

FÍSICA I

O que é Física. Ramos da Física. Conceitos básicos sobre grandezas físicas e unidades de medida.

Prof.º Hélio Guerrini Filho

O que é Física

A palavra física (do grego: *physis*) significa Natureza.

A Física busca compreender os fenômenos da natureza. Além disso, busca prever ou mesmo controlar a ocorrência de tais fenômenos.

Esta compreensão se dá través de modelos criados de acordo as capacidades do estágio de desenvolvimento da ciência.

Ramos da Física

Física do trivial

- 1. Mecânica Clássica Mecânica Newtoniana, Lagrangeana e Hamiltoniana.
- Cinemática;
- Dinâmica;
- Estática;
- Etc.
- 2. Óptica e ondulatória.
- 3. Termodinâmica.
- 4. Eletroestática, eletrodinâmica e eletromagnetismo.

Física do exótico

- 1. Física quântica mecânica quântica, física nuclear.
- 2. Física relativística astrofísica, astronomia.

Conceitos básicos sobre grandezas físicas e unidades de medida.

Grandezas Físicas

São aquelas grandezas que podem ser medidas. Isto é, fornecem parâmetros qualitativos e, principalmente, quantitativos sobre as propriedades observadas nos fenômenos físicos.

Grandezas Escalares - são aquelas que são definidas apenas por uma medida, por exemplo: massa, comprimento (espaço), tempo, temperatura, trabalho, energia e etc.

Grandezas Vetoriais - são aquelas que são definidas pelas medidas de intensidade, direção e sentido. Essas grandezas são representadas por um símbolo matemático denominado *vetor*. Nele se encontram os três parâmetros das grandezas vetoriais.

Módulo do vetor - Informa a intensidade da grandeza física

Direção e sentido do vetor - Informa a orientação da grandeza física.

Exemplos de grandezas vetoriais: força, velocidade, aceleração, deslocamento, quantidade de movimento, momento, campo elétrico, campo magnético e etc.

Medida

Define-se arbitrariamente um padrão de medida.

Cria-se uma unidade de medida (porção unitária do padrão de medida). A medida é realizada pela comparação com o padrão.

O padrão deve ser:

- Imutável não muda com o passar do tempo.
- Acessível qualquer laboratório pode reproduzi-lo.
- Preciso permite qualquer grau de refinamento de medidas.
- Universal permite os mesmos resultados em diferentes lugares.

Unidades fundamentais do sistema internacional (SI)

Grandeza de Base	Unidade	Símbolo
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	S
Corrente elétrica	ampere	Α
Temperatura termodinâmica	kelvin	K
Intensidade luminosa	candela	cd
Quantidade de substância	mol	mol

Comprimento - Metro

Inicialmente o metro foi definido como o meridiano terrestre dividido por 10 milhões.

Depois foi definido como a distância entre dois traços sobre uma barra de platina-Irídio.

Hoje o metro é definido como o comprimento *d* do trajeto percorrido pela luz no vácuo durante um intervalo de tempo de 1/299.792.458 de segundo.

Massa - quilograma

Até o começo de 2019 a massa de um quilograma era igual à massa do protótipo internacional feito especialmente de liga metálica de platina-irídio. O artefato é conservado no BIPM em Sèvres na França. Infelizmente perdeu 50 microgramas desde sua criação.

Massa - quilograma

Agora o quilograma é definido através da constante de Planck. Que relaciona a corrente elétrica de um eletroímã com o peso. Portanto, um valor especifico de corrente no eletroímã induz uma força de 1 kg.

Balança de Kibble (ou Watt)

Tempo - Segundo

Originalmente a unidade de tempo, o **segundo**, foi definida como a fração 1/86.400 do dia solar médio.

Por uma questão de precisão e universalidade, o **segundo**, agora é definido como a duração de 9.192.631.770 períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133.

Unidades derivadas

Grandeza	Nome	Símbolo
Força	newton	$1 N = kg \times m/s^2$
Trabalho, Energia	joule	1 J = N × m
Potência	watt	1 W = J/s
Pressão	pascal	1 Pa = kg × m ⁻¹ s ²
Frequência	hertz	1 Hz = s ⁻¹
Carga elétrica	coulomb	1 C = A × s
Potencial Elétrico	volt	1 V = J/C
Resistência Elétrica	ohm	1 Ω = V/A
Capacitância	farad	1 F = C/V
Campo Magnético	tesla	1 T = N/A×m
Fluxo Magnético	weber	1 Wb = T×m ²
Indutância	henry	$1 H = J/A^2$

Prefixos no SI

Fator	Prefixo	Símbolo
10¹	deca	da
10 ²	hecto	h
10³	kilo	k
10 ⁶	mega	M
10 ⁹	giga	G
1012	tera	T
1015	peta	Р
1018	exa	Е
1021	zetta	Z
1024	yotta	Υ

Fator	Prefixo	Símbolo
10 ⁻¹	deci	d
10-2	centi	С
10 ⁻³	mili	m
10-⁵	micro	μ
10 ⁻⁹	nano	n
10-12	pico	p
10-15	femto	f
10-18	atto	а
10-21	zepto	Z
10-24	yocto	у

