§4 ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Пусть $n, m \in \mathbb{N}$ и $I = \{1, 2, \dots, n\}, J = \{1, 2, \dots, m\}$. Задачей линейного программирования в общей форме называется следующая задача

$$\begin{cases} \sum_{i=1}^{n} c_{i}x_{i} \to \min; \\ \sum_{i=1}^{n} a_{ij}x_{i} \geq b_{j}, \quad j \in J_{1}; \\ \sum_{i=1}^{n} a_{ij}x_{i} = b_{j}, \quad j \in J_{2}; \\ x_{i} \geq 0, i \in I_{1}; \end{cases}$$
(4.1)

где $c=(c_1,c_2,\ldots,c_n)^{\sf T}\in\mathbb{R}^n,\ b=(b_1,b_2,\ldots,b_m)^{\sf T}\in\mathbb{R}^m,\ A=(a_{ij})_{i,j=1}^{n,m}\in\mathbb{R}^{n\times m},\ a$ $I=I_1\sqcup I_2$ и $J=J_1\sqcup J_2$ — некоторые разбиения множеств I и J, соответственно. Очевидно, что задача (4.1)— частный случай задачи выпуклого программирования. Если $J_1=J$ (а значит, $J_2=\varnothing$) и $I_1=I$, то задача (4.1) называется нормальной, если же $J_2=J$ и $I_1=I$, то задача (4.1)— канонической.

Пример 4.1 (Расстояние землекопа). Пусть дано два конечных множества $A = \{a_i\}_{i=1}^m$ и $B = \{b_j\}_{j=1}^k \subset \mathbb{R}^n$ точек. Требуется каким-либо разумным образом измерить расстояние (меру схожести) между этими множествами. Рассмотрим так называемое расстояние землекопа (Earth mover's distance). В каждую точку $a_i \in A$ поместим кучу песка объёма 1/|A|, а в каждой точке $b_j \in B$ выкопаем яму объёма 1/|B| (очевидно, что общий объём песка в точках множества A равен общему объёму выкопанных ям в точках множества B). Будем считать, что стоимость перемещения песка объёма v из точки a_i в точку b_j равна $vd(a_i,b_j)$, где $d(a_i,b_j)$ — расстояние между точками a_i и b_j . Расстояние землекопа между множествами a_i и a_i равно минимальной стоимости, за которую можно засыпать ямы в точках множества a_i песком из точек множества a_i . Расстояние землекопа может быть найдено решением следующей задачи линейного программирования:

$$\begin{cases} \sum_{i=1}^{m} \sum_{j=1}^{k} v_{ij} d(a_i, b_j) \to \min; \\ \sum_{j=1}^{k} v_{ij} = \frac{1}{m}, & 1 \le i \le m; \\ \sum_{i=1}^{m} v_{ij} = \frac{1}{k}, & 1 \le j \le k; \\ v_{ij} \ge 0, & 1 \le i \le m, \ 1 \le j \le k. \end{cases}$$

Пример 4.2 (Линейная регрессия). Пусть дана обучающая выборка $S = \{(x_i, y_i\}_{i=1}^N.$ Задача линейной регрессии заключается в том, чтобы найти вектор $a \in \mathbb{R}^n$ и число b, такие что $y \approx a^\mathsf{T} x + b$. Как правило, поиск параметров a и b сводится к решению задачи

$$\sum_{i=1}^{N} (y_i - a^{\mathsf{T}} x_i - b_i)^2 \to \min_{a,b}.$$

Однако, при таком подходе даже единственный выброс может существенно исказить искомые параметры. Для уменьшения влияния выбросов переходят к следующей задаче

$$\sum_{i=1}^{N} |y_i - a^{\mathsf{T}} x_i - b_i| \to \min_{a,b},$$

которая, очевидно, равносильна задаче линейного программирования

$$\begin{cases} \sum_{i=1}^{N} \xi_i \to \min; \\ \xi_i \ge y_i - a^{\mathsf{T}} x_i - b_i \ge -\xi_i, \quad 1 \le i \le N; \\ \xi \ge \mathbf{0}. \end{cases}$$

