
		TCTAGTTGCC	AGCCATCTGT	TGTTTGCCCC	TCCCCCGTGC	CTTCCTTGAC	CCTGGAAGGT	2760
40		GCCACTCCCA	CTGTCCTTTC	CTAATAAAAT	GAGGAAATTG	CATCGCATTG	TCTGAGTAGG	2820
		TGTCATTCTA	TTCTGGGGGG	TGGGGTGGGG	CAGGACAGCA	AGGGGGAGGA	TTGGGAAGAC	2880
	\$14.	AATAGCAGGC	ATGCTGGGGA	TGCGGTGGGC	TCTATGGCTT	CTGAGGCGGA	AAGAACCAGC	2940
45		TGGGGCTCTA	GGGGGTATCC	CCACGCGCCC	TGTAGCGGCG	CATTAAGCGC	GGCGGGTGTG	3000
		GTGGTTACGC	GCAGCGTGAC	CGCTACACTT	GCCAGCGCCC	TAGCGCCCGC	TCCTTTCGCT	3060
		TTCTTCCCTT	CCTTTCTCGC	CACGTTCGCC	GGCTTTCCCC	GTCAAGCTCT	AAATCGGGGC	3120
50	٠	ATCCCTTTAG	GGTTCCGATT	TAGTGCTTTA	CGGCACCTCG	ACCCCAAAAA	ACTTGATTAG	3180
		GGTGATGGTT	CACGTAGTGG	GCCATCGCCC	TGATAGACGG	TITTICGCCC	TTTGACGTTG	3240

	GAGTCCACGT	TCTTTAATAG	TGGACTCTTG	TTCCAAACTG	GAACAACACT	CAACCCTATC	3300
	TCGGTCTATT	CTTTTGATTT	ATAAGGGATT	TTGGGGATTT	CGGCCTATTG	GTTAAAAAAT	3360
5	GAGCTGATTT	AACAAAAATT	TAACGCGAAT	TAATTCTGTG	GAATGTGTGT	CAGTTAGGGT	3420
	GTGGAAAGTC	CCCAGGCTCC	CCAGGCAGGC	AGAAGTATGC	AAAGCATGCA	TCTCAATTAG	3480
10	TCAGCAACCA	GGTGTGGAAA	GTCCCCAGGC	TCCCCAGCAG	GCAGAAGTAT	GCAAAGCATG	3540
	CATCTCAATT	AGTCAGCAAC	CATAGTCCCG	CCCCTAACTC	CGCCCATCCC	GCCCCTAACT	3600
	CCGCCCAGTT	CCGCCCATTC	TCCGCCCCAT	GGCTGACTAA	TTTTTTTAT	TTATGCAGAG	3660
15	GCCGAGGCCG	CCTCTGCCTC	TGAGCTATTC	CAGAAGTAGT	GAGGAGGCTT	TTTTGGAGGC	3720
	CTAGGCTTTT	GCAAAAAGCT	CCCGGGAGCT	TGTATATCCA	TTTTCGGATC	TGATCAAGAG	3780
20	ACAGGATGAG	GATCGTTTCG	CATGATTGAA	CAAGATGGAT	TGCACGCAGG	TTCTCCGGCC	3840
	GCTTGGGTGG	AGAGGCTATT	CGGCTATGAC	TGGGCACAAC	AGACAATCGG	CTGCTCTGAT	3900
	GCCGCCGTGT	TCCGGCTGTC	AGCGCAGGGG	CGCCCGGTTC	TTTTTGTCAA	GACCGACCTG	3960
25	TCCGGTGCCC	TGAATGAACT	GCAGGACGAG	GCAGCGCGGC	TATCGTGGCT	GGCCACGACG	4020
	GGCGTTCCTT	GCGCAGCTGT	GCTCGACGTT	GTCACTGAAG	CGGGAAGGGA	CTGGCTGCTA	4080
	TTGGGCGAAG	TGCCGGGGCA	GGATCTCCTG	TCATCTCACC	TTGCTCCTGC	CGAGAAAGTA	4140
30	TCCATCATGG	CTGATGCAAT	GCGGCGGCTG	CATACGCTTG	ATCCGGCTAC	CTGCCCATTC	4200
	GACCACCAAG	CGAAACATCG	CATCGAGCGA	GCACGTACTC	GGATGGAAGC	CGGTCTTGTC	4260
35	GATCAGGATG	ATCTGGACGA	AGAGCATCAG	GGGCTCGCGC	CAGCCGAACT	GTTCGCCAGG	4320
	CTCAAGGCGC	GCATGCCCGA	CGGCGAGGAT	CTCGTCGTGA	CCCATGGCGA	TGCCTGCTTG	4380
	CCGAATATCA	TGGTGGAAAA	TGGCCGCTTT	TCTGGATTCA	TCGACTGTGG	CCGGCTGGGT	4440
40	GTGGCGGACC	: GCTATCAGGA	CATAGCGTTG	GCTACCCGTG	ATATTGCTGA	AGAGCTTGGC	4500
	GGCGAATGGG	CTGACCGCTT	CCTCGTGCTT	TACGGTATCG	CCGCTCCCGA	TTCGCAGCGC	4560
45	ATCGCCTTCT	ATCGCCTTCT	TGACGAGTTC	TTCTGAGCGG	GACTCTGGGG	TTCGAAATGA	4620
	CCGACCAAGO	GACGCCCAAC	: CTGCCATCAC	GAGATTTCGA	TTCCACCGCC	GCCTTCTATG	4680
	AAAGGTTGGG	CTTCGGAATC	GTTTTCCGGG	ACGCCGGCTG	GATGATCCTC	CAGCGCGGG	4740
50	ATCTCATGCT	GGAGTTCTTC	GCCCACCCCA	ACTTGTTTAT	TGCAGCTTAT	AATGGTTACA	480
	AATAAAGCAA	A TAGCATCACA	AATTTCACAA	ATAAAGCATT	TTTTTCACTO	CATTCTAGTT	486

	GTGGTTTGTC CAAACTCATC AATGTATCTT ATCATGTCTG TATACCGTCG ACCTCTAGCT	
	AGAGCTTGGC GTAATCATCG TCATACCTCT	492
5	AGAGCTTGGC GTAATCATGG TCATAGCTGT TTCCTGTGTG AAATTGTTAT CCGCTCACAA	4986
	TTCCACACAA CATACGAGCC GGAAGCATAA AGTGTAAAGC CTGGGGTGCC TAATGAGTGA	5040
	GCTAACTCAC ATTAATTGCG TTGCGCTCAC TGCCCGCTTT CCAGTCGGGA AACCTGTCGT	5100
10	GCCAGCTGCA TTAATGAATC GGCCAACGCG CGGGGAGAGG CGGTTTGCGT ATTGGGCGCT	
	CTTCCGCTTC CTCGCTCACT GACTCGCTGC GCTCGGTCGT TCGGCTGCGG CGAGCGGTAT	
	CAGCTCACTC AAAGGCGGTA ATACGGTTAT CCACAGAATC AGGGGATAAC GCAGGAAAGA	5220
15	ACATGTGAGC AAAAGGCCAG CAAAAGGCCA GGAACCGTAA AAAGGCCGCG TTGCTGGCGT	5280
	- TTTTCCATAG GCTCCGCCCC CCTGACGAGA AAAGGCCGCG TTGCTGGCGT	5340
	TTTTCCATAG GCTCCGCCCC CCTGACGAGC ATCACAAAAA TCGACGCTCA AGTCAGAGGT	5400
20	GGCGAAACCC GACAGGACTA TAAAGATACC AGGCGTTTCC CCCTGGAAGC TCCCTCGTGC	5460
	GCTCTCCTGT TCCGACCCTG CCGCTTACCG GATACCTGTC CGCCTTTCTC CCTTCGGGAA	5520
	GCGTGGCGCT TTCTCAATGC TCACGCTGTA GGTATCTCAG TTCGGTGTAG GTCGTTCGCT	5580
25	CCAAGCTGGG CTGTGTGCAC GAACCCCCCG TTCAGCCCGA CCGCTGCGCC TTATCCGGTA	5640
	ACTATCGTCT TGAGTCCAAC CCGGTAAGAC ACGACTTATC GCCACTGGCA GCAGCCACTG	
	GTAACAGGAT TAGCAGAGCG AGGTATGTAG GCGGTGCTAC AGAGTTCTTG AAGTGGTGGC	5700
30	CTAACTACGG CTACACTAGA AGGACAGTAT TTGGTATCTG CGCTCTGCTG AAGCCAGTTA	5760
	CCTTCGGAAA AAGAGTTGGT ACCTCTTAR GOTTON	5820
	CCTTCGGAAA AAGAGTTGGT AGCTCTTGAT CCGGCAAACA AACCACCGCT GGTAGCGGTG	5880
3 5	GTTTTTTGT TTGCAAGCAG CAGATTACGC GCAGAAAAAA AGGATCTCAA GAAGATCCTT	5940
	TGATCTTTTC TACGGGGTCT GACGCTCAGT GGAACGAAAA CTCACGTTAA GGGATTTTGG	6000
	TCATGAGATT ATCAAAAAGG ATCTTCACCT AGATCCTTTT AAATTAAAAA TGAAGTTTTA	6060
40	AATCAATCTA AAGTATATAT GAGTAAACTT GGTCTGACAG TTACCAATGC TTAATCAGTG	6120
	AGGCACCTAT CTCAGCGATC TGTCTATTTC GTTCATCCAT AGTTGCCTGA CTCCCCGTCG	6180
	TGTAGATAAC TACGATACGG GAGGGCTTAC CATCTGGCCC CAGTGCTGCA ATGATACCGC	
45	GAGACCCACG CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC GGAAGGGCCG	6240
	AGCGCAGAAG TGGTCCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAT TGTTGCCGGG	6300
	AAGCTAGAGT AAGTAGTTCG CCAGTTAATA CTTTCCCA GTCTATTAAT TGTTGCCGGG	6360
50	AAGCTAGAGT AAGTAGTTCG CCAGTTAATA GTTTGCGCAA CGTTGTTGCC ATTGCTACAG	6420
	GCATCGTGGT GTCACGCTCG TCGTTTGGTA TGGCTTCATT CAGCTCCGGT TCCCAACGAT	6480
	CAAGGCGAGT TACATGATCC CCCATGTTGT GCAAAAAAGC GGTTAGCTCC TTCGGTCCTC	6540

