Amplificadores de Pequeña Señal en RF

Amplificadores de Pequeña Señal en RF						
	Amplificadores de Pequeña Señal en RF					

Tabla de contenidos

I. An	ıplificadores de Pequeña Señal en RF	. 1
	AmpEst	. 2
	AmpInEst	3
	CLinvill	. 4
	DRollett	5
	Ds	. 7
	ECap	8
	GT	9
	GTS	10
	GmRp	11
	KStern	12
	MAG	13
	OColp	14
	OHart	15
	PolarCompl	16
	QRA	17
	RAL	18
	RPi	19
	RT	20
	RVirtPi	21
	RVirtT	22
	RoL	23
	RoS	24
	SMAG	25
	YL	26
	YS	27
	analizoTRF	28
	analizoTRFS	29

Amplificadores de Pequeña Señal en RF

AmpEst — Analizador de Amplificadores Estables, usando los Parámetros Y del Transistor.

AmpEst = AmpEst(yi,yo,yf,yr)

Parameters

yi
Admitancia de entrada del transistor

yo
Admitancia de salida del transistor

yf
Ganancia de Transconductancia en directo

yr
Ganancia de transconductancia en reverso

AmpEst

Los resultados obtenidos se imprimen en pantalla

Description

Esta función se encarga de realizar el cálculo de Ys, Zs, Yl y Zl de un amplificador RF. También ofrece como resultado la Ganancia del Amplificador en cuestión

Examples

```
>-- AmpEst(1+%i,2+%i,20-%i*10,0.05-0.001*%i)
```

See Also

AmpInEst , AnalizoTRF

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

MAG, GT

AmpInEst — Analizador de Amplificadores Estables, usando los Parámetros Y del Transistor.

AmpEst = AmpInEst(yi,yo,yf,yr,nf,k)

Parameters

yi
Admitancia de entrada del transistor

yo
Admitancia de salida del transistor

yf
Ganancia de Transconductancia en directo

yr
Ganancia de transconductancia en reverso

nf
Resistencia del generador para óptima figura de ruido

k
Valor de estabilidad de Stern deseado

AmpEst

Los resultados obtenidos se imprimen en pantalla

Description

Esta función se encarga de realizar el cálculo de Ys, Zs, Yl y Zl de un amplificador potencialmente inestable en RF. También ofrece como resultado la Ganancia del Amplificador en cuestión

Examples

```
>-- AmpEst(1+%i,2+%i,20-%i*10,0.05-0.001*%i,25,3)
```

See Also

AmpEst, AnalizoTRF

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

MAG, GT, abs, real, imag

CLinvill — Criterio de estabilidad de Linvill.

C = CLinvill(yi,yo,yf,yr)

Parameters

yi

Admitancia de entrada del transistor

yo
Admitancia de salida del transistor

yf
Ganancia de Transconductancia en directo

Ganancia de transconductancia en reverso

C Factor de Mérito para la estabilidad de Linvill

Description

Esta función realiza el cálculo de estabilidad de Linvill

Examples

C=CLinvill(1+%i,2+%i,20-%i*10,0.05-0.001*%i)

See Also

AnalizoTRF

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

abs, real

DRollett — Criterio de estabilidad de Rollett.

K = DRollett(al1,pl1,al2,pl2,a21,p21,a22,p22)

Parameters

```
a11
    Módulo de S11
p11
    Fase de S11
a12
    Módulo de S12
p12
    Fase de S12
a21
    Módulo de S21
p21
    Fase de S21
a22
    Módulo de S22
p22
    Fase de S22
    Factor de Mérito para la estabilidad de Rollett
```

Description

Esta función realiza el cálculo de estabilidad de Rollett

Examples

```
K=DRollett(1,45,2,-50,10,160,0.1,-80)
```

See Also

analizoTRFS

Authors

Ing. Manuel Pérez P.

Bibliography

Used Functions

PolarCompl, abs

Ds — Constante Ds de un transistor (Parámetros S).

