Name - Onkar Katkamwar

PRN - 202201040098

Roll No. - 630

Batch - F(2)

import numpy as np
import pandas as pd

all_data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/1686715083343_all_data.csv")
all_data.head()

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
0	176559.0	Bose SoundSport Headphones	1.0	99.99	04-07-2019 22:30	682 Chestnut St, Boston, MA 02215
1	176560.0	Google Phone	1.0	600.00	04-12-2019 14:38	669 Spruce St, Los Angeles, CA 90001
2	176560.0	Wired Headphones	1.0	11.99	04-12-2019 14:38	669 Spruce St, Los Angeles, CA 90001
3	176561.0	Wired Headphones	1.0	11.99	05/30/19 9:27	333 8th St, Los Angeles, CA 90001
4	176562.0	USB-C Charging Cable	1.0	11.95	04/29/19 13:03	381 Wilson St, San Francisco, CA 94016

#FIND MAN
nan_df = all_data[all_data.isna().any(axis = 1)]
display(nan_df.head)

all_data.shape

all_data = all_data.dropna(how = 'all')
all_data.head()

		und method ress	NDFrame.head	of Ord	der ID Product	Quantity	Ordered Price	e Each Order Date Purchase
_	6	NaN	NaN	Na		Naf	=	NaN
5	1	NaN	NaN	Na	aN NaN	Naf	V	NaN>
		Order ID		Product	Quantity Ordered	Price Each	Order Date	Purchase Address
	0	176559.0		oundSport adphones	1.0	99.99	04-07-2019 22:30	
	1	176560.0	Goog	gle Phone	1.0	600.00	04-12-2019 14:38	
:	2	176560.0	Wired He	adphones	1.0	11.99	04-12-2019 14:38	,,

all_data = all_data[all_data['Order Date'].str[0:2]!='Or']
print(all_data)

	Order ID	Product	Quantity Ordered	Price Each
0	176559.0	Bose SoundSport Headphones	1.0	99.99
1	176560.0	Google Phone	1.0	600.00
2	176560.0	Wired Headphones	1.0	11.99
3	176561.0	Wired Headphones	1.0	11.99
4	176562.0	USB-C Charging Cable	1.0	11.95
		•••		
64	259329.0	Lightning Charging Cable	1.0	14.95
65	259330.0	AA Batteries (4-pack)	2.0	3.84
66	259331.0	Apple Airpods Headphones	1.0	150.00
67	259332.0	Apple Airpods Headphones	1.0	150.00
68	259333.0	Bose SoundSport Headphones	1.0	99.99

```
Order Date
                                               Purchase Address
    04-07-2019 22:30
                           682 Chestnut St, Boston, MA 02215
    04-12-2019 14:38 669 Spruce St, Los Angeles, CA 90001 04-12-2019 14:38 669 Spruce St, Los Angeles, CA 90001
      05/30/19 9:27
                             333 8th St, Los Angeles, CA 90001
3
4
      04/29/19 13:03 381 Wilson St, San Francisco, CA 94016
    09-05-2019 19:00
                             480 Lincoln St, Atlanta, GA 30301
      09/25/19 22:01
                         763 Washington St, Seattle, WA 98101
       09/29/19 7:00
                         770 4th St, New York City, NY 10001
66
67
      09/16/19 19:21
                                782 Lake St, Atlanta, GA 30301
      09/19/19 18:03
                         347 Ridge St, San Francisco, CA 94016
```

```
[67 rows x 6 columns]

all_data['Quantity Ordered'] = pd.to_numeric(all_data['Quantity Ordered'])
all_data['Price Each'] = pd.to_numeric(all_data['Price Each'])

all_data['Month'] = pd.to_datetime(all_data['Order Date']).dt.month
all_data.head()
```

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month
() 176559.0	Bose SoundSport Headphones	1.0	99.99	04-07-2019 22:30	682 Chestnut St, Boston, MA 02215	4
	1 176560.0	Google Phone	1.0	600.00	04-12-2019 14:38	669 Spruce St, Los Angeles, CA 90001	4
:	2 176560.0	Wired Headphones	1.0	11.99	04-12-2019 14:38	669 Spruce St, Los Angeles, CA 90001	4

→ Add City Column

```
def get_city(address):
    return address.split(",")[1].strip(" ")

def get_state(address):
    return address.split(",")[2].strip(" ")[1]

all_data['City'] = all_data['Purchase Address'].apply(lambda x: f"{get_city(x)} ({get_state(x)})")
    all_data.head()
```

