Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica

Informe Nº 1: Amplificadores discretos

Emerson Warhman C.I. 25.795.480 7 de enero de 2025

Índice

1.	Metodología	2
	1.1. Amplificador de potencia	2
	1.2. Etapa diferencial	5
	1.3. Etapa impulsora	9
	1.4. Amplificador multietapas	10
	1.5. Respuesta en frecuencia	12
2.	Simulaciones	15
	2.1. Práctica N° 4	25
	2.1.1. Puntos estaticos de operación amplificador multietapas	25
	2.1.2. Respuesta en frecuencia amplificador multietapas	25
	2.1.3. Respuesta en frecuencia amplificador multietapas sin condensadores de acople	25
3.	Análisis de resultados	28
1	Conclusiones	29

1. Metodología

Se estudiará el comportamiento de cada etapa por separado del circuito base, el circuito completo, la respuesta en frecuencia, al circuito realimentado.

Figura 1: Circuito base

1.1. Amplificador de potencia

En primer lugar identificamos la etapa del amplificador de potencias en el diagrama del amplificador multietapas, la cual es la que contiene a los transistores Q4, Q5 y Q6. Dicha etapa se muestra en la figura 2.

Figura 2: Etapa del amplificador de potencia

Ahora procedemos a calcular los puntos estáticos de operación, para ello tomamos los capacitores como circuitos abiertos, ya que estamos trabajando en DC y empezamos a calcular las corrientes en el transistor Q4.

Asumiremos que las corrientes de base I_{bQ5} e I_{bQ6} son muy pequeñas en comparación con la corriente I_{R17} por tanto la tomaremos como despreciables.

Ahora aplicando LCK en el multiplicador de voltaje (Q_4) :

$$I_{RV1} + I_{cQ4} = I_{R17} (1)$$

Si ahora asumimos I_bQ4 despreciable:

$$I_{RV1} = \frac{V_{BEQ4}}{XR_{V1}} \tag{2}$$

Aplicando LVK tenemos:

$$V_{CEQ4} = I_{RV1} * R_v 1 \tag{3}$$

Usando (2) y (3):

$$V_{CEQ4} = \frac{V_{BEQ4}}{X * R_{V1}} * R_{V!}$$

$$V_{CEQ4} = \frac{V_{BEQ4}}{X}$$
(4)

Debido a que el amplificador es de clase AB el voltaje V_{CEQ4} tiene que ser dos veces el voltaje base emisor V_{be} para los transistores Q5 y Q6 estén lo más cerca posible de la zona activa y se pueda reducir el efecto crossover de la salida.

Aplicando LVK entre las dos referencias tenemos:

$$10V - R_{17} * I_{17} - 2V_{beQ4} - R_{12} * I_{17} + 10V = 0$$

despejando I_{17} :

$$I_{17} = \frac{20 - 2V_{beQ4}}{R_{17} + R_{12}} \tag{5}$$

Usando (1), (2) y (5) tenemos:

$$I_{cQ4} = \frac{20 - 2V_{beQ4}}{R_{17} + R_{12}} - \frac{2V_{beQ4}}{R_{V1}} \tag{6}$$

Usando la ecuacion (6) y los datos:

 $V_{beQ4} = 0.62V$

 $R_{17} = R_{12} = 22k\Omega$:

 $R_{V1} = 10k\Omega$

$$I_{cQ4} = \frac{20 - 2*0,62V}{22k\Omega + 22k\Omega} - \frac{2*0,62V}{10k\Omega}$$

$$I_{cQ4} = 302,36\mu A$$

Tomando $hfe_{Q4}=230$

$$I_{bQ4} = I_{cQ4}/hfe \tag{7}$$

$$I_{bO4} = 1.31 \mu A$$

$$V_{ceQ4} = 2 * 0.62V = 1.24V$$

Ahora, volviendo a despreciar las corriente de base y aplicando LVK en la malla con los transistores

$$V_{ceQ4} - V_{beQ5} - I_{eQ5} * (R_{13} + R_{14}) - V_{beQ6} = 0$$

despejando I_{eO5}

$$I_{eQ5} = \frac{V_{ceQ4} - V_{beQ5} - V_{beQ6}}{R_{13} + R_{14}} \tag{8}$$

Tomando $V_{beQ5} = V_{beQ4} = 0.62 V$ y $V_{beQ6} = 0.55 V$, entonces:

$$I_{eQ5} = \frac{1,24V - 0,62V - 0,55V}{10\Omega + 10\Omega}$$

$$I_{eQ5} = I_{eQ6} \approx I_{cQ5} \approx I_{cQ6} = 350 \mu A$$

Basado en las I de emisor ahora calulamos las corrientes de base, asumiendo que $hfe_{Q5}=230$ y $hfe_{Q6}=150$

$$I_{bQ5} = I_{cQ5}/hfe = 350\mu A/230 = 1,52\mu A$$

$$I_{bQ6} = I_{cQ6}/hfe = 350\mu A/150 = 2{,}33\mu A$$

Se asume que $V_{ceQ5} = V_{ceQ6}$, por tanto:

$$10 - 2V_{ceQ5} - (R_{14} + R_{13}) * I_{eQ5} + 10 = 0$$

despejando V_{ceQ5} tenemos:

$$V_{ceQ5} = V_{ceQ6} = \frac{20 - (R_{14} + R_{13}) * I_{eQ5}}{2}$$
(9)

por tanto

$$V_{ceQ5} = V_{ceQ6} = \frac{20V - (10 + 10)\Omega * 350\mu A}{2} = 9.99V$$

El resumén de los puntos estáticos de operación del amplificador de potencia se muestran en la tabla 1.

Transistor	I_c	V_{ce}
Q4	$302,36\mu A$	1,24V
Q5	$350\mu A$	9,99V
Q6	$350\mu A$	9,99V

Cuadro 1: Puntos estáticos de operación del amplificador de potencia

A continuación, en la figura 3 se muestran los puntos estáticos de operación del amplificador de potencia.

Figura 3: Puntos estáticos de operación del amplificador de potencia

Ahora, para la parte dinámica, calculamos los parámetros del transistor utilizando $V_t=26mV$ y $V_A=100V$

$$gm = \frac{I_c}{V_t} = \frac{0.35mA}{26mV}$$

$$gm = 13,46mS$$

$$R_{\pi} = \frac{\beta}{gm} = \frac{230}{13,46 \times 10^{-3}}$$

$$R_{\pi} = 17.07k\Omega$$

$$R_o = \frac{V_A}{I_c} = \frac{100V}{0,35mA} = 285,71k\Omega$$

Obtenidos los parámetros dinámicos podemos calcular la ganancia del amplificador hacinedo un análisis de las corrientes de entrada y salida del circuito, obteniendo la expresión:

$$A = \frac{(1 + gmr_{\pi 5})(r_{13} + r_l)r_L}{[r_{\pi 5} + (1 + gmr_{\pi 5})(r_{13} + r_L)](r_{13} + r_L)}$$

$$A = 0.96$$

Ahora, para calcular la impedancia de entrada:

$$Z_i = r_{17} \parallel r_{12} \parallel [r_{\pi 5} + (1 + gmr_{\pi 5})(r_{13} + r_l)]$$

$$Z_i = 10,77K\Omega$$

Mientras que la impedancia de salida viene dada por la expresión:

$$Z_o = r_{13} + \frac{r_{\pi 5} + r_{17}/2}{1 + gmr_{\pi 5}}$$

$$Z_o = 132\Omega$$

El modelo dinámico del amplificador de potencia se muestra en la tabla 2.

parámetro	valor
Z_i	$10,77k\Omega$
Z_o	132Ω
A	0,96

Cuadro 2: Modelo dinámico del amplificador de potencia

en la figura 4 se muestra la ganancia del amplificador de potencia. Se puede observar que el voltaje de entrada y de salida se superponen, ya que la ganancia es aproximadamente 1.

En la figura 5 se muestra el efecto crossover del amplificador de potencia.

1.2. Etapa diferencial

En primer lugar identificamos la etapa diferencial en el diagrama del amplificador multietapas, la cual es la que contiene a los transistores Q_1 y Q_2 . Dicha etapa se muestra en la figura 6.

Ahora procedemos a calcular los puntos estáticos de operación, para ello tomamos los capacitores como circuitos abiertos, ya que estamos trabajando en DC y empezamos a calcular las corrientes en los transistores.

