

多核嵌入式实验箱在android开发中的应用

马书群

嵌入式开发,在学习嵌入式理论基础上,进行更高层次开发实践,可通过多核嵌入式实验箱进行单核和多核嵌入式基础实验、物联网基础实验、手机和平板等智能设备嵌入式软件开发实验。实验箱搭载的Arduino开源开发板能够让使用者快速根据需求搭建完整的硬件系统,并用Android开发各类应用。

目录页 CONTENTS PAGE

PARTO1 嵌入式实验箱介绍

PARTO2 Android开发应用

PARTO3 Arduion应用开发

嵌入式实验箱硬件平台采用ARM+DSP的异构多核处理器 +FPGA架构。强调通过FPGA模拟不同的底层接口与设备,增强 学习者对于各种接口设备底层驱动的理解;通过异构多核处 理器不同处理器核之间的交互实验,增强学习者对于异构多 核处理器的理解;而丰富的扩展接口设计,以及FPGA所带来 的接口多样性,体现了嵌入式系统接口丰富、种类多种多样 的特点,同时FPGA所带来的设计灵活性,也使其更加接近实 际产品与企业需求。

三星4412多核嵌入式实验箱是基于智能手机和平板电脑所 采用的主流处理器构建的多核嵌入式实验箱,该实验箱采用 三星Exynos 4412 四核高速ARM Cortex-A9处理器+FPGA +ARM Cortex-M 系列高性能单片机的架构,同时兼容开源硬件 Arduino,是一款基于开源软件和开源硬件思想构建的嵌入式 教学实验箱,不但能够满足目前物联网、传感网、嵌入式软 件和硬件设计的教学实验要求,还能够用于智能手机、平板 电脑、物联网系统、及其它智能终端的开发需求。

三星4412多核嵌入式实 验箱以ARM Cortex-A9系列 架构的4核处理器和ARM Cortex-M系列架构的高性能 单片机为核心,系统集成了 GPS模块、摄像头模块、 WiFi+BT模块、3G模块、 RFID 模块,并支持陀螺仪、 重力传感器、加速度传感器 等多种传感器,能与现今流 行的嵌入式行业应用接轨。

1.强大的平台功能

采用硬件开源和模块化的设计理念,内置ARM Cortex-A9系列架构的4核处理器和ARM Cortex-M系列架构的高性能单片机,Android/Linux全兼容+Arduino开源硬件,系统集成了GPS模块、摄像头模块、WiFi模块、3G模块、RFID 模块,并支持陀螺仪、重力传感器、加速度传感器等多种传感器,能与现今流行的嵌入式行业应用接轨。

2.丰富的外设接口

板载2GB的DDR内存、16GB EMMC、1个标准SD卡槽、2个TF 卡接口(其中1个接Comtex-M); 3路USB HOST输出、2路USB OTG接口(其中1路是Cortex-M);;HDMI输出(支持高清显 示);耳麦接口(支持音频输入/输出);内置WiFi+BT(或 3G)(WCDMA下行速率可达21M/s);200万摄像头Camera接 口;5个串口(3个DB9接口,2个排针形式)、1个RS485、1个 CAN2.0;扩展接口(SPI、I2C、AD等),兼容Google ADK2012; 其它人机交换接口等丰富外设接口。

3.丰富的实验案例

满足单核和多核嵌入式基础实验、物联网基础实验、手机和平板等智能设备嵌入式软件开发需求。搭载的Arduino开源开发板能够让学生快速根据需求搭建完整的硬件系统,并用Android开发各类应用。此外,还提供了Android、Linux、Google ADK 软件开发平台,而且Android和Linux同时共存,可以通过软件瞬间切换,非常便捷。

4.ARM模块的特性介绍

	ADM Cortox AO	(Exynos 4412) 1.6 GHz Quad Core 32/32KB数据/指令一级缓存,1MB的二级级	至方	
处理器				
	Mali 400MP四核图形处理器,支持 2D/3D图形加速; HDMI 1.4(3D feature)兼容HDCP 1.1和DVI 1.0;			
	内部MFC支持MPEG-2/4、H.263、H.264等的编解码和VC1的解码; 32nm HKMG的先进工艺,性能达到			
	双核两倍,功耗降低20%			
存储器	2GB DDR316GB EMMC音频/视频接口			
音视频接口	1个 HDMI 接口(数字信号视频传输的高清晰度多媒体接口)1个音频 3.5mm 输入接口1个音频 3.5mm			
	输出接口1 个 CAMERA 接口			
液晶触摸屏接口	9.7'IPS屏,分辨率1024X768,LVDS 262144 colors 亮度: 典型值 420 cd/m2,上下左右178°可视角			
	十点触控电容触摸			
传输接口	串行口	UARTO,5线串口,TTL 电平UART1,5 线串口,RS232 电平UART2,3 线串口,	RS232	
		电平UART3,3线串口,TTL 电平		
	RS485接口	1个		
	CAN2.0接口	1个		
	USB 接口	1 x USB2.0 OTG, High-speed 3 x USB2.0 HOST, High-speed		
	SD/MMC/TF 接口	1 路 SD/MMC 接口、1 路 TF接口,支持 3.3V 及 1.8V 逻辑电压		
	网络接口	10/100Mbps		
	1 个 20 针标准	JTAG 接口 5 个用户按键 1 个复位按键 外扩端口: I2C、SPI、AD、PWM、UA	ART,	
	GPIO、WIFI+BT等			
		XOM5 XOM3 XOM2		
Boot模式设置	EMMC启动			
	SD卡启动	0 0 1		
无线接口	3G MA天线接口1、	、GPS SMA天线接口一个、WIFI+BT FPC天线焊在板上。		

