Exercise 8.12 (c) (iii)

Solvers: Ethan Writeup: Ethan

Let $U \subseteq \mathbb{R}^n$ be an open set and let $f: U \to \mathbb{R}$ be a scalar function. Then if all partial derivatives exist and are continuous on U, then f is continuously differentiable and f'(p) is given by $f'(p)(v) = D_v f(p)$.

Recall the statement in (ii): There exists a point $q_k \in U$ such that

$$\frac{f(p_k) - f(p_{k-1})}{h_k} = \frac{\partial f}{\partial x_k}(q_k)$$

We make the additional distinction that q_k is of the form $p_{k-1} + \gamma e_k$, where $|\gamma| < |h_k|$.

Proof. Define $\|\cdot\|$ on U to be the 1-norm.

Let
$$L_p = f'(p)$$
. We will show that $\frac{|f(p+h) - f(p) - L_p(h)|}{\|h\|} \to 0$.

Let $\varepsilon > 0$. Utilising part (i), we define a sequence of points $p_0, ..., p_n \in X$ by

$$p_0 = p$$
 and $p_i = p_{i-1} + h_i e_i$.

We know that for ||h|| smaller than some positive δ_1 , $p_i \in U$. By the uniform continuity of $\frac{\partial f}{\partial x_i}$ there is also a δ_2 such that for all $a, b \in U$ such that $||a - b|| < \delta_2$, $\left| \frac{\partial f}{\partial x_i}(a - b) \right| < \varepsilon$.

Let $\delta = \min\{\delta_1, \delta_2\}$. Let $h \in U$ so that $||h|| < \delta$. Notice that $p + h = p_n$ and $p = p_0$. We have that

$$\frac{|f(p+h) - f(p) - L_p(h)|}{\|h\|} = \frac{|f(p_n) - f(p_0) - L_p(h)|}{\|h\|}$$

We can expand the numerator by adding and subtracting every term p_i and substituting

$$L_p(h) = D_h f(p) = \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(p),$$

which yields

$$\frac{\left|\sum\limits_{i=1}^{n}\left(f(p_i)-f(p_{i-1})-h_i\frac{\partial f}{\partial x_i}(p)\right)\right|}{\|h\|}\leq \sum\limits_{i=1}^{n}\frac{\left|f(p_i)-f(p_{i-1})-h_i\frac{\partial f}{\partial x_i}(p)\right|}{\|h\|}.$$

Now, by part (ii), we can rewrite $f(p_i) - f(p_{i-1})$ as $h_i \frac{\partial f}{\partial x_i}(q_i)$, for some $q_i \in U$, so the expression becomes

$$\sum_{i=1}^{n} \frac{\left| h_i \frac{\partial f}{\partial x_i}(q_i) - h_i \frac{\partial f}{\partial x_i}(p) \right|}{\|h\|} = \frac{1}{\|h\|} \sum_{i=1}^{n} |h_i| \left| \frac{\partial f}{\partial x_i}(q_i - p) \right|$$

Note that p_i can also be written as $p + \sum_{j=1}^{i} h_j e_j$. Thus we can say that $q_i = p_{i-1} + \gamma e_i = p + \gamma e_i + \sum_{j=1}^{i-1} h_j e_j$. We get that

$$\frac{1}{\|h\|} \sum_{i=1}^{n} |h_i| \left| \frac{\partial f}{\partial x_i} (q_i - p) \right| = \frac{1}{\|h\|} \sum_{i=1}^{n} |h_i| \left| \frac{\partial f}{\partial x_i} \left(\gamma e_i + \sum_{j=1}^{i-1} h_j e_j \right) \right|$$

We see that the norm of the argument inside the partial derivative is

$$\left\| \gamma e_i + \sum_{j=1}^{i-1} h_j e_j \right\| \leq |\gamma| + \sum_{j=1}^{i-1} |h_j| < \sum_{j=1}^{i} |h_j| \leq \sum_{j=1}^{n} |h_j| = \|h\| < \delta_2,$$

so by the continuity of $\frac{\partial f}{\partial x_i}$,

$$\left| \frac{1}{\|h\|} \sum_{i=1}^{n} |h_i| \left| \frac{\partial f}{\partial x_i} \left(\gamma e_i + \sum_{j=1}^{i-1} h_j e_j \right) \right| < \frac{1}{\|h\|} \sum_{i=1}^{n} |h_i| \cdot \varepsilon = \frac{\|h\|}{\|h\|} \cdot \varepsilon = \varepsilon$$

and the proof is complete.