التطورات الرتيبة

الكتاب الأول

تطور جملة كيميائية نحو حالة التوازن

الوحدة 04

GUEZOURI Aek – Lycée Maraval - Oran

حلول تمارين الكتاب المدرسي

الجزء الأول

التمرين 01

التفاعل حمض - أساس هو التفاعل الذي يتم فيه انتقال البروتونات H^+ بين الحمض والأساس .

. تفاعل ترسیب : $Cu^{2+}_{(aq)} + 2OH^{-}_{(aq)} = Cu(OH)_{2(s)}$

نه بروتون H^+ من H^+ من H^+ انتقال بروتون H^+ دث H^+ دث H^+ انتقال بروتون H^+ دث انتقال بروتون H^+ من H^+ من H^+ دث H^+ انتقال بروتون H^+ من H^+ من H^+ من H^+ دث H^+ انتقال بروتون H^+ من H^+ من H^+ من H^+ من H^+ انتقال بروتون H^+ من $H^$

(نتعرّف علية في وحدة لاحقة : $CH_3COOH_{(l)} + CH_3OH_{(l)} = CH_3COO-CH_{3(l)} + H_2O_{(l)}$

نحصل في هذا التفاعل على كلور الأمونيوم صلب وليس محلولا لأن NH_3 و $NH_{3(g)} + NH_{3(g)} = NH_4Cl_{(s)}$ و $NH_4Cl_{(s)}$ عاز ان H^+ من غاز كلور الهيدروجين إلى غاز النشادر .

نين H^+ من حمض البنزين : $C_6H_5COOH_{(l)} + H_2O_{(l)} = C_6H_5COO^-_{(aq)} + H_3O^+_{(aq)}$ الماء .

التمرين 02

: نملاً الجدول $[H_3O^+]=10^{-pH}$ او العلاقة العكسية لها $pH=-Log\left[H_3O^+
ight]$ نملاً الجدول -1

pН	1,3	3,4	4,1	6,8	1,6	9,6
$[H_3O^+] (mol/L)$	$5,0 \times 10^{-2}$	$4,0 \times 10^{-4}$	$7,4 \times 10^{-5}$	$1,6 \times 10^{-7}$	$2,6 \times 10^{-2}$	$2,5 \times 10^{-10}$

. $\left[H_{3}O^{+}
ight]$ = 10^{-pH} يزداد الـ $\left[H_{3}O^{+}
ight]$ ، وذلك حسب التناسب العكسي بينهما في العلاقة -2

نتحقق من ذلك مثلا في الخانتين الأولى والثانية في الجدول.

التمرين 03

$$\mathrm{HCl}_{(\mathrm{g})} + \mathrm{H}_2\mathrm{O}_{(\mathrm{l})}
ightarrow \mathrm{H}_3\mathrm{O}^+_{(\mathrm{aq})} + \mathrm{Cl}^-_{(\mathrm{aq})}$$
: معادلة النفاعل – 1

(1)
$$pH = -Log[H_3O^+] - 2$$

 $[\mathrm{H_{3}O}^{+}] = [\mathrm{HCl}]$ بما أن حمض كلور الهيدروجين يتشرد كليا في الماء ، فإن

$$\left[H_3 O^+
ight] = rac{n \left(H_3 O^+
ight)}{V} = rac{0.1}{1} = 0.1 \, mol \, / \, L \ :$$
تر كيز شوار د الهيدرونيوم في المحلول

 $pH = -Log \ 0.1 = 1 : (1)$ بالتعويض في العلاقة

ملاحظة: التركيز $pH = -Log[H_3O^+]$ يفوق حدود مجال تطبيق العلاقة $pH = -Log[H_3O^+]$. لكن تماشيا مع معطيات التمارين نعتبر الخطأ مهملا ونواصل حلول التمارين الأخرى على أساس أن المحاليل ممدة إذا كانت تراكيز الأفراد الكيميائية في المحلول لا تتعدى القيمة H_3O^+ ، وهذا ما تفعله يوم الامتحان ، احسب pH بأية قيمة لتركيز H_3O^+ تعطى لك .

إليك هذا المثال:

محلول مائي لكلور الصوديوم ، حللنا فيه غاز كلور الهيدروجين ، بحيث كان التركيز المولي لكلور الصوديوم 0.1 mol / L ، أما التركيز المولي لشوارد الهيدرونيوم هو $10^{-2} mol / L$.

. 2,3 العيام المباشر لـ $pH=-Logigl[H_3O^+igr]$ المباشر لـ $pH=-Logigl[H_3O^+igr]$ اعطى القيمة والمباشر المباشر المباشر

السبب هو وجود نوع كيميائي في المحلول تركيزه أكبر من $10^{-2}\,mol\,/\,L$ ، هو كلور الصوديوم .

 $n\left(H_{3}O^{+}\right)=\left[H_{3}O^{+}\right] imes V_{s}=10^{-pH} imes V_{s}=10^{-2} imes 1=10^{-2} \ mol$ ، ولدينا ، $n\left(HCl\right)=n\left(H_{3}O^{+}\right)$ في 1 من الماء هي . 10^{-2} mol . 10

التمرين 4

 ${
m HNO_{3(l)}} \, + \, {
m H_2O_{(l)}} = \, {
m H_3O_{(aq)}^+} + \, {
m NO_{3}^-}_{(aq)} \,$: معادلة التفاعل -1

 $C = [H_3O^+] = 0.1 \text{ mol/ L}$ اعتبرنا حمض الأزوت قويا ، أي أن -2

 $. pH = -Log \left[H_3O^+ \right] = -Log \ 0, 1=1$

. الحمض قوي ، إذن $n(H_3O^+)$ لا يتغير عندما نمدد المحلول بالماء . -3

ليكن $[H_3O^+]_1$ هو التركيز المولي لشوارد الهيدرونيوم قبل التمديد و $[H_3O^+]_2$ هو التركيز المولي لشوارد الهيدرونيوم بعد التمديد .

 $V_2 = 90 + 10 = 100 \text{ mL} \quad \quad V_1 = 10 \text{ mL} \quad \text{or} \quad \left[H_3O^+\right]_1 V_1 = \left[H_3O^+\right]_2 V_2$

 $pH = 2 \quad \text{i.e.} \quad pH = -Log \Big[H_3 O^+ \Big]_{3} \quad \text{i.e.} \quad \Big[H_3 O^+ \Big]_{2} = \frac{\Big[H_3 O^+ \Big]_{1}}{10} = \frac{0.1}{10} = 10^{-2} \quad \text{mol/L} \quad \text{i.e.} \quad \text{i.$

التمرين 5

 $_{\rm H_3O^+}$ لكي نبيّن إن كان التفاعل تاما أو غير تــام ، نقـارن بين التركيز المولي للحمض $_{\rm C}$ والتركيز المولي لشوارد $_{\rm C}$

ا فإن الحمض قوي $[\mathrm{H_3O}^+]=\mathrm{C}$ إذا كان

. فإن الحمض ضعيف [$\mathrm{H_3O}^+$] < C

 $[{
m H}_3{
m O}^+]=10^{-\,{
m pH}}\,=10^{-3,9}=1,\!26 imes10^{-4}\,{
m mol/}\,L$: محلول حمض الإيثانويك

هذه القيمة أصغر من تركيز الحمض ، ومنه التفاعل غير تــام .

هذه القيمة تساوي تركيز الحمض ، ومنه التفاعل تام .

. $ext{CI}^-$ علور الأمونيوم هو ملح صيغته $ext{NH}_4 ext{Cl}$. يتحلل في الماء إلى شوارد الأمونيوم $ext{NH}_4^+$ وشوارد الكلور

 $[NH_4Cl] = [NH_4^{+}] = [Cl^{-}] = C = 10^{-3} \, mol.L^{-1}$ يتحلل كلور الأمونيوم تماما في الماء ، أي

القوة التي نتكلم عنها هنا هي قوة تفاعل شاردة الأمونيوم $\mathrm{NH_4}^+$ مع الماء ، وليس قوة تفكك الملح في الماء.

لو لم تتفاعل هاتان الشاردتان مع الماء لوجدنا pH المحلول مساويا للقيمة 7 مبب نزول الـ pH إلى القيمة 6,2 هو تفاعل الحمض الضعيف $NH_4^+_{(aq)} + H_2O_{(aq)} = NH_{3(aq)} + H_3O^+_{(aq)}$ مع الماء : $NH_4^+_{(aq)} + H_2O_{(aq)} = NH_{3(aq)} + H_3O^+_{(aq)}$

. وبمقارنة $[{\rm H_3O^+}]$ مع $N{\rm H_4Cl}$ نحكم على أن التفاعل غير تـام . $[{\rm H_3O^+}] = 10^{-6,2} = 6.3 \times 10^{-7}$ mol/ L

- محلول حمض الأزوت : $10^{-pH} = 10^{-9}$. هذه القيمة تساوي تركيز الحمض ، ومنه التفاعل تــام .

