7.2 Trend methods

Holt's linear trend method

Holt (1957) extended simple exponential smoothing to allow the forecasting of data with a trend. This method involves a forecast equation and two smoothing equations (one for the level and one for the trend):

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level equation $\ell_t = \alpha y_t + (1-\alpha)(\ell_{t-1} + b_{t-1})$

Trend equation $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1},$

where ℓ_t denotes an estimate of the level of the series at time t, b_t denotes an estimate of the trend (slope) of the series at time t, α is the smoothing parameter for the level, $0 \le \alpha \le 1$, and β^* is the smoothing parameter for the trend, $0 \le \beta^* \le 1$. (We denote this as β^* instead of β for reasons that will be explained in Section 7.5.)

As with simple exponential smoothing, the level equation here shows that ℓ_t is a weighted average of observation y_t and the one-step-ahead training forecast for time t, here given by $\ell_{t-1} + b_{t-1}$. The trend equation shows that b_t is a weighted average of the estimated trend at time t based on $\ell_t - \ell_{t-1}$ and b_{t-1} , the previous estimate of the trend.

The forecast function is no longer flat but trending. The h-step-ahead forecast is equal to the last estimated level plus h times the last estimated trend value. Hence the forecasts are a linear function of h.

Example: Air Passengers

```
air <- window(ausair, start=1990)
fc <- holt(air, h=5)</pre>
```

In Table 7.2 we demonstrate the application of Holt's method to annual passenger numbers for Australian airlines. The smoothing parameters, α and β^* , and the initial values ℓ_0 and b_0 are estimated by minimising the SSE for the one-step training errors as in Section 7.1.

Table 7.2: Applying Holt's linear method with $\alpha=0.8321$ and $\beta^*=0.0001$ to Australian air passenger data (millions of passengers).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Year	Time	Observation	Level	Slope	Forecast
1989 0		t	y_t	ℓ_t	b_t	${\hat y}_{t t-1}$
1991 2 21.86 21.49 2.102 19.68 1992 3 23.89 23.84 2.102 23.59 1993 4 26.93 26.76 2.102 25.94 1994 5 26.89 27.22 2.102 28.86 1995 6 28.83 28.92 2.102 29.33 1996 7 30.08 30.24 2.102 31.02 1997 8 30.95 31.19 2.102 32.34 1998 9 30.19 30.71 2.101 33.29 1999 10 31.58 31.79 2.101 32.81 2000 11 32.58 32.80 2.101 33.89 2001 12 33.48 33.72 2.101 34.90 2002 13 39.02 38.48 2.101 40.58 2003 14 41.39 41.25 2.101 40.58 2004 15 41.60 41.89 2.101 43.35 2005 16 44.66	1989	0		15.57	2.102	
1992 3 23.89 23.84 2.102 23.59 1993 4 26.93 26.76 2.102 25.94 1994 5 26.89 27.22 2.102 28.86 1995 6 28.83 28.92 2.102 29.33 1996 7 30.08 30.24 2.102 31.02 1997 8 30.95 31.19 2.102 32.34 1998 9 30.19 30.71 2.101 33.29 1999 10 31.58 31.79 2.101 32.81 2000 11 32.58 32.80 2.101 33.89 2001 12 33.48 33.72 2.101 34.90 2002 13 39.02 38.48 2.101 35.82 2003 14 41.39 41.25 2.101 40.58 2004 15 41.60 41.89 2.101 43.35 2005 16 44.66 44.54 2.101 46.05 2007 18 48.73	1990	1	17.55	17.57	2.102	17.67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1991	2	21.86	21.49	2.102	19.68
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1992	3	23.89	23.84	2.102	23.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1993	4	26.93	26.76	2.102	25.94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1994	5	26.89	27.22	2.102	28.86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1995	6	28.83	28.92	2.102	29.33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1996	7	30.08	30.24	2.102	31.02
1999 10 31.58 31.79 2.101 32.81 2000 11 32.58 32.80 2.101 33.89 2001 12 33.48 33.72 2.101 34.90 2002 13 39.02 38.48 2.101 35.82 2003 14 41.39 41.25 2.101 40.58 2004 15 41.60 41.89 2.101 43.35 2005 16 44.66 44.54 2.101 44.00 2006 17 46.95 46.90 2.101 46.65 2007 18 48.73 48.78 2.101 49.00 2008 19 51.49 51.38 2.101 50.88 2009 20 50.03 50.61 2.101 53.49 2010 21 60.64 59.30 2.102 52.72 2011 22 63.36 63.03 2.102 65.13 2012 23 66.36 66.15	1997	8	30.95	31.19	2.102	32.34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1998	9	30.19	30.71	2.101	33.29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1999	10	31.58	31.79	2.101	32.81
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000	11	32.58	32.80	2.101	33.89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2001	12	33.48	33.72	2.101	34.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2002	13	39.02	38.48	2.101	35.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2003	14	41.39	41.25	2.101	40.58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2004	15	41.60	41.89	2.101	43.35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2005	16	44.66	44.54	2.101	44.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2006	17	46.95	46.90	2.101	46.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2007	18	48.73	48.78	2.101	49.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2008	19	51.49	51.38	2.101	50.88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2009	20	50.03	50.61	2.101	53.49
2012 23 66.36 66.15 2.102 65.13 2013 24 68.20 68.21 2.102 68.25 2014 25 68.12 68.49 2.102 70.31 2015 26 69.78 69.92 2.102 70.60 2016 27 72.60 72.50 2.102 72.02 h $\hat{y}_{t+h t}$ 1 74.60 2 76.70 3 78.80 4 80.91	2010	21	60.64	59.30	2.102	52.72
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2011	22	63.36	63.03	2.102	61.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2012	23	66.36	66.15	2.102	65.13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2013	24	68.20	68.21	2.102	68.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2014	25	68.12	68.49	2.102	70.31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2015	26	69.78	69.92	2.102	70.60
1 74.60 2 76.70 3 78.80 4 80.91	2016	27	72.60	72.50	2.102	72.02
1 74.60 2 76.70 3 78.80 4 80.91		h				$\hat{y}_{t+h t}$
3 78.80 4 80.91		1				
4 80.91		2				76.70
		3				78.80
5 83.01		4				80.91
		5				83.01

