POTENSI PEMANFAATAN ATAP GEDUNG PUSAT PEMERINTAHAN KABUPATEN BADUNG UNTUK PLTS ROOFTOP

I Dewa Gde Yaya Putra Pratama¹, I Nyoman Satya Kumara², I Nyoman Setiawan³

Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana, Denpasar-Bali Email: yayaputrapratama@gmail.com, jins.kumara@yahoo.com, setiawan@.unud.ac.id

Abstrak

Dalam Rencana Usaha Penyediaan Tenaga Listrik PT Perusahaan Listrik Negara (RUPTL PT PLN) Tahun 2017 sampai dengan 2026, pemerintah menargetkan pengembangan Pembangkit Listrik Tenaga Surya (PLTS) sebesar 5000 MW pada tahun 2025. Salah satu upaya yang dapat dilakukan untuk mencapai target tersebut adalah dengan memanfaatkan gedung pemerintah sebagai tempat pemasangan PLTS. Penelitian ini bertujuan untuk mengetahui potensi daya dan produksi energi listrik jika atap gedung-gedung Pusat Pemerintahan Kabupaten Badung (Puspem Badung), Bali dipasang PLTS. Modul surya disimulasikan dipasang di sisi utara, timur, barat, dan selatan dari atap gedung Puspem Badung. Simulasi produksi energi listrik dilakukan dengan menggunakan software System Advisor Model (SAM). Hasil simulasi menunjukkan sisi utara mampu memproduksi energi listrik terbesar, yaitu 1.847.361 kWh/tahun. Total energi listrik yang dapat dihasilkan sebesar 6.169.092 kWh/tahun, jumlah ini setara dengan 124,72 % dari konsumsi energi Puspem Badung sekarang ini.

Kata Kunci: Energi Terbarukan, System Advisor Model, Produksi Energi, Rooftop PV.

Abstract

In the RUPTL PT PLN Years 2017 untill 2026, the goverment aim to reach 5000 MW of PV plant potential in 2025. But, until November 2016, the number of PV plant in Indonesia is around 11 MW. To reach the 5000 MW target, many approach must be use. One of the approach is install PV plant on goverment buildings. Pusat Pemerintahan Kabupaten Badung (Puspem Badung) is a goverment buildings complex which located in Badung Regency, Bali is one of the goverment building that can be use for this approach. This paper aim to know the potency of electrical power dan electrical energy produced by Puspem Badung if the PV plant installed on the north, east, west, and south side of the roof. Electrical energy produced by PV plant is simulated by using System Advisor Model (SAM). From the simulation results, north side of the roof can produce energy of 1.847.361 kWh/year. From the analysis, the total energy that can be produced by PV plant is 6.169.092 kWh/year. This amount can supply Puspem Badung energy need by 124,72 %.

Keywords: Renewable Energy, System Advisor Model, Energy Production, Rooftop PV

1. PENDAHULUAN

Pemerintah telah mengeluarkan berbagai kebijakan mengenai energi baru dan terbarukan (EBT). Salah satu kebijakan yang dikeluarkan pemerintah adalah PP No. 79 Tahun 2014 Tentang Kebijakan Energi Nasional (KEN). Dalam kebijakan itu disebutkan bahwa untuk mencapai bauran energi yang optimal, pemerintah menargetkan penggunaan energi baru dan terbarukan paling sedikit sebesar 23 %

pada tahun 2025 dan paling sedikit sebesar 31 % pada tahun 2050 [1]. Namun, berdasarkan Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) Tahun 2017 sampai dengan 2026, hingga bulan November 2016 bauran energi dari energi baru dan terbarukan (EBT) hanya sebesar 12,9 %. Jika dirinci, bauran energi EBT yang terbesar datang dari air sebesar 7,8 %, panas bumi 4,3 %, dan EBT lain sebesar 0,8 % [2]. Untuk kondisi di Bali,

energi listrik yang berasal dari energi baru dan terbarukan hanya sekitar 1 % dari total pembangkitan listrik di Bali [3], sehingga perlu ada upaya untuk meningkatkan jumlah energi listrik yang berasal dari EBT, baik di Bali maupun di Indonesia.

Indonesia yang terletak di wilayah khatulistiwa memiliki potensi rata-rata energi surya sebesar 4,8 kWh/m²/hari [4]. Dari potensi tesebut, jumlah Pembangkit Listrik Tenaga Surya (PLTS) yang terpasang hingga bulan November tahun 2016 hanya sekitar 11 MW saja. Dalam RUPTL, pemerintah telah mencanangkan pengembangan potensi PLTS sebesar 5000 MW pada tahun 2025.

Melihat iumlah PLTS vang terpasang saat ini masih jauh dari target 5000 MW, maka diperlukan beragam upaya agar target tersebut dapat tercapai. Salah satu cara yang dapat dilakukan adalah dengan memanfaatkan atap gedung pemerintah. Gedung pemerintah umumnya beroperasi di siang hari, sehingga tenaga listrik yang dikonsumsi lebih banyak pada siang hari. Hal inilah yang menyebabkan PLTS cocok dipasang di gedung pemerintah, karena PLTS merupakan pembangkit listrik yang tergantung dengan sinar matahari. Dengan melakukan hal tersebut, diharapkan gedung mampu mengurangi pemerintah penggunaan energi listrik dari PLN.

