Model Free Control SARSA and Q-Learning

Marius Lindauer

Winter Term 2021

Model-free Policy Iteration with TD Methods

- Use temporal difference methods for policy evaluation step
- ▶ Initialize policy π
- ► Repeat:

Lindauer

- lacktriangle Policy evaluation: compute Q^π using temporal difference updating with Q-greedy policy
- ▶ Policy improvement: Same as Monte Carlo policy improvement, set π to ϵ -greedy (Q^{π})
- ▶ First consider SARSA, which is an on-policy algorithm

General Form of SARSA Algorithm

- Initialization:
 - ightharpoonup ϵ -greedy policy
 - t = 0
 - ightharpoonup initial state $s_t = s_0$
- ► Loop
 - ▶ Take action $a_t \sim \pi(s_t)$
 - \blacktriangleright Observe (r_t,s_{t+1}) , $a_{t+1}\sim\pi(s_{t+1})$
 - $\blacktriangleright \ \ \mathsf{Update} \ \mathsf{Q} \ \mathsf{given} \ (s_t, a_t, r_t, s_{t+1}, a_{t+1}) \colon$

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$$

- $lacktriangledown \pi(s_t) \in rg \max_{a \in A} Q(s_t, a)$ with probability 1ϵ , else random
- t = t + 1

Convergence Properties of SARSA

▶ Theorem:

Lindauer

SARSA for finite-state and finite-action MDPs converges to the optimal action-value, $Q(s,a) \to Q^*(s,a)$, under the following conditions:

- 1. The policy sequence $\pi_t(a \mid s)$ satisfies the condition of GLIE
- 2. The step-sizes α_t satisfy the Robbins-Munro sequence such that

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

- \blacktriangleright For example $\alpha_t=\frac{1}{T}$ satisfies the above condition
- ▶ Would one want to use a step size choice that satisfies the above in practice? Likely not.

Q-Learning: Learning the Optimal State-Action Value

- ► SARSA is an on-policy learning algorithm
- SARSA estimates the value of the current behavior policy (policy using to take actions in the world)
- ▶ And then updates the policy trying to estimate
- ▶ Alternatively, can we directly estimate the value of π^* while acting with another behavior policy π_b ?
- ► Yes! Q-learning, an off-policy RL algorithm
- ► Key idea: Maintain state-action Q estimates and use to bootstrap— use the value of the best future action
- ► Recall SARSA:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha((r_t + \gamma Q(s_{t+1}, a_{t+1})) - Q(s_t, a_t))$$

► Q-Learning:

Lindauer

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha((r_t + \gamma \max_{a' \in A} Q(s_{t+1}, a')) - Q(s_t, a_t))$$

Q-Learning with ϵ -greedy Exploration

- Initialization:
 - $Q(s,a) = 0. \forall s \in S, a \in A$
 - t = 0
 - ightharpoonup initial state $s_t = s_0$
- ► Loop

Lindauer

- ▶ Take action $a_t \sim \pi_b(s_t)$
- ▶ Observe (r_t, s_{t+1})
- Update Q

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a \in A} Q(s_{t+1}, a) - Q(s_t, a_t))$$

- $\pi(s_t) \in \arg\max_{a \in A} Q(s_t, a)$ with probability 1ϵ , else random
- ▶ t = t + 1

Q-Learning with ϵ -greedy Exploration

- ▶ Conditions for convergence to Q^* ?
 - ightharpoonup Visit all (s,a) pairs infinitely often
 - lacktriangle the step-sizes $lpha_t$ satisfy the Robbins-Munro sequence
 - ▶ Note: the algorithm does not have to be greedy in the limit of infinite exploration (GLIE) to satisfy this
- \blacktriangleright Conditions for convergence to optimal π^*
 - lacktriangle The above requirements to converge to optimal Q^*
 - The algorithm is GLIE