The Optimal design of Climate Agreements Inequality, Trade and Incentives for carbon policy WORK IN PROGRESS

Thomas Bourany
The University of Chicago

Econ Dynamics & Financial Markets

February 2024

▶ What is the optimal taxation of energy in the presence of climate externality and inequality?

- ▶ What is the optimal taxation of energy in the presence of climate externality and inequality?
- ► Fossil fuels taxation and climate policy redistribute across countries through
 (i) energy markets (ii) change in climate and (iii) reallocation of activity through trade

- ▶ What is the optimal taxation of energy in the presence of climate externality and inequality?
- ► Fossil fuels taxation and climate policy redistribute across countries through
 (i) energy markets (ii) change in climate and (iii) reallocation of activity through trade
- Countries have differing incentives to join
 e.g. cold, "closed" or fossil-rich countries are better off outside "climate clubs"

- ▶ What is the optimal taxation of energy in the presence of climate externality and inequality?
- ► Fossil fuels taxation and climate policy redistribute across countries through
 (i) energy markets (ii) change in climate and (iii) reallocation of activity through trade
- ➤ Countries have differing incentives to join e.g. cold, "closed" or fossil-rich countries are better off outside "climate clubs"
- ⇒ Designing a climate agreement entails determining *jointly* the level of carbon tax and the club of participating countries

Introduction – this project

- ► Trade-off between intensive margin and extensive margin :
 - Climate club with a small number of countries, higher tax and large emissions reductions
 - Extensive climate agreements with a large number of countries but lower optimal tax to accommodate participation constraints

Introduction – this project

- ► Trade-off between intensive margin and extensive margin :
 - Climate club with a small number of countries, higher tax and large emissions reductions
 - Extensive climate agreements with a large number of countries but lower optimal tax to accommodate participation constraints
- ► Study an Integrated Assessment Model (IAM) with heterogeneous countries & trade to :
 - Evaluate the welfare costs of global warming and solve optimal carbon policy
 - o Analyze the strategic implications of joining climate agreements
 - Design the optimal size of the climate club

Introduction – this project

- ► Trade-off between intensive margin and extensive margin :
 - Climate club with a small number of countries, higher tax and large emissions reductions
 - Extensive climate agreements with a large number of countries but lower optimal tax to accommodate participation constraints
- ► Study an Integrated Assessment Model (IAM) with heterogeneous countries & trade to :
 - Evaluate the welfare costs of global warming and solve optimal carbon policy
 - o Analyze the strategic implications of joining climate agreements
 - Design the optimal size of the climate club
- ▶ Preview of the result :
 - Differing incentives to join club through exposure to GE effects on energy & good prices
 - Trade matters as it creates interdependence across countries
 - Damages of climate change propagate across countries
 - Leakage effect of carbon taxation : reallocate activity to outside the club
 - o Generate policy leverage (tariffs) for making the climate club sustainable

Literature

- Climate change & optimal carbon taxation
 - RA model: Nordhaus DICE (1996-), Weitzman (2014), Golosov et al (2014)
 - HA model: Krusell Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models : Cruz, Rossi-Hansberg (2022, 2023)
 - ⇒ Optimal and constrained policy with heterogeneous countries & trade
- ► Unilateral vs. climate club policies :
 - Climate clubs: Nordhaus (2015), Non-cooperative taxation: Chari, Kehoe (1990), Suboptimal policy: Hassler, Krusell, Olovsson (2019)
 - Trade policy: Kortum, Weisbach (2023), Farrokhi, Lashkaripour (2021), Hsiao (2022), Costinot, Donalson, Vogel, Werning (2015), Adao, Costinot (2022), Antras, Fort, Gutierrez, Tintelnot (2022)
 - ⇒ Climate cooperation and optimal design of climate club
- Optimal policy in heterogeneous agents models
 - Policy with limited instruments: Diamond (1973), Davila, Walther (2022)
 - Bhandari et al (2021), Le Grand, Ragot (2022), Davila, Schaab (2022) . . .
 - ⇒ Application to climate and carbon taxation policy

Literature

- Climate change & optimal carbon taxation
 - RA model: Nordhaus DICE (1996-), Weitzman (2014), Golosov et al (2014)
 - HA model: Krusell Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models : Cruz, Rossi-Hansberg (2022, 2023)
 - ⇒ Optimal and constrained policy with heterogeneous countries & trade
- ► Unilateral vs. climate club policies :
 - Climate clubs: Nordhaus (2015), Non-cooperative taxation: Chari, Kehoe (1990), Suboptimal policy: Hassler, Krusell, Olovsson (2019)
 - Trade policy: Kortum, Weisbach (2023), Farrokhi, Lashkaripour (2021), Hsiao (2022), Costinot, Donalson, Vogel, Werning (2015), Adao, Costinot (2022), Antras, Fort, Gutierrez, Tintelnot (2022)
 - ⇒ Climate cooperation and optimal design of climate club
- Optimal policy in heterogeneous agents models
 - Policy with limited instruments: Diamond (1973), Davila, Walther (2022)
 - Bhandari et al (2021), Le Grand, Ragot (2022), Davila, Schaab (2022) . . .
 - ⇒ Application to climate and carbon taxation policy

Model – Household & Firms

- Static deterministic Neoclassical economy (for today)
 - countries $i \in \mathbb{I}$, heterogeneous in productivity z_i , temperature τ_i , energy extraction cost C_i
 - In each country, 3 agents:
 - (i) HtM household, (ii) homogeneous good firm, (iii) (fossil) energy producer

Model – Household & Firms

- Static deterministic Neoclassical economy (for today)
 - countries $i \in \mathbb{I}$, heterogeneous in productivity z_i , temperature τ_i , energy extraction cost C_i
 - In each country, 3 agents:
 - (i) HtM household, (ii) homogeneous good firm, (iii) (fossil) energy producer
- ▶ Representative household problem in each country *i* :

$$\mathcal{V}_i = u(c_i) \qquad \qquad \mathbb{P}_i c_i = w_i + \pi_i^f + \mathbf{t}_i^{ls} \qquad \qquad c_i = \begin{cases} c_{ii} & \mathbb{P}_i = \mathbf{p}_i = 1 \\ \left(\sum_j a_{ij}^{\frac{1}{\theta}} c_{ij}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}} & \text{price} \quad (1 + \mathbf{t}_{ij}^b) d_{ij} \mathbf{p}_j \end{cases}$$

• Labor income w_i from final good firm (labor norm. to 1), profit π_i^f from fossil firm

Model – Household & Firms

- ► Static deterministic Neoclassical economy (for today)
 - countries $i \in \mathbb{I}$, heterogeneous in productivity z_i , temperature τ_i , energy extraction cost C_i
 - In each country, 3 agents:
 - (i) HtM household, (ii) homogeneous good firm, (iii) (fossil) energy producer
- ▶ Representative household problem in each country *i* :

$$\mathcal{V}_i = u(c_i) \qquad \qquad \mathbb{P}_i c_i = w_i + \pi_i^f + \mathsf{t}_i^{ls} \qquad \qquad c_i = \begin{cases} c_{ii} & \mathbb{P}_i = \mathsf{p}_i = 1\\ \left(\sum_j a_{ij}^{\frac{1}{\theta}} c_{ij}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}} & \text{price} \quad (1+\mathsf{t}_{ij}^b) d_{ij} \mathsf{p}_j \end{cases}$$

- Labor income w_i from final good firm (labor norm. to 1), profit π_i^f from fossil firm
- Competitive homogeneous good producer in country i

$$\max_{\boldsymbol{e}_{i}^{f}} p_{i} \mathcal{D}(\tau_{i}) z_{i} f(\boldsymbol{e}_{i}^{f}) - w_{i} - (q^{f} + \boldsymbol{t}_{i}^{f}) \boldsymbol{e}_{i}^{f}$$

- Fossil energy demand e_i^f emitting carbon subject to price q^f and tax/subsidy t^f .
- Climate externality : effect of temperature on damage/TFP, $\mathcal{D}(\tau) \in (0,1)$

