Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, Qingsong Wen ICLR 2024

발표자: 안도형

# **Contents**

- Introduction
- Methods
- Conclusion

# Introduction

### Introduction

#### • 시계열 예측 모델의 한계

- 시계열 예측은 수요예측, 재고 최적화, 기후 모델링 등 다양한 산업에서 활용
- But, 이런 시계열 예측은 특정 도메인 전문지식과 맞춤형 모델 개발이 필요하여 일반화가 어려움
- GPT, Llama 같은 LLM은 다양한 NLP 작업을 Few-shot, Zero-shot 방식으로 수행가능

#### • LLM을 활용한 시계열 예측의 가능성

- 1. 일반화 가능성 새로운 도메인에 대해 재학습 없이 활용
- 2. 데이터 효율성 사전학습된 데이터로 적은 데이터로도 학습 가능
- 3. 추론 능력 복잡한 패턴을 인식하고 논리적으로 추론
- 4. 멀티모달 학습 LLM은 텍스트/이미지/음성 등 다양한 데이터 활용가능
- 5. 최적화 용이성 LLM은 이미 학습되었기에 특정작업에도 바로 적용 가능

> 논문의 연구에서는 Time-LLM: LLM을 시계열 예측에 적용하는 새로운 Reprogramming 프래임워크를 제안

# Method

### **Method: Time LLM**



Figure 2: The model framework of TIME-LLM. Given an input time series, we first tokenize and embed it via ① patching along with a ② customized embedding layer. ③ These patch embeddings are then reprogrammed with condensed text prototypes to align two modalities. To augment the LLM's reasoning ability, ④ additional prompt prefixes are added to the input to direct the transformation of input patches. ⑤ The output patches from the LLM are projected to generate the forecasts.

#### • Time LLM 의 전체적인 모델 프레임 워크

• 기존 LLM을 수정하지 않고, 시계열 데이터를 자연어 형태로 변화하여 예측

(불꽃 아이콘) → 학습 과정에서 업데이트되는 가중치 (출력 투영 과정). (눈꽃 아이콘) → LLM은 동결된 상태(Frozen) 로 유지되며 변경되지 않음 파란색 박스 → LLM에서 처리하는 주요 과정 (임베딩, 본체, 출력 등). 노란색 박스 → 패치 변환과 재프로그램 과정 (Patch Reprogram).

# Method : 흐름 및 주요 단계

- Patching (패치변환)
  - 입력 시계열 데이터는 Patch 단위로 분할.
  - Instance Normalization(인스턴스 정규화)를 통해 데이터의 분포를 조정
  - 이후 Patch Embedder를 사용하여 패치를 특정 차원의 벡터로 변환
- Patch Embedding(임베딩 변환)
  - 패치 데이터를 사용자지정(customized) 임베딩 레이어를 통해 벡터화
  - 이 과정에서 Text Prototypes을 활용하여 시계열 데이터를 자연어 표현과 정렬(Alignment)
- Patch Reprogram(패치 재프로그램)
  - 기존 LLM이 자연어를 처리하는 방식에 맞춰 패치 데이터를 재구성.
  - 다중 헤드 어텐션(Multi-Head Attention)과 선형 변환(Linear)을 적용하여, 시계열 데이터를 LLM이 처리할 수 있는 입력 데이터로 변환
- Prompt-as-Prefix(PaP, 프롬프트 추가)
  - LLM이 시계열 데이터를 더 잘 이해할 수 있도록 prompt 추가
  - 프롬프트 구성:
    - 1. 도메인 지식(domain knowledge) 해당 데이터의 의미 및 특성 설명
    - 2. 작업 지시(Task Introduction) 예측해야할 타임 스텝과 작업 방향을 지정
    - 3. 입력통계(Input Statistics) 최소값, 최대값, 중간값, 추제 정보 제공
- Output Projection(출력 투영)
  - LLM이 생성한 출력을 다시 시계열 데이터 형태로 변환
  - 예측된 결과를 선형변환(Linear Projection) 및 Flatten 과정을 통해 최종 예측값을 도출

# Method : 모델의 구조

### Input Transformation : 입력 변환

#### 시계열 데이터 정규화

- 1. 각 입력 채널을 개별적으로 평균 0, 표준편차 1로 정규화하여 시계열 분포 변화를 완화
- 2. Reversible Instance Normalizatoin (RevIN)을 사용하여 시계열 데이터의 변화에도 적응하도록 함
  - -> RevIN은 시계열의 절대적 크기는 무시하고 상대적 패턴만 순수하게 보존