第一部分 嵌入式Linux实验

u简单Linux命令学习 u嵌入式Linux SD卡启动盘制作 uU-BOOT移植实验 u嵌入式Linux内核裁剪实验 u基于Busybox的根文件系统实验 uTFTP方式实验箱下载实验 u基于NFS文件系统实验 u简单字符驱动实验 uLinux动态链接库应用实验 uWiFi实验 u3G拨号上网实验。

第二部分 Android实验

uAndroid 4.0.3开发环境搭建与源码内核编译实验 u基于FTFP与NFS运行Android 4.0.3系统实验 u实验箱软件下载实验 uAndroid应用开发入门实验 uAndroid按键驱动调试实验 uAndroid NDK开发入门实验 uAndroid 音频驱动调试实验

第三部分 Arduino实验

uLED闪烁实验

u按键控制LED实验

uPWM控制LED实验

u外部中断实验

u定时器实验

u串口实验

uADC实验

uDAC实验

u模拟温度传感器实验

u温湿度传感器实验

u三轴加速度传感器实验

u大气压强传感器实验

第四部分 无线遥控视频小车的设计(选配)

u小车重力感应控制实验

u小车语音控制实验

u小车滑动控制实验

u小车手势控制实验

u小车视频监控实验

目录页 CONTENTS PAGE

PARTO1 嵌入式实验箱介绍

PARTO2 Android开发应用

PARTO3 Arduion应用开发

Android的系统架构

Android的系统架构采用了分层架构的思想,如图所示。从上层到底层共包括四层,分别是应用程序程序层、应用框架层、系统库运行库层和Linux内核。

Android一级目录结构

Android/abi (abi相关代码。ABI:

applicationbinary interface,应用程序二进制接口)

Android/bionic (bionic C库)

Android/bootable (启动引导相关代码)

Android/build (存放系统编译规则及generic 等基础开发配置包)

Android/cts (Android兼容性测试套件标准)

Android/dalvik (dalvik JAVA虚拟机)

Android/development(应用程序开发相关)

Android/device (设备相关代码)

Android/docs (介绍开源的相关文档)

Android/external (android使用的一些开源的模组)

Android/frameworks (核心框架——java及C++语言,是Android应用程序的框架。)

Android/hardware (硬件适配层HAL代码)

Android/libcore (核心库相关)

Android/ndk (ndk相关代码。AndroidNDK (Android NativeDevelopment Kit) 是一系列的开发工具,允许程序开发人员在Android应用程序中嵌入C/C++语言编写的非托管代码。)

Android/packages (应用程序包)

Android/prebuilt (x86和arm架构下预编译的一些资源)

Android/sdk (sdk及模拟器)

Android/system (文件系统、应用及组件——C语言)

Android/Makefile

Android/v8.log

1. ADT

ADT (Android Development Tools)是 EcliPSe 开发 Android 应用程序的插件。

ADT-Bundle for Windows 是由Google Android官方提供的集成式IDE,已经包含了Eclipse,你无需再去下载Eclipse,并且里面已集成了插件,它解决了大部分新手通过eclipse来配置Android开发环境的复杂问题。

2. ADT安装步骤

- (1) 将你下载好的 ADT 的压缩包解压,就以的得到 ADT 的文件夹了。 进入文件夹,找到"SDK Manager.exe"并运行;
- (2) TOOLS 和 EXTRAS 建议全部安装,Android(API)则需要根据个人的开发来选择安装。选中你需要 安装的文件,然后点击程序右下方的"Install package"。
- (3) 安装完成后,进入"eclipse"文件夹,运行"eclipse.exe"文件。第一次需要设置 Workshood 及不 作为方故工程的日子

\adt-bundle-windows-x86-20130514

SDK Manager, exe

3. 创建 android 模拟器

- (1) 打开"eclipse.exe",然后点击工具栏;
- (2) 点击程序右侧"NEW"按钮;
- (3) AVD Name:是你创建的 AVD 设备的名称; Device:则是 AVD 设备的屏幕界面大小; Target:是 A VD 运行的 android 版本; CPU/ABI不需要选择,这是根据你选择的 Target 系统自动为你配置的; RAM、VM Heap、SD Card Size 可以不设置。设置好后,单击"OK按钮";
- (4) 启动 AVD,选中你刚创建的 AVD,然 后点击右侧的 Start 按钮,等待几分钟后,后

