# GNU Radio Zedboard Implementation with FPGA Acceleration

Khodamoradi, Hong, Pandit, Parikh

### **Overview**

- FPGA communication blocks via gr\_modtool
- WBFM functions separately created Vivado HLS
- Overall WBFM block needs to be verified in Vivado HLS

## Accomplishments

- Used gr\_modtool to create blocks to send data to and receive data from FPGA via Xillybus (Ali)
- Moved volk multiply, volk dot product, fast\_atan2f, FIR, and IIR functions into C (Keyur, Nishant, Jun)
  - Still troubleshooting FIR
- Created unified test bench to evaluate all functions working together in WBFM block in hardware (Nishant, Ali)

# **Current Progress**

| 5/29/2015 | Generate Test Data for each Function for HLS test benches                                                                                                                                                         | Ali  | DONE        |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|
|           | C Function verification using HLS test data and test benches  1. volk_32fc_x2_multiply_conjugate_32fc // nishant  2. fast_atan2f // jun  3. volk_32f_x2_dot_prod_32f_a // done by nishant  4. IIR_filter // keyur | Team | DONE        |
|           | Synthesis C Functions into HLS IP                                                                                                                                                                                 | Team | In progress |
|           | Host Code for write, read FPGA                                                                                                                                                                                    | Ali  | DONE        |
|           | Integrate HLS IP into FPGA                                                                                                                                                                                        | Team | DONE        |
| 6/12/2015 | FPGA End to End verification using Test Data                                                                                                                                                                      | Team | In progress |
|           | Optimizing hw-sw Performance                                                                                                                                                                                      | Team | In progress |
|           | Final Demonstration                                                                                                                                                                                               | Team | In progress |

## **Proposed Design**

#### **WBFM** Receiver



## Xillybus blocks for GRC



```
xili_write_32::sptr
xili write 32::make()
  fd = open("/dev/xillybus_write_32", O_WRONLY);
 if (fd < 0) {
    printf("Failed to open write 32");
  return gnuradio::get initial sptr
    (new xili write 32 impl());
 * The private constructor
xili write 32 impl::xili write 32 impl()
  : gr::block("xili_write_32",
          gr::io signature::make(1, 1, sizeof(float)),
          gr::io signature::make(0, 0, 0))
 * Our virtual destructor.
xili write 32 impl::~xili write 32 impl()
```

# **Function Sequence**



## **Upcoming Two Weeks Sprint**

- Insert FPGA block into GNU Radio Companion flow graph and test quality of playback
- Optimize FPGA Block
- Documentation

## **Quarter Plan**

Goals left to complete this project

- Integrate Verilog code with GNU Radio
  - ensure data is being processed quickly enough
  - beware scheduling issues
- Listen to GNU Radio without skipping due to buffer overflows