# Multimodal Semantic Word Representations Grounded in the Human Perception

#### Giannis Karamanolakis

Department of Electrical and Computer Engineering National Technical University of Athens (NTUA)

12 June, 2017

### Goal of this thesis

### Distributional Semantic Models (DSMs)

- Information Retrieval & Natural Language Processing
- Modeling word semantics

#### Our Goal:

- Extend DSMs to Multimodal DSMs
  - Audio-based DSM (ADSM): Acoustic properties of words
- Fuse Audio-DSM with Text-DSM and Visual-DSM
- Evaluate Multimodal DSMs on Word Semantic Similarity
- Apply Audio-DSM for Music Information Retrieval tasks
  - Audio Auto-Tagging
  - Music Similarity

#### Prior work:

- E. Bruni and M. Baroni (2014, 2016): VDSM and Fusion with DSM
- A. Lazaridou (2015, 2016): VDSM and Fusion with DSM
- A. Lopopolo and E. Miltenburg (2015): First approach of ADSM
- D. Kiela and S. Klark (2016, 2017): Extended ADSM and Fusion with DSM

### Outline

### Introduction - Distributional Semantic Models (DSMs)

### Distributional Semantic Models (DSMs)

Vector representations of word semantics

### Distributional Hypothesis

"Words that appear in similar contexts tend to have similar meanings"

Counting co-occurences between target words and their contexts

|            | wheel | transport | passenger | tournament | London | goal | match |
|------------|-------|-----------|-----------|------------|--------|------|-------|
| automobile | 1     | 1         | 1         | 0          | 0      | 0    | 0     |
| car        | 1     | 2         | 1         | 0          | 1      | 0    | 0     |
| soccer     | 0     | 0         | 0         | 1          | 1      | 1    | 1     |
| football   | 0     | 0         | 1         | 1          | 1      | 2    | 1     |

Table: The word-context matrix.

### Introduction - Distributional Semantic Models (DSMs)

|            | wheel | transport | passenger | tournament | London | goal | match |
|------------|-------|-----------|-----------|------------|--------|------|-------|
| automobile | 1     | 1         | 1         | 0          | 0      | 0    | 0     |
| car        | 1     | 2         | 1         | 0          | 1      | 0    | 0     |
| soccer     | 0     | 0         | 0         | 1          | 1      | 1    | 1     |
| football   | 0     | 0         | 1         | 1          | 1      | 2    | 1     |

Table: The word-context matrix.

- Weighting: TF-IDF, Pointwise Mutual Information (PMI)
- Dimensionality Reduction: PCA, Truncated SVD
- Word Semantic Similarity: Vector Similarity (e.g. cosine similarity)



### Motivation: The Grounding Problem

- Human Perception of words
  - banana



guitar



### Motivation: The Grounding Problem

#### Human Perception of words

banana



guitar



### Grounding Problem

- DSMs rely solely on text
- Acoustic/Visual properties of words?
- DSMs are "disembodied" from the human perception and action

### Our Goal



### Audio-based DSM (ADSM)

- Extract acoustic features from audio clips
- Audio Clip Representations: Bag-of-Audio-Words (BoAW) approach (extension of the traditional Bag-of-Words method)



# Audio-based DSM (ADSM) - Tag Representations

- Word Representations via the ADSM:
  - Metadata: tags describe clip content
  - Tag Representations: averaging the clip representations



### Audio-based DSM (ADSM) - Tag Representations

#### Word Representations via the ADSM:

- Metadata: tags describe clip content
- Tag Representations: **averaging** the clip representations



### Audio-DSM - Summary

### ADSM Computation Steps (Baseline):

- **1** Acoustic Feature Extraction
- Clustering (k-means)
- Vector Quantization (BoAW) for clip encodings
- Average clip encodings for tag encodings
- Weighting (PMI)
- Dimensionality Reduction (SVD)

#### ADSM Extensions:

- Soft Cluster Assignment (Soft Encoding)
- Weighted Fusion of Feature Spaces

### ADSM Extension: Soft Cluster Assignment

• Before: Hard Cluster Assignment (Hard Encoding)





$$x_t \to e_t = (0, ..., 1, 0, ..., 0).$$
 (1)

