Homework 1: Stochastic learning: Stochastic Gradient Descent

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

As formative assessment, submit the solutions to Exercise 1.2, 1.3, and 1.4.

Exercise 1. $(\star\star\star)$ Consider the binary classification problem with inputs $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$ for some given value L > 0, target $y \in \mathcal{Y}$ where $\mathcal{Y} := \{-1, +1\}$, and prediction rule $h_w : \mathbb{R}^d \to \{-1, +1\}$ with

$$(0.1) h_w(x) = \operatorname{sign}\left(w^{\top}x\right)$$

$$(0.2) = \operatorname{sign}\left(\sum_{j=1}^{d} w_j x_j\right)$$

Let the hypothesis class of prediction rules be

$$\mathcal{H} = \left\{ x \to w^{\top} x : \forall w \in \mathbb{R}^d \right\}$$

In other words, the hypothesis $h_w \in \mathcal{H}$ is parametrized by $w \in \mathbb{R}^d$ it receives an input vector $x \in \mathcal{X} := \mathbb{R}^d$ and it returns the label $y = \text{sign}(w^\top x) \in \mathcal{Y} := \{\pm 1\}$.

Consider a loss function $\ell: \mathbb{R}^d \to \mathbb{R}_+$ with

(0.3)
$$\ell(w, z = (x, y)) = \max(0, 1 - yw^{\top}x) + \lambda \|w\|_{2}^{2}$$

for some given value $\lambda > 0$.

Assume there is available a dataset of examples $S_n = \{z_i = (x_i, y_i); i = 1, ..., n\}$ of size n. Do the following tasks.

Hint-1:: We denote

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0\\ +1, & \text{if } \xi > 0 \end{cases}$$

Hint-2:: The notation ± 1 means either -1 or +1.

HInt-3:: We define $\mathbb{R}_+ := (0, +\infty)$

Hint-4:: We denote $||x||_2 := \sqrt{\sum_{\forall j} (x_j)^2}$ the Euclidean distance.

(1) Show that the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1 - x)$ is convex in \mathbb{R} ; and show that the loss (0.3) is convex.

Hint: You may use Example 13 from Handout 1.

(2) Show that the loss $\ell(w, z)$ for $\lambda = 0$ (0.3) is L-Lipschitz (with respect to w) when $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$.

- **Hint::** You may use the definition of Lipschitz function. Without loss of generality, you can consider any $w_1 \in \mathbb{R}^d$ and $w_2 \in \mathbb{R}^d$ such that $1 yw_2^\top x \le 1 yw_1^\top x$, and then take cases $1 yw_2^\top x > \text{or} < 0$ and $1 yw_1^\top x > \text{or} < 0$ to deal with the max.
- (3) Construct the set of sub-gradients $\partial f(x)$ for $x \in \mathbb{R}$ of the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1-x)$. Show that the vector v with

$$v = \begin{cases} 2\lambda w, & yw^{\top}x > 1\\ 2\lambda w, & yw^{\top}x = 1\\ -yx + 2\lambda w, & yw^{\top}x < 1 \end{cases}$$

is $v \in \partial_w \ell(w, z = (x, y))$, aka a sub-gradient of $\ell(w, z = (x, y))$ at w, for any $w \in \mathbb{R}^d$.

(4) Write down the algorithm of online AdaGrad (Adaptive Stochastic Gradient Descent) with learning rate $\eta_t > 0$, batch size m, and termination criterion $t > T_{\text{max}}$ for some $T_{\text{max}} > 0$ in order to discover w^* such as

(0.4)
$$w^* = \arg\min_{\forall w: h_m \in \mathcal{H}} \left(\mathbb{E}_{z \sim g} \left(\ell \left(w, z = (x, y) \right) \right) \right)$$

The formulas in your algorithm have to be tailored to 0.3.

