Chapter 6: Duality Theory (replaces 6 pages from Week 6 note outline)

Standard Problem Conversion

Primal Problem

Maximize Z = cx, subject to $Ax \le b$ and $x \ge 0$. Dual Problem

Minimize W = yb, subject to $yA \ge c$ and $y \ge 0.$

Example: Barbie and Ken AGAIN

<u>Primal</u>

Maximize Z = 6b + 6.5 ks.t $12 b + 14 k \le 100000$ $5b \le 30000$ $4b + 4k \le 35000$ $b, k \ge 0$ <u>Dual</u>

Minimize W=100000~p+30000~n+35000~c s.t $12~p~+~5~n~+~4~c~\geq~6$ $14~p~+~0~n~+~4~c~\geq~6.5$ $p,n,c~\geq~0$

Optimal Tableaus

PRIMAL	barbie	ken	plastic s1	nylon s2	cardboard s3	right hand side
Z	0	0	<mark>0.4642857</mark>	<mark>0.0857143</mark>	O	49000
ken	0	1	0.0714286	-0.171429	0	2000
barbie	1	0	0	0.2	0	6000
cardboard s3	0	0	-0.285714	-0.114286	1	3000

DUAL	plastic	nylon	cardboard	barbie s1	ken s2	barbie a1	ken a2	rhs
W = negative Z	0	0	3000	6000	2000	994000	998000	-49000
nylon	0	1	0.11429	-0.20000	0.17143	0.20000	-0.17143	<mark>0.08571</mark>
plastic	1	0	0.28571	0	-0.07143	0	0.07143	<mark>0.46429</mark>

Note that cardboard is not basic and so cardboard = 0

■ TABLE 6.14 Corresponding primal-dual forms

Label	Primal Problem (or Dual Problem)	Dual Problem (or Primal Problem)		
	Maximize Z (or W)	Minimize W (or Z)		
Sensible Odd Bizarre	Constraint <i>i</i> : ≤ form ← = form ← ≥ form ←	Variable y_i (or x_i): $y_i \ge 0$ Unconstrained $y'_i \le 0$		
Sensible Odd Bizarre	Variable x_j (or y_j): $x_j \ge 0 \longleftarrow$ Unconstrained \longleftarrow $x_j' \le 0 \longleftarrow$	$\begin{array}{c} \text{Constraint } j: \\ \longrightarrow & \geq \text{form} \\ \longrightarrow & = \text{form} \\ \longrightarrow & \leq \text{form} \end{array}$		

One More Example:

Original Problem

$$x_1 + x_2 = 2
2x_1 - x_2 \ge 3
x_1 - x_2 \le 1
x_1x_2 \ge 0$$

From Table:

Minimize $W=2\ y_1+3\ y_2+y_3$ s.t $y_1+2\ y_2+y_3\geq 2$ $y_1-y_2-y_3\geq 1$ $y_1\ URS, y_2\leq 0, y_3\geq 0$

"Standardized" Problem Maximize $Z = 2x_1 + x_2$

s.t. $x_1 + x_2 \le 2$ $-x_1 - x_2 \le -2$ $-2x_1 + x_2 \le -3$

 $x_1 - x_2 \le 1$
 $x_1 x_2 \ge 0$

From "standardized" problem: Minimize $W = 2 y_1 - 2 y_1^* - 3 y_2 + y_3$

$$y_1 - y_1^* - 2 y_2 + y_3 \ge 2$$

 $y_1 - y_1^* + y_2 - y_3 \ge 1$
 $y_1, y_1^*, y_2, y_3 \ge 0$

WHY DOES THIS WORK???

Weak duality property: If x is a feasible solution for the primal problem and y is a feasible solution for the dual problem, then

$$cx \leq yb$$
.

Strong duality property: If x^* is an optimal solution for the primal problem and y^* is an optimal solution for the dual problem, then

$$\mathbf{c}\mathbf{x}^* = \mathbf{y}^*\mathbf{b}$$
.

