LOOP HOMOLOGY OF QUATERNIONIC PROJECTIVE SPACES

MARTIN ČADEK, ZDENĚK MORAVEC

ABSTRACT. We determine the Batalin-Vilkovisky algebra structure of the integral loop homology of quaternionic projective spaces and octonionic projective plane.

1. Introduction

Let M be a closed oriented manifold of dimension d and let $LM = \operatorname{Map}(S^1, M)$ denote its free loop space. By loop homology we understand the homology groups of LM with the degree shifted by -d

$$\mathbb{H}_*(LM) = H_{*+d}(LM).$$

In [2] it was shown that this graded group can be equipped with a product and an operator Δ giving $\mathbb{H}_*(LM)$ the structure of a Batalin-Vilkovisky algebra. The methods computing the product on concrete manifolds are based either on the modified Serre spectral sequence derived in [4] or on the isomorphism of the loop homology of M with the Hochschild cohomology $HH^*(C^*(M); C^*(M))$ of the cochain complex as rings, [3]. There is also a way of defining a BV-structure on $HH^*(C^*(M); C^*(M))$, [11]. The BV-algebra structures on the loop homology and the Hochschild cohomology are isomorphic over the fields of characteristic zero ([5]) but not over other coefficients in general. Hence the computation of the BV operator is more subtle. So far the BV-algebra structure of the loop homology with integral coefficients has been determined for the Lie groups [7], for the spheres [9], for the complex Stiefel manifolds [10] and for the complex projective spaces [8]. Over rationals it has been described for the quaternionic projective spaces [13] and the surfaces [12].

The aim of this note is to describe the BV-algebra structure of the integral loop homology of the quaternionic projective spaces $\mathbb{H}P^n$ and the octonionic projective plane $\mathbb{O}P^2$.

Theorem 1.1. The string topology BV-algebra structure of $\mathbb{H}P^n$ is given by

$$\mathbb{H}_*(L\mathbb{H}P^n;\mathbb{Z}) \cong \frac{\mathbb{Z}[a,b,x]}{\langle a^{n+1},b^2,a^n\cdot b,(n+1)a^n\cdot x\rangle}$$

with $a \in \mathbb{H}_{-4}(L\mathbb{H}P^n; \mathbb{Z})$, $b \in \mathbb{H}_{-1}(L\mathbb{H}P^n; \mathbb{Z})$ and $x \in \mathbb{H}_{4n+2}(L\mathbb{H}P^n)$, and

$$\Delta(a^p x^q) = 0, \quad \Delta(a^p b x^q) = [(n-p) + q(n+1)]a^p x^q$$

Date: April 9, 2010.

 $2000\ Mathematics\ Subject\ Classification.\ 55P35;\ 55R20.$

Key words and phrases. Quaternionic projective space, octonionic projective plane, free loop space, integral loop homology, Batalin-Vilkovisky algebra.

This work was supported by the grant MSM0021622409 of the Czech Ministry of Education and the grant 0964/2009 of Masaryk University.

for all $0 \le p \le n$, $0 \le q$.

Let us note that for n = 1 the quaternionic projective space is S^4 and the statement agrees with the result obtain by L. Menichi in [9] for even dimensional spheres.

Theorem 1.2. There are elements $a \in \mathbb{H}_{-8}(L\mathbb{O}P^2;\mathbb{Z})$, $b \in \mathbb{H}_{-1}(L\mathbb{O}P^2;\mathbb{Z})$ and $x \in \mathbb{H}_{22}(L\mathbb{O}P^2)$ such that the string topology BV-algebra structure of $\mathbb{O}P^2$ is given by

$$\mathbb{H}_*(L\mathbb{O}P^2;\mathbb{Z}) \cong \frac{\mathbb{Z}[a,b,x]}{\langle a^3, b^2, a^2 \cdot b, 3a^n \cdot x \rangle}$$

and

$$\Delta(a^p x^q) = 0, \quad \Delta(a^p b x^q) = (2 + 3q - p)a^p x^q$$

for all $0 \le p \le 2$, $0 \le q$.

