Problem 1

Maximin Optimization Problems

$$f(x) := \min_{y \in \mathcal{Y}} g(x, y).$$

求函数 f(x) 的最大值点

The Bilinear Problem

BILINEAR $(x, y) := |y|(|x| - \beta n) - \alpha n|x|,$

对于特殊的 Bilinear 函数, 求其最大值点

Bilinear 函数图像

J. W. Herrmann. A Genetic Algorithm for Minimax Optimization Problems. In Angeline et. al., editors, Proc. 1999 Congress on Evolutionary Computation, pages 1099-1103, 1997.

Parallel Coevolutionary Algorithm

- 1. 随机生成初始种群 P₁ P₂
- 2. 根据 P_2 种群对 P_1 中的个体进行估值
- 3. 依据 P_1 种群对 P_2 中的个体进行估值
- 4. 对 P₁ 进行变异和交换操作, 生成新的 P₁ 种群
- 5. 对 P_2 进行变异和交换操作,生成新的 P_2 种群
- 6. 回到步骤 2

Parallel Coevolutionary Algorithm

Algorithm 1: Parallel Coevolutionary Algorithm **Input:** Object function $g: \{0,1\}^n \times \{0,1\}^n \to \mathbb{R}$ **Input:** Population size $\lambda \in \mathbb{N}$ Output: Max value of function $f(x) = \min_{y \in \mathcal{Y}} g(x, y)$ 1 for $i \in [\lambda]$ do Sample $P_0(i) \sim Unif(\{0,1\}^n);$ Sample $Q_0(i) \sim Unif(\{0,1\}^n);$ 4 end 5 for $t \in \mathbb{N}$ do for individual $x \in P_t$ do caculate $h(x) = \min_{y \in Q_t} g(x, y);$ 7 end8 for individual $y \in Q_t$ do 9 caculate $v(x) = \max_{x \in P_t} g(x, y);$ 10 11 end $sort(P_t, h)$; 12 $sort(Q_t, v)$; 13 $x' \leftarrow \operatorname{mutation}(P_t(\lambda))$; 14 $y' \leftarrow \operatorname{mutation}(Q_t(1))$; 15if $\min_{y \in Q_t} g(x', y) > h(P_t(1))$ then 16 $P_t(1) \leftarrow x';$ 17 end18 if $\max_{x \in P_t} g(x, y') > v(Q_t(\lambda))$ then 19 $Q_t(\lambda) \leftarrow y'$; 2021 end $P_{t+1} \leftarrow P_t$; $\mathbf{22}$ $Q_{t+1} \leftarrow Q_t;$ 24 end

Parallel Coevolutionary Algorithm 能使用 Theorem 1 中的框架,得到与原文章相同的复杂度和结论

Parallel Coevolutionary Algorithm 满足 Theorem 1 中的条件

Theorem 1

Theorem 3. Given subsets $A_j \subseteq \mathcal{X}$, $B_j \subseteq \mathcal{Y}$ for $j \in [m]$ where $A_1 := \mathcal{X}$ and $B_1 := \mathcal{Y}$, define $T := \min\{t\lambda \mid (P_t \times Q_t) \cap (A_m \times B_m) \neq \emptyset\}$, where for all $t \in \mathbb{N}$, $P_t \in \mathcal{X}^{\lambda}$ and $Q_t \in \mathcal{Y}^{\lambda}$ are the populations of Algorithm $\boxed{1}$ in generation t. If there exist $z_1, \ldots, z_{m-1}, \delta \in (0,1]$, and $\gamma_0 \in (0,1)$ such that for any populations $P \in \mathcal{X}^{\lambda}$ and $Q \in \mathcal{Y}^{\lambda}$ with "current level" $j := \max\{i \in [m-1] \mid |(P \times Q) \cap (A_i \times B_i)| \geq \gamma_0 \lambda^2\}$

