MODEL STRUCTURES

Contents

1.	Preliminaries	1
2.	Topological Spaces	4

1. Preliminaries

Definition 1.1 (Hovey Definition 2.1.1). Suppose \mathcal{C} is a cocomplete category, and λ is an ordinal. A λ -sequence in \mathcal{C} is a colimit-preserving functor $X:\lambda\to\mathcal{C}$, commonly written as

$$X_0 \to X_1 \to \cdots \to X_\beta \to \cdots$$
.

Since X preserves colimits, for all limit ordinals $\gamma < \lambda$, the induced map

$$\operatorname{colim}_{\beta<\lambda}X_{\beta}\to X_{\gamma}$$

is an isomorphism. We refer to the map $X_0 \to \operatorname{colim}_{\beta < \lambda} X_{\beta}$ as the *composition* of the λ -sequence. Given a collection \mathcal{D} of morphisms in \mathcal{C} such that every map $X_{\beta} \to X_{\beta+1}$ for $\beta+1 < \lambda$ is in \mathcal{D} , we refer to the composition $X_0 \to \operatorname{colim}_{\beta < \lambda} X_{\beta}$ as a *transfinite composition* of maps in \mathcal{D} .

Definition 1.2 (Hovey Definition 2.1.2). Let γ be a cardinal. An ordinal α is γ -filtered if it is a limit ordinal and, if $A \subseteq \alpha$ and $|A| \le \gamma$, then $\sup A < \alpha$.

Given a cardinal γ , a γ -filtered category is one such that any diagram $\mathcal{D} \to \mathcal{C}$ has a cocone where \mathcal{D} has $<\gamma$ arrows. A category is just "filtered" if it is ω -filtered, i.e., if every finite diagram in \mathcal{C} admits a cocone. Note that an ordinal α is γ -filtered precisely when it is γ -filtered as a category, and in particular every ordinal is ω -filtered.

Definition 1.3 (Hovey Definition 2.1.3). Suppose \mathcal{C} is a comcomplete category, $\mathcal{D} \subseteq \mathrm{Mor}\,\mathcal{C}$ is some collection of morphisms of \mathcal{C} , A is an object of \mathcal{C} , and κ is a cardinal. We say that A is κ -small relative to \mathcal{D} if, for all κ -filtered ordinals λ and all λ -sequences

$$X_0 \to X_1 \to \cdots \to X_\beta \to \cdots$$

such that each map $X_{\beta} \to X_{\beta+1}$ is in \mathcal{D} for $\beta+1 < \lambda$, the map of sets

$$\operatorname{colim}_{\beta < \lambda} \mathcal{C}(A, X_{\beta}) \to \mathcal{C}(A, \operatorname{colim}_{\beta < \lambda} X_{\beta})$$

is an isomorphism. We say that A is *small relative to* \mathcal{D} if it is κ -small relative to \mathcal{D} for some κ . We say that A is *small* if it is small relative to \mathcal{C} itself.

Recall that given a small category \mathcal{D} and a functor $F:\mathcal{D}\to\operatorname{Set}$, we may explicitly construct the colimit of F as the set

$$\operatorname{colim} F := \left(\coprod_{d \in \mathcal{D}} F(d)\right) / \sim,$$

where the equivalence relation \sim is **generated** by

$$((x \in F(d)) \sim (x' \in F(d')))$$
 if $(\exists (f : d \to d') \text{ with } Ff(x) = x').$

In particular, if \mathcal{D} is a filtered category then the resulting relation can be described as follows:

(1)
$$((x \in F(d)) \sim (x' \in F(d')))$$
 iff $(\exists d'', (f : d \to d''), (g : d' \to d'') \text{ with } Ff(x) = Fg(x')).$

Date: February 7, 2023.

given a cone $\eta: F \Rightarrow \underline{Y}$ under F, the unique map colim $F \to Y$ maps the equivalence class of $x \in F(d)$ to the element $\eta_d(x) \in X$. We will use this characterization of the colimit in the following example.

