⑩ 日本国特許庁(JP)

① 特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭63-30366

֍Int.Cl.⁴		識別記号	庁内整理番号		❸公開	昭和63年(198	38)2月9日
C 04 B	35/56	1 0 1	J - 7158 - 4 G U - 7158 - 4 G			•	
;	35/58	102	F-7158-4G W-7158-4G	審査請求	未請求	発明の数 1	(全13頁)

②発明の名称 窒化けい素ー炭化けい素系複合材の製造法

到特 頤 昭61-171601

介

②出 願 昭61(1986)7月23日

⑫発 明 者 安 富 義 幸 茨城県日立市久慈町4026番地 株式会社日立製作所日立研

究所内

茨城県日立市久慈町4026番地 株式会社日立製作所日立研

究所内

①出 願 人 株式会社日立製作所 東京都千代田区神田駿河台4丁目6番地

②代理人 弁理士 小川 勝男 外2名

明 超 🛊

1. 発明の名称

翎発

明

窒化けい素-炭化けい素系複合材の製造法

- 2. 特許請求の範囲
 - 1. 金鳳Si粉末とSiC粉末に焼結助剤を添加 した成形体を窒素性ガス中で1500℃以下で 加熱焼結することにより、上記金鳳Siが窒化 したSisNs粒子と、上記SiC粒子および焼 納助剤とを非酸化性雰囲気中、1500℃~ 2200℃で焼結することを特徴とする窓化け い楽一炭化けい素系複合材の製造法。
 - 2. 焼結助剤が希土類化合物から選ばれる1種または2種以上である特許請求の範囲第1項記載の窒化けい素ー炭化けい素系複合材の製造法。
 - 3. 焼結助剤は、酸化ベリリウム、酸化マグネシウム、酸化アルミニウム、酸化カルシウム、酸化チタン、酸化ケイ素、酸化クロム、酸化マンガン、酸化バナジウム、酸化鉄、酸化ニツケル、酸化コバルト、酸化亜鉛、酸化セリウム、酸化ジルコニウム、酸化ニオブ、酸化タンタル、窒

化アルミニウム、窒化チタン、窒化タンタル、 窒化水ウ素から選ばれる1種または2種以上で ある特許請求の範囲第1項記載の窒化けい素一 炭化けい素複合材の製造法。

3.発明の詳細な説明

[産業上の利用分野]

〔従来の技術〕

一般に、エンジンやタービンなどの構造材に選 するエンジニアリングセラミツクとしてSiaNs やSiCが考えられている。

工業レアメタル他73,1980,P10に示すようにSiC,SiaN。とも難焼結材であるため技術的な工夫が要求されており、焼結研究が進められている。しかし、SiCとSiaN。はすぐれた特徴を有しているが同時に欠点を持つている。すなわち、SiCは硬く、高温においても強度が低下しないが、初性におとる。一方、SiaN。は

駅性に貫んでいるが耐熱性に問題がある。

そこで、この2種類を組み合わせた複合材料を作ることにより、強度、耐熱衝撃性に優れ、特に初性の大きい特殊な材料を作ることが可能と考えられるが、特開昭58-88169 号に示すように従来のSiaN•精合SiC組成物は、機械的強度が不十分であり、機械構造用材料として使用するには不適当である。またこれまでSiCとSisN•を同時に焼結させるのに好適な焼結助刑及び方法が確立されておらず、実用的なものがない。

(発明が解決しようとする問題点)

上記従来技術は、SiaNaとSiCの2種類の材料を同時に焼結するのに有効な焼結助剤及び方法が確立されていないために、強度、靱性、耐熱性の点について配慮されておらず、機械構造用材料として使用するには問題があつた。

本発明の目的は、金鳳Siの窒化反応を促進し、かつSisNsとSiCを焼結することのできる焼 結助刑を使用しSisNs母材中に、適量のSiC

のSiaN a 結合Si Cと比較して結合強度を大きくできるので強度。特に耐熱衡繁性。初性に対してすぐれた複合材を得ることが可能となつた。

本発明は、SiaNa-SiC系複合材にA.R.
Be, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Se, Zr, Nb, Mo, Taの敗化物、A.R. Ti, Ta, Bの窓化物(以下、これらをD化合物と称する)のなかから選ばれる何れか1種または2種以上含有する。これらD化合物は、金属Siの窓化反応を促進すると共に、SiaNa, SiC粒子及び前記のA.化合物とそれぞれ反応し粒界エネルギ低波により焼結反応を促進させるのに有効であり、SiCとSiaNaを促進させるのに有効であり、SiCとSiaNaを促進させるのに有効であり、SiCと

