Genel Üniversite Kimyası: kimyasal Bağlar, Periyodik tablo (giriş), Molekül ve Bileşikler

konu özeti

Doç. Dr. Yasemin G. İŞGÖR Ankara Üniversitesi

Periyodik Tablo

- Elementlerin anlamlı bir şekilde sıralanması ve organize edilmesi amaçlı oluşturulmuştur.
- Tabloda peryodik özelliklere göre düzenlenme vardır. Kolonlar Grup, Satırlara periyot adı verilir.
- Kolonlar için farklı numaralandırmaya dayalı adlandırmalar mevcuttur.
 - ➤ 1 18, veya 1A 8A ve 1B -8B gibi adlandırmalara rastlanabilir.
- Tabloda (çizelge de denebilir) bazı gruplara özel adlar verilmiştir:
 - Grup 1A: alkali metaller ve Grup 7A: halojenler gibi.
- Metal elementler tablonun sol tarafında yer alır ve çoğu element metal özelliktedir..
- Ametal elementler Tabloda sağ üst bölgede yer alır
 - hem metal hem ametal özellik gösteren elementler de mevcuttur. Bunlara metaloidler denir ve tabloda metal ile ametaller arasında dağılım göstermişlerdir. Örneğin B, Si, Ge, As, Sb and Te.
 - Metaller dövülebilir (maleabilite, dövülgen), şekil alabilen, parlak özelliktedir. Termal ve elektrik iletkenlikleri çok iyidir.
 - Ametaller ise bu özellikleri göstermez, katı halde kırılgan, mat görünümlüdürler. Isı (termal) ve elektrik iletkenlikleri iyi değildir.

Periyodik Tablo

IIA (veya 2) → Toprak alkali metaller (Be, Mg, Ca, Sr, Ba, Ra)

VIIA (veya 17) → Halojenler (F, Cl, Br, I, At)

VIIIA (veya 18) → Soy gazlar (He, Ne, Ar, Kr, Xe, Rn)

1A																	_8A
' н																	He
1.00794	٠,											24	4.6			74	4.002602
Hydrogen	2A	ı										3A	4A	5A	6A	7A	Helium
3	¹ n-											5 -	6	⁷ N	l* _	9 _	10
Li	Be											В	C	N	0	F	Ne
6.941 Lithium	9.012182 Beryllium											10.811 Boron	12.0107 Carbon	14.0067 Nitrogen	15.9994 Oxygen	18.9984032 Fluorine	20.1797 Neon
11	12												14	15	16	17	18
[∵] Na	Mg											Ĩ AI	Si	P	ຶຣ	ÜCI	
22.989769	24,3050											26,9815386	28.0855	30.973762	32.065	35,453	Ar 39.948
	Magnesium	3B	4B	5B	6B	7B		— 8B —		1B	2B	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	l v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,0983	40.078	44.955912	47,867	50.9415	51,9961	54,938045	55.845	58.933195	58,6934	63,546	65,38	69.723	72.63	74.92160	78.96	79.904	83.798
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	l In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.90585	91.224	92.90638	95.96	[98]	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.293
Rubidium	Strontlum	Yttrium	Zirconium	Niobium		Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmlum	Indium	Tin	Antimony	Tellurium	lodine	Xenon
55_	56_	57	72	73	74	75	76	77	78	79_	80		82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	lr 📗	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9054519	137.327	138,90547	178.49	180.94788	183.84	186.207	190.23	192.217	195.084	196.966569	200.59	204.3833	207.2	208.98040	[209]	[210]	[222]
Cesium	Barlum	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
1	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116		118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo
[223]	[226] Radium	[227] Actinium	[267] Rutherfordium	[268] Dubnium	[271] Contombro	[272]	[270] Hassium	[276] Meitnerium	[281]	[280]	[285]	[284] Ununtrium	[289]	[288]	[293]	[294]	[294]
Francium	Radium	Accentum	rumenora um	Dubnium	Seaborgium	Bohrium	riassium	weithenum	Darmstadtium	Roentgenium	Copernicium	Unununum	Ununquadium	Ununpendum	Ununhexium	Ununseptium	Ununoctium

	58	59	60	61	62	63	64	65	66	67	68	69	70	71	ı
Lanthanides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	ı
	140.116	140.90765	144.242	[145]	150.36	151.964	157.25	158.92535	162,500	164.93032	167_259	168.93421	173.054	174.9668	ı
	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	l
	90	91	92	93	94	95	96	97	98	99	100	101	102	103	ı
Actinides	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	l
	232.03806	231.03588	238.02891	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]	ı
	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mondelevium	Nobelium	Lawrencium	l

Molekül ve molekül Bileşikler

- Molekül, iki veya daha çok atomun bir araya gelmesiyle oluşur.
- Her molekülün kimyasal bir formülü vardır
- Kimyasal formül: molekülde hangi atomların bulunduğunu ve hangi oranda bulundukları hakkında bilgi verir.
- Bir molekül sadece iki atomdan (aynı atomlar) oluşmuşsa diatomik molekül adını alır.
- Moleküllerden oluşan bileşiklere molekül bileşikleri adı verilir.
- Bu bileşikler en az iki farklı atom içerirler. Molekül bileşiklerin çoğunluğu sadece ametallerden oluşur.