Example 1.4 (Hovey 2.1.5). Every set is small. Indeed, if A is a set we claim that A is |A|-small. To see this, suppose λ is an |A|-filtered ordinal, and X is a λ -sequence of sets. Given $\alpha < \beta < \lambda$, let $\iota_{\alpha,\beta} : X_{\alpha} \to X_{\beta}$ denote the induced morphism. We will write $X_{\lambda} := \operatorname{colim}_{\beta < \lambda} X_{\beta}$, and let $\iota : X \Rightarrow X_{\lambda}$ be the colimit cone, so that given $\beta < \lambda$, $\iota_{\beta} : X_{\beta} \to X_{\lambda}$ is the leg of the colimit cone at X_{β} . By composing with the functor $\mathfrak{C}(A,-): \operatorname{Set} \to \operatorname{Set}$, we get another λ -sequence $\{\mathfrak{C}(X_{\beta},A)\}_{\beta < \lambda}$. The cone ι under X induces a cone ι_* under $\mathfrak{C}(X_{\beta},A)$ with nadir $\mathfrak{C}(A,X_{\lambda})$. Let $\eta : \mathfrak{C}(X_{\beta},A) \Rightarrow \operatorname{colim}_{\beta < \lambda} \mathfrak{C}(X_{\beta},A)$ be the colimit cone, and let $\ell : \operatorname{colim}_{\beta < \lambda} \mathfrak{C}(A,X_{\lambda}) \to \mathfrak{C}(A,X_{\lambda})$ be the unique morphism of cones so that the following diagram commutes

First, we wish to show that ℓ is surjective. Indeed, let $f: A \to X_{\lambda}$. For each $a \in A$, there exists some $\beta_a \in \lambda$ and some $a' \in X_{\beta_a}$ such that $f(a) = \eta_{\beta_a}(a')$ (see the preceding discussion). Then let $\gamma := \sup_{a \in A} \beta_a$. Since $|\{\beta_a\}_{a \in A}| \leq |A|$ and λ is |A|-filtered, necessarily $\gamma < \lambda$. Now, define $g: A \to X_{\gamma}$ like so: for $a \in A$, define $g(a) := \iota_{\beta_a,\gamma}(a')$, where $a' \in X_{\beta_a}$ was chosen earlier so that $\iota_{\beta_a}(a') = f(a)$. Then we claim that $\ell(\eta_{\gamma}(g)) = f$. Indeed, as ℓ is a morphism of cocones, $\ell \circ \eta = \iota_*$, so that we have

$$\ell(\eta_{\gamma}(g)) = (\iota_{\gamma})_{*}(g) = \iota_{\gamma} \circ g,$$

and given $a \in A$ we have

$$\iota_{\gamma}(g(a)) = \iota_{\gamma}(\iota_{\beta_a,\gamma}(a')).$$

By definition of a cone, $\iota_{\gamma} \circ \iota_{\beta_a,\gamma} = \iota_{\beta_a}$, so that

$$\ell(\eta_{\gamma}(g))(a) = \iota_{\gamma}(\iota_{\beta_{a},\gamma}(a')) = \iota_{\beta_{a}}(a') = f(a),$$

so that indeed $\ell(\eta_{\gamma}(g)) = f$.

It remains to show ℓ is injective. Suppose we are given $[f], [g] \in \operatorname{colim}_{\beta < \lambda} \mathbb{C}(A, X_{\beta})$ such that $\ell([f]) = \ell([g])$. Then by the preceding discussion, there exists $\alpha, \beta < \lambda$, $f \in \mathbb{C}(A, X_{\alpha})$, and $g \in \mathbb{C}(A, X_{\beta})$ such that $\eta_{\alpha}(f) = [f]$ and $\eta_{\beta}(g) = [g]$. Then since $\ell \circ \eta = \iota_*$, we have

$$\ell([f]) = \ell([g]) \implies \iota_{\alpha} \circ f = (\iota_{\alpha})_{*}(f) = \ell(\eta_{\alpha}(f)) = \ell(\eta_{\beta}(g)) = (\iota_{\beta})_{*}(g) = \iota_{\beta} \circ g.$$

For each $a \in A$, since $\iota_{\alpha}(f(a)) = \iota_{\beta}(g(a))$, by Equation 1 there exists γ_a with $\alpha, \beta \leq \gamma_a$ such that $\iota_{\alpha,\gamma_a}(f(a)) = \iota_{\beta,\gamma_a}(g(a))$. Then let $\gamma := \sup_{a \in A} \gamma_a$. Since $|\{\gamma_a\}_{a \in A}| \leq |A|$ and λ is |A|-filtered, necessarily $\gamma < \lambda$. Now, in order to show [f] = [g], by Equation 1 it suffices to show that $(\iota_{\alpha,\gamma})_*(f) = (\iota_{\beta,\gamma})_*(g)$. Indeed, given $a \in A$, we have

$$(\iota_{\alpha,\gamma})_*(f)(a) = \iota_{\alpha,\gamma}(f(a)) = \iota_{\gamma_{\alpha},\gamma} \circ \iota_{\alpha,\gamma_{\alpha}}(f(a)) = \iota_{\gamma_{\alpha},\gamma} \circ \iota_{\beta,\gamma_{\alpha}}(g(a)) = \iota_{\beta,\gamma}(g(a)) = (\iota_{\beta,\gamma})_*(g)(a),$$

precisely the desired result..

