Reinforcement Learning

RL in continuous MDPs

Marcello Restelli

Matt Kretchmar, 1995

Large/Continuous MDPs

Marcello Restelli

Incrementa Methods

- Large/Continuous state space
 - Tabular representation cannot be used
- Large/Continuous action space
 - Maximization over action space is problematic
- Continuous time
 - Hamilton–Jacoby–Bellman equation

Function Approximation in RL: Why?

Marcello Restelli

Incrementa Methods

- Reinforcement learning can be used to solve large problems, e.g.
 - Backgammon: 10²⁰ states
 - Computer Go: 10¹⁷⁰ states
 - Helicopter: continuous state space
- How can we scale up the model-free methods for prediction and control?

Value Function Approximation

Marcello Restelli

Incrementa Methods

- So far we have represented value function by a lookup table
 - Every state s has an entry V(s)
 - Or every state—action pair s, a has an entry Q(s, a)
- Problem with large MDPs
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPS
 - Estimate value function with function approximation

$$egin{array}{lll} V_{ heta}(s) &pprox & V^{\pi}(s) \ Q_{ heta}(s,a) &pprox & Q^{\pi}(s,a) \end{array}$$

- Generalize from seen states to unseen states
- **Update** parameter θ using MC or TD learning

Which Function Approximation?

Marcello Restelli

Incrementa Methods

- There are **many** function approximators, e.g.
 - Artificial neural network
 - Decision tree
 - Nearest neighbor
 - Fourier/wavelet bases
 - Coarse coding
- In principle, any function approximator can be used. However, the choice may be affected by some properties of RL:
 - Experience is **not i.i.d.** successive timesteps are correlated
 - During control, value function $V^{\pi}(s)$ is **non–stationary**
 - Agent's action affect the subsequent data it receives
 - Feedback is delayed, not instantaneous

Gradient Descent

Marcello Restelli

Incremental Methods

methods

- Let $L(\theta)$ be a **differentiable** function of parameter vector θ
- Define the **gradient** of $L(\theta)$ to be

$$\nabla_{\theta} L(\theta) = \begin{bmatrix} \frac{\partial L(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial L(\theta)}{\partial \theta_n} \end{bmatrix}$$

- To find a **local minimum** of $L(\theta)$
- Adjust the parameter θ in the direction of **negative gradient**

$$\Delta\theta = -\frac{1}{2}\alpha\nabla_{\theta}L(\theta)$$

where α is a stepsize parameter

Value Function Approximation by Stochastic Gradient Descent

Marcello Restelli

Incrementa Methods

Batch

• Goal: find parameter vector θ minimizing mean–squared error between approximate value function $V_{\theta}(s)$ and true value function $V^{\pi}(s)$

$$L(\theta) = \mathbb{E}_{\pi}[(V^{\pi}(s) - V_{\theta}(s))^{2} | s_{t} = s]$$

Gradient descent finds a local minimum

$$\Delta\theta = -\frac{1}{2}\alpha\nabla_{\theta}L(\theta)$$
$$= \alpha\mathbb{E}_{\pi}[(V^{\pi}(s) - V_{\theta}(s))\nabla_{\theta}V_{\theta}(s)|s_{t} = s]$$

• Stochastic gradient descent samples the gradient

$$\Delta \theta = \alpha (V^{\pi}(s) - V_{\theta}(s)) \nabla_{\theta} V_{\theta}(s)$$

Expected update is equal to full gradient update

Feature Vectors

Marcello Restelli

Incremental Methods

Batch method: • Represent state by a feature vector

$$\phi(s) = \left[egin{array}{c} \phi_1(s) \ dots \ \phi_n(s) \end{array}
ight]$$

- For example:
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess

Linear Value Function Approximation

Marcello Restelli

Incrementa Methods

Batch methods Represent value function by a linear combination of features

$$V_{ heta}(s) = \phi(s)^{\mathrm{T}} heta = \sum_{j=1}^{n} \phi_{j}(s) heta_{j}$$

Objective function is quadratic

$$J(\theta) = \mathbb{E}\left[(V^{\pi}(s) - \phi(s)^{\mathrm{T}}\theta)^{2} | s_{t} = s \right]$$

