

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 18.56 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 0.82$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.1 (Draggura)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.1 1.7 (Pressure)	testing done by Ruscheweyh Consult. Coefficients are
Cf- _{TOP}	=	-2.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.00	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	<u>9</u>		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
$L_b =$	<u>42</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.99	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$I_y =$	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	-0.349	k-ft
$M_z =$	-0.016	k-ft
M _{y allowable} =	1.276	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>29%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	1.5x0.25 6061-T6	l.a.:
$F_{ty} = \Phi =$	0.90	ksi
$S_y =$	0.02	in ³
E =	10100	ksi
$I_y =$	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.001	k-ft
P _n =	0.118	k
$M_{y \text{ allowable}} =$	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>3%</u>	

A cross brace kit is required every 62 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	192.42	1652.39	k
Compressive Load =	<u>1036.77</u>	1059.76	k
Lateral Load =	<u>1.52</u>	<u>856.39</u>	k
Moment (Weak Axis) =	0.00	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 24546.4 in-lbs Resisting Force Required = 818.21 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1363.69 lbs to resist overturning. Minimum Width = Weight Provided = 1993.75 lbs Sliding Force = 205.85 lbs Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 514.62 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 205.85 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballas	t Width	
	22 in	23 in	24 in	25 in
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$	1994 lbs	2084 lbs	2175 lbs	2266 lbs

ASD LC		1.0D -	+ 1.0S			1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S				0.6D + 1.0W			
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	310 lbs	310 lbs	310 lbs	310 lbs	431 lbs	431 lbs	431 lbs	431 lbs	530 lbs	530 lbs	530 lbs	530 lbs	-91 lbs	-91 lbs	-91 lbs	-91 lbs
FB	213 lbs	213 lbs	213 lbs	213 lbs	464 lbs	464 lbs	464 lbs	464 lbs	489 lbs	489 lbs	489 lbs	489 lbs	-794 lbs	-794 lbs	-794 lbs	-794 lbs
F _V	21 lbs	21 lbs	21 lbs	21 lbs	364 lbs	364 lbs	364 lbs	364 lbs	287 lbs	287 lbs	287 lbs	287 lbs	-412 lbs	-412 lbs	-412 lbs	-412 lbs
P _{total}	2518 lbs	2608 lbs	2699 lbs	2789 lbs	2889 lbs	2979 lbs	3070 lbs	3161 lbs	3013 lbs	3103 lbs	3194 lbs	3285 lbs	311 lbs	366 lbs	420 lbs	475 lbs
M	220 lbs-ft	220 lbs-ft	220 lbs-ft	220 lbs-ft	505 lbs-ft	505 lbs-ft	505 lbs-ft	505 lbs-ft	527 lbs-ft	527 lbs-ft	527 lbs-ft	527 lbs-ft	644 lbs-ft	644 lbs-ft	644 lbs-ft	644 lbs-ft
е	0.09 ft	0.08 ft	0.08 ft	0.08 ft	0.17 ft	0.17 ft	0.16 ft	0.16 ft	0.17 ft	0.17 ft	0.17 ft	0.16 ft	2.07 ft	1.76 ft	1.53 ft	1.36 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft					
f _{min}	245.8 psf	244.6 psf	243.5 psf	242.4 psf	249.0 psf	247.7 psf	246.4 psf	245.2 psf	259.7 psf	257.8 psf	256.2 psf	254.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	303.4 psf	299.7 psf	296.3 psf	293.1 psf	381.3 psf	374.1 psf	367.6 psf	361.6 psf	397.7 psf	389.8 psf	382.7 psf	376.0 psf	262.0 psf	172.0 psf	144.8 psf	132.9 psf

Maximum Bearing Pressure = 398 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_O = 0.0 \text{ ft-lbs}$

Resisting Force Required = 0.00 lbsS.F. = 1.67

Weight Required = 0.00 lbs Minimum Width = 22 in in Weight Provided = 1993.75 lbs A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0	.362D + 0.875	iΕ
Width		22 in			22 in			22 in	
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F _Y	47 lbs	112 lbs	44 lbs	154 lbs	432 lbs	151 lbs	14 lbs	33 lbs	13 lbs
F _V	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs
P _{total}	2515 lbs	2580 lbs	2513 lbs	2504 lbs	2781 lbs	2501 lbs	735 lbs	754 lbs	735 lbs
M	0 lbs-ft	0 lbs-ft	0 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft
L/6	0.31 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft
f _{min}	274.3 sqft	281.5 sqft	274.1 sqft	272.9 sqft	303.3 sqft	272.7 sqft	80.2 sqft	82.3 sqft	80.1 sqft
f _{max}	274.4 psf 281.5 psf 274.1			273.3 psf	303.5 psf	273.0 psf	80.2 psf	80.2 psf	

Maximum Bearing Pressure = 303 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.798 k	Maximum Axial Load =	1.093 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>14%</u>	Utilization =	<u>19%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.452 k	Maximum Axial Load =	0.118 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>8%</u>	Utilization =	<u>1%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 30.83 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.617 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.003 \text{ in} \\ \hline \frac{N\!/\!A}{} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 42.00 \text{ in}$$

$$J = 0.255$$

$$109.366$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

30.0 ksi

$$\begin{split} S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]} \end{split}$$

3.4.16

 $\phi F_L =$

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Use</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

Weak Axis:

3.4.14

4.14
$$L_b = 42.00 \text{ in}$$

$$J = 0.255$$

$$113.57$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2})}]$$

$$\phi F_L = 29.9$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

S2 = 77.3

$$\phi F_L$$
= 1.3 ϕF_C
 ϕF_L = 43.2 ksi

$$\begin{array}{cccc} \phi F_L St = & 30.0 \text{ ksi} \\ Ix = & 250988 \text{ mm}^4 \\ & 0.603 \text{ in}^4 \\ y = & 30 \text{ mm} \\ Sx = & 0.511 \text{ in}^3 \\ M_{max} St = & 1.276 \text{ k-ft} \end{array}$$

3.4.18

 $M_{max}Wk =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

0.871 k-ft

Compression

3.4.9

b/t = 7.4S1 = 12.21

S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi y F c y$ $\phi F_L = 33.3 \text{ ksi}$ b/t = 23.9 S1 = 12.21

S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$

 $\phi F_L = 28.5 \text{ ksi}$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

 $\begin{array}{lll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11 $L_{b} = 33.78 \text{ in}$ ry = 1.374 Cb = 1.32 21.4323 $1.2(Bc - \frac{\theta_{y}}{\theta_{h}}Fc)$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.8 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.32 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})] \\ \phi F_L = & 29.8 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 \text{ ksi}$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

φ_{Γ1}

N/A for Strong Direction

3.4.16

N/A for Weak Direction

3.4.16

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $Ix = 364470 \text{ mm}^4$
 0.876 in^4
 $y = 37.77 \text{ mm}$
 $Sx = 0.589 \text{ in}^3$
 $M_{max}St = 1.460 \text{ k-ft}$

3.4.18

h/t = 4.29

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$\psi = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

x =

Sy =

 $M_{max}Wk =$

29 mm

0.457 in³

0.513 k-ft

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 0.46067 \\ r = & 1.374 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.90326 \\ & \phi F_L = & \phi cc(Bc-Dc^*\lambda) \\ & \phi F_L = & 30.1251 \text{ ksi} \end{array}$$

3.4.8

 $\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$

3.4.9

b/t = 4.29 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L = 33.3 \text{ ksi}$ b/t = 24.46 S1 = 12.21

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L = 28.2 \text{ ksi}$

32.70

3.4.9.1

S2 =

b/t =24.46 2.6 t = ds = 6.05 rs = 3.49 S = 21.70 pst = 0.22 10.43 $F_{UT} =$ $F_{ST}=$ 28.24 $\phi F_L = Fut + (Fst - Fut)\rho st < Fst$ $\phi F_L =$ 14.3 ksi

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi \varphi Fcy$$

$$\varphi F_I = 33.3 \text{ ksi}$$

 $\phi F_L = 31.2 \text{ ksi}$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L = 31.2 \text{ ksi}$$

$$\varphi F_L = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$\varphi = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.423 \text{ k-ft}$

Rev. 11.10.2015

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 18.00 \text{ in} \\ J &= & 0.16 \\ & 47.2194 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.2 \end{split}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 15 \\ C_0 = & 15 \\ C_0 = & 15 \\ S2 = & 15 \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \phi F_L \text{Wk} = & 31.2 \text{ ksi} \\ \text{ly} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{x} = & 15 \text{ mm} \\ \text{Sy} = & 0.163 \text{ in}^3 \\ M_{\text{max}} \text{Wk} = & 0.423 \text{ k-ft} \\ \end{array}$$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

 $\phi F_L = 24.5226 \text{ ksi}$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{B + \theta_b}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi F_C V$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.18

 $M_{max}St =$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$\phi F_L St = 1.3\phi y Fcy$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$\phi F_L St = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$\phi F_L St = 15 \text{ mm}$$

$$\phi F_L St = 15 \text{ mm}$$

$$\phi F_L St = 16.3 \text{ mm}$$

0.404 k-ft

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$V = 15 \text{ mm}$$

$$V = 0.163 \text{ in}^3$$

0.450 k-ft

h/t = 7.75

 $M_{max}Wk =$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 36.18 \text{ in}$$
 $J = 0.16$
 94.9139

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.2 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

3.4.16.1 Not Used Rb/t =
$$0.0$$

 $\phi F_1 = 33.3 \text{ ksi}$

 $\phi F_1 = \phi y F c y$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.2 \text{ ksi}$$
 $bx = 39958.2 \text{ mm}^4$
 0.096 in^4
 $bx = 15 \text{ mm}$
 $bx = 0.163 \text{ in}^3$

0.410 k-ft

Weak Axis:

3.4.14

$$L_{b} = 36.18 \text{ in}$$

$$J = 0.16$$

$$94.9139$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2})}]$$

30.2

3.4.16

 $\phi F_L =$

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max} W k = & 0.450 \text{ k-ft} \end{array}$$

 $M_{max}St =$

SCHLETTER

Compression

3.4.7
$$\lambda = 1.5514$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.7972$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 11.5927 \text{ ksi}$$
3.4.9
$$b/t = 7.75$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$φF_L = φyFcy$$
 $φF_I = 33.3 \text{ ksi}$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

 $P_{max} = 5.82 \text{ kips}$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-51.748	-51.748	0	0
2	M16	Υ	-51.748	-51.748	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-81.397	-81.397	0	0
2	M16	V	-125.796	-125.796	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	٧	162.794	162.794	0	0
2	M16	V	73.997	73.997	0	0

Load Combinations

	Description	S	P	S E	S I	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W					1.2		1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	. Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1 .	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	195.925	2	268.815	2	.006	10	0	10	0	1	0	1
2		min	-230.592	3	-411.182	3	179	3	0	3	0	1	0	1
3	N7	max	0	15	270.367	1	.057	10	0	10	0	1	0	1
4		min	121	2	-32.35	3	401	1	0	1	0	1	0	1
5	N15	max	0	15	797.517	2	.072	9	0	9	0	1	0	1
6		min	-1.168	2	-148.013	3	668	3	001	3	0	1	0	1
7	N16	max	590.271	2	815.199	2	0	11	0	9	0	1	0	1
8		min	-658.761	3	-1271.067	3	-88.242	3	0	3	0	1	0	1
9	N23	max	0	15	270.671	1	.444	3	0	3	0	1	0	1
10		min	121	2	-31.724	3	056	10	0	10	0	1	0	1
11	N24	max	195.926	2	271.011	2	88.999	3	0	9	0	1	0	1
12		min	-231.252	3	-410.744	3	007	10	0	3	0	1	0	1
13	Totals:	max	980.712	2	2662.504	2	0	10	·				·	
14		min	-1120.809	3	-2305.08	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
1	M2	1	max	207.187	2	.645	4	.068	1	0	10	0	10	0	1
2			min	-368.907	3	.152	15	099	3	0	3	0	1	0	1
3		2	max	207.303	2	.599	4	.068	1	0	10	0	15	0	15
4			min	-368.819	3	.141	15	099	3	0	3	0	3	0	4
5		3	max	207.42	2	.554	4	.068	1	0	10	0	9	0	15
6			min	-368.732	3	.13	15	099	3	0	3	0	3	0	4
7		4	max	207.536	2	.508	4	.068	1	0	10	0	9	0	15
8			min	-368.645	3	.12	15	099	3	0	3	0	3	0	4
9		5	max	207.652	2	.462	4	.068	1	0	10	0	9	0	15
10			min	-368.557	3	.109	15	099	3	0	3	0	3	0	4
11		6	max	207.769	2	.417	4	.068	1	0	10	0	9	0	15
12			min	-368.47	3	.098	15	099	3	0	3	0	3	0	4
13		7	max	207.885	2	.371	4	.068	1	0	10	0	9	0	15
14			min	-368.383	3	.087	15	099	3	0	3	0	3	0	4
15		8	max	208.002	2	.325	4	.068	1	0	10	0	9	0	15
16			min	-368.296	3	.077	15	099	3	0	3	0	3	0	4
17		9	max	208.118	2	.28	4	.068	1	0	10	0	9	0	15
18			min	-368.208	3	.066	15	099	3	0	3	0	3	0	4
19		10	max	208.234	2	.234	4	.068	1	0	10	0	9	0	15
20			min	-368.121	3	.055	15	099	3	0	3	0	3	0	4
21		11	max	208.351	2	.188	4	.068	1	0	10	0	9	0	15
22			min	-368.034	3	.045	15	099	3	0	3	0	3	0	4
23		12	max	208.467	2	.143	4	.068	1	0	10	0	9	0	15
24			min	-367.946	3	.034	15	099	3	0	3	0	3	0	4
25		13	max	208.584	2	.107	2	.068	1	0	10	0	9	0	15
26			min	-367.859	3	.016	12	099	3	0	3	0	3	0	4
27		14	max	208.7	2	.071	2	.068	1	0	10	0	9	0	15
28			min	-367.772	3	004	3	099	3	0	3	0	3	0	4
29		15	max	208.816	2	.036	2	.068	1	0	10	0	9	0	15
30			min	-367.684	3	031	3	099	3	0	3	0	3	0	4
31		16	max		2	0	2	.068	1	0	10	0	9	0	15
32			min	-367.597	3	058	3	099	3	0	3	0	3	0	4
33		17	max	209.049	2	02	15	.068	1	0	10	0	9	0	15
34			min	-367.51	3	086	4	099	3	0	3	0	3	0	4
35		18	max		2	031	15	.068	1	0	10	0	9	0	15
36			min	-367.423	3	131	4	099	3	0	3	0	3	0	4
37		19	max		2	041	15	.068	1	0	10	0	9	0	15

