Состязательный метод дообучения нейронной сети в задаче переноса информации

Колесов А.С.

Московский Физико-Технический интитут Физтех-школа прикладной математики и информатики Кафедра интеллектуальных систем Научный руководитель: к.ф.-м.н. Бахтеев О.Ю.

22.04.2022

Задача переноса информации

Цель

Предложить метод оптимизации параметров модели нейронной сети при помощи информации с другой модели глубокого обучения, обученной на схожей выборке.

Исследуемая проблема

Современные алгоритмы переноса информации нацелены на биективное соответствие параметров в моделях, тем самым теряя гибкость модели для обучения ее на новой выборке.

Метод Решения

Предлагается метод переноса информации , основанный на вероятностном подходе. Он обладает более быстрой сходимостью и использует меньший объем информации.

Постановка задачи переноса информации

Определение

Моделью глубокого обучения является $\mathbf{f}(\mathbf{x},\mathbf{w})$ функция дифференцируемая по параметрам из множества признакового описания объектов во множество меток $\mathbf{f}:\mathbb{X}\times\mathbb{W}\to\mathbb{Y}$, где \mathbb{W} - пространство параметров функции \mathbf{f} .

Определение

Множество объектов и их меток $\mathcal{S} = \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^n : \mathbf{x}_i \in \mathbb{X}_s, \mathbf{y}_i \in \mathbb{Y}_s$ назовем выборкой-источником , данные которого доступны только при оптимизации модели глубокого обучения с некоторого произвольного начального положения $\mathbf{w}_0 \in \mathbb{W}$.

Определение

Множество объектов и их меток $\mathcal{T}=\{\mathbf{x}_i,\mathbf{y}_i\}_{i=1}^n:\mathbf{x}_i\in\mathbb{X}_t,\mathbf{y}_i\in\mathbb{Y}_t$ назовем целевой выборкой, данные которой доступны только при оптимизации модели глубокого обучения с фиксированного начального положения $\mathbf{w}_{fix}\in\mathbb{W}.$

Постановка задачи переноса информации

В качестве модели глубокого обучения рассматривается суперпозиция :

- ullet $f_{enc}(x,w): \mathbb{X} imes \mathbb{W} o \mathbb{Q}$,где \mathbb{Q} скрытое пространство признаков модели-энкодера.
- ullet $\mathbf{f}_{cl}(\mathbf{q},\mathbf{w}): \mathbb{W} imes \mathbb{Q} o \mathbb{Y}$ модель-классификатор.

На источнике и целевой выборках модель представима в виде суперпозиции:

$$\mathbf{f}^{src} = \mathbf{f}^{src}_{cl} \odot \mathbf{f}^{src}_{enc}, \qquad \mathbf{f}^{tgt} = \mathbf{f}^{tgt}_{cl} \odot \mathbf{f}^{tgt}_{enc}$$

Общий метод переноса информации

- Обучить \mathbf{f}_{enc}^{src} на \mathcal{S} выборке-источнике с произвольного начального положения \mathbf{w}_0 до фиксированного положения \mathbf{w}_{fix} .
- Провести оптимизацию по параметрам модели \mathbf{f}_{enc}^{tgt} на \mathcal{T} целевой выборке, взяв в качестве начального фиксированного положения \mathbf{w}_{fix} .
- ullet Обучить $\mathbf{f}_{\mathit{cl}}^{\mathit{tgt}}$ на $\mathcal T$ с начального фиксированного положения $\mathbf{w}_0^{'} \in \mathbb W.$

Обзор существующих методов

Современные методы переноса информации в общем виде могут быть сформулированны как задача минимизации следующего функционала:

$$\min_{\mathbf{w} \in \mathbb{W}} \sum_{i=1}^{n} \mathcal{L}(\mathbf{f}_{cl}^{tgt}(\mathbf{f}_{enc}^{tgt}(\mathbf{x}_{i})), \mathbf{y}_{i}) + \Omega(\cdot)$$

w -параметры модели, $\mathcal{L}(\cdot,\cdot)$ - функция потерь и $\Omega(\cdot)$ -регуляризация на параметры или выходы слоев модели.

Методы

L2-penalty :

$$\Omega(\mathbf{w}) = \alpha ||\mathbf{w}^{tgt}||_2^2$$

где α - гиперпараметр, контролирующий силу регуляризации.

