Nested case-control and case-cohort studies

Tuesday, 06 June, 2023

Esa Läärä & Martyn Plummer & Krista Fischer

Statistical Practice in Epidemiology with R University of Tartu, Estonia June, 2023

Points to be covered

- Outcome-dependent sampling designs a.k.a.
 case-control studies vs. full cohort design.
- ▶ **Nested case-control** study (NCC): sampling of controls from risk-sets during follow-up of study population.
- Matching in selection of control subjects in NCC.
- ► R tools for NCC: function ccwc() in Epi for sampling controls, and clogit() in survival for model fitting.
- ► Case-cohort study (CC): sampling a subcohort from the whole cohort as it is at the start of follow-up.
- R tools for CC model fitting: function cch() in survival

Example: Smoking and cervix cancer

Study population, measurements, follow-up, and sampling design

- ▶ Joint cohort of $N \approx 500~000$ women from 3 Nordic biobanks.
- Follow-up: From variable entry times since 1970s till 2000.
- For each of 200 cases, 3 controls were sampled; matched for biobank, age (± 2 y), and time of entry (± 2 mo).
- Frozen sera of cases and controls analyzed for cotinine etc.

Main result: Adjusted OR = 1.5 (95% Cl 1.1 to 2.3) for high (>242.6 ng/ml) vs. low (<3.0 ng/ml) cotinine levels.

Simen Kapeu et al. (2009) Am J Epidemiol

Example: USF1 gene and CVD

Study population, measurements, follow-up, and sampling design

- ▶ Two FINRISK cohorts, total $N \approx 14000$ M & F, 25-64 y.
- ▶ Baseline health exam, questionnaire & blood specimens at recruitment in the 1990s – Follow-up until the end of 2003.
- Subcohort of 786 subjects sampled.
- 528 incident cases of CVD; 72 of them in the subcohort.
- Frozen blood from cases and subchort members genotyped.

Main result: Female carriers of a high risk haplotype had a 2-fold hazard of getting CVD [95% CI: 1.2 to 3.5]

Komulainen et al. (2006) PLoS Genetics

Full cohort design & its simple analysis

- ► **Full cohort design**: Data on exposure variables obtained for all subjects in a large study population.
- ► Summary data for crude comparison:

	Exposed	Unexposed	Total
Cases	D_1	D_0	\overline{D}
Non-cases	B_1	B_0	B
Group size at start	N_1	N_0	\overline{N}
Follow-up times	Y_1	Y_0	Y

► Crude estimation of hazard ratio $\rho = \lambda_1/\lambda_0$: incidence rate ratio IR, with standard error of log(IR):

$$\widehat{\rho} = IR = \frac{D_1/Y_1}{D_0/Y_0}$$
 $SE[\log(IR)] = \sqrt{\frac{1}{D_1} + \frac{1}{D_0}}.$

More refined analyses: Poisson or Cox regression.

4/1

Problems with full cohort design

Obtaining exposure and covariate data

- Slow and expensive in a big cohort.
- ► Easier with questionnaire and register data,
- Extremely costly and laborious for e.g.
 - measurements from biological specimens, like genotyping, antibody assays, etc.
 - dietary diaries & other manual records

Can we obtain equally valid estimates of hazard ratios etc. with nearly as good precision by some other strategies?

Yes – we can!

Estimation of hazard ratio

The incidence rate ratio can be expressed:

$$IR = \frac{D_1/D_0}{Y_1/Y_0} = \frac{\text{cases: exposed / unexposed}}{\text{person-times: exposed / unexposed}}$$

$$= \frac{exp're \ odds \ \text{in cases}}{exp're \ odds \ \text{in p-times}} = \text{exposure odds ratio (EOR)}$$

= Exposure distribution in cases vs. that in cohort!

Implication for more efficient design:

- Numerator: Collect exposure data on all cases.
- **Denominator**: Estimate the ratio of person-times Y_1/Y_0 of the exposure groups in the cohort by **sampling** "control" subjects, on whom exposure is measured.

Case-control designs

General principle: Sampling of subjects from a given study population is *outcome-dependent*.

Data on risk factors are collected separately from

(I) Case group: All (or high % of) the D subjects in the study population (total N) encountering the outcome event during the follow-up.

(II) Control group:

- ▶ Random sample (simple or stratified) of C subjects (C << N) from the population.</p>
- ► Eligible controls must be bf risk (alive, under follow-up & free of outcome) at given time(s).

