Amendments to the Claims

The following listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

1. (Currently amended) A composition comprising a compound of the formula

$$X \xrightarrow{Y} B A R_1$$

or pharmaceutically acceptable salts thereof together with a pharmaceutically acceptable carrier, excipient, or diluent, wherein

A is aryl or heteroarylfuran;

B is C1-C6 alkyl or C2-C6 alkenyl:

X is sulfur, oxygen, =CR₄R₅, =NR₄, =NC(O)R₄, or =NSO₂R₄,

Y is sulfur, oxygen, $C(R_4)(R_5)$, $N(R_4)$, $NC(O)(R_4)$, $NSO_2(R_4)$, $S(O)_2$, or $S(O)_7$;

R₁ is —H,—NH₂, C₁-C₆ alkyl, C₁-C₂ alkenyl, C₁-C₆ alkyl-S-C₁-C₆ alkyl, C₀-C₆ alkyl-aryl, C₀-C₆ alkyl-c(O)OR₆, C₀-C₆ alkyl-teteroaryl, C₀-C₆ alkyl-teteroaryl, C₀-C₆ alkyl-C(O)NR₆R₇, C₀-C₆ alkyl-C(S)NR₆R₇, C₀-C₆ alkyl-croaryl-aryl, -NHC(O)-aryl, C₀-C₆ alkyl-C(O)NH-C₀-C₆ alkyl-C(O)-O-R₆, C₀-C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-aryl, C₀-C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-aryl, C₀-C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-croaryl, C₀-C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-croaryl, C₀-C₆ alkyl-croaryl, C₀-C₀-C₆ alkyl-croaryl, C₀-C₆ alkyl-croaryl

R₂ is -H, halogen, C₁-C₆ alkyl, C₀-C₆ alky-aryl, -NO₂, C₀-C₆ alkyl-C(O)-OR₆, C₀-C₆ alkyl-heteroaryl, C₀-C₆ alkyl-heterocyclyl, C₀-C₆ alkyl-carbocyclyl, -N(R₆)-C(O)NR₆R₇, -NHSO₂-aryl, C₀-C₆ alky-heteroaryl-aryl or -C(O)-R₆, wherein each one of the aryl, heteroaryl, heterocyclic and carbocyclyl are optionally substituted with one or more R₄;

2

R₃ is -H, C₁-C₆ alkyl or C₂-C₆ alkenyl; or

R₃ and B together with the carbon atom to which they are attached form an alkenyl or a spirocyclic ring;

- R4 is halogen, oxo, -C(O)OR6, -NO2, C1-C6 alkyl optionally substituted with halo, -C1-C6 alkoxy optionally substituted with halo, -CH3, -SO2NH2 or -C(O)-OR6;
- R₅ is halogen, oxo, C₁-C₆ alkoxy, C₁-C₆ alkyl, C₀-C₆ alkyl-aryl, -NO₂, di(C₁-C₆ alkyl)amino, -CF₃, -OH, -SO₂NH₂ or -C(O)-OR₆; and
- R₆ and R₇ are independently -H, halogen, C₁-C₆ alkoxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, aryl, di(C₁-C₆ alkyl)amino, -CF₃, -OH or -C(O)-OR₆.
- 2. (original) The composition according to claim 1 wherein the compound is of the formula

 (original) The composition according to claim 2 wherein the compound is of the formula

- 4. (Currently amended) The composition according to claim 3 wherein R₁ is -H₁-C₁-C₆ alkyl, C₁-C₂ alkenyl, C₀-C₆ alky-aryl, C₀-C₆ alkyl-C(O)OR₆, C₀-C₆ alkyl-heteroaryl, C₀-C₆ alkyl-heterocyclyl, C₀-C₆ alkyl-carbocyclyl or C₀-C₆ alky-heteroaryl-aryl, and R₂ is -H, halogen, C₁-C₆ alkyl, C₀-C₆ alky-aryl.
- (Currently amended) The composition according to claim 4 wherein R₁ is -H, C₁-C₆ alkyl, C₁-C₂ alkenyl, C₀-C₆ alky-aryl, or C₀-C₆ alkyl-C(O)OR₆ and R₂ is C₀-C₆ alky-aryl.
- (Currently amended) The composition according to claim 5 wherein R₁ is H, allyl, phenyl or benzyl and R₂ is phenyl.
- 7. (original) The composition according to claim 3 wherein the compound is of the formula

