3.1

$$Y1 = \overline{\overline{A} + \overline{A} + \overline{B}} + \overline{\overline{A} + \overline{B}} + \overline{\overline{B}} = (A + \overline{A} + \overline{B}) \cdot (\overline{A} + \overline{B} + B)$$
$$= (A + \overline{B}) \cdot (\overline{A} + B) = \overline{A}\overline{B} + AB$$

电路实现同或运算,可以检验奇偶。

$$Y1 = \overline{AB} \cdot (\overline{\overline{A}} + \overline{C}) + (B \oplus \overline{C}) = (AB + \overline{A} + C)(\overline{B} \oplus \overline{C})$$

$$= (B + \overline{A} + C)(\overline{B}C + B\overline{C}) = B\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{B}C$$

$$= B\overline{C} + \overline{B}C = \overline{B}\overline{C} + \overline{B}C = \overline{B}\overline{C} \overline{B}C$$

3.5、用与非门设计能实现下列功能的组合电路

1)、四变量表决函数——输出与多数变量的状态一致(即,服从少数服从多数原则)

$ \left \begin{array}{c cccccccccccccccccccccccccccccccccc$	\boldsymbol{A}	В	C	D	Y
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0	0
$\left \begin{array}{ccc c} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{array}\right $	0	0	0	1	0
$\left \begin{array}{ccc c} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{array} \right $	0	0	1	0	0
0 1 0 1 0	0	0	1	1	0
	0	1	0	0	0
0 1 1 0 0	0	1	0	1	0
	0	1	1	0	0
0 1 1 1 1	0	1	1	1	1
1 0 0 0 0	1	0	0	0	0
1 0 0 1 0	1	0	0	1	0
1 0 1 0 0	1	0	1	0	0
1 0 1 1 1	1	0	1	1	1
1 1 0 0 0	1	1	0	0	0
1 1 0 1 1	1	1	0	1	1
1 1 1 0 1	1	1	1	0	1
1 1 1 1 1	1	1	1	1	1

$$Y = \overline{A}BCD + A\overline{B}CD + AB\overline{C}D + ABC\overline{D} + ABCD$$
$$= BCD + ACD + ABD + ABC$$

3.5、用与非门设计能实现下列功能的组合电路

1)、四变量表决函数——输出与多数变量的状态一致(即,服从

少数服从多数原则)

_	774	7417147			
	\boldsymbol{A}	В	C	D	Y
	0	0	0	0	0
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	1	0
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	0	1	1	1	1
	1	0	0	0	0
	1	0	0	1	0
	1	0	1	0	0
	1	0	1	1	1
	1	1	0	0	0
	1	1	0	1	1
	1	1	1	0	1
	1	1	1	1	1

$$Y = BCD + ACD + ABD + ABC$$

$$= \overline{BCD + ACD + ABD + ABC}$$

$$= \overline{BCD} \bullet \overline{ACD} \bullet \overline{ABD} \bullet \overline{ABC}$$

3.8、设计一个组合电路,其输入是四位二进制数D=D₃D₂D₁D₀,要求能判断出下列三种情况: 1)D中没有1。2)D中有两个1。3)D中有奇数个1。

A	В	<i>C</i>	D	Y_1	Y_2	Y_3
0	0	0	0	1	0	0
	0	0	1		0 0 0	1
$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	0	1	0	0 0 0 0	0	1
0	0	1	1	0		1 0
0	1	0	0	0	1 0	
0	1	0	1	0	1	1 0
0	1	1	0	0	1	0
0	1	1	1	0	0	1
1	0	0	0	0	0	1 1
1	0	0	1	0	1	0
1 1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	0	1	1 0
1	1	0	1	0 0 0 0	0	1
1	1	1	0	0	1 0 0 1 1 0 1 0 0	1
1	1	1	1	0	0	0

解: 令D中没有1, Y_1 为1; D中有两个1, Y_2 =1; D中有奇数个1, Y_3 =1。列真值表,并得逻辑表达式:

$$Y_1 = \overline{A}\overline{B}\overline{C}\overline{D}$$

$$Y_{2} = \overline{A}\overline{B}CD + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} + A\overline{B}\overline{C}D + A\overline{B}C\overline{D} + AB\overline{C}\overline{D}$$

$$Y_{3} = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}B\overline{C}\overline{D} + \overline{A}BCD + A\overline{B}\overline{C}\overline{D} + A\overline{B}CD + ABCD$$

