The size of the "process" indicates the minimum possible channel length. Magnitude of the electron charge in the channel [Q]:

$$|Q| = C_{OX}(WL)v_{OV}$$

 C_{OX} is the oxide capacitance, [F/m²]

$$C_{OX} = \frac{\epsilon_{OX}}{t_{OX}}$$

 ϵ_{OX} is the permittivity of the SiO₂. t_{OX} is the oxide thickness. For C_{OX} per micron squared, use $C = C_{OX}WL$ [fF]

$$i_{D} = \left[(\mu_{n} C_{OX}) \left(\frac{W}{L} \right) (v_{GS} - V_{t}) \right] v_{DS}$$

$$i_{D} = \left[g_{DS} \right] v_{DS}$$

$$k'_{n} = \mu_{n} C_{OX}$$

$$k_{n} = k'_{n} (W/L)$$

 $k_n^{'}$ is process transconductance paramter. k_n is device transconductance

paramter.

When V_{DS} is small, the MOSFET behaves as a linear resistance r_{DS} whose value is controlled by the gate voltage v_{GS} .

$$r_{DS} = \frac{1}{g_{DS}}$$

Triode vs Saturation Triode $(v_{DS} \leq V_{OV})$

$$\begin{split} i_D &= k_n^{'} \left(\frac{W}{L}\right) \left(V_{OV} - \frac{1}{2}v_{DS}\right) v_{DS} \\ i_D &= k_n^{'} \left(\frac{W}{L}\right) \left[(v_{GS} - V_t)v_{DS} - \frac{1}{2}v_{DS}^2\right] \end{split}$$

Saturation $(v_{DS} \ge V_{OV})$

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) V_{OV}^2$$

 $k_n = k'_n$, so

$$i_D = \frac{1}{2} k_n V_{OV}^2$$

Or,

$$i_D = \frac{1}{2}k_n(V_{GS} - V_{th})^2$$

Constant V_{OV} can be replaced by variable

PMOS transistors operate similarly but the polarity is reversed, so v_{GS} must be negative and larger than a negative v_{tp} , as is v_{DS}

If you care about channel-length modulation, then use the expression:

$$i_D = \frac{1}{2}k'_n \left(\frac{W}{L}\right)(v_{GS} - V_{th})^2(1 + \lambda v_{DS})$$

 $\begin{array}{l} v_{DS} = -\frac{1}{\lambda} \mid V_A = \frac{1}{\lambda} \mid V_A = V_A^{'}L \\ V_A \text{ (Early Voltage) has units of volts.} \\ V_A^{'} \text{ has units of volts per micron.} \\ \text{Expression for } r_o\text{:} \end{array}$

$$r_o = \frac{V_A}{I_D} = \frac{1}{\lambda I_D}$$

 $r_o = \frac{V_A}{I_D} = \frac{1}{\lambda I_D}$ I_D is the drain current without channel-length modulation taken into account.

$$I_D = \frac{1}{2} k_n' \frac{W}{L} (V_{GS} - V_{tn})^2$$

 $I_D = \frac{1}{2}k_n'\frac{W}{L}(V_{GS} - V_{tn})^2$ For a p-Channel MOSFET, everything is backwards, here is an equation showing the voltages without negative signs, everything here is considered in terms of positive voltages or magnitudes.

voltages or magnitudes.
$$i_{D} = \frac{1}{2}k_{p}^{'}\left(\frac{W}{L}\right)\left(v_{SG} - |V_{tp}|\right)^{2}(1 + |\lambda|v_{SD})$$
 Also,

Also,
$$i_{D} = \frac{1}{2}k_{p}^{'}\left(\frac{W}{L}\right)\left(v_{SG} - |V_{tp}|\right)^{2}\left(1 + \frac{v_{SD}}{|V_{A}|}\right)$$
Kinda useful:

$$R_D = \frac{V_{DD} - V_D}{I_D}$$

$$R_D = V_{DD} - I_D R_D$$

MOSFETs biased for linear amplification Note bias point Q. Voltages V_{GS} and V_{DS} are related at the bias point by

$$v_{DS} = V_{DD} - \frac{1}{2}k_nR_D(v_{GS} - V_t)^2$$

$$v_{GS} = V_{GS} + v_{qs}$$

 A_v is expressed in terms of V_{OV} at the bias point by

$$A_v = -k_n V_{OV} R_D$$

$$A_v = -\frac{2I_D R_D}{V_{OV}} = -\frac{I_D R_D}{V_{OV}/2}$$

To prevent nonlinear distortion, v_{qs} must be sufficiently small.

