Veriopt Theories

$August\ 30,\ 2023$

Contents

_	~	
1		onicalization Optimizations 1
	1.1	AbsNode Phase
	1.2	AddNode Phase
	1.3	AndNode Phase
	1.4	BinaryNode Phase
	1.5	ConditionalNode Phase
	1.6	MulNode Phase
	1.7	Experimental AndNode Phase
	1.8	NotNode Phase
	1.9	OrNode Phase
	1.10	ShiftNode Phase
	1.11	SignedDivNode Phase
	1.12	SignedRemNode Phase
	1.13	SubNode Phase
	1.14	XorNode Phase
	1.15	NegateNode Phase
	1.16	AddNode
	1.17	NegateNode
1	\mathbf{C}	anonicalization Optimizations
1	\mathbf{C}_{i}	anomeanzation Optimizations
$^{ m th}$	eory	Common
i	mpor	ts
	-	$nization DSL.\ Canonicalization$
_		ntics.IRTreeEvalThms
be	$_{ m gin}$	
		size-pos[size-simps]: 0 < size y
		(induction y; auto?) al for op
5	_	y (cases op)
		$mt\ (z3)\ gr0I\ one-neq-zero\ pos2\ size.elims\ trans-less-add2)+$
	• (-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

done

```
lemma size-non-add[size-simps]: size (BinaryExpr op a b) = size a + size b + 2
\longleftrightarrow \neg (is\text{-}ConstantExpr\ b)
 by (induction b; induction op; auto simp: is-ConstantExpr-def)
lemma size-non-const[size-simps]:
  \neg is\text{-}ConstantExpr y \Longrightarrow 1 < size y
 using size-pos apply (induction y; auto)
 \mathbf{by}\ (\mathit{metis}\ \mathit{Suc\text{-}lessI}\ \mathit{add\text{-}is\text{-}1}\ \mathit{is\text{-}ConstantExpr\text{-}def}\ \mathit{le\text{-}less}\ \mathit{linorder\text{-}not\text{-}le}\ \mathit{n\text{-}not\text{-}Suc\text{-}n}
numeral-2-eq-2 pos2 size.simps(2) size-non-add)
lemma \ size-binary-const[size-simps]:
  size\ (BinaryExpr\ op\ a\ b) = size\ a + 2 \longleftrightarrow (is-ConstantExpr\ b)
 by (induction b; auto simp: is-ConstantExpr-def size-pos)
lemma size-flip-binary[size-simps]:
   \neg (is\text{-}ConstantExpr\ y) \longrightarrow size\ (BinaryExpr\ op\ (ConstantExpr\ x)\ y) > size
(BinaryExpr\ op\ y\ (ConstantExpr\ x))
  by (metis add-Suc not-less-eq order-less-asym plus-1-eq-Suc size.simps(2,11)
size-non-add)
lemma size-binary-lhs-a[size-simps]:
  size (BinaryExpr \ op \ (BinaryExpr \ op' \ a \ b) \ c) > size \ a
 by (metis add-lessD1 less-add-same-cancel1 pos2 size-binary-const size-non-add)
lemma size-binary-lhs-b[size-simps]:
  size (BinaryExpr \ op \ (BinaryExpr \ op' \ a \ b) \ c) > size \ b
 by (metis IRExpr.disc(42) One-nat-def add.left-commute add.right-neutral is-ConstantExpr-def
less-add-Suc2 numeral-2-eq-2 plus-1-eq-Suc size.simps(11) size-binary-const size-non-add
size-non-const trans-less-add1)
lemma size-binary-lhs-c[size-simps]:
 size (BinaryExpr \ op \ (BinaryExpr \ op' \ a \ b) \ c) > size \ c
 by (metis IRExpr.disc(42) add.left-commute add.right-neutral is-ConstantExpr-def
less-Suc-eq numeral-2-eq-2 plus-1-eq-Suc size.simps(11) size-non-add size-non-const
trans-less-add2)
lemma size-binary-rhs-a[size-simps]:
  size\ (BinaryExpr\ op\ c\ (BinaryExpr\ op'\ a\ b)) > size\ a
 apply auto
  by (metis trans-less-add2 less-Suc-eq less-add-same-cancel1 linorder-neqE-nat
not-add-less1 pos2
     order-less-trans size-binary-const size-non-add)
lemma size-binary-rhs-b[size-simps]:
  size (BinaryExpr \ op \ c \ (BinaryExpr \ op' \ a \ b)) > size \ b
 by (metis add.left-commute add.right-neutral is-ConstantExpr-def lessI numeral-2-eq-2
plus-1-eq-Suc size.simps(4,11) size-non-add trans-less-add2)
```

```
lemma size-binary-rhs-c[size-simps]:
  size (BinaryExpr op c (BinaryExpr op' a b)) > size c
 by simp
lemma \ size-binary-lhs[size-simps]:
  size (BinaryExpr op x y) > size x
  by (metis One-nat-def Suc-eq-plus1 add-Suc-right less-add-Suc1 numeral-2-eq-2
size-binary-const size-non-add)
lemma size-binary-rhs[size-simps]:
 size (BinaryExpr \ op \ x \ y) > size \ y
 by (metis\ IRExpr.disc(42)\ add\text{-}strict\text{-}increasing\ is\text{-}ConstantExpr-def\ linorder\text{-}not\text{-}le
not-add-less1 size.simps(11) size-non-add size-non-const size-pos)
lemmas \ arith[size-simps] = Suc-leI \ add-strict-increasing \ order-less-trans \ trans-less-add2
definition well-formed-equal :: Value \Rightarrow Value \Rightarrow bool
 (infix \approx 50) where
  well-formed-equal v_1 v_2 = (v_1 \neq UndefVal \longrightarrow v_1 = v_2)
lemma well-formed-equal-defn [simp]:
  well-formed-equal v_1 v_2 = (v_1 \neq UndefVal \longrightarrow v_1 = v_2)
  unfolding well-formed-equal-def by simp
end
1.1
       AbsNode Phase
theory AbsPhase
 imports
   Common\ Proofs. Stamp Eval Thms
begin
phase AbsNode
 terminating size
begin
Note:
We can't use (\langle s \rangle) for reasoning about intval-less-than. (\langle s \rangle) will always
treat the 64^{th} bit as the sign flag while intval-less-than uses the b^{th} bit
depending on the size of the word.
```

value $val[new-int 32 \ 0 < new-int 32 \ 4294967286] - 0 < -10 = False$

value (0::int64) < s 4294967286 - 0 < 4294967286 = True

 $\mathbf{lemma}\ \mathit{signed-eqiv} \colon$

assumes $b > \theta \land b \le 64$

```
shows val-to-bool (val[new-int b v < new-int b v']) = (int-signed-value b v < new-int b v']
int-signed-value b v')
 using assms
 by (metis (no-types, lifting) ValueThms.signed-take-take-bit bool-to-val.elims bool-to-val-bin.elims
int-signed-value.simps intval-less-than.simps(1) new-int.simps one-neg-zero val-to-bool.simps(1)
lemma val-abs-pos:
 assumes val-to-bool(val[(new\text{-}int\ b\ 0) < (new\text{-}int\ b\ v)])
 shows intval-abs (new-int b v) = (new-int b v)
 using assms by force
lemma val-abs-neg:
 assumes val-to-bool(val[(new-int b \ v) < (new-int b \ \theta)])
 shows intval-abs (new-int b v) = intval-negate (new-int b v)
 using assms by force
lemma val-bool-unwrap:
 val-to-bool (bool-to-val v) = v
 by (metis bool-to-val.elims one-neq-zero val-to-bool.simps(1))
lemma take-bit-64:
 assumes 0 < b \land b \le 64
 assumes take-bit b v = v
 shows take-bit 64 \ v = take-bit b \ v
 using assms
 by (metis min-def nle-le take-bit-take-bit)
A special value exists for the maximum negative integer as its negation is
itself. We can define the value as set-bit ((b::nat) - (1::nat)) (0::64 word)
for any bit-width, b.
value (set-bit 1 0)::2 word — 2
value -(set\text{-}bit\ 1\ \theta)::2 word — 2
value (set-bit 31 0)::32 word — 2147483648
value -(set-bit 31 0)::32 word — 2147483648
lemma negative-def:
 \mathbf{fixes}\ v::\ 'a{::}len\ word
 assumes v < s \theta
 shows bit v(LENGTH('a) - 1)
 using assms
 by (simp add: bit-last-iff word-sless-alt)
lemma positive-def:
 fixes v :: 'a :: len word
 assumes \theta < s v
 shows \neg(bit\ v\ (LENGTH('a)-1))
 using assms
```

```
by (simp add: bit-last-iff word-sless-alt)
lemma negative-lower-bound:
 \mathbf{fixes}\ v::\ 'a{::}len\ word
 assumes (2\widehat{\phantom{a}}(LENGTH('a) - 1)) < s \ v
 assumes v < s \theta
 shows \theta < s(-v)
 using assms
 by (smt\ (verit)\ signed-0\ signed-take-bit-int-less-self-iff\ sint-ge\ sint-word-ariths(4)
word-sless-alt)
lemma min-int:
 fixes x :: 'a :: len word
 assumes x < s \theta
 assumes x \neq (2^{(LENGTH('a) - 1)})
 shows 2^{\sim}(LENGTH('a) - 1) < s x
 using assms sorry
lemma negate-min-int:
 fixes v :: 'a :: len word
 assumes v = (2 \widehat{\phantom{a}} (LENGTH('a) - 1))
 shows v = (-v)
 using assms
 \textbf{by} \ (\textit{metis One-nat-def add.inverse-neutral double-eq-zero-iff mult-minus-right verit-minus-simplify} (4))
fun abs :: 'a::len word \Rightarrow 'a word where
  abs \ x = (if \ x < s \ 0 \ then \ (-x) \ else \ x)
lemma
 abs(abs(x)) = abs(x)
 for x :: 'a :: len word
proof (cases 0 \le s \ x)
 case True
 then show ?thesis
   by force
\mathbf{next}
 case neg: False
```

then show ?thesis

then show ?thesis using negate-min-int

 ${\bf case}\ \, True$

 ${f case}\ {\it False}$

next

proof $(cases\ x = (2^LENGTH('a) - 1))$

by (simp add: word-sless-alt)

```
then show ?thesis using min-int negative-lower-bound
     using negate-min-int by force
 qed
qed
We need to do the same proof at the value level.
lemma invert-intval:
 assumes int-signed-value b v < 0
 assumes b > \theta \land b \le 64
 assumes take-bit b v = v
 assumes v \neq (2 \hat{\ } (b-1))
 shows \theta < int-signed-value b (-v)
 using assms apply simp sorry
lemma negate-max-negative:
 assumes b > 0 \land b \le 64
 assumes take-bit b v = v
 assumes v = (2\hat{\ }(b-1))
 shows new-int b v = intval-negate (new-int b v)
 using assms apply simp using negate-min-int sorry
lemma val-abs-always-pos:
 assumes b > 0 \land b \le 64
 assumes take-bit b v = v
 assumes v \neq (2 \hat{\ } (b-1))
 assumes intval-abs (new-int b v) = (new-int b v')
 shows val-to-bool (val[(new\text{-}int\ b\ 0) < (new\text{-}int\ b\ v')]) \lor val-to-bool (val[(new\text{-}int\ b\ v')])
(b \ \theta) \ eq \ (new\text{-}int \ b \ v')])
proof (cases \ v = \theta)
 {f case}\ True
 then have isZero: intval-abs (new-int b 0) = new-int b 0
   by auto
  then have IntVal\ b\ \theta = new\text{-}int\ b\ v'
   using True assms by auto
  then have val-to-bool (val[(new\text{-}int\ b\ 0)\ eq\ (new\text{-}int\ b\ v')])
   by simp
 then show ?thesis by simp
next
 case neq\theta: False
 have zero: int-signed-value b \theta = \theta
   by simp
  then show ?thesis
 proof (cases int-signed-value b \ v > 0)
   case True
   then have val-to-bool(val[(new-int b \ \theta) < (new-int b \ v)])
     using zero apply simp
   by (metis One-nat-def ValueThms.signed-take-take-bit assms(1) val-bool-unwrap)
   then have val-to-bool (val[new-int b 0 < new-int b v'])
     by (metis \ assms(4) \ val-abs-pos)
```

```
then show ?thesis
     by blast
  \mathbf{next}
   case neg: False
   then have val-to-bool (val[new-int b 0 < new-int b v'])
   proof -
     have int-signed-value b v \leq 0
       using assms neg neg0 by simp
     then show ?thesis
     proof (cases int-signed-value b \ v = 0)
       {\bf case}\ {\it True}
       then have v = \theta
      by (metis One-nat-def Suc-pred assms(1) assms(2) dual-order.reft int-signed-value.simps
signed-eq-0-iff\ take-bit-of-0\ take-bit-signed-take-bit)
       then show ?thesis
         using neq\theta by simp
     next
       case False
       then have int-signed-value b v < \theta
         using \langle int\text{-}signed\text{-}value\ (b::nat)\ (v::64\ word) \sqsubseteq (0::int) \rangle by linarith
       then have new-int b v' = new-int b (-v)
         using assms using intval-abs.elims
         by simp
       then have \theta < int-signed-value b (-v)
         using assms(3) invert-intval
       \mathbf{using} \ \ (int\text{-}signed\text{-}value \ (b::nat) \ (v::64 \ word) < (0::int) \land \ assms(1) \ assms(2)
by blast
       then show ?thesis
            using \langle new\text{-}int \ (b::nat) \ (v'::64 \ word) = new\text{-}int \ b \ (- \ (v::64 \ word)) \rangle
assms(1) signed-eqiv zero by presburger
     qed
   qed
   then show ?thesis
     by simp
 qed
qed
lemma intval-abs-elims:
 assumes intval-abs x \neq UndefVal
 shows \exists t \ v \ . \ x = IntVal \ t \ v \ \land
                intval-abs\ x = new-int\ t\ (if\ int-signed-value\ t\ v < 0\ then\ -\ v\ else\ v)
 by (meson intval-abs.elims assms)
lemma wf-abs-new-int:
 assumes intval-abs (IntVal\ t\ v) \neq UndefVal
 shows intval-abs (IntVal\ t\ v) = new-int\ t\ v\ \lor\ intval-abs (IntVal\ t\ v) = new-int
t(-v)
 by simp
```

```
lemma mono-undef-abs:
 assumes intval-abs (intval-abs x) \neq UndefVal
 shows intval-abs x \neq UndefVal
 using assms by force
lemma val-abs-idem:
 assumes valid-value x (IntegerStamp b l h)
 assumes val[abs(abs(x))] \neq UndefVal
 shows val[abs(abs(x))] = val[abs x]
proof -
 obtain b v where in-def: x = IntVal \ b \ v
   using assms intval-abs-elims mono-undef-abs by blast
 then have bInRange: b > 0 \land b \le 64
   using assms(1)
   by (metis\ valid-stamp.simps(1)\ valid-value.simps(1))
 then show ?thesis
 proof (cases int-signed-value b \ v < \theta)
   case neg: True
   then show ?thesis
   proof (cases\ v = (2\widehat{\ }(b-1)))
    case min: True
    then show ?thesis
    by (smt (z3) \ assms(1) \ bInRange \ in-def \ intval-abs.simps(1) \ intval-negate.simps(1)
negate-max-negative new-int.simps valid-value.simps(1))
   next
    case notMin: False
    then have nested: (intval-abs\ x) = new-int\ b\ (-v)
      using neg val-abs-neg in-def by simp
    also have int-signed-value b (-v) > 0
      using neg notMin invert-intval bInRange
      by (metis\ assms(1)\ in-def\ valid-value.simps(1))
    then have (intval-abs\ (new-int\ b\ (-v))) = new-int\ b\ (-v)
    by (smt (verit, best) ValueThms.signed-take-take-bit bInRange int-signed-value.simps
intval-abs.simps(1) new-int.simps new-int-unused-bits-zero)
    then show ?thesis
      using nested by presburger
   qed
 next
   case False
   then show ?thesis
   by (metis\ (mono-tags,\ lifting)\ assms(1)\ in-def\ intval-abs.simps(1)\ new-int.simps
valid-value.simps(1))
 qed
qed
Optimisations end
```

end

1.2 AddNode Phase

```
theory AddPhase
 imports
   Common
begin
phase AddNode
 terminating size
begin
lemma binadd-commute:
 assumes bin-eval BinAdd x y \neq UndefVal
 shows bin-eval BinAdd x y = bin-eval BinAdd y x
 by (simp add: intval-add-sym)
optimization AddShiftConstantRight: ((const v) + y) \mapsto y + (const v) when
\neg (is\text{-}ConstantExpr\ y)
apply (metis add-2-eq-Suc' less-Suc-eq plus-1-eq-Suc size.simps(11) size-non-add)
 using le-expr-def binadd-commute by blast
optimization AddShiftConstantRight2: ((const\ v) + y) \longmapsto y + (const\ v) when
\neg (is\text{-}ConstantExpr\ y)
 using AddShiftConstantRight by auto
lemma is-neutral-0 [simp]:
 assumes val[(IntVal\ b\ x) + (IntVal\ b\ \theta)] \neq UndefVal
 shows val[(IntVal\ b\ x) + (IntVal\ b\ 0)] = (new-int\ b\ x)
 \mathbf{by} \ simp
lemma AddNeutral-Exp:
 shows exp[(e + (const (IntVal 32 0)))] \ge exp[e]
 apply auto
 subgoal premises p for m p x
 proof -
   obtain ev where ev: [m,p] \vdash e \mapsto ev
     using p by auto
   then obtain b evx where evx: ev = IntVal b evx
   by (metis evalDet evaltree-not-undef intval-add.simps (3,4,5) intval-logic-negation.cases
   then have additionNotUndef: val[ev + (IntVal 32 0)] \neq UndefVal
     using p evalDet ev by blast
   then have sameWidth: b = 32
     by (metis\ evx\ additionNotUndef\ intval-add.simps(1))
  then have unfolded: val[ev + (IntVal 32 0)] = IntVal 32 (take-bit 32 (evx+0))
     by (simp add: evx)
```

```
then have eqE: IntVal\ 32\ (take-bit\ 32\ (evx+0)) = IntVal\ 32\ (take-bit\ 32\ (evx))
     by auto
   then show ?thesis
     by (metis ev evalDet eval-unused-bits-zero evx p(1) sameWidth unfolded)
 qed
 done
optimization AddNeutral: (e + (const (IntVal 32 0))) \mapsto e
  using AddNeutral-Exp by presburger
ML-val \langle @\{term \langle x = y \rangle\} \rangle
\mathbf{lemma}\ \mathit{NeutralLeftSubVal} :
 assumes e1 = new\text{-}int \ b \ ival
 shows val[(e1 - e2) + e2] \approx e1
 using assms by (cases e1; cases e2; auto)
\mathbf{lemma}\ RedundantSubAdd\text{-}Exp:
 shows exp[((a-b)+b)] \geq a
 apply auto
 subgoal premises p for m p y xa ya
 proof -
   obtain bv where bv: [m,p] \vdash b \mapsto bv
     using p(1) by auto
   obtain av where av: [m,p] \vdash a \mapsto av
     using p(3) by auto
   then have subNotUndef: val[av - bv] \neq UndefVal
     by (metis by evalDet p(3,4,5))
   then obtain bb bvv where bInt: bv = IntVal bb bvv
   by (metis by evaltree-not-undef intval-logic-negation.cases intval-sub.simps (7,8,9))
   then obtain ba avv where aInt: av = IntVal ba avv
   by (metis av evaltree-not-undef intval-logic-negation.cases intval-sub.simps (3,4,5)
subNotUndef)
   then have widthSame: bb=ba
    by (metis av bInt by evalDet intval-sub.simps(1) new-int-bin.simps p(3,4,5))
   then have valEval: val[((av-bv)+bv)] = val[av]
     using aInt av eval-unused-bits-zero widthSame bInt by simp
   then show ?thesis
     by (metis av bv evalDet p(1,3,4))
 qed
 done
optimization RedundantSubAdd: ((e_1 - e_2) + e_2) \longmapsto e_1
  using RedundantSubAdd-Exp by blast
lemma allE2: (\forall x \ y. \ P \ x \ y) \Longrightarrow (P \ a \ b \Longrightarrow R) \Longrightarrow R
 by simp
```

```
lemma just-goal2:
 assumes (\forall \ a \ b. \ (val[(a - b) + b] \neq UndefVal \land a \neq UndefVal \longrightarrow
                val[(a - b) + b] = a))
 shows (exp[(e_1 - e_2) + e_2]) \ge e_1
 unfolding le-expr-def unfold-binary bin-eval.simps by (metis assms evalDet eval-
tree-not-undef)
optimization RedundantSubAdd2: e_2 + (e_1 - e_2) \longmapsto e_1
 using size-binary-rhs-a apply simp apply auto
 by (smt (z3) NeutralLeftSubVal evalDet eval-unused-bits-zero intval-add-sym int-
val-sub.elims new-int.simps well-formed-equal-defn)
{\bf lemma}~ Add To Sub Helper Low Level:
 shows val[-e + y] = val[y - e] (is ?x = ?y)
 by (induction y; induction e; auto)
print-phases
lemma val-redundant-add-sub:
 assumes a = new-int bb ival
 assumes val[b + a] \neq UndefVal
 \mathbf{shows} \ val[(b+a)-b] = a
 using assms apply (cases a; cases b; auto) by presburger
\mathbf{lemma}\ \mathit{val-add-right-negate-to-sub} :
 assumes val[x + e] \neq UndefVal
 shows val[x + (-e)] = val[x - e]
 by (cases x; cases e; auto simp: assms)
\mathbf{lemma}\ \textit{exp-add-left-negate-to-sub:}
 exp[-e + y] \ge exp[y - e]
 by (cases e; cases y; auto simp: AddToSubHelperLowLevel)
{f lemma} RedundantAddSub\text{-}Exp:
 shows exp[(b+a)-b] \geq a
 apply auto
   subgoal premises p for m p y xa ya
 proof -
```

```
obtain bv where bv: [m,p] \vdash b \mapsto bv
    using p(1) by auto
   obtain av where av: [m,p] \vdash a \mapsto av
    using p(4) by auto
   then have addNotUndef: val[av + bv] \neq UndefVal
    by (metis by evalDet intval-add-sym intval-sub.simps(2) p(2,3,4))
   then obtain bb bvv where bInt: bv = IntVal bb bvv
   by (metis by evalDet evalTee-not-undef intval-add.simps(3,5) intval-logic-negation.cases
        intval-sub.simps(8) p(1,2,3,5))
   then obtain ba avv where aInt: av = IntVal ba avv
    by (metis\ addNotUndef\ intval-add.simps(2,3,4,5)\ intval-logic-negation.cases)
   then have widthSame: bb=ba
    by (metis addNotUndef bInt intval-add.simps(1))
   then have valEval: val[((bv+av)-bv)] = val[av]
    using aInt av eval-unused-bits-zero widthSame bInt by simp
   then show ?thesis
    by (metis av bv evalDet p(1,3,4))
 qed
 done
Optimisations
optimization RedundantAddSub: (b + a) - b \mapsto a
 using RedundantAddSub-Exp by blast
optimization AddRightNegateToSub: x + -e \longmapsto x - e
 apply (metis Nat.add-0-right add-2-eq-Suc' add-less-mono1 add-mono-thms-linordered-field(2)
       less-SucI not-less-less-Suc-eq size-binary-const size-non-add size-pos)
 using AddToSubHelperLowLevel intval-add-sym by auto
optimization AddLeftNegateToSub: -e + y \longmapsto y - e
 apply (smt (verit, best) One-nat-def add.commute add-Suc-right is-ConstantExpr-def
less-add-Suc2
      numeral-2-eq-2 plus-1-eq-Suc size.simps(1) size.simps(11) size-binary-const
size-non-add)
 using exp-add-left-negate-to-sub by simp
end
```

end

1.3 AndNode Phase

theory AndPhase imports Common

```
Proofs. Stamp Eval Thms
begin
context stamp-mask
begin
\mathbf{lemma}\ \mathit{AndCommute-Val} :
 assumes val[x \& y] \neq UndefVal
 shows val[x \& y] = val[y \& x]
 using assms apply (cases x; cases y; auto) by (simp add: and.commute)
lemma And Commute-Exp:
 shows exp[x \& y] \ge exp[y \& x]
 using AndCommute-Val unfold-binary by auto
lemma And Right Fall through: (((and (not (\downarrow x)) (\uparrow y)) = \theta)) \longrightarrow exp[x \& y] \ge
exp[y]
 apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises p for m p v
   proof -
     obtain xv where xv: [m, p] \vdash x \mapsto xv
       using p(2) by blast
     obtain yv where yv: [m, p] \vdash y \mapsto yv
       using p(2) by blast
     obtain xb xvv where xvv: xv = IntVal xb xvv
         by (metis bin-eval-inputs-are-ints bin-eval-int evalDet is-IntVal-def p(2)
unfold-binary xv)
     obtain yb yvv where yvv: yv = IntVal yb yvv
         by (metis bin-eval-inputs-are-ints bin-eval-int evalDet is-IntVal-def p(2)
unfold-binary yv)
     have equalAnd: v = val[xv \& yv]
       by (metis\ BinaryExprE\ bin-eval.simps(6)\ evalDet\ p(2)\ xv\ yv)
    then have and Unfold: val[xv \& yv] = (if xb = yb then new-int xb (and xvv yvv))
else UndefVal)
      by (simp add: xvv yvv)
     have v = yv
       apply (cases v; cases yv; auto)
       using p(2) apply auto[1] using yvv apply simp-all
       by (metis\ Value.distinct(1,3,5,7,9,11,13)\ Value.inject(1)\ and Unfold\ equa-
lAnd new-int.simps
       xv\;xvv\;yv\;eval\text{-}unused\text{-}bits\text{-}zero\;new\text{-}int.simps\;not\text{-}down\text{-}up\text{-}mask\text{-}and\text{-}zero\text{-}implies\text{-}zero
          equalAnd p(1))+
     then show ?thesis
       by (simp \ add: yv)
   qed
 done
lemma AndLeftFallthrough: (((and (not (\downarrow y)) (\uparrow x)) = \theta)) \longrightarrow exp[x \& y] \ge
exp[x]
```

