The derivative as slope of tangent (section 2.3)

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

or

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The Four Step Process (section 2.4)

- 1. Replace x by x + h in the equation y = f(x) to obtain $y + \Delta y = f(x + h)$.
- 2. Subtract y = f(x) from both sides to obtain $\Delta y = f(x+h) f(x)$.
- 3. Divide both sides by $\Delta x = h$ to obtain $\frac{\Delta y}{\Delta x} = \frac{f(x+h) f(x)}{h}$.
- 4. Take the limit $\Delta x = h \rightarrow 0$ on both sides to obtain

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Note: The derivative f'(x) gives us the instantaneous rate of change of one variable with respect to another.

Example 1.

Find the derivative of the following functions:

1.
$$y = \frac{1}{x-1}$$
.

2.
$$y = \sqrt{x+2}$$
.

Derivatives of polynomials (section 2.5)

- 1. The constant rule: $\frac{dc}{dx} = 0$ where c is a constant.
- 2. The derivative of x: $\frac{dx}{dx} = 1$.
- 3. The derivative of x^n , n > 0: $\frac{dx^n}{dx} = nx^{n-1}$.
- 4. The sum rule: $\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$.
- 5. The constant multiple rule: $\frac{d}{dx}(cu) = c\frac{du}{dx}$.

Example 2. Differentiate the following:

- 1. $y = 3x^4$.
- 2. $y = 4x^5 + 5x^3 x^2 + 1$.