STATISTISK ANALYS AV KOMPLEXA DATA SPATIALA DATA

Mattias Villani

Statistik och Maskininlärning Institutionen för Datavetenskap Linköpings Universitet

MOMENTETS INNEHÅLL

- ► Introduktion till spatiala data
- ► Geostatistiska data: Interpolation, Variogram och Kriging
- ► Arealdata: Spatiala autoregressionsmodeller.

TRE TYPER AV SPATIALA DATA

- ▶ Spatiala data: position och avstånd har betydelse.
- ► Tre typer av spatiala data:
 - ► Geostatistiska data (Mätstationer)
 - Arealdata (Bildpixlar)
 - Punktmönsterdata (Fågelskådning)
- ► **Tempo-spatiala** data. Spatiala mätningar över **tid**. Ex: Meteorologiska mätningar.
- ▶ Inom delmomentet: Geostatistiska och lite areal data.

GEOSTATISTISKA DATA

- ▶ Y(s) är en slumpmässig vektor observerad vid positionen $s \in D$.
- ▶ Positionerna $s_1, s_2, ..., s_n$ är fixa.
- ▶ Mätningarna vid positionerna $Y(s_1)$, $Y(s_2)$, ..., $Y(s_n)$ är slumpmässiga.
- ightharpoonup D är ofta en delmängd av \mathbb{R}^2 . Longitud och latitud.

GEOSTATISTISKA DATA

- ▶ Y(s) är en slumpmässig vektor observerad vid positionen $s \in D$.
- ▶ Positionerna $s_1, s_2, ..., s_n$ är fixa.
- ▶ Mätningarna vid positionerna $Y(s_1)$, $Y(s_2)$, ..., $Y(s_n)$ är slumpmässiga.
- ightharpoonup D är ofta en delmängd av \mathbb{R}^2 . Longitud och latitud.
- Exempel 1: Temperatur och nederbörd i min trädgård igår.
- Exempel 2: Mängd olja vid olika borrningsstationer.
- ► Exempel 3: Huspriser.

MEUSE RIVER DATA - ZINC CONCENTRATION

AREAL DATA

- ▶ D är fortfarande en fix delmängd, men partitionerad i arealenheter. En mätning i varje area.
- ► Exempel 1: Jordbruksexperiment.
- Exempel 2: Bildanalys. Röntgen/Magnetkamera.
- Exempel 3: Huspriser på kommunnivå.
- ► Areal data kallas också lattice data.

KOMMUNALSKATT 2012

FMRI BILDER AV HJÄRNAKTIVITET

FMRI BILDER AV HJÄRNAKTIVITET

PUNKTMÖNSTERDATA

- ▶ Positionerna $s_1, s_2, ..., s_n$ är slumpmässiga. Punktprocesser.
- ▶ $Y(s_1)$, $Y(s_2)$, ..., $Y(s_n)$ är fixa som indikerar att en viss händelse inträffat vid s_i .
- ▶ Exempel 1: Positioner av viss trädsort.
- ► Exempel 2: Sjukdomsutbrott.
- Exempel 3: Brottsplatser.
- ▶ Klustring ofta viktigt. Tenderar vissa djurarter att befinna sig inom samma område? Olika områden (revir)? Attraction/repulsion.
- ► Kovariatinformation vid de slumpmässiga positionerna: marked point pattern. Ex: brottsstyp, fågelstorlek, trädomkrets.

SPATIALA DATA I R

- ▶ Paketet **sp** är baspaketet med spatiala datatyper.
- Objekt för att rita upp spatiala data: punkt, linje, polygon, grid och pixel.
- coordinates (dataMatris) <- dinaKoordinater
 [dinaKoordinater är en matris med två kolumner innehållande longitud och latitud]
- dataMatris blir ett objekt av typen SpatialPointsDataFrame.
- Alternativ: funktionen SpatialPointsDataFrame().
- ▶ 11CRS <- CRS("+proj=longlat +ellps=WGS84") definerar det traditionella longitud-latitude koordinatsystemet.
- ► library(maps); map("world", "sweden") ritar upp en Sverigekarta.
- gridObjekt <- as(SpatialDataMatris, "SpatialPixels") Gör om matrisen SpatialDataMatris med punkter till en grid/pixlar.

