Упражнение. Фигуры Лиссажу с помощью хсоs

Имитационное моделирование

Королёв Иван

Содержание

1	Цель работы	6		
2	Задание	7		
3	Теоретическое введение	8		
4	Выполнение лабораторной работы 4.1 Моделирование выражения для кривой Лиссажу в Scilab 4.2 Построение с помощью хсоз фигуры Лиссажу для первого случая . 4.3 Построение с помощью хсоз фигуры Лиссажу для второго случая . 4.4 Построение с помощью хсоз фигуры Лиссажу для третьего случая . 4.5 Построение с помощью хсоз фигуры Лиссажу для четвертого случая	9 10 12 14 17		
5	Выводы	20		
Сг	писок литературы 2			

Список иллюстраций

4.1	Моделирование выражения для кривой Лиссажу в Scilab	9
4.2	Фигура Лиссажу со следующими параметрами: $A = B = 1$, $a = 2$, $b = 2$, $\delta = 0$;	10
4.3	Фигура Лиссажу со следующими параметрами: $A = B = 1$, $a = 2$, $b = 2$, $\delta = \pi/4$;	11
4.4	Фигура Лиссажу со следующими параметрами: $A = B = 1$, $a = 2$, $b = 2$,	
4.5	δ = $\pi/2$;	11
4.6	$\delta = 3\pi/4$;	12
4.7	$\delta = \pi;$	12
	$\delta = 0; \ldots \ldots \ldots \ldots \ldots$	13
4.8	Фигура Лиссажу со следующими параметрами: $A = B = 1$, $a = 2$, $b = 4$, $\delta = \pi/4$;	13
4.9	Фигура Лиссажу со следующими параметрами: $A = B = 1$, $a = 2$, $b = 4$, $\delta = \pi/2$;	13
4.10	Фигура Лиссажу со следующими параметрами: $A = B = 1$, $a = 2$, $b = 4$,	
4.11	$\delta = 3\pi/4$;	14
4.12	δ = π ;	14
	$\delta = 0;$	15
	$\delta = \pi/4$;	15
4.14	Фигура Лиссажу со следующими параметрами: $A = B = 1$, $a = 2$, $b = 6$, $\delta = \pi/2$;	16
4.15	Фигура Лиссажу со следующими параметрами: $A = B = 1$, $a = 2$, $b = 6$, $\delta = 3\pi/4$;	16
4.16	Фигура Лиссажу со следующими параметрами: $A = B = 1$, $a = 2$, $b = 6$, $\delta = \pi$;	16
4.17	Фигура Лиссажу со следующими параметрами: $A = B = 1$, $a = 2$, $b = 3$,	
4.18	δ = 0;	17
4.19	$\delta = \pi/4$;	17
/	$\delta = \pi/2$.	18

4.20 Фигура Лиссажу со следующими параметрами: $A = B = 1$, $a = 2$, $b = 3$,	
$\delta = 3\pi/4$;	18
4.21 Фигура Лиссажу со следующими параметрами: $A = B = 1$, $a = 2$, $b = 3$,	
$\delta = \pi$:	19

Список таблиц

1 Цель работы

Освоить систему компьютерной математики, предназначенной для решения вычислительных задач Scilab. Построить фигуры Лиссажу с различными параметрами.

2 Задание

Постройте с помощью хсоs фигуры Лиссажу со следующими параметрами: 1. А = B = 1, a = 2, b = 2, δ = 0; $\pi/4$; $\pi/2$; $3\pi/4$; π ; 2. A = B = 1, a = 2, b = 4, δ = 0; $\pi/4$; $\pi/2$; $3\pi/4$; π ; 3. A = B = 1, a = 2, b = 6, δ = 0; $\pi/4$; $\pi/2$; $3\pi/4$; π ; 4. A = B = 1, a = 2, b = 3, δ = 0; $\pi/4$; $\pi/2$; $3\pi/4$; π .

3 Теоретическое введение

Scilab — система компьютерной математики, предназначенная для решения вычислительных задач. Основное окно Scilab содержит обозреватель файлов, командное окно, *обозреватель переменных* и *журнал команд*. Программа хсоз является приложением к пакету Scilab. Для вызова окна хсоз необходимо в меню основного окна Scilab выбрать Инструменты, Визуальное моделирование хсоз. При моделировании с использованием хсоз реализуется принцип визуального программирования, в соответствии с которым пользователь на экране из палитры блоков создаёт модель и осуществляет расчёты.

