STAT 510: Spatiotemporal Stats

Spatiotemporal Stats Lab 1

Prof. Taylor-Rodriguez

```
knitr::opts_chunk$set(echo = TRUE,cache = TRUE)
library(STRbook)
library(ggplot2)
library(dplyr)
library(tidyr)
library(tidyverse)
library(sp)
library(spacetime)
library(lubridate)
```

Let's get the Lab started

We'll be working with the following datasets

- 1. Station.dat: (328×3) station info
- 2. $Times_1990.dat$: (1461 × 4) daily time stamps between Jan 1st 1990 and Dec 30 1993
- 3. $Tmax_1990.dat$: (1461 × 328) Daily Tmax by station (NA's = -9999)
- 4. Tmin 1990.dat: (1461×328) Daily Tmin by station $(NA's \equiv -9999)$
- 5. $Precip_1990.dat$: (1461 × 328) Daily Precip by station (NA's = -9999.90001)
- 6. $Precip_1990.dat$: (1461 × 328) Daily Precip by station (NA's = -9999.989998)

Data Wrangling

Data Wrangling and Visualization

First, let's load into R, combine and rearrange into long format these datasets.

This can help summarize and visualize the data

Loading data tables into R

Convert data into long format

```
#using dplyr functions:
Tmax_long <- bind_cols(Times,Tmax) %>% #add time stamps to Tmax
  gather(key="id", value="values",
        -julian, -year, -month, -day) %>% #make into long format
 mutate(proc="Tmax") #add variable label
head(Tmax_long,4)
## julian year month day id values proc
35 Tmax
                                 42 Tmax
## 3 726836 1990
                  1 3 3804
                                 49 Tmax
## 4 726837 1990
                   1 4 3804
                                59 Tmax
```

Note: the gather function has been replaced by pivot_long... but for now we'll stick to what they use in the book

Convert data into long format

Combine data and remove NA's

Some simple data summaries

Some simple data summaries

```
#yearly means by variable
summ <- NOAA_df_1990 %>%
 group_by(proc,year) %>%
 summarise(proc_means=mean(values))
head(summ,5)
## # A tibble: 5 x 3
## # Groups: proc [2]
## proc year proc_means
## <chr> <int> <dbl>
## 1 Precip 1990
                      0.126
## 2 Precip 1991
                      0.116
## 3 Precip 1992
                     0.111
## 4 Precip 1993
                      0.116
                   67.4
## 5 Tmax 1990
```

More involved summaries

Mean number of dry days in June each year by station

```
summ <- NOAA_df_1990 %>%
 filter(proc=="Precip",month==6,values==0) %>%
  group_by(id,year,month) %>%
  summarise(numdry=n())
head(summ)
## # A tibble: 6 x 4
## # Groups: id, year [6]
## id year month numdry
## <chr> <int> <int> <int> <int>
## 1 13865 1990 6
## 2 13865 1991 6
                              19
## 3 13865 1992 6
## 4 13865 1993 6
                              20
                              23
## 5 13866 1990
                               19
## 6 13866 1991
                        6
```

More involved summaries

Mean number of dry days in June each year

```
summ <- summ %>%
ungroup() %>%
group_by(year,month) %>%
summarise(mu_noprecip=mean(numdry)) %>%
select(-month)
head(summ)
```

```
## # A tibble: 4 x 2
## # Groups: year [4]
##
   year mu_noprecip
##
   <int>
                <db1>
## 1 1990
                 20.5
## 2 1991
                 22.2
## 3 1992
                 19.7
## 4 1993
                 18.7
```

3 726836 1990

4 726837 1990

hand side. Other options available.

Combining datasets using keys

1 3 3804

1 4 3804

Let's add the station location information to the combined data

```
locs <- locs %>% mutate(id=as.character(id))
NOAA_df_1990 <- NOAA_df_1990 %>%
  left_join(locs,by="id")
head(NOAA_df_1990,5)
    julian year month day id values proc lat
                    1 1 3804
1 2 3804
## 1 726834 1990
                                    35 Tmax 39.35 -81.43333
## 2 726835 1990
                                    42 Tmax 39.35 -81.43333
```

59 Tmax 39.35 -81.43333 ## 5 726838 1990 1 5 3804 41 Tmax 39.35 -81.43333 Note: left_join keeps all observations in left dataset and finds matches according to the key (here "id") in the dataset on the right

49 Tmax 39.35 -81.43333

Create date variable from year, month, day

Let's add the station location information to the combined data

```
NOAA_df_1990 <- NOAA_df_1990 %>%
  unite("date",year,month,day,remove=F) %>%
  mutate(date=ymd(date))
head(NOAA_df_1990,5)
## julian date year month day id values proc ## 1 726834 1990-01-01 1990 1 1 3804 35 Tmax 3 ## 2 726835 1990-01-02 1990 1 2 3804 42 Tmax 3
                                                      35 Tmax 39.35 -81.43333
                                                       42 Tmax 39.35 -81.43333
## 3 726836 1990-01-03 1990
                                  1 3 3804
                                                       49 Tmax 39.35 -81.43333
## 4 726837 1990-01-04 1990
                                    1
                                          4 3804
                                                       59 Tmax 39.35 -81.43333
                                          5 3804
## 5 726838 1990-01-05 1990
                                                       41 Tmax 39.35 -81.43333
```

