SUPERCONDUCTING FPGA DEVICE

Publication number: JP8148989 (A)

Publication date: 1996-06-07

Inventor(s): HATANO MUTSUKO; NAGAISHI HIDEYUKI; HOSOYA MUTSUMI

Applicant(s):

HITACHI LTD

Classification:

- international: H01L39/22; H01L21/82; H01L27/118; H03K17/00; H03K19/195; H01L39/22; H01L21/70; H01L27/118; H03K17/00; H03K19/02; (IPC1-7): H03K19/195;

H01L27/118; H01L39/22; H03K17/00

- European:

Application number: JP19940284733 19941118 Priority number(s): JP19940284733 19941118

Abstract of JP 8148989 (A) PURPOSE: To configure the FPGA device with low

power consumption at a high speed by using a Josephson integrated circuit, CONSTITUTION: The device is provided with logic units having a prescribed logic function arranged as a matrix and a wiring unit 812 located between logic units 812 in the vertical direction and the horizontal direction and connected to the logic unit 8, and the connection between the logic unit 812 and the wiring unit and the connection between the vertical and horizontal wires are made by using a superconducting multiplexer 811 and an objective logic function is realized between input terminals and output terminals being parts of the wiring unit 812.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開平8-148989

(43)公開日 平成8年(1996)6月7日

(51) Int.Cl. ⁶		識別配号		庁内整理番号	ΡI	技術表示臨所				
H03K	19/195	ZAA		9199-5K						
H01L	27/118									
	39/22	ZAA	K							
H03K	17/00	ZAA	F	9184-5K						
					H01L	21/82		M		
					審查請求	未請求	請求項の数4	OL	(全	7 頁)
(21) 出願番号		特顯平6-284733			(71)出額人	0000051	108		-	
						株式会	社日立製作所			
(22)出顧日		平成6年(1994)11月18日				東京都	千代田区神田駿	何台四,	厂目6 1	野地
					(72)発明者	波多野	睦子			
						東京都	国分寺市東恋ケ	生1丁	1280福	地
						株式会	社日立製作所中	央研究形	枘	
					(72)発明者	永石 3	英幸			
						東京都	3分寺市東恋ケ	年1丁日	1280番	地
						株式会社	吐日立製作所中	央研究所	附	
					(72)発明者	細谷 目	陸			
							国分寺市東恋ケ			地
							生日立製作所中5	共研究的	枘	
					(74)代理人	弁理士	小川 勝男			

(54) 【発明の名称】 超電導FPGA装置

(57)【要約】

【目的】ジョセフソン集積回路で高速かつ低消費電力の FPGA装置を構成する。

【構成】格子状に整列された一定の論理機能を有する論理ユニットと、誘端ユニットの垂直方向と水平方向との間に設けられ、前記論理ユニットと起線ユニットとの接続、及び垂直衛と水平順配線との接続に超電等ルチブレウが使用されており、前記論理等ルチブレウが使用されており、前記館標等ルチブレウが明白されており、前記館標等ルチブレウがの明り替え刺郷により、配線ユニットの一部である入力端子と出力端子との間に目的とする論理機能を実現する。

【特許請求の範囲】

【請求項1】格子状に整列された一定の論理機能を有す る論理ユニットと、前記論理ユニットの垂直方向と水平 方向との間に設けられ、前記論理ユニットに接続された 配線ユニットとからなり、前記論理ユニットと前記配線 ユニットとの接続、及び垂直方向配線と水平方向配線と の接続に超電導マルチプレクサが使用され、前記紹雷邁 マルチプレクサの切り替え制御により、前記配線ユニッ トの一部である入力端子と出力端子との間に目的とする 論理機能を実現することを特徴とする超電導FPGA装 10

【請求項2】請求項1に記載の前記超電導マルチプレク サは、一本の信号配線と信号配線のイネーブル配線が正 方向に入力される正衡ジョセフソン素子と、前記信号配 線が逆方向に入力され、前記信号配線のイネーブル配線 が正方向に入力される逆側ジョセフソン素子とを一組と し、それらの複数組を従属接続してなり、複数組のうち の一組にイネーブル入力が与えられることにより、その 一組と同一の組の信号線の入力が出力に現われる紹言道 FPGA装置。

