Cyclistic Case Study Q1_2021

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for 2021's first quarter.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                                 – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                        ✓ purrr
                                   0.3.5
## ✓ tibble 3.1.8

✓ dplyr

                                   1.0.10
## ✔ tidyr
             1.2.1

✓ stringr 1.4.1

           2.1.3
                        ✓ forcats 0.5.2
## ✓ readr
## — Conflicts -
                                                           – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                     masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
   The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Jan21 <- read_csv("202101-divvy-tripdata.csv")
```

```
## Rows: 96834 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (9): ride_id, rideable_type, started_at, ended_at, start_station_name, s...
## dbl (4): start_lat, start_lng, end_lat, end_lng
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
Feb21 <- read_csv("202102-divvy-tripdata.csv")

## Rows: 49622 Columns: 13
## — Column specification
## Delimiter: ","
## chr (9): ride_id, rideable_type, started_at, ended_at, start_station_name, s...</pre>
```

```
Mar21 <- read_csv("202103-divvy-tripdata.csv")
```

```
## Rows: 228496 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (9): ride_id, rideable_type, started_at, ended_at, start_station_name, s...
## dbl (4): start_lat, start_lng, end_lat, end_lng
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

dbl (4): start_lat, start_lng, end_lat, end_lng

i Use `spec()` to retrieve the full column specification for this data.

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Examine the dataframe for an overview of the data. Review column names, **colnames()**. Then, we need to combine all data one dataframe. Then we examine dataframes to find dimensions, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
colnames(Jan21)
```

```
colnames(Feb21)
```

```
colnames(Mar21)
```

Since all column names are the same. We can combine the data for each month into quarters.

```
q1_2021 <- bind_rows(Jan21, Feb21, Mar21)
```

```
View(q1_2021)
```

```
nrow(q1_2021)
```

```
## [1] 374952
```

```
dim(q1_2021)
```

```
## [1] 374952 13
```

```
head(q1_2021)
```

```
## # A tibble: 6 × 13
##
    ride id
                    ridea...¹ start...² ended...³ start...⁴ start...⁵ end s...⁶ end s...⁶ start...௧
                                                                         <chr>
##
                     <chr> <chr> <chr> <chr> <chr>
                                                                <chr>
## 1 E19E6F1B8D4C4... electr... 1/23/2... 1/23/2... Califo... 17660
                                                                 <NA>
                                                                         <NA>
                                                                                     41.9
## 2 DC88F20C2C55F... electr... 1/27/2... 1/27/2... Califo... 17660
                                                                 <NA>
                                                                         <NA>
                                                                                     41.9
## 3 EC45C94683FE3... electr... 1/21/2... 1/21/2... Califo... 17660
                                                                 <NA>
                                                                         <NA>
                                                                                     41.9
## 4 4FA453A75AE37... electr... 1/7/20... 1/7/20... Califo... 17660
                                                                <NA>
                                                                         <NA>
                                                                                     41.9
## 5 BE5E8EB4E7263... electr... 1/23/2... 1/23/2... Califo... 17660
                                                                <NA>
                                                                         <NA>
                                                                                     41.9
## 6 5D8969F88C773... electr... 1/9/20... 1/9/20... Califo... 17660 <NA>
                                                                         <NA>
                                                                                     41.9
## # ... with 4 more variables: start lng <dbl>, end lat <dbl>, end lng <dbl>,
## #
       member casual <chr>, and abbreviated variable names ¹rideable type,
       2started_at, 3ended_at, 4start_station_name, 5start_station_id,
## #
       6end_station_name, 7end_station_id, 8start_lat
```

tail(q1 2021)

