

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań
Egzamin:	Egzamin maturalny
Przedmiot:	Matematyka
Poziom:	Poziom podstawowy
Formy arkusza:	MMA-P1_1P-202 (wersje arkusza: X i Y), MMA-P1_2P-202, MMA-P1_3P-202, MMA-P1_6P-202, MMA-P1_7P-202, MMA-P1_QP-202
Termin egzaminu:	Termin główny – czerwiec 2020 r.
Data publikacji dokumentu:	3 sierpnia 2020 r.

Zadanie 1. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie	2. Wyrażenia algebraiczne. Zdający używa wzorów skróconego mnożenia	Wersja X	Wersja Y
reprezentacji.	$(a\pm b)^2$ oraz a^2-b^2 (2.1).	В	С

Zadanie 2. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie	Liczby rzeczywiste. Zdający oblicza potęgi o wykładnikach wymiernych	Wersja X	Wersja Y
reprezentacji.	i stosuje prawa działań na potęgach o wykładnikach wymiernych (1.4).	С	Α

Zadanie 3. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie reprezentacji.	Liczby rzeczywiste. Zdający wykorzystuje definicję logarytmu i stosuje w obliczeniach wzory na	Wersja X	Wersja Y
	logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym (1.6).	D	В

Zadanie 4. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
I. Wykorzystanie i tworzenie informacji.	Liczby rzeczywiste. Zdający wykonuje obliczenia procentowe,	Wersja X	Wersja Y
	oblicza podatki, zysk z lokat (1.9).	A	D

Zadanie 5. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
Wykorzystanie i tworzenie informacji.	3. Równania i nierówności. Zdający rozwiązuje nierówności pierwszego	Wersja X	Wersja Y
i tworzenie imormacji.	stopnia z jedną niewiadomą (3.3).	Α	D

Zadanie 6. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
I. Wykorzystanie i tworzenie informacji.	3. Równania i nierówności. Zdający korzysta z własności iloczynu przy	Wersja X	Wersja Y
	rozwiązywaniu równań typu $x(x+1)(x-7) = 0$ (3.7).	В	С

Zadanie 7. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający interpretuje współczynniki występujące we	Wersja X	Wersja Y
reprezentacji.	wzorze funkcji kwadratowej w postaci kanonicznej, w postaci ogólnej i w postaci iloczynowej (o ile istnieją) (4.10).	D	В

Zadanie 8. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający wyznacza wartość najmniejszą i wartość	Wersja X	Wersja Y
reprezentacji.	największą funkcji kwadratowej w przedziale domkniętym (4.11).	С	В

Zadanie 9. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający wykorzystuje własności funkcji liniowej	Wersja X	Wersja Y
reprezentacji.	i kwadratowej do interpretacji zagadnień geometrycznych, fizycznych itp. (także osadzonych w kontekście praktycznym) (4.12).	В	С

Zadanie 10. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
I. Wykorzystanie i tworzenie informacji.	3. Równania i nierówności. Zdający sprawdza, czy dana liczba	Wersja X	Wersja Y
	rzeczywista jest rozwiązaniem równania lub nierówności (3.1).	В	В

Zadanie 11. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający interpretuje współczynniki występujące	Wersja X	Wersja Y
reprezentacji.	we wzorze funkcji liniowej (4.7).	D	A

Zadanie 12. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna odpowiedź	
II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający oblicza ze wzoru wartość funkcji dla danego	Wersja X	Wersja Y
reprezentacji.	argumentu. Posługuje się poznanymi metodami rozwiązywania równań do obliczenia, dla jakiego argumentu funkcja przyjmuje daną wartość (4.2).	В	С

Zadanie 13. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej. Zdający bada	Wersja X	Wersja Y
reprezentacji.	równoległość i prostopadłość prostych na podstawie ich równań kierunkowych (8.2).	С	D

Zadanie 14. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna odpowiedź	
III. Modelowanie matematyczne.	5. Ciągi. Zdający wyznacza wyrazy ciągu określonego wzorem ogólnym	Wersja X	Wersja Y
	(5.1).	D	С

Zadanie 15. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
III. Modelowanie matematyczne.	5. Ciągi. Zdający stosuje wzór na <i>n</i> -ty wyraz i na sumę <i>n</i> -początkowych	Wersja X	Wersja Y
	wyrazów ciągu arytmetycznego (5.3).	С	В

Zadanie 16. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający wyznacza wzór funkcji liniowej na podstawie	Wersja X	Wersja Y
reprezentacji.	informacji o funkcji lub o jej wykresie (4.6).	D	A

Zadanie 17. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
IV. Użycie i tworzenie strategii.	7. Planimetria. Zdający stosuje zależności między kątem środkowym	Wersja X	Wersja Y
	i kątem wpisanym (7.1).	D	A

Zadanie 18. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna odpowiedź	
II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej. Zdający wyznacza	Wersja X	Wersja Y
reprezentacji.	równanie prostej przechodzącej przez dwa dane punkty (w postaci kierunkowej lub ogólnej) (8.1).	A	A

Zadanie 19. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie	6. Trygonometria. Zdający wykorzystuje definicje i wyznacza	Wersja X	Wersja Y
reprezentacji.	wartości funkcji sinus, cosinus i tangens kątów o miarach od 0° do 180° (6.1).	В	A

Zadanie 20. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna odpowiedź	
II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej. Zdający oblicza	Wersja X	Wersja Y
reprezentacji.	odległość dwóch punktów (8.6).	Α	D

Zadanie 21. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna odpowiedź	
III. Modelowanie matematyczne.	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa	Wersja X	Wersja Y
	i kombinatoryka. Zdający zlicza obiekty w prostych sytuacjach kombinatorycznych, niewymagających użycia wzorów kombinatorycznych, stosuje regułę mnożenia i regułę dodawania (10.2).	С	В

Zadanie 22. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
IV. Użycie i tworzenie strategii.	G10. Figury płaskie. Zdający oblicza pola i obwody trójkątów	Wersja X	Wersja Y
strategii.	i czworokątów (G10.9).	С	В

Zadanie 23. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie	G9. Statystyka opisowa i wprowadzenie do rachunku	Wersja X	Wersja Y
reprezentacji.	prawdopodobieństwa. Zdający wyznacza średnią arytmetyczną i medianę zestawu danych (G9.4).	A	D

Zadanie 24. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie	G11. Bryły. Zdający oblicza pole powierzchni i objętość graniastosłupa	Wersja X	Wersja Y
reprezentacji.	prostego, ostrosłupa, walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym) (G11.2).	A	D

Zadanie 25. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe	Poprawna	odpowiedź
II. Wykorzystanie i interpretowanie	G11. Bryły. Zdający oblicza pole powierzchni i objętość graniastosłupa	Wersja X	Wersja Y
reprezentacji.	prostego, ostrosłupa, walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym) (G11.2).	В	С

Zadania otwarte

Uwaga: Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.

Zadanie 26. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i interpretowanie reprezentacji.	3. Równania i nierówności. Zdający rozwiązuje nierówności kwadratowe z jedną niewiadomą (3.5).

Zasady oceniania

Zdający otrzymuje1 p. gdy:

- zrealizuje pierwszy etap rozwiązania i na tym zakończy lub zapisze błędny zbiór rozwiązań nierówności, np.
 - obliczy lub poda pierwiastki trójmianu kwadratowego $x_1 = -\frac{5}{2}$ oraz $x_2 = 1$
 - zaznaczy na wykresie miejsca zerowe funkcji f określonej wzorem $f(x) = 2x^2 + 3x 5$: $x_1 = -\frac{5}{2}$ i $x_2 = 1$.
 - rozłoży trójmian kwadratowy na czynniki liniowe, np. $2\left(x+\frac{5}{2}\right)(x-1)$

albo

- realizując pierwszy etap rozwiązania zadania popełnia błędy (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego zapisze zbiór rozwiązań nierówności, np.
 - popełnia błędy rachunkowe przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności,
 - błędnie zapisze równania wynikające ze wzorów Viète'a, np.: $x_1 \cdot x_2 = \frac{5}{2}$ i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności,

albo

• wyznaczy odcięte punktów wspólnych wykresów funkcji określonych wzorami y=2(x-1)(x+3) oraz y=x-1: $x_1=-\frac{5}{2}$ oraz $x_2=1$ i na tym zakończy lub zapisze błędny zbiór rozwiązań nierówności.

• poda zbiór rozwiązań nierówności: $\left(-\infty,-\frac{5}{2}\right)\cup\left(1,+\infty\right)$ lub $x\in\left(-\infty,-\frac{5}{2}\right)\cup\left(1,+\infty\right)$ lub $\left(x<-\frac{5}{2}\right)$ lub x>1),

albo

• sporządzi ilustrację graficzną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: $x<-\frac{5}{2}$, x>1,

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki (dysleksja)

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $\left(-\infty,1\right)\cup\left(-\frac{5}{2},+\infty\right)$, $\left(+\infty,-\frac{5}{2}\right)\cup\left(1,-\infty\right)$, to przyznajemy **2 punkty**.

