

Prof. Dr. S. Sauter Institut für Mathematik Universität Zürich

Numerik I - Homework 5

Deadline: 29.3.2019, 13:00

Restriction The use of built-in functions for Fourier transform is not allowed.

Exercise 1 (6 P.) (Programming task)

Write a function that implements the Fourier transform given by Definition 5.2 in the lecture notes. The function should take the real-valued vector $(f_k)_{k=0}^{N-1}$ as the input argument and return as the output

- (a) the Fourier coefficients \hat{f}_k ;
- (b) the coefficients \hat{A}_m and \hat{B}_m of the trigonometric polynomial T(t) for real-valued f_k (Equation 5.5 in the lecture notes);
- (c) a plot of the trigonometric polynomial T(t).

Exercise 2 (6 P.) (Programming task)

On the course homepage there is a data file f.dat which stores the evaluations of a continuous function $f:[0,2x_0]\to\mathbb{R}$

$$f_k = f\left(\frac{2x_0k}{N}\right)$$
 where $k = 0, 1, \dots, N-1$

for $N = 2^{16}$. The function has the property $f(0) = f(2x_0)$, $x_0 = 101.15520937701599$.

For the refinement level l = 2, 4, 6, 8, 10, 12, 14, 16,

(a) Use your program in Exercise 1 to calculate the trigonometric polynomial T(t) by using the following data sets respectively as the input argument

$$f\left(\frac{2x_0k}{2^l}\right)$$
 where $k = 0, 1, \dots, 2^l - 1;$

and show the trigonometric polynomials in the plot.

(b) Calculate the approximation error for each data set

$$\max_{0 \le k \le N-1} \left| T_l \left(\frac{2x_0 k}{N} \right) - f_k \right|$$

and record them in a table.