Mechatronic Systems Engineering

Truck platooning system

Mohammadreza Bagherifar (7206924) Mariam Jamal(7206873) Sergey Rogachevsky (7104711) Anas Abulehia (7207091)

Fachhochschule Dortmund

System Engineering according to INCOSE

System engineering is an interdisciplinary approach and means to enable the realization of successful systems.

System Engineering: CONSENS

Fachhochschule

Requirements

- 1. Geometry
- 2. Communications
- 3. Safety
- 4. Driver satisfaction
- 5. System interaction

	Requriement list						
No	Requriement descript	ion	Type (D/W)				
1	Geometry						
1.1	The gap between following trucks should be not more than 3 meters.						
1.2	Road clearance of each truck should be not less than 30cm.						
1.3	Turn radius of each truck should be less than 15m						
1.4	The minimum load should be more than 10 tonns						
1.5	Each fully loaded truck should be able to make a trip on a distance at least 1500km.						
1.6	Size of trucks:						
1.6.1		lenght not more than 20m	W				
1.6.2		width not more than 2.5 meters	D				
1.6.3		height not more than 3.5 m	D				
1.7	The length of a platoon should be limited to 7 vehicles D						
2	Communications						
2.1	All trucks should be able to broadcast and recieve platooning information through V2V D						
2.2	The system in the ego truck shall broadcast its actual and intended acceleration via V2V to enable following vehicles to detect emergency braking events.						
2.3	The ego truck shall be informed in case of emergency braking events of the preceding trucks in the platoon. Therefore at least the requested and actual acceleration value of the preceding platoon truck must be received and to be compared with a defined acceleration threshold value.						
600.50	All trucks should be able to use following protocols and standards for communication: Wifi,						

Use Case Diagram

Activity Diagram

Functions

Fachhochschule Dortmund

Active structure

Shape

The shape is from Carla , Tesla Truck model

System of objectives

Correlation of objectives

	103.1	103.2	103.3	IO3.4	103.5	103.6	103.7
103.1							
103.2	+						
103.3	-	-	2	7			
103.4	0	0	0				
103.5	0	12	123	0		*	*
103.6	0	0-20	14	0	-		
103.7	0	0	0	-	0	0	

Environment

Fachhochschule

d Tiff

Application scenarios

Fachhochschule Dortmund

Macro architecture

Micro architecture (Sensors)

Micro Architecture (V2V Communication System)

Agents behaviour

Time Automaton

- Our system contains of 2 main actors, leading vehicle and following vehicle. Each one has a different role.
- In the Time Automatons, they reflect part of the total logical behavior.
 Some properties are checked to make sure that the system behaves properly.
- Some Requirements also have been verified.

Throttle, break and Speed	Control Signals required for longitudinal control of any vehicle.
Existence of platoon, number of vehicles (follower),	Required to have a limited size platoon length
Request, approve reject	Joining the platoon by members.
Kill platoon	The leading vehicle kill the platoon

Time Automaton Follower Vehicle

Multiple Follower objects are instantiated to mimic The platoon system

Time Automaton Leading Vehicle

In a platoon, one leading vehicle only Existed.

To enable safe communication more complicated model is required.

A Demo will show it in action.

Correctness verification

Syntax	Property			
E<> v1.listen	Is there a possibility to receive signals in a platoon			
A[] num_v <= max_v	Always number of vehicles in the platoon less than max number of vehicles in the platoon(verified requirements)			
A[] not deadlock	The system is free of deadlock(verified requirements)			
E<> v1.listen and not vleading.manual_driving and not vleading.start	The platoon works when the leading vehicle in platoon. states not manual driving nor start states.			

Overall Agent Behaviour Leading Vehicle

Overall Agent Behaviour Follower Vehicle

Cognitive operator

Cognitive operator. Scikit-learn. Random forest

Assigned_Role_Id

Route_Destination_Id

Distance

Platoon_Destination_Id

Platoon_Number

Max_Platoon_Size

Platoon_Size

Distance_to_platoon

Weather_condition

Truck_load

Truck_load_limit

Timeout

							12:	
	Assigned_Role_Id	Route_Destination_Id	Distance	Platoon_Destination_Id	Platoon_Number	Max_Platoon_Size	Platoon_Size	Distanc
0	0	1	400	1	1	1	1	
1	0	1	400	1	1	2	2	
2	0	1	400	1	1	3	3	
3	1	1	400	0	0	0	0	
4	2	1	400	1	1	2	1	

[[2 0 1]				
[1 2 0]				
[0 0 1]]	precision	recall	f1-score	support
0	0.67	0.67	0.67	3
1	1.00	0.67	0.80	3
2	0.50	1.00	0.67	1
accuracy			0.71	7
macro avg	0.72	0.78	0.71	7
weighted avg	0.79	0.71	0.72	7
0.71428571428	357143			

Model representation in Carla

- A very simple demo via Carla.
- It is a Simple environment.
- The scenario is very simple,
 All vehicles are from the same type, same load.
- Control Signals are shared between them both brake and throttle.

Thank you!

