EEL 5764 Computer Architecture

Sandip Ray

Department of Electrical and Computer Engineering University of Florida

sandip@ece.ufl.edu

http://sandip.ece.ufl.edu

Lecture 3:

System Design Parameters

Announcements

- TA office hours posted on Canvas
- TA office hours will be held in NEB 288*
- My (Instructor) office hours will be in BEN 323
- We will post an overall schedule for the course by next week
 - → Will include HW assignment schedule and mid-terms

System Design Parameters

- Performance (Speed)
- Cost
- Power (static + dynamid)
 - → Peak power
 - →Average power
- Robustness
 - → Noise-tolerance
 - → Radiation-hardness
- Testability
- Reconfigurability
- Time-to-market etc.

Single Processor Performance

Computer Technology Driving Forces

Improvements in semiconductor technology

→ Feature size, clock speed, cost

Improvements in computer architectures

- → Enabled by high-level language compilers, UNIX
- → Lead to RISC architectures

Together have enabled:

- → More powerful and efficient computers.
- → New classes of computers, i.e. mobile devices, etc.
- → Penetration of GP CPUs into many applications.
- →Tradeoff between performance and productivity in SW development.

Current Trends in Architecture

- Power Wall
- Memory Wall
- Lack of Instruction-Level parallelism (ILP) to exploit
 - → Single processor performance improvement ended in 2003
- New models for performance:
 - → Data-level parallelism (DLP)
 - → Thread-level parallelism (TLP)
 - → Request-level parallelism (RLP)
- These require explicit restructuring of the application
 - → Applications must expose parallelism explicitly.

Classes of Parallelism

- Exploitation of parallelism -> performance
- Classes of parallelism in applications:
 - → Data-Level Parallelism (DLP)
 - → Task-Level Parallelism (TLP)
- Classes of architectural parallelism:
 - → Instruction-Level Parallelism (ILP)
 - → Vector architectures/Graphic Processor Units (GPUs)
 - → Thread-Level Parallelism (TLP)
 - → Request-Level Parallelism (RLP)

Flynn's Taxonomy

- Single instruction stream, single data stream (SISD)
 - → Exploit ILP and TLP in some degree
- Single instruction stream, multiple data streams (SIMD)
 - → Targets DLP
 - → Vector architectures
 - → Multimedia extensions
 - → Graphics processor units
- Multiple instruction streams, single data stream (MISD)
 - → No commercial implementation
- Multiple instruction streams, multiple data streams (MIMD)
 - → Targets TLP and RLP
 - → Tightly-coupled MIMD TLP
 - → Loosely-coupled MIMD RLP

Computer Architecture – Past and Now

- "Old" view of computer architecture:
 - → Instruction Set Architecture (ISA) design
 - → i.e. decisions regarding:
 - registers, memory addressing, addressing modes, instruction operands, available operations, control flow instructions, instruction encoding
- "Real" computer architecture:
 - → ISA design is less of a focus
 - → Specific requirements of the target machine
 - → Design to find a best tradeoff among performance, cost, power, and availability, etc, optimized for target applications
 - → Includes ISA, microarchitecture, logic/circuit design, implementation, etc.

Impacts from requirements of applications and technology