Rodrigo Silveira

Curve and Surface Design Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

Idea: use grid of control points

Idea: use grid of control points

Consider $(n+1) \times (m+1)$ control points arranged in a rectangular grid

Idea: use grid of control points

Consider $(n+1) \times (m+1)$ control points arranged in a rectangular grid

• •

• •

• •

Idea: use grid of control points

Consider $(n+1) \times (m+1)$ control points arranged in a rectangular grid

n+1 columns

Idea: use grid of control points

Consider $(n+1) \times (m+1)$ control points arranged in a rectangular grid

Idea: use grid of control points

Consider $(n+1) \times (m+1)$ control points arranged in a rectangular grid

$$P(u, w) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(w) P_{i,j}$$
$$0 \le u, w \le 1$$

Note that the terms $B_{m,i}$ and $B_{n,j}(u)$ are the Bernstein polynomials, same as in Bézier curves

Idea: use grid of control points

Consider a grid of $(m+1) \times (n+1)$ control points arranged in a rectangular grid

$$P(u,w) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(w) P_{i,j} \qquad 0 \le u, w \le 1$$

In matrix form:

$$P(u,w) = (B_{m,0}(u), B_{m,1}(u), \dots, B_{m,m}(u)) \begin{pmatrix} P_{0,0} & P_{0,1} & \dots & P_{0,n} \\ P_{1,0} & P_{1,1} & \dots & P_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ P_{m,0} & P_{m,1} & \dots & P_{m,n} \end{pmatrix} \begin{pmatrix} B_{n,0}(w) \\ B_{n,1}(w) \\ \vdots \\ B_{n,n}(w) \end{pmatrix}$$

Example

$$(0,1,1)$$
 $(1,1,4)$ $(2,1,1)$

$$(0,0,0)$$
 $(1,0,1)$ $(2,0,0)$

Biquadratic Bézier surface patch [Salomon, Fig 6.20]

Example

Biquadratic Bézier surface patch [Salomon, Fig 6.20]

Properties of Bézier surface (on rectangular grid)

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) P_{i,j}$$

 $0 \le u, v \le 1$

Properties of Bézier surface (on rectangular grid)

Endpoints (patch corners)

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) P_{i,j}$$

 $0 \le u, v \le 1$

Properties of Bézier surface (on rectangular grid)

Endpoints (patch corners)

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) P_{i,j}$$

$$S(0,0)=P_{0,0},\ S(1,0)=P_{0,n},\ S(0,1)=P_{m,0}\ \text{and}\ S(1,1)=P_{m,n}$$

$$0 \le u, v \le 1$$

Properties of Bézier surface (on rectangular grid)

• Endpoints (patch corners)

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) P_{i,j}$$

$$S(0,0)=P_{0,0}$$
, $S(1,0)=P_{0,n}$, $S(0,1)=P_{m,0}$ and $S(1,1)=P_{m,n}$

$$0 \le u, v \le 1$$

Boundary curves

Properties of Bézier surface (on rectangular grid)

Endpoints (patch corners)

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) P_{i,j}$$

$$S(0,0)=P_{0,0},\ S(1,0)=P_{0,n},\ S(0,1)=P_{m,0}\ \mathrm{and}\ S(1,1)=P_{m,n}$$

 $0 \le u, v \le 1$

Boundary curves

S(0,v) is the Bézier curve defined by $P_{0,0},P_{1,0},\ldots,P_{n,0}$

Properties of Bézier surface (on rectangular grid)

Endpoints (patch corners)

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) P_{i,j}$$

$$S(0,0) = P_{0,0} \text{, } S(1,0) = P_{0,n} \text{, } S(0,1) = P_{m,0} \text{ and } S(1,1) = P_{m,n}$$

 $0 \le u, v \le 1$

Boundary curves

S(0,v) is the Bézier curve defined by $P_{0,0},P_{1,0},\ldots,P_{n,0}$

S(1,v) is the Bézier curve defined by $P_{0,n},P_{1,n},\ldots,P_{m,n}$

S(u,0) is the Bézier curve defined by $P_{0,0},P_{0,1},\ldots,P_{0,n}$

S(u,1) is the Bézier curve defined by $P_{n,0},P_{n,1},\ldots,P_{m,n}$

Properties of Bézier surface (on rectangular grid)

