Amendments to the Claims

1. (currently amended) A compound of Formula I:

$$R^2$$
 R^1
Formula I

wherein

X represents S;

R¹ represents hydrogen, F, Cl, Br, I, CHO, -CN, -S(phenyl), CF₃, -(1-4C)alkyl,

-(1-4C)alkoxy, -S(1-4C)alkyl, -SO(1-4C)alkyl, -SO₂(1-4C)alkyl, -C(=O)(1-3C)alkyl, NH₂,

-NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -NH(4-7C)cycloalkyl, or

 $-N[(1-4C)alkyl](CH_2)_rN[(1-4C)alkyl]_2;$

R² represents—CO₂H;

R⁴ represents hydrogen, OH, -CH₂OH, -CH₂OH, -CH₂OH, -CH₂O(1-4C)alkyl, F, Cl, CF₃, OCF₃,

-CN, NO₂, NH₂, -CH₂NH₂, -(1-4C)alkyl, -(1-4C)alkoxy, -C(=O)NH(1-4C)alkyl,

-C(=O)NH₂, -CH₂C(=O)NH₂, -NHC(=O)(1-4C)alkyl, -(CH₂)_mNHSO₂R¹⁰, -(CH₂)_nCN,

-(CH₂)_mCO₂H, -C(=NOH)CH₃, -(CH₂)_mCO₂(1-6C)alkyl, -C(=O)H, -C(=O)(1-4C)alkyl,

 $-NH(1-4C)alkyl, -N[(1-4C)alkyl]_2, -SR^{10}, -SOR^{10}, -SO_2R^{10}, SH, -CH_2SO_2NH_2, \\$

-CH₂NHC(=O)CH₃,

$$N = N$$
 or $N = N$

 R^5 represents hydrogen, F, Cl, -CN, NO₂, NH₂, -(CH₂)_mNHSO₂ R^{10} , -(1-4C)alkyl, or -(1-4C)alkoxy;

 R^6 represents hydrogen, -(1-4C)alkyl, -SO₂R¹¹, or -C(=O)(1-4C)alkyl;

R⁷ represents hydrogen or -(1-4C)alkyl;

 R^8 represents hydrogen, F, Cl, Br, -(1-4C)alkyl, -(1-4C)alkoxy, NO₂, NH₂, -CN,

-NHSO₂ R^{11} , or -C(=O)(1-4C)alkyl;

R^{8a} represents hydrogen, F, Cl, Br, -(1-4C)alkyl, NO₂, NH₂, NH(1-6C)alkyl,

 $N[(1-6C)alkyl]_2, -C(=O)NH_2, -CN, -CO_2H, -S(1-4C)alkyl, -NHCO_2(1-4C)alkyl, -NHCO_$

 $-C(=\!O)NHCH_2CH_2CN, \ or \ -C(=\!O)(1\text{-}4C)alkyl; \\$

 R^{10} , R^{11} , and R^{12} each independently represent -(1-4C)alkyl, $-(CH_2)_3Cl$, CF_3 , NH_2 , NH(1-4C)alkyl, N[(1-4C)alkyl)]₂, thienyl, phenyl, $-CH_2$ phenyl, or $-(CH_2)_2$ phenyl, wherein phenyl, as used in substituent R^{10} , R^{11} or R^{12} , is unsubstituted or substituted with F, Cl, Br, CF_3 , -(1-4C)alkyl, -(1-4)alkoxy, or acetyl;

R¹³ represents hydrogen, -(1-4C)alkyl, -CH₂CF₃, triazole, or tetrazole;

R¹⁴ represents -(1-4C)alkyl;

R¹⁵ represents hydrogen or -(1-4C)alkyl;

R¹⁹ represents (1-4C)alkyl or CF₃;

m represents 0, 1, 2, or 3;

n represents 1, 2, 3, or 4;

p represents 1 or 2;

r represents 1 or 2; and

A is selected from the group consisting of $-(CH_2)_2NHSO_2R^{12}$, $-CH(CH_3)(CH_2)NHSO_2R^{12}$, $-(CH_2)CH(CH_3)NHSO_2R^{12}$,

$$R^{5}$$
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{6}
 R^{8a}
 R^{8a}

and the pharmaceutically acceptable salts thereof, provided that when R^4 is S(1-4C)alkyl, A is not CF_3 , (1-6C)alkyl, or (1-4C)alkoxy.

- 2. (Canceled).
- 3. (Canceled).
- 4. (Canceled).
- 5. (Canceled).
- 6. (Canceled).
- 7. (currently amended) A compound according to claim 1 wherein A is

- 8. (Canceled).
- 9. (Original). A compound according to claim 1 wherein R¹ represents hydrogen, -SCH₃, CF₃, methyl, or ethyl.
 - 10. (Canceled).
- 11. (previously presented) A compound according to claim 7 wherein R⁵ represents hydrogen, F, Cl, or –(1-4C)alkyl.
 - 12. 14. (Canceled).
- 15. (previously presented) A compound according to claim 11 wherein R⁴ represents hydrogen, -CN, ethoxy, or -SCH₃.
 - 16. 42. (Canceled).