### ADSM Extension: Soft Cluster Assignment

• Before: Hard Cluster Assignment (Hard Encoding)



$$x_t \to e_t = (0, ..., 1, 0, ..., 0).$$
 (1)

After: Soft Cluster Assignment (Soft Encoding)

$$x_t \to e_t' = (w_1, w_2, ..., w_k),$$
 (2)

where  $\sum_{i=1}^{k} w_i = 1$ 



# Soft Cluster Assignment: Calculation of weights

### Calculation of weights:

- t-th acoustic vector:  $x_t \in \rm I\!R^d$
- *i*-th acoustic word:  $c_i \sim N(\mu_i, \Sigma_i), \quad \mu_i \in \mathbb{R}^d, \Sigma_i \in \mathbb{R}^{d \times d}$

$$w_i = \frac{p(c_i|x_t)}{\sum_{j=1}^k p(c_j|x_t)},$$
 (3)

• Using Bayes Rule and assuming  $\Sigma_i$  is diagonal:

$$p(c_i|x_t) = \frac{p(x_t|c_i)p(c_i)}{p(x_t)} = \frac{p(c_i)e^{-\frac{1}{2}h_{t_i}^c}}{(2\pi)^{d/2}|\Sigma_i|^{1/2}p(x_t)},$$
 (4)

- $h_{ti}$ : Mahalanobis distance between  $x_t$  and  $c_i$ ,
- $p(c_i)$ : a-priori probability of cluster  $c_i$ ,
- p(.): probabilities computed via ML estimation.

#### Finally:

$$w_{i} = \frac{p(c_{i})|\Sigma_{i}|^{-1/2}e^{-h_{t_{i}}^{2}}}{\sum_{i=1}^{k}p(c_{i})|\Sigma_{i}|^{-1/2}e^{-h_{t_{i}}^{2}}},$$
(5)

### ADSM Extension 2: Fusion of Feature Spaces



# Visual Properties?



### Visual DSM (VDSM) - Bag of Visual Words

- Extract visual features from images
- Image Representations: BoVW



Figure: Bag of Visual Words approach. Source: Multimodal Distributional Semantics (Bruni et al. 2014)

# Visual DSM (VDSM) - Tag representations

#### Tag Representations:



Figure: VDSM. Source: Multimodal Distributional Semantics (Bruni et al. 2014)

### Multimodal Fusion?



### Multimodal Fusion

#### Our work:

- Fuse DSM, ADSM and VDSM
- Estimate Word Semantic Similarity

#### **Fusion Strategies:**

- Early (Feature Level) Fusion
  - **1 Fuse** (e.g. concatenate) the unimodal representations  $x_i$ ,  $y_i$ ,  $z_i$
  - Compute cosine similarity in the multimodal space

$$sim(fuse(x_1, y_1, z_1), fuse(x_2, y_2, z_2))$$
 (6)

- Late (Scoring Level) Fusion
  - Compute cosine similarity separately for every modality
  - 2 Fuse (e.g. average) the similarity scores

$$fuse(sim(x_1, x_2), sim(y_1, y_2), sim(z_1, z_2))$$
 (7)

### Outline

### Applications of Multimodal DSMs

Word Semantic Similarity

- Task: Estimation of Word Semantic Similarity
- Groundtruth Data: MEN (3000 pairs), SimLex-999 (999 pairs)

| automobile | car     | 0.50 |
|------------|---------|------|
| birds      | mammals | 0.29 |
| airplane   | market  | 0.11 |
|            |         |      |

### Applications of Multimodal DSMs

Word Semantic Similarity

- Task: Estimation of Word Semantic Similarity
- Groundtruth Data: MEN (3000 pairs), SimLex-999 (999 pairs)

| automobile | car     | 0.50 |
|------------|---------|------|
| birds      | mammals | 0.29 |
| airplane   | market  | 0.11 |
|            |         |      |

- Evaluation procedure
  - $\forall (w_1, w_2)$ : predict similarity scores:  $sim(w_1, w_2) = cos(\vec{r_1}, \vec{r_2})$
  - Evaluation metric: Spearman correlation coefficient

|            |         | GT   | PRED |
|------------|---------|------|------|
| automobile | car     | 0.50 | 0.35 |
| birds      | mammals | 0.29 | 0.42 |
| airplane   | market  | 0.11 | 0.28 |
|            |         |      |      |

### Word Semantic Similarity Estimation via the ADSM

### Experimental Dataset for ADSM

| Number of clips | 4474  | Number of unique tags | 940   |
|-----------------|-------|-----------------------|-------|
| Min duration    | 0.1s  | Avg tags per clip     | 8     |
| Max duration    | 120s  | Avg clips per tag     | 40    |
| Avg duration    | 16.6s | Total number of tags  | 37203 |

Table: Audio clips & tags from the online search engine FreeSound.

