Team Dirty Gerty

Technik Autonomer Systeme - Final Presentation

Andre Christ Matthäus Gaab Philip Köhler Philipp Schmitt

Supervisor: M.Sc. Laith Alkurdi

Lehrstuhl für Steuerungs- und Regelungstechnik Technische Universität München

Signal Flow

Lookup Table Creation

- Racing as optimal control problem
- (arbitrary) model assumptions:
 - Discrete state space and discrete time
 - Constant speed
 - 3 steering angles
 - Stochastic vehicle dynamic
- Simple cost function:
 - Progress is rewarded
 - Accidents are penalized
 - Discounted, infinite horizon problem
- ⇒ Can be solved by Dynamic Programming.
- ⇒ Optimal policy is computed via asynchronous Value Iteration.

Obstacle Avoidance

The lookup table cannot handle unexpected obstacles.

⇒ Need for additional security mechanism

Idea:

- → Divide laserscan in two sections
- \rightarrow Count data points with $d < d_{min}$ in both sections
- ightarrow If obstacle detected: Bypass on the side with fewer "dangerous" points

Velocity Regulation and Initial Pose Estimate

Idea: The car has to drive slowly when obstacles are in its path. ⇒ Use minimum distance in the laser scan to regulate the velocity.

Pose Initialization: Car always initialized for starting position one.

Parking

- **Approach**: Actions subdivided into 5 phases.
- Initial phase pertains to parking spot discovery.
 - Dependent upon Gerty's left side laser scan $\equiv x_{left}$.
 - If $x_{left} < x_{boxmax} \Rightarrow \text{box found}$.
 - If $x_{left} > x_{wallmin} \Rightarrow$ wall found.
- Actions of remaining phases governed by Δt_i , i = 2, 3, 4, 5.

References

D.P. Bertsekas. Dynamic programming and optimal control-volume 2. Athena Scientific, 1999.

Backup - Obstacle Growing

Backup - Value Function

Backup - Simulation

Backup - WLAN Localization

WLAN Signal Strength Over Map

Backup - WLAN Neural Network

Backup - WLAN Prediction

Backup - IMU Rotation

• IMU Data with still standing car: X and Y rotation

• Z rotation with car tilted to face gravitation in x direction:

