Database Principles:
Fundamentals of Design,
Implementation, and
Management
Tenth Edition

Normalizing Database Designs

Objectives

- In this chapter, students will learn:
 - What normalization is and what role it plays in the database design process
 - About the normal forms 1NF, 2NF, 3NF
 - How normal forms can be transformed from lower normal forms to higher normal forms
 - That normalization and ER modeling are used concurrently to produce a good database design
 - That some situations require denormalization to generate information efficiently

Database Tables and Normalization

- Normalization
 - Process for evaluating and correcting table structures to minimize data redundancies
 - Reduces data anomalies
 - Series of stages called normal forms:
 - First normal form (1NF)
 - Second normal form (2NF)
 - Third normal form (3NF)

Database Tables and Normalization (cont'd.)

- Normalization (continued)
 - 2NF is better than 1NF; 3NF is better than 2NF
 - For most business database design purposes,
 3NF is as high as needed in normalization
 - Highest level of normalization is not always most desirable
- Denormalization produces a lower normal form
 - Increased performance but greater data redundancy

The Need for Normalization

- Example: company that manages building projects
 - Charges its clients by billing hours spent on each contract
 - Hourly billing rate is dependent on employee's position
 - Periodically, report is generated that contains information such as displayed in Table 9.1

A Sample Report Layout

PROJECT	PROJECT	EMPLOYEE	EMPLOYEE NAME	JOB CLASS	CHARGE/	HOURS	TOTAL
NUMBER	NAME	NUMBER			HOUR	BILLED	CHARGE
15	Evergreen	103	June E. Arbough	Elec. Engineer	\$ 84.50	23.8	\$ 2,011.10
		101	John G. News	Database Designer	\$105.00	19.4	\$ 2,037.00
		105	Alice K. Johnson *	Database Designer	\$105.00	35.7	\$ 3,748.50
		106	William Smithfield	Programmer	\$ 35.75	12.6	\$ 450.45
		102	David H. Senior	Systems Analyst	\$ 96.75	23.8	\$ 2,302.65
				Subtotal			\$10,549.70
18	Amber Wave	114	Annelise Jones	Applications Designer	\$ 48.10	24.6	\$ 1,183.26
		118	James J. Frommer	General Support	\$ 18.36	45.3	\$ 831.71
		104	Anne K. Ramoras *	Systems Analyst	\$ 96.75	32.4	\$ 3,134.70
		112	Darlene M. Smithson	DSS Analyst	\$ 45.95	44.0	\$ 2,021.80
				Subtotal			\$ 7,171.47
22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	64.7	\$ 6,793.50
	~	104	Anne K. Ramoras	Systems Analyst	\$ 96.75	48.4	\$ 4,682.70
		113	Delbert K. Joenbrood *	Applications Designer	\$ 48.10	23.6	\$ 1,135.16
		111	Geoff B. Wabash	Clerical Support	\$ 26.87	22.0	\$ 591.14
		106	William Smithfield	Programmer	\$ 35.75	12.8	\$ 457.60
				Subtotal			\$13,660.10
25	Starflight	107	Maria D. Alonzo	Programmer	\$ 35.75	24.6	\$ 879.45
		115	Travis B. Bawangi	Systems Analyst	\$ 96.75	45.8	\$ 4,431.15
		101	John G. News *	Database Designer	\$105.00	56.3	\$ 5,911.50
		114	Annelise Jones	Applications Designer	\$ 48.10	33.1	\$ 1,592.11
		108	Ralph B. Washington	Systems Analyst	\$ 96.75	23.6	\$ 2,283.30
		118	James J. Frommer	General Support	\$ 18.36	30.5	\$ 559.98
		112	Darlene M. Smithson	DSS Analyst	\$ 45.95	41.4	\$ 1,902.33
				Subtotal			\$17,559.82
				Total			\$48,941.09

6

The Normalization Process

- Each table represents a single subject
- No data item will be unnecessarily stored in more than one table
- All nonprime attributes in a table are dependent on the primary key
- Each table is void of insertion, update, and deletion anomalies

The Normalization Process (cont'd.)

- Objective of normalization is to ensure that all tables are in at least 3NF
- Higher forms are not likely to be encountered in business environment
- Normalization works one relation at a time
- Progressively breaks table into new set of relations based on identified dependencies

TABLE 9.3

Functional Dependence Concepts

CONCEPT	DEFINITION
Functional dependence	The attribute B is fully functionally dependent on the attribute A if each value of A determines one and only one value of B . Example: $PROJ_NUM \rightarrow PROJ_NAME$ (read as $PROJ_NUM$ functionally determines $PROJ_NAME$) In this case, the attribute $PROJ_NUM$ is known as the determinant attribute, and the attribute $PROJ_NAME$ is known as the dependent attribute.
Functional dependence (generalized definition)	Attribute A determines attribute B (that is, B is functionally dependent on A) if all of the rows in the table that agree in value for attribute A also agree in value for attribute B .
Fully functional dependence (composite key)	If attribute B is functionally dependent on a composite key A but not on any subset of that composite key, the attribute B is fully functionally dependent on A .

