Республиканская олимпиада по математике, 2014 год, 9 класс

- 1. В треугольнике ABC точка I центр вписанной окружности, а ω описанная окружность. Прямые BI и CI пересекают ω соответственно в точках B_1 и C_1 , а прямая B_1C_1 пересекает прямые AB и AC в точках C_2 и B_2 , соответственно. Пусть ω_1 описанная окружность треугольника IB_1C_1 , а прямые IB_2 и IC_2 пересекают ω_1 в точках M и N, соответственно. Докажите, что $BC_2 \cdot B_2C = B_2M \cdot C_2N$. (Шалгымбай E.)
- **2.** Пусть $a_1, a_2, \dots, a_{2014}$ перестановка чисел 1, 2, ..., 2014. Какое наибольшее количество чисел среди чисел $a_1^2 + a_2, \ a_2^2 + a_3, \dots, \ a_{2013}^2 + a_{2014}, \ a_{2014}^2 + a_1$ могут быть точными квадратами? (Сатылханов К.)
- **3.** Докажите, что если p,q,m,n натуральные числа, причем p и q простые, то равенство $(2^p-p^2)(2^q-q^2)=p^mq^n$ невозможно. (Сатылханов K.)
- **4.** Дано целое $n \ge 1$ и положительные действительные числа $a_1, a_2, ..., a_n$. Пусть $s = a_1 + a_2 + ... + a_n$. Известно, что для каждого i = 1, 2, ..., n выполняется неравенство $a_i^2 > ia_i + s$. Докажите, что $2s > 3n^2$. (Сатылханов K.)
- **5.** В выпуклом четырёхугольнике ABCD справедливы следующие соотношения: AB = BC, AD = BD и $\angle ADB = 2\angle BDC$. Известно, что $\angle ACD = 100^\circ$. Найдите $\angle ADC$. (М. Кунгожин)
- **6.** Из доски $2^n \times 2^n$ $(n \ge 3)$ вырезали одну клетку. Докажите, что оставшуюся часть доски можно покрыть без наложений уголками из 3-х клеток по крайней мере $4^{3\cdot 4^{n-3}}$ различными способами. (Д. Елиусизов)