Autocomplete TAB

Import libraries and load dataset

```
In [2]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [3]:
          kepesertaan = pd.read csv('01 kepesertaan.txt', sep='|')
In [4]:
         df = kepesertaan.copy()
         df.head()
Out[4]:
           PSTV01
                     PSTV02 PSTV03 PSTV04 PSTV05 PSTV06 PSTV07 PSTV08 PSTV09 PSTV10 PST
                               1944-
                         15
                                                                                        7206
                                                                                  72
                               03-01
                               1971-
                                                                                  76
                                                                                        7603
                               12-10
                               1967-
                        101
                                                                                        1273
                               12-31
               218
                        218
                                                                                  18
                                                                                        1801
                               01-30
                               1991-
               340 70225684
                                                                                        3311
                                                                                  33
                               05-31
```

Exploratory Data Analysis

```
In [5]: df.drop(index=1312440, inplace=True)
In [6]: df['PSTV03'] = pd.to_datetime(df['PSTV03'])
In [7]: # Determine Age of Participanti in 30 December 2020
    des_2021 = pd.to_datetime('2020-12-30', format='%Y-%m-%d')
    df['Age'] = (des_2021 - df['PSTV03']).astype('<m8[Y]')
    df.head()

Out[7]: PSTV01 PSTV02 PSTV03 PSTV04 PSTV05 PSTV06 PSTV07 PSTV08 PSTV09 PSTV10 PST
```

	PSTV01	PSTV02	PSTV03	PSTV04	PSTV05	PSTV06	PSTV07	PSTV08	PSTV09	PSTV10	PS1
1	64	64	1971- 12-10	1	2	2	3	3	76	7603	
2	101	101	1967- 12-31	1	1	2	2	5	12	1273	
3	218	218	1961- 01-30	1	2	3	3	2	18	1801	
4	340	70225684	1991- 05-31	3	2	2	2	5	33	3311	

BPJS

```
In [9]: data_info(df)
```

t[9]:		Column	N-unique	Null Value	Null Percent	Dtype	
	0	PSTV01	1971743	0	0.0000	int64	
	1	PSTV02	704887	0	0.0000	int64	
	2	PSTV03	34384	0	0.0000	datetime64[ns]	
	3	PSTV04	5	0	0.0000	int64	
	4	PSTV05	2	0	0.0000	int64	
	5	PSTV06	4	0	0.0000	int64	
	6	PSTV07	4	0	0.0000	int64	
	7	PSTV08	6	0	0.0000	int64	
	8	PSTV09	35	0	0.0000	int64	
	9	PSTV10	515	0	0.0000	int64	
	10	PSTV11	10	0	0.0000	int64	
	11	PSTV12	4	0	0.0000	int64	
	12	PSTV13	35	0	0.0000	int64	
	13	PSTV14	515	0	0.0000	int64	
	14	PSTV15	55152	0	0.0000	float64	
	15	PSTV16	3	0	0.0000	int64	

Dtype	Null Percent	Null Value	N-unique	Column	
int64	0.0000	0	20	PSTV17	16
float64	7369.5723	1945346	5	PSTV18	17
float64	0.0000	0	111	Age	18

Data Visualization

Univariate Analysis

```
In [10]:
    # Pie Plot Function
    def pie_plot(col):
        # Pie chart
        label = df[col].value_counts(sorted).index
        data = df[col].value_counts(sorted).values
        fig1, ax1 = plt.subplots()
        ax1.pie(data, labels=label, autopct='%1.1f%%', shadow=True, startangle=90)

# Equal aspect ratio ensures that pie is drawn as a circle
        ax1.axis('equal')
        plt.tight_layout()
        plt.show()
```

```
In [11]:
#Pie Plot (Donut) Function
def donut_plot(col):
    # Pie chart
    label = df[col].value_counts(sorted).index
    data = df[col].value_counts(sorted).values
    fig1, ax1 = plt.subplots()
    ax1.pie(data, labels=label, autopct='%1.1f%%', startangle=90)

#draw circle
    centre_circle = plt.Circle((0,0),0.70,fc='white')
    fig = plt.gcf()
    fig.gca().add_artist(centre_circle)

# Equal aspect ratio ensures that pie is drawn as a circle
    ax1.axis('equal')
    plt.tight_layout()
    plt.show()
```

```
In [12]: donut_plot('PSTV05')
```