The very small value of β^* means that the slope hardly changes over time.

Damped trend methods

The forecasts generated by Holt's linear method display a constant trend (increasing or decreasing) indefinitely into the future. Empirical evidence indicates that these methods tend to over-forecast, especially for longer forecast horizons. Motivated by this observation, Gardner & McKenzie (1985) introduced a parameter that "dampens" the trend to a flat line some time in the future. Methods that include a damped trend have proven to be very successful, and are arguably the most popular individual methods when forecasts are required automatically for many series.

In conjunction with the smoothing parameters α and β^* (with values between 0 and 1 as in Holt's method), this method also includes a damping parameter $0 < \phi < 1$:

$$egin{aligned} \hat{y}_{t+h|t} &= \ell_t + (\phi + \phi^2 + \dots + \phi^h) b_t \ \ell_t &= lpha y_t + (1-lpha) (\ell_{t-1} + \phi b_{t-1}) \ b_t &= eta^* (\ell_t - \ell_{t-1}) + (1-eta^*) \phi b_{t-1}. \end{aligned}$$

If $\phi=1$, the method is identical to Holt's linear method. For values between 0 and 1, ϕ dampens the trend so that it approaches a constant some time in the future. In fact, the forecasts converge to $\ell_T+\phi b_T/(1-\phi)$ as $h\to\infty$ for any value $0<\phi<1$. This means that short-run forecasts are trended while long-run forecasts are constant.

In practice, ϕ is rarely less than 0.8 as the damping has a very strong effect for smaller values. Values of ϕ close to 1 will mean that a damped model is not able to be distinguished from a non-damped model. For these reasons, we usually restrict ϕ to a minimum of 0.8 and a maximum of 0.98.

