COMP319 Algorithms 1 Lecture 11 Dynamic Programming

Instructor: Gil-Jin Jang

Definition of Dynamic Programming

Longest common subsequence (LCS)

0-1 Knapsack problem

Textbook Chapter 15

Table of Contents

- Prerequisites
- Requirements for dynamic programming
- Longest common subsequence (LCS)
- 0-1 Knapsack problem

Divide and Conquer Brief description and comparison of:

- Linear Programming
- Quadratic Programming
- Dynamic Programming

PREREQUISITES

Divide and Conquer (분할정복)

- To solve a large problem with many factors, it is helpful to divide it into smaller <u>subproblems</u>
 - merge sort, quick sort
 - binary search (이분검색)
 - MapReduce (for parallel processing)

Divide and Conquer Analysis

- General solution
 - Often followed by a recursive solution (재귀용법)

$$T(n) = 2T(n/2) + O(f(n)) \in O(f(n) \cdot \log_2 n) = O(f(n) \cdot \lg n)$$

$$T(n) = kT(n/k) + O(f(n)) \in O(f(n) \cdot \log_k n) = O(f(n) \cdot \lg n)$$

- Algorithm design points:
 - How to define subproblems
 - o 해결가능한 분할 방법이 있어야 한다
 - How to guarantee BALANCED division
 - 균형되게 분할하여야 깊이를 줄일 수 있다

What is Programming (계획법)?

- In mathematics or economics, a set of procedure to find an optimal (min or max) solution <u>with</u> constraints
 - 조건부 최적화(최소화/최대화) 방법
- Some well-known programming
 - Linear programming
 - Quadratic programming
 - Integer programming
 - Dynamic programming .

Linear Programming (선형 계획법)

SIMPLEX: Finding a optimal with LINEAR constraints

Quadratic Programming (이차 계획법)

• CONVEX optimization:

Quadratic cost and quadratic / linear constraints

minimize
$$\frac{1}{2}\mathbf{x}^{T}\mathbf{H}\mathbf{x} + \mathbf{x}^{T}\mathbf{f}$$
subject to
$$\sum_{i \in I_{k}} x_{i} = b_{k}, \ k \in S_{equ}$$
$$\sum_{i \in I_{k}} x_{i} \leq b_{k}, \ k \in S_{neq}$$
$$x_{i} \geq 0, \quad i \in I.$$

$$\begin{aligned} & \min_{\mathbf{x}} \ 0.5x_1^2 + 0.5x_2^2 - 2x_1 - 2x_2 \\ & \text{subject to:} & -x_1 + x_2 \leq 2 \\ & x_1 + 3x_2 \leq 5 \\ & x_1^2 + x_2^2 - 2x_2 \leq 1 \\ & x_1^2 + x_2^2 - x_1 + 2x_2 \leq 1.2 \\ & 0 \leq \mathbf{x} \end{aligned}$$

Integer Programming (정수 계획법)

- Only integer solutions are accepted
 - $O(N^2)$ or $O(k^N)$ by exhaustive search
 - 가능한 모든 경우를 탐색하는 경우의 수

Overlapping Subproblems
Optimal Substructure
Longest Common Subsequence

DYNAMIC PROGRAMMING

Dynamic Programming

- Another strategy for designing algorithms is dynamic programming
 - A <u>metatechnique</u>, not an algorithm (like divide & conquer)
 - The word PROGRAMMING is historical and predates computer programming
- Similarly to divide-and-conquer, use when problem breaks down into recurring small subproblems
 - The parent problem is dependent on the previous, small subproblems
 - (과거의 해를 활용하여 현재의 문제해결)

Properties: Dynamic Programming

- It is used, when the solution can be recursively described in terms of solutions to subproblems (<u>optimal substructure</u>)
- Algorithm finds <u>solutions to subproblems</u> and stores them in <u>memory</u> for later use
- More efficient than "brute-force methods", which solve the same subproblems over and over again (overlapping subproblems)

Set 1. Overlapping Subproblems

- When the subproblems overlap, DP stores the subproblem solutions in the table before use
 - 겹치게 사용되는 같은 subproblem들의 해를 미리 표에 저장하여 다시 연산을 하지 않는다
 - DP is not applicable when no overlapping subproblems
- Examples
 - Non-DP: binary search subproblems do not overlap
 - DP: Fibonacci sequence

$$f(a,b) = f(a-1,b) + f(a,b-1), a \ge 1, b \ge 1$$

 $f(0,0) = f(n,0) = f(0,n) = 1, n \ge 1$

```
int fib(int n)
{
   if ( n <= 1 ) return n;
   else return fib(n-1) + fib(n-2);
}</pre>
```

Good: Easy to understand **Bad**: Recursive function calls consumes call stack in the system memory, and function switch time as well.

```
fib(5)

/
fib(4) fib(3)

/ \ fib(3) fib(2) fib(2) fib(1)

/ \ / \ / \ fib(2) fib(1) fib(0) fib(1) fib(0)

/ (fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

/ (fib(1) fib(0)
```

Significant amount of overlaps (redundancy)

http://doctormaroo.tistory.com/1

http://www.geeksforgeeks.org/dynamic-programming-set-1/

A. Memorization (Top-down, 하향식)

- Memorization:
 Whenever fib(n) is
 computed, store the
 value in a table
- Re-use:
 When fib (n-1) or fib (n-2) is
 requested, check the table first

```
#include<stdio.h>
#define NTL -1
#define MAX 100
int lookup[MAX];
/* Initialize Search Table */
void_initialize() {
  inti;
  for (i = 0; i < MAX; i++)
    lookup[i] = NIL;
/* Memorized Fibonacci */
int fib(int n) {
   if(lookup[n] == NIL) {
    if ( n <= 1 ) lookup[n] = n;
    else
     lookup[n] = fib(n-1) + fib(n-2);
   return lookup[n];
```

B. Tabulation (Bottom-up, 상향식)

- Memorization: fill the table when requested
 - 요구될 때 채운다
- Tabulation: fill the values first, and return the solution as the last filled value
 - 미리 사용될 값을 **예측**하고 채워 나간다
 - Good FILL STRATEGY is needed

```
/* With Table, no recursion */
#include<stdio.h>
int fib(int n) {
  int f[n+1];
  inti;
  f[0] = 0; f[1] = 1;
  for (i = 2; i <= n; i++)</pre>
      f[i] = f[i-1] + f[i-2];
  return f[n];
int main ()
  printf("Fibonacci number is %d\n",
    fib(9));
```

http://doctormaroo.tistory.com/1

http://www.geeksforgeeks.org/dynamic-programming-set-1/

Set 2. Optimal Substructure

- A problem is said to have optimal substructure if an optimal solution can be constructed efficiently from optimal solutions of its subproblems
 - How many subproblems are used in an optimal solution.
 - How many choices in determining subproblems
 - Running time depends roughly on (#subprob) x (#choices)
- Dynamic programming uses optimal structure in a bottom up manner:
 - Find optimal solutions to subproblems.
 - Choose which to use in optimal solution to the problem.

Prerequisites

Requirements for dynamic programming

Longest common subsequence

0-1 Knapsack problem

LCS

Longest Common Subsequence (LCS)

• Given two sequences $\mathbf{x}[1..m]$ and $\mathbf{y}[1..n]$, find the longest subsequence which occurs in both

$$X = A B C B D A B$$

$$Y = B D C A B A$$

- [B C] and [B A] are both subsequences of both X and Y
 o LCS? –the longest one among all the subsequences
- Brute-force (non-systematic) algorithm: For every subsequence of x, check if it's a subsequence of y
 - How many subsequences of x are there?
 - What will be the running time of the brute-force algorithm?

Brute-Force LCS Algorithm

- if |X| = m, |Y| = n, then there are 2^m subsequences of X; we must compare each with Y (n comparisons)
- So the running time of the brute-force algorithm is $O(n \ 2^m)$
 - there exists 2^m subsequences of x to check against n elements of y: ~ O(n 2^m)
- Brute-force: we can reduce the search entries by choosing minimum of the two sequences, but still exponential complexity $\sum_{l=1}^{k} \binom{k}{l} = 2^k, \ k = \min(m,n)$

LCS Algorithm

- LCS problem has optimal substructure:
 - Subproblems: find LCS of pairs of <u>prefixes</u> of x and y
 - Solutions of the above subproblems are parts of the final one.
- Simplify the subproblem:
 - Only consider the problem of finding the <u>length</u> of LCS
 - When finished we will see how to backtrack from this solution back to the actual LCS

LCS Algorithm

- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.
- Define X_i , Y_j to be the prefixes of X and Y of length i and j respectively
- Define c[i,j] to be the length of LCS of X_i and Y_j
- Then the length of LCS of X and Y will be c[m,n]

$$c[i,j] = \begin{cases} c[i-1,j-1]+1, & \text{if } x[i] = y[j] \\ max(c[i,j-1],c[i-1,j]), & \text{otherwise} \end{cases}$$

LCS recursive solution

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1, & \text{if } x[i] = y[j] \\ max(c[i,j-1],c[i-1,j]), & \text{otherwise} \end{cases}$$

- We start with i = j = 0 (empty substrings of x and y)
- Since X_0 and Y_0 are empty strings, their LCS is always empty (i.e. c[0,0] = 0)
- LCS of empty string and any other string is empty, so for every i and j: c[0,j] = c[i,0] = 0

LCS recursive solution

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1, & \text{if } x[i] = y[j] \\ max(c[i,j-1],c[i-1,j]), & \text{otherwise} \end{cases}$$

- When we calculate c[i,j], we consider two cases:
- Case 1: x[i] = y[j]
 - One more symbol in strings X and Y matches, so the length of LCS X_i and Y_j equals to the length of LCS of smaller strings X_{i-1} and Y_{i-1} , plus 1

LCS recursive solution

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1, & \text{if } x[i] = y[j] \\ max(c[i,j-1],c[i-1,j]), & \text{otherwise} \end{cases}$$

- Case 2: $x[i] \neq y[j]$
 - As symbols don't match, our solution is not improved, and the length of $LCS(X_i, Y_j)$ is the same as before, i.e., maximum of $LCS(X_i, Y_{j-1})$ and $LCS(X_{i-1}, Y_j)$

Why not just take the length of LCS(X_{i-1}, Y_{j-1})?

LCS Length Algorithm

```
LCS-Length(X, Y)
1. m = length(X) // get # symbols in X
2. n = length(Y) // get # symbols in Y
3. for i = 1 to m
     c[i,0] = 0 // special case: Y_0
4. for j = 1 to n
     c[0,j] = 0 // special case: X_0
5. for i = 1 to m // for all X_i
   for j = 1 to n // for all Y_j
    if X_i == Y_i c[i,j] = c[i-1,j-1] + 1
    else c[i,j] = max(c[i-1,j], c[i,j-1])
6. return c
```

Why not use recursive function? -- redundant

LCS Example

 We'll see how LCS algorithm works on the following example:

$$X = ABCB$$
 $Y = BDCAB$

What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$

 $X = AB$ C B
 $Y = BDCAB$

ABCB LCS Example (0) B B A Xi B B

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array c [5, 4]

ABCB

B

LCS Example (1) 3 B A B Xi 0 0 0 0 0 0 0 B 0

for
$$i = 1$$
 to m $c[i, 0] = 0$
for $j = 1$ to n $c[0, j] = 0$

ABCB LCS Example (2) 3 B A B Xi 0 0 0 0 0 0 0 3 B if $(X_i == Y_j)$ c[i,j] = c[i-1,j-1] + 1else c[i,j] = max(c[i-1,j], c[i,j-1])

ABCB LCS Example (3) 3 B B A Xi 0 0 0 0 0 0 0 B 0 B if $(X_i == Y_i)$ c[i,j] = c[i-1,j-1] + 1else c[i,j] = max(c[i-1,j], c[i,j-1])

ABCB LCS Example (4) 3 B B Xi 0 0 0 0 0 0 0 0 B if $(X_i == Y_i)$ c[i,j] = c[i-1,j-1] + 1else c[i,j] = max(c[i-1,j], c[i,j-1])

ABCB LCS Example (5) 3 B A Xi 0 0 0 0 0 0 0 0 B if $(X_i == Y_j)$ c[i,j] = c[i-1,j-1] + 1else c[i,j] = max(c[i-1,j], c[i,j-1])

ABCB LCS Example (6) 3 B A B Xi 0 0 0 0 0 0 0 0 0 3 B if $(X_i == Y_i)$ c[i,j] = c[i-1,j-1] + 1else c[i,j] = max(c[i-1,j], c[i,j-1])

LCS Example (10) **ABCB** 3 B A B Xi 0 0 0 0 0 0 0 0 B 0 1 3 B if $(X_i == Y_i)$ c[i,j] = c[i-1,j-1] + 1else c[i,j] = max(c[i-1,j], c[i,j-1])

ABCB LCS Example (11) В A B Xi 0 0 0 0 0 0 0 0 B 0 1 3 B if $(X_i == Y_j)$ c[i,j] = c[i-1,j-1] + 1else c[i,j] = max(c[i-1,j], c[i,j-1])

LCS Example (13) ABCB 3 B A B Xi 0 0 0 0 0 0 0 B 0 1 2 0 if $(X_i == Y_i)$ c[i,j] = c[i-1,j-1] + 1else c[i,j] = max(c[i-1,j], c[i,j-1])

ABCB LCS Example (15) 3 B A Xi 0 0 0 0 0 0 B 0 1 2 if $(X_i == Y_i)$ c[i,j] = c[i-1,j-1] + 1else c[i,j] = max(c[i-1,j], c[i,j-1])

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m, n]
- So what is the running time?

O(m*n)

since each c[i,j] is calculated in constant time, and there are m*n elements in the array

How to find actual LCS

- So far, we have just found the LENGTH of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y
 - Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1, j-1]
 - For each c[i,j] we can **BACKTRACK** how it was acquired:

For example, here
$$c[i, j] = c[i - 1, j - 1] + 1 = 2 + 1 = 3$$

Path: $(i, j) \rightarrow (i - 1, j - 1]$

How to find actual LCS - continued

Remember that:

$$c[i,j] = \begin{cases} c[i-1,j-1]+1, & \text{if } x[i] = y[j] \\ max(c[i,j-1],c[i-1,j]), & \text{otherwise} \end{cases}$$

- We can start from c[m, n] and go backwards
- Whenever c[i,j]=c[i-1,j-1]+1, remember x[i] (because x[i] is a part of LCS)
- When i=0 or j=0 (i.e. we reached the beginning), output remembered letters in reverse order

Finding LCS

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1 +	_ 1 _	1	1	2
3	С	0	1	1	2 ←	- 2	2
4	В	0	1	1	2	2	3

Finding LCS (2)

LCS (reversed order): **B C B**LCS (straight order): **B C B**(this string turned out to be a palindrome)

Conclusion

- Dynamic programming is a useful technique of solving certain kind of problems
- When the solution can be recursively described in terms of partial solutions, we can store these partial solutions and re-use them as necessary
- To know the items that make this maximum value, backtracking is necessary
- Running time
 (Dynamic programming vs. naïve algorithm):
 - LCS: O(m n) vs. $O(n2^m)$

Prerequisites

Requirements for dynamic programming

Longest common subsequence (LCS)

0-1 Knapsack problem

0-1 KNAPSACK PROBLEM

Knapsack problem

- Given some items, pack the knapsack to get the maximum total value.
 - Each item has some weight and some value.
 - Total weight that we can carry is no more than some fixed number W.
- Consider weights of items as well as their value.

Item #	Weight	Value	
1	1	8	
2	3	6	
3	5	5	

Knapsack problem formulation

• There are two versions of the problem:

- (1) "0-1 knapsack problem"
 - Items are indivisible; you either take an item or not. Solved with dynamic programming
- (2) "Fractional knapsack problem"
 - Items are divisible: you can take any fraction of an item.
 Solved with a greedy algorithm.

0-1 Knapsack problem

- Given a knapsack with maximum capacity W, and a set S consisting of n items
- Each item i has some weight w_i and benefit value b_i (all w_i , b_i and W are integer values)

- <u>Problem</u>: How to pack the knapsack to achieve maximum total value of packed items?
 - It is called a "0-1" problem, because each item must be entirely accepted or rejected.

0-1 Knapsack problem: a picture

0-1 Knapsack: brute-force approach

- Solve this problem with a straightforward algorithm
 - Since there are n items, there are 2ⁿ possible combinations of items.
 - We go through all combinations and find the one with the most total value and with total weight less or equal to W
- Running time will be O(2ⁿ) Can we do better?
 If items are labeled 1..n, then a subproblem would be to find an optimal solution for
 S_k = {items labeled 1, 2, ... k}
- Question: can we describe the final solution (S_n) in terms of subproblems (S_k) ?

Defining a Subproblem

$w_2 = 4$ $b_2 = 5$	$w_3 = 5$ $b_3 = 8$	$w_4 = 3$ $b_4 = 4$	
		2	

Max weight: W = 20

For S_4 :

Total weight: 14;

total benefit: 20

$w_1 = 2$ $b_1 = 3$	$w_2 = 4$ $b_2 = 5$	$w_3 = 5$ $b_3 = 8$	$w_4 = 9$ $b_4 = 10$
---------------------	------------------------	------------------------	----------------------

For S₅:

Total weight: 20 total benefit: 26

		Item W _i		Benefit b _i	
		_# 1	2	3	
	$ S_4 $	2	3	4	
S_5		3	4	5	
		4	5	8	
		5	9	10	
1					

Solution for S_4 is not part of the solution for S_5 !!!

