DNA Sequencing and Data Analysis

Prof Noam Shomron Hadas Volkov

Lecture 9, December 30, 2022

DNA Sequencing and Data Analysis

Friday 8:45 AM to 11:15 AM Arazi-Ofer Building, C.LO3

<u>nshomron@gmail.com</u> <u>hadas.volkov@post.runi.ac.il</u>

DNA Sequencing and Data Analysis

RNA-Seq

Class	Title	Content/assignments	Activity, location
1, 4.11	Introduction to Cells and DNA	Basic knowledge of biology	In the lecture hall, Noam
2, 11.11	DNA Sequencing past and present	Basic knowledge of molecular DNA	In the lecture hall, Noam
3, 18.11	Genomics technologies	DNA, RNA, technologies	In the lecture hall, Noam
4, 25.11	Introduction to Bioinformatics challenges in reading DNA	Focus on three methods: WES/WGS, RNA-seq, cell-free DNA	In the lecture hall, Noam
5, 2.12	Modern DNA Sequencing, 2nd wave File Formats, tools.	Analysis approaches for WES/WGS, RNA-seq, cell-free DNA	In the lecture hall, Hadas and Noam
6, 9.12	De novo Shotgun Assembly	The algorithms and methods behind the assembly problem	In computer class, Hadas and Noam
7, 16.12	Sequence Mapping and Alignment	The algorithms behind mapping and alignment, fast and heuristics	In computer class, Hadas and Noam
8, 23.12	Variant Calling and Somatic Variant Analysis	The bioinformatics behind discovery of novel mutations in cancer	In computer class, Hadas and Noam
9, 30.12	RNA-Seq	The bioinformatics behind RNA-Seq and Differential Gene Expression	In computer class, Hadas and Noam
10, 6.1	Nanopore data analysis introduction Practice molecular biology techniques	Pipetting, transferring small amounts of fluids, running a dry Nanopore experiment	In biology class, Meitar and Noam
11, 13.1	Nanopore DNA sequencing	Nanopore DNA sequencing, experimental run	In biology class, Meitar, Hadas, Assaf
12, 20.1	Nanopore data analysis	Nanopore DNA analysis, experimental run	In computer class, Hadas and Noam
13, 27.1	Nanopore data analysis and presentations	Groups present their results	In the lecture hall, Hadas and Noam

Lesson Goals

Understand some common RNA-seq uses and protocols

Be familiar with the basic workflow of gene expression data analysis

Specifically differential gene expression analysis

Know how to map RNA-seq reads to a reference genome using STAR

Be able to QA mapping results

Perform Differential Gene Expression (DGE) analysis

RNA

RNA

What is RNA-Sequencing?

Sequencing of RNA using NGS technology
Allows assessment of presence and quantity or RNA in a sample
Take a snapshot of expression in a sample

Why Study the Transcriptome?

The full range of messenger RNA molecules expressed by an organism

Indication of cell physiology

Dynamic - responds to the environment

- Changes over time
- Responds to external stimuli
- Controls cellular processes

Reduced representation of the genome

- Smaller = cheaper
- Only the "functional" parts of the genome

Types of Expression Analysis

Expression quantification

Differential gene expression

Assemble whole transcriptomes

Detect new transcripts

Detect splicing variants

Detect allele-specific expression

Gene co-expression

Single-cell analysis

RNA-Seq Basic Protocol

Total RNA

Total RNA (Mammalian)

Enrichment for Mature RNA

Poly-A selection method

- use a poly-dT baits to bind mRNAs and discard the rest
- Removes rRNA, tRNA and others
- Enriches for mature mRNA (containing poly-A tail)
- Not all mRNAs have poly-A tails
 - Histones mRNA in Metazoans
 - Mitochondrial mRNA

rRNA depletion method

- Use baits designed specifically for rRNA
- Does not remove tRNA
- Only option in bacteria (no poly-A tail)
- Only option when extracting small RNAs

RNA-Seq Library Prep

Expression Levels

Higher expression → **more transcripts** → **more RNA-seq reads**

Are Read Counts a Good Measure?

Variable length of transcript of interest

Are Read Counts a Good Measure?

Variable length of other transcripts

Are Read Counts a Good Measure?

