Mathematischer Vorkurs

Robin Heinemann

October 23, 2016

Contents

1 Messwert und Maßeinheit			d Maßeinheit	4			
	1.1	Beispiel		4			
	1.2	Bezeichur	ngen	5			
	1.3	Maßeinhe	iten	5			
		1.3.1 Be	espiel:	5			
		1.3.2 SI	-Einheiten	5			
	1.4		es Einheitensystem der Teilchenphysik	7			
			${f rundlage}$	7			
			türliches Einheitensystem	7			
	1.5		Messgenauigkeit	7			
2	Zeichen und Zahlen 9						
	2.1	Symbole		9			
		·	ımmenzeichn	9			
				11			
				11			
	2.2			11			
				12			
				13			
			v 0	13			
				13			
				13			
			1 1	14			
3	Folgen und Reihen 14						
	3.1			14			
	-			$\frac{14}{14}$			
				14			

	3.2	3.1.3 Frage 15 3.1.4 Beschränktheit 15 3.1.5 Monotonie 15 3.1.6 Konvergenz 16 Reihen (unendliche Reihen) 16 3.2.1 Bemerkung 16 3.2.2 Rechenregeln für konvergente Reihen 17 3.2.3 Beispiel 17 3.2.4 Absolute Konvergenz 17
4	TOE	00 what was done after this? (Funktionen? (only?)) 18
5	Fun	ktionen 18
	5.1	Normal-Hyperbel
	F 0	5.1.1 Physik-Beispiel
	5.2	kubische Parabel
		5.2.1 Physik-Beispiel
	5.3	$y = ax^{-2}$
	0.0	5.3.1 Physik-Beispiel
	5.4	Symmetrieeigenschaften der Potenzfunktionen
	5.5	Potenzfunktionen als "Bausteine" in susammengesetzten Funk-
		tionen
	5.6	Rationale Funktionen
		5.6.1 Beispiel
	5.7	Trigonometrische Funktionen
		5.7.1 TODO Table Formula?
		5.7.2 TODO Veranschaulichung am Einheitskreis 20
		5.7.3 Tangens/Cotangens
	5.8	5.7.4 Additions theoreme
	5.6	5.8.1 Rechenregeln
		5.8.2 Beispiel radioaktiver Zerfall
	5.9	Cosinus hyperbolicus
		Sinus hyperbolicus
		Tangens hyperbolicus
	5.12	Cotangens hyperbolicus
	5.13	Wurzelfunktion
		5 13 1 Reisniel 21

6	Funktionen mit Ecken und Sprüngen				
	6.1	Betragsfunktion	22		
	6.2	Heaviside-Stufenfunktion	22		
		6.2.1 TODO Graphik	22		
		6.2.2 Beispiel	22		
	6.3	"symmetrischer Kasten" der Breite $2a$ und der Höhe $\frac{1}{2a}$ (Di-			
		rak Delta Funktion)	22		
		6.3.1 TODO Graphik	22		
7	Verl	kettung von Funktionen	22		
	7.1	Beispiel	23		
	7.2	Spiegelsymmetrie (Siegelung an der y-Achse, d.h. $x \to -x$).	23		
		7.2.1 Beispiel	23		
		7.2.2 Zerlegung	24		
8	Eige	enschaften von Funktionen	24		
O	8.1	Beschränktheit	24		
	0.1	8.1.1 Beispiel			
	8.2	Monotonie	24		
	0.2	8.2.1 Beispiel	25		
^		-	٥.		
9		kehrfunktionen	25		
	9.1	Graph der Umkehrfunktion	25		
		9.1.1 Beispiel $y = x^2$	25		
		9.1.2 Graphisch	25		
10	wha	at after this?	2 6		
11	Inte	egral und Differenzialrechnung	2 6		
		Die Kunst des Integrierens	26		
		Ableiten über Umkehrfunktion	26		
		Integrationsregeln			
		11.3.1 Lineare Zerlegung			
		11.3.2 Substitutionsregel	27		
		11.3.3 Partielle Integration	28		
		11.3.4 Weitere Integrationstricks	29		
	11.4	Uneigentliche Integrale	29		
		11.4.1 Undedliches Integralintervall	29		
	11.5	Cauchy Hauptwert	30		
		11.5.1 Unbeschränkter Integrand	30		

	11.6	Integralfunktionen	30
	11.7	Gamma-Funktion	31
		11.7.1 Definition	31
12		toren	31
	12.1	\mathbb{R}^3	31
		12.1.1 Orthonormal	31
	12.2	Skalarprodukt und Kronecker-Symbol	31
		12.2.1 Motivation: mechanische Arbeit	31
		12.2.2 Definition	31
		12.2.3 Spezialfälle	31
		12.2.4 Betrag:	32
		12.2.5 Eigenschaften	32
		12.2.6 Orthonormalbasis der kartesischen Koordinatensystem	32
		12.2.7 Kronecker Symbol	32
		12.2.8 Komponentendarstellung des Skalarprodukts $\ \ldots \ \ldots$	33
13	Mat	rizen	33
	13.1	Determinante	33
		Homogenes Gleichungssystem	33
		Levi Civita Symbol	34
		Vektorprodukt / Kreuzprodukt	34
		Spatprodukt	34
		Geschachteltes Vektorprodukt	34
		13.6.1 Beweis	34
14	miso		35

1 Messwert und Maßeinheit

Zu jeder phys. Größe gehören <u>Messwert</u> und <u>Maßeinheit,</u> d.h. Zahlewert \cdot Einheit

1.1 Beispiel

Geschw. $v = \mathrm{km}\,\mathrm{s}^{-1}$

1.2 Bezeichungen

Abkürzung	Bedeutung
t	time
m	mass
V	velocity
a	acceleration
\mathbf{F}	Force
\mathbf{E}	Energy
T	Temperature
p	momentum
I	electric current
V	potential

Wenn das lateinische Alphabet nicht ausreicht: griechische Buchstaben

$$\alpha,\beta,\gamma,\delta,\Delta,\Gamma,\epsilon,\zeta,\eta,\Theta,\kappa,\lambda,\mu,\nu,\Xi,\pi,\rho,\sigma,\tau,\phi,\chi,\psi,\omega,\Omega$$

1.3 Maßeinheiten

Maßeinheiten werden über Maßstäbe definiert.

1.3.1 Bespiel:

 $1\,\mathrm{m} = \mathrm{Strecke},$ die das Licht in $\frac{1}{299792458}\mathrm{s}$ zurücklegt.

