

«Система распознавания дорожных знаков на датасете RTSD»

Асташенков Константин Александрович

Осебе

- Асташенков Константин
- Образование:
 - Московский энергетический институт (филиал). Теплоэнергетика (инженер)
 - Саратовская государственная академия права (филиал). Юриспруденция (юрист)
 - Junior Data Analyst (СберУниверситет)
- В Сбере с 2012 года:
 - 11 лет в проблемных активах, главный специалист ПРПА (банкротство / исполнительное производство)
- Место работы:
 - Среднерусский банк, г. Смоленск (готов к переезду)
- Контакты:
 - kaastashenkov@sberbank.ru / +7 910 783 12 73

Описание проекта

- Задача:
 - Построить сервис распознавания дорожных знаков на открытых данных и открытых архитектурах
- Ссылка на репозиторий: https://github.com/zakonreal/RTSD
- Ссылка на приложение: https://zakonreal-rtsd-9app-e0pihy.streamlit.app/

Бизнес-логика

Input image

Детектор (Faster R-CNN / Yolo) Классификатор (CustomResNet)

Object detection

Output image

Модель данных

Набор данных RTSD содержит кадры, предоставленные консалтинговой компанией Geocenter (http://geocenter-consulting.ru). Кадры получены с широкоэкранного цифрового видеомагнитофона, который снимает 5 кадров в секунду. Разрешение кадра составляет от 1280 × 720 до 1920 × 1080. Кадры снимаются в разное время года (весна, осень, зима), в разное время суток (утро, день, вечер) и в разных погодных условиях (дождь, снег, яркое солнце). В наборе используется 155 знак дорожного движения, формат разметки - *Common Objects in Context (COCO)*. Файлы json состоят из 3 списков:

- <u>images</u> содержит информацию о изображениях (метаданные - id, ширина, высота и путь к файлу)

ic	ł	width	height	file_name
()	1280	720	rtsd-frames/autosave01_02_2012_09_13_33.jpg
	1	1280	720	rtsd-frames/autosave01_02_2012_09_13_34.jpg
2	2	1280	720	rtsd-frames/autosave01_02_2012_09_13_35.jpg

- <u>annotations</u> содержит информацию о аннотациях (ограничивающие прямоугольники, классы объектов и т.д.)

iscrowd	bbox	area	category_id	image_id	id
0	[649, 376, 18, 18]	324	1	0	0
0	[671, 356, 20, 21]	420	1	1	1
0	[711, 332, 27, 26]	702	1	2	2

- <u>categories</u> содержит информацию о категориях классификации.

id	name
1	2_1
2	1_23
3	1_17

Модель данных

Распределение частот знаков

ТОП-10

Nº	category_id	count	%	Name
1	5_19_1	22 147	23,2	Пешеходный переход
2	2_1	10 027	10,5	Главная дорога
3	5_16	4 727	5,0	Место остановки автобуса
4	5_15_2	4 504	4,7	Направления движения по полосе
5	3_24	3 761	3,9	Ограничение максимальной скорости
6	2_4	3 755	3,9	Уступите дорогу
7	3_27	3 268	3,4	Остановка запрещена
8	1_23	2 558	2,7	Дети
9	4_1_1	2 137	2,2	Движение прямо
10	5_20	1 853	1,9	Искусственная неровность
Всего		95 492	100,0	

Nº	category_id	count	%	Name
1	5_19_1	2 117	23,9	Пешеходный переход
2	2_1	934	10,5	Главная дорога
3	5_16	445	5,0	Место остановки автобуса
4	5_15_2	440	5,0	Направления движения по полосе
5	3_24	343	3,9	Ограничение максимальной скорости
6	2_4	340	3,8	Уступите дорогу
7	3_27	290	3,3	Остановка запрещена
8	1_23	229	2,6	Дети
9	4_1_1	196	2,2	Движение прямо
10	5_20	154	1,7	Искусственная неровность
Всего		8 866	100,0	

Аугментация данных

(MotionBlur, RandomBrightnessContrast, RandomFog, RandomRain)

Detection

Train loop detection

Train loop classification

Обучение на train_anno_reduced увеличенной в 41 раз

Best pipeline

Классификатор

CustomResNet 8 эпоха

Оценка модели

{'accuracy': 0.7889856701320596, 'precision': 0.8230581338544211, 'recall': 0.9501466275659824, 'fscore': 0.8820480603109785, 'support': 8866, 'mAP': 0.6117087682929622}

с помощью библиотеки fiftyone

Yolo5

Это когда необходимо быстро сделать кастомную модель для детекции, но разбираться в специфике компьютерного зрения и зоопарке моделей нет времени.

ШАГ 1 - Установка

!git clone https://github.com/ultralytics/yolov5 !cd yolov5 !pip install -r requirements.txt

<u>ШАГ 2 – Разметка данных</u>

X_CENTER_NORM = X_CENTER_ABS/IMAGE_WIDTH
Y_CENTER_NORM = Y_CENTER_ABS/IMAGE_HEIGHT
WIDTH_NORM = WIDTH_OF_LABEL_ABS/IMAGE_WIDTH
HEIGHT_NORM = HEIGHT_OF_LABEL_ABS/IMAGE_HEIGHT

ШАГ 3 – Создание yaml файл

train: ../dataset/images/train/ val: ../dataset/images/valid/ nc: 1 # количество классов

names: ['class_0'] # имена классов

ШАГ 4 - Обучение

!python train.py --img 1280 --batch -1 --epochs 100 --data rtsd.yaml --weights yolov5s6.pt --project "RTSD" --name "yolov5s61"

ШАГ 5 - Инференс

!python detect.py --source img\222.mp4 --weights RTSD\best.pt

<u>Результат</u>

Epoch	GPU_mem	box_loss	obj_loss	cls_loss	Instances	Size				
9/9	10.8G	0.0151	0.004668	0.01274	10	1280:	100% 4169/4169	[1:40:08	(00:00, 1.44s/	/it]
	Class	Images	Instances	P	R	mAP50	mAP50-95: 100	% 193/193	[02:41<00:00,	1.20it/s]
	all	5000	8866	0.827	0.442	0.478	0.355			

APP STREAMLIT YOLO5

https://zakonreal-rtsd-9app-e0pihy.streamlit.app/

VIDEO

My_model

YOLO5_model

Спасибо за внимание!