平成30年度日本留学試験(第2回)

試験問題

The Examination

平成30年度(2018年度)日本留学試験

数学(80分)

【コース 1 (基本, Basic)・コース 2 (上級, Advanced)】

※ どちらかのコースを<u>一つだけ</u>選んで解答してください。

Ⅰ 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

Ⅱ 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

III 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号)、または、 0から9までの数が一つずつ入ります。あてはまるものを選び、解答用紙 (マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に **A** , **BC** などが繰り返し現れる場合, 2度目以降 は, **A** , **BC** のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\boxed{\mathbf{C}}$ に $\frac{-\sqrt{3}}{4}$ と答える場合は、下のようにマークしてください。
- (4) $\boxed{\textbf{DE}}$ x に -x と答える場合は、 $\boxed{\textbf{D}}$ を一、 $\boxed{\textbf{E}}$ を1とし、下のようにマークしてください。

【解答用紙】

1 / 12 /12/1												
Α		0	1	2	3	4	(5)	6	7	8	9	
В	Θ	0	1	2		4	(5)	6	7	8	9	
С	Θ	0	1	2	3		(5)	6	0	8	9	
D		0	1	2	3	4	(5)	6	0	8	9	
E	Θ	0		2	3	4	(5)	6	0	8	9	

4. 解答用紙に書いてある注意事項も必ず読んでください。

※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*	*		
名 前				

数学 コース 2 (上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを一つだけ選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を〇で囲み、その下のマーク欄をマークしてください。

< 解答用紙記入例 >								
解答コース Course								
コース 1 Course 1	Course 2							
0	•							

選択したコースを正しくマークしないと, 採点されません。

_	

問 1 2 次関数

$$f(x) = x^2 - 2(a+1)x + 2a^2$$

の $0 \le x \le 2$ における最大値 M と最小値 m について考える。ただし,a は $0 \le a \le 3$ を 満たす定数とする。

(1) y = f(x) のグラフの頂点の座標は

$$\left(a+ \boxed{\mathbf{A}}, a^2- \boxed{\mathbf{B}} a- \boxed{\mathbf{C}}\right)$$

である。

(2) 次の文中の **D** ~ **H** には、下の選択肢 ① ~ ⑨ の中から適するものを選び なさい。

最大値 M, 最小値 m を軸の位置に応じて求めると

$$0 \le a <$$
 D のとき

$$M = \begin{bmatrix} \mathbf{E} \end{bmatrix}, \quad m = \begin{bmatrix} \mathbf{F} \end{bmatrix}$$

 $D \subseteq a \subseteq 3$ のとき

$$M = \boxed{\mathbf{G}}, \quad m = \boxed{\mathbf{H}}$$

である。

- 0 0
- \bigcirc 1
- (2) 2
- (3) 3

- (4) $a^2 2a$
- (5) $a^2 2a 1$

- (7) $2a^2 2a 1$
- (8) $2a^2 4a$ (9) $2a^2 6a + 3$
- (3) m が最大となるのは a = 1 のときであり、このときの m の値は $\boxed{\mathbf{J}}$ また、m が最小となるのは $a = \mathbb{K}$ のときであり、このときの m の値は \mathbb{L} で ある。

数学-18

問	2	1	個のさい	いころを	3回投げ	て, 1回目	1,2回目,	3 回	目に出る	目の数を	それぞれ	a, b,	$c \geq$
		する。	zoa	<i>b</i> , <i>c</i> を用]いて,2	次関数 f	$f(x) = ax^2$	+bx+	cを考え	る。			

(1)	b = 4 かつ	2 次方程式	f(x) = 0	が異なる	2	つの実数解をもつ確認	率は	N OPQ	. で
	ある。								

f(10) > 453 となる確率を求めよう。

f(10) > 453 となる (a, b, c) の場合の数を求めると、次のようになる。

$$a=4$$
 かつ $b=5$ のとき, R 通り

$$a = 4$$
 かつ $b = 6$ のとき, **S** 通り

$$a=5$$
 のとき, **TU** 通り

$$a=6$$
 のとき、 \boxed{VW} 通り

よって,求める確率は X である。

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{Z}$ はマークしないでください。

問 1 数列 $\{a_n\}$ は

$$a_1 = \frac{2}{9}$$
, $a_n = \frac{(n+1)(2n-3)}{3n(2n+1)} a_{n-1}$ $(n = 2, 3, 4, \dots)$

で与えられている。このとき,一般項 a_n と無限級数 $\sum^\infty a_n$ の和を求めよう。

(1) 次の文中の $oldsymbol{A}$ \sim $oldsymbol{E}$ には、下の選択肢 $oldsymbol{0}$ \sim $oldsymbol{9}$ の中から適するものを選び なさい。

まず、
$$b_n=rac{n+1}{3^na_n}$$
 とおき、 $rac{b_n}{b_{n-1}}$ を n の式で表すと

$$\frac{b_n}{b_{n-1}} = egin{bmatrix} {\sf A} \\ \hline {\sf B} \end{bmatrix} \cdot \frac{a_{n-1}}{a_n} = egin{bmatrix} {\sf C} \\ \hline {\sf D} \end{bmatrix}$$

となる。この式より

$$a_n = \frac{n+1}{3^n(\boxed{\mathbf{E}})(2n+1)}$$

である。

- ① n-1 ① n ② n+1 ③ 2n-1 ④ 2n+1
- (5) 2n-3 (6) 2n+3 (7) 3n-1 (8) 3n (9) 3n+1

(2) 次に, $c_n = \frac{1}{3^n(2n+1)}$ $(n=0,1,2,\cdots)$ とおく。このとき, $a_n = Ac_{n-1} + Bc_n$ とおく

