Week 12-13: Hybrid Recommender Systems and Evaluation Metrics

CSX4207/ITX4207: Decision Support and Recommender Systems ITX4287: Selected Topic in Decision Support and Recommender Systems

Asst. Prof. Dr. Rachsuda Setthawong

Objectives

- To understand concept of hybridizing recommender systems
- To understand different types of Hybrid Recommender Systems
- To be able to create simple Hybrid Recommender Systems
- To understand evaluation metrics

Outlines

- Hybrid Recommender Systems
- Types of Hybrid Recommender Systems
 - Monolithic Hybridization Design
 - Parallelized Hybridization Design
 - Pipelined Hybridization Designs
- Evaluation Metrics

Hybrid Recommender Systems

• *hybrida* [lat.]: an object made by combining two different elements

Main Idea:

- Cross two (or more) species/implementations.
- Combine the strengths of the three base techniques to overcome their weak points and problems.
 - Achieve desirable properties not present in parent individuals

Types of Hybrid Recommender Systems

- Monolithic Hybridization Design
 - Feature Combination
 - Feature Augmentation
- Parallelized Hybridization Design
- Pipelined Hybridization Designs

Monolithic Hybridization Design

Only a single recommendation component

- "Virtual" hybridization
 - Combine Features/knowledge sources of different paradigms.

Monolithic Hybridization Designs: Feature Combination

- Combine knowledge from several sources, *e.g.*, ratings, user demographics and/or explicit requirements in computing similarity.
- "Hybrid" content features:

Example 1 of Feature Combination (1)

- Rule for deriving hybrid features:
 - IF a user bought mainly items of genre X, THEN set the user characteristic 'User likes many X items' to true.
- Input data:

Genre	romance	e <mark>myster</mark> į	fiction ~		
User	Item1	Item2	Item3	Item4	Item5
Alice		1		1	
User1		1	1		1
User2	1	1			1
User3	1		1		
User4					1

Genre
romance
mystery
mystery
mystery
fiction

Example 1 of Feature Combination (2)

Genre	romance	mystery	mystery	ı myster <u>ı</u>	fiction
	- -				- -

User	Item1	Item2	Item3	Item4	Item5
Alice		1		1	
User1		1	1		1
User2	1	1			1
User3	1		1		
User4					1

Rule for deriving hybrid features:

- IF # of purchase > = 2 THEN 'many' = true
- IF # of purchase = 1 THEN 'some' = true

User		 Alice	User1	User2	User3	User4
User <i>likes mar</i>	ny mystery books	true	true			
User <i>likes som</i>	e mystery books			true	true	
User <i>likes mar</i>	ny romance books					
User <i>likes som</i>	e romance books			true	true	
User <i>likes mar</i>	ny fiction books					
User <i>likes som</i>	efiction books		true	true		true

Example 1 of Feature Combination (3)

Who is the most similar user to Alice?

Genre	romance mystery mystery fictio					
User	Item1	Item2	Item3	Item4	Item5	
Alice		1		1		
User1		1	1		1	
User2	1	1			1	
User3	1		1			
User4					1	

Example 1 of Feature Combination (4)

Who is the most similar user to Alice wrt the combined features?

Jenie	Tomance	ntystery	nigsterg	ntyster	fiction
User	Item1	Item2	Item3	Item4	Item5
Alice		1		1	
User1		1	1		1
User2	1	1			1
User3	1		1		
User4					1

romance mustern mustern mustern fiction

Rule for deriving hybrid features:

- IF # of purchase > = 2 THEN 'many' = true
- IF # of purchase = 1 THEN 'some' = true

User	Alice	User1	User2	User3	User4
User likes many mystery books	true	true	>		
User likes some mystery books			true	true	
User <i>likes many romance</i> books					
User <i>likes some romance</i> books			true	true	
User <i>likes many fiction</i> books					
User <i>likes some fiction</i> books		true	true		true

Example 2 of Feature Combination (1)

□ Who is the most similar user to Alice *NOT considering* priority of the features?

User	Navigation Action (f1)	Click on item's detail pages (f2)	Contextual user requirements (f3)	Actual purchase (f4)
Alice	n3, n4	i5	k5	Ø
User1	n1, n5	i3, i5	k5	i1
User2	n3, n4	i3, i5, i7	Ø	i3
User3	n2, n3, n4	i2, i4, i5	k2, k4	i4

Example 2 of Feature Combination (2)

□ Who is the most similar user to Alice *NOT considering* priority of the features?

User	Navigation Action (f1)	Click on item's detail pages (f2)	Contextual user requirements (f3)	Actual purchase (f4)
Alice	n3, n4	i5	k5	Ø
User1	n1, n5	i3, i5	k5	i1
User2	n3, n4	i3, i 5, i7	Ø	із
User3	n2, n3, n4	i2, i4, i5	k2, k4	i4

Example 2 of Feature Combination (3)

- □ Suppose that the priority of the features are as follows: $(f_3, f_4) > f_2 > f_1$,
 - who is the most similar user to Alice considering the priority of the features?

User	Navigation Action (f1)	Click on item's detail pages (f2)	Contextual user requirements (f ₃)	Actual purchase (f4)
Alice	n3, n4	i5	k5	Ø
User1	n1, n5	i3, i5	k5	i1
User2	n3, n4	i3, i5, i7	Ø	i3
User3	n2, n3, n4	i2, i4, i5	k2, k4	i4

Example 2 of Feature Combination (4)

- □ Suppose that the priority of the features are as follows: $(f_3, f_4) > f_2 > f_1$,
 - who is the most similar user to Alice considering the priority of the features?

User	Navigation Action (f1)	Click on item's detail pages (f2)	Contextual user requirements (f3)	Actual purchase (f4)
Alice	n3, n4	i5	k5	Ø
User1	n1, n5	i3, i5	k5	i1
User2	n3, n4	i3, i5, i7	Ø	i3
User3	n2, n3, n4	i2, i4, i5	k2, k4	i4

Monolithic Hybridization Designs: Feature Augmentation

- Main Idea: apply *more complex transformation steps* to combine several types of inputs.
 - Augments the **feature space** of the actual recommender by preprocessing its knowledge sources.

An Example of Feature Augmentation: Content-boosted collaborative filtering (1)

- Predicts a target user's rating based on a collaborative
 mechanism that includes content-based predictions.
 - What is Alice's rating on item5?

User	User rating on item5 (v _{User,Item5})	Pearson Coeff. (P _{Alice,User})	No. of user ratings (n _{User})	No. of overlapping rating (n _{Alice,User_i})
Alice	?		40	
User1	4	0.8	14	6
User2	2.2	0.7	55	28

An Example of Feature Augmentation:

Content-boosted collaborative filtering (2)

□ Step 1: create a pseudo-user-ratings vector v_{u,i}:

$$v_{u,i} = \begin{cases} r_{u,i} & : if \ user \ u \ rated \ item \ i \\ c_{u,i} & else \ content-based \ prediction \end{cases}$$

User	User rating on item5 (v _{User,Item5})	Pearson Coeff. (P _{Alice,User})	No. of user ratings (n _{User})	No. of overlapping rating $(\mathbf{n}_{\mathrm{Alice},\mathrm{User}_i})$
Alice	?		40	
User1	4	0.8	14	6
User2	2.2	0.7	55	28

Rating that user1 gives to item5.

Obtained from contentbased prediction for User2 on item5.

An Example of Feature Augmentation:

Content-boosted collaborative filtering (3)

Step 2: compute predictions based on the pseudo ratings:

Self-weighting on

The content-based prediction on item5

Adjust user's rating based on Correlation between the target user

Target item
$$rec_{cbcf}(a,i) = \frac{sw_a c_{a,i} + \sum_{\substack{u=1 \ u \neq a}}^{n} hw_{a,u} P_{a,u} v_{u,i}}{sw_a + \sum_{\substack{u=1 \ u \neq a}}^{n} hw_{a,u} P_{a,u}}$$
User's rating on item5
$$v_{User,Item5}(v_{User,Item5}(a,i)) = \frac{sw_a c_{a,i} + \sum_{\substack{u=1 \ u \neq a}}^{n} hw_{a,u} P_{a,u} v_{u,i}}{sw_a + \sum_{\substack{u=1 \ u \neq a}}^{n} hw_{a,u} P_{a,u}}$$
Pearson Coeff.

 $(P_{Alice,User})$

An Example of Feature Augmentation:

Content-boosted collaborative filtering (4)

Self-weighting on

The content-based prediction on item5

$$sw_a + \sum_{\substack{u=1 \ u \neq a}}^n hw_{a,u}P_{a,u}$$

content-based prediction

on item i

Assume that $C_{Alice,Item_5} = 3$

User	No. of user ratings (n _{User})
Alice	40
User1	14
User2	55

Self-weighing factor:

(confidence wrt no. of original rating values of the target user a)

$$sw_i = \begin{cases} \frac{n_i}{50} \times \max : if \ n_i < 50 \\ \max : Otherwise \end{cases}$$

Assume that max = 2 (in the paper)

$$sw_{Alice} = \frac{n_{Alice}}{50} \times max = \frac{40}{50} \times 2 = 1.6$$

An Example of Feature Augmentation:

Content-boosted collaborative filtering (5)

Hybrid correlation weight

User	User rating on item5 (v _{User,Item5})	Pearson Coeff. (P _{Alice,User})	No. of user ratings (n _{User})	No. of overlapping rating (n _{Alice,User})
Alice	?		40	
User1	4	0.8	14	6
User2	2.2	0.7	55	28

$$hw_{a,u} = sg_{a,u} + hm_{a,u}$$

gnificant eighting ctor
$$(sg_{a,u})$$

Harmonic Mean Weighting Factor $(hm_{a,u})$

Significant Weighting Factor $(sg_{a,u})$ $sg_{a,u} = \begin{cases} \frac{n_{a,u}}{50} & :if \ n_{a,u} < 50 \\ 1 & :Otherwise \end{cases}$

$$hm_{a,u} = \frac{2m_a m_u}{m_a + m_u}$$

$$hm_{Alice,User1}$$

$$hm_{Alice,User1} = \frac{2m_{Alice}m_{User1}}{m_{Alice} + m_{User1}} = \frac{2 \times \frac{40}{50} \times \frac{14}{50}}{\frac{40}{50} + \frac{14}{50}} = \frac{2 \times 0.8 \times 0.28}{0.8 + 0.28} = 0.415$$

 $sg_{Alice,User1} = \frac{n_{Alice,User1}}{50} = \frac{6}{50} = 0.12$

 $hw_{Alice,User1} \neq sg_{Alice,User1} + hm_{Alice,User1}$

 \Rightarrow 0.12 + 0.415 \Rightarrow 0.535

$$m_i = egin{cases} rac{n_i}{50} & : if \ n_i < 50 \ 1 & : Otherwise \end{cases}$$

An Example of Feature Augmentation (6)

Step 2: compute predictions based on the pseudo ratings:

Types of Hybrid Recommender Systems

- Monolithic Hybridization Design
- Parallelized Hybridization Design
 - Weighted
 - Switching
- Pipelined Hybridization Designs

Parallelized Hybridization Design

- Run several recommendation algorithms (in parallel) and combine results to generate final recommendations.
- May apply weighting (voting) for result combination.
 - Approach 1: feasibly learn weights dynamically.
 - Approach 2: use switching if weights of only one algorithm is one; the rest algorithm(s) has zero weight.

Parallelized Hybridization Design: Computing Weighted Recommendations

Asst. Prof. Dr. Rachsuda Setthawong

Recom	mender	1		Recom	mender	· 2
Item1	0.5	1		Item1	0.8	2
Item2	δ			Item2	ø.9	1
Item3	0.3	2		Item3	0.4	3
Item4	0.1	\3		Item4	0	
Item5	0			Item5	0	
				[(0.5*0	0.5) + (0.5	*o.8)]
Rec	ommen	der v	weight	ed (0.5:	0.5)	
Item1			0.65		1	

0.45

0.35

0.05

0.00

Item2

Item3

Item4

Item5

2

3

4

Note:

- Item scores must be in the same range.
- $\Sigma \beta_k = 1$ 2.

Parallelized Hybridization Design: Weighting Strategies

- Empirical bootstrapping
 - Require historic data.
 - Generate recommendations using different weightings and select the one with the best result.
- Dynamic adjustment of weights
 - Initially use uniform weight distribution.
 - Iteratively adjust weights to minimize prediction error.

high

Asst. Prof. Dr. Rachsuda Setthawong

Parallelized Hybridization Design: Caution when Applying Weighted (1)

- Suppose that Alice bought items 1 and 4 (= $actual\ rating = (r_i = 1)$)
 - Select weighting with smallest Mean Absolute Error (MAE)

$$MAE = \frac{\sum_{r_i \in R} \sum_{k=1}^n \beta_k \times |rec_k(u,i) - r_i|}{|R|}$$
 Difference between actual and predicted ratings

Selected weights with best MAE (lowest)

		Absolu	te Errors and	UMAE		
Beta1	Beta2		Predicted rating on Rec1	Predicted rating on Rec2	error	MAE
0.1	0.9	Item1	0.5	0.8	0.23	0.61
		Item4	0.1	0.0	0.99	
0.3	0.7	Item1	0.5	0.8	0.29	0.63
		Item4	0.1	0.0	0.97	
0.5	0.5	Item1	0.5	0.8	0.35	0.65
		Item4	0.1	0.0	0.95	
0.7	0.3	Item1	0.5	0.8	0.41	0.67
		Item4	0.1	0.0	0.93	
0.9	0.1	Item1	0.5	0.8	0.47	0.69
		Item4	0.1	0.0	0.91	

Absolute Errors and MAE

Parallelized Hybridization Design: Caution when Applying Weighted (2)

- Suppose that Alice bought items 1 and 4 (= $actual\ rating = (ri = 1)$)
 - Select weighting with smallest Mean Absolute Error (MAE)

Absolute difference between actual and predicted ratings

$$MAE = \frac{\sum_{r_i \in R} \sum_{k=1}^{n} \beta_k \times |rec_k(u, i) - r_i|}{|R|}$$

Error_item1[beta(0.1, 0.9)] = $(0.1 \times |0.5-1|) + (0.9 \times |0.8-1|) = 0.23$

		Abso	húte Error <mark>s</mark> ai	nd MAE	<u>'</u>	
Beta1	Béta2		Predicted rating on Rec1/	Predicted rating on Rec2/	error	MAE
0.1	0.9	Item1	0.5	0.8	0.23	0.61
		Item4	0.1	0.0	0.99	

Parallelized Hybridization Design: Caution when Applying Weighted (3)

- Suppose that Alice bought items 1 and 4 (= $actual\ rating = (ri = 1)$)
 - Select weighting with smallest Mean Absolute Error (MAE)

Absolute difference between actual and predicted ratings

$$MAE = \frac{\sum_{r_i \in R} \sum_{k=1}^{n} \beta_k \times |rec_k(u, i) - r_i|}{|R|}$$

MAE(beta(0.1,0.9)) = error_item1 + error_item4 =
$$\{ [(0.1 \times |0.5-1|) + (0.9 \times |0.8-1|)] + [(0.1 \times |0.1-1|) + (0.9 \times |0.0-1|)] \} / 2 = (0.23 + 0.99) / 2 = 0.61$$

Absolute Errors and MAE

Beta1	Beta2	•	Predicted rating on	Predicted error rating on	MAE
			Rec1	Rec2	_
			Reci	Rec2	``` `
0.1	0.9	Item1	0.5	0.8	0.61
		Item4	0.1	0.0	

Parallelized Hybridization Design: Switching

$$\exists_1 k : 1 \dots n \ rec_{switching}(u, i) = rec_k(u, i)$$

- Equivalent to dynamic weights when one β equals 1 and the rest β s equal 0.
- An example:

```
IF too few ratings in the system THEN use knowledge-based
```

ELSE

use collaborative-based

Types of Hybrid Recommender Systems

- Monolithic Hybridization Design
- Parallelized Hybridization Design
- Pipelined Hybridization Designs
 - Cascade

Pipelined Hybridization Designs

- Sequentially run recommender systems such that a successor alters results from its predecessor.
- Two designs
 - Cascade
 - Meta-level

Pipelined Hybridization Designs: Cascade (1)

Generating successor's recommendations:

$$rec_{cascade}(u,i) = rec_n(u,i)$$

where $\forall k \geq 2$

$$rec_k(u,i) = \begin{cases} rec_k(u,i) & : rec_{k-1}(u,i) \neq 0 \\ 0 & : else \end{cases}$$

- **Subsequent** recommender **either alters** score of its predecessor's items **or discards** them.
 - An item will be *suggested* by the kth technique *only if* the
 (k-1)th technique *also* assigned a *nonzero score* to it.

Pipelined Hybridization Designs: Cascade (2)

Recom	mend	er 1	•	Recom	mende	er 2
Item1	0.5	1		Item1	0.8	2
Item2	0			Item2	0.9]
Item3	0.3	2		Item3	0.4	3
Item4	0.1	3		Item4	0	
Item5	0			Item5	0	
	1	-				
Reco	ommei	nder o	cascad	ed (rec1,	rec2)	
Item1			0.5			
Item2			0			
Item3			0.3			
Item4			0.1			
Item5			0			

• Examples of applying cascade RS:

- Recommender 1 discards some items.
- Recommender 2 re-calculating their score.

Pipelined Hybridization Designs: Cascade (3)

Examples of applying cascade RS:

- Recommender 1 discards some items.
- Recommender 2 re-calculating their score.

Pipelined Hybridization Designs: Cascade (4)

- Recommender 1 discards some items.
- Recommender 2 re-calculating their score.

Pipelined Hybridization Designs: Cascade (5)

- Recommender 1 discards some items.
- Recommender 2 re-calculating their score.

Pipelined Hybridization Designs: Cascade (6)

- Recommender 1 discards some items.
- Recommender 2 re-calculating their score.

Pipelined Hybridization Designs: Cascade (7)

- Recommender 1 discards some items.
- Recommender 2 re-calculating their score.

Pipelined Hybridization Designs: Cascade (8)

Recommender 1			
Item1	0.5	1	
Item2	O		
Item3	0.3	2	
Item4	0.1	3	
Item5	0		

Recommender 2			
Item1	0.8	2	
Item2	0.9	1	
Item3	0.4	3	
Item4	O		
Item5	0		

- Recommender 1 discards some items.
- Recommender 2 re-calculating their score.

Recommender cascaded (rec1, rec2)			
Item1	0.8	1	
Item2	0	-]	New rank
Item3	0.4	2	
Item4	0.0		
Item5	0		

Outlines

- Hybrid Recommender Systems
- Types of Hybrid Recommender Systems
 - Monolithic Hybridization Design
 - Parallelized Hybridization Design
 - Pipelined Hybridization Designs
- Evaluation Metrics

Methodology

- N-fold cross-validation:
 - A stratified random selection technique
 - (N-1) out of N folds of user profiles is used for model building.
 - 1 out of N folds of user profiles is used for evaluation.
 - Repeat them for N times and determine the average results

Row	UserID	MovieID	Rating
1	234	110	5
2	234	151	5
3	234	260	3
4	234	376	5
5	234	539	4 ^a
6	234	590	5
7	234	649	1
8	234	719	5^{a}
9	234	734	3
10	234	736	2

Note: 'a' = randomly selected ratings for testing.

A Demonstration of 5-fold Cross-validation

Training Set			
r1, r2	r4, r7	r3, r8	r6, r10
	17 - 7	1-0,	
r4, r7	r3, r8	r6, r10	r5, r9
- 0		T	T T
r3, r8	r6, r10	r5, r9	r1, r2
r6, r10	r5, r9	r1, r2	r4, r7
r5, r9	r1, r2	r4, r7	r3, r8
	r3, r8	r1, r2 r4, r7 r4, r7 r3, r8 r3, r8 r6, r10 r6, r10 r5, r9	r1, r2 r4, r7 r3, r8 r4, r7 r3, r8 r6, r10 r3, r8 r6, r10 r5, r9 r6, r10 r5, r9 r1, r2

Test Set	Measure e.g., RMSE	
r5, r9	$RMSE_{round1} = o.$	
r1, r2	$RMSE_{round2} = o.$	
r4, r7	$RMSE_{round_3} = o$	
r3, r8	$RMSE_{round4} = o.$	
r6, r10	$RMSE_{round5} = o.$	

 $\mathrm{RMSE}_{\mathrm{round5}} = \mathbf{0.1}$

Average RMSE = 0.22

Evaluation Tasks

- Prediction Task
 - Compute a *missing rating* in the user/item matrix.
 - Require Likert scale ratings.

- Classification Task
 - Select a ranked list of n items relevant for the user.
 - Transform Likert scale ratings into relevant/irrelevant
 items.

Metrics

- Accuracy of predictions
- Accuracy of classifications
- Accuracy of ranks

Accuracy of Predictions

Mean absolute error

$$MAE = \frac{\sum_{u \in U} \sum_{i \in testset_u} |rec(u, i) - r_{u, i}|}{\sum_{u \in U} |testset_u|}$$

Normalized MAE

$$NMAE = \frac{MAE}{r_{max} - r_{min}}$$

Accuracy of Classifications (1)

• Precision (= TP / (TP + FP))

$$P_u = \frac{|hits_u|}{|recset_u|}$$

 $|hitS_u|$ = the number of correctly recommended relevant items for user u

• Recall (= TP / (TP + FN))

$$R_u = \frac{|hits_u|}{|testset_u|}$$

Example

Top-20 suggested items for user 234 ((Item,Rating) tuples):

A Test Set

Row	UserID	MovieID	Rating
1	234	539	4
2	234	719	5

• MAE =
$$[|4.1 - 4| + |3.8 - 5|]/2$$

= $(0.1 + 1.2)/2 = 0.65$

- **Top 3** ranked items:

 - $P_{234} = 0/3 = 0$ $R_{234} = 0/2 = 0$
- **Top 5** ranked items:
 - $P_{234} = 1/5 = 0.2$
 - $R_{234} = 1/2 = 0.5$
- P_{234} and R_{234} for **Top 20** ranked items?

Accuracy of Classifications (2)

• F1 (F-measure)

$$F1 = \frac{2 \times P \times R}{P + R}$$

• Hit rate (focus on # of users who get at least 1 matched item)

$$hitrate_u = \begin{cases} 1 & if \ hit_u > 0 \\ 0 & otherwise \end{cases}$$

where,

 $hit_u = \#$ of correctly recommended <u>relevant</u> items for user u

Accuracy of Ranks (rankscore_u')

$$rankscore_{u} = \frac{rankscore_{u}}{rankscore_{u}} = \frac{rankscore_{u}}{rankscore_{u}^{max}}$$

$$rankscore_{u}^{max} = \sum_{i \in tastast} \frac{1}{\frac{idx(i)-1}{\alpha}}$$

where,

rank(i) = the *position of item i* in the user's recommendation list α = the *half-life* of utilities (decrease by half for each rank) idx(i) = $assigning\ a\ value\ \in \{1,...,|testset_u|\}$ corresponding to the order of rank(i)

