1.	Уровни инфраструктуры ЦОД?	2
2.	Компоненты и функции каждого уровня ЦОД?	
3.	Межуровневые функции в ЦОД?	
4.	Отличия лучшей в своем классе инфраструктуры и конвергированной	
ино	рраструктуры?	5
5.	Физические и логические компоненты вычислительной системы?	5
6.	Типы вычислительных систем?	6
7.	Виртуализация вычислительных ресурсов, гипервизор и виртуальная машина?	6
8.	Виртуализация приложений и используемые для этого методы?	
9.	Виртуализация рабочих мест используемые для этого методы?	
10.	Развитие архитектуры систем хранения данных?	8
11.		
12.	Возможности подключения вычислительной системы к вычислительной системе	
кс	истеме хранения?	9
13.	Протоколы подключения систем хранения?	. 10
14.		
15.		
16.	Преимущества программно-определяемой архитектуры?	. 11
1	I/	10
1.	Компоненты интеллектуальной системы хранения?	
2.	Компоненты, адресация и производительность жестких дисков (HDD)?	
3.	Компоненты, адресация и производительность твердых дисков (SSD)?	
4.	Описание методов реализации массивов RAID?	. 14
5.	Описание трех методов RAID?	. 15
6.	Описание часто используемых уровней RAID?	
7.	Описание воздействия массивов RAID на производительность?	
8.	Сравнение уровней RAID исходя из стоимости, производительности и	
зац	циты?	
9.	Методы доступа к данным?	
10.	J 1	
11.	Вертикально и горизонтально масштабируемые архитектуры?	. 17

1. Уровни инфраструктуры ЦОД?

2. Компоненты и функции каждого уровня ЦОД?

Физическая инфраструктура

- Базовый уровень инфраструктуры центра обработки данных
- Физические компоненты:
 - Вычислительные системы, ресурсы хранения и сетевые устройства
 - Для их функционирования необходимы операционные системы, системное ПО и протоколы
- Выполняет запросы, генерируемые виртуальным и программноопределяемым уровнями

Виртуальная инфраструктура

- Виртуализация абстрагирует физические ресурсы и создает виртуальные ресурсы.
- Виртуальные компоненты:
 - Виртуальные вычислительные ресурсы, виртуальные ресурсы хранения и виртуальная сеть
 - Созданы из пулов физических ресурсов при помощи программного обеспечения для виртуализации
- Преимущества виртуализации:
 - Консолидация ресурсов и многопользовательская среда
 - Более эффективное использование ресурсов и повышенная окупаемость инвестиций
 - Гибкое выделение ресурсов, оперативность и эластичность

Программно-определяемая инфраструктура

- Развертывание либо на виртуальном, либо на физическом уровне
- Все компоненты инфраструктуры виртуализируются и объединяются в пулы
 - Абстрагирование базовых ресурсов от приложений
 - Реализация модели «ИТ как услуга»
- Централизованное автоматизированное управление и предоставление гетерогенных ресурсов на основе правил
- Компоненты:
 - Программно-определяемые вычислительные ресурсы
 - Программно-определяемая система хранения
 - Программно-определяемая сеть

Оркестрация

- Компонент:
 - ПО для оркестрации
- Предоставляет рабочие процессы для выполнения автоматизированных задач
- Взаимодействует с различными компонентами, расположенными на разных уровнях и обеспечивающими различные функции, для инициирования задач по выделению ресурсов

Услуги

- Предоставляет пользователям ИТ-ресурсы как услугу
 - Позволяет пользователям достигать требуемых бизнес-результатов
 - У пользователей нет никаких обязательств, связанных с владением ресурсами
- Компоненты:
 - Каталог услуг
 - Портал самообслуживания
- Функции уровня услуг:
 - Хранение информации об услугах в каталоге услуг и предоставление их пользователям
 - Предоставление пользователям доступа к услугам через портал самообслуживания

3. Межуровневые функции в ЦОД?

Непрерывность бизнеса

- Позволяет обеспечить доступность услуг в соответствии с соглашением об уровне обслуживания.
- Поддерживает все уровни с целью бесперебойного предоставления услуг
- Включает внедрение мер для снижения влияния простоев.

