

Grundlagen der IT-Sicherheit VL 3: Kryptographie 3

Prof. Dr. Markus Dürmuth, Wintersemester 2024/25

Unsere heutigen Themen...

- Grundlagen der asymmetrischen Kryptographie
 - Das Problem mit dem Schlüsselaustausch
 - Asymmetrisches Setup
 - Probleme und Lösungen bei symmetrischer und asymmetrischer Kryptographie
- Algorithmen mit öffentlichem Schlüssel
- Beispiel RSA
- Diffie-Hellman

GRUNDLAGEN ASYMMETRISCHE KRYPTOGRAPHIE

Wiederholung: Konventionelles symmetrisches Setup

=> Derselbe Schlüssel wird für die Ver- und Entschlüsselung verwendet

Problem 1: Schlüsselaustausch

Symmetrische Kryptographie ist sicher und effizient, aber...

- → **Sicherer** Schlüsselaustausch (also **geheim** und **authentisch**) benötigt für sichere Kommunikation
- → Kommunikation zwischen unbekannten Parteien ist unmöglich

Problem 1: Schlüsselaustausch bei mehreren Parteien

Schlüsselaustausch zwischen mehreren Parteien mit symmetrischen Schlüsseln

• Quadratsicher Wachstum: n Parteien: $\frac{n^2-n}{2}$ Schlüssel nötig

Lösung 1: Asymmetrische Schlüssel

- Lösung: Zwei verschiedene Arten von Schlüsseln
 - Öffentlicher Schlüssel (Public Key) pk: Ermöglicht Verschlüsselung, jedoch keine Entschlüsselung
 - Privater / Geheimer Schlüssel (private / secret key) sk: Nur für die Entschlüsselung verwendet
 - Ableitung des privaten vom öffentlichen Schlüssel ist schwer
- Vergleich: Briefkasten
 - Einwerfen leicht
 - Rausholen (und Lesen) schwer(er)

Asymmetrische Verschlüsselung

=> Verschiedene Schlüssel werden für die Ver- und Entschlüsselung verwendet

Schlüsselaustausch mit Öffentlichen Schlüsseln I

Asymmetrische Chiffre

pk: Public Key von Bob

sk: Private Key von Bob

E(pk,·): Encryption (Verschlüsselung)

D(sk, ·): Decryption (Entschlüsselung)

Kein Austausch von geteiltem (geheimen) Schlüssel nötig (nur authentisch)

Leibniz Log 2 Universität Hannover

Schlüsselaustausch mit Öffentlichen Schlüsseln II

- Skalierbare Kommunikation mit mehreren Parteien
- Lineare Anzahl von Austauschen: n Parteien $\rightarrow n$ öffentliche Schlüssel
- Echte Systeme mit Millionen von Schlüsseln (z.B. PGP, HTTPS)

Problem 2: Performance

- Symmetrischer Kryptographie ist viel schneller als asymmetrische Krptographie
 - Symmetrische Algorithmen (z.B. AES) haben schnelle Implementierung in Hard- und Software
 - Moderne CPUs haben AES auf dem Chip integriert
- Asymmetrische Kryptographie ist langsamer
 - Komplexe mathematische Operationen
 - Keine schnellen Hardware-Implementierungen

Lösung 2: Hybride Systeme

- Ziel: Vorteile beider Systeme nutzen, sowohl die der symmetrischen und asymmetrischen Kryptographie.
 - Am häufigsten genutzt: Verkapselung der Schlüssel ("key encapsulation schemes"), wie z.B. von TLS verwendet

Beispiel:

- Bob erhält den öffentlichen Schlüssel von Alice
- 2. Bob generiert einen neuen symmetrischen Schlüssel
- 3. Bob verschlüsselt die Daten mit dem symmetrischen Schlüssel
- 4. Bob verschlüsselt den symmetrischen Schlüssel mit dem öffentlichen Schlüssel von Alice
- 5. Bob sendet beides an Alice
- 6. Alice entschlüsselt den symmetrischen Schlüssel mit ihrem privaten Schlüssel
- 7. Alice entschlüsselt die Daten mit dem entschlüsselten symmetrischen Schlüssel

l l Leibniz l o 2 Universität l o o 4 Hannover

Problem 3: Öffentliche Schlüssel als Identitäten

- Ziel: Öffentliche Schlüssel als Identitäten behandeln.
- Zwei Arten von Identitäten öffentlicher Schlüssel:
 - Reine Öffentliche Schlüssel als Identitäten nutzen (z.B. verwendet in BitCoin)
 - Öffentliche Schlüssel mit einem Namen verbinden (z.B. verwendet in TLS)
- Herausforderung: Identität überprüfen
 - BitCoin: Kein Problem, Anonymität ist bis zu einem gewissen Level gewünscht
 - TLS: Komplexes System zur Schlüsselverteilung ("Public Key Infrastructure")

