19 BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift DE 44 32 577 A 1

B 67 D 5/34 B 67 D 5/00 B 01 D 53/90 F01 N 3/10

DEUTSCHES PATENTAMT Aktenzeichen:

P 44 32 577.0

Anmeldetag: Offenlegungstag: 13. 9.94 14. 3.96

(71) Anmelder:

Siemens AG, 80333 München, DE

(72) Erfinder:

Hofmann, Lothar, Dipl.-Ing., 96224 Burgkunstadt, DE; Neufert, Ronald, Dr., 96215 Lichtenfels, DE; Mathes, Wieland, 96247 Michelau, DE

Best Available Copy

Prüfungsantrag gem. § 44 PatG ist gestellt

(A) Einrichtung zur Einbringung einer Flüssigkeit in ein Strömungsmedium

Die von einem mit Luftüberschuß betriebenen Verbrennungsmotor emittierten Stickoxide werden üblicherweise nach dem Verfahren der selektiven katalytischen Reduktion durch Kontaktierung der Stickoxide zusammen mit Ammoniak an einem selektiven Katalysator umgesetzt. In einem Fahrzeug muß Ammoniak aufgrund der mit dem Ammoniakeinsatz verbundenen Gefahren in Form einer ammoniakfreisetzenden Substanz, meist einer wäßrigen Harnstofflösung, mitgeführt werden. Das von der Erfindung gelöste Problem besteht in der Vermeidung von Frostschäden an Teilen der Abgasreinigungsanlage während der Stillstandszeiten und in dem Ermöglichen des Betriebs solcher Anlagen bei Temperaturen unterhalb des Gefrierpunktes der verwendeten Reduktionsmittellösung. Hierzu sieht die Erfindung vor, daß die Einrichtung (2) einen thermisch isolierten Vorratsbehälter (6) für die Reduktionsmittelflüssigkeit (4) und eine daran angeschlossene Flüssigkeitszuführungsleitung (12), die in einer Austrittsöffnung (22) für die Flüssigkeit (4) endet, umfaßt, wobei in der Flüssigkeitszuführungsleitung (12) ein Rückspül-Ventil (20) vorgesehen ist, das mit einem unter Druck stehenden Gas (29) beaufschlagbar ist.

ine Einrichtung zur Die Erfindung bezieht sich Einbringung einer Flüssigkeit ihrem Strömungsmedium mit einem Vorratsbehälter für die Flüssigkeit und einer daran angeschlossenen Flüssigkeitszuführungsleitung, die in einer Austrittsöffnung für die Flüssigkeit endet.

Zur Verminderung der in einem Abgas eines Verbrennungsmotors enthaltenen Schadstoffe, im besonderen der Stickoxide, hat sich für Verbrennungsmotoren, 10 die mit einem Luftüberschuß betrieben werden, wie z. B. Diesel- und Magermotoren, das System des geregelten Dieselkatalysators (GDK) als bisher vorteilhafteste Technik erwiesen. Diese im wesentlichen auf dem Verberuhende Technik ist mittlerweile aus zahlreichen Veröffentlichungen und Patentanmeldungen, z. B. aus den Patentanmeldungen P 43 09 891.6. P 43 10 926.8 und P 43 15 278.3, bekannt.

Beim SCR-Verfahren werden die Stickoxide zusam- 20 men mit Ammoniak an einem selektiven Katalysator kontaktiert und katalytisch zu umweltunbedenklichem Stickstoff und Wasser umgesetzt. Es ist weiter bekannt, daß bei dem GDK-System Ammoniak aufgrund der mit dem Ammoniakeinsatz verbundenen Gefahren, wie z. B. 25 seine Giftigkeit und die durch Ammoniak hervorgerufene Geruchsbelästigung, nicht im Fahrzeug mitgeführt werden darf. Das zur katalytischen Umsetzung der Stickoxide erforderliche Reduktionsmittel wird anstelle sung im Fahrzeug mitgeführt. Aus dieser wäßrigen Harnstofflösung kann der Ammoniak durch Hydrolyse der Harnstofflösung in der augenblicklich gerade zur Umsetzung der Stickoxide benötigten Menge erzeugt werden.

Es ist ein Vorteil der in wäßrigen Lösungen vorliegenden ammoniakfreisetzenden Substanzen, wie z. B. Harnstoff, daß die Bevorratung, die Handhabung, die Förderund Dosierbarkeit technisch besonders einfach zu lösen sind. Ein gravierender Nachteil dieser wäßrigen Lösun- 40 keine Flüssigkeit nach dem Rückspülen verbleibt. gen besteht darin, daß in Abhängigkeit von der Konzentration der gelösten Substanz die Gefahr des Einfrierens bei bestimmten Temperaturen besteht.