PLTS yang akan dipasang di atap gedung memiliki beberapa keunggulan, diantaranya ruang untuk memasang PLTS sudah tersedia, sehingga tidak memerlukan lahan tambahan dan energi listrik yang dibangkitkan digunakan di tempat yang sama, sehingga investasi untuk transmisi dan distribusi tenaga listrik bisa dikurangi.

Kabupaten Badung merupakan salah satu dari delapan kabupaten dan satu kota di Provinsi Bali. Kabupaten Badung memiliki wilayah seluas 418,52 km², atau mencakup 7,43 % dari wilayah daratan Pulau Bali. Secara geografis, Kabupaten Badung terletak antara 8⁰14'20"- 8⁰50'52" Selatan dan 115⁰05'03' Lintang 115⁰26'51" Bujur Timur [5]. Berdasarkan data meteorologi dari NASA, Kabupaten Badung memiliki rata-rata iradiasi matahari sebesar 5,33 kWh/m²/hari. Jumlah ini lebih besar dibandingkan rata-rata iradiasi matahari Indonesia sebesar kWh/m²/hari, sehingga Kabupaten Badung

memiliki potensi untuk pengembangan PLTS.

Pada tahun 2016, Kabupaten Badung memiliki pendapatan sebesar 4,3 triliun Rupiah. Pendapatan terbesar berasal dari Pajak daerah, yaitu sebesar 2,9 triliun Rupiah. Sehingga jika dilihat dari sisi ekonomi, Kabupaten Badung memiliki potensi untuk melakukan pemasangan PLTS.

Pusat Pemerintahan Kabupaten Badung atau yang biasa disebut Puspem Badung merupakan salah satu kompleks yang dapat dijadikan pemerintahan percontohan dalam pemasangan PLTS. Puspem Badung berdiri di lahan seluas 46,6 ha yang berlokasi di Kelurahan Sempidi, Kecamatan Mengwi. Puspem Badung terdiri dari 18 gedung.

Penelitian ini bertuiuan untuk mengetahui berapa potensi atap gedung Puspem Badung jika digunakan sebagai pemasangan **PLTS** tempat dan membandingkan dengan kebutuhan energi sekarang dan ke depan. Potensi atap gedung dihitung dengan menggunakan Google Earth. Data luas atap yang didapat menggunakan dengan diolah AutoCAD untuk menentukan banyaknya modul surya yang dapat dipasang di atap. Melalui penelitian ini, diharapkan dapat diketahui berapa besar energi yang dapat diproduksi PLTS yang dipasang di atap gedung Puspem Badung serta persentase energi yang dapat disuplai oleh PLTS. Hasil penelitian ini diharapkan dapat membantu Pemerintah Kabupatan Badung untuk memahami potensi daerah dalam ikut berkontribusi dalam pembangunan EBT dan khususnya PLTS rooftop.

2. KAJIAN PUSTAKA

2.1 PLTS Rooftop

PLTS rooftop merupakan PLTS yang dipasang di atas atap bangunan, baik rumah maupun komersial. PLTS rooftop merupakan PLTS skala kecil, biasanya berkapasitas 20 kW. Di beberapa gedung komersial, PLTS rooftop dapat memiliki kapasitas mendekati 1 MW. Meskipun memiliki kapasitas yang lebih kecil. namun PLTS rooftop memiliki beberapa keunggulan, diantaranya dapat memanfaatkan lahan yang sudah ada, sehingga mengurangi biaya investasi lahan. Keunggulan lainnya adalah lebih mudah dan lebih murah untuk dihubungkan dengan sistem kelistrikan yang sudah ada [6].

2.2 System Advisor Model

System Advisor Model (SAM) merupakan sebuah software yang dapat digunakan untuk memperkirakan produksi energi dari pembangkit yang menggunakan terbarukan sebagai sumber energi **PLTS** energinya, termasuk yang menggunakan energi surya. SAM mampu mensimulasikan unjuk kerja dan model finansial dari suatu pembangkit, sehingga nantinya hasil simulasi itu dapat digunakan untuk memfasilitasi pengambilan keputusan bagi orang-orang yang terlibat di industri energi terbarukan, seperti manajer proyek, teknisi, maupun peneliti.

SAM awalnya dikembangkan oleh National Renewable Energy Laboratory (NREL) yang bekerja sama dengan Sandia National Laboratories pada tahun 2005. Pada awalnya SAM bernama Solar Advisor Model merupakan software khusus yang ditujukan untuk penggunaan internal di Program Teknologi Tenaga Surva Kemetrian Energi Amerika Serikat. NREL akhirnya merilis versi publik dari SAM pada 2007. Pada 2011, penambahan teknologi lain selain teknologi surya, software ini berganti nama dari Solar Advisor Model menjadi System Advisor Model.

