Package 'mvpa'

May 11, 2015

Type Package

2 align.3D.img.in.2D

mvpa-package

Multi-voxel pattern analysis

Description

Provides shortcuts to streamline MVPA using the R caret package

Details

Package: mvpa Type: Package Version: 1.0 Date: 2015-03-29

License: GPL 3.0

This package streamlines testing MVPA solutions in R using caret. caret.train.model.list takes a list of different caret functions and trains the data on each of them, passing the result back in a single list so results can be easily compared.

Author(s)

This package was authored by Ben Smith.

Maintainer: Ben Smith

 denjsmith@gmail.com>

align.3D.img.in.2D Display a 3d image on screen in 3D by tiling it.

Description

Display a 3d image on screen in 3D by tiling it.

Usage

```
align.3D.img.in.2D(img = NULL, dimension = 1)
```

Arguments

img the image to put into 3D

dimension the dimension to reduce across

caret.train.model.list 3

caret.train.model.list

Intended for use with caret; takes a list of items generated by companion function get.caret.model.spec, each of which has one value "method" and one value "tuning" These specify changeable parameters for models It provides a changeable framework so that multiple mthods can all be tested at once There is a list of models here: http://topepo.github.io/caret/modelList.html

Description

Intended for use with caret; takes a list of items generated by companion function get.caret.model.spec, each of which has one value "method" and one value "tuning" These specify changeable parameters for models It provides a changeable framework so that multiple mthods can all be tested at once There is a list of models here: http://topepo.github.io/caret/modelList.html

Usage

```
caret.train.model.list(..., trControl, training.list)
```

Arguments

trControl passed directly to train caret; a list of values that define how this function acts.

Default value if each item doesn't have its own trControl. See trainControl and http://topepo.github.io/caret/training.html#custom. (NOTE: If given, this argu-

ment must be named.)

x passed directly to train caret; an object where samples are in rows and features

are in columns. This could be a simple matrix, data frame or other type (e.g.

sparse matrix)

y passed directly to train caret; a numeric or factor vector containing the outcome

for each sample.

training.list;

a list describing a list of train caret values to run. Should be a list of objects generated by get.caret.model.spec. Each should contain exactly two values, to be passed to train caret: method and tuning. If tuning is an integer, it will be passed to tuneLength. If tuning is a data frame, it will be passed to tuneGrid. If it is null, train's default values for tuneLength will apply. Otherwise an error is generated.

```
caret.train.model.list.default
```

Can take x and y values as the defaults.

Description

Can take x and y values as the defaults.

Usage

```
## Default S3 method:
caret.train.model.list(x, y, trControl, training.list, ...)
```

Arguments

x passed directly to train caret; an object where samples are in rows and features are in columns. This could be a simple matrix, data frame or other type (e.g. sparse matrix)

y passed directly to train caret; a numeric or factor vector containing the outcome for each sample.

passed directly to train caret; a list of values that define how this function acts. Default value if each item doesn't have its own trControl. See trainControl and http://topepo.github.io/caret/training.html#custom. (NOTE: If given, this argument must be named.)

training.list;

a list describing a list of train caret values to run. Should be a list of objects generated by get.caret.model.spec. Each should contain exactly two values, to be passed to train caret: method and tuning. If tuning is an integer, it will be passed to tuneLength. If tuning is a data frame, it will be passed to tuneGrid. If it is null, train's default values for tuneLength will apply. Otherwise an error is generated.

Examples

```
obs <- 500
x.vars <-100
y.vals <- sample(c(1,2),obs,replace = TRUE)
x.vals <- as.data.frame(matrix(rnorm(obs*x.vars,0,1),nrow=obs,ncol=x.vars))
x.vals <- apply(x.vals, 2, function(x.col){return(x.col+y.vals)})
trControl <- trainControl(method="repeatedcv", number=10, repeats=3)
    caret.train.model.list(x.vals
    ,y.vals
    ,trControl
    ,list(
        get.caret.model.spec("svmLinear")
        ,get.caret.model.spec("knn")
)
)</pre>
```

caret.train.model.list.formula

```
caret.train.model.list.formula
```

Can take x and y values as the defaults.

Description

Can take x and y values as the defaults.

Usage

```
## S3 method for class 'formula'
caret.train.model.list(formula, data, trControl,
    training.list, ...)
```

Arguments

formula data

trControl

passed directly to train caret; a list of values that define how this function acts. Default value if each item doesn't have its own trControl. See trainControl and http://topepo.github.io/caret/training.html#custom. (NOTE: If given, this argument must be named.)

training.list;

a list describing a list of train caret values to run. Should be a list of objects generated by get.caret.model.spec. Each should contain exactly two values, to be passed to train caret: method and tuning. If tuning is an integer, it will be passed to tuneLength. If tuning is a data frame, it will be passed to tuneGrid. If it is null, train's default values for tuneLength will apply. Otherwise an error is generated.

createFoldsByGroup Intended for use with caret; creates folds based on the group allocations Use in place of createFolds

Description

Intended for use with caret; creates folds based on the group allocations Use in place of createFolds

Usage

```
createFoldsByGroup(group.allocation)
```

Arguments

```
group.allocation
```

a vector describing which group/fold each item belongs to.