Model – Energy markets & Emissions

- Competitive fossil fuels energy producer :
 - Supply fossil energy e_{it}^x by extraction at cost C_i^f

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x)$$

Energy traded in international markets, at price q^f

$$E = \sum_{\mathbb{I}} e_i^f = \sum_{\mathbb{I}} e_i^x$$

Model – Energy markets & Emissions

- Competitive fossil fuels energy producer :
 - Supply fossil energy e_{it}^x by extraction at cost C_i^f

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x)$$

Energy traded in international markets, at price q^f

$$E = \sum_{\mathbb{T}} e_i^f = \sum_{\mathbb{T}} e_i^x$$

- Climate system
 - Fossil energy e^f releases GHGs in the atmosphere

$$\mathcal{E} = \sum_{\scriptscriptstyle \mathrm{T}} e_i^f$$

Country's local temperature :

$$\tau_i = \bar{\tau}_{i0} + \Delta_i \, \mathcal{E}$$

- Linear model + Climate sensitivity/pattern scaling factor Δ_i

Model – Equilibrium

► Equilibrium

- Given policies $\{t_i^f, t_{ij}^b, t_i^{ls}\}$, a **competitive equilibrium** is a set of decisions $\{c_{ij}, e_i^f, e_i^x\}_{ij}$, states $\{\tau_i\}_i$ and prices $\{p_i, q^f\}$ such that :
- Households choose $\{c_{ij}\}_{ij}$ to max. utility s.t. budget constraint
- Firm choose policies $\{e_i^f\}_i$ to max. profit
- Fossil firms extract/produce $\{e_i^x\}_i$ to max. profit.
- Emissions \mathcal{E}_t affects climate $\{\tau_i\}_i$.
- Government budget clear $\sum_{i} t_{i}^{ls} = \sum_{i} t_{i}^{f} e_{i}^{f} + \sum_{i,j} t_{ij}^{b} c_{ij} d_{ij} p_{j}$
- o Prices $\{p_i, q^f\}$ adjust to clear the markets for energy $\sum_{\mathbb{I}} e_{it}^x = \sum_{\mathbb{I}} e_{it}^f$ and for each good

$$y_i := z_i \mathcal{D}(\tau_i) f(e_i^f) = \sum_k d_{ki} c_{ki} + \frac{q^f}{p_i} (e_i^f - e_i^x) + \mathcal{C}_i(e_i^x)$$

Model – Dynamics & extensions

- 1. Energy market
 - Renewable energy firm in each country
 - Price of clean energy trending down
 - Fossil energy extraction/depleting reserves ⇒ Hotelling problem
- 2. Firm
 - Use capital as well to produce
 - Use an energy bundle of renewable and fossil energy
- 3. Households
 - Consumption / saving in bonds / in capital ⇒ Keynes-Ramsey rule
 - International markets to borrow bonds (in zero net supply)
- 4. Climate system with inertia / closer to standard IAMs
- 5. Population growth dynamics for each country
- 6. (Exogenous) growth: TFP change and Energy-augmenting Directed TC.

8 / 25

Different policies – Summary of results

- ► Equilibrium 0 : Competitive equilibrium Details eq 0
 - Marginal value of wealth $\lambda_i = \frac{u'(c_i)}{\mathbb{P}_i}$ depends on price index $\mathbb{P}_i = \left(\sum_j a_{ij} (d_{ij} \mathbf{p}_j)^{1-\theta}\right)^{\frac{1}{1-\theta}}$
 - Affected by carbon tax \mathbf{t}_j^f and climate damages τ_j of all the sourcing locations
- ► Equilibrium 1 : First-Best, with unlimited instruments Details eq 1
 - Welfare : $W = \max_{\{\mathbf{t}, \mathbf{c}, \mathbf{e}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} W_i$
 - Social Planner redistribute across countries with lump-sum transfers t^{ls}
 - Set the optimal Pigouvian carbon tax to $t^f = SCC$
- ► Equilibrium 2: Second-best Ramsey policy, with limited instruments Details eq 2
 - Optimal carbon tax accounts for (i) inequality and local climate damage, (ii) energy supply elasticities, (iii) energy terms-of-trade redistribution effects, (iv) energy demand distortions
 - Optimal tariffs also account for redistributive terms-of-trade effects on goods
 - ⇒ Planner takes into account trade patterns in the design of all its instruments

Different policies – Summary of results

- **Equilibrium 3:** Countries decide whether to join the climate club: participation constraints
 - Almost same results as Equilibrium 2
 - All the tax formulas are corrected for the participation constraints (Lagrange multipliers affect redistribution weights)
 - Taxation with imperfect instruments : rescale tax rate for the missing tax base.
- **Equilibrium 4**: Optimal design of size \mathbb{J} and countries $j \in \mathbb{J}$ in the climate agreement
 - Object of the rest of this project/presentation!

Quantification

- ► Quantification and calibration More details
 - Quadratic damage as in Nordhaus DICE $y = \mathcal{D}_i(\tau)\bar{y}$ with $\mathcal{D}_i(\tau) = e^{-\gamma_i(\tau \tau_{i0})^2}$
 - Energy parameters to match production/reserves, Isoelastic cost function $C_i(e_i^x) = \bar{\nu}_i(e_i^x/\mathcal{R}_i)^{1+\nu}\mathcal{R}_i$
 - Armington model, distance d_{ij} and preferences a_{ij} to match import shares $s_{ij} = \frac{c_{ij}d_{ij}p_{j}}{c_{i}\mathbb{P}_{i}}$
 - Production $\bar{y} = zf(\ell_i, e_i^f)$ with CES labor/energy σ and energy shares s_i^f .
 - Extension : $\bar{y} = zf(\ell_i, k_i, e_i^f, e_i^r)$. Nested CES energy vs. labor-capital Cobb-Douglas bundle (elasticity $\sigma_v < 1$), and fossil/renewable $\sigma_e > 1$.
 - TFP, and DTC, z_i , z_i^e , calibrated to match GDP / energy shares data.

Optimal Design of a Climate Agreement – Naive approach

- ➤ Tradeoff extensive/intensive margin, choice of J is a tradeoff between
 - High $t^f \Leftrightarrow$ large change in emissions $\Delta \mathcal{E}(\mathbb{J})$
 - The *number* of countries \mathbb{J} in a stable coalition

Optimal Design of a Climate Agreement – Naive approach

- ► Tradeoff extensive/intensive margin, choice of J is a tradeoff between
 - High $\mathfrak{t}^f \Leftrightarrow$ large change in emissions $\Delta \mathcal{E}(\mathbb{J})$
 - The *number* of countries \mathbb{J} in a stable coalition
- Naive approach:
 - Combinatorial problem : $\mathcal{P}(\mathbb{I})$ with $2^{|\mathbb{I}|}$ choices

$$\max_{\mathbb{J}\in\mathcal{P}(\mathbb{I})}\mathcal{W}(\mathbb{J})$$

- Choice of countries $\mathbb J$ yields optimal taxes $\{t^f(\mathbb J),t^{b,r}(\mathbb J),t^b(\mathbb J)\}$
- Search for complementarity

$$\Delta \mathcal{W}(\mathbb{J}',j) := \mathcal{W}(\mathbb{J}' \cup j) - \mathcal{W}(\mathbb{J}') > \Delta \mathcal{W}(\mathbb{J},j)$$
 when $\mathbb{J}' \supset \mathbb{J}$ for all $j \in \mathbb{I}$

Optimal Design – Alternative approach

- Alternative approach : choosing policy first
 - From a level of the tax t^f and t^b imposed on club \mathbb{J} , we can deduce the number of countries $\widetilde{\mathbb{J}}$ with binding participation constraints

$$\widetilde{\mathbb{J}}$$
 s.t. $u(c_i) \geq u(\widetilde{c}_i) \quad \forall i \in \widetilde{\mathbb{J}}$

- Search for the couple $\{t^f, t^b\}$ such that $\mathbb{J} = \widetilde{\mathbb{J}}$
- ▶ What determines the choice of a country to join the climate agreement?
 - Benefit: lower temperature τ_i , reduction in energy price q^f , increase in good price p_i , etc.
 - Costs: carbon tax, tariffs on countries outside the club, decrease in fossil rent

