Linear Algebra

Orthogonal Matrices and QR Decomposition

Automotive Intelligence Lab.

Contents

- Orthogonal matrices
- **■** Gram-Schmidt
- QR decomposition
- Summary
- **■** Code exercise

Orthogonal matrices

Introduction of Orthogonal Matrices

- Important and special matrices for several decompositions
 - ▶ QR decomposition
 - ► Eigen decomposition
 - ► Singular value decomposition
- Letter Q
 - Often used to indicate orthogonal matrices.

Mathematical Expression of Orthogonal Matrices

Two properties of orthogonal matrices

- Orthogonal columns *****
 - All columns are pair- Wiscorthogonal.
- ▶ Unit-norm columns
 - The norm (geometric length) of each column is exactly.

Translate those two properties into a mathematical expression.

- $\triangleright \langle a, b \rangle$: alternative notation for the dot product
- $ightharpoonup q_i$: i^{th} column of matrix

$$\langle q_i, q_j \rangle = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}$$
 Athornal

Mathematical expression of orthogonal matrices

- ▶ Dot product of a column with itself is 1.
- ▶ Dot product of a column with any other column is 0.

Characteristic of Orthogonal Matrices

- Definition of matrix multiplication
 - ▶ Dot products between all rows of the left matrix with all columns of the right matrix
- lacksquare Q^T is a matrix that multiplies Q to produce the identity matrix.
 - Exact same definition as the matrix inverse.
 - Inverse of an orthogonal matrix is its than Pose.
 - Matrix inverse: tedious and prone to numerical in accuracies.
 - Matrix transpose: fast and accurate.
- Identity matrix is an example of an orthogonal matrix.

Example of Orthogonal Matrices

Practice in MATLAB with below matrices

Thampaez Invenez

- ▶ Does each column have unit length?
 - Yes .
- ls each column orthogonal to other columns?
 - 5es.
- ightharpoonup Compute QQ^T .
 - Is that still the identity matrix? Try it to find out!

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \qquad \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$

Example of an orthogonal matrices

```
% Clear workspace, command
window, and close all
figures
clc; clear; close all;

% Matrices Q1 and Q2
Q1 = [1 -1; 1 1]/sqrt(2);
Q2 = [1 2 2; 2 1 -2; -2 2 -
1]/3;

% Orthogonal matrices
Q1 * Q1 = Q1' * Q1;
Q2TQ2 = Q2' * Q2;
C2TQ2 = Q2' * Q2;
C3TQ1 = Q1' * Q1;
C4TQ1 = Q1' * Q1';
C4TQ1 = Q1' * Q1'
```

MATLAB code to compute Q^TQ

Gram-Schmidt

ZITAZZ Q mothix Pt-12 483

Process of Gram-Schmidt

- Way of making two or more vectors perpendicular to each other
- Technical definition of Gram Schmidt
 - ► Method of constructing an oftlesonal basis
 - From a set of vectors in an inner space.
 - Most commonly Euclidean space \mathbb{R}^n equipped with standard inner product.
- Takes a finite, linearly independent set of vectors $S = \{v_1, ..., v_k\}$.
 - ► Generate an orthogonal set $S' = \{u_1, ..., u_k\}$.
 - Spans the same k-dimensional subspace of \mathbb{R}^n as S.
- Application to column vectors of full column rank matrix
 - ▶ Yields the *QR* decomposition.
 - Decomposed into orthogonal and a triangular matrix.
 - We will study QR decomposition in next section!

Basic principles of the Gram-Schmidt process

Reference: https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process

Vector Projection

- Vector projection of a vector v on a nonzero vector u.
 - ightharpoonup < v, u >: inner product of vectors v and u.
 - $ightharpoonup proj_{u}(v)$: orthogonal projection of v onto the line spanned by u.
 - ▶ If *u* is zero vector,
 - $proj_u v$ is defined as a zero vector.

$$proj_{u}(v) = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$$

Vector projection

Expression of Gram-Schmidt Using Vector Projection

- Given k vectors v_1 , ..., v_k .
 - ▶ Gram-Schmidt process defines vectors $u_1, ..., u_k$ as shown in below expression.
 - $u_1, ..., u_k$ is required system of orthogonal vectors.
 - Known as Gram-Schmidt Ofthefonalization
 - Normalized vector e_1 , ... e_k form an orthonormal set.
 - Known as Gram-Schmidt Chlegonalization.