2 - التفاعل تام معناه الحمض قوي ، وبالتالي : حمض الإيثانويك ضعيف ، شاردة الأمونيوم حمض ضعيف ، حمض الأزوت قوي .

$$HCl_{(g)} + H_2O_{(l)} = H_3O^+_{(aq)} + Cl^-_{(aq)} - 1$$

ملاحظة : الثنائية $-HCl/Cl^-$ لا وجود لها في الماء . الثنائيتان الموجودتان في محلول مائي لحمض قوي أو أساس قوي هما فقط H_2O/OH^- و H_3O^+/H_3O^- .

$$pH = -Log C = -Log 10^{-3} = 3$$
 - 2

$$(H_3O^+, Cl^-) + (Na^+, OH^-) = (Na^+, Cl^-) + 2 H_2O$$
 (1 -3

(1)
$$H_3O^+_{(aq)} + OH^-_{(aq)} = 2 H_2O_{(l)}$$
 : in the left of the second of the s

(2)
$$pH = -Log[H_3O^+]$$
 (φ

 $n(\mathrm{OH^-}) = \mathrm{C_b} \ \mathrm{V_b} = 10^{-3} \times 50 \times 10^{-3} = 0.5 \times 10^{-4} \ \mathrm{mol}$: التي أضفناها OH التي أضفناها

: الموجودة في محلول حمض كلور الهيدروجين H_3O^+

$$n(H_3O^+) = C_a V_a = 10^{-3} \times 0.1 = 10^{-4} \text{ mol}$$

حسب التفاعل (1) ، فإن مو لا واحدا من $^+ H_3O^+$ يتفاعل مع مول واحد من $^-OH^-$. إذن كميّة مادة شوار د $^+ H_3O^+$ الباقية بعد التفاعل هي : n' (H_3O^+) = $10^{-4} - 0.5 \times 10^{-4} = 0.5 \times 10^{-4}$ mol

$$[H_3O^+] = \frac{n'(H_3O^+)}{V_a + V_b} = \frac{0.5 \times 10^{-4}}{0.15} = 3.3 \times 10^{-4} \, mol \, / \, L$$

$$pH = - Log \ 3.3 \times 10^{-4} = 3.5$$
: (2) بالتعويض في العلاقة

التمرين 07

$$C_6H_5$$
– $COOH_{(aq)} + H_2O_{(l)} = C_6H_5$ – $COO^-_{(aq)} + H_3O^+_{(aq)}$: معادلة التفاعل – 1

$$\sim 2$$
 حتى نتأكد أن التفاعل غير تــام نحسب التركيز المولي لشوارد الأكسونيوم $[{
m H}_3{
m O}^+]$ ونقارنه مع التركيز ~ 2

.
$$C = 2.0 \times 10^{-2} \ \mathrm{mol} \ / L$$
 . ولدينا $C = 2.0 \times 10^{-2} \ \mathrm{mol} \ / L$. ولدينا $C = 2.0 \times 10^{-2} \ \mathrm{mol} \ / L$

بما أن التركيز المولى لشوارد الهيدرونيوم أقل من التركيز المولى C ، فإن تفاعل حمض البنزين مع الماء غير تـــام

- Log C و pH المقارنة بين - 3

	ASS.	4						
рН	2,95	3,10	3,25	3,60	3,75	4,25	4,50	5,10
-Log C	1,70	1,96	2,30	3,00	3,30	4,00	4,30	5,00

من الأفضل أن يكون السؤال: فسر ما تستنتجه من مقارنتك. (ليس: علل)

: وبالتالي ،
$$pH = -Log [H_3O^+]$$
 ، ونعلم أن $pH > -Log C$ ، وبالتالي :

.
$$[H_3O^+] < C$$
 ، وهذا يؤدي لنتيجة ضعف الحمض $-\text{Log}[H_3O^+] < \text{Log}[C]$ ، وهذا يؤدي لنتيجة ضعف الحمض $-\text{Log}[H_3O^+] > -\text{Log}[C]$

4 – البيان pH = – Log C

 $CH_2CICOOH + H_2O = CH_2CICOO^- + H_3O^+ - 1$

2 - جدول التقدّم:

CH ₂ ClCOOH	+ H ₂ O =	= CH ₂ ClCOO ⁻	+ H ₃ O ⁺
CV	بكثرة	0	0
CV-x	بكثرة	X	X
$CV - x_f$	بكثرة	x_f	x_f
$CV - x_m$	بكثرة	\mathcal{X}_m	X_{m}

 $x_m=10^{-2}\times 20\times 10^{-3}=2\times 10^{-4}\ mol\ /\ L$ من أجل تعيين التقدّم الأعظمي نضع $CV-x_m=0$ ومنه pH=2,37 (ليس pH=2,4) pH=2,4

التقدّم النهائي هو كميّة مادة H_3O^+ في نهاية التفاعل ، أي :

$$x_f = n(H_3O^+) = [H_3O^+] \times V = 10^{-2.4} \times 20 \times 10^{-3} = 7.9 \times 10^{-5} mol$$

. نسبة التقدّم النهائي : $au = \frac{x_f}{2 \times 10^{-5}} = \frac{7.9 \times 10^{-5}}{2 \times 10^{-4}} = 0.40$ نسبة التقدّم النهائي غير تام

التمرين 00

انقي . $28 \, \mathrm{g}$ من المحلول (S_0) يوجد g من الحمض النقي .

(HI هي الكتلة المولية ليود الهيدروجين
$$n(HI) = \frac{m}{M} = \frac{28}{128} = 0,22 mol$$

(1)
$$\rho = \frac{m'}{V}$$
 ديث ، V ديث (S_0) من 100 g

 $ho= ext{d} imes
ho_{ ext{e}}=1,26 imes1=1,26 ext{ g/ cm}^3$ ولدينا $ho= ext{d}$ ولدينا $ho= ext{d}$ ولدينا $ho= ext{d}$

$$V = \frac{m'}{\rho} = \frac{100}{1,26} = 79,4 \ cm^3 = 7,94 \times 10^{-2} L$$
 : (1) بالتعويض في

$$[HI] = \frac{n(HI)}{V} = \frac{0.22}{7.94 \times 10^{-2}} = 2.77 mol/L$$
 : حيث : [HI] هو S_0 هو التركيز المولي لـ S_0

. n (HI) = CV و n_0 (HI) = $C_0
m V_0$: حيث n_0 (HI) = n و n_0 (HI) = n و n_0 (HI) = n

$$V_0 = \frac{CV}{C_0} = \frac{0.05 \times 0.5}{2.77} \approx 9 \times 10^{-3} L = 9 mL$$
 : ومنه : $C_0 V_0 = CV$

الطريقة هي : نأخذ حجما V=9~mL من المحلول S_0 ونضيف له الماء المقطر إلى أن يصبح حجم المحلول V=9~mL ، أي نضيف V=9~mL من الماء المقطر ونرج فنحصل على المحلول S_1 .

: ومنه ، $C_1V_1 = C_2V_2$: أي ، n_1 (HI) $= n_2$ (HI) ومنه : S_2 المحلول نوع ، ومنه : S_2

$$C_2 = \frac{0.05 \times 5}{200} = 1.25 \times 10^{-3} \, mol \, / \, L$$

ب) تعديل: pH المحلول S₂ يساوي 2,9 . احسب نسبة التقدم النهائي للتفاعل بين الحمض والماء . هل يمكن اعتبار التفاعل تامّا ؟

(2)
$$\tau = \frac{x_f}{x_{\text{max}}} = \frac{\left[H_3 O^+\right] \times V_2}{C_2 V_2} = \frac{\left[H_3 O^+\right]}{C_2}$$

 $x_{
m max}={
m C}_2{
m V}_2$ ، ولدينا ، $x_{
m f}=n~({
m H}_3{
m O}^+)$ نكتب معادلة التفاعل وننشئ جدول التقدّم لكي نبيّن أن

$$HI$$
 $+$ H_2O $=$ H_3O $+$ $I^ t=0$ C_2V_2 زیادهٔ 0 0 0 0 0 0 0 نیادهٔ 0 0 0 0 0 0 0

. بالتعويض في العلاقة (2) ،
$$au=rac{10^{-pH}}{C_2}=rac{10^{-2,9}}{1,25 imes10^{-3}}=1$$
 ، وبالتالي التفاعل تـــام

للمزيد: ذرات الهالوجينات (العمود السابع في التصنيف الدوري المختصر) تكوّن مع ذرات الهيدروجين حموضا صيغتها من الشكل HA المزيد: ذرات الهالوجين (HI · HBr · HCl · HF) و هذه الحموض ليست كلها قوية ، بل تتناقص قوّتها من HF إلى HF ، أي أن كلما كان حجم ذرة الهالوجين كبيرا كلما كان الحمض أقوى هذه الحموض هو الذي نتحدّث عنه في التمرين P ، أي أن من المستحيل تفاعل شاردة اليود P مع الماء ، فهي أساس ضعيف جدا.

