Year 1 Assessed Problems

Semester 2

Assessed Problems 8

SOLUTIONS TO BE SUBMITTED ON CANVAS BY

Wednesday 19th March 2025 at 17:00

Electric Circuits

Assessed Problem 4

After being open for a long time, the switch, S, in the circuit shown below is closed at t = 0 for 1 ms, and then opened again.

Quiz Question 1:

What is the behavior of the inductor immediately after the switch is closed at t = 0?

[1]

Quiz Question 2:

What is the initial voltage across the 125 Ω resistor immediately after the switch is closed (0 < t < 1 ms)?

[1]

Quiz Question 3:

After a sufficiently long time after the switch has been closed, how does the inductor behave?

[1]

Quiz Question 4:

After a sufficiently long time after the switch is closed, what will be the voltage across the 125 Ω resistor?

[1]

While the switch is closed, what is the Thévenin equivalent resistance looking back into the circuit from the inductor's perspective?)
[1	1]
Quiz Question 6:	
What is the time constant of the circuit when 0 < t < 1 ms?	
[1	1]
Quiz Question 7:	
What is the voltage across the 125 Ω resistor at t = 1 ms?	
[1	1]
Quiz Question 8:	
What is the current flowing through the inductor at t = 1 ms?	
[1	1]
Quiz Question 9:	
What is the voltage across the 125 Ω resistor immediately after the switch is opened ($t > 1$ ms)?	
[1	1]
Quiz Question 10:	
What is the time constant of the circuit after the switch is opened ($t > 1 \text{ ms}$)?	
[1	1]

Quiz Question 5:

Continuous Assessment IV

Continuous Assessment for Chaos is centred around two analogue exam questions which can be found on canvas.

Consider the non-linear mapping

$$x_{n+1} = \frac{ax_n}{1 - x_n^2}$$

where a is a contol parameter.

- 7. Find all the 2-cycles and establish when they are stable. [5]
- 8. Find the algebraic relationship between $\tan \pi y$ and $\tan \frac{\pi y}{2}$. [5]

Maths for Physicists 1B Assessed Problem 4

Evaluate the following indefinite integrals providing full working (2 marks each).

(a)
$$\int \sin(\sqrt{x}) dx;$$

(b)
$$\int \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$$
 where $a > 0, b > 0$;

(c)
$$\int \frac{1 - \tan x}{1 + \tan x} \, dx;$$

(d)
$$\int \frac{dx}{\sqrt{1+\sqrt{x}}};$$

(e)
$$\int \frac{dx}{\cos x + \sin x}.$$