Decision Trees

Ryan Henning Frank Burkholder

- Decision Tree Overview
 - Animation
 - Advantages/Disadvantages
- How to make a split
 - Information Gain
 - Entropy/Gini (Classification)
 - Variance (Regression)
- Decision tree algorithm(s)
 - Recursion
- Implementation in sklearn

Decision Tree Overview

- Decision trees are a supervised, non-parametric learning method whose trained form is a series of sequential, binary "splits" on features with the goal of minimizing predictive error.
- What distinguishes decision trees are the sequential splits on the features, where the information gained in the split determines which split should be made.
- Walk through <u>decision tree animation</u>.

Historical log of times I played tennis:

Temp	Outlook	Humidity	Windy	Played
Hot	Sunny	High	False	No
Hot	Sunny	High	True	No
Hot	Overcast	High	False	Yes
Cool	Rain	Normal	False	Yes
Cool	Overcast	Normal	True	Yes
Mild	Sunny	High	False	No
Cool	Sunny	Normal	False	Yes
Mild	Rain	Normal	False	Yes
Mild	Sunny	Normal	True	Yes
Mild	Overcast	High	True	Yes
Hot	Overcast	Normal	False	Yes
Mild	Rain	High	True	No
Cool	Rain	Normal	True	No
Mild	Rain	High	False	Yes

```
def will play(temp, outlook, humidity,\
           windy):
 if outlook == 'sunny':
     if humidity == 'normal':
         return True
     else: # humidity == 'high'
         return False
 elif outlook == 'overcast':
     return True
 else: # outlook == 'rain'
     if windy == True:
         return False
     else: # windy == False:
         return True
```

"Nodes" are where data are split on features

Terminal node, a.k.a "leaf", the final result

Benefits:

- non-parametric, non-linear
- can be used for classification and regression
- real and/or categorical features*
- easy to interpret
- computationally cheap prediction
- handles missing values and outliers*
- can handle irrelevant features, multicollinearity

*Caveats in sklearn

Drawbacks:

- expensive to train
- greedy algorithm (local maxima)
- easily overfits
- right-angle decision boundaries only
- deterministic (you'll get the same model every time)

Decision Trees:

Possible Splits:

Consider all binary splits based on a single feature:

- if the feature is categorical, split on value or not value.
- if the feature is numeric, split at a threshold: <u>>threshold</u> or <=threshold

Splitting Algorithm:

- 1. Calculate the information gain for all possible splits.
- 2. Commit to the split that has the highest information gain.

Decision Trees:

Possible Splits:

Consider all binary splits based on a single feature:

- if the feature is categorical, split on <u>value</u> or <u>not value</u>.
- if the feature is numeric, split at a threshold: <u>>threshold</u> or <=threshold

Splitting Algorithm:

- 1. Calculate the information gain for all possible splits.
- 2. Commit to the split that has the highest information gain.

Picking the best split

galvanıze

Need two things:

- A way to quantify how disordered a node is. Classification: Entropy or Gini Regression: Variance
- 2) A way to see how much disorder is reduced by making a split. How much information did we gain (how much disorder was reduced) by making that split?

$$H(X) = E[I(X)] = E[log_2(\frac{1}{P(X)})]$$
$$= -E[log_2(P(X))]$$
$$H(X) = -\sum p_i log_2(p_i)$$

Shannon Entropy
$$H(X) = E[I(X)] = E[log_2(\frac{1}{P(X)})]$$
 Discrete random variable
$$= -E[log_2(P(X))]$$

$$H(X) = -\sum_{i} p_i log_2(p_i)$$

number of bits needed to information content Shannon encode each X event Entropy of X $H(X) = E[I(X)] = E[log_2(\frac{1}{P(X)})]$ Discrete random $=-E[log_2(P(X))]$ variable $H(X) = -\sum p_i log_2(p_i)$

probability of each possible discrete outcome

iterate over pmf

Conceptual/ visual basis for Shannon Entropy

We can measure the diversity of a set using Shannon Entropy (H) if we interpret the frequency of elements in the set as probabilities.