• L2-SP : Метод регуляризации стремит параметры модели \mathbf{f}_{enc}^{tgt} приблизить к параметрам \mathbf{f}_{enc}^{src} по L2 метрике,

$$\Omega(\mathbf{w}) = \beta ||\mathbf{w}_{enc}^{tgt} - \mathbf{w}_{enc}^{src}||_2^2 + \alpha ||\mathbf{w}_{cl}^{tgt}||_2^2.$$

• DELTA : Обозначим выходы слоев модели как FM_{enc}:

$$\Omega(\mathbf{w}) = \beta || \mathbf{F} \mathbf{M}_{enc}^{tgt}(\mathbf{w}_{enc}^{tgt}) - \mathbf{F} \mathbf{M}_{enc}^{src}(\mathbf{w}_{enc}^{src}) ||_2^2 + \alpha ||\mathbf{w}_{cl}^{tgt}||_2^2.$$

Вероятностный подход

Цель вероятностного подхода

Оценка апостериорного распределения $p(\mathbf{w}|\mathbf{x})$ при помощи заданного априорного распределения $p(\mathbf{w})$:

$$p(\mathbf{w}|\mathbf{x},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{w},\mathbf{x})p(\mathbf{w})}{\int_{\mathbb{W}} p(\mathbf{y},\mathbf{w}|\mathbf{x})d\mathbf{w}}.$$

Вариационный вывод

Пусть $q_{\phi^*}(\mathbf{w})$ - вариационное распределение, параметры которой $\phi \in \Phi$ минимизируют:

$$\phi^* = \arg\min_{\phi} \mathit{KL}(\mathbf{q}_{\phi}(\mathbf{w})||p(\mathbf{w}|\mathbf{y},\mathbf{x})).$$

Для вычисления оптимизируется вариационная нижняя оценка $\mathcal{L}(\phi)$:

$$\mathcal{L}(\phi) = \mathbb{E}_{q_{\phi}(\mathbf{w})} \log p(\mathbf{y}|\mathbf{w},\mathbf{x}) - \mathcal{K}L(q_{\phi}(\mathbf{w})||p(\mathbf{w}))
ightarrow \max_{\phi}.$$

Альтернативная функция потерь

 $\mathit{KL}(\mathbb{P}||\mathbb{Q})$ не является метрикой и запрашивает $\mathbb{P},\mathbb{Q}\in\mathcal{P}$, \mathcal{P} - вероятностное пространство, в отличие от $\mathbb{W}_1(\mathbb{P},\mathbb{Q})$.

Расстояние Вассерштайна

Определение

Рассмотрим пространство \mathbb{R}^D с метрикой $||\cdot||_2$. Пусть $\mathbb{P},\mathbb{Q}\in\mathcal{P}_1(\mathbb{R}^D)$, где $\mathcal{P}_1(\mathbb{R}^D)$ — множество вероятностных мер измеримых по Борелю с коненым первым моментом. Расстояние Вассерштйна-1 ($\mathbb{W}_1(\mathbb{P},\mathbb{Q})$):

$$\mathbb{W}_1(\mathbb{P},\mathbb{Q}) \stackrel{def}{=} \inf_{T \sharp \mathbb{P} = \mathbb{Q}} \int ||\mathbf{x} - T(\mathbf{x})||_2 d\mathbb{P}(\mathbf{x}),$$

где $T:\mathbb{R}^D o \mathbb{R}^D$ измеримая функция (детерминистичный план).

Теорема

Пусть \mathbb{P} и $\mathbb{Q} \in \mathcal{P}_1(\mathbb{R}^D)$. Пусть биективное соответствие в задаче переноса информации при L_2 регуляризации соответсвует детерминистичному плану $\tilde{\gamma}$. Тогда для оценки расстояния Вассерштайна $\tilde{W}_1(\mathbb{P},\mathbb{Q})$ по плану $\tilde{\gamma}$ справедливо следующее соотношение

$$W_1(\mathbb{P},\mathbb{Q}) \leq \tilde{W}_1(\mathbb{P},\mathbb{Q}).$$

Двойственность Канторовича

Определение

Функцию $\mathbf{f}(\mathbf{x}):\mathbb{R}^D o \mathbb{R}$ будем называть строго 1-Липшицевой функцией и обозначать $||\mathbf{f}||_L=1$, если

$$\forall \mathbf{x} \in \mathbb{R}^D \Rightarrow ||\nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x})|| = 1$$

Теорема

Пусть \mathbb{P} и $\mathbb{Q} \in \mathcal{P}_1(\mathbb{R}^D)$. Траснпортными лучами назовем прямые определяемые оптимальным планом T(x) вида:

$$r = xt + (1-t)T(x), t \in [0,1].$$

Тогда двойственная форма записи для \mathbb{W}_1 :

$$\mathbb{W}_1(\mathbb{P},\mathbb{Q}) = \sup_{||f||_{L}=1} [\int f(x) d\mathbb{P}(x) - \int f(y) d\mathbb{Q}(y)],$$

где двойственный потенциал f удовлетворяет условию $||f||_L=1$ и \sup берется по классу строго 1-Липшицевых функций $f\colon \mathbb{R}^D \to \mathbb{R}$.