3. METODOLOGI PENELITIAN

Penelitian dilakukan di Pusat Pemerintahan Kabupaten Badung. Tahapan penelitian adalah sebagai berikut:

- 1. Melakukan observasi dari gedung Puspem Badung untuk mengetahui konsidi gedung, letak geografis lokasi penelitian, serta mengumpulkan data-data yang diperlukan untuk menunjang penelitian.
- 2. Menghitung luas atap sisi utara, timur, selatan, dan barat dari masing-masing gedung dengan menggunakan *Google Earth*.
- 3. Menentukan banyaknya modul surya yang dapat dipasang di atap gedung.
- 4. Menghitung potensi daya berdasarkan banyaknya modul surya yang dapat dipasang di atap gedung.
- 5. Melakukan simulasi dengan menggunakan SAM untuk menentukan produksi energi dari PLTS.

- 6. Produksi energi yang dihasilkan nantinya dibandingkan dengan energi yang diperlukan Puspem untuk menentukan besarnya energi yang dapat disuplai oleh PLTS.
- 7. Menentukan pendapatan yang dihasilkan oleh Pemerintah Kabupaten Badung jika kelebihan energi PLTS dijual ke PLN.

4. HASIL DAN PEMBAHASAN

4.1 Gambaran Umum Puspem Badung

Pusat Pemerintahan Kabupaten Badung (Puspem Badung) merupakan sebuah kompleks gedung pemerintah milik Kabupaten Badung Pemerintah terletak di Kelurahan Sempidi, Kecamatan Menawi. Kabupaten Badung. Puspem Badung terletak pada koordinat 08°14'17"-08⁰50'57" Lintang Selatan (LS) 115⁰05'02"-115⁰15'09" Bujur Timur (BT). Gedung Puspem Badung mulai dibangun pada tahun 2007. Pembangunan ini bertujuan mengantikan gedung Puspem untuk Badung Dharma Praja yang terbakar akibat kerusuhan pada tahun 1999. Pembangunan dilakukan dalam tiga tahap. Yaitu tahap pertama pada tahun 2007, tahap kedua pada tahun 2008, dan tahap ketiga pada tahun 2009. Peresmian gedung ini dilakukan pada tahun 2010 oleh Menteri Dalam Negeri Gamawan Fauzi [7]. Puspem Badung berdiri di atas lahan seluas 46,6 ha, di mana di areal Puspem badung sendiri terdapat 18 gedung. Masing-masing gedung diisi oleh Organisasi Perangkat Daerah (OPD), di mana setiap gedung diisi oleh 1 hingga 3 OPD.

Gambar 1. Pusat Pemerintahan Kabupaten Badung

4.2 Sistem Kelistrikan Puspem Badung

Daya listrik yang digunakan di gedung Puspem Badung berasal dari dua sumber, yaitu PLN dan genset. Daya listrik dari PLN akan MVMDP dan akan menuju trafo. Selanjutnya, aliran listrik dari trafo dan genset akan disalurkan menuju LVMDP dan kemudian disalurkan ke masingmasing SDP. Dari SDP kemudian disalurkan ke masing-masing beban.

Gambar 2. Sistem Kelistrikan Puspem Badung

Konsumsi energi Puspem Badung selama tahun 2016 dapat dilihat pada tabel 1.

Tabel 1. Konsumsi Energi Puspem Badung Tahun 2016

Talluli 2010		
Bulan	Konsumsi Energi Puspem Badung	
Bulan	(kWh)	
Januari	454.365,77	
Februari	349.666,03	
Maret	405.879,72	
April	426.282,03	
Mei	440.815,39	
Juni	402.398,06	
Juli	339.521,03	
Agustus	384.874,28	
September	347.784,91	
Oktober	467.816,15	
November	478.186,24	
Desember	448.825,48	
Total	4.946.415,09	

Gambar 3. Grafik Konsumsi Energi Puspem Badung Tahun 2016

Dari tabel 1, dapat dilihat bahwa konsumsi energi Puspem dalam setahun sebesar 4.964.415,09 kWh. Konsumsi energi terbesar terjadi pada bulan November sebesar dengan konsumsi energi 478.186,24 kWh, sedangkan produksi energi terendah terjadi pada bulan Juli dengan konsumsi energi sebesar 339.521,03 kwh.

4.3 Luas Atap Gedung Puspem Badung

Untuk mengetahui potensi dari daya listrik yang mampu dihasilkan atap gedung Puspem Badung, langkah pertama yang dilakukan adalah mencari luas atap gedung dari tiap gedung yang ada di Puspem Badung. Seperti yang sudah dijelaskan sebelumya bahwa terdapat 18 gedung di Puspem Badung, sehingga masing-masing gedung dihitung luas atapnya. Keempat sisi dari atap gedung, yaitu sisi utara, sisi timur, sisi barat, dan sisi selatan dihitung luasnya. Hal ini dikarenakan masing-masing sisi atap gedung menghadap ke sudut azimuth vana berbeda. Luas atap dicari menggunakan Google Earth dan hasilnya dapat dilihat pada tabel 2 dan 3.

