#### Introduction to Machine Learning



#### Lecture 3

**Instructor:** 

Dr. Tom Arodz

#### Recap: Simple threshold-based predictive model for single feature



Two classes  $(y_i \text{ is -1 or +1})$ , Data:

one feature (x<sub>i</sub> is a real number)

Predictive model:  $f(x_i)=sign(x_i + w_0 b)$ with one trainable parameter b  $w_0$  can be set to -1 (some textbooks) or +1 (other textbooks)

- Set initial value of b (0, or random, or a guess)
- Loop:
  - Present a sample  $x_i$  and predict  $f(x_i) = sign(x_i + w_0 b)$
  - Compare true class  $y_i$  with predicted class  $f(x_i)$
  - If prediction is right, go to next sample (i=i+1)
  - If prediction is wrong, update b
    - $b_{\text{new}} = b_{\text{old}} + c[y_i f(x_i)]W_0$

Learning rate (small positive number chosen by user, e.g., 0.001)

e.g., if we want  $f(x_i)$  to increase from -1 to +1 because  $y_i$  is +1:

- increase b if  $w_0 = +1$
- decrease b if  $w_0 = -1$

## Recap: Supervised ML



- Typically one feature is not sufficient
- We have many features
- Possible features
  - color
  - color variability
  - texture
  - reflectance
  - shape

## Recap: Supervised ML









- Building a classifier (a predictive model)
  - F-dimensional feature space: R<sup>F</sup>
    - Two features => F=2
  - Training a classifier can be seen as:
    - finding a decision boundary between class 1 and class -1



#### Recap: Simple predictive model for two features

- Data: Two classes (y<sub>i</sub> is -1 or +1), two features (real numbers x<sub>i</sub><sup>1</sup> and x<sub>i</sub><sup>2</sup>) Predictive model: f(x<sub>i</sub>) = sign(w<sup>T</sup> x) = sign(w<sub>1</sub>x<sub>i</sub><sup>1</sup> + w<sub>2</sub>x<sub>i</sub><sup>2</sup>) with two trainable parameters w<sub>1</sub> and w<sub>2</sub>
  - Set initial value of  $w_1$  and  $w_2$  (random, or a guess)
  - Loop:
    - Present a sample  $x_i$  and predict  $f(x_i) = sign(w_1x_i^1 + w_2x_i^2)$
    - Compare true class  $y_i$  with predicted class  $f(x_i)$
    - If prediction is right, go to next sample (i=i+1)
    - If prediction is wrong, update w
      - $w_{\text{new}} = w_{\text{old}} + c[y_i f(x_i)]X_i$ 
        - that is:
          - $\mathbf{w}_{1,\text{new}} = \mathbf{w}_{1,\text{old}} + \mathbf{c} [\mathbf{y}_i \mathbf{f}(\mathbf{x}_i)] \mathbf{x}_i^1$
          - $\mathbf{w}_{2,\text{new}} = \mathbf{w}_{2,\text{old}} + \mathbf{c} [\mathbf{y}_{i} \mathbf{f}(\mathbf{x}_{i})] \mathbf{x}_{i}^{2}$
- e.g.,  $y_i$ =+1,  $x_i$ =(0.75, -0.25),  $w_1$ = $w_2$ = -1: we want  $f(x_i)$  to increase from -1 to +1: increase  $w_1$  (from negative -1 towards >0, so that  $w_1x^1$  becomes positive) but decrease  $w_2$  (make it more negative, so that  $w_2x^2$  is larger positive)

#### Recap: Simple predictive model for two features

- Data: Two classes (y<sub>i</sub> is -1 or +1), two features (real numbers x<sub>i</sub><sup>1</sup> and x<sub>i</sub><sup>2</sup>) Predictive model: f(x<sub>i</sub>) = sign(w<sup>T</sup> x) = sign(w<sub>1</sub>x<sub>i</sub><sup>1</sup> + w<sub>2</sub>x<sub>i</sub><sup>2</sup>) with two trainable parameters w<sub>1</sub> and w<sub>2</sub>
  - Set initial value of  $w_1$  and  $w_2$  (random, or a guess)
  - Loop:
    - Present a sample  $x_i$  and predict  $f(x_i)=sign(w_1x_i^1+w_2x_i^2)$
    - Compare true class y<sub>i</sub> with predicted class f(x<sub>i</sub>)
    - If prediction is right, go to next sample (i=i+1)
    - If prediction is wrong, update w
      - $w_{\text{new}} = w_{\text{old}} + c[y_i f(x_i)]X_i$ 
        - that is:

          - $\mathbf{w}_{2,\text{new}} = \mathbf{w}_{2,\text{old}} + \mathbf{c} [\mathbf{y}_{i} \mathbf{f}(\mathbf{x}_{i})] \mathbf{x}_{i}^{2}$

```
e.g., y_i=-1, x_i=(0.75, 0.25), w_1=w_2=1: we want f(x_i) to decrease from +1 to -1: decrease w_1 and w_2, but decrease w_1 faster (by c*2*.75) and w_2 slower (by c*2*0.25)
```

Why?  $w_1$  gets multiplied by larger number ( $x^1=0.75$ ) so we want to decrease it more than  $w_2$ 

#### Recap: Perceptron using vectors

- One way of making predictions with samples that have 2 features,  $x=(x^1, x^2)$ 
  - Define a 2D vector  $w=(w_1, w_2)$  of 2 trainable parameters

```
Prediction is: f(x_i) = sign(w_1x_i^1 + w_2x_i^2) = sign(w_1^Tx)

Matrix multiplication:

(1x2) times (2x1)

T is transpose op.,

makes it (1x2)

Vector (2x1)
```

- Perceptron Algorithm
  - Set initial values of vector w(random guess)
  - Loop:
  - Present a sample  $x_i$  and predict  $f(x_i)=sign(w^Tx)$ 
    - Compare true class y<sub>i</sub> with predicted class f(x<sub>i</sub>)
    - If prediction is right, go to next sample (i=i+1)
    - If prediction is wrong, update w
      - vector vector
        vector
        vector
        vector
        vector



Building a Classifier



- Feature generation: measure attributes, transform them if needed
- Feature selection (optional): select most relevant features
- Learning: train a machine learning model
- Validation: test the model, redo the above if not satisfied

Building a Classifier



- Features are typically numerical (real numbers, or binary)
  - If not, some numerical encoding is typically used
- Feature space:
  - if we have 2 features for each object
  - then each object is a point in a 2D space
  - 1000 features => 1000 dimensions

Building a *Classifier* 



- F-dimensional feature space: R<sup>F</sup>
- If we have just two classes (A/B, apples/oranges,...)
- Then, building a classifier translates to:
  - assigning regions of feature space to class A and the rest to class B
  - finding a *decision boundary* in feature space between class A and class B

### Summary

- What kind of learning are we talking about?
  - Learning from experience/examples to predict to which of two classes an object belongs
- What are features?
  - The descriptors/attributes (typically numerical) that describe each object/sample
  - Each sample is a vector in the feature space
- What is a decision boundary?
  - A line/surface/hypersurface that has most of samples from one class on one side, and most samples from the other class on the other side
- What is a classifier? Why classification is "supervised machine learning"?
  - A model (mathematical formula) that predicts a class of an example based on its features
  - It's supervised because the learning algorithm bases its actions on the availability of information about true classes of some samples
- How to build a classifier?
  - One simple way is to use a perceptron

#### Another ML problem



- If you got a mixed breed dog and you don't know what the breeds are...
- ... you could consult an expert, who will look at:
  - size of the dog
  - fur
  - shape of tail, etc.,
     and compare these with
     what he/she learned about dog
     breeds
- It's learning to predict classes from features!
  - except, more than one class is correct

- If you got a mixed breed dog and you don't know what the breeds are
- You could consult an expert, who will look at:
  - size of the dog
  - fur
  - shape of tail, etc.,
     and compare these with
     what he/she learned about dog breeds
- Or you could order a genetic test!
  - If you know the attribute that truly differentiates the classes
  - And you can measure it
  - Then there's nothing to learn!
  - Classification methods are useful if the differences between classes are not known or not easily quantified



A fully accurate feature eliminates the need for machine learning!

#### ML: Typical assumptions

- The features are somewhat informative but not perfectly correlated with the class
  - If features were perfect, no need for machine learning

- Rain or sun tomorrow afternoon
  - Learning from experience:
    - Ring around the moon?
      Rain real soon!
    - Red sky at night, sailors delight.
      Red sky in morning, sailors take warning!