D = Ds(s11, s12, s21, s22)

Parameters

Coeficiente de Reflexión de entrada

s12

Coeficiente de tranmisión inversa

s21

Coeficiente de transmisión directa

s22

Coeficiente de Reflexión de Salida

D

Constante Ds del Transistor

Description

Esta función realiza el cálculo de la constante Ds del Transistor

Examples

//Esta función requiere el ingreso de los Parámetros en su forma compleja. //En el caso de tener los parámetros S en su forma Polar, como sucede en la mag //es posible utilizar la función PolarCompl para transformar un número Polar a //También se puede transformar directamente en los parámetros de entrada de la D=Ds(PolarCompl(1,45),PolarCompl(2,-50),PolarCompl(10,160),PolarCompl(0.1,-80)

See Also

analizoTRFS

Authors

Ing. Manuel Pérez P.

Bibliography

ECap — Diseño de Circuito de Polarización de un Amplificador Emisor Común Autopolarizado.

[Rc,Re,R1,R2] = ECap(Vce,Ic,hfe)

Parameters

Vce
Voltaje colector emisor deseado

Ic
Corrriente de Colector deseada

hfe
Hfe del BJT

Rc
Resistencia de Colector

Re
Resistencia de Emisor

R1
R1, resistencia que conecta la base con tierra

R2, resistencia que conecta Vcc con la base

Description

R2

Esta función realiza el diseño de un circuito de Polarización de un Amplificador Emisor Común Autopolarizado, ofreciendo como resultado Rc, Re, R1 y R2. Adicionalmente, se muestra en pantalla el valor de Vcc e Ib

Examples

[Rc,Re,R1,R1]=ECap(5,5e-3,160)

Authors

Ing. Manuel Pérez P.

Bibliography

GT — Cálculo de la ganancia de un amplificador.

G = GT(yi,yo,yf,yr,ys,yl)

Parameters

yi
Admitancia de entrada del transistor

yo
Admitancia de salida del transistor

yf
Ganancia de Transconductancia en directo

yr
Ganancia de transconductancia en reverso

ys Admitancia del generador que garantiza la estabilidad del Amplificador

yl Admitancia de la carga que garantiza la estabilidad del Amplificador

G
Ganancia de Transconductancia del Amplificador (Párametros Y)

Description

Esta función realiza el cálculo de la ganancia de transconductancia de un amplificador, usando parámetros Y

Examples

```
-->G=GT(1+%i,2+%i,20-%i*10,0.05-0.001*%i,10-%i,2+%i)
```

See Also

AmpEst, AnalizoTRF

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

real, abs

GTS — Cálculo de la ganancia de un amplificador (Parámetros S).

```
G = GTS(s11,s12,s21,s22,rol,ros)
```

Parameters

```
coeficiente de Reflexión de entrada

s12
Coeficiente de tranmisión inversa

s21
Coeficiente de transmisión directa

s22
Coeficiente de Reflexión de Salida

rol
Coeficiente de Reflexión hacia la carga

ros
Coeficiente de Reflexión hacia el generador
```

Ganancia de Transconductancia del Amplificador

Description

G

Esta función realiza el cálculo de ganancia de un amplificador usando parametros S

Examples

```
G=GTS(1+%i,2+%i,20-%i*10,0.05-0.001*%i,10-%i,2+%i)
```

See Also

analizoTRFS

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

abs

GmRp — Calculo de Gm y Rpi de un Amplificador Emisor Común.

```
[gm,rpi] = GmRp(hfe,Ic,vt)
```

Parameters

```
hfe
Hfe del BJT

Ic
Corriente de Colector

vt
Tensión Térmica o potencial equivalente de temperatura

gm
Transconductancia del BJT

rpi
Resistencia de entrada del BJT en AC
```

Description

Esta función realiza el cálculo de la Transcoductancia de un BJT y de Rpi. Parámetros dependientes de la polarización

Examples

```
//Se acostumbra colocar 25mV como lavor de Vt para fines prácticos
//Para el cálculo preciso de Vt se usa la fórmula:
//Vt=kT/q
        [G,R]=GmRp(100,10e-3,25e-3)
```

Authors

Ing. Manuel Pérez P.