Lösung 3: Public Key Infrastructures

- TLS Zertifikate verbinden einen Namen (z.B. <u>www.uni-hannover.de</u>) mit einem Öffentlichen Schlüssel
- Zertifizierungsstellen (Certificate Authorities) bestätigen die Authentizität dieser Verbindung mittels digitaler Signaturen
- Browser überprüfen die Signaturen der Zertifizierungsstellen und zeigen Nutzenden, dass die Verbindung sicher ist

Asymmetrische Verschlüsselung: Setup

- (sk, pk) := generateKeyPair (keysize)
 - Erzeuge ein Schlüsselpaar in der gewünschten Schlüsselgröße
 - sk muss geheim gehalten werden, wird verwendet um Daten zu entschlüsseln.
 - pk wird veröffentlicht und wird verwendet um Daten zu verschlüsseln.
- $c := E(pk_{bob}, m)$
 - Alice bekommt den öffentlichen Schlüssel von Bob
 - Alice verschlüsselt die Nachricht mit dem öffentlichen Schlüssel von Bob und dem Klartext als Eingabe
- $\blacksquare \quad m := D (sk_{bob}, c)$
 - Bob verwendet seinen geheimen Schlüssel
 - Bob entschlüsselt die Nachricht mit seinem geheimen Schlüssel und dem Chiffretext als Eingabe

Asymmetrische Verschlüsselung: Setup

Vor- und Nachteile asymmetrische Kryptographie

- Gute Skalierung: Jede/r erzeugt ein Schlüsselpaar, nicht n Schlüsselpaare für n Kommunikationsparteien
- Schlüsselaustausch braucht keine direkte oder geheime Kommunikation zwischen Alice und Bob
- Asymmetrische Kryptographie ist viel, viel langsamer
- Asymmetrische Kryptographie ist leichter angreifbar
 - Erfordert stärkere Annahmen

ALGORITHMEN MIT ÖFFENTLICHEM SCHLÜSSEL

Einwegfunktion mit Falltür (trapdoor one-way function)

- Einwegfunktion: F(x) = y mit
 - Bei gegebener Eingabe x ist es leicht, die Ausgabe y zu berechnen
 - Bei gegebener Ausgabe y ist es schwer, die Eingabe x zu berechnen
 - Bei gegebenem y und einem Geheimnis ist es leicht x zu berechnen

Einwegfunktion mit Falltür (trapdoor one-way function)

Einweg-Funktion ist Basis der Asymmetrie

- Verschlüsselung mit öffentlichem Schlüssel ≈ Berechnen von F
- Entschlüsselung mit privatem Schlüssel ≈ Invertieren mit Geheimnis
- Chiffretext cracken ≈ Berechnen ohne Geheimnis

Woher bekommen wir eine solche trapdoor one-way function?

=> Wir brauchen Mathematik ©

Modulare Arithmetik I

- Modulo Operation
 - Operator zur Bestimmung des Rests einer Division
 - Für zwei ganze Zahlen a und n (Modulo) gilt

$$a = b \mod n$$

wenn
$$a = b + k \cdot n$$

- (Manchmal auch $a \equiv b \mod n$, lies "kongruent")
- Modulare Arithmetik (Clock Arithmetik)
 - Arithmetik mit ganzen Zahlen unter einem bestimmten Modulo. Beispiele:

$$11 = 6 = 1 \mod 5$$

$$-3 + 4 = 2 \mod 5$$

$$\bullet \ 3 \cdot 5 = 0 \quad \mod 5$$

•
$$2^3 = 3 \mod 5$$

Modulare Arithmetik II

- Größter gemeinsamer Teiler: ggT(a, b) = c
 - Größte ganze Zahl c, die a und b ohne Rest teilt
 - Berechnung mit Faktorisierung oder euklidischem Algorithmus
 - Nummern a und b sind teilerfremd (co-prime), wenn ggT(a, b) = 1
- Modulares multiplikatives Inverses a⁻¹ von a:
 - $a \cdot a^{-1} = 1 \mod n$
 - Inverse f\u00fcr modulare Multiplikation
 - Berechnung mit dem erweiterten euklidischen Algorithmus
 - Inverse existiert nur, wenn a und n teilerfremd (co-prime) sind