	CGATCGTTGT CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG GCAGCAC	TGC 6600
5	ATAATTCTCT TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT GAGTACT	CAA 6660
Ĭ	CCAAGTCATT CTGAGAATAG TGTATGCGGC GACCGAGTTG CTCTTGCCCG GCGTCAA	TAC 6720
	GGGATAATAC CGCGCCACAT AGCAGAACTT TAAAAGTGCT CATCATTGGA AAACGTT	CTT 6780
10	CGGGGCGAAA ACTCTCAAGG ATCTTACCGC TGTTGAGATC CAGTTCGATG TAACCCA	CTC 6840
	GTGCACCCAA CTGATCTTCA GCATCTTTTA CTTTCACCAG CGTTTCTGGG TGAGCAA	AAA 6900
	CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT TGAATAC	TCA 6960
15	TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG TTATTGTCTC ATGAGCG	GAT 7020
	ACATATTTGA ATGTATTTAG AAAAATAAAC AAATAGGGGT TCCGCGCACA TTTCCCCC	GAA 7080
20	AAGTGCCACC TGACGTCGAC GGATCGGG	7108
	(2) INFORMATION ZU SEQ ID NO: 39:	
25	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 4019 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
30	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
3 5	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 14019	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 39:	
	CTCGAGAAAT CATAAAAAAT TTATTTGCTT TGTGAGCGGA TAACAATTAT AATAGAT	TCA 60
40	ATTGTGAGCG GATAACAATT TCACACAGAA TTCATTAAAG AGGAGAAATT AACTATGA	AGA 120
	GGATCGCATC ACCATCACCA TCACGGATCC CTGGTTCTGT TTGAAGGGGA CGAGGTGT	TAT 180
45	TCCACCATCC GGAAGCAGGA ATACAATGGG AAGATCCCTC GGTTCCGCCG CATCCGGC	GGC 240
	GAGAGTGAGC TGTACACCAG TGATACTGTC ATGCAGAACC CACAGTTCAT CAAAGCCA	ACC 300
	ATCGTGCACC AAGACCAGGC TTACGATGAC AAGATCTACT ACTTCTTCCG AGAGGACA	AAT 360
50	CCTGACAAGA ATCCTGAGGC TCCTCTCAAT GTGTCCCGTG TGGCCCAGTT GTGCAGGC	GGG 420
•	GACCAGGGTG GGGAAAGTTC ACTGTCAGTC TCCAAGTGGA ACACTTTTCT GAAAGCCA	ATG 480

	CIGGTATGCA	GTGATGCTGC	CACCAACAAG	AACTTCAACA	GGCTGCAAGA	CGTCTTCCTG	540
5	CTCCCTGACC	CCAGCGGCCA	GTGGAGGGAC	ACCAGGGTCT	ATGGTGTTTT	CTCCAACCCC	600
	TGGAACTACT	CAGCCGTCTG	TGTGTATTCC	CTCGGTGACA	TTGACAAGGT	CTTCCGTACC	660
	TCCTCACTCA	AGGGCTACCA	CTCAAGCCTT	CCCAACCCGC	GGCCTGGCAA	GTGCCTCCCA	720
10	GACCAGCAGC	CGATACCCAC	AGAAAGCTTA	ATTAGCTGAG	CTTGGACTCC	TGTTGATAGA	780
	TCCAGTAATG	ACCTCAGAAC	TCCATCTGGA	TTTGTTCAGA	ACGCTCGGTT	GCCGCCGGGC	840
15	GTTTTTTATT	GGTGAGAATC	CAAGCTAGCT	TGGCGAGATT	TTCAGGAGCT	AAGGAAGCTA	900
75	AAATGGAGAA	AAAAATCACT	GGATATACCA	CCGTTGATAT	ATCCCAATGG	CATCGTAAAG	960
••,	AACATTTTGA	GGCATTTCAG	TCAGTTGCTC	AATGTACCTA	TAACCAGACC	GTTCAGCTGG	1020
20	ATATTACGGC	CTTTTTAAAG	ACCGTAAAGA	AAAATAAGCA	CAAGTTTTAT	CCGGCCTTTA	1080
	TTCACATTCT	TGCCCGCCTG	ATGAATGCTC	ATCCGGAATT	TCGTATGGCA	ATGAAAGACG	1140
	GTGAGCTGGT	GATATGGGAT	AGTGTTCACC	CTTGTTACAC	CGTTTTCCAT	GAGCAAACTG	1200
25	AAACGTTTTC	ATCGCTCTGG	AGTGAATACC	ACGACGATTT	CCGGCAGTTT	CTACACATAT	1260
	ATTCGCAAGA	TGTGGCGTGT	TACGGTGAAA	ACCTGGCCTA	TTTCCCTAAA	GGGTTTATTG	1320
30	AGAATATGTT	TTTCGTCTCA	GCCAATCCCT	GGGTGAGTTT	CACCAGTTTT	GATTTAAACG	1380
	TGGCCAATAT	GGACAACTTC	TTCGCCCCCG	TTTTCACCAT	GGGCAAATAT	TATACGCAAG	1440
	GCGACAAGGT	GCTGATGCCG	CTGGCGATTC	AGGTTCATCA	TGCCGTCTGT	GATGGCTTCC	1500
35	ATGTCGGCAG	AATGCTTAAT	GAATTACAAC	AGTACTGCGA	TGAGTGGCAG	GGCGGGGCGT	1560
	AATTTTTTTA	AGGCAGTTAT	TGGTGCCCTT	AAACGCCTGG	GGTAATGACT	CTCTAGCTTG	1620
40	AGGCATCAAA	TAAAACGAAA	GGCTCAGTCG	AAAGACTGGG	CCTTTCGTTT	TATCTGTTGT	1680
40 <u> </u>	TTGTCGGTGA	ACGCTCTCCT	GAGTAGGACA	AATCCGCCGC	TCTAGAGCTG	CCTCGCGCGT	1740
•	TTCGGTGATG	ACGGTGAAAA	CCTCTGACAC	ATGCAGCTCC	CGGAGACGGT	CACAGCTTGT	1800
15	CTGTAAGCGG	ATGCCGGGAG	CAGACAAGCC	CGTCAGGGCG	CGTCAGCGGG	TGTTGGCGGG	1860
	TGTCGGGGCG	CAGCCATGAC	CCAGTCACGT	AGCGATAGCG	GAGTGTATAC	TGGCTTAACT	1920
;	ATGCGGCATC	AGAGCAGATT	GTACTGAGAG	TGCACCATAT	GCGGTGTGAA	ATACCGCACA	1980
50	GATGCGTAAG	GAGAAAATAC	CGCATCAGGC	GCTCTTCCGC	TTCCTCGCTC	ACTGACTCGC	2040
	TGCGCTCGGT	CTGTCGGCTG	CGGCGAGCGG	TATCAGCTCA	CTCAAACCCC	CTAATACCCT	2100

	TATCCACAGA	ATCAGGGAT	AACGCAGGAA	AGAACAIGIG	AGCAMAAGGC	CAGCAAAAGG	2100
	CCAGGAACCG	TAAAAAGGCC	GCGTTGCTGG	CGTTTTTCCA	TAGGCTCCGC	CCCCCTGACG	2220
5	AGCATCACAA	AAATCGACGC	TCAAGTCAGA	GGTGGCGAAA	CCCGACAGGA	CTATAAAGAT	2280
	ACCAGGCGTT	TCCCCCTGGA	AGCTCCCTCG	TGCGCTCTCC	TGTTCCGACC	CTGCCGCTTA	2340
10	CCGGATACCT	GTCCGCCTTT	CTCCCTTCGG	GAAGCGTGGC	GCTTTCTCAA	TGCTCACGCT	2400
	GTAGGTATCT	CAGTTCGGTG	TAGGTCGTTC	GCTCCAAGCT	GGGCTGTGTG	CACGAACCCC	2460
	CCGTTCAGCC	CGACCGCTGC	GCCTTATCCG	GTAACTATCG	TCTTGAGTCC	AACCCGGTAA	2520
15	GACACGACTT	ATCGCCACTG	GCAGCAGCCA	CTGGTAACAG	GATTAGCAGA	GCGAGGTATG	2580
	TAGGCGGTGC	TACAGAGTTC	TTGAAGTGGT	GGCCTAACTA	CGGCTACACT	AGAAGGACAG	2640
	TATTTGGTAT	CTGCGCTCTG	CTGAAGCCAG	TTACCTTCGG	AAAAAGAGTT	GGTAGCTCTT	2700
20	GATCCGGCAA	ACAAACCACC	GCTGGTAGCG	GTGGTTTTTT	TGTTTGCAAG	CAGCAGATTA	2760
	CGCGCAGAAA	AAAAGGATCT	CAAGAAGATC	CTTTGATCTT	TTCTACGGGG	TCTGACGCTC	2820
	AGTGGAACGA	AAACTCACGT	TAAGGGATTT	TGGTCATGAG	ATTATCAAAA	AGGATCTTCA	2880
25	CCTAGATCCT	TTTAAATTAA	AAATGAAGTT	TTAAATCAAT	CTAAAGTATA	TATGAGTAAA	2940
	CTTGGTCTGA	CAGTTACCAA	TGCTTAATCA	GTGAGGCACC	TATCTCAGCG	ATCTGTCTAT	3000
30	TTCGTTCATC	CATAGCTGCC	TGACTCCCCG	TCGTGTAGAT	AACTACGATA	CGGGAGGGCT	3060
	TACCATCTGG	CCCCAGTGCT	GCAATGATAC	CGCGAGACCC	ACGCTCACCG	GCTCCAGATT	3120
	TATCAGCAAT	AAACCAGCCA	GCCGGAAGGG	CCGAGCGCAG	AAGTGGTCCT	GCAACTTTAT	3180
35	CCGCCTCCAT	CCAGTCTATT	AATTGTTGCC	GGGAAGCTAG	AGTAAGTAGT	TCGCCAGTTA	3240
	ATAGTTTGCG	CAACGTTGTT	GCCATTGCTA	CAGGCATCGT	GGTGTCACGC	TCGTCGTTTG	3300
	GTATGGCTTC	ATTCAGCTCC	GGTTCCCAAC	GATCAAGGCG	AGTTACATGA	TCCCCCATGT	3360
40	TGTGCAAAAA	AGCGGTTAGC	TCCTTCGGTC	CTCCGATCGT	TGTCAGAAGT	AAGTTGGCCG	3420
	CAGTGTTATC	ACTCATGGTT	ATGGCAGCAC	TGCATAATTC	TCTTACTGTC	ATGCCATCCG	3480
45	TAAGATGCTT	TTCTGTGACT	GGTGAGTACT	CAACCAAGTC	ATTCTGAGAA	TAGTGTATGC	3540
45	GGCGACCGAG	TTGCTCTTGC	CCGGCGTCAA	TACGGGATAA	TACCGCGCCA	CATAGCAGAA	. 3600
	CTTTAAAAGT	GCTCATCATT	GGAAAACGTT	CTTCGGGGCG	AAAACTCTCA	AGGATCTTAC	3660
50	CGCTGTTGAG	ATCCAGTTCG	ATGTAACCCA	CTCGTGCACC	CAACTGATCT	TCAGCATCTT	372
	TTACTTTCAC	CAGCGTTTCT	GGGTGAGCA	AAACAGGAAG	GCAAAATGCC	GCAAAAAAGG	378

