Họ và tên: Bùi Vân Anh

MSSV: 20184026

Học phần: Thực hành kiến trúc máy tính

Mã lớp: 122032

# Báo cáo LAB10

#### 1. Assignment 1

```
.eqv SEVENSEG_LEFT 0xFFFF0011
                                  # Dia chi cua den led 7 doan trai.
                                  # Bit 0 = doan a;
                                  # Bit 1 = doan b; ...
                                  # Bit 7 = dau.
.eqv SEVENSEG_RIGHT 0xFFFF0010 # Dia chi cua den led 7 doan phai
.text
main:
                                  # set value for segments
     li $a0, 0x5B
     jal SHOW_7SEG_LEFT
     li $a0, 0x7D
                                  # set value for segments
     jal SHOW_7SEG_RIGHT
                                  # show
exit: li $v0, 10
     syscall
endmain:
# Function SHOW_7SEG_LEFT: turn on/off the 7seg
# param[in] $a0 value to shown
# remark $t0 changed
SHOW_7SEG_LEFT:
                      li $t0, SEVENSEG_LEFT # assign port's address
                       sb $a0, 0($t0) # assign new value
                       jr $ra
# Function SHOW_7SEG_RIGHT: turn on/off the 7seg
# param[in] $a0 value to shown
# remark $t0 changed
SHOW_7SEG_RIGHT:
                      li $t0, SEVENSEG_RIGHT # assign port's address
                       sb $a0, 0($t0)
                                              # assign new value
                       jr $ra
```

### Kết quả:



Số 2: Các bit sáng là a,b,d,e,g tương ứng với bit số 0,1,3,4,6 bằng 1 => 1101101 = 0x5B

Số 6: Các bit sáng là a,c,d,e,f,g tương ứng với bit số 0,2,3,4,5,6 bằng 1

 $\Rightarrow$  1011111 = 0x7D

### 2. Assignment 2



Ví dụ: Vẽ hình trái tim

- .eqv MONITOR\_SCREEN 0x10010000 #Dia chi bat dau cua bo nho man hinh
- .eqv RED 0x00FF0000 #Cac gia tri mau thuong su dung
- .eqv GREEN 0x0000FF00
- .eqv BLUE 0x000000FF
- .eqv WHITE 0x00FFFFFF
- .eqv YELLOW 0x00FFFF00

.text

## li \$k0, MONITOR\_SCREEN #Nap dia chi bat dau cua man hinh

| 11 \$110, 11101111 on_se | one en alla com suc una co |                    |
|--------------------------|----------------------------|--------------------|
| #(0,2)=> 8               | sw \$t0, 72(\$k0)          | li \$t0, RED       |
| li \$t0, RED             | nop                        | sw \$t0, 120(\$k0) |
| sw \$t0, 8(\$k0)         | li \$t0, RED               | nop                |
| nop                      | sw \$t0, 76(\$k0)          | #4,1=> 132         |
| #(0,4)=>16               | nop                        | li \$t0, RED       |
| li \$t0, RED             | li \$t0, RED               | sw \$t0, 132(\$k0) |
| sw \$t0, 16(\$k0)        | sw \$t0, 80(\$k0)          | nop                |
| nop                      | nop                        | li \$t0, RED       |
| #1,1 =>36                | li \$t0, RED               | sw \$t0, 136(\$k0) |
| li \$t0, RED             | sw \$t0, 84(\$k0)          | nop                |
| sw \$t0, 36(\$k0)        | nop                        | li \$t0, RED       |
| nop                      | #2,6 => 88                 | sw \$t0, 140(\$k0) |
| li \$t0, RED             | li \$t0, RED               | nop                |
| sw \$t0, 40(\$k0)        | sw \$t0, 88(\$k0)          | li \$t0, RED       |
| nop                      | nop                        | sw \$t0, 144(\$k0) |
| #1,3 => 44               | #3,0=> 96                  | nop                |
| li \$t0, RED             | li \$t0, RED               | #4,5 => 148        |
| sw \$t0, 44(\$k0)        | sw \$t0, 96(\$k0)          | li \$t0, RED       |
| nop                      | nop                        | sw \$t0, 148(\$k0) |
| li \$t0, RED             | li \$t0, RED               | nop                |
| sw \$t0, 48(\$k0)        | sw \$t0, 100(\$k0)         | #5,2 => 168        |
| nop                      | nop                        | li \$t0, RED       |
| #1,5 =>52                | li \$t0, RED               | sw \$t0, 168(\$k0) |
| li \$t0, RED             | sw \$t0, 104(\$k0)         | nop                |
| sw \$t0, 52(\$k0)        | nop                        | li \$t0, RED       |
| nop                      | li \$t0, RED               | sw \$t0, 172(\$k0) |
| -                        | sw \$t0, 108(\$k0)         | nop                |
| #2,0 => 64               | nop                        | #5,4 => 176        |
| li \$t0, RED             | li \$t0, RED               | li \$t0, RED       |
| sw \$t0, 64(\$k0)        | sw \$t0, 112(\$k0)         | sw \$t0, 176(\$k0) |
| nop                      | nop                        | nop                |
| li \$t0, RED             | li \$t0, RED               | #6,3 => 204        |
| sw \$t0, 68(\$k0)        | sw \$t0, 116(\$k0)         | li \$t0, RED       |
| nop                      | nop                        | sw \$t0, 204(\$k0) |
| li \$t0, RED             | #3,6 => 120                | nop                |
|                          | '                          | -                  |

