الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

دورة: 2023

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة: التكنولوجيا (هندسة كهربائية)

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

نظام آلي لتصنيع ركائز (سندات)

يحتوي هذا الموضوع على: 9 صفحات.

- العرض: من الصفحة 1 إلى الصفحة 5.
 - العمل المطلوب: الصفحة 6.
- وثائق الإجابة: من الصفحة 7 إلى الصفحة 9.

دفتر الشروط:

- 1. هدف التألية: يهدف هذا النظام إلى تصنيع ركائز (سندات) تستعمل كحوامل للأجهزة الكهرومنزلية.
- ◄ وصف التشغيل: بعد نهاية التشغيل التحضيري تنطلق عملية تركيب قطعة بلاستيكية داخل قطعة معدنية ثم تقدميها إلى البساط الذي يشتغل بصفة مستمرة لتحول إلى الصحن الدوار أين يتم ثقبها ثم طبع علامة الصانع عليها، وبدوران الصحن الدوار تسقط القطعة المصنعة في العلبة عبر التجويف الموجود في الصحن الثابت، وبعد امتلاء العلبة الكرتونية بـ 16 قطعة ينطلق جهاز إنذار لتنبيه العامل من أجل سحب العلبة المملوءة واستبدالها بأخرى فارغة.
- \checkmark توضيح حول أشغولة الثقب: تنزل ذراع الرافعة \Tau مع دوران المحرك \TeX لإنجاز الثقب وعند الضغط على \Tau تصعد ذراع الرافعة مع بقاء المحرك في الدوران وتنتهي الأشغولة.
 - 2. الاستغلال: عامل للقيادة والصيانة الدورية وعامل دون اختصاص لتزويد القنوات بالقطع واستبدال العلب الكرتونية
 - 3. الأمن: حسب قوانين الأمن المعمول بها.
 - 4. الوظيفة الشاملة: مخطط النشاط A-0

W: طاقة كهربائية وطاقة هوائية.

E: تعليمات الاستغلال.

C: إعدادات الضبط.

 $(\theta; N_2;N_1;t_2;t_1)$ تعدیلات: R

5. جدول الاختيارات التكنولوجية:

الملتقطات	المنفذات المتصدرة	المنفذات	الاشغولات					
p ₁ : ملتقط حضور قطعة في مركز	سجل إزاحة.	Mpp1: محرك خ/خ						
التركيب.	-dA ⁻ , dA : موزع 5/2 ثنائي	ذو مغناطيس دائم						
N ₁ : عدد الخطوات.	الاستقرار ~24V كهروهوائي.	A: رافعة مزدوجة المفعول.						
A ملتقطي وضعية ساق الرافعة: a_0, a_1	dV: موزع 3/2 أحادي		التركيب					
t ₁ : تأجيل 0,5s	الاستقرار ~24V كهروهوائي.	V: مصاصة أحادية	والتقديم					
	T ₁ : مؤجلة.	المفعول.						
b: ملتقط وضعية ساق الرافعة B.	dB: موزع 3/2 أحادي	B: رافعة أحادية المفعول.						
	الاستقرار ~24Vكهروهوائي.							
p ₂ : ملتقط حضور قطعة في مركز	-dC ⁻ ,dC): موزع 5/2 ثنائي	C: رافعة مزدوجة المفعول						
التحويل.	الاستقرار ~24V كهروهوائي.							
$ m C$ ملتقطي وضعية ساق الرافعة: $ m c_0, c_1$	dD:موزع 3/2 أحادي الاستقرار	D: كماشة أحادية المفعول	التحويل					
d: ملتقط يكشف عن غلق الكماشة D.	~24V كهروهوائي.							
e_0, e_1 ملتقطي وضعية ساق الرافعة e_0, e_1	†dE ⁺ ,dE: موزع 5/2 ثنائي	E: رافعة مزدوجة المفعول						
	الاستقرار ~24V كهروهوائي.							
	+dF-,dF:موزع 5/2 ثنائي	F: رافعة مزدوجة المفعول.						
f_0,f_1 ملتقطي وضعية ساق الرافعة f_0	الاستقرار ~24V كهروهوائي.	M2: محرك لاتزامني3~						
	KM ₂ : ملامس كهرومغناطيسي	220/380v ;550w;1,7A	الثقب					
	.24V~	680mn ⁻¹ ;cosφ=0,72						
θ: ملتقط يكشف عن درجة الحرارة.	KR _{ch} : ملامس ~24V.	R _{ch} : مقاومة تسخين.						
	dG: موزع 3/2 أحادي الاستقرار							
g: ملتقط وضعية ساق الرافعة G.	~24V كهروهوائي.	G: رافعة أحادية المفعول.	الطبع					
t ₂ : تأجيل 1s.	T ₂ : مؤجلة							
N2: عدد الخطوات.	سجل ازاحة	Mpp2: محرك خ/خ	تدوير					
	-		الصحن					
ma: زر التشغيل. Ar: زر التوقيف. Auto/Manu : مبدلة اختيار نمط التشغيل.								
Init: زر التهيئة. AU: زر التوقف الاستعجالي.								
ِ إعادة التسليح.	المحركات ثلاثية الطور . Réa: زر	RT ₁ , RT ₂ : ملامس حماية	والحماية					

