Exercices: 13 - Équilibres chimiques — Solutions —

A. Composition et constante d'équilibre

1. Mise en solution

Réponses : $K_s = \left[\mathsf{Ca}^{2+}\right] \left[\mathsf{SO}_4^{2-}\right], \ s = \left[\mathsf{Ca}^{2+}\right], \ s = \left[\mathsf{SO}_4^{2-}\right] \left(1 + \frac{\left[\mathsf{H}_3\mathsf{O}^+\right]}{K_a}\right) \simeq \left[\mathsf{SO}_4^{2-}\right], \ s = 8, 4 \times 10^{-3} \, \mathrm{mol} \cdot \mathrm{L}^{-1}, \ \frac{y(10^{-7} + y)}{8, 4 \times 10^{-3}} = 7, 7 \times 10^{-13}, \ \left[\mathsf{HO}^-\right] = y + 10^{-7} = 1, 45 \times 10^{-7} \, \mathrm{mol} \cdot \mathrm{L}^{-1} \ ; \ pH = 7, 2.$

2. Décomposition de l'éthylamine

Réponses : $\Delta_T H^{\circ} = 30, 3 \,\mathrm{kJ \cdot mol^{-1}}$, la réaction est endothermique, $K_{480 \,\mathrm{K}} = 1, 34, \, \xi = 0, 77 \,\mathrm{mol.}$

3. Oxydation du dioxyde de soufre

Réponses : réaction peu développée, $K \simeq \frac{\xi\sqrt{3}}{\sqrt{2}} = 3,05 \times 10^{-2}, \ \xi = 2,5 \times 10^{-2} \, \text{mol}, \ x = 8,3 \times 10^{-3}, \ K \simeq \frac{\xi\sqrt{11}}{\sqrt{2}}, \ \xi = 1,3 \times 10^{-2} \, \text{mol}, \ x = 1,2 \times 10^{-3}, \ K \simeq \frac{\xi}{\sqrt{y}}, \ x = K\sqrt{y}(1-y), \ x \, \text{maximum pour } y = \frac{1}{3}.$

4. Équilibres simultanés

Réponses : $n_{SO_3} = 2(\xi_1 - \xi_2)$, $n_{SO_2} = \xi_1 + 2\xi_2$, $n_{O_2} = \xi_2$, $p_{SO_2} = \frac{\xi_1 + 2\xi_2}{3\xi_1 + \xi_2}p$, $\xi_1 = 1, 14\xi_2$, $K_1 = 2, 85 \times 10^{-3}$, $K_2 = 28, 5.$

5. Équilibres simultanés en phase gaz

Réponses : La loi de Van't Hoff permet de dire que $\Delta_r H^\circ = R \, T^2 \, \frac{\mathrm{d} \ln K^\circ}{\mathrm{d} T} \simeq \frac{R \, T^2}{\Delta T} \, \frac{\Delta K}{K}$ d'où $\Delta_r H^\circ = -32, 2 \, \mathrm{kJ} \cdot \mathrm{mol}^{-1}$. Par la loi de Hess, on a $\Delta_r H^\circ = \sum_i \nu_i \, \Delta_f H_i^\circ = -40, 9 \, \mathrm{kJ} \cdot \mathrm{mol}^{-1}$. Il y a un écart avec le résultat précédent mais ce n'est pas étonnant : l'énoncé ne précise pas à quelle température les enthalpies standard de formation sont données! En général dans les tables, les valeurs correspondent à 298 K, ce qui n'est pas la température d'étude. On doit traduire les constantes d'équilibre en fonction des taux de conversion.

$$\begin{array}{lll} \mathsf{H_2O} &= \mathsf{H_2} + \frac{1}{2}\,\mathsf{O_2} & (2) \\ n\,(1-\alpha) & n\,\alpha & n\,\frac{\alpha}{2} & n_{gaz} = n\,\big(1+\frac{\alpha}{2}\big) \end{array}$$

