

Sommaire

- 1. Contexte du projet
 - 2. Présentation, nettoyage et analyse des données
- 3. Feature engineering
 - 4. Mise en place des algorithmes de clustering
- 5. Choix du modèle de clustering
 - 6. Modèle choisi en rajoutant le review score
- 7. Contrat de maintenance

Contexte du projet

<u>Problématique</u>: L'équipe e-commerce de l'entreprise Olist souhaite une solution de segmentation des clients pour leurs campagnes de communications.

Objectif: fournir à l'équipe Marketing une description actionnable d'une segmentation client.

Missions:

- Nettoyer et analyser les données.
- Utiliser des méthodes non supervisées pour regrouper les clients similaires.
- Mettre en place une simulation de maintenance pour déterminer la fréquence de mise à jour du modèle de segmentation.

Résultat attendu: 3 notebooks:

- Analyse exploratoire des données,
- Essais des différentes approches de modélisation,
- Simulation pour déterminer la fréquence nécessaire de mise à jour.

Présentation du jeu de données

Une fois les jointures réalisées, les données correspondent à toutes les commandes passées.

Les individus ne sont donc pas les clients mais leurs commandes. Plusieurs lignes peuvent donc concerner un seul et même client.

	<class 'pandas.core.frame.dataframe'=""></class>								
	RangeIndex: 115299 entries, 0 to 115298								
		columns (total 43 columns):							
	#	Column	Non-Null Count	Dtype					
			445000						
	0	order_id	115299 non-null	object					
	1	customer_id	115299 non-null						
	2	order_status	115299 non-null	-					
	3	order_purchase_timestamp	115299 non-null	object					
	4	order_approved_at	115285 non-null	object					
	5	order_delivered_carrier_date	114111 non-null	object					
	6	order_delivered_customer_date	112912 non-null	object					
	7	order_estimated_delivery_date	115299 non-null	object					
	8	order_item_id	115299 non-null	int64					
_	9	product_id	115299 non-null	-					
	10	seller_id	115299 non-null	-					
	11	shipping_limit_date	115299 non-null						
	12	price	115299 non-null	float64					
	13	freight_value	115299 non-null	float64					
N	14	product_category_name	115299 non-null	-					
	15	product_name_lenght	115299 non-null	float64					
	16	product_description_lenght	115299 non-null						
	17	product_photos_qty	115299 non-null						
	18	product_weight_g	115298 non-null						
	19	product_length_cm	115298 non-null						
	20	product_height_cm	115298 non-null						
	21	product_width_cm	115298 non-null						
	22	seller_zip_code_prefix	115299 non-null						
	23	seller_city	115299 non-null						
	24	seller_state	115299 non-null	_					
	25	payment_sequential	115299 non-null	int64					
m	26	payment_type	115299 non-null	-					
	27	payment_installments	115299 non-null	int64					
-	28	payment_value	115299 non-null						
L	29	review_id	115299 non-null	object					
7	30	review_score	115299 non-null	int64					
	31	review_comment_title	13756 non-null	object					
	32	review_comment_message	48780 non-null	object					
=	33	review_creation_date	115299 non-null	-					
	34	review_answer_timestamp	115299 non-null	3					
2	35	customer_unique_id	115299 non-null	-					
	36	customer_zip_code_prefix	115299 non-null	int64					
=	37	customer_city	115299 non-null	_					
	38	customer_state	115299 non-null						
	39	geolocation_lat	115299 non-null						
d	40	geolocation_lng	115299 non-null						
	41	geolocation_city	115299 non-null						
	42	geolocation_state	115299 non-null	object					
		es: float64(12), int64(6), obje	ct(25)						
	memoi	ry usage: 37.8+ MB							

Nettoyage des données .1/3

Valeurs manquantes

Nettoyage des données .2/3

Statuts des commandes

Suppression des commandes autres que les commandes délivrées.

