

Contesta fins a un màxim de 5 preguntes d'entre totes les preguntes proposades a les opcions A i B de l'examen. Utilitza la taula periòdica adjunta. Pots usar la calculadora.

La puntuació màxima de cada pregunta està indicada a l'inici de la pregunta. La nota de l'examen és la suma de les puntuacions.

OPCIÓ A

1A. (2 punts)

a) El CO_2 és un gas abundant a la Terra, indispensable per a la fotosíntesi de les plantes. En un laboratori de Química, s'ha estudiat l'efecte de la temperatura sobre la reacció de dissociació de $CO_{2 (g)}$ segons la reacció química ajustada següent:

Figura 1. Representació esquemàtica del procés de la fotosíntesi.

Un químic ha emplenat algunes de les cel·les de la taula 1, on s'indiquen a tres temperatures els valors de les concentracions de reactius i productes un cop assolit l'equilibri químic i el valor d'algunes constants d'equilibri.

Taula 1. Concentracions d'equilibri i constants d'equilibri en funció de la temperatura

Temperatura, °C	[CO ₂]eq, M	[CO]eq, M	[O ₂]eq, M	K, mol ^{1/2} · L ^{-1/2}
1500				0,048
2000	0,10	0,20	0,25	
2500	0,0025	0,10	0,20	17,6

- i) Determina el valor de la constant d'equilibri a 2000 °C
- ii) A partir dels valors de la taula 1, es pot deduir si la reacció de dissociació del $CO_{2(g)}$ és un procés endotèrmic? Raona la resposta.
- b) Formula els composts següents: àcid carbònic i dietilamina.

Convocatòria 2020

Model 3

de les Illes Balears

Proves d'accés
a la Universitat

Universitat

2A. (2 punts) La següent reacció química ajustada correspon a un procés redox:

$$Cu_{(s)} + 2H_2SO_{4 (aq)} \rightarrow CuSO_{4 (aq)} + SO_{2 (q)} + 2H_2O_{(I)}$$

- a) Identifica l'espècie oxidant. Justifica la resposta.
- b) Calcula el volum de $SO_{2 (g)}$ que s'obtindrà fent reaccionar 12,71 g de $Cu_{(s)}$ amb un excés d'àcid sulfúric, a 27 °C de temperatura i a una pressió de 750 mm Hg.
- c) Indica de forma raonada si la reacció següent correspon a un procés redox.

$$AgNO_{3 (aq)} + NaCl_{(aq)} \rightarrow AgCl_{(aq)} + NaNO_{3 (aq)}$$

3A. (2 punts)

- a) Escriu la configuració electrònica dels ions S²⁻ i Cl²⁻. Quin dels ions anteriors presenta major estabilitat? Raona la resposta.
- b) Els valors de les energies reticulars dels composts NaF i NaI són, respectivament, 910 i 682 kJ·mol⁻¹. Justifica la diferència entre els valors de l'energia reticular dels composts NaF i NaI.
- c) Explica la geometria de la molècula H₂S segons la TRPECV.

4A. (2 punts)

- a) En un laboratori s'han preparat dues dissolucions per separat de CH₃COOH i CH₃COONa. Sense fer cap càlcul numèric, indica de forma raonada si aquestes dissolucions són àcides, bàsiques o neutres.
 - Dades: $K_a(CH_3COOH) = 1.8 \cdot 10^{-5}$
- b) Quina quantitat (en grams) de Mg(OH)₂ s'ha d'utilitzar per neutralitzar completament 100,0 mL d'una dissolució 0,5 M de HCl?
- c) Indica el material de laboratori necessari per dur a terme una valoració àcid-base.
- **5A.** (2 punts) L'equació de velocitat del procés $A + B \rightarrow C$ és $v = k \cdot [A] [B]$

Indica de manera raonada si les següents afirmacions són correctes:

- a) La velocitat de reacció segueix una cinètica de primer ordre respecte al producte C.
- b) Quan es duplica la concentració de B al procés anterior, la velocitat també es duplica.
- c) El valor numèric de la constant de velocitat no varia amb la temperatura.
- d) La velocitat de reacció depèn de l'estat físic dels reactius.

OPCIÓ B

a la Universitat

1B. (2 punts)

- a) Anomena els composts següents: CH₂=CH₂ i CaCl₂.
- b) Explica el tipus d'hibridació que presenten els àtoms de carboni a la molècula CH₂=CH₂.
- c) Quin tipus d'enllaç químic presenta la molècula CaCl₂? Justifica la resposta.
- **2B. (2 punts)** Al segle passat, el científic alemany Fritz Haber va dissenyar un procés per obtenir amoníac a partir de la fixació del nitrogen de l'aire, en el qual s'esdevé la reacció ajustada següent:

$$N_{2(q)} + 3 H_{2(q)} \rightleftharpoons 2 NH_{3(q)} Kc = 1,2 L^2 \cdot mol^{-2} (a 375 °C)$$

En un recipient tancat i buit de 3 L, s'introdueixen 6 mols de $N_{2 (g)}$, 9 mols de $H_{2 (g)}$ i 12 mols de $NH_{3 (g)}$ a 375 °C.

- a) Justifica per què el sistema no està en equilibri i explica de forma raonada el sentit cap a on es desplaçarà la reacció per assolir-lo.
- b) Una vegada assolit l'equilibri, s'obtindrà més amoníac si es disminueix el volum del recipient? Justifica la resposta.
- c) Calcula el valor de Kp a 375 °C.
- **3B. (2 punts)** Indica de manera raonada si les afirmacions següents són vertaderes o falses:
 - a) El radi atòmic del brom és menor que el del calci.
 - b) El fòsfor presenta dos electrons desaparellats en el seu estat fonamental.
 - c) La combinació de nombres quàntics (2, 1, 3, -1/2) està permesa.
 - d) El fluor és l'halogen amb major electronegativitat del grup 17 de la taula periòdica.
- **4B. (2 punts)** L'àcid fluorhídric (HF) és una substància tòxica i corrosiva. La constant d'acidesa d'aquest àcid, a 25 °C, és 6,6 ·10⁻⁴.
 - a) Quin volum de HF comercial, del 40% en pes i densitat 1,15 g/mL, es necessita per preparar 500 mL d'una dissolució de HF 0,5 M?
 - b) Quin és el pH d'una dissolució de HF 0,5 M a 25 °C?
 - c) Indica els dos pictogrames de la figura següent (A-E) que han d'aparèixer a l'etiqueta de la botella d'àcid fluorhídric. Justifica la resposta.

5B. (2 punts) Per determinar quantitativament el contingut de ferro que conté una mostra, aquesta es dissol en àcid i es duu a terme la valoració de l'ió Fe²⁺ emprant una solució de permanganat de potassi (KMnO₄) de concentració coneguda. La reacció de valoració que té lloc és la següent:

$$Fe^{2+}$$
 (aq) + MnO_4^- (aq) + H^+ (aq) $\rightarrow Fe^{3+}$ (aq) + Mn^{2+} (aq) + H_2O (I)

- a) Ajusta la reacció iònica utilitzant el mètode de l'ió electró.
- b) Indica, de forma raonada, quin dels reactius actua com a reductor.
- c) És espontània la reacció anterior en condicions estàndard? Justifica la resposta.

Dades: potencials estàndard de reducció: $E^0(MnO_4^-/Mn^{2+}) = 1,51 \text{ V};$ $E^0(Fe^{3+}/Fe^{2+}) = 0,77 \text{ V}$

Convocatòria 2020

de les Illes Balears
Proves d'accés
a la Universitat

Taula Periòdica dels Elements

18	0	2 He 4,0026	10 Ne 20,1797	18 Ar 39,948	36 Kr 83,80	54 Xe 131,29	86 Rn (222,02)	118 0g (293)
17	VIIa		9 F 18,9984	17 CI 35,4527	35 Br 79,904	53 126,9045	85 At (209,99)	117 Ts
16	VIa		8 O 15,9994	16 S 32,066	34 Se 78,96	52 Te 127,60	84 Po (208,98)	116 Lv (289)
15	Va		7 N 14,0067	15 P 30,9738	33 As 74,9216	51 Sb 121,760	83 Bi 208,980	115 Mc (288)
14	IVa		6 C 12,0107	14 Si 28,0855	32 Ge 72,61	50 Sn 118,710	82 Pb 207,2	114 FI (285)
13	IIIa		5 B 10,811	13 Al 26,9815	31 Ga 69,723	49 In 114,818	81 Ti 204,383	113 S d 0
12	q				30 Zn 65,39	48 Cd 112,411	80 Hg 200,59	112 Cn (277)
11	lb				29 Cu 63,546	47 Ag 107,8682	79 Au 196,967	Rg (272)
10					28 Ni 58,6934	46 Pd 106,42	78 Pt 195,078	110 Ds (271)
6	III				27 Co 58,9332	45 Rh 102,905	77 Ir 192,217	109 Mt (268)
8					26 Fe 55,845	44 Ru 101,07	76 0s 190,23	108 Hs (265,13)
7	VIIb				25 Mn 54,9380	43 Tc (98,9063)	75 Re 186,207	107 Bh (264,12)
9	VIb				24 Cr 51,9961	42 Mo 95,94	74 W 183,84	106 Sg (263,12)
2	Λb				23 V 50,9415	41 Nb 4 92,9064	73 Ta 180,948	105 Db (262,11)
7	IVb				22 Ti 47,867	40 Zr 1,22	72 Hf 178,49	104 Rf (261,11)
3	qIII				21 Sc 44,9559 47	39 Y 88,9059	57 * La 138,906	89 * Ac (227,03)
2	IIa		4 Be 9,0122	12 Mg 24,3050	20 Ca 40,078	38 Sr 87,62	56 Ba 137,327	87 88 Fr Ra (223,02) (226,03)
1	la	1 H 1,00794	3 Li 6,941	11 Na 22,9898	19 K 39,0983	37 Rb 85,4678	55 Cs 132,905	87 Fr (223,02)
		_	2	n	4	5	9	7