La constante de cet équilibre est $K_2^{\circ} = \frac{\alpha^{3/2}}{(1-\alpha)\sqrt{1+\alpha/2}\sqrt{2}}\sqrt{\frac{p}{p^{\circ}}} \simeq \frac{\alpha^{3/2}}{\sqrt{2}}\sqrt{\frac{p}{p^{\circ}}}$. Alors, $K_2^{\circ} = 2,32.10^{-6}$. Par ailleurs,

$$\begin{array}{rcl} \mathsf{CO}_2 &=& \mathsf{CO} \,+\, \frac{1}{2}\,\mathsf{O}_2 & (3) \\ n'\,(1-\alpha') && n'\,\alpha' && n'\,\frac{\alpha'}{2} && n'_{gaz} = n'\,\left(1+\frac{\alpha'}{2}\right) \end{array}$$

La constante de cet équilibre est, de même que pour l'équilibre (2), $K_3^{\circ} \simeq \frac{{\alpha'}^{3/2}}{\sqrt{2}} \sqrt{\frac{p}{p^{\circ}}} = 7,44.10^{-6}$. La loi de HESS permet de conclure, puisque (1) = (2) - (3): $K_1^{\circ} = \frac{K_2^{\circ}}{K_3^{\circ}} = 0$, 312. La relation particulière précédente impose $x(\mathsf{CO}_2) = x(\mathsf{H}_2)$. De plus, $x(\mathsf{CO}_2) + x(\mathsf{H}_2) + x(\mathsf{CO}) + x(\mathsf{H}_2\mathsf{O}) = 1$. En introduisant le rapport $r = x(\mathsf{H}_2\mathsf{O})/x(\mathsf{CO})$, on arrive avec ce qui précède à $x(\mathsf{CO}) = \frac{1 - 2x(\mathsf{CO}_2)}{1 + r}$. Par conséquent, on obtient la constante $K_1^{\circ} = \frac{x(\mathsf{H}_2)x(\mathsf{CO}_2)}{x(\mathsf{H}_2\mathsf{O})x(\mathsf{CO})} = \frac{x(\mathsf{CO}_2)^2(1+\varepsilon)^2}{x(\mathsf{H}_2\mathsf{O})^2(1+\varepsilon)^2}$ $\frac{x(CO_2)^2(1+r)^2}{r(1-2x(CO_2))^2}$. On veut $x(\mathsf{CO}_2)$ maximal, ce qui correspond à $\mathrm{d}x(\mathsf{CO}_2)=0$. On différencie logarithmiquement l'expression précédente de K_1° . Par conséquent, $0 = \frac{2 \operatorname{d} x(\operatorname{CO}_2)}{x(\operatorname{CO}_2)} + \frac{2 \operatorname{d} r}{1+r} - \frac{\operatorname{d} r}{r} + \frac{4 \operatorname{d} x(\operatorname{CO}_2)}{1-2 \operatorname{x}(\operatorname{CO}_2)}$. Finalement r = 1. On vérifie un résultat connu : le rendement maximum est obtenu pour des réactifs en proportions stœchiométriques. Les équilibres (2) et (3) sont simultanés. On raisonne alors par la méthode des avancements composés (qui permet d'écrire sans se fatiguer les lois de conservation de la matière):

On note que $n_{gaz}=5+2\,\xi_2$ et $\xi_3=0,5\,\mathrm{mol}$. Puisque $K_3^\circ=\frac{\xi_3\,(3\,\xi_2+\xi_3)}{(\xi_2-\xi_3)\,(4-\xi_2-\xi_3)}=2,20$ on obtient $\xi_2=0,72$. Puis $K_2^\circ=\frac{(\xi_2-\xi_3)\,(3\,\xi_2+\xi_3)^3}{(1-\xi_2)\,(4-\xi_2-\xi_3)\,(5+2\,\xi_2)^2}\,\frac{p}{p^\circ}^2$ donne $p=3,18\,\mathrm{bar}$. On peut alors conclure sur la composition finale du système : $n(\mathsf{CH_4})=0,28\,\mathrm{mol},\,n(\mathsf{H_2O})=2,78\,\mathrm{mol},\,n(\mathsf{CO})=0,22\,\mathrm{mol}$ et $n(\mathsf{H_2})=2,66\,\mathrm{mol}$.

