ریز پردازنده (میکروکنترلرهای AVR) مبدل آنالوگ به دیجیتال (ADC)

محسن راجي

دانشگاه شیراز بخش مهندسی و علوم کامپیوتر

مقدمه

- اغلب کمیت های موجود در دنیای پیرامون ما، کمیت های پیوسته یا
 آنالوگ هستند
 - دما، فشار، حرارت، سرعت و دیگر کمیت های فیزیکی قابل اندازه گیری اطراف
 - تغییرات این کمیت های به صورت کاملا پیوسته رخ می دهد
- در چنین شرایطی،در صورت نیاز به اندازه گیری این کمیت ها، باید سیستم ها تمام مقادیر را به طور پیوسته اندازه گیری کرده و روی آن ها پردازش انجام دهد

مقدمه

- سیستم های موجود دیجیتال هستند و در نتیجه نمی توانیم یک کمیت پیوسته یا آنالوگ را مستقیما به یک سیستم پردازشی دیجیتال اعمال کنیم
 - راه حل این است که باید کمیت آنالوگ را به دیجیتال تبدیل کنیم و سپس آن را پردازش کنیم
 - راه حل: استفاده از مبدل های آنالوگ به دیجیتال

3

مقدمه

- فرض کنید یک سنسور LM35 خریداری می کنید که می توانید با
 آن دمای محیط را اندازه گیری کنید
- خروجی این سنسور ولتاژ است و به ازای هر درجه تغییر دما ۱۰ میلی ولت تغییر می کند
- میخواهید با یک میکروکنترلر AVR این تغییرات دما را اندازه گیری
 کرده و ثبت کنید
- اما برای AVR، فقط دو ولتاژ و ۵ ولت (معادل منطق صفر و یک) معنا دارند.
 - نیاز به ترجمه مقادیر پیوسته به مقادیر صفر و یکی (دیجیتال) برای کار با سنسور دارید

مقدمه

• رابطه مقدار دیجیتال خروجی متناسب با ولتاژ ورودی را می توان به صورت فرمول زیر نشان داد

$$\frac{\mathit{Vin}}{\mathit{Vref}} = \frac{\mathit{degraphical}}{2^{n}-1}$$

مفاهيم اوليه ADC

- اندازه گام
- هر ADC از یک مقدار کمتر تغییر در ورودی را نمی تواند اندازه گیری کند
- اندازه گام کوچکترین تغییری هست که یک مبدل آنالوگ به دیجیتال می تواند اندازه بگیرد.
- مثلا اگر اندازه گام برای یک ADC برابر با ۲۰ میلی ولت باشد، به این معناست که این ADC تغییرات ۵ میلی ولتی را متوجه نمی شود و هرگاه ولتاژ نسبت به مقدار قبلی ۲۰ میلی ولت بیشتر یا کمتر شود می تواند تغییرات را تشخیص دهد.

7

مفاهيم اوليه ADC

- زمان تبدیل
- زمان بین این که ورودی آنالوگ توسط ADC به خروجی دیجیتال تبدیل شود
 - این زمان به منبع کلاک متصل به ADC، روشی که برای تبدیل استفاده می شود و تکنولوژی ساخت مبدل آنالوگ به دیجیتال بستگی دارد.
 - رزولوشن
 - رزولوشن يا وضوح يا درجه تفكيك
 - تعداد بیت هایی که برای نمایش مقدار تبدیل شده استفاده می شود
 - مثلا ADC در AVR ده بیتی است. این بدین معناست که خروجی دیجیتال در قالب ۱۰ بیت ارائه خواهد شد

مفاهيم اوليه ADC

- ولتاژ مرجع
- یک ولتاژ ورودی است که به عنوان مرجع استفاده شده و بازه تبدیل را مشخص می کند
 - ولتاژ ورودی ADC می تواند بین صفر تا ولتاژ مرجع تغییر کند
 - این ولتاژ به همراه رزولوشن اندازه گام را معلوم می کند
- اگر از ADC ده بیتی استفاده می کنید، اندازه گام به صورت روبه رو محاسبه می شود:

 $rac{v_{ref}}{2^{10}}$

9

روش های تبدیل آنالوگ به دیجیتال

- به طور کلی ۶ روش برای تبدیل سیگنال های آنالوگ به دیجیتال وجود دارد
 - روش موازی یا همزمان
 - روش یله ای
 - روش تقریب متوالی
 - روش تبدیل ولتاژ به زمان (تک شیب)
 - روش دو شیب
 - روش تبدیل ولتاژ به فرکانس
- در میکروکنترلر های AVR از روش تقریب های متوالی برای
 تبدیل سیگنال های آنالوگ به دیجیتال استفاده می شود

بررسی واحد ADC در میکروکنترلر AVR

- مبدل ADC در AVRها بسته به نوع AVR از کانال های ورودی متعددی ... بهره می برد.
 - ADCداخلی دارای دقت ۱۰ بیت است
 - سرعت نمونه برداری آن حداکثر ۱۵ هزار نمونه در ثانیه است
- در این حالت زمان تبدیل بین ۶۵ تا ۲۵۰ میکرو ثانیه طول خواهد کشید.

