All-pairs shortest path

		T	_	3
$D^{(1)}$:	1	0	8	5
	2	3	0	8
	3	∞	2	0

2

2

In each iteration $k = 1 \dots n$, see if it's cheaper to go from i to j via k.

After the kth iteration, $d_{ij}^{(k)}$ will be the shortest path from i to j that does not pass through any vertex > k.

Recurrence

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0\\ \min(d_{ij}^{(k-1)}, d_{ij}^{(k-1)} + d_{kj}^{(k-1)}) & \text{if } k \ge 1 \end{cases}$$

Floyd-Warshall's algorithm

Since $d_{ik}^{(k)}=d_{ik}^{(k-1)}$ and $d_{kj}^{(k)}=d_{kj}^{(k-1)}$, no entry with either subscript =k changes during the kth iteration.

Therefore we can perform the computation with only copy of D.

FLOYD-WARSHALL(W)

- 1. $n \leftarrow rows[W]$
- 2. $D \leftarrow W$
- 3. for $k \leftarrow 1$ to n
- 4. do for $i \leftarrow 1$ to n
- 5. do for $j \leftarrow 1$ to n
- 6. $\mathbf{do}\ d_{ij} \leftarrow \min(d_{ij}, d_{ik} + d_{kj})$

Analysis and comparison

- Clearly, FLOYD-WARSHALL is an $O(n^3)$ algorithm.
- An adjacency-list implementation of Dijkstra's algorithm is $O(n^2)$.
- Calling Dijkstra's algorithm n times would cost $O(n^3)$.
- Why use Floyd-Warshall's algorithm then?
- The constant inside $O(n^3)$ is much smaller for Floyd-Warshall.
- For sparse graphs, however, there is a $O(n \ e \lg n)$ implementation of Dijkstra's algorithm, where e = number of edges.