整数リング上において置換多項式を使用す るターボ符号のためのインタリーバ

Kwame Ackah Bohulu

11/17/2016

1 効果的な自由距離 (d_{ef}) を使用して、良いインタリーバを探索する。

決定論インタリーバでは大きな d_{ef} が良い性能を保証するわけではないが、 小さい d_{ef} だと通常、悪い性能になる関係がある。このような悪い置換多項 式を選ばないように、 d_{ef} を基準とする。ランダムインタリーバと二次イン タリーバの場合は、入力重み2エラーイベントが抑制できないが, いえるのは 入力重み2エラーイベントが起きる確率は、フレーメサイズが無限にちかづ くほど, ゼローになっていく。S-ランダムインタリーバの場合、それぞれの要 素符号に起きる S より小さい距離を持つ入力重み 2 エラーイベントが防げる。 $t \le S$ の場合、S-ランダムインタリーバは (x, x+t) を (y, z) にマッピングし T、|y-z| > S。ところが、ある要素符号に起こる入力重み2エラーイベン トは t が (cycle length) の倍数の値だけなので、S-ランダムインタリーバの能 力がむだになる。置換多項式に基づいてインタリーバを使う場合、多項式の 係数をうまく選べば、ある要素符号によく起きる重み 2 エラーイベントが避 けられる。そうすると、それより大きい入力重み2エラーイベントも避けら れる。1番目の要素符号に起きる入力重み2エラーイベントの長さをt+1と し、t は τ の倍数で、t のオーダーは o_t とする。 2番目の要素符号に起きる 入力重み2エラーイベントの長さ-1は以下のようになる。

$$\Delta(x,t) = P(x+t) - P(x) = 2btx + bt^2 + at = c_1x + bt^2 + at$$
 (8)

性質 2.9 より、x の係数は $c_1 = 2bt$ のオーダーは $o_{c1} = o_2 + o_b + o_t$ である。 $x \in \{0,1,2,...,N-1\}$ のとき、式 (8) での第一項は $k \cdot p_N^{o_{c1}}, k = 0,1,2,...,p_N^{o_N-o_{c1}}-1$ それぞれの値は $p_N^{o_{c1}}$ 回をとる。x に従って c_1x の図を描くと $p_N^{(o_N-o_{c1})}$ の水平線が出る。 $bt^2 + at$ は水平線のオフセットを与える。短い入力重み 2x = 0 イントを防止するために、t が τ の小さい倍数の場合、 $\Delta(x,t)$ が τ の倍数の値を 0 から離れてほしい。このためには、ベクトル o_{c1} を大きくして、 $\Delta(x,t)$ の図にある水平線の数が少なくなって、 $\Delta(x,t)$ を 0 から離れる係数をうまく選ばれる。 o_{c1} はもう大きいため、0 の上か下からの最初線を着目する。着目される線から 0 までの距離は以下のように書ける。

$$s = \pm \Delta(x, t) \bmod p_N^{o_{c1}} = (bt^2 + at) \bmod p_N^{o_{c1}}$$
 (9)

 $\mathbf{a},\mathbf{b},\tau$ が与えられたとき、 $L_{(a,b,\tau)}$ は以下のように定義して、良いインタリーバを選ぶ基準とする。

$$L_{(a,b,\tau)} \min (|s| + |t|)$$

要素符号が与えられたとき、 $L(a,b,\tau)$ から d_{ef} が計算できる。良い a と b を探索するとき、範囲を制限したらよい。以下の補題で a と b の範囲が制限できる。

補題 4.1

入力重み2エラーイベントの解析では、b を $b_1 \cdot b_0 = b_1 \cdot p_N^{o_{b1}}$ のようにかけば b1 を 1 とすることができる。

Proof. $b_1=1$ と仮定すると、 b_1 と N は互いに素である。ある置換多項式 $P_1(x)=p_N^{o_b}x^2+at$ が与えたら、(9) は

$$s_1 = p_N^{o_b} t^2 + at \mod p_N^{o_b + o_t + o_2}$$

もう一つの置換多項式 $P_2(x) = b_1 p_N^{o_b} x^2 + at$ が与えたら、(9) は

$$s_2 = b_1 p_N^{o_b} t^2 + at \mod p_N^{o_b + o_t + o_2}$$

 $s_2 - s_1$ を計算すると以下の式が出る。

$$s_2 - s_1 = (b_1 - 1)p_N^{o_b}t^2 + at \ mod \ p_N^{o_b + o_t + o_2}$$

$$\tag{10}$$

2 は N の因数の場合 : b_1 と N は互いに素であるので b_1 は奇数で、 b_1-1 は偶数である。式 (10) の右辺のオーダーは少なくとも $o_2+o_b+2o_t$ 。

$$s_2 - s_1 = 0 \mod p_N^{o_b + o_t + o_2}$$

2 は N の因数でない場合 :式 (10) の右辺のオーダーは少なくとも $o_b + 2o_t$ であり、 mod $o_b + o_t$ で計算する。

$$s_2 - s_1 = 0 \mod p_N^{o_b + o_t + o_2}$$

 $P_1(x)$ と $P_2(x)$ の入力重み 2 エラーイベントの位置以外は同じ入力重み 2 エラーイベントを持っている。この観点から、 $P_1(x)$ と $P_2(x)$ は均しいである。