Résultats toutes ont le même statut, on peut supprimer la variable.

Nombre de variables restantes après action: 40

Nettoyage des données .3/3

Suppression des colonnes non-utiles à la segmentation des clients

Data Set après suppression :

4 - 2 -	II P-t-	F13					
	<class 'pandas.core.frame.dataframe'=""></class>						
Rang	RangeIndex: 112913 entries, 0 to 112912						
Data	columns (total 17 columns	s):					
#	Column	Non-Null Count	Dtype				
0	order_id	112913 non-null	object				
1	order_purchase_timestamp	112913 non-null	object				
2	product_id	112913 non-null	object				
3	seller_id	112913 non-null	object				
4	price	112913 non-null	float64				
5	freight_value	112913 non-null	float64				
6	product_category_name	112913 non-null	object				
7	payment_value	112913 non-null	float64				
8	review_score	112913 non-null	int64				
9	customer_unique_id	112913 non-null	object				
10	customer_zip_code_prefix	112913 non-null	object				
11	customer_city	112913 non-null	object				
12	customer_state	112913 non-null	object				
13	geolocation_lat	112913 non-null	float64				
14	geolocation_lng	112913 non-null	float64				
15	geolocation_city	112913 non-null	object				
16	geolocation_state	112913 non-null	object				
dtyp	es: float64(5), int64(1),	object(11)					
memo	ry usage: 14.6+ MB						

Nombre de variables supprimées : 23 Nombre de variables restantes après action : 17

Suppression des variables qui ne caractérisent pas

les clients et donc qui ne seront pas utiles à la

segmentation.

Analyse Exploratoire .1/5

Nombre de commandes par dates d'achat et répartition des prix par rapport au nombre total de ventes

On peut voir que le nombre de commande en fonction de la date d'achat est plutôt bien réparti.

A noter qu'il y a une forte hausse au moment des fêtes de fin d'années (2017-12).

Les produits les plus vendus sont les produits « moins chers », plus le prix des produits augmentent et moins ils sont vendus.

Analyse Exploratoire .2/5

Profil des clients

L'indice de Gini est de : 0.56

Analyse Exploratoire .3/5

Répartition du chiffre d'affaires par clients

Nous avons des clients avec un très fort chiffre d'affaires cumulé. Il pourrait s'agir d'erreurs ou de clients professionnels.

La solution est donc de supprimer ces clients « atypiques » pour ne pas biaiser nos segmentations futures.

Nous allons donc supprimer les données des 8 clients ayant un chiffre d'affaires cumulé supérieur à 20 000.

Ces clients doivent donc être traités à part.

Analyse Exploratoire .4/5

Distribution des variables quantitatives

Analyse Exploratoire .5/5 Analyse des corrélations (analyse bivariée)

Feature Engineering .1/2

Variables RFM (Récence, Fréquence et Montant)

A partir de maintenant, il faut attribuer les données à chacun des clients uniques.

En effet, chaque ligne de notre jeu de donné correspond à une seule et unique commande. Le but est donc d'agréger les données sur chaque client unique.

La récence est calculée en soustrayant la dernière date de commande connue du Dataset et la dernière date de commande du client.

La fréquence est calculée en comptant le nombre de commandes passées pour chaque clients.

Le montant est calculée en additionnant le montant des commandes pour chaque clients.

Feature Engineering .2/2 Moyenne des review scores

Puis, la moyenne des scores laissés par les clients a été rajoutée.

Le Dataset final avec les données des clients comporte donc 91 225 individus pour 5 variables.