ADC

- کانال ورودی
- Single-Ended: یک ورودی وجود دارد که ممکن است بین 0 تا Vcc تا Vcc تغییر می کند
- Differential: دو ورودی از دو پایه با هم مقایسه می شوند و تفاضل این دو ورودی را شکل می دهد
- بعضی از ورودی های دیفرانسیلی بهره قابل برنامه ریزی دارند و قبل از انجام تبدیل ، ابتدا تقویتی روی ورودی انجام می شود.
 - بهره ها 200X,10X,1X انجام می شود

ADC

- ولتاژ مرجع (Vref) برای ADC از سه طریق تامین می شود
 - ولتاژ مرجع داخلی 2.56v
- ولتاژ روی پایه Aref همراه با یک خازن و از طریق ورودی از خارج از میکرو
- ولتاژ روی پایه Avcc در محدوده 0.3v از طریق پایه ورودی از خارج از میکرو

15

ADC

- ADC دارای یک مدار sample & hold است که باعث می شود ولتاژ ورودی ADC در حین تبدیل در سطح ثابتی نگه داشته شوند
- یک مدار آنالوگ که از ورودی (که مدام در حال تغییر است) نمونه بر می دارد (به صورت یک ولتاژ) و مقدار آن را برای یک محدوده زمانی مشخصی در یک سطح ولتاژ ثابت نگه می دارد.

رجیستر های ADC

- ADC Multiplexer Selection) ADMUX رجیستر (Register
 - MUX4:0 •
- ترکیب اتصال ورودی های آنالوگ متصل به ADC ورودی از کدام پایه دریافت می شود ADC0,ADC1 یا ...
 - بهره تقویت کانال ها
 - ♦ ADC(بهره تقویت) ADCO (سر منفی)
 100(ورودی دیفرانسیلی) ADC1

Bit	7	6	5	4	3	2	1	0	_
	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

ورودي	كانال	9	ىرى ە	ب	انتخا
	\cup		74.		

MUX40	Single Ended Input	Positive Differential Input	Negative Differential Input	Gain
00000	ADC0			
00001	ADC1			
00010	ADC2			
00011	ADC3	N/A		
00100	ADC4			
00101	ADC5			
00110	ADC6			
00111	ADC7			
01000		ADC0	ADC0	10x
01001		ADC1	ADC0	10x
01010 ⁽¹⁾		ADC0	ADC0	200x
01011 ⁽¹⁾		ADC1	ADC0	200x
01100		ADC2	ADC2	10x
01101		ADC3	ADC2	10x
01110 ⁽¹⁾		ADC2	ADC2	200x
01111 ⁽¹⁾		ADC3	ADC2	200x
10000		ADC0	ADC1	1x
10001		ADC1	ADC1	1x
10010			4004	4

- (Left Adjust Result)ADLAR •
- نحوه نمایش نتیجه تبدیل ADC در یک رجیستر داده
 - نتیجه تبدیل ADC در یک رجیستر ۱۶ بیتی (ADCH,ADCL) ذخیره می شود
 - اگر ADLAR = 0 = ADLAR ارزش تبدیل در ADCH و بقیه در ADCH
 - اگر ADLAR = 1 € از سمت چپ تنظیم می شود ۸ بیت پر ارزش در ADCH و بقیه در ADCL

- ADC Data) ADCH , ADCL رجیستر های (Register
 - دو رجیستر ۸ بیتی
- اسلاید بعد نشان می دهد که اگر ADLAR برابر صفر باشد (بالا) و یا این که یک باشد (پایین) نتیجه چطور در رجیستر داده ذخیره خواهد شد

