

# Compa Family CPLDs Clock Resources User Guide

(UG030003, V1.4) (16.08.2023)

Shenzhen Pango Microsystems Co., Ltd.
All Rights Reserved. Any infringement will be subject to legal action.



# **Revisions History**

# **Document Revisions**

| Version | Date of Release | Revisions        |
|---------|-----------------|------------------|
| V1.4    | 16.08.2023      | Initial release. |
|         |                 |                  |

(UG030003, V1.4) 1/56



# **About this Manual**

# **Terms and Abbreviations**

| Terms and Abbreviations | Meaning                           |  |
|-------------------------|-----------------------------------|--|
| CLKDIV                  | Clock Divider                     |  |
| PLL                     | Phase Lock Loop                   |  |
| CPLD                    | Complex Programmable Logic Device |  |
| PFD                     | Phase-Frequency Detector          |  |
| VCO                     | Voltage Controlled Oscillator     |  |
| LPF                     | Low Pass Filter                   |  |
| СР                      | Charge Pump                       |  |
| APB                     | Advanced Peripheral Bus           |  |
| LDO                     | Low Drop Out regulator            |  |
| SRB                     | Signal Relay Block                |  |
|                         |                                   |  |

(UG030003, V1.4) 2 / 56



# **Table of Contents**

| Revisions History                    | 1  |
|--------------------------------------|----|
| About this Manual                    | 2  |
| Table of Contents                    | 3  |
| Tables                               | 4  |
| Figures                              | 6  |
| Chapter 1 Overall Introduction       | 8  |
| Chapter 2 Detailed Introduction      | 10 |
| 2.1 Clock Input Pins                 | 10 |
| 2.2 GLOBAL CLOCK                     | 10 |
| 2.2.1 USCMMUX                        | 12 |
| 2.2.2 USCMDC                         | 12 |
| 2.2.3 USCMD                          | 14 |
| 2.3 IO CLOCK                         | 16 |
| 2.3.1 IOCKGATE                       | 17 |
| 2.3.2 CLKDIV                         |    |
| 2.3.3 IOCKBRG                        | 20 |
| 2.4 CLKDLY                           | 21 |
| 2.5 GLOBAL SIGNAL                    | 25 |
| 2.6 Phase Locked Loop (PLL)          | 26 |
| 2.6.1 PLL Function Overview          | 26 |
| 2.6.2 GTP_PLL_E2                     | 27 |
| 2.6.3 Standby Mode                   | 33 |
| 2.6.4 PLL Operation Mode             |    |
| 2.6.5 Output Frequency Programming   | 35 |
| 2.6.6 Fractional Frequency Synthesis | 36 |
| 2.6.7 PLL Lock Indication            | 36 |
| 2.6.8 Output Clock Phase Adjustment  | 37 |
| 2.6.9 Output Clock Cascading         | 42 |
| 2.6.10 Output Clock Dynamic Enable   | 42 |
| 2.6.11 APB Ports                     | 43 |
| 2.7 Internal Oscillator (OSC)        | 53 |
| Disclaimer                           | 56 |



# **Tables**

| Table 1-1 Major Clock Resources of Compa Family Products                             | 9  |
|--------------------------------------------------------------------------------------|----|
| Table 2-1 Clock Input Pins                                                           | 10 |
| Table 2-2 GLOBAL CLOCK Input Sources                                                 | 12 |
| Table 2-3 GTP_CLKBUFGCE Port Description                                             | 13 |
| Table 2-4 GTP_CLKBUFGCE Parameter Description                                        | 13 |
| Table 2-5 GTP_CLKBUFG Port Description                                               | 14 |
| Table 2-6 GTP_CLKBUFGMUX Port Description                                            | 15 |
| Table 2-7 GTP_CLKBUFGMUX Parameter Description                                       | 15 |
| Table 2-8 IO CLOCK Input Sources                                                     | 17 |
| Table 2-9 GTP_IOCLKBUF Port Description                                              | 17 |
| Table 2-10 GTP_IOCLKBUF Parameter Description                                        | 17 |
| Table 2-11 GTP_IOCLKDIV_E1 Port Description                                          | 19 |
| Table 2-12 GTP_IOCLKDIV_E1 Parameter Description                                     | 19 |
| Table 2-13 GTP_IOCLKMUX Port Description                                             | 21 |
| Table 2-14 GTP_IOCLKDELAY Port Description                                           | 22 |
| Table 2-15 GTP_IOCLKDELAY Parameter Description                                      | 22 |
| Table 2-16 GTP_BUFGS Port Description                                                | 26 |
| Table 2-17 GTP_PLL_E2 Port Description                                               | 28 |
| Table 2-18 GTP_PLL_E2 Parameter Description                                          | 30 |
| Table 2-19 Definitions of Output Frequency Programming Parameters                    | 35 |
| Table 2-20 PLL Lock Mode                                                             | 37 |
| Table 2-21 Static Phase Fine Adjustment Parameter Configuration                      | 37 |
| Table 2-22 Static Phase Coarse Adjustment Parameter Configuration                    | 39 |
| Table 2-23 Phase Static Parameters Configuration of Fine and Coarse Phase Adjustment | 40 |
| Table 2-24 APB Port Description                                                      | 43 |
| Table 2-25 Configuration Register Description: Address 0x00                          | 43 |
| Table 2-26 Configuration Register Description: Address 0x01                          | 43 |
| Table 2-27 Configuration Register Description: Address 0x02                          | 44 |
| Table 2-28 Configuration Register Description: Address 0x03                          | 44 |
| Table 2-29 Configuration Register Description: Address 0x04                          | 44 |
| Table 2-30 Configuration Register Description: Address 0x05                          | 44 |
| Table 2-31 Configuration Register Description: Address 0x06                          | 44 |
| Table 2-32 Configuration Register Description: Address 0x07                          | 44 |
| Table 2-33 Configuration Register Description: Address 0x08                          | 44 |
| Table 2-34 Configuration Register Description: Address 0x09                          | 44 |
| Table 2-35 Configuration Register Description: Address 0x0A                          | 45 |
|                                                                                      |    |

| <b>也</b> PANGO                                                        | Tables |
|-----------------------------------------------------------------------|--------|
| Table 2-36 Configuration Register Description: Address 0x0B           | 45     |
| Table 2-37 Configuration Register Description: Address 0x0C           | 45     |
| Table 2-38 Configuration Register Description: Address 0x0D           | 45     |
| Table 2-39 Configuration Register Description: Address 0x0E           | 45     |
| Table 2-40 Configuration Register Description: Address 0x0F           | 46     |
| Γable 2-41 Configuration Register Description: Address 0x10           | 46     |
| Γable 2-42 Configuration Register Description: Address 0x11           | 47     |
| Γable 2-43 Configuration Register Description: Address 0x12           | 47     |
| Γable 2-44 Configuration Register Description: Address 0x13           | 48     |
| Table 2-45 GTP_APB Port Description                                   | 49     |
| Table 2-46 GTP_OSC_E2 Port Description                                | 53     |
| Table 2-47 GTP_OSC_E2 Parameter Description                           | 53     |
| Table 2-48 Correspondence Between CLK_DIV Values and Division Factors | 54     |

(UG030003, V1.4) 5 / 56



# **Figures**

| Figure 1-1 PGC1K/2K Major Clock Resource Distribution Diagram                      | 8  |
|------------------------------------------------------------------------------------|----|
| Figure 1-2 PGC4K/7K/10K Major Clock Resource Distribution Diagram                  | 9  |
| Figure 2-1 GLOBAL CLOCK Signal Connection Diagram                                  | 11 |
| Figure 2-2 GTP_CLKBUFGCE Structure Block Diagram                                   | 12 |
| Figure 2-3 GTP_CLKBUFGCE Timing Diagram                                            | 13 |
| Figure 2-4 GTP_CLKBUFG Structure Block Diagram                                     | 14 |
| Figure 2-5 GTP_CLKBUFG Timing Diagram                                              | 14 |
| Figure 2-6 GTP_CLKBUFGMUX Structure Block Diagram                                  | 15 |
| Figure 2-7 GTP_CLKBUFGMUX Timing Diagram                                           | 16 |
| Figure 2-8 IO CLOCK Signal Connection Diagram                                      | 16 |
| Figure 2-9 GTP_IOCLKBUF Structure Block Diagram                                    | 17 |
| Figure 2-10 GTP_IOCLKBUF with GATE_EN="FALSE" Timing Diagram                       | 18 |
| Figure 2-11 GTP_IOCLKBUF with GATE_EN="TRUE" Timing Diagram                        | 18 |
| Figure 2-12 GTP_IOCLKDIV_E1 Structure Block Diagram                                | 19 |
| Figure 2-13 GTP_IOCLKDIV_E1 Divide-by-2 Timing Diagram                             | 20 |
| Figure 2-14 GTP_IOCLKDIV_E1 Divide-by-3.5 Timing Diagram                           | 20 |
| Figure 2-15 GTP_IOCLKMUX Block Diagram                                             | 21 |
| Figure 2-16 GTP_IOCLKMUX Timing Diagram                                            | 21 |
| Figure 2-17 GTP_IOCLKDELAY Diagram                                                 | 22 |
| Figure 2-18 Static Configuration of GTP_IOCLKDELAY Timing Diagram                  | 23 |
| Figure 2-19 Dynamic Delay Example of GTP_IOCLKDELAY Timing Diagram                 | 24 |
| Figure 2-20 DELAY_OB Transitioning to High Level with Maximum Delay Timing Diagram | 24 |
| Figure 2-21 DELAY_OB Transitioning to High Level with Minimum Delay Timing Diagram | 24 |
| Figure 2-22 GLOBAL SIGNAL Connection Diagram                                       | 25 |
| Figure 2-23 GTP_BUFGS Block Diagram                                                | 26 |
| Figure 2-24 PLL Schematic Block Diagram.                                           | 27 |
| Figure 2-25 GTP_PLL_E2 Top-Level Ports                                             | 28 |
| Figure 2-26 PLL Bypass Output Diagram                                              | 34 |
| Figure 2-27 PLL Internal Feedback Diagram                                          | 34 |
| Figure 2-28 PLL Output Frequency Calculation Block Diagram                         | 35 |
| Figure 2-29 Phase Fine Adjustment Static Configuration                             | 38 |
| Figure 2-30 Timing Requirements of Dynamic Phase Fine-Tuning                       | 39 |
| Figure 2-31 Coarse Phase Adjustment Static Configuration                           | 40 |
| Figure 2-32 PLL Phase Static Configuration.                                        | 40 |
| Figure 2-33 Timing Requirements of Dynamic Phase Coarse Adjustment                 | 41 |
| Figure 2-34 Output Clock Cascading Block Diagram                                   | 42 |
|                                                                                    |    |

| <b>也 PANGO</b>                                 | Figures |
|------------------------------------------------|---------|
| Figure 2-35 Output Clock GATE Timing Diagram   | 43      |
| Figure 2-36 GTP_APB Diagram                    | 49      |
| Figure 2-37 Timing of APB Write without Wait   | 50      |
| Figure 2-38 Timing of APB Write with Wait      | 51      |
| Figure 2-39 Timing of APB Continuous Write     | 51      |
| Figure 2-40 Timing of APB Read without Wait    | 51      |
| Figure 2-41 Timing of APB Read with Wait       | 52      |
| Figure 2-42 Timing of APB Continuous Read      | 52      |
| Figure 2-43 Timing of APB Write before Read    | 52      |
| Figure 2-44 Timing of APB Read before Write    | 53      |
| Figure 2-45 GTP_OSC_E2 Structure Block Diagram | 53      |
| Figure 2-46 GTP_OSC_E2 Timing Diagram          | 55      |



# **Chapter 1 Overall Introduction**

The Compa family products provide a variety of on-chip clock resources, including a global clock network, IO clock network, clock divider module (CLKDIV), clock delay unit (CLKDLY), PLL, and internal oscillator (OSC). The global clock network contains 8 dedicated GLOBAL CLOCKs and 8 GLOBAL SIGNALs evenly distributed throughout the chip. The 8 GLOBAL SIGNALs can be used as clock lines, thereby supporting up to 16 global clock lines in total. The IO clock network contains 4 IO CLOCKs dedicated to high-speed port applications. They are distributed on the upper and lower sides of the chip and can be bridged via IOCKBRG. The PGC1K/2K clock resource distribution diagram is shown in Figure 1-1:



Figure 1-1 PGC1K/2K Major Clock Resource Distribution Diagram

(UG030003, V1.4) 8 / 56



The PGC4K/7K/10K clock resource distribution diagram is shown in Figure 1-2:



Figure 1-2 PGC4K/7K/10K Major Clock Resource Distribution Diagram

The Compa family products provide dedicated clock pins that allow dedicated clock routing within the chip to reach any GLOBAL CLOCK. Compared with general pins, using these dedicated clock input pins can avoid interference from ordinary routing resources, thus achieving better clock performance. When not used as clock inputs, these dedicated clock input pins can be used as general pins.