$\mathbf{using} \ \mathit{AndRightFallthrough} \ \mathit{AndCommute-Exp} \ \mathbf{by} \ \mathit{simp}$

```
end
phase AndNode
  terminating size
begin
\mathbf{lemma}\ \mathit{bin-and-nots} :
 (^{\sim}x \& ^{\sim}y) = (^{\sim}(x \mid y))
 by simp
\mathbf{lemma}\ \mathit{bin-and-neutral} :
 (x \& ^{\sim}False) = x
  by simp
{f lemma}\ val	ext{-} and	ext{-} equal:
  assumes x = new-int b v
           val[x \& x] \neq UndefVal
  \mathbf{shows} \quad val[x \ \& \ x] = x
  by (auto simp: assms)
\mathbf{lemma}\ \mathit{val-and-nots} :
  val[^{\sim}x \& ^{\sim}y] = val[^{\sim}(x \mid y)]
  by (cases x; cases y; auto simp: take-bit-not-take-bit)
\mathbf{lemma}\ \mathit{val-and-neutral} :
  assumes x = new\text{-}int \ b \ v
 \begin{array}{ll} \mathbf{and} & val[x \ \& \ ^{\sim}(new\text{-}int \ b' \ \theta)] \neq \ UndefVal \\ \mathbf{shows} & val[x \ \& \ ^{\sim}(new\text{-}int \ b' \ \theta)] = x \end{array}
  using assms apply (simp add: take-bit-eq-mask) by presburger
lemma val-and-zero:
  assumes x = new\text{-}int \ b \ v
  shows val[x \& (IntVal \ b \ \theta)] = IntVal \ b \ \theta
  by (auto simp: assms)
\mathbf{lemma}\ exp\text{-} and\text{-} equal:
  exp[x \& x] \ge exp[x]
  apply auto
  subgoal premises p for m p xv yv
  proof-
```

```
obtain xv where xv: [m,p] \vdash x \mapsto xv
    using p(1) by auto
   obtain yv where yv: [m,p] \vdash x \mapsto yv
    using p(1) by auto
   then have evalSame: xv = yv
    using evalDet xv by auto
   then have notUndef: xv \neq UndefVal \land yv \neq UndefVal
    using evaltree-not-undef xv by blast
   then have andNotUndef: val[xv \& yv] \neq UndefVal
    by (metis evalDet evalSame p(1,2,3) xv)
   obtain xb xvv where xvv: xv = IntVal xb xvv
     by (metis Value.exhaust-sel and Not Undef eval Same intval-and.simps (3,4,9)
notUndef)
   obtain yb yvv where yvv: yv = IntVal yb yvv
    using evalSame xvv by auto
   then have widthSame: xb=yb
    using evalSame xvv by auto
   then have valSame: yvv=xvv
    using evalSame xvv yvv by blast
   then have evalSame\theta: val[xv \& yv] = new\text{-}int xb (xvv)
    using evalSame xvv by auto
   then show ?thesis
    by (metis eval-unused-bits-zero new-int.simps eval Det p(1,2) val Same width-
Same xv xvv yvv)
 qed
 done
lemma exp-and-nots:
 exp[^{\sim}x \& ^{\sim}y] \ge exp[^{\sim}(x \mid y)]
  using val-and-nots by force
lemma exp-sign-extend:
 assumes e = (1 \ll In) - 1
 shows BinaryExpr BinAnd (UnaryExpr (UnarySignExtend In Out) x)
                       (ConstantExpr(new-int b e))
                     > (UnaryExpr (UnaryZeroExtend In Out) x)
 apply auto
 subgoal premises p for m p va
   proof -
    obtain va where va: [m,p] \vdash x \mapsto va
      using p(2) by auto
    then have notUndef: va \neq UndefVal
      by (simp add: evaltree-not-undef)
     then have 1: intval-and (intval-sign-extend In Out va) (IntVal\ b\ (take-bit b
e)) \neq UndefVal
      using evalDet p(1) p(2) va by blast
    then have 2: intval-sign-extend In Out va \neq UndefVal
      by auto
    then have 21:(0::nat) < b
```

```
using eval-bits-1-64 p(4) by blast
     then have 3: b \sqsubseteq (64::nat)
      using eval-bits-1-64 p(4) by blast
     then have 4: -((2::int) \cap b \ div \ (2::int)) \subseteq sint \ (signed-take-bit \ (b-Suc
(0::nat) (take-bit\ b\ e)
    by (simp add: 21 int-power-div-base signed-take-bit-int-greater-eq-minus-exp-word)
    then have 5: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) < (2::int)
^ b div (2::int)
    by (simp add: 21 3 Suc-le-lessD int-power-div-base signed-take-bit-int-less-exp-word)
     then have 6: [m,p] \vdash UnaryExpr (UnaryZeroExtend In Out)
             x \mapsto intval-and (intval-sign-extend In Out va) (IntVal b (take-bit b e))
      apply (cases \ va; \ simp)
      apply (simp add: notUndef) defer
      using 2 apply fastforce+
      sorry
     then show ?thesis
      by (metis evalDet p(2) va)
   qed
 done
lemma exp-and-neutral:
 assumes wf-stamp x
 assumes stamp-expr \ x = IntegerStamp \ b \ lo \ hi
 shows exp[(x \& ^{\sim}(const\ (IntVal\ b\ \theta)))] \ge x
 using assms apply auto
 subgoal premises p for m p xa
 proof-
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(3) by auto
   obtain xb xvv where xvv: xv = IntVal xb xvv
     by (metis assms valid-int wf-stamp-def xv)
   then have widthSame: xb=b
     by (metis\ p(1,2)\ valid-int-same-bits\ wf-stamp-def\ xv)
   then show ?thesis
      by (metis evalDet eval-unused-bits-zero intval-and.simps(1) new-int.elims
new	ext{-}int	ext{-}bin.elims
        p(3) take-bit-eq-mask xv xvv)
 qed
 done
lemma val-and-commute[simp]:
  val[x \& y] = val[y \& x]
 by (cases x; cases y; auto simp: word-bw-comms(1))
Optimisations
optimization And Equal: x \& x \longmapsto x
```

```
using exp-and-equal by blast
optimization And Shift Constant Right: ((const\ x)\ \&\ y) \longmapsto y\ \&\ (const\ x)
                                   when \neg (is\text{-}ConstantExpr\ y)
 using size-flip-binary by auto
optimization And Nots: (^{\sim}x) \& (^{\sim}y) \longmapsto ^{\sim}(x \mid y)
 by (metis add-2-eq-Suc' less-SucI less-add-Suc1 not-less-eq size-binary-const size-non-add
     exp-and-nots)+
optimization And Sign Extend: Binary Expr BinAnd (Unary Expr (Unary Sign Extend
In Out)(x)
                                        (const\ (new\text{-}int\ b\ e))
                          \longmapsto (UnaryExpr(UnaryZeroExtend\ In\ Out)(x))
                             when (e = (1 << In) - 1)
  using exp-sign-extend by simp
optimization And Neutral: (x \& {}^{\sim}(const (Int Val \ b \ \theta))) \longmapsto x
  when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo\ hi)
  using exp-and-neutral by fast
optimization And Right Fall Through: (x \& y) \longmapsto y
                         when (((and (not (IRExpr-down x)) (IRExpr-up y)) = 0))
 \mathbf{by}\ (simp\ add:\ IRExpr-down-def\ IRExpr-up-def)
optimization And Left Fall Through: (x \& y) \longmapsto x
                         when (((and (not (IRExpr-down y)) (IRExpr-up x)) = 0))
  by (simp add: IRExpr-down-def IRExpr-up-def)
end
end
       BinaryNode Phase
1.4
theory BinaryNode
 imports
   Common
begin
phase BinaryNode
 terminating size
begin
optimization BinaryFoldConstant: BinaryExpr op (const v1) (const v2) \longmapsto Con-
stantExpr (bin-eval op v1 v2)
 unfolding le-expr-def
 apply (rule \ all I \ imp I) +
```

```
subgoal premises bin for m p v
   apply (rule BinaryExprE[OF bin])
   subgoal premises prems for x y
   proof -
     have x: x = v1
       using prems by auto
     have y: y = v2
       using prems by auto
     have xy: v = bin\text{-}eval op x y
       by (simp \ add: prems \ x \ y)
     have int: \exists b vv \cdot v = new\text{-}int b vv
       using bin-eval-new-int prems by fast
     show ?thesis
        by (metis ConstantExpr prems(1) x y int bin eval-bits-1-64 new-int.simps
new\text{-}int\text{-}take\text{-}bits
           wf-value-def validDefIntConst)
     qed
   done
 done
end
end
        ConditionalNode Phase
1.5
{\bf theory}\ {\it Conditional Phase}
 imports
    Common
    Proofs.StampEvalThms
begin
{f phase} ConditionalNode
 terminating size
begin
lemma negates: \exists v \ b. \ e = IntVal \ b \ v \land b > 0 \implies val-to-bool \ (val[e]) \longleftrightarrow
\neg(val\text{-}to\text{-}bool\ (val[!e]))
\mathbf{by}\ (metis\ (mono-tags,\ lifting)\ intval-logic-negation.simps (1)\ logic-negate-def\ new-int.simps
     of-bool-eq(2) one-neg-zero take-bit-of-0 take-bit-of-1 val-to-bool.simps(1))
\mathbf{lemma}\ negation\text{-}condition\text{-}intval\text{:}
 assumes e = IntVal \ b \ ie
 assumes \theta < b
 shows val[(!e) ? x : y] = val[e ? y : x]
 by (metis assms intval-conditional.simps negates)
lemma negation-preserve-eval:
```

```
assumes [m, p] \vdash exp[!e] \mapsto v
 shows \exists v'. ([m, p] \vdash exp[e] \mapsto v') \land v = val[!v']
 using assms by auto
lemma negation-preserve-eval-intval:
 assumes [m, p] \vdash exp[!e] \mapsto v
 shows \exists v' \ b \ vv. \ ([m, p] \vdash exp[e] \mapsto v') \land v' = IntVal \ b \ vv \land b > 0
  by (metis assms eval-bits-1-64 intval-logic-negation.elims negation-preserve-eval
unfold-unary)
optimization NegateConditionFlipBranches: ((!e) ? x : y) \mapsto (e ? y : x)
 apply simp apply (rule allI; rule allI; rule allI; rule impI)
 subgoal premises p for m p v
 proof -
   obtain ev where ev: [m,p] \vdash e \mapsto ev
     using p by blast
   obtain notEv where notEv: notEv = intval-logic-negation ev
     by simp
   obtain lhs where lhs: [m,p] \vdash ConditionalExpr (UnaryExpr UnaryLogicNega-
tion \ e) \ x \ y \mapsto lhs
     using p by auto
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using lhs by blast
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using lhs by blast
   then show ?thesis
    by (smt (z3) le-expr-def ConditionalExpr ConditionalExprE Value.distinct(1)
evalDet negates p
        negation-preserve-eval negation-preserve-eval-intval)
 \mathbf{qed}
 done
optimization DefaultTrueBranch: (true ? x : y) \mapsto x.
optimization DefaultFalseBranch: (false ? x : y) \longmapsto y.
optimization Conditional Equal Branches: (e ? x : x) \longmapsto x.
optimization condition-bounds-x: ((u < v) ? x : y) \mapsto x
   when (stamp-under\ (stamp-expr\ u)\ (stamp-expr\ v)\ \land\ wf-stamp\ u\ \land\ wf-stamp\ v)
  using stamp-under-defn by fastforce
optimization condition-bounds-y: ((u < v) ? x : y) \mapsto y
   when (stamp-under\ (stamp-expr\ v)\ (stamp-expr\ u) \land wf-stamp\ u \land wf-stamp\ v)
  using stamp-under-defn-inverse by fastforce
```

```
lemma val-optimise-integer-test:
 assumes \exists v. x = IntVal \ 32 \ v
  shows val[((x \& (IntVal 32 1)) eq (IntVal 32 0)) ? (IntVal 32 0) : (IntVal 32 0)]
        val[x \& IntVal 32 1]
 using assms apply auto
 apply (metis (full-types) bool-to-val.simps(2) val-to-bool.simps(1))
 by (metis\ (mono-tags,\ lifting)\ bool-to-val.simps(1)\ val-to-bool.simps(1)\ even-iff-mod-2-eq-zero
     odd-iff-mod-2-eq-one and-one-eq)
optimization ConditionalEliminateKnownLess: ((x < y) ? x : y) \mapsto x
                             when (stamp-under\ (stamp-expr\ x)\ (stamp-expr\ y)
                                 \land wf-stamp x \land wf-stamp y)
 using stamp-under-defn by fastforce
lemma ExpIntBecomesIntVal:
 assumes stamp-expr \ x = IntegerStamp \ b \ xl \ xh
 assumes wf-stamp x
 assumes valid-value v (IntegerStamp b xl xh)
 assumes [m,p] \vdash x \mapsto v
 shows \exists xv. \ v = IntVal \ b \ xv
 using assms by (simp add: IRTreeEvalThms.valid-value-elims(3))
{f lemma}\ intval\text{-}self\text{-}is\text{-}true:
 assumes yv \neq UndefVal
 assumes yv = IntVal\ b\ yvv
 shows intval-equals yv \ yv = IntVal \ 32 \ 1
 using assms by (cases yv; auto)
lemma intval-commute:
 assumes intval-equals yv xv \neq UndefVal
 \mathbf{assumes}\ intval\text{-}equals\ xv\ yv \neq\ UndefVal
 shows intval-equals yv xv = intval-equals xv yv
 using assms apply (cases yv; cases xv; auto) by (smt (verit, best))
definition isBoolean :: IRExpr \Rightarrow bool where
 isBoolean\ e = (\forall\ m\ p\ cond.\ (([m,p] \vdash e \mapsto cond) \longrightarrow (cond \in \{IntVal\ 32\ 0,\ IntVal\ a)\})
32 1 })))
lemma preserveBoolean:
 assumes isBoolean c
 shows isBoolean exp[!c]
 using assms isBoolean-def apply auto
 by (metis (no-types, lifting) IntVal0 IntVal1 intval-logic-negation.simps(1) logic-negate-def)
optimization ConditionalIntegerEquals-1: exp[BinaryExpr BinIntegerEquals (c?
x:y)(x) \longmapsto c
```

```
when stamp-expr x = IntegerStamp \ b \ xl \ xh \ \land
wf-stamp x \land
                                             stamp\text{-}expr\ y = IntegerStamp\ b\ yl\ yh\ \land
wf-stamp y \land
                                         (alwaysDistinct\ (stamp-expr\ x)\ (stamp-expr\ x)
y)) \wedge
                                         isBoolean c
 apply (metis Canonicalization.cond-size add-lessD1 size-binary-lhs) apply auto
 subgoal premises p for m p cExpr xv cond
 proof -
   obtain cond where cond: [m,p] \vdash c \mapsto cond
     using p by blast
   have cRange: cond = IntVal \ 32 \ 0 \ \lor \ cond = IntVal \ 32 \ 1
     using p cond isBoolean-def by blast
   then obtain yv where yVal: [m,p] \vdash y \mapsto yv
     using p(15) by auto
   obtain xvv where xvv: xv = IntVal \ b \ xvv
     by (metis p(1,2,7) valid-int wf-stamp-def)
   obtain yvv where yvv: yv = IntVal \ b \ yvv
     by (metis\ ExpIntBecomesIntVal\ p(3,4)\ wf\text{-}stamp\text{-}def\ yVal)
   have yxDiff: xvv \neq yvv
     by (smt (verit, del-insts) yVal xvv wf-stamp-def valid-int-signed-range p yvv)
   have eqEvalFalse: intval-equals yv xv = (IntVal 32 0)
      unfolding xvv yvv apply auto by (metis (mono-tags) bool-to-val.simps(2)
yxDiff)
   then have valEvalSame: cond = intval-equals val[cond ? xv : yv] xv
     apply (cases cond = IntVal 32 0; simp) using cRange xvv by auto
   then have condTrue: val-to-bool \ cond \implies cExpr = xv
     by (metis (mono-tags, lifting) cond eval Det p(11) p(7) p(9))
   then have condFalse: \neg(val\text{-}to\text{-}bool\ cond) \Longrightarrow cExpr = yv
     by (metis (full-types) cond evalDet p(11) p(9) yVal)
   then have [m,p] \vdash c \mapsto intval\text{-}equals \ cExpr \ xv
     using cond condTrue valEvalSame by fastforce
   then show ?thesis
     by blast
 qed
 done
lemma negation-preserve-eval\theta:
 assumes [m, p] \vdash exp[e] \mapsto v
 assumes isBoolean e
 shows \exists v'. ([m, p] \vdash exp[!e] \mapsto v')
 using assms
proof -
  obtain b vv where vIntVal: v = IntVal b vv
   using isBoolean-def assms by blast
  then have negationDefined: intval-logic-negation v \neq UndefVal
   by simp
```

```
show ?thesis
   using assms(1) negationDefined by fastforce
qed
lemma negation-preserve-eval2:
 assumes ([m, p] \vdash exp[e] \mapsto v)
 assumes (isBoolean e)
 shows \exists v'. ([m, p] \vdash exp[!e] \mapsto v') \land v = val[!v']
 using assms
proof -
 obtain notEval where notEval: ([m, p] \vdash exp[!e] \mapsto notEval)
   by (metis assms negation-preserve-eval0)
 then have logicNegateEquiv: notEval = intval-logic-negation v
   using evalDet assms(1) unary-eval.simps(4) by blast
 then have vRange: v = IntVal 32 0 \lor v = IntVal 32 1
   using assms by (auto simp add: isBoolean-def)
 have evaluateNot: v = intval-logic-negation notEval
  \textbf{by} \ (metis\ Int Val0\ Int Val1\ int val-logic-negation. simps (1)\ logicNegate Equiv\ logic-negate-def
       vRange
 then show ?thesis
   using notEval by auto
qed
optimization ConditionalIntegerEquals-2: exp[BinaryExpr BinIntegerEquals (c?
x:y)(y) \longmapsto (!c)
                                      when stamp-expr x = IntegerStamp \ b \ xl \ xh \ \land
wf-stamp x \land
                                            stamp-expr\ y = IntegerStamp\ b\ yl\ yh\ \land
wf-stamp y \land
                                        (alwaysDistinct\ (stamp-expr\ x)\ (stamp-expr\ x)
y)) \wedge
                                        isBoolean c
 apply (smt (verit) not-add-less1 max-less-iff-conj max.absorb3 linorder-less-linear
add-2-eq-Suc'
       add-less-cancel-right size-binary-lhs add-lessD1 Canonicalization.cond-size)
 apply auto
 subgoal premises p for m p cExpr yv cond trE faE
 proof -
   obtain cond where cond: [m,p] \vdash c \mapsto cond
     using p by blast
   then have condNotUndef: cond \neq UndefVal
     by (simp add: evaltree-not-undef)
   then obtain notCond where notCond: [m,p] \vdash exp[!c] \mapsto notCond
     by (meson \ p(6) \ negation-preserve-eval2 \ cond)
   have cRange: cond = IntVal \ 32 \ 0 \ \lor \ cond = IntVal \ 32 \ 1
     using p cond by (simp add: isBoolean-def)
   then have cNotRange: notCond = IntVal 32 0 \lor notCond = IntVal 32 1
   by (metis (no-types, lifting) IntVal0 IntVal1 cond evalDet intval-logic-negation.simps(1)
        logic-negate-def negation-preserve-eval notCond)
```

```
then obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p by auto
   then have trueCond: (notCond = IntVal\ 32\ 1) \Longrightarrow [m,p] \vdash (ConditionalExpr
(c \ x \ y) \mapsto yv
     by (smt (verit, best) cRange evalDet negates negation-preserve-eval notCond
p(7) cond
         zero-less-numeral\ val-to-bool.simps(1)\ evaltree-not-undef\ Conditional Expr
         ConditionalExprE)
   obtain xvv where xvv: xv = IntVal \ b \ xvv
     by (metis p(1,2) valid-int wf-stamp-def xv)
   then have opposites: notCond = intval-logic-negation \ cond
     by (metis cond evalDet negation-preserve-eval notCond)
    then have negate: (intval-logic-negation cond = IntVal 32 0) \Longrightarrow (cond =
Int Val 32 1)
     using cRange intval-logic-negation.simps negates by fastforce
   have false Cond: (notCond = IntVal\ 32\ 0) \Longrightarrow [m,p] \vdash (ConditionalExpr\ c\ x\ y)
     unfolding opposites using negate cond eval Det p(13,14,15,16) xv by auto
   obtain yvv where yvv: yv = IntVal \ b \ yvv
     by (metis\ p(3,4,7)\ wf\text{-}stamp\text{-}def\ ExpIntBecomesIntVal})
   have yxDiff: xv \neq yv
    by (metis linorder-not-less max.absorb1 max.absorb4 max-less-iff-conj min-def
xv yvv
         wf-stamp-def valid-int-signed-range p(1,2,3,4,5,7)
   then have trueEvalCond: (cond = IntVal\ 32\ 0) \Longrightarrow
                     [m,p] \vdash exp[BinaryExpr\ BinIntegerEquals\ (c\ ?\ x:y)\ (y)]
                           \mapsto intval-equals yv yv
   by (smt (verit) cNotRange trueCond ConditionalExprE cond bin-eval.simps(13)
evalDet p
        falseCond\ unfold-binary\ val-to-bool.simps(1))
   then have falseEval: (notCond = IntVal\ 32\ 0) \Longrightarrow
                     [m,p] \vdash exp[BinaryExpr\ BinIntegerEquals\ (c\ ?\ x:y)\ (y)]
                           \mapsto intval\text{-}equals \ xv \ yv
      using p by (metis ConditionalExprE bin-eval.simps(13) evalDet falseCond
unfold-binary)
   have eqEvalFalse: intval-equals yv xv = (IntVal 32 0)
      unfolding xvv yvv apply auto by (metis (mono-tags) bool-to-val.simps(2)
yxDiff\ yvv\ xvv
   have trueEvalEquiv: [m,p] \vdash exp[BinaryExpr BinIntegerEquals (c ? x : y) (y)]
\mapsto notCond
     apply (cases notCond) prefer 2
    apply (metis\ IntVal0\ Value.distinct(1)\ eqEvalFalse\ evalDet\ evaltree-not-undef
falseEval \ p(6)
        intval\text{-}commute\ intval\text{-}logic\text{-}negation.simps(1)\ intval\text{-}self\text{-}is\text{-}true\ logic\text{-}negate\text{-}def
           negation-preserve-eval2 notCond trueEvalCond yvv cNotRange cond)
     using notCond cNotRange by auto
   show ?thesis
     using ConditionalExprE
     by (metis cNotRange falseEval notCond trueEvalEquiv trueCond falseCond
```

```
intval-self-is-true
        yvv \ p(9,11) \ evalDet)
 \mathbf{qed}
 done
optimization ConditionalExtractCondition: exp[(c ? true : false)] \mapsto c
                                   when isBoolean c
 using isBoolean-def by fastforce
optimization ConditionalExtractCondition2: exp[(c ? false : true)] \mapsto !c
                                   when isBoolean c
 apply auto
 subgoal premises p for m p cExpr cond
 proof-
   obtain cond where cond: [m,p] \vdash c \mapsto cond
     using p(2) by auto
   obtain notCond where notCond: [m,p] \vdash exp[!c] \mapsto notCond
     by (metis cond negation-preserve-eval p(1))
   then have cRange: cond = IntVal \ 32 \ 0 \ \lor \ cond = IntVal \ 32 \ 1
     using is Boolean-def cond p(1) by auto
   then have cExprRange: cExpr = IntVal~32~0 \lor cExpr = IntVal~32~1
     by (metis (full-types) ConstantExprE p(4))
   then have condTrue: cond = IntVal \ 32 \ 1 \implies cExpr = IntVal \ 32 \ 0
     using cond evalDet p(2) p(4) by fastforce
   then have condFalse: cond = IntVal \ 32 \ 0 \implies cExpr = IntVal \ 32 \ 1
     using p cond evalDet by fastforce
   then have opposite: cond = intval\text{-logic-negation } cExpr
   by (metis (full-types) IntVal0 IntVal1 cRange condTrue intval-logic-negation.simps(1)
        logic-negate-def)
   then have eq: notCond = cExpr
     by (metis (no-types, lifting) IntVal0 IntVal1 cExprRange cond evalDet nega-
tion-preserve-eval
        intval-logic-negation.simps(1) logic-negate-def notCond)
   then show ?thesis
     using notCond by auto
 qed
 done
optimization Conditional Equal Is RHS: ((x eq y) ? x : y) \mapsto y
 apply auto
 subgoal premises p for m p v true false xa ya
 proof-
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(8) by auto
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using p(9) by auto
   have notUndef: xv \neq UndefVal \land yv \neq UndefVal
     using evaltree-not-undef xv yv by blast
   have evalNotUndef: intval-equals xv \ yv \neq UndefVal
```

```
by (metis evalDet p(1,8,9) xv yv)
   obtain xb xvv where xvv: xv = IntVal xb xvv
    by (metis Value.exhaust evalNotUndef intval-equals.simps(3,4,5) notUndef)
   obtain yb yvv where yvv: yv = IntVal yb yvv
    by (metis evalNotUndef intval-equals.simps(7,8,9) intval-logic-negation.cases
notUndef)
   obtain vv where evalLHS: [m,p] \vdash if val\text{-to-bool} (intval-equals xv yv) then x
else y \mapsto vv
    by (metis (full-types) p(4) yv)
   obtain equ where equ: equ = intval-equals xv yv
     by fastforce
   have trueEval: equ = IntVal 32 1 \implies vv = xv
     using evalLHS by (simp add: evalDet xv equ)
   have falseEval: equ = IntVal 32 0 \implies vv = yv
     using evalLHS by (simp add: evalDet yv equ)
   then have vv = v
     by (metis evalDet evalLHS p(2,8,9) xv yv)
   then show ?thesis
    by (metis (full-types) bool-to-val.simps(1,2) bool-to-val-bin.simps equ evalNo-
tUndef\ falseEval
        intval-equals.simps(1) trueEval xvv yv yvv)
 \mathbf{qed}
 done
optimization normalizeX: ((x eq const (IntVal 32 0)) ?
                           (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto x
                        when stamp-expr x = IntegerStamp 32 0 1 \land wf-stamp x \land y
                               isBoolean x
 apply auto
 subgoal premises p for m p v
   proof -
     obtain xa where xa: [m,p] \vdash x \mapsto xa
      using p by blast
     have eval: [m,p] \vdash if val\text{-}to\text{-}bool (intval\text{-}equals xa (IntVal 32 0))}
                    then ConstantExpr (IntVal 32 0)
                    else ConstantExpr (IntVal 32 1) \mapsto v
       using evalDet p(3,4,5,6,7) xa by blast
      then have xaRange: xa = IntVal \ 32 \ 0 \ \lor \ xa = IntVal \ 32 \ 1
       using isBoolean-def p(3) xa by blast
     then have \theta: v = xa
      using eval xaRange by auto
     then show ?thesis
      by (auto simp: xa)
   qed
 done
optimization normalizeX2: ((x eq (const (IntVal 32 1))) ?
```

```
(const\ (IntVal\ 32\ 1)): (const\ (IntVal\ 32\ 0))) \longmapsto x
                               when (x = ConstantExpr (IntVal 32 0))
                                   (x = ConstantExpr (IntVal 32 1))).
optimization flip X: ((x \ eq \ (const \ (Int Val \ 32 \ 0))) \ ?
                       (const\ (Int Val\ 32\ 1)): (const\ (Int Val\ 32\ 0))) \longmapsto x \oplus (const\ (Int Val\ 32\ 0)))
(IntVal 32 1))
                         when (x = ConstantExpr (Int Val 32 0))
                              (x = ConstantExpr(IntVal 32 1))).
optimization flipX2: ((x eq (const (IntVal 32 1))) ?
                            (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto x \oplus
(const (IntVal 32 1))
                          when (x = ConstantExpr (IntVal 32 0))
                               (x = ConstantExpr (IntVal 32 1))).
lemma stamp-of-default:
 assumes stamp-expr \ x = default-stamp
 assumes wf-stamp x
 shows ([m, p] \vdash x \mapsto v) \longrightarrow (\exists vv. \ v = IntVal \ 32 \ vv)
 by (metis assms default-stamp valid-value-elims(3) wf-stamp-def)
optimization OptimiseIntegerTest:
    (((x \& (const (IntVal 32 1))) eq (const (IntVal 32 0))) ?
     (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto
      x & (const (IntVal 32 1))
      when (stamp-expr \ x = default-stamp \land wf-stamp \ x)
 apply (simp; rule impI; (rule allI)+; rule impI)
 subgoal premises eval for m p v
proof -
  obtain xv where xv: [m, p] \vdash x \mapsto xv
   using eval by fast
 then have x32: \exists v. xv = IntVal 32 v
   using stamp-of-default eval by auto
 obtain lhs where lhs: [m, p] \vdash exp[(((x \& (const (Int Val 32 1))) eq (const (Int Val 32 1)))]
32 0))) ?
                             (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1)))] \mapsto lhs
   using eval(2) by auto
 then have lhsV: lhs = val[((xv & (IntVal 32 1)) eq (IntVal 32 0)) ?
                     (IntVal\ 32\ 0): (IntVal\ 32\ 1)]
    using ConditionalExprE ConstantExprE bin-eval.simps(4,11) evalDet xv un-
fold-binary
        intval\hbox{-}conditional.simps
   by fastforce
  obtain rhs where rhs: [m, p] \vdash exp[x \& (const (Int Val 32 1))] \mapsto rhs
   using eval(2) by blast
  then have rhsV: rhs = val[xv \& IntVal 32 1]
```

```
by (metis BinaryExprE ConstantExprE bin-eval.simps(6) evalDet xv)
     have lhs = rhs
          using val-optimise-integer-test x32 lhsV rhsV by presburger
      then show ?thesis
          by (metis eval(2) evalDet lhs rhs)
qed
     done
optimization opt-optimise-integer-test-2:
            (((x \& (const (IntVal 32 1))) eq (const (IntVal 32 0))) ?
                               (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto x
                                    when (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr (IntVal 32 0)) | (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr (IntVal 32 0)) | (x = Consta
32 1))) .
end
end
                    MulNode Phase
1.6
theory MulPhase
     imports
           Common
           Proofs.StampEvalThms
begin
fun mul-size :: IRExpr \Rightarrow nat where
     mul-size (UnaryExpr\ op\ e) = (mul-size e) + 2
     mul-size (BinaryExpr\ BinMul\ x\ y) = ((mul-size x) + (mul-size y) + 2) * 2
     mul-size (BinaryExpr\ op\ x\ y) = (mul-size x) + (mul-size y) + 2
     mul-size (ConditionalExpr cond t f) = (mul-size cond) + (mul-size t) + (mul-size
f) + 2 |
      mul-size (ConstantExpr\ c) = 1
      mul-size (ParameterExpr\ ind\ s) = 2 |
     mul-size (LeafExpr\ nid\ s) = 2
      mul-size (Constant Var c) = 2
```

