Эргодические свойства процессов кристаллизации

Югай Александр Германович

Санкт-Петербургский государственный университет Факультет математики и компьютерных наук

2025

Содержание

- 🕕 Введение
- 2 Процесс кристаллизации
- Эргодичность
- 4 Абсолютная регулярность
- Результаты

Содержание

- 🚺 Введение
- Процесс кристаллизации
- Эргодичность
- Абсолютная регулярность
- Б Результать

Введение

- Процесс кристаллизации: случайное появление центров (x_g, t_g) в пространстве-времени.
- Из каждого центра растет кристалл с некоторой скоростью.

Содержание

- Введение
- 2 Процесс кристаллизации
- Эргодичность
- Абсолютная регулярность
- Б Результать

Определение

Пусть E-метрическое пространство.

Положим $\mathbb{K}:=\{\Sigma\subset E: |\Sigma|\leq \mathbb{N}, \forall x\in E, r>0: |B_r(x)\cap \Sigma|<\mathbb{N}\}.$

Случайная величина $\mathcal N$ со значениями в $\mathbb K$ называется точечным процессом.

Определение

Пусть E-метрическое пространство.

Положим $\mathbb{K}:=\{\Sigma\subset E: |\Sigma|\leq \mathbb{N}, \forall x\in E, r>0: |B_r(x)\cap \Sigma|<\mathbb{N}\}.$

Случайная величина $\mathcal N$ со значениями в $\mathbb K$ называется точечным процессом.

ullet Для $A\subset E$ обозначим $\mathcal{N}(A):=|\mathcal{N}\cap A|.$

Определение

Пусть E-метрическое пространство.

Положим $\mathbb{K}:=\{\Sigma\subset E: |\Sigma|\leq \mathbb{N}, \forall x\in E, r>0: |B_r(x)\cap \Sigma|<\mathbb{N}\}.$ Случайная величина \mathcal{N} со значениями в \mathbb{K} называется **точечным**

Случайная величина ${\mathcal N}$ со значениями в ${\mathbb K}$ называется **точечным** процессом.

ullet Для $A\subset E$ обозначим $\mathcal{N}(A):=|\mathcal{N}\cap A|.$

Пример: $E = \mathbb{R}^+ \times \mathbb{R}^d$

$$t \in \mathbb{R}^+$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Определение

Случайный точечный процесс $\mathcal N$ на пространстве $\mathbb R^d imes \mathbb R^+$ называется пуассоновским, если:

- ullet Для дизъюнктных $A,B\subset \mathbb{R}^d imes \mathbb{R}^+$ с.в. $\mathcal{N}(A),\mathcal{N}(B)$ независимы;
- Число точек в области А имеет распределение Пуассона:

$$\mathbb{P}\{N(A)=k\}=\frac{(\Lambda(A))^k}{k!}e^{-\Lambda(A)},$$

где ∧ – мера интенсивности процесса.

Определение

Случайный точечный процесс $\mathcal N$ на пространстве $\mathbb R^d imes \mathbb R^+$ называется пуассоновским, если:

- ullet Для дизъюнктных $A,B\subset \mathbb{R}^d imes \mathbb{R}^+$ с.в. $\mathcal{N}(A),\mathcal{N}(B)$ независимы;
- Число точек в области А имеет распределение Пуассона:

$$\mathbb{P}\{N(A)=k\}=\frac{(\Lambda(A))^k}{k!}e^{-\Lambda(A)},$$

где **Λ** − **мера интенсивности** процесса.

• Длее будем считать:

$$\Lambda(dx \times dt) = \lambda^d(dx) \times m(dt).$$

• Имеем центры кристаллизации $\{(x_g,t_g)\}_{g\in\mathcal{N}}$ в пространстве-времени.

- Имеем центры кристаллизации $\{(x_g,t_g)\}_{g\in\mathcal{N}}$ в пространстве-времени.
- ullet Мы связываем с каждым центром кристаллизации g функцию A_g :

$$A_g: \mathbb{R}^d \to \mathbb{R}^+,$$

 $x \mapsto A_g(x),$

где $A_g(x)$ это время, когда кристалл, относящийся к центру кристаллизации g достигает точки x.

- Имеем центры кристаллизации $\{(x_g,t_g)\}_{g\in\mathcal{N}}$ в пространстве-времени.
- ullet Мы связываем с каждым центром кристаллизации g функцию A_g :

$$A_g: \mathbb{R}^d \to \mathbb{R}^+,$$

 $x \mapsto A_g(x),$

где $A_g(x)$ это время, когда кристалл, относящийся к центру кристаллизации g достигает точки x.

• Далее будем считать, что кристаллы растут со скоростью 1, т.е. в нашем случае: $A_g(x) = t_g + |x - x_g|$.

• Процесс кристаллизации:

$$\xi(x) = \inf_{g \in \mathcal{N}} A_g(x).$$

 $\xi(x)$ – время, когда точка x закристаллизовалась.

Содержание

- Эргодичность

Определение

• Пусть $\{Y(x)\}_{x \in \mathbb{R}^d}$ -случайное поле. Тогда мы говорим, что $\{Y(x)\}_{x \in \mathbb{R}^d}$ - стационарно, если $\forall h \forall x_1 \leq x_2 \leq \cdots \leq x_m$:

$$\mathbb{P}\{(Y(x_1), Y(x_2), \dots, Y(x_m)) \in B\} =$$

$$= \mathbb{P}\{(Y(x_1 + h), Y(x_2 + h), \dots, Y(x_m + h)) \in B\},$$

$$\mathcal{B}(\mathbb{R}^d).$$

где $B \in \mathcal{B}(\mathbb{R}^d)$.

• Пусть $\{Y(x)\}_{x\in\mathbb{R}^d}$ -стационарное случайное поле, где $Y(0)\sim (\Omega,\mathcal{F},\mu)$. Пусть $\{V_n\}_{n\in\mathbb{N}}$ — возрастающая последовательность компактов в \mathbb{R}^d . Тогда случайное поле $\{Y(x)\}_{x\in\mathbb{R}^d}$ — эргодично, тогда и только тогда, когда $\forall f\in L^1(\Omega,\mu)$:

$$\frac{1}{\lambda^d(V_n)} \int_{V_n} f(Y(x)) d\lambda^d(x) \xrightarrow[n \to \infty]{\text{R.H.}} \mathbb{E} f(Y(0)).$$

Определение

Пусть $\{Y(x)\}_{x\in\mathbb{R}^d}$ -стационарное случайное поле.

Положим для $C_m \in \mathcal{B}(\mathbb{R}^m)$, $h \in \mathbb{R}^d$, $(x_1, x_2, \dots x_m) \in \mathbb{R}^m$:

$$\overline{C_{m,x_1,x_2,...x_m}^h} := \{\omega : (Y(x_1+h),Y(x_2+h),...,Y(x_m+h)) \in C_m\}.$$

Тогда случайное поле $\{Y(x)\}_{x\in\mathbb{R}^d}$ – перемешивающее, тогда и только тогда, когда

$$\forall A_m, B_m \in \mathcal{B}(\mathbb{R}^m); \ \forall (x_1, x_2, \dots x_m) \in \mathbb{R}^m, (y_1, y_2, \dots y_m) \in \mathbb{R}^m$$
:

$$\lim_{h\to\infty}\mathbb{P}\left(\overline{A^0_{m,x_1,x_2,\dots x_m}}\cap\overline{B^h_{m,y_1,y_2,\dots y_m}}\right)=\mathbb{P}\left(\overline{A^0_{m,x_1,x_2,\dots x_m}}\right)\mathbb{P}\left(\overline{B^0_{m,y_1,y_2,\dots y_m}}\right).$$

Определение

Пусть $\{Y(x)\}_{x\in\mathbb{R}^d}$ -стационарное случайное поле.