Eine einfache Zugabe eines Frostschutzmittels scheitert daran, daß für derartige wäßrige Lösungen kein 45 Frostschutzmittel bekannt ist, das bei wirtschaftlicher Dosierung eine nennenswerte Absenkung des Gefrierpunktes der wäßrigen Lösung bewirkt. Zudem besteht bei der Verwendung eines zusätzlichen Stoffes, wie z. B. eines Frostschutzmittels, im allgemeinen die Gefahr, 50 daß im Zusammenhang mit der Anwendung eines Reduktionsmittels in Abgasreinigungsanlagen wünschte Nebenprodukte entstehen, die zusammen mit dem Abgas emittiert werden. Aus diesem Grunde können Frostschutzmittel in einem solchen Verfahren zur 55 Abgasreinigung nicht eingesetzt werden.

Eine weitere Möglichkeit zur Vermeidung des Einfrierens der wäßrigen Lösung und zur Vermeidung von Frostschäden ist grundsätzlich die Beheizung der reduktionsmittelführenden Teile der Abgasreinigungsanlage. 60 Bei mobilen Anwendungen, speziell in Nutzfahrzeugen (LKW), Lokomotiven und Schiffen - soweit diese nicht mit eigener Energieversorgung versehen sind -, steht jedoch die dazu notwendige elektrische Energie, insbesondere während längerer Stillstandszeiten, nicht zur 65 Verfügung. So müßte beispielsweise bei einem LKW ein Volumen von etwa 100 l wäßriger Harnstofflösung vor dem Einfrieren geschützt werden.

Der Erfindung liegt daher die Aufgabe zugrunde. per Abgasreinigungsanlage Frostschäden an Teile Fahrzeugen während der für den mobilen Einsa Stillstandszeiten zu vermeiden und den Betrieb einer solchen Anlage bei Temperaturen unterhalb des Gefrierpunktes der verwendeten Reduktionsmittellösung zu ermöglichen.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß eine Einrichtung zur Einbringung einer Flüssigkeit in ein Strömungsmedium mit einem thermisch isolierten Vorratsbehälter für die Flüssigkeit und einer daran angeschlossenen Flüssigkeitszuführungsleitung, die in einer Austrittsöffnung für die Flüssigkeit endet, vorgesehen ist, wobei in der Flüssigkeitszuführungsleitung ein fahren der selektiven katalytischen Reduktion (SCR) 15 Rückspül-Ventil vorgesehen ist, das mit einem unter Druck stehenden Gas beaufschlagbar ist.

Auf diese Weise ist es möglich, zu jedem beliebigen Zeitpunkt die in der Flüssigkeitszuführungsleitung vorhandene Flüssigkeit mittels des unter Druck stehenden Gases in den Vorratsbehälter zurückzuspülen und/oder durch die Austrittsöffnung für die Flüssigkeit herauszuspülen. Insbesondere Nutzfahrzeuge verfügen über ein Druckluftsystem, welches an das Rückspül-Ventil angeschlossen werden kann. Auf diese Weise ist es möglich, beispielsweise unmittelbar nach dem Abstellen des Fahrzeuges, das Rückspülen der Flüssigkeit, z. B. einer wäßrigen Reduktionsmittellösung, mittels der im Fahrzeug vorhandenen Druckluft durchzuführen. Aufgrund der thermischen Isolation des Vorratsbehälters ist es des Ammoniaks in Form einer wäßrigen Harnstofflö- 30 weitgehend gewährleistet, daß die im Vorratsbehälter vorhandene Flüssigkeit und die in den Vorratsbehälter zurückgespülte Flüssigkeit nicht einfrieren.

> In vorteilhafter Ausgestaltung der Erfindung können die Flüssigkeitszuführungsleitung und gegebenenfalls weitere in der Flüssigkeitszuführungsleitung angeschlossene Komponenten, wie z. B. ein Ventil, ein Filter, eine Pumpe, rückspülbar ausgeführt sein. Es ist auf diese Weise gewährleistet, daß in dem gesamten Flüssigkeitsstrang zwischen Vorratsbehälter und Austrittsöffnung

Es ist vorteilhaft, wenn als Rückspül-Ventil ein Drei/ Drei-Wegeventil eingesetzt ist. Auf diese Weise kann die in der Flüssigkeitszuführungsleitung befindliche Flüssigkeit in beide Strömungsrichtung gespült werden. Zusätzlich kann beispielsweise beim Einbringen der Flüssigkeit in das Strömungsmedium eine Zerstäubung der Flüssigkeit an der Austrittsöffnung mittels der Druckluft, die über das Rückspül-Ventil in die Flüssigkeitszuführungsleitung eingeführt wird, erfolgen.

