Logika układów cyfrowych lab.

Prowadzący: Mgr inż. Antoni Sterna (E02-38m, wtorek 17:05)

sprawozdanie 7 - 2017.11.28

Jakub Dorda 235013 Marcin Kotas 235098

> 5 grudnia 2017 LAT_EX

1 Wprowadzenie/cel ćwiczeń

Celem ćwiczeń było zaprojektowanie analizatora ciągu par w czasie trwania zajęć. Dodatkowo należało przeprowadzić syntezę strukturalną w wariancie Mealy z wykorzystaniem przerzutników JK w celu uruchomienia go na zestawie UNILOG.

2 Graf

• Wejścia: $Z = \{Z_0, Z_1\}$

 Z_0 - element pary równy - 0 Z_1 - element pary równy - 1

• Stany wewnetrzne: $Q = \{Q_0, Q_1, Q_2, Q_3\}$

	$ q_1 $	q_0
$\overline{Q_0}$	0	0
Q_1	0	1
Q_2	1	0
Q_3	1	1

 Q_0 - par wejść spełniająca warunki

+ stan startowy

 Q_1 - pierwszy element pary równy Z_0

 \mathbb{Q}_2 - pierwszy element pary równy \mathbb{Z}_1

 Q_3 - para wejść niespełniająca warunki

• Funkcja wyjść: $Y = \{Y_0, Y_1\}$

 Y_0 - nieparzysta ilość wejść / niepoprawny ciąg par

 Y_1 - poprawny ciąg par

Graf 1 - analizator ciągu par w wersji Mealy

3 Tabela prawdy i tablice Karnaugh:

Tabela 1: Tabela Prawdy - funkcja przejść

	t		t+1					
q_1	q_0	Z	q_1	q_0	J_1	K_1	J_0	K_0
0	0	0	0	1	0	-	1	-
0	0	1	1	0	1	-	0	-
0	1	0	0	0	0	-	-	1
0	1	1	1	1	1	-	-	0
1	0	0	1	1	-	0	1	-
1	0	1	0	0	-	1	0	-
1	1	0	1	1	_	0	-	0
1	1	1	1	1	_	0	-	0

Tabela 2: Tabela Prawdy - funkcja wyjść

q_1	q_0	Z	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Tabela 3: Tablica Karnaugh dla J_1

	Z q_1q_0 Z	00	01	11	10
	0	0	0	-	-
_	1	1	1	-	_

Tabela 4: Tablica Karnaugh dla K_1

Z q_1q_0	00	01	11	10
0	-	-	0	0
1	-	-	0	1

Tabela 5: Tablica Karnaugh dla J_0

Z q_1q_0	00	01	11	10
0	1	-	-	1
1	0	-	-	0

Tabela 6: Tablica Karnaugh dla K_0

Z q_1q_0	00	01	11	10
0	-	1	0	-
1	-	0	0	-

Tabela 7: Tablica Karnaugh dla ${\cal Y}$

Z q_1q_0	00	01	11	10
0	0	1	0	0
1	0	0	0	1

3.1 Minimalizacje:

$$J_1 = Z$$
$$J_0 = \bar{Z}$$

$$K_1 = Z\bar{q}_0 = \overline{\overline{Z}\overline{q}_0} = \overline{Z} + q_0$$

$$K_0 = \bar{Z}\bar{q}_1 = \overline{\overline{Z}}\overline{q}_1 = \overline{Z} + q_1$$

$$Y = \bar{Z}\bar{q}_1q_0 + Zq_1\bar{q}_0 = \overline{\overline{Z}\bar{q}_1q_0 + Zq_1\bar{q}_0} = \overline{\overline{Z}\bar{q}_1q_0} \cdot \overline{Zq_1\bar{q}_0}$$

3.2 Użyte wzory:

$$\overline{a \cdot b} = \overline{a} + \overline{b} \tag{1}$$

$$\overline{a+b} = \bar{a} \cdot \bar{b} \tag{2}$$

3.3 Schemat układu:

Schemat 1 - analizator ciągu par w wersji Mealy

4 Wnioski/podsumowanie

W celu sprawdzenia poprawności działania komparatora należało przeprowadzić testy dla wszystkich możliwych kombinacji wejść oraz stanów. W czasie testowania układu okazało się, że typ zbocza sygnału reset może mieć wpływ na poprawne zachowanie automatów ze względu na budowę wewnętrzną przerzutników.