Tasks 2&3 17-941-998

Auxiliary Variables

To assist interpretation, the following auxiliary variables are added to the buffer:

• t_used, t_valid: the tail, split into t_{used} (the item exactly before it is allocated to a writer, but not yet ready to pop) and t_{valid} (the items before it are ready for a reader to pop).

- h_used, h_red, h_blue: similarly, the head is also split, $h_{\rm used}$ means allocated to a reader, while $h_{\rm valid}$ is further split into $h_{\rm red}$ and $h_{\rm blue}$, indicating the number of items that are finished reading for each stream, and $h_{\rm red} + h_{\rm blue} = h_{\rm valid}$. $h_{\rm valid}$ is thus implicit.
- x_red, x_blue: the x pointers in both input streams are copied into the buffer so that x can be shared by both streams to help interpretation. The original x pointers (private in each stream) are kept but not used in the interpretations.

Added to the streams are:

- Red.H, Red.T: booleans, meaning "Red owns the Head pointer/Tail pointer";
- Blue.H, Blue.T: likewise.

New Notations

To distinguish items of different colors for buffer interpretation, the following syntax is defined using our former upto notation and Python-like list comprehension:

- B[h redupto t) = [item.v for item in B[h upto t) if item.c = Red]
- B[h blueupto t) = [item.v for item in B[h upto t) if item.c = Blue]

Interpretations

```
Red.S_O = Red.O[0, Red.y) Blue.S_O = Blue.O[0, Blue.y)

Red.S_{BO} = Red.O[Red.y, h_{red}) Blue.S_{BO} = Blue.O[Blue.y, h_{blue})

Red.S_B = B[(h_{red} + h_{blue}) \text{ redupto } t_{valid}) Blue.S_B = B[(h_{red} + h_{blue}) \text{ blueupto } t_{valid})

Red.S_{IB} = B[t_{valid} \text{ redupto } (x_{red} + x_{blue})) Blue.S_{IB} = B[t_{valid} \text{ blueupto } (x_{red} + x_{blue}))

Red.S_I = Red.I[x_{red}, Red.N) Blue.S_I = Blue.I[x_{blue}, Blue.N)
```

Invariant

The invariant can be split into five parts:

```
S: \operatorname{Red}.S_O + \operatorname{Red}.S_{BO} + \operatorname{Red}.S_B + \operatorname{Red}.S_{IB} + \operatorname{Red}.S_I = K_{\operatorname{Red}} \land Blue.S_O + \operatorname{Blue}.S_{BO} + \operatorname{Blue}.S_B + \operatorname{Blue}.S_{IB} + \operatorname{Blue}.S_I = K_{\operatorname{Blue}}B: h_{\operatorname{Red}} + h_{\operatorname{Blue}} \leq t_{\operatorname{valid}} \land t_{\operatorname{valid}} - h_{\operatorname{Red}} - h_{\operatorname{Blue}} \leq N_BI: \operatorname{Red}.x \leq \operatorname{Red}.N \land \operatorname{Blue}.x \leq \operatorname{Blue}.NO: \operatorname{Red}.y \leq \operatorname{Red}.N \land \operatorname{Blue}.y \leq \operatorname{Blue}.NT: \neg(\operatorname{Red}.H \land \operatorname{Blue}.H) \land \neg(\operatorname{Red}.T \land \operatorname{Blue}.T)
```

S ensures for both streams the overall content is constant. B is the boundary invariant for the buffer. I and O ensures the boundary of input and output pointers for both streams. T is the mutual exclusion invariant so that each pointer can be held by at most one stream.

Local Correctness

fi

For brevity, the annotations are only shown for Red.push() and Red.pop(). For Blue it is only reversing the color.

All variables are assigned 0 (or false for booleans) on initialization.

