NALAIYA THIRAN - IBM PROJECT REPORT

(19EC406T - Professional Readiness for Innovation, Employability and Entrepreneurship)

ON

WEB PHISHING DETECTION

Submitted by

TEAM ID: PNT2022TMID23445

DURGA DEVI M (113219041026)

SINDHU J (113219041009)

SUBHIKSHA P (113219041117)

SURTHIKA G (113219041119)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

VELAMMAL ENGINEERING COLLEGE, CHENNAI-66.

(An Autonomous Institution, Affiliated to Anna University, Chennai) 2022-2023

VELAMMAL ENGINEERING COLLEGE CHENNAI -66

(An Autonomous Institution, Affiliated to Anna University, Chennai)

BONAFIDE CERTIFICATE

Certified that this NALAIYA THIRAN – IBM PROJECT REPORT "WEB PHISHING DETECTION" is the Bonafide work of "DURGA DEVI M (113219041026), SINDHU J (11321901009), SUBHIKSHA P (113219041117), and SURTHIKA G (113219041119)" carried out in "PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTREPRENEURSHIP (NALAIYA THIRAN-IBM PROJECT)" during the Academic Year 2022-2023.

FACULTY EVALUATOR

HEAD OF THE DEPARTMENT

Mrs. DOLLY IRENE

Dr. S. MARY JOANS

ASSISTANT PROFESSOR I

PROFESSOR & HEAD

Department of Electronics and

Department of Electronics and

Communication Engineering

Communication Engineering

Velammal Engineering College

Velammal Engineering College

Chennai-600 066

Chennai-600 066

TABLE OF CONTENT

S.NO		TITLE	PAGE NO.
1		INTRODUCTION	1
	1.1	Project overview	1
	1.2	Purpose	2
2		LITERATURE SURVEY	3
	2.1	Existing problems	3
	2.3	Problem statement and definition	3
3		IDEATION & PROPOSED SOLUTION	5
	3.1	Empathy Map Canvas	5
	3.2	Ideation & Brainstorming	6
	3.3	Proposed Solution	6
	3.4	Problem Solution fit	7
4		REQUIREMENT ANALYSIS	8
	4.1	Functional requirement	8
	4.2	Non-Functional requirements	9
5		PROJECT DESIGN	11
	5.1	Data Flow Diagrams	11
	5.2	Solution & Technical Architecture	12
	5.3	User Stories	13
6		PROJECT PLANNING & SCHEDULING	15
	6.1	Sprint Planning & Estimation	15
	6.2	Sprint Delivery Schedule	16
7	6.3	Reports from JIRA CODING & SOLUTIONING	17 20
1		(Explain the features added in the project along with code)	40
	7.1	Feature 1	20
	7.2	Feature 2	21

	TESTING	23
8.1	Test Cases	23
8.2	User Acceptance Testing	24
	RESULTS	25
9.1	Performance Metrics	25
	ADVANTAGES & DISADVANTAGES	26
	CONCLUSION	27
	FUTURE SCOPE	28
	REFERENCE	30
	APPENDIX	31
	SOURCE CODE	31
	GITHUB & PROJECT DEMO LINK	46
	8.2	 8.1 Test Cases 8.2 User Acceptance Testing

CHAPTER 1 INTRODUCTION

1.1 PROJECT OVERVIEW:

There are a number of users who purchase products online and make payments through e-banking. There are e-banking websites that ask users to provide sensitive data such as username, password & credit card details, etc., often for malicious reasons. This type of e-banking website is known as a phishing website. Web service is one of the key communications software services for the Internet. Web phishing is one of many security threats to web services on the Internet.

Common threats of web phishing:

- Web phishing aims to steal private information, such as usernames, passwords, and credit card details, by way of impersonating a legitimate entity.
- It will lead to information disclosure and property damage.
- Large organizations may get trapped in different kinds of scams.
- This Guided Project mainly focuses on applying a machine-learning algorithm to detect Phishing websites.

In order to detect and predict e-banking phishing websites, we proposed an intelligent, flexible and effective system that is based on using classification algorithms. We implemented classification algorithms and techniques to extract the phishing datasets criteria to classify their legitimacy. The e-banking phishing website can be detected based on some important characteristics like URL and domain identity, and security and encryption criteria in the final phishing detection rate. Once a user makes a transaction online when he makes payment through an e-banking website our system will use a data mining algorithm to detect whether the e-banking website is a phishing website or not.

