

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Programação III AP3 2° semestre de 2013.

Nome -

Assinatura –

Observações:

- 1. Prova sem consulta e sem uso de máquina de calcular.
- 2. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 3. Você pode usar lápis para responder as questões.
- 4. Ao final da prova devolva as folhas de questões e as de respostas.
- 5. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Questão 1) (5.0 pontos)

Suponha que num arquivo texto estejam armazenados os resultados de todos os jogos de futebol já disputados de algumas copas do mundo, e que, em cada uma das copas guardadas nesse arquivo, tenham sido jogadas 64 partidas. Os dados salvos no arquivo em questão seguem o padrão abaixo:

ANO DA COPA: LOCAL

Time A/Time B/Quantidade Gols Time A/Quantidade Gols Time B

Isto é, para cada copa, a linha "**Time A/Time B/Quantidade Gols Time A/Quantidade Gols Time B**" é repetida 64 vezes. Suponha, também, que o jogo final seja sempre a última linha de cada copa. Escreva um programa que leia esse arquivo de dados de copas do mundo (passado como parâmetro de entrada) UMA ÚNICA VEZ e que seja capaz de:

- (a) imprimir todas as seleções campeãs, informando também o local onde foi realizada a copa e o ano da disputa;
- (b) informar, para cada copa, qual(is) foi(foram) a(s) seleção(seleções) que mais perdeu(perderam). Esse dado é obtido dividindo-se o número de jogos em que uma seleção perdeu pelo total de jogos que ela disputou;
- (c) semelhantemente, apresentar, para cada copa, qual(is) foi(foram) a(s) seleção(seleções) que mais empatou(empataram); e
- (d) de modo análogo, mostrar, para cada copa, qual(is) foi(foram) a(s) seleção(seleções) que mais ganhou(ganharam).

```
RESPOSTA:
import java.util.*;
import java.io.*;
class Selecao{
  String nome;
  int num vit, num emp, num der;
  float med_vit, med_emp, med_der;
  Selecao(String n) {
   nome = n;
   num_vit = num_emp = num der = 0;
 void incEmp() { num emp++; }
 void incVit() { num vit++; }
 void incDer() { num der++; }
 void calcMedias(){
    float total = num vit + num emp + num der;
   med_vit = num_vit / total;
   med emp = num emp / total;
   med der = num der / total;
  }
 public String toString(){
    return nome + "\tVit: " + num vit + "\tEmp: " + num emp + "\tDer: "
+ num der;
 }
}
public class Copa{
 public static void main(String[] args) throws Exception{
   BufferedReader in = new BufferedReader(new FileReader(args[0]));
    String campea = "", local, linha;
    int ano;
   ArrayList<Selecao> 1 = new ArrayList<Selecao>();
    try{
      linha = in.readLine();
      String partes[];
      while(linha != null){
        partes = linha.split(":");
        ano = Integer.parseInt(partes[0]);
        local = partes[1];
        for(int i = 0; i < 64; i++){
          linha = in.readLine();
          partes = linha.split("/");
          int gols1 = Integer.parseInt(partes[2]);
          int gols2 = Integer.parseInt(partes[3]);
          if(i == 63)
            if(gols1 > gols2) campea = partes[0];
            else campea = partes[1];
```

```
boolean existe = false;
  for(Selecao atual: 1){
    if(atual.nome.equals(partes[0])){
      if(gols1 > gols2) atual.incVit();
      else if(gols1 < gols2) atual.incDer();</pre>
      else atual.incEmp();
      existe = true;
     break;
    }
  }
  if(!existe){
    Selecao atual = new Selecao(partes[0]);
    if(gols1 > gols2) atual.incVit();
    else if(gols1 < gols2) atual.incDer();</pre>
    else atual.incEmp();
    1.add(atual);
  }
 existe = false;
  for(Selecao atual: 1){
    if(atual.nome.equals(partes[1])){
      if(gols1 < gols2) atual.incVit();</pre>
      else if(gols1 > gols2) atual.incDer();
      else atual.incEmp();
      existe = true;
      break;
    }
  }
 if(!existe){
    Selecao atual = new Selecao(partes[1]);
    if(gols1 < gols2) atual.incVit();</pre>
    else if(gols1 > gols2) atual.incDer();
    else atual.incEmp();
    1.add(atual);
 }
//letra (a)
System.out.println("\n" + ano + " " + local + " " + campea);
for(Selecao atual : 1) atual.calcMedias();
//letra (d)
System.out.println("Maior vencedor:");
imprimeMaiorVencedor(1);
//letra (b)
System.out.println("Maior perdedor:");
imprimeMaiorPerdedor(1);
//letra (c)
System.out.println("Maior empatador:");
imprimeMaiorEmpatador(1);
//proxima copa
1 = new ArrayList<Selecao>();
linha = in.readLine();
```