Предлагаемый метод

Введем следующие обозначения :

- ullet $\mathbf{w}_{enc_{j}}^{src}\sim p_{j}(\mathbf{w})$ параметры в j-ом слое модели \mathbf{f}_{enc}^{src} .
- ullet $\mathbf{w}_{enc_i}^{tgt} \sim q_j(\mathbf{w})$ параметры в j-ом слое модели $\mathbf{f}_{enc}^{tgt}.$
- $||\mathbf{f}_{j_{\phi_j}}(\mathbf{w}_j)||_L = 1$ модель глубокого обучения на j-ом слое с оптимизируемыми параметрами ϕ_j , именуемая дискриминатором (критиком).
- ullet Пара $({f x}_i,{f y}_i)\in {\cal T}$ это пара объект и метка на целевой выборке.

Тогда задача оптимизации параметов модели \mathbf{f}^{tgt} ставится как следующая мини-максная задача:

$$\max_{\boldsymbol{\phi}} \min_{\mathbf{w}^{\mathsf{tgt}}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\mathbf{y}_i | \mathbf{x}_i, \mathbf{w}^{\mathsf{tgt}}) + \sum_{j=1}^{J} \lambda_j [\mathbb{E}_{q_j(\mathbf{w})} \mathbf{f}_{j_{\phi_j}}(\mathbf{w}^{\mathsf{tgt}}_{\mathsf{enc}_j}) - \mathbb{E}_{p_j(\mathbf{w})} \mathbf{f}_{j_{\phi_j}}(\mathbf{w}^{\mathsf{src}}_{\mathsf{enc}_j})],$$

где λ_j является настраиваемым гиперпараметром для каждого слоя модели ${\bf f}$. Первое слагаемое соответствует функции потерь для обучения ${\bf f}^{\rm tgt}$, второе слагаемое — двойственная задача Канторовича.

Строго 1-Липшицевы нейронные сети

Теорема

Рассмотрим функцию $f: \mathbb{R}^D \to \mathbb{R}$, представимую в виде f(x) = Wx, где W некоторая матрица преобразования. Тогда $||\nabla_x f(x)||_2 = 1$, если $||W||_2 = 1$.

Теорема

Рассмотрим функции $\mathbf{f}, \mathbf{g}: \mathbb{R}^D \to \mathbb{R}$ такие, что : $||\mathbf{f}||_L = 1, ||\mathbf{g}||_L = 1$. Тогда следующие функции будут строго 1-Липшицевы :

$$\max(\mathbf{f}, \mathbf{g}), \quad \min(\mathbf{f}, \mathbf{g}).$$

Теорема

Рассмотрим функции $\mathbf{f},\mathbf{g}:\mathbb{R}^D \to \mathbb{R}$ такие , что: $||\mathbf{f}||_L=1,||\mathbf{g}||_L=1.$ Тогда функция $\mathbf{t}:\mathbb{R}^{2D} \to \mathbb{R}$, определяемую как

$$t(x, y) = \alpha f(x) + \beta g(y),$$

является строго 1-Липшицевой с коэффициентом $\alpha = \sqrt{1-eta^2}.$

Схема предлагаемого метода

Вычислительный эксперимент

Цель

Исследовать поведение модели глубокого обучения при переносе информации с другой модели. Сравнить предложенный метод с различными существующими подходами переноса информации.

Проведенно сравнение со следующими методами переноса информации:

- L2-Penalty(baseline)
- L2-SP
- DELTA.

 ${f f}^{src}$ обученная сверточная модель архитектуры ResNet-18 на выборке-источнике CIFAR-100 . Информация переносится на ${f f}^{tgt}$ сверточную нейронную сеть той же архитектуры обучаемую на целевых выборках CalTech-256 и CalTech-101.

Критерий качества модели

$$Accuracy(\mathbf{x}) = 1 - \frac{1}{m} \sum_{i=1}^{m} [\mathbf{f}^{\text{tgt}}(\mathbf{x}_i, \mathbf{w}^{\text{tgt}}) \neq \mathbf{y}_i].$$

Эксперименты на CalTech-256 и CalTech-101

Выносится на защиту

- Предложен и обоснован метод переноса информации, реегуляризатор которого является точной нижней оценкой между распределениями параметров моделей.
- Предложенны и теоретически обоснованны модели глубокого обучения, имеющие константу Липшица ровно 1.
- Проведены эксперименты для моделей глубокого обучения для различных целевых выборок, подтверждающие работоспособность предложенного метода.