LTE system signaling procedure

www.huawei.com

Objectives

- Upon completion of this course, you will be able to :
 - Know the LTE/SAE system architecture and functions
 - Know main elementary procedures of S1/X2/Uu interfaces
 - Know the procedure of service setup, service release, intraeUTRAN handover

References

- 3GPP TS 36.300
- 3GPP TS 23.401
- 3GPP TS 36.413
- 3GPP TS 36.331
- 3GPP TS 36.423

- 1. Overview
- 2. Elementary Procedures
- 3. Service signaling flow

1. Overview

- 2. Elementary Procedures
- 3. Service signaling flow

System Architecture Overview

- Main functions of the Serving GW is:
 - the local Mobility Anchor point for handover (inter-eNodeB/inter-3GPP)
 - Packet routeing and forwarding
- Main functions of the PDN GW is:
 - UE IP address allocation
 - UL and DL service level charging

Bearer service architecture

- A radio bearer transports the packets of an EPS bearer between a UE and an eNB. There is a one-to-one mapping between an EPS bearer and a radio bearer.
- An S1 bearer transports the packets of an EPS bearer between an eNodeB and a Serving GW
- An eNB stores a one-to-one mapping between a radio bearer and an S1 to create the binding between a radio bearer and an S1 bearer in both the uplink and downlink.

Service request procedure

Bearer level QoS

- Basically, bearers can be classified into two categories
 - GBR bearers
 - Non-GBR bearers
- Each bearer has an associated QoS Class Identifier (QCI), and an Allocation and Retention Priority (ARP)
 - QoS Class Identifier (QCI)
 - QCI is characterized by priority, packet delay budget and acceptable packet loss rate
 - QCI is used to control bearer level packet forwarding treatment
 - The set of standardized QCIs is listed in the table of next page
 - The ARP of a bearer is used for call admission control
 - A GBR bearer is additionally associated with the following bearer level QoS parameters:
 - Guaranteed Bit Rate (GBR)
 - Maximum Bit Rate (MBR)

Bearer level QoS(Cont.)

• The set of standardized QCIs

QCI	Resource type	Priority	Packet delay budget (ms)	Packet error loss rate	Example services
1	GBR	2	100	10-2	Conversational voice
2	GBR	4	150	10^{-3}	Conversational video (live streaming)
3	GBR	5	300	10^{-6}	Non-conversational video
4	GBR	3	50	10^{-3}	(buffered streaming) Real time gaming
5	Non-GBR	1	100	10^{-6}	IMS signalling
6	Non-GBR	7	100	10^{-3}	Voice, video (live streaming),
7	Non-GBR	6	300	10^{-6}	interactive gaming Video (buffered streaming)
8	Non-GBR	8	300	10^{-6}	TCP-based (e.g. WWW, e-mail)
9	Non-GBR	9	300	10 ⁻⁶	chat, FTP, p2p file sharing, progressive video, etc.

Application protocol identities

- EPS bearer identity
 - An EPS bearer identity uniquely identifies an EPS bearer for one UE accessing via E-UTRAN
 - The EPS Bearer Identity is allocated by the MME
 - There is one to one mapping between EPS RB and EPS Bearer, and the mapping between EPS RB Identity and EPS Bearer Identity is made by E-UTRAN
- eNB UE S1AP ID
 - A eNB UE S1AP ID shall be allocated so as to uniquely identify the UE over the S1 interface within an eNB
- MME UE S1AP ID
 - A MME UE S1AP ID shall be allocated so as to uniquely identify the UE over the S1 interface within the MME
- Old eNB UE X2AP ID
 - An Old eNB UE X2AP ID shall be allocated so as to uniquely identify the UE over the X2 interface within a source eNB
- New eNB UE X2AP ID
 - An New eNB UE X2AP ID shall be allocated so as to uniquely identify the UE over the X2 interface within a target eNB
- C-RNTI: The C-RNTI provides a unique UE identification at the cell level identifying RRC Connection and used for scheduling

1. Overview

2. Elementary Procedures

3. Service signaling flow

2. Elementary Procedures

2.1 Elementary Procures of Uu

- 2.2 Elementary Procedures of S1
- 2.3 Elementary Procures of X2

UE states

- RRC_IDLE
 - A UE specific DRX may be configured by upper layers
 - UE controlled mobility
 - The UE:
 - Monitors a Paging channel to detect incoming calls;
 - Performs neighbouring cell measurements and cell (re-)selection;
 - Acquires system information.