Um beispielsweise einen in der Leitung für das Strömungsmedium in Strömungsrichtung des Strömungsmediums nach der Austrittsöffnung angeordneten Katalysator nur gering mit der Flüssigkeit bei dem Rückspülen zu belasten, ist es vorteilhaft, wenn der Weg der Flüssigkeitszuführungsleitung zwischen dem Rückspül-Ventil und der Austrittsöffnung besonders kurz ist im Bezug zur Gesamtlänge der Flüssigkeitszuführungsleitung. Hierunter wird auch verstanden, daß das Rückspül-Ventil unmittelbar an der Austrittsöffnung angeordnet ist und als solches kein separates Stück Flüssigkeitszuführungsleitung zwischen Austrittsöffnung und Rückspül-Ventil angeordnet ist.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind den übrigen Unteransprüchen zu entnehmen.

Ein Ausführungsbeispiel der Erfindung wird anhand einer Figur näher erläutert. Die Figur zeigt in schematischer Darstellung eine Einrichtung 2 zur Einbringung einer wäßrigen Harnstofflösung 4 in ein in einer Abgas-

leitung 42 geführt es stickoxidhaltiges Abgas 5 eines nicht weiter dargestellten Ve nnungsmotors. Ein solcher Verbrennungsmotor k eispielsweise in einem Nutzfahrzeug, wie z. B. einem LKW, einer Lokomotive oder einem Schiff, eingebaut sein.

In der Figur erkennt man einen Vorratsbehälter 6 für die Harnstofflösung 4, wobei der Vorratsbehälter 6 eine thermische Isolierung 7, eine Entlüftungsvorrichtung 8 und einen Wärmetauscher 10 aufweist. An den Vorratsbehälter 6 ist eine Harnstoffzuführungsleitung 12 angeschlossen, die - der Reihe nach - über einen weiteren separaten Vorratsbehälter 14, einen Filter 16, eine Pumpe 18 und ein Rückspül-Ventil 20 in einer als Austrittsöffnung 22 vorgesehenen Düse 24 endet.

Das Rückspül-Ventil 20 ist als Drei/Drei-Wegeventil 15 ausgeführt. Im oberen Teil des Rückspül-Ventils 20 ist eine Druckluftzuführungsleitung 26 angeschlossen, die von einem Druckluftbehälter 28 ausgeht. Das Rückspül-Ventil 20 weist weiter einen Steuereingang 30 auf, der in hier nicht weiter dargestellter Weise an einen Bordcom- 20 puter für die Steuerung des Verbrennungsmotors und der Pumpe 18 für die wäßrige Harnstofflösung 4 angeschlossen ist. Mittels dieses Steuereingangs 30 wird die Funktion des als Drei/Drei-Wegeventils ausgestalteten Rückspül-Ventils 20 festgelegt.

Das Rückspül-Ventil 20 hat drei steuerbare Funktionsweisen. Die erste Funktion 32 sieht einen ungehinderten Durchlaß der wäßrigen Harnstofflösung 4 vor. Die zweite Funktion 34 sieht ein Absperren der Harnstoffzuführungsleitung 12 in Richtung zum Vorratsbe- 30 ist es insbesondere bei Außentemperaturen unterhalb hälter 6 hin und ein Ausblasen der Harnstoffzuführungsleitung 12 in Richtung zur Austrittsöffnung 22 hin vor. Die dritte Funktion 36 verhält sich umgekehrt zur Funk-

Bei der Inbetriebnahme des Verbrennungsmotors be- 35 findet sich die Harnstofflösung 4 vollständig in den Vorratsbehältern 6 und 14. Bei einer Außentemperatur unter dem Gefrierpunkt der wäßrigen Harnstofflösung 4 kann es insbesondere bei längeren Standzeiten trotz der thermischen Isolierung 7 des Vorratsbehälters 6 zu ei- 40 nem Einfrieren der wäßrigen Harnstofflösung 4 kommen. In einem solchen Betriebsfall kann nun entweder nach Anlassen des Verbrennungsmotors oder auch bereits vor dem Anlassen des Verbrennungsmotors mittels einer elektrischen Heizung 38, die einen Wärmetau- 45 scher 40 mit Wärme versorgt, ein geringes Startvolumen 4' an Harnstofflösung 4 in dem als Zwischenbehälter dienenden Vorratsbehälter 14 aufgetaut werden.

Diese aufgetaute Harnstofflösung 4 wird dann mittels der Pumpe über das Filter 16 und das Rückspül-Ventil 50 20 (in Funktion 32) zur Austrittsöffnung 22 befördert. Dort wird die wäßrige Harnstofflösung 4 feinverdüst in das Abgas 5, das in der Abgasleitung 42 des Verbrennungsmotors strömt, eingebracht. Damit die Harnstofflösung 4 auf dem Weg zur Austrittsöffnung 22 nicht in 55 der Harnstoffzuführungsleitung 12 einfriert, kann zusätzlich eine Heizung für die Harnstoffzuführungsleitung 12 vorgesehen sein, die durch die strichpunktierten Linien 44, 46 parallel zur Harnstoffzuführungsleitung 12 angedeutet ist. Hierbei kann die Wärmeenergie elek- 60 trisch oder auch über das Kühlmittel des Verbrennungsmotors herangeführt werden. So ist es vorstellbar, daß die Harnstoffzuführungsleitung 12 wie eine Koaxialleitung aufgebaut ist, in der in der zentralen Ader die Harnstofflösung 4 strömt und in dem äußeren Mantel 65

Mit zunehmender Betriebsdauer des Verbrennungsmotors erwärmt sich das Kühlmittel. Dieses kann bei-

spielsweise in den Wärmetauscher 10 strömen und auf diese Weise das Au n der überwiegenden Harnstofflösungsmenge in ratsbehälter 6 bewirken. Der Vorratsbehälter 6 weist zusätzlich einen Temperatur-5 sensor 47, beispielsweise ein Thermoelement, auf, mit dessen Temperatursignal ein einstellbares Ventil 48 angesteuert werden kann, das die Durchflußmenge des Kühlmittels im Wärmetauscher 10 einstellt. Die von dem Wärmetauscher 10 auf die Harnstofflösung 4 übertragene Wärmemenge wird also mittels des einstellbaren Ventils 48 durch eine Einstellung der Kühlmittelrate reguliert. Auf diese Weise ist eine Thermostatisierung der im Vorratsbehälter 6 befindlichen Harnstofflösung 4 möglich. Durch diese Thermostatisierung wird als positiver Nebeneffekt eine Steigerung der Dosiergenauigkeit von üblicherweise volumetrisch arbeitenden Dosiereinrichtungen erzielt. Weiter wird ein Überhitzen der Harnstofflösung 4 sowohl im Vorratsbehälter 6 als auch im Vorratsbehälter 14 vermieden, was ansonsten bereits in den Vorratsbehältern 6 und 14 zu einer Hydrolyse der Harnstofflösung zu Ammoniak führen würde. Diese Hydrolyse ist aber unerwünscht.

Während des Betriebes des Verbrennungsmotors wird der Druckluftbehälter 28 mit Druckluft 29 aufgela-25 den. Der hier nicht weiter beschriebene Bordcomputer steuert die pro Zeiteinheit in das Abgas 6 eingebrachte Menge der Harnstofflösung 4 entsprechend der im Abgas 6 enthaltenen Stickoxidrate.

Im Anschluß an den Betrieb des Verbrennungsmotors des Gefrierpunktes der wäßrigen Harnstofflösung 4 zur Vermeidung von Frostschäden vorgesehen, die Harnstofflösung 4 aus den frostgefährdeten Teilen der Einrichtung 2 zu entfernen. Diese Teile sind insbesondere das Filter 16, die Pumpe 18, das Rückspül-Ventil 20, die Düse 24 sowie die gesamte Harnstoffzuführungsleitung 12. Hierzu wird nun zunächst die Funktion 34 und dann die Funktion 36 des Rückspül-Ventils 20 ausgeübt. Es könnte ebensogut auch umgekehrt verfahren werden.

Mittels der Funktion 34 wird die noch in der Harnstoffzuführungsleitung 12 zwischen dem Rückspül-Ventil 20 und der Düse 24 in der Harnstoffzuführungsleitung 12 befindliche Harnstofflösung 4 in die Abgasleitung 42 ausgeblasen. Weil dieses Stück Harnstoffzuführungsleitung 12 im Vergleich zur Gesamtlänge der Harnstoffzuführungsleitung 12 besonders kurz ausgeführt ist, wird auch nur eine geringe Menge Harnstofflösung 4 in die nun nicht mehr vom Abgas 6 durchströmte Abgasleitung 42 eingeleitet. Die ausgetragene Harnstofflösung 4 kann beispielsweise an den heißen Wänden der Abgasleitung 42 verdampfen. Der bei der Hydrolyse (Verdampfung) entstehende Ammoniak wird in dem der Düse 24 in der Abgasleitung 42 nachgeschalteten und hier nicht weiter dargestellten Katalysator adsorbiert.