Expression of Gram-Schmidt using vector projection

Check Formula Validity

- First, compute $< u_1, u_2 >$ and check the result is zero.
 - \triangleright Substituting previous formula for u_2 .

$$u_2 = v_2 - proj_{u_1}(v_2)$$

- $u_2 = v_2 proj_{u_1}(v_2)$ $u_3 = v_3 - proj_{u_1}(v_3) - proj_{u_2}(v_3)$ $u_k = v_k - \sum^{k-1} proj_{u_j}(v_k)$
 - Expression of Gram-Schmidt using vector projection

- Then, compute $< u_1, u_3 >$ and check the result is zero.
 - \triangleright Substituting previous formula for u_3 .

•
$$u_3 = v_3 - proj_{u_1}(v_3) - proj_{u_2}(v_3)$$

$$U_1 \cdot U_2 = 0$$

$$U_1 \cdot (U_2 - PF_{Vu_1}(U_2))$$

$$U_2 \cdot U_1$$

$$U_2 \cdot U_1$$

$$U_3 \cdot U_4$$

 $u_1 = v_1$

Geometrically Check Formula Validity

To compute u_i ,

- \triangleright Project v_i orthogonally onto subspace U.
 - U: generated by u_1, \dots, u_{i-1}
 - Same as subspace generated by $v_1, ..., v_{i-1}$
 - Vector u_i defined to be the difference between v_i .

Expression of Gram Schmidt using vector projection

 \blacktriangleright This projection is guaranteed to be **orthogonal to all vectors in the subspace** U.

Euclidean Space

- Consider following set of vectors in \mathbb{R}^2 as Eq 1...
 - With conventional inner product.
- Then, perform Gram-Schmidt as Eq 2...
 - ➤ To obtain orthogonal set of vectors!

$$S = \{v_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}\}$$

Eq 1. Set of vectors

$$u_{1} = v_{1} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$u_{2} = v_{2} - proj_{u_{1}}(v_{2}) = \begin{bmatrix} 2 \\ 2 \end{bmatrix} - proj_{\begin{bmatrix} 3 \\ 1 \end{bmatrix}} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \frac{8}{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 6/5 \end{bmatrix}$$

Eq 2. Gram-Schmidt

Check Whether Orthogonal or Not

- lacksquare Check that vectors u_1 and u_2 are indeed orthogonal as Eq 1..
 - If dot product of two vectors is 0, then they are
- In case of non-zero vectors,
 - ▶ We can normalize vectors by dividing out their sizes as Eq 2..

$$\langle \boldsymbol{u}_1, \boldsymbol{u}_2 \rangle = \left\langle \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} -2/5 \\ 6/5 \end{bmatrix} \right\rangle = -\frac{6}{5} + \frac{6}{5} = 0$$

Eq 1. Dot product of two vectors

$$\boldsymbol{e}_1 = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$e_2 = \frac{1}{\sqrt{\frac{40}{25}}} \begin{bmatrix} -2/5 \\ 6/5 \end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Eq 2. Normalizing vectors

