Digital design

Ch 5. Synchronous sequential logic

5-1 Sequential circuits

- Outputs are function of inputs and present states
- Present states are supplied by memory elements

Fig. 5-1 Block Diagram of Sequential Circuit

Sequential circuits

- Two types of sequential circuit
- Synchronous: behavior depends on the signals affecting storage elements at discrete time
- Asynchronous: behavior depends on inputs at any instance of time

Fig. 5-2 Synchronous Clocked Sequential Circuit

- SR latch : consist of two cross-coupled NOR gates
- S=1,R=0 then Q=1(set)

Fig. 5-3 SR Latch with NOR Gates

- SR latch : consist of two cross-coupled NOR gates
- S=0,R=1 then Q=0(reset)

Fig. 5-3 SR Latch with NOR Gates

- SR latch : consist of two cross-coupled NOR gates
- S=0,R=0 then no change(keep condition)

Fig. 5-3 SR Latch with NOR Gates

- SR latch : consist of two cross-coupled NOR gates
- S=1,R=1 Q=Q'=0 (undefined)

Fig. 5-3 SR Latch with NOR Gates

SR latch timing diagram

S(t)	R(t)	Q(t)	$Q(t+\varepsilon)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	
1	1	1	- -

SR latch operation

S(t)	R(t)	Q(t)	$Q(t+\varepsilon)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	
1	1	1	- [

SR latch operation

$$Q(t + \epsilon) = S(t) + R'(t) Q(t)$$

$$Q^+ = S + R'Q \qquad (SR = 0)$$

S'R' latch with NAND gates

Require the complement value of NOR latch

(a) Logic diagram

(b) Function table

Fig. 5-4 SR Latch with NAND Gates

SR latch with control input

- Add two NAND gate and control signal
- C=0(no action), C=1(act as SR latch)

С	S	R	Next state of Q
0 1 1 1 1	X 0 0 1	X 0 1 0	No change No change Q = 0; Reset state Q = 1; set state Indeterminate

(b) Function table

Fig. 5-5 SR Latch with Control Input

D latch

- Eliminate indeterminate state in SR latch
- C=1, output value is equal to D

Fig. 5-6 D Latch

5-3 Flip-flops

- Latch: case (a), output changes as input changes
- Flip-flop: output only changes at clock edge

Master-slave D flip-flop

- Negative edge triggered D flip-flop
- CLK=1: master enable, slave disable

Master-slave D flip-flop

- Negative edge triggered D flip-flop
- CLK=0 : master disable, slave enable
 - Output has no relation with input

Fig. 5-9 Master-Slave D Flip-Flop

D-type positive edge triggered flip flop

Consist of 3 SR-latches

Fig. 5-10 D-Type Positive-Edge-Triggered Flip-Flop

Q changes only when C becomes 0 to 1

Fig. 5-11 Graphic Symbol for Edge-Triggered D Flip-Flop

D-type edge triggered flip flop

t_{su}: set-up time

th: hold time

t_p: propagation delay

Two D-type flip-flops

JK flip-flop

- Performs three operations
 - Set(J), Reset(K), Complement(J=K=1)
 - D=JQ'+K'Q

(a) Circuit diagram

(b) Graphic symbol

JK flip-flop

- Performs three operations
 - Set(J), Reset(K), Complement(J=K=1)
 - D=JQ'+K'Q

J	K	Q	Q^{+}	
0	0	0	0	Clock
0	0	1	1	J
0	1	0	0	
0	1	1	0	K
1	0	0	1	$Q \qquad t_p \rightarrow \leftarrow \sim \leftarrow \qquad t_p \rightarrow \leftarrow \sim \leftarrow \sim \rightarrow \sim t_p \rightarrow \leftarrow $
1	0	1	1	t_1 t_2 t_3
1	1	0	1	(c) J-K flip-flop timing
1	1	1	0	(c) J-IX IIIp-IIop uninig

T flip-flop

- Complementing flip-flop
- D=TQ'+T'Q = T⊕Q

(a) From JK flip-flop

(b) From D flip-flop

(c) Graphic symbol

Fig. 5-13 T Flip-Flop

Characteristic tables

Flip-flop characteristic tables

Table 5-1 *Flip-Flop Characteristic Tables*

JK	Flip-	Flop	
J	K	Q(t+1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

\ \ '	present state
`	1): next state T(t), J(t), K(t):
	present input

D	D Flip-Flop		<i>T</i> F	lip-Flop	
D	Q(t +	1)	T	Q(t+1)	
0	0	Reset	0	Q(t)	No change
1	1	Set	1	Q(t) $Q'(t)$	Complement

Summary

Name / Symbol	Characteristic (Truth) Table	State Diagram / Characteristic Equations	Ex	citation	Ta	ble
SR SR Clk R Q'	S R O Onext 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 × 1 1 1 ×	$SR=00$ or 01 $Q=0$ $SR=01$ $Q=0$ $SR=00 \text{ or } 10$ $SR=01$ $Q_{next} = S + R'Q$ $SR = 0$	0 0 1 1	Onext 0 1 0 1	0 1 0 ×	R 0 1 0
$ \begin{array}{ccc} JK \\ & \downarrow & Q \\ & \downarrow & Clk \\ K & Q' \end{array} $	J K Q Onext 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0	$JK=10 \text{ or } 11$ $JK=00 \text{ or } 01$ $JK=01 \text{ or } 11$ $Q_{mext} = J'K'Q + JK' + JKQ'$ $= J'K'Q + JK'Q + JK'Q' + JKQ'$ $= K'Q(J'+J) + JQ'(K'+K)$ $= K'Q + JQ'$	0 0 1 1	Onext 0 1 0 1	J 0 1 × ×	

Summary

Name / Symbol	Characteristic (Truth) Table	State Diagram / Characteristic Equations	Excitation Table	
$\begin{array}{ccc} \mathbf{D} & \varrho \\ \longrightarrow clk & \varrho' \end{array}$	$\begin{array}{c cccc} \underline{D} & \underline{O} & \underline{Onext} \\ \hline 0 & \times & 0 \\ 1 & \times & 1 \end{array}$	D=0 $Q=0$ $Q=0$ $Q=1$ $Q=0$	Q Qnext D 0 0 0 0 1 1 1 0 0 1 1 1	
$\begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	T O Onext 0 0 0 0 1 1 1 0 1 1 0	T=0 $Q=0$ $T=1$ $Q=1$ $T=0$ $Q=0$ $T=0$ $Q=1$ $Q=0$ $T=0$ $Q=1$ $Q=0$ $T=0$ $Q=1$ $Q=0$ $T=0$	Q Qnext T 0 0 0 0 1 1 1 0 1 1 1 0	

5-4 Analysis of clocked sequential circuits

- Behavior of clocked sequential circuit is determined from input, output and present state
- Output, next state are a function of input and present state

State equations

 Specifies the next state and output as a function of the present state and inputs

State table

- Time sequence table of inputs, outputs and flip-flop states
- two types of state table exist

Table 5-2State Table for the Circuit of Fig. 5-15

Present State		Input Sta			Output
Α	В	x	Α	В	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Table 5-3
Second Form of the State Table

Present State	Next S	tate	Outpu	t
	x = 0	x = 1	x = 0	x = 1
AB	AB	AB	у	у
00	00	01	0	0
01	00	11	1	0
10	00	10	1	0
11	00	10	1	0

State diagram

- A kind of flow diagram
- Can be derived from state table
 - State-circle, transition-line, I/O

Table 5-2State Table for the Circuit of Fig. 5-15

Present State		Input	Ne Sta	xt	Output
Α	В	x	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Fig. 5-16 State Diagram of the Circuit of Fig. 5-15

33

Analysis with D flip-flops

- Input equation: $D_A = A \oplus x \oplus y$
- State equation is equal to input equation

34

Analysis with D flip-flops

• Input equation: $D_A = A \oplus x \oplus y$

(b) State table

State equation is equal to input equation

Present state	Inputs	Next state	
Α	хy	Α	
0	0 0	0	00,11
0	0 1	1	
0	1 0	1	
0	1 1	0	01, 10
1	0 0	1	(c) State diagram
1	0 1	0	
1	1 0	0	Fig. 5-17 Sequential Circuit with D Flip-Flo
1	1 1	1 —	