- Stochastic gradient descent converges to global optimum
- Update rule is particularly simple

$$abla_{ heta} V_{ heta}(s) = \phi(s)$$

$$\Delta \theta = \alpha (V^{\pi}(s) - V_{ heta}(s)) \phi(s)$$

• Update = stepsize \times prediction error \times feature value

Table Lookup Features

Marcello Restelli

Incremental Methods

Batch methods

- Table lookup is a special case of linear value function approximation
- Using table lookup features

$$\phi^{table}(s) = \left[egin{array}{c} \mathbf{1}(s=s_1) \ dots \ \mathbf{1}(s=s_n) \end{array}
ight]$$

• Parameter vector θ gives value of **each individual** state

$$V(s) = \left[egin{array}{c} \mathbf{1}(s=s_1) \ dots \ \mathbf{1}(s=s_n) \end{array}
ight]^{ ext{T}} \cdot \left[egin{array}{c} heta_1 \ dots \ heta_n \end{array}
ight]$$

Coarse Coding

Marcello Restelli

Incremental Methods

Batch methods

Example of linear value function approximation:

- Coarse coding provides **large** feature vector $\phi(s)$
- Parameter vector θ gives a value to **each feature**

Generalization in Coarse Coding

Incremental Methods

a) Narrow generalization

b) Broad generalization

c) Asymmetric generalization

Stochastic Gradient Descent with Coarse Coding

Marcello Restelli

Incremental Methods

Tile Coding

Marcello Restelli

Incremental Methods

- Binary feature for each tile
- Number of features present at any one time is constant
- Binary features means weighted sum easy to compute
- Easy to compute indices of the features present

Tile Coding

Marcello Restelli

Incremental Methods

Batch methods Irregular tilings

Hashing

 CMAC [Albus, 1971] "Cerebellar Model Architecture Computer"

Radial Basis Functions (RBFs)

Marcello Restelli

Incremental Methods

Batch methods

e.g., Gaussians

$$\phi_i(s) = \exp\left(-rac{\|s-c_i\|^2}{2\sigma_i^2}
ight)$$

Incremental Prediction Algorithm

Marcello Restelli

Incrementa Methods

Batch methods

- Have assumed true value function $V^{\pi}(s)$ given by supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a **target** for $V^{\pi}(s)$
 - For MC, the target is the return v_t

$$\Delta\theta = \alpha(\mathbf{v_t} - \mathbf{V_\theta(s)})\nabla_\theta \mathbf{V_\theta(s)}$$

• For TD(0), the target is the TD target $r + \gamma V(s')$

$$\Delta \theta = \alpha(\mathbf{r} + \gamma \mathbf{V}(\mathbf{s}') - \mathbf{V}_{\theta}(\mathbf{s})) \nabla_{\theta} \mathbf{V}_{\theta}(\mathbf{s})$$

• For TD(λ), the target is the λ -return v_t^{λ}

$$\Delta \theta = \alpha (\mathbf{v}_t^{\lambda} - V_{\theta}(s)) \nabla_{\theta} V_{\theta}(s)$$

Monte–Carlo with Value Function Approximation

Marcello Restelli

Incrementa Methods

Batch

- The return v_t is an **unbiased**, noisy sample of true value $V^{\pi}(s)$
 - Can therefore apply supervised learning to "training data":

$$\langle s_1, v_1 \rangle, \langle s_2, v_2 \rangle, \ldots, \langle s_T, v_T \rangle$$

For example, using linear Monte—Carlo policy evaluation

$$\Delta\theta = \alpha(\mathbf{v_t} - \mathbf{V_{\theta}}(\mathbf{s}))\nabla_{\theta}\mathbf{V_{\theta}}(\mathbf{s})$$
$$= \alpha(\mathbf{v_t} - \mathbf{V_{\theta}}(\mathbf{s}))\phi(\mathbf{s})$$

- Monte-Carlo evaluation converges to a local optimum
- Even when using non-linear value function approximation