6. Pollution au dioxyde d'azote

Réponses : la réaction est $N_{2gaz} + 2O_{2gaz} \rightleftharpoons 2NO_{2gaz}$ et $\Delta_r H^\circ = 66, 4 \, \text{kJ} \cdot \text{mol}^{-1}, \Delta_r S^\circ = -122 \, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}, \Delta_r G^\circ = \Delta_r H^\circ - T \Delta_r S^\circ = 103 \, \text{kJ} \cdot \text{mol}^{-1}$ d'où $K^\circ(T) = \exp{-\frac{\Delta_r G^\circ}{RT}} = 10^{-18}$, la réaction s'effectue très peu (heureusement...), on considère qu'à l'équilibre $p_{\text{N}_2} = \frac{4}{5}p^\circ$ et $p_{\text{O}_2} = \frac{1}{5}p^\circ$, comme $K^\circ(T) = \frac{p_{\text{N}_2}p^\circ}{p_{\text{O}_2}^2p_{\text{N}_2}}$ on trouve $p_{\text{N}_2} = 1, 8 \times 10^{-10}$ bar, on a $x_{\text{N}_2} = \frac{p_{\text{N}_2}}{p_{\text{tot}}}$ avec $p_{\text{tot}} = p^\circ$ d'où $x_{\text{N}_2} = 1, 8 \times 10^{-10} < 0, 2 \times 10^{-6}$, l'odeur de NO_2 n'est pas perceptible, $[NO_2] = \frac{p_{\text{N}_2}}{RT}$ par la loi des gaz parfaits, la concentration massique est $c = M_{\text{N}_2}[NO_2] = 0, 33 \, \mu\text{g} \cdot \text{m}^{-3}$, heureusement une fois de plus on est nettement en dessous de l'objectif qualité (qui peut-être évalué assez haut...).

7. Réduction du dioxyde d'étain

Réponses : $\Delta_r G^{\circ}(1\ 200\ \mathrm{K}) = -50, 5\ \mathrm{kJ} \cdot \mathrm{mol}^{-1}$ et $K^{\circ}(T=1\ 200\ \mathrm{K}) = 158$; on a $\Delta_r n_{gaz} = 2-2=0$ la pression n'est pas un facteur d'équilibre; $K^{\circ} = \frac{p_{\mathrm{H}_2\mathrm{O}}^2}{p_{\mathrm{H}_2}^2} = \left(\frac{2\xi_{eq}}{n_2-2\xi_{eq}}\right)^2$ donne $\xi_{eq} = \frac{n_2}{2} \frac{\sqrt{K^{\circ}}}{\sqrt{K^{\circ}}+1}$ d'où $\xi_{eq} = 0,463\ \mathrm{mol} > n_1$ l'équilibre ne peut se produire, il y a réaction limitée par $n_1 = \xi_{max}$ d'où $n_{\mathrm{H}_2,fin} = 0,200\ \mathrm{mol}$ et $n_{\mathrm{H}_2\mathrm{O},fin} = 0,800\ \mathrm{mol}$ d'où les pressions partielles $p_{\mathrm{H}_2} = 2,0$ bar et $p_{\mathrm{H}_2\mathrm{O}} = 8\ \mathrm{bar}$; l'équilibre est possible lorsque $\xi_{eq} = \xi_{max}$ ce qui provoque $K^{\circ}(T_{lim}) = 16$, en utilisant la loi de VAN'T HOFF $\frac{\mathrm{d} \ln K^{\circ}}{\mathrm{d} T} = \frac{\Delta_r H^{\circ}}{RT^2}$ on intègre pour obtenir $\ln \frac{K^{\circ}(T_{lim})}{K^{\circ}(T)} = \frac{\Delta_r H^{\circ}}{R} \left(\frac{1}{T} - \frac{1}{T_{lim}}\right)$, on trouve $T_{lim} = 984\ \mathrm{K}$.