RRC_CONNECTED

- Transfer of unicast data to/from UE.
- At lower layers, the UE may be configured with a UE specific DRX.
- Network controlled mobility
- The UE:
 - Monitors control channels associated with the shared data channel to determine if data is scheduled for it;
 - Provides channel quality and feedback information;
 - Performs neighbouring cell measurements and measurement reporting;
 - Acquires system information

Page14

Signalling radio bearers

- "Signalling Radio Bearers" (SRBs) are defined as Radio Bearers (RB) that are used only for the transmission of RRC and NAS messages. the following three SRBs are defined:
 - SRB0 is for RRC messages using the CCCH logical channel;
 - SRB1 is for RRC messages as well as for NAS messages prior to the establishment of SRB2, all using DCCH logical channel;
 - SRB2 is for NAS messages, using DCCH logical channel. SRB2 has a lowerpriority than SRB1 and is always configured by E-UTRAN after security activation

System information

- System information is divided into the MasterInformationBlock (MIB) and a number of SystemInformationBlocks (SIBs).
- The MIB includes a limited number of most essential and most frequently transmitted parameters that are needed to acquire other information from the cell, and is transmitted on BCH
- SystemInformationBlockType1 and all SI messages are transmitted on DL-SCH

Paging

Purpose:

- To transmit paging information to a UE in RRC_IDLE and/ or to inform UEs in RRC_IDLE and UEs in RRC_CONNECTED about a system information change or about an ETWS (Earthquake and Tsunami Warning System) primary notification
- Main IE:
 - ue-Identity
 - cn-Domain
 - pagingCause
 - systemInfoModification
 - ETWS notification

RRC connection establishment

• Purpose:

 RRC connection establishment involves SRB1 establishment. The procedure is also used to transfer the initial NAS dedicated information/ message from the UE to E-UTRAN

Main IE:

- establishmentCause
- radioResourceConfiguration for Only SRB1
- selectedPLMN-Identity
- registeredMME
- nas-DedicatedInformation

Initial security activation

Purpose:

- To activate AS security upon RRC connection establishment
- When only SRB1 is established and prior to establishment of SRB2 and/ or DRBs.
- Main IE:
 - integrity protection and ciphering

RRC connection reconfiguration

Purpose:

To modify an RRC connection, e.g. to establish/ modify/ release RBs, to perform handover, to setup/ modify/ release measurements

Main IE:

- measurementConfiguration
- mobilityControlInformation
- nas-DedicatedInformation
- radioResourceConfiguration (for SRB2 and possibly DRBs)
- securityConfiguration
- ue-RelatedInformation

RRC connection release

Purpose:

To release the RRC connection, which includes the release of the established radio bearers as well as all radio resources.

Mobility from E-UTRA

• Purpose:

- To move a UE in RRC_CONNECTED to a cell using another Radio Access
 Technology (RAT), e.g. GERAN, UTRA or CDMA2000 systems
- The mobility from E-UTRA procedure covers both:
 - handover, i.e. the MobilityFromEUTRACommand message includes radio resources that have been allocated for the UE in the target cell
 - cell change order, i.e. the MobilityFromEUTRACommand message may include information facilitating access of and/ or connection establishment in the target cell, e.g. system information. Cell change order is applicable only to GERAN.

