WHAT IS CLAIMED IS:

1	1. An isolated or recombinant nucleic acid molecule that comprises a
2	polynucleotide sequence that encodes a polypeptide selected from the group consisting of:
3	a) a polypeptide having lipid A biosynthesis acyltransferase activity,
4	wherein the polypeptide comprises an amino acid sequence that is at least about 70%
5	identical to an amino acid sequence encoded by nucleotides 350-1234 (ORF 2a) of the LOS
6	biosynthesis locus of C. jejuni strain OH4384 as shown in SEQ ID NO:1;
7	b) a polypeptide having glycosyltransferase activity, wherein the
8	polypeptide comprises an amino acid sequence that is at least about 70% identical to an
9	amino acid sequence encoded by nucleotides 1234-2487 (ORF 3a) of the LOS biosynthesis
10	locus of C. jejuni strain OH4384 as shown in SEQ ID NO:1;
11	c) a polypeptide having glycosyltransferase activity, wherein the
12	polypeptide comprises an amino acid sequence that is at least about 50 % identical to an
13	amino acid sequence encoded by nucleotides 2786-3952 (ORF 4a) of the LOS biosynthesis
14	locus of C. jejuni strain OH4384 as shown in SEQ ID NO:1 over a region at least about 100
15	amino acids in length;
16	d) a polypeptide having β1,4-GalNAc transferase activity, wherein the
17	GalNAc transferase polypeptide comprises an amino acid sequence that is at least about 77%
18	identical to an amino acid sequence as set forth in SEQ ID NO:17 over a region at least
19	about 50 amino acids in length;
20	e) a polypeptide having β1,3-galactosyltransferase activity, wherein
21	the galactosyltransferase polypeptide comprises an amino acid sequence that is at least about
22	75% identical to an amino acid sequence as set forth in SEQ ID NO:27 or SEQ ID NO:29
23	over a region at least about 50 amino acids in length;
24	f) a polypeptide having $\alpha 2,3$ sially transferase activity, wherein the
25	sialyltransferase polypeptide comprises an amino acid sequence that is at least about 66%
26	identical over a region at least about 60 amino acids in length to an amino acid sequence as
27	set forth in one or more of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:10;

28	g) a polypeptide having stanc acid synthase activity, wherein the
29	polypeptide comprises an amino acid sequence that is at least about 70% identical to an
30	amino acid sequence encoded by nucleotides 6924-7961 of the LOS biosynthesis locus of C.
31	jejuni strain OH4384 as shown in SEQ ID NO:1;
32	h) a polypeptide having sialic acid biosynthesis activity, wherein the
33	polypeptide comprises an amino acid sequence that is at least about 70% identical to an
34	amino acid sequence encoded by nucleotides 8021-9076 of the LOS biosynthesis locus of C.
35	jejuni strain OH4384 as shown in SEQ ID NO:1;
36	i) a polypeptide having CMP-sialic acid synthetase activity, wherein
37	the polypeptide comprises an amino acid sequence that is at least about 65% identical to an
38	amino acid sequence encoded by nucleotides 9076-9738 of the LOS biosynthesis locus of C.
39	jejuni strain OH4384 as shown in SEQ ID NO:1;
40	j) a polypeptide having acetyltransferase activity, wherein the
41	polypeptide comprises an amino acid sequence that is at least about 65% identical to an
42	amino acid sequence encoded by nucleotides 9729-10559 of the LOS biosynthesis locus of
43	C. jejuni strain OH4384 as shown in SEQ ID NO:1; and
44	k) a polypeptide having glycosyltransferase activity, wherein the
45	polypeptide comprises an amino acid sequence that is at least about 65% identical to an
46	amino acid sequence encoded by a reverse complement of nucleotides 10557-11366 of the
47	LOS biosynthesis locus of C. jejuni strain OH4384 as shown in SEQ ID NO:1.
	o m ' 1 / 1 / 1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /
1	2. The isolated or recombinant nucleic acid molecule of claim 1, wherein
2	the nucleic acid comprises a polynucleotide sequence that encodes one or more polypeptides
3	selected from the group consisting of: a) a sialyltransferase polypeptide that has both an α2,3
4	a) a sialyltransferase polypeptide that has both an $\alpha 2,3$ sialyltransferase activity and an $\alpha 2,8$ sialyltransferase activity, wherein the sialyltransferase
5	polypeptide comprises an amino acid sequence that is at least about 75% identical to an
7	amino acid sequence as set forth in SEQ ID NO:3 over a region at least about 50 amino acids
8	in length;
9	b) a GalNAc transferase polypeptide that has a β1,4-GalNAc
10	transferase activity, wherein the GalNAc transferase polypeptide comprises an amino acid

