Machine Learning

Ensemble methods

Ensemble methods

In previous lecture, we focused on interpretable classification with decision trees. But for many complex problems, a simple, interpretable classifier might not be optimal in terms of classification accuracy.

Many high-performing **black-box** classifiers exist (for example, deep learning) but these lack interpretability and may require both lots of processing power and lots of training data to achieve high performance.

Here's a simple way to get high performance, which also allows you to manage the accuracy vs. interpretability tradeoff: learn multiple, different predictors and let them **vote** (or **average** their outputs for regression).

[Digression: majority voting or soft voting with probabilistic classifiers?]

Two natural ways to create multiple, different predictors from training data:

- 1) Learn different classes of models using the same training dataset.
- 2) Learn the same type of model (e.g., a decision tree) using different, randomly selected subsets of the training data.

Why might ensembles improve accuracy?

Think about making a decision by asking a panel of independent experts and taking a vote. Each expert has different knowledge of the data and (maybe) a different decision-making procedure. We might expect the majority decision to be better more often than asking any single expert.

General Idea

Build Ensemble Classifiers

• Basic idea:

Build different "experts", and let them vote

• Advantages:

Improve predictive performance

Other types of classifiers can be directly included

Easy to implement

No too much parameter tuning

• Disadvantages:

The combined classifier is not so transparent (black box)

Not a compact representation

Why do they work?

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\varepsilon = 0.35$
- Assume independence among classifiers
- Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

Ensemble Methods 1: Stacking

Probably the simplest ensemble approach: learn a bunch of different models using the same training dataset, and let them vote (or average their predictions).

But an unweighted vote/avg typically underperforms the best individual model...

Solution: learn another classifier, typically logistic regression, to choose the weights of the individual classifiers.

Important to do this using a separate, held-out validation set (or cross-validation).

Resulting classifier is often slightly better than the best individual model: great for Kaggle competitions, not necessarily worth the effort in practice!

Voting

Ensemble Methods 2: Bagging

Short for "bootstrap aggregation". We learn a large set of models, e.g., decision trees, each using a different **bootstrap sample** from the training dataset.

Final prediction is an unweighted average (or vote) of the individual predictors.

Bootstrap sample: sample data records (rows) uniformly at random with replacement.

<u>Advantages</u>: much higher performance than individual trees, though often boosting or random forests will perform slightly better. Increases stability and reduces overfitting. Trivial to implement and to parallelize.

From Martinez-Muñoz and Suarez, 2010: while it is typical to use bootstrap samples of the same size as the original dataset, smaller bootstrap samples (e.g., 20-40% of original size) are sometimes better (and sometimes worse). Choose based on minimizing OOB on separate validation set.

(OOB = out-of-bag error = prediction error on each training sample x_i , using only trees not containing x_i .)

Bagging

This approach would be helpful when your model is complex, easy to overfit.

e.g. decision tree

Random Forests

A super-useful variant of bagging. We learn a large set of models, e.g., decision trees, each using a different **bootstrap sample** from the training dataset.

Final prediction is an unweighted average (or vote) of the individual predictors.

Key difference of RF from bagging:

When building each individual tree, each time we split, we restrict our choice to a randomly chosen subset of features (columns).

<u>Typical choice</u>: if original dataset has p dimensions, restrict to sqrt(p).

Advantages:

- Generally very accurate--see Delgado paper in references-and easy to use out-of-box.
- Efficiently parallelizable.
- Not prone to overfitting; no need to prune (low variance- trees aren't very correlated).
- With enough trees, can estimate OOB error.
- Can estimate feature importance.

Disadvantages:

- Computationally expensive.
 To train a model with N trees,
 m features, and n data points,
 complexity is O(Nm*n log(n)).
- Lots of memory to store trees.
- Not very interpretable.

Random Forests

A super-useful variant of bagging. We learn a large set of models, e.g., decision trees, each using a different **bootstrap sample** from the training dataset.

Final prediction is an unweighted average (or vote) of the individual predictors.

Key difference of RF from bagging:

When building each individual tree, each time we split, we restrict our choice to a randomly chosen subset of features (columns).

<u>Typical choice</u>: if original dataset has p dimensions, restrict to sqrt(p).

Choice of parameters:

- Number of trees in the forest
- Whether and how to prune the trees (min # of samples per leaf, max depth, min # samples to split, etc.)
- # of records and features to sample

But fairly robust to these choices!

<u>Alternative approach (random subspaces)</u>

Choose a single subset of features per decision tree rather than per split.

Empirically, random forests tend to do a bit better, but random subspaces are even more parallelizable— very useful for massive data— and can be applied to prediction approaches other than trees.

Random Forest

train	f_1	f ₂	f ₃	f ₄
X^1	0	X	0	X
x^2	0	X	X	0
x ³	X	0	0	X
\mathbf{X}^4	X	0	X	0

- Decision tree:
 - Easy to achieve 0% error rate on training data
 - If each training example has its own leaf
- Random forest: Bagging of decision tree
 - Resampling training data is not sufficient
 - Randomly restrict the features/questions used in each split
- Out-of-bag validation for bagging
 - Using RF = f_2+f_4 to test x^1
 - Using RF = f_2+f_3 to test x^2
 - Using RF = f_1+f_4 to test x^3
 - Using RF = f_1+f_3 to test x^4

Out-of-bag (OOB) error
Good error estimation
of testing set

Ensemble Methods 3: Boosting

More complicated, but effective, ensemble methods where we learn a **sequence** of classifiers, each focusing on examples where previous models had difficulty.

