# Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 18: Controllo in retroazione dallo stato (parte 1)

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022



| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

## In questa lezione

- ▶ Proprietà di sistemi lineari retroazionati dallo stato
- $\triangleright$  Controllo in retroazione dallo stato: caso m=1
- ▶ Comandi Matlab<sup>®</sup>

## Retroazione dallo stato ed equivalenza algebrica

$$\Sigma^{(K)}: x(t+1) = (F + GK)x(t) + Gv(t)$$

Come si modificano le matrici del sistema per effetto di un cambio di base T?

$$F' = T^{-1}FT$$
,  $G' = T^{-1}G$ ,  $K' = KT$ 

#### Forma di Kalman del sistema retroazionato dallo stato

$$\Sigma^{(K)}: x(t+1) = (F + GK)x(t) + Gv(t)$$

$$F_{\mathcal{K}} \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_{\mathcal{K}} \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}, \quad K_{\mathcal{K}} \triangleq KT = \begin{bmatrix} K_1 & K_2 \end{bmatrix}$$

$$T^{-1}x = egin{bmatrix} x_R(t+1) \ x_{NR}(t+1) \end{bmatrix} = egin{bmatrix} F_{11} + G_1K_1 & F_{12} + G_1K_2 \ 0 & F_{22} \end{bmatrix} egin{bmatrix} x_R(t) \ x_{NR}(t) \end{bmatrix} + egin{bmatrix} G_1 \ 0 \end{bmatrix} v(t)$$

Il sottosistema non raggiungibile non è influenzato dalla retroazione!

G. Baggio

Lez. 18: Controllo in retroazione dallo stato (pt. 1)

30 Marzo 2022

#### Controllo in retroazione per sistemi a singolo ingresso (m = 1)

$$\Sigma$$
:  $x(t+1) = Fx(t) + gu(t)$ ,  $g \in \mathbb{R}^{n \times 1}$ 

$$\Sigma^{(K)}$$
:  $x(t+1) = (F + gK)x(t) + gv(t)$ 

Quando è possibile assegnare a F + gK degli autovalori desiderati?

Teorema: Per ogni polinomio

$$p(\lambda) = \lambda^n + p_{n-1}\lambda^{n-1} + \cdots + p_1\lambda + p_0, \ p_i \in \mathbb{R},$$

esiste una matrice di retroazione  $K \in \mathbb{R}^{1 \times n}$  tale che  $\Delta_{F+gK}(\lambda) = p(\lambda)$  se e solo se il sistema  $\Sigma$  è raggiungibile.

G. Baggio

Lez. 18: Controllo in retroazione dallo stato (pt. 1)

30 Marzo 2022

### Allocazione degli autovalori (m = 1): metodo diretto

 $\Sigma$ : x(t+1) = Fx(t) + gu(t),  $g \in \mathbb{R}^{n \times 1}$ ,  $\Sigma$  raggiungibile  $\Sigma^{(K)}$ : x(t+1) = (F + gK)x(t) + gv(t)

Come fare ad assegnare a F + gK degli autovalori desiderati?

 $p(\lambda) = \lambda^n + p_{n-1}\lambda^{n-1} + \cdots + p_1\lambda + p_0$  = polinomio con autovalori desiderati

Risolvere  $\Delta_{F+gK}(\lambda)=\det(\lambda I-F-gK)=p(\lambda)$  con incognita K

Sistema di equazioni lineari con incognite  $k_1, \ldots, k_n$ ,  $K = \begin{bmatrix} k_1 & \cdots & k_n \end{bmatrix}$ !

G. Baggio

Lez. 18: Controllo in retroazione dallo stato (pt. 1)

30 Marzo 2022

## Esempio

$$x(t+1) = egin{bmatrix} 1 & 2 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{bmatrix} x(t) + egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix} u(t)$$

Retroazione  $K^*$  tale che il sistema retroazionato abbia autovalori  $\lambda_1=0,\ \nu_1=3$ ?

$$K^* = \begin{bmatrix} -\frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

G. Baggio

Lez. 18: Controllo in retroazione dallo stato (pt. 1)

30 Marzo 2022

#### Allocazione autovalori (m = 1): osservazioni

- 1. Il procedimento permette di allocare gli autovalori di F + gK a nostro piacimento! L'unico vincolo è la raggiungibilità di  $\Sigma$  e il fatto che se un autovalore è complesso deve esserci anche il suo complesso coniugato.
- **2.** Se il sistema  $\Sigma$  non è raggiungibile allora possiamo cambiare tramite retroazione solo gli autovalori di  $F_{11}$  (matrice di stato del sottosistema raggiungibile).
- **3.** Se tutti gli autovalori vengono allocati in zero  $(p(\lambda) = \lambda^n)$  tutti i modi del sistema retroazionato convergono a zero in tempo finito. Il controllore in questo caso viene detto controllore dead-beat!
- **4.** Il procedimento rimane invariato per sistemi a tempo continuo, ma in questo caso non si possono avere controllori dead-beat.

G. Baggio

Lez. 18: Controllo in retroazione dallo stato (pt. 1)

30 Marzo 2022

# Comandi Matlab® – Control System Toolbox

K = place(F,G,v)

calcola matrice di retroazione K tale che F + GK ha come autovalori gli elementi del vettore v (**N.B.** numericamente robusto ma non funziona per autovalori multipli);

K = acker(F,G,v)

calcola matrice di retroazione K tale che F + GK ha come autovalori gli elementi del vettore v (**N.B.** numericamente instabile ma funziona anche per autovalori multipli);

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

G. Baggio

Lez. 18: Controllo in retroazione dallo stato (pt. 1)

30 Marzo 2022