Assignment5

March 21, 2025

```
[]: import pandas as pd
     import seaborn as sns
     import matplotlib.pyplot as plt
[]: | df = pd.read_csv("StudentsPerformance.csv")
[]: df.head()
        gender race/ethnicity parental level of education
[]:
                                                                     lunch \
     0 female
                       group B
                                         bachelor's degree
                                                                  standard
     1 female
                      group C
                                               some college
                                                                  standard
     2 female
                      group B
                                           master's degree
                                                                  standard
                                        associate's degree
          male
                                                             free/reduced
     3
                      group A
     4
          male
                      group C
                                               some college
                                                                  standard
                                                             writing score
       test preparation course
                                 math score
                                             reading score
     0
                                                                         74
                           none
                                         72
                                                         72
     1
                                         69
                                                         90
                                                                         88
                     completed
     2
                                         90
                                                         95
                                                                         93
                           none
     3
                                         47
                                                         57
                                                                         44
                           none
     4
                                                         78
                                                                         75
                                         76
                           none
```

1. Perform multivariate analysis: • Identify patterns using techniques such as pair plots and matrix plots.

```
[]: df_numeric = df[['math score', 'reading score', 'writing score']]
[]: sns.pairplot(df_numeric)
   plt.show()
```


2. Identify and summarize key insights from the dataset.

[]: df_numeric.describe()

[]:		math score	reading score	writing score
	count	1000.00000	1000.000000	1000.000000
	mean	66.08900	69.169000	68.054000
	std	15.16308	14.600192	15.195657
	min	0.00000	17.000000	10.000000
	25%	57.00000	59.000000	57.750000
	50%	66.00000	70.000000	69.000000
	75%	77.00000	79.000000	79.000000
	max	100.00000	100.000000	100.000000

3. Compute the correlation matrix for numerical attributes using: • Pearson correlation • Spearman correlation

```
[ ]: pearson_corr = df_numeric.corr(method='pearson')
spearman_corr = df_numeric.corr(method='spearman')
```

[]: pearson_corr

- []: reading score writing score math score math score 1.000000 0.817580 0.802642 reading score 0.817580 1.000000 0.954598 writing score 0.802642 0.954598 1.000000
 - 1. Math & Reading Scores: High positive correlation $(0.82-0.85) \rightarrow$ Students who score well in Math tend to perform well in Reading.
 - 2. The highest covariance is between Reading & Writing, confirming they are closely related.

[]: spearman_corr

- Г1: reading score math score writing score 1.000000 0.804064 0.778339 math score reading score 0.804064 1.000000 0.948953 writing score 0.778339 0.948953 1.000000
 - 1. Similar results but Spearman measures rank-based relationships, meaning it captures non-linear trends as well.
 - 2. Reading & Writing have the strongest monotonic relationship, meaning higher reading scores always tend to imply higher writing scores.
 - 4. Compute covariance for pairs of numerical attributes

```
[]: cov_matrix = df_numeric.cov()
```

[]: cov_matrix

- []: math score reading score writing score math score 229.918998 180.998958 184.939133 reading score 213.165605 211.786661 180.998958 writing score 184.939133 211.786661 230.907992
 - 1. Positive covariance between all attributes \rightarrow When one score increases, the other tends to increase as well.
 - 2. The highest covariance is between Reading & Writing, confirming they are closely related.
 - 3. Math has a slightly lower covariance with Writing, meaning writing performance may depend on more than just numerical skills.
 - 5. Visualize correlations using: Explore relationships between variables using \bullet scatter plots \bullet correlation plots \bullet Heatmaps

```
[]: sns.scatterplot(x='math score', y='reading score', data=df_numeric)
     plt.title("Scatter Plot: Math Score vs Reading Score")
     plt.show()
```


Some points deviate, suggesting that a few students excel in Math but not as much in Reading.

```
[]: sns.scatterplot(x='math score', y='writing score', data=df_numeric)
     plt.title("Scatter Plot: Math Score vs Writing Score")
    plt.show()
```


The trend is positive, but the correlation is weaker than Math & Reading.

```
[]: sns.scatterplot(x='reading score', y='writing score', data=df_numeric)
plt.title("Scatter Plot: Reading Score vs Writing Score")
plt.show()
```


Almost a perfect linear relationship, meaning students who are good at Reading are almost always good at Writing.

```
[]: sns.pairplot(df_numeric) plt.show()
```



```
[]: sns.heatmap(pearson_corr, annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Pearson Correlation Heatmap")
plt.show()
```


All correlations are above 0.80, indicating strong relationships between all three subjects.

The heatmap confirms that Reading and Writing have the highest correlation (\sim 0.9), meaning they are almost dependent on each other.

```
[]: sns.heatmap(spearman_corr, annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Spearman Correlation Heatmap")
plt.show()
```


Reading and writing scores (0.95) are highly correlated, indicating a strong relationship. Math has a slightly lower correlation with reading (0.82) and writing (0.80), improving reading skills could significantly impact writing performance, while math is somewhat independent but linked to overall academic performance.