21

رجيستر هاى ADC

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0										
Read/Write		ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
R		7	6	5	4	3	2	1	0	'
Initial Value	Read/Write	R	R	R	R	R	R	R	R	
Bit 15 14 13 12 11 10 9 8 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0		R	R	R	R	R	R	R	R	
Bit 15 14 13 12 11 10 9 8 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 7 6 5 4 3 2 1 0 Read/Write R R R R R R R R Initial Value 0 0 0 0 0 0 0 0 0	Initial Value	0	0	0	0	0	0	0	0	
ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH ADC1 ADC0 - - - - - - - ADCL A		0	0	0	0	0	0	0	0	
ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC4 ADC4 ADC3 ADC4 ADC4 ADC5 ADC4 ADC5 ADC4 ADC5 ADC6 ADC5 ADC6 ADC5 ADC6 ADC5 ADC6 ADC6										
ADC1 ADC0 ADCL 7 6 5 4 3 2 1 0 Read/Write R R R R R R R R R Initial Value 0 0 0 0 0 0 0 0 0	Bit	15	14	13	12	11	10	9	8	
7 6 5 4 3 2 1 0 Read/Write R R R R R R R R Initial Value 0 0 0 0 0 0 0 0		ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
Read/Write R		ADC1	ADC0	-	-	-	-	-	-	ADCL
R R R R R R R R R R R R R R O		7	6	5	4	3	2	1	0	•
Initial Value 0 0 0 0 0 0 0 0	Read/Write	R	R	R	R	R	R	R	R	
		R	R	R	R	R	R	R	R	
0 0 0 0 0 0 0	Initial Value	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	

- وقتی نتیجه تبدیل آنالوگ به دیجیتال کامل شود • نتیجه در این دو رجیستر قرار می گیرد
- •اگر از کانالهای دیفرانسیلی باشد نتیجه به صورت مکمل دو می باشد
 - اگر از ADCL خوانده شود ، تا وقتی ADCL خوانده نشود ، این دو رجیستر بازنویسی نمی شوند

23

رجيستر هاى ADC

•اگر نتیجه از سمت چپ منظم شده باشد و تنها ۸ بیت دقت کافی باشد خواندن ADCH کافی است در غیر این صورت ابتدا باید ADCL خوانده شود

شروع عمل تبدیل در ADC

- برای انجام تبدیل باید بیت ADC Enable) ADEN) یک باشد
- عملیات تبدیل به روش های مختلفی ممکن است شروع شود:
 - با یک کردن بیت ADSC در رجیستر ADCSRA
- این بیت تا زمانی که عمل تبدیل در حال انجام است ۱ باقی می ماند و با
 اتمام توسط سخت افزار پاک می شود

Bit	7	6	5	4	3	2	1	0	
	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

25

شروع عمل تبدیل در ADC

- عملیات تبدیل به روش های مختلفی ممکن است شروع شود:
 - تحریک خودکار
- در این حالت رخدادهای مختلفی موجب شروع شدن عمل تبدیل می شود (تحریک و تریگر شدن)
- به این منظور برای فعال کردن این قابلیت ، باید بیت ADATE در رجیستر ADCSRA را یک کرد

شروع عمل تبدیل در ADC

- عملیات تبدیل به روش های مختلفی ممکن است شروع شود:
 - تحریک خودکار
- منابع مختلف تحریک، با تنظیم بیت های ADTS واقع در رجیستر SFIOR مشخص می شوند.

					. •				
ADTS2	ADTS1	ADTS0 AI	DHSM A	CME	PUD	PSR2	PSR10	SF	
	Table 85. A	DC Auto Trigg	er Source Se	election	s				
	ADTS2	ADTS1	ADTS0	Trigg	jer Source				
	0	0	0	Free	Running mo	de			
	0	0	1	Anal	og Comparat	or			
	0	1	0	Exte	nal Interrupt	Request 0			
	0	1	1	Time	r/Counter0 C	ompare Mat	ch		
	1	0	0	Time	r/Counter0 C	verflow			
	1	0	1	Time	r/Counter Co	mpare Matcl	h B		
	1	1	0	Time	r/Counter1 C	verflow			
	1	1	1	Time	r/Counter1 C	apture Even	t		

27

شروع عمل تبدیل در ADC

- عملیات تبدیل به روش های مختلفی ممکن است شروع شود:
 - نکات تحریک خودکار
 - تبدیل با یک لبه بالا رونده رخداد تعیین شده، تریگر می شود
- اگر پس از اتمام تبدیل ، منبع تحریک همچنان یک باشد تبدیل بعدی انجام نمی شود حتی اگر حین تبدیل یک لبه بالارونده بیاید و اصطلاحا تحریک انجام نشود ، بدون تاثیر است و تبدیل انجام نمی شود

شروع عمل تبدیل در ADC

- ادامه...
- یک حالت خاص
- ADC به محض اتمام یک تبدیل، تبدیل جدیدی را آغاز می کند.
 - (ADTS = 000) Free Running مد \bullet
- یعنی با نرخ ثابتی به طور مداوم نمونه برداری می کند و رجیستر های داده
 خودش را بازنویسی می کند
 - در این حالت، پرچم وقفه ADC (یعنی ADIF) به عنوان منبع تریگر استفاده می شود
- نکته: برای شروع اولین تبدیل بیت ADSC باید یک شود و در ادامه، تبدیل
 به طور مداوم انجام می شود