本発明において、SiC粉末はα-SiC, β -SiC非晶質SiCの何れかを少なくとも1種 を使用でき、平均粒径100μm以下とする理由 粒子を存在させることにより高強度かつ特に初性。 耐熱衝撃性にすくれたSisN。—SiC系複合材 を提供することにある。

(問題点を解決するための手段)

本発明を概説すれば、本発明はSiaN4-SiC 系数合材及びその製造法に関する発明であつて、 上記目的は、金属Si粉末とSiC粉末の混合物 に焼結助剤を0.05~10vo2% 添加すること に焼結助剤を0.05~10vo2% 添加すること

本発明はSiaNaーSiC系複合材に含有される桁土類化合物は、Y,La,Ce,Sc,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luの元素から選ばれる化合物(以下、A化合物と称す)何れか1種または2種以上である。これらA化合物は、金属Siの窒化反応を促進する役目があると共に、SiC,SiaNa粒子の表面エネルギを低下させ、SiCとSiaNa粒子を強固に結合することが判明し、SiCとSiaNa粒子を強固に結合することが可能となつた。これにより、従来

は、SiC粒子は100μmより大きいとへき闘 し易い。これは強度が低くなつたからである。

本発明において、金属Siの平均粒径を10 μm以下とする理由は、平均粒径が10μmより 大きくなると窒化時間が長くなると共に残留Si が存在しやすくなるからである、そして金属Si の分散性が良好なので成形体の相対密度を向上す ることができたからである。

本発明において、金属SiとSiC粉末を出発原料とする理由は、金属Si粉末を窓化性ガスと反応させて生成したSisNs粒子によりSiC粒子を結合することにより、相対密度が80~95%の高密度な一次焼結体が得られ、これを更に焼結助が働く温度で焼結することにより100%に近い焼結体を得ることが可能で、この場合でき続いた。な収縮を10%以内に抑えることができるものが焼結な収縮を10%以内に抑えることができるものは、SiCとSisNsの成形体の相対密度が50~60%程度であり、焼結に伴い20%近く収縮し、寸法格

本発明において、窒化工程の1次加熱焼結によって生成したSiaN4系は、a型SiaN4。 A型SiaN4。 B型SiaN4。 B型SiaN4及びSi2ON2から成る、そして2次加熱焼結により生成したSiaN4系以外にa型サイアロン、B型サイアロンが一部含まれる。

:

本発明において、焼結体中に含有するSiC系組成物を10~60vol%とする理由は、10volより少ないと、また60vol%より多いと複合効果によつてもたらされる初性や耐熱衝撃性の

系の特性が充分に発揮されないので、O.05~ 10vo2%の範囲にする必要がある。

本発明において、金属Si粉末とSiC粉末と 焼結助剤から成る出発原料にSiaNa粉末を添加 しても良い。適宜なSiaNa粉末は、金属Siを 窒化反応によりSiaNa相に変化させる時の核と なり窒化反応が促進されるからである。

本発明において、成形用バインダはポリビニルブチラールやポリエチレンなどの有機高分子化合物、シリコンイミド化合物やポリシラン化合物などの有機建業高分子化合物、熱可塑性樹脂、可塑が利力をとも1~20重量部部加し、成形体の相対密度を50%以上とするのが好ましい。また、金属Si粉末、SiC粉末、SiaNa粉末は、市販のものをそのまま使用でき、ミルなどにより粉砕した丸みを帯びた粒子を使用してもよい。
「作用)

