- 1.5. An experiment consists of tossing two dice.
 - (a) Find the sample space S.
 - (b) Find the event A that the sum of the dots on the dice equals 7.
 - (c) Find the event B that the sum of the dots on the dice is greater than 10.
 - (d) Find the event C that the sum of the dots on the dice is greater than 12.
 - (a) For this experiment, the sample space S consists of 36 points (Fig. 1-3):

$$S = \{(i, j): i, j = 1, 2, 3, 4, 5, 6\}$$

where i represents the number of dots appearing on one die and j represents the number of dots appearing on the other die.

(b) The event A consists of 6 points (see Fig. 1-3):

$$A = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$$

(c) The event B consists of 3 points (see Fig. 1-3):

$$B = \{(5, 6), (6, 5), (6, 6)\}$$

(d) The event C is an impossible event, that is, $C = \emptyset$.

1.30. The sample space S of a random experiment is given by

$$S = \{a, b, c, d\}$$

with probabilities P(a) = 0.2, P(b) = 0.3, P(c) = 0.4, and P(d) = 0.1. Let A denote the event $\{a, b\}$, and B the event $\{b, c, d\}$. Determine the following probabilities: (a) P(A); (b) P(B); (c) $P(\overline{A})$; (d) $P(A \cup B)$; and (e) $P(A \cap B)$.

Using Eq. (1.36), we obtain

- (a) P(A) = P(a) + P(b) = 0.2 + 0.3 = 0.5
- (b) P(B) = P(b) + P(c) + P(d) = 0.3 + 0.4 + 0.1 = 0.8
- (c) $\bar{A} = \{c, d\}$; $P(\bar{A}) = P(c) + P(d) = 0.4 + 0.1 = 0.5$
- (d) $A \cup B = \{a, b, c, d\} = S; P(A \cup B) = P(S) = 1$
- (e) $A \cap B = \{b\}$; $P(A \cap B) = P(b) = 0.3$
- **1.39.** Show that if P(A | B) > P(A), then P(B | A) > P(B).

If
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} > P(A)$$
, then $P(A \cap B) > P(A)P(B)$. Thus,

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} > \frac{P(A)P(B)}{P(A)} = P(B)$$
 or $P(B \mid A) > P(B)$

1.11. Consider the switching networks shown in Fig. 1-5. Let A_1 , A_2 , and A_3 denote the events that the switches s_1 , s_2 , and s_3 are closed, respectively. Let A_{ab} denote the event that there is a closed path between terminals a and b. Express A_{ab} in terms of A_1 , A_2 , and A_3 for each of the networks shown.

Fig. 1-5

(a) From Fig. 1-5(a), we see that there is a closed path between a and b only if all switches s₁, s₂, and s₃ are closed. Thus,

$$A_{ab} = A_1 \cap A_2 \cap A_3$$

(b) From Fig. 1-5(b), we see that there is a closed path between a and b if at least one switch is closed. Thus.

$$A_{ab} = A_1 \cup A_2 \cup A_3$$

(c) From Fig. 1-5(c), we see that there is a closed path between a and b if s₁ and either s₂ or s₃ are closed. Thus,

$$A_{ab} = A_1 \cap (A_2 \cup A_3)$$

Using the distributive law (1.12), we have

$$A_{ab} = (A_1 \cap A_2) \cup (A_1 \cap A_3)$$

which indicates that there is a closed path between a and b if s_1 and s_2 or s_1 and s_3 are closed.

(d) From Fig. 1-5(d), we see that there is a closed path between a and b if either s₁ and s₂ are closed or s₃ is closed. Thus

$$A_{ab} = (A_1 \cap A_2) \cup A_3$$

1.51. Two numbers are chosen at random from among the numbers 1 to 10 without replacement. Find the probability that the second number chosen is 5.