Uwagi

- 1. Akceptujemy zapisanie odpowiedzi w postaci: $x < -\frac{5}{2}$ i x > 1, $x < -\frac{5}{2}$ oraz x > 1.
- 2. Jeżeli zdający dzieli obie strony nierówności przez x-1, rozważając dwa przypadki x-1>0 oraz x-1<0, rozwiąże nierówność w każdym z tych przypadków i poda zbiór rozwiązań każdej z tych nierówności, to otrzymuje **2 punkty**.
- 3. Jeżeli zdający poprawnie obliczy pierwiastki trójmianu $x_1 = -\frac{5}{2}$, $x_2 = 1$ i zapisze, np. $\left(-\infty, -\frac{5}{2}\right) \cup \left(-1, +\infty\right)$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to otrzymuje **2 punkty**.
- 4. Jeżeli zdający poprawnie rozwiąże nierówność 2(x-1)(x+3)>x-1, ale zapisze sprzeczną z tym rozwiązaniem odpowiedź, np. $x \notin R \setminus \left\{-\frac{5}{2},1\right\}$, albo $x \neq -\frac{5}{2}$ i $x \neq 1$, to otrzymuje **2 punkty**.
- 5. Jeżeli zdający rozwiązuje zadanie sposobem III i nie sprawdzi algebraicznie, że odczytane liczby $x_1 = -\frac{5}{2}$ oraz $x_2 = 1$ są odciętymi punktów wspólnych wykresów funkcji y = 2(x-1)(x+3) oraz y = x-1, to otrzymuje **2 punkty**.
- 6. Jeżeli zdający pominie 2 w nierówności 2(x-1)(x+3) > x-1 i rozwiąże nierówność (x-1)(x+3) > x-1, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie.
- 7. Jeżeli zdający rozwiązuje zadanie sposobem III i błędnie odczyta którąkolwiek z odciętych punktów wspólnych wykresów funkcji y=2(x-1)(x+3) oraz y=x-1, to otrzymuje **1 punkt** za całe rozwiązanie, pod warunkiem, że otrzyma sumę dwóch rozłącznych przedziałów otwartych.
- 8. Jeżeli zdający podaje pierwiastki bez związku z trójmianem kwadratowym z zadania, to oznacza, że nie podjął realizacji pierwszego etapu rozwiązania i w konsekwencji otrzymuje **0 punktów** za całe rozwiązanie.

- 9. Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego w przypadku, gdy obliczony wyróżnik Δ jest niedodatni, to otrzymuje **0 punktów** za całe rozwiązanie.
- 10. Jeżeli zdający rozwiąże nierówność 2(x-1)(x+3) > 0, to otrzymuje **0 punktów** za całe rozwiązanie.
- 11. Jeżeli zdający dzieli obie strony nierówności przez x-1 bez stosownego założenia, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe rozwiązanie

Pierwszy etap to wyznaczenie pierwiastków trójmianu kwadratowego: $2x^2 + 3x - 5$.

Drugi etap to zapisanie zbioru rozwiązań nierówności kwadratowej.

Pierwszy etap rozwiązania może być realizowany następująco:

l sposób

Przekształcamy równoważnie nierówność do postaci (2x+5)(x-1)>0 (przenosimy wszystkie wyrażenia na lewą stronę nierówności i wyłączamy wspólny czynnik poza nawias), a następnie zapisujemy pierwiastki trójmianu (2x+5)(x-1): $x_1=-\frac{5}{2}$ oraz $x_2=1$.

II sposób

Zapisujemy nierówność w postaci $2x^2 + 3x - 5 > 0$ i obliczamy pierwiastki trójmianu $2x^2 + 3x - 5$

• obliczamy wyróżnik tego trójmianu:

$$\Delta = 49$$
 i stąd $x_1 = -\frac{5}{2}$ oraz $x_2 = 1$

albo

stosujemy wzory Viète'a:

$$x_1 \cdot x_2 = -\frac{5}{2}$$
 oraz $x_1 + x_2 = -\frac{3}{2}$, stąd $x_1 = -\frac{5}{2}$ oraz $x_2 = 1$

albo

 podajemy je bezpośrednio, np. zapisując pierwiastki trójmianu lub postać iloczynową trójmianu, lub zaznaczając je na wykresie (wystarczy szkic wykresu, oś liczbowa itp.):

$$x_1 = -\frac{5}{2}$$
 oraz $x_2 = 1$ lub $2\left(x + \frac{5}{2}\right)(x - 1)$.

Drugi etap rozwiązania:

Zapisujemy zbiór rozwiązań nierówności: $\left(-\infty,-\frac{5}{2}\right)\cup\left(1,+\infty\right)$ lub $x\in\left(-\infty,-\frac{5}{2}\right)\cup\left(1,+\infty\right)$.

III sposób

Wykonujemy rysunek pomocniczy. W jednym układzie współrzędnych szkicujemy fragment wykresu funkcji kwadratowej określonej wzorem y = 2(x-1)(x+3) oraz fragment wykresu funkcji liniowej określonej wzorem y = x-1.

Odczytujemy odcięte punktów wspólnych obu wykresów. Są to liczby $x_1 = -\frac{5}{2}$ oraz $x_2 = 1$. Sprawdzamy, czy odczytane współrzędne są odciętymi punktów wspólnych tych wykresów $2\left(-\frac{5}{2}-1\right)\left(-\frac{5}{2}+3\right)=2\cdot\left(-\frac{7}{2}\right)\left(\frac{1}{2}\right)=-\frac{7}{2}$ $-\frac{5}{2}-1=-\frac{7}{2}$

Stąd liczba $\left(-\frac{5}{2}\right)$ jest odciętą punktu wspólnego obu wykresów, a liczba 1 jest wspólnym miejscem zerowym obu funkcji y=2(x-1)(x+3) oraz y=x-1.

Z naszkicowanego wykresu odczytujemy te argumenty, dla których funkcja kwadratowa przyjmuje wartości większe niż funkcja liniowa $x \in \left(-\infty, -\frac{5}{2}\right) \cup \left(1, +\infty\right)$. Zatem zbiór ten jest zbiorem rozwiązań nierówności 2(x-1)(x+3) > x-1.

Zadanie 27. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
I. Wykorzystanie i tworzenie informacji.	3. Równania i nierówności. Zdający korzysta z własności iloczynu przy rozwiązywaniu równań typu $x(x+1)(x-7)=0$ (3.7).

Zasady oceniania

Zdający otrzymuje1 p. gdy

• zapisze dwa równania $x^2 - 1 = 0$ i $x^2 - 2x = 0$ lub z zapisu wynika, że rozwiązuje te równania

albo

• obliczy lub poda rozwiązania jednego z równań:

$$x^{2}-1=0$$
 (x=1, x=-1) lub $x^{2}-2x=0$ (x=0, x=2)

i na tym zakończy lub dalej popełni błędy.

Uwagi

- Jeżeli zdający poda wszystkie rozwiązania równania, bez zapisanych rachunków lub uzasadnienia, to otrzymuje 2 punkty.
- Jeżeli zdający poprawnie zapisze lewą stronę równania w postaci sumy jednomianów i doprowadzając ją do postaci iloczynu popełni błędy, ale skorzysta z własności iloczynu równego zero, to za całe rozwiązanie może otrzymać co najwyżej 1 punkt.

Przykładowe rozwiązanie

Iloczyn jest równy zero, jeśli przynajmniej jeden z czynników jest równy zero.

Zatem
$$x^2 - 1 = 0$$
 lub $x^2 - 2x = 0$.

Równanie $x^2 - 1 = 0$ ma dwa rozwiązania: x = -1 lub x = 1.

Równanie $x^2 - 2x = 0$ ma dwa rozwiązania: x = 0 lub x = 2.

Zatem rozwiązaniami równania $(x^2-1)(x^2-2x)=0$ są liczby: x=0, x=2, x=1, x=-1.

Zadanie 28. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
V. Rozumowanie i argumentacja.	2. Wyrażenia algebraiczne. Zdający używa wzorów skróconego mnożenia $(a \pm b)^2$ oraz $a^2 - b^2$ (2.1).

Zasady oceniania I i II sposobu rozwiązania

Zdający otrzymuje1 p. gdy

• zapisze nierówność w postaci $(a-b)^2 + b^2 > 0$

albo

 obliczy wyróżnik trójmianu kwadratowego w zależności od zmiennej a lub b, występującego po jednej stronie nierówności, gdy po drugiej stronie jest 0, i stwierdzi, że jest on niedodatni

albo

• obliczy wyróżnik trójmianu kwadratowego w zależności od zmiennej a lub b, występującego po jednej stronie nierówności, gdy po drugiej stronie jest 0 oraz rozważy jeden z przypadków $\Delta < 0$ lub $\Delta = 0$ i w tym przypadku doprowadzi rozumowanie do końca

i na tym zakończy lub dalej popełni błędy.

Uwaga

Jeżeli zdający sprawdza prawdziwość nierówności jedynie dla wybranych wartości a i b, to otrzymuje **0 punktów** za całe rozwiązanie.

Zasady oceniania III sposobu rozwiązania

Zdający otrzymuje1 p. gdy rozważy dwa przypadki:

w jednym, dla $a \neq 0$, podzieli stronami nierówność przez a^2 , w drugim, dla $b \neq 0$, podzieli stronami nierówność przez b^2

i w jednym przypadku doprowadzi rozumowanie do końca.

Uwaga

Jeżeli zdający sprawdza prawdziwość nierówności jedynie dla wybranych wartości a i b, to otrzymuje **0 punktów** za całe rozwiązanie.

Zasady oceniania IV sposobu rozwiązania

Zdający otrzymuje1 p. gdy

• rozważy trzy przypadki i zapisze nierówności $\left(a-\sqrt{2}b\right)^2>2ab\left(1-\sqrt{2}\right)$, $\left(a+\sqrt{2}b\right)^2>2ab\left(1+\sqrt{2}\right)$, $a^2+2b^2>0$

i na tym zakończy lub dalej popełni błędy.

albo

• przeprowadzi pełne rozumowanie w dwóch spośród trzech przypadków i na tym zakończy lub dalej popełni błędy.

Uwaga

Jeżeli zdający sprawdza prawdziwość nierówności jedynie dla wybranych wartości *a* i *b*, to otrzymuje **0 punktów** za całe rozwiązanie.

Zasady oceniania V sposobu rozwiązania

i na tym zakończy lub dalej popełni błędy.

Uwaga

Jeżeli zdający sprawdza prawdziwość nierówności jedynie dla wybranych wartości *a* i *b*, to otrzymuje **0 punktów** za całe rozwiązanie.

Zasady oceniania VI sposobu rozwiązania

$$a^2 + 2b^2 \ge a^2 + b^2$$
 oraz $a^2 + b^2 \ge 2ab$

i na tym zakończy lub dalej popełni błędy

Uwaga

Jeżeli zdający sprawdza prawdziwość nierówności jedynie dla wybranych wartości *a* i *b*, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe rozwiązania

I sposób

Przekształcamy równoważnie nierówność i otrzymujemy kolejno:

$$a^{2}-2ab+2b^{2} > 0$$
,
 $a^{2}-2ab+b^{2}+b^{2} > 0$,

$$\left(a-b\right)^2+b^2>0.$$

Nierówność $(a-b)^2 + b^2 > 0$ jest prawdziwa, ponieważ:

- 1) wyrażenie $(a-b)^2$ jest dodatnie, gdyż z założenia wynika $a-b \neq 0$ i kwadrat każdej liczby rzeczywistej różnej od zera jest dodatni,
- 2) wyrażenie b^2 jest nieujemne,
- 3) suma dwóch liczb rzeczywistych, z których jedna jest liczbą dodatnią, a druga liczbą nieujemną, jest liczbą dodatnią.

To kończy dowód.

II sposób

Przekształcamy równoważnie nierówność i otrzymujemy:

$$a^2 - 2ab + 2b^2 > 0$$
.

Wyrażenie $a^2 - 2ab + 2b^2$ traktujemy jako trójmian kwadratowy jednej zmiennej np. a.

Wyróżnik trójmianu kwadratowego $a^2 - 2ab + 2b^2$ jest równy: $\Delta = 4b^2 - 8b^2 = -4b^2$. Ten wyróżnik jest niedodatni dla każdej rzeczywistej wartości b.

Gdy $\Delta < 0$, to $a^2 - 2ab + 2b^2 > 0$ dla każdej rzeczywistej wartości a.

Gdy $\Delta = 0$, to b = 0, stad $a^2 > 0$, ponieważ z założenia $a \neq b$.

Oznacza to, że dla każdych dwóch różnych liczb rzeczywistych a i b prawdziwa jest nierówność $a^2-2ab+2b^2>0$.

To kończy dowód.

III sposób

Przekształcamy równoważnie nierówność $a(a-2b)+2b^2>0$ i otrzymujemy:

$$a^2 - 2ab + 2b^2 > 0$$
.

Z założenia wynika, że liczby a i b nie mogą jednocześnie przyjmować wartości 0.

Jeżeli $b \neq 0$, to $b^2 > 0$. Dzielimy obie strony nierówności przez b^2 i otrzymujemy nierówność równoważną

$$\left(\frac{a}{h}\right)^2 - 2\frac{a}{h} + 2 > 0.$$

Niech $x = \frac{a}{b}$. Otrzymujemy nierówność kwadratową $x^2 - 2x + 2 > 0$ z niewiadomą x.

Zauważamy, że ta nierówność jest prawdziwa dla każdej liczby rzeczywistej $\,x$, bo z równości

$$x^2 - 2x + 2 = (x-1)^2 + 1$$

wnioskujemy, że $(x-1)^2 + 1 > 0$, wobec oczywistej nierówności $(x-1)^2 \ge 0$.

Natomiast jeżeli $a \neq 0$, to $a^2 > 0$. Dzielimy obie strony nierówności przez a^2 i otrzymujemy nierówność równoważną

$$2\left(\frac{b}{a}\right)^2 - 2\frac{b}{a} + 1 > 0.$$

Niech teraz $x = \frac{b}{a}$. Otrzymujemy nierówność kwadratową $2x^2 - 2x + 1 > 0$ z niewiadomą x.

Ponieważ wyróżnik trójmianu $2x^2-2x+1$ jest ujemny oraz współczynnik przy najwyższej potędze trójmianu jest dodatni, więc ten trójmian przyjmuje tylko wartości dodatnie dla każdej liczby rzeczywistej $\,x$.

Z rozważonych przypadków wynika, że nierówność jest prawdziwa dla każdych dwóch różnych liczb rzeczywistych *a* i *b*.

To kończy dowód.

IV sposób

Niech $a \neq b$. Rozważmy następujące przypadki:

Przypadek I: $a \cdot b > 0$.

Przekształcamy równoważnie nierówność $a(a-2b)+2b^2>0$ i otrzymujemy:

$$a^2 + 2b^2 - 2\sqrt{2}ab > 2ab - 2\sqrt{2}ab$$
.

Stąd
$$\left(a-\sqrt{2}b\right)^2 > 2ab\left(1-\sqrt{2}\right)$$
.

Wyrażenie $\left(a-\sqrt{2}b\right)^2$ jest nieujemne. Wyrażenie $2ab\left(1-\sqrt{2}\right)$ jest ujemne, ponieważ $1-\sqrt{2}<0$ i z założenia ab>0 .

Nierówność jest prawdziwa dla każdych dwóch liczb rzeczywistych a i b, takich, że $a \cdot b > 0$ i $a \neq b$.

Przypadek II: $a \cdot b < 0$.

Przekształcamy równoważnie nierówność $a(a-2b)+2b^2>0$ i otrzymujemy:

$$a^2 + 2b^2 + 2\sqrt{2}ab > 2ab + 2\sqrt{2}ab$$
.

Stąd
$$\left(a+\sqrt{2}b\right)^2 > 2ab\left(1+\sqrt{2}\right)$$
.

Wyrażenie $\left(a+\sqrt{2}b\right)^2$ jest nieujemne. Wyrażenie $2ab\left(1+\sqrt{2}\right)$ jest ujemne, ponieważ $1+\sqrt{2}>0$ i z założenia ab<0 .

Nierówność jest prawdziwa dla każdych dwóch liczb rzeczywistych a i b, takich, że $a \cdot b < 0$ i $a \neq b$.

Przypadek III: $a \cdot b = 0$

Przekształcamy równoważnie nierówność $a(a-2b)+2b^2>0$ i otrzymujemy:

$$a^2 - 2ab + 2b^2 > 0$$
.

Ponieważ $a \cdot b = 0$, więc nierówność $a^2 - 2ab + 2b^2 > 0$ możemy zapisać w postaci $a^2 + 2b^2 > 0$.

Suma kwadratów dwóch dowolnych liczb rzeczywistych a i b, takich, że $a \neq b$ jest dodatnia. Nierówność jest prawdziwa dla każdych dwóch liczb rzeczywistych a i b, takich, że $a \cdot b = 0$ i $a \neq b$.

To kończy dowód.

V sposób (dowód nie wprost)

Załóżmy, że istnieją różne liczby rzeczywiste a i b, dla których prawdziwa jest nierówność

$$a(a-2b)+2b^2\leq 0.$$

Powyższa nierówność jest równoważna nierównościom:

$$a^2 - 2ab + 2b^2 \le 0$$
,

$$\left(a-b\right)^2+b^2\leq 0.$$

Ponieważ lewa strona tej nierówności jest sumą dwóch liczb nieujemnych $\left(a-b\right)^2$ i b^2 , więc może zachodzić jedynie przypadek $\left(a-b\right)^2+b^2=0$. Wynika stąd, że a-b=0 i b=0. Zatem a=0 i b=0, co przeczy założeniu, że liczby a i b są różne.

Otrzymana sprzeczność oznacza, że nierówność $a(a-2b)+2b^2 \le 0$ jest fałszywa.

Prawdziwa zatem jest nierówność $a(a-2b)+2b^2>0$, dla każdych dwóch różnych liczb rzeczywistych a i b.

To kończy dowód.

VI sposób (szacowanie)

Nierówność $a(a-2b)+2b^2>0$ jest równoważna nierówności $a^2+2b^2>2ab$.

Dla dowolnych liczb rzeczywistych a, b prawdziwe są nierówności $a^2+2b^2 \ge a^2+b^2$ oraz $a^2+b^2 \ge 2ab$, przy czym $a^2+b^2 = 2ab$ tylko wtedy, gdy a=b. Ale z założenia $a \ne b$, więc otrzymujemy $a^2+2b^2 \ge a^2+b^2 > 2ab$.

To kończy dowód.

Zadanie 29. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
V. Rozumowanie i argumentacja.	7. Planimetria. Zdający rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych) cechy podobieństwa trójkątów (7.1). SP9. Wielokąty, koła, okręgi. Zdający rozpoznaje i nazywa trójkąty ostrokątne, prostokątne i rozwartokątne, równoboczne i równoramienne (SP9.1).

Zasady oceniania

Zdający otrzymuje1 p. gdy

• wyznaczy długości odcinków BC i CF w zależności od tej samej zmiennej, np.: $\left|BC\right|=a$

i
$$|CF| = \frac{3\sqrt{3}a}{8} \cdot \frac{\sqrt{3}}{2}$$
 lub $|BC| = 2x$ i $|CF| = \frac{9}{8}x$

albo

• wyznaczy skalę podobieństwa trójkątów *BCD* i *CEF*: $k = \frac{8\sqrt{3}}{9}$

albo

• wyznaczy długość odcinka CF w zależności od długości odcinków CB i CD oraz zależność między długościami odcinków CD i CB, np.: $\left|CF\right| = \frac{3\left|CD\right|^2}{4\left|CB\right|}$, $\left|CD\right| = \frac{\sqrt{3}}{2}\left|CB\right|$

i na tym poprzestanie lub dalej popełni błędy.

Uwaga

Ponieważ podobieństwo zachowuje stosunek długości odcinków, więc jeżeli zdający przyjmuje konkretną wartość długości boku trójkąta i przeprowadzi rozumowanie do końca, ale nie odwołuje się do tej własności, to może otrzymać co najwyżej **1 punkt**.

Przykładowe rozwiązania

I sposób

Niech
$$|BC|=a$$
 . Wtedy $|CD|=\frac{a\sqrt{3}}{2}$. Ponieważ $|CE|=\frac{3}{4}|CD|$, to $|CE|=\frac{3\sqrt{3}a}{8}$. Zatem $|CF|=|CE|\cdot\frac{\sqrt{3}}{2}=\frac{3\sqrt{3}a}{8}\cdot\frac{\sqrt{3}}{2}=\frac{9}{16}a=\frac{9}{16}|BC|$.

To kończy dowód.

II sposób

Trójkąt BCD jest trójkątem prostokątnym o kątach ostrych 30° i 60° . Niech |BC|=y . Wtedy $|CD|=\frac{y\sqrt{3}}{2}$. Trójkąt CEF jest połową trójkąta równobocznego. Niech |CF|=x . Stąd $|CE|=\frac{2x\sqrt{3}}{3}$. Ponieważ $|CE|=\frac{3}{4}|CD|$, to $\frac{2x\sqrt{3}}{3}=\frac{3}{4}\cdot\frac{y\sqrt{3}}{2}$. Stąd $x=\frac{9}{16}y$.

To kończy dowód.

