Department of Computer Applications

23MX11 – Exercise Problems in Propositional Calculus

- 1. Show that p Λ (q V r) & (p Λ q) V r are not logically equivalent
- 2. Let p stand for the proposition "I bought a lottery ticket" and q for "I won the jackpot". Express the following as natural English sentences:

(a)
$$\neg p$$
 (b) $p \lor q$ (c) $p \land q$ (d) $p \Rightarrow q$ (e) $\neg p \Rightarrow \neg q$ (f) $\neg p \lor (p \land q)$

- 3. Check for the validity of the following arguments If x > 2, then $x^2 > 4$. x > 2. Therefore, $x^2 > 4$
- 4. Determine the validity of the argument: $p \rightarrow qV \sim r q \rightarrow p \wedge r : p \rightarrow r$
- 5. If 18,486 is divisible by 18, then 18,486 is divisible by 9. If 18,486 is divisible by 9, then the sum of the digits of 18,486 is divisible by 9. ∴ If 18,486 is divisible by 18, then the sum of the digits of 18,486 is divisible by 9. Determine the validity of the given arguments.
- 6. State whether the following are true or false, where x, y and z range over the integers.

(a)
$$\forall$$
 x, \exists y, $(2x - y = 0)$ (b) \exists y, \forall x, $(2x - y = 0)$ (c) \forall x, \exists y, $(x - 2y = 0)$

(d)
$$\forall x, x < 10 \Rightarrow \forall y, (y < x \Rightarrow y < 9)$$
 (e) $\exists y, \exists z, y + z = 100$

(f)
$$\forall x, \exists y, (y > x \land \exists z, y + z = 100)$$

- 7. Show that $\neg(p \land q) \lor (\neg p \land q) \equiv \neg p$ without constructing the truth tables
- 8. Verify that the proposition $(p \land q) \land \neg (p \lor q)$ is a contradiction.
- 9. Show that the following proposition is a tautology: $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$

10. Show that $(p \rightarrow q) \land (p \rightarrow r)$ and $p \rightarrow (q \land r)$ are logically equivalent?

DrAS – 23MX11 – MFCS – Holiday Homework sheet – Sep 2023