• شبكة التغذية ثلاثية الطور: 220/380V+N , 50Hz

6. المناولة الزمنية:

متمن الأشغولة 4 "الطبع"

متمن الأشغولة 4 مشفر (موجه) API

متمن الإنتاج العادي GPN

7. الانجازات التكنولوجية:

• دارة عد القطع و التحكم في المنبه الصوتي (الشكل1)

• دارة تغذية مقاومة التسخين Rch (الشكل 2

• دارة التحكم في المحرك خ/خ Mpp1 (الشكل 3)

8. المناولة الهيكلية:

العمل المطلوب

الجزء الأول: (6 نقاط)

- س1. أكمل مخطط النشاط البياني A0 على وثيقة الإجابة 1.
- س2. أنشئ متمن الأشغولة 3 "الثقب" من وجهة نظر جزء التحكم.
- س3. أكمل ملأ دليل GMMA اعتمادا على متمن القيادة والتهيئة GCI ومتمن الأمن GS على وثيقة الإجابة 1.
 - س4. أكمل دارة المعقب الكهربائي للأشغولة 4 "الطبع" مع ربط دارة التحكم في المخارج على وثيقة الإجابة 1. الجزء الثانى: (5 نقاط)
 - دارة عد القطع والتحكم في المنبه الصوتي الشكل 1 (ص4):
 - س5. أكمل ملأ الجدول الخاص بهذه الدارة على وثيقة الإجابة 2.
 - س6. املأ جدول تشغيل الطابقين 1 و 2 من الدارة على وثيقة الإجابة 2.
 - س7. أكمل ربط المخطط المنطقي للعداد على وثيقة الإجابة 2.
 - دارة تغذية مقاومة التسخين Rch شكل 2 (ص4):
 - س8. ارفق الإجابة الصحيحة ب"1" والإجابة الخاطئة بـ"0" في جدول خصائص التركيب على وثيقة الإجابة 2. الجزء الثالث: (4.5 نقطة)
 - دارة التحكم في المحرك خ/خ Mpp1 شكل3 (ص4):
 - -0.5 من أجل دور إشارة الساعة -0.5 من أجل دور إشارة الساعة -0.5
 - س10. أكمل ربط مخطط سجل الإزاحة يسار حلقى والمشحون بالقيمة 1001 على وثيقة الإجابة 3.
 - س11. أكمل ملأ جدول الازاحة على وثيقة الإجابة 3.
 - س12. استنتج خصائص المحرك خ/خ (m; P; K1; K2) ثم احسب عدد الخطوات في الدورة والخطوة الزاوية. الجزء الرابع: (4.5 نقطة)
 - *لتغذية المنفذات المتصدرة نستعمل محول يحمل الخصائص: \$20/24v; 50hz
 - $P_{1cc} = 6,4w$; $I_{2cc} = I_{2N} = 2,625A$: أجريت عليه تجرية الدارة القصيرة فأعطت النتائج
 - P_{1cc} س 13. حدد ماذا تمثل
 - R_s المقاومة المرجعة للثانوي المقاومة المرجعة للثانوي
 - س15. احسب الهبوط في التوتر عندما يغذي حمولة مقاومية بتيار إسمى.
 - * محرك اشغولة الثقب M2 بإقلاع مباشر اتجاه واحد للدوران ومركب على الشبكة 220/380v:
 - س16. فسر خصائص الشبكة.
 - س17. استنتج سرعة تزامن المحرك ثم أحسب انزلاقه g.
 - س18. أحسب استطاعته الممتصة Pa ومجموع ضياعه
 - س19. أكمل دارة الاستطاعة لهذا المحرك على وثيقة الإجابة 3.
 - س20. برر لماذا لا يصلح الإقلاع النجمي المثلثي لهذا المحرك.

