

Disciplina: T951 - Sistemas Inteligentes

Professor: André Coelho

Datas de apresentação e entrega do código-fonte: 26/03/2019 e 28/03/2019

Peso da atividade: 4,0

Observação: Vale lembrar que não há segunda chamada para avaliações práticas. A primeira data será alocada para apresentação dos resultados relativos à tarefa de regressão, enquanto a segunda data para apresentação dos resultados relativos à tarefa de classificação. O código-fonte deverá ser entregue ao professor durante as aulas indicadas acima, juntamente com o relatório técnico reportando os resultados experimentais. Todos os alunos devem estar preparados para responder às perguntas feitas pelo professor, sendo que a nota de cada integrante de um grupo será dada com base em seu desempenho individual durante a arguição. Não será permitido o uso de toolkits ou bibliotecas de redes neurais disponíveis na Internet para implementar os algoritmos. O não-comparecimento implicará em nota zero nesta avaliação.

## **INSTRUÇÕES**

Nesta atividade computacional, que poderá ser realizada individualmente ou em grupo de **no máximo 2 integrantes**, deve-se implementar em **Python, Java ou Matlab** os algoritmos de treinamento e teste das redes **Perceptron Multicamadas (PMC)** e **Adaline**, <u>conforme o material disponibilizado em sala de aula</u>. Os grupos devem se cadastrar até o dia 21/03/2019 via mensagem eletrônica para <u>acoelho@unifor.br</u>, indicando os nomes dos integrantes. Serão repassados dois <u>datasets</u>, um de regressão e outro de classificação, os quais serão descritos brevemente abaixo. Os resultados experimentais deverão ser apresentados de <u>forma organizada</u>, alocando uma <u>seção diferente</u> do relatório a cada experimento. **OBS**: o programa deve ser capaz de <u>plotar a curva "EQM × época"</u>.

## 1. PROBLEMA DE REGRESSÃO – REDES ADALINE × PERCEPTRON MULTICAMADAS

Nesta tarefa, será adotado o *dataset bodyfat* para avaliar comparativamente o potencial das redes Adaline e PMC em um problema de aproximação funcional (regressão múltipla). O problema é o de estimar a percentagem de gordura corporal de uma pessoa (variável dependente) a partir de 13 atributos físicos (variáveis independentes), os quais são descritos a seguir:

| 1. Idade (anos)       | 2. Peso (libras)      | 3. Altura (polegadas) | 4. Circunferência do | 5. Circunferência do  |
|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|
|                       |                       |                       | pescoço (cm)         | peitoral (cm)         |
| 6. Circunferência do  | 7. Circunferência do  | 8. Circunferência da  | 9. Circunferência do | 10. Circunferência do |
| abdômen (cm)          | quadril (cm)          | coxa (cm)             | joelho (cm)          | tornozelo (cm)        |
| 11. Circunferência do | 12. Circunferência do | 13. Circunferência do |                      |                       |
| bícens estendido (cm) | antebraco (cm)        | nulso (cm)            |                      |                       |

No total, há 252 amostras disponíveis (não-normalizadas): 75% delas serão usadas no treinamento das redes e as demais para testar a capacidade de generalização. A partição treino/teste será definida pelo professor. Serão avaliadas 3 topologias da rede PMC, todas com uma camada escondida: PMC1, com 2 neurônios escondidos; PMC2, com 5 neurônios escondidos; e PMC3, com 10 neurônios escondidos. Deve-se usar a função tangente hiperbólica para os neurônios escondidos e linear para o neurônio de saída das redes PMC. O número máximo de épocas de treinamento deve ser 10000. A precisão a ser adotada para todas as redes deve ser  $\varepsilon = 10^{-6}$ . Em todas as execuções, os pesos devem ser iniciados com valores aleatórios em [-0.5,0.5]. Em cada execução, reinicie o gerador de números aleatórios, de tal forma que as condições iniciais não sejam as mesmas. A partir dessas considerações, deve-se conduzir os experimentos descritos abaixo separadamente:

1) Considerando os dados <u>normalizados via padronização</u> e a <u>taxa de aprendizado</u> variando em  $\eta = \{0.01, 0.1, 0.2, 0.5, 0.7, 1.0\}$ , realize 5 execuções de treinamento (<u>modo *online*</u>) tanto para a rede Adaline como para cada topologia de rede PMC dada acima. Para as redes PMC, é necessário que as amostras de treinamento sejam <u>embaralhadas</u> a cada época. Em cada execução, anote o <u>número de épocas</u> de treinamento e

o valor do <u>erro quadrático médio (EQM) final</u>. Teste cada rede treinada sobre os dados de teste e também calcule o valor do EQM obtido sobre esse conjunto de dados. Não se esqueça que os dados de teste devem ser normalizados também. Finalmente, calcule os valores médios das medidas acima.

- 2) Repita o experimento anterior, considerando agora as redes treinadas no <u>modo offline</u>. Não é necessário embaralhar as amostras a cada época.
- 3) Repita os experimentos 1) e 2), somente para as redes PMC, considerando agora a <u>normalização *min-max*</u> no intervalo [-0.5,0.5].
- 4) A partir dos experimentos anteriores, indique qual topologia de rede PMC foi a mais eficaz, ou seja, obteve o menor erro de aproximação médio sobre as amostras de treinamento e teste. Houve alguma configuração de rede PMC (topologia + parâmetros de controle) cujo treinamento levou a *overfitting*?

## 2. PROBLEMA DE CLASSIFICAÇÃO – REDES PERCEPTRON MULTICAMADAS

Nesta tarefa, será adotado o *dataset 3spirals* para avaliar o potencial de diferentes topologias de redes PMC em um problema *benchmark* de classificação de padrões. No total, há 312 amostras disponíveis, sendo que 101 pertencem à primeira espiral (classe), 105 à segunda e 106 à terceira, conforme a figura a seguir:



A partição treino/teste dos dados será definida pelo professor, sendo 75% das amostras de treinamento e as demais de teste. Serão avaliadas 4 topologias da rede PMC: a topologia PMC1, com 6 neurônios de uma única camada escondida; a topologia PMC2, com 12 neurônios de uma única camada escondida; a topologia PMC3, com 6 neurônios na primeira camada escondida e 2 na segunda camada escondida; e a topologia PMC4, com 4 neurônios na primeira camada escondida e 3 na segunda camada escondida. Deve-se adotar codificação bipolar para as classes e a função tangente hiperbólica para todos os neurônios. O número máximo de épocas de treinamento deve ser 10000. A precisão a ser adotada deve ser  $\varepsilon = 10^{-6}$ . Em todas as execuções, os pesos devem ser iniciados com valores aleatórios em [-0.5,0.5]. Em cada execução, reinicie o gerador de números aleatórios, de tal forma que as condições iniciais não sejam as mesmas. A partir dessas considerações, deve-se conduzir os experimentos descritos abaixo separadamente:

- 1) Considerando os dados <u>normalizados via normalização min-max</u> no intervalo [-0.5,0.5] e a <u>taxa de aprendizado</u> variando em  $\eta = \{0.01,0.1,0.2,0.5\}$ , realize 5 execuções de treinamento (<u>modo offline</u>) para cada topologia de rede PMC descrita acima. Deve-se adotar a <u>codificação sequencial</u> das classes. Em cada execução, anote o <u>número de épocas</u> de treinamento e a <u>taxa de classificação correta</u> obtida ao final do treinamento. Teste cada rede treinada sobre os dados de teste e também calcule a taxa de classificação correta sobre esse conjunto de dados. Não se esqueça que os dados de teste devem ser normalizados também. Finalmente, calcule os valores médios das medidas acima.
- 2) Repita o experimento anterior, considerando agora a codificação "one-of-c" das classes.
- 3) Repita o experimento 2), adotando agora o <u>termo de momentum</u> na regra de ajuste dos pesos. A <u>taxa de momentum</u> deve variar em  $\alpha = \{0.5, 0.7, 0.9\}$ .
- 4) A partir dos experimentos anteriores, indique qual topologia de rede PMC foi em geral a mais eficaz, ou seja, obteve a <u>maior taxa média de classificação correta</u> sobre as amostras de treinamento e teste. Houve alguma configuração de rede PMC (topologia + parâmetros de controle) cujo treinamento levou a *overfitting*?