	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 91225 entries, 0 to 91224</class></pre>						
Data	columns (total 5 co	lumns):					
#	Column	Non-Null Count	Dtype				
0	customer_unique_id	91225 non-null	object				
1	R_recence	91225 non-null	int64				
2	F_frequence	91225 non-null	int64				
3	M_montant	91225 non-null	float64				
4	4 Mean_review_score 91225 non-null float64						
dtyp	dtypes: float64(2), int64(2), object(1)						
memo	ry usage: 3.5+ MB						

	R_recence	F_frequence	M_montant	Mean_review_score
count	91225.000000	91225.000000	91225.000000	91225.000000
mean	236.149685	1.032809	208.804403	4.154727
std	152.612152	0.205937	440.161224	1.279109
min	0.000000	1.000000	9.590000	1.000000
25%	113.000000	1.000000	63.830000	4.000000
50%	217.000000	1.000000	112.870000	5.000000
75%	344.000000	1.000000	202.740000	5.000000
max	694.000000	14.000000	19457.040000	5.000000

Kmeans avec les données RFM .1/3

Normalisation des données et choix du nombre optimal de clusters

Normalisation des données :

Normaliser Les données
scaler = StandardScaler()
df_normalized = scaler.fit_transform(df_RFM)

Afin de normaliser les données, un StandardScaler a été utilisé pour rendre les variables indépendantes de leur unité et de leur échelle d'origine.

Choix du nombre optimal de clusters :

	Туре	n_clusters	Silhouette	Davies_Bouldin
0	KMeans	2	0.771068	0.646928
3	KMeans	5	0.525578	0.620122
2	KMeans	4	0.507793	0.662084
1	KMeans	3	0.495990	0.701606

En utilisant la méthode du coude, nous constatons que le nombre idéal de clusters se situe entre 4 et 5.

En se basant sur le score Silhouette, les options de 4 ou 5 clusters sont viables, et on peut voir ensuite que l'indice de Davies-Bouldin est minimisé pour 5 clusters.

La meilleure option est donc 5 clusters.

Kmeans avec les données RFM .2/3

Interprétation des clusters

Centroïds du Kmeans:

ā		R_recence	F_frequence	M_montant
	KMeans_label			
	0	386.256522	1.000000	157.379171
Ī	1	126.370664	1.000000	156.304528
/	2	231.435644	1.010396	1714.466198
_	3	218.953777	2.110485	396.419410
	4	228.565574	1.139344	8053.073033

Nombre de client par clusters :

	count
KMeans_label	
1	49700
0	36722
3	2661
2	2020
4	122

Kmeans avec les données RFM .3/3

Interprétation des clusters

Interprétation métier des clusters :

Le cluster 0 correspond aux clients perdus. Ils ont commandé une seule fois pour un montant modéré il y a 386 jours en moyenne.

Le cluster 1 correspond aux derniers clients ayant commandé ; ils peuvent être assimilés à de nouveaux clients car c'était leur première commande.

Le cluster 2 correspond aux *clients ayant dépensé une somme importante sur le site* ; dans la majorité des cas ces clients n'ont commandé qu'une seule fois.

Le cluster 3 correspond aux clients fidèles; ces clients ont commandé au moins 2 fois sur le site.

olis

CAH avec les données RFM .1/3

Échantillonnage du Data Set et choix du nombre optimal de clusters

Échantillonnage des données :

Le nombre de données est trop volumineux (cela donne une erreur de type 'MemoryError')
Prennons un échantillon

échantillon = df_RFM.sample(n=45000, random_state=0)

Afin d'éviter les erreurs dû à la mémoire vive (« MemoryError »), il a été nécessaire d'échantillonner le Data Set et de ne prendre que 45 000 clients.

Choix du nombre optimal de clusters :

Type	n_clusters	Silhouette	Davies_Bouldin
CAH	2	0.747728	0.499237
CAH	5	0.519143	0.632865
CAH	4	0.513991	0.754483
CAH	3	0.478432	0.691042
	CAH CAH	CAH 2 CAH 5 CAH 4	CAH 5 0.519143 CAH 4 0.513991

En utilisant le dendrogramme, on pourrait opter pour 3 options : 3, 4 ou 5 clusters.

