Glucose potential energy

The Tricarboxylic Acid Cycle

Chapter 19

Summary of aerobic energy production

- Pyruvate \rightarrow acetyl-CoA \rightarrow CO₂
- Electrons released → NADH and FADH₂ → O₂
- Electron transfer
 proton gradient across membrane
- ATP synthesis in ETC = oxidative phosphorylation

Summary of aerobic energy production

Pyruvate as a source of acetyl-CoA

• Glycolysis → TCA cycle

Oxidative decarboxylation of pyruvate:

Reaction mechanism of PDC

- 1. Decarboxylation of pyruvate
- 2. Transfer of 2C unit to lipoic acid
- 3. Formation of acetyl Co-A
- 4. Reoxidation of lipoic acid

3',5'-ADP

Isoalloxazine moiety of the Flavin Coenzymes

(b)

Oxidized form $\lambda_{\text{max}} = 450 \text{ nm}$ (yellow)

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H
 H
 H
 H
 H
 H

Reduced form (colorless)

$$H^+, e^ H^+, e^-$$

FADH₂ or FMNH₂

Semiquinone form $\lambda_{\text{max}} = 570 \text{ nm}$ (blue)

Semiquinone anion $\lambda_{\text{max}} = 490 \text{ nm}$ (red)

A snapshot of the TCA cycle reactions

- Reaction 1: 2C acetyl group from acetyl-CoA <u>transferred</u> to oxaloacetate
 → 6C citrate
- Reaction 2: <u>isomerisation</u> of citrate to isocitrate
- Reaction 3: first oxidative decarboxylation $\rightarrow \alpha$ ketoglutarate
- Reaction 4: second <u>oxidative decarboxylation</u> → Succinyl-CoA
- Reaction 5: substrate level <u>phosphorylation</u>, succinyl-CoA →
 Succinate
- Reaction 6: Succinate <u>oxidised</u> to fumerate in an FADdependant reaction
- Reaction 7: trans <u>hydration</u> of fumerate → L-malate
- Reaction 8: malate <u>oxidised</u> back to oxeloacetate

A chemically feasible way for cleaving C – C

•
$$CH_3COO^- \rightarrow CO_2 + CO_2$$

C – C cleavage in biological systems

$$\begin{array}{c|c} & & & & \\ & & & \\ & & \\ & & \\ -C-C_{\alpha}-C_{\beta}- & & \\ & & \\ \end{array}$$

Condense acetate with oxaloacetate for $\boldsymbol{\beta}$ cleavage

All the TCA cycle reactions and their thermodynamics

Reaction	Enzyme	$\Delta G^{\circ}'$ (kJ/mol)	ΔG (kJ/mol)
 Acetyl-CoA + oxaloacetate + H₂O ⇒ CoASH + citrate 	Citrate synthase	-31.4	-53.9
2. Citrate ← isocitrate	Aconitase	+6.7	+0.8
3. Isocitrate + NAD+ $\Longrightarrow \alpha$ -ketoglutarate + NADH + CO ₂	Isocitrate dehydrogenase	-8.4	-17.5
4. α -Ketoglutarate + CoASH + NAD+ \Longrightarrow succinyl-CoA + NADH + CO ₂	α-Ketoglutarate dehydrogenase complex	-30	-43.9
5. Succinyl-CoA + GDP + P _i ⇒ succinate + GTP + CoASH	Succinyl-CoA synthetase	-3.3	≈()
6. Succinate + [FAD] ⇒ fumarate + [FADH ₂]	Succinate dehydrogenase	+0.4	$\neq 0$
7. Fumarate + H ₂ O ← 1-malate	Fumarase	-3.8	≈()
8. L-Malate + NAD+ === oxaloacetate + NADH + H+	Malate dehydrogenase	+29.7	≈0

The citrate synthase reaction

- Carbon atoms introduced to the cycle
- Condensation reaction

Acetyl-CoA + oxaloacetate + $H_2O \rightarrow CoASH + citrate$ $\Delta G^{o'} = -31 \text{ kJ/mol}$ Highly regulated enzyme

The aconitase reaction

- 2-step process
- H₂O removed to form aconitate and then readded to form isocitrate

Aconitase removes the pro-R H of the pro-R arm of citrate

The iron-sulfur cluster of aconitase

- 3 irons and 4 sulfurs
- 4th iron activates the enzyme

Fe³⁺ in vacant position coordinates carboxyl and OH

The isocitrate dehydrogenase reaction

- Oxidative decarboxylation
- Links the TCA cycle with the electron transport chain and oxidative phosphorylation

NADH and ATP = allosteric inhibitors ADP = allosteric activator

The α-ketoglutarate dehydrogenase reaction

- Second oxidative decarboxylation reaction
- NADH, CO₂ and succinyl-Co-A are the products