Каждой задаче (4.1) соответствуют так называемая двойственная задача. Мотивировкой введения двойственной задачи являются следующие рассуждения. Пусть $x \in \mathbb{R}^n$ — произвольный допустимый вектор задачи (4.1). Рассмотрим произвольный вектор $y = (y_1, y_2, \dots, y_m)^\mathsf{T} \in \mathbb{R}^m$, такой что $y_j \ge 0$, если $j \in J_1$. Умножим каждое ограничение задачи (4.1) на соответствующую компоненту вектора и и сложим их. В итоге получаем, что

$$\sum_{j=1}^{m} b_j y_j \le \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} x_i y_j = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij} y_j \right) x_i.$$

Потребуем, чтобы $\sum\limits_{j=1}^m a_{ij}y_j \leq c_i$ при $i\in I_1$ и $\sum\limits_{j=1}^m a_{ij}y_j = c_i$ при $i\in I_2$. Тогда справедливо неравенство $\sum\limits_{i=1}^n c_ix_i \geq \sum\limits_{j=1}^m b_jy_j$. Другими словами, чем больше величина

 $\sum_{j=1}^{m} b_j y_j$, тем точнее оценка снизу оптимального значения целевой функции $c^{\mathsf{T}} x$.

Таким образом, рассмотрим следующую задачу линейного программирования

$$\begin{cases} \sum_{j=1}^{m} b_{j}y_{j} \to \max; \\ \sum_{j=1}^{m} a_{ij}y_{j} \leq c_{i}, & i \in I_{1}; \\ \sum_{j=1}^{m} a_{ij}y_{j} = c_{i}, & i \in I_{2}; \\ y_{j} \geq 0, & j \in J_{1}. \end{cases}$$

$$(4.2)$$

Задача (4.2) называется двойственной, а задача (4.1) — прямой (или исходной). Сведём воедино правила составления двойственной задачи:

1. Каждому j-му ограничению исходной задачи соответствует переменная y_i двойственной задачи и, наоборот, каждому i-му ограничению двойственной задачи соответствует переменная x_i исходной задачи.

- 2. Матрица ограничений A заменяется на транспонированную $A^\mathsf{T}.$
- 3. Свободные члены ограничений одной из задач являются коэффициентами при соответствующих переменных в целевой функции другой задачи. При этом поиск минимума заменяется на поиск максимума и наоборот.
- 4. В каждой из задач ограничения-неравенства следует записывать со знаком ">" при поиске минимума и со знаком "<" при поиске максимума.
- 5. Каждому j-му ограничению-неравенству прямой задачи в двойственной задаче соответствует условие неотрицательности $(y_j \ge 0)$, а равенству переменная y_j без ограничение на знак. Наоборот, неотрицательной переменной $x_i \ge 0$ соответствует в двойственной задаче i-е ограничение-неравенство, а произвольной переменной-равенство.

Нетрудно видеть, что двойственной задачей для задачи (4.2) является задача (4.1). Между решениями задач (4.1) и (4.2) имеется ряд нетривиальных связей, образующих теорию двойственности. Для доказательства некоторых утверждений этой теории нам понадобится лемма Фаркаша. Но сперва установим, что всякий конечно порождённый выпуклый конус в пространстве \mathbb{R}^n является замкнутым множеством.

Опр. 4.1. Подмножество C векторного пространства V называется выпуклым конусом, если $\alpha x + \beta y \in C$ для любых неотрицательных чисел α , β и любых векторов x, $y \in C$. Другими словами, выпуклый конус — это подмножество векторного пространства, замкнутое относительно сложения и умножения на неотрицательные числа. Конус C называется конечно порождённым, если найдутся такие векторы v_1, v_2, \ldots, v_m , что

$$C = \{\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_m v_m : \alpha_i > 0, 1 < i < m\}.$$

Лемма 4.1. Пусть F и $H \subset \mathbb{R}^n$ — замкнутые подмножества, такие что $f \perp h$ для любых $f \in F$ и $h \in H$. Тогда множество $F + H \stackrel{\mathrm{def}}{=} \{f + h \colon f \in F, h \in H\}$ замкнуто.

