CONCOURS MAROCAIN 2006: Maths I, MP

Maths-MPSI

Mr Mamouni : myismail@altern.org

Source disponible sur:

@http://www.chez.com/myismail

Première partie

- 1) a) Au voisinage de 0: On sait que $e^t = 1 + t + o(t)$, donc $\frac{e^{-at} e^{-bt}}{t} = b a + o(1) \sim b a$ intégrable au voisinage de 0.

 Au voisinage de $+\infty$: On sait que $e^{-at} = o\left(\frac{1}{t}\right)$, donc $\frac{e^{-at} e^{-bt}}{t} = o\left(\frac{1}{t^2}\right)$ intégrable au voisinage de $+\infty$.
 - b) I(a,b) = -I(b,a), trés evident. Posons : u = ta, donc : $I(a,b) = \int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \int_0^{+\infty} \frac{e^{-u} - e^{-\frac{b}{a}u}}{u} du = I\left(1, \frac{b}{a}\right).$
 - c) i. L'application : $f:(x,t)\mapsto \frac{e^{-t}-e^{-xt}}{t}$ est continue sur $[1,+\infty[\times\mathbb{R}^* \text{ en tant que somme, rapport de fonctions continue, qui ne s'annule pas. En <math>(x,0)$ on a : $f(x,t)\sim x-1$ continue, donc f est continue sur $[1,+\infty[\times\mathbb{R}.$ D'autre part : pour $x\in[a,b]\subset[1,+\infty[$ on a : $\left|\frac{e^{-t}-e^{-xt}}{t}\right|=\frac{e^{-t}-e^{-xt}}{t}\leq\frac{e^{-t}-e^{-bt}}{t}$ qui est continue, intégrable sur $]0,+\infty[$, donc φ est continue sur $[1,+\infty[$.
 - ii. Pour $x \in [a, b] \subset [1, +\infty[$ on a : $\left| \frac{\partial f}{\partial x} \right| = e^{-xt} \le e^{-at}$ continue, intégrable sur $[0, +\infty[$. Donc φ est de classe \mathcal{C}^1 sur $[1, +\infty[$, avec $\varphi'(x) = \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$.
 - iii. D'aés le raisonnement fait dans la question précédente, on a :

- $\varphi'(x) = \frac{1}{x}$, donc $\varphi(x) = \ln x + K$, or $\varphi(1) = 0$, d'où K = 0 et donc $\varphi(x) = \ln x$.
- d) Si $b \ge a$, alors $x = \frac{b}{a} \ge 1$, donc $I(a,b) = I(1,\frac{b}{a}) = \varphi\left(\frac{b}{a}\right) = \ln\left(\frac{b}{a}\right)$. Si $b \le a$, alors $x = \frac{a}{b} \ge 1$, donc: $I(a,b) = -I(b,a) = -I(1,\frac{a}{b}) = -\varphi\left(\frac{a}{b}\right) = -\ln\left(\frac{a}{b}\right) = \ln\left(\frac{b}{a}\right)$. Conclusion: $I(a,b) = \ln\left(\frac{b}{a}\right)$.
- 2) a) Au voisinage de 0 : on sait que $\ln(1+t) = t + o(t)$, d'où $\frac{\ln(1+t)}{t} \sim 1$ intégrable au voisinage de 0, donc $t \mapsto \frac{\ln(1+t)}{t}$ est intégrable sur [0,1].
 - b) Posons $a_n = \frac{(-1)^n}{n+1}$, on a $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, donc le rayon de convergence de la série $\sum_{n \ge 0} \frac{(-1)^n}{n+1} x^n$ est égal à 1, dont la somme est $\frac{\ln(1+x)}{x}$, puisqu'il s'agit de son développement en série entière.
 - c) Pour $x \in [0, 1]$ fixé, on vérifie faciulement que la série $\sum_{n \geq 0} \frac{(-1)^n}{n+1} x^n$ est une série alternée, donc vérifie le critère spécial, en prticulier la majoration du reste par son 1ér terme, donc $\left|\sum_{k \geq n} \frac{(-1)^k}{k+1} x^k\right| \leq \left|\frac{(-1)^n}{n+1} x^n\right| \leq \frac{1}{n+1}$, donc le reste converge uniformément vers 0, et par suite la convergence de la série sur [0,1] est uniforme.

