Міністерство освіти і науки України

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ «ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

Кафедра комп'ютерного моделювання процесів і систем

3BIT

з лабораторної роботи №1 "Засоби побудови графіків Matplotlib" з курсу

«Алгоритми та моделі збору, аналізу та візуалізації даних»

Виконав:	студент групи ІКМ-М222к	Черкас Ю.В.	ı	
Перевірила:	аспірантка	Рикова В.О.		

Варіант №15

Побудувати графіки функцій, поверхонь та стовпчикові діаграми. На всіх графіках підписати осі, відобразити сітку, легенду. Вивести текстом рівняння графіку функції.

1. Побудувати графіки функцій.

$$y = \frac{2 + \sin^3(x)}{1 + x^2}, \qquad z = \begin{cases} \frac{5x^2}{1 + x^2}, & x \le 0\\ \sqrt{1 + \frac{2x}{1 + x^2}}, & x > 0. \end{cases}$$

```
import numpy as np
import matplotlib.pyplot as plt
def f1(x):
   return (2+(np.sin(x))**3)/(1 + x**2)
def f2(x):
    if x <= 0:
        return (5*(x**2))/(1 + x**2)
    else:
        return np.sqrt(1+2*x/(1+x**2))
x = np.arange(-5, 5, 0.02)
x1 = x[x <= 0]
x2 = x[x > 0]
plt.figure(1)
plt.subplot(211)
plt.plot(x, f1(x), 'k')
plt.legend([r'y=$\frac{2+sin(x)^3}{1+x^2}$'])
plt.grid(True)
plt.ylabel(r'y')
f21_{vals} = list(map(f2, x1))
f22_vals = list(map(f2, x2))
plt.subplot(212)
plt.plot(x1, f21 vals, 'r')
plt.plot(x2, f22_vals, 'y')
plt.legend([r'z=$\frac{5x^2}{1+x^2}$', r'z=$\sqrt{1+\frac{2x}{1+x^2}}$'])
plt.grid(True)
plt.xlabel('x')
plt.ylabel('z')
plt.show()
```


Рисунок 1 – Графіки функцій з пункту 1

2. Побудувати поверхню.

$$z = 10x^3 sin^2(y) - 2x^2 y^3$$

```
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Make data.
X = np.arange(-1, 1, 0.05)
Y = np.arange(-1, 1, 0.05)
X, Y = np.meshgrid(X, Y)
Z = 10*(X**3)*(np.sin(Y))**2 - 2*(X**2)*(Y**3)
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0,
antialiased=False)
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set zlabel('Z')
```

```
ax.text2D(0.05, 0.95, r'y=$10*x^3*sin(y)^2-2*x^2*y^3$',
transform=ax.transAxes)
plt.show()
```


Рисунок 2 – Графік поверхні з пункту 2

3. Побудувати графік у полярних координатах.

Строфоїда:

$$\rho = \alpha \frac{1 \pm \sin \varphi}{\cos \varphi}$$

```
import numpy as np
import matplotlib.pyplot as plt
alfa = 1
fi = np.arange(-np.pi/2, np.pi/2, 0.001)
r1 = alfa * (1 + np.sin(fi)) / np.cos(fi)
r2 = alfa * (1 - np.sin(fi)) / np.cos(fi)
ax = plt.subplot(111, projection='polar')
ax.plot(fi, r1, label=r'$\rho=\alpha\frac{1 + \sin(\phi)}{\cos(\phi)}$')
ax.plot(fi, r2, label=r'$\rho=\alpha\frac{1 - \sin(\phi)}{\cos(\phi)}$')
ax.legend()
ax.set_rmax(5)
plt.show()
```


Рисунок 3 – Строфоїда в полярних координатах

4. Побудувати поверхню 2-го порядку. a, b, c – константи Гіперболічний параболоїд:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$$

```
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Make data.
X = np.arange(-2, 2, 0.1)
Y = np.arange(-2, 2, 0.1)
X, Y = np.meshgrid(X, Y)
a=1
b=1
Z=0.5*((X**2)/(a**2)-(Y**2)/(b**2))
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0,
antialiased=False)
# Add a color bar which maps values to colors.
```

```
fig.colorbar(surf, shrink=0.5, aspect=5)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.text2D(0.05, 0.95, r'$\frac{x^2}{a^2}+\frac{y^2}{b^2}=2z$',
transform=ax.transAxes)
plt.show()
```


Рисунок 4 – Графік гіперболічного параболоїду

5. За даними з таблиці побудувати 2d та 3d стовпчикові діаграми.

