

WHAT IS CLAIMED IS:

1. A system of section cutting and analysis of a computer model comprising:

5 a computer system, wherein said computer system includes a memory, a processor, a user input device and a display device;

 a computer generated model of a structural member stored in the memory of the computer system;

10 a user locating at least a first cutting plane and a last cutting plane on the computer model using the user input device, wherein the first and last cutting planes define a cutting path, and the computer model is cut into at least one section along the cutting path;

15 said computer system maintaining the section in the memory;

 said computer system using a computer aided engineering (CAE) analysis to predict a property of the section; and

20 the user using the input device to modify the section, if the property does not meet a predetermined criterion.

2. A system as set forth in claim 1
25 wherein the computer system prompts a user to input a

shell thickness if the model is a computer-aided design (CAD) model.

3. A method as set forth in claim 1
5 wherein the computer system prompts a user to input a material type if the model is a computer-aided design (CAD) model.

4. A method as set forth in claim 1 wherein
10 the cutting plane is generated by the user selecting two points on the model using the input device and the computer system generates a vertical plane oriented perpendicular to a line between the points.

15 5. A method of section cutting and analysis of a computer model, said method comprising the steps of:

selecting a computer generated model of a structural member, wherein the computer generated
20 model is stored in a memory of a computer system;

locating at least a first cutting plane and a last cutting plane on the computer generated model, wherein the first and last cutting planes define a cutting path;

25 cutting the computer generated model into at least one section along the cutting path;

maintaining the section in a memory of the computer system;

analyzing the section using a computer aided engineering (CAE) analysis;

5 determining if the CAE analysis of the section meets a predetermined criteria;

modifying the section if the predetermined criteria is not met; and

10 using the section in the design of the model if the predetermined criterion is met.

6. A method as set forth in claim 5 including the step of determining if the model is a computer aided design (CAD) model and prompting a 15 user to input a shell thickness if the model is a CAD model.

7. A method as set forth in claim 5 including the step of determining if the model is a 20 computer aided design (CAD) model and prompting a user to input a material type if the model is a CAD model.

8. A method as set forth in claim 5 25 including the step of defining an area of the model

for locating the cutting path after said step of selecting a computer model.

9. A method as set forth in claim 5
5 including the step of prompting a user to input a number of sections to generate, prior to said step of locating the first and last cutting planes.

10. A method as set forth in claim 5,
10 wherein said step of locating a cutting plane includes the step of selecting two points on the model and generating a vertical plane oriented perpendicular to a line between the points.

15 11. A method as set forth in claim 5
wherein said step of locating a cutting plane includes the step of selecting a line on a computer aided design (CAD) model defining the cutting plane.

20 12. A method as set forth in claim 5
including the step determining if the model is a finite element analysis (FEA) model and simplifying the FEA model by replacing a shell element along the cutting path with a beam element.

13. A method as set forth in claim 5
wherein said step of analyzing the section includes
the step of using finite element analysis to
determine a geometric property of the section to
5 assess its stiffness.

14. A method as set forth in claim 5
wherein said step of analyzing the section includes
the step of using finite element analysis to
10 determine a crush strength of the section.

15. A method of section cutting and
analysis of a computer model of a structural member,
said method comprising the steps of:

15 selecting a model of the structural member
from a library of models stored in a memory of a
computer system having a memory, a processor a user
input device and a display device;

defining an area of the model for section
20 cutting and analysis using the device;

locating at least a first cutting plane and
a last cutting plane on the model, wherein the
cutting plane is located by selecting two points on
the model and generating a vertical plane oriented
25 perpendicular to a line between the points;

defining a cutting path between the first
and last cutting planes;

cutting the model into a predetermined
number of sections along the cutting path;

5 maintaining the cut sections in the memory
of the computer system;

analyzing the sections using a computer
aided engineering (CAE) analysis to determine
geometric properties and crush strength of the
10 section;

determining if the CAE analysis of a
selected section meets a predetermined criterion;

modifying the selected section if the
predetermined criterion is not met; and

15 using the selected section in the design of
the model if the predetermined criterion is met.

16. A method as set forth in claim 15
including the step of determining if the model is a
20 computer aided design (CAD) model and prompting a
user to input a shell thickness if the model is a CAD
model.

17. A method as set forth in claim 15
25 including the step of determining if the model is a
computer aided design (CAD) model and prompting a

user to input a material type if the model is a CAD model.

18. A method as set forth in claim 15
5 including the step of prompting a user to input a
number of sections to cut along the cutting path.

19. A method as set forth in claim 15
wherein said step of locating a cutting plane
10 includes the step of selecting a line on a computer
aided design model defining the cutting plane.

20. A method as set forth in claim 15
including the step determining if the model is a
15 finite element analysis (FEA) model and simplifying
the FEA model by replacing a shell element along the
cutting path with a beam element.