TD Learning with Value Function Approximation

Marcello Restelli

Incrementa Methods

Batch methods

- The TD-target $r_{t+1} + \gamma V_{\theta}(s_{t+1})$ is a **biased** sample of true value $V^{\pi}(s_t)$
- Can still apply supervised learning to "training data":

$$\langle s_1, r_2 + \gamma V_{\theta}(s_2) \rangle, \langle s_2, r_3 + \gamma V_{\theta}(s_3) \rangle, \dots, \langle s_{T-1}, r_t \rangle$$

For example, using linear TD(0)

$$\Delta\theta = \alpha(\mathbf{r} + \gamma V_{\theta}(\mathbf{s}') - V_{\theta}(\mathbf{s}))\nabla_{\theta}V_{\theta}(\mathbf{s})$$
$$= \alpha\delta\phi(\mathbf{s})$$

• Linear TD(0) converges (close) to global optimum

$\mathsf{TD}(\lambda)$ with Value Function Approximation

Marcello Restelli

Incrementa Methods

Batch methods

- The λ -return v_t^{λ} is also a **biased** sample of true value $V^{\pi}(s)$
- Can again apply supervised learning to "training data":

$$\langle s_1, \textit{v}_1^{\lambda} \rangle, \langle s_2, \textit{v}_2^{\lambda} \rangle, \ldots, \langle s_{T-1}, \textit{v}_{T-1}^{\lambda} \rangle$$

• Forward view linear $TD(\lambda)$

$$\Delta\theta = \alpha(\mathbf{v}_t^{\lambda} - V_{\theta}(\mathbf{s}_t))\nabla_{\theta}V_{\theta}(\mathbf{s}_t)$$
$$= \alpha(\mathbf{v}_t^{\lambda} - V_{\theta}(\mathbf{s}_t))\phi(\mathbf{s}_t)$$

• Backward view linear $TD(\lambda)$

$$\delta_t = r_{t+1} + \gamma V(s_{t+1}) - V(s_t)
e_t = \gamma \lambda e_{t-1} + \phi(s_t)
\Delta \theta = \alpha \delta_t e_t$$

• Forward view and backward view linear $TD(\lambda)$ are equivalent

Control with Value Function Approximation

Marcello Restelli

Incremental Methods

methods

- Policy Evaluation: Approximate policy evaluation, $Q_{\theta} \approx Q^{\pi}$
- ullet Policy Improvement: ϵ -greedy policy improvement

Action-Value Function Approximation

Marcello Restelli

Incremental Methods

method:

• **Approximate** the action-value function

$$Q_{ heta}(s,a) pprox Q^{\pi}(s,a)$$

- Minimize the mean–squared error between approximate action–value function $Q_{\theta}(s, a)$ and true action–value function $Q^{\pi}(s, a)$
- Use stochastic gradient descent to find local minimum

$$-\frac{1}{2}\nabla_{\theta}J(\theta) = (Q^{\pi}(s,a) - Q_{\theta}(s,a))\nabla_{\theta}Q_{\theta}(s,a)$$

$$\Delta\theta = \alpha(Q^{\pi}(s,a) - Q_{\theta}(s,a))\nabla_{\theta}Q_{\theta}(s,a)$$

Linear Action-Value Function Approximation

Marcello Restelli

Incremental Methods

Batch methods Represent state and action by a feature vector

$$\phi(s,a) = \left[egin{array}{c} \phi_1(s,a) \ dots \ \phi_n(s,a) \end{array}
ight]$$

Represent action—value function by linear combination of features

$$Q_{ heta}(oldsymbol{s},oldsymbol{a}) = \phi(oldsymbol{s},oldsymbol{a})^{ extstyle T} heta = \sum_{j=1}^n \phi_j(oldsymbol{s},oldsymbol{a}) heta_j$$

Stochastic gradient descent update

$$abla_{ heta} Q_{ heta}(s, a) = \phi(s, a)$$

$$\Delta \theta = \alpha(Q^{\pi}(s, a) - Q_{ heta}(s, a))\phi(s, a)$$

Incremental Control Algorithms

Marcello Restelli

Incrementa Methods

methods

• Like prediction, we must substitute a **target** for $Q^{\pi}(s, a)$

• For MC, the target is the return v_t

$$\Delta\theta = \alpha(\mathbf{v}_t - \mathbf{Q}_{\theta}(\mathbf{s}_t, \mathbf{a}_t))\phi(\mathbf{s}_t, \mathbf{a}_t)$$