التمرين 10

$$CH_3COOH_{(aq)} + H_2O_{(l)} = CH_3COO_{(aq)}^- + H_3O_{(aq)}^+ - 1$$

$$au=rac{x_f}{x_{max}}$$
 النسبة النهائية التقدم هي – 2

(يجب إعطاء قيمتي الناقليتين الموليتين الشارديتين للشاردتين $^+$ $^+$ $^+$ $^+$ و $^ ^ ^+$ $^+$ $^+$ في نص التمرين $^+$

$$\lambda_2 = \lambda_{CH_3COO^-} = 4.1 \times 10^{-3} \, S \, m^2 \, mol^{-1}$$
 $\lambda_1 = \lambda_{H_3O^+} = 35 \times 10^{-3} \, S \, m^2 \, mol^{-1}$

: في المحلول يكون لدينا (OH] في المحلول يكون لدينا ($\sigma_1 = \lambda_1 \left\lceil H_3 O^+ \right\rceil + \lambda_2 \left\lceil C H_3 COO^- \right\rceil + \lambda_{OH^-} \left\lceil OH^- \right\rceil$

 $[{
m H}_3{
m O}^+]$ و $x_{
m max}={
m CV}$ و $x_{
m f}=n~({
m H}_3{
m O}^+)$ التركيز المولي من جدول التقدم نستنتج أن

$$[H_3O^+] = \frac{\sigma_1}{\lambda_1 + \lambda_2} = \frac{4.9 \times 10^{-3}}{39.1 \times 10^{-3}} = 0.125 \ mol \ / \ m^3 = 1.25 \times 10^{-4} \ mol \ / \ L$$

$$au = rac{x_f}{x_{max}} = rac{n\left(H_3O^+
ight)}{CV} = rac{\left[H_3O^+
ight] imes V}{CV} = rac{\left[H_3O^+
ight]}{C} = rac{1,25 imes 10^{-4}}{10^{-3}} = 0,125$$
 (1) من العلاقة (1)

 $[CH_3COOT]$ وليس $[CH_3COOT]$ هو كمية المادة بعد التمديد يؤدي إلى $[C_2V_2 = C_1V_1]$ هو كمية المادة بعد التمديد يؤدي المادة بعد المادة المادة بعد المادة بعد المادة بعد المادة بعد المادة المادة بعد ا

 $C_2 = [CH_3COOH]_0$ مع العلم أن

$$C_2 = \frac{C_1 V_1}{V_2} = \frac{10^{-3} \times 10}{100} = 10^{-4} \, mol \, / \, L$$

$$[\mathrm{H}_3\mathrm{O}^+] = [\mathrm{CH}_3\mathrm{COO}^-] \ \, \dot{\forall} \ \, \boldsymbol{\circ} \quad \boldsymbol{\sigma}_2 = \lambda_1 \Big[H_3\mathrm{O}^+ \Big] + \lambda_2 \Big[CH_3COO^- \Big] = \Big[CH_3COO^- \Big] (\lambda_1 + \lambda_2) \qquad (\mathbf{0} + \mathbf{0}) = (\mathbf{0} + \mathbf{0}) (\lambda_1 + \lambda_2)$$

تصحيح : القيمة الصحيحة لـ σ_2 هي σ_2 اليس σ_2 اليس 1,2 mS.m (ليس σ_2 القيمة الصحيح : القيمة الصحيحة المولي بعد التمديد)

$$\left[CH_{3}COO^{-}\right] = \frac{\sigma_{2}}{\lambda_{1} + \lambda_{2}} = \frac{1,55 \times 10^{-3}}{39,1 \times 10^{-3}} = 0,038 \; mol \; / \; m^{3} = 3,8 \times 10^{-5} \; mol \; / \; L \quad : 0.01 \; mol \; / \; L$$

$$au_2 = \frac{\left[H_3O^+\right]}{C_2} = \frac{3.8 \times 10^{-5}}{10^{-4}} = 0.38$$
: جـ) النسبة النهائية للتقدم

 $au_2 > au_1$ كلما مددنا حمضا ضعيفا از دادت نسبة التقدم النهائي ، أي $au_2 > au_1$

التمرين 11

$$AgCl_{(s)} = Ag^{+}_{(aq)} + Cl^{-}_{(aq)} - 1$$

$$AgCl_{(s)} = Ag^{+}_{(aq)} + Cl^{-}_{(aq)} - 2$$
 $n_{0} = 0$
 $n_{0} - x_{f}$
 x_{f}

$$a_0 = 0$$

$$n_0 - x_f$$
 x_f

. تركيز ا شاردتي الهيدرونيوم و الهيدروكسيد مهملان في هذا المحلول الملحي ، $\sigma = \lambda_{dg^+} \lceil Ag^+ \rceil + \lambda_{CC^-} \lceil Cl^- \rceil$ - 3

: ومنه (
$$\mathrm{Ag}^+$$
) = [Cl^-) کان ، $\sigma = \left[Ag^+\right]\left(\lambda_{Ag^+} + \lambda_{Cl^-}\right)$

$$[Ag^{+}] = \frac{\sigma}{(\lambda_{Ag^{+}} + \lambda_{Cl^{-}})} = \frac{0.19 \times 10^{-3}}{(6.2 + 7.6) \times 10^{-3}} = 0.013 \ mol \ / \ m^{3} = 1.3 \times 10^{-5} \ mol \ / \ L$$

$$\left[Ag^{+}\right] = \left[Cl^{-}\right] = 1.3 \times 10^{-5} \, mol \, / \, L$$

نحسب ثابت التوازن لهذا التشرّد لـ $K = [Ag^+] \times [Cl^-] = (1,3 \times 10^{-5})^2 = 1,7 \times 10^{-10}$ تبين التشرّد الجزئي لكلور الفضية.

التمرين 12

$$NH_{3(aq)} + H_2O_{(1)} = NH_4^+_{(aq)} + OH_{(aq)}^- - 1$$

. C_1 مع تركيز الأساس OH^- مع نبيّن أن غاز النشادر لا يتفاعل كليا مع الماء نقارن تركيز شوارد الهيدروكسيد

. ومنه
$$[OH^-] < C_1$$
 ، ومنه $[OH^-] = \frac{10^{-14}}{[H_3O^+]} = \frac{10^{-14}}{10^{-11,1}} = 1,26 \times 10^{-3} \, mol \, / \, L$ لدينا

 au_1 يمكن أن نبيّن أن التفاعل غير تام بحساب قيمة نسبة التقدم النهائية

من أجل هذا ننشئ جدول التقدم:

$$NH_{3(aq)} + H_2O_{(1)} = NH_4^+_{(aq)} + OH_{(aq)}^ C_1V_1$$
 زیادهٔ x_f x_f x_f $n(OH^-)$ $OH^- \times V$ $OH^- = 1.26 \times 10^{-3}$

$$\tau_1 = \frac{x_f}{x_{max}} = \frac{n(OH^-)}{x_{max}} = \frac{[OH^-] \times V_1}{C_1 V_1} = \frac{[OH^-]}{C_1} = \frac{1,26 \times 10^{-3}}{0,1} = 1,26 \times 10^{-2}$$

اذن التفاعل غير تام
$$au_1 < 1$$

. عدد مو لات NH_3 لا يتغير بعد التمديد ، أي أن $C_1V_1=C_2V_2$ ، حيث أن V_1 هو الحجم الذي نأخذه من المحلول الأول .

$$V_1 = \frac{C_2 V_2}{C_1} = \frac{2.5 \times 10^{-2} \times 100}{0.1} = 25 \text{ mL}$$

الطريقة هي : نأخذ حجما $V_1 = 25 \; \mathrm{mL}$ ونضعه في مخبار حجمه $100 \; \mathrm{mL}$ ، ثم نكمل الحجم بالماء المقطر (أي نضيف $V_1 = 25 \; \mathrm{mL}$ من . $C_2 = 2.5 \times 10^{-2} \; mol/\; L$ وتركيزه المولى ، وعمد S_2 حجمه S_2 محلول ، وتركيزه المولى ، ونحصل بذلك على محلول

$${
m NH_{3(aq)}} + {
m H_{2}O_{(l)}} = {
m NH_{4}^{+}}_{(aq)} + {
m OH^{-}}_{(aq)} - 4$$
 ${
m C_{2}V_{2}}$ ${
m C_{2}V_{2}} - x_{
m f}$ ${
m C_{2}V_{2}} - x_{
m$

$$au_2=rac{x_f}{x_{max}}=rac{nig(OH^-ig)}{C_2V}=rac{ig[OH^-ig] imes V}{C_2V}=rac{ig[OH^-ig]}{C_2}$$
 النسبة النهائية لتقدّم النفاعل هي

$$au_2 = rac{6,31 imes 10^{-4}}{2.5 imes 10^{-2}} = 2,52 imes 10^{-2}$$
 دينا $OH^- = rac{10^{-14}}{10^{-pH}} = rac{10^{-14}}{10^{-10.8}} = 6,31 imes 10^{-4} \ mol/L$

وجدنا $au_1 < au_2$ ، ومنه نستخلص أنه كلما كان الأساس الضعيف ممدا يتشرد أكثر .

التمرين 13

 ${
m CH_3COOH_{(aq)}} + {
m H_2O_{(l)}} = {
m CH_3COO^-_{(aq)}} + {
m H_3O^+_{(aq)}}$: معادلة تفاعل حمض الإيثانويك مع الماء : -1

= 1 = 2

CH ₃ COOH _(aq) +	H ₂ O _(l)	= CH ₃ COO ⁻ _(aq)	+ H ₃ O ⁺ _(aq)
CV	زيادة	0	0
CV-x	زيادة	x	x
$CV - x_f$	زيادة	$x_{ m f}$	\mathcal{X}_{f}
$CV-x_m$	زيادة	\mathcal{X}_m	\mathcal{X}_m

: في المحلول يكون لدينا (OH¯] في المحلول يكون لدينا
$$\sigma = \lambda_{H_3O^+} \left[H_3O^+ \right] + \lambda_{CH_3COO^-} \left[CH_3COO^- \right] + \lambda_{OH^-} \left[OH^- \right]$$

$$\sigma = [H_3 O^+] (\lambda_{H_3 O^+} + \lambda_{CH_3 COO^-})$$
 : وبالتالي نكتب : $[H_3 O^+] = [CH_3 COO^-]$

$$\left[H_3O^+\right] = \frac{\sigma_1}{\lambda_{H_2O^+} + \lambda_{CH_2COO^-}} = \frac{4,7 \times 10^{-2}}{39,1 \times 10^{-3}} = 1,2 \text{ mol/m}^3$$

$$au_1 = \frac{\left[H_3O^+\right]}{C_1} = \frac{1,2 \times 10^{-3}}{0,1} = 1,2 \times 10^{-2}$$
 : نسبة النقدم النهائي

: S₂ المحلول

$$\left[H_3O^+\right] = \frac{\sigma_2}{\lambda_{H,O^+} + \lambda_{CH,COO^-}} = \frac{1,55 \times 10^{-2}}{39,1 \times 10^{-3}} = 0,39 \text{ mol/m}^3$$

$$au_2 = \frac{\left[H_3O^+\right]}{C_1} = \frac{0.39 \times 10^{-3}}{0.01} = 3.9 \times 10^{-2}$$
 : نسبة التقدم النهائي

$$\left[H_3O^+\right] = \frac{\sigma_3}{\lambda_{H_3O^+} + \lambda_{CH_3COO^-}} = \frac{4.6 \times 10^{-3}}{39.1 \times 10^{-3}} = 0.12 \, mol \, / \, m^3$$

$$au_3 = \frac{\left[H_3O^+\right]}{C_1} = \frac{0.12 \times 10^{-3}}{0.001} = 0.12$$
 : نسبة التقدم النهائي

ب) كلما انخفض التركيز المولى للحمض تزداد نسبة التقدّم النهائي ، لأن التمديد يساعد على التشرد (الحمض الضعيف يتفاعل مع الماء) .

التمرين 14

(1)
$$CH_2ClCOOH_{(aq)} + H_2O_{(l)} = CH_2ClCOO^-_{(aq)} + H_3O^+_{(aq)}$$
 : معادلتا التفاعلين - 1

(2)
$$CHCl_2COOH_{(aq)} + H_2O_{(l)} = CHCl_2COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$$

. ($\sigma_1 = 0.167 \text{ mS m}^{-1}$ ليس) $\sigma_1 = 0.121 \text{ S m}^{-1}$:

: CH2ClCOOH بالنسبة للحمض - 2

: يكون لدينا [OH¯] يكون لدينا ،
$$\sigma_1 = \lambda_{H_3O^+} \left[H_3O^+ \right] + \lambda_{CH_2CICOO^-} \left[CH_2CICOO^- \right] + \lambda_{OH^-} \left[OH^- \right]$$

$$\sigma_1 = \left[H_3O^+\right]\left(\lambda_{H_3O^+} + \lambda_{CH_2CICOO^-}\right)$$
 : وبالتالي ($\left[\mathrm{CH_2CICOO^-}\right] = \left[\mathrm{H_3O^+}\right]$

$$[H_3O^+] = \frac{\sigma_1}{\lambda_{H_3O^+} + \lambda_{CH_3CICOO^-}} = \frac{0,121}{39,22 \times 10^{-3}} = 3,1 \text{ mol/m}^3 = 3,1 \times 10^{-3} \text{ mol/L}$$

: CHCl2COOH بالنسبة للحمض

: يكون لدينا (OH¯] يكون الدينا ،
$$\sigma_2 = \lambda_{H_3O^+} \left[H_3O^+ \right] + \lambda_{CHCl_2COO^-} \left[CHCl_2COO^- \right] + \lambda_{OH^-} \left[OH^- \right]$$

$$\sigma_2 = \left[H_3O^+\right] \left(\lambda_{H_3O^+} + \lambda_{CHCl_2COO^-}\right)$$
 : وبالتالي ([CHCl_2COO^-] = [H_3O^+]

$$\sigma_{2} = [H_{3}O](\lambda_{H_{3}O^{+}} + \lambda_{CHCl_{2}COO^{-}}) : \text{CHCl}_{2}COO] = [H_{3}O]$$

$$[H_{3}O^{+}] = \frac{\sigma_{2}}{\lambda_{H_{3}O^{+}} + \lambda_{CHCl_{2}COO^{-}}} = \frac{0.33}{38.83 \times 10^{-3}} = 8.5 \text{ mol}/m^{3} = 8.5 \times 10^{-3} \text{ mol}/L$$

$$au_1 = \frac{\left[H_3O^+
ight]}{\left[CH_2ClCOOH
ight]} = \frac{3.1 imes 10^{-3}}{10^{-2}} = 0.31$$
 : CH2ClCOOH النسبة النهائية لتقدّم تفاعل - 3

$$au_2 = \frac{\left[H_3O^+\right]}{\left[CHCl_2COOH\right]} = \frac{8.5 \times 10^{-3}}{10^{-2}} = 0.85$$
 : CHCl2COOH النسبة النهائية لتقدّم تفاعل

$$K_1 = \frac{\left[H_3O^+\right]_f \times \left[CH_2ClCOO^-\right]_f}{\left[CH_2ClCOOH\right]_f}$$
 : (1) التفاعل - 4

$$K_2 = \frac{\left[H_3O^+\right]_f \times \left[CHCl_2COO^-\right]_f}{\left[CHCl_2COOH\right]_f}$$
 : (2) التفاعل

عند التوازن يكون تركيز الحمض الباقي ، أي [CH2CICOOH] أو [CHCl2COOH] ، مساويا للتركيز الابتدائي مطروح منه تركيز H_3O^+ ، وبالتالي:

$$K_{1} = \frac{\left[H_{3}O^{+}\right]_{f}^{2}}{C - \left[H_{3}O^{+}\right]_{f}} = \frac{\left(3.1 \times 10^{-3}\right)^{2}}{10^{-2} - 3.1 \times 10^{-3}} = 1.4 \times 10^{-3}$$

$$K_2 = \frac{\left[H_3 O^+\right]_f^2}{C - \left[H_3 O^+\right]_f} = \frac{\left(8,5 \times 10^{-3}\right)^2}{10^{-2} - 8,5 \times 10^{-3}} = 4,8 \times 10^{-2}$$

5 - من أجل تفاعل معيّن ، ثابت التوازن لا يتغير مهما كان التركيز المولى .

إذا أردنا المقارنة بين محلولين لحمضين ضعيفين لهما نفس التركيز الولي C ، فإن الذي يوافق تفاعله مع الماء أكبر قيمة لثابت التوازن هو الذي تكون له أكبر قيمة لنسبة التقدّم النهائي . (في حالة تفاعل حمض ضعيف مع الماء $K=K_a$).