SiCは硬いが脆く、靭性に問題点があり、一方SiaNaは靱性がすぐれているが耐熱性に問題があつた。このように特性が異なるSiCと

特性の向上が期待できないからである。

本発明において、金瓜Si粉末の窓化工程は無加圧下あるいは加圧下の何れによつても行うことができ、金瓜Siの融点(1410℃)以下では1000℃から長時間かけて加熱することにより、SisNsーSiC複合材の1次焼結体が得られる。窓化性ガス雰囲気としては、窒化・アンモニアの単体ガスあるいはこれにアルゴン、ヘリウム、水森、ネオン、一酸化炭素などの非酸化性ガスとを混合した雰囲気を使用する。

本発明において、2次加熱焼結は無加圧下、あるいは加圧下の何れによつても行うことができ、 無加圧焼結によつても高密度、高強度の焼結体を 得ることができる。加圧焼結は通常のホツトプレス、熱間静水圧プレス、雰囲気加圧等が可能である。

本発明において、焼結助剤は 0.05 vo 2%より少ないと焼結反応が充分に進行しない、また 1 0.vo 2%より多いと焼結体中に存在する Si C と Si a N a 系の量が少なくなり、 Si C と Si a N a

SiaNaを焼結助剤により強固に結合することにより、高初性、高耐熱衝整性、高強度、高寸法精度の焼結体が得られるので構造用材料への利用範囲を拡大するものである。

[実施例]

以下、本苑明を実施例により更に具体的に説明 するが、本苑明はこれら実施例に限定されない。 実施例1

平均粒径 0.9 μm の金属 Si 初末 6 0 部と 平均粒径 1.6 μmのαーSi C 初末 4 0 部に焼結助剤として Y 2 O a を 5 vo 2 % 添加し、メタノールと一緒にポットミルで混合、乾燥した後、ブレンドワックスを 9 部添加して、150° とで加圧ニーダを用いて 5 時間混練した。そして、混練符でする 6 5 mm × 1 O a m のものを成形した。成形体中のフェで耐熱した。そして、窒素ガス中1450℃まで取附的に長時間かけて1気圧中で加熱処理し、一次焼結体を 得た。

に示す。ここで、焼結体中のSiCとSisN↓の

組成比は40:60と一定である。

一次焼結体の相対密度は90%, 寸法変化率 0.15% であつた。

この一次焼結体をアルゴン雰囲気中100気圧 2000℃で30分保持しSiaNューSiC焼結体を得た。この焼結体の試験結果を第1表に示す。 ここで、無衝撃抵抗性は、焼結体を1300℃で 30分間保持した後、水中に急冷した。そして鬼 裂を見出すまで反復した回数を示す。

第 1 表

		_	•			
					1	破蛛靭性值
No	SiC系	SisNa系	(%)	(MPa)	(回)	kic(Mas ²)
Ţ1	40	60	4.2	780	67	8.2

これにより、SiCのみのkic値よりかなり大きくなつているのが判る。また、収縮率が4.2%と、一般の常圧焼結法に比べかなり小さく、高寸法精度にすぐれていることが判る。

实施例 2

実施例1と同様にして、焼結助剤の種類を変えて、1800℃から2200℃の温度範囲で焼結して得たSisN4-SiC複合材の特性を第2表

*
- -
-
2
9
2
2
5
8
6
1
8
8
5
8

実施例1と同様にして、焼結助剤の種類を変えて、1800~2200℃の温度,100気圧の圧力の条件で焼結して得たSiaN。-SiC被合材の特性を第3数に示す。ここで、焼結体中のSiCとSiaN。の組成比は40:60と一定である。以上より、本発明品は、耐熱衝撃性、靱性、高寸法精度に優れていることが判る。