Euklidischer Algorithmus

Geg: natürliche Zahlen a und b (oBdA $a \ge b$)

Ges: ggT(*a,b*),

$$(1) a = q_1 \cdot b + r_0$$

$$(2) b = q_2 \cdot r_0 + r_1$$

$$(3) r_0 = q_3 \cdot r_1 + r_2$$

... wiederholt bis Rest = 0

$$(4) r_1 = q_4(r_2) + 0$$

(Mehr in der Übung)

Ergebnis: r_n letzter Rest der nicht 0 ist

Modulare Arithmetik III

Eulersche Phi-Funktion $\boldsymbol{\varphi}(\boldsymbol{n})$:

- Zahl der zu n teilerfremden positiven natürlichen Zahlen kleiner gleich n
- Für Primzahl p:

$$\varphi(p) = (p-1)$$

Für zusammengesetzte Zahlen $\mathbf{n} = \mathbf{p} \cdot \mathbf{q}$ (mit p, q Primzahlen, $\mathbf{p} \neq \mathbf{q}$) $\boldsymbol{\varphi}(\boldsymbol{n}) = (\boldsymbol{p} - \mathbf{1}) \cdot (\boldsymbol{q} - \mathbf{1})$

Satz von Euler

• Für alle a,n mit ggT(a,n)=1:

$$a^{\varphi(n)} = 1 \mod n$$

"Schwere Probleme" I

"Falltür" um ein mathematisches Problem herum gebaut

- Problem ist schwer zu lösen doch leicht zu verifizieren (asymmetrisch)
- Kein schneller ("Polynomialzeit") Algorithmus zur Lösung bekannt
- Beispiele: Primfaktorzerlegung und diskreter Logarithmus

"Schwere Probleme" II

"Falltür" um ein mathematisches Problem herum gebaut

- Problem ist schwer zu lösen doch leicht zu verifizieren (asymmetrisch)
- Kein schneller ("Polynomialzeit") Algorithmus zur Lösung bekannt
- Beispiele: Primfaktorzerlegung und diskreter Logarithmus

Primfaktorzerlegung

Gegeben: Ganze Zahl n. Gesucht: die m Primfaktoren

$$n = p_1 \cdot p_2 \dots p_m \text{ mit } p_i \in \mathbf{p}$$

Beispiel: n = 4711. $\rightarrow p_1 = 7$, $p_2 = 673$

"Schwere Probleme" III

"Falltür" um ein mathematisches Problem herum gebaut

- Problem ist schwer zu lösen doch leicht zu verifizieren (asymmetrisch)
- Kein schneller ("Polynomialzeit") Algorithmus zur Lösung bekannt
- Beispiele: Primfaktorzerlegung und diskreter Logarithmus

Diskreter Logarithmus

Gegeben: Ganze Zahlen g, p, b. Gesucht: Ganze Zahl a, sodass gilt:

$$g^a = b \mod p$$

Beispiel: $2^a = 1 \mod 5 \rightarrow a = 4$

Asymmetrische Algorithmen

- RSA-Algorithmus (Verschlüsselung & Signierung)
 - Entwickelt von Rivest, Shamir und Adleman im Jahr 1978
 - Basiert auf der Schwierigkeit der ganzzahligen Faktorisierung
- Diffie-Hellman (DH) Schlüsselaustausch
 - Entwickelt von Diffie und Hellman im Jahr 1976
 - Basiert auf der Schwierigkeit, diskrete Logarithmen zu berechnen
- Elgamal-Schemata (Verschlüsselung & Signierung)
 - Entwickelt von Elgamal im Jahr 1985
 - Basiert auf der Schwierigkeit der Berechnung des diskreten Logarithmus

BEISPIEL RSA

Algorithmen mit öffentlichem Schlüssel

RSA

- Standardisierter Algorithmus für die Asymmetrische Kryptographie
 - Entwickelt von Rivest, Shamir und Adleman in 1978
 - Basiert auf der Schwierigkeit, große Zahlen zu faktorisieren

From left: Adi Shamir, Ron Rivest, and Len Adleman

(Textbook)-RSA

Schlüsselgenerierung

Wähle zufällige Primzahlen p und q und berechne $\mathbf{n} = \mathbf{p} \cdot \mathbf{q}$