### Word Semantic Similarity Estimation via the ADSM

#### Experimental Dataset for ADSM

| Number of clips | 4474  | Number of unique tags | 940   |
|-----------------|-------|-----------------------|-------|
| Min duration    | 0.1s  | Avg tags per clip     | 8     |
| Max duration    | 120s  | Avg clips per tag     | 40    |
| Avg duration    | 16.6s | Total number of tags  | 37203 |

Table: Audio clips & tags from the online search engine FreeSound.

#### Evaluation Procedure for ADSM



# Word Semantic Similarity: Evaluating the ADSM

- Adding two text models as evaluation datasets<sup>1</sup>:
  - CDSM: state-of-the-art DSM (Iosif & Potamianos, LREC 2016)
  - word2vec: the word2vec model (Mikolov et al. 2013 a,b,c)

| Dataset    | MEN | SimLex-999 | CDSM | word2vec |
|------------|-----|------------|------|----------|
| Word Pairs | 157 | 44         | 1084 | 785      |

<sup>&</sup>lt;sup>1</sup>Both CDSM and word2vec are used as evaluation datasets, because they have state-of-the-art performance and provide estimations for unlimited word pairs

### **Evaluating the ADSM**

### ADSM parameters

| Parameter | Description    | Default Value |
|-----------|----------------|---------------|
| k         | # audio words  | 300           |
| SVD       | SVD dimensions | - (no SVD)    |

#### Baseline ADSM vs Literature Results<sup>2</sup>

| Method   | k   | SVD | MEN   | SimLex-999 | CDSM  | word2vec |
|----------|-----|-----|-------|------------|-------|----------|
| [1]      | 100 | 60  | 0.402 | 0.233      | n/a   | n/a      |
| [2]      | 300 | -   | 0.325 | 0.161      | n/a   | n/a      |
| Baseline | 100 | 60  | 0.382 | 0.302      | 0.321 | 0.294    |
| Baseline | 300 | -   | 0.416 | 0.235      | 0.333 | 0.332    |

Table: ADSM Accuracy, i.e., Spearmann Correlation.



<sup>&</sup>lt;sup>2</sup>First row: A. Lopopolo and E. Miltenburg (2015) Second row: D. Kiela and S.Clark (2016)

### ADSM Evaluation: Fusion of Feature Spaces

Feat. Space

- **Feature Spaces**:  $S_1$ : MFCCs,  $S_2$ : F0 feature,  $S_3$ : Music features
- Classification (music, speech, other): SVM classifier (linear kernel)

SVD

MEN 0.416

|        |                       |     |     | -1                    |     |    |       |       |       | 0.00- |
|--------|-----------------------|-----|-----|-----------------------|-----|----|-------|-------|-------|-------|
|        |                       |     |     | $S_2$                 |     | -  | 0.308 | 0.313 | 0.269 | 0.248 |
|        |                       |     |     | $S_3$                 |     |    | 0.418 | 0.205 | 0.278 | 0.315 |
|        |                       |     |     | S <sub>123</sub>      | 300 |    | 0.468 | 0.387 | 0.388 | 0.382 |
|        |                       |     |     | $S_1$                 |     |    | 0.436 | 0.209 | 0.283 | 0.320 |
| Class  | <i>u</i> <sub>1</sub> | И2  | из  | $S_2$                 |     | 90 | 0.302 | 0.34  | 0.275 | 0.26  |
|        |                       |     |     | $S_3$                 |     |    | 0.422 | 0.252 | 0.343 | 0.337 |
| Music  | 0.3                   | 0.2 | 0.5 | S <sub>123</sub>      | 1   |    | 0.480 | 0.374 | 0.402 | 0.401 |
| Speech | 0.8                   | 0.2 | 0.0 | S <sub>1</sub>        |     |    | 0.457 | 0.24  | 0.298 | 0.309 |
| Other  | 0.3                   | 0.0 | 0.7 | $S_2$                 |     | _  | 0.304 | 0.334 | 0.283 | 0.259 |
|        |                       |     |     | S <sub>3</sub>        |     |    | 0.423 | 0.300 | 0.384 | 0.343 |
|        |                       |     |     | S <sub>123</sub>      | 400 |    | 0.462 | 0.437 | 0.404 | 0.379 |
|        |                       |     |     | $S_1$                 |     |    | 0.427 | 0.317 | 0.375 | 0.331 |
|        |                       |     |     | $S_2$                 | 1   | 90 | 0.314 | 0.351 | 0.278 | 0.254 |
|        |                       |     |     | <i>S</i> <sub>3</sub> |     |    | 0.46  | 0.225 | 0.293 | 0.302 |
|        |                       |     |     | S <sub>123</sub>      |     |    | 0.477 | 0.407 | 0.416 | 0.407 |