Definition 1.5 (Hovey Definition 2.1.7). Let I be a class of maps in a category \mathcal{C} .

- (1) A map is *I-injective* if it has the right lifting property w.r.t. every map in *I*. The class of *I*-injective maps is denoted *I*-inj (or I_{\perp}).
- (2) A map is *I-projective* if it has the left lifting property w.r.t. every map in *I*. The class of *I*-projective maps is denoted *I*-proj (or $_{\perp}I$).
- (3) A map is an *I-cofibration* if it has the left lifting property w.r.t. every *I*-injective map. The class of *I*-cofibrations is the class (*I*-inj)-proj and is denoted *I*-cof (or $_{\perp}(I_{\perp})$).

(4) A map is an *I-fibration* if it has the right lifting property w.r.t. every *I*-projective map. The class of *I*-fibrations is the class (*I*-proj)-inj and is denoted *I*-fib (or $(_{\perp}I)_{\perp}$).

Definition 1.6 (Hovey Definition 2.1.9). Let I be a set of maps in a cocomplete category \mathbb{C} . A relative I-cell complex is a transfinite composition of pushouts of elements of I. That is, if $f: A \to B$ is a relative I-cell complex, then there is an ordinal λ and a λ -sequence $X: \lambda \to \mathbb{C}$ such that f is the composition of X and such that, for each β such that $\beta + 1 < \lambda$, there is a pushout square

$$\begin{array}{ccc}
C_{\beta} & \longrightarrow X_{\beta} \\
g_{\beta} \downarrow & & \downarrow \\
D_{\beta} & \longrightarrow X_{\beta+1}
\end{array}$$

with $g_{\beta} \in I$. We denote the collection of relative *I*-cell complexes by *I*-cell. We say that $A \in \mathcal{C}$ is an *I*-cell complex if the map $0 \to A$ is a relative *I*-cell complex.

Lemma 1.7 (Hovey 2.1.10). Suppose I is a class of maps in a category \mathbb{C} with all small colimits. Then $I\text{-cell} \subseteq I\text{-cof}$.

Definition 1.8 (Hovey Definition 2.1.17). Suppose \mathfrak{C} is a model category. We say that \mathfrak{C} is *cofibrantly generated* if there are sets I and J of maps such that:

- 1. The domains of the maps of I are small relative to I-cell;
- 2. The domains of the maps of J are small relative to J-cell;
- 3. The class of fibrations is J-inj; and
- 4. The class of trivial fibrations is I-inj.

We refer to I as the set of generating cofibrations and to J as the set of generating trivial cofibrations. A cofibrantly generated model category is finitely generated if we can choose the sets I and J above so that the domains and codomains of I and J are finite relative to I-cell.

Proposition 1.9 (Hovey Proposition 2.1.18). Suppose \mathfrak{C} is a cofibrantly generated model category, with generating cofibrations I and generating trivial fibrations J.

- (a) The cofibrations form the class I-cof.
- (b) Every cofibration is a retract of a relative I-cell complex.
- (c) The domains of I are small relative to the cofibrations.
- (d) The trivial cofibrations form the class J-cof.
- (e) Every trivial cofibration is a retract of a relative J-cell complex.
- (f) The domains of J are small relative to the trivial cofibrations.

If C is fibrantly generated, then the domains and codomains of I and J are finite relative to the cofibrations.

Proof. TODO.

Theorem 1.10 (Hovey Theorem 2.1.19). Suppose \mathcal{C} is a complete \mathcal{E} cocomplete category. Suppose \mathcal{W} is a subcategory of \mathcal{C} , and I and J are sets of maps of \mathcal{C} . Then there is a cofibrantly generated model structure on \mathcal{C} with I as the set of generating cofibrations, J as the set of generating trivial fibrations, and \mathcal{W} as the subcategory of weak equivalences if and only if the following conditions are satisfied.

