Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Fall 2011)

Recitation 23 December 1, 2011

1. Examples 8.2, 8.7, and 8.12 in the textbook

Romeo and Juliet start dating, but Juliet will be late on any date by a random amount X, uniformly distributed over the interval $[0, \theta]$. The parameter θ is unknown and is modeled as the value of a random variable Θ , uniformly distributed between zero and one hour.

- (a) Assuming that Juliet was late by an amount x on their first date, how should Romeo use this information to update the distribution of Θ ?
- (b) How should Romeo update the distribution of Θ if he observes that Juliet is late by x_1, \ldots, x_n on the first n dates? Assume that Juliet is late by a random amount X_1, \ldots, X_n on the first n dates where, given θ, X_1, \ldots, X_n are uniformly distributed between zero and θ and are conditionally independent.
- (c) Find the MAP estimate of Θ based on the observation X = x.
- (d) Find the LMS estimate of Θ based on the observation X = x.
- (e) Calculate the conditional mean squared error for the MAP and the LMS estimates. Compare your results.
- 2. Let Θ be a Bernoulli random variable that indicates which of the two hypotheses is true, $\mathbf{P}(\Theta = 1) = p$. Under the null hypothesis ($\Theta = 0$), the random variable X is uniformly distributed over the interval [0, 1]. Under the alternative hypothesis ($\Theta = 1$), the PDF of X is given by

$$f_{X|\Theta}(x \mid 1) = \begin{cases} 2x & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the MAP rule for deciding which of the two hypotheses is true based on X = x. Give the decision rule for p = 2/3, p = 1/2, p = 1/3.
- (b) For this question only, assume that p = 2/3. Find the probability of error for the MAP decision rule given that the null hypothesis is true.
- (c) Find the probability of error for the MAP decision rule as a function of p.