1.3.2 SI-Einheiten

Internationaler Standart (außer die bösen Amerikaner :D)

Größe	Einheit	Symbol
Länge	Meter	m
Zeit	Sekunden	\mathbf{S}
Masse	Kilogramm	kg
elektrischer Strom	Ampere	A
Temperatur	Kelvin	K
Lichstärke	Candela	cd
ebener Winkel	Radiant	rad
Raumwinkel	Steradiant	sr
Stoffmenge	Mol	mol

1. Radiant Kreisumfang $U=2\pi r$ Bogenmaß $b=\phi r$ Umrechung in Winkelgrad

$$2\pi \operatorname{rad} \stackrel{\wedge}{=} 360^{\circ}$$

$$\frac{WinkelinRadiant}{2\pi} = \frac{WinkelinGrad}{360}$$

2. Steradiant

$$\Omega = \frac{A}{r^2}$$

3. Abgeleitete Einheiten

Gröpe	Einheit	Symbol	Equivalent
Frequenz	Hertz	Hz	1/s
Kraft	Newton	N	${ m kgms^{-2}}$
Energie	Joule	J	N m
Leistung	Watt	W	$\mathrm{Js^{-1}}$
Druck	Pascal	Pa	${ m Nm^{-2}}$
elektrischer Ladung	Coulomb	\mathbf{C}	As
elektrisches Potenzal	Volt	V	$ m JC^{-1}$
elektrischer Wiederstand	Ohm	Ω	$ m VA^{-1}$
Kapazität	Farad	\mathbf{F}	$ m CN^{-1}$
magn. Fluss	Weber	Wb	${ m Vs^{-1}}$

4. Prefix / Größenordungen

Prefix	$\log\{10\}$	Abkürzung
Dezi	-1	d
Zenti	-2	\mathbf{c}
Milli	-3	m
Mikro	-6	μ
Nano	-9	n
Piko	-12	p
Femto	-15	f
Atto	-18	a
Zepta	-21	${f z}$
Yokto	-24	У
Deka	1	D
Hekto	2	h
Kilo	3	k
Mega	6	M
Giga	9	G
Tera	12	${ m T}$
Peta	15	P
Exa	18	\mathbf{E}
Zetta	21	\mathbf{Z}
Yotta	24	Y

1.4 Natürliches Einheitensystem der Teilchenphysik

1.4.1 Grundlage

$$2.9979 \times 10^8 \, \mathrm{m \, s^{-1}}$$

$$\hbar = \frac{h}{2\pi} = 6.5822 \times 10^{-22} \, \mathrm{MeV \, s}$$

betrachte $\frac{\hbar c}{\text{MeV m}} = 197.33 \times 10^{-15}$

1.4.2 natürliches Einheitensystem

h=c=1 In diesem Fall ist \$1/MeV = 197.44 fm In diesem Einheitensystem ist die Einheit von $[Energie]=[Masse]=[L\ddot{a}nge]^{-}1=[Zeit]^{-}1$

1.5 Endliche Messgenauigkeit

z.B. Plancksches Wirkungsquantum

$$\hbar = 1.054\,571\,68(18) \times 10^{-34}\,\mathrm{J\,s}$$

Das bedeutet, dass der Wert von \hbar mit einer Wahrscheinlichkeit von $68\,\%$ zwischen den beiden Schranken liegt

$$1.054\,571\,50 \times 10^{-34}\,\mathrm{J\,s} \le \hbar \le 1.054\,571\,86 \times 10^{-34}\,\mathrm{J\,s}$$

2 Zeichen und Zahlen

2.1 Symbole

Zeichen	Bedeutung
+	plus
	mal
=	gleich
<	ist kleiner als
>	ist größer als
_	Windel zwischen
< > / / / / / / / / / / / / / / / / / /	minus
/	geteilt
\neq	ungleich
\leq	kleiner gleich
\geq	größer gleich
\simeq	ungefähr gleich
\pm	plus oder minus
\perp	steht senkrecht auf
=	ist identisch gleich
⊥ ≡ ≪ ≫	ist klein gegen
>>	ist groß gegen
∞	größer als jede Zahl
$\rightarrow \infty$	eine Größe wächst über alle Grenzen \ Limes
\sum	Summe
\in	Element von
\subseteq	ist Untermenge von oder gleich
\cup	Vereiningungsmenge
3	es existiert ein
$\begin{array}{c} \infty \\ \rightarrow \infty \\ \sum \\ \in \\ \subseteq \\ \cup \\ \exists \\ \Rightarrow \\ \Leftarrow \\ \exists ! \end{array}$	daraus folgt, ist hinreichende Bedingung für
\Leftarrow	gilt wenn, ist notwendige Bedingung für
	es existiert genau ein
∉	kein Element von
:=	ist definiert durch
Ø	Nullmenge
\forall	für alle

2.1.1 Summenzeichn

1. Beispiel

(a)
$$\sum_{n=1}^{3} a_n = a_1 + a_2 + a_3$$

(b) Summe der ersten m natürlichen Zahlen

$$\sum_{m=1}^{m} n = 1 + 2 + \ldots + (m-1) + m = \frac{m(m+1)}{2}$$

(c) Summe der ersten m Quadrate der natürlichen Zahlen

$$\sum_{m=1}^{m} n^2 = 1 + 4 + \ldots + (m-1)^2 + m^2 = \frac{m(m+1)(2m+1)}{6}$$

(d) Summe der ersten m Potenzen einer Zahl $(q \neq 1)$

$$\sum_{n=0}^{m} q^{n} = 1 + q + \dots + q^{m-1} + q^{m} = \frac{1 - q^{m+1}}{1 - q}$$

sog. geometrische Summe

• Beweis

$$s_m = 1 + \dots + q^m$$

 $qs_m = q + \dots + q^{m+1}$
 $s_m - qs_m = s_m (1 - q) = 1 - q^{m+1}$

2. Rechenregeln

$$\sum_{k=m}^{n} a_k = \sum_{j=m}^{n} a_j$$

$$c\sum_{k=m}^{n} a_k = \sum_{k=m}^{n} ca_k$$

(c)
$$\sum_{k=m}^{n} a_k \pm \sum_{i=m} nb_k = \sum_{k=m}^{n} (a_k \pm b_k)$$

(d)
$$\sum_{k=m}^{n} a_k + \sum_{k=n+1}^{p} a_k = \sum_{k=m}^{p} a_k$$

(e)
$$\sum_{k=m}^{n} a_k = \sum_{k=m+p}^{n+p} a_{k-p} = \sum_{k=m-p}^{n-p} a_{k+p}$$

(f)
$$\left(\sum_{i=1}^{n} a_i\right) \left(\sum_{j=1}^{m} b_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j = \sum_{j=1}^{m} \sum_{i=1}^{n} a_i b_j$$
 falls $n = m$
$$\sum_{i,j=1}^{n} a_i b_j$$

2.1.2 Produktzeichen

1. Beispiel

$$\prod_{n=1}^{3} a_n = a_1 a_2 a_3$$

2.1.3 Fakultätszeichen

$$m! = 1 \cdot 2 \cdot \ldots \cdot (m-1) \cdot m = \prod_{n=1}^{m} n$$

 $0! = 1$

2.2 Zahlen

Erinnerung natürliche Zahlen $\mathbb{N}=1,2,3,\ldots$ ganze Zahlen $\mathbb{Z}=\mathbb{N}\cup 0\cup -a\mid a\in\mathbb{N}$ rationale Zahlen $\mathbb{Q}=\mathbb{Z}\cup\frac{b}{a}\mid a\in\mathbb{Z}\setminus\{0\}b\in\mathbb{Z}$ reelle Zahlen $\mathbb{R}=\mathbb{Q}\cup$ unendliche Dezimalbrüche Die reellen Zahlen lassen sich umkehrbar eindeutig auf die Zahlengerade abbilden, dh.h jedem Punkt entspricht genau eine reelle Zahl und umgekehrt