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]				z Shear[lb]		Torque[k-ft]		<u>y-y Mome</u>		z-z Mome	
38			min		3	177	4	099	3	0	3	0	3	0	4
39	M3	1		151.341	2	1.78	4	.012	10	0	10	0	1	0	4
40			min	-136.832	3	.419	15	102	1	0	1	0	10	0	15
41		2	max		2	1.602	4	.012	10	0	10	0	1	0	2
42				-136.884	3	.377	15	102	1	0	1	0	10	0	12
43		3	max	151.204	2	1.425	4	.012	10	0	10	0	1	0	2
44			min	-136.935	3	.335	15	102	1	0	1	0	10	0	3
45		4	max	151.135	2	1.248	4	.012	10	0	10	0	1	0	15
46			min	-136.987	3	.294	15	102	1	0	1	0	10	0	4
47		5	max	151.067	2	1.071	4	.012	10	0	10	0	1	0	15
48			min	-137.038	3	.252	15	102	1	0	1	0	10	0	4
49		6	max	150.998	2	.894	4	.012	10	0	10	0	1	0	15
50			min	-137.089	3	.21	15	102	1	0	1	0	10	0	4
51		7	max	150.93	2	.716	4	.012	10	0	10	0	1	0	15
52			min	-137.141	3	.169	15	102	1	0	1	0	10	0	4
53		8	max	150.861	2	.539	4	.012	10	0	10	0	1	0	15
54			min	-137.192	3	.127	15	102	1	0	1	0	10	001	4
55		9	max	150.792	2	.362	4	.012	10	0	10	0	1	0	15
56				-137.244	3	.085	15	102	1	0	1	0	10	001	4
57		10		150.724	2	.185	4	.012	10	0	10	0	1	0	15
58				-137.295	3	.044	15	102	1	0	1	0	10	001	4
59		11		150.655	2	.031	2	.012	10	0	10	0	1	0	15
60			_	-137.347	3	023	3	102	1	0	1	0	10	001	4
61		12		150.587	2	04	15	.012	10	0	10	0	1	0	15
62		'-	_	-137.398	3	17	4	102	1	0	1	0	10	001	4
63		13		150.518	2	081	15	.012	10	0	10	0	1	0	15
64				-137.45	3	347	4	102	1	0	1	0	10	001	4
65		14		150.449	2	123	15	.012	10	0	10	0	9	0	15
66		17		-137.501	3	524	4	102	1	0	1	0	10	001	4
67		15		150.381	2	165	15	.012	10	0	10	0	9	0	15
68		13		-137.553	3	701	4	102	1	0	1	0	10	0	4
69		16		150.312	2	206	15	.012	10	0	10	0	10	0	15
70		10		-137.604	3	878	4	102	1	0	1	0	1	0	4
71		17		150.243	2	248	15	.012	10	0	10	0	10	0	15
72		17		-137.655	3	-1.056	4	102	1	0	1	0	1	0	4
73		18		150.175	2	29	15	.012	10	0	10	0	10	0	15
74		10		-137.707	3	-1.233	4	102	1	0	1	0	1	0	4
75		19		150.106	2	331	15	.012	10	0	10	0	10	0	1
76		19		-137.758	3	-1.41	4	102	1	0	1	0	1	0	1
77	M4	1		269.203	<u>ა</u> 1		1	.058	10	0	1	0	3	0	1
78	IVI4		min	-33.224	3	0	1	42	1	0	1	0	2	0	1
		2		269.267											•
79 80		2	_		1	0	1	.058	10	0	1	0	10	0 0	1
		3		-33.175	3	0	1	42		<u> </u>	_				1
81		3	max	269.332	1	0	1	.058	10		1	0	10	0	1
82		1	min		3	0		42		0		0	_	0	-
83		4	max		1	0	1	.058	10		1	0	10	0	1
84		_		-33.078	3_	0	1	42	1	0	1	0	1	0	1
85		5	max		1_	0	1	.058	10	0	1	0	10	0	1
86			min	-33.029	3	0	1	42	1	0	1	0	1	0	1
87		6	max		1	0	1	.058	10	0	1	0	10	0	1
88			min	-32.981	3	0	1	42	1	0	1	0	1	0	1
89		7	max		_1_	0	1	.058	10	0	1	0	10	0	1
90			min	-32.932	3	0	1	42	1	0	1	0	1	0	1
91		8	max	269.656	_1_	0	1	.058	10	0	1	0	10	0	1
92			min	-32.884	3_	0	1	42	1	0	1	0	1	0	1
93		9	max	269.72	_1_	0	1	.058	10	0	1	0	10	0	1
94			min	-32.835	3	0	1	42	1	0	1	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec	T	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	_LC
95		10	max	269.785	1	0	1	.058	10	00	1	0	10	0	1
96			min	-32.787	3	0	1	42	1	0	1	0	1	0	1
97		11	max	269.85	1	0	1	.058	10	0	1	0	10	0	1
98			min	-32.738	3	0	1	42	1	0	1	0	1	0	1
99		12	max	269.914	1	0	1	.058	10	0	1	0	10	0	1
100			min	-32.69	3	0	1	42	1	0	1	0	1	0	1
101		13	max		1	0	1	.058	10	0	1	0	10	0	1
102			min	-32.641	3	0	1	42	1	0	1	0	1	0	1
103		14	max		1	0	1	.058	10	0	1	0	10	0	1
104			min	-32.593	3	0	1	42	1	0	1	0	1	0	1
105		15		270.109	1	0	1	.058	10	0	1	0	10	0	1
106			min	-32.544	3	0	1	42	1	0	1	0	1	0	1
107		16	max	270.173	1	0	1	.058	10	0	1	0	10	0	1
108			min	-32.496	3	0	1	42	1	0	1	0	1	0	1
109		17	max	270.238	1	0	1	.058	10	0	1	0	10	0	1
110			min	-32.447	3	0	1	42	1	0	1	0	1	0	1
111		18	max		1	0	1	.058	10	0	1	0	10	0	1
112			min	-32.399	3	0	1	42	1	0	1	0	1	0	1
113		19	max		1	0	1	.058	10	0	1	0	10	0	1
114			min	-32.35	3	0	1	42	1	0	1	0	1	0	1
115	<u>M6</u>	1	max		2	.643	4	.013	9	0	3	0	3	0	1
116			min	-1092.756	3	.151	15	313	3	0	1	0	1	0	1
117		2	max		2	.597	4	.013	9	0	3	0	3	0	15
118			min	-1092.669	3	.141	15	313	3	0	1	0	1	0	4
119		3	max	637.26	2	.552	4	.013	9	0	3	0	3	0	15
120			min		3	.13	15	313	3	0	1	0	1	0	4
121		4	max		2	.506	4	.013	9	0	3	0	3	0	15
122			min	-1092.494	3	.119	15	313	3	0	1	0	1	0	4
123		5	max		2	.46	4	.013	9	0	3	0	3	0	15
124			min	-1092.407	3	.108	15	313	3	0	1	0	1	0	4
125		6		637.609	2	.415	4	.013	9	0	3	0	3	0	15
126			min	-1092.32	3	.098	15	313	3	0	1	0	1	0	4
127		7	max		2	.378	2	.013	9	0	3	0	9	0	15
128			min	-1092.232	3	.083	12	313	3	0	1	0	3	0	4
129		8	max	637.842	2	.343	2	.013	9	0	3	0	9	0	15
130		_		-1092.145	3	.065	12	313	3	0	1	0	3	0	4
131		9	max		2	.307	2	.013	9	0	3	0	9	0	15
132			min	-1092.058	3	.047	12	313	3	0	1	0	3	0	4
133		10	max		2	.272	2	.013	9	0	3	0	9	0	15
134		4.4	min	-1091.971	3	.03	12	313	3	0	1	0	3	0	4
135		11		638.191	2	.236	2	.013	9	0	3	0	9	0	15
136		40		-1091.883	3	.012	3	313	3	0	1	0	3	0	4
137		12		638.308	2	.2	2	.013	9	0	3	0	9	0	12
138		40		-1091.796	3	015	3	313	3	0	1	0	3	0	2
139		13		638.424	2	.165	2	.013	9	0	1	0	9	0	12
140		4.4		-1091.709	3	042	3	313	3	0		0	3	0	2
141		14		638.541	2	.129	2	.013	9	0	3	0	9	0	12
142		4.5		-1091.621	3	069	3	313	3	0	1	0	3	0	2
143		15		638.657	2	.094	2	.013	9	0	3	0	9	0	12
144		4.0	min	-1091.534	3	095	3	313	3	0	1	0	3	0	12
145		16		638.773	2	.058	2	.013	9	0	3	0	9	0	12
146		47	min	-1091.447	3	122	3	313	3	0	1	0	3	0	2
147		17	max		2	.022	2	.013	9	0	3	0	9	0	12
148		40		-1091.359	3	149	3	313	3	0	1	0	3	0	2
149		18	max	639.006	2	013	2	.013	9	0	1	0	9	0	12
150		40	min		3	175	3	313	3	0		0	3	0	2
151		19	max	639.123	2	042	15	.013	9	0	3	0	9	00	12

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]	L LC	y-y Mome		z-z Mome	. LC
152			min	-1091.185	3	202	3	313	3	0	1	0	3	0	2
153	M7	1	max	451.867	2	1.78	4	.027	3	0	9	0	9	0	2
154			min	-353.163	3	.419	15	003	9	0	3	0	3	0	12
155		2	max	451.798	2	1.603	4	.027	3	0	9	0	9	0	2
156			min	-353.215	3	.377	15	003	9	0	3	0	3	0	3
157		3	max	451.73	2	1.426	4	.027	3	0	9	0	9	0	2
158			min	-353.266	3	.335	15	003	9	0	3	0	3	0	3
159		4	max		2	1.249	4	.027	3	0	9	0	9	0	2
160			min	-353.318	3	.294	15	003	9	0	3	0	3	0	3
161		5	max	451.593	2	1.071	4	.027	3	0	9	0	9	0	15
162			min	-353.369	3	.252	15	003	9	0	3	0	3	0	3
163		6	max		2	.894	4	.027	3	0	9	0	9	0	15
164			min	-353.421	3	.21	15	003	9	0	3	0	3	0	4
165		7	max		2	.717	4	.027	3	0	9	0	9	0	15
166		– ′	min	-353.472	3	.169	15	003	9	0	3	0	3	0	4
167		8	max		2	.54	4	.027	3	0	9	0	9	0	15
168			min	-353.524	3	.127	15	003	9	0	3	0	3	001	4
169		9	max		2	.363	4	.027	3	0	9	0	9	0	15
170		9	min	-353.575	3	.085	15	003	9	0	3	0	3	001	4
171		10		451.249	2	.214	2	.027	3		9	0	9	001	15
172		10	max min	-353.627	3	.027	12	003	9	0	3	0	3	001	4
173		11				.027	2	.027	3		9	0	9	001 0	
			max		3		3			0			3		15
174		40	min	-353.678		067		003	9	0	3	0	_	001	4
175		12	max		2	039	15	.027	3	0	9	0	9	0	15
176		40	min	-353.729	3	17	3	003	9	0	3	0	3	001	4
177		13	max		2	081	15	.027	3	0	9	0	9	0	15
178		4.4	min	-353.781	3	346	4	003	9	0	3	0	3	001	4
179		14	max		2	123	15	.027	3	0	9	0	9	0	15
180			min	-353.832	3	523	4	003	9	0	3	0	3	001	4
181		15	max	450.906	2	164	15	.027	3	0	9	0	9	0	15
182		1.0	min	-353.884	3	701	4	003	9	0	3	0	3	0	4
183		16	max		2	206	15	.027	3	0	9	0	9	0	15
184			min	-353.935	3	878	4	003	9	0	3	0	3	0	4
185		17	max	450.769	2	248	15	.027	3	0	9	0	9	0	15
186			min	-353.987	3	-1.055	4	003	9	0	3	0	3	0	4
187		18	max		2	289	15	.027	3	0	9	0	9	0	15
188			min	-354.038	3	-1.232	4	003	9	0	3	0	3	0	4
189		19	max	450.632	2	331	15	.027	3	0	9	0	9	0	1
190			min	-354.09	3	-1.409	4	003	9	0	3	0	3	0	1
191	M8	1	max	796.352	2	0	1	.076	9	0	1_	0	1_	0	1
192				-148.887		0	1	652	3	0	1	0	3	0	1
193		2	max	796.417	2	0	1	.076	9	0	1	0	9	0	1
194			min	-148.838	3	0	1	652	3	0	1	0	3	0	1
195		3	max	796.482	2	0	1	.076	9	0	1	0	9	0	1
196			min	-148.79	3	0	1	652	3	0	1	0	3	0	1
197		4	max	796.546	2	0	1	.076	9	0	1	0	9	0	1
198			min	-148.741	3	0	1	652	3	0	1	0	3	0	1
199		5	max	796.611	2	0	1	.076	9	0	1	0	9	0	1
200					3	0	1	652	3	0	1	0	3	0	1
201		6	max		2	0	1	.076	9	0	1	0	9	0	1
202			min	-148.644	3	0	1	652	3	0	1	0	3	0	1
203		7	max		2	0	1	.076	9	0	1	0	9	0	1
204			min		3	0	1	652	3	0	1	0	3	0	1
205		8	max		2	0	1	.076	9	0	1	0	9	0	1
206			min	-148.547	3	0	1	652	3	0	1	0	3	0	1
207		9	max	796.87	2	0	1	.076	9	0	1	0	9	0	1
208			min		3	0	1	652	3	0	1	0	3	0	1
200			1111111	140.430	J	U		002	J	U		U	J	U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	796.935	2	0	1	.076	9	0	1	0	9	0	1
210			min	-148.45	3	0	1	652	3	0	1	0	3	0	1
211		11	max	796.999	2	0	1	.076	9	0	1	0	9	0	1
212			min	-148.401	3	0	1	652	3	0	1	0	3	0	1
213		12	max	797.064	2	0	1	.076	9	0	1	0	9	0	1
214			min	-148.353	3	0	1	652	3	0	1	0	3	0	1
215		13	max	797.129	2	0	1	.076	9	0	1	0	9	0	1
216			min	-148.304	3	0	1	652	3	0	1	0	3	0	1
217		14	max	797.193	2	0	1	.076	9	0	1	0	9	0	1
218			min	-148.256	3	0	1	652	3	0	1	0	3	0	1
219		15	max	797.258	2	0	1	.076	9	0	1	0	9	0	1
220			min	-148.207	3	0	1	652	3	0	1	0	3	0	1
221		16	max	797.323	2	0	1	.076	9	0	1	0	9	0	1
222			min	-148.159	3	0	1	652	3	0	1	0	3	0	1
223		17	max	797.387	2	0	1	.076	9	0	1	0	9	0	1
224			min	-148.11	3	0	1	652	3	0	1	0	3	0	1
225		18	max	797.452	2	0	1	.076	9	0	1	0	9	0	1
226			min	-148.062	3	0	1	652	3	0	1	0	3	0	1
227		19	max	797.517	2	0	1	.076	9	0	1	0	9	0	1
228			min	-148.013	3	0	1	652	3	0	1	001	3	0	1
229	M10	1	max	208.353	2	.645	4	.006	10	0	1	0	9	0	1
230			min	-291.917	3	.152	15	068	1	0	3	0	3	0	1
231		2	max	208.47	2	.599	4	.006	10	0	1	0	9	0	15
232			min	-291.829	3	.141	15	068	1	0	3	0	3	0	4
233		3	max	208.586	2	.554	4	.006	10	0	1	0	9	0	15
234			min	-291.742	3	.13	15	068	1	0	3	Ö	3	0	4
235		4	max	208.703	2	.508	4	.006	10	0	1	0	9	0	15
236			min	-291.655	3	.12	15	068	1	0	3	0	3	0	4
237		5	max	208.819	2	.462	4	.006	10	0	1	0	9	0	15
238			min	-291.567	3	.109	15	068	1	0	3	0	3	0	4
239		6	max	208.935	2	.417	4	.006	10	0	1	0	9	0	15
240			min	-291.48	3	.098	15	068	1	0	3	0	3	0	4
241		7	max	209.052	2	.371	4	.006	10	0	1	0	10	0	15
242			min	-291.393	3	.087	15	068	1	0	3	0	3	0	4
243		8	max	209.168	2	.325	4	.006	10	0	1	0	10	0	15
244			min	-291.305	3	.077	15	068	1	0	3	0	3	0	4
245		9	max	209.285	2	.28	4	.006	10	0	1	0	10	0	15
246			min	-291.218	3	.066	15	068	1	0	3	0	3	0	4
247		10	max	209.401	2	.234	4	.006	10	0	1	0	10	0	15
248		10	min	-291.131	3	.055	15	068	1	0	3	0	3	0	4
249		11	max	209.517	2	.188	4	.006	10	0	1	0	10	0	15
250			min	-291.044	3	.045	15	068	1	0	3	0	3	0	4
251		12	max		2	.143	4	.006	10	0	1	0	10	0	15
252		12		-290.956	3	.034	15	068	1	0	3	0	3	0	4
253		13	max	209.75	2	.107	2	.006	10	0	1	0	10	0	15
254		13	min	-290.869	3	.023	15	068	1	0	3	0	3	0	4
255		14		209.867	2	.023	2	.006	10	0	1	0	10	0	15
256		14	min	-290.782	3	.007	12	068	1	0	3	0	3	0	4
		15									1		10		15
257 258		15	max min	-290.694	3	.036 018	3	.006 068	10	0 0	3	0	3	0	4
259		16			2	0	2	.006	10	0	1	0	10	0	15
		10					3		1		3		3		
260		17	min	-290.607	3	044		068		0		0		0	4
261		17	max		2	02	15	.006	10	0	1	0	10	0	15
262		10	min	-290.52	3	086	4	068		0	3	0	3	0	4
263		18	max		2	031	15	.006	10	0	3	0	<u>10</u>	0	15
264		10	min	-290.432	3	131	4	068	1	0		0		0	4
265		19	тпах	210.449	2	041	15	.006	10	0	1	0	10	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]		y-y Mome		z-z Mome	
266			min	-290.345	3	177	4	068	1	0	3	0	3	0	4
267	M11	1	max	150.961	2	1.78	4	.102	1	0	3	0	3	0	4
268			min	-137.7	3	.419	15	05	3	0	10	0	1	0	15
269		2	max	150.893	2	1.602	4	.102	1	0	3	0	3	0	2
270			min	-137.752	3	.377	15	05	3	0	10	0	1	0	12
271		3	max	150.824	2	1.425	4	.102	1	0	3	0	3	0	2
272			min	-137.803	3	.335	15	05	3	0	10	0	1	0	3
273		4	max	150.755	2	1.248	4	.102	1	0	3	0	3	0	15
274				-137.855	3	.294	15	05	3	0	10	0	1	0	4
275		5	max	150.687	2	1.071	4	.102	1	0	3	0	3	0	15
276				-137.906	3	.252	15	05	3	0	10	0	1	0	4
277		6		150.618	2	.894	4	.102	1	0	3	0	3	0	15
278				-137.957	3	.21	15	05	3	0	10	0	1	0	4
279		7	_	150.549	2	.716	4	.102	1	0	3	0	3	0	15
280			min	-138.009	3	.169	15	05	3	0	10	0	1	0	4
281		8		150.481	2	.539	4	.102	1	0	3	0	3	0	15
282		<u> </u>	min	-138.06	3	.127	15	05	3	0	10	0	1	001	4
283		9	max	150.412	2	.362	4	.102	1	0	3	0	3	0	15
284				-138.112	3	.085	15	05	3	0	10	0	1	001	4
285		10	max	150.344	2	.185	4	.102	1	0	3	0	3	<u>001</u>	15
286		10		-138.163	3	.044	15	05	3	0	10	0	1	001	4
287		11		150.275	2	.031	2	.102	1	0	3	0	3	0	15
288				-138.215	3	028	3	05	3	0	10	0	1	001	4
		12							1			-			
289		12		150.206	2	04	15	.102		0	3	0	3	0	15
290		40	min	-138.266	3_	17	4	05	3	0	10	0		001	4
291		13		150.138	2	081	15	.102	1	0	3	0	3	0	15
292		4.4		-138.318	3	347	4	05	3	0	10	0	1	001	4
293		14	max		2	123	15	.102	1	0	3	0	3	0	15
294		4.5		-138.369	3	524	4	05	3	0	10	0	1	001	4
295		15	max	150.001	2	165	15	.102	1	0	3	0	3	0	15
296		40		-138.421	3	701	4	05	3	0	10	0	1	0	4
297		16		149.932	2	206	15	.102	1	0	3	0	3	0	15
298		-		-138.472	3	878	4	05	3	0	10	0	10	0	4
299		17	max	149.863	2	248	15	.102	1	0	3	0	3	0	15
300			min	-138.523	3_	-1.056	4	05	3	0	10	0	10	0	4
301		18		149.795	2	29	15	.102	1	0	3	0	3	0	15
302				-138.575	3	-1.233	4	05	3	0	10	0	10	0	4
303		19	max	149.726	2	331	15	.102	1_	0	3	0	3	0	1
304			min	-138.626	3	-1.41	4	05	3	0	10	0	10	0	1
305	M12	1	max	269.506	_1_	0	1	.442	3	0	1	0	2	0	1
306				-32.597	3	0	1	057	10		1	0	3	0	1
307		2	max	269.571	<u>1</u>	0	1	.442	3	0	1	0	1	0	1
308			min	-32.549	3	0	1	057	10	0	1	0	10	0	1
309		3	max	269.635	1	0	1	.442	3	0	1	0	1	0	1
310			min	-32.5	3	0	1	057	10	0	1	0	10	0	1
311		4	max	269.7	1	0	1	.442	3	0	1	0	1	0	1
312			min	-32.452	3	0	1	057	10	0	1	0	10	0	1
313		5	max	269.765	1	0	1	.442	3	0	1	0	1	0	1
314			min	-32.403	3	0	1	057	10	0	1	0	10	0	1
315		6	max	269.83	1	0	1	.442	3	0	1	0	1	0	1
316				-32.355	3	0	1	057	10	0	1	0	10	0	1
317		7	max		1	0	1	.442	3	0	1	0	1	0	1
318				-32.306	3	0	1	057	10	0	1	0	10	0	1
319		8		269.959	1	0	1	.442	3	0	1	0	1	0	1
320			min	-32.257	3	0	1	057	10	0	1	0	10	0	1
321		9	max		1	0	1	.442	3	0	1	0	3	0	1
322			min		3	0	1	057	10	0	1	0	10	0	1
JZZ			1111111	52.203	J	U		007	10	U		U	10	U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
323		10	max	270.088	1	0	1	.442	3	0	1	0	3	0	1
324			min	-32.16	3	0	1	057	10	0	1	0	10	0	1
325		11	max	270.153	1	0	1	.442	3	0	1	0	3	0	1
326			min	-32.112	3	0	1	057	10	0	1	0	10	0	1
327		12	max	270.218	1	0	1	.442	3	0	1	0	3	0	1
328			min	-32.063	3	0	1	057	10	0	1	0	10	0	1
329		13	max	270.282	1	0	1	.442	3	0	1	0	3	0	1
330			min	-32.015	3	0	1	057	10	0	1	0	10	0	1
331		14	max	270.347	1	0	1	.442	3	0	1	0	3	0	1
332			min	-31.966	3	0	1	057	10	0	1	0	10	0	1
333		15	max	270.412	1	0	1	.442	3	0	1	0	3	0	1
334			min	-31.918	3	0	1	057	10	0	1	0	10	0	1
335		16	max	270.477	1	0	1	.442	3	0	1	0	3	0	1
336			min	-31.869	3	0	1	057	10	0	1	0	10	0	1
337		17	max	270.541	1	0	1	.442	3	0	1	0	3	0	1
338			min	-31.821	3	0	1	057	10	0	1	0	10	0	1
339		18	max	270.606	1	0	1	.442	3	0	1	0	3	0	1
340			min	-31.772	3	0	1	057	10	0	1	0	10	0	1
341		19	max	270.671	1	0	1	.442	3	0	1	0	3	0	1
342			min	-31.724	3	0	1	057	10	0	1	0	10	0	1
343	M1	1	max	60.556	1	348.367	3	1.373	10	0	2	.022	1	0	2
344			min	2.301	15	-225.463	2	-11.369	1	0	3	003	10	0	3
345		2	max	60.674	1	348,177	3	1.373	10	0	2	.02	1	.049	2
346			min	2.336	15	-225.716	2	-11.369	1	0	3	002	10	076	3
347		3	max	63.397	3	3.823	9	1.368	10	0	10	.017	1	.097	2
348			min	-12.058	10	-20.668	2	-11.329	1	0	1	002	10	15	3
349		4	max	63.486	3	3.613	9	1.368	10	0	10	.015	1	.102	2
350			min	-11.959	10	-20.921	2	-11.329	1	0	1	002	10	146	3
351		5	max	63.574	3	3.402	9	1.368	10	0	10	.012	1	.106	2
352			min	-11.861	10	-21.174	2	-11.329	1	0	1	001	10	142	3
353		6	max	63.663	3	3.191	9	1.368	10	0	10	.01	1	.111	2
354			min	-11.763	10	-21.427	2	-11.329	1	0	1	001	10	138	3
355		7	max	63.751	3	2.98	9	1.368	10	0	10	.007	1	.116	2
356			min	-11.664	10	-21.68	2	-11.329	1	0	1	0	10	135	3
357		8	max	63.84	3	2.769	9	1.368	10	0	10	.005	1	.12	2
358			min	-11.566	10	-21.933	2	-11.329	1	0	1	0	10	131	3
359		9	max	63.928	3	2.558	9	1.368	10	0	10	.003	3	.125	2
360			min	-11.468	10	-22.186	2	-11.329	1	0	1	0	10	127	3
361		10	max	64.017	3	2.347	9	1.368	10	0	10	.002	3	.13	2
362			min	-11.369	10	-22.439	2	-11.329	1	0	1	0	10	123	3
363		11		64.106	3	2.136	9	1.368	10	0	10	0	3	.135	2
364				-11.271	10	-22.692	2	-11.329	1	0	1	002	1	119	3
365		12	max		3	1.925	9	1.368	10	0	10	0	10	.14	2
366			min	-11.173	10	-22.946	2	-11.329	1	0	1	005	1	114	3
367		13	max	64.283	3	1.714	9	1.368	10	0	10	0	10	.145	2
368		10	min		10	-23.199	2	-11.329	1	0	1	007	1	11	3
369		14	max	64.371	3	1.504	9	1.368	10	0	10	.001	10	.15	2
370		17	min	-10.976	10	-23.452	2	-11.329	1	0	1	01	1	106	3
371		15	max	64.46	3	1.293	9	1.368	10	0	10	.001	10	.155	2
372		10	min	-10.878	10	-23.705	2	-11.329	1	0	1	012	1	102	3
373		16	max	87.398	2	93.021	2	1.379	10	0	1	.002	10	.159	2
374		10	min	-20.71	3	-127.956	3	-11.422	1	0	10	015	1	097	3
375		17	max	87.516	2	92.768	2	1.379	10	0	1	.002	10	.139	2
376		17	min	-20.622	3	-128.146	3	-11.422	1	0	10	017	1	069	3
377		18	max	-2.335	15	321.996	2	1.436	10	0	3	.002	10	<u>009</u> .07	2
378		10	min	-60.652	1	-158.487	3	-11.845	1	0	2	02	1	035	3
379		19			15	321.743	2	1.436	10	0	3	.003	10	035 0	2
313		l 19	max	-2.299	เข	341.143		1.430	IU	U	J	.003	IU	U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
380			min	-60.534	1	-158.677	3	-11.845	1	0	2	022	1	0	3
381	M5	1	max	157.352	1	1095.095	3	0	1	0	9	.012	3	0	3
382			min	-7.461	3	-697.589	2	-80.118	3	0	3	0	11	0	2
383		2	max	157.47	1	1094.905	3	0	1	0	9	0	9	.151	2
384			min	-7.372	3	-697.842	2	-80.118	3	0	3	005	3	237	3
385		3	max	155.684	3	4.994	9	8.48	3	0	3	0	9	.3	2
386			min	-24.903	10	-67.672	2	086	9	0	1	022	3	469	3
387		4	max	155.773	3	4.783	9	8.48	3	0	3	0	9	.314	2
388			min	-24.805	10	-67.925	2	086	9	0	1	02	3	455	3
389		5	max	155.861	3	4.572	9	8.48	3	0	3	0	9	.329	2
390			min	-24.707	10	-68.179	2	086	9	0	1	018	3	441	3
391		6	max	155.95	3	4.361	9	8.48	3	0	3	0	9	.344	2
392			min	-24.608	10	-68.432	2	086	9	0	1	016	3	427	3
393		7	max	156.038	3	4.15	9	8.48	3	0	3	0	9	.359	2
394			min	-24.51	10	-68.685	2	086	9	0	1	014	3	413	3
395		8	max	156.127	3	3.939	9	8.48	3	0	3	0	9	.374	2
396			min	-24.412	10	-68.938	2	086	9	0	1	012	3	399	3
397		9	max	156.215	3	3.728	9	8.48	3	0	3	0	9	.389	2
398			min	-24.313	10	-69.191	2	086	9	0	1	01	3	385	3
399		10	max	156.304	3	3.517	9	8.48	3	0	3	0	1	.404	2
400		1.0	min	-24.215	10	-69.444	2	086	9	0	1	009	3	37	3
401		11	max	156.392	3	3.307	9	8.48	3	0	3	0	1	.419	2
402			min	-24.117	10	-69.697	2	086	9	0	1	007	3	356	3
403		12	max	156.481	3	3.096	9	8.48	3	0	3	0	1	.434	2
404		12	min	-24.018	10	-69.95	2	086	9	0	1	005	3	342	3
405		13	max	156.569	3	2.885	9	8.48	3	0	3	<u>.003</u>	1	.449	2
406		15	min	-23.92	10	-70.203	2	086	9	0	1	003	3	327	3
407		14	max	156.658	3	2.674	9	8.48	3	0	3	<u>005</u>	1	.464	2
408		14	min	-23.822	10	-70.456	2	086	9	0	1	001	3	313	3
409		15	max	156.746	3	2.463	9	8.48	3	0	3	001	3	.48	2
410		13	min	-23.723	10	-70.709	2	086	9	0	1	0	9	298	3
411		16	max	266.312	2	283.536	2	8.45	3	0	3	.002	3	.492	2
412		10	min	-63.412	3	-343.745	3	088	9	0	1	0	9	282	3
413		17	max	266.43	2	283.283	2	8.45	3	0	3	.004	3	.43	2
414		17	min	-63.323	3	-343.934	3	088	9	0	1	<u>.004</u>	9	207	3
415		18		-03.323 472	3	1000.701	2	7.801	3	0	3	.005	3	.216	2
416		10	max min	-157.514	<u> </u>	-479.626	3	016	9	0	9	<u>.005</u>	9	104	3
417		19		384	3			7.801	3		3	.007	3		3
418		19	max min	-157.396	<u> </u>	1000.448 -479.815	3	016	9	0	9	<u>.007</u>	9	0	2
419	M9	1		60.556	1	348.268	3	84.72	3	0	3	.003	10	0	2
420	IVI9	<u> </u>	max	2 207		-225.463	<u>ა</u>	-1.373	10	0	2	022	1	0	3
		2													
421 422		2	max min	60.674 2.333	1_	348.079 -225.716	3	84.72 -1.373	3	0	3	.002 02	10	.049 076	3
423		3			<u>15</u>	3.816			10 1	0	1	02 .016	3	076 .097	2
		3	max		3		9	11.329		0			1		
424 425		4	min	-11.753	10	-20.645 3.605	2	-3.073 11.329	3	0	10	017 .015	3	15	3
		4	max	62.786	3		9		1	0				.102	2
426		-	min	-11.655	10	-20.899	2	-3.073	3	0	10	015	1	146	3
427		5	max		3	3.394	9	11.329	1	0	1	.014	3	.106	2
428			min	-11.557	10	-21.152	2	-3.073	3	0	10	012	1	142	3
429		6	max	62.963	3	3.184	9	11.329	1	0	1	.014	3	.111	2
430		-	min	-11.458	10	-21.405	2	-3.073	3	0	10	01	1	138	3
431		7	max		3_	2.973	9	11.329	1	0	1	.013	3	.116	2
432			min	-11.36	<u>10</u>	-21.658	2	-3.073	3	0	10	007	1	134	3
433		8	max	63.14	3	2.762	9_	11.329	1	0	1	.012	3	.12	2
434			min	-11.262	10	-21.911	2	-3.073	3	0	10	005	1	131	3
435		9	max	63.229	3	2.551	9	11.329	1	0	1	.012	3	.125	2
436			min	-11.163	10	-22.164	2	-3.073	3	0	10	003	1	127	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec	1	Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC			z-z Mome	
437		10	max	63.317	3	2.34	9	11.329	1	0	1	.011	3	.13	2
438			min	-11.065	10	-22.417	2	-3.073	3	0	10	0	1	123	3
439		11	max	63.406	3	2.129	9	11.329	1	0	1	.01	3	.135	2
440			min	-10.967	10	-22.67	2	-3.073	3	0	10	0	10	119	3
441		12	max	63.494	3	1.918	9	11.329	1	0	1	.01	3	.14	2
442			min	-10.868	10	-22.923	2	-3.073	3	0	10	0	10	114	3
443		13	max	63.583	3	1.707	9	11.329	1	0	1	.009	3	.145	2
444			min	-10.77	10	-23.176	2	-3.073	3	0	10	0	10	11	3
445		14	max	63.671	3	1.496	9	11.329	1	0	1	.01	1	.15	2
446			min	-10.671	10	-23.429	2	-3.073	3	0	10	001	10	106	3
447		15	max	63.76	3	1.285	9	11.329	1	0	1	.012	1	.155	2
448			min	-10.573	10	-23.682	2	-3.073	3	0	10	001	10	102	3
449		16	max	87.526	2	92.746	2	11.421	1	0	10	.015	1	.159	2
450			min	-21.948	3	-128.513	3	-3.113	3	0	3	002	10	097	3
451		17	max	87.644	2	92.493	2	11.421	1	0	10	.017	1	.139	2
452			min	-21.859	3	-128.703	3	-3.113	3	0	3	002	10	069	3
453		18	max	-2.332	15	321.996	2	11.845	1	0	2	.02	1	.07	2
454			min	-60.652	1	-158.476	3	-2.673	3	0	3	002	10	035	3
455		19	max	-2.296	15	321.743	2	11.845	1	0	2	.022	1	0	2
456			min	-60.534	1	-158.666	3	-2.673	3	0	3	003	10	0	3
457	M13	1	max	84.714	3	225.401	2	-2.297	15	0	2	.022	1	0	2
458			min	-1.373	10	-348.328	3	-60.553	1	0	3	003	10	0	3
459		2	max	84.714	3	161.641	2	-1.398	10	0	2	.016	3	.116	3
460			min	-1.373	10	-248.787	3	-45.083	1	0	3	004	2	075	2
461		3	max	84.714	3	97.88	2	.154	10	0	2	.013	3	.193	3
462			min	-1.373	10	-149.247	3	-29.613	1	0	3	013	1	126	2
463		4	max	84.714	3	34.12	2	1.706	10	0	2	.009	3	.232	3
464			min	-1.373	10	-49.706	3	-14.142	1	0	3	021	1	151	2
465		5	max	84.714	3	49.835	3	4.894	2	0	2	.006	3	.232	3
466			min	-1.373	10	-29.641	2	-7.333	3	0	3	024	1	152	2
467		6	max	84.714	3	149.375	3	16.798	1	0	2	.004	3	.193	3
468			min	-1.373	10	-93.401	2	-6.515	3	0	3	02	1	128	2
469		7	max	84.714	3	248.916	3	32.269	1	0	2	.001	10	.116	3
470			min	-1.373	10	-157.162	2	-5.698	3	0	3	011	1	08	2
471		8	max	84.714	3	348.456	3	47.739	1	0	2	.007	2	0	15
472			min	-1.373	10	-220.922	2	-4.88	3	0	3	0	3	006	2
473		9	max	84.714	3	447.997	3	63.209	1	0	2	.027	1	.092	2
474			min	-1.373	10	-284.683	2	-4.063	3	0	3	003	3	155	3
475		10	max	84.714	3	-6.615	15	78.679	1	0	2	.054	1	.215	2
476		'	min	-1.373	10	-547.538	3	2.489	12	0	3	016	3	349	3
477		11		11.386	1	284.683	2	5.063	3	0	3	.027	1	.092	2
478			min	-1.373	10	-447.997	3	-63.209	1	0	2	015	3	155	3
479		12	1		1	220.922	2	5.88	3	0	3	.007	2	0	15
480			min	-1.373	10	-348.456	3	-47.739	1	0	2	013	3	006	2
481		13	max	11.386	1	157.162	2	6.698	3	0	3	.001	10	.116	3
482		10	min	-1.373	10	-248.916	3	-32.268	1	0	2	011	1	08	2
483		14	max		1	93.401	2	7.516	3	0	3	0	15	.193	3
484		1 -	min	-1.373	10	-149.375	3	-16.798	1	0	2	02	1	128	2
485		15	max	11.386	1	29.641	2	8.333	3	0	3	0	15	.232	3
486		10	min	-1.373	10	-49.834	3	-4.894	2	0	2	024	1	152	2
487		16		11.386	1	49.706	3	14.143	1	0	3	0	12	.232	3
488		10	min	-1.373	10	-34.12	2	-1.706	10	0	2	021	1	151	2
489		17	max	11.386	1	149.247	3	29.613	1	0	3	.003	3	.193	3
490		17	min	-1.373	10	-97.88	2	154	10	0	2	013	1	126	2
491		18	max	11.386	1	248.787	3	45.083	1	0	3	.007	3	.116	3
491		10	min	-1.373	10	-161.641	2	1.398	10	0	2	004	2	075	2
493		10	max		1	348.328	3	60.553	1	0	3	.022	1	075 0	2
493		l 19	шах	11.300		J40.JZ0	S	00.003		U	J	.022		U	

