Lecture 8-1 Frequency Domain Filtering

Yuyao Zhang, Xiran Cai PhD

zhangyy8@shanghaitech.edu.cn caixr@shanghaitech.edu.cn

SIST Building 2 302-F/302-C

Course piazza link: piazza.com/shanghaitech.edu.cn/spring2021/cs270spring2021

Outline

- 2D Discrete Fourier Transform (傅里叶变换)
- Frequency Domain Filtering(频率域滤波)
 - Lowpass Filtering (低通滤波器)
 - Highpass Filtering (高通滤波器)
 - Selective Filtering (选择性滤波)

A recall of 1-D Discrete Fourier Transform

Fourier series

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} [a_n \cos(nt) + b_n \sin(nt)]$$

Fourier transform (continuous-time)

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \, e^{-j\omega t} dt$$

Discrete-time Fourier Transform (DTFT)

$$F(\omega) = \sum_{n=1}^{\infty} x[n] e^{-j\omega n}, \ \omega \in [0,2\pi], \ \omega = 2\pi/T$$

Discrete Fourier Transform (DFT)

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}, (k = 1, 2, \dots, N)$$

An inside view of 1-D DFT

An inside view: https://www.youtube.com/watch?v=cUD1gMAl6W4

https://www.bilibili.com/video/BV1xb411y7EL?from=s earch&seid=284139594740416347

Discrete Fourier Transform (离散傅里叶变换)

2D Discrete Fourier Transform (DFT)

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi (\frac{ux}{M} + \frac{vy}{N})}$$

Discrete Fourier Transform (DFT)

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}, (k = 1, 2, \dots, N)$$

2D Inverse Discrete Fourier Transform (IDFT)

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi (\frac{ux}{M} + \frac{vy}{N})}$$

- f(x,y): M*N input image
- (x,y): spatial variables, $(x=0,2,\cdots,N-1;y=0,2,\cdots,M-1)$
- (u,v): frequency variables, defines the continuous frequency domain $(u=0,2,\cdots,N-1)$ $1: v = 0.2, \cdots, M-1$
- Examples of basis function.

Separability (可分性)

2D DFT to 1D DFT

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})} = \sum_{x=0}^{M-1} e^{-j2\pi\frac{ux}{M}} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi\frac{vy}{N}} = \mathcal{F}_{x} \{ \mathcal{F}_{y} \{ f(x,y) \} \}$$

Calculate IDFT by DFT

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi (\frac{ux}{M} + \frac{vy}{N})}$$

$$MNf^*(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u,v) e^{-j2\pi (\frac{ux}{M} + \frac{vy}{N})}$$

Examples of Basis Functions in 2D DFT

- [0,0]: Constant
- [0,1] [1,0] [1,1]

• [0,2] [2,0] [1,2] [2,1] [2,2]


```
function im = bf(m, n)
```

```
N = 256;

[x,y] = meshgrid(0:(N-1),0:(N-1));

im = real(exp(-j*2*pi*(m*x/N +n*y/N)));
```

```
if (m==0) && (n==0)
    im = round(im);
end
```

figure; imshow(im,[]);

Coding task 1

- 1. Load image vallay-house2.jpeg.
- 2. fft_im = fft2(im);
- 3. Try to show the magnitude of DFT.

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi (\frac{ux}{M} + \frac{vy}{N})}$$

Coding task 1

- 1. Load image vallay-house2.jpeg.
- 2. fft_im = fft2(im);
- 3. Try to show the magnitude of DFT.
- 4. fft_im_shifted = fftshift(fft_im);
- 5. im_recover = ifft(fft_im);
- 6. Try to show the inversed DFT image.

Visualization of FFT

Aliasing

2D Sampling

2D Sampling function (二维取样函数)

$$s_{\Delta T \Delta Z}(t, z) = \sum_{m = -\infty}^{\infty} \sum_{n = -\infty}^{\infty} \delta(t - m\Delta T, z - n\Delta Z)$$

2D Sampling Theorem (二维取样定理)

- ightharpoonup f(t,z) is band-limited (带限函数) if $F(\mu,\nu)=0$, $|\mu|\geq \mu_{\max}$ and $|\nu|\geq \nu_{\max}$
- > The sampling rate: $\frac{1}{\Delta T} > 2\mu_{\text{max}}$, $\frac{1}{\Delta Z} > 2\nu_{\text{max}}$

Spatial Aliasing (空间混淆)

Properties of 2D DFT

- ➤ Spatial and frequency intervals (空间和频率间隔)
- ➤ Translation (平移)
- ➤ Periodicity(周期性)
- ➤ Rotation (旋转)
- ➤ Separability (可分性)
- ➤ Symmetry (对称性)
- ➤ Spectrum and Phase angle (频谱和相角)
- ➤ 2D Convolution theorem (卷积定理)

Translation (平移)