INTERPOLATION AV SPATIALA DATA

- ▶ Vi har observerat $Z(s_1)$, $Z(s_2)$, ..., $Z(s_n)$ vid n fixa positioner.
- ▶ Vi vill beräkna anpassningen $\hat{Z}(s_0)$ i en ny punkt s_0 .
- ► Interpolation viktat med inversa avståndet:

$$\hat{Z}(s_0) = \frac{\sum_{i=1}^{n} w(s_i, s_0) Z(s_i)}{\sum_{i=1}^{n} w(s_i, s_0)}$$

där

$$w(s_i, s_0) = ||s_i - s_0||^{-p}$$

- library(gstat); idwOut <- idw(zinc ~ 1, meuse, meuse.grid, idp = 2)
- image(idwOut) ritar upp den interpolerade ytan.

INTERPOLATION MED INVERSA AVSTÅND

MEUSE RIVER DATA - ZINC CONCENTRATION

TIDSERIER

- ▶ **Tidserier**: data observerat över **tid**. $x_1, x_2, ..., x_T$.
- ► Autoregressiv model av ordning ett:

$$x_t = \phi x_{t-1} + \varepsilon_t$$

där ε_t $\sim N(0,\sigma^2)$ är oberoende slumpfel.

▶ Beroende över tid. Värdet idag beror på gårdagens värde.

AUTOKORRELATION

- Stationär tidsserie:
 - Konstant väntevärde över tiden
 - Konstant varians över tiden
 - ▶ Autokorrelationen mellan X_t och X_{t+h} beror bara på h.
- ► Autokorrelationsfunktionen visar beroendet över tid:

$$C(h) = Corr(X_t, X_{t+h})$$

Variogrammet innehåller samma info som C(h):

$$\mathrm{E}\left[\left(X_{t}-X_{t+h}\right)^{2}\right]$$

VARIOGRAM

- ▶ Spatiala data är som tidserier där tiden t byts ut mot rumsliga koordinater $s = (s_1, s_2)$.
- Process

$$Z(s) = m + e(s)$$

där m är väntevärdet och e(s) är spatialt brus.

Alternativt

$$Z(\mathbf{s}) = X\beta + e(\mathbf{s})$$

► Semivariogram

$$\gamma(\mathbf{h}) = \frac{1}{2} \mathbb{E} \left[Z(\mathbf{s}) - Z(\mathbf{s} + \mathbf{h}) \right]^2$$

där h är en vektor.

- ▶ Variogram = $2\gamma(h)$.
- ▶ Relation till kovariansfunktionen C(h) = Cov[Y(s+h), Y(s)]:

$$\gamma(\mathbf{h})=2[C(\mathbf{0})-C(\mathbf{h})]$$

VARIOGRAM, FORTS

- Stationäritet över rummet.
- ▶ Spatial korrelation beror endast på avståndsvektorn $\mathbf{h} = \mathbf{s}_i \mathbf{s}_j$ mellan två punkter och inte på punkternas positioner.
- ▶ Isotropisk korrelation: vektorn h kan ersättas med dess längd h = ||h||.
- ▶ Nugget: ofta antas att $\gamma(\mathbf{0}^+) = \lim_{h \to 0^+} \gamma(h) = \tau^2 > 0$. Går dock inte att skatta utan upprepade observationer vid samma position.

SAMPELVARIOGRAMMET

- ▶ Problematiskt att skatta variogrammet eftersom vi kan ha inga eller få datapunkter som just har avståndet h. Jfr ACF i tidsserieanalys.
- ▶ Låt $I_1 = [0, h_1), I_2 = [h_1, h_2), ..., I_m = [h_{m-1}, h_m)$ vara en partitionering av intervallet $[0, h_m)$ där h_m är en övre gräns.
- ► Momentskattning av (semi)variogrammet:

$$\hat{\gamma}(I_j) = \frac{1}{2N_h} \sum_{i=1}^{N_h} [Z(s_i) - Z(s_i + h)]^2$$

för alla $h \in I_i$.