d)
$$\int_{0}^{1} \frac{\ln(1+t)}{t} dt = \int_{0}^{1} \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{n+1} t^{n} dt \quad \text{D'aprés 2.2}$$

$$= \sum_{n=0}^{+\infty} \int_{0}^{1} \frac{(-1)^{n}}{n+1} t^{n} dt$$

$$= \sum_{n=0}^{+\infty} \int_{0}^{1} \frac{(-1)^{n}}{n+1} t^{n} dt$$

$$= \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(n+1)^{2}}$$

$$= \sum_{p=1}^{+\infty} \frac{1}{(2p+1)^{2}} - \sum_{p=0}^{+\infty} \frac{1}{(2p+2)^{2}}$$
On divise la somme en deux $n = 2p, n = 2p + 1$

$$= \sum_{n=1}^{+\infty} \frac{1}{n^{2}} - \sum_{p=1}^{+\infty} \frac{1}{(2p)^{2}} - \sum_{p=0}^{+\infty} \frac{1}{(2p+2)^{2}}$$

$$= \sum_{n=1}^{+\infty} \frac{1}{n^{2}} - 2 \sum_{p=1}^{+\infty} \frac{1}{(2p)^{2}}$$

$$= \sum_{n=1}^{+\infty} \frac{1}{n^{2}} - 2 \sum_{p=1}^{+\infty} \frac{1}{(2p)^{2}}$$

$$= \sum_{n=1}^{+\infty} \frac{1}{n^{2}} - \frac{1}{2} \sum_{p=1}^{+\infty} \frac{1}{p^{2}}$$

$$= \frac{1}{2} \sum_{n=1}^{+\infty} \frac{1}{n^{2}}$$

$$= \sum_{n=1}^{+\infty} \frac{1}{n^{2}} = \sum_{p=1}^{+\infty} \frac{1}{p^{2}}$$

$$= \frac{\pi^{2}}{10}$$

Deuxième partie

a) g est de classe C^1 , en tant que primitive de f qui est continue. On a $\psi(f)(x) = \frac{g(x)}{x}$ pour x > 0, donc ψ est continue sur \mathbb{R}_+^* . Pour $x \neq 0$, le théorème des accroissement finie, donc g(x) - g(0) = 0 xg'(c) avec c compris entre 0 et x, d'où $\psi(f)(x) = f(c) \longrightarrow f(0) = \psi(f)(0)$ car g(0) = 0 et g' = f continue, donc $\psi(f)$ est continue sur \mathbb{R}^+ , autrement dit $\psi(f) \in E$.

b) $\lim_{t\to +\infty} f(t) = \lambda \Longrightarrow \forall \varepsilon > 0, \ \exists A > 0 \text{ tel que } |f(t)-\lambda| \le \frac{\varepsilon}{2} \quad \forall t \ge A, \text{ donc pour } x \ge A \text{ on a :}$

$$|\varphi(x) - \lambda| = \frac{1}{x} \left| \int_0^x f(t)dt - \lambda x \right|$$

$$= \frac{1}{x} \left| \int_0^x f(t)dt - \int_0^x \lambda dt \right|$$

$$= \frac{1}{x} \left| \int_0^x (f(t) - \lambda)dt \right|$$

$$\leq \frac{1}{x} \int_0^x |f(t) - \lambda| dt$$

$$= \frac{1}{x} \int_0^A |f(t) - \lambda| dt + \frac{1}{x} \int_x^A |f(t) - \lambda| dt$$

$$= \frac{K}{x} + \frac{1}{x} \int_x^A |f(t) - \lambda| dt$$

$$\leq \frac{K}{x} + \frac{1}{x} \int_x^A \frac{\varepsilon}{2} dt$$

$$= \frac{K}{x} + \frac{x - A}{x} \frac{\varepsilon}{2}$$

$$\leq \frac{K}{x} + \frac{\varepsilon}{2} \quad \text{car } \frac{x - A}{x} \leq 1$$

$$\leq \varepsilon \quad \text{car } \lim_{x \to +\infty} \frac{K}{x} = 0$$

La réciproque est fausse, prenons pour contre-exemle la fonction $f(t) = \cos t$, on a : $\psi(f)(x) = \frac{\sin x}{x} \longrightarrow 0$ quand $x \longrightarrow +\infty$, alors que $\lim_{x \to +\infty} \cos x$ n'existe pas.