Example: Air Passengers (continued)

Figure 7.3 shows the forecasts for years 2017–2031 generated from Holt's linear trend method and the damped trend method.

```
fc <- holt(air, h=15)
fc2 <- holt(air, damped=TRUE, phi = 0.9, h=15)
autoplot(air) +
  autolayer(fc, series="Holt's method", PI=FALSE) +
  autolayer(fc2, series="Damped Holt's method", PI=FALSE) +
  ggtitle("Forecasts from Holt's method") + xlab("Year") +
  ylab("Air passengers in Australia (millions)") +
  guides(colour=guide_legend(title="Forecast"))</pre>
```

Forecasts from Holt's method

Figure 7.3: Forecasting total annual passengers of air carriers registered in Australia (millions of passengers, 1990–2016). For the damped trend method, $\phi=0.90$.

We have set the damping parameter to a relatively low number $(\phi=0.90)$ to exaggerate the effect of damping for comparison. Usually, we would estimate ϕ along with the other parameters. We have also used a rather large forecast horizon (h=15) to highlight the difference between a damped trend and a linear trend. In practice, we would not normally want to forecast so many years ahead with only 27 years of data.

Example: Sheep in Asia

In this example, we compare the forecasting performance of the three exponential smoothing methods that we have considered so far in forecasting the sheep livestock population in Asia. The data spans the period 1961–2007 and is shown in Figure 7.4.

```
autoplot(livestock) +
  xlab("Year") + ylab("Livestock, sheep in Asia (millions)")
```


Figure 7.4: Annual sheep livestock numbers in Asia (in million head)

We will use time series cross-validation to compare the one-step forecast accuracy of the three methods.

```
e1 <- tsCV(livestock, ses, h=1)
e2 <- tsCV(livestock, holt, h=1)
e3 <- tsCV(livestock, holt, damped=TRUE, h=1)
# Compare MSE:
mean(e1^2, na.rm=TRUE)
#> [1] 178.3
mean(e2^2, na.rm=TRUE)
#> [1] 173.4
mean(e3^2, na.rm=TRUE)
#> [1] 162.6
# Compare MAE:
mean(abs(e1), na.rm=TRUE)
#> [1] 8.532
mean(abs(e2), na.rm=TRUE)
#> [1] 8.803
mean(abs(e3), na.rm=TRUE)
#> [1] 8.024
```

Damped Holt's method is best whether you compare MAE or MSE values. So we will proceed with using the damped Holt's method and apply it to the whole data set to get forecasts for future years.

```
fc <- holt(livestock, damped=TRUE)</pre>
# Estimated parameters:
fc[["model"]]
#> Damped Holt's method
#> Call:
   holt(y = livestock, damped = TRUE)
#>
     Smoothing parameters:
#>
#>
       alpha = 0.9999
       beta = 3e-04
#>
       phi = 0.9798
#>
#>
     Initial states:
#>
      1 = 223.35
#>
       b = 6.9046
#>
#>
     sigma: 12.84
#>
#>
    AIC AICC BIC
#> 427.6 429.7 438.7
```

The smoothing parameter for the slope is estimated to be essentially zero, indicating that the trend is not changing over time. The value of α is very close to one, showing that the level reacts strongly to each new observation.

```
autoplot(fc) +
xlab("Year") + ylab("Livestock, sheep in Asia (millions)")
```

Forecasts from Damped Holt's method

Figure 7.5: Forecasting livestock, sheep in Asia: comparing forecasting performance of nonseasonal method.

The resulting forecasts look sensible with increasing trend, and relatively wide prediction intervals reflecting the variation in the historical data. The prediction intervals are calculated using the methods described in Section 7.7.

In this example, the process of selecting a method was relatively easy as both MSE and MAE comparisons suggested the same method (damped Holt's). However, sometimes different accuracy measures will suggest different forecasting methods, and then a decision is required as to which forecasting method we prefer to use. As forecasting tasks can vary by many dimensions (length of forecast horizon, size of test set, forecast error measures, frequency of data, etc.), it is unlikely that one method will be better than all others for all forecasting scenarios. What we require from a forecasting method are consistently sensible forecasts, and these should be frequently evaluated against the task at hand.