Ordonnançement temps réel pour tâches périodiques Ordonnancement temps réel temps réel

- Partant d'un ensemble de tâches Γ
 - Les tâches ayant:
- Un temps d'arrivée
- Un temps d'exécution
- Une échéance
- L'ordonnancement vise à trouver un moyen d'allouer le processeur aux différentes tâches de manière à respecter les contraintes de temps

Tâches périodiques

Variable	Description
Γ	Un ensemble de tâches périodiques
$ au_i$	Une tâche périodique générique
$ au_{i,j}$	La j $^{\mathrm{ème}}$ instance de la tâche périodique $ au_i$
$r_{i,j}$	Le temps d'arrivée de la j $^{\mathrm{ème}}$ instance de la tâche périodique $ au_i$
Φ_i	Le déphasage de la tâche τ_i ; il s'agit du temps d'arrivée de $\tau_{i,0}$ ($\Phi_i=r_{i,0}$)
D_i	Echéance relative de la tâche $ au_i$
$d_{i,j}$	Echéance absolue de la j ^{ème} instance de la tâche τ_i $(d_{i,j} = \Phi_i + (j-1)P_i + D_i)$
$s_{i,j}$	Temps de début d'exécution de la jème instance de la tâche $ au_i$
$f_{i,j}$	Temps de fin d'exécution de la j $^{\rm ème}$ instance de la tâche $ au_i$

Ordonnancement temps réel

•Pour les tâches à échéances sur requête, nous pouvons calculer les temps d'arrivée des tâches, ainsi que leurs échéances respectives de cette manière:

$$r_{i,j} = \Phi_i + (j-1)P_i$$

 $d_{i,j} = r_{i,j} + P_i = \Phi_i + jP_i$

Hypothèse

- Les instances d'une tâche périodique sont activées avec une période constante
- Toutes les instances d'une tâche ont le même pire temps d'exécution C_i
- Toutes les instances d'une tâche ont la même échéance relative Di
- Toutes les tâches sont indépendantes. Il n'y a pas de dépendances entre tâches
- Une tâche ne peut se suspendre elle-même
- La surcharge liée aux opérations du noyau est négligée

Période d'étude

- Les ordonnancements sont dédiés aux ensembles de tâches périodiques.
- · Alors le fonctionnement complet du système est donc cyclique.
- L'algorithme d'ordonnancement doit trouver une séquence de tâches, valable sur toute la durée de fonctionnement du système.
- Cette période de longueur L est appelée période d'étude, ou période de base.

Période d'étude

$$L = [0, PPCM(P_i)]$$

Où le PPCM dénote le plus petit multiple commun des périodes des tâches.

- Si les tâches sont ordonnançables sur la période d'étude, nous pouvons garantir qu'elles le seront pour un temps infini.
- Pour des tâches asynchrones, ne débutant donc pas au même instant, la période d'étude est :

Période d'étude

$$L = [\min\{r_{i,0}\}, 2 \times PPCM(P_i) + \max\{r_{i,0}]\}$$

en présence de tâches apériodiques, la période d'étude devient :

$$L = [\min\{r_{i,0}\}, 2 \times PPCM(P_i) + \max\{r_{i,0}, r_j + D_j\}]$$

Où r_i est la date d'activation de la tâche apériodique T_i , et où D_i est son échéance relative.

Exemple

Tâche	Coût	Période
T_1	10	25
T_2	5	50
T_3	30	100

• Pour une tâche τ_i , le facteur d'occupation est défini par:

$$u_i = \frac{C_i}{P_i}$$

Pour l'ensemble des tâches Γ, le facteur d'utilisation est dès lors:

$$U = \sum_{i=1}^{n} \frac{C_i}{P_i}$$

 Une condition nécessaire (mais pas suffisante) pour qu'un ensemble de tâches soit ordonnançable:

$$U = \sum_{i=1}^{n} \frac{C_i}{P_i} \le 1$$

- Mais il dépend des caractéristiques des tâches et de l'algorithme appliqué
- Il existe un $U_{ub}(\Gamma, A)$ (Upper Bound) au-delà duquel les tâches ne sont pas ordonnançables
- Lorsque U = $U_{ub}(\Gamma, A)$, l'ensemble Γ utilise entièrement le processeur
- L'augmentation du temps d'exécution d'une des tâches rend l'ensemble non ordonnançable

 Pour un algorithme A donné, il existe une valeur minimale de U_{ub} (Least Upper Bound)

$$U_{lub}(A) = \min_{\Gamma} U_{ub}(\Gamma, A)$$

 De ce fait, un ensemble de tâches Γ est ordonnançable si son facteur d'utilisation du processeur est inférieur à cette limite minimale

$$U_{\Gamma} = \sum_{i=1}^n rac{C_i}{P_i} \leq U_{lub}(A) = \min_{\Gamma} U_{ub}(\Gamma,A) \Rightarrow \Gamma$$
est ordonnançable

Rate Monotonic

- L'algorithme Rate Monotonic est un algorithme statique, applicable à un ensemble de tâches à échéance sur requête, où les priorités des tâches sont fixes et décidée avant le lancement du système.
- Plus une tâche a une petite période d'activation, plus sa priorité sera haute.