00,11

Analysis with D flip-flops

$$D_1 = q_1q_2' + xq_1'$$

 $D_2 = xq_1$
 $z = q_2'$

D Flip-Flop

D	Q(t+1)	
0	0	Reset
1	1	Set

a	C	С)	С	D					7
q	q	x=0	x=1	x=0	x=1	X=	=0	X=	=1	Z
0	0	0	0	1	0	0	0	1	0	1
0	1	0	0	1	0	0	0	1	0	0
1	0	1	0	1	1	1	0	1	1	1
1	1	0	0	0	1	0	0	1	0	0

	C	C	Q ₁			_		
	q	q	X=	=0	X=	=1	Z	
	0	0	0	0	1	0	1	
	0	1	0	0	1	0	0	
	1	0	1	0	1	1	1	
l	1	1	0	0	1	0	0	

$$D_1 = xq_1 + xq_2$$

 $D_2 = xq_1'q_2'$
 $z = xq_1$
 $q_1^* = xq_1 + xq_2$
 $q_2^* = xq_1'q_2'$

$$D_1 = xq_1 + xq_2$$

 $D_2 = xq_1'q_2'$
 $z = xq_1$
 $q_1^* = xq_1 + xq_2$
 $q_2^* = xq_1'q_2'$

D Flip-Flop

D	Q(t+1)	
0	0	Reset
1	1	Set

		D		0	D					Z		
q	q	x=0	x=1	x=0	x=1	x=0		x=1		x=0	x=1	
0	0	0	0	0	1	0	0	0	1	0	0	
0	1	0	1	0	0	0	0	1	0	0	0	
1	0	0	1	0	0	0	0	1	0	0	1	
1	1	0	1	0	0	0	0	1	0	0	1	

	a		q ₁				Z	
	q	q	X=	=0	x=1		x=0	x=1
	0	0	0	0	0	1	0	0
	0	1	0	0	1	0	0	0
ı	1	0	0	0	1	0	0	1
	1	1	0	0	1	0	0	1

- State equation is not the same as the input equation
- Have to refer characteristic table or characteristic equation

IV Elim Elam

Table 5-1Flip-Flop Characteristic Tables

JΛ	х гир-гюр							
J	K	Q(t+1)						
0	0	Q(t)	No change					
0	1	0	Reset					
1	0	1	Set					
1	1	Q'(t)	Complement					

Input equations

Fig. 5-18 Sequential Circuit with JK Flip-Flop

State table and state diagram

Table 5-4
State Table for Sequential Circuit with JK Flip-Flops

Present State		Input	nput State		Flip-Flop Inputs				
Α	В	x	Α	В	JA	KA	J ₈	Kβ	
0	0	0	0	1	0	0	1	0	
0	0	1	0	0	0	0	0	1	
0	1	0	1	1	1	1	1	0	
0	1	1	1	0	1	0	0	1	
1	0	0	1	1	0	0	1	1	
1	0	1	1	0	0	0	0	0	
1	1	0	0	0	1	1	1	1	
1	1	1	1	1	1	0	0	0	

Fig. 5-19 State Diagram of the Circuit of Fig. 5-18

$$J_A = x$$
 $K_A = xB'$
 $J_B = K_B = x + A'$
 $z = A + B$

$$J_A = x$$
 $K_A = xB'$
 $J_B = K_B = x + A'$
 $z = A + B$

Table 5-1 *Flip-Flop Characteristic Tables*

JK Flip-Flop

J	K	Q(t+1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

٨	D	J	K	J	K	J	K	J	K	A((t+1)	B(t+	1)	_
A	В	X=	=0	X=	=1	X=	=0	X=	=1	X=	=0	X=	=1	
0	0	0	0	1	1	1	1	1	1	0	1	1	1	0
0	1	0	0	1	0	1	1	1	1	0	0	1	0	1
1	0	0	0	1	1	0	0	1	1	1	0	0	1	1
1	1	0	0	1	0	0	0	1	1	1	1	1	0	1

^	В	А	(t+1)	B(t+1)	7	
А	В	X=	x=0		=1	Z	
0	0	0	1	1	1	0	
0	1	0	0	1	0	1	
1	0	1	0	0	1	1	
1	1	1	1	1	0	1	

