

Exploring Hybrid CTC/Attention End-to-End Speech Recognition with Gaussian Processes

Dipl.-Ing. Ludwig Kürzinger
Technische Universität München
Department of Electrical and Computer Engineering
Chair for Human Machine Interaction
Istanbul, 22. August 2019

Contributions

- 1. Sequential Gaussian Process hyperparameter optimization for the hybrid CTC/Attention end-to-end speech recognition
- 2. Distinct parameter groups found in architecture exploration
- 3. We revisit the *hybrid CTC/Attention hypothesis*:

HYP: CTC primarily regularizes alignments of the attention mechanism

Contributions

- 1. Sequential Gaussian Process hyperparameter optimization for the hybrid CTC/Attention end-to-end speech recognition
- 2. Distinct parameter groups found in architecture exploration
- 3. We revisit the *hybrid CTC/Attention hypothesis*:

HYP: CTC primarily regularizes alignments of the attention mechanism

Contributions

- 1. Sequential Gaussian Process hyperparameter optimization for the hybrid CTC/Attention end-to-end speech recognition
- 2. Distinct parameter groups found in architecture exploration
- 3. We revisit the *hybrid CTC/Attention hypothesis*:

HYP: CTC primarily regularizes alignments of the attention mechanism

PART 1

Preliminaries

- Gaussian Process Optimization
- Hybrid CTC/Attention ASR

Gaussian Process Optimization

- Many parameters, but few of them are more influential?
 - ⇒ GP optimization is better than *grid* or *random search*
- Black box function f(x) approximated by a kernel

$$K_{\text{Mat\'ern}}(r^{(n)}) = \frac{2^{1-v}}{\Gamma(v)} (\frac{\sqrt{2v}r^{(n)}}{I})^v K_v (\frac{\sqrt{2v}r^{(n)}}{I}), \text{ with } r^{(n)} = ||X^{(n)} - X'^{(n)}||.$$
 (1)

- Sequential optimization
- Next point is chosen by maximizing the Expected Improvement

$$f_{\text{EI}}(X^{(n+1)}) = \mathbb{E}[\max(0, f_{\min} - f_{GP}(X^{(n+1)})) | X^{(n+1)}, D]. \tag{2}$$

Gaussian Process Optimization

- Many parameters, but few of them are more influential?
 - ⇒ GP optimization is better than *grid* or *random search*
- Black box function f(x) approximated by a kernel

$$K_{\text{Mat\'ern}}(r^{(n)}) = \frac{2^{1-\nu}}{\Gamma(\nu)} (\frac{\sqrt{2\nu}r^{(n)}}{I})^{\nu} K_{\nu}(\frac{\sqrt{2\nu}r^{(n)}}{I}), \text{ with } r^{(n)} = ||X^{(n)} - X'^{(n)}||.$$
 (1)

- Sequential optimization
- Next point is chosen by maximizing the Expected Improvement

$$f_{\text{EI}}(X^{(n+1)}) = \mathbb{E}[\max(0, f_{\min} - f_{GP}(X^{(n+1)})) | X^{(n+1)}, D]. \tag{2}$$

Gaussian Process Optimization

- Many parameters, but few of them are more influential?
 - ⇒ GP optimization is better than *grid* or *random search*
- Black box function f(x) approximated by a kernel

$$K_{\text{Mat\'ern}}(r^{(n)}) = \frac{2^{1-\nu}}{\Gamma(\nu)} (\frac{\sqrt{2\nu}r^{(n)}}{I})^{\nu} K_{\nu} (\frac{\sqrt{2\nu}r^{(n)}}{I}), \text{ with } r^{(n)} = ||X^{(n)} - X'^{(n)}||.$$
 (1)

- Sequential optimization
- Next point is chosen by maximizing the Expected Improvement

$$f_{\text{EI}}(X^{(n+1)}) = \mathbb{E}[\max(0, f_{\min} - f_{GP}(X^{(n+1)})) | X^{(n+1)}, D].$$
 (2)

Hybrid CTC/Attention ASR - Encoder (1/2)

Hybrid CTC/Attention ASR - Decoder (2/2)

4個→4厘→4厘→

PART 2

Experiment Setup

Gaussion Process Optimization in Two Stages

Stage 1: Network Training

- 20 initial CTC/Attention models
- Lower and upper bounds on model parameters, e.g. CTC vs. attention $\lambda \in [0.0; 1.0]$
- ⇒ in total **70** models

Stage 2: Beam Search

- Started with networks from stage 1 decoded with and without RNNLM
- Optimized parameters:
 - (1) Weight of CTC activations
 - (2) weight of the LM
- ⇒ in total **590** beam search results