Complementary solutions property: At each iteration, the simplex method simultaneously identifies a CPF solution \mathbf{x} for the primal problem and a complementary solution \mathbf{y} for the dual problem (found in row 0, the coefficients of the slack variables), where

$$cx = yb.$$

If **x** is *not optimal* for the primal problem, then **y** is *not feasible* for the dual problem.

Duality theorem: The following are the only possible relationships between the primal and dual problems.

- 1. If one problem has *feasible solutions* and a *bounded* objective function (and so has an optimal solution), then so does the other problem, so both the weak and strong duality properties are applicable.
- **2.** If one problem has *feasible solutions* and an *unbounded* objective function (and so *no optimal solution*), then the other problem has *no feasible solutions*.
- **3.** If one problem has *no feasible solutions*, then the other problem has either *no feasible solutions* or an *unbounded* objective function.

Several reasons to care:

- 1) Fewer constraints mean fewer row operations, so sometimes solving the dual is faster by hand
- 2) ≤ constraints mean less artificial variables, so more ≥ constraints may mean the dual is faster by hand.
- 3) Changing the constraint coefficient(s) of a variable changes ONE constraint in the dual.
- 4) Adding a variable in the primal is adding a constraint in the dual.

Example for 4) ADD skipper to Barbie and Ken: \$6.25 profit, 9 oz plastic, 4 oz nylon and 4 oz cardboard.

In the Primal – new variable:

In the Dual – new constraint:

```
Minimize W=100000~p+30000~n+35000~c s.t 12~p~+~5~n~+~4~c~\geq~6 14~p~+~0~n~+~4~c~\geq~6.5 p,n,c~\geq~0
```

Changes to the A and c coefficients for non-basic and basic variables...

Homework Problem 5 parts b and c:

DJ **7.2-3.** Consider the following problem.

Maximize
$$Z = 2x_1 + 7x_2 - 3x_3$$
,

subject to

$$x_1 + 3x_2 + 4x_3 \le 30$$

$$x_1 + 4x_2 - x_3 \le 10$$

and

$$x_1 \ge 0$$
, $x_2 \ge 0$, $x_3 \ge 0$.

By letting x_4 and x_5 be the slack variables for the respective constraints, the simplex method yields the following final set of equations:

(0)
$$Z + x_2 + x_3 + 2x_5 = 20$$

(1) $-x_2 + 5x_3 + x_4 - x_5 = 20$
(2) $x_1 + 4x_2 - x_3 + x_5 = 10$

(1)
$$-x_2 + 5x_3 + x_4 - x_5 = 20$$

$$(2) x_1 + 4x_2 - x_3 + x_5 = 10$$

Final tableau

	x1	x2	хЗ	х4	x5	rhs	
Z	0	1	1	0	2	20	
x4	0	-1	5	1	-1	20	
x1	1	4	-1	0	1	10	

(b) Change the coefficients of x_3 to

$$\begin{bmatrix} c_3 \\ a_{13} \\ a_{23} \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ -2 \end{bmatrix}.$$

$$c_b^{\top} B^{-1} A - c^{\top} = \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & -1 & 5 \\ 1 & 4 & -2 \end{bmatrix} - \begin{bmatrix} 2 & 7 & -3 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & 1 & -1 \end{bmatrix}$$
$$B^{-1} A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & -2 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & -1 & 5 \\ 1 & 4 & -2 \end{bmatrix}$$

(c) Change the coefficients of x_1 to

$$\begin{bmatrix} c_1 \\ a_{11} \\ a_{21} \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$$

$$c_b^{\top} B^{-1} A - c^{\top} = \begin{bmatrix} 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & -1 & 5 \\ 2 & 4 & -1 \end{bmatrix} - \begin{bmatrix} 4 & 7 & -3 \end{bmatrix} = \begin{bmatrix} 4 & 9 & -1 \end{bmatrix}$$

$$B^{-1}A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 3 & 4 \\ 2 & 4 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 5 \\ 2 & 4 & -1 \end{bmatrix}$$