

An Extendable Link Layer Frame Format for Wireless Coded Mesh Networks

Martin Herrmann

Chair for Network Architectures and Services

Department for Computer Science Technische Universität München

May 15, 2013

- 1 Motivation a.k.a. "The Old Header"
- 2 IEEE 802.11
- 3 The new Header Structure
- 4 Evaluation
- 5 Conclusion

What is a Wireless (Coded) Mesh-Network?

- Nodes in the network are connected wirelessly
- Many different possible routes ⇒ reliability
- Combining packets using finite field arithmetic

What is a Wireless (Coded) Mesh-Network?

- Nodes in the network are connected wirelessly
- Many different possible routes ⇒ reliability
- Combining packets using finite field arithmetic

What is a Wireless (Coded) Mesh-Network?

- Nodes in the network are connected wirelessly
- Many different possible routes ⇒ reliability
- Combining packets using finite field arithmetic

The old moep80211 Header

Octets	2	2	6	6	6	2	6
	Frame Control	Duration / ID	MAC 1 (SA)	MAC 2 (DA)	MAC 3 (TA)	SEQ	MAC 4 (RA)
Octets	2	2	2	4	2 – 128	2	2
	Frame Disc.	Frame Info	Generation SEQ	Rank Info	Coefficients	Ethertype	Payload Length
Octets	0 - 2162		4				
	Frame Body		FCS				

- Very large (36 172 Bytes), not all information is always of interest
- Different versions for different purposes, no efficient way for assembling the header

The old moep80211 Header

Octets	2	2	6	6	6	2	6
	Frame Control	Duration/ ID	MAC 1 (SA)	MAC 2 (DA)	MAC 3 (TA)	SEQ	MAC 4 (RA)
Octets	2	2	2	4	2 – 128	2	2
	Frame Disc.	Frame Info	Generation SEQ	Rank Info	Coefficients	Ethertype	Payload Length
Octets	0 - 2162		4				
	Frame Body		FCS				

- Very large (36 172 Bytes), not all information is always of interest
- Different versions for different purposes, no efficient way for assembling the header

The old moep80211 Header

Octets	2	2	6	6	6	2	6
	Frame Control	Duration/ ID	MAC 1 (SA)	MAC 2 (DA)	MAC 3 (TA)	SEQ	MAC 4 (RA)
Octets	2	2	2	4	2 – 128	2	2
	Frame Disc.	Frame Info	Generation SEQ	Rank Info	Coefficients	Ethertype	Payload Length
Octets	0 - 2162		4				
	Frame Body		FCS				

- Very large (36 172 Bytes), not all information is always of interest
- Different versions for different purposes, no efficient way for assembling the header

- 1 Motivation a.k.a. "The Old Header"
- 2 IEEE 802.11
- 3 The new Header Structure
- 4 Evaluation
- 5 Conclusion

- moep80211 is based on IEEE 802.11 and cannot access the physical medium by itself
- Advantage: can be used with existing wireless hardware
- Disadvantage: having to "deal" with the IEEE 802.11 header

Figure: Generic IEEE 802.11 header

- moep80211 is based on IEEE 802.11 and cannot access the physical medium by itself
- Advantage: can be used with existing wireless hardware
- Disadvantage: having to "deal" with the IEEE 802.11 header

Figure: Generic IEEE 802.11 header

- moep80211 is based on IEEE 802.11 and cannot access the physical medium by itself
- Advantage: can be used with existing wireless hardware
- Disadvantage: having to "deal" with the IEEE 802.11 header

Figure: Generic IEEE 802.11 header

- moep80211 is based on IEEE 802.11 and cannot access the physical medium by itself
- Advantage: can be used with existing wireless hardware
- Disadvantage: having to "deal" with the IEEE 802.11 header

Octets	2	2	6	6	6	2
	Frame Control	Duration/ ID	MAC 1 (RA)	MAC 2 (TA)	MAC 3 (SA)	SEQ
Octets	6	2	4	0 – 7	7951	4
	MAC 4 (DA)	QoS Control	HT Control	Pay	load	FCS

