PHY2053 EXAM 1 (PRACTICE)

Fall, 2019

Prof. Douglas H. Laurence

Abstract

This exam consists of 18 multiple choice questions. You must record your answers on a Scantron sheet. Don't record your answers on this print-out; I will not accept it as a submission. Fill out the Scantron sheet in with a pencil, not a pen. Don't forget to include your name, the course, and exam number on the Scantron sheet.

Figure 1: Figure for Problem 1

- 1. What is the y-component of the vector \vec{A} , shown in Figure 1 above?
 - (a) -2.87
 - (b) 2.87
 - (c) -4.10
 - (d) 4.10
- 2. Consider the vector $\vec{A} = -2\hat{i} + 4\hat{j}$. What is the direction of \vec{A} ? Measure the angle **counter-clockwise from the** +x-axis.
 - (a) 27°
 - (b) 63°
 - (c) 117^{o}
 - (d) 243°

Figure 2: Figure for Problems 3 and 4

3. Consider the vectors \vec{A} and \vec{B} , as shown in Figure 2 above. What is the x-component of $\vec{A} + \vec{B}$?

- (a) 0.4
- (b) 1.5
- (c) 1.9
- (d) 3.4

4. Consider the vectors \vec{A} and \vec{B} , as shown in Figure 2 above. What is $\vec{A} \cdot \vec{B}$?

- (a) 3.9
- (b) -3.9
- (c) 4.6
- (d) -4.6

5. Under what conditions can kinematics be used?

- (a) Kinematics can always be used
- (b) Only if the acceleration of an object is constant
- (c) Only if the speed of an object is constant
- (d) Only if the motion of an object is in a straight line

6. A jogger runs half of a circular track in 100s. If the radius of the track is 100m, what is the jogger's average **velocity**?

- (a) 2 m/s
- (b) 3.14 m/s
- (c) 4 m/s
- (d) 6.28 m/s

7. A car accelerates at 4.7 m/s², from rest, to a top speed of 57 m/s. How long does it take the car to reach its top speed?
 (a) 4.7s (b) 12.1s (c) 57s (d) 267.9s
8. An Olympic sprinter can run the 100m dash in about 10s. If the sprinter's acceleration were constant during the sprint, what would it be?
(a) 2 m/s^2 (b) 5 m/s^2 (c) 10 m/s^2 (d) 20 m/s^2
9. The observatory on the 82nd floor of the Empire State Building is 320m above the ground. If you dropped a penny from there, with what speed would it hit the ground?
(a) 8 m/s (b) 10 m/s (c) 80 m/s (d) 6,400 m/s
10. How fast would you have to throw an object upward for it to reach a height of 12.5m?
 (a) 0 m/s (b) 10 m/s (c) 15.8 m/s (d) 250 m/s
11. A car accelerates from rest at 6 $\rm m/s^2$ for 5s. What is the car's average velocity during this time?
 (a) 0 m/s (b) 15 m/s (c) 30 m/s (d) 45 m/s
12. A car accelerates from rest at 5 m/s 2 for 200m. Suddenly, the car brakes at 7 m/s 2 until stopped. How long does the entire trip take?
 (a) 6.4s (b) 8.9s (c) 10.2s (d) 15.3s

13.	A bicycle's velocity points in the $-x$ -direction while its acceleration points in the $+x$ -direction. Which of the following statements about the bicycle is true?
	(a) The bicycle is slowing down
	(b) The bicycle is speeding up
	(c) The bicycle's speed isn't changing
	(d) There isn't enough information given to know the behavior of the bicycle's speed

(c) 13 m/s

(d) 15 m/s

15. A projectile is launched with a speed of 15 m/s at an angle of 30°. After 1s, what is the projectile's acceleration?

- (a) 2.5 m/s^2 (b) 10 m/s^2
- (c) 13 m/s^2
- (d) 15 m/s^2

16. A projectile is fired off the roof of a 15m tall building, with a speed of 17 m/s and angle of 40° above the horizontal. What is the maximum height, above the ground, of the projectile?

- (a) 3m
- (b) 12m
- (c) 15m
- (d) 18m

17. A projectile is fired off the roof of a 15m tall building, with a speed of 17 m/s and angle of 40° above the horizontal. How far away from the building does the projectile land?

- (a) 14.3m
- (b) 24.7m
- (c) 28.6m
- (d) 39m

18. Which of the following statements is true regarding the trajectory of a projectile?

- (a) The trajectory is always symmetric
- (b) The trajectory is symmetric only if the projectile starts and ends at the same height
- (c) The trajectory is symmetric only if the projectile starts and ends at the same location
- (d) The trajectory is never symmetric

FORMULA SHEET

• Vectors:

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

$$= A_x B_x + A_y B_y + A_z B_z$$

$$|\vec{A} \times \vec{B}| = AB \sin \theta$$

• Kinematics:

$$g = 10 \text{ m/s}^2$$

$$\vec{v}_{av} = \frac{\Delta \vec{x}}{\Delta t}$$

$$\vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}$$

$$\Delta x = v_0 t + \frac{1}{2} a t^2$$

$$v = v_0 + a t$$

$$v^2 = v_0^2 + 2a \Delta x$$

$\underline{\mathbf{ANSWERS}}$

- 1. (c)
- 2. (c)
- 3. (a)
- 4. (d)
- 5. (b)
- 6. (a)
- 7. (b)
- 8. (a)
- 9. (c)
- 10. (c)
- 11. (b)
- 12. (d)
- 13. (a)
- 14. (c)
- 15. (b)
- 16. (d)
- 17. (d)
- 18. (b)