• For TD(0), the target is the TD target $f_{t+1} + \gamma Q(s_{t+1}, a_{t+1})$

$$\Delta\theta = \alpha(\mathbf{r}_{t+1} + \gamma \mathbf{Q}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) - \mathbf{Q}_{\theta}(\mathbf{s}_t, \mathbf{a}_t))\phi(\mathbf{s}_t, \mathbf{a}_t)$$

• For forward–view TD(λ), target is λ –return v_t^{λ}

$$\Delta_{\theta} = \alpha(\mathbf{v}_{t}^{\lambda} - Q_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}))\phi(\mathbf{s}_{t}, \mathbf{a}_{t})$$

• For backward–view $TD(\lambda)$, equivalent update is

$$\delta_t = r_{t+1} + \gamma Q_{\theta}(s_{t+1}, a_{t+1}) - Q_{\theta}(s_t, a_t)
e_t = \gamma \lambda e_{t-1} + \phi(s_t, a_t)
\Delta_{\theta} = \alpha \delta_t e_t$$

GPI Linear Gradient Descent SARSA(0)

Marcello Restelli

Incremental Methods

```
Initialize \theta arbitrarily
dool
     s, a \leftarrow initial state and action of episode
     Q(s, a) = \theta^{\mathrm{T}} \phi(s, a)
     repeat
          \nabla Q_a = \phi(s, a)
          Take action a, observe reward, r, and next state s
          \delta \leftarrow r - Q_2
          Uniformly draw a number \rho \in [0, 1]
          if \rho < 1 - \epsilon then
               for all a \in A(s) do
                     Q_a \leftarrow \theta^{\mathrm{T}} \phi(s, a)
               end for
                a \leftarrow arg \max_a Q_a
          else
                a \leftarrow a random action \in \mathcal{A}(s)
          end if
          Q_a \leftarrow \theta^{\mathrm{T}} \phi(s, a)
          \delta \leftarrow \delta + \gamma Q_a
          \theta \leftarrow \theta + \alpha \delta \nabla Q_a
     until s is terminal
end loop
```


GPI Linear Gradient Descent Watkins' Q(0)

Marcello Restelli

Incremental Methods

```
Initialize \theta arbitrarily
loop
     s, a \leftarrow initial state and action of episode
     Q(s, a) = \theta^{T} \phi(s, a)
     repeat
          \nabla Q_a = \phi(s, a)
          Take action a, observe reward, r, and next state s
          \delta \leftarrow r - Q_2
         for all a \in \mathcal{A}(s) do
               Q_a \leftarrow \theta^{\mathrm{T}} \dot{\phi}(s, a)
         end for
          \delta \leftarrow \delta + \gamma \max_{a} Q_{a}
          \theta \leftarrow \theta + \alpha \delta \nabla Q_a
         Uniformly draw a number \rho \in [0, 1]
          if \rho < 1 - \epsilon then
              for all a \in \mathcal{A}(s) do
                    Q_a \leftarrow \theta^T \phi(s, a)
               end for
               a \leftarrow arg \max_a Q_a
         else
               a \leftarrow a \text{ random action } \in \mathcal{A}(s)
         end if
          Q_a \leftarrow \theta^T \phi(s, a)
     until s is terminal
end loop
```


Linear SARSA with Coarse Coding in Mountain Car

Marcello Restelli

Incremental Methods

Linear SARSA with Radial Basis Functions in Mountain Car

Marcello

Incremental Methods

Study of λ : Should We Bootstrap?

Marcello Restelli

Incremental Methods

Convergence Questions

Marcello Restelli

Incremental Methods

- The previous results show it is desirable to bootstrap
- But now we consider convergence issues
- When do incremental prediction algorithms converge?
 - When using **bootstrapping** (i.e., TD with $\lambda < 1$)?
 - When using linear function approximation?
 - When using off-policy learning?
- Ideally, we would like algorithms that converge in all cases