Visualization

Empirical Spatial Means Plot

For geostatistical data

```
NOAA_df_1990 %>%
  filter(proc=="Tmax") %>%
  group_by(id,lon,lat) %>%
  summarise(z=mean(values)) %>%
  ggplot() +
 geom_point(aes(x=lon,y=lat,colour=z),size=2) +
col_scale(name = "degF") +
  xlab("Longitude (deg)") +
  ylab("Latitude (deg)") +
  geom_path(data = map_data("state"),# state boundaries
  aes(x = long, y = lat, group = group)) + coord_fixed(xlim = c(-105, -75),
              ylim = c(25,50)) +
  theme_bw()
```


Empirical Spatial Means Plot (By Year)

For geostatistical data

Empirical Spatial Covariances and Plots

For geostatistical data

Let's work with the Tmax data between May and September of 1993

Empirical Spatial Covariances and Plots

But first, de-trend the data

Extract the spatial locations

```
spat_df <- filter(Tmax_long, t == 1) %>% # lon/lat coords of stations
select(lon, lat) %>% # select lon/lat only
arrange(lon, lat) # sort ascending by lon/lat
m <- length(unique(Tmax_long$id)) # number of stations</pre>
```

Empirical Spatial Covariances and Plots

Put data in space-wide format

```
X <- Tmax_long %>% select(lon, lat, residuals, t) %>% # select columns
spread(t, residuals) %>% select(-lon, -lat) %>% t()
```

Calculate lag-0 and lag-1 covariance matrices (use complete.obs)

```
Lag0_cov <- cov(X, use = 'complete.obs')
Lag1_cov <- cov(X[-1, ], X[-nrow(X),],use = 'complete.obs')</pre>
```

Empirical Spatial Covariances and Plots

Empirical Spatial Means Plot (By Year)

Lag 0 covariances

```
par(mfrow=c(2,2))
plot_cov_strips(Lag0_cov, spat_df) # plot the lag-0 matrices
```


Empirical Spatial Means Plot (By Year)

Lag 1 covariances

```
par(mfrow=c(2,2))
plot_cov_strips(Lag1_cov, spat_df) # plot the lag-1 matrices
```


Empirical Spatial Means Plot

For areal data

Empirical Spatial Means Plot

For areal data

Join MO county boundary data with income

```
MOcounties <- left_join(MOcounties, BEA, by = "NAME10")

County1 <- filter(MOcounties, NAME10 == "Clark, MO")
plot(County1$long, County1$lat, cex=0.7)
```


Empirical Spatial Means Plot

For areal data

Empirical Spatial Means Plot

For areal data

Hovmoller Plot

```
lim_lat <- range(Tmax_long$lat) # latitude range</pre>
t_axis <- seq(lim_t[1], # time axis
               lim_t[2],
length=100)
lat_t_grid <- expand.grid(lat = lat_axis,</pre>
                             t = t_axis
Tmax_grid <- Tmax_long</pre>
dists <- abs(outer(Tmax_long$lat, lat_axis, "-"))</pre>
Tmax_grid$lat <- lat_axis[apply(dists, 1, which.min)]</pre>
 Tmax_lat_Hov <- Tmax_grid %>% group_by(lat, t) %>%
   summarise(z = mean(values))
ggplot(Tmax_lat_Hov) + # take data
  geom_tile(aes(x = lat, y = t, fill = z)) + # plot
fill_scale(name = "degF") +
  scale_y_reverse() +
  ylab("Day number (days)") + xlab("Latitude (degrees)") +
  theme_bw()
        0
 Day number (days)
                                                                                                                               degF
       50
                                                                                                                                      100
                                                                                                                                      90
                                                                                                                                      80
                                                                                                                                      70
                                                                                                                                      60
                                                                                                                                      50
     150
                32
                                            36
                                                                         40
                                                                                                     44
                                                     Latitude (degrees)
```

On your own

For the SST data loaded using the code below:

1. generate a data frame with the Empirical Spatial Means per decade (1970-1979, 1980-1989, 1990-2002) and plot them with one panel per decade

- 2. generate a spatial plot for the **yearly** SST 95th quantile for the years 1980, 1990, 2000 having one panel per year
- 3. Obtain a Hovmoller plot for these data
- 4. Calculate the EOFs for the SST dataset. Replicate the figures in pages 44-45 using the R function eigen (not svd) and ggplot2::geom_tile and interpret them. How many EOFs would you retain?

```
data("SSTlandmask", package = "STRbook")
data("SSTlonlat", package = "STRbook")
data("SSTdata", package = "STRbook")

#remove years that are not complete
rm_rows <- which(SSTlandmask == 1)
SSTdata <- SSTdata[-rm_rows, 1:396]</pre>
```