Countries' incentives – Model w/o trade in goods

- Experiment : Model with trade in energy but not in "goods"
 - Start from the equilibrium where carbon tax t^f(J) = 0,
 ⇒ country i is indifferent to join the club J or not
 - Linear approximation around that point ⇒ small changes in carbon tax dt^f

Countries' incentives – Model w/o trade in goods

- Experiment : Model with trade in energy but not in "goods"
 - Start from the equilibrium where carbon tax t^f(J) = 0,
 ⇒ country i is indifferent to join the club J or not
 - Linear approximation around that point \Rightarrow small changes in carbon tax dt^f
 - Change in welfare if $i \in \mathbb{J}$ vs. $i \notin \mathbb{J}$

$$\frac{d\mathcal{W}_{i|i\in\mathbb{J}}}{u'(c_i^{i\in\mathbb{J}})} - \frac{d\mathcal{W}_{i|i\notin\mathbb{J}}}{u'(c_i^{i\notin\mathbb{J}})} = -e_i dt^f - \gamma_i (\tau_i - \tau_{i0}) y_i \Delta_i (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}})
- e_i \frac{q^f \nu}{E_{\mathbb{J}}} (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) + \pi_i \frac{(1+\nu)}{E} (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}})$$

• Difference in the GE effect on energy markets, for $\sigma \approx 1$

$$dE_{i \in \mathbb{J}} - dE_{i \notin \mathbb{J}} = -\left(E_{\mathbb{J}} - E_{\mathbb{J} \setminus \{i\}}\right) \frac{\sigma dt^f}{q^f (1 - s^f)} \frac{1}{1 + \frac{\nu \sigma}{(1 - s^f)}}$$

 \circ Params : σ energy demand elasticity, s^f energy cost share, ν energy supply elasticity, Climate damage γ_i

14 / 25

Thomas Bourany (UChicago) Optimal Design of Climate Agreements February 2024

Countries' incentives – Model w/o trade in goods

- Experiment : Model with trade in energy but not in "goods"
 - Start from the equilibrium where carbon tax t^f(J) = 0,
 ⇒ country i is indifferent to join the club J or not
 - Linear approximation around that point \Rightarrow small changes in carbon tax dt^f
 - Change in welfare if $i \in \mathbb{J}$ vs. $i \notin \mathbb{J}$

$$\frac{d\mathcal{W}_{i|i\in\mathbb{J}}}{u'(c_i^{i\in\mathbb{J}})} - \frac{d\mathcal{W}_{i|i\notin\mathbb{J}}}{u'(c_i^{i\notin\mathbb{J}})} = -e_i dt^f - \gamma_i(\tau_i - \tau_{i0}) y_i \Delta_i (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}})$$

$$- e_i \frac{q^f \nu}{E_{\mathbb{J}}} (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) + \pi_i \frac{(1+\nu)}{E} (dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}})$$

• Difference in the GE effect on energy markets, for $\sigma \approx 1$

$$dE_{i \in \mathbb{J}} - dE_{i \notin \mathbb{J}} = -\left(E_{\mathbb{J}} - E_{\mathbb{J} \setminus \{i\}}\right) \frac{\sigma dt^f}{q^f (1 - s^f)} \frac{1}{1 + \frac{\nu \sigma}{(1 - s^f)}}$$

 \circ Params : σ energy demand elasticity, s^f energy cost share, ν energy supply elasticity, Climate damage γ_i

15/25

Countries' incentives – Armington Model with trade in goods

- ▶ Trade in energy and goods à la Armington, Linear approx. around $t^f \approx 0$ and $t^b \approx 0$
 - Change in welfare if $i \in \mathbb{J}$, vs. $i \notin \mathbb{J}$

$$\begin{split} \frac{d\mathcal{W}_{i|i\in\mathbb{J}}}{u'(c_{i}^{i\in\mathbb{J}})c_{i}} - \frac{d\mathcal{W}_{i|i\notin\mathbb{J}}}{u'(c_{i}^{i\notin\mathbb{J}})c_{i}} &= -e_{i}dt^{f} - \gamma_{i}(\tau_{i} - \tau_{i0})\eta_{i}^{y}\Delta_{i}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &- e_{i}\frac{q^{f}\nu}{E_{\mathbb{I}}}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) + \eta_{i}^{f}\frac{(1+\nu)}{E}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &+ \eta_{i}^{y}\left(\frac{d\mathbf{p}_{i}}{\mathbf{p}_{i}}\big|_{i\in\mathbb{J}} - \frac{d\mathbf{p}_{i}}{\mathbf{p}_{i}}\big|_{i\notin\mathbb{J}}\right) - s_{i\mathbb{J}^{c}}dt^{b} - \sum_{i\in\mathbb{J}}s_{ij}\left(\frac{d\mathbf{p}_{j}}{\mathbf{p}_{j}}\big|_{i\in\mathbb{J}} - \frac{d\mathbf{p}_{j}}{\mathbf{p}_{j}}\big|_{i\notin\mathbb{J}}\right) \end{split}$$

Countries' incentives – Armington Model with trade in goods

- ▶ Trade in energy and goods à la Armington, Linear approx. around $t^f \approx 0$ and $t^b \approx 0$
 - Change in welfare if $i \in \mathbb{J}$, vs. $i \notin \mathbb{J}$

$$\begin{split} \frac{d\mathcal{W}_{i|i\in\mathbb{J}}}{u'(c_{i}^{i\in\mathbb{J}})c_{i}} - \frac{d\mathcal{W}_{i|i\notin\mathbb{J}}}{u'(c_{i}^{i\notin\mathbb{J}})c_{i}} &= -e_{i}dt^{f} - \gamma_{i}(\tau_{i} - \tau_{i0})\eta_{i}^{y}\Delta_{i}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &- e_{i}\frac{q^{f}\nu}{E_{\mathbb{I}}}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) + \eta_{i}^{f}\frac{(1+\nu)}{E}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &+ \eta_{i}^{y}(\frac{d\mathbf{p}_{i}}{\mathbf{p}_{i}}\big|_{i\in\mathbb{J}} - \frac{d\mathbf{p}_{i}}{\mathbf{p}_{i}}\big|_{i\notin\mathbb{J}}) - s_{i\mathbb{J}^{c}}dt^{b} - \sum_{i\in\mathbb{J}}s_{ij}(\frac{d\mathbf{p}_{j}}{\mathbf{p}_{j}}\big|_{i\in\mathbb{J}} - \frac{d\mathbf{p}_{j}}{\mathbf{p}_{j}}\big|_{i\notin\mathbb{J}}) \end{split}$$

- GE effect on energy markets, same as before
- GE effect on goods markets, equilibrium on expenditure $v_i = \mathbb{P}_i c_i$, for $\theta \approx 1$

$$\frac{dv_i}{v_i} = \sum_{k \in \mathbb{I}} \mathcal{P}_k \alpha_{ki} \left(\frac{dv_k}{v_k} - \theta \frac{dt_{ki}^b}{1 + t_{ki}^b} \right) \qquad \alpha_{ki} = \frac{c_{ki} d_{ki} p_i}{\sum_{\ell} c_{k\ell} d_{k\ell} p_{\ell}} \frac{v_k}{v_i} = s_{ki} \frac{v_k}{(1 + t_{ki}^b) v_i}$$

- Params: σ energy demand elasticity, s^f energy cost share, ν energy supply elasticity, share of output y in income $\eta_i^y = \frac{y_i p_i}{y_i}$, fossil rent share $\eta_i^f = \frac{\pi_i}{y_i}$

