WHAT IS CLAIMED IS

1. A method of inhibiting human stearoyl-CoA desaturase (hSCD) activity comprising contacting a source of hSCD with a compound of formula (I):

wherein:

x and y are each independently 1, 2 or 3;

W is -O-, -C(O)O-, -N(R¹)-, -S(O)_t- (where t is 0, 1 or 2), -N(R¹)S(O)₂-, -OC(O)- or -C(O)-;

 $V \text{ is -C(O)-, -C(S)-, -C(O)N(R}^1)-, -C(O)O-, -S(O)_2-, -S(O)_2N(R}^1)- \text{ or } -C(R^{11})H-; \\$

each R¹ is independently selected from the group consisting of hydrogen, C₁-C₁₂alkyl, C₂-C₁₂hydroxyalkyl, C₄-C₁₂cycloalkylalkyl and C₇-C₁₉aralkyl;

 R^2 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkenyl, C_2 - C_{12} alkoxyalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkyl, aryl, C_7 - C_{19} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_1 - C_{12} heteroaryl, and C_3 - C_{12} heteroarylalkyl;

or R² is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 R^3 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkenyl, C_2 - C_{12} alkoxyalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkyl, aryl, C_7 - C_{19} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_1 - C_1 2heteroaryl and C_3 - C_1 2heteroarylalkyl;

or R³ is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 R^4 and R^5 are each independently selected from hydrogen, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{13})₂;

R⁶, R^{6a}, R⁷, R^{7a}, R⁸, R^{8a}, R⁹ and R^{9a} are each independently selected

from hydrogen or C₁-C₃alkyl;

or R^7 and R^{7a} together, or R^8 and R^{8a} together, or R^9 and R^{9a} together, or R^6 and R^{6a} together are an oxo group, provided that when V is -C(O)-, R^7 and R^{7a} together or R^8 and R^{8a} together do not form an oxo group, while the remaining R^7 , R^{7a} , R^8 , R^{9a} , R^9 , R^{9a} , R^6 and R^{6a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

or one of R^6 , R^{6a} , R^7 , and R^{7a} together with one of R^8 , R^{8a} , R^9 and R^{9a} form an alkylene bridge, while the remaining R^6 , R^{6a} , R^7 , R^{7a} , R^8 , R^8 , R^9 , and R^{9a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

R¹¹ is hydrogen or C₁-C₃alkyl; and each R¹³ is independently selected from hydrogen or C₁-C₆alkyl; a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

2. A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

wherein:

x and y are each independently 1, 2 or 3;

W is -O-, -C(O)O-, -N(R¹)-, -S(O)_t- (where t is 0, 1 or 2), -N(R¹)S(O)₂-, -OC(O)- or -C(O)-;

 $V \ \text{is -C(O)-, -C(S)-, -C(O)N(R}^1)-, -C(O)O-, -S(O)_2-, -S(O)_2N(R}^1)- \ \text{or -C(R}^{11})H-; \\$

each R^1 is independently selected from the group consisting of hydrogen, C_1 - C_{12} alkyl, C_2 - C_{12} hydroxyalkyl, C_4 - C_{12} cycloalkylalkyl and C_7 - C_{19} aralkyl; R^2 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkyl, C_3 - C_{12} cycloalkyl,

 C_4 - C_{12} cycloalkylalkyl, aryl, C_7 - C_{19} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_1 - C_{12} heteroaryl, and C_3 - C_{12} heteroarylalkyl;

or R² is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 R^3 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkenyl, C_2 - C_{12} alkoxyalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkyl, aryl, C_7 - C_{19} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_1 - C_1 -heteroaryl and C_3 - C_1 -heteroarylalkyl;

or R³ is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

R⁴ and R⁵ are each independently selected from hydrogen, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R¹³)₂;

 R^6 , R^{6a} , R^7 , R^{7a} , R^8 , R^{8a} , R^9 and R^{9a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

or R^7 and R^{7a} together, or R^8 and R^{8a} together, or R^9 and R^{9a} together, or R^6 and R^{6a} together are an oxo group, provided that when V is -C(O)-, R^7 and R^{7a} together or R^8 and R^{8a} together do not form an oxo group, while the remaining R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^6 and R^{6a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

or one of R^6 , R^{6a} , R^7 , and R^{7a} together with one of R^8 , R^{8a} , R^9 and R^{9a} form an alkylene bridge, while the remaining R^6 , R^{6a} , R^7 , R^{7a} , R^8 , R^8 , R^8 , and R^{9a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

