Programming Assignment 2 Submitted by: Tushar Bansal (tb34826)

1. PSEUDO CODE:

findMinimumStudentCost(start, destination):

for each student in students: minimum cost of student ← infinity	O(V)
minimum cost of start ← 0	O(1)
build the min-Heap ← students	O(V)
while min-Heap is $\neq \phi$: current student \leftarrow extract minimum from min-Heap	O(V) O(log V)
if current student == destination: return min. cost of destination	O(1)
for each neighbor of current student: O(E) new cost ← min. cost of current + price from current to neighbor	
if new cost < min. cost of neighbor: neighbor's key in min-Heap ← new cost min. cost of neighbor ← new cost	O(1) O(log V) O(1)

return -1 // If the destination is not reachable from start

DIJKSTRA'S ALGORITHM COMPLEXITY (also check the red part above)

- With values stored in min-heap size V
- Initialization of costs for students takes O(V)
- Initializing Heap takes O(V)
- EXTRACT-MIN and DECREASE-KEY take O(log V)
- While loop runs for O(V)
- Each doing EXTRACT-MIN, so O(V log V) overall
- For loop runs O(E) times and if statement contains changing KEY which is O(log V), so O(E log V) overall
- Overall running time O((V+E) log V)
- Since connected graph V = O(E), so O(E lg V)

2. PSEUDO CODE:

findMinimumClassCost():

total cost \leftarrow 0

for each student in students: minimum cost of student ← infinity	O(V)
start = first student in students minimum cost of start ← 0	O(1) O(1)
build the min-Heap ← students	O(V)
while min-Heap $\neq \phi$: current student \leftarrow extract minimum from min-Heap	O(V) O(log V)
totalCost += min. cost of current student	
for each neighbor of current student: price ← price from current to neighbor	O(E) O(1)
if neighbor ϵ min-Heap and price < min. cost of neighbor: neighbor's key in min-Heap \leftarrow price	O(1) O(log V)

min. cost of neighbor ← price

O(1)

return total cost

PRIM'S ALGORITHM COMPLEXITY (also check the red part above)

- With values stored in min-heap size V
- Initialization of costs for students takes O(V)
- Initialization of first student and its cost takes O(1)
- Initializing Heap takes O(V)
- EXTRACT-MIN and DECREASE-KEY take O(log V)
- While loop runs O(V)
- Each doing EXTRACT-MIN, so O(V log V) overall
- For loop runs O(E) times and if statement contains changing KEY which is O(log V), so O(E log V) overall
- In the if statement, to check if the neighbor belongs to min-heap, there is a Hash-Map of indices in the Min-Heap which makes the return equal to O(1)
- Overall running time O((V+E) log V)
- Since connected graph V = O(E), so O(E lg V)