M4 Unit-Test-01 (18MAT41)

Sharul Hameed'S 1/CN 18CSO97 CSE' A'See 4th Sem.

SIT W= Z+ez is analytic and find dw dz

By dota & = Z+ez u+iv=(x+iy)+e(x+iy)

= (x4xy)+ex,ext

(Genis in pres) ret (grant sing)

utiv = 6c+ex cosy)+i(ytex siny)

u=x+exwgy V=y+exsint

Mr=1+ excosy My= Hen siny

uy = -e & sint Vx = . ex Siny

we observe that C-R Egn's in the cation are satisfied.

John un= Ny and Nn = - cly are satisfied.

Thus, w= z+e2 is analytic.

Also we have; du = fr (z) = Untirn

ixedus = (He x wy) +ier siny)

= 1 tex (ory + i siny) = 1 tex en'y = 1 tex + i y

Since z=)ctiy, dw = 1+ez

8	Find $p(x \ge 1)$, $p(x > 1)$ and $p(-1) = x \ge 3$ p(x) -3 -2 -1 0 1 2 3 2 2 2 2 2 2 2 2 2 2
>	use must have $p(x) \ge 0$ jot all x and $\xi p(x) = 1$. The joint about the second condition is latisfied if $\xi \ge 0$ and the second condition elequines that, $\xi \ne 0$ and $\xi \ne 0$ are $\xi \ne 0$ and $\xi \ne 0$ are $\xi \ne 0$ and $\xi \ne 0$ and $\xi \ne 0$ and $\xi \ne 0$ and $\xi \ne 0$ are $\xi \ne 0$ and $\xi \ne 0$ and $\xi \ne 0$ and $\xi \ne 0$ and $\xi \ne 0$ are $\xi \ne 0$ and $\xi \ne 0$ and $\xi \ne 0$ and $\xi \ne 0$ are $\xi \ne 0$ and $\xi \ne 0$ and $\xi \ne 0$ are $\xi \ne 0$ and $\xi \ne 0$ and $\xi \ne 0$ are $\xi \ne 0$ are $\xi \ne 0$ and $\xi \ne 0$ are $\xi \ne 0$ are $\xi \ne 0$ and $\xi \ne 0$ are $\xi \ne $
	of 16 k = 1 - K = 1/6 The discount / finite perobability distribution is as gollows - 2 - 2 - 1 0 1 2 13 P(2) 1/16 2/16 3/16 4/16 3/16 2/16 1/6
	Mean $M = \sum_{n} p(x) = \frac{1}{16} (-3-4-340+3+4+3)$ $= 0$ Variance $Y = \sum_{n} (x - M)^{2} p(x)$
	1 = 1 (9+8+3+0+3+8+9) =40 = 5/2 / Thus k = 1/6, Mean = 0 and S.D = $\sqrt{5/2}$ /

Also, $p(x \leq 1) = p(-3) + p(-2) + p(-1) + p(-2) + p(-1) = \frac{13}{16}$ $p(x > 1) = p(2) + p(3) = \frac{3}{16}$ $p(-1 < x \leq 2) = p(0) + p(1) + p(1) = \frac{9}{16}$

My-unit Test -02 Shahul Hameok S (18 MATH) IFNIB (SOTT (SE'A) sec 4th Sem gird the bilinear sound another which is map points F,0,i=w other +, i, 1=5 let w= az +b 7=1, W=2. = > 1 = a + b ato ticted > ato-ic-id =0 -0 d+ is = 0 = 0, 1= 8 aith ->> (3) Z=-1, W=-i = -a+b -a +6 = ic - id => -a +6 - ic+id=0 _3 Now, Lon O +B Ey @ Ee @ we arith in the gown, 9/46-ic-id=0 a it to to c >0 -gab-ictid=0 0212-d+00 86-8ic0 Applying the rule of Colors X in => b-ic EO -(A) $\frac{a}{\begin{vmatrix} 1 & 0 \\ 1 & -1 \end{vmatrix}} = \frac{c}{\begin{vmatrix} 1 & 0 \\ 1 & -1 \end{vmatrix}}$ 立こっちこでこと 9 = -1k b=-1c C=1k Evn O -ik+k-ik-di=0=>-ik-K+K-id=0

(1)

0=1,0017 P= 9,0028 ×10-3

62)

7

Shahul Hameed.S

IKNIBUS097

C SE A'Sec

4th sem

1: (Dang of Cx) of broken is volid if (Cx) 30 and EDEN):1

i.k. >0 and k+5 k+10 b +5+K=1

コンシン	0	1 }	2 }	33	4 \	5
(x)9	Y32	7/32	132	1	1/38	7/32

63)

$$\frac{\partial^{2} 4}{(2+1)^{2}(2-3)} + \frac{\partial^{2} 2}{\partial x} +$$