Análisis general de la función de transferencia

Tipo de filtro

Dada la función de transferencia asignada

$$H(s) = \frac{3948 \cdot s^2}{s^4 + 88,86 \cdot s^3 + 7,935 \cdot 10^5 \cdot s^2 + 3,508 \cdot 10^7 \cdot s + 1,559 \cdot 10^{11}}$$

procederemos a analizar su comportamiento en s = 0 y $s \longrightarrow \infty$.

En primer lugar analizamos el caso s=0 para el cual tenemos que

$$H(0) = \frac{3948 \cdot 0^2}{0^4 + 88,86 \cdot 0^3 + 7,935 \cdot 10^5 \cdot 0^2 + 3,508 \cdot 10^7 \cdot 0 + 1,559 \cdot 10^{11}}$$

obteniendo entonces que

$$H(0) = 0$$

Analizando ahora el caso $s \longrightarrow \infty$ tenemos que

$$\lim_{s \to \infty} H(s) = 0$$

dado que el grado del denominador es dos veces mayor al del numerador.

En base a los valores obtenidos podemos entonces afirmar que se trata de un filtro pasabanda dado que la transferencia es nula para frecuencias bajas y altas.

Ceros y polos

En principio, es trivial ver que el único cero de la función H(s) es s=0 y dado que está elevado al cuadrado se deduce que el cero es doble.

Por otro lado tenemos los polos, cuyo cálculo no es trivial. Dado que el denominador de la función es de grado cuatro tendremos entonces cuatro raíces. Debido a esto y a que los coeficientes del polinomio complejizan el desarrollo del cálculo de dichas raíces, se calcularán entonces mediante calculadora.

Obtenemos que

$$p_{1,2} \approx -21,40395436 \pm 606,8764861j$$

$$p_{3,4} \approx -23,02604564 \pm 649,8008994j$$

donde $p_{1,2}$ y $p_{3,4}$ son los pares conjuados que componen los cuatros polos de H(s), y donde el primer subíndice corresponde al conjugado cuya parte imaginaria es positiva mientras que el segundo subíndice corresponde al de parte imaginaria negativa.

Cálculo de W₀ y Q

Dado que el denominador se compone de dos pares de raíces complejas conjugadas tendrá entonces un W_0 y Q para cada par. Para obtenerlos debemos primero reescribir la función H(s) a la forma

$$H(s) = \frac{3948 \cdot s^2}{(a \cdot s^2 + b \cdot s + c) \cdot (d \cdot s^2 + e \cdot s + f)}$$

donde las letras corresponden a valores que debemos calcular de forma tal que dicha ecuación sea equivalente a la fórmula original de H(s).

Para conseguir esto es conveniente utilizar las raíces del denominador de H(s) (los polos de la función) expresando la función como

$$H(s) = \frac{3948 \cdot s^2}{k \cdot (s - p_1) \cdot (s - p_2) \cdot (s - p_3) \cdot (s - p_4)}$$

donde k es el factor del término $k*s^4$ y, para nuestra función en particular, se da que k=1.

Luego, multiplicando los polos conjuados entre sí obtenemos

$$H(s) = \frac{3948 \cdot s^2}{(s^2 - (p1 + p2) \cdot s + p_1 \cdot p_2) \cdot (s^2 - (p3 + p4) \cdot s + p_3 \cdot p_4)}$$

Sean z_1 y z_2 dos números complejos conjugados tenemos que

$$z1 + z2 = 2\Re(z_1) = 2\Re(z_2)$$

$$z1 \cdot z2 = |z_1|^2 = |z_2|^2$$

Aplicando estas propiedades a $p_{1,2}$ y $p_{3,4}$ obtenemos la expresión

$$H(s) = \frac{3948 \cdot s^2}{(s^2 - 2\Re(p_1) \cdot s + |p_1|^2) \cdot (s^2 - 2\Re(p_3) \cdot s + |p_3|^2)}$$

 W_0 y Q vienen dados por $s^2 + \frac{W_0}{Q} \cdot s + W_0^2$. Ejemplificando para el primer factor del denominador tendríamos entonces que

$$W_{0_1} = |p1|$$

$$Q_1 = -\frac{W_{0_1}}{2\Re(p_1)}$$

Reemplazando obtenemos finalmente que

$$W_{0_1} \approx 607, 2538173 \frac{r}{s}$$

$$Q_1 \approx 14, 18555205$$

$$W_{0_2} \approx 650, 2087416 \frac{r}{s}$$

$$Q_2 \approx 14, 11898404$$

siendo W_{0_1} y Q_1 los valores correspondientes al polinomio de segundo grado cuyas raíces son $p_{1,2}$ y W_{0_2} y Q_2 los correspondientes al polinomio de segundo grado de raíces $p_{3,4}$.

