FTML Exercices 2

Pour le 9 mars 2023

TABLE DES MATIÈRES

1	Ordinary	least squares	
	1.0.1	Enoncé	
	1.0.2	Solution	
2	Expected	value as a minimization	1
	2.0.1	Enoncé	1
	2.0.2	Solution	

1 ORDINARY LEAST SQUARES

1.0.1 Enoncé

Les question 1 et 2 peuvent être traitées indépendamment. Soit n et $d\in \mathbb{N}^*.$

1) Soit $X \in \mathbb{R}^{n,d}$, et $y \in \mathbb{R}^n$. Calculer le gradient de

$$g = \left\{ \begin{array}{l} \mathbb{R}^d \to \mathbb{R} \\ \theta \mapsto \|X\theta - y\|^2 \end{array} \right.$$

C'est la fonction objectif du problème OLS.

- 2) On veut montrer que la fonction $g:\mathbb{R}^d\to\mathbb{R}$ définie plus haut est convexe. Il y a de nombreuses méthodes pour cela mais ici utiliser les étapes suivantes :
 - a) montrer que si $r: \mathbb{R}^d \to \mathbb{R}^n$ est linéaire et $f: \mathbb{R}^n \to \mathbb{R}$ est convexe, alors $f \circ r: \mathbb{R}^d \to \mathbb{R}$ est convexe.
 - b) montrer que toute norme sur \mathbb{R}^n est convexe.
 - c) montrer que si $w : \mathbb{R} \to \mathbb{R}$ est convexe croissante et $a : \mathbb{R}^n \to \mathbb{R}$ est convexe, alors $f = w \circ a : \mathbb{R}^n \to \mathbb{R}$ est convexe.
 - d) conclure.

1.0.2 Solution

1) On connaît déjà le gradient de l'application $f: x \mapsto ||x||^2$, qui vaut 2x. Si on considère l'application r:

$$\mathbf{r} = \left\{ \begin{array}{l} \mathbb{R}^d \to \mathbb{R}^n \\ \theta \mapsto X\theta - y \end{array} \right.$$

alors $g=f\circ r.$ Comme tout est différentiable, on en déduit qu'en notant L les jacobiennes :

$$L_{\theta}g = L_{X\theta - u}fL_{\theta}r \tag{1}$$

ou bien on considérant le gradient (qui est la transposée de la jacobienne quand l'application est à valeurs dans \mathbb{R}):

$$\nabla_{\theta} g = (L_{\theta} r)^{\mathsf{T}} \nabla_{X\theta - u} f \tag{2}$$

Or $L_{\theta}r = X$. Donc

$$\nabla_{\theta} g = 2X^{\mathsf{T}} (X\theta - y) \tag{3}$$

a) Soit $\alpha \in [0, 1]$, et $x, y \in \mathbb{R}^d$.

$$(f \circ r)(\alpha x + (1 - \alpha)y) = f(r(\alpha x + (1 - \alpha)y))$$

$$= f(\alpha r(x) + (1 - \alpha)r(y))$$

$$\leq \alpha f(r(x)) + (1 - \alpha)f(r(y))$$
(4)

b) Soit $\alpha \in [0, 1]$, et $x, y \in \mathbb{R}^n$.

$$\|\alpha x + (1 - \alpha)y\| \le \|\alpha x\| + \|(1 - \alpha)y\|$$

$$= \alpha \|x\| + (1 - \alpha)\|y\|$$
(5)

c) Soit $\alpha \in [0, 1]$, et $x, y \in \mathbb{R}$. Since a is convex,

$$a(\alpha x + (1 - \alpha)y) \le \alpha a(x) + (1 - \alpha)a(y)$$
(6)

Since w is increasing,

$$w(a(\alpha x + (1 - \alpha)y)) \le w(\alpha a(x) + (1 - \alpha)a(y)) \tag{7}$$

Since w is convex,

$$w(\alpha a(x) + (1 - \alpha)a(y)) \leqslant \alpha(w(a(x)) + (1 - \alpha)w(a(y))$$
(8)

Finally,

$$(w \circ a)(\alpha x + (1 - \alpha)y)) \leqslant \alpha(w \circ a)(x) + (1 - \alpha)(w \circ a)(y)$$
(9)

- d) On utilise:
- le point c) avec $w: t \mapsto t^2$ et a l'application norme sur \mathbb{R}^n pour montrer que $f: x \mapsto ||x||^2$ est convexe.
- le point a) appliqué à $g = f \circ r$.

2 EXPECTED VALUE AS A MINIMIZATION

2.0.1 Enoncé

Soit X une variable aléatoire réelle ayant un moment d'ordre 2. Montrer que son espérance E(X) est la quantité minimisant la fonction de variable réelle $t\mapsto$ $E((X-t)^2)$

2.0.2 Solution

All expected values are over X. We remark that

$$\begin{split} E\Big[(X-t)^2\Big] &= E\Big[\big(X-E(X)+E(X)-t\big)^2\Big] \\ &= E\Big[\big(X-E(X)\big)^2+2\big(X-E(X)\big)\big(E(X)-t\big)+\big(E(X)-t\big)^2\Big] \end{split}$$

By linearity, the expected value is separated in 3 terms.

$$- E[(X-E(X))^2]$$

$$- E[2(X-E(X))(E(X)-t)]$$

$$- E[(E(X)-t)^2]$$

We note that the first term $\mathsf{E}\!\left[(X-\mathsf{E}(X))^2\right]$ does not depend on t. Also, $(E(X) - t)^2$, is a fixed scalar, and not a random variable, hence :

$$\mathsf{E} \left[\left(\mathsf{E}(\mathsf{X}) - \mathsf{t} \right)^2 \right] = \left(\mathsf{E}(\mathsf{X}) - \mathsf{t} \right)^2$$

We also have that

$$\mathsf{E} \Big[2 \big(X - \mathsf{E}(X) \big) \big(\mathsf{E}(X) - t \big) \Big] = 2 \big(\mathsf{E}(X) - t \big) \mathsf{E} \Big[\big(X - \mathsf{E}(X) \big) \Big] = 0$$

As a consequence, the value that minimizes $E\left[(X-t)^2\right]$ is t=E(X).