mul-size (VariableExpr x s) = 2

phase MulNode

begin

terminating mul-size

```
{\bf lemma}\ bin-eliminate-redundant-negative:
  uminus\ (x:: 'a::len\ word)*uminus\ (y:: 'a::len\ word) = x*y
 by simp
lemma bin-multiply-identity:
(x :: 'a :: len word) * 1 = x
 by simp
{\bf lemma}\ bin-multiply-eliminate:
(x :: 'a :: len word) * \theta = \theta
 by simp
\mathbf{lemma}\ \textit{bin-multiply-negative}\colon
(x :: 'a :: len word) * uminus 1 = uminus x
 by simp
\mathbf{lemma}\ \mathit{bin-multiply-power-2}\colon
(x:: 'a::len \ word) * (2^j) = x << j
 by simp
lemma take-bit64[simp]:
 fixes w :: int64
 shows take-bit 64 w = w
proof -
 have Nat.size w = 64
   by (simp add: size64)
 then show ?thesis
  by (metis lt2p-lem mask-eq-iff take-bit-eq-mask verit-comp-simplify1(2) wsst-TYs(3))
qed
lemma mergeTakeBit:
 \mathbf{fixes}\ a::\ nat
 fixes b c :: 64 word
 shows take-bit a (take-bit a (b) * take-bit a (c)) =
        take-bit\ a\ (b*c)
by (smt (verit, ccfv-SIG) take-bit-mult take-bit-of-int unsigned-take-bit-eq word-mult-def)
{\bf lemma}\ val\text{-}eliminate\text{-}redundant\text{-}negative\text{:}
 assumes val[-x * -y] \neq UndefVal
 \mathbf{shows} \ val[-x * -y] = val[x * y]
 by (cases x; cases y; auto simp: mergeTakeBit)
lemma val-multiply-neutral:
 assumes x = new\text{-}int \ b \ v
 shows val[x * (IntVal \ b \ 1)] = x
```

```
by (auto simp: assms)
{\bf lemma}\ val\text{-}multiply\text{-}zero:
 assumes x = new\text{-}int \ b \ v
 shows val[x * (IntVal \ b \ \theta)] = IntVal \ b \ \theta
 by (simp add: assms)
lemma val-multiply-negative:
 assumes x = new\text{-}int \ b \ v
 shows val[x * -(IntVal \ b \ 1)] = val[-x]
 \mathbf{unfolding}\ \mathit{assms}(1)\ \mathbf{apply}\ \mathit{auto}
 by (metis bin-multiply-negative mergeTakeBit take-bit-minus-one-eq-mask)
lemma val-MulPower2:
 fixes i :: 64 \ word
 assumes y = IntVal\ 64\ (2 \cap unat(i))
          0 < i
 and
 and
          i < 64
          val[x * y] \neq UndefVal
 shows val[x * y] = val[x << IntVal 64 i]
  using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
   proof -
     have 63: (63::int64) = mask 6
       by eval
     then have (2::int) \cap 6 = 64
      \mathbf{bv} eval
     then have uint \ i < (2::int) \ \widehat{\phantom{a}} \ 6
     by (metis linorder-not-less lt2p-lem of-int-numeral p(4) word-2p-lem word-of-int-2p
          wsst-TYs(3)
     then have and i \pmod{6} = i
       using mask-eq-iff by blast
     then show x2 \ll unat i = x2 \ll unat (and i (63::64 word))
       by (auto simp: 63)
   \mathbf{qed}
 by presburger
lemma val-MulPower2Add1:
 fixes i :: 64 \ word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) + 1)
          0 < i
 and
          i < 64
 and
          val-to-bool(val[IntVal\ 64\ 0< x])
 and
          val-to-bool(val[IntVal\ 64\ 0\ <\ y])
 and
 shows val[x * y] = val[(x << IntVal 64 i) + x]
 using assms apply (cases x; cases y; auto)
```

```
subgoal premises p for x2
 proof -
   have 63: (63 :: int64) = mask 6
    by eval
   then have (2 :: int) \hat{\phantom{a}} 6 = 64
    by eval
   then have and i \pmod{6} = i
     by (simp add: less-mask-eq p(6))
   then have x2 * (2 \cap unat i + 1) = (x2 * (2 \cap unat i)) + x2
     by (simp add: distrib-left)
   then show x2 * (2 \cap unat i + 1) = x2 << unat (and i 63) + x2
     by (simp add: 63 \( and i \) (mask 6) = i\( )
   qed
 using val-to-bool.simps(2) by presburger
lemma val-MulPower2Sub1:
 fixes i :: 64 word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) - 1)
 and
          0 < i
 and
          i < 64
 and
          val-to-bool(val[IntVal\ 64\ 0< x])
 and
          val-to-bool(val[IntVal\ 64\ 0\ <\ y])
 shows val[x * y] = val[(x << IntVal 64 i) - x]
 using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
 proof -
   have 63: (63::int64) = mask 6
    by eval
   then have (2 :: int) \cap 6 = 64
    by eval
   then have and i \pmod{6} = i
    by (simp \ add: \ less-mask-eq \ p(6))
   then have x2 * (2 ^unat i - 1) = (x2 * (2 ^unat i)) - x2
    by (simp add: right-diff-distrib')
   then show x^2 * (2 \cap unat i - 1) = x^2 << unat (and i 63) - x^2
     by (simp add: 63 \langle and i (mask 6) = i\rangle)
   qed
 using val-to-bool.simps(2) by presburger
{f lemma}\ val	ext{-} distribute	ext{-} multiplication:
 assumes x = IntVal\ b\ xx \land q = IntVal\ b\ qq \land a = IntVal\ b\ aa
 assumes val[x * (q + a)] \neq UndefVal
 assumes val[(x * q) + (x * a)] \neq UndefVal
 shows val[x * (q + a)] = val[(x * q) + (x * a)]
 using assms apply (cases x; cases q; cases a; auto)
 by (metis (no-types, opaque-lifting) distrib-left new-int.elims new-int-unused-bits-zero
     mergeTakeBit)
```

```
\mathbf{lemma}\ \mathit{val-distribute-multiplication 64}:
 assumes x = new\text{-}int \ 64 \ xx \land q = new\text{-}int \ 64 \ qq \land a = new\text{-}int \ 64 \ aa
 shows val[x * (q + a)] = val[(x * q) + (x * a)]
 using assms apply (cases x; cases q; cases a; auto)
 using distrib-left by blast
\mathbf{lemma}\ val\text{-}MulPower2AddPower2:
  fixes i j :: 64 word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) + (2 \cap unat(j)))
 and
          0 < i
 and
          0 < j
 and
          i < 64
 and
          j < 64
 and
          x = new-int 64 xx
 shows val[x * y] = val[(x << Int Val 64 i) + (x << Int Val 64 j)]
 proof -
   have 63: (63::int64) = mask 6
     by eval
   then have (2 :: int) \hat{\phantom{a}} 6 = 64
     by eval
   then have n: IntVal\ 64\ ((2 \cap unat(i)) + (2 \cap unat(j))) =
           val[(IntVal\ 64\ (2\ \widehat{\ }unat(i)))+(IntVal\ 64\ (2\ \widehat{\ }unat(j)))]
     by auto
  then have 1: val[x * ((IntVal 64 (2 \cap unat(i))) + (IntVal 64 (2 \cap unat(j))))]
               val[(x * IntVal 64 (2 \cap unat(i))) + (x * IntVal 64 (2 \cap unat(j)))]
    using assms val-distribute-multiplication 64 by simp
  then have 2: val[(x * IntVal 64 (2 \cap unat(i)))] = val[x << IntVal 64 i]
      by (metis\ (no\text{-}types,\ opaque\text{-}lifting)\ Value.distinct(1)\ intval\text{-}mul.simps(1)
new\text{-}int.simps
        new-int-bin.simps \ assms(2,4,6) \ val-MulPower2)
  then show ?thesis
   by (metis (no-types, lifting) 1 Value.distinct(1) n intval-mul.simps(1) new-int-bin.elims
        new-int.simps\ val-MulPower2\ assms(1,3,5,6))
  qed
thm-oracles val-MulPower2AddPower2
lemma exp-multiply-zero-64:
 shows exp[x * (const (IntVal \ b \ \theta))] \ge ConstantExpr (IntVal \ b \ \theta)
 apply auto
 subgoal premises p for m p xa
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
```

```
using p(1) by auto
   obtain xb xvv where xvv: xv = IntVal xb xvv
   by (metis evalDet p(1,2) xv evaltree-not-undef intval-is-null cases intval-mul.simps(3,4,5))
   then have evalNotUndef: val[xv * (IntVal \ b \ 0)] \neq UndefVal
     using p evalDet xv by blast
   then have mulUnfold: val[xv * (IntVal \ b \ 0)] = IntVal \ xb \ (take-bit \ xb \ (xvv*0))
     by (metis new-int.simps xvv new-int-bin.simps intval-mul.simps(1))
   then have isZero: val[xv * (IntVal \ b \ \theta)] = (new-int \ xb \ (\theta))
     by (simp add: mulUnfold)
   then have eq: (IntVal\ b\ \theta) = (IntVal\ xb\ (\theta))
     by (metis\ Value.distinct(1)\ intval-mul.simps(1)\ mulUnfold\ new-int-bin.elims
xvv)
   then show ?thesis
     using evalDet isZero p(1,3) xv by fastforce
 done
lemma exp-multiply-neutral:
 exp[x * (const (IntVal \ b \ 1))] \ge x
 apply auto
 subgoal premises p for m p xa
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(1) by auto
   obtain xb xvv where xvv: xv = IntVal xb xvv
     by (smt (z3) evalDet intval-mul.elims p(1,2) xv)
   then have evalNotUndef: val[xv * (IntVal \ b \ 1)] \neq UndefVal
     using p evalDet xv by blast
   then have mulUnfold: val[xv * (IntVal \ b \ 1)] = IntVal \ xb \ (take-bit \ xb \ (xvv*1))
    by (metis new-int.simps xvv new-int-bin.simps intval-mul.simps(1))
   then show ?thesis
     by (metis bin-multiply-identity evalDet eval-unused-bits-zero p(1) xv xvv)
 qed
 done
thm-oracles exp-multiply-neutral
lemma exp-multiply-negative:
 exp[x * -(const (IntVal \ b \ 1))] \ge exp[-x]
 apply auto
 subgoal premises p for m p xa
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(1) by auto
   obtain xb xvv where xvv: xv = IntVal xb xvv
   by (metis array-length.cases evalDet evaltree-not-undef intval-mul.simps(3,4,5)
   then have rewrite: val[-(IntVal\ b\ 1)] = IntVal\ b\ (mask\ b)
    by simp
```

```
then have evalNotUndef: val[xv * -(IntVal \ b \ 1)] \neq UndefVal
    unfolding rewrite using evalDet p(1,2) xv by blast
   then have mulUnfold: val[xv * (IntVal \ b \ (mask \ b))] =
                      (if xb=b then (IntVal xb (take-bit xb (xvv*(mask xb)))) else
UndefVal)
    by (metis new-int.simps xvv new-int-bin.simps intval-mul.simps(1))
   then have sameWidth: xb=b
    by (metis evalNotUndef rewrite)
   then show ?thesis
   by (metis evalDet eval-unused-bits-zero new-int.elims p(1,2) rewrite unary-eval.simps(2)
xvv
        unfold-unary val-multiply-negative xv)
 qed
 done
lemma exp-MulPower2:
 fixes i :: 64 \ word
 assumes y = ConstantExpr (IntVal 64 (2 ^unat(i)))
         0 < i
 and
 and
         i < 64
         exp[x > (const\ IntVal\ b\ 0)]
 and
         exp[y > (const\ IntVal\ b\ \theta)]
 and
 shows exp[x * y] \ge exp[x << ConstantExpr (IntVal 64 i)]
 using ConstantExprE equiv-exprs-def unfold-binary assms by fastforce
lemma exp-MulPower2Add1:
 fixes i :: 64 \ word
 assumes y = ConstantExpr (IntVal 64 ((2 ^unat(i)) + 1))
         0 < i
 and
         i < 64
 and
         exp[x > (const\ IntVal\ b\ 0)]
 and
 and
         exp[y > (const\ IntVal\ b\ 0)]
          exp[x * y] \ge exp[(x << ConstantExpr(IntVal 64 i)) + x]
 using ConstantExprE equiv-exprs-def unfold-binary assms by fastforce
lemma exp-MulPower2Sub1:
 fixes i :: 64 word
 assumes y = ConstantExpr (IntVal 64 ((2 ^unat(i)) - 1))
 and
         0 < i
 and
         i < 64
         exp[x > (const\ IntVal\ b\ \theta)]
 and
 and
          exp[y > (const\ IntVal\ b\ 0)]
 shows exp[x * y] \ge exp[(x << ConstantExpr(IntVal 64 i)) - x]
 using ConstantExprE equiv-exprs-def unfold-binary assms by fastforce
\mathbf{lemma}\ exp\text{-}MulPower2AddPower2:
 fixes i j :: 64 word
 assumes y = ConstantExpr (IntVal 64 ((2 ^unat(i)) + (2 ^unat(j))))
 and
         0 < i
```

```
and
                      0 < j
   and
                     i < 64
                     j < 64
   and
                      exp[x > (const\ IntVal\ b\ 0)]
   and
                      exp[y > (const\ IntVal\ b\ \theta)]
   and
   shows exp[x * y] \ge exp[(x << ConstantExpr(IntVal 64 i)) + (x << ConstantExpr(IntVa
tExpr\ (IntVal\ 64\ j))]
    using ConstantExprE equiv-exprs-def unfold-binary assms by fastforce
lemma greaterConstant:
   fixes a \ b :: 64 \ word
   assumes a > b
   and
                      y = ConstantExpr (IntVal 32 a)
                      x = ConstantExpr (Int Val 32 b)
   shows exp[BinaryExpr\ BinIntegerLessThan\ y\ x] \ge exp[const\ (new-int\ 32\ 0)]
   using assms
   apply simp unfolding equiv-exprs-def apply auto
   sorry
lemma exp-distribute-multiplication:
    assumes stamp-expr \ x = IntegerStamp \ b \ xl \ xh
   assumes stamp-expr \ q = IntegerStamp \ b \ ql \ qh
   assumes stamp-expr\ y = IntegerStamp\ b\ yl\ yh
   assumes wf-stamp x
   assumes wf-stamp q
   assumes wf-stamp y
   shows exp[(x * q) + (x * y)] \ge exp[x * (q + y)]
   apply auto
   subgoal premises p for m p xa qa xb aa
   proof -
       obtain xv where xv: [m,p] \vdash x \mapsto xv
           using p by simp
       obtain qv where qv: [m,p] \vdash q \mapsto qv
           using p by simp
       obtain yv where yv: [m,p] \vdash y \mapsto yv
           using p by simp
       then obtain xvv where xvv: xv = IntVal\ b\ xvv
           by (metis assms(1,4) valid-int wf-stamp-def xv)
       then obtain qvv where qvv: qv = IntVal\ b\ qvv
           by (metis\ qv\ valid-int\ assms(2,5)\ wf-stamp-def)
       then obtain yvv where yvv: yv = IntVal\ b\ yvv
          by (metis\ yv\ valid-int\ assms(3,6)\ wf-stamp-def)
       then have rhsDefined: val[xv * (qv + yv)] \neq UndefVal
          by (simp \ add: xvv \ qvv)
       have val[xv * (qv + yv)] = val[(xv * qv) + (xv * yv)]
           using val-distribute-multiplication by (simp add: yvv qvv xvv)
       then show ?thesis
```

```
by (metis bin-eval.simps(1,3) BinaryExpr p(1,2,3,5,6) qv xv evalDet yv qvv
Value.distinct(1)
        yvv intval-add.simps(1))
  qed
 done
Optimisations
optimization EliminateRedundantNegative: -x * -y \longmapsto x * y
 apply auto
 by (metis\ BinaryExpr\ val-eliminate-redundant-negative\ bin-eval.simps(3))
optimization MulNeutral: x * ConstantExpr (IntVal \ b \ 1) \longmapsto x
 using exp-multiply-neutral by blast
optimization MulEliminator: x * ConstantExpr (IntVal b 0) \longrightarrow const (IntVal b 0)
\theta)
 using exp-multiply-zero-64 by fast
optimization MulNegate: x * -(const (IntVal \ b \ 1)) \longmapsto -x
 using exp-multiply-negative by presburger
fun isNonZero :: Stamp \Rightarrow bool where
 isNonZero (IntegerStamp b lo hi) = (lo > 0)
 isNonZero - = False
lemma isNonZero-defn:
 assumes isNonZero (stamp-expr x)
 assumes wf-stamp x
 shows ([m, p] \vdash x \mapsto v) \longrightarrow (\exists vv \ b. \ (v = IntVal \ b \ vv \land val-to-bool \ val[(IntVal \ b \ val-to-bool \ val]))
(0) < v(0)
 apply (rule impI) subgoal premises eval
proof -
 obtain b lo hi where xstamp: stamp-expr x = IntegerStamp b lo hi
   by (meson isNonZero.elims(2) assms)
 then obtain vv where vdef: v = IntVal\ b\ vv
   by (metis assms(2) eval valid-int wf-stamp-def)
 have lo > 0
   using assms(1) xstamp by force
 then have signed-above: int-signed-value b vv > 0
   using assms eval vdef xstamp wf-stamp-def by fastforce
 have take-bit b vv = vv
   using eval eval-unused-bits-zero vdef by auto
 then have vv > 0
  by (metis bit-take-bit-iff int-siqned-value.simps signed-eq-0-iff take-bit-of-0 siqned-above
      verit-comp-simplify1(1) word-gt-0 signed-take-bit-eq-if-positive)
 then show ?thesis
   using vdef signed-above by simp
qed
 done
```

```
\mathbf{lemma}\ ExpIntBecomesIntValArbitrary:
 assumes stamp-expr \ x = IntegerStamp \ b \ xl \ xh
 assumes wf-stamp x
 assumes valid-value v (IntegerStamp b xl xh)
 assumes [m,p] \vdash x \mapsto v
 shows \exists xv. \ v = IntVal \ b \ xv
 using assms by (simp add: IRTreeEvalThms.valid-value-elims(3))
optimization MulPower2: x * y \longmapsto x << const (IntVal 64 i)
                           when (i > 0 \land stamp\text{-}expr \ x = IntegerStamp \ 64 \ xl \ xh \land 
wf-stamp x \wedge
                               64 > i \land
                               y = exp[const (IntVal 64 (2 \cap unat(i)))])
  apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises eval for m p v
proof -
  obtain xv where xv: [m, p] \vdash x \mapsto xv
   using eval(2) by blast
  then have notUndef: xv \neq UndefVal
   by (simp add: evaltree-not-undef)
  obtain xb xvv where xvv: xv = IntVal xb xvv
   by (metis wf-stamp-def eval(1) ExpIntBecomesIntValArbitrary xv)
  then have w64: xb = 64
  by (metis wf-stamp-def intval-bits.simps ExpIntBecomesIntValArbitrary xv eval(1))
  obtain yv where yv: [m, p] \vdash y \mapsto yv
   using eval(1,2) by blast
  then have lhs: [m, p] \vdash exp[x * y] \mapsto val[xv * yv]
   by (metis\ bin-eval.simps(3)\ eval(1,2)\ evalDet\ unfold-binary\ xv)
 have [m, p] \vdash exp[const\ (IntVal\ 64\ i)] \mapsto val[(IntVal\ 64\ i)]
  by (smt (verit, ccfv-SIG) ConstantExpr constantAsStamp.simps(1) eval-bits-1-64
take-bit64 xv xvv
       validStampIntConst wf-value-def valid-value.simps(1) w64)
 then have rhs: [m, p] \vdash exp[x << const (IntVal 64 i)] \mapsto val[xv << (IntVal 64 i)]
  by (metis Value.simps(5) bin-eval.simps(10) intval-left-shift.simps(1) new-int.simps
xv \ xvv
       evaltree.BinaryExpr)
 have val[xv * yv] = val[xv << (IntVal 64 i)]
   by (metis ConstantExprE eval(1) evaltree-not-undef lhs yv val-MulPower2)
  then show ?thesis
   by (metis\ eval(1,2)\ evalDet\ lhs\ rhs)
qed
 done
optimization MulPower2Add1: x * y \longmapsto (x << const (IntVal 64 i)) + x
                           when (i > 0 \land stamp\text{-}expr \ x = IntegerStamp \ 64 \ xl \ xh \land 
wf-stamp x \land
                               64 > i \land
```

```
y = ConstantExpr (IntVal 64 ((2 \cap unat(i)) + 1)))
  apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises p for m p v
 proof -
   obtain xv where xv: [m, p] \vdash x \mapsto xv
     using p by fast
   then obtain xvv where xvv: xv = IntVal 64 xvv
     using p by (metis valid-int wf-stamp-def)
   obtain yv where yv: [m, p] \vdash y \mapsto yv
     using p by blast
   have ygezero: y > ConstantExpr (IntVal 64 0)
     using greaterConstant p wf-value-def sorry
   then have 1: \theta < i \wedge
               i < 64 \ \land
               y = ConstantExpr (IntVal 64 ((2 ^unat(i)) + 1))
     using p by blast
   then have lhs: [m, p] \vdash exp[x * y] \mapsto val[xv * yv]
     by (metis\ bin-eval.simps(3)\ evalDet\ p(2)\ xv\ yv\ unfold-binary)
   then have [m, p] \vdash exp[const\ (IntVal\ 64\ i)] \mapsto val[(IntVal\ 64\ i)]
   by (metis wf-value-def verit-comp-simplify1(2) zero-less-numeral ConstantExpr
take-bit64
         constantAsStamp.simps(1) \ validStampIntConst \ valid-value.simps(1))
   then have rhs2: [m, p] \vdash exp[x << const (IntVal 64 i)] \mapsto val[xv << (IntVal 64 i)]
   by (metis Value.simps(5) bin-eval.simps(10) intval-left-shift.simps(1) new-int.simps
xv \ xvv
        evaltree.BinaryExpr)
   then have rhs: [m, p] \vdash exp[(x << const (IntVal 64 i)) + x] \mapsto val[(xv <<
(IntVal\ 64\ i)) + xv
    by (metis\ (no\text{-}types,\ lifting)\ intval\text{-}add.simps(1)\ bin\text{-}eval.simps(1)\ Value.simps(5)
xv \ xvv
         evaltree.BinaryExpr\ intval-left-shift.simps(1)\ new-int.simps)
   then have simple: val[xv * (IntVal 64 (2 \cap unat(i)))] = val[xv << (IntVal 64)]
i)
     using val-MulPower2 sorry
    then have val[xv * yv] = val[(xv << (IntVal 64 i)) + xv]
      using val-MulPower2Add1 sorry
    then show ?thesis
      by (metis 1 evalDet lhs p(2) rhs)
 qed
 done
optimization MulPower2Sub1: x * y \longmapsto (x << const (IntVal 64 i)) - x
                          when (i > 0 \land stamp\text{-}expr \ x = IntegerStamp \ 64 \ xl \ xh \land 
wf-stamp x \land
                               y = ConstantExpr (IntVal 64 ((2 \cap unat(i)) - 1)))
  apply simp apply (rule impI; (rule allI)+; rule impI)
```

```
subgoal premises p for m p v
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p by fast
   then obtain xvv where xvv: xv = IntVal 64 xvv
     using p by (metis valid-int wf-stamp-def)
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using p by blast
   have ygezero: y > ConstantExpr (IntVal 64 0) sorry
   then have 1: \theta < i \wedge
               i < 64 \land
               y = ConstantExpr (IntVal 64 ((2 \cap unat(i)) - 1))
     using p by blast
   then have lhs: [m, p] \vdash exp[x * y] \mapsto val[xv * yv]
     by (metis\ bin-eval.simps(3)\ evalDet\ p(2)\ xv\ yv\ unfold-binary)
   then have [m, p] \vdash exp[const\ (IntVal\ 64\ i)] \mapsto val[(IntVal\ 64\ i)]
   by (metis wf-value-def verit-comp-simplify1(2) zero-less-numeral ConstantExpr
take-bit64
        constantAsStamp.simps(1) \ validStampIntConst \ valid-value.simps(1))
   then have rhs2: [m, p] \vdash exp[x << const (IntVal 64 i)] \mapsto val[xv << (IntVal 64 i)]
   by (metis\ Value.simps(5)\ bin-eval.simps(10)\ intval-left-shift.simps(1)\ new-int.simps
xv \ xvv
         evaltree.BinaryExpr)
    then have rhs: [m, p] \vdash exp[(x << const (IntVal 64 i)) - x] \mapsto val[(xv <<
(IntVal\ 64\ i)) - xv
     using 1 equiv-exprs-def ygezero yv by fastforce
   then have val[xv * yv] = val[(xv << (IntVal 64 i)) - xv]