4 Выполнение лабораторной работы

4.1 Моделирование выражения для кривой Лиссажу в Scilab

Математическое выражение для кривой Лиссажу:

$$\begin{cases} x(t) = A\sin(at + \delta), \\ y(t) = B\sin(bt), \end{cases}$$

где A, B — амплитуды колебаний, a, b — частоты, δ — сдвиг фаз.

В модели, изображённой на (рис. 4.1), использованы следующие блоки хсоs: - $CLOCK_c$ — запуск часов модельного времени; - $GENSIN_f$ — блок генератора синусоидального сигнала; - CANIMXY — анимированное регистрирующее устройство для построения графика типа y = f(x); - $TEXT_f$ — задаёт текст примечаний

Рис. 4.1: Моделирование выражения для кривой Лиссажу в Scilab

Для каждого случая будет необходимо изменять частоту и сдвиг фазы.

4.2 Построение с помощью хсоѕ фигуры Лиссажу для первого случая

В 1-м случае необходимо было построить фигуры Лиссажу со следующими параметрами: $\mathbf{A} = \mathbf{B} = \mathbf{1}$, $\mathbf{a} = \mathbf{2}$, $\mathbf{b} = \mathbf{2}$, $\mathbf{\delta} = \mathbf{0}$; $\pi/4$; $\pi/2$; $3\pi/4$; π ; (рис. 4.2), (рис. 4.3), (рис. 4.4), (рис. 4.5), (рис. 4.6)

Рис. 4.2: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 2, $\delta = 0$;

Рис. 4.3: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 2, δ = $\pi/4$;

Рис. 4.4: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 2, δ = $\pi/2$;

Рис. 4.5: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 2, $\delta = 3\pi/4$;

Рис. 4.6: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 2, $\delta = \pi$;

4.3 Построение с помощью хсоѕ фигуры Лиссажу для второго случая

Во 2-м случае необходимо было построить фигуры Лиссажу со следующими параметрами: $\mathbf{A} = \mathbf{B} = \mathbf{1}$, $\mathbf{a} = \mathbf{2}$, $\mathbf{b} = \mathbf{4}$, $\mathbf{\delta} = \mathbf{0}$; $\pi/\mathbf{4}$; $\pi/\mathbf{2}$; $3\pi/\mathbf{4}$; π ; (рис. 4.7), (рис. 4.8), (рис. 4.9), (рис. 4.10), (рис. 4.11)

Рис. 4.7: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 4, $\delta = 0$;

Рис. 4.8: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 4, δ = $\pi/4$;

Рис. 4.9: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 4, δ = $\pi/2$;

Рис. 4.10: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 4, $\delta = 3\pi/4$;

Рис. 4.11: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 4, δ = π ;

4.4 Построение с помощью хсоѕ фигуры Лиссажу для третьего случая

В 3-м случае необходимо было построить фигуры Лиссажу со следующими параметрами: $\mathbf{A} = \mathbf{B} = \mathbf{1}, \mathbf{a} = \mathbf{2}, \mathbf{b} = \mathbf{6}, \mathbf{\delta} = \mathbf{0}; \pi/4; \pi/2; 3\pi/4; \pi;$ (рис. 4.12), (рис. 4.13), (рис. 4.14), (рис. 4.15), (рис. 4.16)

Рис. 4.12: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 6, δ = 0;

Рис. 4.13: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 6, δ = $\pi/4$;

Рис. 4.14: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 6, δ = $\pi/2$;

Рис. 4.15: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 6, δ = $3\pi/4$;

Рис. 4.16: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 6, δ = π ;

4.5 Построение с помощью хсоѕ фигуры Лиссажу для четвертого случая

В 4-м случае необходимо было построить фигуры Лиссажу со следующими параметрами: $\mathbf{A} = \mathbf{B} = \mathbf{1}$, $\mathbf{a} = \mathbf{2}$, $\mathbf{b} = \mathbf{3}$, $\mathbf{\delta} = \mathbf{0}$; $\pi/4$; $\pi/2$; $3\pi/4$; π ; (рис. 4.17), (рис. 4.18), (рис. 4.19), (рис. 4.20), (рис. 4.21)

Рис. 4.17: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 3, δ = 0;

Рис. 4.18: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 3, δ = $\pi/4$;

Рис. 4.19: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 3, δ = $\pi/2$;

Рис. 4.20: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 3, δ = $3\pi/4$;

Рис. 4.21: Фигура Лиссажу со следующими параметрами: A = B = 1, a = 2, b = 3, δ = π ;

5 Выводы

Освоил систему компьютерной математики, предназначенной для решения вычислительных задач Scilab. Построил фигуры Лиссажу с различными параметрами.

Список литературы