CHAPTER 2 - SEQUENCES

Definition of a Sequence

A sequence is a set of numbers u_1, u_2, u_3, \ldots in a definite order of arrangement (i.e., a *correspondence* with the natural numbers or a subset thereof) and formed according to a definite rule. Each number in the sequence is called a *term*; u_n is called the *n*th *term*. The sequence is called *finite* or *infinite* according as there are or are not a finite number of terms. The sequence u_1, u_2, u_3, \ldots is is also designated briefly by $\{u_n\}$.

Limit of a Sequence

A number l is called the *limit* of an infinite sequence u_1, u_2, u_3, \ldots if for any positive number ϵ we can find a positive number N depending on ϵ such that $|u_n - l| < \epsilon$ for all integers n > N. In such case we write $\lim_{n \to \infty} u_n = l$.

EXAMPLE. If
$$u_n = 3 + 1/n = (3n + 1)/n$$
, the sequence is 4, 7/2, 10/3, ... and we can show that $\lim_{n \to \infty} u_n = 3$.

If the limit of a sequence exists, the sequence is called *convergent*; otherwise, it is called *divergent*. A sequence can converge to only one limit; i.e., if a limit exists, it is unique. See Problem 2.8.

A more intuitive but unrigorous way of expressing this concept of limit is to say that a sequence u_1 , u_2 , u_3 , ... has a limit l if the successive terms get "closer and closer" to l. This is often used to provide a "guess" as to the value of the limit, after which the definition is applied to see if the guess is really correct.

Theorems on Limits of Sequences

If
$$\lim_{n\to\infty} a_n = A$$
 and $\lim_{n\to\infty} b_n = B$, then

1.
$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = A + B$$

2.
$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n = A - B$$

3.
$$\lim_{n \to \infty} (a_n \cdot b_n) = (\lim_{n \to \infty} a_n)(\lim_{n \to \infty} b_n) = AB$$

4.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{A}{B} \qquad \text{if } \lim_{n \to \infty} b_n = B \neq 0$$

If
$$B = 0$$
 and $A \neq 0$, $\lim_{n \to \infty} \frac{a_n}{b_n}$ does not exist.

If
$$B = 0$$
 and $A = 0$, $\lim_{n \to \infty} \frac{a_n}{b_n}$ may or may not exist.

5.
$$\lim_{n\to\infty} a_n^p = (\lim_{n\to\infty} a_n)^p = A^p$$
, for $p = \text{any real number if } A^p \text{ exists.}$

6.
$$\lim_{n\to\infty} p^{a_n} = p^{\lim_{n\to\infty} a_n} = p^{\Lambda}$$
, for $p = \text{any real number if } p^{\Lambda} \text{ exists.}$

Infinity

We write $\lim_{n\to\infty} a_n = \infty$ if for each positive number M we can find a positive number N (depending on M) such that $\mathbf{a}_n > M$ for all n > N. Similarly, we write $\lim_{n\to\infty} a_n = -\infty$ if for each positive number M we can find a positive number N such that $a_n < -M$ for all n > N. It should be emphasized that ∞ and $-\infty$ are not numbers and the sequences are not convergent. The terminology employed merely indicates that the sequences diverge in a certain manner. That is, no matter how large a number in absolute value that one chooses, there is an n such that the absolute value of a_n is greater than that quantity.

Bounded, Monotonic Sequences

If $u_n \le M$ for $n = 1, 2, 3, \ldots$, where M is a constant (independent of n), we say that the sequence $\{u_n\}$ is bounded above and M is called an upper bound. If $u_n \ge m$, the sequence is bounded below and m is called a lower bound.

If $m \le u_n \le M$ the sequence is called *bounded*. Often this is indicated by $|u_n| \le P$. Every convergent sequence is bounded, but the converse is not necessarily true.

If $u_{n+1} \ge u_n$ the sequence is called *monotonic increasing*; if $u_{n+1} > u_n$ it is called *strictly increasing*. Similarly, if $u_{n+1} \le u_n$ the sequence is called *monotonic decreasing*, while if $u_{n+1} < u_n$ it is *strictly decreasing*.