8. Formation de fercarbonyle

Réponses : $\Delta_r H^\circ = -224\,\mathrm{kJ\cdot mol}^{-1}$, $\Delta_r S^\circ = -677, 2\,\mathrm{J\cdot K}^{-1}\cdot\mathrm{mol}^{-1}$, $\Delta_r G^\circ = -22, 2\,\mathrm{kJ\cdot mol}^{-1}$ à 298 K d'où $K^\circ = 7, 8\times 10^3 = \left(\frac{p^\circ}{p\mathrm{co},e_q}\right)^5$, ici $Q = \left(\frac{p^\circ}{p\mathrm{co}}\right)^5 = \left(\frac{p^\circ}{p}\right)^5 = 3, 1\times 10^{-2}$ en permanence puisque la pression est maintenue à p=2 bar, on a toujours $Q< K^\circ$, la réaction s'effectue toujours dans le sens direct jusqu'à disparition du réactif limitant qui est le fer, on a donc $\xi = \xi_{max} = n_1 = 0, 1\,\mathrm{mol}$; $\Delta H = \xi_{max}\Delta_r H^\circ = -22, 4\,\mathrm{kJ\cdot mol}^{-1}$, pour ΔG on peut écrire que $\Delta G = \xi_{max}(\Delta_r G^\circ + RT\,\mathrm{ln}\,Q)$, on arrive à $\Delta G = n_1\Delta_r G^\circ + 5n_1RT_0\,\mathrm{ln}\,\frac{p^\circ}{p} = -3, 1\,\mathrm{kJ}$, comme la pression et la température sont fixées, on pouvait aussi utiliser $\Delta G = \xi_{max}\Delta_r G = n_1(\Delta_r G^\circ + RT\,\mathrm{ln}\,Q) = n_1(\Delta_r G^\circ + 5RT\,\mathrm{ln}\,\frac{p^\circ}{p})$, $\Delta S = \frac{\Delta H - \Delta G}{T_0}$ puisque la température est fixée, $\Delta S = -65\,\mathrm{J\cdot K^{-1}}$, $\Delta S = S_{\mathrm{transf}} + S_{\mathrm{créée}}$ avec $S_{\mathrm{transf}} = \frac{Q}{T_0} = \frac{\Delta H}{T_0}$ puisque la transformation est monobare, on trouve $S_{\mathrm{créée}} = 10\,\mathrm{J\cdot K^{-1}}$, cette valeur est positive conformément au second principe de la Thermodynamique.

9. Réduction des oxydes de fer

Réponses : L'équilibre (1) s'établit dès l'introduction de H_2 puisqu'alors, pour le système hors-équilibre, $\Delta_r G_1 = RT \ln \frac{Q_{1,i}}{K_1^o(T)} = RT \ln \frac{p_{\text{H}_2,i}/p_{\text{H}_2,i}}{K_1^o(T)} < 0$. On en déduit $n = 0^+$. On effectue un bilan de matière à partir de l'écriture de l'avancement sur le premier équilibre :

$$\begin{split} \text{Fe}_3 \text{O}_{4cr} + \text{H}_{2gaz} &= 3 \ \text{FeO}_{cr} + \text{H}_2 \text{O} \\ n(t=0) \ (\text{mol}) \quad 4, 0 \qquad n \qquad 0 \qquad 0 \\ n(t) \ (\text{mol}) \quad 4, 0 - \xi \quad n - \xi \qquad 3 \, \xi \qquad \xi \end{split}$$

En fin de réduction, $\xi \simeq 4,0$ mol, d'où, puisque $K_1^\circ = \xi/(n-\xi)$, n=5,2 mol. Attention, dans tout ce raisonnement, on a considéré l'équilibre physico-chimique (2) rompu en sens indirect. En fait, il ne peut pas avoir lieu en même temps que l'équilibre (1) car K_1° et K_2° ont même expression littérale mais des valeurs numériques différentes à $800\,^\circ\mathrm{C}$: (1) et (2) ne peuvent être que des équilibres successifs (et non des équilibres simultanés!). Lorsque (2) commence, $n(H_2O)=4,0$ mol et $K_2^\circ=\frac{n(H_2O)}{n-n(H_2O)}$ d'où n=10 mol. On demande FeO et Fe équimolaires. On effectue un bilan de matière à partir de l'utilisation de l'avancement :

$$\begin{array}{ccc} \mathsf{Feo}_{cr} \ + & \mathsf{H}_{2gaz} & = \mathsf{Fe}_{cr} + \mathsf{H}_2 \mathsf{O} gaz \\ n(t) \ (\bmod) \ 12 - \xi' & n - \xi' - 4, 0 & \xi' & 4, 0 + \xi' \end{array}$$

