Calculus I Homework Volumes of solids of revolution

- 1. (a) Consider the region bounded by the curves $y = 2x^2 x + 1$ and $y = x^2 + 1$. What is the volume of the solid obtained by rotating this region about the line x = 0?
 - (b) Consider the region bounded by the curves $y = 1 x^2$ and y = 0. What is the volume of the solid obtained by rotating this region about the line y = 0?
 - (c) Consider the region bounded by the curves $y=x^2$ and $x=y^2$. What is the volume of the solid obtained by rotating this region about the line x=2?
 - (d) Set up BUT DO NOT EVALUATE an integral to calculate the volume of the solid obtained by rotating the region bounded by $y = -x^2 + 2$ and y = 0 about the given line.
 - The x axis.
 - The line y = -3.
 - (e) Set up BUT DO NOT EVALUATE an integral to calculate the volume of the solid obtained by rotating the region bounded by $y = -x^2 + 1$ and y = 0 about the given line.
 - The x axis.
 - The line y = -4.
- 2. (a) Consider the region bounded by the curves $y = \sqrt{x}$, x = 0, y = 2. Use the method of cylindrical shells to find the volume of the solid obtained by rotating this region about the x-axis.
 - (b) Consider the region bounded by the curves $y = x^2$ and $y = 2 x^2$. Use the method of cylindrical shells to find the volume of the solid obtained by rotating this region about the line x = 1.