- 1. The subcategory W has the 2-of-3 property and is closed under retracts.
- 2. The domains of I are small relative to I-cell.
- 3. The domains of J are small relative to J-cell.
- 4. J-cell $\subseteq W \cap I$ -cof.
- 5. I-inj $\subseteq W \cap J$ -inj.
- 6. Either $W \cap I$ -cof $\subseteq J$ -cof or $W \cap J$ -inj $\subseteq I$ -inj.

Proof. TODO.

Definition 1.11. Let \mathcal{C} be a category and I a collection of morphisms in \mathcal{C} . Then if I is closed under transfinite composition, pushouts, and retracts then we say I is saturated.

2. Topological Spaces

An injective map $f: X \to Y$ in **Top** is an *inclusion* if U is open in X if and only if there is a V open in Y such that $f^{-1}(V) = U$. If f is a closed inclusion and every point in $Y \setminus f(X)$ is closed, then we call f a closed T_1 inclusion. We will let \mathcal{T} denote the class of closed T_1 inclusions in **Top**.

The symbol D^n will denote the unit disk in \mathbb{R}^n , and the symbol S^{n-1} will denote the unit sphere in \mathbb{R}^n , so that we have the boundary inclusions $S^{n-1} \hookrightarrow D^n$. In particular, for n = 0 we let $D^0 = \{0\}$ and $S^{-1} = \emptyset$.

Definition 2.1. A map $f: X \to Y$ in **Top** is called a *weak equivalence* if

$$\pi_n(f,x):\pi_n(X,x)\to\pi_n(Y,f(x))$$

is an isomorphism for all $n \geq 0$ and for all $x \in X$. We will write \mathcal{W} to refer to the class of all weak equivalences in **Top**.

Define the set of maps I' to consist of all the boundary inclusion $S^{n-1} \hookrightarrow D^n$ for all $n \geq 0$, and define the set J to consist of all the inclusions $D^n \hookrightarrow D^n \times I$ mapping $x \mapsto (x,0)$ for $n \geq 0$. Then a map f will be called a *cofibration* if it is in I'-cof = ${}_{\perp}(I'_{\perp})$, and a *fibration* if it is in J-inj = J_{\perp} .

A map in I'-cell is usually called a relative cell complex; a relative CW-complex is a special case of a relative cell complex, where, in particular, the cells can be attached in order of their dimension. Note that in particular maps of J are relative CW complexes, hence are relative I-cell complexes. A fibration is often known as a Serre fibration in the literature.

Theorem 2.2 (Hovey Theorem 2.4.19). There is a finitely generated model structure on **Top** with I' as the set of generating cofibrations, J as the set of generating trivial cofibrations, and the cofibrations, fibrations, and weak equivalences as above. Every object of **Top** is fibrant, and the cofibrant objects are retracts of relative cell complexes.

Proof. We will apply Theorem 1.10 to get that there is a cofibrantly generated model structure on **Top** with I' as the set of generating cofibrations, J as the set of generating trivial fibrations, and W as the subcategory of weak equivalences. The six requirements outlined in the theorem will be verified like so:

- 1. W is a subcategory of C which has the 2-of-3 property and is closed under retracts: Lemma 2.6.
- 2. The domains of I' are small relative to I'-cell: In Lemma 2.3, we will show that every space is small relative to the inclusions, and in particular every space is small relative to the class \mathcal{T} of closed T_1 inclusions. Hence, it will suffice to show that I'-cell $\subseteq \mathcal{T}$. In Proposition 2.5, we will show that \mathcal{T} is saturated, and clearly every map in I' is a closed T_1 inclusion, so the desired result follows.
- 3. The domains of J are small relative to J-cell: By the same argument given above, this will follow by Lemma 2.3, Proposition 2.5, and the fact that $J \subseteq \mathfrak{I}$.
- 4. J-cell $\subseteq W \cap I'$ -cof: In Proposition 2.7, we will show J-cof $\subseteq W \cap I'$ -cof, and by Lemma 1.7 J-cell $\subseteq J$ -cof.
- 5. I'-inj $\subseteq \mathcal{W} \cap J$ -inj: Proposition 2.8
- 6. $\mathcal{W} \cap J$ -inj $\subseteq I'$ -inj: Proposition 2.9

It will follow by the definition of a cofibrantly generated model structure (Definition 1.8) that the fibrations in this model structure are given by J-inj, which is precisely how we defined it. By Proposition 1.9, the class of cofibrations will be given by I'-cof, which is likewise exactly how we defined them.