Examples

```
createFoldsByGroup(c(1,1,1,1,2,2,2,2,3,3,3)) \#create 3 folds; two with 4 members each and the third with 3 members.
```

display.2D.img

Display a 2d image on screen.

Description

Display a 2d image on screen.

Usage

```
display.2D.img(ds)
```

Examples

```
display.2D.img(array(rnorm(100^2),dim=c(100, 100)))
```

```
display.3D.img.in.2D
```

Display a 3d image on screen in 3D by tiling it.

Description

Display a 3d image on screen in 3D by tiling it.

Usage

```
display.3D.img.in.2D(img, dimension = 3)
```

Examples

```
data <- array(sample(1:100,10^3,replace=TRUE),c(10,10,10)) display.3D.img.in.2D(data,1)
```

extract.roi 7

extract.roi Extract an ROI from an image timeseries using a mask. Expects an image in the format of NIFTI file. If it's not, we get trouble.

Description

Extract an ROI from an image timeseries using a mask. Expects an image in the format of NIFTI file. If it's not, we get trouble.

Usage

```
extract.roi(img.ts, roi.mask)
```

Arguments

img.ts a 4D image timeseries from which to extract the mask roi.mask the roi mask to use to extract the file.

Examples

```
image.filename <- system.file("extdata", "haxby2001subj1bold.nii.gz", package = "mvpa")
mask.filename <- system.file("extdata", "haxby2001subj1mask.nii.gz", package = "mvpa")
fmri.image <- read.image(image.filename)
mask.image <- read.image(mask.filename)
roi.data <- extract.roi(fmri.image, mask.image)
summary(roi.data)</pre>
```

```
get.caret.model.spec
```

Intended for use with caret; specifies a caret model specification for use by companion function caret.train.model.list There is a list of models here: http://topepo.github.io/caret/modelList.html

Description

Intended for use with caret; specifies a caret model specification for use by companion function caret.train.model.list There is a list of models here: http://topepo.github.io/caret/modelList.html

Usage

```
get.caret.model.spec(method, tuning = NULL, preProcess = NULL, ...)
```

Arguments

method	method to be passed to train caret
tuning	tuning method to be passed to train caret etiher a tuneGrid data frame or an integer to be passed to tuneLength
• • •	Values that will be passed directly to the function; in caret, these are values that aren't supported as tuning parameters.

Examples

```
get.caret.model.spec("knn",tuning = 5, preProcess = "pca")
#get a knn model spec, with 5 a tuneLength of 5, and use PCA pre-processing.
```

```
load.preprocess.subject
```

load and pre-process a subject

Description

load and pre-process a subject

Usage

```
load.preprocess.subject(img.path, mask.path, run.path = NULL,
  run.factor.list = NULL)
```

Arguments

```
list of the run objects as a file to look up
run.path
run.factor.list
```

should be a data frame, the first column of which is called "labels" and describes the labels applied to each image; the second column called "chunks" and describes any applicable chunks (e.g., runs)

fmri timeseries Х

```
prepropress.fmri.run.set
```

Apply preprocessing stuff.

Description

Apply preprocessing stuff.

Usage

```
prepropress.fmri.run.set(x, run)
```

Arguments

X	fmri timeseries
run	list of the run objects

```
prepropress.haxby.run.set

Apply preprocessing stuff.
```

Description

Apply preprocessing stuff.

Usage

```
prepropress.haxby.run.set(x, run)
```

Arguments

file

file.format file format the mri file is stored in. Currently only NIFTI

read.image Read a brain image http://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/ This function allows you to read a brain image very nicely

Description

Read a brain image http://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/ This function allows you to read a brain image very nicely

Usage

```
read.image(file, dim, file.format = "NIFTI")
```

Arguments

file

file.format file format the mri file is stored in. Currently only NIFTI

10 register.machine.cores

```
register.machine.cores
```

Detects and registers the number of machine cores. This should be run before using cross-validation with caret Will allow R to use the doMC package to utilize the machine's multiple processors. You will need to call this function for it to be applied.

Description

Detects and registers the number of machine cores. This should be run before using cross-validation with caret Will allow R to use the doMC package to utilize the machine's multiple processors. You will need to call this function for it to be applied.

Usage

```
register.machine.cores()
```

Examples

```
register.machine.cores()
```