Code Exercise of Gram-Schmidt algorithm using MATLAB

- Code Exercise (09_01)
 - Follow the order of Gram-Schmidt algorithm in previous slide.

```
%% Gram-Schmidt Algorithm
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Initialize the matrices
A = [8 \ 1 \ 6; \ 3 \ 5 \ 7; \ 4 \ 9 \ 2];
Q = zeros(3);
% Perform the Gram-Schmidt process
for i = 1:size(A, 2)
   % Start with the original vector
    v = A(:, i);
    % Subtract the projections onto all previously obtained orthogonal vectors
        v = v - (Q(:, j)' * A(:, i)) / (Q(:, j)' * Q(:, j)) * Q(:, j);
    % Normalize the vector to make it orthogonal
    Q(:, i) = v / norm(v);
end
% Display the original and orthogonalized matrices
disp('Original Matrix A:');
disp(A);
disp('Orthogonalized Matrix Q:');
disp(Q);
% Verify orthogonality by computing dot proudct
disp('Dot products between different vectors of Q (should be close to zero):');
for i = 1:size(Q, 2)
    for j = i+1:size(0, 2)
        fprintf('Dot product between Q(:, %d) and Q(:, %d): %f\n', i, j, dot(Q(:, i), Q(:, j)));
    end
end
                                            MATLAB code
```


$$A \rightarrow Q \cdot R \rightarrow A \times = b$$

$$C+b = A \times = b$$

$$Q \cdot R \times = b$$

$$U \cdot R \times = b$$

QR decomposition

$$A = Q^{\dagger}A$$

$$A = Q^{\dagger}A$$

$$A = -R$$

Definition of QR Decomposition

Decompose matrix with <u>Gangle Othobal basis</u> vector which is found using Gram-Schmidt.

■ Matrix Q

- \blacktriangleright A set of standard orthogonal basis q_1, \dots, q_n obtained through the Gram-Schmidt
- Q is obviously different from the original matrix.
 - Assuming original matrix was not orthogonal.
 - lost information about that matrix.
- Fortunately, lost information can be retrieved and stored in another matrix R.
 - ightharpoonup R multiplied to Q.
 - Then..., how to create *R*?

Creating R

Comes right from the definition of QR.

$$A = QR$$
 $Q^TA = Q^TQR$
 $Q^TA = R$

Definition of QR

- Advantage of orthogonal matrices that can be seen from the above definition.
 - Solve matrix equations without worrying about computing the inverse.

Overall form of QR decomposition 💋

Simplification of QR Decomposition

- lacksquare Consider $a_1 \cdot q_2$.
 - ▶ $a_1 \cdot q_2 = 0$ because a_1 is orthogonal to q_2 .
- For $a_i \cdot q_j$, i < j
 - $a_i \cdot q_j = 0$
 - Because a_i is orthogonal to q_j for i < j.

$$q_1 = a_1$$
 $q_2 = a_2 - proj_{q_1}(a_2)$
 $q_3 = a_3 - proj_{q_1}(a_3) - proj_{q_2}(a_3)$
 \vdots
 $q_k = a_k - \sum_{i=1}^{k-1} proj_{q_i}(a_k)$

Features of QR Decomposition

- A = QR
 - ightharpoonup A QR is zeros matrix.
- \blacksquare Q times its transpose gives the identity matrix.
- R matrix: always upper triangular
 - lt will be explained in the next section.

```
% Clear workspace, command window, and close
all figures
                                                   figure;
clc; clear; close all;
                                                   imagesc(R);
                                                   title('R Matrix');
% Random integer matrix A
                                                   colorbar;
A = randi(10, 6);
                                                   colormap jet;
                                                   axis equal tight;
% OR decomposition
[Q,R] = qr(A);
                                                   figure;
                                                   imagesc(Q*R);
% Visualize the results
                                                   title('QR');
                                                   colorbar;
imagesc(A); % Display the matrix as a color
                                                   colormap jet;
image
                                                   axis equal tight;
title('A matrix');
colorbar; % Show a color scale
                                                   figure;
colormap jet; % Use the jet color map
                                                   imagesc(Q' * Q);
axis equal tight; % Adjust axes to fit the
                                                   title('QT*Q');
data
                                                   colorbar;
                                                   colormap jet;
figure;
                                                   axis equal tight;
imagesc(Q);
title('Q Matrix');
colorbar;
colormap jet;
axis equal tight;
```

MATLAB code

Sizes of Q and R

- \blacksquare Depend on the size of to-be-decomposed matrix A.
- Whether QR decomposition is economy or full.
 - **Economy** called reduced.
 - ► Full called complete.

