

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

		ESTRUCTURA DE DATOS Y ALGORITMOS II		10	
Asignatura		Clave	Semestre	Crédit	
INGENIERÍA ELÉCTRICA		INGENIERÍA EN COMPUTACIÓN	INGEN EN COM	INGENIERÍA EN COMPUTACIÓN	
División		Departamento	Licencia	Licenciatura	
Asignat	ura:	Horas/semana:	Horas/seme	Horas/semestre:	
Obligato		Teóricas 4.0	Teóricas	64.0	
Optativa	ı 🗀	Prácticas 2.0	Prácticas	32.0	
		Total 6.0	Total	96.0	
Seriación obliga	atoria antecedente: Est	ructura de Datos y Algoritmos I			
Objetivo(s) del			,	,	
Objetivo(s) del El alumno diseña	curso: ará algoritmos para la res	ructuras Discretas solución de problemas de la ciencia			
Objetivo(s) del e El alumno diseña 	curso: ará algoritmos para la res NOMBRE	solución de problemas de la ciencia	HOR	RAS	
Objetivo(s) del e El alumno diseña Temario NÚM.	curso: ará algoritmos para la res NOMBRE Algoritmos de ordenamien	solución de problemas de la ciencia	HOR 12	RAS 2.0	
Objetivo(s) del e El alumno diseña Femario NÚM. 1. 2.	curso: ará algoritmos para la res NOMBRE Algoritmos de ordenamien Algoritmos de búsqueda	solución de problemas de la ciencia	HOR 12 8	RAS 2.0 3.0	
Objetivo(s) del el alumno diseña Temario NÚM. 1. 2. 3.	curso: ará algoritmos para la res NOMBRE Algoritmos de ordenamien Algoritmos de búsqueda Algoritmos de grafos	solución de problemas de la ciencia	HOR 12 8	RAS 2.0 3.0 5.0	
Objetivo(s) del el alumno diseña Femario NÚM. 1. 2. 3. 4.	curso: ará algoritmos para la res NOMBRE Algoritmos de ordenamien Algoritmos de búsqueda Algoritmos de grafos Árboles	solución de problemas de la ciencia	HOR 12 8 6	2.0 3.0 5.0 5.0	
Objetivo(s) del el alumno diseña Temario NÚM. 1. 2. 3. 4. 5.	curso: ará algoritmos para la res NOMBRE Algoritmos de ordenamien Algoritmos de búsqueda Algoritmos de grafos Árboles Archivos	solución de problemas de la ciencia	HOR 12 8 6	RAS 2.0 3.0 5.0 5.0	
Objetivo(s) del El alumno diseña Temario NÚM. 1. 2. 3. 4.	curso: ará algoritmos para la res NOMBRE Algoritmos de ordenamien Algoritmos de búsqueda Algoritmos de grafos Árboles	solución de problemas de la ciencia	HOR 12 8 6 6 8	RAS 2.0 3.0 5.0 5.0 3.0 4.0	
Objetivo(s) del el alumno diseña Temario NÚM. 1. 2. 3. 4. 5.	curso: ará algoritmos para la res NOMBRE Algoritmos de ordenamien Algoritmos de búsqueda Algoritmos de grafos Árboles Archivos	solución de problemas de la ciencia	HOR 12 8 6 6 8	RAS 2.0 3.0 5.0 5.0	
Objetivo(s) del el alumno diseña Temario NÚM. 1. 2. 3. 4. 5.	curso: ará algoritmos para la res NOMBRE Algoritmos de ordenamien Algoritmos de búsqueda Algoritmos de grafos Árboles Archivos	solución de problemas de la ciencia	HOR 12 8 6 6 8 24	RAS 2.0 3.0 5.0 5.0 3.0 4.0	

1 Algoritmos de ordenamiento

Objetivo: El alumno diseñará los métodos más importantes de algoritmos para efectuar ordenamientos en la computadora.

Contenido:

- 1.1 Ordenamiento.
 - 1.1.1 Bubble Sort.
 - 1.1.2 Heapsort.
 - 1.1.3 QuickSort.
 - 1.1.4 Countig Sort.
 - 1.1.5 Radix Sort.
 - 1.1.6 Merge Sort.

2 Algoritmos de búsqueda

Objetivo: El alumno aplicará el método de búsqueda apropiado a conjuntos de datos residentes, tanto en la memoria principal, como en la memoria secundaria para generar algoritmos que resuelvan búsquedas.

Contenido:

- 2.1 Generalidades.
- 2.2 Definición de la operación de búsqueda.
- 2.3 Búsqueda por comparación de llaves.
 - **2.3.1** Lineal.
 - **2.3.2** Binaria.
- **2.4** Búsqueda por transformación de llaves.
 - 2.4.1 Funciones de hash.
 - 2.4.2 Colisiones.

3 Algoritmos de grafos

Objetivo: El alumno aplicará las formas de representar y operar los grafos y listas lineales para representarlos en la computadora.

Contenido:

- 3.1 Representación de grafos.
- **3.2** Búsqueda por expansión.
- 3.3 Búsqueda por profundidad.

4 Árboles

Objetivo: El alumno aplicará las formas de representar y operar las listas lineales para representarlos en la computadora.

Contenido:

- 4.1 Notaciones: infija, prefija, sufija.
- 4.2 Árboles binarios.
 - **4.2.1** Definiciones y operaciones.
 - **4.2.2** Transformación de árboles a árboles binarios.
 - 4.2.3 Recorrido de árboles.
 - **4.2.4** Representación en la computadora.
- 4.3 Árboles B.

