Sharing recruitment sites with a precision-medicine based study: What is the impact on your study?

Guillaume Desachy¹, Anel Mahmutovic², Andrew Harper³, John Tillinghast², Jason Cooper²

¹Biometrics, Late-stage Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca ²Early R&I, Early Biometrics & Statistical Innovation, Data Science & AI, R&D BioPharmaceuticals, AstraZeneca ³Clinical Development, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca

Introduction

Asthma is a heterogeneous disease with diverse etiological drivers. Precision medicine (PM) randomized controlled trials (RCT) aim to demonstrate differential clinical efficacy for specific endophenotypes. Such approaches rely on well-powered biomarker-defined subgroup analyses. To identify and enroll eligible patients in a PM-study, screening a large number of patients is required.

The objective of this work?

Assess the impact a PM-study could have towards all-comer studies due to actively reallocating patients into a PM-study at shared sites.

Explanation

At a given site, patients could be randomized into two RCT:

- Study A, a precision-medicine-based RCT
- Study B, an all-comer RCT

Participants are recruited at sites which are running either study A (magenta), study B (lime-green) or both (magenta and lime-green).

Biomarker-Positive participants are preferentially recruited or actively reallocated into Study A thus changing the population-composition of Study B as this leads to fewer Biomarker-Positive patients recruited in the all-comer study.

Methods

Biomarker-Positive
Placebo Arm

Biomarker-Negative
Placebo Arm

Treatment Arm

Treatment Arm

Placebo Arm

Treatment Arm

Modelling and simulations were used to approximate the impact of actively reallocating Biomarker-Positive patients into a PM-study. Both Forced Expiratory Volume (FEV1) and Severe Exacerbation rates (SevEx) were considered as endpoints and the impact on statistical power was quantified with respect to a hypothetical Phase 3 trial.

Results

Empirical Power for SevEx in a hypothetical Ph3 trial Each point is 1000 simulations of 1,100 participants in 2 equally-sized arms

In these analyses SevEx proved to be more sensitive to biomarker*treatment response interactions than FEV1 (data not shown).

Assuming a Phase 3 biomarker*treatment response interaction <10%, a Phase 3 trial could tolerate (i.e. <5% drop in power) up to a 15% loss of Biomarker-Positive patients.

A modeling and simulation framework was designed to investigate site sharing. This framework can be used to assess how changes in the composition of subpopulations or subpopulation-specific perturbations influence the population as a whole. Assuming a Phase 3 biomarker*treatment response interaction <10%, a Phase 3 trial could tolerate up to a 15% loss of Biomarker-Positive patients.