1.2 PURPOSE:

The purpose of this project is to design an intelligent system for detecting phishing websites. Phishing is one of the social attack which aims in stealing sensitive information of the users such as login credentials, credit card numbers etc. Here we have collected phishing dataset from phish Tanks as well as from phishing sites and are compared with the algorithms which classifies the phishing dataset into phishing or legitimate. We propose a web application for detection. The algorithm used is random forest in order to get better performance and accuracy. This system uses a database in order to store phishing websites which are already tested and can be used as blacklist, which makes the classification even faster, as it reduces repetition.

CHAPTER 2 LITERATURE SURVEY

2.1 EXISTING PROBLEM:

There are many users who purchase products through online platform and the payment is done through e-banking. There are some fake banking websites in which they collect the more sensitive information like username, password, credit card details etc , for illegal purpose. This type of websites are called phishing website. Here web phishing is one of the security threat to webservices on the internet. we people are highly dependent on the internet. For performing online shopping and online activities like banking, mobile recharge and more activities are done only through internet. Here phishing is nothing but a type of website threat which illegally collects the original website information such as login id, password and credit card information.

2.2 PROBLEM STATEMENT DEFINITION:

An online user needed to purchase something through an online. So he entered into the online website through internet. It takes some time to display the product. He started to see all the products. He search the necessary things in online website. At last he found the needed products. After that he entered all the credit card details, username and password for purchasing the things through online. Then he received the message "Your order is placed and transaction is successfully completed. You will receive the ordered product within 2 days". After that within 24 hours he got a message in mobile and the bank account was empty then the customer shocked. Then only he realized that was a fake website and his bank account details was stolen by hacker.

Web phishing aims to steal private information, such as usernames, passwords, and credit card details, by way of impersonating a legitimate entity. It will lead to information disclosure and property damage. This paper mainly focuses on applying a deep learning framework to detect phishing websites.

PROBLEMS:

Malicious links will lead to a website that often steals login credentials or financial information like credit card numbers. Attachments from phishing emails can contain malware that once opened can leave the door open to the attacker to perform malicious behavior from the user's computer.

Phishing attack examples

A spoofed email ostensibly from myuniversity.edu is massdistributed to as many faculty members as possible.

The email claims that the user's password is about to expire. Instructions are given to go to myuniversity.edu/renewal to renew their password within 24 hours.

Email phishing scams:

Email phishing is a numbers game. An attacker sending out thousands of fraudulent messages can net significant information and sums of money, even if only a small percentage of recipients fall for the scam. As seen above, there are some techniques attackers use to increase their success rates. For one, they will go to great lengths in designing phishing messages to mimic actual emails from a spoofed organization. Using the same phrasing, typefaces, logos, and signatures makes the messages appear legitimate. In addition, attackers will usually try to push users into action by creating a sense of urgency. For example, as previously shown, an email could threaten account expiration and place the recipient on a timer. Applying such pressure causes the user to be less diligent and more prone to error. Lastly, links inside messages resemble their legitimate counterparts, but typically have a misspelled domain name or extra subdomains. In the above example, the myuniversity.edu/renewal URL was changed to myuniversity.edurenewal.com. To overcome this we came with the solution of web phishing detection.

CHAPTER 3 IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS:

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes. It is a useful tool to helps teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

3.2 IDEATION & BRAINSTROMING:

3.3 PROPOSED SOLUTION:

To overcome the problem of phishing website whenever we are clicking on one website it must show an alert box like it is a secure website or it is not a secure website Then another way is that we can scan the website in order to prevent our system or mobile from the phishing attack. Even though technologies are there we as the user have to be aware of the websites whether it is secure or not. We should not click any unwanted websites. The proposed approach has divided the hyperlink specific features into 12 different categories and used these features to train the machine learning algorithms. We have evaluated the performance of our proposed phishing detection approach on various classification algorithms using the phishing and non-phishing websites dataset. As we are using some websites but while clicking that website it display an alert box which leads to an aware of the customer which results in satisfaction of the user while using the websites, And another way is that we can scan the website in order to prevent the hacking of the information which makes even more satisfaction to the customer.

