Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment	No
------------	----

Faculty of Engineering / Science End Sem (Odd) Examination Dec-2022 EN3ES16 / BC3ES08 / SC3ES05

Basic Electronics Engineering

Branch/Specialisation: All / Computer	Programme: B.Tech./
Science	B. Sc.

Duration: 3 Hrs. Maximum Marks: 60

No Q.

	_	•	ompulsory. Inte		f any, are indicated. Answeb, c or d.	ers o
2.1	i.	Approximate	value of silicon	diode's forwa	ard barrier voltage is-	1
			(b) 0.7 V		_	
	ii.	Zener diode is	s used in-			1
		(a) Rectifiers		(b) Clippers		
		(c) Voltage re	egulators	(d) Amplifier	S	
	iii.	Which of thes	se is not a termi	nal of BJT?		1
		(a) Gate	(b) Collector	(c) Base	(d) Emitter	
	iv.	FET is also k	nown as-			1
		(a) Bipolar de	evice			
		(b) Current co	ontrolled device	;		
		(c) Voltage co	ontrolled device	e		
		(d) Linear dev	vice			
	v.	Walkie Talkie	e is an example	of mod	e of communication.	1
		(a) Simplex		(b) Full duple	ex	
		(c) Half simp	lex	(d) Half duple	ex	
	vi.	According to	sampling theo	rem, if fm is a	message signal frequency	1
		then sampling	g frequency sho	uld be at least-		
		(a) fm/2	(b) fm	(c) 2fm	(d) 10fm	
	vii.	2's compleme	ent of 10110 is-			1
		(a) 01001	(b) 11000	(c) 10111	(d) 01010	
	viii.	Which eqaution	on is true regard	ding DeMorga	n's law?	1
		(a) $(A+B)' = 1$	A*B	(b) $(A+B)' =$	A'*B'	
		(c) $A*B = A'$	+B'	(d) $A*B = A$	+ B	
					ъ. т	

P.T.O.

	ix.	is how close the measured values are to each other.	1
	х.	(a) Accuracy (b) Precision (c) Sensitivity (d) Hysteresis By connecting a shunt resistance, a PMMC meter can be converted in-	1
		(a) Ammeter (b) Voltmeter	
		(c) Multimeter (d) CRO	
Q.2	i.	What do you mean by semiconducting material? Give any two examples.	2
	ii.	Draw and explain VI characteristics of PN junction diode.	3
	iii.	Explain the working of half wave rectifier with schematic diagram, input-output voltage waveforms. Also derive expression for its ripple factor.	5
OR	iv.	Discuss diode clipper circuit with appropriate example.	5
Q.3	i.	Explain the structure of BJT with respect to doping and size of various regions.	2
	ii.	What are the factors which affect the stability of Q point of BJT? Enlist various biasing techniques of BJT.	3
	iii.	Discuss common emitter configuration of BJT with the help of circuit diagram and input output VI characteristics.	5
OR	iv.	With a neat sketch, describe the structure and working of n-channel JFET. Also draw drain characteristics curves.	5
Q.4	i.	Draw the schematic block diagram of communication system. Also discuss working of each block.	4
	ii.	Discuss at least four needs of modulation in detail.	6
OR	iii.	Explain amplitude modulation with the help of mathematical expressions and appropriate diagrams.	6
Q.5	i.	Convert (57) ₁₀ into equivalent binary number.	2
	ii.	Derive minimal expression for following function using K-map $F(x,y,z) = \Sigma_m (0,1,2,4.6)$	3
	iii.	Explain half adder and full adder with circuit diagram, truth table and boolean expressions.	5
OR	iv.	Discuss Von Neumann architecture of computer in detail.	5

Q.6		Attempt any two:	
	i.	Write a detailed note on function generator.	5
	ii.	Explain the working of voltmeter and ammeter.	5
	iii.	Explain the construction and working of Cathode Ray Tube.	5

Scheme of Marking

Faculty of Engineering End Sem (Odd) Examination Dec-2022 EN3ES16 Basic Electronics Engineering

Programme: B.Tech.

Branch/Specialisation:

Note: The Paper Setter should provide the answer wise splitting of the marks in the scheme below.

Q.1	i)	b	1
	ii)	С	1
	iii)	a	1
	iv)	С	1
	v)	d	1
	vi)	С	1
	vii)	d	1
(4)	viii)	b	1
	ix)	b	1
	x)	a	1
0.2	i.	Definition 1 month 0.5 month for each grounds	
Q.2		Definition 1 mark, 0.5 mark for each example	
	ii.	Diagram 1 mark, explanation 2 marks	
	iii.	2 marks circuit, 1 mark waveforms, 2 marks derivation	
OR	iv.	1 mark definition, 1 mark diagram, 1 mark working, 2 marks waveforms	
Q.3	i.	1 mark each for doping and size of regions	
	ii.	2 marks factors, 1 mark list	
	iii.	Circuit 2 marks, 1 mark theory, 2 marks VI characteristics	
OR	iv.	Structure 1 mark, working 2 marks, Characteristics 2 marks	
Q.4	i.	Diagram 2 marks, working 2 marks	
	ii.	1.5 mark for each need	
OR	iii	2 marks for definition(theory), expression, waveforms each	

Q.5	i.	1 mark procedure, 1 mark correct result
	ii.	2 marks for k map, 1 for minimal expression
	iii.	Half adder: 2marks for circuit, 2 mark for expression, 1 marks for truth table. Same marking for full adder
OR	iv	2 marks block diagram, 3 for explanation
Q.6	i.	2 marks block diagram, 3 for explanation
	ii.	2 mark diagram, 1 mark component explanation, 2 marks working
	iii.	3 marks diagram, 2 for explanation
