

INDIAN STATISTICAL INSTITUTE, KOLKATA

Assignment-I

Student : Snehashish Ghosh, CS2431

Teacher:

Prof. Malay Bhattacharyya

Contents

1	Question 1	2
2	Question 2	20

1 Question 1

```
import pandas as pd
 In [1]:
          import numpy as np
          import random
          import sklearn.datasets as datasets
          import sys
          sys.path.insert(1, '...')
          from check_data_consistency import DataConsistencyChecker
 In [2]: pd.options.display.max_columns = 1000
          pd.options.display.max_colwidth = 1000
          pd.options.display.max_rows = 1000
          pd.options.display.width = 10000
In [11]: data = datasets.fetch_california_housing()
          df = pd.read_csv("power consumption.csv") #https://www.kaggle.com/datasets/sauga
          df.head(2)
Out[11]:
                                                      general
                                               Wind
                                                              diffuse
             DateTime Temperature Humidity
                                                      diffuse
                                                                           Zone 1
                                                                                       Zone
                                               Speed
                                                                flows
                                                        flows
                01-01-
          0
                                               0.083
                                                        0.051
                 2017
                              6.559
                                         73.8
                                                                0.119 34055.69620 16128.8753
                 00:00
                01-01-
          1
                 2017
                              6.414
                                         74.5
                                               0.083
                                                        0.070
                                                                0.085 29814.68354 19375.0759
                 00:10
         dc = DataConsistencyChecker()
          dc.init_data(df)
In [13]: # Run a small set of tests to start. In this example, we run a single test.
          _ = dc.check_data_quality()
```