4. 创建一个Hello World项目

- (1) 通过File -> New-> Android Application Project, 然后输入Hello World(项目名字),next,finish;
- 直接点击Run Debug(快捷键F11)就可以在你配置的模拟器里运 行了。
- (3) 也可以选中 Run As -> Android Appli cation。选择实验箱作为运行 目标。

PARTO2 Android开发应用

18

四)Andrid界面设计

1. 了解 Android项目文件 夹结构

2. 控件

1.Android 控件

Android 自定义控件一般要继承 View 类,因此控件的实现及其相应的布局需要完成:

- (1)继承 View 类,并实现参数为(Context context, Attribute Set attrs)的构造函数。 (2) 在 布局文件 xml 中设置属性的时候,应以(<包名.类名 />)的格式进行。
 - (3) 声明一个自定义控件的变量,用 findViewByld 将其与布局文件关联起来。
 - 2.Text 控件

在 android 中,文本控件主要包括 TextView 控件和 EditView 控件,本节先对 TextView 控件的用法进行 详细介绍。TextView 类继承自 View 类,TextView 控件的功能是向用户显示文本的内容,但不允许编辑,而 其子类 EditView 允许用户进行编辑

3.Button 控件

在 android 中,Button 是一种按钮控件,用户能够在该控件上点击,并后引发相应的事件处理函数

ImageButton 用以实现能够显示图像功能的控件按钮。

3. 制作按钮控件

- (1)新建工程,选择菜单 File->New->Android Application Project。一直选择 Next,完成工程创建。
- (2) 在 res->layout 目录下修改 activity_main.xml 增加所需控件(工程默认为 activity_main.xml,可以手 动修改)。Form Widgets 下就有常用控件:Button 、CheckBox、RadiosButton、Spinner 等等 这里举例添加Button 控件作为参考。
 - (3) 按住 button 图形,将其拖入右侧的可视化控件窗口区。
 - (4) 双击可视化控件窗口中的 Button, 进入文本编辑界面。
 - (5) 修改控件属性

方法一:在可视化窗口单击 Button,在 ADT 右方出现 properties 一栏,可以较直观地对 background, text,size,height 等属性。同时可以在 Outline 窗口中查看整体的控件。

方法二:双击 Button,直接进入 XML 布局文件中进行修改。

- (6) 切回 Layout 的可视化预览界面,则可以看到的确被修改了。
- (7) 添加ImageButton,指定自定义图形按钮。拷贝图标文件到相应的资源目录。

目录页 CONTENTS PAGE

PARTO1 嵌入式实验箱介绍

PARTO2 Android开发应用

PARTO3 Arduion应用开发

rduino是一个基于开放原 始码的软硬件平台,软件上具 有使用类似 Java,C 语言的 Processing/Wiring开发环境。 Arduino能通过各种各样的传 感感知环境,通过控制灯光、 马达,传感器和其他的装置来 反馈、影响环境。板子上的微 控制器可以通过 Arduino 的编 程语言来编写程序,编译成二 进制文件, 收录 进微控制器。 对 Arduino 的编程是利用 Arduino 编程语言和 Arduino 开发环境来实现的。

Rduino介绍

rduino是一个基于开放原始码的软硬件平台,软件上具有使用类似 Java, C 语言的 Processing/Wiring开发环境。Arduino能通过各种各样的传感 感知环境,通过控制灯光、马达,传感器和其他的装置来 反馈、影响环境。板子上的微控制器可以通过 Arduino 的编程语言来编写程序,编译成二进制文件,收录 进微控制器。对 Arduino 的编程是利用 Arduino 编程语言和 Arduino 开发环境来实现的。

1. 程序流程

2. 程序代码

```
// BlinkLED.ino
// Pin 13 is connected to LED4.
int LED4 = 13;
void setup() {
 pinMode(LED4, OUTPUT);
                                   // initialize the digital pin as an output.
void loop() {
                                  // turn the LED4 on (HIGH is the voltage level)
 digitalWrite(LED4, HIGH);
 delay(500);
                                  // wait for 500ms
 digitalWrite(LED4, LOW);
                                  // turn the LED4 off by making the voltage LOW
 delay(500);
                                  // wait for 500ms
```

3. 程序代码

```
// BlinkLED.ino
// Pin 13 is connected to LED4.
int LED4 = 13;
void setup() {
 pinMode(LED4, OUTPUT);
                                   // initialize the digital pin as an output.
void loop() {
                                  // turn the LED4 on (HIGH is the voltage level)
 digitalWrite(LED4, HIGH);
 delay(500);
                                  // wait for 500ms
 digitalWrite(LED4, LOW);
                                  // turn the LED4 off by making the voltage LOW
 delay(500);
                                  // wait for 500ms
```

4. 擦除程序

在 Arduino 模块板 上,同时按住的 Erase 按键和 3X8E-RESET 按键 不放, 然后先放开 3X8E-RESET 按键等 待大 约 500ms 后, 再放开 Erase 按键,这时 Arduino 模块板上 LED4 被点亮,Arduino 模块 板上的程序已被成功擦 除,可以重新烧写入新 的程序。

for your time

感谢您的聆听!

13673368167 <u>373811104@qq.com</u>