Data Structures for Disjoint Sets

Contents

Disjoint-sets

- Disjoint-set operations
- An application of disjoint-set data structures
- Disjoint-set data structures

Disjoint sets

Disjoint sets

- Two sets *A* and *B* are disjoint if $A \cap B = \{\}$. Ex> $A = \{1, 2\}, B = \{3, 4\}$
- Sets S_1 , S_2 , ..., S_k are disjoint if every two distinct sets S_i and S_j are disjoint. Ex> $S_1 = \{1, 2, 3\}$, $S_2 = \{4, 8\}$, $S_3 = \{5, 7\}$

Disjoint sets

- A collection of disjoint sets
 - A set of disjoint sets is called a collection of disjoint sets. Ex> {{1, 2, 3}, {4, 8}, {5,7}}
 - Each set in a collection has a *representative member* and the set is identified by the member.

Ex>
$$\{\{1, 2, 3\}, \{4, 8\}, \{5, 7\}\}$$

Disjoint sets

- A collection of dynamic disjoint sets
 - Dynamic: Sets are changing.
 - New sets are created.
 - $\{\{1, 2, 3\}, \{4, 8\}, \{5, 7\}\}\}$ \rightarrow $\{\{1, 2, 3\}, \{4, 8\}, \{5, 7\}, \{9\}\}\}$
 - Two sets are united.
 - $\{\{1, 2, 3\}, \{4, 8\}, \{5, 7\}\} \} \rightarrow \{\{1, 2, 3\}, \{4, 8, 5, 7\}\}$

Disjoint-set operations

- Disjoint-set operations
 - \bullet MAKE-SET(x)
 - UNION(x, y)
 - FIND-SET(x)

Disjoint-set operations

• MAKE-SET(x)

- Given a member x, generate a set for x.
- MAKE-SET(9)

```
\{\{1, 2, 3\}, \{4, 8\}, \{5, 7\}\} \rightarrow \{\{1, 2, 3\}, \{4, 8\}, \{5, 7\}, \{9\}\}\}
```

Disjoint-set operations

\circ UNION(x, y)

- Given two members x and y, unite the set containing x and another set containing y.
- UNION(1,4)
- $\{\{1, 2, 3\}, \{4, 8\}, \{5, 7\}\}\} \rightarrow \{\{1, 2, 3, 4, 8\}, \{5, 7\}\}$

• FIND-SET(x)

- Find the representative of the set containing x.
- FIND-SET(5): 7

o Problem

• **Developing data structures** to maintain a collection of dynamic disjoint sets supporting disjoint-set operations, which are MAKE-SET(x), UNION(x,y), FIND-SET(x).

Parameters for running time analysis

- #Total operations: m
- #MAKE-SET ops: *n*
- #UNION ops: u
- #FIND-SET ops: f
- m = n + u + f

$ou \leq n-1$

- *n* is the number of sets are generated by MAKE-SET ops.
- Each UNION op reduces the number of sets by 1.
- So, after *n*-1 UNION ops, we have only 1 set and then we cannot do UNION op more.

Assumption

• The first *n* operations are MAKE-SET operations.

Contents

- Disjoint-sets
- Disjoint-set operations
- An application of disjoint-set data structures
- Disjoint-set data structures

Application

Computing connected components (CC)

- Static graph
 - Depth-first search: $\Theta(V + E)$
- Dynamic graph
 - Depth-first search is inefficient.
 - Maintaining a disjoint-set data structure is more efficient.

$$\{\{a,b,c,d\}, \{e,f,g\}, \{h,i\}, \{j\}\}$$

→
$$\{\{a,b,c,d\}, \{e,f,g\}, \{h,i,j\}\}$$

Depth first search: $\Theta(V + E)$

Disjoint-set data structures: UNION(h, j)

Computing CC using disjoint set operations

CONNECTED-COMPONENTS(G)

```
1 for each vertex v \in G.V

2 MAKE-SET(v)

3 for each edge (u, v) \in G.E

4 if FIND-SET(u) \neq FIND-SET(v)

5 UNION(u, v)
```


SAME-COMPONENT(u, v)

- 1 **if** FIND-SET(u) == FIND-SET(v)
- 2 return TRUE
- 3 else return FALSE

Contents

- Disjoint-sets
- Disjoint-set operations
- An application of disjoint-set data structures
- Disjoint-set data structures

Disjoint-set data structures

- Linked-list representation
- Forest representation

Linked-list representation

- Each set is represented by a linked list.
- Members of a disjoint set are objects in a linked list.
- The first object in the linked list is the representative.
- All objects have pointers to the representative.

 $\{\{b,c,e,h\},\{d,f,g\}\}\}$: Two linked lists are needed.

- MAKE-SET(x)
 - Θ(1)

- FIND-SET(x)
 - Θ(1)

• UNION(x,y): Attaching a linked list to the other

• UNION(x,y): Attaching a linked list to the other

- $\Theta(m_2)$ time where m_2 is the number of objects in the linked list being attached.
 - Changing tail pointer & linking two linked lists: $\Theta(1)$
 - Changing pointers to the representative: $\Theta(m_2)$

- Running time for m (= n + f + u) operations
 - Simple implementation of union
 - $O(n+f+u^2)$ time $\rightarrow O(m+n^2)$ time
 - Because u < n
 - A weighted-union heuristic
 - $O(n+f+u\lg u)$ time $\rightarrow O(m+n\lg n)$ time

Forest representation

- Each set is represented by a tree.
- Each member points to its parent.
- The root of each tree is the rep.

 $\{\{b,c,e,h\}, \{f,d,g\}\}$

MAKE-SET(x)

$$1 \quad x.p = x$$

FIND-SET(x)

- 1 if x == x.p
- $\mathbf{2}$ return \mathbf{x}
- 3 else return FIND-SET(x.p)

Union by rank

- *Idea*: Attach the shorter tree to the taller tree.
- Each node maintains a *rank*, which is an upper bound on the height of the node.
- Compare the ranks of the two roots and attach the tree whose root's rank is smaller to the other.


```
MAKE-SET(x)
1 \quad x.p = x
2 \quad x.rank = 0
UNION(x, y)
1 \quad LINK(FIND-SET(x), FIND-SET(y))
```

```
LINK(x, y)

1 if x.rank > y.rank

2 y.p = x

3 else x.p = y

4 if x.rank == y.rank

5 y.rank = y.rank + 1
```

Path compression

• Change the parent to the root during FIND-SET(x).

```
FIND-SET(x)

1 if x \neq x.p

2 x.p = \text{FIND-SET}(x.p)

3 return x.p
```


• Worst case running time : $O(m \alpha(n))$

• $\alpha(n) \le 4$: for all practical situations.