Chapter 1

Seminar — 10 Oct. 2023, Alpha 0.1

1.1 Mulțimea numerelor reale \mathbb{R}

1.1.1 Teorie

Fie $A \subseteq \mathbb{R}$ o mulţime

Def. Spunem că A este mărginită dacă:

 $(\exists) \ m, M \in \mathbb{R} \text{ astfel încât:}$

$$\underbrace{m}_{\text{Margine inferioară (minorant)}} \leq a \leq \underbrace{M}_{\text{Margine superioară (majorant)}}, \forall a \in A$$

 $\inf A = \text{cea mai mare margine inferioară} / \text{cel mai mare minorant}$

 $\sup A = \operatorname{cea} \operatorname{mai} \operatorname{mic} \operatorname{a} \operatorname{margine} \operatorname{superioar} \operatorname{a} / \operatorname{cel} \operatorname{mai} \operatorname{mic} \operatorname{majorant}$

 $\min A = \inf A$, dacă $\inf A \in A$

 $\max A = \sup A$, dacă $\sup A \in A$

1.2 Exerciții

1.2.1 Determinați inf A, sup A, min A, max A pentru:

a.
$$A = (0, 1)$$

$$\inf A = 0 \in A$$

$$\sup A = 1 \in A$$

 $\min A = \text{nu există}$ $\max A = \text{nu există}$

- b. $A = (-1, 1] \cup \{2\}$ $\inf A = -1$ $\sup A = 2$ $\min A = \text{nu există}$ $\max A = 2$
- c. $A = (-\infty, 0]$ $\inf A = -\infty$ $\sup A = 0$ $\min A = \text{nu există}$ $\max A = 0$
- d. $A = \{x^2 2x + 5 | x \in \mathbb{R}\}$ $= \text{Im} f = [y_v, \infty)$ $f : \mathbb{R} \to \mathbb{R}; f(x) = x^2 - 2x + 5$ $y_v = \frac{\Delta}{4a}$ $\Delta = 4 - 20 = -16 \Rightarrow y_v = \frac{16}{4} = 4$

$$\operatorname{Im} f = [y_v, \infty) = [4, \infty)$$

 $\inf A = \infty$ $\sup A = 4$ $\min A = 4$ $\max A = \text{nu exist} \check{\text{a}}$

- e. $A = \{x^2 + 2x 1 | x \in \mathbb{R}\}$ $\operatorname{Im} f = [-\infty, \frac{-\Delta}{4a})$ $\Delta = 4 4 = 0 \Rightarrow \operatorname{Im} f = (-\infty, 0]$ $\inf A = -\infty$ $\sup A = 0$ $\min A = \operatorname{nu} \text{ există}$ $\max A = 0$
- f. $A = \{x \in \mathbb{R} | 4x^2 + 3x 1 > 0\}$ $f : \mathbb{R} \to \mathbb{R}, f(x) = 4x^2 + 3x - 1$ f(x) = 0 $\Delta = 9 + 16 = 25$ $x_{1,2} = \frac{-1 \pm 5}{8}$

1.2. EXERCIŢII

$$x_1 = -1; \ x_2 = \frac{1}{4} \Rightarrow$$

$$\inf A = -\infty$$

$$\sup A = \infty$$

$$A = (-\infty, -1) \cup \left(\frac{1}{4}, \infty\right)$$

$$\inf A = -\infty$$

$$\sup A = \infty$$

Care din următoarele mulțimi este mărginită? 1.2.2

a.
$$A = \{\frac{1}{x} | x \in (0, \infty) \}$$

$$0 < x < y \Leftrightarrow 0 < \frac{1}{x} < \infty$$

$$\underbrace{\frac{1}{0}}_{} > \frac{1}{x} > \frac{1}{\infty}$$

$$A = \{\frac{1}{2} | x \in (0, \infty)\} = (0, \infty) =$$

 $A=\{\tfrac{1}{x}|x\in(0,\infty)\}=(0,\infty)\Rightarrow\quad \inf A=0\ -\text{m arginit}\\ \sup A=\infty\ -\text{nu este m arginit}$

3

b.
$$A = \{ \frac{n+1}{n+2} | n \in \mathbb{N} \}$$

$$0 < \frac{n+1}{n+2} < 1 \Rightarrow A$$
 — mărginită

c.
$$A = \{\sin n | n \in \mathbb{N}\} = [-1, 1) \Rightarrow A$$
 — mărginită

$$d. A = \{ \frac{n^2}{n+1} | n \in \mathbb{N} \}$$

$$\frac{n^2}{n+1} > 0$$

$$\frac{n^2}{n+1} < \frac{n^2}{n} = n$$

 $n \in \mathbb{N}, \quad \mathbb{N}$ — nemărginită $\Rightarrow A$ — nu este mărginită