Gaussion Process Optimization in Two Stages

Stage 1: Network Training

- 20 initial CTC/Attention models
- Lower and upper bounds on model parameters, e.g. CTC vs. attention $\lambda \in [0.0; 1.0]$
- ⇒ in total **70** models

Stage 2: Beam Search

- Started with networks from stage 1 decoded with and without RNNLM
- Optimized parameters:
 - (1) Weight of CTC activations
 - (2) weight of the LM
- ⇒ in total **590** beam search results

PART 3

Results

- Observed Parameter Groups
- CTC-Only Networks
- Attention-Only Networks

General Results

- Unsurprising:
 Deeper models are better
- Deeper attention decoders are better they predict $p(y_t|y_{t-1})$, similar to a LM

Observed Parameter Groups

- Deteriorated Results in some parameter configurations
 - → CTC-only models without RNNLM
 - → Attention-only models with RNNLM
- Optimization criterion based on CER

Parameter Groups Overview

CTC-Only Networks

CTC-only example transcription without RNNLM

REF: BUT IN FACT we ARE CHANGED we ARE MARKED OF COURSE by a CHALLENGE whether PHYSICALLY EMOTIONALLY or BOTH AND i AM GOING TO SUGGEST THAT this IS A GOOD THING

HYP: UT AN VACT we AR CHANSD we AR MARK TOF CORTS by a CHALENE whether FISICALLY IMOSNOLY or BOS AN i ** **** ** MMNOSUGJEST T this ** IC COD TING

Many spelling errors

ullet ightarrow needs a language model

comparatively high WER-to-CER

Attention-Only Networks

Attention-only example transcription with RNNLM

HYP: serves to be more ******** THAN the individual than the pathology itself by not treating the WHOLE NUCLEUS of THE PERSON AND THE PERSONAL

- Feedback loops
- Also: dropped sentence parts

- comparatively low WER-to-CER
- ullet o Misplaced attention focus

→ < ≥ > < ≥ >

Best results in selected categories.

	baseline	with LM			without LM		
Parameter	[?]	hybrid	attonly	CTC-only	hybrid	attonly	CTC-only
training parameters							
Encoder Layers	6	6	6	6	4	6	6
Decoder Layers	1	5	2	2	3	2	2
Attention neurons	320	379	100	350	172	100	350
Multi-obj. (training) κ	0.5	0.69	0.00	1.00	0.15	0.00	1.00
Model size (1 <i>e</i> 6)	18.7	35.1	23.6	26.6	28.8	23.6	26.6
beam search parameters							
RNNLM weight eta	1.0	0.73	0.41	1.00	0.00	0.00	0.00
Multi-obj. (beam) λ	0.3	0.62	0.08	1.00	0.15	0.00	1.00
results							
TEDlium 2 test/CER	10.1	8.9	40.2	11.3	10.6	10.9	14.4
TEDlium 2 test/WER	18.6	17.6	49.3	22.6	22.1	22.4	36.9

PART 4

Discussion

- Discussion: Feedback Loops
- Concluding Remarks

Discussion: Attention Feedback Loops

But other publications with an Attention-based model + LM had a better performance! Why Attention-only models + LM performed so bad?

Hybrid CTC/Attention

- Teacher Forcing
- Location-aware attention depends on s_{l-1} and a_{l-2} (feedback delay of up to two steps)

e.g. Listen-Attend-Spell

- Scheduled Sampling
- LSTM transducer attention
 based on s_I
 (no delay for feedback on attention)

Discussion: Attention Feedback Loops

But other publications with an Attention-based model + LM had a better performance! Why Attention-only models + LM performed so bad?

Hybrid CTC/Attention

- Teacher Forcing
- Location-aware attention depends on s_{l-1} and a_{l-2} (feedback delay of up to two steps)

e.g. Listen-Attend-Spell

- Scheduled Sampling
- LSTM transducer attention
 based on s_I
 (no delay for feedback on attention)

Discussion: Attention Feedback Loops

But other publications with an Attention-based model + LM had a better performance! Why Attention-only models + LM performed so bad?

Hybrid CTC/Attention

- Teacher Forcing
- Location-aware attention depends on s_{l-1} and a_{l-2} (feedback delay of up to two steps)

e.g. Listen-Attend-Spell

- Scheduled Sampling
- LSTM transducer attention
 based on s_I
 (no delay for feedback on attention)

Concluding Remarks

Previously as hypothesis of the *hybrid CTC/Attention model*:

CTC primarily regularizes alignments of the attention mechanism

Results indicate that:

CTC instead regularizes the impact of LM feedback in the attention mechanism

₹ ₽▶∢≅▶∢≅⊁

Ш

Dipl.-Ing. Ludwig Kürzinger
Technische Universität München
Department of Electrical and Computer Engineering
Chair for Human Machine Interaction
Istanbul, 22. August 2019