III sposób

Niech $x=\left|BD\right|$. Trójkąt BCD jest trójkątem prostokątnym o kątach ostrych 30° i 60° , więc $\left|BC\right|=2x \text{ oraz } \left|CD\right|=x\sqrt{3} \ .$

Ponieważ $|CE| = \frac{3}{4}|CD|$, więc $|CE| = \frac{3}{4}x\sqrt{3}$. Trójkąt *CEF* jest połową trójkąta równobocznego,

więc
$$|CF| = \frac{\frac{3}{4}x\sqrt{3}\cdot\sqrt{3}}{2} = \frac{9}{8}x$$
.

Stąd
$$\frac{|CF|}{|CB|} = \frac{\frac{9}{8}x}{2x} = \frac{9}{16}$$
. Zatem $|CF| = \frac{9}{16}|CB|$.

To kończy dowód.

IV sposób

Trójkąty BCD i ECF są podobne na podstawie cechy (kqt, kqt, kqt). Przyjmijmy następujące oznaczenie: $\left|BC\right|=a$, wtedy $\left|CD\right|=h=\frac{a\sqrt{3}}{2}$. Skalę podobieństwa można obliczyć w następujący sposób:

$$k = \frac{|BC|}{|CE|} = \frac{a}{\frac{3}{4}h} = \frac{a}{\frac{3}{4} \cdot \frac{a\sqrt{3}}{2}} = \frac{8\sqrt{3}}{9} \text{ oraz } k = \frac{|CD|}{|CF|}.$$

Stąd
$$|CF| = \frac{|CD|}{k} = \frac{a\sqrt{3}}{2} \cdot \frac{9}{8\sqrt{3}} = \frac{9}{16}a$$
.

To kończy dowód.

Zadanie 30. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
III. Modelowanie matematyczne.	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Zdający oblicza prawdopodobieństwa w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa (10.3).

Zasady oceniania

Zdający otrzymuje1 p. gdy

• zapisze liczbę wszystkich zdarzeń elementarnych $|\Omega|=6^2=36$ lub opisze zbiór zdarzeń elementarnych za pomocą tabeli

albo

• wypisze wszystkie zdarzenia elementarne sprzyjające zdarzeniu A: $A = \{(1,5),(2,5),(3,5),(4,5),(5,5),(5,6),(5,1),(5,2),(5,3),(5,4),(6,5)\}$ lub zaznaczy je wszystkie w tabeli lub zaznaczy wszystkie istotne gałęzie na pełnym drzewie składającym się z 36 gałęzi,

albo

• obliczy liczbę zdarzeń elementarnych sprzyjających zdarzeniu A, np.: $|A| = 2 \cdot 6 - 1 = 11$, |A| = 5 + 5 + 1 = 11 i nie wskaże przy tym niepoprawnych zdarzeń elementarnych sprzyjających zdarzeniu A,

albo

ullet zapisze prawdopodobieństwa potrzebne do wyznaczenia końcowego wyniku na dwóch etapach (przy stosowaniu metody drzewa probabilistycznego składającego się z czterech gałęzi) oraz wskaże wszystkie istotne gałęzie (dla zdarzenia A lub zdarzenia A')

i na tym zakończy lub dalej popełni błędy.

Uwagi

- 1. Jeżeli zdający zapisze tylko: |A|=11, $|\Omega|=36$, $P(A)=\frac{11}{36}$, lub zapisze tylko: $P(A)=\frac{11}{36}$, lub $\frac{11}{36}$, to otrzymuje **2 punkty**.
- 2. Jeżeli zdający zapisze prawdopodobieństwo $P(A) = \frac{1}{6} \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} \cdot \frac{5}{6}$, to otrzymuje **2 punkty**.
- 3. Jeżeli zdający zapisze tylko |A| = 11, to otrzymuje **1 punkt**.
- 4. Jeżeli zdający popełni błąd przy wypisywaniu zdarzeń elementarnych i wypisze o jedno za mało lub jedno powtórzy, ale nie wypisze żadnego niewłaściwego i konsekwentnie do popełnionego błędu obliczy prawdopodobieństwo, to otrzymuje **1 punkt**.
- 5. Jeżeli zdający stosuje drzewo probabilistyczne o 36 gałęziach, w którym przynajmniej 7 gałęzi odpowiada sytuacjom sprzyjającym rozważanemu zdarzeniu A (lub przynajmniej 13, gdy rozpatruje zdarzenie A'), ale nie wskaże gałęzi niewłaściwej, i konsekwentnie do popełnionego błędu obliczy prawdopodobieństwo, to otrzymuje **1 punkt**.
- 6. Jeżeli zdający narysuje tylko drzewko i nie zaznaczy oraz nie opisze żadnej gałęzi, to otrzymuje **0 punków**.
- 7. Jeżeli zdający zapisze tylko liczby 36 lub 11 lub 25 i z rozwiązania zadania nie wynika znaczenie tych liczb, to otrzymuje **0 punktów.**
- 8. Jeśli zdający rozwiąże zadanie do końca i otrzyma $P(A) > 1 \quad \text{lub} \quad P(A) < 0$, to otrzymuje za całe rozwiązanie **0 punktów**, o ile końcowy wynik nie jest skutkiem błędu w działaniach na ułamkach.

Przykładowe rozwiązania

I sposób

Obliczamy liczbę wszystkich zdarzeń elementarnych tego doświadczenia $|\Omega|=6^2=36$ lub opisujemy zbiór zdarzeń elementarnych np. w postaci tabeli

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Wskazujemy elementy zbioru A i zliczamy je:

$$|A| = 11.$$

Obliczamy prawdopodobieństwo zdarzenia A. Ponieważ wszystkie zdarzenia jednoelementowe są jednakowo prawdopodobne, więc korzystamy z klasycznej definicji prawdopodobieństwa:

$$P(A) = \frac{|A|}{|\Omega|} = \frac{11}{36}.$$

II sposób

Obliczamy liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 6^2 = 36$.

A – zdarzenie polegające na tym, że co najmniej jeden raz wypadnie ścianka z pięcioma oczkami.

A' – zdarzenie polegające na tym, że ani razu nie wypadnie ścianka z pięcioma oczkami.

Wskazujemy elementy zbioru A' (wypisujemy lub zaznaczamy w tabeli) i zliczamy je:

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

$$|A'| = 5^2 = 25.$$

Obliczamy prawdopodobieństwo zdarzenia A: $P(A) = 1 - P(A') = 1 - \frac{25}{36} = \frac{11}{36}$.

III sposób (metoda drzewka)

Przedstawiamy model graficzny doświadczenia.

5 – oznacza wypadnięcie ścianki kostki z pięcioma oczkami, z – oznacza wypadnięcie innej ścianki niż z pięcioma oczkami.

Prawdopodobieństwo zdarzenia A jest równe: $P(A) = \frac{1}{6} \cdot \frac{1}{6} + \frac{1}{6} \cdot \frac{5}{6} + \frac{5}{6} \cdot \frac{1}{6} = \frac{11}{36}$

Zadanie 31. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	6. Trygonometria. Zdający stosuje proste zależności między funkcjami trygonometrycznymi:
	$\sin^2 \alpha + \cos^2 \alpha = 1$, $tg\alpha = \frac{\sin \alpha}{\cos \alpha}$, oraz
	$\sin(90^\circ - \alpha) = \cos\alpha \ (6.4).$

Zasady oceniania I, II, III i IV sposobu rozwiązania

$$2 \operatorname{tg} \alpha + 3 = 4 \operatorname{lub} 2 \sin \alpha = \cos \alpha \operatorname{lub} 2 \sin \alpha - \cos \alpha = 0 \operatorname{lub} 2 \frac{a}{c} = \frac{b}{c} \operatorname{lub} 2a = b$$

i na tym zakończy lub dalej popełni błędy.

Uwagi

- 1. Jeżeli zdający popełni błąd i zapisze $tg\alpha = \frac{\cos\alpha}{\sin\alpha}$, to otrzymuje co najwyżej **1 punkt** za całe rozwiązanie.
- 2. Jeżeli zdający popełni jedyny błąd polegający na zastosowaniu niepoprawnego wzoru $\sqrt{a-b}=\sqrt{a}-\sqrt{b}$ albo $(a+b)^2=a^2+b^2$ i konsekwentnie doprowadzi rozwiązanie do końca, to może otrzymać za całe rozwiązanie co najwyżej **1 punkt**.

Przykładowe rozwiązania

I sposób

Równanie $\frac{2\sin\alpha + 3\cos\alpha}{\cos\alpha} = 4$ przekształcamy równoważnie do postaci:

$$\frac{2\sin\alpha}{\cos\alpha} + \frac{3\cos\alpha}{\cos\alpha} = 4.$$

Stąd
$$2 \operatorname{tg} \alpha + 3 = 4$$
, czyli $\operatorname{tg} \alpha = \frac{1}{2}$.

<u>II sposób</u>

Równanie $\frac{2\sin\alpha + 3\cos\alpha}{\cos\alpha} = 4$ przekształcamy równoważnie do postaci:

$$2\sin\alpha + 3\cos\alpha = 4\cos\alpha$$
.

Stąd $2\sin\alpha = \cos\alpha$, czyli $tg\alpha = \frac{1}{2}$.

III sposób

Rysujemy trójkąt prostokątny, w którym oznaczamy długości przyprostokątnych a i b, długość przeciwprostokątnej c oraz zaznaczamy kąt ostry α taki, że $\sin\alpha = \frac{a}{c}$ lub $\cos\alpha = \frac{b}{c}$.

Podane równanie
$$\frac{2\sin\alpha + 3\cos\alpha}{\cos\alpha} = 4$$
 zapisujemy w postaci $\frac{2 \cdot \frac{a}{c} + 3 \cdot \frac{b}{c}}{\frac{b}{c}} = 4$. Następnie

wykonujemy przekształcenia na lewej stronie tej równości i otrzymujemy $\frac{2a+3b}{b}=4$. Stąd wynika,

że 2a+3b=4b, czyli 2a=b. Ostatnia równość oznacza, że $\frac{a}{b}=\frac{1}{2}$. Zatem $\lg \alpha = \frac{1}{2}$.

