

M2 Intership

Comparative analysis of genome-scale metabolic networks among brown algae

> Pauline Hamon-Giraud Supervisors: Anne Siegel, Jeanne Got & Gabriel Markov

Summary

Objectives

- 1. Generate metabolic networks
 - a. AuCoMe tool
 - b. Generated Networks
 - c. Results
 - d. Accessibility of results
 - e. Perspectives
- 2. Study the evolution of gene loss in Laminarionema elsbetiae
 - a. Finding the lost genes
 - b. Results
 - c. Interpretation
 - d. Perspectives
- 3. Interactions between the endophyte *L. elsbetiae* and its host *S. latissima*

Objectives

- 1. Generate metabolic networks of brown algae from Phaeoxplorer data
- 2. Study the evolution of gene loss in *Laminarionema elsbetiae* (endophytic lifestyle)
- 3. Identify interactions of metabolic functions between the endophyte *L elsbetiae* and its host *Saccharina latissima*

1. Generate metabolic networks

Why?

- Identify the metabolic reactions / pathways of species
- Compare metabolic networks between species allow to reconstruct trees based on metabolic capability

How?

- From annotated genome files: Phoexplorer + Public
- Thanks to the AuCoMe metabolic networks reconstruction tool

Objective: Automatically reconstruct metabolic networks and homogenize the annotations of the input files

—> overcome the heterogeneity of the annotations according to the organisms

Main steps:

- 1. Reconstruction of networks from file annotations (PathwayTools)
- 2. Gene propagation by orthology (Orthofinder)
- 3. Search for potential missed annotations during initial annotation of files
- 4. Adding spontaneous reactions to networks
- 5. Processing the results: clustering (Pvclust), tables

1. Draft reconstruction

GSMN = Genome-Scale Metabolic Networks

2. Orthology propagation

OrthoFinder

Gene or Prot

Gene or Prot

Gene-Protein-Reaction relationship and metabolic reaction

3. Structural verification

4. Spontaneous completion

GSMN

GSMN

GSMN

Functional annotation

GSMN

Gene-Protein-Reaction relationship and metabolic reaction

b. Generated Networks

Networks generated for a dataset including long read assemblies + Laminarionema.E : Dataset 01

Phaeoexplorer
Public
Long read
Diatoms
Brown algae

18 Brown algae:

Public:

- Undaria pinnatifida (Kr2015)
- Cladosiphon okamuranus
- Ectocarpus species 7
- Ectocarpus subulatus
- Nemacystus decipiens
- Saccharina japonica

Phaeoxplorer:

- Ectocarpus crouaniorum (m)
- Laminarionema elsbetiae
- Desmarestia herbacea (m) 🌑
- Porterinema fluviatile
- Scytosiphon promiscuus (m)
- Ectocarpus siliciosus (m)
- Chordaria linearis
- Pleurocladia lacustris
- Ectocarpus fasciculatus (m)
- Dictyota dichotoma (m)
- Fucus serratus (m)
- Saccharina latissima (f)

6 Outgroups:

Public:

- Fistulifera solaris
- Fragilariopsis cylindrus
- Phaeodactylum tricornutum
- Thalassiosira pseudonana
- Nannochloropsis gaditana

Phaeoexplorer

Schizocladia ischiensis

c. Results: Dataset 01

c. Results: Dataset 03

1.5

0.5

1.0

Run 03 Metabolic Dendrogram

0.0

0.1

0.2

0.3

0.4

c. Results: Dataset 03 -> Interpretation

How to get closer to the phylogeny of species?

Filter the reactions on brown algae -> remove the ones that seem questionable

• Idea 1: Remove reactions present in only 2-3 brown algae unless they belong to basal species of the phylogeny

• Idea 2: Remove the reactions present in only 1-2 brown algae if they belong to the wrong species (too much at the base)

c. Results: Dataset 03 -> Idea 1

1.5

1.0

0.5

Run 03 : cut 3 basal Metabolic Dendrogram

0.05

0.10

0.15

0.20

0.25

0.30

c. Results: Dataset 03 -> Idea 2

1.5

1.0

0.5

Run 03 : cut 2 misplaced Metabolic Dendrogram

0.1

0.2

0.3

c. Results: Dataset 03 -> #Reations

d. Accessibility of results

- Data storage in wikis
 - Availability of file results in an easy human-readable online page
 - For each organism, list of genes, reactions, pathways and metabolites
 - Information on the origin of the integration of reactions: orthology or annotation

Q

workflow command history Random page Files

Metabolic network components

organism reaction gene pathway metabolite

Reconstruction categories

annotation manual orthology

Reconstruction tools

curation orthofinder pathwaytools

Tools

What links here Related changes Special pages Printable version Permanent link Page information Browse properties Main page Discussion

Read Edit View history

Search metabolic_network

Main Page

description [edit]

Automatic reconstruction with AuReMer [edit]

Model summary: summary

Download AuReMe Input/Output [LINK OR MEDIA data]

The automatic reconstruction of MODEL NAME results to a Genome scale Model containing 3230 reactions, 3610 metabolites, 6239 genes and 1483 pathways. This GeM was obtained based on the following sources:

- · Based on orthology data:
 - · Creation of a global metabolic network containing 2932 reactions
- Based on annotation data:
 - · Creation of a metabolic network containing 2306 reactions
- Based on expertise:
 - 6 reaction(s) added
- · List of tools used:
 - . Tool: Orthofinder ₪
 - Tool: PathwayTools

File:Venn.png

Collaborative curation [edit]

- · Suggest reactions to add or remove:
 - · Download this form
- . Suggest new reactions to create and add:
 - · Download this form
- · Follow the examples given in the form(s) to correctly share your suggestions
- . Send the filled form(s) to: CONTACT MAIL

Expert input: possibility to suggest modifications of reactions

Category: Pages with broken file links

18

Main page SMW-Ask workflow command history

Metabolic network components

Random page Files

organism reaction

pathway metabolite

Reconstruction categories

annotation manual orthology

Reconstruction tools

curation orthofinder pathwaytools

Tools

What links here Related changes Special pages Printable version Permanent link Page information Browse properties Category Discussion

Read Edit View history | Search metabolic_network

? Help

Q

Category:Organism

\$	Nb reaction associated \$	Nb gene associated \$	Nb pathway associated \$		
Ectocarpus siliculosus m	3362	8307	1506		
Schizocladia ischiensis	3331	8107	1533		
Scytosiphon promiscuus MALE	3323	8261	1515		
Ectocarpus crouaniorum m	3321	8249	1508		
Chordaria linearis	3306	7940	1511		
Porterinema fluviatile	3299	7593	1513		
Ectocarpus fasciculatus m	3296	8555	1499		
Desmarestia herbacea m	3274	7869	1507		
Fucus serratus MALE	3271	9622	1490		
Saccharina latissima FEMALE	3249	7991	1504		
Nemacystus decipiens	3240	5462	1520		
Pleurocladia lacustris	3236	7515	1502		
Saccharina japonica	3230	6239	1483		
Dictyota dichotoma m	3225	8089	1495		
Cladosiphon okamuranus	3194	5565	1473		
Laminarionema elsbetiae	3172	7543	1490		
Undaria pinnatifida Kr2015	3152	6186	1466		
Ectocarpus subulatus	3144	6900	1470		
Fragilariopsis cylindrus	3076	3692	1472		
Fistulifera solaris	2974	5882	1433		
Phaeodactylum tricornutum	2956	3164	1463		
Nannochloropsis gaditana	2953	3337	1461		
Thalassiosira pseudonana	2924	3383	1450		

Overview for each organism: number of genes / reactions / pathways

Main page SMW-Ask workflow command history Random page Files

Metabolic network components

organism

gene pathway metabolite

Reconstruction categories

annotation manual orthology

Reconstruction tools

orthofinder pathwaytools

Tools

What links here Related changes Special pages Printable version Permanent link Page information Browse properties

