Part III-B: Analysis Chemistry

Lecture by 王敏 Note by THF

2024年11月1日

目录

0.1	酸碱指	示剂	1
	0.1.1	指示剂的特点	1
	0.1.2	指示剂变色范围的影响	2
	0.1.3	混合指示剂	3
0.2	整碱活	定曲线	3
	0.2.1	强酸碱的滴定	3
	0.2.2	弱酸碱(一元)的滴定	4
	0.2.3	多元酸/碱的滴定	4
0.3	滴定应	用	5
	0.3.1	酸碱标准溶液的配置	5
	0.3.2	常用酸碱标准溶液的配置与标定	6
	0.3.3	酸碱滴定分析中的计算	6
	0.3.4	滴定方式	7
Lecture 6			10.22
0.1 酸碱指示剂			
0.1.1 指示剂的特点			

0

0.

指示剂 (Indicator, In)

- 1. 弱的有机酸/碱
- 2. 共轭酸碱对的颜色明显不同
- 3. 在不同 pH 下结构变化

 $HI \rightleftharpoons H^+ + In^-.$

Notation. 指示剂的作用原理: 指示剂的分子结构变化

Example. 常用指示剂:

- 1. 甲基橙 (MO): $pK_a = 3.4$, 碱性呈黄色, 酸性下质子化呈红色
- 2. 酚酞 (PP): $pK_a = 9.1$, 酸性下呈无色, 碱性呈红色

Notation. 不同指示剂变色点和变色范围不同

对于解离平衡:

$$HI \Longrightarrow H^{+} + In^{-} \qquad K_{HIn} = \frac{[H^{+}][In^{-}]}{[HIn]}.$$

$$\Longrightarrow \frac{K_{HIn}}{[H^{+}]} = \frac{[In^{-}]}{[HIn]}.$$

当 $pH \ge pK_{HIn} + 1$ 或 $[In^-]/[HIn] \ge 10$ 时看到的是碱式色 当 $pH \le pK_{HIn} - 1$ 或 $[In^-]/[HIn] \le \frac{1}{10}$ 时看到的是碱式色

Notation. 理论变色范围: $pH=pK_{HIn}\pm 1$

理论变色点: $pH = pK_{HIn}$ 或 $[In^-]/[HIn] = 1$

甲基橙的理论变色点: $4.4 \sim 2.4$ 甲基橙的实际变色点: $4.4 \sim 3.1$

Notation. 指示剂的变色范围越窄, 变色越敏锐

0.1.2 指示剂变色范围的影响

1. 温度: $T \to K_{HIn} \to$ 变色范围变化

Example. 甲基橙 ($18^{\circ}C$): $3.1 \sim 4.4$

甲基橙 $(100^{\circ}C)$: $2.5 \sim 3.7$

- 2. 电解质: $c_{\text{离子浓度}} \to K_{\text{HIn}} \to$ 变色范围变化
- 3. 滴定次序: 无色 → 有色, 浅色 → 深色
- 4. 指示剂用量:

Example. 单色指示剂:

设指示剂浓度为 C_{HIn} , 当 $[\text{In}^-]=a$ 达到一定浓度时观察到颜色发生变化

$$\frac{K_{\rm HIn}}{[{\rm H}^+]} = \frac{a}{C - a}.$$

当 C_{HIn} 变化时 pH 也变化,导致变色点偏移,即浓度可影响变色范围

双色指示剂: 与 C_{HIn} 无关

0.1.3 混合指示剂

Notation. 混合指示剂: 变色更敏锐、范围更窄

1. 指示剂 + 惰性染料

Example. 甲基橙 + 靛蓝: 变色范围 $4.4 \sim 3.1$, 变化颜色: 绿色 \rightarrow 无色 \rightarrow 紫色

2. 混合两种或两种以上的指示剂

Example. 溴甲酚绿 + 甲基红: 变色范围 $4.9 \sim 5.1 (\pm 0.1)$, 变色: 橙红 \rightarrow 灰色 \rightarrow 绿色

酸碱滴定曲线

Notation. *x* 轴的两种:

- 1. 滴定体积 V_T or V_t
- 2. 滴定分数 VT VTatal

0.2.1 强酸碱的滴定

滴定常数:

Example. 使用 NaOH(V_b) 滴定 HCl($V_a, c_a = 0.1 \text{mol/L}$)

