Steiner Tree

Md Nafiu Rahman 1905077 Kazi Reyazul Hasan 1905082 Asad Bin Shahid 1905087 Mubasshira Musarrat 1905088 Shahriar Raj 1905105

Problem Definition

1905105

Steiner Tree Problem

Instance

- An undirected graph G = (V,E)
- A subset of vertices R ⊆ V called terminal nodes
- A number $k \in \mathbb{N}$

Question:

Does there exist a **subtree** of G that:

- Includes all the vertices of R (i.e., a spanning tree of the terminal nodes)
- Contains at most k edges (for unweighted graphs), or has a total cost of at most k (for weighted graphs)?

- Terminal Node
- Steiner Node

<u>Differences Between MST & ST</u>

- Definition: Covers All vertices | Covers The Terminal Vertices
- Nodes: All Nodes | Terminal Nodes + Steiner Nodes
- Complexity: Polynomial | Not Polynomial
- Use Case: Power Grid Connection | Telecommunication

Different Types of Steiner Trees

- Classical Steiner Tree (Example: Telecommunication)
- Rectilinear Steiner Tree (Example: VLSI design)
- Group Steiner Tree (Example: Content Delivery Networks)
- **Degree Steiner Tree** (Example: Switch, Transformer)
- K-restricted Steiner Tree (Example: Network Design)
- Prize-Collecting Steiner Tree (Example: Marketing Campaign)

Complexity

The **Steiner Tree Problem** is:

NP-Complete for unweighted graphs and NP-Hard for weighted graphs

Different Exact Algorithms

Algorithm Name	Time Complexity	Notes
Dreyfus-Wagner	O(3 ^k · n +2 ^k · n ² + n(n log n + m))	Classical DP algorithm.
Ericsson's Algorithm	O(3 ^k · n +2 ^k ·(n log n + m))	Branch & Bound algorithm that combines the concept of minimum spanning tree.

Improvement to exact algorithm

O*(2.684 ^k)	The optimal Steiner tree T can be divided into three subtrees T1, T2 and T3 in such a way that each subtree Ti represents a minimum Steiner tree within a contracted graph that contains fewer than k/2 terminal nodes. This approach uses a decomposition strategy that simplifies the problem by reducing the number of terminals in each contracted graph, allowing for more manageable subproblems. This idea was explored by Fuchs, Kern, and Wang in their 2007 work in <i>Mathematical Methods of Operations Research</i> .
O(c ^k) for any c ≥ 2	It builds an optimal solution by assembling parts that each contain only a limited number of terminal nodes [Molle, Richter, and Rossmanith, STACS 2006].
O(2 ^k n ² +nm)	It constructs an optimal solution through techniques like subset convolution and Möbius inversion [Bjorklund, Husfeldt, Kaski, Koivisto, STOC 2007].
O(6 ^k n ^{O(log(k))})	First polynomial space algorithm [Fomin, Grandoni, Kratsch ESA 2008]
O(2 ^k n ^{O(1)})	Polynomial space algorithm based on the inclusion-exclusion principle [Nederlof, ICALP 2009]

Different Approximate Algorithms

Algorithm Name	Approximation Ratio	Worst Time Complexity
Minimum Spanning Tree	2(1- 1/L), where L is the no of leaves in the optimal tree	O(S V ²) ;spans S terminals
Linear Programming Based Approximation Algorithm With Iterative Randomized Rounding	ln4+ε < 1.39	O(S V ³) ;spans S terminals
Primal-Dual Approximation Algorithm	2(1- 1/L), where L is the no of leaves in the optimal tree	$O(V \log V + V ^2)$

Algorithm Name	Approximation Ratio	Worst Time Complexity
A Faster Approximation Algorithm	2(1- 1/L), where L is the no of leaves in the optimal tree	O(V log V + E)
Zelikovsky's Approximation Algorithm	11/6	O(E + V ^{log4})
Relative Greedy Algorithm	1.694	O(E log V)
Loss Contraction Algorithm	1.55	O(E log V)

