Convex Optimization: Homework #3

Due on November 13, 2017 at 11:59pm $Professor\ Ying\ Cui$

Xiaoyi He

Textbook Exercises 4.1

Solution

the sketch of the feasible set:

- (a) $x^* = (2/5, 1/5), p^* = 3/5$
- (b) With these constrains, $\inf \{f_0(x_1, x_2)\} = -\infty$
- (c) $X_{opt} = \{(0, x_2) | x_2 \ge 1\}, P^* = 0$
- (d) $x^* = (1/3, 1/3), P^* = 1/3$
- (e) when the line $x_1 + 3x_2 = 1$ and the ellipsoid $x_2^2 + 9x_2^2 = R^2$ are tangent, the point of tangency (x_1^*, x_2^*) satisfy:

$$x_1^* + 3x_2^* = 1$$
$$-x_1^*/9x_2^* = -1/3$$

Thus, $x^* = (1/2, 1/6)$ and $p^* = 1/2$

Textbook exercise 4.8 a-e

Solution

- (a) If the problem is infeasible, the optimal value is ∞ . If the problem is feasible, the optimal value is $-\infty$.
- (b) If the vector c is not parallel to a, then the optimal value is $-\infty$.

If the vector c is equal to λa , the optimal value is $-\infty$ when the $\lambda > 0$ and the optimal value is λb when $\lambda < 0$.

(c)

$$p^* = \sum_{i=1}^{j} c_i l + \sum_{i=j+1}^{n} c_i u$$

where $c_1, \ldots, c_j \ge 0$ and $c_{j+1}, \ldots, c_n \le 0$

(d)

$$c^T x = \sum_{i=1}^n c_i x_i$$

Let $c_j = c_{min}$. Thus $p^* = c_j$ when $x_j^* = 1$ and $x_i^* = 0$, $i \neq j$

When the constraint is replaced by the inequality and $c_j \leq 0$, the optimal value is achieved with $x_j = 1$ and $x_i = 0, i \neq j$. If $c_j \geq 0$ the optimal value is achieved when $x_i = 0, i = 1, ..., n$.

(e)

Textbook exercise 4.33

Solution

(a) It is equivalent to:

minimize t

subject to
$$\log \left(\sum_{k=1}^{K} exp(a_{ik}^{T}y + b_{ik}) \right) / t \leq 1, i = 1, 2$$

(b) It is equivalent to:

minimize
$$exp(t_1) + exp(t_2)$$

subject to
$$\log \left(\sum_{k=1}^{K} exp(a_{ik}^{T}y + b_{ik}) \right) \leq t_i, i = 1, 2$$

(c)It is equivalent to:

minimize t

subject to
$$\frac{\left(\log\left(\sum_{k=1}^{K}exp(a_{1k}^{T}y+b_{1k})\right)\right)/t+\log\left(\sum_{k=1}^{K}exp(a_{2k}^{T}y+b_{2k})\right)}{a^{T}y+b}\leq 1$$

Textbook exercise 4.40 a-c

Solution

Xiaoyi He

(a) It is equivalent to:

minimize
$$c^T x + d$$

subject to $\mathbf{diag}(Gx - h) \leq 0$
 $Ax = b$

(b) QP. Let $P_i = W_i W_i^T$

minimize
$$t + 2q^T x + r$$

subject to $\begin{bmatrix} I & W_T x \\ x^T W & tI \end{bmatrix} \succeq 0$
 $\mathbf{diag}(Gx - h) \preceq 0$
 $Ax = b$

QCQP. Let $P_i = W_i W_i^T$

minimize
$$t_0 + 2q_0^T x + r_0$$

subject to $\begin{bmatrix} I & W_i^T x \\ x^T W_i & t_i I \end{bmatrix} \succeq 0, i = 0, 1, \dots, m$
 $t_i + 2q_i^T x + r_i \leq 0, i = 1, \dots, m$
 $Ax = b$

SOCP.

minimize
$$c^T x$$
 subject to
$$\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A x_i + b_i)^T & (c_i^T + d_i)I \end{bmatrix} \succeq 0, i = 1, \dots, N$$

$$F x = g$$

(c)

minimize
$$t$$

subject to
$$\begin{bmatrix} F(x) & Ax + b \\ (Ax + b)^T & t \end{bmatrix} \succeq 0$$