The number of main clock resources for Compa family products is shown in Table 1-1:

Name PGC1K PGC2K PGC4K PGC7K PGC10K **PLL** 1 2 2 2 1 **GLOBAL CLOCK** 8 8 8 8 8 **GLOBAL SIGNAL** 8 8 8 8 8 4 4 4 IO CLOCK 4 4 Clock divider module 4 4 4 4 4

Table 1-1 Major Clock Resources of Compa Family Products

(UG030003, V1.4) 9/56



# **Chapter 2 Detailed Introduction**

# 2.1 Clock Input Pins

Compa family products provide dedicated pins related to the clock. There are three types of clock input pins, as shown in Table 2-1. The clock signal can be directly connected to the internal clock network through the clock input pin, thereby reducing interference and improving clock quality. The clock input pins support differential signals as well as single-ended signals. When receiving a single-ended signal, only the P-side can be directly connected to the internal clock network, while the N-side has to pass through an SRB. When not used as clock inputs, the clock input pins can be used as general pins.

 Symbol
 Description

 CLKxP\_Bx/CLKxN\_Bx
 Inputs for GLOBAL CLOCK and IO CLOCK

 PLLx\_CLKIN\_P/PLLx\_CLKIN\_N
 PLL dedicated reference clock input

PLL external feedback clock input

Table 2-1 Clock Input Pins

#### pin Notes:

**Clock Input Pin** 

Global clock Input pin1

PLL reference clock input

PLL feedback input clock

PLLx\_CLKFB\_P/PLLx\_CLKFB\_N

# 2.2 GLOBAL CLOCK

The Compa family products provide 8 GLOBAL CLOCKs. All GLOBAL CLOCKs support the dynamic enable function, among which two GLOBAL CLOCKs provide the function of dynamically switching input clocks. The GLOBAL CLOCK signal connection diagram is shown in Figure 2-1:

(UG030003, V1.4)

<sup>1.</sup> The global clock pins of BANK0/2 do not require an SRB and can be directly routed through a dedicated clock network to the PLL input clock port;

<sup>2.</sup> The PLL reference clock input pin needs to be connected to the global clock network via an SRB.





Figure 2-1 GLOBAL CLOCK Signal Connection Diagram

(UG030003, V1.4) 11/56



The signal connection diagram shows the clock source, the 28:1 multiplexer USCMMUX, the intelligent 2:1 multiplexer USCMD, and the buffer USCMDC with dynamic enable function. The GLOBAL CLOCK input source is delivered by vertical clock lines to the USCMMUX input at the middle of the chip. The GLOBAL CLOCK is evenly distributed to each column of logic cells via the global clock routing.

The description of GLOBAL CLOCK input sources is shown in the following table:

| GLOBAL CLOCK Input<br>Sources                                                                           | Description                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| From CLKxP_Bx                                                                                           | The clock may come from global clock input pins, with up to 8 pairs of differential pins; and the single-ended clocks use the P-side; the pin name definitions can be found in the packaging manual; each pin can be connected to any USCMMUX. |
| From PLL                                                                                                | The clock may come from the PLL's output clocks CLKOUT0, CLKOUT1, CLKOUT2, CLKOUT3; each output can be connected to any USCMMUX.                                                                                                               |
| From SRB                                                                                                | The clock may come from SRB outputs, that is, normal interconnection line outputs, with a total of 10 outputs, and each one is fixed to a USCMMUX.                                                                                             |
| From CLKDIV                                                                                             | The clock may come from the clock of divider outputs, CLKOUT and CLKDIVOUT, with each output connectible to any USCMMUX.                                                                                                                       |
| From OSC  The clock may come from the clock of the internal oscillator (OSC connectible to any USCMMUX. |                                                                                                                                                                                                                                                |

Table 2-2 GLOBAL CLOCK Input Sources

# 2.2.1 USCMMUX

USCMMUX is a 28-to-1 multiplexer that selects one clock signal from multiple clock sources as the GLOBAL CLOCK signal. Among them, the 10 signals from the SRB have a one-to-one fixed connection with the 10 USCMMUXs, while other clock sources can connect to any USCMMUX.

#### **2.2.2 USCMDC**

USCMDC is a buffer with enable control designed to meet users' requirements for dynamic control of GLOBAL CLOCK input sources without generating glitches. It is used by directly instantiating GTP\_CLKBUFGCE or GTP\_CLKBUFG.

## > GTP\_CLKBUFGCE

The GTP\_CLKBUFGCE structure block diagram is shown in the figure below, the corresponding port descriptions are shown in Table 2-3, and the parameter descriptions are shown in Table 2-4.



Figure 2-2 GTP\_CLKBUFGCE Structure Block Diagram

(UG030003, V1.4) 12 / 56



# Table 2-3 GTP\_CLKBUFGCE Port Description

| Port Signal | Direction | Description                                        |
|-------------|-----------|----------------------------------------------------|
| CLKIN       | Input     | Input Clock                                        |
| CE          | Input     | When CE=1'b1, CLKOUT=CLKIN; When CE=1'b0, CLKOUT=0 |
| CLKOUT      | Output    | Output clock                                       |

## Table 2-4 GTP\_CLKBUFGCE Parameter Description

| Parameter     | Description                                                                                                                                                                     |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEFAULT_VALUE | For Compa family devices, the parameter can only be configured as 0; when CE=0, CLKOUT outputs 1'b0                                                                             |
| SIM_DEVICE    | Device selection parameter to choose the device as needed. The default value is "TITAN," with valid options being "TITAN," "LOGOS," "COMPACT," "LOGOS2," "TITAN2," and "TITAN3" |

Taking Verilog instantiation as an example, the call method for GTP\_CLKBUFGCE is as follows:

# GTP\_CLKBUFGCE

```
#(
.DEFAULT_VALUE (1'b0 )
) I_GTP_CLKBUFGCE (
.CLKIN (CLKIN ),
.CE (CE ),
.CLKOUT (CLKOUT )
);
```

When CE is high, CLKOUT=CLKIN; when CE is low, CLKOUT output is low level, with the timing diagram shown in the figure below:



Figure 2-3 GTP\_CLKBUFGCE Timing Diagram

# ➤ GTP\_CLKBUFG

The GTP\_CLKBUFG structure block diagram is shown in the figure below, and the port descriptions are shown in Table 2-5.

(UG030003, V1.4)





Figure 2-4 GTP\_CLKBUFG Structure Block Diagram

Table 2-5 GTP\_CLKBUFG Port Description

| Port Signal | Direction | Description  |
|-------------|-----------|--------------|
| CLKIN       | Input     | Input Clock  |
| CLKOUT      | Output    | Output clock |

Taking Verilog instantiation as an example, the call method for GTP\_CLKBUFG is as follows:

```
GTP_CLKBUFG I_ GTP_CLKBUFG (

.CLKOUT (CLKOUT ),

.CLKIN (CLKIN )
);
```

The timing diagram of GTP\_CLKBUFG is shown in the figure below:



Figure 2-5 GTP\_CLKBUFG Timing Diagram

#### 2.2.3 **USCMD**

USCMD is an intelligent 2-to-1 clock signal multiplexer, where the control selection signal can be triggered at any time without generating glitches. When making clock selections, it is necessary to ensure that both clock inputs are functioning normally. USCMD can be used by instantiating GTP\_CLKBUFGMUX.

#### ➤ GTP CLKBUFGMUX

GTP\_CLKBUFGMUX can be used for dynamic switching between two global clock input sources; Compa products only support the "NEGEDGE" mode, and the glitchless switching is triggered by the falling edge of the clock (corresponding to TRIGGER\_MODE="NEGEDGE"). It is important to note that both clock sources must be active. Otherwise, an abnormal CLKOUT output will occur during switching. The structure block diagram is shown in Figure 2-6:

(UG030003, V1.4) 14 / 56





Figure 2-6 GTP\_CLKBUFGMUX Structure Block Diagram

| Table 2-6 GTP CL | KBUFGMUX | Port Description |
|------------------|----------|------------------|
|------------------|----------|------------------|

| Port Signal | Direction | Description                                                                      |
|-------------|-----------|----------------------------------------------------------------------------------|
| CLKIN0      | Input     | Input clock 0                                                                    |
| CLKIN1      | Input     | Input clock 1                                                                    |
| SEL         | Input     | The clock selection signal, which selects CLKIN0 when set to 0 and CLKIN1 when 1 |
| CLKOUT      | Output    | Output clock                                                                     |

Table 2-7 GTP\_CLKBUFGMUX Parameter Description

| Parameter    | Description                                                                                                                                                                          |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRIGGER_MODE | Valid value 'NEGEDGE', mode selection; in this mode, input clocks (CLKIN0 and CLKIN1) can be freely switched with the glitchless function triggered on the falling edge of the clock |
| SIM_DEVICE   | Device selection parameter to choose the device as needed. The default value is "TITAN," with valid options being "TITAN," "LOGOS," "COMPACT," "LOGOS2," "TITAN2," and "TITAN3"      |

Taking Verilog instantiation as an example, the call method for GTP\_CLKBUFGMUX is as follows:

```
GTP_CLKBUFGMUX
#(
```

```
""

.TRIGGER_MODE ("NEGEDGE" )

.SIM_DEVICE ("COMPACT" )

) I_CLKBUFGMUX (

.CLKIN0 (CLKIN0 ),

.CLKIN1 (CLKIN1 ),

.SEL (SEL ),

.CLKOUT (CLKOUT )

);
```

The timing diagram for GTP\_CLKBUFGMUX is shown below. In TRIGGER\_MODE='NEGEDGE' mode, when switching clocks, the output clock remains unchanged after two falling edges of the current clock, and then a active clock is output after two falling edges of the switched clock.

(UG030003, V1.4) 15 / 56



Figure 2-7 GTP\_CLKBUFGMUX Timing Diagram

## **2.3 IO CLOCK**

The IO clock network provides high-speed and low-skew clocks to IO logic resources. The IO clock network contains 4 IO CLOCKs, with 2 on each side of the chip; each side's IO CLOCK can drive nearby IO logic resources, while the IOCKBRG can also drive opposing IO logic resources.

Each IO CLOCK source outputs a clock through a multiplexer, after passing through the buffer IOCKGATE with dynamic enable function, it can drive IO logic resources, or enter the clock divider CLKDIV for frequency division as an input source for GLOBAL CLOCK, the connection diagram for IO CLOCK signals is shown in Figure 2-8:





Figure 2-8 IO CLOCK Signal Connection Diagram

(UG030003, V1.4)



| Table | 2-8 10 | CLO           | CK In | out Sou | rces |
|-------|--------|---------------|-------|---------|------|
| rauro | 2-0 I  | $\mathcal{L}$ |       | out Sou | LUUS |

| IO CLOCK Input<br>Source | Description                                                                                                                                                                                                                                              |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| From CLKxP_Bx            | May come from the global clock input pins Upper-side IO CLOCK source: CLK0P_B0, CLK1P_B0, and CLK0P_B1 Lower-side IO CLOCK source: CLK0P_B2, CLK1P_B2, CLK0P_B3, CLK0P_B4, and CLK0P_B5                                                                  |  |
| From PLL                 | May come from the PLL's output clocks CLKOUT0 and CLKOUT1 The IO CLOCK source of PGC1K/2K: PLL0 output clocks CLKOUT0 and CLKOUT1 The IO CLOCK source of PGC4K/7K/10K: PLL0 output clocks CLKOUT0 and CLKOUT1 and PLL1 output clocks CLKOUT0 and CLKOUT1 |  |
| From SRB                 | May come from SRB output, with 4 signals each fixed to an iockpremux                                                                                                                                                                                     |  |

# 2.3.1 IOCKGATE

In source-synchronous data transmission applications, to maintain synchronisation with the clock from the IO CLOCK, an IOCKGATE is added, providing the dynamic enable function to turn off or turn on the clock signal.

# ➤ GTP\_IOCLKBUF

The use of IOCKGATE is implemented by instantiating GTP\_IOCLKBUF; its structure block diagram is shown in Figure 2-9, the port descriptions are shown in Table 2-9, and parameters are listed in Table 2-10.



