1. (2 Punkte) Schreibe eine Funktion func01, der ein String übergeben wird und die den String ohne erstes und letztes Zeichen zurückgibt.

```
>>> func01('Hallo')
```

```
Lösung:

def func01(s):
    return s[1:-1]
```

2. (3 Punkte) Schreibe eine Funktion func02, der ein nicht leerer String übergeben wird und die den String wieder zurückgibt, aber erstes und letztes Zeichen sind vertauscht.

```
>>> func02('Hallo')
'oallH'
```

```
Lösung:

def func02(s):
    return s[-1]+s[1:-1]+s[0]
```

3. (3 Punkte) Schreibe eine Funktion func
03, der ein String übergeben wird und die den String wieder zurückgibt ergänzt um den selben String in umgekehrter Reihenfolge.

```
>>> func03('Hallo')
'HalloollaH'
```

```
Lösung:

def func03(s):
    return s + s[::-1]
```

4. (3 Punkte) Schreibe eine Funktion zaehl01, die einen nicht leeren String erhält und zurückgibt, wieviel mal das erste Zeichen in dem String vorkommt. Die Stringmethode count darf nicht benutzt werden.

```
>>> zaehl01('abbaaeacde')
```

5. (3 Punkte) Schreibe eine Funktion zaehl02, die einen nicht leeren String erhält und zurückgibt, wieviele Ziffern (0-9) in dem String vorkommen.

```
>>> zaehl02('ab12cc3d60bb')
```

```
Lösung:

def zaehl02(s):
    zaehl = 0
    for c in s:
        if c in '0123456789':
            zaehl+=1
    return zaehl
```

6. (3 Punkte) Schreibe eine Funktion zaehl03, die einen nicht leeren String und ein Zeichen erhält und zurückgibt, wie oft das Zeichen an einem geraden Index des Strings vorkommt.

```
>>> zaehl03('abaabbbba','a')
3
>>> zaehl03('abaabbbba','b')
2
```

```
Lösung:

def zaehl03(s, c):
    zaehl = 0
    for i in range(len(s)):
        if i % 2 == 0 and s[i] == c:
            zaehl+=1
    return zaehl
```

7. (4 Punkte) Schreibe eine Funktion zaehl01, die zurückgibt, wieviele Zahlen es zwischen 100 und 999 (einschließlich) gibt, die durch 3 aber nicht durch 5 teilbar sind.

```
Lösung:

def zaehl01():
    zaehl = 0
    for k in range(100,1000):
        if k % 3 == 0 and k % 5 != 0:
            zaehl+=1
    return zaehl
```

8. (4 Punkte) Schreibe eine Funktion zaehl02, der zwei natürliche Zahlen übergeben werden und die zurückgibt, wieviele Vielfache von 7 zwischen diesen Zahlen (einschließlich) liegen.

```
>>> zaehl02(4,17)
2
>>> zaehl02(0,21)
```

```
Lösung:

def zaehl02(a, b):
    zaehl = 0
    for k in range(a, b+1):
        if k % 7 == 0 :
            zaehl+=1
    return zaehl
```

9. (2 Punkte) Schreibe eine Funktion pruef
01, der ein String mit Länge >=2 übergeben wird und die prüft, ob die ersten beiden Zeichen gleich sind.

```
>>> pruef01('aab')
True
>>> pruef01('abb')
False
```

```
Lösung:

def pruef01(s):
    return s[0] == s[1]
```

10. (4 Punkte) Schreibe eine Funktion pruef02, der ein String s , ein Zeichen c und eine nicht negative ganze Zahl k übergeben wird, und die prüft, ob c in s k-mal vorkommt.

```
>>> pruef02('aab','a',2)
True
>>> pruef02('aab','b',2)
False
```

```
Lösung:

def pruef02(s, c, k):
    zaehl = 0
    for zeichen in s:
        if zeichen == c:
            zaehl+=1
    return zaehl == k
```

11. (3 Punkte) Schreibe eine Funktion summe01, die die Summe aller Vielfachen von 7 zwischen 100 und 1000 zurückgibt.

```
Lösung:

def summe01():
    summe = 0
    for k in range(100,1000):
        if k % 7 == 0:
            summe+=k
    return summe
```

12. (4 Punkte) Schreibe eine Funktion echte
TeilerSumme, der eine positive ganze Zahl übergeben wird und die die Summe der echten Teiler dieser Zahl zurückgibt. Echte Teiler sind alle Teiler der Zahl, außer die Zahl selbst. Beispiel: die Summe der echten Teiler von 12 ist: 1+2+3+4+6=16

```
>>> echteTeilerSumme(12)
16
```

```
Lösung:
def echteTeilerSumme(n):
    summe = 0
    for k in range(1,n):
        if n % k == 0:
            summe +=k
    return summe
```

13. (4 Punkte) Was erscheint auf der Konsole?

Lösung: True 11

14. (4 Punkte) Was erscheint auf der Konsole?

```
\begin{array}{l} \textbf{def } a(x,y)\colon \\ & \textbf{return } x + 2*y \\ \textbf{def } b(x)\colon \\ & \textbf{return } x - 1 \\ \textbf{def } c(x,y)\colon \\ & \textbf{return } x - y \\ \textbf{def } d(x,y)\colon \\ & \textbf{return } x - y > 0 \\ z = c(a(3,4),b(2)) \\ \textbf{print}(d(z,12),z) \end{array}
```

Lösung: False 10