11	sequence that is at least about 75% identical to an amino acid sequence as set forth in SEQ
12	ID NO:17 over a region at least about 50 amino acids in length; and
13	c) a galactosyltransferase polypeptide that has β1,3-
14	galactosyltransferase activity, wherein the galactosyltransferase polypeptide comprises an
15	amino acid sequence that is at least about 75% identical to an amino acid sequence as set
16	forth in SEQ ID NO:27 over a region at least about 50 amino acids in length.
1	3. The nucleic acid molecule of claim 1, wherein the sequence
2	comparisons are performed using a BLASTP Version 2.0 algorithm with a wordlength (W)
3	of 3, G=11, E=1, and a BLOSUM62 substitution matrix.
1	4. The nucleic acid molecule of claim 1, wherein the region extends the
2	full length of the amino acid sequence of the polypeptide.
1	5. The nucleic acid molecule of claim 1, wherein:
2	a) the sialyltransferase polypeptide comprises an amino acid sequence
3	as set forth in SEQ ID NO:3, SEQ ID NO:5 SEQ ID NO:7 or SEQ ID NO:10;
4	b) the GalNAc transferase polypeptide comprises an amino acid
5	sequence as set forth in SEQ ID NO:17; and
6	c) the galactosyltransferase polypeptide comprises an amino acid
7	sequence as set forth in SEQ ID NO:27 or SEQ ID NO:29.
1	6. The nucleic acid molecule of claim 5, wherein:
2	a) the polynucleotide sequence that encodes the sialyltransferase
3	polypeptide is at least about 75% identical to a nucleic acid sequence as set forth in SEQ ID
4	NO:2, SEQ ID NO:4, or SEQ ID NO:6 over a region at least about 50 nucleotides in length;
5	b) the polynucleotide sequence that encodes the β1,4-GalNAc
6	transferase polypeptide is at least about 75% identical to a nucleic acid sequence as set forth
7	in SEQ ID NO:16 or over a region at least about 50 nucleotides in length; and
8	c) the polynucleotide sequence that encodes the β1,3-

galactosyltransferase polypeptide is at least about 75% identical to a nucleic acid sequence

- as set forth in SEQ ID NO:26 or SEQ ID NO:28 over a region at least about 50 nucleotides
- 11 in length.
- 7. The nucleic acid molecule of claim 6, wherein the sequence
- 2 comparisons are performed using a BLASTN Version 2.0 algorithm with a wordlength (W)
- 3 of 11, G=5, E=2, q=-2, and r=1.
- 1 8. The nucleic acid molecule of claim 6, wherein:
- 2 a) the polynucleotide sequence that encodes the sialyltransferase
- 3 polypeptide has an nucleic acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or
- 4 SEQ ID NO:6;
- b) the polynucleotide sequence that encodes the GalNAc transferase
- 6 polypeptide has a nucleic acid sequence as set forth in SEQ ID NO:16; and
- 7 c) the polynucleotide sequence that encodes the galactosyltransferase
- 8 polypeptide has a nucleic acid sequence as set forth in SEQ ID NO:26 or SEQ ID NO:28.
- 1 9. The nucleic acid molecule of claim 5, wherein the sialyltransferase is a
- bifunctional sialyltransferase that has both an α 2,3-sialyltransferase activity and an α 2,8-
- 3 sialyltransferase activity and the polynucleotide sequence that encodes the sialyltransferase
- 4 polypeptide is at least about 75% identical to a nucleic acid sequence as set forth in SEQ ID
- 5 NO:2, SEQ ID NO:4.
- 1 10. An expression cassette that comprises a nucleic acid molecule of claim
- 2 1.
- 1 11. An expression vector that comprises the expression cassette of claim 10.
- 1 12. A host cell that comprises the expression vector of claim 11.
- 1 13. An isolated or recombinantly produced polypeptide selected from the
- 2 group consisting of:

3	a) a polypeptide having lipid A biosynthesis acyltransferase activity,
4	wherein the polypeptide comprises an amino acid sequence that is at least about 70%
5	identical to an amino acid sequence encoded by nucleotides 350-1234 (ORF 2a) of the LOS
6	biosynthesis locus of C. jejuni strain OH4384 as shown in SEQ ID NO:1;
7	b) a polypeptide having glycosyltransferase activity, wherein the
8	polypeptide comprises an amino acid sequence that is at least about 70% identical to an
9	amino acid sequence encoded by nucleotides 1234-2487 (ORF 3a) of the LOS biosynthesis
10	locus of C. jejuni strain OH4384 as shown in SEQ ID NO:1;
11	c) a polypeptide having glycosyltransferase activity, wherein the
12	polypeptide comprises an amino acid sequence that is at least about 50 % identical to an
13	amino acid sequence encoded by nucleotides 2786-3952 (ORF 4a) of the LOS biosynthesis
14	locus of C. jejuni strain OH4384 as shown in SEQ ID NO:1 over a region at least about 100
15	amino acids in length;
16	d) a polypeptide having β1,4-GalNAc transferase activity, wherein the
17	GalNAc transferase polypeptide comprises an amino acid sequence that is at least about 77%
18	identical to an amino acid sequence as set forth in SEQ ID NO:17 over a region at least
19	about 50 amino acids in length;
20	e) a polypeptide having β1,3-galactosyltransferase activity, wherein
21	the galactosyltransferase polypeptide comprises an amino acid sequence that is at least about
22	75% identical to an amino acid sequence as set forth in SEQ ID NO:27 or SEQ ID NO:29
23	over a region at least about 50 amino acids in length;
24	f) a polypeptide having $\alpha 2,3$ sialyltransferase activity, wherein the
25	sialyltransferase polypeptide comprises an amino acid sequence that is at least about 66%
26	identical to an amino acid sequence as set forth in SEQ ID NO:3, SEQ ID NO:5, SEQ ID
27	NO:7 or SEQ ID NO:10 over a region at least about 60 amino acids in length;
28	g) a polypeptide having sialic acid synthase activity, wherein the
29	polypeptide comprises an amino acid sequence that is at least about 70% identical to an
30	amino acid sequence encoded by nucleotides 6924-7961 of the LOS biosynthesis locus of C.
21	igiuni etrain OH4384 as shown in SEO ID NO 1

32	h) a polypeptide having sialic acid biosynthesis activity, wherein the
33	polypeptide comprises an amino acid sequence that is at least about 70% identical to an
34	amino acid sequence encoded by nucleotides 8021-9076 of the LOS biosynthesis locus of C.
35	jejuni strain OH4384 as shown in SEQ ID NO:1;
36	i) a polypeptide having CMP-sialic acid synthetase activity, wherein
37	the polypeptide comprises an amino acid sequence that is at least about 65% identical to an
38	amino acid sequence encoded by nucleotides 9076-9738 of the LOS biosynthesis locus of C.
39	jejuni strain OH4384 as shown in SEQ ID NO:1;
40	j) a polypeptide having acetyltransferase activity, wherein the
41	polypeptide comprises an amino acid sequence that is at least about 65% identical to an
42	amino acid sequence encoded by nucleotides 9729-10559 of the LOS biosynthesis locus of
43	C. jejuni strain OH4384 as shown in SEQ ID NO:1; and
44	k) a polypeptide having glycosyltransferase activity, wherein the
45	polypeptide comprises an amino acid sequence that is at least about 65% identical to an
46	amino acid sequence encoded by a reverse complement of nucleotides 10557-11366 of the
47	LOS biosynthesis locus of C. jejuni strain OH4384 as shown in SEQ ID NO:1.
1	14. The isolated or recombinantly produced polypeptide of claim 13,
2	wherein the polypeptide is recombinantly produced and at least partially purified.
1	15. The isolated or recombinantly produced polypeptide of claim 13,
2	wherein the polypeptide is expressed by a heterologous host cell.
1	16. The isolated or recombinantly produced polypeptide of claim 15,
2	wherein the host cell is E. coli.
۷	wherein the host cen is 2. con.
1	17. The isolated or recombinantly produced polypeptide of claim 13,
2	wherein the netimentide is a C joinni seretime 0:2 netimentide

1	18. The isolated or recombinantly produced polypeptide of claim 13,
2	wherein the polypeptide is a sialyltransferase polypeptide according to g) and the
3	polypeptide is selected from the group consisting of:
4	a polypeptide has both an $\alpha 2,3$ sialyltransferase activity and an $\alpha 2,8$
5	sialyltransferase activity and comprises an amino acid sequence that is at least 75% identical
6	to an amino acid sequence of a cstII sialyltransferase encoded by ORF 7a of the LOS
7	biosynthesis locus from C. jejuni strain OH4384 as set forth in SEQ ID NO:3;
8	a polypeptide that has an α2,3 sialyltransferase activity and comprises
9	an amino acid sequence that is at least 75% identical to an amino acid sequence of a $cst\Pi$
10	sialyltransferase from C. jejuni serotype O:10 as set forth in SEQ ID NO:5;
11	a polypeptide that that has an $\alpha 2,3$ sialyltransferase activity and
12	comprises an amino acid sequence that is at least 75% identical to an amino acid sequence of
13	a cst II sialyltransferase from C. jejuni serotype O:41 as set forth in SEQ ID NO:7; and
14	a polypeptide that that has an $\alpha 2,3$ sialyltransferase activity and
15	comprises an amino acid sequence that is at least 75% identical to an amino acid sequence of
16	a cstII sialyltransferase of C. jejuni serotype O:2 as set forth in SEQ ID NO:10.
1	19. The isolated or recombinantly produced sialyltransferase polypeptide of
2	claim 18, wherein the sialyltransferase polypeptide has an amino acid sequence selected
3	from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, and SEQ ID
4	NO:10.
1	20. The polypeptide of claim 13, wherein:
2	a) the sialyltransferase polypeptide of f) has an amino acid sequence
3	as set forth in SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:10;
4	b) the 1,4-GalNAc transferase polypeptide of d) has an amino acid
5	sequence as set forth in SEQ ID NO:17; and
6	c) the β1,3-galactosyltransferase polypeptide of e) has an amino acid
7	sequence as set forth in SEQ ID NO:27 or SEQ ID NO:29.

1.	21. A reaction mixture for synthesis of a sialylated oligosaccharide, the
2	reaction mixture comprising a sialyltransferase polypeptide which has both an α2,3
3	sialyltransferase activity and an $\alpha 2.8$ sialyltransferase activity, a galactosylated acceptor
4	moiety, and a sialyl-nucleotide sugar;
5	wherein the sialyltransferase transfers a first sialic acid residue from the
6	sialyl-nucleotide sugar to the galactosylated acceptor moiety in an $\alpha 2,3$ linkage, and further
7	transfers a second sialic acid residue to the first sialic acid residue in an $\alpha 2.8$ linkage.
1	22. The reaction mixture of claim 21, wherein the sialyl-nucleotide sugar is
2	CMP-sialic acid.
1	23. The reaction mixture of claim 21, wherein the sialyltransferase
2	polypeptide has an amino acid sequence that is at least about 75% identical to an amino acid
3	sequence as set forth in SEQ ID NO:3 over a region at least about 50 amino acids in length.
1	24. The reaction mixture of claim 23, wherein the sialyltransferase
2	polypeptide has an amino acid sequence as set forth in SEQ ID NO:3.
•	25. The reaction mixture of claim 21, wherein the galactosylated acceptor
1	comprises a compound having the formula Gal\beta1,4-R or Gal\beta1,3-R, wherein R is selected
2	from the group consisting of H, a saccharide, oligosaccharide, or an aglycone group having
3	
4	at least one carbohydrate atom.
1	26. The reaction mixture of claim 21, wherein the galactosylated acceptor is
2	attached to a protein, lipid, or proteoglycan.
1	27. The reaction mixture of claim 21, wherein the sialylated oligosaccharide
2	is a ganglioside, a ganglioside mimic, or a carbohydrate portion of a ganglioside.

