Due: Friday, October 16, 2015

Print your **name** and **NetID** legibly. Follow the guidelines and format given in the syllabus. Staple multiple pages. Show all units. Homework must be turned in at the **beginning** of class and any late homework assignments will not be accepted. Please contact the course director, Professor Dallesasse, should any issues with late homework arise.

1. DIFFUSION IN P-TYPE SILICON

In a very long p-type Si bar with cross sectional area, $A = 5 cm^2$, and $Na = 1E17 cm^{-3}$, holes are injected such that the steady state excess hole concentration is $5E16 cm^{-3}$ at x = 0. T = 300K in this problem.

- (A). Given $\mu_p = 500 \, cm^2/V s$ and $\tau_p = 1E 10 \, s$, calculate the diffusion coefficient and diffusion length of this Si sample.
- (B). Write down an expression for excess hole with respect to position and draw it with labels such as Δp and L_p . With the aid of the sketch, derive an expression for the excess stored hole charge, Q_p and calculate Q_p .
- (C). What is the maximum hole diffusion current and at which position does it take place?
- (D). Calculate the steady state separation between E_c and E_{fp} at x = 1E 5 cm.

2. Doping gradient and energy band bending

- (A). An intrinsic Si sample of length $L = 5x_0$ is doped with donors from one side such that $N_d(x) = N_0 exp(-x/x_0)$, where $N_0 \gg n_i$ and x_0 is an arbitrary unit length. Sketch the equilibrium band diagram in the range, $0 \le x \le L$, and indicate the direction of resulting electric field. Also, is the electric field uniform?
- (B). Repeat for acceptor doping with $N_a(x) = P_0 exp(-x/x_0)$, where $P_0 \gg n_i$. Is the electric field uniform?
- (C). Repeat for $N_d(x) = -(N_0/5)(x/x_0) + N_0$ and $N_a(x) = -(P_0/5)(x/x_0) + P_0$. Is the electric field uniform?
- (D). Please summarize: does linear doping profile produce uniform electric field? Why or why not?

3. The diffusion equation

An n-type silicon sample doped with $N_d=2E17\,cm^{-3}$ is in steady state with an excess hole concentration $\Delta p=7E15\,cm^{-3}$ injected at x=0. Assume the sample has a circular cross section with a diameter of $50\,\mu m$ and that $\mu_p=600\,cm^2/V-s$ and $\tau_p=2E-10\,s$.

(A). What is the hole concentration at a distance of $L_p/2$ into the semiconductor? A distance of $10L_p$?

- (B). What is the hole current at each of the distances in part (b)?
- (C). Starting from Eqn. 4-33b, derive an expression for $\Delta p_n(x)$ if the n-type silicon sample is of length L under steady state conditions assuming generation-recombination is negligible in the semiconductor and using the boundary conditions $\Delta p_n(0) = \Delta p_n$ and $\Delta p_n(L) = 0$. Rememer Δp_n stands for excess hole concentration in the n-region.
- (C). Qualitatively speaking, for what lengths of semiconductor is this approximation (negligible generation-recombination) valid? Justify your answer given what you know about diffusion and generation-recombination processes within semiconductors.

4. More on doping profile and electric field

A bar of silicon has a donor doping profile of $n(x) = N_0 exp(-ax^2)$ where a is a constant. The doping level is high enough such that at any point the electron concentration n = n(x).

- (A). Derive an expressing for the built-in electric field as a function of x.
- (B). If $a = 9E7 \, cm^{-2}$, determine the position at which the electric field is $10^4 \, V/cm$.
- (C). Why is the electric field zero at x = 0?