وثيقة الإجابة 1 (تعاد مع أوراق الإجابة)

ج1) مخطط النشاط البياني A0:

ج3) دليل أنماط التشغيل والتوقيف GMMA:

ج4) دارة المعقب الكهربائي للأشغولة 4 "الطبع":

وثيقة الإجابة 2 (تعاد مع أوراق الإجابة)

ج5) الجدول الخاص بدارة عد القطع والتحكم في المنبه الصوتي:

قيمة التوتر	عد المقاحل DND		المقاحل	المقاحل	نوع المقحل	دور العناصر		دور الطوابق				
المرجعي	في الدارة	Tr ₂	AOP	D ₅ و D ₄	طابق 3		طابق 2		طابق 5			
						مرحل سكوني		خلية				
						سكوني		الكشف				

ج6) جدول تشغيل الطابقين 1و2:

Q	R	S	حالة المقحل Tr ₂	\mathbf{V} د قيمة	\mathbf{V}^+ قيمة	حالة المقحل Tr ₁	
							غياب القطعة
							حضور القطعة

ج7) المخطط المنطقي للعداد:

ج8) جدول خصائص التركيب:

V _{Reh moy} ولة	وتر الحم	يمة المتوسطة لت	علاقة الق	(المراقبة)	نوع التحكم	ِ قريتز	نوع جسر	تقويم	نوع الا
$\frac{V_{max}(1+\cos\theta)}{\pi}$	$\frac{V_{max}}{\pi}$	$\frac{V_{max}(1+\cos\theta)}{2\pi}$	$\frac{2V_{max}}{\pi}$	مراقب	غیر مراقب	جسر مختلط	جسر بثنائیات		أحاد <i>ي</i> النوبة

وثيقة الإجابة 3 (تعاد مع أوراق الإجابة)

ج10) مخطط سجل الإزاحة يسار حلقي:

Y.,	7 (00) 1 . /11_
X_{10}	ج11) جدول الإزاحة

X ₁₀	CLK	المخارج					
2 10		QA	Q_{B}	Qc	Q_{D}		
1	_						
0	1						
0	1						
0	1						
0	1						

$\cdot M_2$ دارة الاستطاعة للمحرك (19

اختبار في مادة: التكنولوجيا (هندسة كهربائية) / الشعبة: تقني رياضي / بكالوريا 2023

الموضوع الثاني نظام آلى لتشكيل قارورات بلاستيكية

يحتوي هذا الموضوع على: 10 صفحات.

- العرض: من الصفحة 11 إلى الصفحة 16.
- العمل المطلوب: من الصفحة 17 الى الصفحة 18.
 - وثائق الإجابة: من الصفحة 19 إلى الصفحة 20.

دفتر الشروط

1. هدف التألية: تهدف تألية هذا النظام الحصول على قارورات بلاستيكية بكميات كبيرة وبصفة مستمرة انطلاقا من كبسولات (على شكل انابيب بلاستيكية).

ح وصف التشغيل:

تصل الكبسولات إلى مركز التحويل عبر منحدر فيكشف عنها الملتقط Cp لتحوّل إلى اسطوانة التقديم. تُقدّم الكبسولات بالأسطوانة التي يديرها المحرك Mpp إلى مركز التشكيل مرورا بنفق تسخين. بعد غلق القالب تُشكَّل القارورة بضخ الهواء الساخن في الكبسولة، ليتم بعدها تبريد وفتح القالب ثم تُحرّر القارورة المشكلة لتسقط على بساط الاخلاء (خارج عن الدراسة).

﴿ توضيحات حول أشغولة التّحويل:

تنطلق عملية التحويل بصعود ساق الرافعة W حتى W لتثبيت الكبسولة على أسطوانة التقديم ثم تعود. بعدها تنزل ساق الرافعة Y حتى Y لتوفير كبسولة جديدة ثم تعود إلى وضعيتها الأصلية Yو تنتهى الاشغولة.

- 2. الاستغلال: عامل غير متخصص لجلب الكبسولات وآخر متخصص لعمليات القيادة والصيانة الدورية.
 - 3. الأمن: وفق المقاييس المعمول بها في الأمن الصناعي.
 - 4. الوظيفة الشاملة: مخطط النشاط 0-A

w: طاقة كهربائية و هوائية

E: تعليمات الاستغلال

C : إعدادات الضبط

 $(t_1;t_2;Np)$ تعدیلات: R

5. جدول الاختيارات التكنولوجية:

الملتقطات	المنفذات المتصدرة	المنفذات	الاشغولات				
ي ملتقطي وضعية: W_0 , W_1	*dW-, dW: موزع 5/2 ثنائي الاستقرار	W: رافعة مزدوجة المفعول.					
ساق الرافعة W.	~24V كهروهوائي.		تحويل				
ي ملتقطي وضعية y_0 , y_1	'dY ⁻ , dY: موزع 5/2 ثنائي الاستقرار	Y: رافعة مزدوجة المفعول.	كبسولة				
ساق الرافعة Y.	~24V كهروهوائي.						
N _p : عدد الخطوات.	سجل ازاحة SN74198	Mpp: محرك خ/خ ذو مغناطيس دائم.	تقديم الكبسو لات				
a ₁ : ملتقط وضعية خروج	+dA:موزع 5/2 ثنائي الاستقرار ~24V	A: رافعة مزدوجة المفعول.					
ساق الرافعة A.	كهروهوائي.		غلق				
ملتقط وضعية خروج: b_1	+dB:موزع 5/2 ثنائي الاستقرار ~24V	B: رافعة مزدوجة المفعول.	القالب				
ساق الرافعة B.	كهروهوائي.						
ملتقطي وضعية z_0,z_1	-dZ-, dZ): موزع 5/2 ثنائي الاستقرار	Z: رافعة مزدوجة المفعول.					
ساق الرافعة Z.	~24V كهروهوائي.		تشكيل				
t ₁ : زمن ضبخ الهواء	:KEV ₁ ملامس كهر ومغناطيسي ~24V	EV_1 : کهروصمام	القارورة				
الساخن 4s.	T ₁ : مؤجلة						
t ₂ : زمن ضخ الهواء البارد5s.	KEV ₂ :ملامس كهر ومغناطيسي ~24V	EV ₂ : كهروصمام.					
	T ₂ : مؤجلة						
a ₀ : ملتقط وضعية دخول	-dA:موزع 5/2 ثنائي الاستقرار ~24V	A: رافعة مزدوجة المفعول.	تبرید وفتح				
ساق الرافعة A.	كهروهوائي.	B: رافعة مزدوجة المفعول.	القالب				
b ₀ : ملتقط وضعية دخول ساق الرافعة B.	-dB:موزع 5/2 ثنائي الاستقرار ~24V						
	كهروهوائي.						
c ₀ ; c ₁ ملتقطي وضعية	†dC ⁻ ,dC: موزع 5/2 ثنائي الاستقرار	C: رافعة مزدوجة المفعول	تحرير الكبسولة				
- 24V كهروهوائي. ساق الرافعة C كهروهوائي.							
dcy: زر انطلاق الدورة. Ar: زر التوقيف. Auto/cy/cy: مبدلة اختيار نمط التشغيل.							
Init: زر التهيئة. AU: زر التوقف الاستعجالي.							
	Réa .N: زر إعادة التسليح.	RT: ملمس الحماية للمحرك Λ	والحماية				

• شبكة التغذية ثلاثية الطور: 220/380V+N , 50Hz

6. المناولة الزمنية:

7. المناولة الهيكلية:

8. إنجازات تكنولوجية:

9. الملحق:

- وثائق الصانع للدارة المندمجة SN74198:

FUNCTION TABLE

					INPU'	ΓS		OUTPU	TS				SO [ſτ	VCC
CLEAD	MC	DDE	CI OCIV	SE	RIAL	PARALLEL		0	0	0			SR SER	2	23 S1
CLEAR	S ₁	S ₀	CLOCK	LEFT	RIGHT	АН	Q _A	Q _B	Q_{G}	Q _H			Α [3	22 SL SER
L	X	X	X	X	X	X	L	L	L	L	←	مسح	Q _A L B [5	21∐ H 20 ΩH
Н	X	X	L	X	X	X	Q_{A0}	Q_{B0}	Q_{G0}	Q_{H0}	←	احتفاظ	ΩB	6	19 G
Н	Н	Н	↑	X	X	ah	a	b	g	h	←	شحن	С	7	18 QG
Н	L	Н	↑	X	Н	X	Н	$Q_{An} \\$	$Q_{Fn} \\$	$Q_{G\!n}$	[←	إزاحة	α _C [9	16 at
Н	L	Н	↑	X	L	X	L	$Q_{An} \\$	$Q_{Fn} \\$	$Q_{Gn} \\$	┛	يمين	-0 =	10	15 E
Н	Н	L	↑	Н	X	X	Q_{Bn}	$Q_{Cn} \\$	$Q_{Hn} \\$	Н	←	إزاحة	CLK [12	14 QE 13 CLR
Н	Н	L	↑	L	X	X	Q_{Bn}	Q _{Cn}	Q _{Hn}	L] ←	يسار		_	
Н	L	L	X	X	X	X	Q_{A0}	Q_{B0}	Q _{G0}	Q _{H0}	←	احتفاظ			

- وثائق الصانع للدارة المندمجة 78XX

Electrical Characteristics (LM7805)

Refer to the test circuits. -40°C < T_J < 125°C, I_O = 500mA, V_I = 10V, C_I = 0.1 μ F,

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C	4.8	5.0	5.2	٧
		$5\text{mA} \le I_O \le 1\text{A}, \ P_O \le 15\text{W}, \\ V_I = 7\text{V to } 20\text{V}$	4.75 5.0		5.25	
r _O	Output Resistance ⁽²⁾	f = 1kHz	-	15.0	-	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A = +25°C	-	230	-	mA
I _{PK}	Peak Current ⁽²⁾	T _J = +25°C	-	2.2	-	Α

- لوحة المواصفات للمحرك M

		MOT.3~ LS80L T								
		N° 561815170 BJ 002 Kg9								
Ip55 l cl.F 40°C S1										
V	Hz	Min ⁻¹	Min ⁻¹ kW cosp A 1							
Δ 220	50	2780	0.55	(!-	Δ泵	<i>⊱</i> %				
Y 380	50	2/80	0.75		Y %	/* 70				

