Data Visualisation Tasks

Kamal Karlapalem

Spring 2024

Slides taken, reformatted, and used from Tamara Munzner (UBC, Canada)

From domain to abstraction

- Domain situation

 Data/task abstraction

 Wisual encoding/interaction idiom

 Algorithm
- Domain characterization: details of application domain
 - Group of users, target domain, their questions and data
 - Varies wildly by domain
 - Must be specific enough to get traction
 - Domain questions/problems
 - Break down into simpler abstract tasks
 - Abstraction: data and task
 - Map what and why into generalized terms
 - Identify tasks that users wish to perform or already do
 - Find data types that will support those tasks
 - Possibly transform/derive if need be

domain

Design Process

Task abstraction: Actions and Targets

- Very high-level pattern
- Actions
 - Analyze
 - High-level choices
 - Search
 - Find a known/unknown item
 - Query
 - Find out about the characteristics of the item
- Targets
 - What is being acted on

- {action, target} pairs
 - Discover distribution
 - Compare trends
 - Locate outliers
 - Browse topology

Actions: Analyze

- Consume
 - Discover vs present
 - Classic split
 - Explore vs explain
 - Enjoy
 - Newcomer
 - Casual, social
- Produce
 - Annotate, record
 - Derive
 - Crucial design choice

→ Consume

→ Present

- → Produce
 - → Annotate

Actions: Search

- What does the user know?
 - Target, location
- Lookup
 - Ex: word in a dictionary
 - Alphabetical order
- Locate
 - Ex: keys in your house
 - Ex: node in network
- Browse
 - Ex: books in the bookstore
- Explore
 - Ex: find cool neighborhood in a new city

	Target known	Target unknown
Location known	• • • Lookup	• • Browse
Location unknown	C. Ocate	<

Actions : Query

- How much of the data matters?
 - One : identify
 - Some : compare
 - All : summarize

→ Identify

→ Compare

→ Summarize

Actions

- Independent choices for each of these three levels
 - Analyze, search, query
 - Mix and match

→ Analyze

→ Consume

→ Search

	Target known	Target unknown
Location known	·.•• Lookup	·. Browse
Location unknown	⟨`@.> Locate	<: O >> Explore

Query

Task abstractions: Targets

- → All Data
 - → Trends → Outliers → Features

- **→** Attributes
 - → One → Many
 → Distribution → Dependency → Correlation → Similarity
 → Extremes

- **→** Network Data
 - → Topology

→ Paths

- Spatial Data
 - → Shape

Abstraction

- These {action, target} pairs are a good starting points for vocabulary
 - But sometime you will need more precision!
- Rule of thumb
 - Systematically remove all domain jargon
- Interplay: task and data abstraction
 - Need to use data abstraction within task abstraction
 - To specify your targets!
 - But task abstraction can lead you to transform the data
 - Iterate back and forth
 - First pass data, first pass task, second pass data, ...

Means and ends

- {action, target} pairs
 - discover distribution
 - compare trends
 - locate outliers
 - browse topology

Why?

- → Analyze
 - → Consume

Search

	Target known	Target unknown
Location known	·.·· Lookup	:. Browse
Location unknown	⟨`ฺ⊙ੑ∙> Locate	< ∙ Explore

Query

Targets

All Data

Attributes

.illin.

Network Data

→ Topology

Spatial Data

→ Shape