Finalmente, reemplazando con los valores de W y Q obtenidos podemos expresar la función de transferencia como

$$H(s) \approx \frac{3948 \cdot s^2}{(s^2 + 42, 81 \cdot s + 607, 3^2) \cdot (s^2 + 46, 05 \cdot s + 650, 2^2)}$$

Diagramas de Bode

A continuación se presentan los diagramas de Bode tanto de módulo como de fase (en grados sexagesimales) de la función H(s) junto con una breve descripción explicando lo obtenido. Para los diagramas de Bode se analiza el caso s=jw donde w se mide en $\frac{r}{s}$ (radianes por segundo).

Figure 1: Diagramas de Bode

En primer lugar tenemos el diagrama de módulo de Bode, es decir, el módulo de H(jw) medido en dB (decibeles) el cual viene dado por la fórmula

$$20 \cdot \log(|H(jw)|)dB$$

Dado que el filtro es un pasabanda era lo esperable observar que para frecuencias bajas $(w \longrightarrow 0)$ y altas $(w \longrightarrow \infty)$ el gráfico tendiera a $-\infty$ dado que este tipo de filtro se caracteriza por anular la función de transferencia para dichas frecuencias. Esto puede verse matemáticamente en base al análisis previo realizado donde se calculó que H(0) = 0 y $\lim_{s \to \infty} H(s) =$

0, luego $\lim_{x\to 0} \log(x) = -\infty$ lo cual explica lo observado en el primer gráfico. Por último, para las frecuencias en el intervalo (W_{0_1}, W_{0_2}) se aprecia una ganancia que tiende a 0dB lo que implica una salida de igual amplitud a la de la señal de entrada (esta es la banda que nuestro filtro deja pasar sin amortiguar).

El segundo gráfico es el diagrama de fase de Bode (en grados sexagesimales). Los valores de este gráfico vienen dados por la fórmula

$$\arctan(\frac{\Im(H(jw))}{\Re(H(jw))})$$

Dado que el numerador de la función se compone de un único término $3948 \cdot s^2$ tenemos que la constante positiva aporta 0° mientras que el s^2 aporta 180° (recordemos que s=jw lo cual tiene un ángulo de 90° , luego elevar al cuadrado duplica el ángulo y obtenemos 180°).

Al acercarnos a las frecuencias W_0 de los polos vemos como empieza a disminuir el ángulo a un ritmo de $-180\frac{grad}{dec}$ aproximadamente. En rigor, en principio hay un intervalo donde disminuye $-90\frac{grad}{dec}$ pero dicho intervalo no es apreciable dada la escala y cercanía entre los W_0 . Finalmente, una vez alcanzado el valor $W=10\cdot W_0$ los polos ya no aportan pendiente decreciente y se estabiliza el gráfico nuevamente, quedando en este caso en -180° aproximadamente.

Respuesta gráfica del sistema a distintas señales

A continuación se presentan gráficos de respuestas del sistema a distintos tipos de señales y frecuencias.

Respuesta al escalón

Figure 2: Respuesta al escalón

Vemos que al ser un filtro pasabanda nuestro sistema no reacciona al instante $t=0^+$ el cual correspondería a una frecuencia $w\longrightarrow\infty$. Luego obtenemos una respuesta oscilatoria (esperable dado que se tienen polos complejos) que va tendiendo a cero a medida que pasa el tiempo (debido a los factores exponenciales decrecientes provenientes de la parte real negativa de las raíces de los polos). Cuando $t\longrightarrow\infty$ tenemos que $w\longrightarrow0$ y se da, como era esperable dado el análisis previo, que la respuesta del sistema tiende a cero y logrando estabilizarse.

Respuesta al impulso

Figure 3: Respuesta al impulso

La respuesta al impulso es matemáticamente la derivada de la respuesta al escalón, lo que dará como resultado que en los valores de t donde la respuesta al escalón alcance un máximo o mínimo entonces en la respuesta al impulso obtendremos un cero. Puede observarse sencillamente esto en el t alineado con la barra horizontal del valor 0V, donde para la respuesta al escalón se ve que se alcanza un máximo mientras que la respuesta al impulso vale cero.

Respuesta a senoidales

Figure 4: Respuesta a la senoidal de frecuencia $w=1\frac{r}{s}$

Para una señal senoidal de frecuencia $w=1\frac{r}{s}$ y 1V de amplitud vemos que la respuesta es prácticamente nula (tenemos una amplitud de salida de aproximadamente 1,3mV, un 0,13% de la señal de entrada) coincidiendo con el comportamiento esperado del filtro dado que es un pasabanda.