29

30

دیاگرام شروع عملیات تبدیل

تقسیم فرکانس و چگونگی زمانبندی تبدیل ADC

- فرکانس پالس ساعت شمارنده ۱۰ بیتی ADC از تقسیم فرکانسی پالس ساعت میکرو به دست می آید • کلاک کاری بایستی بین 50 تا 200 KHz باشد
- بیت های ADPS2:0 از رجیستر ADCSRA را باید برای تقسیم فرکانس تنظیم نمود
- این تقسیم فرکانسی با فعال شدن بیت ADEN فعال شده و با صفر شدن ADEN در حالت Reset باقی می ماند و غیرفعال می شود

31

تقسیم فرکانس و چگونگی زمانبندی تبدیل ADC

Figure 100. ADC Prescaler

ADC Control & Status)ADCSRA رجیستر (Register A

Bit	7	6	5	4	3	2	1	0	
	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

33

رجيستر هاى ADC

- ADEN : با یک کردن این بیت مبدل ADC فعال می شود
- در صورتی که ADC در حال تبدیل باشد با صفر کردن این بیت ADC غیر فعال شده و تبدیل نیمه کاره رها خواهد شد
- ADSC : در مد عملکرد single با نوشتن یک در این بیت ، تبدیل شروع شده و پس از پایان تبدیل به صورت خودکار صفر می شود در مد free یک کردن این بیت برای شروع الزامی است

ADATE •

- با یک کردن این بیت Auto Trigger و با لبه بالا رونده منبع تحریک کننده شروع به تبدیل می کند.
 - منبع تحریک کننده ADC توسط بیتهای ADTS از رجیستر SFIOR انتخاب می شود.

35

رجيستر هاى ADC

- ADIF •
- با اتمام تبدیل ADC و تغییر محتویات رجیستر داده ADC این بیت یک خواهد شد در این صورت اگر قبلا وقفه ADC فعال شده باشد ، روتین وقفه مربوطه اجرا می شود
 - ADIE •
- در صورت فعال کردن این بیت هنگام اتمام تبدیل ، وقفه اتمام تبدیل رخ خواهد داد البته اگر I در SREG نیز فعال باشد

ADPS2:0

• این بیت ها تعیین کننده پالس ساعت اعمالی به ورودی پالس ساعت ADC می باشند و با توجه به مقدار این بیت ها تقسیمی از کلاک ADC (CLK_{ADC}) به آن اعمال خواهد شد

์ 37

رجيستر هاى ADC

- •بیت های ADTS2:0 در SFIOR
- مقدار این بیت ها منبع تریگر تبدیل آنالوگ به دیجیتال را مشخص می کند در این صورت تبدیل با لبه بالا رونده سیگنال تریگر می شود

Bit	7	6	5	4	3	2	1	0	_
	ADTS2	ADTS1	ADTS0	ADHSM	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	1
Initial Value	0	0	0	0	0	0	0	0	

زمانبندی تبدیل ADC

Table 80. ADC Conversion Time

Condition	Sample & Hold (Cycles from Start of Conversion)	Conversion Time (Cycles)
First conversion	14.5	25
Normal conversions, single ended	1.5	13
Auto Triggered conversions	2	13.5
Normal conversions, differential	1.5/2.5	13/14

43

كانالهاى تفاضلي

- در ورودی تفاضلی، تفاوت (ولتاژ/جریان/مقدار) بین دو ورودی که در یک محدوده هستند به عنوان ورودی در نظر گرفته می شود
- در حالی که در ورودی Single-Ended مقدار یک ورودی نسبت به یک مقدار مرجع (زمین) به عنوان ورودی در نظر گرفته می شود
 - مزیت ورودی تفاضلی: تحمل پذیری بیشتر در برابر نویز
- زیرا اگر نویز رخ دهد هر دو ورودی را تحت تاثیر قرار می دهد و چون به یک میزان کم یا زیاد می شوند اثر نویز خنثی می شود

ADC

- نتیجه تبدیل ADC برای n
- در حالت ورودی single-ended

$$\frac{Vin}{Vref} = \frac{1}{2^n - 1}$$

• در حالت ورودی تفاضلی

ADCار دیجیتا پ $=2^{n-1}*\frac{(V^+-V^-)*Gain}{Vref}$

- ولتاژ روی پایه مثبت و V^- آن روی پایه منفی ورودی تفاضلی V^+
 - Gain: بهره انتخابی برای تقویت کانال تفاضلی
 - Vref ولتاژ مرجع
- باید توجه داشت در حالت تفاضلی نتیجه به صورت مکمل ۲ از (512-) تا (1FFh) تغییر می کند