DL/UL information transfer

• Purpose:

 To transfer NAS or non-3GPP dedicated information from E-UTRAN/UE to a UE/E-UTRAN in RRC_CONNECTED

UE capability transfer

- Purpose:
 - To transfer UE radio access capability information from the UE to E-UTRAN

2. Elementary Procedures

2.1 Elementary Procures of Uu

2.2 Elementary Procedures of S1

2.3 Elementary Procures of X2

Paging

- Purpose:
 - The purpose of the Paging procedure is to enable the MME to page a UE in the specific eNB
- Main information:
 - UE Paging ID
 - Paging DRX
 - Paging Cause
 - List of TAIs

Context Management procedures

Purpose:

- To establish the necessary overall initial UE Context including SAE Bearer context, Security context,
 Handover Restriction List, UE capability information, NAS-PDU etc
- Other message in this category includes: UE Context Release Request /release/modify

Main information:

- SAE Bearer Level QoS parameters
- Transport Layer Address
- NAS-PDU
- Security
- Handover Restriction List
- UE Radio Capability
- Subscriber Profile ID for RAT/Frequency priority

SAE Bearer Management procedures

• Purpose:

- To assign resources on Uu and S1 for one or several SAE bearers and to setup corresponding SAE
 Radio Bearers for a given UE
- Other message in this category includes: SAE bearer modify and SAE bearer release

Main information :

- SAE Bearer Level QoS parameters
- Transport Layer Address
- NAS-PDU
- SAE Bearer Setup List
- SAE Bearer Failed to Setup List

Page28

NAS transport

- Purpose:
 - The purpose of the NAS Transport procedure is to carry UE MME signalling over the S1 Interface.
 - The NAS messages are not interpreted by the eNB
 - Besides INITIAL UE MESSAGE, DOWNLINK NAS TRANSPORT and UPLINK NAS TRANSPORT messages are used for NAS Transport procedure also
- Main IE:
 - NAS-PDU
 - TAI
 - E-UTRAN CGI
 - S-TMSI (optional)
 - Handover Restriction List in DOWNLINK NAS TRANSPORT (optional)

S1 Setup

• Purpose:

- The purpose of the S1 Setup procedure is to exchange application level data needed for the eNodeB and MME to interoperate correctly on the S1 interface.
- This procedure shall be the first S1AP procedure triggered after the TNL association has become operational

Main IE:

Global eNB ID
 MME Name

eNB NameServed PLMNs

Supported TAs of the eNodeB
 Served GUMMEIs

MME/eNodeB Configuration Update

Purpose:

- The purpose of the MME/ eNB Configuration Update procedure is to update application level configuration data needed for the eNB and MME to interoperate correctly on the S1 interface.
- This procedure doesn't affect existing UE-related contexts

2. Elementary Procedures

- 2.1 Elementary Procures of Uu
- 2.2 Elementary Procedures of S1
- 2.3 Elementary Procures of X2

Handover Preparation

- Purpose:
 - To establish necessary resources in an eNB for an incoming handover
- Main IE:
 - Cause
 - Target Cell ID and GUMMEI
 - SAE Bearer Info

SN Status Transfer

• Purpose:

To transfer the uplink PDCP-SN and HFN receiver status and the downlink PDCP-SN and HFN transmitter status from the source to the target eNB during an X2 handover for each respective SAE bearer for which PDCP SN and HFN status preservation applies

Main IE:

SAE Bearers Subject To Status Transfer List

UE Context Release

Purpose:

- To signal to the source eNB that control plane resources for the handed over
 UE context can be released
- Upon reception of the UE CONTEXT RELEASE message, the source eNB can
 release radio and control plane related resources associated to the UE context

Load Indication

Purpose:

 To transfer load and interference co-ordination information between intrafrequency neighboring eNBs

• Main IE:

- UL Interference Overload Indication
- UL High Interference Indication
- Relative Narrowband Tx Power (RNTP)

Resource Status Reporting Initiation / Reporting

Purpose:

- To request the reporting of load measurements to another eNB
- And to report the result of measurements requested by eNB1 using the Resource Status Reporting Initiation