2 energy rich products for use in subsequent reactions

The succinyl Co-A synthetase reaction

2 high energy molecules from previous reaction

Succinyl- CoA

NADH

GTP + ADP → ATP + GDP

The succinate dehydrogenase reaction

- Membrane-bound enzyme
- Part of the ETC
- Heterodimer

Binds FAD covalently via His residue

- 3 different Fe-S clusters
- Carries out oxidation of succinate to fumerate

- Removal of H across a C-C bond
- Oxidation of an alkane to an alkene
- Not sufficient energy to reduce NAD+
- Stereospecific reaction

Electrons → [FAD] → Fe-S clusters → co-Q →
 ETC

The fumarase reaction

 Trans addition of the elements of water across the double bond

Fumarate

L-Malate

The malate dehydrogenase reaction

- Oxidation reaction coupled to reduction of NAD+4th coenzyme reduced via oxidation of single acetate unit
- $\Delta G^{o'} = +30 \text{ kJ/mol}$
- Structurally and functionally similar to other dehydrogenases

NADH

NADH

NADH

NAD+ + H⁺

OH

H—C—COO

Malate

dehydrogenase

$$H_2$$
C—COO

NAD+ NADH

NAD+ NADH

 H_2 C—COO

NAD+ NADH

 H_2 C—COO

NAD+ NADH

 H_2 C—COO

Energetic consequences of TCA cycle

Reaction	Enzyme	$\Delta G^{\circ\prime}$ (kJ/mol)	∆ G (kJ/mol)
 Acetyl-CoA + oxaloacetate + H₂O ⇒ CoASH + citrate 	Citrate synthase	-31.4	-53.9
2. Citrate ← isocitrate	Aconitase	+6.7	+0.8
 Isocitrate + NAD⁺	Isocitrate dehydrogenase	-8.4	-17.5
4. α-Ketoglutarate + CoASH + NAD ⁺ ⇒ succinyl-CoA + NADH + CO ₂	α-Ketoglutarate dehydrogenase complex	-30	-43.9
 Succinyl-CoA + GDP + P_i ⇒ succinate + GTP + CoASH 	Succinyl-CoA synthetase	-3.3	≈0
6. Succinate + [FAD] ⇒ fumarate + [FADH ₂]	Succinate dehydrogenase	+0.4	$\neq 0$
7. Fumarate + H ₂ O ← L-malate	Fumarase	-3.8	≈0
8. L-Malate + NAD+ ⇒ oxaloacetate + NADH + H+	Malate dehydrogenase	+29.7	≈0

Intermediates Carbohydrates serve as starting point 3-Phosphoglycerate-→ Serine → Glycine Erythrose-4-phosphate Alanine Cysteine for many Leucine Phosphoenol--Phenylalanine Valine pyruvate biosynthetic Fatty acids Tryptophan Malonyl-CoA Pyruvate CO, CO, CO, processes Isopentenyl (Acetyl-CoA Steroids pyrophosphate CO, Acetoacetyl-CoA Asparagine Purine nucleotides Pyrimidine nucleotides Malate Aspartate Citric Glutamine CO, acid α-Ketoglutarate cycle **Aspartyl Anaplerotic** phosphate Glutamate -Aspartyl CO2 reactions feed semialdehyde Ornithine intermediates Glycine Citrulline Threonine Diamino-Methionine 2-Aminoback into the Arginine pimelate 3-ketoadipate Isoleucine cycle δ -Aminolevulinate Lysine Porphyrins

Regulation of the TCA cycle

- Link between glycolysis and ETC
- Must be carefully controlled
- Sites of regulation?

Reaction	Enzyme	$\Delta G^{\circ\prime}$ (kJ/mol)	∆ G (kJ/mol)
 Acetyl-CoA + oxaloacetate + H₂O ⇒ CoASH + citrate 	Citrate synthase	-31.4	-53.9
2. Citrate ← isocitrate	Aconitase	+6.7	+0.8
3. Isocitrate + NAD+ $\Longrightarrow \alpha$ -ketoglutarate + NADH + CO ₂	Isocitrate dehydrogenase	-8.4	-17.5
4. α-Ketoglutarate + CoASH + NAD ⁺ ⇒ succinyl-CoA + NADH + CO ₂	α-Ketoglutarate dehydrogenase complex	-30	-43.9
5. Succinyl-CoA + GDP + P _i ⇒ succinate + GTP + CoASH	Succinyl-CoA synthetase	-3.3	≈0
6. Succinate + [FAD] ⇒ fumarate + [FADH ₂]	Succinate dehydrogenase	+0.4	$\neq 0$
7. Fumarate + H ₂ O ⇒ L-malate	Fumarase	-3.8	≈0
8. L-Malate + NAD+ ⇒ oxaloacetate + NADH + H+	Malate dehydrogenase	+29.7	≈0

Regulation of the TCA cycle

Sites of regulation:

Reduction potentials – chapter 3

• Standard reduction potential (%) quantifies the tendency of chemical species to be reduced or oxidised

```
Reduced donor

Ne

Oxidised acceptor

Reduced acceptor
```

- \mathscr{T}_{0} is related to the free energy of a process
- (Faraday's constant: 96.485 kJ/mol.V)
- $\Delta \mathcal{C}_0$ =difference in reduction potentials between donor and acceptor. \mathbf{n} = number of \mathbf{e}^- transferred