KStern — Criterio de estabilidad de Stern.

k = KStern(yi,yo,yf,yr,ys,yl)

Parameters

yi
Admitancia de entrada del transistor

yo
Admitancia de salida del transistor

yf
Ganancia de Transconductancia en directo

yr
Ganancia de transconductancia en reverso

ys Admitancia del generador que garantiza la estabilidad del Amplificador

yl Admitancia de la carga que garantiza la estabilidad del Amplificador

Factor de Mérito para la estabilidad de Stern

Description

Esta función realiza el cálculo de estabilidad de Stern

Examples

K=KStern(1+%i,2+%i,20-%i*10,0.05-0.001*%i,10-%i,2+%i)

See Also

 $analizo TRF \ , \ amp In Est$

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

real, abs

MAG — Cálculo de MAG.

M = MAG(yi,yo,yf)

Parameters

yi
Admitancia de entrada del transistor

yo
Admitancia de salida del transistor

yf
Ganancia de Transconductancia en directo

M Máxima Ganancia Disponible por el Transistor

Description

Cálculo de la Máxima Ganancia del Amplificador

Examples

M=MAG(1+%i,2+%i,20-%i*10)

See Also

ampEst, analizoTRF

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

abs,real

OColp — Diseño de un oscilador Colpitts.

[c1,c2,13] = OColp(gm,f,rin)

Parameters

m Transconductancia del Transistor

f Frecuencia del Oscilador a diseñar

rin Impedancia de entrada de entrada

c1 C1 del Oscilador Colpitts

c2 C2 del oscilador Colpitts

13 L3 del Oscilador Colpitts

Description

Esta función realiza el cálculo de los componentes necesarios para la implementación de un Oscilador Colpitts

Examples

[x,y,z] = OColp(0.2,100e6,500)

See Also

ECap, OHart

Authors

Ing. Manuel Pérez P.

Bibliography

RADIO-FREQUENCY AND MICROWAVE COMMUNICATION CIRCUITS - Devendra K. Misra CIRCUITOS ELECTRÓNICOS, ANALISIS, SIMULACIÓN Y DISEÑO - Norbert R. Malik

OHart — Diseño de un oscilador Hartley.

[c1,c2,l3] = OHart(gm,f,rin)

Parameters

```
gm
Transconductancia del Transistor

f
Frecuencia del Oscilador a diseñar

rin
Impedancia de entrada de entrada

11
L1 del Oscilador Hartley

12
L2 del oscilador Hartley

C3
L3 del Oscilador Hartley
```

Description

Esta función realiza el cálculo de los componentes necesarios para la implementación de un Oscilador Hartley

Examples

[x,y,z] = OHart(0.02,100e6,500)

See Also

OColp, ECap

Authors

Ing. Manuel Pérez P

Bibliography

RADIO-FREQUENCY AND MICROWAVE COMMUNICATION CIRCUITS - Devendra K. Misra CIRCUITOS ELECTRÓNICOS, ANALISIS, SIMULACIÓN Y DISEÑO - Norbert R. Malik

PolarCompl — Transformación de Polar a complejo.

```
C = PolarCompl(m,p)
```

Parameters

```
m
Magnitud del número polar

p
Fase del número polar en grados rectangualres

C
Número Complejo
```

Description

Esta función realiza la conversión de polar a complejo

Examples

```
//Esta función trabaja la fase usando grados rectangulares, por ejemplo:
//Para transformar un núemro cuya magnitud es 2 y su fase es 45°
C=PolarCompl(2,45)
Ans:
C = 1.4142136 + 1.4142136i
//Si se desea trabajar con radianes se puede usar la función de la siguiente f f=0.5235988
d=f*180/%pi
C=PolarCompl(2,d)
C = 1.7320508 + i
//donde f es la fase del número en radianes
```

Authors

Ing. Manuel Pérez P.

QRA — Cálculo de Q de una red de Adaptación.

Q = QRA(Rh,Rs)

Parameters

Rh

Resistencia de mayor magnitud

Rs

Resistencia de mayor magnitud

Q

Factor Q del Circuito

Description

Cálculo del Factor de Calidad de una red de adaptación cualquiera, independiente de su constitución

Examples

Q=QRA(100,75)

See Also

RAL

Authors

Ing. Manuel Pérez P.

Bibliography

RAL — Diseño de Red de Adaptación tipo L.

