Oscillateurs quasi-sinusoïdaux, AO en régime linéaire et saturé - corrigé

Correction Exercice 1

$$i(t) + \left[(1 - G)R_2C_1 + R_1C_1 + R_2C_2 \right] \frac{di(t)}{dt} + R_1C_1R_2C_2 \frac{d^2i(t)}{dt^2} = 0 \tag{1}$$

• $G = \frac{R_1C_1 + R_2C_2 + R_2C_1}{R_2C_1}$ et $f_0 = \frac{1}{2\pi(R_1C_1R_2C_2)}$

• On remplace $R_2 \leftarrow \frac{R_2 R_e}{R_2 + R_e}$ et $R_1 \leftarrow R_1 + R_s$

Correction exercice 2

Amplificateur idéal

- La boucle de rétroaction est sur la borne +, l'AO est en régime saturé et donc $u_s = \pm V_s$.
- Condition de basculement de $+/-V_s \to -/+V_s$: $u_- \to -/+\frac{R_1}{R_2+R_1}$. On peut commencer par $u_-(t=0) = \frac{R_1}{R_2+R_1}V_s$ et $u_+(t=0) = -V_s$. Alors:

$$u_{-}(t) = V_s \left(1 + \frac{R_1}{R_1 + R_2} \right) \exp(-t/RC) - V_s$$
 (2)

Puis, à $t = t_1 = RC \ln \left(\frac{2R_1 + R_2}{R_2} \right)$:

$$u_{-}(t) = -V_s \left(1 + \frac{R_1}{R_1 + R_2} \right) \exp(-(t - t_1)/RC) + V_s$$
 (3)

Et ainsi de suite. La période est donc $T=2RC\ln\left(\frac{2R_1+R_2}{R_2}\right)$. $u_+(t)$ évolue en créneau de même période.

Amplificateur réel

On trouve:

$$\begin{cases} \tau_0 \frac{du_s}{dt} + u_s = \mu_0 (u_+ - u_-) \\ u_+ = \frac{R_1 + R_2}{R_1} \\ \tau_1 \frac{du_-}{dt} + u_- = u_s \end{cases}$$

On arrive alors sur deux équations différentielles couplées :

$$\begin{cases}
\tau_0 \frac{du_s}{dt} = \mu_1 u_s - \mu_0 u_- \\
\tau_1 \frac{du_-}{dt} = u_s - u_-
\end{cases}$$

avec $\mu_1 = \mu_0 \frac{R_1 + R_2}{R_1} - 1 \simeq \mu_0 \frac{R_1 + R_2}{R_1}$. On toruve alors une ED sur u_s :

$$\frac{d^2 u_s}{dt^2} + \left(\frac{1}{\tau_1} - \frac{\mu_1}{\tau_0}\right) \frac{du_s}{dt} + \frac{1}{\tau_1 \tau_0} (\mu_0 - \mu_1) u_s = 0 \tag{4}$$

Comme $\mu_0 < \mu_1$, les solutions sont exponentielles et divergentes. On se retrouve donc très rapidement dans le régime d'instabilité même si les conditions initiales sont nulles (la moindre perturbatios étant amplifiée).

Correction exercice 3

 $H = \frac{jRC\omega}{1 + 3jRC\omega - (RC\omega)^2} = \frac{1/3}{1 + \frac{j}{3}\left(\frac{\omega}{d\Omega} - \frac{\omega_0}{d\Omega}\right)}$ (5)

donc Q = 1/3 et $\omega_0 = 1/RC$.

• Équation différentielle : $\omega_0 \frac{du_e}{dt} = u_s + 3\omega_0 \frac{du_s}{dt} + \omega_0^2 \frac{d^2u_s}{dt}$. Comme $u_s = (1 + R_2/R_1)u_e$, on a :

$$0 = u_s + \left(2 - \frac{R_2}{R_1}\right) \omega_0 \frac{du_s}{dt} + \omega_0^2 \frac{d^2 u_s}{dt}$$
 (6)

Oscillations si $R_2 = 2R_1$.

• Quasi-sinusoïdal car pour démarrer on a besoin de la condition $R_2 > 2R_1$ et alors solutions exponentielles divergentes, jusqu'à saturation. Le démarrage se fait à partir du bruit de fond qui est amplifié.

Correction exercice 4

• C'est un passe-bande d'ordre 2. Soit u_1 le potentiel entre la résistance R, la capacité C et l'inductance L_1 . Alors :

$$\frac{u_1}{u_e} = \frac{1}{1 + R\left(\frac{1}{jL\omega} + jC\omega\right)} \tag{7}$$

De même:

$$\frac{u_s}{u_1} = \frac{jL_2\omega}{jL_1\omega + jL_2\omega} \tag{8}$$

Alors:

$$\frac{u_s}{u_e} = \frac{A_0}{1 + jQ\left(\frac{\omega}{\omega_c} - \frac{\omega}{\omega_c}\right)} \tag{9}$$

avec
$$\omega_c = \frac{1}{\sqrt{(L_1 + L_2)C}}$$
, $A_0 = \frac{L_2}{L_1 + L_2}$ et $Q = RC\omega_c = R\sqrt{\frac{C}{L_1 + L_2}}$

• La fonction de transfert totale faite du filtre et de l'amplificateur d'écrit :

$$\frac{u_s'}{u_e} = \frac{R_1 + R_2}{R_1} \frac{A_0}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega}{\omega_0}\right)} = \frac{R_1 + R_2}{R_1} \frac{A_0}{1 + jR\left(C\omega - \frac{1}{L\omega}\right)}$$
(10)

Le circuit est quasi-sinusoïdal s'il existe une pulsaiton ω_0 tq $|F(j\omega_0)| = 1$ et $arg[F(j\omega_0)] = 0$.

On peut passer aussi par l'équation différentielle. On trouve $\omega_0 = \omega_c$ et la condition :

$$\frac{R_1 + R_2}{R_1} \frac{L_2}{L_1 + L_2} = 1 \tag{11}$$

Question supplémentaire

On ne peut avoir des oscillations qu'avec un basse bande. Pour un filtre passe-haut et passe-bas, on ne peut avoir que des solutions divergentes ou qui tendent vers 0. On peut le trouver avec les fonctions canoniques.

Remplissage d'un réservoir d'hélium

Première version

- Pas de boucle de rétroaction : l'AO fonctionne forcément en régime saturé car la condition $u_{+}=u_{-}$ n'est jamais remplie. L'AO marche donc en comparateur et comme il est parfait $I_{+}=i_{-}=0$. Les résistances R_{1} et R_{2} sont inutiles.
- Le potentiomètre fonctionne comme 2 résistances $(1-x)R_P$ et xR_P . Le potentiel (au niveau de la flèche) est pris entre ces 2 résistances. On a donc $u_+ = \frac{xR_P + R_3}{R_P + R_3}U$, avec U = 5V. La vanne s'ouvre lorsque $u_{+} > u_{-}$ cad pour :

$$u_{+} > u_{-} \Rightarrow \frac{xR_{P} + R_{3}}{R_{P} + R_{3}}U > \alpha h_{min}$$

$$\tag{12}$$

De même, la vanne se ferme lorsque :

$$u_{+} < u_{-} \Rightarrow \frac{xR_{P} + R_{3}}{R_{P} + R_{3}}U < \alpha h_{max}$$

$$\tag{13}$$

On trouve que $h_{min} = h_{max} \in [0, 2; 1]$ pour x variant de 0 à 1. On a donc bien un système qui verse de l'hélium lorsque la hauteur descend en dessous de h_{min} et s'arrête lorsque la hauteur atteint h_{max} . Le défaut est que $h_{min} = h_{max}$: la vanne s'ouvre et se referme en permanence.

Seconde version

• L'AO fonctionne toujours en régime saturé car la boucle de rétroaction est sur la borne +. u_P est inchangé car les résistances R_1 sont très grandes devant les autres. On a donc $u_{+}=\frac{1}{2}u_{s}+\frac{1}{2}u_{p}$ Si la vanne est initialement fermée, celle-ci s'ouvre lorsque le niveau atteint un niveau h_{min} qui correspond à :

$$u_{+} = \frac{1}{2}V_{sat+} + \frac{1}{2}u_{p} = \alpha h_{min}$$
 (14)

De même, si la vanne est initialement ouverte, celle-ci se ferme lorsque le niveau atteint un niveau h_{max} qui correspond à :

$$u_{+} = \frac{1}{2}V_{sat-} + \frac{1}{2}u_{p} = \alpha h_{min}$$
 (15)

On a alors : $h_{min} = 0$, 1m et $h_{max} = 1$, 1m si x = 0 et $h_{min} = 0$, 5m et $h_{max} = 1$, 5m si x=1. Le système ne s'ouvre et ferme plus en permanence.

