ENSTA IP Paris

http://cas.ensmp.fr/~petit/

19 février 2021

Robot à roues

On considère un robot mobile (tel qu'utilisé dans de nombreux concours de robotique). Ce robot admet sur un même essieu deux roues motorisées de manière indépendante. On note $(x,y) \in \mathbb{R}^2$ les coordonnées cartésiennes du milieu de l'essieu, $\theta \in [0,2\pi[$ l'angle du robot avec un axe fixe, Ω_d et Ω_g les vitesses de rotation des roues droite et gauche. On suppose que les roues roulent sans glisser ni déraper.

1. Montrer que la dynamique est

$$\frac{d}{dt}x = v\cos\theta, \quad \frac{d}{dt}y = v\sin\theta, \quad \frac{d}{dt}\theta = \omega$$
 (1)

où (x, y, θ) est l'état et $u = (v, \omega) \in \mathbb{R}^2$ est le contrôle que l'on relira à Ω_d et Ω_g , le rayon ρ des roues et l la distance entre les roues.

2. La dynamique des moteurs est décrite par $(\nu = d, g)$

$$J\frac{d}{dt}\Omega_{\nu} = C_{\nu} + kI_{\nu}, \quad L\frac{d}{dt}I_{\nu} = -RI_{\nu} - k\Omega_{\nu} + V_{\nu}$$

où (J,k,R,L) sont des paramètres positifs. Le contrôle est la tension V_{ν} ; Ω_{ν} est la vitesse de rotation et I_{ν} le courant. C_{ν} est le couple extérieur supposé constant. Sous l'hypothèse J et L petits, montrer que l'on a $\Omega_{\nu} \approx \frac{1}{k}V_{\nu} + \frac{R}{k^2}C_{\nu}$. Dans la suite on néglige $\frac{R}{k^2}C_{\nu}$ et donc $\Omega_{\nu} \approx \frac{1}{k}V_{\nu}$. Réécrire le modèle de la question précédente en fonction de V_d et V_g .

- 3. Quels sont les points d'équilibre du système? Écrire autour d'un point d'équilibre le système linéarisé. Étudier sa commandabilité.
- 4. Dans cette question on désire suivre l'axe des abscisses à une vitesse a>0 constante :

$$x_r(t) = at$$
, $y_r(t) = 0$, $\theta_r(t) = 0$, $v_r(t) = a$, $\omega_r(t) = 0$

Pour cela on pose $x=x_r+\Delta_x, y=y_r+\Delta_y, \theta=\theta_r+\Delta_\theta, v=v_r+\Delta_v$ et $\omega=\omega_r+\Delta_\omega$ où les écarts Δ_σ , $\sigma=x,y,\theta,v,\omega$ sont supposés petits.

(a) Montrer qu'au premier ordre, les équations linéaires satisfaites par les Δ_{σ} sont

$$\begin{cases}
\frac{d}{dt}\Delta_x = \Delta_v \\
\frac{d}{dt}\Delta_y = a\Delta_\theta \\
\frac{d}{dt}\Delta_\theta = \Delta_\omega
\end{cases}$$
(2)

avec $(\Delta_v, \Delta_\omega)$ comme commande.

- (b) Donner un bouclage d'état qui stabilise asymptotiquement le système ci-dessus.
- 5. Dans cette question on désire suivre une courbe régulière paramétrée en abscisse curviligne $s \mapsto (x_r(s), y_r(s))$. On note $\theta_r(s)$ l'angle de sa tangente et $\kappa_r(s)$ sa courbure. On rappelle que (formules de Frénet pour les courbes planes)

$$\frac{dx_r}{ds} = \cos \theta_r, \quad \frac{dy_r}{ds} = \sin \theta_r, \quad \frac{d\theta_r}{ds} = \kappa_r$$

On souhaite suivre cette courbe avec une vitesse constante a>0. Aux écarts cartésiens (Δ_x,Δ_y) utilisés dans la question précédente on préfère les écarts tangentiel Δ_{\parallel} et normal Δ_{\perp} définis par

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_r \\ y_r \end{pmatrix} + \Delta_{\parallel} \begin{pmatrix} \cos \theta_r \\ \sin \theta_r \end{pmatrix} + \Delta_{\perp} \begin{pmatrix} -\sin \theta_r \\ \cos \theta_r \end{pmatrix}$$

(a) Montrer que les commandes de référence sont

$$v_r(t) = a, \quad \omega_r(t) = a\kappa_r(at)$$

En déduire qu'au premier ordre les écarts Δ_{σ} $(\sigma = \parallel, \perp, \theta, v, \omega)$ vérifient

$$\begin{cases}
\frac{d}{dt}\Delta_{\parallel} = a\kappa_r(at)\Delta_{\perp} + \Delta_v \\
\frac{d}{dt}\Delta_{\perp} = -a\kappa_r(at)\Delta_{\parallel} + a\Delta_{\theta} \\
\frac{d}{dt}\Delta_{\theta} = \Delta_{\omega}
\end{cases}$$
(3)

avec $(\Delta_v, \Delta_\omega)$ comme commande.

- (b) On suppose dans (3) que la courbure $\kappa_r(s)$ varie peu en fonction de $s:\kappa_r(at)\approx \bar{\kappa}_r$ est en première approximation indépendant de t. Donner un bouclage d'état stabilisant.
- (c) Comment se ramener à ce qui précède si l'on souhaite parcourir la même courbe $s \mapsto (x_r(s), y_r(s))$ mais avec une vitesse variable $a(t) = \frac{d}{dt} s_r$ régulière correspondant à une loi horaire de $t \mapsto s_r(t)$ définie par avance?