```
## # A tibble: 6 × 13
                      ridea…¹ start…² ended…³ start…⁴ start…⁵ end_s…⁶ end_s…7 start…8
##
    ride_id
##
                       <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
                                                                                            <dbl>
## 1 081549DEA616C... electr... 3/14/2... 3/14/2... Larrab... TA1309... New St... TA1306...
                                                                                             41.9
## 2 9397BDD14798A... docked... 3/20/2... 3/20/2... Michig... 13042 New St... TA1306...
                                                                                              41.9
## 3 BBBEB8D51AAD4... classi... 3/2/20... 3/2/20... Kingsb... KA1503... New St... TA1306...
                                                                                             41.9
## 4 637FF754DA0BD... classi... 3/9/20... 3/9/20... Michig... 13042 Clark ... KA1504...
                                                                                              41.9
## 5 F8F43A0B978A7... classi... 3/1/20... 3/1/20... Kingsb... KA1503... New St... TA1306...
                                                                                              41.9
## 6 3AE64EA5BF43C... electr... 3/26/2... 3/26/2... <NA> <NA>
                                                                    New St... TA1306...
                                                                                              41.9
## # ... with 4 more variables: start lng <dbl>, end lat <dbl>, end lng <dbl>,
        member casual <chr>, and abbreviated variable names ¹rideable type,
## #
        <sup>2</sup>started at, <sup>3</sup>ended at, <sup>4</sup>start station name, <sup>5</sup>start station id,
       <sup>6</sup>end station name, <sup>7</sup>end station id, <sup>8</sup>start lat
## #
```

summary(q1_2021)

```
##
      ride id
                      rideable type
                                          started at
                                                              ended at
##
   Length: 374952
                      Length: 374952
                                         Length: 374952
                                                            Length: 374952
##
   Class :character
                      Class :character
                                         Class :character
                                                            Class :character
                      Mode :character
                                         Mode :character
   Mode :character
                                                            Mode :character
##
##
##
##
##
   start station name start station id
                                         end station name
                                                            end station id
##
##
   Length:374952
                      Length: 374952
                                         Length: 374952
                                                            Length: 374952
##
   Class :character
                      Class :character
                                         Class :character
                                                            Class :character
##
   Mode :character Mode :character
                                         Mode :character
                                                           Mode :character
##
##
##
##
                                       end_lat
##
      start_lat
                     start_lng
                                                       end_lng
                   Min. :-87.78
                                    Min. :41.54
   Min. :41.64
                                                    Min. :-88.07
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                    1st Qu.:41.88
                                                    1st Qu.:-87.66
   Median :41.90
                   Median :-87.64
                                    Median :41.90
##
                                                    Median :-87.64
   Mean :41.90
                   Mean :-87.65
                                    Mean :41.90
##
                                                    Mean :-87.65
    3rd Qu.:41.93
                   3rd Qu.:-87.63
                                    3rd Qu.:41.93
                                                    3rd Qu.:-87.63
##
##
   Max. :42.07
                   Max. :-87.53
                                    Max. :42.08
                                                    Max. :-87.51
##
                                    NA's
                                           :484
                                                    NA's
                                                         .484
   member casual
##
   Length: 374952
   Class :character
##
##
   Mode :character
##
##
##
##
```

$str(q1_2021)$

```
## spc_tbl_ [374,952 \times 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ ride_id
                      : chr [1:374952] "E19E6F1B8D4C42ED" "DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377
DB"
                      : chr [1:374952] "electric bike" "electric bike" "electric bike" ...
##
   $ rideable type
                      : chr [1:374952] "1/23/2021 16:14" "1/27/2021 18:43" "1/21/2021 22:35" "1/7/2021 13:31" .
##
   $ started at
                       : chr [1:374952] "1/23/2021 16:24" "1/27/2021 18:47" "1/21/2021 22:37" "1/7/2021 13:42" .
##
   $ ended at
  $ start station name: chr [1:374952] "California Ave & Cortez St" "California Ave & Cortez St" "California Av
e & Cortez St" "California Ave & Cortez St" ...
## $ start_station_id : chr [1:374952] "17660" "17660" "17660" "17660" ...
##
   ##
   $ end station id
                      : chr [1:374952] NA NA NA NA ...
##
   $ start_lat
                      : num [1:374952] 41.9 41.9 41.9 41.9 ...
##
   $ start lng
                      : num [1:374952] -87.7 -87.7 -87.7 -87.7 ...
                      : num [1:374952] 41.9 41.9 41.9 41.9 ...
##
   $ end lat
##
   $ end lng
                      : num [1:374952] -87.7 -87.7 -87.7 -87.7 ...
                      : chr [1:374952] "member" "member" "member" "member" ...
##
   $ member_casual
##
    - attr(*, "spec")=
##
     .. cols(
##
        ride id = col character(),
    . .
##
        rideable type = col character(),
    . .
##
    .. started at = col_character(),
##
    .. ended_at = col_character(),
##
        start station name = col character(),
    . .
##
         start station id = col character(),
     . .
         end station name = col_character(),
##
     . .
##
        end station id = col character(),
    . .
        start lat = col double(),
##
    . .
##
        start_lng = col_double(),
    . .
##
        end_lat = col_double(),
    . .
##
         end lng = col double(),
    . .
##
    . .
        member casual = col character()
    ..)
##
   - attr(*, "problems")=<externalptr>
```

Columns started at and ended at need to be convert from character data type to date data type. Str() syntax confirms changes.

