1 17.3: Conservative Vector Fields

Definition. (Simple and Closed Curves)

Suppose a curve C (in \mathbb{R}^2 or \mathbb{R}^3) is described parametrically by $\mathbf{r}(t)$, where $a \leq t \leq b$. Then C is a **simple curve** if $\mathbf{r}(t_1) \neq \mathbf{r}(t_2)$ for all t_1 and t_2 , with $a < t_1 < t_2 < b$; that is, C never intersects itself between its endpoints. The curve C is **closed** if $\mathbf{r}(a) = \mathbf{r}(b)$; that is, the initial and terminal points of C are the same.

Definition. (Connected and Simply Connected Regions)

An open region R in \mathbb{R}^2 (or D in \mathbb{R}^3) is **connected** if it is possible to connect any two points of R by a continuous curve lying in R. An open region R is **simply connected** if every closed simple curve in R can be deformed and contracted to a point in R.

Definition. (Conservative Vector Field)

A vector field \mathbf{F} is said to be **conservative** on a region (in \mathbb{R}^2 or \mathbb{R}^3) if there exists a scalar function φ such that $\mathbf{F} = \nabla \varphi$ on that region.

Theorem 17.3: Test for Conservative Vector Fields

Let $\mathbf{F} = \langle f, g, h \rangle$ be a vector field defined on a connected and simply connected region D of \mathbb{R}^3 , where f, g, and h have continuous first partial derivatives on D. Then \mathbf{F} is a conservative vector field on D (there is a potential function φ such that $\mathbf{F} = \nabla \varphi$) if and only if

$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}, \qquad \frac{\partial f}{\partial z} = \frac{\partial h}{\partial x}, \qquad \text{and} \qquad \frac{\partial g}{\partial z} = \frac{\partial h}{\partial y}.$$

For vector fields in \mathbb{R}^2 , we have the single condition $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$.

Procedure: Finding Potential Functions in \mathbb{R}^3

Suppose $\mathbf{F} = \langle f, g, h \rangle$ is a conservative vector field. To find φ such that $\mathbf{F} = \nabla \varphi$, use the following steps:

- 1. Integrate $\varphi_x = f$ with respect to x to obtain φ , which includes an arbitrary function c(y, z).
- 2. Compute φ_y and equate it to g to obtain an expression for $c_y(y,z)$.
- 3. Integrate $c_y(y, z)$ with respect to y to obtain c(y, z), including an arbitrary function d(z).
- 4. Compute φ_z and equate it to h to get d(z).

A similar procedure beginning with $\varphi_y = g$ or $\varphi_z = h$ may be easier in some cases.

Theorem 17.4: Fundamental Theorem for Line Integrals

Let R be a region in \mathbb{R}^2 or \mathbb{R}^3 and let φ be a differentiable potential function defined on R. If $\mathbf{F} = \nabla \varphi$ (which means that \mathbf{F} is conservative), then

$$\int_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \int_{C} \mathbf{F} \cdot d\mathbf{r} = \varphi(B) - \varphi(A),$$

for all points A and B in R and all piecewise-smooth oriented curves C in R from A to B.

Definition. (Independence of Path)

Let **F** be a continuous vector field with domain R. If $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$ for all piecewise-smooth curves C_1 and C_2 in R with the same initial and terminal points, then the line integral is **independent of path**.

Theorem 17.5

Let **F** be a continuous vector field on an open connected region R in \mathbb{R}^2 . If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path, then **F** is conservative; that is, there exists a potential function φ such that $\mathbf{F} = \nabla \varphi$ on R.

Line Integrals on Closed Curves

Let R be on open connected region in \mathbb{R}^2 or \mathbb{R}^3 . Then \mathbf{F} is a conservative vector field on R if and only if $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ on all simple closed piecewise-smooth oriented curves C in R.