Most common approach: Adaboost.

On each step, iteratively **reweight** the training data using the current set of models, giving exponentially higher weight to incorrectly predicted data points and lower weight to correctly predicted points, then learn a new model using the reweighted data. Final prediction = weighted avg of individual predictions.

Related and more general approach: gradient boosting.

Additive model: on each step, fit the model to the **residuals** left by fitting all previous models. This is equivalent to gradient descent in function space.

(add with weights proportional to log-odds of correct prediction)

More complicated, but effective, ensemble methods where we learn a **sequence** of classifiers, each focusing on examples where previous models had difficulty.

Most common approach: Adaboost.

On each step, iteratively **reweight** the training data using the current set of models, giving exponentially higher weight to incorrectly predicted data points and lower weight to correctly predicted points, then learn a new model using the reweighted data. Final prediction = weighted avg of individual predictions.

Related and more general approach: **gradient boosting**. Additive model: on each step, fit the model to the **residuals** left by fitting all previous models. This is equivalent to gradient descent in function space.

Advantages: can start with weak classifiers (e.g., decision stumps) and get resulting strong classifier; reduces bias not just variance; good theoretical properties (minimize a convex loss function).

<u>Disadvantages</u> (as compared to random forests): harder to implement, less robust to outliers, sensitive to parameter values, and not easily parallelizable.

High accuracy: considered (one of) the best "out of the box" classifiers.

Boosting

Training data:
$$\{(x^1, \hat{y}^1), \dots, (x^n, \hat{y}^n), \dots, (x^N, \hat{y}^N)\}$$
 $\hat{y} = \pm 1$ (binary classification)

- Guarantee:
 - If your ML algorithm can produce classifier with error rate smaller than 50% on training data
 - You can obtain 0% error rate classifier after boosting.
- Framework of boosting
 - Obtain the first classifier $f_1(x)$
 - Find another function $f_2(x)$ to help $f_1(x)$
 - However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.
 - We want $f_2(x)$ to be complementary with $f_1(x)$ (How?)
 - Obtain the second classifier $f_2(x)$
 - Finally, combining all the classifiers
- The classifiers are learned sequentially.

How to obtain different classifiers?

- Training on different training data sets
- How to have different training data sets
 - Re-sampling your training data to form a new set
 - Re-weighting your training data to form a new set
 - In real implementation, you only have to change the cost/objective function

$$(x^1, \hat{y}^1, u^1)$$
 $u^1 = 1$ 0.4

$$(x^2, \hat{y}^2, u^2)$$
 $u^2 = 1$ 2.1

$$(x^3, \hat{y}^3, u^3)$$
 $u^3 = 1$ 0.7

$$L(f) = \sum_{n} l(f(x^n), \hat{y}^n)$$

$$L(f) = \sum_{n} u^{n} l(f(x^{n}), \hat{y}^{n})$$

Idea of Adaboost

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 ε_1 : the error rate of $f_1(x)$ on its training data

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n \qquad \varepsilon_1 < 0.5$$

Changing the example weights from u_1^n to u_2^n such that

$$\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5$$

The performance of f_1 for new weights would be random.

Training $f_2(x)$ based on the new weights u_2^n

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

$$(x^{1}, \hat{y}^{1}, u^{1}) \quad u^{1} = 1 \qquad \qquad u^{1} = 1/\sqrt{3}$$

$$(x^{2}, \hat{y}^{2}, u^{2}) \quad u^{2} = 1 \qquad \qquad u^{2} = \sqrt{3}$$

$$(x^{3}, \hat{y}^{3}, u^{3}) \quad u^{3} = 1 \qquad \qquad u^{3} = 1/\sqrt{3}$$

$$(x^{4}, \hat{y}^{4}, u^{4}) \quad u^{4} = 1 \qquad \qquad u^{4} = 1/\sqrt{3}$$

$$\varepsilon_{1} = 0.25$$

$$f_{1}(x)$$

$$0.5$$

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

```
\begin{cases} \text{If } x^n \text{ misclassified by } f_1 \ (f_1(x^n) \neq \hat{y}^n) \\ u_2^n \leftarrow u_1^n \text{ multiplying } d_1 \quad \text{increase} \end{cases} If x^n correctly classified by f_1 \ (f_1(x^n) = \hat{y}^n) u_2^n \leftarrow u_1^n \text{ divided by } d_1 \quad \text{decrease} \end{cases}
```

 f_2 will be learned based on example weights u_2^n

What is the value of d_1 ?

