Statistics 305/605: Introduction to Biostatistical Methods for Health Sciences

Chapter 18, part 3: Prediction intervals, r^2 , residual plots

Jinko Graham

Prediction Intervals (PIs)

Prediction Intervals (PIs)

- $\hat{y} = \hat{\alpha} + \hat{\beta}x$ is also our prediction of a *future* y at x.
- Future y's consist of the population parameter $\mu_{y|x}$ plus a random error.
- ▶ The CI is an interval that estimates the parameter $\mu_{y|x}$.
- ▶ In contrast, a PI is an interval that predicts $\mu_{y|x}$ **plus** a random error and so should be wider (more variable) than the CI.
- ▶ To construct an interval that contains, say, 95% of all future *y*'s, we need to account for 2 sources of variation:
 - 1. variation in $\hat{\mu}_{y|x} = \hat{\alpha} + \hat{\beta}x$, and
 - 2. variation in ϵ .
- As a result of the extra-variation due to ϵ in 2 above, over and above the variation in $\hat{\mu}_{y|x}$ in 1 accounted for by the CI, the PIs are wider than CIs.

► A level-C PI has the usual form of

estimate \pm margin of error,

where

- the estimate is \hat{y} , and
- ▶ the margin of error is SE(pred) times t^* , the upper (1 C)/2-critical value of the t-distribution with n 2 df.
- ▶ The PI is of similar form to the CI for $\mu_{y|x}$, except that $SE(\hat{y})$ is replaced with the larger **standard error of prediction**, SE(pred).
 - ▶ The text, page 430, provides the formula, which we'll skip. (Text's notation for SE(pred) is $\widehat{se}(\widetilde{y})$).

95% Cls and Pls for example data

- ▶ Predicted values \hat{y} and lower and upper limits of PI are in the columns fit, 1wr and upper, respectively.
- ▶ PIs are wider than CIs; e.g. in the low birth-weight babies data . . .

95% CI for the mean head circumference at gestational age 29 weeks is (26.22, 26.85) cm:

```
## gestage fit lwr upr
## 1 29 26.53581 26.21989 26.85172
```

95% PI for the head circumference at gestational age 29 weeks is (23.36, 29.71) cm:

```
## gestage fit lwr upr
## 1 29 26.53581 23.36391 29.7077
```

 r^2 in Simple Linear Regression

Coefficient of determination

- ▶ In simple line regression, the squared Pearson correlation, r^2 , is called the *coefficient of determination*
- $ightharpoonup r^2$ reflects how close the data are to the regression line.
- Specifically, r² is the fraction of the variation in the values of Y that is explained by the least-squares regression of y on x;
 - i.e. $r^2 = \text{explained variation/total variation.}$
- Examples:
 - ▶ if r = 1 or r = -1, $r^2 = 1$ and the regression explains 100% of the variation in y.
 - if r = .7 or r = -.7, $r^2 = .49$ and the regression explains 49% (about half) of the variation in y.

▶ Which of the two fitted models below do you think has a higher r^2 value?

- ▶ In the plot on the previous slide, the fitted line on the left accounts for 95% of the total variance in the responses, whereas the one on the right accounts for 70%.
- ► The more variance in the response that is accounted for by the regression model, the closer the data points will fall to the fitted regression line.
- ▶ If a model could explain 100% of the variance in *y*, the fitted values would be the observed values and all the data points would fall on the fitted line.

r^2 for low birth-weight babies

In the low birth-weight babies example, the coefficient of determination for the regression of head circumference on gestational age is $r^2 \approx 0.61$ (see demo)

[1] 0.6094799

Residual Plots

Residual plots

- Regardless of the coefficient of determination, we should look at the residuals to see what the data suggest about the adequacy of our regression model.
- ▶ Residuals are the discrepancies $y \hat{y}$; i.e., the vertical distances between the observed values and the fitted values.
 - ▶ They are the primary tool for checking model assumptions.

- ▶ We'll study regression diagnostics later in the course. For now, we only consider the plot of residuals vs. fitted values.
- ► This plot can show evidence of
 - 1. departures from the assumption of a linear model:
 - look for nonlinear trends
 - 2. departures from the assumption of constant SD
 - look for funnel shapes (e.g., text, page 435, Figure 18.11)
 - 3. departures from the assumption of no outlying/unusual data points:
 - look for unusually large residuals

Departures from linear model: EG.1

- Scatterplots of
 - ▶ (left) y vs. x with fitted regression line superposed, and
 - (right) residuals vs. \hat{y} .
- Both show that an obvious quadratic trend is missed by the fitted regression line.

Departures from linear model: EG.2

- Scatterplots of
 - ▶ (left) y vs. x with fitted regression line superposed, and
 - ightharpoonup (right) residuals vs. \hat{y} .
- Both show that a nonlinear trend is missed by the fitted regression line, but it is more obvious in the plot of the residuals vs. fitted values on the right.

Departures from constant SD

- We can also use the plot of residuals vs. ŷ's to look for non-constant SD in the response over the values of x
- ▶ Plot below suggests non-constant SD.
 - ▶ The funnel shape indicates that as \hat{y} increases so does the spread of the residuals;
 - ▶ Suggests that, as population-mean response $\mu_{y|x}$ increases, so does the response sd, $\sigma_{y|x}$ (violating model assumptions; see ch18part1, slides 6-9).

Outliers

- ▶ Finally, the plot of the residuals vs \hat{y} 's can help to find outliers.
- ► Let's look at the regression of head circumference on gestational age in the low-birthweight-babies data ...

Interpretation

- ► There may be a few outliers among the observations such as infants 29, 31 and 33.
 - ▶ Infant 29 has a head circumference that is smaller than expected given his/her gestational age (negative residual)
 - ▶ Infants 31 and 33 have head circumferences that are larger than expected given their gestational age (positive residuals).
- ► However, there is no obvious non-linear trend that we've missed and no funnel shapes in the pattern of residuals.