课程作业 4

2023年4月24日

题目 1. 下图是一个由 NAND 门 (而不是 NOR 门) 组成的 SR 锁存器。请写出该电路的状态表,验证该电路确实可以作为一个 SR 锁存器使用。

解答. 若 RS=01, Q = 1; 若 RS=10, Q = 0; 若 RS = 11, 状态保持不变; RS=00 为不允许状态。

题目 2. 使用 D 触发器、2-1 多路复用器和反相器构建 JK 触发器。

题目 3. 考虑下面的三个电路,分别由 XOR、OR、AND 门组成。对于每一个电路,说明该电路是否具有与 SR 锁存器 (由 NOR 门组成)相同的行为,即你是否可以用它来保持、设置和重置 Q。

解答. 三个电路都不可以

题目 4. 尝试只使用 AND 门、OR 门和 NOT (反相器) 画出一个 D 触发器的电路图。

解答.

题目 5. 设计一个带有两个 D 触发器 A、B 以及一个输入 x 的时序电路。当 x=0 时,电路状态保持不变。当 x=1 时,电路经历从 00->01->11->10->00 的状态转换,重复这个过程。画出电路图并写出激励方程。

解答. 画出电路图:

Present State	Input	Nest State
AB	X	AB
00	0	00
00	1	01
01	0	01
01	1	11
10	0	10
10	1	00
11	0	11
11	1	10

化简,得:

题目 6. 用一个带使能端的 T 触发器和若干 AND、OR、NOT 门实现一个 JK 触发器,写出激励方程,并画出电路图。JK 触发器的状态转移表如下所示:

J	K	Qcurrent	Q _{next}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Step 3: derive next state logic T = JQ' + KQ

题目 7. 一个由 T 触发器和 JK 触发器组成的时序电路如下图所示 (图中输入 T 相当于课本上 T 触发器的使能端),请写出该时序电路的状态转移表

解答. 含有中间结果的状态转移表:

省略中间结果,最终的状态转移表为:

$Q_1 Q_0$	T	$Q_1(t+1)$	J	K	$Q_0(t+1)$
00	0	0	0	1	0
00	1	1	0	1	0
01	0	0	0	1	0
01	1	1	0	1	0
10	0	1	1	1	1
10	1	0	1	1	1
11	0	1	0	0	1
11	1	0	0	0	1

Q ₁ Q ₀	Next	sate	Output (y)	
	X=0	X=1	X=0	X=1
00	00	10	0	0
01	00	10	1	1
10	11	01	1	1
11	11	01	1	1

题目 8. 一个时序电路的状态转移表如下所示, 其中 x 为输入, y 为输出:

X	Q1(t)	Q0(t)	Q1(t+1)	Q0(t+1)	у
0	0	0	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	1
1	0	0	1	0	1
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	0	1	1

请写出该时序电路的状态转移方程和输出方程

解答.

$$Q_1(t+1) = Q_0(t) \oplus x(t)$$

$$Q_0(t+1) = Q_1(t)\overline{x(t)} + Q_0(t)x(t)$$

$$y(t) = Q_0(t) + \overline{Q_1(t)}$$

题目 9. 试分析下图所示时序电路的逻辑功能,写出电路的激励方程,状态转移方程和输出方程,画出电路的状态转换图,检查电路能否自启动.

解答.

解:从电路图写出驱动方程为

$$\begin{cases} D_0 = (Q_0 + Q_1)' \oplus (Q_1 \oplus Q_2) = Q_0' Q_2' + Q_0 Q_1' Q_2 + Q_1 Q_2' \\ D_1 = Q_0 \\ D_2 = Q_1 \end{cases}$$

将上述驱动方程代入 D 触发器的特性方程,得到状态方程

$$\begin{cases} Q_0^* = Q_0' Q_2' + Q_0 Q_1' Q_2 + Q_1 Q_2' \\ Q_1^* = Q_0 \\ Q_2^* = Q_1 \end{cases}$$