Let A_i , i = 1, 2, ..., 10 denote the event that the first number chosen is i. Let B be the event that the second number chosen is 5. Then by Eq. (1.44),

$$P(B) = \sum_{i=1}^{10} P(B | A_i) P(A_i)$$

Now $P(A_i) = \frac{1}{10}$. $P(B \mid A_i)$ is the probability that the second number chosen is 5, given that the first is *i*. If i = 5, then $P(B \mid A_i) = 0$. If $i \neq 5$, then $P(B \mid A_i) = \frac{1}{5}$. Hence,

$$P(B) = \sum_{i=1}^{10} P(B \mid A_i) P(A_i) = 9(\frac{1}{6})(\frac{1}{10}) = \frac{1}{10}$$

2.7. Show that

(a)
$$P(a \le X \le b) = P(X = a) + F_X(b) - F_X(a)$$
 (2.64)

(b)
$$P(a < X < b) = F_X(b) - F_X(a) - P(X = b)$$
 (2.65)

(c)
$$P(a \le X < b) = P(X = a) + F_X(b) - F_X(a) - P(X = b)$$
 (2.66)

(a) Using Eqs. (1.23) and (2.10), we have

$$P(a \le X \le b) = P[(X = a) \cup (a < X \le b)]$$

= $P(X = a) + P(a < X \le b)$
= $P(X = a) + F_X(b) - F_X(a)$

(b) We have

$$P(a < X \le b) = P[(a < X < b) \cup (X = b)]$$

= $P(a < X < b) + P(X = b)$

Again using Eq. (2.10), we obtain

$$P(a < X < b) = P(a < X \le b) - P(X = b)$$

= $F_X(b) - F_X(a) - P(X = b)$

(c) Similarly,
$$P(a \le X \le b) = P[(a \le X < b) \cup (X = b)]$$
$$= P(a \le X < b) + P(X = b)$$

Using Eq. (2.64), we obtain

$$P(a \le X < b) = P(a \le X \le b) - P(X = b)$$

= $P(X = a) + F_X(b) - F_X(a) - P(X = b)$

2.8. Let X be the r.v. defined in Prob. 2.3.

- (a) Sketch the cdf $F_X(x)$ of X and specify the type of X.
- (b) Find (i) $P(X \le 1)$, (ii) $P(1 < X \le 2)$, (iii) P(X > 1), and (iv) $P(1 \le X \le 2)$.
- (a) From the result of Prob. 2.3 and Eq. (2.18), we have

$$F_X(x) = P(X \le x) = \begin{cases} 0 & x < 1 \\ \frac{1}{2} & 1 \le x < 2 \\ \frac{3}{4} & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases}$$

which is sketched in Fig. 2-11. The r.v. X is a discrete r.v.

(b) (i) We see that

$$P(X \le 1) = F_X(1) = \frac{1}{2}$$

(ii) By Eq. (2.10),

$$P(1 < X \le 2) = F_X(2) - F_X(1) = \frac{3}{4} - \frac{1}{2} = \frac{1}{4}$$

(iii) By Eq. (2.11),

$$P(X > 1) = 1 - F_X(1) = 1 - \frac{1}{2} = \frac{1}{2}$$

(iv) By Eq. (2.64),

$$P(1 \le X \le 2) = P(X = 1) + F_X(2) - F_X(1) = \frac{1}{2} + \frac{3}{4} - \frac{1}{2} = \frac{3}{4}$$

Fig. 2-11

- **2.16.** Let X be a binomial r.v. with parameters (n, p).
 - (a) Show that $p_x(x)$ given by Eq. (2.36) satisfies Eq. (2.17).
 - (b) Find P(X > 1) if n = 6 and p = 0.1.
 - (a) Recall that the binomial expansion formula is given by

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Thus, by Eq. (2.36),

$$\sum_{k=0}^{n} p_{X}(k) = \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} = (p+1-p)^{n} = 1^{n} = 1$$

(b) Now

$$P(X > 1) = 1 - P(X = 0) - P(X = 1)$$

$$= 1 - \binom{6}{0}(0.1)^{0}(0.9)^{6} - \binom{6}{1}(0.1)^{1}(0.9)^{5}$$

$$= 1 - (0.9)^{6} - 6(0.1)(0.9)^{5} \approx 0.114$$

- **2.17.** Let X be a Poisson r.v. with parameter λ .
 - (a) Show that $p_x(x)$ given by Eq. (2.40) satisfies Eq. (2.17).
 - (b) Find P(X > 2) with $\lambda = 4$.
 - (a) By Eq. (2.40),

$$\sum_{k=0}^{\infty} p_{\chi}(k) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