Tabel 2. Luas Atap Gedung Puspem Badung Sisi Utara dan Timur

Badang Clor Ctara dan Timai			
Unit/Dinas	Luas Atap Tiap Sisi (m2)		
CintiDinas	Utara	Timur	
Unit 5	1.310,50	1.003,00	
Unit 8	1.035,02	1.082,08	
Unit 9	818,11	645,57	
Unit 10	465	399	
Unit 11	759	493,3	
Unit 12	825,25	633,25	
Unit 14	1.104,66	646,08	
Unit 15	465	399	
Unit 16	759	495	
Unit 17	825,25	633,25	
Unit 25	448,1	431,66	
Unit 31	651,27	649,04	
Koperasi	299,42	97,07	
Perpustakaan	196,57	221,5	
Kantin	204,77	39,13	
Dinas	281,84	320,92	
Kearsipan	201,04	320,92	
Depo Arsip	284,94	256,2	
Dinas	146,26	57,23	
Pemadam	140,20	31,23	
Total	10.879,95	8.502,29	

Tabel 3. Luas Atap Gedung Puspem Badung Sisi Barat dan Selatan

Badding Olsi Barat dan Ociatan			
Unit/Dinas	Luas Atap Tiap Sisi (m2)		
UllivDillas	Barat	Selatan	
Unit 5	1.003,00	1.310,50	
Unit 8	1.082,12	1.035,87	
Unit 9	663,95	818,08	
Unit 10	399	465	
Unit 11	493,3	759	
Unit 12	633,25	825,25	

Unit 14	646,08	1.104,66
Unit 15	399	465
Unit 16	495	759
Unit 17	633,26	825,24
Unit 25	431,66	448,1
Unit 31	649,04	651,27
Koperasi	97,07	299,42
Perpustakaan	221,5	196,57
Kantin	39,13	204,77
Dinas Kearsipan	320,92	281,84
Depo Arsip	256,2	284,94
Dinas Pemadam	78,28	146,26
Total	8.541,77	10.880,76

Pada tabel 2 dan 3, dapat dilihat bahwa sisi terluas adalah sisi selatan dengan luas sebesar 10.880,76 m². Sedangkan sisi timur memiliki luas terkecil dengan luas sebesar 8.502,29 m².

4.4 Perancangan PLTS

Untuk melakukan simulasi produksi energi dengan menggunakan SAM, diperlukan input dari dua komponen PLTS, yaitu modul surya dan inverter. SAM menyediakan database modul surya dan inverter dari berbagai produsen untuk dipilih oleh pengguna dalam melakukan simulasi.

Dalam pemilihan modul surya, ada dua faktor yang diperhatikan. Yang pertama adalah ketersediaan modul surya di Indonesia dan yang kedua adalah adanya data modul surya tersebut dalam database SAM. Modul surya yang mampu memenuhi kedua kriteria tersebut adalah modul surya Canadian Solar Maxpower CS6U-340M yang diproduksi oleh Canadian Solar. Spesifikasinya dapat dilihat pada tabel 4.

Sedangkan dalam pemilihan inverter, selain memperhatkan ketersediaan barang di Indonesia dan adanya data inverter tersebut dalam database SAM, inverter yang dipilih harus memiliki kapasitas kerja yang mendekati output PLTS. Untuk inverter yang digunakan dalam simulasi ini adalah SUNNY TRIPOWER 24000TL yang dibuat oleh SMA America. Untuk spesifikasinya dapat dilihat pada tabel 5.

Tabel 4. Spesifikasi Modul Surya Canadian Solar Maxpower CS6U-340M

Colai Maxponol Coco o lom		
Standard Test Condition (STC)		
Electrical Data		
Pmax	340 W	
Vmp	37,9 V	
Imp	8,97 A	

Voc	46,2 V
Isc	9,48 A
Modul Efficiency	17,49%
Operating Temperature	-40° C $\sim +85^{\circ}$ C
Power Tolerance	0 ~ + 5 W
Max. System Voltage	1000 V
Mechan	ical Data
Cell Type	Mono-crystalline, 6 inch
Cell Arrangement	72 (6x12)
Dimensions	1960 x 992 x 40 mm
Weight	22,4 kg (49,4 lbs)
Temperature (Characteristics
Pmax	-0,41 %/°C
Voc	-0,31 %/°C
Isc	0,05 %/°C
NMOT	$43 \pm 2^{0} \text{ C}$

