

Pulse Number	Length of pulse (uS)
1	122
2	122
3	826
4	236
5	126
6	166
7	126
8	126
9	172
10	128
11	384
12	234
13	276
14	124
15	168
16	124
17	272
18	840
	4572

 $4.572~mS \ / \ 10.88~mS = 42.02\% = Measured Duty Cycle$

MS Series Encoder Data Structure

The MS Series encoder is designed to securely register button presses or switch closures over a wireless link for remote control applications. It will turn eight parallel input lines into a secure, encoded serial bit stream output.

The MS Series algorithm is designed to create a data stream with 5 High Data Bits at 9600bps.

Logic State Description:

1 = HIGH

0 = LOW

Total bits, including start and stop bits = 80

Total 1's = 40

Total 0's = 40

Value for each bit per baud rate:

2400bps = 417uS or 1.18% of duty cycle

9600bps = 104uS or 1.01% of duty cycle

19200bps = 52uS or 0.85% of duty cycle

28800bps = 35uS or 0.74% of duty cycle

Duty Cycle =
$$\frac{\text{Time High}}{\text{Total Time}}$$
 \longrightarrow $\frac{37 \text{ bits} + 800 \text{uS}}{80 \text{ bits} + 680 \text{uS} + 465 \text{uS} + 800 \text{uS}}$ \longrightarrow $\frac{(37*104 \text{uS}) + 800 \text{uS}}{(80*104 \text{uS}) + 1,945 \text{uS}}$ = $\frac{4,648 \text{uS}}{10,265 \text{uS}}$ = 45.28%