

수포자도 도전해 볼 만한

Mathematics in DeepLearning

Lecture4. Optimization

Juhee Lee ph.D.
Research Professor @ ewha womans university

<u>Definition</u> An optimization problem consists of maximizing or minimizing a real function by choosing input values from within an allowed set and computing the value of the function.

$$f: A \rightarrow R$$

"linear programming"

Given: set A to the real numbers R

an element x_0 in A such that $f(x_0) \le f(x)$ for all x in A ("minimization") or such that $f(x_0) \ge f(x)$ for all x in A ("maximization")

A function

objective function $f: A \rightarrow R$

- Is called a loss function or cost function(minimization), a utility function or fitness function (maximization)
- Typically, $A \subset \mathbb{R}^n$ specified by a set of constraints, equalities or inequalities that the members of A have to satisfy.
- The elements of A are candidate solutions
- A feasible solution that minimizes (or maximize if that is the goal) the objective function is called an optimal solution

In mathematics, conventional optimization problems are usually stated in terms of **minimizati on**.

Generally, unless both the objective function a nd the feasible region are convex in a minimiz ation, there may be several local minima

A local minimum x^* for all x, some $\delta > 0$ $||x - x^*|| < \delta$, $f(x^*) \le f(x)$

In mathematics,

S is **bounded** above (**bounded** below) for all $x \in S$, $S(\neq \emptyset) \subset R$, $\exists u \in R, x \leq u \ (u \leq x)$

S is **bounded** if S is bounded above and below for all $x \in S$, $S(\neq \emptyset) \subset R$, $\exists u \in R$, $|x| \leq u$

In mathematics,

$$a = \sup S$$

a is supremum or least upper bound

 $\exists a \in R$, such that 1) and 2)

Let S is **bounded** above

- 1) a is a upper bound, ie, for all $x \in S$, $x \le a$
- 2) $\beta \in R, \beta < a, \Rightarrow \exists x \in R \text{ such that } \beta < x \leq a$

In mathematics,

 $u = \inf S$

u is infimum or greatest lower bound

 $\exists u \in R$, such that 1) and 2)

Let S is **bounded** below

- 1) a is a lower bound, ie, for all $x \in S$, $u \le x$
- 2) $v \in R, u < v, \Rightarrow \exists x \in R \text{ such that } u \leq x < v$

In mathematics, 실수계의 완비성공리 (completeness axiom)

R의 공집합이 아닌 부분집합 S가 위로 유계이면 반드시 그 상한이 존재한다.

Quiz.R의 공집합이 아닌 부분집합 S가 아래로 유계이면 그 ()이 존재한다.

• ex. *S* = {1, 2, 3} check bounded, if then sup of inf?

- ex. $S = \{x \in R \mid 2 \le x < 3\}$ check bounded, if then sup of inf?
- ex. $S = \left\{\frac{1}{n} \mid n \in N\right\}$ check bounded, if then sup of inf?

Ex.
$$\min_{x \in R} x^2 + 1$$

Ex.
$$\max_{x \in R} 2x$$

Def.
$$\operatorname{argmax} f(x) \coloneqq \{x \mid x \in S \land \forall y \in S : f(y) \le f(x)\}\$$

 $x \in S \subset X$

Ex. argmax
$$x cos y$$

 $x \in [-5,5], y \in R$

Feasible region, set or solution space

Consider the problem

Minimize
$$x^2 + y^4$$

subject to $1 \le x \le 10$ and $5 \le y \le 12$

a constraint that one or more variable must be non-negative.

<출처 :https://en.wikipedia.org/wiki/Feasible_region>

Minimize $x^2 + y^4$ subject to $1 \le x \le 10$ and $5 \le y \le 12$

Integer programming problem

A problem with five linear constraints (in blue, including the non-negativity constraints). In the absence of integer constraints the feasible set is the entire region bounded by blue, but with <u>integer constraints</u> it is the set of red dots.