	X 10	(HPam [‡])	9.3	9.2	8.5	8.4	7.8	7.5	8.3	9.0	8.3	8.4	8.1	7.8	7.9	7.8	7.5	7.4	7.8	7.7	7.5	7.3	7.8	8.7	4.1	4.2	4.1	4.1	4.3	6.4
	報告を	(国)	6 9	0 6	8 8	6.7	6 9	6.5	6.4	68	7 1	6.7	8 9	99	8 9	6.5	8 9	6 8	6.7	7.0	6.4	6 9	67.	6 9	3 5	3 5	3 5	3 6	3 6	3.4
栎	曲げ張さ	(MP &)	810	790	720	064	783	742	751	745	787	792	781	742	748	721	714	742	731	753	741	719	741	792	350	372	371	368	403	4 2 1
3	なる	(%)	. 5 . 8	5.7	4.6	4.9	5.1	4.7	4.9	4.5	5.7	5.8	5.1	8.4	9.4	4.5	4.6	5.1	5.2	5.0	4.7	4.8	4.9	5.1	0.15	1.1	9.0	6.0	1.4	1.5
10	相对图域	(%)	6 6	6 6	9.7	8 6	9 8	9.7	9 6	9.7	6 6	6 6	8 8	9 6	9 8	97.5	9.7.6	8 6	8 8	8 8	97.5	8 6	8 6	6 6	0 6	8 2	9 1	9.1	9 3	9 3
	いない。	(5vo 8 %)	N a .A	A 8 101	B & O	MRO	SiOa	0 4 0	T 10.	V 2 0 8	0.0	MnOs	F 0 10 1	0 ° 0	101 N	2 n O	Z r 0 s	Nbaos	M . O.	S 0 0 x	T 8 10 0	TIN	TeN	N W	岩遊戲	F O S N	Lin	MBIN	S L	CatNa
	量が	æ	-1	2	3	4	s	9	7	•	8	0 1	-	1 2	1 3	1.4	1 2	1 6	17	1 8	1 B	2 0	2 1	2 2	2 3	2.4	2.5	2 6	2 7	2 8
										#				æ				E							<u>L</u>	±	*	₹		

实施例4

実施例1,2,3と同様にして、焼結助剤の種類を変えて得たSisNi-SiC複合材の特性を第4級に示す。

		额	4			
政松		超级现实	设施	田で扱い	を発送される。	× .
£	務益号型(Ao B A)	(%)	(%)	(MPa)	(回)	(MPam ^k)
-	Laz0::3	9 8	5.4	792	6 9	8.0
23	A B N : 2 M n O s : 3	8 6	5.7	805	8 8	9.1
6	K u s O s : 1 T s O s : 2 T s N s : 2	8 6	5.8	812	6 7	8.9
4	Y 40 : 1 S m 40 : 1 T i O 4 : 3	8 8	5.1	781	6 9	8.7
2	ZnO:1 MoOs:2 CoO:2	8 8	5.3	792	8 8	8.8
9	C 0 0 3 : 2 H 0 s 0 b : 2 Y b s 0 b : 1	98,5	5.5	804	6.7	9.1

以上より、本発明品は高強度、耐熱衝影性、靱性、高寸法精度に優れているものが判る。 実施例 5

実施例1と同様にして、焼結助剤の添加量を変えた場合の結果を第5及に示す。

第 5 表

BEE STATE	Y2Os添加盘	収縮量	曲げ強さ	熟衝擊值	Kio
Na	(vo 2 %)	(%)	(MPa)	(国)	(MPao ¹)
1	0	1.5	450	35	4.2
2	0.03	1.9	490	40	4.5
3	0.05	3.2	610	69	6.2
4	1	4.0	720	6 9	7.3
. 5	5	4.2	780	67	8.2
6	10	4.5	792	6 9	8.5
7	15	4.3	733	42	4.7
8	20	4.7	677	3 7	4.0
9	30	5.6	600	32	3.8
10	40	7.2	560	30	3.7
1 1	50	8.1	520	2 1	3.7

第1回に、焼結助剤添加量と曲げ強さの関係を

示す。第2回に、焼結助剤添加量とKicの関係を示す。また第3回に、焼結助剤添加量と熟謝撃値の関係を示す。

これより、来げ強さ及び K rcは助利添加量0.05 vo 8 %から大きくなり、10 vo 8 %より多くなると小さくなつているのが判る。また熱衝射抵抗は、助刑添加量が10 vo 8 %より多くなると低下しているのが判る。以上より、本発明品は高強度、耐熱物學性、靱性にすぐれているのが判る。

実施例6

実施例1と同様にして焼結体中のSiC含有量。 を変えた場合の結果を第6表に示す。

第4回に、SiC含有量と熱衝整値の関係を示す。第5回に、SiC含有量とKicの関係を示す。これより、SiC含有量が10vol%より少ないか、60vol%より多いとSiCとSiaNaの複合効果がなくなり、熱衝撃抵抗、Kicが低下していることが判る。つまり、SiaNa単体、SiC単体に較べすぐれていることが判る。以上より本発明品は、特に耐熱衝撃性、初性にすぐれている