ightarrow Пусть $(f_k)_{k\in\mathbb{N}}\subset F$ и $(h_k)_{k\in\mathbb{N}}\subset H$ — две последовательности, такие что $\lim_{k\to+\infty}(f_k+h_k)=x.$ Так как

$$\|f_m+h_m-(f_k+h_k)\|^2=\|(f_m-f_k)+(h_m-h_k)\|^2=\|f_m-f_k\|^2+\|h_m-h_k\|^2\to 0,$$
 то $\|f_m-f_k\|^2\to 0$ и $\|h_m-h_k\|^2\to 0$. Следовательно,

$$\lim_{k\to +\infty} f_k = f \in F \quad \text{if} \quad \lim_{k\to +\infty} h_k = h \in H,$$

а значит, $x=f+h\in F+H$. \lhd

Лемма 4.2. Пусть $a_1, a_2, \ldots, a_m \in \mathbb{R}^n$ — столбцы матрицы $A \in \mathbb{R}^{n \times m}$. Тогда конус $C \stackrel{\text{def}}{=} \{Ax : x \in \mathbb{R}^m_+\}$ замкнут.

ightharpoonup Докажем замкнутость конуса $C_s \stackrel{\mathrm{def}}{=} \{\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_s a_s \colon \lambda_i \geq 0\}$ индукцией по s. Очевидно, что $C_1 = \{\lambda_1 a_1 \colon \lambda_1 \geq 0\}$ — замкнутое множество. Предположим, что мы доказали, что конус C_s замкнут для любых векторов $a_1, a_2, \ldots, a_s \in \mathbb{R}^n$. Покажем, что тогда замкнут конус C_{s+1} . Рассмотрим произвольную последовательность $(c_k)_{k \in \mathbb{N}} \subset C_{s+1}$,

$$c_k = \lambda_1^k a_1 + \lambda_2^k a_2 + \ldots + \lambda_{s+1}^k a_{s+1},$$

такую что $\lim_{k\to +\infty} c_k = c$, и докажем, что $c\in C_{s+1}$. Если все последовательности чисел $(\lambda_i^k)_{k\in\mathbb{N}}$ ограничены, то без нарушения общности будем считать, что они сходятся: $\lim_{k\to +\infty} \lambda_i^k = \lambda_i$. Следовательно, имеет место равенство

$$c = \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_{s+1} a_{s+1} \in C_{s+1}.$$

Рассмотрим случай, когда хотя бы одна из последовательностей чисел $(\lambda_i^k)_{k\in\mathbb{N}}$ неограничена, например, с номером s+1. Без нарушения общности будем считать, что $\lambda_{s+1}^k\uparrow+\infty$ и $\lambda_{s+1}^k\geq\lambda_i^k,\,1\leq i\leq s$. Но тогда последовательности $(\lambda_i^k/\lambda_{s+1}^k)_{k\in\mathbb{N}}$ ограничены, а значит, без нарушения общности будем считать, что они сходятся: $\lim_{k\to+\infty}\lambda_i^k/\lambda_{s+1}^k=\lambda_i,\,1\leq i\leq s$. Следовательно, $\lambda_1a_1+\lambda_2a_2+\ldots+a_{s+1}=\mathbf{0}$, т.е.

$$-a_{s+1} = \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_s a_s \in C_s \subset C_{s+1}.$$

Пусть $P: \mathbb{R}^n \to (a_{s+1})^{\perp}$ — проекция на ортогональное дополнение к одномерному подпространству, натянутому на вектор a_{s+1} . Тогда

$$PC_{s+1} = \{\lambda_1 Pa_1 + \lambda_2 Pa_2 + \ldots + \lambda_s Pa_s : \lambda_i \ge 0\}$$

в силу равенства $P(\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_{s+1} a_{s+1}) = \lambda_1 P a_1 + \lambda_2 P a_2 + \ldots + \lambda_s P a_s$. Более того, $PC_{s+1} \subset C_{s+1}$, так как $Pa_i = a_i - \frac{(a_i, a_{s+1})}{\|a_{s+1}\|^2} a_{s+1}$. Согласно предположению индукции PC_{s+1} — замкнутое множество. Наконец, так как $C_{s+1} = PC_{s+1} + \mathbb{R} a_{s+1}$, то согласно лемме 4.1 множество C_{s+1} замкнуто. \lhd

