

Optically-Based Diagnostics for Gas-Phase Laser Development

W. Terry Rawlins, Seonkyung Lee, Kristin L. Galbally-Kinney, William J. Kessler, Adam J. Hicks, Ian M. Konen, Emily P. Plumb, and Steven J. Davis Physical Sciences Inc. Andover, MA 01810

XVIII International Symposium on Gas Flow and Chemical Lasers and High Power Lasers 2010

Sofia, Bulgaria

August 2010

Acknowledgement of Support and Disclaimer

This material is based upon work supported by Air Force Office of Scientific Research under Contract Number FA9550-07-1-0575. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of Air Force Office of Scientific Research.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comment arters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE AUG 2010		2. REPORT TYPE		3. DATES COVE 00-00-2010	to 00-00-2010	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Optically-Based Diagnostics for Gas-Phase Laser Development				5b. GRANT NUMBER		
			5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)			5d. PROJECT NUMBER			
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Physical Sciences Inc,20 New England Business Center,Andover,MA,01810				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO	OTES					
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	28		

Report Documentation Page

Form Approved OMB No. 0704-0188

Overview

VG10-174-1

- Theme: multi-species diagnostics for absolute concentrations are essential for effective development of high-energy gas lasers
 - Precursor production, loss, optimization
 - Transference from subscale reactors
 - Scaling of gain, power, efficiency

Current applications

- Electric Oxygen Iodine Laser (EOIL): precursor kinetics and gain dynamics
- Related systems: COIL, micro-COIL
- Alkali laser systems: DPAL, XPAL gain, multi-photon effects

Outline of presentation:

- Brief overview of diagnostics and apparatus
- Absolute emission spectrometry
 - Near-infrared spectroscopy: O₂(a¹Δ_q), I(²P_{1/2})
 - Air afterglow photometry: O(3P)
- Ultrasensitive absorption photometry: I₂, O₃
- High-resolution absorption/gain spectroscopy: atomic iodine, alkali metals

Role of Optical Diagnostics in High Energy Gas Laser Development

- Chemically rich, energetic, reacting flow with competing phenomena
 - Multispecies detection required
 - COIL, EOIL: O₂(a,b), I*, I, I₂, gain, T, O, O₃
 - DPAL, XPAL: ground-state M, numerous M*, M₂*, MX*, gain
- Objective: detect key species concentrations vs. flow time
 - Vary operating conditions systematically
 - Quantify species production and loss rates
 - Relate to system design requirements
- Put a "cage" around the model:

Electric Oxygen Iodine Laser (EOIL)

$$e^{-} + O_{2} \rightarrow O_{2}(a) + e^{-}$$

$$e^- + O_2 \rightarrow O + O + e^-$$

Ionization

$$e^- + O_2(a) \rightarrow losses$$

Dilution in He required

$$O + NO + M \rightarrow NO_2 + M$$

$$O + NO_2 \rightarrow NO + O_2$$

$$O + O_2 + M \rightarrow O_3 + M$$

$$O+O_3 \rightarrow O_2+O_2$$

$$NO + O_3 \rightarrow O_2 + NO_2$$

$$O+I_2 \rightarrow IO+I$$

$$O + IO \rightarrow O_2 + I$$

$$O_2(a) + I \rightleftharpoons O_2 + I^*$$

$$O + I^* \rightarrow O + I$$

$$I^* + O_2 \rightarrow I + O_2(v)$$

$$\frac{\left[I^{*}\right]}{\left[I\right]} \rightarrow K_{EQ}(T) \frac{\left[O_{2}(a)\right]}{\left[O_{2}\right]}$$

Hybrid EOIL: Catalytically enhanced O₂(a)

PSI Microwave Discharge Flow Reactors (2450 MHz)

Physical Sciences Inc.

VG10-174-4

Low-Pressure Reactor: Active-O₂ Kinetics

EOIL Subsonic/Supersonic Reactor

- 1-5 kW, 10-50 Td
- Coaxial MIDJet discharge
- 30-70 Torr, 40-100 mmole/s
- M ~ 2 supersonic cavity
- Lasing typically 100-150 mW
 - $M^2 = 1.08 \pm 0.01$

Near-IR Absolute Emission: O₂(a) and I*

Physical Sciences Inc.

- InGaAs array monochromator: observe entire band
- Concentration = Intensity ÷ Einstein coefficient

$$O_2(a^1\Delta_g \rightarrow X^3\Sigma_g^-)$$

- $A_{00} = 2.20 \times 10^{-4} \text{ s}^{-1} (\pm 10\%)$
- Detection limit ~ 5 x 10¹² cm⁻³
 (5 cm path)

$$I(^{2}P_{1/2} \rightarrow ^{2}P_{3/2})$$

- $A = 8.0 \text{ s}^{-1} (\pm 20\%)$
- Detection limit ~ 10⁸ cm⁻³
 (5 cm path)