Problems due to the IEEE 802.11 header

- Frame format must adhere to the basic IEEE 802.11 structure
- A receiver must still be able to differentiate between moep80211 and regular frames
- Changing of some fields is not possible or causes problems elsewhere ⇒ presence of unnecessary information

Octets	2	2	6	6	6	2
	Frame Control	Duration/ ID	MAC 1 (RA)	MAC 2 (TA)	MAC 3 (SA)	SEQ
Octets	6	2	4	0 – 7	7951	4
	MAC 4 (DA)	QoS Control	HT Control	Pay	load	FCS

Problems due to the IEEE 802.11 header

- Frame format must adhere to the basic IEEE 802.11 structure
- A receiver must still be able to differentiate between moep80211 and regular frames
- Changing of some fields is not possible or causes problems elsewhere ⇒ presence of unnecessary information

Octets	2	2	6	6	6	2
	Frame Control	Duration/ ID	MAC 1 (RA)	MAC 2 (TA)	MAC 3 (SA)	SEQ
Octets	6	2	4	0 – 7	7951	4
	MAC 4 (DA)	QoS Control	HT Control	Pay	load	FCS

Problems due to the IEEE 802.11 header

- Frame format must adhere to the basic IEEE 802.11 structure
- A receiver must still be able to differentiate between moep80211 and regular frames
- Changing of some fields is not possible or causes problems elsewhere ⇒ presence of unnecessary information

Octets	2	2	6	6	6	2
	Frame Control	Duration/ ID	MAC 1 (RA)	MAC 2 (TA)	MAC 3 (SA)	SEQ
Octets	6	2	4	0 – 7	7951	4
	MAC 4 (DA)	QoS Control	HT Control	Pay	load	FCS

- 1 Motivation a.k.a. "The Old Header"
- 2 IEEE 802.11
- 3 The new Header Structure
- 4 Evaluation
- 5 Conclusion

Basic idea

- Use of a generic header that contains the basic information
- Adding of extension headers where special information is necessary
- Moving the frame discriminator into the third address field of the IEEE 802.11 header

Basic idea

- Use of a *generic header* that contains the basic information
- Adding of extension headers where special information is necessary
- Moving the frame discriminator into the third address field of the IEEE 802.11 header

Basic idea

- Use of a *generic header* that contains the basic information
- Adding of extension headers where special information is necessary
- Moving the frame discriminator into the third address field of the IEEE 802.11 header

Basic idea

- Use of a *generic header* that contains the basic information
- Adding of extension headers where special information is necessary
- Moving the frame discriminator into the third address field of the IEEE 802.11 header

The new generic frame header

Octets	2	2	6	6	6	2
	Frame Control	Duration/ ID	MAC 1	MAC 2	Frame Disc	SEQ
Octets	6	2	4	1	2	
	MAC 4	QoS Control	HT Control	Next Header	Seq Number	Further data

- Third address field set to value of fe:ff:ff:12:34:56
- Locally administered unicast MAC address
- Should not be in regular use

The new generic frame header

Octets	2	2	6	6	6	2
	Frame Control	Duration/ ID	MAC 1	MAC 2	Frame Disc	SEQ
Octets	6	2	4	1	2	
	MAC 4	QoS Control	HT Control	Next Header	Seq Number	Further data

- Third address field set to value of fe:ff:ff:12:34:56
- Locally administered unicast MAC address
- Should not be in regular use

The new generic frame header

Octets	2	2	6	6	6	2
	Frame Control	Duration/ ID	MAC 1	MAC 2	Frame Disc	SEQ
Octets	6	2	4	1	2	
	MAC 4	QoS Control	HT Control	Next Header	Seq Number	Further data

- Third address field set to value of *fe:ff:ff:12:34:56*
- Locally administered unicast MAC address
- Should not be in regular use

The new generic frame header

Octets	2	2	6	6	6	2
	Frame Control	Duration/ ID	MAC 1	MAC 2	Frame Disc	SEQ
Octets	6	2	4	1	2	
	MAC 4	QoS Control	HT Control	Next Header	Seq Number	Further data

- Third address field set to value of *fe:ff:ff:12:34:56*
- Locally administered unicast MAC address
- Should not be in regular use

