Table of Contents

- 1 第四周作业
 - 1.1 Part1
 - <u>1.2 part2</u>
 - 1.3 part3

第四周作业

Part1

对于数据集auto,进行以下任务:

- (c) 建立一个二元变量,每加仑里程量(mpg01),1表示每加仑汽油该型号撤所拍里程数(mpg)在 $\frac{3}{4}$ 分位数以上,0表示每加仑汽油该型号车所跑里程数(mpg)在 $\frac{3}{4}$ 分位数以下。将数据集按照留出法随机分为训练集(比例0.8)和测试集(比例0.2),对于函数 $P(mpg01=1)=\frac{exp\{3.85-0.01*weight\}}{1+exp\{3.85-0.01*weight\}}$ 编写程序估计0-1损失下的泛化误差;
- (d) 将数据集按照分层等比例分按照训练集(比例0.8)和测试集(比例0.2),对于函数 $P(mpg01=1)=\frac{exp\{3.85-0.01*weight\}}{1+exp\{3.85-0.01*weight\}}$ 编写程序估计0-1损失下的泛化误差
- (e) 根据以上实验,结合教材,分析分层抽样和不同的抽样方式对泛化误差的影响
- (f) 数据集包含1000个样本,其中500个正例,500个反例,将其划分为包含70%样本的训练集和30%样本的测试集用于留出法评估,试估算共有多少种划分方式

part2

PPT内思考题

• 对于图中的两个图,你认为如果用线性模型来划分两组数据,他们的P-R曲线会有怎样的不同?

如何绘制ROC与AUC

• 假设已经得出一系列样本被划分为正类的概率,然后按照大小排序,下表是一个示例,表中共有20个测试样本, "Class"一栏表示每个测试样本真正的标签(p表示正样本,n表示负样本),"Score"表示每个测试样本属于正样本的概率。

Inst#	Class	Score	Inst#	Class	Score
1	р	.9	11	р	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

• (a) 参照例题数据,作ROC曲线和P-R曲线(要求自写代码绘制,函数为佳)

- (b) 参照例题数据绘制均衡代价曲线(注: $cost_{01}=1, cost_{10}=1$)。如果该数据是一个银行追查 网络钓鱼攻击的一个学习器的训练数据,漏网的代价(FN)是误报代价(FP)的五倍 ($cost_{01}=5, cost_{10}=1$),那么请绘制代价曲线。如果上述代价是3倍,代价曲线会怎么变化,请比较三种不同代价下的代价曲线有什么变化?
- (c) 如下数据是16次实验中的误分类结果,请比较测试误差率是否小于30%($\epsilon \leq 30$),实验中每次测试集n=10的误分数量(mc)如下,凭借这些数据使用t检验等于该算法的泛化误差给出判断。请给出检验问题的表述,计算统计量及其p-value,给出结论。

3	4	1	2	0	1	2	3
1	2	4	0	0	3	4	5

ps: 这周作业由于发布时间较晚,延长至下周三(3月23日)22:00,另外同学们写作业的时候记得写一会快捷键保存一下,免得没保存,这是一个好习惯^-^