Executing test 0: MISSING VALUES Executing test 1: RARE_VALUES Executing test 2: UNIQUE_VALUES Executing test 3: PREV_VALUES_DT Executing test 4: MATCHED_MISSING Executing test 5: OPPOSITE_MISSING Executing test 6: SAME_VALUES Executing test 7: SAME OR CONSTANT Executing test 8: UNIQUE_PAIR Executing test 9: POSITIVE Executing test 10: NEGATIVE Executing test 11: NUMBER DECIMALS Executing test 12: RARE_DECIMALS Executing test 13: COLUMN_ORDERED_ASC Executing test 14: COLUMN_ORDERED_DESC Executing test 15: COLUMN_TENDS_ASC Executing test 16: COLUMN_TENDS_DESC Executing test 17: SIMILAR_PREVIOUS Executing test 18: UNUSUAL ORDER MAGNITUDE Executing test 19: FEW_NEIGHBORS Executing test 20: FEW_WITHIN_RANGE Executing test 21: VERY_SMALL Executing test 22: VERY_LARGE Executing test 23: VERY_SMALL_ABS Executing test 24: MULTIPLE_OF_CONSTANT Executing test 25: ROUNDING Executing test 26: NON_ZERO Executing test 27: LESS_THAN_ONE Executing test 28: GREATER_THAN_ONE Executing test 29: INVALID NUMBERS Executing test 30: LARGER_DIFF_RANGE Executing test 31: LARGER_SAME_RANGE Executing test 32: MUCH_LARGER Executing test 33: SIMILAR_WRT_RATIO Executing test 34: SIMILAR_WRT_DIFF Executing test 35: SIMILAR_TO_INVERSE Executing test 36: SIMILAR TO NEGATIVE Executing test 37: CONSTANT SUM Executing test 38: CONSTANT_DIFF Executing test 39: CONSTANT_PRODUCT Executing test 40: CONSTANT RATIO Executing test 41: EVEN_MULTIPLE Executing test 42: RARE_COMBINATION Executing test 43: CORRELATED NUMERIC Executing test 44: MATCHED ZERO Executing test 45: OPPOSITE_ZERO Executing test 46: RUNNING_SUM Executing test 47: A ROUNDED B Executing test 48: MATCHED ZERO MISSING Executing test 49: SIMILAR_TO_DIFF Executing test 50: SIMILAR_TO_PRODUCT Executing test 51: SIMILAR TO RATIO Executing test 52: LARGER THAN SUM Executing test 53: SUM_OF_COLUMNS Executing test 54: MEAN OF COLUMNS Executing test 55: MIN OF COLUMNS Executing test 56: MAX_OF_COLUMNS Executing test 57: MATCHED_SET_POS_NEG Executing test 58: MATCHED_SET_ZERO_NON_ZERO Executing test 59: DECISION TREE REGRESSOR

```
Executing test 60: LINEAR REGRESSION
Executing test 61: PREDICT_NULL_DT
Executing test 62: EARLY_DATES
Executing test 63: LATE_DATES
Executing test 64: UNUSUAL_DAY_OF_WEEK
Executing test 65: UNUSUAL_DAY_OF_MONTH
Executing test 66: UNUSUAL_MONTH
Executing test 67: UNUSUAL HOUR
Executing test 68: UNUSUAL_MINUTES
Executing test 69: CONSTANT_DOM
Executing test 70: CONSTANT_LAST_DOM
Executing test 71: CONSTANT GAP
Executing test 72: LARGE_GAP
Executing test 73: SMALL_GAP
Executing test 74: LATER
Executing test 75: SAME_DATE
Executing test 76: SAME_MONTH
Executing test 77: CORRELATED_DATES
Executing test 78: LARGE GIVEN DATE
Executing test 79: SMALL_GIVEN_DATE
Executing test 80: BINARY_SAME
Executing test 81: BINARY_OPPOSITE
Executing test 82: BINARY_IMPLIES
Executing test 83: BINARY_AND
Executing test 84: BINARY_OR
Executing test 85: BINARY XOR
Executing test 86: BINARY NUM SAME
Executing test 87: BINARY_RARE_COMBINATION
Executing test 88: BINARY_MATCHES_VALUES
Executing test 89: BINARY TWO OTHERS MATCH
Executing test 90: BINARY_MATCHES_SUM
Executing test 91: BLANK_VALUES
Executing test 92: LEADING_WHITESPACE
Executing test 93: TRAILING_WHITESPACE
Executing test 94: FIRST CHAR ALPHA
Executing test 95: FIRST_CHAR_NUMERIC
Executing test 96: FIRST CHAR SMALL SET
Executing test 97: FIRST CHAR UPPERCASE
Executing test 98: FIRST_CHAR_LOWERCASE
Executing test 99: LAST_CHAR_SMALL_SET
Executing test 100: COMMON SPECIAL CHARS
Executing test 101: COMMON CHARS
Executing test 102: NUMBER ALPHA CHARS
Executing test 103: NUMBER NUMERIC CHARS
Executing test 104: NUMBER ALPHANUMERIC CHARS
Executing test 105: NUMBER NON-ALPHANUMERIC CHARS
Executing test 106: NUMBER CHARS
Executing test 107: NONPRINTABLE CHARS
Executing test 108: MANY CHARS
Executing test 109: FEW CHARS
Executing test 110: POSITION_NON-ALPHANUMERIC
Executing test 111: CHARS PATTERN
Executing test 112: UPPERCASE
Executing test 113: LOWERCASE
Executing test 114: CHARACTERS USED
Executing test 115: FIRST WORD SMALL SET
Executing test 116: LAST WORD SMALL SET
Executing test 117: NUMBER WORDS
Executing test 118: LONGEST_WORDS
Executing test 119: COMMON WORDS
```

```
Executing test 120: RARE WORDS
       Executing test 121: GROUPED_STRINGS
       Executing test 122: RARE_PAIRS
       Executing test 123: RARE_PAIRS_FIRST_CHAR
       Executing test 124: RARE_PAIRS_FIRST_WORD
        Executing test 125: RARE PAIRS FIRST WORD VAL
        Executing test 126: SIMILAR_CHARACTERS
        Executing test 127: SIMILAR NUM CHARS
        Executing test 128: SIMILAR_WORDS
        Executing test 129: SIMILAR_NUM_WORDS
        Executing test 130: SAME_FIRST_CHARS
        Executing test 131: SAME FIRST WORD
        Executing test 132: SAME_LAST_WORD
        Executing test 133: SAME_ALPHA_CHARS
        Executing test 134: SAME_NUMERIC_CHARS
        Executing test 135: SAME_SPECIAL_CHARS
        Executing test 136: A_PREFIX_OF_B
       Executing test 137: A_SUFFIX_OF_B
        Executing test 138: B CONTAINS A
       Executing test 139: CORRELATED_ALPHA_ORDER
        Executing test 140: LARGE_GIVEN_VALUE
        Executing test 141: SMALL_GIVEN_VALUE
        Executing test 142: LARGE_GIVEN_PREFIX
        Executing test 143: SMALL GIVEN PREFIX
        Executing test 144: GROUPED_STRINGS_BY_NUMERIC
        Executing test 145: LARGE_GIVEN_PAIR
        Executing test 146: SMALL_GIVEN_PAIR
        Executing test 147: CORRELATED_GIVEN_VALUE
        Executing test 148: DECISION_TREE_CLASSIFIER
        Executing test 149: C IS A OR B
        Executing test 150: TWO_PAIRS
        Executing test 151: UNIQUE_SETS_VALUES
        Executing test 152: MISSING_VALUES_PER_ROW
        Executing test 153: ZERO_VALUES_PER_ROW
        Executing test 154: UNIQUE VALUES PER ROW
        Executing test 155: NEGATIVE VALUES PER ROW
        Executing test 156: SMALL AVG RANK PER ROW
        Executing test 157: LARGE_AVG_RANK_PER_ROW
       Data consistency check complete.
       Analysed 52,416 rows, 9 columns
       Executed 158 tests.
       Patterns without Exceptions:
       Found 45 patterns without exceptions
       11 tests (6.96% of tests) identified at least one pattern without exceptions eac
       h.
       By default some patterns are not listed in calls to display detailed results().
       Patterns with Exceptions:
       Found 9 patterns with exceptions
       4 tests (2.53% of tests) flagged at least one exception each.
       Flagged 611 row(s) with at least one exception.
       Flagged 7 column(s) with at least one exception.
In [14]: # In the next few cells, we look at the output of the tests.
         dc.summarize patterns and exceptions()
```