Положим для $C_m \in \mathcal{B}(\mathbb{R}^m)$, $h \in \mathbb{R}^d$, $(x_1, x_2, \dots x_m) \in \mathbb{R}^m$:

$$\overline{C_{m,x_1,x_2,...x_m}^h} := \{\omega : (Y(x_1+h),Y(x_2+h),...,Y(x_m+h)) \in C_m\}.$$

Тогда случайное поле $\{Y(x)\}_{x\in\mathbb{R}^d}$ – перемешивающее, тогда и только тогда, когда

$$\forall A_m, B_m \in \mathcal{B}(\mathbb{R}^m); \ \forall (x_1, x_2, \dots x_m) \in \mathbb{R}^m, (y_1, y_2, \dots y_m) \in \mathbb{R}^m$$
:

$$\lim_{h\to\infty}\mathbb{P}\left(\overline{A^0_{m,x_1,x_2,\dots x_m}}\cap\overline{B^h_{m,y_1,y_2,\dots y_m}}\right)=\mathbb{P}\left(\overline{A^0_{m,x_1,x_2,\dots x_m}}\right)\mathbb{P}\left(\overline{B^0_{m,y_1,y_2,\dots y_m}}\right).$$

• Из условия перемешивания следует эргодичность.

• Стационарность процесса $\{\xi(x)\}_{x\in\mathbb{R}^d}$ следует из однородности меры интенсивности процесса рождения $\mathcal N$ относительно сдвигов в $\mathbb R^d$.

- Стационарность процесса $\{\xi(x)\}_{x\in\mathbb{R}^d}$ следует из однородности меры интенсивности процесса рождения $\mathcal N$ относительно сдвигов в $\mathbb R^d$.
- ullet Более того, процесс $\{\xi(x)\}_{x\in\mathbb{R}^d}$ является перемешивающим.

- Стационарность процесса $\{\xi(x)\}_{x\in\mathbb{R}^d}$ следует из однородности меры интенсивности процесса рождения $\mathcal N$ относительно сдвигов в $\mathbb R^d$.
- ullet Более того, процесс $\{\xi(x)\}_{x\in\mathbb{R}^d}$ является перемешивающим.
- Каким еще усилениям условия эргодичности удовлетворяет $\xi(x)$?

Содержание

- Введение
- Процесс кристаллизации
- Эргодичность
- 4 Абсолютная регулярность
- Б Результать

• В работе Yu. Davydov, A. Illig, Ergodic properties of crystallization processes было предложено изучать коэффициент абсолютной регулярности процесса $\xi(x)$.

- В работе Yu. Davydov, A. Illig, Ergodic properties of crystallization processes было предложено изучать коэффициент абсолютной регулярности процесса $\xi(x)$.
- Коэффициент абсолютной регулярности процесса $\xi(x)$:

$$\beta(T_1, T_2) = \|\mathcal{P}_{T_1 \cup T_2} - \mathcal{P}_{T_1} \times \mathcal{P}_{T_2}\|_{\textit{var}},$$

где \mathcal{P}_T — это распределение $\xi_{\mid T}$ и $T_1, T_2 \subset \mathbb{R}^d$.

- В работе Yu. Davydov, A. Illig, Ergodic properties of crystallization processes было предложено изучать коэффициент абсолютной регулярности процесса $\xi(x)$.
- Коэффициент абсолютной регулярности процесса $\xi(x)$:

$$\beta(T_1, T_2) = \|\mathcal{P}_{T_1 \cup T_2} - \mathcal{P}_{T_1} \times \mathcal{P}_{T_2}\|_{var},$$

где \mathcal{P}_T – это распределение $\xi_{\mid T}$ и $T_1, T_2 \subset \mathbb{R}^d$.