In Proposition 2.4, we will show that compact spaces are finite relative to the class \mathcal{T} of closed T_1 inclusions. Hence, this model structure will be finitely generated, as the domains and codomains of I' and J are all compact, and by the reasoning given above we will have shown I'-cell $\subset \mathcal{T}$.

We will show that every object of **Top** is fibrant in Corollary 2.10. Finally, to see that cofibrant objects are retracts of relative cell complexes, FINISH □

Lemma 2.3 (Hovey 2.4.1). Every topological space is small relative to the inclusions.

Proof. As with the case of sets, we claim that every topological space X is |X|-small.

Proposition 2.4 (Hovey 2.4.2). Compact topological spaces are finite relative to the class \mathfrak{T} of closed T_1 inclusions.

Proof. TODO.

Proposition 2.5 (Hovey 2.4.5 & 2.4.6). The class of closed T_1 inclusions is saturated.

Lemma 2.6 (Hovey Lemma 2.4.4). The weak equivalences in **Top** are closed under retracts and satisfy 2-of-3 axiom (so that in particular the weak equivalences form a subcategory, as clearly identities are weak equivalences).

Proof. First we show that weak equivalences satisfy 2-of-3. Let $f: X \to Y$ and $g: Y \to Z$ be continuous functions of topological spaces.

First of all, suppose f and g are both weak equivalences. Then by functoriality of π_n , since $\pi_n(f,x)$ and $\pi_n(g,f(x))$ are isomorphisms for all $x \in X$, $\pi_n(g \circ f,x) = \pi_n(g,f(x)) \circ \pi_n(f,x)$ is likewise an isomorphism for all $x \in X$, so that $g \circ f$ is a weak equivalence.

Now, suppose that $g \circ f$ and g are weak equivalences. Pick a point $x \in X$. We wish to show that $\pi_n(f,x): \pi_n(X,x) \to \pi_n(Y,f(x))$ is an isomorphism for all $n \geq 0$. We know that $\pi_n(g \circ f,x)$ is an isomorphism, and $\pi_n(g,f(x))$ is an isomorphism, say with inverse, φ , so that

$$\varphi \circ \pi_n(g \circ f, x) = \varphi \circ \pi_n(g, f(x)) \circ \pi_n(f, x) = \pi_n(f, x)$$

is an isomorphism, as it is a composition of isomorphisms.

Now, suppose that $g \circ f$ and f are weak equivalences. Pick a point $y \in Y$. Since $\pi_0(f)$ is an isomorphism, there exists a point $x \in X$ such that f(x) belongs to the path component containing y, so that there exists some $\alpha: I \to Y$ with $\alpha(0) = f(x)$ and $\alpha(1) = f(y)$. Then consider the following diagram

$$\pi_n(Y,y) \xrightarrow{\pi_n(g,y)} \pi_n(Z,g(y))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi_n(Y,f(x)) \xrightarrow{\pi_n(g,f(x))} \pi_n(Z,g(f(x)))$$

where the left arrow is the isomorphism given by conjugation by the path α , and the right arrow is the isomorphism given by conjugation by the path $g \circ \alpha$. It is tedious yet straightforward to verify that the diagram commutes. Furthermore, we know that $\pi_n(f,x)$ and $\pi_n(g \circ f,x) = \pi_n(g,f(x)) \circ \pi_n(f,x)$ are isomorphisms for all n, so that if we denote the inverse of $\pi_n(f,x)$ by φ , then

$$\pi_n(g \circ f, x) \circ \varphi = \pi_n(g, f(x)) \circ \pi_n(f, x) \circ \varphi = \pi_n(g, f(x))$$

is an isomorphism, as it is given as a composition of isomorphisms. Hence, the top arrow must likewise be an isomorphism, precisely the desired result.

The fact that weak equivalences in **Top** are closed under retracts is entirely straightforward and follows from the fact that the functors π_n preserve retract diagrams and that the class of isomorphisms in any category is closed under retracts.

Proposition 2.7 (Hovey 2.4.9). J-cof $\subseteq W \cap I'$ -cof.

$$Proof.$$
 TODO.

Proposition 2.8 (Hovey 2.4.10). I'-inj $\subseteq W \cap J$ -inj

$$Proof.$$
 TODO.

Proposition 2.9 (Hovey 2.4.12). $W \cap J$ -inj $\subseteq I'$ -inj

Corollary 2.10 (Hovey 2.4.14). Every topological space is fibrant, i.e., given a space X, the unique map $X \to *$ is an element of J-inj.

Questions:

(1) What is an example of a relative cell complex that is not a CW complex?