Least Upper Bound and Greatest Lower Bound of a Sequence

A number \underline{M} is called the *least upper bound* (l.u.b.) of the sequence $\{u_n\}$ if $u_n \leq \underline{M}$, $n = 1, 2, 3, \ldots$ while at least one term is greater than $\underline{M} - \epsilon$ for any $\epsilon > 0$.

A number \overline{m} is called the *greatest lower bound* (g.l.b.) of the sequence $\{u_n\}$ if $u_n \ge \overline{m}$, $n = 1, 2, 3, \ldots$ while at least one term is less than $\overline{m} + \epsilon$ for any $\epsilon > 0$.

Compare with the definition of l.u.b. and g.l.b. for sets of numbers in general (see Page 6).

Limit Superior, Limit Inferior

A number \bar{l} is called the *limit superior*, greatest limit, or upper limit ($\limsup \text{or } \overline{\lim}$) of the sequence $\{u_n\}$ if infinitely many terms of the sequence are greater than $\bar{l} - \epsilon$ while only a finite number of terms are greater than $\bar{l} + \epsilon$, where ϵ is any positive number.

A number \underline{l} is called the *limit inferior, least limit,* or *lower limit* (lim inf or $\underline{\lim}$) of the sequence $\{u_n\}$ if infinitely many terms of the sequence are less than $\underline{l} + \epsilon$ while only a finite number of terms are less than $\underline{l} - \epsilon$, where ϵ is any positive number.

These correspond to least and greatest limiting points of general sets of numbers.

If infinitely many terms of $\{u_n\}$ exceed any positive number M, we define $\limsup \{u_n\} = \infty$. If infinitely many terms are less than -M, where M is any positive number, we define $\liminf \{u_n\} = -\infty$.

```
If \lim u_n = \infty, we define \limsup \{u_n\} = \liminf \{u_n\} = \infty.
```

If $\lim_{n\to\infty} u_n = -\infty$, we define $\limsup \{u_n\} = \liminf \{u_n\} = -\infty$.

Although every bounded sequence is not necessarily convergent, it always has a finite lim sup and lim inf.

A sequence $\{u_n\}$ converges if and only if $\limsup u_n = \liminf u_n$ is finite.

Nested Intervals

Consider a set of intervals $[a_n, b_n]$, n = 1, 2, 3, ..., where each interval is contained in the preceding one and $\lim_{n \to \infty} (a_n - b_n) = 0$. Such intervals are called *nested intervals*.

We can prove that to every set of nested intervals there corresponds one and only one real number. This can be used to establish the Bolzano-Weierstrass theorem of Chapter 1. (See Problems 2.22 and 2.23.)

Cauchy's Convergence Criterion

Cauchy's convergence criterion states that a sequence $\{u_n\}$ converges if and only if for each $\epsilon > 0$ we can find a number N such that $|u_p - u_q| < \epsilon$ for all p, q > N. This criterion has the advantage that one need not know the limit l in order to demonstrate convergence.

Infinite Series

Let u_1, u_2, u_3, \ldots be a given sequence. Form a new sequence S_1, S_2, S_3, \ldots where

$$S_1 = u_1, S_2 = u_1 + u_2, S_3 = u_1 + u_2 + u_3, \dots, + S_n = u_1 + u_2 + u_3 + \dots + u_n, \dots$$

where S_n , called the *n*th partial sum, is the sum of the first *n* terms of the sequence $\{u_n\}$.

The sequence S_1, S_2, S_3, \ldots is symbolized by

$$u_1 + u_2 + u_3 + \cdots = \sum_{n=1}^{\infty} u_n$$

which is called an *infinite series*. If $\lim_{n\to\infty} S_n = S$ exists, the series is called *convergent* and S is its *sum*; otherwise, the series is called *divergent*. $n\to\infty$