Меры	Описание
Упреждающие	 Анализ последствий для бизнеса Оценка степени риска Развертывание технических решений (резервное копирование и репликация)
Пассивные	Аварийное восстановлениеАварийный перезапуск

Безопасность

- Поддерживает все уровни с целью предоставления безопасных услуг
- Определяет внедрение:
 - Административных механизмов
 - Политики в области безопасности и управления персоналом
 - Стандартные процедуры по управлению безопасным выполнением операций
 - Технических механизмов
 - Брандмауэр
 - Системы обнаружения и предотвращения атак
 - Антивирус
- Механизмы обеспечения безопасности позволяют обеспечить выполнение требований стратегического управления, управления рисками и соответствия требованиям регуляторов (GRC)

Управление

- Обеспечивает настройку инфраструктуры хранения данных и выделение емкости
- Обеспечивает разрешение проблем
- Обеспечивает управление емкостью и доступностью
- Обеспечивает соответствие требованиям регуляторов
- Предоставляет услуги по мониторингу

4. Отличия лучшей в своем классе инфраструктуры и конвергированной инфраструктуры?

Лучшая в своем классе инфраструктура	Конвергентная инфраструктура	
• Интеграция различных лучших в своем классе компонентов от нескольких поставщиков	 Интеграция всех аппаратных и программных компонентов в единый пакет 	
 Предотвращение привязки к оборудованию одного поставщика 	 Предоставление предварительно настроенных и оптимизированных автономных модулей 	
 Возможность перепрофилирования существующих компонентов инфраструктуры 	 Ускорение приобретения и развертывания 	

5. Физические и логические компоненты вычислительной системы?

Физические компоненты вычислительной системы

Процессор	Микросхема, исполняющая программы путем выполнения арифметических и логических операций, а также операций ввода-вывода	
Оперативная память (ОЗУ)	Система хранения данных с произвольным доступом, которая содержит программы для выполнения и данные, используемые процессором	
Постоянное запоминающее устройство (ПЗУ)	Полупроводниковая память, которая содержит встроенное ПО загрузки, управления питанием и другое встроенное ПО для конкретных устройств	
Материнская плата	Печатная плата, на которой размещены процессор, ОЗУ, ПЗУ, сетевые порты и порты ввода-вывода, а также другие интегрированные компоненты, например, видеокарта и сетевая карта	
Чипсет	Набор микросхем на материнской плате, предназначенный для управления определенными функциями, например, доступом процессора к ОЗУ и периферийным портам	
Внешнее запоминающее устройство	Постоянное устройство хранения данных, например жесткий диск или твердотельный диск (SSD)	

Логические компоненты вычислительной системы

- Операционная система
- Виртуальная память
- Диспетчер логических томов
- Файловая система

(можно ещё подробнее рассказать про логические компоненты вычислительной системы, но это ещё +5 картинок или 23 минуты просмотра лекции №03)

6. Типы вычислительных систем?

Типы вычислительных систем

7. Виртуализация вычислительных ресурсов, гипервизор и виртуальная машина?

Виртуализация вычислительных ресурсов

Метод абстрагирования физических вычислительных ресурсов от операционной системы и приложений, обеспечивающий возможность параллельной работы нескольких операционных систем в одиночной или кластерной физической вычислительной системе.

Гипервизор

Программное обеспечение, предоставляющее уровень виртуализации для абстрагирования аппаратного обеспечения вычислительной системы и позволяющее создавать несколько виртуальных машин.

- Два ключевых компонента:
 - Ядро гипервизора
 - Предоставляет функциональность, аналогичную ядру ОС
 - Представляет запросы на ресурсы физическому оборудованию
 - Диспетчер виртуальных машин (VMM)
 - Каждая ВМ назначена диспетчеру VMM
 - Абстрагирует физические аппаратные ресурсы и представляет их ВМ

Вычислительная система

Два типа гипервизоров: автономный и клиентский

Виртуальная машина (ВМ)

Логическая вычислительная система с виртуальным оборудованием, на котором работают поддерживаемая гостевая ОС и ее приложения.