第 6 表

試料	が新体中の	烧結則刑添加量	曲げ強さ	熟初繁值	Kie
Na	SiC 含有量 (vo & %)	(vo 1 %)	(MPa)	(回)	()(Paw ¹)
1	0	CeO2:5 MgO:5	750	3 2	3.8
2	5	•	762	45	5.0
3	10		795	62	7.0
4	20	*	800	70	8.1
5	40		812	71	8.2
6	60	,	795	65	6.7
7	70	*	600	47	5.2
8	80	,	510	36	3.1
9	90	8	420	23	2.4

実施例7

実施例1と同様にして金属Si粉末,SiC粉末の粒径を変えて焼結した結果を第7表に示す。 焼結助剤は、Y2Os:5vol%,AlN:3vol%である。

10回にSiC粉末の粒径と曲げ強さ、Kicの関係を示す。これらより、Si粉末の粒径が10 μmより大きくなると一次焼結体中に残留Siが存在するために二次焼結時にSiが蒸発し、曲げ強さ、熱衝撃値、靭性が低下していることが判る。また、SiC粒子が100μmより大きくなるとへき関しやすいために曲げ強さ、Kicが低下しているのが判る。以上より本発明品は、高強度、耐熱衝撃性、靱性にすぐれていることが判る。

実施例1と同様にして得られたSiaN4-SiC 複合材と、出発原料をSiaN4粉体。SiC粉末 .及び焼箱助剤として同様にして得られたSiaN4 -SiC複合材の結果を第8表に示す。ここで、 焼結助剤はYェ〇a 5vog%, MnO:5vog% を添加した。

第 7 表

ſ	試料	原科粒	怪(μɒ)	烷箱	本組成比	曲げ強さ	熱研勢值	Kic
	No	Si	SiC	SiC	SiaNe系	(MPa)	(回)	(МРав ²)
Ī	1	0.3	16	40	60	802	69	8.5
Ī	2	0.9	16	-40	60	804	70	8.4
Ì	3	5.0	16	40	60	758	69	8.2
	.4	7.2	16	40	60	745	69	8.2
Ì	5	10.0	16	40	60	682	66	8.0
	6	11.2	16	40	60	570	60	6.2
	7	15,2	16	40	60	521	47	5.4
	8	0.9	0.3	40	60	801	68	8.0
:	9	0.9	1.0	40	60	808	70	8.3
:	10	0.9	16	40	60	804	70	8.4
-	11	0.9	3 2	40	60	754	69	7.9
	12	0.9	64	40	,60	731	69	7.7
	13	0.9	98	40	60 .	708	70	6.8
	14	0.9	106	40	60	609	68	5.8
	15	0.9	121	40	60	518	47	4.9

第6図から第8図に金属Si粉末の粒径と曲げ強さ、Krc,熱樹繁態の関係を示す。第9図,第

П	出発	原料	焼 結	体 vo l 比	相対密度	収縮率	曲げ強さ	熱衡繁値	Kic
	. 40部	. 60部	SiC	SiaNa系	(%)	(%)	(MPa)	(0)	(MPam ¹)
本	a-SiC	Si	4 0	6 0	9 9	5.4	841	7 1	8.8
1 1	(16 p·m)	(0.9 µ m)							
死	β-SiC	S i	4 0	6 0	9 9	5.4	821	70	8.4
1	(16 µ m)	(0.9 µ m)							
明品	非品質 SiC (16 µ m)	Si (0.9 µ m)	4 0	6 0	9 9	5.7	851	70	8.9
比比	α-SiC (16 μm)	α - SiaN ₄ (0.9 μm)	4 0	6 0	9 2	1 2	5 2 1	4 7	6.4
較	β-SiC (16 μm)	α-SisN ₄ (0.5 μm)	4 0	6 0	9 3	1 6	5 4 5	4 4	6.5
991	非品質 SiC (16µm)	α-SiaNa (0.8 μm)	4 0	6 0	9 3	1 5	548	4 5	6.8

