## Ingénieur Électronique et Logiciel



#### Hardware - Electronique

- √ Conception de schémas électriques, routage, simulation
- √ Filtrage analogique actif et passif, Matlab

#### Electronique numérique

- ✓ Microcontrôleurs : programmation en C et Assembleur sur Keil-uVision
- ✓ Logique programmable : technologie FPGA, description VHDL
- √ Systèmes sur puce : SoC, SoC-FPGA, SoC-IP

# Domaines de compétences

#### Informatique

- ✓ Programmation bas-niveau : microcontrôleurs, FreeRTOS
- √ Informatique industrielle : traitement d'image, création d'interfaces graphiques
- √ Développement jeux-vidéos

#### Ingénierie système

- √ Rédaction de cahier des charges
- √ Etudes de faisabilité

## Langages Outils Normes

#### Langages

√ C, C++, Python, Java, Assembleur

#### Outils

- $\checkmark$  Collaboratifs : Git, Jira, Confluence, Teams
- ✓ IDEs: VSCode, STM32CubeIDE, Eclipse
- ✓ Bibliothèques : OpenCV, PyQt5, NumPy, SFML, Matplotlib, RealSense
- ✓ Modélisation : OrCAD PSpice, Visio, Blender, draw.io

#### **Normes**

✓ ISO7816 (smart-cards), ISO12233 (traitement d'image)

## Secteurs d'activités

Systèmes d'identification et de sécurité Systèmes d'acquisition automatisés

Smart-Cards

#### **Formation**

#### Ingénieur électronicien ENSEA

√ Année d'obtention du diplôme : 2023

√ Spécialités : microélectronique et numérique



### Langues

Anglais : bilingue (915/990 à l'examen TOEIC)

Français: langue maternelle

Description

**Hardware** 

**Electronique** 

Informatique





#### **Projet ALIX**

## Informations projet

- √ ALIX : Augmented Luggage Identity eXperience
- √ Partenariat Air France
- ✓ Système multi-caméras avec éclairage LED synchronisé
- √ Aide à retrouver les bagages perdus sans étiquette
  - Acquisition du bagage en temps réel
  - ▷ Envoi des images dans la base de données
  - ⊳ Appairage dans le backend grâce à l'I.A

#### Ma contribution

- √ Rôle : ingénieur apprenti
- ✓ Pilote industriel : Jan. 2021 à Jan. 2022 (2 ans)
- ✓ Industrialisation : Jan. 2022 à Juil. 2023 (7 mois)
- √ Système d'acquisition
- ✓ Banc industriel de calibration des caméras

## ✓ N

Tâches

- √ Mise en place de la solution d'éclairage
  - ▷ Recherche de matériel existant

  - > Validation par mesure de la fréquence des flashs
  - ▷ Analyse du mode de fonctionnement sécuritaire

  - Déploiement du firmware sur les drivers
- √ Création des schémas de connexion des signaux du système
- √ Estimation précise des besoins énergétiques

#### Outils

- √ LTSpice
- √ Oscilloscopes (Lecroy)
- ✓ Luxmètre
- √ Logiciel de visualisation de PCB
- √ GBF, alimentations électriques
- √ Logiciel de dessin Visio
- √ STM32CubeProgrammer

#### Tâches

- √ Recherche et test du capteur détecteur de bagages
- √ Modélisation 3D du système d'acquisition
  - Simulation des champs vision caméras
  - ▶ Réduction de la longueur du système
  - ⊳ Réduction des reflets sur l'image
- √ Conversion de code Python vers C++
- ✓ Traitement d'image : optimisation du SNR des caméras
- √ Réalisation d'un banc industriel de calibration des caméras
  - ▷ Intégration d'algorithmes de mesure de netteté (MTF)
  - ▷ Intégration de l'algorithme de balance des blancs
  - Développement de la détection automatique des mires
  - ▷ Création des requètes HTTP associées

### Environnement, normes et outils

- √ ARM / Linux Debian
- √ Blender
- √ Norme ISO 12233
- √ OpenCV pour C++
- √ VSCode, SSH, SVN, CMake
- √ Compilation croisée (schroot)
- ✓ ArUco
- √ cpp-httplib

#### Tâches

- √ Modification du cahier des charges pour le pilote industriel
- √ Conception du banc industriel de calibration caméra
  - ▷ Rédaction du cahier des charges
  - ⊳ Planification des tâches
  - ▷ Diagramme d'interfaces systèmes IDEMIA et client
  - ▷ Rédaction du manuel d'utilisation client
  - ▷ Soutenance du projet devant IDEMIA et mon école