For push(), Red. $T \to t_{\text{valid}} = x_{\text{red}} + x_{\text{blue}}$ is true on initialization, and it is proved as below that it is preserved by push(), thus by induction it is a precondition and a postcondition. The same reasoning applies for the precondition and postcondition Red.y = h_red in pop().

```
Red.push()
[Precondition] Red.T->(t_valid=x_red+x_blue), Red.x<Red.N, not Red.T
[Postcondition] Red.T->(t_valid=x_red+x_blue), Red.x<=Red.N, not Red.T
> S, B, I, O, T holds
> Red.x < Red.N and not Red.T
> Red.T -> (t_valid = x_red+x_blue)
do (not Red.T)
  > S, B, I, O, T, Red.x < Red.N, not Red.T, Red.T->(t_valid=x_red+x_blue)
  t' := t_used
  > S, B, I, O, T, Red.x < Red.N, not Red.T
  > Red.T -> (t_valid = x_red + x_blue)
  if t' = t_valid then
    > S, B, I, O, T, Red.x < Red.N, not Red.T, Red.T->(t_valid=x_red+x_blue)
    > t' = t_used -> t_valid = t_used
    if t - h_red - h_blue < N_B then
      > S, B, I, O, T, Red.x < Red.N, not Red.T, Red.T->(t_valid=x_red+x_blue)
      > t' = t_used -> (t_valid = t_used and t_valid - h_red - h_blue < N_B)</pre>
      CAS(Red.T, t_used, t'+1, t')
      > S, B, I, O, T, Red.x < Red.N
      > Red.T -> (t_valid = x_red + x_blue)
      > Red.T \rightarrow (t_valid + 1 = t_used and t_valid - h_red - h_blue < N_B)
      > Red.T -> not Blue.T
```

```
fi
  > S, B, I, O, T, Red.x < Red.N
  > Red.T -> (t_valid = x_red + x_blue)
  > Red.T \rightarrow (t_valid + 1 = t_used and t_valid - h_red - h_blue < N_B)
  > Red.T -> not Blue.T
> S, B, I, O, T, Red.x < Red.N, Red.T, not Blue.T
> t_valid = x_red + x_blue
> t_valid + 1 = t_used, t_valid - h_red - h_blue < N_B
> Red.S_0 + Red.S_B0 + B[(h_red+h_blue) redupto t_valid) + [] +
  (Red.I[x\_red] + Red.I[x\_red + 1, Red.N)) = K\_Red
B[t\_valid mod N\_B].v := Red.I[Red.x]
> S, B, I, O, T, Red.x < Red.N, Red.T, not Blue.T
> t_valid = x_red + x_blue
> t_valid + 1 = t_used, t_valid - h_red - h_blue < N_B</pre>
> Red.S_0 + Red.S_B0 + B[(h_red+h_blue) redupto t_valid) + [] +
  (B[t\_valid mod N\_B].v + Red.I[x\_red + 1, Red.N)) = K\_Red
B[t\_valid mod N\_B].c := Red
> S, B, I, O, T, Red.x < Red.N, Red.T, not Blue.T
> t_valid = x_red + x_blue
> t_valid + 1 = t_used, t_valid - h_red - h_blue < N_B</pre>
> Red.S_0 + Red.S_B0 + B[(h_red+h_blue) redupto t_valid) + [] +
  (B[t\_valid mod N\_B].v + Red.I[x\_red + 1, Red.N)) = K\_Red
x_red := x_red + 1
> S, B, I, O, T, Red.x < Red.N, Red.T, not Blue.T
> t_valid + 1 = x_red + x_blue
> t_valid + 1 = t_used, t_valid - h_red - h_blue < N_B
> Red.S_O + Red.S_BO + B[(h_red+h_blue) redupto t_valid) +
  B[t\_valid mod N\_B].v + Red.I[x\_red, Red.N) = K\_Red
Red.x := Red.x + 1
> S, B, I, O, T, Red.x <= Red.N, Red.T, not Blue.T
> t_valid + 1 = x_red + x_blue
> B[(t_valid + 1) redupto (x_red + x_blue)] = []
> t_valid + 1 = t_used, t_valid - h_red - h_blue < N_B</pre>
> Red.S_O + Red.S_BO + B[(h_red+h_blue) redupto t_valid) +
  B[t\_valid mod N\_B].v + Red.I[x\_red, Red.N] = K\_Red
Red.T := false