IV sposób

Równanie $\frac{2\sin\alpha + 3\cos\alpha}{\cos\alpha} = 4$ przekształcamy równoważnie do postaci

$$2\sin\alpha + 3\cos\alpha = 4\cos\alpha.$$

Stąd wynika, że $2\sin\alpha=\cos\alpha$. Korzystamy z tożsamości $\sin^2\alpha+\cos^2\alpha=1$ i otrzymujemy równanie $\sin^2\alpha+\left(2\sin\alpha\right)^2=1$. Stąd $\sin^2\alpha=\frac{1}{5}$. Ponieważ α jest kątem ostrym, więc $\sin\alpha=\frac{1}{\sqrt{5}}$.

Ale
$$\cos \alpha = 2 \sin \alpha$$
, wiec $\cos \alpha = \frac{2}{\sqrt{5}}$. Ostatecznie $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{1}{\frac{\sqrt{5}}{2}} = \frac{1}{2}$.

Zadanie 32. (0-4)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	8. Geometria na płaszczyźnie kartezjańskiej. Zdający wyznacza równanie prostej, która jest równoległa lub prostopadła do prostej danej w postaci kierunkowej i przechodzi przez dany punkt (8.3). Zdający oblicza współrzędne punktu przecięcia dwóch prostych (8.4). Zdający wyznacza współrzędne środka odcinka (8.5).

Zasady oceniania I, II, III i IV sposobu rozwiązania

• wyznaczy równanie prostej *AC*: $y = -\frac{3}{4}x + \frac{25}{12}$

albo

obliczy odległość punktu A od prostej BD: 5

albo

• zapisze współrzędne punktu P leżącego na prostej o równaniu $y=\frac{4}{3}x$, np. $P=\left(x,\frac{4}{3}x\right)$ i wyznaczy odległość punktu P od danego punktu A jako funkcję jednej zmiennej $x:|AP|=\sqrt{(x-5)^2+\left(\frac{4}{3}x+\frac{5}{3}\right)^2}$

albo

wyznaczy równania prostych *AB* i *AD*: $y + \frac{5}{3} = \frac{1}{7}(x-5)$ oraz $y + \frac{5}{3} = -7(x-5)$, i na tym zakończy lub dalej popełni błędy.

• wyznaczy równanie prostej AC: $y = -\frac{3}{4}x + \frac{25}{12}$ i obliczy współrzędne punktu przecięcia przekątnych kwadratu: $O = \left(1, \frac{4}{3}\right)$

albo

obliczy odległość punktu A od prostej BD: 5 i obliczy pole kwadratu: 50

albo

• obliczy odległość punktu *A* od prostej *BD*: 5 i zapisze równanie $(x_o - 5)^2 + (\frac{4}{3}x_o + \frac{5}{3})^2 = 25$

albo

• obliczy x, dla którego odległość AP jest najmniejsza: x = 1

albo

• wyznaczy równania prostych *AB* i *AD* oraz obliczy współrzędne wierzchołków *B* i *D*: $y + \frac{5}{3} = \frac{1}{7}(x-5)$, $y + \frac{5}{3} = -7(x-5)$, $B = \left(-2, -\frac{8}{3}\right)$, $D = \left(4, \frac{16}{3}\right)$.

i na tym zakończy lub dalej popełni błędy.

Pokonanie zasadniczych trudności zadania 3 p. Zdający

• obliczy współrzędne punktu przecięcia przekątnych kwadratu: $O = \left(1, \frac{4}{3}\right)$ i długość przekątnej kwadratu (lub połowę tej długości): 10

albo

• obliczy pole kwadratu: 50 i zapisze równanie $(x_o - 5)^2 + (\frac{4}{3}x_o + \frac{5}{3})^2 = 25$

albo

• obliczy x, dla którego odległość AP jest najmniejsza: x=1 i obliczy współrzędne punktu przecięcia przekątnych kwadratu: $O=\left(1,\frac{4}{3}\right)$

albo

 obliczy x, dla którego odległość AP jest najmniejsza: x=1 i długość przekątnej kwadratu: 10

albo

• obliczy współrzędne punktu przecięcia przekątnych kwadratu: $O = \left(1, \frac{4}{3}\right)$ i długość

boku kwadratu: $\sqrt{50}$

i na tym zakończy lub dalej popełni błędy.

Rozwiązanie pełne 4 p.

Zdający obliczy pole kwadratu: 50 oraz współrzędne punktu przecięcia przekątnych

kwadratu: $O = \left(1, \frac{4}{3}\right)$.

Uwagi

- 1. Jeśli zdający popełni błędy rachunkowe, które nie przekreślają poprawności rozumowania i konsekwentnie rozwiąże zadanie do końca, to może otrzymać za całe rozwiązanie co najwyżej **3 punkty**.
- 2. Jeżeli jedynym błędem zdającego jest:
 - a) błąd przy ustalaniu współczynnika kierunkowego prostej AC, to zdający może otrzymać co najwyżej 2 punkty za całe rozwiązanie;
 - b) błąd polegający na zamianie miejscami współrzędnych punktu, np. przy podstawieniu do wzoru na odległość punktu od prostej, przy podstawieniu do wzoru na długość odcinka, przy obliczaniu współczynnika b w równaniu kierunkowym prostej AC, to zdający może otrzymać co najwyżej 2 punkty za całe rozwiązanie;
 - c) błąd polegający na zastosowaniu niepoprawnego wzoru " $\sqrt{a+b}=\sqrt{a}+\sqrt{b}$ ", to zdający może otrzymać co najwyżej **2 punkty** za całe rozwiązanie.
- 3. Jeśli zdający zaznaczy w układzie współrzędnych punkt *A* i narysuje np. dwie proste, w których zawierają się przekątne kwadratu, a następnie odczyta i zapisze współrzędne punktu przecięcia się tych prostych i na tym zakończy, to otrzymuje **0 punktów.**

Przykładowe rozwiązania I sposób

Prosta AC jest prostopadła do prostej o równaniu $y = \frac{4}{3}x$, więc współczynnik kierunkowy prostej

AC jest równy $a_{AC}=-\frac{3}{4}$. Prosta AC przechodzi przez punkt $A=\left(5,-\frac{5}{3}\right)$, więc jej równanie ma postać

$$y + \frac{5}{3} = -\frac{3}{4}(x - 5),$$

$$y = -\frac{3}{4}x + \frac{25}{12}.$$

Obliczamy współrzędne punktu O przecięcia się prostych AC i BD, rozwiązując układ równań

$$\begin{cases} y = \frac{4}{3}x \\ y = -\frac{3}{4}x + \frac{25}{12} \end{cases}$$

Rozwiązaniem tego układu jest para liczb x = 1 i $y = \frac{4}{3}$. Stąd $O = \left(1, \frac{4}{3}\right)$.

Punkt O jest środkiem przekątnej AC, więc $|AC| = 2|AO| = 2\sqrt{(1-5)^2 + \left(\frac{4}{3} + \frac{5}{3}\right)^2}$.

$$|AC| = 2|AO| = 2\sqrt{(-4)^2 + (\frac{9}{3})^2} = 2\sqrt{16 + 9} = 2 \cdot 5 = 10.$$

Przekątna kwadratu ma długość $a\sqrt{2}$, gdzie a jest długością boku kwadratu. Stąd $a\sqrt{2}=10$, czyli $a=5\sqrt{2}$.

Zatem pole kwadratu *ABCD* jest równe $a^2 = (5\sqrt{2})^2 = 50$.

Uwaga

Pole kwadratu *ABCD* możemy obliczyć, wykorzystując długość przekątnej kwadratu (lub jej połowy). Wtedy $P_{ABCD} = \frac{1}{2} \cdot \left| AC \right|^2 = \frac{1}{2} \cdot 10^2 = 50$.

II sposób

Długość przekątnej kwadratu *ABCD* (lub jej połowy) możemy obliczyć, korzystając ze wzoru na odległość *d* punktu *A* od danej prostej. Wtedy

$$d = \frac{\left|\frac{4}{3} \cdot 5 + \frac{5}{3}\right|}{\sqrt{\left(\frac{4}{3}\right)^2 + \left(-1\right)^2}} = \frac{\frac{25}{3}}{\frac{5}{3}} = 5.$$

Zatem pole kwadratu ABCD jest równe

$$P_{ABCD} = 2 \cdot d^2 = 2 \cdot 5^2 = 50$$
.

Punkt $O=\left(x_{o},y_{o}\right)$ leży na prostej o równaniu $y=\frac{4}{3}x$, więc $O=\left(x_{o},\frac{4}{3}x_{o}\right)$, a skoro odległość d jest równa 5, to $\left|AO\right|^{2}=25$, czyli

$$(x_o - 5)^2 + \left(\frac{4}{3}x_o + \frac{5}{3}\right)^2 = 25,$$

$$x_o^2 - 10x_o + 25 + \frac{16}{9}x_o^2 + \frac{40}{9}x_o + \frac{25}{9} - 25 = 0,$$

$$\frac{25}{9}x_o^2 - \frac{50}{9}x_o + \frac{25}{9} = 0,$$

$$x_o^2 - 2x_o + 1 = 0,$$

$$(x_o - 1)^2 = 0,$$

Stąd $x_0 = 1$, więc $O = \left(1, \frac{4}{3} \cdot 1\right) = \left(1, \frac{4}{3}\right)$.

III sposób (odległość jako funkcja jednej zmiennej)

Niech punkt $P = \left(x, \frac{4}{3}x\right)$ będzie dowolnym punktem leżącym na prostej o równaniu $y = \frac{4}{3}x$.

Zapiszemy odległość punktu P od danego punktu $A = \left(5, -\frac{5}{3}\right)$ jako funkcję jednej zmiennej. Obliczamy kolejno:

$$|AP| = \sqrt{(x-5)^2 + \left(\frac{4}{3}x + \frac{5}{3}\right)^2} = \sqrt{x^2 - 10x + 25 + \frac{16}{9}x^2 + \frac{40}{9}x + \frac{25}{9}} = \sqrt{\frac{25}{9}(x^2 - 2x + 10)}.$$

Zatem

$$|AP|(x) = \frac{5}{3}\sqrt{(x-1)^2+9}$$
 dla każdej liczby rzeczywistej x.