العمل المطلوب:

الجزء الأول: (5.5 نقطة)

- س1. اذكر جميع المراحل لمختلف متامن النظام التي تصبح نشطة عندما يضغط العامل على زر التوقف الاستعجالي AU مستعينا بمتمن الأمن GS.
 - س2. أنشئ متمن الأشغولة 1 "تحويل الكبسولة" من وجهة نظر جزء التحكم.
 - س3. أكمل ملأ جدول معادلات التنشيط والتخميل للمراحل التالية على وثيقة الإجابة 1:
 - (13 ص GCI و X_{105} من متمن القيادة والتهيئة X_{105}
 - (13 من متمن الأشغولة 3 "غلق القالب" (ص- 13).
 - س4.أكمل ربط دارة المعقب الهوائي للأشغولة 3 "غلق القالب" على وثيقة الإجابة 1.

الجزء الثاني: (7 نقاط)

- دارة التأجيل £2=5s بعداد تنازلي لتبريد القالب الشكل 1 (ص15):
 - X_{51} ودور D ودور D
- f = 2Hz المتغيرة P للحصول على إشارة ساعة ترددها f = 2Hz
- 1. أحسب ترديد العداد N ثم أكمل المخطط المنطقى للمؤجلة بالعدّاد التنازلي على وثيقة الإجابة
 - دارة التحكم في المحرك خ/خ الشكل 2 (ص15):
- * نكتفي باستعمال أربع مخارج فقط ($Q_AQ_BQ_CQ_D$) من السجل 74198 للتحكم في المحرك خ/خ ونربط المخرج Q_D مع المدخل Q_D مع المدخل Q_D مع المدخل على سجل حلقي.
- س8. أكمل ملأ جدول الإزاحة للسجل مستعينا بالشكل 2 (ص15) ووثائق الصانع (ص16) على وثيقة الإجابة 2.
 - * لشحن السجل عند تنشيط X_{102} ثم الازاحة عند تنشيط X_{21} يجب توفر نبضات الساعة في المدخل
 - س9. ارسم البوابة المنطقية التي تراها مناسبة لضمان الشحن ثم الازاحة على وثيقة الإجابة 2.
 - س10. أكمل ملأ جدول خصائص المحرك خ/خ مستعينا بالشكل 2 (ص15) على وثيقة الإجابة 2.
 - س 11. حدد نوع المقحل Tr_A ثم انقل شكل المقحل على ورقتك وعين عليه التيار والتوترات واتجاهاتها. الجزء الثالث: (4)
 - دارة تغذية الدارات المندمجة الشكل 3(ص15):
 - س12. أكمل ملأ الجدول الذي يحدد الوظيفة والبنية المادية (العنصر) المجسدة لكل طابق على وثيقة الإجابة 2.
 - س13. فسر الخصائص الكهربائية المدونة على الطابق1.
 - س 14. أحسب شدة التيار الإسمية I_{2N} في مخرج الطابق 1.
 - 0.15. استخرج قيمة التوتر 0.05 في مخرج التركيب مستعينا بوثائق الصانع (ص0.05).
 - س 16. أكمل رسم إشارات التوترات $u_2(t); u_3(t); u_c(t)$ مبينا قيمة $u_3(t); u_1(t); u_2(t); u_3(t); u_3(t)$ على وثيقة الإجابة 2.

الجزء الرابع: (3.5 نقطة)

- محرك بساط التصريف M: يحمل المرجع LS80L انظر وثائق الصانع (ص16)
- *لاحظ عامل الصيانة أثناء دورية المراقبة بأن عدة مقادير على لوحة المواصفات لهذا المحرك غير واضحة ولا يمكن قراءتها، فاستعان بابنه من قسم 3هندسة كهربائية الذي اقترح عليه قياس الاستطاعة بطريقة الواطمترين لإيجاد هذه المقادير.
 - $P_1=720w$; $P_2=350w$: كانت: كانت: اذا علمت ان نتائج القياسات كانت: هذه المهمة بالإجابة على الأسئلة التالية:
 - س 17. أحسب مختلف الاستطاعات لهذا المحرك (الفعالة Pa والارتكاسية (الردية) Qa والظاهرية Sa)
 - س 18. أحسب معامل استطاعة المحرك cosφ
 - س 19. أحسب تيار الخط في حالة الربط النجمي I_{Y} ثم اوجد قيمته في حالة الربط المثلثي I_{Δ}
 - س 20. أحسب مردود المحرك η.