The statements of Theorem 1.1 and 1.2 concerning the ring structure are consequences of the computation of $HH^*(\mathbb{Z}[y]/y^{n+1};\mathbb{Z}[y]/y^{n+1})$ in [13] and the ring isomorhism between the loop homology and the Hochschild cohomology. Nevertheless, we provide an alternative proof using the Serre spectral sequence for the fibrations $\Omega M \to LM \to M$ converging to the ring $\mathbb{H}_*(LM;\mathbb{Z})$. These computations will be carried out in the next section.

In the last section we will show what the BV operator Δ looks like. We use the knowledge of Δ on S^4 and S^8 and the inclusions $S^4 = \mathbb{H}P^1 \hookrightarrow \mathbb{H}P^n$ and $S^8 \hookrightarrow \mathbb{O}P^2$. The computation will be completed by comparing Δ in integral homology with BV-operator Δ in rational cohomology computed by Yang in [13]. The results show that for the quaternionic projective spaces and the octonionic projective plane the BV-algebra structures on the loop homology and the Hochschild homology over integers are isomorphic (in contrast to the complex projective spaces, see [8]).

2. The ring structure of loop homology

According to [4] the spectral sequence for the fibration $\Omega M \to LM \to M$ with $E_{p,q}^2 = H^{-p}(M; H_q(\Omega M; \mathbb{Z}))$ and the product coming from the Pontryagin product in $H_*(\Omega M; \mathbb{Z})$ and the cup product in $H^*(M; H_*(\Omega M; \mathbb{Z}))$ converges to $\mathbb{H}_{p+q}(LM; \mathbb{Z})$ as an algebra. To apply this spectral sequence to $M = \mathbb{H}P^n$ we have to determine the Pontryagin ring $H_*(\Omega \mathbb{H}P^n; \mathbb{Z})$. We will consider $n \geq 2$ since for $\mathbb{H}P^1 = S^4$ the statement of Theorem 1.1 has been proved in [9].

Lemma 2.1. For $n \geq 2$ the Pontryagin ring structure of $H_*(\Omega \mathbb{H} P^n; \mathbb{Z})$ is given by

$$H_*(\Omega \mathbb{H}P^n; \mathbb{Z}) \cong \mathbb{Z}[x] \otimes \Lambda[t]$$

where the degrees of x and t are 4n + 2 and 3, respectively.

Proof. The Hopf fibration $S^3 \to S^{4n+3} \to \mathbb{H}P^n$ gives us the fibration

(2.1)
$$\Omega S^{4n+3} \xrightarrow{j} \Omega \mathbb{H} P^n \xrightarrow{p} S^3$$

Since $p_*: \pi_k(\Omega \mathbb{H} P^n) \to \pi_k(S^3)$ is an isomorphism for $0 \le k \le 6$, there is up to homotopy a unique map $i: S^3 \to \Omega \mathbb{H} P^n$ such that $p \circ i$ is homotopic to the identity

on S^3 . Therefore the long exact sequence of homotopy groups for this fibration passes to short exact sequences which split:

$$0 \longrightarrow \pi_*(\Omega S^{4n+3}) \xrightarrow{j_*} \pi_*(\Omega \mathbb{H} P^n) \xrightarrow[j_*]{p_*} \pi_*(S^3) \longrightarrow 0$$

Denote by μ the Pontryagin product on $\Omega \mathbb{H} P^n$. The map $h = \mu \circ (j, i) : \Omega S^{4n+2} \times S^3 \to \Omega \mathbb{H} P^n$ is a homotopy equivalence since it induces an isomorphism of homotopy groups. So we obtain an isomorphism of homology groups

$$H_*(\Omega \mathbb{H} P^n; \mathbb{Z}) \cong H_*(\Omega S^{4n+3}; \mathbb{Z}) \otimes H_*(S^3; \mathbb{Z}) \cong \mathbb{Z}[x] \otimes \Lambda[t].$$

The Pontryagin ring structure of $H_*(\Omega \mathbb{H} P^n; \mathbb{Z})$ can be recovered using the duality between the Hopf algebras $H_*(\Omega \mathbb{H} P^n; \mathbb{Z})$ and $H^*(\Omega \mathbb{H} P^n; \mathbb{Z})$. The map h induces an algebra isomorphism $h^*: H^*(\Omega \mathbb{H} P^n; \mathbb{Z}) \to H^*(\Omega S^{4n+3}; \mathbb{Z}) \otimes H^*(S^3; \mathbb{Z})$. We know that $H^*(\Omega \mathbb{H} P^n; \mathbb{Z})$ is a commutative associative Hopf algebra with μ^* as a coproduct. As an algebra $H^*(\Omega \mathbb{H} P^n; \mathbb{Z}) \cong \Gamma_{\mathbb{Z}}[\alpha_1, \alpha_2, \ldots] \otimes \Lambda[\beta]$, where $\Gamma_{\mathbb{Z}}[\alpha_1, \alpha_2, \ldots]$ is a divided polynomial algebra with generators α_i and relations $\alpha_i \alpha_j = \binom{i+j}{i} \alpha_{i+j}$. Since $j^*: H^*(\Omega \mathbb{H} P^n; \mathbb{Z}) \to H^*(\Omega S^{4n+3}; \mathbb{Z})$ is a homomorphism of Hopf algebras and the Hopf algebra structure of $H^*(\Omega S^{4n+3}; \mathbb{Z})$ is well known, the coproduct on $H_*(\Omega \mathbb{H} P^n; \mathbb{Z})$ is given by

$$\mu^*(\beta) = \beta \otimes 1 + 1 \otimes \beta, \quad \mu^*(\alpha_k) = \sum_{k=i+j} \alpha_i \otimes \alpha_j,$$
$$\mu^*(\alpha_k \beta) = \sum_{k=i+j} \alpha_i \beta \otimes \alpha_j + \sum_{k=i+j} \alpha_i \otimes \beta \alpha_j.$$

By duality this coproduct completely determines the Potryagin product in $H^*(\Omega \mathbb{H} P^n; \mathbb{Z})$. Let $t \in H_*(\Omega \mathbb{H} P^n)$ be a dual element to β , x_k be a dual to α_k and z_k be a dual to $\alpha_k\beta$. Then

$$x_{i+j} = x_i x_j, \quad z_{i+j} = z_i x_j.$$

If we put $x = x_1$, we obtain $x_i = x^i$ and $z_i = x^i t$ for all $i \ge 0$. This completes the proof.

Now we return to the spectral sequence converging to the algebra $\mathbb{H}_*(L\mathbb{H}P^n;\mathbb{Z})$. Its E^2 term is

$$E_{-p,q}^2 = H^p(\mathbb{H}P^n; H_q(\Omega \mathbb{H}P^n; \mathbb{Z})) \cong H^p(\mathbb{H}P^n; \mathbb{Z}) \otimes H_q(\Omega \mathbb{H}P^n; \mathbb{Z}) \cong \frac{\mathbb{Z}[a] \otimes \mathbb{Z}[x,t]}{\langle a^{n+1}, t^2 \rangle}$$

where $a \in H^4(M; \mathbb{Z})$ and x, t as in Lemma 2.1. The stages E^4 and E^{4n} of the spectral sequence with possible nonzero differentials are shown in the following diagram:

Since $E_{p,q}^{\infty} \Rightarrow \mathbb{H}_{p+q}(L\mathbb{H}P^n;\mathbb{Z}) = H_{p+q+4n}(L\mathbb{H}P^n;\mathbb{Z})$ we can determine the differentials from the knowledge of the additive structure of $H_*(L\mathbb{H}P^n;\mathbb{Z})$.

To compute it we use the result of [1] on the existence of a stable decomposition

$$(L\mathbb{H}P^n)_+ \simeq \mathbb{H}P^n_+ \vee \bigvee_{l \geq 1} S(\eta)^{l\xi \oplus (l-1)\zeta}$$

where η is tangent bundle of the quaternionic projective space $\mathbb{H}P^n$, ξ is the 3-dimensional Lie algebra bundle over $\mathbb{H}P^n$ and ζ is the fibrewise tangent bundle of $S(\eta)$ and $S(\eta)^{\omega}$ stands for the Thom space of the vector bundle ω over $S(\eta)$. Note that dim $S(\eta) = 8n - 1$ and dim $\zeta = 4n - 1$. Using the Gysin long exact sequence for the fibration $S^{4n-1} \to S(\eta) \to \mathbb{H}P^n$ and the fact that the Euler characteristic class of η is an (n+1)-multiple of the generator $a^n \in H^{4n}(\mathbb{H}P^n; \mathbb{Z})$ we get

$$H_i S(\eta) = \begin{cases} \mathbb{Z} & i = 0, 4, \dots, 4n - 4, 4n + 3, 4n + 7, \dots, 8n - 1, \\ \mathbb{Z}_{n+1} & i = 4n - 1, \\ 0 & \text{otherwise.} \end{cases}$$

The dimesion of the vector bundle $l\xi \oplus (l-1)\zeta$ is 4n(l-1)+2l+1, so due to the Thom isomorphism

$$H_*(L\mathbb{H}P^n;\mathbb{Z}) \cong H_*(\mathbb{H}P^n;\mathbb{Z}) \oplus \bigoplus_{l>1} H_{*+4n(l-1)+2l+1}(S(\eta);\mathbb{Z}).$$

Since $\mathbb{H}_*(L\mathbb{H}P^n;\mathbb{Z}) \cong E^{\infty}_{*,*}$, the E^{∞} stage of the spectral sequence is the following

It forces the differentials d^4 in E^4 to be zero and the differentials $d^{4n}: E^{4n}_{0,(4n+2)i+3} \to E^4_{-4n,(4n+2)(i+1)}$ to be the multiplication by n+1.

So $E^{\infty}_{*,*}$ as a ring is generated by the group generators $a \in E^{\infty}_{-4,0} \cong H^4(\mathbb{H}P^n;\mathbb{Z})$, $x \in E^{\infty}_{0,4n+2} \cong H_{4n+2}(\Omega\mathbb{H}P^n;\mathbb{Z})$ and $b \in E^{\infty}_{-4,3} \cong H^4(\mathbb{H}P^n;\mathbb{Z}) \otimes H_3(\Omega\mathbb{H}P^n;\mathbb{Z})$ which satisfy relations $a^{n+1} = 0$, (n+1) $x \otimes a^n = 0$, $b \otimes a^n = 0$, $b^2 = 0$. We conclude that as rings

$$\mathbb{H}_*(L\mathbb{H}P^n;\mathbb{Z}) \cong E^{\infty}_{*,*} \cong \frac{\mathbb{Z}[a,b,x]}{\langle a^{n+1},b^2,a^nb,(n+1)a^nx \rangle}.$$

In the case of the octonionic projective plane the derivation of the ring structure of the loop homology follows the same lines.

Lemma 2.2. The Pontryagin ring structure of $H_*(\Omega \mathbb{O}P^2; \mathbb{Z})$ is given by

$$H_*(\Omega \mathbb{O} P^2; \mathbb{Z}) \cong \mathbb{Z}[x] \otimes \Lambda[t]$$

where |x| = 22 and |t| = 7.

Proof. Using the fact that

$$H^*(\Omega \mathbb{O} P^2) \cong \Gamma_{\mathbb{Z}}[\alpha_1, \alpha_2, \dots] \otimes \Lambda[\beta]$$

where $|\alpha_i| = 22i$ and $|\beta| = 7$, proved in [6], we can proceed in the same way as in the proof of Lemma 2.1.

The additive structure of $H_*(L\mathbb{O}P^2;\mathbb{Z})$ was found in [1] using a stable decomposition of $L\mathbb{O}P^2$ derived there:

$$H_i(L\mathbb{O}P^2) = \begin{cases} \mathbb{Z} & i = 0, 8, 16, 22m - 15, 22m - 7, 22m + 8, 22m + 16, \\ \mathbb{Z}_3 & i = 22m, \\ 0 & \text{otherwise.} \end{cases}$$

It yields that in the spectral sequence starting with

$$E_{-p,q}^2 = H^p(\mathbb{O}P^2; H_q(\Omega \mathbb{O}P^2; \mathbb{Z})) \cong H^p(\mathbb{O}P^2; \mathbb{Z}) \otimes H_q(\Omega \mathbb{O}P^2; \mathbb{Z}) \cong \frac{\mathbb{Z}[a] \otimes \mathbb{Z}[x, b]}{\langle a^3, b^2 \rangle}$$

all the differentials are zero with the exception of the differentials $d^{16}: E_{0,22m-15}^{16} \to E_{-16,22m}^{16}$ which act as the multiplication by 3. The group generators $a \in E_{-8,0}^{\infty} \cong H^*(\mathbb{O}P^2;\mathbb{Z}), x \in E_{0,22}^{\infty} \cong H_{22}(\Omega\mathbb{O}P^2;\mathbb{Z})$ and $b \in E_{-8,7}^{\infty} \cong H^8(\mathbb{H}P^n;\mathbb{Z}) \otimes H_7(\Omega\mathbb{O}P^2;\mathbb{Z})$, generate $E_{*,*}^{\infty} \cong \mathbb{H}_*(L\mathbb{O}P^2;\mathbb{Z})$ as a ring satisfying relations $a^3 = 0, b^2 = 0, 3ax = 0$ and $a^2b = 0$.

3. The BV operator

The BV operator $\Delta: \mathbb{H}_*(LM) \to \mathbb{H}_{*+1}(LM)$ and its unshifted version $\Delta': H_*(LM) \to H_{*+1}(LM)$ come from the canonical action of S^1 on LM. So any map $f: N \to M$ between manifolds induces a homomorhism $H_*(LN) \to H_*(LM)$ which commutes with Δ' . To determine the BV operator on $\mathbb{H}_*(L\mathbb{H}P^n; \mathbb{Z})$ and $\mathbb{H}_*(L\mathbb{O}P^2; \mathbb{Z})$ we use this fact for the inclusions $S^4 \hookrightarrow \mathbb{H}P^n$ and $S^8 \hookrightarrow \mathbb{O}P^2$ together with the knowledge of the BV operator on $\mathbb{H}_*(S^n; \mathbb{Z})$, see [9].

We start with the quaternionic projective space. First, $\Delta(a^p x^q) = 0$ because $\mathbb{H}_{|a^p x^q|+1}(L\mathbb{H}P^n;\mathbb{Z}) = 0$. Since $\mathbb{H}_{|a^p b|+1}(L\mathbb{H}P^n;\mathbb{Z}) \cong \mathbb{Z}$ is generated by a^p , there is an integer ν_p such that $\Delta(a^p b) = \nu_p a^p$. Due to the relation

$$\Delta(xyz) = \Delta(xy)z + (-1)^{|x|}x\Delta(yz) + (-1)^{(|x|-1)|y|}y\Delta(xz) - \Delta(x)yz - (-1)^{|x|}x\Delta(y)z - (-1)^{|x|+|y|}xy\Delta(z)$$

we obtain

$$\Delta(a^p b) = \Delta(a^{p-1}ab) = a^{p-1}\Delta(ab) + a\Delta(a^{p-1}b) - a^p\Delta(b).$$

It yields the equation $\nu_p = \nu_1 - \nu_0 + \nu_{p-1}$, which can be rewritten as

$$\nu_p = p(\nu_1 - \nu_0) + \nu_0.$$

The relation $a^nb=0$ implies that $\nu_n=0$. Consequently, for p=n the equation above gives $n\nu_1=(n-1)\nu_0$. Hence for $n\geq 2$ the only possible integer solutions of this equation are

$$\nu_1 = (n-1)\lambda_n, \quad \nu_0 = n\lambda_n,$$

where λ_n is an integer. Consequently, we obtain $\nu_p = (n-p)\lambda_n$.

