SD701: Big Data Mining

Louis Jachiet

Louis JACHIET 1 / 4-

About the course

Calendar

11/09	Amphi Rubis	Intro to Big Data and MapReduce		
18/09	Amphi Grenat	Intro to Data Mining		
25/09	Amphi Rubis	Classification & Clustering		
2/10	Amphi Rubis	Classification & Clustering 2		
9/10	Amphi Rubis	Spark		
16/10	Amphi Rubis	Spark 2		
23/10	Amphi Grenat	Frequent Pattern Mining		
6/11	Amphi 3	Links Analysis		

https://synapses.telecom-paris.fr/catalogue/occurrence/14437/edt

Generalities About Data Mining

A Data Mining Pipeline

http://www.fabriders.net/data-literacy-update/

Data, Like Oil, Needs to be Refined to be Useful

- Hal Varian

The ability to take data—to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it—that's going to be a hugely important skill in the next decades

- Hal Varian, in 2009

Data Mining is not only about analyzing!

http://www.fabriders.net/data-literacy-update/

Data Mining is not only about analyzing!

Generalities of Data Mining

Machine Learning/Data Mining Applications

- Business Analytics
 - Is this costumer credit-worthy?
 - Is a costumer willing to respond to an email?
 - Do costumers divide in similar groups?
 - How much a costumer is going to spend next semester?
- World Wide Web
- Financial Analytics
- Internet of Things
- Image Recognition, Speech

• .

The Data Mining Process

- Data collection
- Data Preprocesing
 - Feature extraction
 - Data cleaning
 - Feature selection and transformation
- Analytical processing and algorithms
- Data Postprocesing

Multidimensional Data

• Example:

Competitor Name	Swim	Cycle	Run	Total
John T	13:04	24:15	18:34	55:53
Norman P	8:00	22:45	23:02	53:47
Alex K		28:00	,	n/a
Sarah H	9:22	21:10	24:03	54:35

Triathlon results

- Example or Instance
 - data point, transaction, entity, tuple, object, or feature-vector
- Attribute or Feature
 - field, dimension

Instance Types

Dense

- red, white, Barcelona, 3, up
- red, red, Barcelona, 4, down
- black, white, Paris, 2, up
- red, green, Paris, 3, down

Sparse

- 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Attribute Type

- Numerical
 - 0, 1, 3.43, 2.34, 4.23
- Categorical or Discrete
 - +, -
 - · red, green, black
 - yes, no
 - up, down
 - Barcelona, Paris, London, New York
- Text Data: vector-space representation
 - The cat is black
- Binary: Categorical or Numerical

Analytical processing and algorithms

- Attribute/Column Relationships
 - Classification : predict value of a discrete attribute
 - Regression: predict value of a numeric attribute
- Instance/Row Relationships
 - Clustering: determine subsets of rows, in which the values in the corresponding columns are similar
 - Outlier Detection: determine the rows that are very different from the other rows

Big Data Scalability

- Distributed Systems:
 - Hardware: Hadoop cluster
 - Software: MapReduce, Spark, Flink, Storm
- Streaming Algorithms
 - Single pass over the data
 - Concept Drift

Louis JACHIET _______14 / 44

Data preprocessing

The Data Mining Process

- Data collection
- Data Preprocesing
 - Feature extraction
 - Data cleaning
 - Feature selection and transformation
- Analytical processing and algorithms
- Data Postprocesing

Exercise EDF scenario

You are working at EDF and you want to predict the energy consumption for tomorrow. What features do you use?

Exercise EDF scenario

You are working at EDF and you want to predict the energy consumption for tomorrow. What features do you use?

Note

The same data can be presented in different manners!

Example: a timestamp vs (year,day in the year, hour, minute)

• Sensor data (time series): Wavelets or Fourier Transforms

• Sensor data (time series): Wavelets or Fourier Transforms

• Image Data: histograms or visual words

• Sensor data (time series): Wavelets or Fourier Transforms

• Image Data: histograms or visual words

• Web logs: multidimensional data

- Sensor data (time series): Wavelets or Fourier Transforms
- Image Data: histograms or visual words
- Web logs: multidimensional data
- Network traffic: specific features as network protocol, bytes transferred

- Sensor data (time series): Wavelets or Fourier Transforms
- Image Data: histograms or visual words
- Web logs: multidimensional data
- Network traffic: specific features as network protocol, bytes transferred
- Text Data: remove stop words, stem data, multidimensional data

Data Cleaning

Data Cleaning

- Handling missing entries
 - Eliminate entries with a missing value
 - Estimate missing values
 - Algorithms can handle missing values
- Handling incorrect entries
 - Duplicate detection and inconsistency detection
 - Domain knowledge
 - Data-centric methods
- Scaling and normalization
 - Standardization: for instance *i*, attribute *j*:

$$z_i^j = \frac{x_i^j - \mu_j}{\sigma_j}$$

Normalization:

$$y_i^j = \frac{x_i^j - \min_j}{\max_j - \min j}$$

- Numeric to Discrete
 - Equi-width ranges
 - Equi-log ranges
 - Equi-depth ranges

