Particle spectrograph

Wave operator and propagator

0 0 0	0 0	0	0	0	0		α
0 0	0))	$\tau_{1}^{\#2}{}_{\alpha}$
0		0	0	0	0	0	$\tau_{1^-}^{\#1}\alpha$
	0	0	0	0	0	0	$\sigma_{1}^{\#2}{}_{lpha}$
0	0	0	$\frac{1}{k^2 r_5}$	0	0	0	$\sigma_{1}^{\#1}{}_{lpha}$
0	0	0	0	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$-\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$\tau_1^{\#1}_+ \alpha_\beta$
0	0	0	0	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(k+k^3)^2r_5t_2}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$
0	0	0	0	$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{1}{k^2 r_5}$	$\sigma_1^{\#1}{}_+\alpha\beta$
$\tau_{1}^{\#2} +^{\alpha}$	$\tau_{1^-}^{\#1} +^\alpha$	$\sigma_{1}^{\#2} +^{lpha}$	$\sigma_{1^{\text{-}}}^{\#1} +^{\alpha}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\sigma_{1}^{\#1} + \alpha^{\beta}$	
	$t_1^{\#^1} + \alpha$ 0 0 0 0 0	$\sigma_1^{\#2} + \alpha = 0 = 0 = 0$	0 0 0	$+\alpha\beta \frac{i\sqrt{2}}{kr_5+k^3r_5} - \frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2} = \frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\alpha\beta = \frac{\sqrt{2}}{k^2 r_5 + k^4 r_5} = \frac{3k^2 r_5 + 2t_2}{(k + k^3)^2 r_5 t_2}$	$\frac{1}{k^2 r_5}$ $-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$ -	$\sigma_{1}^{\#2}$ $\sigma_{1}^{\#1}$ $\sigma_{1}^{\#1}$ $\sigma_{1}^{\#1}$

~ I							
$f_{1^{ ext{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5$	0	0	0
$f_1^{\#1} = \alpha \beta$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	k ² t ₂	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\sqrt{2}t_2}{3}$	$\frac{t}{2}$	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_5 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + \alpha^{eta}$	$^{c#1}_{1}$ †	$\omega_{1^{\bar{-}}}^{\#1} \dag^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 + t_2$	
$f_{0}^{\#2}$	0	0	0	0	
$f_{0}^{\#1}$	0	0	0	0	
$\omega_{0}^{\#1}$	0	0	0	0	
·	$\omega_{0}^{\#1}\dagger$	$f_{0}^{#1}$ †	$f_0^{#2} +$	$\omega_{0}^{\#1} \dagger$	

Source constraints/gauge generators SO(3) irreps

 \vdash

 $\tau_{0}^{\#2} == 0$

 $\tau_{0}^{\#1} == 0$

 \sim

 $\sigma_{0^+}^{\#1} == 0$

 \sim

 $\tau_{1}^{\#1\alpha} == 0$

 \sim

 \sim

 $\tau_{1}^{\#1}\alpha\beta + ik \sigma_{1}^{\#2}\alpha\beta$

2

 $\sigma_{2^{-1}}^{\#1}\alpha\beta\chi == 0$

Fotal constraints:

 $\sigma_{2}^{\#1}{}^{\alpha\beta} == 0$

0 ==

 $t_2^{\#1}\alpha\beta$

))	7,						
			k^2		$\sigma_{o+}^{\#1}$	$ au_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_{0}^{\#1}$	
0	0	0	0	$\sigma_{0^+}^{\#1}$ †	0	0	0	0	
0	0	0	0	$\tau_{0}^{\#1}$ †	0	0	0	0	
0	0	0	0	$\tau_{0+}^{#2} +$	0	0	0	0	
 	++	² +	1+	$\sigma_{\circ}^{\#1}$ +	0			1	
3 0 1+0	$f_{0}^{\#1}$	$f_{0}^{#2}$	$\omega_{0}^{\#1}$	00-	U	0	0	$\frac{1}{k^2 r_2 + t_2}$	

_			
	$\sigma_2^{\#1} + ^{\alpha eta}$	$\tau_2^{\#1} + ^{\alpha\beta}$	$\sigma_{2^{-}}^{\#1} +^{\alpha \beta \chi}$
$\omega_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$	0	0	0
$f_{2}^{\#1}\alpha\beta$	0	0	0
$\omega_2^{\#1}{}_+\alpha\beta$	0	0	0
	$_{2}^{+1}$ $+^{\alpha\beta}$	$_{2}^{+1}$ $+^{\alpha\beta}$	$\frac{1}{1} + \alpha \beta \chi$

0

0

0

0

 $\sigma_{2}^{\#1} \alpha \beta \tau_{2}^{\#1} \alpha \beta$

Massive and massless spectra

(No massless particles)

Unitarity conditions