Figure 2-9 GTP\_IOCLKBUF Structure Block Diagram

Table 2-9 GTP\_IOCLKBUF Port Description

| Port Signal | Direction | Description                                                                                           |
|-------------|-----------|-------------------------------------------------------------------------------------------------------|
| CLKIN       | Input     | Input Clock                                                                                           |
| DI          | Input     | Enable signal. When DI is active, 0 denotes clock output disabled, and 1 denotes clock output enabled |
| CLKOUT      | Output    | Output clock                                                                                          |

Table 2-10 GTP\_IOCLKBUF Parameter Description

| Parameter | Description                                                                                 |
|-----------|---------------------------------------------------------------------------------------------|
| GATE_EN   | When "TRUE", the enable signal DI is active; when "FALSE", the enable signal DI is inactive |

(UG030003, V1.4) 17 / 56



Taking Verilog instantiation as an example, the call method for GTP\_IOCLKBUF is as follows:

# GTP\_IOCLKBUF

```
#(

.GATE_EN ("FALSE" ) //FALSE; TRUE
) I_ GTP_IOCLKBUF (

.CLKOUT (CLKOUT),

.CLKIN (CLKIN),

.DI (DI )
);
```

When the parameter GATE\_EN is "TRUE" or "FALSE", the corresponding timing diagram is as follows:



Figure 2-10 GTP\_IOCLKBUF with GATE\_EN="FALSE" Timing Diagram



Figure 2-11 GTP\_IOCLKBUF with GATE\_EN="TRUE" Timing Diagram

#### **2.3.2 CLKDIV**

The divider CLKDIV divides the clock received from IOCKGATE by 2, 3.5, or 4. The divider has two output clocks: the undivided output clock CLKOUT and the divided output clock CLKDIVOUT.

## ➤ GTP IOCLKDIV E1

CLKDIV can be used by directly instantiating GTP\_IOCLKDIV\_E1. The GTP\_IOCLKDIV\_E1

(UG030003, V1.4) 18 / 56



structure block diagram is shown in the figure below, the port descriptions are shown in Table 2-11, and the parameter descriptions are shown in Table 2-12.



Figure 2-12 GTP\_IOCLKDIV\_E1 Structure Block Diagram

Table 2-11 GTP\_IOCLKDIV\_E1 Port Description

| Port Signal | Direction | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CLKIN       | Input     | Input Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| ALIGNWD     | Input     | Provides the level hold function to the output division clock; in divide-by-2 or divide-by-4 modes, it is triggered by the rising edge of the input clock, during even-numbered ALIGNWD pulses, the division clock is held for one input clock cycle upon the fourth rising edge of the input clock. In the divide-by-3.5 mode, the division clock is maintained for one input clock cycle when the fourth rising edge of the input clock occurs in each ALIGNWD pulse. |  |
| RST_N       | Input     | Reset signal, active low                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CLKDIVOUT   | Output    | Divided output clock                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| CLKOUT      | Output    | Output clock without division                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

Table 2-12 GTP\_IOCLKDIV\_E1 Parameter Description

| Parameter  | Description                                                                                                                                      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| DIV_FACTOR | When set to "DIV_DIS", CLKOUT=1'b1, and CLKDIVOUT=1'b1; when set to "2," "3.5," or "4," CLKOUT is CLKIN and CLKDIVOUT outputs the division clock |
| GRS_EN     | Global enable signal. "TRUE" indicates the global enable signal is active; "FALSE" indicates the global enable signal is inactive.               |

Taking Verilog instantiation as an example, the call method for GTP\_IOCLKDIV\_E1 is as follows:

```
GTP_IOCLKDIV_E1 #(
.DIV_FACTOR
                    ("DIV_DIS"
                                       //"DIV_DIS";"2"; "3.5"; "4";
                                  ),
                    ("TRUE"
                                        //"TRUE"; "FALSE"
.GRS_EN
                                  )
)I_IOCLKDIV_E1(
.CLKIN
                 (CLKIN
                               ),
.RST_N
                 (RST_N
                               ),
.ALIGNWD
                 (ALIGNWD
.CLKOUT
                    (CLKOUT
.CLKDIVOUT
                    (CLKDIVOUT
);
```

(UG030003, V1.4) 19 / 56

When DIV\_FACTOR is "2" or "3.5", which means divide-by-2 or divide-by-3.5, the timing diagram for the clock output from GTP\_IOCLKDIV\_E1 is as follows:



Figure 2-13 GTP\_IOCLKDIV\_E1 Divide-by-2 Timing Diagram



Figure 2-14 GTP\_IOCLKDIV\_E1 Divide-by-3.5 Timing Diagram

#### 2.3.3 IOCKBRG

The IO CLOCKs on the upper and lower sides of the chip drive their respective sides' IO logic resources. To drive the IO logic resources on the opposite side, a bridging function is needed. The Compa family products include such IO CLOCK bridging resources, IOCKBRG, where the upper-side IO CLOCK can bridge to the lower side of the chip via IOCKBRG to drive the IO logic resources there, and the lower-side IO CLOCK can bridge to the upper side of the chip via IOCKBRG to drive the IO logic resources.

## > GTP\_IOCLKMUX

Users can bridge the IO CLOCK by instantiating GTP\_IOCLKMUX, the structure block diagram of GTP\_IOCLKMUX is shown below, and its port descriptions are shown in Table 2-13.

(UG030003, V1.4) 20 / 56





Figure 2-15 GTP\_IOCLKMUX Block Diagram

Table 2-13 GTP\_IOCLKMUX Port Description

| Port Signal | Direction | Description                                                                        |
|-------------|-----------|------------------------------------------------------------------------------------|
| CLKIN0      | Input     | Input clock 0                                                                      |
| CLKIN1      | Input     | Input clock 1                                                                      |
| SEL         | Input     | Clock select signal. Select CLKIN0 when it is 1'b0; select CLKIN1 when it is 1'b1; |
| CLKOUT      | Output    | Output clock                                                                       |

Taking Verilog instantiation as an example, the call method for GTP\_IOCLKMUX is as follows:

# GTP\_IOCLKMUX

```
I_ IOCLKMUX (

.CLKIN0 (CLKIN0 ),

.CLKIN1 (CLKIN1 ),

.SEL (SEL ),

.CLKOUT (CLKOUT )

);
```

The timing diagram of GTP\_IOCLKMUX is shown below.



Figure 2-16 GTP\_IOCLKMUX Timing Diagram

# 2.4 CLKDLY

To meet the need to adjust the input clock phase in some applications, the global clock input pins of the Compa family products offer an optional time delay function. The time delay of the input clock

(UG030003, V1.4) 21/56



is implemented by directly calling GTP\_IOCLKDELAY.

# ➤ GTP\_IOCLKDELAY

The GTP\_IOCLKDELAY structure block diagram is shown in Figure 2-17, the port descriptions are shown in Table 2-14, and the parameter descriptions are shown in Table 2-15.



Figure 2-17 GTP\_IOCLKDELAY Diagram

| Port Signal      | Direction | Description                                                                                                                                                                                   |
|------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLKIN            | Input     | Clock signal from global clock input pins                                                                                                                                                     |
| DELAY_STEP [7:0] | Input     | Delay step from DLL                                                                                                                                                                           |
| DIRECTION        | Input     | Set to 0 to dynamically increase the delay step; set to 1 to dynamically decrease the delay step.                                                                                             |
| LOAD             | Input     | When LOAD=1'b1, the static parameter configuration or the delay step value from DLL is loaded. When LOAD=1'b0, the delay time is dynamically adjusted.                                        |
| MOVE             | Input     | The falling edge triggers dynamic fine adjustment, increasing or decreasing one step depending on the DIRECTION                                                                               |
| CLKOUT           | Output    | Delayed clock output                                                                                                                                                                          |
| DELAY_OB         | Output    | Dynamic fine adjustment overflow flag of delay step; it goes high when internal DELAY STEP is 127 with DIRECTION set to 0; it goes high when internal delay step is 0 with DIRECTION set to 1 |

Table 2-15 GTP\_IOCLKDELAY Parameter Description

| Parameter        | Description                                                                                                                                        |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DELAY_STEP_VALUE | Static delay step, effective when DELAY_STEP_SEL is set to "PARAMETER"                                                                             |  |
| DELAY_STEP_SEL   | When set to "PORT," it selects the delay step from DLL; When set to "PARAMETER," it selects the delay step from the static parameter configuration |  |
| SIM_DEVICE       | Device selection parameter to choose the device as needed. The default value is "TITAN," with valid options being "TITAN," "LOGOS," and "COMPACT"  |  |

Users can statically configure the delay step to adjust the number of delay chains, with each step delaying by 25ps; the minimum delay chain count is 0, and the maximum is 127 (8'b0–8'b0111\_1111), or dynamically obtain the delay step using the on-chip DLL or dynamically fine adjust the delay step. In static configuration adjustment mode, MOVE and DIRECTION are not working.

(UG030003, V1.4) 22 / 56



Taking Verilog instantiation as an example, the call method for GTP\_IOCLKDELAY is as follows: GTP\_IOCLKDELAY

```
#(
.DELAY_STEP_VALUE
                        (8'd10
                                         //Used for static DELAY STEP setting, 0~127
                                      ),
.DELAY STEP SEL
                        ("PARAMETER")
                                         // "PARAMETER" or "PORT"
)
I_IOCLKDELAY(
.CLKIN
                        (CLKIN
                                      ),
.DELAY_STEP
                        (DELAY_STEP ),
.CLKOUT
                        (CLKOUT
                                      ),
.DIRECTION
                        (DIRECTION
                                      ),
.LOAD
                        (LOAD
                                      ),
.MOVE
                        (MOVE
                                      ),
.DELAY_OB
                        (DELAY_OB
);
```

In the above example, the DELAY\_STEP\_VALUE parameter is set to 10, LOAD is set to 1'b1, DIRECTION and MOVE are set to 1'bx, and the timing diagram is as follows:



Figure 2-18 Static Configuration of GTP\_IOCLKDELAY Timing Diagram

When adjusting in dynamic mode, LOAD=1'b0, MOVE acts as the trigger clock for the dynamic mode by triggered on the falling edge. With each trigger, the phase relationship between CLKOUT and CLKIN increases or decreases by one step. DIRECTION controls the increase or decrease of the step, decreasing the step when DIRECTION=1'b1; and increasing the step when DIRECTION=1'b0. The corresponding timing diagram is as follows, with each increase or decrease in time being T1.

(UG030003, V1.4) 23 / 56



Figure 2-19 Dynamic Delay Example of GTP\_IOCLKDELAY Timing Diagram

For DELAY\_OB, as described in the diagram below, after the moment t0, DIRECTION=1'b0; if the count M of MOVE falling edges plus the value of DELAY\_STEP\_VALUE set or the DELAY\_STEP value x from DLL reaches 127, then DELAY\_OB transitions to a high level, indicating that the maximum adjustable DELAY TIME has been reached and no further steps can be added; when DELAY\_STEP\_VALUE or DELAY\_STEP is set to 8'd0, if DIRECTION=1'b1, then DELAY\_OB transitions to a high level, indicating that the minimum adjustable DELAY TIME has been reached and no further steps can be reduced.



Figure 2-20 DELAY\_OB Transitioning to High Level with Maximum Delay Timing Diagram



Figure 2-21 DELAY\_OB Transitioning to High Level with Minimum Delay Timing Diagram

(UG030003, V1.4) 24 / 56



#### 2.5 GLOBAL SIGNAL

Compa family products provide 8 GLOBAL SIGNALs, each of which can act both as a global reset signal and a global clock signal evenly distributed throughout the chip. The GLOBAL SIGNAL connection diagram is shown in Figure 2-22:



Figure 2-22 GLOBAL SIGNAL Connection Diagram

The signal sources for GLOBAL SIGNAL come from 8 global clock input pins and 7 internal SRB output signals of the chip. Each global clock input pin is fixed to a USSMMUX, and the output of an SRB can be connected to any USSMMUX.

