人工神经网络--补充材料

1. class2 nn

- 可视化并理解 CNN: https://zhuanlan.zhihu.com/p/24833574
- Python 徒手实现 CNN: https://zhuanlan.zhihu.com/p/102119808
- 卷积操作详解(代码+扩展): https://zh.d2l.ai/chapter_convolutional-neural-networks/conv-laver.html
- 如何读论文 (李沐): https://www.bilibili.com/video/BV1H44y1t75x/?spm id from=333.999.0.0
- 如何读论文-李沐(以 ResNet 为例): https://www.bilibili.com/video/BV1P3411y7nn/?spm_id_from=333.999.0.0

2. class3_optimization

- B站课程: 李沐-动手学深度学习 (第4到第15节课) https://space.bilibili.com/1567748478/channel/seriesdetail?sid=358497
- 一个框架看懂优化算法之异同 SGD/AdaGrad/Adam: https://zhuanlan.zhihu.com/p/32230623
- 什么是过拟合,如何避免过拟合: https://zhuanlan.zhihu.com/p/462736611
- L1 正则化容易引起稀疏解的解释: https://zhuanlan.zhihu.com/p/50142573
- Dropout 的原理及实现:<u>https://developer.aliyun.com/article/1207717</u>
- 模型集成方法 bagging、boosting 、stacking:<u>https://www.jiqizhixin.com/articles/2019-05-15-15</u>
- 反向传播算法 python 实现:<u>https://zhuanlan.zhihu.com/p/158870007</u>
- 矩阵乘法的反向传播算法实现: https://blog.csdn.net/m0 63238256/article/details/126632188

3. class4_cnn_issue

- Resnet 论文精讲: https://www.bilibili.com/video/BV1P3411y7nn/?spm_id_from=333.999.0.0
- Batch normalization 详解: https://zhuanlan.zhihu.com/p/437446744
- Python 徒手实现 CNN: https://zhuanlan.zhihu.com/p/102119808
- 卷积操作详解(代码+扩展): https://zh.d2l.ai/chapter_convolutional-neural-networks/conv-layer.html
- 深度学习常用激活函数的原理和优缺点 https://www.jiqizhixin.com/articles/2021-02-24-7

4. class9_ semantic_image_segmentation

- Semantic segmentation:
 - O Stanford CS231n: Deep Learning for Computer Vision, Lecture 11: Object Detection and Image Segmentation

https://www.bilibili.com/video/BV1nJ411z7fe

http://cs231n.stanford.edu/slides/2023/lecture 11.pdf

O 46 语义分割和数据集【李沐 动手学深度学习 v2】 https://www.bilibili.com/video/BV1BK4y1M7Rd

〇 语义分割前言

https://www.bilibili.com/video/BV1ev411P7dR

O Minaee et al., Image Segmentation Using Deep Learning: A Survey, PAMI, 2022 https://ieeexplore.ieee.org/abstract/document/9356353 https://arxiv.org/abs/2001.05566

• FCN:

O 转置卷积【吴恩达 深度学习】(P79)

https://www.bilibili.com/video/BV16c411k7F4

O 47 转置卷积【李沐 动手学深度学习 v2】

https://www.bilibili.com/video/BV17o4y1X7Jn

O 47.2 转置卷积是一种卷积【李沐 动手学深度学习 v2】

https://www.bilibili.com/video/BV1CM4y1K7r7

O 48 全连接卷积神经网络 FCN【李沐 动手学深度学习 v2】

https://www.bilibili.com/video/BV1af4y1L7Zu

〇 转置卷积(transposed convolution)

https://www.bilibili.com/video/BV1mh411J7U4

O FCN 网络结构详解(语义分割)

https://www.bilibili.com/video/BV1J3411C7zd

O Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully Convolutional Networks for Semantic Segmentation, CVPR, 2015

https://openaccess.thecvf.com/content_cvpr_2015/html/Long_Fully_Convolutional_Networks 2015_CVPR_paper.html

https://arxiv.org/abs/1605.06211

• U-Net:

O U-Net 【吴恩达深度学习】(P76 P81)

https://www.bilibili.com/video/BV16c411k7F4

O U-Net 网络结构讲解(语义分割)

https://www.bilibili.com/video/BV1Vq4y127fB

O Ronneberger O, Fischer P, Brox T, U-net: Convolutional networks for biomedical image segmentation, MICCAI, 2015https://link.springer.com/chapter/10.1007/978-3-319-24574-428

https://arxiv.org/abs/1505.04597

• PSPNet:

O Pyramid scene parsing network, CVPR, 2017

https://openaccess.thecvf.com/content_cvpr_2017/html/Zhao_Pyramid_Scene_Parsing_CVP_R_2017_paper.html

https://arxiv.org/abs/1612.01105

DeepLab :

〇 膨胀券积(Dilated convolution)详解

https://www.bilibili.com/video/BV1Bf4y1g7j8

O DeepLabV1 网络简介(语义分割)

https://www.bilibili.com/video/BV1SU4y1N7Ao

O DeepLabV2 网络简介(语义分割)

https://www.bilibili.com/video/BV1gP4y1G7TC

O DeepLabV3 网络简介(语义分割)

https://www.bilibili.com/video/BV1Jb4y1q7j7

O (DeepLabV1) Chen et al., Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs, arXiv, 2014

https://arxiv.org/abs/1412.7062

O (DeepLabV2) Chen et al., DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, PAMI, 2017

https://ieeexplore.ieee.org/abstract/document/7913730

https://arxiv.org/abs/1606.00915

O (DeepLabV3) Chen et al., Rethinking Atrous Convolution for Semantic Image Segmentation, arXiv, 2017

https://arxiv.org/abs/1706.05587

O (DeepLabV3+) Chen et al., Encoder-decoder with atrous separable convolution for semantic image segmentation, ECCV, 2018

https://openaccess.thecvf.com/content_ECCV_2018/html/Liang-Chieh_Chen_Encoder-Decoder with Atrous ECCV_2018 paper.html

https://arxiv.org/abs/1802.02611

O Fu et al., Dual Attention Network for Scene Segmentation, CVPR, 2019

https://openaccess.thecvf.com/content_CVPR_2019/html/Fu_Dual_Attention_Network_for_Scene_Segmentation_CVPR_2019_paper.html

https://arxiv.org/abs/1809.02983

O Liu et al., Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation, CVPR, 2019

https://openaccess.thecvf.com/content CVPR 2019/html/Liu Auto-

<u>DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_C_VPR_2019_paper.html</u>

https://arxiv.org/abs/1901.02985

• Computer Graphics:

O Kirillov et al., PointRend: Image Segmentation as Rendering, CVPR, 2020

https://openaccess.thecvf.com/content_CVPR_2020/html/Kirillov_PointRend_Image_Segme_ntation_As_Rendering_CVPR_2020_paper.html

https://arxiv.org/abs/1912.08193

• Others:

O Taghanaki et al., Deep Semantic Segmentation of Natural and Medical Images: A Review, Artificial Intelligence Review, 2020

https://link.springer.com/article/10.1007/s10462-020-09854-1

https://arxiv.org/abs/1910.07655

O Transformer 如何内卷医学图像分割?31 种最新方法汇总 https://mp.weixin.qq.com/s/KO1uGZyAMap3w3rvbIryWw

O Transformer 结合 UNet, 称霸医学图像分割!10种融合方法汇总 https://mp.weixin.qq.com/s/buJwbwIwpYAioWPJeYFFWQ

5. 免费的 GPU 资源

平台	GPU	显存	RAM	算力,单精 /半精 (TFLOPS)	备注
Google Colab https://colab.google/	T4	16GB	12GB	8.14/65.13	前台执行连续 12h
Kaggle https://www.kaggle.com/	P100 T4 x2	16GB 16GB x2	30GB	9.526/19.05 8.14/65.13 x2	(验证手机后)每周 30h
Amazon SageMaker https://studiolab.sagemaker.a ws/	-	-	-	-	需要注册后等待申请 GPU 连续执行 4 个小 时 CPU 连续执行 12 小 时
阿里云天池实验室 https://tianchi.aliyun.com/not ebook-ai	V100	-	-	15.7/125	每年免费使用 60h, 参加天池比赛获得积 分兑换时长