と,
$$A= \begin{tabular}{|c|c|c|c|c|} \hline {\bf F} \\ \hline {\bf G} \\ \hline {\bf G} \\ \hline \end{tabular}$$
 、 $B= \begin{tabular}{|c|c|c|c|c|} \hline {\bf HI} \\ \hline {\bf J} \\ \hline \end{tabular}$ である。この式を用いて, $S_n=\sum_{k=1}^n a_k$ を求めると

$$S_n = \frac{\mathbb{K}}{\mathbb{L}} \left(\mathbb{M} - c_n \right)$$

となる。したがって

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n = \frac{\mathbb{N}}{\mathbb{O}}$$

を得る。

- 問 2 x 軸上の点 (5,0) を中心とする半径 4 の円 C を考える。
 - (1) 円 C 上に点 P(p,q) をとると

$$p^2 - \boxed{\mathbf{PQ}} p + q^2 + \boxed{\mathbf{R}} = 0$$

が成り立つ。また、点 P(p,q) における円 C の接線の方程式は

$$(p - S)x + qy = Tp - U$$

である。

(2) $a \ge 0$ とし、y 軸上の点 A(0,a) から円 C に接線を引き、その接点を P(p,q) とおく。

線分 AP の長さが最小となるのは、a= f V のときであり、その長さは f W である。

また, 点 A から円 C に引いた 2 本の接線が直交するのは, 線分 AP の長さが X のときであり, このときの a の値は $a=\sqrt{Y}$ である。

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{Z}$ はマークしないでください。

~	-	-	
	-	-1	
	-	- 1	
_	1	_	

x の関数

$$f(x) = x^3 - 3ax^2 - 3(2a+1)x + a + 2$$

について,次の問いに答えなさい。

(1)	次の文中の	G	~	K K	下の選択肢 ⑩ ~ ⑤	の中から適するものを選び
	なさい。また,	他の] には, 通	る数を入れなさい。	

f(x) の導関数は

であるから

(ii)
$$a = \begin{bmatrix} \mathsf{EF} \end{bmatrix} \mathcal{O} \mathcal{E} \mathfrak{F}, \ f(x) \ \mathsf{ttotal} \mathsf{T} \end{bmatrix} \mathcal{E} \mathsf{ttotal}$$

(iii)
$$a < \mathsf{EF}$$
 のとき、 $f(x)$ は $x = -\mathsf{D}$ で **J** となり、
$$x = \mathsf{B} \ a + \mathsf{C} \ \mathsf{C} \ \mathsf{K} \ \mathsf{E}$$
 となる。

- ① 極大 ① 極小 ② 増加 ③ 減少

- (4) 最大 (5) 最小

(III は次ページに続く)

- (2) $-1 \le x \le 1$ における f(x) の最小値 m を a を用いて表そう。
 - (i) $a \ge \begin{bmatrix} \mathbf{L} \end{bmatrix}$ のとき, $m = \begin{bmatrix} \mathbf{M} \mathbf{N} \end{bmatrix} a$ である。
 - (ii) $\mathbf{OP} \leq a < \mathbf{L}$ のとき、 $m = \mathbf{QR} \left(a^3 + \mathbf{S} \quad a^2 + \mathbf{T} \quad a\right)$ である。
 - (iii) $a < \mathbf{OP}$ のとき, $m = \mathbf{U}$ $a + \mathbf{V}$ である。

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{Z}$ はマークしないでください。

2つの関数

$$y = x \log ax$$
 ①

$$y = 2x - 3$$
 ②

を考える。ただし、a > 0 とする。また、 \log は自然対数を表す。

(1) ① のグラフが ② のグラフに接するような a を求めよう。

点 $(t, t \log at)$ における ① のグラフの接線の方程式は \mathbf{A} である。ただし、 \mathbf{A} には、次の選択肢 ① ~ ③ の中から適するものを選びなさい。

- ② $y = (a \log t + 1)x + t$ ③ $y = (a \log t + a)x + t$

接点の座標は (**C** , **D**) である。

 $a = \frac{e}{\mathbf{B}}$ のとき,関数 ① は $x = \mathbf{E} e^{-\mathbf{F}}$ で最小値 $-\mathbf{G} e^{-\mathbf{H}}$ をとる。

(IV は次ページに続く)

注) 自然対数: natural logarithm

(3)	$a = \frac{e}{\Box}$	のとき,	① のグラフと	② のグラフおよび	x 軸で囲まれる部分の面積	₹.S
	を求めよう。					

次の不定積分を求めると

$$\int x \log ax \, dx = \boxed{1} + C \quad (C は積分定数)$$

である。ただし, $oxed{\mathsf{I}}$ には,次の選択肢 $oxed{\mathsf{0}}$ \sim $oxed{\mathsf{3}}$ の中から適するものを選びなさい。

②
$$\frac{1}{2}x^2\log ax - \frac{1}{4}x^2$$
 ③ $2x^2\log ax - 4x^2$

$$3 2x^2 \log ax - 4x^2$$

したがって

$$S = \frac{\boxed{\mathbf{J}}}{\boxed{\mathbf{K}}} e^{-\boxed{\mathbf{L}}}$$

である。

注) 不定積分: indefinite integral

 $oxed{IV}$ の問題はこれで終わりです。 $oxed{IV}$ の解答欄 $oxed{M}$ \sim $oxed{Z}$ はマークしないでください。 コース2の問題はこれですべて終わりです。解答用紙のVはマークしないでください。 解答用紙の解答コース欄に「コース2」が正しくマークしてあるか, もう一度確かめてください。

この問題冊子を持ち帰ることはできません。