- **4.3.1** Árboles B.
- **4.3.2** Árboles B+, algoritmos.
- **4.3.3** Árboles B+ prefijos simples, algoritmos.

5 Archivos

Objetivo: El alumno interpretará las organizaciones básicas de los archivos, las operaciones que se pueden realizar sobre ellos y su representación mediante diferentes medios de almacenamiento secundario.

Contenido:

- 5.1 Generalidades.
- **5.2** Definición y operaciones.
- **5.3** Organización de archivos.
 - **5.3.1** Organización lógica.
 - 5.3.2 Organización física.
- **5.4** Acceso a archivos.
 - 5.4.1 Acceso lógico.
 - 5.4.2 Acceso físico.
- 5.5 Sistema de archivos.

6 Introducción a los algoritmos paralelos

Objetivo: El alumno clasificará los elementos a considerar en el diseño y análisis de algoritmos paralelos versus algoritmos seriales para su programación.

Contenido:

- **6.1** Niveles de paralelismo. Granularidad.
- **6.2** Algoritmos con memoria compartida.
 - **6.2.1** Carrera de datos.
 - **6.2.2** Inconsistencia de datos.
 - **6.2.3** Modelo PRAM.
- **6.3** Técnicas de desarrollo de algoritmos.
 - **6.3.1** Rediseño de estructuras de datos.
 - **6.3.2** Rediseño de algoritmos.
- **6.4** Análisis de desempeño de algoritmos paralelos.
 - **6.4.1** Trabajo y profundidad.
 - 6.4.2 Ejemplos clásicos.

Bibliografía básica

Temas para los que se recomienda:

1-5

AHO, Alfred, ULLMAN, Jeffrey, et al.

Data Structures and Algorithms

New Jersey

Addison-Wesley, 1983

		(4/6)
BAASE, Sara, VAN GELDER, Allen		
Computer Algorithms: Introduction to Design and Analysis	1-5	
3rd edition		
San Diego		
Addison-Wesley, 1999		
BLAIR-CHAPPELL, Stephen, STOKES, Andrew		
Parallel Programming with Intel Parallel Studio XE	6	
Indiana		
Wrox, 2012		
CORMEN, Thomas		
Algorithms Unlocked	1-5	
Cambridge MA, USA		
The MIT Press, 2013		
CORMEN, Thomas, LEISERSON, Charles, et al.		
Introduction to Algorithms	1-5	
3rd edition	1 5	
MA, USA		
The MIT Press, 2009		
IEFFERG I DENIDERG I		
JEFFERS, James, REINDERS, James	(
Intel Xeon Phi Coprocessor High Performance Programming	6	
Waltham MA, USA Morgan Kaufmann, 2013		
Worgan Kaumann, 2013		
KIRK, David, HWU, Wen-mei		
Programming Massively Parallel Processors: A Hands-on	6	
Approach 2nd edition		
Waltham MA, USA		
Morgan Kaufmann, 2012		
KNUTH, Donald		
The Art of Computer Programming	1-5	
New Jersey		
Addison-Wesley Professional, 2011		
Volumes 1-4A		
PACHECO, Peter		
An Introduction to Parallel Programming	6	
MA, USA		
Morgan Kaufmann, 2011		
RAUBER, Thomas, RÜNGER, Gudula		
Parallel Programming: for Multicore and Cluster Systems	6	
Heidelberg		
Springer, 2010		
		15/10/2015 17:10

Bibliografía complementaria

Temas para los que se recomienda:

BRASSARD, Gilles, BRATLEY, Paul

Fundamentals of Algorithmics 1-5

New Jersey

Prentice Hall, 1995

CAMPBELL, Colin, JOHNSON, Ralph, et al.

Parallel Programming with Microsoft® .NET: Design Patterns 6

for Decomposition and Coordination on Multicore Architectures (Patterns & Practices) Washington

Microsoft Press, 2010

HERLIHY, Maurice, SHAVIT, Nir

The Art of Multiprocessor Programming 6

Waltham MA

Morgan Kaufmann, 2012

KINGSTON, Jeffrey

Algorithms and Data Structures: Design, Correctness, 1-5

Analysis 2nd edition

New Jersey

Addison-Wesley, 1997

KOZEN, Dexter C.

The Design and Analysis of Algorithms 1-5

Ithaca NY

Springer, 1992

PACHECO, Peter

Parallel Programming with MPI 6

San Francisco CA, USA

Morgan Kaufmann, 1996

SZNAJDLEDER, Pablo

Algoritmos a fondo: con implementación en C y JAVA

Todos

Buenos Aires

Alfaomega, 2012

(6	/(5)	ì
•	U	/ ۱	•	,

Sugerencias didácticas			
Exposición oral	X	Lecturas obligatorias	X
Exposición audiovisual	X	Trabajos de investigación	X
Ejercicios dentro de clase	X	Prácticas de taller o laboratorio	X
Ejercicios fuera del aula	X	Prácticas de campo	
Seminarios	X	Búsqueda especializada en internet	
Uso de software especializado		Uso de redes sociales con fines académicos	
Uso de plataformas educativas			
Forma de evaluar			
Exámenes parciales	X	Participación en clase	X
Exámenes finales	X	Asistencia a prácticas	X
Trabajos y tareas fuera del aula	X		

Perfil profesiográfico de quienes pueden impartir la asignatura

Licenciatura en Ingeniería en Computación, Ciencias de Computación, Matemáticas Aplicadas o una carrera similar. Deseable haber realizado estudios de posgrado, contar con conocimientos y experiencia en el área de ciencias de la computación, contar con experiencia docente o haber participado en cursos o seminario de iniciación en la práctica docente