Baird's Counterexample

Marcello Restelli

Incremental Methods

Batch methods

Reward is always zero

Parameter Divergence in Baird's Counterexample

Marcello Restelli

Incremental Methods

Batch methods

Parameter values, $\theta_k(i)$ (log scale, broken at ± 1) Using **uniform distribution**

$$\gamma =$$
 0.99, $\alpha =$ 0.01, $m{ heta}_0 = [1, 1, 1, 1, 1, 1, 1]^{\mathrm{T}}$

Another Example

Marcello Restelli

Incremental Methods

- Baird's counterexample has two simple fixes:
 - use on–policy distribution
 - Instead of taking small steps towards expected one—step returns, change value function to the best least—squares approximation
- This works if the feature vectors form a linearly independent set
- When an exact solution is not possible, it does not work even if we consider the best approximation at each iteration

$$\begin{array}{lcl} \theta_{k+1} & = & arg \min_{\theta \in \Re} \sum_{s \in \mathcal{S}} \left\{ V_{\theta}(s) - \mathbb{E}_{\pi} [r_{t+1} + \gamma V_{\theta_k}(s_{t+1}) | s_t = s] \right\} \\ \\ & = & arg \min_{\theta \in \Re} [\theta - 2\gamma \theta_k]^2 + [2\theta - 2(1 - \epsilon)\gamma \theta_k]^2 = \frac{6 - 4\epsilon}{5} \gamma \theta_k \end{array}$$

Convergence of Prediction Algorithms

Marcello Restelli

Incremental Methods

On/Off–Policy	Algorithm	Table Lookup	Linear	Non-Linear
	MC	OK	OK	OK
On-Policy	TD(0)	OK	OK	KO
	$TD(\lambda)$	OK	OK	KO
Off–Policy	MC	OK	OK	OK
	TD(0)	OK	KO	KO
	$TD(\lambda)$	OK	KO	KO

Problematic Triumvirate

Marcello Restelli

Incremental Methods

Batch methods

We have not **quite** achieved our ideal goal for prediction algorithms

Convergence of Control Algorithms

Marcello Restelli

Incremental Methods

Batch methods

	Algorithm	Table Lookup	Linear
	Monte-Carlo Control	OK	OK
	SARSA	OK	(OK)
	<i>Q</i> -learning	OK	KO
$\overline{}$	Abottore eround n	oor optimal val	ua funation

(OK) = **chatters** around near—optimal value function

What Objective Function does TD(0) Optimize?

Marcello Restelli

Incremental Methods

Batch

Mean–squared error

$$\mathit{MSE}(\theta) = \|\mathit{V}_{\theta} - \mathit{V}^{\pi}\|_{\mathit{D}}^2 = \mathbb{E}_{s \sim \mathit{D}}[(\mathit{V}_{\theta}(s) - \mathit{V}^{\pi}(s))^2]$$

Mean–squared TD error

$$MSTDE(\theta) = \mathbb{E}_{D,P,\pi}[\delta_t^2 | s_t = s]$$

Mean—squared Bellman error

$$\mathit{MSBE}(\theta) = \|V_{\theta} - T^{\pi}V_{\theta}\|_{D}^{2} = \mathbb{E}_{s \sim D}[\mathbb{E}_{P,\pi}[\delta_{t}|s_{t} = s]^{2}]$$

Mean-squared projected Bellman error

$$MSPBE(\theta) = \|V_{\theta} - \Pi T^{\pi} V_{\theta}\|_{D}^{2}$$

Split-A Example

Marcello Restelli

Incremental Methods

methods

TD-fixpoint solution

Residual-gradient solution

With function approximation

Solution minimizing MSE: Correct solution

$$V(A) = 0.5, V(B) = 1, V(C) = 0$$

Solution minimizing MSTDE (with table lookup):

$$V(A) = 0.5, V(B) = 0.75, V(C) = 0.25$$

Solution minimizing MSBE (with function approximation):

$$V(A) = 0.5, V(B) = 0.75, V(C) = 0.25$$

Solution minimizing MSPBE: Correct solution

$$V(A) = 0.5, V(B) = 1, V(C) = 0$$

TD(0) Objective

Incremental Methods

TD(0)-fixpoint satisfies $V_{\theta} = \Pi T V_{\theta}$

- TD(0) finds the solution minimizing MSPBE
- But TD does not follow the gradient of any objective function
- This is why TD(0) can diverge when off-policy or using **non-linear** function approximation