- Numeric to Discrete
 - Equi-width ranges
 - Equi-log ranges
 - Equi-depth ranges
- Discrete to Numeric
 - Binarization: one numeric attribute for each value

- Numeric to Discrete
 - Equi-width ranges
 - Equi-log ranges
 - Equi-depth ranges
- Discrete to Numeric
 - Binarization: one numeric attribute for each value
- Text to Numeric
 - remove stop words, stem data, tf-idf, multidimensional data

- Numeric to Discrete
 - Equi-width ranges
 - Equi-log ranges
 - Equi-depth ranges
- Discrete to Numeric
 - Binarization: one numeric attribute for each value
- Text to Numeric
 - remove stop words, stem data, tf-idf, multidimensional data
- Time Series to Discrete Sequence Data
 - SAX: equi-depth discretization after window-based averaging

- Numeric to Discrete
 - Equi-width ranges
 - Equi-log ranges
 - Equi-depth ranges
- Discrete to Numeric
 - Binarization: one numeric attribute for each value
- Text to Numeric
 - remove stop words, stem data, tf-idf, multidimensional data
- Time Series to Discrete Sequence Data
 - SAX: equi-depth discretization after window-based averaging
- Time Series to Numeric Data
 - Discrete Wavelet Transform
 - Discrete Fourier Transform

Term Frequency-Inverse Document Frequency

- Term frequency
 - Boolean "frequencies"
 - tf(t,d) = 1 if t occurs in d and 0 otherwise;
 - Logarithmically scaled frequency
 - $tf(t,d) = 1 + log(f_{t,d})$, or zero if $f_{t,d}$ is zero;
 - Augmented frequency,

$$tf(t,d) = 0.5 + 0.5 \cdot \frac{f_{t,d}}{\max\{f_{t',d} : t' \in d\}}$$

Inverse document frequency

$$idf(t, D) = \log \frac{N}{|\{d \in D : t \in d\}|}$$

• Term frequency-inverse document frequency

$$tfidf(t, d, D) = tf(t, d) \cdot idf(t, D)$$

Louis JACHIET 20 / 44

Feature conversion exercise

"What is the cure for Tuberculosis?"

Feature conversion exercise

"What is the cure for Tuberculosis?"
Predicting the next position of a car given the last positions?

Feature conversion exercise

"What is the	cure for Tuberculosis?"	
Predicting the	next position of a car given the last positions	;?
Predicting disc	ease from noisy input (body temperature, etc.)

Louis JACHIET 21 / 4-

Feature conversion exercise

"What is the cure for Tuberculosis?"	
Predicting the next position of a car given the last position	าร?์
Predicting disease from noisy input (body temperature, etc	c.)

Recognizing authors through their unique style?

Feature selection and transformation

- Sampling for Static Data
 - Sampling with Replacement
 - Sampling without Replacement: no duplicates
 - Biased Sampling
 - Stratified Sampling
- Reservoir Sampling for Data Streams
 - Given a data stream, choose k items with the same probability, storing only k elements in memory.

Reservoir Sampling

Reservoir Sampling

```
for every item i in the first k items of the stream

do store item i in the reservoir

n = k

for every item i in the stream after the first k items of the stream

do select a random number r between 1 and n

if r < k

then replace item r in the reservoir with item i

n = n + 1</pre>
```

Algorithm Reservoir Sampling

Feature selection and transformation

- Feature Subset Selection
 - Supervised feature selection
 - Unsupervised feature selection
 - Biased Sampling
 - Stratified Sampling
- Dimensionality reduction with axis rotation
 - Principal Component Analysis
 - Singular Value Decomposition
 - Latent Semantic Analysis

Principal Component Analysis

- Goal: Principal component analysis computes the most meaningful basis to re-express a noisy, garbled data set. The hope is that this new basis will filter out the noise and reveal hidden dynamics
- Normalize Input Data
- Compute k orthonormal vectors to have a basis for the normalized data
- Sort these *principal components*
- Eliminate components with low variance

Principal Component Analysis

- Organize the data set X as an $m \times n$ matrix, where m is the number of features and n is the number of instances.
- Normalize Input Data: subtract off the mean for each instance
 x_i
- Calculate the SVD or the eigenvectors of the covariance
 - Find some orthonormal matrix P where Y = PX such that

$$S_Y = \frac{1}{n-1} Y Y^T$$

is diagonalized.

- The rows of P are the principal components of X.
- Sort these principal components
- Eliminate components with low variance

• Simplification of models

• Simplification of models

• Shorten training phase

• Simplification of models

• Shorten training phase

Avoids the curse of dimensionality

• Simplification of models

• Shorten training phase

Avoids the curse of dimensionality

Reduce overfitting

Classifier evaluation

Precision and recall

wikipedia

What should be prioritized (true negative, false positive, true positive?) in these situations:

What should be prioritized (true negative, false positive, true positive?) in these situations:

• "You might like this movie" recommendation

What should be prioritized (true negative, false positive, true positive?) in these situations:

• "You might like this movie" recommendation

Medical test (pregnancy / cancer / 50-50-cure)

What should be prioritized (true negative, false positive, true positive?) in these situations:

• "You might like this movie" recommendation

Medical test (pregnancy / cancer / 50-50-cure)

• Danger prediction (pedestrian detection / hurricane alert)

Evaluation

- 1. Error estimation: Hold-out or Cross-Validation
- 2. Evaluation performance measures: Accuracy or κ -statistic
- 3. Statistical significance validation: MacNemar or Nemenyi test

Louis JACHIET 30 / 44

Error Estimation

Data available for testing

- Holdout an independent test set
- Apply the current decision model to the test set
- The loss estimated in the holdout is an unbiased estimator

Louis JACHIET 31 / 44

1. Error Estimation

Not enough data available for testing

- Divide dataset in 10 folds
- Repeat 10 times: use one fold for testing and the rest for training

	Predicted	Predicted	
	Class+	Class-	Total
Correct Class+	75	8	83
Correct Class-	7	10	17
Total	82	18	100

Simple confusion matrix example

Louis JACHIET 33 / 44

	Predicted	Predicted	
	Class+	Class-	Total
Correct Class+	tp	fn	tp+fn
Correct Class-	fp	tn	fp+tn
Total	tp+fp	fn+tn	N

Simple confusion matrix example

- Precision = $\frac{tp}{tp+fp}$
- Recall = $\frac{tp}{tp+fn}$
- Accuracy = $\frac{tp+tn}{total}$
- $F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

Louis JACHIET 34 / 44

	Predicted	Predicted	
	Class+	Class-	Total
Correct Class+	75	8	83
Correct Class-	7	10	17
Total	82	18	100

Simple confusion matrix example

- Accuracy = $\frac{75}{100} + \frac{10}{100} = \frac{75}{83} \frac{83}{100} + \frac{10}{17} \frac{17}{100} = 85\%$ Others:
- Arithmetic mean = $(\frac{75}{83} + \frac{10}{17})/2 = 74.59\%$
- Geometric mean = $\sqrt{\frac{75}{83}\frac{10}{17}} = 72.90\%$

Louis JACHIET 35 / 44

2. Performance Measures with Unbalanced Classes

	Predicted	Predicted	
	Class+	Class-	Total
Correct Class+	75	8	83
Correct Class-	7	10	17
Total	82	18	100

Simple confusion matrix example

	Predicted	Predicted	
	Class+	Class-	Total
Correct Class+	68.06	14.94	83
Correct Class-	13.94	3.06	17
Total	82	18	100

Confusion matrix for chance predictor

Louis JACHIET 36 / 44

2. Performance Measures with Unbalanced Classes

Kappa Statistic

- p₀: classifier's prequential accuracy
- p_c: probability that a chance classifier makes a correct prediction.
- κ statistic

$$\kappa = \frac{p_0 - p_c}{1 - p_c}$$

- $\kappa = 1$ if the classifier is always correct
- $\kappa = 0$ if the predictions coincide with the correct ones as often as those of the chance classifier

Matthews correlation coefficient (MCC)

$$\frac{tp \times tn - fp \times fn}{\sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}$$

	Predicted	Predicted	
	Class+	Class-	Total
Correct Class+	tp	fn	tp+fn
Correct Class-	fp	tn	fp+tn
Total	tp+fp	fn+tn	N

Simple confusion matrix example

AUC Area under the curve

A ROC space is defined by FPR and TPR (recall)

• FPR =
$$\frac{fp}{fp+tp}$$

• TPR =
$$\frac{tp}{tp+fn}$$

Louis JACHIET 38 / 44

Comparing two models: Accuracy

	Classifier A	Classifier B
	correct	wrong
Classifier A	Both	A only
correct		
Classifier B	B only	Both
wrong		

Statistical significance validation (2 Classifiers)

	Classifier A	Classifier A	
	Class+	Class-	Total
Classifier B Class+	С	а	c+a
Classifier B Class-	b	d	b+d
Total	c+b	a+d	a+b+c+d

$$M = |a - b - 1|^2/(a + b)$$

The test follows the χ^2 distribution. At 0.99 confidence it rejects the null hypothesis (the performances are equal) if M > 6.635.

Louis JACHIET 40 / 44

Statistical significance validation (> 2 Classifiers)

2 classifiers are performing differently if the corresponding average ranks differ by at least the critical difference

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}}$$

- *k* is the number of learners, *N* is the number of datasets.
- critical values q_{α} are based on the Studentized range statistic divided by $\sqrt{2}$.

Louis JACHIET 41 / 44

Statistical significance validation (> 2 Classifiers)

Two classifiers are performing differently if the corresponding average ranks differ by at least the critical difference

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}}$$

- k is the number of learners, N is the number of datasets,
- critical values q_{α} are based on the Studentized range statistic divided by $\sqrt{2}$.

# classifiers	2	3	4	5	6	7
q 0.05	1.960	2.343	2.569	2.728	2.850	2.949
$q_{0.10}$	1.645	2.052	2.291	2.459	2.589	2.693

Critical values for the Nemenyi test

Comparing two models: ROC curves

Louis JACHIET 43 / 44

Comparing two models: ROC curves

Louis JACHIET 44 / 44