Random variables

1. Random Variables

A real number associated with outcome of an experiment is known as a random variable.

Example(1)

Suppose two fair coins are tossed. Then S={HH, HT, TH, TT}

X={0, if atleast one head occurs}
1, otherwise

Outcome	НН	HT	TH	TT
X	0	0	0	1

Let X be the random variable corresponding to number of heads. Then X takes values 0,1,2.

Outcome	НН	HT	TH	TT
X	2	1	1	0

Range of random variable

The set of all real numbers of a random variate X is called range of X.

In example(1), Range of $X = \{0,1,2\}$

Example(3)

Consider the random experiment of throwing a dice twice.

The corresponding sample space is

$$S = \{(a,b) \mid a=1,2,3,4,5,6 \text{ and } b=1,2,3,4,5,6\}$$

Let X=a+b be a random variable, then

Range of
$$X = \{2,3,4,5,6,7,8,9,10,11,12\}$$

Over the same sample space, we can define

$$Y = \begin{cases} 1 & if a + b is even \\ -1 & if a + b is odd \end{cases}$$

Range of $Y = \{-1,1\}$

Thus infinitely many random variables can be defined on a given sample space.

2. Discrete and Continuous random variable

If a random variable X takes at
most a countable number of values x₁, x₂, x₃
x_{4,....} x_n, then it is called a discrete random
variable(DRV).

Examples: (1) and (2).

A random variable X is said to be a continuous random variable(CRV) if it can take any value in an interval which may be finite or infinite.

Example: weight of articles

3. Discrete Probability distribution

Let X be a discrete random variable assuming the values x_1 , x_2 , x_3 x_4 ,.... x_n . With each possible outcome x_i we associate a number $p_i = P(X = x_i) = P(x_i)$ called the probability of x_i .

Then $P(x_i)$ is called the probability mass function (PMF) of the random variable X if the following conditions are satisfied.

- (i) $P(x_i) \geq 0 \quad \forall i$
- (ii) $\sum P(x_i) = 1$

The set $\{P(xi)\}\$ is called the probability distribution of the random variable.

Example:

Suppose two fair coins are tossed. Let X be the random variable corresponding to number of heads.

Outcome	HH	HT	TH	TT
X	2	1	1	0

The probability distribution for number of heads is given by

X	0	1	2
P(X)	1/4	2/4	1/4

Clearly
$$P(xi) \ge 0 \quad \forall i \text{ and } \sum P(xi) = 1$$

$$E(X)=0+(1/2)+(1/2)=1=Mean????$$

Example:

Suppose THREE fair coins are tossed. Let X be the random variable corresponding to number of heads.

The probability distribution for number of heads is given by

	0	1	2	3
X	TTT	TTH,THT,	ннт,нтн	ннн
		HTT	,THH	
P(X)	1/8	3/8	3/8	1/8

Mean=
$$E(X)=(3/8)+(3/4)+(3/8)$$

= $(3+6+3)/8=12/8=1.5$

4. Continuous Probability distribution

Let X be a continuous random variable assuming values x over an interval.

We assign a real number f(x) satisfying the conditions

(i)
$$f(x) \geq 0 \quad \forall i$$

(ii)
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Then f(x) is called the probability density function (PDF) of the continuous variable X.

If (a,b) is a subinterval of the range space of X then the probability of x which lies in (a,b) is denoted by $P(a \le X \le b)$ and is defined as

$$P(a \le X \le b) = \int_a^b f(x) dx$$

5. Cumulative distribution function

Let X be a random variable (discrete or continuous). We define F(x) to be the cumulative distribution function (CDF) or simply distribution function if

$$F(x) = P(X \le x)$$

If X is a discrete random variable, then

$$F(x_i) = P(X \le x_i)$$

= $P(x_1) + P(x_2) + \cdots P(x_i)$

If X is a continuous variable with PDF f(x) then

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

Thus,
$$f(x) = \frac{d}{dx}(F(x))$$

6. Mathematical Expectation E(X):

For a DRV X having the possible values x_1 , $x_{2,}x_3$, x_4 , x_n , the expectation of X is defined as

$$E(\mathbf{X}) = \sum_{i=1}^{n} x_i \mathbf{P}(x_i)$$

Similarly, expectation of X^2 is defined as

$$E(X^2) = \sum_{i=1}^n x_i^2 P(x_i)$$

In general,

$$E(\phi(\mathbf{X})) = \sum_{i=1}^{n} \phi(x_i) P(x_i)$$

For a CRV X, having density function f(x) the expectation of X is defined as

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

In general,

$$E(\varphi(x)) = \int_{-\infty}^{\infty} \varphi(x) f(x) dx$$

7. Mean & Variance:

The expectation of X is known as mean value of the probability distribution and it it is denoted as μ .