Berechne die Eulerfunktion $\varphi(n) = (p-1) \cdot (q-1)$

Wähle einen zufälligen Verschlüsselungs-Schlüssel e mit $\mathbf{ggT}ig(\mathbf{e},oldsymbol{arphi}(oldsymbol{n})ig)=\mathbf{1}$

Berechne den Entschlüsselungs-Schlüssel $\mathbf{d} = \mathbf{e}^{-1} \mathbf{mod} \, \boldsymbol{\varphi}(n)$

Öffentlicher Schlüssel: pk = (e, n)

Privater Schlüssel: sk = (d, n)

(Textbook)-RSA

Verschlüsselung mit öffentlichem Schlüssel (e, n)

Verschlüssele die Nachricht m und erzeuge den Chiffre-Text $\mathbf{c} = m^e \mathbf{mod} \ n$

Entschlüsselung mit privatem Schlüssel (d, n)

Entschlüssele den Chiffre-Text c und erzeuge die Nachricht $\mathbf{m} = c^d \mod n$

Warum funktioniert RSA?

Sicherheit von RSA

- Hauptangriffsvektor gegen RSA:
 - Entschlüsselung des Chiffretextes $\mathbf{c} = m^e \mod n$
 - Schwierigkeit der Berechnung von Wurzeln in modularer Arithmetik
 - Ableitung des privaten Schlüssels $\mathbf{d} = \mathbf{e}^{-1} \mathbf{mod} \ oldsymbol{arphi}(n)$
 - Schwierigkeit der Berechnung von Primfaktoren aus n

$$(p-1)\cdot(q-1)$$

- Sicherheit hängt von Größe der Primzahlen ab!
 - Faktorisierung von Zahlen bis zu 1024 Bits machbar
 - Schlüssel mit 2048 und mehr Bits gelten als sicher

Sicherheit von RSA "aus dem Lehrbuch"

- Bisher beschrieben ist die "Lehrbuch"-Variante von RSA. Diese hat einige Probleme:
- Deterministisch
 - Hat keine Zufallskomponente
 - Ist semantisch unsicher
- Gibt Informationen über den Klartext preis
 - Anfällig für chosen-plaintext-Angriffe
- In der Praxis: Klartext vorbereiten vor der Anwendung der RSA-Permutation ("Preprocessing")
 - Zufälliges Auffüllen (Padding), Hash-Permutationen

PKCS #1 v1.5

- Eingabe muss auf richtige Länge gebracht werden:
- Klartext "auffüllen" (Padding) um die richtige Länge zu erhalten:

$$c = (00 \parallel 02 \parallel r \parallel m)^{e} \mod(n)$$
(r ist eine Zufallszahl)

Wichtig: Prüfen Sie das Padding bei der Entschlüsselung, um Fehler zu erkennen!

Angriffe auf die Implementierung

Weitere mögliche Schwachstellen:

- Timing und Leistung
 - Wie lange / wie viel Leistung um $m = c^d \mod n$ zu berechnen?
- Schlechte Zufälligkeit
 - p und q könnten nicht vollständig unabhängig erzeugt worden sein
 - Z.B.: Wenn $n = p \cdot q$ und $n' = p \cdot q'$

=> leicht zu brechen (!)

Schlechtes Padding / Malleability

Veraltete OpenSSL Version:

p schlecht gewählt

Eingebettete Systeme:

Nutzung kleiner Schlüssel

Implementieren Sie diese Algorithmen nicht selbst für den produktiven Einsatz!

Die Darstellung hier ist leicht vereinfacht.

Seitenkanäle sind schwer zu bekämpfen.

Wie relevant ist RSA in der Praxis?

JA!

HTTPS

- "Hypertext Transfer Protocol Secure"
- Heninger, Durumeric, Wunstrow, Halderman 2012;
 Durumeric, Wunstrow, Halderman 2013

- Methodik
 - Scannt den geamten IPv4-Raum auf Port 443
 - Lädt HTTPS-Zertifikate von Live-Hosts herunter

Open port	Handshake	RSA	DSA	ECDSA	GOST
28,900,000	12,800,000	5,600,000	6,000	8	200

Scan-Tools verfügbar unter zmap.io, Daten unter scans.io

SSH

- "Secure Shell"
- Heninger, Durumeric, Wunstrow, Halderman 2012;
 Bos, Halderman, Heninger, Moore, Naehrig, Wunstrow 2013
- Methodik:
 - Scannt den gesamten IPv4-Raum auf Port 22
 - Lädt Öffentliche Schlüssel und Signaturen der Hosts herunter
 - Diffie-Hellman-Schlüsselaustausch