Overview of All Possible Sizes of Q and R

- Fig 1. shows an overview of all possible sizes.
- \blacksquare "?" indicates that the matrix elements depend on values in A.
 - Not identity matrix.

$$A = \begin{bmatrix} |||| \end{bmatrix} M$$

Fig 1. Sizes of Q and R depending on size of A

Code Exercise of Orthogonal Matrix using MATLAB

- Code Exercise (09_02)
 - Notice optional second input 'complete', which produces a full QR decomposition.
 - ➤ Setting that to 'reduced', gives economy-mode QR decomposition, in which *Q* is same size as *A*.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;

% Matrix A
A = [1; -1];
[Q,R] = qr(A); % Full QR decomposition
[Q_econ,R_econ] = qr(A, "econ"); % Economy-mode QR decomposition, Q is same size as matrix A

% Scale to make integer matrix
Q = Q*sqrt(2);
Q_econ = Q_econ*sqrt(2);

% Display the results
disp("Q")
disp(Q);
disp("Q")
disp(Q);
disp("Q_econ")
disp(Q_econ);

MATLAB code of orthogonal matrix
```


Rank of Orthogonal Matrix

- \blacksquare Rank of Q is always maximum possible rank.
 - lt is possible to craft more than M > N orthogonal vectors from a matrix with N columns.

\blacksquare Rank of Q

- ► *M* for all square *Q* matrices
- ► *N* for economy *Q* matrices

Rank of R

Same as rank of A.

\blacksquare Difference in rank between Q and A resulting from orthogonalization

- ightharpoonup Q spans all of ealso M even if the column space of A is only lower-dimensional subspace of ealso M
 - Important reason why the singular value decomposition is so useful for revealing properties of a matrix, including its rank and null space.
- ► Another reason to look forward to learning about SVD in Chapter 14!

Property of QR Decomposition

- QR decomposition is not unique for all matrix sizes and ranks.
 - lt is possible to obtain $A = Q_1R_1$ and $A = Q_2R_2$ where $Q_1 \neq Q_2$.
- All QR decomposition results have the same properties described in this section.
- QR decomposition can be made unique when given additional constraints.
 - E.g., positive values on diagonals of *R*.
 - ▶ But! Not necessary in most cases.
 - Not implemented in MATLAB.

Orthogonalization

- Orthogonalization works column-wise from left to right.
 - ▶ Later columns in *Q* are orthogonalized to earlier columns of *A*.
- Lower triangle of R comes from Orthogonalized Pairs of Voctor.
- \blacksquare Earlier columns in Q are not orthogonalized to later columns of A.
 - ▶ No expect their dot products to be zero.
- \blacksquare Columns i and j of A were already orthogonal.
 - ▶ Corresponding $(i,j)^{th}$ element in \mathbf{R} would be zero.
- If compute QR decomposition of orthogonal matrix,
 - ► R will be talam matrix.
 - Norms of each column in A.
- If A = Q, R is same as I.
 - Comes from equation solved for R.

QR and **Inverses**

- More numerically stable way to compute matrix inverse
 - ▶ When using QR decomposition.

- ► Apply the LIVE EVIL rule as we learned before.
- Inverse of A
 - \blacktriangleright Same as inverse of R times than of Q.
 - ▶ **Q** is numerically stable.
 - Due to Householder reflection algorithm.
 - **R** is numerically stable.
 - Due to results from matrix multiplication.
- Need to invert *R* explicitly.
 - Inverting triangular matrices is highly numerically stable.
 - Through back substitution.

$$A \chi = b$$

$$Q R \chi = b$$

$$Q^{\dagger}Q R \chi = Q^{7}b$$

$$A^{-1} = QR$$
 $A^{-1} = (QR)^{-1}$
 $A^{-1} = R^{-1}Q^{-1}$
 $A^{-1} = R^{-1}Q^{T}$

Compute matrix inverse using QR decomposition

Key Point of QR Decomposition

- Provide more numerically stable way to invert matrices.
 - ► Compared to algorithm presented in previous lecture.
- On the other hand, some matrices are still very difficult to invert.
 - ▶ Theoretically invertible but are close to singular.
- QR decomposition doesn't guarantee high-quality inverse.
 - ► Rotten apple dipped in honey is still rotten…!

Summary

Summary

Orthogonal matrix

- All columns are pair-wise orthogonal and norm equals to 1.
- Key to several matrix decompositions.
 - QR, eigen, singular value decomposition.
- Important in geometry and computer graphics.
 - E.g. pure rotation matrices.

Can transform a nonorthogonal matrix into an orthogonal matrix.

- Via Gram-Schmidt procedure.
- Involves applying orthogonal vector decomposition.
 - To isolate the component of each column.
 - Each column is orthogonal to all previous columns, previous meaning left to right.

QR decomposition is the result of Gram-Schmidt.

- ► Technically, it is implemented by more stable algorithm.
- ▶ But GS is still the right way to understand it.

Code exercises

Characteristic of matrix Q

A square Q has the following equalities:

$$Q^TQ = QQ^T = Q^{-1}Q = QQ^{-1} = I$$

- Demonstrate this in code by computing Q from a random-numbers matrix, then compute Q^T and Q^{-1} . Then show that all four expressions produce the identity matrix.
- https://kr.mathworks.com/help/matlab/ref/qr.html