Countries' incentives – Armington Model with trade in goods

- ▶ Trade in energy and goods à la Armington, Linear approx. around $t^f \approx 0$ and $t^b \approx 0$
 - Change in welfare if $i \in \mathbb{J}$, vs. $i \notin \mathbb{J}$

$$\begin{split} \frac{d\mathcal{W}_{i|i\in\mathbb{J}}}{u'(c_{i}^{i\in\mathbb{J}})c_{i}} - \frac{d\mathcal{W}_{i|i\notin\mathbb{J}}}{u'(c_{i}^{i\notin\mathbb{J}})c_{i}} &= -e_{i}dt^{f} - \gamma_{i}(\tau_{i} - \tau_{i0})\eta_{i}^{y}\Delta_{i}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &- e_{i}\frac{q^{f}\nu}{E_{\mathbb{I}}}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) + \eta_{i}^{f}\frac{(1+\nu)}{E}(dE_{i\in\mathbb{J}} - dE_{i\notin\mathbb{J}}) \\ &+ \eta_{i}^{y}(\frac{dp_{i}}{p_{i}}\big|_{i\in\mathbb{J}} - \frac{dp_{i}}{p_{i}}\big|_{i\notin\mathbb{J}}) - s_{i\mathbb{J}^{c}}dt^{b} - \sum_{i\in\mathbb{J}} s_{ij}(\frac{dp_{j}}{p_{j}}\big|_{i\in\mathbb{J}} - \frac{dp_{j}}{p_{j}}\big|_{i\notin\mathbb{J}}) \end{split}$$

- GE effect on energy markets, same as before
- GE effect on goods markets, equilibrium on expenditure $v_i = \mathbb{P}_i c_i$, for $\theta \approx 1$

$$\frac{dv_i}{v_i} = \sum_{k \in \mathbb{T}} \mathcal{P}_k \alpha_{ki} \left(\frac{dv_k}{v_k} - \theta \frac{dt_{ki}^b}{1 + t_{ki}^b} \right) \qquad \qquad \alpha_{ki} = \frac{c_{ki} d_{ki} p_i}{\sum_{\ell} c_{k\ell} d_{k\ell} p_{\ell}} \frac{v_k}{v_i} = s_{ki} \frac{v_k}{(1 + t_{ki}^b) v_i}$$

- Params: σ energy demand elasticity, s^f energy cost share, ν energy supply elasticity, share of output y in income $\eta_i^y = \frac{y_i p_i}{y_i}$, fossil rent share $\eta_i^f = \frac{\pi_i}{y_i}$

Numerical approach for stable coalition

- ► Algorithm : sequential approach
 - 1. Start from the second-best optimal policy $\{t^{f_{\star}}, t^{b_{\star}}\}$, on the world $\mathbb{J} = \mathbb{I}$
 - 2. From tax levels imposed on club \mathbb{J} , deduce the number of countries $\widetilde{\mathbb{J}}$ with binding participation constraints

$$\widetilde{\mathbb{J}}$$
 s.t. $u(c_i) \geq u(\widetilde{c}_i) \quad \forall i \in \widetilde{\mathbb{J}}$

- Search for $\{t^f, t^b\} \in (0, 1)^2 \odot \{t^{f\star}, t^{b\star}\}$ that yield $\mathbb{J} = f(\mathbb{J}, t^f, t^b)$
- 3. If $Im(f(\mathbb{J}, \mathfrak{t}^f, \mathfrak{t}^b)) \subseteq \mathbb{J}$, remove countries one-by-one
- 4. Repeat (2-3) until convergence fixed point of $\widetilde{\mathbb{J}} = f(\mathbb{J}, t^{l}, t^{b})$ or unraveling

Numerical Application – Competitive equilibrium

▶ Data : 24 countries, (G20+4 large countries)

Local Cost of Carbon & Carbon Tax – First and Second Best

▶ Difference $LCC_i = \frac{\psi_i^{\mathcal{E}}}{\lambda_i^{w}}$ vs. $\widehat{\lambda}_i^{w}LCC_i = \frac{\psi_i^{\mathcal{E}}}{\widehat{\lambda}_i^{w}}$ since $SCC = \sum_{\mathbb{I}} \widehat{\lambda}_i^{w}LCC_i$

Comparison - Value of wealth vs. Social Cost of Carbon

Social Cost of Carbon can be decomposed:

$$SCC := -\frac{\partial \mathcal{W}/\partial \mathcal{E}}{\partial \mathcal{W}/\partial c} = \frac{\psi^{\mathcal{E}}}{\lambda} = \frac{\sum_{\mathbb{I}} \psi_{i}^{\mathcal{E}}}{\frac{1}{I} \sum_{\mathbb{I}} \lambda_{i}}$$

► Here plot that decomposition :

$$\log(SCC) = \log(\psi^{\mathcal{E}}) - \log(\lambda)$$

Local Cost of Fossil and Terms of Trade Adjustment

Social Cost of Fossil Energy :

$$\begin{array}{ll} \textit{SCF} = \mathcal{C}_\textit{EE} \sum_{\mathbb{I}} \widehat{\lambda}_i \big(\textcolor{red}{e_i^f} - \textcolor{red}{e_i^x} \big) & \quad \mathcal{C}_\textit{EE}^{f-1} = \sum_{\mathbb{I}} \mathcal{C}_{i,e^xe^x}^{f-1} \end{array}$$

► Here plotting local cost of fossil :

$$LCF_i = \widehat{\lambda}_i(e_i^f - e_i^x)$$

Winner and losers – Second Best vs. Competitive equilibrium

- ▶ Difference $W_i(\mathbb{I})$ (second-best climate club) vs. V_i (no climate club)

Winner and losers – Second Best vs. Outside options

- ▶ Difference $W_i(\mathbb{I})$ (second-best climate club) vs. V_i (no climate club)
- ▶ Difference $W_i(\mathbb{I})$ (second-best climate club) vs. $W_i(\mathbb{I}\setminus\{i\})$ (outside options)

Conclusion

- ▶ In this project, I solve for the optimal climate policy
 - Accounting for inequality as it depends on the availability of transfer mechanisms
 - Redistributing through GE effects on energy and good markets ⇒ terms-of-trade effects
- ► Climate agreement design jointly solves for :
 - The optimal choice of countries participating
 - The carbon tax level, both for correcting externality & respecting participation constraints
- Differing incentive to join
 - Benefit: change in climate due to participation, cost through taxation, loss in energy rent, GE effect on price
 - Complementarity: the larger the group, the higher the effect on (1) climate, (2) energy price, (3) price of outside countries $i \notin \mathbb{J}$

Appendices

Step 0 : Competitive equilibrium & Trade

- Each household in country i maximize utility and firms maximize profit
- Standard trade model results :
 - Consumption and trade :

$$s_{ij} = \frac{c_{ij}p_{ij}}{c_{i}\mathbb{P}_{i}} = a_{ij}\frac{(d_{ij}(1+t_{ij}^{b})p_{j})^{1-\theta}}{\sum_{k} a_{ik}(d_{ik}(1+t_{ik}^{b})p_{k})^{1-\theta}} \qquad \qquad \& \qquad \mathbb{P}_{i} = \left(\sum_{j} a_{ij}(d_{ij}p_{j})^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

Energy consumption doesn't internalize climate damage :

$$p_iMPe_i=q^e$$

Inequality, as measured in local welfare units :

$$\lambda_i = \frac{u'(c_i)}{\mathbb{P}_i}$$

"Local Social Cost of Carbon", for region i

$$LCC_{i} = \frac{\partial W_{i}/\partial \mathcal{E}}{\partial W_{i}/\partial w_{i}} = \frac{\psi_{i}^{\mathcal{E}}}{\lambda_{i}} = -\Delta_{i}\mathcal{D}'(\tau_{i})z_{i}f(e_{i}^{f})p_{i} \qquad (> 0 \text{ if heat causes losses})$$

Step 1: World First-best policy

► Maximizing welfare of the world Social Planner :

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} \mathcal{W}_i$$

- Full array of instruments: cross-countries lump-sum transfers \mathbf{t}_i^{ls} , individual carbon taxes \mathbf{t}_i^f on energy e_i^f , bilateral tariffs \mathbf{t}_{ii}^b
- Budget constraint : $\sum_i t_i^{ls} = \sum_i t_i^f e_i^f + \sum_{i,j} t_{ij}^b c_{ij} d_{ij} p_j$
- ► Maximize welfare subject to
 - Market clearing for good $[\mu_i]$, market clearing for energy μ^e

back

Step 1 : World First-best policy

- Social planner results :
 - Consumption:

$$\omega_i u'(c_i) = \left[\sum_j a_{ij} (d_{ij}\omega_j \mu_j)^{1-\theta}\right]^{\frac{1}{1-\theta}}$$

• Energy use :

$$\omega_i \mu_i MPe_i = \mu^e + SCC$$

Social cost of carbon :

$$SCC = -\frac{\sum_{j} \Delta_{j} \omega_{j} \mu_{j} \mathcal{D}'_{j}(\tau_{j}) \bar{y}_{j}}{\frac{1}{I} \sum_{j} \omega_{j} \mu_{j}}$$

back

Step 2: World optimal Ramsey policy

► Maximizing welfare of the world Social Planner :

$$\mathcal{W} = \max_{\{\mathbf{t}, \boldsymbol{e}, \boldsymbol{q}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} \mathcal{W}_i$$

- One single instrument : uniform carbon tax t^f on energy e_i^f
- Rebate tax lump-sum to HHs $t_i^{ls} = t^f e_i^f$
- ▶ Ramsey policy : Primal approach, maximize welfare subject to
 - Budget constraint $[\lambda_i]$, Market clearing for good $[\mu_i]$, market clearing for energy
 - Optimality (FOC) conditions for good demands $[\eta_{ij}]$, energy demand & supply, etc.
 - Trade-off faced by the planner:
 - (i) Correcting externality, (ii) Redistributive effect, (iii) Distort energy demand and supply

Step 2: World optimal Ramsey policy

- ► The planner takes into account
 - (i) the marginal value of wealth λ_i
 - (ii) the shadow value of good i, from market clearing, μ_i :

w/o trade
$$\omega_i u'(c_i) = \omega_i \lambda_i$$
 vs. w/ trade in goods :
$$\omega_i u'(c_i) = \Big(\sum_{i \in \mathbb{I}} a_{ij} (d_{ij} \mathbf{p}_j)^{1-\theta} \Big[\omega_i \lambda_i + \omega_j \mu_j + \eta_{ij} (1-s_{ij})\Big]^{1-\theta}\Big)^{\frac{1}{1-\theta}}$$

Relative welfare weights, representing inequality

w/o trade :
$$\widehat{\lambda}_i = \frac{\omega_i \lambda_i}{\bar{\lambda}} = \frac{\omega_i u'(c_i)}{\frac{1}{l} \sum_{\mathbb{I}} \omega_j u'(c_j)} \leq 1 \qquad \Rightarrow \qquad \begin{array}{c} \text{ceteris paribus, poorer} \\ \text{countries have higher } \widehat{\lambda}_i \end{array}$$
 vs. w/ trade :
$$\widehat{\lambda}_i = \frac{\omega_i (\lambda_i + \mu_i)}{\frac{1}{l} \sum_{\mathbb{T}} \omega_i (\lambda_i + \mu_i)} \leq 1$$

Step 2 : Optimal policy – Social Cost of Carbon

- ► Key objects : Local vs. Global Social Cost of Carbon :
 - Marginal cost of carbon $\psi_i^{\mathcal{E}}$ for country i
 - "Local social cost of carbon" (LCC) for region *i*:

$$LCC_i := \frac{\partial \mathcal{W}_i / \partial \mathcal{E}}{\partial \mathcal{W}_i / \partial w_i} = \frac{\psi_i^{\mathcal{E}}}{\lambda_i} = -\Delta_i \mathcal{D}'(\tau_i) z_i f(e_i^f) p_i \qquad (> 0 \text{ if heat causes losses})$$

Step 2 : Optimal policy – Social Cost of Carbon

- ► Key objects : Local vs. Global Social Cost of Carbon :
 - Marginal cost of carbon $\psi_i^{\mathcal{E}}$ for country i
 - "Local social cost of carbon" (LCC) for region *i*:

$$LCC_i := \frac{\partial \mathcal{W}_i / \partial \mathcal{E}}{\partial \mathcal{W}_i / \partial w_i} = \frac{\psi_i^{\mathcal{E}}}{\lambda_i} = -\Delta_i \mathcal{D}'(\tau_i) z_i f(e_i^f) \mathbf{p}_i \qquad (> 0 \text{ if heat causes losses})$$

Social Cost of Carbon for the planner :

$$SCC := \frac{\partial \mathcal{W}/\partial \mathcal{E}}{\partial \mathcal{W}/\partial w} = \frac{\sum_{\mathbb{I}} \omega_i \psi_i^{\mathcal{E}}}{\frac{1}{I} \sum_{\mathbb{I}} \omega_i (\lambda_i + \mu_i)}$$

Social Cost of Carbon integrates these inequalities :

$$SCC = \sum_{\mathbb{I}} \widehat{\lambda}_i LCC_i = \sum_{\mathbb{I}} LCC_i + \mathbb{C}ov_i(\widehat{\lambda}_i, LCC_i)$$

Step 2 : Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects :
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
- ▶ New measure : Social Value of Fossil (SVF)

$$SVF := \frac{\partial \mathcal{W}/\partial E}{\partial \mathcal{W}/\partial w} = \mathcal{C}_{EE}^f \mathbb{C}ov_i \left(\widehat{\lambda}_i, \mathbf{e}_i^f - \mathbf{e}_i^x\right) - \mathbb{C}ov_i \left(\widehat{\lambda}_i, \frac{q^f (1 - s_i^f)}{\sigma}\right)$$

 \circ Params : \mathcal{C}_{EE}^f agg. fossil supply elasticity, s_i^f energy cost share and σ energy demand elasticity

Step 2 : Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects :
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
- ► New measure : Social Value of Fossil (SVF)

$$SVF := \frac{\partial \mathcal{W}/\partial E}{\partial \mathcal{W}/\partial w} = \underbrace{\mathcal{C}_{EE}^{f}}_{\substack{\text{agg. supply} \\ \text{distortion}}} \underbrace{\mathbb{C}\text{ov}_{i}(\widehat{\lambda}_{i}, \underbrace{e_{i}^{f} - e_{i}^{x}}_{i})}_{\substack{\text{terms-of-trade} \\ \text{redistribution}}} - \underbrace{\mathbb{C}\text{ov}_{i}(\widehat{\lambda}_{i}, \underbrace{e_{i}^{f} - e_{i}^{x}}_{\sigma})}_{\substack{\text{demand} \\ \text{distortion}}}$$

 \circ Params : \mathcal{C}_{EE}^f agg. fossil supply elasticity, s_i^f energy cost share and σ energy demand elasticity

Step 2 : Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects :
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
- ► New measure : Social Value of Fossil (SVF)

$$SVF := \frac{\partial W/\partial E}{\partial W/\partial w} = \mathcal{C}_{EE}^f \mathbb{C}ov_i \left(\widehat{\lambda}_i, \mathbf{e}_i^f - \mathbf{e}_i^x\right) - \mathbb{C}ov_i \left(\widehat{\lambda}_i, \frac{q^f (1 - s_i^f)}{\sigma}\right)$$

- \circ Params : \mathcal{C}_{EE}^f agg. fossil supply elasticity, s_i^f energy cost share and σ energy demand elasticity
- ► *Proposition 2* : Optimal fossil energy tax :

$$\Rightarrow$$
 $t^f = SCC + SVF$

- Social cost of carbon : $SCC = \sum_{\mathbb{I}} \widehat{\lambda}_i LCC_i$

Step 3: Ramsey Problem with participation constraints

- ► Consider that countries can "exit" climate agreement.
- ▶ For a climate "club" of $\mathbb{J} \subset \mathbb{I}$ countries :
 - Countries $i \in \mathbb{J}$ are subject to a carbon tax t^f
 - Countries $i \in \mathbb{J}$ can unilaterally leave, subject to retaliation tariff $t^{b,r}$ on goods and get consumption \tilde{c}_i
 - Countries $i \notin \mathbb{J}$ trade in goods subject to tariff t^b with club members and countries outside the club. They still trade with the club members in energy at price q^f

