STA 601 - Homework 11

Kedar Prabhudesai

October 23, 2013

Bayesian Model Selection:

Data:

 $y^n \sim Binomial(n, \theta).$

Hypotheses:

$$H_0: \theta = 0.5$$

 $H_1: \theta \neq 0.5$.

Prior on Hypotheses/Models:

$$p(H_0) = 0.5$$

 $p(H_1) = 0.5$.

Prior on Parameter of the model: Let's use a Uniform prior, $\alpha = \beta = 1$.

$$\theta \sim Beta(\alpha, \beta)$$
.

Likelihood under each hypotheses: k denotes number of heads.

$$L(y^{n} \mid H_{0}) = \binom{n}{k} 0.5^{k} 0.5^{(n-k)} = \binom{n}{k} 0.5^{n}.$$

$$L(y^{n} \mid H_{1}) = \int_{0}^{1} \binom{n}{k} \theta^{k} (1-\theta)^{(n-k)} \pi(\theta) d\theta$$

$$= \int_{0}^{1} \binom{n}{k} \theta^{k} (1-\theta)^{(n-k)} \times \frac{\theta^{\alpha-1} (1-\theta)^{\beta-1}}{B(\alpha,\beta)} d\theta$$

$$= \frac{\binom{n}{k}}{B(\alpha,\beta)} \int_{0}^{1} \theta^{\alpha+k-1} (1-\theta)^{(n+\beta-k-1)} d\theta$$

$$= \frac{\binom{n}{k}}{B(\alpha,\beta)} \times B(\alpha+k,n+\beta-k) \int_{0}^{1} \frac{\theta^{\alpha+k-1} (1-\theta)^{(n+\beta-k-1)}}{B(\alpha+k,n+\beta-k)} d\theta$$

$$\therefore L(y^{n} \mid H_{1}) = \frac{\binom{n}{k} B(\alpha+k,n+\beta-k)}{B(\alpha,\beta)}$$

Posteriors:

Assuming, $p(H_0) = p(H_1) = 0.5$.

$$P(H_1 \mid y^n) = \frac{L(y^n \mid H_1)p(H_1)}{L(y^n)}$$

$$= \frac{L(y^n \mid H_1)p(H_1)}{L(y^n \mid H_0)p(H_0) + L(y^n \mid H_1)p(H_1)}$$

$$= \frac{L(y^n \mid H_1)}{L(y^n \mid H_0) + L(y^n \mid H_1)}$$

$$P(H_1 \mid y^n) = \frac{1}{1 + \frac{L(y^n \mid H_0)}{L(y^n \mid H_1)}}$$

 $\frac{L(y^n|H_0)}{L(y^n|H_1)}$ is Bayes' Factor in favor of $H_0.$

$$\therefore \frac{L(y^n \mid H_0)}{L(y^n \mid H_1)} = \frac{0.5^n B(\alpha, \beta)}{B(\alpha + k, n + \beta - k)}$$

Similarly we can prove,

$$P(H_0 \mid y^n) = \frac{1}{1 + \frac{L(y^n \mid H_1)}{L(y^n \mid H_0)}}$$

 $\frac{L(y^n|H_1)}{L(y^n|H_0)}$ is Bayes' Factor in favor of $H_1.$

$$\therefore \kappa = \frac{L(y^n \mid H_1)}{L(y^n \mid H_0)} = \frac{B(\alpha + k, n + \beta - k)}{0.5^n B(\alpha, \beta)}$$

Based on value of κ we can choose an appropriate model. If $\kappa > 1$, we are more in favor of H_1 , whereas if $\kappa < 1$, we are more in favor of H_0 .

Asymptotic Behavior:

If n=1, $\kappa=\frac{L(y^n|H_1)}{L(y^n|H_0)}=\frac{B(\alpha+k,1+\beta-k)}{0.5B(\alpha,\beta)}$. Hence, κ will depend on the parameters of our prior, and the outcome k that we get for the one coin flip. Using, $\alpha=\beta=1$, we always get $\kappa=1$, no matter what the outcome of the flip is! However, using different values of α,β will change what model we select based on the outcome of the flip.

As $n \to \infty$, we have $0.5^n \to 0$, as a result of which $\kappa \to \infty$, and does not depend on the outcomes of flips. This means that we always accept H_1 . The prior parameters α, β will only determine at what asymptotic value κ comes very large. This is demonstrated in the following figures.

Simulate Data:

Assume, under H_0 , $\theta = 0.5$, and H_1 , $\theta \neq 0.5$. To simulate H_1 , we draw θ randomly between [0, 1]. We get the expected behavior, we are always in favor of H_1 after around 1100 trials. This is confirmed by plotting both κ and $1/\kappa$.

Appendix:

```
1 %% STA 601 - Homework 11
2 % Author: Kedar Prabhudesai
3 % Created on: 10/22/2013
5 close all;
6 clear all;
8 % Beta Prior Parameters
9 a = 1;
10 b = 1;
11 % Number of Trials
13 % We draw theta at random in [0,1]
14 H1Theta = rand(1, numel(nTrials));
15 % Get number of successes
16 k = binornd(nTrials, H1Theta);
17 % Calculate Bayes Factor
18 BayesFactor = beta(a+k,nTrials-k+b)./((0.5.^nTrials).*beta(a,b));
20 % Manage Plotting
21 figure;plot(nTrials, BayesFactor, 'b-o');ylim([0 2]);hold on;
22 plot(nTrials, ones(numel(nTrials),1),'r','LineWidth',2);hold off;
23 xlabel('n','FontSize',14);
ylabel('\kappa','FontSize',14);
25 title(['\kappa vs Number of Trials, \alpha = ',num2str(a),', \beta = ',num2str(b)],'...
       FontSize',14);
```