Um avião a jato emprega um sistema de monitoração da turbina com os valores de rotação (rpm), pressão (N/m²) e temperatura (°C). Há sensores de rotação, pressão e temperatura; conversor A/D para cada sensor; conversor D/A e um atuador.

Um avião a jato emprega um sistema de monitoração da turbina com os valores de *rotação* (*rpm*), *pressão* (N/m²) e *temperatura* (°C). Sintetize um circuito combinatório que acende no painel uma luz de advertência quando a temperatura ultrapassar 93,3 °C e, a pressão for superior a 1,33 N/m² ou a rotação for inferior a 4800 rpm.

Quando:

a velocidade for \geq 4800 rpm \rightarrow RPM=0 a pressão for < 1,33 N/m² \rightarrow P=0 a temperatura for < 93,3 °C \rightarrow T=0

Definição e atribuição dos valores para as variáveis Booleanas

Um avião a jato emprega um sistema de monitoração da turbina com os valores de *rotação* (*rpm*), *pressão* (N/m²) e *temperatura* (°C). Sintetize um circuito combinatório que acende no painel uma luz de advertência quando a temperatura ultrapassar 93,3 °C e, a pressão for superior a 1,33 N/m² ou a rotação for inferior a 4800 rpm. (Obs: as saídas dos sensores fornecem uma tensão compatível com uma tecnologia digital (família) Quando:

a velocidade for ≥ 4800 rpm → RPM=0

a pressão for $< 1,33 \text{ N/m}^2 \rightarrow \text{P=0}$

a temperatura for $< 93,3 \, ^{\circ}\text{C} \rightarrow \text{T=0}$

Variável Booleana de saída: W = 1 luz acesa e W=0 luz apagada

Um avião a jato emprega um sistema de monitoração da turbina com os valores de *rotação* (*rpm*), *pressão* (N/m²) e *temperatura* (°C). Sintetize um circuito combinatório que acende no painel uma luz de advertência quando a temperatura ultrapassar 93,3 °C e, a pressão for superior a 1,33 N/m² ou a rotação for inferior a 4800 rpm.

Quando:

a velocidade for \geq 4800 rpm \Rightarrow RPM=0 a pressão for < 1,33 N/m² \Rightarrow P=0 a temperatura for < 93,3 °C \Rightarrow T=0

Tabela Verdade

RPM	Р	Т	W
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Tabela Verdade

RPM,P e T → são variáveis booleanas de entrada.

Função canônica SOP

W=RPM' P T + RPM P' T + RPM P T

Mintermo RPM P' T → P' é um

literal → é a variável

ou o seu complemento

A função W tem 9 literais

RPM	Р	Т	W
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Função canônica POS

Tabela Verdade

RPM, P e T → são variáveis booleanas de entrada.

RPM	Р	Т	W
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

W tem 15 literais

Operadores básicos:

Portas básicas:

- a) Função AND
 IF (∀Ai=1, onde 1≤ i ≤ N)
 então F=1
 caso contrário F=0
- b) Função OR IF (∃Ai=1, onde 1≤ i ≤ N) então F=1 caso contrário F=0
- c) Função NOT
 IF A=0
 então F=1
 caso contrário F=0

OPERADORES LÓGICOS & PORTAS & CIRCUITOS MOS

TRANSISTORES MOS & PMOS e NMOS

Obs: Os transistores NMOS alimentado com Vcc e PMOS aterrado não é uma configuração usual (alimentação contrária que é usual)

Outros operadores: Portas Universais:

- a) Função NOR
 - IF (∃Ai=1, onde 1≤ i ≤ N) então F=0 caso contrário F=1
- b) Função NAND
 IF (∃Ai=0, onde 1≤ i ≤ N)
 então F=1
 caso contrário F=0

Portas universais: NAND e NOR

Transistor PMOS: satura (fecha chave) com zero no gate (entrada)
Transistor NMOS: satura (fecha chave) com hum no gate (entrada)

Transistor PMOS: corte (abre chave) com hum no gate (entrada) **Transistor NMOS**: corte (abre chave) com zero no gate (entrada)

Outros operadores: Portas de Equivalência:

a) Função XOR
 IF número de 1's em
 (A₁,...,A_N) for ímpar
 então F=1
 caso contrário F=0

b) Função XNOR
IF número de 1'S em
(A₁,...,A_N) for par
então F=1
caso contrário F=0

Operadores Símbolos

Para duas entradas:

- a) Função AND → F=A.B
- b) Função OR → F=A+B
- c) Função NOT → F=A'
- d) Função NAND → F=(A.B)'=A↑B
- e) Função NOR → F=(A+B)'=A↓B
- f) Função XOR → F=A⊕B
- g) Função XNOR → F=(A⊕B)'=AΘB

Outras Operações Lógicas

Existem 2^{2 n} funções Booleanas com n variáveis binárias. Para duas variáveis, existem 16 funções Booleanas e as funções E e OU são apenas duas dessas 16 funções

Zero
Um
E(x.y)
OU(x+y)
NOR $(x \downarrow y)$
$NAND(x\uparrow y)$
$XOR(x \oplus y)$
Equivalência (x⊕y)
Inibição (x/y)
Inibição (y/x)
Transferência
Transferência
Complemento y'

Complemento x'

Implicação x⊂y

Implicação x⊃y

Nome (x,y)

Expressão algébrica $F_0 = 0$ $F_1 = 1$ $F_2 = xy$ $F_3 = x + y$ $F_4 = (x + y)'$ $F_5 = (xy)'$ $F_6 = xy' + x'y$ $F_7 = xy + x'y'$ $F_8 = xy'$ $F_9 = x'y$ $F_{10} = x$ $F_{11} = y$ $F_{12} = y'$ $F_{13} = x'$ $F_{14} = x + y'$

```
Comentário
Constante 0
Constante 1
   x=y=1
    x ou y
   Não-OU
   Não E
x ou y, mas não ambos
 x igual a y
x mas não y
 y mas não x
       \mathbf{X}
    Não v
    Não x
 Se y, então x
 Se x, então y
```

 $F_{15} = x' + y$

Implementação: Função lógica

Função canônica SOP

Circuito lógico

W = RPM' P T + RPM P' T + RPM P T

Implementação: Função lógica

Função canônica POS

$$W = (RPM + P + T). (RPM + P + T').$$

 $(RPM + P' + T). (RPM' + P + T).$
 $(RPM' + P' + T)$

Fan-in →número de entradas de uma porta

fan-in=5 →AND

fan-in=3 \rightarrow OR

Fan-out → número de saídas de uma porta

Portas OR → fan-out=1

Circuito lógico

Minimização Lógica: Álgebra

Minimização da função -> não há um procedimento no uso da álgebra Booleana