Modeling cycles: AR(), MA(), and ARMA()

Dr. Natalia Khorunzhina

CBS

Cycles

• Recall the component decomposition

$$\mu_t = T_t + S_t + C_t$$

- The cycle component C_t should be free of trend and seasonal
- We will focus on pure cycle models

$$\mu_t = C_t$$

A Rigid Cyclical Pattern

Mean Stationary

 Definition: A time series Y_t has a constant mean, or is mean stationary, if

$$E(Y_t) = \mu$$

is constant (stable) over time.

- Counter-example:
 - A trended time series is not mean stationary
- We assume the cyclical component C_t is mean stationary

Mean Stationary

Non-Stationary series

Variance Stationary

 Definition: A time series Y_t has a constant variance, or is variance stationary, if

$$var(Y_t) = \sigma^2$$

is constant (stable) over time.

- Counter-example:
 - A time-series with trended (increasing) variance is not variance stationary
- We assume the cyclical component C_t is variance stationary

Variance Stationary

Non-Stationary series

Covariance

The covariance of two random variables X and Z is

$$cov(X, Z) = E((X - EX)(Z - EZ))$$

 The covariance measures the linear dependence between X and Z

Autocovariance

- The first **autocovariance** of a time series Y_t is the covariance of Y_t with its value in the preceding time period Y_{t-1}
- We call Y_{t-1} the first **first lag** of Y_t
- We write the first autocovariance as

$$\gamma(1) = cov(Y_t, Y_{t-1})$$

$$= E((Y_t - \mu)(Y_{t-1} - \mu))$$

Autocovariances

- The k'th **autocovariance** of a time series Y_t is the covariance of Y_t with its lag Y_{t-k}
- It is written as

$$\gamma(k) = cov(Y_t, Y_{t-k})$$

= $E((Y_t - \mu)(Y_{t-k} - \mu))$

Covariance Stationary

- **Definition**: A time series Y_t is **covariance stationary** if its mean $E(Y_t)$, variance, and autocovariance function $\gamma(k)$ are constant (stable) over time
- Counter-example:
 - A time-series with changing correlations is not covariance stationary
- We assume the cyclical component C_t is covariance stationary

Covariance Stationary

Non-Stationary series

Correlation

The correlation normalizes the covariance

$$corr(X, Z) = \frac{cov(X, Z)}{\sqrt{var(X)var(Z)}}$$

- Correlations lie between -1 and 1
 - corr(X, Z) = 0 means no linear association
 - corr(X, Z) = 1 means X = Z
 - corr(X, Z) = -1 means X = -Z

Autocorrelation

- The first **autocorrelation** of a time series Y_t is the correlation of Y_t with Y_{t-1}
- We write the first autocorrelation as

$$\rho(1) = corr(Y_t, Y_{t-1})$$

$$= \frac{cov(Y_t, Y_{t-1})}{\sqrt{var(Y_t)var(Y_{t-1})}}$$

$$= \frac{cov(Y_t, Y_{t-1})}{var(Y_t)}$$

The third equality holds by variance stationarity

Autocorrelation

- The autocorrelation $\rho(1)$ lies between -1 and 1
- $\rho(1)$ is close to 1 for highly correlated series
- $\rho(1)$ is close to -1 if the correlation is negative if there are movements back and forth
- $\rho(1) = 0$ if the series is uncorrelated

Autocorrelation: two examples

Autocorrelations

- The k'th **autocorrelation** of a time series Y_t is the correlation of Y_t with Y_{t-k}
- It is written as

$$\rho(k) = \frac{cov(Y_t, Y_{t-k})}{\sqrt{var(Y_t)var(Y_{t-k})}}$$
$$= \frac{cov(Y_t, Y_{t-k})}{var(Y_t)}$$

Autocorrelations lie between -1 and 1

Autocorrelation Function

- The autocovariance $\gamma(k)$ and autocorrelation $\rho(k)$ are functions of the lag k.
- We call $\rho(k)$ the autocorrelation function.
- Plotted as a function of *k* it shows us how the dependence pattern alters with the lag.

Autocorrelation Function

Partial Autocorrelation Function

- Partial autocorrelation function, p(k) is sometimes useful.
- p(k) is just the coefficient on y_{t-k} in a population linear regression of y_t on $y_{t-1}, ..., y_{t-k}$.
- We call such a regression an autoregression, because the variable is regressed on lagged values of itself.
- The partial autocorrelations measure the association between y_t and y_{t-k} after *controlling* for the effects of y_{t-1} , ..., y_{t-k+1} .