#### 3. Assignment 3

### Sửa phần main để vẽ hình thoi:

main: jal TRACK # draw track line

nop

addi \$a0, \$zero, 90 # Marsbot rotates 90\* and start running

jal ROTATE

nop jal GO nop

sleep1: addi \$v0,\$zero,32 # Keep running by sleeping in 1000 ms

li \$a0,10000

syscall

jal UNTRACK # keep old track

nop

jal TRACK # and draw new track line

nop

goDOWN: addi \$a0, \$zero, 135 # Marsbot rotates 135\*

jal ROTATE

nop

sleep2: addi \$v0,\$zero,32 # Keep running by sleeping in 10000 ms

li \$a0,10000

syscall

jal UNTRACK # keep old track

nop

jal TRACK # and draw new track line

nop

goAHEAD: addi \$a0, \$zero, 270 # Marsbot rotates 270\*

jal ROTATE

nop

sleep3: addi \$v0,\$zero,32 # Keep running by sleeping in 2000 ms

li \$a0,10000 syscall

jal UNTRACK # keep old track

nop

jal TRACK # and draw new track line

nop

goUP: addi \$a0,\$zero,315

jal ROTATE

nop

sleep4: addi \$v0,\$zero,32

li \$a0,10000

syscall

end\_main:

# Kết quả:



#### 4. Assignment 4

Đọc văn bản sau đó chuyển mã ASCII , rồi cộng thêm 1. Sau đó chuyển ASCII thành văn bản và in ra màn hình. Nhập vào nếu là "exit" thì thoát

#### CODE:

```
.eqv KEY_CODE 0xFFFF0004 # ASCII code from keyboard, 1 byte
.egv KEY_READY 0xFFFF0000 # =1 if has a new keycode?
# Auto clear after lw
.eqv DISPLAY_CODE 0xFFFF000C # ASCII code to show, 1 byte
.eqv DISPLAY_READY 0xFFFF0008 # =1 if the display is already to do
# Auto clear after sw
.egv e 0x65
.eqv x 0x78
.egv i 0x69
.eqv t 0x74
.text
li $k0, KEY_CODE
li $k1, KEY_READY
li $s0, DISPLAY_CODE
li $s1, DISPLAY_READY
loop: nop
WaitForKey: lw $t1, 0($k1) # $t1 = [$k1] = KEY_READY
            nop
            beg $t1, $zero, WaitForKey # if $t1 == 0 then Polling
            nop
ReadKey:
            lw $t0, 0($k0) # $t0 = [$k0] = KEY_CODE
     j check_e
      nop
WaitForDis: lw $t2, 0($s1) # $t2 = [$s1] = DISPLAY_READY
      beg $t2, $zero, WaitForDis # if $t2 == 0 then Polling
      nop
Encrypt:
            addi $t0, $t0, 1 # change input key
#----
ShowKey:
            sw $t0, 0($s0) # show key
            nop
#----
j loop
nop
check_e:
            beg $t3,e,check_x
            bne $t0,e,WaitForDis
            add $t3,$t0,$zero
            i WaitForDis
```

check\_x: beq \$t4,x,check\_i bne \$t0,x,WaitForDis add \$t4,\$t0,\$zero j WaitForDis check\_i: beq \$t5,i,check\_t bne \$t0,i,WaitForDis add \$t5,\$t0,\$zero j WaitForDis check\_t: beq \$t0,t,exit j reset reset: li \$t3,0 li \$t4,0 li \$t5,0 j WaitForDis exit: li \$v0,10 syscall

### Kết quả:

