

TFG del Grado en Ingeniería Informática

Aplicación del Aprendizaje Semisupervisado en el descubrimiento de ataques a Sistemas de Recomendación Documentación Técnica

Presentado por Patricia Hernando Fernández en Universidad de Burgos — 8 de diciembre de 2022

Tutor: Álvar Arnaiz González

Índice general

Índice general	i
Índice de figuras	iii
Índice de tablas	iv
Apéndice A Plan de Proyecto Software	1
A.1. Introducción	1
A.2. Planificación temporal	
A.3. Estudio de viabilidad	
Apéndice B Especificación de Requisitos	11
B.1. Introducción	11
B.2. Objetivos generales	
B.3. Catalogo de requisitos	
B.4. Especificación de requisitos	11
Apéndice C Especificación de diseño	13
C.1. Introducción	13
C.2. Diseño de datos	13
C.3. Diseño procedimental	
C.4. Diseño arquitectónico	
Apéndice D Documentación técnica de programación	15
D.1. Introducción	15
D.2. Estructura de directorios	
D 3 Manual del programador	15

II	Índice general

D.4. Compilación, instalación y ejecución del proyecto	15
D.5. Compilación, instalación y ejecución de herramientas auxiliares	15
D.6. Pruebas del sistema	16
Apéndice E Documentación de usuario	17
E.1. Introducción	17
E.2. Requisitos de usuarios	17
E.3. Instalación	17
E.4. Manual del usuario	17
Bibliografía	19

Índice de figuras

Λ 1	Burndown Report Sprint 01
A.1.	Durnaown Report Sprint 01
A.2.	Burndown Report Sprint 02
A.3.	Burndown Report Sprint 03
A.4.	Burndown Report Sprint 04
A.5.	Burndown Report Sprint 05
A.6.	Burndown Report Sprint 06
D.1.	Configuración de un experimento que utiliza el algoritmo co-forest
	mediante la GUI de KEEL.

Índice de tablas

B.1. CU-1 Nombre del caso de uso

Apéndice A

Plan de Proyecto Software

A.1. Introducción

A.2. Planificación temporal

Planificación por sprints

Sprint 1: Mustard

■ Planning meeting

Durante la reunión se marcaron los siguientes objetivos:

- 1. Configuración básica: incluyendo la creación del repositorio, la correcta instalación de ZenHub, la creación de entornos virtuales (miniconda, SKLearn, etc.) y la familiarización con conceptos scrum: milestones, sprints, epics, etc.
- 2. Memoria: comienzo de la redacción incluyendo las secciones de introducción, conceptos teóricos (aprendizaje automático) y trabajo relacionado.
- 3. Investigación: búsqueda del código SSADR-CoF y de las bases de datos utilizadas en el paper.
- 4. Lectura de papers: Engelen & Hoos [7], García, Triguero & Herrera [5], y Zhou & Duan [8].
- Marcas temporales El *sprint* se desarrolló entre el 24 de septiembre de 2022 y el 2 de octubre del 2022.

■ Burndown Report

Figura A.1: Burndown Report Sprint 01

Como se puede comprobar, no todos los objetivos marcados fueron cumplidos: la estimación del tiempo fue demasiado optimista, además de no contar con el tiempo requerido en solucionar problemas técnicos (LATEX). Se dejó para próximos sprints la lectura del último paper.

■ Sprint review meeting Durante la reunión se fijaron ciertas correcciones en la memoria (mejorar referencias bibliográficas y la sección de «Trabajos relacionados»), además de la necesidad de introducir una sección teórica de ataques a los sistemas de recomendación.

Sprint 2: Paprika

- Planning meeting Objetivos del siguiente Sprint:
 - 1. Configuración: debido a la gran cantidad de tiempo invertida en solucionar errores de compilación en L^AT_EX, se decidió migrar el proyecto a una nueva instalación basada en Debian.
 - 2. Correcciones: aspectos estilísticos y completar información.
 - 3. Lectura: Mingdan y Qingshan [4] con el objetivo de introducir una sección teórica de ataques.

- 4. Memoria: redacción completa de los modelos de ataque en los aspectos teóricos.
- Marcas temporales El *sprint* se desarrolló entre el 3 de octubre de 2022 y el 18 de octubre del 2022.
- Burndown Report

Figura A.2: Burndown Report Sprint 02

En este sprint sí se cumplió con los objetivos marcados. Sin embargo, la estimación de tiempo tampoco fue la adecuada, requiriendo más de lo previsto.

■ Sprint review meeting Durante la reunión se resolvieron dudas acerca de bibliografía, referencias y trabajo previo. Además, se acordó empezar a programar, definiendo así los issues desarrollados en el siguiente sprint.

Sprint 3: Fennel Seeds

• Planning meeting

Durante esta reunión, se decidió empezar a programar el *co-forest*. Para ello, se definieron los siguientes pasos:

- 1. Librerías: se acordó aprender a utilizar las librerías más comunes en el data science. Entre ellas: MatplotLib y SKLearn. Además, se requirió la correcta configuración del entorno virtual, haciendo que el tiempo dedicado al issue fuese mayor de lo estimado (problemas en el PATH y con las dependencias).
- 2. SKLearn: aprovechando la correcta documentación de la librería, se decidió repasar los conceptos teóricos básicos, además del manejo de la «interfaz» (métodos comunes). Entre ellos:
 - Decision trees
 - Self training
 - Random Forest
- 3. Lectura: se concertó la relectura del artículo de Zhou [8] con la intención de comprender el algoritmo y del *paper* «original» del *co-forest* [3]. Durante el proceso de programación, además, se encontró la tesis de Van Engelen [6] y se añadió al conjunto.
- 4. Documentación: se acordó la corrección de los errores previamente señalados y la inclusión del *sprint* en los anexos.
- 5. Programación del *Co-Forest*: se programó el pseudocódigo ilustrado en la Tesis de Van Engelen [6], que es muy similar al original [3] pero con algunas diferencias. Inicialmente se intentó usar el *Random Forest* de *SKLearn*, pero se descartó la idea debido a la poca versatilidad que se ofrecía para manejar los *concomitant ensembles*. Se han de corregir ciertos factores, pero se pospondrá hasta la correcta discusión con el tutor.
- Marcas temporales El *sprint* se desarrolló entre el 19 de octubre de 2022 y el 2 de noviembre del 2022.

■ Burndown Report

En este *sprint* se cumplió con los objetivos marcados. Nuevamente, la estimación del tiempo fue inferior a la real (se pensaba que se podría depender más de librerías existentes de lo que se pudo en realidad), calculándose un total de aproximadamente 25 horas reales.

• Sprint review meeting

Durante la revisión del *sprint*, se llegó a la conclusión de que el pseudocódigo podía ser mejor implementado aprovechando ciertas librerías de *Python*. Se comentó cómo mejorar complejidades espaciales y reducir el código. Se fijaron objetivos para las próximas semanas.

Figura A.3: Burndown Report Sprint 03

Sprint 4: Cayenne

• Planning meeting

Durante la reunión se acordaron los siguientes objetivos:

- 1. Reimplementación del código: se acordó volver a programar el co-forest, esta vez implementando una versión más «pythoniana» con el fin de mejorar la complejidad espacial y facilitar la lectura.
- 2. Curso de Numpy: se decidió que sería interesante la realización de un curso para aprender a utilizar la librería y aplicarla al código.
- 3. Curso de Pandas: aprovechando la relación con el punto anterior, se acordó completar también un curso de esta librería.
- 4. Memoria: corregir aspectos anteriores e incluir toda la teoría relacionada con el *co-forest*.
- Marcas temporales El *sprint* se desarrolló entre el 3 de noviembre de 2022 y el 15 de noviembre del 2022.

■ Burndown Report

En este *sprint* se completaron los objetivos, aunque quedaron pendientes ciertos aspectos a comentar respecto al código. Destacar que,

Figura A.4: Burndown Report Sprint 04

debido a que se terminaron antes de lo planeado los *issues* planificados, se aprovechó para modificar ciertos aspectos pendientes relacionados con la memoria y para probar correctamente el código. Esto hizo que el tiempo real dedicado haya sido ligeramente superior al estimado (más tiempo de documentación).

■ *Sprint review meeting* En la reunión se acordó experimentar con el algoritmo utilizando distintos conjuntos de datos, además de mejorar ciertos detalles de implementación.

Sprint 5: Curry

- Planning meeting Durante la reunión se acordaron los siguientes objetivos:
 - Ajustes al código: se acordó mejorar algunos factores, como la generación de objetos «aleatorios» para obtener resultados deterministas en los experimentos, optimización de memoria o corrección de parámetros.
 - 2. Experimentación: se determinó probar el código con distintos conjuntos de datos en diferentes fases: durante el entrenamiento y tras terminarlo. Para ello, se estudiaron algunos conceptos teóricos

- y el uso de la librería MatplotLib para representar gráficamente los resultados obtenidos.
- 3. Memoria: documentación de los experimentos realizados y correcciones
- Marcas temporales El *sprint* se desarrolló entre el 15 de noviembre de 2022 y el 25 de noviembre del 2022.

$lacksquare Burndown \ Report$

Figura A.5: Burndown Report Sprint 05

En este *sprint* se cerraron todos los puntos de historia propuestos. Aunque se estimaron 11 horas de trabajo, el tiempo invertido fue superior, realizando 15. La mayor dedicación se justifica por la existencia de reuniones intermedias y de «defectos» encontrados en el código en el trascurso del *sprint*.

■ Sprint review meeting Durante la reunión se acordó comparar los resultados obtenidos con los de otras herramientas, además de empezar el tratamiento de los conjuntos de datos utilizados en el paper [8].

Sprint 6: Coriander

- Planning meeting Durante la reunión se fijaron los siguientes objetivos:
 - 1. Ajustes en las gráficas: arreglar detalles menores en el formato de ciertos gráficos.
 - 2. Comparativas: probar los resultados obtenidos y compararlos la herramienta de la Universidad de Granada llamada *Keel*.
 - 3. Datasets «reales»: probar el algoritmo utilizando MovieLens, una de las bases de datos utilizadas en el paper [8]. Para ello, es necesaria una re-lectura del artículo y realizar el procesamiento inicial de los datos.
 - 4. Memoria: documentación de los experimentos realizados.
- Marcas temporales El *sprint* se desarrolló entre el 25 de noviembre de 2022 y el 5 de diciembre del 2022.
- \blacksquare Burndown Report

Figura A.6: Burndown Report Sprint 06

Puede parecer que los puntos de historia fueron mal estimados debido a que el ritmo de trabajo es bajo. Sin embargo, se justifica debido a que durante la experimentación (en concreto, durante la comparativa contra KEEL) se encontraron dos *bugs* en el código (causados no por la lógica del programa, sino por el operador *in* de Python y por no estar preparado para recibir etiquetas que no comiencen en 0).

Debido a que los errores se encontraron una vez se realizó toda la documentación, se tuvo que repetir la sección asociada a los experimentos del *co-forest*, además de localizar y depurar los errores de código. Todo este trabajo supuso un esfuerzo extra de 7 horas, que fueron introducidas en el *backlog* del *sprint* a mediados del mismo (debido a la gran importancia que tienen y la influencia en pasos posteriores). Por este motivo, no se completaron los objetivos previstos. Sin embargo, el tiempo dedicado al proyecto fue el estimado.

Es destacable también que de los 6 puntos de historia que quedan se realizaron 2, pero se decidió dejar el *issue* abierto para el siguiente *sprint*.

• Sprint review meeting

Sprint N:

- Planning meeting
- Marcas temporales
- Burndown Report
- Sprint review meeting

A.3. Estudio de viabilidad

Viabilidad económica

Viabilidad legal

Apéndice ${\cal B}$

Especificación de Requisitos

B.1. Introducción

Una muestra de cómo podría ser una tabla de casos de uso:

- B.2. Objetivos generales
- B.3. Catalogo de requisitos
- B.4. Especificación de requisitos

CU-1	Ejemplo de caso de uso
Versión	1.0
Autor	Alumno
Requisitos	RF-xx, RF-xx
asociados	
Descripción	La descripción del CU
Precondición	Precondiciones (podría haber más de una)
Acciones	
	1. Pasos del CU
	2. Pasos del CU (añadir tantos como sean necesarios)
Postcondición Excepciones Importancia	Postcondiciones (podría haber más de una) Excepciones Alta o Media o Baja

Tabla B.1: CU-1 Nombre del caso de uso.

Apéndice ${\cal C}$

Especificación de diseño

- C.1. Introducción
- C.2. Diseño de datos
- C.3. Diseño procedimental
- C.4. Diseño arquitectónico

Apéndice D

Documentación técnica de programación

- D.1. Introducción
- D.2. Estructura de directorios
- D.3. Manual del programador
- D.4. Compilación, instalación y ejecución del proyecto
- D.5. Compilación, instalación y ejecución de herramientas auxiliares

KEEL

KEEL es una herramienta que permite experimentar con modelos de *machine learning*. Ha sido creada por distintas universidades españolas y financiada por el Ministerio de Educación y Ciencia [2].

Para poder ejecutarla, en primer lugar, se han de descargar los ficheros fuente del repositorio de GitHub [1]. Una vez se han descargado, se compilan aprovechando el fichero build.xmlz contenido y la herramienta ant.

Mediante el comando ant cleanAll se eliminan barios previos (para evitar conflictos), y mediante el comando ant se compila el código fuente.

Posteriormente se ejecuta la aplicación mediante el comando java -jar ./dist/GraphInterKeel.jar y se utiliza mediante su interfaz gráfica.

Figura D.1: Configuración de un experimento que utiliza el algoritmo co-forest mediante la GUI de KEEL.

D.6. Pruebas del sistema

Apéndice ${\cal E}$

Documentación de usuario

- E.1. Introducción
- E.2. Requisitos de usuarios
- E.3. Instalación
- E.4. Manual del usuario

Bibliografía

- [1] Jesús Alcalá Fernández (Coordinator). Keel: Github, 2018.
- [2] Jesús Alcalá Fernández (Coordinator). Keel: Knowledge extraction based on evolutionary learning, 2018.
- [3] Ming Li and Zhi-Hua Zhou. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. *IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans*, 37(6):1088–1098, 2007.
- [4] Si Mingdan and Qingshan Li. Shilling attacks against collaborative recommender systems: a review. *Artificial Intelligence Review*, 53, 01 2018.
- [5] Isaac Triguero, Salvador García, and Francisco Herrera. Self-labeled techniques for semi-supervised learning: Taxonomy, software and empirical study. *Knowledge and Information Systems*, 42, 02 2015.
- [6] Jesper Van Engelen and Holger Hoos. Semi-supervised ensemble learning. master's thesis., 07 2018.
- [7] Jesper Van Engelen and Holger Hoos. A survey on semi-supervised learning. *Machine Learning*, 109, 02 2020.
- [8] Quanqiang Zhou and Liangliang Duan. Semi-supervised recommendation attack detection based on co-forest. *Comput. Secur.*, 109(C), oct 2021.