

BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

Amirhossein Ebrahimi

Fall 2024

TABLE OF CONTENT

Introduction

Methodology

Plan and Progress

Potential Improvement

INTRODUCTION

Background

Accurate segmentation is crucial for **diagnosis**, **growth rate prediction**, and **treatment planning**.

- It is challenging to segment due to variability in shape, size, and contrast.
- Traditional segmentation approaches rely on handcrafted features, which is not as accurate and is time-consuming.

Goal

Develop an accurate and a fully automatic tumor segmentation method using DNN.

Novelty?

Next slides.

METHODOLOGY

- Two-Pathway Convolutional Neural Network (CNN):
 - Local
 - Global
- Cascaded Architecture:
 - Input Concatenation
 - Local Pathway Concatenation
 - Pre-output Concatenation
- Two-Phase Training:
 - Phase 1: Balanced Training
 - Phase 2: Recalibration

TWO-PATHWAY CONVOLUTIONAL NEURAL NETWORK (CNN)

local_conv1 = tf.keras.layers.Conv2D(32, (7, 7), activation='relu', padding='same')(input_layer)
global_conv1 = tf.keras.layers.Conv2D(32, (13, 13), activation='relu', padding='same') (input_layer)
concatenated = tf.keras.layers.concatenate([local_conv1, global_conv1])

CASCADED ARCHITECTURE

Adding the 1st CNN output as an 4th channel of 2nd CNN input

TWO-PHASE TRAINING

What have I done so far

- Implemented their code [Colab]
- Added some preprocessing
- Using <u>Classification Brats2019</u> <u>dataset</u>
- Not used two-phase training

Future steps

- Using <u>Segmentation Brats2019 dataset</u>
- Modify their model for segmentation task
- Add more preprocessing

Current approach	Future steps
Cascaded Architecture	encode feature map instead of adding pixel-level classification at 4th channel
Cascaded Architecture	Using ResNet instead of Cascaded CNN

BRATS2019

What have I done so Far: Preprocessing

- > Applied a median filter to reduce noise
- > Applied a sharpening filter to enhance edges
- ➤ Contrast Limited Adaptive Histogram Equalization

Prediction: Yes (1.00) File: Y2.jpeg

Prediction: Yes (1.00) File: Y1.jpeg

Prediction: Yes (1.00) File: Y3.jpeg

Prediction: No (1.00) File: N3.jpeg

Prediction: No (1.00) File: N2.jpeg

What have I done so Far:

Simple KNN?

THANKS FOR YOUR ATTENTION