Correction

 $\begin{array}{c} {\rm Test~Dimensions} \\ 2020 \end{array}$

Nom et prénom :

Question 1 \clubsuit On donne la famille $(e_1 = (1, 0, 2, -1), e_2 = (1, 0, 3, 1)$. Quels vecteurs e_3 parmi les suivants rendent la famille (e_1, e_2, e_3) libre ? $e_3 = \dots$

 $\boxed{\mathbf{A}}$ (1,0,1,-3).

(2,0,1,0)

C (0,0,-1,-2)

(1,1,2,-1)

E Aucun

Explication: On a $(0,0,-1,-2) = e_1 - e_2$ et $(1,0,1,-3) = -2e_1 + e_2$.

 $\boxed{\mathbf{A}}$ multiples de $\overrightarrow{\mathbf{0}}$

B vecteurs qui sont égaux à $\overrightarrow{0}$ D images de $\overrightarrow{0}$

antécédents de $\overrightarrow{0}$

Explication: C'est la définition $\operatorname{Ker} f = f^{-1}(\{\overrightarrow{0}_F\}).$

Question 3 \clubsuit L'image d'une application linéaire $f: E \to F$ est

 $oxed{A}$ F l'espace vectoriel engendré par les images $oxed{D}$ f(x) f(E) f(E)

Explication : L'image de f est l'ensemble des images ce qui correspond à f(E). Par théorème, Im f est un sev de F.

Question 4 Si f est injective de \mathbb{R}^2 dans \mathbb{R}^3 , alors son image est

A une droite

 $\overrightarrow{0}$

 \mathbb{C} \mathbb{R}^3

un plan

E son noyau

Explication: Si f est injective alors $\operatorname{Ker} f = \{\overrightarrow{0}_E\}$. Le théorème du rang donne $\dim \operatorname{Im} f = \dim \mathbb{R}^2 - \dim \operatorname{Ker} f = 2$.

Question 5 Si f est un endomorphisme de \mathbb{R}^2 avec f(1,0)=(2,3) et f(0,1)=(-1,2), alors pour tout $(x,y)\in\mathbb{R}^2$,

f(x,y) = (2x - y, 3x + 2y)

B f(x,y) = (2x + 3y, -x + 2y)D f(x,y) = 5x + y $\boxed{\mathbf{C}} \quad f(x,y) = (5x,y)$

Explication: Par linéarité, f(x,y) = xf(1,0) + yf(0,1) = (2x - y, 3x + 2y)

Question 6 Si f(x,y) = (1/x,y), alors f est une symétrie

Faux

B Vrai

Explication: L'application f n'est pas linéaire car f(0,0) n'est pas défini.

CORRECTION

Question 7 On définit f par $\forall P \in \mathbb{R}[X]$, f(P) = Q avec Q(X) = P(-X). f est une symétrie?

Vrai B Faux

Explication: f est linéaire car $(\alpha P + Q)(-X) = \alpha P(-X) + Q(-X)$ et $f \circ f = id_{\mathbb{R}[X]}$ donc f est une symétrie.

Question 8 On définit g par $\forall P \in \mathbb{R}[X]$, g(P) = P(0)(X+1). g est une projection?

A Faux Vrai

Explication: g est linéaire et $g \circ g = g$.

Question 9 Si s est une symétrie, alors s est une symétrie par rapport à F parallèlement à G avec

Explication: s est une symétrie par rapport à l'ensemble des vecteurs invariants : $Ker(s - id_E)$ parallèlement à l'ensemble des vecteurs changés en leurs opposés : $Ker(s + id_E)$

Question 10 \clubsuit Soit E un espace vectoriel de dimension finie et F,G deux sous-espaces vectoriels de E. On a $E=F\oplus G \iff$

Question 11 \clubsuit Soit u une application linéaire de E dans F. Soit $(e_i)_{i \in [\![1,n]\!]}$ une base de E. u est injective si et seulement si

Explication: Le théorème du rang donne $\dim(\operatorname{Im}(u)) = \dim E \iff \dim(\operatorname{Ker} u) = 0 \iff \operatorname{Ker}(u) = \{\overrightarrow{0}\} \iff u$ est injective

Question 12 \clubsuit Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ une application linéaire telle que l'équation f(x,y) = (0,0) équivaut à (x,y) = (0,0). Alors,

Explication: f(x,y) = (0,0) équivaut à (x,y) = (0,0) signifie que f est injective. Comme f est un endomorphisme d'un espace de dimension finie, alors f injective $\iff f$ est bijective. Donc f est un isomorphisme.