<출처 :https://en.wikipedia.org/wiki/Feasible_region>

Minimize $x^2 + y^4$ subject to $1 \le x \le 10$ and $5 \le y \le 12$

Linear programming problem

A closed feasible region of a <u>linear</u> <u>programming</u> problem with three variables is a convex <u>polyhedron</u>.

In a linear programming problem, a series of linear constraints produces a convex feasible region of possible values for those variables. In the two-variable case this region is in the shape of a convex simple polygon.

Convex function on an interval

<그림출처 :https://en.wikipedia.org/wiki/Convex_function>

f is called **convex** if $\forall x_1, x_2 \in X$, $\forall t \in [0,1]$: $f(tx_1 + (1-t)x_2 \le tf(x_1) + (1-t)f(x_2)$

<그림출처 :https://en.wikipedia.org/wiki/Convex_function>

A function is convex if and only if the region above its graph (in green) is convex set

This region is the function's epigraph epi
$$f = \{(x, \mu) : x \in \mathbb{R}^n, \mu \in \mathbb{R}, \mu \geq f(x)\} \subset \mathbb{R}^{n+1}$$

f is convex $\Leftrightarrow R(x_1, x_2)$ is monotonically non-decreasing $R(x_1, x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$ in x_1 for every fixed x_2

A convex function f of one variable defined on some open interval C is continuous on C and Lipschitz continuous on any closed subinterval.

f is differentiable at all but at most countably many points

A diffenentiable function of one variable is convex on an interval

⇔ if its derivative is monotonically non-decreasing on that interval.

A differentiable function of one variable is convex on an interval

 \Leftrightarrow the function lies above all of its tangents $f(x) \ge f(y) + f'(y)(x - y)$ for all x_1 and x_2 in that interval.

If f'(c) = 0 then c is a global minimum of f(x)

A twice differentiable function of **one variable** is convex on an interval

⇔ if its second derivative is non-negative

⇔ this give a practical test for convexity.

A twice diffenentiable function of **several variable** is convex on a convex set

⇔ if its Hessian matrix of second derivatives is positive semidefinite on the interior of the convex set.

Any local minimum of a convex function is also a **global** minumum.

ex. Functions of one variable

$$f(x) = x^2$$
, $f(x) = |x|^p$ $(1 \le p)$, $f(x) = e^x$

ex. Functions of n variable

 $f(x) = \log \det(X)$ on the domain for positive-definite matrices , *every norm* is a convex function

<그림출처 :https://en.wikipedia.org/wiki/Convex_set>

Convex set is a subset of an affine space that is closed under convex combination

A convex combination is a linear combination of points where all coefficients are non-negative are sum to 1 $a_1x_1+a_2x_2+\cdots+a_nx_n$. Where $a_i \ge 0$, real number, $\sum a_i = 1$

<u>Definition</u> An affine space is a set A to which is a ssociated a vector space \overline{A} and \overline{a} transitive and free action of the additive group of \overline{A}

$$A \times \overrightarrow{A} \rightarrow A$$

 $(a, v) \mapsto a + v$

That has the following properties

- 1. Right identity
- 2. Associativity
- 3. Free and transitive action
- 4. Existence of one-to-one translations

An affine space A such that $A \times \overline{A} \rightarrow A$ $(a, v) \mapsto a + v$

1.
$$\forall a \in A, a + 0 = a$$

2.
$$\forall v, w \in \overline{A}, \forall a \in A, (a+v) + w = a + (v+w)$$

- 3. For every $a \in A$, the mapping $\overrightarrow{A} \rightarrow A : v \mapsto a + v$ is a bijection
- 4. For all $\forall v \in \overline{A}$ the mapping $A \to \overline{A}$: $a \mapsto a + v$ is a bijection

An affine space
$$A$$
 such that $\overrightarrow{A} \times \overrightarrow{A} \longrightarrow A$
 $(a, v) \mapsto a + v$

keeping only the properties related to parallelism and ratio of lengths for parallel line segments

