

De l'atome à la puce

Devoir surveillé de rattrapage

Durée : 2 heures Calculatrices autorisées (tous types)

Les exercices sont indépendants Vous devez expliquer le détail de votre raisonnement. Un résultat seul ne suffit pas.

Les données utiles :

Soit h la constante de Planck : h = 6,626. 10^{-34} J.s Soit ϵ_0 la permittivité du vide. ϵ_0 = 8,854. 10^{-12} F.m Soit G la constante gravitationnelle : G = 6,674 . 10^{-11} m³.kg⁻¹.s⁻² (ou N.m².kg⁻²) On a aussi $1/(4\pi\epsilon_0)$ = 8,9. 10^9 N.m².C⁻² c = 3. 10^8 m.s⁻¹ (vitesse de la lumière) Le "gap" du silicium est E_g = 1,12 eV à 25°C On prendra la charge élémentaire e = 1,6. 10^{-19} C k = 1,38. 10^{-23} J.K⁻¹ Dans le silicium, μ_p = 0,04 m².V⁻¹.s⁻¹ et μ_e = 0,14 m².V⁻¹.s⁻¹

A. Le modèle de Bohr.

Soit un électron de masse m_e, un noyau de masse m_n,

Retrouvez, selon l'hypothèse de Bohr, la relation liant l'énergie totale de l'électron de l'atome d'hydrogène au "nombre quantique principal" n.

- a. Faites le bilan des forces s'appliquant sur l'électron tournant à une distance r_e et une vitesse v_e autour du noyau.
 - d. A l'équilibre, exprimez r_e en fonction de e, m_e et v_e.
- c. Exprimez l'énergie cinétique E_c de l'électron en fonction de e et r_e . Exprimez l'énergie potentielle E_p de l'électron dans le champ électrique exercé par le noyau en fonction de e et r_e .
- d. Ecrivez la relation de De Broglie associant quantité de mouvement et longueur d'onde.

e. En appliquant l'hypothèse de Bohr, exprimez le rayon r_n de l'orbite n de l'électron en fonction de n et m_e (et des autres constantes fondamentales).

Application numérique :

Lors de la relaxation, il y a émission d'une radiation, d'énergie hy (relaxation radiative).

Soit v la fréquence de la radiation

Calculer la longueur d'onde correspondant au passage de l'électron :

- a- de l'état n=2 à l'état fondamental
- b- du troisième état excité au 1er état excité

B. Dopage et conductivité du silicium.

Le silicium est, non dopé, un semi-conducteur intrinsèque. On négligera la présence d'éventuelles impuretés avant dopage. Sa conductivité intrinsèque est $\sigma_i = 2,5 \cdot 10^{-4} \text{ S.m}^{-1}$.

- a. Ce silicium est dopé par des atomes d'azote.
- b. Calculer la concentration (n ou p selon le cas) d'atomes de dopant à introduire dans le Si pour qu'il possède une conductivité de 530 S.m⁻¹.
- c. Vérifier l'approximation faite en b.
- d. Calculer le % d'atomes de dopant par rapport au nombre d'atomes de Si, sachant qu'il y a 4,99.10²² atomes de Si par cm³.
- e. Faire le schéma énergétique des bandes de valence, interdite et de conduction, en faisant apparaître E_V , E_C , E_{Fi} , E_g . On considèrera, pour le Si intrinsèque, qu'il y a autant de porteurs de charges e (électrons) que h (trous) et donc que le niveau de Fermi est situé au milieu de la bande interdite.
- f. Rappeler les expressions des concentrations en électrons (n) et en trous (p) dans chacune des bandes.
- g. Calculer la variation de l'énergie de Fermi pour le silicium de la question b., par rapport au silicium intrinsèque, pour une température de 25°C.
- h. Sur un nouveau schéma, positionner le niveau de Fermi E_{Fn} (respecter l'échelle).

C. Diffusion des charges dans un semiconducteurs

a. Rappeler la loi régissant la diffusion (Fick générale, puis appliquée aux charges)

On considère une zone d'un semi-conducteur de type n éclairée (en x = 0), tandis que le reste du même semi-conducteur est dans le noir complet. L'énergie qu'amène l'éclairage permet la génération de paires électrons-trous.

On prend $n = 1.10^{18}$ cm⁻³ et ni = 1,4.10¹⁰ cm⁻³. L'éclairage amène localement (en x = 0) 10^6 cm⁻³ trous.

- b. A quoi est égal p dans le noir ? (pour $x=\infty$) ?
- c. A quoi est égal p(x=0) sous l'éclairage?
- d. Rappeler la relation liant p(x) à p(x=0), x et L_p , longueur de diffusion des trous dans le silicium.
- e. Posez l'application numérique permettant de calculer la longueur de diffusion des trous dans ce matériau, sachant que la concentration de trous est égale à $p(x=5 \mu m) = p(x=\infty) + 100 \text{ cm}^{-3}$.

D. Procédés de lithographie

- a. Rappelez le procédé général de gravure par lithographie (photorésist, illumination, lift-off, évaporation, épitaxie, etc.)
- b. Décrivez, étape par étape (avec des schémas clairs), la gravure d'un transistor bipolaire npn. Précisez les matériaux utilisés.
- c. Décrivez, étape par étape (avec des schémas clairs), la gravure d'un transistor unipolaire nMOS. Précisez les matériaux utilisés.

E. Transistor unipolaire

Expliciter le fonctionnement d'un transistor nMOS à enrichissement. Utilisez tous les schémas que vous jugerez utile d'utiliser.