Escrevendo unidades com prefixos

Prefixo SI + Unidao		Nova grafia pela regra do SI (utilizada nesta publicação)	Grafia atual, aceita mas a ser gradualmente extinta
centi + metro	c + m = cm	centimetro	centímetro
deca + metro	da + m = dar	n decametro	decâmetro
deci + metro	d + m = dm	decimetro	decímetro
exa + metro	E + m = Em	exametro	exâmetro
giga + metro	G + m = Gm	gigametro	gigâmetro
hecto + metro		hectometro	hectômetro
kilo + metro	k + m = km	kilometro	quilômetro
micro + metro	μ + m = μm	micrometro	micrômetro
mili + metro	m + m = mm	milimetro	milímetro
mili + radiano	m + rad = m	rad miliradiano	milirradiano
mili + segundo		milisegundo	milissegundo
nano + metro	n + m = nm	nanometro	nanômetro

Outros Sistemas de unidades

- Sistema CGS:
 - Comprimento: centímetro (cm)
 - Massa: grama (g)
 - Tempo: segundo (s)
 - Temperatura: Celsius (⁹C)
- Sistema Inglês de Unidades:
 - Comprimento: pé (ft) ou polegadas (in)
 - Massa: pound = libra (lb)
 - Tempo: segundo (s)
 - Temperatura: Rankine (
 R)

Conversão de unidades

Exemplo: Calcular em milhas a distância percorrida em 3 h por um carro que se desloca à velocidade de 80 km/h.

$$v = \frac{d}{t} \Rightarrow d = v \cdot t = 80 \frac{km}{h} \cdot 3h \Rightarrow d = 240 \ km$$

$$d = 240 \text{ km} \cdot \frac{1 \text{ mi}}{1,609 \text{ km}} \Rightarrow d = 149, 16 \text{ mi}$$

Fator de conversão

Alguns fatores de conversão de unidades:

- Sistema CGS:
 - Comprimento:
 - 1 m = 100 cm
 - Massa:
 - 1 kg = 1000 g
 - Temperatura:

- Sistema Inglês de Unidades:
 - Comprimento:
 - 1ft = 12 in = 30,48 cm
 - 1 mi = 1,609 km
 - 1 yd = 3 ft = 91,44 cm
 - Massa:
 - 1 lb = 453,592 g
 - Temperatura:
 - gR = gF + 460
 - •F = 32 + 1.8 •C

Exercícios - Conversão de unidades

1. Se o seu carro estiver a 90 km/h, qual sua velocidade em m/s e mi/h?

$$1 \, mi = 1,61 \, km$$

2. Imagine que você está pilotando uma moto a 20 m/s, determine sua velocidade em mi/h.

3. Qual a densidade da água (1g/cm³) em kg/m³, kg/l e lb/in³?

Dimensões das grandezas físicas

Por convenção as grandezas físicas são organizadas segundo um sistema de dimensões.

Cada uma das sete grandezas de base do SI é considerada como tendo sua própria dimensão.

Grandezas de base	Símbolo de grandeza	Símbolo de dimensão
comprimento	<i>l, x, r,</i> etc.	L
massa	m	M
tempo, duração	t	Т
corrente elétrica	I, i	I
temperatura termodinâmica	T	Θ
quantidade de substância	n	N
intensidade luminosa	I_{v}	J

Dimensões das grandezas físicas

Exemplo: Determine a área de um retângulo de lados 2 m e 3 m.

$$A = b \cdot h = l \cdot l = 2 \cdot 3 \Rightarrow A = 6 m^2$$

- Como a medida de qualquer área é o produto de 2 comprimentos, dizemos que a área tem dimensões de comprimento ao quadrado ⇒ L²
- .: Dimensões das grandezas fundamentais:
 - Dimensão de comprimento: L;
 - Dimensão de massa: M;
 - Dimensão de tempo: T.

Pode-se escrever as dimensões de todas grandezas

Dimensões das grandezas físicas

- Todas as outras grandezas são grandezas derivadas, que podem ser expressas em função das grandezas de base por meio de equações da física.
- As dimensões das grandezas derivadas são escritas sob a forma de produtos de potências das dimensões das grandezas de base por meio de equações que relacionam as grandezas derivadas às grandezas de base.
- Em geral a dimensão de uma grandeza Q é escrita sob a forma de um produto dimensional

$$\dim Q = \mathbf{L}^{\alpha} \mathbf{M}^{\beta} \mathbf{T}^{\gamma} \mathbf{I}^{\delta} \Theta^{\varepsilon} \mathbf{N}^{\zeta} \mathbf{J}^{\eta}$$

onde os expoentes α , β , γ , δ , ϵ , ζ e η , que são em geral números inteiros pequenos, positivos, negativos ou zero, são chamados de expoentes dimensionais.

Operações com grandezas

 As operações de soma e subtração com grandezas físicas só tem significado se as duas possuírem as mesmas dimensões.

$$A = B + C$$

$$D = B - C$$

 Somente podemos realizar as operações acima se as grandezas possuírem as mesmas dimensões e unidades.

Exemplo – análise dimensional

A intensidade da força de inércia de um corpo, depende da massa do corpo e da sua aceleração. Sabendo-se que o módulo da força de inércia pode ser calculado pelo produto entre massa e aceleração, encontre a dimensão da força.

Exercícios – análise dimensional

Faça análise dimensional das seguintes grandezas físicas:

```
v=rac{\Delta s}{\Delta t} - velocidade; a=rac{\Delta v}{\Delta t} - aceleração; Q=m.v - quantidade de movimento; V=m.g.h - energia potencial; q=i.\Delta t - carga elétrica; E=rac{F}{q} - campo elétrico; V=q.U - energia potencial elétrica; R=U.i - resistência elétrica;
```