• Uniparametric curves (i.e., fixed u or fixed v)

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) P_{i,j}$$

Properties of Bézier surface (on rectangular grid)

• Uniparametric curves (i.e., fixed u or fixed v)

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) P_{i,j}$$

All uniparametric curves are Bézier curves

Properties of Bézier surface (on rectangular grid)

• Uniparametric curves (i.e., fixed u or fixed v)

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) P_{i,j}$$

All uniparametric curves are Bézier curves

Affine invariance

$$\sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) = 1 \quad \text{for all } (u,v)$$

Properties of Bézier surface (on rectangular grid)

• Uniparametric curves (i.e., fixed u or fixed v)

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) P_{i,j}$$

All uniparametric curves are Bézier curves

Affine invariance

$$\sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) = 1 \quad \text{for all } (u,v)$$

Convex hull property

Properties of Bézier surface (on rectangular grid)

• Uniparametric curves (i.e., fixed u or fixed v)

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) P_{i,j}$$

All uniparametric curves are Bézier curves

Affine invariance

$$\sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) = 1 \quad \text{for all } (u,v)$$

Convex hull property

No variation diminishing property

Smooth connection of rectangular Bézier patches

Smooth connection of rectangular Bézier patches

• Same idea as for curves

Smooth connection of rectangular Bézier patches

• Same idea as for curves

Smooth connection of rectangular Bézier patches

Smooth connection of rectangular Bézier patches

Same idea as for curves

Smooth connection of rectangular Bézier patches

Same idea as for curves

• Continuity (C^0 -cont)

$$P_{i,n} = Q_{i,0} \quad \forall i = 0, \dots, m$$

Smooth connection of rectangular Bézier patches

Same idea as for curves

- Continuity (C^0 -cont)
- $P_{i,n} = Q_{i,0} \quad \forall i = 0, \dots, m$
- Smoothness (C^1 -cont)

Smooth connection of rectangular Bézier patches

Same idea as for curves

- Continuity (C^0 -cont)
- Smoothness (C^1 -cont)

$$P_{i,n} = Q_{i,0} \quad \forall i = 0, \dots, m$$

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \frac{\partial Q(u,v)}{\partial u}\Big|_{u=0}$$

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \frac{\partial Q(u,v)}{\partial u}\Big|_{u=0}$$

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \frac{\partial Q(u,v)}{\partial u}\Big|_{u=0}$$

$$P(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u) B_{n,j}(v) P_{i,j} = \sum_{i=0}^{m} \sum_{j=0}^{n} {m \choose i} u^{i} (1-u)^{m-i} {n \choose j} v^{j} (1-v)^{n-j} P_{i,j}$$

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \frac{\partial Q(u,v)}{\partial u}\Big|_{u=0}$$

$$P(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u)B_{n,j}(v)P_{i,j} = \sum_{i=0}^{m} \sum_{j=0}^{n} {m \choose i} u^{i} (1-u)^{m-i} {n \choose j} v^{j} (1-v)^{n-j} P_{i,j}$$

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \sum_{i=0}^{m} {m \choose i} n v^{i} (1-v)^{m-i} P_{i,n} - \sum_{i=0}^{m} {m \choose i} n v^{i} (1-v)^{m-i} P_{i,n-1}$$

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \frac{\partial Q(u,v)}{\partial u}\Big|_{u=0}$$

$$P(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u)B_{n,j}(v)P_{i,j} = \sum_{i=0}^{m} \sum_{j=0}^{n} {m \choose i} u^{i} (1-u)^{m-i} {n \choose j} v^{j} (1-v)^{n-j} P_{i,j}$$

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \sum_{i=0}^{m} {m \choose i} n v^{i} (1-v)^{m-i} P_{i,n} - \sum_{i=0}^{m} {m \choose i} n v^{i} (1-v)^{m-i} P_{i,n-1}$$

$$= n \sum_{i=0}^{m} {m \choose i} v^{i} (1-v)^{m-i} (P_{i,n} - P_{i,n-1})$$

Smoothness condition (C^1 -continuity)