Study population in a case-control study?

Ideally: The study population comprises subjects who <u>would be</u> included as cases, *if they got* the outcome in the study

- ➤ Cohort-based studies: **cohort** or **closed** population of well-identified subjects under intensive follow-up for outcomes (*e.g.* biobank cohorts).
- Register-based studies: open or dynamic population in a region covered by a disease register.
- Hospital-based studies: dynamic catchment population of cases may be hard to identify (e.g. hospitals in US).

In general, the role of control subjects is to represent the distribution of person-times by exposure variables in the underlying population from which the cases emerge.

Sampling of controls – alternative frames

Illustrated in a simple longitudinal setting: Follow-up of a cohort over a fixed risk period & no censoring.

Rodrigues, L. & Kirkwood, B.R. (1990). Case-control designs of common diseases ... *Int J Epidemiol* **19**: 205-13.

Sampling schemes or designs for controls

- (A) Exclusive or traditional, "case-noncase" sampling
 - Controls chosen from those N-D subjects still at risk (healthy) at the end of the risk period (follow-up).
- (B) Inclusive sampling or case-cohort design (CC)
 - The control group − subcohort − is a random sample of the cohort (N) at start.
- (C) Concurrent sampling or density sampling
 - Controls drawn during the follow-up
 - Risk-set or time-matched sampling:
 A set of controls is sampled from the risk set at each time t of diagnosis of a new case a.k.a. nested case-control design (NCC)

Nested case-control – two meanings

▶ In some epidemiologic books, the term "nested case-control study" (NCC) covers jointly all variants of sampling: (A), (B), and (C), from a cohort.

```
Rothman et al. (2008): Modern Epidemology, 3rd Ed. Dos Santos Silva (1999): Cancer Epidemiology. Ch 8-9
```

▶ In biostatistical texts NCC typically refers only to the variant of concurrent or density sampling (C), in which *risk-set* or *time-matched* sampling is employed.

```
Borgan & Samuelsen (2003) in Norsk Epidemiologi Langholz (2005) in Encyclopedia of Biostatistics.
```

We shall follow the biostatisticians!

NCC: Risk-set sampling with staggered entry

Sampling frame to select controls for a given case:

Members (\times) of the **risk set** at t_k , *i.e.* the population at risk at the time of diagnosis t_k of case k.

Sampled risk set contains the case and the control subjects randomly sampled from the non-cases in the risk set at t_k .

Use of different sampling schemes

- (A) Exclusive sampling, or "textbook" case-control design
 - ► Almost exclusively(!) used in studies of epidemics.
 - ► (Studies on birth defects with *prevalent* cases.)
- (B) Inclusive sampling or case-cohort design
 - Good esp. for multiple outcomes, if measurements of risk factors from stored material remain stable.
- (C) Concurrent or density sampling (without or with time-matching)
 - ► The only logical design in an open population.
 - ▶ Most popular in chronic diseases (Knol *et al.* 2008).

Designs **(B)** and **(C)** allow valid estimation of hazard ratios ρ without any "rare disease" assumption.

Case-control studies: Textbooks vs. real life

- Many epi texts focus on the traditional design:
 exclusive sampling of controls, ignoring other designs.
- Claim: "Odds ratio is the only estimable parameter."
- ➤ Yet, over 60% of published case-control studies apply **concurrent sampling** or **density sampling** of controls from an **open** or **dynamic** population.
- ▶ Thus, the parameter most often estimated is the hazard ratio (HR) or rate ratio ρ .
- ▶ Still, 90% of authors really estimating HR, reported as having estimated an OR (e.g. Simen Kapeu et al. 2009)

Knol et al. (2008). What do case-control studies estimate? Am J Epidemiol 168: 1073-81.

Exposure odds ratio – estimate of what?

Crude summary of case-control data

	exposed	unexposed	total
cases	D_1	D_0	D
controls	C_1	C_0	C

▶ Depending on study base & sampling strategy, the **exposure odds ratio**

$$\mathsf{EOR} = \frac{D_1/D_0}{C_1/C_0} = \frac{\mathsf{cases: exposed / unexposed}}{\mathsf{controls: exposed / unexposed}}$$

is a consistent estimator of

- (a) hazard ratio, (b) risk ratio, (c) risk odds ratio,
- (d) prevalence ratio, or (e) prevalence odds ratio
- ▶ **NB.** In case-cohort studies with variable follow-up times C_1/C_0 is substituted by $\widehat{Y}_1/\widehat{Y}_0$, from estimated p-years.