Analysis with D and JK flip-flops

$$J_1 = xq_2$$
,
 $K_1 = x'$
 $D_2 = x(q_1+q_2')$
 $z = q_1q_2$

Analysis with D and JK flip-flops

$$J_1 = xq_2$$
 $K_1 = x'$
 $D_2 = x(q_1+q_2')$
 $z = q_1q_2$

Table 5-1Flip-Flop Characteristic Tables

JK Flip-Flop $J \quad K \qquad Q(t+1)$

J	K	Q(t+1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

D Flip-Flop

D	Q(t+1)	
0	0	Reset
1	1	Set

49

~	~	J	K	J	K	D	D	q				7
q	q	X=	=0	X=	=1	x=0	x=1	X=	=0	X=	= 1	
0	0	0	1	0	0	0	1	0	0	0	1	0
0	1	0	1	1	0	0	0	0	0	1	0	0
1	0	0	1	0	0	0	1	0	0	1	1	0
1	1	0	1	1	0	0	1	0	0	1	1	1

Input equations and output equation

$$T_A=Bx$$
, $T_B=x$
 $y=AB$

State equations are derived from characteristic equation A(t+1)=T_AA'+T_A'A
 B(t+1)=T_BB'+T_B'B

Table 5-5State Table for Sequential Circuit with T Flip-Flops

	Output	ext ate		Input	esent ate	
(6	у	В	A	x	В	Α
	0	0	0	0	0	0
	0	1	0	1	0	0
	0	1	0	0	1	0
	0	0	1	1	1	0
	0	0	1	0	0	1
(1	0	1	1	1	0	1
\rightarrow	1	1	1	0	1	1
_/\	1	0	0	1	1	1

(b) State diagram

State/output

Input

Mealy and Moore models

- Mealy model : output is a function of the present state and input
 - Inputs must be synchronized with the clock
 - Outputs must be sampled at the clock edge
- Moore model : output is a function of the present state only
 - Outputs are synchronized with the clock

5-5 HDL for sequential circuits

- Two kinds of behavioral statements
- Initial: executes only once
- Always : executes repeatedly until the simulation terminates

Flip-flops and latches

D-latch

HDL Example 5-1

```
//Description of D latch (See Fig. 5-6)
module D_latch (Q,D,control);
  output Q;
  input D,control;
  reg Q;
  always @ (control or D)
  if (control) Q = D; //Same as: if (control == 1)
endmodule
```

54

D flip-flop

D flip-flop with asynchronous reset

```
//D flip-flop
module D_FF (Q,D,CLK);
   output Q;
   input D, CLK;
   reg Q;
   always @ (posedge CLK)
   O = D;
endmodule
//D flip-flop with asynchronous reset.
module DFF (Q,D,CLK,RST);
   output 0;
   input D,CLK,RST;
   reg 0;
   always @(posedge CLK or negedge RST)
     if (\simRST) Q = 1'b0; // Same as: if (RST == 0)
     else O = D;
endmodule
```

55

T flip-flop from D flip-flop

```
//T flip-flop from D flip-flop and gates
 module TFF (Q,T,CLK,RST);
    output Q;
    input T, CLK, RST;
    wire DT;
    assign DT = Q ^ T ;
 //Instantiate the D flip-flop
    DFF TF1 (Q,DT,CLK,RST);
 endmodule
//JK flip-flop from D flip-flop and gates
module JKFF (Q, J, K, CLK, RST);
   output Q;
   input J, K, CLK, RST;
   wire JK;
   assign JK = (J \& \sim Q) \mid (\sim K \& Q);
//Instantiate D flipflop
   DFF JK1 (Q, JK, CLK, RST);
endmodule
```

JK flip-flop

HDL Example 5-4

```
// Functional description of JK flip-flop
module JK_FF (J,K,CLK,Q,Qnot);
   output Q, Qnot;
   input J, K, CLK;
   reg Q;
   assign Qnot = ~ Q ;
   always @ (posedge CLK)
           case ({J,K})
             2'b00: Q = Q;
             2'b01: Q = 1'b0;
             2'b10: Q = 1'b1;
             2'b11: Q = ~ Q;
           endcase
endmodule
```