$$\therefore \ \mu = E(X)$$

Variance of a distribution is defined as

$$Var(X) = \sigma^2 = E[(X - \mu)^2]$$

For a DRV

$$\sigma^2 = \sum_{i=1}^n (x_i - \mu)^2 P(x_i)$$

For a CRV

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx$$

NOTE:

The positive square root of the variance is called the standard deviation and is given

by
$$\sigma = \sqrt{Var(X)} = \sqrt{E[(X - \mu)^2]}$$

- 8. Laws of Expectation:
 - a) E(cX) = cE(X) where c is constant
 - b) If X and Y are random variables, then E(X + Y) = E(X) + E(Y)
 - c) If X and Y are independent random variables, then E(XY) = E(X)E(Y)

Problems

a. Prove that $\sigma^2 = E(X^2) - [E(X)]^2$

$$\sigma^2 = E[(X - \mu)^2]$$

$$\Rightarrow \sigma^2 = \sum_{i=1}^n (x_i - \mu)^2 P(x_i)$$

$$\Rightarrow \sigma^2 = \sum_{i=1}^n (x_i^2 + \mu^2 - 2x_i\mu) P(x_i)$$

$$\sigma^{2} = \sum_{i=1}^{n} \left(x_{i}^{2} P(x_{i}) + \mu^{2} P(x_{i}) - 2x_{i} \mu P(x_{i}) \right)$$

$$\sigma^{2} = \sum_{i=1}^{n} x_{i}^{2} P(x_{i}) + \mu^{2} \sum_{i=1}^{n} P(x_{i}) - 2\mu \sum_{i=1}^{n} x_{i} P(x_{i})$$

$$\sigma^2 = \mathbf{E}(\mathbf{X}^2) + \mu^2 - 2\mu^2$$

$$\sigma^2 = \mathbf{E}(\mathbf{X}^2) - [\mathbf{E}(\mathbf{X})]^2$$

 b. The probability distribution of a random variable X is given by the following table.
 Find k and evaluate the mean.

X	0	1	2	3	4	5
P(X=x)	k	5k	10k	10k	5k	k

Soln: The set $\{P(xi)\}$ is called the probability distribution of the random variable if it satisfies the following conditions.

(i)
$$P(x_i) \geq 0 \quad \forall i$$

(ii)
$$\sum P(x_i) = 1$$

$$k + 5k + 10k + 10k + 5k + k = 1$$

$$\therefore 32k = 1 \qquad \Rightarrow \boxed{k = \frac{1}{32}}$$

Mean,
$$\mu = E(X) = \sum_{i=1}^{n} x_i P(x_i)$$

$$\Rightarrow \mu = 0(k) + 1(5k) + 2(10k) + 3(10k) + 4(5k) + 5(k)$$

$$\Rightarrow \mu = 80k = \frac{80}{32} = \frac{5}{2}$$

Random variables

c. The probability density function of a variate X is

X	0	1	2	3	4	5	6
P(X)	k	3k	5k	7k	9k	11k	13k

Find k

- (i) P(X < 4), $P(X \ge 5)$, P(3 < X < 6)
- (ii) Mean and variance

d. A random variable X has the following probability function

X	1	2	3	4	5	6	7
P(X)	k	2k	2k	3k	k ²	2k ²	7k ² +k

Find (i) k (ii)
$$P(X \ge 6)$$
 (iii) $P(X < 6)$ (iv) $P(1 \le X < 5)$ (v) $E(X)$ Soln:

$$k + 2k + 2k + 3k + k^2 + 2k^2 + 7k^2 + k = 1$$

$$10k^2 + 9k - 1 = 0$$

$$k = \frac{-9 \pm \sqrt{81 + 40}}{20} = \frac{-9 \pm 11}{20}$$

$$k = -1$$
 or 0.1

But, $P(x_i) \ge 0$ and hence k = 0.1

X	1	2	3	4	5	6	7
P(X)	0.1	0.2	0.2	0.3	0.01	0.02	0.17

ii)
$$P(X \ge 6) = P(6) + P(7) = 0.19$$

iii)
$$P(X < 6) = 1 - P(X \ge 6) = 0.81$$

$$iv) P(1 \le X < 5)$$

= $P(1) + P(2) + P(3) + P(4)$
= 0.8

$$iv) E(X) = \sum_{i=1}^{n} x_i P(x_i) = 3.66$$

e. A company has five applicants for two positions. Two women and three men have applied. Suppose that no preference is given for choosing either sex. Let the random variable X be the number of women chosen to fill the two positions. Write the probability mass function of X. Soln:

$$S = \{M_1M_2, M_1M_3, M_2M_3, W_1W_2, M_1W_1, M_1W_2, M_2W_1, M_2W_2, M_3W_1, M_3W_2\}$$

~	0				2		
X	OW	2M	1W 1M		2W	MO	
P(X)	3/10		6/10		1/10		

Method-02 {without writing \$}

					_, ,			
~	0			1	2			
X	OW 2M		0W 2				2W	OM
P(X)		$\frac{^3C_2}{C_2}$	$\frac{{}^2C_1}{5}$	$\frac{^3C_1}{C_2}$		$\frac{^3C_0}{C_2}$		
	3/10		6/	10	1/	10		

f. Find E[X], E[X²] and σ^2 for the probability function P(X) defined by the following table

Xi	1	2	3	• • • • • • • • • • • • • • • • • • • •	n
$P(x_i)$	k	2k	3k	• • • • • • • • • • • • • • • • • • • •	nk

Where k is an appropriate constant.

g. Find which of the following is a probability density function.

a)
$$f_1(x) = \begin{cases} 2x, 0 < x < 1 \\ 0, otherwise \end{cases}$$

b)
$$f_2(x) = \begin{cases} 2x, -1 < x < 1 \\ 0, otherwise \end{cases}$$

c)
$$f_3(x) = \begin{cases} |x|, & |x| \le 1 \\ 0, & otherwise \end{cases}$$

$$\mathsf{d})f_4(x) = \left\{ \begin{array}{ll} 2x, & 0 < x \le 1 \\ 4 - 4x, & 1 < x < 2 \\ 0, & otherwise \end{array} \right.$$

j. A random variable X has the density function $f(x) = \frac{k}{1+x^2}$, $-\infty < x < \infty$ determine k and evaluate $P(X \ge 0)$.

k. A continuous random variable X has pdf given by $f(x) = \begin{cases} 2e^{-2x}, x > 0 \\ 0, x \le 0 \end{cases}$ Evaluate (i) E(x) and (ii) E(x²). Hence find the standard deviation.

I. If a continuous random variable X has pdf $f(x) = \begin{cases} \frac{1}{4}, -2 < x < 2 \\ 0, elsewhere \end{cases}$

Obtain (i)
$$P[X < 1]$$
 (ii) $P[|X| > 1]$ (iii) $P[2X + 3 > 5]$

m. Let the continuous random variable X have the pdf $f(x) = \begin{cases} \frac{k}{1+x^2}, 1 < x < \infty \\ 0, elsewhere \end{cases}$. Find the distribution function F(x).

n. The pdf of a random variable X is given by

$$f(x) = \begin{cases} x & \text{, } 0 \le x \le 1 \\ 2 - x & \text{, } 1 < x \le 2 \\ 0 & \text{, } elsewhere \end{cases}$$

- Find (i) Probability distribution function F(X) and (ii) $P(X \ge 1.5)$.
- O. Is the function $f(x) = \begin{cases} e^{-x}, 0 \le x < \infty \\ 0, elsewhere \end{cases}$ a density function of the continuous random variable X?
 - i). If so, determine $P(1 \le X \le 2)$.
 - ii). Also, find the probability distribution function f(x) at x = 2.

- p. The diameter of an electric cable is assumed to be a continuous random variable with pdf $f(x) = 6x (1-x), 0 \le x \le 1$, 0 elsewhere. Verify that the above is a pdf. Also find its mean and variance.
- q. A random variable X has the probability function $p(x) = \frac{1}{2^x}$; x = 1, 2, 3, 4 ... Find (i) Mean & (ii) variance.