Heuristics

Algorithm Name	Approximation Ratio	Time Complexity	How it works?
Minimum Path Heuristic (Takahashi and Matsuyama)	2-2/k, where k is the number of terminals	O(k·n²)	iteratively adding the shortest path from the existing tree to the closest unconnected terminal
Contraction Heuristic (Plesnik)	Bounded above by 2 and can be 2	O(n³)	recursively reduces the graph by forming neighborhoods around Steiner vertices, contracting each neighborhood class into a single vertex, and then constructing a Steiner tree on the reduced graph

Metaheuristics

Name	Time Complexity	How it works?
Genetic Algorithm	O(N· V ²), where N is the population size	evolves a population of Steiner trees through selection, crossover, and mutation, optimizing the tree weight iteratively
Simulated Annealing	O(V ² ·T), where T is the number of iterations	gradually reduces the probability of accepting higher-cost solutions to escape local minima

Metaheuristics

Name	Time Complexity	How it works?
Variable Neighborhood Search	Generally O(n ^k), where k is the number of neighborhoods explored	changes neighborhoods (solution structures) to escape local optima
Tabu Search	Generally O(n²) or more, depending on neighborhood structure and memory management	uses memory structures to store recently visited solutions (tabu list) to prevent cycling back to them

Metaheuristics

Name	Time Complexity	How it works?
Ant Colony Optimization (ACO)	Highly variable, generally O(n· V ²), where n is the number of ants, affected by the number of iterations and pheromone update strategy.	simulates the behavior of ants, where virtual "ants" explore paths and deposit pheromones on those that give shorter, lower-cost routes. Over time, these pheromones reinforce paths that form a good solution, iteratively approximating the minimal steiner tree

Exact Algorithm

1905077

Dreyfus-Wagner Algorithm

Solves the Steiner Tree Problem by calculating the minimum-cost connections for all subsets of terminal nodes using dynamic programming.

The fundamental idea

- Compute the weight of a minimum Steiner tree for a given terminal set by considering the weights of the minimum Steiner trees of all proper subsets of this set.
- Starting the process with two-element subsets (where the Steiner tree can be determined by shortest path computations) one finally ends up with the k-element terminal set S.

Some notations...

Notations:

- C(u,S): The minimum cost to connect a vertex u to all the vertices in the set S, where u\(\pm\)S.
- S: A subset of terminal vertices.
- d(u,v): The cost (weight) of the direct edge between vertices u and v.
- T: The set of terminal vertices.

Recursive Formula

$$C(u, S) = \min(\min_{v \in S} [d(u,v) + C(v, S \setminus \{v\})],$$

$$\min_{S_1=S \setminus \{u\}, S_2=S \setminus S_1, v \in V} [C(v, S_1) + C(v, S_2) + d(a,v)])$$

Base Case

If S is a singleton set, i.e., S={v} then:

 $C(u,{v})=d(u,v)$

d(u,v) is the Shortest Distance between u and v (Can be computed using Dijkstra's algorithm)

First Case

 $C(u,S)=\min_{v\in S}[d(u,v)+C(v,S\setminus\{v\})]$

Choose an intermediate vertex $v \in S$ and split S into $\{v\}$ and $S \setminus \{v\}$.

Second Case

$$C(u, S) = \min_{S_1=S\setminus\{u\},S_2=S\setminus S_1,v\in V} [C(v, S_1) + C(v, S_2) + d(u,v)]$$

Split S into two non-empty disjoint subsets S1 and S2, compute the cost of connecting u to each subset, and then combine the results

The goal is to compute **C({a,b,c})** the minimum weight of the Steiner tree connecting a, b and c. The idea is to compute the weight of a minimum Steiner tree for the terminal set by considering the weights of the minimum Steiner trees of all proper subsets of this set.

