Server Environment

Microsoft Windows Server

TrakSYS components can be installed on the following Windows Server Operating Systems...

Server 2016 - Server 2019

.NET Framework

The TrakSYS services and web require the full .NET Framework 4.8.

Internet Information Services

The TrakSYS Web sits atop the Internet Information Services (IIS) component of Windows Server. The version of IIS is tied to the hosting Windows Server OS.

Microsoft SQL Server

All TrakSYS configuration, business rules and collected data are stored in a standard SQL Server Database. Supported versions include...

SQL Server 2014 – 2019 Azure SQL | Amazon RDS for SQL

Standard vs. Enterprise

The TrakSYS database can run on either **Standard** or **Enterprise** version of SQL Server.

Some optional features of the TrakSYS Tag

Historian require the Enterprise version.

Client Environment

Browser Support

The TrakSYS Web user interface is compatible with nearly all modern browsers...

- Internet Explorer
- Edge
- Chrome / Android
- Safari / IOS
- Firefox
- More...

Mobile and Responsive Design

Both standard and solution-specific content can be deployed once and consumed across a variety of device and screen footprints...

- Touch Friendly
- No App Required
- Information Anywhere
- Screen-Site Sensitive

Server Processors and Cores

Recommendations

Physical Cores or Virtual Processors should be proportional to the expected application size.

- Small Applications 4 Cores
- Medium Applications ~8 Cores
- Large Applications 16+ Cores

Licensing Considerations

The use of additional Cores may affect the required TrakSYS license.

Multi-Threading

The following platform elements and components take specific advantage of multi-threading...

- SQL Server / Data Access
- IIS (Web Server) / TrakSYS Web
- TrakSYS Logic Service
- TrakSYS Historian Service
- TrakSYS Data Management Service

Virtualization Considerations

Virtual Machines typically share Processors and Cores with other (non-TrakSYS) servers.

Server Memory

Recommendations

Memory is important to nearly every platform layer and TrakSYS component and should be proportional to the expected application size.

- Small Applications 32 GB
- Medium Applications 64 GB
- Large Applications should consider a Distributed (multi-server) Architecture

Virtualization Considerations

Memory is typically allocated and dedicated to each Virtual Machine. Sharing with other VMs on the same Host is not a concern.

Server Disk Types

Recommendations

TrakSYS solution performance is closely related to the database platform performance.

The bottleneck of the database platform is typically the disks...

- Disk Type / Speeds
- Database File Distribution
- RAID Performance
- Dedicated Disks

Server Disk RAID

Recommendations

TrakSYS solution performance is closely related to the database platform performance.

The bottleneck of the database platform is typically the disks...

- Disk Type / Speeds
- Database File Distribution
- RAID Performance
- Dedicated Disks

RAID 5

Recommended for OS and Applications Fewer Disks Adequate Performance

RAID₁₀

Recommended for SQL Data
Additional Disk(s)

4x Read • 2x Write

Database File Distribution

Recommendations

TrakSYS solution performance is closely related to the database platform performance.

The bottleneck of the database platform is typically the disks...

- Disk Type / Speeds
- Database File Distribution
- RAID Performance
- Dedicated Disks

When placing files on separate disks, the separate disks should be different physical disk arrays, not different partitions.

	Drive C OS • TrakSYS™ SQL TempDB		Drive D SQL Data Files	Orive E QL Logs
	Drive C OS • TrakSYS™ SQL Logs SQL TempDB		Drive D SQL Data Files	
_	Drive C OS • TrakSYS™ Logs and TempDB	SQL Data, l		

Component Distribution

Typical Implementations

While a typical small or medium sized implementation can be achieved by installing all the TrakSYS components on a single server.

Larger Implementations

For larger workloads, all the TrakSYS components can be distributed across any number of physical or virtual servers.

Non-Production Environments

Database Transfer

Optional TrakSYS development licenses enable a configuration and user interface transfer tool allowing new changes to be pushed forward from Development, to Test to Production.