2.2.1 Reechengesetze für reelle Zahlen

- 1. Addition
 - Assoziativität (a+b) + c = a + (b+c)
 - Kommutativität a + b = b + a
 - neutrales Element a + 0 = a
 - Existenz des Negatives a+x=b hat immer genau eine Lösung: x=b-a für 0-a schreibe wir -a
- 2. Multiplikation:
 - Assoziativität $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - Kommutativität $a \cdot b = b \cdot a$
 - neutrales Element $a \cdot 1 = a$
 - Inverses $a \cdot x = b$ hat für jedes $a \neq a$ genau eine Lösung $x = \frac{b}{a}$ für $\frac{1}{a}$ schreiben wir a^-1
 - Distributivgesetz $a \cdot (b+c) = a \cdot b + a \cdot c$
- 3. Ordung der reellen Zahlen Die kleiner-Beziehung a < b, oder auch b > a hat folgende Eigenschaften:
 - Trichotomie Es gilt immer genau eine Beziehung a < b, a = b a > b
 - Transitivität Aus a < b und b < c folgt a < c
- 4. Beispiele, Folgerungen
 - (a) Rechenregen für Potenzen $b^n := b \cdot b \cdot \dots \cdot b$ $n \in \mathbb{N}$ Faktoren

$$b^{0} := 1$$

$$b^{-}n = \frac{1}{b^{n}}$$

$$b^{n} \cdot b^{m} = b^{n+m}$$

$$(b^{n})^{m} = b^{n \cdot m}$$

$$(a \cdot b)^{n} = a^{n} \cdot b^{n}$$

5. Betrag einer reellen Zahl

$$|a| := \begin{cases} a & a \le 0 \\ -a & a > 0 \end{cases}$$

(a) Eigenschaften

$$|a| \ge 0 \,\forall \, a \in \mathbb{R}$$
$$|a| = 0$$

nur für a=0

$$|a+b| \le |a| + |b|$$

Dreieckungleichung

2.2.2 Satz des Pythagoras

$$a^2 + b^2 = c^2$$

2.2.3 binomische Formeln:

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

 $(a + b)(a - b) = a^2 - b^2$

Allgemein:

$$(a \pm b)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} a^{n-k} (\pm)^k$$

(Klammer) Binominial koeffizienten

$$\binom{n}{k} := \frac{n!}{k!(n-k)!} a^{n-k}$$

2.2.4 Pascalsches Dreieck

$$n = 0 \ 1 \ n = 1 \ 1 \ 1 \ n = 2 \ 1 \ 2 \ 1 \ n = 3 \ 1 \ 3 \ 3 \ 1 \ n = 4 \ 1 \ 4 \ 6 \ 4 \ 1 \ n = 5 \ 1 \ 5 \ 10 \ 10 \\ 5 \ 1$$

2.2.5 Beweisprinzip der Vollständingen Induktion

1. Beispiel Für alle $n \in \mathbb{N}$ soll die Summe der ersten n Quadratzahlen beiesen werden

$$A(n) := \sum_{k=1}^{n} k^{1} = 1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$$

(a) Induktions anfang A(1) = 1 \checkmark (b) Induktonsschritt Falls A(k) richtig ist, wird gezeigt, dass auch A(k+1) richtig ist

$$A(k+1) = \underbrace{1^2 + 2^2 + \dots + k^2}_{A(n)} + (k+1)^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$$

$$= \frac{1}{6}(k+1)(k(2k+1) + 6(k+1))$$

$$= \frac{1}{6}(k+1)(k+2)(2k+3)$$

$$= \frac{1}{6}(k+1)(k+2)(2(k+1) + 1)$$

2.2.6 Quadratische Ergänzung

$$x^{2} + ax + b = 0$$
$$x_{1,2} = -\frac{a}{2} \pm \sqrt{\frac{a^{2}}{4} - b}$$

3 Folgen und Reihen

3.1 Folge

3.1.1 Definition

Vorschrift, die jeder natürlichen Zahl n eine reelle Zahl a_n zuweist.

$$(a_n)_{n\in\mathbb{N}}$$

3.1.2 Beispiele

• die natürlichen Zahlen selbst

$$n_{n\in\mathbb{N}}=(1,2,3,\ldots)$$

• alternierende Folge

$$((-1)^{n+1})_{n\in\mathbb{N}} = (1, -1, 1, -1, \ldots)$$

• harmonische Folge

$$(\frac{1}{n})_{n\in\mathbb{N}} = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$$

• inverse Fakultäten

$$(\frac{1}{n!})_{n\in\mathbb{N}} = (1, \frac{1}{2}, \frac{1}{6}, \ldots)$$

• Folge echter Brüche

$$(\frac{n}{n+1})_{n\in\mathbb{N}} = (\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots)$$

• geometrische Folge

$$(q^n)_{n\in\mathbb{N}} = (q, q^2, q^3, \ldots)$$

charakteristische Eigenschaft der geometrischen Folge $\frac{a_{n+1}}{a_n}=q$ q heißt Quotient der Folge allgemeines Bildungsgesetz $a_n=a_1q^{n-1}$

• Folge der Ungeraden Zahlen (arithmetische Folge)

$$(1 + (n-1) * 2)_{n \in \mathbb{N}} = (1, 3, 5, 7, \ldots)$$

 $a_{n+1}-a_n=d\ d$ heißt Differenz der Folge allgemeines Bildungsgesetz $a_n=a_1+(n-1)d$

• "zusammengesetzte Folgen" (hier Exponentialfolge)

$$((1+\frac{1}{n})^n)_{n\in\mathbb{N}} = (2, \frac{3}{2}^2, \frac{4}{3}^2, \ldots)$$

3.1.3 Frage

Kann man etwas über das Verhalten von $(a_n)_{n\in\mathbb{N}}$ für $n\to\infty$ aussagen, ohne tatsächlich "die Reise ins Unendliche" anzutreten"

3.1.4 Beschränktheit

Eine Folge heißt nach oben beschänkt, wenn es eine obere Schranke B für die Flieder der Folge gibt: $a_n \leq B$, d.h. $\exists B : a_n \leq B \, \forall \, n \in \mathbb{N}$ Nach unten beschränkt: $\exists A : A \geq a_n \, \forall \, n \in \mathbb{N}$

