One Fourth Labs

Using Cross Entropy With Sigmoid Neuron

What does the cross entropy loss function look like

- 1. Consider an example in the scope of our final project
- 2. Look at the following signboard

- 3. x = image, y = [0, 1] (True distribution, where 1 corresponds to Text)
- 4. $\hat{y} = \frac{1}{1 + e^{(-(w.x + b))}}$
- 5. This corresponds to $\hat{y} = 0.7$

- 6. Thus, the predicted distribution is $\tilde{y} = [0.3, 0.7]$ (where 0.7 corresponds to Text)
- 7. The Loss function is $L(\theta) = -\sum_{i} y_{i} log \tilde{y}_{i}$ where $i \in \{0, 1\}$
- 8. $L(\theta) = -((y_o \log \tilde{y}_o) + (y_1 \log \tilde{y}_1))$

PadhAl: Information Theory and Cross Entropy

One Fourth Labs

- 9. $L(\theta) = -((y_o \log (1 \tilde{y}_1)) + (y_1 \log \tilde{y}_1))$ (from probability axioms, $y_0 = 1 y_1$)
- 10. Consider two examples side by side

Training Data	Image	$L(\theta) = -((y_o \log (1 - \tilde{y}_1)) + (y_1 \log))$	Loss function
y = [0, 1] $\hat{y} = 0.7$ $\tilde{y} = [0.3, 0.7]$ (Text)	मुंबई	$L(\theta) = -(0 * log(0.3)) + (1 * log(0.7)))$ $L(\theta) = -log(0.7)$	$L(\theta) = -log(\hat{y})$ When true output is 1
y = [1, 0] $\hat{y} = 0.2$ $\tilde{y} = [0.8, 0.2]$ (No-Text)		$L(\theta) = -(1 * log(0.8)) + (0 * log(0.2)))$ $L(\theta) = -log(0.8)$	$L(\theta) = -log(1 - \hat{y})$ When true output is 0

- 11. The Loss function can be expressed as follows
 - a. $L(\theta) = -log(\hat{y})$ if y = 1
 - b. $L(\theta) = -log(1 \hat{y})$ if y = 0
 - c. Combining them and removing the if conditions:
 - d. $L(\theta) = -[(1-y)log(1-\hat{y}) + ylog(\hat{y})]$
 - i. When y = 1, the first term becomes 0
 - ii. When y = 0, the second term becomes 0