	•	103 Lr (262,11)
70	Yb 173,04	102 No (259,10)
69	Tm 168,934	101 Md (258,10)
89	Er 167,26	100 Fm (257,10)
29	Ho 164,930	99 Es (252,08)
99	Dy 162,50	98 Cf (251,08)
65	Tb 158,925	97 Bk (247,07)
64	Gd 157,25	96 Cm (247,07)
63	Eu 151,964	95 Am (243,06)
62	Sm 150,36	94 Pu (244,06)
61	Pm (144,913)	93 Np (237,048)
09	Nd 144,24	92 U 238,029
59	Pr 140,908	91 Pa 8 231,036 23
28	Ce 140,116	90 Th 232,038

Constants: R = 0.082 atm L mol⁻¹ $K^{\text{-}1} = 8.3$ J mol⁻¹ $K^{\text{-}1}$

SOLUCIONS

a la Universitat

OPCIÓ A

1A. (2 punts)

a) Pregunta competencial

i)
$$CO_{2(q)} \rightleftharpoons CO_{(q)} + \frac{1}{2}O_{2(q)}$$

$$K_{eq} = \frac{[co][o_2]^{1/2}}{[co_2]} = \frac{0.2 \cdot (0.25)^{1/2}}{0.1} = 1.0$$
 (mol/L)^{1/2}

0,5 punts

ii) A 1500 °C, Keq= 0,048; a 2500 °C, Keq= 17,6

A mesura que augmenta la temperatura, la constant d'equilibri augmenta i l'equilibri químic es desplaça cap a la dreta. Per tant, el procés és endotèrmic (Le Chatelier)

0,5 punts

b) Formulació química

$$H_2CO_3$$
 i $(CH_3CH_2)_2NH$

1,0 punt

2A. (2 punts)

a) Procés redox: Cu
$$_{(s)}$$
 + 2H $_2$ SO $_4$ $_{(aq)}$ \rightarrow CuSO $_4$ $_{(aq)}$ + SO $_2$ $_{(g)}$ + 2H $_2$ O $_{(l)}$

$$[SO_4^{2-} + 4H^+ + 2e - \rightarrow SO_2 + 2H_2O]$$
; SO_4^{2-} oxidant

0,5 punts

b)
$$12,71 \text{ g Cu } \times \frac{1 \, mol \, Cu}{63.55 \, g \, Cu} \frac{1 \, mol \, SO2}{1 \, mol \, Cu} = 0,2 \text{ mols SO}_2$$
 0,5 punts

$$PV = n R T = 750/760 \times V = 0.20,082 (27 + 273,15) = V = 4.99 L SO_2$$

0.5 punts

c) No es tracta d'un procés redox, ja que no hi ha cap canvi d'estat d'oxidació en cap dels elements que intervenen en la reacció

0,5 punts

3A. (2 punts)

a) S^{2^-} $1s^22s^22p^63s^23p^6$ Cl^{2^-} $1s^22s^22p^63s^23p^6$ 4s¹ El més estable és S^{2^-} , configuració de gas noble **1,0 punt**

Proves d'accés a la Universitat

Química Model 3

b) Eret (NaF) = $910 \text{ kJ} \cdot \text{mol}^{-1}$ i Eret (NaI) = $682 \text{ kJ} \cdot \text{mol}^{-1}$