## ➤ GTP\_BUFGS

By instantiating GTP\_BUFGS, signals can be fed into USSMMUX and reach the driven logic modules evenly. The GTP\_BUFGS structure block diagram is shown in the figure below, and the port descriptions are shown in Table 2-16:

(UG030003, V1.4) 25 / 56





Figure 2-23 GTP\_BUFGS Block Diagram

Table 2-16 GTP\_BUFGS Port Description

| Port Signal | Direction | Description               |
|-------------|-----------|---------------------------|
| I           | Input     | Global signal input port  |
| Z           | Output    | Global signal output port |

Taking Verilog instantiation as an example, the call method for GTP\_BUFGS is as follows:

## 2.6 Phase Locked Loop (PLL)

# 2.6.1 PLL Function Overview

The PLL of the Compa family products offers functions like frequency synthesis, phase adjustment, clock skew reduction, and power consumption reduction. The system block diagram of PLL is shown in Figure 2-24:

(UG030003, V1.4) 26 / 56





Figure 2-24 PLL Schematic Block Diagram

# The key features of PLL are:

- ➤ Dynamic switching of input reference clock
- > Two feedback modes: internal feedback and external feedback
- > Fractional division function
- ➤ Dynamic enable of output clock
- > Static and dynamic phase adjustment
- > PLL dynamic configuration
- ➤ Mutual cascading of output clocks

## 2.6.2 GTP\_PLL\_E2

Users can generate PLL function modules through IPC when using PLL or directly instantiate GTP\_PLL\_E2. The GTP\_PLL\_E2 structure block diagram is shown in the figure below, the port descriptions are shown in Table 2-17, and the parameter descriptions are shown in Table 2-18 GTP\_PLL\_E2.

(UG030003, V1.4) 27 / 56





Figure 2-25 GTP\_PLL\_E2 Top-Level Ports

Table 2-17 GTP\_PLL\_E2 Port Description

| Port Signal  | Direction | Function Description                                                                                                                                                                                                                                                                                                                          |  |
|--------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CLKOUT       | Output    | PLL reference clock output; reference clock enters the PLL and is directly bypassed output (Bypass PLL) without going through the input clock divider, PFD, CP, LPF, VCO, and output divider                                                                                                                                                  |  |
| CLKOUT0      | Output    | The first output clock of the PLL, with phase adjustment function                                                                                                                                                                                                                                                                             |  |
| CLKOUT1      | Output    | The second output clock of the PLL, with phase adjustment function                                                                                                                                                                                                                                                                            |  |
| CLKOUT2      | Output    | The third output clock of the PLL, with phase adjustment function                                                                                                                                                                                                                                                                             |  |
| CLKOUT3      | Output    | The fourth output clock of the PLL, with phase adjustment function                                                                                                                                                                                                                                                                            |  |
| PHASE_SOURCE | Output    | Indication signal for the source of PLL dynamic phase adjustment control signal 1'b0: Indicates that the control signal comes from the APB port 1'b1: Indicates that the control signal comes from ports, i.e. CPHASE_STEP_N, LOAD_PHASE, PHASE_SEL, PHASE_DIR, and PHASE_STEP_N. If the user didn't choose a dynamic port, the register with |  |

(UG030003, V1.4) 28 / 56



| Port Signal   | Direction | Function Description                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|---------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|               |           | the APB port will be used by default for dynamic phase adjustment settings                                                                                                                                                                                                                                                                                                                                                                                       |  |
| LOCK          | Output    | An asynchronous PLL frequency lock indication signal; when the signal is pulled high, it indicates that the PLL feedback clock signal is locked to the input clock signal; When the clock recovers from a lost or unstable state, PLL needs to be reset via the reset pin RST                                                                                                                                                                                    |  |
| CLKIN1        | Input     | PLL reference input clock 1                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| CLKIN2        | Input     | PLL reference input clock 2                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| CLKFB         | Input     | PLL feedback clock input                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| CLKIN_SEL     | Input     | The input clock selection signal, which selects either of the input reference clocks CLKIN1 and CLKIN2 as the input clock for the input divider; selects CLKIN1 when it is 1'b0 and selects CLKIN2 when it is 1'b1                                                                                                                                                                                                                                               |  |
| PFDEN         | Input     | PFD enable signal for the PLL; 1'b0 indicates that the PFD is disabled, and 1'b1 indicates that the PFD is enabled; PFDEN is an optional signal, and the user can decide whether PFDEN is effective through the static configuration parameter PFDEN_EN. Note that after PFD is turned off, the LOCK signal still maintains a high level for a period of time before pulling down, during which there will still be clock output, but the clock will be unstable |  |
| PHASE_SEL     | Input     | Select any PLL output clock for phase adjustment 2'b00: Selects CLKOUT0, 2'b01: Selects CLKOUT3, 2'b10: Selects CLKOUT2, 2'b11: Selects CLKOUT1;                                                                                                                                                                                                                                                                                                                 |  |
| PHASE_DIR     | Input     | Select the direction for dynamic phase fine adjustment; 1'b0: lag, 1'b1: lead                                                                                                                                                                                                                                                                                                                                                                                    |  |
| PHASE_STEP_N  | Input     | Dynamic phase fine adjustment trigger signal; with each trigger, the output clock phase is adjusted by $1/8~T_{vco}$ (where $T_{vco}$ represents the clock cycle of the input VCO)                                                                                                                                                                                                                                                                               |  |
| LOAD_PHASE    | Input     | Load signal for the current phase fine adjustment value of the selected channel is a pulse signal, active high                                                                                                                                                                                                                                                                                                                                                   |  |
| CPHASE_STEP_N | Input     | Dynamic phase coarse adjustment trigger signal; each trigger increments the counter by +1, adjusting the output clock phase by n*T <sub>vco</sub> , where n*T <sub>vco</sub> is set through phase coarse static configuration                                                                                                                                                                                                                                    |  |
| CLKOUT0_SYN   | Input     | The CLKOUT0 output clock enable control signal; active high. The signal is active when the user sets CLKOUT0_SYN_EN to "TRUE." If the user sets the CLKOUT0 output as active, or if there is no requirement for the signal CLKOUT0_SYN, the CLKOUT0 output clock is always active unless the PLL is in Standby mode.                                                                                                                                             |  |
| CLKOUT1_SYN   | Input     | The CLKOUT1 clock output enable control signal; active high; its function is the same as CLKOUT0_SYN                                                                                                                                                                                                                                                                                                                                                             |  |
| CLKOUT2_SYN   | Input     | The CLKOUT2 clock output enable control signal; active high; its function is the same as CLKOUT0_SYN                                                                                                                                                                                                                                                                                                                                                             |  |
| CLKOUT3_SYN   | Input     | The CLKOUT3 clock output enable control signal; active high; its function is the same as CLKOUT0_SYN                                                                                                                                                                                                                                                                                                                                                             |  |
| STDBY         | Input     | Standby mode control signal; active high; turns off all PLL modules; the STDBY signal can be controlled via user logic or the Power Controller module. The STDBY signal is optional and is controlled by the configuration bit STDBY_EN. It is active when set to "TRUE" and inactive when set to "FALSE"                                                                                                                                                        |  |
| PLL_PWD       | Input     | The PLL Power Down signal; active high; disable modules except for the LDO                                                                                                                                                                                                                                                                                                                                                                                       |  |
| RST           | Input     | The PLL reset signal, active high; this signal resets the VCO, PFD, CP, LPF, and all clock dividers, including input dividers and output dividers. The reset signal will pull down the PLL output directly to ground. After the reset is released, the PLL starts to enter the lock state, and the PLL frequency lock                                                                                                                                            |  |

(UG030003, V1.4) 29 / 56



| Port Signal | Direction | Function Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             |           | is completed after t <sub>LOCK</sub> (PLL lock time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| RSTODIV     | Input     | The PLL reset signal, active high; this signal resets the VCO, PFD, CP, LPF and all dividers except the input divider RSTODIV cannot reset the input divider (M-divider), as there may be synchronization requirements between the external clock and the reference clock. In this case, a phase relationship between the external clock and the output clock of the M-divider needs to be maintained, even during the reset of the PLL circuit.  After the reset is released, the PLL starts to enter the lock state, and the PLL frequency lock is completed after t <sub>LOCK</sub> (PLL lock time) |  |
| RSTODIV2    | Input     | RSTODIV2 only resets the CLKOUT2 output divider; the signal can be generated by internal fabric logic or input via IO pins. Using this reset signal will pull down the CLKOUT2 output to ground, unless the PLL is in the bypass mode  This signal is active-high and is option. If the CLKOUT2 output is used in the PLL feedback path, it is recommended to use the RST/RSTODIV signal to reset the PLL, rather than the RSTODIV2 reset signal                                                                                                                                                       |  |
| RSTODIV3    | Input     | RSTODIV3 only resets the CLKOUT3 output divider; the signal can be generated by internal fabric logic or input via IO pins. Using this reset signal will pull down the CLKOUT3 output to ground, unless the PLL is in the bypass mode  This signal is active-high and is option. If the CLKOUT3 output is used in the PLL feedback path, it is recommended to use the RST/ RSTODIV signal to reset the PLL, rather than the RSTODIV3 reset signal                                                                                                                                                      |  |
| APB_CLK     | Input     | PLL APB port bus clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| APB_RST_N   | Input     | PLL APB port bus asynchronous reset signal, active low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| APB_ADDR    | Input     | PLL APB port bus address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| APB_SEL     | Input     | PLL APB port bus select signal to select the slave device, active high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| APB_EN      | Input     | The PLL APB port bus enable signal, which indicates the second and subsequent cycles of transmission, active high;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| APB_WRITE   | Input     | PLL APB port bus write enable signal; 1'b0: read operation, 1'b1: write operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| APB_WDATA   | Input     | PLL APB port bus data input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

Table 2-18 GTP\_PLL\_E2 Parameter Description

| Parameter Name | Valid Values    | Function Description                                                                                           |
|----------------|-----------------|----------------------------------------------------------------------------------------------------------------|
| CLKIN_FREQ     | 10MHz~500MHz    | Input Clock Frequency                                                                                          |
| PFDEN_EN       | "FALSE", "TRUE" | PFDEN signal enable configuration "FALSE": PFDEN signal input is invalid "TRUE": PFDEN signal input is active; |
| PFDEN_APB_EN   | "FALSE", "TRUE" | PLL PFD enable signal source configuration "FALSE": from dynamic port "TRUE": from APB port                    |
| LOCK_MODE      | 1'b0~1'b1       | PLL frequency detection mode configuration 1'b0: real-time monitoring mode 1'b1: hold mode                     |
| STATIC_RATIOI  | 1~50            | The division ratio configuration of the input clock divider                                                    |
| STATIC_RATIO0  | 1~128           | The division ratio configuration of the CLKOUT0 divider                                                        |
| STATIC_RATIO1  | 1~128           | The division ratio configuration of the CLKOUT1 divider                                                        |
| STATIC_RATIO2  | 1~128           | The division ratio configuration of the CLKOUT2 divider                                                        |

(UG030003, V1.4) 30 / 56



| Parameter Name  | Valid Values    | <b>Function Description</b>                                                                                                                                                                                               |
|-----------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STATIC_RATIO3   | 1~128           | The division ratio configuration of the CLKOUT3 divider                                                                                                                                                                   |
| STATIC_RATIOF   | 1~128           | Feedback divider's division ratio configuration Integer divider: 1~128 Fractional divider: 7~120                                                                                                                          |
| FRACN_EN        | "FALSE", "TRUE" | Fractional division function enable "FALSE": fractional division function disabled "TRUE": fractional division function enabled                                                                                           |
| FRACN_DIV       | 0~65535         | Fractional division decimal configuration                                                                                                                                                                                 |
| PHASE_APB_EN    | "FALSE", "TRUE" | Source configuration for control signal of dynamic phase adjustment "FALSE": from dynamic port "TRUE": from APB port                                                                                                      |
| STATIC_PHASE0   | 0~7             | The CLKOUTO phase fine adjustment static configuration parameter                                                                                                                                                          |
| STATIC_PHASE1   | 0~7             | The CLKOUT1 phase fine adjustment static configuration parameter                                                                                                                                                          |
| STATIC_PHASE2   | 0~7             | The CLKOUT2 phase fine adjustment static configuration parameter                                                                                                                                                          |
| STATIC_PHASE3   | 0~7             | The CLKOUT3 phase fine adjustment static configuration parameter                                                                                                                                                          |
| STATIC_CPHASE0  | 0~127           | The CLKOUT0 phase coarse adjustment static configuration parameter                                                                                                                                                        |
| STATIC_CPHASE1  | 0~127           | The CLKOUT1 phase coarse adjustment static configuration parameter                                                                                                                                                        |
| STATIC_CPHASE2  | 0~127           | The CLKOUT2 phase coarse adjustment static configuration parameter                                                                                                                                                        |
| STATIC_CPHASE3  | 0~127           | The CLKOUT3 phase coarse adjustment static configuration parameter                                                                                                                                                        |
| VCOCLK_BYPASS0  | "FALSE", "TRUE" | The VCO clock bypass configuration (MUXA0 configuration bit) "FALSE": select VCO clock "TRUE": select PLL reference clock                                                                                                 |
| VCOCLK_BYPASS1  | "FALSE", "TRUE" | The VCO clock bypass configuration (MUXB0 configuration bit) "FALSE": select VCO clock "TRUE": select PLL reference clock                                                                                                 |
| VCOCLK_BYPASS2  | "FALSE", "TRUE" | The VCO clock bypass configuration (MUXC0 configuration bit) "FALSE": select VCO clock "TRUE": select PLL reference clock                                                                                                 |
| VCOCLK_BYPASS3  | "FALSE", "TRUE" | The VCO clock bypass configuration (MUXD0 configuration bit) "FALSE": select the VCO clock "TRUE": select PLL reference clock                                                                                             |
| ODIV0_CLKIN_SEL | 0~3             | MUXA1 configuration in front of the CLKOUT0 divider 0: select the output of the MUXA0 1: select the output of the CLKOUT3 divider 2: select the output of the CLKOUT1 divider 3: select the output of the CLKOUT2 divider |
| ODIV1_CLKIN_SEL | 0~3             | MUXB1 configuration in front of the CLKOUT1 divider 0: select the output of the MUXB0 1: select the output of the CLKOUT0 divider 2: select the output of the CLKOUT3 divider 3: select the output of the CLKOUT2 divider |
| ODIV2_CLKIN_SEL | 0~3             | MUXC1 configuration in front of the CLKOUT2 divider 0: select the output of the MUXC0                                                                                                                                     |

