AoA Triangulation for MIC arrays

Hyungjoo Seo UIUC

ECE/CS 434 SP2020 Final Project

- Far-field propagation
- 8 devices in2-D coordinate

(Ux,Uy)

How to find AoA Vectors?

Relative Location Vector Amount \overrightarrow{r}_{21} \bullet \overrightarrow{a} = $\Delta \tau_{21}$ v_p

Unknowns!

Total Combination of

$$\binom{6}{2} = 15$$

Known

Measured

$$\begin{bmatrix} r_{x1} & r_{y1} \\ r_{x2} & r_{y2} \\ \vdots & \vdots \\ r_{x15} & r_{y15} \end{bmatrix}$$

$$\begin{bmatrix} a_x/v_p \\ a_y/v_p \end{bmatrix}$$

rows

Least Square Problem

Device non-ideality

Bandpass Filtering 100Hz ~ 1600Hz

Sampling Noise

$$a_1 U_x + b_1 U_y = c_1$$

$$a_2 U_x + b_2 U_y = c_2$$

$$a_8U_x+b_8U_y=c_8$$

Least Square Problem 17

Weighted Least Square (WLS)

More average power ⇒ Assign greater weight

WLS U(Ux, Uy) found (For all k w/ nonzero weight) k's U-(xk,yk) • AoA Vector Yes