: Schletter, Inc. : HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	_LC_
494			min	-1.373	10	-225.401	2	2.301	15	0	2	003	10	0	3
495	M16	1	max	2.676	3	321.82	2	-2.296	15	0	3	.022	1	0	2
496			min	-11.828	1	-158.692	3	-60.537	1	0	2	003	10	0	3
497		2	max	2.676	3	230.433	2	-1.398	10	0	3	.003	9	.053	3
498			min	-11.828	1	-114.402	3	-45.067	1	0	2	004	2	107	2
499		3	max	2.676	3	139.047	2	.154	10	0	3	0	3	.089	3
500			min	-11.828	1	-70.113	3	-29.597	1	0	2	013	1	179	2
501		4	max	2.676	3	47.66	2	1.706	10	0	3	0	15	.108	3
502			min	-11.828	1	-25.824	3	-14.126	1	0	2	021	1	216	2
503		5	max	2.676	3	18.465	3	4.898	2	0	3	0	15	.109	3
504			min	-11.828	1	-43.727	2	-4.648	3	0	2	024	1	216	2
505		6	max	2.676	3	62.754	3	16.814	1	0	3	0	15	.093	3
506			min	-11.828	1	-135.113	2	-3.831	3	0	2	02	1	182	2
507		7	max	2.676	3	107.043	3	32.284	1	0	3	.001	10	.06	3
508			min	-11.828	1	-226.5	2	-3.013	3	0	2	011	1	111	2
509		8	max	2.676	3	151.333	3	47.755	1	0	3	.007	2	.01	3
510			min	-11.828	1	-317.886	2	-2.195	3	0	2	008	3	005	2
511		9	max	2.676	3	195.622	3	63.225	1	0	3	.027	1	.136	2
512			min	-11.828	1	-409.273	2	-1.378	3	0	2	009	3	057	3
513		10	max	1.436	10	-6.612	15	78.695	1	0	15	.054	1	.313	2
514			min	-11.828	1	-500.659	2	944	3	0	2	009	3	142	3
515		11	max	1.436	10	409.273	2	126	3	0	2	.027	1	.136	2
516			min	-11.828	1	-195.622	3	-63.225	1	0	3	002	3	057	3
517		12	max	1.436	10	317.886	2	.691	3	0	2	.007	2	.01	3
518			min	-11.828	1	-151.333	3	-47.754	1	0	3	002	3	005	2
519		13	max	1.436	10	226.5	2	1.509	3	0	2	.001	10	.06	3
520			min	-11.828	1	-107.043	3	-32.284	1	0	3	011	1	111	2
521		14	max	1.436	10	135.113	2	2.326	3	0	2	0	12	.093	3
522			min	-11.828	1	-62.754	3	-16.814	1	0	3	02	1	182	2
523		15	max	1.436	10	43.727	2	3.144	3	0	2	0	3	.109	3
524			min	-11.828	1	-18.465	3	-4.898	2	0	3	024	1	216	2
525		16	max	1.436	10	25.824	3	14.127	1	0	2	.001	3	.108	3
526			min	-11.828	1	-47.66	2	-1.706	10	0	3	021	1	216	2
527		17	max	1.436	10	70.113	3	29.597	1	0	2	.003	3	.089	3
528			min	-11.828	1	-139.047	2	154	10	0	3	013	1	179	2
529		18	max	1.436	10	114.402	3	45.067	1	0	2	.005	3	.053	3
530			min	-11.828	1	-230.433	2	1.398	10	0	3	004	2	107	2
531		19	max	1.436	10	158.692	3	60.537	1	0	2	.022	1	0	2
532			min	-11.828	1	-321.82	2	2.299	15	0	3	003	10	0	3
533	M15	1	max	0	1	.731	3	.172	3	0	1	0	1	0	1
534				-117.203	3	0	1	0	1	0	3	0	3	0	1
535		2	max	0	1	.65	3	.172	3	0	1	0	1	0	1
536			min	-117.269	3	0	1	0	1	0	3	0	3	0	3
537		3	max		1	.569	3	.172	3	0	1	0	1	0	1
538			min	-117.334	3	0	1	0	1	0	3	0	3	0	3
539		4	max	0	1	.487	3	.172	3	0	1	0	1	0	1
540			min	-117.399	3	0	1	0	1	0	3	0	3	0	3
541		5	max	0	1	.406	3	.172	3	0	1	0	1	0	1
542				-117.464	3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	1	.325	3	.172	3	0	1	0	1	0	1
544				-117.529	3	0	1	0	1	0	3	0	3	0	3
545		7	max		1	.244	3	.172	3	0	1	0	3	0	1
546				-117.594	3	0	1	0	1	0	3	0	1	0	3
547		8	max		1	.162	3	.172	3	0	1	0	3	0	1
548			min	-117.66	3	0	1	0	1	0	3	0	1	0	3
549		9	max	0	1	.081	3	.172	3	0	1	0	3	0	1
550			min		3	0	1	0	1	0	3	0	1	0	3