- 1. $\forall a \in A, a + 0 = a$
- 2. $\forall v, w \in \overrightarrow{A}, \forall a \in A, (a+v) + w = a + (v+w)$
- 3. For every $a, b \in A$, there exists a unique $v \in \overrightarrow{A}$ denote b - a such that b = a + v
- 4. For all $\forall v \in \overline{A}$ the mapping $A \to \overline{A}$: $a \mapsto a + v$ is a bijection

- 1. $\forall a \in A, a + 0 =$
- 2. $\forall v, w \in \overrightarrow{A}, \forall a \in x$
- 3. For every $a, b \in A$, there exists a unique $v \in \overrightarrow{A}$ denote b - a such that b = a + v
- 4. For all $\forall v \in \overline{A}$ the mapping $A \to \overline{A}$: $a \mapsto a + v$ is a bijection

First order optimizaiton

Derivative

We use the tangent line at (a, f(a)) as an approximation to the curve y = f(x) when x is near a

An equation of this tangent line is y = f(a) + f'(a)(x - a)

and the approximation $f(x) \approx f(a) + f'(a)(x - a)$ of f at a

DLC@모두의연구소

x 에서의 함수값과 그 점에서의 변화율을 알면 그 점 바로 근처에 있는 점에서의 함수값을 근사적으로 계산할 수 있다.

$$f(x + dx) = f(x) + \Delta y \approx f(x) + dy = f(x) + f'(x)dx$$

ex. Find the linearization of the function $f(x) = \sqrt{x+3}$ at the number a=1 and use it to approximate the numbers $\sqrt{4.05}$

ex. Find the linearization of the function $f(x) = \sqrt{x+3}$ at the number a=1 and use it to approximate the numbers $\sqrt{4.05}$ Sol) The derivative of $f(x)=(x+3)^{\frac{1}{2}}$ is

$$f'(x) = \frac{1}{2}(x+3)^{-\frac{1}{2}}, f(1) = 2, f'(1)=1/4$$

$$L(x) = f(1) + f'(1)(x-1) = 2 + \frac{1}{4}(x-1) = \frac{7}{4} + \frac{x}{4}$$

$$\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$$

$$\sqrt{4.05} \approx \frac{7}{4} + \frac{1.05}{4} = 2.0125$$

ex. For what values of x is the linear approximation

$$\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$$

Accurate to within 0.5 ?

ex. For what values of x is the linear approximation

$$\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$$

Accurate to within 0.5 ?

Sol)
$$\left| \sqrt{x+3} - \left(\frac{7}{4} + \frac{x}{4} \right) \right| < 0.5$$

 $\Leftrightarrow \sqrt{x+3} - 0.5 < \left(\frac{7}{4} + \frac{x}{4} \right) < \sqrt{x+3} + 0.5$
 $\Leftrightarrow -2.6 < x < 8.6$

Derivative

We use the tangent line at (a, f(a)) as an approximation to the curve y = f(x) when x is near a

An equation of this tangent line is y = f(a) + f'(a)(x - a)

Multivariate Function.

the approximation
$$f(x) \approx f(a) + f'(a)(x - a)$$
 of f at a

the approximation

$$f(x,y,z) \approx f(a,b,c) + f_x(a,b,c)(x-a) + f_y(a,b,c)(y-b) + f_z(a,b,c)(z-c)$$
 of f at (a,b,c)

Definition A function.

$$f: A \rightarrow R$$

for all x in Aan element x_0 in A such that $f(x_0) \le f(x)$ f has an minimum at x_0

an element x_0 in A such that $f(x_0) \ge f(x)$ for all x in A f has an global maximum at x_0

The maximum and minimum value of f are called the **extrem** e values of f

<u>Definition</u> A function.

$$f:A \rightarrow R$$

for all x in A in some open interval containing c an element c in A such that $f(c) \le f(x)$ f has an **local minimum** when x is near c

an element c in A such that $f(c) \ge f(x)$ for all x in A f has an **local maximum** when x is near c