3.4 PROBLEM SOLUTION FIT:

CHAPTER 4 REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS:

FR No.	Functional	Sub Requirement
	Requirement(Epic)	(Story/sub-Task)
FR-1	User Input	User inputs an URL in
	Osci input	required field to check
		its validation.
FR-2	Website Comparison	Model compares
T.K-2	Website Comparison	the websites using
		Blacklist and
		Whitelist approach
ED 2	Footsum Extraortion	After comparing, if
FR-3	Feature Extraction	none found on
		comparison then it
		extracts feature using
		heuristic and visual
		similarity approach.
ED 4	D., 1'-4'	Model predicts the
FR-4	Prediction	URL using Machine
		Learning algorithms
		such as Logistic
		Regression.
ED 5	Classifier	Model sends all output to
FR-5	Classifier	classifier and produces
		final result.
		Model then displays

FR-6	Announcement	whether website is a legal site or a phishing site.
FR-7	Events	This model needs the capability of retrieving and displaying accurate result for a website

4.2 NON-FUNCTIONAL REQUIREMENTS:

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	User can have full access to the particular websites they using must proceed some certain user friendly websites so that it does not affect the datas.
NFR-2	Security	To check whether the particular website is secure or not we can notify it by displaying an alert box while using the websites.
		It must be a reliable

NFR-3	Reliability	source to the users
		while they using the
		websites.
NFR-4	Performance	The performance must
		be good while using
		the websites which the
		users proceeds the
		website.
NFR-5	Availability	The website
		availability must be
		valid for the users to
		access the resources.
NFR-6	Scalability	It must be able to
		handle an increase in
		users and loads
		without disrupting the
		end users.

CHAPTER 5 PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS:

5.2 SOLUTION & TECHNICAL ARCHITECTURE:

SOLUTION ARCHITECTURE:

TECHNICAL ARCHITECTURE:

5.3 USER STORIES:

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
	Dashboard					
Customer (Web user)	User input	USN-1	As a user I can input the particular URL in the required	I can go access the website without any	High	Sprint-1

			field and waiting for validation.	problem		
Customer Care Executive	Feature extraction	USN-1	After I compare in case if none found on comparison then we can extract feature using heuristic and visual similarity approach.	As a User I can have comparison between websites for security.	High	Sprint-1
Administrator	Prediction	USN-1	Here the Model will predict the URL websites using Machine Learning algorithms such as Logistic Regression.	In this I can have correct prediction on the particular algorithms	High	Sprint-1
	Classifier	USN-2	Here I will send all the model output to classifier in order to produce final result.	In this I will find the correct classifier for producing the result	Medium	Sprint-2

CHAPTER 6 PROJECT PLANNING & SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	User input	USN-1	User inputs an URL in the required field to check its validation.	1	Medium	Sagaya Punitha J
Sprint-1	Website Comparison	USN-2	Model compares the websites using Blacklist and Whitelist approach.	1	High	Madhumitha T
Sprint-2	Feature Extraction	USN-3	After comparison, if none found on comparison then it extract feature using heuristic and visual similarity.	2	High	Thaarani P
Sprint-2	Prediction	USN-4	Model predicts the URL using Machine learning algorithms such as logistic Regression.	1	Medium	Ramalingam K

Sprint-3	Classifier	USN-5	Model sends all the output to the classifier and produces the final result.	1	Medium	Sagaya Punitha J
Sprint-4	Announceme nt	USN-6	Model then displays whether the website is legal site or a phishing site.	1	High	Madhumitha T
Sprint-4	Events	USN-7	This model needsthe capability of retrieving and displaying accurate result for a website.	1	High	Thaarani P

6.2 SPRINT DELIVERY SCHEDULE:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 REPORTS FROM JIRA:

1.BACKLOG:(BACKLOG-1 & BACKLOG-2)

2.SPRINT PROGRESS(FINAL PROGRESS & INSIGHTS):

3.SPRINT BURNDOWN:

4.SPRINT 1 &2:

	NOV
Sprints	WPD S WPD S WPD Sp
> WPD-8 User input	
> WPD-9 Website Comparison	
> WPD-10 Feature Extraction	A
> WPD-11 Prediction	
> WPD-12 Classifier	
> WPD-13 Announcement	
> WPD-14 Events	

5.SPRINT 4&5:

CHAPTER 7 CODING & SOLUTIONING

7.1 FEATURE 1:

As a user before using any website they bringing that website into our project URL and typing it . As the user types, it results whether it is a safe website or unsafe website in that porject URL so that before they entering into that website and giving thier personal information they may get aware of usage of that particular website to prevent the fake websites to be used by the user .By entering the website it predicts the safe or unsafe website.

7.2 FEATURE 2:

Here the user enters the URL in our project workspace, it predicts the safe or unsafe website in which the user will get alert of entering into that website as it alerts with a wordings namely **"it is safe website,and it is secure! or it is an unsafe website be cautious!".**By displaying the message user will surely be alert of using the website.

