ENSA-ALHOCEIMA CPII.

ANALYSE 4 SEMESTRE 4

Exercice 1

Déterminer si les formes différentielles suivantes sont exactes et dans ce cas, les intégrer:

$$\omega_{1} = 2xy \, dx + x^{2} \, dy ,$$

$$\omega_{2} = xy \, dx - z \, dy + xz \, dz ,$$

$$\omega_{3} = 2xe^{x^{2}-y} \, dx - 2e^{x^{2}-y} \, dy ,$$

$$\omega_{4} = yz^{2} \, dx + (xz^{2} + z) \, dy + (2xyz + 2z + y) \, dz .$$

Exercice 2

On considère le changement de variables en coordonnées sphériques suivant :

$$\begin{cases} x = r \sin \varphi \cos \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \varphi \end{cases}$$

1- Calculer dx, dy et dz.

2- Montrer que : xdx + ydy + zdz = rdr

3- En déduire : $\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}$ et $\frac{\partial r}{\partial z}$.

Exercice 3

On considère la forme différentielle : $\omega = (x^2 + y^2 + 2x)dx + 2ydy$

1- Montrer que ω n'est pas exacte.

2- Trouver une fonction $\psi(x)$ telle que $\psi(x)\omega$ soit exacte.

3- Déterminer une fonction f telle que : $\psi(x)\omega = df$.

Exercice 4

Soit $\omega = yz \, dx + zx \, dy + xy \, dz$ une forme différentielle sur \mathbb{R}^3 .

1- Calculer l'intégrale de ω le long de l'hélice H paramétrée par :

$$\begin{cases} x(t) = \cos t \\ y(t) = \sin t & avec \ t \in \left[0, \frac{\pi}{4}\right] \\ z(t) = t \end{cases}$$

2- Montrer que $\,\omega\,$ est exacte et déterminer son potentiel f.

3- En déduire une autre méthode pour calculer : $I = \int_H \omega$.

Exercice 5

Soit la forme différentielle suivante : $\omega = (1 + y)dx + (2 - x)dy$ sur \mathbb{R}^2 .

1- ω est-elle exacte?

- 2- Calculer l'intégrale de ω du point A(0,0) au point B(2,4) le long des chemins suivants :
- a- γ_1 est la droite d'équation : y = 2x.
- b- γ_2 est la parabole d'équation : $y = x^2$.
- c- γ_3 est la ligne brisée constituée des droites : x = 0 et y = 4.

Exercice 6

- 1- On considère le champ vectoriel : $\vec{V}(x,y) = (1 + 2xy, x^3 3)$ Ce champ est-il un champ de gradient ?
 - 2- Montrer que le champ de vecteurs $\vec{F}(x,y) = (3 + 2xy, x^2 3y^2)$ dérive d'un potentiel et déterminer ses potentiels.

Exercice 7

Déterminer le champ vectoriel $\overrightarrow{grad}f$, dans les cas suivants :

a-
$$f(x, y, z) = 1 + x + xy + xyz$$
.

$$b- f(x,y,z) = xy + xz + yz$$

$$c- f(x,y) = \cos x + \sin y.$$

Exercice 8

Calculer la circulation des champs $\vec{V}(x, y)$ le long du cercle (C) de centre O et de rayon 1, parcouru dans le sens direct.

$$1) \vec{V}(x,y) = (3x, x + y)$$

$$2) \vec{V}(x,y) = (x^2y,xy)$$

Exercice 9

En utilisant la formule de Green-Riemann, calculer :

- 1- $\oint_{\mathbb{F}} x^2 dx + xy dy$ où \mathbb{F} est le bord du carré $[0,1] \times [0,1]$ parcouru dans le sens trigonométrique.
- 2- L'aire de l'ellipse pleine (ξ) : $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$
- 3- L'aire de la cycloïde représentée paramétriquement par :

$$\gamma: [0, 4\pi] \to \mathbb{R}^2: \begin{cases} \begin{cases} x(t) = t \\ y(t) = 0 \end{cases} : t \in [0, 2\pi] \\ \begin{cases} x(t) = 4\pi - t + \sin t \\ y(t) = 1 - \cos t \end{cases} : t \in [2\pi, 4\pi] \end{cases}$$