- Создается гипервизором и устанавливается в физической вычислительной системе
- Включает виртуальное оборудование, например, виртуальный процессор, виртуальную систему хранения и виртуальные сетевые ресурсы
 - Для гостевой ОС выглядит как физическая вычислительная система
 - Гипервизор устанавливает соответствие между виртуальным и физическим оборудованием
- Виртуальные машины в вычислительной системе изолированы друг от друга

8. Виртуализация приложений и используемые для этого методы?

Виртуализация приложений

Метод отделения приложения от базовой вычислительной платформы (ОС и оборудования), позволяющий использовать приложение в вычислительной системе без установки.

- Приложение либо поставляется из удаленной вычислительной системы, либо инкапсулируется в виртуализированный контейнер
- Преимущества виртуализации приложений
 - Упрощенное развертывание приложений и управление ими
 - Исключение изменений ОС
 - Разрешение конфликтов между приложениями и проблем совместимости
 - Гибкость доступа к приложениям

Методы виртуализации приложений

- Инкапсуляция приложений
 - Приложение преобразуется в автономный исполняемый пакет
 - Пакеты приложений могут запускаться непосредственно с локального диска, USB или оптического диска
- Представление приложений
 - Приложение размещается на сервере и исполняется удаленно, а данные интерфейса пользователя приложения передаются в клиент
 - Локально установленный агент в клиенте управляет обменом информацией интерфейса пользователя с сессией удаленного приложения пользователя
- Потоковая передача приложений
 - Данные определенного приложения передаются по частям клиентам для локального выполнения
 - Необходим локально установленный агент, клиентское программное обеспечение или подключаемый модуль веб-браузера

9. Виртуализация рабочих мест используемые для этого методы?

Виртуализация рабочих мест

Технология, отделяющая ОС, приложения и состояние пользователя от физической вычислительной системы с целью создания виртуальной инфраструктуры рабочих мест, к которой можно получать доступ с любого клиентского устройства.

- Рабочие места размещаются на сервере и управляются централизованно
- Преимущества виртуализации рабочих мест:
 - Упрощенное управление инфраструктурой рабочих мест
 - Улучшенная защита данных и соответствие требованиям регуляторов
 - Гибкость доступа

Методы виртуализации рабочих мест

Службы удаленных рабочих мест

Инфраструктура виртуальных рабочих мест (VDI)

10. Развитие архитектуры систем хранения данных?

Сервер-ориентированная архитектура систем хранения

Информационно-ориентированная архитектура систем хранения

11.Типы устройств хранения данных?

 Данные хранятся на вращающемся диске с ферромагнитным покрытием Накопитель на магнитных дисках Обеспечивает произвольный доступ для чтения и записи Самое популярное устройство хранения данных с большой емкостью хранения Данные хранятся в памяти на основе полупроводников • Чрезвычайно малые задержки операций ввода-вывода, низкое энергопотребление и Твердотельный диск (флэш-диск) очень высокая пропускная способность • Данные хранятся на пластиковой пленке с магнитным покрытием Магнитный ленточный Обеспечивает только последовательный доступ к данным накопитель • Недорогое решение для длительного хранения данных • Данные хранятся на поликарбонатном диске с отражающим покрытием Оптический дисковод Возможность однократной записи и многократного чтения: CD, DVD, BD Недорогое решение для длительного хранения данных

12.Возможности подключения вычислительной системы к вычислительной системе и к системе хранения?

Введение в возможности подключения

 Пути передачи данных между компонентами ИТ-инфраструктуры для обмена информацией и совместного использования ресурсов

Возможность подключения вычислительной системы к вычислительной системе

Возможность подключения вычислительной системы к системе хранения

- Обеспечивается при посредстве физических компонентов и протоколов обмена данными
- Физические компоненты, обеспечивающие возможность подключения
 - НВА-адаптер, порт и кабель
- Протоколы определяют форматы обмена данными между устройствами
 - Популярные протоколы обмена данными, используемые в системах хранения: IDE/ATA, SCSI и FC
- Система хранения может быть подключена непосредственно или по сети хранения данных

FMC²

13.Протоколы подключения систем хранения?

