Теорема о гомоморфизме колец

Теорема 2

Пусть K, L — коммутативные кольца, $f: K \to L$ — гомоморфизм. Тогда $K/\mathrm{Ker}(f) \simeq \mathrm{Im}(f)$. Более того, отображение $\overline{f}: K/\mathrm{Ker}(f) \to \mathrm{Im}(f)$, заданное формулой $\overline{f}(\overline{x}) := f(x)$, является изоморфизмом колец.

Доказательство. • Докажем корректность определения \overline{f} . Пусть $\overline{x} = \overline{y}$. Тогда $x - y \in \mathrm{Ker}(f)$, а значит, f(x) = f(y) + f(x - y) = f(y) + 0 = f(y).

ullet Теперь ясно, что \overline{f} — гомоморфизм:

 $\overline{f}(\overline{x}+\overline{y})=\overline{f}(\overline{x}+y)=f(x+y)=f(x)+f(y)=\overline{f}(\overline{x})+\overline{f}(\overline{y});$ $\overline{a}+\overline{b}:=\overline{a+b};$ $\overline{a}\cdot\overline{b}:=\overline{ab}.$ $\overline{f}(\overline{x}\cdot\overline{y})=\overline{f}(\overline{x}\cdot\overline{y})=f(xy)=f(x)f(y)=\overline{f}(\overline{x})\cdot\overline{f}(\overline{y}).$ Проверили на f(a+b)=f(a)+f(b) и f(a*b)=f(a)*f(b)

ullet Очевидно, \overline{f} — сюръекция: $\forall y \in \mathrm{Im}(f) \; \exists x \in K \;$ такой, что y = f(x). Тогда и $y = \overline{f}(\overline{x})$.

ullet Пусть $\overline{a} \in \mathrm{Ker}(\overline{f})$. Тогда $0 = \overline{f}(\overline{a}) = f(a)$, а значит, $a \in \mathrm{Ker}(f)$, откуда следует $\overline{a} = \overline{0}$. Следовательно, $\mathrm{Ker}(\overline{f}) = \{\overline{0}\}$.

ullet Таким образом, \overline{f} — изоморфизм, а значит, $K/\mathrm{Ker}(f)\simeq\mathrm{Im}(f).$ Сюръекция + инъекция

 $Ker(\neg f)$ – ядро, если $\neg f(\neg a) = 0$, аналогично для Ker(f) т.к. $\neg a = \neg 0 \Rightarrow a - 0 \in Ker(f) \Rightarrow Ker(\neg f) = \{\neg 0\}$

 $x \in K$, $\neg x - вычет, состоящий из элементов кольца сравнимых с <math>x$. $\neg x = x + I = \{x + a : a \in I\}$

K/Ker(f) (факторкольцо по идеалу) ~ Im(f)

Ker(f) – идеал коммутативного кольца (лемма 7) Im(f) – образ ($\forall y \in L, \exists x \in K: f(x)=y$)

 $\neg x = \neg y \iff x - y \in Ker(f) \implies f(x - y) = 0$ В этом пункте доказываем корректность

равны друг другу: f(x) = f(y) + f(x - y) = f(y) + 0

определения $\neg f$, т.е. то, что значения отображения от равных $\neg x = \neg y$ также будут

Т.к. задавали отображение $\neg f$ по правилу $f(x) = \neg f(\neg x)$, то очевидно, что $\neg f(\neg x) = \neg f(\neg y)$

Факторкольцо: $K/I = \{ \neg a : a \in K \}$

ullet Пусть $a\in {
m Ker}(f)$. Из f(a)=0=f(0) следует, что a=0 (так как f — инъекция).

 \Leftarrow • Пусть f(a) = f(b). Тогда f(a - b) = f(a) - f(b) = 0. • Значит, $a - b \in \operatorname{Ker}(f) = \{0\}$, откуда a = b. Таким образом, f — инъекция, а значит, мономорфизм.

