Mathematics 3F03 Advanced Differential Equations

Instructor: David Earn

Lecture 6
Second Order and Planar ODEs
18 September 2013

Announcements

- Assignment 1 due THIS FRIDAY, 20 Sep 2013, before class, in the appropriately labelled locker next to HH-105.
- Putnam Mathematical Competition: There will be an organizational meeting on Thursday 19 Sep 2013 in HH 410.

The William Lowell Putnam competition is a university-level mathematics competition held annually for undergraduate students at North American universities. More information can be found at http://math.scu.edu/putnam or on the undergraduate page of the Math department's website. This year's competition will occur on 7 Dec 2013. If you are interested in participating or learning more, drop by on Thursday 19 Sep and/or send email to Prof. Bradd Hart (hartb@mcmaster.ca).

Second Order ODEs

Warning: using ' for time derivative.

$$x'' = f(t, x, x'),$$
 $x(0) = x_0,$ $x'(0) = v_0.$

■ Example: Forced Harmonic Oscillator

$$mx'' = -bx' - kx + f(t)$$

■ Usually forcing is periodic, e.g., $f(t) = \cos(2\pi t)$.

2nd order ODE equivalent to two coupled 1st order ODEs

$$x'' = f(t, x, x'),$$
 $x(0) = x_0,$ $x'(0) = v_0.$

- Let y = x', $y_0 = y(0) = x'(0)$
- : y' = x''
- Equation becomes

$$x' = y$$
, $x(0) = x_0$
 $y' = f(t, x, y)$, $y(0) = y_0$

■ We will study general ODEs in the plane:

$$x' = f(t, x, y)$$
 $x(0) = x_0$
 $y' = g(t, x, y)$, $y(0) = y_0$

General Planar ODE

$$x' = f(t, x, y)$$
 $x(0) = x_0$
 $y' = g(t, x, y)$, $y(0) = y_0$

Equivalently, in vector notation:

$$X' = F(t,X), \qquad X_0 = X(0) = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \in \mathbb{R}^2$$

This generalizes immediately to n dimensions...

General ODE in \mathbb{R}^n

$$x'_1 = f_1(t, x_1, x_2, ..., x_n)$$
 $x_1(0) = x_{1,0}$
 $x'_2 = f_2(t, x_1, x_2, ..., x_n)$ $x_2(0) = x_{2,0}$
 \vdots \vdots
 $x'_n = f_n(t, x_1, x_2, ..., x_n)$ $x_n(0) = x_{n,0}$

Equivalently, in vector notation:

$$X' = F(t, X),$$
 $X_0 = X(0) = (x_{1,0}, x_{2,0}, \dots, x_{n,0}) \in \mathbb{R}^n$

Very simple planar example

$$x' = y$$
 $y' = -x$
(Equivalent to $x'' = -x$)

Solution:

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = a \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

 Circular motion on a circle of radius a. Solutions in the *phase plane* yield the *phase portrait*.

Interpretation as Vector Field

$$X' = F(t, X), \qquad X_0 = X(0)$$

- X = point in plane (or in \mathbb{R}^n)
- F(t, X) = vector field, i.e., magnitude and direction of "flow"
- **Note:** In 1D, it is common to draw the "slope field" (a 2D drawing) since the vectors in the vector field lie on top of each other. But I find vector field a more intuitive concept. The vector field lies on the *phase line* in 1D and on the *phase plane* in 2D.

Vector Field vs Direction Field

■ Vector Field shows both magnitude and direction of flow

- Direction Field shows only direction of flow
 - All vectors have the same length.
 - Usually much easier to draw and interpret.
 - Does not show speed of flow (though this can be represented using colour).
 - Computers are good at drawing such things. . .

Vector Field vs Direction Field

Figure 2.1 The vector field, direction field, and several solutions for the system x' = y, y' = -x.

Generalizing from the very simple planar ODE example

$$x' = y$$
$$y' = -x$$

Equation can also be written:

$$X' = AX$$
, where $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

- This generalizes to any linear ODE in any number of dimensions.
- Not surprising that linear algebra will be useful.
- Less obvious, but true: linear algebra is also critical for studying nonlinear ODEs.