- 1. 滴定开始前 $(V_b = 0)$: 溶液组成: HCl
- 2. 滴定至化学计量点前 (before sp.):溶液: HCl+NaCl

$$[\mathrm{H}^+] = c_a \frac{V_a - V_b}{V_a + V_b}.$$

Notation. 化学剂量点前 0.1%: pH=4.3

- 3. 化学计量点 (sp.): 溶液: NaCl, pH=7
- 4. 化学计量点后 (after sp.):溶液: NaCl+NaOH

Notation. 化学剂量点后 0.1%: pH=9.7, 滴定剂仅多加 0.2mL

Notation. 化学计量点前后滴定分数 0.1% 为滴定突越范围 (ΔpH)

Notation. 被滴定试剂 H^+/OH^- 浓度越大,可选指示剂越多(突越范围越大) 浓度每增加 10 倍, 突越范围 (ΔpH) 增大 2 个单位

Notation. 指示剂选择原则:指示剂的变色范围部分或全部落在 Δ pH 内

10.29

0.2.2 弱酸碱 (一元) 的滴定

Example. NaOH0.1000mol/L 滴定醋酸 (HAc)0.1000mol/L

滴定常数:

$$K_t = \frac{1}{K_b} = \frac{K_a}{K_w}.$$

1. 滴定开始前 (起点较高):

$$[\mathrm{H}^+] = \sqrt{K_a c_a} \implies \mathrm{pH} \approx 2.88.$$

2. 化学计量点前 (存在缓冲作用, pH 增加速率减缓):

$$\begin{split} [\mathrm{Ac}^-] &= \frac{c_b V_b}{V_a + V_b} \\ [\mathrm{HAc}] &= \frac{c_a V_a - c_b V_b}{V_a + V_b} \\ \mathrm{pH} &= \mathrm{p} K_a + \lg \frac{[\mathrm{Ac}^-]}{[\mathrm{HAc}]} \approx 7.76. \end{split}$$

3. 化学计量点(滴定突越范围减小)

$$[\mathrm{OH^-}] = \sqrt{K_b c_b} = \sqrt{\frac{K_a}{K_w} c_b}$$
$$\mathrm{pOH} \approx 5.28 \quad \mathrm{pH} \approx 8.72.$$

4. 化学计量点后与强酸碱滴定一样

指示剂选择: 酚酞

Notation. 强酸滴定弱碱:

$$H_3O^+A^- \rightleftharpoons HA^+H_2O.$$

指示剂选择: 甲基橙、甲基红

Lecture 7

Notation. $K_a < 10^{-9}$ 的弱酸无法准确滴定

判断弱酸/弱碱能否被准确滴定:

$$c_a K_a \ge 10^{-8}$$
 $c_b K_b \ge 10^{-8}$.

Example. 酸的浓度为 0.1000 mol/L, 则其 $K_a \geq 10^{-7}$ 才能被准确滴定

0.2.3 多元酸/碱的滴定

Notation. 首先解决:

- 1. 能准确滴定至第几级解离产物
- 2. 是否能准确滴定、能形成几个 pH 突越
- 3. 选择什么指示剂

Lecture 7

准确滴定

$$c_a K_a \ge 10^{-8}$$
 $c_b K_b \ge 10^{-8}$.

分布滴定

$$\frac{K_{a_1}}{K_{a_2}} \ge 10^4 \qquad \frac{K_{b_1}}{K_{b_2}} \ge 10^4.$$

判断第二级解离的 H+ 是否影响第一步

Example. 用 0.1000mol/L NaOH 滴定 0.1000mol/L 磷酸:

磷酸: $K_{a_1} = 10^{-2.16}$, $K_{a_2} = 10^{-7.12}$, $K_{a_3} = 10^{-12.32}$

判断是否能准确滴定:

第一步: $c_a K_{a_1} = 10^{-1.16} > 10^{-8}$ 且 $K_{a_1}/K_{a_2} = 10^{4.96} > 10^4$

第二步同理: 可以准确分步滴定

第三步: $c_a K_{a_3} < 10^{-8}$,不能准确滴定

指示剂选择

只看化学计量点的 pH

Example. 以磷酸为例: 第一化学计量点 pH=4.68: 甲基橙、甲基红、溴甲酚绿 + 甲基橙 第二化学计量点 pH=9.76: 酚酞、百里酚酞、酚酞 + 百里酚酞

0.3 滴定应用

0.3.1 酸碱标准溶液的配置

Definition. 基准物质:用于直接配置或标定标准溶液的物质

Notation. 基准物质常用纯金属或纯化合物

对基准物质的要求:

- 1. 组成与化学式完全相符
- 2. 纯度足够高(主成分含量 >99.9%)
- 2.1. 杂质不能影响反应
- 3. 性质稳定
- 4. 有较大的摩尔质量
- 5. 按滴定反应式定量反应

Definition. 标准溶液:已知准确浓度的试剂溶液

标准溶液浓度: 物质的量浓度 c

Notation. 滴定度 (titer): 每毫升标准溶液相当于被测物质的质量,用 $T_{T/B}$ 表示

$$T_{T/B} = \frac{m_B}{V_T}.$$

配置标准溶液:

Notation. 直接法: 称量 \Rightarrow 溶解 \Rightarrow 定容 \Rightarrow 标签

Notation. 标定法(非标准物质的标准溶液配置):

配置为近似于所需浓度的溶液后,使用标定后的标准溶液标定该溶液

Example. 配置 0.1 mol/L HCl 标准溶液:

- 1. 浓盐酸稀释为近似 0.1 mol/L
- 2. 用基准物质硼砂 Na₂B₄O₇·10 H₂O 标定

0.3.2 常用酸碱标准溶液的配置与标定

Notation. 酸标准溶液: 最常用 0.1 mol/L

最常用 HCl, 配置方法: 浓盐酸间接法

标定使用的基准物质: 无水碳酸钠 (易吸湿), 硼砂 (易风化)

常用指示剂: 甲基橙、甲基红

Notation. 碱标准溶液: 最常用 NaOH, 配置方法: 浓碱间接法 (NaOH 易吸水和 CO_2 , KOH 较贵)

标定使用基准物质: 邻苯二甲酸氢钾 (纯净、易保存、摩尔质量大)、草酸

0.3.3 酸碱滴定分析中的计算

计量关系:

$$tT + bB = cC + dD.$$

Notation. 标定法配置:

$$c_T = \frac{t}{b} \times \frac{m_b}{M_b V_T}.$$

Notation. 物质的量浓度和滴定度之间的关系:

$$\frac{n_b}{n_t} = \frac{c_T \cdot V_T}{T_{T/B} \cdot V_T / M_B} = \frac{c_b \times 10^{-3} \times M_B}{T_{T/B}}.$$

Notation. 被测组分百分含量:

$$\omega_B\% = \frac{m_B}{m} = \frac{n_B M_B}{m} = \frac{b}{t} \times \frac{c_t V_t M_B}{m} \times 100\%.$$

Example. $T_{\text{K}_2\text{Cr}_2\text{O}_7/\text{Fe}} = 0.005022 \text{g/mL}$,测定 0.5000g Fe,用去标准溶液 25.10 mL,计算 $T_{\text{K}_2\text{Cr}_2\text{O}_7/\text{Fe}_3\text{O}_4}$ 和试样中 Fe 和 Fe₃O₄ 的质量分数

0.3.4 滴定方式

直接滴定 间接滴定 返滴定 置换滴定

Notation. 直接滴定要求 (重点):

- 1. 反应必须反应完全、定量进行
- 2. 反应必须较快
- 3. 反应必须有确定的化学计量关系
- 4. 必须有适当简便的方法确定终点

Example. 用 NaOH 滴定乙酰水杨酸

缺点: 乙酰基可能被碱水解

改进: 使用中性乙醇溶解, 使用已知滴定度计算

Notation. 返滴定:适用于反应较慢、难溶、无合适的指示剂

- 1. 准确加入定量且过量的标准溶液 A
 - 2. 加入待测物质
 - 3. 等待彻底反应完全
 - 4. 使用另一种标准溶液 B 滴定剩余的标准溶液 A

Example. HCl 标定固体 ZnO (难溶)、HCl 标定 CaCO₃, AgNO₃ 标定 Cl⁻

Notation. 置换滴定:适用于无明确定量关系、有副反应

- 1. 用适当试剂与待测物质反应,定量置换出另一种物质
- 2. 用标准物质滴定置换出的物质

Notation. 间接滴定:适用于不能与滴定剂直接反应

Example. $KMnO_4$ 滴定 Ca^{2+} : 先使用草酸沉淀,使用硫酸溶解,用高锰酸钾测定脱落的草酸根浓度

Example. 硼酸 (酸性极弱,不能直接滴定): 使用甘油结合生成甘油硼酸 ($K_a = 4.26$) 后可以滴定