Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 October 31, 2016

Due: A. November 11, 2016; B. November 22, 2016

A. Boosting

- 1. Implement AdaBoost with boosting stumps and apply the algorithm to the spambase data set of HW2 with the same training and test sets. Plot the average cross-validation error plus or minus one standard deviation as a function of the number of rounds of boosting T by selecting the value of this parameter out of $\{10, 10^2, \ldots, 10^k\}$ for a suitable value of k, as in HW2. Let T^* be the best value found for the parameter. Plot the error on the training and test set as a function of the number of rounds of boosting for $t \in [1, T^*]$. Compare your results with those obtained using SVMs in HW2.
- 2. Consider the following variant of the classification problem where, in addition to the positive and negative labels +1 and -1, points may be labeled with 0. This can correspond to cases where the true label of a point is unknown, a situation that often arises in practice, or more generally to the fact that the learning algorithm incurs no loss for predicting -1 or +1 for such a point. Let $\mathcal X$ be the input space and let $\mathcal Y=\{-1,0,+1\}$. As in standard binary classification, the loss of $f\colon \mathcal X\to\mathbb R$ on a pair $(x,y)\in \mathcal X\times \mathcal Y$ is defined by $1_{yf(x)<0}$.

Consider a sample $S = ((x_1, y_1), \dots, (x_m, y_m)) \in (\mathcal{X} \times \mathcal{Y})^m$ and a hypothesis set H of base functions taking values in $\{-1, 0, +1\}$. For a base hypothesis $h_t \in H$ and a distribution D_t over indices $i \in [1, m]$, define ϵ_t^s for $s \in \{-1, 0, +1\}$ by $\epsilon_t^s = \mathbb{E}_{i \sim D_t}[1_{y_i h_t(x_i) = s}]$.

- (a) Derive a boosting-style algorithm for this setting in terms of ϵ_t^s s, using the same objective function as that of AdaBoost. You should carefully justify the definition of the algorithm.
- (b) What is the weak-learning assumption in this setting?
- (c) Write the full pseudocode of the algorithm.
- (d) Give an upper bound on the training error of the algorithm as a function of the number of rounds of boosting and ϵ_t^s s.

B. On-line learning

The objective of this problem is to show how another regret minimization algorithm can be defined and studied. Let L be a loss function convex in its first argument and taking values in [0, M].

We will adopt the notation used in the lectures and assume $N > e^2$. Additionally, for any expert $i \in [1, N]$, we denote by $r_{t,i}$ the instantaneous regret of that expert at time $t \in [1, T]$, $r_{t,i} = L(\widehat{y}_t, y_t) - L(y_{t,i}, y_t)$, and by $R_{t,i}$ his cumulative regret up to time $t: R_{t,i} = \sum_{s=1}^t r_{t,i}$. For convenience, we also define $R_{0,i} = 0$ for all $i \in [1, N]$. For any $x \in \mathbb{R}$, $(x)_+$ denotes $\max(x, 0)$, that is the positive part of x, and for $\mathbf{x} = (x_1, \dots, x_N)^\top \in \mathbb{R}^N$, $(\mathbf{x})_+ = ((x_1)_+, \dots, (x_N)_+)^\top$.

Let $\alpha>2$ and consider the algorithm that predicts at round $t\in[1,T]$ according to $\widehat{y}_t=\frac{\sum_{i=1}^n w_{t,i}y_{t,i}}{\sum_{i=1}^n w_{t,i}}$, with the weight $w_{t,i}$ defined based on the α th power of the regret up to time (t-1): $w_{t,i}=(R_{t-1,i})_+^{\alpha-1}$. The potential function we use to analyze the algorithm is based on the function Φ defined over \mathbb{R}^N by $\Phi\colon\mathbf{x}\mapsto\|(\mathbf{x})_+\|_{\alpha}^2=\left[\sum_{i=1}^N (x_i)_+^{\alpha}\right]^{\frac{2}{\alpha}}$.

1. Show that Φ is twice differentiable over $\mathbb{R}^N - B$, where B is defined as follows:

$$B = \{ \mathbf{u} \in \mathbb{R}^N \colon (\mathbf{u})_+ = 0 \}.$$

- 2. For any $t \in [1,T]$, let \mathbf{r}_t denote the vector of instantaneous regrets, $\mathbf{r}_t = (r_{t,1},\ldots,r_{t,N})^{\top}$, and similarly $\mathbf{R}_t = (R_{t,1},\ldots,R_{t,N})^{\top}$. We define the potential function as $\Phi(\mathbf{R}_t) = \|(\mathbf{R}_t)_+\|_{\alpha}^2$. Compute $\nabla \Phi(\mathbf{R}_{t-1})$ for $\mathbf{R}_{t-1} \notin B$ and show that $\nabla \Phi(\mathbf{R}_{t-1}) \cdot \mathbf{r}_t \leq 0$ (hint: use the convexity of the loss with respect to the first argument).
- 3. (Bonus question) Prove the inequality $\mathbf{r}^{\top}[\nabla^2\Phi(\mathbf{u})]\mathbf{r} \leq 2(\alpha-1)\|\mathbf{r}\|_{\alpha}^2$ valid for all $\mathbf{r} \in \mathbb{R}^N$ and $\mathbf{u} \in \mathbb{R}^N B$ (hint: write the Hessian $\nabla^2\Phi(\mathbf{u})$ as a sum of a diagonal matrix and a positive semi-definite matrix multiplied by $(2-\alpha)$. Also, use Hölder's inequality generalizing Cauchy-Schwarz: for any p>1 and q>1 with $\frac{1}{p}+\frac{1}{q}=1$ and $\mathbf{u},\mathbf{v} \in \mathbb{R}^N$, $|\mathbf{u}\cdot\mathbf{v}|\leq \|\mathbf{u}\|_p\|\mathbf{v}\|_q$).
- 4. Using the answers to the two previous questions and Taylor's formula, show that for all $t \geq 1$, $\Phi(\mathbf{R}_t) \Phi(\mathbf{R}_{t-1}) \leq (\alpha 1) \|\mathbf{r}_t\|_{\alpha}^2$, if $\gamma \mathbf{R}_{t-1} + (1 \gamma) \mathbf{R}_t \not\in B$ for all $\gamma \in [0, 1]$.
- 5. Suppose there exists $\gamma \in [0, 1]$ such that $(1 \gamma)\mathbf{R}_{t-1} + \gamma\mathbf{R}_t \in B$. Show that $\Phi(\mathbf{R}_t) \leq (\alpha 1)\|\mathbf{r}_t\|_{\alpha}^2$.
- 6. Using the two previous questions, derive an upper bound on $\Phi(\mathbf{R}_T)$ expressed in terms of T, N, and M.

- 7. Show that $\Phi(\mathbf{R}_T)$ admits as a lower bound the square of the regret R_T of the algorithm.
- 8. Using the two previous questions give an upper bound on the regret R_T . For what value of α is the bound the most favorable? Give a simple expression of the upper bound on the regret for a suitable approximation of that optimal value.