X2 Setup

- Purpose:
 - To exchange application level data needed for two eNBs to interoperate correctly over the X2 interface
- Main IE:
 - Served Cell Information
 - PhyCID and Cell ID (CGI)
 - TAC
 - Broadcast PLMNs
 - UL EARFCN/DL EARFCN and Cell Transmission Bandwidth

- 1. Overview
- 2. Elementary Procedures
- 3. Service signaling flow

Service request procedure

RRC CONN SETUP REQ

RRC CONN SETUP

RRC CONN SETUP CMP

Direct transfer message of S1interface

Direct transfer message of S1interface

Direct transfer (Authentication & ciphering)

Uu interface trace

S1 interface trace

No. 🛆	Time /	Standard Interface Message Type 🗡	Message direction 🖊	S1 ID 🖊		
1	2010-06-05 21:42:35(531408)	S1AP_INITIAL_UE_MSG	SEND	0		
2	2010-06-05 21:42:35(541436)	S1AP_DL_NAS_TRANS	RECEIVE	0		
3	2010-06-05 21:42:35(555771)	S1AP_UL_NAS_TRANS	SEND	0		
4	2010-06-05 21:42:35(557390)	S1AP_DL_NAS_TRANS	RECEIVE	0		
5	2010-06-05 21:42:35(570751)	S1AP_UL_NAS_TRANS	SEND	0		
6	2010-06-05 21:42:35(593533)	S1AP_INITIAL_CONTEXT_SETUP_REQ	RECEIVE	0		
7	2010-06-05 21:42:35(625894)	S1AP_UE_CAPABILITY_INFO_IND	SEND	0		
8	2010-06-05 21:42:35(651442)	S1AP_INITIAL_CONTEXT_SETUP_RSP	SEND	0		
9	2010-06-05 21:42:35(654807)	S1AP_UL_NAS_TRANS	SEND	0		

S1 Initial Context Setup Request

S1 Initial Context Setup Request

RRC Security Mode Command

UE capability report

RRC connection reconfiguration

Used to establish SRB2 and default DRB1.

INITI UE CONTEXT SETUP RSP

INITI UE CONTEXT SETUP RSP

Service request procedure

Uu interface trace

S1 interface trace

C:\Documents and Settings\y00142117\桌面\接入\AM21_S1_2010-11-13-14-54-41.tmf						
No. 🛆	Time 🛆	Standard Interface Message Type 🗡	Message direction 🗡	S1 ID 🛆		
1	2010-06-05 21:42:35(531408)	S1AP_INITIAL_UE_MSG	SEND	0		
2	2010-06-05 21:42:35(541436)	S1AP_DL_NAS_TRANS	RECEIVE	0		
3	2010-06-05 21:42:35(555771)	S1AP_UL_NAS_TRANS	SEND	0		
4	2010-06-05 21:42:35(557390)	S1AP_DL_NAS_TRANS	RECEIVE	0		
5	2010-06-05 21:42:35(570751)	S1AP_UL_NAS_TRANS	SEND	0		
6	2010-06-05 21:42:35(593533)	S1AP_INITIAL_CONTEXT_SETUP_REQ	RECEIVE	0		
7	2010-06-05 21:42:35(625894)	S1AP_UE_CAPABILITY_INFO_IND	SEND	0		
8	2010-06-05 21:42:35(651442)	S1AP_INITIAL_CONTEXT_SETUP_RSP	SEND	0		
9	2010-06-05 21:42:35(654807)	S1AP_UL_NAS_TRANS	SEND	0		

S1 release procedure

Purpose:

To release the logical S1-AP signalling connection (over S1-MME) and all S1 bearers (in S1-U) for a UE. The procedure will move the UE from ECM-CONNECTED to ECM-IDLE in both the UE and MME, and all UE related context information is deleted in the eNodeB

Intra EUTRAN X2-based handover without Serving GW relocation

See notes for details

Intra EUTRAN X2-based handover with Serving GW relocation

Intra EUTRAN S1-based handover

Intra EUTRAN S1-based handover

Thank you

www.huawei.com