Orthogonalité - Démonstrations

Propriété : Identité de Pythagore

1) Soient E un espace préhilbertien réel et $x, y \in E$. On a :

$$x \perp y \iff ||x + y||^2 = ||x||^2 + ||y||^2$$

2) Soient E un espace préhilbertien complexe et $x, y \in E$. On a :

$$x \perp y \Longrightarrow ||x + y||^2 = ||x||^2 + ||y||^2$$

Démonstration : 🖈

- 1) On sait que $||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2\langle x, y \rangle + ||y||^2$ Ainsi $||x + y||^2 = ||x||^2 + ||y||^2 \Leftrightarrow 2\langle x, y \rangle = 0 \Leftrightarrow x \perp y$
- 2) On sait que $||x+y||^2 = \langle x+y, x+y \rangle = ||x||^2 + 2Re(\langle x,y \rangle)$ Ainsi $\langle x,y \rangle = 0 \Rightarrow Re(\langle x,y \rangle) = 0 \Rightarrow ||x+y||^2 = ||x||^2 + ||y||^2$

<u>Propriété</u>: Toute famille <u>orthogonale</u> ne comportant pas le vecteur nul est libre. En particulier, une famille orthonormée est libre.

<u>Démonstration</u>: **★**

Une famille ne comportant aucun élément est par définition libre. Soit $n \in \mathbb{N}^*$, soit $(e_1, ..., e_n)$ une famille orthogonale d'éléments de E tq $\forall i \in [\![1,n]\!], e_i \neq 0_E$. Soient $\lambda_1, ... \lambda_n \in \mathbb{K}^n$ tq $\sum_{k=1}^n \lambda_k e_k = 0_E$

D'une part
$$\langle e_i, \sum_{k=1}^n \lambda_k e_k \rangle = \langle e_i, 0_E \rangle$$

D'autre part, par linéarité à droite de \langle , \rangle , $\langle e_j, \sum_{k=1}^n \lambda_k e_k \rangle = \sum_{k=1}^n \lambda_k \underbrace{\langle e_j, e_k \rangle}_{0 \text{ si } k \neq j} = \lambda_j \|e_j\|^2$

Ainsi,
$$\lambda_i \|e_i\|^2 = 0$$
, d'où $\lambda_i = 0$ car $\|e_i\| \neq 0$ car $e_i \neq 0_E$

Ainsi
$$(e_1, ..., e_n)$$
.

Ce résultat s'étend à une famille infinie. En effet, une famille infinie est libre si et seulement si toutes ses sous-familles finies sont libres.

De plus, si $(e_i)_{i \in I}$ est une famille orthonormée d'éléments de E, alors $(e_i)_{i \in I}$ est orthogonale et $\forall i \in I$, $\|e_i\| = 1 \neq 0$ donc $e_i \neq 0_E$

<u>Définition</u>: soit $A \subset E$. On appelle orthogonal de A l'ensemble noté A^{\perp} , constitué des éléments de E orthogonaux à tous les éléments de A, ie

$$A^{\perp} = \{ x \in E \mid \forall a \in A, \langle a, x \rangle = 0 \}$$

Exemples

- 2) $*E^{\perp} = \{0_E\}$ car 0_E est le seul élément de E orthogonal à tous les autres. (savoir redémontrer)

Propriété : Soit $F = Vect(e_i)_{i \in I}$ un sev de E. Alors $F^{\perp} = \{x \in E \mid \forall i \in I, \langle x, e_i \rangle = 0\}$

<u>Démonstration</u>: \circledast Soit $x \in F^{\perp}$, alors $\forall y \in F, \langle x, y \rangle = 0$. Or $\forall i \in I, e_i \in F$, donc $\langle x, e_i \rangle = 0$

Ainsi $F^{\perp} \subset \{x \in E \mid \forall i \in I, \langle x, e_i \rangle = 0\}$

Réciproquement, soit $x \in E$ tel que $\forall i \in I, \langle x, e_i \rangle = 0$. Soit $y \in F = Vect(e_i)_{i \in I}$

Donc $\exists n \in \mathbb{N}^*, \exists \lambda_1, ..., \lambda_n \in \mathbb{K} \text{ et } \exists i_1, ..., i_n \in I \text{ tq } y = \sum_{k=1}^n \lambda_k e_{i_k}$

D'où
$$\langle x, y \rangle = \sum_{k=1}^{n} \lambda_k \left(\underbrace{x, e_{i_k}}_{=0} \right) = 0$$

Donc $x \in F^{\perp}$ d'où l'inégalité voulue.

<u>Théorème</u>: Soit F un sev de E de dimension finie. Soit $B=(e_1,\ldots,e_r)$ une base <u>orthonormée</u> de F. Alors pour tout $x\in E$, le projeté orthogonal $p_F(x)$ de x sur F vérifie :

$$p_F(x) = \sum_{k=1}^r \langle e_k, x \rangle e_k$$

Démonstration : **★**

Soit $x \in E$, comme $p_F(x) \in F$, et puisque B est une base orthonormée de F,

$$p_F(x) = \sum_{k=1}^r \langle e_k, p_F(x) \rangle e_k$$

Soit $k \in [1; r]$,

$$\langle e_k, x \rangle - \langle e_k, p_F(x) \rangle = \langle e_k, x - p_F(x) \rangle = \left(\underbrace{e_k}_{\in F}, \underbrace{p_{F^{\perp}}(x)}_{\in F^{\perp}} \right) = 0$$

Où $p_{F^{\perp}}$ désigne la projection orthogonale sur F^{\perp}

Ainsi $\langle e_k, x \rangle = \langle e_k, p_F(x) \rangle$

D'où $p_F(x) = \sum_{k=1}^r \langle e_k, x \rangle e_k$

<u>Théorème</u>: Soit F un sev de E tel que $E = F \oplus F^{\perp}$ (ceci est vrai en particulier quand dim $F < +\infty$) Alors $\forall x \in E$,

$$d(x,F) = ||x - p_F(x)|| = ||p_{F^{\perp}}(x)||$$

Ainsi la distance de x à F est un minimum. De plus, cette distance est uniquement atteinte en $p_F(x)$. C'est-à-dire $\exists ! y \in F$ tel que d(x,F) = ||x-y||, et $y = p_F(x)$

<u>Démonstration</u>: **★**

Soit $y \in F$,

$$||x - y||^2 = \left\| \underbrace{x - p_F(x)}_{\in F^{\perp}} + \underbrace{p_F(x) - y}_{\in F} \right\|^2$$

Ainsi $x - p_F(x)$ et $p_F(x) - y$ sont orthogonaux donc par l'identité de Pythagore :

$$||x - y||^2 = ||x - p_F(x)||^2 + ||p_F(x) - y||^2 \ge ||x - p_F(x)||^2$$

Alors par croissance de $t \mapsto \sqrt{t}$ sur \mathbb{R}_+ ,

$$\forall y \in F, ||x - y|| \ge ||x - p_F(x)||$$

Ainsi $||x - p_F(x)||$ est un minorant de $\{ ||x - y|| \mid y \in F \}$, et comme $p_F(x) \in F$, il appartient à cet ensemble.

Ainsi c'est un minimum.

De plus, par les calculs ci-dessus,

$$||x - y|| = ||x - p_F(x)|| \iff ||x - p_F(x)||^2 + ||p_F(x) - y||^2 = ||x - p_F(x)||^2$$

$$\iff ||p_F(x) - y|| = 0$$

$$\iff p_F(x) - y = 0_E$$

$$\iff y = p_F(x)$$