

CI 项目编号: 335 产线/设备名称代码: FB 9#

单元/部门:精冲单元质量

KEIPER

项目定义: Define

项目名称: PH	项目名称:PHA3000 Inner Gear不良率改善报告 项目负责人:魏思海							
	商业影响: PHA3000 电动调节器装置,作为公司面对高端市场规划的重要产品,主供宝马客户。而内 齿作为其核心装配组件之一,尺寸及外观要求度也极为严格。							
零件作为BMN	问题描述:一直以来,PHA 3000(IBK2) Inner Gear 2深受磕碰问题的困扰,不良率居高不下。同时该零件作为BMM专用项目,磕碰伤会导致马达总成出现抖动、异音。现急需识别过程潜在风险点,优化过程,降低不良率。							
项目目标:降	低零件不良率,从10.82%降低至1%以下	项目范围: PHA3000						
项目投资: 10	000	项目收益: 21W						
团队成员	主要职责	贡献比重						
魏思海	CP-原因查找-原因验证-改进控制-供应商控制-分享	30						
许永青	原因查找-方案设计-效果验证	20						
周鹏	周鹏 协调生产人员GP12-改进效果跟踪反馈							
仝志国	协助原因查找-现场跟踪-效果确认及反馈	10						
曾育辉 2 KEIF	技术支持-协调人员-经验分享 PER Template / Jan 2021	30						

Kaizen 项目立项表

KPI指标							
KPI	改善前	改善后					
零件磕碰不良率	10.82%	1%					

项目计划				
项目计划	计划时间			
D	2020/5/6-2020/6/6			
М	2020/6/7-2020/7/20			
Α	2020/7/21-2020/8/28			
I	2020/8/29-2020/9/15			
С	2020/9/16-2020/12/10			

项目测量: Measure

> A1-原因分析

测量指标:保证GP12分选的准确性

开展日期: 2020年5月20日

★[样本量]: 共50个 **★**[量具]: NA

★[检查员]: 邵晴晴 王慧 刘利军 ★[记录分析人员]: 魏思海

★[测量方法]: 目视全检

检测方法MSA分析:

检验员自身 评估一致性 1) 方法: 选取50件 评估一致性 #检 #相 检验员 验数 符数 百分比 25% 置信区间 (内含磕碰伤) 零 96.00 (86.19, 99.51) 检验员 验数 符数 百分比 95% 置信区间 96.00 (86.2), 99.51) (86.29, 99.51) 50 件,选择3名操作人 50 96.00 (86.29, 99.51) # 相符数: 检验员在多次试验中的评估与己知标准一致。 94.00 (83.45, 98.75) 员每件重复测试3次。 # 相符数: 检验员在多个试验之间, 他/她自身标准一致。 评估不一致 2) 对检测方法进行 Fleiss 的 Kappa 统计量 0.00 MSA研究结果如下: Kappa 标准误 Z P(与 > 0) #1/0:多个试验中误将标准=0者一致评估为=1的次数 0.944444 0.0816497 11.5670 0.0000 #0/1: 多个试验中误将标准 = 1 者一致评估为 = 0 的次数 0.944444 0.0816497 11.5670 0.0000 # 22合: 多个试验中所有的评估与标准不相同者。 0.944444 0.0816497 11.5670 0.0000 0.0816497 11.5670 0.944444 0.0000 Fleiss 的 Kappa 统计量 0.916186 0.0816497 1.2209 0.0000 检验员 响应 Kappa Kappa 标准误 Minitab分析: 11,2209 0.0816497 0.0816497 11.9071 0.972209 0.0816497 11.9071 0.0000 0.972209 0816497 11.9071 0.972209 0816497 11.9071 .0816497 11.7321 0.0816497 11.7321 测量系统有效: 1.大于90%

2.Kappa > 0.75

每个检验员与标准

检验员之间

评估一致性

验数 符数 百分比 95% 置信区间 50 43 86.00 (73.26, 94.18)