Analyse d'ordonnançabilité (Least Upper Bound)

Une condition suffisante

$$\sum_{i=1}^{n} \frac{C_i}{P_i} \le U_{lub_{RM}}(n) = n(2^{\frac{1}{n}} - 1)$$

\overline{n}	U_{lub}
1	1.000
2	0.828
3	0.780
4	0.757
5	0.743

d'ordonnançabilité est :

• Nous pouvons calculer U_{lub} pour de grandes valeurs de n :

$$U_{lub} = \lim_{n \to \infty} n(2^{\frac{1}{n}} - 1) = ln2 \simeq 0.69$$

Analyse d'ordonnançabilité (Hyperbolic Bound)

En 2001, une nouvelle condition d'ordonnançabilité, appelée
 Hyperbolic Bound, a été proposée. Il s'agit également d'une condition suffisante mais pas nécessaire :

$$\prod_{i=1}^{n} (U_i + 1) \le 2$$

 Cette condition est moins restrictive que la précédente, et est donc intéressante.

Tâche	Coût	Période
T_0	2	6
T_1	3	8
T_2	4	24

	$T_0\\T_1\\T_2$	2 3 4	6 8 24					
T.	1 1 1			_	1 1	1 1	1	>
Ţ	1	<u> </u>	<u> </u>				<u> </u>	
T	1						1	>

20

15

Tâche Coût Période

10

 T_0

Process	Execution time	Period
P1	1	8
P2	2	5
P3	2	10

Least Upper Bound

L'utilisation sera :

$$\frac{1}{8} + \frac{2}{5} + \frac{2}{10} = 0.725.$$

 La condition suffisante pour les processus, sous laquelle nous pouvons conclure que le système est planifiable est :

$$U_{lub}=3(2^{rac{1}{3}}-1)=0.77976>0.693$$

- − 0.693 utilisation de RMS pour n=∞
- Puisque 0.725 < 0.77976 , il est déterminé que le système est garanti comme étant ordonnançable.

Process	Execution time	Period
P1	3	16
P2	2	5
Р3	2	10

Least Upper Bound

$$- \text{ L'utilisation sera}: \frac{3}{16} + \frac{2}{5} + \frac{2}{10} = 0.7875.$$

 La condition suffisante pour les processus, sous laquelle nous pouvons conclure que le système est planifiable est :

$$U_{lub} = 3(2^{\frac{1}{3}} - 1) = 0.77976 > 0.693$$

- 0.693 utilisation de RMS pour n=∞
- Puisque 0.7875 > 0.77976 , il est déterminé que le système n'est pas garanti comme étant ordonnançable.

Hyperbolic Bound

– En utilisant la limite hyperbolique :

$$(\frac{3}{16}+1)*(\frac{2}{5}+1)*(\frac{2}{10}+1)=1.995\leq 2$$

- on constate que l'ensemble de tâches est ordonnançable.

Deadline Monotonic

- L'algorithme Rate Monotonic est basé sur l'hypothèse que les tâches sont à échéance sur requête.
- · échéances pourront être plus petites que les périodes.
- Dans ce cas, l'algorithme Deadline Monotonic est un algorithme optimal dans le cas des algorithmes à priorité statique avec échéances plus petites que les périodes.
 Comme RM, il est préemptif.

- Plus son échéance est petite, plus sa priorité est grande.
- Une condition suffisante d'ordonnançabilité est :

$$\sum_{i=1}^{n} \frac{C_i}{D_i} \le n(2^{\frac{1}{n}} - 1)$$

- la charge du processeur y est surestimée.
- Il est possible de déduire un autre test, en se basant sur les observations suivantes :

- 1)Le pire cas au niveau des demandes d'utilisation du processeur se trouve au moment où toutes les tâches sont activées simultanément
- 2)Le pire temps de réponse d'une tâche correspond à la somme de son temps d'exécution et des interférences des tâches de priorité supérieure.
- Si nous supposons les tâches ordonnées selon l'ordre ascendant de leurs échéances
- Ordonnançables si:

$$\forall i: 1 \leq i \leq n \quad C_i + I_i \leq D_i$$

Où l_i est l'interférence mesurée sur la tâche τ_i :

$$I_i = \sum_{j=1}^{i-1} \left\lceil \frac{D_i}{P_j} \right\rceil C_j$$

Test suffisant, mais pas nécessaire

Exemple

Tâche	Coût	Période	Echéance
T_0	2	6	5
T_1	3	8	4
T_2	4	24	20

Exemple

Tâche	Coût	Période	Echéance
T_0	2	6	5
T_1	3	8	4
T_2	4	24	20

Earliest Deadline First

•L'algorithme Earliest Deadline First (EDF) donne la priorité à la tâche ayant l'échéance la plus proche.

L'algorithme EDF est optimal dans le cas préemptif.
 La condition nécessaire et suffisante
 d'ordonnançabilité est :

$$\sum_{i=1}^{n} \frac{C_i}{P_i} \le 1$$

Exemple

Tâche	Coût	Période
T_0	2	5
T_1	3	7
T_2	1	10

Exemple

Tâche	Coût	Période
T_0	2	5
T_1	3	7
T_2	1	10

Least Laxity First

 L'algorithme Least Laxity First (LLF) est un algorithme à priorité dynamique. Il traite des tâches périodiques pour lesquelles la préemption est autorisée.

Least Laxity First

- L = D C: sa laxité nominal. Indique le retard maximum que peut prendre la tâche sans dépasser son échéance
- D(t) = d t: son délai critique résiduel au temps t
- C(t): sa durée d'exécution résiduelle au temps t
- L(t) = D(t) C(t): sa laxité résiduelle au temps t

 La condition d'ordonnançabilité est identique à celle d'EDF.

$$\sum_{i=1}^{n} \frac{C_i}{P_i} \le 1$$

Exemple