On doit donc avoir $12 - \xi' = \xi'$. Par conséquent, $\xi' = 6,0$ mol et l'écriture de la constante d'équilibre donne $\frac{10}{n-10} = 0,63$ soit n=26 mol. Dans le dernier des cas précédents, la pression est $p = [n(\mathsf{H}_2) + n(\mathsf{H}_2\mathsf{O})] \frac{RT}{V}$. Le calcul, fait dans les unités du système international donne p=58 bar.

10. Changement d'état du thiophène

Réponses : Le dihydrogène est un corps simple dans son état standard de référence s'il est à l'état gazeux, ce qui explique les valeurs nulles dans le tableau de l'énoncé. Pour la vaporisation du thiophène (noté th), $\Delta_r H^\circ = \Delta_f H^\circ(th_{gaz}) - \Delta_f H^\circ(th_{liq}) = 37\,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ et $\Delta_r G^\circ = \Delta_f G^\circ(th_{gaz}) - \Delta_f G^\circ(th_{liq}) = 3\,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$. Les potentiels chimiques du thiophène gazeux (supposé gaz parfait) et du thiophène liquide (incompressible) sont $\mu(th_{gaz}) = \mu^\circ(th_{gaz}) + RT \ln \frac{p^*(th)}{p^\circ}$ et $\mu(th_{liq}) \simeq \mu^\circ(th_{liq})$. Pour l'équilibre du thiophène entre les phases, $\Delta_r G = 0$ donc ces potentiels chimiques sont égaux. On en déduit $p^*(th) = p^\circ \exp \frac{\mu^\circ(th_{liq}) - \mu^\circ(th_{gaz})}{RT}$ soit $p^*(th) = p^\circ \exp \frac{-\Delta_{vap} G^\circ(th)}{RT} = 0,3\,\mathrm{bar}$. L'entropie standard molaire absolue du thiophène gaz vérifie $S_m^\circ(th_{gaz}) = S_m^\circ(th_{liq}) + \Delta_{vap} S^\circ(th)$ d'où $S_m^\circ(th_{gaz}) = S_m^\circ(th_{liq}) + \frac{\Delta_{vap} H^\circ(th) - \Delta_{vap} G^\circ(th)}{T}$. Ainsi $S_m^\circ(th_{gaz}) = 294\,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1}$. On vérifie bien que le gaz est plus désordonné que le liquide. Il s'agit de calculs élémentaires qui donnent $\Delta_r H^\circ = -265\,\mathrm{kJ}\cdot\mathrm{mol}^{-1}$ (exothermique) $\Delta_r G^\circ = -169\,\mathrm{kJ}\cdot\mathrm{mol}^{-1}$, $\Delta_r S^\circ = \frac{\Delta_r H^\circ - \Delta_r G^\circ}{T} = -322\,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1}$. Cette valeur négative est en accord avec la diminution de la quantité de matière gazeuse au cours de la réaction (le désordre diminue).

B. Équilibre et influence du volume

11. Décomposition du bromure de cuivre

Réponses : K=0,66 ; 0,41 mol de $\mathsf{CuBr}_{2solide},\,0,09$ mol de $\mathsf{CuBr}_{solide},\,0,045$ mol de Br_{2qaz} ; $V=28\,\mathrm{L}.$

C. Équilibre et influence de la pression

12. Synthèse du trioxyde de soufre

Réponses : $\Delta_r H^{\circ} = -178 \,\mathrm{kJ \cdot mol}^{-1}$ endothermique, $\Delta_r S^{\circ} = -188 \,\mathrm{J \cdot K}^{-1} \cdot \mathrm{mol}^{-1}$ diminution des gaz, 80% de N₂, 10% de O₂ et de SO₂, $T = 717 \,\mathrm{K}$, $p = 4, 7 \,\mathrm{bar}$, augmente la vitesse de réaction.