Search metabolic_network Q Page Discussion Read Edit View history Schizocladia ischiensis Contents [hide] 1 Organism Schizocladia ischiensis Details for a specific organism: 2 Summary list of genes / reactions / 3 Reaction(s) associated 4 Gene(s) associated pathways 5 Pathway(s) associated Organism Schizocladia_ischiensis [edit] Summary [edit] 3331 reaction(s) • 8107 gene(s) 1533 pathway(s) Reaction(s) associated [edit] [Expand] Gene(s) associated [edit] [Expand] Pathway(s) associated [edit] [Expand]

Category: Organism

Category Discussion

Ex: Reactions informations

Read Edit View history | Search metabolic_network

Category:Reaction

? Help

Q

Main page SMW-Ask workflow command history Random page Files

Metabolic network components

organism reaction

gene pathway metabolite

Reconstruction categories

annotation manual orthology

Reconstruction tools

curation orthofinder pathwaytools

Tools

What links here Related changes Special pages Printable version Permanent link Page information Browse properties

ı	Common-name +	Ec-number +	Nb gene associated	Nb pathway associated †	Nb reconstruction + source	Reconstruction category	Reconstruction tool	Reconstruction comment
+-NEOMENTHOL- DEHYDROGENASE-RXN		Ec-1.1.1.208	1	1		Orthology	Orthofinder	N.a
1-ACYLGLYCEROL-3-P- ACYLTRANSFER-RXN	Nil 1-acylglycerol-3-phosphate o-acyltransferase	Ec-2.3.1.51	10	2		Orthology Annotation	Orthofinder Pathwaytools	N.a
1-PHOSPHATIDYLINOSITOL- 3-KINASE-RXN	Nil 1-phosphatidylinositol- 3-kinase	Ec-2.7.1.137	20	1		Orthology Annotation	Orthofinder Pathwaytools	N.a
1-PHOSPHATIDYLINOSITOL- KINASE-RXN	Nil 1-phosphatidylinositol 4-kinase	Ec-2.7.1.67	15	2		Orthology Annotation	Orthofinder Pathwaytools	N.a
1.1.1.145-RXN		Ec-1.1.1.145	2	0		Orthology	Orthofinder	N.a
1.1.1.178-RXN	Nil	Ec-1.1.1.178	1	2		Orthology Annotation	Orthofinder Pathwaytools	N.a
1.1.1.188-RXN	Prostaglandin d2 11- ketoreductase	Ec-1.1.1.188	1	0		Orthology Annotation	Orthofinder Pathwaytools	N.a
1.1.1.197-RXN		Ec-1.1.1.197	4	0		Orthology	Orthofinder	N.a
1.1.1.215-RXN		Ec-1.1.1.215	1	1		Orthology	Orthofinder	N.a
1.1.1.220-RXN	Nil	Ec-1.1.1.220	1	2		Orthology Annotation	Orthofinder Pathwaytools	N.a
1.1.1.264-RXN	Nil	Ec-1.1.1.264	1	1		Annotation	Pathwaytools	N.a
1.1.1.271-RXN	Nil	Ec-1.1.1.271	1	0		Orthology Annotation	Orthofinder Pathwaytools	N.a
1.1.1.272-RXN	Nil	Ec-1.1.1.272	1	0		Orthology Annotation	Orthofinder Pathwaytools	N.a 21

Q

Main page SMW-Ask workflow command history Random page

Metabolic network components

Files

organism reaction gene pathway metabolite

Reconstruction categories

annotation

orthology

Reconstruction tools

curation orthofinder pathwaytools

Tools

Related changes Special pages Printable version Permanent link Page information Browse properties