Asumiremos que la corriente que pasa por $R5\ \mathrm{es}\ \mathrm{0}.$

Para calcular la corriente de base se usará el teorema de thevenim para sustituir R_1 y R_2 por una fuente y una resistencia que pasa por la base de Q_1 .

Para calcular el valor de la resistencia equivalente de thevenim:

$$R_{th} = R_1//R_2$$

cómo $R_1=R_2$

$$Rth = \frac{R_1}{2} = 50k\Omega$$

Ahora, calculamos el valor de la fuente de thevenim aplicando un divisor de voltaje:

Figura 4: Ganancia del amplificador de potencia

$$V_{th} = \frac{R_2(V_{cc} - V_{EE})}{R_1 + R_2}$$

$$V_{th} = 10V$$

Ahora aplicando LVK en la malla B-E (Q_4) :

$$V_{th} - R_{th}I_b - V_{be} - R_7(I_e) = 0$$

despejando \mathcal{I}_b , tenemos

$$I_{b} = \frac{V_{th} - V_{be}}{R_{th} + (\beta + 1)R_{7}}$$

usando un $\beta=230$ entonces

$$I_b = 2,65 \mu A$$

Ahora, para calcular I_c :

$$I_c = \beta I_b = 0,62mA$$

Y por último, para calcular V_{ce} aplicamos LVK:

$$Vcc - I_c R_3 - I_e R_4 - V_{ce} - V_{ee} = 0$$

Despejando V_{ce} y aproximando $I_c pprox I_e$, tenemos

$$V_{ce} = V_{cc} - V_{ee} - I_c(R_4 + R_3)$$

$$V_{ce} = 7,79V$$

Como el circuito es simétrico, los voltajes y corrientes I_b , I_e , I_c , V_{ce} y V_{be} son iguales. El resumén de los puntos estáticos de operación en la etapa diferencial se muestra en la tabla 3. Ahora, para la parte dinámica, calculamos los parámetros del transistor utilizando $V_t=26mV$ y $V_A=100V$

$$gm = \frac{I_c}{V_t} = \frac{0,62mA}{26mV}$$

$$gm = 23,85 \times 10^{-3}$$

Figura 5: Efecto crossover del amplificador de potencia

Transistor	I_c	V_{ce}
Q_1	0,62mA	7,79V
Q_2	0,62mA	7,79V

Cuadro 3: Puntos estáticos de operación en la etapa diferencial

$$R_{\pi} = \frac{\beta}{gm} = \frac{230}{23,85 \times 10^{-3}}$$

$$R_{\pi} = 9,6k\Omega$$

$$R_o = \frac{V_A}{I_c} = \frac{100V}{0,62mA} = 161,29k\Omega$$

Resumimos los parámetros dinámicos de los transistores de la etapa diferencial en la tabla 4.

Transistor	R_{π}	gm	R_o
Q_1	$9,6k\Omega$	23,85mS	$161,29k\Omega$
Q_2	$9,6k\Omega$	$23,\!85mS$	$161,29k\Omega$

Cuadro 4: Parámetros dinámicos de los transistores de la etapa diferencial

Tomando el amplificador en su modo común, en primer lugar calculamos la impedancia de entrada, analizando el circuito obtenemos la expresión:

$$Z_i = R_1 ||R_2|| (R_\pi + (1 + gmR_\pi)R_4)$$

sustituyendo los valores tenemos:

$$Z_i = 49K\Omega$$

Pero en modo cómun las impedancias de entrada están en paralelo y son las mismás, por lo tanto:

$$Z_c = 24,5K\Omega$$

Ahora la impedancia de salida es:

$$Z_o = Z_{cc} \parallel r_3$$

Figura 6: Etapa diferencial del amplificador

donde

$$Z_{ccQ1} = \frac{r_{\pi} + r_{1}/2 + \left[(1 + gmr_{\pi}) + \frac{r_{\pi} + r_{1}/2}{R_{o}} \right] r_{4}}{\frac{r_{\pi} + r_{1}/2 + r_{4}}{r_{o}}}$$
$$Z_{ccQ1} = 7,63M\Omega$$

pero, como $Z_{ccQ1}\gg r_3$ entonces:

$$Z_0 = r_3 = 4.7k\Omega$$

Ahora la ganancia es:

$$A_{c} = -\frac{gmR_{\pi}R_{3}}{R_{\pi} + (1 + gmR_{\pi})R_{4}}$$
$$A_{c} = 0,31$$