(G1) for
$$(x,y) \sim \mathcal{D}(P,Q)$$

$$\Pr\left(x \in A_{j+1}\right) \Pr\left(y \in B_{j+1}\right) \ge z_j,$$

(G2a) for all $\gamma \in (0, \gamma_0)$ if $|(P \times Q) \cap (A_{j+1} \times B_{j+1})| \ge \gamma \lambda^2$, then for $(x, y) \sim \mathcal{D}(P, Q)$,

$$\Pr(x \in A_{i+1}) \Pr(y \in B_{i+1}) \ge (1 + \delta)\gamma$$

(G2b) for $(x, y) \sim \mathcal{D}(P, Q)$,

$$\Pr(x \in A_j) \Pr(y \in B_j) \ge (1 + \delta)\gamma_0,$$

(G3) and the population size $\lambda \in \mathbb{N}$ satisfies for a sufficiently large constant c', where $z_* := \min_{i \in [m-1]} z_i$,

$$\lambda \ge c' \log(m/z_*),$$

then for a constant c'' > 0, $\mathbb{E}[T] \le c'' \lambda \left(\lambda^2 m + \sum_{i=1}^{m-1} 1/z_i\right)$.

Definition 2

对搜索空间进行划分,定义 S_0 , $S_1(k)$, $S_2(k)$

$$S_0 := \{ x \in \mathcal{X} \mid 0 \le |x| < \beta n \}$$

$$S_1(k) := \{ x \in \mathcal{X} \mid \beta n \le |x| < n - k \},$$

$$S_2(k) := \{ x \in \mathcal{X} \mid n - k \le |x| \le n \}.$$

定义
$$R_0, R_1(k), R_2(k)$$

$$R_0 := \{ y \in \mathcal{Y} \mid \alpha n \le |y| \le n \}$$

$$R_1(\ell) := \{ y \in \mathcal{Y} \mid \ell \le |y| < \alpha n \}$$

$$R_2(\ell) := \{ y \in \mathcal{Y} \mid 0 \le |y| < \ell \}.$$

同时定义概率 p(C) $p_{sel}(C)$, 其中 $C \subseteq \mathcal{X} \times \mathcal{Y}$,

$$\begin{split} p(C) &:= \Pr_{(x,y) \sim \text{Unif}(P \times Q)} \left((x,y) \in C \right) \\ p_{\text{sel}}(C) &:= \Pr_{(x,y) \sim \text{select}(P \times Q)} \left((x,y) \in C \right). \end{split}$$

Theorem 1

Theorem 14. Assume that for a sufficiently large constant c, it holds $c \log(n) \le \lambda \in \text{poly}(n)$. Let $\alpha, \beta, \varepsilon \in (0,1)$ be three constants where $\alpha - \varepsilon \ge 4/5$. Define $T := \min\{\lambda t \mid (P_t \times Q_t) \cap S_0 \times R_1((\alpha - \varepsilon))n\}$ where P_t and Q_t are the populations of Algorithm 2 applied to BILINEAR α,β . Then if the mutation rate χ is a sufficiently small constant, and at most $1/(1-\alpha+\varepsilon)$, there exists a constant c_0 such that for all $r \in \text{poly}(n)$, it holds $\Pr(T > c_0 r \lambda^3 n) \le (1/r)(1+o(1))$.

- 1. 规定了 Bilinear Problem 中 α 的范围和算法中突变概率 χ 的范围
- 2. 应用框架的结论得出期望时间和时间的概率分布

Parallel Coevolutionary Algorithm 与原文章算法的区别:

- 1. 产生新种群的方式不同,不会发生"退化"的情况
- 2. 因此没有种群大小 λ 的限制
- 3. 实践结果明显更优,种群变化趋势明显

Parallel Coevolutionary Algorithm 单个个体研究:

也就是 (1+1)EA 算法

对于位置为 (x,y) 的个体, 计算下一次的期望位置 (E(x), E(y))

如果 $x < \beta n$: E(x)=x+1-x/n

否则:E(x)=x-x/n

如果 $y < \alpha n$:E(y)=y-y/n

否则:E(y)=y+1-y/n

画出期望曲线, 发现结果不收敛

实验也有相同的结果

方向1:研究种群数量大于1的算法

实验说明不会出现不收敛的情况

在 $x = \beta n$ 或 $y = \alpha n$ 时,由于在直线附近存在多个个体,有向最优解进化趋势,不会存在之前的情况

知行合一、经世致用

方向2:基于原问题的设定 $\alpha > 0.8$,并且认为没有落在区域 R_0 中的个体

考虑 (1+1)EA 达到最优解的的期望时间:

类似于原问题,将进化过程分为两个阶段

每个阶段时间复杂度
$$T = \frac{n}{1} + \frac{n}{2} + \frac{n}{3} + \dots + \frac{n}{n} = O(nln(n))$$

