DEMO 1 : CONFIGURER

DYNAMIQUEMENT UNE INTERFACE RESEAU FTHERNET

LA COMMANDE IP

L'objet link et la commande show permettent d'afficher la liste des interfaces réseau connues du système, avec leurs caractéristiques de niveau liaison :

```
# ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00 brd 00:00:00:00:00:00
2: enp38s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel
state UP mode DEFAULT group default qlen 1000
    link/ether e4:11:5b:50:13:32 brd ff:ff:ff:ff:
3: wlo1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue
state DOWN mode DORMANT group default qlen 1000
    link/ether 56:d0:6d:d0:b9:ab brd ff:ff:ff:ff:ff permaddr
9c:b7:0d:bb:2b:67
```

☐ Ce système dispose de la pseudo-interface de bouclage lo, ainsi que de deux cartes d'interface réseau : enp38s0 (Ethernet) et wlo1 (Wi-Fi), toutes les deux actives (state UP).

LA COMMANDE IP ADDRESS

Afficher les informations d'adresse de toutes les cartes d'interface réseau :

```
# ip a show
1: lo: <LOOPBACK, UP, LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group
default
glen 1000
   link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
   inet 127.0.0.1/8 scope host lo
     valid lft forever preferred lft forever
   inet6 ::1/128 scope host
     valid lft forever preferred lft forever
2: enp38s0: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 qdisc fq codel state
group default glen 1000
   link/ether e4:11:5b:50:13:32 brd ff:ff:ff:ff:ff
   inet 192.168.0.4/24 brd 192.168.0.255 scope global dynamic noprefixroute
enp38s0
      valid lft 24479sec preferred lft 24479sec
   inet6 fe80::5508:86a9:e923:75b3/64 scope link noprefixroute
     valid lft forever preferred lft forever
3: wlo1: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 qdisc noqueue state UP
default qlen 1000
   link/ether 9c:b7:0d:bb:2b:67 brd ff:ff:ff:ff:ff
  inet 192.168.0.5/24 brd 192.168.0.255 scope global dynamic noprefixroute
     valid lft 24481sec preferred lft 24481sec
```

```
inet6 2a01:e35:2439:1510:be93:7dd3:8725:3060/64 scope global dynamic
noprefixroute
    valid_lft 86025sec preferred_lft 86025sec
    inet6 fe80::7f4c:37c9:66fd:4292/64 scope link noprefixroute
        valid_lft forever preferred_lft forever
4: virbr0: <NO-CARRIER, BROADCAST, MULTICAST, UP> mtu 1500 qdisc noqueue state
DOWN
group default qlen 1000
    link/ether 52:54:00:a2:5f:41 brd ff:ff:ff:ff:ff
    inet 192.168.122.1/24 brd 192.168.122.255 scope global virbr0
        valid_lft forever preferred_lft forever
5: virbr0-nic: <BROADCAST, MULTICAST> mtu 1500 qdisc fq_codel master virbr0
state
DOWN group default qlen 1000
    link/ether 52:54:00:a2:5f:41 brd ff:ff:ff:ff:ff
```

Le système semble avoir de nombreuses cartes d'interface. En réalité, il dispose d'une carte Ethernet enp38s0 (n°2) et d'une interface Wi-Fi wlo1 (n°3). Chacune gère deux adresses utiles, en IPv4 et IPv6. L'interface n°1, lo, est une pseudo-interface de bouclage interne (loopback). Enfin, les deux interfaces n°4 et 5, virbr0 et virbr0-nic ne sont utilisées que par les logiciels de virtualisation (elles sont créées par la bibliothèque libvirtd).

Pour ne visualiser que l'interface réseau enp38s0 :

```
# ip a show enp38s0
2: enp38s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state
UP
group default qlen 1000
    link/ether e4:11:5b:50:13:32 brd ff:ff:ff:ff:
    inet 192.168.1.108/24 brd 192.168.1.255 scope global dynamic
noprefixroute enp38s0
    valid_lft 40424sec preferred_lft 40424sec
    inet6 2a01:e0a:32c:9940:e611:5bff:fe50:1332/64 scope global dynamic
noprefixroute
    valid_lft 86327sec preferred_lft 86327sec
    inet6 fe80::e611:5bff:fe50:1332/64 scope link noprefixroute
    valid_lft forever preferred_lft forever
```

☐ La commande affiche les caractéristiques de la carte d'interface réseau, active (state UP), parmi lesquelles :

Son adresse MAC : e4:11:5b:50:13:32

Son adresse IPv4 CIDR: 192.168.1.108/24

Son adresse IPv6 CIDR: fe80::e611:5bff:fe50:1332/64 (adresse de lien local)

On peut utiliser le format d'affichage abrégé avec l'option -br :

```
# ip -br a show enp38s0
enp38s0
UP
192.168.1.108/24
2a01:e0a:32c:9940:e611:5bff:fe50:1332/64
```

☐ La carte est active et elle a deux adresses IP, une en version 4 et l'autre en version 6.

Définir une nouvelle adresse IPv4:

Une carte d'interface pouvant gérer plusieurs adresses, IPv4 et/ou IPv6, on veut ajouter l'adresse IPv4 10.1.0.5 à une carte d'interface réseau Ethernet, avec un masque de sous-réseau sur 16 bits (sous-réseau 1 du réseau 10).

On affiche les interfaces Ethernet disponibles et leurs adresses IPv4 :

# ip -br a show		
10	UNKNOWN	127.0.0.1/8
enp38s0 virbr0	UP	192.168.1.108/24
virbr0	DOWN	192.168.122.1/24

On ajoute l'adresse souhaitée à la carte Ethernet :

```
# ip a add 10.1.0.5/16 dev enp38s0
```

On vérifie :

```
# ip -br -4 a show dev enp38s0
enp38s0 UP 192.168.1.108/24 10.1.0.5/16
```

☐ La carte gère désormais deux adresses IPv4.

On teste une communication vers une adresse existante sur le sous-réseau 10.1 :

```
# ping 10.1.0.39
PING 10.1.0.39 (10.1.0.39) 56(84) bytes of data.
64 bytes from 10.1.0.39: icmp_seq=1 ttl=64 time=0.401 ms
64 bytes from 10.1.0.39: icmp_seq=2 ttl=64 time=0.192 ms
64 bytes from 10.1.0.39: icmp_seq=3 ttl=64 time=0.228 ms
64 bytes from 10.1.0.39: icmp_seq=4 ttl=64 time=0.220 ms
^c
--- 10.1.0.39 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 72ms
rtt min/avg/max/mdev = 0.192/0.260/0.401/0.083 ms
```

Le test effect

ué, on décide de supprimer cette adresse :

```
# ip a del 10.1.0.5/16 dev enp38s0
```

On vérifie :

ip -br -4 a show dev enp38s0)
enp38s0 UP	192.168.1.108/24