	GAATAAGGGC GACACGGAAA TGTTGAATAC TCATACTCTT CCTTTTTCAA TATTATTGAA	3840
5	GCATTTATCA GGGTTATTGT CTCATGAGCG GATACATATT TGAATGTATT TAGAAAAATA	3900
٠.	AACAAATAGG GGTTCCGCGC ACATTTCCCC GAAAAGTGCC ACCTGACGTC TAAGAAACCA	3960
	TTATTATCAT GACATTAACC TATAAAAATA GGCGTATCAC GAGGCCCTTT CGTCTTCAC	4019
10	(2) INFORMATION ZU SEQ ID NO: 40:	
15	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 3999 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
20	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon	
	(B) LAGE: 13999	
25	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 40:	
	CTCGAGAAAT CATAAAAAAT TTATTTGCTT TGTGAGCGGA TAACAATTAT AATAGATTCA	60
30	ATTGTGAGCG GATAACAATT TCACACAGAA TTCATTAAAG AGGAGAAATT AACTATGAGA	120
	GGATCGCATC ACCATCACCA TCACACGGAT CCGCATGCGA GCTCCCAGTG GGAGGTGAGC	180
	CAGGTGCCCC TGGACCTGTG TGAGGTCTAT GGCGGGGGCT GCCACGGTTG CCTCATGTCC	240
35	CGAGACCCCT ACTGCGGCTG GGACCAGGGC CGCTGCATCT CCATCTACAG CTCCGAACGG	300
	TCAGTGCTGC AATCCATTAA TCCAGCCGAG CCACACAAGG AGTGTCCCAA CCCCAAACCA	360
40	GACAAGGCCC CACTGCAGAA GGTTTCCCTG GCCCCAAACT CTCGCTACTA CCTGAGCTGC	420
	CCCATGGAAT CCCGCCACGC CACCTACTCA TGGCGCCACA AGGAGAACGT GGAGCAGAGC	480
	TGCGAACCTG GTCACCAGAG CCCCAACTGC ATCCTGTTCA TCGAGAACCT CACGGCGCAG	540
45	CAGTACGGCC ACTACTTCTG CGAGGCCCAG GAGGGCTCCT ACTTCCGCGA GGCTCAGCAC	600
	TGGCAGCTGC TGCCCGAGGA CGGCATCATG GCCGAGCACC TGCTGGGTCA TGCCTGTGCC	660
	CTGGCTGCCT CCCTCTGGCT GGGGGTGCTG CCCACACTCA CTCTTGGCTT GCTGGTCCAC	720
50	GTGAAGCTTA ATTAGCTGAG CTTGGACTCC TGTTGATAGA TCCAGTAATG ACCTCAGAAC	780
	TCCATCTGGA TTTGTTCAGA ACGCTCGGTT GCCGCCGGGC GTTTTTTATT GGTGAGAATC	840

	CAAGCTAGCT	IGGCGAGATI	I I CAGGAGC I	AAGGAAGCIA	AAAIGGAGAA	AAAAAICACI	300
	GGATATACCA	CCGTTGATAT	ATCCCAATGG	CATCGTAAAG	AACATTTTGA	GGCATTTCAG	960
5	TCAGTTGCTC	AATGTACCTA	TAACCAGACC	GTTCAGCTGG	ATATTACGGC	CTTTTTAAAG	1020
	ACCGTAAAGA	AAAATAAGCA	CAAGTTTTAT	CCGGCCTTTA	TTCACATTCT	TGCCCGCCTG	1080
10	ATGAATGCTC	ATCCGGAATT	TCGTATGGCA	ATGAAAGACG	GTGAGCTGGT	GATATGGGAT	1140
	AGTGTTCACC	CTTGTTACAC	CGTTTTCCAT	GAGCAAACTG	AAACGTTTTC	ATCGCTCTGG	1200
	AGTGAATACC	ACGACGATTT	CCGGCAGTTT	CTACACATAT	ATTCGCAAGA	TGTGGCGTGT	1260
15	TACGGTGAAA	ACCTGGCCTA	TTTCCCTAAA	GGGTTTATTG	AGAATATGTT	TTTCGTCTCA	1320
	GCCAATCCCT	GGGTGAGTTT	CACCAGTTTT	GATTTAAACG	TGGCCAATAT	GGACAACTTC	1380
20	TTCGCCCCCG	TTTTCACCAT	GGGCAAATAT	TATACGCAAG	GCGACAAGGT	GCTGATGCCG	1440
	CTGGCGATTC	AGGTTCATCA	TGCCGTCTGT	GATGGCTTCC	ATGTCGGCAG	AATGCTTAAT	1500
-	GAATTACAAC	AGTACTGCGA	TGAGTGGCAG	GGCGGGGCGT	AATTTTTTTA	AGGCAGTTAT	1560
25	TGGTGCCCTT	AAACGCCTGG	GGTAATGACT	CTCTAGCTTG	AGGCATCAAA	TAAAACGAAA	1620
	GGCTCAGTCG	AAAGÁCTGGG	CCTTTCGTTT	TATCTGTTGT	TTGTCGGTGA	ACGCTCTCCT	1680
30	GAGTAGGACA	AATCCGCCGC	TCTAGAGCTG	CCTCGCGCGT	TTCGGTGATG	ACGGTGAAAA	1740
30	CCTCTGACAC	ATGCAGCTCC	CGGAGACGGT	CACAGCTTGT	CTGTAAGCGG	ATGCCGGGAG	1800
	CAGACAAGCC	CGTCAGGGCG	CGTCAGCGGG	TGTTGGCGGG	TGTCGGGGCG	CAGCCATGAC	1860
35	CCAGTCACGT	AGCGATAGCG	GAGTGTATAC	TGGCTTAACT	ATGCGGCATC	AGAGCAGATT	1920
	GTACTGAGAG	TGCACCATAT	GCGGTGTGAA	ATACCGCACA	GATGCGTAAG	GAGAAAATAC	1980
	CGCATCAGGC	GCTCTTCCGC	TTCCTCGCTC	ACTGACTCGC	TGCGCTCGGT	CTGTCGGCTG	2040
40	CGGCGAGCGG	TATCAGCTCA	CTCAAAGGCG	GTAATACGGT	TATCCACAGA	ATCAGGGGAT	2100
	AACGCAGGAA	AGAACATGTG	AGCAAAAGGC	CAGCAAAAGG	CCAGGAACC	TAAAAAGGCC	2160
45	GCGTTGCTGC	G CGTTTTTCCA	TAGGCTCCGC	CCCCCTGACG	G AGCATCACA	AAATCGACGC	2220
	TCAAGTCAGA	GGTGGCGAAA	CCCGACAGGA	CTATAAAGAT	ACCAGGCGT	r TCCCCCTGGA	2280
	AGCTCCCTC	TGCGCTCTCC	TGTTCCGACC	CTGCCGCTTA	A CCGGATACC	r GTCCGCCTTT	234
50	CTCCCTTCG	GAAGCGTGGG	GCTTTCTCA	A TGCTCACGCT	r gtaggtatc	r cagttcggtg	240
	TAGGTCGTT	GCTCCAAGC1	r GGGCTGTGT	CACGAACCC	CCGTTCAGC	C CGACCGCTGC	246

	GCCTTATCCG	GTAACTATCG	TCTTGAGTCC	AACCCGGTAA	GACACGACTT	ATCGCCACTG	2520
5	GCAGCAGCCA	CTGGTAACAG	GATTAGCAGA	GCGAGGTATG	TAGGCGGTGC	TACAGAGTTC	2580
	TTGAAGTGGT	GGCCTAACTA	CGGCTACACT	AGAAGGACAG	TATTTGGTAT	CTGCGCTCTG	2640
	CTGAAGCCAG	TTACCTTCGG	AAAAAGAGTT	GGTAGCTCTT	GATCCGGCAA	ACAAACCACC	2700
10	GCTGGTAGCG	GTGGTTTTTT	TGTTTGCAAG	CAGCAGATTA	CGCGCAGAAA	AAAAGGATCT	2760
	CAAGAAGATC	CTTTGATCTT	TTCTACGGGG	TCTGACGCTC	AGTGGAACGA	AAACTCACGT	2820
15	TAAGGGATTT	TGGTCATGAG	ATTATCAAAA	AGGATCTTCA	CCTAGATCCT	TTTAAATTAA	2880
.5	AAATGAAGTT	TTAAATCAAT	CTAAAGTATA	TATGAGTAAA	CTTGGTCTGA	CAGTTACCAA	2940
	TGCTTAATCA	GTGAGGCACC	TATCTCAGCG	ATCTGTCTAT	TTCGTTCATC	CATAGCTGCC	3000
20	TGACTCCCCG	TCGTGTAGAT	AACTACGATA	CGGGAGGGCT	TACCATCTGG	CCCCAGTGCT	3060
	GCAATGATAC	CGCGAGACCC	ACGCTCACCG	GCTCCAGATT	TATCAGCAAT	AAACCAGCCA	3120
	GCCGGAAGGG	CCGAGCGCAG	AAGTGGTCCT	GCAACTTTAT	CCGCCTCCAT	CCAGTCTATT	3180
25	AATTGTTGCC	GGGAAGCTAG	AGTAAGTAGT	TCGCCAGTTA	ATAGTTTGCG	CAACGTTGTT	3240
	GCCATTGCTA	CAGGCATCGT	GGTGTCACGC	TCGTCGTTTG	GTATGGCTTC	ATTCAGCTCC	3300
30	GGTTCCCAAC	GATCAAGGCG	AGTTACATGA	TCCCCCATGT	TGTGCAAAAA	AGCGGTTAGC	3360
	TCCTTCGGTC	CTCCGATCGT	TGTCAGAAGT	AAGTTGGCCG	CAGTGTTATC	ACTCATGGTT	3420
	ATGGCAGCAC	TGCATAATTC	TCTTACTGTC	ATGCCATCCG	TAAGATGCTT	TTCTGTGACT	3480
35	GGTGAGTACT	CAACCAAGTC	ATTCTGAGAA	TAGTGTATGC	GGCGACCGAG	TTGCTCTTGC	3540
	CCGGCGTCAA	TACGGGATAA	TACCGCGCCA	CATAGCAGAA	CTTTAAAAGT	GCTCATCATT	3600
40	GGAAAACGTT	CTTCGGGGCG	AAAACTCTCA	AGGATCTTAC	CGCTGTTGAG	ATCCAGTTCG	3660
	ATGTAACCCA	CTCGTGCACC	CAACTGATCT	TCAGCATCTT	TTACTTTCAC	CAGCGTTTCT	3720
	GGGTGAGCAA	AAACAGGAAG	GCAAAATGCC	GCAAAAAAGG	GAATAAGGGC	GACACGGAAA	3780
45	TGTTGAATAC	TCATACTCTT	CCTTTTTCAA	TATTATTGAA	GCATTTATCA	GGGTTATTGT	3840
	CTCATGAGCG	GATACATATT	TGAATGTATT	TAGAAAAATA	AACAAATAGG	GGTTCCGCGC	3900
50	ACATTTCCCC	GAAAAGTGCC	ACCTGACGTC	TAAGAAACCA	TTATTATCAT	GACATTAACC	3960
	TATAAAAATA	GGCGTATCAC	GAGGCCCTTT	CGTCTTCAC			3999

(2) ANGABEN ZU SEQ ID NO: 41:

(i) SEQUENZKENNZEICHEN:

(A) LÂNGE: 8888 Basenpaare

(B) ART: Nucleotid

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKŪLS: Genom-DNA

(ix) MERKMAL:

(A) NAME/SCHLÜSSEL: exon

(B) LAGE:1..8888

15

20

25

30

35

10

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 41:

GAGCCGCACA CGGTGCTTTT CCACGAGCCA GGCAGCTCCT CTGTGTGGGT GGGAGGACGT 60 GGCAAGGTCT ACCTCTTTGA CTTCCCCGAG GGCAAGAACG CATCTGTGCG CACGGTGAGC 120 CTCTCTCTC CCCCAACACC CCCCCTACCC TCTTATCTCC CCTCTGGCCC TGCCAAGGGT 180 CCTCAGGGAA TCCGAGGGAG CTGGCTTCTC TTCCTAAACT GCCCCCACCT CCGTATCCTA 240 TAAATGGCTC CTGGGGGAGG CTCCCTAAAG GTAGTCCAGA TTGGAGTGGG GAGCTGGGGC 300 GGTGTGGAGA AAAACAGGAG CTAATGGGCC TGGCCAGCTG GGCAGCGCTG CTGCGGAAAG 360 CCCAGGCTGG AAGCTGGGCC CCAGAGCCCA TGCCTGGTCT TCTGAACCCT CTGGGCCTCA GCTCTGGATA TGAGACCTG TTTGACCTCA GGTAGATCAC TCACCCTCTC AGAGCCCCAG 480 TTGCTCATCT GTCAGATGAG AATAATGGTT GCTTCCTTTG GGGCTTATCC TGAGGCTGTG 540 TGGAAAGCAT TTCAGGGGTA CCTCACCCCT GGCAGATTGA ACTAATGCTT CTCCCCTTCC 600 CCAGGTGAAT ATCGGCTCCA CAAAGGGGTC CTGTCTGGAT AAGCGGGTGA GCGGGGAGG 660 GATCTGGAGG GGTCTGAGCC ACTTGGTAAA GGGAGAGGAG ACCCTGAGGG TCTAAGGAAG 720 780 GAAGCATGGC CCTGCCCCAC GAGTCCCAGA CTGATGGGGA GACGTGGTCC TCTGTGCTTA GGGGATGGCG TCAGCTGCAC ACACTCTGGG CTGTCCCGGG AGGCTGTCAC CTATGCTAAG 840 CCCTTCTGAC ACCTTCTTCC CTGATCCTGG GGGTCCTAGT GCTAGGCTTG CCAGGGCCTT 900 CCAGCAACCA ATTTCTCTCC TCCCTTCTCT CTTCCCCGGG CAGGACTGCG AGAACTACAT 960 CACTCTCCTG GAGAGGCGGA GTGAGGGGCT GCTGGCCTGT GGCACCAACG CCCGGCACCC 1020 CAGCTGCTGG AACCTGGTGA GAAGGCTGCT CCCCATGTGC CTGATCAGCT CACCTTCTAC 1080 TGCGTGGGCT TCTGCCCCTC ATGGTGGGAA GGAGATGGCG AGACTCCAAT GCTGGCCTTG 1140

45

	CCCTGGGAGG	ATGGGGCTCC	TGGCCGAGAA	ACTGGCCGTC	ATGGGAGGCA	GTGGCTGTGG	1200
5	GATTATGTGG	CCATCCAACC	CTCTGGATCT	CCCACAGGTG	AATGGCACTG	TGGTGCCACT	1260
3	TGGCGAGATG	AGAGGCTACG	CCCCCTTCAG	CCCGGACGAG	AACTCCCTGG	TTCTGTTTGA	1320
	AGGTTGGGGC	ATGCTTCGGA	ACTGGGCTGG	GAGCAGGATG	GTCAGCTCTT	TGTCCAGTGT	1380
10	CCGGAGGAGG	GACTTCCAGG	AGCTGCCTGC	CCTTACTCAT	ттстссстсс	CACTGACCCC	1440
	AGGGGACGAG	GTGTATTCCA	CCATCCGGAA	GCAGGAATAC	AATGGGAAGA	TCCCTCGGTT	1500
	CCGCCGCATC	CGGGGCGAGA	GTGAGCTGTA	CACCAGTGAT	ACTGTCATGC	AGAGTGAGTC	1560
15	AGGCTCCGGC	TGGGCTGAGG	GTGGGCAAGG	GGGTGTGAGC	ACTTAAGGTG	GCAGATGGGA	1620
	TCCTGATGTT	TCTGGGAGGG	CTCCCTGAGG	GCCGCTGGGG	CCATGCAGGA	AAGCAGGACC	1680
	TTGGTATAGG	CCTGAGAAGT	TAGGGTTGGC	TGGGAGCAGA	GGAACAGACA	AGGTATAGCA	1740
	GTGGGATGGG	CCCAGCCCTC	TTCAGGAACA	CAAACAGAGG	GAGCCCCAGA	CCCAGTGCAG	1800
	GGTCCCCAGG	AGCCAAAGTT	TATCCTCTGC	TGAGTTCACG	TGGAGGCAGC	CCCCCAACTC	1860
25	CCTCCTCATC	AGGGCTCTGC	CAATTGAGCA	GAAGTGACAT	AGGGGCCCCC	AGGGACCTTC	1920
	CCCCACTCCC	CAGGCATGAA	GTCATTGCTC	CTGGGCCGAT	GACATCTTTG	TAGGAAGAGG	1980
	GCAAAACAGG	TGTGGGGTGG	AGGTGCAGGG	TCTAGGGCCC	CTCGGGGAGT	TGGACCTGAT	2040
30	GTTATGAGTC	CTATTCCAGA	TCTGATTTGC	CATGGTTTGT	GCAGACÇCGA	AGGAGGGAGG	2100
	AGAGTGTGCA	GGGTTGGAAT	GGTCTCCCGG	GCAAGCTTCC	CAGCCTTACG	CCCATTCGCT	2160
	TCTGTGCCCT	GGCAGACCCA	CAGTTCATCA	AAGCCACCAT	CGTGCACCAA	GACCAGGCTT	2220
35	ACGATGACAA	GATCTACTAC	TTCTTCCGAG	AGGACAATCC	TGACAAGAAT	CCTGAGGCTC	2280
	CTCTCAATGT	GTCCCGTGTG	GCCCAGTTGT	GCAGGGTGAA	CACGGGCGTG	AGGGCTGCTG	2340
10	GCTACGTGTC	TGTGCATGAA	TAGGCCTGAG	TGAGGGTGAG	TTCTGTGTGT	CCGTGTGCAT	2400
	GTAGAAGTTG	TGTGGATGTA	TGAGTGGGTC	TGTGTCAGGG	ACTGTGGGAG	CAGCTGTGTG	2460
:	TGCATGGAGC	ATCATGTGTC	TGTGTGTGGG	TAAAGGTGGC	TGAGCTCCTG	TGCACGTATG	2520
15	ATGGCGTGTG	AGCGTGTGTA	TGATGGGGTG	TGTGTGTGTG	TGTGTGTGTG	TGTTTTGCCT	2580
	GTGTGAATGT	GCTGTGCCAC	GTATGTGGGT	GCGTGAGTCA	GTAAATGTGT	GTCTGAGTCC	2640
** *	GTCTGCTCTG	TGGGGACCTG	GCACTCTCAC	CTGCCCTGAC	CCTGGGCACT	GCTGGCCCTG	2700
50	GGCTCTGGAT	CAGCCAGGCC	TGCTTGCAGG	AGTCTCATCT	GGAGACCTGC	CCTGAGTCCT	2760
	GGGCACCCC	CGGCAGGTCC	TGGCCCCTCG	CAGCCTGCCT	TCCTCCTCTG	GGCCCAGGTG	2820

	HIGHIATIGE	IGGCAGIGGI	TICCIGGGT	GTGTGGGGAA	GCCCGGGCAG	GTGCTGAGGG	2886
5	GCCTCTTCTC	CCCTCTACCC	TTCCAGGGGG	ACCAGGGTGG	GGAAAGTTCA	CTGTCAGTCT	2940
	CCAAGTGGAA	CACTTTTCTG	AAAGCCATGC	TGGTATGCAG	TGATGCTGCC	ACCAACAAGA	3000
	ACTTCAACAG	GCTGCAAGAC	GTCTTCCTGC	TCCCTGACCC	CAGCGGCCAG	TGGAGGGACA	3060
10	CCAGGGTCTA	TGGTGTTTTC	TCCAACCCCT	GGTGAGTGGC	CCTTGTCCTG	GGGCCGGGGC	3120
	TGGCATTGGT	TCAGTGTCCA	GTAGGĠACAG	GAGGCCTTGG	GCCCTGCTGA	GGGCCTCCCT	3180
	GGTGTGGCAG	GAGCAGGGGC	TGCAGGCTCA	AGAGGCTGGG	CTGTTGCTGG	GTGTGGGGTG	3240
15	GGGGGACAGC	CAGTGCGATG	TATGTACTGT	TGTGTGAGTG	AGTCTGCACT	CATGGGTGTG	3300
	TGTGCATGCC	CTATATGCAC	ACTCATGACT	GCACTTGTGC	CTGTGTGTCC	CACCACCTGC	3360
20	TTGTGCCGAG	AGTGGACACT	GGGCCCAGGA	GGAAGCTGCT	GAAGCATCTC	TCGGGGAGCT	3420
	GGGTGCTATT	ACACCTGCTC	AGGCACTGCC	TGAGCCCGAT	AATTCACACT	TCTTAATCAC	3480
	TCTCATTGAT	TGAACACACG	GCAGGCGGAA	GTGTTGGGTG	TGTGTGGGGA	GAGTTAGGGA	3540
25	TAGAGTGGAG	GAAGCCAAGA	CCCTGCTCTG	TGGCTCCTGG	GTGAGTGGGT	CCCCCAGGCT	3600
	GGGAAGGGGT	TGGGGGTCTG	GCCTCCTGGG	GCATCAGCAC	CCCACAGCCT	GTGCCCAGGG	3660
	AGGGCTAGAG	AACTGCTCAG	CCTATGATGG	GGTTCCTCCT	GCCTTGGGGT	TGGGTAGAGC	3720
30	AGATGGCCTC	TAGACTCAGT	GATTCTGTAA	CAGGATACAA	GTTTGTGGTT	TTAAATTGCA	3780
	GCACAAAGAA	ATTAGGCTGA	ACTCCTCTCC	TTCCTCCTCT	CCATCCCTCC	CCATTTTCAG	3840
35	TGGTGGTTGG	CAACTCAGTG	CCAGGCACAA	GGCTGGCCTG	GGTGAGTGGA	GGTGGATGGG	3900
	TGGGTTCTGG	GCCCCCATT	GAGCTGGTCT	CCATGTCACT	GCAGGAACTA	CTCAGCCGTC	3960
	TGTGTGTATT	CCCTCGGTGA	CATTGACAAG	GTCTTCCGTA	CCTCCTCACT	CAAGGGCTAC	4020
40	CACTCAAGCC	TTCCCAACCC	GCGGCCTGGC	AAGGTGAGCG	TGACACCAGC	CGTGGCCCAG	4080
	GCCCAGCCCT	CCTTCTGCCT	CACCTCCCAC	CACCCCACTG	ACCTGGGCCT	GCTCTCCTTG	4140
	CCCAGTGCCT	CCCAGACCAG	CAGCCGATAC	CCACAGAGAC	CTTCCAGGTG	GCTGACCGTC	4200
45	ACCCAGAGGT	GGCGCAGAGG	GTGGAGCCCA	TGGGGCCTCT	GAAGACGCCA	TTGTTCCACT	4260
	CTAAATACCA	CTACCAGAAA	GTGGCCGTCC	ACCGCATGCA	AGCCAGCCAC	GGGGAGACCT	4320
50	TTCATGTGCT	TTACCTAACT	ACAGGTGAGA	GGCTACCCCG	GGACCCTCAG	TTTGCTTTGT	4380
	AAAAACGGGC	ATGAAAGGTG	TAAGGAATAA	TGTAGTTAAC	ATCTGGTTGG	ATCTTTACAT	4440

