

(11) Publication number:

08-250120

(43)Date of publication of application : 27.09.1996

(51)Int.CI.

HO1M 4/58 HO1M 4/02

H01M 10/40

(21)Application number: 07-078296

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

08.03.1995

(72)Inventor: UEHARA MAYUMI

SHOJI YOSHIHIRO YAMAZAKI MIKIYA

NISHIO KOJI

SAITO TOSHIHIKO

(54) LITHIUM SECONDARY BATTERY

(57)Abstract:

PURPOSE: To provide a lithium secondary battery having an increased charge/ discharge cycle characteristic.

CONSTITUTION: This lithium secondary battery is provided with a positive electrode wherein a lithium-'transition metals' composite oxide is adopted as positive electrode active material, a negative electrode, and a nonaqueous electrolyte containing an organic solvent. The lithium-'transition metals' composite oxide has the sulfide of B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Ru, Ag, Ta, Bi, In, Mo, or W, and a coating composed of selenide or telluride. Since the lithium-'transition metals' composite oxide, having a coating composed of specific chalcogenide on a particle surface, is used as positive electrode active material; the decomposition of the organic solvent is difficult to occur on the positive electrode side at the time of a charge/discharge cycle.

LEGAL STATUS

[Date of request for examination]

14.03.2000

[Date of sending the examiner's decision of

25.02.2003

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

· [Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-250120

(43)公開日 平成8年(1996)9月27日

(51)IntCl*	識別記号	庁内整理番号	FΙ				技術表示	下箇所
H01M 4/58	•	•	H01M	4/58				
4/02				4/02		С		
10/40			_ 1	10/40	· .	Z		
		•						
			客查請求	未請求	請求項の数 4	FD	(全 6	頁)
(21)出顧書号	特顯平7-78296		(71)出顧人	0000018	189		_	
				三洋電視	農株式会社		•	
(22) 出顧日	平成7年(1995)3月	18日		大阪府	了口市京阪本通:	2丁目	5番5号	÷
			(72)発明者	上原	其弓			
				大阪府等	了口市京阪本通:	2丁目	5番5号	Ξ
		•		洋電機構	未式会社内			
			(72)発明者	小路 自	注 浩			
				大阪府气	了口市京阪本通:	2丁目	5番5号	Ξ
				洋電機材	未式会社内			
			(72)発明者	山崎草	中也			
•				大阪府气	西本國京市口	2丁目	5番5号	Ξ
				洋電機材	大式会社内			
			(74)代理人	弁理士	松尾 智弘			
							具終育に	なく

(54) 【発明の名称】 リチウム二次電池

(57) 【要約】

【構成】リチウムー遷移金属複合酸化物を正極活物質とする正極と、負極と、有機溶媒を含有する非水電解質とを備えるリチウム二次電池であって、前記リチウムー遷移金属複合酸化物が、粒子表面に、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Ru、Ag、Ta、Bi、In、Mo又はWの硫化物、セレン化物又はテルル化物からなる被膜を有している。

【効果】特定のカルコゲン化物からなる被膜を粒子表面に有するリチウムー遷移金属複合酸化物が正極活物質として使用されているので、充放電サイクル時に正極側で有機溶媒の分解が起こりにくい。このため、本発明電池は充放電サイクル特性に優れる。

【特許請求の範囲】

【請求項1】リチウム一遷移金属複合酸化物を正極活物質とする正極と、負極と、有機溶媒を含有する非水電解質とを備えるリチウム二次電池であって、前記リチウム一遷移金属複合酸化物が、粒子表面に、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Ru、Ag、Ta、Bi、In、Mo又はWの硫化物、セレン化物又はテルル化物からなる被膜を有していることを特徴とするリチウム二次電池。