Alternate Formulation of Subproblems

- As we have seen, the solution for S_4 is not part of the solution for S_5
 - The definition of a subproblem is not satisfied
- Alternate formulation
 - Add another parameter: <u>w</u>, which will represent the <u>exact</u> weight for each subset of items
- Let X_k^w be the best subset of S_k that has maximum total weight w, then X_k^w is either of:
 - 1) X_{k-1}^w : the best subset of S_{k-1} with total weight w
 - 2) $X_{k-1}^{w-w_k} \cup \{tem_k\}$: the best subset of S_{k-1} with total weight $w-w_k$ plus the item k

Alternate Formulation of Subproblems

- $X_k^w = X_{k-1}^w$ or $X_{k-1}^{w-w_k} \cup \{tem_k\}$
 - To determine which option to take, we need to know the benefits of the above
- Recursive formula for subproblems:
 - Let B_k^w be the total benefit of X_k^w , then the subproblem then will be to compute B_k^w
 - Recursive formula for subproblems:

$$B_{k}^{w} = \begin{cases} B_{k-1}^{w} & \text{if } w_{k} > w \\ \max\left\{B_{k-1}^{w}, B_{k-1}^{w-w_{k}} + b_{k}\right\} & \text{otherwise} \end{cases}$$

Recursive Formula

$$B_{k}^{w} = \left\{ \begin{array}{l} B_{k-1}^{w} & \text{if } w_{k} > w \\ \max \left\{ B_{k-1}^{w}, B_{k-1}^{w-w_{k}} + b_{k} \right\} & \text{otherwise} \end{array} \right.$$

- The best subset of S_k that has the total weight w, either contains item k or not.
 - Case 1: $w_k > w$. Item k cannot be part of the solution; if it is added, regardless of the other items, the total weight becomes larger than w.
 - Case 2: $w_k \le w$. Then the item k can be in the solution, and choose the case with greater benefit.

0-1 Knapsack Algorithm

```
Denote B[k,w] for B_k^W
for w = 0 to W
 B[0,w] = 0
for i = 0 to n
 B[i, 0] = 0
  for w = 0 to W
     if w_i \le w // \text{ consider item i}
           if b_i + B[i-1, w-w_i] > B[i-1, w]
                 B[i,w] = b_i + B[i-1,w-w_i]
           else
                 B[i,w] = B[i-1,w]
     else B[i, w] = B[i-1, w] // w_i > w
```

Running time

for
$$w = 0$$
 to W $O(W)$
 $B[0,w] = 0$

for $i = 0$ to n $Repeat \ n \ times$
 $B[i,0] = 0$

for $w = 0$ to W $O(W)$

...

What is the running time of this algorithm?

→ O(n*W)

Remember that the brute-force algorithm takes O(2ⁿ)

Example (1)

 i
 0
 1
 2
 3
 4

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <th

Run the algorithm on the following data:

n = 4 (# of elements) W = 5 (max weight) Elements (weight, benefit): (2,3), (3,4), (4,5), (5,6)

for
$$w = 0$$
 to W

$$B[0,w] = 0$$

Example (2)

 i
 0
 1
 2
 3
 4

 0
 0
 0
 0
 0

 1
 0
 0
 0

 2
 0
 0
 0

 3
 0
 0
 0

 4
 0
 0
 0

 5
 0
 0
 0

n = 4 (# of elements) W = 5 (max weight) Elements (weight, benefit): (2,3), (3,4), (4,5), (5,6)

for
$$i = 0$$
 to n
 $B[i,0] = 0$

Items: Example (3) 1: (2,3) 1 2: (3,4) W 0 0 0 0 0 3: (4,5) i=14: (5,6) $b_i = 3$ 0 $w_i=2$ 3 0 W=14 0 $W - W_i = -1$ 5 0

```
if w_i \le w // item i can be part of the solution

if b_i + B[i-1,w-w_i] > B[i-1,w]

B[i,w] = b_i + B[i-1,w-w_i]

else

B[i,w] = B[i-1,w]

else B[i,w] = B[i-1,w] // w_i > w
```