Gradient Temporal-Difference Learning

Marcello Restelli

Incremental Methods

Batch methods

 Gradient TD learning explicitly follows gradient of MSPBE

$$\Delta \theta = -\frac{1}{2} \alpha \nabla_{\theta} \| V_{\theta} - \Pi T^{\pi} V_{\theta} \|_{D}^{2}$$

- MSPBE is optimized at TD(0) fixed point
- Gradient descent of MSPBE finds TD(0) fixed point robustly

Gradient Temporal–Difference Learning Algorithm

Marcello Restelli

Incremental Methods

Batch methods

$$\begin{aligned} \textit{MSPBE}(\theta) &= \|V_{\theta} - \Pi T^{\pi} V_{\theta}\|_{D}^{2} \\ -\frac{1}{2} \nabla_{\theta} \textit{MSPBE}(\theta) &= \mathbb{E}[\delta \phi] - \gamma \mathbb{E}[\phi' \phi^{\text{T}}] \mathbb{E}[\phi \phi^{\text{T}}]^{-1} \mathbb{E}[\delta \phi] \\ &\stackrel{\text{def}}{=} \mathbb{E}[\delta \phi] - \gamma \mathbb{E}[\phi' \phi^{\text{T}}] \textit{w} \end{aligned}$$

This leads to the linear TDC algorithm

$$\Delta \theta = \alpha (\delta \phi - \gamma \phi'(\phi^{T} w))$$

$$\Delta w = \beta (\delta - \phi^{T} w) \phi$$

 The highlighted term is a correction of the TD(0) update

$$\Delta\theta = \alpha\delta\phi$$

Gradient Temporal Difference Learning Results

Marcello Restelli

Incremental Methods

Convergence of Incremental Prediction Algorithms

Marcello Restelli

Incremental Methods

On/Off–Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	OK	OK	OK
	TD(0)	OK	OK	KO
	TDC	OK	OK	OK
Off–Policy	MC	OK	OK	OK
	TD(0)	OK	KO	KO
	TDC	OK	OK	OK

Batch Reinforcement Learning

Marcello Restelli

Incrementa Methods

- Gradient descent is simple and appealing
- But it is **not** sample efficient
- Batch methods seek to find the best fitting value function
- Given the agent's **experience** ("training data")

Least Squares Prediction

Marcello Restelli

Incrementa Methods

- Given value function **approximation** $V_{\theta}(s) \approx V^{\pi}(s)$
- And **experience** \mathcal{D} consisting of $\langle state, value \rangle$ pairs

$$\mathcal{D} = \{\langle s_1, \textit{v}_1^{\pi} \rangle, \langle s_2, \textit{v}_2^{\pi} \rangle, \dots, \langle s_T, \textit{v}_T^{\pi} \rangle\}$$

- Which parameters θ give the **best fitting** value function $V_{\theta}(s)$?
- Least squares algorithms find parameter vector θ minimizing sum–squared error between $V_{\theta}(s_t)$ and target values v_t^{π} ,

$$egin{array}{lll} LS(heta) &=& \displaystyle\sum_{t=1}^T (v_t^\pi - V_ heta(s_t))^2 \ &=& \displaystyle\mathbb{E}_{\mathcal{D}}[(v^\pi - V_ heta(s))^2] \end{array}$$

Stochastic Gradient Descent with Experience Replay

Marcello Restelli

Incrementa Methods

Batch methods • Given **experience** consisting of *(state, value)* pairs

$$\mathcal{D} = \{\langle s_1, v_1^{\pi} \rangle, \langle s_2, v_2^{\pi} \rangle, \dots, \langle s_T, v_T^{\pi} \rangle\}$$

- Repeat
 - Sample state, value from experience

$$\langle \boldsymbol{s}, \boldsymbol{v}^{\pi} \rangle \sim \mathcal{D}$$

Apply stochastic gradient descent update

$$\Delta \theta = \alpha (\mathbf{v}^{\pi} - \mathbf{V}_{\theta}(\mathbf{s})) \nabla_{\theta} \mathbf{V}_{\theta}(\mathbf{s})$$