相符数:所有检验员的评估一致。

Fleiss 的 Kappa 统计量

Kendall 的一致性系数

所有检验员与标准

评估一致性

响应 Kappa Kappa 标准误

验数 符数 百分比 95% 置信区间

Fleiss 的 Kappa 统计量

0.967447

Kendall 的相关系数

属性一致性分析

50 43 86.00 (73.26, 94.18)

相符数: 所有检验员的评估与已知的标准一致。

Kanpa Kappa 标准误

0.935064 0.0235702 39.6714 0.0000

0.02-5702 39.6714 0.0000

0.0471405 20.5227 0.0000

评估和标准中只有一个或两个可区分值。未计算 Kendall 系数。

总的来说,这些统计量表明一致性良好,认为测量系统 可接受。

项目测量: Measure

➤ A1-原因分析

2020年2月至7月不良件缺陷类型统计如下:

月份	产线	设备型号	GP12人员	分选数	不良数	不良率	工时数	磕碰伤	压伤	生锈	油污
2	FB9#	Feintool HFT 880T	屈红青	8947	847	9.47%	25	847			
3	FB9#	Feintool HFT 881T	李小云	15868	1568	9.88%	46	1548	20		
4	FB9#	Feintool HFT 882T	邵晴晴	48408	5460	11.28%	144.5	5419	19	10	12
5	FB9#	Feintool HFT 883T	王慧	23769	2769	11.65%	57.5	2747	22		
6	FB9#	Feintool HFT 884T	杨平	78880	6873	8.71%	228	6845	7	21	
7	FB9#	Feintool HFT 885T	刘利军	118482	16509	13.93%	315.5	16470	39		

不良类型	磕碰伤	压伤	生锈	油污
频数	33876	107	31	12
百分比	99.6%	0.3%	0.1%	0.0%

运用柏拉图对不良类型做统计图,磕碰 伤不良比例高达99.6%,是报废主要类别。 重点改善方向为减少/消除磕碰伤不良。

➤ A1-原因分析

➤ A1-原因分析

基于上述的4个可能风险点进行排查,锁定精冲工序下料环节(高度差+硬度低),热处理前清洗(高度差+硬度低)作为重点排查环节。

> A2-寻找根本原因

Team通过鱼骨刺图分析,识别出三个潜在风险点。

> A3-验证根本原因

X1

- 1、齿形是模具最后一工步成型,在模具内部 不存在磕碰伤。
- 2、零件通过移动臂下料,通过金属滑槽,进 入传送带。
- 3、在零件转入滑槽过程中可能存在磕碰伤风 险。

在该工位,对零件不间断取样进行检验,取样数量1000pcs,其中,齿形磕碰不良: 0pcs, **不良比率0%。**

X2

- 1、对Inner Gear下料传送带进行观察,发现零件有跌落现象。
- 2、零件在高位跌落(离底端约0.5M),单件质量大,硬度低,冲击力强,如果齿部接触,会造成磕碰伤。

在该工位,对零件不间断取样进行检验,取样数量1000pcs,其中,齿形磕碰不良:55pcs,不良比率5.5%。

X3

1、对Inner Gear 热处理过程进行排查,发现前 清洗下料处存在高度差,产品高处跌落,与传 送带(铁)接触,易产生磕碰。

准备1000Pcs已进行外观全检OK的样件进行验证,清洗后进行外观检验,其中,齿形磕碰不良:65pcs,**不良比率6.5%。**

左侧零件跌落

X2

X1

X3

结论: X1处无磕碰风险

结论: X2处磕碰风险较大, 重点改善

结论: X3处磕碰风险大, 重点改善

> 11-寻求解决方案

通过观察传送带下料, Inner Gear与传送带随机产生有如下三种接触方式:

红色面与传送带接触,接触面积: 3.57cm²,零件与传送带接触良好,不易产生脱落。

红色面与传送带接触,接触面积: 2.17cm²,零件与传送带接触差,易产生脱落。

零件倾斜与传送带接触,接触面积:极小,零件与传送带接触差,极易脱落。

- 当Inner Gear 开口朝上时, 跌落的零件, 极大概率造成齿部磕碰。
- 当Inner Gear 开口朝下时,跌落的零件,不 会造成齿部磕碰。

> 11-寻求解决方案

头脑风暴的方式来需求解决方案和行动措施

> 11-寻求解决方案

头脑风暴的方式来需求解决方案和行动措施

4	5	5	100
3	3	2	18
3	4	2	24
4	5	4	80
4	2	1	8

总体得分

成本

可行性

无论是精冲还是热处理, Inner Gear都不是专机生产, 对通用设备进行大规模的设备升级, 投入高, 通用性差, 不作为首选改善方案。

结论:从有效性、可行性、成本三个维度考虑,我们选取了以下两种方案进行改进。

> 12-主要改善措施及效果验证

主要改善措施: 增加橡胶缓冲

• 增加橡胶缓冲后, 当零件掉落时, 能够有效缓冲冲击 (0.5m降低至0.05m)。

对精冲传送带改善前后取样抽检,进行假设检验验证

状态	样本数	不良品数量	不良率
改善前	1000	55	5.5%
改善后	1000	3	0.3%

描述性统计量

			样本	
		合计出	Poisson	
样本	Ν	现次数	比率	
样本 1	1000	55	0.055	
样本 2	1000	3	0.003	

差值的估计值

估计的 差值 差值

差值 差值的 95% 置信区间 0.052 (0.0370734, 0.0669266)

检验

原假设 H_0 : $\lambda_1 - \lambda_2 = 0$ 备择假设 H_1 : $\lambda_1 - \lambda_2 \neq 0$ 方法 Z 值 P 值 精确 0.000 正态近似 6.83 0.000

P-Value=0<α=0.05 拒绝原假设,证明改善 后具有显著提升

> 12-主要改善措施及效果验证

主要改善措施:增加挡板、橡胶垫

•增加橡胶垫板缓冲后,零件由自由落体运动,改为沿橡胶垫滑落,减少冲击。

对清洗机下料处改善前后取样抽检,进行假设检验验证

状态	样本数	不良品数量	不良率
改善前	1000	65	6.5%
改善后	1000	4	0.4%

描述性统计量

			件平
		合计出	Poisson
样本	N	现次数	比率
样本1	1000	65	0.065
样本 2	1000	4	0.004

差值的估计值

估计的 差值 差值的 95% 置信区间 0.061 (0.0447193, 0.0772807)

检验

P-Value=0.0<α=0.05 拒绝原假设,证明改善后 具有显著提升

项目控制: Control

C1-项目绩效跟踪及改善前后KPI对比

项目指标 名称	改善前 改善		项目实施后数据		数据跟踪							
	平均值目标	8月	9 月	10月	11月	12月	1月	2月	3月	4月		
不良率	PHA3000	10. 82%	1%	1. 38%	0. 61%	0. 65%	0. 41%	0. 48%	0. 45%	0. 23%	0. 29%	0. 73%

2020年2月至2021年4月不良率

总结:改善后跟踪六个月以上的数据,不良率从10.82%降低至0.58%。

项目控制: Control

> C2-财务收益预估及投入比

未来一年的财务收益达到预期,根据该零件年需求量127Wpcs,单价1.72元/pcs。项目改善后,不良率从10.82%降低至0.58%,预计节约达22.4W.

项目目标									
	标准	改善前	期望目标	实际	降幅比	节约			
1	不良率	10.82%	1%	0.58%	94%	/			
2	报废成本	23.64W/Y	2.18W/Y	1.27W/Y	94%	22.4W/Y			

横向展开预期收益:

我们将此次改善成果推广到相似结构的项目上, PHA2000 Inner Gear、Y2xx Inner Gear。

横向展开						
项目	年需求量	单价	改善前	期望目标	节约	降幅比
PHA2000 Inner Gear	60W	1.46元/pcs	8.5%	1%	6.57	88.2%
Y2XX Inner Gear	18W	1.29元/pcs	8.2%	1%	1.67	87.8%
PHA3000 Inner Gear	127W	1.72元/pcs	10.82%	1%	21.46	94%

不良率

零件报废成本

投入与节约

项目控制: Control

KEIPER