CSCI 6110 Applied Combinatorics & Graph Theory N. Adlai A. DePano, Ph.D. Spring 2023 ndepano@uno.edu

1

Generating combinatorial objects

- Some problem may be so hard as to require a "brute force" solution
- How to produce all combinatorial objects needed
- Generated stream may be of various types
 - subsets of a set (power set)
 - k-subsets of a set
 - permutations of a set

2

Generating combinatorial objects • General set-up: seed object G object

3

Generating combinatorial objects

G: Generating subsets of a given set

Algorithm: Subsets of $\{1,...,n\}$

First subset Y is \emptyset .

- NEXT SUBSET after Y:
- Find the last element i not in Y (working back from the end).
- If there's no such element, then Y was the last
- Remove from Y all elements after i, and add i to Y. Return this set.

Generating combinatorial objects

- Example: Subsets of {1,2,3} are generated in the following order -
 - 1: Ø
- **5**: {1}
- **2**: {3}
- **6**: {1,3}
- **3**: {2}
- **7**: {1,2}
- **4**: {2,3}
- **8**: {1,2,3}

5

Generating combinatorial objects

• **G**: Generating *k*-subsets of a given set

Algorithm: k-Subsets of $\{1,...,n\}$

FIRST SUBSET Y is $\{1,...,k\}$.

- NEXT SUBSET after $Y=\{y_1,...,y_k\}$, where $y_1 < ... < y_k$:
- Find the first i such that $y_i+1 \notin Y$; Increase y_i by 1, set $y_j=j$ for j < i, and return the new set Y;
- This fails if i=k, $y_k=n$, in which case $Y=\{n-k+1,...,n\}$ is the last set.

Generating combinatorial objects

• Example: **2-Subsets of** {1,2,3} are generated in the following order –

1: {1,2}

2: {1,3}

3: {2,3}

7

Generating combinatorial objects

• G: Generating permutations of a given set

Algorithm: Permutations of $\{1,...,n\}$ First Permutation is given by $x_i = i$ for i = 1,...,n. Next Permutation after $\{x_1,...,x_n\}$:

- Find the largest j for which $x_j < x_{j+1}$ (working back from the end);
- If no such j exists, then the current permutation is the last
- Interchange the value of x_j with the least x_k greater than x_j with k > j; then reverse the sequence of values of $\{x_{j+1}, \dots, x_n\}$; return this permutation.

8

Generating combinatorial objects

• Example: **Permutations of** {1,2,3} are generated in the following order –

1: {1,2,3} 4: {2,3,1}

2: {1,3,2} **5**: {3,1,2}

3: {2,1,3} **6**: {3,2,1}