Precision and efficiency

With exclusive (A) or concurrent (C) sampling of controls (unmatched), the estimated variance of log(EOR) is

$$\widehat{\text{var}}[\log(\text{EOR})] = \frac{1}{D_1} + \frac{1}{D_0} + \frac{1}{C_1} + \frac{1}{C_0}$$
= cohort variance + sampling variance

- ightharpoonup Depends basically on the numbers of cases, with ≥ 4 controls per case.
- ls not much bigger than $1/D_1 + 1/D_0 = \text{variance}$ in a full cohort study with same numbers of cases.
- \Rightarrow Usually < 5 controls per case is enough.
- ⇒ These designs are very cost-efficient!

Estimation in concurrent or density sampling

- ► Assume a simple situation: Prevalence of exposure in the study population stable over time.
- \Rightarrow The exposure odds C_1/C_0 among controls = a consistent estimator of exposure odds Y_1/Y_0 of person-times.
- ► Therefore, the crude EOR = $(D_1/D_0)/(C_1/C_0)$ = a consistent estimator of hazard ratio $\rho = \lambda_1/\lambda_0$.
- ► Variance of log(EOR) estimated as above.
- Yet, stability of exposure distribution may be unrealistic, especially in a closed study population or cohort.
- Solution: Time-matched sampling of controls from risk sets, i.e. NCC, & matched EOR to estimate HR.

Prentice & Breslow (1978), Greenland & Thomas (1982).

Matching in case-control studies

- = **Stratified sampling** of controls, *e.g.* from the same region, sex, and age group as a given case
- ► Frequency matching or group matching: For cases in a specific stratum (e.g. same sex and 5-year age-group), a set of controls from a similar subgroup.
- ▶ Individual matching (1:1 or 1:m matching): For each case, choose 1 or more (rarely > 5) closely similar controls (e.g. same sex, age within ± 1 year.
- ▶ NCC: Sampling from risk-sets implies time-matching at least. Additional matching for other factors possible.
- **CC**: Subcohort selection involves no matching with cases.

Virtues of matching

- ▶ Increases *efficiency*, if the matching factors are both
 - (i) strong risk factors of the disease, and
 - (ii) correlated with the main exposure.
 - Major reason for matching.
- Confounding due to poorly quantified factors (sibship, neighbourhood, etc.) may be removed by close matching only if properly analyzed.
- ▶ Biobank studies: Matching for storage time, freeze-thaw cycle & analytic batch improves comparability of measurements from frozen specimens
 - → Match on the time of baseline measurements within the case's risk set.

Warnings for overmatching

Matching a case with a control subject is a different issue than matching an unexposed subject to an exposed one in a cohort study – much trickier!

- ▶ Matching on an *intermediate* variable between exposure and outcome.
 - \Rightarrow Bias!
- ► Matching on a *surrogate* or *correlate* of exposure, which is not a true risk factor.
 - \Rightarrow Loss of efficiency.
- → **Counter-matching:** Choose a control which is not similar to the case w.r.t a correlate of exposure.
 - ⇒ Increases efficiency!
 - Requires appropriate weighting in the analysis.

Sampling matched controls for NCC using R

- Suppose key follow-up items are recorded for all subjects in a cohort, in which a NCC study is planned.
- Function ccwc() in package Epi can be used for risk-set sampling of controls. – Arguments:

```
entry : Time of entry to follow-up
exit : Time of exit from follow-up
```

fail: Status on exit (1 for case, 0 for censored)

origin: Origin of analysis time scale (e.g. time of birth) controls: Number of controls to be selected for each case

match: List of matching factors

data: Cohort data frame containing input variables

 Creates a data frame for a NCC study, containing the desired number of matched controls for each case.

Analysis of matched studies

- Close matching induces a new parameter for each matched case-control set or stratum.
 - ⇒ unconditional logistic regression breaks down.
- Matching on well-defined variables (like age, sex)
 include these factors as covariates
- Matching on "soft" variables (like sibship) can be dealt with conditional logistic regression.
- Same method in matched designs (A), exclusive, and (C), concurrent, but interpretation of β_j s differs:
 - (A) $\beta_j = \log$ of risk odds ratio (ROR), (C) $\beta_j = \log$ of hazard ratio (HR).