      \mathbf{using} \ 1 \ exp\text{-}MulPower2Sub1 \ ygezero \ \mathbf{sorry}
    then show ?thesis
     by (metis evalDet lhs p(1) p(2) rhs)
 qed
done
end
end
1.7
       Experimental AndNode Phase
theory NewAnd
 imports
   Common
   Graph. JavaLong
begin
{\bf lemma}\ intval\text{-} distribute\text{-} and\text{-} over\text{-} or:
  val[z \& (x | y)] = val[(z \& x) | (z \& y)]
 by (cases x; cases y; cases z; auto simp add: bit.conj-disj-distrib)
```

```
{f lemma}\ exp	ext{-} distribute	ext{-} and	ext{-} over	ext{-} or:
  exp[z \& (x | y)] \ge exp[(z \& x) | (z \& y)]
 apply auto
 by (metis\ bin-eval.simps(6,7)\ intval-or.simps(2,6)\ intval-distribute-and-over-or
BinaryExpr)
lemma intval-and-commute:
  val[x \& y] = val[y \& x]
 by (cases x; cases y; auto simp: and.commute)
\mathbf{lemma}\ intval\text{-}or\text{-}commute:
  val[x \mid y] = val[y \mid x]
 by (cases x; cases y; auto simp: or.commute)
lemma intval-xor-commute:
  val[x \oplus y] = val[y \oplus x]
 by (cases x; cases y; auto simp: xor.commute)
lemma exp-and-commute:
  exp[x \& z] \ge exp[z \& x]
 by (auto simp: intval-and-commute)
lemma exp-or-commute:
  exp[x \mid y] \ge exp[y \mid x]
 by (auto simp: intval-or-commute)
lemma exp-xor-commute:
  exp[x \oplus y] \ge exp[y \oplus x]
 by (auto simp: intval-xor-commute)
lemma intval-eliminate-y:
 assumes val[y \& z] = IntVal b \theta
 shows val[(x \mid y) \& z] = val[x \& z]
 using assms by (cases x; cases y; cases z; auto simp add: bit.conj-disj-distrib2)
{f lemma}\ intval	ext{-} and	ext{-} associative:
  val[(x \& y) \& z] = val[x \& (y \& z)]
 by (cases x; cases y; cases z; auto simp: and.assoc)
{f lemma}\ intval	ext{-}or	ext{-}associative:
  val[(x \mid y) \mid z] = val[x \mid (y \mid z)]
 by (cases x; cases y; cases z; auto simp: or.assoc)
{\bf lemma}\ intval\text{-}xor\text{-}associative:
  val[(x \oplus y) \oplus z] = val[x \oplus (y \oplus z)]
 by (cases x; cases y; cases z; auto simp: xor.assoc)
lemma exp-and-associative:
```

```
exp[(x \& y) \& z] \ge exp[x \& (y \& z)]
  using intval-and-associative by fastforce
lemma exp-or-associative:
  exp[(x \mid y) \mid z] \ge exp[x \mid (y \mid z)]
 using intval-or-associative by fastforce
lemma exp-xor-associative:
  exp[(x \oplus y) \oplus z] \ge exp[x \oplus (y \oplus z)]
 using intval-xor-associative by fastforce
lemma intval-and-absorb-or:
  assumes \exists b \ v \ . \ x = new\text{-}int \ b \ v
 assumes val[x \& (x \mid y)] \neq UndefVal
 shows val[x \& (x \mid y)] = val[x]
 using assms apply (cases x; cases y; auto)
 by (metis\ (full-types)\ intval-and.simps(6))
lemma intval-or-absorb-and:
 assumes \exists b \ v \ . \ x = new\text{-}int \ b \ v
 assumes val[x \mid (x \& y)] \neq UndefVal
 shows val[x \mid (x \& y)] = val[x]
 using assms apply (cases x; cases y; auto)
 by (metis (full-types) intval-or.simps(6))
lemma exp-and-absorb-or:
  exp[x \& (x \mid y)] \ge exp[x]
 apply auto
 subgoal premises p for m p xa xaa ya
 proof-
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(1) by auto
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using p(4) by auto
   then have lhsDefined: val[xv \& (xv | yv)] \neq UndefVal
     by (metis evalDet p(1,2,3,4) xv)
   obtain xb xvv where xvv: xv = IntVal xb xvv
     by (metis Value.exhaust-sel intval-and.simps(2,3,4,5) lhsDefined)
   obtain yb yvv where yvv: yv = IntVal yb yvv
    by (metis Value.exhaust-sel intval-and.simps(6) intval-or.simps(6,7,8,9) lhs-
Defined)
   then have valEval: val[xv \& (xv | yv)] = val[xv]
     by (metis eval-unused-bits-zero intval-and-absorb-or lhsDefined new-int.elims
xv \ xvv)
   then show ?thesis
     by (metis evalDet p(1,3,4) xv yv)
 qed
 done
```

```
lemma exp-or-absorb-and:
 exp[x \mid (x \& y)] \ge exp[x]
 apply auto
 subgoal premises p for m p xa xaa ya
 proof-
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(1) by auto
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using p(4) by auto
   then have lhsDefined: val[xv \mid (xv \& yv)] \neq UndefVal
    by (metis evalDet p(1,2,3,4) xv)
   obtain xb xvv where xvv: xv = IntVal xb xvv
    by (metis Value.exhaust-sel intval-and.simps(3,4,5) intval-or.simps(2,6) lhs-
Defined)
   obtain yb yvv where yvv: yv = IntVal yb yvv
    by (metis Value.exhaust-sel intval-and.simps(6,7,8,9) intval-or.simps(6) lhs-
Defined)
   then have valEval: val[xv \mid (xv \& yv)] = val[xv]
    by (metis eval-unused-bits-zero intval-or-absorb-and lhsDefined new-int.elims
xv \ xvv)
   then show ?thesis
    by (metis evalDet p(1,3,4) xv yv)
 qed
 done
lemma
 assumes y = \theta
 shows x + y = or x y
 by (simp add: assms)
lemma no-overlap-or:
 assumes and x y = 0
 shows x + y = or x y
 by (metis bit-and-iff bit-xor-iff disjunctive-add xor-self-eq assms)
\mathbf{context}\ \mathit{stamp\text{-}mask}
begin
{f lemma}\ intval-up-and-zero-implies-zero:
 assumes and (\uparrow x) (\uparrow y) = 0
```

```
assumes [m, p] \vdash x \mapsto xv
 assumes [m, p] \vdash y \mapsto yv
 \mathbf{assumes}\ val[xv\ \&\ yv] \neq\ UndefVal
 shows \exists b \cdot val[xv \& yv] = new\text{-}int b \theta
 using assms apply (cases xv; cases yv; auto)
 apply (metis eval-unused-bits-zero stamp-mask.up-mask-and-zero-implies-zero stamp-mask-axioms)
 by presburger
lemma exp-eliminate-y:
  and (\uparrow y) \ (\uparrow z) = 0 \longrightarrow exp[(x \mid y) \& z] \ge exp[x \& z]
  apply simp apply (rule impI; rule allI; rule allI; rule allI)
 subgoal premises p for m p v apply (rule \ impI) subgoal premises e
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using e by auto
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using e by auto
   obtain zv where zv: [m,p] \vdash z \mapsto zv
     using e by auto
   have lhs: v = val[(xv \mid yv) \& zv]
     by (smt (verit, best) BinaryExprE bin-eval.simps(6,7) e evalDet xv yv zv)
   then have v = val[(xv \& zv) \mid (yv \& zv)]
     by (simp add: intval-and-commute intval-distribute-and-over-or)
   also have \exists b. \ val[yv \& zv] = new\text{-}int \ b \ 0
   by (metis\ calculation\ e\ intval-or.simps(6)\ p\ unfold-binary\ intval-up-and-zero-implies-zero
yv
   ultimately have rhs: v = val[xv \& zv]
     by (auto simp: intval-eliminate-y lhs)
   from lhs rhs show ?thesis
     by (metis BinaryExpr BinaryExprE bin-eval.simps(6) e xv zv)
 qed
  done
 done
lemma leadingZeroBounds:
 fixes x :: 'a :: len word
 assumes n = numberOfLeadingZeros x
 shows 0 \le n \land n \le Nat.size x
  by (simp add: MaxOrNeg-def highestOneBit-def nat-le-iff numberOfLeadingZe-
ros-def assms)
lemma above-nth-not-set:
 fixes x :: int64
 assumes n = 64 - numberOfLeadingZeros x
 shows j > n \longrightarrow \neg(bit \ x \ j)
 by (smt (verit, ccfv-SIG) highestOneBit-def int-nat-eq int-ops(6) less-imp-of-nat-less
size 64
     max-set-bit zerosAboveHighestOne assms numberOfLeadingZeros-def)
```

```
no-notation LogicNegationNotation (!-)
lemma zero-horner:
 horner-sum of-bool 2 (map (\lambda x. False) xs) = 0
 by (induction xs; auto)
lemma zero-map:
 assumes j \leq n
 assumes \forall i. j \leq i \longrightarrow \neg(f i)
 shows map \ f \ [0..< n] = map \ f \ [0..< j] @ map \ (\lambda x. \ False) \ [j..< n]
 by (smt\ (verit,\ del\text{-}insts)\ add\text{-}diff\text{-}inverse\text{-}nat\ at Least Less Than\text{-}iff\ bot\text{-}nat\text{-}0\ .extremum}
leD assms
     map-append map-eq-conv set-upt upt-add-eq-append)
lemma map-join-horner:
 assumes map f [0..< n] = map f [0..< j] @ map (\lambda x. False) [j..< n]
 shows horner-sum of-bool (2::'a::len word) (map f [0..< n]) = horner-sum of-bool
2 (map \ f \ [0..< j])
proof -
 have horner-sum of-bool (2::'a::len word) (map f [0..< n]) = horner-sum of-bool
2 \pmod{f[0...< j]} + 2 \cap length[0...< j] * horner-sum of-bool 2 \pmod{f[j...< n]}
   using assms apply auto
    by (smt (verit) assms diff-le-self diff-zero le-add-same-cancel2 length-append
length-map
       length-upt map-append upt-add-eq-append horner-sum-append)
  also have ... = horner-sum of-bool 2 (map f [0..< j]) + 2 \widehat{} length [0..< j] *
horner-sum of-bool 2 (map (\lambda x. False) [j..<n])
   by (metis calculation horner-sum-append length-map assms)
 also have ... = horner-sum of-bool 2 (map f [0..< j])
   using zero-horner mult-not-zero by auto
 finally show ?thesis
   by simp
qed
lemma split-horner:
 assumes j \leq n
 assumes \forall i. j \leq i \longrightarrow \neg(f i)
 shows horner-sum of-bool (2::'a::len\ word)\ (map\ f\ [0..< n]) = horner-sum\ of-bool
2 (map f [0..< j])
 by (auto simp: assms zero-map map-join-horner)
lemma transfer-map:
 assumes \forall i. i < n \longrightarrow f i = f' i
 shows (map f [0..< n]) = (map f' [0..< n])
 by (simp add: assms)
lemma transfer-horner:
 assumes \forall i. i < n \longrightarrow f i = f' i
```

```
shows horner-sum of-bool (2::'a::len word) (map f[0..< n]) = horner-sum of-bool
2 (map f' [0..< n])
 by (smt (verit, best) assms transfer-map)
lemma L1:
 assumes n = 64 - numberOfLeadingZeros (\uparrow z)
 assumes [m, p] \vdash z \mapsto IntVal\ b\ zv
 shows and v zv = and (v mod <math>2^n) zv
proof -
 have nle: n \leq 64
   using assms diff-le-self by blast
 also have and v zv = horner-sum of-bool 2 (map (bit (and v zv)) [0...<64])
   by (metis size-word.rep-eq take-bit-length-eq horner-sum-bit-eq-take-bit size64)
 also have ... = horner-sum of-bool 2 (map (\lambda i. bit (and v zv) i) [0..<64])
   by blast
 also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit v i) \wedge (bit zv i))) [0..<64])
   by (metis bit-and-iff)
 also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit v i) \wedge (bit zv i))) [\theta ... < n])
 proof -
   have \forall i. i \geq n \longrightarrow \neg(bit\ zv\ i)
       by (smt (verit, ccfv-SIG) One-nat-def diff-less int-ops(6) leadingZerosAd-
dHighestOne\ assms
      linorder-not-le\ nat-int-comparison(2)\ not-numeral-le-zero\ size 64\ zero-less-Suc
         zerosAboveHighestOne not-may-implies-false)
   then have \forall i. i \geq n \longrightarrow \neg((bit \ v \ i) \land (bit \ zv \ i))
   then show ?thesis using nle split-horner
     by (metis (no-types, lifting))
  qed
  also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit (v \mod 2^{\hat{}} n) i) \wedge (bit zv
i))) [\theta ... < n])
 proof -
   have \forall i. i < n \longrightarrow bit (v \bmod 2^n) i = bit v i
     by (metis bit-take-bit-iff take-bit-eq-mod)
   then have \forall i. i < n \longrightarrow ((bit \ v \ i) \land (bit \ zv \ i)) = ((bit \ (v \ mod \ 2 \widehat{\ n}) \ i) \land (bit \ v \ i))
zv(i)
     by force
   then show ?thesis
     by (rule transfer-horner)
 qed
  also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit (v \mod 2^n) i) \wedge (bit zv
i))) [0..<64])
 proof -
   have \forall i. i \geq n \longrightarrow \neg(bit \ zv \ i)
       by (smt (verit, ccfv-SIG) One-nat-def diff-less int-ops(6) leadingZerosAd-
dHighestOne \ assms
      linorder-not-le nat-int-comparison(2) not-numeral-le-zero size64 zero-less-Suc
```

```
zerosAboveHighestOne not-may-implies-false)
   then show ?thesis
     by (metis (no-types, lifting) assms(1) diff-le-self split-horner)
 also have ... = horner-sum of-bool 2 (map (bit (and (v mod 2^n) zv)) [0...<64])
   by (meson bit-and-iff)
  also have ... = and (v \mod 2 \hat{n}) zv
   by (metis size-word.rep-eq take-bit-length-eq horner-sum-bit-eq-take-bit size64)
  finally show ?thesis
     using \langle and (v::64 \ word) (zv::64 \ word) = horner-sum \ of-bool (2::64 \ word)
(map\ (bit\ (and\ v\ zv))\ [0::nat..<64::nat]) \land (horner-sum\ of-bool\ (2::64\ word)\ (map\ v)
(\lambda i::nat. bit ((v::64 \ word) \ mod \ (2::64 \ word) \ \widehat{\ } (n::nat)) i \land bit \ (zv::64 \ word)
i) [0::nat..<64::nat]) = horner-sum\ of-bool\ (2::64\ word)\ (map\ (bit\ (and\ (v\ mod\ v))))
(2::64 \ word) \ \hat{\ } n) \ zv)) \ [0::nat..<64::nat]) \land (horner-sum \ of-bool \ (2::64 \ word) \ (map)
(\lambda i::nat.\ bit\ ((v::64\ word)\ mod\ (2::64\ word)\ ^(n::nat))\ i\ \wedge\ bit\ (zv::64\ word)\ i)
[0::nat..< n] = horner-sum of-bool (2::64 word) (map (\lambda i::nat. bit (v mod (2::64)
word) \widehat{} n) i \wedge bit zv i) [0::nat..<64::nat]) \land (horner-sum of-bool (2::64 word))
(map\ (\lambda i::nat.\ bit\ (v::64\ word)\ i\ \land\ bit\ (zv::64\ word)\ i)\ [0::nat..<64::nat]) =
horner-sum of-bool (2::64 word) (map (\lambda i::nat. bit v i \wedge bit zv i) [0::nat..<n::nat])
\langle horner-sum of-bool (2::64 word) (map (\lambda i::nat. bit (v::64 word) i \wedge bit (zv::64
word) i) [0::nat.. < n::nat] = horner-sum\ of-bool\ (2::64\ word)\ (map\ (\lambda i::nat.\ bit
(v \mod (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat..< n]) \land (horner-sum of-bool (2::64 \mod ))
word) \ (map \ (bit \ (and \ ((v::64 \ word) \ mod \ (2::64 \ word) \ ^(n::nat)) \ (zv::64 \ word)))
[0::nat..<64::nat]) = and (v mod (2::64 word) ^n) zv \land horner-sum of-bool (2::64 word) ^n)
word) (map\ (bit\ (and\ (v::64\ word)\ (zv::64\ word)))\ [0::nat..<64::nat]) = horner-sum
of-bool (2::64 word) (map (\lambda i::nat. bit v i \wedge bit zv i) [0::nat..<64::nat]) by pres-
burger
\mathbf{qed}
lemma up-mask-upper-bound:
  assumes [m, p] \vdash x \mapsto IntVal\ b\ xv
 shows xv \leq (\uparrow x)
 by (metis (no-types, lifting) and right-neutral bit.conj-cancel-left bit.conj-disj-distribs(1)
     bit.double-compl ucast-id up-spec word-and-le1 word-not-dist(2) assms)
lemma L2:
  assumes numberOfLeadingZeros (\uparrow z) + numberOfTrailingZeros (\uparrow y) \geq 64
 assumes n = 64 - numberOfLeadingZeros (\uparrow z) assumes [m, p] \vdash z \mapsto IntVal\ b\ zv
  assumes [m, p] \vdash y \mapsto IntVal\ b\ yv
  shows yv \mod 2 \hat{\ } n = 0
proof -
  have yv \mod 2 \hat{\ } n = horner-sum \ of-bool \ 2 \ (map \ (bit \ yv) \ [0..< n])
   by (simp add: horner-sum-bit-eq-take-bit take-bit-eq-mod)
  also have ... \leq horner-sum of-bool 2 (map (bit (\uparrow y)) [0..< n])
  by (metis\ (no-types,\ opaque-lifting)\ and.right-neutral\ bit.conj-cancel-right\ word-not-dist(2)
     bit.conj-disj-distribs(1) bit.double-compl horner-sum-bit-eq-take-bit take-bit-and
ucast-id
       up-spec word-and-le1 assms(4))
```

```
also have horner-sum of-bool 2 (map (bit (\uparrow y)) [0..<n]) = horner-sum of-bool 2
(map (\lambda x. False) [0..< n])
 proof -
   have \forall i < n. \neg (bit (\uparrow y) i)
     by (metis add.commute add-diff-inverse-nat add-lessD1 leD le-diff-conv zeros-
BelowLowestOne
         numberOfTrailingZeros-def\ assms(1,2))
   then show ?thesis
     by (metis (full-types) transfer-map)
 also have horner-sum of-bool 2 (map (\lambda x. False) [0..<n]) = 0
   by (auto simp: zero-horner)
 finally show ?thesis
   by auto
qed
thm-oracles L1 L2
lemma unfold-binary-width-add:
 shows ([m,p] \vdash BinaryExpr\ BinAdd\ xe\ ye \mapsto IntVal\ b\ val) = (\exists\ x\ y.
         (([m,p] \vdash xe \mapsto IntVal\ b\ x) \land
          ([m,p] \vdash ye \mapsto IntVal\ b\ y) \land
          (IntVal\ b\ val = bin-eval\ BinAdd\ (IntVal\ b\ x)\ (IntVal\ b\ y))\ \land
          (IntVal\ b\ val \neq UndefVal)
       )) (is ?L = ?R)
 using unfold-binary-width by simp
lemma unfold-binary-width-and:
  shows ([m,p] \vdash BinaryExpr\ BinAnd\ xe\ ye \mapsto IntVal\ b\ val) = (\exists\ x\ y.
         (([m,p] \vdash xe \mapsto IntVal\ b\ x) \land
          ([m,p] \vdash ye \mapsto IntVal\ b\ y) \land
          (IntVal\ b\ val = bin-eval\ BinAnd\ (IntVal\ b\ x)\ (IntVal\ b\ y))\ \land
          (IntVal\ b\ val \neq UndefVal)
       )) (is ?L = ?R)
 using unfold-binary-width by simp
lemma mod-dist-over-add-right:
 fixes a \ b \ c :: int64
 fixes n :: nat
 assumes 0 < n
 assumes n < 64
 shows (a + b \mod 2\widehat{\ n}) \mod 2\widehat{\ n} = (a + b) \mod 2\widehat{\ n}
 using mod-dist-over-add by (simp add: assms add.commute)
{\bf lemma}\ number Of Leading Zeros\text{-}range:
  0 \leq numberOfLeadingZeros \ n \land numberOfLeadingZeros \ n \leq Nat.size \ n
 by (simp add: leadingZeroBounds)
lemma improved-opt:
```

```
assumes number Of Leading Zeros (\uparrow z) + number Of Trailing Zeros (\uparrow y) \geq 64
 shows exp[(x + y) \& z] \ge exp[x \& z]
 apply simp apply ((rule allI)+; rule impI)
 subgoal premises eval for m p v
proof
  obtain n where n: n = 64 - numberOfLeadingZeros (\uparrow z)
   by simp
  obtain b val where val: [m, p] \vdash exp[(x + y) \& z] \mapsto IntVal \ b \ val
   by (metis BinaryExprE bin-eval-new-int eval new-int.simps)
  then obtain xv yv where addv: [m, p] \vdash exp[x + y] \mapsto IntVal\ b\ (xv + yv)
   apply (subst (asm) unfold-binary-width-and) by (metis add.right-neutral)
  then obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
   apply (subst (asm) unfold-binary-width-add) by blast
 from addv obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
   apply (subst (asm) unfold-binary-width-add) by blast
  from val obtain zv where zv: [m, p] \vdash z \mapsto IntVal \ b \ zv
   apply (subst (asm) unfold-binary-width-and) by blast
 have addv: [m, p] \vdash exp[x + y] \mapsto new\text{-}int \ b \ (xv + yv)
   using xv yv evaltree.BinaryExpr by auto
  have lhs: [m, p] \vdash exp[(x + y) \& z] \mapsto new\text{-int } b \text{ (and } (xv + yv) zv)
   using addv zv apply (rule evaltree.BinaryExpr) by simp+
 have rhs: [m, p] \vdash exp[x \& z] \mapsto new\text{-}int \ b \ (and \ xv \ zv)
   using xv zv evaltree.BinaryExpr by auto
  then show ?thesis
  proof (cases numberOfLeadingZeros (\uparrow z) > 0)
   case True
   have n-bounds: 0 \le n \land n < 64
     by (simp add: True n)
   have and (xv + yv) zv = and ((xv + yv) mod 2^n) zv
     using L1 \ n \ zv by blast
   also have ... = and ((xv + (yv \mod 2\widehat{n})) \mod 2\widehat{n}) zv
   by (metis take-bit-0 take-bit-eq-mod zero-less-iff-neq-zero mod-dist-over-add-right
n-bounds)
   also have ... = and (((xv \mod 2\widehat{n}) + (yv \mod 2\widehat{n})) \mod 2\widehat{n}) zv
      by (metis bits-mod-by-1 mod-dist-over-add n-bounds order-le-imp-less-or-eq
   also have ... = and ((xv \mod 2\widehat{\ }n) \mod 2\widehat{\ }n) zv
     using L2 \ n \ zv \ yv \ assms by auto
   also have ... = and (xv \mod 2\hat{n}) zv
   by (smt (verit, best) and idem take-bit-eq-mask take-bit-eq-mod word-bw-assocs(1)
         mod\text{-}mod\text{-}trivial)
   also have \dots = and xv zv
     by (metis L1 \ n \ zv)
   finally show ?thesis
     by (metis evalDet eval lhs rhs)
   case False
   then have numberOfLeadingZeros (\uparrow z) = 0
```

```
by simp
   then have numberOfTrailingZeros (\uparrow y) \geq 64
     \mathbf{using}\ \mathit{assms}\ \mathbf{by}\ \mathit{fastforce}
   then have yv = \theta
       by (metis (no-types, lifting) L1 L2 add-diff-cancel-left' and.comm-neutral
linorder-not-le
      bit. conj\text{-}cancel\text{-}right\ bit. conj\text{-}disj\text{-}distribs (1)\ bit. double\text{-}compl\ less\text{-}imp\text{-}diff\text{-}less
yv
         word-not-dist(2))
   then show ?thesis
     by (metis add.right-neutral eval evalDet lhs rhs)
qed
done
thm-oracles improved-opt
end
phase NewAnd
 terminating size
begin
optimization redundant-lhs-y-or: ((x \mid y) \& z) \longmapsto x \& z
                              when (((and (IRExpr-up y) (IRExpr-up z)) = 0))
 by (simp add: IRExpr-up-def)+
optimization redundant-lhs-x-or: ((x \mid y) \& z) \longmapsto y \& z
                              when (((and (IRExpr-up x) (IRExpr-up z)) = 0))
 by (simp add: IRExpr-up-def)+
optimization redundant-rhs-y-or: (z \& (x \mid y)) \longmapsto z \& x
                              when (((and (IRExpr-up y) (IRExpr-up z)) = 0))
 by (simp \ add: IRExpr-up-def)+
\mathbf{optimization}\ \mathit{redundant\text{-}rhs\text{-}x\text{-}or}\colon (z\ \&\ (x\ |\ y))\longmapsto z\ \&\ y
                              when (((and (IRExpr-up x) (IRExpr-up z)) = 0))
 by (simp \ add: IRExpr-up-def)+
end
end
```