Table: ADSM Accuracy, i.e., Spearmann Correlation.

Siml ex-999

0.235

CDSM

0.333

word2vec

0.332

### Word Semantic Similarity: Multimodal Fusion

#### Multimodal Fusion

| Model      | Dimensions | Train Data        | Train Features   |  |  |
|------------|------------|-------------------|------------------|--|--|
| ADSM       | 300        | FreeSound clips   | MFCCs            |  |  |
| DSM (CDSM) | 300        | English documents | -                |  |  |
| VDSM       | 300        | ESP-Game images   | SIFT (HSV Space) |  |  |

- Evaluation: keep the intersection of DSM, ADSM and VDSM tags (1613 unique tags)
- Addition of three evaluation datasets
  - AMEN: the auditory relevant subset of MEN (e.g. guitar-rock)
  - TMEN: the text relevant subset of MEN (complementary to AMEN)<sup>3</sup>
  - ASLex: the auditory relevant subset of SimLex-999

| Dataset    | MEN  | AMEN | TMEN | SimLex-999 | ASLex |
|------------|------|------|------|------------|-------|
| Word Pairs | 1533 | 141  | 135  | 207        | 100   |

 $<sup>^3</sup>$  To provide equal comparisons, we random sample TMEN to obtain equal number of words as in AMEN. The final score is computed as the average score of 10 random samples.

### Word Semantic Similarity: Multimodal Fusion

- Early Fusion:
  - Concatenation of ADSM, DSM, VDSM representations<sup>4</sup>
  - 2 Dimensionality reduction to 300 dimensions using PCA
  - Final score: cosine similarity between multimodal representations

| Model         | MEN   | AMEN  | TMEN  | SimLex-999 | ASLex |
|---------------|-------|-------|-------|------------|-------|
| ADSM          | 0.433 | 0.554 | 0.532 | 0.352      | 0.292 |
| DSM           | 0.774 | 0.762 | 0.812 | 0.427      | 0.398 |
| VDSM          | 0.233 | 0.435 | 0.181 | 0.248      | 0.269 |
| ADSM&DSM      | 0.783 | 0.815 | 0.759 | 0.475      | 0.424 |
| ADSM&VDSM     | 0.470 | 0.632 | 0.438 | 0.401      | 0.348 |
| DSM&VDSM      | 0.762 | 0.814 | 0.772 | 0.481      | 0.497 |
| ADSM&DSM&VDSM | 0.776 | 0.827 | 0.798 | 0.502      | 0.476 |

Table: Early Fusion - Spearmann Correlation



<sup>&</sup>lt;sup>4</sup>Before concatenation, L2 normalization is performed

### Outline

### ADSM Applications

#### Audio auto-tagging

- Task: Audio auto-tagging, i.e., predict multiple labels from audio
- Applications: Indexing & Querying Music Collections
- Auto-tagging using ADSM:



# **ADSM Applications**

Audio auto-tagging

- Experimentation Dataset: MagnaTagATune
  - 25,863 audio clips (mostly music) of 30s duration
  - 188 unique tags
- Acoustic Features for ADSM
  - EchoNest:
    - 12 chromagram features
    - 12 timbre (MFCC-like) features
  - MFCCdd:
    - 13 MFCCs, first and second order derivatives