En se basant sur le score Silhouette et l'indice de Davies-Bouldin on optera pour 5 clusters.

CAH avec les données RFM .2/3

Interprétation des clusters

Centroïds de la CAH:

	R_recence	F_frequence	M_montant
CAH_label			
1	216.956890	2.120862	377.541955
2	384.408525	1.000000	150.351217
3	127.125812	1.000000	152.909665
4	216.814286	1.085714	7424.719714
5	201.684553	1.017073	1542.449642

		count
7	CAH_label	
L	3	24314
	2	18087
i	1	1299
ľ	5	1230
	4	70

CAH avec les données RFM .3/3

Interprétation des clusters

Interprétation métier des clusters :

Le cluster 1 correspond aux clients fidèles; ces clients ont commandé au moins 2 fois sur le site.

Le cluster 2 correspond aux *clients perdus*. Ils ont commandé une seule fois pour un montant modéré il y a 377 jours en moyenne.

Le cluster 3 correspond aux derniers clients ayant commandé ; ils peuvent être assimilés à de nouveaux clients car c'était leur première commande

Le cluster 4 correspond aux clients ayant dépensé le plus sur le site ; dans la majorité des cas ces clients n'ont commandé qu'une seule fois.

Le **cluster 5** correspond aux *clients ayant dépensé une somme importante sur le site* ; dans la majorité des cas ces clients n'ont commandé gu'une seule fois.

DBSCAN avec les données RFM .1/2

Choix du nombre optimal de clusters

lci, pour trouver le nombre optimal de cluster il faut trouver :

- Epsilon : qui sera la distance maximale entre deux points pour qu'ils soient considérés comme étant dans le même voisinage,
- Et Minimum Points : qui sera le nombre minimum de points pour former un cluster dense.

	min_samples	eps	Silhouette	Davies_Bouldin	Туре
10	5	1.0	0.734269	0.847784	DBSCAN
11	5	1.5	0.733813	1.046944	DBSCAN
7	4	1.0	0.733645	1.022659	DBSCAN
2	2	1.5	0.733483	1.075835	DBSCAN
8	4	1.5	0.733469	1.358878	DBSCAN
5	3	1.5	0.733355	1.340815	DBSCAN
1	2	1.0	0.733053	1.131369	DBSCAN
4	3	1.0	0.733000	1.341611	DBSCAN
9	5	0.5	0.492870	1.391978	DBSCAN
6	4	0.5	0.492571	1.458050	DBSCAN
3	3	0.5	0.490833	1.358840	DBSCAN
0	2	0.5	0.483565	1.267555	DBSCAN

On part toujours du principe qu'il faut **maximiser** le score de Silhouette et qu'il faut **minimiser** l'indice de Davies-Bouldin.

On obtient donc:

- > epsilon = 1.0
- > min_samples = 5

Nombre de client par clusters :

Nombre de clusters = 6

Le premier problème auquel on va se confronter est le nombre de clients par clusters qui est trop déséquilibré.

Ceci étant dû à un nombre trop important de clusters.

DBSCAN avec les données RFM .2/2

Interprétation des clusters

Interprétation métier des clusters :

lci, le DBSAN isole les clients atypiques dans le cluster -1 avec les clients qui ont le plus commandé ou bien les clients qui ont commandé pour de très gros montants (ou les deux).

Mais pour l'interprétation des autres clusters cela devient très compliqué.

Visiblement, le DBSCAN caractérise les différents types de clients par leur fréquence d'achat.

Choix du modèle de clustering

Comparaison des scores des modèles

	Туре	n_clusters	Silhouette	Davies_Bouldin	min_samples	eps
0	KMeans	5.0	0.525578	0.620122	NaN	NaN
1	CAH	5.0	0.519143	0.632865	NaN	NaN
2	DBSCAN	6.0	0.734269	0.847784	5.0	1.0

Le choix du modèle se portera sur le **KMeans**.