1	28. The reaction mixture of claim 21, wherein the sialylated oligosaccharide
2	is a lysoganglioside, a lysoganglioside mimic, or a carbohydrate portion of a
3	lysoganglioside.
1	29. The reaction mixture of claim 27, wherein the galactosylated acceptor
2	moiety comprises a compound having a formula selected from the group consisting of
3	Gal4Glc-R ¹ and Gal3GalNAc-R ² ; wherein R ¹ is selected from the group consisting of
4	ceramide or other glycolipid, and R ² is selected from the group consisting of Gal4GlcCer,
5	(Neu5Ac3)Gal4GlcCer, and (Neu5Ac8Neu5c3)Gal4GlcCer.
1	30. The reaction mixture of claim 29, wherein the galactosylated acceptor is
2	selected from the group consisting of Gal4GlcCer, Gal3GalNAc4(Neu5Ac3)Gal4GlcCer,
3	and Gal3GalNAc4(Neu5Ac8Neu5c3)Gal4GlcCer.
1	31. The reaction mixture of claim 21, wherein the galactosylated acceptor is
2	formed by contacting an acceptor saccharide with UDP-Gal and a galactosyltransferase
3	polypeptide, wherein the galactosyltransferase polypeptide transfers the Gal residue from the
4	UDP-Gal to the acceptor.
1	32. The reaction mixture of claim 31, wherein the galactosyltransferase
2	polypeptide has β1,3-galactosyltransferase activity and has an amino acid sequence that is at
3	least about 75% identical to an amino acid sequence as set forth in SEQ ID NO:27 or SEQ
4	ID NO:29 over a region at least about 50 amino acids in length.
1	33. The reaction mixture of claim 32, wherein the galactosyltransferase has
2	an amino acid sequence as set forth in SEQ ID NO:27 or SEQ ID NO:29.
1	34. The reaction mixture of claim 31, wherein the acceptor saccharide

comprises a terminal GalNAc residue.

1	35. The reaction mixture of claim 34, wherein the acceptor saccharide for
2	the galactosyltransferase is formed by contacting an acceptor for a GalNAc transferase with
3	UDP-GalNAc and a GalNAc transferase polypeptide, wherein the GalNAc transferase
4	polypeptide transfers the GalNAc residue from the UDP-GalNAc to the acceptor for the
5	GalNAc transferase.
1	36. The reaction mixture of claim 35, wherein the GalNAc transferase
2	polypeptide has a β 1,4-GalNAc transferase activity and has an amino acid sequence that is at
3	least about 75% identical to an amino acid sequence as set forth in SEQ ID NO:17 over a
4	region at least about 50 amino acids in length.
1	37. The reaction mixture of claim 29, wherein the GalNAc transferase
2	polypeptide has an amino acid sequence as set forth in SEQ ID NO:17.
1	38. A method for synthesizing a sialylated oligosaccharide, the method
2	comprising incubating a reaction mixture that comprises a sialyltransferase polypeptide
3	which has both an $\alpha 2,3$ sialyltransferase activity and an $\alpha 2,8$ sialyltransferase activity, a
4	galactosylated acceptor moiety, and a sialyl-nucleotide sugar, under suitable conditions
5	wherein the sialyltransferase polypeptide transfers a first sialic acid residue from the sialyl-
6	nucleotide sugar to the galactosylated acceptor moiety in an $\alpha 2,3$ linkage, and further
7	transfers a second sialic acid residue to the first sialic acid residue in an $\alpha 2,8$ linkage.
1	39. The method of claim 38, wherein the sialylated oligosaccharide is a
2	ganglioside.
1	40. The method of claim 38, wherein the sialyltransferase polypeptide has
2	an amino acid sequence that is at least about 75% identical to an amino acid sequence as set
3	forth in SEO ID NO:3 over a region at least about 50 amino acids in length.

81

an amino acid sequence as set forth in SEQ ID NO:3.

1 2 The method of claim 40, wherein the sialyltransferase polypeptide has

- 1 42. The method of claim 38, wherein the sialylated oligosaccharide is a
- 2 ganglioside a lysoganglioside, a ganglioside mimic, or a lysoganglioside mimic.