NIR Photometric Calibration: O₂(a) and I* Emission

Physical Sciences Inc. _

- Collimated field of view: no reflective surfaces
 - Eliminate stray light, e.g. discharge emission
- Etendue (AΩ) for calibration is identical to that for volume emission
- Spectral responsivity = (signal) / (Planck function)
- Blackbody calibrations 800-1000° C agree within 1%

Principle of Absolute Calibration Method

VG10-174-7

Instrumental signal for both blackbody and $O_2(a \rightarrow X)$ emission:

• $S(\lambda) = F(\lambda) T(\lambda) A\Omega \delta\lambda I(\lambda)$ F = spectral responsivity

• Use the same $\{A\Omega \delta \lambda\}$ for calibration and gas emission measurements

Determine F by measuring blackbody spectrum (Planck function):

• $F(\lambda) = S_{BB}(\lambda) / N(\lambda, T_{BB})$ $T_{BB} \sim 1000 C$

- Area of source > area of fov
- Accuracy <1%

Gas radiance in photons/cm²-s-sr-nm:

- $I_{ax}(\lambda) = S_{ax}(\lambda) / \{F(\lambda) T(\lambda)\}$
- Correct for spectral baseline/background

Determine $O_2(a)$ concentration from spectrally integrated intensity:

•
$$[O_2(a)] = (4\pi/\ell) \int I_{aX}(\lambda) d\lambda / A_{aX}$$
 $A_{aX} = Einstein coefficient$

Spectral Fitting Analysis: [O₂(a,v)], T_{rot}

Physical Sciences Inc.

- $O_2(a^1\Delta_g \rightarrow X^3\Sigma_g^-)$ spectroscopy:
 - Magnetic dipole transition
 - Hund's coupling case (b)
 - Bose-Einstein statistics (¹6O₂)
 - → 9 rotational branches
- Our procedure: determine line strengths for (0,0) from line-by-line compilation (HITRAN)
 - Boltzmann rotational temperature
 - Shift (0,0) envelope to band centers for (1,1), (2,2), etc.
- Convolve with instrument scan function
 - Triangular slit function for grating monochromator (0.3 nm FWHM)
- Linear least squares solutions are {[O₂(a,v]}

Estimation of A₁₁, A₂₂, A₃₃ Values

 Scale values from A₀₀ via Franck-Condon factors, transition moment vs. r-centroid:

$$A_{v'v''} = (64\pi^4/3h) (v^3q_{v'v''}) (R(r))^2$$

- Franck-Condon factors, r-centroid values from Krupenie (1972)
- Estimate scaling of (R(r))² from A₀₀:A₀₁:A₁₀
 - Literature: A_{00}/A_{01} is either ~50 or ~80
 - PSI measurement: $A_{00}/A_{01} = 52 \pm 6$
 - Badger et al. (1965): $A_{00}/A_{10} > 200$
 - Solution: (R(r))² varies slightly with v'
- Solutions for $A_{00} = 2.20 \times 10^{-4} \text{ s}^{-1}$: $A_{11} = 2.17 \times 10^{-4} \text{ s}^{-1}$ $A_{22} = 2.12 \times 10^{-4} \text{ s}^{-1}$ $A_{33} = 2.06 \times 10^{-4} \text{ s}^{-1}$

BUT WE DO NOT OBSERVE $O_2(a,v>0)$!

- Typical fits: [(v=1)]/[(v=0)] ~ 3 to 7 %
 - Tends to track with temperature of discharge, i.e. thermal populations only
- True for large range of conditions:
 - 50 W 2 kW discharges
 - 0.5 50 Torr
 - Cl₂/BHP generators, energy pooling conditions
- Slanger, Copeland 2003: O₂(a,v) exchange with O₂(X, v=0) is fast
- Implications for COIL I₂ dissociation mechanism?

Spectral Fitting vs. Integration

Philosophy: spectral fitting confirms band shape, T_{rot}, T_{vib}, no other radiators; then integration gives accurate values

Air Afterglow: $O + NO \rightarrow NO_2 + hv$

Physical Sciences Inc.

VG10-174-12

(e)

- Fiber-coupled photomultiplier
 -- 580 nm filter, collimated field-of-view
- Calibrate with blackbody <u>and</u> titration reaction

J. Phys. Chem. 90, 320-325 (1986)

- Calibrations allow measurement of absolute emission rates for known [O], [NO]
- → Determination of k(580 nm)
- Scale to other wavelengths via relative intensity measurements

Air Afterglow: Determination of [O]

Physical Sciences Inc. _

 N_2 Discharge: $N + NO \rightarrow N_2 + O$ $O + NO \rightarrow NO_2 + hv$

For [NO] < [N]: N₂(B→A) emission For [NO] > [N]: O + NO emission slope ÷ [O] = calibration factor correct for O+NO+M reaction

Blackbody calibration: $\rightarrow k_{580}$

Measurements: Discharge Production of O, O₂(a)

- Observed [O]/[O₂(a)] is ~ 1 or less
- Discharge models predict[O] >> [O₂(a)]
 - Electron-impact O₂ dissociation cross sections are too large
 - Possible O loss on hot walls

Ultrasensitive Dual-Beam Absorption: O₃ and I₂

Physical Sciences Inc.,

VG10-174-15

G-0183

O₃ Formation in Active-Oxygen Flow

VG10-174-16

Surprise: O and O₃ are in ~ steady state!
Requires O₃ conversion to O

$$O + O_2 + M \rightarrow O_3(v) + M$$

 $O_2(a) + O_3(v) \rightarrow O + 2O_2$, $k = 5 \times 10^{-11} \text{ cm}^3/\text{s}$

J. Chem. Phys. <u>87</u>, 5209-5221 (1987)

Small Signal Gain: Atomic Iodine

BIP

Physical Sciences Inc.

