Задание №16 «Рекурсивные алгоритмы»

1. Алгоритм вычисления значений функций F(n) и G(n), где n — натуральное число, задан следующими соотношениями:

```
F(1) = 1; G(1) = 1;

F(n) = F(n-1) - 2 \cdot G(n-1), при n \ge 2

G(n) = F(n-1) + G(n-1) + n, при n \ge 2
```

Чему равна сумма цифр величины G(36)?

2. Алгоритм вычисления функции F(n) задан следующими соотношениями:

```
F(n) = n при n \le 3;

F(n) = n // 4 + F(n-3) при 3 < n \le 32;

F(n) = 2 \cdot F(n-5) при n > 32

Здесь // обозначает деление нацело. Чему равно значение величины F(100)?
```

3. Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями:

```
F(n) = n, при n \le 3 при n > 3: F(n) = 2*n*n + F(n-1), при чётном n; F(n) = n*n*n + n + F(n-1), при нечётном n;
```

Определите количество натуральных значений n, при которых F(n) меньше, чем 10^7 .

4. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = n, при n \le 3 при n > 3: F(n) = F(n-1) + 2*F(n/2), при чётном n; F(n) = F(n-1) + F(n-3), при нечётном n;
```

Определите количество натуральных значений n, при которых F(n) меньше, чем 10^8 .

5. Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями:

```
F(n) = n, при n \le 3 при n > 3: F(n) = 2*n + F(n-1), при чётном n; F(n) = n*n + F(n-2), при нечётном n;
```

Определите количество натуральных значений n на отрезке [1; 100], при которых F(n) кратно 3.

6. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = n*n - 5, при n > 15
F(n) = n*F(n+2) + n + F(n+3), при n \le 15
```

Определите сумму цифр значения F(1).

7. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = n*n*n + n, при n > 20

F(n) = 3*F(n+1) + F(n+3), при чётных n \le 20

F(n) = F(n+2) + 2*F(n+3), при нечётных n \le 20
```

Определите количество натуральных значений n из отрезка [1; 1000], для которых значение F(n) не содержит цифру 1.

8. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = 2*n*n*n + 1, при n > 25
F(n) = F(n+2) + 2*F(n+3), при n \le 25
```

Определите количество натуральных значений п из отрезка [1; 1000], для которых значение F(n) кратно 11.

9. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = n*n + 4*n + 3, при n > 25

F(n) = F(n+1) + 2*F(n+4), при n \le 25, кратных 3

F(n) = F(n+2) + 3*F(n+5), при n \le 25, не кратных 3
```

Определите количество натуральных значений n из отрезка [1; 1000], для которых сумма цифр значения F(n) равна 24.

10. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = n*n + 2*n + 1, при n > 25 F(n) = 2*F(n+1) + F(n+3), при чётных n \le 25 F(n) = F(n+2) + 3*F(n+5), при нечётных n \le 25
```

Определите количество натуральных значений п из отрезка [1; 1000], для которых значение F(n) не содержит цифру 0.

11. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = n*n + 3*n + 9, при n \le 15 F(n) = F(n-1) + n - 2, при n > 15, кратных 3 F(n) = F(n-2) + n + 2, при n > 15, не кратных 3
```

Определите количество натуральных значений п из отрезка [1; 1000], для которых все цифры значения F(n) чётные.

12. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = n*n*n + n*n + 1, при n \le 13
```

```
F(n) = F(n-1) + 2*n*n - 3, при n > 13, кратных 3 F(n) = F(n-2) + 3*n + 6, при n > 13, не кратных 3
```

Определите количество натуральных значений п из отрезка [1; 1000], для которых все цифры значения F(n) нечётные.

13. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = n + 15, при n \le 5

F(n) = F(n//2) + n*n*n - 1, при чётных n > 5

F(n) = F(n-1) + 2*n*n + 1, при нечётных n > 5
```

Здесь // обозначает деление нацело. Определите количество натуральных значений п из отрезка [1; 1000], для которых значение F(n) содержит не менее двух цифр 8.

14. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = n*n + 11, при n \le 15

F(n) = F(n//2) + n*n*n - 5*n, при чётных n > 15

F(n) = F(n-1) + 2*n + 3, при нечётных n > 15
```

Здесь // обозначает деление нацело. Определите количество натуральных значений п из отрезка [1; 1000], для которых значение F(n) содержит не менее трёх цифр 6.

15. Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями:

```
F(1) = G(1) = 1

F(n) = 2 \cdot F(n-1) + G(n-1) - 2, если n > 1

G(n) = F(n-1) + 2 \cdot G(n-1), если n > 1
```

Чему равно значение F(14) + G(14)?

16. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(1) = G(1) = 1

F(n) = 3 \cdot F(n-1) + G(n-1) - n + 5, если n > 1

G(n) = F(n-1) + 3 \cdot G(n-1) - 3 \cdot n, если n > 1
```

Чему равно значение F(14) + G(14)?

17. Определите наименьшее значение n, при котором сумма чисел, которые будут выведены при вызове F(n), будет больше 1000000. Запишите в ответе сначала найденное значение n, а затем через пробел — соответствующую сумму выведенных чисел.

Паскаль	Python	C++
procedure F(n:	def F(n):	void F(int n)
integer);	print(n+1)	{

```
begin
                         if n > 1:
                                             cout << n+1 <<
  writeln(n+1);
                           print(2*n)
                                           endl;
  if n > 1 then
                           F(n-1)
                                             if(n > 1) {
                           F(n-3)
                                               cout << 2*n <<
begin
    writeln(2*n);
                                           endl;
    F(n-1);
                                               F(n-1);
    F(n-3);
                                               F(n-3);
  end;
                                               }
                                           }
end;
```

18. Определите наименьшее значение n, при котором сумма чисел, которые будут выведены при вызове F(n), будет больше 5000000. Запишите в ответе сначала найденное значение n, а затем через пробел — соответствующую сумму выведенных чисел.

Паскаль	Python	C++
procedure F(n:	def F(n):	void F(int n)
integer);	print(2*n+1)	{
begin	if n > 1:	cout << 2*n+1 <<
writeln($2*n+1$);	print(3*n-8)	endl;
if $n > 1$ then	F(n-1)	if(n > 1) {
begin	F(n-4)	cout << 3*n-8
writeln(3*n-		<< endl;
8);		F(n-1);
F(n-1);		F(n-4);
F(n-4);		}
end;		}
end;		
<pre>writeln(3*n- 8); F(n-1); F(n-4); end;</pre>		F(n-1);

19. Определите наименьшее значение n, при котором значение F(n), будет больше числа 320. Запишите в ответе сначала найденное значение n, а затем через пробел — соответствующее значение F(n).

Паскаль	Python	C++
function F	def F(n):	int F(int n)
(n: integer):	if n>0:	{
integer;	return	if(n)
begin	n%10*F(n//10)	return
if $n > 0$ then	else:	n%10*F(n/10);
F:= n mod 10*	return 1	else
F(n div		return 1;
10)		}

```
else
F:= 1;
end;
```

20. Определите наибольшее трехзначное значение n, при котором значение F(n), будет больше числа 7. Запишите в ответе сначала найденное значение n, а затем через пробел – соответствующее значение F(n).

Паскаль	Python	C++
function F(n:	def F(n):	int F(int n)
integer):	if n < 10:	{
integer;	return n	if(n < 10)
var m,d: byte;	else:	return n;
begin	m = F(n//10)	else {
if n < 10 then	d = m%10;	int $m = F(n/10)$,
F:=n	if m < d:	d = m%10;
else begin	return d	if(m < d)
m:= F(n div	else:	return d;
10);	return m	else
d:= m mod 10;		return m;
if m < d then		}
F:=d		}
else F := m		
end		
end;		

21. Определите количество различных значений n таких, что n и m — натуральные числа, а значение F(n, m) равно числу 30.

Паскаль	Python	C++
function F(n, m:	def F(n,m):	int F(int n, int m)
integer):	if m == 0:	{
integer;	d = 0	if(m == 0)
begin	else:	return 0;
if $m == 0$ then	d = n + F(n, m-	else
F:=0	1)	return n+F(n,m-
else	return d	1);
F := n + F(n, m-		}
1)		
end;		

22. Определите количество различных натуральных значений п таких, что значение F(n, 2) находится в диапазоне [100; 1000].

Паскаль	Python	C++
function F(n, m:	def F(n,m):	int F(int n, int
integer):	if m == 0:	m)
integer;	d = 1	{
begin	else:	if(m == 0)
if $m = 0$ then	d = n*F(n, m-	return 1;
F:= 1	1)	else
else	return d	return n*F(n, m-
F := n*F(n,m-1)		1);
end;		}

23. Определите наименьшее значение суммы n+m такое, что значение F(n, m) больше числа 15 и выполняется условие $n \neq m$, n и m — натуральные числа. Запишите в ответе сначала значения n и m, при которых указанная сумма достигается, в порядке неубывания.

Паскаль	Python	C++
function F(n, m:	def F(n, m):	int F(int n, int
integer):	if n < m:	m)
integer;	n, $m = m$, n	{
begin	if n != m:	if(n > m)
if n > m then	return F(n-	return F(n-
F := F(n-m, m)	m, m)	m,m);
else	else:	else
if n < m then	return n	if(n < m)
F := F(n, m-n)		return F(m-
else		n,n);
F:= n;		else
end;		return n;
		}

24. Определите наименьшее число n такое, что при вызове F(n) второе выведенное число будет больше числа 51. Запишите в ответе сначала найденное значение n, а затем через пробел — соответствующее значение F(n).

Паскаль	Python	C++
function f(n:	def F(n):	int F(int n)
integer):	print(n)	{
integer;	if n > 0:	cout << n << endl;
<pre>var d:integer;</pre>	d = (n%10 +	if(n) {
begin	F(n//10))	int d = n%10
writeln(N);	print(d)	+

```
if n > 0 then
                                   F(n/10);
                    return d
                                    cout << d <<
begin
                   else:
d := n mod 10
                                   endl;
                   return 0
                                    return d;
   F(n div
                                    }
10);
                                   else
 writeln( d );
                                   return 0;
 F := d
                                   }
end
else F:=0;
end;
```