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \frac{\partial Q(u,v)}{\partial u}\Big|_{u=0}$$

$$P(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u)B_{n,j}(v)P_{i,j} = \sum_{i=0}^{m} \sum_{j=0}^{n} {m \choose i} u^{i} (1-u)^{m-i} {n \choose j} v^{j} (1-v)^{n-j} P_{i,j}$$

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \sum_{i=0}^{m} {m \choose i} n v^{i} (1-v)^{m-i} P_{i,n} - \sum_{i=0}^{m} {m \choose i} n v^{i} (1-v)^{m-i} P_{i,n-1}$$

$$= n \sum_{i=0}^{m} {m \choose i} v^{i} (1-v)^{m-i} (P_{i,n} - P_{i,n-1})$$

Analogously,

$$\frac{\partial Q(u,v)}{\partial u}\Big|_{u=0} = k \sum_{i=0}^{m} {m \choose i} v^{i} (1-v)^{m-i} (Q_{i,1} - Q_{i,0})$$

CONNECTING BEZIER SURFACES

Smoothness condition (C^1 -continuity)

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \frac{\partial Q(u,v)}{\partial u}\Big|_{u=0}$$

$$P(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u)B_{n,j}(v)P_{i,j} = \sum_{i=0}^{m} \sum_{j=0}^{n} {m \choose i} u^{i} (1-u)^{m-i} {n \choose j} v^{j} (1-v)^{n-j} P_{i,j}$$

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \sum_{i=0}^{m} {m \choose i} n v^{i} (1-v)^{m-i} P_{i,n} - \sum_{i=0}^{m} {m \choose i} n v^{i} (1-v)^{m-i} P_{i,n-1}$$

$$= n \sum_{i=0}^{m} {m \choose i} v^{i} (1-v)^{m-i} (P_{i,n} - P_{i,n-1})$$

Analogously,

$$\frac{\partial Q(u,v)}{\partial u}\Big|_{u=0} = k \sum_{i=0}^{m} {m \choose i} v^{i} (1-v)^{m-i} (Q_{i,1} - Q_{i,0})$$

Therefore, the condition for C^1 -continuity is: $n(P_{i,n}-P_{i,n-1})=k(Q_{i,1}-Q_{i,0}) \ \forall i=0,\ldots,m$

CONNECTING BEZIER SURFACES

Smoothness condition (C^1 -continuity)

 $= n \sum_{i=0}^{m} {m \choose i} v^{i} (1-v)^{m-i} (P_{i,n} - P_{i,n-1})$

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \frac{\partial Q(u,v)}{\partial u}\Big|_{u=0}$$

$$P(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_{m,i}(u)B_{n,j}(v)P_{i,j} = \sum_{i=0}^{m} \sum_{j=0}^{n} {m \choose i} u^{i} (1-u)^{m-i} {n \choose j} v^{j} (1-v)^{n-j} P_{i,j}$$

$$\frac{\partial P(u,v)}{\partial u}\Big|_{u=1} = \sum_{i=0}^{m} {m \choose i} n v^{i} (1-v)^{m-i} P_{i,n} - \sum_{i=0}^{m} {m \choose i} n v^{i} (1-v)^{m-i} P_{i,n-1}$$

Analogously,

$$\frac{\partial Q(u,v)}{\partial u}\Big|_{u=0} = k \sum_{i=0}^{m} {m \choose i} v^{i} (1-v)^{m-i} (Q_{i,1} - Q_{i,0})$$

Therefore, the condition for C^1 -continuity is: $n(P_{i,n}-P_{i,n-1})=k(Q_{i,1}-Q_{i,0}) \ \forall i=0,\ldots,m$

If we just want G^1 -cont, it is enough with $P_{i,n} - P_{i,n-1} = \alpha(Q_{i,1} - Q_{i,0})$, for some $\alpha \neq 0 \in \mathbb{R}$