- Probe transmission on (3,4) line
- $G/\sigma(T) = [I^*] [I]/2$
- [I*] from IR emission

 → [I], [I*]/[I], ([I*]+[I])/2

- Scanning tunable diode laser
- Balanced ratiometric detection
- Detection limit ~10⁻⁵ %/cm
- Doppler width → temperature
- Method widely used for COIL, EOIL development

Observations of I*/I Behavior

←Subsonic flow reactor

- I*/I ratio is limited by I* loss reaction
- Catalytic environment enhances attainable I*/I
- Chem. Phys. Lett. <u>469</u>, 68-70 (2009)
 Proc. SPIE 7196-04 (2009)

Proc. SPIE 7581-06 (2010)

- I*/I ratio is limited by I* loss reaction
- Addition of NO enhances I*/I
- I*/I continues to increase past optimum gain point
- Proc. SPIE 6874-10 (2008)
 Proc. SPIE 7581-03 (2010)
 J. Appl. Phys. D 43 025208 (2010)

Application to Alkali and Alkali-Exciplex Systems

- DPAL: pump D₂, lase D₁ (C₂H₆ promotes spin-orbit transfer)
- XPAL: pump broadband exciplex X→B, lase on D₁ or D₂

DPAL/XPAL Gain Measurement Test Bed (Diode laser scanning D₁ line)

Ti: S Laser

Alkali Cell

Filter

Signal

Detector

Reference

Detector

Scope

K-1858a

- Direct probe of population inversion dynamics
- Aids in design of optical resonators
- Portable: take to other facilities
- Can extend to spatial imaging of gain
 - Expect significant spatial effects in power scaling
 - Valuable tool for scaling DPAL to high powers

Optical Layout for DPAL/XPAL Gain Measurements Physical Sciences Inc.

Computed D₁ Absorption Spectra: Cs Collisional Broadening Effect Physical Sciences Inc.

VG10-174-22

$$Cs {}^{2}S_{1/2} - {}^{2}P_{1/2}$$
, 894 nm

Low Pressure, Doppler broadening

High Pressure, collisional broadening

- Collisional broadening greatly expands required scan range
- High optical thickness at elevated temperatures

Absorption/Gain Spectra: $Cs(^2S_{1/2},F''=4\rightarrow^2P_{1/2},F')$, 894 nm 500 Torr Kr + 75 Torr C_2H_6 , 338 K

VG10-174-23

Pump Laser: ${}^{2}S_{1/2} \rightarrow {}^{2}P_{3/2}$, 852 nm

 Continuing work: investigate absorption and gain dynamics for DPAL, XPAL configurations: Cs, Rb, K

State-Selected Absorption and Saturation

3-D Image of D₁ Gain, Absorption Cs + 500 Torr Kr + 75 Torr C₂H₆

VG10-174-25

- Probe beam diameter > pump beam diameter
- Sample 9 combinations: probe{on peak, off peak, blocked} x pump{on peak, off peak, blocked}

Gain profile follows Gaussian profile of pump beam

Conclusions

- Multispecies diagnostic suite
 - Absolute emission spectrometry
 - Ultrasensitive absorption photometry
 - Scanning TDL absorption/gain spectroscopy
- Extreme sensitivity enables subscale operation at low species concentrations
 - Simplify chemistry, focus on primary reaction steps
 - Transfer to large scale systems: establish models for scaling
- EOIL, catalytic EOIL, COIL, micro-COIL: operational parametrics
 - O₂(a) yield vs. small-signal gain
 - I_2 dissociation: $[I_2]$, $[I^*]$ + [I]
 - O, O₃ effects
- DPAL, XPAL: power scaling phenomena
 - Gain vs. pump power, spatial effects at high optical depth
 - General emission spectroscopy: multi-photon effects vs. pump power

Acknowledgements

VG10-174-27

Air Force Office of Scientific Research
High Energy Laser Joint Technology Office
Air Force Research Laboratory
Defense Advanced Research Projects Agency

<u>PSI</u>	<u>UIUC/CUA</u>	<u>AFRL</u>
Daniel Maser	David Carroll	Tim Madden
David Oakes	Wayne Solomon	David Hostutler
Lawrence Piper	Joe Verdeyen	
	Gary Eden	
<u>MIT</u>	Joe Zimmerman	Emory University
Carol Livermore	Andrew Palla	Michael Heaven
	Brian Woodard	
	Gabriel Benavides	