

MOTORS and **PWM**

Project-based Learning Center | ETH Zurich
Tommaso Polonelli tommaso.polonelli@pbl.ee.ethz.ch
Michele magno michele.magno@pbl.ee.ethz.ch
Vlad Niculescu vladn@iis.ee.ethz.ch

Credits: STMicroelectronics

Safety considerations

NEVER USE PROPELLES IN THE CLASSROOM

Safety considerations **BATTERY**

LiPO batteries can be damaged and even explode if they are short-circuited or overcharged.

Basic Principle

An electric motor is a device converting electrical energy into mechanical energy (generally a torque). This conversion is usually obtained through the generation of a magnetic field by means of a current flowing into one or more coils.

supply current

Magnetic field generation

The relation between electrical energy (current) and magnetic field generated by a solenoid (coil) is obtained through the following formula:

A long straight coil of wire can be used to generate a nearly uniform magnetic field similar to that of a bar magnet. Such coils, called solenoids, have an enormous number of practical applications.

of coil turns expressed as coil density [turns/cm]

Torque and load angle

The **output torque (T)** of an electrical motor depends on the intensity of the rotor and stator magnetic fields and on their phase relation.

motor torque

The angle between two magnetic field

T

The maximum output torque, and then the **maximum efficiency**, is obtained when the load angle is **90°**

The driving force of an electric motor is torque - not horsepower.

Load angle

The torque is the twisting force that makes the motor running and the torque is active from 0% to 100% operating speed.

Basic principle

The electric motor operation is based on the following points:

At least one of the two magnetic field is generated by a solenoid carrying a current.

Phase relation between the rotor and stator magnetic field (i.e. the load angle) must be always greater than
0° in order to keep the motor in motion (negative angles reverse the rotation).

Output torque depends to both solenoid current and load angle

Motor rotation causes a back electro-motive force opposing the motion itself.

Basic principle: inductive load

Where:

V is in Volts
R is in Ohms
L is in Henries
t is in Seconds

Current in an LR Series Circuit

An inductive load (<u>motor phases included</u>) can be represented as and **LR** series which stores energy in the form of current.

Applying a voltage to the load it is possible to change the amount of current stored into the inductance.

Basic principle: inductive load

Current in an LR Series Circuit

The Time Constant, (τ) of the LR series circuit is given as L/R and in which V/R represents the **final steady state** current value after five time constant values. Once the current reaches this maximum steady state value at ~ 5τ, the inductance of the coil has reduced to zero acting more like a short circuit and effectively removing it from the circuit.

Therefore the current flowing through the coil is limited only by the resistive element in Ohms of the coils windings.

Charge and discharge of an inductive load

Scenario 1 (ON time) accelerate inductance is charged applying a voltage

Scenario 2 (slow decay)
Inductance is discharged shorting the leads

Scenario 3 (fast decay) break Inductance is discharged applying a voltage

How to control motor speed/torque/current?

Embedded systems with drones

Tommaso Polonelli | 3/8/2021

PWM current control basics

The most common method to control the current is the **Pulse Width Modulation** method. The duty-cycle changes according to the target current and boundary conditions.

It is a digital modulation → MCU! (our STM32F4 natively supports PWM)

PWM current control basics

PWM is a technique that allows us to adjust the average value of the voltage.

working condition

PWM period << Time Constant (τ)

PWM current control basics

PWM is a technique that allows us to adjust the average value of the voltage.

working condition

PWM period << Time Constant (τ)

ETH zürich

Brushed DC motors

Project-based Learning Center | ETH Zurich
Tommaso Polonelli tommaso.polonelli@pbl.ee.ethz.ch
Michele Magno michele.magno@pbl.ee.ethz.ch
Vlad Niculescu vladn@iis.ee.ethz.ch

Credits: STMicroelectronics

Basics - mechanical

The rotor coils are sequentially connected to the motor leads through mechanical switches (brushes)

The rotor is composed by a group of coils

The stator magnetic field is generated by a permanent magnet

Basics – magnetic fields and load angle

Forcing a current in the motor leads the rotor magnetic field is generated

The torque applied to the rotor is the highest possible because the load angle (θ) is about 90°

Embedded systems with drones

3/8/2021

Basics – brushes and rotation

The brushes connect the motor leads to the next coil (B) keeping the load angle almost equal to 90° during rotation

Basics – brushes and rotation

Changing the current direction the motor rotation is reversed

Brush DC motor summary

The electric motor operation is based on the following points:

- The magnetic field intensity is proportional to the current forced into the motor leads.
- The magnetic field rotation is automatically obtained commutating the active coil through mechanical switches (brushes).
- The load angle is almost constant, and it is about 90° allowing the maximum efficiency (current vs. torque proportion).
- The motor is controlled applying a voltage on the motor leads. The higher the voltage, the higher the speed.
 The direction is changed reversing the polarity on the leads.
- The maximum torque is limited by the current rating of the motor and it is obtained at zero speed (start-up).
- The **maximum speed** is limited by the supply voltage and it is obtained when no load torque is present.