e)
$$\lim_{\substack{t \to +\infty \\ \text{donc}}} f(t) = +\infty \Longrightarrow \forall B > 0, \ \exists A > 0 \text{ tel que } f(t) \ge \frac{B}{2} \quad \forall t \ge A,$$

$$\varphi(f)(x) = \frac{1}{x} \left(\int_0^A f(t)dt + \int_A^x f(t)dt \right)$$

$$\geq \frac{1}{x} \left(K + \frac{B}{2}(x - A) \right)$$

$$= \frac{K}{x} + \frac{x - A}{x} \frac{B}{2}$$

$$\geq B \quad car \lim_{x \to +\infty} \frac{K}{x} + \frac{x - A}{x} \frac{B}{2} = \frac{B}{2}$$
Donc $\lim_{x \to +\infty} \psi(f)(x) = +\infty$.

d) i. Dans $\psi(h)$ on va utiliser une intégration par partie, en posant u=x,v'=f, donc u'=1,v=g, d'où :

 $\psi(h)(x) = \frac{1}{x} \int_0^x t f(t) dt = \frac{1}{x} \left[[tg(t)]_0^x - \int_0^x g(t) dt \right]$ $= g(x) - \frac{1}{x} \int_0^x g(t) dt = g(x) - \psi(g)(x)$

ii. f est intégrable sur $[0, +\infty[$, donc $g(x) = \int_0^x f(t)dt$ admet une limite finie en $+\infty$, d'aprés la question 1.2) $\psi(h)$ admet aussi la même limite en $+\infty$, or $\psi(h) = g - \psi(g)$, donc $\lim_{x \to +\infty} \psi(h)(x) = 0$.

La réciproque n'est pas toujours vraie, prenons pour contreexemple $f(x) = \frac{e^{-x}}{x}$, non intégrable au voisinage de 0, car $\frac{e^{-x}}{x} \sim \frac{1}{x}$, alors que $\psi(h)(x) = \frac{1}{x} \int_0^x e^{-t} dt = \frac{1}{x} (1 - e^{-x}) \longrightarrow 0$, quand $x \longrightarrow +\infty$.

e) $\sqrt{f} \ge 0$ et $x \ge 0$, donc $\psi(\sqrt{f})(x) = \frac{1}{x} \int_0^x \sqrt{f(t)} dt \ge 0$. D'autre part : en utilisant l'inégalité de Cauchy-schwarz pour 1 et \sqrt{f} , on aura : $\frac{1}{x} \int_0^x \sqrt{f(t)} dt \le \frac{1}{x} \sqrt{\int_0^x dt} \sqrt{\int_0^x f(t) dt}$.

$$= \sqrt{\frac{1}{x} \int_0^x f(t)dt} = \sqrt{\psi(f)}$$

On aura égalité, s'il y a égalité dans l'inégalité de Cauchy-schwarz

pour 1 et \sqrt{f} , donc s'ils sont proportionnels, c'est à dire f est constante.

- 2) a) Il est clair que $\psi(f + \lambda g) = \psi(f) + \lambda \psi(g)$, n'oubliez pas de le mentionner pour x = 0, donc ψ est linéaire. D'autre part d'aprés 1.1) $\psi(f) \in E$, $\forall f \in E$, donc ψ est un endomorphisme de E.
 - b) $f \in \text{Ker } (\psi) \implies \psi(f)(x) = 0, \ \forall x > 0$ $\implies g(x) = \int_0^x f(t)dt = 0, \ \forall x > 0$ $\implies g'(x) = f(x) = 0, \ \forall x \ge 0$

Donc ψ est injective.

- c) D'aprés 1.1) on peut affirmer que $\psi(f)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* , donc toute fonction de E qui ne l'est pas ne peut pas être de la forme $\psi(f)$, c'est à dire n'admet pas d'antécédant, donc ψ n'est pas surjective. F(x) = |x 1| est un exemple de fonction de E qui n'est pas de classe \mathcal{C}^1 sur \mathbb{R}_+^* , car non dérivable en 1.
- 3) a) Il s'agit d'une équation différentielle linéaire du 1ér ordre à coéfficients non constant, dont la solution est :

$$f(x) = Ke^{-\int_0^x \frac{\lambda - 1}{\lambda} t dt} = Ke^{\frac{1 - \lambda}{\lambda} \ln x} = Kx^{\frac{1 - \lambda}{\lambda}}.$$