3. 8、设计一个组合电路,其输入是四位二进制数 $D=D_3D_2D_1D_0$,要求能判断出下列三种情况: 1)D中没有1。2)D中有两个1。3)D中有奇数个1。 **卡诺图化简逻辑表达式:** $Y_1 = \overline{ABCD}$

$$Y_{2} = \overline{A}\overline{B}CD + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} + A\overline{B}\overline{C}D + A\overline{B}C\overline{D} + AB\overline{C}D$$

$$Y_{3} = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}B\overline{C}\overline{D} + \overline{A}BCD + A\overline{B}\overline{C}\overline{D} + A\overline{B}CD + ABCD$$

CD						
AB	00	01	11	10		
00			1			
01		1		1		
11	1					
10		1		1		
	(Y_2)					

 Y_1

3-13 用集成译码器实现函数: (1)Y = ABC + A(B+C)

[解] (1) 若选 3 线 - 8 线译码器 74LS138

(2) 函数的标准与非-与非式

$$Y = ABC + \overline{A}(B+C) = ABC + \overline{A}BC + \overline{A}B\overline{C} + \overline{A}\overline{B}C$$

$$= m_1 + m_2 + m_3 + m_7 = \overline{m_1 \cdot m_2 \cdot m_3 \cdot m_7}$$

(3) 确认变量和输入关系

$$\Leftrightarrow A_2 = A \ A_1 = B \ A_0 = C$$

则
$$Y = \overline{Y_1} \cdot \overline{Y_2} \cdot \overline{Y_3} \cdot \overline{Y_7}$$

(4) 画连线图

在输出端需增加一个与非门

$$(2) Y = A\overline{B} + \overline{A}B$$

[解]

- (1) 2个输入变量,可选 2线 4线译码器 74LS139
- (2) 函数的标准与非-与非式

$$Y_2 = A\overline{B} + \overline{A}B = m_2 + m_1$$

$$= m_2 \cdot m_1$$

(3) 确认变量和输入关系

则
$$Y = \overline{\overline{Y_1} \cdot \overline{Y_2}}$$

(4) 画连线图

3-13 用集成译码器实现函数 $Y = A\overline{B} + \overline{AB}$

[解] (1) 若选 3 线 - 8 线译码器 74LS138

(2) 函数的标准与非-与非式

$$Y = \overline{AB}(C + \overline{C}) + \overline{AB}(C + \overline{C}) = \overline{AB}C + \overline{AB}C + \overline{AB}C + \overline{AB}C + \overline{AB}C$$

$$= m_5 + m_4 + m_3 + m_2 = m_2 \cdot m_3 \cdot m_4 \cdot m_5$$

(3) 确认变量和输入关系

则
$$Y = \overline{\overline{Y}_2 \cdot \overline{Y}_3 \cdot \overline{Y}_4 \cdot \overline{Y}_5}$$

(4) 画连线图

在输出端需增加一个与非门

3-16: 用数据选择器74LS153实现逻辑函数
$$Y = \sum m(1,2,4,7)$$

解:数据选择器74LS153标准与或式

$$Y = \overline{A}_1 \overline{A}_0 D_0 + \overline{A}_1 A_0 D_1 + A_1 \overline{A}_0 D_2 + A_1 A_0 D_3$$

$$= m_0 D_0 + m_0 D_1 + m_2 D_2 + m_3 D_3$$
4) 画出逻辑图

)将逻辑函数式用最小项表示

$$Y = \sum m(1,2,4,7) = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

)确定输入变量的表达式 $iLA_1 = A \setminus A_0 = B$,

$$Y = \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$
$$= m_0 \cdot C + m_1 \overline{C} + m_2 \cdot \overline{C} + m_3 \cdot C$$

比较对照可得: $D_0 = C \setminus D_1 = \overline{C} \setminus D_2 = \overline{C} \setminus D_3 = C$

3-16: 用数据选择器74LS153实现逻辑函数
$$Y = \sum m(3,5,6,7)$$

解:数据选择器74LS153标准与或式

$$Y = \overline{A}_1 \overline{A}_0 D_0 + \overline{A}_1 A_0 D_1 + A_1 \overline{A}_0 D_2 + A_1 A_0 D_3$$

$$= m_0 D_0 + m_0 D_1 + m_2 D_2 + m_3 D_3$$
4) 画出逻辑图

)将逻辑函数式用最小项表示

$$Y = \sum m(1,2,4,7) = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

- $= \overline{A}BC + A\overline{B}C + AB$
 -)确定输入变量的表达式 $iLA_1 = A \setminus A_0 = B$,

$$Y = \overline{ABC} + A\overline{BC} + AB$$
$$= m_0 \cdot 0 + m_1C + m_2 \cdot C + m_3 \cdot 1$$

比较对照可得: $D_0=0$ 、 $D_1=C$ 、 $D_2=C$ 、 $D_3=1$