Partial Autocorrelation Function

MA(1) Process

The first-order moving average process, or MA(1) process, is

$$y_t = \varepsilon_t + \theta \varepsilon_{t-1}$$

where ε_t is $WN(0, \sigma^2)$

- The MA coefficient θ controls the degree of serial correlation. It may be positive or negative.
- The innovations ε_t impact y_t over two periods
 - An contemporaneous (same period) impact
 - A one-period delayed impact

Mean of MA(1)

• The unconditional mean of y_t is

$$E(y_t) = E(\varepsilon_t + \theta \varepsilon_{t-1})$$

$$= E(\varepsilon_t) + \theta E(\varepsilon_{t-1})$$

$$= 0$$

Variance of MA(1)

• The unconditional variance of y_t is

$$var(y_t) = var(\varepsilon_t + \theta \varepsilon_{t-1})$$

$$= var(\varepsilon_t) + var(\theta \varepsilon_{t-1}) + 2cov(\varepsilon_t, \theta \varepsilon_{t-1})$$

$$= \sigma^2 + \theta^2 \sigma^2 + 0$$

$$= (1 + \theta^2)\sigma^2$$

• This is a function of both the innovation variance σ^2 and the MA coefficient θ .

Autocovariance of MA(1)

The first autocovariance is

$$\gamma(1) = E(y_t y_{t-1})
= E((\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-1} + \theta \varepsilon_{t-2}))
= E(\varepsilon_t \varepsilon_{t-1}) + \theta E(\varepsilon_{t-1}^2) + \theta E(\varepsilon_t \varepsilon_{t-2}) + \theta^2 E(\varepsilon_{t-1} \varepsilon_{t-2})
= 0 + \theta E(\varepsilon_{t-1}^2) + 0 + 0
= \theta \sigma^2$$

Autocovariance of MA(1)

• The autocovariance for k > 1 are

$$\gamma(k) = E(y_t y_{t-k})
= E((\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-k} + \theta \varepsilon_{t-k-1}))
= E(\varepsilon_t \varepsilon_{t-k}) + \theta E(\varepsilon_{t-1} \varepsilon_{t-k}) + \theta E(\varepsilon_t \varepsilon_{t-k-1}) + \theta^2 E(\varepsilon_{t-1} \varepsilon_{t-k-1})
= 0 + 0 + 0 + 0
= 0$$

• Thus the autocovariance function is zero for k > 1

Autocorrelations of MA(1)

Since

$$\gamma(0) = var(y_t) = (1 + \theta^2)\sigma^2$$
$$\gamma(1) = \theta\sigma^2$$
$$\gamma(k) = 0, k \ge 2$$

then

$$\rho(1) = \frac{\theta \sigma^2}{(1 + \theta^2)\sigma^2} = \frac{\theta}{1 + \theta^2}$$
$$\rho(k) = 0, k \ge 2$$

• The autocorrelation function of an MA(1) is zero after the first lag.

Autocorrelation Function of MA(1)

ACF for MA(2)

ACF for MA(3)

AR(1) Process

• The first-order autoregressive process, AR(1) is

$$y_t = \beta y_{t-1} + \varepsilon_t$$

where ε_t is $WN(0, \sigma^2)$

Variance of AR(1)

Take variance of both sides of

$$y_t = \beta y_{t-1} + \varepsilon_t$$

Thus

$$var(y_t) = var(\beta y_{t-1} + \varepsilon_t)$$

$$= var(\beta y_{t-1}) + var(\varepsilon_t)$$

$$= \beta^2 var(y_{t-1}) + \sigma^2$$

• If y is variance stationary, we solve and find

$$var(y_t) = var(y_{t-1}) = \frac{\sigma^2}{1 - \beta^2}$$

$|\beta| < 1$

We calculated that

$$var(y_t) = \beta^2 var(y_{t-1}) + \sigma^2$$

• When $|\beta| = 1$, then

$$var(y_t) = var(y_{t-1}) + \sigma^2 > var(y_{t-1})$$

so the variance is increasing with t

- $|\beta| = 1$ is inconsistent with variance stationarity.
- $|\beta|$ < 1 is necessary for stationarity.

Random Walk

• An AR(1) with $\beta = 1$ is known as a random walk or unit root process

$$y_t = y_{t-1} + \varepsilon_t$$

By back-substitution

$$y_t = y_0 + \sum_{i=0}^t \varepsilon_{t-i}$$

• The past never disappears. Shocks have permanent effects.

