Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2023-24

Κεντρική Μονάδα Επεξεργασίας

(Σχεδιασμός μιας απλής ΚΜΕ)

http://mixstef.github.io/courses/comparch/

Μ.Στεφανιδάκης

Σχεδιασμός μιας απλής ΚΜΕ

- Μοντέλο load-store (τύπου RISC)
 - Εντολές σταθερού μήκους
- Βασικές κατηγορίες εντολών
 - Αριθμητικές-λογικές πράξεις
 - Εντολές διακλάδωσης
 - Ανάγνωση-εγγραφή από/στη μνήμη
- Ν καταχωρητές γενικού σκοπού
- Απλουστευμένο μοντέλο μνήμης
 - Ως διεπαφή (interface) που δέχεται διεύθυνση και επιστρέφει δεδομένα και εντολές
 - Αντιπροσωπεύει στην πραγματικότητα μια ιεραρχία μνήμης

Εκτέλεση πράξεων: ΑΛΜ

- Αριθμητική Λογική Μονάδα (ΑΛΜ)
 - Arithmetic Logic Unit (ALU)
 - Εκτέλεση αριθμητικών και λογικών πράξεων
 - Εκτέλεση συγκρίσεων (για διακλάδωση υπό συνθήκη)
 - Υπολογισμός διευθύνσεων (για προσπέλαση μνήμης)

Εντολές για αριθμητικές – λογικές πράξεις

 $Rz \leftarrow Rx \text{ op } Ry$

- Σε κάθε εκτέλεση εντολής
 - Ανάγνωση από 2 καταχωρητές
 - Εγγραφή σε 1 καταχωρητή
- Ίδια ροή δεδομένων
 - Διαφορετική επιλεγόμενη πράξη

Συστοιχία καταχωρητών (register file)

- Λειτουργία ανάγνωσης
 - Σήματα ελέγχου επιλογή Α και επιλογή Β
 - Ο αριθμός των καταχωρητών το περιεχόμενο των οποίων θα εμφανιστεί στην έξοδο Α και έξοδο Β αντίστοιχα

Συστοιχία καταχωρητών (register file)

- Λειτουργία εγγραφής
 - Αποθήκευση της εισόδου στη θετική ακμή του clk
 - Στον καταχωρητή που ορίζει η επιλογή εγγραφής, εάν το επιτρέπει η επίτρεψη εγγραφής

Ένα απλό μονοπάτι δεδομένων (datapath)

- Εκτέλεση μιας εντολής ανά κύκλο ρολογιού
- Ανάγνωση και εγγραφή στον ίδιο κύκλο;
 - Ναι, η ανάγνωση από τους καταχωρητές θα δώσει το αποτέλεσμα της εγγραφής του προηγούμενου κύκλου ρολογιού (clk)
 - Ενώ η εγγραφή θα είναι διαθέσιμη για ανάγνωση στον επόμενο κύκλο

Η μονάδα ελέγχου (control unit)

- Αποκωδικοποίηση bits της εντολής
 - Επιλογή καταχωρητών προέλευσης δεδομένων
 - Επιλογή καταχωρητή αποθήκευσης αποτελέσματος
 - Επιλογή λειτουργίας ΑΛΜ
 - Το δυσκολότερο στη σχεδίαση τμήμα της ΚΜΕ

Η «μνήμη εντολών»

- Μια χρήσιμη αφαίρεση, αντιπροσωπεύει μια ιεραρχία μνήμης
 - Από την κρυφή μνήμη 1^{ου} επιπέδου μέχρι την κύρια μνήμη
 - Στην πραγματικότητα ίσως να μην είναι δυνατή η ανάκτηση μιας εντολής σε κάθε κύκλο ρολογιού

Η διεύθυνση της επόμενης εντολής

- Program Counter (PC)
 - Περιέχει τη διεύθυνση στη μνήμη της επόμενης εντολής
 - Αυξάνεται κατά την εκτέλεση κάθε εντολής
 - Επόμενη διεύθυνση = τρέχουσα + d
 - d = μήκος σε bytes κάθε εντολής
 - Οι εντολές έχουν σταθερό μήκος

Ο κύκλος μηχανής

- Στάδια εκτέλεσης εντολής
 - Instruction Fetch (IF)
 - Ανάκτηση εντολής προς εκτέλεση
 - Instruction Decode (ID)
 - Επιλογή δεδομένων και λειτουργιών ανάλογα με εντολή
 - Execute (EX)
 - Εκτέλεση υπολογισμού στην ΑΛΜ
 - Data Memory Access (DM)
 - Προσπέλαση μνήμης δεδομένων
 - Write Back (WB)
 - Αποθήκευση αποτελεσμάτων σε καταχωρητή

Instruction Fetch (IF): Ανάκληση (όλες οι κατηγορίες εντολών)

Instruction Decode (ID): Αποκωδικοποίηση (αριθμητικές – λογικές πράξεις)

Execute (EX): Εκτέλεση (αριθμητικές – λογικές πράξεις)

Write Back (WB): Αποθήκευση (αριθμητικές – λογικές πράξεις)

Εντολές διακλάδωσης (branch ή jump)

• Παράδειγμα

if Rx == Ry then PC ← PC + offset "branch if equal"

- Διακλάδωση υπό συνθήκη
 - Βασισμένο σε αποτέλεσμα πράξης ΑΛΜ
- Σχετική διεύθυνση
 - Πρόσθεση σταθεράς (±offset) στην τρέχουσα διεύθυνση
- Υπολογισμός συνθήκης και διακλάδωση στην ίδια εντολή

Διακλαδώσεις και ενημέρωση PC

- Επιλογή νέας (επόμενης) διεύθυνσης
 - Η διακλάδωση δεν εκτελείται: PC = PC + d
 - Η διακλάδωση εκτελείται: PC = PC + d + offset

Execute (EX) (διακλαδώσεις)

Ενημέρωση PC στη φάση "DM" (διακλαδώσεις)

Εντολές προσπέλασης μνήμης (load-store)

• Παράδειγμα

 $Rx \leftarrow mem[Ry + offset]$

- Μόνο οι εντολές load και store προσπελαύνουν τη μνήμη δεδομένων
- Η διεύθυνση μνήμης παράγεται από την ΑΛΜ
 - Ως άθροισμα περιεχομένου καταχωρητή + σταθεράς (offset)

Η «μνήμη δεδομένων»

- Μια επίσης χρήσιμη αφαίρεση, στην πραγματικότητα αντιπροσωπεύει μια ιεραρχία μνήμης
 - Για εγγραφή ή ανάγνωση
 - clk για την εγγραφή

Execute (EX) (ανάγνωση από μνήμη – load)

Data Memory Access (DM) (ανάγνωση από μνήμη – load)

Write Back (WB)

Σύνοψη λειτουργίας της απλής ΚΜΕ

- Στο σημερινό παράδειγμα ΚΜΕ είναι
 - Κύκλοι ρολογιού ανά εντολή (Clocks per Instruction CPI) =
 - Κάθε εντολή μηχανής εκτελείται σε έναν κύκλο ρολογιού
- Ο κύκλος (περίοδος) ρολογιού (Clock Cycle CC) εξαρτάται από την πιο χρονοβόρα εντολή
 - Οχι αποδοτικό σχήμα
- Υπάρχει τεχνική για βελτίωση της απόδοσης;
 - (στο επόμενο μάθημα)