Ahora analizamos en modo diferencial:

$$Z_d = R_1 ||R_2|| (2R_\pi + (1 + gmR_\pi)R_5)$$

$$Z_d = 43,99k\Omega$$

 Z_o es la misma que en modo común:

$$Z_0 = 4,9K\Omega$$

Por último calculamos la ganancia en modo diferencial:

$$A_{d} = -\frac{gmR_{\pi}R_{3}}{2R_{\pi} + (1 + gmR_{\pi})R_{5}}$$

$$A_{d} = -2,96$$

Los datos del modelo dinámico de la etapa diferencial se muestran en la tabla 5 para el modo común y en la tabla 6 para el modo diferencial.

parámetro	valor
Z_i	$24,5k\Omega$
Z_o	$4,7k\Omega$
A	0,31

Cuadro 5: Modelo dinámico de la etapa diferencial modo común

parámetro	valor
Z_i	$43,99k\Omega$
Z_o	$4,7k\Omega$
A	-2,96

Cuadro 6: Modelo dinámico de la etapa diferencial modo diferencial

1.3. Etapa impulsora

Identificamos la etapa impulsora en el diagrama del amplificador multietapas, la cual es la que contiene al transistor Q_3 . Dicha etapa se muestra en la figura 11.

aplicamos thevenim de manera que:

$$R_{th} = R15||R10$$

$$R_{th} = 29k\Omega$$

$$V_{th} = \frac{R15}{R15 + R10} (V_{cc} - V_{ee})$$

$$V_{th} = 2,61V$$

Aplicando LVK en la malla del emisor:

$$V_{th} - V_{be} = R11\beta I_b + R_{th}I_b$$

$$Ib = \frac{V_{th} - V_{be}}{R11\beta + R_{th}}$$

usando un $\beta=230$

$$I_b = 10,03 \mu A$$

$$Ic = \beta I_b$$

$$I_c = 2.37mA$$

Aplicando LVK:

$$V_{ce} = V_{cc} - V_{ee} - I_e R 11 - I_c R 16$$

$$V_{ce} = 2,27V$$

La tabla 8 presenta los puntos estáticos de operación en la etapa impulsora.

La figura 12 muestra la simulación de los puntos estáticos de operación en la etapa impulsora.

Haciendo el analisis AC, tenemos

$$gm = \frac{I_c}{V_t} = 0.09$$

$$R_{\pi} = \frac{\beta}{qm} = 2523$$

$$R_o=\frac{V_A}{I_c}=\frac{100V}{2,37mA}=42,20k\Omega$$

Figura 7: Simulación puntos estáticos etapa diferencial

Modo	V_i	δV_i
modo diferencial	2V	100mV
modo común	$12,\!8V$	0,4V

Cuadro 7: Límite de máxima excursión

La impedancia de entrada es:

$$Z_i = R15||R10||r_{\pi}$$
$$z_i = 2.31k\Omega$$

Para calcular la impedancia de salida, aplicamos la ecuación:

$$Z_o = Z_{cc} \parallel r_{16}$$

pero, como $Z_{ccQ1} \gg r_3$ entonces:

$$Z_o = r_{16}$$
$$Z_o = 6.8k\Omega$$

para calcular la ganancia tenemos:

$$A = \frac{gmr_{\pi}R16}{r_{\pi}} = 619,90$$

La figura 13 muestra la simulación de la ganancia en la etapa impulsora. La tabla 9 presenta el modelo dinamico de la etapa impulsora.

1.4. Amplificador multietapas

Los puntos de de operación del amplificador multietapas son todos aquellos que se calcularon para las etapas individuales. Mientras que en el modelo dinámico para las impedancias de entrada se utilizan las de la etapa diferencial tanto en modo común como en modo diferencial. Por otro lado, la impedancia de salida es la misma que la de la etapa de potencia.

