Types and λ -calculus

Problem Sheet 2

Questions 1, 2 6 and 7 will be marked.

- * 1. Write these terms using the minimum number of parentheses and λ , according to our conventions.
 - (a) $(\lambda y.((y y)(zz)))$
 - (b) $(\lambda y.(((y y) y) y))$
 - (c) $((SZ)(\lambda y.(\lambda z.(z(Sy)))))$
- * 2. Write the term $(\lambda xyz.xy(xz))(\lambda xy.x)$ with all the parentheses and λ , that we will usually omit, tediously put back in.
- * 3. List the all the subterms of the following terms (don't bother listing the same subterm more than once even it occurs several times):
 - (a) The 3 distinct subterms of $\lambda x. xx$
 - (b) The 6 distinct subterms of $(\lambda x. xx)(\lambda y. y)$
 - (c) The 8 distinct subterms of $\lambda x yz. xy(yx)$
 - (d) The 13 distinct subterms of fix $(\lambda x y)$ if z y y (x (pred y))
- * 4. Each of the following has two free variables, what are they in each case?
 - (a) $\lambda xy. \lambda u. uvxyz$
 - (b) $\lambda x y. z(\lambda u. uv x y)$
 - (c) $\lambda wx.z(\lambda u.uvwx)$
 - (d) $\lambda vw. z(\lambda z. uvvw)$
 - (e) $\lambda y x. z(\lambda u. uwy x)$

- * 5. Which of the following pairs of strings are α -equivalent (and therefore represent the same term):
 - (a) $\lambda x. xy$ and $\lambda z. zy$
 - (b) $\lambda x. xy$ and $\lambda z. zx$
 - (c) ifz x (S x) (pred x) and ifz y (S y) (pred y)
 - (d) $\lambda xy.xy$ and $\lambda xy.yx$
 - (e) fix $(\lambda x.(\lambda y.xy)(Sx))$ and fix $(\lambda y.(\lambda x.yx)(Sy))$
- * 6. Perform the following substitutions:
 - (a) (ifz x (S x) Z)[2/x]
 - (b) 2[1/x]
 - (c) $(\lambda x.(\lambda y.xz)z)[(\lambda z.z)/z]$
 - (d) $(\lambda x. yx)[yz/x]$
 - (e) $(\lambda x. yz)[yy/z]$
 - (f) $(\lambda y.xy)[yx/x]$
- ** 7. Complete the following partial proof of the following statement, by filling out (a), (b) (c) and (d). This proof is a particularly good test of how carefully you are keeping track of the proof state.

Suppose *P* and *Q* are terms, *x* and *y* are variables. If $x \neq y$ and $x \notin FV(Q)$ then for all terms *M*:

$$M[P/x][Q/y] = M[Q/y][P[Q/y]/x]$$

(which tells us how to reorder substitutions in general).

Proof. Suppose *P* and *Q* are terms. Suppose *x* and *y* are variables. The rest of the proof is by induction on $M \in \Lambda$.

• In case M is some variable z, we argue as follows. Assume $x \neq y$ and $x \neq FV(Q)$. Our goal is to show:

$$z[P/x][Q/y] = z[Q/y][P[Q/y]/x]$$

Now, either z = x, z = y or z is neither x nor y. We proceed by a case analysis on this fact:

- Suppose z = x. By our assumption, it follows that $z \neq y$. Then, by definition of substitution, z[P/x][Q/y] = P[Q/y] and

$$z[Q/y][P[Q/y]/x] = z[P[Q/y]/x] = P[Q/y]$$

Hence, the desired equality follows.

- Suppose z = y. (a)
- Suppose $z \neq x$ and $z \neq y$. Then z[P/x][Q/y] = z on the left side of the goal and also z[Q/y][P[Q/y]/x] = z on the right side, so the result follows.
- (b)
- In case M is some application N_1N_2 we argue as follows. Assume $x \neq y$ and $x \neq FV(Q)$. Additionally, assume the induction hypothesis:

(IH1) if
$$x \neq y$$
 and $x \neq FV(Q)$ then $N_1[P/x][Q/y] = N_1[Q/y][P[Q/y]/x]$

(IH2) if
$$x \neq y$$
 and $x \neq FV(Q)$ then $N_2[P/x][Q/y] = N_2[Q/y][P[Q/y]/x]$

Our goal is to show that:

$$(N_1N_2)[P/x][Q/y] = (N_1N_2)[Q/y][P[Q/y]/x]$$

(c)

• In case M is of shape $\lambda z.N$, we argue as follows. We can assume by the bound variable convention that z is different from any variable in scope, so $z \neq x$ and $z \neq y$ and $z \notin FV(P)$ and $z \notin FV(Q)$. (d)