Variable number of reads between experiments

Read Count Normalization

Normalize for transcript length

RPK - reads per kilobase (of transcript)

$$RPK_i = 10^3 \cdot rac{n_i}{l_i}$$

$$RPKM_i = 10^9 \cdot rac{n_i}{l_i \cdot \sum_j n_j}$$

Normalize for sequencing depth

RPKM - reads per kilobase (of transcript) per million (reads)

Read Count Normalization

Experiment 1 - total reads: 100,000

Gene	Transcript length	Reads	RPK	RPKM
Gene1	500	10	20	200
Gene2	1000	20	20	200

Experiment 2 - total reads: 1,000,000

Gene	Transcript length	Reads	RPK	RPKM
Gene1	500	10	20	20
Gene2	1000	50	50	50

Differential Gene Expression (DGE)

Compare gene expression levels across all genes between two (or more) samples

Samples of the same cell type

- Different physiological conditions
- Different environmental conditions
 - Growth medium
 - Treatment

Samples of different cell types

- Different tissues
- WT vs. mutant
- Different strains
- Normal vs. tumor

DGE Workflow

RNA-Seq Data QA and Pre-processing

Same as for genomic data!
FastQC for QA stats
Remove duplicate reads

RNA-Seq Depth of Coverage

Average depth - how many reads cover each base **on average**But with RNA-seq "depth" depends on gene expression levels
So talking about sequencing depth is **meaningless**Instead, we just indicate how many reads were generated

Splicing

We need to assign RNA-seq reads to specific genes
The simplest way is by read mapping
We must have a reference genome and annotation

Splice-aware Mapping

We need to consider intron-exon gene structure Allow large gaps in read alignment

BWA won't work so well

STAR - a very popular choice

Very fast and memory-efficient

The algorithm works in two steps:

- 1. Find splice junctions by allowing partial read mapping
- 2. Stitch together parts of reads mapped to proximal genomic positions

Find best exact mapping

Find best exact mapping for unmapped part

Try to extend mapping over mismatches

Cluster and stitch mappings based on proximity

Inputs:

- Reference genome fasta
- RNA-seq reads fastq (SE or PE)
- Optional: genome annotation GFF/GTF

Output: reads alignment in sam/bam format

Step 1: create a reference index:

```
STAR --runMode genomeGenerate --genomeFastaFiles
</path/to/genome.fasta> --sjdbGTFfile </path/to/genes.gff>
--genomeDir </path/to/ref_index_dir/>
```

Step 2: align reads to indexed reference:

```
STAR --runMode alignReads --genomeDir
</path/to/ref_index_dir/> --readFilesIn reads_R1.fastq
reads_R2.fastq --outSAMtype BAM SortedByCoordinate
--outFileNamePrefix <name>
```


Experimental Data

The effect of the steroid Dexamethasone on human airway smooth muscle cells

Four cell lines - treated/untreated

Himes, Blanca E., et al. "RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells." *PloS one* 9.6 (2014).

Experimental Data

Goal: Study the mechanism of dexamethasone action

N61311

Method: Which genes are differentially-expressed between treated and untreated samples?

Expression Quantification of Mapped Reads

Goal: determine how many RNA-seq reads mapped to each gene

Reason: this is our proxy for gene expression level

Input:

- RNA-seq reads (spliced) mapping BAM
- Gene annotation GFF

Output: expression matrix M

 M_{ij} = number of reads mapped to gene i in sample j

Count Matrix

Cell line	N61311	N052611	N080611	N061011	N61311	N052611	N080611	N061011
Dex treatment	+	+	+	+	-	-	-	-
C7	34	512	66	121	25	344	297	76
CCDC69	5	8	8	3	12	7	10	7
DUSP1	1112	985	1003	898	214	128	188	203
FKBP5	33	94	111	42	46	98	57	85
	1			•••				

Total: ~64k transcripts (mRNAs)

Exploring Expression Levels Data

Useful as preparation for differential gene expression analysis

Allows detection of trends in the counts data

Basic QA

Main goal: determine overall similarity between samples

Exploring Expression Levels Data

Expression levels differ in orders of magnitude between genes

Log Transformation

We usually apply a \log_2 transformation to read counts Makes it easier to explore the data

QA Expression Quantification

Which samples are overall similar/different from one another?

Does it match our expectations, given the experimental design?