Ex.
$$f(x) = cosx$$

 $x = 2n\pi \ cosx = 1$, $x = (2n + 1)\pi \ cosx = -1$

Multivariate function

<u>Definition</u> A function.

```
f: D \to R
for all x, y in D
an element x_0, y_0 in D such that f(x_0, y_0) \le f(x, y)
f has an minimum at x_0, y_0
an element x_0, y_0 in D such that f(x_0, y_0) \ge f(x, y)
f has an maximum at x_0, y_0
```

The maximum and minimum value of f are called the **extrem** e values of f

Multivariate function

Definition A function.

$$f: D \to R$$
 for all x, y in D $\exists r > 0 \ ||x - x_0|| < r$ in D such that $f(x_0) \le f(x)$ f has an minimum at x_0 $\exists r > 0 \ ||x - x_0|| > r$ such that $f(x_0) \ge f(x)$ f has an maximum at x_0

The maximum and minimum value of f are called the **extrem** e values of f

No maximum value.

No minimum or maximum value

Theorem. (Mean value theorem)

- f is continuous in [a, b]
- f is differentiable on (a, b)

Then there is a number c in (a, b) such that

$$f'(c) = \frac{f(b)-f(a)}{b-a}$$
 or $f(b) - f(a) = f'(c)(b-a)$

Theorem. (Fermat) If f has a local maximum or minimum at $c \in (a, b)$ and if f'(x) exists, then f'(x) = 0.

<u>Definition</u> A **critical point** of a function f is a $c \in domain$ of f such that either f'(c) = 0 or f'(c) doesn't exist.

Theorem. (Fermat) If f has a local maximum or minimum at (a,b) and if the first order partial derivatives of f exists there, then

$$f_x(a,b) = 0, f_y(a,b) = 0.$$

<u>Definition</u> A **critical point** of a function f is at (a,b) if $f_x(a,b) = 0$ and $f_v(a,b) = 0$ or f'(a,b) doesn't exist.

If f has a local maximum or minimum at c and if

$$f'(x)$$
 exists, then $f'(x) = 0$

When f'(x) = 0, then

When f'(x) = 0, then f doesn't necessarily have a maximum or minimum at c

$$f(x) = x^3 f'(x) = 3x^2, f'(0) = 0$$

• If f' changes from positive to negative at c then f has

- If f' changes from positive to negative at c then f has a local maximum
- If f' changes from negative to positive at c then f has a

- If f' changes from positive to negative at c then f has a local maximum
- If f' changes from negative to positive at c then f has a local minimum
- If f' does not change sign at c then f has

- If f' changes from positive to negative at c then f has a local maximum
- If f' changes from negative to positive at c then f has a local minimum
- If f' does not change sign at c then f has no local maximum or minimum at c

Gradient Descent

Loss 가 최소인 목표지점

$$x_{k+1} = x_k - \lambda f'(x_k)$$
 $\lambda = learning rate$ $x_{k+1} = x_k - \lambda \nabla f(x_k)$

Second order optimizaiton

Second derivative test

• If function f is twice differitiable at a critical point c then

- If f''(c) < 0 then f has a local maximum
- If f''(c) > 0 then f has a local minimum
- If f''(c) = 0 then

Second derivative test (proof)

Using Tylor's theorem,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^k}{k!}(x - a)^k + h_k(x)(x - a)^k$$

$$0 < f''(c) = \lim_{h \to 0} \frac{f'(c+h) - f'(c)}{h}$$
$$= \lim_{h \to 0} \frac{f'(c+h) - 0}{h} = \lim_{h \to 0} \frac{f'(c+h)}{h}$$

 $\frac{f'(c+h)}{h} > 0 \Rightarrow f'(c+h) > 0$ if h > 0 incresing ie, local minimum

Second derivative test

• If function f is twice differtiable at a critical point or stationary point (a,b) then

$$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{x,y}(a,b)]^{2}$$

- If D > 0, $f_{xx}(a, b) > 0$ then f(a, b) is a local minimum
- If D > 0, $f_{\chi\chi}(a,b) < 0$ then f(a,b) is a local maximum
- If D < 0, $f_{\chi\chi}(a,b) > 0$ then f(a,b) is not a $\stackrel{\text{def}}{=}$ (saddle point)
- If D = 0, test gives no information

Proof.