• Если $\mathcal{F}_T = \sigma\{\xi(x)|x\in T\}$ и

$$\alpha(T_1, T_2) = \sup_{\substack{A \in \mathcal{F}_{T_1} \\ B \in \mathcal{F}_{T_2}}} |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)|, \tag{1}$$

то

$$\alpha(T_1,T_2)\leq \frac{1}{2}\beta(T_1,T_2).$$

Примеры

•
$$d = 1$$

$$T_1 = (-\infty, 0], T_2 = [r, +\infty).$$

Примеры

• d = 1

$$T_1 = (-\infty, 0], T_2 = [r, +\infty).$$

• d = 2

$$T_1 = (-\infty, 0] \times (-\infty, 0], T_2 = [r, +\infty) \times [0, +\infty).$$

$$T_1$$
 T_2

• Пусть $dist(T_1, T_2) = r$. Обозначим $\beta(r) = \beta(T_1, T_2)$.

- Пусть $dist(T_1, T_2) = r$. Обозначим $\beta(r) = \beta(T_1, T_2)$.
- ullet Из условия $eta(r) \underset{r o \infty}{\longrightarrow} 0$ следует перемешивание и эргодичность.

- Пусть $dist(T_1, T_2) = r$. Обозначим $\beta(r) = \beta(T_1, T_2)$.
- ullet Из условия $eta(r) \underset{r o \infty}{\longrightarrow} 0$ следует перемешивание и эргодичность.
- Хорошие оценки $\beta(r)$ дают асимптотическую нормальность оценкок $\mathbb{E} f(\xi(x))$.

Случай d=1

ullet В той же статье было показано, что в случае $d=1 \ orall
ho \in \mathbb{R}$

$$\left| e^{-2F\left(\frac{r}{\rho}\right)} - e^{-F\left(\frac{(1+\rho)}{\rho}r\right)} \right| \leq \beta(r) \leq 8e^{-F\left(\frac{r}{2}\right)},$$

где
$$F(t) = \Lambda(\{g \in \mathbb{R}^d imes \mathbb{R}^+ \,|\, A_g(0) \leq t\}).$$

Случай d=1

ullet В той же статье было показано, что в случае $d=1 \,\, orall
ho \in \mathbb{R}$

$$\left| e^{-2F\left(\frac{r}{\rho}\right)} - e^{-F\left(\frac{(1+\rho)}{\rho}r\right)} \right| \leq \beta(r) \leq 8e^{-F\left(\frac{r}{2}\right)},$$

где
$$F(t) = \Lambda(\{g \in \mathbb{R}^d imes \mathbb{R}^+ \,|\, A_g(0) \leq t\}).$$

• Нижняя оценка получается выбором в (1) конкретных А и В.

ullet В той же статье было показано, что в случае $d=1 \,\, orall
ho \in \mathbb{R}$

$$\left| e^{-2F\left(\frac{r}{\rho}\right)} - e^{-F\left(\frac{(1+\rho)}{\rho}r\right)} \right| \leq \beta(r) \leq 8e^{-F\left(\frac{r}{2}\right)},$$

где
$$F(t) = \Lambda(\{g \in \mathbb{R}^d imes \mathbb{R}^+ \,|\, A_g(0) \leq t\}).$$

ullet Нижняя оценка получается выбором в (1) конкретных A и B.

Лемма

Пусть $(\xi(x))_{x \in \mathbb{R}^d}$ — случайное поле и T_1 , T_2 два дизъюнктных подмножества \mathbb{R}^d . Если существуют случайные поля $(\eta_1(x))_{x \in \mathbb{R}^d}$ и $(\eta_2(x))_{x \in \mathbb{R}^d}$ и $\delta_1, \delta_2 \in \mathbb{R}$ такие что:

- η_1 и η_2 независимы;
- $\mathbb{P}\left\{\xi(x) = \eta_i(x), \forall x \in T_i\right\} \ge 1 \delta_i$ для i = 1, 2.