Full cohort design: Follow-up & risk sets

Each member of the cohort provides exposure data for all cases, as long as this member is at risk, *i.e.* (i) alive, (ii) not censored & (iii) free from outcome.

Times of new cases define the **risk-sets**.

Nested case-control (NCC) design

Whenever a new case occurs, a set of controls (here 2/case) are sampled from its risk set.

NB. A control once selected for some case can be selected as a control for another case, and can later on become a case, too.

Case-cohort (CC) design

Subcohort: Sample of the whole cohort randomly selected at the outset.

- Serves as a reference group for all cases.

NB. A subcohort member can become a case, too.

Modelling in NCC and other matched studies

Cox proportional hazards model:

$$\lambda_i(t, x_i; \beta) = \lambda_0(t) \exp(x_{i1}\beta_1 + \dots + x_{ip}\beta_p),$$

Estimation: partial likelihood $L^P = \prod_k L_k^P$:

$$L_k^P = \exp(\eta_{i_k}) / \sum_{i \in \widetilde{R}(t_k)} \exp(\eta_i),$$

where $\widetilde{R}(t_k) =$ sampled risk set at observed event time t_k , containing the case + sampled controls $(t_1 < \cdots < t_D)$

- \Rightarrow Fit stratified Cox model, with $\widetilde{R}(t_k)$'s as the strata.
- ⇔ Conditional logistic regression
 - function clogit() in survival, wrapper of coxph().

Modelling case-cohort data

Cox's PH model $\lambda_i(t) = \lambda_0(t) \exp(\eta_i)$ again, but . . .

- ► Analysis of survival data relies on the theoretical principle that you can't know the future.
- Case-cohort sampling breaks this principle: cases are sampled based on what is known to be happening to them during follow-up.
- ▶ The union of cases and subcohort is a mixture
 - 1. random sample of the population, and
 - 2. "high risk" subjects who are certain to become cases.
- ⇒ Ordinary Cox partial likelihood is wrong.
- Overrepresentation of cases must be corrected for, by
 (I) weighting, or (II) late entry method.

Correction method I - weighting

The method of **weighted partial likelihood** borrows some basics ideas from survey sampling theory.

- ▶ Sampled risk sets $\widetilde{R}(t_k) = \{ \text{cases} \} \cup \{ \text{subcohort members} \}$ at risk at t_k .
- Weights:
 - -w=1 for all cases (within and outside the subcohort),
 - $-w = N_{\text{non-cases}}/n_{\text{non-cases}} = \text{inverse of sampling-fraction}$ f for selecting a non-case to the subcohort.
- Function coxph() with option weights = w would provide consistent estimation of β parameters.
- However, the SEs must be corrected!
- R solution: Function cch() a wrapper of coxph() in package survival, with method = "LinYing".

Comparison of NCC and CC designs

- Statistical efficiency Broadly similar in NCC and CC with similar numbers of cases and controls.
- Statistical modelling and valid inference
 Straightforward for both designs with appropriate software, now widely available for CC, too
- Analysis of outcome rates on several time scales?
 - NCC: Only the time scale used in risk set definition can be the time variable *t* in the baseline hazard of PH model.
 - CC: Different choices for the basic time in PH model possible, because subcohort members are not time-matched to cases.

Comparison of designs (cont'd)

- Missing data
 - NCC: With close 1:1 matching, a case-control pair is lost, if either of the two has data missing on key exposure(s).
 - CC: Missingness of few data items is less serious.
- Quality and comparability of biological measurements
 - NCC: Allows each case and its controls to be matched also for analytic batch, storage time, freeze-thaw cycle, \rightarrow better comparability.
 - CC: Measurements for subcohort performed at different times than for cases → differential quality & misclassification.
- Possibility for studying many diseases with same controls
 - NCC: Complicated, but possible if matching is not too refined.
 - CC: Easy, as no subcohort member is "tied" with any case.

Conclusion

- "Case-controlling" is very cost-effective.
- Case-cohort design is useful especially when several outcomes are of interest, given that the measurements on stored materials remain stable during the study.
- ▶ Nested case-control design is better suited e.g. for studies involving biomarkers that can be influenced by analytic batch, long-term storage, and freeze-thaw cycles.
- Matching helps in improving effciency and in reducing bias
 - but only if properly done.
- ► Handy R tools are available for all designs.