11/4

Nathan Keough Acknowledgements:

Wade Exercise 3.1.1 Using Definition 3.1, prove that each of the following limits exists.

c.
$$\lim_{x \to 1} x^3 + 2x + 1 = 4$$
.

Let $f(x) = x^3 + 2x + 1$ and Let $\epsilon > 0$.

Set $\delta = \min \{1, \frac{\epsilon}{9}\}.$

Assume $0 < |x-1| < \delta$.

Then,

$$\begin{aligned} |x-1| < 1 &\Longrightarrow -1 < x-1 < 1 \\ &\Longrightarrow 0 < x < 2 \\ &\Longrightarrow x \in (0,2) \end{aligned}$$
 Also note that $|x-1| < \frac{\epsilon}{9}$

Then,

$$|f - 4| = |x^{3} + 2x + 1 - 4|$$
 [Substitution/Algebra]

$$= |x^{3} + 2x - 3|$$

$$= |x - 1||x^{2} + x + 3|$$

$$< |x - 1|(|x|^{2} + |x| + 3)$$

$$= \frac{\epsilon}{9}((2)^{2} + (2) + 3)$$

$$= \frac{\epsilon}{9}9$$

$$< \epsilon.$$

$$\therefore f \to 4 \text{ as } x \to 1.$$

d. $\lim_{x \to 0} x^3 \sin(e^{x^2}) = 0$

Proof.

Let $f(x) = x^3 \sin(e^{x^2})$ and Let $\epsilon > 0$. Set $\delta = \min\left\{1, \frac{\epsilon}{\sin(e)}\right\}$.

Assume $0 < |x - 0| < \delta$.

Notice |x| < 1.

Then,

$$\begin{aligned} |x| < 1 & \Longrightarrow -1 < x < 1 \\ & \Longrightarrow x \in (-1,1) \\ \text{Also note that } |x-1| < \frac{\epsilon}{\sin{(e)}} \end{aligned}$$
 [FTAV]

Then,

$$|f - 0| = |x^3 \sin(e^{x^2}) - 0|$$
 [Substitution/Algebra]

$$= |x^3 \sin(e^{x^2})|$$

$$= |x||x^2 \sin(e^{x^2})|$$

$$< |x|(|x|^2 \sin(e^{|x|^2}))$$

$$= \frac{\epsilon}{\sin(e)}((1)^2 \sin(e^{(1)^2}))$$

$$= \frac{\epsilon}{\sin(e)} \sin(e)$$

$$< \epsilon.$$

 $\therefore f \to 0 \text{ as } x \to 0.$