Figure 5: Respuesta a la senoidal de frecuencia $w = 630 \frac{r}{s}$

Vemos que para una señal senoidal de frecuencia $w=630\frac{r}{s}$ y amplitud 1V al estabilizarse la respuesta obtenemos que la amplitud de la misma coincide aproximadamente con la de la señal senoidal. Esto coincide con el análisis previo de la función de transferencia, ya que $w=630\frac{r}{s}$ se encuentra a mitad de camino entre los W_0 calculados ($W_{0_1}\approx 607, 3\frac{r}{s}$ y $W_{0_2}\approx 650, 2\frac{r}{s}$) y vimos en el diagrama de Bode que para la banda de frecuencias con W_{0_i} de extremos la ganancia era de aproximadamente 0dB, lo que significa que la la salida mantiene la amplitud de la entrada, tal y como podemos apreciar para la respuesta a esta señal senoidal.

Figure 6: Respuesta a la senoidal de frecuencia $w = 5000 \frac{r}{s}$

Por último tenemos que para una señal senoidal de frecuencia $w=5000\frac{r}{s}$ y amplitud 1V la respuesta de nuestro sistema es prácticamente nula al igual que para el análisis de las bajas frecuencias (como vimos previamente para la señal senoidal de frecuencia $w=1\frac{r}{s}$). La respuesta observable en el gráfico coincide, lógicamente, con el hecho de que nuestro filtro es un pasabanda y por lo tanto anulará las señales de altas frecuencias.

Respuesta a la cuadrada

Esta sección se dividirá en dos subsecciones, en la primera analizaremos las cuadradas de frecuencias relacionadas con la de $W_{0_1}\approx 607, 3\frac{r}{s}$ y en la siguiente para las cuadradas de frecuencias relacionadas a W_{0_2} . Recordemos que $f=\frac{W}{2\cdot\pi}$

Frecuencia f_{0_1}

Para W_{0_1} tenemos que $f_{0_1} = \frac{W_{0_1}}{2 \cdot \pi} \approx 96,65 Hz$.

Figure 7: Respuesta a la cuadrada de frecuencia $\frac{f_{0_1}}{10}$

Para una señal cuadrada de frecuencia $\frac{f_{0_1}}{10}\approx 9,665Hz$ vemos que la respuesta oscila constantemente alrededor de cero, y dado que es un filtro pasabanda no reacciona a ninguno de los flancos (los flancos tendrían una frecuencia prácticamente infinita y el filtro pasabanda, como vimos antes, no reacciona a dicha frecuencia). Comparando gráficos vemos que la respuesta a esta señal cuadrada se asemeja a la respuesta al escalón con la diferencia de que, debido a que estamos excitandola constantemente y no

dejamos que alcance frecuencia cero, la respuesta nunca se extingue sino que repite constantemente el final de la respuesta al escalón.

Figure 8: Respuesta a la cuadrada de frecuencia f_{0_1}

Para la señal cuadrada de frecuencia $f_{0_1} \approx 96,65Hz$ tenemos que la respuesta, una vez estabilizada, es una senoidal de amplitud igual a la mitad de la de la señal cuadrada (0,5V en este caso). Esto es lógico si vemos que la señal cuadrada generada se puede pensar como una continua de 0,5V más una cuadrada centrada en cero de 0,5V de amplitud. Dado que la frecuencia de la cuadrada esta en el rango de frecuencias entre los W_{0_i} (más especificamente, coincide con el extremo W_{0_1}) entonces la señal no se ve atenuada significativamente por el filtro. Por otro lado, el tiempo que tarda en estabilizarse la señal está relacionado con el tiempo que tarda el filtro en estabilizar la respuesta a la continua.

Figure 9: Respuesta a la cuadrada de frecuencia $f_{0_1} \cdot 10$

Para la señal cuadrada de frecuencia $10 \cdot f_{0_1} \approx 966, 5Hz$ tenemos que la respuesta oscila alrededor de los 0V cercanamente, coincidiendo con el comportamiento esperado del pasabanda para frecuencias mayores a las de la banda que deja pasar el filtro (que recordemos que va de f_{0_1} a f_{0_2} , y debido a que estas frecuencias son cercanas entre sí entonces diez veces la primera ya se aleja considerablemente de dicha banda).