Mittels der Funktion 36 des Rückspül-Ventils 20 wird daran anschließend die gesamte übrige Harnstoffzuführungsleitung 12 sowie die darin angeordnete Pumpe 18 und das darin angeordnete Filter 16 mit der Druckluft harnstofffrei gespült. Es ist hier vorgesehen, daß die Größe des als Zwischenbehälter dienenden Vorratsbehälters 14 so gewählt ist, daß das Volumen zur Aufnahme der rückgespülten Harnstofflösung 4 inklusive eines mit Luft gefüllten Dehnungsvolumens ausreicht. Diese rückgespülte Harnstofflösung 4 wird dann bei erneuter Wiederinbetriebnahme des Verbrennungsmotors als gegebenenfalls mit nur geringer elektrische Heizleistung auftaubares Startvolumen verwendet.

In nicht weiter dargestellter Weise kann an den Vorratsbehälter 6 und gegebenen auch an den Vorratsbehälter 14 eine Entlüftungste kentlastungsleitung, die in die Abgasleitung 42 in Strömungsrichtung des Abgases 5 vor dem hier nicht weiter dargestellten Katalysator zur Stickoxidminderung mündet, angeschlossen werden, wie dies beispielsweise auch aus der EP 0 577 853 A1 bekannt ist.

Die vorstehend beschriebene Einrichtung 2 gewährleistet somit jederzeit, daß unabhängig von den Außentemperatur während des Betriebes des Verbrennungsmotors immer die zur katalytischen Umsetzung der Stickoxide erforderliche Harnstoffmenge bereitgestellt werden kann. Sie gewährleistet ebenso, daß die gesamte Einrichtung 2 vor Frostschäden bei Außentemperaturen unterhalb des Gefrierpunkts der Harnstofflösung 4 geschützt ist.

Die in der Figur beschriebene Einrichtung kann ebensogut auch in Anlagen der chemischen Industrie, in der Flüssigkeiten durch Freileitungen geführt werden, verwendet werden.

Patentansprüche

- 1. Einrichtung (2) zur Einbringung einer Flüssigkeit 25 (4) in ein Strömungsmedium (5) mit einem Vorratsbehälter (6) für die Flüssigkeit (4) und einer daran angeschlossenen Flüssigkeitszuführungsleitung (12), die in einer Austrittsöffnung (22) für die Flüssigkeit (4) endet, wobei in der Flüssigkeitszuführungsleitung (12) ein Rückspül-Ventil (20) vorgesehen ist, das mit einem unter Druck stehenden Gas (29) beaufschlagbar ist.
- 2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Flüssigkeitszuführungsleitung (12) 35 und gegebenenfalls weitere in der Flüssigkeitszuführungsleitung (12) angeschlossene Komponenten, wie z. B. ein Ventil, ein Filter (16), eine Pumpe (18), rückspülbar ausgeführt sind.
- Einrichtung nach Anspruch 1 oder 2, dadurch 40 gekennzeichnet, daß das Rückspül-Ventil (20) ein 3/3-Wegeventil ist.
- 4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Weg der Flüssigkeitszuführungsleitung (12) zwischen dem Rückspül-Ventil (20) und 45 der Austrittsöffnung (22) besonders kurz ist im Bezug zur Gesamtlänge der Flüssigkeitszuführungsleitung (12).
- 5. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Vorratsbehälter 50 (6, 14) und die Flüssigkeitszuführungsleitung (12) beheizbar sind.
- 6. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Austrittsöffnung (22) als Düse (24) ausgebildet ist.
- 7. Éinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Flüssigkeit (4) eine wäßrige Harnstofflösung ist.
- 8. Einrichtung nach einem Ansprüche 1 bis 7, dadurch gekennzeichnet, daß Strömungsmedium (5) 60 das Abgas eines Verbrennungsmotors ist.
- 9. Verwendung einer Einrichtung nach einem der Ansprüche 1 bis 8 in der Abgasreinigungsanlage eines Fahrzeugs mit einem Verbrennungsmotor, insbesondere einem mit Luftüberschuß betriebe- 65 nen Verbrennungsmotor.

Hierzu 1 9 n) Zeichnungen

- Leerseite -

.

.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY