GPU Implementation of FBP and GridRec

Yongsheng Pan Aug. 2011

Efficiency of GPU Implementation

- Use 32 slices of size 2048 * 2048
 - GPU OptimizedFBP
 - 1.1s for each slice with data available in GPU (40 times faster)
 - 73s for reconstruction (20 times faster)
 - CPU OptimizedFBP
 - 44.7s for each slice with data available in CPU
 - 1416s for reconstruction
 - CPU GridRec
 - 3s for each slice (6s for 2 slices)when data available in CPU using fft_nr.cpp (fft from Numerical Recipe)
 - 0.7s for each slice (1.4s for 2 slices) using fft_fftw.c
 - 99s for reconstruction (a little slower than GPU FBP)
 - GPU GridRec
 - 0.4s for each slice (0.8s for 2 slices)
 - 6 times faster than CPU using fft-nr.
 - 1.6 times faster than CPU using fftw
 - GPU for FFT and filtering only. Efficiency may be improved.

GPU GridRec

 GridRec efficiency for the reconstruction of a 2048 * 2048 slice

•	CPU-NR	CPU-FFTW	GPU (ms) Comment
Phase 1	708	550	550	
Phase 2	5314	660	160	(2D IFFT)
Phase 3	80	50	50	(post processing)
Total	6000	1260	760	

- Phase 1 can not be improved any further, because the interpolation using pswf for the filtered frequency data is inappropriate for GPU implementation
 - Hard to parallelize the computation
- Phase 1 is therefore the bottleneck.

Accuracy of GPU Reconstruction

CPU-OptimizedFBP

GPU-OptimizedFBP

GPU FBP results are very close to CPU FBP results

Accuracy of GPU Reconstruction

CPU-GridRec

GPU-OptimizedFBP

GPU FBP results have lower contrast than CPU GridRec

Accuracy of GPU Reconstruction

CPU-GridRec GPU-GridRec

GPU GridRec results are very close to CPU GridRec

Conclusion

- GPU FBP is about 40 times faster than CPU FBP
- GPU FBP is about 3 times faster than CPU GridRec (when GridRec uses fft_nr.cpp)
- GPU GridRec is about 6 times faster than CPU GridRec when GridRec uses fft_nr.cpp
- GPU GridRec is about 1.6 times faster than CPU GridRec when GridRec uses fft_fftw.cpp
- GPU FBP results contain lower contrast than CPU GridRec
- Benefits of GPU FBP are therefore limited, when compared with GPU GridRec.
- Combine GPU GridRec with MPI cluster codes for higher efficiency

Postprocessing for Wood Adhesive Data

Org

Post-processing

- (1) Thresholding
- (2) Itk::ConfidenceConnectedImageFilter
- (3) vtk visualization

Postprocessing for Wood Adhesive Data

Boundaries