# ADSM Application: Auto-tagging

Examples

| Clip id | Groundtruth Tags                                        | Predicted Tags                                      |  |
|---------|---------------------------------------------------------|-----------------------------------------------------|--|
| 3843    | indian, sitar                                           | sitar, indian, eastern, india, oriental             |  |
| 13526   | bass, <b>drums</b> , drum, <b>funky</b> , <b>reggae</b> | funky, beat, drums, reggae, funk                    |  |
| 15380   | classical, solo, cello, violin, strings                 | cello, viola, violin, solo, classical               |  |
| 19920   | -                                                       | orchestra, violins, flutes, fiddle, violin          |  |
| 21725   | choir, <b>choral</b> , <b>men</b> , man                 | monks, chant, chanting, men, choral                 |  |
| 29231   | acoustic, guitar                                        | classical guitar, guitar, acoustic, lute, spanish   |  |
| 43390   | rock, loud, pop, vocals, male vocals                    | male vocals, pop, male vocal, male singer, rock     |  |
| 48010   | silence                                                 | low, soft, no singing, quiet, wind                  |  |
| 57081   | piano                                                   | piano solo, <b>piano</b> , classic, solo, classical |  |

Table: Examples of auto-tagging outputs for MagnaTagATune clips. Number of predicted tags: N=5.

# ADSM Application: Auto-tagging

Visualization of tag representations using t-SNE



Visualization of tag representations using t-SNE



Visualization of tag representations using t-SNE

```
_male
male_vocals
                    man_singing man
      male_vocal
                   male voice
 _male_singer
                               english
             singer
                               vocals
                                              ocalپد
                                ∠voice
                                                 singing
              Jemale singer
                           female_vocal female_vocals
                    woman_singing female voice
                                                     female.
                                           woman
                        female singing
```

Visualization of tag representations using t-SNE



## Outline

- Music Similarity: The core of Music Recommendation and Music Information Retrieval
- ADSM for Music Similarity: Combine tags and audio



## ADSM Application: Music Similarity

- Music Similarity Estimation is subjective
- Relative similarity:
  - Given songs (a, b, c): "Which is the most irrelevant (odd) song?"
  - c irrelevant  $\Rightarrow sim(c, a) < sim(b, a)$  and sim(c, b) < sim(a, b)
  - similarity constraints = distance constraints
- Groundtruth similarity data
  - Collected from a "odd one out" game
  - 860 Triplets of songs (a, b, c), where c is the "odd" song
- Evaluation Metric: % constraints satisfied by the algorithm
- Experimentation dataset: MagnaTagATune

# ADSM Application: Music Similarity

| Literature Method | EchoNest Features |
|-------------------|-------------------|
| Euclidean         | 0.598             |
| RITML             | 0.711             |
| SVM               | 0.712             |
| MLR               | 0.689             |



Table: Literature methods.

| Proposed       | Echo  | Nest   | MFCCdd |          |  |
|----------------|-------|--------|--------|----------|--|
| Method         | k=300 | svd=10 | k=300  | svd = 10 |  |
| AUDIO          | 0.613 | 0.644  | 0.636  | 0.646    |  |
| ADSM-REALTAG   | 0.705 | 0.719  | 0.717  | 0.720    |  |
| FUSION-REALTAG | 0.720 | 0.731  | 0.681  | 0.684    |  |
| ADSM-AUTOTAG   | 0.705 | 0.705  | 0.693  | 0.696    |  |
| FUSION-AUTOTAG | 0.705 | 0.709  | 0.662  | 0.672    |  |

Table: Proposed methods.

## Conclusions

### Multimodal DSMs - Grounding to the auditory and visual modalities

- Multimodal Fusion for Word Semantic Similarity: Higher correlation with human ratings compared to unimodal representations. First attempt to fuse text, visual and acoustic features for multimodal word representations.
- Dimensionality Reduction can give significant improvements for Word Semantic Similarity and Music Similarity
- Fusion of Feature Spaces outperforms the baseline ADSM
- Soft Encoding did not outperform Hard Encoding
- ADSM for Auto-tagging: Satisfactory performance. Can be used to tag unknown clips or enrich provided annotations
- ADSM for Music Similarity: Combine audio and tags (groundtruth or predicted) for getting better estimations in an unsupervised way

