CS669 - Pattern Recognition Programming Assignment 1

Gabriel Dulac-Arnold <gabe@squirrelsoup.net> (CS09F004) Johannes H. Jensen <johannj@stud.ntnu.no> (CS09F005)

(Batch no. 14)

September 23, 2009

1 Classifier Accuracy for Each Dataset

Dataset	$\mid B C_{mean} \mid$	B $C_{distinct}$	NB $\sigma^2 I$	NB C_{mean}	NB $C_{distinct}$
LS	99.73%	100%	99.73%	99.73%	99.73%
NLS	62.17%	62.01%	62.58%	62.42%	62.58%
OL	88.53%	92.54%	88.00%	88.53%	89.07%
RL	77.61%	77.44%	77.20%	77.43%	77.43%

2 Confusion Matrices

1. Bayes C_{mean}

(a) Linearly Seperable

	ω_1	ω_2	ω_3
ω_1	124	1	0
ω_2	0	125	0
ω_3	0	0	125

(b) Non-Linearly Seperable

	ω_1	ω_2
ω_1	384	228
ω_2	235	377

2. Bayes $C_{distinct}$

(a) Linearly Seperable

		ω_1	ω_2	ω_3
	ω_1	125	0	0
•	ω_2	0	125	0
	ω_3	0	0	125

(b) Non-Linearly Seperable

	ω_1	ω_2
ω_1	379	233
ω_2	232	380

(c) Overlapping Data

	ω_1	ω_2	ω_3
ω_1	106	17	2
ω_2	0	109	16
ω_3	7	1	117

(d) Real World Data

	ω_1	ω_2	ω_3
ω_1	571	23	3
ω_2	343	213	17
ω_3	0	0	622

(c) Overlapping Data

	ω_1	ω_2	ω_3
ω_1	114	8	3
ω_2	4	116	5
ω_3	6	2	117

(d) Real World Data

	ω_1	ω_2	ω_3
ω_1	571	23	3
ω_2	343	211	15
ω_3	0	1	621

- 3. Naive Bayes $C = \sigma^2 I$
 - (a) Linearly Seperable

	ω_1	ω_2	ω_3
ω_1	124	1	0
ω_2	0	125	0
ω_3	0	0	125

(b) Non-Linearly Seperable

	ω_1	ω_2
ω_1	388	224
ω_2	234	378

- 4. Naive Bayes C_{mean}
 - (a) Linearly Seperable

	ω_1	ω_2	ω_3
ω_1	124	1	0
ω_2	0	125	0
ω_3	0	0	125

(b) Non-Linearly Seperable

	ω_1	ω_2
ω_1	386	226
ω_2	234	378

- 5. Naive Bayes $C_{distinct}$
 - (a) Linearly Separable

	ω_1	ω_2	ω_3
ω_1	124	1	0
ω_2	0	125	0
ω_3	0	0	125

(b) Non-Linearly Seperable

	ω_1	ω_2
ω_1	384	228
ω_2	230	382

(c) Overlapping Data

	ω_1	ω_2	ω_3
ω_1	106	17	2
ω_2	2	106	17
ω_3	6	1	118

(d) Real World Data

	ω_1	ω_2	ω_3
ω_1	570	24	3
ω_2	348	207	18
ω_3	0	0	622

(c) Overlapping Data

	ω_1	ω_2	ω_3
ω_1	106	17	2
ω_2	0	109	16
ω_3	7	1	117

(d) Real World Data

	ω_1	ω_2	ω_3
ω_1	571	23	3
ω_2	345	210	18
ω_3	0	0	622

(c) Overlapping Data

	ω_1	ω_2	ω_3
ω_1	106	18	1
ω_2	2	115	8
(1)0	10	2	113

(d) Real World Data

	ω_1	ω_2	ω_3
ω_1	571	23	3
ω_2	346	210	18
ω_3	0	0	622

3 Decision Region Plots

Figure 1: Bayes ${\cal C}_{mean},$ Linearly separable data set

Figure 2: Bayes C_{mean} , Nonlinearly separable data set

Figure 3: Bayes C_{mean} , Overlapping data set

Figure 4: Bayes C_{mean} , Real world data set

Figure 5: Bayes $C_{distinct},$ Linearly separable data set

Figure 6: Bayes $\mathcal{C}_{distinct},$ Nonlinearly separable data set

Figure 7: Bayes $C_{distinct}$, Overlapping data set

Figure 8: Bayes $\mathcal{C}_{distinct},$ Real world data set

Figure 9: Naive Bayes $C=\sigma^2I,$ Linearly separable data set

Figure 10: Naive Bayes $C=\sigma^2 I,$ Nonlinearly separable data set

Figure 11: Naive Bayes $C=\sigma^2 I,$ Overlapping data set

Figure 12: Naive Bayes $C=\sigma^2 I,$ Real world data set

Figure 13: Naive Bayes ${\cal C}_{mean},$ Linearly separable data set

Figure 14: Naive Bayes ${\cal C}_{mean},$ Noninearly separable data set

Figure 15: Naive Bayes ${\cal C}_{mean},$ Overlapping data set

Figure 16: Naive Bayes $\mathcal{C}_{mean},$ Real world data set

Figure 17: Naive Bayes $C_{distinct},$ Linearly separable data set

Figure 18: Naive Bayes $C_{distinct},$ Nonlinearly separable data set

Figure 19: Naive Bayes $C_{distinct},$ Overlapping data set

Figure 20: Naive Bayes $\mathcal{C}_{distinct},$ Real world data set