

Worm Club Update

Joey Doll 3/29/10

The Plan

- Introduction
- Problems and solutions
 - Curvature induced stiffening
 - Accidental resistor etching
 - Actuator to sensor crosstalk
 - Experimental issues
- Current work
 - New die layout
 - Design specs
- What's next

The Devices

Piezoresistive force sensor (PR)

Piezoresistive force sensor with integrated piezoelectric actuation (PR+PE)

Applications of a Faster Actuator and Sensor

Sense of touch (TRNs)

Sense of hearing (hair cells)

Performance Goals

- Actuator
 - Rise time = 1-10 microseconds
 - Tip deflection < 1 micron
- Sensor
- Closed loop control
- Operation in fluid

Where Things Stand

- Made first generation PR and PR+PE devices
- Obtained lots of useful characterization data
- The fabrication process mostly works
- But some issues...
 - Force offsets
 - High resistances
 - Crosstalk
- Designing the next round of devices now

Curvature Induced Stiffening

- A large force is required to overcome the "potato chip" effect and start bending the PR
- Due to surface stresses (probably dopants) and the way the cantilever is designed

Solving the Stiffening Problem

1) Add a stress compensation layer
Blue = dopants (tensile)
Orange = surface oxide (compressive)

2) Modify the cantilever design to reduce stress sensitivity (eliminate long transverse sections)

3) Measure film stresses whenever possible and choose thicknesses accordingly

Accidental Resistor Etching

Problem: Resistances were about 10x higher than expected and depended heavily on voltage

Solution: Protect the piezoresistor during AIN deposition. Simple fab solution.

Experimental Crosstalk Data

Crosstalk is important due to the signal magnitude difference:

PR output = microvolts before amplification

PE drive = volts

Ideally want < 1 uV/V crosstalk at 100 kHz (40,000x improvement from current)

Crosstalk Schematic

Crosstalk Model

- Model predicts 3 mV/V @ 100 kHz (vs 40 mV/V measured)
- Close enough given the uncertainties involved

Crosstalk Solutions

- Substrate ground
 - Removes the LTO from the equation on the last slide → 30,000x improvement
 - Will probably use a p-n junction too for further improvement
- Symmetric device and circuit layout
 - Right now the crosstalk only goes into one input of the instrumentation amplifier
 - Utilize common mode rejection of amplifier to attenuate anything that gets around the isolation well
- >40,000x reduction seems reasonable
 - At least -80 dB from substrate ground
 - -100 dB from CMRR (with perfect device layout)

Some Experimental Issues

- Parylene coating
 - Thin (< 200 nm) coating needed to passivate but not affect mechanics, fixed
- Bead adhesion to parylene
 - Fixed, was just an issue of using the right epoxy + curing
- Wirebond passivation
 - The new, thin parylene doesn't cover the bondpad wires perfectly, will start encasing in epoxy
- Vibrations
 - ~ 100 nm vibrations on current setup
 - Moving to our AFM, want < 1 nm vibration
- Big beads on little cantilevers
 - Need to include bead mass in design optimization

New Device Layout

New Device Layout

The Next Designs

- Combining the PE and PR optimization code is trickier than I thought – no designs ready yet
- General improvements
 - Shift cantilever to one side
 - Make it easy to use at an angle
 - Add die labeling
 - Define cantilever from the frontside
 - Skinnier PCB tip

Double-Checking the Specs

- Mammalian hair cells
 - 1 microsecond rise time → 300 kHz resonant frequency
 - Current = 10 microseconds (30 kHz)
 - 50 pN force resolution (plausible but hard @ 300 kHz)
 - Max deflection > 1 micron
 - Inner: 7-10 micron diameter bead
 - Outer: 3-5 micron diameter bead
- Turtle hair cells
 - Stiffness = 2-10 mN/m
 - 2-5 micron diameter bead
- General
 - Soft probes (mechanics) → ~1 mN/m
 - Stiff probes (kinetics) → much stiffer than the soft

What's Next

- Finish characterizing PR devices and finalize models
- Modify AFM for PR measurements and perform demo streptavidin-biotin experiments
- Extend optimization code to PR+PE designs
- Generate + review final designs w/ interested people
- Fab run

Thank You