	O TOGARGOA	TAMITGAGIC	ACTGGAGTTC	TCAGGGGTTA	ATGTGTGTGG	GTGTGGAAGA	4500
5	GCCAGGCAGG	GAGAGCTTCC	TGGAGGAGGT	AGGGGCAAGA	GGGAAAGGGG	GATGGGAGAA	4560
	AAGCAAGCAC	TGGGATTTGG	AGGCGGAAAT	CTGGAGAGTC	TGAGCAAAGC	CAGGTGCACC	4620
	TTTGGTCCAG	ATGTCTGACT	CAGGGAAGAA	GATGGTAGGA	AGAGACGTGG	CAAATGAGGA	4680
10	· · · GGAGGGGCCT	GAACCACAGG	GATACTGGCC	TCTGCCAGGC	AGAATGAGGG	AGTCAGGCCC	4740
	TGCGCCTGTC	TTTGGGATTG	TGCAGGTGAG	AAGAAACATT	TGAGGAGTTG	ATGGGGCACA	4800
	AATTAGGTAT	GGGGAAGGAG	TTCCAGGGGG	CAGAACCTTT	GCCATCTCAC	AGAGGACAGG	4860
15	GGCAGCTTCT	CTTCTTCCCT	GGAGTAGGCC	CTGCTGGGGG	AAGCTGGGTG	GAATGCCGTG	4920
	GGAGATGCTC	CTGCTTTCTG	GAAAGCCACA	GGACACGGAG	GAGCCAGTCC	TGAGTTGGGT	4980
20	TTGTCGCAGC	TTCCCATGCC	AGCTGCCTTC	CTTGAGACTG	GAAAGGGCCT	CTAGCACCCC	5040
	TGGGGCCATT	CAATTCAGGC	CCAGGCGCCC	AACCTCAGTT	GTTCACATTC	CCCATGTGAT	5100
	CTCCTGTTGC	TGCTTCACCT	TGGGACTGTC	TCGGCTTTGG	TGACCTTGTA	GGAAACTGGA	5160
25	ACCCCAGCAC	CATTGTTTGG	CTCCTGGAAG	CCTTGGGGAG	AGGAATTTCC	CACAGGGCAG	5220
	GGCCTGGGTC	CTGATTCCCT	GCCTCTTTAC	TCCCTATTCA	TCCCGGCTAC	ACCCTTGGGC	5280
	CCCCATCCTT	GCTTGGCTCC	AGTACTGGCT	GGCACAGCTG	TTGTGGTCAT	CCAGGGATGG	5340
30	CAGGGCACTG	GGGAACAGAA	GAGAGAGGTC	ACACAGTGCG	GAACTGGGAG	CAGGAGCTAG	5400
	GACAAGGAAG	GCTGGACTTG	GGCCATGGAT	TCCCTTCCTG	CAGACTTGGG	AAGTGAGCAC	5460
35	ACTTGAGTGA	TTAGAGAAGG	TGTCTTCGTT	CTAAGGGCAG	TGGAGGAGGC	ACCATTTTGG	5520
55	AGCCTGCATC	ATTCGTATTT	GGGCTAGATT	GAAAAATAGA	GCTTTCTAAG	TCCTCTGCAG	5580
	AGAATGGGAG	GCTCTCACAA	CTGGGAGAAG	TATTGGCTCT	TTTCCTGAGA	ATTTTGCCAA	5640
40	GGGTATGCTG	TTACTGGGGC	TGGTTTGGAA	GGAGTATAGG	GCATTATGTC	TGTGAAGGCA	5700
	GTGGCTGGGG	TGGGGCCTTA	TCAGGCCCAA	GGAGCATCTG	GCCACATCTC .	AGAGTCCACA	5760
•	GATGAGGATC	ACGGATGTGT	AGAGGAAACA	TCCTAGGCAG	GCAATCATCT (GACTGCTTTT	5820
45	TTGGGGCAGG	TGATGCCCTG	GGAAATTGGG	AGGGAGGGAG	AGAGGGAGGT	AGGCTATTCT	5880
	AGAAACTGGG	AGAGCAGGTG	AGGTAGGATT	GGGAGGACCA (GGGGTCAGGG '	TCCCCATTGG	5940
50	TCCCTAATTG	AGAACGGAGA	GAGCATTGGT	CTAGGAGGCA	GCAGCTCGG '	TTATAAGACC	6000
50	TTGGGAACTC	TTGATTTAGA	ATCCAAGATC	CTTTTTAGAT (CTAGGATTTT /	ATAAAATTAA	6060
	GATATCCCCT	AAGATCAAAT	GCAACGTGGA	GTCCTGAATT (GGATCCTAGA A	ACAGAAGAAG	6120

	.l'Trigre	GAAAAACTAG	TGAAATCCAA	ATAAAGTCTG	TAGTTTTGTT	AATAGTAATG	6180
	ACCAATGTC	AGTTGCCTAG	TTGTGACAAA	TATACCGTGG	TTATGTAAGA	TGGTAACATT	6240
	AGGGGGAACT	GGAGAAGGGT	AGATTGGAGC	TCTCTGTACT	ATCTTTGCAA	CTTTTCTGGG	6300
	AATCTAAAAT	TACTCCAAAA	ТАААААААА	ATGTATTTAA	AGTAAATATA	TTCCCTAAGA	6360
J	GTCCAGGAGG	CAGGGGAGTT	GTAGAAGCAG	CTGAGTGGTT	GGGTTCTGAC	AGATTTGGTT	6420
	CCAACTCGGT	CTCTGCTGCT	CACCAGCTGT	GTGACCTTGA	GCAAGTGGCT	TAGCCTTTCT	6480
	GAGCCTGATT	TCCTTATCTG	TGGAGTGGGG	AAGATGACAG	CCACCTCGCA	GGGCTGTGGA	6540
5	GGGTTAAACG	AGGTGATGCA	TGGACAGCAG	CCGCACTGAC	CTTGCTGGTG	TGGGGCTCCT	6600
	GCTTCTGTTC	TTCCCGTGCA	GCCTTGGGAA	TGTTGGAGGC	CGTATCCAGG	GACCCCTGGG	6660
20	CCTCCTGGGA	TGGCCTCTCT	GGATCAGCCT	TGGAAGGTTC	CAGGCTGCCC	TTAGGCTCCC	6720
•	ACATTCTTCC	CCAGTCACGC	тстестевсе	CTGCCCACAC	CAGTCCTGTG	ACCUTTGCCT	6780
	GAGTTGTGAC	TTCCCACCCC	TCCCCGGCCT	AGAGGAAAGC	TGCCTGGCCC	CTCAGTGGGA	6840
?5	CTCCCGCCCA	CTGACCCTCT	GTCCACCATA	CACAGACAGG	GGCACTATCC	ACAAGGTGGT	6900
	GGAACCGGGG	GAGCAGGAGC	ACAGCTTCGC	CTTCAACATC	ATGGAGATCC	AGCCCTTCCG	6960
	CCGCGCGGCT	GCCATCCAGA	CCATGTCGCT	GGATGCTGAG	CGGGTGAGCC	TTCCCCCACT	7020
30	GCGTCCCATG	GGCTATGCAG	TGACTGCAGC	TGAGGACAGG	GCTCCTTTGC	ATGTGATTTG	7080
	TGTGTTCTTT	TAAGAGCTTC	TAGGCCTTAG	GGCCTGGACA	TTTAGGACTG	AGTGTGGGGT	7140
35	GGGGCCCGGG	CCTGACCCAA	TCCTGCTGTC	CTTCCAGAGG	AAGCTGTATG	TGAGCTCCCA	7200
	GTGGGAGGTG	AGCCAGGTGC	CCCTGGACCT	GTGTGAGGTC	TATGGCGGGG	GCTGCCACGG	7260
	TTGCCTCATG	TCCCGAGACC	CCTACTGCGG	CTGGGACCAG	GGCCGCTGCA	TCTCCATCTA	7320
40	CAGCTCCGAA	CGGTACGTTG	GCCGGGATCC	CTCCGTCCCT	GGGACAAGGT	GGGCATGGGA	7380
	CAGGGGGAGG	TGTTGTCGGG	CTGGAAGAGG	TGGCGGTACT	GGGCCTTTCT	TGTGGGACCT	7440
45	CCTCTCTACT	GGAACTGCAC	TAGGGGTAAG	GATATGAGGG	TCAGGTCTGC	AGCCTTGTAT	7500
45	CTGCTGATCC	TCTTTCGTCC	TTCCCACTCC	AGGTCAGTGC	TGCAATCCAT	TAATCCAGCC -	7560
	GAGCCACACA	AGGAGTGTCC	CAACCCCAAA	CCAGGTACCT	GATCTGGCCC	TGCTGGCGGC	7620
50	TGTGGCCCAA	TGAGTGGGGT	ACTGCCCTGC	CCTGATTGTC	CTGGTCTGAG	GGAAACATGG	7680
	ССТТСТССТС	TGGGCCCCAG	GTACATGGGG	CAGGATACAG	TCCTGCAGAG	GGAGCCCTCT	7740

	TGGTGGGATG	AGCGAGACGG	GAGAAAAAAG	GAGGACGCTG	AGGGCTGGGT	TCCCCACGTT	7800
	CATTCAGAAG	CCTTGTCCTG	GGATCCCAGT	CGGTGGGGAG	GACACATCCT	CCCCTGGGAG	7860
5	CTCTTTGTCC	CTCCTCACGG	CTGCTTCCCC	ACTGCCTCCC	CAGACAAGGC	CCCACTGCAG	7920
	AAGGTTTCCC	TGGCCCCAAA	CTCTCGCTAC	TACCTGAGCT	GCCCCATGGA	ATCCCGCCAC	7980
10 -	GCCACCTACT	CATGGCGCCA	CAAGGAGAAC	GTGGAGCAGA	GCTGCGAACC	TGGTCACCAG	8040
	AGCCCCAACT	GCATCCTGTT	CATCGAGAAC	CTCACGGCGC	AGCAGTACGG	CCACTACTTC	8100
	TGCGAGGCCC	AGGAGGGCTC	CTACTTCCGC	GAGGCTCAGC	ACTGGCAGCT	GCTGCCCGAG	8160
15	GACGGCATCA	TGGCCGAGCA	CCTGCTGGGT	CATGCCTGTG	CCCTGGCCGC	CTCCCTCTGG	8220
•	CTGGGGGTGC	TGCCCACACT	CACTCTTGGC	TTGCTGGTCC	ACTAGGGCCT	CCCGAGGCTG	8280
	GGCATGCCTC	AGGCTTCTGC	AGCCCAGGGC	ACTAGAACGT	CTCACACTCA	GAGCCGGCTG	8340
20	GCCCGGGAGC	TCCTTGCCTG	CCACTTCTTC	CAGGGGACAG	AATAACCCAG	TGGAGGATGC	8400
	CAGGCCTGGA	GACGTCCAGC	CGCAGGCGGC	TGCTGGGCCC	CAGGTGGCGC	ACGGATGGTG	8460
25	AGGGGCTGAG	AATGAGGGCA	CCGACTGTGA	AGCTGGGGCA	TCGATGACCC	AAGACTTTAT	8520
	CTTCTGGAAA	ATATTTTCA	GACTCCTCAA	ACTTGACTAA	ATGCAGCGAT	GCTCCCAGCC	8580
	CAAGAGCCCA	TGGGTCGGGG	AGTGGGTTTG	GATAGGAGAG	CTGGGACTCC	ATCTCGACCC	8640
30	TGGGGCTGAG	GCCTGAGTCC	TTCTGGACTC	TTGGTACCCA	CATTGCCTCC	TTCCCCTCCC	8700
	TCTCTCATGG	CTGGGTGGCT	GGTGTTCCTG	AAGACCCAGG	GCTACCCTCT	GTCCAGCCCT	8760
	GTCCTCTGCA	GCTCCCTCTC	TGGTCCTGGG	TCCCACAGGA	CAGCCGCCTT	GCATGTTTAT	8820
35	TGAAGGATGT	TTGCTTTCCG	GACGGAAGGA	CGGAAAAAGC	TCTGAAAAA	АААААААА	8880
	AAAAAAA						8888