Tabel 5. Spesifikasi Inverter Sunny Tripower 24000TL

Technical Data	24000TL
Input (DC)	
Max. usable DC power (@ $\cos \phi =$	24500 W
1)	24300 W
Max. DC voltage	1000 V
Rated MPPT voltage range	450 V to 800 V
MDDT anausting valtage songs	150 V to 1000
MPPT operating voltage range	V
Number of MPP tracker inputs	2
Max. input current / per MPP	66 A / 33 A
tracker input	00 A / 33 A
Output (AC)	
AC nominal power	24000 W
Max. AC apparent power	24000 VA
Output phases / line connections	3 / 3-N-PE
Nominal AC voltage	480 / 277 V
Nominal AC voltage	WYE
AC voltage range	244 V to 305 V
AC grid frequency / range	50 Hz, 60 Hz
Max. output current	29 A
Harmonics	< 3%
Max. efficiency / CEC efficiency	98.5% / 98.0%
Dimensions (W / H / D) in mm	665 / 650 / 265
Weight	55g (121 lbs)

Modul surya akan disusun secara seri dan paralel, sebelum kemudian dihubungkan ke inverter. Untuk skematik dari PLTS dapat dilihat pada gambar 4.

Gambar 4. Skematik PLTS

4.5 Menentukan Jumlah Modul Surya

Setelah mengetahui luas atap untuk keempat sisi dari seluruh gedung di Puspem Badung dan juga menentukan modul surva serta inverter yang akan digunakan, langkah selanjutnya adalah menentukan banyaknya modul surya yang dapat dipasang di atap gedung Puspem Badung. Untuk mengetahui banyaknya modul surya yang dapat dipasang di atap gedung Puspem Badung, disimulasikan dengan menggunakan AutoCAD. Hal ini dikarenakan tiap gedung memiliki bentuk vang berbeda-beda, di mana terdapat sisi yang memiliki bentuk berupa segitiga, jajaran genjang, maupun trapesium, sehingga saat modul surya yang berbentuk dipasang, persegi panjang menyisakan ruang kosong. Salah satu bentuk atap gedung yang terdapat di Puspem Badung dapat dilihat pada gambar 5. Sedangkan untuk jumlah modul surya yang dapat dipasang di atap gedung Puspem Badung dapat dilihat pada tabel 6.

Gambar 5. Atap Gedung Unit 8

Tabel 6. Jumlah Modul yang Dapat dipasang pada Atap Gedung Puspem Badung

		Jumlah Modul Yang Dapat			
	Unit/Dinas	Dipasang			
		Utara	Timur	Barat	Selatan
	Unit 5	525	365	397	525

Unit 8	277	307	307	277
Unit 9	234	181	196	224
Unit 10	162	146	146	168
Unit 11	287	167	166	284
Unit 12	328	253	252	328
Unit 14	389	186	207	399
Unit 15	166	140	140	166
Unit 16	291	176	176	291
Unit 17	326	241	254	326
Unit 25	167	153	153	167
Unit 31	268	268	268	268
Koperasi	116	36	36	116
Perpustakaan	68	76	76	68
Kantin	64	10	10	64
Dinas Kearsipan	74	110	110	74
Depo Arsip	93	87	87	93
Dinas Pemadam	46	22	18	46
Total	3.881	2.924	2.999	3.884

Berdasarkan tabel 6, dapat dilihat bahwa sisi selatan dari atap gedung dapat dipasangi modul surya paling banyak, yaitu sebanyak 3.884 modul surya. Sedangkan sisi timur dari atap gedung dapat dipasangi modul surya paling sedikit, yaitu sebanyak 2.924 modul surya.

Jumlah modul surya yang dapat dipasang di atap gedung Puspem Badung pada tabel 6 selanjutnya digunakan untuk menentukan potensi daya listrik dari masing-masing atap gedung. Untuk mencari potensi energi dari tiap-tiap gedung, dapat dilakukan dengan persamaan sebagai berikut:

$$Total \ Daya = Jumlah \ Modul \ x \ Pmax \tag{1}$$

Pmax modul berdasarkan dari modul surya yang digunakan. Pada penelitian ini, modul surya yang digunakan adalah Canadian Solar Maxpower CS6U-340M. Sesuai data pada tabel 4, modul surya yang digunakan memiliki Pmax sebesar 340 W. Sedangkan untuk jumlah modul, data yang digunakan adalah data pada tabel 6.

Dengan menggunakan persamaan (1), maka didapatkan total daya untuk sisi utara dan sisi timur dari atap gedung Puspem Badung, yang hasilnya dapat dilihat pada tabel 7.

Tabel 7. Potensi Daya Puspem Badung Sisi Utara dan Timur

Unit/Dinas	Total Daya (Wp)		
Unit/Dinas	Utara	Timur	

Unit 5	178.500	124.100
Unit 8	94.180	104.380
Unit 9	79.560	61.540
Unit 10	55.080	49.640
Unit 11	97.580	56.780
Unit 12	111.520	86.020
Unit 14	132.260	63.240
Unit 15	56.440	47.600
Unit 16	98.940	59.840
Unit 17	110.840	81.940
Unit 25	56.780	52.020
Unit 31	91.120	91.120
Koperasi	39.440	12.240
Perpustakaan	23.120	25.840
Kantin	21.760	3.400
Kearsipan	25.160	37.400
Depo Arsip	31.620	29.580
Pemadam	15.640	7.480
Total	1.319.540	994.160

Dari tabel 7, dapat dilihat bahwa sisi utara memiliki potensi daya sebesar 1.319.540 Wp, sedangkan sisi timur memiliki potensi daya sebesar 994.160 Wp. Sisi utara memiliki potensi daya yang lebih besar karena mampu dipasangi modul surya lebih banyak dibandingkan sisi Timur, sesuai yang terdapat pada tabel 6.