K, L – коммутативные кольца (ассоциативность +*, коммутативность +*, 0, обратный элемент по +, дистрибутивность) Отображение $f: K \to L$ – гомоморфизм:

 $(f(a+b)=f(a)+f(b),\,f(a*b)=f(a)*f(b),$ для любых $a,b\in K$)

Теорема 13.1 (Теорема о гомоморфизме колец). $R/\ker \varphi \simeq \operatorname{Im} \varphi$.

Доказательство. Пусть $I := \ker \varphi$. Тогда из доказательства теоремы о гомоморфизме для групп отображение $\psi \colon R/I \to \operatorname{Im} \varphi, \ \psi(a+I) := \varphi(a)$ является изоморфизмом групп (по сложениею).

Остается проверить, что ψ — гомоморфизм колец.

$$\psi((a+I)(b+I)) = \psi(ab+I) = \varphi(ab) = \varphi(a)\varphi(b) = \psi(a+I)\psi(b+I).$$

Пример. K — поле, $a \in K$, $\varphi \colon K[x] \to K$, $f \mapsto f(a)$. Это гомоморфизм, он сюръективен $(b = \varphi(b))$. $\ker \varphi = (x-a) \implies K[x]/(x-a) \simeq K$.

Поле частных

- Пусть K коммутативное кольцо без делителей ноля (то есть, если $a,b\in K$ и ab=0, то a=0 или b=0).
- ullet Обозначим через M множество всех дробей $rac{a}{b}$, где $a,b\in K$, b
 eq 0.
- Пусть $\frac{a}{b} \sim \frac{c}{d} \iff ad = bc$.

Делитель ноля – ненулевой элемент, произведение которого на другой ненулевой элемент равно нулю

В кольце вычетов \mathbb{Z}_m по модулю m, если k не взаимно просто с m, то вычет k является делителем нуля. Например, в кольце \mathbb{Z}_6 элементы 2. 3. 4 — делители нуля:

$$2_6\cdot 3_6=0;\ 4_6\cdot 3_6=0$$

Свойство 1

$$\frac{0}{b} \sim \frac{c}{d} \iff c = 0.$$

Доказательство. \Leftarrow . Если c=0, то $0 \cdot d=0=b \cdot 0$.

 \Rightarrow . $\frac{0}{b}\sim \frac{c}{d}\Rightarrow 0=0\cdot d=bc$. Так как по определению $b\neq 0$, а делителей 0 в K нет, c=0.

Свойство 2

$$\frac{a}{a} \sim \frac{c}{d} \iff c = d.$$

Доказательство. Очевидно, $a \neq 0$. Следовательно, $\frac{a}{a} \sim \frac{c}{d} \iff ad = ac \iff a(d-c) = 0 \iff d-c = 0 \iff c = d$.

Свойство 3

Сокращение дроби. $\frac{a}{b} \sim \frac{ac}{bc}$ при $c \neq 0$.

Доказательство. abc-bac=0. Просто доказали возможность сокращения на с

Алгебра. Глава 0. Основные понятия.

Д.В.Карпов

Лемма 12

 \sim — отношение эквиваленности.

Доказательство. • Рефлексивность очевидна.

• Симметричность.

$$rac{a}{b}\simrac{c}{d}\iff ad=bc\iff cb=da\iffrac{c}{d}\simrac{a}{b}.$$
 Коммутативное кольцо в помощь

- ullet Транзитивность. Если $rac{a}{b}\simrac{c}{d}$ и $rac{c}{d}\simrac{e}{f}$, то $ad=\overline{bc}$ и cf=de.
- ullet Если хотя бы одно из a,c,e равно 0, то по Свойству 1 равны и два других. Тогда $\frac{a}{b}\sim \frac{e}{f}$. $_{\text{один из числителей}\,=\,0\,\,\text{и}\,\,0/b\,\sim\,c/d\,<=>\,\,c=0}$
- Пусть $0 \notin \{a, c, e\}$. Тогда перемножим полученные равенства и сократим на $cd \neq 0$: $adcf = bcde \Rightarrow af = be \Rightarrow \frac{a}{b} \sim \frac{e}{f}$.

