

## EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta ....089

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$ 

• Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

## La toate subiectele se cer rezolvări cu soluții complete

## SUBIECTUL I (20p)

În sistemul cartezian de coordonate Oxy, se consideră punctele  $A_n(n,0)$  și  $B_n(0,n)$ , unde  $n \in \{1,2,3,4\}$  și se notează cu M mulțimea formată din toate aceste 8 puncte.

- (4p) a) Să se calculeze distanța dintre punctele  $A_2$  și  $B_2$ .
- (4p) b) Să se arate că punctele  $A_1$  și  $B_3$  sunt pe dreapta 3x + y 3 = 0.
- (4p) c) Să se determine ecuația paralelei prin  $B_1$  la dreapta  $A_1B_3$ .
- (4p) d) Să se calculeze aria triunghiului  $A_1A_4B_4$ .
- (2p) e) Să se calculeze  $\sin \left( A_1 A_2 B_2 \right)$ .
- (2p)  $| f \rangle$  Să se determine câte drepte trec prin cel puțin două puncte din mulțimea M.

#### SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze a+b știind că numerele 3, a, 4, b, 5 sunt , în această ordine , în progresie aritmetică.
- (3p) b) Să se determine numărul natural c pentru care  $\frac{(c+5)!}{(c+4)!} = 8$ .
- (3p) c) Să se determine numărul soluțiilor din  $\mathbb{Z}_5$  ale ecuației  $\hat{3} \cdot \hat{x} = \hat{4}$ .
- (3p) d) Să se calculeze numărul funcțiilor  $f:\{3,4,5\} \rightarrow \{3,4,5\}$  pentru care f(3) este număr impar.
- (3p) e) Să se determine în câte moduri se poate alcătui o echipă de cercetare formată din 2 biologi și 3 chimiști, dacă avem la dispoziție 3 biologi și 4 chimiști.
  - 2. Se consideră funcția  $f:(0,\infty)\to \mathbb{R}$ ,  $f(x)=\frac{1}{x^3}-\frac{1}{x^4}+\frac{1}{x^5}$ .
- (3p) a) Să se calculeze f'(x),  $x \in (0, \infty)$ .
- (3p) b) Să se determine ecuațiile asimptotelor la graficul funcției f.
- (3p) c) Să se arate că funcția f este strict descrescătoare pe intervalul  $(0, \infty)$ .
- (3p) d) Să se compare numerele  $a = f(\sqrt{3})$  și  $b = f(\sqrt{5})$
- (3p) e) Să se calculeze  $\int_{1}^{2} f(x)dx$ .



## SUBIECTUL III (20p)

În mulțimea  $M_2(\mathbf{C})$  se consideră matricele  $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$  precum și

submulțimea  $G = \left\{ \begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix} \middle| z, w \in \mathbf{C} \right\}$ , unde prin  $\overline{z}$  am notat conjugatul numărului complex z.

- (4p) a) Să se verifice că  $I_2 \in G$  și  $O_2 \in G$ .
- **(4p) b)** Să se arate că, dacă  $z, w \in \mathbb{C}$  şi  $|z|^2 + |w|^2 = 0$ , atunci z = w = 0.
- (4p) c) Să se arate că, dacă  $P,Q \in G$ , atunci  $P \cdot Q \in G$ .
- (2p) d) Să se arate că dacă  $D \in G$ ,  $D \neq O_2$ , atunci D este matrice inversabilă şi  $D^{-1} \in G$ .
- (2p) e) Să se găsească o matrice  $X \in G$ , cu proprietatea că  $X \cdot C \neq C \cdot X$ , unde  $C = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$ .
- (2p) f) Să se arate că dacă  $A, B \in G$  și  $A \cdot B = O_2$ , atunci  $A = O_2$  sau  $B = O_2$ .
- (2p) g) Să se arate că mulțimea G, împreună cu operațiile de adunare și de înmulțire a matricelor, determină o structură de corp necomutativ.

# SUBIECTUL IV (20p)

Se consideră șirurile de numere reale  $(a_n)_{n\geq 1}$  și  $(b_n)_{n\geq 1}$  cu termenul general

$$a_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n}$$
, respectiv  $b_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$ ,  $n \in \mathbb{N}^*$ .

- (4p) a) Să se calculeze  $a_2 b_2$
- (4p) b) Să se arate că  $a_n = b_n$ ,  $\forall n \in \mathbb{N}^*$ .
- (4p) c) Să se studieze monotonia șirului  $(b_n)_{n\geq 1}$
- (2p) d) Să se arate că  $1-x+x^2-...+x^{2n-2}-x^{2n-1}=\frac{1-x^{2n}}{1+x}, \forall n \in \mathbb{N}^*, \forall x \ge 0$ .
- (2p) e) Să se arate că  $a_n = \int_0^1 \frac{1}{1+x} dx \int_0^1 \frac{x^{2n}}{1+x} dx$ ,  $\forall n \in \mathbb{N}^*$ .
- (2p) **f**) Să se arate că  $\lim_{n\to\infty} a_n = \int_0^1 \frac{1}{1+x} dx$ .
- (2p) g) Să se arate că  $\lim_{n \to \infty} \left( 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) = \infty$ .