We start by defining $C(a, \{a\}), C(b, \{b\}), C(c, \{c\})$. Since $\{a\}, \{b\}, \{c\}$ are individual nodes, we define $C(a, \{a\}) = 0$

We start by defining $C(a, \{a\}), C(b, \{b\}), C(c, \{c\})$. Since $\{a\}, \{b\}, \{c\}$ are individual nodes, we define $C(a, \{a\}) = 0$, $C(b, \{b\}) = 0$

We start by defining $C(a, \{a\}), C(b, \{b\}), C(c, \{c\})$. Since $\{a\}, \{b\}, \{c\}$ are individual nodes, we define $C(a, \{a\}) = 0$, $C(b, \{b\}) = 0$, $C(c, \{c\}) = 0$

We start the process with two-element subsets (where the Steiner tree can be determined by shortest path computations, using Dijkstra's algorithm, for example) and will finally end up with the k-element(3 here) terminal set S.

$$C(b, \{c\}) = C(c, \{b\}) = 3$$

$$C(b, \{c\}) = C(c, \{b\}) = 3$$

 $C(a, \{b\}) = C(b, \{a\}) = 2$

$$C(b, \{c\}) = C(c, \{b\}) = 3$$

 $C(a, \{b\}) = C(b, \{a\}) = 2$
 $C(a, \{c\}) = C(c, \{a\}) = 1$

$$C(b, \{c\}) = C(c, \{b\}) = 3$$

 $C(a, \{b\}) = C(b, \{a\}) = 2$
 $C(a, \{c\}) = C(c, \{a\}) = 1$
 $C(a, \{d\}) = C(d, \{a\}) = 1$

$$C(b, \{c\}) = C(c, \{b\}) = 3$$

 $C(a, \{b\}) = C(b, \{a\}) = 2$
 $C(a, \{c\}) = C(c, \{a\}) = 1$
 $C(a, \{d\}) = C(d, \{a\}) = 1$
 $C(b, \{d\}) = C(d, \{b\}) = 1$

$$C(b, \{c\}) = C(c, \{b\}) = 3$$

 $C(a, \{b\}) = C(b, \{a\}) = 2$
 $C(a, \{c\}) = C(c, \{a\}) = 1$
 $C(a, \{d\}) = C(d, \{a\}) = 1$
 $C(b, \{d\}) = C(d, \{b\}) = 1$
 $C(c, \{d\}) = C(d, \{c\}) = 2$

The goal is to compute **C({a,b,c})** the minimum weight of the Steiner tree connecting a, b and c. The idea is to compute the weight of a minimum Steiner tree for the terminal set by considering the weights of the minimum Steiner trees of all proper subsets of this set.

$$C(a, \{b,c\}) = \min(\min_{v \in \{b,c\}} [d(a,v) + C(v, \{b,c\} \setminus \{v\})],$$

$$\min_{S_1 = S \setminus \{u\}, S_2 = S \setminus S_1, v \in V} [C(v, S_1) + C(v, S_2) + d(a,v)])$$

$$\min_{v \in \{b,c\}} [d(u,v) + C(v, \{b,c\} \setminus \{v\})]$$

$$d(a,b) + C(b,c) = 2 + 3 = 5$$

$$\min_{v \in \{b,c\}} [d(u,v) + C(v, \{b,c\} \setminus \{v\})]$$

$$d(a,b) + C(b,c) = 2 + 3 = 5$$

 $d(a,c) + C(b,c) = 1 + 3 = 4$

$$\min_{v \in \{b,c\}} [d(u,v) + C(v, \{b,c\} \setminus \{v\})]$$

$$d(a,b) + C(b,c) = 2 + 3 = 5$$

 $d(a,c) + C(b,c) = 1 + 3 = 4$

$$min(4, 5) = 4$$

$$min_{S1=S\setminus\{\,u\,\},S2=S\setminus S1,v\,\in\,V}\,[\,\,C(\,v\,,\,S1\,)\,+\,C(\,v\,,\,S2\,)\,+\,d(a,v)]\,\,)$$

$$C(a, c) + C(a, b) + C(a, a) = 3$$

$$min_{S1=S\setminus\{\,u\,\},S2=S\setminus S1,v\,\in\, V}\,[\,\,C(\,v\,,\,S1\,)\,+\,C(\,v\,,\,S2\,)\,+\,d(a,v)]\,\,)$$