```
q1_2021$started_at <- mdy_hm(q1_2021$started_at)
q1_2021$ended_at <- mdy_hm(q1_2021$ended_at)
str(q1_2021)</pre>
```

```
## spc tbl [374,952 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                      : chr [1:374952] "E19E6F1B8D4C42ED" "DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377
## $ ride id
DB"
    . . .
                      : chr [1:374952] "electric bike" "electric bike" "electric bike" "electric bike" ...
##
   $ rideable type
                       : POSIXct[1:374952], format: "2021-01-23 16:14:00" "2021-01-27 18:43:00" ...
## $ started at
                      : POSIXct[1:374952], format: "2021-01-23 16:24:00" "2021-01-27 18:47:00" ...
## $ ended at
## $ start station name: chr [1:374952] "California Ave & Cortez St" "California Ave & Cortez St" "California Ave
e & Cortez St" "California Ave & Cortez St" ...
## $ start_station_id : chr [1:374952] "17660" "17660" "17660" "17660" ...
##
   ##
   $ end station id
                       : chr [1:374952] NA NA NA NA ...
                      : num [1:374952] 41.9 41.9 41.9 41.9 ...
##
   $ start lat
##
   $ start lng
                      : num [1:374952] -87.7 -87.7 -87.7 -87.7 ...
                      : num [1:374952] 41.9 41.9 41.9 41.9 ...
##
   $ end lat
##
   $ end lng
                      : num [1:374952] -87.7 -87.7 -87.7 -87.7 ...
##
                      : chr [1:374952] "member" "member" "member" ...
   $ member_casual
##
    - attr(*, "spec")=
    .. cols(
##
##
        ride id = col character(),
    . .
##
        rideable type = col character(),
    . .
##
    .. started at = col character(),
##
        ended at = col character(),
    . .
##
         start station name = col character(),
     . .
##
         start_station_id = col_character(),
     . .
         end station name = col_character(),
##
     . .
##
         end station id = col character(),
    . .
##
         start_lat = col_double(),
    . .
##
     . .
         start_lng = col_double(),
##
         end_lat = col_double(),
    . .
##
         end lng = col double(),
    . .
##
    . .
         member casual = col character()
##
    ..)
    - attr(*, "problems")=<externalptr>
```

```
q1_2021$date <- as.Date(q1_2021$started_at)
q1_2021$month <- format(as.Date(q1_2021$date), "%m")
q1_2021$day <- format(as.Date(q1_2021$date), "%d")
q1_2021$year <- format(as.Date(q1_2021$date), "%Y")
q1_2021$year <- format(as.Date(q1_2021$date), "%Y")
q1_2021$day_of_week <- format(as.Date(q1_2021$date), "%A")
q1_2021$ride_length <- difftime(q1_2021$ended_at,q1_2021$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(q1_2021$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
q1_2021$ride_length <- as.numeric(as.character(q1_2021$ride_length))
is.numeric(q1_2021$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
q1_2021 <- na.omit(q1_2021)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
q1_2021 <- subset(q1_2021, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 1 minute.

```
q1_2021 <- subset (q1_2021, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(q1_2021$ride_length)
```

```
## [1] 1240.123
```

median(q1_2021\$ride_length)

```
## [1] 660
```

max(q1_2021\$ride_length)

```
## [1] 1900920
```

min(q1_2021\$ride_length)