Out[14]: **Number Patterns without Number Patterns with** Test ID **Exceptions Exceptions** MISSING VALUES 0 9 1 UNIQUE_VALUES 2 UNIQUE_PAIR 3 **POSITIVE** 7 4 NUMBER DECIMALS 5 COLUMN_ORDERED_ASC 6 COLUMN_TENDS_ASC 1 7 SIMILAR_PREVIOUS 5 8 FEW_WITHIN_RANGE 1 9 NON_ZERO 10 GREATER_THAN_ONE 5 11 LARGER_DIFF_RANGE 2 12 MISSING_VALUES_PER_ROW 1 13 NEGATIVE_VALUES_PER_ROW In [15]: # Run a small set of tests to start. In this example, we run a single test. _ = dc.check_data_quality(execute_list=['SIMILAR_PREVIOUS']) Executing test 17: SIMILAR_PREVIOUS Data consistency check complete. Analysed 52,416 rows, 9 columns Executed 1 tests. Patterns without Exceptions: Found 3 patterns without exceptions 1 tests (100.00% of tests) identified at least one pattern without exceptions eac By default some patterns are not listed in calls to display detailed results(). Patterns with Exceptions: Found 5 patterns with exceptions 1 tests (100.00% of tests) flagged at least one exception each. Flagged 165 row(s) with at least one exception. Flagged 5 column(s) with at least one exception.

