Hardware Course Project: Technical Drawings, SUS and QFD Results

Technical Drawings

Assembly

Exploded View

		Parts List			
Item	Qty	Part Number	Description	Material	
1	5	LUG_N_101 - "Lug Nut"	3D Printed Lug Nut	3D Printed Plastic	
2	4	R_SHELL_102	3D Printed Rim Asthetic	3D Printed Plastic	
3	5	KY040 Rotary Encoder	Rotary encoders to allow for spin movement	N/A	7 8 9
4	1	ELEV_P_103 - "Elevated Platform"	Platform used to hold rotary encoders above base	3D Printed Plastic	6
5	3	PLA_L:_104 - "Platform Legs"	Used to hold the platform above the base	3D Printed Plastic	4 5
6	1	A000066 - "Arduino Uno"	Main source to program simulation	N/A	
7	1	BB400 - "Breadboard"	Used to house Arduino and solderless wires	N/A	
8	6	INT_P_105 - "Interior Pegs"	Pegs used to join base pieces together	3D Printed Plastic	
9	4	BASE_105 - "Rim Base"	Base to support the shell and all other components	3D Printed Plastic	
					(A)
					PROJECT Hardware Controller
					PROJECT
					PROJECT Hardware Controller TITLE Controller Exploded View
					PROJECT Hardware Controller TITLE

Rim Base

Lug Nut

Elevated Platform

Rim Aesthetic

Updated Bill of Materials

Item	Quantity	Purpose	Where to Obtain	Costs
Jumper wires (M-F) (M-M) (F-F)	x240	To form a connection between the Arduino, and rotary encoder	amazon.ca	\$12.97
LED Lights x2		Actuators to signal feedback when turning lugnuts	Game Lab (Arduino kit)	
Resistor	x2	Used to regulate the flow of electrical current to LED lights through the breadboard.	Game Lab (Arduino Kit)	
Arduino Uno	x1	Power and process inputs from the tire peripheral	Game Lab (Arduino Kit)	
Rotary Encoder	x5	Record the rotation input of the torque wrench on the lug nuts.	Creatron Inc	\$42,38
Magnets (3/8")	x20	Magnets will provide feedback when they	Amazon	\$14.99
Double Sided Tape (Gorilla Glue)	x1	Tape used to secure hardware in place	Walmart.ca	\$11.97
Socket Wrench (3/4" Socket)	x1	This will act as our main controller. Rather than utilizing a 3D printed component, we will give the user an actual wrench to play in the simulation.	Personal	
Breadboard	x1	Act as a base platform for the Arduino Nano	Amazon	\$7.90

Customer Needs to Functional Requirements

	Customer Competitive Assesment											
Our Product	Competitor #1: VR Car Mechanic Sim	Competitor #2: Product Name			0	1	2	3	4	5		
3	2	1				φ,	Ж	+				
4	1	1				*	~		X			
5	5	4							P	*		
5	5	3						d		*		

Customer Competitive Analysis

	Target	Weight	Balance	Knowledge & Understanding	Ease of Use	External Force	Portability	Functionality								
	Max Relationship	7	3	9	9	9	3	9								
	Technical Importance Rating	425	91.67	225	275	225	50	300								
	Relative Weight	27%	6%	14%	17%	14%	3%	19%								
	Weight Chart		_				_									
	Our Product	3	4	2	4	4	2	5								
	Competitor #1: VR Mechanic Simulator	4	4	2	3	4	4	5								
	Competitor #2: AR Training Simulator	4	4	3	4	5	4	3								
nent	Competitor #3: Product Name															
Issesi	Competitor #4: Product Name															
Technical Competitive Assesment	Colrimu # 0 1 6 4 8	**************************************	2	**	*	* 5	¥ 6	*	9	10	11	12	13	-* -c	ompetito 2 ompetito	or or
	Column #	-	_	_			_									_

Our Product to Competitor Analysis

SUS Results

Paticipant	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	
	I think that I would like	I found the	I thought t	I think that	I found the	I thought t	I would im	I found the	I felt very	I needed to learn a lot of things befo	Score
1	3	1	5	1	5	1	5	1	5	2	92.5
2	2	2	3	5	4	2	3	4	3	4	45
3	2	1	5	2	5	1	5	2	5	2	85
4	4	1	5	1	5	1	5	1	5	4	90
5	2	1	4	3	5	1	4	2	4	3	72.5
6	2	2	4	3	4	4	3	4	3	3	50
7	2	1	5	2	3	2	4	2	4	1	75
											72.8571

Average Participants score from Questionnaire

Results from Questionnaire

Christian Riggi:100752293

Ehren Chan: 100753167

Project Timeline

TUNE-UP: PROJECT TIMELINE

IMPROVEMENT 1

Utilized a real socket wrench rather than making a custom one. Done to avoid complex controller design

IMPROVEMENT 2

Designed the shell of the rim to be removed from the base in order to access hardware components. Achieved via magnets

IMPROVEMENT 3

Split the base and shell of the controller into 4 pieces as it was too big for the printer bed. Holes were cut along the inside with pegs to attach pieces together

IMPROVEMENT 4

Switched from Arduino nano to Arduino Uno to save time avoiding soldering. Adjusted the port size to match the uno

IMPROVEMENT 5

Removed the middle leg of the platform to re-position breadboard and Arduino Uno

IMPROVEMENT 6

Built a stand for the Arudino Uno so it could reach the height of the port.