(b) With $\lambda = 4$, we have

$$p_X(k) = e^{-4} \frac{4^k}{k!}$$

and

$$P(X \le 2) = \sum_{k=0}^{2} p_X(k) = e^{-4}(1+4+8) \approx 0.238$$

Thus,

$$P(X > 2) = 1 - P(X \le 2) \approx 1 - 0.238 = 0.762$$

1.52. Consider the binary communication channel shown in Fig. 1-15. The channel input symbol X may assume the state 0 or the state 1, and, similarly, the channel output symbol Y may assume either the state 0 or the state 1. Because of the channel noise, an input 0 may convert to an output 1 and vice versa. The channel is characterized by the channel transition probabilities p_0 , q_0 , p_1 , and q_1 , defined by

$$p_0 = P(y_1 | x_0)$$
 and $p_1 = P(y_0 | x_1)$
 $q_0 = P(y_0 | x_0)$ and $q_1 = P(y_1 | x_1)$

where x_0 and x_1 denote the events (X = 0) and (X = 1), respectively, and y_0 and y_1 denote the events (Y = 0) and (Y = 1), respectively. Note that $p_0 + q_0 = 1 = p_1 + q_1$. Let $P(x_0) = 0.5$, $p_0 = 0.1$, and $p_1 = 0.2$.

- (a) Find $P(y_0)$ and $P(y_1)$.
- (b) If a 0 was observed at the output, what is the probability that a 0 was the input state?
- (c) If a 1 was observed at the output, what is the probability that a 1 was the input state?
- (d) Calculate the probability of error P_e .

Fig. 1-15

(a) We note that

$$P(x_1) = 1 - P(x_0) = 1 - 0.5 = 0.5$$

 $P(y_0 | x_0) = q_0 = 1 - p_0 = 1 - 0.1 = 0.9$
 $P(y_1 | x_1) = q_1 = 1 - p_1 = 1 - 0.2 = 0.8$

Using Eq. (1.44), we obtain

$$P(y_0) = P(y_0|x_0)P(x_0) + P(y_0|x_1)P(x_1) = 0.9(0.5) + 0.2(0.5) = 0.55$$

$$P(y_1) = P(y_1|x_0)P(x_0) + P(y_1|x_1)P(x_1) = 0.1(0.5) + 0.8(0.5) = 0.45$$

(b) Using Bayes' rule (1.42), we have

$$P(x_0 | y_0) = \frac{P(x_0)P(y_0 | x_0)}{P(y_0)} = \frac{(0.5)(0.9)}{0.55} = 0.818$$

(c) Similarly,

$$P(x_1 | y_1) = \frac{P(x_1)P(y_1 | x_1)}{P(y_1)} = \frac{(0.5)(0.8)}{0.45} = 0.889$$

(d) The probability of error is

$$P_e = P(y_1 \mid x_0)P(x_0) + P(y_0 \mid x_1)P(x_1) = 0.1(0.5) + 0.2(0.5) = 0.15.$$

- 1.35. Consider the experiment of tossing a fair coin repeatedly and counting the number of tosses required until the first head appears.
 - (a) Find the sample space of the experiment.
 - (b) Find the probability that the first head appears on the kth toss.
- (c) Verify that P(S) = 1.
- (a) The sample space of this experiment is

$$S = \{e_1, e_2, e_3, \ldots\} = \{e_k : k = 1, 2, 3, \ldots\}$$

where e_k is the elementary event that the first head appears on the kth toss.

(b) Since a fair coin is tossed, we assume that a head and a tail are equally likely to appear. Then $P(H) = P(T) = \frac{1}{2}$. Let

$$P(e_k) = p_k$$
 $k = 1, 2, 3, ...$

Since there are 2^k equally likely ways of tossing a fair coin k times, only one of which consists of (k-1) tails following a head we observe that

$$P(e_k) = p_k = \frac{1}{2^k}$$
 $k = 1, 2, 3, ...$ (1.79)

(c) Using the power series summation formula, we have

$$P(S) = \sum_{k=1}^{\infty} P(e_k) = \sum_{k=1}^{\infty} \frac{1}{2^k} = \sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$
 (1.80)