(UG030003, V1.4) 31 / 56



| Parameter Name  | Valid Values    | Function Description                                |
|-----------------|-----------------|-----------------------------------------------------|
|                 |                 | 1: select the output of the CLKOUT0 divider         |
|                 |                 | 2: select the output of the CLKOUT1 divider         |
|                 |                 | 3: select the output of the CLKOUT3 divider         |
|                 |                 | MUXD1 configuration in front of the CLKOUT3 divider |
|                 |                 | 0: select the output of the MUXD0                   |
| ODIV3_CLKIN_SEL | 0~3             | 1: select the output of the CLKOUT0 divider         |
|                 |                 | 2: select the output of the CLKOUT1 divider         |
|                 |                 | 3: select the output of the CLKOUT2 divider         |
|                 |                 | MUXA2 configuration behind the CLKOUT0 divider      |
|                 |                 | 0: select the output of the CLKOUT0 divider         |
| CLIVOLIEO CEL   |                 | 1: select the output of the CLKOUT1 divider         |
| CLKOUT0_SEL     | 0~4             | 2: select the output of the CLKOUT2 divider         |
|                 |                 | 3: select the output of the CLKOUT3 divider         |
|                 |                 | 4: select PLL reference clock                       |
|                 |                 | MUXB2 configuration behind the CLKOUT1 divider      |
|                 |                 | 0: select the output of the CLKOUT1 divider         |
|                 |                 | 1: select the output of the CLKOUT2 divider         |
| CLKOUT1_SEL     | 0~4             | 2: select the output of the CLKOUT3 divider         |
|                 |                 | 3: select the output of the CLKOUT0 divider         |
|                 |                 | 4: select PLL reference clock                       |
|                 |                 | MUXC2 configuration behind the CLKOUT2 divider      |
|                 |                 | 0: select the output of the CLKOUT2 divider         |
|                 |                 | 1: select the output of the CLKOUT3 divider         |
| CLKOUT2_SEL     | 0~4             | 2: select the output of the CLKOUT0 divider         |
|                 |                 | 3: select the output of the CLKOUT1 divider         |
|                 |                 | 4: select PLL reference clock                       |
|                 |                 | MUXD2 configuration behind the CLKOUT3 divider      |
|                 |                 | 0: select the output of the CLKOUT3 divider         |
|                 |                 | 1: select the output of the CLKOUT0 divider         |
| CLKOUT3_SEL     | 0~4             | 2: select the output of the CLKOUT1 divider         |
|                 |                 | 3: select the output of the CLKOUT2 divider         |
|                 |                 | 4: select PLL reference clock                       |
|                 |                 | Configuration for CLKOUTO_SYN signal enable         |
| CLKOUT0_SYN_EN  | "FALSE", "TRUE" | "FALSE": CLKOUTO_SYN input is inactive              |
| CLROUIU_SIN_EN  | TALSE, TRUE     | "TRUE": CLKOUTO_SYN input is mactive                |
|                 |                 | Configuration for CLKOUT1 SYN signal enable         |
| CLKOUT1_SYN_EN  | "FALSE", "TRUE" | "FALSE": CLKOUT1_SYN input is inactive              |
| CLROUII_SIN_EN  | TALSE, TRUE     | "TRUE": CLKOUT1_SYN input is mactive                |
|                 |                 | Configuration for CLKOUT2_SYN signal enable         |
| CLVOLITY CVN EN | "FALSE", "TRUE" | "FALSE": CLKOUT2_SYN input is inactive              |
| CLKOUT2_SYN_EN  | FALSE, TRUE     | _ *                                                 |
|                 |                 | "TRUE": CLKOUT2_SYN input is active                 |
| CLEOUT2 CVN EN  | "EALCE" "TOLIE" | Configuration for CLKOUT3_SYN signal enable         |
| CLKOUT3_SYN_EN  | "FALSE", "TRUE" | "FALSE": CLKOUT3_SYN input is inactive              |
|                 | "CL KOLTTO"     | "TRUE": CLKOUT3_SYN input is active                 |
|                 | "CLKOUTO"       |                                                     |
| IMPEDATAT PP    | "CLKOUT1"       |                                                     |
| INTERNAL_FB     | "CLKOUT2"       | Internal feedback path select                       |
|                 | "CLKOUT3"       |                                                     |
|                 | "DISABLE"       |                                                     |
|                 | "CLKOUTO"       |                                                     |
| EXTERNAL        | "CLKOUT1"       |                                                     |
| EXTERNAL_FB     | "CLKOUT2"       | External feedback path select                       |
|                 | "CLKOUT3"       |                                                     |
|                 | "DISABLE"       |                                                     |
| BANDWIDTH       | "LOW", "HIGH"   | Bandwidth select configuration                      |
|                 | "OPTIMIZED"     |                                                     |

(UG030003, V1.4) 32 / 56



| Parameter Name | Valid Values    | Function Description                       |
|----------------|-----------------|--------------------------------------------|
|                |                 | STDBY signal enable configuration          |
| STDBY_EN       | "FALSE", "TRUE" | "FALSE": STDBY input is inactive           |
|                |                 | "TRUE": STDBY input is active              |
|                |                 | Reset signal RST enable configuration      |
| RST_INNER_EN   | "FALSE", "TRUE" | "FALSE": RST input is inactive             |
|                |                 | "TRUE": RST input is active                |
|                |                 | Reset signal RSTODIV enable configuration  |
| RSTODIV_EN     | "FALSE", "TRUE" | "FALSE": RSTODIV input is inactive         |
|                |                 | "TRUE": RSTODIV input is active            |
|                |                 | Reset signal RSTODIV2 enable configuration |
| RSTODIV2_EN    | "FALSE", "TRUE" | "FALSE": RSTODIV2 input is inactive        |
|                |                 | "TRUE": RSTODIV2 input is active           |
|                |                 | Reset signal RSTODIV3 enable configuration |
| RSTODIV3_EN    | "FALSE", "TRUE" | "FALSE": RSTODIV3 input is inactive        |
|                |                 | "TRUE": RSTODIV3 input is active           |

# 2.6.3 Standby Mode

When the PLL is not required to work, the STDBY signal can power down the PLL completely, entering Standby mode to reduce power consumption; the STDBY signal can be controlled by user logic or the Power Controller module. The STDBY signal is optional and is controlled by the configuration bit STDBY\_EN. It is active when set to "TRUE" and inactive when set to "FALSE."

## 2.6.4 PLL Operation Mode

## > PLL clock bypass mode:

Mode 1: After the input reference clock CLKIN enters the PLL, it does not pass through the input divider, phase frequency detector (PFD), charge pump (CP), loop filter (LPF), and oscillator (VCO), and output dividers; it is directly routed through a bypass structure as shown in Figure 2-26.

Mode 2: After the input reference clock CLKIN enters the PLL, it does not pass through the input divider, PFD, CP, LPF, and VCO modules, but does pass through the output divider. The divided clock signals are then output from the PLL output ports CLKOUT0/CLKOUT1/CLKOUT2 /CLKOUT3; the specific flow of clock signals in bypass mode is shown in Figure 2-26.

(UG030003, V1.4) 33 / 56





Figure 2-26 PLL Bypass Output Diagram

## ➤ Internal feedback mode

Internal feedback mode, where the PLL feedback divider output does not go through the clock network, and the feedback clock signal flow is directly implemented locally within the PLL. The clock from the output divider directly enters the PFD input through the feedback divider via the shortest path. This will improve the jitter feature of the PLL.



Figure 2-27 PLL Internal Feedback Diagram

#### External feedback mode

External feedback mode, where the output clock from the PLL is fed back externally from the PLL. The phase difference between the PLL input and output is subject to the delay in the feedback path.

(UG030003, V1.4) 34 / 56



# 2.6.5 Output Frequency Programming



Figure 2-28 PLL Output Frequency Calculation Block Diagram

The definitions of the parameters in the figure are as follows:

Table 2-19 Definitions of Output Frequency Programming Parameters

| Symbol   | Description                                           |  |
|----------|-------------------------------------------------------|--|
| Fin      | Input reference frequency                             |  |
| FPFD     | Input reference frequency of the PFD                  |  |
| Fvco     | Output frequency of the VCO                           |  |
| Fout     | Output frequency of the CLKOUT0/1/2/3                 |  |
| M        | The division ratio of the input divider               |  |
| V        | The division ratio of the output divider              |  |
| Neff     | The division ratio of the feedback divider            |  |
| N        | The integer division ratio of the feedback divider    |  |
| Frac_div | The fractional division ratio of the feedback divider |  |

The calculation formulas of the parameters are as follows:

$$F_{PFD} = F_{in}\!/\!M$$

$$F_{vco} = (F_{in}/M)*V*N_{eff}$$

$$F_{out} = F_{vco}/V$$

$$N_{eff}\!\!=\!\!N\!\!+F_{rac\_div}$$

Whereas, V in the calculation of  $F_{vco}$  represents the output division ratio of the feedback clock. If a clock that requires output Clock Frequency calculation is same as the feedback clock, then  $F_{out} = (F_{in}/M)*N_{eff}$ .

(UG030003, V1.4) 35 / 56



### 2.6.6 Fractional Frequency Synthesis

The PLL supports a 16-bit high-precision fractional division frequency synthesizer, the effective division number for the feedback divider is:

$$Neff = N + (F/65536)$$

Whereas, N is the integer division factor for the feedback divider, and F is the fractional division factor.

Note that the fractional division function only supports input reference clocks with a frequency greater than 20MHz.

#### 2.6.7 PLL Lock Indication

Once the PLL's input reference clock is stable and the reset signal is released, the internal frequency locking module of the PLL starts working, with two counters in the reference clock domain and the feedback clock domain beginning their independent counts. When the count of the reference clock counter reaches the predetermined value of 8191, the frequency lock module captures the current count of the feedback clock counter. It compares the difference between the counts of the two counters with the lock accuracy threshold of 9. If the count difference is less than the accuracy threshold, the frequency is considered to be locked, and the PLL\_LOCK is pulled high. If the count difference exceeds the lock accuracy threshold, both counters restart their count, and then the comparison is made again. At any time after frequency locking, if the count difference between the two counters exceeds the out-of-lock accuracy threshold of 16, it is considered that the PLL is out of lock, and the PLL\_LOCK is pulled down.

The frequency accuracy calculation formula is shown as follows:

$$\Delta = \frac{N_{REFCLK} - N_{FBCLK}}{N_{REFCLK}} \times 10^6 \text{ ppm}$$

The lock accuracy of the PLL is ±1100ppm, and the out-of-lock accuracy is ±2000ppm.

When the frequency error is within the lock accuracy, the PLL is deemed to be locked, and the PLL\_LOCK signal is high.

When the frequency error exceeds the out-of-lock accuracy, the PLL is deemed to be out of lock, and the PLL\_LOCK signal is low.

