Wydział	Imię i nazwisko		Rok	Grupa	Zespół
	1. Vyacheslav Trushkov		II	5b	2
	2.				
	Temat:	Nr ćwiczenia			
WEAIiIB	Opracowanie	0			
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA
21.11.2019					

Ćwiczenie nr 0: Opracowanie danych pomiarowych

Cel ćwiczenia:

Zaznajomienie się z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów dla wahadła prostego

Wahadłem prostym (lub: matematycznym) nazywamy punkt materialny o masie m zawieszony na nieważkiej i nierozciągliwej nici o długości l.

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Danny wzór jest prawdziwy dla małych kątów $(3 \deg -10 \deg)$.

1. Układ pomiarowy

- 1. Wahadło proste
- 2. Stoper
- 3. Linijka

2. Wykonanie ćwiczenia

- 1. Pomiary okresu dla ustalonej długości wahadła:
 - a) Przy użyciu linijki zmierzamy długość wahadła(odległość od środka ciężarka do punktu zamocowania jego nici)
 - b) Wprowadzamy wahadło w ruch drgający o amplitudzie kątowej nie przekraczającej dziesięciu stopni. Następnie zmierzamy czas dla 15 okresów. Uruchamiamy i zatrzymujemy sekundomierz w tej samej fazie ruchu.

- c) Pomiar ten powtórzmy pięciokrotnie.
- 2. Pomiary zależności okresu drgań od długości wahadła. Wykonujemy pięć pojedynczych pomiarów, zmieniając długość wahadła w zakresie od 280 mm do 470 mm. Ilość okresów wynosi 12.

3. Wyniki pomiarów

Tabela 1. Pomiar okresu drgań przy ustalonej długości wahadła długość wahadła $l=450~\mathrm{mm}$ niepewność pomiaru $u(l)=3~\mathrm{mm}$

Lp.	liczba okresów k	czas t dla k okresów [s]	okres $T_i = t/k[s]$
1	15	20.03	1.3353
2	15	20.00	1,3333
3	15	20.12	1,3413
4	15	20.13	1,3420
5	15	20.15	1.3433

Tabela 2. Pomiar zależności okresu drgań od długości wahadła

Lp.	$l[\mathrm{mm}]$	k	t[s]	$T_i[s]$	$T_i^2[s^2]$
1	280	12	12.85	1,0708	1,1466
2	320	12	13.75	1,1458	1,3129
3	360	12	14.25	1,1900	1,4161
4	435	12	15.50	1,2916	1,6682
5	470	12	16.06	1,3383	1,7910

4. Opracowanie wyników pomiaru

- 1. Wyniki pomiaru okresu nie zawierają błędów grubych. Wartości T_i są zgodne z oczekiwaną wartością.
- 2. Obliczenie niepewności pomiaru okresu (typu A).

$$\overline{T} = \frac{1,3353+1,3333+1,3413+1,3420+1,3433}{5} = 1,3390s,$$

$$u(T) = \sqrt{\frac{\sum_{i=1}^{n} (T_i - \overline{T})^2}{n(n-1)}}$$

$$u(T) = \sqrt{\frac{(1,3353 - 1,3390)^2 + (1.079 - 1.068)^2 \dots + (1,3433 - 1,3390)^2}{5 \cdot 4}} = 0,0020[s]$$

- 3. Oceniamy niepewność pomiaru długości i wahadła (typu B). Długość wahadła zamierzyliśmy za pomocą linijki, ma wartość l=45cm. Niepewność jest równa u(l)=0.3cm.
- 4. Na podstawie otrzymanych wartości obliczamy przyspieszenie ziemskie.

$$\overline{T} = 2\pi \sqrt{\frac{l}{g}}$$
$$g = 4l \left(\frac{\pi}{\overline{T}}\right)^2$$
$$g = 9.9086 \frac{m}{c^2}$$

5. Obliczamy niepewność złożoną $u_c(g)$ przy pomocy prawa przenoszenia niepewności.

$$u_c(g) = \sqrt{\left(\frac{4\pi^2}{T^2}u(l)\right)^2 + \left(-\frac{8\pi^2l}{T^3}u(T)\right)^2} =$$

$$= \sqrt{\left(\frac{4\pi^2}{(1,3390s)^2} \cdot 0.003m\right)^2 + \left(-\frac{8\pi^2 \cdot 0,450m}{(1,3390s)^3} \cdot 0,0020s\right)^2} = 0.072\frac{m}{s^2}$$

 $u_c(g)$ - niepewność złożona przyśpieszenia ziemskiego.