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	_LC_
551		10	max	0	1	0	1	.172	3	0	1	0	3	0	1
552			min	-117.79	3	0	1	0	1	0	3	0	1	0	3
553		11	max	0	1	0	1	.172	3	0	1	0	3	0	1
554			min	-117.855	3	081	3	0	1	0	3	0	1	0	3
555		12	max	0	1	0	1	.172	3	0	1	0	3	0	1
556			min	-117.92	3	162	3	0	1	0	3	0	1	0	3
557		13	max	0	1	0	1	.172	3	0	1	0	3	0	1
558			min	-117.986	3	244	3	0	1	0	3	0	1	0	3
559		14	max	0	1	0	1	.172	3	0	1	0	3	0	1
560			min	-118.051	3	325	3	0	1	0	3	0	1	0	3
561		15	max	0	1	0	1	.172	3	0	1	0	3	0	1
562			min	-118.116	3	406	3	0	1	0	3	0	1	0	3
563		16	max	0	1	0	1	.172	3	0	1	0	3	0	1
564		'	min	-118.181	3	487	3	0	1	0	3	0	1	0	3
565		17	max	0	1	0	1	.172	3	0	1	0	3	0	1
566		1 '	min	-118.246	3	569	3	0	1	0	3	0	1	0	3
567		18	max	0	1	0	1	.172	3	0	1	0	3	0	1
568		10	min	_	3	65	3	0	1	0	3	0	1	0	3
569		19	max	0	_ <u></u>	0	1	.172	3	0	1	0	3	0	1
570		19		-118.377	3	731	3	0	1	0	3	0	1	0	1
571	M16A	1	min	0	<u>ა</u> 1	1.251	4	.015	9	0	3	0	3	0	1
572	WITOA		max		3				3						1
		2	min	_		0	1	07		0	9	0	9	0	1
573		2	max	0	1_	1.112	4	.015	9	0	3	0	3	0	1
574			min	-116.558	3	0	1	07	3	0	9	0	9	0	4
575		3	max	0	1_	.973	4	.015	9	0	3	0	3	0	1
576			min	-116.493	3	0	1	07	3	0	9	0	9	0	4
577		4	max	0	_1_	.834	4	.015	9	0	3	0	3	0	1
578		_	min		3	0	1	07	3	0	9	0	9	0	4
579		5	max	0	1_	.695	4	.015	9	0	3	0	3	0	1
580			min	-116.363	3	0	1	07	3	0	9	0	9	001	4
581		6	max	0	1_	.556	4	.015	9	0	3	0	3	0	1
582			min	-116.297	3_	0	1	07	3	0	9	0	9	001	4
583		7	max	0	_1_	.417	4	.015	9	0	3	0	3	0	1
584			min	-116.232	3	0	1	07	3	0	9	0	9	001	4
585		8	max	0	_1_	.278	4	.015	9	0	3	0	3	0	1
586			min	-116.167	3	0	1	07	3	0	9	0	9	001	4
587		9	max	0	_1_	.139	4	.015	9	0	3	0	3	0	1
588			min	-116.102	3	0	1	07	3	0	9	0	9	001	4
589		10	max	0	1	0	1	.015	9	0	3	0	3	0	1
590			min	-116.037	3	0	1	07	3	0	9	0	9	001	4
591		11	max	.045	13	0	1	.015	9	0	3	0	3	0	1
592				-115.972	3	139	4	07	3	0	9	0	9	001	4
593		12	max		13	0	1	.015	9	0	3	0	3	0	1
594			min	-115.906	3	278	4	07	3	0	9	0	9	001	4
595		13	max	.224	13	0	1	.015	9	0	3	0	1	0	1
596			min	-115.841	3	417	4	07	3	0	9	Ö	4	001	4
597		14	max		4	0	1	.015	9	0	3	0	9	0	1
598		17	min		3	556	4	07	3	0	9	0	3	001	4
599		15	max	.44	4	0	1	.015	9	0	3	0	9	0	1
600		10	min		3	695	4	07	3	0	9	0	3	001	4
601		16	max	.551	4	0	1	.015	9	0	3	0	9	0	1
602		10		-115.646	3		4	07	3		9		3		
		17				834				0		0		0	4
603		17	max		_4_	0	1	.015	9	0	3	0	9	0	1
604		40	min	-115.58	3	973	4	07	3	0	9	0	3	0	4
605		18	max	.775	4_	0	1	.015	9	0	3	0	9	0	1
606		4 -	min	-115.515	3	-1.112	4	07	3	0	9	0	3	0	4
607		19	max	.886	4	0	1	.015	9	0	3	0	9	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC	
608			min	-115.45	3	-1.251	4	07	3	0	9	0	3	0	1	