3.1.5 Monotonie

- Eine Folge heißt monoton steigend, wenn aufeinanderfolgende Glieder mit wachsender Nummer immer größer werden: $a_n \leq a_{n+1} \, \forall \, n \in \mathbb{N}$
- streng monoton steigend $a_n < a_{n+1} \, \forall \, n \in \mathbb{N}$
- monoton fallend $a_n \ge a_{n+1} \, \forall \, n \in \mathbb{N}$
- streng monoton fallend $a_n > a_{n+1} \, \forall \, n \in \mathbb{N}$

3.1.6 Konvergenz

Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen a oder hat den Grenzwert a, wenn es zu jedem $\epsilon>0$ ein $N(\epsilon)\in\mathbb{N}$ gibt mit $|a-a_n|<\epsilon\,\forall\,n>N(\epsilon)$ Wir schreiben $\lim_{n\to\infty}a_n=a$

- 1. Beispiel
 - $\lim_{n\to\infty}\frac{1}{n}=0$
 - $\lim_{n\to\infty} \left(1 \frac{1}{\sqrt{n}}\right) = 1$
- 2. Grenzwertfreie Konvergenzkriterien
 - jede monoton wachsend, nach oben beschränkte Folge ist konvergent, entsprechend ist jede monoton fallende, nach unten beschränkte Folge konvergent
 - Cauchy-Kriterium: Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert genau dann, wenn es zu jedem $\epsilon > 0$ ein $N(\epsilon) \in \mathbb{N}$ gibt, so dass

$$|a_n - a_m| < \epsilon \, \forall \, n, m > N(\epsilon)$$

(a) Für harmonische Folge $(\frac{1}{n})_{n\in\mathbb{N}}$

$$|a_n - a_m| = \left|\frac{1}{n} - \frac{1}{m}\right| = \left|\frac{m - n}{mn}\right| < \left|\frac{m}{mn}\right| = \frac{1}{n} < \epsilon \text{für} n > N(\epsilon) = \frac{1}{\epsilon}$$

3.2 Reihen (unendliche Reihen)

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen, Die Folge

$$s_n := \sum_{k=1}^n a_k, n \in \mathbb{N}$$

der Partialsumme heißt (unendliche) Reihe und wird oft mit $\sum_{k=1}^{\infty} a_k$ bezeichnet Konvergiert die Folge $(s_n)_{n\in\mathbb{N}}$, so wird ihr Grenzwert ebenfalls mit $\sum_{k=1}^{\infty} a_k$ bezeichnet

3.2.1 Bemerkung

Ergebnisse für Folgen gelten auch für Reihen

3.2.2 Rechenregeln für konvergente Reihen

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ zwei konvergente Reihen und $\lambda \in \mathbb{R}$, dann sind auch die Reihen

$$\sum_{k=1}^{\infty} a_k + b_k, \sum_{k=1}^{\infty} a_k - b_k, \sum_{k=1}^{\infty} \lambda a_k$$

konvergent und es gilt

$$\sum_{k=1}^{\infty} (a_k \pm b_k) = \sum_{k=1}^{\infty} a_k \pm \sum_{k=1}^{\infty} b_k$$

$$\sum_{k=1}^{\infty} \lambda a_k = \lambda \sum_{k=1}^{\infty} a_k$$

1. Bemerkung Für das Produkt zweier undendlicher Reihen gilt i.A. keine so einfache Formel

3.2.3 Beispiel

geometrische Reihe

$$\sum_{n=0}^{\infty} q^n = \lim_{m \to \infty} (\sum_{n=0}^m q^n) = \lim_{m \to \infty} \frac{1 - q^{m+1} 1 - q}{=} \frac{1}{1 - q} \text{für} q < 1, q \neq 0$$

3.2.4 Absolute Konvergenz

Eine Reihe

$$\sum_{k=1}^{\infty} a_k$$

heißt absolut konvergent, wenn die Reihe

$$\sum_{k=1}^{\infty} |a_k|$$

konvergiert. Absolute konvergente Reihen können ohne Änderung der Grenzwertes umgeordnet werden, d.h. jede ihrer Umordunen konvergiert wieder und zwar immer gegen den gleichen Grenzwert.

- 4 **TODO** what was done after this? (Funktionen? (only?))
- 5 Funktionen
- 5.1 Normal-Hyperbel

$$y = \frac{1}{x}$$
 $D_f = \mathbb{R} \setminus \{0\}$ $W_f = \mathbb{R} \setminus \{0\}$

- 5.1.1 Physik-Beispiel
 - Boyle-Mariettsches Gesetz
 - Druck peines idealen Gases in einem Volumen Vbei konstanter Temperatur und Gasmenge: $p=\frac{\mathrm{cons}}{V}$
- 5.2 kubische Parabel

$$y = ax^3$$

5.2.1 Physik-Beispiel

$$V = \frac{4}{3}\pi r^3$$

5.2.2 Verallgemeinerung

$$y = ax^n \quad n \in \mathbb{N}$$

- **5.3** $y = ax^{-2}$
- 5.3.1 Physik-Beispiel

Coulomb Gesetz der Elektrostatik

$$F = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2}$$

5.4 Symmetrieeigenschaften der Potenzfunktionen

$$y = f(x) = x^n$$

- gerade n: f ist symmetrisch, d.h. f(-x) = f(x)
- ungerade n: f ist antisymmetrisch, d.h. f(-x) = -f(x)

5.5 Potenzfunktionen als "Bausteine" in susammengesetzten Funktionen

Polynom m-ten Grades

$$y = P_m(x) = a_0 + a_1 x + \ldots + a_m x^m = \sum_{k=0}^m a_k x^k$$

5.6 Rationale Funktionen

$$y = \frac{P_m(x)}{Q_n(x)} \quad D_f = \{x \in \mathbb{R} \mid Q_n(x) \neq 0\}$$

 $P_m(x)$ Polynom m-ten Grades, $Q_n(x)$ n-ten Grades

5.6.1 Beispiel

$$f(x) = \frac{1}{x^2 + 1}$$

"Lorentz-Verteilung beschreibt die Linienbreite einer Spektrallinie"

5.7 Trigonometrische Funktionen

$$\sin \alpha = \frac{a}{c} = \cos \beta$$

$$\cos \alpha = \frac{b}{c} = \sin \beta$$

$$\tan \alpha = \frac{a}{b} = \frac{\sin \alpha}{\cos \alpha} = \cot \beta = \frac{1}{\cot \alpha}$$

$$\cot \alpha = \frac{b}{a} = \frac{\cos \alpha}{\sin \alpha} = \tan \beta = \frac{1}{\tan \alpha}$$

$$\cos \alpha^2 + \sin \alpha^2 = 1$$

α	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$
0	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	1	0	$\rightarrow \infty$

5.7.1 **TODO** Table Formula?