For n = 1 the quaternionic projective space is S^4 . According to [9] the generators of $\mathbb{H}_*(L\mathbb{H}P^1;\mathbb{Z})$ as an algebra are a_1 , b_1 and v_1 in degrees -4, -1 and 6, respectively, and $\Delta(b_1) = 1$.

The standard inclusion $i: S^4 = \mathbb{H}P^1 \hookrightarrow \mathbb{H}P^n$ induces the commutative diagram of fibrations

$$\Omega \mathbb{H} P^{1} \longrightarrow \Omega \mathbb{H} P^{n}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$L \mathbb{H} P^{1} \longrightarrow L \mathbb{H} P^{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{H} P^{1} \longrightarrow \mathbb{H} P^{n}$$

The inclusion i induces an isomorphism $H_4(\mathbb{H}P^1;\mathbb{Z}) \cong H_4(\mathbb{H}P^n;\mathbb{Z})$ and the inclusion $\Omega \mathbb{H}P^1 \hookrightarrow \Omega \mathbb{H}P^n$ yields an isomorphism $H_3(\Omega \mathbb{H}P^1;\mathbb{Z}) \cong H_3(\Omega \mathbb{H}P^n;\mathbb{Z})$.

The commutative diagram above gives us a homomorphism between the Serre spectral sequences of the corresponding fibrations. (Here we consider the spectral sequences with $E_{p,q}^2 = H_p(M; H_q(\Omega M; \mathbb{Z}))$.) This homomorphism is an isomorphism on $E_{4,0}^2$ and $E_{0,3}^2$ terms and it remains an isomorphism also on $E_{4,0}^{\infty}$ and $E_{0,3}^{\infty}$. Consequently, for i = -1 and 0 we obtain

$$\mathbb{H}_i(LS^4;\mathbb{Z}) = H_{i+4}(LS^4;\mathbb{Z}) \cong H_{i+4}(L\mathbb{H}P^n;\mathbb{Z}) = \mathbb{H}_{i-4(n-1)}(L\mathbb{H}P^n;\mathbb{Z}).$$

Choose $b \in \mathbb{H}_1(L\mathbb{H}P^n;\mathbb{Z})$ and $a \in \mathbb{H}_4(L\mathbb{H}P^n;\mathbb{Z})$ so that a^{n-1} is the image of 1 and $a^{n-1}b$ is the image of $b_1 \in \mathbb{H}_1(LS^4;\mathbb{Z})$ under the above isomorphisms. Since these isomorphisms commute with Δ , we obtain $\Delta(a^{n-1}b) = a^{n-1}$. Consequently, $\lambda_n = 1$.

Analogously we get $\Delta(bx^q) = \rho_q x^q$ for an integer ρ_q and derive that

$$\rho_q = q(\rho_1 - \rho_0) + \rho_0.$$

Since $\rho_0 = \nu_0 = n\lambda_n = n$, we obtain

$$\Delta(a^p b x^q) = \Delta(a^p b) x^q + a^p \Delta(b x^q) - a^p x^q \Delta(b) =$$

$$= [(n-p) + q(\rho_1 - n)] a^p x^q.$$

In [13] T. Yang computed the BV-algebra structure of the Hochshild cohomology of truncated polynomials. Using Theorem 1 from [5] on the existence of a BV-algebra isomorphism between the loop homology $\mathbb{H}_*(LM;\mathbb{F})$ of a manifold and the Hochschild cohomology $HH^*(C^*(M);C^*(M))$ of the singular cochain complex over fields of characteristic zero, he was able to calculate the BV-algebra structure of $\mathbb{H}_*(L\mathbb{H}P^n;\mathbb{Q})$. This is given by

$$\mathbb{H}_*(L\mathbb{H}P^n;\mathbb{Q}) = \frac{\mathbb{Q}[\alpha,\beta,\chi]}{\langle \alpha^{n+1},\beta^2,\alpha^n\beta,\alpha^n\chi \rangle},$$

where $|\alpha| = -4$, $|\beta| = -1$, $|\chi| = 4n + 2$, and by

$$\Delta(\alpha^p \chi^q) = 0, \quad \Delta(\alpha^p \beta \chi^q) = [(n-p) + q(n+1)]\alpha^p \chi^q.$$

