

CAVITACIÓN ICM 557 LABORATORIO DE MÁQUINAS

DINO ARATA HERRERA ESCUELA INGENIERÍA MECÁNICA PUCV Profesores Cristóbal Galleguillos Ketterer Tomás Herrera Muñoz

Resumen

La cavitación es un fenómeno presente cuando se habla de transporte de fluidos, por ende, está presente y puede afectar a una bomba centrífuga. En el presente informe se llevó una bomba centrífuga a condiciones de baja presión y alto vacío para presenciar el fenómeno de la cavitación en tres puntos, así, determinar ciertas propiedades como la columna neta de succión positiva disponible y requerida.

Índice

Resumen	1
Introducción	3
Objetivos	4
Simbología	5
	6
Tabla de valores medidos	7
Fórmulas	9
Tablas de valores calculados	11
Gráficos	Error! Bookmark not defined.
Conclusión	15
Referencias	16

Introducción

La cavitación es un fenómeno que deseamos no se presente en nuestras maquinas hidráulicas (en este caso bomba centrífuga), puesto que produce que las componentes de la máquina se deterioren, aumentando su probabilidad de fallar, disminuyendo la eficiencia de la máquina e impedir correcta circulación del fluido.

Existen dos valores importantes en términos de diseño de una instalación hidráulica:

- Columna neta de succión positiva disponible, la cual es una medida de cuan cerca esta el fluido de alcanzar la cavitación.
- Columna neta de succión positiva requerida, el cual es el valor limite para evitar la cavitación del fluido en cierto punto.

Por lo tanto, son valores sumamente importantes para el correcto funcionamiento de una instalación hidráulica, que en este caso es una bomba centrífuga.

Objetivos

• Determinar la curva de columna neta de succión positiva requerida, CNSPR, de una bomba centrífuga.

Simbología

n: velocidad de ensayo [rpm]

nx: velocidad de la bomba [rpm]

pax%: presión de aspiración [%]

pdx%: presión de descarga [%]

 Δhx : caudal de la bomba, presión diferencial en el venturímetro $[mm_{hg}]$

Fx: fuerza medida en la balanza [kp]

 t_a : temperatura de agua en el estanque [°C]

 P_{atm} : presión atmosférica $[mm_{hg}]$

cpax: altura piezométrica del manómetro de aspiración respecto del eje de la bomba [mm]

cpdx: altura piezométrica del manómetro de descarga respecto del eje de la bomba [mm]

V: velocidad

CNSPD: columna neta de succion positiva disponible.

CNSPR: columna neta de succion positiva requerida.

Pv: presion de vapor del liquido bombeado.

Metodología/ procedimiento

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas, Regular la velocidad a la indicada por el profesor.

Luego de inspeccionar los instrumentos y su operación, esperar un tiempo prudente para que se estabilice la operación de la bomba, estrangular, parcialmente, la descarga para situarse en un punto de la curva característica de la bomba ligeramente separada de su extremo derecho. A continuación, tome las siguientes medidas:

Una vez estabilizado se realizaron las siguientes mediciones:

- Velocidad de ensayo.
- Velocidad de la bomba.
- Presión de aspiración.
- Presión de descarga.
- Caudal de la bomba.
- Fuerza medida en la balanza.
- Temperatura del agua en el estanque.
- Presión atmosférica.
- Altura piezométrica del manómetro de aspiración respecto del eje de la bomba.
- Altura piezométrica del manómetro de descarga respecto del eje de la bomba.

Finalizada esta, estrangular la válvula de aspiración haciendo disminuir la presión de aspiración y el caudal en un valor indicado por el profesor. A continuación, restablecer el caudal al valor original abriendo la válvula de descarga. Y se realizan las mediciones efectuadas anteriormente. El procedimiento se repite tantas veces como sea necesario hasta alcanzar plena cavitación.