- (5) Use the R code given below in order to generate the dataset of observed examples $S_n = \{z_i = (x_i, y_i)\}_{i=1}^n$ that contains $n = 10^6$ examples with inputs x of dimension d = 2. Consider $\lambda = 0$. Use a seed $w^{(0)} = (0, 0)^{\top}$.
 - (a) By using appropriate values for m, η_t and T_{max} , code in R the algorithm you designed in part 4, and run it.
 - (b) Plot the trace plots for each of the dimensions of the generated chain $\{w^{(t)}\}$ against the iteration t.
 - (c) Report the value of the output w_{adaGrad}^* (any type) of the algorithm as the solution to (0.4).
 - (d) To which cluster y (i.e., -1 or 1) $x_{\text{new}} = (1,0)^{\top}$ belongs?

```
# R code. Run it before you run anything else
data_generating_model <- function(n,w) {</pre>
z <- rep( NaN, times=n*3 )
z \leftarrow matrix(z, nrow = n, ncol = 3)
z[,1] \leftarrow rep(1,times=n)
z[,2] \leftarrow runif(n, min = -10, max = 10)
p \leftarrow w[1]*z[,1] + w[2]*z[,2] p \leftarrow exp(p) / (1+exp(p))
z[,3] \leftarrow rbinom(n, size = 1, prob = p)
ind <-(z[,3]==0)
z[ind,3] < -1
x <- z[,1:2]
y < -z[,3]
return(list(z=z, x=x, y=y))
n_{obs} < 1000000
w_{true} <- c(-3,4)
set.seed(2023)
out <- data_generating_model(n = n_obs, w = w_true)</pre>
set.seed(0)
z_{obs} \leftarrow out$z #z=(x,y)
x \leftarrow \text{out}
y <- out$y
#z_obs2=z_obs
#z_obs2[z_obs[,3]==-1,3]=0
#w_true <- as.numeric(glm(z_obs2[,3]~ 1+ z_obs2[,2],family = "binomial"</pre>
)$coefficients)
```

Solution.

- (1) $f_1(x) = 0$ is convex, $f_2(x) = 1 x$ is convex, hence from the example in Handout 1, $f(x) = \max(f_1(x), f_2(x))$ is convex as well. Regarding the loss function, we just have $f_2(w) = 1 yx^{\top}w$ which is convex as a composition due to linearity.
- (2) Given a fixed example $(x,y) \in \{x \in \mathbb{R}^d : ||x'||_2 \le R\} \times \{-1,1\}$. Assume $w_1, w_2 \in \mathbb{R}^d$. Let $\ell_i = \max\{0, 1 - yx^\top w_i\}$, for i = 1, 2. It suffices to show that $|\ell_1 - \ell_2|_2 \le R |w_1 - w_2|_2$. I take cases

Case-1: Assume $yx^{\top}w_1 \geq 1$ and $yx^{\top}w_2 \geq 1$ then $|\ell_1 - \ell_2|_2 = 0 \leq R|w_1 - w_2|_2$

Case-2: Assume that at least one of $yx^{\top}w_1 < 1$ or $yx^{\top}w_2 < 1$ but not both is true. Assume without loss of generality that $1 - yx^{\top}w_1 < 1 - yx^{\top}w_2$. Then

$$\begin{aligned} \left| \ell_{1} - \ell_{2} \right|_{2} &= \ell_{1} - \ell_{2} \\ &= 1 - yx^{\top}w_{1} - \max\left(0, 1 - yx^{\top}w_{2}\right) \\ &\leq 1 - yx^{\top}w_{1} - \left(1 - yx^{\top}w_{2}\right) \\ &= yx^{\top}\left(w_{2} - w_{1}\right) \\ &\leq y \left\| x^{\top} \right\|_{2} \left\| w_{1} - w_{2} \right\|_{2} \quad \text{because} \quad a^{\top}b \leq \left\| a \right\| \left\| b \right\| \end{aligned}$$

(3) It is

$$f(x) = \max(0, 1 - x) = \begin{cases} 0 & x > 1 \\ 0 & x = 1 \\ 1 - x & x < 1 \end{cases}$$

- For x > 1, f is differentiable so $\partial f(x) = \{f'(x)\} = \{0\}$.
- For x < 1, f is differentiable so $\partial f(x) = \{f'(x)\} = \{-1\}$.
- For x = 1, f is not differentiable. By definition I have that v is subgradient of f(x) at $x = 0 \in S$ if

$$\forall u \in \mathbb{R}, \ f(u) \ge f(x) + \langle u - x, v \rangle$$

So, for $u \ge 1$, it is $0 \ge (u-1)v \implies v \le 0$, and for u < 1 it is $(1-u) \ge (u-1)v \implies v \ge -1$. Hence the common space is $v \in [0,1]$ So $\partial f(x) = [0,1]$. Hence,

$$\partial f(x) = \begin{cases} 0, & x > 1 \\ [-1, 0], & x = 1 \\ -1, & x < 1 \end{cases}$$

