Numerical propagation of errors of Earth-orbiting spacecraft

Víctor Ballester

Supervisor: Josep Maria Mondelo

Departament de Matemàtiques Facultat de Ciències

July 11, 2023

Motivation

- Around 7000 satellites (active and inactive) orbit the Earth.
- Various unintentional collisions have occurred in the past.
- Point Earth model is not enough. We need a more accurate model.

Motivation

- Around 7000 satellites (active and inactive) orbit the Earth.
- Various unintentional collisions have occurred in the past.
- Point Earth model is not enough. We need a more accurate model.

Goal:

- Develop a geopotential model of the Earth.
- Propagate the position of a satellite adding different perturbations.
- Estimate the error of the trajectory.

Equation for V

Let $\Omega \subseteq \mathbb{R}^3$ be the region that occupies the Earth.

$$\begin{split} \mathbf{g} &= -\int\limits_{\Omega} G \frac{\mathbf{r} - \mathbf{s}}{\left\|\mathbf{r} - \mathbf{s}\right\|^3} \rho(\mathbf{s}) \mathrm{d}^3 \mathbf{s} = \boldsymbol{\nabla} V \\ V &= \int\limits_{\Omega} G \frac{\rho(\mathbf{s})}{\left\|\mathbf{r} - \mathbf{s}\right\|} \mathrm{d}^3 \mathbf{s} \end{split}$$

Equation for V

Let $\Omega \subseteq \mathbb{R}^3$ be the region that occupies the Earth.

$$\mathbf{g} = -\int\limits_{\Omega} G rac{\mathbf{r} - \mathbf{s}}{\left\|\mathbf{r} - \mathbf{s}
ight\|^3}
ho(\mathbf{s}) \mathrm{d}^3 \mathbf{s} = \mathbf{\nabla} V$$

$$V = \int\limits_{\Omega} G rac{
ho(\mathbf{s})}{\left\|\mathbf{r} - \mathbf{s}
ight\|} \mathrm{d}^3 \mathbf{s}$$

$\mathsf{Theorem}$

V satisfies the following exterior boundary problem:

$$\begin{cases} \Delta V = 0 & \text{in } \Omega^c \\ V = f & \text{on } \partial \Omega \\ \lim_{\|\mathbf{r}\| \to \infty} V = 0 \end{cases}$$

where $f: \partial \Omega \to \mathbb{R}$ is the gravitational potential on the surface of the Earth.

Separation of variables: $V = R(r)\Theta(\theta)\Phi(\phi)$

$$\begin{cases} \frac{(r^2R')'}{R} = n(n+1) \\ \frac{1}{\Theta}\Theta'' = -m^2 \\ \frac{\sin\phi}{\Phi}(\sin\phi\Phi')' + n(n+1)(\sin\phi)^2 = m^2 \end{cases} n, m \in \mathbb{N} \cup \{0\}, m \le n$$

Separation of variables: $V = R(r)\Theta(\theta)\Phi(\phi)$

$$\begin{cases} \frac{\left(r^2R'\right)'}{R} = n(n+1) \\ \frac{1}{\Theta}\Theta'' = -m^2 \\ \frac{\sin\phi}{\Phi}(\sin\phi\Phi')' + n(n+1)(\sin\phi)^2 = m^2 \end{cases} n, m \in \mathbb{N} \cup \{0\}, m \leq n$$

Imposing boundary conditions:

$$V = \frac{GM_{\oplus}}{R_{\oplus}} \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left(\frac{R_{\oplus}}{r}\right)^{n+1} (\bar{C}_{n,m} Y_{n,m}^{c}(\theta,\phi) + \bar{S}_{n,m} Y_{n,m}^{s}(\theta,\phi))$$

where

$$Y_{n,m}^{c}(\theta,\phi) = N_{n,m}P_{n,m}(\cos\theta)\cos(m\phi)$$

$$Y_{n,m}^{s}(\theta,\phi) = N_{n,m}P_{n,m}(\cos\theta)\sin(m\phi)$$

are the spherical harmonics.