【請求項3】請求項2に記載の前記イネーブル入力は、 2個のジョセフソン素子とそれらを直列接続する紹雷導 配線とで構成される超電導ループのループ電流として供 給され、前記FPGA装置に論理機能を設定する論理プ ログラム時にループ電流が設定されて超電導マルチプレ クサの特定入力の選択を実現し、論理実行時にはその選 択状態を保持する超雷導FPGA装置。

【請求項4】請求項1において、順序回路を模擬する機 能を有するフリップフロップユニットを含み、前記フリ ップフロップユニットの出力は前記超電導マルチプレク 30 サを介して論理ユニットと配線ユニットの配列の先頭に 帰還されている超電導FPGA装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ボードに実装した状態 でLSIに論理機能を設定可能なフィールドプログラマ ブル ゲート アレイ(Field Programmable Gate Arra y.以下、FPGA)装置に係り、特に、論理素子及びプログ ラム素子にジョセフソン素子を用いた超電導FPGA装 置に関する。

[00002]

【従来の技術】ボードに実装した状態でLSIに論理機 能を設定可能なFPGA装置に関しては、従来多数の製 品が発表されている。中でも代表的なザイリンクス (Xi linx) 社のFPGA装置が日経マイクロデバイス Wo.1 08,60ページ,(1994年)に記述されている。

[0003] ザイリンクス社のFPGA装置は、可変論 理コニットの入出力端子を水平または垂直方向配線チャ ネルに選択接続することにより、ユーザの希望する任意 の論理機能をLSIチップ内に実現できる。

【0004】論理エミュレーション装置の全体構成を図 5に示す。同図で101はエミュレーション装置全体を 収容するLSIチップ、102は可変論理ユニット 1 03は1/0ユニット、104は水平方向配線、105 は垂直方向配線である。可変論理ユニットの入出力端子 を水平または垂直方向配線に選択接続することにより、 希望する任意の論理機能をLSIチップ内に実現でき る。なお装置の配線には超電導線を用いることにより信 号の遅延を減少させて、高速化、低消費電力化を図る。 【0005】可変論理ユニットの構成を図6に示す。同 図で201はユーザプログラマブルルックアップテーブ ル、202はユーザプログラマブルマルチプレクサ、2 03はフリップフロップ、204は入力信号線、205 は出力信号線である。

【0006】ユーザプログラマブルルックアップテーブ ル201の内容及びユーザプログラマブルマルチプレク サ202の切替はRAMセル群206により制御され る。可変論理ユニットの入出力配線は、水平方向配線ま たは垂直方向配線とスイッチマトリックスで接続され 20 る。同様に水平方向配線と垂直方向配線はスイッチマト リックスで接続される。スイッチマトリックスは配線間 スイッチを格子状に整列させたものである。

【0007】配線間スイッチ305の構成を図7に示 す。同図で401はCMOSのスイッチであり、水平方 向配線104と、垂直方向配線105を接続する。接続 の制御はRAMセル402により行われる。RAMセル 402の内容は '1' であると水平方向配線104と、 垂直方向配線105は接続され、'0'であると両者は 切り離される。CMOSスイッチ401はオフ時に殆ど 無限大の抵抗値を実現できるので、理想的な双方向スイ ッチとして動作可能である。

【0008】以上のようなFPGA装置は配線間スイッ チ305の切り替えにより、任意の機能を実現できる。 CMOS集積化技術の進歩により、1LSI内に等価的 に実現できる論理回路の規模も数千ゲートに達する。こ のため、このようなFPGA装置はLSIの試作前のボ ードの動作検証や論理エミュレーション装置として広く 用いられている。

[00009]

【発明が解決しようとする課題】音声や画像のLSIの 検証は実時間で行う必要が有る。その際に要求される速 度はクロック200MHzから500MHz以上であ る。さらに対象が並列に展開できないので並列処理や分 散処理をさせることが不可能である。

