蜂鸟 E203 开源内核简介

Content

0.1	REVISION HISTORY	1
0.2	REFERENCE DOCUMENTATION	1
	开源背景简介	
	蜂鸟 E203 内核简介	
	蜂鸟 E203 内核配置选项	
	蜂鸟 E203 内核快速上手介绍	
4	蚌与 E205 内仅区还工于开组	. 11

0.1 Revision History

Date	Version	Author	Change Summary
Oct 20,2018	0.1	Bob Hu	Initial version

0.2 Reference Documentation

注意:

- 本文档对蜂鸟 E203 内核以及 RISC-V 指令集架构的介绍尚不够详细,在中文书籍《手把手教你设计 CPU: RISC-V 处理器篇》或《RISC-V 架构与嵌入式开发快速入门》中对其进行深入浅出地系统讲解。感兴趣的用户可以自行搜索书籍。
- 本文档对 SoC 的各外设的介绍尚不够详细,我们将出版中文书籍《RISC-V 架构与嵌入 式开发入门指南》中进行深入浅出的系统讲解。感兴趣的用户可以自行搜索此书。

1 开源背景简介

由于 RISC-V 的开放性,受到了全世界范围内的广泛关注。在教育教学和爱好者领域,使用开源的 RISC-V 处理器内核进行科研、自学和教学日趋成为主流。

目前全世界范围内存在着诸多的开源 RISC-V 处理器核,对于众多开源实现加以分析,我们可以发现这些现象:

- 目前开源的RISC-V内核实现主要以国外为主,没有一款中国本土的RISC-V处理器, 难以取得与本土开发人员的交流和支持。
- 大多数的开源实现或者均来自于个人爱好者、或者来自于高校。其开发语言或者使用 VHDL,或者使用高级的 System Verilog。来自产业界工程团队且使用最稳健的 Verilog RTL 实现的开源 RISC-V 处理器尚不多见。
- 最知名的 Rocket Core 使用了高级的 Chisel 语言转换生成 Verilog RTL 代码,造成代码可读性很差,给不熟悉 Chisel 语言的业界工程师使用造成了困难。
- 绝大多数的开源处理器仅仅提供处理器核的实现,没有提供配套 SoC 和软件示例, 用户若要将其使用起来且移植完整软件需要付出额外的努力。
- 绝大多数开源处理器仅仅提供处理器核的实现,但是并没有提供调试方案的实现,很 少有开源处理器能够支持完整的 GDB 交互调试功能。
- 绝大多数开源处理器均文档匮乏。

蜂鸟 E203 处理器内核(简称蜂鸟 E203 内核)可有效解决以上这些问题,与其他的 RISC-V 开源处理器实现相比,它具有如下显著特点:

- 蜂鸟 E203 内核由中国大陆本土研发团队开发,用户能够轻松与本土的开发人员取得 交流和支持。
- 蜂鸟 E203 内核的研发团队来自业界一流的处理器设计公司,使用所有 EDA 工具均稳健支持的 Verilog 2001 语法编写的可综合 RTL 代码。
- 蜂鸟 E203 内核的代码为人工编写,添加丰富的注释且可读性强,非常易于理解。
- 蜂鸟 E203 内核专为 IoT 领域量身定做,其具有 2 级流水线深度,麻雀虽小五脏俱全。
- 蜂鸟 E203 内核不仅提供处理器核的实现,还提供完整的配套 SoC、详细的 FPGA 原型平台搭建,详细的软件运行实例。用户可以的按照其步骤重现出整套系统,轻松将蜂鸟 E203 内核应用其到具体项目中。

- 蜂鸟 E203 内核不仅提供处理器核的实现、SoC 实现、FPGA 平台和软件示例。还实现了完整的调试方案,具备完整的 GDB 交互调试功能。是从硬件到软件,从模块到SoC,从运行到调试,的一套完整解决方案。
- 蜂鸟 E203 内核提供详细文档和实例,以及系统的配套书籍《手把手教你设计 CPU——RISC-V 处理器篇》和《RISC-V 架构和嵌入式开发快速入门》。