A partir que: $E_{reticular} \alpha (q \cdot q')/d$

Com menor és la distància de separació dels ions, major energia reticular. El radi atòmic del F és menor que el del I, per tant, la molècula de NaF tindrà major energia reticular **0,5 punts**

c) S: $1s^2 2s^2 2p^6 3s^2 3p^4$ H: $1s^1$

AX₂E₂: Geometria angular

0,5 punts

4A. (2 punts)

a) CH₃COOH: és un àcid feble. Dissolució àcida **0,5 punts**CH₃COONa: prové d'un àcid feble i una base forta. Dissolució bàsica **0,5 punts**

b) 100,0 mL HCl· $\frac{0.5 \ mols \ HCl}{1000 \ mL}$ · $\frac{1 \ mol \ Mg(OH)2}{2 \ mol \ HCl}$ · $\frac{58,3g}{1 \ mol \ Mg(OH)2}$ = 1,46 g Mg(OH)₂ **0,5 punts**

c) Bureta i matràs erlenmeyer

0,5 punts

5A. (2 punts) 0,5 punts per apartat

- a) Fals. Els ordres de reacció corresponen als reactius, no als productes.
- b) Vertader. La velocitat de la reacció és directament proporcional a la concentració de B.
- c) Fals. El valor de la constant de velocitat varia amb la temperatura.
- d) Vertader. L'estat físic dels reactius determina la seva reactivitat i, per tant, la velocitat en la qual té lloc la reacció.

OPCIÓ B

a la Universitat

1B. (2 punts)

a) CH₂CH₂: etè (etilè) i CaCl₂: diclorur de calci (0,5 punts cada un) **1,0 punt**

Per la presència d'un enllaç doble, la hibridació del C és sp²

0,5 punts

c) Compost format per un metall i un no-metall: enllaç iònic

0,5 punts

2B. (2 punts)

$$N_{2(g)} + 3 H_{2(g)} \approx 2NH_{3(g)}$$
 Kc (375 °C) = 1,2

a)
$$Q = \frac{[NH3]^2}{[N2]^1[H2]} = \frac{(12/3)^2}{(6/3)(9/3)^3} = \frac{16}{54} = 0,296$$

0,5 punts

Q < Keq es desplaçarà cap a la dreta, formació d'amoníac **0,5 punts**

b) Si disminuïm el volum, el sistema desplaçarà l'equilibri cap al lloc on disminueixi el nombre de mols. Per tant, cap a productes **0,5 punts**

c)
$$K_p = K_c (RT)^{\Delta n} (\Delta n = -2); K_p = 1,2 (0,082 (273,15+375)^{-2} = 4,25 \ 10^{-4}$$
 0,5 punts

3B. (2 punts) 0,5 punts cada apartat

a) Vertader. El Br es troba a la taula periòdica al tercer període i al grup 17, mentre que el calci es troba al mateix període i al grup 2. En un mateix període, quan augmenta el nombre atòmic (ens desplaçam cap a la dreta) augmenta la càrrega nuclear efectiva i, per tant, disminueix el radi atòmic.

a la Universitat

- b) Fals. P (Z=15) $1s^22s^22p^63s^23p^3$. El fòsfor presenta tres electrons desaparellats.
 - c) Fals. Si I = 1, m només pot valer ± 1 i 0. Per tant, m no pot valer 3.
 - d) Vertader. En un mateix grup, quan augmenta el període, augmenta el radi atòmic, ja que s'ocupen nivells superiors, i disminueix l'atracció dels electrons més externs cap al nucli. Per tant, l'element més electronegatiu del grup 17 és el fluor.

4B. (2 punts)

a) 500 mL
$$\frac{0.5 \text{ mols HF}}{1000 \text{ mL}} \frac{20 \text{ g HF}}{1 \text{ mol HF}} \frac{100 \text{ g HF com.}}{40 \text{ g HF}} \frac{1 \text{ mL HF com.}}{1,15 \text{ g HF com.}} = 10.9 \text{ mL HF com.}$$
 0,75 punts

b) HF (àcid feble) $Ka = 6.6 \cdot 10^{-4}$

$$K_a = \frac{x^2}{0.5 - x} = 6.6 \times 10^{-4}$$
; (0,25 punts)
Suposant 0,5 - x \approx 0,5; x = 0,0182 (0,25 punts)

0,75 punts

c) Pictogrames: D => tòxic i A => corrosiu

0,5 punts

5B. (2 punts)

a)
$$Fe^{2+}$$
 (aq) + MnO_4^- (aq) + H^+ (aq) $\rightarrow Fe^{3+}$ (aq) + Mn^{2+} (aq) + H_2O (I)

$$5 \text{ Fe}^{2+} (aq) + \text{MnO}_4^- (aq) + 8 \text{ H}^+ (aq) \rightarrow 5 \text{ Fe}^{3+} (aq) + \text{Mn}^{2+} (aq) + 4 \text{ H}_2\text{O} (I)$$

0,25 punts

- b) Espècie reductora: Fe^{2+} (passa de +2 a +3, s'oxida i redueix el MnO_4^-) **0,5 punts**
- c) fem = E_{cat} E_{anode} ; fem = 1,51 0,77 = 0,74 V (positiva, espontània) **0,5 punts**

4 / 4