CHAPTER-8 TESTING

8.1 TEST CASES:

Test case ID	Feature Type	Compon	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Statu	Comments	TC for Automation(Y/N	BUG	Executed By
LoginPage_TC_ OOI	Functional	Home Page	Verify user is able to see the home page, when user enter the link in URL	Internet connection Web browser such as Google User know the link http://127.0.0.15000 Mobile ,Laptop, or System. needed	1Enter the URL in web browser and click go 2. Verify home page displayed or not	http://127.0.0.15000	Home page should display	Working as expected	Pass		Yes		manual
LoginPage_TC_ OO2	UI	Home Page	Verify the UI elements in home page	Internet connection Web browser such as Google User know the link http://doi.org/10.01.5000 Mobile_Laptop.or System_ needed	1Enter URL and click go 2. Verify home page display below UI elements: a. Home b. About c. Contact d. Get started	http://127.0.0.15000	Application should show below UI elements: a.Home b.About o.Contact d.Get started	Working as expected	pass		Yes		manual
LoginPage_TC_ OO3	Functional	Home page	Verify user is redirected to the about page, when the user click the "About" button	Internet connection Web browser such as Google User know the link http://127.0.1.5000 Mobile ,Laptop, or System needed	1Enter the URL (http://127.0.0.15000) 2.Click the About button 3.Verify About page displayed or not	http://127.0.0.15000	User should navigate to about page	Working as expected	pass		Yes		manual
LoginPage_TC_ OO4	Functional	Home page	Verify user is redirected to phishing website detection page when user click the "Get started" button in the home page.	I. Internet connection Web browser such as Google User know the link http://127.0.0.15000 Mobile ,Laptop, or Sustern_needed	LEnter the UPL (http://127.00.15000) 2.Click the "Get started" button 3.verify phishing website detection page displayed or not	click the get started button	User should navigate to phishing website detection page	Working as expected	Pass		Yes		manual

Test case ID	Feature Type	Compon		Maximum Marks Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Statu	Comments	TC for Automation(Y/N	BUG	Executed By
LoginPage_TC_ OO5	Functional	About page	Verify user is redirected to phishing website detection page when user click the "check your website" button in the about page.	1. Internet connection 2. Web browser such as Google 3. User know the link http://127.0.0.15000 4.Mobile ,Laptop, or System needed	1.Enter the URL (http://127.00.15000) 2.Click the About button 3.Click the "Check your website" button in the About page 4. Verify phishing website	click the "check your website" button	user should navigate to phishing website detection page	Working as expected	Pass	Here user click the "check your website" button in about page	Yes		manual
LoginPage_TC_ OO6	Functional	Phishing website detection page	Verify it shows whether the URL entered by the user is safe or unsafe.	https://portal.naanmudhal van.tn.gov.inflogin	LEnter the UPL (http://127.00.15000) 2.Click the About button 3.Click the "Check gour website" button in the About page 4.enter the UPL in the Phishing website detection page 5.click the predict button 6.verify it shows whether the UPL entered by the user is safe		Application should display "you are safe!! This is a legitimate website"	₩orking as expected	Pass	user enter the UFIL in correct format	Yes		Automatic
LoginPage_TC_ 007	Functional	Phishing website detection page	Verify it shows whether the URL entered by the user is safe or unsafe.	https://www.seatchonlinein fo.com/	LEnter the UFL (http://l27.00.15000) 2.Click the About button 3.Click the *Check your website* button in the About page 4.enter the UFL in the Phishing website detection page 5.click the predict button 6.verifg it shows whether the UFL entered but the user its safe	https://www.searchonlin einfo.com/	Application should display "you are on the wrong sike. Be cautioust"	Working as espected	Pass	User entered the URL in correct format	Yes		Automatic

Test case ID	Feature Type	Compon	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Autual Nesult	Statu	Comments	TC for Automation(Y/N	BUG	Executed By
LoginPage_TC_ OO8	Functional	Phishing website detection page	Verify it shows whether the UPL entered by the user is safe or unsafe.	www.searchonlineinfo.co	Enter the UPL (http://27.00.15000) 2.Click the About button 3.Click the "Check your website" button in the About page 4-enter the UPL in the Phishing website detection page 5.click the predict button 6.verlight shows whether the UPL entered but but user is safe		Application should display "you are on the wrong sike. Be cautious!"	Not Working as especte	Fail	e user enter URL without http	2000		Automatic
LoginPage_TC_ OO9	Functional	Phishing website detection page	Verify it shows whether the UFIL entered by the user is safe or unsafe.	portal naanmudhalvan.tn.g ox.inflogin	IEnce the UFL (http://IZ7.00.15000) 2 Click the About button 3 Click the "Check your website" button in the About page 4 enter the UFL in the Phishing website detection page 5 click the predict button 6, verify it shows whether the UFL entered by the user is sale		are safe!! This is a legitimate website"	Not Working as especte	Fail	User enter the UFIL in correct format	Yes		Automatic