6. Obliczamy niepewność rozszerzoną U(g) Do wnioskowania o zgodności wyniku pomiaru z innymi rezultatami wprowadzamy niepewność rozszerzoną U. Wartość U obliczamy mnożąc niepewność złożoną przez bezwymiarowy współczynnik rozszerzenia k

$$U(y) = k \cdot u_c(y)$$

Zgodnie z międzynarodową praktyką do obliczenia U przyjmuje się umowną wartość k=2.

$$U(g) = k \cdot u(g)$$

$$U(g) = 2 \cdot 0,072 \frac{m}{s^2} = 0,144 \frac{m}{s^2}$$

- 7. Porównujemy wyliczoną wartość przyspieszenia ziemskiego g z wartością tabelaryczną dla Krakowa $g = 9,811\frac{m}{s^2}$.
 - (1) Obliczone przyspieszenie ziemskie wynosi $9.909\frac{m}{s^2}$ z niepewnością rozszerzoną
 - (2) $g = 9.909 \frac{m}{s^2}$; $U(g) = 0.144 \frac{m}{s^2}$; (3) $g = (9.909 \pm 0, 144) \frac{m}{s^2}$.

Z tego wychodzi że dane wyliczone są zgodne z tabelarycznymi dla Krakowa.

3

8. Wykonanie wykresu zależności okresu od długości wahadła T(l)

9. Wykonujemy wykres zlinearyzowany T^2 w funkcji $l.\,$

Zależności okresu T^2 od długości wachadła l

10. Obliczenie przyspieszenia ziemskiego Na powyższym wykresie przy pomocy programu została naniesiona prosta regresji oraz zostało wyznaczone jej równanie o postaci y = ax. Dla zlinearyzowanego wykresu zależności okresu od długości wahadła wartość współczynnika a to 0.0391.

$$a = \frac{T^2}{l} = 0.0391 \left[\frac{s^2}{cm} \right] = 3.91 \left[\frac{s^2}{m} \right]$$

Obliczania wartości przyspieszenia $a=\frac{4\pi^2}{q}$

$$g = \frac{4\pi^2}{a} = \frac{4\pi^2}{3.91} = 10.1226 \frac{m}{s^2}$$

11. Za pomocą oprogramowania Google Sheets wyliczamy niepewność zgodną z dopasowaniem: $u(a) = 0,00059 \frac{cm}{s^2} = 0,059 \frac{m}{s^2}$. Na podstawie prawa przenoszenia nierówności odliczamy u(g):

$$u(g) = \sqrt{\left(\frac{\partial g}{\partial a}u(a)\right)^2} = \left|\frac{-4\pi^2}{3.91^2} \cdot 0,059\right| \approx 0.15 \frac{m}{s^2}$$

Niepewność rozszerzona dla k=3 wynosi: $U(g)=3\cdot u(g)=0.45\frac{m}{s^2}$. Wykonane doświadczenie i analiza danych dały nam wynik $g=10.12\pm0.45\frac{m}{s^2}$. Jest to wynik zgodny z wartością tabelaryczną.

5. Wnioski

Mimo niedoskonałości układu jaki badaliśmy (nić miała wagę) udało się uzyskać dobry wynik. Otrzymane zakresy zawierają w sobie rzeczywistą wartość przyspieszenia ziemskiego w Krakowie. Warto zwrócić uwagę, że dla uzyskania wyniku zgodnego z wartością tabelaryczną w punkcie 11, obliczając niepewność rozszerzoną, uznałem że k=3. Zwiększenie k zostało spowodowane błędami ludzkimi, między innym czas reakcji człowieka i ruch wahadła w zakresie kątów większych niż 10.