$$C(a, c) + C(a, b) + C(a, a) = 3$$

 $C(d, c) + C(d, b) + C(d, a) = 3+1 = 4$

$$min_{S1=S\setminus\{\,u\,\},S2=S\setminus S1,v\in V}\,[\,\,C(\,v\,,\,S1\,)+C(\,v\,,\,S2\,)+d(a,v)]\,\,)$$

$$C(a, c) + C(a, b) + C(a, a) = 3$$

 $C(d, c) + C(d, b) + C(d, a) = 3+1 = 4$
So, minimum length = $(4, 3) = 3$

$$\min_{S_1=S\setminus\{u\},S_2=S\setminus S_1,v\in V} [C(v,S_1)+C(v,S_2)+d(a,v)])$$

$$C(a, c) + C(a, b) + C(a, a) = 3$$

 $C(d, c) + C(d, b) + C(d, a) = 3+1 = 4$
So, minimum length = $(4, 3) = 3$

Therefore overall minimum is min(3, 4) = 3

Similarly....

$$C(b, {a,c}) = 3$$

 $C(c, {a,b}) = 3$

Therefore, length of steiner tree is 3.

The Algorithm

Initialization:

- Let C(u,S) represent the minimum cost to connect vertex u to all vertices in S.
 For singleton sets S={v} C(u,{v})=d(u,v)
- **Dynamic Programming Recurrence:** For all u ∈ V and subsets S ⊆ T where |S| > 1:

- **Table Construction:** Compute C(u,S) iteratively for all u ∈ V and subsets S ⊆ T in increasing order of |S|.
- The minimum cost for the Steiner Tree is: min_{u=v}C(u,T)

Implementation Details

- Written in C++ (dreyfus_wagner.cpp)
- DP table in Cset
- ComputeTableLookup() is the recursive function that runs the dp algorithm
- findMinimumSteinerTree() finds the minimum tree iterating over all vertices in the terminal set
- Results are found using bash script

Github: https://github.com/NafiuRahman77/CSE462-Project

Initialization (Shortest Paths): Computing shortest paths p(u,v) for all pairs u,v using Dijkstra's algorithm n times takes O(n²logn+n·m)

$$C(u, S) = \min_{S_1 \cup S_2 = S, S_1 \cap S_2 = \phi} [C(u, S_1) + C(u, S_2)]$$

The number of recursive calls corresponding to the above equation can be bounded from above by 3^k : for all $X = \emptyset$, $X \subseteq S$ we have to consider all $X' = \emptyset$, $X' \subseteq X$, and all $v \in V \setminus X$. The number of combinations can be upper-bounded by

$$\sum_{i=1}^{k} {k \choose i} \cdot \sum_{j=1}^{i-1} {i \choose j} \cdot n \le n \cdot \sum_{i=1}^{k} {k \choose i} \cdot 2^{i-1} \le n \cdot 3^{k}.$$

Since each combination leads to two table lookups (recursive calls corresponding to C(u,S1) and s(u,S2) and since we have to perform only constantly many operations for a fixed combination of S1,S2 and v, we obtain the upper bound $O(3^k \cdot n)$ for the running time here.

In this case $O(2^k \cdot n)$ of pairs S and u are possible. For each fixed pair S and u, however, due to the consideration of $v \in S$, we get an additional factor of O(n). Altogether, we have an upper bound of $O(2^k \cdot n^2)$

So the algorithm runs in $O(3^k \cdot n + 2^k \cdot n^2 + n(n \log n + m))$

1905087

Dataset

PACE challenge 2018
Steiner Tree Track 1
Exact with low number of terminals

Results Overview

Results Overview

Results Overview

Three approaches

- Fixing number of terminals and varying nodes
- Fixing number of nodes and varying number of terminals
- Varying number of edges (graph density)

Approach 1: Terminals fixed

9 terminals

Nodes	Edges	Runtime(ms)
160	269	213577
640	960	4482487
640	960	4540714
640	960	4468618
640	4135	4739241
640	4135	4202292
640	4135	4042783
640	4135	4093606

