Modelos de Datos y Diseño de Bases de Datos Relacionales

Tema 2. Modelos de Datos

Tema 2. Modelos de datos

Objetivos

- Conocer el concepto de "sistema de información" y entender en qué consiste el "análisis y diseño de un sistema de información"
- Comprender qué es un modelo de datos, para qué se utiliza y sus distintos niveles de abstracción

Tema 2. Modelos de datos

Contenidos

- 2.1 Introducción
 - Concepto de Sistema de Información (SI)
 - Sistema de Información y Base de Datos
 - Análisis y Diseño de un Sistema de Información
- 2.2 Modelado de datos
 - Concepto de Modelo de Datos
 - Tipos de Modelos de Datos

Tema 2. Modelos de datos

Bibliografía

- [CB 2015] Connolly, T.M.; Begg C.E.: Database Systems: A Practical Approach to Design, Implementation, and Management, 6th Edition.Pearson
- [EN 2016] Elmasri, R.; Navathe, S.B.: Fundamentals of Database
 Systems, 7th Edition. Pearson.
- [CB 2005] Connolly, T.M.; Begg C.E.: Sistemas de bases de datos.
 Un enfoque práctico para el diseño, implementación y gestión. 4°
 Edición. Pearson/Addison-Wesley. (Cap.1y2)
- [EN 2008] Elmasri, R.; Navathe, S.B. Fundamentos de Sistemas de Bases de Datos. 5° Edición. Addison-Wesley. (Cap. 1)

2.1 Introducción

Toda organización (empresa, negocio, ... sistema),
 para su correcto funcionamiento, necesita de
 información que se transmita entre sus

distintos elementos, y generalmente desde y hacia el exterior

- Es decir, de un Sistema de Información
- □ ¿Qué es un Sistema de información (SI)?
 - Colección de personas, procedimientos (reglas) y equipos diseñados, construidos, operados y mantenidos para recoger, procesar, almacenar, recuperar y visualizar información

Componentes de un Sistema de Información **Automatizado**

Sistema de Información y Base de Datos

 □ La Base de Datos es un componente fundamental del Sistema de Información (SI)

- □ Reflexionemos...
 - Pensemos en los datos de los SI de Amazon, X (antes Twitter) Instagram, la UMU, una tienda la web StackOverflow, ...
 - Los datos deben estar estructurados y organizados de forma que su manipulació sea sencilla y su consulta sea eficiente
 - Es decir, hay que DISEÑAR BIEN la base de datos; es más: hay que diseñar adecuadamente el Sistema de Información en el que está ubicada

Análisis y Diseño de un Sistema de Información

- Para construir un Sistema de Información es necesario realizar un análisis de la funcionalidad y de los datos del sistema, para después hacer un diseño a través de modelos que facilitan su comprensión
- Se diseña el software y la base de datos del sistema

Modelado de Procesos funcionamiento del sistema; procesos y subprocesos y cómo transforman los datos

Esto no lo veremos

Modelado de Datos

información con la que trabaja el sistema: datos, relaciones entre los datos y restricciones que deben cumplir \(\textbf{\textit{Trabajaremos esto}}\)

2.2 Modelado de Datos

- Objetivo: tener una visión abstracta de los datos
 - Ocultar detalles técnicos de almacenamiento y mantenimiento (acceso y modificación) de los datos
- Los Modelos de datos se usan para conseguir esa visión abstracta
- □ Analogía: planos técnicos de casas o viviendas
 - Nos permiten representar y comprender la estructura de una casa antes incluso de haberla construido
 - Para comprender un plano no se necesita tener conocimientos técnicos avanzados

□ Conjunto de conceptos, reglas y convenciones que permiten describir y manipular datos

- Un modelo de datos es una herramienta formal para comprender y representar el mundo real
 - Analogía: símbolos usados para construir o "dibujar" los planos arquitectónicos

Una simbología para representar y describir información

(Ejemplo: Modelo Entidad-Relación)

Tipo de Entidad

Tipo de Entidad Débil

Text

Atributo discriminante

Atributo clave

Tipo de Relación

- Permite representar y describir la información que maneja el Sistema de Información, sus tipos de datos, restricciones y cómo están relacionados entre sí
- Lo puede hacer desde diferentes niveles de abstracción
 - □ Nivel Conceptual (alto nivel: cómo lo pensamos)
 - Nivel Lógico (cómo "lo vemos" en el ordenador)
 - □ Nivel **Físico** (de bajo nivel: "dentro de la unidad de almacenamiento")

Modelos de datos Conceptuales

- Un modelo de datos conceptual permite crear el Esquema Conceptual, que describe los tipos de entidad, los tipos de relación, los atributos y las restricciones
 - ▶ Ejemplos de Modelos de Datos Conceptuales:
 - Modelo Entidad Relación, MER (Entity Relationship Model)
 - UML (Unified Modeling Language)
 - Lenguaje de Modelado Orientado a Objetos

Esquema Conceptual de Datos

Un Esquema Conceptual en el Modelo Entidad-Relación

Tipos de Relación:

ES_TITULAR vincula cada cliente con las cuentas de las que es titular.

PERTENECE asocia cada cuenta con la sucursal bancaria en la que ha sido abierta.

Modelos de datos Lógicos

- Permite describir la estructura lógica global de la base de datos, mediante el Esquema Lógico, que es una descripción de la implementación
 - Incluye conceptos entendibles por usuarios finales, pero no lejos de organización física de datos
 - Oculta detalles de implementación, pero son conceptos implementables directamente en el sistema
- Los modelos de datos lógicos son los más utilizados en los SGBD comerciales actuales (como Oracle)
 - Modelos Lógicos basados en Registros
 - Relacional, Red, Jerárquico
 - Modelos Lógicos orientados a objetos
 - Modelos lógicos próximos a los conceptuales

Esquema Lógico de Datos

Un esquema lógico en el Modelo Relacional de datos

CLIENTE

DNI	nombre	direccion	ciudad

SUCURSAL

codigo	nombre	activo	ciudad

CUENTA

numero	saldo	sucursal	cliente

Esquema Lógico de Datos

□ Pero, ojo, para crear estas tablas, hay que ejecutar este código:

```
CREATE TABLE CLIENTE (
DNI CHAR(12) NOT NULL,
nombre VARCHAR(16) NOT NULL,
direccion VARCHAR(30) NOT NULL,
ciudad VARCHAR(10) NOT NULL,
PRIMARY KEY (DNI)
);
```

CREATE TABLE **SUCURSAL** (
codigo CHAR(3) NOT NULL,
nombre VARCHAR(10) NULL,
activo DECIMAL(10,2) NOT NULL,
ciudad VARCHAR(10) NOT NULL,
PRIMARY KEY (codigo)

CREATE TABLE **CUENTA**(
numero NUMERIC(20) NOT NULL,
saldo DECIMAL(9,2) NOT NULL,
sucursal CHAR(3) NOT NULL,
cliente CHAR(12) NOT NULL,
PRIMARY KEY(numero),
FOREIGN KEY(sucursal)
REFERENCES SUCURSAL(codigo),
FOREIGN KEY(cliente)
REFERENCES CLIENTE(DNI)

Modelos de datos Físicos

- Permite describir la estructura física global de la base de datos mediante el Esquema interno, que especifica los detalles de almacenamiento de los datos:
 - Formato y ordenamiento de registros en los ficheros de datos en disco
 - Tamaños de página, de bloque, ...
 - Estructuras de almacenamiento
 - Estructuras de acceso a los datos (ficheros índices, etc.)
 - □ Etc.
- Está dirigido a usuarios especialistas en informática