Patterned self-Assembly Tile set Synthesis

Andrew Rodriguez andrew.rodriguez09@utrgv.edu

University of Texas Rio Grande Valley — May 22, 2022

1 Definitions

Abstract Tile Assembly Model (aTAM). Let Σ be the set of *states*, also referred to as a *tile set*. A *tile* $t=(\sigma,p)$ is a unit square where $\sigma\in\Sigma$ and p is its position and $p\in\mathbb{Z}^2$. An assembly A is a set of tiles where for every pair of tiles $t_1=(\sigma_1,p)$ and $t_2=(\sigma_2,p')$, $p\neq p'$. A glue strength function s is defined as $s:\Sigma\times\Sigma\to\mathbb{N}$. A *tile assembly system* is a 4-tuple $\mathcal{T}=(\Sigma,S,s,\tau)$ where Σ is the tile set, S is the seed assembly, S is the glue strength function and S is the temperature.

K-Colored Pattern. Given the fixed dimensions m and n, a mapping from $[m] \times [n] \subseteq \mathbb{Z}^2$ onto [k] defines a k-colored pattern. The k-colored pattern will be extended by adding tiles to the south and west borders to create an L shape seed assembly for our tile assembly system.

Patterned self-assembly tile set synthesis (PATS). Given a k-colored pattern $c:[m]\times[n]\to[k]$, find a tile assembly system $\mathcal{T}=(\Sigma,S,s,\tau=2)$ where all tiles in Σ have glue strength 1 and there exists a tile coloring $tc:\Sigma\to[k]$ such that each terminal assembly A satisfies tc(A(x,y))=c(x,y) for all $(x,y)\in[m]\times[n]$.