输出方程为

$$Y = Q_0 Q_1' Q_2'$$

根据得到的状态方程和输出方程,即可画出电路的状态转换图,如图 A6.4 所示。当电路进入无效状态($Q_0Q_1Q_2=111$)后,在时钟信号作用下能自行进入有效循环,所以电路能自启动。

题目 10. 试分析下图的时序电路,写出激励方程和状态转移表,说明该电路能实现什么功能

解:由给出的逻辑图得到电路的驱动方程组为

$$\begin{cases} D_1 = AQ_2Q_3 \\ D_2 = Q_2 \oplus Q_3 \\ D_3 = Q_1'Q_3' \end{cases}$$
 (6-3-1)

将上式代人 D 触发器的特性方程后得到

$$\begin{cases} Q_1^* = AQ_2Q_3 \\ Q_2^* = Q_2 \oplus Q_3 \\ Q_3^* = Q_1'Q_3' \end{cases}$$
 (6-3-2)

由图写出输出方程为

$$Y = AQ_1 + A'Q_2Q_3 \tag{6-3-3}$$

根据式(6-3-2)和式(6-3-3)分别计算出当 A=1 和 A=0 时 $Q_1Q_2Q_3$ 的次态 $Q_1^*Q_2^*Q_3^*$ 和现态下的输出 Y,然后列表,就得到了表 6-3-1 的状态转换表。将状态转换表的内容画成状态转换图,就得到了图 6-3-2 的状态转换图。

 $Q_{1}Q_{2}Q_{3}$ Q; Q; Q; /Y 000 001 010 011 100 101 110 111 0 001/0 010/0 011/0 000/1 000/0 010/0 010/0 000/1 001/0 1 010/0 011/0 100/0 000/1 010/1 010/1 100/1

表 6-3-1 例 6-3-1 电路的状态转换表

从状态转换图可以看出, 当 A=1 时, 图 6-3-1 电路可作为五进制计数器用; 而当 A=0 时, 该 电路可作为四进制计数器使用。而且, 无论在 A=1 还是在 A=0 状态下, 这个电路都能自启动 (即在时钟信号操作下自动进入有效循环中去)。

题目 11. 下图展示了一个移位寄存器型计数器。画出电路的状态转换图, 说明这是几进制计数器, 能否自启动

解答. 十五进制计数器,不满足自启动

题目 12. 分析下图中的时钟同步状态机。写出激励方程,激励/转移表,以及状态/输出表 (状态 Q1Q2=00-11 使用状态名 A-D)。

解:激励方程为 T1=Y T2=X'Y·Q1输出方程为 Z=X'·Q2'激励表为:

χ,	Y	T1	T2	
Q1 Q2	00	01	11	10
00	00	10	10	00
01	00	10	10	00
11	00	11	10	00
10	00	11	10	00

考虑到 T 触发器的特性方程为: $Q^* = T \cdot Q' + T' \cdot Q$ 将激励方程代入,可以得到转移方程为:

$$Q1* = Y \cdot Q1' + Y' \cdot Q1$$

$$Q2* = X' \cdot Y \cdot Q1 \cdot Q2' + (X + Y' + Q1') \cdot Q2$$

转移表为:

XXY		Q1*		
Q1 Q2	00	01	11	10
00	00	10	10	00
01	01	11	11	01
11	11	00	01	11
10	10	01	00	10

采用题中要求的状态命名,状态/输出表为:

		ΧY			
S	00	01	11	10	
Α	A,1	C,1	C,0	A,0	
В	В,0	D,0	D,0	В,0	
D	D,0	A,0	В,0	D,0	
С	C,1	B,1	A,0	C,0	
S*					

题目 13. 请使用 D 触发器和其他门电路设计一个检测电路, 当输入出现连续四个及四个以上的 1 时,输出为 1,其余情况下输出为 0。请画出状态转换图,列出状态转换方程和输出方程,并画出电路图。

解答. 状态转换图为:

状态转移方程

$$Q_1^{n+1} = AQ_1^n + AQ_0^n$$

$$Q_0^{n+1} = AQ_1^n \overline{Q_0^n}$$

输出方程 $Y = AQ_1Q_0$ 使用 D 触发器实现的电路图如下所示:

