STATS 310B: Theory of Probability II

Winter 2016/17

Scribes: Kenneth Tay

Lecture 4: January 19

Lecturer: Sourav Chatterjee

4.1 Application of Wald's Lemma to Random Walks

Consider the following setting:

- X_1, X_2, \ldots be i.i.d. ± 1 valued random variables with $P\{X_i = 1\} = P\{X_i = -1\} = \frac{1}{2}$.
- $\mathcal{F}_n = \sigma(X_1, \dots, X_n), \mathcal{F}_0 = \text{trivial } \sigma\text{-algebra}.$
- $S_n = \sum_{i=1}^n X_i, S_0 = 0.$
- a < 0 < b are 2 integers, T is defined to be a stopping time $T = \inf\{k : S_k = a \text{ or } b\}$.

4.1.1 Symmetric Random Walk $(p = \frac{1}{2})$

 $\{S_n\}$ is a martingale w.r.t. $\{\mathcal{F}_n\}$. If we can show that $T<\infty$ a.s, then we can use Wald's Lemma (last lecture) to show that $P(S_T=a)=\frac{b}{b-a}$.

We now show that $\mathbb{E}T < \infty$. It then follows that $T < \infty$ a.s.

Proof: Define

$$T' := \min\{k : X_n = 1 \text{ for } n = (k-1)(b-a), (k-1)(b-a) + 1, \dots, (k-1)(b-a) + (b-a)\}.$$

(i.e. Partition $\mathbb N$ into blocks of size b-a, T' is the first time each step in the block is 1.) Then $T' \sim \mathrm{Geom}(2^{-(b-a)})$, and so $\mathbb E T' < \infty$. However, note that $T \leq (b-a)T'!$ Thus, $\mathbb E T \leq (b-a)\mathbb E T' < \infty$.

We can actually compute $\mathbb{E}T$ exactly:

Proposition 4.1 $\mathbb{E}T = -ab$.

Proof: Recall that $\{S_n^2 - n\}$ is also a martingale w.r.t. $\{\mathcal{F}_n\}$. Thus, by Wald's Lemma, for all n,

$$\mathbb{E}[S_{T\wedge n}^2 - T \wedge n] = 0,$$

$$\mathbb{E}[S_{T\wedge n}^2] = \mathbb{E}[T \wedge n].$$

Now, $S^2_{T \wedge n} \to S^2_T$ and $S_{T \wedge n}$ is a uniformly bounded sequence of random variables, so by the Bounded Convergence Theorem, $\mathbb{E}[S^2_{T \wedge n}] \to \mathbb{E}[S^2_T]$. Also, $0 \le T \wedge n \nearrow T$, so by the Monotone Convergence Theorem,

 $\mathbb{E}[T \wedge n] \to \mathbb{E}T$. Hence,

$$\mathbb{E}T = \mathbb{E}[S_T^2]$$

$$= a^2 \frac{b}{b-a} + b^2 \frac{-a}{b-a}$$

$$= -ab$$

4.1.1.1 Cautionary Tale

Consider the stopping time $T = \inf\{k : S_k = 1\}$. By Wald's Lemma, $\mathbb{E}[S_{T \wedge n}] = 0$ for all n. We can also show that $T < \infty$ a.s., so $S_{T \wedge n} \to S_T$.

However, $\mathbb{E}S_T = 1$ since $S_T = 1$ always! This happens because we do not have $\mathbb{E}S_{T \wedge n} \to \mathbb{E}S_T$: the Dominated Converge Theorem does not apply as $\{|S_{T \wedge n}|\}$ cannot be bounded above by an integrable random variable.

4.1.2 Biased Random Walk $(p \neq \frac{1}{2})$

 $\{S_n\}$ will no longer be a martingale. While $\{\sum_{i=1}^n X_i - \mathbb{E}X_i\} = \{S_n - n(2p-1)\}$ is a martingale, Wald's Lemma won't help us.

Instead, consider $M_n = \left(\frac{q}{p}\right)^{S_n}$, where q = 1 - p. $\{M_n\}$ is a martingale:

$$\mathbb{E}\left[\left(\frac{q}{p}\right)^{S_{n+1}}\middle|\mathcal{F}_{n}\right] = \mathbb{E}\left[\left(\frac{q}{p}\right)^{S_{n}}\left(\frac{q}{p}\right)^{X_{n+1}}\middle|\mathcal{F}_{n}\right]$$

$$= \left(\frac{q}{p}\right)^{S_{n}}\mathbb{E}\left[\left(\frac{q}{p}\right)^{X_{n+1}}\middle|\mathcal{F}_{n}\right]$$

$$= \left(\frac{q}{p}\right)^{S_{n}}\left[\left(\frac{q}{p}\right)^{1}p + \left(\frac{q}{p}\right)^{-1}q\right]$$

$$= M_{n}.$$

Hence, with T as before, by Wald's Lemma,

$$\mathbb{E}\left(\frac{q}{p}\right)^{S_{T\wedge n}} = \mathbb{E}M_0 = 1.$$

Using a similar argument as that for the symmetric random walk, $T < \infty$ a.s., so $S_{T \wedge n} \to S_T$ a.s. and $|S_{T \wedge n}|$ is uniformly bounded, so

