

PG Certificate Course in Data Science, AI/ML and Data Engineering by IIT Roorkee

Final Project Submission – Hemant Agarwal

Agenda

About ProjectS	Slide 5
Project Objective & ImportanceS	Slide 6
Proof of Concept ResultsS	Slide 7
mpactS	Slide 8
Model Learning problems & Alternate ApproachS	Slide 9
Key MetricsS	Slide 10
Model Architecture & WorkflowSI	lide 11
Data Sources & Preparation S	slide 12
Feature EngineeringSl	lide 13

Agenda (Conti.)

Hyperparameter tuning & Tech Stack	Slide 14
Key Concepts	Slide 15
Model Training & Evaluation	Slide 16
Testing Strategy	Slide 17
Integration & Deployment	Slide 18
Requirement	Slide 19
Key Learnings & Tips	Slide 20
Impact & Future Roadmap	Slide 21
Trade-Offs & Decisions	Slide 22

Agenda (Conti.)

File Structure & Summary	Slide 23
STAR Solution	Slide 24
Q&A	Slide 25
Appendix	Slide 26

Predicting Song Popularity with Machine Learning

Forecast song popularity pre-release to boost marketing and engagement. Leverage audio features to identify potential hits early.

Project Objective & Importance

Project Goal

Predict song popularity score via musical features

Key Features

- Danceability
- Energy
- Tempo

Business Value

Optimize marketing, identify hits early, enhance user engagement

Proof of Concept Results

Model Used

Random Forest Regressor to predict popularity

Key Validation

Strong correlations between audio features and popularity

Business Impact

Curate Trends

Enhance playlist recommendations

Optimize Marketing

Pre-launch promotional tactics

Increase Reach

Engage larger listener bases

Machine Learning Problem & Alternatives

Problem Type

Regression: Predict continuous popularity score 0–100

Alternative Approach

Classification considered: Hit vs Flop

Rejected due to loss of score granularity

Key Technical Metrics

R² Score

Explained variance metric of prediction quality

RMSE

Average prediction error, lower is better

MACHINE LEARNING

Model Architecture & Workflow

Step 1: Data Ingestion

Import CSV dataset

2

Step 2: Preprocessing

Clean, normalize, filter data

3

Step 3: Modeling

Train Random Forest on features

4

Step 4: Evaluation

Assess metrics, visualize results

Data Sources & Preparation Steps

Data Origin

Kaggle dataset with song metadata + audio features

Preparation Tasks

- Missing value imputation
- Drop irrelevant columns
- Scaling and normalization

Feature Engineering Highlights

Feature Selection

Removed low variance and multicollinear features

Top Features

- Energy
- Danceability
- Valence

Outcome

Improved accuracy and interpretability

Hyperparameter Tuning & Tech Stack

Hyperparameter Tuning

- GridSearchCV for n_estimators, max_depth
- Improved stability and reduced overfitting

Tech Stack

- Python, Pandas, NumPy, Scikit-learn
- Django for web integration
- Jupyter Notebook, SQLite database

Core Concepts in Music Popularity Prediction

Key techniques and metrics for modeling song popularity.

Model Training & Evaluation

Training Strategy

- 80-20 train-test split
- Random Forest on engineered features

Evaluation Metrics

- High R² score
- Low RMSE
- Error distribution visualization

Robust Testing Strategy

Manual Prediction
Testing

Test realistic input scenarios

Cross-Validation

Ensure statistical reliability

Django Unit Testing

Validate forms and backend logic

Integration & Deployment Overview

User Interface

Simple and intuitive song feature input

Backend Integration

Random Forest model seamlessly integrated

Real-Time Predictions

Instantaneous popularity output

Project Requirements

Languages & Libraries

- Python 3.x
- Pandas, NumPy, Scikit-learn

Tools & Interface

- Jupyter Notebook
- SQLite database
- Django web app via browser

Key Learnings & Tips

Data Quality

Critical for stable predictions

Visual Analytics

Useful for feature selection

GridSearchCV

Powerful yet computationally expensive

Impact & Future Roadmap

Trade-Offs & Decisions

Model Choice

Random Forest preferred for interpretability

Database

SQLite chosen for lightweight setup

Framework

Django for admin & UI convenience

File Structure Summary

- README.md
- dataset/MusicDataset.csv
- notebooks/Song_popularity_prediction
- models/scaler.pkl
- models/ridge.pkl
- application.py
- templates/home.html
- templates/index.html
- .ebextensions/python.config
- requirements.txt
- vscode/settings.json, extensions.json, tasks.json

STAR Story – Technical Challenge

1

Situation

Inconsistent predictions despite similar inputs

2

Task

Identify instability source and refine model

Action

3

- Dropped irrelevant columns
- Handled multicollinearity
- Applied GridSearchCV tuning

Result

/

- 20% RMSE reduction
- Stable, interpretable predictions
- Increased model trustworthiness

Thank You & Questions

Appreciate your attention
Thank you for joining today

Open Q&A

Any questions or feedback?

Appendix