- Contain specific additional information
- Are identified by their extension header ID (EID) in the previous header
- Usually start with a next header field
- May affect the data following after the extension

- Contain specific additional information
- Are identified by their extension header ID (EID) in the previous header
- Usually start with a next header field
- May affect the data following after the extension

- Contain specific additional information
- Are identified by their extension header ID (EID) in the previous header
- Usually start with a next header field
- May affect the data following after the extension

- Contain specific additional information
- Are identified by their extension header ID (EID) in the previous header
- Usually start with a next header field
- May affect the data following after the extension

- Contain specific additional information
- Are identified by their extension header ID (EID) in the previous header
- Usually start with a next header field
- May affect the data following after the extension

Existing extensions

- (a) EthertypeLength header
- (b) Multipacket header

Multipacket frame format

- 1 Motivation a.k.a. "The Old Header"
- 2 IEEE 802.11
- 3 The new Header Structure
- 4 Evaluation
- 5 Conclusion

Comparison of header sizes

(a) Comparison of uncoded PTM headers

(b) Comparison of coded NCM headers

Efficiency of header generation

(a) PTM translation times for moep80211 to IEEE 802.11

(b) PTM translation times for IEEE 802.11 to moep80211

Efficiency of header generation

Figure: Evaluation of the functions generating the different header

- 1 Motivation a.k.a. "The Old Header"
- 2 IEEE 802.11
- 3 The new Header Structure
- 4 Evaluation
- 5 Conclusion

- Unified structure: all frames use the same format and add extensions where needed
- Smaller headers: the new structure is in many cases significantly smaller
- Efficency: conversion is not significantly slower
- Extendability: support of additional coding fields and new features

- Unified structure: all frames use the same format and add extensions where needed
- Smaller headers: the new structure is in many cases significantly smaller
- Efficency: conversion is not significantly slower
- Extendability: support of additional coding fields and new features

- Unified structure: all frames use the same format and add extensions where needed
- Smaller headers: the new structure is in many cases significantly smaller
- Efficency: conversion is not significantly slower
- Extendability: support of additional coding fields and new features

Conclusion

- Unified structure: all frames use the same format and add extensions where needed
- Smaller headers: the new structure is in many cases significantly smaller
- Efficency: conversion is not significantly slower

- Unified structure: all frames use the same format and add extensions where needed
- Smaller headers: the new structure is in many cases significantly smaller
- Efficency: conversion is not significantly slower
- Extendability: support of additional coding fields and new features

- moep80211 cannot be considered finished
- Message encryption and authentication will become necessary in the future but are not supported yet
- Addition is being developed by Julius Michaelis

Figure: Encrypted session data format (by Julius Michaelis)

- moep80211 cannot be considered finished
- Message encryption and authentication will become necessary in the future but are not supported yet
- Addition is being developed by Julius Michaelis

Figure: Encrypted session data format (by Julius Michaelis)

- moep80211 cannot be considered finished
- Message encryption and authentication will become necessary in the future but are not supported yet
- Addition is being developed by Julius Michaelis

Figure: Encrypted session data format (by Julius Michaelis)

- moep80211 cannot be considered finished
- Message encryption and authentication will become necessary in the future but are not supported yet
- Addition is being developed by Julius Michaelis

Figure: Encrypted session data format (by Julius Michaelis)

Bibliography

D.D. Coleman and D.A. Westcott. Cwna certified wireless network administrator official study guide: Exam pw0-104, Serious skills, Wiley, 2009.

Jerome Henry and Marcus Burton, 802.11s Mesh Networking, Tech. report, Certified Wireless Network Professional, 2011.

IEEE Standard for Information technology-Telecommunications and information exchange between systems Local and metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Laver (PHY) Specifications, IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007) (2012).

Stephan M. Günther, moep80211 - Towards a Coded Wireless Mesh Network based on IEEE 802.11 Consumer Hardware, 2012.

D.A. Westcott, D.D. Coleman, B. Miller, and P. Mackenzie, Cwap certified wireless analysis professional official study quide: Exam pw0-270, Serious skills, Wiley, 2011.