What links here

Ex: Reconstruction by orthology informations

Read Edit View history

Search metabolic_network

Orthology

Page Discussion

	♦ Common-name	Ec-number +	Reconstruction tool	Reconstruction source	Reconstruction comment	Nb gene associated	Nb pathway associated
+-NEOMENTHOL- DEHYDROGENASE-RXN		Ec-1.1.1.208	Orthofinder	Cladosiphon okamuranus	N.a	1	1
1-ACYLGLYCEROL-3-P- ACYLTRANSFER-RXN	Nil 1-acylglycerol-3-phosphate o-acyltransferase	Ec-2.3.1.51	Orthofinder Pathwaytools	Cladosiphon okamuranus Genome	N.a	10	2
1-PHOSPHATIDYLINOSITOL- 3-KINASE-RXN	Nil 1-phosphatidylinositol-3-kinase	Ec-2.7.1.137	Orthofinder Pathwaytools	Cladosiphon okamuranus Fistulifera solaris Undaria pinnatifida kr2015 Genome Ectocarpus subulatus Ectocarpus siliculosus	N.a	20	1
1-PHOSPHATIDYLINOSITOL- KINASE-RXN	Nil 1-phosphatidylinositol 4-kinase	Ec-2.7.1.67	Orthofinder Pathwaytools	Cladosiphon okamuranus Fistulifera solaris Undaria pinnatifida kr2015 Genome Ectocarpus subulatus Ectocarpus siliculosus Nannochloropsis gaditana Thalassiosira pseudonana	N.a	15	2
1.1.1.145-RXN		Ec-1.1.1.145	Orthofinder	Ectocarpus subulatus Ectocarpus siliculosus	N.a	2	0
			Orthofinder	Cladosiphon okamuranus			22

e. Perspectives

- Add more brown algae species :
 - species sequenced by Illumina in short read
 - soon available species sequenced in long read
 - Ascophyllum nodulosum
 - Pylaiella littoralis
 - Heterosigma akashiwo
- Understand the potential technical biases that would induce phylogenetic mismatches

2. Study the evolution of gene loss in Laminarionema elsbetiae

Laminarionema elsbetiae:

- Filamentous Brown Algae
- Order of Ectocarpales
- Endophyte of Saccharina latissima
 - Also found in *S. japonica* and rarly in *L. digitata*
- Different impacts (physiological and transcriptomic) depending on the host inhabited

a. Finding the lost genes

Simple method:

From a file indicating which reactions are present in which species:

- Select the reactions present in all species except one
- Select precisely those where it is the case for *L. elsbetiae*
- Find the intersection of these reactions between the different runs
- Define the genes / proteins associated with these reactions

b. Results

- Dataset 02 (2022): Long read only + Diatoms
- Dataset 03 (2022): Long read + L. elsbetiae + Diatoms
- **Dataset 40 (20 ??) :** 40 algae + 7
 - 12 Brown Algae
- Dataset A0 (2020): 12 brown algae + 4 outgroups
- Dataset A1 (2022): same as 0A with new datafiles
- **Dataset A2 (2022) :** same as 1A : species with better quality assembly & + 1 species in outgroup

b. Results

Intersection with A0:01 n 40 n A0

• 8 Reactions lost

Intersection with A1:01 n 40 n A1

• 16 Reactions lost

Intersection with A2:01 n 40 n A2

• 27 Reactions lost

c. Interpretation

These supposed lost genes could also be:

- Genes misassembled
- Genes not annotated

Some of these supposedly lost genes are found in the transcriptome

c. Perspectives

Inject transcriptome information into the data

The simple method could be improved:

- Is 1 the optimal number to chose of species not having the reaction?
- Doesn't take into account the position of species in the phylogenic tree
- Doesn't interpret lost or gain

3. Interactions between the endophyte *L. elsbetiae* and its host *S. latissima*

Study perspective:

- Understand whether losses of metabolic function are compensated by the host
- Understand whether certain metabolic functions of the host explain its acclimatization to the infection of the endophyte
- Understand how the endophyte manage to inactivate host defenses