Sedangkan untuk potensi daya pada sisi barat dan sisi selatan dari atap gedung Puspem Badung juga dicari dengan menggunakan cara yang sama seperti tabel 7. Untuk hasilnya dapat dilihat pada tabel 8.

Tabel 8. Potensi Daya Puspem Badung Sisi Barat dan Selatan

Unit/Dinas	Total Daya (Wp)		
UllivDillas	Barat	Selatan	
Unit 5	134.980	178.500	
Unit 8	104.380	94.180	
Unit 9	66.640	76.160	
Unit 10	49.640	57.120	
Unit 11	56.440	96.560	
Unit 12	85.680	111.520	
Unit 14	70.380	135.660	
Unit 15	47.600	56.440	
Unit 16	59.840	98.940	
Unit 17	86.360	110.840	
Unit 25	52.020	56.780	
Unit 31	91.120	91.120	
Koperasi	12.240	39.440	
Perpustakaan	25.840	23.120	
Kantin	3.400	21.760	
Kearsipan	37.400	25.160	
Depo Arsip	29.580	31.620	
Pemadam	6.120	15.640	
Total	1.019.660	1.320.560	

Dari tabel 8 dapat dilihat bahwa sisi selatan memiliki potensi daya sebesar 1.320. 560 Wp, sedangkan sisi barat memiliki potensi daya sebesar 1.019.660 Wp. Dari tabel 7 dan tabel 8 dapat dilihat bahwa sisi selatan memiliki potensi daya terbesar dibandingkan sisi lainnya. Hal ini sesuai dengan tabel 6, di mana sisi selatan merupakan sisi yang paling banyak dapat dipasangi modul surya. Sedangkan sisi timur merupakan sisi dengan potensi energi terendah, hal ini disebabkan karena jumlah modul surya yang dapat dipasang di sisi timur lebih rendah dibandingkan dengan sisi lainnya.

4.6 Simulasi Produksi Energi PLTS Pada Atap Gedung Puspem Badung

Simulasi produksi energi Puspem Badung dilakukan dengan menggunakan SAM. Pada SAM dapat diketahui potensi energi surya dari Puspem Badung. Potensi energi surya Puspem Badung dapat dilihat pada tabel 9 dan gambar 6.

Tabel 9. Potensi Energi Surya Puspem Badung

Badding		
Bulan	Potensi Energi (kWh/bulan)	
Januari	125.749	
Februari	116.782	
Maret	146.596	
April	150.035	
Mei	169.742	
Juni	186.946	
Juli	181.646	
Agustus	186.262	
September	140.411	
Oktober	151.834	
November	148.301	
Desember	107.512	

Gambar 6. Potensi Energi Surya Puspem Badung

Untuk melakukan simulasi produksi energi dari PLTS yang dipasang di atap gedung Puspem Badung dengan menggunakan SAM, tahapan yang dilakukan adalah sebagai berikut:

- Memilih model simulasi yang akan digunakan, dalam penelitian ini, model yang akan digunakan adalah No Financial Model. Setelahnya diperlukan beberapa input. Yang pertama adalah input mengenai pemasangan PLTS. Lokasi lokasi pemasangan PLTS adalah Puspem Badung yang terletak di -8.603073 LS, 115.178591 BT. Untuk wilayah Indonesia, data cuaca dapat di-download pada situs PVGis.
- 2. Melakukan pemilihan modul surya yang akan digunakan. Seperti pada tabel 4, modul surya yang akan digunakan adalah Canadian Solar MAXPOWER CS6U-340M.
- 3. Melakukan pemilihan inverter. Inverter yang akan digunakan adalah Sunny Tripower 24000TL dengan spesifikasi yang dapat dilihat pada tabel 5.
- 4. Pada *System Sizing*, input untuk kapasitas PLTS yang digunakan akan diisi sesuai tabel IV. Untuk sudut kemiringan, diisi dengan 35°, sesuai dengan sudut kemiringan atap gedung. Sedangkan untuk sudut azimuth, untuk sisi utara diisi dengan 12°, untuk sisi timur diisi dengan 102°, untuk sisi selatan diisi dengan 192°, dan untuk sudut 282°.
- 5. Untuk *shading* diisi dengan nilai 0, karena dalam penelitian ini, nilai *shading* diabaikan. Sedangkan untuk *losses*, dibiarkan inputan *default* dari SAM [8]. Hasil simulasi dapat dilihat pada tabel 10 dan 11.