Лемма 4.3 (Фаркаш). Пусть $A \in \mathbb{R}^{n \times m}$ и $b \in \mathbb{R}^n$. Тогда либо Ax = b, для некоторого $x \in \mathbb{R}^m_+$, либо найдётся такой вектор $y \in \mathbb{R}^n$, что $y^\mathsf{T} A \leq \mathbf{0}$ и $y^\mathsf{T} b > 0$.

ightharpoonup Пусть выполнена первая из альтернатив, т.е. существует вектор $x \in \mathbb{R}^m_+,$ такой что Ax = b. Предположим, что $y^\mathsf{T} A \leq 0$ для некоторого вектора $y \in \mathbb{R}^n,$ тогда $y^\mathsf{T} b = y^\mathsf{T} A x \leq 0.$

Предположим теперь, что такого $x \in \mathbb{R}^m_+$ не существует. Рассмотрим выпуклый конус $C = \{Ax \colon x \in \mathbb{R}^m_+\}$, который согласно лемме 4.2 является замкнутым множеством. По предположению $b \notin C$, а значит, точка b строго отделима от C, т.е. существуют ненулевой вектор $y \in \mathbb{R}^n$ и число d, такие что $y^\mathsf{T}b > d > y^\mathsf{T}c$, $c \in C$. Так как $\mathbf{0} \in C$, то $y^\mathsf{T}b > d > 0$. С другой стороны $d \geq y^\mathsf{T}Ax = (A^\mathsf{T}y)^\mathsf{T}x$. Так как компоненты вектора x могут быть сколь угодно большими, то $y^\mathsf{T}A \leq \mathbf{0}$. Таким образом, выполнена вторая альтернатива. \lhd

Следствие 4.1. Если векторы $b, a_1, a_2, \ldots, a_m \in \mathbb{R}^n$, такие что для каждого вектора $x \in \mathbb{R}^n$ из неравенств $x^{\mathsf{T}} a_i \geq 0, 1 \leq i \leq m$, следует $x^{\mathsf{T}} b \geq 0$, то найдутся такие числа $\lambda_i \geq 0$, что $b = \sum_{i=1}^m \lambda_i a_i$.

Следствие 4.2. Пусть $\mathbb{R}^n = V \oplus V^{\perp}$. Если векторы $b, a_1, a_2, \ldots, a_s \in \mathbb{R}^n,$ такие что для каждого вектора $x \in V^{\perp}$ из неравенств $x^{\mathsf{T}} a_i \geq 0, \ 1 \leq i \leq m,$ следует неравенство $x^{\mathsf{T}} b \geq 0,$ то найдутся такие числа $\lambda_i \geq 0$ и вектор $v \in V,$ что $b = v + \sum_{i=1}^m \lambda_i a_i$.

ightharpoonup Пусть $b', a'_1, a'_2, \ldots, a'_m \in V^{\perp}$ — проекция векторов b, a_1, a_2, \ldots, a_m на подпространство V^{\perp} . Тогда для любого вектора $x \in \mathbb{R}^n$ из неравенств $x^{\mathsf{T}}a'_i \geq 0$ следует $x^{\mathsf{T}}b' \geq 0$, а значит, найдутся такие числа $\lambda_i \geq 0$, что $b' = \sum_{i=1}^m \lambda_i a'_i$. Возвращаясь к исходным векторам, получаем, что $b = v + \sum_{i=1}^m \lambda_i a_i$, где $v \in V$. \lhd

Пример 4.3 (Арбитраж). Предположим, что имеется две биржи, на которых продаются и покупаются товары n различных видов. Торговец хочет заработать, покупая товары на одной бирже и продавая их на второй. В зависимости от конъюнктуры возможны m ситуаций. Через c_{ij} обозначим разницу цен за единицу товара i при наступлении ситуации j (от цены на второй бирже отнимается цена на первой). Произвольный вектор $y = (y_1, y_2, \dots, y_n)^\mathsf{T} \in \mathbb{R}^n$ назовём стратегией торговца, где через y_i обозначено количество товара i, которое покупает и продаёт торговец. Доход торговца для стратегии y в ситуации j, очевидно, равен $\sum_{i=1}^{n} c_{ij}y_i$.

