

اللمتحان الوطني الموحد للبكالوريا الدورة العادية 2014 الموضوع

المركز الوطني للتقويم والامتحانات والتوجيه

NS 22

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعبة أو المسلك

تعليمات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟
- عدد الصفحات: 3 (الصفحة الأولى تتضمن تعليمات ومكونات الموضوع والصفحتان المتبقيتان تتضمنان موضوع الامتحان) ؛
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؛
 - ينبغى تفادي أستعمال اللون الأحمر عند تحرير الأجوبة ؛
- بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

مكونات الموضوع

- يتكون الموضوع من أربعة تمارين و مسألة مستقلة فيما بينها و تتوزع حسب المجالات كما يلي:

3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثاني
3 نقط	المتتاليات العددية	التمرين الثالث
3 نقط	حساب الاحتمالات	التمرين الرابع
8 نقط	دراسة دالة وحساب التكامل	المسألة

- بالنسبة للمسألة ، ln يرمز لدالة اللوغاريتم النبيري

الامتمان الوطني المومد للبكالوريا - الدورة العادية 2014 - الموضوع عاحة ، الريا عيات - هعبة العلوء التجريبية بمسالكما وهعبة العلوء والتكنولوجيات بمسلكيما

التمرين الأول: (3ن)

$$B(-1,3,0)$$
 و $A(0,3,1)$ النقط $(O,\vec{i}\,,\vec{j},\vec{k})$ ، النقط متعامد ممنظم مباشر $(O,\vec{i}\,,\vec{j},\vec{k})$ النقط $(O,\vec{i}\,,\vec{j},\vec{k})$ و $(O,5,0)$ و $(O,5,0)$

اً. بين أن
$$\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} - \overrightarrow{j} - 2\overrightarrow{k}$$
 واستنتج أن النقط A و B و C غير مستقيمية $\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} - \overrightarrow{j} - 2\overrightarrow{k}$

(ABC) بـ بين أن
$$2x - y - 2z + 5 = 0$$
 هي معادلة ليكارتية للمستوى (0.5

د. و أ. بين أن مركز الفلكة (S) هو النقطة
$$\Omega(2,0,0)$$
 و أن شعاعها هو 3 مركز الفلكة (S) مركز الفلكة و $\Omega(2,0,0)$

$$z^2 - z\sqrt{2} + 2 = 0$$
: المعادلة (1) حل في مجموعة الأعداد العقدية $u = \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}i$ عتبر العدد العقدي (2)

$$argu \equiv \frac{\pi}{2}[2\pi]$$
 و أن $\sqrt{2}$ هو u معيار العدد 0.5

ب- باستعمال كتابة العدد
$$m u$$
 على الشكل المثلثي ، بين أن $m u^6$ عدد حقيقي

$$\frac{\pi}{3}$$
ليكن z لحق نقطة M من المستوى و z' لحق النقطة M صورة M بالدوران Z' الذي مركزه Z' و زاويته Z' غير عن Z' بدلالة Z'

التمرين الثالث: (3ن)

0.5

0.75

$${
m IN}$$
 نعتبر المنتالية العديية $\left(u_{n}\right)$ المعرفة بما يلي : $\left(u_{0}=13\right)$ و $\left(u_{0}=13\right)$ لكل $\left(u_{0}\right)$ نعتبر المنتالية العديية $\left(u_{0}\right)$

IN من
$$u_{x} < 14$$
 الكل $u_{x} < 14$

IN من
$$u_n$$
 حا4 بين بالترجع أن u_n <14 بين بالترجع أن v_n حا1 لكل v_n المنتالية العدية بحيث v_n المنتالية العدية بحيث (2

$$n$$
 بدلالة v_n بدلالة $\frac{1}{2}$ بدلالة v_n بدلالة v_n بدلالة ا

$$\left(u_{n}\right)$$
 لكل n من n نم احسب نهاية المتتالية $u_{n}=14-\left(\frac{1}{2}\right)^{n}$ نا ب- استنتج أن $u_{n}=14-\left(\frac{1}{2}\right)^{n}$

$$u_n > 13,99$$
 جـ حدد أصغر قيمة للعدد الصحيح الطبيعي n التي يكون من أجلها 0.5

الامتمان الوطنيي الموحد للبكالوريا - الدورة العادية 2014 - الموصوع - ماحة ، الرياحيات — هعية العلوم التجريبية بمسالكما وهعبة العلوم والتكنولوجيات بمسلكيما

التمرين الرابع: (3ن)

