DATA621-HW5-SmoothOperators

Rob Hodde, Matt Farris, Jeffrey Burmood, Bin Lin 5/11/2017

Problem Description

Explore, analyze and model a data set containing information on approximately 12,000 commercially available wines. The variables are mostly related to the chemical properties of the wine being sold. The response variable is the number of sample cases of wine that were purchased by wine distribution companies after sampling a wine. These cases would be used to provide tasting samples to restaurants and wine stores around the United States. The more sample cases purchased, the more likely is a wine to be sold at a high end restaurant. A large wine manufacturer is studying the data in order to predict the number of wine cases ordered based upon the wine characteristics. If the wine manufacturer can predict the number of cases, then that manufacturer will be able to adjust their wine offering to maximize sales.

The objective is to build a count regression model to predict the number of cases of wine that will be sold given certain properties of the wine.

Data Exploration

Data Exploration

VAR	TYPE
TARGET	integer
FixedAcidity	double
VolatileAcidity	double
CitricAcid	double
ResidualSugar	double
Chlorides	double
${\bf Free Sulfur Dioxide}$	double
${\bf Total Sulfur Dioxide}$	double
Density	double
pН	double
Sulphates	double
Alcohol	double
LabelAppeal	integer
${\bf AcidIndex}$	integer
STARS	integer

TARGET	FixedAcidity	VolatileAcidity	CitricAcid	ResidualSugar	Chlorides
4:3177	Min. :-18.100	Min. :-2.7900	Min. :-3.2400	Min. :-127.800	Min. :-1.1710
0:2734	1st Qu.: 5.200	1st Qu.: 0.1300	1st Qu.: 0.0300	1st Qu.: -2.000	1st Qu.:-0.0310
3:2611	Median: 6.900	Median: 0.2800	Median: 0.3100	Median: 3.900	${\rm Median}:0.0460$
5:2014	$\mathrm{Mean}:7.076$	$\mathrm{Mean}:0.3241$	$\mathrm{Mean}:0.3084$	Mean: 5.419	$\mathrm{Mean}:0.0548$
2:1091	3rd Qu.: 9.500	3rd Qu.: 0.6400	3rd Qu.: 0.5800	3rd Qu.: 15.900	$3\mathrm{rd}~\mathrm{Qu.}{:}~0.1530$
6:765	Max. : 34.400	Max. : 3.6800	Max. : 3.8600	Max.: 141.150	Max. : 1.3510
(Other): 403	NA	NA	NA	NA's :616	NA's :638

FreeSulfurDioxide	TotalSulfurDioxide	Density	рН	Sulphates	Alcohol
Min. :-555.00	Min. :-823.0	Min. :0.8881	Min. :0.480	Min. :-3.1300	Min. :-4.70
1st Qu.: 0.00	1st Qu.: 27.0	1st Qu.:0.9877	1st Qu.:2.960	1st Qu.: 0.2800	1st Qu.: 9.00
Median: 30.00	Median: 123.0	Median: 0.9945	Median: 3.200	Median:0.5000	Median: 10.40
$\mathrm{Mean}:30.85$	$\mathrm{Mean}:120.7$	Mean $:0.9942$	Mean $:3.208$	$\mathrm{Mean}:0.5271$	Mean : 10.49
3rd Qu.: 70.00	3rd Qu.: 208.0	3rd Qu.:1.0005	3rd Qu.:3.470	3rd Qu.: 0.8600	3rd Qu.:12.40
Max. : 623.00	Max. :1057.0	Max. $:1.0992$	Max. :6.130	Max. : 4.2400	Max. :26.50
NA's :647	NA's :682	NA	NA's :395	NA's :1210	NA's :653

LabelAppeal	${\bf AcidIndex}$	STARS	
Min. :-2.000000	Min.: 4.000	Min. :1.000	
1st Qu.:-1.000000	1st Qu.: 7.000	1st Qu.:1.000	
Median:0.000000	Median : 8.000	Median $:2.000$	
Mean :- 0.009066	$\mathrm{Mean}:7.773$	Mean $:2.042$	
3rd Qu.: 1.000000	3rd Qu.: 8.000	3rd Qu.:3.000	
Max. : 2.000000	Max. :17.000	Max. :4.000	
NA	NA	NA's :3359	

```
#ggplot(wine, aes(TARGET, fill = STARS)) + geom_histogram(binwidth = 1, stat = "count") + facet_grid(STARGET, fill = STARS))
### ., margins = TRUE, scales = "free")
```

