Discussion 10

1. Find the expression of the spectral densities of the following processes. Use the expression

$$f_X(\omega) = \gamma_X(0) + 2\sum_{h=1}^{\infty} \gamma_X(h)\cos(2\pi\omega h),$$

and properties of ARMA(p,q) processes.

- a) $\{X_t\}$ is white noise with $\sigma^2 = 4$.
- b) $\{X_t\}$ is an MA(1) process with $\theta = -0.2$ and $\sigma^2 = 4$.
- c) $\{X_t\}$ is an MA(2) process with $\theta_1=0.6,\,\theta_2=-0.2$ and $\sigma^2=4$.
- 2. For each of the processes below, explain why the process is a linear filter of another process, find the filter coefficients, the power transform function $|g(\omega)|^2$, and the spectral density fuction of the output process. The following expressions will be useful.

$$Y_t = \sum_{j=-\infty}^{\infty} \beta_j X_t,$$

$$f_Y(\omega) = |g(\omega)|^2 f_X(\omega),$$

$$g(\omega) = \sum_{j=-\infty}^{\infty} \beta_j e^{-2\pi i \omega j}.$$

Compare your answers to the AR(p) and MA(q) spectral densities from lecture.

- a) $\{X_t\}$ is an MA(2) process with $\theta_1=0.6,\,\theta_2=-0.2$ and $\sigma^2=4$.
- b) $\{X_t\}$ is an AR(2) process with $\phi_1=0.4,\,\phi_2=0.2$ and $\sigma^2=4.$
- 3. Suppose $\{X_t\}$ is an MA(2) process with $\theta_1=0.6$, $\theta_2=-0.2$ and $\sigma^2=4$, and $\{Y_t\}$ is a linear filter of $\{X_t\}$. In each case below, find the ACVF of $\{Y_t\}$ for $h=0,\pm 1,\pm 2,\cdots$. Use the expression

$$\gamma_Y(h) = \sum_{k=-\infty}^{\infty} \left(\sum_{j=-\infty}^{\infty} \beta_j \beta_{j+k} \right) \gamma_X(h-k).$$

- a) $Y_t = (X_{t-1} + X_t + X_{t-1})/3$
- b) $Y_t = X_t X_{t-1}$