(23) Теореша об ограниченности метр й фин мог отреже и техрена о доститиности его своих наибоновенено u manueromero zararereni. Meoperua (οδ ογραφιία-Τη) Μησης $f(x) \in C_{[a,b]}$, μουρα f(x) ογραφιία-νενα μα [a,b], μ. e = Im, $M \in \mathbb{R}$ $\forall x \in [a,b]$ $m \notin f(x) \notin M$. $f(x) \in M$.

αθού Ωπ προπιίδ-το: πρεοποιονικών, τηνο f(x) με ογραφιίατετα $f(x) \notin M$.

αθογγη $f(x) \in [a,b]$ $f(x) \in [a,b]$ $f(x) \in [a,b]$ II=[a, bi]=[a, b], the) me apamurenna Chepry. $I_2 = [a_2, b_2]$, $b_2 - a_1 = b - a_2$, $I_2 < I_1$, f(x) me orpaneur. Obepxy ma I_2 In = [an; bn], len-an = $\frac{6-a}{2^{n-1}} \rightarrow 0$ In $(I_{n-1}f(x))$ ree or passer. Chepxy ma In In procued-mo buoncerums omprenob. Fre N borsepeur kne In $f(x_n) > n$. To upunusuny buoncerums omprenob $\exists c \in \mathbb{R}$ $\forall n \in \mathbb{N}$, $C \in In$ $C_{n} \leq x_{n} \leq b_{n} \Rightarrow x_{n} \Rightarrow C(n \Rightarrow \infty) \Rightarrow f(x_{n}) \Rightarrow f(c) (n \Rightarrow \infty)$ $f(c_{n}) \Rightarrow f(c) (n \Rightarrow \infty) \Rightarrow f(c) (n \Rightarrow \infty)$ $f(c_{n}) \Rightarrow f(c) (n \Rightarrow \infty) \Rightarrow f(c) (n \Rightarrow \infty)$ $f(x_n) \rightarrow f(c) \Rightarrow f(x_n) \geq h_0 \Rightarrow \begin{cases} f(c) = h_0 \\ h_0 > f(c) \end{cases} - n_0$ remulsoperul $\Rightarrow f(x)$ or pan. (elepsy.) ри но Hx) - огран-а същуу. mequeua (o goernu neueucernu supu int zuareuwi) Myorne $f(x) \in G_{a;e_{3}}$ Osognarueu reneg mull, m = inff(x) $M = \sup_{x \in E_{a}, e_{3}} f(x)$ Torra 72 of et 0 67 (co) - m Torga $\exists c$, $d \in [a,b]$ f(c) = m, f(d) = ell. Tyreg nowne, $\forall mo$ $\exists c \in [a,b]$, f(c) = m, $m \in \{c \in [a,b]\}$ f(c) > m. $\exists c \in [a,b]$, f(c) = m, $m \in \{c \in [a,b]\}$ f(c) > m. $\exists c \in [a,b]$, f(c) = m, f(c) = m. $\exists c \in [a,b]$ f(c) = m. $\exists c \in [a,b]$ f(c) = m. $\exists c \in [a,b]$ f(c) = m. M. R JUL > 0 YXE [9,6] g(x) < ll =) 1 / (x)-m < ll * f(x)-m > 1 $f(x) \le m + 1 = m + \ell > f(x')$ Fx' < m + 1 promubo peral, y Ianewour napegna =>

=73 CEEq,63 f(e)=m, Au-mo, rmo 3de [q,63 f(d)=ell.