Zauważamy, że trójmian kwadratowy $y=\left(x-1\right)^2+9$ przyjmuje najmniejszą wartość dla x=1. Ponieważ funkcja f określona wzorem $f\left(t\right)=\sqrt{t}$ jest rosnąca, więc dla x=1 także i odległość |AP| jest najmniejsza. Oznacza to, że odcinek AP, którego długość jest równa 5, jest zawarty w przekątnej AC kwadratu ABCD. Zatem przekątna tego kwadratu ma długość 10 oraz pole tego kwadratu jest równe $\frac{1}{2}\cdot 10^2=50$. Ponadto jeśli x=1, to punkt P ma współrzędne $\left(1,\frac{4}{3}\right)$ i jest szukanym punktem przecięcia przekątnych AC i BD kwadratu ABCD.

IV sposób (kąt między prostymi)

Każda z prostych AB i AD zawierających boki kwadratu ABCD tworzą z prostą BD o równaniu $y=\frac{4}{3}x$, kąt 45° . Każda z nich przechodzi przez punkt $A=\left(5,-\frac{5}{3}\right)$, więc ma równanie postaci

$$y + \frac{5}{3} = a\left(x - 5\right).$$

Ze wzoru na tangens kąta między prostymi otrzymujemy:

$$\left| \frac{\frac{4}{3} - a}{1 + \frac{4}{3} \cdot a} \right| = tg45^{\circ} = 1,$$

$$\left| \frac{4}{3} - a \right| = \left| 1 + \frac{4}{3} a \right|,$$

$$\frac{4}{3} - a = 1 + \frac{4}{3} a \text{ lub } a - \frac{4}{3} = 1 + \frac{4}{3} a,$$

$$\frac{1}{3} = \frac{7}{3} a \text{ lub } -\frac{7}{3} = \frac{1}{3} a,$$

$$a = \frac{1}{7} \text{ lub } a = -7.$$

Zatem równania prostych AB i AD mają postać

$$y + \frac{5}{3} = \frac{1}{7}(x - 5)$$
 oraz $y + \frac{5}{3} = -7(x - 5)$, $y = \frac{1}{7}x - \frac{50}{21}$ oraz $y = -7x + \frac{100}{3}$.

Obliczamy współrzędne wierzchołków B i D, rozwiązując układy równań

$$\begin{cases} y = \frac{4}{3}x \\ y = \frac{1}{7}x - \frac{50}{21} \end{cases} \text{ oraz } \begin{cases} y = \frac{4}{3}x \\ y = -7x + \frac{100}{3} \end{cases}$$

Stąd otrzymujemy równania

$$\frac{4}{3}x = \frac{1}{7}x - \frac{50}{21}$$
 oraz $\frac{4}{3}x = -7x + \frac{100}{3}$,

Zatem $B = \left(-2, -\frac{8}{3}\right)$ oraz $D = \left(4, \frac{16}{3}\right)$.

Punkt O przecięcia przekątnych kwadratu ma zatem współrzędne

$$O = \left(\frac{-2+4}{2}, \frac{-\frac{8}{3} + \frac{16}{3}}{2}\right) = \left(1, \frac{4}{3}\right).$$

Pole kwadratu ABCD jest równe

$$P_{ABCD} = |AB|^2 = \left(\sqrt{(-2-5)^2 + \left(-\frac{8}{3} + \frac{5}{3}\right)^2}\right)^2 = 7^2 + (-1)^2 = 50.$$

Zadanie 33. (0-4)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	5. Ciągi. Zdający stosuje wzór na <i>n</i> -ty wyraz i sumę <i>n</i> początkowych wyrazów ciągu geometrycznego (5.4).

Zasady oceniania I sposobu rozwiązania

$$a_2 = a_1 \cdot q$$
 oraz $a_3 = a_1 \cdot q^2$

i na tym zakończy lub dalej popełni błędy.

$$6a_1 - 5a_1 \cdot q + a_1 \cdot q^2 = 0$$
 lub $a_1(q^2 - 5q + 6) = 0$

i na tym zakończy lub dalej popełni błędy.

Zasady oceniania II sposobu rozwiązania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do całkowitego rozwiązania zadania....... 1 p.

Zdający przy oznaczeniach $a_1=a,\,a_2=b,\,a_3=c\,$ wykorzysta własność ciągu geometrycznego i zapisze równość $b^2=ac\,$

i na tym zakończy lub dalej popełni błędy.

$$b_1 = 2a$$
 lub $b_2 = 3a$

i na tym zakończy lub dalej popełni błędy.

Uwagi do I i II sposobu oceniania

- 1. Jeżeli zdający zapisze równanie $6a_1-5a_1\cdot q+a_1q^2=0$ i przyjmie jako pierwszy wyraz ciągu konkretną liczbę dodatnią, pisząc, np. że wartość pierwszego wyrazu nie ma wpływu na iloraz ciągu, a następnie rozwiąże zadanie konsekwentnie do końca, to otrzymuje **4 punkty.**
- 2. Jeżeli zdający rozwiąże równanie kwadratowe z błędem i otrzyma co najmniej jedno rozwiązanie i konsekwentnie poda odpowiedź, to za całe rozwiązanie może otrzymać co najwyżej **3 punkty**.
- 3. Jeżeli zdający zapisze równanie $6a_1-5a_1\cdot q+a_1q^2=0$ i przyjmie jako pierwszy wyraz ciągu konkretną liczbę dodatnią i rozwiąże otrzymane równanie kwadratowe z niewiadomą q oraz zapisze wnioski, konsekwentne do otrzymanych rozwiązań, dotyczące należenia bądź nie tych rozwiązań do przedziału $\left<2\sqrt{2}\,,3\sqrt{2}\right>$, to otrzymuje **3 punkty**.
- 4. Jeżeli zdający zapisze równanie $6a_1-5a_1\cdot q+a_1q^2=0$ i przyjmie jako pierwszy wyraz ciągu konkretną liczbę dodatnią, a następnie poda q=3 i zapisze, że ten iloraz należy do przedziału $\left<2\sqrt{2}\,,3\sqrt{2}\right>$, to otrzymuje **3 punkty**.
- 5. Jeżeli zdający zapisze równanie $6a_1-5a_1\cdot q+a_1q^2=0$ i przyjmie jako pierwszy wyraz ciągu konkretną liczbę dodatnią, a następnie poda q=2 i zapisze, że ten iloraz nie należy do przedziału $\left<2\sqrt{2}\,,3\sqrt{2}\right>$, to otrzymuje **3 punkty**.
- 6. Jeżeli zdający rozwiązuje równanie kwadratowe przy ujemnym wyróżniku, to za całe rozwiązanie może otrzymać co najwyżej **2 punkty.**
- 7. Jeżeli zdający zapisze konkretny ciąg o wyrazach dodatnich i ilorazie q=3, np. (1,3,9,...) oraz sprawdzi, że pierwszy, drugi i trzeci wyraz tego ciągu spełniają warunek $6a_1-5a_2+a_3=0$ i zapisze, że ten iloraz należy do przedziału $\left<2\sqrt{2}\,,3\sqrt{2}\right>$ i na tym zakończy, to otrzymuje **2 punkty.**
- 8. Jeżeli zdający zapisze dwa konkretne ciągi o wyrazach dodatnich; jeden o ilorazie q=2, np. (1,2,4,...), drugi o ilorazie q=3, np. (1,3,9,...) oraz sprawdzi, że pierwszy, drugi i trzeci wyraz każdego z tych ciągów spełniają warunek $6a_1-5a_2+a_3=0$ i zapisze, że iloraz q=2 nie należy do przedziału $\left<2\sqrt{2}\,,3\sqrt{2}\right>$, a iloraz q=3 należy do przedziału $\left<2\sqrt{2}\,,3\sqrt{2}\right>$ i na tym zakończy, to otrzymuje **2 punkty**.
- 9. Jeżeli zdający poda q=3 i zapisze, że ten iloraz należy do przedziału $\left<2\sqrt{2}\,,3\sqrt{2}\right>$ i na tym zakończy, to otrzymuje **1 punkt**.

- 10. Jeżeli zdający zapisze konkretny ciąg o wyrazach dodatnich i ilorazie q=3 oraz sprawdzi, że ten iloraz należy do przedziału $\left<2\sqrt{2}\,,\,3\sqrt{2}\right>$ i na tym zakończy, to otrzymuje **1 punkt**.
- 11. Jeżeli zdający zapisze konkretny ciąg o wyrazach dodatnich i ilorazie q=3, np. (1,3,9,...) oraz sprawdzi, że pierwszy, drugi i trzeci wyraz tego ciągu spełniają warunek $6a_1-5a_2+a_3=0$ i na tym zakończy, to otrzymuje **1punkt**.
- 12. Jeżeli zdający zapisze konkretny ciąg o wyrazach dodatnich i ilorazie q=2, np. (1,2,4,...) oraz sprawdzi, że pierwszy, drugi i trzeci wyraz tego ciągu spełniają warunek $6a_1-5a_2+a_3=0$ i zapisze, że ten iloraz nie należy do przedziału $\left<2\sqrt{2}\,,3\sqrt{2}\right>$ i na tym zakończy, to otrzymuje **1 punkt**.
- 13. Jeżeli zdający poda q=2 i zapisze, że ten iloraz nie należy do przedziału $\left<2\sqrt{2},3\sqrt{2}\right>$ i na tym zakończy, to otrzymuje **0 punktów**.
- 14. Jeżeli zdający myli własność ciągu geometrycznego z własnością ciągu arytmetycznego, to za całe rozwiązanie otrzymuje **0 punktów**.
- 15. Jeżeli zdający poda jedynie q=3 i na tym zakończy, to otrzymuje **0 punków**.

Przykładowe rozwiązania

l sposób

Oznaczamy przez q iloraz ciągu (a_n) . Korzystamy ze wzoru na n-ty wyraz ciągu geometrycznego i zapisujemy równość

$$6a_1 - 5a_1 \cdot q + a_1 \cdot q^2 = 0 ,$$

Wyłączamy wspólny czynnik a_1 poza nawias $a_1(6-5\cdot q+q^2)=0$.

Ponieważ wyrazy ciągu są dodatnie, więc $a_1 \neq 0$. Korzystamy z własności iloczynu równego zero i otrzymujemy równanie

$$q^2 - 5q + 6 = 0$$
.

To równanie ma dwa rozwiązania q=2 lub q=3. Ponieważ $q\in\left\langle 2\sqrt{2},3\sqrt{2}\right\rangle$, więc q=3.