```
% Clear workspace, command window, and
                                             % QtQ
close all figures
                                             disp("QtQ")
clc; clear; close all;
                                             disp(round(, 8));
% Generate a 5x5 random matrix and compute % QQt
the QR decomposition
                                             disp("QQt")
random_matrix = randn(5, 5);
                                             disp(round(, 8));
%%%%%%% TODO %%%%%%%%
                                             % QiQ
% Generate Q matrix
                                             disp("QiQ")
                                             disp(round(, 8));
[Q, R] = ;
% Get Transpose of Q & Inverse of Q
                                             % QQi
Qt = ; % Transpose of Q
                                             disp("QQi")
Qi = ; % Inverse of Q
                                             disp(round(, 8));
                                             %%%%%%% TODO %%%%%%%%
```

Sample code

Full, Economy Sized matrix Q and Its Inverse

- This exercise will highlight one feature of the R matrix that is relevant for under-standing how to use QR to implement least squares (lecture 12): when A is tall and full column-rank, the first N rows of R are upper-triangular, whereas rows N+1 through M are zeros. Confirm this in MATLAB using a random 10×4 matrix. Make sure to use the complete (full) QR decomposition, not the economy (compact) decomposition.
- Of course, *R* is noninvertible because it is nonsquare. But (1) the submatrix comprising the first *N* row is square and full-rank (when *A* us full column-rank) and thus has a full inverse, and (2) the tall *R* has a pseudoinverse. Compute both inverses, and confirm that the full inverse of the first *N* rows of *R* equals the first *N* columns of the pseudoinverse of the tall *R*.

```
% Create a random 10x4 matrix
                                                                  % Invertible submatrix (first 4x4 part of R)
A = randn(10, 4);
                                                                  Rsub = ;
% Compute the complete QR decomposition
% economy sized R
                                                                  % Inverses
[\sim, R] = ;
                                                                  % calculate full inverse of Rsub
% full sized R
                                                                  Rsub inv =;
                                                                  % calculate left inverse of R
[~, fullR] = ;
                                                                  Rleftinv = ;
% Examine R (rounded to 3 decimal places)
disp('R:');
disp(round(R, 3));
                                                                  % Display both inverses
disp('fullR:');
                                                                  disp('Full inverse of R submatrix:');
disp(round(fullR, 3));
                                                                  disp(round(Rsub_inv, 3));
                                                                  disp('Left inverse of R:');
                                                                  disp(round(Rleftinv, 3));
                                                           Sample code
```


THANK YOU FOR YOUR ATTENTION

