(Super) Capacitors

Faster (dis)charging

Batteries are a good charge-storage solution, but are limited in how quickly they can discharge (safely).

• Ultimately, redox processes can only occur so fast...

Why not separate charges directly?

This is a Capacitor

An arrangement of electrodes of area A, separated by a distance d.

Two electrodes separated by vacuum have a capacitance *C*:

$$C = \frac{\epsilon_0 A}{d}$$

where ϵ_0 is the permittivity of free space = 8.854 × 10⁻¹² C² J⁻¹ m⁻¹

Charge stored

On charging a capacitor with a constant voltage, current decays with time:

$$I_t = I_0 e^{\left(rac{-t}{RC}
ight)}$$

The charge stored increases with time:

$$Q_t = CV \left[1 - e^{\left(rac{-t}{RC}
ight)}
ight]$$

The maximum charge stored, Q = CV

Increasing the charge stored

 $C=rac{\epsilon_0 A}{d}$, so decreasing d or increasing A will increase stored charge. If d gets too small, however, electrons will tunnel from one plate to the other.

Alternatively, use a dielectric

• An electrically insulating material in which an applied electric field causes a **displacement** (but not a flow) of charge.

Dielectric capacitor

Adding a dielectric between the plates increases the charge capacity.

$$C_{ ext{dielec}} = rac{\epsilon_r \epsilon_0 A}{d}$$

where ε_r is the relative permittivity of the dielectric (ε_r = ε / ε_0) and ε_r > ε_0

Example permittivities

Material	Relative Permittivity, ϵ_r
Vacuum	1
Paper	2.0 - 6.0
Polymers	2.0 - 6.0
Silicon oil	2.7 - 2.8
Quartz	3.8 - 4.4
Glass	4 - 15
Al_2O_3	10
Ta ₂ O ₅	26
TiO ₂	100
CaTiO ₃	130
SrTiO ₃	285
BaTiO ₃	1000 - 10000

Characterising dielectrics

Apply an alternating (sinusoidal) field, and measure the resulting current *and phase* shift - **Impedance spectroscopy**

- ullet Applied field, $E_t=E_0\sin(\omega t)$, where $\omega=2\pi f$
- Response current, $I_t = I_0 \sin(\omega t + \phi)$

The total impedance $(Z(\omega)=rac{E_t}{I_t})$ can be represented as a complex number:

- $Z(\omega) = Z_0(\cos\phi + i\sin\phi)$
- In an ideal dielectric, current and voltage should be 90° out-of-phase ($\varphi = 90^\circ$).
- For a resistive material, current and voltage should be in phase ($\varphi = 0^{\circ}$).

Impedance analysis

Two standard ways to display data:

- Bode plot: |Z| and φ plotted against frequency
- **Nyquist plot**: -Z" (90° out-of-phase) against Z' (in phase).

Ideal Response

Single Z' value for all frequencies

$$\circ$$
 Z" = 0

• 0° phase shift

Z" varies with frequency

$$\circ$$
 Z' = 0

90° phase shift

'Real' Impedance

Many real materials exhibit behaviour like a parallel RC circuit:

^C Ions flow

electrode (see later)

• Ionic conduction in a ceramic material building up a charge gradient

More complex behaviour is often observed, and can be modelled using *equivalent* circuits

Real dielectric response

Changing the electric field direction causes the dipoles to rearrange with a characteristic timescale. This timescale means *real* dielectrics show a peak in ϕ with frequency, corresponding to the maximum energy loss.

This *dielectric loss* is often characterised as $\tan\delta=\frac{Z'}{-Z''}$, where $\delta=90^\circ-\phi$

tan δ must be minimised for applications

Dielectric breakdown

Dielectrics also break down under high electric fields

- Electrons start to conduct, causing localised heating and breakdown
- This is quantified as the **Dielectric Strength** (in *e.g.* V m⁻¹)

How good is a capacitor for energy storage?