5.7.2 TODO Veranschaulichung am Einheitskreis

 $\sin\alpha=y$ Periodische Werweiterung auf $\alpha<0,\ \alpha>\frac{\pi}{2}$ Periodische Funktion:

$$\sin x + 2\pi = \sin x$$
 Periode: 2π

$$\cos x + 2\pi = \cos x$$
 Periode: 2π

1. Beispiel

$$\sin x + \pi = -\sin x$$

$$\cos x + \pi = -\cos x$$

$$\cos x = \sin \frac{\pi}{2} - x$$

2. **TODO** Graphik

5.7.3 Tangens/Cotangens

$$\tan x = \frac{\sin x}{\cos x}$$

1. **TODO** Graphik

5.7.4 Additions theoreme

$$\sin \alpha \pm \beta = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos \alpha \pm \beta = \cos \alpha \cos \beta \pm \sin \alpha \sin \beta$$

$$\sin 2\alpha = 2\sin \alpha\cos \alpha$$

$$\cos 2\alpha = \cos \alpha^2 - \sin \alpha^2 = 1 - 2\sin \alpha^2 = 2\cos \alpha^2 - 1$$

5.8 Exponentialfunktionen

$$y = f(x) = b^x$$
 $b > 0, x \in \mathbb{R}$

5.8.1 Rechenregeln

$$b^x b^y = b^{x+y} \quad (b^x)^y = b^{xy}$$

natürliche Exponentialfunktion mit Zahl e als Basis

$$y = f(x) = e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

5.8.2 Beispiel radioaktiver Zerfall

$$N(t) = N(0)e^{\frac{-t}{\tau}}$$

5.9 Cosinus hyperbolicus

$$y = \cosh x := \frac{1}{2} \left(e^x + e^{-x} \right)$$

5.10 Sinus hyperbolicus

$$y = \sinh x := \frac{1}{2} (e^x - e^{-x})$$

Es gilt:

$$\cosh^2 x - \sinh^2 x = 1$$

5.11 Tangens hyperbolicus

$$y = \tanh x := \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

5.12 Cotangens hyperbolicus

$$y = \coth x := \frac{1}{\tanh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

5.13 Wurzelfunktion

Umkehrfunktion der Potenzfunktionen

$$y = f(x) = x^n \quad n \in \mathbb{Z}$$

Wurzelfunktion:

$$y = f(x) = \sqrt[n]{x} = x^{\frac{1}{n}}$$

n gerade: vor der Umkehrung ist die Einschränkung des Definitionsbereiches auf $x \geq 0$ notwendig

5.13.1 Beispiel

$$y = f(x) = x^2 + 1 \quad x \ge 0$$

Umkehrfunktion:

$$y = \sqrt{x-1}$$

- 6 Funktionen mit Ecken und Sprüngen
- 6.1 Betragsfunktion

$$y = |x| := \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

6.2 Heaviside-Stufenfunktion

$$y = \Theta(x) := \begin{cases} 1 & x > 0 \\ 0 & x < 0 \\ \frac{1}{2} & x = 0 \end{cases}$$

- 6.2.1 TODO Graphik
- 6.2.2 Beispiel

$$y = \Theta(x)\Theta(-x+a)$$

TODO Graphik

6.3 "symmetrischer Kasten" der Breite 2a und der Höhe $\frac{1}{2a}$ (Dirak Delta Funktion)

$$\Theta_a(x) := \frac{\Theta(x+a)\Theta(-x+a)}{2a}$$
$$\lim_{a \to 0} \Theta_a = \text{"(Dirak) } \delta\text{-Funktion"}$$

6.3.1 TODO Graphik

7 Verkettung von Funktionen

Seinen

$$f: D_f \to \mathbb{R}$$
$$g: D_g \to \mathbb{R}$$

mit $w_g \subseteq D_f$, dann ist die Funktion $f \circ g : D_g \to \mathbb{R}$ definiert durch

$$(f \circ g)(x) := f(g(x)) \quad \forall x \in D_g$$

7.1 Beispiel

$$z = g(x) = 1 + x^2$$
 $W_g: z \ge 1$

$$y = f(z) = \frac{1}{z}$$
 $D_f = \mathbb{R} \setminus \{0\}$

also $W_g \subset D_f$, sodass

$$(f \circ g)(x) = f(g(x)) = \frac{1}{g(x)} = \frac{1}{1+x^2}$$

7.2 Spiegelsymmetrie (Siegelung an der y-Achse, d.h. $x \rightarrow -x$)

Eine Funktion f(x) heißt

- gerade(symmetrisch) wenn f(-x) = f(x)
- ungerade (antisymmetrisch) wenn f(-x) = -f(x)

7.2.1 Beispiel

- 1. gerade Funktionen
 - $f(x) = x^{2n}$ $n \in \mathbb{N}$
 - $f(x) = \cos x$
 - f(x) = |x|
- 2. ungerade Funktionen
 - $f(x) = x^{2n+1}$
 - $f(x) = \frac{1}{x}$
 - $f(x) = \sin(x)$
- 3. keins von beidem
 - f(x) = sx + c

7.2.2 Zerlegung

Jede Funktion lässt sich in einen geraden und ungeraden Anteil zerlegen

• gerader Anteil:

$$f_{+}(x) = \frac{1}{2} (f(x) + f(-x)) = f_{+}(-x)$$

• ungerader Anteil:

$$f_{-}(x) = \frac{1}{2} (f(x) - f(-x)) = -f_{-}(-x)$$

• check:

$$f_{+}(x) + f_{-}(x) = f(x) \quad \checkmark$$

8 Eigenschaften von Funktionen

8.1 Beschränktheit

f heißt nach oben beschränkt im Intervall [a, b], wenn es eine obere Schranke gibt, d.h.

$$\exists B \in \mathbb{R} : f(x) \leq B \, \forall \, x \in [a, b]$$

analog: nach unten beschränkt

$$\exists A \in \mathbb{R} : f(x) \ge A \, \forall \, x \in [a, b]$$

8.1.1 Beispiel

 $f(x) = x^2$ durch A = 0 nach unten beschränkt

$$f(x) = \Theta(x) B = 1, A = 0$$

8.2 Monotonie

Eine Funktion $f: D_f \to \mathbb{R}$ heißt monoton steigend im Intervall $[a, b] \subseteq D_f$, wenn aus $x_1, x_2 \in [a, b]$ mit $x_1 < x_2$ stets folgt $f(x_1) \leq f(x_2)$ Gilt sogar $f(x_1) < f(x_2)$ so heißt f streng monoton steigend im Intervall [a, b] Analog heißt f monoton (streng monoton) fallend, wenn stets folgt $f(x_1) \geq f(x_2)$ $(f(x_1) > f(x_2))$

8.2.1 Beispiel

 $f(x) = x^3$ streng monoton steigend

9 Umkehrfunktionen

Sei $f:D_f\to W_f$ eine
indeutig(bijektiv), dann kann man die Gleichung y=f(x) eindeutig
nach x auflösen

$$x = f^{-1}(y) := g(y)$$
 $D_g = W_f, \quad W_g = D_f$
$$f^{-1} = g: W_f \to D_f$$

Die ursprüngliche Abbildung y=f(x) und die Umkehrabbildung $x=f^{-1}(y)=g(y)$ heben sich in ihrer Wirkung auf

$$f^{-1}(f(x)) = x$$

9.1 Graph der Umkehrfunktion

- 1. Gegebenfalls Einschränktung von D_f , sodass eine bijektive Funktion vorliegt
- 2. Auflösen der Gleichung $y=f(x)\Rightarrow x=f^-1(y)$
- 3. Umbennenung der Variablen: die unabhängige Variable y wird wieder x genannt, die abhängige wieder y: $y=f^{-1}(x)$

9.1.1 Beispiel $y = x^2$

- 1. Einschränktung D_f auf $x \ge 0$
- 2. $y = x^2, x \ge 0 \Leftrightarrow x = \sqrt{y}$
- 3. Umbenennung: $y = \sqrt{x} = x^{\frac{1}{2}}$

9.1.2 Graphisch

Spiegelung an y=x

10 what after this?

