UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE CIENCIAS ESCUELA PROFESIONAL DE MATEMATICAS

Primera Práctica Dirigida ANÁLISIS CONVEXO Ciclo 2021-1

1. Sea $A \subset V$, V espacio lineal. Si A es convexo y $x \in V \setminus A$. Mostrar que

$$\bigcup_{a \in A} [x,a]$$

es convexo.

2. Sea d una métrica euclideana sobre \mathbb{R}^n , y sea $C\subset\mathbb{R}^n$ convexo. Mostrar que

$$\{x \in \mathbb{R}^n/d(x,C) \le \varepsilon\}$$

es convexo si $\varepsilon > 0$.

3. Mostrar que los siguientes conjuntos son convexos

(a)
$$S_1 = \{\overline{x} \in \mathbb{R}^4 : 2x_1 + 3x_4 \le 5, -2x_1 + 5x_2 - x_3 + 4x_4 \le 3, x_1 + x_2 + x_3 + x_4 = 2, x_i \ge 0\}$$

(b)
$$S_2 = \{ \overline{x} \in \mathbb{R}^n : \sum a_i x_i^2 \le c, \ a_i > 0, c > 0 \}$$

4. Mostrar que un cono convexo K es un subespacio si y sólo si K=-K.

5. Mostrar que

$$C = \{(\xi_1, \xi_2, ..., \xi_n) / \xi_i \ge 0 \ (1 \le i \le n) \ y \ \sum_{i=1}^n \xi = 1\}.$$

es un politopo en \mathbb{R}^n . Determine los vértices de C.

6. Demostrar que si A es convexo, se puede decir lo mismo de \overline{A} y \mathring{A} .

7. Sea $S = C_1 \cap \cap C_m$ donde $C_i \subset \mathbb{R}^n$ son convexos, i = 1, ..., m. Mostrar que la capsula convexa de S (co S)

$$co~S = \{\sum_{i=1}^m lpha_i x_i : lpha_i \geq 0, \sum lpha_i = 1, x_i \in C_i\}.$$

- 8. Sea $K = \{x \in \mathbb{R}^n : \langle s_j, x \rangle \geq 0, j = 1, ..., m, \langle s_{m+j}, x \rangle \leq 0, j = 1, ..., p\}$, con $s_j \in \mathbb{R}^n$ es un conjunto convexo.
- 9. Sea una familia de conjuntos convexos, entonces la intersección es convexa. ¿La unión será tambien convexa?
- 10. Sean $C_1, ..., C_k$ conjuntos convexos en \mathbb{R}^{n_i} cada C_i , si y sólo si $C_1 \times C_2 \times ... \times C_k$ es convexo en $\mathbb{R}^{n_i} \times \mathbb{R}^{n_k}$.
- 11. Probar que si $S \subset \mathbb{R}^n$ es abierto entonces co S es abierto.
- 12. Probar: Si $dim(C) = n \iff int(C) \neq \emptyset$, donde C es un conjunto convexo.
- 13. Sea $A: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una aplicación afín, es decir

$$A(\alpha x + (1 - \alpha)x') = \alpha A(x) + (1 - \alpha)A(x') \quad x, x' \in \mathbb{R}^n, \quad \alpha \in \mathbb{R}$$

y $C \subset \mathbb{R}^n$ convexo. Entonces $A(C) \subset \mathbb{R}^m$ es convexo. Si $D \subset \mathbb{R}^m$ es convexo entonces $A^{-1}(D) = \{x \in \mathbb{R}^n; A(x) \in D\}$ es comprexo en \mathbb{R}^n .

1