يحتوي كيس على تسع بيدقات لا يمكن التمييز بينها باللمس وتحمل الأعداد : 0 و0 و0 و0 و0 و 1

ليكن A الحدث: " مجموع العدين اللذين تحملاهما البيدقتين المسحوبتين يساوى 1 "

$$p(A) = \frac{5}{9}$$
 يين أن

2) نعتبر اللعبة التالية : يسحب سعيد عشوانيا و في آن واحد بيدقتين من الكيس و يعتبر فانزا إذا سحب بيدقتين تحمل كل واحدة منهما العدد 1

$$\frac{1}{6}$$
 أـ بين أن احتمال فوز سعيد هو

ب- لعب سعيد اللعبة السابقة ثلاث مرات (يعيد سعيد البيدقتين المسحوبتين إلى الكيس في كل مرة)
ما هو الاحتمال لكي يفوز سعيد مرتين بالضبط ؟

المسألة : (8 ن)

$$g(x) = 1 - \frac{1}{x^2} + \ln x$$
: يلي يا $[0,+\infty]$ بما يلي يا و الدالة العدية المعرفة على و الدالة العدية المعرفة على المعرفة على يا

$$]0,+\infty[$$
 لكل $g'(x)=rac{2}{x^3}+rac{1}{x}$ الكال $g'(x)=0.5$ و استنتج أن الدالة $g'(x)=rac{2}{x^3}+rac{1}{x}$ و استنتج أن الدالة $g'(x)=rac{2}{x^3}+rac{1}{x}$

 $[1,+\infty[$ ثم x کا $g(x)\geq 0$ یا تحقق من أن $g(x)\geq 0$ ثم استنتج أن $g(x)\leq 0$ لکل $g(x)\leq 0$ لکل $g(x)\geq 0$ کا تحقق من أن

$$f(x) = (1 + \ln x)^2 + \frac{1}{x^2}$$
: يما يلي بالدالة العدية f المعرفة على $f(x) = (1 + \ln x)^2 + \frac{1}{x^2}$ المعرفة على $f(x) = (1 + \ln x)^2 + \frac{1}{x^2}$

($1\,\mathrm{cm}$: المنحنى الممثل للدالة f في معلم متعامد ممنظم $\left(\mathrm{C}\,,i,j\right)$ (الوحدة

بين أن
$$\infty + \infty = \lim_{\substack{x \to 0 \\ x \to 0}} f(x) = +\infty$$
 النتيجة (1) بين أن 0.5

$$\lim_{x\to +\infty} f(x) \stackrel{\text{lim}}{=} (2) 0.25$$

1

$$\lim_{x \to +\infty} \frac{f(x)}{x} = 0$$
 بـ بين أن $\int_{x \to +\infty} \frac{(1 + \ln x)^2}{x} = 0$ بين أن $\int_{x \to +\infty} \frac{(1 + \ln x)^2}{x} = 0$

$$[0,1]$$
 لكل $[0,+\infty]$ ثم استنتج أن الدالة $[0,+\infty]$ تناقصية على $[0,+\infty]$ كل $[0,+\infty]$ لكل $[0,+\infty]$ لكل $[0,+\infty]$ الدالة $[0,+\infty]$

 $]0,+\infty[$ به من $]0,+\infty[$ به الدالة $[0,+\infty]$ به من $[0,+\infty]$ به من $[0,+\infty]$ به من الدالة والدالة والدال

(د مطلوب) نشئ (
$$(C)$$
 في المعلم (C, \vec{i}, \vec{j}) (نقبل أن للمنحنی (C) نقطة انعطاف وحيدة تحديدها غير مطلوب) ((C, \vec{i}, \vec{j})

$$J=\int_{1}^{e}\left(1+\ln x
ight)^{2}dx$$
 و $I=\int_{1}^{e}\left(1+\ln x
ight)dx$: نعتبر التكاملين $I=\int_{1}^{e}\left(1+\ln x
ight)dx$

$$I=e$$
 نام استنتج أن $h:x\mapsto 1+\ln x$ على $h:x\mapsto 1+\ln x$ دالة أصلية للدالة $h:x\mapsto 1+\ln x$ على $h:x\mapsto x\ln x$ ا

$$J = 2e - 1$$
 بين أن $J = 2e - 1$ بين أن 0.5

ج- احسب ب
$$cm^2$$
 مساحة حيز المستوى المحصور بين المنحنى (C) و محور الأفاصيل و المستقيمين $x=e$ و $x=1$ اللذين معادلتاهما $x=e$ و $x=e$