Review

- Python basics
 - Interpreter, data types (int, float, str, bool), memory operation, namespace
 - Functions, modules, classes, and methods
 - Control, grouping, and repetition
 - File I/O
- Object-oriented programming
- Data structures
 - Lists, sets, tuples, and dictionaries
 - Arrays and hashing
 - Linked lists, queues, stacks, binary search trees, general trees, and graphs
- Algorithms
 - Big O, search, sort, and traversal

Bits, Data Types, and Operations

Lecture 20

Hyung-Sin Kim

Python is a high-level, human-friendly language

Now it is time to explore the low level to understand computers!

Textbook

Contents

- Bits
- Data types
- Integer representation
 - Unsigned integers
 - Signed integers
 - Operations
- Other representations
- Summary

Bits

We have seen many data types (int, float, str, bool).

Today's main question:

How does a computer represent these data types?

Bits (Binary Digits) – What and Why?

- You write a program in a computer language like Python
- When a computer executes this program, it actually means that **electrons** in the computer move in a specific way
 - A computer has billions of very tiny, very fast devices that control the movement of those electrons

- These devices react to the <u>presence</u> or <u>absence</u> of voltages in electronic circuits (rather than a specific voltage value)
 - Simply detecting presence/absence of voltages is much easier than measuring exact voltage values (120 V, 115 V, 118.6 V ...)
 - Making a device react to the actual, exact voltages is very complex and error-prone

Bits (Binary Digits) – What and Why?

- Why is detecting presence/absence of a voltage easier?
 - A circuit does **NOT** have to detect **absolute** presence or absence of a voltage (does not need to be very precise!)

- **Detection with <u>margin</u>:** Rough detection when a computer expects 0 V for absence and 2.9 V for presence
 - A circuit detects presence of a voltage if a voltage is **far from** 0 (e.g., 2.4~2.9 V)
 - A circuit detects absence of a voltage if a voltage is **close** to 0 (e.g., $0\sim0.5$ V)

Bits (Binary Digits) – What and Why?

- Symbolic representation of the two states
 - 1: Presence of a voltage
 - **0**: Absence of a voltage
- Each 0/1 is called "bit," a shortened form of binary digit
 - With a bit, now we can represent **two values** successfully!

- But only two values are not enough to do useful tasks!
 - We need to identify a large number of distinct states (values)
 - How?

Computers represent useful information by using <u>multiple</u> bits!

Two bits can represent four states: 00, 01, 10, 11 **N bits** can represent 2^N states

Ok! Then the remaining question is: "How does a computer represent data types using multiple bits?"

Data types

Data Types

- How can we represent a value "5" by using bits?: There are many ways!
- Unary system (bit counting, **not** using bit-position information)
 - 5 = 111111 (five 1s)
 - We need **too many** bits for representing a large value
- Using bit-position information
 - $5 = 101 (1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0)$
- Data type
 - A particular **representation** of information in bits
 - There should be **operations** in a computer that can operate on information encoded in that representation

Boolean Types - Values

- A data type that represents two logical values
 - 1: True
 - **0**: False

- Bit vectors (a sequence of logical variables)
 - Each bit position represents true/false of a specific condition
 - Ex.) A bit vector for GSDS graduation
 - Freshman: 0000
 - Qual Pass!: 0100
 - 4th semester: 0111

Thesis?	Qual?	Units?	Required courses?
0	0	0	0

Boolean Types – Operations

Operations with logical variables

Input A	NOT (~)
0	1
1	0

Input A	Input B	AND (&)
0	0	0
0	1	0
1	0	0
1	1	1

Input A	Input B	OR ()
0	0	0
0	1	1
1	0	1
1	1	1

Input A	Input B	XOR (^)
0	0	0
0	1	1
1	0	1
1	1	0

Boolean Types – Operations

Operations with bit vectors

Input A	NOT (~)
0110	1001
1111	0000

Input A	Input B	AND (&)
0111	1110	0110
0000	1010	0000
0101	0011	0001
1110	1111	1110

Input A	Input B	OR ()
0111	1110	1111
0000	1010	1010
0101	0011	0111
1110	1111	1111

Input A	Input B	XOR (^)
0111	1110	1001
0000	1010	1010
0101	0011	0110
1110	1111	0001

Integer representation

- Unsigned integers
- Signed integers
- Operations

Representing Integers (maybe more complex than you thought)

Unsigned Integers

- A data type that represents positive integers and zero (no negative integers)
 - N bits can represent unsigned integers from 0 to $2^N 1$

Value	2-nd Bit	1-st Bit	0-th Bit
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

• Operations: Addition, subtraction, multiplication, division, etc... with **Base 2**

Signed Integers – Signed Magnitude

- A data type that represents <u>positive/negative integers</u> and <u>zero</u>
 - N bits can represent signed integers from $-2^{N-1} + 1$ to $2^{N-1} 1$

- Most significant bit (the leftmost bit) to represent **sign**
 - 0: Positive
 - 1: Negative
- Approach 1: Signed magnitude
 - Use other bits just as unsigned integers
 - 2 = 0.10
 - -2 = 1 10

Value	2-nd Bit	1-st Bit	0-th Bit
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
-0	1	0	0
-1	1	0	1
-2	1	1	0
-3	1	1	1

Signed Integers – 1's Complement

- A data type that represents <u>positive/negative integers</u> and <u>zero</u>
 - N bits can represent signed integers from $-2^{N-1} + 1$ to $2^{N-1} 1$

- Most significant bit (the leftmost bit) to represent sign
 - 0: Positive
 - 1: Negative
- Approach 2: 1's complement
 - Flip the other bits
 - 2 = 0.10
 - -2 = 101

2-nd Bit	1-st Bit	0-th Bit
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1
	0 0 0 0 1 1	0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1

Signed Integers – 2's complement

- Problems with signed magnitude and 1's complement
 - Two representations of zero (+0 and -0)
 - Complex rules for operations: complex to design arithmetic circuits

• We want to represent negative integers so that logic circuits become as simple as possible!

