TD: 1 Modele géométrique inverse d'un robot Scara

Objectif : Générer une trajectoire pour le robot Scara représenté ci-dessous :

Le robot doit attraper le cube d'arête 0.1m, pour l'emmener du point P1 de coordonnées ${}^{0}P1 = \begin{bmatrix} 0.5m \\ -0.5m \\ 0.1m \end{bmatrix}$ au

point P2 de coordonnées ${}^{0}P2 = \begin{bmatrix} 0.5 \, m \\ 0.5 \, m \\ 0.1 \, m \end{bmatrix}$, en se déplaçant sur la ligne correspondante, avec une erreur

inférieure à *1mm*. Il doit ensuite revenir au point *P3* de coordonnées ${}^{0}P3 = \begin{bmatrix} 0.5 \, m \\ 0.0 \, m \\ 0.1 \, m \end{bmatrix}$

Robot : fichier (scène vrep) testScara.ttt

i,i+1	Rot/zi	Trans/xi+1	Trans/zi	Rot/xi+1
0,1	$q1=\theta 1^*$	a1=L1	d1=L3	α1=0
1,2	$q2=\theta2^*$	a2=L2	d2=0	α2=0
2,3	θ3=0	a3=0	q3=d3*	α3=0
3,4	$q 4 = \theta 4^*$	a4=0	d4=0	$\alpha 4=0$

1 MGD et MGI avec matlab/octave (calcul symbolique)

En vous référant au tableau de *Denavit-Hartenberg* du robot, adapter le programme symbolique octave scara_MTB_symbolic_etudiant.m pour déterminer et résoudre les équations telles que l'extrémité de l'outil ait

pour coordonnées dans le repère 0:
$${}^{0}outil = \begin{bmatrix} xo_d \\ yo_d \\ zo_d \end{bmatrix}$$

Pour cela compléter successivement chacune des étapes du programme, jusqu'à obtention des équations à résoudre :

<u>étape 1</u>: calcul des transformations homogènes 0T_1 , 1T_2 , 2T_3 , 3T_4 , 1T_4 , 0T_4 du robot, notées respectivement T_-01 , T_-12 , T_-23 , T_-34 dans le programme

<u>étape 2</u>: calcul de ${}^{1}T_{4}$ puis ${}^{0}T_{4}$, notées $T_{-}14$, $T_{-}04$

<u>étape 3</u>: <u>établissement de la posture désirée</u> $^{0}T_{4}$ *désirée* , (notée $T_{-}04_{-}$ desiree)

<u>étape 4 :</u> essai de résolution automatique des équations : ${}^{0}O_{4} = {}^{0}O_{4}$ désirée (ça peut marcher, car ça dépend de l'efficacité du solveur symbolique)

<u>étape 5:</u> essai de résolution automatique des équations : ${}^{1}O_{4}$ = ${}^{1}O_{4}$ désirée (qui nécessitent de déterminer l'expression de ${}^{1}T_{4}$ désirée)

<u>étape 6:</u> résolution semi-manuelle des équations : ${}^{1}O_{4}$ = ${}^{1}O_{4}$ désirée (en aidant le solveur symbolique) <u>étape 7:</u> génération des fonctions matlab/octave calculant les solutions des équations

 clc_MGD_scara : calcule 0T_4 en fct des coordonnées articulaires

clc_MGI_scara : calcule les coordonnées articulaires en fct de ⁰O₄ désirée

quelques règles à respecter :

- vérifier la cohérence des résultats obtenus avec ce que vous attendez, en particulier lorsque tous les angles sont nuls, puis lorsque $\theta 1=0^{\circ}, 90^{\circ}=90^{\circ}$

2- chargement du modèle sous Vrep

- Si pas installé Télécharger et décompresser l'archive de **vrep**, sous votre répertoire de travail :

http://www.coppeliarobotics.com/downloads.html

(choisir la version : Non-limited EDUCATIONAL version. Free.)

- lancer **vrep** depuis un terminal, après vous être placés sous le répertoire d'installation:

```
cd ~/V_REP_
```

sh ./vrep.sh

- Sous vrep:
- charger la scène : **scene_Scara_MTB.ttt** (dansTD1-scara...), menu :*File->open scene*
- lancer la simulation de la scène, pour vérifier que tout fonctionne correctement : simulation->start ..
- éditer le script Lua simulant le robot : Tools->Scripts->Non-Threaded child script(MTB_Robot)
- Votre travail consistera à remplacer la partie du programme mistsubishi, entre les lignes

REM DEBUT DE PROGRAMME

. . . .

GOTO DEBUT

par votre propre programme, dont le texte sera généré avec octave/matlab

(noter la présence d'une aide succincte du langage mitsubishi en début de programme).

2 Travail numérique (sous matlabloctave)

éditer (octave/matlab) le programme matlab **scara_MTB_numerique_etudiant.m**,

<u>étape 1</u>- adapter le programme pour générer la trajectoire et le programme du robot correspondant au cahier des charges en début de TD (tester avec peu de points au départ):

- attention aux unités
- attention aux points impossibles

<u>étape 2</u> – pour tester votre programme, le copier dans le script lua (remplace les lignes REM DEBUT à GOTO DEBUT), et lancer la simualtion.

Etape3- : modifier le programme pour que le carré ne change pas d'orientation lors du suivi de trajectoire