COMP9318 (19T1) ASSIGNMENT 1

DUE ON 23:59 14 APR, 2019 (SUN)

Consider the following base cuboid *Sales* with *four* tuples and the aggregate function SUM:

Location	Time	Item	Quantity
Sydney	2005	PS2	1400
Sydney	2006	PS2	1500
Sydney	2006	Wii	500
Melbourne	2005	XBox 360	1700

Location, Time, and Item are dimensions and Quantity is the measure. Suppose the system has built-in support for the value **ALL**.

- (1) List the tuples in the complete data cube of R in a tabular form with 4 attributes, i.e., Location, Time, Item, SUM(Quantity)?
- (2) Write down an equivalent SQL statement that computes the same result (i.e., the cube). You can *only* use standard SQL constructs, i.e., no **CUBE BY** clause.
- (3) Consider the following *ice-berg cube* query:

Draw the result of the query in a tabular form.

(4) Assume that we adopt a MOLAP architecture to store the full data cube of R, with the following mapping functions:

$$f_{Location}(x) = \begin{cases} 1 & \text{if } x = \text{`Sydney'}, \\ 2 & \text{if } x = \text{`Melbourne'}, \\ 0 & \text{if } x = \mathbf{ALL}. \end{cases}$$
$$f_{Time}(x) = \begin{cases} 1 & \text{if } x = 2005, \\ 2 & \text{if } x = 2006, \\ 0 & \text{if } x = \mathbf{ALL}. \end{cases}$$

$$f_{Item}(x) = \begin{cases} 1 & \text{if } x = \text{'PS2'}, \\ 2 & \text{if } x = \text{'XBox 360'}, \\ 3 & \text{if } x = \text{'Wii'}, \\ 0 & \text{if } x = \mathbf{ALL}. \end{cases}$$

Draw the MOLAP cube (i.e., sparse multi-dimensional array) in a tabular form of (*ArrayIndex*, *Value*). You also need to write down the function you chose to map a multi-dimensional point to a one-dimensional point.

Consider binary classification where the class attribute y takes two values: 0 or 1. Let the feature vector for a test instance be a d-dimension column vector \vec{x} . A linear classifier with the model parameter \mathbf{w} (which is a d-dimension column vector) is the following function:

$$y = \begin{cases} 1 & \text{, if } \mathbf{w}^{\top} \mathbf{x} > 0 \\ 0 & \text{, otherwise.} \end{cases}$$

We make additional simplifying assumptions: \mathbf{x} is a binary vector (i.e., each dimension of \mathbf{x} take only two values: 0 or 1).

- Prove that if the feature vectors are d-dimension, then a Naïve Bayes classifier is a linear classifier in a d + 1-dimension space. You need to explicitly write out the vector \mathbf{w} that the Naïve Bayes classifier learns.
- It is obvious that the Logistic Regression classifier learned on the same training dataset as the Naïve Bayes is also a linear classifier in the same d+1-dimension space. Let the parameter \mathbf{w} learned by the two classifiers be \mathbf{w}_{LR} and \mathbf{w}_{NB} , respectively. Briefly explain why learning \mathbf{w}_{NB} is much easier than learning \mathbf{w}_{LR} .

Hint 1.
$$\log \prod_i x_i = \sum_i \log x_i$$

We have a sample of mixture of two chemical compound, S_1 and S_2 . The (unknown) percentages of each chemical in the sample are denoted as q_1 and q_2 (whereas $q_1 + q_2 = 1$), respectively.

We have a device that can detect the percentages of m=3 different components that are contained in both chemical compounds, albeit with different percentages. We denote the components as $\{O_j\}_{j=1}^m$. We list the percentages of each components in pure S_i s in the following table:

$$\begin{array}{c|cccc} p_{i,j} & O_1 & O_2 & O_3 \\ \hline S_1 & 0.1 & 0.2 & 0.7 \\ S_2 & 0.4 & 0.5 & 0.1 \\ \end{array}$$

After measuring the three components, we obtain their percentages as $\{u_j\}_{j=1}^m$.

- (1) Write out the log likelihood function (as a function of q_i , $p_{i,j}$, and u_i).
- (2) If $u_1 = 0.3$, $u_2 = 0.2$, $u_3 = 0.5$, what are the MLE of q_1 and q_2 ? What are the expected percentage of each component under a model with the MLE parameters?

Submission

Please write down your answers in a file named ass1.pdf. You must write down your name and student ID on the first page.

You can submit your file by

give cs9318 ass1 ass1.pdf

Late Penalty. -10% per day for the first two days, and -20% for each of the following days.