Math XXXX – Independent Study: Manifolds– Summer 2025 w/Professor Berchenko-Kogan

 $\begin{array}{c} {\rm Paul~Carmody} \\ {\it Basic~Category~Theory-Tom~Leinster-August,~2025} \end{array}$

Chapter 1

Categories, Functors, and Natural Transformations

1.1 Categories

1.1.1 Exercises

- 1.1.12 Find three examples of categories not mentioned above.
- 1.1.13 Show that a map in a category can have at most one inverse. That is, given a map $f: A \to B$ there is at most one map $g: B \to A$ such that $gf = \mathbb{I}_A$ and $fg = \mathbb{I}_B$.
- 1.1.14 Let \mathscr{A} and \mathscr{B} be categories. Construct 1.1.11 defined by the product category $\mathscr{A} \times \mathscr{B}$, except that the definitions of composition and identities in $\mathscr{A} \times \mathscr{B}$ are not given. There is only one sensible way to define the: write it down.
- 1.1.15 There is a category call **Toph** whose objects are topological spaces and whose maps $X \to Y$ are homotopy classes of continuous maps X to Y. What do we need to know about homotopy in order to prove that **Toph** is a category? What does it mean in pure topological terms for two objects of **Toph** to be isomorphic?