CHAPITRE 20

FRACTIONS RATIONNELLES

Dans ce chapitre, K désigne un corps.

1. Corps des fractions rationnelles

Rappel 1.1

Un polynôme $P \in \mathbb{K}[X]$ est inversible si et seulement si $\deg(P) = 0$.

Lemme 1.2

La relation \sim définie sur $\mathbb{K}[X] \times \mathbb{K}[X]^*$ par

$$(P,Q) \sim (A,B) \iff PB = AQ$$

est une relation d'équivalence.

Lemme 1.3

Soient P, Q, K trois polynômes. Alors $PK \sim QK$.

Lemme 1.4

Soient $P_1, Q_1, P_2, Q_2, A_1, A_2, B_1, B_2$ des polynômes tels que

$$(P_1, Q_1) \sim (A_1, B_1)$$
 et $(P_2, Q_2) \sim (A_2, B_2)$.

Alors $(P_1Q_2 + P_2Q_1, Q_1Q_2) \sim (A_1B_2 + A_2B_1, B_1B_2).$

Lemme 1.5

Soient $P_1, Q_1, P_2, Q_2, A_1, A_2, B_1, B_2$ des polynômes tels que

$$(P_1, Q_1) \sim (A_1, B_1)$$
 et $(P_2, Q_2) \sim (A_2, B_2)$.

Alors $(P_1P_2, Q_1Q_2) \sim (A_1A_2, B_1B_2)$.

Proposition-Définition 1.6

On note $\mathbb{K}(X)$ l'ensemble des classes d'équivalences de $\mathbb{K}[]X] \times \mathbb{K}[X]^*$ pour la relation \sim . La classe d'équivalence de (P,Q) est notée $\frac{P}{Q}$. On définit une addition notée + et une multiplication notée \times par les formules suivantes

$$\frac{P_1}{Q_1} + \frac{P_2}{Q_2} = \frac{P_1Q_2 + P_2Q_1}{Q_1Q_2} \text{ et } \frac{P_1}{Q_1} \times \frac{P_2}{Q_2} = \frac{P_1P_2}{Q_1Q_2}.$$

Alors $(\mathbb{K}(X), +, \times)$ est un corps commutatif, appelé corps des fractions rationnelles.

Remarque 1.7

L'application $i: P \mapsto \frac{P}{1}$ est une injection de $\mathbb{K}[X]$ dans $\mathbb{K}(X)$.

On peut donc identifier un polynôme P avec la fraction rationnelle $\frac{P}{1}$. Suite à cette identification, $\mathbb{K}[X]$ apparaît comme un sous-anneau de $\mathbb{K}(X)$.

Proposition-Définition 1.8

Soit $F \in \mathbb{K}(X)$. Il existe un unique couple $(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X]^*$ à constante multitplicative près tel que $F = \frac{P}{Q}$ avec $P \wedge Q = 1$ et $\mathrm{dom}(Q) = 1$. On dit que $\frac{P}{Q}$ est une fraction irréductible.

Proposition-Définition 1.9

Si $\frac{P}{Q} = \frac{A}{B}$, alors $\deg(P) - \deg(Q) = \deg(A) - \deg(B)$. On peut donc définir le $\operatorname{degr\'e}$ de la fraction rationnelle $\operatorname{P}{Q}$ par $\operatorname{deg}(P/Q) = \operatorname{deg}(P) - \operatorname{deg}(Q)$.

Proposition 1.10

Soient F et G deux fractions rationnelles. Alors $\deg(FG) = \deg(F) + \deg(G)$.

Proposition 1.11

Soient F et G deux fractions rationnelles. Alors $\deg(F+G) \leq \max(\deg(F), \deg(G))$.

Définition 1.12

Soit $F = \frac{P}{Q}$ une fraction rationnelle écrite sous forme irréductible. Les racines de P sont appelées zéros de F et celles de Q sont appelées $p\hat{o}les$ de F.

Définition 1.13

Soit $F = \frac{P}{Q}$ une fraction rationnelle écrite sous forme irréductible et a un pôle de F. Si a est une racine de multiplicité m de Q, alors on dit que a est un pôle de multiplicité m de F. De même, si b est une racine de multiplicité μ de P, alors on dit que b est un zéro de multiplicité m de F.

2. Décomposition en éléments simples

Lemme 2.1

Soit $(A,B) \in \mathbb{K}[X]^2$ tel que $A \wedge B = 1$ et $C \in \mathbb{K}[X]$ tel que $\deg(C) < \deg(AB)$. Alors il existe un unique couple $(P,Q) \in \mathbb{K}[X]^2$ tel que $\deg(P) < \deg(A)$, $\deg(Q) < \deg(B)$ et $\frac{1}{AB} = \frac{P}{A} + \frac{Q}{B}$.