Tabla de valores medidos

		ENSA	O DE CA	VITACIO	ÓN DE U	NA BON	/IBA ENTR	RIFUGA							
	VALORES MEDIDOS 2900 (curva H vs Q)														
						Ì									
	n	срах	cpdx	nx	pax	pdx	□ hx	Fx	Т	Patm					
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mmHg]	[kp]	[°C]	[mmHg]					
1	2900	0.115	0.165	2899	91.8	5.6	140	1.19	18	757.1					
2	2900	0.115	0.165	2899	93.8	10.2	128	1.27	18	757.1					
3	2900	0.115	0.165	2898	96.3	14.6	115	1.34	18	757.1					
4	2900	0.115	0.165	2899	98.6	19.4	101	1.42	18	757.1					
5	2900	0.115	0.165	2898	100.8	24	87	1.48	18	757.1					
6	2900	0.115	0.165	2897	103.2	28.5	74	1.53	18	757.1					
7	2900	0.115	0.165	2899	104.8	32.2	63	1.53	18	757.1					
8	2900	0.115	0.165	2896	107.3	37.7	50	1.57	18	757.1					
9	2900	0.115	0.165	2897	109.7	42.2	36	1.53	18	757.1					
10	2900	0.115	0.165	2898	112.2	46.5	22	1.45	18	757.1					
11	2900	0.115	0.165	2899	115.2	50.3	9	1.21	19	757.1					
12	2900	0.115	0.165	2900	121.1	54.3	0	0.82	19	757.1					

Tabla 1

	PUNTO 1													
	n	срах	cpdx	nx	pax	pdx	□ hx	Fx	Т	Patm				
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mmHg]	[kp]	[°C]	[mmHg]				
1	2900	0.115	0.165	2908	97.4	17.6	105	1.4	16	757.1				
2	2900	0.115	0.165	2912	79.5	12.8	105	1.4	16	757.1				
3	2900	0.115	0.165	2912	63	8.6	105	1.4	16	757.1				
4	2900	0.115	0.165	2913	53.5	5.2	105	1.38	16	757.1				
5	2900	0.115	0.165	2916	50.4	5	98	1.35	16	757.1				
6	2900	0.115	0.165	2917	39.4	4.9	89	1.4	16.5	757.1				
7	2900	0.115	0.165	2916	36.2	4.7	79	1.4	17	757.1				

Tabla 2

	PUNTO 2													
	n	срах	cpdx	nx	pax	pdx	□ hx	Fx	Т	Patm				
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mmHg]	[kp]	[°C]	[mmHg]				
1	2900	0.115	0.165	2917	102.3	27.8	78	1.52	17	757.1				
2	2900	0.115	0.165	2917	74	20.5	78	1.52	17	757.1				
3	2900	0.115	0.165	2917	48.4	10.6	78	1.48	17	757.1				
4	2900	0.115	0.165	2917	37.7	4.7	78	1.41	17.5	757.1				
5	2900	0.115	0.165	2915	35.9	4.6	73	1.4	17.5	757.1				
6	2900	0.115	0.165	2917	35.8	4.7	69	1.38	18	757.1				
7	2900	0.115	0.165	2916	36.1	4.4	64	1.35	18	757.1				

Tabla 3

	PUNTO 3													
	n	срах	cpdx	nx	pax	pdx	□ hx	Fx	Т	Patm				
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mmHg]	[kp]	[°C]	[mmHg]				
1	2900	0.115	0.165	2916	109.8	43.8	35	1.49	18	757.1				
2	2900	0.115	0.165	2917	86.1	36.8	35	1.55	18	757.1				
3	2900	0.115	0.165	2918	26.8	4	35	1.28	18	757.1				
4	2900	0.115	0.165	2918	27.8	3.7	34	1.25	18.5	757.1				
5	2900	0.115	0.165	2917	29.3	3.6	31	1.2	18.5	757.1				

Tabla 4

Fórmulas

Caudal:

De gráfico del venturímetro adjunto en el PPT de la clase se determina el caudal para cada línea de mediciones:

Qx

Caudal corregido:

$$Q = Qx \cdot \left(\frac{n}{nx}\right) \left[\frac{m^3}{h}\right]$$

Presión de aspiración:

$$pax = 0.1pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

cpax= 115[mm]