Électrolyse du sulfate de Cobalt

Quelques rappels

Un réaction d'oxydo-réduction : $\alpha Ox + ne^- \longrightarrow \beta Red$.

Potentiel de Nernst : $E_N = E_0 + \frac{0.06}{n} \log \frac{a_{ox}^{\alpha}}{a_{red}^{\beta}}$ Anode : $E_a > E_N$ siège de l'oxydation $\beta Red \longrightarrow \alpha Ox + ne^-$. Cathode : $E_c < E_N$ siège de la réduction $\alpha Ox + ne^- \longrightarrow \beta Red$

Correction

• Équation bilan de cémentation : Fe + Cu²⁺ \longrightarrow Cu + Fe²⁺. Pour Co/Co²⁺, $E_C \sim -0.29 - 0.15 = -0.44 \text{V}$ donc la réaction Fe + Co²⁺ \longrightarrow Co + Fe²⁺ est thermodynamiquement possible mais cinétiquement bloquée. Seul Cu²⁺ réagit avec Fe, le Cobalt reste en solution.

• Les espèces présentes sont : H_2O , Co^{2+} et SO_4^{2-} .

A l'anode on peut avoir :

$$H_2O \longrightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$$
, avec $E_N = 1, 23 - 0, 06pH = 1,05V$

A la cathode, on peut avoir :

$$\mathrm{Co^{2+}}+~2\mathrm{e^{-}}\longrightarrow\mathrm{Co,~avec}~E_{N}=-0.29+\frac{0.06}{2}\log[\mathrm{Co^{2+}}]\text{=-0,31V}^{1}$$

$$2H^+ + 2e^- \longrightarrow 2H$$
, avec $E_N = -0.06$ pH=-0.18V

Sans surtension, on réalise l'électrolyse de l'eau avec $\Delta E_{min} = 1,23$ V.

• $E_{A1} = 1,05+0,7=1,75$ V, $E_{C1} = -0,18+0,4=-0,58$ V et $E_{C2} = -0,41$ V

Avec les surtensions, les potentiels à la cathode sont inversés. On réalise l'électrolyse du cobalt.

• L'électrolyse est sous contrôle cinétique, car on "repousse" la courbe de la réduction de H^+ avec une surtension, cad avec une considération cinétique :

$$\mathrm{Co^{2+}} + \mathrm{H_2O} \longrightarrow \frac{1}{2}\mathrm{O_2} + 2\mathrm{H^+} + \mathrm{Co}$$

• On a : $\Delta E = E_{ohmique} + E_{N,O_2/H_2O} + \eta_{O_2/H_2O} - (E_{N,Co/Co^{2+}} + \eta_{Co})$

$$E_{N,O_2/H_2O} = 1,23 - 0,06pH = 1,05V$$

Il faut calculer $E_{N,Co/Co^{2+}}$:

$$n(\mathrm{SO_4^{2-},\,7H_2O}) = m(\mathrm{SO_4^{2-},\,7H_2O}) \\ M(\mathrm{SO_4^{2-},\,7H_2O}) = 0.18 \text{ mol.}$$

 $^{^{-1}}$ La concentration en Co pour CoSO₄, 7H₂O à 50g.L $^{-1}$ est de 0.18mol/L comme M=281g/mol.

Comme c'est la quantité pour 1L, [Co²⁺]=0,18 mol. L⁻¹. Alors $E_{N,Co/Co^{2+}}=-0,29+0.03\log[\mathrm{Co^{2+}}]=-0.31\mathrm{V}$.

A courant nul, $\Delta E_{min} = 1,75-0,41=2,16\text{V}$, avec la chute ohmique $\Delta E_{min} = 3,26\text{ V}$.

- La charge échangée en un jour est : $C=I\Delta t=8,64\cdot10^8\mathrm{C}$, cad une quantité de C/F=8953 moles d'électrons échangés. Comme pour deux électrons consommés, il n'ya qu'un Co qui est crée : $n_{Co}=4477$ moles, cad 264kg de Co.
- $\eta=0,97$. Il y a toujours une petite quantité d' H_2 qui est formée, au détriment du Co, à cause de la faible différence entre les potentiels.
- \bullet On consomme $E=UI\Delta t{=}3{,}02{\rm GJ}.$ Il faut donc 11,8MJ pour créer 1kg de Co.