NOME: RA:

Depois de um longo tempo com a chave fechada, a chave abre em t=0. Dado $e_A(t)=34V$ determine os valores de i_A e i_x para $t=0^-$ e $t=0^+$

- $i_{A}(0^{-})=$
- $i_{A}(0^{+})=$
- $i_{x}(0^{-})=$
- $i_{x}(0^{+})=$
- Para o mesmo circuito da questão anterior, pede-se: $i_x(t)$ e $i_A(t)$ para todo t.

$$i_x(t) =$$

$$i_A(t)=$$

3 O circuito abaixo está em regime permanente em $t=0^-$. Para t>0, pede-se em função de C e L: as equações de estado na forma matricial: $\vec{z} = Az + Be_A$; $Z = \begin{bmatrix} X \\ V \end{bmatrix}$ e a equação diferencial em V(t)

- 4 Para o mesmo circuito da questão anterior e dado $i_A(t) = 6A$, C = 1/20 F e L=5H, pede-se: a equação diferencial em x(t) e a corrente x(t) no indutor para t>0.
- **5** Determine a <u>resposta ao degrau</u> da corrente x(t) no indutor e corrente $i_A(t)$ em R_1 devido a fonte $e_A(t) = 100u(t)$ [V] Dados: $R_1 = 10\Omega$, $R_2 = 20\Omega$ e L = 0.1H.

$$i_A(t) =$$

- Para o mesmo circuito da questão anterior determine a <u>resposta ao impulso</u> da corrente $\mathbf{x}(t)$ no indutor e corrente $\mathbf{i}_2(t)$ em \mathbf{R}_2 devido a fonte $\mathbf{e}_A(t) = \mathbf{100} \ \delta(t)$ [V] $\mathbf{x}(t) = \mathbf{i}_2(t) =$
- Para o circuito abaixo o AmOp é ideal, $R_1=1k\Omega$, $R_2=2k\Omega$, $C_1=1uF$, $C_2=1/4\mu$ F. Em regime permanente, determine a função de transferência $H(j\omega)=I_S$ / E_A em função de ω e, para $e_A(t)=2\cos(4000t)$ [V], determine o fasor I_S e a resposta forçada $i_S(t)$

Para o circuito abaixo, determine a equação diferencial em x(t) e sua solução para t>0 com x(0)=2A, v(0)=6 V, R=4, L=0.5H, C=1/6F e $e_A(t)=20cos(6t)$ [V]

9 No circuito abaixo a carga Z_L é variável, a impedância de linha é $20 + j35 [\Omega]$, R_1 = 40Ω , R_2 = 15Ω e E_A =480 VRMS. Pede-se: o valor de Z_L para que haja máxima transferência de potência, o seu fator de potência e o valor desta potência máxima na carga.

Para o mesmo circuito da questão anterior, determine a potência complexa na carga \mathbf{Z}_L e o valor do elemento $\mathbf{E}_{lemento}$, que ao ser ligado em paralelo com a carga \mathbf{Z}_L faz com que a carga equivalente se torne puramente resistiva na freqüência $\mathbf{f} = \mathbf{60Hz}$.

$$S = E_{lemento} =$$