IEEE-9 BUS Load Flow Analysis

Course Code: EE 308

Comparison of different non-linear solution techniques in PowerWorld Simulator

IEEE 9 bus system consists of 3 synchronous generators, nine buses, six transmission lines, three transformers & three P-Q loads. The interconnection of these devices is depicted in the figure.

We have performed load flow analysis to determine the steady-state operating characteristics of the power system for a given load and generator real power and voltage conditions.

IEEE 9 BUS SYSTEM

Bus data of the 9 bus system

Bus No.	Bus Type	Per unit Voltage	Voltage (KV)	Generation (MW)	Generation (Mvar)	Load(MW)	Load(Mvar)
1	Slack	1.04	16.5KV	0	0	0	0
2	PV	1.025	18.0KV	163	6.7	0	0
3	PV	1.025	13.8KV	85	-10.9	0	0
4	PQ	1	230KV	0	0	0	0
5	PQ	1	230KV	0	0	125	50
6	PQ	1	230KV	0	0	90	30
7	PQ	1	230KV	0	0	0	0
8	PQ	1	230KV	0	0	100	35
9	PQ	1	230KV	0	0	0	0

Line and branch data of the 9 bus system

Line From	Line To	R	Х	В
1	4	0	0.0576	0
4	5	0.01	0.085	0.176
4	6	0.017	0.092	0.158
6	9	0.039	0.17	0.358
5	7	0.032	0.161	0.306
9	3	0	0.0586	0
7	2	0	0.0625	0
9	8	0.0119	0.1008	0.209
7	8	0.0085	0.072	0.149

IEEE-9 Bus simulation in PowerWorld

Y Bus Matrix

No.	Name	Bus1	Bus2	Bus3	Bus4	Bus5	Bus6	Bus7	Bus8	Bus9
1	Bus 1	0.00-j17.36			-0.00+j17.36					
2	Bus 2		0.00-j16.00					-0.00+j16.00		
3	Bus 3			0.00-j17.06						-0.00+j17.06
4	Bus 4	-0.00+j17.36			3.31-j39.31	-1.37+j11.60	-1.94+j10.51			
5	Bus 5				-1.37+j11.60	2.55-j17.34		-1.19+j5.98		
6	Bus 6				-1.94+j10.51		3.22-j15.84			-1.28+j5.59
7	Bus 7		-0.00+j16.00			-1.19+j5.98		2.80-j35.45	-1.62+j13.70	
8	Bus 8							-1.62+j13.70	2.77-j23.30	-1.16+j9.78
9	Bus 9			-0.00+j17.06			-1.28+j5.59		-1.16+j9.78	2.44-j32.15

Load flow analysis

Load flow studies are performed on power system to understand the nature of the installed network. Load flow is used to determine the **static performance** of the system.

It is commonly used to investigate:

- Component or circuit loading
- Bus voltage profiles (magnitude, phase angle, etc)
- Real and reactive power flow
- Power system losses
- Proper transformer tap settings

Load Flow Analysis for the 9 Bus System

•	Bus No.	Generation		Load		Bus Voltage		
		MW	Mvar	MW	Mvar	Voltage (p.u)	Angle(degree)	
	1	71.6	27	0	0	1.04	0	
	2	163	6.7	0	0	1.025	9.3	
•	3	85	-10.9	0	0	1.025	4.7	
	4	0	0	0	0	1.026	-2.2	
	5	0	0	125	50	0.996	-4	
	6	0	0	90	30	1.013	-3.7	
	7	0	0	0	0	1.026	3.7	
	8	0	0	100	35	1.016	0.7	
	9	0	0	0	0	1.032	2	

Line to Line Losses and Power Transfer Data

	Line	Р	Q	Line Los	SS
From	То	MW	Mvar	MW	Mvar
1	4	70.53	27	0	3.23
4	5	40.88	22.9	0.3	-15.8
4	6	30.7	1	0.2	-15.43
6	9	59.6	-13.6	1.4	-31.5
5	7	84.3	-11.3	2.3	-19.8
9	3	85	15	0	4.1
7	2	163	9.1	0	15.8
9	8	24.2	3.1	0.1	-21.2
7	8	76.4	-0.8	0.5	-11.5