40 (2) ANGABEN ZU SEQ ID NO: 42:

(i) SEQUENZKENNZEICHEN:

(A) LÂNGE: 6622 Basenpaare

(B) ART: Nucleotid

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKŪLS: Genom-DNA

(ix) MERKMAL:

(A) NAME/SCHLÜSSEL: exon

(B) LAGE:1..6622

45

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 42:

5	GATATCATGG	AGATAATTAA	AATGATAACC	ATCTCGCAAA	TAAATAAGTA	TTTTACTGTT	60
	TTCGTAACAG	TTTTGTAATA	AAAAAACCTA	TAAATATGAA	ATTCTTAGTC	AACGTTGCCC	120
	TTGTTTTTAT	GGTCGTATAC	ATTTCTŢACA	TCTATGCGGA	TCGATGGGGA	TCCGCCCAGG	180
10	GCCACCTAAG	GAGCGGACCC	CGCATCTTCG	CCGTCTGGAA	AGGCCATGTA	GGGCAGGACC	240
·	GGGTGGACTT	TGGCCAGACT	GAGCCGCACA	CGGTGCTTTT	CCACGAGCCA	GGCAGCTCCT	300
	CTGTGTGGGT	GGGAGGACGT	GGCAAGGTCT	ACCTCTTTGA	CTTCCCCGAG	GGCAAGAACG	360
15	CATCTGTGCG	CACGGTGAAT	ATCGGCTCCA	CAAAGGGGTC	CTGTCTGGAT	AAGCGGGACT	420
	GCGAGAACTA	CATCACTCTC	CTGGAGAGGC	GGAGTGAGGG	GCTGCTGGCC	TGTGGCACCA	480
20	ACGCCCGGCA	CCCCAGCTGC	TGGAACCTGG	TGAATGGCAC	TGTGGTGCCA	CTTGGCGAGA	540
20	TGAGAGGCTA	TGCCCCCTTC	AGCCCGGACG	AGAACTCCCT	GGTTCTGTTT	GAAGGGGACG	600
	AGGTGTATTC	CACCATCCGG	AAGCAGGAAT	ACAATGGGAA	GATCCCTCGG	TTCCGCCGCA	660
25	TCCGGGGCGA	GAGTGAGCTG	TACACCAGTG	ATACTGTCAT	GCAGAACCCA	CAGTTCATCA	720
	AAGCCACCAT	CGTGCACCAA	GACCAGGCTT	ACGATGACAA	GATCTACTAC	TTCTTCCGAG	780
	AGGACAATCC	TGACAAGAAT	CCTGAGGCTC	CTCTCAATGT	GTCCCGTGTG	GCCCAGTTGT	840
30	GCAGGGGGGA	CCAGGGTGGG	GAAAGTTCAC	TGTCAGTCTC	CAAGTGGAAC	ACTTTTCTGA	900
	AAGCCATGCT	GGTATGCAGT	GATGCTGCCA	CCAACAAGAA	CTTCAACAGG	CTGCAAGACG	960
35	TCTTCCTGCT	CCCTGACCCC	AGCGGCCAGT	GGAGGGACAC	CAGGGTCTAT	GGTGTTTTCT	1020
	CCAACCCCTG	GAACTACTCA	GCCGTCTGTG	TGTATTCCCT	CGGTGACATT	GACAAGGTCT	1080
	TCCGTACCTC	CTCACTCAAG	GGCTACCACT	CAAGCCTTCC	CAACCCGCGG	CCTGGCAAGT	1140
40	GCCTCCCAGA	CCAGCAGCCG	ATACCCACAG	AGACCTTCCA	GGTGGCTGAC	CGTCACCCAG	1200
	AGGTGGCGCA	GAGGGTGGAG	CCCATGGGGC	CTCTGAAGAC	GCCATTGTTC	CACTCTAAAT	1260
45	ACCACTACCA	GAAAGTGGCC	GTTCACCGCA	TGCAAGCCAG	CCACGGGGAG	ACCTTTCATG	1320
45	TGCTTTACCT	AACTACAGAC	AGGGGCACTA	TCCACAAGGT	GGTGGAACCG	GGGGAGCAGG	1380
	AGCACAGCTT	CGCCTTCAAC	ATCATGGAGA	TCCAGCCCTT	ccccccccc	GCTGCCATCC	1440
50	AGACCATGTC	GCTGGATGCT	GAGCGGAGGA	AGCTGTATGT	GAGCTCCCAG	TGGGAGGTGA	1500
	GCCAGGTGCC	CCTGGACCTG	TGTGAGGTCT	ATGGCGGGGG	CTGCCACGGT	TGCCTCATGT	1560

		CCCGAGACCC	CTACTGCGGC	TGGGACCAGG	GCCGCTGCAT	CTCCATCTAC	AGCTCCGAAC	1620
5		GGTCAGTGCT	GCAATCCATT	AATCCAGCCG	AGCCACACAA	GGAGTGTCCC	AACCCCAAAC	1680
		CAGACAAGGC	CCCACTGCAG	AAGGTTTCCC	TGGCCCCAAA	CTCTCGCTAC	TACCTGAGCT	1740
		GCCCCATGGA	ATCCCGCCAC	GCCACCTACT	CATGGCGCCA	CAAGGAGAAC	GTGGAGCAGA	1800
10	:•	GCTGCGAACC	TGGTCACCAG	AGCCCCAACT	GCATCCTGTT	CATCGAGAAC	CTCACGGCGC	1860
		AGCAGTACGG	CCACTACTTC	TGCGAGGCCC	AGGAGGGCTC	CTACTTCCGC	GAGGCTCAGC	1920
	-	ACTGGCAGCT	GCTGCCCGAG	GACGGCATCA	TGGCCGAGCA	CCTGCTGGGT	CATGCCTGTG	1980
15		CCCTGGCTGC	CTGAATTCGA	AGCTTGGAGT	CGACTCTGCT	GAAGAGGAGG	AAATTCTCCT	2040
	:	TGAAGTTTCC	CTGGTGTTCA	AAGTAAAGGA	GTTTGCACCA	GACGCACCTC	TGTTCACTGG	2100
20	<i>:</i>	TCCGGCGTAT	TAAAACACGA	TACATTGTTA	TTAGTACATT	TATTAAGCGC	TAGATTCTGT	2160
	-	GCGTTGTTGA	TTTACAGACA	ATTGTTGTAC	GTATTTTAAT	AATTCATTAA	ATTTATAATC	2220
		TTTAGGGTGG	TATGTTAGAG	CGAAAATCAA	ATGATTTTCA	GCGTCTTTAT	ATCTGAATTT	2280
25		AAATATTAAA	TCCTCAATAG	ATTTGTAAAA	TAGGTTTCGA	TTAGTTTCAA	ACAAGGGTTG	2340
		TTTTTCCGAA	CCGATGGCTG	GACTATCTAA	TGGATTTTCG	CTCAACGCCA	CAAAACTTGC	2400
30		CAAATCTTGT	AGCAGCAATC	TAGCTTTGTC	GATATTCGTT	TGTGTTTTGT	TTTGTAATAA	2460
		AGGTTCGACG	TCGTTCAAAA	TATTATGCGC	TTTTGTATTT	CTTTCATCAC	TGTCGTTAGT	2520
		GTACAATTGA	CTCGACGTAA	ACACGTTAAA	TAAAGCCTGG	ACATATTTAA	CATCGGGCGT	2580
35		GTTAGCTTTA	TTAGGCCGAT	TATCGTCGTC	GTCCCAACCC	TCGTCGTTAG	AAGTTGCTTC	2640
		CGAAGACGAT	TTTGCCATAG	CCACACGACG	CCTATTAATT	GTGTCGGCTA	ACACGTCCGC	2700
		GATCAAATTT	GTAGTTGAGC	TTTTTGGAAT	TATTTCTGAT	TGCGGGCGTT	TTTGGGCGGG	2760
40		TTTCAATCTA	ACTGTGCCCG	ATTTTAATTC	AGACAACACG	TTAGAAAGCG	ATGGTGCAGG	2820
	•.•	CGGTGGTAAC	ATTTCAGACG	GCAAATCTAC	TAATGGCGGC	GGTGGTGGAG	CTGATGATAA	2880
45		ATCTACCATC	GGTGGAGGCG	CAGGCGGGGC	TGGCGGCGGA	GGCGGAGGCG	GAGGTGGTGG	2940
	•	CGGTGATGCA	GACGGCGGTT	TAGGCTCAAA	TTGTCTCTTT	CAGGCAACAC	AGTCGGCACC	3000
		TCAACTATTG	TACTGGTTTC	GGGCGTATGG	TGCACTCTCA	GTACAATCTG	CTCTGATGCC	3060
50	-	GCATAGTTAA	GCCAGCCCCG	ACACCCGCCA	ACACCCGCTG	ACGCGCCCTG	ACGGGCTTGT	3120
		CTGCTCCCGG	CATCCGCTTA	CAGACAAGCT	GTGACCGTCT	CCGGGAGCTG	CATGTGTCAG	3180