Take e.g. a BaTiO₃-based capacitor:

- $\varepsilon_r \approx 1000$
- Dielectric strength ≈ 10 MV m⁻¹
- Thickness $(d) \approx 1 \, \mu \text{m}$

Assuming a total volume of 5 cm³ (similar to an AA battery):

$$A = rac{5 imes 10^{-6}}{1 imes 10^{-6}} = 5 ext{ m}^2$$

$$C=rac{\epsilon_r\epsilon_0A}{d}=0.04427\,\mathrm{F}$$

Maximum voltage = $10 imes 10^6/1 imes 10^{-6} = 10 ext{ V}$, therefore:

$$Q=CV=0.4427 ext{ Coulombs}=0.1229 ext{ mAh}$$

Volumetric charge storage of 24.6 mAh L^{-1} : Energy capacity = 0.245 Wh L^{-1}

Why are they useful then?

Although energy capacity is worse than for batteries (often by a lot), capacitors can discharge the charge very rapidly

A discharge current of 100 Amps can be easily achieved.

This gives a high specific power. For the BaTiO₃ capacitor considered before, this gives power density approximately 1000 W L⁻¹!

Supercapacitors

- Higher capacitance (but lower voltage limits) than other capacitors
- Sometimes known as ultracapacitors or electrostatic double layer capacitors (EDLCs)

Rather than a ceramic dielectric, supercapacitors rely on an ionic electrolyte solution, and an ion-permeable membrane to prevent electronic conduction.

Supercapacitor operation

Charge is stored in a **Helmholtz double layer** at each electrode:

This separation of +ve and -ve charges occurs over a few angstroms

This is effectively a capacitor with very small d

Capacitance

Because there are two double-layers, a supercapacitor behaves as two capacitors connected in series:

$$rac{1}{C} = rac{1}{C_a} + rac{1}{C_c}$$

For a symmetric supercapacitor (commonly called ultracapacitor, where anode and cathode are the same material):

$$C=rac{C_A}{2}$$

The total energy stored is:

$$E=rac{CV^2}{2}$$

Charging voltages are typically 1-3 V (depending on electrolyte).

Electrolytes Aqueous

- Acids (e.g. H₂SO₄)
- Alkalis (KOH)
- NaClO₄ or LiClO₄
- LiAsF₆

Organic

e.g. acetonitrile, propylene carbonate, tetrahydrofuran with:

- Tetraethylammonium tetrafluoroborate, N(Et)₄BF₄
- Triethyl(methyl) tetrafluoroborate, NMe(Et)₃BF₄

```
← Cheaper
Higher voltage →
Wider temperature range →
← Higher conductivity
← Higher specific power
Higher specific energy →
```

Electrode materials

- C \propto amount of double-layer \propto A \rightarrow
 - electrodes are designed to have maximum area

Porous (activated) carbon

- Surface area exceeding 3000 m² g⁻¹
- Trade-off between surface area and pore size
 - Smaller pores limit maximum current (power density) but increase energy capacity
- Activated carbon is relatively expensive and potentially unsustainable
 - High temperatures and aggressive chemical activation required
 - Biochar (a by-product of biofuel production) is one alternative

Pseudocapacitance

One way to increase energy storage in supercapacitors is to add redox-active species.

- Must be fast, reversible redox processes (so that power density remains high)
- Pseudocapacitance can contribute 100 times the double-layer capacitance
- Redox ions must have affinity for the electrode(s)
 - MnO₂ is commonly used as an electrode

NOTE: In order to be considered pseudocapacitance, charge stored must depend linearly on the applied voltage (otherwise it is behaving like a battery)

Hybrid technologies

One of the main drawbacks of supercapacitors is that their voltage drops with time

Not ideal for powering devices

Hybrid capacitors combine a battery-electrode with a supercapacitor electrode

- e.g. replace carbon cathode with NiOOH
- C_{battery} ≈ 10 × C_{supercap}

$$\circ$$
 $\frac{1}{C} = \frac{1}{C_A} + \frac{1}{10C_A} pprox \frac{1}{C_A}$

• In some cases (e.g. thin-film Li electrodes) fast redox kinetics still allow high power applications

(Super) Capacitor applications

Regenerative braking

- Recovers kinetic energy lost when braking
- Large currents generated; supercapacitors required to store charge

Medical devices *i.e.* pacemakers

 Takes advantage of their lowmaintenance / long life