Tabel 10. Hasil Simulasi PLTS *Rooftop* Puspem Badung Sisi Utara dan Timur

Unit	Utara (kWh/	Timur (kWh/
	tahun)	tahun)
Unit 5	253.451	146.849
Unit 8	134.383	127.239
Unit 9	110.923	73.424
Unit 10	79.223	60.276
Unit 11	134.383	66.914
Unit 12	158.445	100.371
Unit 14	190.147	73.424
Unit 15	79.223	53.570
Unit 16	141.459	73.424
Unit 17	158.445	100.371
Unit 25	79.223	60.276
Unit 31	126.725	106.901
Koperasi	53.065	13.332

Perpustakaan	29.624	26.785
Kantin	31.541	6.552
Dinas Kearsipan	31.694	39.850
Depo Arsip	39.611	33.457
Dinas Pemadam	15.796	6.582
Rata-Rata	102.631	64.978
Total	1.847.361	1.169.597

Tabel 11. Hasil Simulasi PLTS *Rooftop* Puspem Badung Sisi Barat dan Selatan

	arig Cioi Bara	
Unit	Barat (kWh/	Selatan (kWh/
	tahun)	tahun)
Unit 5	207.185	220.821
Unit 8	164.026	117.209
Unit 9	101.898	96.620
Unit 10	77.704	69.014
Unit 11	86.318	117.209
Unit 12	129.447	138.028
Unit 14	101.898	165.635
Unit 15	69.078	69.014
Unit 16	94.713	123.784
Unit 17	129.447	138.028
Unit 25	77.704	69.014
Unit 31	138.001	110.410
Koperasi	17.226	47.077
Perpustakaan	34.539	27.600
Kantin	7.519	27.481
Dinas	50.949	27.600
Kearsipan	30.949	27.000
Depo Arsip	43.159	34.507
Dinas Pemadam	8.533	13.739
Rata-Rata	85.519	89.599
Total	1.539.344	1.612.790

Dari tabel 10 dan 11 dapat dilihat bahwa berdasarkan hasil simulasi, sisi utara merupakan sisi yang mampu memproduksi energi listrik terbesar, yaitu sebesar 1.847.361 kWh/tahun. Hal ini dikarenakan Pulau Bali terletak di sebelah selatan garis khatulistiwa, sehingga matahari berada di utara. Hal menyebabkan sinar matahari yang diterima PLTS yang dipasang pada sisi utara atap gedung menerima sinar matahari lebih banyak dibandingkan sisi lainnya.

4.7 Energi Yang Dapat Disuplai Oleh PLTS

Pada tabel 1 dapat dilihat bahwa total konsumsi energi dari Puspem Badung selama setahun sebesar 4.964.415,09 kWh. Untuk mengetahui seberapa besar persentase energi listrik yang dapat disuplai oleh PLTS berdasarkan hasil simulasi pada tabel 10 dan 11 terhadap total konsumsi energi listrik Puspem Badung pada tabel 1, dapat dilihat pada tabel 12.

Tabel 12. Persentase Energi Yang Dapat Disuplai Oleh PLTS

Sisi	Energi (kWh/tahun)	Persentase (%)
Utara	1.847.361	37,35
Timur	1.169.597	23,65
Barat	1.539.344	31,12
Selatan	1.612.790	32,61
Total	6.169.092	124,72

Dari tabel 12, dapat dilihat bahwa sisi utara mampu menyuplai energi listrik terbesar, yaitu sebesar 37,35 %, sedangkan sisi merupakan sisi menjadi yang timur terendah karena hanya mampu menyuplai energi sebesar 23,65 %. Total energi yang dapat disuplai oleh PLTS yang dipasang di sisi utara, timur, barat, dan selatan atap gedung Puspem Badung sebesar 6.169.092 kWh/tahun. Jumlah ini mampu menyuplai kebutuhan energi listrik Puspem Badung sebesar 124,72% dari total energi listrik yang dikonsumsi Puspem Badung.

Dari tabel 12 dapat dilihat bahwa energi yang diproduksi oleh PLTS lebih banyak dari yang diperlukan oleh Puspem Badung. Kelebihan energi ini dapat dijual ke PLN yang nantinya dapat menjadi pemasukan bagi Kabupaten Badung. Berdasarkan Peraturan Menteri ESDM Nomor 12 Tahun 2017 dan Keputusan Menteri ESDM Nomor 1772 Tahun 2018, Biaya Pokok Penyediaan Pembangkitan (BPP Pembangkitan) di Bali sebesar Rp 911/kWh [9],[10]. Kelebihan energi serta besarnya pendapatan Puspem Badung jika menjual listrik hasil PLTS ke PLN dapat dilihat pada tabel 13.

