รายงานการทดลองในหัวข้อ

Time Series Forecasting on crude oil using Long-short term memory

จัดทำโดย

นายรวิชา ฮาชิโมโตะ รหัสนักศึกษา 600610768 นายรักษ์พงศ์ ทอหุล รหัสนักศึกษา 600610769 นายสุริยา เตชะลือ รหัสนักศึกษา 600610790

เสนอ

ดร.เกษมสิทธิ์ ตียพันธ์

รายงานนี้เป็นส่วนหนึ่งของวิชา 261499

Deep learning

คำนำ

รายงานนี้จัดทำขึ้นเพื่อสรุปผลการทดลอง การใช้โมเคล deep learning ในการแก้ปัญหาการทำนาย ราคาน้ำมันดิบในตลาดน้ำมันสหรัฐอเมริกา ซึ่งราคาน้ำมันดิบมีผลต่อราคาของสินค้าอุปโภคบริโภค อีกทั้ง ยังเป็นตัวชี้วัดเศรษฐกิจอีกชนิดหนึ่ง ผู้ศึกษาจึงได้ทำการทดลองในเรื่องนี้ โดยผู้ศึกษาได้เลือกใช้ Long-short term memory ในการแก้ไขปัญหาในครั้งนี้ เนื่องจาก Long-short term memory เป็นโมเคลที่ใช้ข้อมูลจากผล ในอดีต และผลจาก output layer ที่ผ่านมาในการรับเป็นข้อมูล input ต่อไป ซึ่งผู้ศึกษาคาดว่า ราคาน้ำมันดิบ ในอดีตอันใกล้ จะส่งผลต่อราคาน้ำมันดิบในอนาคต ดังนั้นจึงเลือกใช้ Long-short term memory ในการ ทดลองครั้งนี้ ซึ่งผลลัพธ์ที่ได้เป็นไปตามที่ผู้ศึกษาคาดหวังไว้ เนื่องจากราคาน้ำมันในอดีตอันใกล้ ส่งผลต่อ ราคาน้ำมันในอนาคตเป็นอย่างมาก และพบว่ายิ่งปรับช่วงเวลาให้น้อยลงยิ่งส่งผลดีต่อ output ที่ได้

สารบัญ

คำนำ	1
สารบัญ	2
การเตรียมการทดลอง	3
ข้อมูลที่ใช้ในการทคลอง	3
โมเคลที่ใช้ในการทคลอง	4
รูปแบบการทดลอง	6
ผลการทดลอง	7
สรุปผลการทดลอง	8

การเตรียมการทดลอง

1. ข้อมูลที่ใช้ในการทดลอง

ข้อมูลราคาน้ำมันคิบในตลาดน้ำมันสหรัฐอเมริกา ตั้งแต่วันที่ 1 มกราคม ค.ศ 2003 ถึง 30 มิถุนายน ค.ศ. 2020 ซึ่งเป็นข้อมูลแบบรายวัน จากเว็บไซต์ www.quandl.com โดยลักษณะของข้อมูลแบ่ง ออกเป็น 2 คอลัมน์ ประกอบด้วย ข้อมูลวันที่ของราคาน้ำมัน และข้อมูลราคาน้ำมันหน่วยเป็นดอลลาร์สหรัฐ ต่อบาร์เรล ซึ่งมีลักษณ์ดังรูปที่ 1 และทำการ Visulization ข้อมูลดังรูปที่ 2

	value
Date	
2003-01-02	30.05
2003-01-03	30.83
2003-01-06	30.71
2003-01-07	29.72
2003-01-08	28.86

รูปที่ 1 ข้อมูลราคาน้ำมันคิบจากเว็บไซต์ www.quandl.com

รูปที่ 2 ข้อมูลราคาน้ำมันคิบจากเว็บ ไซต์ www.quandl.com โคยการทำ Visulization

โดยผู้ศึกษา ได้ทำการแบ่งข้อมูลเป็น 10% cross validation สำหรับการ Train และ Test ในแต่ละ Epoch คังรูปที่ 3

รูปที่ 3 ข้อมูลราคาน้ำมันคิบถูกแบ่งออกเป็น 10% cross validation

2. โมเดลที่ใช้ในการทดลอง

ผู้ศึกษาได้เลือกใช้ Long-short term memory ในการแก้ไขปัญหาในครั้งนี้ เนื่องจาก Long-short term memory เป็นโมเคลที่ใช้ข้อมูลจากผลในอดีต และผลจาก output layer ที่ผ่านมาในการรับเป็นข้อมูล input ต่อไป ซึ่งมีการปรับค่า input และ จำนวน epoch มีลักษณะ 1 input layer, 2 LSTM layer และ output layer จำนวน 1 โหนดซึ่งเป็นผลการทำนาย มีลักษณ์ โมเคลดังรูปที่ 4 ซึ่งโมเคลเป็นลักษณะ many to one ดัง รูปที่ 5