The Normalization Process (cont'd.)

- Partial dependency
 - Exists when there is a functional dependence in which the determinant is only part of the primary key
- Transitive dependency
 - Exists when there are functional dependencies such that X → Y, Y → Z, and X is the primary key

Conversion to First Normal Form

- Repeating group
 - Group of multiple entries of same type can exist for any single key attribute occurrence
- Relational table must not contain repeating groups
- Normalizing table structure will reduce data redundancies
- Normalization is three-step procedure

Conversion to First Normal Form (cont'd.)

- Step 1: Eliminate the Repeating Groups
 - Eliminate nulls: each repeating group attribute contains an appropriate data value
- Step 2: Identify the Primary Key
 - Must uniquely identify attribute value
 - New key must be composed
- Step 3: Identify All Dependencies
 - Dependencies are depicted with a diagram

FIGURE 9.2

A table in first normal form

Table name: DATA_ORG_1NF

Database name: Ch09_ConstructCo

PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	HOURS
15	Evergreen	103	June E. Arbough	Elect. Engineer	84.50	23.8
15	Evergreen	101	John G. News	Database Designer	105.00	19.4
15	Evergreen	105	Alice K. Johnson ₹	Database Designer	105.00	35.7
15	Evergreen	106	William Smithfield	Programmer	35.75	12.6
15	Evergreen	102	David H. Senior	Systems Analyst	96.75	23.8
18	Amber Wave	114	Annelise Jones	Applications Designer	48.10	24.6
18	Amber Wave	118	James J. Frommer	General Support	18.36	45.3
18	Amber Wave	104	Anne K. Ramoras *	Systems Analyst	96.75	32.4
18	Amber Wave	112	Darlene M. Smithson	DSS Analyst	45.95	44.0
22	Rolling Tide	105	Alice K. Johnson	Database Designer	105.00	64.7
22	Rolling Tide	104	Anne K. Ramoras	Systems Analyst	96.75	48.4
22	Rolling Tide	113	Delbert K. Joenbrood *	Applications Designer	48.10	23.6
22	Rolling Tide	111	Geoff B. Wabash	Clerical Support	26.87	22.0
22	Rolling Tide	106	William Smithfield	Programmer	35.75	12.8
25	Starflight	107	Maria D. Alonzo	Programmer	35.75	24.6
25	Starflight	115	Travis B. Bawangi	Systems Analyst	96.75	45.8
25	Starflight	101	Jahn G. News ₹	Database Designer	105.00	55.3
25	Starflight	114	Annelise Jones	Applications Designer	48.10	33.1
25	Starflight	108	Ralph B. Washington	Systems Analyst	96.75	23.6
25	Starflight	118	James J. Frommer	General Support	18.36	30.5
25	Starflight	112	Darlene M. Smithson	DSS Analyst	45.95	41.4

SOURCE: Course Technology/Cengage Learning

Conversion to First Normal Form (cont'd.)

- Dependency diagram:
 - Depicts all dependencies found within given table structure
 - Helpful in getting bird's-eye view of all relationships among table's attributes
 - Makes it less likely that you will overlook an important dependency

First normal form (1NF) dependency diagram

1NF (PROJ_NUM, EMP_NUM, PROJ_NAME, EMP_NAME, JOB_CLASS, CHG_HOURS, HOURS)

PARTIAL DEPENDENCIES:

(PROJ_NUM — PROJ_NAME)

(EMP_NUM => EMP_NAME, JOB_CLASS, CHG_HOUR)

TRANSITIVE DEPENDENCY:

SOURCE: Course Technology/Cengage Learning

Conversion to First Normal Form (cont'd.)

- First normal form describes tabular format:
 - All key attributes are defined
 - No repeating groups in the table
 - All attributes are dependent on primary key
- All relational tables satisfy 1NF requirements
- Some tables contain partial dependencies
 - Dependencies are based on part of the primary key
 - Should be used with caution

Conversion to Second Normal Form

- Step 1: Make New Tables to Eliminate Partial Dependencies
 - Write each key component on separate line,
 then write original (composite) key on last line
 - Each component will become key in new table
- Step 2: Reassign Corresponding Dependent Attributes
 - Determine attributes that are dependent on other attributes
 - At this point, most anomalies have been eliminated

Conversion to Second Normal Form (cont'd.)

