AJT Notes (3/19/21)

- Start with single-particle momentum distribution in partial waves then use 142 (r) 2 to define PA(r)

$$\hat{n}_{j,\tau}(q) = V \left[2 \theta(k_{F}^{2} - q) + \frac{2}{\pi} \int_{G}^{G} dk k^{2} \int_{-1}^{1} d(\hat{q} \cdot \hat{k}) \times \left(S U_{150}(k, k) \left[\theta(k_{F}^{2} - |\hat{q} - 2\vec{k}| \right) + \frac{1}{4} \theta(k_{F}^{2} - |\hat{q} - 2\vec{k}| \right) \right] + \frac{2J+1}{2} S U_{35,-35}(k, k) \theta(k_{F}^{2} - |\hat{q} - 2\vec{k}| \right) \theta(k_{F}^{2} - |\hat{q} - 2\vec{k}| \right) \theta(k_{F}^{2} - |\hat{q} - 2\vec{k}|) \theta(k_{F}^{2} - |\hat{q} - 2\vec{k}|) \times \frac{1}{4} \left(\frac{2}{\pi} \right)^{2} \sum_{x=35,39} \int_{0}^{G} dk k^{2} \int_{0}^{G} dk k^{2} \int_{-1}^{1} d(\hat{k} \cdot \hat{k}) \left(S U_{36}(k, |\vec{q} - 2\vec{k}|) \times S U_{36}^{4} \left(|\vec{q} - 1\vec{k}| + k \right) \theta(k_{F}^{2} - |\vec{1}\vec{k} - \vec{k}|) \right) + \frac{1}{4} S U_{36}(k, |\vec{q} - 1\vec{k}| + k \right) \theta(k_{F}^{2} - |\vec{1}\vec{k} - \vec{k}|) \theta(k_{F}^{2} - |\vec{1}\vec{k} - \vec{k}|) \times \frac{1}{4} S U_{36}(k, |\vec{q} - 1\vec{k}| + k \right) \left(\frac{1}{4} \left(-\frac{1}{4} \vec{k} - \vec{k} \right) \right) \theta(k_{F}^{2} - |\vec{1}\vec{k} - \vec{k}|) + \frac{2J+1}{4} S U_{35,-x}(k, |\vec{q} - 2\vec{k}|) \times S U_{x-36}^{4} \left(|\vec{q} - 1\vec{k}| + k \right) \left(\frac{1}{4} \left(-\frac{1}{4} \vec{k} - \vec{k} \right) \right) \theta(k_{F}^{2} - |\vec{1}\vec{k} - \vec{k}|) + \frac{1}{4} S U_{36}(k_{F}^{2} - |\vec{1}\vec{k} - \vec{k}|) \theta(k_{F}^{2} - |\vec{1}\vec{k} - \vec{k}|) + \frac{1}{4} S U_{36}(k_{F}^{2} - |\vec{1}\vec{k} - \vec{k}|) \theta(k_{F}^{2} - |\vec{1}\vec{k} - \vec{k}|) \theta(k_{F}^{2} - |\vec{1}\vec{k} - \vec{k}|) + \frac{1}{4} S U_{36}(k_{F}^{2} - |\vec{1}\vec{k} - \vec{k}|) \theta(k_{F}^{2} - |\vec{1}\vec{k} - \vec{k}|) + \frac{1}{4} S U_{36}(k_{F}^{2} - |\vec{k}|) + \frac{1}{4} S U_{36}(k_{F}^{2} - |\vec{k$$

(1)

So for Section:
$$T = 0$$
, $S = 1$

$$\int_{1}^{2}(q) = V \left[2 \beta \left(k_{F} - q \right) + \frac{2}{\pi} \left(15 \pi i \right) \int_{0}^{\infty} \partial_{i} k^{2} \int_{0}^{1} \left(\hat{q} \cdot \hat{k} \right) \times \delta U_{2S_{i} - 2S_{i}} \left(k_{i} k_{i} \right) \partial_{i} \left(k_{F}^{2} - q \right) + \frac{1}{\pi} \left(\frac{1}{\pi} \right)^{\lambda} \frac{\left(15 \pi i \right)}{2} \sum_{\kappa = 3i, j \neq i} \int_{0}^{\infty} \partial_{i} k^{2} \int_{0}^{1} \partial_{i} \left(k^{2} \cdot \hat{k} \right) \times \delta U_{2S_{i} - 2S_{i}} \left(k_{i} \cdot \hat{k} \right) \int_{0}^{\infty} \partial_{i} k^{2} \int_{0}^{1} \partial_{i} \left(k^{2} \cdot \hat{k} \right) \left(k_{F}^{2} - q \right) + \frac{1}{\pi} \left(\frac{1}{\pi} \right)^{\lambda} \frac{\left(15 \pi i \right)}{2} \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left(k_{F}^{2} - k_{F}^{2} \right) \int_{0}^{\infty} \partial_{i} k^{2} \times \delta \left($$

Then
$$\langle \Lambda_{\lambda}(q) \rangle_{0} = 4\pi \int_{0}^{\infty} dr r^{2} \frac{\Lambda_{\lambda}(q)}{V}$$
 (5)

$$P^{d}(q) = q^{2} \langle \Lambda_{\lambda}(q) \rangle_{0} / A$$
 (6)

Given $\int dq P^{d}(q) = 1$. Also chiech

$$\int P^{A}(q) dq = 1$$
. Under both are correctly

Normalized that dc

$$A_{\lambda}^{A} = \int_{2}^{\infty} dq P^{A}(q)$$

$$\int_{\lambda}^{\infty} dq P^{d}(q)$$

* Guestions:

- Factor of 2T+1 for Julion?

- Swithing to K_{-array} ?

- Swithing to K_{-array} ?

- Check equations in single-particle-mountain-dist,py

~ I da PA(q) = Z/A for asymmetric nuclai?