[Xp,Xs] = RAL(Rg,Rl)

Parameters

Rg

Resistencia del Generador

R1

Resistencia de la carga

Xp

Reactancia Paralelo de la red de Adaptación

Xs

Reactancia Serie de la red de Adaptación

Description

Calcula las impedancias necesarias para adaptar dos impedancias, usando una red L

Examples

[x,y]=RAL(100,75)

See Also

QRA, RPi

Authors

Ing. Manuel Pérez P.

Bibliography

RPi — Diseño de Red de Adaptación tipo Pi.

[Xp1,Xs1,Xp2,Xs2] = RPi(Rg,Rl,Q)

Parameters

Rg

Resistencia del Generador

R1

Resistencia de la carga

Q

Factor Q del Circuito

Xp1

Reactancia Paralelo de la red de Adaptación 1

Xs1

Reactancia Serie de la red de Adaptación 1

Xp2

Reactancia Paralelo de la red de Adaptación 2

Xs2

Reactancia Paralelo de la red de Adaptación 2

Description

Calcula las impedancias necesarias para adaptar dos impedancias usando una red Pi

Examples

[w,x,y,z]=RPi(100,600,16)

See Also

RAL, RT

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

RVirtPi, RAL

RT — Diseño de Red de Adaptación tipo T.

[Xp1,Xs1,Xp2,Xs2] = RT(Rg,Rl,Q)

Parameters

Rg

Resistencia del Generador

R

Resistencia de la carga

Q

Factor Q del Circuito

Xp1

Reactancia Paralelo de la red de Adaptación 1

Xs1

Reactancia Serie de la red de Adaptación 1

Xp2

Reactancia Paralelo de la red de Adaptación 2

Xs2

Reactancia Paralelo de la red de Adaptación 2

Description

Calcula las impedancias necesarias para adaptar dos impedancias usando una red T

Examples

[w,x,y,z]=RT(100,600,16)

See Also

RAL, RPi

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

RVirtT, RAL

RVirtPi — Cálculo de la R visrtual de una red Pi.

R = RVirtPi(Rh,Q)

Parameters

Rh

Resistencia de mayor magnitud

Q

Factor Q del circuito

R

R virtual de la red Pi

Description

Esta función calcula la R Virtual de una Red Pi

Examples

R=RVirtPi(100,16)

See Also

Rpi, RT

Authors

Ing. Manuel Pérez P.

Bibliography

RVirtT — Cálculo de la R visrtual de una red T.

R = RVirtT(Rs,Q)

Parameters

Rs

Resistencia de moren magnitud

Q

Factor Q del circuito

R

R virtual de la red T

Description

Esta función calcula la R Virtual de una Red Pi

Examples

R=RVirtT(100,16)

See Also

RT, RPi

Authors

Ing. Manuel Pérez P.

Bibliography

RoL — Coeficiente de Reflexión hacia la carga.

R = RoL(s11, s22, D)

Parameters

s11

Coeficiente de Reflexión de entrada

s22

Coeficiente de Reflexión de Salida

D

Constante Ds de un amplificador usando parámetros S

R

Coeficiente de Reflexión hacia la carga

Description

Esta función realiza el cálculo del coeficiente de reflexión de un amplificador hacia la carga, usando Parámetros S

Examples

```
R=RoL(1+%i,0.05-0.001*%i,49.949+0.049*%i)
```

See Also

analizoTRFS, GTS

Authors

Ing. MAnuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

atan, real, imag, sin, cos

RoS — Coeficiente de Reflexión hacia el generador.

R = RoS(s11, s12, s21, s22, RL)

Parameters

s11

Coeficiente de Reflexión de entrada

s12

Coeficiente de tranmisión inversa

s21

Coeficiente de transmisión directa

s22

Coeficiente de Reflexión de Salida

RL

Coeficiente de Reflexión hacia la carga

R

Coeficiente de Reflexión hacia el Generador

Description

Esta función realiza el cálculo del coeficiente de reflexion de un amplificador hacia la el generador, usando Parámetros S

Examples

R=RoS(1+%i,2+%i,20-%i*10,0.05-0.001*%i,-0.02-0.02*%i)

See Also

RoL, analizoRTFS

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

atan, real, imag, sin, cos

SMAG — Cálculo de MAG (Parámetros S).

