Metody obliczeniowe w nauce i technice - sprawozdanie 1

Łukasz Jezapkowicz 11.03.2020

1 Znaleźć "maszynowe epsilon", czyli najmniejszą liczbę a, taką że a+1>1

Maszynowe epsilon to najmniejsza liczba zmiennoprzecinkowa, dla której zachodzi zależność a+1>1. Można więc zdefiniować ją również jako odległość pomiędzy 1 a kolejną liczbą zmiennoprzecinkową możliwą do wyrażenia w naszej reprezentacji (dla nas IEEE754). Podczas dodawania liczb sprowadzane są one do wspólnego wykładnika w celu dodania mantys. Wynika z tego, że najmniejsza liczba, którą można dodać do 1 musi mieć ten sam wykładnik co 1 (oraz oczywiście najmniejszą możliwą mantysę). Można pokazać, że w takim przypadku maszynowe epsilon wynosi:

$$\epsilon = \beta^{1-t}$$
,

Gdzie β to podstawa systemu liczbowego a t to precyzja tego systemu. Gdybyśmy przybliżali nasz wynik do najbliższej liczby otrzymalibyśmy podobne równanie:

$$\epsilon = \frac{1}{2}\beta^{1-t},$$

którego rozwiązanie łatwo sprawdzić implementując bardzo prosty program. Poniżej zamieściłem tabelkę porównującą wartości obliczone przez program z tymi podawanymi przez Wikipedię.

IEEE754	Wikipedia	Program	
Binary16	$2^{-10} \approx 9.77 e-04$	9.77-04	
Binary32	$2^{-23} \approx 1.19e-07$	1.19e-07	
Binary64	$2^{-52} \approx 2.26e-16$	2.22e-16	

1.1 Wnioski

: Wyniki teorytyczne dla obu podanych wzorów pokrywają się z wartościami podanymi w internecie. Dodatkowo dla drugiego wzoru wartości wyznaczone przez algorytm iteracyjny również pokrywają się z wartościami teorytycznymi. Przeprowadzone rozumowanie okazało się zatem poprawne.

2 Rozważamy problem ewaluacji funkcji sin(x), m.in. propagację błędu danych wejściowych, tj. błąd wartości funkcji ze względu na zakłócenie h w argumencie x

2.1 Ocenić błąd bezwzględny przy ewaluacji sin(x)

Błąd bezwględny wyraża się wzorem:

$$\Delta f(x) = |f(x) - f(x(1 + \epsilon_0))|$$

$$\Delta sinx = |sinx - sin(x(1 + \epsilon_0))|$$

2.2 Ocenić błąd względny przy ewaluacji sin(x)

Błąd względny wyraża się wzorem:

$$\frac{\Delta f(x)}{f(x)} = \frac{|f(x) - f(x(1+\epsilon_0))||}{f(x)}$$

$$\frac{\Delta sinx}{sinx} = \frac{|sinx - sin(x(1+\epsilon_0))|}{sinx}$$

2.3 Ocenić uwarunkowanie dla tego problemu

Uwarunkowanie funkcji jednej zmiennej wyraża się wzorem:

$$cond(f(x)) = \lim_{x^* \to x} \frac{\left| \frac{f(x) - f(x^*)}{f(x)} \right|}{\left| \frac{x - x^*}{x} \right|} = \left| \frac{x * f'(x)}{f(x)} \right|$$

W naszym przypadku odpowiednie wartości wynoszą:

$$f'(x) = cosx$$

$$cond(f(x)) = \left| \frac{x * cosx}{sinx} \right| = \left| x * ctgx \right|$$

Wykres cond(f(x)) przedstawiłem poniżej:

2.4 Dla jakich wartości argumentu x problem jest bardzo czuły?

Jak widać z wykresu funkcja xctgx ucieka do $+\infty$ dla każdego $x=n\pi$ z wyjątkiem n=0. Właśnie wtedy problem jest bardzo czuły.

2.5 Wnioski

Przeprowadzone doświadczenie wykazało, że funkcja sinx jest najgorzej uwarunkowana w otoczeniu swoich miejsc zerowych (dla $x=n\pi$ z wyjątkiem n=0). Wynika to z faktu, że funkcja przyjmuje tam bardzo małe wartości oraz jej pochodna osiąga największe wartości. Dobre uwarunkowanie funkcji jest natomiast w punktach $x=\frac{n\pi}{2}$ gdzie funkcja osiąga swoje ekstrema oraz jej pochodna jest równa 0.