Світовий товарний експорт в цінах на 2000 р., млрд. дол.

1		1			1 1 1 1					
	1900	1913	1929	1938	1950	1960	1970	1980	1990	2000
Германія	21,5	54	58	64,1	36,5	87,5	185	385	600	710
Франція	22	28,5	40,5	40	31,5	62,5	140	235	330	420
Великобританія	38,5	54,5	73	76	66	105	160	235	320	400
Бельгія	12,2	15,5	18,4	16,8	12,3	27,5	63	112	176	214

```
import numpy as np
import matplotlib.pyplot as plt

n_groups = 10
german = (21.5, 54, 58, 64.1, 36.5, 87.5, 185, 385, 600, 710)
france = (22, 28.5, 40.5, 40, 31.5, 62.5, 130, 235, 330, 420)
gb = (38.5, 54.5, 73, 76, 66, 105, 160, 235, 320, 400)
belgium = (12.5, 15.5, 18.4, 16.8, 12.3, 27.5, 63, 112, 176, 214)
```

```
fig, ax = plt.subplots()
index = np.arange(n groups)
bar width = 0.2
opacity = 0.4
rects1 = ax.bar(index - bar width, german, bar width,
                alpha=opacity, color='b',
                label='Germany')
rects2 = ax.bar(index, france, bar_width,
                alpha=opacity, color='r',
                label='France')
rects3 = ax.bar(index + bar_width, gb, bar_width,
                alpha=opacity, color='g',
                label='Great Britain')
rects4 = ax.bar(index + 2bar_width, belgium, bar_width,
                alpha=opacity, color='y',
                label='Belgium')
ax.set_xlabel('Year')
ax.set_ylabel('$, blns')
ax.set_title('Export per year')
ax.set_xticks(index + bar_width / 2)
ax.set_xticklabels(('1900', '1913', '1929', '1938', '1950', '1960', '1970',
'1980', '1990', '2000'))
ax.legend()
fig.tight_layout()
plt.grid(True)
plt.show()
```


Рисунок 5 – 2d стовпчикова діаграма

```
import numpy as np
import matplotlib.pyplot as plt
german = (21.5, 54, 58, 64.1, 36.5, 87.5, 185, 385, 600, 710)
france = (22, 28.5, 40.5, 40, 31.5, 62.5, 130, 235, 330, 420)
gb = (38.5, 54.5, 73, 76, 66, 105, 160, 235, 320, 400)
belgium = (12.5, 15.5, 18.4, 16.8, 12.3, 27.5, 63, 112, 176, 214)
_x = np.arange(10)
_y = np.arange(4)
_xx, _yy = np.meshgrid(_x, _y)
x, y = _xx.ravel(), _yy.ravel()
top = belgium + gb + france + german
bottom = np.zeros_like(top)
width = depth = 1
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
data = np.array(top)
colors = plt.cm.jet(data.flatten()/float(data.max()))
bars = ax.bar3d(x, y, bottom, width, depth, top, shade=True, color = colors,
alpha = 0.8)
ax.set_title('Export per year')
ax.set_xticklabels(('1900', '1913', '1929', '1938', '1950', '1960', '1970',
'1980', '1990', '2000'))
ax.set_yticks(_y + width / 2)
ax.set_yticklabels(('Belgium', 'Great Britain', 'France', 'German'))
ax.set_xlabel('Year')
ax.set_zlabel('$, blns')
plt.show()
```


Рисунок 6 – 3d стовпчикова діаграма

Висновок

На даній лабораторній роботі ми дослідили можливості бібліотеки Matplotlib для мови програмування Python при візуалізації даних. Навчилися будувати графіки 2D функцій, 3D поверхонь, функцій в полярній системі координат, 2D та 3D стовпчикових діаграм. Оглянули різні можливості побудови графіків: нанесення підписів на осі, відображення сітки, легенди, виведення текстом рівняння графіку функції та інші.