INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

DEPARTAMENTO DE ENGENHARIA DE ELECTRÓNICA E TELECOMUNICAÇÕES E DE COMPUTADORES Lógica e Sistemas Digitais 1º teste - (28/Jan/2008)

1 teste - (26/Jan/200

[1]

- a) Dada a função $F = \overline{\left(\overline{(A.\overline{B}.C + \overline{C} + \overline{A})} \oplus ABC\right)} (A.B + A.\overline{C} + B.C) (A.\overline{C} + B.C)$, obtenha a forma AND-OR, simplificando algebricamente.
- b) Obtenha a forma OR-AND simplificada de $G = \left((C + A.\overline{B}) \oplus \overline{(\overline{A}.D + \overline{A}.B + A.\overline{B} + \overline{B}.\overline{D})} \right) (\overline{A}.B + A.\overline{C})$, utilizando mapas de *Karnaugh*.
- [2] Não dispondo das variáveis na forma complementar, realize com o mínimo de componentes as seguintes funções:
 - a) $H = \bar{A}.B + \bar{A}.C + \bar{B}.\bar{C}.D$, apenas com portas NAND e NOR de duas entradas. Desenhe o circuito, explicitando o método utilizado.
 - b) $I = \bar{A}.B + B.C + A.\bar{C}$, apenas com multiplexers de 2x1.
- [3] Projecte o módulo da figura ao lado que tem como entrada dois números naturais A e B de um bit cada.
- [4] Dado o circuito da figura abaixo, obtenha a expressão simplificada para a saída J. Justifique.

[5]

- a) Dado o número 1001011101₂ em código dos complementos para dois a 10 bits, determine a sua representação em base 8 inteiro com sinal.
- b) Na operação proposta calcule, justificando, expressões booleanas para cada um dos quatro *bits* de S (em função de A, B e C) e explique para que valor dessas mesmas variáveis é excedido o domínio, entendido em binário natural.

 \$\overline{B} B C A \\
 1 0 C \overline{A} \\
 S_3 S_2 S_1 S_0
 \$
- c) Complete os campos da tabela, assumindo que numa ALU de 3 *bits* está seleccionada a operação R = A B Ci. Justifique sucintamente os cálculos efectuados e o significado dos valores dos vários indicadores.

		R	A	В	Ci	Cy/	Ov	BL	GE
Base 2			010			Br	ΟV	BL	GE
Base 10	natural				1		-		-
	relativo	-3				_		_	

[6] Dado o programa em CUPL, desenhe o ASM-chart referente a este módulo.

```
[Q0..1].SP = 'b' 0;
SEQUENCE [Q1,Q0] {
PRESENT 0
  next 1:
PRESENT 1
  out S1;
  next 2;
PRESENT 2
  if !Y out S0;
  if Y next 3;
  if !Y&X next 2
  default next 1
PRESENT 3
  if !X&!Y out SO;
  if X next 3;
  default next 1;
```

[Q0..1].AR = 'b' 0;

- [7] Dada a máquina de estados descrita pelo *ASM-chart* da figura, e assumindo que caso a máquina se encontre no estado 10 deverá seguir para o estado 00, na próxima transição de *clock*:
 - a) obtenha as funções de saída e de geração do estado seguinte utilizando flip-flops do tipo JK;
 - b) realize a máquina de estados descrita pelo ASM da figura utilizando uma PAL22V10. Descreva o programa em CUPL utilizando a estrutura SEQUENCE e especifique os pinos utilizados.

[8] Desenhe o ASM-chart correspondente ao circuito da figura abaixo, com início no estado 00.

Os docentes

												7b	
Classificação	1,5	1,5	1,5	1,5	1,5	2	0,5	1,5	1,5	1,5	2	1,5	2