AMENDMENTS TO THE CLAIMS

The claims in this listing will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

- 1. (Currently Amended) A <u>combination of an ion-modified</u> polymeric material <u>used in combination with a tissue adhesive, which comprises comprising expanded</u> <u>polytetra-fluoroethylene (ePTFE), polylactic acid, or polyglactin including a surface earbon or silicon as a constitutional element, and with at least a portion of the surface of which is modified by ion bombardment; and a tissue adhesive comprising fibrin glue.</u>
 - 2. (Canceled)
 - 3. (Canceled)
- 4. (Currently Amended) The polymeric material combination according to claim 1 wherein the modification by ion bombardment is carried out by irradiation with ions at a dose (ϕ) of 1 x 10¹² $\leq \phi \leq$ 1 x 10¹⁶ ions/cm².
- 5. (Currently Amended) The polymeric material combination according to claim 1 which is used for comprising an artificial dura mater, and an artificial blood vessel, a patch used for the heart or blood vessel, or a surgical suture.
- 6. (Currently Amended) A method for producing the <u>a combination of an ion-modified</u> polymeric material <u>and a fibrin glue</u> of claim 1, which is characterized in at lease <u>comprising irradiating at least</u> a portion of the <u>a</u> surface of the <u>a</u> polymeric material comprising <u>carbon or silicon as a constitutional element is irradiated expanded polytetra-fluoroethylene (ePTFE), polylactic acid, or polyglactin with ions at a dose (φ) of $1 \times 10^{12} \le \varphi \le 1 \times 10^{16}$ ions/cm²; and applying the fibrin glue to the irradiated polymeric material.</u>

- 7. (Currently Amended) A method for improving the affinity with a fibrin glue of a polymeric material comprising carbon or silicon as a constitutional element with a tissue adhesive, which is characterized in that comprising irradiating at least a portion of the a surface of the polymeric material is irradiated with ions at a dose (φ) of $1 \times 10^{12} \le \varphi \le 1 \times 10^{16}$ -ions/em² to form an ion-modified polymeric material; and applying the fibrin glue to the irradiated at least a portion of a surface of the polymeric material.
- 8. (New) The method according to claim 7 wherein the ion-modified polymeric material includes a non-irradiated portion and the non-irradiated surface is placed into contact with dura mater.
- 9. (New) The method according to claim 7 wherein the polymeric material is an artificial dura mater, an artificial blood vessel, a patch for the heart or blood vessel, or a surgical suture.
- 10. (New) The method according to claim 7 wherein the material comprising carbon or silicon as a constitutional element comprises expanded polytetra-fluoroethylene (ePTFE), polylactic acid, or polyglactin.
- 11. (New) The method according to claim 7 wherein the polymeric material is an artificial dura mater.
- 12. (New) The method according to claim 7 wherein the irradiating at least a portion of a surface of the polymeric material comprises irradiating with ions at a dose (ϕ) of $1 \times 10^{12} \le \phi \le 1 \times 10^{16}$ ions/cm².
- 13. (New) The method according to claim 12 wherein the irradiating at least a portion of a surface of the polymeric material comprises irradiating with ions at a dose (ϕ) of 1 x 10¹³ $\leq \phi \leq$ 1 x 10¹⁵ ions/cm².

- 14. (New) The method according to claim 12 wherein the ions include H^+ , He^+ , C^+ , N^+ , Ne^+ , Na^+ , N_2^+ , O_2^+ , Ar^+ , Kr^+ , and Xe^+ .
- 15. (New) The method according to claim 6 wherein the irradiating at least a portion of a surface of a polymeric material comprises irradiating with ions at a dose (ϕ) of $1 \times 10^{12} \le \phi \le 1 \times 10^{16} \ ions/cm^2$.