Estimation, Detection and Analysis II

07 - Dimensionality reduction

Principal Component Analysis (PCA) Linear discriminant analysis Self organizing map (SOM)

Main Component Analysis

PCA for dataset visualization (visualize the Iris dataset, which has 4D)

Load the Iris dataset:

```
import pandas as pd
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
df = pd.read_csv(url, names=['sepal length','sepal width','petal length','petal width','target'])
```

Standardize (scale) the dataset

```
from sklearn.preprocessing import StandardScaler
features = ['sepal length', 'sepal width', 'petal length', 'petal width']
# Separating out the features
x = df.loc[:, features].values# Separating out the target
y = df.loc[:,['target']].values# Standardizing the features
x = StandardScaler().fit_transform(x)
```

Project the dataset to 2D (instead of 4D)

```
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
mainComponents = pca.fit_transform(x)
principalDf = pd.DataFrame(data = principalComponents, columns = ['principal component
1', 'principal component 2'])
finalDf = pd.concat([mainDf, df[['target']]], axis = 1)
```

View the 2D projection

```
import matplotlib.pyplot as plt
fig = plt.figure(figsize = (8,8))
ax = fig.add_subplot(1,1,1)
ax.set_xlabel('Main Component 1', fontsize = 15)
ax.set_ylabel('Main Component 2', fontsize = 15)
ax.set_title('2 component PCA', fontsize = 20)
targets = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
colors = ['r', 'g', 'b']
for target, color in zip(targets,colors):
indicesToKeep = finalDf['target'] == target
ax.scatter(finalDf.loc[indicesToKeep, 'main component 1']
, finalDf.loc[indicesToKeep, 'main component 2']
, c = color
, s = 50)
ax.legend(targets)
ax.grid()
plt.show()
```

Check the explained variance

```
print(pca.explained_variance_ratio_)

# Result:

# [0.72770452 0.23030523]

# 1st component explains 73% of the variance

# 2nd component explains 23%

# Together they explain about 96% of the information in the data
```

UNIVERSIDADE PORTUCALENSE

IMP.GE.194.0 1/5

PCA to accelerate machine learning algorithms (using the MNIST dataset ¹, a database of handwritten characters, with 784 features - 784D, 60,000 examples in the trainset and 10,000 in the testset)

Read the mnist 784 dataset

```
import pandas as pd
          pd.read_csv('C:/Users/Catarina/Desktop/Aulas/Materia/DataMining/07-Dimensional
Reduction/CSV/mnist 784.csv');
```

Split the dataset into training and test sets

```
from sklearn.model selection import train test split
# test size: what proportion of original data is used for test set
train_img, test_img, train_lbl, test_lbl = train_test_split(df.iloc[:,:-1], df.iloc[: ,
-1], test_size=1/7.0, random_state=0)
```

Standardize the dataset

```
{\tt from \ sklearn.preprocessing \ import \ StandardScaler}
scaler = StandardScaler() # Fit on training set only.
scaler.fit(train img) # Apply transform to both the training set and the test set.
train img = scaler.transform(train img)
test_img = scaler.transform(test_img)
```

Import and apply PCA (in trainset)

```
from sklearn.decomposition import PCA # Make an instance of the Model
pca = PCA(.95)
pca.fit(train img)
```

Apply mapping (transformation) to training and test sets

```
train img = pca.transform(train img)
test img = pca.transform(test img)
```

Apply Logistic Regression to transformed data

```
from sklearn.linear model import LogisticRegression
logisticRegr = LogisticRegression(solver = 'lbfgs')
logisticRegr.fit(train_img, train_lbl)
```

Predict for just one observation (image)

```
print("Prediction of image 0: ",logisticRegr.predict(test_img[0].reshape(1,-1)))
```

```
Output:
Image preview 0: [0]
```

Predict multiple observations

```
print("First 10 images prediction: ", logisticRegr.predict(test_img[0:10]))
```

```
Output:
Prediction of the first 10 images: [0 4 1 2 4 7 7 1 1 7]
```

Measure model performance

```
print("Model performance: ", logisticRegr.score(test_img, test_lbl))
```

```
Output:
Model performance: 0.9201
```

http://yann.lecun.com/exdb/mnist/

IMP.GF.194.0 2/5

Linear discriminant analysis

import the libraries

```
from sklearn.datasets import load_wine
import pandas as pd
import numpy as np
np.set_printoptions(precision=4)
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
```