11 Integral und Differenzialrechnung

$$int_a^b f(x) dx = F(b) - F(a)$$

Haupsatz:

$$F'(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x} = f(x)$$

$$\frac{F(x) = \int f(x)\mathrm{d}x \quad f(x) \quad \text{Bemerkungen}}{\mathrm{const}}$$

$$0$$

$$x^r \quad rx^{r-1} \quad r \in \mathbb{R}$$

$$\frac{x^{r+1}}{r+1} \quad x^r \quad -1 \neq r \in \mathbb{R}$$

11.1 Die Kunst des Integrierens

$$\int_{1}^{e} \frac{1}{x} dx = \ln x \mid_{1}^{e} = \ln e - \ln 1 = 1$$

$$\int_{0}^{\frac{\pi}{2}} \cos(t) dt = \sin t \mid_{0}^{\frac{\pi}{2}} = \sin \frac{\pi}{2} - \sin 0 = 1$$

$$\int_{a}^{b} \frac{1}{1 + x^{2}} dx = \arctan x \mid_{a}^{b}$$

11.2 Ableiten über Umkehrfunktion

$$\frac{\mathrm{d}f^{-1}(x)}{\mathrm{d}x} = \frac{1}{f'(f^{-1}(x))}$$

11.3 Integrationsregeln

11.3.1 Lineare Zerlegung

$$\int_{a_1}^{a_2} cf(x) + bg(x) dx = c \int_{a_1}^{a_2} f(x) dx + b \int_{a_1}^{a_2} g(x) dx$$

1. Beispiel

$$F = \int_0^1 \sqrt{x} - x^2 dx = \int_0^1 \sqrt{x} dx - \int_0^1 x^2 dx = \frac{2}{3} x^{\frac{3}{2}} \Big|_0^1 - \frac{1}{3} x^3 \Big|_0^1 = \frac{1}{3}$$
$$\int_0^1 (1 - x^2)^2 dx = \int_0^1 1 - 2x^2 + x^4 dx = \int_0^1 1 dx - 2 \int_0^1 x^2 dx + \int_0^1 x^4 dx = \frac{8}{15}$$

11.3.2 Substitutionsregel

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$

merke: $\frac{g(x)}{dx}dx = g'(x)dx = dy$

$$y = g(x), \quad \frac{\mathrm{d}y}{\mathrm{d}x} = g'(x), \quad \mathrm{d}y = g'(x)\mathrm{d}x$$

1. Beweis Fsei die Stammfunktion zu $f,\,F'=f$

$$(F(g(t)))' = F'(g(t))g'(t) = f(g(t))g'(t)$$

$$\int_{a}^{b} f(g(t))g'(t)dt = F(g(t)) \mid_{a}^{b} = F(g(b)) - F(g(a)) = F(x) \mid_{g(a)}^{g(b)} = \int_{g(a)}^{g(b)} f(y)dy$$

2. Beispiel

$$\int_{1}^{5} \sqrt{2x+1} dx = \int_{1}^{9} \sqrt{y} \frac{1}{2} dy = \frac{26}{3}$$
$$y = 2x-1 \quad y' = g'(x) = \frac{dy}{dx} = g'(x) = 2 \Rightarrow dy = 2dx \Rightarrow \frac{1}{2} dy = dx$$

$$\int_0^b t e^{-\alpha t^2} dt = -\frac{1}{2\alpha} \int_0^{-\alpha b^2} e^y dy = -\frac{1}{2\alpha} (e^{-\alpha b^2} - 1)$$
$$y = g(t) = -\alpha^2 \Rightarrow \frac{dy}{dt} = -2\alpha t \Rightarrow dy = -2\alpha t dt \Rightarrow dt = -\frac{1}{2\alpha t} dy$$

$$\int_0^T \cos \omega t dt = \frac{1}{\omega} \int_0^{\omega T} dy$$

$$\int_{a}^{b} \frac{g'(x)}{g(x)} dx = \int_{g(a)}^{g(b)} \frac{1}{y} dy = \ln|y| \Big|_{g(a)}^{g(b)}$$

$$\int \frac{\mathrm{d}x}{ax \pm b} = \frac{1}{a} \ln|ax \pm b| + c$$

$$\int_{a}^{b} g^{n}(x)g'(x)dx = \int_{q(a)}^{g(b)} y^{n}dy$$

11.3.3 Partielle Integration

$$\int_{a}^{b} f'(x)g(x) dx = f(x)g(x) \mid_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx$$

1. Beweis

$$F(x) = f(x)g(x) \Rightarrow F'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\int_{a}^{b} F'(x)dx = \int_{a}^{b} f'(x)g(x)dx + \int_{a}^{b} f(x)g'(x)dx$$

$$f(x)g(x) \mid_{a}^{b} = \int_{a}^{b} f'(x)g(x)dx + \int_{a}^{b} f(x)g'(x)dx$$

$$f(x)g(x) \mid_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx = \int_{a}^{b} f'(x)g(x)dx$$

2. Beispiel

•

$$\int_{a}^{b} x \ln x dx = \frac{1}{2} x^{2} \ln(x) \mid_{a}^{b} - \int_{a}^{b} \frac{1}{2} x^{2} \frac{1}{x} dx = \frac{1}{2} x^{2} \ln(x) \mid_{a}^{b} - \frac{1}{2} \int_{a}^{b} x dx$$

$$\int 1 \ln x dx = x \ln x - \int x \frac{1}{x} dx = x \ln x - \int 1 dx = x \ln x - x + c = x(\ln x - 1) + c$$

 $\int x \sin x dx = -x \cos x + \int \cos x dx = -x \cos x + \sin x$

3. Kreisfläche

$$y = f(x) = \sqrt{1 - x^2}$$

$$\int_a^b \sqrt{1 - x^2} dx = \int_{\arcsin a}^{arcsinb} \sqrt{1 - \sin^2 t} \cos t t d = \int_{\arcsin a}^{arcsinb} \cos t \cos t dt = \frac{1}{2} (\arcsin b + b\sqrt{1 - b^2} - \arcsin x)$$

$$x = \sin t \Rightarrow t = \arcsin x, \quad \frac{x}{dt} = \cos t, \quad dx = \cos t dt$$

$$\int \cos t \cos t = \sin t \cos t + \int \sin^2 t dt = \sin t \cos t + \int 1 - \cos^2 t dt = \frac{\sin t \cos t + t}{2}$$