รูปที่ 4 ลักษณะของโมเคลในการทำลอง

many to one

รูปที่ 5 ลักษณะของโมเคล LSTM แบบ many to one

รูปแบบการทดลอง

ทำการเปลี่ยนแปลงค่าช่วงของ timesteps ในแต่ละเลเยอร์ เพื่อให้ข้อมูลการรู้จำแต่ต่างการ ไป โดยผู้ศึกษาตั้งสมมติฐานว่า ค่า timesteps ที่แตกต่างกันจะส่งผลกระทบต่อ การเปลี่ยนแปลงเทรนของ โมเคล และการเปลี่ยนแปลงจำนวนรอบในการ Trian จะทำให้โมเคลทำนายผลได้ใกล้เคียงและแม่นยำยิ่งขึ้น โดยผู้ศึกษาได้ทำกาออกแบบ รูปแบบการทดลองออกเป็น 9 แบบดังนี้

		Timesteps		
	จำนวน	5	15	25
	200	การทดลองที่ 1	การทดลองที่ 2	การทดลองที่ 3
Epoch	5004	การทคลองที่ 4	การทคลองที่ 5	การทคลองที่ 6
	1000	การทดลองที่ 7	การทดลองที่ 8	การทดลองที่ 9

Model: "model_2"

Layer (type)	Output Shape	Param #	
input_3 (InputLayer)	[(64, 5, 1)]	0	=======
lstm_4 (LSTM)	(64, 5, 10)	480	
lstm_5 (LSTM)	(64, 5, 10)	840	
dense_2 (Dense)	(64, 5, 1)	11	

Total params: 1,331 Trainable params: 1,331 Non-trainable params: 0 Model: "model_8"

Layer (type)	Output Shape	Param #	
input_9 (InputLayer)	[(64, 15, 1)]	0	====
lstm_16 (LSTM)	(64, 15, 10)	480	
lstm_17 (LSTM)	(64, 15, 10)	840	
dense_8 (Dense)	(64, 15, 1)	11	

Total params: 1,331 Trainable params: 1,331 Non-trainable params: 0

รูปที่ 7 รูปแบบการทคลองที่ 2 epoch 200 timesteps 15

Model: "model_4"

Layer (type)	Output Shape	Param #	
input_5 (InputLayer)	[(64, 25, 1)]	0	:======:
Istm_8 (LSTM)	(64, 25, 10)	480	
Istm_9 (LSTM)	(64, 25, 10)	840	
dense_4 (Dense)	(64, 25, 1)	11	

Total params: 1,331 Trainable params: 1,331 Non-trainable params: 0

รูปที่ 8 รูปแบบการทคลองที่ 3 epoch 200 timesteps 25

Model: "model_5"

Layer (type)	Output Shape	Param #	_
input_6 (InputLayer)	[(64, 5, 1)]	0	:=:
lstm_10 (LSTM)	(64, 5, 10)	480	_
lstm_11 (LSTM)	(64, 5, 10)	840	_
dense_5 (Dense)	(64, 5, 1)	11	_

Total params: 1,331 Trainable params: 1,331 Non-trainable params: 0

รูปที่ 9 รูปแบบการทคลองที่ 4 epoch 500 timesteps 5

Model: "model_6"

Layer (type)	Output Shape	Param #	
input_7 (InputLayer)	[(64, 15, 1)]	0	===:
lstm_12 (LSTM)	(64, 15, 10)	480	
lstm_13 (LSTM)	(64, 15, 10)	840	
dense_6 (Dense)	(64, 15, 1)	11	

Total params: 1,331 Trainable params: 1,331 Non-trainable params: 0

รูปที่ 10 รูปแบบการทคลองที่ 5 epoch 500 timesteps 15

Model: "model_7"

Layer (type)	Output Shape	Param #	
input_8 (InputLayer)	[(64, 30, 1)]	0	==:
lstm_14 (LSTM)	(64, 30, 10)	480	
lstm_15 (LSTM)	(64, 30, 10)	840	
dense_7 (Dense)	(64, 30, 1)	11	_

Total params: 1,331 Trainable params: 1,331 Non-trainable params: 0

รูปที่ 11 รูปแบบการทคลองที่ 6 epoch 500 timesteps 25

Model: "model_9"

Layer (type)	Output Shape	Param #	
input_10 (InputLayer)	[(64, 5, 1)]	0	=======
lstm_18 (LSTM)	(64, 5, 10)	480	
lstm_19 (LSTM)	(64, 5, 10)	840	
dense_9 (Dense)	(64, 5, 1)	11	

Total params: 1,331 Trainable params: 1,331 Non-trainable params: 0

รูปที่ 12 รูปแบบการทคลองที่ 7 epoch 1000 timesteps 5

Model: "model_10"