R¹¹ is hydrogen or C₁-C₃alkyl; and each R¹³ is independently selected from hydrogen or C₁-C₆alkyl; a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

- 3. The method of Claim 2 wherein the mammal is a human.
- 4. The method of Claim 3 wherein the disease or condition is selected from the group consisting of Type II diabetes, impaired glucose tolerance, insulin resistance, obesity, fatty liver, non-alcoholic steatohepatitis, dyslipidemia and metabolic syndrome and any combination of these.

5. The method of Claim 4 wherein the disease or condition is Type II diabetes.

- 6. The method of Claim 4 wherein the disease or condition is obesity.
- 7. The method of Claim 4 wherein the disease or condition is metabolic syndrome.
 - 8. The method of Claim 4 wherein the disease or condition is fatty liver.
- 9. The method of Claim 4 wherein the disease or condition is non-alcoholic steatohepatitis.
 - 10. A compound of formula (la):

wherein:

x and y are each independently 1, 2 or 3;

W is -O-, -C(O)O-, -N(R¹)-, -S(O)_t- (where t is 0, 1 or 2), -N(R¹)S(O)₂-, -OC(O)- or -C(O)-;

 $\label{eq:Vis-CONR} V \text{ is -C(O)-, -C(S)-, -C(O)N(R1)-, -C(O)O-, -S(O)$_2-, -S(O)$_2N(R1)- or -C(R$^{11})H-;}$

each R^1 is independently selected from the group consisting of hydrogen, C_1 - C_{12} alkyl, C_2 - C_{12} hydroxyalkyl, C_4 - C_{12} cycloalkylalkyl and C_7 - C_{19} aralkyl; R^2 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkenyl, C_2 - C_{12} alkoxyalkyl, C_3 - C_{12} cycloalkyl, C_4 - C_{12} cycloalkylalkyl, aryl, C_7 - C_{19} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_1 - C_1 2heteroaryl, and C_3 - C_1 2heteroarylalkyl, provided that, when W is -C(O)-, R^2 can not be C_1 - C_6 alkyl substituted by -S(O)₁ R^{14} where R^{14} is hydrogen, C_1 - C_6 alkyl,

C₇-C₁₂aralkyl, pyrazinyl, pyridinonyl, pyrrolidionyl or imidazolyl;

or R² is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 R^3 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkenyl, C_2 - C_{12} alkoxyalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkylalkyl, aryl, C_7 - C_{19} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_1 - C_1 -heteroaryl and C_3 - C_1 -heteroarylalkyl;

or R³ is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

R⁴ and R⁵ are each independently selected from hydrogen, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R¹³)₂;

 R^6 , R^7 , R^7 , R^8 , R^8 , R^9 and R^{9a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

or R^7 and R^{7a} together, or R^8 and R^{8a} together, or R^9 and R^{9a} together, or R^6 and R^{6a} together are an oxo group, provided that when V is -C(O)-, R^7 and R^{7a} together or R^8 and R^{8a} together do not form an oxo group, while the remaining R^7 , R^{7a} , R^8 , R^{9a} , R^9 , R^{9a} , R^6 and R^{6a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

or one of R^6 , R^{6a} , R^7 , and R^{7a} together with one of R^8 , R^{8a} , R^9 and R^{9a} form an alkylene bridge, while the remaining R^6 , R^{6a} , R^7 , R^{7a} , R^8 , R^8 , R^8 , and R^{9a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

R¹¹ is hydrogen or C₁-C₃alkyl; and each R¹³ is independently selected from hydrogen or C₁-C₆alkyl; a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

11. The compound of Claim 10 wherein:

x and y are each 1;

W is -O-;

V is -C(O)- or -C(S)-;

 R^2 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} heterocyclylalkyl, C_3 - C_{12} heterocyclylalkyl, C_3 - C_{12} heterocyclylalkyl,

C₁-C₁₂heteroaryl, and C₃-C₁₂heteroarylalkyl;

 R^3 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkenyl, C_2 - C_{12} alkoxyalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkyl, aryl, C_7 - C_{19} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_1 - C_1 2heteroaryl and C_3 - C_1 2heteroarylalkyl;

 R^4 and R^5 are each hydrogen; and R^6 , R^{6a} , R^7 , R^{7a} , R^8 , R^{8a} , R^9 and R^{9a} are each hydrogen.

12. The compound of Claim 11 wherein:

V is -C(O)-;

 R^2 is C_7 - C_{12} aralkyl optionally substituted by one or more substituents selected from halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 trihaloalkoxy, C_1 - C_6 alkylsulfonyl, -N(R^{12})₂, -OC(O) R^{12} , -C(O)OR¹², -S(O)₂N(R^{12})₂, cycloalkyl, heterocyclyl, heteroaryl and heteroarylcycloalkyl; and

each R^{12} is independently selected from hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, aryl or aralkyl.

13. The compound of Claim 12 wherein:

 R^2 is C_7 - C_{12} aralkyl optionally substituted by one or more substituents selected from halo, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy; and R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy.

- 14. The compound of Claim 13, namely, [4-(6-Phenethyloxy-pyridazin-3-yl)-piperazin-1-yl]-(2-trifluoromethyl-phenyl)-methanone.
 - 15. The compound of Claim 11 wherein:

V is -C(O)-;

 R^2 is C_1 - C_{12} alkyl or C_2 - C_{12} alkenyl:

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 trihaloalkoxy, C_1 - C_6 alkylsulfonyl, -N(R^{12})₂, -OC(O) R^{12} , -C(O)OR¹², -S(O)₂N(R^{12})₂,

cycloalkyl, heterocyclyl, heteroaryl and heteroarylcycloalkyl; and each R¹² is independently selected from hydrogen, C₁-C₆alkyl, C₃-C₆cycloalkyl, aryl or aralkyl.

16. The compound of Claim 11 wherein:

V is -C(O)-;

R² is C₃-C₁₂cycloalkyl or C₄-C₁₂cycloalkylalkyl;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkoxy, C_1 - C_6 trihaloalkoxy, C_1 - C_6 alkylsulfonyl, -N(R^{12})₂, -OC(O) R^{12} , -C(O)O R^{12} , -S(O)₂N(R^{12})₂, cycloalkyl, heterocyclyl, heteroaryl and heteroarylcycloalkyl; and

each R^{12} is independently selected from hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, aryl or aralkyl.

17. The compound of Claim 16 wherein:

R² is C₄-C₁₂cycloalkylalkyl; and

R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C₁-C₆trihaloalkyl and C₁-C₆trihaloalkoxy.

- 18. The compound of Claim 17, namely, {4-[6-(2-Cyclopropyl-ethoxy)-pyridazin-3-yl]-piperazin-1-yl}-(2-trifluoromethyl-phenyl)-methanone.
 - 19. The compound of Claim 10 wherein:

x and y are each 1;

W is $-S(O)_{t-}$ (where t is 0, 1 or 2):

V is -C(O)- or -C(S)-;

 R^2 is selected from the group consisting of C₁-C₁₂alkyl, C₂-C₁₂alkenyl, C₂-C₁₂hydroxyalkyl, C₂-C₁₂hydroxyalkenyl, C₂-C₁₂alkoxyalkyl, C₃-C₁₂cycloalkyl, C₄-C₁₂cycloalkyl, aryl, C₇-C₁₂aralkyl, C₃-C₁₂heterocyclyl, C₃-C₁₂heterocyclylalkyl, C₁-C₁₂heteroaryl, and C₃-C₁₂heteroarylalkyl;

 R^3 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkenyl, C_2 - C_{12} alkoxyalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkylalkyl, aryl, C_7 - C_{12} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_1 - C_1 -heteroaryl and C_3 - C_1 -heteroarylalkyl;

R⁴ and R⁵ are each hydrogen; and

 R^6 , R^{6a} , R^7 , R^{7a} , R^8 , R^{8a} , R^9 and R^{9a} are each hydrogen.

20. The compound of Claim 19 wherein:

V is -C(O)-;

 R^2 is C_7 - C_{12} aralkyl optionally substituted by one or more substituents selected from halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkoxy, C_1 - C_6 alkylsulfonyl, -N(R^{12})₂, -OC(O) R^{12} , -C(O)OR¹², -S(O)₂N(R^{12})₂, cycloalkyl, heterocyclyl, heteroaryl and heteroarylcycloalkyl; and

each R^{12} is independently selected from hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, aryl or aralkyl.

21. The compound of Claim 20 wherein:

 R^2 is C_7 - C_{12} aralkyl optionally substituted by one or more substituents selected from halo, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy; and R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy.

- 22. The compound of Claim 21 selected from the group consisting of the following:
- [4-(6-Phenethylsulfanyl-pyridazin-3-yl)-piperazin-1-yl]-(2-trifluoromethyl-phenyl)-methanone;
- {4-[6-(2-Phenyl-ethanesulfinyl)-pyridazin-3-yl]-piperazin-1-yl}-(2-trifluoromethyl-phenyl)-methanone; and
- {4-[6-(2-Phenyl-ethanesulfonyl)-pyridazin-3-yl]-piperazin-1-yl}-(2-trifluoromethyl-phenyl)-methanone.
 - 23. The compound of Claim 19 wherein:

V is -C(O)-;

 R^2 is C_1 - C_{12} alkyl or C_2 - C_{12} alkenyl;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkoxy, C_1 - C_6 alkylsulfonyl, -N(R^{12})₂, -OC(O) R^{12} , -C(O)O R^{12} , -S(O)₂N(R^{12})₂,

cycloalkyl, heterocyclyl, heteroaryl and heteroarylcycloalkyl; and each R^{12} is independently selected from hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, aryl or aralkyl.

- 2 4. The compound of Claim 23 wherein R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C₁-C₆trihaloalkyl and C₁-C₆trihaloalkoxy.
- 25. The compound of Claim 24, namely, {4-[6-(3-Methyl-butylsulfanyl)-pyridazin-3-yl]-piperazin-1-yl}-(2-trifluoromethyl-phenyl)-methanone.
 - 26. The compound of Claim 10 wherein:

x and y are each 1;

W is $-N(R^1)$ -;

V is -C(O)- or -C(S)-;

R¹ is hydrogen or C₁-C₆alkyl;

 R^2 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkenyl, C_2 - C_{12} alkoxyalkyl, C_3 - C_{12} cycloalkyl, C_4 - C_{12} cycloalkylalkyl, aryl, C_7 - C_{12} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_1 - C_1 2heteroaryl, and C_3 - C_1 2heteroarylalkyl;

 R^3 is selected from the group consisting of $C_1\text{-}C_{12}$ alkyl, $C_2\text{-}C_{12}$ alkenyl, $C_2\text{-}C_{12}$ hydroxyalkyl, $C_2\text{-}C_{12}$ hydroxyalkenyl, $C_2\text{-}C_{12}$ alkoxyalkyl, $C_3\text{-}C_{12}$ cycloalkyl, $C_4\text{-}C_{12}$ cycloalkylalkyl, aryl, $C_7\text{-}C_{12}$ aralkyl, $C_3\text{-}C_{12}$ heterocyclyl, $C_3\text{-}C_{12}$ heterocyclylalkyl, $C_1\text{-}C_{12}$ heteroaryl and $C_3\text{-}C_{12}$ heteroarylalkyl;

 R^4 and R^5 are each hydrogen; and R^6 , R^{6a} , R^7 , R^{7a} , R^8 , R^{8a} , R^9 and R^{9a} are each hydrogen.

27. The compound of Claim 26 wherein:

V is -C(0)-;

R¹ is hydrogen or C₁-C₆alkyl;

 R^2 is C_7 - C_{12} aralkyl optionally substituted by one or more substituents selected from halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl,

$$\begin{split} &C_{1}\text{-}C_{6}\text{trihaloalkoxy},\ C_{1}\text{-}C_{6}\text{alkylsulfonyl},\ -N(R^{12})_{2},\ -OC(O)R^{12},\ -C(O)OR^{12},\ -S(O)_{2}N(R^{12})_{2},\\ &\text{cycloalkyl},\ \text{heterocyclyl},\ \text{heteroaryl}\ \text{and}\ \text{heteroarylcycloalkyl};\ \text{and}\\ &\text{each}\ R^{12}\ \text{is independently selected from hydrogen},\ C_{1}\text{-}C_{6}\text{alkyl},\\ &C_{3}\text{-}C_{6}\text{cycloalkyl},\ \text{aryl or aralkyl}. \end{split}$$