> S, B, I, O, T, Red.x <= Red.N, not Red.T, not Blue.T
> B[(t_valid + 1) redupto (x_red + x_blue)] = []
> t_valid + 1 = t_used, t_valid - h_red - h_blue < N_B
> Red.S_O + Red.S_BO + B[(h_red+h_blue) redupto t_valid) +
  B[t\_valid mod N\_B].v + Red.I[x\_red, Red.N] = K\_Red
t_valid := t_valid + 1
> S, B, I, O, T, Red.x <= Red.N, not Red.T
> Red.T -> (t_valid = x_red + x_blue)
> B[t_valid redupto (x_red + x_blue)] = []
> Red.S_0 + Red.S_B0 + B[(h_red+h_blue) redupto t_valid) + [] +
  Red.I[x_red, Red.N) = K_Red
```

```
Red.pop()
[Precondition] Red.y = h_red and Red.y < Red.N and not Red.H
[Postcondition] Red.y = h_red and Red.y <= Red.N and not Red.H
> S, B, I, O, T holds
> Red.y = h_red, Red.y < Red.N, not Red.H
do (not Red.H)
 > S, B, I, O, T, Red.y = h_red, Red.y < Red.N, not Red.H
 h' := h\_used
 > S, B, I, O, T, Red.y = h_red, Red.y < Red.N, not Red.H
  if h' = h_red + h_blue then
    > S, B, I, O, T, Red.y = h_red, Red.y < Red.N, not Red.H
    > h' = h_used -> h_used = h_red + h_blue
    if h' < t_valid and B[h' mod N_B].c = Red then
      > S, B, I, O, T, Red.y = h_red, Red.y < Red.N, not Red.H
      > h' = h_used -> h_used = h_red + h_blue
      > h' = h_used -> h_used < t_valid and B[h_used mod N_B].c = Red
      CAS(Red.H, h_used, h'+1, h')
     > S, B, I, O, T, Red.y = h_red, Red.y < Red.N
      > Red.H -> h_used = h_red + h_blue + 1
     > Red.H -> h_red + h_blue < t_valid
      > Red.H -> B[(h_red + h_blue) mod N_B].c = Red
      > Red.H -> not Blue.H
    fi
 fi
 > S, B, I, O, T, Red.y = h_red, Red.y < Red.N
 > Red.H -> h_used = h_red + h_blue + 1
 > Red.H -> h_red + h_blue < t_valid
 > Red.H -> B[(h_red + h_blue) mod N_B].c = Red
 > Red.H -> not Blue.H
od
> S, B, I, O, T, Red.y = h_red, Red.y < Red.N, Red.H, not Blue.H
> h_used = h_red + h_blue + 1
> h_red + h_blue < t_valid</pre>
> B[(h_red + h_blue) mod N_B].c = Red
> Red.O[O, Red.y) + [] + (B[(h_red + h_blue) mod N_B].v +
 B[(h_red + h_blue + 1) redupto t_valid)) + Red.S_IB + Red.S_I = K_Red
Red.O[Red.y] := B[(h_red + h_blue) mod N_B].v
> S, B, I, O, T, Red.y = h_red, Red.y < Red.N, Red.H, not Blue.H
> h\_used = h\_red + h\_blue + 1
> h_red + h_blue < t_valid</pre>
> B[(h_red + h_blue) mod N_B].c = Red
> Red.0[0, Red.y) + [] + (Red.0[Red.y] +
 B[(h_red + h_blue + 1) redupto t_valid)) + Red.S_IB + Red.S_I = K_Red
Red.H := false
> S, B, I, O, T, Red.y = h_red, Red.y < Red.N, not Red.H, not Blue.H
> h_used = h_red + h_blue + 1
> h_red + h_blue < t_valid
```

```
> B[(h_red + h_blue) mod N_B].c = Red
> Red.0[0, Red.y) + [] + (Red.0[Red.y] +
    B[(h_red + h_blue + 1) redupto t_valid)) + Red.S_IB + Red.S_I = K_Red
h_red := h_red + 1
> S, B, I, O, T, Red.y + 1 = h_red, Red.y < Red.N, not Red.H
> Red.0[0, Red.y) + Red.0[Red.y] + B[(h_red + h_blue) redupto t_valid) +
    Red.S_IB + Red.S_I = K_Red
Red.y := Red.y + 1
> S, B, I, O, T, Red.y = h_red, Red.y <= Red.N, not Red.H
> Red.0[0, Red.y) + [] + B[(h_red + h_blue) redupto t_valid) +
    Red.S_IB + Red.S_I = K_Red
```