Протокол	Описание			
IDE/ATA	 Популярный интерфейс, используемый для подключения жестких и оптических дисков Версия Ultra DMA/133 протокола ATA поддерживает пропускную способность 133 Мбайт/с 			
Serial ATA	 Последовательная версия спецификации IDE/ATA обычно используется для внутренних подключений Обеспечивает скорость передачи данных до 16 Гбит/с (стандарт 3.2) 			
SCSI	 Популярный стандарт, используемый для подключения вычислительной системы к системе хранения Поддерживает до 16 устройств на одной шине Версия Ultra-640 обеспечивает скорость передачи данных до 640 Мбайт/с 			
SAS	 Последовательный протокол «точка-точка», заменяющий параллельный протокол SCSI Поддерживает скорость передачи данных до 12 Гбит/с (SAS 3.0) 			
FC	 Широко используемый протокол для высокоскоростного обмена данными между вычислительной системой и системой хранения Обеспечивает последовательную передачу данных, осуществляемую по медному и/или волоконно-оптическому кабелю Последняя версия интерфейса Fibre Channel «16FC» позволяет передавать данные со скоростью до 16 Гбит/с 			
IP	 Существующая сеть на основе протокола IP используется для обмена данными между системами хранения Примеры: протоколы iSCSI и FCIP 			

14. Архитектура программно-определяемого ЦОД?

15.Программно-определяемый контроллер?

- Обнаруживает базовые ресурсы и обеспечивает сводное представление ресурсов
 - Абстрагирует базовые аппаратные ресурсы и объединяет их в пул
- Обеспечивает быстрое выделение ресурсов на основе предварительно определенных политик
- Обеспечивает единообразное применение политик во всех компонентах инфраструктуры при помощи программного интерфейса
- Предоставляет интерфейсы, которые позволяют внешним для контроллера приложениям запрашивать ресурсы и получать к ним доступ как к услугам

16.Преимущества программно-определяемой архитектуры?

Преимущества	Описание			
Оперативность	Самообслуживание по требованию.Более быстрое выделение ресурсов			
Экономичность	 Использование существующей инфраструктуры и стандартного оборудования снижает капитальные затраты 			
Более эффективное управление	 Стратегическое управление на основе политик Автоматизированное обеспечение непрерывности бизнеса и аварийное восстановление Поддержка операционной аналитики 			
Централизованное управление	 Унифицированная платформа управления для централизованного мониторинга и администрирования 			
Гибкость	 Использование стандартного оборудования и современных аппаратных технологий Поддержка гибридного облака 			

1. Компоненты интеллектуальной системы хранения?

- Два ключевых компонента интеллектуальной системы хранения (ISS)
 - Контроллер
 - блочный;
 - файловый;
 - объектно-ориентированный;
 - унифицированный.
 - СХД
 - все жесткие диски (HDD);
 - все твердотельные диски (SSD);
 - их сочетание.

Интеллектуальная система хранения

2. Компоненты, адресация и производительность жестких дисков (HDD)?

Из аудиодорожки лекции (решил вставить т.к. описывается больше элементов чем представлено на картинке):

... Ключевые компоненты жесткого диска (HDD): <u>пластина, шпиндель, головка чтения и записи, блок приводного рычага и плата контроллера.</u> ... Набор вращающихся пластин запаян в корпус, который называется <u>блок дисков с головками (HDA)</u>. ... Шпиндель соединяет все пластины и подключается к <u>приводу</u>. ... И завершающим компонентом в нашем обзоре является плата контроллера диска. Контроллер представляет собой печатную плату, смонтированную в нижней части дискового накопителя. Он состоит из *микропроцессора*, внутренней памяти, микросхем и встроенного ПО. ...

Компоненты жестких дисков

Адресация логического блока

Производительность жесткого диска

- Электромеханическое устройство
 - оказывает воздействие на общую производительность системы хранения
- Время отклика диска
 - время, необходимое диску для выполнения запроса ввода-вывода, зависит от:
 - времени поиска;
 - задержки из-за вращения диска;
 - скорости передачи данных.