- 8. (Currently amended) The composition according to claim 7 wherein R_1 is $-H_1$ - C_1 - C_6 alkyl, C_1 - C_2 alkenyl, C_0 - C_6 alky-aryl, C_0 - C_6 alkyl- $C(O)OR_6$, C_0 - C_6 alkyl-heteroaryl, C_0 - C_6 alkyl-heteroaryl-aryl, and R_4 is halogen, oxo, NO₂, C_1 - C_6 alkyl, - C_1 - C_6 alkoxy, - CF_3 , - SO_2 NH₂, or -C(O)-OR₆.
- (Currently amended) The composition according to claim 8 wherein R₁ is -H₂-C₁-C₆
 alkyl, C₁-C₂ alkenyl, C₀-C₆ alky-aryl, or C₀-C₆ alkyl-C(O)OR₆, and R₄ is halogen, -NO₂, C₁-C₆
 alkyl, -C₁-C₆ alkoxy, -CF₃, -SO₂NH₂, or -C(O)-OR₆.
- (Currently amended) The composition according to claim 9 wherein R₁ is -H₇ allyl, phenyl or benzyl and R₄ is chloro, bromo, fluoro, -NO₂, -OCH₃, -CF₃ or -C(O)-OH.
- 11. (Currently amended) A composition comprising a compound of the formula

$$X \xrightarrow{Y} B A R_2$$

or <u>a</u> pharmaceutically acceptable salts thereof together with a pharmaceutically acceptable carrier, excipient, or diluent, wherein

A is aryl or heteroarylfuran;

one or more R5;

B is C1-C6 alkyl or C2-C6 alkenyl;

X is sulfur, oxygen, $=CR_4R_5$, $=NR_4$, $=NC(O)R_4$, or $=NSO_2R_4$,

Y is sulfur, oxygen, $-C(R_4)(R_5)$, $-N(R_4)$, $-NC(O)(R_4)$, $-NSO_2(R_4)$, $-S(O)_2$, or $-S(O)_2$.

T is suitui, saygeir, --(Kajrks), --(Kajrks), --(Kojrka), --(Kojrka), --(Kajrks), --(Kojrka), --(Kojrk

- R₂ is -H, halogen, C₁-C₆ alkyl, C₀-C₆ alky-aryl, -NO₂, C₀-C₆ alkyl-C(O)-OR₆, C₀-C₆ alkyl-heteroaryl, C₀-C₆ alkyl-heterocyclyl, C₀-C₆ alkyl-carbocyclyl, -N(R₆)-C(O)NR₆R₇, -NHSO₂-aryl, C₀-C₆ alky-heteroaryl-aryl or -C(O)-R₆, wherein each one of the aryl, heteroaryl, heterocyclic and carbocyclyl are optionally substituted with one or more R₄:
- R₃ is -H, C₁-C₆ alkyl or C₂-C₆ alkenyl; or
- R₃ and B together with the carbon atom to which they are attached form an alkenyl or a spirocyclic ring;
- R4 is halogen, oxo, -C(O)OR6, -NO2, C1-C6 alkyl optionally substituted with halo, -C1-C6 alkoxy optionally substituted with halo, -CF3, -SO2NH2 or -C(O)-OR6;
- R₅ is halogen, oxo, C₁-C₆ alkoxy, C₁-C₆ alkyl, C₀-C₆ alkyl-aryl, -NO₂, di(C₁-C₆ alkyl)amino, -CF₃, -OH, -SO₂NH₂ or -C(O)-OR₆; and
- R_6 and R_7 are independently -H, halogen, C_1 - C_6 alkoy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, aryl, di(C_1 - C_6 alkyl)amino, -CF₃, -OH or -C(O)-OR₆,