Figura 8: Simulación ganancia etapa diferencial modo común

Transistor	I_c	V_{ce}
Q_3	$2,\!37mA$	2,27V

Cuadro 8: Puntos estáticos de operación en la etapa impulsora

Para encontrar la ganancia en el modo diferencial se analiza analiza todo el circuito, puediendo dividir la expresión en distintas partes de forma que:

$$A_d = A_1 A_2 A_3$$

donde A_1 es la ganancia desde la etapa diferencial, que viene dada por:

$$A_{1} = \frac{-gmr_{\pi 1}R_{3} \parallel r_{15} \parallel r_{10} \parallel r_{\pi 3}}{r_{\pi 1} + (1 + gmr_{\pi 1})(r_{5} + \frac{r_{\pi 2}}{1 + gmr_{\pi 2}})}$$
$$A_{1} = -1.03$$

 A_2 es la ganancia vista desde la etapa impulsora, que viene dada por:

$$A_{2} = \frac{-gmr_{\pi 3}R_{16} \parallel r_{17} \parallel r_{12} \parallel [r_{\pi 5} + (1 + gmr_{\pi 5})(r_{13} + r_{l})]}{r_{\pi 3}}$$

$$A_2 = -383,52$$

 A_3 es la ganancia vista desde la etapa potencia, que viene dada por:

$$A_3 = \frac{(1 + gmr_{\pi 5})(r_{13} + r_l)r_l}{[r_{\pi 5} + (1 + gmr_{\pi 5})(r_{13} + r_l)](r_{13} + r_l)}$$

 $A_3 = 0.96$

Por lo que la ganancia diferencial es:

$$A_d = 1,03 \times 383,52 \times 0,96 = 1,03 \times 383,52 \times 0,96 = 379,22$$

La tabla 11 presenta el modelo dinámico del amplificador multietapas en modo diferencial.

La figura 14 muestra la simulación del amplificador multietapas en modo diferencial.

Para encontrar el valor de la ganancia en el modo común se utiliza la misma fórmula que en el modo diferencial pero se reemplaza el valor de A_1 por:

$$A_1 = \frac{-gmr_{\pi 1}R_3 \parallel r_{15} \parallel r_{10} \parallel r_{\pi 3}}{r_{\pi 1} + (1 + gmr_{\pi_1})r_4}$$

Figura 9: Simulación ganancia etapa diferencial modo diferencial

Transistor	R_{π}	gm	R_o
Q_3	$2,52k\Omega$	0,09S	$42,20k\Omega$

Cuadro 9: Parámetros dinámicos de la etapa impulsora

$$A_1 = -0.11$$

Por lo tanto, la ganancia en modo común es:

$$A_c = A_1 A_2 A_3 = 0.11 \times 383.52 \times 0.96 = 0.11 \times 383.52 \times 0.96 = 40.05$$

La tabla 12 presenta el modelo dinámico del amplificador multietapas en modo común. La figura 15 muestra la simulación del amplificador multietapas en modo común.

1.5. Respuesta en frecuencia

En primer lugar se identifican los capacitores de baja frecuencia, los cuales son C1, C2, C3, C5, C6 y C7. para obtener las frecuencias de corte usaremos:

$$\omega_{ci} = \frac{1}{C_i R_{eqCi}}$$

Para C_1 tenemos:

$$\omega_{C1} = \frac{1}{C_1*R_{eqC1}} = \frac{1}{42K\times 10^{-6}} = 23{,}34rad/s$$

Para C_2 tenemos:

$$\omega_{C2} = \frac{1}{C_2 * R_{eaC2}} = \frac{1}{10K \times 10^{-6}} = 140{,}34rad/s$$

Para C_3 tenemos:

$$\omega_{C3} = \frac{1}{C_3*R_{eqC3}} = \frac{1}{10K\times 10^{-6}} = 23{,}34rad/s$$

Para C_5 tenemos:

Figura 10: Límite de máxima excursión etapa diferencial modo diferencial

parámetro	valor
Z_i	$2,31k\Omega$
Z_o	$6,8k\Omega$
A	619,90

Cuadro 10: Modelo dinámico de la etapa impulsora

$$\omega_{C5} = \frac{1}{C_5 * R_{eqC5}} = \frac{1}{10K \times 10^{-6}} = 0.84 rad/s$$

Para C_6 tenemos:

$$\omega_{C6} = \frac{1}{C_6*R_{eqC6}} = \frac{1}{10K\times 10^{-6}} = 442,6rad/s$$

Para C_7 tenemos:

$$\omega_{C7} = \frac{1}{C_7*R_{eaC7}} = \frac{1}{10K\times 10^{-6}} = 65{,}34rad/s$$

sabiendo que:

$$f = \frac{\omega}{2\pi} = \frac{1}{T}$$

La frecuencia de corte inferior es la mayor frecuencia entre todos los valores obtenidos, por lo tanto

$$f_L = 70,414Hz$$

La figura 16 muestra el modelo dinámico del amplificador base. Cuyos parámetros son los mostrados en la tabla 14.

