Johns Hopkins Engineering

Number Systems for Computation

EN605.204 Computer Organization

Introduction

- What are bits and how do we interpret them?
- How do we represent data using bits?
- Positive and negative numeric representations
- Number systems: binary, octal, hexadecimal
- Arithmetic in different number systems
- Integer overflow

What is a "bit"?

- A "bit" is a "binary bit: 0/1, True/False, On/Off
- Other type of "_its":
 - "trit": trinary bit = {0, 1, 2}
 - "dit": decimal bit = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - o "qubit": quantum bit = {superpositions of bits}
- Computers implement bits as a high or low voltage
 - \circ -0.5V = 0
 - \circ +0.5V = 1

Interpreting a Stream of Bits

- Computers can stream billions of bits per seconds
- System software decomposes these streams into "instructions"
 - this process is known as "decoding" (more later)
- MIPS instructions are 32-bits/4-bytes long
 - An 8-bit entity is called a "byte"
 - A 4-byte entity is called a "word"
- Before we decode instructions, let's understand binary number systems

How Binary Works

- Binary is base 2, meaning each digits is a 0 or 1
- Ex: $1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 0 + 1 = 13$
 - Each column goes up a single power or 2 from right to left
- With N bits we can represent N-1 values from 0 to 2^N-1
 - \circ N = 6 bits we can represent 2⁶=64 values: {0...63}
- "Unsigned" numbers are always positive
- "Signed" numbers must have the sign (+/-) specified explicitly
- Let's look at how to represent "signed" numbers...

Sign & Magnitude Numbers

- Allows us to represent "signed" numbers in binary
- The leading bit is used ONLY to represent the sign
- **Ex**: $4_{10} = 0100_2$, so $-4_{10} = 1100_2$
- Pros:
 - Easy to implement in hardware
- Issues:
 - O An entire bit is wasted which reduces the range of numbers we can represent
 - $^{\circ}$ Two zeros: +010 = 00002, -010 = 11112

One's Complement Numbers

- Allows us to represent "signed" numbers in binary
- "Complement" just means "flipping bits":
 - o 0's become 1's and 1's become 0 (easy!)
- **Ex**: $4_{10} = 0100_2$, so $-4_{10} = 1011_2$
- Pros:
 - Easy to implement in hardware
- Issues:
 - \circ Two zeros: $+0_{10} = 0000_2$, $-0_{10} = 1111_2$

Two's Complement Numbers

- Allows us to represent negative numbers in binary
- Flip all of the bits and add 1
- Ex: $4_{10} = 0100_2$, so $-4_{10} = 1011_2$ (flip) + 1_2 (add 1) = 1100_2
- Pros:
 - Easy to implement in hardware
 - A single, standard value for 0
- Most computers today use two's complement numbers to represent signed numbers!

Examples of Signed Numbers

- One's Complement
 - \circ 4-bit ex: $+7_{10} = 0111_2$, so $-7_{10} = 1000_2$
 - \circ 5-bit ex: +11₁₀ = 01011₂, so -11₁₀ = 10100₂
- Two's Complement
 - \circ 4-bit ex: $+5_{10} = 0101_2$, so $-5_{10} = 1010_2 + 0001_2 = 1011_2$
 - \circ 5-bit ex: $+15_{10} = 01111_2$, $-15_{10} = 10000_2 + 00001_2 = 10001_2$

Pro Tip

- You don't convert numbers to/from 1's or 2's complement, you just interpret them differently:
- Examples:
 - \circ 1101₂ (1's comp.) = -(0010)₂ (flip all bits) = -2₁₀
 - \circ 1101₂ (2's comp.) = -(0011)₂ (flip all bits, add 1) = -3₁₀

Rules for Binary Addition

Addition		Result	Carry
0+0	=	0	0
0 + 1	=	1	0
1 + 0	=	1	o
1+1	=	0	1

Binary Addition Example

- Two ways to perform addition:
 - Short method: add the bits directly (shown below)
 - Long method: convert the numbers to base 10, add them, convert the sum back to binary

Integer Overflow

- Overflow occurs when the result of an arithmetic operation exceeds the maximum value that can be represented with the given number of bits
- Recall: given N-bits, we can represent values from 0 to 2^N-1 (unsigned)
- Example: let's add two unsigned 3-bit numbers together
 - $0.101_2 + 101_2 = 1010_2 = 10_{10}$
 - o The result is too large to represent using only 3 bits and requires a 4^{th} bit; the lead bit is truncated leaving us with $010_2 = 2_{10}$, which is not the correct answer

Integer Overflow – Practical Examples

Octal Numbers

- Base 8
- Values 0-7: 0, 1, 2, 3, 4, 5, 6, 7
 - One octal digit requires 3 bits
- Examples:
 - $0.014_{10} = 16_8 = 001 \ 110_2$
 - \circ 26₁₀ = 32₈ = 011 010₂
 - \circ 55₈ (1's complement) = 101 101₂ = -010 010₂ = -18₁₀

Hexadecimal Numbers

- Base 16, commonly referred to as "hex" numbers
 - Values 0-15: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - One hex digit requires 4 bits, 2 hex digits require 1 byte
- Examples:
 - $0.14_{10} = E_{16} = 1110_2$
 - \circ 26₁₀ = 1A₁₆ = 00011010₂
 - \circ CC₁₆ (1's complement) = 1100 1100₂ = -0011 0011₂ = -51₁₀
 - \circ -42₁₀ = -2A₁₆ = -0010 1010₂ = 1101 0110₂ (2's complement)

Rules for Hexadecimal Addition

- Start adding Hex. Digits from right to left.
- If sum of two Hex. Digits is greater than 15, then divide the sum by Hex. base (16). The quotient becomes the carry value, and the remainder is the sum digit.