Gauss- Seidel Method

With the slack bus voltage assumed (usually V1 = 1.0 p.u.), the remaining **(n-1)** bus voltages are found through **iterative process** as follows

$$P_{i} = \sum_{j=1}^{n} |V_{i}| |V_{j}| |Y_{ij}| \cos(\theta_{ij} - \delta_{i} + \delta_{j})$$

$$Q_{i} = -\sum_{j=1}^{n} |V_{i}| |V_{j}| |Y_{ij}| sin(\theta_{ij} - \delta_{i} + \delta_{j})$$

The equation 1 and 2 are called static load flow equations.

$$I_i = \frac{P_i - jQ_i}{V_i^*}$$

$$V_i = \frac{1}{Y_{ii}} \left(I_i - \sum_{\substack{j=1 \ j \neq 1}}^n Y_{ij} V_j \right) \quad i = 2, 3, 4 \dots n$$

For $(k+1)^{th}$ iteration, the voltage equation becomes

$$V_i^{(k+1)} = \frac{1}{Y_{ii}} \left[\frac{P_i - jQ_i}{(V_i^k)^*} - \sum_{j=1}^{i-1} (Y_{ij} V_j^{k+1}) - \sum_{j=i+1}^{n} (Y_{ij} V_j^k) \right]$$

Newton- Raphson method

- The Jacobian matrix gives the linearized relationship between small changes in voltage angle $\Delta \delta$ and voltage magnitude ΔV with the small changes in active and reactive power ΔP and ΔQ .
- The terms **ΔPir and ΔQir** are the difference between the scheduled and calculated valued, known as **mismatch** vector or power residuals, given by

$$P_i$$
 (scheduled) $-P_i^r$ calculated $= \Delta P_i^r$

$$Q_i \text{ (scheduled)} - Q_i^r \text{ calculated} = \Delta Q_i^r$$

$$|V|^{(r+1)} = |V|^r + |\Delta V|^r \qquad \left[\begin{array}{c} \Delta P \\ \Delta Q \end{array} \right] = \begin{bmatrix} J \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta V \end{bmatrix}$$

$$\delta(r+1) = \delta r + \Delta \delta r$$
where $r = \text{no. of iteration}$
here $[J] = \begin{bmatrix} J1 & J2 \\ J3 & J4 \end{bmatrix}$

Initial Mismatches (Flat Start)

X	Mism	natches X Yb	us X Genera	tors X OPF Bu	ses X Mismato	hes X Buses		
:		00. 4k ∰	.00 AM ABCD	### Records ▼	Geo * Set * C	olumns 🕶 🖼 🕶	AUXB - AUXB - P	# ▼ SORT f(x) ▼ Options ▼
:	Filter	Advanced +	Bus	*			→ Find Remov	re Quick Filter *
		Number	Name	Area Name	Mismatch MW	Mismatch Mvar	Mismatch M\ ▼	
	1	2	Bus 2	1	163.00	6.70	163.14	
	2	5	Bus 5	1	-125.00	-25.90	127.66	
	3	8	Bus 8	1	-100.00	-17.10	101.45	
	4	6	Bus 6	1	-90.00	-4.20	90.10	
	5	4	Bus 4	1	0.00	86.14	86.14	
	6	3	Bus 3	1	85.00	-10.90	85.70	
	7	9	Bus 9	1	0.00	28.35	28.35	
	8	7	Bus 7	1	0.00	22.75	22.75	
	9	1	Bus 1	1	0.00	0.00	0.00	