Converges to least squares solution

$$heta^{\pi} = arg \min_{ heta} LS(heta)$$

Linear Least Squares Prediction

Marcello Restelli

Incrementa Methods

- Experience replay finds least squares solution
- But it may take many iterations
- Using **linear** value function approximation $V_{\theta}(s) = \phi(s)^{\mathrm{T}} \theta$
- We can solve the least squares solution directly

Linear Least Squares Prediction (2)

Marcello Restelli

Incrementa Methods

Batch methods • At minimum of $LS(\theta)$, the expected update must be **zero**

$$\mathbb{E}_{\mathcal{D}}[\Delta \theta] = 0$$

$$\sum_{t=1}^{T} \phi(s_t) (v_t^{\pi} - \phi(s_t)^{\mathrm{T}} \theta) = 0$$

$$\sum_{t=1}^{T} \phi(s_t) v_t^{\pi} = \sum_{t=1}^{T} \phi(s_t) \phi(s_t)^{\mathrm{T}} \theta$$

$$\theta = \left(\sum_{t=1}^{T} \phi(s_t) \phi(s_t)^{\mathrm{T}}\right)^{-1} \sum_{t=1}^{T} \phi(s_t) v_t^{\pi}$$

- For N features, **direct** solution time is $O(N^3)$
- Incremental solution time is $O(N^2)$ using Shermann–Morrison

Linear Least Squares Prediction Algorithms

Marcello Restelli

Incrementa Methods

Batch methods

- We do not know true value v_t^{π}
- In practice, our "training data" must use **noisy** or **biased** samples of v_t^{π}
 - LSMC: Least Squares Monte–Carlo uses return

$$\mathbf{v}_t^{\pi} \approx \mathbf{v}_t$$

LSTD: Least Squares Temporal-Difference uses TD target

$$v_t^{\pi} \approx r_{t+1} + \gamma V_{\theta}(s_{t+1})$$

• LSTD(λ): Least Squares TD(λ) uses λ -return

$$v_t^{\pi} \approx v_t^{\lambda}$$

 In each case solve directly for fixed point of MC/TD/TD(λ)

Linear Least Squares Prediction Algorithms (2)

Marcello Restelli

Incrementa Methods

Batch methods LSMC

$$0 = \sum_{t=1}^{T} \alpha(v_t - V_{\theta}(s_t))\phi(s_t)$$

$$\theta = \left(\sum_{t=1}^{T} \phi(s_t)\phi(s_t)^{\mathrm{T}}\right)^{-1} \sum_{t=1}^{T} \phi(s_t)v_t$$

LSTD

$$0 = \sum_{t=1}^{T} \alpha(r_{t+1} + \gamma V_{\theta}(s_{t+1}) - V_{\theta}(s_{t})) \phi(s_{t})$$

$$\theta = \left(\sum_{t=1}^{T} \phi(s_{t}) (\gamma \phi(s_{t+1}) - \phi(s_{t}))^{T}\right)^{-1} \sum_{t=1}^{T} \phi(s_{t}) r_{t+1}$$

LSTD(λ)

$$0 = \sum_{t=1}^{T} \alpha \delta_t e_t$$

$$\theta = \left(\sum_{t=1}^{T} e_t (\gamma \phi(s_{t+1}) - \phi(s_t))^{\mathsf{T}}\right)^{-1} \sum_{t=1}^{T} e_t r_{t+1}$$

Convergence of Linear Least Squares Prediction Algorithms

Marcello Restelli

Incrementa Methods

On/Off–Policy	Algorithm	Table Lookup	Linear
	LSMC	OK	OK
On-Policy	LSTD(0)	OK	OK
	$LSTD(\lambda)$	OK	OK
Off–Policy	LSMC	OK	OK
	LSTD(0)	OK	OK
	$LSTD(\lambda)$	OK	OK

Least Squares Policy Iteration

Marcello Restelli

Incrementa Methods

- Policy Evaluation: Least Squares policy evaluation, $Q_{\theta} \approx Q^{\pi}$
- ullet Policy Improvement: ϵ -greedy policy improvement