Тогда

$$\beta(T_1, T_2) \leq 8(\delta_1 + \delta_2).$$

Случай $d \geq 2$

Случай $d \geq 2$

• В статье была получена оценка:

$$\beta(T_1, T_2) \le 8 \sum_{k=1}^{\infty} k^{d-1} e^{-F(\frac{2rk}{9d})}.$$

Случай $d \geq 2$

• В статье была получена оценка:

$$\beta(T_1, T_2) \le 8 \sum_{k=1}^{\infty} k^{d-1} e^{-F(\frac{2rk}{9d})}.$$

При d = 2:

$$\beta(T_1, T_2) \leq 8 \sum_{k=1}^{\infty} k e^{-F(\frac{rk}{9})}.$$

Содержание

- 🕕 Введение
- 2 Процесс кристаллизации
- Эргодичность
- Абсолютная регулярность
- Результаты

Цели исследования

ullet Улучшить нижнюю границу в случае d=1.

Цели исследования

- Улучшить нижнюю границу в случае d=1.
- Обобщить верхнюю оценку на другие области T_1 и T_2 в случае d=2.

Цели исследования

- ullet Улучшить нижнюю границу в случае d=1.
- Обобщить верхнюю оценку на другие области T_1 и T_2 в случае d=2.
- Интересный случай, где по аналогии с d=1, T_1 и T_2 представляют собой полупространства.

• Удалось улучшить нижнюю границу:

Теорема 1

Если
$$T_1=(-\infty,0]$$
 и $T_2=[r,+\infty)$, то

$$\beta(r) \ge 2e^{-F(\frac{r}{2})}.$$

Случай $d=1^{\circ}$

• Удалось улучшить нижнюю границу:

Теорема 1

Если
$$T_1=(-\infty,0]$$
 и $T_2=[r,+\infty)$, то

$$\beta(r) \ge 2e^{-F(\frac{r}{2})}.$$

• Сводится к выбору в (1) конкретных А и В.

Теорема 2

Пусть $T_1 = \{e \in \mathbf{R}^2 | \measuredangle(e, -e_2) < \alpha + \frac{\pi}{2} \}$ и T_2 – симметрично отраженная T_1 , относительно L_0 , область. Если $\alpha < \frac{\pi}{4} \le \beta$ и $tg\beta = \frac{a}{b} > 1$, где $a, b \in \mathbb{N}$ и $\frac{a}{b} > tg\alpha$ то, верна оценка:

$$\beta(T_1, T_2) \leq 8 \sum_{k=0}^{\infty} \left(3 + \frac{k}{2a} + \frac{\left(1 + tg\alpha - \frac{k}{b}\right)^+}{2\left(\frac{a}{b} - tg\alpha\right)} + \frac{1 + tg\alpha + \frac{k}{b}}{2\left(\frac{a}{b} - tg\alpha\right)} \right) e^{-F(C(k+1))}$$

где
$$C = \frac{r}{9\sqrt{2(a^2+b^2)}}$$
.

Теорема 3

Пусть $T_1 = \{e \in \mathbf{R}^2 | \measuredangle(e, -e_2) < \alpha + \frac{\pi}{2} \}$ и T_2 – симметрично отраженная T_1 , относительно L_0 , область. Если $\alpha < \beta$ и $tg\beta = \frac{a}{b}, \ tg\alpha = \frac{c}{d}$, где $a,b,c,d \in \mathbb{N}$ и $\frac{a}{b} > \frac{c}{d}$ то, верна оценка:

$$\beta(T_1, T_2) \leq 8 \sum_{k=1}^{\infty} k \mathrm{e}^{-F(Ck)},$$

где
$$C = rac{r}{9\sqrt{(2+2sinlpha)(a^2+b^2)(c^2+d^2)}}.$$

Спасибо за внимание!