Envelope Member Section Deflections

	siope ivicini		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	on Dene		10									
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					LC
1	M2	1	max	.002	2	.008	2	.001	9	2.161e-5	10	NC	3	NC	1
2			min	003	3	008	3	002	3	-1.989e-4	3	4439.668	2	NC	1
3		2	max	.002	2	.008	2	.001	9	2.06e-5	10	NC	3	NC	1
4			min	003	3	008	3	002	3	-1.884e-4	3	4834.623	2	NC	1
5		3	max	.002	2	.007	2	.001	9	1.958e-5	10	NC	3	NC	1
6			min	003	3	007	3	002	3	-1.779e-4	3	5302.48	2	NC	1
7		4	max	.002	2	.006	2	.002	9	1.857e-5	10	NC	1	NC	1
		-			3		3	002	3		3	5860.574		NC	1
8		-	min	003		007				-1.675e-4			2		
9		5_	max	.001	2	.006	2	.001	9	1.756e-5	10	NC	1	NC	1
10			min	003	3	007	3	001	3	-1.57e-4	3	6531.938	2	NC	1
11		6	max	.001	2	.005	2	0	9	1.654e-5	10	NC	1	NC	1
12			min	002	3	006	3	001	3	-1.465e-4	3	7347.677	2	NC	1
13		7	max	.001	2	.004	2	0	9	1.553e-5	10	NC	_1_	NC	1
14			min	002	3	006	3	001	3	-1.36e-4	3	8350.604	2	NC	1
15		8	max	.001	2	.004	2	0	9	1.452e-5	10	NC	1_	NC	1
16			min	002	3	006	3	0	3	-1.256e-4	3	9600.97	2	NC	1
17		9	max	.001	2	.003	2	0	9	1.351e-5	10	NC	1	NC	1
18			min	002	3	005	3	0	3	-1.151e-4	3	NC	1	NC	1
19		10	max	0	2	.003	2	0	9	1.249e-5	10	NC	1	NC	1
20			min	002	3	005	3	0	3	-1.046e-4	3	NC	1	NC	1
21		11	max	0	2	.002	2	0	9	1.148e-5	10	NC	1	NC	1
22			min	001	3	004	3	0	3	-9.58e-5	1	NC	1	NC	1
23		12	max	0	2	.002	2	0	9	1.047e-5	10	NC	1	NC	1
24		12	min	001	3	004	3	0	3	-8.745e-5	1	NC	1	NC	1
		12									•	NC NC	1		1
25		13	max	0	2	.001	2	0	9	9.452e-6	<u>10</u>			NC	_
26		4.4	min	<u>001</u>	3	003	3	0	3	-7.91e-5	1_	NC	1_	NC	1
27		14	max	0	2	.001	2	0	9	8.439e-6	10	NC	1	NC	1
28			min	0	3	003	3	0	3	-7.075e-5	_1_	NC	1_	NC	1
29		15	max	0	2	0	2	0	9	7.426e-6	10	NC	_1_	NC	1
30			min	0	3	002	3	0	3	-6.24e-5	1_	NC	1	NC	1
31		16	max	0	2	0	2	0	9	6.413e-6	10	NC	1	NC	1
32			min	0	3	002	3	0	3	-5.406e-5	1	NC	1	NC	1
33		17	max	0	2	0	2	0	9	5.4e-6	10	NC	1	NC	1
34			min	0	3	001	3	0	3	-4.571e-5	1	NC	1	NC	1
35		18	max	0	2	0	2	0	9	4.386e-6	10	NC	1	NC	1
36			min	0	3	0	3	0	3	-3.736e-5	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	3.373e-6	10	NC	1	NC	1
38			min	0	1	0	1	0	1	-2.917e-5	9	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.36e-5	9	NC	1	NC	1
40	IVIO			0	1	0	1	-		-1.581e-6		NC	1	NC	1
		2	min					0	10						
41		2	max	0	3	0	2	0		1.971e-5	1	NC NC	1	NC NC	1
42		_	min	0	2	0	3	0	9	-2.318e-6	10	NC NC	1_	NC NC	1
43		3	max	0	3	0	2	0	10		1_	NC	1	NC	1
44			min	0	2	002	3	0	9	-3.056e-6	<u>10</u>	NC	<u>1</u>	NC	1
45		4	max	0	3	0	2	0	10	3.196e-5	_1_	NC	_1_	NC	1
46			min	0	2	002	3	0	9	-3.794e-6	10	NC	1	NC	1
47		5	max	0	3	0	2	0	3	3.809e-5	1_	NC	1_	NC	1
48			min	0	2	003	3	0	9	-4.532e-6	10	NC	1	NC	1
49		6	max	0	3	0	2	0	3	4.421e-5	1	NC	1	NC	1
50			min	0	2	004	3	0	9	-5.27e-6	10	NC	1	NC	1
51		7	max	0	3	0	2	0	3	5.034e-5	1	NC	1	NC	1
			,an							0.00 10 0					

