MA1014 20/10/21

Proving Composition of Functions is continuous

Theorem:

If
$$f: \mathbb{R} \to \mathbb{R}$$
 is continuous at $x = a$ (1)
and $y: \mathbb{R} \to \mathbb{R}$ is continuous at $x = a$ (2)
Then $yf: \mathbb{R} \to \mathbb{R}$ is continuous at $x = a$ (3)

$$|\infty - \alpha| < \delta \stackrel{\textcircled{D}}{\Rightarrow} |f(x) - f(a)| < \epsilon'$$

$$\stackrel{\textcircled{F}}{\Rightarrow} |g(f(x)) - g(f(a))| < \epsilon$$