1 Manifolds

1.1 Manifolds on Euclidean Spaces

1.1.1 Taylor's theorem with remainder [Theorem 1.1.1]

A smooth function f on an open ball $U \in \mathcal{O}_n$ can be written as

$$f(x) = f(p) + \sum_{i} (x^{i} - p^{i})g_{i}(x)$$

where $p \in U$ and $g_i \in C^{\infty}(U)$ with $g_i(p) = (\partial f/\partial x^i)(p)$.

Adapting this to g_i repeatedly gives the Taylor's expansion of f.

1.1.2 Tangent vector as an arrow from a point [Definition 1.1.2]

The tangent space $T_p(\mathbb{R}^n)$ at $p \in \mathbb{R}^n$ is the set of arrows from p.

1.1.3 Directional derivative [Definition 1.1.3]

The directional derivative of a smooth function f in the direction $v \in T_p(\mathbb{R}^n)$ at $p \in \mathbb{R}^n$ is

$$D_v f = \lim_{t \to 0} \frac{f(c(t)) - f(p)}{t} = \left. \frac{d}{dt} \right|_{t=0} f(c(t))$$

with $c^i(t) = p^i + tv^i$.

By the chain rule,

$$D_v f = \sum \frac{dc^i}{dt}(0) \frac{\partial f}{\partial x^i}(p) = \sum v^i \frac{\partial f}{\partial x^i}(p).$$

1.1.4 Derivation at a point [Definition & Proposition 1.1.4]

A linear map $D: C_p^{\infty} \to \mathbb{R}$ satisfying the Leibniz rule (i.e., D(fg) = (Df)g(p) + f(p)Dg for any $f, g \in C_p^{\infty}$) is called a *derivation at p* or a *point-derivation* of C_p^{∞} .

The set of all derivations at $p \mathcal{D}_p(\mathbb{R}^n)$ is a real vector space, and a map $\phi \colon T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$ assigning D_v to each v is a linear map.

1.1.5 Point-derivation of a constant is zero [Lemma 1.1.5]

If D is a point-derivation of C_p^{∞} , then D(c) = 0 for any constant function c.

1.1.6 Tangent space is isomorphic to the set of point-derivations [Theorem 1.1.6]

The linear map $\phi \to T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$ in 1.1.4 is an isomorphism of vector spaces.

1.1.7 Tangent vector as a derivation [Definition 1.1.7]

By 1.1.6, $v \in T_p(\mathbb{R}^n)$ is identified as

$$v = \sum v^i \left. \frac{\partial}{\partial x^i} \right|_n \in \mathcal{D}_p(\mathbb{R}^n).$$

1.1.8 Vector fields on an open set [Definition 1.1.8]

A vector field on $U \in \mathcal{O}_n$ is a map $X \colon U \to T_p(\mathbb{R}^n)$. $X = \sum a^i \partial / \partial x^i$ means

$$X(p) = X_p = \sum a^i(p) \left. \frac{\partial}{\partial x^i} \right|_p \quad \text{with } a^i(p) \in \mathbb{R}$$

2 P-adic Numbers

2.1 Fundations

2.1.1 Absolute value on a field [Definition 2.1.1]

An absolute value on a field \mathbb{K} is a function $| : \mathbb{K} \to \mathbb{R}_{>0}$ that satisfies:

- i) |x| = 0 iff x = 0.
- ii) $\forall x, y \in \mathbb{K}, |xy| = |x||y|.$
- iii) $\forall x, y \in \mathbb{K}, |x+y| \le |x| + |y|.$

An absolute value that satisfies the condition

iv)
$$\forall x, y \in \mathbb{K}, |x+y| \le \max\{|x|, |y|\}$$

is said to be non-archimedean; otherwise, it is said to be archimedean.

2.1.2 Trivial absolute value [Definition 2.1.2]

The absolute value on a field that assigns 0 to x = 0 and 1 otherwise is called the *trivial absolute value*. An absolute value on a finite field must be trivial.

2.1.3 Valuation on a field [Definition 2.1.3]

A function $v \colon \mathbb{A}^{\times} \to \mathbb{R}$ with an integral domain \mathbb{A} is called a *valuation* on \mathbb{A} if it satisfies the following conditions:

- i) $\forall x, y \in \mathbb{A}^{\times}, \ v(xy) = v(x) + v(y)$
- ii) $\forall x, y \in \mathbb{A}^{\times}, \ v(x+y) \ge \min\{v(x), v(y)\}\$

2.1.4 Value group of a valuation [Definition & Proposition 2.1.4]

The image of a valuation v on a field is an additive subgroup of \mathbb{R} . im v is called the value group of v.

2.1.5 Correspondence between valuations and non-archimedean absolute values [Proposition 2.1.5]

Let \mathbb{A} be an integral domain and $\mathbb{K} = \operatorname{Frac} \mathbb{A}$. Let $v : \mathbb{A}^{\times} \to \mathbb{R}$ be a valuation on \mathbb{A} and extend v to \mathbb{K} by setting v(a/b) = v(a) - v(b), then the function $| v| : \mathbb{K} \to \mathbb{R}_{>0}$ defined by

$$|x|_v = \begin{cases} e^{-v(x)} & \text{for } x \neq 0\\ 0 & \text{for } x = 0 \end{cases}$$

is a non-archimedean absolute value on \mathbb{K} . Conversely, $-\log \mid \mid$ is a valuation on \mathbb{K} for a non-archimedean absolute value $\mid \mid$ on \mathbb{K} .

2.1.6 p-adic valuation [Definition 2.1.6]

The *p-adic valuation* on $\mathbb Q$ with a prime p is a valuation $v_p \colon \mathbb Q^\times \to \mathbb R$ defined as follows: for each $n \in \mathbb Z^\times$, let $v_p(n)$ be the greatest integer such that $p^{v_p(n)} \mid n$, and for each $x = a/b \in \mathbb Q^\times$, $v_p(x) = v_p(a) - v_p(b)$. We often set $v_p(0) = \infty$.

2.1.7 p-adic absolute value [Definition 2.1.7]

The *p-adic absolute value* $|\ |_p \colon \mathbb{Q} \to \mathbb{R}$ with a prime p is defined as

$$|x|_p = p^{-v_p(x)}.$$

The usual absolute value is looked as $|\ |=|\ |_{\infty}$.

参考文献

- [1]Fernando Q. Gouvêa. $\emph{p-adic Numbers}$ - $\emph{An Introduction, Second Edition}.$ Springer, 1997.
- $[2] \ \ \text{Loring W. Tu.} \ \ \textit{An Introduction to Manifolds, Second Edition}. \ \ \text{Springer, 2011}.$