

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCES SEPTEMBER, 2020 1 EXAMINATION

COURSE CODE: PHY311

COURSE TITLE: KINETIC THEORY AND STATISTICAL MECHANICS

CREDIT UNIT 2

TIME ALLOWED (2 HRS)

INSTRUCTION: Answer question 1 and any other four questions

QUESTION 1

(a) i- What do you understand by statistical mechanics? **2 marks** ii- Four coins are flipped in succession. Find the total number of possible outcomes.

2 marks

(b) i- Differentiate between permutation and combination. **2 marks** ii-Seven physicists assembled for a meeting shake hands with one another. How many handshakes take place? **3 marks**

(c) i-Define Entropy and state how it relates to probability. 2 marks

ii- Using $w_f/w_i = \left(v_{f/v_i}\right)^N$ and $\Delta S = nR \ln \left(\frac{v_f}{v_i}\right)$ 5 marks

Show that; $S = K \ln(W)$

(d) i-, Differentiate between macrostate and microstate. Give examples. 3 marks

ii- Briefly explain each of the following:

1. Microcanonical ensemble 3 marks

QUESTION 2

Derive the probability $W_N(n_1)$ for finding the particle at position x=ml after N steps.

12 marks

QUESTION 3

A particle of mass m is free to move in one dimension. Denote its position coordinate by x and its momentum by p. Suppose that this particle is confined with a box so as to be located between x=0 and x=L, and suppose that its energy is known to lie between E and E+dE. Draw the classical phase space of this particle, indicating the regions of this space which are accessible to the particle.

12 marks

QUESTION 4

Consider two system A and system B with constant specific heat C'_A and C'_B and originally at respective temperature T_A and T_B , are brought into thermal contact with each other. After the system come to equilibrium, they reach a come final temperature T_f . What is the entropy change of the entire system in this process?

QUESTION 5

5. With the help of the partition function, $z = \sum_{R} e^{-\beta(n_1 \varepsilon_1 + n_2 \varepsilon_2 + ...)}$ compute the Maxwell-Boltzmann distribution.

QUESTION 6

Using the Taylor expansion and derive the Gaussian distribution. 12 marks