2 蜂鸟 E203 内核简介

蜂鸟 E203 内核的处理器研发团队拥有多年在国际一流公司开发处理器的经验。蜂鸟是世界上最小的鸟类,其体积虽小却有着极高的速度与敏锐度,可以说是世界上"能效比"最高的鸟类。蜂鸟 E203 内核以蜂鸟命名便寓意于此,旨在将其打造成一款世界上最小面积与最高能效比的 RISC-V 处理器。

蜂鸟 E203 内核的特性简介如下:

- E203 内核采用 2 级流水线结构,能够运行 RISC-V 指令集,支持 RV32I/E/A/M/C 等指令子集的配置组合,仅支持机器模式(Machine Mode Only)。
- E203 内核提供标准的 JTAG 调试接口,以及成熟的 GDB 调试工具。注意: 蜂鸟 E203 内核不支持 Hardware Breakpoint 和 Watchpoint 特性。
- E203 内核提供成熟的 GCC 编译工具链,以及 Linux 与 Windows 图形化软件开发工具。
- E203 内核提供配套的开源 SoC,提供紧耦合系统 IP 模块,包括中断控制器,计时器, UART, QSPI, PWM 等,以及 Ready-to-Use 的 SoC 平台与 FPGA 原型系统。

蜂鸟 E203 内核作为结构精简的处理器核,可谓"蜂鸟虽小、五脏俱全",源代码全部开源公开,文档翔实,非常适合作为大中专院校师生学习 RISC-V 处理器设计(使用 Verilog 语言)的教学实验或自学案例。

蜂鸟 E203 内核的系统示意图如图 1 所示,其提供丰富的存储和接口,包括:

- 私有的 ITCM (指令紧耦合存储)与 DTCM (数据紧耦合存储),实现指令与数据的分离存储同时提高性能。ITCM 与 DTCM 均基于单周期访问的单口 SRAM 实现, DTCM 的宽度为 32 比特,ITCM 的宽度为 64 比特以节省功耗。ITCM 不仅用于存储指令,也可以被作为数据存储访问。
- 中断接口用于与 SoC 级别的中断控制器连接。
- 调试接口用于与 SoC 级别的 JTAG 调试器连接。
- 系统总线接口,用于访存指令或者数据。可以将系统主总线接到此接口上,蜂鸟 E203 内核可以通过该总线访问总线上挂载的片上或者片外存储模块。
- 紧耦合的私有外设接口,用于访存数据。可以将系统中的私有外设直接接到此接口上, 使得蜂鸟 E203 内核无需经过与数据和指令共享的总线便可访问这些外设。
- 紧耦合的快速 IO 接口,用于访存数据。可以将系统中的快速 IO 模块直接接到此接口上,使得蜂鸟 E203 内核无需经过与数据和指令共享的总线便可访问这些模块。

■ 所有的 ITCM、DTCM、系统总线接口、私有外设接口、快速 IO 接口均可以配置地址区间。

图 1 蜂鸟 E203 内核系统示意图

注意:

- 蜂鸟 E203 内核主要面向教育教学和爱好者领域,源代码全部开放。理论上可以用于 商业目的,但是不保证其商用质量和服务。
- The main purpose of this open-sourced core is to be used by students/university/research and entry-level-beginners, hence, the commercial quality (bug-free) and service of this core is not not warranted!!!

蜂鸟 E203 内核的功耗与面积以及性能参数非常的有竞争力,如表 2 中所示。

表 2 "蜂鸟 E203 内核"与 "ARM Cortex MO 内核"对比表

	ARM	ARM	蜂鸟 E203
	Cortex-M0	Cortex-M0+	
Dhrystone	0.84	0.94	1.262
(DMIPS/MHz)	(Official)	(Official)	
	1.21	1.31	
	(Max options)	(Max options)	
CoreMark	2.33	2.42	2.226
(CoreMark/MHz)			
最小配置逻辑门数	12K	12K	12K~25K(取决于配置)
(K Gates)			
流水线深度	3	2	2
乘法器	有	有	有
除法器	无	无	有