Deviations of the Earth's rotation axis

- Precession
- Nutation
- Rotation
- Polar motion

Source: NASA Earth Orientation Animations

Celestial sphere

- Abstract sphere of infinite radius centered at the Earth.
- All celestial objects are projected naturally onto it.

Mean axis of rotation: Axis of rotation when the nutation perturbation are averaged out.

Mean equator: plane perpendicular to the mean axis of rotation. Mean vernal equinox $(\overline{\Upsilon})$: The point of intersection between the mean equator with the ecliptic where the Sun crosses the celestial equator from south to north.

Inertial and non-inertial reference frames

J2000 date: January 1, 2000 at 12:00 TT.

Quasi-inertial:

- x-axis: pointing towards the $\overline{\Upsilon}$ of the J2000 date
- z-axis: perpendicular to the mean equator of the J2000 date

Non-inertial (Earth fixed):

- z-axis: pointing towards the IRP (International Reference Pole)
- x-axis: pointing towards the zero meridian and in the plane perpendicular to the z-axis.

In both systems y-axis is chosen in order to complete a right-handed system.

Other perturbations

 ${f r}=$ satellite position with respect to Earth's center of mass

• Third body perturbations (Moon and Sun):

$$\frac{GM}{\left\|\mathbf{s}-\mathbf{r}\right\|^2}(\mathbf{s}-\mathbf{r}) - \frac{GM}{\left\|\mathbf{s}\right\|^2}\mathbf{s}$$

Other perturbations

 ${f r}=$ satellite position with respect to Earth's center of mass

Third body perturbations (Moon and Sun):

$$\frac{GM}{\|\mathbf{s} - \mathbf{r}\|^2}(\mathbf{s} - \mathbf{r}) - \frac{GM}{\|\mathbf{s}\|^2}\mathbf{s}$$

Atmospheric drag:

$$-\frac{1}{2}C_{\rm D}\frac{A}{m}\rho v_{\rm rel}\mathbf{v}_{\rm rel}$$

where $\mathbf{v}_{\mathrm{rel}} = \dot{\mathbf{r}} - \boldsymbol{\omega}_{\oplus} \times \mathbf{r}$.

Other perturbations

 ${f r}=$ satellite position with respect to Earth's center of mass

Third body perturbations (Moon and Sun):

$$\frac{GM}{\left\|\mathbf{s}-\mathbf{r}\right\|^2}(\mathbf{s}-\mathbf{r}) - \frac{GM}{\left\|\mathbf{s}\right\|^2}\mathbf{s}$$

Atmospheric drag:

$$-\frac{1}{2}C_{\rm D}\frac{A}{m}\rho v_{\rm rel}\mathbf{v}_{\rm rel}$$

where $\mathbf{v}_{\mathrm{rel}} = \dot{\mathbf{r}} - \boldsymbol{\omega}_{\oplus} \times \mathbf{r}$.

Solar radiation pressure:

$$-\nu P_{\odot} C_{\rm R} \frac{A_{\odot}}{m} \frac{\mathbf{s}_{\odot} - \mathbf{r}}{\|\mathbf{s}_{\odot} - \mathbf{r}\|}$$

Differential system

Using the Runge-Kutta-Fehlberg method of order 7(8) we will integrate the differential system:

$$\begin{cases} \dot{\mathbf{r}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{a}_{\mathrm{GP}} + \delta_{\mathrm{D}} \mathbf{a}_{\mathrm{D}} + \delta_{\mathrm{R}} \mathbf{a}_{\mathrm{R}} + \delta_{\mathrm{sun}} \mathbf{a}_{\mathrm{sun}} + \delta_{\mathrm{moon}} \mathbf{a}_{\mathrm{moon}} \end{cases}$$

Differential system

Using the Runge-Kutta-Fehlberg method of order 7(8) we will integrate the differential system:

$$\begin{cases} \dot{\mathbf{r}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{a}_{\mathrm{GP}} + \delta_{\mathrm{D}} \mathbf{a}_{\mathrm{D}} + \delta_{\mathrm{R}} \mathbf{a}_{\mathrm{R}} + \delta_{\mathrm{sun}} \mathbf{a}_{\mathrm{sun}} + \delta_{\mathrm{moon}} \mathbf{a}_{\mathrm{moon}} \end{cases}$$

Initial conditions from TLEs (Two Line Elements sets).