Now regarding the loss $\partial_w \ell(w, z = (x, y))$

• for $yw^{\top}x > 1$ it is differentiable so $\nabla_w \ell(w, z = (x, y)) = \nabla_w \left(0 + \lambda \sum_{j=1}^d w_j^2\right) = 2\lambda w$; as

$$\frac{\mathrm{d}}{\mathrm{d}w_j} \sum_{j'=1}^d w_{j'}^2 = 2\lambda w_j$$

• for $yw^{\top}x > 1$ it is differentiable so $\nabla_w \ell(w, z = (x, y)) = \nabla_w \left(1 - yw^{\top}x + \lambda \sum_{j=1}^d w_j^2\right) = yx + 2\lambda w$ as

$$\frac{\mathrm{d}}{\mathrm{d}w_j} \left(1 - y w^\top x \right) = \frac{\mathrm{d}}{\mathrm{d}w_j} \left(1 - y \sum_{j'=1}^d w_{j'} x_{j'} \right) = -y x_j$$

• for $yw^{\top}x = 1$, v = 0 satisfies the definition of the sub-gradient

$$\forall u, \ f(u) \ge f(w) + \langle u - w, v \rangle$$
$$\max \left(0, 1 - yu^{\top} x \right) \ge 0 + (u - w)^{\top} 0$$

So

$$\partial \ell (w, z = (x, y)) = \partial \left(\max \left(0, 1 - y w^{\top} x \right) + \lambda \|w\|_{2}^{2} \right)$$

$$= \partial \left(\max \left(0, 1 - y w^{\top} x \right) \right) + \partial \left(\lambda \|w\|_{2}^{2} \right)$$

$$= \partial \left(\max \left(0, 1 - y w^{\top} x \right) \right) + \nabla \left(\lambda \|w\|_{2}^{2} \right)$$

$$0 + 2\lambda w$$

but $\partial \left(\lambda \|w\|_2^2\right) = \left\{\nabla \left(\lambda \|w\|_2^2\right)\right\}$ because $\lambda \|w\|_2^2$ is differentiable. Hence $\partial \ell \left(w, z = (x, y)\right) = 0 + 2\lambda w$

Hence

$$v = \begin{cases} 2\lambda w, & yw^{\top}x > 1\\ 2\lambda w, & yw^{\top}x = 1\\ -yx + 2\lambda w, & yw^{\top}x < 1 \end{cases}$$

(4)

Algorithm. For t = 1, 2, 3, ... iterate:

- (a) Get a random sub-sample $\left\{\tilde{z}_{i}^{(t)} = \left(\tilde{x}_{i}^{(t)}, \tilde{y}_{i}^{(t)}\right); i = 1, ..., m\right\}$ of size m with or without replacement from the complete data-set \mathcal{S}_{n} .
- (b) For j = 1, ..., d (index j indicates the dimension of w) compute

$$w_j^{(t+1)} = w_j^{(t)} - \eta_t \frac{1}{\sqrt{[G_t]_{j,j} + \epsilon}} \bar{v}_{t,j}$$

$$[G_t]_{j,j} = [G_{t-1}]_{j,j} + (\bar{v}_{t,j})^2$$
 where $\bar{v}_t = \frac{1}{m} \sum_{i=1}^m \tilde{v}_{t,i}$ and

$$\tilde{v}_{t,i} = \begin{cases} 2\lambda w^{(t)}, & \tilde{y}_{i}^{(t)} \left(w^{(t)}\right)^{\top} \tilde{x}_{i}^{(t)} > 1\\ 2\lambda w^{(t)}, & \tilde{y}_{i}^{(t)} \left(w^{(t)}\right)^{\top} \tilde{x}_{i}^{(t)} = 1\\ -\frac{1}{m} \tilde{y}_{i}^{(t)} \tilde{x}_{i}^{(t)} + 2\lambda w^{(t)}, & \tilde{y}_{i}^{(t)} \left(w^{(t)}\right)^{\top} \tilde{x}_{i}^{(t)} < 1 \end{cases}$$

where index i indicates the sub-sample, and $\epsilon > 0$ small.

(c) Terminate if a termination criterion is satisfied

(5)

- (a) The R code can be found in the link https://raw.githubusercontent.com/georgios-stats/Machine_Learning_and_Neural_Networks_III_Epiphany_2023/main/Exercises/supplementary/q6.R
- (b) The figures are presented below

FIGURE 0.1. trace plots

- (c) I found w = (-2.674615, 3.205785)
- (d) It belongs to -1