Computing: Present and Future

- Mandar Gurav

Present

- Single cores
 - Performance improvments due to
 - Clock frequency scaling
 - Single thread performance
 - pipelining
 - out of order executions
 - Caches
 - •
- Multicores
 - Moore's law is alive!

Present – Sandy Bridge

- Intel Advanced Vector Extensions (Intel AVX)
- Enhanced front-end and execution engine
- Cache hierarchy improvements for wider data path
 - two symmetric ports for memory operation, increased buffers, Improved prefetching
- System-on-a-chip support
 - Integrated graphics and media engine, PCIE controller, memory controller
- Next generation Intel Turbo Boost Technology Courtesy: Intel

Accelerators

- GPGPU's
 - Nvidia
 - Stake in top 10 systems
 - AMD/ ATI
- Other accelerators
 - IBM Cell Broadband Engine
 - Roadrunner First petaflop system
 - FPGA

Future

- Driving forces
 - Desktop users
 - Graphics /User friendlyness
 - Office
 - ...
 - HPC users
 - Performance matters
 - Code portability
 - Stability
 - ...

Performance Development in Top500

Credits: Prof. Jack Dongarra

Exascale

- 10^18 flops
- Challenges
 - Power
 - Fault tolerance
 - Concurrency
 - Others
 - Storage capacity
 - Programmability
 - Efficiency

Credits: International Exascale Software Project

How we are going to attack this?

IBM Cell Broadband Engine

- Power Processor Element(PPE)
 - 64-bit PowerPC RISC core (can run OS)
- Synergistic Processing Elements (SPE)
 - a 128x128 register file
 - a floating-point unit
 - two fixed-point units
 - VMX vector arithmetic unit
 - Local Store
 - DMA controller

Courtesy: IBM

Larrabee

- Originally a GPGPU chip
- 32 general purpose x86 cores
- Shared global memory
- Interconnection network: a ring
- Shared L2
- Cache control instructions
- 4 way MultiThreading
- VPU
 - 16-wide Integer / single-precision FP
 - 8-wide double-precision FP

Memory Controller

Memory Controller

Memory Controller

Memory Controller

Memory Controller

Multi-Threaded

Wide SIMD

Is Ds

Multi-Threaded

Wide SIMD

Wide SIMD

Is Ds

Multi-Threaded

Wide SIMD

Wide SIMD

Is Ds

Milti-Threaded

Wide SIMD

Wide SIMD

Is Ds

Milti-Threaded

Wide SIMD

Wide SIMD

Is Ds

Larrabee Block Diagram

Courtesy: Intel

Single Chip Cloud Computer (SCC)

- First Si with 48 iA cores on a single die
- Power envelope 125W, Core @ 1GHz, Mesh @ 2GHz
- Message passing architecture
 - No coherent shared memory
 - Proof of concept for scalable many-core solution
- Next generation 2D mesh interconnect
 - Bisection B/W 1.5Tb/s to 2Tb/s, avg.power 6W to 12 W
- Fine grain dynamic power management

Terascale Research chip

- Deliver Tera-scale performance
 - Single precision TFLOP at desktop power
 - Frequency target 5GHz
 - Bi-section B/W order of Terabits/s
 - Link bandwidth in hundreds of GB/s
- Prototype two key technologies
 - On-die interconnect fabric
 - 3D stacked memory
- Develop a scalable design methodology
 - Tiled design approach
 - Mesochronous clocking
 - Power-aware capability

Credits: Jim Held, Intel

Many Integrated cores

- Co-processor x86 Based
- Has own linux running
- can run program in following modes
 - Offload mode Host as initiator
 - Native mode Device itself executes the binary
 - Offload to Host Device as initiator
- PCIE based
- 512 bit SIMD unit
- Cache coherent
- On-chip Network with message passing support

Heterogeneous vs Homogeneous cores

Large	Large
core	core
Large	Large
core	core

Niagara	Niagara	Niagara	Niagara
-like	-like	-like	-like
core	core	core	core
Niagara	Niagara	Niagara	Niagara
-like	-like	-like	-like
core	core	core	core
Niagara	Niagara	Niagara	Niagara
-like	-like	-like	-like
core	core	core	core
Niagara	Niagara	Niagara	Niagara
-like	-like	-like	-like
core	core	core	core

Large core		Niagara -like core	Niagara -like core
		Niagara -like core	Niagara -like core
Niagara	Niagara	Niagara	Niagara
-like	-like	-like	-like
core	core	core	core
Niagara	Niagara	Niagara	Niagara
-like	-like	-like	-like
core	core	core	core

"Tile-Large" Approach

"Niagara" Approach

ACMP Approach

ACMP: Asymmetric Chip Multiprocessor

Credits: Prof. Yale Patt

Large core vs. Small Core

Large Core

- Out-of-order
- Wide fetch e.g. 4-wide
- Deeper pipeline
- Aggressive branch predictor (e.g. hybrid)
- Many functional units
- Trace cache
- Memory dependence speculation

Small Core

- In-order
- Narrow Fetch e.g. 2wide
- Shallow pipeline
- Simple branch predictor (e.g. Gshare)
- Few functional units

Credits: Prof. Yale Patt

Some questions...

- Instruction Level Parallelism
- x86 or Arm or something else
- MIC or GPGPU or something else
- How many cores
- Programming models
- Role of Compilers
- ??

Thank you.