Three-phase brushless DC motor

The stator is composed by three coils, named **phases**, positioned at 120° from each other

A permanent magnet generates the magnetic field of the rotor

The windings are connected by one of the sides.
The sum of the currents is zero

ETH zürich

Timers

Project-based Learning Center | ETH Zurich
Tommaso Polonelli tommaso.polonelli@pbl.ee.ethz.ch
Michele Magno michele.magno@pbl.ee.ethz.ch
Vlad Niculescu vladn@iis.ee.ethz.ch

Credits: STMicroelectronics

- Correct system timing is a fundamental requirement for the proper operation of a real-time application;
 - If the timing is incorrect, the input data may be processed after the output was updated
- The timers may be driven from an internal or external clock;
- Usually timers include multiple independent capture and compare blocks, with interrupt capabilities;
- Main applications:
 - Generate events of fixed-time period;
 - Allow periodic wake-up from sleep;
 - Count external signals/events;
 - Signal generation (Pulse Width Modulation PWM);
 - Replacing delay loops with timer calls allows the CPU to sleep between operations, thus consuming less power.

Timer/Counter Basics

Notes

- Timers are often called "Timer/Counters" as a counter is the essential element
- "Timing" is based on counting inputs from a known clock rate

What happens on each clock input?

Timer/Counter Basics

Notes

- Timers are often called "Timer/Counters" as a counter is the essential element
- "Timing" is based on counting inputs from a known clock rate
- Actions don't occur when writing value to counter

Frequency, Time Period, Resolution

Definitions

Frequency: How many times per second

• Time Period: Amount of time between successive events

• Resolution: Granularity in determining system events

Capture Basics

Alternatively, use CCR for compare...

Notes

• Capture time (i.e. count value) when Capture Input signal occurs

Capture Basics

Notes

- Capture time (i.e. count value) when Capture Input signal occurs
- When capture is triggered, count value is placed in CCR and an interrupt is generated

Notes

- Capture time (i.e. count value) when Capture Input signal occurs
- When capture is triggered, count value is placed in CCR and an interrupt is generated
- Capture Overflow (COV): indicates 2nd capture to CCR before 1st was read

Example.

Timers – STM32

- The general-purpose timers consist of a **16-bit (or 32bits) auto-reload counter** driven by a programmable prescaler.
- They may be used for a variety of purposes, including **measuring the pulse lengths of input signals** (<u>input capture</u>) or **generating output waveforms** (<u>output compare and PWM</u>).
- Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds
 using the timer prescaler and the RCC clock controller prescalers.
- General-purpose TIMx timer features include:
 - 16/32-bit up, down, up/down auto-reload counter.
 - 16/32-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65535.
 - Up to 4 independent channels for:
 - Input capture
 - Output compare
 - ► PWM generation (Edge- and Center-aligned modes) / One-pulse mode output

Timers – Basic architecture STM32.

Embedded systems with drones

3/8/2021

General-purpose timer block diagram

Embedded systems with drones

PATH: TimerX -Channel 4 output compare

Tommaso Polonelli

3/8/2021

39

3/8/2021

3/8/2021

STM32F4 Timers and Output Channels on GPIOs

Table 16. STM32L475xx pin definitions

Pin Number		Pin name		ıre		Pin functions		
LQFP64	LQFP100	(function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
-	1	PE2	I/O	FT	1	TRACECK, TIM3_ETR, TSC_G7_IO1, FMC_A23, SAI1_MCLK_A, EVENTOUT	-	
-	2	PE3	I/O	FT	-	TRACED0, TIM3_CH1. TSC_G7_IO2, FMC_A19, SAI1_SD_B, EVENTOUT	-	
-	3	PE4	I/O	FT	-	TRACED1, TIM3_CH2, DFSDM1_DATIN3, TSC_G7_IO3, FMC_A20, SAI1_FS_A, EVENTOUT	-	
-	4	PE5	I/O	FT	-	TRACED2, TIM3_CH3, DFSDM1_CKIN3, TSC_G7_IO4, FMC_A21, SAI1_SCK_A, EVENTOUT	-	
-	5	PE6	I/O	FT	-	TRACED3, TIM3_CH4, FMC_A22, SAI1_SD_A, EVENTOUT	RTC_TAMP3/ WKUP3	

Counting Modes (1/2)

- Some timers have three counter modes:
 - Up counting mode
 - Down counting mode
 - Center-aligned mode

Counting Modes (2/2)

- One counting mode only for timers with less than 4 channels:
 - Up counting mode

STM32F401 Timers Overview

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complemen- tary output	Max. interface clock (MHz)	Max. timer clock (MHz)
Advanced -control	TIM1 16-bit		Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	84	84
	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	42	84
General	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between1 and 65536	Yes	4	No	42	84
purpose	TIM9 16-bit		Up	Any integer between 1 and 65536	No	2	No	84	84
	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	84	84