- **4.** For each of these pairs of sets, determine whether the first is a subset of the second, the second is a subset of the first, or neither is a subset of the other.
- a) the set of people who speak English, the set of people who speak English with an Australian accent
 b) the set of fruits, the set of citrus fruits
- c) the set of students studying discrete mathematics, the set of students studying data structures

10. Determine whether these statements are true or false.

- a) $\emptyset \in \{\emptyset\}$ c) $\{\emptyset\} \in \{\emptyset\}$ e) $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$ g) $\{\{\emptyset\}\} \subset \{\{\emptyset\}, \{\emptyset\}\}$
- **b)** $\emptyset \in \{\emptyset, \{\emptyset\}\}\$ **d)** $\{\emptyset\} \in \{\{\emptyset\}\}\$ **f)** $\{\{\emptyset\}\} \subset \{\emptyset, \{\emptyset\}\}\$

14. Use a Venn diagram to illustrate the relationship $A \subseteq B$ and $B \subseteq C$.

20. What is the cardinality of each of these sets?

a) Ø

c) $\{\emptyset, \{\emptyset\}\}$

b) {Ø} **d**) {Ø, {Ø}, {Ø, {Ø}}}

27. Let $A = \{a, b, c, d\}$ and $B = \{y, z\}$. Find

a) $A \times B$.

b) $B \times A$.

2.2.4

4. Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$. Find

- a) $A \cup B$. c) A B.
- **b**) $A \cap B$. **d**) B A.

- **26.** Draw the Venn diagrams for each of these combinations of the sets A, B, and C.
- a) $A \cap (B \cup C)$ b) $\overline{A} \cap \overline{B} \cap \overline{C}$ c) $(A B) \cup (A C) \cup (B C)$

- **30.** Can you conclude that A = B if A, B, and C are sets such that
- **a)** $A \cup C = B \cup C$? **b)** $A \cap C = B \cap C$? **c)** $A \cup C = B \cup C$ and $A \cap C = B \cap C$?

- **47.** Let $A_i = \{1, 2, 3, ..., i\}$ for i = 1, 2, 3, ... Find **a)** $\bigcup_{i=1}^{n} A_i$. **b)** $\bigcap_{i=1}^{n} A_i$.

- **50.** Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer i, **a)** $A_i = \{i, i+1, i+2, \ldots\}$.

 - **b**) $A_i = \{0, i\}.$
 - c) $A_i = (0, i)$, that is, the set of real numbers x with 0 < x < i.
 - **d)** $A_i = (i, \infty)$, that is, the set of real numbers x with x > i.

- **2.** Determine whether f is a function from \mathbf{Z} to \mathbf{R} if

 - a) $f(n) = \pm n$. b) $f(n) = \sqrt{n^2 + 1}$. c) $f(n) = 1/(n^2 4)$.

- 6. Find the domain and range of these functions.
 - a) the function that assigns to each pair of positive integers the first integer of the pair
 - b) the function that assigns to each positive integer its largest decimal digit
 - c) the function that assigns to a bit string the number of ones minus the number of zeros in the string
 - d) the function that assigns to each positive integer the largest integer not exceeding the square root of the
 - e) the function that assigns to a bit string the longest string of ones in the string

8. Find these values.

a) $\lfloor 1.1 \rfloor$ c) $\lfloor -0.1 \rfloor$ e) $\lceil 2.99 \rceil$ g) $\lfloor \frac{1}{2} + \lceil \frac{1}{2} \rceil \rfloor$

b) $\lceil 1.1 \rceil$ d) $\lceil -0.1 \rceil$ f) $\lceil -2.99 \rceil$ h) $\lceil \lfloor \frac{1}{2} \rfloor + \lceil \frac{1}{2} \rceil + \frac{1}{2} \rceil$