Applying De Casteljau to each dimension

Applying De Casteljau to each dimension

Applying De Casteljau to each dimension

Applying De Casteljau to each dimension

Applying De Casteljau to each dimension

Applying De Casteljau to each dimension

Applying De Casteljau to each dimension

Applying De Casteljau to each dimension

• For surfaces: apply it in two phases (along u, and along v)

Applying De Casteljau to each dimension

• For surfaces: apply it in two phases (along u, and along v)

Applying De Casteljau to each dimension

• For surfaces: apply it in two phases (along u, and along v)

Applying De Casteljau to each dimension

• For surfaces: apply it in two phases (along u, and along v)

Applying De Casteljau to each dimension

• For surfaces: apply it in two phases (along u, and along v)

along one "constant v" polygon

 Applications of De Casteljau, e.g., to curve subdivision, also extend to surfaces

Interpolating Bézier surface patch

Problem: given $(m+1) \times (n+1)$ data points $Q_{k,l}$, compute a set of $(m+1) \times (n+1)$ control points $P_{i,j}$ such that the Bézier surface S defined by the points $P_{i,j}$ goes through the points $Q_{k,l}$

Interpolating Bézier surface patch

Problem: given $(m+1) \times (n+1)$ data points $Q_{k,l}$, compute a set of $(m+1) \times (n+1)$ control points $P_{i,j}$ such that the Bézier surface S defined by the points $P_{i,j}$ goes through the points $Q_{k,l}$

Same approach as for curves:

Interpolating Bézier surface patch

Problem: given $(m+1) \times (n+1)$ data points $Q_{k,l}$, compute a set of $(m+1) \times (n+1)$ control points $P_{i,j}$ such that the Bézier surface S defined by the points $P_{i,j}$ goes through the points $Q_{k,l}$

Same approach as for curves:

1) Select m+1 values u_k (for $k=0,\ldots,m$)

Interpolating Bézier surface patch

Problem: given $(m+1) \times (n+1)$ data points $Q_{k,l}$, compute a set of $(m+1) \times (n+1)$ control points $P_{i,j}$ such that the Bézier surface S defined by the points $P_{i,j}$ goes through the points $Q_{k,l}$

Same approach as for curves:

- 1) Select m+1 values u_k (for $k=0,\ldots,m$)
- 2) Select n+1 values v_l (for $l=0,\ldots,n$)

Interpolating Bézier surface patch

Problem: given $(m+1) \times (n+1)$ data points $Q_{k,l}$, compute a set of $(m+1) \times (n+1)$ control points $P_{i,j}$ such that the Bézier surface S defined by the points $P_{i,j}$ goes through the points $Q_{k,l}$

Same approach as for curves:

- 1) Select m+1 values u_k (for $k=0,\ldots,m$)
- 2) Select n+1 values v_l (for $l=0,\ldots,n$)
- 3) Require $S(u_k, v_l) = Q_{k,l}$ for all k, l

Interpolating Bézier surface patch

Problem: given $(m+1) \times (n+1)$ data points $Q_{k,l}$, compute a set of $(m+1) \times (n+1)$ control points $P_{i,j}$ such that the Bézier surface S defined by the points $P_{i,j}$ goes through the points $Q_{k,l}$

Same approach as for curves:

- 1) Select m+1 values u_k (for $k=0,\ldots,m$)
- 2) Select n+1 values v_l (for $l=0,\ldots,n$)
- 3) Require $S(u_k, v_l) = Q_{k,l}$ for all k, l

Defines system of $(m+1) \times (n+1)$ equations that always has a solution

Interpolating Bézier surface patch

Problem: given $(m+1) \times (n+1)$ data points $Q_{k,l}$, compute a set of $(m+1) \times (n+1)$ control points $P_{i,j}$ such that the Bézier surface S defined by the points $P_{i,j}$ goes through the points $Q_{k,l}$

Same approach as for curves:

- 1) Select m+1 values u_k (for $k=0,\ldots,m$)
- 2) Select n+1 values v_l (for $l=0,\ldots,n$)
- 3) Require $S(u_k, v_l) = Q_{k,l}$ for all k, l