1.8 NotNode Phase

```
theory NotPhase
 imports
    Common
begin
{f phase}\ {\it NotNode}
 terminating size
begin
lemma bin-not-cancel:
 bin[\neg(\neg(e))] = bin[e]
 by auto
\mathbf{lemma}\ \mathit{val}\text{-}\mathit{not}\text{-}\mathit{cancel}\text{:}
  assumes val[^{\sim}(new\text{-}int\ b\ v)] \neq UndefVal
  shows val[^{\sim}(^{\sim}(new\text{-}int\ b\ v))] = (new\text{-}int\ b\ v)
 by (simp add: take-bit-not-take-bit)
lemma exp-not-cancel:
   exp[^{\sim}(^{\sim}a)] \ge exp[a]
  apply auto
 subgoal premises p for m p x
 proof -
   obtain av where av: [m,p] \vdash a \mapsto av
     using p(2) by auto
   obtain by avv where avv: av = IntVal \ bv \ avv
     by (metis Value.exhaust av evalDet evaltree-not-undef intval-not.simps(3,4,5)
p(2,3)
   then have valEval: val[^{\sim}(^{\sim}av)] = val[av]
    by (metis av avv evalDet eval-unused-bits-zero new-int.elims p(2,3) val-not-cancel)
   then show ?thesis
     by (metis av evalDet p(2))
  \mathbf{qed}
  done
Optimisations
optimization NotCancel: exp[^{\sim}(^{\sim}a)] \longmapsto a
 by (metis exp-not-cancel)
end
end
```

1.9 OrNode Phase

```
theory OrPhase
imports
Common
begin
context stamp-mask
begin
```

qed

Taking advantage of the truth table of or operations.

```
x|y
   Х
       У
1
   0
            0
       0
2
   0
3
            1
   1
       0
      1
            1
   1
```

```
If row 2 never applies, that is, can BeZero x & can BeOne y = 0, then (x|y) =
Likewise, if row 3 never applies, can Be Zero y & can Be One x = 0, then
(x|y) = y.
\mathbf{lemma} \ \mathit{OrLeftFallthrough} :
 assumes (and (not (\downarrow x)) (\uparrow y)) = 0
 shows exp[x \mid y] \ge exp[x]
 using assms
 apply simp apply ((rule allI)+; rule impI)
 subgoal premises eval for m p v
 proof -
   obtain b vv where e: [m, p] \vdash exp[x \mid y] \mapsto IntVal\ b\ vv
     by (metis BinaryExprE bin-eval-new-int new-int.simps eval(2))
   from e obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     apply (subst (asm) unfold-binary-width) by force+
   from e obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     apply (subst (asm) unfold-binary-width) by force+
   have vdef: v = val[(IntVal\ b\ xv) \mid (IntVal\ b\ yv)]
     by (metis bin-eval.simps(7) eval(2) evalDet unfold-binary xv yv)
   have \forall i. (bit xv i) \mid (bit yv i) = (bit xv i)
     by (metis assms bit-and-iff not-down-up-mask-and-zero-implies-zero xv yv)
   then have IntVal\ b\ xv = val[(IntVal\ b\ xv) \mid (IntVal\ b\ yv)]
    by (metis (no-types, lifting) and idem assms bit.conj-disj-distrib eval-unused-bits-zero
yv xv
      intval\text{-}or.simps(1)\ new\text{-}int.simps\ new\text{-}int\text{-}bin.simps\ not\text{-}down\text{-}up\text{-}mask\text{-}and\text{-}zero\text{-}implies\text{-}zero
         word-ao-absorbs(3))
   then show ?thesis
     using xv vdef by presburger
```

done

```
{\bf lemma}\ {\it Or Right Fall through}:
 assumes (and (not (\downarrow y)) (\uparrow x)) = 0
 shows exp[x \mid y] \ge exp[y]
 using assms
 apply simp apply ((rule allI)+; rule impI)
 subgoal premises eval for m p v
 proof -
   obtain b vv where e: [m, p] \vdash exp[x \mid y] \mapsto IntVal\ b\ vv
     by (metis\ BinaryExprE\ bin-eval-new-int\ new-int.simps\ eval(2))
   from e obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     apply (subst (asm) unfold-binary-width) by force+
   from e obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     apply (subst (asm) unfold-binary-width) by force+
   have vdef: v = val[(IntVal\ b\ xv) \mid (IntVal\ b\ yv)]
     by (metis\ bin-eval.simps(7)\ eval(2)\ evalDet\ unfold-binary\ xv\ yv)
   have \forall i. (bit xv i) | (bit yv i) = (bit yv i)
     by (metis assms bit-and-iff not-down-up-mask-and-zero-implies-zero xv yv)
   then have IntVal\ b\ yv = val[(IntVal\ b\ xv) \mid (IntVal\ b\ yv)]
      by (metis (no-types, lifting) assms eval-unused-bits-zero intval-or.simps(1)
new-int.elims yv
            new\-int\-bin.elims stamp\-mask.not\-down\-up\-mask\-and\-zero\-implies\-zero
stamp	ext{-}mask	ext{-}axioms \ xv
         word-ao-absorbs(8))
   then show ?thesis
     using vdef yv by presburger
 ged
 done
end
phase OrNode
 terminating size
begin
lemma bin-or-equal:
  bin[x \mid x] = bin[x]
 by simp
lemma bin-shift-const-right-helper:
x \mid y = y \mid x
 by simp
{f lemma}\ bin-or-not-operands:
(^{\sim}x \mid ^{\sim}y) = (^{\sim}(x \& y))
 by simp
```

```
lemma val-or-equal:
 assumes x = new\text{-}int \ b \ v
         val[x \mid x] \neq UndefVal
 shows val[x \mid x] = val[x]
 by (auto simp: assms)
\mathbf{lemma}\ \mathit{val-elim-redundant-false} :
 assumes x = new\text{-}int \ b \ v
          val[x \mid false] \neq UndefVal
 and
 shows val[x \mid false] = val[x]
 using assms by (cases x; auto; presburger)
\mathbf{lemma}\ \mathit{val-shift-const-right-helper}\colon
  val[x \mid y] = val[y \mid x]
 by (cases x; cases y; auto simp: or.commute)
\mathbf{lemma}\ \mathit{val-or-not-operands}\colon
val[^{\sim}x \mid ^{\sim}y] = val[^{\sim}(x \& y)]
 by (cases x; cases y; auto simp: take-bit-not-take-bit)
lemma exp-or-equal:
  exp[x \mid x] \ge exp[x]
 apply auto[1]
 subgoal premises p for m p xa ya
 proof-
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(1) by auto
   obtain xb xvv where xvv: xv = IntVal xb xvv
    by (metis evalDet evaltree-not-undef intval-is-null.cases intval-or.simps (3,4,5)
p(1,3) xv
   then have evalNotUndef: val[xv \mid xv] \neq UndefVal
     using p evalDet xv by blast
   then have orUnfold: val[xv \mid xv] = (new-int xb (or xvv xvv))
     by (simp add: xvv)
   then have simplify: val[xv \mid xv] = (new-int \ xb \ (xvv))
     by (simp add: orUnfold)
   then have eq: (xv) = (new\text{-}int \ xb \ (xvv))
     using eval-unused-bits-zero xv xvv by auto
   then show ?thesis
     by (metis evalDet p(1,2) simplify xv)
 qed
 done
\mathbf{lemma}\ \textit{exp-elim-redundant-false} :
exp[x \mid false] \ge exp[x]
 apply auto[1]
 subgoal premises p for m p xa
```

```
proof-
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(1) by auto
   obtain xb xvv where xvv: xv = IntVal xb xvv
    by (metis evalDet evaltree-not-undef intval-is-null.cases intval-or.simps (3,4,5)
p(1,2) xv
   then have evalNotUndef: val[xv \mid (IntVal 32 0)] \neq UndefVal
     using p evalDet xv by blast
   then have widthSame: xb=32
     by (metis intval-or.simps(1) new-int-bin.simps xvv)
   then have orUnfold: val[xv \mid (IntVal \ 32 \ \theta)] = (new-int \ xb \ (or \ xvv \ \theta))
     by (simp \ add: xvv)
   then have simplify: val[xv \mid (IntVal 32 0)] = (new-int xb (xvv))
     by (simp add: orUnfold)
   then have eq: (xv) = (new\text{-}int \ xb \ (xvv))
     using eval-unused-bits-zero xv xvv by auto
   then show ?thesis
     by (metis evalDet p(1) simplify xv)
 qed
 done
Optimisations
optimization OrEqual: x \mid x \longmapsto x
 by (meson exp-or-equal)
optimization OrShiftConstantRight: ((const\ x)\ |\ y) \longmapsto y\ |\ (const\ x)\ when\ \neg (is-ConstantExpr
 using size-flip-binary by (auto simp: BinaryExpr unfold-const val-shift-const-right-helper)
optimization EliminateRedundantFalse: x \mid false \longmapsto x
 by (meson exp-elim-redundant-false)
optimization OrNotOperands: (^{\sim}x \mid ^{\sim}y) \longmapsto ^{\sim}(x \& y)
  apply (metis add-2-eq-Suc' less-SucI not-add-less1 not-less-eq size-binary-const
size-non-add)
  using BinaryExpr\ UnaryExpr\ bin-eval.simps(4)\ intval-not.simps(2)\ unary-eval.simps(3)
        val-or-not-operands by fastforce
optimization OrLeftFallthrough:
 x \mid y \longmapsto x \text{ when } ((\text{and } (\text{not } (\text{IRExpr-down } x)) (\text{IRExpr-up } y)) = 0)
 using simple-mask.OrLeftFallthrough by blast
optimization OrRightFallthrough:
 x \mid y \longmapsto y \text{ when } ((\text{and } (\text{not } (\text{IRExpr-down } y)) \mid (\text{IRExpr-up } x)) = 0)
 using simple-mask.OrRightFallthrough by blast
end
```