Lemme 2.2

Soient A_1, \ldots, A_n des polynômes premiers entre eux dans leur ensemble, et $N \in \mathbb{K}[X]$ tel que $\deg(N) < \deg(A_1 \ldots A_n)$. Alors il existe un unique n-uplet $(N_1, \ldots, N_n) \in \mathbb{K}[X]^n$ tel que

$$\forall i \in [1, n], \ \deg(N_i) < \deg(A_i) \ \text{et} \ \frac{N}{A_1 \dots A_n} = \sum_{i=1}^n \frac{N_i}{A_i}.$$

Lemme 2.3

Soient $a \in \mathbb{K}$, $n \in \mathbb{N}$ et $P \in \mathbb{K}_{n-1}[X]$. Alors il existe un unique $(a_1, \ldots, a_n) \in \mathbb{K}^n$ tel que $\frac{P}{(X-a)^n} = \sum_{i=1}^n \frac{a_i}{(X-a)^i}$.

Proposition-Définition 2.4

Soient N et D deux polynômes avec $D \neq 0$. Il existe un unique couple $(E, F) \in \mathbb{K}[X] \times \mathbb{K}(X)$ tel que $\frac{N}{D} = E + F$ avec $\deg(F) < 0$. De plus E est le quotient dans la division de N par D. Le polynôme E est appelé partie entière de $\frac{N}{D}$.

Théorème 2.5: Décomposition en éléments simples dans $\mathbb C$

Soit $F = \frac{P}{Q}$ une fraction rationnelle de $\mathbb{C}(X)$ écrite sous forme irréductible. On note z_1, \ldots, z_n les pôles de F et m_1, \ldots, m_n leurs multiplicités respectives. Alors

$$\exists ! (E, a_{1,1}, \dots, a_{1,m_1}, a_{2,1}, \dots, a_{2,m_2}, \dots, a_{n,1}, \dots, a_{n,m_n}) \in \mathbb{C}[X] \times \mathbb{C}^{m_1 + \dots + m_n}$$

$$F = E + \sum_{k=1}^{n} \sum_{i=1}^{m_k} \frac{a_{k,i}}{(X - z_k)^i} \text{ et } \deg(E) < \deg(Q).$$

On dit alors qu'on a décomposé F en éléments simples sur \mathbb{C} .

Proposition 2.6

Soit $P \in \mathbb{C}[X]$, z_1, \ldots, z_n ses racines distinctes de multiplicités respectives m_1, \ldots, m_n . La décomposition en éléments simples de $\frac{P'}{P}$ est

$$\frac{P'}{P} = \sum_{k=1}^{n} \frac{m_k}{X - z_k}.$$

Remarque 2.7

Dans la formule ci-dessus, tout se passe comme si on a dérivé le logarithme de P; bien sûr cette phrase n'a pas de sens (un polynôme n'est pas une fonction, pas de logarithme complexe ni de dérivée de fonctions complexes) mais ça aide à retenir la formule.

Théorème 2.8: Décomposition en éléments simples dans $\mathbb R$

Soit $F = \frac{P}{Q}$ une fraction rationnelle de $\mathbb{R}(X)$ écrite sous forme irréductible. Soit

$$Q = a \prod_{i=1}^{p} (X - z_i)_i^m \prod_{j=1}^{q} (X^2 + a_i X + b_i)^{\mu_i}$$

la décomposition en facteurs irréductibles de Q sur $\mathbb{R}[X].$ Alors

$$\exists! (E, a_{1,1}, \dots, a_{1,m_1}, \dots, a_{p,1}, \dots, a_{p,m_p}, A_{1,1}, \dots, A_{1,\mu_1}, \dots, A_{q,1}, \dots, A_{q,\mu_q}) \in \mathbb{R}[X] \times \mathbb{R}^{m_1 + \dots + m_p} \times \mathbb{R}_1[X]^{\mu_1 + \dots + \mu_q}$$

$$F = E + \sum_{k=1}^p \sum_{i=1}^{m_k} \frac{a_{k,i}}{(X - z_k)^i} + \sum_{k=1}^q \sum_{j=1}^{\mu_k} \frac{A_{k,j}}{(X^2 + a_k X + b_k)^j} \text{ et } \deg(E) < \deg(Q).$$

On dit alors qu'on a décomposé F en éléments simples sur \mathbb{R} .

Proposition 2.9

Soit $\frac{P}{Q} \in \mathbb{K}(X)$ une fraction irréductible à pôles simples de degré strictement négatif. On note z_1, \ldots, z_n les racines de Q. Alors sa décomposition en éléments simples est

$$\frac{P}{Q} = \sum_{i=1}^{n} \frac{c_i}{X - z_i}$$

où pour tout i, $c_i = \frac{P(z_i)}{Q'(z_i)}$