注:

- (1) Cortex M0+的乘法器可以配置成单周期乘法器或多周期迭代乘法器,因此其 Dhrystone 性能数据有两组; CoreMark 性能数据采用单周期乘法或多周期乘法器信息不详。
- (2) 本表格中有关 ARM Cortex M 系列处理器核的性能数据来自于其他公开信息,非官方数据。请以最新 ARM 官方数据为准。

很多开源的处理器核仅有一个 Core 的实现,为了使其能够被完整使用起来,用户需要花费不少精力来构建完整的 SoC 平台、FPGA 平台、并且对于调试(Debugger)的支持更加的困难。

蜂鸟 E203 内核不仅仅完全开源了 Core 的实现,还搭配完整的开源 SoC 平台,如图 2 和表 3 所示。请参见《蜂鸟 E203 开源 SoC 简介》了解更多 SoC 的介绍与信息。

蜂鸟 E203 内核还提供软件开发环境,支持交互式硬件调试工具(GDB)的支持。用户可按照文档《蜂鸟 E203 快速上手介绍》中步骤便可快速搭建完整的 SoC 仿真平台或者 FPGA 原型平台,并运行软件示例。

图 2 蜂鸟 E203 内核配套 SoC 结构图

表 3 蜂鸟 E203 内核配套 SoC 特性

	特性	描述
CPU	使用 Windows/Linux GCC 工具链开发	
	基于 E203 内核	
	使用标准 JTAG 调试接口	
	支持 GDB 交互式软件调试能力	
	支持中断控制器	
存储	片上 ITCM-SRAM(指令)	可配置大小
	片上 DTCM-SRAM (数据)	可配置大小
	可通过 QSPI 等接口外接其他片外存储	片外 Flash
外设提供	提供 PWM	3 组
	提供 SPI,QSPI	3 组
	提供 GPIO	32 个 pin 脚
	提供 I2C Master	1组

提供 UART	1组
提供 WatchDog	1组
提供 RTC(Real Time Counter)	1组
提供计时器 (Timer)	1组

3 蜂鸟 E203 内核配置选项

蜂鸟 E203 内核具有一定的可配置性,通过修改其目录下的 config.v 文件中的宏定义便可以实现不同的配置。

config.v 文件在 e200_opensource 目录的结构如下。

config.v 中的具体的配置选项宏定义,如表 4 所示。

表 4 E203 处理器核配置选项

宏	描述	推荐默认值
E203_CFG_DEBUG_HAS_JTAG	如果添加了此宏,则配置使用 JTAG 调试	使用
	接口	
E203_CFG_ADDR_SIZE_IS_16	三选一,用于配置处理器的寻址地址宽度	32 位
E203_CFG_ADDR_SIZE_IS_24	为 16 位, 24 位或者 32 位	
E203_CFG_ADDR_SIZE_IS_32		
E203_CFG_SUPPORT_MCYCLE_MINSTRET	如果添加了此宏,则配置使用 MCYCLE 和	使用
	MINSTRET 这两个 64 位的 Performance	
	Counters	
E203_CFG_REGNUM_IS_32	二选一,用于配置使用 32 个通用寄存器	32 ↑
E203_CFG_REGNUM_IS_16	(RV32I) 或者 16 个通用寄存器 (RV32E)	
E203_CFG_HAS_ITCM	如果添加了此宏,则配置使用 ITCM	使用
E203_CFG_ITCM_ADDR_BASE	配置 ITCM 的基地址	0x8000_0000
E203_CFG_ITCM_ADDR_WIDTH	配置 ITCM 的大小,使用地址总线宽度作	16
	为大小的衡量,譬如假设 ITCM 的大小为	(64KByte)

