Intelligent Supply
Chain
Management
Toolkit

Fenglin Fan Chengcheng Liu Eduardo Ruffo Xuejiao Wang Zhifan Xu

Outline

- Problem Introduction
- How to use the toolbox
- Database Development
- Demand Forecasting
- Optimization Model
- User Interface
- Scenario Analysis

Problem Introduction

- A big clothing company is facing increasing operating cost with its rapid business expansion in the past few years.
 - Manufacturing Cost
 - Inventory Cost
 - Logistic Cost
- An intelligent solution is needed to reduce supply chain management cost

Current Supply Chain Structure

Logistics Distribution Network - China Area

Our Goal

- Develop a toolbox with GUI, which is capable of:
 - Forecast the monthly demand of each retailer in the next year based on the past data.
 - 2. Provide the monthly production plan for each plant.
 - Provide the monthly inventory plan for each distribution center.
 - 4. Provide the monthly logistic network arrangement
 - Which DCs should be used
 - Shipment quantity between plants-DCs-retailers

Structure of the Toolkit

How to use the toolbox

Database Development

Entities

DC

Region_DC

Longitude_DC

Lattitude_DC

Setup_cost

Operation_Cost

Inventory_cost

Retailers

ID_R
Region_R
Longitude_R
Lattitude_R
Annual_demand

Database Development

Relations

```
S_DC_consolidate

ID_S
ID_DC
Distance_S_DC
Time_S_DC
Transportation_Cost_S_DC
```


Database Development

Tables for output

Demand Forecasting

Winter's Method

Input last 2 years sales data

Use sales of (t-2) year to predict demand of (t-1) year

Get new seasonality factor for (t-1) year

Predict t year demand

Demand Forecasting

- Objection
 - 1. Minimize the total cost
 - 2. Minimize the total weighted time
- Basic assumption
 - The company will gain profit as long as the retailers' demand must be satisfied
 - 2. The basic workforce cost is fixed no matter how much merchandise was produced.
 - 3. There is no limitation on the transportation capacity.
 - 4. No initial inventory.

Sets

- S set of suppliers
- R set of retailers
- D set of DC candidates
- T set of time periods

Variables

 $shipSD_{s,d}^t$ $shipRD_{r,d}^t$ $extraCap_s^t$ $invtD_d^t$ $selectD_d$ shipments between supplier s and DC d at time period t, $\forall s \in S, \forall d \in D, \forall t \in T$ shipments between retailer r and DC d at time period t, $\forall r \in R, \forall d \in D, \forall t \in T$ products produced in overwork time at supplier s during time period t, $\forall s \in S, \forall t \in T$ products inventory at DC d at the end of time period t, $\forall d \in D, \forall t \in T$ binary. Equals to 1 if DC d is selected, $\forall d \in D$

Parameters

 $tpSCost_{s,d} \qquad \qquad \text{transportation cost per unit freight per distance from supplier } s \ \text{ to DC } d, \ \forall s \in S, \forall d \in D$

 $tpRCost_{r,d}$ transportation cost per unit freight per distance from retailer r to DC d, $\forall s \in S, \forall d \in D$

exCost_s extra production cost per unit freight when produced during overtime at supplier s, $\forall s \in S$

 $stCost_d$ setup cost of DC $d, \forall d \in D$

 $opCost_d$ operational cost of DC $d, \forall d \in D$

 $invtCost_d$ inventory cost per unit freight per month at DC d, $\forall d \in D$

 Cap_s capacity of supplier s monthly, $\forall s \in S$

 Dmd_r^t demand of retailed r at time period t, $\forall r \in R, t \in T$

 $distSD_{s,d}$ distance between supplier s and DC d, $\forall s \in S$, $\forall d \in D$

 $distRD_{r,d}$ distance between retailer s and DC $d, \forall r \in R, \forall d \in D$