Consider the homomorphism $r_*: \mathbb{H}_*(L\mathbb{H}P^n; \mathbb{Z}) \to \mathbb{H}_*(L\mathbb{H}P^n; \mathbb{Q})$ induced by the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$. Let

$$r_*(a) = k\alpha, \quad r_*(b) = l\beta, \quad r_*(x) = m\chi,$$

where, $k, l, m \in \mathbb{Q} - \{0\}$. Since r_* is a homomorphism of BV-algebras, we obtain

$$[(n-p) + q(\rho_1 - n)]k^p m^q \alpha^p \chi^q = r_*(\Delta(a^p b x^q) = \Delta(r_*(a^p b x^q)) = l[(n-p) + q(n+1)]k^p m^q \alpha^p \chi^q.$$

Putting q = 0 we get l = 1. Then the choice p = 0, q = 1 yields $\rho_1 = 2n + 1$ which concludes our computation.

To compute the BV operator in $\mathbb{H}_*(L\mathbb{O}P^2;\mathbb{Z})$ we can follow the same procedure step by step replacing the inclusion $S^4 \hookrightarrow \mathbb{H}P^n$ by the inclusion $S^8 \hookrightarrow \mathbb{O}P^2$.

References

- [1] M.B. Böckstedt, I.M. Ottosen, The suspended free loop space of a symmetric space, arXiv:math.AT/0511086, (2005).
- [2] M. Chas, D. Sullivan, String topology, arXiv:math.GT/9911159v1.
- [3] R.L. Cohen, J.D.S. Jones, A homotopy theoretic realization of string topology, Math. Ann. **324** (2002), 773-798.
- [4] R.L. Cohen, J.D.S. Jones, J. Yan, The loop homology algebra of sphere and projective spaces, Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), 77–92, Progr. Math.215, Birkhuser, Basel, 2004.
- [5] Y. Félix, J. Thomas, Rational BV-algebra in string topology, Bull. Soc. Math. France 136 (2008), no. 2, 311–327.
- [6] E. Halpern, The cohomology algebra of certain loop spaces, Proc. Amer. Math. Soc. 9 (1958), 808-817.
- [7] R.A. Hepworth, String topology for Lie groups, arXiv:math.AT/0905.1199v1.
- [8] R.A. Hepworth, String topology for complex projective spaces, arXiv:math.AT/0908.1013v1.
- [9] L. Menichi, String topology for spheres, Comment. Math. Helv. 84 (2009), 135-157.
- [10] H. Tamanoi, Batalin-Vilkovisky Lie algebra structure on the loop homology of complex Stiefel manifolds, Int. Math. Res. Not.23 (2006), Art. ID 97193, 23 pp.
- [11] T. Tradler, The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products, Ann. Inst. Fourier (Grenoble) **58** (2008), 2351–2379.
- [12] D. Vaintrob, The string topology BV algebra, Hochschild cohomology and the Goldman bracket on surfaces, arXiv:math.AT/0702.2859.
- [13] T. Yang, A Batalin-Vilkovisky algebra structure on the Hochschild cohomology of truncated polynomials, arXiv:math.AT/0707.4213.

DEPARTMENT OF MATHEMATICS, MASARYK UNIVERSITY, KOTLÁŘSKÁ 2, 611 37 BRNO, CZECH REPUBLIC

E-mail address: cadek@math.muni.cz E-mail address: 106681@mail.muni.cz