Monash University
Faculty of Information Technology

Lecture 7 Kleene's Theorem.

Slides by David Albrecht (2011) and Graham Farr (2013).

FIT2014 Theory of Computation

Overview

- Questions
- Kleene's Theorem
- Convert RegularExpressions to NFA
- Convert NFA to FA
- Convert FA to Regular Expression

Stephen Cole Kleene (1909-1994) http://www-history.mcs.st-and.ac.uk/

<u>Biographies/Kleene.html</u>

Questions

- Can every language which is represented by a regular expression be described by a finite automaton?
- Can every language which is described by a finite automaton be represented by a regular expression?
- Can every language be represented by a regular expression or a finite automaton?

Kleene's Theorem

- Any language which can be defined by
 - Regular Expressions
 - Finite Automata
 - Nondeterministic Finite Automata (NFA)
 - Generalized Nondeterministic Finite Automata (GNFA)
- can be defined by any of the other methods.

Kleene's Theorem

Converting Regular Expression to NFA

Start with the graph.

Apply the following rules until all edges are labelled with a letter or ε .

- 1. Delete any edge labelled with ϕ .
- 2. Transform any edge like

into

3. Transform any edge like:

into

4. Transform any edge like:

into

(a* U aa*b)*

Kleene's Theorem

In a FA:

- Any string w traces a **unique path**, starting from the Start State and ending at **some unique state**, which we'll call endState(w).
- The string w is accepted if endState(w) is a Final State, otherwise it is rejected.

In a NFA:

- Any string w traces a **set of paths**, starting from the Start State and ending at some **set of states**, which we'll call endState**s**(w).
 - The set might have zero, one or more members.
- The string w is accepted endStates(w) contains
 a Final State, otherwise it is rejected.

endStates(ab) =
$$\{1,3\}$$

endStates(aba) = $\{1,2\}$

In general, if w is a string and x is a single letter, then endStates(wx) =

 $\{q: \text{ for some state } p \text{ in endStates}(w), \}$

there is a transition $p \xrightarrow{x} q$

... provided there are no empty string transitions

$$q_1 \xrightarrow{\mathcal{E}} q_2$$

This suggests an algorithm for constructing all possible endStates(w) for all strings w.

```
w := \varepsilon
endStates(\varepsilon) := \{ Start State \}
For all strings w in order of increasing length:
For each x in \{a,b\}
For each p in endStates(w), and each transition p \xrightarrow{x} q
Add q to the set endStates(wx).
... until we keep getting the same endStates(...) sets all the time.
```

Again, assumes there are no empty string transitions $q_1 \xrightarrow{\mathcal{E}} q_2$

Use the sets endStates(...) as the states of a new FA. Transitions: endStates(w) $\xrightarrow{\mathcal{X}}$ endStates(wx) Start State of the new FA = { Start State of the NFA } Final States of the new FA = any set endStates(...) that contains a Final State of the NFA.

Algorithm is only an outline.

Some things to think about:

- loop through the p outside, then loop through x?
- How do we know it stops?
- Complexity?
- How to deal with empty string transitions?

- Now suppose that the FA might have empty string transitions, $q_1 \xrightarrow{\mathcal{E}} q_2$.
- These allow change of state without reading any letter of the input string.

- Every time we include a new state q in some endStates(...), we also need to include any state we can reach from it along empty string transitions.
- Look at all paths from q that just use ε transitions ...

$$q \xrightarrow{\varepsilon} q_1 \xrightarrow{\varepsilon} q_2 \xrightarrow{\varepsilon} \cdots \xrightarrow{\varepsilon} q_i$$

... and include all states on such paths.

Modify earlier algorithm, for constructing the sets endStates(...), to take account of empty string transitions.

Earlier algorithm:

For all strings w in order of increasing length:

For each x in $\{a,b\}$

For each p in endStates(w), and each transition $p \xrightarrow{\mathcal{X}} q$ Add q to the set endStates(wx).

... until we keep getting the same endStates(...) sets all the time.

Modify earlier algorithm, for constructing the sets endStates(...), to take account of empty string transitions.

Modified algorithm:

```
    w := ε
    endStates(ε) := { Start State }
    Add, to endStates(ε), states reachable from Start State along ε-transitions.
```

For all strings w in order of increasing length:

```
For each x in \{a,b\}
```

For each p in endStates(w), and each transition $p \xrightarrow{X} q$ Add q to the set endStates(wx).

Add, to endStates(wx), states reachable from q along ϵ -transitions.

... until we keep getting the same endStates(...) sets all the time.

		a	b
Start/Final {	[1,2,3,4,5]	{2,3,4,5}	{4,5}
Final	{2,3,4,5}	{2,3,4,5}	{4,5}
Final	{4,5}	ф	{4,5}
	ф	ф	ф

Kleene's Theorem

Generalised Nondeterministic Finite Automaton (GNFA)

Definition

- A Generalised Nondeterministic Finite Automaton (GNFA) is a NFA in which:
- transitions are labelled by regular expressions, not just by single letters;
- there is just one Final State, and it is not the Start State;
- there are transitions from every state to every other state (including itself), except that the Start State has no incoming transitions and the Final State has no outgoing transitions.

(Note: you can just label a transition by Ø if you don't want to use it.)

Generalised Nondeterministic Finite Automaton (GNFA)

Definition

A string w is **accepted** by a given GNFA if it can be divided into substrings, $w = w_1 ... w_k$, such that there is some sequence of transitions, starting at the Start State, finishing at the Final State, and labelled by regular expressions $R_1, ..., R_k$, such that, for all i, w_i matches R_i . If a string w is not accepted by the GNFA, then it is **rejected**.

From FA to GNFA

Given a FA:

- I. Add a new Final State, add new transitions labelled ε from the previous Final States to this new one, and make those states no longer Final. So now there is just one Final State.
- 2. Add new arcs "everywhere", labelled Ø. The letters on the arcs are already regular expressions in their own right.
- Now it's a GNFA, accepting the same language as the original FA.

Kleene's Theorem

Starting with a GNFA, we convert it to an equivalent GNFA with one fewer state.

We keep doing this until we have a GNFA with just one transition:

If our initial GNFA has only a Start State and a Final State, we are done.

- So, let q be some non-Start, non-Final state.
- Let q_{in} be any non-Final state. Let R_{in} be the regular expression on the transition from q_{in} to q.
- Let q_{out} be any non-Start state. Let R_{out} be the regular expression on the transition from q to q_{out} .
- Let R_{loop} be the regular expression on the transition from q to itself.
- Let R_{direct} be the regular expression on the transition from q_{in} to q_{out} .

becomes ...

Ensure this replacement is done for all q_{in} , q_{out} .

Keep doing this whole procedure, removing one state at a time, until you are left with just the Start State and the Final State, with a single transition between them.

The regular expression on this transition is the one you want. It matches precisely those strings accepted by the original GNFA.

Examples: Sipser, pp 75-76.

For FIT2004 students:

Compare this algorithm with the Floyd-Warshall algorithm for the All Pairs Shortest Path problem.

Revision

- Understand Kleene's Theorem
- Be able to convert Regular Expressions into NFA
- Be able to convert NFA into a Finite Automaton
- Be able to convert a FA into a Regular Expression

Reference

Sipser, Ch I, especially pp 54-56, 66-76.