وثيقة الإجابة 1 (تعاد مع أوراق الإجابة)

ج3) معادلات التنشيط والتخميل

التخميل	التنشيط	المرحلة
$+X_{201}$		X ₁₀₃
		X105
		X30
$+X_{203}$		X31

ج4) المعقب الهوائي لأشغولة غلق القالب:

ج7) المخطط المنطقي للمؤجلة بالعداد التنازلي:

وثيقة الإجابة 2(تعاد مع أوراق الإجابة)

ج9) البوابة المنطقية المناسبة:

ج8) جدول الإزاحة للسجل 74198:

X_{200}	X_{102}	Clk	ABCD	QA	Q _B	Q _C	Q_{D}
0	0	0	1 1 0 0	0	0	0	0
1	1	↑	1 1 0 0	1	1	0	0
1	0	↑	1 1 0 0				
1	0		1 1 0 0				
1	0	↑	1 1 0 0				
1	0	1	1 1 0 0				

ج10) جدول خصائص المحرك خ/خ

الخطوة الزاوية	عدد الخطوات في دورة	نمط التبديل	نوع القطبية	عدد ازواج الأقطاب	عدد الاطوار (الوشائع)
α_{p}	Np/t	K2	K1	P	m
		1			

ج12) الوظيفة والبنية المادية المجسدة لكلّ طابق:

طابق4	طابق3	طابق2	طابق 1	الطابق
				الوظيفة
				البنية المادية (العنصر)

ج16) رسم إشارات التوترات اللحظية:

انتهى الموضوع الثاني

الإجابة النموذجية مادة: التكنولوجيا (هندسة كهربائية)/ الشعبة: تقنى رياضي/ بكالوريا: 2023

									لتركيب:	سائص ال	ول خص	ج8) جد
		$ m V_{Reh}$	مولة _{moy}	لتوتر الد	يمة المتوسطة	علاقة الق	(المراقبة)	وع التحكم	ِ قريتز ان	نوع جسر	تقويم	نوع ال
1 ن	10×0.1	$V_{\text{max}}(1$	+cose)	V _{max}	$V_{\text{max}}(1+\cos\theta)$	2V _{max}	مراقب	غیر مراقب	جسر م ذالما	جسر بثنائیات	ثنائي النسبة	أحادي
		π	;	π	2 π	π		مروب			اللوبة	, <u>-</u>
			1	0	0	0	1	0	1	0	1	0
	0.25		T=2	R ₃ Cln	$n3 = 2, 2R_{5}$	C			فة C:	عة المكث	ىاب سى	ج9) حد
0.75ن	0.25		$C = \frac{1}{2}$	$\frac{T}{2,2R_3}$								
	0.25				$\frac{1}{10^3} = 22\mu$	F						
	الساعة						:	ار حلقي	زاحة يس	سجل الإ	خطط	ج10) م
	0.25									1		
	الشحن	X_{11}	т ^{X₁₅}			,	ι ^γ	1,	,			\mathbb{H}_{-}
	0.25	X_{11} X_{15} D_A S Q_A D_B S Q_B D_C S Q_C D_D S Q_D									儿	
1 ن	الازاحة											
	يسار 0.25											
	الربط الحلقي	ملاحظة: مداخل الإرغام غير المستعملة لا تؤخذ بعين الاعتبار في حالة عدم ربطها بالواحد										
	0.25		, , ,		.			· 🗸				
										لإزاحة:	ئدول اا	ج11) ج
			X ₁₀	Cl	k		المخارج					
	(خمس				Q _A	QI			Q _D			
1.25ن			1	<u> </u>	1	0		0	1			
	5x0.25		0	<u> </u>	0	0		1 1	0			
			0	<u>'</u>	1	1		0	0			
			0	· ·	1	0		0	1			
								<u> </u>	•			

		ج12) استنتاج خصائص المحرك خ/خ:
	0.25	عدد الأطوار (الوشائع): m=2
	0.25	عدد أزواج الأقطاب: P=1
	0.25	نوع القطبية: ثنائي القطبية
	0.25	نمط التبديل: متناظر K2=1
1.5ن		
	0.25	$N_{P/t}$ = $m.P.K1.K2$ = $2.1.2.1$ = 4 دورة: لخطوات في دورة:
	0.25	$lpha_p=rac{360}{N_{p_t'}}=rac{360}{4}=90^\circ$ حسا ب الخطوة الزاوية:
		ملاحظة:
		في حالة التعويض بقيم صحيحة للخصائص في العلاقة دون تفصيل تعطى العلامة الموافقة
		ج13) تحدید ماذا تمثل P _{1cc} :
0.25ن	0.25	ضياع بمفعول جول في الشروط الإسمية P _J (ضياع في النحاس)
		$\mathbf{P_{1cc}}\!\!=\!\!\mathbf{P_{J}}$ تقبل الإجابة في حالة كتابة: $\mathbf{P_{1cc}}\!\!=\!\!\mathbf{P_{J}}$
		ج $(14$ حساب المقاومة المرجعة للثانوي (R_s)
0.5ن	0.25	$R_s = \frac{P_{1cc}}{I_{2CC}^2}$
	0.25	$R_s = \frac{6.4}{2.625^2} = 0.93\Omega$
		$(I_2 = I_{2N}$ تيار إسمي $(I_2 = I_{2N})$: تيار الهبوط في التوتر (حمولة مقاومية $(I_2 = I_{2N})$:
	0.25	$\Delta U_2 = R_s I_2$
0.5ن	0.25	$\Delta U_2 = 0.93 \times 2.625 = 2.44V$

