Surfaces

Toni Sellarès Universitat de Girona

Surfaces

- Many objects we want to model are not flat:
 - Cars, animals, plants, buildings.

Accuracy/Space Trade-off

Problem

- Piecewise linear approximations require many pieces to look good (realistic, smooth, etc.).
- Set of individual surface points would take large amounts of storage.

Solution

- Higher-order formulae for coordinates on surface.
- If a simple formula won't work, subdivide surface into pieces that can be represented by simple formulae.
- May still be an approx., but uses much less storage.
- Downside: harder to specify and render.

3

Surface Representations

- Parametric: (x,y,z)=(f(u,v), g(u,v), h(u,v))
 - e.g. plane, sphere, cylinder, torus, bi-cubic surface, swept surface
 - parametric functions let you iterate over the surface by incrementing u and v
 - great for making polygon meshes, etc
 - complex for intersections: ray/surface, point-inside-boundary, etc
- Implicit: F(x,y,z) = 0
 - e.g. plane, sphere, cylinder, quadric, torus, blobby models
 - terrible for iterating over the surface
 - great for intersections, morphing

Examples

Paremetric: Ellipsoid

$$x = r_x \cos \phi \cos \theta$$
$$y = r_y \cos \phi \sin \theta$$
$$z = r_z \sin \phi$$

Implicit functions: Quadrics and other

5

Swept Surfaces

Obtained by sweeping generator enities along director entities.

Rotational Surfaces

Generated by rotating a curve about an axis.

Every point of the generating curve describes a circle whose supporting plane lies orthogonally to the Axis.

7

Meshes

We can approximate a surface with a polygonal mesh.

Curved Surfaces

- Remember the overview of curves:
 - Described by a series of control points.
 - A function Q(t).
 - Segments joined together to form a longer curve.
- Same for surfaces, but now two dimensions
 - Described by a mesh of control points.
 - A function S(u, v).
 - Patches joined together to form a bigger surface.

9

Parametric Surface Patch

- S(u,v) describes a point in space for any given (u,v) pair:
 - u,v each range from 0 to 1.

- For fixed u_0 , have a v curve $S(u_0, v)$.
- For fixed v_0 , have a u curve $S(u,t_0)$.
- For any point on the surface, there are a pair of parametric curves that go through point.

Polynomial Surface Patches

• *S*(*s*,*t*) is typically polynomial in both *s* and *t*

 $+(cs^3 + gs^2 + ks + o)t + (ds^3 + hs^2 + ls + p)$

- Bilinear:

$$S(s,t) = \mathbf{a}st + \mathbf{b}s + \mathbf{c}t + \mathbf{d}$$

$$S(s,t) = (\mathbf{a}t + \mathbf{b})s + (\mathbf{c}t + \mathbf{d}) \quad \text{--hold } t \text{ constant} \Rightarrow \text{linear in } s$$

$$S(s,t) = (\mathbf{a}s + \mathbf{c})t + (\mathbf{b}s + \mathbf{d}) \quad \text{--hold } s \text{ constant} \Rightarrow \text{linear in } t$$

$$- \text{Bicubic:}$$

$$S(s,t) = \mathbf{a}s^3t^3 + \mathbf{b}s^3t^2 + \mathbf{c}s^3t^2 + \mathbf{d}s^3 + \mathbf{e}s^2t^3 + \mathbf{f}s^2t^2 + \mathbf{g}s^2t + \mathbf{h}s^2$$

$$+ \mathbf{i}st^3 + \mathbf{j}st^2 + \mathbf{k}st + \mathbf{l}s + \mathbf{m}t^3 + \mathbf{n}t^2 + \mathbf{o}t + \mathbf{p}$$

$$S(s,t) = (\mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d})s^3 + (\mathbf{e}t^3 + \mathbf{f}t^2 + \mathbf{g}t + \mathbf{h})s^2 \quad \text{--hold } t \text{ constant} \Rightarrow \text{cubic in } s$$