• $ax^2 + 2bxy + cy^2$ quadratic forms for x

•
$$ax^{2} + 2bxy + cy^{2} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$T = \sqrt{b^{2} - ac} \Rightarrow D = \det \begin{pmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \end{pmatrix} = ac - b^{2}$$

$$D > 0 \Rightarrow T < 0$$

$$H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} = f_{xx}f_{yy} - f_{xy}^{2} > 0, f_{xx} > 0$$

local minimum

For two variable functions

- $ax^2 + 2bxy + cy^2$ quadratic forms
- In single variable

$$f'(a) = 0$$
, if $f''(a) > 0$ f has a local minimum

$$f(x) \approx f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2$$

For two variable functions

In single variable

$$f'(a) = 0$$
, if $f''(a) > 0$ f has a local minimum $f(x) \approx f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2$

For two variable functions

• In single variable f'(a) = 0, if f''(a) > 0 f has a local minimum $f(x) = f(x + \Delta x) \approx f(x) + f(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2$

$$\Delta x$$
에 관하여 미분,
$$-\frac{f'(x)}{f''(a)} = \Delta x$$

$$x_{k+1} = x_k - \frac{\nabla f(x_k)}{Hf(x_k)}$$

Q & A

Review

If $f: \mathbb{R}^n \to \mathbb{R}$ is a function of n variables, the gradient vector, ∇f

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}\right)$$

Check. Product rule, Chain rule!

A vector-valued function or vector function, is simply a function whose domain is a set of real numbers and whose range is a set of vectors.

$$F: R \rightarrow R^m$$

For every number t in the domain of F there is a unique vector in V_m denoted by F(t),

$$\mathbf{F}(\mathsf{t}) = (f_1(t), f_2(\mathsf{t}), \dots, f_m(t))$$

From
$$F(t) = \langle f_1(t), f_2(t), \dots, f_m(t) \rangle$$

$$\nabla F: R \rightarrow R^m$$

$$\nabla F(t) = (f'_1(t), f'_2(t), \dots, f'_m(t))$$

Vector valued multivariate Ft.

From
$$F(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_m(\mathbf{x})), \mathbf{x} \in \mathbb{R}^n$$

$$F: \mathbb{R}^n \to \mathbb{R}^m$$

$$\nabla F(\mathbf{x}) = (\nabla f_1(\mathbf{x}), \nabla f_2(\mathbf{x}), \cdots, \nabla f_m(\mathbf{x}))$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix} = \mathrm{d} f_i^T$$

From
$$F(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_m(\mathbf{x}))$$
, $\mathbf{x} \in \mathbb{R}^n$
$$F: \mathbb{R}^n \to \mathbb{R}^m$$

Jacobian matrix,

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix} = \mathbf{J}_{ij} = \frac{\partial f_i}{\partial x_j}$$

Ex. $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$

$$\mathbf{F}(x,y) = \begin{bmatrix} x^2y \\ 5x + \sin y \end{bmatrix} = \begin{bmatrix} f_1(x,y) \\ f_2(x,y) \end{bmatrix}$$

Jacobian matrix,
$$\mathbf{J}_{ij} = \frac{\partial f_i}{\partial x_j} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} 2xy & x^2 \\ 5 & \cos y \end{pmatrix}$$

From
$$F(\mathbf{x}) = f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^n$$

$$F: \mathbb{R}^n \to \mathbb{R}$$

Hessian matrix,

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix} = \mathbf{H}_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$