Statistical modelling

05. Linear models (coefficient of determination)

Léo Belzile, HEC Montréal 2024

Pearson's linear correlation coefficient

The Pearson correlation coefficient quantifies the strength of the linear relationship between two random variables X and Y.

$$ho = \operatorname{cor}(X,Y) = rac{\operatorname{Co}(X,Y)}{\sqrt{\operatorname{Va}(X)\operatorname{Va}(Y)}}.$$

- The sample correlation $ho \in [-1,1].$
- |
 ho|=1 if and only if the n observations fall exactly on a line.
- The larger $|\rho|$, the less scattered the points are.

Properties of Pearson's linear correlation coefficient

The sign determines the orientation of the slope.

- ullet If ho>0, the variables are positively associated, meaning Y increases on average with X.
- If ho < 0, the association is negative and Y decreases on average with X.

Figure 1: Scatterplots of observations with correlations of 0.1, 0.5, -0.75 and 0.95 from A to D.

Correlation and independence

- Independent variables are uncorrelated (not the other way around).
- A correlation of zero only implies that there is no linear dependence between two variables.

Figure 2: Four datasets with dependent data having identical summary statistics and a linear correlation of -0.06.

Sum of squares decomposition

Suppose that we do not use any explanatory variable (i.e., the intercept-only model). In this case, the fitted value for Y is the overall mean and the sum of squared centered observations

$$\mathsf{SS}_c = \sum_{i=1}^n (Y_i - \overline{Y})^2$$

where \overline{Y} represents the intercept-only fitted value.

When we include the p regressors, we get rather

$$\mathsf{SS}_e = \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2$$

The SS_e is non-increasing when we include more variables.

Percentage of variance

Consider the sum of squared residuals for two models:

- SS_c is for the intercept-only model
- SS_e for the linear regression with model matrix **X**.

Consequently, $SS_c - SS_e$ is the reduction of the error associated with including ${f X}$ in the model

$$R^2 = rac{\mathsf{SS}_c - \mathsf{SS}_e}{\mathsf{SS}_c}$$

This gives the proportion of the variability in $m{Y}$ explained by $m{X}$.

Coefficient of determination

We can show that the coefficient of determination is the square of Pearson's linear correlation between the response y and the fitted values \hat{y} ,

$$R^2 = \mathsf{cor}^2(oldsymbol{y}, \widehat{oldsymbol{y}}).$$

```
1 data(college, package = "hecstatmod")
2 mod <- lm(salary ~ sex + field + rank + service, data = college)
3 summary(mod)$r.squared # R-squared from output
4 ## [1] 0.45
5 y <- college$salary # response vector
6 yhat <- fitted(mod) # fitted value
7 cor(y, yhat)^2
8 ## [1] 0.45</pre>
```

- ${\it R}^2$ always takes a value between 0 and 1.
- R^2 is not a goodness-of-fit criterion: the coefficient is non-decreasing so the more explanatories are added to ${\bf X}$, the higher the R^2 .