The PLL frequency locking is divided into two modes: real-time monitoring mode and hold mode. Real-time monitoring mode refers to the PLL\_LOCK pulled high when  $\Delta \leq \pm 1100$ ppm, with the frequency error monitored in real-time. As long as it does not exceed  $\pm 2000$ ppm, the PLL\_LOCK signal remains high. Otherwise, the PLL\_LOCK signal is pulled down. Hold mode refers to the PLL\_LOCK signal remaining high after it has been pulled high unless the RST signal is active.

(UG030003, V1.4) 36/56



Users can configure the LOCK\_MODE parameter to select the locking mode according to their needs, as described in Table 2-20. The LOCK\_MODE can be configured either by directly instantiating GTP\_PLL\_E2 or by using the Advanced Configurations interface of the IPC PLL. Checking the "LOCK Latch Mode" option will select the hold mode.

Table 2-20 PLL Lock Mode

| Parameter | Configuration Value | Function Description                                                                                                                                                                                                               |
|-----------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCK_MODE | 1'b0                | Real-time monitoring mode: Pull high the LOCK signal within the lock precision range. As long as it does not exceed the out-of-lock accuracy, the LOCK signal may continue to be pulled high. Otherwise, the signal is pulled down |
|           | 1'b1                | Hold mode: Pull high the LOCK signal within the lock precision range, and unless the PLL is reset or powered down, the LOCK signal remains high                                                                                    |

# 2.6.8 Output Clock Phase Adjustment

After the chip enters user mode, the default phase relationship of the PLL's 4 output clocks, CLKOUT0, CLKOUT1, CLKOUT2, and CLKOUT3, is aligned. The PLL also supports the phase adjustment function of each output clock. Phase adjustment is divided into fine adjustment and coarse adjustment, each of which can be used to adjust the output clock's phase through static configuration and dynamic adjustment.

#### 2.6.8.1 Phase Fine Adjustment

With respect to the input VCO clock, the minimum step for phase fine adjustment of the output clocks CLKOUT0/CLKOUT1/CLKOUT2/CLKOUT3 is  $T_{vco}/8$ , with an adjustment range of  $0\sim7/8T_{vco}$ ; where  $T_{vco}$  is the VCO clock cycle.

#### ➤ Static configuration

The static configuration for phase fine adjustment of the output clocks CLKOUT0, CLKOUT1, CLKOUT2, and CLKOUT3 is controlled by STATIC\_PHASE0, STATIC\_PHASE1, STATIC\_PHASE2, and STATIC\_PHASE3, respectively. Please refer to Table 2-21 for parameter descriptions.

For example, when the coarse phase adjustment parameters are all set to 0 and the output clock is a divide-by-two frequency of the VCO clock, the phase fine adjustment parameter settings are shown in the table.

Table 2-21 Static Phase Fine Adjustment Parameter Configuration

| Phase Fine Adjustment Parameters | Configuration Value |
|----------------------------------|---------------------|
| STATIC_PHASE0                    | 0                   |

(UG030003, V1.4) 37 / 56



| Phase Fine Adjustment Parameters | Configuration Value |
|----------------------------------|---------------------|
| STATIC_PHASE1                    | 2                   |
| STATIC_PHASE2                    | 4                   |
| STATIC_PHASE3                    | 6                   |

Based on the configuration values, the timing diagrams of phase fine adjustment for each output clock are shown in Figure 2-29:



Figure 2-29 Phase Fine Adjustment Static Configuration

### ➤ Dynamic adjustment

The ports for dynamic phase fine adjustment include PHASE\_SEL, PHASE\_DIR, PHASE\_STEP\_N, and LOAD\_PHASE. Please refer to Table 2-17 for port descriptions. All the output clocks CLKOUT0/CLKOUT1/CLKOUT2/CLKOUT3 have dynamic phase fine adjustment features, but only one output clock can be adjusted at a time.

PHASE\_SEL and PHASE\_DIR must remain stable before the LOAD\_PHASE signal is triggered. LOAD\_PHASE must be released before triggering the PHASE\_STEP\_N signal. Phase adjustment is achieved by triggering PHASE\_STEP\_N, with each trigger adjusting the phase by one step (T<sub>vco</sub>/8). The PHASE\_STEP\_N signal must start from logic 1 and phase adjustment will start at the rising edge. When switching phase adjustment channels or directions, the current phase fine adjustment value of the selected channel must be loaded with the LOAD\_PHASE signal. The timing requirements are shown in the figure below:

(UG030003, V1.4) 38 / 56





Figure 2-30 Timing Requirements of Dynamic Phase Fine-Tuning

#### 2.6.8.2 Phase Coarse Adjustment

With respect to the input VCO clock, the minimum step for phase coarse adjustment of the output clocks CLKOUT0/CLKOUT1/CLKOUT2/CLKOUT3 is  $T_{vco}$ , with an adjustment range of  $[0\sim V-1]*T_{vco}$ , where V is the output divider factor.

### ➤ Static configuration

The static configuration for the phase coarse adjustment of the output clocks CLKOUT0, CLKOUT1, CLKOUT2, and CLKOUT3 is controlled by STATIC\_CPHASE0, STATIC\_CPHASE1, STATIC\_CPHASE2, and STATIC\_CPHASE3, respectively.

For example, when the phase fine adjustment parameters are all set to 0 and the output clock is a divide-by-four frequency of the VCO clock, the phase coarse adjustment parameter settings are shown in the table, and the timing diagram for the corresponding phase coarse adjustment are shown in Figure 2-31:

Table 2-22 Static Phase Coarse Adjustment Parameter Configuration

| Phase Coarse Adjustment Parameters | Configuration Value |
|------------------------------------|---------------------|
| STATIC_CPHASE0                     | 0                   |
| STATIC_CPHASE1                     | 1                   |
| STATIC_CPHASE2                     | 2                   |
| STATIC_CPHASE3                     | 3                   |

(UG030003, V1.4) 39 / 56





Figure 2-31 Coarse Phase Adjustment Static Configuration

Fine and coarse phase adjustments can be statically configured simultaneously, with configuration parameter are shown in the table below, and the corresponding timing diagrams is shown in Figure 2-32:

| Phase Parameter | Configuration Value |  |
|-----------------|---------------------|--|
| STATIC_PHASE0   | 0                   |  |
| STATIC_PHASE1   | 2                   |  |
| STATIC_PHASE2   | 0                   |  |
| STATIC_PHASE3   | 2                   |  |
| STATIC_CPHASE0  | 0                   |  |
| STATIC_CPHASE1  | 0                   |  |
| STATIC_CPHASE2  | 1                   |  |
| STATIC_CPHASE3  | 1                   |  |

Table 2-23 Phase Static Parameters Configuration of Fine and Coarse Phase Adjustment



Figure 2-32 PLL Phase Static Configuration

The timing diagram resulting from phase parameter configuration values are shown in Table 2-23. CLKOUT0 is generated from a divide-by-two frequency of the VCO's  $0^{\circ}$  clock. Taking CLKOUT0 as the reference, the fine adjustment phase for CLKOUT1 is  $2*T_{vco}/8$  with a coarse adjustment phase of 0; CLKOUT2 has a fine adjustment phase of 0, with a coarse adjustment of phase  $T_{vco}$ ; CLKOUT3 has a fine adjustment phase of  $2*T_{vco}/8$ , with a coarse adjustment phase of  $T_{vco}$ .

### ➤ Dynamic adjustment

The dynamic phase coarse adjustment ports are PHASE\_SEL and CPHASE\_STEP\_N, with

(UG030003, V1.4) 40 / 56



dynamic phase coarse adjustment applied after a delay. Output clocks CLKOUT0/CLKOUT1/CLKOUT2/ CLKOUT3 have the feature of dynamic coarse phase adjustment, but only one output clock can be adjusted at a time.

PHASE\_SEL must maintain a stable configuration before the CPHASE\_STEP\_N signal is triggered. Once PHASE\_SEL is set, phase adjustment is achieved by triggering CPHASE\_STEP\_N, adjusting by an increment of  $n^*$   $T_{vco}$  (with  $n^*$   $T_{vco}$  being the coarse adjustment initial value set by static configuration, and n ranging from 0 to 127). The CPHASE\_STEP\_N signal must start from logical 1 and begin phase adjustment at the rising edge, with timing requirements as shown in the figure below:



Figure 2-33 Timing Requirements of Dynamic Phase Coarse Adjustment

(UG030003, V1.4) 41 / 56



### 2.6.9 Output Clock Cascading



Figure 2-34 Output Clock Cascading Block Diagram

The PLL output clock cascading is shown in the figure above; the output clocks from the dividers (ODIV0/ODIV1/ODIV2/ODIV3), after being routed through multiplexers A1/B1/C1/D1, implement the cascading function of the dividers, generating clocks with lower frequency. The selection of all clock multiplexers in the diagram can be statically configured or dynamically changed via the APB port.

#### 2.6.10 Output Clock Dynamic Enable

The PLL input signal CLKOUT0\_SYN is used to enable and disable CLKOUT0 clock output; when the CLKOUT0 clock is not required, it can be turned off to reduce power consumption. The CLKOUT0\_SYN signal is optional and is active when the user sets CLKOUT0\_SYN\_EN to "TRUE."

Similarly, the input signals CLKOUT1\_SYN, CLKOUT2\_SYN, and CLKOUT3\_SYN work in conjunction with configuration bits CLKOUT1\_SYN\_EN, CLKOUT2\_SYN\_EN, and CLKOUT3\_SYN\_EN, respectively enabling and disabling the CLKOUT1, CLKOUT2, and CLKOUT3 clocks.

Taking the output clock CLKOUT0 as an example, the functional diagram is as follows:

(UG030003, V1.4) 42 / 56





Figure 2-35 Output Clock GATE Timing Diagram

#### 2.6.11 APB Ports

Allows user logic to change the PLL's operating parameters dynamically via the APB port. Writing configurations into the PLL's internal registers via APB port to change the PLL working parameters. It should be noted that:

- After the APB rewrites the input divider, output divider, and feedback divider ratios, a reset is required to ensure their normal working.
- ➤ After the APB rewrites the phase (fine or coarse adjustment) initial value, it is necessary to reset the PLL to load the initial value.

**Port Signal** Direction **Description** APB\_CLK Input Clock, sampled on the rising edge Asynchronous reset, active low; Only resets the data bus (does APB\_RST\_N Input not reset register output) APB ADDR[4:0] Input Address bus Selection signal, indicating that the slave device has been APB SEL Input Enable signal, indicating the second and subsequent cycles of APB EN Input transmission APB\_WRITE Input Direction, 0: read, 1: write APB\_PWDATA[7:0] Input Data bus input

Table 2-24 APB Port Description

Table 2-25 Configuration Register Description: Address 0x00

| Bits | R/W | Corresponding Parameter Name | Description                                              |
|------|-----|------------------------------|----------------------------------------------------------|
| 7:0  | R/W | FRACN_DIV [7:0]              | The lower 8 bits of the fractional divider configuration |

Table 2-26 Configuration Register Description: Address 0x01

| Bits | R/W | Corresponding<br>Parameter Name | Desc | ription |   |      |    |     |            |         |
|------|-----|---------------------------------|------|---------|---|------|----|-----|------------|---------|
| 7:0  | R/W | FRACN_DIV [15:8]                | The  | upper   | 8 | bits | of | the | fractional | divider |

(UG030003, V1.4) 43 / 56



| Bits | R/W | Corresponding<br>Parameter Name | Description   |
|------|-----|---------------------------------|---------------|
|      |     |                                 | configuration |

## Table 2-27 Configuration Register Description: Address 0x02

| Bits | R/W | Corresponding<br>Parameter Name | Description                                    |
|------|-----|---------------------------------|------------------------------------------------|
| 7:0  | R/W | CLKI_DIV[7:0]                   | Division factor configuration of input divider |

### Table 2-28 Configuration Register Description: Address 0x03

| Bits | R/W | Corresponding Parameter Name | Description                                       |
|------|-----|------------------------------|---------------------------------------------------|
| 7:0  | R/W | CLKFB_DIV[7:0]               | Division factor configuration of feedback divider |

# Table 2-29 Configuration Register Description: Address 0x04

| Bits | R/W | Corresponding<br>Parameter Name | Description                                      |
|------|-----|---------------------------------|--------------------------------------------------|
| 7:0  | R/W | CLKOUT0_DIV[7:0]                | Division factor configuration of CLKOUT0 divider |