Line				te m				Class	5		5		51 1		51 1		51.1		Class			International designator						,								(UTC) year (as fraction)					-ti	or	.)	-				[re	'n v/		ay	2]							[r	ev	n/		y ³]				(dr		B*		m)			Model	10000		TI		er	Check
1	2	3	14	Ŀ	1	6	7	8	9											11												21						3	3 3	4 3	5 :	36	37	38	35	9 4) 4	1 -	42	43	44	45	40	5 4	7 -	is	49	50	51	52	53	54	55	54	5	7 5	8 2					6:	64	65	66	67	GS	59						
			L	L	1					L	1										L	1				L					L		L					L	- 15	3							L	1				S	1	L								S	_			Ш	1		S							Ш								
1		5	5		l	2	4	U		S) (8	0	6	7	П		R			ľ	2	3	0	8	16	П	.]	1	6	7	7	1 8	3	9	9	4		1	Τ.	.]	0	1	5	4	10	1	1	0	7			1	. 4	1	1	0	2	-	2			2	6	16		3 4	1		2		0			9	9	9	1						
Line	Satellite number							i	[ċ	leg	g]								Ω	[4	de	g]		or				Е			e								pε	ri , [ap de	ner osi: g]	S							И	[d	leg	g]							Me	[r	ev	/(la	y]				re	evo	lut	io	of ns	5										
1	2	3	14	Т	ST.	6	7	8	9	1	0 2	1	12	13	1.	1	5	16	17		5 2	9 :	00	21	22	2	1	4		26	27	21	1 2	9	30	31	32	3	3 3	4 3	5 :	36	37	35	35	9 4	9 4	1 -	42	43	44	43	40	5 4	7 -	is	49					54		54	5	7 5	8 3		60		62			63	GG	67	GS	29						
			Г	Т	Т	П		Г	Г	Т	Т	Т		Г	Г	Т				Г	Т	Т	Т		Г	Т	Т	Т	П	٠,	Г	Т	Т	Т	П		Г	Т	Т	Т	Т			Г	Г	Т	Т	Т	П			Г	Т	Т	Т	Т	П			П	П	П	П	Г	Т	Т	Т	Т		Г	Т	Т	Т	Т		П	П	٦						
2		5	5	1	l	2	4			5		1		6	2	Ü	3	7			I		5		0	(ı İ	1	7		0	0	įį	ij	0	7	5	7	7		l	8	8		3	8	(3	9		1	7	1	Į.		6	9	6	3		1	6		0	1	. 8	3 '	7	8	1	9	9		1	3	7	9	2						

Results

Scheme of our simulation:

Results

Scheme of our simulation:

Zones that we will explore:

- Low Earth Orbit satellites
- Medium Earth Orbit satellites
- Geostationary Earth Orbit satellites

Results - LEO

- \bullet ISS makes \sim 16 orbits per day.
- LEO satellites interact with the atmosphere.
- The atmospheric drag is difficult to predict.

Results - MEO

- GPM is very oscillatory.
- Sun and Moon reduce the oscillations.
- Solar radiation increases the oscillations.

Results - GEO

TDRS-3

- Adding the Sun and the Moon the errors are reduced.
- Solar radiation again increases the oscillations.
- Maneuver at around the 13th day.

Conclusions

- The point mass model is not enough to predict the orbit of a satellite.
- Adding both together the Sun and the Moon the variability of the errors is reduced.
- Solar radiation pressure increases the oscillations.

Conclusions

- The point mass model is not enough to predict the orbit of a satellite.
- Adding both together the Sun and the Moon the variability of the errors is reduced.
- Solar radiation pressure increases the oscillations.

Improvements:

- Atmospheric drag and solar radiation bad modelled.
- Study the influence of the inclination and eccentricity on the errors.