Information Theory & Coding

- Communication Model
- ➤ Introduction to ITC (Shannon's Theory)
- >Amount of Information
- ➤ Average Information (Entropy)
- >Information rate

Communication System

Communication Model

Shannon's Theory (Basic Concept of ITC)

- 1) Measure of Source Information
- 2) Information Capacity of Channel
- 3) Coding

Information Source

Source definition

- Analog: Emit a continuous amplitude, continuous time electrical wave from.
- > Discrete: Emit a sequence of letters of symbols.

The output of a discrete information source is a string or sequence of symbols (dice , coin)

Amount of Information

- Consider the following examples:
- Today is Monday
- 2. It is a cloudy day
- 3. Possible snow fall today

Continuous

Amount of information received is obviously different for these messages.

- Message (I) Contains very little information since the everyone know that today is Monday
- Message (2) The forecast of "cloudy day" contains more information, since it is not an event that occurs often.
- Message (3) In contrast, the forecast of "snow fall" convey even more information, since the occurrence of snow in jodhpur is a rare/impossible event.

Continuous

- I) It is related to the probability of occurrence of the event.
- 2) Message associated with an event "least likely to occur" contains most information
- 3) Information is proportional to uncertainty of an event
- 4) Information is inversely proportional to probability

Information

an information source emits one of "m" possible messages $x_1, x_2 \dots x_m$ with $p_1, p_2 \dots p_m$ as their probabilities of occurrence.

The information content of the ith message, can be written as

$$I \quad \alpha \quad I/P_{i}$$

$$I(x_{i}) = \log_{b} \frac{1}{P(x_{i})} = -\log_{b} P(x_{i})$$

Base of log decide unit of information b=2, bits (Binary digit) b=10, decit (Decimal digit) b=e, nats (Natural digit)

Properties

Basic

$$I(x_i) = 0$$
 for $P(x_i) = 1$
 $I(x_i) \ge 0$
 $I(x_i) > I(x_j)$ if $P(x_i) < P(x_j)$
 $I(x_ix_j) = I(x_i) + I(x_j)$ if x_i and x_j are independent

Question

Information content in a universally true event is......

```
p=1
1 = log 1/p = log 1 = 0
```

A discrete source emits five symbols with the probability $P_1=1/2$, $P_2=1/4$, $P_3=1/8$, $P_4=1/16$ and $P_5=1/16$. Find information content of each symbols.

$$I = log I/p = Log I/(I/2) = log 2 = I bits$$
 (Ans I,2,3, 4 and 4 bits)

ENTROPY

Average Information per symbol

--- lingth of Message = L

Set Sx, x2, x3 --- xm3, probability SP, P2, P3 -- Pm3

Symbo)	Respective probabilities	Information content cach symbol	Nos. of Symbol	ty a symbol
71,	P,	$I_1 = log_2 \frac{1}{P_1}$	P, L	P, L log P,
. X ²	PL	I2 = log_ 1/P2	P2L	P2L 60/2 /2
2/3	P3	$J_3 = \log_2 \frac{1}{\ell_3}$	P3 L	P3L bg 1 P3
?	,		,	,
	,	5	,	1
×m ,	Pm	$P_m = \log_2 \frac{1}{\rho_m}$	PmL	Pm L bg Pm

Total Information $F_{total} = P_1 L \log_2 \frac{1}{P_1} + P_2 L \log_2 \frac{1}{P_2} + P_3 L \log_2 \frac{1}{P_3} + \dots + P_{nolleg} \lim_{n \to \infty} \frac{1}{P_n} + P_2 \log_2 \frac{1}{P_3} + P_3 \log_2 \frac{1}{P_3} + \dots + P_n \log_2 \frac{1}{P_n}$ $= L \left(P_1 \log_2 \frac{1}{P_1} + P_2 \log_2 \frac{1}{P_2} + P_3 \log_2 \frac{1}{P_3} + \dots + P_n \log_2 \frac{1}{P_n} \right)$ $T_{total} = L \sum_{i=1}^{\infty} P_i \log_2 \frac{1}{P_i}$ $T_{total} = \sum_{i=1}^{\infty} P_i \log_2 \frac{1}{P_i}$ $H(x) = \sum_{i=1}^{\infty} P_i \log_2 \frac{1}{P_i} = -\sum_{i=1}^{\infty} P_i \log_2 P_i = \frac{1}{\log_2 2} \sum_{i=1}^{\infty} P_i \log_2 P_i$

ENTROPY

Formula

$$H(X) = E[I(x_i)] = \sum_{i=1}^{m} P(x_i)I(x_i)$$
$$= -\sum_{i=1}^{m} P(x_i)\log_2 P(x_i) \quad \text{b/symbol}$$

Base Conversion formula

$$\log_2 a = \frac{\ln a}{\ln 2} = \frac{\log a}{\log 2}$$

Question

• A discrete source emits five symbols with the probability $P_1=1/2$, $P_2=1/4$, $P_3=1/8$, $P_4=1/16$ and $P_5=1/16$. Find Entropy of source .

$$H(x) = \sum_{j=1}^{m} P_{j}^{*} U_{j} \frac{1}{P_{j}^{*}}$$

$$= \frac{1}{2} U_{j}^{2} + \frac{1}{4} U_{j}^{2} + \frac{1}{8} U_{j}^{2} + \frac{1}{16} U_{j}^{2} \frac{1}{16} U$$

Information Rate

If a discrete source emits symbol at rate "r" symbol per sec with average information per symbol (entropy) "H" bits per symbols then information rate "R" of source will be given by

R = r H bits per second

Question

An event has five possible outcomes with the probability $P_1=1/2$, $P_2=1/4$, $P_3=1/8$, $P_4=1/16$ and $P_5=1/16$. find the rate of information if there are 1000 outcomes per sec.

Answer: H = 15/8 bits/symbol, r = 1000 outcomes per sec so rate of information

$$R = r H$$

=1000*15/8=1875 bits per second

Objective for learning

If the rate of information from a source does not exceed the capacity of a given communication channel, then we can opt a coding technique to get maximum utilization of channel such that the information can be transmitted over the channel with small error, despite the presence of channel noise.

Summary

- ➤ Basic of ITC
- ➤ Amount of Information (I)
- > Average Information (Entropy) H
- > Information rate R