中华人民共和国国家标准

土壤质量 镍的测定 火焰原子吸收分光光度法

GB/T 17139 — 1997

Soil quality—Determination of nickel— Flame atomic absorption spectrophotometry

1 主题内容与适用范围

- 1.1 本标准规定了测定土壤中镍的火焰原子吸收分光光度法。
- 1.2 本标准的检出限(按称取 0.5 g 试样消解定容至 50 mL 计算)为 5 mg/kg。
- 1.3 干扰
- 1.3.1 使用 232.0 nm 线作为吸收线,存在波长距离很近的镍三线,应选用较窄的光谱通带予以克服。
- 1.3.2 232.0 nm 线处于紫外区,盐类颗粒物、分子化合物产生的光散射和分子吸收比较严重,会影响测定,使用背景校正可以克服这类干扰。如浓度允许亦可用将试液稀释的方法来减少背景干扰。

2 原理

采用盐酸-硝酸-氢氟酸-高氯酸全分解的方法,彻底破坏土壤的矿物晶格,使试样中的待测元素全部进入试液。然后,将土壤消解液喷入空气-乙炔火焰中。在火焰的高温下,镍化合物离解为基态原子,基态原子蒸气对镍空心阴极灯发射的特征谱线 232.0 nm 产生选择性吸收。在选择的最佳测定条件下,测定镍的吸光度。

3 试剂

本标准所使用的试剂除另有说明外,均使用符合国家标准的分析纯试剂和去离子水或同等纯度的水。

- 3.1 盐酸(HCl):ρ=1.19 g/mL,优级纯。
- 3.2 硝酸(HNO₃):ρ=1.42 g/mL,优级纯。
- 3.3 硝酸溶液,1+1:用3.2配制。
- 3.4 硝酸溶液,体积分数为 0.2%:用 3.2 配制。
- 3.5 氢氟酸(HF):ρ=1.49 g/mL。
- 3.6 高氯酸(HClO₄):ρ=1.68 g/mL,优级纯。
- 3.7 镍标准储备液,1.000 mg/mL:称取光谱纯镍粉 1.000 0 g(精确至 0.000 2 g)于 50 mL 烧杯中,加硝酸溶液(3.3)20 mL,温热,待完全溶解后,全量转移至 1 000 mL 容量瓶中,用水稀释至标线,摇匀。
- 3.8 镍标准使用液,50 mg/L:移取镍标准储备液(3.7)10.00 mL于 200 mL 容量瓶中,用硝酸溶液(3.4)稀释至标线,摇匀。

4 仪器

4.1 一般实验室仪器和以下仪器。

- 4.2 原子吸收分光光度计(带有背景校正装置)。
- 4.3 镍空心阴极灯。
- 4.4 乙炔钢瓶。
- 4.5 空气压缩机,应备有除水、除油和除尘装置。

4.6 仪器参数

不同型号仪器的最佳测试条件不同,可根据仪器使用说明书自行选择。表 1 列出本标准通常采用的测量条件。

元	镍
测定波长(nm)	232.0
通带宽度(nm)	0. 2
灯电流(mA)	12.5
火焰性质	中性

表 1 仪器测量条件

5 样品

将采集的土壤样品(一般不少于 500 g)混匀后用四分法缩分至约 100 g。缩分后的土样经风干(自然风干或冷冻干燥)后,除去土样中石子和动植物残体等异物,用木棒(或玛瑙棒)研压,通过 2 mm 尼龙筛(除去 2 mm 以上的砂砾),混匀。用玛瑙研钵将通过 2 mm 尼龙筛的土样研磨至全部通过 100 目(孔径 0.149 mm)尼龙筛,混匀后备用。

6 分析步骤

6.1 试液的制备

准确称取 0.2~0.5 g(精确至 0.000 2 g)试样于 50 mL 聚四氟乙烯坩埚中,用水润湿后加入 10 mL 盐酸(3.1),于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩 3 mL 左右时,取下稍冷,然后加入 5 mL 硝酸(3.2),5 mL 氢氟酸(3.5),3 mL 高氯酸(3.6),加盖后于电热板上中温加热 1 h 左右,然后开盖,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚。当加热至冒浓厚高氯酸白烟时,加盖,使黑色有机碳化物分解。待坩埚壁上的黑色有机物消失后,开盖,驱赶白烟并蒸至内容物呈粘稠状。视消解情况,可再补加 3 mL 硝酸(3.2),3 mL 氢氟酸(3.5),1 mL 高氯酸(3.6),重复以上消解过程。当白烟再次冒尽且内容物呈粘稠状时,取下稍冷,用水冲洗内壁及坩埚盖,并加入 1 mL 硝酸溶液(3.3)温热溶解残渣。然后全量转移至 50 mL 容量瓶中,冷却后定容至标线,摇匀,备测。

由于土壤种类较多,所含有机质差异较大,在消解时,要注意观察,各种酸的用量可视消解情况酌情增减。土壤消解液应是白色或淡黄色(含铁较高的土壤),没有明显沉淀物存在。

注意:电热板温度不宜太高,否则会使聚四氟乙烯坩埚变形。

6.2 测定

按照仪器使用说明书调节仪器至最佳工作条件,测定试液的吸光度。

6.3 空白试验

用去离子水代替试样,采用和 6.1 相同的步骤和试剂,制备全程序空白溶液。并按步骤 6.2 进行测定。每批样品至少制备 2 个以上空白溶液。

6.4 校准曲线

准确移取镍标准使用液(3.8)0.00、0.20、0.50、1.00、2.00、3.00 mL 于 50 mL 容量瓶中,用硝酸溶液(3.4)定容至标线,摇匀,其浓度为 0、0.2、0.5、1.0、2.0、3.0 mg/L。此浓度范围应包括试液中镍的浓度。按(6.2)中的条件由低到高顺次测定标准溶液的吸光度。

用减去空白的吸光度与相对应的元素含量(mg/L)绘制校准曲线。

7 结果的表示

土壤样品中镍的含量 W(mg/kg) 按式(1)计算:

式中:c----试液的吸光度减去空白试验的吸光度,然后在校准曲线上查得镍的含量,mg/L;

V----试液定容的体积,mL;

m--- 称取试样的重量,g;

f——试样水分的含量,%。

8 精密度和准确度

多个实验室用本方法分析 ESS 系列土壤标样中镍的精密度和准确度见表 2。

表 2 方法的精密度和准确度

土壤标样	实验室数	保证值 mg/kg	总均值 mg/kg	室内相对标准偏差 %	室间相对标准偏差 %	相对误差
ESS-1	29	29.6±1.8	29. 1	2. 5	8. 4	-1.7
ESS-3	32	33.7 \pm 2.1	34.0	2. 6	6.0	0.89
ESS-4	33	32.8 ± 1.7	34.1.	2. 9	9. 1	4.0

附录A

(标准的附录)

土样水分含量測定

A1 称取通过 100 目筛的风干土样 5~10 g(准确至 0.01 g),置于铝盒或称量瓶中,在 105 ℃ 烘箱中烘 $4\sim5$ h,烘干至恒重。

A2 以百分数表示的风干土样水分含量 f 按式(A1)计算:

$$f(\%) = \frac{W_1 - W_2}{W_1} \times 100$$
 (A1)

式中: f---土样水分含量,%;

 W_1 ——烘干前土样重量,g;

W₂——烘干后土样重量,g。

附加说明:

本标准由国家环境保护局科技标准司提出。

本标准由中国环境监测总站负责起草。

本标准主要起草人刘京、齐文启。

本标准由中国环境监测总站负责解释。