### **Future Work**

### ADSM Pipeline

- Audio-word Dictionary: Replace k-means with a dictionary learning algorithm (e.g. k-SVD)
- Perform audio segmentation before building the ADSM
- Hard Encoding vs Soft Encoding. Test assertion: clustering samples ↑ ⇒ Hard Encoding=Soft Encoding
- Multimodal Fusion: Early, Middle and Late Fusion
  - Early Fusion: Learn simultaneously text, image and audio representations (e.g. multimodal skip-gram)
  - Use the auditory/visual relevance of words to weight the contribution of ADSM and VDSMs to the multimodal representation
- Zero-shot learning via cross-modal mapping: e.g. use multimodal Deep Boltzmann Machines
- Apply for Audio/Video tasks (e.g. Multimedia Event Detection)
- Build deep neural auditory embeddings
  - end2end learning: CNN (or CNN-LSTM) on log mel spectrogram
- BoAW approach ignores temporal order → train LSTMs



# Thank You!

# Backup slides

# Word Semantic Similarity: Multimodal Fusion Late Fusion

#### • Late Fusion:

- Computation of cosine similarity separately for ADSM, DSM, VDSM
- Final score: Fusion (average) of similarity scores

| Model         | MEN   | AMEN  | TMEN  | SimLex-999 | ASLex |
|---------------|-------|-------|-------|------------|-------|
| ADSM          | 0.433 | 0.554 | 0.532 | 0.352      | 0.292 |
| DSM           | 0.774 | 0.762 | 0.812 | 0.427      | 0.398 |
| VDSM          | 0.233 | 0.435 | 0.181 | 0.248      | 0.269 |
| ADSM&DSM      | 0.741 | 0.719 | 0.718 | 0.406      | 0.317 |
| ADSM&VDSM     | 0.474 | 0.635 | 0.428 | 0.405      | 0.340 |
| DSM&VDSM      | 0.762 | 0.814 | 0.737 | 0.478      | 0.492 |
| ADSM&DSM&VDSM | 0.459 | 0.639 | 0.308 | 0.403      | 0.345 |

Table: Late Fusion - Spearmann Correlation

#### **Evaluation**

- Auto-tagging as Multi-label classification (tags = labels)
- Evaluation metric: AUC-ROC (Area Under ROC curve)



- ADSM Evaluation Procedure
  - Compute AUC for each tag
  - Final Score: Avg AUC over the tags

#### **Evaluation**

| 300 0.809 0.806 | k   | EchoNest | MFCCdd |  |  |
|-----------------|-----|----------|--------|--|--|
|                 | 300 | 0.809    | 0.806  |  |  |

Table: Avg AUC



**Evaluation** 

| tag         | AUC   | tag       | AUC   | tag        | AUC   | tag          | AUC   |
|-------------|-------|-----------|-------|------------|-------|--------------|-------|
| metal       | 0.965 | loud      | 0.868 | male       | 0.795 | female vocal | 0.755 |
| choral      | 0.946 | techno    | 0.862 | male vocal | 0.786 | vocal        | 0.747 |
| choir       | 0.942 | country   | 0.847 | guitar     | 0.786 | female voice | 0.747 |
| opera       | 0.941 | piano     | 0.838 | electronic | 0.786 | synth        | 0.738 |
| rock        | 0.927 | classical | 0.828 | male voice | 0.783 | weird        | 0.737 |
| harp        | 0.906 | рор       | 0.827 | ambient    | 0.775 | vocals       | 0.733 |
| harpsichord | 0.900 | solo      | 0.826 | soft       | 0.773 | voice        | 0.728 |
| cello       | 0.897 | classic   | 0.823 | fast       | 0.768 | slow         | 0.727 |
| dance       | 0.891 | quiet     | 0.823 | indian     | 0.767 | no voice     | 0.642 |
| beats       | 0.881 | sitar     | 0.821 | singing    | 0.766 | no vocals    | 0.629 |
| beat        | 0.877 | drums     | 0.818 | woman      | 0.757 | no vocal     | 0.626 |
| flute       | 0.875 | man       | 0.808 | female     | 0.757 |              |       |
| violin      | 0.870 | strings   | 0.799 | new age    | 0.755 |              |       |

Table: 50 MagnaTagATune tags sorted by AUC