- Rain or sun tomorrow afternoon
  - Learning from experience:
    - Ring around the moon?
      Rain real soon!
    - Red sky at night, sailors delight.
      Red sky in morning, sailors take warning!
  - Predictions from supercomputer simulation model
  - There are other, better ways of predicting than machine learning
  - Accurate simulation beats learning from data unless the problem is very complex



#### ML: Typical assumptions

- We do not have a detailed physical/mechanical understanding of the modeled object/process, or, if we do, the process is too complex to simulate
  - Otherwise we would apply known scientific formula or run a computer simulation to get our predictions

This further reinforces the assumption that:

- The features are somewhat informative but very strongly correlated with the class
  - If they were perfectly informative, no need for machine learning



- Circle vs other closed figure
  - Feature A: figure circumference
  - Is this a useful/informative feature for this classification task?



- Circle vs other closed figure
  - Feature B: circumference of circumscribed circle

Is this a useful/informative feature for this classification task?



- Circle vs other closed figure
  - Feature A: figure circumference
  - Feature B: circumference of circumscribed circle
  - A,B uninformative individually, but informative together!
    - If A<B, not a circle</p>
    - If A=B, a circle





- Circle vs other closed figure
  - Feature A: figure circumference
  - Feature B: circumference of circumscribed circle



- Circle vs other closed figure
  - Feature A: figure circumference
  - Feature B: circumference of circumscribed circle
    - If A<B, not a circle</p>
    - If A=B, a circle



- Circle vs other closed figure
  - Feature A: figure circumference
  - Feature B: circumference of circumscribed circle
    - If A<B, not a circle</li>
    - If A=B, a circle **FALSE** if we allow non-convex shapes



- Circle vs other closed figure
  - Feature A: figure circumference



#### ML: Typical assumptions

- We do not have a detailed physical/mechanical understanding of the modeled object/process, or the process is too complex
- The features are somewhat informative but not very strongly correlated with the class
- The association between features and class we can learn is likely to be accurate only for objects similar to our training set
  - We do not have much information about objects fundamentally different from we have seen during training

- Gold vs fake
  - Magnetism
    - Not magnetic –
       but so is lead, etc.
  - Hardness
    - Soft but so is lead, or lead covered with gold
  - Density = mass/vol.
    - Much denser than lead







- Gold vs fake
  - Hardness
    - Soft but so is anything covered with gold
  - Density = mass/vol.
    - Much denser than lead
    - But tungsten has the same density as gold
    - And is not magnetic



Gold bar filled with cheap tungsten (wolfram) rods inside!

Hardness/density classifier will fail!

Gold vs fake
 Hardness (also, is this cheap gold deal a spam?)



The classification problem changed over time

Classifier trained previously may no longer work!

Typically, we assume that the problem is stable:

past and future sample are similar

- Gold vs fake
  - Heat capacity
  - Electric conductivity



 These can tell gold easily (especially both features together)



#### ML: Typical assumptions

- We do not have a detailed physical/mechanical understanding of the modeled object/process, or the process is too complex
- The features are somewhat informative but not perfectly correlated with the class
- The association between features and class we can learn is likely to be accurate only for objects similar to our training set
- The association between regions of feature space and the class variable is fixed
  - If it was changing quickly over time, classifier would soon stop being accurate

#### ML: Typical assumptions

What is the mathematical framework in which we can talk about imperfect, typically weak associations between features regions of feature space and the class variable?



- Modern way of thinking about Machine Learning starts with framing learning in a probabilistic way
  - For next class, please revisit what you know about probability from previous courses

#### News & updates

- Homework 1 is out in Canvas
  - It is due on Thursday, 9/12 (in two weeks), at 5pm

Next Monday (9/2) is Labor Day holiday,
 VCU will be closed, no class

- Next Wednesday (9/4) there will be **no class** (I have an appointment that I wasn't able to reschedule)
  - There WILL be office hours, starting at 1pm

