ROC, AUC

混淆矩阵

混淆表(confusion table)		分类器预测的类别	
		у1	у2
实际的类别	у1	C11	C12
	y2	C21	C22

- 准确度Accuracy: (C11+C22)/(C11+C12+C21+C22)
- 正确率Precision (y1) : C11/(C11+C21)
- 召回率Recall (y1) : C11/(C11+C12)

评测指标

混淆表(confusion table)		分类器预测的类别	
		军事	科技
实际的类别	军事(60)	50	10
	科技(40)	5	35

- 准确度Accuracy: (50+35)/(35+5+10+50)=85%
- 正确率Precision (y1): 50/(50+5)=90.9%
- 召回率Recall (y1): 50/(50+10)=83.3%

评测指标

混淆表 (confusion table)		分类器预测的类别	
		+1	-1
实际的类别	+1	真正例 (TP)	伪反例(FN)
	-1	伪正例(FP)	真反例 (TN)

- 正确率Precision: TP/(TP+FP)
 - 预测为正例的样本中的真正正例的比例
- 召回率Recall: TP/(TP+FN)
 - 预测正例的真实正例占所有真实正例的比例

——八斗大数据内部资料,盗版必究——

评测指标

- 很容易构造一个高正确率或高召回率的分类器,但很难保证两全其美
- 一般情况下准确率高、召回率就低,召回率高、准确率低

- 搜索场景:
 - 保证召回为前提,提升准确
- 疾病监测、反垃圾场景:
 - 保证准确为前提,提升召回

——八斗大数据内部资料,盗版必究——

ROC

• ROC是个曲线

混淆表 (confusion table)		分类器预测的类别	
		+1	-1
实际的类别	+1	真正例 (TP)	伪反例(FN)
	-1	伪正例 (FP)	真反例 (TN)

• 纵轴: 真阳率: TP/(TP+FN)

- Recall

横轴: 假阳率: FP/(FP+TN)

——八斗大数据内部资料,盗版必究——

ROC, AUC

真阳率: TP/(TP+FN)

快速方法

- 另一种理解AUC的方法:
 - 负样本排在正样本前面的概率
- cat auc.raw | sort -t $^+$ '\t' -k2g |awk -F'\t' '(1==-1++x;a+=y;}(1==1++y;}END{print 1.0-a/(x*y);} '

- x*y: 正负样本pair对
- a: 错误的pair对
- a/x*y: 错误的概率
- 1-a/x*y: 正确的概率

Q&A

@八斗学院