$$+ (\mathbf{i}t^3 + \mathbf{j}t^2 + \mathbf{k}t + \mathbf{l})s + (\mathbf{m}t^3 + \mathbf{n}t^2 + \mathbf{o}t + \mathbf{p})$$

$$S(s,t) = (\mathbf{a}s^3 + \mathbf{e}s^2 + \mathbf{i}s + \mathbf{m})t^3 + (\mathbf{b}s^3 + \mathbf{f}s^2 + \mathbf{j}s + \mathbf{n})t^2 \quad \text{--hold } s \text{ constant} \Rightarrow \text{cubic in } t$$

11

Bilinear Patch

- A bilinear patch is defined by a control mesh with four points p_0 , p_1 , p_2 , p_3 **defining** a (possibly-non-planar) quadrilateral.
- Compute S(u,v) using a two-step construction

Bilinear Patch (step 1)

- For a given value of *u*, evaluate the linear curves on the two *u*-direction edges.
- Use the same value *u* for both:

13

Bilinear Patch (step 2)

• Consider that q_0 , q_1 define a line segment. Evaluate it using v to get S.

$$S = Lerp(v, \mathbf{q}_0, \mathbf{q}_1)$$

Bilinear Patch (full)

· Combining the steps, we get the full formula

$$S(u,v) = Lerp(v, Lerp(u, \mathbf{p}_0, \mathbf{p}_1), Lerp(u, \mathbf{p}_2, \mathbf{p}_3))$$

15

Bilinear Patch (either order)

• It works out the same either way!

$$S(u,v) = Lerp(v, Lerp(u, \mathbf{p}_0, \mathbf{p}_1), Lerp(u, \mathbf{p}_2, \mathbf{p}_3))$$

$$S(u,v) = Lerp(u, Lerp(v, \mathbf{p}_0, \mathbf{p}_2), Lerp(v, \mathbf{p}_1, \mathbf{p}_3))$$

Properties of the bilinear patch

- Interpolates the control points.
- The boundaries are straight line segments connecting the control points.
- If the all 4 points of the control mesh are co-planar, the patch is flat.
- If the points are not coplanar, get a curved surface.
- The parametric curves are all straight line segments:
 - Is a (doubly) *ruled surface:* has (two) straight lines through every point.

17

Ruled Surfaces

- Linear interpolation between 2 curves
 - All point lie in one line

$$f(s,t) = (1-t)f_1(s) + t f_2(s)$$

Particular case

Cylinder:

$$f(s,t) = f_1(s) + t d$$

$$f_1(s) = (\cos s, \sin s, 0)$$

Cone:

$$f(s,t) = (1-t)f_1 + t f_2(s)$$
$$f_2(s) = (\cos s, \sin s, 0)$$

Coons patches

- Interpolation between 4 curves
- Build a ruled surface between pairs of curves

$$f_1(s,t) = (1-t)f(s,0) + t f(s,1)$$
$$f_2(s,t) = (1-s)f(0,t) + s f(1,t)$$

19

Coons patches

$$f_1(s,t) = (1-t)f(s,0) + t f(s,1)$$
 $f_2(s,t) = (1-s)f(0,t) + s f(1,t)$

Coons patches

- "Correct" surface to make boundaries match
 - Create a linear interpolation surface between the 4 extremes:

$$f_3(s,t) = (1-s)t f(0,1) + s(1-t)f(1,0) + st f(1,1)$$
 (bilinear patch).