 $Recset_{234} = \{$

20 (*ItemID*, *Rating*) tuples suggested for user 234:

(912, 4.8),

Example

• Assume, $\alpha = 10$

Sume,
$$\alpha = 10$$

$$rankscore'_{u} = \frac{rankscore_{u}}{rankscore_{u}}$$

$$rankscore'_{234} = \frac{1.08}{1.93} = 0.56$$

$$rankscore_{234} = \frac{1}{2 \cdot 10} + \frac{1}{2 \cdot 10} = 1.08$$

$$rankscore_{234} = \frac{1}{2 \cdot 10} + \frac{1}{2 \cdot 10} = 1.93$$

Accuracy of Ranks (*liftindex*_u)

- Assume that the ranked list is divided into ten equal deciles.
- Count the number of hits in each decile as $S_{1,u}, S_{2,u}, ..., S_{10,u}$, where

$$\sum_{i=1}^{10} S_i = hits_u$$

$$liftindex_u = \begin{cases} \frac{1 \cdot S_{1,u} + 0.9 \cdot S_{2,u} + \dots + 0.1 \cdot S_{10,u}}{\sum_{i=1}^{10} S_{i,u}} & if \ hit_u > 0 \\ 0 & otherwise \end{cases}$$

where,

 $hit_u = \#$ of correctly recommended <u>relevant</u> items for user u

Example

$$liftindex_u = \begin{cases} \frac{1 \cdot S_{1,u} + 0.9 \cdot S_{2,u} + \dots + 0.1 \cdot S_{10,u}}{\sum_{i=1}^{10} S_{i,u}} & if \ hit_u > 0 \\ 0 & otherwise \end{cases}$$

$$liftindex_{234} = \frac{S_{2,u}}{0.9 \cdot 1 + 0.1 \cdot 1} = 0.5$$

Discounted Cumulative Gain (DCG)

- **Assumption:** The <u>highly relevant</u> documents are <u>more useful</u> than moderately relevant documents.
- DCG measures *ranking quality* that assesses the recommended list provided by a recommendation engine

$$DCG = \sum_{i=1}^{n} \frac{\text{Document relevant score of the ordered recommended item}_{i}}{\log_{2}(i+1)}$$

• E.g., score_recset_A = [2,3,2,3,1] and score_recset_B = [3,3,2,1,2] $DCG_A = \frac{2}{log_2(1+1)} + \frac{3}{log_2(2+1)} + \frac{2}{log_2(3+1)} + \frac{3}{log_2(4+1)} + \frac{1}{log_2(5+1)} = 6.57$ $DCG_B = \frac{3}{log_2(1+1)} + \frac{3}{log_2(2+1)} + \frac{2}{log_2(3+1)} + \frac{1}{log_2(4+1)} + \frac{2}{log_2(5+1)} = 7.09$

Normalized Discounted Cumulative Gain (NDCG)

$$NDCG = \frac{DCG}{iDCG}$$

- where, iDCG = DCG of the ideal order
- $NDCG \in [0, 1]$
- E.g., $score_recset_A = [2,3,2,3,1]$ and $ideal_score_recset_A = [3,3,2,2,1]$

$$DCG_A = \frac{2}{\log_2(1+1)} + \frac{3}{\log_2(2+1)} + \frac{2}{\log_2(3+1)} + \frac{3}{\log_2(4+1)} + \frac{1}{\log_2(5+1)} = 6.57$$

$$iDCG_A = \frac{3}{\log_2(1+1)} + \frac{3}{\log_2(2+1)} + \frac{2}{\log_2(3+1)} + \frac{2}{\log_2(4+1)} + \frac{1}{\log_2(5+1)} = 7.14$$

$$NDCG = \frac{6.57}{7.14} = 0.92$$

Note: use **Mean NDCG** of all test users' recommended list to evaluate the performance of the recommendation algorithm