Noninterference Proof

To prove noninterference between colours and between operations, we find that all assertions are a conjunction of predicates of 5 forms:

- The invariants S, B, I, O, T, which are proved to hold everywhere as long as other conjuncts hold.
- $\{MyColor\}.\{x|y\}$ $\{<|<=\}$ $\{MyColor\}.N$, [not] $\{MyColor\}.\{T|H\}$, which only involve local variables and constants, so interference is impossible.
- {MyColor}.y = h_{myColor} , {MyColor}.y + 1 = h_{myColor} , which involve shared variables h_{myColor} , but they are only ever updated by the concerned process itself, so it cannot be violated by interference.
- {Red|Blue}.{H|T} -> not {Blue|Red}.{H|T}, which are also parts of the invariant, so already covered.

This leaves only the following predicates that might suffer interference:

{MyColor}.T -> (t_valid = x_red + x_blue) only appears in {MyColor}.push(), and the only non-local statements that might could modify these variables are in {OtherColor}.push().

The first such statement is $\mathbf{x}_{\{\text{otherColor}\}} := x_{\{\text{otherColor}\}} + 1$, which has $\neg \{\text{MyColor}\}.T$ as precondition and postcondition, so $\{\text{MyColor}\}.T \rightarrow (\texttt{t_valid} = \texttt{x_red} + \texttt{x_blue})$ always holds.

The second such statement is $\mathbf{t}_{\text{valid}} := t_{\text{valid}} + 1$, where the pre- and post- conditions are also compatible:

2. Similarly,

$$\{MyColor\}.T \land (t_{valid} = x_{red} + x_{blue})$$

and

$$\{MyColor\}.T \wedge (t_{valid} + 1 = x_{red} + x_{blue})$$

also only appear in $\{MyColor\}$. push(), and are only possibly affected by the same two statements as above. But this is actually impossible by mutual exclusion, because they both have $\neg\{MyColor\}$. T as precondition, which is a conflict.

3. {MyColor}.T -> (t_valid + 1 = t_used) only appears in {MyColor}.push(), and the only statements that might could modify these variables are in {OtherColor}.push().

The first such statement is CAS({OtherColor}.T, t_used, t'+1, t'), whose non-interference can be proved by annotations:

 $\triangleright \{ \text{OtherColor} \}.T \rightarrow t_{\text{valid}} + 1 = t_{\text{used}}$

 $\triangleright \{\text{MyColor}\}.T \rightarrow t_{\text{valid}} + 1 = t_{\text{used}} \text{ (postcondition no conflict)}$

The second such statement is $\mathbf{t}_{\text{valid}} := t_{\text{valid}} + 1$, where the pre- and post- conditions are also compatible:

4. Similarly, \neg {OtherColor}. $T \land t_{\text{valid}} + 1 = t_{\text{used}}$ also only appears in {MyColor}.push(), and are only possibly affected by the same two statements as above.

