The German University in Cairo (GUC).

Discrete Mathematics, Fall 2022.

SAMPLE ANSWER: Q #1

Date: 22-Oct.-22 Time: 25 Minutes (max.) Marks: 10

Group / Name / ID:

- 1. Write a propositional logic form of the following statement, then write a plausible negation both in propositional logic and in English. (Don't use "It is not true that")
 - "the statement is not satisfiable only if the statement is a contradiction." [2 Marks]
- Ans. (a) Form: $p \to q$, where p: "the statement is NOT satisfiable" and q: "the statement is a contradiction".

Negation: $\neg(p \to q) \equiv \neg(\neg p \lor q) \equiv p \land \neg q$: "the statement is NOT satisfiable AND the statement is NOT a contradiction".

- N.B. It's also okay if p were "the statement is satisfiable". However, in such a case, the form must be $\neg p \rightarrow q$, and the negation $\neg p \land \neg q$, for example.
- 2. Prove that the Negation Introduction (NI) $(P \to Q) \land (P \to \neg Q) \to \neg P$ is a valid argument.

[3 Marks]

<u>Remember</u>: This argument means that if one statement leads to another one as well as to is negation (of that other one), then the first statement must be false.

Ans. • Since the last column in the following truth table is always true, therefore the given argument is valid.

$\overset{\circ}{P}$	Q	$P \to Q (1)$	$P \rightarrow \neg Q$ (2)	$1 \wedge 2 (3)$	$3 \rightarrow \neg P (4)$
F	F	T	T	Т	T✓
\mathbf{F}	T	${ m T}$	${f T}$	T	T✓
\mathbf{T}	F	${f F}$	T	${f F}$	$\mathbf{T}\checkmark$
\mathbf{T}	Т	Γ	${f F}$	\mathbf{F}	T√

- A proof sequence using would also work fine (yet seemingly less obvious):
 - 1. $P \to Q$ hyp. (given)
 - 2. $P \to \neg Q$ hyp. (given)
 - 3. $Q \to \neg P$ 2, CONT (\equiv)
 - 4. $P \rightarrow \neg P$ 1, 3, HS (\rightarrow)
 - 5. $\neg P \lor \neg P$ 4, CONT (\equiv)
 - 6. $\therefore \neg P$ 5, SIMP (\equiv)
- 3. Prove that $((\neg A \to B) \to (C \to D)) \land ((\neg B \to A) \to (C \land \neg D)) \to (\neg A \land \neg B)$ is a valid argument.
 - <u>Hints:</u> (1) Remember that $\neg (\boxtimes \to \boxtimes) \equiv \boxtimes \land \neg \boxtimes$, and apply the valid argument of question 2 and/or other rules from the "formula sheet". (2) If you're puzzled, answer using a truth table... Tick Tock!

[5 Marks]

		#:	expression:	Justification:
Ans.		1.	$(\neg A \to B) \to (C \to D)$ $(\neg B \to A) \to (C \land \neg D)$ $(\neg A \to B) \to (C \land \neg D)$ $(\neg A \to B) \to \neg(\neg C \lor D)$ $(\neg A \to B) \to \neg(C \to D)$ $(\neg A \to B) \to \neg(C \to D)$ $\neg(\neg A \to B)$ $\neg(\neg A \lor B)$ $\therefore \neg A \land \neg B$	hypothesis
		2.	$(\neg B \to A) \to (C \land \neg D)$	hypothesis
		3.	$(\neg A \to B) \to (C \land \neg D)$	$\equiv 2$, CONT (of antecedent)
	•	4.	$(\neg A \to B) \to \neg(\neg C \lor D)$	≡3, De Morgan's (of consequent)
		5.	$(\neg A \to B) \to \neg (C \to D)$	\equiv 4, CONT (of consequent)
		6.	$\neg(\neg A \to B)$	5, 1, NI (question 2)
		7.	$\neg(\neg\neg A\lor B)$	6, CONT
		8.	$\therefore \neg A \wedge \neg B$	7, De Morgan's

N.B. If this question is answered using a truth table, the answer must also state the concluding statement: "therefore, the given argument is valid because it's a tautology.".

Rules of inference: Other rules are missing (e.g., commutativity, associativity, double negation, De Morgan's, etc.)

Name (abbreviation)	of the rule:	The rule:
Implication	(IMP)	$P \to Q \equiv \neg P \lor Q.$
Contrapositive	(CONT)	$P \to Q \equiv \neg Q \to \neg P.$
Modus Ponens	(MP)	from P and $P \to Q$, deduce Q .
Modus Tollens	(MT)	from $P \to Q$ and $\neg Q$, deduce $\neg P$.
Simplification	(SIMP)	from $P \wedge Q$, deduce P (or deduce Q).
Conjunction	(CONJ)	from P and Q , deduce $P \wedge Q$.
Hypothetical Syllogism	(HS)	from $P \to Q$ and $Q \to R$, deduce $P \to R$.
Disjunctive Syllogism	(DS)	from $P \vee Q$ and $\neg P$, deduce Q .
Addition	(ADD)	from P , deduce $P \vee Q$.
Negation Introduction	(NI)	from $P \to Q$ and $P \to \neg Q$, deduce $\neg P$.
Negation Elimination	(NE)	from P and $\neg P$, deduce Q .