Lab Assignment #4: Problems 3 & \$Inverting Velocity Structure using Dix Equations, and NMO

MADIADI E IZEM

44100

57600

72900

90000

108900

129600

152100

0.304

0.310

0.317

0.324

0.333

0.342

0.352

0.882

0.886

0.889

0.894

0.899

0.904

0.909

1.494

1.496

1.498

1.501

1.504

1.508

1.512

TRUE MOD	EL			,	ARIABLE	KEY		
V1	1502	h1	1 400		X	distance		
V2	2504	h	2 500		t0	arrival time	at zero offse	t
V3	3506	h3	3 500		Vn	Velocity of l	layer n (n=1,	2, or 3)
DATA				I	arameters	for t2-x2 plo	ot	
x (m)	Layer 1 arrival (ms)	Layer 2 arrival (ms)	Layer 3 arrival (ms)		x2	t1^2	t2^2	t3^2
0	533.333	933.333	1219.048		0	0.284	0.871	1.486
30	533.707	933.455	1219.11		900	0.285	0.871	1.486
60	534.829	933.819	1219.298		3600	0.286	0.872	1.487
90	536.695	934.426	1219.61		8100	0.288	0.873	1.487
120	539.296	935.276	1220.047		14400	0.291	0.875	1.489
150	542.623	936.367	1220.608		22500	0.294	0.877	1.490
180	546.659	937.698	1221.294		32400	0.299	0.879	1.492

1222.103

1223.037

1224.094

1225.274

1226.575

1228

1229.545

Velocity	Model	(sinale-l	aver ass	umntion)

551.394

556.807

562.881

569.589

576.918

584.833

593.322

V1	1500.145	t01	0.533	h	1 400.037	
V 2	1993.662	t02	0.933	h	2 930.380	530.34357
<i>V</i> 3	2432.443	t03	1.219	h	3 1482.634	552.253866

939.269

941.074

943.119

945.395

947.904

950.642

953.609

Velocity Model (Dix)

210

240

270

300

330

360

390

VRMS1^2	2250435.074	v1^2	2250435.074	v1 1500.145	h1	400.037
VRMS2^2	3974688.041	v2^2	6273637.858	v2 2504.723	h2	500.954
VRMS3^2	5916780.906	v3∧2	12261050.351	v3 3501.578	h3	500.220

Note: VrmsN^2=VN above squared

A	rival times(or "seismogram")	
	1400	
	1200	
	1000	
Time (ms)	800	
	600	
	400	
	200	
	0 50 100 150 200 250 300 350 400 450 X (m)	0
	X (m)	

 $\begin{array}{ll} \textit{hn} & \text{Thickness of layer n (n=1, 2, or 3)} \\ \textit{VRMSn} \land 2 & \text{Root mean squared velocity for layer n (n=1, 2, or 3)} \\ \textit{TNMO}_\textit{n} & \text{Normal-moveout layer n (n=1, 2, or 3)} \end{array}$

TNMO_1	TNMO_2	TNMO_3	x2/2t0_1	x2/2t0_2	x2/2t0_3
2.416E-06	-4.942E-06	-1.161E-06	0.000E+00	0.000E+00	0.000E+00
3.764E-04	1.171E-04	6.084E-05	8.438E+02	4.821E+02	3.691E+02
1.498E-03	4.811E-04	2.488E-04	3.375E+03	1.929E+03	1.477E+03
3.364E-03	1.088E-03	5.608E-04	7.594E+03	4.339E+03	3.322E+03
5.965E-03	1.938E-03	9.978E-04	1.350E+04	7.714E+03	5.906E+03
9.292E-03	3.029E-03	1.559E-03	2.109E+04	1.205E+04	9.229E+03
1.333E-02	4.360E-03	2.245E-03	3.038E+04	1.736E+04	1.329E+04
1.806E-02	5.931E-03	3.054E-03	4.134E+04	2.362E+04	1.809E+04
2.348E-02	7.736E-03	3.988E-03	5.400E+04	3.086E+04	2.362E+04
2.955E-02	9.781E-03	5.045E-03	6.834E+04	3.905E+04	2.990E+04
3.626E-02	1.206E-02	6.225E-03	8.438E+04	4.821E+04	3.691E+04
4.359E-02	1.457E-02	7.526E-03	1.021E+05	5.834E+04	4.467E+04
5.150E-02	1.730E-02	8.951E-03	1.215E+05	6.943E+04	5.316E+04
5.999E-02	2.027E-02	1.050E-02	1.426E+05	8.148E+04	6.238E+04

Normal Move-Out model

VRMS_1^2 2366052.95	1538.198	h1	410.184
VRMS_2^2 4013897.12	2492.182		498.446
VRMS_3\2 5939899.88			499.619

Reflection Method

Seismic Reflection Travel-Times have egns of a hyperbola. For single layer over halfspace,

$$t^2 = \frac{x^2}{V_1^2} + \frac{4h_1^2}{V_1^2}$$

has **intercept** $2h_1/V_1$ and slope of the asymptote is $1/V_1$!

For two layers:

$$\frac{\left(t - t_0\right)^2}{a^2} - \frac{x^2}{b^2} = 1 \Rightarrow a = 2\left(\frac{h_1}{V_1} + \frac{h_2}{V_2}\right); \frac{b}{a} = \frac{1}{V_2}; t_0 = \frac{2h_1\sqrt{V_2^2 - V_1^2}}{V_1V_2}$$

For a dipping layer,

$$t^{2} = \frac{x^{2}}{V_{1}^{2}} - \frac{4h_{1}\sin(\alpha)}{V_{1}^{2}}x + \frac{4h_{1}^{2}}{V_{1}^{2}}$$

• Dix Equations multiple layers:

$$V_{n_{RMS}}^{2} \cong \frac{\sum_{i=1}^{n} V_{i}^{2} \Delta t_{i}}{\sum_{i=1}^{n} \Delta t_{i}} \qquad V_{n}^{2} = \frac{V_{n_{RMS}}^{2} t_{0n} - V_{n-1_{RMS}}^{2} t_{0n-1}}{t_{0n} - t_{0n-1}}$$

- **Normal Move-Out (NMO)**: reflection travel-time at distance x minus t at x = 0:
 - * For single layer case:

$$T_{NMO} = t - t_0 = \frac{\sqrt{x^2 + 4h_1^2}}{V_1} - \frac{2h_1}{V_1} \qquad t = \frac{\sqrt{x^2 + 4h_1^2}}{V_1} = \sqrt{\frac{x^2}{V_1^2} + \frac{4h_1^2}{V_1^2}} = t_0\sqrt{1 + \frac{x^2}{V_1^2 t_0^2}}$$

* First-order binomial series approximation:

$$T_{NMO} \doteq \frac{x^2}{2t_0V_1^2}$$
 (& second-order): $T_{NMO} \doteq \frac{x^2}{2t_0V_1^2} - \frac{x^4}{8t_0^3V_1^4}$

(Useful to write travel-time in terms of only V & observed t_0)

* Can also be applied to multiple layers using the **Dix equation** approximation for V_{rms} : $T_{NMO} = \frac{x^2}{2t_0 V^2}$