Name Surname	:		19/04/2022 09:00
			Duration: 75 min
Student Id	:	Signature:	

Akdeniz University, Engineering Faculty Computer Engineering Department CSE206 Computer Organization Midterm Exam

Q 1. (5pts) Explain th	e difference between Computer organization and Computer Architecture.
Computer organ	nization is about the hardware part of computer design.
Computer archi	tecture is about the software part of computer design.
•••••	
O 2. (17pts) Write th	e full name of the abbreviated terms considering the context of computer organization.
a) MBR	memory buffer register
b) MAR	· memory address register
c) IBR	· instruction buffer register
d) PC	. program counter
e) AC	· accumulator
f) ARM	· acorn risc machine
g) QPI	quickpath interconnect
h) MMU	. memory management unit
i) RAID	redundant array of independent disks
j) RAS	row address selector
k) ALU	arithmetic logic unit
l) GPU	graphical processing unit
m) USB	. universal serial bus
n) ISA	instruction set architecture
o) RISC	. Reduced Instruction Set Computer
p) CISC	complex instruction set computer
q) DMA	. direct access media
1	an application is performed serially, what is the maximum speedup? Write the formula and solution.
1	
. <u>2/infinity</u>	
1.25	
-	set-associative cache memory unit with a capacity of 16 KB is built using a block size of 8 words (be careful!)
	is 32 bits. The size of the physical address space is 4 GB. What is the number of bits for the TAG field?
	$KB = 2^4 * 2^10 = 2^14$ byte
block size = line	e size = 8 words = 32 byte (word length 32 bit olduğu için 8e böleriz
	word length 4 byte olur. $4*8=32$ byte) $32 = 2^5 -> 5$ -bit offset
memory size = 4	$4GB = 2^2 * 2^30 = 2^32$ byte -> 32-bit physical address
32-bit	
20 7	 5
TAG set ind	
num of sets = 2^{4}	$^{14}/(2^{5} * 2^{2}) = 2^{7} -> 7$ -bit set index
Q 5. (4pts) How man	y check bits are needed if the Hamming error correction code is used to detect single bit errors in a 1024-bi
data word?	
$2^p >= (p+m)$	+ 1
p = 11-bits of p	omitry mandad

Q 6. (4p	ts) Which RAID level pr Level 0 RAID	ovides the highest capacity	for the same	number of disk	s?			
		e word 010101100010 has d was created using an eve t	•		computations i	n the following	empty ar	·ea

a) Which bit is incorrect (indicate the position)

12th position

b) Write the correct code word

,,,	iic iii	c cor	1001	couc	word	<i>.</i>						
	0	1	0	1	0	1	1	0	0	0	1	1

c) Indicate what the original (correct) data was (8 bit data)

	0	0	1	1	0	0	1	1
--	---	---	---	---	---	---	---	---

Q 8. (10pts) Consider a memory system that uses a 32-bit address to address at the byte level, plus a cache that uses a 64-byte line size. Assume a direct mapped cache with a tag field in the address of 20 bits. Show the address format and determine the following parameters:

number of addressable units number of blocks in main memory number of lines in cache total cache memory capacity size of tag

	2^32 words
: .	2^26 blocks
	2^26 lines exist
	2^32 bytes
	20-bit

Q 9. (5pts) What is speculative execution?

It is a technique which is used to optimize the performance by predicting the outcome of future instructions and executing them ahead of time.

.....

Q 10. (10pts) Given the **memory contents** of the IAS computer shown below:

Address	<u>Contents</u>
08A	010FA210FB
08B	010FA0F08D
08C	020FA210FB
08D	

Explain (semantically) what this program does? You can find IAS instruction format and IAS Instruction set in Figure 1 and Table 2.

LOAD.M(0FA)	Transfer M(0FA) to the accumulator.
STOR M(0FB)	Transfer contents of accumulator to memory location 0FB.
LOAD M(0FA)	Transfer M(0FA) to the accumulator.
JUMP + M(08D, 0:19)	If number in the accumulator is nonnegative, take next
LOAD - M(0FA)	instruction from left half of M(08D).
STOR M(0FB)	Transfer $-M(0FA)$ to the accumulator.

Transfer contents of accumulator to memory location 0FB.

						0FD
Address	Symbolic Name	Contents	_	Address	Symbolic Name	Contents
08AL				092R		
08AR				,093L		
08BL				/ 093R		
08BR				/ 094L		
08CL				/ 094R		
08CR				/ 095L		
08DL				; 095R		
08DR				096L		
08EL			;	096R		
08ER				097L		
08FL			;	097R		
			i	0A8L		
			!	0A8R		
			;	0A9L		
			i	0A9R		,
			;	0AAL		,
092L			i	0AAR		,
pseudoc	ode:					
	•••••					

Q 11. (20pts) Write an IAS program to compute the factorial f(n)=n! using instructions from the Table 2 where the value of n is stored at the memory location **0FA**. After the execution of your program the output value f(n)

 Name Surname
 19/04/2022 09:00

 Student Id
 Signature:

 Duration: 75 min

 Table 2
 The IAS Instruction Set

Instruction Type	Opcode	Symbolic Representation	Description
	00001010	LOAD MQ	Transfer contents of register MQ to the accumulator AC
	00001001	$LOAD\ MQ,M(X)$	Transfer contents of memory location X to MQ
	00100001	STOR $M(X)$	Transfer contents of accumulator to memory location X
Data transfer	00000001	LOAD M(X)	Transfer $M(X)$ to the accumulator
	00000010	LOAD - M(X)	Transfer $-M(X)$ to the accumulator
	00000011	LOAD M(X)	Transfer absolute value of $M(X)$ to the accumulator
	00000100	LOAD - M(X)	Transfer $- M(X) $ to the accumulator
Unconditional	00001101	JUMP M(X.0:19)	Take next instruction from left half of $M(X)$
branch	00001110	JUMP M(X,20:39)	Take next instruction from right half of $M(X)$
Conditional	00001111	JUMP + M(X.0:19)	If number in the accumulator is nonnegative, take next instruction from left half of $M(X)$
branch	00010000	JUMP + M(X,20:39)	If number in the accumulator is nonnegative, take next instruction from right half of $M(X)$
	00000101	ADD M(X)	Add M(X) to AC; put the result in AC
	00000111	ADD M(X)	Add $ M(X) $ to AC; put the result in AC
	00000110	SUB M(X)	Subtract M(X) from AC; put the result in AC
	00001000	SUB M(X)	Subtract $ M(X) $ from AC; put the remainder in AC
Arithmetic	00001011	MUL M(X)	Multiply M(X) by MQ; put most significant bits of result in
Arithmetic	00001100	DIV M(X)	AC. put least significant bits in MO Divide AC by $M(X)$; put the quotient in MQ and the remainder in AC
	00010100	LSH	Multiply accumulator by 2; that is, shift left one bit position
	00010101	RSH	Divide accumulator by 2; that is, shift right one position,
	00010011	MOV	Move the scalar value presented in the address field in AC
Address	00010010	STOR M(X,8:19)	Replace left address field at M(X) by 12 rightmost bits of AC
modify	00010011	STOR M(X,28:39)	Replace right address field at $M(X)$ by 12 rightmost bits of AC

Figure 1. IAS Instruction format