Patterns List (short list only)

In [16]: dc.quick_report()

	Test ID	Column(s)	Description of Pattern	Pattern ID
0	SIMILAR_PREVIOUS	Temperature	The values in "Temperature" are consistently similar to the previous value, more so than they are si	0
1	SIMILAR_PREVIOUS	Zone 3	The values in "Zone 3 " are consistently similar to the previous value, more so than they are simil	1
2	SIMILAR_PREVIOUS	DateTime	The values in "DateTime" are consistently similar to the previous value, more so than they are simil	2

Patterns by Test and Feature

Exceptions List

	Test ID	Column(s)	Description of Pattern	Number of Exceptions	Issue ID
0	SIMILAR_PREVIOUS	Humidity	The values in "Humidity" are consistently similar to the previous value, more so than they are simil	2	0
1	SIMILAR_PREVIOUS	Wind Speed	The values in "Wind Speed" are consistently similar to the previous value, more so than they are sim	1	1
2	SIMILAR_PREVIOUS	general diffuse flows	The values in "general diffuse flows" are consistently similar to the previous value, more so than t	160	2
3	SIMILAR_PREVIOUS	Zone 1	The values in "Zone 1" are consistently similar to the previous value, more so than they are similar	1	3
4	SIMILAR_PREVIOUS	Zone 2	The values in "Zone 2 " are consistently similar to the previous value, more so than they are simil	1	4

Exceptions Summary by Test and Feature

	DateTime	Temperature	Humidity	Wind Speed	general diffuse flows	diffuse flows	Zone 1	Z
Test ID								
SIMILAR_PREVIOUS			2	1	160		1	
4								•

Exceptions Summary by Test

	Number of Columns Flagged At Least Once	e Number of Issues Total	
Test ID			
SIMILAR PREVIOUS	5	165	

Summary of Patterns and Exceptions (all tests)

Test ID	Number Patterns without Exceptions	Number Patterns with Exceptions
SIMILAR PREVIOUS	3	5

Final Scores by Row of the Data

Distribution of Scores by Row, ordered lowest to highest scores

Final Scores by Feature

Final Scores by Test

Columns(s): Humidity

Issue ID: 0

A strong pattern, and exceptions to the pattern, were found.

Description: The values in "Humidity" are consistently similar to the previous value, more so that similar to the median value of the column (69.86), with exceptions.

→

Number of exceptions: 2 (0.0038% of rows)

Examples of values NOT flagged (showing a consecutive set of rows):

	Humidity
30403	67.660000
30404	67.860000
30405	67.800000
30406	67.200000
30407	66.930000
30408	66.970000
30409	66.730000
30410	66.530000
30411	66.370000
30412	65.400000

Flagged values:

	Humidity
29219	36.810000
48096	55.770000

Showing a flagged example (row 29219) with 5 rows before and 5 rows after (if available) the fla

Columns(s): Wind Speed

Issue ID: 1

A strong pattern, and exceptions to the pattern, were found.

Description: The values in "Wind Speed" are consistently similar to the previous value, more so similar to the median value of the column (0.086), with exceptions.

Examples of values NOT flagged (showing a consecutive set of rows):

	Wind Speed
32103	4.907000
32104	4.909000
32105	4.908000
32106	4.903000
32107	4.907000
32108	4.908000
32109	4.910000
32110	4.912000
32111	4.908000
32112	4.903000

Flagged values:

	Wind Speed	
18499	4.917000	

Showing a flagged example (row 18499) with 5 rows before and 5 rows after (if available) the fla

	Wind Speed
18494	0.069000
18495	0.068000
18496	0.067000
18497	0.067000
18498	0.070000
18499	4.917000
18500	4.916000
18501	4.918000
18502	4.924000
18503	4.922000

Columns(s): general diffuse flows

Issue ID: 2

A strong pattern, and exceptions to the pattern, were found.

Description: The values in "general diffuse flows" are consistently similar to the previous value, they are similar to the median value of the column (5.0355), with exceptions.

Number of exceptions: 160 (0.3053% of rows)

Examples of values NOT flagged (showing a consecutive set of rows):

general diffuse flows

186.000000
204.600000
133.300000
130.200000
147.900000
106.400000
108.700000
112.400000
125.600000
235.600000

Examples of flagged values:

	general diffuse flows
2100	547.100000
2529	679.100000
2672	585.200000
2814	157.800000
4692	702.000000
4695	233.100000
4818	259.300000
4832	613.800000
4837	172.200000
4976	674.200000

Showing a flagged example (row 2100) with 5 rows before and 5 rows after (if available) the flag

	general diffuse flows
2095	491.600000
2096	513.200000
2097	428.400000
2098	311.200000
2099	206.200000
2100	547.100000
2101	530.700000
2102	441.000000
2103	461.600000
2104	455.900000

Columns(s): Zone 1

Issue ID: 3

A strong pattern, and exceptions to the pattern, were found.

Description: The values in "Zone 1" are consistently similar to the previous value, more so than to the median value of the column (32265.92034), with exceptions.

Number of exceptions: 1 (0.0019% of rows)

Examples of values NOT flagged (showing a consecutive set of rows):

	Zone 1
20757	26137.180330
20758	25835.016390
20759	25457.311480
20760	25432.131150
20761	25344.000000
20762	24953.704920
20763	24500.459020
20764	23568.786890
20765	22511.213110
20766	21856.524590

Flagged values:

Zone 1 15769 16814.983850

Showing a flagged example (row 15769) with 5 rows before and 5 rows after (if available) the fla

Columns(s): Zone 2

Issue ID: 4

A strong pattern, and exceptions to the pattern, were found.

Description: The values in "Zone 2" are consistently similar to the previous value, more so thar similar to the median value of the column (20823.168404999997), with exceptions.

Examples of values NOT flagged (showing a consecutive set of rows):

	Zone 2
46884	24809.504130
46885	25077.272730
46886	24723.966940
46887	23347.933880
46888	23704.958680
46889	24422.727270
46890	25073.553720
46891	24861.570250
46892	24686.776860
46893	24207.024790

Flagged values:

	Zone 2
49602	18244.860390

Showing a flagged example (row 49602) with 5 rows before and 5 rows after (if available) the fla

-		
Z 0	ne	_

49597	24375.575330
49598	24710.647440
49599	24957.348880
49600	25656.949980
49601	26058.300090
49602	18244.860390
49603	22781.221230
49604	25704.817430
49605	25940.472540
49606	26260.816200

2 Question 2

Suppose there exists a pair of relations R1(W,X,Y) and R2(X,Y,Z) having t1 > 0 and t2 > 0 tuples, respectively. Consider that W, X, Y and Z take integer values only. Without making any further assumptions, find out the minimum and maximum possible number of tuples that may appear in the resulting relations provided by the following operations.

(i)
$$(R_1 \cup R_1) \bowtie (R_2 \cap R_2)$$

 $R_1 \cup R_1 = R_1$ and $R_2 \cap R_2 = R_2$. Therefore, minimum and maximum number of tuples $= R_1 \bowtie R_2$.

Minimum: 0 (when no tuples from R_1 match tuples from R_2 on the common attributes X, Y)

Maximum: $t_1 \times t_2$ (when all tuples in R_1 match all tuples in R_2 , i.e., X, Y values are identical across both relations)

(ii)
$$\pi_{X,Y}(R_1) - \pi_{X,Y}(R_2)$$

Minimum: 0 (when $\pi_{X,Y}(R_1) \subseteq \pi_{X,Y}(R_2)$, so the difference is empty)

Maximum: t_1 (when there is no overlap between $\pi_{X,Y}(R_1)$ and $\pi_{X,Y}(R_2)$, so all tuples in $\pi_{X,Y}(R_1)$ remain)

(iii)
$$(R_1 - R_2) \bowtie (R_2 - R_1)$$

The attribute set of the relations is unequal therefore $(R_1 - R_2)$ and $(R_2 - R_1)$ is invalid.

Minimum: invalid Maximum: invalid

(iv)
$$R_1 \div (\pi_{X,Y}(R_1) \cap \pi_{X,Y}(R_2))$$

Minimum: 0 (If none of the distinct W-values in R_1 are associated with every tuple in the common part $\pi_{X,Y}(R_1) \cap \pi_{X,Y}(R_2)$, the result is empty.)

Maximum: t_1 (If all distinct W-values in R_1 are associated with every tuple in the common part $\pi_{X,Y}(R_1) \cap \pi_{X,Y}(R_2)$, all W-values are included in the result.)