Assignment -7

1) Introduction

In this lab we have built a Receiver in which FPGA board receive 8 bits data written on "gtkterm screen". Gtkterm is a software which is used for manually providing input so that the "Receiver" can read that data.

UART (Universal Asynchronous Receiver Transmitter) is used as an interface for communication between Basay 3 board and PC.

Some important points regarding UART :

- a) UART is a serial interface, so transmitter send data bit by bit and at same time receiver has to capture each bit and convert it into parallel data.
- b) Baud rate is a standard feature of URAT which tell us number of bits transfer per second.
- c) URAT interface allow use of different Baud rate like 300, 600, 900, 1200, 9600, 115200 etc.
- d) Similar to Baud rate there are different variants parameter like 'Data bits', 'Parity', 'Start bits' and 'Stop bits'.

Some basic feature of Receiver :

- a) Serial in Parallel out register
- b) Shift the bits serially into a register
- c) Read out data in parallel

Some important diagram related to URAT:

Fig 1: Basic diagram of URAT

UART interface time diagram

bit 3

bit 0

start bit

bit 1

bit 2

Fig 2: Time diagram along with different parameters

bit 4

bit 5

bit 7

stop bit

2) Implementation Design

In this lab we have implement a Finite State Machine (FSM) /State Machine which is based on bit — data received by Receiver Input pin(rx - in). We have also used FPGA clock of 100MHz as clock for the receiver (rx - clock), reset pushButton is also used so that 'idle' state can be reached.

To sample 8 bit data we have used counter(temp - count) and with the help of new - clk we are sampling the middle of each data bit.

Calculation of counter:

- i) Rx clock frequency = 100 MHz.
- ii) Baud rate = 9600
- iii) Number of clock cycle per bit = 16

As we are using middle data bit sampling method:

counter =
$$\frac{(Rx-clock\ Frequency)}{(Baud\ rate)^*(No\ .of\ clock\ cycle\ per\ bit)^*2} = \frac{10^8}{(9600^*16^*2)} = 351$$

Fig 3: middle method of data bit sampling

Fig 4: Basic Diagram of Circuit of Assignment -8

State Diagram (FSM) Description of Receiver:

4 States of FSM: Idle, Start, Read, Stop

- a) Idle: If the rx in = '1' then state will be in Idle state and in this state receiver will not be reading any bit. If the "receiver input" (rx in) value changes from 1 to 0 then "Idle" state will transition to the "Idle" state.
- b) Start: If the value of "rx in" remains '0' for 8 consecutive cycles of "receiver clock" (rx clock) then it get identified as "Start state" and now state will change to "Read state". If 8 consecutive '0' is not received then the state will change to "Idle state" from "Start state".
- c) Read: In this state "8 bit data" is read by Receiver and in every 16 clock cycle 1 bit is read. After 8 bit data reading the state will change to "Stop state".
- d) Stop: It is a kind of "end state" which describe that 8 bit consecutive data is successfully read by Receiver. After completion of 16 clock cycle this state will change to "Idle State".

UART_rx_FSM state diagram

The state diagram of the UART_rx_FSM

Fig 5: Receiver FSM diagram

Block diagram of the UART_rx.vhd file

Fig 6: Block Diagram of Receiver

3) Simulation Waveform for UART Receiver

Fig 7: Waveform for Receiver at different input and parameter

4) Digital Circuit for URAT Receiver

Fig 8: Complex Digital Circuit for Receiver

5) Resource Utilisation

- a) LUT Memory =0
- b) LUT logic = 592
- c) DSP =0
- d) Flip Flops =125
- e) BRAM = 0
- $6) \, \textit{Some other relevant diagram for resource utilisation} \,$

Fig 9: Summary

4	Primitives		
₽	Ref Name	Used	Functional Category
	LUT6	179	LUT
	LUT3	150	LUT
	LUT1	147	LUT
	FDRE	125	Flop & Latch
	LUT2	124	LUT
	CARRY4	100	CarryL og ic
	LUT5	75	LUT
	LUT4	38	LUT
	OBUF	11	10
	IBUF	3	10
	BUFG	2	Clock

Fig 10: Primitives

Fig 11: Hierarchy

7) Some photographs of FPGA Board