Least Squares Action–Value Function Approximation

Marcello Restelli

Incrementa Methods

Batch methods • Approximate Q(s, a) using linear combination of features

$$Q_{\theta} = \phi(s, a)^{\mathrm{T}} \theta \approx Q^{\pi}(s, a)$$

- Minimize least squares error between approximate action–value function $Q_{\theta}(s,a)$ and true action–value function $Q^{\pi}(s,a)$
- LSTDQ algorithm minimizes least squares TD error
- Expected SARSA update must be zero at TD fixed point

$$0 = \sum_{t=1}^{T} \alpha \delta_{t} \phi(s_{t}, a_{t}) = \sum_{t=1}^{T} \alpha(r_{t+1} + \gamma Q_{\theta}(s_{t+1}, a_{t+1}) - Q_{\theta}(s_{t}, a_{t})) \phi(s_{t}, a_{t})$$

$$\theta = \left(\sum_{t=1}^{T} \phi(s_{t}, a_{t}) (\gamma \phi(s_{t+1}, a_{t+1}) - \phi(s_{t}, a_{t}))\right)^{-1} \sum_{t=1}^{T} \phi(s_{t}, a_{t}) r_{t+1}$$

Similarly for LSMCQ and LSTDQ(λ)

Least Squares Policy Iteration Algorithm

Marcello Restelli

Incrementa Methods

Batch methods

```
    The following pseudocode uses LSTDQ for policy evaluation
```

 \bullet It repeatedly re–evaluates experience ${\mathcal D}$ with different policies

```
function LSPI-TD(\mathcal{D},\pi_0)
     \pi' \leftarrow \pi_0
     repeat
           \pi \leftarrow \pi'
           Q \leftarrow \mathsf{LSTDQ}(\pi, \mathcal{D})
           for all s \in S do
                \pi'(s) \leftarrow arg \max_{a \in \mathcal{A}} Q(s, a)
           end for
     until \pi \approx \pi'
      return \pi
end function
```


Convergence of Control Algorithms

Marcello Restelli

Incrementa Methods

Algorithm	Table Lookup	Linear
LSPI-MC	OK	OK
LSPI-TD(0)	OK	OK
$LSPI\!\!-\!\!TD(\lambda)$	OK	OK

Chain Walk Example

Marcello Restelli

Incrementa Methods

- Consider the **50-state version** of this problems
- Reward +1 in states 10 and 41, 0 elsewhere
- Optimal policy: R (1–9), L (10–25), R (26–41), L (42–50)
- Features: 10 evenly spaced Gaussians ($\sigma = 4$) for each action
- Experience: 10,000 steps from random walk policy

LSPI in Chain Walk Action-Value Function

Marcello Restelli

Incrementa Methods

LSPI in Chain Walk Policy

Marcello Restelli

Incrementa Methods

Fitted Q-Iteration

Marcello Restelli

Incrementa Methods

- Implements fitted value iteration
- Given a dataset of experience tuple D, solve a sequence of regression problems
 - At iteration i, build an approximation \hat{Q}_i over a dataset obtained by $(T^*Q_{i-1})(s,a)$
- Allows to use a large class of regression methods (averagers), e.g.
 - Kernel averaging
 - Regression trees
 - Fuzzy regression
- With other regression methods it may diverge
- In practice, good results also with neural networks

Fitted Q-Iteration Algorithm

Marcello Restelli

Incrementa Methods

Batch methods **Input**: a set of four–tuples $\mathcal{D} = \{\langle s_i, a_i, r_{i+1}, s'_{i+1} \rangle\}_{i=1}^L$ and a regression algorithm

Initialize: set *N* to 0, $\hat{Q}_N(s, a) = 0$, $\forall s, a$

repeat

$$N \leftarrow N + 1$$

Build a training set

$$\mathcal{TS} = \{\langle \mathbf{s}_i, \mathbf{a}_i, r_{i+1} + \gamma \max_{\mathbf{a} \in \mathcal{A}} \hat{\mathbf{Q}}_{N-1}(\mathbf{s}'_{i+1}, \mathbf{a}) \rangle\}_{i=1}^L$$

Use the regression algorithm on TS to build $\hat{Q}_N(s, a)$ until Stopping condition

- Stopping condition:
 - Fixed number of iterations
 - When the **distance** between \hat{Q}_N and \hat{Q}_{N-1} drops below a **threshold**