For CAS({OtherColor}.T, t_used, t'+1, t'), the noninterference can be proved by annotations:

 $\mathbf{t}_{\mathrm{valid}} := t_{\mathrm{valid}} + 1$

 $ightharpoonup \neg \{OtherColor\}.T$ (postcondition does not care about t_{used} , so no conflict)

5. Following the same reasoning in 3 and 4,

$$\{\text{MyColor}\}.T \to (t_{\text{valid}} - h_{\text{red}} - h_{\text{blue}} < N_B)$$

and

$$\neg \{\text{OtherColor}\}.T \wedge (t_{\text{valid}} - h_{\text{red}} - h_{\text{blue}} < N_B)$$

in {MyColor}.push() cannot be interfered by {OtherColor}.push(). In addition, h_{red} and h_{blue} can be updated by $h_{\text{color}} := h_{\text{color}} + 1$ in pop() of both colors, but it only makes the lefthand side of the inequality smaller, so they still holds.

6. $t' = t_{\text{used}} \rightarrow t_{\text{valid}} = t_{\text{used}}$ and $t' = t_{\text{used}} \rightarrow t_{\text{valid}} - h_{\text{red}} - h_{\text{blue}} < N_B$ only appears in push(), where t' is a local variable. Wherever interference might happen, it is possible to set $t' \neq t_{\text{used}}$, so it still holds.

7.

$$B[(t_{\text{valid}} + 1) \{\text{myColor}\}\text{upto } (x_{\text{red}} + x_{\text{blue}})] = []$$

and

$$B[t_{\text{valid}} \{\text{myColor}\} \text{upto} (x_{\text{red}} + x_{\text{blue}})] = []$$

only appears in {MyColor}.push(), and the only statements that might invalidate it is in {OtherColor}.push().

First, $x_{\{\text{otherColor}\}} := x_{\{\text{otherColor}\}} + 1$ makes the range larger by 1, but it does not add or remove items of myColor, so they still holds.

Second, $t_{\text{valid}} := t_{\text{valid}} + 1$ only makes the range smaller, so they can only stay empty.

- 8. Following the same reasoning as 6, in pop(), $h' = h_{\text{used}} \rightarrow h_{\text{used}} = h_{\text{red}} + h_{\text{blue}}$ and $h' = h_{\text{used}} \rightarrow h_{\text{used}} < t_{\text{valid}} \land B[h_{\text{used}} \mod N_B].c = \text{Red also hold where interference}$ is possible.
- 9. Following the same reasoning as in 3 and 4,

$$\{MyColor\}.H \rightarrow$$

$$h_{\text{used}} = h_{\text{red}} + h_{\text{blue}} + 1 \wedge h_{\text{red}} + h_{\text{blue}} < t_{\text{valid}} \wedge B[(h_{\text{red}} + h_{\text{blue}}) \mod N_B].c = \text{Red}$$

and

$$\neg \{OtherColor\}.H \land$$

$$h_{\text{used}} = h_{\text{red}} + h_{\text{blue}} + 1 \wedge h_{\text{red}} + h_{\text{blue}} < t_{\text{valid}} \wedge B[(h_{\text{red}} + h_{\text{blue}}) \mod N_B].c = \text{Red}$$

in $\{MyColor\}.pop()$ cannot be interfered by $\{OtherColor\}.pop()$. In addition, t_{valid} can be updated by $t_{valid} := t_{valid} + 1$ in push() of both colors, but it only makes t_{valid} larger, so the inequality still holds.

Partial Correctness

The extended invariant plus the termination condition (Red.y = Red.N) for **R** (the receiver) implies that

$$\{\text{Color}\}.O[0, N) + \{\text{Color}\}.S_{BO} + \{\text{Color}\}.S_B + \{\text{Color}\}.S_{IB} + \{\text{Color}\}.S_I = K_{\{\text{Color}\}},$$
 which implies

 $N + |\{\text{Color}\}.S_{BO}| + |\{\text{Color}\}.S_B| + |\{\text{Color}\}.S_{IB}| + |\{\text{Color}\}.S_I| = |\{\text{Color}\}.I[0, N)| = N,$ therefore

$$|\{\text{Color}\}.S_{BO}| = |\{\text{Color}\}.S_B| = |\{\text{Color}\}.S_{IB}| = |\{\text{Color}\}.S_I| = 0,$$

thus

$$\{\text{Color}\}.O[0, N) = \{\text{Color}\}.I[0, N).$$