Items: Example (4) 1: (2,3) 1 2: (3,4) W 0 0 0 0 0 3: (4,5) *i*=1 4: (5,6) 1 0 0 $b_i = 3$ 3 0 $w_i=2$ 3 0 w=24 0 $W-W_i = 0$ 5 0

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Items: Example (5) 1: (2,3) 1 2: (3,4) W 0 0 0 0 0 3: (4,5) *i*=1 4: (5,6) 1 0 0 $b_i = 3$ 3 0 $w_i=2$ 3 3 0 W=34 0 $W-W_i=1$ 5 0

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Items: Example (6) 1: (2,3) 1 2: (3,4) W 0 0 0 0 0 3: (4,5) *i*=1 4: (5,6) 0 0 $b_i = 3$ 3 0 $w_i=2$ 3 3 0 3 4 0 $W-W_i=2$ 5 0

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Items: Example (7) 1: (2,3) 1 2: (3,4) W 0 0 0 0 0 3: (4,5) *i*=1 4: (5,6) 0 0 $b_i = 3$ 3 0 $w_i=2$ 3 3 0 W=53 4 0 $W-W_i=2$ 5 3 0

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Items: Example (8) 1: (2,3) 2: (3,4) W 3: (4,5) i=2 $b_i=4$ $w_i=3$ 4: (5,6) w=1 $W-W_i=-2$

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (9) W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$b_i = 4$$

$$i=2$$
 $b_i=4$
 $w_i=3$

$$w=2$$

$$W-W_i=-1$$

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

4

5

0

0

3

Example (10)

W 0 0 0 0 0 0 0 0 3 3 0 3 3 0 3

Items:

- 1: (2,3)
- 2: (3,4)
- 3: (4,5)
- 4: (5,6)

$$b_i = 4$$

$$i=2$$
 $b_i=4$
 $w_i=3$

$$W=3$$

$$W-W_i=0$$

if $w_i \le w$ // item i can be part of the solution $if b_i + B[i-1, w-w_i] > B[i-1, w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else $B[i, w] = B[i-1, w] // w_i > w$

Example (11)

W

4

5

O	,	2	3	7
0	0	0	0	0
0	0	0		
0	3	3		
0	3	4		
0	3	4		
0	3			

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$b_i = 4$$

$$w_i = 3$$

$$W=4$$

$$W-W_i=1$$

if $w_i \le w$ // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else B[i,w] = B[i-1,w] // $w_i > w$

Example (12) W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$w_i=3$$

$$W=5$$

$$W-W_i=2$$

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (13)

W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i=3

w=1..3

if
$$w_i \le w // item i$$
 can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else

$$B[i,w] = B[i-1,w]$$

else $B[i,w] = B[i-1,w] // w_i > w$

Example (14)

W

3

4

5

0

0	0	0	0	0
0	0	0	0	
0	3	3	3	
0	3	4	4	
0	3	Λ	¥ <u>5</u>	

Items:

1: (2,3)

2: (3,4)

3: (4,5)

$$b_i = 5$$

$$W_i = 4$$

$$W=4$$

$$W-W_i=0$$

if $w_i \le w$ // item i can be part of the solution $if b_i + B[i-1, w-w_i] > B[i-1, w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else $B[i, w] = B[i-1, w] // w_i > w$

Example (15)

W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$i=3$$

$$W_i = 4$$

$$W=5$$

$$W-W_i=1$$

if $w_i \le w$ // item i can be part of the solution $if b_i + B[i-1, w-w_i] > B[i-1, w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else

$$B[i,w] = B[i-1,w]$$

else $B[i,w] = B[i-1,w] // w_i > w$

Example (16)

W

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i=3

 $b_i = 5$ $w_i = 4$

w=1..4

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (17)

W i	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	3	3	3	3
3	0	3	4	4	4
4	0	3	4	5	5
5	0	3	7	7 —	→ 7

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$

$$B[i,w] = B[i-1,w]$$

else $B[i,w] = B[i-1,w] // w_i > w$

Comments

- This algorithm only finds the max possible value that can be carried in the knapsack
- To know the items that make this maximum value, backtracking is necessary
 - See the LCS algorithm
- Running time
 (Dynamic programming vs. naïve algorithm):
 - 0-1 Knapsack problem: O(W n) vs. $O(2^n)$
 - LCS: O(m n) vs. $O(n2^m)$

Next topic: Greedy Algorithms

END OF LECTURE 11