Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method comprising:
2	serially receiving, from a source, a plurality of forward messages each addressed
3	to one of a corresponding destination among a plurality of destinations, wherein each forward
4	message is received at a destination directly from the source;
5	receiving a plurality of availability signals, each availability signal indicating that
6	one of the destinations is available to accept a-its corresponding forward message;
7	for first forward messages whose corresponding first destinations are available,
8	simultaneously sending a-the first forward messages to each available their corresponding first
9	destinations;
10	subsequent to receiving the first forward messages, simultaneously receiving,
11	after a predetermined period of time, a plurality of reverse messages from the first destinations,
12	each reverse message corresponding to one of the first forward messages simultaneously sent to
13	an available destination; and
14	serially sending the reverse messages to the source.
1	2. (Original) The method of claim 1, wherein the source identifies each of
2	the forward messages by a different tag, further comprising:
3	placing a tag in a delay buffer when sending to a destination the forward message
4	identified by that tag, wherein the delay buffer implements a delay equal to the predetermined
5	period of time such that the tag is available when receiving from memory the reverse message
6	corresponding to the forward message; and
7	sending the tag to the source with the reverse message, whereby the source
8	associates the reverse message with the forward message.

1	3. (Original) The method of claim 1, further comprising:
2	associating a priority with each forward message; and
3	sending a forward message to a destination when that forward message has a
4	higher priority than other forward messages addressed to that destination.
1	4. (Original) The method of claim 3, wherein the priority of each forward
2	message represents an age of that forward message.
1	5. (Previously presented) The method of claim 1, further comprising:
2	associated a priority with each reverse message; and
3	sending a reverse message to the source when that reverse message has a higher
4	priority than other reverse messages.
1	6. (Original) The method of claim 5, wherein the priority of each reverse
2	message represents an age of that reverse message.
1	7. (Original) The method of claim 1, wherein each destination is a memory
2	bank, each forward message is a memory transaction, and each reverse message is the result of
3	one of the memory transaction.
l	8. (Currently amended) An apparatus comprising:
2	means for serially receiving, from a source, a plurality of forward messages each
3	addressed to one of a corresponding destination among a plurality of destinations, wherein each
1	forward message is received at a destination directly from the source;
5	means for receiving a plurality of availability signals, each availability signal
6	indicating that one of the destinations is available to accept a-its corresponding forward message;
7	means for simultaneously sending a-first forward messages to each available their
3	corresponding first destinations, wherein the first destinations are determined to be available
)	based on the availability signals;

Appl. No. 09/925,159 Amdt. sent March 9, 2006 Reply to Office Action of September 14, 2005

10	means for simultaneously receiving, after a predetermined period of time, a
11	plurality of reverse messages from the first destinations, each reverse message corresponding to
12	one of the first forward messages simultaneously sent to an available destination; and
13	means for serially sending the reverse messages to the source.
1	9. (Original) The apparatus of claim 8, wherein the source identifies each of
2	the forward messages by a different tag, further comprising:
3	means for placing a tag in a delay buffer when sending to a destination the
4	forward message identified by that tag, where the delay buffer implements a delay equal to the
5	predetermined period of time such that the tag is available when receiving from memory the
6	reverse message corresponding to the forward message; and
7	means for sending the tag to the source with the reverse message, whereby the
8	source associates the reverse message with the forward message.
1	10. (Original) The apparatus of claim 8, further comprising:
2	means for associating a priority with each forward message; and
3	means for sending a forward message to a destination when that forward message
4	has a higher priority than other forward messages addressed to that destination.
1	11. (Original) The apparatus of claim 10, wherein the priority of each forward
2	message represents an age of that forward message.
1	12. (Previously presented) The apparatus of claim 8, further comprising:
2	means for associated a priority with each reverse message; and
3	means for sending a reverse message to the source when that reverse message has
4	a higher priority than other reverse messages.
1	13. (Original) The apparatus of claim 12, wherein the priority of each reverse
2	message represents an age of that reverse message.

1	14. (Original) The apparatus of claim 8, wherein each destination is a
2	memory bank, each forward message is a memory transaction, and each reverse message is the
3	result of one of the memory transactions.
1	15. (Currently amended) A computer program product, tangibly stored on a
2	computer-readable medium, comprising instructions operable to cause a programmable processor
3	to:
4	serially receive, from a source, a plurality of forward messages each addressed to
5	one of a corresponding destination among a plurality of destinations, wherein each forward
6	message is received at a destination directly from the source;
7	receive a plurality of availability signals, each availability signal indicating that
8	one of the destinations is available to accept a-its corresponding forward message;
9	for first forward messages whose corresponding first destinations are available,
10	simultaneously send a-the first forward messages to each available their corresponding first
11	destinations,;
12	simultaneously receive, after a predetermined period of time, a plurality of reverse
13	messages from the first destinations, each reverse message corresponding to one of the forward
14	messages-simultaneously sent to an available destination; and
15	serially send the reverse messages to the source.
1	16. (Original) The computer program product of claim 15, wherein the source
2	identifies each of the forward messages by a different tag, further comprising instructions
3	operable to cause a programmable processor to:
4	place a tag in a delay buffer when sending to a destination the forward message
5	identified by that tag, wherein the delay buffer implements a delay equal to the predetermined
6	period of time such that the tag is available when receiving from memory the reverse message
7	corresponding to the forward message; and
8	send the tag to the source with the reverse message, whereby the source associates
9	the reverse message with the forward message.

Appl. No. 09/925,159 Amdt. sent March 9, 2006 Reply to Office Action of September 14, 2005

1	17. (Original) The computer program product of claim 15, further comprising
2	instructions operable to cause a programmable processor to:
3	associate a priority with each forward message; and
4	send a forward message to a destination when that forward message has a higher
5	priority than other forward messages addressed to that destination.
1	18. (Original) The computer program product of claim 17, wherein the
2	priority of each forward message represents an age of that forward message.
1	19. (Previously presented) The computer program product of claim 15,
2	further comprising instructions operable to cause a programmable processor to:
3	associate a priority with each reverse message; and
4	send a reverse message to the source when that reverse message has a higher
5	priority than other reverse messages.
1	20. (Original) The computer program product of claim 19, wherein the
2	priority of each reverse message represents an age of that reverse message.
1	21. (Original) The computer program product of claim 15, wherein each
2	destination is a memory bank, each forward message is a memory transaction, and each reverse
3	message is the result of one of the memory transactions.