Cover Sheet for Submission of Maths Examinations Summer 2020

We would advise preparing your coversheets with your CID, Module Name and Code and Date, before the exams are due to take place.

CID: 01738166

Module Name: Analysis 1

Module Code: MATH40002

Date: 04/05/2020

Questions Answered (in the file):

Please tick next to the question or questions you have answered in this file.

Q1	√
Q2	
Q3	
Q4	
Q5	
Q6	

(Note: this is a coversheet for all students - not all students will have exams with 6 questions. Please tick the boxes which are appropriate for your exam and/or the file you are submitting).

(Optional) Page Numbers for each question;

	ı
Page	Question
Number	Answered

If handwritten, please complete in CAPITAL Letters, in Blue or Black Ink, ensuring the cover sheet is legible.

CID: 01738166 Module Code: MATH40002 Question 1 Page 1 (a) (=) there exists a Bijection fill > S. Uncountable Countably inlinite Procl: Since 45ES, SZA, we have that A is a lover bound Assume Box Aff is a greater lower bound (E>0). We have ASES: SCAtE, which is a contradiction. => A is the to greatest lower bound of S. =) A = in/s. (i) (D) Constant (ii) (E) Impossible (iii) (B) Has a convergent subsequence (iv) (A) Bounded (v) (c) (onvergent (d) VEOO FINE IN # Ja & IR such that In IN, lan-ale & Za EIR such that the an -a (an) = \(\frac{1}{n} \) , or an = \(\frac{1}{n} \) gn -> a => HE>O JNIEIN such that Hanznis agent - agent 4870 ∃Nz ∈ IN such thad th = N, lang, -anle € => Piqu E>O. JV = max {N1, M2} such that Vn z V

CID:01738166 Module Code: MATH40002 Question 1 Page 2

 $|A_{2n+2} - A_{2n}| \mathcal{E}_{\xi} \quad \text{and} \quad |A_{n+1} - A_{n}| \mathcal{E}_{\xi}$ $|A_{2n+2}| \mathcal{E}_{\xi} \quad |A_{n+1}| \mathcal{E}_{\xi} \quad |A_{n+1}| \mathcal{E}_{\xi}$ $|A_{2n+2}| \mathcal{E}_{\xi} \quad |A_{n+1}| \mathcal{E}_{\xi} \quad |A_{n+1}| \mathcal{E}_{\xi} \quad |A_{2n+1}| \mathcal{E}_{\xi} \quad |A_{2n+1}| \mathcal{E}_{\xi}$ $|A_{n+2}| \mathcal{E}_{\xi} \quad |A_{n+2}| \mathcal{E}_{\xi} \quad |A_{n+1}| \mathcal{E}_{\xi} \quad |A_{n+1}| \mathcal{E}_{\xi} \quad |A_{n+1}| \mathcal{E}_{\xi}$ $|A_{n+1}| \mathcal{E}_{\xi} \quad |A_{n+1}| \mathcal{E}_{\xi}$ $|A_{n+1}| \mathcal{E}_{\xi} \quad |A_{n+1}| \mathcal{E}_{\xi}$