Defines system of $(m+1) \times (n+1)$ equations that always has a solution

$$S(u_k, v_l) = B_m^t(u_k) P B_n(v_l) = Q_{k,l}$$
, for $k = 0, ..., m$ and $l = 0, ..., n$

Interpolating Bézier surface patch

Problem: given $(m+1) \times (n+1)$ data points $Q_{k,l}$, compute a set of $(m+1) \times (n+1)$ control points $P_{i,j}$ such that the Bézier surface S defined by the points $P_{i,j}$ goes through the points $Q_{k,l}$

Same approach as for curves:

- 1) Select m+1 values u_k (for $k=0,\ldots,m$)
- 2) Select n+1 values v_l (for $l=0,\ldots,n$)
- 3) Require $S(u_k, v_l) = Q_{k,l}$ for all k, l

Defines system of $(m+1) \times (n+1)$ equations that always has a solution

$$S(u_k, v_l) = B_m^t(u_k) P B_n(v_l) = Q_{k,l}$$
, for $k = 0, ..., m$ and $l = 0, ..., n$

matricial form of Bézier surface formula

Interpolating Bézier surface patch

Example from [Salomon, page 232]:

Example: We choose m=3 and n=2. The system of equations becomes

$$[(1-u_k)^3, 3u_k(1-u_k)^2, 3u_k^2(1-u_k), u_k^3] \begin{bmatrix} \mathbf{P}_{00} & \mathbf{P}_{01} & \mathbf{P}_{02} \\ \mathbf{P}_{10} & \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{20} & \mathbf{P}_{21} & \mathbf{P}_{22} \\ \mathbf{P}_{30} & \mathbf{P}_{31} & \mathbf{P}_{32} \end{bmatrix} \begin{bmatrix} (1-w_l)^2 \\ 2w_l(1-w_l) \\ w_l^2 \end{bmatrix} = \mathbf{Q}_{kl}$$

Interpolating Bézier surface patch

Example from [Salomon, page 232]:

Example: We choose m = 3 and n = 2. The system of equations becomes

$$[(1-u_k)^3, 3u_k(1-u_k)^2, 3u_k^2(1-u_k), u_k^3] \begin{bmatrix} \mathbf{P}_{00} & \mathbf{P}_{01} & \mathbf{P}_{02} \\ \mathbf{P}_{10} & \mathbf{P}_{11} & \mathbf{P}_{12} \\ \mathbf{P}_{20} & \mathbf{P}_{21} & \mathbf{P}_{22} \\ \mathbf{P}_{30} & \mathbf{P}_{31} & \mathbf{P}_{32} \end{bmatrix} \begin{bmatrix} (1-w_l)^2 \\ 2w_l(1-w_l) \\ w_l^2 \end{bmatrix} = \mathbf{Q}_{kl}$$

12 equations, 12 unknowns

RATIONAL BÉZIER SURFACES

Rational rectangular Bézier surface patch

RATIONAL BÉZIER SURFACES

Rational rectangular Bézier surface patch

Definition anologous to the one for curves

RATIONAL BÉZIER SURFACES

Rational rectangular Bézier surface patch

Definition anologous to the one for curves

$$P(u,w) = \frac{\sum_{i=0}^{m} \sum_{j=0}^{n} w_{i,j} B_{m,i}(u) B_{n,j}(w) P_{i,j}}{\sum_{i=0}^{m} \sum_{j=0}^{n} w_{i,j} B_{m,i}(u) B_{n,j}(w)} \qquad 0 \le u, w \le 1$$

$$w_{i,j} \in \mathbb{R}_{>0} \text{ for all } i, j$$

If all weights are $w_{i,j} = 1$, it reduces to the ordinary Bézier surface

Surface patches don't need to be rectangular

Surface patches don't need to be rectangular

Control points arranged as triangular array

Surface patches don't need to be rectangular

Control points arranged as triangular array

Bézier formula needs version based on three variables

$$\mathbf{P}(u, v, w) = \sum_{i+j+k=n} \mathbf{P}_{ijk} \frac{n!}{i! \, j! \, k!} u^i v^j w^k = \sum_{i+j+k=n} \mathbf{P}_{ijk} B_{ijk}^n(u, v, w)$$

Example