Translation

$$f(x,y)e^{j2\pi(\frac{u_0x}{M}+\frac{v_0y}{N})} \Longleftrightarrow F(u-u_0,v-v_0)$$

$$f(x - x_0, y - y_0) \Leftrightarrow F(u, v)e^{-j2\pi(\frac{ux_0}{M} + \frac{vy_0}{N})}$$

When
$$u_0 = \frac{M}{2}$$
, $v_0 = \frac{N}{2}$

$$F\left(u - \frac{M}{2}, v - \frac{N}{2}\right) \Longleftrightarrow f(x, y)e^{j\pi(x+y)} = f(x, y)(-1)^{(x+y)}$$

Periodicity (周期性)

- $f(x,y) = f(x + k_1M, y) = f(x, y + k_2N) = f(x + k_1M, y + k_2N)$
- $F(u,v) = F(u + k_1 M, v) = F(u,v + k_2 N) = F(u + k_1 M, v + k_2 N)$

Where k_1 and k_2 are integers

Rotation (旋转)

Rotation

$$f(r, \theta + \theta_0) \Leftrightarrow F(\omega, \varphi + \theta_0)$$

Where $x = r\cos\theta$, $y = r\sin\theta$, $u = \omega\cos\varphi$, $v = \omega\sin\varphi$

Fourier Spectrum (频谱)

Phase angle (相角)

Spectrum and Phase angle (频谱和相角)

Take home message

- ➤ 2D-DFT is a useful tool for estimating the frequency domain property about an image, however, it is not as powerful as the 1-D DFT for time domain sequence.
- ➤ Nearly all the property about 1D-DFT can be extended to 2D-DFT.

Symmetry (对称性)

• Even Function (偶函数)

$$w_e(x, y) = w_e(-x, -y)$$
 $w_e(x, y) = w_e(M - x, N - y)$

• Odd Function (奇函数)

$$w_o(x,y) = -w_o(-x,-y)$$
 $w_o(x,y) = -w_o(M-x,N-y)$

• Conjugate symmetric (共轭对称)

$$F^*(u, v) = F(-u, -v)$$
 $F^*(u, v) = F(M - u, N - v)$

Conjugate antisymmetric (共轭反对称)

$$F^*(u,v) = -F(-u,-v)$$
 $F^*(u,v) = -F(M-u,N-v)$

Symmetry (对称性)

	Spatial Domain [†]		Frequency Domain [†]
1)	f(x, y) real	\Leftrightarrow	$F^*(u,v) = F(-u,-v)$
2)	f(x, y) imaginary	\Leftrightarrow	$F^*(-u, -v) = -F(u, v)$
3)	f(x, y) real	\Leftrightarrow	R(u, v) even; $I(u, v)$ odd
4)	f(x, y) imaginary	\Leftrightarrow	R(u, v) odd; $I(u, v)$ even
5)	f(-x, -y) real	\Leftrightarrow	$F^*(u, v)$ complex
6)	f(-x, -y) complex	\Leftrightarrow	F(-u, -v) complex
7)	$f^*(x, y)$ complex	\Leftrightarrow	$F^*(-u-v)$ complex
8)	f(x, y) real and even	\Leftrightarrow	F(u, v) real and even
9)	f(x, y) real and odd	\Leftrightarrow	F(u,v) imaginary and odd
10)	f(x, y) imaginary and even	\Leftrightarrow	F(u,v) imaginary and even
11)	f(x, y) imaginary and odd	\Leftrightarrow	F(u, v) real and odd
12)	f(x, y) complex and even		F(u, v) complex and even
13)	f(x, y) complex and odd	\Leftrightarrow	F(u, v) complex and odd

Spectrum and Phase angle (频谱和相角)

2D DFT in polar form: $F(u,v) = |F(u,v)|e^{-j\Phi(u,v)}$, then

- > Fourier spectrum (频谱): $|F(u,v)| = [R^2(u,v) + I^2(u,v)]^{\frac{1}{2}}$
- Phase angle (相角): $\Phi(u,v) = \arctan \frac{I(u,v)}{R(u,v)}$
- Power spectrum(功率谱): $P(u,v) = |F(u,v)|^2$
- > DC component(直流分量): $F(0,0) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) = MN\overline{f(x,y)}$

2D Convolution theorem(卷积定理)

Convolution theorem

$$f(x,y) \star h(x,y) \Leftrightarrow F(u,v)H(u,v) \text{ or } f(x,y) h(x,y) \Leftrightarrow F(u,v) \star H(u,v)$$

➤ Zero padding (零填充)

$$f_p(x,y) = \begin{cases} f(x,y), & 0 \le x \le A - 1, 0 \le y \le B - 1 \\ 0, & A \le x \le P, B \le y \le Q \end{cases}$$

$$h_p(x,y) = \begin{cases} h(x,y), & 0 \le x \le C - 1, 0 \le y \le D - 1 \\ 0, & C \le x \le P, D \le y \le Q \end{cases}$$

