Programme de khôlle de maths nº 23

Semaine du 22 mai

Cours

- Chapitre 15: Intégration
 - Intégrale sur un intervalle fermé d'une fonction positive, d'une fonction de signe quelconque, aire algébrique
 - Propriétés des intégrales : relation de Chasles, l'intégrale d'une fonction positive est positive, linéarité de l'intégrale, $f \leq g \Rightarrow \int f \leq \int g$, inégalité triangulaire, inégalité de la moyenne, $f \geq 0$ et $\int f = 0 \Rightarrow f = 0$
 - Théorème fondamental : $x \mapsto \int_a^x f(t) dt$ est une primitive de f
 - $\int_a^b f(t) dt = F(b) F(a)$ si F est une primitive de f
 - Primitives usuelles à connaître : constante, polynômes, x^{α} , $\frac{1}{x+a}$, $\frac{1}{\sqrt{x}}$, e^{x} , $\cos x$, $\sin x$, $1 + \tan^{2} x$, $\frac{1}{1+x^{2}}$, $u'u^{n}$, $\frac{u'}{u}$, $u'e^{u}$, $\frac{u'}{\sqrt{u}}$
 - Intégration par partie
 - Changement de variable : soit f une fonction continue sur un intervalle I et φ une fonction \mathcal{C}^1 sur [a,b] avec $\varphi([a,b]) \subset I$, alors

$$\int_{\varphi(a)}^{\varphi(b)} f(t) dt = \int_{a}^{b} f(\varphi(u)) \varphi'(u) du$$

- Fonctions paires et fonctions impaires
- Sommes de Riemann : si f est continue sur [a, b], alors

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right) = \int_{a}^{b} f(t) dt$$

Questions de cours

- Questions de cours
 - Pas de questions de cours