- b) f est prolongeable en 0^+ si et seulement si $\lim_{x \to} f(x)$ est finie si et seulement si $\frac{1-\lambda}{\lambda} \ge 0$ si et seulement si $0 < \lambda \le 1$.
- 4) a) 0 ne peut pas être une valeur propre de ψ car elle est injective.
 - b) Soit $f \in E$ non nulle telle que $\psi(f) = \mu f$, donc $f = \frac{1}{\mu} \psi(f)$ car $\mu \neq 0$ d'aprés 4.1). De plus d'aprés 1.1) on peut affirmer que $\psi(f)$ est de classe \mathcal{C}^1 sur \mathbb{R}^*_+ , donc f aussi.
 - c) Soit λ valeur propre de ψ et f vecteur propr associé, donc $\psi(f)(x) = \lambda f(x)$, d'où $\int_0^x f(t)dt = \lambda x f(x)$, en dérivant cette égalité on obtient : $\lambda x f'(x) + (\lambda 1)f(x) = 0$, dont les solutions sont : $f(x) = Kx^{\frac{1-\lambda}{\lambda}}$, dérivables sur $]0, +\infty[$ pour tout $\lambda \in]0, 1]$.

Troisième partie

1) a) Pour tout segment $[a, b] \subset \mathbb{R}^+$, on a d'aprés l'inégalité de Cauchy-Schwarz : $\left| \int_a^b f(t)g(t)dt \right| \leq \sqrt{\int_a^b f^2(t)dt} \sqrt{\int_a^b g^2(t)dt}$ $\leq M = \sqrt{\int_a^{+\infty} f^2(t)dt} \sqrt{\int_a^{+\infty} g^2(t)dt}$

Donc fg est intégrable sur \mathbb{R}^+

b) Il est clair que l'application nulle est de carré intégrable, donc appartient à E_2 , d'autre part, soit $(f,g) \in E_2$, $\lambda \in \mathbb{R}$, alors : $(f + \lambda g)^2 = f^2 + 2\lambda fg + g^2$ car f^2 , fg, g^2 sont toutes intégrables, donc $f + \lambda g \in E_2$ et par suite E_2 est un sous-espace vectoriel de E.

c) - Symétrie:
$$(f,g) = \int_0^{+\infty} f(t)g(t)dt = \int_0^{+\infty} g(t)f(t)dt = (g,f).$$

- Bilinéarité : $(f + \lambda g, h) = (f, h) + \lambda (g, h)$, car l'intégrale est linéaire, d'où la linéarité à gauche, à l'aide de la symétrie on conclut la bilinéarité.
- Positive: $(f, f) = \int_0^{+\infty} f^2(t)dt \ge 0.$
- Définie : $(f, f) = 0 \Longrightarrow \int_0^{+\infty} f^2(t)dt = 0 \Longrightarrow f^2 = 0$, car f^2 continue positive, donc f = 0.
- 2) a) $\frac{g^2(t)}{t} = g(t)\psi(f)(t) \longrightarrow g(0)\psi(f)(0) = 0$, quand $t \longrightarrow 0^+$, car g et $\psi(f)$ sont continues sur \mathbb{R}^+ et g(0) = 0.
 - b) $\frac{g^2(t)}{t^2} = (\psi(f)(t))^2 \longrightarrow (\psi(f)(0))^2$, quand $t \longrightarrow 0^+$, car $\psi(f)$ est continue sur \mathbb{R}^+ , donc $t \mapsto \frac{g^2(t)}{t^2}$ est intégrable sur]0,b] car prolongeable par continuité en 0^+ .