これにより、本発明品は、SiC粉末とSiaN

・粉末を出発原料としたものに較べ、高寸法精度でかつ高強度、耐熱衝撃性、靱性にすぐれていることが判る。また、本発明品は、SiC粒子がα、 β、非品質であつてもすぐれた特性を示している ことが判る。

実施例9

出発原料を平均粒径 0.9 μm の金属 S i 粉末 と平均粒径 0.3 ~ 1 0 0 μm の S i C 粒子の組 み合わせについて実施例 1 と同様にして得られた S i a N a - S i C 複合材の結果を第9表に示す。

ex on

其其	Si	SiC 原料 (vog %)	18%)	焦结助剂	中部公	収縮率 曲げ強さ 熱制整備	熱酮繁質	X to
묲	a-SiC	A-SiC	a-SiC B-SiC 非品質SiC (vog %)	(% 8 %)	(%)	(MPa).	(<u>a</u>)	(MPam ²)
	3.0	1.0	10	¥20.	ď	8	9	8
-	(16 µm)	(0.5 m)	(B # m)	(10vo £ \$)			_1	
٠	10	10	20		2	763	69	8
.7	(84 µm)	(0.3 µm)	(B µ m)					
	S	30	2	,	r.	873	7.0	9.1
က	(0.3 µm)	(0.3 µm) (1.2 µm)	(18 m)					
.	2	2	30		8 7	80	8	0.6
4	(0.3 µm)	(1.7 µm)	(4 mm)		2		- 1	
١,	rc.	2.0	1.5	3	4	7.8.1	7.1	. 8
ດ	(m # 8 8)	(0.3 µm)	(S p m)	•		2		

类施例10

金凤SiとSi C初末及び焼結助剤にSiaNa 粉末を添加し、実施例1と同様にして得られた SiaNa-Si C複合材の試験結果を第10段に 示す。

質 10 表

跃料	出。	电原料(重	盘 部)	烧結助剤	权 縮 率	曲げ強さ	熱樹緊値	Kic
Na	金鳳Si	a-SiC	a - SisN.	(vo 1 %)	(%)	(MPa)	(<u>n</u>)	(M Pam ¹)
1	60 (.0.9 μ m)	40 (16 µ m)	-	¥ 2 0 s (5)	4.2	780	6 7	8.2
2	5 9 (*)	,,	1 (0.5 μm)		4.2	778	6 8	8.1
ż	5 5 (#)		5 (#)	,	4.3	785	7 0	8.3
4	5 0 (#)	N	10		4.5	773	70	7.9
5	45		15		5.8	731	6.8	6.9
6	4 0	. "	20		7.1	701	67	6.5
7	3 0	,	3 0 (*)	,	8.2	621	6 6	6.1
8	2 0	,	4 0	,	11.8	555	6 1	5.9
9	10	•	5 0 (")	,,	1 3	5 5 1	5.5	5.9
1 0	-	•	6 0 (•)	•	1 5	534	5 2	5.8

)

第 11 表

200 有機珪穀高 相対 収额率 曲げ強さ 熱研究值 分子化合物 (MPom²) No (重量部) 密度 (%) (MPa) (回) ポリシラン化合 物分子母:10000 72 9.5 853 1 99 6.1 (10)シリコンイミド 化合物分子是: 851 7 1 9.3 99 6.0 2500 (10) ポリシル化合物 分子母:1000 99 5.9 847 71 9.2 (15)

実施例12

実施例1と同様にして、出発原料を金属Si粉末と焼結助剤として得られた焼結体の試験結果と本発明品との比較を第12表に示す。

以上より、SisN·添加量が多くなると共に、 収縮率が大きくなり、曲げ強さ、熱衝撃値、靱性 が小さくなつているのが判る。従つて、SisN· の添加量は、3 Ovo & %以下が好遊であると考え る。

実施例11

平均粒径 0.9 μ m の金属 S i 粉末 7 0 部と平均粒径 1 6 μ m の α - S i 粉末 4 0 部に焼結助剤として Y 10 1:5 vo 2 %, M g O : 3 vo 2 % 添加した混合粉末に、結合剤として有機珪素高分子化合物をキシレンと一緒にポントミルで混合, 乾燥した後、150℃, 1000kgf/cm²の条件でφ60×10mkに成形した。そして窒素とアンモニアの混合雰囲気で1100℃から1600℃まで段階的に長時間加熱し、そして窒素雰囲気で1気圧中、1900℃で1時間保持した。得られた焼結体の各特性を第11衷に示す。

