

The characteristics of good ML problems

Clear use case

Relevant data

Decision making

The ML Pipeline

A Hypothetical case study

 A lab scientist wants to build an automated system that will allow her cat in and out of her office window and disallow dogs from entering through it

ML Problem formulation

ML Problem Statement: Classify cats vs dogs correctly

Supervised Learning

Build an ML classifier

Collect data

What kind? How much?

From which source?

Time and Expense/ Quality?

Pre-process the image data

Resizing

Denoising

Feature generation and data modelling

Handcrafted/ Statistical/ Deep learnt features

Which classifier?

Evaluate the model

Which accuracy metrics?

Practical issues

What could be the reasons?

Data

- Noisy / low quality data?
- Insufficient data volume?
- Poor data pre-processing?

Features

- Scaling required?
- Feature selection/ extraction required?

Model Training and Testing

- Insufficient training?
- Excessive training?
- Tuning of model parameters required?
- Algorithm needs to be changed?
- Testing method?

Holdout test set: The naïve approach

- Randomly split the entire dataset into:
 - Training set: A dataset used for training the model
 - Test set (a.k.a validation set): Data only used for testing the model

The three-way split

Training set

A set of examples used for learning

Validation set

A set of examples used to tune the parameters of a classifier

Test set

 A set of examples used only to assess the performance of a fullytrained classifier.

The three-way split

The entire available dataset

How to perform the split?

- How many examples in each data set?
 - Training: Typically 60-80% of data
 - Test set: Typically 20-30% of your data set
 - Validation set: Around 20% of data
- Examples
 - 3 way: Training: 60%, Val: 20%, Test: 20%
 - 2 ways: Training 70%, Test: 30%

Holdout summary

Positive

Intuitive; Usually easy to perform; Considered the ideal method for evaluation

Drawbacks:

- In small datasets, you do not have the luxury of setting aside a portion of your data
- The performance will be misleading if we had an unfortunate split

Common Splitting Strategies

k-fold cross-validation

Leave-one-out (n-fold cross validation)

Estimating model performance

K-fold cross validation

- The dataset is split into K partitions of equal size
- k-1 folds are used to train a model, and the holdout kth fold is used as the validation set
- This process is repeated and each of the folds is given an opportunity to be used as the holdout test set. A total of k models are fit and evaluated, and the performance of the model is calculated as the mean of these runs.
 - Small datasets

 Computationally more expensive

Cross - Validation

- How do you summarize the performance? $E = \frac{1}{K} \sum_{i=1}^{K} E_i$
 - Average: Usually average of performance between experiments
- How many folds are needed?
 - Common choice: 5-fold or 10-fold cross-validation (Some nice numbers)
 - Large datasets → even 3-Fold cross-validation will do
 - Smaller datasets → bigger K. Why?
 - Leave-One-Out approach (K=n). K is equal to the number of examples
 n. Used for very small datasets

Thanks!!

Questions?