	AGGIIIICAC	COTCATCACC	GAAACGCGCG	AGACGAAAGG	GCCTCGTGAT	ACGCCTATTT	3240
	TTATAGGTTA	ATGTCATGAT	AATAATGGTT	TCTTAGACGT	CAGGTGGCAC	TTTTCGGGGA	3300
5	AATGTGCGCG	GAACCCCTAT	TTGTTTATTT	TTCTAAATAC	ATTCAAATAT	GTATCCGCTC	3360
	ATGAGACAAT	AACCCTGATA	AATGCTTCAA	TAATATTGAA	AAAGGAAGAG	TATGAGTATT	3420
10 ·	CAACATTTCC	GTGTCGCCCT	TATTCCCTTT	TTTGCGGCAT	TTTGCCTTCC	TGTTTTTGCT	3480
	CACCCAGAAA	CGCTGGTGAA	AGTAAAAGAT	GCTGAAGATC	AGTTGGGTGC	ACGAGTGGGT	3540
	TACATCGAAC	TGGATCTCAA	CAGCGGTAAG	ATCCTTGAGA	GTTTTCGCCC	CGAAGAACGT	3600
15	TTTCCAATGA	TGAGCACTTT	TAAAGTTCTG	CTATGTGGCG	CGGTATTATC	CCGTATTGAC	3660
	GCCGGGCAAG	AGCAACTCGG	TCGCCGCATA	CACTATTCTC	AGAATGACTT	GGTTGAGTAC	3720
	TCACCAGTCA	CAGAAAAGCA	TCTTACGGAT	GGCATGACAG	TAAGAGAATT	ATGCAGTGCT	3780
20	GCCATAACCA	TGAGTGATAA	CACTGCGGCC	AACTTACTTC	TGACAACGAT	CGGAGGACCG	3840
	AAGGAGCTAA	CCGCTTTTTT	GCACAACATG	GGGGATCATG	TAACTCGCCT	TGATCGTTGG	3900
os.	GAACCGGAGC	TGAATGAAGC	CATACCAAAC	GACGAGCGTG	ACACCACGAT	GCCTGTAGCA	3960
25	ATGGCAACAA	CGTTGCGCAA	ACTATTAACT	GGCGAACTAC	TTACTCTAGC	TTCCCGGCAA	4020
	CAATTAATAG	ACTGGATGGA	GGCGGATAAA	GTTGCAGGAC	CACTTCTGCG	CTCGGCCCTT	4080
30 ·	CCGGCTGGCT	GGTTTATTGC	TGATAAATCT	GGAGCCGGTG	AGCGTGGGTC	TCGCGGTATC	4140
	ATTGCAGCAC	TGGGGCCAGA	TGGTAAGCCC	TCCCGTATCG	TAGTTATCTA	CACGACGGGG	4200
	AGTCAGGCAA	CTATGGATGA	ACGAAATAGA	CAGATCGCTG	AGATAGGTGC	CTCACTGATT	4260
35	AAGCATTGGT	AACTGTCAGA	CCAAGTTTAC	тсатататас	TTTAGATTGA	TTTAAAACTT	4320
	CATTTTTAAT	TTAAAAGGAT	CTAGGTGAAG	ATCCTTTTTG	ATAATCTCAT	GACCAAAATC	4380
	CCTTAACGTG	AGTTTTCGTT	CCACTGAGCG	TCAGACCCCG	TAGAAAAGAT	CAAAGGATCT	4440
40	TCTTGAGATC	сттттттст	GCGCGTAATC	TGCTGCTTGC	АААСААААА	ACCACCGCTA	4500
	CCAGCGGTGG	TTTGTTTGCC	GGATCAAGAG	CTACCAACTC	TTTTTCCGAA	GGTAACTGGC	4560
45	TTCAGCAGAG	CGCAGATACC	AAATACTGTT	CTTCTAGTGT	AGCCGTAGTT	AGGCCACCAC	4620
	TTCAAGAACT	CTGTAGCACC	GCCTACATAC	CTCGCTCTGC	TAATCCTGTT	ACCAGTGGCT	4680
	GCTGCCAGTG	GCGATAAGTC	GTGTCTTACC	GGGTTGGACT	CAAGACGATA	GTTACCGGAT	4740
50	AAGGCGCAGC	GGTCGGGCTG	AACGGGGGGT	TCGTGCACAC	AGCCCAGCTT	GGAGCGAACG	4800
•	ACCTACACCG	AACTGAGATA	CCTACAGCGT	GAGCTATGAG	AAAGCGCCAC	GCTTCCCGAA	4860

	GGGAGAAAGG	CGGACAGGTA	TCCGGTAAGC	GGCAGGGTCG	GAACAGGAGA	GCGCACGAGG	492
5	GAGCTTCCAG	GGGGAAACGC	CTGGTATCTT	TATAGTCCTG	TCGGGTTTCG	CCACCTCTGA	498
	CTTGAGCGTC	GATTTTTGTG	ATGCTCGTCA	GGGGGGGGA	GCCTATGGAA	AAACGCCAGC	504
	AACGCGGCCT	TTTTACGGTT	CCTGGCCTTT	TGCTGGCCTT	TTGCTCACAT	GTTCTTTCCT	510
10	GCGTTATCCC	CTGATTCTGT	GGATAACCGT	ATTACCGCCT	TTGAGTGAGC	TGATACCGCT	516
	CGCCGCAGCC	GAACGACCGA	GCGCAGCGAG	TCAGTGAGCG	AGGAAGCATC	CTGCACCATC	522
.,	GTCTGCTCAT	CCATGACCTG	ACCATGCAGA	GGATGATGCT	CGTGACGGTT	AACGCCTCGA	528
15	ATCAGCAACG	GCTTGCCGTT	CAGCAGCAGC	AGACCATTTT	CAATCCGCAC	CTCGCGGAAA	534
	CCGACATCGC	AGGCTTCTGC	TTCAATCAGC	GTGCCGTCGG	CGGTGTGCAG	TTCAACCACC	540
20 .	GCACGATAGA	GATTCGGGAT	TTCGGCGCTC	CACAGTTTCG	GGTTTTCGAC	GTTCAGACGT	546
,	AGTGTGACGC	GATCGGTATA	ACCACCACGC	TCATCGATAA	TTTCACCGCC	GAAAGGCGCG	552
	GTGCCGCTGG	CGACCTGCGT	TTCACCCTGC	CATAAAGAAA	CTGTTACCCG	TAGGTAGTCA	558
25	CGCAACTCGC	CGCACATCTG	AACTTCAGCC	TCCAGTACAG	CGCGGCTGAA	ATCATCATTA	564
	AAGCGAGTGG	CAACATGGAA	ATCGCTGATT	TGTGTAGTCG	GTTTATGCAG	CAACGAGACG	570
30	TCACGGAAAA	TGCCGCTCAT	CCGCCACATA	TCCTGATCTT	CCAGATAACT	GCCGTCACTC	576
	CAACGCAGCA	CCATCACCGC	GAGGCGGTTT	TCTCCGGCGC	GTAAAAATGC	GCTCAGGTCA	582
	AATTCAGACG	GCAAACGACT	GTCCTGGCCG	TAACCGACCC	AGCGCCCGTT	GCACCACAGA	588
35	TGAAACGCCG	AGTTAACGCC	ATCAAAAATA	ATTCGCGTCT	GGCCTTCCTG	TAGCCAGCTT	594
	TCATCAACAT	TAAATGTGAG	CGAGTAACAA	CCCGTCGGAT	TCTCCGTGGG	AACAAACGGC	600
	GGATTGACCG	TAATGGGATA	GGTCACGTTG	GTGTAGATGG	GCGCATCGTA	ACCGTGCATC	606
40 :	TGCCAGTTTG	AGGGGACGAC	GACAGTATCG	GCCTCAGGAA	GATCGCACTC	CAGCCAGCTT	6120
160	TCCGGCACCG	CTTCTGGTGC	CGGAAACCAG	GCAAAGCGCC	ATTCGCCATT	CAGGCTGCGC	6180
45	AACTGTTGGG	AAGGCCGATC	GGTGCGGGCC	TCTTCGCTAT	TACGCCAGCT	GGCGAAAGGG	6240
	GGATGTGCTG	CAAGGCGATT	AAGTTGGGTA	ACGCCAGGGT	TTTCCCAGTC	ACGACGTTGT	6300
	AAAACGACGG	GATCTATCAT	TTTTAGCAGT	GATTCTAATT	GCAGCTGCTC	TTTGATACAA	6360
50	CTAATTTTAC	GACGACGATG	CGAGCTTTTA	TTCAACCGAG	CGTGCATGTT	TGCAATCGTG	6420
	CAAGCGTTAT	CAATTTTTCA	TTATCGTATT	GTTGCACATC	AACAGGCTGG	ACACCACGTT	6480

	GAACTCGCCG CAGTTTTGCG GCAAGTTGGA CCCGCCGCGC ATCCAATGCA AACTTTCCGA	6540	•
_	CATTCTGTTG CCTACGAACG ATTGATTCTT TGTCCATTGA TCGAAGCGAG TGCCTTCGAC	6600	
,	TTTTTCGTGT CCAGTGTGGC TT	6622	
	(2) ANGABEN ZU SEQ ID NO: 43:		
10	(i) SEQUENZKENNZEICHEN:		
	(A) LÄNGE: 31 Basenpaare		
	(B) ART: Nucleotid (C) STRANGFORM: Einzelstrang		
15	(D) TOPOLOGIE: linear		
	(ii) ART DES MOLEKÜLS: Genom-DNA		
	(ix) MERKMAL:		
20	(A) NAME/SCHLÜSSEL: exon		
	(B) LAGE:131		
25	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 43:		
	CCGGATCCGC CCAGGGCCAC CTAAGGAGCG G	31	
30	(2) ANGABEN ZU SEQ ID NO: 44:		
	(i) SEQUENZKENNZEICHEN:		
	(A) LÄNGE: 29 Basenpaare (B) ART: Nucleotid		
	(C) STRANGFORM: Einzelstrang		
35	(D) TOPOLOGIE: linear		
	(ii) ART DES MOLEKŪLS: Genom-DNA		
40	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 44:		
	CTGAATTCAG GAGCCAGGGC ACAGGCATG	29	,
45			
	Determinantishe		

Patentansprüche

50

 Semaphorin enthaltend eine charakteristische Sema-Domäne, dadurch gekennzeichnet, daß das Protein ein Nterminales Signalpeptid und im C-terminalen Bereich eine Immunglobulin-ähnliche Domäne und eine Transmembrandomäne aufweist, wobei das Semaphorin als Semaphorin vom Typ L (SemaL) bezeichnet wird und Derivate des Semaphorins vom Typ L.

55

2. Semaphorin nach Anspruch 1, wobei das Protein (humanes Semaphorin vom Typ L (H-SemaL)) die Aminosäuresequenz SEQ ID NO. 3 hat.

- Semaphorin nach einem oder mehreren der Ansprüche 1 und 2, wobei das Protein im Bereich der Sema-Dom\u00e4ne eine Aminos\u00e4ureidentit\u00e4t von mindestens 40 % im Bezug auf die Sema-Dom\u00e4ne von H-SemaL aufweist.
- 4. Semaphorin nach einem oder mehreren der Ansprüche 1 bis 2, wobei das Protein die partielle Aminosäuresequenz SEQ ID NO. 4 enthält (murines Semaphorin (M-SemaL)).
 - 5. Nukleinsäure enthaltend eine Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L gemäß einem oder mehreren der Ansprüche 1 bis 4 kodiert sowie Derivate derselben.
- 6. Nukleinsäure nach Anspruch 5, wobei besagte Nukleinsäure-Sequenz ein Semaphorin L Gen ist.
 - 7. Nukleinsäure nach einem oder mehreren der Ansprüche 5 und 6, wobei besagte Nukleinsäure-Sequenz das Gen von H-SemaL enthält.
- Nukleinsäure nach Anspruch 5, wobei besagte Nukleinsäure-Sequenz die cDNA eines Semaphorins vom Typ L enthält.
 - 9. Nukleinsäure nach Anspruch 8, wobei die cDNA die cDNA von H-SemaL ist.
- 20 10. Nukleinsäure nach Anspruch 8, wobei die cDNA die cDNA von M-SemaL ist.

