CS 207: Discrete Structures

Instructor: S. Akshay

 $\mathrm{Aug}\ 10,\ 2015$

Lecture 10 – Basic mathematical structures: chains, antichains, lattices

Recap: Partial order relations

Last class we saw

- ▶ Partial orders: definition and examples
- Posets, chains and anti-chains
- Graphical representation as Directed Acyclic Graphs
- ► Topological sorting (application to task scheduling)
- Mirsky's theorem (application to parallel task scheduling)

Recall: Partial Orders and Equivalence relations

- ▶ A poset is a set S with a partial order \leq \subseteq S \times S.
- ▶ A totally ordered set is a poset in which every pair of elements is comparable, i.e., $\forall a, b \in S$, either $a \leq b$ or $b \leq a$.

Definitions: Let (S, \preceq) be a poset.

- ▶ A subset $B \subseteq S$ is called a chain if every pair of elements in B is related by \leq .
- ▶ A subset $A \subseteq S$ is called an anti-chain if no two distinct elements of A are related by \leq .

Tasks scheduling as a poset

Theorems

- ► Every finite poset has a topological sort, i.e., a totally ordered set that is consistent with the poset (H.W).
- ► Every finite poset has a legal parallel schedule that runs in t steps, where t is the length of the longest chain.

In fact, we proved:

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Assuming this theorem,

- ▶ Observe that we can schedule all of S_i at time i (since we know that all previous tasks were done earlier!).
- ▶ Thus, each S_i is an anti-chain.
- ▶ This solves the parallel task scheduling problem.

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the length of the longest chain ending at a. Now proof by contradiction:

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the length of the longest chain ending at a. Now proof by contradiction:

▶ Suppose $\exists i, a \in S_i, b \leq a, b \neq a \text{ but } b \notin S_1 \cup \ldots \cup S_{i-1}$.

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the length of the longest chain ending at a. Now proof by contradiction:

- ▶ Suppose $\exists i, a \in S_i, b \leq a, b \neq a \text{ but } b \notin S_1 \cup \ldots \cup S_{i-1}$.
- ▶ By defin of S_i , \exists chain of length at least i ending at b.

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the length of the longest chain ending at a. Now proof by contradiction:

- ▶ Suppose $\exists i, a \in S_i, b \leq a, b \neq a \text{ but } b \notin S_1 \cup \ldots \cup S_{i-1}$.
- ▶ By defin of S_i , \exists chain of length at least i ending at b.
- ▶ But now, $b \leq a, b \neq a$ implies we can extend the chain to chain of length $\geq i + 1$, ending at a.
- ▶ But then a cannot be in S_i . Contradiction.

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \leq) is of length t, then S can be partitioned into t anti-chains.

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \leq) is of length t, then S can be partitioned into t anti-chains.

Another corollary (Dilworth's Lemma)

For all t > 0, any poset with n elements must have

- \triangleright either a chain of length greater than t
- or an antichain with at least $\frac{n}{t}$ elements.

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \leq) is of length t, then S can be partitioned into t anti-chains.

Another corollary (Dilworth's Lemma)

For all t > 0, any poset with n elements must have

- \triangleright either a chain of length greater than t
- or an antichain with at least $\frac{n}{t}$ elements.

Its "dual" is called the Dilworth's theorem...

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \leq) is of length t, then S can be partitioned into t anti-chains.

Another corollary (Dilworth's Lemma)

For all t > 0, any poset with n elements must have

- \triangleright either a chain of length greater than t
- ▶ or an antichain with at least $\frac{n}{t}$ elements.

Dilworth's Theorem, ~ 1950

If the largest anti-chain in a poset (S, \leq) is of length r, then S can be partitioned into r chains.

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \leq) is of length t, then S can be partitioned into t anti-chains.

Another corollary (Dilworth's Lemma)

For all t > 0, any poset with n elements must have

- \triangleright either a chain of length greater than t
- or an antichain with at least $\frac{n}{t}$ elements.

Dilworth's Theorem, ~ 1950

If the largest anti-chain in a poset (S, \leq) is of length r, then S can be partitioned into r chains.

▶ Of course partition is different from before. But will a similar proof technique work? Try induction!

Minimal and maximal elements

Let (S, \preceq) be a poset.

- ▶ An element $a \in S$ is called minimal if, $b \leq a$ implies b = a.
- ▶ An element $a \in S$ is called maximal if, $a \leq b$ implies a = b.