State diagram

Fig. 5-16 State Diagram of the Circuit of Fig. 5-

(Mealy state diagram)

```
module Mealy_mdl (x,y,CLK,RST);
  input x, CLK, RST;
  output y;
  reg y;
  reg [1:0] Prstate, Nxtstate;
  parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;
  always @ (posedge CLK or negedge RST)
      if (~RST) Prstate = S0; //Initialize to state S0
      else Prstate = Nxtstate; //Clock operations
                             //Determine next state
  always @ (Prstate or x)
         case (Prstate)
            S0: if (x) Nxtstate = S1:
                  else Nxtstate = S0;
            S1: if (x) Nxtstate = S3;
                  else Nxtstate = S0;
            S2: if (-x)Nxtstate = S0;
                  else Nxtstate = S2;
            S3: if (x) Nxtstate = S2;
                  else Nxtstate = S0;
         endcase
   always @ (Prstate or x)
                              //Evaluate output
         case (Prstate)
            S0: y = 0;
            S1: if (x) y = 1'b0; else y = 1'b1;
            S2: if (x) y = 1'b0; else y = 1'b1;
            S3: if (x) y = 1'b0; else y = 1'b1;
         endcase
```

endmodule

State diagram

Fig. 5-19 State Diagram of the Circuit of Fig. 5-18

Moore state diagram)

```
//Moore state diagram (Fig. 5-19)
module Moore_mdl (x,AB,CLK,RST);
   input x,CLK,RST;
   output [1:0]AB;
   reg [1:0] state;
   parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;
      always @ (posedge CLK or negedge RST)
         if (~RST) state = S0; //Initialize to state S0
         else
         case (state)
           S0: if (\simx) state = S1; else state = S0;
           S1: if (x) state = S2; else state = S3;
           S2: if (~x) state = S3; else state = S2;
           S3: if (~x) state = S0; else state = S3;
         endcase
   assign AB = state; //Output of flip-flops
endmodule
```

Structural description

```
module Tcircuit (x,y,A,B,CLK,RST);
                               input x, CLK, RST;
                               output y, A, B;
                               wire TA, TB;
                           //Flip-flip input equations
                               assign TB = X,
                                       TA = x \& B;
                           //Output equation
                               assign y = A \& B;
                           //Instantiate T flip-flops
                               T FF BF (B, TB, CLK, RST);
                               T FF AF (A, TA, CLK, RST);
                           endmodule
                            module T_FF (Q,T,CLK,RST);
                               output 0;
                               input T, CLK, RST;
                               reg Q;
CLK Reset
                                 always @ (posedge CLK or negedge RST)
                                    if (~RST) Q = 1'b0;
(a) Circuit diagram
                                    else O = O ^ T;
```

endmodule

60

Structural description

endmodule

```
module testTcircuit:
                                                           (Stimulus and output)
  reg x,CLK,RST; //inputs for circuit
  wire y, A, B; //output from circuit
  Tcircuit TC (x,y,A,B,CLK,RST); // instantiate circuit
  initial
     begin
         RST = 0;
         CLK = 0;
                                            testTcircuit.x
      #5 RST = 1;
          repeat (16)
                                          testTeirenit.CLK
      #5 CLK = ~CLK;
     end
                                          testTeireuit.RST
  initial
                                            testTcircuit.v
     begin
           x = 0;
                                             testeireuit.A
       #15 x = 1;
                                             testeireuit.B
           repeat (8)
       #10 x = ~ x;
     end
```

Fig. 5-21 Simulation Output of HDL Example 5-7

5-6 State reduction and assignment

- State reduction is used to reduce the number of flip-flop
- Only input/output sequences are important
- Interested in present states that go to the same next state and have the same output

State reduction

Table 5-6 State Table

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
ь	c	d	0	0	
C	a	d	0	0	
d	e	f	0	1	
e	а	f	0	1	
f	g	f	0	1	
g	а	f	0	1	

Fig. 5-22 State Diagram

State reduction

Table 5-7 *Reducing the State Table*

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	е	f	0	1	
e	а	f	0	1	
f	е	f	0	1	

State reduction

Table 5-8
Reduced State Table

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
a	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

Fig. 5-23 Reduced State Diagram

State assignment

- m states circuit, codes must contain n bits where 2ⁿ≥m
- Three possible binary state assignments