الإجابة النموذجية مادة: التكنولوجيا (هندسة كهربائية)/ الشعبة: تقني رياضي/ بكالوريا: 2023

		ج16) تفسير خصائص الشبكة:
	0.25	220v: التوتر البسيط V
0.5ن	0.25	380v: التوتر المركب
		تقبل الإجابتين التاليتين: U :380v V :220v
		أو 220v: توتر بين طور و حيادي 380v: توتر بين طورين
		ج17) استنتاج سرعة التزامن وحساب الانزلاق:
	0.25	$n = 680mn^{-1} \Rightarrow n_s = 750mn^{-1}$
0.75ن	0.25	$g = \frac{n_s - n}{n_s}$ الانزلاق:
	0.25	$g = \frac{750 - 680}{750} = 0,093 = 9,3\%$
		ج18) حساب الاستطاعة الممتصة ومجموع الضياع:
	0.25	$P_a = \sqrt{3UI\cos\varphi}$:
0.75ن	0.25	$P_a = 1,73 \times 380 \times 1,7 \times 0,72 = 805w$
<i>ن</i> . 73		$\Sigma P_{pertes} = P_a - P_u = 805 - 550 = 255w$: a culture : a cul
	0.25	— pertes — a — u — c — c — c — c — c — c — c — c — c
	تسمية	ج19) دارة استطاعة المحرك:
	الفاصل	L1 L2 L3
	العازل Q	
	0.25	,
1ن	رسم تماسات	KM_2
	الملامس 0.25	
	0.25 تسمية	RT ₂
	ورسم	
	المرحل RT2	$\left(\begin{array}{c} M_2 \\ 3 \sim \end{array} \right)$
	2x0.25	
		ج20) تبرير لماذا لا يصلح الإقلاع النجمي المثلثي:
0.25ن	0.25	لأن كل لف للمحرك لا يتحمل 380V
		تقبل الإجابة: -لأن التوتر المركب للشبكة 380v لا ينطبق مع توتر الربط المثلثي للمحرك
		220v

الإجابة النموذجية مادة: التكنولوجيا (هندسة كهربائية)/ الشعبة: تقني رياضي/ بكالوريا: 2023

العلامة		/ alabi					
مجموع	مجزأة		عناصر الإجابة (الموضوع الثاني)				
0.75ن	3x0.25 (كل ثلاث مراحل عشوائيا)	X ₂₀₁ ; X ₂₀₃ X ₁₀₀ X ₁₀ ; X ₂₀ ; X ₃₀ ; X ₄₀ ; X ₅₀	ذف 0,25 إذا أخطأ في مرحلتين من بين كل ثلاث م	ملاحظة: تد			
ن 2	رمرحلة انتقال) 6x0.25 الأفعال 0.25 الأشغولة الأشغولة 0.25		" " تحويل الكبسولة": X ₁ .(X ₁₀₅ +X ₁₀₆)	25) متمن الا			
			التنشيط والتخميل:	· ` `			
		التخميل	التنشيط	المرحلة			
	التنشيط	$X_{104}+X_{105}+X_{201}$	X ₁₀₂ .X ₁ .X ₅₋₂ .X ₆₋₂	X ₁₀₃			
	0.5	$X_{106}+X_{107}+X_{201}$	X ₁₀₄ .Cp+X ₁₀₃ .Auto.Dcy.Cp+X ₁₀₇ .Cp	X ₁₀₅			
1ن			_				
1ن	التخميل	$X_{31}.X_{33}$	X_{32} , X_{34} , X_3 + X_{203}	X ₃₀			

الإجابة النموذجية مادة: التكنولوجيا (هندسة كهربائية)/ الشعبة: تقني رياضي/ بكالوريا: 2023

	326					5/خ:	س المحرك خ	جدول خصائص	ج10)
	الخطوات		الخطوة الزاوية	عدد الخطوات	نمط التبديل	نوع القطبية	عدد ازواج	عدد الاطوار	,
	في الدورة			في دورة			الأقطاب	(الوشائع)	
1.5ن	0.5		α_{p}	Np/t	K2	K1	P	m	
	الباقي		90°	4	1	1	1	4	
	0.25x4								
					والتوترات:	تعيين التيار	قحل Tr _A وأ	تحديد نوع الم	ج11)
							T هو مقحل:		
	0.25	اع)	ير المجال (بإغذ	أو مقحل ذو تأث	NMOSFI	نناة N أو ET	MOS] ذو ف	FET	
							, ,		
0.5ن				D			والتوترات:	تعيين التيار	
				V _{DS}					
	0.25		G	I←					
			V _{GS}						
					ابق:	جسّدة لكلّ ط	ة المادية الم	الوظيفة والبني	ج12)
	(أربيع		طابق4	لمابق3	ابق2 -	1 طا	طابق	الطابق	
	رابي أعمدة)		التثبيت	ترشيح	قويم ال	ل الت	التحوي	الوظيفة	
1ن	4x0.25		ظم (مثبت)	من	ِ قریتز پ قریتز	11112	محول مذ	البنية المادية	
				فة C	ِ فریدر مکن ائیات	•		البنية المادية (العنصر)	
			(78XX)			- 22	20/9V	(المنتشر)	
					_			_	