910 N 100	100 100 110	Gauss Seidel			Newton Raphson		
Number of Iterations	Bus Number	MW Mismatch	Mvar Mismatch	MVA Mismatch	MW Mismatch	Mvar Mismatch	MVA Mismatch
	1	0	0	0	0	0	0
	2	53.69	18.51	56.79	-1.23	-21.18	21.21
	3	15.5	2.59	15.71	-0.82	-5.35	5.41
	4	-140.47	-0.15	140.47	-2.91	4.17	5.08
1	5	19.2	-2.88	19.41	-4.97	-8.31	9.68
50	6	6.03	2.7	6.61	-3.61	-5.03	6.19
	7	-31.44	-12.57	33.86	1.41	-0.53	1.51
	8	9.93	5.9	11.55	-0.04	0.22	0.22
	9	0	0	0	0.85	-0.62	1.05
	1	0	0	0	0	0	0
	2	3.98	8.28	9.18	0	-0.01	0.01
	3	2.02	-7.28	7.55	0	0	0
	4	1.65	1.06	1.96	0	0	0
5	5	1.6	-0.08	1.6	0	0	0
	6	1.06	0.88	1.38	0	0	0
	7	3.05	1.94	3.61	0	0	0
	8	1.51	1.8	2.35	0	0	0
	9	0	0	0	0	0	0
	1	0	0	0	0	0	0
	2	-0.07	7.02	7.02	0	-0.01	0.01
	3	-0.04	-10.58	10.58	0	0	0
	4	80.0	0.27	0.28	0	0	0
50	5	0.02	0.12	0.12	0	0	0
	6	0.03	0.1	0.11	0	0	0
	7	0.01	0.28	0.28	0	0	0
	8	0.01	0.18	0.18	0	0	0
	9	0	0	0	0	0	0
	1	0	0	0	0	0	0
	2	0	6.7	6.7	0	-0.01	0.01
	3	0	-10.9	10.9	0	0	0
	4	0	0	0	0	0	0
175	5	0	0	0	0	0	0
	6	0	0	0	0	0	0
	7	0	0	0	0	0	0
	8	0	0	0	0	0	0
	9	0	0	0	0	0	0

Comparing the results

Comparing the results

Comparing the results

Observations

The **Gauss-Siedel** method requires more iterations to converge for the same values of |V|, angle, active and reactive power. Furthermore, with less iterations, the **Newton Raphson** approach outperforms the **GS** method.

The **results** show that the **Gauss-Siedel** approach is straightforward and easy to implement, but gets slower as the number of buses **increases**. The **Newton Raphso**n approach is more accurate than any other methods and yields better results in fewer iterations.

Method Bus No.↓	Used→	Gauss-Siedel Method	Newton - Raphson method
6		24	11
9		182	11
14	20	384	7
30		648	5
57		864	11

System Data Changes

The following alterations are made on the IEEE 9 Standard Bus System model

Loads:

Load on Bus 5 is changed to **50 MW, 0 MVA**R Load on Bus 6 is changed to **150 MW, 50 MVAR** Load on Bus 8 is changed to **200 MW, 50 MVAR**

Generators:

Real and Reactive Power of all generators are made equal to 500MW and 10MVAR

Under normal system conditions the voltages need to be maintained between **95%** and **105%** of the nominal

Low Voltage condition results in equipment malfunctions:

- •Load will stall, overheat or damage
- •Reactive power output of capacitor is exponentially reduced
- •Generating units may trip

Here, Per Unit Voltage of Bus 6 = 0.82053

Shunt Capacitor is Installed

- When Capacitor of 100MVar rating is connected at Bus 6, Bus 9 and Bus 4
- This leads to per unit Voltage correction
- Now, Per Unit Voltage of Bus 6 = **1.02999**

Need for capacitor

The generation of **reactive power** affects the total generation cost due to increase in the transmission losses.

TCSC (Thyristor controlled series capacitor) introduces a number of important benefits:

- Sub synchronous resonance risks elimination
- Real power oscillations damping
- Improvement in post contingency stability
- Increased power flow through the lines

TCSC provides a cost effective alternative capable of boosting the degree of overall power flow.

Utilization of TCSC in real world power problems between any buses can help overcome the issues of **reactive power losses** and poor power quality.

Conclusion

Thus we have performed the load flow analysis of IEEE-9 Bus system by:

- Simulating the IEEE-9 Bus system on powerWorld simulator.
- Analysing the Gauss-Seidel and Newton-Raphson methods.
- Comparing the results of both these methods.
- Finding methods to improve the overall performance of the system.

Resources

- https://www.pscad.com/knowledge-base/article/25
- https://ieeexplore.ieee.org/document/8358277
- https://www.ripublication.com/irph/ijee16/ijeev9n2_01.pdf
- https://www.omazaki.co.id/en/load-flow-study-analysis/
- https://scholarworks.calstate.edu/downloads/xg94hv83w
- https://www.powerworld.com/WebHelp/Content/MainDocumentation_HTM L/Limit_Monitoring_Settings_and_Limit_Violations_Dialog.htm
- https://www.researchgate.net/publication/338345486_Power_Flow_Analysis_ using_Power_World_Simulator
- https://www.irjet.net/archives/V3/i3/IRJET-V3I323.pdf
- https://www.powerworld.com/files/12Weber_DFACTS.pdf