Open port	Handshake	RSA	DSA	ECDSA	GOST
23,000,000	12,000,000	10,900,000	9,900,000	1,200,000	114

PGP

- "Pretty Good Privacy"
- Lenstra, Hughes, Augier, Bos, Kleinjung, Wachte
 2012
- Verschlüsselung und Signierung von Emails

Methodik:

- Depot ("key repository") enthält öffentliche PGP-Schlüssel und Signaturen
- Download der benötigten öffentlichen Schlüssel aus dem Depot

RSA keys	DSA keys	ElGamal Keys	
700,000	2,100,000	2,100,000	

DIFFIE-HELLMAN

Diffie Hellman

- Asymmetrischer Algorithmus für den sicheren Schlüsselaustausch
- Entwickelt von Diffie und Hellman 1976
 - (und damit älter als RSA)
- Grundlage: Schwierigkeit, diskrete Logarithmen zu berechnen
- Schlüsselaustausch:
 - Protokoll an dessen Ende beide einen Schlüssel haben
 - (Passiver) Angreifer lernt Schlüssel nicht

Japanese military bike courier

Modulare Arithmetik IV

Wdh: Diskreter Logarithmus

Gegeben: Ganze Zahlen g, p, b.

Gesucht: Ganze Zahl a, sodass gilt: $g^a = b \mod p$

Def Generator:

Gegeben p

- Ein Generator ist ein Wert $0 \le g < p$ so dass: für alle 0 < x < p gibt es ein a mit $g^a = x \mod p$
- Alternativ: $\{g^0, g^1, g^2, ..., g^{p-1}\} = Z_p^* = \{1, 2, ..., p-1\}$

Diffie Hellman

Initialisierung

Alice und Bob einigen sich auf eine Primzahl ${f p}$ und einen Generator ${m g}$.

Erzeugung der Geheimnisse

Alice wählt ein zufälliges $0 \le a < p$ und berechnet $A = g^a mod p$

Bob wählt ein zufälliges $0 \leq b < p$ und berechnet $B = g^b mod \ p$

Diffie Hellman

Schlüsselaustausch

Alice sendet A an Bob. Bob sendet B an Alice.

Alice berechnet den geteilten Schlüssel $k = B^a mod p$

Bob berechnet den geteilten Schlüssel $k = A^b mod p$

$$A := g^a \mod p$$

$$K_a = B^a \mod p$$

$$B:=g^b \mod p$$

$$K_b := A^b \mod p$$

Warum funktioniert Diffie-Hellman?

Sicherheit von Diffie-Hellman

- Hauptangriffsvektor gegen den Schlüsselaustausch:
 - Ermittlung des geteilten Geheimnisses $k = g^{ab} mod p$
 - lacksquare Schwierigkeit, aus $oldsymbol{g^a}$ und $oldsymbol{g^bmod}\,oldsymbol{p}$ den Wert $oldsymbol{g^{ab}}$ abzuleiten
 - Ableitung der geheimen Nummer $a = \log_{\mathbf{g}}(A) \mod p$
 - Schwierigkeit, diskrete Logarithmen zu berechnen

- Sicherheit hängt von der Größe von A und B ab!
 - Schwierigkeit ähnlich wie bei der Primzahlzerlegung
 - Schlüssel mit 2048 und mehr Bits gelten als sicher

Diffie-Hellman und Authentifizierung

- Diffie-Hellman bietet keine Authentifizierung!
 - Anfällig für aktive Man-In-The-Middle Angriffe

Dasselbe Problem gibt es für RSA: Wie kann man einem öffentlichen Schlüssel vertrauen?

Sicherheit der zugrundeliegenden "schweren Probleme"

- Sicherheit von Algorithmen mit symmetrischen Schlüsseln → Komplexität
 - Diffusion und Konfusion durch beteiligte Bit-Operationen
- Sicherheit von Algorithmen mit asymmetrischem Schlüssel → schwierige Probleme
 - Falltüreigenschaft basiert auf schwierigen mathematischen Problemen
 - Aktuell sind keine Polynomial-Zeit-Lösungen bekannt
- Große Frage: Werden diese mathematischen Probleme schwierig bleiben?
 - Fortschritte in der Quanteninformatik ...
 - Neuartige Polynomial-Zeit-Algorithmen ...
 - (Oder sogar P = NP?)

FRAGEN BIS HIERHER?