Approach 1: Terminals fixed

10 terminals

Nodes	Edges	Runtime(ms)
90	135	249577
169	280	1050595
179	293	1163662
286	465	3353328
298	503	3570315
311	530	3957323
331	560	4272861
541	906	12406357
609	932	16384636
632	1087	17422713
777	1239	26141050
816	1460	29104560

Approach 1: Terminals fixed

11 terminals

Nodes	Edges	Runtime(ms)
123	233	1805080
128	227	2034264
191	302	4823321
212	381	6400632
237	390	7995517
278	478	11450510
317	476	15094701
338	541	17216589
353	608	18154499
402	695	24592146
572	963	51074709

Approach 2: Node Range fixed

0-100 Nodes

Nodes	Ed	ges	Terminals	Runtime
	53	80	4	11
	55	82	6	235
	57	84	8	4762
	64	288	8	5842
	64	288	8	5945
	90	135	10	249577

Approach 2: Node Range fixed

100-200 Nodes

Nodes	Edges		Terminals	Runtime
15	57	266	6	2369
16	50	269	9	213577
16	59	280	10	1050595
17	79	293	10	1163662
12	23	233	11	1805080
12	28	227	11	2034264
19	91	302	11	4823321

Approach 2: Node Range fixed

200-300 Nodes

Nodes	Edges		Terminals	Runtime
(307	526	6	10060
2	286	465	10	3353328
2	298	503	10	3570315
2	212	381	11	6400632
2	237	390	11	7995517
2	278	478	11	11450510

Approach 2: Node Range fixed

300-400 Nodes

Nodes	Edges	Terminals		Runtime
	307	526	6	10060
	311	530	10	3957323
	331	560	10	4272861
	317	476	11	15094701
	338	541	11	17216589
	353	608	11	18154499
	402	695	11	24592146

Approach 2: Node Range fixed

540-640 Nodes

Nodes		Edges	Terminals	Runtime
6	640	960	9	4468618
6	640	960	9	4482487
6	640	960	9	4540714
6	640	4135	9	4739241
6	640	4135	9	4202292
6	640	4135	9	4042783
6	640	4135	9	4093606
Ę	541	906	10	12406357
6	609	932	10	16384636
(632	1087	10	17422713
Ĺ	572	963	11	51074709

Approach 3: Edges and Density

If everything else remains constant, positive correlation between edge count and runtime

Nodes		Edges	Terminals	Runtime
	2500	3125	5	184439
	2500	5000	5	272812
	2500	12500	5	342680

Approach 3: Edges and Density

No general correlation between density and runtime

Nodes		Edges	Terminals	Runtime	Density
	640	960	9	4468618	0.004694835681
	640	960	9	4540714	0.004694835681
	609	932	10	16384636	0.005034137067
	632	1087	10	17422713	0.00545146342
	572	963	11	51074709	0.005896905196
	541	906	10	12406357	0.006202505648
	402	695	11	24592146	0.008622721802
	338	541	11	17216589	0.009499060629
	317	476	11	15094701	0.009503653716
	353	608	11	18154499	0.009786247747
	331	560	10	4272861	0.01025359334
	307	526	6	10060	0.01119839901
	298	503	10	3570315	0.01136646103
	286	465	10	3353328	0.01140964299
	278	478	11	11450510	0.01241461704

Conclusions

- Runtime grows polynomially with node count
- Runtime grows exponentially with terminal count
- No strong correlation between edge count/density

Approximation Algorithm

1905088

Shortest Path Heuristic Approximation Algorithm

- proposed by Takahashi & Matsuyama in 1979
- 2(1-1/k)-approximation,
 where k = no of terminals

Step 1:

$$V_1 = \{v_1\}$$

$$E_1 = \phi$$

Start with a **Subgraph** $T_1 = (V_1, E_1)$, consisting a **single terminal**, say v_1 .