	1以2000 即此定点义体头 10	
	1KByte,则此宏定义值为 10	th FF
E203_CFG_HAS_DTCM	如果添加了此宏,则配置使用 DTCM	使用
E203_CFG_DTCM_ADDR_BASE	配置 DTCM 的基地址	0x9000_0000
E203_CFG_DTCM_ADDR_WIDTH	配置 DTCM 的大小,使用地址总线宽度作	14
	为大小的衡量,譬如假设 DTCM 的大小为	(16KByte)
	1KByte,则此宏定义值为 10	
E203_CFG_REGFILE_LATCH_BASED	如果添加了此宏,则配置使用 Latch 作为通	使用 Latch
	用寄存器组(Regfile)的基本单元。如果	
	没有添加此宏,则使用 D Flip-Flops 作为基	
	本单元。	
E203_CFG_PPI_ADDR_BASE	配置私有外设接口(PPI: Private Peripheral	0x1000_0000
	Interface)的基地址	
E203 CFG PPI BASE REGION	配置 PPI 接口的地址区间,通过指定高位	31:28
2400_02 0_22 2_5302_53201034	的区间来界定地址区间。譬如如果该	
	REGION 定义为 31:28, 基地址定义为	
	0x1000_0000。则表示 PPI 的地址区间为	
	0x1000_0000 ~ 0x1FFF_FFFF.	
E203_CFG_FIO_ADDR_BASE	配置快速 IO 接口(FIO: Fast IO Interface)	0xf000_0000
	的基地址	
E203 CFG FIO BASE REGION	配置 FIO 接口的地址区间,通过指定高位	31:28
	的区间来界定地址区间。譬如如果该	
	REGION 定义为 31:28, 基地址定义为	
	0xf000_0000。则表示 FIO 的地址区间为	
	0xf000_0000 ~ 0xfFFF_FFFF.	
E203_CFG_CLINT_ADDR_BASE	配置 CLINT 接口的基地址。	0x0200_0000
	有 关 CLINT 介 绍 , 请 参 见	
	《Hummingbird_E200_Series_	
	Core_SoC_Quick_Start_Guide.pdf》	
E203_CFG_CLINT_BASE_REGION	配置 CLINT 接口的地址区间,通过指定高	31:16
	位的区间来界定地址区间。譬如如果该	
	REGION 定义为 31:16, 基地址定义为	
	0x0200_0000。则表示 PLIC 的地址区间为	
	0x0200_0000 ~ 0x0200_FFFF	
E203_CFG_PLIC_ADDR_BASE	配置 PLIC 接口的基地址	0x0C00_0000

3 蜂鸟 E203 内核配置选项

	•	
	有 关 PLIC 介 绍 , 请 参 见	
	《Hummingbird_E200_Series_	
	Core_SoC_Quick_Start_Guide.pdf》	
E203_CFG_PLIC_BASE_REGION	配置 PLIC 接口的地址区间,通过指定高位	31:24
	的区间来界定地址区间。譬如如果该	
	REGION 定义为 31:24, 基地址定义为	
	0x0C00_0000。则表示 PLIC 的地址区间为	
	0x0C00_0000 ~ 0x0CFF_FFFF	
E203_CFG_HAS_ECC	如果添加了此宏,则配置使用 ECC 对 ITCM	不使用 ECC。
	和 DTCM 的 SRAM 进行保护	注意:此选项的功能并
		未开源,因此相关代码
		并不具备,即便添加了
		<mark>配置宏也不起作用</mark>
E203_CFG_HAS_EAI	如果添加了此宏,则配置使用协处理器接	不使用协处理器接口。
	П	注意:此选项的功能并
		未开源,因此相关代码
		并不具备,即便添加了
		配置宏也不起作用
E203_CFG_SUPPORT_SHARE_MULDIV	如果添加了此宏,则配置使用面积优化的	使用多周期乘除法
	多周期乘除法单元	<mark>注意:此选项对于开源</mark>
		的 E203 核必须配置,
		<mark>不可修改。</mark>
E203_CFG_SUPPORT_AMO	如果添加了此宏,则配置支持 RISC-V 的	支持 RISC-V 的 "A" 指
	"A"指令集扩展	令集扩展
		注意: 此选项对于开源
		的 E203 核必须配置,
		不可修改。

4 蜂鸟 E203 内核快速上手介绍

请参见另外文档《蜂鸟 E203 快速上手介绍》。