M = SMAG(s11,s12,s21,s22,D,k)

Parameters

s11
Coeficiente de Reflexión de entrada

s12

Coeficiente de tranmisión inversa

s21

Coeficiente de transmisión directa

s22

Coeficiente de Reflexión de Salida

D

Constante Ds de un amplificador usando parámetros S

k

Factor de Mérito para la estabilidad de Rollett

 \mathbf{M}

Máxima Ganancia Disponible por el Transistor

Description

Máxima Ganancia Disponible (Parámetros S)

Examples

M=SMAG(PolarCompl(0.4,162),PolarCompl(0.04,60),PolarCompl(5.2,63),Polar

See Also

 $analizo TRFS \ , \ GTS$

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

abs, sing, sqrt

YL — Cálculo de YL de un amplificador RF.

```
[Gl,Bl] = YL(yi,yo,yf,yr)
```

Parameters

yi

Admitancia de entrada del transistor

yo
Admitancia de salida del transistor

yf
Ganancia de Transconductancia en directo

yr
Ganancia de transconductancia en reverso

Gl Conductancia de YL

Bl Suceptancia de YL

Description

Esta función realiza el cálculo de la admitancia de la carga que garantiza la estabilidad del amplificador

Examples

```
[x,y]=YL(8+%i*5.7,0.4+%i*1.5,52-%i*20,0.01-%i*0.1)
```

See Also

analizoTRF, YS

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

sqrt, real, abs

YS — Cálculo de YS de un amplificador RF.

```
[Gs,Bs] = YS(yi,yo,yf,yr)
```

Parameters

yi Admitancia de entrada del transistor

yo
Admitancia de salida del transistor

yf
Ganancia de Transconductancia en directo

yr
Ganancia de transconductancia en reverso

Gl Conductancia de YL

Bl Suceptancia de YL

Description

AEsta función realiza el cálculo de la admitancia del generador que garantiza la estabilidad del amplificador

Examples

```
[x,y]=YS(8+%i*5.7,0.4+%i*1.5,52-%i*20,0.01-%i*0.1)
```

See Also

analizoTRF, YL

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

sqrt, real, abs

analizoTRF — Analizador de Transistores en RF usando Parámetros Y

analizoTRF = analizoTRF(yi,yo,yf,yr)

Parameters

yi
Admitancia de entrada del transistor

yo
Admitancia de salida del transistor

yf
Ganancia de Transconductancia en directo

yr
Ganancia de transconductancia en reverso

analizoTRF
Los resultados se muestran en pantalla

Description

Esta función analiza la estabilidad de un transistor usado como amplificador de señales de alta frecuencia y da como resultado YS y YL, usando Parámetros Y.

Examples

```
analizoTRF(1+%i,2+%i,20-%i*10,0.05-0.001*%i)
```

See Also

 \mbox{AmpEst} , \mbox{AmpEst} , \mbox{MAG} , \mbox{GT} , $\mbox{CLinvill}$, \mbox{KStern}

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

MAG, GT, CLinvill, KStern, abs, real, imag

analizoTRFS — Analizador de Transistores en RF usando Parámetros S

[RL,RS,G] = analizoTRFS(a11,p11,a12,p12,a21,p21,a22,p22)

Parameters

```
a11
    Módulo de S11
p11
    Fase de S11
a12
    Módulo de S12
p12
    Fase de S12
a21
    Módulo de S21
p21
    Fase de S21
a22
    Módulo de S22
p22
    Fase de S22
RL
    Coeficiente de Reflexión hacia la carga
RS
    Coeficiente de Reflexión hacia el generador
G
    Ganancia de Transconductancia del Amplificador
```

Description

Esta función analiza la estabilidad de un transistor usado como amplificador de señales de alta frecuencia y da como resultado YS y YL, usando Parámetros S

Examples

```
[x,y,z] = analizoTRFS(1,45,2,-50,10,160,0.1,-80)
```

See Also

AnalizoTRF, DRollet

Authors

Ing. Manuel Pérez P.

Bibliography

RF CIRCUIT DESIGN - CHRIS BOWICK

Used Functions

PolarCompl, DRollet, SMAG, GTS, RoL, RoS