Step 2:

- Find a terminal in the remaining terminals, say v_i, such that c(V_{i-1},v_i) is minimized. (Using Dijkistra's Algorithm)
- 2. Construct Tree, $T_i = (V_i, E_i)$ by adding PATH(V_{i-1}, v_i) to T_{i-1} .

Local Search

proposed by M.G.A.
 Verhoeven, M.E.M. Severens,
 E.H.L. Aarts in 1996

Initialization:

- Take the edge_set of Steiner Tree solution gotten from greedy heuristic (Shortest Path Heuristic).
- 2. Compute **current cost** of the solution.
- 3. Identify all nodes present in the solution by traversing edgeSet (**nodes_in_solution**).
- Initialize best_cost as the cost of the current solution.

Phase 1: Attempt to Remove Non-Terminal Nodes:

- 1. Iterate through each node in **nodes_in_solution**
- 2. Skip terminal nodes
- 3. For each **non-terminal node**:
 - a. Identify all edges connected to this node from edgeSet
 - b. Create a new solution by **removing these edges** from the current solution
 - c. Check if the remaining edges keep all terminals connected
 - d. If terminals remain connected, compute the cost of the new solution
 - e. If the new cost is lower than the current best_cost update edge_set & best_cost.

Phase 1: Attempt to Remove Non-Terminal Nodes:

Phase 2: Attempt to Add Non-Terminal Nodes:

- 1. Iterate through all nodes in the graph
- 2. Skip nodes that are already in the solution or are terminal nodes
- 3. For each **non-terminal node**:
 - a. Identify edges connecting this node to nodes in the current solution
 - b. Check if adding this node introduces at least 2 new edges. Add these edges to the current solution
 - c. If new edges are added, prune previous edges & check for connectivity
 - d. If terminals remain connected, compute the cost of the new solution
 - If the new cost is lower than the current best_cost update edge_set & best_cost.

Phase 2: Attempt to Add Non-Terminal Nodes:

Phase-1 removes non-terminal leaves

Phase-2 **improves connectivity** by including additional nodes and their edges if they contribute to lower cost

Uses iterative first improvement/best first search, which decreases runtime compared to iterative best improvement

Takes each terminal node as a starting point to get the best possible steiner tree in the greedy (shortest path heuristic) stage.

Multiple initialization helps the algorithm to not get stuck at local optima.

Time Complexity Analysis

Shortest Path Heuristic Stage:

- Finding the shortest path between two vertices takes O(N²) time complexity by Dijkstra's Algorithm., where N is the no of nodes in the tree.
- The algorithm finds the shortest path between **k terminals**, which takes **O(kN²)** time complexity.
- It is **run k times** to get the best possible steiner tree, making the complexity $O(k^2N^2)$

Local Search Stage:

Phase 1:

- If there are N nodes in the tree, removing each non-terminal node takes approximate O(N) time.
- Computing The cost for removing each non-terminal node, requires a traversal through approximately all the edges in the tree, making the time complexity
 O(E)
- \therefore Overall time complexity = O(NE)

Time Complexity Analysis

Local Search Stage:

Phase 2:

- If there are N nodes in the tree, adding each non-terminal node takes approximate **O(N)** time.
- Pruning the edges require approximately O(NE) time complexity as the process similar to phase 1.
- \therefore Overall time complexity = $O(N^2E)$
- ... Overall time complexity for local search = $O(NE) + O(N^2E) = O(N^2E)$

Time complexity of the Algorithm = $O(k^2N^2) + O(N^2E)$

Shortest path heuristic approach reports an

Approximation ratio ≤ 2(1-1/k)

for all $n \& k(2 \le k \le n-1)$; k = no of terminals

(if k=n approximation ratio = 1)

Local search, in practice, brings the

Approximation ratio ~ 1.55

Worst Case Bound : 2

Because of local search, the approximation ratio is not tight

MinPath vs Minpath+Local Search

	MinPath	MinPath+Local Search
Time Complexity	O(kn ²)	$O(k^2n^2) + O(n^2e)$
Approximation Ratio	≤ 2(1-1/k)	~ 1.55
Approximation Ratio Bound	Tight	Not Tight