Load the wine datset

```
wine = load_wine()
X = pd.DataFrame(wine.data, columns=wine.feature_names)
y = pd.Categorical.from_codes(wine.target, wine.target_names)

# Check the dimensions of the dataset
print("dimensions: ", X.shape)

# View a portion of the dataset
print("portion:\n", X.head())

# Check that there are 3 types of wine in the dataset
print("classes: ", wine.target_names)

# Create a dataframe with the features and the target
df = X.join(pd.Series(y, name='class'))
```

Manual LDA

```
class_feature_means = pd.DataFrame(columns=wine.target_names)
for c, rows in df.groupby('class'):
class_feature_means[c] = rows.mean()
within class scatter matrix = np.zeros((13, 13))
for c, rows in df.groupby('class'): rows = rows.drop(['class'], axis=1)
s = np.zeros((13, 13))
for index, row in rows.iterrows():
x, mc = row.values.reshape(13, 1), class feature means[c].values.reshape(13, 1)
s += (x - mc).dot((x - mc).T)
within class scatter matrix += s
feature_means = df.mean()
between class scatter matrix = np.zeros((13, 13))
for c in class feature means:
n = len(df.loc[df['class'] == c].index)
mc, m = class feature means[c].values.reshape(13, 1), feature means.values.reshape(13,
1)
between class scatter matrix += n * (mc - m).dot((mc - m).T)
eigen_values,
                                            eigen vectors
np.linalg.eig(np.linalg.inv(within class scatter matrix).dot(between class scatter matri
x))
                                                eigen vectors[:,i])
                [(np.abs(eigen values[i]),
                                                                       for
                                                                                       in
range(len(eigen values))]
pairs = sorted(pairs, key=lambda x: x[0], reverse=True)
for pair in pairs:
print(pair[0])
```

UPI UNIVERSIDADE PORTUCALENSE

IMP.GE.194.0 3/5

```
eigen_value_sums = sum(eigen_values)
print('Explained Variance')
for i, pair in enumerate(pairs):
print('Eigenvector {}: {}'.format(i, (pair[0]/eigen_value_sums).real))
w_{matrix} = np.hstack((pairs[0][1].reshape(13,1), pairs[1][1].reshape(13,1))).
X lda = np.array(X.dot(w matrix))
le = LabelEncoder()
y = le.fit transform(df['class'])
plt.xlabel('LD1')
plt.ylabel('LD2')
plt.scatter(
X_lda[:,0],
X_lda[:,1],
с=у,
cmap='rainbow',
alpha=0.7,
edgecolors='b'
plt.show()
```

automatic LDA

```
from \ sklearn.discriminant\_analysis \ import \ Linear Discriminant Analysis
lda = LinearDiscriminantAnalysis()
X_lda = lda.fit_transform(X, y)
print(lda.explained variance ratio )
plt.xlabel('LD1')
plt.ylabel('LD2')
plt.scatter(
X lda[:,0],
X_{lda}[:,1],
c=y,
cmap='rainbow',
alpha=0.7,
edgecolors='b'
plt.show()
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X, y)
print(pca.explained variance ratio )
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.scatter(
X_pca[:,0],
X_pca[:,1],
c=y,
cmap='rainbow',
alpha=0.7,
edgecolors='b'
plt.show()
```

UNIVERSIDADE PORTUCALENSE

IMP.GE.194.0 4/5

SOUND

Implement a SOM for the Iris dataset and check the predictions made

```
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn som.som import SOM
# Load iris data
iris = datasets.load iris()
iris_data = iris.data
iris_label = iris.target
# Extract just two features (just for ease of visualization)
iris data = iris data[:, :2]
# Build a 3x1 SOM (3 clusters)
sound = SOUND(m=3, n=1, dim=2, random_state=1234)
# Fit it to the date
sound.fit(iris data)
# Assign each datapoint to its predicted cluster
predictions = sound.predict(iris data)
# Plot the results
fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(5,7))
x = iris data[:,0]
y = iris_data[:,1]
colors = ['red', 'green', 'blue']
ax[0].scatter(x, y, c=iris_label, cmap=ListedColormap(colors))
ax[0].title.set_text('Actual Classes')
ax[1].scatter(x, y, c=predictions, cmap=ListedColormap(colors))
ax[1].title.set_text('SOM Predictions')
plt.savefig('iris example.png')
```

IMP.GE.194.0 5/5