Paramètre	Définition	Type	Commentaires
x_min	Limite gauche du domaine	double	Les valeurs négatives sont admises
x_max	Limite droite		
y_min	Limite du bas		
y_max	Limite du haut		
N	Nombre de mailles suivant l'horizontale	Int	
М	Nombre de mailles suivant la verticale	Int	Nombre total de mailles = (N+2)*(M+2) en incluant la couche de mailles fantômes.
С	Vitesse de la lumière	double > 0	
а	Constante radiative	double > 0	$E_r = aT_r^4$ pour un corps noir à l'équilibre thermodynamique
C_v	Capacité thermique du domaine	double > 0	
CFL	Condition de stabilité du modèle	0 < double < 1	dt = CFL * dx/c. En pratique, il faut prendre $CFL <= 0.5$ pour éviter des NaN.
precision	Précision sur les résultats de l'étape 1	double > 0	Précision = 1e-6 pour la majorité des cas
t_0	Temps initial	double >= 0	
t_f	Temps final	double > 0	
			Ecrire $crenau(pos_x,pos_y,h1,h2)$ - sans espace - pour placer un créneau de hauteur $h2$ situe en (pos_x,pos_y) . La valeur de la densité en dehors du créneau est $h1$.
sigma_a	Opacité d'absorption	string $\sigma_a(\rho,T)$	Juste une fonction de rho et T
sigma_c	Opacité de scattering	string $\sigma_c(\rho,T)$	
E_0	Énergie des photons initiale	string $E_0(t_0, x, y)$	
F_0_x	Flux initial (abscisse)	string $F_0(t_0, x, y)$	Composante x du vecteur F_0
F_0_y	Flux initial (ordonné)	0 (0, 7, 7, 7	Composante y du vecteur F 0
т_0	Température initiale	string $T_0(t_0, x, y)$	
E_I	Énergie imposée sur l'extrémité gauche du domaine	string $E_l(t,y)$	Une fonction de t et de y Ecrire " $neumann$ " pour avoir des conditions de sortie libre dans les mailles fantômes $E_l[j] = E[j]$ suivant la verticale. Ecrite " $ponctuel(start, end)$ " – sans espace - pour placer une source ponctuelle ($perturbation\ sinuso\"idale\ d'amplitude\ 5\ et\ de\ fr\'equence\ 500$) commençant à $start$ et se terminant à end . Si $start = end$, la source se trouve dans une seule maille.

F_I_x		string E (t a)	Ecrire "neumann" pour avoir des sorties libre
		string $F_l(t, y)$	Ecrire "neumann" pour avoir des sorties libre
F_l_y T_l		string E (t a)	Ecrire "neumann" pour avoir des sorties libre
	Énergie imposée sur	string $F_l(t, y)$	
E_r	l'extrémité droite du	string $E_r(t, y)$	Une fonction de t et de y
	domaine		Estiro "maumann" nour $F[i] - F[i]$ suivant
	uomame		Ecrire " $neumann$ " pour $E_r[j] = E[j]$ suivant la verticale
			la verticale
			Ecrire "ponctuel(start, end)" pour placer
			une source ponctuelle (sans espace)
F_r_x		string $F_r(t, y)$	
F_r_y		string I _r (t, y)	
T_r		string $F_r(t, y)$	
 E_u	en haut	string $E_u(t,x)$	Une fonction de t et de x
L_u	Cirilaut	$L_{u}(\iota,x)$	one fonction de t et de x
			Ecrire " $neumann$ " pour $E_u[i] = E[i]$ suivant
			l'horizontale
			1 Horizontaic
			Ecrire "ponctuel(start, end)" pour placer
			une source ponctuelle (sans espace)
F_u_x			
F_u_y			
T_u			
E_d	en bas	string $E_d(t,x)$	Une fonction de t et de x
- - -		$= u(\cdot, \cdot, \cdot)$	
			Ecrire " $neumann$ " pour $E_d[i] = E[i]$ suivant
			l'horizontale
			Ecrire "ponctuel(start, end)" pour placer
			une source ponctuelle (éviter les espace)
F_d_x			
F_d_y			
_T_d			
E_exact	Solution exacte	string	Paramètre facultatif
		E(t,x,y)	
F_exact_x		string	Paramètre facultatif
		F(t,x,y)	
F_exact_y			Paramètre facultatif
T_exact		string	Paramètre facultatif
. (01		T(t,x,y)	
export_file	Fichier dans lequel	string	Chemin d'accès du fichier à partir du
	sont écrites toutes		répertoire racine
	les données (soit au		
	format csv ou au		
write mede	format binaire) Mode d'écriture dans	ctring	Ecrito "annand" nour sigutor dans la fichiar
write_mode	le fichier	string	Ecrite "append" pour ajouter dans le fichier
			Ecrite " <i>truncate</i> " pour remettre le fichier à 0 avant d'écrire.
simu count	d'exportation Nombre de	Int	Paramètre facultatif
simu_count		IIIC	rarametre racuitatii
	simulations à faire		