provided the compound is not a compound of the formula

- X and Y are independently sulfur, oxygen, -CR₄R₅, -NR₄, -NC(O)R₄, -NSO₂R₄, -SO₂, or -SO;
- $R_1 \text{ is -H,-NH}_2, C_1\text{-}C_6 \text{ alkyl, } C_1\text{-}C_2 \text{ alkenyl, } C_1\text{-}C_6 \text{ alkyl-S-}C_1\text{-}C_6 \text{ alkyl, } C_0\text{-}C_6 \text{ alkyl-aryl, } \\ C_0\text{-}C_6 \text{ alkyl-C(O)OR}_6, C_0\text{-}C_6 \text{ alkyl-heteroaryl, } C_0\text{-}C_6 \text{ alkyl-heteroaryl, } C_0\text{-}C_6 \text{ alkyl-heteroaryl, } C_0\text{-}C_6 \text{ alkyl-C(S)NR}_6R_7, C_0\text{-}C_6 \text{ alkyl-C(S)NR}_6R_7, C_0\text{-}C_6 \text{ alkyl-C(O)-NH}_6, \\ C_0\text{-}C_6 \text{ alkyl-C(O)-NH-}C_0\text{-}C_6 \text{ alkyl-aryl, } C_0\text{-}C_6 \text{ alkyl-C(O)-NH-}C_0\text{-}C_6 \text{ alkyl-heteroaryl, } C_0\text{-}C_6 \text{ alkyl-}C_0\text{-}C_6 \text{ alkyl-}C_0\text{-}C_6$
- R₂ is -H, halogen, C₁-C₆ alkyl, C₀-C₆ alky-aryl, -NO₂, C₀-C₆ alkyl-C(O)-OR₆, C₀-C₆ alkyl-heteroaryl, C₀-C₆ alkyl-heterocyclyl, C₀-C₆ alkyl-carbocyclyl, -N(R₆)-

- $C(O)NR_6R_7$, -NHSO₂-aryl, C_0 - C_6 alky-heteroaryl-aryl, or -C(O)- R_6 , wherein each one of the aryl, heteroaryl, heterocyclic and carbocyclyl are optionally substituted with one or more R_4 :
- R₄ is halogen, oxo, -C(O)OR₆, -NO₂, C₁-C₆ alkyl optionally substituted with halo, -C₁-C₆ alkoxy optionally substituted with halo, -CF₃, -SO₂NH₂, or -C(O)-OR₆;
- R₅ is halogen, oxo, C₁-C₆ alkoxy, C₁-C₆ alkyl, C₀-C₆ alkyl-aryl, -NO₂, di(C₁-C₆ alkyl)amino, -CF₃, -OH, -SO₂NH₂, or -C(O)-OR₆; and
- R_6 and R_7 are independently -H, halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, aryl, di(C_1 - C_6 alkyl)amino, -CF₃, -OH, or -C(O)-OR₆.
- (Withdrawn) A method of inhibiting ubiquitination in a cell comprising contacting a cell
 in which inhibition of ubiquitination is desired with a composition according to claim 1.
- (Withdrawn) The method according to claim 12 wherein the cell is from a mammal.
- 14. (Withdrawn) The method according to claim 13 wherein the mammal is human.
- 15. (Withdrawn) A method of treating cell proliferative diseases or conditions comprising administering to a patient an effective amount of a composition according to claim 1.
- 16. (Withdrawn) The method according to claim 15 wherein the cell proliferative diseases are cancers
- 17. (Withdrawn) The method according to claim 16 wherein the patient is human.
- 18. (Withdrawn) A method of inhibiting ubiquitination in a cell comprising contacting a cell in which inhibition of ubiquitination is desired with a composition according to claim 2.
- (Withdrawn) A method of inhibiting ubiquitination in a cell comprising contacting a cell
 in which inhibition of ubiquitination is desired with a composition according to claim 3.
- (Withdrawn) A method of inhibiting ubiquitination in a cell comprising contacting a cell
 in which inhibition of ubiquitination is desired with a composition according to claim 7.