Autocovariance of AR(1)

Take the equation

$$y_t = \beta y_{t-1} + \varepsilon_t$$

• And then multiply both sides by y_{t-k}

$$y_{t-k}y_t = \beta y_{t-k}y_{t-1} + y_{t-k}\varepsilon_t$$

• Then take expectations. Since ε_t is white noise, it is uncorrelated with

$$E(y_{t-k}y_t) = \beta E(y_{t-k}y_{t-1}) + E(y_{t-k}\varepsilon_t)$$

or

$$\gamma(k) = \beta \gamma(k-1)$$

Autocorrelations of AR(1)

Dividing by the variance, this implies

$$\rho(k) = \beta \rho(k-1)$$

We know

$$\rho(0) = 1$$

Then

$$\rho(1) = \beta \rho(0) = \beta$$
$$\rho(2) = \beta \rho(1) = \beta^{2}$$
$$\vdots$$
$$\rho(k) = \beta^{k}$$

Autocorrelations of AR(1)

We have derived

$$\rho(\mathbf{k}) = \beta^{\mathbf{k}}$$

- The autocorrelation of the stationary AR(1) is a simple geometric decay ($|\beta|$ < 1)
- If β is small, the autocorrelations decay rapidly to zero with k
- If β is large (close to 1), then the autocorrelations decay moderately
- The AR(1) parameter describes the persistence in the time series

Autocorrelation Function of AR(1)

Autocorrelation Function of AR(1)

PACF of AR(2)

Modeling cycles: AR(), MA(), and ARMA()

PACF of AR(3)

ARMA(1,1) Process

- The random shocks that drives an autoregressive process is itself a moving average process.
- It can arise from aggregation (sum of AR or of AR and MA).
- AR processes observed with measurement error.
- ARMA(1,1)

$$y_t = \beta y_{t-1} + \varepsilon_t + \theta \varepsilon_{t-1}$$
$$\varepsilon_t \sim WN(0, \sigma^2)$$

ACF and PACF ARMA(1,1)

ARMA(p,q) Process

- ARMA models have a fixed unconditional mean but a time-varying conditional mean.
- Neither the autocorrelation nor partial autocorrelation functions of ARMA process cut off at any particular displacement.
- Autocorrelation and partial autocorrelation functions damp gradually, with the precise pattern depending on the process.

Akaike Information criterion (AIC)

The Akaike Information criterion is effectively an estimate of the out-of-sample forecast error variance:

$$AIC = \exp\left\{\frac{2k}{T}\right\} \frac{\sum_{t=1}^{T} \hat{\varepsilon}_t^2}{T}$$

where k is the number of estimated parameters.

- Larger models have smaller sum of squared residuals, but larger
 k.
- AIC is designed to find models with low forecast risk.
- AIC assumes all models are approximations, and is trying to find the model which makes the best forecast.
- Akaike recommended selecting forecasting models by finding the one model with the smallest AIC.

Best fitting ARMA(p,q) model

- Neither the ACF nor PACF of ARMA process cut off at any particular displacement. Therefore, ACF and PACF may not be helpful in determining the order p and q for the model.
- One way of choosing the best fitting model is to try them all and compare.
- We can estimate as many ARMA(p,q) models as we can and choose the one with the smallest AIC.
- If you let both p and q vary between 1 and 4, you will estimate and consider 16 different models.

AIC for ARMA(p,q)

	MA(q)	1	2	3	4
AR(p)					
1		502.0	497.5	498.4	499.1
2		494.8	496.6	497.8	499.8
3		497.0	498.7	499.8	501.4
4		498.8	499.7	501.6	503.6

AIC for ARMA(p,q)

	MA(q)	1	2	3	4
AR(p)					
1		502.0	497.5	498.4	499.1
2		494.8	496.6	497.8	499.8
3		497.0	498.7	499.8	501.4
4		498.8	499.7	501.6	503.6

Best fitting ARMA(p,q) model using auto.arima

- We can let the algorithm in auto.arima to pick the best fitting model.
- The algorithm loops over pairwise values of $p \in \{0, 1, 2, 3, ...\}$ and $q \in \{0, 1, 2, 3, ...\}$ to estimate ARMA(p,q) and calculate the AIC.
- The algorithm will choose the order p and q in ARMA(p,q) such that the AIC is the smallest.