NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI

Side 1 av 2

KONTINUASJONSEKSAMEN KJ1042 TERMODYNAMIKK GRUNNKURS, 2011 Mandag 8. august 2011 Tid: 9.00-13.00

Faglig kontakt på eksamen: Dr. Kirill Glavatskiy, Mobiltlf. 4724 4779

Hjelpemiddel: Typegodkjent lommekalkulator med tomt minne. Aylward og Findlay: SI Chemical Data, Rothmans tabeller Alle delspørsmål veies likt.

OPPGAVE 1.

a)

- (i) Beregn entropiendring når 5 mol ideell monoatomisk gass varmes opp fra 0 °C til 100 °C ved konstant volum lik 20 liter.
- (ii) Beregn entropiendring når 3 mol ideell gass ekspanderer fra volumet 500 liter til 1 500 liter ved en konstant temperatur lik 25 °C.
- b) For en kjemisk forbindelse har man målt følgende sammenheng mellom varmekapasitet og temperatur:

T/K	5	10	20	30	40	60	100	140	180	200
$Cp,m / (J K^{-1} mol^{-1})$	1,15	5,20	18,6	32,1	44,0	61,8	88,0	107,8	124,2	134,0

Finn på grunnlag av disse opplysningene forbindelsens molare entropi ved 200 K. (Det kreves ikke nøyaktig svar.)

- c) Beregn endring i Gibbs' energi for et mol ideell gass som komprimeres fra 3 bar til 12 bar ved en konstant temperatur på 100 °C.
- d) Hva er standard entalpiendring for reaksjonen A = B når likevektskonstanten fordobles ved en temperaturøkning fra 300 K til 400 K?

OPPGAVE 2.

To studenter målte varmetoningen ΔH_{mix} ved tilsetning av n_2 mol fast KNO₃ til n_1 = 10 mol H₂O. For meget små verdier av n_2 fant de at $\frac{\Delta H_{\text{mix}}}{n_2}$ = 70.7 kJ/mol

Videre fant de for $n_2 = 0.5$ mol, at $\Delta H_{\text{mix}} = 33.3$ kJ og at $[\partial \Delta H_{\text{mix}} / \partial n_2]_{n_1} = 63.6$ kJ/mol

- a) Beregn den partielle molare entalpi for KNO₃ og H_2O når $n_2 = 0.5$ for standardtilstandene
 - 1) fast KNO₃
 - 2) uendelig fortynnet vannoppløsning.

b) Beregn endringen i entalpi når en blanding med $n_1 = 10$ og $n_2 = 0.5$ tilsettes en stor mengde vann.

OPPGAVE 3.

En galvanisk celle ved 25 °C består av en hydrogenelektrode (H₂(g) på Pt) og en AgCl(s)| Ag(s) elektrode i en elektrolytt av metylamin (CH₃NH₂) og methylammoniumklorid (CH₃NH₃Cl) oppløst i etanol. Oppløsningen er mettet på klorid som foreligger i fast fase. Trykket av hydrogen er 0.893 bar og trykket av metylamin er 4,15 x 10⁻³ bar. Cellens emf er 0.697 V.

Sett opp cellen med vanlig konvensjon og skriv opp cellereaksjonen ved overføring av 1 mol elektroner (1 F) i ytre krets. Beregn endring i Gibbs energi for cellereaksjonen fra oppgitte data, når reaktanter og produkter er i standardtilstand.