【請求項2】前記リチウムー遷移金属複合酸化物が、一般式Lix Niy Coz Mi-y-z Oa (式中、MはB、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Cu、Zn、Ga、Ge、Zr、Nb、Ru、Ag、Ta、Bi、In、Mo及びWよりなる群から選ばれた少なくとも一種の元素、 $0 \le y \le 1$ 、 $0 \le z \le 1$ 、0. $5 \le y + z \le 1$ 、1. $8 \le a \le 2$. 2 である)で表される請求項1記載のリチウム二次電池。

【請求項3】前記被膜がTiS2、MoS2又はこれらの混合物からなる請求項1記載のリチウム二次電池。

【請求項4】前記硫化物、前記セレン化物又は前記テルル化物の前記リチウムー遷移金属複合酸化物に対する割合が0.1~20モル%である請求項1記載のリチウム二次電池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、リチウム二次電池に係わり、詳しくは充放電サイクル特性に優れたリチウム二次電池を提供することを目的とした、正極活物質の改良 30 に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】近年、 リチウム二次電池が、水の分解電圧を考慮する必要がな く、正極活物質を適宜選定することにより高電圧化を達 成することが可能であることから、注目されつつある。

【0003】この種の電池の代表的な正極活物質としては、容易に作製することができるとともに、容量が大きいことから、LiNiO2、LiCoO2、LiMn2O4などのリチウムー遷移金属複合酸化物が主に使用されている。

【0004】しかしながら、リチウムー遷移金属複合酸化物を正極活物質として使用したリチウム二次電池には、充放電サイクル特性が未だ実用上充分満足の行く程度のものではないという問題がある。これは、リチウムー遷移金属複合酸化物の粒子表面に存在する高活性な部分で、非水電解液(有機溶媒)が分解することによるものである。

【0005】本発明は、かかる事情に鑑みなされたものいては、従来リチウム二次電池用として提案され、或いであって、その目的とするところは、リチウムー遷移金 50 は実用されている種々の材料を特に制限なく用いること

属複合酸化物の粒子表面の活性を低減させることにより 正極側での有機溶媒の分解を抑制し、もって充放電サイ クル特性に優れたリチウム二次電池を提供するにある。 【0006】

【課題を解決するための手段】上記目的を達成するための本発明に係るリチウム二次電池(本発明電池)は、リチウム一遷移金属複合酸化物を正極活物質とする正極と、負極と、有機溶媒を含有する非水電解質とを備えるリチウム二次電池であって、前記リチウム一遷移金属複合酸化物が、粒子表面に、B、Na、Mg、A1、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Ru、Ag、Ta、Bi、In、Mo又はWの硫化物、セレン化物又はテルル化物からなる被膜を有してなる。

【0007】上記被膜としては、充放電サイクル特性に特に優れた電池を得る上で、TiSz、MoSz又はこれらの混合物からなる被膜が特に好ましい。

【0008】上記リチウムー遷移金属複合酸化物の代表的なものとしては、LiMn2 O4、LiMnO2、LiNiO2、LiNiO2、LiNiO3 Co0.5 O2が挙げられる。充放電サイクル特性に特に優れたリチウム二次電池を得る上で、一般式Lix Niy Coz MI-y-z Oa (式中、MはB、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Cu、Zn、Ga、Ge、Zr、Nb、Ru、Ag、Ta、Bi、In、Mo及びWよりなる群から選ばれた少なくとも一種の元素、0 < x < 1. 3. $0 \le y \le 1$. $0 \le z \le 1$. 0. $5 \le y + z \le 1$. 1. $8 \le a \le 2$. 2 である)で表されるリチウムー遷移金属複合酸化物が特に好ましい。

【0009】上記硫化物、上記セレン化物又は上記テルル化物の上記リチウム-遷移金属複合酸化物に対する好適な割合は0.1~20モル%である。同割合が0.1 モル%未満の場合は充放電サイクル特性が充分に改善されず、一方同割合が20モル%を越えた場合は放電容量が低下する。

【0010】本発明における硫化物、セレン化物又はテルル化物からなる被膜を粒子表面に有するリチウム一遷移金属複合酸化物は、例えばリチウム一遷移金属複合酸化物とB、Na、Mg等の特定の元素の硫化物、セレン化物又はテルル化物との所定割合の混合物を所定の温度(通常、400~800°C)で10~20時間程度熱処理する固相法により容易に得ることができる。

【0011】本発明の特徴は、正極活物質として、リチウムー遷移金属複合酸化物の粒子表面に特定の硫化物、セレン化物又はテルル化物からなる被膜を形成したものを使用した点にある。それゆえ、負極材料、有機溶媒を含有する非水電解質など、電池を構成する他の部材については、従来リチウム二次電池用として提案され、或いは実用されている種々の材料を特に制限なく用いること

が可能である。

【0012】例えば、負極材料としては、リチウムイオ ンを電気化学的に吸蔵及び放出することが可能な物質又 は金属リチウムを使用することができる。リチウムイオ ンを電気化学的に吸蔵及び放出することが可能な物質と しては、黒鉛、コークス、有機物焼成体等の炭素材料、 LiNb2 Os 等の金属酸化物及びリチウム合金 (リチ ウムーアルミニウム合金、リチウムー鉛合金、リチウム - 錫合金).が例示される。

【0013】また、非水電解質の有機溶媒としては、エ 10 チレンカーボネート、ビニレンカーボネート、プロピレ ンカーボネートなどの高誘電率溶媒や、これらとジエチ ルカーボネート、ジメチルカーボネート、1,2-ジメ トキシエタン、1,2-ジエトキシエタン、エトキシメ トキシエタンなどの低沸点溶媒との混合溶媒が、同溶質 としては、LiPF6、LiC1O4、LiCF3 SO 3 LiN (CF3 SO2) 2 LiBF4 LiAs F6 が、それぞれ例示される。なお、本発明における有 機溶媒を含有する非水電解質には、ゲル状固体電解質 (擬似固体電解質) も含まれる。

[0014]

【作用】正極活物質としてのリチウムー遷移金属複合酸 化物の粒子表面に特定のカルコゲン化物からなる被膜が 形成されてその表面活性が低減されているので、充放電 サイクル時の正極側での有機溶媒(非水電解液中の有機 溶媒又はゲル状固体電解質中の有機溶媒)の分解が起こ りにくくなる。

[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細 のではなく、その要旨を変更しない範囲において適宜変 更して実施することが可能なものである。

【0016】 (実施例1) 扁平型のリチウム二次電池 (本発明電池) を組み立てた。

【0017】 〔正極〕 Liz CO3 とMnO2 とをモル 比1:4で乳鉢にて混合し、乾燥空気雰囲気下にて75 0°Cで20時間熱処理し、石川式らいかい乳鉢にて粉 砕して、LiMn2 O4 (正極活物質)を得た。

【0018】次いで、このLiMn2 O4 100モル部 とTiSe2 10モル部とを混合し、650° Cで10 40 時間熱処理してLiMn2 O4 の粒子表面にTiSe2 の被膜を形成し、正極活物質を作製した。 LiMn2 O 4 の粒子表面に被膜が形成されたことは、X線光電子分 光法 (X-ray Photoelectron Spectroscopy) により確認 した(以下の被膜についても同じ方法により確認し た。)。

【0019】この正極活物質と、導電剤としてのアセチ レンプラックと、結着剤としてのポリフッ化ビニリデン とを、重量比90:6:4で混合して正極合剤を調製 し、この正極合剤を2トン/cm²の成型圧で直径20 50 活物質を作製した。この正極活物質を使用したこと以外

mmの円盤状に加圧成型した後、250°Cで2時間熱 処理して正極を作製した。

【0020】〔負極〕所定の厚みを有する金属リチウム 圧延板を直径20mmの円盤状に打ち抜いて負極を作製 した。

【0021】〔非水電解液〕プロピレンカーボネートと 1,2-ジメトキシエタンとの体積比1:1の混合溶媒 に、過塩素酸リチウムを1M (モル/リットル) の割合 で溶かして非水電解液を調製した。

【0022】 〔電池の組立〕以上の正極、負極及び非水 電解液を用いて扁平型の本発明電池BA1を組み立てた (電池寸法:直径24.0mm、厚さ3.0mm)。な お、セパレータとしては、ポリプロピレン製の微多孔膜 を使用し、これに先の非水電解液を含浸させた。

【0023】図1は、作製した本発明電池BA1を模式 的に示す断面図であり、図示の本発明電池BA1は、正 極1、負極2、これら両電極1,2を互いに離間するセ パレータ3、正極缶4、負極缶5、正極集電体6、負極 集電体7及びポリプロピレン製の絶縁パッキング8など 20 からなる。

【0024】正極1及び負極2は、非水電解液を含浸し たセパレータ3を介して対向して正負極缶4,5が形成 する電池ケース内に収納されており、正極1は正極集電 体6を介して正極缶4に、又負極2は負極集電体7を介 して負極缶5に接続され、電池内部に生じた化学エネル ギーを正極缶4及び負極缶5の両端子から電気エネルギ ーとして外部へ取り出し得るようになっている。

【0025】 (実施例2) LiMn2 O4 モル部とTi Te2 10モル部とを混合し、650°Cで10時間熱 に説明するが、本発明は下記実施例に何ら限定されるも 30 処理してLiMn2 O4 の粒子表面にTiTe2 被膜を 形成し、正極活物質を作製した。この正極活物質を使用 したこと以外は実施例1と同様にして、本発明電池BA 2を組み立てた。

> 【0026】 (実施例3) LiMn2 O4 100モル部 とTiS2 10モル部とを混合し、650°Cで10時 間熱処理してLiMn2 O4 の粒子表面にTiS2 被膜 を形成し、正極活物質を作製した。この正極活物質を使 用したこと以外は実施例1と同様にして、本発明電池B A3を組み立てた。

【0027】(実施例4)LiMn2 O4 100モル部 とMoS2 10モル部とを混合し、650°Cで10時 間熱処理してLiMn2 O4 の粒子表面にMoS2 被膜 を形成し、正極活物質を作製した。この正極活物質を使 用したこと以外は実施例1と同様にして、本発明電池B A4を組み立てた。

【0028】 (実施例5) LiMn2 O4 100モル部 とMoS2 5モル部とTiS2 5モル部とを混合し、6 50° Cで10時間熱処理してLiMn2 O4 の粒子表 面にMoS2とTiS2とからなる被膜を形成し、正極

は実施例1と同様にして、本発明電池BA5を組み立てた。

【0029】(実施例6) LiOHとNi(OH)2 と Co(OH)2 とをモル比2:1:1で乳鉢にて混合し、乾燥空気雰囲気下にて750°Cで20時間熱処理し、石川式らいかい乳鉢にて粉砕して、LiNio.5 Coo.5 O2 (正極活物質)を得た。

【0030】次いで、このLiNio.5 Coo.5 O2 1 00モル部とTiSe2 10モル部とを混合し、650 ° Cで10時間熱処理してLiNio.5 Coo.5 O2 の粒子表面にTiSe2 の被膜を形成し、正極活物質を作製した。この正極活物質を使用したこと以外は実施例1と同様にして、本発明電池BA6を組み立てた。

【0031】(実施例7) LiNio.5 Coo.5 O2 1 00モル部とTiTe2 10モル部とを混合し、650 ° Cで10時間熱処理してLiNio.5 Coo.5 O2 の 粒子表面にTiTe2 の被膜を形成し、正極活物質を作 製した。この正極活物質を使用したこと以外は実施例1 と同様にして、本発明電池BA7を組み立てた。

【0032】 (実施例8) LiNios Coos O2 1 00モル部とTiS2 10モル部とを混合し、650° Cで10時間熱処理してLiNios Coos O2 の粒子表面にTiS2の被膜を形成し、正極活物質を作製した。この正極活物質を使用したこと以外は実施例1と同様にして、本発明電池BA8を組み立てた。

【0033】 (実施例9) LiNio 5 Coo 5 O2 1 00モル部とMo S2 10モル部とを混合し、650° Cで10時間熱処理してLiNio 5 Coo 5 O2 の粒* *子表面にTiSe2の被膜を形成し、正極活物質を作製した。この正極活物質を使用したこと以外は実施例1と同様にして、本発明電池BA9を組み立てた。

【0034】(実施例10) LiNio.s Coo.s O2 100モル部とTiS2 5モル部とMoS2 5モル部と を混合し、650° Cで10時間熱処理してLiNi 0.5 Coo.s O2 の粒子表面にTiSe2 とMoS2 と からなる被膜を形成し、正極活物質を作製した。この正 極活物質を使用したこと以外は実施例1と同様にして、 本発明電池BA10を組み立てた。

【0035】(比較例1)正極活物質としてLiMn2 O4 を用いたこと以外は実施例1と同様にして、比較電 池BC1を組み立てた。

【0036】(比較例2)正極活物質としてLiNi 0.5 Coo.5 O2 を用いたこと以外は実施例1と同様に して、比較電池BC2を組み立てた。

【0037】〔充放電サイクル試験〕本発明電池BA1~BA10及び比較電池BC1,2について、充電電流密度1mA/cm²で4.3Vまで充電した後、放電電流密度3mA/cm²で2.5Vまで放電する工程を1サイクルとする充放電サイクル試験を行い、1サイクル目の放電容量に対する150サイクル目の放電容量の容量劣化率〔容量劣化率(%)={(1サイクル目の放電容量)/1サイクル目の放電容量}×100〕を求めた。結果を表1に示す。

[0038]

【表1】

電池	正極活物質	被膜	容量劣化率(%)
BA1 BA2 BA3 BA4 BBA6 BA7 BA8 BA9 BC1 BC2	LiMn ₂ O ₆ LiNi ₉ sCo ₉ sO ₂ LiMn ₂ O ₆ LiMn ₂ O ₆ LiMn ₂ O ₆ LiMn ₂ O ₆	Tisez Titez Tisz Mosz Tisz, Mosz Tisz, Mosz Titez Titez Tisz Mosz Tisz, Mosz	2 2 2 1 1 5 1 3 1 4 2 0 1 9 5 3 4 3 0

【0039】表1より、粒子表面に特定の被膜を有するリチウムー遷移金属複合酸化物を正極活物質として用いた本発明電池BA1~BA10は、粒子表面に被膜を有しないリチウムー遷移金属複合酸化物を正極活物質として用いた比較電池BC1,BC2に比べて、容量劣化率が小さいことが分かる。また、被膜形成材料が同じ場合、リチウムー遷移金属複合酸化物としてLiNio.5Coo.5O2を使用した電池の容量劣化率が特に小さいことから、Li-Ni-Co系複合酸化物が特に好ましいことが分かる。

【0040】 (実施例11) LiNio.5 Coo.5 O2

40 100モル部とTiS2 0.05モル部とを混合し、650° Cで10時間熱処理してLiNi0.5 Coo.5 O2の粒子表面にTiS2の被膜を形成し、正極活物質を作製した。この正極活物質を使用したこと以外は実施例1と同様にして、本発明電池BA11を組み立てた。【0041】(実施例12)LiNi0.5 Coo.5 O2100モル部とTiS2 0.1モル部とを混合し、650° Cで10時間熱処理してLiNi0.5 Coo.5 O2の粒子表面にTiS2の被膜を形成し、正極活物質を作製した。この正極活物質を使用したこと以外は実施例150と同様にして、本発明電池BA12を組み立てた。

【0042】 (実施例13) LiNio.5 Coo.5 O2 100モル部とTiS2 2モル部とを混合し、650° Cで10時間熱処理してLiNio.5 Coo.5 O2 の粒 子表面にTiS2 の被膜を形成し、正極活物質を作製した。この正極活物質を使用したこと以外は実施例1と同 様にして、本発明電池BA13を組み立てた。

【0043】(実施例14)LiNi0.5 Coo.5 O2 100モル部とTiS2 20モル部とを混合し、650 °Cで10時間熱処理してLiNio.5 Coo.5 O2 の 粒子表面にTiS2の被膜を形成し、正極活物質を作製 した。この正極活物質を使用したこと以外は実施例1と 同様にして、本発明電池BA14を組み立てた。

【0044】 (実施例15) LiNio.5 Coo.5 O2 100モル部とTiS2 22モル部とを混合し、650 ° Cで10時間熱処理してLiNio.5 Coo.5 O2 の 粒子表面にTiS2の被膜を形成し、正極活物質を作製 した。この正極活物質を使用したこと以外は実施例1と 同様にして、本発明電池BA15を組み立てた。

【0045】(実施例16) LiMn2 O4 100モル 部とMoS2 0.05モル部とを混合し、650° Cで 20 10時間熱処理してLiMn2 O4 の粒子表面にMoS 2 の被膜を形成し、正極活物質を作製した。この正極活物質を使用したこと以外は実施例1と同様にして、本発明電池BA16を組み立てた。

【0046】 (実施例17) LiMn2 O4 100モル 部とMoS2 O. 1モル部とを混合し、650° Cで1 0時間熱処理してLiMn2 O4 の粒子表面にMoS2 * *の被膜を形成し、正極活物質を作製した。この正極活物質を使用したこと以外は実施例1と同様にして、本発明電池BA17を組み立てた。

【0047】(実施例18)LiMn2 O4 100モル 部とMoS2 2モル部とを混合し、650° Cで10時間熱処理してLiMn2 O4 の粒子表面にMoS2 の被 膜を形成し、正極活物質を作製した。この正極活物質を使用したこと以外は実施例1と同様にして、本発明電池 BA18を組み立てた。

6 【0048】(実施例19) LiMn2 O4 100モル 部とMoS2 20モル部とを混合し、650° Cで10 時間熱処理してLiMn2 O4 の粒子表面にMoS2 の 被膜を形成し、正極活物質を作製した。この正極活物質 を使用したこと以外は実施例1と同様にして、本発明電 池BA19を組み立てた。

【0049】 (実施例20) LiMn2 O4 100モル 部とMoS2 22モル部とを混合し、650° Cで10時間熱処理してLiMn2 O4 の粒子表面にMoS2 の 被膜を形成し、正極活物質を作製した。この正極活物質を使用したこと以外は実施例1と同様にして、本発明電池BA20を組み立てた。

【0050】 〔充放電サイクル試験〕本発明電池BA1 1~BA20について先と同じ条件の充放電サイクル試 験を行い、各電池の容量劣化率を求めた。結果を表2に 示す。

[0051]

【表2】

電池	正極活物質	被疑	被覆量	容量劣化率
	*		(# %)	(%)
BA11 BA12 BA13 BA14 BA15	LiNio, sCoo, sOz LiNio, sCoo, sOz LiNio, sCoo, sOz LiNio, sCoo, sOz LiNio, sCoo, sOz	Tis, Tis, Tis, Tis, Tis,	0.05 0.1 2 20 22	2 5 5 3 5 2 5
BA16 BA17 BA18 BA19 BA20	LiNn ₂ O _b LiNn ₂ O _b LiNn ₂ O _b LiNn ₂ O _b LiNn ₂ O _b	MOS2 MOS2 MOS2 MOS2 MOS2 MOS2	0.05 0.1 2 20 22	2 8 1 5 1 4 1 5 2 8

【0052】表2に示すように、本発明電池BA11~BA15のうちBA12~BA14の容量劣化率が5% 40以下と特に小さく、また本発明電池BA16~BA20のうちBA17~BA19の容量劣化率が15%以下と特に小さい。このことから、リチウムー遷移金属複合酸化物に対する硫化物、セレン化物又はテルル化物の割合(平均被覆率)は0.1~20モル%の範囲が好ましいことが分かる。

【0053】 (実施例21~46) LiNio.5 Co 0.5 O2 100モル部と表3に示す種々の硫化物10モ ル部とを混合し、650° Cで10時間熱処理してLi Nio.5 Coo.5 O2 の粒子表面にそれらの各硫化物か 50

らなる被膜を形成し、正極活物質を作製した。これらの 各正極活物質を使用したこと以外は実施例1と同様にし て、本発明電池BA21~46を組み立てた。

【0054】 [充放電サイクル試験] 本発明電池BA2 1~BA46について先と同じ条件の充放電サイクル試 験を行い、各電池の容量劣化率を求めた。結果を表3に 示す。なお、表3中には、本発明電池BA8, BA9の 容量劣化率も表1より転記して示してある。

[0055]

【表3】

西池 被膜 容量劣化率 (%) BA21 B2S1 2 0 BA22 Na1S 2 1 BA23 M2S 2 0 BA24 A12S1 2 0 BA25 S152 1 9 BA26 K2S 1 8 BA27 CaS 1 9 BA28 SC2S1 2 1 BA28 T152 5 BA28 T152 5 BA29 V2S1 1 9 BA31 M2S 1 8 BA32 Fe2S1 1 8 BA33 CC2S 2 0 BA31 M2S 2 0 BA31 M2S 2 0 BA37 CaS 2 1 BA38 CS 2 1 BA38 CS 2 1 BA37 Ca2S 2 0 BA36 CA2S 2 1 BA37 CA2S 2 0 BA37 CA2S 2 0 BA38 CA2S 2 1 BA38 CA2S 2 0 BA39 CA2S 2 2 0 BA38 CA2S 2 1 BA39 CA2S 2 2 0 BA39 CA2S 2 2 0 BA38 CA2S 2 2 0 BA38 CA2S 2 2 0 BA39 CA2S 2 2 0
BA 2 5 K ₂ S 1 8 BA 2 6 K ₂ S 1 8 BA 2 7 C ₂ S 1 9 BA 2 8 Sc ₂ S ₃ 2 1 BA 3 1 TiS ₂ 5 BA 3 0 Cr ₂ S ₃ 2 0 BA 3 1 MrS BA 3 2 Fe ₂ S ₃ 1 8 BA 3 2 Fe ₂ S ₃ 1 8 BA 3 3 CoS 2 1 BA 3 7 CoS 2 1 BA 3 8 CoS 2 1 1 9 BA 3 8 CoS 3 1 9
BA41 RuS2 18 BA42 Ag2S 21 BA43 TaS2 18 BA44 Bi2S3 18 BA45 In2S3 20 BA 9 McS2 3 BA46 WS2 19

【0056】表3に示すように、本発明電池のうちでも BA8, BA9の容量劣化率が5%以下と特に小さい。 このこと、及び、表1に示すように本発明電池BA10 の容量劣化率が4%と小さいことから、被膜形成材料と してはTiS2、MoS2 又はこれらの混合物が特に好ましいことが分かる。

[0057]

【発明の効果】特定のカルコゲン化物からなる被膜を粒子表面に有するリチウムー遷移金属複合酸化物が正極活物質として使用されているので、充放電サイクル時に正極側で有機溶媒の分解が起こりにくい。このため、本発明電池は充放電サイクル特性に優れる。

【図面の簡単な説明】

【図1】実施例で組み立てた扁平型のリチウム二次電池 (本発明電池) の断面図である。

【符号の説明】

BA1 扁平型のリチウム二次電池(本発明電池)

- 1 正極
- 2 負極
- 20 3 セパレータ

【図1】

フロントページの続き

(72) 発明者 西尾 晃治

大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

(72) 発明者 斎藤 俊彦

大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内