Presión de descarga:

$$pdx = 0.4pdx\% + \frac{cpdx}{1000} [m_{ca}]$$

cpdx = 165[mm]

Altura:

$$Hx = -pax + pdx [m_{ca}]$$

Altura corregida:

$$H = Hx \cdot \left(\frac{n}{nx}\right)^2 [m_{ca}]$$

Potencia en el eje de la bomba:

$$Nex = 0.0007355 Fxnx [kW]$$

Potencia en el eje de la bomba corregida:

$$Ne = Nex \cdot \left(\frac{n}{nx}\right)^3 [kW]$$

Potencia hidráulica:

$$Nh = \gamma \cdot \frac{QH}{3600} [kW]$$

$$\gamma = peso \ espec ífico \ del \ agua \ en \ \left[\frac{N}{m^3}\right]$$

Rendimiento global:

$$\eta_{gl} = \frac{Nh}{Ne} 100 \, [\%]$$

Velocidad:

$$V = \frac{4Q}{3600\pi D_A^2} \left[\frac{m}{s} \right]$$

$$D_A = 0.1023[m]$$

Columna neta de succión positiva disponible, CNSPD.

$$CNSPD = pax + \frac{13,54Patm}{1000} + \frac{V^2}{2g} - Pv [m_{ca}]$$

Pv= presión de vapor del líquido bombeado en [mca].

Columna neta de succión positiva requerida, CNSPR.

CNSPR=CNSPD_{crítica}

Tablas de valores calculados

Pv	Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	ηgl	V	CNSPD
mca	m^3/h	m^3/h	mca	mca	mca	mca	kW	kW	kW	-	m/s	mca
0,22338	112,32	112,359	-0,820	2,240	3,060	3,062	2,537	2,540	0,937	36,878	3,798	9,944
0,22338	102,6	102,635	-0,620	4,080	4,700	4,704	2,708	2,711	1,314	48,480	3,469	10,022
0,22338	99,72	99,789	-0,370	5,840	6,210	6,219	2,856	2,862	1,689	59,024	3,372	10,238
0,22338	92,88	92,912	-0,140	7,760	7,900	7,906	3,028	3,031	2,000	65,973	3,140	10,391
0,22338	85,68	85,739	0,080	9,600	9,520	9,533	3,155	3,161	2,225	70,390	2,897	10,536
0,22338	82,08	82,165	0,320	11,400	11,080	11,103	3,260	3,270	2,483	75,943	2,775	10,741
0,22338	82,8	82,829	0,480	12,880	12,400	12,409	3,262	3,266	2,798	85,677	2,800	10,908
0,22338	64,08	64,169	0,730	15,080	14,350	14,390	3,344	3,358	2,514	74,856	2,167	10,997
0,22338	53,64	53,696	0,970	16,880	15,910	15,943	3,260	3,270	2,330	71,264	1,814	11,165
0,22338	39,6	39,627	1,220	18,600	17,380	17,404	3,091	3,097	1,877	60,621	1,339	11,339
0,23868	25,2	25,209	1,520	20,120	18,600	18,613	2,580	2,583	1,277	49,457	0,852	11,569
0,23868	0	0,000	2,110	21,720	19,610	19,610	1,749	1,749	0,000	0,000	0,000	12,122

punto 1

Pv	Qx	Q	pax	pdx	Нх	Η	Nex	Ne	Nh	ηgl	V	CNSPD
mca	m^3/h	m^3/h	mca	mca	mca	mca	kW	kW	kW	1	m/s	mca
0,1855176	93,24	92,983	-0,260	7,040	7,300	7,260	2,994	2,970	1,838	61,881	3,144	10,310
0,1855176	93,24	92,856	-2,050	5,120	7,170	7,111	2,998	2,962	1,798	60,696	3,140	8,518
0,1855176	93,24	92,856	-3,700	3,440	7,140	7,082	2,998	2,962	1,790	60,442	3,140	6,868
0,1855176	93,24	92,824	-4,650	2,080	6,730	6,670	2,957	2,917	1,686	57,777	3,139	5,918
0,1855176	93,204	92,693	-4,960	2,000	6,960	6,884	2,895	2,848	1,737	60,993	3,134	5,607
0,191607	86,004	85,503	-6,060	1,960	8,020	7,927	3,004	2,951	1,845	62,515	2,891	4,426
0,1977168	84,06	83,599	-6,380	1,880	8,260	8,170	3,003	2,953	1,859	62,952	2,827	4,081