.

o)

絃

Kre	(M P amt)	8.2	4.1
雅斯聚值	(固)	29	3.2
田げ路さ	(MPa)	780	740
祖对密展	(%)	9 8	98
安福安	(%)	4.2	6.4
(節)	Sic Yros	2	5
免员和	Sic	40	l
æ	S i	09	100
		本発明	比較例

これにより、複合組織である本発明品は単一母材のポイト反応焼結SiaNaに較べ、寸法特度,強度,耐熱衝撃性, 靱性に優れていることが分る。実施例13

実施例1で得られた焼結体を ø 3 0 × ø 2 0 × 8 mm の摺動試験用リングに加工し、褶動面を 1 μm のダイヤモンドバブで研磨した後、下記の条件で乾式摺動試験を行つた。その結果を第1 3 数に示す。

摺動条件

試験後:メカニカルシールタイプ (Ring on Ring方式)

潤滑方式:無润滑

摺勁速度:100m/min

面圧: 1.5kgf/cm²

時間:100時間

Na	材料名	動摩擦係 数	學耗量 100h (×10 ⁻⁶ mm ⁸ /mmkg)	
1	本発明品	0.07	4	

また、比較材料について同様の条件でテストした結果を第14次に示す。この結果から本発明品は耐寒能性にもすぐれていることが判る。

第 14 表

Na	材料名	助摩擦 係 数	摩託量(100h) (×10 ⁻⁸ mm ⁸ /mokg)		
1	アルミナ	0.85	4 1		
2	SiaNa	0.90	5 2		
3	SiC	0.21	1 7		
4	超硬合金	焼付	_		
5	ジルコニア	0.52	2 7		

実施例

水平式の速線鏡逸設備における鏡型とタンデイシュとを連結する鏡型注入口用耐火物として本発明品を適用してみた。第11回に水平式速鏡設備の概略図を示す。鏡型注入口用耐火物1はタンディッシュ2と鏡型3を連絡している。

	熟御幣による	置わの治療	ᄣ	₩		₩	枰
	MX	SUS304	÷	к		*	*
-	安食租	S 4 5 C	4	+	ζ	Ψ	*
15 #	製品	既	Ý	*	〈 .	4	*
既		コメト	Ý	4	÷	*	÷
	挽着体组成		城旅街3 822	本田慈語	SisNe	オシトプレス	お圧然動 SiC
		٠	本海児島		H	\$	Æ

実施例3の No 2 2 で得られた焼結体を鋳型注入 口用耐火物として使用し、2 0 t の炭素鋼(S45C) とステンレス鋼 (SUS304) を鋳込んだ。その時の 侵食程度、摩耗程度、熱御器による割れの有無を 第15 表に示す。比較の為に、SisNa、BN、 SiCについても示す。

以上の結果から、水平速効用耐火物としては、 本発明品が安価で、耐食性、耐燥能性、耐熱衝撃 性にすぐれていることから有効であり、凝薬を安 定に行うことができる。

(発明の効果)

本発明によれば、SiC粒子と生成SiaN。を 焼結助剤を添加することにより強固に結合するこ とができ、SiaN。とSiCの特長を兼ね備える ことができるので、高強度、高靱性の焼結体を提 供することができる。

4. 図面の簡単な説明

第1回~第3回は、焼結別刑添加量と曲げ強さ、 初性値、熱衝整値の関係を示す曲線回、第4回お よび第5回は、焼結体中SiC含有量と熱衝撃値。 初性値の関係を示す曲線回、第6回~第8回は、 金属Si粒程と曲げ強さ、初性値、熱衝撃値の関係を示す曲線回、第10回は、SiC 粒径と曲げ強さ、初性値の関係を示す曲線回、第

1…鋳型注入口用耐火物、2…タンデイシュ、3

代理人 弁理士 小川勝男

|--- 鋳型注入ロ用耐火物 2--- タッディシュ 3--- 鋳型

