District wise rainfall:

PROBLEM STATEMENT: To predict the Rainfall based on various features of the dataset.

Import Libraries: ¶

```
In [1]: import numpy as np
   import pandas as pd
   from sklearn.linear_model import LinearRegression
   from sklearn import preprocessing,svm
   from sklearn.model_selection import train_test_split
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: df=pd.read_csv(r"C:\Users\DELL\Desktop\district wise rainfall normal.csv")
df

Out[2]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527.3
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636.3
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352.7
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592.9
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217.5

641 rows × 19 columns

Data cleaning & preprocessing:

In [3]:	df.h	ead()											
Out[3]:	S	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ос
	0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	326.
	1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	301.
	2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	276.
	3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167.
	4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	206.
	-												•
In [4]:	df.t	ail()											
Out[4]:													
		STATE_UT_NAM	E	DISTRIC	CT JA	AN FE	B MAR	APR	MAY	' JUN	l JU	JL AU	G ;
[.]•	636	STATE_UT_NAM		DISTRIC IDUK		AN FE							
[.].	636 637		A		KI 13		1 43.6	150.4	232.6	651.6	788	.9 527	.3 3
	637 638	KERAL KERAL KERAL	A A KA A PATHANA	IDUK ASARGO AMTHIT	KI 13	3.4 22. 2.3 1. 9.8 45.	1 43.6 0 8.4 2 73.9	150.4 46.9 184.9	232.6 217.6 294.7	999.6 556.9	788 1108 539	.9 527 .5 636 .9 352	.3 3 .3 2 .7 2
	637 638 639	KERAL KERAL KERAL KERAL	A KA A PATHANA A N	IDUK ASARGO AMTHIT [*] WAYAN <i>A</i>	KI 13 DD 2 TA 19	3.4 22. 2.3 1. 9.8 45.	1 43.6 0 8.4 2 73.9 3 17.5	150.4 46.9 184.9 83.3	232.6 217.6 294.7 174.6	5 651.6 5 999.6 5 556.9 6 698.1	788 1108 539	.9 527 .5 636 .9 352 .4 592	.3 3 .3 2 .7 2 .9 2
	637 638	KERAL KERAL KERAL	A KA A PATHANA A N	IDUK ASARGO AMTHIT	KI 13 DD 2 TA 19	3.4 22. 2.3 1. 9.8 45.	1 43.6 0 8.4 2 73.9 3 17.5	150.4 46.9 184.9 83.3	232.6 217.6 294.7 174.6	5 651.6 5 999.6 5 556.9 6 698.1	788 1108 539	.9 527 .5 636 .9 352 .4 592	.3 3 .3 2 .7 2
	637 638 639	KERAL KERAL KERAL KERAL	A KA A PATHANA A N	IDUK ASARGO AMTHIT [*] WAYAN <i>A</i>	KI 13 DD 2 TA 19	3.4 22. 2.3 1. 9.8 45.	1 43.6 0 8.4 2 73.9 3 17.5	150.4 46.9 184.9 83.3	232.6 217.6 294.7 174.6	5 651.6 5 999.6 5 556.9 6 698.1	788 1108 539	.9 527 .5 636 .9 352 .4 592	.3 3 .3 2 .7 2 .9 2
In [5]:	637 638 639	KERAL KERAL KERAL KERAL LAKSHADWEE	A KA A PATHANA A N	IDUK ASARGO AMTHIT [*] WAYAN <i>A</i>	KI 13 DD 2 TA 19	3.4 22. 2.3 1. 9.8 45.	1 43.6 0 8.4 2 73.9 3 17.5	150.4 46.9 184.9 83.3	232.6 217.6 294.7 174.6	5 651.6 5 999.6 5 556.9 6 698.1	788 1108 539	.9 527 .5 636 .9 352 .4 592	.3 3 .3 2 .7 2 .9 2

```
In [6]: df.describe()
```

Out[6]:

	JAN	FEB	MAR	APR	MAY	JUN	JUL	
count	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	6
mean	18.355070	20.984399	30.034789	45.543214	81.535101	196.007332	326.033697	2
std	21.082806	27.729596	45.451082	71.556279	111.960390	196.556284	221.364643	1
min	0.000000	0.000000	0.000000	0.000000	0.900000	3.800000	11.600000	
25%	6.900000	7.000000	7.000000	5.000000	12.100000	68.800000	206.400000	1
50%	13.300000	12.300000	12.700000	15.100000	33.900000	131.900000	293.700000	2
75%	19.200000	24.100000	33.200000	48.300000	91.900000	226.600000	374.800000	3
max	144.500000	229.600000	367.900000	554.400000	733.700000	1476.200000	1820.900000	15
4								•

In [7]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 641 entries, 0 to 640
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	STATE_UT_NAME	641 non-null	object
1	DISTRICT	641 non-null	object
2	JAN	641 non-null	float64
3	FEB	641 non-null	float64
4	MAR	641 non-null	float64
5	APR	641 non-null	float64
6	MAY	641 non-null	float64
7	JUN	641 non-null	float64
8	JUL	641 non-null	float64
9	AUG	641 non-null	float64
10	SEP	641 non-null	float64
11	OCT	641 non-null	float64
12	NOV	641 non-null	float64
13	DEC	641 non-null	float64
14	ANNUAL	641 non-null	float64
15	Jan-Feb	641 non-null	float64
16	Mar-May	641 non-null	float64
17	Jun-Sep	641 non-null	float64
18	Oct-Dec	641 non-null	float64
4+,45	oc. £100+64/17\	obioc+(2)	

dtypes: float64(17), object(2)

memory usage: 95.3+ KB

In [8]: | df.columns