$$\begin{split} \varepsilon_1 &= \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n \\ &\frac{\sum_n u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5 \quad \frac{f_1(x^n) \neq \hat{y}^n}{f_1(x^n) = \hat{y}^n} \quad u_2^n \leftarrow u_1^n \text{ multiplying } d_1 \\ &= \sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 \qquad = \sum_{f_1(x^n) \neq \hat{y}^n} u_2^n + \sum_{f_1(x^n) = \hat{y}^n} u_2^n \\ &= \sum_n u_2^n \qquad \qquad = \sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1 \\ &\frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1} = 2 \end{split}$$

$$\begin{split} \varepsilon_{1} &= \frac{\sum_{n} u_{1}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{1}} \qquad Z_{1} = \sum_{n} u_{1}^{n} \\ &\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5 \quad \frac{f_{1}(x^{n}) \neq \hat{y}^{n}}{f_{1}(x^{n}) = \hat{y}^{n}} \quad u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1} \\ &\frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} + \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 2 \quad \frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} / d_{1}}{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1}} = 1 \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} = \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} d_{1} \quad \frac{1}{d_{1}} \sum_{f_{1}(x^{n}) = \hat{y}^{n}} u_{1}^{n} = d_{1} \sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} \\ &\varepsilon_{1} = \frac{\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n}}{Z_{1}} \quad Z_{1}(1 - \varepsilon_{1}) \quad Z_{1}\varepsilon_{1} \\ &\sum_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} \quad Z_{1}(1 - \varepsilon_{1}) / d_{1} = Z_{1}\varepsilon_{1} d_{1} \\ &\int_{f_{1}(x^{n}) \neq \hat{y}^{n}} u_{1}^{n} = Z_{1}\varepsilon_{1} \quad d_{1} = \sqrt{(1 - \varepsilon_{1})/\varepsilon_{1}} > 1 \end{split}$$

Algorithm for AdaBoost

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}$ • $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - For n = 1, ..., N:

 - If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$ $u^n_{t+1} = u^n_t \times d_t = u^n_t \times \exp(\alpha_t)$ $d_t = \sqrt{1}$ $d_t = \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$
 - $\alpha_t = ln\sqrt{(1 \varepsilon_t)/\varepsilon_t}$
 - $u_{t+1}^n = u_t^n/d_t = u_t^n \times exp(-\alpha_t)$

$$u_{t+1}^n \leftarrow u_t^n \times exp(-\hat{y}^n f_t(x^n) \alpha_t)$$

Algorithm for AdaBoost

- We obtain a set of functions: $f_1(x), ..., f_t(x), ..., f_T(x)$
- How to aggregate them?
 - Uniform weight:

•
$$H(x) = sign(\sum_{t=1}^{T} f_t(x))$$

- Non-uniform weight:
 - $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

Smaller error ε_t , larger weight for final voting

$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$
 $\varepsilon_t = 0.1$ $\varepsilon_t = 0.4$ $u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n)\alpha_t)$ $\alpha_t = 1.10$ $\alpha_t = 0.20$

Summary

- bagging, that often considers homogeneous weak learners, learns them independently from each other in parallel and combines them following some kind of deterministic averaging process
- **boosting**, that often considers homogeneous weak learners, learns them sequentially in a very adaptative way (a base model depends on the previous ones) and combines them following a deterministic strategy
- **stacking**, that often considers heterogeneous weak learners, learns them in parallel and combines them by training a meta-model to output a prediction based on the different weak models predictions

T=3, weak classifier = decision stump

• t=1

T=3, weak classifier = decision stump

• t=2
$$\alpha_1 = 0.42$$

$$\varepsilon_2 = 0.21$$
 $d_2 = 1.94$

$$\alpha_2 = 0.66$$

T=3, weak classifier = decision stump

• t=3
$$a_1 = 0.42$$
 • $a_2 = 0.66$

$$f_{3}(x) = 0.78 + 0.33 - 0.78 + 0.33 - 0.33 + 0.33 - 0.3$$

$$\varepsilon_3 = 0.13$$
 $d_3 = 2.59$
 $\alpha_3 = 0.95$

$$f_3(x):$$

$$\alpha_3 = 0.95$$

• Final Classifier: $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

References

- Scitkit-learn documentation for random forests and other ensemble methods: http://scikit-learn.org/stable/modules/ensemble.html
- Ch. 14 of Bishop (ensemble methods).
- Ch. 10 of Hastie, Tibshirani, and Friedman (mainly about boosting).
- L. Breiman. Random forests. *Machine Learning*, 2001.
- M. Fernández-Delgado et al. Do we need hundreds of classifiers to solve real-world classification problems? *J. Mach Learn Res.*, 2014.
- G. Martinez-Munoz and A. Suarez. Out-of-bag estimation of the optimal sample size in bagging. *Pattern Recognition*, 2010.
- M. Bilenko et al. Scaling up decision tree ensembles. KDD 2011 tutorial, http://hunch.net/~large_scale_survey/.
- C. Strobl et al. Bias in random forest variable importance measures: Illustrations, sources and a solution. *BMC Bioinformatics*, 2007.
- B. Gregorutti et al. Correlation and variable importance in random forests. Statistics in Computing, 2016.
- P. Domingos. Knowledge discovery via multiple models. *Intelligent Data Analysis*, 1998.

Up next: a short break, and then Python examples for trees and random forests.