Activité 1 page 84:

1 – Du plus petit au plus grand : taille_(noyau) < taille_(atome) < taille_(molécule)

2 –

ÉTAT INITIAL	ÉTAT FINAL	TYPE DE TRANSFORMATION
Atome d'uranium U	Atome de Plutonium Pu	Transformation nucléaire car on modifie l'atome
Molécules de dioxygène liquide O _{2(I)}	Molécules de dioxygène gazeux O _{2(g)}	Transformation physique car on ne change pas la molécule
Molécules de méthane CH ₄ et de dioxygène O ₂	•	Transformation chimique car on a modifié les molécules

3 – Cette quête ne pouvait pas aboutir car transformer le plomb en or est une transformation nucléaire, cela nécessite beaucoup plus d'énergie qu'une transformation chimique. Au Moyen-Âge, les alchimistes ne disposaient pas de cette énergie.

Activité 2 page 85 :

Démarche élémentaire :

1 – Masse de pain dans le stock : $m_p = 12.0 \text{ kg} = 1.20 \text{ x } 10^4 \text{ g}$ De même, masse de jambon dans le stock : $m_i = 2.2 \text{kg} = 2.2 \text{ x } 10^3 \text{ g}$

2 – Calculons le nombre de tranches de pain disponibles dans le stock noté n_p

 $n_p = m_p / M_p$ $n_p = (1,20 \times 10^4) / (6,0 \times 10^1)$

 $n_p = 200$

→ Il y a 200 tranches de pain de disponibles dans le stock.

D'après l'équation, pour faire 1 sandwich on utilise 2 tranches de pain, avec 200 tranches de pain, on peut faire **100 sandwichs**.

- 3 D'après l'équation, pour faire 100 sandwichs, on doit utiliser 100 tranches de jambon.
- 4 Calculons le nombre de tranches de jambon disponibles dans le stock noté ni

 $n_i = m_i / M_i$

 $n_i = (2.2 \times 10^3) / (2.0 \times 10^1)$

 $n_i = 110$

- → Il y a 200 tranches de jambon de disponibles dans le stock.
- 5 Le pain va manquer en premier : 110 > 100, il y a donc plus de jambon que nécessaire, le pain est totalement consommé en premier, c'est le **réactif limitant**.