We can use Euclidean distances:

In 2 dimensions

In n dimensions

	sample 1	sample2
gene1	m ₁₁	m ₁₂
gene2	m ₂₁	m ₂₂
	•••	
gene n	m_{n1}	m_{n2}

$$d = \sqrt{(m_{12} - m_{11})^2 + (m_{22} - m_{21})^2 + \dots + (m_{n2} - m_{n1})^2}$$

Hierarchical Clustering

PCA

Filtering Counts Data

It is useful to remove genes with very few reads from the analysis

- Slow down the analysis
- Reduce detection power for other genes

We won't be able to detect DE anyway

We can choose a count cutoff

Or we can remove the Xth percentile

In the Himes et. al data:

~64k transcripts → Require >= 10 reads → ~20k transcripts

Differential Expression Analysis

<u>Goal</u>: detect genes that significantly differ in their expression levels between samples

Input:

- Normalized, filtered expression quantification matrix
- Description of the experimental design

Output: per gene - estimated difference between samples and significance level

Experimental Design

What samples were tested

What conditions were tested

What experimental replicates were made

Experimental design must match the biological question

Affects the statistical tests applied

Experimental design is represented by the samples information table

Sample Information

Sample	Cell line	Dex		
SRR1039508	N61311	Untreated		
SRR1039509	N61311	Treated		
SRR1039512	N052611	Untreated		
SRR1039513	N052611	Treated		
SRR1039516	N080611	Untreated		
SRR1039517	N080611	Treated		
SRR1039520	N061011	Untreated		
SRR1039521	N061011	Treated		

Batch Effects

Batch Effects

Introduced during sample handling and preparation

- Technical factors
- External factors

Minimize by:

- Use the same protocol for all samples
- Prepare all samples together

Not always possible

We must test for batch effects when performing DE statistical tests

Batch Effects

Sample	Cell line	Dex	Batch
SRR1039508	N61311	Untreated	1
SRR1039509	N61311	Treated	1
SRR1039512	N052611	Untreated	1
SRR1039513	N052611	Treated	1
SRR1039516	N080611	Untreated	2
SRR1039517	N080611	Treated	2
SRR1039520	N061011	Untreated	2
SRR1039521	N061011	Treated	2

Fold Change

The main measure used in DGE analysis is **fold change** - a.k.a ratio

Ratios are highly non-symmetric $R = \frac{Count_{sample1}}{Count_{sample2}}$

Therefore we use log scaling - log2 fold change (L2FC)

$$L2FC = \log_2(\frac{Count_{sample1}}{Count_{sample2}}) = \log_2 Count_{sample1} - \log_2 Count_{sample2}$$

Fold Change

	N61311 Dex	N61311 Dex	N05261 1 Dex	N08061 1 Dex	N61311 Unt	N61311 Unt	N05261 1 Unt	N08061 1 Unt	Mean Dex	Mean Unt	FC	L2FC
Gene 1	34	512	66	121	25	344	297	76	183.25	185.50	0.99	-0.02
Gene 2	1112	985	1003	898	214	128	188	203	999.50	183.25	5.45	2.45
Gene 3	6	9	4	6	12	9	15	16	6.25	13.00	0.48	-1.06

L2FC = 0 : no difference

L2FC > 0 : sample1 expression > sample 2

expression

L2FC < 0 : sample1 expression < sample 2

expression

Fold Change

Log2 Fold Changes

Can we tell just by looking at L2FC values? Maybe it's just random noise? Replicates can help

Hypothesis Testing

H_o: there is no difference in expression levels between samples

H₁: expression levels differ between samples

We try and reject H₀ with an appropriate statistical test, e.g.:

- Parametric tests: t-test, ANOVA
- Non-parametric tests: Mann-Whitney U test
- Other modeling methods: linear models, GLM

The result is a significance score - per gene p-value

Volcano Plots

For each gene, we must consider both L2FC and p-value

To get a global view - use a **volcano plot**

We can choose a p-value cutoff, e.g. 0.05 or 0.01

Cutoff

We can choose an arbitrary cutoff, e.g. 1

Lowly-expressed genes usually display higher variability in expression

This can be seen in a MA-plot
Can be used as a sanity-check
Or to choose dynamic L2FC cutoffs

Correcting for Multiple Testing

Recall the meaning of a p-value...

Since we are performing multiple tests, we must correct (adjust) p-values The simple and stringent way - Bonferroni correction

$$p_{adj} = p \times [\# of genes]$$

The common way - False Discovery Rate (FDR - BH procedure):

1. Order p-values from smallest to largest

$$p_{1}, p_{2}, \dots, p_{k}, \dots p_{m}$$

$$2. p_{adj}^{k} = \frac{p^{k} \times [\# of \ genes]}{k}$$

Himes et al. - DGE Analysis Results

A total of 316 DE genes between treated and untreated samples

Top 5:

Gene	Dex RPKM	Untreated RPKM	Ln[Fold Change]	Test Statistic	Adj. P-Value
C7	38.41	3.76	-3.35	8.74	0
CCDC69	47.39	6.24	-2.92	8.61	0
DUSP1	144.96	18.26	-2.99	8.99	0
FKBP5	53.05	3.43	-3.95	10.52	0
GPX3	613.37	45.18	-3.76	9.19	0