8.2 USER ACCEPTANCE TESTING:

Here we briefly explained the test coverage and open issues of the Web Phishing Detection project at the time of the release to User Acceptance Testing (UAT).

8.2.1 DEFECT ANALYSIS:

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	77

8.2.2 TEST CASE ANALYSIS:

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	51	0	0	51
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

CHAPTER 9 RESULTS

9.1 PERFORMANCE METRICS:

In this performance metrics, we have built a decision tree model classifier we predicted the accuracy of the training data and also the testing data.

```
building the Decision Tree Classifier model

In [63]: # Decision Tree model
from sklearn.tree Import DecisionTreeClassifier
# instantiate the model
tree = DecisionTreeClassifier(max_depth = 5)
# fit the model
tree.fit(x_train, y_train)

Out[63]: DecisionTreeClassifier(max_depth=5)

In [64]: #predicting the target value from the model for the samples
y_test_tree = tree.predict(x_test)
y_train_tree = tree.predict(x_train)

Performance Evaluation:

In [66]: #computing the accuracy of the model performance
acc_train_tree = accuracy_score(y_test_y_test_tree)
print("Decision Tree: accuracy on training Data: (1.3f)".format(acc_train_tree))
print("Decision Tree: Accuracy on training Data: (1.3f)".format(acc_test_tree))

Decision Tree: Accuracy on training Data: 0.885
Decision Tree: Accuracy on test Data: 0.885
Decision Tree: Accuracy on test Data: 0.885
```

CHAPTER 10 ADVANTAGES & DISADVANTAGES

ADVANTAGES:

- Here we can easily predict the website security of the user whlie using the particular website from the web browser.
- By using our project URL the user can easily can get aware of the secure level of the particular website.
- Sometimes the user need not get scare about giving their personal information if they predicted the particular website to be safe or unsafe if it is a safe website they can proceed further or if it's unsafe means they can be even more cautious.

DISADVANTAGES:

- As it depends on internet connectivity, we have to make sure of a proper internet connection to proceed our project URL platform.
- Here we have to enter the original website for identification.
- According to this prediction might take a longer due to the availability of the internet services.

CHAPTER 11 CONCLUSION

Our project aims to enhance detection method to detect phishing website using machine learning technology. Also, classifiers generated by machine learning algorithms identify legitimate phishing websites. The proposed technique can detect new temporary phishing sites and reduce the damage caused by phishing attacks. The performance of the proposed technique based on machine learning is more effective that previous phishing detection technologies. In the future, it will be useful to investigate the impact of feature selection using various algorithms.

CHAPTER 12 FUTURE SCOPE

In future in our project we try to inbuilt our URL with google for a safer access for the user to maintain a proper functioning of our project and also we will be using a pop up box for the alert of the user in order to make sure about the security level of the particular website in the user system or mobile so that they can get aware of the usage of the website.

In future we can develop an application for mobile phones and browser extension so it will automatically detect the legitimacy of the websites and warn the user if website is suspicious.

CHAPTER 13 REFERENCES

- [1] Higashino, M., Et Al. An Anti-phishing Training System For Security Awareness And Education Considering Prevention Of Information Leakage. In 2019 5th International Conference On Information Management (icim). 2019.
- [2] H. Bleau, Global Fraud And Cybercrime Forecast,. 2017.
- [3] Michel Lange, V., Et Al., Planning And Production Of Grammatical And Lexical Verbs In Multiword Messages. Plos One, 2017. 12(11): P. E0186685-e018668.
- [4] S. Sheng, M. Holbrook, P. Kumaraguru, L. F. Cranor, and J. Downs, "Who falls for phish?: a demographic analysis of phishing susceptibility and effectiveness of interventions," in Proceedings of the 28th international conference on Human factors in computing systems, ser. CHI '10. New York, NY, USA: ACM, 2010, pp. 373–382.
- [5] B. Krebs, "HBGary Federal hacked by Anonymous," http://krebsonsecurity.com/2011/02/hbgary-federal-hacked-by-anonymous/, 2011, accessed December 2011.
- [6] B. Schneier, "Lockheed Martin hack linked to RSA's SecurID breach," http://www.schneier.com/blog/archives/2011/05/lockheed martin.html, 2011, accessed December 2011.
- [7] C. Whittaker, B. Ryner, and M. Nazif, "Large-scale automatic classification of phishing pages," in NDSS '10, 2010.
- [8] X. Dong, J. Clark, and J. Jacob, "Modelling user-phishing interaction," in Human System Interactions, 2008 Conference on, may 2008, pp. 627 –632.

