Assignment #3

Matthew McDougall - 30170482

March 18, 2024

Question 1

Let $A = \{1, 2, 3, 4, 5\}$ and let $B = \{6, 7, 8, 9\}$. Prove or disprove the following statements.

a. For all functions $f: A \to B$, there exists a function $g: B \to A$ so that $g \circ f = I_A$

Solution. This statement is false. The negation of the statement is: There exists a function $f: A \to B$ so that for all functions $g: B \to A$, $g \circ f \neq I_A$.

Proof. Let $f = \{(1,6), (2,6), (3,6), (4,6)\}$. Suppose g is a function $g: B \to A$. Argue by contradiction: suppose $g \circ f = I_A$. Then, g(f(1)) = g(6) = 1 and g(f(2)) = g(6) = 2, so g must have elements (6,1) and (6,2). Then, g is not a function, since 6 does not have a unique element. But g is a function, this is a contradiction, so the original claim cannot be true. Therefore, $g \circ f \neq I_A$.

b. For all functions $f: A \to B$, there exists a function $g: B \to A$ so that $f \circ g = I_B$

Solution. This statement is false. The negation of the statement is: There exists a function $f: A \to B$ so that for all functions $g: B \to A$, $f \circ g \neq I_B$.

Proof. Let $f = \{(1,6), (2,6), (3,6), (4,6)\}$. Suppose g is a function $g: B \to A$. Argue by contradiction: suppose $f \circ g = I_B$. Then, f(g(7)) = 7, but $7 \notin Im(f)$, so $f(g(7)) \neq 7$. This is a contradiction, so the original claim cannot be true. Therefore, $f \circ g \neq I_B$.

Therefore,
$$g \circ f \neq I_A$$
.

c. There exist functions $f: A \to B$ and $g: B \to A$ so that $g \circ f = I_A$

Solution. This statement is false. The negation of the statement is: For all functions $f: A \to B$ and $g: B \to A$, $g \circ f \neq I_A$.

Proof. Suppose functions $f: A \to B$, $g: B \to A$. Argue by contradiction: suppose $g \circ f = I_A$. Then, g(f(x)) = x for all $x \in A$.

d. There exist functions $f: A \to B$ and $g: B \to A$ so that $f \circ g = I_B$

Solution. This statement is true.

Proof. Let function $f: A \to B$ be defined by

$$f = \{(1,6), (2,7), (3,8), (4,9), (5,9)\}$$

and let the function $g: B \to A$ be defined by

$$g = \{(6,1), (7,2), (8,3), (9,4)\}$$

Then

$$f \circ g = \{(6,6), (7,7), (8,8), (9,9)\} = I_B$$

4

Where $f: A \to B$ and $g: B \to A$ so that $f \circ g = I_B$.

Question 2

Prove or disprove each of the following statements.

a. For every nonempty set A, if f is a function from A to A so that $f \circ f = I_A$, then f is one-to-one and onto.

Solution. This statement is true.

Proof. Suppose A is a nonempty set. Suppose that $f: A \to A$ and $f \circ f = I_A$. Then, for all $x \in A$, f(f(x)) = x. Suppose we have elements $a, b \in A$ such that f(a) = f(b). Then, f(f(a)) = f(f(b)), and therefore a = b, so f must be one-to-one. Now suppose $c \in A$. Let $d \in A$, d = f(c). Then, f(d) = f(f(c)) = c, so f must be onto.

b. For every nonempty set A, if f is a one-to-one and onto function from A to A, then $f \circ f = I_A$.

Solution. This statement is false. The negation of the statement is: There exists nonempty set A where function $f: A \to A$ is one-to-one and onto, but $f \circ f \neq I_A$.

Proof. Let $A = \{1, 2, 3\}$. Now, let f = (1, 2), (2, 3), (3, 1). Observe that the function is one-to-one and onto. But, $f \circ f = \{(1, 3), (2, 1), (3, 2)\} \neq \{(1, 1), (2, 2), (3, 3)\} = I_A$.

c. There exists a function f from A to A where $A = \{1, 2, 3, 4\}$ so that $f \circ f = I_A$ and $f(x) \neq x$ for all $x \in A$.

Solution. This statement is true.

Proof. Let
$$f = \{(1,4), (2,3), (3,2), (4,1)\}$$
. Then
$$f \circ f = \{(1,1), (2,2), (3,3), (4,4), (5,5)\} = I_A$$
 And $1 \neq 4, 2 \neq 3, 3 \neq 2, 4 \neq 1$, so $\forall x \in A, f(x) \neq x$.

4

d. There exists a function f from A to A where $A = \{1, 2, 3, 4, 5\}$ so that $f \circ f = I_A$ and $f(x) \neq x$ for all $x \in A$.

Solution. This statement is false. The negation of the statement is: For all functions f from A to A where $A = \{1, 2, 3, 4, 5\}$, $f \circ f \neq I_A$ or f(x) = x.

e. For parts (c) and (d), if such a function exists, count the number of such functions. Give a detailed recipe and simplify your answer to a number.

Solution. One recipe for such a function in part (c) is:

- (a) Choose a pair of numbers (such that f(a) = b and f(b) = a) $\binom{4}{2}$ ways).
- (b) Choose the other pair of numbers (1 way). THIS DOESNT IN-CLUDE IDENTIYTY

So there are

$$\binom{4}{2} = \frac{4!}{2!(4-2)!}$$

$$= \frac{4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(2 \cdot 1)}$$

$$= 3 \cdot 2$$

$$= 6$$

such functions.

Question 3

Let $f: \mathbb{R} \to \mathbb{R}$ be the function given by $f(x) = \lfloor 2x \rfloor - x$, for all $x \in \mathbb{R}$.

a. Prove that for all $x \in \mathbb{R}$, $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.

Proof. Suppose $x \in \mathbb{R}$. By definition of floor, $\lfloor x \rfloor \leq x < \lfloor x+1 \rfloor$.

- **b.** Prove that f is one-to-one.
- **c.** Prove that f is onto.