}

```
} catch (Exception e) {
      System.out.println("Erro");
    } finally {
     in.close();
    }
  }
  static void imprimeMaiorVencedor(ArrayList<Selecao> 1) {
    Selecao maior = null;
    for(Selecao atual : 1)
      if((maior == null) || (atual.med vit > maior.med vit))
        maior = atual;
    for(Selecao atual : 1)
      if(atual.med vit == maior.med vit)
        System.out.println(atual);
  }
  static void imprimeMaiorPerdedor(ArrayList<Selecao> 1) {
    Selecao maior = null;
    for(Selecao atual : 1)
      if((maior == null) || (atual.med der > maior.med der))
       maior = atual;
    for(Selecao atual : 1)
     if(atual.med der == maior.med der)
        System.out.println(atual);
  }
  static void imprimeMaiorEmpatador(ArrayList<Selecao> 1) {
    Selecao maior = null;
    for(Selecao atual : 1)
      if((maior == null) || (atual.med_emp > maior.med_emp))
        maior = atual;
    for(Selecao atual : 1)
      if(atual.med emp == maior.med emp)
        System.out.println(atual);
 }
}
```

Questão 2) (5.0 pontos)

Polinômios são sequências de termos, chamados de monômios, da forma \mathbf{ax}^n , onde \mathbf{a} é um coeficiente, \mathbf{x} é sua base e \mathbf{n} é um expoente. Um exemplo de polinômio seria " $3\mathbf{x}^3 + 2\mathbf{x}^1$ ". Para manipular polinômios, foi criada uma classe, a qual segue abaixo. Em linhas gerais, o construtor desta classe recebe um polinômio como uma string no formato " $3\mathbf{x}^3 + 2\mathbf{x}^1$ " e armazena estes numa lista de termos.

```
String regexp = "(\\d)*x(\\d)*"; // expressão regular para pegar padrão axn no
parâmetro polinomio dado no construtor
               Pattern pattern = Pattern.compile(regexp);
               Matcher matcher = pattern.matcher(polinomio);
               while (matcher.find()) {
                       String t = matcher.group(); // Strings da forma axn, coeficiente e
expoente, respectivamente
                       Termo termo = new Termo(t);
                       termos.add(termo);
       public void imprimePolinomio() {
               for (Termo t: termos) {
                       System.out.print(t + " ");
       }
public class AP3_2013_2_Q2 {
       public static void main(String[] args) {
               Polinomio p1 = new Polinomio("3x3 + 2x1");
               p1.imprimePolinomio();
               System.out.println("\nValor do polinomio para x igual a 2: " +
p1.calculaPolinomio(2));
               System.out.println("Polinomio completo: " + p1.completo());
       }
}
```

- α) Analise o código e defina a classe Termo para que esta classe Polinomio funcione
- β) No método main() é chamado o método calculaPolinomio, o qual atribui um valor ao x do polinômio e retorna o resultado. Implemente esta função.
- χ) Ainda no método main() é chamada um método completo(), o qual verifica se um polinômio é completo, ou seja, se possui todos os expoentes, de 0 até um dado valor. O exemplo dado ("3x3 + 2x1") não é completo, pois faltam os termos de expoente 2 e 0.

GABARITO:

```
/* !!! Letra a) !!! */
class Termo {
    int coeficiente;
    int expoente;

    public Termo(int c, int e) {
        coeficiente = c;
        expoente = e;
    }

    public Termo(String t) {
        String valores[] = t.trim().split("x");
        coeficiente = Integer.valueOf(valores[0]);
        expoente = Integer.valueOf(valores[1]);
    }
}
```

```
public int getCoeficiente() {
               return coeficiente;
        public int getExpoente() {
               return expoente;
       public String toString() {
               return coeficiente + "x" + expoente;
}
class Polinomio {
        private List<Termo> termos;
       /* !!! Restante da classe definida no enunciado !!! */
       /* !!! Letra b) !!! */
       public double calculaPolinomio (double x) {
               double soma = 0;
               for (Termo t: termos) {
                       soma = soma + Math.pow(x, t.getExpoente())*t.getCoeficiente();
               return soma;
        }
       public boolean contemExpoente (int e) {
               for (Termo t: termos) {
                       if (t.getExpoente() == e)
                              return true;
               return false;
        }
       /* !!! Letra c) !!! */
       public boolean completo() {
               int tamanho = termos.size();
               for (int i=0; i<tamanho; i++)</pre>
                       if (! this.contemExpoente(i))
                              return false:
               return true:
        }
}
```