Теорема 4.1 (Де Финетти). Верно ровно одно из следующих утверждений:

- 1. существует такое распределение $p = (p_1, p_2, \dots, p_m), p_j \ge 0$ и $\sum_{j=1}^m p_j = 1$, на множестве ситуаций, что математическое ожидание дохода торговца для любого товара равно нулю, т.е. $\sum_{j=1}^m c_{ij}p_j = 0, 1 \le i \le n;$
- 2. существует такая стратегия y, что доход торговца положительный вне зависимости от ситуации, т.е. $\sum_{i=1}^{n} c_{ij}y_i > 0, \ 1 \leq j \leq m.$
- ho Рассмотрим вектор $b=(0,0,\dots,0,-1)^{\sf T}$ $\in \mathbb{R}^{n+1}$ и матрицу размера $(n+1) \times m$

$$A = \left(\begin{array}{ccc} c_{11} & \dots & c_{1m} \\ \vdots & \ddots & \vdots \\ c_{n1} & \dots & c_{nm} \\ -1 & \dots & -1 \end{array}\right)$$

Если какой-либо вектор $p \in \mathbb{R}_+^m$ удовлетворяет системе Ap = b, то справедливы равенства $\sum_{j=1}^m c_{ij} p_j = 0, \ 1 \le i \le n, \ \text{и} \ \sum_{j=1}^m -p_j = -1, \ \text{т.е.} \ p$ — искомое распределение. Согласно лемме Фаркаша либо такой вектор p существует, либо для некоторого $\widetilde{y} \in \mathbb{R}^{n+1}$ верно $\widetilde{y}^\mathsf{T} A \ge \mathbf{0}$,

 $\widetilde{\boldsymbol{y}}^\mathsf{T} \boldsymbol{b} < 0$. Согласно определению матрицы A и вектора \boldsymbol{b} имеем

$$\sum_{i=1}^{n} c_{ij} \widetilde{y}_i \ge \widetilde{y}_{n+1}, \quad 1 \le j \le m, \quad \mathbf{u} \quad -\widetilde{y}_{n+1} < 0.$$

Другими словами, стратегия $y = (\widetilde{y}_1, \widetilde{y}_2, \dots, \widetilde{y}_n)^\mathsf{T}$ искомая. \triangleleft

Упражнения

13. Решите следующую задачу линейного программирования

$$\begin{cases} c^{\mathsf{T}}x \to \max; \\ x_1 + x_2 + \dots + x_n = 1; \\ 0 \le x_i \le 1, \quad 1 \le i \le n. \end{cases}$$

- 14. (Гордон) Докажите, что для произвольной матрицы $A \in \mathbb{R}^{n \times m}$ выполнена ровно одна из альтернатив:
 - (a) существует такой вектор $x \in \mathbb{R}^m$, что $Ax < \mathbf{0}$;
 - (b) существует такой ненулевой вектор $y \in \mathbb{R}^n$, что $A^\mathsf{T} y = \mathbf{0}$ и $y \geq \mathbf{0}$.
- 15. Пусть $P=(p_{ij})_{i,j=1}^n$ стохастическая (слева) матрица, т.е. матрица с неотрицательными элементами $p_{ij} \geq 0$ и для всех j от 1 до n выполнено равенство $\sum\limits_{i=1}^n p_{ij} = 1$ (другими словами, в каждом столбце сумма стоящих в нём элементов равна 1). Используя лемму Фаркаша, докажите, что существует такой вектор $y=(y_1,y_2,\ldots,y_n)^{\sf T}\in\mathbb{R}^n_+$, что Py=y и $\sum\limits_{i=1}^n y_i=1$.
- 16. Докажите, что для того чтобы точка $x^* \in X$ была точкой минимума выпуклой дифференцируемой функции f на множестве $X = \{x : a_j^\mathsf{T} x \leq b_j\}$ необходимо и достаточно существование таких чисел $y_i \geq 0$, что

$$-\nabla f(x^*) = \sum_{j \in I(x^*)} y_j a_j.$$