Minimal and maximal elements

Let (S, \preceq) be a poset.

- ▶ An element $a \in S$ is called minimal if, $b \leq a$ implies b = a.
- ▶ An element $a \in S$ is called maximal if, $a \leq b$ implies a = b.
- ▶ An element $a \in S$ is called the least element of S if $a \leq b$ for all $b \in S$.
- ▶ An element $a \in S$ is called the greatest element of S if $b \leq a$ for all $b \in S$.

Minimal and maximal elements

Let (S, \preceq) be a poset.

- ▶ An element $a \in S$ is called minimal if, $b \leq a$ implies b = a.
- ▶ An element $a \in S$ is called maximal if, $a \leq b$ implies a = b.
- ▶ An element $a \in S$ is called the least element of S if $a \leq b$ for all $b \in S$.
- An element $a \in S$ is called the greatest element of S if $b \leq a$ for all $b \in S$.

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ is called an upper bound of A iff $a \leq u$ for all $a \in A$.
- ▶ $l \in S$ is called a lower bound of A iff $l \leq a$ for all $a \in A$.

)

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ is called an upper bound of A iff $a \leq u$ for all $a \in A$.
- ▶ $l \in S$ is called a lower bound of A iff $l \leq a$ for all $a \in A$.
- ▶ $u \in S$ is called the least upper bound of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is called the greatest lower bound of A if it is an lower bound of A and is greater than every other lower bound.

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ is called an upper bound of A iff $a \leq u$ for all $a \in A$.
- ▶ $l \in S$ is called a lower bound of A iff $l \leq a$ for all $a \in A$.
- ▶ $u \in S$ is called the least upper bound of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is called the greatest lower bound of A if it is an lower bound of A and is greater than every other lower bound.

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ is called an upper bound of A iff $a \leq u$ for all $a \in A$.
- ▶ $l \in S$ is called a lower bound of A iff $l \leq a$ for all $a \in A$.
- ▶ $u \in S$ is called the least upper bound of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is called the greatest lower bound of A if it is an lower bound of A and is greater than every other lower bound.

A poset in which every pair of elements has both a lub and a glb is called a lattice.

)

Lattices and complete lattices

Definitions

- ▶ A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- ▶ A complete lattice is a poset in which any subset of elements has both a lub and a glb (in the set), i.e., $\forall S' \subseteq S$, there exists $l, u \in S$ such that l is the glb and u is the lub of S'.

Lattices and complete lattices

Definitions

- ▶ A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- ▶ A complete lattice is a poset in which any subset of elements has both a lub and a glb (in the set), i.e., $\forall S' \subseteq S$, there exists $l, u \in S$ such that l is the glb and u is the lub of S'.

Theorem (Zorn's lemma)

Given a poset (S, \preceq) , if every non-empty chain in S has an upper-bound, then S has some maximal element.

▶ Given two posets (S, \leq_s) and (T, \leq_T) , $f: S \to T$ is order-preserving or monotonic if for all $a, b \in S$, $a \leq_S b$ implies $f(a) \leq_T f(b)$.

- ▶ Given two posets (S, \leq_s) and (T, \leq_T) , $f: S \to T$ is order-preserving or monotonic if for all $a, b \in S$, $a \leq_S b$ implies $f(a) \leq_T f(b)$.
- For $f: S \to S$, $x \in S$ is a fixed point of f if f(x) = x.

- ▶ Given two posets (S, \leq_s) and (T, \leq_T) , $f: S \to T$ is order-preserving or monotonic if for all $a, b \in S$, $a \leq_S b$ implies $f(a) \leq_T f(b)$.
- For $f: S \to S$, $x \in S$ is a fixed point of f if f(x) = x.

Theorem (Tarski's fixed point theorem)

Let (S, \preceq) be a complete lattice and $f: S \to S$ be a monotonic function. Then the set of fixed points of f is a (non-empty) complete lattice.

- ▶ Given two posets (S, \leq_s) and (T, \leq_T) , $f: S \to T$ is order-preserving or monotonic if for all $a, b \in S$, $a \leq_S b$ implies $f(a) \leq_T f(b)$.
- For $f: S \to S$, $x \in S$ is a fixed point of f if f(x) = x.

Theorem (Tarski's fixed point theorem)

Let (S, \preceq) be a complete lattice and $f: S \to S$ be a monotonic function. Then the set of fixed points of f is a (non-empty) complete lattice.

Important result with several applications in many domains of mathematics and CS.