CHEMISTRY CLASS TEST

1.	Which one of the	e following ions has the h	s the highest value of ionic radius?		
	(1) Li ⁺	(2) B ³⁺	(3) O ²⁻	(4) F ⁻	

2. The formation of the oxide ion $O^{2-}_{(g)}$ requires first an exothermic and then an endothermic step as shown below:

$$O_{(g)} + e^- = O_{(g)}^-$$
; $\Delta H^\circ = -142 \text{ kJmol}^{-1}$
 $O_{(g)}^- + e^- = O_{(g)}^{2-}$; $\Delta H^\circ = 844 \text{ kJmol}^{-1}$

This is because:

- (1) oxygen is more electronegative.
- (2) oxygen has high electron affinity.
- (3) O- ion will tend to resist the addition of another electron.
- (4) O- ion has comparatively larger size than oxygen atom.

3. Among Al₂O₃, SiO₂, P₂O₃ and SO₂ the correct order of acid strength is :

$$(1) SO_2 < P_2O_3 < SiO_2 < Al_2O_3$$

$$(2) SiO_2 < SO_2 < Al_2O_3 < P_2O_3$$

 $(3) Al_2O_3 < SiO_2 < SO_2 < P_2O_3$

$$(4) Al_2O_3 < SiO_2 < P_2O_3 < SO_2$$

4. Which of the following oxides is amphoteric in nature?

(1) CaO

(2) CO₂

(3) SiO₂

(4) SnO₂

5. In which of the following arrangements the order is NOT according to the property indicated against it?

- (1) $AI^{3+} < Mg^{2+} < Na^+ < F^-$ increasing ionic size
- (2) B < C < N < O increasing first ionisation enthalpy
- (3) I < Br < F < CI increasing electron gain enthalpy (with negative sign)
- (4) Li < Na < K < Rb increasing metallic radius

6. Which of the following factors may be regarded as the main cause of lanthanide contraction?

- (1) Greater shielding of 5d electrons by 4f electrons.
- (2) Poorer shielding of 5d electron by 4f electrons.
- (3) Effective shielding of one of 4f electrons by another in the sub-shell.
- (4) Poor shielding of one of 4f electron by another in the sub-shell.

7. The lanthanide contraction is responsible for the fact that:

- (1) Zr and Y have about the same radius
- (2) Zr and Nb have similar oxidation state
- (3) Zr and Hf have about the same radius
- (4) Zr and Zn have same oxidation state.

8. The increasing order of the first ionization enthalpies of the elements B, P, S and F (lowest first) is:

- (1) F < S < P < B
- (2) P < S < B < F
- (3) B < P < S < F
- (4) B < S < P < F

9. Which of the following statements is true?

- (1) H₃PO₃ is a stronger acid than H₂SO₃.
- (2) In aqueous medium, HF is a stronger acid than HCl.
- (3) HCIO₄ is a weaker acid than HCIO₃.
- (4) HNO₃ is a stronger acid than HNO₃.

10. Lanthanoid contraction is caused due to :

- (1) the appreciable shielding on outer electrons by 4f electrons from the nuclear charge
- (2) the appreciable shielding on outer electrons by 5f electrons from the nuclear charge
- (3) the same effective nuclear charge from Ce to Lu
- (4) the imperfect shielding on outer electrons by 4f electrons from the nuclear charge

11. The stability of dihalides of Si, Ge, Sn and Pb increases steadily in the sequence.

- $(1) SiX_2 \ll GeX_2 \ll SnX_2 \ll PbX_3$
- (2) PbX₂ << SnX₂ << GeX₂ << SiX₂
- $(3) \text{ GeX}_2 \ll \text{SiX}_2 \ll \text{SnX}_2 \ll \text{PbX}_2$
- (4) SiX, << GeX, << PbX, << SnX,

12. The set representing the correct order of ionic radius is:

(1) $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$

(2) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$

(3) $Mg^{2+} > Be^{2+} > Li^+ > Na^+$

(4) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$

13.	In which of the following arrangements, the sequence is not strictly according to the property written against it? (1) HF < HCl < HBr < HI : increasing acid strength (2) NH ₃ < PH ₃ < AsH ₃ < SbH ₃ : increasing basic strength (3) B < C < O < N : increasing first ionization enthalpy (4) CO ₂ < SiO ₂ < SnO ₂ < PbO ₂ : increasing oxidising power							
14.	The correct sequence which shows decreasing order of the ionic radii of the elements is :							
	(1) $AI^{3+} > Mg^{2+} > Na^{+} > F^{-} > O^{2-}$ (3) $Na^{+} > F^{-} > Mg^{2+} > O^{2-} > AI^{3+}$			(2) $Na^+ > Mg^{2+} > Al^{3+} > O^{2-} > F^-$ (4) $O^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$				
15.	The outer electron configuration of Gd (Atomic No : 64) is :							
	$(1) 4f^3 5d^5 6s^2$	(2) 4f8 5d0 6s2	(3) 4f ⁴ 5d ⁴ 6s ²	$(4) 4f^7 5d^1 6s^2$				
16.	The number of lone pairs on Xe in XeF_2 , XeF_4 and XeF_6 respectively are : (A) 3, 2, 1 (B) 2, 4, 6 (C) 1, 2, 3 (D) 6, 4, 2							
17.		of the underline atom char o AIH ₄ -	•	·in : (B) H₂O changes to H₃O⁺				
18.	Bond angle of 109 (A) NH ₃	° 28' is found in : (B) H ₂ O	(C) CH ₃ ⁺	(D) NH ₄ +				
19.	In the anion HCOO ⁻ the two C – O bonds are found to be of equal length. What is the reason for it? (A) Electronic orbits of carbon atom are hybridised. (P) The C = O bond is weaker than the C – O bond. (C) The anion HCOO ⁻ has two resonating structures. (D) The anion is obtained by removal of a proton from the acid molecule.							
20.	Which of the follow (A) SO ₂	ving compounds has the s (B) H ₂ O	smallest bond angle in its r (C) H ₂ S	molecule? (D) NH ₃				
21.	The pair of species having identical shapes for molecules of both species is: (A) CF ₄ , SF ₄ (B) XeF ₂ , CO ₂ (C) BF ₃ , PCI ₃ (D) PF ₅ , IF ₅ .							
22.	The maximum number of 90° angles between bond pair–bond pair of electrons is observed in :							
	(A) dsp³	(B) sp³d	(C) dsp ²	(D) sp^3d^2				
23.	The correct order $(A) H_2S < SiH_4 < N$ $(C) H_2S < NH_3 < S$	$IH_3 < BF_3$	(B) NH ₃ < H ₂ S < Sil-	n H ₂ S, NH ₃ , BF ₃ and SiH ₄ is : (B) NH ₃ < H ₂ S < SiH ₄ < BF ₃ (D) H ₂ S < NH ₃ < BF ₃ < SiH ₄				
24.	(A) XeF₄	ollowing has the regular to (B) SF ₄ B = 5, S = 16, Ni = 28, Xe	(C) BF ₄ ⁻	(D) [Ni(CN) ₄] ²⁻				
25.	Which one of the fo	ollowing does not have s (B) Acetic acid	p² hybridized carbon? (C) Acetonitrile	(D)Acetamide				