Ahora calculamos los parámetros del amplificador realimentado negativamente. para la impedancia de entrada Z_i tenemos:

$$Z_i = R_s = 3.3k\Omega$$

Y la impedancia de salida viene dada por la expresión:

$$Z_o = \frac{R_o}{A/(1 + \frac{R_f}{R})}$$

Por lo tanto el valor de Z_o es:

$$Z_o = 0.137\Omega$$

El valor de la ganancia de la realimentación negativa es:

Figura 11: Etapa impulsora del amplificador

parámetro	valor
Z_i	$43,99k\Omega$
Z_o	132Ω
A	379,22

Cuadro 11: Modelo dinámico amplificador multietapas en modo diferencial

$$A_{fb}=-\frac{R_f}{R_s}=-\frac{11k\Omega}{3{,}3k\Omega}=-3{,}33$$

Y debido a que $A=>\infty$ en el amplificador base, el valor de la ganancia de la realimentación negativa es:

$$A = -\frac{1}{\beta}$$

despejando β de la expresión anterior, tenemos:

$$\beta = -\frac{1}{A} = -\frac{1}{3,33} = 0,333$$

Para encontrar las frecuencias de corte inferior utilizamos la expresión:

$$f_{Lf} = \frac{f_{Lb}}{1 + A_b}$$

entonces:

$$f_{Hf} = \frac{69,\!61 Hz}{1+49,\!54} = 1,\!37 Hz$$

Para hallar la frecuencia de corte superior utilizamos la expresión:

$$f_{Hf} = f_{Hb} \cdot (1 + A_b)$$

Por lo tanto:

$$f_{Hf} = 11kHz \cdot (1 + 49,54) = 555,94KHz$$

Figura 12: Simulación puntos estáticos etapa impulsora

parámetro	valor
Z_i	$24,5k\Omega$
Z_o	132Ω
A	40,05

Cuadro 12: Modelo dinámico amplificador multietapas en modo común

Ahora, para el amplificador realimentado positivamente, procedemos a calcular la ganancia:

$$A_{fb} = 1 + \frac{R_f}{R_s} = 1 + \frac{11k\Omega}{3,3k\Omega} = 4,33$$

La impedancia de entrada con realimentación positiva es:

$$Z_{i} = \frac{Z_{d} \cdot A_{b}}{1 + \frac{R_{f}}{R_{s}}} = \frac{43,99k\Omega \cdot 300}{1 + \frac{11k\Omega}{3,3k\Omega}} = 3,05M\Omega$$

Y la impedancia de salida con realimentación positiva es igual a la impedancia de salida de realimentación negativa:

$$Z_o = 0.137\Omega$$

2. Simulaciones

La figura 17 muestra el circuito del amplificador realimentado negativamente construido en multisim.

Figura 13: Simulación ganancia etapa impulsora

Capacitor	Velocidad angular	Frecuencia
C1	23.34 rad / s	3.401 Hz
C2	140.34 rad / s	21.002 Hz
C3	23.34 rad / s	3.561 Hz
C5	0.84 rad / s	0.14 Hz
C6	442.6 rad / s	70.414 Hz
C7	65.34 rad / s	9.013 Hz

Cuadro 13: Frecuencia de corte de los capacitores de baja frecuencia

Parámetro	Valor
Z_d	$43,99 [k\Omega]$
Z_o	12,13 $[\Omega]$
A_b	300
f_L	$69,61 \ [Hz]$
f_H	11,00 [kHz]

Cuadro 14: Valores de los parámetros dinámicos del amplificador Realimentado

Figura 14: Simulación amplificador multietapas en modo diferencial

Figura 15: Simulación amplificador multietapas en modo común

Figura 16: Modelo dinámico del amplificador base

Figura 17: Circuito amplificador con realimentación negativa

En la figura 18 podemos observar una ganancia de aproximadamente 3,3 que coincide con la ganancia de los cálculos.

