Laboratorium 12

Całkowanie numeryczne metodą Simpsona

Anastasiya Hradouskaya

06.06.2021

Cel ćwiczenia

Zapoznanie się z całkowaniem numerycznym metodą Simpsona.

1. Opis problemu

Celem zadania jest obliczenie numeryczne całki typu:

$$I = \int_0^\pi x^m \sin(kx) \, dx$$

metodą Simpsona dla następujących zestawów parametrów:

- a) m = 0, k = 1
- b) m = 1, k = 1
- c) m = 5, k = 5

W celu sprawdzenia poprawności metody musimy dysponować wartościami dokładnymi, które można łatwo obliczyć korzystając z rozwinięcia funkcji sin(x) w szereg:

$$\sin(x) = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

Wstawiając powyższe rozwinięcie pod całkę i wykonując całkowanie każdego elementu szeregu dostajemy:

$$I = \int_{a}^{b} x^{m} \sin(kx) dx = \int_{a}^{b} \sum_{i=1}^{\infty} (-1)^{i} \frac{(kx)^{2i+1}}{(2i+1)!} x^{m} =$$
$$= \sum_{i=0}^{\infty} (-1)^{i} \frac{(kx)^{2i+m+2}}{k^{m+1}(2i+1)! (2i+m+2)} \bigg|_{a}^{b}$$

Sumę szeregu obliczaliśmy sumując 30 pierwszych wyrazów.

Następnie wykonać to samo zadanie dla następującej liczby węzłów n = 2p + 1 = 11, 21, 51, 101, 201.

2. Opis metody

Kwadratury Newtona-Cortesa – metody obliczania całek oznaczonych, opierające się na przybliżeniu funkcji podcałkowej wielomianem Lagrange'a stopnia co najwyżej N na siatce równoległych węzłów. W kolejnym kroku na drodze odpowiednich obliczeń i postawień wyznacza się współczynniki kwadratury, które pozwalają na uzyskanie ostatecznego wyniku całki oznaczonej.

Całkowanie metodą Simpsona – jedna z metod przybliżania wartości całki oznaczonej funkcji rzeczywistej, kwadratura rzędu 2. Funkcja podcałkowa jest przybliżana parabolą rozpiętą na dwóch krańcach przedziału całkowania oraz jego środku.

Wartość całki wyraża się następującą sumą:

$$S = \sum_{i=0}^{\binom{N}{2}-i} \frac{h}{3} [f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})]$$

gdzie krok w zależności od liczby węzłów wynosi:

$$h_n = \frac{b-1}{2^{n+1}}, \qquad n = 0, 1, 2, \dots, 8, \qquad N = 2^{n+1}, \qquad i = 0, 1, 2, 3, \dots, N.$$

3. Wykresy i wyniki

Obliczyliśmy wartości całki metodą rozwinięcia funkcji podcałkowej w szereg dla parametrów m i k. Wykresy zmiany wartości sum dla liczby sumowanych wyrazów l=2,3,...,30 narysowaliśmy w Pythonie za pomocą biblioteki matplotlib.

Rys.1 Zmiana wartości sumy dla k = 1, m = 0

Rys.2 Zmiana wartości sumy dla k = 1, m = 1

Rys.3 Zmiana wartości sumy dla k = 5, m = 5

Dla dwóch pierwszych zestawów parametrów wyniki były zgodne z oczekiwanymi. Możemy wywnioskować, że wraz ze wzrostem wartości parametrów m i k należy zwiększyć liczbę symowanych wyrazów.

Następnie wartości metodą Simpsona dla następującej liczby węzłów n = 2p + 1 = 11, 21, 51, 101, 201. Narysowaliśmy wykresy zależności |C - I| od ilości węzłów, gdzie C – wartość całki obliczonej numerycznie, I – wartość dokładna całki.

Rys.4 Zależność |C-I| od ilości węzłów dla k = 1, m = 0

Rys.5 Zależność |C-I| od ilości węzłów dla k=1, m=1

Rys.6 Zależność |C-I| od ilości węzłów dla k = 5, m = 5

Możemy zauważyć, że różnica pomiędzy C a I staje się coraz większa wraz ze wzrostem parametrów m i k. Na dokładność wyników ma także wpływ ilość węzłów (im większe jest n, tym dokładniejsze są wyniki).

4. Wnioski

Metoda Simpsona pozwala na uzyskanie wyniku przybliżonego do faktycznej wartości całki oznaczonej. Metoda jest dobra do obliczenia wartości całki funkcji, które nie przyjmują dużych wartości.

Bibiliografia

http://home.agh.edu.pl/~chwiej/mn/calkowanie 1819.pdf

http://fluid.itcmp.pwr.wroc.pl/~znmp/dydaktyka/metnum/simpson.pdf