Step 3: Ramsey Problem with participation constraints

- ► Consider that countries can "exit" climate agreement.
- ▶ For a climate "club" of $\mathbb{J} \subset \mathbb{I}$ countries :
 - Countries $i \in \mathbb{J}$ are subject to a carbon tax t^f
 - Countries $i \in \mathbb{J}$ can unilaterally leave, subject to retaliation tariff $t^{b,r}$ on goods and get consumption \tilde{c}_i
 - Countries $i \notin \mathbb{J}$ trade in goods subject to tariff t^b with club members and countries outside the club. They still trade with the club members in energy at price q^f
- Participation constraints :

$$u(c_i) \geq u(\tilde{c}_i)$$
 $[\nu_i]$

Welfare :

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{\mathbb{J}} \omega_i \ u(c_i) + \sum_{\mathbb{J}^c} \alpha \omega_i \ u(c_i)$$

Step 3: Ramsey Problem with participation constraints

► Participation constraints

$$u(c_i) \geq u(\tilde{c}_i)$$
 $[\nu_i]$

- ▶ Proposition 3.1 : Second-Best social valuation with participation constraints
 - Participation incentives change our measure of inequality

w/ trade:
$$\omega_{i}(1+\nu_{i})u'(c_{i}) = \left(\sum_{j\in\mathbb{I}}a_{ij}(d_{ij}\mathbf{p}_{j})^{1-\theta}\left[\omega_{i}\widetilde{\lambda}_{i}+\omega_{j}\widetilde{\mu}_{j}+\widetilde{\eta}_{ij}(1-s_{ij})\right]^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

$$\Rightarrow \qquad \widehat{\widetilde{\lambda}}_{i} = \frac{\omega_{i}(\widetilde{\lambda}_{i}+\widetilde{\mu}_{i})}{\frac{1}{J}\sum_{\mathbb{J}}\omega_{i}(\widetilde{\lambda}_{i}+\widetilde{\mu}_{i})} \neq \widehat{\lambda}_{i}$$

$$\text{vs. w/o trade} \qquad \widehat{\widetilde{\lambda}}_{i} = \frac{\omega_{i}(1+\nu_{i})u'(c_{i})}{\frac{1}{J}\sum_{\mathbb{J}}\omega_{j}(1+\nu_{j})u'(c_{j})} \neq \widehat{\lambda}_{i}$$

• Similarly, the "effective Pareto weights" are $\alpha \omega_i$ for countries outside the club $i \notin \mathbb{J}$ and $\omega_i(\alpha - \nu_i)$ for retaliation policy on $i \in \mathbb{J}$

Step 3: Participation constraints & Optimal policy

- ► *Proposition 3.2* : Second-Best taxes :
 - Taxation with imperfect instruments:
 - Climate change & general equilibrium effects on fossil market affects all countries $i \in \mathbb{I}$
 - Need to adjust for the "outside" countries $i \notin \mathbb{J}$ not subject to the tax, which weight on the energy market as $\vartheta_{\mathbb{J}^c} \approx \frac{E_{\mathbb{J}^c}}{E_{\mathbb{I}}} \frac{\nu \sigma}{q^f(1-s^f)}$ with ν fossil supply elasticity, σ energy demand elasticity and s^f energy cost share.
 - Optimal fossil energy tax $t^f(\mathbb{J})$:

$$\Rightarrow \quad \mathfrak{t}^f(\mathbb{J}) = SCC + \underline{SVF}$$

$$= \frac{1}{1 - \vartheta_{\mathbb{J}^c}} \sum_{i \in \mathbb{I}} \widetilde{\lambda}_i LCC_i + \frac{1}{1 - \vartheta_{\mathbb{J}^c}} \mathcal{C}_{EE}^f \sum_{i \in \mathbb{I}} \widetilde{\lambda}_i (\underline{e_i^f} - \underline{e_i^x}) - \sum_{i \in \mathbb{J}} \widetilde{\lambda}_i \frac{q^f (1 - \underline{s_i^f})}{\sigma}$$

• Optimal tariffs/export taxes $t^{b,r}(\mathbb{J})$ and $t^b(\mathbb{J})$: In search for a closed-form expression As of now, only opaque system of equations (fixed point w/ demand/multipliers)

More details – Capital market

In each countries, the agent can save in two assets, capital k_{it} and bonds b_{it} :

$$\begin{cases} \dot{k}_{it} &= \mathcal{D}_{i}^{y}(\tau_{it})z_{i}f(k_{it},e_{it}) - (\delta + n + \bar{g})k_{it} + \iota_{it} \\ \dot{b}_{it} &= r^{\star}b_{it} + \theta_{i}\pi_{t}^{f} + \pi_{it}^{r} - (q_{t}^{f} + t_{it}^{f})e_{it}^{f} - (q_{t}^{r} + t_{it}^{r})e_{it}^{r} - \iota_{it} - c_{it} + t_{it}^{ls} \\ b_{it} &\geq -\vartheta k_{it} \end{cases}$$

► Combining, substituting ι_{it} and defining wealth $w_{it} = k_{it} + b_{it}$, we obtain the main equation

$$\dot{w}_{it} = r^{\star}w_{it} + \mathcal{D}^{y}(\tau_{it})z_{it}f(k_{it}, e_{it}) - (\bar{\delta} + r_{t}^{\star})k_{it} + \theta_{i}\pi_{t}^{f} + \pi_{it}^{r} - (q_{t}^{f} + t_{it}^{f})e_{it}^{f} - (q_{t}^{r} + t_{it}^{r})e_{it}^{r} - c_{it} + t_{it}^{f}$$

$$k_{it} \leq \frac{1}{1 - e^{2}}w_{it}$$

- ► Two polar cases :
 - $\vartheta \to 0$, full autarky (no trade), and $w_{it} = k_{it}$
 - $\vartheta \to 1$, full financial integration :

$$k_{it}$$
 s.t. $MPk_{it} - \bar{\delta} = \mathcal{D}_i^{y}(\tau_{it})z_i\partial_k f(k_{it}, e_{it}) - (\delta + n + \bar{g}) = r_t^{\star}$

12/26

Impact of increase in temperature

▶ Marginal values of the climate variables : λ_{it}^s and λ_{it}^{τ}

$$\dot{\lambda}_{it}^{\tau} = \lambda_{it}^{\tau}(\rho + \zeta) + \overbrace{\gamma_{i}(\tau_{it} - \tau_{i}^{\star})\mathcal{D}^{y}(\tau_{it})}^{-\partial_{\tau}\mathcal{D}^{y}(\tau_{it})} f(k_{it}, e_{it}) \lambda_{it}^{k} + \overbrace{\phi_{i}(\tau_{it} - \tau_{i}^{\star})\mathcal{D}^{u}(\tau_{it})^{1-\eta} c_{it}^{1-\eta}}^{\partial_{\tau}u(c,\tau)}$$

$$\dot{\lambda}_{it}^{S} = \lambda_{it}^{S}(\rho + \delta^{s}) - \zeta \chi \Delta_{i} \lambda_{it}^{\tau}$$

- Costate λ_{it}^S : marg. cost of 1Mt carbon in atmosphere, for country i. Increases with:
 - Temperature gaps $\tau_{it} \tau_i^*$ & damage sensitivity of TFP γ_i^y and utility γ_i^u
 - Development level $f(k_{it}, e_{it})$ and c_{it}
 - Climate params : χ climate sensitivity, Δ_i "catching up" of τ_i and ζ reaction speed
 - back

Cost of carbon / Marginal value of temperature

▶ Solving for the cost of carbon and temperature ⇔ solving ODE

$$\dot{\lambda}_{it}^{\tau} = \lambda_{t}^{\tau}(\widetilde{\rho} + \Delta\zeta) + \gamma(\tau - \tau^{\star})\mathcal{D}^{y}(\tau)f(k, e)\lambda_{t}^{k} + \phi(\tau - \tau^{\star})\mathcal{D}^{u}(\tau)u(c)
\dot{\lambda}_{t}^{S} = \lambda_{t}^{S}(\widetilde{\rho} + \delta^{s}) - \int_{\mathbb{I}} \Delta_{i}\zeta\chi\lambda_{it}^{\tau}$$