D'autre part : $\int_0^b \psi(f)^2(t)dt = \int_0^b \frac{g^2(t)}{t^2}dt$, par définition de $\psi(f)$, pour l'autre égalité on va utiliser une intégration par parties, avec $u = g^2(t), v' = \frac{1}{t^2}$, donc u' = 2g'(t)g(t) et $v = -\frac{1}{t}$, d'où :

$$\begin{split} \int_0^b \frac{g^2(t)}{t^2} dt &= \left[-\frac{g^2(t)}{t} \right]_0^b + 2 \int_0^b \frac{g'(t)g(t)}{t} dt \\ &= -\frac{g^2(b)}{b} + 2 \int_0^b \frac{g'(t)g(t)}{t} dt \\ &= \arcsin \lim_{t \to 0^+} \frac{g^2(t)}{t} = 0 \\ &= -\frac{g^2(b)}{b} + 2 \int_0^b f(t)\psi(f)(t) dt \\ &= \operatorname{car} : g'(t) = f(t), \frac{g(t)}{t} = \psi(f)(t) \end{split}$$

c)
$$\int_{0}^{b} \psi(f)^{2}(t)dt \leq 2 \int_{0}^{b} f(t)\psi(f)(t)dt \quad \text{D'aprés (1)}$$

$$\leq 2 \sqrt{\int_{0}^{b} f^{2}(t)dt} \sqrt{\int_{0}^{b} \psi(f)^{2}(t)dt}$$
 D'aprés l'inégalité de Cauchy-Shwarz.

Si $\int_0^b \psi(f)^2(t)dt = 0$, c'est terminé, sinon on peut simplifier avec et on obtient encore le résultat demandé.

- d) Découle immédiatement de 2-4) en faisant tendre b vers $+\infty$.
- e) D'aprés 2-5) on peut conclure que ψ_2 est 2-lipshitzienne, donc continue.
- **3)** a)
 - b) Faire tendre b vers $+\infty$ dans (1), en utilisant 3-1).

4)
$$||\psi(f) - 2f||^2 = (\psi(f) - 2f, \psi(f) - 2f)$$

 $= (\psi(f), \psi(f)) - 4(\psi(f), f) + 4(f, f)$
 $= ||\psi(f)||^2 - 4(\psi(f), f) + 4||f||^2$
 $= -4(\psi(f), f) + 8||f||^2 \quad \text{Car} : ||\psi(f)|| = 2||f||$
 $= -4(\psi(f), f) + 2||\psi(f)||^2 \quad \text{Car} : ||\psi(f)|| = 2||f||$
 $= 0 \quad \text{D'aprés 3-2}$

Donc $\psi(f) - 2f = 0$, ainsi si $f \neq 0$, on aurait 2 est une valeur propre de ψ , impossible puisque les valeurs propres de ψ sont les $\lambda \in]0,1]$.

Quatrième partie

1) a)
$$f_a^2(x) = e^{-2ax}$$
 est évidement intégrable sur \mathbb{R}^+ , avec :
$$||f_a||^2 = \int_0^{+\infty} e^{-2ax} dx = \frac{1}{2a}.$$

b) Pour
$$x \neq 0$$
, on a : $\psi(f_a)(x) = \frac{1}{x} \int_0^x e^{-at} dt = \frac{1 - e^{-ax}}{ax}$.
Pour $x = 0$, on a : $\psi(f_a)(0) = f_a(0) = 1$.

$$(f_a, \psi(f_a)) = \int_0^{+\infty} \frac{f_a(x)\psi(f_a)(x)dx}{x}$$

$$= \frac{1}{a} \int_0^{+\infty} \frac{e^{-ax} - e^{-2ax}}{x} dx$$

$$= \frac{1}{a} I(a, 2a)$$

$$= \frac{\ln a}{a} \quad \text{D'aprés 1-4 de la 1ère partie}$$

$$\left(\frac{||\psi(f_a)||}{||f_a||}\right)^2 = 2a(\psi(f_a), \psi(f_a) \quad \text{D'aprés 1-1}$$

$$= 4a(f_a, \psi(f_a)) \quad \text{D'aprés 3-2, 3ème partie}$$

$$= 4 \ln a$$

$$\text{D'où : } \frac{||\psi(f_a)||}{||f_a||} = 2\sqrt{\ln a}.$$

2) a) Pour
$$x \neq 0$$
, on a : $\psi(f)(x) = \frac{1}{x} \int_0^x \frac{1}{1+t} dt = \frac{\ln(1+x)}{x}$.
Pour $x = 0$, on a : $\psi(f)(0) = f(0) = 1$.

b) Au voisiange de
$$0: f^2(x) \sim 1$$

Au voisiange de $+\infty: f^2(x) \sim \frac{1}{x^2}$, donc f^2 est intégrable sur \mathbb{R}^+ , or f continue, donc $f \in E_2$.