1.10 ShiftNode Phase

```
theory ShiftPhase
 imports
   Common
begin
{f phase} ShiftNode
 terminating size
begin
fun intval-log2 :: Value \Rightarrow Value where
  intval-log2 (IntVal b v) = IntVal b (word-of-int (SOME e. v=2^e))
  intval-log2 - = UndefVal
fun in-bounds :: Value \Rightarrow int \Rightarrow int \Rightarrow bool where
  in-bounds (IntVal b v) l h = (l < sint <math>v \wedge sint v < h)
  in-bounds - l h = False
lemma
 assumes in-bounds (intval-log2 val-c) 0 32
 shows val[x << (intval-log2\ val-c)] = val[x * val-c]
  apply (cases val-c; auto) using intval-left-shift.simps(1) intval-mul.simps(1)
intval-log2.simps(1)
 sorry
lemma e-intval:
  n = intval-log2 \ val-c \land in-bounds \ n \ 0 \ 32 \longrightarrow
   val[x << (intval-log2\ val-c)] = val[x * val-c]
proof (rule impI)
 assume n = intval-log2 \ val-c \land in-bounds \ n \ 0 \ 32
 show val[x << (intval-log2\ val-c)] = val[x * val-c]
   proof (cases \exists v . val-c = Int Val 32 v)
     {f case}\ True
     obtain vc where val-c = IntVal 32 vc
       using True by blast
     then have n = IntVal \ 32 \ (word-of-int \ (SOME \ e. \ vc=2^e))
       using \langle n = intval-log2 \ val-c \land in-bounds \ n \ 0 \ 32 \rangle \ intval-log2.simps(1) by
presburger
     then show ?thesis sorry
   \mathbf{next}
     case False
     then have \exists v . val\text{-}c = IntVal 64 v
     then obtain vc where val-c = IntVal 64 vc
       by auto
```

```
then have n = IntVal\ 64\ (word-of-int\ (SOME\ e.\ vc=2^e))
       using \langle n = intval-log2 \ val-c \land in-bounds \ n \ 0 \ 32 \rangle \ intval-log2.simps(1) by
presburger
     then show ?thesis sorry
qed
qed
optimization e:
 x * (const \ c) \longmapsto x << (const \ n) \ when \ (n = intval-log2 \ c \land in-bounds \ n \ 0 \ 32)
 using e-intval BinaryExprE ConstantExprE bin-eval.simps(2,7) sorry
end
end
        SignedDivNode Phase
1.11
theory SignedDivPhase
 imports
   Common
begin
{\bf phase}\ Signed Div Node
 terminating size
begin
lemma val-division-by-one-is-self-32:
 assumes x = new\text{-}int 32 v
 shows intval-div x (IntVal 32 1) = x
 using assms apply (cases x; auto)
 by (simp add: take-bit-signed-take-bit)
end
end
        SignedRemNode Phase
1.12
theory SignedRemPhase
 imports
   Common
begin
{\bf phase}\ Signed Rem Node
 terminating size
begin
```

```
\mathbf{lemma}\ \mathit{val}\text{-}\mathit{remainder}\text{-}\mathit{one}\text{:}
 assumes intval-mod x (IntVal 32 1) \neq UndefVal
 shows intval-mod x (IntVal 32 1) = IntVal 32 0
 using assms apply (cases x; auto) sorry
value word-of-int (sint (x2::32 word) smod 1)
end
\mathbf{end}
          SubNode Phase
1.13
theory SubPhase
 imports
    Common
    Proofs. Stamp Eval Thms
begin
phase SubNode
  terminating size
begin
\mathbf{lemma}\ \mathit{bin-sub-after-right-add}\colon
  shows ((x::('a::len) \ word) + (y::('a::len) \ word)) - y = x
 by simp
\mathbf{lemma}\ \mathit{sub-self-is-zero}:
 shows (x::('a::len) word) - x = 0
 by simp
\mathbf{lemma}\ \mathit{bin-sub-then-left-add}:
 shows (x::('a::len) \ word) - (x + (y::('a::len) \ word)) = -y
 by simp
{f lemma}\ bin-sub-then-left-sub:
  shows (x::('a::len) \ word) - (x - (y::('a::len) \ word)) = y
 by simp
\mathbf{lemma}\ bin\text{-}subtract\text{-}zero:
 shows (x :: 'a :: len word) - (0 :: 'a :: len word) = x
 by simp
{\bf lemma}\ bin-sub-negative-value:
 (x :: ('a::len) \ word) - (-(y :: ('a::len) \ word)) = x + y
 by simp
```

```
\mathbf{lemma}\ bin\text{-}sub\text{-}self\text{-}is\text{-}zero:
(x :: ('a::len) \ word) - x = 0
 by simp
{f lemma}\ bin\mbox{-}sub\mbox{-}negative\mbox{-}const:
(x :: 'a::len \ word) - (-(y :: 'a::len \ word)) = x + y
 by simp
lemma val-sub-after-right-add-2:
 assumes x = new-int b v
 assumes val[(x + y) - y] \neq UndefVal
 \mathbf{shows} \quad val[(x+y)-y] = x
 using assms apply (cases x; cases y; auto)
 by (metis (full-types) intval-sub.simps(2))
lemma \ val-sub-after-left-sub:
 \mathbf{assumes}\ val[(x\ -\ y)\ -\ x] \neq\ UndefVal
 shows val[(x - y) - x] = val[-y]
 using assms intval-sub.elims apply (cases x; cases y; auto)
 by fastforce
lemma val-sub-then-left-sub:
 assumes y = new\text{-}int b v
 assumes val[x - (x - y)] \neq UndefVal
 shows val[x - (x - y)] = y
 using assms apply (cases x; auto)
 by (metis\ (mono-tags)\ intval-sub.simps(6))
lemma val-subtract-zero:
 assumes x = new-int b v
 assumes val[x - (IntVal\ b\ \theta)] \neq UndefVal
 shows val[x - (IntVal\ b\ \theta)] = x
 by (cases x; simp add: assms)
lemma val-zero-subtract-value:
 assumes x = new\text{-}int \ b \ v
 \mathbf{assumes}\ val[(\mathit{IntVal}\ b\ 0)\ -\ x] \neq \ \mathit{UndefVal}
 shows val[(IntVal\ b\ \theta) - x] = val[-x]
 by (cases x; simp add: assms)
lemma val-sub-then-left-add:
 assumes val[x - (x + y)] \neq UndefVal
 shows val[x - (x + y)] = val[-y]
 using assms apply (cases x; cases y; auto)
 by (metis\ (mono-tags,\ lifting)\ intval-sub.simps(6))
```

 ${f lemma}\ val ext{-}sub ext{-}negative ext{-}value:$

```
assumes val[x - (-y)] \neq UndefVal
 shows val[x - (-y)] = val[x + y]
 by (cases x; cases y; simp add: assms)
lemma val-sub-self-is-zero:
 assumes x = new\text{-}int \ b \ v \land val[x - x] \neq UndefVal
 shows val[x - x] = new\text{-}int \ b \ 0
 by (cases x; simp add: assms)
lemma val-sub-negative-const:
 assumes y = new\text{-}int \ b \ v \land val[x - (-y)] \neq UndefVal
 shows val[x - (-y)] = val[x + y]
 by (cases x; simp add: assms)
lemma exp-sub-after-right-add:
 shows exp[(x + y) - y] \ge x
 apply auto
 subgoal premises p for m p ya xa yaa
 proof-
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(3) by auto
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using p(1) by auto
   obtain xb xvv where xvv: xv = IntVal xb xvv
      by (metis Value.exhaust evalDet evaltree-not-undef intval-add.simps(3,4,5)
intval-sub.simps(2)
        p(2,3) xv
   obtain yb yvv where yvv: yv = IntVal yb yvv
   by (metis evalDet evaltree-not-undef intval-add.simps(7,8,9) intval-logic-negation.cases
yv
        intval-sub.simps(2) p(2,4)
   then have lhsDefined: val[(xv + yv) - yv] \neq UndefVal
     using xvv yvv apply (cases xv; cases yv; auto)
     by (metis evalDet intval-add.simps(1) p(3,4,5) xv yv)
    then show ?thesis
     by (metis \land \land thesis. (\land (xb) xvv. (xv) = IntVal xb xvv \Longrightarrow thesis) \Longrightarrow thesis)
evalDet xv yv
       eval-unused-bits-zero lhsDefined new-int.simps p(1,3,4) val-sub-after-right-add-2)
 qed
 done
lemma exp-sub-after-right-add2:
 shows exp[(x + y) - x] \ge y
 using exp-sub-after-right-add apply auto
 by (metis\ bin-eval.simps(1,2)\ intval-add-sym\ unfold-binary)
\mathbf{lemma}\ exp\text{-}sub\text{-}negative\text{-}value:
exp[x - (-y)] \ge exp[x + y]
```

```
apply auto
 subgoal premises p for m p xa ya
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(1) by auto
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using p(3) by auto
   then have rhsEval: [m,p] \vdash exp[x+y] \mapsto val[xv+yv]
   by (metis bin-eval.simps(1) evalDet p(1,2,3) unfold-binary val-sub-negative-value
xv
   then show ?thesis
     by (metis evalDet p(1,2,3) val-sub-negative-value xv yv)
 done
lemma exp-sub-then-left-sub:
 exp[x - (x - y)] \ge y
 using val-sub-then-left-sub apply auto
 subgoal premises p for m p xa xaa ya
   proof-
     obtain xa where xa: [m, p] \vdash x \mapsto xa
      using p(2) by blast
     obtain ya where ya: [m, p] \vdash y \mapsto ya
      using p(5) by auto
     obtain xaa where xaa: [m, p] \vdash x \mapsto xaa
      using p(2) by blast
     have 1: val[xa - (xaa - ya)] \neq UndefVal
      by (metis evalDet p(2,3,4,5) xa xaa ya)
     then have val[xaa - ya] \neq UndefVal
      by auto
     then have [m, p] \vdash y \mapsto val[xa - (xaa - ya)]
      by (metis 1 Value.exhaust eval-unused-bits-zero evaltree-not-undef xa xaa ya
new\text{-}int.simps
          intval-sub.simps(6,7,8,9) evalDet val-sub-then-left-sub)
     then show ?thesis
      by (metis evalDet p(2,4,5) xa xaa ya)
   qed
 done
thm-oracles exp-sub-then-left-sub
\mathbf{lemma} \ \mathit{SubtractZero\text{-}Exp} .
 exp[(x - (const\ IntVal\ b\ \theta))] \ge x
 apply auto
 subgoal premises p for m p xa
 proof-
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(1) by auto
   obtain xb xvv where xvv: xv = IntVal xb xvv
```

```
by (metis array-length.cases evalDet evaltree-not-undef intval-sub.simps (3,4,5)
p(1,2) xv
   then have widthSame: xb=b
    by (metis evalDet intval-sub.simps(1) new-int-bin.simps p(1) p(2) xv)
   then have unfoldSub: val[xv - (IntVal\ b\ \theta)] = (new-int\ xb\ (xvv-\theta))
     by (simp add: xvv)
   then have rhsSame: val[xv] = (new-int \ xb \ (xvv))
     using eval-unused-bits-zero xv xvv by auto
   then show ?thesis
     by (metis diff-zero evalDet p(1) unfoldSub xv)
 qed
 done
\mathbf{lemma}\ \mathit{ZeroSubtractValue\text{-}Exp} \colon
 assumes wf-stamp x
 assumes stamp-expr \ x = IntegerStamp \ b \ lo \ hi
 assumes \neg(is-ConstantExpr x)
 shows exp[(const\ IntVal\ b\ \theta) - x] \ge exp[-x]
 using assms apply auto
 subgoal premises p for m p xa
 proof-
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(4) by auto
   obtain xb xvv where xvv: xv = IntVal xb xvv
   by (metis constant AsStamp. cases eval Det eval tree-not-undef intval-sub. simps(7,8,9)
p(4,5) xv
   then have unfoldSub: val[(IntVal\ b\ 0) - xv] = (new-int\ xb\ (0-xvv))
      by (metis\ intval-sub.simps(1)\ new-int-bin.simps\ p(1,2)\ valid-int-same-bits
wf-stamp-def xv)
   then show ?thesis
       by (metis\ UnaryExpr\ intval-negate.simps(1)\ p(4,5)\ unary-eval.simps(2)
verit-minus-simplify(3)
        evalDet xv xvv)
 qed
 done
Optimisations
optimization SubAfterAddRight: ((x + y) - y) \mapsto x
 using exp-sub-after-right-add by blast
optimization SubAfterAddLeft: ((x + y) - x) \mapsto y
 using exp-sub-after-right-add2 by blast
optimization SubAfterSubLeft: ((x - y) - x) \longmapsto -y
 by (smt (verit) Suc-lessI add-2-eq-Suc' add-less-cancel-right less-trans-Suc not-add-less1
evalDet
       size-binary-const size-binary-lhs size-binary-rhs size-non-add BinaryExprE
bin-eval.simps(2)
     le-expr-def unary-eval.simps(2) unfold-unary val-sub-after-left-sub)+
```

```
optimization SubThenAddLeft: (x - (x + y)) \longmapsto -y
  apply auto
 by (metis evalDet unary-eval.simps(2) unfold-unary val-sub-then-left-add)
optimization SubThenAddRight: (y - (x + y)) \longrightarrow -x
  apply auto
 by (metis evalDet intval-add-sym unary-eval.simps(2) unfold-unary val-sub-then-left-add)
optimization SubThenSubLeft: (x - (x - y)) \mapsto y
 using size-simps exp-sub-then-left-sub by auto
optimization SubtractZero: (x - (const\ IntVal\ b\ \theta)) \longmapsto x
 using SubtractZero-Exp by fast
thm-oracles SubtractZero
optimization SubNegativeValue: (x - (-y)) \longmapsto x + y
 apply (metis add-2-eq-Suc' less-SucI less-add-Suc1 not-less-eq size-binary-const
size-non-add)
 using exp-sub-negative-value by blast
thm-oracles SubNegativeValue
lemma negate-idempotent:
 assumes x = IntVal\ b\ v \land take-bit\ b\ v = v
 shows x = val[-(-x)]
 by (auto simp: assms is-IntVal-def)
optimization ZeroSubtractValue: ((const\ IntVal\ b\ 0) - x) \longmapsto (-x)
                             when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo
hi \wedge \neg (is\text{-}ConstantExpr\ x))
 using size-flip-binary ZeroSubtractValue-Exp by simp+
optimization SubSelfIsZero: (x - x) \mapsto const IntVal \ b \ 0 \ when
                   (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo\ hi)
 using size-non-const apply auto
 by (smt (verit) wf-value-def ConstantExpr eval-bits-1-64 eval-unused-bits-zero
new-int.simps
   take-bit-of-0\ val-sub-self-is-zero\ validDefIntConst\ valid-int\ wf-stamp-def\ One-nat-def
     evalDet)
```

```
\quad \text{end} \quad
```

end

1.14 XorNode Phase

```
theory XorPhase
  imports
    Common
    Proofs. Stamp Eval Thms
begin
{\bf phase}\ {\it XorNode}
  terminating size
begin
lemma bin-xor-self-is-false:
 bin[x \oplus x] = 0
 \mathbf{by} \ simp
\mathbf{lemma}\ \mathit{bin-xor-commute} \colon
 bin[x \oplus y] = bin[y \oplus x]
 by (simp add: xor.commute)
{\bf lemma}\ bin-eliminate-redundant-false:
 bin[x \oplus \theta] = bin[x]
 by simp
\mathbf{lemma}\ \mathit{val-xor-self-is-false} :
  assumes val[x \oplus x] \neq UndefVal
  shows val-to-bool (val[x \oplus x]) = False
  by (cases x; auto simp: assms)
\mathbf{lemma}\ \mathit{val-xor-self-is-false-2}\colon
  assumes val[x \oplus x] \neq UndefVal
  and
           x = IntVal 32 v
  shows val[x \oplus x] = bool\text{-}to\text{-}val \ False
  by (auto simp: assms)
lemma val-xor-self-is-false-3:
  assumes val[x \oplus x] \neq UndefVal \land x = IntVal 64 v
  shows val[x \oplus x] = IntVal \ 64 \ 0
  by (auto simp: assms)
```

lemma val-xor-commute:

```
val[x \oplus y] = val[y \oplus x]
 by (cases x; cases y; auto simp: xor.commute)
\mathbf{lemma}\ \mathit{val-eliminate-redundant-false} :
 assumes x = new\text{-}int \ b \ v
 assumes val[x \oplus (bool\text{-}to\text{-}val\ False)] \neq UndefVal
 shows val[x \oplus (bool\text{-}to\text{-}val\ False)] = x
 using assms by (auto; meson)
lemma exp-xor-self-is-false:
assumes wf-stamp x \wedge stamp-expr x = default-stamp
shows exp[x \oplus x] \ge exp[false]
 using assms apply auto
 subgoal premises p for m p xa ya
 proof-
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p(3) by auto
   obtain xb xvv where xvv: xv = IntVal xb xvv
   by (metis Value exhaust-sel assms evalDet evaltree-not-undef intval-xor.simps(5,7)
p(3,4,5) xv
         valid-value.simps(11) wf-stamp-def)
   then have unfoldXor: val[xv \oplus xv] = (new\text{-}int xb (xor xvv xvv))
   then have isZero: xor xvv xvv = 0
     by simp
   then have width: xb = 32
     by (metis valid-int-same-bits xv xvv p(1,2) wf-stamp-def)
   then have isFalse: val[xv \oplus xv] = bool-to-val\ False
     unfolding unfoldXor isZero width by fastforce
   then show ?thesis
   by (metis (no-types, lifting) eval-bits-1-64 p(3,4) width xv xvv validDefIntConst
IntVal0
           Value.inject(1) \ bool-to-val.simps(2) \ evalDet \ new-int.simps \ unfold-const
wf-value-def)
 qed
 done
lemma exp-eliminate-redundant-false:
  shows exp[x \oplus false] \ge exp[x]
  using val-eliminate-redundant-false apply auto
 subgoal premises p for m p xa
   proof -
     obtain xa where xa: [m, p] \vdash x \mapsto xa
       using p(2) by blast
     then have val[xa \oplus (IntVal \ 32 \ 0)] \neq UndefVal
       using evalDet p(2,3) by blast
     then have [m, p] \vdash x \mapsto val[xa \oplus (IntVal \ 32 \ 0)]
       using eval-unused-bits-zero xa by (cases xa; auto)
```

```
then show ?thesis
        using evalDet \ p(2) xa by blast
    \mathbf{qed}
  done
Optimisations
optimization XorSelfIsFalse: (x \oplus x) \longmapsto false \ when
                        (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = default\text{-}stamp)
  \mathbf{using} \ \mathit{size-non-const} \ \mathit{exp-xor-self-is-false} \ \mathbf{by} \ \mathit{auto}
\textbf{optimization} \ \textit{XorShiftConstantRight} : ((\textit{const} \ \textit{x}) \ \oplus \ \textit{y}) \ \longmapsto \ \textit{y} \ \oplus \ (\textit{const} \ \textit{x}) \ \textit{when}
\neg (is\text{-}ConstantExpr\ y)
  using size-flip-binary val-xor-commute by auto
optimization EliminateRedundantFalse: (x \oplus false) \longmapsto x
    using exp-eliminate-redundant-false by auto
end
end
           NegateNode Phase
1.15
theory NegatePhase
  imports
     Common
begin
{f phase} NegateNode
  terminating size
begin
lemma bin-negative-cancel:
 -1 * (-1 * ((x::('a::len) word))) = x
  by auto
\mathbf{lemma}\ \mathit{val-negative-cancel}\colon
  \mathbf{assumes}\ val[-(\mathit{new-int}\ b\ v)] \neq \mathit{UndefVal}
  shows val[-(-(new\text{-}int\ b\ v))] = val[new\text{-}int\ b\ v]
  \mathbf{by} \ simp
\mathbf{lemma}\ val	ext{-} distribute	ext{-} sub:
  assumes x \neq UndefVal \land y \neq UndefVal
```

```
shows val[-(x-y)] = val[y-x]
 by (cases x; cases y; auto)
lemma exp-distribute-sub:
 shows exp[-(x-y)] \ge exp[y-x]
 \mathbf{by}\ (\mathit{auto}\ \mathit{simp}:\ \mathit{val-distribute-sub}\ \mathit{evaltree-not-undef})
thm-oracles exp-distribute-sub
lemma exp-negative-cancel:
 shows exp[-(-x)] \ge exp[x]
 apply auto
 by (metis (no-types, opaque-lifting) eval-unused-bits-zero intval-negate.elims new-int.simps
     intval-negate.simps(1) minus-equation-iff take-bit-dist-neg)
lemma exp-negative-shift:
 assumes stamp-expr \ x = IntegerStamp \ b' lo hi
          unat y = (b' - 1)
 shows exp[-(x >> (const\ (new\text{-}int\ b\ y)))] \ge exp[x >>> (const\ (new\text{-}int\ b\ y))]
 apply auto
 subgoal premises p for m p xa
 proof -
   obtain xa where xa: [m,p] \vdash x \mapsto xa
     using p(2) by auto
   then have 1: val[-(xa >> (IntVal\ b\ (take-bit\ b\ y)))] \neq UndefVal
     using evalDet p(1,2) by blast
   then have 2: val[xa >> (IntVal\ b\ (take-bit\ b\ y))] \neq UndefVal
     by auto
   then have 4: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b y)) < (2::int)
^ b div (2::int)
   by (metis Suc-le-lessD Suc-pred eval-bits-1-64 int-power-div-base p(4) zero-less-numeral
        signed-take-bit-int-less-exp-word size64 unfold-const wsst-TYs(3))
   then have 5: (0::nat) < b
     using eval-bits-1-64 p(4) by blast
   then have 6: b \sqsubseteq (64::nat)
     using eval-bits-1-64 p(4) by blast
   then have 7: [m,p] \vdash BinaryExpr\ BinURightShift\ x
               (ConstantExpr\ (IntVal\ b\ (take-bit\ b\ y))) \mapsto
               intval-negate (intval-right-shift xa (IntVal b (take-bit b y)))
     apply (cases y; auto)
     subgoal premises p for n
      proof -
        have sg1: y = word\text{-}of\text{-}nat n
          by (simp \ add: \ p(1))
        then have sg2: n < (18446744073709551616::nat)
          by (simp \ add: \ p(2))
        then have sg3: b \sqsubseteq (64::nat)
```

```
by (simp \ add: 6)
        then have sg4: [m,p] \vdash BinaryExpr BinURightShift x
              (ConstantExpr\ (IntVal\ b\ (take-bit\ b\ (word-of-nat\ n))))\mapsto
               intval-negate (intval-right-shift xa (IntVal b (take-bit b (word-of-nat
n))))
           sorry
        then show ?thesis
          by simp
      \mathbf{qed}
     done
   then show ?thesis
     by (metis evalDet p(2) xa)
 qed
 done
Optimisations
optimization NegateCancel: -(-(x)) \mapsto x
 using exp-negative-cancel by blast
optimization DistributeSubtraction: -(x - y) \longmapsto (y - x)
 apply (smt (verit, best) add.left-commute add-2-eq-Suc' add-diff-cancel-left' is-ConstantExpr-def
      less-Suc-eq-0-disj plus-1-eq-Suc size.simps(11) size-binary-const size-non-add
           zero-less-diff\ exp-distribute-sub\ nat-add-left-cancel-less\ less-add-eq-less
add-Suc lessI
       trans-less-add2 size-binary-rhs Suc-eq-plus1 Nat.add-0-right old.nat.inject
       zero-less-Suc)
  using exp-distribute-sub by simp
optimization NegativeShift: -(x >> (const (new-int b y))) \mapsto x >>> (const
(new\text{-}int \ b \ y))
                             when (stamp-expr \ x = IntegerStamp \ b' \ lo \ hi \land unat \ y)
= (b' - 1)
 using exp-negative-shift by simp
end
end
theory TacticSolving
 imports Common
begin
fun size :: IRExpr \Rightarrow nat where
 size (UnaryExpr op e) = (size e) * 2
 size (BinaryExpr BinAdd x y) = (size x) + ((size y) * 2)
 size (BinaryExpr op x y) = (size x) + (size y) \mid
 size (ConditionalExpr \ cond \ t \ f) = (size \ cond) + (size \ t) + (size \ f) + 2
 size (ConstantExpr c) = 1
```

```
size (ParameterExpr ind s) = 2
  size (LeafExpr \ nid \ s) = 2
  size (Constant Var c) = 2
  size (VariableExpr x s) = 2
lemma size-pos[simp]: 0 < size y
  apply (induction y; auto?)
 subgoal premises prems for op a b
    using prems by (induction op; auto)
  done
phase TacticSolving
  terminating size
begin
1.16
          AddNode
lemma value-approx-implies-refinement:
  assumes lhs \approx rhs
 assumes \forall m \ p \ v. \ ([m, p] \vdash elhs \mapsto v) \longrightarrow v = lhs
 assumes \forall m \ p \ v. \ ([m, p] \vdash erhs \mapsto v) \longrightarrow v = rhs
 assumes \forall m \ p \ v1 \ v2. \ ([m, p] \vdash elhs \mapsto v1) \longrightarrow ([m, p] \vdash erhs \mapsto v2)
  shows elhs \ge erhs
 by (metis assms(4) le-expr-def evaltree-not-undef)
method explore-cases for x y :: Value =
  (cases x; cases y; auto)
method explore-cases-bin for x :: IRExpr =
  (cases x; auto)
method obtain-approx-eq for lhs rhs x y :: Value =
  (rule meta-mp[where P=lhs \approx rhs], defer-tac, explore-cases x y)
{f method}\ obtain\mbox{-}eval\ {f for}\ exp::IRExpr\ {f and}\ val::Value =
  (rule meta-mp[where P = \bigwedge m \ p \ v. ([m, p] \vdash exp \mapsto v) \Longrightarrow v = val], defer-tac)
method solve for lhs rhs x y :: Value =
  (match \ \mathbf{conclusion} \ \mathbf{in} \ size \ - \ \leqslant size \ - \ \Rightarrow \ \langle simp \rangle)?,
  (match \ \mathbf{conclusion} \ \mathbf{in} \ (elhs::IRExpr) \ge (erhs::IRExpr) \ \mathbf{for} \ elhs \ erhs \Rightarrow \langle
    (obtain-approx-eq \ lhs \ rhs \ x \ y)?\rangle)
print-methods
thm BinaryExprE
{\bf optimization}\ opt\hbox{-} add\hbox{-} left\hbox{-} negate\hbox{-} to\hbox{-} sub:
  -x + y \longmapsto y - x
  apply (solve val[-x1 + y1] \ val[y1 - x1] \ x1 \ y1)
```