(a) In Polarkoordinaten

$$y = \sin t$$

$$x = \cos t$$

$$dx = \sin t dt$$

$$dA = y dx = \sin^2 t dt$$

$$A = \int_0^{\pi} \sin^2 t = \frac{\pi}{2}$$

(b) Zerlegung

$$\mathrm{d}A = 2\pi r \mathrm{d}r$$

$$\int \mathrm{d}A = \int_0^R 2\pi r \mathrm{d}r = 2\pi \frac{1}{2} r^2 \mid_0^R = \pi R^2$$

11.3.4 Weitere Integrationstricks

1. Partialbruchzerlegung \Rightarrow Integration rationaler Funktionen

$$\int_{a}^{b} \frac{\mathrm{d}}{1-x^{2}} \min \left\{-1,1\right\} \not\in [a,b]$$

$$1-x^{2} = (1-x)(1+x)$$

$$\frac{1}{1-x^{2}} = \frac{\alpha}{1-x} + \frac{\beta}{1+x} = \frac{\alpha(1+x) + \beta 1 - x}{(1-x)(1+x)} = \frac{\alpha+\beta+x(\alpha-\beta)}{1-x^{2}} \Rightarrow \alpha = \beta \frac{1}{2}$$

$$\int_{a}^{b} \frac{\mathrm{d}x}{1-x^{2}} = \frac{1}{2} \left(\int_{a}^{b} \frac{1}{1+x} + \int_{a}^{b} \frac{1}{1+x}\right)$$

11.4 Uneigentliche Integrale

11.4.1 Undedliches Integralintervall

1. Definition Sei $f:[a,\infty)\to\mathbb{R}$ eine Funktion, die über jedem Intervall $[a,R),\ a< R<\infty$ (Riemann-)integrierbar ist. Falls der Grenzwert $\lim_{R\to\infty}\int_a^R f(x)\mathrm{d}x$ existiert setzt man

$$\int_{a}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{a}^{R} f(x) dx$$

2. Beispiel

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{s}} = \begin{cases} \frac{1}{s-1} & s > 1\\ \infty & s \le 1 \end{cases}$$

11.5 Cauchy Hauptwert

$$P \int_{-\infty}^{\infty} f(x) dx := \lim_{c \to \infty} \int_{-c}^{c} f(x) dx$$

P := "principal Value"

$$\int_{-\infty}^{\infty} x^{2n-1} dx = \lim_{a \to \infty} \int_{-a}^{c} x^{2n-1} dx + \lim_{b \to \infty} \int_{c}^{b} x^{2n-1} dx = \infty$$
$$P \int_{-\infty}^{\infty} x^{2n-1} dx = \lim_{c \to \infty} \int_{-c}^{c} x^{2n-1} dx = \lim_{c \to \infty} \left(\frac{1}{2\pi} \left(\underbrace{c^{2n} - (-c)^{2n}}_{-0} \right) \right) = 0$$

11.5.1 Unbeschränkter Integrand

Situation: Integrand wird an einer Stelle $x_0 \in [a,b]$ unbeschränkt

1. Definition Sei $f:(a,b] \to \mathbb{R}$ eine Fnunkion, die über jedem Teilintervall $[a+\eta,b],\ 0<\eta< b-a$ (Riemann-)integrierbar ist. Falls der Grenzwert $\lim_{\eta\to 0}\int_{a+\eta}^b f(x)\mathrm{d}x$ existiert, heipßt das Integral $\int_a^b f(x)\mathrm{d}x$ konvergent

$$\int_{a}^{b} f(x) dx = \lim_{\eta \to 0} \int_{a+\eta}^{b} f(x) dx$$

2. Beispiel

$$\int_0^b \frac{1}{x^{1-\epsilon}} dx = \lim_{\eta \to 0} \int_\eta^b \frac{1}{x^{1-\epsilon}} dx = \lim_{\eta \to 0} \frac{1}{\epsilon} (b^{\epsilon} - \eta^{\epsilon}) = \frac{1}{\eta} b^{\epsilon}$$

3. Principal value

$$P \int_{a}^{b} f(x) dx = \lim_{\eta \to 0} \int_{a}^{x_0 - \eta} f(x) dx + \int_{x_0 + \eta}^{b} f(x) dx$$

11.6 Integralfunktionen

$$\ln x = \int_1^x \frac{\mathrm{d}x}{x}$$

$$\arctan x = \int_0^y \frac{\mathrm{d}x}{1+x^2}$$

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^y e^{-x^2} \mathrm{d}x$$

Elliptisches Integral

11.7 Gamma-Funktion

11.7.1 Definition

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} \mathrm{d}t$$
 Satz: Es gilt $\Gamma(1) = 1$, $\Gamma(m+1) = m! \, \forall \, n \in \mathbb{N}$, $x\Gamma(x) = \Gamma(x+1)$
$$\Gamma(1) = \int_0^\infty e^{-t} \mathrm{d}t = -e^{-t} \mid_0^\infty = 1$$

$$\Gamma(x+1) = \int_\epsilon^R t^x e^{-t} \mathrm{d}t = \underbrace{t^x e^{-t} \mid_\epsilon^R}_{R \to \infty t} + x \int_e p silon^R t^{x-1} e^{-t} \mathrm{d}t$$

$$f(t) = -e^{-t} \Leftarrow f'(t) = e^{-t}$$

$$g(t) = t^x \Rightarrow xt^{t-1} = g'(t)$$

12 Vektoren

12.1 \mathbb{R}^{3}

12.1.1 Orthonormal

Länge eins, senkrecht aufeinander und sie bilden eine Basis, also jeder Vektor hat genau eine Darstellung:

$$\vec{a} = a_1\vec{e_1} + a_2\vec{e_2} + a_3\vec{e_3} = \sum_{k=1}^3 a_k\vec{e_k}a = \underbrace{a_ke_k}_{\text{Einsteinsche Summenkonvention}}$$

12.2 Skalarprodukt und Kronecker-Symbol

12.2.1 Motivation: mechanische Arbeit

12.2.2 Definition

$$<\vec{a},\vec{b}>=\vec{a}\cdot\vec{b}:=|\vec{a}||\vec{b}|\cos\angle(\vec{a},\vec{b})$$

12.2.3 Spezialfälle

$$\vec{a}||\vec{b} \Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|$$

 \vec{a} und \vec{b} antiparallel:

$$\vec{a} \cdot \vec{b} = -|\vec{a}||\vec{b}|$$
$$\vec{a} \mid \vec{b} \Rightarrow \vec{a} \cdot \vec{b} = 0$$

12.2.4 Betrag:

$$<\vec{a}, \vec{b}> = |\vec{a}|^2 = a^2$$

12.2.5 Eigenschaften

• Kommutativgesetz

$$<\vec{a},\vec{b}>=<\vec{b},\vec{a}>$$

• Homogenität

$$<\lambda \vec{a}, \vec{b}> = \lambda < \vec{a}, \vec{b}> = < \vec{a}, \lambda \vec{b}>$$