		ج13) تفسير الخصائص الكهربائية المدونة على الطابق1:
	0.25	U ₁ =U _{1N} التوتر الابتدائي : 220V
0.75ن	0.25	U _{2N} : التوتر الثانوي الإسمى : 9V
	0.25	S الاستطاعة الظاهرية : 40VA
	0.23	
		ملاحظة: تقبل الإجابة في حالة ذكر الرمز فقط بدون تسمية $(S;U_{2N};U_{1})$
	0.25	$S = U_{2N} I_{2N}$ حساب شدة التيار الإسمية I_{2N} في مخرج الطابق I_{2N}
0.75ن	0.25	$\Rightarrow I_{2N} = \frac{S}{U_{2N}}$
	0.25	$I_{2N} = \frac{40}{9} = 4,44A$
		\mathbf{U}_{s} استنتاج قیمة التوبر (\mathbf{U}_{s} :
0.5ن	0.5	$U_s = 5V$: هو 7805 إذن توتر الخروج $V_s = 5V$ هو خلال معطيات الصانع فإن المنظم
		\mathbf{u}_2 ; \mathbf{u}_3 ; \mathbf{u}_c اكمال رسم إشارات التوترات اللحظية اللحظية \mathbf{u}_1 \mathbf{u}_1
1ن	ثلاث منحنيات 3×0.25 القيمة العظمى 0.25	القيمة العظمى : U_{3max} القيمة العظمى : $U_{3max} = U_{2max} - 2V_d$ المنحنى دون حساب $U_{3max} = 9 \times \sqrt{2} - 2 \times 0, 7 = 11.3v$ ملاحظة: تقبل الإجابة في حالة تعيين قيمة U_{3max} على المنحنى دون حساب ملاحظة: تقبل الإجابة في حالة تعيين قيمة U_{3max}

		ج17) حساب مختلف الاستطاعات:
	0.25	$P_a = P_1 + P_2$: Illumidation is the state of the sta
	0.25	$P_a = 720 + 350 = 1070W$
	0.20	$\mathbf{O} = \sqrt{3}(\mathbf{P} \cdot \mathbf{P})$ الاستطاعة الارتكاسية:
1.5ن	0.25	$Q_a = \sqrt{3} \left(\mathbf{I}_1 - \mathbf{I}_2 \right)$
	0.25	$Q_a = \sqrt{3} (720 - 350) = 640 VAR$
	0.25	$S_a = \sqrt{P_a^2 + Q_a^2}$ الاستطاعة الظاهرية:
	0.25	$S_a = \sqrt{1070^2 + 640^2} = 1247VA$
	0.25	$cos\phi = rac{P_a}{S_a}$: جا σ استطاعة المحرك:
0.5ن	0.25	$\cos\varphi = \frac{1070}{1247} = 0.86$
		1247
		ج19) حساب تيار الخط في حالة الربط النجمي والمثلثي:
	0.25	$S_a = \sqrt{3}UI$: تيار الخط في حالة الربط النجمي
	0.25	$I = \frac{S_a}{\sqrt{3}U} = \frac{P_a}{\sqrt{3}U\cos\varphi}$
.1	0.25	$I_{Y} = \frac{1247}{\sqrt{3} \times 380} = 1,91A$
1ن		الإقران المثلثي للمحرك يتطلب توتر شبكة U=220v
	0.25	$I_A = rac{S_a}{\sqrt{3}U} = rac{1247}{\sqrt{3} imes 220} = 3,3A$ إذن في حالة الربط المثلثي التيار في الخط هو:
		${ m I}_{\scriptscriptstyle \Delta} = \sqrt{3} \cdot { m I}_{\scriptscriptstyle Y} = 3,3 { m A}$ تقبل الإجابة في حالة كتابة:
		ويمكن قبول الإجابة التالية: لا يمكن حساب ١٨. بشرط ان يذكر التلميذ السبب التالي: أن
		المحرك لا يقرن مثلثيا على الشبكة المتوفرة.
	0.25	$oldsymbol{\eta}=rac{oldsymbol{P}_U}{oldsymbol{P}_a}$ عساب مردود المحرك:
0.5ن	0.27	u
	0.25	$\eta = \frac{750}{1070} = 0, 7 = 70\%$