EDIT TO BE REMOVED: In the below examples, I took Rob's runs and extrapolated some Negative Binomial Regression to see if it greatly differed. From What I saw, it didn't, though I didnt compare the chi-square test yet.

```
##
## Call:
## glm(formula = as.formula(paste(colnames(train)[1], "~", paste(colnames(train)[-1],
## collapse = "+"), sep = "")), family = poisson, data = train)
```

```
##
## Deviance Residuals:
      Min
              1Q
                    Median
## -2.9945 -0.7089 0.0591
                              0.5775
                                       3.2498
## Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                      1.717e+00 2.664e-01
                                            6.448 1.14e-10 ***
## FixedAcidity
                     -8.333e-05 1.121e-03 -0.074 0.940734
## VolatileAcidity
                     -3.463e-02 8.921e-03 -3.882 0.000104 ***
## CitricAcid
                      1.884e-03 8.051e-03
                                            0.234 0.814987
## ResidualSugar
                     -8.061e-05 2.051e-04 -0.393 0.694357
## Chlorides
                     -5.673e-02 2.164e-02 -2.621 0.008773 **
## FreeSulfurDioxide
                     1.270e-04 4.673e-05
                                           2.718 0.006562 **
## TotalSulfurDioxide 8.448e-05 3.017e-05 2.800 0.005108 **
## Density
                     -4.789e-01 2.620e-01 -1.828 0.067541 .
## pH
                     -1.571e-02 1.022e-02 -1.536 0.124484
## Sulphates
                     -9.854e-03 7.499e-03 -1.314 0.188818
                      1.396e-03 1.895e-03
                                            0.737 0.461356
## Alcohol
## LabelAppeal
                      1.340e-01 8.299e-03 16.143 < 2e-16 ***
## AcidIndex
                     -8.550e-02 6.199e-03 -13.794 < 2e-16 ***
## STARS
                      3.128e-01 6.230e-03 50.213 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 12143.9 on 6893 degrees of freedom
## Residual deviance: 7882.5 on 6879 degrees of freedom
     (3342 observations deleted due to missingness)
## AIC: 25165
##
## Number of Fisher Scoring iterations: 5
pm2 <- glm(TARGET ~ STARS + LabelAppeal,data = train,family = poisson)
summary(pm2)
##
## Call:
## glm(formula = TARGET ~ STARS + LabelAppeal, family = poisson,
##
      data = train)
##
## Deviance Residuals:
##
                     Median
      Min
                1Q
                                  3Q
                                          Max
## -2.8887 -0.7644
                     0.0787
                              0.6151
                                       3.2902
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
                         0.011250
                                    45.75
## (Intercept) 0.514677
                                            <2e-16 ***
## STARS
              0.331690
                         0.004969
                                    66.75
                                            <2e-16 ***
## LabelAppeal 0.125219
                         0.006773
                                    18.49
                                            <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## (Dispersion parameter for poisson family taken to be 1)
##
##
      Null deviance: 18225 on 10235 degrees of freedom
## Residual deviance: 12107 on 10233 degrees of freedom
## AIC: 37677
##
## Number of Fisher Scoring iterations: 5
pm3 <- glm.nb(TARGET ~ STARS + LabelAppeal, data = train)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(pm3)
##
## Call:
## glm.nb(formula = TARGET ~ STARS + LabelAppeal, data = train,
       init.theta = 48547.83031, link = log)
##
## Deviance Residuals:
                     Median
      Min
                1Q
                                   3Q
                                           Max
## -2.8887 -0.7644
                                        3.2901
                     0.0787
                              0.6151
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.514670
                          0.011250
                                     45.75
                                             <2e-16 ***
                                     66.75
## STARS
              0.331694
                          0.004969
                                             <2e-16 ***
## LabelAppeal 0.125219
                         0.006773
                                     18.49
                                             <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for Negative Binomial (48547.83) family taken to be 1)
##
       Null deviance: 18224 on 10235 degrees of freedom
## Residual deviance: 12106 on 10233 degrees of freedom
## AIC: 37679
##
## Number of Fisher Scoring iterations: 1
##
##
                 Theta: 48548
##
            Std. Err.: 56938
## Warning while fitting theta: iteration limit reached
  2 x log-likelihood: -37671.1
pm4 <- glm.nb(TARGET ~ ., data = train)
```

```
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(pm4)
##
## Call:
## glm.nb(formula = TARGET ~ ., data = train, init.theta = 49150.47669,
      link = log)
##
## Deviance Residuals:
##
      Min
                10
                     Median
                                  3Q
                                          Max
## -2.9944 -0.7089
                     0.0591
                              0.5774
                                       3.2497
##
## Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                      1.717e+00 2.664e-01
                                            6.447 1.14e-10 ***
## FixedAcidity
                     -8.331e-05 1.121e-03 -0.074 0.940748
## VolatileAcidity
                     -3.463e-02 8.922e-03 -3.882 0.000104 ***
## CitricAcid
                      1.884e-03 8.051e-03
                                             0.234 0.814966
## ResidualSugar
                     -8.060e-05 2.051e-04 -0.393 0.694380
## Chlorides
                     -5.673e-02 2.165e-02 -2.621 0.008774 **
## FreeSulfurDioxide
                     1.270e-04 4.673e-05
                                            2.718 0.006563 **
## TotalSulfurDioxide 8.448e-05 3.017e-05
                                             2.800 0.005108 **
                     -4.789e-01 2.620e-01 -1.828 0.067548 .
## Density
## pH
                     -1.571e-02 1.022e-02 -1.536 0.124488
                     -9.855e-03 7.499e-03 -1.314 0.188810
## Sulphates
## Alcohol
                      1.396e-03 1.895e-03
                                             0.737 0.461392
## LabelAppeal
                      1.340e-01 8.300e-03 16.143 < 2e-16 ***
## AcidIndex
                     -8.551e-02 6.199e-03 -13.794 < 2e-16 ***
## STARS
                      3.129e-01 6.231e-03 50.212 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for Negative Binomial(49150.48) family taken to be 1)
##
##
      Null deviance: 12143.4 on 6893 degrees of freedom
## Residual deviance: 7882.2 on 6879 degrees of freedom
    (3342 observations deleted due to missingness)
## AIC: 25167
##
## Number of Fisher Scoring iterations: 1
##
##
##
                Theta: 49150
            Std. Err.: 69155
##
## Warning while fitting theta: iteration limit reached
##
```

2 x log-likelihood: -25135.19

```
pchisq(2 * (logLik(pm) - logLik(pm4)), df = 1, lower.tail = FALSE)
```

'log Lik.' 0.6988478 (df=15)