25

30

40

45

55

- 11. Verfahren zur Herstellung eines Semaphorins vom Typ L gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L oder ein Derivat derselben kodiert, in einen Expressionsvektor kloniert und exprimiert wird.
- 12. Verfahren gemaß Anspruch 11, wobei für die Expression eine eukaryotische Zelle verwendet wird.
- 13. Verwendung eines Semaphorins vom Typ L oder eines Derivats desselben oder einer Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L kodiert oder eines Derivats derselben zur Herstellung eines Arzneimittels, das zur Behandlung oder Prävention von immunologischen Erkrankungen verwendet werden kann.
- 14. Verwendung einer Nukleinsäure-Sequenz oder eines Derivats derselben nach Anspruch 13 in der Gentherapie.
- 15. Verwendung eines Semaphorins vom Typ L oder einer Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L
 kodiert in einem Verfahren zur Identifizierung von immunmodulierenden Wirkstoffen.
 - 16. Verfahren zur Identifizierung von immunmodulierenden Wirkstoffen, dadurch gekennzeichnet, daß ein Semaphorin vom Typ L unter definierten Bedingungen mit einem zu untersuchenden Wirkstoff inkubiert wird, parallel ein zweiter Ansatz ohne den zu untersuchenden Wirkstoff, aber unter ansonsten gleichen Bedingungen durchgeführt wird und dann die inhibierende bzw. aktivierende Wirkung des zu untersuchenden Wirkstoffs bestimmt wird.
 - 17. Verfahren zur Identifizierung von immunmodulierenden Wirkstoffen, dadurch gekennzeichnet, daß eine Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L kodiert unter definierten Bedingungen und in Gegenwart eines zu untersuchenden Wirkstoffs exprimiert wird und das Ausmaß der Expression bestimmt wird.
 - 18. Verfahren zur Herstellung einer Nukleinsäure, die für ein Semaphorin vom Typ L kodiert, wobei diese Nukleinsäure mit Hilfe der Polymerase Ketten Reaktion unter Verwendung von spezifischen Primern amplifiziert wird.
- 19. Semaphorin Antikörper, dadurch gekennzeichnet, daß er entweder das Epitop von H-SemaL, das den Aminosäuren 179-378 in SED ID NO: 4 entspricht, erkennt oder daß er das Epitop von H-SemaL, das den Aminosäuren 480-666 in SED ID NO: 4 entspricht, erkennt.
 - 20. Verfahren zur Herstellung eines Semaphorin Antikörpers nach Anspruch 19, wobei die Epitope als Fusionsproteine mit einem Epitop-Tag exprimiert und über dieses Epitop-Tag aufgereinigt werden und die aufgereinigten Fusionsproteine zur Immunisierung verwendet werden.

Hig: 1

kb

9.5 7.5

4.4 -

2.4

1.35

Beta-Actin Kontrolle

Hig. 4-g (LCL EBV-Transformierte B-Zellen)

Spezifisches Antiserum

800

400 600

200-

FSC-H/FSC-Höhe

Hig. 4k (CBL-Mix59)

Hig: 6

Hig. T

(11) EP 0 892 047 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

- (88) Veröffentlichungstag A3: 08.03.2000 Patentblatt 2000/10
- (43) Veröffentlichungstag A2: 20.01.1999 Patentblatt 1999/03
- (21) Anmeldenummer: 98112470.4
- (22) Anmeldetag: 06.07.1998

(51) Int. Cl.⁷: **C12N 15/12**, C07K 14/47, A61K 48/00, G01N 33/50

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorităt: 09.07.1997 DE 19729211 11.02.1998 DE 19805371 (71) Anmelder:

Hoechst Marion Roussel Deutschland GmbH 65929 Frankfurt am Main (DE)

- (72) Erfinder:
 - Fleckenstein, Bernhard, Prof. Dr. 91369 Wiesenthau (DE)
 - Ensser, Armin, Dr. 90419 Nürnberg (DE)

(54) Humanes und murines Semaphorin L

(57) Humanes Semaphorin L(H-SemaL) und korrespondierende Semaphorine in anderen Spezies.

Gegenstand der Erfindung sind neuen Semaphorine, die sich durch eine besondere Domänenstruktur auszeichnen und deren Derivate, Nukleinsäuren (DNA, RNA, cDNA), die für diese Semaphorine kodieren und deren Derivate sowie die Verwendung derselben.

Gegenstand der vorliegenden Erfindung sind Semaphorine mit einer neuen, bisher nicht bekannten und nicht zu erwartenden Domänenstruktur, denen eine biochemische Funktion im Immunsystem zukommt (immunmodulierende Semaphorine). Die erfindungsgemäßen Semaphorine werden als Semaphorine vom Typ L (SemaL) bezeichnet. Sie enthalten ein N-terminales Signalpeptid, eine charakteristische Sema-Domäne und im C-terminalen Bereich des Proteins eine Immunglobulin-ähnliche Domäne und eine hydrophobe Domäne, die eine potentielle Transmembrandomäne darstellt.

Nummer der Anmeldung

EP 98 11 2470

	EINSCHLÄGIG	E DOKUMENTE			
Kategorie	Kennzeichnung des Doku der maßgeblic	ments mit Angabe, soweit erfor hen Teile	derlich.	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.6)
D,X	ENSSER A ET AL: "type 1 has a semapl JOURNAL OF GENERAL Bd. 76, 1995, Seite XP002113888 SOCIETY FOR GENERAL READING., GB ISSN: 0022-1317 * Abbildung 2 *	horin-like gene" VIROLOGY., en 1063-1067,			C12N15/12 C07K14/47 A61K48/00 G01N33/50
į	DATABASE EMBL 'On' Accession Number HG 22. Juni 1995 (1999) HILLIER L ET AL: "S CDNA clone 151129 S A49069 COLLAPSIN - XP002125533 * 94% identität (42 und H03806 *	03806, 5-06-22) vj39f01.r1 Homo sap b'similar to SP:A4 ;"	9069		
	DATABASE EMBL Onlaccession number AA 19. März 1997 (1997 MARRA M ET AL: "vag 3NME12 5 Mus muscul similar to TR:G1000 GENBANK ACCESSION N XP002125534 * 99.7% identität (1 und H03806 *	0260340, 7-03-19) 11b02.rl Soares mou us cDNA clone 7467 1717 G1000717 SIMIL UMBER L26081. ;"	63 5' AR TO	-	RECHERCHIERTE SACHGEBIETE (Int.C1.6) C12N C07K A61K G01N
	liegende Recherchenbericht wu Recherchenort DEN HAAG	Abschindarum : (i.e.h.	2000		Proter Pune, R
X : von b Y : von b ander A : techn	TEGORIE DER GENANNTEN DOKI esonderer Bedeutung allein betracht esonderer Bedeutung in Verbindung en Veröffentlichung derseiben Kateg ologischer Himergrund schriftliche Offenbarung thentiteratur	et alteres mit einer D in der A porie L aus ans	Patentdokume m Anmeldeda Inmeldung an Ieren Gründer	ent, das jedoc itum veröffent geführtes Dok i angeführtes	Dokument

Nummer der Anmeldung EP 98 11 2470

	EINSCHLAGIG	E DOKUMENTE		
Kategorie	Kennzeichnung des Doku der maßgeblic	ments mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
T	glycosylphosphatid molecule CDw108" JOURNAL OF IMMUNOL Bd. 162, 1. April Seiten 4094-4100, THE WILLIAMS AND W US ISSN: 0022-1767	1999 (1999-04-01), XP002123609 ILKINS CO. BALTIMORE., zwischen SEQ ID 1 und 1) *	1-3,5-9, 11,12, 18-20	
	H-Sema-L (Abbildung -& DATABASE EMBL Accession Number Al 8. September 1998 (LANGE C ET AL: "Mus (SemaL) mRNA, parts XP002125537	lose homology to uses" 1998 (1998-08-01), 202113887 wischen SEQ ID 1 und g 3) * 1001ine! 5030699, 1998-09-08) 5 musculus semaphorin L	1-12.18	RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
		-/ ·		
Der vor	liegende Recherchenbericht wu	rde für alle Patentansprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche		Prûfer
	DEN HAAG	10. Januar 2000	laia	une, R
X : von b Y : von b ander A : techn O : nicht	TEGORIE DER GENANNTEN DOK esonderer Bedeutung allein betrach esonderer Bedeutung in Verbindun en Veröffentlichung derselben Kate ologischer Hintergrund schriftliche Offenbarung chenliteratur	UMENTE T : der Erlindung zus E : älteres Patentdol tet nach dem Anmek g mit einer D : in der Anmektung gorie L : aus anderen Grü	grunde liegende Th Kument, das jedoch deatum veröffentl g angeführtes Dokt nden angeführtes (neorien oder Grundsätze h erst am oder iicht worden ist ument Dokument

Nummer der Anmeldung

EP 98 11 2470

	EINSCHLÄGIG	E DOKUMENTE		
Kategorie		ments mit Angabe, soweit erforderlich.	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.6)
T	glycosylphosphatid defines a new subfi semaphorins" JOURNAL OF BIOLOGIO Bd. 273, Nr. 35, 28. August 1998 (19 22428-22434, XP002)	998-08-28), Seiten	1-3,5-9, 11,12,18	
	ISSN: 0021-9258	wischen SEQ ID 1 und 1) *		
E	WO 99 45114 A (ZYMO 10. September 1999	GENETICS INC) (1999-09-10)	1-3,5-9, 11,12, 18-20	
	* 99.8% identität z SEQ ID 1 von W09945 * Beispiel 4 *	wischen SEQ ID 1 und i114) *	10-20	
	5. August 1999 (199	wischen SEQ ID 1 und	1-3,5-9, 11,12,18	RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
	CORP (US)) 18. Nove	GGS MELANIE K ;IMMUNEX mber 1999 (1999-11-18) zwischen SEQ ID 1 und 676 *	1-3,5-9, 11,12,18	·
		-/		
Der vori	iegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
	Recherchenon	Abschlußdalum der Recherche	 	Prüler
{	DEN HAAG	10. Januar 2000	Leje	une, R
X : von be Y : von be andere A : lechne	rEGORIE DER GENANNTEN DOKL esonderer Bedeutung allein betracht esonderer Bedeutung in Verbindung en Veröffentlichung derselben Kateg ologischer Hintergrund chriftliche Offenbarung henliteratur	E : alteres Patentdo et nach dem Anme mit einer D : in der Anmeldun orie L : aus anderen Grü	grunde liegende Th kument, das jedoch Idedatum veröffentli g angeführtes Doku Inden angeführtes C	eorien oder Grundsätze erst am oder cht worden ist ment ookument

Nummer der Anmeldung

EP 98 11 2470

Kategorie	Kennzeichnung des Dokuments m der maßgeblichen Teil	it Angabe, soweit erforderlich,	Betrifft	KLASSIFIKATION DER
T	DATABASE EMBL 'Online!		Anspruch 1, 3-6, 8,	ANMELDUNG (Int.Cl.6)
	Accession Number AF1766 7. September 1999 (1999 MINE T ET AL: "Mus musc membrane protein CDw108 mRNA, complete cds." XP002125535	-09-07) ulus GPI-anchored	10-12,18	·
	* 99.8% identität zwisc AF176670 * .	hen SEQ ID _. 2 und		
T	DATABASE EMBL 'Online! Accession number ab0175 15. März 1999 (1999-03- TAKAHASHI H ET AL: "Mus msemKlp, complete cds." XP002125536	15) musculus mRNA for	1.3-6.8, 10-12,18	
	* 99.8% identität zwiscl AB017532 *	hen SEQ ID 2 und		
				RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
Der vo	rliegende Recherchenbericht wurde für a	alle Patentansprüche erstellt		
Recherchenon DEN HAAG		Abschußdalum der Recherche 10. Januar 2000	Leje	ergler une, R
X : von Y : von ande	ATEGORIE DER GENANNTEN DOKUMENTE besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung mit eine iren Veröffentlichung derselben Kategorie nologischer Hirtergrund tschriffliche Offenbarung	E ; alteres Patentdol nachidem Anmek r D ; in der Anmeldung L ; aus anderen Grüi	ument, das jedoch ledatum veröffentl g angeführtes Doki nden angeführtes (icht worden ist ument