

(Artificial) Neural Networks

Industrial AI Lab.

Prof. Seungchul Lee

Output Inear combination

Output of inputs $\hat{y} = g \left(\sum_{i=1}^{m} x_i \; \theta_i \right)$ Non-linear activation function

Inputs Weights Sum Non-Linearity Output

$$\hat{y} = g \left(\theta_0 + \sum_{i=1}^m x_i \theta_i \right)$$

$$\hat{y} = g \left(\theta_0 + \boldsymbol{X}^T \boldsymbol{\theta} \right)$$

where:
$$\boldsymbol{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and $\boldsymbol{\theta} = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_m \end{bmatrix}$

Activation Functions

$$\hat{y} = g (\theta_0 + X^T \theta)$$

• Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

tf.nn.sigmoid(z)

Hyperbolic Tangent

$$g(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

We have:
$$\theta_0 = 1$$
 and $\boldsymbol{\theta} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$\hat{y} = g \left(\theta_0 + X^T \boldsymbol{\theta} \right)$$

$$= g \left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right)$$

$$\hat{y} = g \left(1 + 3x_1 - 2x_2 \right)$$

This is just a line in 2D!

Assume we have input: $X = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

$$\hat{y} = g(1 + (3*-1) - (2*2))$$

= $g(-6) \approx 0.002$

Artificial Neural Networks: Perceptron

- Perceptron for $h(\theta)$ or $h(\omega)$
 - Neurons compute the weighted sum of their inputs
 - A neuron is activated or fired when the sum a is positive

- $a=\omega_0+\omega_1x_1+\cdots \ o=\sigma(\omega_0+\omega_1x_1+\cdots)$

- A step function is not differentiable
- One layer is often not enough

XOR Problem

- Minsky-Papert Controversy on XOR
 - not linearly separable
 - Limitation of perceptron

x_1	x_2	x_1 XOR x_2
0	0	0
0	1	1
1	0	1
1	1	0

• Single neuron = one linear classification boundary

Artificial Neural Networks: MLP

- Multi-layer Perceptron (MLP) = Artificial Neural Networks (ANN)
 - Multi neurons = multiple linear classification boundaries

Artificial Neural Networks: Activation Func.

• Differentiable non-linear activation function

Artificial Neural Networks

• In a compact representation

Artificial Neural Networks

- Multi-layer perceptron
 - Features of features
 - Mapping of mappings

ANN: Transformation

• Affine (or linear) transformation and nonlinear activation layer (notations are mixed: $g = \sigma, \omega = \theta, \omega_0 = b$)

$$o(x) = g\left(heta^T x + b
ight)$$

• Nonlinear activation functions $(g = \sigma)$

ANN: Architecture

- A single layer is not enough to be able to represent complex relationship between input and output
 - ⇒ perceptron with many layers and units

$$\sigma_{2}=\sigma_{2}\left(heta_{2}^{T}o_{1}+b_{2}
ight)=\sigma_{2}\left(heta_{2}^{T}\sigma_{1}\left(heta_{1}^{T}x+b_{1}
ight)+b_{2}
ight)$$

• The perceptron classification rule boils down to

$$f(x) = \sigma(w \cdot x + b).$$

• For neural networks, the function σ that follows a linear operator is called the activation function.

• We can also use tensor operations, as in

$$f(x) = \sigma(w \cdot x + b).$$

• We can represent this "neuron" as follows:

$$f(x) = \sigma(w \cdot x + b).$$

• The main weakness of linear predictors is their lack of capacity. For classification, the populations have to be linearly separable.

• The xor example can be solved by pre-processing the data to make the two populations linearly separable.

$$\Phi: (x_u, x_v) \mapsto (x_u, x_v, x_u x_v).$$

• The xor example can be solved by pre-processing the data to make the two populations linearly separable.

$$\Phi: (x_u, x_v) \mapsto (x_u, x_v, x_u x_v).$$

• The xor example can be solved by pre-processing the data to make the two populations linearly separable.

$$\Phi: (x_u, x_v) \mapsto (x_u, x_v, x_u x_v).$$

• Nonlinear mapping + neuron

$$\Phi: (x_u, x_v) \mapsto (x_u, x_v, x_u x_v).$$

- Nonlinear mapping can be represented by another neurons
- We can generalize an MLP

Linear Classifier

• Perceptron tries to separate the two classes of data by dividing them with a line

Neural Networks

• The hidden layer learns a representation so that the data gets linearly separable

Understanding a Network's Behavior

- Understanding what is happening in a deep architectures after training is complex and the tools we have at our disposal are limited.
- We can look at
 - the network's parameters, filters as images,
 - internal activations as images,
 - distributions of activations on a population of samples,
 - derivatives of the response(s) wrt the input,
 - maximum-response synthetic samples,
 - adversarial samples.

Nonlinearly Distributed Data

Multi Layers

Multi Layers

