List of decision problems

Jens Kristian Refsgaard Nielsen

8. august 2019

1 The theory

A decision problem is something that takes an input and asks a question, we wish to determine whether it is possible to make a general algorithm that can answer this question.

1.1 Reduces to, $P_1 \leq P_2$

We say a decision problem $P_1 = (I_1, Q_1)$ reduces to another problem $P_2 = (I_2, Q_2)$ iff $\exists F : I_1 \to I_2$ such that $\forall i \in I_1 : i$ is a yes instance of Q_1 iff F(i) is a yes instance of Q_2 .

1.2 Reduction theorem

Given two problems and a reduction $P_1 \leq P_2$ we get two very important results:

Decideable if P_2 is decideable then so is P_1 ,

"if you live inside something solveable, then you too are solveable"

Undecideable if P_1 is undecideable then so is P_2 ,

"if something unsolveable lives inside of you, there is no salvation in more data"

1.3 Language property

A property R on TMs is a language property if

$$\forall M, T \in TM : \mathcal{L}(M) = \mathcal{L}(T) \Rightarrow (R(M) \iff R(T))$$

And non trivial if there exists two TM's such that R(M) and $\neg R(T)$, i.e. there is a language with the property and one without it.

1.3.1 Rice theorem

Every non-trivial language property of Turing machines is undecideable.

1.3.2 Examples

2 The list

In order to decide whether something is decideable or not, it is very important to have a good list of results to use for our deductions. What follows are lists of problems handled in the lectures

and exercise classes of "Beregnelighed & Logik" at Aarhus university in the spring of 2019. Each will be of the form: Name I: input Q: question Notation:

TM = set of turing machines

CFG = set of context free grammars

REC = set of recursive languages

RECE = set of recursive enumerable languages

REG = set of regular languages

2.1 Decideable problems

I:
$$G \in CFG, w \in \Sigma_G^*$$
 Q: $w \in \mathcal{L}(G)$? (2.1)

I:
$$G \in CFG$$
 Q: $\mathcal{L}(G) = \emptyset$? (2.2)

I:
$$G_1, G_2 \in CFG$$
 Q: $\mathcal{L}(G_1) \cup \mathcal{L}(G_2) = \emptyset$? (2.3)

I: Q: (2.4)

2.2 Undecideable problems

Halting	I: T \in TM, $w \in \Sigma_T$,	Q: does T halt on w ?	(2.5)
Self-Accept	$I\colon M\in TM$	Q: Does M halt on e(M)?	(2.6)
Accepts	I: $\mathbf{M} \in \mathbf{TM}, \mathbf{w} \in \Sigma_M^*$	Q: Does M accept w?	(2.7)
Halts	I: $M \in TM, w \in \Sigma_M^*$	Q: Does M halt on w?	(2.8)
Accept- Λ	$I\colon M\in TM$	$Q:\Lambda \in \mathcal{L}(M)$?	(2.9)
Accepts All	$I\colon M\in TM$	$Q:\mathcal{L}(M) = \Sigma_M^*?$	(2.10)
Subset	$I{:}\ M_1{,}M_2\in TM$	$Q:in\mathcal{L}(M_1)\subset\mathcal{L}(M_2)$?	(2.11)
Equivalent Λ	$I{:}\ M_1{,}M_2\in TM$	$Q:\mathcal{L}(M_1) = \mathcal{L}(M_2)$	(2.12)
WriteSym	I: $\mathbf{M} \in \mathbf{TM}, a \in \Sigma_M^*$	Q: will M write a?	(2.13)
PCP	I: A,B: A = B	$Q: \exists J: \Pi_{j \in J} A_{i_j} = \Pi_{j \in i} A_{i_j}?$	(2.14)
MPCP	I: A,B: A = B	Q: $\exists J : A_1 \Pi_{j \in J} A_{i_j} = B_1 \Pi_{j \in i} A_{i_j}$?	(2.15)
${\bf AmbiCFG}$	I: $G \in CFG$	Q: is G ambiguous?	(2.16)

KitchenTiling I: set of tiles Q: can we tile ANY square with matching sides? (2.17)

2.3 Reductions

$$\begin{array}{lll} \text{Accepts} & \leq & \text{MPCP} \leq & \text{PCP} & (2.18) \\ \text{SelfAccept} & \leq & \text{Accept} \leq & \text{Halts} & (2.19) \\ \text{Accept} & \leq & \text{Accept-}\Lambda \leq & \text{writeSym} & (2.20) \\ \text{Accept-}\Lambda \leq & \text{AcceptAll} \leq & \text{Subset} \leq & \text{Equivvalent} & (2.21) \\ \end{array}$$

(2.22)

 $\mathrm{PCP} \ \leq \mathrm{AmbiCFG}$