التمرين 15

من الأحسن أن يكون السؤال: اكتب عبارة كسر التفاعل، لأن كسر التفاعل عند حالة التوازن هو نفسه ثابت التوازن، وهذا الأخير مطلوب في السؤال ا رقم 5 . أو مثلا : عين كسر التفاعل الابتدائي .

$$Q_{ri} = rac{\left[H_3O^+
ight] imes \left[CH_3COO^-
ight]}{\left[CH_3COOH
ight]} = rac{0 imes 0}{C} = 0$$
: کسر التفاعل الابتدائي

: نكتب (OH¯] نكتب ،
$$\sigma = \lambda_{H_3O^+} \left[H_3O^+ \right]_f + \lambda_{CH_3COO^-} \left[CH_3COO^- \right]_f + \lambda_{OH^-} \left[OH^- \right]_f$$
 - 2

$$\sigma = \lambda_{H_3O^+} \left[H_3O^+ \right]_f + \lambda_{CH_3COO^-} \left[CH_3COO^- \right]_f$$

3 - جدول التقدم

	CH ₃ COOH _(aq) +	$- H_2O_{(l)} =$	CH ₃ COO ⁻ _(aq)) +	$H_3O^+_{(aq)}$
t = 0	CV	زيادة	0	0
الحالة الانتقالية	CV-x	زيادة	х	х
الحالة النهائية	$CV - x_{\acute{e}q}$	زيادة 📗	$\chi_{\acute{e}q}$	$x_{\acute{e}q}$

(1)
$$\sigma = [H_3O^+]_f (\lambda_{H_3O^+} + \lambda_{CH_3COO^-})$$
 وبالتالي ، $[CH_3COO^-] = [H_3O^+]$ نعلم أن $[CH_3COO^-] = [H_3O^+]$ ، وباتالي تصبح عبارة σ كالتالي : σ من جدول التقدم نستنتج أن عند نهاية التفاعل يكون $\sigma_{CH_3COO^-} = n_{H_3O^+} = n_{CH_3COO^-}$.

$$\sigma = \frac{x_{\acute{e}q}}{V} \Big(\lambda_{H_3O^+} + \lambda_{CH_3COO^-} \Big)$$

من العلاقة (1) نحسب التركيز المولي لشوارد الهيدرو

$$\left[H_3O^+\right]_f = \left[CH_3COO^-\right]_f = \frac{\sigma}{\lambda_{H_2O^+} + \lambda_{CH_2COO^-}} = \frac{1,6 \times 10^{-2}}{(34,9+4,1) \times 10^{-3}} = 0,41 \ mol \ / \ m^3 = 0,41 \times 10^{-3} \ mol \ / \ L$$

$$[{
m CH_3COOH}]_{
m f} = {
m C} - [{
m H_3O}^+]_{
m f} = 10^{-2} - 4 imes 10^{-4} = 9,6 imes 10^{-3} \; {
m mol/L}$$
 عند حالة التوازن يكون -5

$$K = \frac{\left[H_3O^+\right]_f \times \left[CH_3COO^-\right]_f}{\left[CH_3COOH\right]_f} = \frac{\left(4.1 \times 10^{-4}\right)^2}{9.6 \times 10^{-3}} = 1,75 \times 10^{-5}$$
 ثابت التوازن

$$NH_{3(aq)} + H_2O_{(l)} = NH_4^+_{(aq)} + OH_{(aq)}^- - 1$$

2 - تصحیح :

قيم الناقلية النوعية المسجّلة في الجدول خاطئة.

. $100.4~\mu~\mathrm{S.m^{-1}}$ وليس $\sigma = 10.9~\mathrm{mS.m^{-1}}$ تكون ناقليته النوعية $C = 10^{-2}~\mathrm{mol/L}$ وليس

لماذا القيم المسجلة في الجدول خاطئة ؟

يجب أن نعلم أن ناقلية محلول (G) تخص فقط جزءا من المحلول ، أي الجزء المحصور بين صفيحتي الخلية : $G = K \ \sigma$ عيث K هو ثابت الخلية . أما الناقلية النوعية لمحلول (σ) تخص المحلول ، أي أنها تتعلق بطبيعة الشوارد الموجودة في المحلول وتراكيزها المولية في هذا المحلول ودرجة حرارة المحلول .

المقصود من هذا هو: أن محلولا شارديا معينا بتركيز معين في درجة حرارة معينة لا تكون له إلا قيمة واحدة للناقلية النوعية.

الجدول بعد التصحيح

C (mol/L)	$1,0 \times 10^{-2}$	$5,0 \times 10^{-3}$	$1,0 \times 10^{-3}$
$\sigma (mS.m^{-1})$	10,9	7,71	3,44

للمزيد: صحّحنا قيم الناقلية النوعية بالطريقة التالية: هناك علاقة تجمع بين التركيز المولى للأساس الضعيف والـ pH ،

$$pK_A$$
، (التلميذ ليس مطالبا بهذا) حيث C حيث $pH = \frac{1}{2}(14 + pK_A + Log C)$ (التلميذ ليس مطالبا بهذا)

. (25°C في الدرجة $pK_A = 9,2$ و NH_4^+/NH_3 و $pK_A = 9,2$ في الدرجة $pK_A = 9,2$

نعوض فنجد pH=10,6، ثم نستنتج التركيز المولي لشوارد الهيدروكسيد في المحلول:

$$[OH^{-}] = \frac{10^{-14}}{10^{-pH}} = \frac{10^{-14}}{10^{-10.6}} = 4.0 \times 10^{-4} \, mol \, / \, L$$

$$\sigma = [OH^-](\lambda_{OH^-} + \lambda_{NH_4^+}) = 4 \times 10^{-4} \times 10^3 (20 + 7.35) \times 10^{-3} = 10.9 \times 10^{-3} S$$
 : من جهة أخرى لدينا

وبهذه الطريقة حسبنا كل القيم الأخرى للناقلية النوعية . وهناك الطريقة الأخرى التي تعتمد على قيمة pK_A الثنائية pK_A .

$$NH_{3(aq)}$$
 + $H_2O_{(1)}$ = $NH_4^+_{(aq)}$ + $OH_{(aq)}^ CV$ زیادهٔ x_f x_f

. مهمل
$$\lceil H_3O^+ \rceil$$
 ، لأن $\lceil OH^- \rceil = \lceil NH_4^+ \rceil$ مهمل ، $x_f = n \left(OH^- \right)$ ، لأن

من أجل تعيين تركيزي الشاردتين OH^- و NH_4^+ ، نكتب عبارة الناقلية النوعية للمحلول :

$$\sigma = \lambda_{OH^{-}} \left[OH^{-} \right]_{f} + \lambda_{NH_{4}^{+}} \left[NH_{4}^{+} \right]_{f} = \left[OH^{-} \right] \left(\lambda_{OH^{-}} + \lambda_{NH_{4}^{+}} \right)$$

المحلول الأول:

$$[OH^{-}]_{f} = [NH_{4}^{+}]_{f} = \frac{\sigma_{1}}{\lambda_{OH^{-}} + \lambda_{NH^{+}}} = \frac{10.9 \times 10^{-3}}{27.35 \times 10^{-3}} = 0.4 \ mol \ / \ m^{3} = 4.0 \times 10^{-4} \ mol \ / \ L$$

$$[{
m H_3O}^+] imes [{
m OH}^-] = 10^{-14}$$
 أما التركيز المولي للشاردة ${
m H_3O}^+$ نحسبه من الجداء الشاردي للماء

. و هذا يؤكّد سبب إهماله ،
$$\left[H_3 O^+ \right] = \frac{10^{-14}}{4 \times 10^{-4}} = 2.5 \times 10^{-11} \, mol \, / \, L$$

المحلول الثاني:

$$[OH^{-}]_{f} = [NH_{4}^{+}]_{f} = \frac{\sigma_{2}}{\lambda_{OH^{-}} + \lambda_{NH^{+}}} = \frac{7.71 \times 10^{-3}}{27.35 \times 10^{-3}} = 0.28 \ mol \ / \ m^{3} = 2.8 \times 10^{-4} \ mol \ / \ L$$

$$[H_3O^+] = \frac{10^{-14}}{2.8 \times 10^{-4}} = 3.6 \times 10^{-11} \, mol \, / \, L$$

المحلول الثالث:

$$[OH^{-}]_{f} = [NH_{4}^{+}]_{f} = \frac{\sigma_{3}}{\lambda_{OH^{-}} + \lambda_{NH^{+}}} = \frac{3.44 \times 10^{-3}}{27.35 \times 10^{-3}} = 0.125 \ mol \ / \ m^{3} = 1.25 \times 10^{-4} \ mol \ / \ L$$

$$[H_3O^+] = \frac{10^{-14}}{1,25 \times 10^{-4}} = 8,0 \times 10^{-11} mol/L$$

النسبة النهائية للتقدم في كل محلول:

$$au = rac{x_f}{x_{max}} = rac{\left[OH^-
ight]_f}{C}$$
لدينا

.
$$au_1 = rac{4 imes 10^{-4}}{10^{-2}} = 0.04$$
 : المحلول الأول

$$au_2 = \frac{2.8 \times 10^{-4}}{5 \times 10^{-3}} = 0.056$$
: المحلول الثاني

المحلول الثالث: $au_3 = \frac{1,25 \times 10^{-4}}{10^{-3}} = 0,125$. نعم تتعلق النسبة النهائية للتقدم بالتركيز المولي للأساس ، حيث كلما كان الأساس ممدا يتكون نسبة التقدم النهائية أكبر .