#### 2. 패치변환(Patching)

- 1. 시계열 데이터를 고정 길이의 패치단위로 분할
- 2. 연속적인 패치를 구성하여 모델이 로컬 시계열 패턴을 효과적으로 학습하도록 유도
- 3. 패치수는 다음과 같음

$$P = \lfloor \frac{(T - L_p)}{S} \rfloor + 2,$$

#### 3. 패치 임베딩(Patch Embedding)

- 1. 분할된 패치를 선형 레이어를 통해 임베딩 벡터로 변환
- 2. 임베딩 된 패치 데이터를 LLM이 처리할 수 있는 형식으로 변환

Lp: 패치 길이

S : 슬라이딩 위도우 크기

## Method : 모델의 구조

### Patch Reprogramming 패치 재프로그래밍



(a) Patch Reprogramming

- LLM이 이해할 수 있도록 시계열 데이터를 자연어 형태로 변환
- Text Prototypes을 사용하여 패치 정보 요약
- Multi-head Cross-Attention을 적용하여 시계열 데이터를 자연어 표현

## Method : 모델의 구조

Prompting : 프롬프트 기법



(b) Patch-as-Prefix and Prompt-as-Prefix

- Patch-as-Prefix VS Prompt-as-Prefix 두가지 방법 비교
- LLM의 예측 성능을 향상시키기 위해 Prompt-as-Prefix(PaP) 기법 도입

Lp: 패치 길이

S : 슬라이딩 위도우 크기

# Method : 모델의 구조

Prompting: 프롬프트 기법

#### 1. Patch-as-Prefix

시계열 데이터를 패치 단위로 변환 후, 이를 LLM에 직접 입력하여 다음 값을 예측하도록 학습 예측값은 숫자(0.6)과 같은 형태로 직접 생성

#### 문제점

LLM은 숫자 처리 성능이 낮아 정밀도가 떨어짐 토큰화 방식이 다르기 때문에 숫자 출력을 일관되게 변환하기 어려움. 해서, 장기 예측이 어려움

LLM이 시계열 데이터를 더 효과적으로 학습할 수 있도록 프롬프트 추가

#### 2. Prompt-as-Prefix(PaP)

패치 변환 후, 추가적인 프롬프트를 입력하여 LLM이 시계열 데이터를 더 효과적으로 학습할 수 있도록 유도 출력은 자연어 기반으로 생성된 후, 최종적으로 Projection Layer(출력변환 레이어)를 통해 시계열 예측값으로 변환됨.

#### 3. 프롬프트 구성요소

Dataset Context: 데이터의 의미와 특성 제공

예) "이 데이터는 전력 소비량을 나타내며, 특정 시점에서 급증할 가능성이 있음."

Task Instruction: LLM이 수행해야할 예측 작업 정의 - 예측할 타임 스템과 예측 방식 설명

예) "다음 24시간 동안의 전력 소비량을 예측하시오"

Input Statistics : 입력 데이터의 통계 정보 제공

예 ) 최소, 최대, 중간값, 변화 추세(upward/downward) 등.

# Method : 모델의 구조

Output Projection : 출력 반환

- LLM에서 생성된 출력을 **다시 시계열 데이터 형태로 변환**
- 출력투영 레이어(Projection Layer) 를 사용하여 예측값을 생성.
- LLM의 자연어 출력을 정량적 예측값으로 변환하는 역할.

# **Conclusion**

### **Conclusion**

- Time-LLM은 기존의 LLM을 수정하지 않고도 시계열 예측에 적용할 수 있는 강력한 프레임워크임을 입 증
  - Patch Reprogramming을 통해 시계열 데이터를 LLM이 이해할 수 있는 텍스트 프로토타입으로 변환
  - Prompt-as-Prefix 기법을 사용하여 LLM의 논리적 추론 능력을 강화, 기존의 전문 시계열 모델보다 더 높은 성능 기록
  - 이를 통해 시계열 예측을 자연어처리(NLP)문제처럼 다룰 수 있으며, LLM을 활용한 새로운 접근 방식이 가능함을 시사

### • 향후 연구 방향

- 최적의 Reprogramming 기법 연구
- LLM의 지속적인 사전학습 연구
- 멀티모달 모델로 확장
- LLM을 활용하여 예측 뿐만 아니라 다양한 시계열 분석에도 사용