Solving for λ_t^{τ} and $\lambda_t^{\mathcal{S}}$, in stationary equilibrium $\dot{\lambda}_t^{\mathcal{S}} = \dot{\lambda}_t^{\tau} = 0$

$$\begin{split} &\lambda_{it}^{\tau} = -\int_{t}^{\infty} e^{-\left(\widetilde{\rho} + \zeta\right)u} (\tau_{u} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{u}) y_{\tau} \lambda_{u}^{k} + \phi \mathcal{D}^{u}(\tau_{u}) u(c_{u}) \Big) du \\ &\lambda_{it}^{\tau} = -\frac{1}{\widetilde{\rho} + \Delta \zeta} (\tau_{\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{\infty}) y_{\infty} \lambda_{\infty}^{k} + \phi \mathcal{D}^{u}(\tau_{\infty}) u(c_{\infty}) \Big) \\ &\lambda_{t}^{S} = -\int_{t}^{\infty} e^{-\left(\widetilde{\rho} + \delta^{S}\right)u} \zeta \chi \int_{\mathbb{I}} \Delta_{j} \lambda_{j,u}^{\tau} dj \, du \\ &= \frac{1}{\widetilde{\rho} + \delta^{S}} \zeta \chi \int_{\mathbb{I}} \Delta_{j} \lambda_{j,\infty}^{\tau} \\ &= -\frac{\chi}{\widetilde{\rho} + \delta^{S}} \frac{\zeta}{\widetilde{\rho} + \zeta} \int_{\mathbb{I}} \Delta_{j} (\tau_{j,\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{j,\infty}) y_{\infty} \lambda_{j,\infty}^{k} + \phi \mathcal{D}^{u}(\tau_{j,\infty}) u(c_{j,\infty}) \Big) dj \\ &\lambda_{t}^{S} \xrightarrow{\zeta \to \infty} -\frac{\chi}{\widetilde{\rho} + \delta^{S}} \int_{\mathbb{I}} \Delta_{j} (\tau_{j,\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{j,\infty}) y_{j,\infty} \lambda_{j,\infty}^{k} + \mathcal{D}^{u}(\tau_{j,\infty}) u(c_{j,\infty}) \Big) dj \end{split}$$

Cost of carbon / Marginal value of temperature

► Proposition (Stationary LSCC) :

When $t \to \infty$ and for a BGP with $\mathcal{E}_t = \delta_s \mathcal{E}_t$ and $\tau_t \to \tau_\infty$, the LSCC is *proportional* to climate sensitivity χ , marg. damage γ_i^y , γ_i^u , temperature, and output, consumption.

$$LSCC_{it} \equiv \frac{\Delta_i \chi}{\rho - n + \bar{g}(\eta - 1) + \delta^s} (\tau_{\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^y(\tau_{\infty}) y_{\infty} + \phi \mathcal{D}^u(\tau_{\infty}) c_{\infty} \Big)$$

- Stationary equilibrium : $\dot{\lambda}_t^S = \dot{\lambda}_t^T = 0$
- Fast temperature adjustment $\zeta \to \infty$
- Back

Social cost of carbon & temperature

► Cost of carbon depends only on final temperatures and path of emissions :

$$\tau_T - \tau_{t_0} = \Delta \chi \xi \omega \int_{t_0}^T e^{(n+\bar{g})t - \delta_s(T-t)} q_t^{f-\sigma_e} \int_{j \in \mathbb{I}} \left(z_j z_{j,t}^e \mathcal{D}(\tau_{j,t}) \right)^{\sigma-1} y_{j,t} q_{j,t}^{\sigma_e-\sigma} dj dt$$

- Geographical factors determining warming Δ_i
- Climate sensitivity χ & carbon exit from atmosphere δ_s
- Growth of population n, aggregate productivity \bar{g}
- Deviation of output from trend y_i & relative TFP z_i
- Directed technical change z_t^e , elasticity of energy in output σ Fossil energy price q^{ef} and Hotelling rent $g^{ef} \approx \lambda_t^R/\lambda_t^R = \rho$
- Change in energy mix, renewable share ω , price q_t^r & elasticity of source σ_e
- Approximations at $T \equiv$ Generalized Kaya (or I = PAT) identity More details

$$rac{\dot{ au}_T}{ au_T} \propto n + ar{g}^{ ext{y}} - (1-\sigma)ig(g^{z^e} - \widetilde{\gamma}ig) + (\sigma_e - \sigma)(1-\omega)g^{q^r} - (\sigma_e(1-\omega) + \sigma\omega)g^{q^f}$$

Equilibrium – Mean Field Games

Uniqueness : Lasry-Lions monotonicity on the function :

$$\int_{\mathbb{T}} [f(t, x, \mu', \alpha) - f(t, x, \mu, \alpha)] d(\mu' - \mu)(x) \ge 0 \qquad \mu, \mu' \in \mathcal{P}(\mathbb{X})$$

• Work in progress : checking such conditions along the transition

$$\sum_{i \in \mathbb{I}} \left(u \left(c^{\star}(\mathbf{w}, \tau, p') \right) - u \left(c^{\star}(\mathbf{w}, \tau, p) \right) \right) \left[p'(\mathbf{w}, \tau) - p'(\mathbf{w}, \tau) \right] \ge 0$$

with $p'(w,\tau)$ empirical distribution $p'(w,\tau) = \frac{1}{\mathbb{I}} \sum_{i \in \mathbb{I}} \delta_{\{x_i = (w,\tau)\}} \equiv \text{population distribution}!$

- Mean Field approximation & Carmona Delarue (2013)
 - Mean-Field is an ε -equilibrium of the N-player game when $N \to \infty$
 - Require symmetry and invariance under permutation
 - Back

Sequential solution method

- ► Summary of the model :
 - ODEs for states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^s\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^*\}_t$
 - Existence and Uniqueness More details

Sequential solution method

- **Summary** of the model :
 - ODEs for states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^s\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^*\}_t$
 - Existence and Uniqueness More details
- Global Numerical solution :
 - Discretize agents (countries) space $i \in \mathbb{I}$ with M and time-space $t \in [t_0, t_T]$ with T periods
 - Express as a large vector $\mathbf{y} = \{x, \lambda, c, q\}$ in a large non-linear function

$$F(\mathbf{y}) = \mathbf{0}$$

• Solve for the large system with $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$ unknowns and N equations with gradient-descent – Newton-Raphson methods.

Sequential method: Pros and Cons

- ▶ Why use a sequential approach?
 - Global approach : Only need to follow the trajectories for i agents :
 - Arbitrary (!) number of dimension of *ex-ante* heterogeneity : Productivity z_i Population p_i , Temperature scaling Δ_i , Fossil energy cost $\bar{\nu}_i$, Energy mix ϵ_i , ω_i , z_i^r , Local damage γ_i^y , γ_i^u , τ_i^* , Directed Technical Change z_i^e
 - Potentially large dimensions of *ex-post* heterogeneity and aggregate state variables: For now: Wealth w_{it} , temperature τ_{it} , reserves \mathcal{R}_{it} , Carbon \mathcal{S}_t Extension with a large climate system as a proof of concept (e.g. Cai, Lontzek, Judd, 2013)
 - Newton method & Non-linear solvers very efficient
- ► Why not :
 - Numerical constraint to solve a large system of ODEs and non-linear equations :
 - \Rightarrow Constraint on $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$, so either M or T can't be too large
 - Relying on numerical solvers/structure of the problem can be opaque

Quantification – Firms

▶ Production function $y_i = \mathcal{D}_i^y(\tau_i)z_if(k, \varepsilon(e^f, e^r))$

$$f_{i}(k, \ell, \varepsilon(e^{f}, e^{r})) = \left[(1 - \epsilon_{i})^{\frac{1}{\sigma_{y}}} (k^{\alpha} \ell^{1-\alpha})^{\frac{\sigma_{y}-1}{\sigma_{y}}} + \epsilon_{i}^{\frac{1}{\sigma_{y}}} (z_{i}^{e} \varepsilon_{i}(e^{f}, e^{r}))^{\frac{\sigma_{y}-1}{\sigma_{y}}} \right]^{\frac{\sigma_{y}}{\sigma_{y}-1}}$$

$$\varepsilon(e^{f}, e^{r}) = \left[\omega_{i}^{\frac{1}{\sigma_{e}}} (e^{f})^{\frac{\sigma_{e}-1}{\sigma_{e}}} + (1 - \omega_{i})^{\frac{1}{\sigma_{e}}} (e^{r})^{\frac{\sigma_{e}-1}{\sigma_{e}}} \right]^{\frac{\sigma_{e}}{\sigma_{e}-1}}$$

