A-Level Mathe

Shao Hong

Contents

1	A1:	Inequalities and Equations
	1.1	Solving Inequalities
		1.1.1 Rational Inequalities
	1.2	Modulus Inequalities
2	B1(.	A): Graphing Techniques (Part I)

A1: Inequalities and Equations

1.1 Solving Inequalities

1.1.1 Rational Inequalities

General Methods

- 1. Quadratic formula for factorisation / finding roots (of polynomial).
- 2. Completing the square.
- 3. Discriminant to eliminate factors which are always positive or negative (e.g. removing $x^2 3x + 4$). Note to include coefficient of x^2 in argument.
- 4. GC (include sketch).
- 5. Rational Functions^a: Move everything to one side (+,-), then use number line.
- 6. Number line (more complicated functions).

Important Notes

- \Box Discriminant include coefficient of x^2 in argument.
- □ Rational functions exclude the values that causes division by zero to occur.
- \Box Cross multiplication preserves order for $\frac{x}{y} < \frac{x'}{y'}$ iff y and y' are both positive or negative.
- \Box Squaring preserves order for x < y iff x and y are both positive or negative.

1.2 Modulus Inequalities

Fact. Given $x \in \mathbb{R}$, we have that

- $|x| \geq 0$,
- $|x^2| = |x|^2 = x^2$,
- $\sqrt{x^2} = |x|$.

And as long as $x \in \mathbb{R}^+$,

$$\bullet \ \sqrt{x}^2 = |x|.$$

Useful Properties

For every $x, k \in \mathbb{R}$:

(a)
$$|x| < k$$
 iff^a $-k < x < k$.

(b)
$$|x| > k$$
 iff $x < -k$ or $x > k$.

(of course, similarly applies for the non-strict ordering $\leq)$

^aFractions of Polynomials

^aOtherwise, note the counterexample $\frac{1}{2} < \frac{1}{-3}$.

^aNotice that k > 0 here since $0 \le |x| < k$.

Important Notes

• Note that when solving for |x| = y, |x| < y, etc, y must be greater than or equal to 0. In other words, there may be solutions we will need to reject. (For <, equality is of course not allowed.)

B1(A): Graphing Techniques (Part I)

General Definitions

- 1. **Lines of Symmetry**: A *line of symmetry* of a function is a line, such that the function is a reflection of itself about that line.
- 2. Horizontal Asymptotes: A (horizontal) line g(x) = c is the horizontal asymptote of the curve f(x) iff $\lim_{x\to\infty} f(x) = c$ (or with $-\infty$ instead of ∞).
- 3. Vertical Asymptotes: A (vertical) line x = c is a vertical asymptote of the curve f(x) iff $\lim_{x\to c} f(x) = \infty$ or $-\infty$.
- 4. **Oblique Asymptotes**: A line g(x) = mx + c where $m \neq 0$ is an *oblique asymptote* of the curve f(x) iff $\lim_{x\to\infty} [f(x)-g(x)]=0$ (or with $-\infty$ instead of ∞).

^aOtherwise notated by $f(x) \to c$ as $x \to \infty$.