- Basic code implementation in C++
- Bash Script to run the instances & generate csv
- Python to generate graphs on the results

Github: https://github.com/NafiuRahman77/CSE462-Project

Experiment Insights Algorithm II

1905082

PACE 2018

Dataset Link:

https://github.com/PACE-challenge/SteinerTree-PACE-2018-instances/blob/master

Track Number	Data	Used for
Track A	197	Both Algorithms
Track C	50	Approximation Algorithms

Total instances used Number of terminals Number of nodes Number of edges

197 4-104 53-19083 80-204480

Total instances used Number of terminals Number of nodes Number of edges

Defining Dense/Sparse

This logarithmic relationship often serves as a good divider:

- If E/V is less than logV, the graph is likely sparse.
- If E/V is greater than logV, the graph is moving towards being dense.

E/V>logV; Dense

Track C Experiments

Increase of number of edges increases approximation ratio in many cases (not clear pattern).

No relation can be derived from node increase.

Increase of number of terminals increases approximation ratio for dense graphs (clear pattern).

Approximation Ratio Frequency

How well our algorithm ran on 50 instances.
Recall, **Approximation ratio**~ 1.55
The plot validates our algorithm.

Conclusion on Ratio

- Increasing the number of terminals in dense graphs clearly raises the
 approximation ratio due to the high connectivity and the many potential paths,
 making optimization more complex. In sparse graphs, the effect on the
 approximation ratio is less evident as the limited connections obscure
 straightforward relationships.
- In all scenarios, dense graphs show a higher approximation ratio compared to sparse graphs, reflecting the increased complexity introduced by numerous connections and options for network configuration.
- The instances are bounded within Approximation ratio ~ 1.55 as derived.

Runtime increases as edge number increases.

Runtime increases as node number increases.

Runtime increases as number of terminals increases.

Conclusion on Runtime

- Dijkstra's may need to traverse comparatively more nodes to find the shortest path between any two nodes in a sparse graph, due to the lack of direct paths.
- In sparse graphs, each edge removal or addition can drastically change the connectivity, potentially requiring more careful and thus slower examination.
- In dense graphs, while there are more potential changes to evaluate, each change might not require as extensive a re-evaluation of the solution's viability, **leading to quicker iterations** but more of them.

Final Verdict

- For Dense Graphs, Approximation Ratio ↑ Runtime ↓
- For Sparse Graphs, Approximation Ratio ↓ Runtime ↑

Track A Experiments

- Approximation ratio smoothens after local search as seen in graph for most instances.
- Minpath tries to find a solution as soon as possible, and local search tries to improve on it.

- Increase of non-terminal nodes directly affect local search, increasing runtime.
- Non-terminal nodes have trivial effect on just minpath algorithm.

Memory Usage

Data Structures Used

- Graph: $n \times d \times \text{sizeof}(\text{pair} < \text{int}, \text{int} >)$
- Maps: $m \times (\text{sizeof(pair} < \text{int}, \text{int} >) + \text{sizeof(int)} + \text{overhead)}$
- ullet Vectors: Depending on their usage, $k imes ext{sizeof}(ext{int})$ for each vector
- Boolean Vector: $n \times \text{sizeof(bool)}$ or less if optimized

n (number of vertices)
d (average degree per node, edges per node)
m (total number of edges)
k (number of elements in a vector, such as terminals)
pair<int, int> 8 bytes
int 4 bytes

Bool

1 byte

We utilized the <sys/resource.h> header to measure the memory of the process, observing a range from **3.5 MB to 10 MB** as we transitioned from smaller to larger, denser graphs

References

- 1. <u>an approximate solution for the steiner problem in graphs</u>
- 2. <u>Verhoeven, M. G. A., Severens, M. E. M., & Aarts, E. H. L. (1996). Local search for Steiner tree problems in graphs. In V. J. Rayward-Smith, C. R. Reeves, & G. D. Smith (Eds.), Modern Heuristic Search Methods (pp. 117-129). Wiley.</u>

Thanks!