CHAPTER 14 APPENDIX

SOURCE CODES:

In the application, the user provides any website URL to check and the corresponding parameter values are generated by analysing the URL using which legitimate websites are detected.

BUILDING THE PYTHON FLASK APPLICATION:

In the flask application, the URL is taken from the HTML page and it is scraped to get the different factors or the behavior of the URL. These factors are then given to the model to know if the URL is phishing or safe and is sent back to the HTML page to notify the user.

APP.PY SOURCE CODE:

Here we have done the app.py code inorder to execute the Flask application.

INPUTSCRIPT.PY SOURCE CODE:

After executing the flask application, we have executed the inputscript.py file.

```
| File | Edit | Selection | View | Go | Run | Terminal | Help | ImputScript.py - Visual Studio Code | Go | Run | Terminal | Help | ImputScript.py - Visual Studio Code | Go | Run | Terminal | Help | ImputScript.py - Visual Studio Code | Go | Run | Terminal | Help | ImputScript.py - Visual Studio Code | Go | Run | Terminal | Help | ImputScript.py - Visual Studio Code | Go | Run | Terminal | Help | ImputScript.py - Visual Studio Code | Go | Run | Terminal | Help | ImputScript.py - Run | ImputScript.py -
```

```
| Sile | Edit | Selection | View | Go | Rum | Terminal | Help | Impulscriptpy - Visual Studio Code | Code |
```

```
#ongoing
return 0
            def rightClick(url):
              #ongoing
return 0
            def popup(url):
              #ongoing
return 0
            def iframe(url):
            def age_of_domain(url):
              age_of_domain(
try:
    w = whois.whois(url)
    start_date = w.creation_date
    current_date = datetime.datetime.now()
    age =(current_date-start_date[0]).days
    if(age>=180):
    return -1
    else:
        return 1
                return 1
except Exception as e:
                 print(e)
return 0
Tile Edit Selection View Go Run Terminal Help
                                                                         inputScript.py - Visual Studio Code
     def google_index(url):
           def main(url):
```

Build An HTML Page

We Build an HTML page to take the URL as a text and upon clicking on the button for submission it has to redirect to the URL for "y_predict" which returns if the URL given is phishing or safe. The output is to be then displayed on the page. The HTML pages are put under the templates folder and any style sheets if present is kept in the static folder.

here we first built a css file called style.css file

```
| File | Edit | Selection | View | Go | Run | Terminal | Help | style.css | View | View | File | Run | View | File |
```

style1.css

now moving on to the index.html source file

```
| Signature | Oneschemic | New York | One | New York |
```

now final.html source file

FINAL OUTPUT:

After executing the source codes we get the following outputs as follows

first we get a command prompt output with the URL over there we have to copy that particular URL and paste it in your web browser. In our project we have used google chrome web browser for the execution.

after the URL has been pasted we get the home page of our project web phishing detection

Here we have two options to predict the website one is we can click on check your website or you can click on get started to proceed your website prediction the diplay screen is as follows

PREDICTION OF SAFE WEBSITE:

Here we have used the original website as a prediction so now we have pasted that URL in our project web page and we clicked on Predict and here the result will be produced as "YOU ARE SAFE! THIS IS A LEGITIMATE WEBSITE."

PREDICTION OF UNSAFE WEBSITE:

Here we have used a fake website as a prediction so now we again pasted the fake URL in our project web page and we clicked on Predict and here the result will be produced as "YOU ARE ON THE WRONG SITE BE CAUTIONS!"

Phishing Website Detection using Machine Learning

IBM CLOUD DEPLOYMENT:

SCORING ENDPOINTS IN IBM CLOUD:

INTEGRATING FLASK WITH IBM CLOUD:

LINKS:

GITHUB LINK: IBM-EPBL/IBM-Project-22344-1659849670: Web Phishing

Detection (github.com)

VIDEO LINK: click here