Eigenvectors of Symmetric Matrices

Ali Taqi

11/4/2020

Computational Evidence: Real Symmetric Matrices have Real Eigenvectors

In this document, we hope to show that given any arbitrary element of the set of $M \times M$ symmetric matrices, denote it $S \in \mathcal{SM}_{\mathbb{R}}[M \times M]$ has a set of real eigenvectors $[\lambda_i] \in \mathbb{R}^M$.

To simulate a generic element S, we use the following method:

(1) First, pick some $f \in [0,1]$, letting it denote the fraction of positive entries of S. That is;

Want:
$$f \approx \frac{|\{s_{ij} > 0\}|}{M^2}$$

We hope to show that our condition is invariant to the value of f, since there is the possibility that the sign proportions of our matrix S influences the det(S).

(2) To simulate a symmetric matrix S with a fraction of positive entries f, we will sample from the distribution:

$$s_{ij} \sim \text{Unif}(f-1,f)$$

(3) To not constrict the sizes of $|s_{ij}|$, we will add an ϵ term and scale our endpoints to preserve the fraction f.

$$s_{ij} \sim \text{Unif}(\epsilon(f-1), \epsilon f)$$

- (4) Having our uniform distribution, we will generate M^2 entries and insert them in the matrix S. Then, we delete the lower triangular matrix, then duplicate the entries from the upper triangle to the lower triangle.
- (5) Now, if we let $f \sim \text{Unif}(0,1)$ and let $\epsilon \to \infty$, we can well approximate $S \in \mathcal{SM}_{\mathbb{R}}[M \times M]$.