 $timeSD_{s,d}$ Traffic time needed between supplier s and DC $d, \forall s \in S, \forall d \in D$

 $timeRD_{r,d}$ Traffic time needed between retailer r and DC $d, \forall r \in R, \forall d \in D$

Constraints

Supplier Capacity

$$\sum_{d \in D} shipSD_{s,d}^t \le Cap_s + extraCap_s^t \quad \forall s \in S, t \in T$$

Overtime limitation

$$extraCap_s^t \le \frac{1}{2} \cdot Cap_s \quad \forall s \in S, t \in T$$

$$\sum_{t} extraCap_{s}^{t} \leq 2 \cdot Cap_{s} \ \forall s \in S$$

Demand Requirement

$$\sum_{d \in D} shipRD_{s,d}^t \ge Dmd_r^t \quad \forall r \in R, t \in T$$

DC Balance

$$\sum_{s \in S} shipSD_{s,d}^t + invt_d^{t-1} = \sum_{r \in R} shipRD_{r,d}^t + invt_d^t \quad \forall d \in D, t \in T$$

DC select

$$\sum_{t \in T} \sum_{s \in S} shipSD_{s,d}^t \le M \cdot selectD_d$$

Objective Function

$$totalTpCost = \sum_{t \in T} \sum_{s \in S} \sum_{d \in D} tpSCost_{s,d} \cdot distSD_{s,d} \cdot shipSD_{s,d}^t + \sum_{t \in T} \sum_{r \in R} \sum_{d \in D} tpRCost_{r,d} \cdot distRD_{r,d} \cdot shipRD_{s,d}^t$$

$$totalDcCost = \sum_{t \in T} \sum_{d \in D} \sum_{r \in R} opCost_d \cdot shipRD_{r,d}^t + \sum_{t \in T} \sum_{d \in D} invtCost_d \cdot invtD_d^t + \sum_{d \in D} stCost_d \cdot selectD_d$$

$$extraProdCost = \sum_{t \in T} \sum_{s \in S} exCost_s \cdot extraCap_s^t$$

$$totalTime = \sum_{t \in T} \sum_{s \in S} \sum_{d \in D} timeSD_{s,d} \cdot shipSD_{s,d}^t + \sum_{t \in T} \sum_{r \in R} \sum_{d \in D} timeRD_{r,d} \cdot shipRD_{s,d}^t$$

$$\min \lambda \cdot (totalTpCost + totalDcCost + extraProdCost) + (1 - \lambda) \cdot totalTime$$

- Implementation
 - Python + CPLEX
 - Use NetworkX package to represent the network structure
 - Use Numpy for matrix representation

Scenario Analysis

Cost Item	Original Situation	2 x Capacity	10 x stCost
Total Cost	1.6313e+08	1.2846e+08	1.6876e+08
Total Transportation Cost	0.6490e+08	0.5045e+08	0.6696e+08
Total Operational Cost	0.7577e+08	0.7577e+08	0.7577e+08
Total Fixed Cost	0.0089e+08	0.0097e+08	0.0045e+08

Distribution Center	Original Situation	2 x Capacity	10 x stCost
Shanghai	1	1	1
Guangdong	1	1	1
Shenyang	1	1	0
Tianjin	1	1	1
Henan	1	1	0
Hunan	1	1	0
Shenzhen	1	1	0
Xinjiang	0	0	0
Hubei	1	1	1
Gansu	0	0	0
Fujian	1	1	1
Jiangsu	1	1	0
Dalian	1	1	1
Sichuan	0	1	0
Yunan	1	1	0
Shandong	0	0	0
Shanxi	0	0	0

Summary

- Database leveraged for data storage
- Winter's method used for forecasting
- Optimization model established to solve problem
- User interface built for function integration
- Flexible scenario analysis

Thank you

Group 4

Fenglin Fan
Chengcheng Liu
Eduardo Ruffo
Xuejiao Wang
Zhifan Xu