## Table 2-30 Configuration Register Description: Address 0x05

| Bits | R/W | Corresponding Parameter Name | Description                                      |
|------|-----|------------------------------|--------------------------------------------------|
| 7:0  | R/W | CLKOUT1_DIV[7:0]             | Division factor configuration of CLKOUT1 divider |

## Table 2-31 Configuration Register Description: Address 0x06

| Bits | R/W | Corresponding<br>Parameter Name | Description                                      |
|------|-----|---------------------------------|--------------------------------------------------|
| 7:0  | R/W | CLKOUT2_DIV[7:0]                | Division factor configuration of CLKOUT2 divider |

## Table 2-32 Configuration Register Description: Address 0x07

| Bits | R/W | Corresponding<br>Parameter Name | Description                                      |
|------|-----|---------------------------------|--------------------------------------------------|
| 7:0  | R/W | CLKOUT3_DIV[7:0]                | Division factor configuration of CLKOUT3 divider |

## Table 2-33 Configuration Register Description: Address 0x08

| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                           |
|------|-----|---------------------------------|---------------------------------------------------------------------------------------|
| 7:0  | R/W | CLKOUT0_CPHASE[7:0]             | The phase coarse adjustment setting for CLKOUT0, with the value ranging from 0 to 127 |

# Table 2-34 Configuration Register Description: Address 0x09

| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                           |
|------|-----|---------------------------------|---------------------------------------------------------------------------------------|
| 7:0  | R/W | CLKOUT0_CPHASE[7:0]             | The phase coarse adjustment setting for CLKOUT1, with the value ranging from 0 to 127 |

(UG030003, V1.4) 44 / 56



| Table 2-35 | Configuration | Register | Description: | Address | 0x0A |
|------------|---------------|----------|--------------|---------|------|
|            |               |          |              |         |      |

| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                           |
|------|-----|---------------------------------|---------------------------------------------------------------------------------------|
| 7:0  | R/W | CLKOUT0_CPHASE[7:0]             | The phase coarse adjustment setting for CLKOUT2, with the value ranging from 0 to 127 |

# Table 2-36 Configuration Register Description: Address 0x0B

| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                           |
|------|-----|---------------------------------|---------------------------------------------------------------------------------------|
| 7:0  | R/W | CLKOUT0_CPHASE[7:0]             | The phase coarse adjustment setting for CLKOUT3, with the value ranging from 0 to 127 |

# Table 2-37 Configuration Register Description: Address 0x0C

| Bits | R/W | Corresponding Parameter<br>Name | Description                                                                                                          |
|------|-----|---------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 2:0  | R/W | CLKOUT0_FPHASE[2:0]             | The phase fine adjustment static configuration for CLKOUT0, with the value ranging from 0 to 7                       |
| 5:3  | R/W | CLKOUT1_FPHASE[2:0]             | The phase fine adjustment static configuration for CLKOUT1, with the value ranging from 0 to 7                       |
| 6    | R/W | CLKOUT0_SYN_ENABLE              | Configuration for CLKOUT0_SYN signal enable, 1'b1: CLKOUT0_SYN signal is active 1'b0: CLKOUT0_SYN signal is inactive |
| 7    | R/W | CLKOUT1_SYN_ENABLE              | Configuration for CLKOUT1_SYN signal enable, 1'b1: CLKOUT1_SYN signal is active 1'b0: CLKOUT1_SYN signal is inactive |

# Table 2-38 Configuration Register Description: Address 0x0D

| Bits | R/W | Corresponding Parameter<br>Name | Description                                                                                                          |
|------|-----|---------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 2:0  | R/W | CLKOUT2_FPHASE[2:0]             | The phase fine adjustment static configuration for CLKOUT2, with the value ranging from 0 to 7                       |
| 5:3  | R/W | CLKOUT3_FPHASE[2:0]             | The phase fine adjustment static configuration for CLKOUT3, with the value ranging from 0 to 7                       |
| 6    | R/W | CLKOUT2_SYN_ENABLE              | Configuration for CLKOUT2_SYN signal enable, 1'b1: CLKOUT2_SYN signal is active 1'b0: CLKOUT2_SYN signal is inactive |
| 7    | R/W | CLKOUT3_SYN_ENABLE              | Configuration for CLKOUT3_SYN signal enable, 1'b1: CLKOUT3_SYN signal is active 1'b0: CLKOUT3_SYN signal is inactive |

Table 2-39 Configuration Register Description: Address 0x0E

| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                                                                                                                                                                                        |
|------|-----|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:0  | R/W | ODIV0_CLKIN_SEL[1:0]            | The MUXA1 configuration in front of the CLKOUT0 divider; 2'b00: select the output of the MUXA0, 2'b01: select the output of the CLKOUT3 divider, 2'b10: select the output of the CLKOUT1 divider, 2'b11: select the output of the CLKOUT2 divider; |
| 3:2  | R/W | ODIV1_CLKIN_SEL[1:0]            | The MUXB1 configuration in front of the CLKOUT1 divider;                                                                                                                                                                                           |

(UG030003, V1.4) 45 / 56



| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                                                                                                                                                                                        |
|------|-----|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |     |                                 | 2'b00: select the output of the MUXB0,<br>2'b01: select the output of the CLKOUT0 divider,                                                                                                                                                         |
|      |     |                                 | 2'b10: select the output of the CLKOUT3 divider, 2'b11: select the output of the CLKOUT2 divider;                                                                                                                                                  |
| 5:4  | R/W | ODIV2_CLKIN_SEL[1:0]            | The MUXC1 configuration in front of the CLKOUT2 divider; 2'b00: select the output of the MUXC0, 2'b01: select the output of the CLKOUT0 divider, 2'b10: select the output of the CLKOUT1 divider, 2'b11: select the output of the CLKOUT3 divider; |
| 7:6  | R/W | ODIV3_CLKIN_SEL[1:0]            | The MUXD1 configuration in front of the CLKOUT3 divider; 2'b00: select the output of the MUXD0, 2'b01: select the output of the CLKOUT0 divider, 2'b10: select the output of the CLKOUT1 divider, 2'b11: select the output of the CLKOUT2 divider; |

Table 2-40 Configuration Register Description: Address 0x0F

| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                                                                                                                                                                                                                                           |
|------|-----|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:0  | R/W | CLKOUT0_SEL[2:0]                | The MUXA2 configuration behind the CLKOUT0 divider; 3'b000: select the output of the CLKOUT0 divider, 3'b001: select the output of the CLKOUT1 divider, 3'b010: select the output of the CLKOUT2 divider, 3'b011: select the output of the CLKOUT3 divider, 3'b100: select the reference clock CLKIN; |
| 5:3  | R/W | CLKOUT1_SEL[2:0]                | The MUXB2 configuration behind CLKOUT1 divider; 3'b000: select the output of the CLKOUT1 divider, 3'b001: select the output of the CLKOUT2 divider, 3'b010: select the output of the CLKOUT3 divider, 3'b011: select the output of the CLKOUT0 divider, 3'b100: select the reference clock CLKIN;     |
| 6    | R/W | VCOCLK_BYPASS0                  | The VCO clock bypass configuration (MUXA0 configuration bit); 1'b0: No bypass (select the VCO clock), 1'b1: bypass (select the reference clock CLKIN);                                                                                                                                                |
| 7    | R/W | VCOCLK_BYPASS1                  | The VCO clock bypass configuration (MUXB0 configuration bit); 1'b0: No bypass (select the VCO clock), 1'b1: bypass (select the reference clock CLKIN);                                                                                                                                                |

Table 2-41 Configuration Register Description: Address 0x10

| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                                                                                                                                                                                                                                           |
|------|-----|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:0  | R/W | CLKOUT2_SEL[2:0]                | The MUXC2 configuration behind the CLKOUT2 divider; 3'b000: select the output of the CLKOUT2 divider, 3'b001: select the output of the CLKOUT3 divider, 3'b010: select the output of the CLKOUT0 divider, 3'b011: select the output of the CLKOUT1 divider, 3'b100: select the reference clock CLKIN; |

(UG030003, V1.4) 46 / 56



| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                                                                                                                                                                                                                                           |
|------|-----|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:3  | R/W | CLKOUT3_SEL[2:0]                | The MUXD2 configuration behind the CLKOUT3 divider; 3'b000: select the output of the CLKOUT3 divider, 3'b001: select the output of the CLKOUT0 divider, 3'b010: select the output of the CLKOUT1 divider, 3'b011: select the output of the CLKOUT2 divider, 3'b100: select the reference clock CLKIN; |
| 6    | R/W | VCOCLK_BYPASS2                  | The VCO clock bypass configuration (MUXC0 configuration bit); 1'b0: No bypass (select VCO clock), 1'b1: bypass (select the reference clock CLKIN);                                                                                                                                                    |
| 7    | R/W | VCOCLK_BYPASS3                  | The VCO clock bypass configuration (MUXD0 configuration bit); 1'b0: No bypass (select VCO clock), 1'b1: bypass (select the reference clock CLKIN);                                                                                                                                                    |

Table 2-42 Configuration Register Description: Address 0x11

| Bits | R/W    | Corresponding<br>Parameter Name | Description                                    |
|------|--------|---------------------------------|------------------------------------------------|
|      |        |                                 | STDBY signal enable configuration;             |
| 0    | R/W    | STDBY_ENABLE                    | 1'b0: STDBY signal is inactive,                |
|      |        |                                 | 1'b1: STDBY signal is active;                  |
|      |        |                                 | PLL_PWD signal enable configuration;           |
| 1    | R/W    | PLL_PWD_ENABLE                  | 1'b0: PLL_PWD signal is inactive,              |
|      |        |                                 | 1'b1: PLL_PWD signal is active;                |
|      |        |                                 | Reset signal RST enable configuration;         |
| 2    | R/W    | RST_ENABLE                      | 1'b0: RST signal is inactive,                  |
|      |        |                                 | 1'b1: RST signal is active;                    |
|      |        |                                 | Reset signal RSTODIV enable configuration;     |
| 3    | R/W    | RSTODIV_ENABLE                  | 1'b0: RSTODIV signal is inactive,              |
|      |        |                                 | 1'b1: RSTODIV signal is active;                |
|      |        |                                 | Reset signal RSTODIV2 enable configuration;    |
| 4    | R/W    | RSTODIV2_ENABLE                 | 1'b0: RSTODIV2 signal is inactive,             |
|      |        |                                 | 1'b1: RSTODIV2 signal is active;               |
|      |        |                                 | Reset signal RSTODIV3 enable configuration;    |
| 5    | R/W    | RSTODIV3_ENABLE                 | 1'b0: RSTODIV3 signal is inactive,             |
|      |        |                                 | 1'b1: RSTODIV3 signal is active;               |
|      |        |                                 | Function consistent with the dynamic port RST; |
| 6    | R/W    | PLL_RST_APB                     | 1'b0: PLL operates normally,                   |
|      |        |                                 | 1'b1: PLL reset                                |
|      |        |                                 | Function consistent with the dynamic port      |
| 7    | R/W    | PLL PWD APB                     | PLL_PWD;                                       |
| ′    | IX/ VV | I LL_I WD_AI B                  | 1'b0: PLL on,                                  |
|      |        |                                 | 1'b1: PLL off;                                 |

Table 2-43 Configuration Register Description: Address 0x12

| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                                                                                                                  |
|------|-----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:0  | R/W | PHASESEL_APB[1:0]               | Function consistent with the dynamic port PHASE_SEL; Select the corresponding PLL output clock for phase adjustment; 2'b00: Selects the CLKOUT0, 2'b01: Selects the CLKOUT3, |

(UG030003, V1.4) 47 / 56



| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                                                                                                                                                                                                            |
|------|-----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |     |                                 | 2'b10: Selects the CLKOUT2,<br>2'b11: Selects the CLKOUT1;                                                                                                                                                                                                             |
| 2    | R/W | PHASEDIR_APB                    | Function consistent with the dynamic port PHASE_DIR; Select the direction for dynamic phase fine adjustment; 1'b0: lag, 1'b1: lead;                                                                                                                                    |
| 3    | R/W | PHASESTEP_N_APB                 | Function consistent with the dynamic port PHASE_STEP_N; Dynamic phase fine adjustment trigger signal; Each trigger adjusts the output clock phase by 1/8T <sub>vco</sub>                                                                                               |
| 4    | R/W | LOAD_PHASE_APB                  | Function consistent with the dynamic port LOAD_PHASE; Load signal for the current phase fine adjustment value of the selected channel, pulse signal, active-high;                                                                                                      |
| 5    | R/W | CPHASESTEP_N_APB                | Function consistent with the dynamic port CPHASE_STEP_N; Dynamic phase coarse adjustment trigger signal; Each trigger increments the counter by 1, adjusting the output clock phase by n*step (n*step determined by the initial value configured by static parameters) |
| 6    | R/W | DPHASE_SOURCE                   | Source configuration for control signal of dynamic phase adjustment; 1'b0: control signal from the dynamic port (SRB), 1'b1: control signal from the APB port;                                                                                                         |
| 7    | R/W | DPFDEN_SOURCE                   | PFDEN enable signal source configuration of PLL PFD; 1'b0: control signal from the dynamic port (SRB), 1'b1: control signal from the APB port;                                                                                                                         |

Table 2-44 Configuration Register Description: Address 0x13

| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                                                                                                                                                                                                                                                                                                                                        |
|------|-----|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | R/W | ICP_BASE_TRIM                   | CP current correction configuration in PLL;<br>1'b0: 5μA per step;<br>1'b1: 2.5μA per step;                                                                                                                                                                                                                                                                                                        |
| 1    | R/W | FRACN_ENABLE                    | Fractional division function enable; 1'b0: Off, 1'b1: On;                                                                                                                                                                                                                                                                                                                                          |
| 4:2  | R/W | LOCK_ACCURACY[2:0]              | PLL frequency detection accuracy configuration; 3'b000:Lockin:±1100ppm;Lockout:±2000ppm; 3'b001:Lockin:±5100ppm;Lockout:±10000ppm; 3'b010:Lockin:±10300ppm;Lockout:±20000ppm; 3'b011:Lockin:±15600ppm;Lockout:±29300ppm; 3'b100:Lockin:±20500ppm;Lockout:±40100ppm; 3'b101:Lockin:±30300ppm;Lockout:±48900ppm; 3'b110:Lockin:±49900ppm;Lockout:±78200ppm; 3'b111:Lockin:±550ppm; Lockout:±1000ppm; |
| 5    | R/W | LOCK_MODE                       | PLL frequency detection mode configuration; 1'b0: normal frequency detection; 1'b1: maintains the state after frequency lock unless PLL is reset or powered down;                                                                                                                                                                                                                                  |

(UG030003, V1.4) 48 / 56



| Bits | R/W | Corresponding<br>Parameter Name | Description                                                                                         |
|------|-----|---------------------------------|-----------------------------------------------------------------------------------------------------|
| 6    | R/W | PFDEN_APB                       | PLL PFD enable signal; 1'b0: PFD off, 1'b1: PFD on;                                                 |
| 7    | R/W | PFDEN_ENABLE                    | PFDEN signal enable configuration;<br>1'b0: PFDEN signal is inactive, 1'b1: PFDEN signal is active; |

Users can control the PLL by directly instantiating GTP\_APB, the corresponding port diagram of which is shown below, and the port descriptions are shown in Table 2-45.



Figure 2-36 GTP\_APB Diagram

Table 2-45 GTP\_APB Port Description

| Port      | Direction | <b>Function Description</b> |
|-----------|-----------|-----------------------------|
| CLK       | Input     | Clock                       |
| RST_N     | Input     | Asynchronous reset          |
| ADDR      | Input     | Address bus                 |
| SEL_CCS   | Input     | Select CCS                  |
| SEL_SPI   | Input     | Select SPI                  |
| SEL_I2C0  | Input     | Select I2C0                 |
| SEL_I2C1  | Input     | Select I2C1                 |
| SEL_TIMER | Input     | Select timer                |
| SEL_PLL0  | Input     | Select PLL0                 |
| SEL_PLL1  | Input     | Select PLL1                 |
| EN        | Input     | Enabled                     |
| WR        | Input     | Read/write selection        |
| WDATA     | Input     | Data bus input              |
| RDATA     | Output    | Data bus output             |
| RDY       | Output    | Ready                       |
| IRQ       | Output    | Master interrupt            |
| IRQ_CCS   | Output    | CCS interrupt               |

Taking Verilog instantiation as an example, the call method for GTP\_APB is as follows:

(UG030003, V1.4) 49 / 56



```
GTP_APB
I_GTP_APB
(
.CLK
              CLK
                             ),
.RST_N
              RST_N
                             ),
.ADDR
              (ADDR
                             ),
.SEL\_CCS
              (SEL_CCS
.SEL_SPI
              (SEL_SPI
                             ),
. SEL\_I2C0
              (SEL_I2C0
                             ),
.SEL\_I2C1
              (SEL_I2C1
                             ),
.SEL\_TIMER
              (SEL_TIMER
                             ),
.SEL_PLL0
              (SEL_PLL0
                             ),
.SEL_PLL1
              (SEL_PLL1
                             ),
.EN
              (EN
                             ),
.WR
              (WR
.WDATA
              (WDATA
.RDATA
              (RDATA
.RDY
              (RDY
.IRQ
              (IRQ
                             ),
.IRQ_CCS
              (IRQ_CCS
                             )
);
```

The read and write timing of APB is divided into the following types:

### > Write without wait



Figure 2-37 Timing of APB Write without Wait

(UG030003, V1.4) 50 / 56



### ➤ Write with wait



Figure 2-38 Timing of APB Write with Wait

## ➤ Continuous write



Figure 2-39 Timing of APB Continuous Write

### > Read without wait



Figure 2-40 Timing of APB Read without Wait

(UG030003, V1.4) 51/56



## > Read with wait



Figure 2-41 Timing of APB Read with Wait

## ➤ Continuous read



Figure 2-42 Timing of APB Continuous Read

## ➤ Write before read



Figure 2-43 Timing of APB Write before Read

(UG030003, V1.4) 52 / 56



### > Read before write



Figure 2-44 Timing of APB Read before Write

# 2.7 Internal Oscillator (OSC)

Compa family products provide an internal oscillator (OSC), which can be used as a clock source. The output clock from the internal oscillator can be used as a global clock input source. The OSC can be used by directly instantiating GTP\_OSC\_E2, with its structure block diagram shown below, the port descriptions shown in Table 2-46, and the parameter descriptions in Table 2-47.



Figure 2-45 GTP\_OSC\_E2 Structure Block Diagram

Table 2-46 GTP\_OSC\_E2 Port Description

| Port Name | Direction | Description                                                                                                                                                                         |
|-----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLKOUT    | Output    | Output clock for user, with output frequency configured by CLK_DIV; please refer to Table 2-49 for the frequency that can be output. The port goes through the global clock network |
| CLKCRC    | Output    | Output clock, default frequency of 2.08MHz, provides clock for GTP_RBCRC                                                                                                            |
| EN_N      | Input     | OSC output enable signal, which turns off OSC when high and turns on OSC when low                                                                                                   |

Table 2-47 GTP\_OSC\_E2 Parameter Description

| Parameter | Description                                                               |
|-----------|---------------------------------------------------------------------------|
| CLK_DIV   | Clock division factor setting, with the valid value ranging from 0 to 127 |

(UG030003, V1.4) 53 / 56



| Parameter   | Description                                                                            |  |
|-------------|----------------------------------------------------------------------------------------|--|
| USER DIV EN | Clock division enable configuration, the value may be "FALSE" or "TRUE," and is active |  |
| OSEK_DIV_EN | when "TRUE"                                                                            |  |

The correspondence between CLK\_DIV values and division factors is shown in Table 2-48:

Table 2-48 Correspondence Between CLK\_DIV Values and Division Factors

| CLK_DIV | Division Factor |
|---------|-----------------|
| 0       | 128             |
| 1       | 2               |
| 2       | 2               |
| 3       | 3               |
|         |                 |
| 125     | 125             |
| 126     | 126             |
| 127     | 127             |

The frequency that can be output by CLKOUT are shown in Table 2-49:

Table 2-49 CLKOUT Output Frequency

| OSC Output Frequency (Division Factor), in MHz |           |           |           |           |           |           |           |
|------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 2.08(128)                                      | 2.09(127) | 2.11(126) | 2.13(125) | 2.15(124) | 2.16(123) | 2.18(122) | 2.20(121) |
| 2.22(120)                                      | 2.24(119) | 2.25(118) | 2.27(117) | 2.29(116) | 2.31(115) | 2.33(114) | 2.35(113) |
| 2.38(112)                                      | 2.40(111) | 2.42(110) | 2.44(109) | 2.46(108) | 2.49(107) | 2.51(106) | 2.53(105) |
| 2.56(104)                                      | 2.58(103) | 2.61(102) | 2.63(101) | 2.66(100) | 2.69(99)  | 2.71(98)  | 2.74(97)  |
| 2.77(96)                                       | 2.80(95)  | 2.83(94)  | 2.86(93)  | 2.89(92)  | 2.92(91)  | 2.96(90)  | 2.99(89)  |
| 3.02(88)                                       | 3.06(87)  | 3.09(86)  | 3.13(85)  | 3.17(84)  | 3.20(83)  | 3.24(82)  | 3.28(81)  |
| 3.33(80)                                       | 3.37(79)  | 3.41(78)  | 3.45(77)  | 3.50(76)  | 3.55(75)  | 3.59(74)  | 3.64(73)  |
| 3.69(72)                                       | 3.75(71)  | 3.80(70)  | 3.86(69)  | 3.91(68)  | 3.97(67)  | 4.03(66)  | 4.09(65)  |
| 4.16(64)                                       | 4.22(63)  | 4.29(62)  | 4.36(61)  | 4.43(60)  | 4.51(59)  | 4.59(58)  | 4.67(57)  |
| 4.75(56)                                       | 4.84(55)  | 4.93(54)  | 5.02(53)  | 5.12(52)  | 5.22(51)  | 5.32(50)  | 5.43(49)  |
| 5.54(48)                                       | 5.66(47)  | 5.78(46)  | 5.91(45)  | 6.05(44)  | 6.19(43)  | 6.33(42)  | 6.49(41)  |
| 6.65(40)                                       | 6.82(39)  | 7.00(38)  | 7.19(37)  | 7.39(36)  | 7.60(35)  | 7.82(34)  | 8.06(33)  |
| 8.31(32)                                       | 8.58(31)  | 8.87(30)  | 9.17(29)  | 9.50(28)  | 9.85(27)  | 10.23(26) | 10.64(25) |
| 11.08(24)                                      | 11.57(23) | 12.09(22) | 12.67(21) | 13.30(20) | 14.00(19) | 14.78(18) | 15.65(17) |
| 16.63(16)                                      | 17.73(15) | 19.00(14) | 20.46(13) | 22.17(12) | 24.18(11) | 26.60(10) | 29.56(9)  |
| 33.25(8)                                       | 38.00(7)  | 44.33(6)  | 53.20(5)  | 66.50(4)  | 88.67(3)  | 133.00(2) |           |

Taking Verilog instantiation as an example, the call method for GTP\_OSC\_E2 is as follows:

GTP\_OSC\_E2

#(

(UG030003, V1.4) 54 / 56



```
. USER_DIV_EN
                                     //FALSE; TRUE
                    ("TRUE"
                              ),
   . CLK_DIV
                    (0)
                              )
                                     //0-127
) I_GTP_OSC_E2 (
.CLKOUT
                 (CLKOUT ),
                 (CLKCRC ),
.CLKCRC
.EN_N
                 (EN_N
                           )
);
```

When the parameter USER\_DIV\_EN is set to "TRUE" and CLK\_DIV is 0, the timing diagram is shown in the figure below:



Figure 2-46 GTP\_OSC\_E2 Timing Diagram

(UG030003, V1.4) 55 / 56



# **Disclaimer**

## **Copyright Notice**

This document is copyrighted by Shenzhen Pango Microsystems Co., Ltd., and all rights are reserved. Without prior written approval, no company or individual may disclose, reproduce, or otherwise make available any part of this document to any third party. Non-compliance will result in the Company initiating legal proceedings.

#### **Disclaimer**

- 1. This document only provides information in stages and may be updated at any time based on the actual situation of the products without further notice. The Company assumes no legal responsibility for any direct or indirect losses caused by improper use of this document.
- 2. This document is provided "as is" without any warranties, including but not limited to warranties of merchantability, fitness for a particular purpose, non-infringement, or any other warranties mentioned in proposals, specifications, or samples. This document does not grant any explicit or implied intellectual property usage license, whether by estoppel or otherwise.
- 3. The Company reserves the right to modify any documents related to its family products at any time without prior notice.

(UG030003, V1.4) 56 / 56