Precise Control of Organic LED Emission Through Optically-Resonant Microcavity Confinement

Benjamin Isenhart¹, Ekraj Dahal², Karen Cianciulli³, Matthew S. White¹²

 1 Department of Physics, The University of Vermont, Burlington VT 2 Materials Science Pgrogram, The University of Vermont, Burlington VT 3 Asheville School, Asheville NC

May 2, 2019

OLED Devices Waveguides and the Fabry-Pérot Etalon Microcavity-confined OLEDs

Experimental Methods

Results

Single Cavity Devices Multi-cavity Devices

OLED Devices Waveguides and the Fabry-Pérot Etalon Microcavity-confined OLEDs

Experimental Methods

Results

Single Cavity Devices Multi-cavity Devices

OLED Devices

Waveguides

The Fabry-Pérot Etalon

Microcavity-confined OLEDs

OLED Devices

Waveguides and the Fabry-Pérot Etalon Microcavity-confined OLEDs

Experimental Methods

Results

Single Cavity Devices
Multi-cavity Devices

OLED Materials

Device Fabrication

Angle-Resolved Electroluminscence Spectroscopy (ARES)

OLED Devices
Waveguides and the Fabry-Pé

Microcavity-confined OLEDs

Experimental Methods

Results

Single Cavity Devices Multi-cavity Devices

Single Cavity Devices

Test

Peak Emission Wavelength

Band Narrowing

0 - 100

150 200 250

$$Q = q \left\{ \frac{1 - \sqrt{R_1 R_2}}{\pi (R_1 R_2)^{1/4}} \right\}$$

$$q = \frac{2nd}{\lambda_0}$$

$$q = \frac{2nd}{\lambda_0}$$

$$q = \frac{30}{\lambda_0}$$

300 350

Thickness (nm)

Effect of Bottom Electrode Material

Aluminum bottom electrode

Silver bottom electrode

Multi-cavity Devices

Behavior at Large Angles

Number of Resonant Modes

Bandwidth of Resonant Modes

OLED Devices

Waveguides and the Fabry-Pérot Etalon Microcavity-confined OLEDs

Experimental Methods

Results

Single Cavity Devices
Multi-cavity Devices

References

Aknowledgements

Questions?