II sposób

Niech q oznacza iloraz ciągu geometrycznego (a_n) oraz niech $a_1=a,\,a_2=b,\,a_3=c$.

Zatem równość $6a_1 - 5a_2 + a_3 = 0$ zapisujemy w postaci: 6a - 5b + c = 0.

Stąd c=5b-6a. Ponieważ wszystkie wyrazy ciągu (a,b,c) są dodatnie, więc ciąg ten jest geometryczny, gdy spełniona jest równość $b^2=ac$.

Podstawiamy do równania $b^2 = ac$ za c i otrzymujemy:

$$b^2 = a(5b - 6a),$$

$$b^2 - 5ab + 6a^2 = 0$$
.

Rozwiązujemy to równanie przyjmując za niewiadomą, np. b. Wtedy $\Delta=a^2$, $\sqrt{\Delta}=a$, ponieważ a>0.

Zatem rozwiązaniami równania są

$$b_1 = \frac{5a - a}{2} = 2a$$
 lub $b_2 = \frac{5a + a}{2} = 3a$.

Obliczamy iloraz q ciągu (a_n) : $q = \frac{b}{a} = \frac{2a}{a} = 2$ lub $q = \frac{b}{a} = \frac{3a}{a} = 3$.

Ponieważ $q \in \left<2\sqrt{2}, 3\sqrt{2}\right>$, więc iloraz ciągu $\left(a_{\scriptscriptstyle n}\right)$ jest równy: q=3 .

Zadanie 34. (0-5)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Użycie i tworzenie strategii.	9. Stereometria. Zdający rozpoznaje w graniastosłupach i ostrosłupach kąt między odcinkami i płaszczyznami (między krawędziami i ścianami, przekątnymi i ścianami), oblicza miary tych kątów (9.2). 6. Trygonometria. Zdający wykorzystuje definicje i wyznacza wartości funkcji sinus, cosinus i tangens kątów o miarach od 0° do 180° (6.1).

Zasady oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania1 p Zdający

- zaznaczy na rysunku kąt α nachylenia ściany bocznej do płaszczyzny podstawy **albo**
 - zapisze równanie wynikające z definicji tangensa kąta α : $\frac{h}{\frac{1}{2}a} = \sqrt{7}$

albo

• zapisze równanie wynikające z twierdzenia Pitagorasa w trójkącie SOE: $h^2 + \left(\frac{a}{2}\right)^2 = h_b^2$

albo

zapisze równanie wynikające z twierdzenia Pitagorasa w trójkącie SEC:

$$h_b^2 + \left(\frac{a}{2}\right)^2 = 6^2$$

albo

• zapisze równanie wynikające z twierdzenia Pitagorasa w trójkącie SOC:

$$h^2 + \left(\frac{a\sqrt{2}}{2}\right)^2 = 6^2$$

albo

• zapisze równanie wynikające z definicji sinusa kąta α : $\frac{h}{h_b} = \frac{\sqrt{14}}{4}$

albo

• zapisze równanie wynikające z definicji cosinusa kąta α : $\frac{\frac{a}{2}}{h_b} = \frac{\sqrt{2}}{4}$

i na tym zakończy lub dalej popełni błędy.

układ dwóch równań z dwiema niewiadomymi, np.:

$$\frac{h}{\frac{1}{2}a} = \sqrt{7} \quad i \quad h^2 + \left(\frac{a\sqrt{2}}{2}\right)^2 = 6^2$$

lub

układ trzech równań z trzema niewiadomymi, np.:

$$\frac{h}{h_b} = \frac{\sqrt{14}}{4}$$
 i $h^2 + \left(\frac{a}{2}\right)^2 = h_b^2$ i $h^2 + \left(\frac{a\sqrt{2}}{2}\right)^2 = 6^2$

i na tym zakończy lub dalej popełni błędy.

$$\left(\frac{\sqrt{7}}{2}a\right)^{2} + \left(\frac{a\sqrt{2}}{2}\right)^{2} = 6^{2} \quad \text{lub} \quad h^{2} + \left(\frac{\frac{2}{\sqrt{7}}h\cdot\sqrt{2}}{2}\right)^{2} = 6^{2} \quad \text{lub} \quad \frac{1}{4}h_{b}^{2} + \left(\frac{\sqrt{14}}{4}h_{b}\right)^{2} = 6^{2}$$

i na tym zakończy lub dalej popełni błędy.

Rozwiązanie prawie pełne 4 p. Zdający:

obliczy długość krawędzi podstawy ostrosłupa lub wysokość ostrosłupa: a=4 , $h=2\sqrt{7}$

albo

• obliczy wysokość h_b ściany bocznej ostrosłupa oraz wyznaczy objętość ostrosłupa w zależności od tej wysokości: $h_b=4\sqrt{2}$, $V=\frac{1}{3}\cdot\frac{1}{2}\,h_b^2\cdot\frac{\sqrt{14}}{4}\,h_b$

i na tym zakończy lub dalej popełni błędy

Uwagi

- 1. Jeśli zdający popełni błędy rachunkowe, które nie przekreślają poprawności rozumowania i konsekwentnie rozwiąże zadanie do końca, to może otrzymać za całe rozwiązanie co najwyżej **4 punkty**.
- 2. Jeżeli jedynym błędem zdającego jest pominięcie współczynnika $\frac{1}{3}$ we wzorze na objętość ostrosłupa, to otrzymuje **4 punkty**.

- 3. Jeżeli jedynym błędem jest:
 - a) zastosowanie niepoprawnej definicji tangensa (lub niepoprawnej definicji innej funkcji trygonometrycznej wykorzystanej przez zdającego), np. $tg\alpha = \frac{h_b}{h}$, $tg\alpha = \frac{h}{a}$
 - b) niepoprawne zastosowanie twierdzenia Pitagorasa,
 - c) błąd polegający na zastosowaniu niepoprawnego wzoru " $\sqrt{a+b}=\sqrt{a}+\sqrt{b}$ ", to zdający może otrzymać co najwyżej **3 punkty** za całe rozwiązanie, o ile nie popełnia innych błędów i konsekwentnie rozwiąże zadanie do końca.
- 4. Jeżeli zdający popełnia jeden błąd, opisany w uwadze 3., a ponadto popełnia błędy rachunkowe, ale poprawnie realizuje strategię rozwiązania, to otrzymuje co najwyżej **2 punkty** za całe rozwiązanie.
- 5. Jeżeli zdający błędnie interpretuje kąt między ścianą boczną i płaszczyzną podstawy tego ostrosłupa, to otrzymuje co najwyżej **1 punkt** za całe rozwiązanie, o ile poprawnie zastosuje twierdzenie Pitagorasa.
- 6. Jeżeli zdający przyjmuje, że krawędź podstawy ostrosłupa jest równa 6, to może otrzymać co najwyżej **1 punkt** za całe rozwiązanie, o ile zapisze poprawny związek między wielkościami *h*, *h*_b i *a* lub zaznaczy poprawnie kąt nachylenia ściany bocznej ostrosłupa do płaszczyzny podstawy.
- 7. Akceptujemy poprawne przybliżenia liczb rzeczywistych.

Przykładowe rozwiązanie I sposób

Zaznaczmy na rysunku kąt α – kąt nachylenia ściany bocznej do płaszczyzny podstawy i wprowadzamy następujące oznaczenia:

a – krawędź podstawy ostrosłupa, h – wysokość ostrosłupa.

Korzystając z definicji tangensa kąta ostrego w trójkącie prostokątnym *SOE* otrzymujemy związek $\frac{h}{\frac{1}{2}a} = \sqrt{7}$, czyli $h = \frac{\sqrt{7}}{2}a$.

Z twierdzenia Pitagorasa w trójkącie SOC wynika równanie $h^2 + \left(\frac{a\sqrt{2}}{2}\right)^2 = 6^2$.

Wykorzystując wcześniejszą zależność otrzymujemy

$$\left(\frac{\sqrt{7}}{2}a\right)^2 + \left(\frac{a\sqrt{2}}{2}\right)^2 = 6^2$$

$$\frac{7}{4}a^2 + \frac{2}{4}a^2 = 36$$

$$\frac{9}{4}a^2 = 36 \text{ , stąd } a^2 = 16 \text{ , czyli } a = 4.$$

Stąd $h=4\cdot\frac{\sqrt{7}}{2}=2\sqrt{7}$. Obliczamy objętość ostrosłupa: $V=\frac{1}{3}\cdot 4^2\cdot 2\sqrt{7}=\frac{32\sqrt{7}}{3}$.

II sposób

Zaznaczmy na rysunku kąt α – kąt nachylenia ściany bocznej do płaszczyzny podstawy i wprowadzamy następujące oznaczenia:

a – krawędź podstawy ostrosłupa, h – wysokość ostrosłupa, h_b – wysokość ściany bocznej ostrosłupa

Korzystając z definicji tangensa kąta ostrego w trójkącie prostokątnym SOE otrzymujemy:

$$\frac{h}{\frac{1}{2}a} = \sqrt{7} \text{ , czyli } h = \frac{\sqrt{7}}{2}a.$$

Z twierdzenia Pitagorasa w trójkącie prostokątnym SEC otrzymujemy

$$h_b^2 = 6^2 - \left(\frac{a}{2}\right)^2, \quad h_b^2 = \frac{144 - a^2}{4}.$$

Z twierdzenia Pitagorasa w trójkącie prostokątnym SOE otrzymujemy

$$h^2 + \left(\frac{a}{2}\right)^2 = h_b^2.$$

Zatem

$$h^2 + \frac{a^2}{4} = \frac{144 - a^2}{4} \,,$$

$$\frac{7}{4}a^2 + \frac{a^2}{4} = \frac{144 - a^2}{4}$$

$$a^2 = 16$$
.

Stąd a=4, więc $h=2\sqrt{7}$.

Objętość ostrosłupa jest równa: $V = \frac{1}{3} \cdot 4^2 \cdot 2\sqrt{7} = \frac{32}{3}\sqrt{7}$.