Where f(x,y): $A \times B$ image; h(x,y): $C \times D$ image; $P \ge A + C - 1$; $Q \ge B + D - 1$

Summary of DFT

	Name	DFT Pairs
7)	Correlation theorem [†]	$f(x, y) \not\approx h(x, y) \Leftrightarrow F^{*}(u, v) H(u, v)$ $f^{*}(x, y)h(x, y) \Leftrightarrow F(u, v) \not\approx H(u, v)$
8)	Discrete unit impulse	$\delta(x, y) \Leftrightarrow 1$
9)	Rectangle	$rect[a,b] \Leftrightarrow ab \frac{\sin(\pi ua)}{(\pi ua)} \frac{\sin(\pi vb)}{(\pi vb)} e^{-j\pi(ua+vb)}$
10)	Sine	$\sin(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow$
		$j\frac{1}{2}\Big[\delta(u+Mu_0,v+Nv_0)-\delta(u-Mu_0,v-Nv_0)\Big]$
11)	Cosine	$\cos(2\pi u_0 x + 2\pi v_0 y) \Leftrightarrow$
		$\frac{1}{2} \Big[\delta(u + Mu_0, v + Nv_0) + \delta(u - Mu_0, v - Nv_0) \Big]$
The	following Fourier	transform pairs are derivable only for continuous variables,

The following Fourier transform pairs are derivable only for continuous variables, denoted as before by t and z for spatial variables and by μ and ν for frequency variables. These results can be used for DFT work by sampling the continuous forms.

12) Differentiation (The expressions on the right assume that
$$f(\pm \infty, \pm \infty) = 0.$$
)
$$\begin{cases} \frac{\partial}{\partial t} \end{pmatrix}^m \left(\frac{\partial}{\partial z} \right)^n f(t, z) \Leftrightarrow (j2\pi\mu)^m (j2\pi\nu)^n F(\mu, \nu) \\ \frac{\partial^m f(t, z)}{\partial t^m} \Leftrightarrow (j2\pi\mu)^m F(\mu, \nu); \frac{\partial^n f(t, z)}{\partial z^n} \Leftrightarrow (j2\pi\nu)^n F(\mu, \nu) \end{cases}$$

Properties of DFT

Name	Expression(s)
8) Periodicity (k_1 and	$F(u, v) = F(u + k_1 M, v) = F(u, v + k_2 N)$
k_2 are integers)	$= F(u + k_1 M, v + k_2 N)$
	$f(x, y) = f(x + k_1 M, y) = f(x, y + k_2 N)$
	$= f(x + k_1 M, y + k_2 N)$
9) Convolution	$f(x,y) \star h(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)h(x-m,y-n)$
10) Correlation	$f(x, y) \approx h(x, y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^{*}(m, n) h(x + m, y + n)$
11) Separability	The 2-D DFT can be computed by computing 1-D
	DFT transforms along the rows (columns) of the
	image, followed by 1-D transforms along the columns (rows) of the result. See Section 4.11.1.
L	
12) Obtaining the inverse Fourier transform using a forward transform algorithm.	$MNf^*(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u, v) e^{-j2\pi(ux/M + vy/N)}$ This equation indicates that inputting $F^*(u, v)$ into an algorithm that computes the forward transform (right side of above equation) yields $MNf^*(x, y)$. Taking the complex conjugate and dividing by MN gives the desired inverse. See Section 4.11.2.

Properties of DFT

Name	DFT Pairs
1) Symmetry properties	See Table 4.1
2) Linearity	$af_1(x, y) + bf_2(x, y) \Leftrightarrow aF_1(u, v) + bF_2(u, v)$
3) Translation (general)	$f(x, y) e^{j2\pi(u_0x/M + v_0y/N)} \Leftrightarrow F(u - u_0, v - v_0)$ $f(x - x_0, y - y_0) \Leftrightarrow F(u, v) e^{-j2\pi(ux_0/M + vy_0/N)}$
4) Translation to center of the frequency rectangle, (M/2, N/2)	$f(x, y)(-1)^{x+y} \Leftrightarrow F(u - M/2, v - N/2)$ $f(x - M/2, y - N/2) \Leftrightarrow F(u, v)(-1)^{u+v}$
5) Rotation	$f(r, \theta + \theta_0) \Leftrightarrow F(\omega, \varphi + \theta_0)$ $x = r \cos \theta y = r \sin \theta u = \omega \cos \varphi v = \omega \sin \varphi$
6) Convolution theorem [†]	$f(x, y) \star h(x, y) \Leftrightarrow F(u, v)H(u, v)$ $f(x, y)h(x, y) \Leftrightarrow F(u, v) \star H(u, v)$