```
In [9]: df.isnull().sum()
 Out[9]: STATE_UT_NAME
                            0
          DISTRICT
                            0
          JAN
                            0
          FEB
                            0
          MAR
                            0
          APR
                            0
          MAY
                            0
                            0
          JUN
          JUL
                            0
          AUG
                            0
          SEP
                            0
          OCT
          NOV
                            0
          DEC
                            0
          ANNUAL
                            0
          Jan-Feb
                            0
          Mar-May
                            0
          Jun-Sep
                            0
          Oct-Dec
                            0
          dtype: int64
In [10]: df["Jan-Feb"].value counts()
Out[10]: Jan-Feb
          32.7
                   9
          18.2
                   5
                   5
          21.4
          0.8
                   5
          17.5
                   5
          107.7
                   1
          87.0
                   1
          101.0
                   1
          135.2
                   1
          65.0
          Name: count, Length: 399, dtype: int64
```

Data Visualisation:

In [12]: df=df[['JAN','FEB','MAR','APR','DEC']]
 sns.heatmap(df.corr(),annot=True)
 plt.show()


```
In [13]: sns.displot(x='JAN',y='MAR',data=df,color='aquamarine')
plt.show()
```



```
In [14]: x=df[['JAN']]
y=df['APR']
```

Linear Regression:

```
In [15]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=1
```

```
In [16]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
```

Out[16]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [17]: score=regr.score(x_test,y_test)
print(score)
```

0.1200065273449159

Ridge:

```
In [18]: from sklearn.linear_model import Lasso,RidgeCV,Ridge
    from sklearn.preprocessing import StandardScaler

In [19]: feature=df.columns[0:3]
    target=df.columns[-1]

In [20]: x= df[feature].values
    y= df[target].values
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=1)

In [21]: ridgeReg=Ridge(alpha=10)
    ridgeReg.fit(x_train,y_train)
    train_score_ridge=ridgeReg.score(x_train,y_train)
    test_score_ridge=ridgeReg.score(x_test,y_test)
    print("\n Ridge Model \n")
    print("train score for ridge model is {}".format(train_score_ridge))
    print("test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model

train score for ridge model is 0.18674498377799043 test score for ridge model is 0.19747287933454494

```
In [22]:
         plt.figure(figsize=(10,10))
         plt.plot(feature,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersiz
         plt.plot(feature,alpha=0.4,linestyle='none',marker='o',markersize=7,color='gree
         plt.xticks(rotation=90)
         plt.legend()
         plt.show()
                    Ridge; alpha = 10
           MAR
                    Linear Regression
           FEB
           JAN
                 AN
```

In [23]: print(ridgeReg.score(x_test,y_test))

0.19747287933454494

Lasso:

```
In [24]: lassoReg=Lasso(alpha=10)
    lassoReg.fit(x_train,y_train)
        train_score_lasso=lassoReg.score(x_train,y_train)
        test_score_lasso=lassoReg.score(x_test,y_test)
        print("\n Lasso Model \n")
        print("train score for lasso model is {}".format(train_score_lasso))
        print("test score for lasso model is {}".format(test_score_lasso))
```

Lasso Model

train score for lasso model is 0.1833839875827794 test score for lasso model is 0.20227481138935577

The train score for lasso model is 0.18674499707273973 The train score for lasso model is 0.19746402052680911

```
In [26]:
          plt.figure(figsize=(10,10))
          plt.plot(feature,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersiz
          plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,cole
          plt.plot(feature,alpha=0.4,linestyle='none',marker='o',markersize=7,color='gree
          plt.xticks(rotation=90)
          plt.legend()
          plt.show()
                    Ridge; alpha = 10
           MAR
                    lasso; alpha = grid
                    Linear Regression
           FEB
           JAN
                 AN
                                                                                         MAR
```

In [27]: print(lassoReg.score(x_test,y_test))

0.20227481138935577

Elastic Net:

```
In [28]: from sklearn.linear_model import ElasticNet
In [29]: regr=ElasticNet()
    regr.fit(x,y)
    print(regr.coef_)
    print(regr.intercept_)
        [ 1.06176358 -0.47019381     0.08183614]
        6.0709164259899975
In [30]: y_pred_elastic=regr.predict(x_train)
        mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
        print(mean_squared_error)
        825.5143097001077
In [31]: print(regr.score(x_test,y_test))
```

0.2100200576179274

CONCLUSION: Among on accuracy scores of all models that were implemented we can conclude that "Elastic Net Model" is the best model for the given dataset.