Figura 18: Ganancia de la realimentación negativa

En la figura 19 podemos observar un aumento en el ancho de banda con realimentación negativa. Podemos observar que las frecuencias de corte coinciden con los cálculados previamente.

Figura 19: Respuesta en frecuencia del amplificador realimentado negativamente

La figura 20 muestra la construcción del circuito del amplificador realimentado positivamente.

La ganancia de este amplificador se puede observar en la figura del 21 y podemos observar que coincide con la ganancia calculada anteriormente de 4.33. Sin embargo podemos observar que despues de un tiempo la ganancia cambia y toma la forma mostrada en la figura 22.

Figura 20: Circuito de realimentación positiva sin condensador

Figura 21: Ganancia del circuito de realimentación positiva sin condensador

Figura 22: Ganancia del circuito de realimentación positiva sin condensador despues de unos segundos

Podemos observar la respuesta en frecuencia del amplificador realimentado positivamente en la figura 23.

Figura 23: Respuesta en frecuencia del amplificador con Realimentación positiva sin condensador

Amplificador realimentado positiva y negativamente

La figura 24 muestra el circuito del amplificador con realimentación positiva y negativa con condensador.

Figura 24: Circuito con realimentación positiva y negativa

La ganancia este amplificador se puede observar en la figura 25.

Figura 25: Ganancia con realimentación positiva y negativa

La respuesta en frecuencia del amplificador se puede observar en la figura 26.

Figura 26: Circuito con realimentación positiva y negativa

2.1. Práctica N° 4

2.1.1. Puntos estaticos de operación amplificador multietapas

Transistor	Vc[V]	$\Delta Vc[V]$	Vb[V]	$\Delta V b[V]$	Ve[V]	$\Delta Ve[V]$	$Re[\Omega]$	$\Delta Re[\Omega]$
Q1	7.2	0.4	-0.016	0.002	-0.6	0.04	4700	235
Q2	7.6	0.4	0.048	0.004	-0.64	0.04	4700	235
Q3	7.6	0.4	8	1	9	1	6800	340
Q4	0.68	0.04	0	0.1	-0.56	0.04	5000	500
Q5	10	1	0.6	0.1	0.1	0.02	20	1
Q6	-10	1	-0.5	0.1	0.2	0.02	20	1

Cuadro 15: Mediciones de voltaje amplificador multietapas en respuesta en frecuencia

Parámetro	Transistor	Valor Teórico	Medición	Incertidumbre	Error Absoluto	Error Relativo
I_c	Q1	0.00062	0.000595745	0.000231084	0.00002426	3.91 %
I_c	Q2	0.00062	0.000510638	0.000230574	0.00010936	17.64 %
I_c	Q3	-0.00237	-0.002588235	0.000204533	0.00021824	9.21 %
I_c	Q4	3.02E-04	0.000112	2.42784E-05	0.00019036	62.96 %
I_c	Q5	3.50E-04	0.005	0.001436141	0.00465000	1328.57 %
I_c	Q6	3.50E-04	0.005	0.001436141	0.00465000	1328.57 %
V_{ce}	Q1	7.79	7.8	0.401995025	0.01000000	0.13 %
V_{ce}	Q2	7.79	8.24	0.401995025	0.45000000	5.78 %
V_{ce}	Q3	2.27	1.4	1.077032961	0.87000000	38.33 %
V_{ce}	Q4	1.24	1.24	0.056568542	0.00000000	0.00 %
V_{ce}	Q5	9.99	9.9	1.00019998	0.09000000	0.90 %
V_{ce}	Q6	-9.99	-10.2	1.00019998	0.21000000	2.10 %

Cuadro 16: Puntos estáticos de operación amplificador multietapa para respuesta en frecuencia

2.1.2. Respuesta en frecuencia amplificador multietapas

Figura 27: Respuesta en frecuencia amplificador multietapas acoplado por condensadores