التمرين 17

 $2~(Ag^+\,,NO_3^-)~+~Cu~=~(Cu^{2^+}\,,2~NO_3^-)~+~2~Ag~$: معادلة التفاعل . (معادلة التفاعل . NO_3^-) $2~Ag^+~+~Cu~=~Cu^{2^+}~+~2~Ag~$. أو اختصارا

.
$$Q_r = \frac{\left[Cu^{2+}\right]}{\left[Ag^+\right]^2}$$
 : کسر التفاعل - 1

$$n(Cu) = \frac{m}{M} = \frac{6,35}{63,5} = 0.1 \ mol$$
 كمية مادة النحاس - 2 كمية مادة النحاس جدول التقدّم : $2 \ \mathrm{Ag}^+ + \mathrm{Cu} = \mathrm{Cu}^{2+} + 2 \ \mathrm{Ag}$ جدول التقدّم :

$$CV - 2 x_{\text{\'eq}} \qquad n_0 - x_{\text{\'eq}} \qquad x_{\text{\'eq}} \qquad x_{\text{\'eq}}$$

CV

(1)
$$K = Q_{r,f} = \frac{\left[Cu^{2+}\right]_f}{\left[Ag^{+}\right]_f^2}$$
 in the contraction of \mathbf{X}

$$\left[Cu^{2+}
ight]=rac{x_{\acute{e}q}}{V}$$
: وبالتالي ، $n\left(\mathrm{Cu}^{2+}
ight)=x_{\acute{e}q}$ ولدينا من جدول التقدم

$$\left[Ag^{+}
ight] = rac{CV-2x_{\acute{e}q}}{V}$$
 ، وبالتالي ، $n\left(Ag^{+}
ight) = CV-2x_{\acute{e}q}$ ولدينا كذلك من جدول التقدم

(2)
$$K = \frac{\frac{x_{\acute{e}q}}{V}}{\left(\frac{CV - 2x_{\acute{e}q}}{V}\right)^2} = \frac{x_{\acute{e}q}}{\left(CV - 2x_{\acute{e}q}\right)^2}$$
 : (1) is larger than the second of the content of the conte

4 - لكي نتأكد من ذلك نعوّض $x_{
m éq}=1.0 imes10^{-3}-4.8 imes10^{-11}~
m mol$ ، وذلك لكي نجد النتيجة

$$K = \frac{x_{\acute{e}q} \ V}{\left(CV - 2x_{\acute{e}q}\right)^2} = \frac{\left(10^{-3} - 4.8 \times 10^{-11}\right) \times 0.02}{\left[0.1 \times 0.02 - 2\left(10^{-3} - 4.8 \times 10^{-11}\right)\right]^2} = \frac{2 \times 10^{-5} - 9.6 \times 10^{-13}}{\left(9.6 \times 10^{-11}\right)^2}$$

 $K \approx 2,2 \times 10^{15}$ ، فنجد 2×10^{-5} أمام القيمة $9,6 \times 10^{-13}$ نهمل في البسط القيمة

: وبالتالي ، (K انظر لمقام عبارة) مو ($(K - 2x_{eq} = 9.6 \times 10^{-11} \text{ mol})$ وبالتالي - 5 عند التوازن يكون

$$[Ag^{+}] = \frac{CV - 2x_{\acute{e}q}}{V} = \frac{9.6 \times 10^{-11}}{0.02} = 4.8 \times 10^{-9} \text{ mol / } L$$

لكي نحسب $x_{
m max}$ يجب تحديد المتفاعل المحد أو لا ، من أجل ذلك نكتب :

$$x = 0.1 \text{ mol}$$
 ، ونستنج ، $n_0 - x = 0$

$$x = \frac{CV}{2} = \frac{0.1 \times 0.02}{2} = 1.0 \times 10^{-3} \, mol$$
 einiting $CV - 2x = 0$

 $x_{
m max} = 10^{-3} \; {
m mol}$ القيمة الصغيرة للتقدم x هي الموافقة لشوارد الفضة ، وبالتالي شوارد الفضة هي المتفاعل المحد ، ومنه يكون

. ایمکن اعتبار التفاعل می
$$au=rac{x_f}{x_{max}}=rac{10^{-3}-4.8 imes10^{-11}}{10^{-3}}pprox 1$$
 نسبة التقدم النهائي للتفاعل هي $au=1$

التمرين 18

$$(2 \text{ Na}^+, \text{SO}_3^{2-})_{(aq)} + \text{CH}_3\text{COOH}_{(aq)} = \text{CH}_3\text{COO}_{(aq)}^- + (\text{Na}^+, \text{HSO}_3^-)_{(aq)} : معادلة التفاعل - 1$$
 $\text{SO}_3^{2-}_{(aq)} + \text{CH}_3\text{COOH}_{(aq)} = \text{CH}_3\text{COO}_{(aq)}^- + \text{HSO}_3^- :$ اُو اختصارا :

- 2

SO ₃ ²⁻ (aq) +	$CH_3COOH_{(aq)} =$	HSO ₃ ⁻ (aq) +	CH ₃ COO ⁻ (aq)
C_1V_1	C_2V_2	0	0
C_1V_1-x	C_2V_2-x	х	X
$C_1V_1-x_f$	$C_2V_2-x_f$	x_f	x_f

$$Q_{r,i} = \frac{[CH_3COO^-][HSO_3^-]}{[SO_3^{2-}][CH_3COOH]} = \frac{0 \times 0}{C_1 \times C_2} = 0 - 3$$

(1)
$$Q_{r,f} = \frac{\left[CH_3COO^{-}\right]_f \left[HSO_3^{-}\right]_f}{\left[SO_3^{2-}\right]_f \left[CH_3COOH\right]_f} = \frac{x_f^2}{\left(C_1V_1 - x_f\right) \times \left(C_2V_2 - x_f\right)} - 4$$

لدينا النسبة النهائية للتقدم $au = \frac{x_f}{x_{max}}$ ، ومن المعطيات لدينا كميّة المادة للمتفاعلين متساويان (نفس التركيز ونفس الحجم)

: بنت (1) نكتب ، $x_{\text{max}} = C_1 V_1 = C_2 V_2$

$$Q_{r,f} = \frac{x_f^2}{(x_{\text{max}} - x_f)^2} = \left(\frac{x_f}{x_{\text{max}} - x_f}\right)^2 = \left(\frac{x_f}{x_f \left(\frac{x_{\text{max}}}{x_f} - 1\right)}\right)^2 = \left(\frac{1}{\frac{1}{\tau} - 1}\right)^2$$

$$Q_{r,f} = \frac{\tau^2}{\left(1 - \tau\right)^2}$$

(2)
$$K = \frac{\tau^2}{(1-\tau)^2}$$
 ومنه $Q_{r,f} = K$ نعلم أن -5

$$au = \frac{\sqrt{K}}{1 + \sqrt{K}} = \frac{\sqrt{251}}{1 + \sqrt{251}} = 0,94$$
 بجذر المعادلة (2) نكتب $\sqrt{K} = \frac{\tau}{1 - \tau}$: نستنتج

لتمرين 19

$$HCO_{3^{-}(aq)} + NH_{3(aq)} = NH_{4^{+}(aq)} + CO_{3^{-}(aq)}^{2-}$$
 : معادلة التفاعل - 1

2 — جدول التقدّم :

HCO ₃ (aq) +	$NH_{3(g)} =$	$NH_4^+_{(aq)}$ +	$\text{CO}_3^{2-}_{(aq)}$
C_1V_1	C_2V_2	0	0
C_1V_1-x	C_2V_2-x	x	x
$C_1V_1-x_f$	$C_2V_2-x_f$	x_f	x_f
$C_1V_1-x_m$	$C_2V_2-x_m$	\mathcal{X}_m	\mathcal{X}_{m}

$$Q_r = \frac{[NH_4^+][CO_3^{2-}]}{[HCO_3^-][NH_3]} - 3$$

$$Q_{r,i} = \frac{[NH_4^+][CO_3^{2-}]}{[HCO_3^-][NH_3]} = \frac{0 \times 0}{C_1 \times C_2} = 0$$