1.17 NegateNode

```
\mathbf{lemma}\ val	ext{-}distribute	ext{-}sub:
val[-(x-y)] \approx val[y-x]
 by (cases x; cases y; auto)
optimization distribute-sub: -(x-y) \longmapsto (y-x)
 using val-distribute-sub unfold-binary unfold-unary by auto
lemma val-xor-self-is-false:
 assumes x = IntVal \ 32 \ v
 shows val[x \oplus x] \approx val[false]
 by (cases x; auto simp: assms)
definition wf-stamp :: IRExpr \Rightarrow bool where
  wf-stamp e = (\forall m \ p \ v. ([m, p] \vdash e \mapsto v) \longrightarrow valid-value \ v \ (stamp-expr \ e))
lemma exp-xor-self-is-false:
 assumes stamp-expr \ x = IntegerStamp \ 32 \ l \ h
 assumes wf-stamp x
 shows exp[x \oplus x] >= exp[false]
 by (smt (z3) wf-value-def bin-eval.simps(8) bin-eval-new-int constantAsStamp.simps(1)
evalDet
        int-signed-value-bounds new-int.simps new-int-take-bits unfold-binary un-
fold-const valid-int
   valid-stamp.simps(1) valid-value.simps(1) well-formed-equal-defn val-xor-self-is-false
     le-expr-def assms wf-stamp-def)
lemma val-or-commute[simp]:
  val[x \mid y] = val[y \mid x]
 by (cases x; cases y; auto simp: or.commute)
lemma val-xor-commute[simp]:
  val[x \oplus y] = val[y \oplus x]
 by (cases x; cases y; auto simp: word-bw-comms(3))
lemma val-and-commute[simp]:
  val[x \& y] = val[y \& x]
 by (cases x; cases y; auto simp: word-bw-comms(1))
lemma exp-or-commutative:
  exp[x \mid y] \ge exp[y \mid x]
 by auto
lemma exp-xor-commutative:
  exp[x \oplus y] \ge exp[y \oplus x]
```

```
by auto
\mathbf{lemma}\ exp\text{-}and\text{-}commutative:
  exp[x \& y] \ge exp[y \& x]
 by auto
— — New Optimisations - submitted and added into Graal —
lemma OrInverseVal:
 assumes n = IntVal \ 32 \ v
 shows val[n \mid {}^{\sim}n] \approx new\text{-}int \ 32 \ (-1)
 apply (auto simp: assms)
 by (metis bit.disj-cancel-right mask-eq-take-bit-minus-one take-bit-or)
optimization OrInverse: exp[n \mid {}^{\sim}n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
  apply (auto simp: Suc-lessI)
 subgoal premises p for m p xa xaa
 proof -
   obtain nv where nv: [m,p] \vdash n \mapsto nv
     using p(3) by auto
   obtain nbits nvv where nvv: nv = IntVal \ nbits \ nvv
   by (metis evalDet evaltree-not-undef intval-logic-negation.cases intval-not.simps (3,4,5)
nn
        p(5,6)
   then have width: nbits = 32
     by (metis\ Value.inject(1)\ nv\ p(1,2)\ valid-int\ wf-stamp-def)
   then have stamp: constantAsStamp (IntVal 32 (mask 32)) =
                (IntegerStamp 32 (int-signed-value 32 (mask 32)) (int-signed-value
32 (mask 32)))
     by auto
   have wf: wf-value (IntVal 32 (mask 32))
     unfolding wf-value-def stamp apply auto by eval+
   then have unfoldOr: val[nv \mid ^{\sim}nv] = (new-int 32 (or (not nvv) nvv))
     using intval-or.simps OrInverseVal nvv width by auto
   then have eq: val[nv \mid {}^{\sim}nv] = new\text{-}int \ 32 \ (not \ 0)
     by (simp add: unfoldOr)
   then show ?thesis
   by (metis bit.compl-zero evalDet local.wf new-int.elims nv p(3,5) take-bit-minus-one-eq-mask
         unfold-const)
  qed
  done
optimization OrInverse2: exp[{}^{\sim}n \mid n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
  using OrInverse exp-or-commutative by auto
{f lemma} XorInverseVal:
 assumes n = IntVal \ 32 \ v
 shows val[n \oplus {}^{\sim}n] \approx new\text{-}int \ 32 \ (-1)
```

```
apply (auto simp: assms)
 by (metis (no-types, opaque-lifting) bit.compl-zero bit.xor-compl-right bit.xor-self
take-bit-xor
     mask-eq-take-bit-minus-one
optimization XorInverse: exp[n \oplus {}^{\sim}n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ \theta)))
                     \textit{when } (\textit{stamp-expr } n = \textit{IntegerStamp } \textit{32 } \textit{l } \textit{h} \land \textit{wf-stamp } \textit{n})
 apply (auto simp: Suc-lessI)
 subgoal premises p for m p xa xaa
 proof-
   obtain xv where xv: [m,p] \vdash n \mapsto xv
     using p(3) by auto
   obtain xb xvv where xvv: xv = IntVal xb xvv
   by (metis evalDet evaltree-not-undef intval-logic-negation.cases intval-not.simps (3,4,5)
xv
   have rhsDefined: [m,p] \vdash (ConstantExpr (IntVal 32 (mask 32))) \mapsto (IntVal 32)
(mask 32))
      by (metis ConstantExpr add.right-neutral add-less-cancel-left neg-one-value
numeral-Bit0
      new-int-unused-bits-zero\ not-numeral-less-zero\ valid DefIntConst\ zero-less-numeral
         verit-comp-simplify1(3) wf-value-def)
   have w32: xb = 32
     by (metis\ Value.inject(1)\ p(1,2)\ valid-int\ xv\ xvv\ wf-stamp-def)
   then have unfoldNot: val[(\neg xv)] = new-int xb (not xvv)
     by (simp add: xvv)
   have unfoldXor: val[xv \oplus (\neg xv)] =
                  (if xb=xb then (new-int xb (xor xvv (not xvv))) else UndefVal)
     using intval-xor.simps(1) XorInverseVal w32 xvv by auto
   then have rhs: val[xv \oplus (\neg xv)] = new\text{-}int \ 32 \ (mask \ 32)
     using unfoldXor w32 by auto
   then show ?thesis
     by (metis evalDet neg-one.elims neg-one-value p(3,5) rhsDefined xv)
  qed
 done
optimization XorInverse2: exp[({}^{\sim}n) \oplus n] \longmapsto (const\ (new-int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
  using XorInverse exp-xor-commutative by auto
lemma And Self Val:
  assumes n = IntVal \ 32 \ v
 shows val[^{\sim}n \& n] = new\text{-}int 32 0
 apply (auto simp: assms)
 by (metis take-bit-and take-bit-of-0 word-and-not)
optimization And Self: exp[(^{\sim}n) \& n] \longmapsto (const (new-int 32 (0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
 apply (auto simp: Suc-lessI) unfolding size.simps
```

```
by (metis (no-types) val-and-commute ConstantExpr IntVal0 Value.inject(1)
evalDet wf-stamp-def
      eval\text{-}bits\text{-}1\text{-}64\ new\text{-}int.simps\ validDefIntConst\ valid\text{-}int\ wf\text{-}value\text{-}def\ AndSelf\text{-}int\ wf\text{-}}
Val
optimization And Self2: exp[n \& (^{\sim}n)] \longmapsto (const (new-int 32 (0)))
                      when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
 using AndSelf exp-and-commutative by auto
\mathbf{lemma}\ \mathit{NotXorToXorVal}:
 assumes x = IntVal \ 32 \ xv
 assumes y = IntVal \ 32 \ yv
 shows val[(^{\sim}x) \oplus (^{\sim}y)] = val[x \oplus y]
 apply (auto simp: assms)
 by (metis (no-types, opaque-lifting) bit.xor-compl-left bit.xor-compl-right take-bit-xor
     word-not-not)
lemma NotXorToXorExp:
 assumes stamp-expr \ x = IntegerStamp \ 32 \ lx \ hx
 assumes wf-stamp x
 assumes stamp-expr\ y = IntegerStamp\ 32\ ly\ hy
 assumes wf-stamp y
 shows exp[(^{\sim}x) \oplus (^{\sim}y)] \ge exp[x \oplus y]
 apply auto
 subgoal premises p for m p xa xb
   proof -
     obtain xa where xa: [m,p] \vdash x \mapsto xa
       using p by blast
     obtain xb where xb: [m,p] \vdash y \mapsto xb
       using p by blast
     then have a: val[(^{\sim}xa) \oplus (^{\sim}xb)] = val[xa \oplus xb]
       by (metis assms valid-int wf-stamp-def xa xb NotXorToXorVal)
     then show ?thesis
       by (metis BinaryExpr bin-eval.simps(8) evalDet p(1,2,4) xa xb)
   qed
 done
optimization NotXorToXor: exp[(^{\sim}x) \oplus (^{\sim}y)] \longmapsto (x \oplus y)
                      when (stamp-expr \ x = IntegerStamp \ 32 \ lx \ hx \land wf-stamp \ x) \land
                           (stamp-expr\ y = IntegerStamp\ 32\ ly\ hy\ \land\ wf-stamp\ y)
 using NotXorToXorExp by simp
end
— New optimisations - submitted, not added into Graal yet —
\mathbf{context}\ \mathit{stamp\text{-}mask}
begin
```

```
\mathbf{lemma}\ \textit{ExpIntBecomesIntValArbitrary}:
 assumes stamp-expr \ x = IntegerStamp \ b \ xl \ xh
 assumes wf-stamp x
 assumes valid-value v (IntegerStamp b xl xh)
 assumes [m,p] \vdash x \mapsto v
 shows \exists xv. \ v = IntVal \ b \ xv
 using assms by (simp add: IRTreeEvalThms.valid-value-elims(3))
lemma OrGeneralization:
  assumes stamp-expr \ x = IntegerStamp \ b \ xl \ xh
 assumes stamp-expr\ y = IntegerStamp\ b\ yl\ yh
 assumes stamp-expr\ exp[x\mid y]=IntegerStamp\ b\ el\ eh
 assumes wf-stamp x
 assumes wf-stamp y
 assumes wf-stamp exp[x \mid y]
 assumes (or (\downarrow x) (\downarrow y)) = not \theta
 shows exp[x \mid y] \ge exp[(const\ (new\text{-}int\ b\ (not\ \theta)))]
  using assms apply auto
 subgoal premises p for m p xvv yvv
 proof -
   obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     by (metis p(1,3,9) valid-int wf-stamp-def)
   obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     by (metis p(2,4,10) valid-int wf-stamp-def)
   obtain evv where ev: [m, p] \vdash exp[x \mid y] \mapsto IntVal\ b\ evv
     by (metis BinaryExpr bin-eval.simps(7) unfold-binary p(5,9,10,11) valid-int
wf-stamp-def
        assms(3))
   then have rhsWf: wf-value (new-int b (not \theta))
       by (metis eval-bits-1-64 new-int.simps new-int-take-bits validDefIntConst
wf-value-def)
   then have rhs: (new\text{-}int\ b\ (not\ 0)) = val[IntVal\ b\ xv\ |\ IntVal\ b\ yv]
     using assms\ word-ao-absorbs(1)
    by (metis (no-types, opaque-lifting) bit.de-Morgan-conj word-bw-comms(2) xv
down-spec
         word-not-not yv bit.disj-conj-distrib intval-or.simps(1) new-int-bin.simps
ucast-id
         or.right-neutral)
   then have notMaskEq: (new-int\ b\ (not\ 0)) = (new-int\ b\ (mask\ b))
     by auto
   then show ?thesis
    \mathbf{by}\ (\textit{metis neg-one.elims neg-one-value}\ p(9.10)\ \textit{rhsWf unfold-const evalDet}\ xv
yv rhs)
   qed
   done
end
```

```
terminating size
begin
\mathbf{lemma}\ \mathit{constEvalIsConst} \colon
 assumes wf-value n
 shows [m,p] \vdash exp[(const\ (n))] \mapsto n
 by (simp add: assms IRTreeEval.evaltree.ConstantExpr)
lemma ExpAddCommute:
  exp[x + y] \ge exp[y + x]
 by (auto simp add: Values.intval-add-sym)
lemma AddNotVal:
 assumes n = IntVal \ bv \ v
 shows val[n + (^{\sim}n)] = new\text{-}int \ bv \ (not \ \theta)
 by (auto simp: assms)
lemma AddNotExp:
 assumes stamp-expr \ n = IntegerStamp \ b \ l \ h
 assumes wf-stamp n
 shows exp[n + (^{\sim}n)] \ge exp[(const\ (new\text{-}int\ b\ (not\ \theta)))]
 apply auto
 subgoal premises p for m p x xa
 proof -
   have xaDef: [m,p] \vdash n \mapsto xa
     by (simp \ add: \ p)
   then have xaDef2: [m,p] \vdash n \mapsto x
     by (simp \ add: \ p)
   then have xa = x
     using p by (simp \ add: \ evalDet)
   then obtain xv where xv: xa = IntVal\ b\ xv
     by (metis valid-int wf-stamp-def xaDef2 assms)
   have to Val: [m,p] \vdash exp[n + (^{\sim}n)] \mapsto val[xa + (^{\sim}xa)]
      by (metis\ UnaryExpr\ bin-eval.simps(1)\ evalDet\ p\ unary-eval.simps(3)\ un-
fold-binary xaDef)
   have wfInt: wf-value (new-int b (not 0))
     using validDefIntConst xaDef by (simp add: eval-bits-1-64 xv wf-value-def)
   have to ValRHS: [m,p] \vdash exp[(const\ (new\text{-}int\ b\ (not\ \theta)))] \mapsto new\text{-}int\ b\ (not\ \theta)
     using wfInt by (simp add: constEvalIsConst)
   have isNeg1: val[xa + (^{\sim}xa)] = new-int \ b \ (not \ \theta)
     by (simp \ add: xv)
   then show ?thesis
     using to ValRHS by (simp add: \langle (xa::Value) = (x::Value) \rangle)
   qed
  done
```