- Combine surface as f₁+f₂-f₃

$$f_1(s,t) + f_2(s,t) - ((1-s)(1-t)f(0,0) + (1-s)tf(0,1) + s(1-t)f(1,0) + stf(1,1))$$

21

Properties of Coons patches

$$\left(f(s,0) \ f(s,1) \begin{pmatrix} 1-t \\ t \end{pmatrix} + \left(1-s \ s \right) \begin{pmatrix} f(0,t) \\ f(1,t) \end{pmatrix} - \left(1-s \ s \right) \begin{pmatrix} f(0,0) & f(0,1) \\ f(1,0) & f(1,1) \end{pmatrix} \begin{pmatrix} 1-t \\ t \end{pmatrix}$$

- Interpolate arbitrary boundaries
- Smoothness of surface equivalent to minimum smoothness of boundary curves
- Don't provide higher continuity across boundaries

Bézier Control Mesh

A bicubic patch has a grid of 4x4 control points:

$$P_{0,0}, ..., P_{0,3}$$
...
...
 $P_{3,0}, ..., P_{3,3}$

- Defines four Bézier curves along u and four Bézier curves along v.
- Evaluate using same approach as bilinear.

23

Bézier Patch Properties

- Convex hull: any point on the surface will fall within the convex hull of the control points.
- Interpolates 4 corner points.
- Approximates other 12 points, which act as "handles".
- The boundaries of the patch are the Bézier curves defined by the points on the mesh edges.
- The parametric curves are all Bézier curves.

Cubic Bezier Surfaces: Algebraic Formulation

Cubic Bezier curves can be extended to surfaces on unit squares:

$$S(u,v) = \sum_{i=0}^{i=3} \sum_{j=0}^{j=3} B_i^3(u) B_j^3(v) P_{ij}$$

$$B_i^3(t) = {3 \choose i} t^i (1-t)^{3-i}$$

25

Building a surface from Bézier patches

Building complex surfaces by putting together Bezier patches.

- · Lay out grid of adjacent meshes.
- For C⁰ continuity, must share points on the edge
 - Each edge of a Bézier patch is a Bézier curve based only on the edge mesh points.
 - So if adjacent meshes share edge points, the patches will line up exactly.

C¹ continuity across Bézier edges

- We want the parametric curves that cross each edge to have C¹ continuity:
 - So the handles must be equal-and-opposite across the edge.

27

B-spline patches

For the same reason as using B-spline curves:

- More uniform behavior.
- Better mathematical properties.
- Doesn't interpolate any control points.

B-Spline Surfaces

A B-spline surface S(u,v), is defined by:

$$S(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{n'} B_{i,d}(u) B_{j,d'}(v) P_{i,j}$$

where:

- The $P_{i,j}$ are the $(n+1) \times (n'+1)$ control points.
- d and d' are the orders in the u and v directions.
- We have two non-decreasing *knot sequences of parameters* $u_0, ..., u_{n+d}$ and $v_0, ..., v_{n'+d'}$.
- $B_{i,d}$ are the uniform B-Spline basis or blending functions of degree d-1.

29

NURBS Surfaces

$$S(u,v) = \frac{\sum_{i=0}^{n} \sum_{j=0}^{n'} w_{i,j} B_{i,d}(u) B_{j,d'}(v) P_{i,j}}{\sum_{i=0}^{n} \sum_{j=0}^{n'} w_{i,j} B_{i,d}(u) B_{j,d'}(v)}$$

- Can take on more shapes:
 - · conic sections.
- Can blend, merge,
- Still has rectangular topology.

Surface examples

31

Subdivision Surfaces

- Defined by a control mesh and a recursive subdivision procedure
- Arbitrary mesh, not rectangular topology:
 - No *u*,*v* parameters.
- Can make surfaces with arbitrary topology or connectivity.
- Work by recursively subdividing mesh faces:
 - Per-vertex annotation for weights, corners, creases.
- good for interactive design
 - Used in particular for character animation:
 - One surface rather than collection of patches.
 - Can deform geometry without creating cracks.

The Basic Idea

- In each iteration
 - Refine a control net (mesh)
 - Increases the number of vertices / faces
- The mesh vertices converges to a limit surface
- Each subdivision scheme has:
 - Rules to calculate the locations of new vertices.
 - A method to generate the new net topology.

33

Surfaces

Toni Sellarès Universitat de Girona