- why binary	y: simple						
- 167 - 1584 3	32+4+2+1=27	+ 2 ⁵ + 2 ³ + 2 ¹ + 2	0- (10100III)				
- 101 = 120+ 5	27472112		2 (10 (00 1117)				
- bit: "binar	y digit" 8 bi	its: byte 4	t bits : nybbl	2			
- we use base	e 16 to easily	translate in	to binary in	computer	organizat	ion	
Base 16 has	s 16 digits						
easy to con	vert a hex num	ber to bino	ry. e.g: 9A	= 1001 101	0 1110 3F	F= 0011 1111	1111= 10.
lition & Subt	raction						
510 010 + 610 + 011	0	2AE					
		+1 68 50A					
8 100 - 3 -001 5 010							
5 -001	π						
- We don't su	bstract → instea	nd we add a	negative Al	imber leas	ier)		
- 66 60111 66	DST (ACT) (ABIEC	we down	negative m	All Cors			
In binary.	ve use 2's con	mplement to	represent r	egative &	oositive nu	mbers	