【0010】従来のFPGA装置を応用した論理エミュ レーション装置の制約は、等価的な論理を本来目的とす るLSI上に最適な形で実現した場合に対比して、動作 速度が遅いことにある。例えば、現在のサブミクロン(MOSプロセスで最適設計を行えばクロック100MH 50 z程度の論理回路を実現することは可能であるが、論理

【0011】これは、プログラマビリティを実現する手 段としてCMOSあるいはフラッシュメモリを配線間ス イッチ用の素子として用いた場合、論理ゲート間に介在 している配線チャネルや配線間スイッチの寄生容量や寄 生抵抗が大きいためである。このため実時間との差が2 0倍以上あり、これでは実時間での論理ネットリストの 検証が困難となる。

【0012】一方、配線間スイッチ用の素子として、バ 10 構成方法が異なってくる。 イポーラやGaAs素子のSRAMを用いた場合、SR AMは6個以上のフリップフロップ回路から構成されて いるため、素子数が膨大となることから高集精化が困難 である。さらに、CMOS、パイポーラ素子あるいはフ ラッシュメモリを用いると、素子の駆動電圧が1V以上 であるため消費電力が大きくなり、高集積化ができなく なるとともに、通信用の携帯機器への適用が困難であ る。また、従来のFPGA装置にSRAMを用いたもの では、電源を落すと書き込んだプログラムが消去される という問題があった。

【0013】本発明の第一の目的は、高速で動作可能な FPGA装置を提供することにある。

【0014】本発明の第二の目的は、低消費電力で動作 可能なFPGA装置を提供することにある。

【0015】本発明の第三の目的は、雷源を落しても論 理実行時にはその選択状態を保持することができるFP GA装置を提供することにある。

[0016]

【課題を解決するための手段】本発明のこれらの目的 は、格子状に整列された一定の論理機能を有する論理ユ 30 ニットと、該論理ユニットの垂直方向と水平方向との間 に設けられ、前記論理ユニットに接続された配線ユニッ トとからなり、前記論理ユニットと配線ユニットとの接 続、及び垂直側と水平側配線との接続に招電道マルチブ レクサが使用されており、前記超電導マルチプレクサの 切り替え制御により、配線ユニットの一部である入力端 子と出力機子との間に目的とする論理機能を実現するこ とにより達成される。本発明は、FPGA装置をCMO S技術ではなく、より高速の超電導集積回路技術で構成 することにより、等価的な論理を目的とするLSI上に 40 最適な形で実現した場合以上の件能を実現しようとする ものである。

[0017]

【作用】代表的な超電導集積回路であるジョセフソン集 積回路では、2μm程度のプロセスを用いても1GHz 以上の動作クロックが実現可能である。プログラマビリ ティを実現する手段として、論理ゲート間に配線チャネ ルや配線間スイッチを介在させても100MHz以上の 動作クロックが実現可能である。さらに超電導マルチプ 理プログラム時に超電導ループ電流が設定されて、論理 実行時には電源を落してもその選択状態を保持すること ができる。

【0018】但し、ジョセフソン素子のオフ時の抵抗値 を無限大にすることは不可能である。その代わりオン時 の抵抗はゼロとすることができる。このため、CMOS のような双方向スイッチを使用する代わりにマルチプレ クサのみを組み合わせて配線間接続のプログラマビリテ ィを確保することになる。このためFPGA装置全体の

[0019]

【実施例】図1に本発明の超電導FPGA装置の基本要 素である超電導プログラマブル多入力マルチプレクサの 構成を示す。同図で501~503は肯定入力側ジョヤ フソン素子、511~513は否定入力側ジョセフソン 素子、521,522は負荷抵抗、523は電源安定化 抵抗である。

【0020】第一の肯定入力側(正側)ジョセフソン素 子501及び第一の否定入力側(逆側)ジョヤフソン素 20 子511には共に正向きにループ信号S1が印加されて いる。さらにジョセフソン素子501及び511には入 力信号 A 1 がそれぞれ正向き及び逆向きに印加されてい る。一方、プログラム用ジョセフソン素子531、リセ ット用ジョセフソン素子532に配線ループ533を商 列接練したもの、ダンピング抵抗534を並列に接続し たものにも直流電流Ⅰbが供給されている。プログラム 用ジョセフソン素子531にはプログラム信号P1が供 給されている。リセット用ジョセフソン素子532には リセット信号R1が供給されている。

