Cumulating Search in a

Distributed

Computing Environment

Hantao Zhang Maria Paola Bonacina Dept. of Computer Science University of Iowa

Outline

- · Introduction
- · Satisfiability: Davis - Putnam SATO
- · Parallel satisfiability: PSATO
- · Experiments
- . Problems on quasignoups
- . Discussion

Satisfiability

S: set of propositional clauses

- · Davis Putnam algorithm 1960
- · NP completeness, Cook 1971

Satisfiability

Recent work:

. Sequential SAT:

[Zhang 1993]

SATO

[Zhang, Stickel 1994]

[Mc Cume 1994]

ANL-DP

. Parallel / distributed SAT:

[Böhm, Speckenmeyer 1994]

[Zhang 1994] PSATO

Motivation

- . SAT
- · Constraint satisfaction problems

finite => SAT

problems

domains

- · Model generation

 [Slaney 1992] FINDER
- · Algebraic problems

 Quasignoups problems

 [J. Zhang 1990]

 [Fujita, Slaney, Bennett 1993]

Motivation

Problems in distributed deduction:

- . Partition the search space among parallel processes
- · Combine the work of parallel processes
- · Cumulate the results of searches
 performed in separate intervals
 of time
- · Scalability
- · Fault tolerance

PSATO: a parallel SAT prover

- · concurrent asymphromous

 SAT processes
- · one process on each mode of a network of workstations
- · partition search space no overlap
 - · cumulate search by concurrent processes
 - · cumulate search over time
- · highly scalable
- · fault tolerant

The Davis-Putnam algorithm

· case splitting

· unit clause rule

· · pure literal rule

SATO

· case splitting

- · unit clause rule
 - · unit subsumption
 - · unit resolution

umit
propagation

SATO

- · Trie data structure (discrimination trees) for representing clauses.
- · Trie based sublinear algorithm for unit - propagation [Zhang, Stickel 1994]
- · Heuristic for splitting: choose a literal in one of the shortest positive clauses.

Tries in SATO

Trie for L:

< L, T, T, T, T, >

LvAvB LvD 7Lv7B 7AvC 7LvC

Cumulating search over time

PSATO

Master / Slave organization.

The master:

- · partition the search space among the slaves,
- · broadcast
 - · choice of splitting rule,
 - · allotted time,
 - · halting message
- · receive reports.

Each slave executes the Davis - Putnam algorithm (SATO).

Partition the search space

The master assigns to each slave:

- the set of imput clauses,
- a different guiding path.

Different guiding paths lead the search to disjoint portions of the search space.

is splitted into

PSATO

The master handles a list of guiding paths to be assigned.

Each slave may report:

- _ true
- false
- out of time/memory with guiding path computed so far

I guiding path returning true: satisfiable.

V guiding paths return false: unsatisfiable.

Experiments with PSATO om random 3-SAT

umsatisfiable problems:

$\overline{\text{#V}}$	#P	Wall	Total	Speed-	Over-
		Clock	Time	up	head
100	1	22.2	22.2	_	_
	5	7.9	24.4	2.81	0.10
	20	3.6	26.0	6.17	0.17
150	1	1082.5	1082.5	_	
	5	237.9	1169.1	4.55	0.08
	20	60.7	1212.4	17.83	0.12
200	1	53346.7	53346.7		
	5	10777.0	54947.1	4.95	0.05
	20	2899.3	58793.4	18.40	0.07

#V: mumber of propositional variables

#P: mumber of processors

Quasigroups

Cancellative:

$$x * y = \omega$$
, $x * y = w \implies \omega = w$

$$(x*y=0) \vee ... \vee (x*y=v-1)$$

$$(x*0=y) \vee \vee (x*(v-1)=y)$$

$$(0*x=y)v...v((v-1)*x=y)$$

Quasigroup problems

[Fujita, Slaney, Bennett 1993]

Name	${f Constraint}$
QG1	x * y = u, z * w = u, v * y = x,
	$v * w = z \Rightarrow x = z, y = w$
QG2	x * y = u, z * w = u, y * v = x,
	$w * v = z \Rightarrow x = z, y = w$
QG3	(x * y) * (y * x) = x
QG4	(x*y)*(y*x) = y
QG5	((x*y)*x)*x = y
QG6	(x*y)*y = x*(x*y)
QG7	((x*y)*x)*y = x

QGi.v:

basic axioms, i-th constraint, order $v \left(S = \{0, ..., v-1\} \right)$, x*x=x.

γ.

Quasigroup problems

Does there exist a quasigroup satisfying a specification QGi.v?

Replace variables in QGi.v by values in S.

Replace xxy = z by Pxiyiz.

Satisfiability problem.

O(vk) clauses if QGi.v contains k variables.

Quasigroup problems solved first by machine

Y: satisfiable

N: unsatisfiable

0: open

v:	9	10	11	12	13	14	15	16	17
QG1				Ο					
QG2		Ο		Y		Y	$(\mathbf{\hat{Y}})$		
QG3		:		Y					
QG4				Y					
QG5	N	N	Y	N	N	N	N	N	О
QG6		N	N	N		N	N	:	Y
QG7		N	N	N		N	N		

Other open problems: QG5.18, QG6.20, QG7.33.

Pereformance of PSATO on hard unsatisfiable problems

Prob.	#P	Workdays	P-Measure
QG5.14(*)	20	35	11
QG6.15	20	8	8
QG7.15	20	5	6
QG5.16	20	4	5
QG6.17	8	2	_

#P: mumber of processors Workday = 8 hours

(*): now-idempotent

P-Measure: number of open pairs in guiding path after one workday.

If p-measure = m, then O(2m)

Workdays (empirical observation).

Discussion

- · PSATO: a distributed prover for propositional satisfiability.
- · Partition the search space effectively.
- · Accumulate search over time.
- · Use now-dedicated general-purpose metworks of workstations effectively.
- · Achieve high scalability and fault tolerance by the master/slave organization.
- · Experiments : quasignoup problems.