- Calibrate TFP z_i to match $y_i = GDP_i$ per capita in 2011 (PPP).
- Today : $\omega_i = \bar{\omega} = 85\%$ and $\epsilon_i = \bar{\epsilon} = 12\%$ for all i
- Future : $(z_i^e, \omega_i, \epsilon_i)$ to match Energy/GDP $(e_i^f + e_i^r)/y_i$ and energy mix (e_i^f, e_i^r)
- Damage functions in production function y:

$$\mathcal{D}_i^{y}(\tau) = e^{-\gamma_i^{\pm,y}(\tau - \tau_i^{\star})^2}$$

- Asymmetry in damage to match empirics with $\gamma^y = \gamma^{+,y} \mathbb{1}_{\{\tau > \tau, \star\}} + \gamma^{-,y} \mathbb{1}_{\{\tau < \tau, \star\}}$
- Today $\gamma_i^{\pm,y} = \bar{\gamma}^{\pm,y} \& \tau_i^* = \bar{\alpha} \tau_{it_0} + (1 \bar{\alpha}) \tau^*$

Quantification – Energy markets

- ▶ Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\bar{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now: $\bar{\nu}_i$ to match extraction data e_i^x , \mathcal{R}_{it} calibrated to *proven reserves* data from BP. $\nu_i = \nu = 1$ quadratic extraction cost.
 - Future : Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost \mathcal{C}_e & extraction data e_i^x (BP, IEA)

Quantification – Energy markets

- ► Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\bar{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now: $\bar{\nu}_i$ to match extraction data e_i^x , \mathcal{R}_{it} calibrated to *proven reserves* data from BP. $\nu_i = \nu = 1$ quadratic extraction cost.
 - Future : Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost \mathcal{C}_e & extraction data e_i^x (BP, IEA)
- ▶ Renewable : Production \bar{e}_{it}^r and price q_{it}^r
 - Now : $q_{it}^r = z^r e^{-g_r t}$, with g_r growth rate in renewable energy price decreases.
 - Future : Choose z_i^r to match the energy mix (e_i^f, e_i^r)

back

Quantification – Future Extensions :

- Damage parameters :
 - $\gamma_i^{\pm,y}$ depends on daily temperature distribution $\tau \sim \mathcal{T}_i(\bar{T}, \sigma^T)$ following Rudik et al. (2022)
 - Use Climate Lab's (Greenstone et al) estimates for damage γ_i ?
- ► Fossil Energy markets :
 - Divide fossils e_{it}^f/e_{it}^x into oil/gas/coal
 - Match the production/cost/reserves data across countries
 - Use a dynamic model: extraction/exploration a la Hotelling
- Renewables Energy markets :
 - Make the problem dynamic with investment in capacity C_{it}^r
- ► Population dynamics
 - Match UN forecast for growth rate / fertility

Calibration

TABLE – Baseline calibration (\star = subject to future changes)

Teci	0.	& Energy markets	
α	0.35	Capital share in $f(\cdot)$	Capital/Output ratio
ϵ	0.12	Energy share in $f(\cdot)$	Energy cost share (8.5%)
σ	0.3	Elasticity capital-labor vs. energy	Complementarity in production (c.f. Bourany 2020)
ω	0.8	Fossil energy share in $e(\cdot)$	Fossil/Energy ratio
σ_e	2.0	Elasticity fossil-renewable	Slight substitutability & Study by Stern
δ	0.06	Depreciation rate	Investment/Output ratio
\bar{g}	0.01^{\star}	Long run TFP growth	Conservative estimate for growth
g_e	0.01^{\star}	Long run energy directed technical change	Conservative / Acemoglu et al (2012)
g_r	-0.01^{*}	Long run renewable price decrease	Conservative / Match price fall in R.E.
ν	2*	Extraction elasticity of fossil energy	Cubic extraction cost
Pre	ferences d	& Time horizon	
ρ	0.03	HH Discount factor	Long term interest rate & usual calib. in IAMs
η	2.5	Risk aversion	_
'n	0.01^{*}	Long run population growth	Conservative estimate for growth
ω_i	1	Pareto weights	Uniforms / Utilitarian Social Planner
T	90	Time horizon	Horizon 2100 years since 2010
1	Thomas Boura	ny (UChicago) Optimal De	esign of Climate Agreements February 2024 2

Calibration

TABLE – Baseline calibration (\star = subject to future changes)

Climate parameters							
ξ	0.81	Emission factor	Conversion 1 $MTOE \Rightarrow 1 MT CO_2$				
ζ	0.3	Inverse climate persistence / inertia	Sluggishness of temperature $\sim 11-15$ years				
χ	2.1/1e6	Climate sensitivity	Pulse experiment : $100 GtC \equiv 0.21^{\circ} C$ medium-term warming				
δ_s	0.0014	Carbon exit from atmosphere	Pulse experiment : $100 GtC \equiv 0.16^{\circ} C$ long-term warming				
γ^{\oplus}	0.00234^{\star}	Damage sensitivity	Nordhaus' DICE				
γ^\ominus	$0.2\! imes\!\gamma^{\oplus}$ *	Damage sensitivity	Nordhaus' DICE & Rudik et al (2022)				
$\alpha^{ au}$	0.2*	Weight historical climate for optimal temp.	Marginal damage decorrelated with initial temp.				
$ au^\star$	15.5	Optimal yearly temperature	Average spring temperature / Developed economies				
Parameters calibrated to match data							

Parameters calibrated to match data

p_i	Population	Data – World Bank 2011
z_i	TFP	To match GDP Data – World Bank 2011
$ au_i$	Local Temperature	To match temperature of largest city
\mathcal{R}_i	Local Fossil reserves	To match data from BP Energy review

Sequential solution method

- ► Summary of the model :
 - ODEs for states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_t^S, \lambda_{it}^R\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^*\}_t$
 - Existence and Uniqueness, c.f. Mean Field Game theory (Carmona-Delarue)

Sequential solution method

- ► Summary of the model :
 - ODEs for states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^S, \lambda_{it}^R\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^*\}_t$
 - Existence and Uniqueness, c.f. Mean Field Game theory (Carmona-Delarue)
- Global Numerical solution :
 - Discretize agents (countries) space $i \in \mathbb{I}$ with M and time-space $t \in [t_0, t_T]$ with T periods
 - Express as a large vector $\mathbf{y} = \{x, \lambda, c, q\}$ in a large non-linear function

$$F(\mathbf{y}) = \mathbf{0}$$

• Solve for the large system with $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$ unknowns and N equations with gradient-descent – Newton-Raphson methods.

Sequential method: Pros and Cons

- ▶ Why use a sequential approach?
 - Global approach : Only need to follow the trajectories for i agents :
 - Arbitrary (!) number of dimension of *ex-ante* heterogeneity : Productivity z_i Population p_i , Temperature scaling Δ_i , Fossil energy cost $\bar{\nu}_i$, Energy mix ϵ_i , ω_i , z_i^r , Local damage γ_i^y , γ_i^u , τ_i^* , Directed Technical Change z_i^e
 - Potentially large dimensions of *ex-post* heterogeneity and aggregate state variables: For now: Wealth w_{it} , temperature τ_{it} , reserves \mathcal{R}_{it} , Carbon \mathcal{S}_t Extension with a large climate system as a proof of concept (e.g. Cai, Lontzek, Judd, 2013)
 - Newton method & Non-linear solvers very efficient
- ► Why not:
 - Numerical constraint to solve a large system of ODEs and non-linear equations :
 - \Rightarrow Constraint on $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$, so either M or T can't be too large
 - Relying on numerical solvers/structure of the problem can be opaque