	punto 2														
Pv	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	V	CNSPD			
mca	m^3/h	m^3/h	mca	mca	mca	mca	kW	kW	kW	-	m/s	mca			
0,1977168	83,16	82,675	0,229	11,120	10,891	10,765	3,261	3,204	2,423	75,606	2,795	10,681			
0,1977168	83,16	82,675	-2,601	8,200	10,801	10,676	3,261	3,204	2,403	74,981	2,795	7,851			
0,1977168	83,16	82,675	-5,161	4,240	9,401	9,292	3,175	3,120	2,091	67,026	2,795	5,291			
0,2041581	83,16	82,675	-6,231	1,880	8,111	8,017	3,025	2,973	1,804	60,700	2,795	4,215			
0,2041581	82,44	82,016	-6,411	1,840	8,251	8,167	3,002	2,955	1,823	61,693	2,773	4,028			
0,2105994	79,2	78,738	-6,421	1,880	8,301	8,205	2,961	2,909	1,759	60,450	2,662	3,981			
0,2105994	75,96	75,543	-6,391	1,760	8,151	8,062	2,895	2,848	1,658	58,215	2,554	3,982			

	punto 3														
Pv	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	٧	CNSPD			
mca	m^3/h	m^3/h	mca	mca	mca	mca	kW	kW	kW	-	m/s	mca			
0,2105994	52,92	52,630	0,979	17,520	16,541	16,360	3,196	3,143	2,344	74,569	1,780	11,181			
0,2105994	52,92	52,612	-1,391	14,720	16,111	15,924	3,325	3,268	2,281	69,795	1,779	8,811			
0,2105994	52,92	52,594	-7,321	1,600	8,921	8,812	2,747	2,697	1,262	46,784	1,778	2,881			
0,217413	52,56	52,236	-7,221	1,480	8,701	8,594	2,683	2,633	1,222	46,407	1,766	2,972			
0,217413	51,84	51,538	-7,071	1,440	8,511	8,412	2,575	2,530	1,180	46,654	1,743	3,118			

Gráficos

• Con los valores del ensayo anterior, trace la curva característica de la bomba para la velocidad ensayada y sobreponga los nuevos valores de altura y caudal obtenidos. ¿Qué significan las desviaciones que se producen?

Las desviaciones que se producen son debido a las cavitaciones, en el lugar donde se produce la desviación es el punto exacto en que se produce la cavitación.

Ilustración 1

 Trace tantos gráficos como series de mediciones se hayan realizado. En la ordenada H, Ne en [%] respecto al valor sin cavitación y ηgl, y en la abscisa la CNSPD.

Ilustración 2

Ilustración 3

Ilustración 4

¿Cómo determina la CNSPD crítica y qué representa?

A partir de la información de los gráficos, se observó el punto en donde cambia la pendiente de estos, para cada caso esos serian los puntos críticos, en esa posición es el límite, una vez sobrepasado se produce la cavitación.

Conclusión

Durante el presente informe, se obtuvieron cálculos de la columna neta de succión positiva disponible y requerida. Estos valores son de suma importancia para términos de diseño hidráulico eficiente y sin cavitaciones. Al conocer los valores limites podemos diseñar de manera adecuada según los requerimientos sacando el mayor provecho y eficiencia de la máquina o sistema.

Referencias

- [1] http://www2.udec.cl/~josefcastillo/cavitacion.pdf
- [2] https://www.debem.com/es/la-cavitacion-en-las-bombas-centrifugas/