- ▶ library(gstat); plot(variogram(log(zinc) ~ 1, meuse))
- library(gstat); plot(variogram(log(zinc) ~ sqrt(dist), meuse))
- ▶ library(gstat); plot(variogram(log(zinc) ~ 1, meuse, alpha = c(0,45,90,135)))

Modeller för isotropiska variogram

Linjär

$$\gamma(h;\theta) = \begin{cases} \tau^2 + \sigma^2 h & \text{om} \quad h > 0\\ 0 & \text{om} \quad h = 0 \end{cases}$$

Sfärisk

$$\gamma(h;\theta) = \left\{ \begin{array}{ccc} \tau^2 + \sigma^2 & \text{om} & h \ge 1/\phi \\ \tau^2 + \sigma^2 \left\{ \frac{3\phi h}{2} - \frac{1}{2}\phi^3 h^3 \right\} & \text{om} & 0 \le h \le 1/\phi \end{array} \right.$$

▶ Powered exponential 0 (Exponential <math>p = 1, Gaussisk p = 2)

$$\gamma(h;\theta) = \begin{cases} \tau^2 + \sigma^2 \left[1 - \exp(-|\phi h|^p)\right] & \text{om} \quad h > 0 \\ 0 & \text{om} \quad h = 0 \end{cases}$$

Matérn

$$\gamma(h;\theta) = \begin{cases} \tau^2 + \sigma^2 \left[1 - \frac{(2\sqrt{\nu}h\phi)^{\nu}}{2^{\nu-1}\Gamma(\nu)} K_{\nu}(2\sqrt{\nu}h\phi) \right] & \text{om} \quad h > 0 \\ 0 & \text{om} \quad h = 0 \end{cases}$$

NUGGET, SILL OCH RANGE

► Exempel: sfäriskt variogram

$$\gamma(h;\theta) = \left\{ \begin{array}{ccc} \tau^2 + \sigma^2 & \text{om} & h \ge 1/\phi \\ \tau^2 + \sigma^2 \left\{ \frac{3\phi h}{2} - \frac{1}{2}\phi^3 h^3 \right\} & \text{om} & 0 \le h \le 1/\phi \end{array} \right.$$

- ► Nugget: $\gamma(0^+) = \lim_{h \to 0^+} \gamma(h) = \tau^2 > 0$
- ► Sill: $\lim_{h\to\infty} \gamma(h) = \tau^2 + \sigma^2$
- ▶ Partial sill: Sill Nugget = σ^2
- ▶ Range: h-värdet där $\gamma(h)$ först når sitt maximum: $1/\phi$.

SKATTNING AV PARAMETRISKA VARIOGRAM

Ickelinjär viktad minsta kvadrat (startvärden viktiga)

$$\sum_{j=1}^{p} w_j \left[\gamma(h) - \hat{\gamma}(h) \right]^2$$

- ► Variogrammodeller i R: vgm(psill, model, range, nugget)
- ► Exempel: v <- vgm(1, "Sph", 800, 1)
- ▶ library(gstat); sampleVariogram <- variogram(log(zinc) ~
 sqrt(dist), meuse)</pre>
- vFit <- fit.variogram(sampleVariogram, v);
 plot(sampleVariogram, vFit)</pre>
- ► attributes(vFit) ger SSE.

SKATTNING AV PARAMETRISKA VARIOGRAM - EYEBALLING

- ► Eyeball statistics: Prova olika parametervärdet tills dess parametriskt variogram anpassar sampelvariogrammet.
- library(geoR); varioEye <eyefit(variog(as.geodata(meuse["zinc"]), max.dist =
 1500)); varioFit <- as.vgm.variomodel(varioEye[[1]])</pre>
- ► Fungerar inte i RStudio. Kör "vanlig" R. Datamaterialet meuse finns i paketet sp.

SPATIAL PREDIKTION - KRIGING

- ▶ Vi har observationer $Z(s_1), ..., Z(s_n)$ och vill prediktera $Z(s_0)$, Z-värdet vid en ny position s_0 .
- ▶ Vi har kovariater vid varje position: $X = (x(s_1), ..., x(s_n))'$ och $x(s_0)$.
- ► Rimlig prediktor: $\hat{Z}(s_0)$ är ett viktat medelvärde av värdena vid "närliggande" positioner.
- Bästa linjära väntevärdesriktiga prediktorn

$$\hat{Z}(\mathbf{s}_0) = x(\mathbf{s}_0)\hat{\beta} + v'V^{-1}\left(Z(\mathbf{s}) - X\hat{\beta}\right)$$

där $Z(s)=(Z(s_1),...,Z(s_n))'$, V är kovariansmatrisen för Z(s) och v är kovariansvektorn innehållande kovarianserna mellan $Z(s_0)$ och Z(s), och

$$\hat{\beta} = (X'V^{-1}X)^{-1}X'V^{-1}Z(s)$$

är den vanliga GLS-skattningen.

SPATIAL PREDIKTION - KRIGING, FORTS.

Prediktionsvarians

$$Var(\hat{Z}(s_0)) = Var(Z(s_0)) - v'V^{-1}v' + (x(s_0) - v'V^{-1}X)(X'V^{-1}X)^{-1}(x(s_0) - v'V^{-1}X)$$

- Universal kriging.
- Ordinary kriging: endast intercept i regressionsytan.
- krige(log(zinc) ~ sqrt(dist), meuse, meuse.grid, fittedSphVariogram)

KRIGING - MEUSE DATA

AREAL DATA

- ► Datapunkter är definierade över arealenheter (kommuner, pixlar)
- Arealernas närhet till varandra äv viktig. Motsvarar avstånd för geostatistiska data.
- ► Spatiala grannskap (neighbourhoods):
 - ▶ Vilka regioner gränsar till region *i*?
 - Vilka länder handlar med varandra? Hur mycket?
 - Vilka delar av hjärnan är sammankopplade med fibrer?
 - Vem är du vän med på Facebook?

SPATIALA GRANNSKAP - ETT EXEMPEL

$$W = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right)$$

$$W = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad \tilde{W} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0.33 & 0 & 0.33 & 0.33 \\ 0 & 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 & 0 \end{pmatrix}$$

SPATIALA GRANNSKAP - ETT EXEMPEL

$$W = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right)$$

$$W = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad \tilde{W} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0.33 & 0 & 0.33 & 0.33 \\ 0 & 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 & 0 \end{pmatrix}$$

SPATIALA GRANNSKAP - ETT EXEMPEL

$$W = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right)$$

$$W = \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ 1 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 \ 0 & 1 & 1 & 0 \end{array}
ight) \qquad ilde{W} = \left(egin{array}{ccccc} 0 & 1 & 0 & 0 \ 0.33 & 0 & 0.33 & 0.33 \ 0 & 0.5 & 0 & 0.5 \ 0 & 0.5 & 0.5 & 0 \end{array}
ight)$$

US CENSUS TRACT DATA - NEW YORK COUNTIES

US CENSUS TRACT DATA - NEW YORK COUNTIES

MORAN'S I

- ▶ Näthetsmatris $W = (w_{ij})$ [objekt av klassen nb i R]
- ► Test för spatialt beroende, Moran's I

$$I = \frac{n}{\sum_{i=1}^{n} \sum_{i=1}^{n} w_{ij}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y_i - \bar{y}) (y_j - \bar{y})}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Moran's I i vektorform

$$I = \frac{(\mathbf{y} - \bar{y})' \tilde{\mathbf{W}} (\mathbf{y} - \bar{y})}{(\mathbf{y} - \bar{y})' (\mathbf{y} - \bar{y})}$$

- ▶ $-1 \le I \le 1$ och $E(I) = -\frac{1}{n-1}$ vid spatiellt oberoende.
- Globalt vs Lokalt beroende.
- ► Geary's C mer lokalt alternativ till Moran's I.

