Probabilités III

MINES ParisTech

12 décembre 2024 (#a4e78ae)

\$ \$	
Question 1 Soient $X \sim \mathcal{E}(\lambda)$, $\lambda > 0$, et $Y \sim \mathcal{B}(1/2)$ deux variables aléat réelles indépendantes, et $Z = XY + (1 - Y)\lambda$.	toire
□ A : La fonction de répartition conditionnelle $F_{Z Y=1}$ vaut $F_{Z Y=1}$ $\mathbb{P}(Z \leq z Y=1) = (1-e^{-\lambda z}) \mathbb{W}_{\mathbb{R}_+^*}(z)$ □ B : La fonction de répartition conditionnelle $F_{Z Y=0}$ vaut $F_{Z Y=0}$ $\mathbb{P}(Z \leq z Y=0) = \mathbb{W}_{[\lambda,+\infty[}(z)$ □ C : Z admet une densité □ D : $Z = \lambda$ p.s.	
Question 2 (réponses multiples) Soient $X \sim \mathcal{E}(\lambda)$, $\lambda > 0$, et $Y \sim \mathcal{B}$ deux variables aléatoires réelles indépendantes, et $Z = XY + (1 - Y)\lambda$. A	
$\Box A : \mathbb{E}(Z Y=1) = \frac{1}{\lambda}$ $\Box B : \mathbb{E}(Z Y=0) = \lambda$ $\Box C : \mathbb{E}(Z Y) = \frac{Y}{2\lambda} + \frac{1}{2}(1-Y)\lambda$ $\Box D : \mathbb{E}(Z Y) = \frac{Y}{\lambda} + (1-Y)\lambda$	
Question 3 Soient X et Y deux variables aléatoires de densité j $f_{X,Y}(x,y) = \frac{1}{x} 1_{[0,x]}(y) \lambda \exp(-\lambda x), \lambda > 0$. Quelle est la densité de $Y X=$	
$ \Box A : \exp(-y) \Box B : 1_{[0,x]}(y) \Box C : \frac{1}{x}1_{[0,x]}(y) \Box D : \lambda \exp(-\lambda x) $	
Question 4 En déduire la valeur de $\mathbb{E}(Y)$:	
$ \Box A: 1/2 \Box B: x/2 \Box C: \frac{1}{2\lambda} \Box D: \lambda^2 $	

Question 5 Soit (X, Y) un vecteur gaussien d'espérance (μ_X, μ_Y) et de matrice de covariance $\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, où $\rho > 0$. L'espérance conditionnelle de X|Y vaut :

- \square A: μ_Y
- $\Box \text{ B: } \mu_X$ $\Box \text{ C: } \mu_Y + \rho(Y \mu_X)$ $\Box \text{ D: } \mu_X + \rho(Y \mu_Y)$