Tabel 13. Kelebihan Energi yang dihasilkan PLTS Rooftop Puspem Badung

. E. C. Roonop . dopon: Badang		
Bulan	Kelebihan Energi (kWh)	Pendapatan (Rp)
Januari	114.733,10	104.521.855
Februari	133.066,78	121.223.832
Maret	126.816,45	115.529.782,30
April	51.177,05	46.622.296,19
Mei	59.837,53	54.511.990,74
Juni	117.868,10	107.377.836,40
Juli	185.412,45	168.910.740,10

Agustus	195.388,78	177.999.174,90
September	138.001,12	125.719.016,70
Oktober	138.604,35	126.268.561,90
November	159.425,10	145.236.269,70
Desember	31.486,60	28.684.295,33
Total	1.451.817,40	1.322.605.651

Dari tabel 13 dapat dilihat bahwa kelebihan energi yang dihasilkan oleh PLTS sebesar 1.451.817,40 kWh/tahun. Jika kelebihan energi tersebut dijual ke PLN, maka pemerintah Kabupaten Badung mendapatkan pemasukan sebesar 1,3 miliar Rupiah/tahun.

5. KESIMPULAN

Berdasarkan hasil pengukuran dengan menggunakan Google Earth, total luas atap Puspem Badung sebesar gedung 38.804,77 m2. Di mana, dari luas atap tersebut, jumlah modul surya yang mampu dipasang sebanyak 13.688 buah modul Sehingga, berdasarkan jumlah modul yang dapat dipasang di atap gedung, Puspem Badung memiliki potensi daya sebesar 4.653.920 kW. Sisi selatan dari atap gedung memiliki potensi daya terbesar, yaitu sebesar 1.320.560 kW. Hal ini disebabkan karena sisi selatan memiliki luas atap terluas, sehingga mampu dipasangi modul surya lebih banyak dibandingkan sisi lainnya.

Berdasarkan hasil simulasi menggunakan SAM, didapatkan bahwa PLTS yang dipasang di sisi utara atap gedung mampu menghasilkan energi listrik sebesar 1.847.361 terbesar, yaitu kWh/tahun. Sisi utara mampu menghasilkan energi listrik terbesar karena Pulau Bali terletak di sisi selatan khatulistiwa, sehingga posisi matahari berada di sisi utara khatulistiwa. Hal ini menyebabkan sinar matahari yang diterima oleh PLTS yang dipasang di sisi utara lebih besar dibandingkan dengan sisi lainnya.

PLTS yang dipasang di seluruh sisi atap gedung Puspem Badung mampu menghasilkan energi sebesar 6.169.092 kWh/tahun. Jumlah ini mampu menyuplai kebutuhan energi Puspem Badung sebanyak 124,72 %. Kelebihan energi yang dihasilkan oleh PLTS sebesar 1.451.817.40 kWh/tahun, dan jika kelebihan energi tersebut dijual, maka pemerintah Kabupaten Badung akan mendapatkan pemasukan sebesar 1,3 miliar Rupiah/tahun.

6. DAFTAR PUSTAKA

- [1] Peraturan Pemerintah Republik Indonesia No. 79 Tahun 2014 Tentang Kebijakan Energi Nasional (KEN).
- [2] Kementerian Energi dan Sumber Daya Mineral. Rencana Usaha Penyediaan Tenaga Listrik PT. Perusahaan Listrik Negara (Persero) Tahun 2017 s.d. 2026, 2017.
- [3] I N. S. Kumara, W. G. Ariastina, W. Sukerayasa, I. A. D. Giriantari. "On the potential and progress of renewable electricity generation in Bali". 2014 6th International Conference on Information Technology and Electrical Engineering (ICITEE). 2014.
- [4] A. Rahardjo, Herlina, H. Safruddin. "Optimalisasi Pemanfaatan Sel Surya Pada Bangunan Komersial Secara Terintegrasi Sebagai Bangunan Hemat Energi". Prosiding Seminar Nasional Sains dan Teknologi-II. 2008: 56-65.
- [5] BPS Kabupaten Badung. "Kabupaten Badung Dalam Angka 2017". Badung: BPS Kabupaten Badung. 2017.
- [6] Asian Developmet Bank. "Handbook for Solar Development in Asia". Manila: Asian Development Bank. 2014.
- [7] I G. M. Raharja. "Simulasi Desain dengan Citra Kronoskopi Gedung Pusat Pemerintahan Kabupaten Badung Sebuah Pembuktian Teori Dekonstruksi Derrida". *Jurnal Seni Budaya Mudra .2015. Vol. 30, No. 2*:: 153-164.
- [8] P.A. Sujana, I N. S. Kumara, I. A. D. Giriantari. "Pengaruh Kebersihan Modul Surya Terhadap Unjuk Kerja PLTS". *E-Journal SPEKTRUM. 2015. Vol. 2, No. 3.*: 49-54.
- [9] Peraturan Menteri ESDM No. 12 Tahun 2017 Tentang Pemanfaatan Sumber Energi Terbarukan Untuk Penyediaan Tenaga Listrik.
- [10] Keputusan Menteri ESDM Nomor 1772 K/20/MEM/2018 Tentang Besaran Biaya Pokok Penyediaan Pembangkitan PT Perusahaan Listrik Negara (Persero) Tahun 2017.