#### Outils

- √ Word, Excel
- √ Diagramme de Gantt
- √ Logiciel de schématique draw.io

## **Projet**

Description

Informatique





### Ingénieur responsable du test électrique des produits biométriques

#### Informations

- ✓ Site de Buchelay (78)
- √ Secteur des cartes à puces
- √ Environnement salle blanche
- √ Test électrique
  - ▷ Vérification finale de conformité avant envoi au client
  - ⊳ Système industriel à grande capacité de production

#### Ma contribution

- √ Jan. 2024 à aujourd'hui (5 mois)
- ✓ Automatisation de l'analyse de la qualité
- ✓ Documentation
- ✓ Amélioration du positionnement
- √ Support en production

#### Tâches

- ✓ Développement intégral d'un logiciel d'analyse de la qualité
  - Analyse des informations contenues dans les logfiles de la machine de test électrique
  - ▷ Algorithmes de parsing pour différents formats
  - ▷ Algorithmes de visualisation des données
  - ▷ Refactorisation en bibliothèque orientée objet (OOP)
  - ▷ Interface utilisateur graphique et ergonomique
  - Documentations utilisateur et développeur
- √ Amélioration de programmes de reconnaissance visuelle

#### **Formations**

- √ Logiciel de reconnaissance visuelle des smart-cards
- √ Bases de la cybersecurité des smart-cards

#### Environnement, normes et outils

- √ Norme ISO 7816
- ✓ Python 3.12
- √ NumPy
- √ Matplotlib
- √ PyQt5

#### Tâches

- √ Résolution de panne complexe empêchant la production
  - ▷ Rédaction d'un plan d'action pour la résolution
  - ▷ Mise en oeuvre de mesures préventives
  - Documentation du procédé établi
- ✓ Apprentissage du fonctionnement de la machine
- ✓ Supervision lors du lancement d'un nouveau produit
- √ Fiabilisation du procédé de positionnement
  - Documentation du fonctionnement du positionnement
  - ▷ Réunions de travail avec différents départements
- ✓ Documentation à destination des opérateurs
  - ⊳ Guides de dépannage

#### Outils

- √ Word, Excel
- √ Logiciel de reconnaissance visuelle des produits
- √ Logiciel de test électrique
- √ Logiciel de dessin draw.io
- √ Caméra à vision microscopique

## **Support**

SoC FPGA

Java



#### Réalisations

#### √ Création d'une IP soft utilisant le processeur MicroBlaze

- ✓ Défilement d'un message lumineux sur le contrôleur 7 segments
  - ▶ Polling
  - ▷ Interruptions
  - ▷ Création d'une IP hardware dédiée

#### Outils

- √ Vivado
- √ Vivado SDK
- √ ModelSim
- √ Langage C
- √ Langage VHDL

#### Réalisations

- √ Utilitaire permettant d'indiquer l'aéroport le plus proche du lieu cliqué sur une représentation du globe terrestre
  - ▷ Extraction de données à partir d'un fichier CSV
  - ▷ Représentation du globe terrestre en 3D en rotation sur lui-même
  - Algorithme de calcul de distance entre deux points de la surface terrestre

#### Outils

- √ Bibliothèque JavaFx
- √ Eclipse IDE
- √ Design pattern : singleton
- √ OOP

#### Réalisations

#### μContrôleur

**Electronique** 

**Numérique** 

- √ Chenillard à LEDs
  - ▷ Développement mixant langage C et Assembleur
  - Développement de fonctions liées à des interruptions
  - Définition de nouvelles interruptions
  - ▷ Développement par modification directe des registres

#### Outils

- √ Carte OpenX05R-C
- ✓ Logiciel Keil-µVision5
- √ Langage Assembleur
- √ Langage C

#### Minuteur réglable sur FPGA avec affichage LED

#### √ Fonctionnalités

- ⊳ Valeur maximale de départ : 99m99s
- > Affichage du décompte sur afficheur 7 segments
- √ Méthodologie
  - Décomposition en blocs fonctionnels

  - ⊳ Machine à état

#### Outils

- √ Carte Basys3 (Xilinx)
- √ Langage VHDL
- √ Logiciel Vivado
- √ Tableaux de Karnaugh

## •

**Electronique** 

**Analogique** 



#### Voiture télécommandée

- √ Fonctionnalités
  - ▷ Avancer, reculer, tourner
- √ Méthodologie
  - ▷ Analyse fonctionnelle à partir du cahier des charges
  - Décomposition et schématisation des différents blocs fonctionnels

  - ⊳ Réalisation régulière de comptes-rendus

#### Outils

- √ LTSpice
- √ Oscilloscopes (Tektronix)
- √ Générateurs de puissance
- √ GBF
- √ Plaque d'essai

#### Matériel disponible

- √ Motoréducteurs
- ✓ Pont en H
- √ Carte Arduino
- √ Kit de communication 433MHz
- √ Matériel de laboratoire