E0 298 | Linear Algebra and Its Applications Assignment 3

Deadline: 11.30 AM, 5 October, 2023 Full Marks: 25

- 1. Let \mathbb{V} be a nontrivial finite-dimensional vector space and \mathbb{W} be an infinite-dimensional vector space. Prove that the space $\mathcal{L}(\mathbb{V},\mathbb{W})$ is infinite-dimensional. (4)
- 2. Suppose \mathbb{V} is finite-dimensional and $T_1, T_2 \in \mathcal{L}(\mathbb{V})$. Prove that $\mathcal{R}(T_1) \subseteq \mathcal{R}(T_2)$ if and only if there exists $T \in \mathcal{L}(\mathbb{V})$ such that $T_1 = T_2 \circ T$. (6)
- 3. Given an example of $A \in \mathbb{R}^{2 \times 2}$ such that $\mathcal{N}(A) = \mathcal{R}(A)$. On the other hand, show that there cannot exist $A \in \mathbb{R}^{3 \times 3}$ such that $\mathcal{N}(A) = \mathcal{R}(A)$. (4)
- 4. Suppose \mathbb{V} is a vector space and $T \in \mathcal{L}(\mathbb{V})$. Prove that T is a scalar multiple of the identity map if and only if $R \circ T = T \circ R$ for all $R \in \mathcal{L}(\mathbb{V})$. (6)
- 5. Suppose \mathbb{V} is finite-dimensional and $T_1, T_2 \in \mathcal{L}(\mathbb{V})$. Prove that (5)

nullity $(T_1 \circ T_2) \leq \text{nullity } T_1 + \text{nullity } T_2.$