(1)
$$Q_{r,f} = K = \frac{x_f^2}{(C_1 V_1 - x_f)(C_2 V_2 - x_f)} - 4$$

. لدينا $au=\frac{x_f}{x_{max}}$ ، و لكي نحدّد التقدّم الأعظمي x_{max} يجب تحديد المتفاعل المحد في حالة فرض أن التفاعل تام

$$x = C_1 V_1 = 0.15 \times 0.03 = 4.5 \times 10^{-3} \text{ mol}$$
 ومنه $C_1 V_1 - x = 0$

$$x = C_2V_2 = 0,1 \times 0,02 = 2 \times 10^{-3} \text{ mol}$$
 ومنه، $C_2V_2 - x = 0$

 $x_{
m max} = {
m C}_2 {
m V}_2$ نستنتج أن المتفاعل المحد هو محلول النشادر ، وبالتالي

$$\mathrm{C_{1}V_{1}}=2{,}25~x_{\mathrm{max}}$$
 من جهة أخرى لدينا $\mathrm{C_{1}V_{1}}=2{,}25~\mathrm{C_{2}V_{2}}$ ، أي

$$Q_{r,f} = \frac{x_f^2}{(2,25x_{\max} - x_f)(x_{\max} - x_f)} = \frac{x_f^2}{x_f x_f \left(\frac{2,25x_{\max}}{x_f} - 1\right) \left(\frac{x_{\max}}{x_f} - 1\right)}$$
: (1) نعوض في العلاقة

$$Q_{r,f} = \frac{1}{\left(\frac{2,25}{\tau} - 1\right)\left(\frac{1}{\tau} - 1\right)} = \frac{\tau^2}{(2,25-\tau)(1-\tau)}$$

. au نحل المعادلة $Q_{r,f}=rac{ au^2}{(2,25- au)(1- au)}$ ذات المجهول - 5

$$\tau^2 = Q_{r,f} (2,25-3,25 \tau + \tau^2)$$

$$Q_{r,f} = K = 7.9 \times 10^{-2}$$
 ولاينا ، $(Q_{r,f} - 1) \, au^2 - 3.25 \, Q_{r,f} \, au + 2.25 \, Q_{r,f} = 0$

حل المعادلة من الدرجة الثانية يعطينا جذرين هما $au_1=0.32$ ، $au_1=0.32$ ، مرفوض) نسبة التقدم النهائي هي au_2 .

التمرين 20

 $Fe^{2+}_{(aq)} + Ag^{+}_{(aq)} = Fe^{3+}_{(aq)} + Ag_{(s)}$: معادلة التفاعل – 1

(1)
$$Q_r = \frac{[Fe^{3+}]}{[Fe^{2+}][Ag^+]} - 2$$

ثابت التوازن المعطى في التمرين K=3,2 خاص بالتفاعل المباشر ، أي تفاعل شوارد الحديد الثنائي مع شوارد الفضة .

$$Q_r = \frac{10^{-2}}{10^{-2} \times 10^{-2}} = 100$$
 : الحالة الأولى

$$Q_r = \frac{5 \times 10^{-3}}{10^{-1} \times 10^{-1}} = 0,5$$
 : الحالة الثانية

 $_{
m c}$ - لو وجدنا في إحدى الحالتين مثلا $_{
m c}$ $_{
m c}$ ، فهذا معناه أن الجملة في حالة التوازن ، أي لا تنمو .

الحالة 1: وجدنا $Q_r > K$ ، إذن الجملة غير متوازنة ، فلكي يصبح $Q_r = K$ يجب أن تنمو لكي يتناقص $Q_r > K$ ، فمن أجل هذا الغرض بجب أن ينقص البسط في العلاقة (1) ويزداد المقام . معنى هذا يجب أن نضيف التقدم (x) لـ Fe^{2+} و Fe^{2+} و Fe^{2+} و وينقصه من Fe^{3+} و وبالتالى تنمو الجملة نحو اليسار .

الحالة 2 : وجدنا $Q_r < K$ ، إذن الجملة غير متوازنة ، فلكي يصبح $Q_r = K$ يجب أن تنمو لكي يزداد $Q_r < K$ ، فمن أجل هذا الغرض يجب أن يزداد البسط في العلاقة (1) وينقص المقام . معنى هذا يجب أن نضيف التقدم (x) لـ Fe^{3+} و Fe^{2+} و Fe^{2+} و بالتالي تنمو الجملة نحو اليمين .

4 - في التحول الأول (الحالة 1) التفاعل الغالب هو التفاعل غير المباشر ، لذلك يكون ثابت التوازن لهذا التفاعل هو:

$$K' = \frac{1}{K} = \frac{1}{3 \cdot 2} = 0.31$$

K=3,2 في التحوّل الثاني (الحالة 2) التفاعل الغالب هو التفاعل المباشر ، أي

5 - الحالة الأولى:

$$Fe^{2+}_{(aq)}$$
 + $Ag^{+}_{(aq)}$ = $Fe^{3+}_{(aq)}$ + $Ag_{(s)}$
 10^{-2} 10^{-2} 10^{-2} 10^{-1}
 $10^{-2} + x$ $10^{-2} + x$ $10^{-2} - x$ $10^{-1} - x$

 $K = \frac{10^{-2} - x}{\left(10^{-2} + x\right)^2} = 3.2$: يكون كسر التفاعل مساويا لثابت التوازن ، وبالتالي

$$3.2 x^2 + 1.06 x - 9.7 \times 10^{-3} = 0$$
 $10^{-2} - x = 3.2 (10^{-2} + x)^2$

بحل هذه المعادلة من الدرجة الثانية نجد جذرين هما : $x_1 = 8.75 \times 10^{-3}$ و $x_2 = -0.34$ و رمرفوض لأنه سالب) $x_1 = 8.75 \times 10^{-3}$ التقدم النهائي هو $x_1 = 8.75 \times 10^{-3}$ mol

التركيب النهائي للوسط:

Fe ²⁺	Ag^+	Fe ³⁺	Ag
$10^{-2} + 8,75 \times 10^{-3} =$	$10^{-2} + 8,75 \times 10^{-3} =$	$10^{-2} - 8,75 \times 10^{-3} =$	$10^{-1} - 8,75 \times 10^{-3} =$
$1,87 \times 10^{-2} \text{ mol}$	$1,87 \times 10^{-2} \text{ mol}$	$1,25 \times 10^{-3} \text{ mol}$	$9,1 \times 10^{-2} \text{ mol}$

الحالة الثانية:

$$Fe^{2+}_{(aq)} + Ag^{+}_{(aq)} = Fe^{3+}_{(aq)} + Ag_{(s)}$$

$$10^{-1} 10^{-1} 5 \times 10^{-3} 10^{-1}$$

$$10^{-1} - x 10^{-1} - x 5 \times 10^{-3} + x 10^{-1} + x$$

 $K = \frac{5 \times 10^{-3} + x}{\left(10^{-1} - x\right)^2} = 3,2$: وبالتالي وبالتالي مساويا لثابت التوازن يكون كسر التفاعل مساويا لثابت التوازن ،

بحل هذه المعادلة من الدرجة الثانية نجد جذرين هما : $x_1 = 1.71 \times 10^{-2}$ و $x_2 = 0.49$ (مرفوض لأنه أكبر من $x_1 = 1.71 \times 10^{-2}$ التقدم النهائي هو $x_1 = 8.75 \times 10^{-3}$ mol

التركيب النهائي للوسط:

Fe ²⁺	$\mathrm{Ag}^{^{+}}$	Fe ³⁺	Ag
$10^{-1} - 1,71 \times 10^{-2} =$	$10^{-1} - 1,71 \times 10^{-2} =$	$5 \times 10^{-3} + 1,71 \times 10^{-2} =$	$10^{-1} + 1,71 \times 10^{-2} =$
$8,3 \times 10^{-2} \text{ mol}$	$8,3 \times 10^{-2} \text{ mol}$	$2,21 \times 10^{-2} \text{ mol}$	$11,7 \times 10^{-2} \text{ mol}$

 ${
m CH_3COOH_{(aq)}} + {
m H_2O_{(l)}} = {
m CH_3COO^-_{(aq)}} + {
m H_3O^+_{(aq)}}$: معادلة النفاعل -1

2 - جدول التقدم:

CH ₃ COOH _(aq)	$+$ $H_2O_{(l)}$ =	CH ₃ COO ⁻ (aq)	$+ H_3O^+_{(aq)}$
C_0V_0	زيادة	0	0
C_0V_0-x	زيادة	x	X
$C_0V_0-x_f$	زيادة	x_f	x_f
$C_0V_0-x_m$	زيادة	X_m	X_m