Table 5-9 *Three Possible Binary State Assignments*

State	Assignment 1 Binary	Assignment 2 Gray code	Assignment 3 One-hot
a	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

5-7 Design procedure

- Sequential circuit design : requires state table
 ⇔ Combinational circuit : truth table
- The number of flip-flop is determined from the number of states in circuit
 - If 2ⁿ states exist, there are n flip-flops

Design procedure

- Design steps
 - 1)Derive a state diagram or state table
 - 2)Reduce the number of states if necessary
 - 3)Assign binary code to the state
 - 4) Choose the type of flip-flops to be used
 - 5)Derive the flip-flop input equations and output equations
 - 6)Draw the logic diagram

Derive a state diagram

- Sequential detector
 - Three or more consecutive 1's in a string of bits coming through an input line

S0: 00, S1: 01, S2:10, S3:11

69

Input equations are obtained directly from the next states

Table 5-11 *State Table for Sequence Detector*

Present State		Input	Next State		Output
Α	В	X	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	1	1	1

Table 5-11 *State Table for Sequence Detector*

Present State		Input	Next State		Output	
Α	В	x	Α	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	1	
1	1	0	0	0	0	
1	1	1	1	1	1	

D_A	=	Ax	+	Вх

0	Onext	D	
0	0	0	
0	1	1	
1	0	0	
1	1	1	

Table 5-11 *State Table for Sequence Detector*

Present State				xt ate	Output	
Α	В	x	Α	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	1	
1	1	0	0	0	0	
1	1	1	1	1	1	

$$D_B = Ax + B'x$$

0	Qnext	D
0	0	0
0	1	1
1	0	0
1	1	1

Table 5-11 *State Table for Sequence Detector*

Pres Stat		Input	Ne Sta	xt ate	Output		
Α	В	X	Α	В	у		
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	0	0		
0	1	1	1	0	0		
1	0	0	0	0	0		
1	0	1	1	1	1		
1	1	0	0	0	0		
1	1	1	1	1	1		

$$y = Ax$$

Fig. 5-26 Logic Diagram of Sequence Detector

Synthesis with JK flip-flops

 Input equations evaluated from the present state to next state transition

Table 5-13	
State Table and JK Flip-Flop	Inputs

Present State		Input	Ne: Sta		Flip-Flop Inputs					
Α	В	x	A	В	JA	K _A	J _B	K _B		
0	0	0	0	0	0	X	0	X		
0	0	1	0	1	0	X	1	X		
0	1	0	1	0	1	X	X	1		
0	1	1	0	1	0	X	X	0		
1	0	0	1	0	X	0	0	X		
1	0	1	1	1	X	0	1	X		
1	1	0	1	1	X	0	X	0		
1	1	1	0	0	X	1	X	1		

0	Onext	J	K
0	0	0	×
0	1	1	×
1	0	×	1
1	1	×	0
1	1	^	U

Fig. 5-27 Maps for J and K Input Equations

- 3-bit binary counter
 - 3-bit counter has 3 flip-flops and can count from 0 to 2ⁿ-1(n=3)

Fig. 5-29 State Diagram of 3-Bit Binary Counter

Table 5-14

State Table for 3-Bit Counter

Present State			Next State			Flip-Flop Inputs									
A ₂	A1	A ₀		A ₂	Α	Ao	TA2	T _{A1}	TAO						
0	0	0		0	0	1	0	0	1						
0	0	1		0	1	0	0	1	1						
0	1	0		0	1	1	0	0	1		A_2		A_1		A_0
0	1	1		1	0	0	1	1	1						
1	0	0		1	0	1 1	0	0	1						- †
1	0	1		1	1	0	0	1	1				\rightarrow		_
1	1	0		1	1	1	0	1	1				_	_	
1	1	1		0	0	0	1	1	1	C	T		$\stackrel{C}{\wedge}$ T		T
									CLK -		\Box				
0	Q	next	T									$\neg oldsymbol{oldsymbol{eta}}$			
0		0	0								Ц(1
0		1	1												•
1		0	1							Fig	g. 5-31 Logic	Diagram of	3-Bit Binary Co	unter	
1		1	0												

 $T_{A2}=A_1A_0$, $T_{A1}=A_0$, $T_{A0}=1$