Discrete Mathematics, 2016 Spring - HW 9

October 31, 2016

Instructor: Zsolt Pajor-Gyulai

Courant Institute of Mathematical Sciences, NYU

To get full credit in all of the problems, use rigorous justification and unless otherwise indicated, make sure that your solution reads as a perfect English sentence. You should only assume integers, operations and order relations as given. If you use a statement or a definition from the textbook, make sure to indicate it.

Section 26

6-7) (a) Let A and B be sets and suppose $f:A\to B$ is one-to-one and onto. Prove that then

$$f \circ f^{-1} = \mathrm{id}_B$$
, and $f^{-1} \circ f = \mathrm{id}_A$

- (b) Suppose A and B are sets, and f and g are functions with $f: A \to B$ and $g: B \to A$. Prove that if $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$ then f is one to one and $g = f^{-1}$.
- 13-14) Let A be a set and $f: A \to A$. Then $f \circ f$ is also a function from A to itself. Let us write $f^{(n)}$ for the n-fold composition

$$f^{(n)} = f \circ f \circ \cdots \circ f.$$

Of course $f^{(1)} = f$.

- (a) What is a sensible meaning for $f^{(0)}$?
- (b) If f is invertible, prove that $(f^{-1})^{(n)} = (f^{(n)})^{-1}$.
- (c) Find a formula for the *n*-th iteration of the function $f :: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1 given the starting value $x_0 = 1$. That is, find the *n*th term of

$$f(1), f^{(1)}(1), f^{(2)}(1), \dots$$

Section 27

- 1) Consider the permutation $\pi = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 1 & 6 & 5 & 3 & 8 & 9 & 7 \end{bmatrix}$. Express π as
 - (a) As a set of ordered pairs.
 - (b) In cycle notation.

- 4) How many permutations in S_n do not have a cycle of length one in their disjoint cycle notation.
- 13) Let $\pi = (1, 2)(3, 4, 5, 6, 7)(8, 9, 10, 11)(12) \in S_{12}$.
 - (a) Find the smallest positive integer k for which

$$\pi^{(k)} = \pi \circ \pi \circ \cdots \circ \pi = \iota.$$

- (b) Generalize the previous argument. If π 's are disjoint cycles have lengths n_1, n_2, \ldots, n_t , what is the smallest integer k so that $\pi^{(k)} = \iota$?
- 11) Let $\tau_1, \tau_2, \dots, \tau_a$ be transpositions and suppose

$$\pi = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_a.$$

Prove that

$$\pi^{-1} = \tau_a \circ \tau_{a-1} \circ \cdots \circ \tau_1$$

Reading) Read Definition 27.14, the following discussion, and the proof of Lemma 27.13 on pages 193-195.

Section 40

- 2) Let * be a binary operation defined on the real numbers \mathbb{R} by x * y = x + y xy.
 - (a) Is * closed on the real numbers?
 - (b) Is * commutative?
 - (c) Is * associative?
 - (d) Does * have an identity element? If so, does every real number have an inverse?
- 13) Let A be a set. Prove that $(2^A, \Delta)$ is a group.