phase TacticSolving

```
optimization AddNot: exp[n + (^{\sim}n)] \longmapsto (const\ (new\text{-}int\ b\ (not\ \theta)))
                    when (stamp-expr \ n = IntegerStamp \ b \ l \ h \land wf-stamp \ n)
  apply (simp add: Suc-lessI) using AddNotExp by force
optimization AddNot2: exp[(^{\sim}n) + n] \longmapsto (const (new-int b (not 0)))
                    when (stamp-expr \ n = IntegerStamp \ b \ l \ h \land wf-stamp \ n)
  apply (simp add: Suc-lessI) using AddNot ExpAddCommute by simp
lemma TakeBitNotSelf:
 (take-bit 32 (not e) = e) = False
 by (metis even-not-iff even-take-bit-eq zero-neq-numeral)
lemma ValNeverEqNotSelf:
 assumes e = IntVal \ 32 \ ev
 shows val[intval-equals\ (\neg e)\ e] = val[bool-to-val\ False]
 by (simp add: TakeBitNotSelf assms)
lemma ExpIntBecomesIntVal:
 assumes stamp-expr \ x = IntegerStamp \ 32 \ xl \ xh
 assumes wf-stamp x
 assumes valid-value\ v\ (IntegerStamp\ 32\ xl\ xh)
 assumes [m,p] \vdash x \mapsto v
 shows \exists xv. \ v = IntVal \ 32 \ xv
 using assms by (simp add: IRTreeEvalThms.valid-value-elims(3))
lemma ExpNeverNotSelf:
 assumes stamp-expr \ x = IntegerStamp \ 32 \ xl \ xh
 assumes wf-stamp x
 shows exp[BinaryExpr\ BinIntegerEquals\ (\neg x)\ x] \ge
       exp[(const\ (bool-to-val\ False))]
 using assms apply auto
 subgoal premises p for m p xa xaa
 proof -
   obtain xa where xa: [m,p] \vdash x \mapsto xa
     using p(5) by auto
   then obtain xv where xv: xa = IntVal 32 xv
     by (metis\ p(1,2)\ valid-int\ wf-stamp-def)
   then have lhsVal: [m,p] \vdash exp[BinaryExpr\ BinIntegerEquals\ (\neg x)\ x] \mapsto
                          val[intval-equals (\neg xa) xa]
   by (metis\ p(3,4,5,6)\ unary-eval.simps(3)\ evaltree.BinaryExpr\ bin-eval.simps(13)
xa UnaryExpr
        evalDet)
   have wfVal: wf-value (IntVal 32 0)
     using wf-value-def apply rule
    by (metis IntVal0 intval-word.simps nat-le-linear new-int.simps numeral-le-iff
wf-value-def
      semiring-norm(71,76) validDefIntConst verit-comp-simplify1(3) zero-less-numeral)
```

```
then have rhsVal: [m,p] \vdash exp[(const\ (bool-to-val\ False))] \mapsto val[bool-to-val\ ]
False
     by auto
   then have valEq: val[intval-equals (\neg xa) \ xa] = val[bool-to-val \ False]
     using ValNeverEqNotSelf by (simp add: xv)
   then show ?thesis
     by (metis bool-to-val.simps(2) evalDet p(3,5) rhsVal xa)
  qed
 done
optimization NeverEqNotSelf: exp[BinaryExpr\ BinIntegerEquals\ (\neg x)\ x] \longmapsto
                           exp[(const\ (bool-to-val\ False))]
                      when (stamp-expr \ x = IntegerStamp \ 32 \ xl \ xh \land wf-stamp \ x)
 apply (simp add: Suc-lessI) using ExpNeverNotSelf by force
— New optimisations - not submitted / added into Graal yet —
\mathbf{lemma}\ BinXorFallThrough:
 shows bin[(x \oplus y) = x] \longleftrightarrow bin[y = 0]
 by (metis xor.assoc xor.left-neutral xor-self-eq)
lemma \ valXorEqual:
 assumes x = new\text{-}int 32 xv
 assumes val[x \oplus x] \neq UndefVal
 shows val[x \oplus x] = val[new-int 32 0]
 using assms by (cases x; auto)
lemma valXorAssoc:
 \mathbf{assumes}\ x = \textit{new-int}\ \textit{b}\ \textit{xv}
 assumes y = new\text{-}int \ b \ yv
 assumes z = new\text{-}int \ b \ zv
 assumes val[(x \oplus y) \oplus z] \neq UndefVal
 assumes val[x \oplus (y \oplus z)] \neq UndefVal
 shows val[(x \oplus y) \oplus z] = val[x \oplus (y \oplus z)]
 by (simp add: xor.commute xor.left-commute assms)
lemma valNeutral:
  assumes x = new\text{-}int \ b \ xv
 assumes val[x \oplus (new\text{-}int \ b \ 0)] \neq UndefVal
 shows val[x \oplus (new\text{-}int \ b \ \theta)] = val[x]
 using assms by (auto; meson)
lemma ValXorFallThrough:
 assumes x = new\text{-}int \ b \ xv
 assumes y = new-int b yv
 shows val[intval-equals\ (x\oplus y)\ x] = val[intval-equals\ y\ (new-int\ b\ 0)]
 by (simp add: assms BinXorFallThrough)
{\bf lemma}\ \textit{ValEqAssoc} :
  val[intval-equals \ x \ y] = val[intval-equals \ y \ x]
```

```
apply (cases x; cases y; auto) by (metis (full-types) bool-to-val.simps)
lemma ExpEqAssoc:
  exp[BinaryExpr\ BinIntegerEquals\ x\ y] \ge exp[BinaryExpr\ BinIntegerEquals\ y\ x]
 by (auto simp add: ValEqAssoc)
lemma ExpXorBinEqCommute:
  exp[BinaryExpr\ BinIntegerEquals\ (x\oplus y)\ y] \geq exp[BinaryExpr\ BinIntegerEquals
(y \oplus x) y
 using exp-xor-commutative mono-binary by blast
lemma ExpXorFallThrough:
  assumes stamp-expr \ x = IntegerStamp \ b \ xl \ xh
 assumes stamp-expr\ y = IntegerStamp\ b\ yl\ yh
 assumes wf-stamp x
 assumes wf-stamp y
 shows exp[BinaryExpr\ BinIntegerEquals\ (x \oplus y)\ x] \ge
        exp[BinaryExpr\ BinIntegerEquals\ y\ (const\ (new-int\ b\ 0))]
 using assms apply auto
 subgoal premises p for m p xa xaa ya
 proof -
   obtain b xv where xa: [m,p] \vdash x \mapsto new\text{-int } b \ xv
     using intval-equals.elims
    by (metis new-int.simps eval-unused-bits-zero p(1,3,5) wf-stamp-def valid-int)
   obtain yv where ya: [m,p] \vdash y \mapsto new\text{-}int \ b \ yv
     by (metis\ Value.inject(1)\ wf\text{-}stamp\text{-}def\ p(1,2,3,4,8)\ eval\text{-}unused\text{-}bits\text{-}zero\ xa
new\text{-}int.simps
        valid-int)
   then have wfVal: wf-value (new-int b \theta)
       by (metis eval-bits-1-64 new-int.simps new-int-take-bits validDefIntConst
wf-value-def(xa)
   then have eval: [m,p] \vdash exp[BinaryExpr\ BinIntegerEquals\ y\ (const\ (new-int\ b
\theta))] \mapsto
                         val[intval-equals\ (xa \oplus ya)\ xa]
   by (metis (no-types, lifting) ValXorFallThrough constEvalIsConst bin-eval.simps(13)
evalDet xa
        p(5,6,7,8) unfold-binary ya)
   then show ?thesis
     by (metis evalDet new-int.elims p(1,3,5,7) take-bit-of-0 valid-value.simps(1)
wf-stamp-def(xa)
  qed
 done
lemma ExpXorFallThrough2:
  assumes stamp-expr \ x = IntegerStamp \ b \ xl \ xh
 assumes stamp-expr\ y = IntegerStamp\ b\ yl\ yh
 assumes wf-stamp x
 assumes wf-stamp y
 shows exp[BinaryExpr\ BinIntegerEquals\ (x \oplus y)\ y] \ge
```

```
exp[BinaryExpr\ BinIntegerEquals\ x\ (const\ (new-int\ b\ 0))]
  by (meson assms dual-order.trans ExpXorBinEqCommute ExpXorFallThrough)
optimization XorFallThrough1: exp[BinaryExpr\ BinIntegerEquals\ (x \oplus y)\ x] \mapsto
                            exp[BinaryExpr\ BinIntegerEquals\ y\ (const\ (new-int\ b\ 0))]
                      when (stamp-expr \ x = IntegerStamp \ b \ xl \ xh \land wf-stamp \ x) \land
                           (stamp-expr\ y = IntegerStamp\ b\ yl\ yh \land wf-stamp\ y)
  using ExpXorFallThrough by force
\textbf{optimization} \ \textit{XorFallThrough2} : exp[\textit{BinaryExpr BinIntegerEquals} \ x \ (x \oplus y)] \longmapsto
                            exp[BinaryExpr\ BinIntegerEquals\ y\ (const\ (new-int\ b\ 0))]
                      when (stamp-expr \ x = IntegerStamp \ b \ xl \ xh \land wf-stamp \ x) \land
                           (stamp-expr\ y = IntegerStamp\ b\ yl\ yh \land wf-stamp\ y)
  using ExpXorFallThrough ExpEqAssoc by force
optimization XorFallThrough3: exp[BinaryExpr\ BinIntegerEquals\ (x\oplus y)\ y] \longmapsto
                            exp[BinaryExpr\ BinIntegerEquals\ x\ (const\ (new-int\ b\ 0))]
                      when (stamp-expr \ x = IntegerStamp \ b \ xl \ xh \land wf-stamp \ x) \land
                           (stamp-expr\ y = IntegerStamp\ b\ yl\ yh \land wf-stamp\ y)
  using ExpXorFallThrough2 by force
optimization XorFallThrough4: exp[BinaryExpr\ BinIntegerEquals\ y\ (x\oplus y)] \longmapsto
                            exp[BinaryExpr\ BinIntegerEquals\ x\ (const\ (new-int\ b\ 0))]
                      when (stamp-expr \ x = IntegerStamp \ b \ xl \ xh \land wf-stamp \ x) \land
                           (stamp-expr\ y = IntegerStamp\ b\ yl\ yh \land wf-stamp\ y)
 using ExpXorFallThrough2 ExpEqAssoc by force
end
context stamp-mask
begin
lemma inEquivalence:
  assumes [m, p] \vdash y \mapsto IntVal\ b\ yv
  assumes [m, p] \vdash x \mapsto IntVal\ b\ xv
  shows (and (\uparrow x) yv) = (\uparrow x) \longleftrightarrow (or (\uparrow x) yv) = yv
  by (metis\ word-ao-absorbs(3)\ word-ao-absorbs(4))
\mathbf{lemma}\ in Equivalence 2:
  assumes [m, p] \vdash y \mapsto IntVal\ b\ yv
  assumes [m, p] \vdash x \mapsto IntVal\ b\ xv
  shows (and (\uparrow x) (\downarrow y)) = (\uparrow x) \longleftrightarrow (or (\uparrow x) (\downarrow y)) = (\downarrow y)
  by (metis\ word-ao-absorbs(3)\ word-ao-absorbs(4))
```

```
{\bf lemma}\ Remove LHSOr Mask:
  assumes (and (\uparrow x) (\downarrow y)) = (\uparrow x)
  assumes (or (\uparrow x) (\downarrow y)) = (\downarrow y)
  shows exp[x \mid y] \ge exp[y]
  using assms apply auto
  subgoal premises p for m p v
  proof -
   obtain b ev where exp: [m, p] \vdash exp[x \mid y] \mapsto IntVal\ b ev
    \mathbf{by}\ (\textit{metis BinaryExpr bin-eval.simps} (\textit{?})\ \textit{p(3,4,5)}\ \textit{bin-eval-new-int new-int.simps})
   from exp obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     apply (subst (asm) unfold-binary-width) by force+
   from exp obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     apply (subst (asm) unfold-binary-width) by force+
   then have yv = (or xv yv)
     using assms yv xv apply auto
    by (metis\ (no\text{-}types,\ opaque\text{-}lifting)\ down\text{-}spec\ ucast\text{-}id\ up\text{-}spec\ word\text{-}ao\text{-}absorbs(1)
word-or-not
         word-ao-equiv word-log-esimps(3) word-oa-dist word-oa-dist 2)
   then have (IntVal\ b\ yv) = val[(IntVal\ b\ xv) \mid (IntVal\ b\ yv)]
     apply auto using eval-unused-bits-zero yv by presburger
   then show ?thesis
     by (metis\ p(3,4)\ evalDet\ xv\ yv)
  qed
  done
\mathbf{lemma}\ \textit{RemoveRHSAndMask}:
  assumes (and (\uparrow x) (\downarrow y)) = (\uparrow x)
  assumes (or (\uparrow x) (\downarrow y)) = (\downarrow y)
  shows exp[x \& y] \ge exp[x]
  using assms apply auto
  subgoal premises p for m p v
  proof -
   obtain b ev where exp: [m, p] \vdash exp[x \& y] \mapsto IntVal\ b\ ev
    by (metis BinaryExpr bin-eval.simps(6) p(3,4,5) new-int.simps bin-eval-new-int)
   from exp obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     apply (subst (asm) unfold-binary-width) by force+
   from exp obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     apply (subst (asm) unfold-binary-width) by force+
   then have IntVal\ b\ xv = val[(IntVal\ b\ xv)\ \&\ (IntVal\ b\ yv)]
     apply auto
    \mathbf{by}\;(smt\;(verit,\;ccfv\text{-}threshold)\;or.right\text{-}neutral\;not\text{-}down\text{-}up\text{-}mask\text{-}and\text{-}zero\text{-}implies\text{-}zero
p(1)
      bit.conj-cancel-right word-bw-comms(1) eval-unused-bits-zero yv word-bw-assocs(1)
         word-ao-absorbs(4) or-eq-not-not-and)
   then show ?thesis
     by (metis\ p(3,4)\ yv\ xv\ evalDet)
```

```
\begin{array}{c} \mathbf{qed} \\ \mathbf{done} \end{array}
```

```
\mathbf{lemma}\ ReturnZeroAndMask:
 assumes stamp-expr \ x = IntegerStamp \ b \ xl \ xh
 assumes stamp-expr\ y = IntegerStamp\ b\ yl\ yh
 assumes stamp-expr\ exp[x\ \&\ y]=IntegerStamp\ b\ el\ eh
 assumes wf-stamp x
 assumes wf-stamp y
 assumes wf-stamp exp[x \& y]
 assumes (and (\uparrow x) (\uparrow y)) = 0
 shows exp[x \& y] \ge exp[const (new-int b \theta)]
 using assms apply auto
 subgoal premises p for m p v
 proof -
   obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     by (metis valid-int wf-stamp-def assms(2,5) p(2,4,10) wf-stamp-def)
   obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     by (metis valid-int wf-stamp-def assms(1,4) p(3,9) wf-stamp-def)
   obtain ev where exp: [m, p] \vdash exp[x \& y] \mapsto IntVal \ b \ ev
       by (metis BinaryExpr bin-eval.simps(6) p(5,9,10,11) assms(3) valid-int
wf-stamp-def)
   then have wfVal: wf-value (new-int b \theta)
       by (metis eval-bits-1-64 new-int.simps new-int-take-bits validDefIntConst
wf-value-def)
   then have lhsEq: IntVal\ b\ ev = val[(IntVal\ b\ xv)\ \&\ (IntVal\ b\ yv)]
     by (metis bin-eval.simps(6) yv xv evalDet exp unfold-binary)
   then have newIntEquiv: new-int \ b \ \theta = IntVal \ b \ ev
   apply auto by (smt (z3) p(6) eval-unused-bits-zero xv yv up-mask-and-zero-implies-zero)
   then have isZero: ev = 0
     by auto
   then show ?thesis
     by (metis evalDet lhsEq newIntEquiv p(9,10) unfold-const wfVal xv yv)
  qed
  done
end
phase TacticSolving
 terminating size
begin
lemma binXorIsEqual:
 bin[((x \oplus y) = (x \oplus z))] \longleftrightarrow bin[(y = z)]
 by (metis (no-types, opaque-lifting) BinXorFallThrough xor.left-commute xor-self-eq)
```

```
lemma binXorIsDeterministic:
 assumes y \neq z
 shows bin[x \oplus y] \neq bin[x \oplus z]
 by (auto simp add: binXorIsEqual assms)
{f lemma}\ {\it ValXorSelfIsZero}:
 assumes x = IntVal \ b \ xv
 shows val[x \oplus x] = IntVal \ b \ \theta
 by (simp add: assms)
lemma ValXorSelfIsZero2:
 assumes x = new\text{-}int \ b \ xv
 shows val[x \oplus x] = IntVal \ b \ \theta
 by (simp add: assms)
lemma ValXorIsAssociative:
 assumes x = IntVal \ b \ xv
 assumes y = IntVal\ b\ yv
 assumes val[(x \oplus y)] \neq UndefVal
 shows val[(x \oplus y) \oplus y] = val[x \oplus (y \oplus y)]
 by (auto simp add: word-bw-lcs(3) assms)
\mathbf{lemma}\ \mathit{ValXorIsAssociative2}\colon
 assumes x = new\text{-}int \ b \ xv
 assumes y = new\text{-}int \ b \ yv
 assumes val[(x \oplus y)] \neq UndefVal
 shows val[(x \oplus y) \oplus y] = val[x \oplus (y \oplus y)]
 using ValXorIsAssociative by (simp add: assms)
lemma XorZeroIsSelf64:
 assumes x = IntVal 64 xv
 assumes val[x \oplus (IntVal \ 64 \ 0)] \neq UndefVal
 shows val[x \oplus (IntVal \ 64 \ 0)] = x
 using assms apply (cases x; auto)
 subgoal
 proof -
   have take-bit (LENGTH(64)) xv = xv
     unfolding Word.take-bit-length-eq by simp
   then show ?thesis
     by auto
  qed
 done
lemma ValXorElimSelf64:
 assumes x = IntVal 64 xv
 assumes y = IntVal 64 yv
 assumes val[x \oplus y] \neq UndefVal
 assumes val[y \oplus y] \neq UndefVal
```

```
shows val[x \oplus (y \oplus y)] = x
 proof -
   have removeRhs: val[x \oplus (y \oplus y)] = val[x \oplus (IntVal 64 0)]
     by (simp \ add: \ assms(2))
   then have XorZeroIsSelf: val[x \oplus (IntVal 64 0)] = x
     using XorZeroIsSelf64 by (simp add: assms(1))
   then show ?thesis
     by (simp add: removeRhs)
 qed
lemma ValXorIsReverse64:
 assumes x = IntVal 64 xv
 assumes y = IntVal 64 yv
 assumes z = IntVal 64 zv
 assumes z = val[x \oplus y]
 assumes val[x \oplus y] \neq UndefVal
 assumes val[z \oplus y] \neq UndefVal
 shows val[z \oplus y] = x
 using ValXorIsAssociative\ ValXorElimSelf64\ assms(1,2,4,5) by force
lemma valXorIsEqual-64:
 assumes x = IntVal 64 xv
 assumes val[x \oplus y] \neq UndefVal
 assumes val[x \oplus z] \neq UndefVal
 shows val[intval-equals\ (x\oplus y)\ (x\oplus z)] = val[intval-equals\ y\ z]
 using assms apply (cases x; cases y; cases z; auto)
 subgoal premises p for yv zv apply (cases (yv = zv); simp)
 subgoal premises p
 proof -
   have is False: bool-to-val (yv = zv) = bool-to-val False
     by (simp \ add: \ p)
   then have unfoldTakebityv: take-bit LENGTH(64) yv = yv
     using take-bit-length-eq by blast
   then have unfoldTakebitzv: take-bit\ LENGTH(64)\ zv = zv
     using take-bit-length-eq by blast
   then have unfoldTakebitxv: take-bit\ LENGTH(64)\ xv = xv
     \mathbf{using}\ take\text{-}bit\text{-}length\text{-}eq\ \mathbf{by}\ blast
   then have lhs: (xor\ (take-bit\ LENGTH(64)\ yv)\ (take-bit\ LENGTH(64)\ xv) =
                   xor (take-bit LENGTH(64) zv) (take-bit LENGTH(64) xv)) =
(False)
     {f unfolding} \ unfold Take bityv \ unfold Take bitxv \ unfold Take bitxv
     by (simp\ add:\ binXorIsEqual\ word-bw-comms(3)\ p)
   then show ?thesis
     by (simp add: isFalse)
   qed
  done
 done
lemma ValXorIsDeterministic-64:
```

```
assumes x = IntVal 64 xv
 assumes y = IntVal 64 yv
 assumes z = IntVal 64 zv
 assumes val[x \oplus y] \neq UndefVal
 assumes val[x \oplus z] \neq UndefVal
 assumes yv \neq zv
 shows val[x \oplus y] \neq val[x \oplus z]
  by (smt (verit, best) ValXorElimSelf64 ValXorIsAssociative ValXorSelfIsZero
Value.distinct(1)
     assms Value.inject(1) val-xor-commute valXorIsEqual-64)
lemma ExpIntBecomesIntVal-64:
 assumes stamp-expr \ x = IntegerStamp \ 64 \ xl \ xh
 assumes wf-stamp x
 assumes valid-value v (IntegerStamp 64 xl xh)
 assumes [m,p] \vdash x \mapsto v
 shows \exists xv. \ v = IntVal \ 64 \ xv
 using assms by (simp add: IRTreeEvalThms.valid-value-elims(3))
lemma expXorIsEqual-64:
 assumes stamp-expr \ x = IntegerStamp \ 64 \ xl \ xh
 assumes stamp-expr\ y = IntegerStamp\ 64\ yl\ yh
 assumes stamp-expr z = IntegerStamp 64 zl zh
 assumes wf-stamp x
 assumes wf-stamp y
 assumes wf-stamp z
   shows exp[BinaryExpr\ BinIntegerEquals\ (x \oplus y)\ (x \oplus z)] \ge
         exp[BinaryExpr\ BinIntegerEquals\ y\ z]
 using assms apply auto
 subgoal premises p for m p x1 y1 x2 z1
 proof -
   obtain xVal where xVal: [m,p] \vdash x \mapsto xVal
     using p(8) by simp
   obtain yVal where yVal: [m,p] \vdash y \mapsto yVal
     using p(9) by simp
   obtain zVal where zVal: [m,p] \vdash z \mapsto zVal
     using p(12) by simp
   obtain xv where xv: xVal = IntVal 64 xv
     by (metis\ p(1)\ p(4)\ wf\text{-}stamp\text{-}def\ xVal\ ExpIntBecomesIntVal-64})
  then have rhs: [m,p] \vdash exp[BinaryExpr\ BinIntegerEquals\ y\ z] \mapsto val[intval-equals\ y\ z]
yVal\ zVal
    by (metis BinaryExpr bin-eval.simps(13) evalDet p(7,8,9,10,11,12,13) valX-
orIsEqual-64 xVal
        yVal\ zVal)
   then show ?thesis
     by (metis xv evalDet p(8,9,10,11,12,13) valXorIsEqual-64 xVal yVal zVal)
 ged
 done
```

```
optimization XorIsEqual-64-1: exp[BinaryExpr\ BinIntegerEquals\ (x \oplus y)\ (x \oplus y)]
z)] \longmapsto
                          exp[BinaryExpr BinIntegerEquals y z]
                     when (stamp-expr \ x = IntegerStamp \ 64 \ xl \ xh \land wf-stamp \ x) \land
                          (stamp-expr\ y = IntegerStamp\ 64\ yl\ yh\ \land\ wf-stamp\ y)\ \land
                          (stamp-expr\ z = IntegerStamp\ 64\ zl\ zh\ \land\ wf-stamp\ z)
 using expXorIsEqual-64 by force
optimization XorIsEqual-64-2: exp[BinaryExpr\ BinIntegerEquals\ (x \oplus y)\ (z \oplus y)]
x)] \longmapsto
                          exp[BinaryExpr\ BinIntegerEquals\ y\ z]
                     when (stamp-expr \ x = IntegerStamp \ 64 \ xl \ xh \land wf-stamp \ x) \land
                          (stamp-expr\ y = IntegerStamp\ 64\ yl\ yh\ \land\ wf-stamp\ y)\ \land
                          (stamp-expr\ z = IntegerStamp\ 64\ zl\ zh \land wf-stamp\ z)
 by (meson dual-order.trans mono-binary exp-xor-commutative expXorIsEqual-64)
optimization XorIsEqual-64-3: exp[BinaryExpr\ BinIntegerEquals\ (y \oplus x)\ (x \oplus x)]
z)] \longmapsto
                          exp[BinaryExpr\ BinIntegerEquals\ y\ z]
                     when (stamp-expr \ x = IntegerStamp \ 64 \ xl \ xh \land wf-stamp \ x) \land
                          (stamp-expr\ y = IntegerStamp\ 64\ yl\ yh\ \land\ wf-stamp\ y)\ \land
                          (stamp-expr\ z = IntegerStamp\ 64\ zl\ zh \land wf-stamp\ z)
 by (meson dual-order trans mono-binary exp-xor-commutative expXorIsEqual-64)
optimization XorIsEqual-64-4: exp[BinaryExpr\ BinIntegerEquals\ (y \oplus x)\ (z \oplus
x)] \longmapsto
                          exp[BinaryExpr\ BinIntegerEquals\ y\ z]
                     when (stamp-expr \ x = IntegerStamp \ 64 \ xl \ xh \land wf-stamp \ x) \land
                          (stamp-expr\ y = IntegerStamp\ 64\ yl\ yh\ \land\ wf-stamp\ y)\ \land
                          (stamp-expr\ z = IntegerStamp\ 64\ zl\ zh\ \land\ wf-stamp\ z)
 by (meson dual-order trans mono-binary exp-xor-commutative expXorIsEqual-64)
lemma unwrap-bool-to-val:
  shows (bool\text{-}to\text{-}val\ a=bool\text{-}to\text{-}val\ b)=(a=b)
 apply auto using bool-to-val.elims by fastforce+
lemma take-bit-size-eq:
 shows take-bit 64 a = take-bit LENGTH(64) (a::64 word)
 \mathbf{by} auto
lemma xorZeroIsEq:
  bin[(xor\ xv\ yv) = 0] = bin[xv = yv]
 by (metis binXorIsEqual xor-self-eq)
```

```
lemma valXorEqZero-64:
 assumes val[(x \oplus y)] \neq UndefVal
 assumes x = IntVal 64 xv
 assumes y = IntVal 64 yv
 shows val[intval-equals\ (x\oplus y)\ ((IntVal\ 64\ 0))] = val[intval-equals\ (x)\ (y)]
 using assms apply (cases x; cases y; auto)
  unfolding unwrap-bool-to-val take-bit-size-eq Word.take-bit-length-eq by (simp
add: xorZeroIsEq)
lemma expXorEqZero-64:
 assumes stamp-expr \ x = IntegerStamp \ 64 \ xl \ xh
 assumes stamp-expr\ y = IntegerStamp\ 64\ yl\ yh
 assumes wf-stamp x
 assumes wf-stamp y
   shows exp[BinaryExpr\ BinIntegerEquals\ (x \oplus y)\ (const\ (IntVal\ 64\ 0))] \ge
         exp[BinaryExpr\ BinIntegerEquals\ (x)\ (y)]
 using assms apply auto
 subgoal premises p for m p x1 y1
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p by blast
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using p by fast
   obtain xvv where xvv: xv = IntVal 64 xvv
     by (metis\ p(1,3)\ wf\text{-}stamp\text{-}def\ xv\ ExpIntBecomesIntVal-64})
   obtain yvv where yvv: yv = IntVal 64 yvv
     by (metis p(2,4) wf-stamp-def yv ExpIntBecomesIntVal-64)
  have rhs: [m,p] \vdash exp[BinaryExpr\ BinIntegerEquals\ (x)\ (y)] \mapsto val[intval-equals\ (x)\ (y)]
xv yv
       by (smt (z3) BinaryExpr ValEqAssoc ValXorSelfIsZero Value.distinct(1)
bin-eval.simps(13) xvv
        evalDet\ p(5,6,7,8)\ valXorIsEqual-64\ xv\ yv)
   then show ?thesis
     by (metis evalDet p(6,7,8) valXorEqZero-64 xv xvv yv yvv)
 qed
 done
optimization XorEqZero-64: exp[BinaryExpr\ BinIntegerEquals\ (x <math>\oplus y) (const
(IntVal \ 64 \ \theta))] \longmapsto
                        exp[BinaryExpr\ BinIntegerEquals\ (x)\ (y)]
                   when (stamp-expr \ x = IntegerStamp \ 64 \ xl \ xh \land wf-stamp \ x) \land
                       (stamp-expr\ y = IntegerStamp\ 64\ yl\ yh\ \land\ wf-stamp\ y)
 using expXorEqZero-64 by fast
lemma xorNeg1IsEq:
 bin[(xor\ xv\ yv) = (not\ \theta)] = bin[xv = not\ yv]
```

```
using xorZeroIsEq by fastforce
lemma valXorEqNeg1-64:
    assumes val[(x \oplus y)] \neq UndefVal
    assumes x = IntVal 64 xv
   assumes y = IntVal 64 yv
   shows val[intval\text{-}equals\ (x\oplus y)\ (IntVal\ 64\ (not\ \theta))] = val[intval\text{-}equals\ (x)\ (\neg y)]
   using assms apply (cases x; cases y; auto)
   unfolding unwrap-bool-to-val take-bit-size-eq Word.take-bit-length-eq using xorNeq1IsEq
by auto
lemma expXorEqNeg1-64:
    assumes stamp-expr \ x = IntegerStamp \ 64 \ xl \ xh
    assumes stamp-expr\ y = IntegerStamp\ 64\ yl\ yh
    assumes wf-stamp x
   assumes wf-stamp y
        shows exp[BinaryExpr\ BinIntegerEquals\ (x \oplus y)\ (const\ (IntVal\ 64\ (not\ 0)))]
\geq
                     exp[BinaryExpr\ BinIntegerEquals\ (x)\ (\neg y)]
    using assms apply auto
    subgoal premises p for m p x1 y1
    proof -
       obtain xv where xv: [m,p] \vdash x \mapsto xv
            using p by blast
       obtain yv where yv: [m,p] \vdash y \mapsto yv
           using p by fast
       obtain xvv where xvv: xv = IntVal 64 xvv
           by (metis\ p(1,3)\ wf\text{-}stamp\text{-}def\ xv\ ExpIntBecomesIntVal-64})
       obtain yvv where yvv: yv = IntVal 64 yvv
           by (metis\ p(2,4)\ wf\text{-}stamp\text{-}def\ yv\ ExpIntBecomesIntVal-64})
       obtain nyv where nyv: [m,p] \vdash exp[(\neg y)] \mapsto nyv
               by (metis ValXorSelfIsZero2 Value.distinct(1) intval-not.simps(1) yv yvv
intval-xor.simps(2)
                    UnaryExpr\ unary-eval.simps(3))
       then have nyvEq: val[\neg yv] = nyv
           using evalDet yv by fastforce
       obtain nyvv where nyvv: nyv = IntVal 64 nyvv
           using nyvEq intval-not.simps yvv by force
       have notUndef: val[intval-equals xv (\neg yv)] \neq UndefVal
           using bool-to-val.elims nyvEq nyvv xvv by auto
     have rhs: [m,p] \vdash exp[BinaryExpr\ BinIntegerEquals\ (x)\ (\neg y)] \mapsto val[intval-equals\ (x)\ (x)\ (x)\ (x)\ (x)\ (x) \mapsto val[intval-equals\ (x)\ (x)\ (x)\ (x) \mapsto val[intval-equals\ (x)\ (x)\ (x)\ (x) \mapsto val[intval-equals\ (x)\ (x) \mapsto val[intval-equals\ (x)\ (x) \mapsto val[intval-equals\ (x) \mapsto val[intval-equals\ (x) \mapsto val[intval-equals\ (x) \mapsto val[intval-equals\ (x)
xv (\neg yv)]
           by (metis\ BinaryExpr\ bin-eval.simps(13)\ notUndef\ nyv\ nyvEq\ xv)
       then show ?thesis
         by (metis bit.compl-zero evalDet p(6,7,8) rhs valXorEqNeg1-64 xvv yvv xv yv)
    qed
    done
optimization XorEqNeg1-64: exp[BinaryExpr\ BinIntegerEquals\ (x \oplus y)\ (const
```

```
(IntVal \ 64 \ (not \ \theta)))] \longmapsto
                            exp[BinaryExpr\ BinIntegerEquals\ (x)\ (\neg y)]
                      when (stamp-expr \ x = IntegerStamp \ 64 \ xl \ xh \land wf-stamp \ x) \land
                          (stamp-expr\ y = IntegerStamp\ 64\ yl\ yh\ \land\ wf-stamp\ y)
  using expXorEqNeg1-64 apply auto sorry
\quad \text{end} \quad
end
{\bf theory}\ {\it ProofStatus}
  imports
    AbsPhase
    AddPhase
    AndPhase
    Conditional Phase
    MulPhase
    NegatePhase
    NewAnd
    NotPhase
    OrPhase
    ShiftPhase
    Signed Div Phase \\
    Signed Rem Phase \\
    SubPhase
    Tactic Solving
    XorPhase
begin
declare [[show-types=false]]
print-phases
print-phases!
{\bf print\text{-}methods}
print-theorems
{f thm}\ opt	ext{-}add	ext{-}left	ext{-}negate	ext{-}to	ext{-}sub
\textbf{export-phases} \ \langle \textit{Full} \rangle
```

 $\quad \text{end} \quad$