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	City
0 17	6559.0	Bose SoundSport Headphones	1.0	99.99	04-07-2019 22:30	682 Chestnut St, Boston, MA 02215	4	Boston (A)
1 17	76560.0	Google Phone	1.0	600.00	04-12-2019 14:38	669 Spruce St, Los Angeles, CA 90001	4	Los Angeles (A)
2 17	76560.0	Wired Headphones	1.0	11.99	04-12-2019 14:38	669 Spruce St, Los Angeles, CA 90001	4	Los Angeles (A)

Data Exploration

Question 1 - What was the best month for sales and how much was earned in that month?

```
all_data['Sales'] = all_data['Quantity Ordered'].astype('int')*all_data['Price Each'].astype("float")
all_data.groupby(['Month']).sum()
     <ipython-input-12-dce0a735c05d>:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy
       all_data.groupby(['Month']).sum()
             Order ID Quantity Ordered Price Each
                                                       Sales
      Month
        4
             7335546.0
                                   123.0
                                               885.80 1210.76
        5
              353124.0
                                     2.0
                                               111.98
                                                       111.98
              184076.0
        6
                                     1.0
                                               14.95
                                                        14.95
        8
              726962.0
                                     9.0
                                                23.92
                                                        50.83
        9
             2378802.0
                                    17.0
                                               591.44
                                                       616.62
       10
              550924.0
                                     11.0
                                                10.67
                                                        39.69
```

Question 2 - Which city sold the most product?

19.0

17.0

740314.0

550635.0

11

65.31

13.66

Q 4 Which products are most often sold together?

```
df = all_data[all_data['Order ID'].duplicated(keep=False)]
#Referenced: https://stackoverflow.com/questions/27298178/concatenate-strings-from-severa
df['Grouped']= df.groupby('Order ID')['Product']. transform(lambda x: ','.join(x))
df2=df[['Order ID', 'Grouped']].drop_duplicates()
print(df['Grouped'])
           Google Phone, Wired Headphones
           Google Phone, Wired Headphones
     Name: Grouped, dtype: object
      <ipython-input-17-7305ebdbe5d9>:4: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus</a>
        df['Grouped']= df.groupby('Order ID')['Product']. transform(lambda x: ','.join(x))
from itertools import combinations
from collections import Counter
count = Counter()
for row in df2['Grouped']:
  row list = row.split(',')
  count.update(Counter(combinations (row_list, 2)))
for key, value in count.most_common (10): print(key,value)
      ('Google Phone', 'Wired Headphones') 1
```

Q 3 which products sold the mosts? Why do u think it sold the most?

```
product_group = all_data.groupby('Product')
quantity_ordered = product_group.sum()['Quantity Ordered']
print (quantity_ordered)
     Product
     AA Batteries (4-pack)
                                    64.0
     AAA Batteries (4-pack)
     Apple Airpods Headphones
                                     3.0
     Bose SoundSport Headphones
                                     3.0
     Google Phone
                                     1.0
     Lightning Charging Cable
                                     4.0
     USB-C Charging Cable
                                     8.0
     Wired Headphones
                                     7.0
     Name: Quantity Ordered, dtype: float64
     <ipython-input-20-ddc2ef51f24b>:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a fut
       quantity_ordered = product_group.sum()['Quantity Ordered']
    4
print(quantity_ordered)
     Product
     AA Batteries (4-pack)
                                    64.0
     AAA Batteries (4-pack)
                                   109.0
     Apple Airpods Headphones
                                     3.0
     Bose SoundSport Headphones
                                     3.0
     Google Phone
                                     1.0
     Lightning Charging Cable
                                     4.0
     USB-C Charging Cable
                                     8.0
     Wired Headphones
     Name: Quantity Ordered, dtype: float64
prices = all_data.groupby('Product').mean()['Price Each']
print(prices)
```

Product

AA Batteries (4-pack) 3.84 2.99 AAA Batteries (4-pack) Apple Airpods Headphones 150.00 Bose SoundSport Headphones 99.99 Google Phone 600.00 14.95 Lightning Charging Cable USB-C Charging Cable 11.95 Wired Headphones Name: Price Each, dtype: float64

<ipython-input-22-ff49c55915e9>:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a fu
prices = all_data.groupby('Product').mean()['Price Each']