The Micro-canonical Algorithm

- · The preceding discussion leads to the algorithm
- We have a system (E.g. N harmonic oscillators) with total energy E (e.g. E=qtw), and want the temperature.
- We "just" need to count the number of ways $\Omega(E)$ for the system to Share (or partition) the energy. This determines the entropy S(E):

Then

This determines the relation between the temperature and energy E(T).

Example of Microcanonical Algorithm
· You will do this in homework. So I will
only sketch the steps here
· Take N harmonic oscillators with 9 units of
energy E=qtw. so the average number
of Vibrational quanta per oscillator is
$\bar{n} = q = E$ we will
$\bar{n} = q = E$ we will $N + w_0 = Consider \bar{n} = 1$
N=400
X me X me X me
Then $S(q) = (N+q-1)!$ (Compute S)
$\Omega(q)$ is the number of states with q units of energy and N particles, which you will compute in
homework
Using the stirling approximation (homework!)
D(q) = e ((1+1) /n (1+1) - 1/n /n]
For N=400=q n=1, 12(q) = e555.
•
Then
S(E) = kIn D(E) = NkB [(1+n) In (1+n) - n In n]
Then differentiating with respect to energy N = E
Ntwo

$$\frac{1}{k_BT} = \frac{1}{\hbar \omega_o} \ln \left(\frac{1+\bar{n}}{\bar{n}} \right)$$

- · So, for n=1 kBT = two/In2 => Btwo=In2
- · We can also express n in terms of the temperature

(Find Temperature)

Analysis of Thermal State

- We found the temperature of the system $k_BT = \hbar \omega_o / \ln 2$ or $\beta \hbar \omega_o = \ln 2$
- · We can verify that this is correct numerically.
- Each site is an independent subsystem. The probability of a site having energy En is P(En) & e En/kgT