Moleküler (bileşik) formül ve Basit Formül

- Moleküler (Bileşik) Formülü: Moleküllere ait formüller ya da bileşik formülleri bir molekül yapısında yer alan atomların türü ve sayısı hakkında bilgi verir.
 - → H₂O, CO₂, CO, CH₄, H₂O₂, O₂, C₂H₄.
- Basit Formüller bir bileşikteki tüm atomların türü ve birbirine oranı hakkında bilgi verir.
 Yani bir referans atoma göre en küçük tam sayıyı verecek şekilde bileşikteki atomların oranı hakkında bilgi verir.
 - \rightarrow HO \rightarrow H₂O₂ bileşiğinin, ve CH₂ \rightarrow C₂H₄ bileşiğinin basit formülüdür.

Diğer taraftan basit ve bileşik formülleri aynı olabilir: H₂O, CO₂, CO, CH₄, O₂ gibi.

Formül ve Molekül Ağırlığının Hesaplanması

magnesyum karbonat ($MgCO_3$) Bileşiğinin formül ağırlığını gram olarak hesaplayınız

$$\mathop{Mg}_{24.3050}^{12}$$

$$24.31 g + 12.01 g + 3(16.00 g) = 84.32 g$$

- 1 mol molekülde ağırlık 84.32 g/mol olarak hesaplanır.
- 1 tane molekülde ise 84,32 akb dir.

Basit ve Bileşik formülü arasındaki bağıntı

Basit formül için formül ağırlığı (FA)

Bileşik Formülü içim Molekül Ağırlığı (MA) Hesaplanır

Molekül ağırlığı bilinen bileşiğin basit formülü biliniyorsa molekülün bileşik formülü hesaplanabilir:

$$(FA)x(n)=(MA)$$

Ör: HO basit formülü, MA=34 g/mol ise bileşik formülünü bulunuz. (H:1 ve O:16g/mol)

 $FA(HO)=16+1=17 \text{ g/mol} \rightarrow (17\text{g/mol})x(n)=(34\text{g/mol}) \rightarrow n=2$

- → (HO)n (basit formülü)
- \rightarrow (HO)₂ \rightarrow H₂O₂ (bileşik formülü)

Diatomik Moleküller: Doğada 7 element iki atomlu moleküller halinde bulunur

Yapısal Formüller

Yapısal Formül

Perspektif çizim (Fischer projeksiyonu)

Top-Çubuk Modeli

Uzay-Dolgu Modeli

- Atomların elektron kazanması ve kaybetmesiyle oluşan yüklü yapılara İYON denir.
- Gene olarak metal atomları elektron kaybetmeye ve ametal atomları elektron kazanmaya meyillidirler. Bu yüzden:
 - Katyonlar pozitif yüklü iyonlardır ve periyodik tablonun sol tarafında yer alan elementlerden oluşurlar.
 - Anyonlar negatif yüklü iyonlardır ve periyodik tablonun sağ tarafında yer alan elementlerden oluşurlar.
 - Eğer moleküllerden ayrılan iyonlar olursa ve geri kalan yapı kararlı yapıysa (kolayca iyonlaşmıyorsa) bu yapılara çok atomlu iyonlar veya poliatomik iyonlar denir. (ör: SO₄²⁻, NO₃⁻).

Kimyasal Bağlar

İki atom bir molekül oluşturmak üzere yan yana geldiklerinde elektronlar her iki atomun çekirdek ve elektronlarının etkisi girerler. Karşılıklı altına etkileşimler sonunda atomlar yeni bir düzenlenme ile kararlı bir yapıya ulaşırlar

Kimyasal bağlar

- İyonik (elektrovalent) bağlar
- Kovalent bağlar
- Ko-ordinat (dative kovalent) bağlar

Bağ olmayan Etkileşimler

- Hidrojen bağları
- Metalik bağlar
- Van der Waals kuvvetleri

İyonik (elektrovalent) bağlar

• Atomlar, elektron kazanarak ya da kaybederek *iyon* adı verilen yüklü parçacıkları oluştururlar. Zıt yüklü iyonlar arasındaki çekim kuvveti sonucu olarak da **iyonik bağlar** oluşur.

Kovalent bağlar

 İki atom arasında ortaklaşa kullanılan elektron çiftinden oluşan bağlardır

Kovalent bağların Polarlığı

Nonpolar (apolar) kovalent bağ

 Elektronun (Negatif yüklü) bağa katılan iki atom tarafından eşit kuvvette çekildiği kovalent bağa denir

Polar kovalent bağ

 Elektronun (Negatif yüklü) bağa katılan iki atomdan birine daha yakın bulunduğu kovalent bağa denir

Koordinat kovalent bağlar

 Ortaklaşa kullanılan her iki elektronun aynı atom tarafından sağlandığı kovalent bağlardır.

Kimyasal Bağ olmayan Etkileşimler

Hidrojen bağları

- Bir hidrojen (H) atomunun oksijen (O) ve azot (N) gibi elektronegatif atoma kovalent bağlanması bağdaki elektronların azot atomlarına oksijen ve hidrojenden daha yakın bulunmaları sonucunda hidrojenin bir (elektropozitif) başka elektronegatif tarafından atom çekilmesi sonucu meydana gelir
- Kimyasal bağ değildir ancak bir etkileşim olarak kimyasal bağ kadar güçlüdür.

Kimyasal Bağ olmayan Etkileşimler

Metalik bağlar

Kimyasal Bağ olmayan Etkileşimler

Van der Waals kuvvetleri

Elektriksel çekim kuvvetlerinin etkisi ile birbirlerine yaklaşan iki atom arasında, atomlar birbirlerine göre en kararlı oldukları uzaklıkta oluşur

