Лабораторная работа № 4 «Численные методы решения задачи Коши»

Решить задачу Коши для обыкновенного дифференциального уравнения первого порядка на отрезке [a,b] с шагом h=0.1 методами, указанными в варианте задания. Оценить погрешность численного решения с шагом h=0.1 с помощью правила Рунге (для одношаговых методов). Сравнить полученные численные решения с точным решением u(x). В одной системе координат построить график функции u(x) и график одного из полученных численных решений.

По результатам лабораторной работы оформляется отчет. В содержание отчета должна быть включена следующая информация:

- Постановка задачи.
- Применяемые численные методы. Итерационный процесс метода Ньютона для реализации неявного метода трапеций.
- Правило Рунге оценки погрешности.
- Результаты вычислительного эксперимента, оформленные в виде таблицы 1. Структура таблицы 1:

i	X_i	Точное решение	Численное решение задачи Коши с шагом 0.1			
			Метод 1	Метод 2	Метод 3	
		$u(x_i)$	\mathcal{Y}_i	y_i	y_i	
0						
:						
N						
$\max_{i=0,N} \left u(x_i) - y_i \right $						
Оценка погрешности					_	
	по п	равилу Рунге				

- Выводы.
- Листинг программы с комментариями.

Варианты заданий

Номер варианта	Задача Коши	Точное решение	Методы
1	$u' = -u^2 + \frac{u}{x}, x \in [1, 2],$ $u(1) = \frac{2}{3}.$	$u(x) = \frac{2x}{x^2 + 2}$	Невный метод трапеций; явный метод Рунге-Кутты 3-го порядка; предиктор-корректорный метод Адамса 3-го порядка.
2	$u' = \frac{u^2 \ln x - u}{x}, x \in [1, 2],$ u(1) = 0.5.	$u(x) = \frac{1}{\ln x + x + 1}$	Невный метод трапеций; явный метод Рунге-Кутты 4-го порядка; предиктор-корректорный метод Адамса 4-го порядка.
3	$u' = \frac{u^2 + x^2 u}{x^3}, x \in [1, 2],$ u(1) = 0.5.	$u(x) = \frac{x^2}{1+x}$	Неявный метод трапеций; явный метод трапеций; предиктор- корректорный метод Адамса 2-го порядка.
4	$u' = x^{2}(u^{2} + 1), x \in [0,1],$ u(0) = 0.	$u(x) = tg\left(\frac{x^3}{3}\right)$	Неявный метод трапеций; явный метод средних прямоугольников; предиктор-корректорный метод Адамса 2-го порядка.

5	$u' = (x-u)^2 + 1, x \in [0,1],$ u(0) = 0.5.	$u(x) = \frac{x^2 - 2x - 1}{x - 2}$	Невный метод трапеций; явный метод Рунге-Кутты 3-го порядка; предиктор-корректорный метод Адамса 3-го порядка.
6	$u' = \frac{u \ln u}{x}, x \in [1, 2],$ $u(1) = e.$	$u(x) = e^x$	Невный метод трапеций; явный метод Рунге-Кутты 4-го порядка; предиктор-корректорный метод Адамса 4-го порядка.
7	$u' = \frac{u^2 + ux}{x^2}, x \in [1, 2],$ u(1) = 0.5.	$u(x) = \frac{x}{2 - \ln x}$	Неявный метод трапеций; явный метод трапеций; предиктор- корректорный метод Адамса 2-го порядка.
8	$u' = (u+x)^2, x \in [0,1],$ u(0) = 0.	$u(x) = \operatorname{tg} x - x$	Неявный метод трапеций; явный метод средних прямоугольников; предиктор-корректорный метод Адамса 2-го порядка.
9	$u' = \frac{1 - u^2}{2x}, x \in [2, 3],$ $u(2) = 2.$	$u(x) = \frac{3x+2}{3x-2}$	Невный метод трапеций; явный метод Рунге-Кутты 3-го порядка; предиктор-корректорный метод Адамса 3-го порядка.
10	$u' = \frac{u}{x} + \frac{x}{u}, x \in [1, 2],$ u(1) = 1.	$u(x) = x\sqrt{2\ln x + 1}$	Невный метод трапеций; явный метод Рунге-Кутты 4-го порядка; предиктор-корректорный метод Адамса 4-го порядка.