$$v_{gs} \ll 2(V_{GS} - Vt)$$
$$v_{gs} \ll 2V_{OV}$$

When this condition is met, we can express i_D as:

$$i_D \simeq I_D + i_d$$

Of course,
$$I_D = \frac{1}{2}k_nV_{OV}^2$$

and $i_d = k_n(V_{GS} - V_t)v_{gs}$

$$g_m \equiv \frac{i_d}{v_{as}} = k_n (V_{GS} - V_t)$$

$$g_m = k_n V_{OV} = \mu_n C_{ox} \frac{W}{L} V_{OV}$$

$$g_m = k'_n(W/L)(V_{GS} - V_t) = k'_n(W/L)V_{OV}$$

$$g_m = \sqrt{2k_n'}\sqrt{W/L}\sqrt{I_D}$$

$$g_m = \frac{2I_D}{V_{GS} - V_t} = \frac{2I_D}{V_{OV}} = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$

Small Signal Model
$$r_o = \frac{|V_A|}{I_D} = \frac{1}{\lambda I_D} \mid A_v = \frac{v_{ds}}{v_{gs}} = -g_m(R_D \parallel r_o)$$

$$v_{DS} = V_{DD} - R_D i_D$$

$$v_{DS} = V_{DD} - R_D(I_D + i_d) = V_{DS} - R_D i_d$$

$$v_{DS} = -i_d R_D = -g_m v_{gs} R_D$$

$$A_v \equiv \frac{v_{ds}}{v_{gs}} = -g_m R_D$$

T Equivalent-Circuit Model $i_d = \bar{i}_s = g_m v_{gs}$

Characterizing Amplifiers

$$A_{vo} \equiv \frac{v_o}{v_i} \Big|_{R_L = \infty}$$

$$A_v \equiv \frac{v_o}{v_i} = A_{vo} \frac{R_L}{R_L + R_o}$$

$$G_v \equiv \frac{v_o}{v_{\text{sig}}}$$

Basic circuit configurations $\begin{aligned} R_{\text{in}} &= \infty \mid v_o = -(g_m v_{gs})(R_D \parallel r_o) \\ A_{vo} &= -g_m(R_D \parallel r_o) \\ A_v &= G_v = -g_m(R_D \parallel R_L \parallel r_o) \\ v_{\text{sig}} \text{ must be much smaller than } 2V_{OV} \end{aligned}$

$$\begin{aligned} v_{gs} &= \frac{v_i}{1+g_m R_s} \\ v_o &= -iR_D \\ i &= \frac{v_i}{1/g_m + R_s} = \left(\frac{g_m}{1+g_m R_s}\right) v_i \end{aligned}$$

Those two together make:

$$A_{vo} = \frac{v_o}{v_i} = -\frac{R_D}{1/g_m + R_s}$$

$$A_v = -\frac{R_D \parallel R_L}{1/g_m + R_s}$$

$$\overline{R_{in} = \frac{1}{g_m} \mid i = -\frac{v_i}{1/g_m} \mid v_o = -iR_D}$$

$$A_{vo} \equiv \frac{v_o}{v_i} = g_m R_D$$

$$G_v = \frac{(R_D \parallel R_L)}{R_{sig} + 1/g_m}$$

Often used as a voltage buffer so that the signal isn't attenuated at the output. $R_{11} = \infty \mid A_{12} = 1 \mid R_{12} = 1/a$

$$R_{\rm in} = \infty \mid A_{vo} = 1 \mid R_o = 1/g_m$$

$$G_v = A_v = \frac{R_L}{R_L + 1/g_m}$$

Biasing amplifier circuits Fixing V_G and using R_s , use $V_G = V_{GS} + R_s I_D$

Depletion-type MOSFET is the same as normal mosfet but it has a negative V_t (positive for PMOS).