$$(f|\psi(f)) = \int_0^{+\infty} f(t)\psi(f)(t)dt$$

$$= \int_0^{+\infty} \frac{\ln(1+t)}{t(1+t)}dt$$

$$= \int_0^1 \frac{\ln(1+t)}{t(1+t)}dt + \int_1^{+\infty} \frac{\ln(1+t)}{t(1+t)}dt$$

$$= \int_0^1 \frac{\ln(1+t)}{t(1+t)}dt + \int_0^1 \frac{\ln(\frac{1+u}{u})}{1+u}du \quad \text{Avec} : u = \frac{1}{t}$$

$$= \int_0^1 \left(\frac{\ln(1+t)}{t(1+t)} + \frac{\ln(\frac{1+t}{t})}{1+t}\right)dt \quad \text{On remplace u par t}$$

$$= \int_0^1 \frac{(1+t)\ln(1+t) - t\ln t}{t(1+t)}dt$$

$$= \int_0^1 \left(\frac{\ln(1+t)}{t} - \frac{\ln t}{1+t}\right)dt$$

c) $(\ln t \ln(1+t))' = \frac{\ln(1+t)}{t} + \frac{\ln t}{1+t}$, donc $\ln t \ln(1+t)$ est une primitive de $\frac{\ln(1+t)}{t} + \frac{\ln t}{1+t}$.

Calculons d'abord :
$$\int_0^1 \frac{\ln(1+t)}{t} dt \text{ et } \int_0^1 \frac{\ln t}{1+t} dt, \text{ en effet :}$$

$$\int_0^1 \frac{\ln(1+t)}{t} dt = [\ln t \ln(1+t)]_0^1 - \int_0^1 \frac{\ln t}{1+t} dt$$
Intégration par parties avec :
$$u = \ln(1+t) \quad v' = \frac{1}{t}$$

$$u' = \frac{1}{1+t} \quad v = \ln t$$

$$= -\int_0^1 \frac{\ln t}{1+t} dt$$

Car au voisinage de 0^+ : $\ln t \ln(1+t) \sim t \ln t \longrightarrow 0$

- 3)
- 4) a) les application $f \mapsto ||f||$ et $f \mapsto \psi(f)$ sont continue, or $f \neq 0$, donc l'application $f \mapsto \frac{||\psi(f)||}{||f||}$ est continue en tant que composée et rapport d'applications continues.

- b) $\left\{\frac{||\psi(f)||}{||f||} \text{ tel que } f \in E_2 0\right\}$ est un connexe dans \mathbb{R} en tant qu'image d'un connexe par une application continue, d'autre part : $0 < \frac{||\psi(f)||}{||f||} < 2$, puisque $\psi(f)$ est injective et d'aprés la question 2-4) 3ème partie, donc c'est un intervalle contenu dans]0, 2[.
- 5) a) i. L'application f est définie ainsi : $f(t) = t^s \qquad \text{si} : 0 \le t \le a$ $= -a^s(t a 1) \quad \text{si} : a \le t \le a + 1$ $= 0 \qquad \text{si} : t \ge a + 1$ $f^2 \text{ est intégrable car son intégrale sur } \mathbb{R}^+ \text{ est égale à celui sur}$ $[0, a + 1], \text{ avec} : ||f||^2 = \int_0^a t^{2s} dt a^{2s} \int_a^{a+1} (t a 1)^2 dt$ $= \frac{a^{2s+1}}{2s+1} \frac{a^{2s}}{3} \sim \frac{a^{2s+1}}{2s+1}$
 - ii. D'abord pour $0 \le x \le a$, on a : $\psi(f)(x) = \frac{1}{x} \int_0^x f(t) dt = \frac{1}{x} \int_0^x t^s dt = \frac{x^s}{s+1}, \text{ car :}$ $2s+1>0 \Longrightarrow s>-\frac{1}{2} \Longrightarrow s+1>0 \Longrightarrow \lim_{x\to 0^+} x^{s+1}=0.$ D'autre part : $||\psi(f)||^2 = \int_0^+ \psi(f)^2(x) dx \ge \int_0^a \psi(f)^2(x) dx = \int_0^a \frac{x^{2s}}{(s+1)^2} dx = \frac{a^{2s+1}}{(s+1)^2(2s+1)} = \frac{2a^{2s+1}}{(s+1)(2s+1)} \cdot \frac{1}{2(s+1)} \ge \frac{2a^{2s+1}}{(s+1)(2s+1)}, \text{ car } 2(s+1) = 2s+2>1.$
 - iii. D'aprés les deux questions précèdentes, en faisant tendre a vers $+\infty$, on aura : $\sup\left(\frac{||\psi(f)||^2}{||f||^2}\right) \geq \frac{2}{s+1} \quad \forall s \in \mathbb{R} \text{ tel que } 2s+1 > 0$, donc pour $s \geq -\frac{1}{2}$, en faisant tendre s vers $-\frac{1}{2}$, on obtient : $\sup\left(\frac{||\psi(f)||^2}{||f||^2}\right) \geq 4$, d'où : $\sup\left(\frac{||\psi(f)||}{||f||}\right) \geq 2$, or d'aprés la question 4.2) on a : $\sup\left(\frac{||\psi(f)||}{||f||}\right) \leq 2$, d'où l'égalité.