- 28. The compound of Claim 27 wherein R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy.
- 29. The compound of Claim 28 selected from the group consisting of the following:
- [4-(6-Phenethylamino-pyridazin-3-yl)-piperazin-1-yl]-(2-trifluoromethyl-phenyl)-methanone; and
- {4-[6-(Methyl-phenethyl-amino)-pyridazin-3-yl]-piperazin-1-yl}-(2-trifluoromethyl-phenyl)-methanone.
 - 30. The compound of Claim 26 wherein:

V is -C(O)-:

R¹ is hydrogen or C₁-C₆alkyl;

R2 is C1-C12alkyl, C2-C12alkenyl, C3-C12cycloalkyl or

C₄-C₁₂cycloalkylalkyl;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkoxy, C_1 - C_6 alkylsulfonyl, -N(R^{12})₂, -OC(O) R^{12} , -C(O)OR¹², -S(O)₂N(R^{12})₂, cycloalkyl, heterocyclyl, heteroaryl and heteroarylcycloalkyl; and

each R^{12} is independently selected from hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, aryl or aralkyl.

31. The compound of Claim 10 wherein:

x and y are each 1;

W is $-N(R^1)S(O)_2$ -;

V is -C(O)- or -C(S)-;

R¹ is hydrogen or C₁-C₆alkyl;

 R^2 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkenyl, C_2 - C_{12} alkoxyalkyl, C_3 - C_{12} cycloalkyl,

 C_4 - C_{12} cycloalkylaikyl, aryl, C_7 - C_{12} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylaikyl, C_1 - C_{12} heteroaryl, and C_3 - C_{12} heteroarylaikyl;

 R^3 is selected from the group consisting of C₁-C₁₂alkyl, C₂-C₁₂alkenyl, C₂-C₁₂hydroxyalkyl, C₂-C₁₂hydroxyalkenyl, C₂-C₁₂alkoxyalkyl, C₃-C₁₂cycloalkyl, C₄-C₁₂cycloalkylalkyl, aryl, C₇-C₁₂aralkyl, C₃-C₁₂heterocyclyl, C₃-C₁₂heterocyclylalkyl, C₁-C₁₂heteroaryl and C₃-C₁₂heteroarylalkyl;

R⁴ and R⁵ are each hydrogen; and R⁶, R^{6a}, R⁷, R^{7a}, R⁸, R^{8a}, R⁹ and R^{9a} are each hydrogen.

32. The compound of Claim 31 wherein:

V is -C(O)-;

R¹ is hydrogen or C₁-C₆alkyl;

 R^2 is C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_3 - C_{12} cycloalkyl or

C₄-C₁₂cycloalkylalkyl;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkoxy, C_1 - C_6 alkylsulfonyl, -N(R^{12})₂, -OC(O) R^{12} , -C(O)OR¹², -S(O)₂N(R^{12})₂, cycloalkyl, heterocyclyl, heteroaryl and heteroarylcycloalkyl; and

each R^{12} is independently selected from hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, aryl or aralkyl.

33. The compound of Claim 32 wherein:

R² is C₁-C₁₂alkyl; and

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy.

- 34. The compound of Claim 33, namely, Propane-1-sulfonic acid {6-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridazin-3-yl}-amide.
 - 35. The compound of Claim 31 wherein:

V is -C(O)-;

R¹ is hydrogen or C₁-C₆alkyl:

 R^2 is C_7 - C_{12} aralkyl optionally substituted by one or more substituents selected from halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 trihaloalkoxy, C_1 - C_6 alkylsulfonyl, -N(R^{12})₂, -OC(O) R^{12} , -C(O)O R^{12} , -S(O)₂N(R^{12})₂, cycloalkyl, heterocyclyl, heteroaryl and heteroarylcycloalkyl; and each R^{12} is independently selected from hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, aryl or aralkyl.

- 36. A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 10.
- 37. A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 10.