For full credit, you must show all work and circle your final answer.

1 Determine if the following set of vectors is orthogonal.

$$\left\{ \begin{bmatrix} -1\\4\\-3 \end{bmatrix}, \begin{bmatrix} 5\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-4\\-7 \end{bmatrix} \right\}$$

2 (a) Verify that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set then compute the orthogonal projection of \mathbf{y} onto span $\{\mathbf{u}_1, \mathbf{u}_2\}$.

$$\mathbf{y} = \begin{bmatrix} 6 \\ 3 \\ -2 \end{bmatrix}, \ \mathbf{u}_1 = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} -4 \\ 3 \\ 0 \end{bmatrix}$$

(b) What is the distance between \mathbf{y} and the plane formed from \mathbf{u}_1 and \mathbf{u}_2 ?

3 Suppose we have the following

$$\left\{ \mathbf{u}_1 = \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ 1/\sqrt{11} \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} -1/\sqrt{66} \\ -4/\sqrt{66} \\ 7/\sqrt{66} \end{bmatrix} \right\}$$

as an orthonormal basis for \mathbb{R}^3 .

Let
$$\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
. Find c_1 , c_2 , and c_3 such that $y = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3$.