補題 4.2

入力重み2エラーイベントの解析では、 $b=b_1\cdot p_N^{ob1}$ があたえられたとき、aは $1\leq a\leq p_N^{ob1}$ となる a だけ考えば十分である。

Proof. 補題 4.1 の結果より $b = p_N^{ob}$ 。

2 は N の因数でないとき : $a_0=a \mod p_N^{o_b+o_2}$ とする。すると、 $a=a_0+lp_N^{o_b+o_2}$ 。

$$s = \pm (bt^{2} + (a_{0} + lp_{N}^{o_{b} + o_{2}})t) \mod p_{N}^{o_{b} + o_{t} + o_{2}}$$

= $\pm bt^{2} + (a_{0})t \mod p_{N}^{o_{b} + o_{t} + o_{2}}$ (11)

これは $L(a,b,\tau) = L(a_0,b,\tau)$ を意味する。

2 は N の因数のとき : 一般性を失わずに、上の証明で $1 \le a < p_N^{o_b + o_2}$ を仮定することができる。 $a_0 = p_N^{o_b + o_2} - a$ とすると、

$$s = \pm (bt^{2} + (a_{0}t) \mod p_{N}^{o_{b}+o_{2}+o_{t}}$$

$$s = \pm (bt^{2} + (p_{N}^{o_{b}+o_{t}+o_{2}} - a)t) \mod p_{N}^{o_{b}+o_{2}+o_{t}}$$

$$= \pm (b(-t)^{2} + (a(-t)) \mod p_{N}^{o_{b}+o_{2}+o_{t}}$$
(12)

また、 $L(a,b,\tau) = L(a_0,b,\tau)$

7/5 と 5/7 要素符号の場合の結果をテーブル 1に書かれている。

	a	1	3	5	7	9	11	13	15
Ì	L(5/7)	12	18	12	24	24	18	12	6
Ì	L(7/5)	4	8	12	16	16	8	12	32

Table 1: $\tau(7/5) = 2$, $\tau(5/7) = 3$, $N = 2^n$, $p_N = [2]$, $o_N = [n]$, $o_b = [4]$ b = 16

2 結果

フレームサイズ N と要素符号にが与えられたら、良い置換多項式に基づいてインタリーバを探すことは、多項式の a と b を計算することになる。最初に、 o_b の値を決める。前の分析で $p_N^{o_b}$ を大きくしなければならないですが、特別な入力重み 4 エラーイベントと入力重み 6 エラーイベントで成約を拘束しなければならない。 o_b が決めたら、 $b=p_N^{o_b}$ とし、定理 4.8 の範囲ですべての a を計算する。

6 種類の要素符号が選ばれて、テーブル 2 に書かれている。フレームサイズを $N=2^n$ とし,N のベースを $p_N=2$ になり、N のオーダーはスカラーになる。 $N=2^8$ の場合、要素符号に対して最良な置換多項式そして、入力重み2 エラーイベントに対する最低距離と多重度がテーブル 2に書かれている。

シムレーションで置換多項式に基づいてインタリーバを S ーランダムインタリーバと二次インタリーバと比べた結果は、図 6-11 で示される。置換多項式に基づいたインタリーバは常に二次インタリーバと S ーランダムインタリーバより良い性能をもつ。

要素符号	Cycle length (τ)	最適多項式	d_{min} (多重度)	図
7/5	2	$15x + 16x^2$	18(512)	6
5/7	3	$15x + 32x^2$	28(512)	7
37/21	4	$7x + 8x^2$	24(56)	8
21/37	5	$15x + 32x^2$	28(512)	9
37/25	6	$15x + 16x^2$	24(512)	10
23/35	7	$15x + 32x^2$	36(512)	11

Table 2: 様々な要素符号に対して最適な置換多項式、フレーメサイズ 256

要素符号を RC 5/7 符号、フレームサイズ N を 1024 と 16384 とし、それぞれのインタリーバの最良の置換多項式は $P(x)=31x+64x^2$ と $P(x)=15x+32x^2$ に基づく。シムレーションでの結果は図 12 と 13 に示される。長いフレームサイズの場合、置換多項式に基づいたインタリーバの性能は、二次インタリーバより良いですが、S ーランダムインタリーバほどよくないということがわかる。

3 結論

この論文には、置換多項式に基づいてインタリーバがしょうかいされた。インタリーバの生成多項式のパラメータが与えたら、多項式を計算することで、重要なエラーイベントの集合の d_{ef} が探索でき、本当の d_{ef} も近似できる。そして、近似値に対して、良いインタリーバの制限された探索ができる。紹介されましたインタリーバを S-ランダムインタリーバと二次インタリーバと比べられた。短いフレームサイズの場合,S-ランダムインタリーバより良い性能を持つインタリーバが見つけられた。長いフレームサイズの場合、紹介されたインタリーバは S-ランダムインタリーバと近い性能を持つ。二次インタリーバと比べた場合、どんなフレームサイズでも置換多項式に基づいてインタリーバの性能がたかいです。