Uwaga

Zależności między wielkościami h, a i h_b możemy też otrzymać, wykorzystując definicje funkcji sinus lub cosinus kąta α . Jeżeli tg $\alpha=\sqrt{7}$, to $\sin\alpha=\frac{\sqrt{14}}{4}$ i $\cos\alpha=\frac{\sqrt{2}}{4}$. Stąd $\frac{h}{h_b}=\frac{\sqrt{14}}{4}$ oraz $\frac{\frac{1}{2}a}{h_b}=\frac{\sqrt{2}}{4}$.

Ocena prac osób ze stwierdzoną dyskalkulią

Obowiązują zasady oceniania stosowane przy sprawdzaniu prac zdających bez stwierdzonej dyskalkulii z dodatkowym uwzględnieniem:

- ogólnych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią (punkty 1.–12.);
- II. dodatkowych szczegółowych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią – matura z matematyki, poziom podstawowy, termin główny 2020.

I. Ogólne zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzona dyskalkulią

- 1. Nie należy traktować jako błędy merytoryczne pomyłek, wynikających z:
 - błędnego przepisania,
 - przestawienia cyfr,
 - zapisania innej cyfry, ale o podobnym wyglądzie,
 - przestawienia położenia przecinka.
- 2. W przypadku błędów, wynikających ze zmiany znaku liczby, należy w każdym zadaniu oddzielnie przeanalizować, czy zdający opanował inne umiejętności, poza umiejętnościami rachunkowymi, oceniane w zadaniu. W przypadku opanowania badanych umiejętności zdający powinien otrzymać przynajmniej 1 punkt.
- 3. We wszystkich zadaniach otwartych, w których wskazano poprawną metodę rozwiązania, części lub całości zadania, zdającemu należy przyznać przynajmniej 1 punkt, zgodnie z kryteriami do poszczególnych zadań.
- 4. Jeśli zdający przedstawia nieprecyzyjne zapisy, na przykład pomija nawiasy lub zapisuje nawiasy w niewłaściwych miejscach, ale przeprowadza poprawne rozumowanie lub stosuje właściwą strategię, to może otrzymać przynajmniej 1 punkt za rozwiązanie zadania.
- 5. W przypadku zadania wymagającego wyznaczenia pierwiastków trójmianu kwadratowego zdający może otrzymać 1 punkt, jeżeli przedstawi poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, przy podanych w treści zadania wartościach liczbowych.
- 6. W przypadku zadania wymagającego rozwiązania nierówności kwadratowej zdający może otrzymać 1 punkt, jeżeli stosuje poprawny algorytm rozwiązywania nierówności kwadratowej, przy podanych w treści zadania wartościach liczbowych.
- 7. W przypadku zadania wymagającego stosowania własności funkcji kwadratowej zdający może otrzymać 1 punkt za wykorzystanie konkretnych własności funkcji kwadratowej, istotnych przy poszukiwaniu rozwiązania.
- 8. W przypadku zadania wymagającego zastosowania własności ciągów arytmetycznych lub geometrycznych zdający może otrzymać 1 punkt, jeżeli przedstawi wykorzystanie takiej własności ciągu, która umożliwia znalezienie rozwiązania zadania.
- 9. W przypadku zadania wymagającego analizowania figur geometrycznych na płaszczyźnie kartezjańskiej zdający może otrzymać punkty, jeżeli przy poszukiwaniu rozwiązania przedstawi poprawne rozumowanie, wykorzystujące własności figur geometrycznych lub zapisze zależności, pozwalające rozwiązać zadanie.
- 10. W przypadku zadania z rachunku prawdopodobieństwa zdający może otrzymać przynajmniej 1 punkt, jeśli przy wyznaczaniu liczby zdarzeń elementarnych sprzyjających rozważanemu zdarzeniu przyjmuje określoną regularność lub podaje prawidłową metodę wyznaczenia tej liczby zdarzeń elementarnych.
- 11. W przypadku zadania z geometrii zdający może otrzymać przynajmniej 1 punkt, jeżeli podaje poprawną metodę wyznaczenia długości odcinka potrzebnej do znalezienia rozwiązania.
- 12. W przypadku zadania wymagającego przeprowadzenia dowodu (z zakresu algebry lub geometrii), jeśli w przedstawionym rozwiązaniu zdający powoła się na własność, która

wyznacza istotny postęp, prowadzący do przeprowadzenia dowodu, to może otrzymać 1 punkt.

II. <u>Dodatkowe szczegółowe zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią</u>

Zadanie 26. (0-2)

Zdający otrzymuje 1 pkt, jeżeli:

• w wyniku przekształceń algebraicznych doprowadza nierówność do postaci $ax^2 + bx + c > 0$, gdzie $\Delta > 0$ (wystarczy, że z rozwiązania zdającego wynika, że traktuje otrzymaną nierówność jak nierówność kwadratową) oraz stosuje wzory na pierwiastki trójmianu kwadratowego i oblicza te pierwiastki.

lub

• rozłoży trójmian kwadratowy na czynniki liniowe, z których jednym będzie (x-1) lub

• poprawnie rozwiąże nierówność 2(x-1)(x+3) > 0.

Zdający otrzymuje 2 pkt, jeżeli:

• Pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci:

$$\left(-\infty,1\right)\cup\left(-\frac{5}{2},+\infty\right),\left(+\infty,-\frac{5}{2}\right)\cup\left(1,-\infty\right)$$

Uwaga!

Jeżeli zdający zapisze zbiór rozwiązań nierówności w postaci sumy przedziałów domkniętych, to może **otrzymać co najwyżej 1 pkt.**

Zadanie 27. (0-2)

Zdający otrzymuje 1 pkt, jeżeli:

• poda co najmniej dwa poprawne rozwiązania równania.

Zdający otrzymuje 2 pkt, jeżeli:

- przyrówna każdy z czynników do zera, wyznaczy 4 pierwiastki, z których dwa będą prawidłowe (<u>obliczone z jednego czynnika</u>), a w obliczeniu pozostałych pierwiastków będą występowały błędy opisane w pkt 1. i 2. dodatkowych zasad lub
- przyrówna każdy z czynników do zera i wyznaczy pierwiastki równania: x = 1, x = 0, x = 2 (z pominięciem x = -1).

Zadanie 28. (0-2)

Zdający otrzymuje 1 pkt, jeżeli:

• obliczy wyróżnik trójmianu kwadratowego $a^2 - 2ab + 2b^2$ w zależności od zmiennej a lub b

Zdający otrzymuje 2 pkt, jeżeli:

• zapisze nierówność w postaci równoważnej $(a-b)^2+b^2>0$ oraz stwierdzi (lub zaznaczy), że każdy ze składników lewej strony nierówności jest dodatni.

Zadanie 29. (0-2)

Zdający otrzymuje 1 pkt, jeżeli:

• zapisze poprawną proporcję między długościami boków trójkątów *CBD* i *CEF*, wynikającą z ich podobieństwa np.:

$$\frac{|CF|}{|CE|} = \frac{|CD|}{|CB|}$$

lub

 ustali związki miarowe między długościami boków w jednym z trójkątów prostokątnych CBD lub CEF.

Zadanie 30. (0-2)

Zdający otrzymuje 1 pkt, jeżeli:

 zapisze jedynie liczbę 36 (należy traktować to jako wyznaczenie liczby wszystkich zdarzeń elementarnych)

lub

 zapisze liczbę 11, a z zapisów wynika, że interpretuje tę liczbę jako liczbę zdarzeń elementarnych sprzyjających zdarzeniu A (np. zilustruje to wypisaniem kilku zdarzeń elementarnych sprzyjających zdarzeniu A, ale nie zapisze zdarzeń elementarnych, które nie sprzyjają zdarzeniu A).

Zdający otrzymuje 2 pkt, jeżeli:

• poprawnie wypisze (lub zaznaczy) wszystkie zdarzenia elementarne sprzyjające zdarzeniu A, popełni błąd w ich zliczeniu i konsekwentnie zapisze wynik $\frac{x}{36}$, gdzie x jest liczbą zliczonych zdarzeń elementarnych sprzyjających A.

Uwaga!

W ocenie rozwiązania zadania 30. (dla zdających z dyskalkulią) <u>nie stosuje się</u> następującej uwagi z zasad oceniania arkuszy standardowych:

Jeżeli zdający rozwiąże zadanie do końca i otrzyma P(A)>1 lub P(A)<0, to otrzymuje za całe rozwiązanie 0 punktów, o ile końcowy wynik nie jest skutkiem błędu w działaniach na ułamkach.

Zadanie 31. (0-2)

Zdający otrzymuje 1 pkt, jeżeli:

- doprowadzi równanie $\frac{2\sin\alpha+3\cos\alpha}{\cos\alpha}=4$ do postaci $a\sin\alpha=b\cos\alpha$, popełniając ewentualnie błędy opisane w pkt 1. i 2. dodatkowych zasad oceniania lub
- poprawnie zastosuje definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym i poprawnie zapisze równanie $\frac{2\sin\alpha+3\cos\alpha}{\cos\alpha}=4$ w postaci, w której występują jedynie długości boków trójkąta prostokątnego.

Zdający otrzymuje 2 pkt, jeżeli:

• doprowadzi do równania: $2 \operatorname{tg} \alpha = 1$.

Zadanie 32. (0-4)

Zdający otrzymuje 1 pkt, jeżeli:

• poprawnie wyznaczy współczynnik kierunkowy prostej AC: $-\frac{3}{4}$.

lub

poprawnie zastosuje wzór na odległość punktu A od prostej BD.

Zdający otrzymuje 2 pkt, jeżeli:

 zdający wyznaczy poprawne równanie prostej AC, zapisuje układ równań, pozwalający obliczyć współrzędne punktu O i rozwiązuje ten układ równań

lub

• zdający obliczy odległość punktu A od prostej BD i stosuje poprawną metodę obliczenia pola kwadratu, z wykorzystaniem obliczonej odległości.

Zadanie 33. (0-4)

Stosują się zasady oceniania arkusza standardowego.

Zadanie 34. (0-5)

Zdający otrzymuje 1 pkt, jeżeli:

 zastosuje poprawnie twierdzenie Pitagorasa dla jednego z trójkątów: SOE lub SEC lub SOC

lub

zastosuje poprawnie definicję funkcji tangens w trójkącie SOE dla kąta α:

$$tg\alpha = \frac{|OS|}{|OE|}.$$