R KOMMANDON FÖR AREALDATA

- ▶ Mål: vikter för varje arealenhet som beskriver dess beroende av enhetens grannar.
- ► Två steg:
 - Definera närhetsmatris (vem är granne med vem?). nb objekt i R [neighbourhood].
 - Bestäm vikter mellan alla par av grannar. nb2listw [neighbourhood to list of weights]

R KOMMANDON FÖR AREALDATA, FORTS.

- ▶ Närhetsvikter: listw objekt.
- ▶ NYlistw[[2]] är en lista där det *i*:te listelementet innehåller information om vilka grannar den *i*:te arealenheten har.
- ▶ **NYlistw**[[3]] är en lista där det *i*:te listelementet innehåller information om **vilka vikter** den *i*:te arealenhetens grannar har.
- ► Exempel: NYlistw <- nb2listw(NY_nb, style = "B") [Binärt definierade grannar. Granne eller ej.]
- ▶ NYlistw[[2]][[3]] returnerar c(2,13,35), vilket säger att enheterna 2, 13 och 35 är grannar med enhet 3.
- ▶ NYlistw[[3]][[3]] returnerar c(1,1,1), vilket säger att enheterna 2, 13 och 35 har alla vikt 1 för enhet 3 (binär grannrelation).
- Exempel: NYlistw <- nb2listw(NY_nb, style = "W") [Binärt definierade grannar. Granne eller ej.]</p>

SIMULTAN AUTOREGRESSIV MODELL (SAR)

► Tidsserieanalys: regression med AR(1) feltermer

$$y_t = \beta_0 + \beta_1 x_t + e_t$$
$$e_t = \rho e_{t-1} + \varepsilon_t$$

där $\varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$.

► Simultan autoregressiv modell (SAR)

$$y_i = \beta_0 + \beta_1 x_i + e_i$$
$$e_i = \sum_{j=1}^m b_{ij} e_j + \varepsilon_i$$

där $\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$.

- bij representerar spatiala beroenden mellan regioner.
- $b_{ii} = 0$ för alla i. Regionen beror inte på sig själv.

SIMULTAN AUTOREGRESSIV MODELL (SAR), FORTS

Modellen kan skrivas som

$$egin{aligned} E\left(\mathbf{y}
ight) &= \mathbf{X}eta \ Var(\mathbf{y}) &= \left(\mathbf{I} - \mathbf{B}
ight)^{-1} \Sigma_{arepsilon} \left(\mathbf{I} - \mathbf{B}'
ight)^{-1} \end{aligned}$$

där $\mathbf{B}=(b_{ij})$ och ${}^{\circ}_{\varepsilon}$ är en diagonal matris, ofta $\Sigma_{\varepsilon}=\sigma^2 I$.

- ▶ Vanligt val: $B = \lambda W$. Spatial autokorrelationsparameter: λ .
- ► R funktionen: nysar <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8, listw = NYlistw)

CONDITIONAL AUTOREGRESSIVE MODEL (CAR)

 Beroendet f\u00f6r residualerna modelleras betingat p\u00e1 omgivningen (neighbourhood)

$$e_i|e_{j\sim i}\sim N\left(\sum_{j\sim i}\frac{c_{ij}e_j}{\sum_{j\sim i}c_{ij}},\frac{\sigma_{e_i}^2}{\sum_{j\sim i}c_{ij}}\right)$$

• Om t ex $\mathbf{C} = \lambda \mathbf{W}$ och $\Sigma_{\varepsilon} = \sigma^2 I$ så gäller för CAR att

$$E(\mathbf{y}) = \mathbf{X}\beta$$
$$Var(\mathbf{y}) = \sigma^{2} (I - \lambda \mathbf{W})^{-1}$$

$$d\ddot{a}r \mathbf{C} = (c_{ii}).$$

▶ R: nycar <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, + data = NY8, family = "CAR", listw = NY1istw)</p>