- b) i. Au voisinage de $+\infty$ on a : $f^{2}(t) = \frac{1}{t^{2\alpha+2}}$ est bien intégrable car $2\alpha + 2 > 1$, avec : $||f||^{2} = \int_{0}^{+\infty} f^{2}(t)dt = \int_{0}^{1} t^{2\alpha}dt + \int_{1}^{+\infty} \frac{1}{t^{2\alpha+2}}dt$ $= \frac{1}{2\alpha+1} + \frac{1}{2\alpha+1} = \frac{2}{2\alpha+1}$
 - ii. Déterminons d'abord $\psi(f)(x)$ pour x > 0. 1ér cas : 0 < x < 1, alors : $\psi(f)(x) = \frac{1}{x} \int_0^x f(t)dt = \frac{1}{x} \int_0^x t^{\alpha}dt = \frac{x^{\alpha}}{\alpha + 1}.$ 2ème cas : x > 1, alors : $\psi(f)(x) = \frac{1}{x} \int_{-x}^{x} f(t)dt = \frac{1}{x} \left(\int_{-x}^{1} f(t)dt + \int_{-x}^{x} f(t)dt \right)$ $=\frac{1}{r}\left(\int_{-1}^{1}t^{\alpha}dt+\int_{-1}^{x}\frac{1}{t^{\alpha+1}}dt\right)$ $=\frac{1}{x}\left(\frac{1}{\alpha+1} - \frac{1}{\alpha}\left(\frac{1}{x^{\alpha}} - 1\right)\right)$ $-\frac{2\alpha+1}{\alpha+1} - \frac{1}{\alpha}\left(\frac{1}{x^{\alpha}} - 1\right)$ $= \frac{2\alpha}{x\alpha(\alpha+1)} - \frac{2\alpha}{\alpha x^{\alpha+1}}$ $||\psi(f)||^2 = \int_{-\infty}^{+\infty} \psi(f)^2(x) dx$ $= \int_0^1 \frac{x^{2\alpha}}{(\alpha+1)^2} dx + \int_1^{+\infty} \left(\frac{2\alpha+1}{x\alpha(\alpha+1)} - \frac{1}{\alpha x^{\alpha+1}}\right)^2 dx$ $= \frac{1}{(2\alpha+1)(\alpha+1)^2} + \frac{(2\alpha+1)^2}{\alpha^2(\alpha+1)^2} - \frac{2(2\alpha+1)}{\alpha^2(\alpha+1)^2}$ $+\frac{1}{\alpha^2(2\alpha+1)}$ $= \frac{1}{(2\alpha+1)(\alpha+1)^2} + \frac{4\alpha^2-1}{\alpha^2(\alpha+1)^2} + \frac{1}{\alpha^2(2\alpha+1)^2}$
 - iii. D'aprés les deux questions précèdentes, on aura : $\inf\left(\frac{||\psi(f)||^2}{||f||^2}\right) \leq \frac{2(2\alpha+1)}{\alpha^2}$ pour $\alpha>0$ assez grand, quand

 $\alpha \longrightarrow +\infty$, on obtient $\inf \left(\frac{||\psi(f)||^2}{||f||^2} \right) \le 0$, or d'aprés la question 4.2) on a : $\inf \left(\frac{||\psi(f)||}{||f||} \right) \ge 0$, d'où l'égalité.

Fin