Discussion 11

Today:

- 1. TF-IDF comments from discussion 10
- 2. CART
- 3. Random Forest

. Bag-of-words: xi is a vector whose entry; is the number of times word ; appears in doc. i.

. TF-JDF

tf (xij) = log (J+Xij)

idf (j) = log N 1+ \(\tilde{\mathcal{L}}\) I(xij>0)

 $\begin{aligned} & \text{tf-idf(i)} = \left[\text{tf(x_{ij})} . idf(j) \right]_{j=1}^{M}, \quad M \text{ total } \# \text{ of words} \\ & \text{Kernel: cosine similarity} \\ & \text{K(x_i, x_i)} = \underbrace{x_i^T x_i}_{x_i} \quad \Rightarrow \text{bag-of-words} \\ & & \text{If } x_i \text{If } x$

CART

Growing the tree

(j*, t*) = arg min min [cost (left node) +]

j ({1,...] } tetj [cost (right node]

Best split on best feature.

Since after the split region are indep. of each other (greedy algo.), the order in which regions are analyzed is (usually) not important

- min_sample_split, default = 2

- min-samples leaf, default=1

- max_leaf_nedes, default=none

-min-impurity-decrease, default=0

. Cost choices: accuracy, entropy, gini index

Split A	: class)	o) class 1	Spli	t B (409,400)	
A1 0 A2 B1 0 B2					
(300,100) (100,300)		(200, 400) (200, C)			
	As	A2	M	82	
Tio	3/4	14	1/3	1	
TIS	3/4	3/4	2/3	0	
ĝ	P	1	1	p	

$$cost(split) = e_1. N_1 + e_2 N_2$$

$$N$$

$$(cost(splitA))$$

Misclassification: $cost (split A) = \frac{1}{4.400 + \frac{1}{4400} = 1}$ $cost (split B) = \frac{1}{3.600 + p} = 1$ $cost (split B) = \frac{3}{8.400 + \frac{3}{8.400} = 3}$ $cost (split A) = \frac{3}{8.400 + \frac{3}{8.400} = 3}$ $cost (split B) = \frac{4}{4.600 + p} = 1$ $cost (split B) = \frac{4}{4.600 + p} = 1$

Random Forest

J. Bagging: grow different trees based on subsamples, of your dataset with replacement

2. Random Forest: not only random subsets V but also random subset of features at each node.

Some parameters:

- all from CART

-n-estimators, default=10: # of trees

-max_features, default=auto: # of considered

features at each split

X=	[5]	JW 5L	
	3	SL	
	2	PN PL	
	1	PL	
L			

(a) Tree 1

(b) Tree 2

(c) Tree 3

(d) Tree 4

Figure 1: Random Forest simple example