Frecuencia f_{0_2}

Dado que $W_{0_2} \approx 650, 2\frac{r}{s}$ para este caso tendremos que $f_{0_2} = \frac{W_{0_2}}{2 \cdot \pi} \approx 103, 5Hz$. Debido a que las frecuencias f_{0_i} son tan cercanas entre sí tendremos que los siguientes gráficos serán extremadamente parecidos a los anteriores, por lo que todo lo explicado previamente aplica de igual manera a lo siguiente y no será repetido.

Figure 10: Respuesta a la cuadrada de frecuencia $\frac{f_{0_2}}{10}$ Respuesta a la cuadrada f0

Figure 11: Respuesta a la cuadrada de frecuencia $f_{0_2}\,$

Figure 12: Respuesta a la cuadrada de frecuencia $f_{0_2} \cdot 10$

Circuito propuesto

Se propone un circuito compuesto por dos Multiple Feedback Band-pass Filter (MFBP) (de manera tal de conseguir el orden correcto de los polinomios de la función H(s)) más dos amplificadores inversores. El primer amplificador inversor permitirá ajustar la ganancia H_0 de forma tal de conseguir la correspondiente a la H(s) asignada. Sin embargo tendremos un efecto secundario indeseado dado que que, al ser inversor, nos correrá 180° la fase de la salida. Para contrarrestar esto utilizaremos un segundo amplificador inversor, cuyo factor será k=-1, con el objetivo de corregir la fase modificada por el anterior amplificador inversor.

Respecto a la elección del MFBP por sobre otro tipo de filtros, esto se debe a la facilidad que aporta diseñar el circuito con este tipo de filtro. La principal desventaja de este filtro es que es complicado conseguir secciones de frecuencias y Q altos (Q > 20) debido a las limitaciones de la ganancia de lazo abierto del amplificador operacional integrado. Dado que nuestra transferencia se compone por valores de Q bajos (Q < 20) no habrá problemas en utilizar este tipo de filtro.

Transferencia del MFPB

A continuación se presenta un diagrama de un filtro Multiple Feedback Band-pass (MFBP).

Figure 13: Filtro MFBP

Para este tipo de filtro se tiene una transferencia del tipo

$$H_{MFBP}(s) = -H_0 \cdot \frac{\frac{W_0}{Q} \cdot s}{s^2 + \frac{W_0}{Q} \cdot s + W_0^2}$$

Para simplificar las expresiones y cuentas tomaremos C1 = C2 = C. Resolviendo el circuito mediante el método de nodos obtenemos que la función de transferencia puede expresarse como

$$H_{MFBP}(s) = -\frac{R_2}{2 \cdot R_1} \cdot \frac{\frac{2}{C \cdot R_2} \cdot s}{s^2 + \frac{2}{C \cdot R_2} \cdot s + \frac{1 + \frac{R_1}{R_3}}{C^2 \cdot R_1 \cdot R_2}}$$

 $^{^1 \}rm Ver\ https://www.analog.com/media/en/training-seminars/design-handbooks/Op-Amp-Applications/Sections5-5-to-5-8.pdf, página 5.70$

De las anteriores dos expresiones podemos inferir que

$$H_0 = \frac{R_2}{2 \cdot R_1}$$

$$\frac{W_0}{Q} = \frac{2}{C \cdot R_2}$$

$$W_0^2 = \frac{1 + \frac{R_1}{R_3}}{C^2 \cdot R_1 \cdot R_2}$$

Despejando las R_i en función de las demas variables obtenemos

$$R_2 = \frac{2 \cdot Q}{C \cdot W_0}$$

$$R_1 = \frac{R_2}{2 \cdot H_0}$$

$$R_3 = \frac{R_1}{\frac{2 \cdot Q^2}{H_0} - 1}$$

Tomando $H_0 = 1$ (utilizaremos amplificadores luego para conseguir la ganancia H_0 de nuestra función de transferencia) obtenemos finalmente el sistema

$$R_2 = \frac{2 \cdot Q}{C \cdot W_0}$$

$$R_1 = \frac{R_2}{2}$$

$$R_3 = \frac{R_1}{2 \cdot Q^2 - 1}$$

donde Q y W_0 son datos provenientes de nuestra función de transferencia, por lo que es cuestión tan solo de seleccionar un C adecuado, reemplazar y obtener los R_i . Antes de proceder a calcular los valores de estos elementos debemos expresar la función de transferencia H(s) de forma tal que podamos aplicarle las ecuaciones previas.

Previamente teníamos que

$$H(s) \approx \frac{3948 \cdot s^2}{(s^2 + 42, 81 \cdot s + 607, 3^2) \cdot (s^2 + 46, 05 \cdot s + 650, 2^2)}$$