Estimate:

$$H(X) = -\sum_{i} p_i log_2(p_i)$$

$$P(\bigcirc) = 3/12 = 0.25$$

$$P(\heartsuit) = 4/12 = 0.33$$

$$P(\bigcirc) = 5/12 = 0.42$$

$$H = -0.25*log_{2}(0.25) + -0.33*log_{2}(0.33) + -0.42*log_{2}(0.42)$$

$$H = 1.55$$

galvanıze

Features

Labels

Determining Information Gain from a Split

Information Gain = **0.57**

...for splitting on yellow feature.

Splitting Algorithm (Classification):

Possible Splits:

Consider all binary splits based on a single feature:

- if the feature is categorical, split on <u>value</u> or <u>not value</u>.
- if the feature is numeric, split at a threshold: <u>>threshold</u> or <=threshold

Splitting Algorithm:

- 1. Calculate the information gain for all possible splits.
- 2. Commit to the split that has the highest information gain.

$$IG(S,C) = H(S) - \sum_{C_i \in C} \frac{|C_i|}{|S|} H(C_i)$$

Splitting Algorithm (Regression):

Possible Splits:

Consider all binary splits based on a single feature:

- if the feature is categorical, split on <u>value</u> or <u>not value</u>.
- if the feature is numeric, split at a threshold: <u>>threshold</u> or <=threshold

Splitting Algorithm:

- 1. Calculate the information gain for all possible splits.
- 2. Commit to the split that has the highest information gain (as measured by reduction in variance)

$$\operatorname{IG}(S,C) = \operatorname{Var}(S) - \sum_{C_i \in C} \frac{|C_i|}{|S|} \operatorname{Var}(C_i)$$

galvanize

The Gini Index

A measure of impurity: the probability of a misclassification if a random sample drawn from the set is classified according to the distribution of classes in the set

Scikit-learn <u>doesn't</u> use *Shannon Entropy Diversity* by default. It uses the *Gini Index*:

$$Gini(S) = 1 - \sum_{i \in S} p_i^2$$

Information gain using the *Gini Index*:

$$IG(S, C) = Gini(S) - \sum_{C_i \in C} \frac{|C_i|}{|S|} Gini(C_i)$$

galvanıze

Recursion

Product notation:

$$f(x) = \prod_{i=1}^{\infty} i$$

A recursive function:

$$f(x) = \begin{cases} 1, & \text{if } x \le 1\\ xf(x-1), & \text{otherwise} \end{cases}$$

```
def f(x):
 1 1 1
 This function returns x!.
 >>> f(5)
 120
 1 1 1
 if x <= 1:
      return 1
 else:
      return x * f(x-1)
```

Build decision tree (note recursive call)


```
function BuildTree:
 If every item in the dataset is in the same class
 or there is no feature left to split the data:
     return a leaf node with the class label
 Else:
     find the best feature and value to split the data
     split the dataset
     create a node
     for each split
         call BuildTree and add the result as a child of the node
     return node
```


Algorithm Names:

The details of training a decision tree vary... each specific algorithm has a name. Here are a few you'll often see:

- ID3: category features only, information gain, multi-way splits, ...
- C4.5: continuous and categorical features, information gain, missing data okay, pruning, ...
- CART: continuous and categorical features and targets, gini index, binary splits only, ...
- Sklearn uses CART. See
 http://scikit-learn.org/stable/modules/tree.html#tree section 1.10.6

Pruning - preventing overfitting

Overfitting is likely if you build your tree all the way until every leaf is pure.

Prepruning ideas (prune while you build the tree):

- leaf size: stop splitting when #examples gets small enough
- **depth:** stop splitting at a certain depth (after a certain number of splits)
- purity: stop splitting if enough of the examples are the same class
- gain threshold: stop splitting when the information gain becomes too small

Postpruning ideas (prune after you've finished building the tree):

- merge leaves if doing so decreases test-set error
- Set the maximum number of leaf nodes (form of regularization see pair.md for details)

galvanıze

In sklearn:

- Gini is default, but you can often choose entropy (I frequently get same tree & splits)
- Prune with max_depth, min_samples_split, min_samples_leaf, max leaf nodes
- Need to use one-hot-encoding for categorical features, e.g. ['Red', 'Green', 'Blue'] encoded as X_red = 1, X_green = 0, X_blue = 0 if feature is 'Red'. See
 Feature Binarization and Encoding Categorical Features at http://scikit-learn.org/stable/modules/preprocessing.html
- Does not support missing values (even though it's CART)