Время обработки диска = время поиска + задержка из-за вращения диска + время передачи данных

3. Компоненты, адресация и производительность твердых дисков (SSD)?

Компоненты твердотельных дисков

Адресация твердотельных дисков (SSD)

Производительность твердотельного диска

Тип доступа

- твердотельный диск лучше всего выполняет произвольные операции чтения
- твердотельные диски используют все внутренние каналы ввода-вывода параллельно для многопоточных больших блочных операций ввода-вывода

Состояние диска

 новый твердотельный диск или твердотельный диск с большим объемом неиспользованного пространства имеет лучшую производительность

Продолжительность рабочей нагрузки

 твердотельные диски лучше всего подходят для рабочих нагрузок с кратковременными всплесками активности

4. Описание методов реализации массивов RAID?

Из аудиодорожки лекции (решил вставить т.к. описание методов реализации на картинках не продемонстрировано:

... Программный RAID использует ПО на базе вычислительной системы для предоставления RAID функций и внедряются на уровне ОС. Программная реализация RAID имеет преимущество в цене и простоте использования в сравнении с аппаратной реализацией RAID, тем не менее они имеют следующие ограничения: производительность, поддерживаемая функциональность и совместимость с ОС.

Аппаратная реализация RAID обычно внедряется путем использования специального контроллера оборудования, находящегося в вычислительной системе или системе хранения. Контроллерная карта RAID – аппаратная реализация RAID на базе вычислительной системы, где в вычислительной системе устанавливаются специальные контроллер RAID, а к нему подключаются диски. Производители также интегрируют

контроллеры RAID в материнские платы. ... (возможно там ещё что-то было важное, но мне надоело это слушать)

RAID

Методика, в которой несколько дисков соединяются в логическую единицу (набор RAID) и обеспечивается их защита, производительность или оба компонента одновременно.

- Обеспечивает защиту данных от сбоев дисков
- Улучшает производительность системы хранения, обслуживая операции ввода-вывода с нескольких дисков одновременно
- Два метода реализации
 - программная реализация RAID;
 - аппаратная реализация RAID.

5. Описание трех методов RAID?

Методы RAID

6. Описание часто используемых уровней RAID?

- Часто используемые уровни RAID:
 - RAID 0 распределенный набор без отказоустойчивости
 - RAID 1 зеркалирование диска
 - RAID 1 + 0 вложенный RAID
 - RAID 3 распределенный набор с параллельным доступом и выделенным диском четности
 - RAID 5 распределенный набор с независимым доступом к диску и распределенной четностью
 - RAID 6 распределенный набор с независимым доступом к диску и двойной распределенной четностью

7. Описание воздействия массивов RAID на производительность?

Воздействие массивов RAID на производительность

- В RAID 5 каждая запись (обновление) на диск оформляется как четыре операции ввода-вывода (2 чтения диска и 2 записи диска)
- В RAID 6 каждая запись (обновление) на диск оформляется как шесть операций ввода-вывода (3 чтения диска и 3 записи диска)
- В RAID 1 каждая запись оформляется как две операции ввода-вывода (2 записи диска)

8. Сравнение уровней RAID исходя из стоимости, производительности и защиты?

Уровень RAID	Мин. кол- во дисков	Доступная емкость ресурсов хранения (%)	Дополнительные издержки записи	Защита данных
1	2	50	2	Зеркало
1+0	4	50	2	Зеркало
3	3	[(n-1)/n]*100	4	Контроль четности (поддерживает один сбой дисков)
5	3	[(n-1)/n]*100	4	Контроль четности (поддерживает один сбой дисков)
6	4	[(n-2)/n]*100	6	Контроль четности (поддерживает два сбоя дисков)

9. Методы доступа к данным?

Методы доступа к данным - Data Access Methods

10.Типы интеллектуальных систем хранения?

- Блочные системы хранения
- Файловые системы хранения
- Объектные системы хранения
- Унифицированные системы хранения

11. Вертикально и горизонтально масштабируемые архитектуры?

Сравнение вертикально и горизонтально масштабируемых архитектур