 $x_{
m max} = {
m C}_0 {
m V}_0$ من جدول التقدم نستنتج $x_{
m f} = n \ ({
m H}_3 {
m O}^+)$ من جدول التقدم

$$[CH_3COOH]_f = C_0 - [H_3O^+] = C_0 - C_0 \times \tau = C_0 (1-\tau) - 3$$

(1)
$$K_{A} = \frac{C_{0}^{2} \times \tau^{2}}{C_{0} (1 - \tau)} = C_{0} \frac{\tau^{2}}{1 - \tau} \qquad (K_{A} = \frac{\left[H_{3}O^{+}\right]_{f} \times \left[CH_{3}COO^{-}\right]_{f}}{\left[CH_{3}COOH\right]_{f}} \quad \text{the same size } -4$$

إن المام الجدول :

C ₀ (mol/L)	$1,0 \times 10^{-2}$	5.0×10^{-3}	$1,0 \times 10^{-3}$	$5,0 \times 10^{-4}$
$\tau \times 10^{-2}$	4,0	5,6	12,5	16,0
$X = \frac{1}{C_0} (L/mol)$	100	200	1000	2000
$Y = \frac{\tau^2}{1 - \tau}$	$16,7 \times 10^{-4}$	$33,2 \times 10^{-4}$	$1,78 \times 10^{-2}$	$3,04 \times 10^{-2}$

من أجل حساب ثابت الحموضة KA نأخذ مثلا النقطتين:

$$(Y_2 = 33.2 \times 10^{-4} \cdot X_2 = 200 \text{ L/mol})$$
 $(Y_1 = 16.7 \times 10^{-4} \cdot X_1 = 100 \text{ L/mol})$

$$K_A = \frac{16.5 \times 10^{-4}}{100} = 1.65 \times 10^{-5}$$

التمرين 22

-1

S_0 المحلول	$C_0 = 0.2 \text{ mol/ } L$	$V_0 = 500 \text{ mL}$
المحلول S	$C = 2 \times 10^{-3} \text{ mol/ L}$	V = 1 L

ملاحظة: كان من الأفضل توفير ماصات عيارية: n_0 (C₂H₅COOH) عدد مو لات حمض البروبانويك n_0 (C₂H₅COOH) لا يتغير عندما نضيف الماء ، أي V_0 هو الحجم الذي نأخذه من المحلول S_0 ونضيف له الماء .

$$V_0$$
' = $\dfrac{CV}{C_0}$ = $\dfrac{2 \times 10^{-3} \times 1}{0,2}$ = $10~mL$ وبالنالي ، $C_0 = \dfrac{n_0}{V_0} = \dfrac{0,1}{0,5} = 0,2~mol~L$ لدينا

ملاحظة: نقول: اقترح بروتوكولا تجريبيا ، لا نقول: اقترح بروتوكول تجريبي.

الطريقة: نأخذ بواسطة الماصة التي سعتها $10 \, \text{mL}$ الحجم V_0 من المحلول V_0 ونضعه في مخبار سعته V_0 ثم نكمل الحجم بالماء المقطر ونحصل بذلك على المحلول V_0 .

- 2

جدول التقدّم:

C ₂ H ₅ COOH _(aq) +	$H_2O_{(1)} =$	$C_2H_5COO^{(aq)}$	$+ H_3O^+_{(aq)}$
2×10^{-3}	زيادة	0	0
$2\times10^{-3}-x$	زيادة	x	х
$2\times10^{-3}-x_{\acute{e}q}$	زيادة	$x_{\acute{e}q}$	$\chi_{\acute{e}q}$

: بنتب:
$$[OH^-]$$
 نكتب: $\sigma = \lambda_{H_3O^+} [H_3O^+]_f + \lambda_{C_2H_5COO^-} [C_2H_5COO^-]_f + \lambda_{OH^-} [OH^-]_f$ عكتب: $[H_3O^+]_f = [C_2H_5COO^-]_f$ وبما أن $\sigma = \lambda_{H_3O^+} [H_3O^+]_f + \lambda_{C_2H_5COO^-} [C_2H_5COO^-]_f$ نكتب: $\sigma = [H_3O^+]_f (\lambda_{H_3O^+} + \lambda_{C_2H_5COO^-})$

$$\left[H_3O^+
ight]_f=rac{x_{\acute{e}q}}{V}$$
 من جدول التقدّم لدينا n $\left(\mathrm{H_3O}^+
ight)=x_{\acute{e}q}$ من جدول التقدّم لدينا

(1)
$$\sigma = \frac{x_{\acute{e}q}}{V} \left(\lambda_{H_3O^+} + \lambda_{C_2H_3COO^-} \right)$$
 : (1) التعويض في العلاقة (1)

- $(\sigma = 6.2 \times 10^{-5} \text{ S.m}^{-1})$ (لیس $\sigma = 6.2 \times 10^{-3} \text{ S.m}^{-1}$: -4
 - أ) كيفية قياس الناقلية النوعية:
- الطريقة الأولى: يوجد جهاز يسمى مقياس الناقلية ، يتألف من مسبار موصول لجهاز عرض رقمى .

لما نغمر المسبار في المحلول المراد قياس ناقليته ، نقرأ على شاشة الجهاز قيمة الناقلية للجزء من المحلول المحصور بين لبوسي خلية القياس وباستعمال ثابت الخلية نستنتج الناقلية النوعية للمحلول .

- الطريقة الثانية: نستعمل خلية قياس الناقلية لقياس ناقلية المحلول (G). نضبط توترا كهربائيا متناوبا بين الصفيحتين قيمته المنتجة $U_{\rm eff}$ ($U_{\rm eff}$) لا نستعمل توترا مستمرا ، لأن مرور التيار المستمر يمكن أن يسبّب تحليلا كهربائيا للمحلول مما يجعل قياس ناقليته غير دقيق $U_{\rm eff}$

نقرأ شدة التيار المنتجة على مقياس الأمبير ، ثم نحسب الناقلية $G = \frac{I_{\it eff}}{U_{\it eff}}$ ، ومن العلاقة $\sigma = \frac{G}{K}$ نستنتج التاقلية النوعية ، مع العلم أن

K هو ثابت الخلية وقيمته مسجّلة على الجهاز .

ب) يجب أن نستعمل محاليل ممدّدة لكي يكون جزء المحلول المحصور بين لبوسي الخلية مشابها في نقله للكهرباء لناقل معدني ، وذلك ليتسنى لنا تطبيق العلاقة $G = \frac{U}{I}$ ، سواء في الطريقة الأولى أو الثانية .

إذا كان المحلول مركزا ، فإن الأفعال المتبادلة بين الأفراد الموجودة فيه تفقده خاصية تشابهه مع النقل في المعادن .

مثلا $3^{-1}S.m^2.mol^{-1}$ من أجل محلول ممدد في الدرجة $3^{\circ}C$ ، أما إذا كان مركزا فإن هذه القيمة غير ثابتة ، لأن هذه القيمة خير ثابتة ، لأن هذه القيمة كُسبت من أجل محلول ممدّد إلى ما لا نهاية (أي ممدّد كثيرا) .

 $m V=1~L=10^{-3}~m^3$ ن ستنتج التقدم عند التوازن $m x_{\acute{e}q}=rac{V\sigma}{\lambda_{H_1O^+}+\lambda_{C_2H_2COO^-}}$ جـ) من العلاقة (1) نستنتج التقدم عند التوازن

$$x_{\acute{e}q} = \frac{1 \times 10^{-3} \times 6, 2 \times 10^{-3}}{38,58 \times 10^{-3}} = 1,6 \times 10^{-4} \, mol$$

$$[H_3O^+] = [C_2H_5COO^-] = \frac{x_f}{V} = \frac{1,6\times10^{-4}}{1} = 1,6\times10^{-4} \,\text{mol}\,/\,L$$

$$[OH^{-}] = \frac{10^{-14}}{[H_3O^{+}]} = \frac{10^{-14}}{1,6 \times 10^{-4}} = 6,25 \times 10^{-11} \, mol \, / \, L$$

 $[C_2H_5COOH]_f = C - [H_3O^+]_f = 2 \times 10^{-3} - 1.6 \times 10^{-4} = 1.84 \times 10^{-3} \, mol \, / \, L$: عند حالة التوازن يكون -5

$$K = \frac{\left[C_2 H_5 COO^-\right]_f \times \left[H_3 O^+\right]_f}{\left[C_2 H_5 COOH\right]_f} = \frac{\left(1.6 \times 10^{-4}\right)^2}{1.84 \times 10^{-3}} = 1.4 \times 10^{-5}$$
 : ثابت التوازن : - 6