Comparison of vestibular input statistics during natural activities and while piloting an aircraft

Running title: Vestibular inputs in natural activities and while piloting

Authors: Roques, A.^{1,2,3}, James, Y³, Bargiotas, I.¹, Keriven Serpollet D.¹, Vayatis, N.¹, Vidal, P.-P. ^{4,1*}.

¹Centre Borelli, CNRS, SSA, INSERM, Université Paris Saclay, ENS Paris Saclay, Université Paris Cité, 75006 Paris, France

²Laboratoire GBCM, EA7528, CNAM, Hesam Université, 75003 Paris, France

³Thales AVS, 95520 Osny, France

⁴Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China

Figure 2: Statistics of vestibular stimuli

Figure 2: A: Ten seconds excerpts of the angular velocity signals in the three planes of the semicircular canals in the manual navigation task (red), self-navigation task (blue) and during seated visual exploration (orange). Each signal corresponds to a single participant. B: Boxplot of the population-averaged angular velocity signals projected in the three planes of the semicircular canals in the three experiments. Boxes and whiskers correspond to respectively 75% and 95% of the data. Outliers are not represented. C: Population-averaged probability density functions for the LARP, RALP and YAW head-velocity signals in the manual navigation task (red), self-navigation task (blue) and during seated visual exploration (orange) with corresponding SD (shaded areas). Inset: Population-averaged excess kurtosis values. The error bars represent the 95% confidence interval.