## 걷지 말고 기어

"Speed. What else?"

Capstone Design Final

Advisor: Prof, YongHwa Park

TA: Sooyong Kim

Team Member: Sangwon Yoon, Duckyoung Kim, Minkyung Kim, Won Choi, Yechan Lee, Sungwoog Hong, Cheol Sagong



#### CONTENTS 01 HARDWARE DESIGN

- Overview
- Pick up
- Gear
- · Frame Issue
- · Vibration
- · Heat Transfer

#### **CONTENTS 02 SOFTWARE**

- · Ball Detect
- · Avoiding Red Ball
- · Ball Picking
- Return
- · Integrated System

CONTENTS 03 CONCLUSION: OUR CREATIVE SOLUTIONS

## Hardware Design

#### 1. PICK UP MODULE

**RAKE SHAPED ROOF** 

**RAKE SHAPED ROLLER** 

STORAGE & BACK DOOR



2) HEAT TRANSFER

FAN

**ELECTRICAL SYSTEM** 

3) GEAR-WHEEL SYSTEM

&
VIBRATION REDUCED STRUCTURE

#### 01) PICK UP & DROP MODULE

#### (SIDE VIEW)

(BEHIND VIEW)





Use Motor to open & close the door



(FRONT VIEW)



#### 01) PICK UP & DROP MODULE

#### (SIDE VIEW)

#### (BEHIND VIEW)









### Optimal dimension of picking up the ball (cf.2<sup>nd</sup> presentation)



Minimize the ball escaping ∴ h≒12cm, l≒9cm

#### 01) PICK UP & DROP MODULE

#### (SIDE VIEW)

(BEHIND VIEW)





Use Motor to open & close the door



(FRONT VIEW)



#### Hardware

#### 01) PICK UP & DROP MODULE

(BEHIND VIEW)



Use Motor to open & close the door



(FRONT VIEW)



Rake shaped roof preventing Ball Escaping

- 1. Lighter
- 2. Effectively block the ball

#### **02) GEAR SYSTEM**





X2.67 faster!

Effect of Gear-Wheel System (c.f. 2<sup>nd</sup> Presentation)



#### **03) FRAME ISSUE**

#### **Primitive Design**



#### Very Rigid Body Frame Assumption: The filed will be flat

#### However, in real situation



## Why the diagonal movement Is stopped?

The field is not flat,

Not all the wheels touches the floor,

# Detach

Mecanum wheel system

#### **03) FRAME ISSUE**

#### **Improved Design**

Lack of Time Lack of Cost Preserve Stability

TRIZ : Segmentation



Segmentation : Add Degree of Freedom



#### **04) VIBRATION ANALYSIS**

#### **Ball Depth Detection**



#### Raw Distance Data (AC+DC)



#### **Vibration (AC) Distance Data**



Eliminate 2nd order polynomial & Pixel errors

#### **04) VIBRATION ANALYSIS**

#### **Horizontal position Detection**



#### Raw Distance Data (AC+DC)



#### **Vibration (AC) Distance Data**



Eliminate 2nd order polynomial & Pixel errors

#### **04) VIBRATION ANALYSIS**

#### **Acceptable Range of Picking up**

## Ball Pick up Algorithm : The roller starts to rotate when the blue ball is 60cm away



Detection error from vibration is in affordable range!

#### Hardware

#### **05) HEAT TRANSFER**



#### Before Heat Transfer Design

Roller Converter: 48°C

Wheel Motor Converter: 67 °C
 Heat Transfer System is required

-NUC: 45~50 ℃

#### Analyze required spec of fin & fan!





#### **05) HEAT TRANSFER**

Assumption: Q=3.5W (converter efficiency 93%)

#### **Analytical Solution**

## (i) No fin&fan, Natural Convection Ti=25 °C http=27,14

Converter

hside=4,503

ΔT=38.67 °C
∴Tf=63.67 °C

hbottom=14,1

(ii) Fin & Forced Convection



h=75.5

Fin Efficiency: 0,995

1

ΔT=4.63 ℃

∴Tf=29.63 ℃

#### **Solidworks Simulation**

#### Condition Set

- 1) Steady state
- 2) Convergence Tolerance: 0,0001
- (i) No fin&fan, Natural Convection



Result: Tmax 65°C

(ii) Fin & Forced Convection



Result: T<sub>max</sub> 43°C T<sub>fin\_surface</sub> 30 °C

Two results are same! Suggested Fin&Fan is appropriate!

#### Hardware

#### **05) HEAT TRANSFER**

#### **Heat Transfer system**



#### Real Temperature obtained from thermal camera

NUC



**IFRONT VIEW** 





(SIDE VIEW)

(BACK VIEW)

## Software

#### Software Integration



#### Ball\_detect\_node

- Detect the ball and get the position of the ball
- Publish the position data of Red, Blue and Green balls

#### Control\_node

- -Subscribe the position data
- -Decide the proper action of each situation.
- -Publish the motor control signal

#### Labview

- -Subscribe the motor control signal
- -Decide the motor speed ...

#### Overall Path Generation Algorithm















#### Back to the basket







## Check the final system on the DEMO!!

### Conclusion: Creative solutions

#### Creativity

## Light & Simple structure

Reduce roller weight



Rake shape: reduce 85% of weight

Frame Segmentation



#### **Fast Speed**



Gear system! X2,67 faster

#### Efficient Algorithm

Picking while moving! Feedback control!



A&D



## Vibration analysis





#### Distance – 2<sup>nd</sup> order polynomial



## Vibration analysis- fft result



near distance was chosen for analysis!

## Vibration analysis- fft result (direct motion)



Distance error is affordable!

No meaningful vibration included!

## Vibration analysis- fft result (direct motion)



Distance error is affordable! No meaningful vibration included!

## Vibration analysis- fft result (diagonal motion)



Distance error is affordable!



∴ 0.7cm vibration amplitude is acceptable within the roller boundary!

#### Cam Position



$$D_{\text{max}} \le \infty \Rightarrow \alpha = 24^{\circ}, D_{\text{min}} = 11.7 \text{cm}$$
, h=31.9cm

Thank You