• 2's complement represent a negative value (-X) so that X + (-X) = 0 with "normal" binary addition (ignoring carry out) 00101 (5) 01001 (9) + (-5) 00000 (0) 00000 (0)

Signed Integers – 2's complement

- Problems with signed magnitude and 1's complement
 - Two representations of zero (+0 and -0)
 - Complex rules for operations: complex to design arithmetic circuits

- We want to represent negative integers so that logic circuits become as simple as possible!
- 2's complement represent a negative value (-X) so that X + (-X) = 0 with "normal" binary addition (ignoring carry out) 00101 (5) 01001 (9) 11011 (-5) 110111 (-9) 00000 (0) 00000 (0)

Signed Integers – 2's complement

- Representing a negative integer by using 2's complement
 - Represent its absolute value as an unsigned integer
 - Flip every bit (i.e., take the 1's complement)
 - Add one

The most significant bit has weight -2^{N-1}

Value	2-nd Bit	1-st Bit	0-th Bit
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
-4	1	0	0
-3	1	0	1
-2	1	1	0
-1	1	1	1

Arithmetic Operation – Addition

- 2's complement addition is just binary addition
 - Assumption
 - All integers have the same number of bits (e.g., 8 bits)
 - The result can still be represented as the same number of bits (e.g., 8 bits)
 - Ignore carry out (e.g., 9-th bit)

Arithmetic Operation – Subtraction

- 2's complement subtraction
 - Assumption
 - All integers have the same number of bits (e.g., 8 bits)
 - The result can still be represented as the same number of bits (e.g., 8 bits)
 - Step 1) **Negate** the subtrahend (2nd number)
 - Step 2) Perform Addition

	01101000 (104)		11110110 (-10)
	00010000 (16)	<u>-</u>	11110111 (-9)
	01101000 (104)		11110110 (-10)
+	11110000 (<mark>-16</mark>)	<u>+</u>	00001001 (<mark>9</mark>)
	01011000 (88)		11111111 (-1)

Arithmetic Operation – Sign Extension

- 2's complement addition when two integers have different lengths
 - Extend the smaller number's bit length
 - Adding 0s for positive integers

	01101000 (104)
+	0100 (4)
	01101000 (104)
+	<mark>0000</mark> 0100 (4)
	01101100 (108)

```
01101000 (104)
+ 1100 (-4)

01101000 (104)
+ 00001100 (8??)

Zero padding does NOT work for negative integers!
```

Arithmetic Operation – Sign Extension

- 2's complement addition when two integers have different lengths
 - Extend the smaller number's bit length
 - Adding 0s for positive integers
 - Adding 1s for negative integers

	01101000 (104)
+	0100 (4)
	01101000 (104)
+	<mark>0000</mark> 0100 (4)
	01101100 (108)

	01101000 (104)
+	1100 (-4)
	01101000 (104)
+	<mark>1111</mark> 1100 (-4)
	01100100 (100)

Arithmetic Operation – Overflow

• Overflow: If operands are too big, the result sometime cannot be represented as an n-bit 2's complement number

- It is important to estimate and detect overflow
 - It can happen when signs of both operands are the same
 - It can be detected by testing the most significant bit (the sign bit)

Other representations

Floating Point

- Representation (binary number)
 - $N = (-1)^{S} \times 1$. fraction $\times 2^{exponent-127}$, $1 \le exponent \le 254$
- Embed the three information in a 32-bit data type
 - 1 bit for the sign (positive or negative)
 - 8 bits for the range (the exponent field)
 - 23 bits for precision (the fraction field)

Floating Point

- Floating point arithmetic is more complex than integer (fixed-point) arithmetic
 - FLOPS (floating point operations per second) is a representative measure of computer performance
- Trade-off
 - **Development cost**: It is easier to design an algorithm with floating point numbers
 - Need to handle quantization noise to design an algorithm with fixed-point numbers
 - Execution cost: It is faster and more energy efficient to execute an algorithm with fixed-point numbers

#500 supercomputer performance in top500 slows down from 2008

ASCII

- 8-bit code to represent characters
 - Used for communication between the main computer processing unit and input/output devices (e.g., keyboards and monitors)
- Greatly simplifies the interface between
 - a keyboard made by one company
 - a computer made by another company
 - a monitor made by a third company

Hexagonal

- A method to represent binary strings (0s and 1s...) for **human** convenience when there are too many bits ...
 - Long binary strings can cause many copying errors!: 0011110101101110
- Group four bits $(0\sim15)$ and represent the number as a hex digit
 - 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Example

Summary

Summary

- Exact value vs. Presence/Absence
- Bit, multiple bits, and data types
- Logical variables, bit vectors, and operations
- Unsigned integers, signed integers, and operations
- Floating point, ASCII, and Hexagonal

Q&A

Any questions?

Thanks!