3 Funkcja sinus zadana jest nieskończonym ciągiem $sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$

Błędem progresywnym nazywamy moduł różnicy pomiędzy wartością uzyskaną a wartością prawdziwą zaś błędem wstecznym moduł różnicy między wartością argumentu podstawioną dla funkcji a wartością argumentu, dla którego prawdziwa wartość jest równa wartości uzyskanej przez przybliżenie funkcji.

3.1 Jakie są błędy progresywny i wsteczny jeśli przybliżamy funkcję sinus biorąc tylko pierwszy człon rozwinięcia, tj. $sin(x) \approx x$, dla x = 0.1, 0.5 i 1.0?

X	$y = \sin(x)$	$\hat{y} = \sin(x) \approx x$	ŷ-y	$\hat{\mathbf{x}} = \arcsin(\hat{\mathbf{y}})$	x̂-x
0.1	0.099833	0.1	0.000167	0.100167	0.000167
0.5	0.479425	0.5	0.020575	0.523599	0.023599
1	0.841470	1	0.158530	1.570796	0.570796

3.2 Jakie są błędy progresywny i wsteczny jeśli przybliżamy funkcję sinus biorąc pierwsze dwa człon rozwinięcia, tj. $sin(x) \approx x - \frac{x^3}{6}$, dla x = 0.1, 0.5 i 1.0?

х	$y = \sin(x)$	$\hat{y} = \sin(x) \approx x - x^3/6$	ŷ-y	$\hat{\mathbf{x}} = \arcsin(\hat{\mathbf{y}})$	x̂-x
0.1	0.099833	0.099833	0	0.099999	0.000001
0.5	0.479425	0.479166	0.000259	0.499704	0.000296
1	0.841470	0.833333	0.008137	0.985110	0.01489

3.3 Wnioski

Jak wykazaly wyniki doświadczenia zwiększenie ilości wyrazów szeregu spowodowało bardzo mocne zmniejszenie błędu zarówno progresywnego jak i wstecznego dla każdego argumentu x. Wraz ze wzrostem argumentu rosną obydwa błędy co jest zgodne z wynikami doświadczenia w zadaniu 2.

4 Zakładamy że mamy znormalizowany system zmiennoprzecinkowy z $\beta = 10$, p = 3, L = -98

4.1 Jaka jest wartość poziomu UFL (underflow) dla takiego systemu?

Wartością poziomu UFL nazywamy najmniejszą możliwą liczbę dodatnią możliwą do zapisania w danym systemie zmiennoprzecinkowym (znormalizowanym). System jest znormalizowany więc najmniejsza możliwa mantysa w tym systemie wynosi 1 zaś wykładnik osiąga najmniejszą wartość dla parametru L (długość wykładnika). Z tych dwóch faktów wynika, że poszukiwana liczba wyraża się wzorem:

.
$$UFL = \beta^L = 10^{-98}$$

4.2 Jeśli $x = 6.87 * 10^{-97}$ i $y = 6.81 * 10^{-97}$, jaki jest wynik operacji x-y?

Wynik naszej operacji wynosi:

$$x-y = 6.87 * 10^{-97} - 6.81 * 10^{-97} = 0.06 * 10^{-97} = 6 * 10^{-99} < UFL$$

Wynik operacji jest o rząd niższy od wartości poziomu UFL zatem wynik tej operacji wynosić będzie 0.

4.3 Wnioski

Dla systemów zmiennoprzecinkowych działających na wyjątkowo małych liczbach wymagana jest jak najmniejsza wartość poziomu UFL. Wynika z tego, że powinniśmy przyjąć jak najmniejszy parametr L by osiągnąć ten cel. Parametr L charakteryzuje zatem zakres możliwych do uzyskania liczb w danym systemie a UFL jest miarą dokładności tego systemu.

5 Bibliografia

- -> Wikipedia
- -> Wykłady dr inż. Katarzyny Rycerz
- -> Analiza Numeryczna, David Kincaid oraz Ward Cheney