10/29/23, 1:17 AM HW7

HW7

## Problem 7A

Test the goodness of fit of the data to the genetic model given in Problem 55 of Chapter 8.

Hide

```
f34 <- c(1997,906,904,32)

l_f34 <- function(t) {
    sum_l_f34 <- dmultinom(x=f34, size=sum(f34), prob=c((.25*(2+t)), (.25*(1-t)), (.25*(1-t)), (.25*t)))
    return (sum_l_f34)
}
theta_o <- optimize(l_f34, c(0,1), maximum=TRUE); theta_o</pre>
```

```
$maximum
[1] 0.03571143

$objective
[1] 6.249532e-06
```

Hide

```
th <- theta_o$maximum

probs <- c(.25*(2+th),.25*(1-th),.25*(1-th),.25*th)

chisq.test(f34,p=probs)
```

```
Chi-squared test for given probabilities

data: f34
X-squared = 2.0154, df = 3, p-value = 0.5692
```

Hide

```
p_value = 1-pchisq(2.0155,2)
p_value
```

```
[1] 0.3650394
```

Since p\_value = 0.3650394, the fit is not rejected. Model is good.

10/29/23. 1:17 AM HW7

## Problem 7B

Yip et al. (2000) studied seasonal variations in suicide rates in England and Wales during 1982–1996, collecting counts shown in the following table:

```
Hide
```

```
suic_f = c(1362,1244,1496,1452,1448,1376,1370,1301,1337,1351,1416,1226)
chisq.test(suic_f)
```

```
Chi-squared test for given probabilities

data: suic_f

X-squared = 53.786, df = 11, p-value = 1.292e-07
```

Hide

```
suic_m = c(3755,3251,3777,3706,3717,3660,3669,3626,3481,3590,3605,3392)
chisq.test(suic_m)
```

```
Chi-squared test for given probabilities

data: suic_m
X-squared = 74.56, df = 11, p-value = 1.646e-11
```

Both datasets show seasonality as we see dips and rises at the same times throughout the year. Mainly dips in December and February, and rises between March through May.

### Problem 7C

In the Current Population Survey of March 2005, men were classified by employment status and marital status. Here are the data; you may assume they come from a simple random sample of U.S. men. "Once married" means, "widowed, divorced, or separated

a.  $H_0$ : Employment and marital status are independent.  $H_A$ : They are dependent.

```
emp <- data.frame (
    Employed = c(790, 98, 209),
    Unemployed = c(56, 11, 27),
    not_in_labor = c(21, 7, 12)
)

# chisq.test(emp)$exp
chisq.test(emp)</pre>
```

10/29/23. 1:17 AM

Chi-squared approximation may be incorrect

```
Pearson's Chi-squared test

data: emp

X-squared = 13.369, df = 4, p-value = 0.009609
```

Since p\_value = 0.009609, the variables are dependant, we reject the null hypothesis.

b. 772.6231 is the expected count under the null hypothesis. P(married\_and\_employed) = P(married)P(employed) since under the null they are independent. R gives a warning message because the expected count in one of the values is close to 0. With such a large n (n=1232), we should use the poisson approx rather than the normal approx that is used in chi-squared test.

### Problem 7D

Is R calculating by...

```
exp_emp <- data.frame (
  exp_Employed = c(772.6231, 66.204712, 28.172218),
  exp_Unemployed = c(103.3729, 8.857839, 3.769293),
  exp_not_in_labor = c(221.0041, 18.937449, 8.058489)
)
sum((emp-exp_emp)^2/exp_emp)</pre>
```

```
[1] 1532.186
```

Hide

Hide

```
2*sum(emp*log(emp/exp_emp))
```

```
[1] 888.8899
```

Not sure why my values are so large in R, did the calculations on hand and it seems that R calculates through  $\sum (O_i - E_i)^2 / E_i$ 

## Problem 7E

Use the datea in Problem 7C to construct an approximate 95% confidence interval for the proportion of unemployed men among all U.S. men in 2005.

10/29/23, 1:17 AM HW7

```
n = 1232
p_hat = (56+11+27)/n
se = sqrt(p_hat * 0.9237/n)

(0.0763-1.96*se)

[1] 0.06147568

Hide

(0.0763+1.96*se)
```

Therefore, the 95% CI is (0.061, 0.091).

#### Problem 7F

If possible use the data in Problem 7C to construct an approximate 95% confidence interval for the difference between the proportion of employed and unemployed men among all U.S. men in 2005.

Therefore, the 95% CI is (0.7831553, 0.8450913).

# Problem 7G

Consider testing goodness of fit for a multinomial distribution with two cells. Denote the number of observations in each cell by X1 and X2 and let the hypothesized probabilities be p1 and p2. Pearson's chi-square statistic is equal to...

 $X_1+X_2=n$  and  $p_1+p_2=1$ , chi squared stat is:

10/29/23. 1:17 AM

$$\frac{(X_1 - np_1)^2}{np_1} + \frac{(X_2 - np_2)^2}{np_2} = \frac{(1 - p_1)(X_1 - np_1)^2 + p_1(n - X_1 - n(1 - p_1))^2}{np_1(1 - p_1)}$$

$$= \frac{(X_1 - np_1)^2}{np_1(1 - p_1)}$$

 $X_1$  is binom so it has exp  $np_1$  and var  $np_1(1-p_1)$ 

When n is large,  $X_1$  is approximately normal, so the stat is approx the square of a normal which is a chi-squared with 1 degree of freedom.

### Problem 7G

Generate an i.i.d. sample of size 1000 from the binomial distribution with parameters n = 5 and p = 0.4. Compute the counts in the categories 0, 1, 2, 3, 4, and 5. You shouldnt have to get each count separately (try the R function table())

Hide

```
x <- rbinom(1000,5,0.4)
p_hat <- mean(x)/5
obs <- hist(x, plot=FALSE, breaks=seq(-0.5,5.5,by=1))$counts
chisq.test(obs, p=dbinom(0:5,5,p_hat))</pre>
```

```
Chi-squared test for given probabilities

data: obs

X-squared = 9.3629, df = 5, p-value = 0.09543
```

But like in problem 7A, the df is wrong since df should = 4, so...

Hide

```
1-pchisq(9.3629, 4)
```

```
[1] 0.05264187
```

So, the p-value = 0.0526. Since the p-value is above 0.05, we fail to reject the null hypothesis.

#### Problem 71

Now repeat the sampling in the previous problem 2000 times. That is, generate 2000 independent samples, each of size 1000, from the binomial distribution with n = 5 and p = 0.4. For each of your samples, get the counts in each category 0, 1, 2, 3, 4, and 5.

10/29/23, 1:17 AM HW7

```
x <- rbinom(20000,5,0.4)
sample <- matrix(x,nrow=1000,ncol=2000)
p_hats <- colMeans(sample)/5
obs <- apply(sample,2,table)
exp <- sapply(p_hats,dbinom,x=0:5,size=5)*1000

chi <- apply((obs-exp)**2/exp,2,sum)
chi2 <- apply(obs*log(obs/exp),2,sum)*2

chi_hist <- hist(chi, plot=FALSE, breaks=seq(-0.5,11.5,by=1))
chi2_hist <- hist(chi2, plot=FALSE, breaks=seq(-0.5,11.5,by=1))</pre>
```

```
mycol <- rgb(0, 0, 155, max = 255, alpha = 125, names = "blue50")
mycol2 <- rgb(155, 0, 0, max = 255, alpha = 125, names = "red50")
plot(chi_hist, col=mycol)
plot(chi2_hist, col=mycol2,add=TRUE)</pre>
```

