Maçãs

Por Cristhian Bonilha, UTFPR So Brazil

Timelimit: 1

Rafael resolveu passar o final de semana na fazenda de seu tio, Antônio, e quando percebeu que havia lá uma árvore carregada de maçãs, decidiu fazer uma torta de maçã.

Para fazer a torta, porém, Rafael precisaria pegar o maior número de maçãs possíveis, e para isso pediu ajuda a seu primo. O combinado era: Seu primo subiria na árvore e chacoalharia diversos galhos contendo as maçãs, fazendo com que elas caissem. A medida que as maçãs iam caindo, Rafael estaria no chão com uma cesta e iria pegá-las no meio do caminho entre a árvore e o chão. Como as maçãs caiam com muita velocidade, o impacto com o chão fazia com que elas rachassem, e Rafael decidiu que iria ignorar todas as maçãs que não conseguisse pegar com a cesta.

Podemos representar a situação da seguinte maneira: Rafael está posicionado em uma área de **N** linhas e **M** colunas abaixo da árvore, e pode se mover uma posição horizontalmente, verticalmente ou diagonalmente por segundo. Cada maçã cai em uma determinada posição dessa área, digamos [i, j] (linha i, coluna j), e o momento exato em que Rafael deve estar nessa posição para que ela caia dentro de sua cesta é um determinado tempo t.

Dada a posição inicial de Rafael, diga quantas maçãs ele consegue pegar com sua cesta, dentre todas as **K** maçãs derrubadas por seu primo.

Entrada

Haverá diversos casos de teste. Cada caso de teste inicia com três inteiros, \mathbf{N} , \mathbf{M} e \mathbf{K} (3 \leq \mathbf{N} , \mathbf{M} \leq 20, 1 \leq \mathbf{K} \leq 1000), representando, respectivamente, a quantidade de linhas e colunas da área abaixo da árvore, e o número de maçãs derrubadas por seu primo.

A seguir haverá **K** linhas, contendo três inteiros cada, $\mathbf{X_i}$, $\mathbf{Y_i}$ e $\mathbf{T_i}$ (1 \leq $\mathbf{X_i}$ \leq \mathbf{N} , 1 \leq $\mathbf{Y_i}$ \leq \mathbf{M} , 1 \leq $\mathbf{T_i}$ \leq 2***K**), representando, respectivamente, a linha e coluna em que a maçã **i** caiu, e o tempo exato em que Rafael deve estar em tal posição para que ela caia em sua cesta.

A sequência de valores T_i dada na entrada é não-decrescente, ou seja, $T_{i-1} \le T_i$, para todo $2 \le i \le K$. Não há duas maçãs que caiam no mesmo lugar ao mesmo tempo.

A seguir haverá dois inteiros \mathbf{X} e \mathbf{Y} ($1 \le \mathbf{X} \le \mathbf{N}$, $1 \le \mathbf{Y} \le \mathbf{M}$), indicando a linha e a coluna em que Rafael estará no tempo 0.

O último caso de teste é indicado quando N = M = K = 0, o qual não deverá ser processado.

Saída

Para cada caso de teste, imprima uma linha contendo um inteiro, representando qual o número máximo de maçãs que Rafael consegue pegar com sua cesta.

Exemplo de Entrada	Exemplo de Saída
5 5 3	3
2 2 1	3
3 3 2	
2 4 3	
1 1	

5 5 4	Exemplo de Entrada	Exemplo de Saída
3 2 1		
3 5 2		
2 5 3		
1 5 4		
3 3		
0 0 0		

Contest Bonilha 2014