2.1.3. Respuesta en frecuencia amplificador multietapas sin condensadores de acople

N	Vi[V]	$\Delta Vi[V]$	Vo[V]	$\Delta Vo[V]$	T	ΔT
1	0.0032	0.0004	0.8	0.1	0.001	0.00004
2	0.0032	0.0004	0.56	0.04	8.4E-05	0.002
3	0.0032	0.0004	0.48	0.04	7.20046E-05	0.002
4	0.0032	0.0004	0.56	0.04	0.014400922	0.0004
5	0.0032	0.0004	0.36	0.04	0.0330033	0.001
6	0.0032	0.0004	0.1	0.04	0.107991361	0.004
7	0.0032	0.0004	0.6	0.04	0.011599582	0.0004
8	0.0032	0.0004	0.76	0.04	0.005	0.0002
9	0.0032	0.0004	0.68	0.04	0.00016	0.00001
10	0.0032	0.0004	0.6	0.04	0.0001	0.000004
11	0.0032	0.0004	0.48	0.04	7E-05	0.0000024
N	A	ΔA	A[dB]	$\Delta A[dB]$	f[Hz]	$\Delta f[Hz]$
1	250	44.19417382	47.95880017	1.535462866	1000	40
2	175	25.19455546	44.86076097	1.250497876	11904.76	283446.6213
3	150	22.53469547	43.52182518	1.304892519	13888	385753.088
4	175	25.19455546	44.86076097	1.250497876	69.44	1.92876544
5	112.5	18.81499153	41.02305045	1.452666133	30.3	0.91809
6	31.25	13.09613642	29.89700043	3.640051059	9.26	0.3429904
7	187.5	26.5625	45.46002544	1.230501032	86.21	2.97286564
8	237.5	32.2117627	47.51327228	1.178053962	200	8
9	212.5	29.35670973	46.54717869	1.199948898	6250	390.625
10	187.5	26.5625	45.46002544	1.230501032	10000	400
11	150	22.53469547	43.52182518	1.304892519	14285.71	489.7956245

Cuadro 17: Mediciones respuesta en frecuencia amplificador multietapas acoplado por condensadores

Parámetro	Valor Teórico	Medición	Incertidumbre	Error Absoluto	Error Relativo
F_L [Hz]	70.41	69.44	1.92876544	0.97000000	1.38 %
H_H [Hz]	10890	11904.76	283446.6213	1014.76000000	9.32 %

Cuadro 18: Medición de frecuencias de corte

Figura 28: Superposición de respuesta en frecuencia amplificador multietapas acoplado por condensadores con su simulación

N	Vi[V]	$\Delta Vi[V]$	Vo[V]	$\Delta Vo[V]$	T	ΔT
1	1	0.1	0.026	0.002	0.001	0.00004
2	1	0.1	0.0072	0.0004	0.006024096	0.0002
3	1	0.1	0.01	0.001	0.003003003	0.0001
4	1	0.1	0.015	0.001	0.002304147	0.0001
5	1	0.1	0.024	0.002	0.001499993	0.0001
6	1	0.1	0.034	0.002	0.00076	0.00004
7	1	0.1	0.052	0.004	0.0005	0.00002
8	1	0.1	0.09	0.01	0.00025	0.00001
9	1	0.1	0.14	0.01	0.0001	0.000004
10	1	0.1	0.15	0.01	5.99988E-05	0.000004
11	1	0.1	0.15	0.01	0.00005	0.000002
12	1	0.1	0.15	0.01	0.0001	0.0000014
N	A	ΔA	A[dB]	$\Delta A[dB]$	f[Hz]	$\Delta f[Hz]$
1	0.026	0.003280244	-31.70053304	1.095839863	1000	40
2	0.0072	0.00082365	-42.85335007	0.99363008	166	5.5112
3	0.01	0.001414214	-40	1.228370293	333	11.0889
4	0.015	0.001802776	-36.47817482	1.043914015	434	18.8356
5	0.024	0.0031241	-32.39577517	1.130649446	666.67	44.44488889
6	0.034	0.003944617	-29.37042166	1.007720715	1315.79	69.25213296
7	0.052	0.006560488	-25.67993313	1.095839863	2000	80
8	0.09	0.013453624	-20.91514981	1.298407708	4000	160
9	0.14	0.017204651	-17.07743929	1.067412113	10000	400
10	0.15	0.018027756	-16.47817482	1.043914015	16667	1111.155556
11	0.15	0.018027756	-16.47817482	1.043914015	20000	800
12	0.15	0.018027756	-16.47817482	1.043914015	10000	14

Cuadro 19: Mediciones respuesta en frecuencia amplificador multietapas sin condensadores de acople

Figura 29: Respuesta en frecuencia amplificador multietapas acoplado sin condensadores

- 3. Análisis de resultados
- 4. Conclusiones