7

ž		
ent then that the	1	
i i		^
į	2	2h
Ē		///
- Curt	1	χ×
_		\

6

1 2 3

4

5

1

2

1 2

2 3

1

1 2

3

What is claimed is:

the encoder and the decoder.

1/	A communication	s system comprising:
	an encoder to en	ode a digitized speech signal;
	a communication	link communicatively coupled to the encoder;

communication link; and a short term/excitation enhancement circuit in communication with

a decoder communicatively coupled to the encoder via the

- 2. The system according to claim 1 where the decoder includes the short term excitation enhancement circuit.
- 3. The system according to claim 1 where the short term excitation enhancement circuit operates to improve the perceptual quality of speech data for reproduction.
- 4. The system according to claim 1 where the system employs eXtended code-excited linear prediction.
- 5. The system according to claim 1 where the system employs codeexcited linear prediction.
- 6. The system according to claim 1 where the short term excitation enhancement circuit is distributed between the encoder and the decoder.
- 7. The system according to claim 1 where the short term excitation enhancement circuit places at least one pulse, in addition to at least one current excitation pulse, within a speech sub-frame.
- 8. The system according to claim 7 where the short term excitation enhancement circuit uses a weighted excitation pulse to estimate a location of a correlation peak within the speech sub-frame.

1	1	
Tight of the tight	2	۸.
= i	3	\emptyset
11		1
įį	1	`

2

3

1

2

1

2

1

2

1

2

1

2

3

1

2

1

2 3

9.	The	system	according	to	claim	8	where	the	short	term	excitat	tion
enhancement	circui	t uses th	e estimated	l lo	cation	of	the corr	elati	on pea	ık to p	lace the	e at
least one pulse	э.											

- The system according to claim 1 where the short term excitation 10. enhancement circuit performs short term excitation within a pitch lag.
 - A communidations system comprising: И.
- a short term excitation enhancement circuit that improves the perceptual quality of speeth data for reproduction.
- 12. The system according to claim 11 where the short term excitation enhancement circuit places at least one pulse, in addition to at least one current excitation pulse, within a speech sub-frame.
- 13. The system according to claim 12 where the short term excitation enhancement circuit uses a weighted excitation pulse to estimate a location of a correlation peak within the speech sub-frame.
- The system according to claim 13 where the short term excitation 14. enhancement circuit uses the estimated location of the correlation peak to place the at least one pulse.
- 15. The system according to claim 11 where the short term excitation enhancement circuit performs short term excitation within a pitch lag.
- 16 The system according to claim 11 where the system employs eXtended code-excited linear prediction.
- The system according to claim 11 where the system employs code-17. excited linear prediction.
- 18. The system according to claim 11 where the short term excitation enhancement circuit is included on a decoder of the communication system.

19.	A meth	d to	perform	excitation	enhancement	on	speech	data,	the
method compr	- 1				7				
	analyzing								
	performi	ng sho	ort term	excitation	nhancement i	n ac	cordance	e with	the
analyzed codeo	d signal.								

- 20. The method according to claim 19 where the analyzed coded signal includes a past weighted excitation signal.
- 21. The method according to claim 19 where analyzing the coded signal further includes estimating a location of a correlation function within a current subframe.
- 22. The method according to claim 21 where estimating the location of the correlation function is based on a past weighted excitation signal.
- 23. The method according to claim 22 further comprising adding a pulse, in addition to at least one current excitation pulse, to a current sub-frame to produced an enhanced excitation signal.
- 24. The method according to claim 23 further comprising using the enhanced excitation signal during the reconstruction of the original speech signal.
- 25. The method according to claim 22 further comprising transmitting the weighted excitation signal from an encoder to a decoder via a communication link.
- The method according to claim 19 further comprising performing code-excited linear prediction to generate the coded signal.
- 27. The method according to claim 19 further comprising performing eXtended code-excited linear prediction to generate the coded signal.