Measuring standard reduction potential

 e^{-} flow towards sample half cell \rightarrow +ve potential e^{-} flow away from sample half cell \rightarrow -ve potential

Predicting direction of redox reactions

- Tabulated as reduction potentials
- Positive sign: substance has tendency to accept electrons
- Negative sign: tendency to gain electrons

Reduction Half-Reaction	%₀′ (V)
$O_2 + 2 H^+ + 2 e^- \longrightarrow H_2O$	0.816
$Fe^{3+} + e^- \longrightarrow Fe^{2+}$	0.771
Photosystem P700	0.430
$NO_3^- + 2 H^+ + 2 e^- \longrightarrow NO_2^- + H_2O$	0.421
Cytochrome $f(Fe^{3+}) + e^{-} \longrightarrow \text{cytochrome } f(Fe^{2+})$	0.365
Cytochrome $a_3(Fe^{3+}) + e^- \longrightarrow \text{cytochrome } a_3(Fe^{2+})$	0.350
Cytochrome $a(Fe^{3+}) + e^{-} \longrightarrow \text{cytochrome } a(Fe^{2+})$	0.290
Rieske Fe-S(Fe ³⁺) + $e^- \longrightarrow$ Rieske Fe-S(Fe ²⁺)	0.280
Cytochrome c (Fe ³⁺) + $e^- \longrightarrow$ cytochrome c (Fe ²⁺)	0.254
Cytochrome $c_1(Fe^{3+}) + e^- \longrightarrow \text{cytochrome } c_1(Fe^{2+})$	0.220
$UQH \cdot + H^+ + e^- \longrightarrow UQH_2 (UQ = coenzyme Q)$	0.190
$UQ + 2 H^+ + 2 e^- \longrightarrow UQH_2$	0.060
Cytochrome $b_H(Fe^{3+}) + e^- \longrightarrow$ cytochrome $b_H(Fe^{2+})$	0.050
Fumarate + 2 H ⁺ + 2 e ⁻ → succinate	0.031
$UQ + H^+ + e^- \longrightarrow UQH$	0.030
Cytochrome $b_5(\text{Fe}^{3+}) + e^- \longrightarrow \text{cytochrome } b_5(\text{Fe}^{2+})$	0.020
$FAD] + 2 H^+ + 2 e^- \longrightarrow [FADH_2]$	0.003-0.09
Cytochrome $b_L(\text{Fe}^{3+}) + e^- \longrightarrow \text{cytochrome } b_L(\text{Fe}^{2+})$	-0.100
Oxaloacetate + 2 H ⁺ + 2 $e^- \longrightarrow$ malate	-0.166
Pyruvate + 2 H ⁺ + 2 e [−] → lactate	-0.185
Acetaldehyde + 2 H ⁺ + 2 e [−] > ethanol	-0.197
$FMN + 2 H^+ + 2 e^- \longrightarrow FMNH_2$	-0.219
$FAD + 2 H^+ + 2 e^- \longrightarrow FADH_2$	-0.219
Glutathione (oxidized) + 2 H ⁺ + 2 $e^- \longrightarrow$ 2 glutathione (reduced)	-0.230
Lipoic acid + 2 H ⁺ + 2 e [−] > dihydrolipoic acid	-0.290
l,3-Bisphosphoglycerate + 2 H ⁺ + 2 e [−] > glyceraldehyde-3-phosphate + P _i	-0.290
$NAD^+ + 2 H^+ + 2 e^- \longrightarrow NADH + H^+$	-0.320
$NADP^{+} + 2 H^{+} + 2 e^{-} \longrightarrow NADPH + H^{+}$	-0.320
Lipoyl dehydrogenase [FAD] + 2 H ⁺ + 2 e [−] > lipoyl dehydrogenase [FADH ₂]	-0.340
α -Ketoglutarate + CO ₂ + 2 H ⁺ + 2 e ⁻ → isocitrate	-0.380
$2 H^+ + 2 e^- \longrightarrow H_2$	-0.421
Ferredoxin (spinach) (Fe ³⁺) + $e^- \longrightarrow$ ferredoxin (spinach) (Fe ²⁺)	-0.430
Succinate + CO ₂ + 2 H ⁺ + 2 $e^- \longrightarrow \alpha$ -ketoglutarate + H ₂ O	-0.670

Analysis of energy changes in redox reactions

NAD+ + isocitrate
$$\rightarrow$$
 NADH + H+ α kg + CO₂

$$NAD^+ + 2H^+ + 2e^- \rightarrow NADH + H$$

$$\alpha$$
kg + CO₂ + 2H⁺ +2e⁻ \rightarrow isocitrate \mathscr{E}'_{a} = -0.38V

$$\Delta \mathcal{E}_{o}' = \mathcal{E}_{o}' \text{ (acceptor)} - \mathcal{E}_{o}' \text{ (donor)}$$

$$\Delta G^{o'} = -n \mathscr{F} \Delta \mathscr{C}_{o'}$$