[1] 60

Run a statistical summary of the ride_length.

```
summary(q1 2021$ride length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 60 420 660 1240 1260 1900920
```

Compare the members and casual users

```
aggregate(q1\_2021\\ ride\_length \sim q1\_2021\\ smember\_casual, FUN = mean)
```

```
## q1_2021$member_casual q1_2021$ride_length
## 1 casual 2256.5048
## 2 member 807.3604
```

```
aggregate(q1_2021$ride_length ~ q1_2021$member_casual, FUN = median)
```

```
## q1_2021$member_casual q1_2021$ride_length
## 1 casual 1080
## 2 member 600
```

```
aggregate(q1_2021$ride_length ~ q1_2021$member_casual, FUN = max)
```

```
## q1_2021$member_casual q1_2021$ride_length
## 1 casual 1900920
## 2 member 88440
```

```
aggregate(q1\_2021\$ride\_length \sim q1\_2021\$member\_casual, \ FUN = min)
```

```
## q1_2021$member_casual q1_2021$ride_length
## 1 casual 60
## 2 member 60
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(q1_2021$ride_length ~ q1_2021$member_casual + q1_2021$day_of_week, FUN = mean)
```

```
##
      q1_2021$member_casual q1_2021$day_of_week q1_2021$ride_length
## 1
                                                             1936.6101
                      casual
                                           Friday
## 2
                      member
                                           Friday
                                                              751.4123
## 3
                      casual
                                           Monday
                                                             2499.6927
## 4
                      member
                                           Monday
                                                             797.8621
## 5
                                         Saturday
                                                             2605.2049
                      casual
## 6
                                                              904.7095
                      member
                                         Saturday
## 7
                      casual
                                           Sunday
                                                             2381.4947
## 8
                      member
                                           Sunday
                                                             917.4977
## 9
                                                             1614.5455
                      casual
                                         Thursday
## 10
                      member
                                         Thursday
                                                              724.1700
                                                             2140.0934
## 11
                      casual
                                          Tuesday
## 12
                      member
                                          Tuesday
                                                              789.5950
## 13
                      casual
                                        Wednesday
                                                             1727.6843
## 14
                                        Wednesday
                                                              769.3041
                      member
```

Sort the days of the week in order.

```
 q1\_2021\$day\_of\_week <- ordered(q1\_2021\$day\_of\_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
 x <- aggregate(q1_2021\$ride_length \sim q1_2021\$member_casual + q1_2021\$day_of_week, \ FUN = mean)   head(x)
```

```
q1_2021$member_casual q1_2021$day_of_week q1_2021$ride length
## 1
                     casual
                                          Sunday
                                                            2381.4947
## 2
                                          Sunday
                                                            917.4977
                     member
## 3
                     casual
                                          Monday
                                                            2499.6927
## 4
                     member
                                          Monday
                                                             797.8621
## 5
                                                            2140.0934
                     casual
                                         Tuesday
## 6
                                                            789.5950
                     member
                                         Tuesday
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
    member_casual weekday number_of_rides average_duration
##
##
                     <int>
                                     <int>
## 1 casual
                                     19415
                                                       2381.
                        1
## 2 casual
                         2
                                     12820
                                                       2500.
## 3 casual
                         3
                                     11565
                                                       2140.
## 4 casual
                                                       1728.
                         4
                                     10226
## 5 casual
                         5
                                     7513
                                                       1615.
## 6 casual
                                     10248
                                                       1937.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(q1_2021$member_casual)
```

```
##
## casual member
## 98489 231310
```

```
table(q1_2021$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 246338 18964 64497
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(q1_2021$day_of_week,q1_2021$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
          Sunday
                       casual 19415
## 2
          Monday
                        casual 12820
## 3
         Tuesday
                        casual 11565
## 4
      Wednesday
                        casual 10226
## 5
       Thursday
                        casual 7513
                        casual 10248
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekdays Trends

Weekend trends (Sunday and Saturday).

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(q1_2021$rideable_type,q1_2021$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

Plot for bike user vs bike type.

Riders and Ride Types 150000 150000 Classic_bike docked_bike electric_bike Riders

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(q1_2021, "q1_2021.csv")