D. Équilibre et influence de la température

13. Dimérisation

Réponses :
$$K^{\circ} = \frac{\alpha(2-\alpha)}{4(1-\alpha)^2}$$
, $K^{\circ}_{720 \text{ K}} = 1, 10$, $K^{\circ}_{790 \text{ K}} = 0, 53$, $\Delta_r H^{\circ} = \frac{RT_1T_2}{T_2-T_1} \ln \frac{K_2^{\circ}}{K_2^{\circ}} = -49, 3 \text{ kJ} \cdot \text{mol}^{-1}$.

14. Combustion du monoxyde de carbone

Réponses : pour la combustion sous une pression constante, avec adiabaticité, $\Delta_r H_{comb}^{\circ} + \int_{298}^{T} C_{\mathrm{p,m,après\ comb.}} \mathrm{d}T' = 0$. Or, $\Delta_r H_{comb}^{\circ} = -283,0 \,\mathrm{kJ\cdot mol}^{-1}$ et $C_{\mathrm{p,m,après\ comb.}} = C_p^{\circ}(\mathsf{CO}_2) + 2\,C_p^{\circ}(\mathsf{N}_2)$ donc on en déduit après calcul $T_f = 3\,267\,\mathrm{K}$. En terme de quantités de matière,

sans oublier les deux moles de N_{2gaz} dans n_{gaz} . On en déduit l'expression de la constante de réaction $K^\circ(T) = \frac{p(\mathsf{CO}_2)\,p^{\circ 1/2}}{p(\mathsf{CO})\,p(\mathsf{O}_2)^{1/2}} = \frac{\alpha\,\sqrt{7-\alpha}}{(1-\alpha)^{3/2}}\,\frac{p^{\circ}}{p}^{1/2}$. D'après l'expression de $K^\circ(T)$, on tire $T_f = \frac{b}{-a+\ln K^\circ} = f_1(\alpha)$ en se servant de la question précédente. Pour $\alpha=0,80$, on calcule $K^\circ=22,27$, d'où $T_f\simeq 2\,520\,\mathrm{K}$. Il se forme α moles de CO_2 . La chaleur $\alpha\,\Delta_r H^\circ$ correspondante chauffe α moles de CO_2 , $(1-\alpha)$ moles de CO_2 , $(1-\alpha)$ moles de CO_3 ,

E. Équilibre et influence de la quantité de matière

15. Du gypse au dioxyde de soufre

Réponses : puisqu'il y a équilibre, on a $p_{\mathsf{SO}_{3gaz}} = p^\circ K_1^\circ = 7,0 \times 10^{-6}$ bar. Le tableau d'avancement donne $p_{\mathsf{O}_{2gaz}} = \frac{1}{2} p_{\mathsf{SO}_{2gaz}}$, on utilise la constante K_2° pour écrire que $p_{\mathsf{O}_{2gaz}} = \left(\frac{K_2^\circ p_{\mathsf{SO}_{3gaz}}}{2}\right)^{2/3}$. On trouve $p_{\mathsf{SO}_{2gaz}} = 2p_{\mathsf{O}_{2gaz}} = 3,4 \times 10^{-3}$ bar. On observe que (4) = (3) - (1), on a $\Delta_r G_4^\circ = \Delta_r G_3^\circ - \Delta_r G_1^\circ$ ce qui donne $K_4^\circ = \frac{K_3^\circ}{K_1^\circ} = 1,4 \times 10^5$. Cette valeur numérique doit faire réagir. En effet si l'on a des solides non miscibles, seule la température assurant $K^\circ = 1$ est possible. On doit supposer que les solides forment une solution solide. On a

 $p_{\mathsf{SO}_{3gaz}} = p^{\circ} K_3^{\circ} = 1,0$ bar puis on détermine $p_{\mathsf{SO}_{2gaz}} = 2\left(\frac{K_2^{\circ} p_{\mathsf{SO}_{3gaz}}}{2}\right)^{2/3} = 9,3$ bar. On constate que l'ajout de silice favorise la décomposition du gypse.