- Table is in second normal form (2NF) when:
 - It is in 1NF and
 - It includes no partial dependencies:
 - No attribute is dependent on only portion of primary key

Conversion to Third Normal Form

- Step 1: Make New Tables to Eliminate Transitive Dependencies
 - For every transitive dependency, write its determinant as PK for new table
 - Determinant: any attribute whose value determines other values within a row

Conversion to Third Normal Form (cont'd.)

- Step 2: Reassign Corresponding Dependent Attributes
 - Identify attributes dependent on each determinant identified in Step 1
 - Identify dependency
 - Name table to reflect its contents and function

Conversion to Third Normal Form (cont'd.)

- A table is in third normal form (3NF) when both of the following are true:
 - It is in 2NF
 - It contains no transitive dependencies

Improving the Design

- Table structures should be cleaned up to eliminate initial partial and transitive dependencies
- Normalization cannot, by itself, be relied on to make good designs
- Valuable because it helps eliminate data redundancies

Improving the Design (cont'd.)

- Issues to address, in order, to produce a good normalized set of tables:
 - Evaluate PK Assignments
 - Evaluate Naming Conventions
 - Refine Attribute Atomicity
 - Identify New Attributes

Improving the Design (cont'd.)

- Identify New Relationships
- Refine Primary Keys as Required for Data Granularity
- Maintain Historical Accuracy
- Evaluate Using Derived Attributes

27 ent from the U.S. Edition.

FIGURE 9.6

The completed database (continued)

Table name: EMPLOYEE

Table halle. Evil Eo TEE									
EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_INITIAL	EMP_HIREDATE	JOB_CODE				
101	News	John	G	08-Nov400	502				
102	Senior	David	Н	12-Jul-89	501				
103	Arbaugh	June	E	01-Dec-97	503				
104	Rampras	Anne	K	15-Nov-88	501				
105	Johnson	Alice	K	01-Feb-94	502				
106	Smithfield	William		22-Jun-05	500				
107	Alanza	Maria	D	10-0 ct-94	500				
108	Washington	Ralph	В	22-Aug-89	501				
109	Smith	Larry	W	18-Jul-99	501				
110	Olenko	Gerald	А	11-Dec-96	505				
111	VVabash	Geoff	В	04-Apr-89	506				
112	Smithson	Darlene	M	23-0 ct-95	507				
113	Joenbrood	Delbert	K	15-Nov-94	508				
114	Jones	Annelise		20-Aug-91	508				
115	Bawangi	Travis	В	25-Jan-90	501				
116	Pratt	Gerald	L	05-Mar-95	510				
117	Williamson	Angie	Н	19-Jun-94	509				
118	Frammer	James	J	04-Jan-06	510				

SOURCE: Course Technology/Cengage Learning

Summary

- Normalization minimizes data redundancies
- First three normal forms (1NF, 2NF, and 3NF) are most commonly encountered
- Table is in 1NF when:
 - All key attributes are defined
 - All remaining attributes are dependent on primary key

Summary (cont'd.)

- Table is in 2NF when it is in 1NF and contains no partial dependencies
- Table is in 3NF when it is in 2NF and contains no transitive dependencies
- Normalization is important part—but only part of the design process
- Tables are sometimes denormalized to yield less I/O, which increases processing speed

Exercise

Identify the functional dependencies represented by the attributes shown in the Patient Medication

Form.

Wellmeadows Hospital Patient Medication Form

Patient Number: P10034

Full Name Robert MacDonald Ward Number Ward 11

Bed Number 84 Ward Name Orthopaedic

Drug Number	Name	Description	Dosage	Method of Admin	Units per Day	Start Date	Finish Date
10223	Morphine	Pain killer	10mg/ml	Oral	50	24-Mar-04	24-Apr-04
10334	Tetracycline	Antibiotic	0.5mg/ml	IV	10	24-Mar-04	17-Apr-04
10223	Morphine	Pain killer	10mg/ml	Oral	10	25-Apr-04	2-May-04

Exercise

Normalize the attributes shown in the form to 3NF

Wellmeadows Hospital Patient Medication Form

Patient Number: P10034

Full Name Robert MacDonald Ward Number Ward 11

Bed Number 84 Ward Name Orthopaedic

Drug Number	Name	Description	Dosage	Method of Admin	Units per Day	Start Date	Finish Date
10223	Morphine	Pain killer	10mg/ml	Oral	50	24-Mar-04	24-Apr-04
10334	Tetracycline	Antibiotic	0.5mg/ml	IV	10	24-Mar-04	17-Apr-04
10223	Morphine	Pain killer	10mg/ml	Oral	10	25-Apr-04	2-May-04

Exercise 3

Does the following ERD need improvement?

Figure 3: Department vs Staff ERD

Analyze the given ERD. Improvise the ERD. Give the appropriate assumption(s).