【0021】南流電流 I bを供給した状能でプログラム 信号P1を供給することにより、配線ループ533に直 流電流が流れ、ジョセフソン素子501及び511に印 加されるループ信号がオンとなる。配線ループ533は プログラム用ジョセフソン素子531及びリセット用ジ ョセフソン素子532とともに超電導ループを形成する ので、ループ信号は直流電流Ibを遮断しても消失した い。すなわち、超雷導ループは不揮発的な機能を右す る。ループ信号を消失させるためには、リセット信号R 1を印加する。

【0022】同様に、第二の肯定入力側ジョセフソン素 子502及び第二の否定入力側ジョセフソン索子512 には、共に正向きにループ信号S2が印加されている。 さらにジョセフソン素子502及び512には、入力信 号A2がそれぞれ正向き及び逆向きに印加されている。 一方、プログラム信号 P 2をプログラム用ジョセフソン 素子535に供給することにより、ジョセフソン素子5 02及び512に印加されるループ信号がオンとなる。 【0023】同様に、第Nの肯定入力側ジョセフソン素 子503及び第Nの否定入力側ジョセフソン素子513 レクサの特定入力の選択により、論理機能を設定する論 50 には、共に正向きにループ信号 S Nが印加されている。

5 さらにジョセフソン素子503及び513には、入力信 号ANがそれぞれ正向き及び逆向きに印加されている。 一方、プログラム信号PNをプログラム用ジョセフソン 素子536に供給することにより、ジョセフソン素子5 03及び513に印加されるループ信号がオンとなる。 【0024】ジョセフソン素子501~503、511 ~513は、ループ信号がオンとなったもののみイネー プル (有効選択) され、イネーブルされた素子に印加さ れる入力信号がオンであれば出力信号もオンとなり、入 力信号がオフであれば出力信号もオフとなる。即ち、イ 10 ネーブルされた素子に印加される入力信号に一致した出 力信号が発生する。ただしループ信号としては、N本の 中から1本だけを選択する。またループ信号はプログラ ム信号により発生するので、プログラム信号で選択され た入力信号が出力に現われることになる。すなわちプロ グラマブル多入力マルチプレクサとして動作することに なる。

【0025】 図2に、以下の実施側の説明で使用するプ ログラマブル多入力マルチプレクサのシンボル図を示 す。特に断らない限り、シンボル図601のように、プ 20 ログラム信号や電源電流は省略し、A1~ANの入力信 号と出力信号OUTのみを記す。入力信号A1~ANが 次段でも使用される場合、602のように記す。入力信 号AOがその段でのみ使用される場合、603のように 記す。

【0026】図3に本発明の超電導FPGA装置の基本 ユニットである論理/配線ユニットの構成を示す。同図 で701は当該段へのN本の入力バスであり、702は 次段へN本の出力バスである。703はM本の内部バス ン素子からなる複数のORとANDで構成されている。 これらのORとANDの配線接続により、任意の論理を 組むてとができる。

【0027】可変論理ユニット711の入力の一部はプ ログラム入力712として与えられる。残りの入力71 3はN入力マルチプレクサ714で入力パスを選択接続 して得られる。可変論理ユニット711の出力信号線は 出力バスの1本を構成する。当該段への入力バス701 の第 i 行とM本の内部パス703から、(M+1)入力 マルチプレクサにより、次段への出力パス702の第1 行が選択される。なお、このN個の(M+1)入力マル チプレクサの部分716をN×Mマルチプレクサとし て、他の部分にも用いる。

【0028】本実施例では可変論理ユニットで論理を組 んだが、可変論理ユニットをプログラマブル多入力マル チプレクサの超電導ループで構成し、該マルチプレクサ を用いて論理を組むこともできる。

【0029】図4に本発明の超雲道FPCA装置の全体 構成を示す。同図で801は装置全体への入力バスで、

M本ある。出力バスは、フリップフロップユニット80 4にも帰還される。フリップフロップユニット804は クロックを供給されるM個のフリップフロップを並列に 配置したものである。フリップフロップユニット804 のM本の出力805はN×Mマルチプレクサ811の内 部パスに接続される。