En éliminant le DBSCAN en raison de son interprétation métier moins pratique puis en visant à maximiser le score de silhouette, et à minimiser l'indice de Davies-Bouldin, le KMeans se présente comme une option favorable.

Par ailleurs, le KMeans présente des avantages en termes de performance des ressources, notamment par rapport à une Classification Ascendante Hiérarchique (CAH), pour laquelle nous avons dû échantillonner le jeu de données des clients.

KMeans avec les données RFM et le Review Score .1/3

Choix du nombre de clusters

	Туре	n_clusters	Silhouette	Davies_Bouldin
0	KMeans + ReviewScore	2	0.693680	0.756450
4	KMeans + ReviewScore	6	0.443026	0.735506
3	KMeans + ReviewScore	5	0.432726	0.742658
2	KMeans + ReviewScore	4	0.422399	0.798567

En utilisant la méthode du coude, nous constatons que le nombre idéal de clusters est de 5.

En se basant sur le score de silhouette et sur l'indice de Davies-Bouldin l'option de 6 clusters semble être la meilleur.

KMeans avec les données RFM et le Review Score .2/3

Interprétation des clusters

Interprétation métier des clusters :

Le cluster 0 correspond aux *clients fidèles*; caractérisés par des achats fréquents, à noter que ces clients sont majoritairement satisfaits.

Le **cluster 1** correspond aux *nouveaux clients*; ces clients ont commandé une seule fois pour un montant modéré et ils sont satisfaits.

Le cluster 2 correspond aux *clients perdus*. Ils ont commandé une seule fois pour un montant modéré il y a 393 jours en moyenne. Ils étaient satisfait de leur expérience.

Le cluster 3 correspond aux *clients ayant dépensé une somme importante sur le site* ces clients sont majoritairement satisfaits.

Le cluster 4 correspond aux *clients non satisfaits*.

Le **cluster 5** correspond aux *clients ayant dépensé une somme importante sur le site*; dans la majorité des cas ces clients n'ont commandé qu'une seule fois.

KMeans avec les données RFM et le Review Score .3/3

Répartition des clients par clusters

Cette option qui consiste à rajouter le review score nous apporte une précision accrue en termes d'interprétation et nous permet d'obtenir un cluster supplémentaire qui facilite l'identification des clients mécontents.

De plus, cela nous permet de connaître le niveau de satisfaction sur les autres clusters pour une meilleure interprétation métier.

Simulation de données « passées » et « futures »

Séparation du Data Set en 2 et explication de la technique de simulation utilisées

Le but est de séparer notre Data Set en deux, d'entraîner le modèle choisi sur les données qui simuleront « le passé » et de voir comment le modèle se comporte sur les données « futures » sans réentraînement.

Il faudra le confronter au même modèle que nous réentraîneront toutes les semaines afin de simuler la stabilité de notre modèle de base à l'incorporation de données futures.

Pour comparer les résultats des deux modèles nous utiliseront l'indice de Rand (Adjusted Rand Index (ARI)).

Fréquence nécessaire de mise à jour du modèle Stabilité des prédictions du KMeans dans le temps

	Date	Semaine	ARI_Score
0	2018-08-26 17:00:40	1	0.965457
1	2018-08-26 17:00:40	2	0.905417
2	2018-08-26 17:00:40	3	0.856606
3	2018-08-26 17:00:40	4	0.834628
4	2018-08-26 17:00:40	5	0.812665
5	2018-08-26 17:00:40	6	0.771691
6	2018-08-26 17:00:40	7	0.678334
7	2018-08-26 17:00:40	8	0.689391
8	2018-08-26 17:00:40	9	0.647253
9	2018-08-26 17:00:40	10	0.614169

Si on prend le seuil de 0.8, la mise à jour du modèle devrait être effectuée à la semaine 6, soit 1 mois et demi après l'avoir entraîné sur les données.