• Distributivgesetz

$$<\vec{a}+\vec{b},\vec{c}>=<\vec{a},\vec{c}>+<\vec{b},\vec{c}>$$
 $<\vec{a},\vec{b}+\vec{c}>=<\vec{a},\vec{b}>+<\vec{a},\vec{c}>$

•

$$<\vec{a}, \vec{a} \ge 0$$
 $<\vec{a}, \vec{a}> = 0 \Leftrightarrow \vec{a} = 0$

12.2.6 Orthonormalbasis der kartesischen Koordinatensystem

Basisvecktoren $\vec{e_k}, k=1,2,4$ Orthogonalität $<\vec{e_k}, \vec{e_l}>=0$ $l\neq k$ Für k=l: $<\vec{e_k}, \vec{e_k}>=\cos 0=1$ Orthonormalität

12.2.7 Kronecker Symbol

$$\delta_{kl} := \begin{cases} 1 & k = l \\ 0 & k \neq l \end{cases}$$

Entspricht Komponenten der Einheitsmatrix Symmetrie gegen Vertauschung

der Indizes
$$\delta_{kl} = \delta\{lk\}$$
 Spur: $\delta_{kk} = \sum_{k=1}^{3} \delta_{kk} = 3$

Einsteinsche Summenkonvention

12.2.8 Komponentendarstellung des Skalarprodukts

$$\vec{a} = \sum_{k=1}^{3} a_k \vec{e_k} = \underbrace{a_k \vec{e_k}}_{\text{Einsteinsche Summenkonvention}}$$

$$\vec{b} = \sum_{k=1}^{3} b_k \vec{e_k} = \underbrace{b_k \vec{e_k}}_{\text{Einsteinsche Summenkonvention}}$$

$$\vec{b} = \sum_{k=1}^{3} a_k \vec{e_k} \cdot \sum_{k=1}^{3} b_k \vec{e_k} = \underbrace{b_k \vec{e_k}}_{\text{Einsteinsche Summenkonvention}}$$

$$\vec{c} = \vec{c} \cdot \sum_{k=1}^{3} a_k \vec{e_k} \cdot \sum_{k=1$$

13 Matrizen

13.1 Determinante

 $\det A = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$ Summe über alle Permutationen von S_n , Vorzeichen der Permutation ist positiv, wenn eine gerade Anzahl an Vertauschungen notwendig ist, und entsprechend negativ bei einer ungeraden Anzahl.

13.2 Homogenes Gleichungssystem

$$A\vec{x} = 0 \quad \begin{array}{ccccc} a_{11} & a_{12} & a_{13}x_1 \\ a_{21} & a_{22} & a_{23}x_2 \\ a_{31} & a_{32} & a_{33}x_3 \\ \end{array}$$

$$\begin{array}{cccccc} a_{11} & a_{12} & a_{13} & 0 \\ x_1 & a_{21} & +x_2 & a_{22} & +x_3 & a_{23} & = 0 \\ \underbrace{a_{31}}_{\vec{a_1}} & \underbrace{a_{32}}_{\vec{a_2}} & \underbrace{a_{33}}_{\vec{a_3}} & 0 \end{array}$$

sind $\vec{a_1}, \vec{a_2}, \vec{a_3}$ linear unabhängig, dann gibt es nur die Lösung $x_1 = x_2 = x_3 = 0$ Nichttriviale Lösung nur wenn $\vec{a_1}, \vec{a_2}, \vec{a_3}$ linear abhängig $\Rightarrow \lambda, \mu \in \mathbb{R}$, sodass z.B. $\vec{a_1} = \lambda \vec{a_2} + \mu \vec{a_3}$ Wenn $\vec{a_1}, \vec{a_2}, \vec{a_3}$ linear unabhängig, dann det A = 0

13.3 Levi Civita Symbol

 $\varepsilon_{ijk\dots} = \begin{cases} +1, & \text{falls } (i,j,k,\dots) \text{ eine gerade Permutation von } (1,2,3,\dots) \text{ ist,} \\ -1, & \text{falls } (i,j,k,\dots) \text{ eine ungerade Permutation von } (1,2,3,\dots) \text{ ist,} \\ 0, & \text{wenn mindestens zwei Indizes gleich sind.} \end{cases}$

$$\varepsilon_{i_1...i_n} = \prod_{1$$

$$\varepsilon_{k,l,m} = \delta_{k1}(\delta_{l2}\delta_{m3} - \delta_{l3}\delta_{m2}) + \delta_{k2}(\delta_{l3}\delta_{m1} - \delta_{l1}\delta_{m3}) + \delta_{k3}(\delta_{l1}\delta_{m2} - \delta_{l2}\delta_{m1})$$
(3)

13.4 Vektorprodukt / Kreuzprodukt

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} \tag{4}$$

$$\vec{a} \times \vec{b} = \det \begin{pmatrix} \vec{e}_1 & a_1 & b_1 \\ \vec{e}_2 & a_2 & b_2 \\ \vec{e}_3 & a_3 & b_3 \end{pmatrix}$$
 (5)

$$= \vec{e}_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} - \vec{e}_2 \begin{vmatrix} a_1 & b_1 \\ a_3 & b_3 \end{vmatrix} + \vec{e}_3 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$
 (6)

$$= (a_2 b_3 - a_3 b_2) \vec{e}_1 + (a_3 b_1 - a_1 b_3) \vec{e}_2 + (a_1 b_2 - a_2 b_1) \vec{e}_3, \quad (7)$$

$$\vec{a} \times \vec{b} = \sum_{i,j,k=1}^{3} \varepsilon_{ijk} a_i b_j \vec{e}_k = \varepsilon_{ijk} a_i b_j \vec{e}_k$$

13.5 Spatprodukt

$$|(\vec{a} \times \vec{b})\vec{c}| = \text{Volumen einees Spats}$$
$$(\vec{a}\vec{b}\vec{c}) = (\vec{a} \times \vec{b})\vec{c} = (\vec{c} \times \vec{a})\vec{b} = (\vec{b} \times \vec{c})\vec{a} = -(\vec{b} \times \vec{a})\vec{c}$$

13.6 Geschachteltes Vektorprodukt

$$\vec{a}(\vec{b}\times\vec{v}) = (\vec{a}\vec{c})\vec{b} - (\vec{a}\vec{b})\vec{c} = \vec{b}(\vec{a}\vec{c}) - \vec{c}(\vec{a}\vec{b})$$

13.6.1 Beweis

$$\vec{a} = (\vec{b} \times \vec{c}) = \vec{a} \times (\varepsilon_{ijk} b_i c_j \vec{e_k}) = \varepsilon_{pqm} a_p \varepsilon_{ijk} b_i c_j \vec{e_m}$$

14 misc

- mathe für physiker vs. analysis
- klasuren gebündelt
- auslandssemester