【0030】装置全体への入力パス801はN×Mマル チプレクサ811の入力バスに接続される。N×Mマル チプレクサ811はM個存在し、内部の構成は図3の7 16に示した。本装置の中核をなすものはM行 K列に配 列された論理/配線ユニット812である。第一列のM 個の論理/配線ユニットは、相互にM本の内部バス81 3で接続されており、かつそれぞれN×Mマルチプレク サ811の各N本の出力パス814を入力パスとして受 け入れる。

【0031】同様に第2列のM個の論理/配線ユニット は、第1列の出力パス815を入力パスとして受け入れ る。同様に最終列である第K列のM個の論理/配線ユニ ットは、第(K-1)列の出力パス816を入力パスと して受け入れる。そして第K列のM個の論理/配線ユニ ットの内部パスが装置全体からの出力パス802に接続 される。

【0032】本発明のFPGA装置では、半導体FPG A装置におけるCMOSスイッチの代わりにプログラマ ブル多入力マルチプレクサを用いているため、論理/配 線ユニットの配列内で双方向に信号を授受することはで きない。第1列の論理/配線ユニットの出力は第(1+ 1) 列に受け継がれ、逆方向には伝撫できない。このた め、模擬しようとする論理回路のラッチ間論理段数は、 である。711は可変論理ユニットであり、ジョセフソ √30 可変論理ユニット内論理段数×論理/配線ユニット列数 (K) 以内でなくてはならない。可変論理ユニットは組 み合わせ回路であるため、任意の順序回路を模擬する場 合にはラッチが必要となる。本発明では、順序回路をフ リップフロップユニット804を用いて実現する。フリ ップフロップユニット804の出力805はN×Mマル チプレクサ811を介して論理/配線ユニットの配列の 先頭に帰還されているため、一定の規模の組み合わせ回 路と順序回路の両方を含む回路を模擬することが可能と なる。

【0033】図4の超電導FPGA装備をさらに大規模 に接続し、X方向にP列, Y方向にO列配置することに より、全体で模擬可能な論理規模を (P×O) 倍に拡大 することができる。これにより大規模な論理機能、例え ば論理エミュレーション装置の実現が可能となる。 【0034】本実施例によれば超電導プログラマブル多 入力マルチプレクサを用いてFPGA装置を構成できるの で、高速で低消費電力で動作するFPGA装置を実現す ることが可能である。また高集積化を図ることもでき

る。さらに、電源を蒸しても論理率行時にはその選択状 N本ある。一方、802は装置全体からの出力パスで、50 態を保持する不揮発的な動作をするFPGA装置を提供 することである。本実施例の超電導 FPGA装置を用い れば、LSIの試作前のボードの動作検証や論理エミュ レーション装置を容易に実現できる。

[0035]

【発明の効果】本発明によれば超電導プログラマブル多 入力マルチプレクサを用いて FPGA装置を構成できる ので、高速で低消費電力で動作する FPG A装置を実現 することが可能である。また高集積化を図ることもでき る。さらに、電源を落しても論理実行時にはその選択状 熊を保持する不揮発的な動作をするFPGA装置を提供 10 【符号の説明】 することができる。

【図面の簡単な説明】

【図1】本発明の超電導プログラマブル多入力マルチブ レクサの回路図。

【図2】本発明の多入力マルチプレクサのシンボルの説

*【図3】本発明の超電導 F P G A 装置の論理/配線ユニ ットの構成を示す系統図。

【図4】本発明の超電導FPGA装置の全体構成を示す 系統図。

【図5】従来のFPGA装置の全体構成を示す説明図。 【図6】従来のFPGA装置内の可変論理ユニットの構 成を示す系統図。

【図7】従来のFPGA装置における配線間スイッチの 構成を示す説明図。

801…入力パス、802…出力パス、804…フリッ プフロップユニット、805…出力、811…N×Mマ ルチプレクサ、812…論理/配線ユニット、813… 内部パス、814…出力パス、815…出力パス、81 6…出力バス。

[図7]