#### News & updates

 Tentative schedule of topics, tests, homeworks is also in Canvas

|          |           |    | Lectures                                | Home | work a | assignments ( | +/- day or two) |                |
|----------|-----------|----|-----------------------------------------|------|--------|---------------|-----------------|----------------|
| 8/21/24  | Wednesday | 1  | Course Intro (today)                    | 8/   | 21/24  | Wednesday     |                 |                |
| 8/26/24  | Monday    | 2  | ML Example: Apples vs Oranges           | 8/   | 26/24  | Monday        |                 |                |
| 8/28/24  | Wednesday | 3  | ML Assumptions / When to use ML         | 8/   | 28/24  | Wednesday     | HW1 out         |                |
| 9/2/24   | Monday    |    | (Labor day)                             | g    | /2/24  | Monday        |                 |                |
| 9/4/24   | Wednesday |    | (cancelled)                             | g    | /4/24  | Wednesday     |                 |                |
| 9/9/24   | Monday    | 4  | Probabilistic View of ML                | g    | 9/9/24 | Monday        |                 |                |
| 9/11/24  | Wednesday | 5  | Maximum Likelihood Estimation           | 9/   | 11/24  | Wednesday     |                 | HW1 due (9/12) |
| 9/16/24  | Monday    |    | Bayesian Learning                       | 9/   | 16/24  | Monday        | HW2 out         |                |
| 9/18/24  | Wednesday | 7  | Trainable Probabilistic Models          | 9/   | 18/24  | Wednesday     |                 |                |
| 9/23/24  | Monday    | 8  | Error Metrics                           | 9/   | 23/24  | Monday        |                 |                |
| 9/25/24  | Wednesday | 9  | Loss Functions                          | 9/   | 25/24  | Wednesday     |                 |                |
| 9/30/24  | Monday    | 10 | Cross-Entropy                           | 9/   | 30/24  | Monday        |                 | HW2 due (10/1) |
| 10/2/24  | Wednesday | 11 | Intro to PyTorch, Test 1 Study Problems | 10   | )/2/24 | Wednesday     |                 |                |
| 10/7/24  | Monday    |    | Test 1                                  | 10   | /7/24  | Monday        |                 |                |
| 10/9/24  | Wednesday | 13 | Nonlinear Kernel Methods                | 10   | )/9/24 | Wednesday     | HW3 out         |                |
| 10/14/24 | Monday    |    | Nonlinear Features and Neural Network   | 10/  | 14/24  | Monday        |                 |                |
| 10/16/24 | Wednesday |    | Details of an MLP Layer                 | 10/  | 16/24  | Wednesday     |                 |                |
| 10/21/24 | Monday    | 16 | MLP: Universal Approximation            | 10/  | 21/24  | Monday        |                 |                |
| 10/23/24 | Wednesday | 17 | MLP: Why Depth                          | 10/  | 23/24  | Wednesday     |                 |                |
| 10/28/24 | Monday    | 18 | Training Deep MLPs                      | 10/  | 28/24  | Monday        |                 | HW3 due        |
| 10/30/24 | Wednesday | 19 | Convolutional Neural Networks           | 10/  | 30/24  | Wednesday     | HW4 out         |                |
| 11/4/24  | Monday    |    | Weight Init, and Dropout                | 11   | /4/24  | Monday        |                 |                |
|          | Wednesday | 21 | Normalizations and Skip Connections     | 11   | /6/24  | Wednesday     |                 |                |
| 11/11/24 | Monday    | 22 | LLM Intro                               | 11/  | 11/24  | Monday        |                 |                |
| 11/13/24 | Wednesday | 23 | Self—Attention and Transformers         | 11/  | 13/24  | Wednesday     | HW5 out         | HW4 due        |
| 11/18/24 | Monday    | 24 | Large Language Models                   | 11/  | 18/24  | Monday        |                 |                |
| 11/20/24 | Wednesday | 25 | Modern Models for Vision Task           | 11/  | 20/24  | Wednesday     |                 |                |
| 11/25/24 | Monday    |    | (Thanksgiving break)                    | 11/  | 25/24  | Monday        |                 |                |
| 11/27/24 | Wednesday |    | (Thanksgiving break)                    | 11/  | 27/24  | Wednesday     |                 |                |
| 12/2/24  | Monday    | 26 | Diffusion-based Generative Models       | 12   | 2/2/24 | Monday        |                 |                |
| 12/4/24  | Wednesday | 27 | Summary, Test 2 Study Problems          | 12   | /4/24  | Wednesday     |                 | HW5 due        |
| 12/9/24  | Monday    | 28 | Test 2                                  | 12   | /9/24  | Monday        |                 |                |

 Now, we move to HW1 slides (they are in Canvas)