POKHARA UNIVERSITY

Level: Bachelor

Semester: Fall

Year : 2018

Programme: BE Course: Numerical Methods

Full Marks: 100 Pass Marks: 45 Time : 3hrs.

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Attempt all the questions.

3.

- 1. a) Derive an iterative formula for NR-method Find a positive real root of the equation $x \times \log_{10}(x) = 1.2$ by using this formula correct to four significant digits.
 - b) Using Secant method find a root of the equation $e^x \sin x x^2 = 0$ correct to three decimal places.
- 2. a) Generate a Lagrange's interpolating polynomial for the function: $y = \cos \pi x$, taking the pivotal points 0, $\frac{1}{4}$ and $\frac{1}{2}$.
 - b) Fit a curve of the form: y=1/(a+bx) by using the method of Least Square with the following data points.

X	1	2	3	4	5
f(x)	3.33	2.20	1.52	1.00	.91

a) Evaluate the integral $I = \int_{0}^{\frac{\pi}{2}} (1 + 3\cos 2x) dx$. Compare the result in

both conditions for Simpson1/3 and 3/8 rule.

b) The following data gives corresponding values of pressure 'P' and specific volume 'V' of stem.

P	105	42.7	25.3	16.7	13
V	2	4	6	8	10

Find the rate of change of volume when pressure is 105 and 13.

4. a) Find the inverse of matrix using gauss Jordan method.

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 3 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$

,b) Find the largest Eigen-value and the corresponding Eigen-vector of the following square matrix using Power method.

$$\begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$$

- 5. a) Solve the given differential equation by RK-4th order method $y''-x^2y'-2xy=0$ with initial condition y(0)=1, y'(0)=0, for y(0.1) taking h=0.1
 - b) Solve the differential equation $y' = y \frac{2x}{y}$ using appropriate method within $0 \le x \le 0.2$ with initial condition y(0) = 1 and step size h=0.1
- 6. a) Solve the equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh $0 \le x \le 3$, $0 \le y \le 3$ with u = 0 on the boundary and mesh length h = k = 1
 - b) Solve the following system of equation $6x_1 2x_2 + x_3 = 4$ $-2x_1 + 7x_2 + 2x_3 = 5$

$$x_1 + 2x_2 - 5x_3 = -1$$

Using gauss factorization method.

- 7. Write short notes on: (Any two)
 - a) Importance of Numerical Methods in Engineering
 - b) Algorithm for Lagrange's Interpolation method
 - c) Laplace method for partial Differential

2×5