

VisNav Exercise 01: Solution

Dr. Jürgen Sturm Jakob Engel Christian Kerl

State-Space: 3D rigid body pose

$$-\mathbf{x} = (x, y, z, \Phi, \Theta, \Psi) \in \mathbb{R}^6$$

$$-\mathbf{x} = (x, y, z, \omega_x, \omega_y, \omega_z) \in \mathbb{R}^6$$

-
$$\mathbf{x} = (x, y, z, q_x, q_y, q_z, q_w) \in \mathbb{R}^7$$

with $\|(q_x, q_y, q_z, q_w)\| = 1$

Odometry Vector: Measurements

$$\mathbf{u} = (v_x, v_y, z, \Phi, \Theta, \Psi) \in \mathbb{R}^6$$

 v_x , v_y horizontal velocity

z relative height

 Φ roll

 Θ pitch

 Ψ yaw (already integrated up)

- "measured" horizontal velocity v_x , v_y
 - projected onto horizontal plane
 - computed from
 - IMU
 - motion-model
 - optical flow on bottom camera

- ullet "measured" relative height z
 - projected onto vertical axis
 - raw ultrasound measurements

- "measured" orientation (Φ , Θ , Ψ)
 - Φ , Θ (roll, pitch): no drift (thanks to gravity)

- Ψ (yaw): drifts over time

Integrated gyroscope measurements

• Odometry model $\mathbf{x}_t = f(\mathbf{x}_{t-1}, \mathbf{u}_t)$:

$$\mathbf{x}_t = f(\mathbf{x}_{t-1}, \mathbf{u}_t) :$$

$$x_t = x_{t-1} + \delta_t(v_{x,t} \cos \Psi_t - v_{y,t} \sin \Psi_t)$$

$$y_t = y_{t-1} + \delta_t(v_{x,t} \sin \Psi_t + v_{y,t} \cos \Psi_t)$$

$$z_t = z_{\text{obs},t}$$

$$\Phi_t = \Phi_{\text{obs},t}$$

$$\Theta_t = \Theta_{\text{obs},t}$$

$$\Psi_t = \Psi_{\text{obs},t}$$
with:
$$\mathbf{u} = (v_x, v_y, z_{\text{obs}}, \Phi_{\text{obs}}, \Theta_{\text{obs}}, \Psi_{\text{obs}})$$

$$\mathbf{x} = (x, y, z, \Phi, \Theta, \Psi)$$

Exercise 2: Implementation

Topics:

- /cmd_vel: Sent control commands
 - linear x, y: desired roll / pitch angle
 - linear z: desired vertical speed
 - angluar z: desired yaw rotational speed
- /ardrone/navdata: Sensor measurements
 - rotX, rotY, rotZ: roll, pitch, yaw (degree)
 - vx, vy: horizontal velocities (mm / sec)
 - altd: altitude (mm)
- /ardrone/image_raw: Camera image
- /ardrone/camera_info: Camera calibration

Exercise 2: Implementation

>> rxplot -p 20 /cmd_vel/linear/x:y /ardrone/navdata/vx:vy

Exercise 2: Implementation

>> rxplot -p 1 /cmd_vel/linear/x:y /ardrone/navdata/vx:vy

Delay: 100ms - 200ms