$$\mathbb{E}\left[\left(\frac{q}{p}\right)^{S_T}\right] = 1,$$

$$\left(\frac{q}{p}\right)^a P\{S_T = a\} + \left(\frac{q}{p}\right)^b (1 - P\{S_T = a\}) = 1,$$

$$P\{S_T = a\} = \frac{1 - (q/p)^b}{(q/p)^a - (q/p)^b}.$$

Lecture 4: January 19 4-3

4.2 Submartingales and Supermartingales

Note that we can define $\mathbb{E}X$ whenever at least one of $\mathbb{E}X^+$ and $\mathbb{E}X^-$ is finite. Similarly, we can define $\mathbb{E}[X \mid \mathcal{G}]$ whenever at least one of $\mathbb{E}X^+$ and $\mathbb{E}X^-$ is finite.

Definition 4.2 $\{Z_n, \mathcal{F}_n\}_{n=1}^{\infty}$ is a submartingale if:

- 1. $\mathbb{E}Z_n^+ < \infty$ for all n, and
- 2. $\mathbb{E}[Z_{n+1} \mid \mathcal{F}_n] \geq Z_n$ a.s. for all n.

Definition 4.3 $\{Z_n, \mathcal{F}_n\}_{n=1}^{\infty}$ is a supermartingale if:

- 1. $\mathbb{E}Z_n^- < \infty$ for all n, and
- 2. $\mathbb{E}[Z_{n+1} \mid \mathcal{F}_n] \leq Z_n$ a.s. for all n.

Proposition 4.4 Let $\{Z_n, \mathcal{F}_n\}_{n=1}^{\infty}$ be a martingale. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a convex function. Assume that $\mathbb{E}|\phi(Z_n)| < \infty$ for all n.

Then $\{\phi(Z_n), \mathcal{F}_n\}_{n=1}^{\infty}$ is a submartingale.

Proof: By Jensen's inequality,

$$\mathbb{E}[\phi(Z_{n+1}) \mid \mathcal{F}_n] > \phi(\mathbb{E}[Z_{n+1} \mid \mathcal{F}_n]) = \phi(Z_n).$$

Proposition 4.5 Let $\{Z_n, \mathcal{F}_n\}_{n=1}^{\infty}$ be a <u>submartingale</u>. Let $\phi : \mathbb{R} \to \mathbb{R}$ be a convex and <u>non-decreasing</u> function. Assume that $\mathbb{E}|\phi(Z_n)| < \infty$ for all n.

Then $\{\phi(Z_n), \mathcal{F}_n\}_{n=1}^{\infty}$ is again a submartingale.

Proof: By Jensen's inequality,

$$\mathbb{E}[\phi(Z_{n+1}) \mid \mathcal{F}_n] \ge \phi(\mathbb{E}[Z_{n+1} \mid \mathcal{F}_n]) \ge \phi(Z_n).$$

(Need ϕ to be non-decreasing for the last inequality.)

4.2.1 Examples

- If $\{Z_n\}$ is a martingale, then $\{|Z_n|\}$ is a submartingale.
- If $\{Z_n\}$ is a submartingale, $\{|Z_n|\}$ may not be a submartingale, but $\{Z_n^+\}$ is a submartingale.
- If $\{Z_n\}$ is a martingale, then $\{Z_n^2\}$ is a submartingale.
- If $\{Z_n\}$ is a submartingale, $\{Z_n^2\}$ may not be a submartingale.

4.3 (Sub)martingale Convergence Theorem

Theorem 4.6 Let $\{Z_n, \mathcal{F}_n\}_{n=1}^{\infty}$ be a submartingale. Suppose $\sup_n \mathbb{E} Z_n^+ < \infty$.

Then there is a random variable Z taking values in $[-\infty, \infty)$ such that $Z_n \to Z$ a.s.

(Note: Martingales are submartingales, and so the theorem above applies as well. For a martingale, we will have Z finite a.s.)

Main Idea of Proof:

We want to show that $\lim Z_n$ exists, and is $< \infty$ a.s. Let's consider the probability that $\lim Z_n$ does not exist. Note that

 $\{\lim Z_n \text{ does not exist in } [-\infty,\infty]\} = \{\exists \ a,b \in \mathbb{Q}, a < b \text{ such that } \liminf Z_n < a, \text{ and } \limsup Z_n > b\},$

hence

$$P\{\lim Z_n \text{ does not exist in } [-\infty,\infty]\} \leq \sum_{a,b \in \mathbb{Q}} P\{\lim \inf Z_n < a, \text{ and } \limsup Z_n > b\}.$$

We will show that for each (a, b) with a < b, the probability on the RHS is equal to 0.

Once we know that $Z=\lim Z_n$ exists a.s., then $Z_n^+\to Z^+$ a.s., so by Fatou's Lemma and the fact that $\sup \mathbb{E} Z_n^+<\infty$,

$$\mathbb{E}Z^+ \leq \liminf \mathbb{E}Z_n^+ < \infty.$$