Layer (type)	Output Shape	Param #	
input_11 (InputLayer)	[(64, 15, 1)]	0	:======:
lstm_20 (LSTM)	(64, 15, 10)	480	
lstm_21 (LSTM)	(64, 15, 10)	840	
dense_10 (Dense)	(64, 15, 1)	11	

Total params: 1,331 Trainable params: 1,331 Non-trainable params: 0

รูปที่ 13 รูปแบบการทคลองที่ 8 epoch 1000 timesteps 15

Model: "model"

Layer (type)	Output Shape	Param #	
input_1 (InputLayer)	[(64, 30, 1)]	0	
lstm (LSTM)	(64, 30, 10)	480	
lstm_1 (LSTM)	(64, 30, 10)	840	
dense (Dense)	(64, 30, 1)	11	

Total params: 1,331 Trainable params: 1,331 Non-trainable params: 0

รูปที่ 14 รูปแบบการทคลองที่ 9 epoch 1000 timesteps 25

ผลการทดลอง

จากการทดลองเปลี่ยนแปลงค่าช่วงของ timesteps ในแต่ละเลเยอร์ และการเปลี่ยนแปลง จำนวนรอบในการ Trian ได้ผลลัพธ์ออกมาดังนี้

รูปที่ 15 ผลการทคลองที่ 1 epoch 200 timesteps 5

รูปที่ 16 ผลการทคลองที่ 2 epoch 200 timesteps 15

รูปที่ 17 ผลการทคลองที่ 3 epoch 200 timesteps 25

รูปที่ 18 ผลการทคลองที่ 4 epoch 500 timesteps 5

รูปที่ 19 ผลการทคลองที่ 5 epoch 500 timesteps 15

รูปที่ 20 ผลการทคลองที่ 6 epoch 500 timesteps 25

รูปที่ 21 ผลการทคลองที่ 7 epoch 1000 timesteps 5

รูปที่ 22 ผลการทคลองที่ 8 epoch 1000 timesteps 15

รูปที่ 23 ผลการทคลองที่ 9 epoch 1000 timesteps 25

รูปที่ 24 ค่า RMSE และ MSE ของผลการทคลองทั้งหมค

สรุปผลการทดลอง

จากผลการทดลองพบว่าค่าที่เหมาะสมในการนำไปวิเคราะห์ข้อมูลราคาน้ำมันต่อไปคือ Timesteps เท่ากับ 5 ซึ่งจะเห็น ได้จากการทดลองที่ 1 4 และ 7 นั้นได้ผลลัพธ์ที่ดีกว่า เมื่อเทียบการทดลองที่มีจำนวน epoch เท่ากัน

การเพิ่มจำนวน epoch มากขึ้นทำให้ผลลัพธ์ดีขึ้นตามลำดับ แต่ถ้าหากเพิ่มจำนวน epoch มากเกินไป อาจจะทำให้ model เกิดการ overfit เช่นการทดลองที่ 8 ที่โมเดลไม่สามารถของรับค่าความผันผวนได้

การเพิ่มจำนวน Timesteps มากไปอาจจะส่งผลต่อการปรับเปลี่ยนค่าในการทำนายของโมเดล ซึ่งจะ เห็นได้จากการทดลองที่ 9 ที่โมเดลสามารถปรับเปลี่ยนตามแนวโน้มของข้อมูลได้ แต่มีการปรับเปลี่ยนที่ช้า มากซึ่งได้ผลลัพธ์ไม่ตรงกับที่ต้องการ ซึ่งนั้นอาจจะเป็นผลจากการปรับค่า Timesteps มากไป

จากการทดลองทั้ง 9 รูปแบบพบว่า จำนวน Timestep ที่มากเกินไปทำให้การรองรับความผันผวน ของข้อมูลเป็นไปได้ยาก และการปรับจำนวน epoch ที่มากขึ้นจะได้ผลลัพธ์ที่ดีขึ้น แต่ถ้าหากปรับค่ามากเกิน ไปจะทำให้โมเคลเกินการ Overfit และค่า Timestep กับ epoch ที่เหมาะสมสำหรับในการฝึกสอนตัวโมเคล LSTM นี้คือ 5 และ 1000 ตามลำดับ ที่ได้ค่า RMSE และคือ MSE ที่ 2.338725747531054 และ 1.988993456243924 ตามลำดับ

อ้างอิง

1. ข้อมูลราคาน้ำมันดิบในตลาดน้ำมันสหรัฐอเมริกา

ที่มา: https://www.quandl.com/data/OPEC/ORB-OPEC-Crude-Oil-Price

2. rude-oil-price-forecasting-using-LSTM

ที่มา: https://github.com/madamalarevanth/crude-oil-price-forecasting-using-LSTM

3. Time Series Forecasting on crude oil using Long-short term memory

ที่มา: https://github.com/fsuriya/DeeplearningProj