1(man) and 2(woman), so there is more man than woman in this dataset

```
In [13]: # Marital Status
pie_plot('PSTV06')
```


1(single), 2(married), 3(divorce), 4(undefined). So in this dataset the highest number of marital status is married

```
In [14]: donut_plot('PSTV12')
```


1(Puskesmas), 2(Klinik Pratama) 3(Dokter Umum), 9(Missing). So the highest number of Type of health facilities is class Puskesmas

```
In [15]:
          def count plot(col, xlabel, title):
              plt.figure(figsize=(15,6))
              # Countplot
              aa = sns.countplot(x=col, data=df)
              # Plot style
              for aa value in aa.patches:
                  aa.annotate(format(aa value.get height(), '.0f'),
                               (aa_value.get_x() + aa_value.get_width() / 2., aa_value.get_heig
                              ha = 'center', va = 'center',
                              xytext = (0, 9),
                              textcoords = 'offset points')
              # Plot Label
              aa.set_xlabel(xlabel)
              aa.set ylabel('Count')
              aa.set title(title);
```

In [16]: count_plot('PSTV07', 'Class', 'Total of each Class')

1(Class 1), 2(Class 2), 3(Class 3), 9(Missing). So the highest number of class participation is class 3

In [17]: count_plot('PSTV08', 'Segmentation participant', 'Total of each Segmentation partici

BPJS

1(Non-worker), 2(PBI APBN), 3(PBI APBD), 4(PBPU), 5(PPU), 9(Missing). So the highest number of segementation participant is PPU

In [18]: count_plot('PSTV11', 'Ownership of health facilities', 'Total of each Ownership of h

1(Vertical/central), 2(province), 3(city), 4(POLRI), 5(TNI AD), 6(TNI AL), 7(TNI AU), 8(BUMN), 9(SWASTA), 99(Missing). So the highest number of ownership of health facilities is Government City

```
In [19]:
    plt.figure(figsize=(15,6))
    sns.histplot(data=df, x="Age", kde=True)
```

Out[19]: <AxesSubplot:xlabel='Age', ylabel='Count'>

500000

400000

300000

Bivariate Analysis

```
In [20]:
           df.head()
Out[20]:
             PSTV01
                      PSTV02 PSTV03 PSTV04 PSTV05 PSTV06 PSTV07 PSTV08 PSTV09 PSTV10 PST
                          15
                                                                                        7206
                               03-01
                                1971-
                                                                                        7603
                                12-10
                                1967-
                101
                         101
                                                                                        1273
                                12-31
                                1961-
                218
                         218
                                                                                        1801
                               01-30
                                1991-
                340 70225684
                                                                                        3311
                               05-31
In [21]:
          def biv count plot(col, hue, xlabel, title):
               plt.figure(figsize=(15,6))
               # Countplot
               aa = sns.countplot(x=col, hue=hue, data=df)
               # Plot style
               for aa_value in aa.patches:
                   aa.annotate(format(aa value.get height(), '.0f'),
                               (aa value.get x() + aa value.get width() / 2., aa value.get heig
                               ha = 'center', va = 'center',
                               xytext = (0, 9),
                               textcoords = 'offset points')
               # Plot label
               aa.set_xlabel(xlabel)
               aa.set_ylabel('Count')
               aa.set_title(title);
```

biv_count_plot('PSTV07', 'PSTV05', 'Class Participation', 'Sum of Class Participatio

```
200000
                    173932
                             168741
           100000
                                                                                              2162
                                                      Class Participation
In [23]:
           def one_box_plot (x, y):
               plt.figure(figsize=(15,6))
               sns.boxplot(data = df, x=x, y=y);
           def one_violin_plot (x, y):
               plt.figure(figsize=(15,6))
               sns.violinplot(data = df, x=x, y=y);
In [24]:
           one_box_plot('PSTV08', 'Age')
           120
            100
In [25]:
           one_violin_plot('PSTV08', 'Age')
```

314628

273676

Sum of Class Participation by Gender

524249

In [22]:

2/2/2021

Multivariate Analysis