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r I			LC		
52			min	0	2	005	3	0		10	NC	1	NC	1
53		8	max	0	3	0	2	0	3 5.647e-5	1_	NC	_1_	NC	1
54			min	0	2	005	3	0	10 -6.745e-6	10	NC	1	NC	1
55		9	max	0	3	.001	2	0	1 6.259e-5	1	NC	1	NC	1
56			min	0	2	006	3	0	10 -7.483e-6	10	NC	1	NC	1
57		10	max	0	3	.002	2	0	1 6.872e-5	1	NC	1	NC	1
58			min	0	2	006	3	0	10 -8.221e-6	10	NC	1	NC	1
59		11	max	0	3	.002	2	0	1 7.484e-5	1	NC	1	NC	1
60			min	0	2	007	3	0	10 -8.959e-6	10	NC	1	NC	1
61		12	max	0	3	.003	2	0		1	NC	1	NC	1
62			min	001	2	007	3	0		10	NC	1	NC	1
63		13	max	.001	3	.003	2	0	1 8.71e-5	1	NC	1	NC	1
64			min	001	2	007	3	0		10	NC	1	NC	1
65		14	max	.001	3	.004	2	0	1 9.322e-5	1	NC	1	NC	1
66			min	001	2	008	3	0		10	NC	1	NC	1
67		15	max	.001	3	.005	2	.001		1	NC	1	NC	1
68		1	min	001	2	008	3	0			9557.524	2	NC	1
69		16	max	.001	3	.006	2	.001	1 1.055e-4	1	NC	1	NC	1
70		1.0	min	001	2	008	3	0			8070.894	2	NC	1
71		17	max	.001	3	.007	2	.001		1	NC	1	NC	1
72		1 '	min	002	2	008	3	0		10	6925.612	2	NC	1
73		18	max	.001	3	.008	2	.002	1 1.177e-4	1	NC	3	NC	1
74		10	min	002	2	008	3	0			6032.977	2	NC	1
75		19	max	.002	3	.009	2	.002		1	NC	3	NC	1
76		19	min	002	2	008	3	0			5330.867	2	NC	1
77	M4	1	max	.002	1	.009	2	0		10 10	NC	1	NC	1
78	IVI4			0	3	008	3	001			NC	1	NC	
		2	min		1		2			1_		1		1
79		2	max	.001	3	.009		0		<u>10</u>	NC NC	1	NC NC	1
80		2	min	0		008	3	001		1_		•		
81		3	max	.001	3	.008	3	0		<u>10</u>	NC NC	1	NC NC	1
82		4	min	0		007		001		1_	NC NC		NC NC	_
83		4	max	.001	1	.008	2	0		<u>10</u>	NC	1	NC	1
84		_	min	0	3	007	3	001		1_	NC	1_	NC	1
85		5_	max	0	1	.007	2	0		10	NC	1_	NC	1
86			min	0	3	006	3	0	1 110010 1	1_	NC	1_	NC	1
87		6	max	0	1	.007	2	0		<u>10</u>	NC	_1_	NC	1
88			min	0	3	006	3	0		1_	NC	_1_	NC	1
89		7	max	0	1	.006	2	0		<u> 10</u>	NC	_1_	NC	1
90			min	0	3	005	3	0		1_	NC	1	NC	1
91		8	max	0	1	.006	2	0		<u>10</u>	NC	_1_	NC	1
92			min	0	3	005	3	0	1 -1.331e-4	1	NC	1	NC	1
93		9	max	0	1	.005	2	0		10	NC	1	NC	1
94			min	0	3	004	3	0		1	NC	1_	NC	1
95		10	max	0	1	.005	2	00		10	NC	1	NC	1
96			min	0	3	004	3	0		1	NC	1	NC	1
97		11	max	0	1	.004	2	0		10	NC	1	NC	1
98			min	0	3	004	3	0	1 -1.331e-4	1	NC	1	NC	1
99		12	max	0	1	.004	2	0		10	NC	1	NC	1
100			min	0	3	003	3	0	1 -1.331e-4	1	NC	1	NC	1
101		13	max	0	1	.003	2	0		10	NC	1	NC	1
102			min	0	3	003	3	0		1	NC	1	NC	1
103		14	max	0	1	.003	2	0		10	NC	1	NC	1
104			min	0	3	002	3	0		1	NC	1	NC	1
105		15	max	0	1	.002	2	0		10	NC	1	NC	1
106		10	min	0	3	002	3	0		1	NC	1	NC	1
107		16	max	0	1	.002	2	0		10	NC	1	NC	1
108		10	min	0	3	001	3	0		1	NC	1	NC	1
100			1111111	U	J	001	J	U	1 -1.3316-4		INC		INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

1110		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
111	109		17	max	0		.001	2		10	1.627e-5	10	NC		NC	
112 min 0 3 0 3 0 1 1,331e-4 1 NC 1 NC 1				min						1	-1.331e-4					
1133			18		0		0		0	10		10		_1_		1
1144				min	0			3	0	1		1		1_		1
115			19	max		-		•		1		10				_
116				min					0					•		
117	115	M6	1	max	.006		.025		0			3		3		
118	116			min	01	3	023	3	006	3	-9.027e-8	1	1448.608	2	5879.199	3
119	117		2	max	.005	2	.023	2	0	9		3	NC	3	NC	1
120	118			min	009		021		006	3	-8.524e-8	1	1549.987	2	6258.041	3
121	119		3	max	.005	2	.022	2	0	9	4.314e-4	3		3	NC	1
122	120			min	009	3	02	3	005	3	-1.884e-7	9	1666.159	2	6706.538	3
123	121		4	max	.005	2	.02	2	0	9	4.185e-4	3	NC	3	NC	1
124	122			min	008	3	019	3	005	3	-9.429e-7	9	1800.102	2	7239.856	3
124	123		5	max	.004	2	.019	2	0	9	4.056e-4	3	NC	3	NC	1
1266						3		3	005	3		9		2		3
1266	125		6		.004	2	.017	2	0	9				3		1
127									004		-2.452e-6					3
128			7											3		1
129																3
130			8													
131																
1322			9													
133			Ť													
134			10													•
135			10								-5.476-6					_
136			11													
137																
138			12													
139			12													_
140			12													
141			13													
142			11													
143 15 max .001 2 .004 2 0 9 2.765e-4 3 NC 1 NC 1 144 min 002 3 005 3 0 3 -9.242e-6 9 8305.426 2 NC 1 145 16 max 0 2 .003 2 0 9 2.636e-4 3 NC 1 NC 1 146 min 002 3 004 3 0 3 -9.996e-6 9 NC 1 NC 1 147 17 max 0 2 .002 2 0 9 2.506e-4 3 NC 1 NC 1 148 min 001 3 003 3 -1.075e-5 9 NC 1 NC 1 149 18 max 0 2 .001 3 -1.15fe-5			14													1
144 min 002 3 005 3 0 3 -9.242e-6 9 8305.426 2 NC 1 145 16 max 0 2 .003 2 0 9 2.636e-4 3 NC 1 NC 1 146 min 002 3 004 3 0 3 -9.996e-6 9 NC 1 NC 1 147 17 max 0 2 .004 3 0 3 -9.996e-6 9 NC 1 NC 1 148 min 001 3 003 3 0 3 -1.075e-5 9 NC 1 NC 1 149 18 max 0 2 .001 2 0 9 2.377e-4 3 NC 1 NC 1 150 min 0 3 001 3 -1.151e-5<			4.5													
145 16 max 0 2 .003 2 0 9 2.636e-4 3 NC 1 NC 1 146 min 002 3 004 3 0 3 -9.996e-6 9 NC 1 NC 1 147 17 max 0 2 .002 2 0 9 2.506e-4 3 NC 1 NC 1 148 min 001 3 003 3 0 3 -1.075e-5 9 NC 1 NC 1 149 18 max 0 2 .001 3 0 3 -1.075e-5 9 NC 1 NC 1 150 min 0 3 001 3 0 3 -1.151e-5 9 NC 1 NC 1 151 19 max 0 1 0 1 0 <td></td> <td></td> <td>15</td> <td></td> <td>_</td>			15													_
146 min 002 3 004 3 0 3 -9.996e-6 9 NC 1 NC 1 147 17 max 0 2 .002 2 0 9 2.506e-4 3 NC 1 NC 1 148 min 001 3 003 3 0 3 -1.075e-5 9 NC 1 NC 1 149 18 max 0 2 .001 2 0 9 2.377e-4 3 NC 1 NC 1 150 min 0 3 001 3 0 3 -1.151e-5 9 NC 1 NC 1 151 19 max 0 1 0 1 2.248e-4 3 NC 1 NC 1 152 min 0 1 0 1 0 1 2.248e-4 3<			40													
147 17 max 0 2 .002 2 0 9 2.506e-4 3 NC 1 NC 1 148 min 001 3 003 3 0 3 -1.075e-5 9 NC 1 NC 1 149 18 max 0 2 .001 2 0 9 2.377e-4 3 NC 1 NC 1 150 min 0 3 001 3 0 3 -1.151e-5 9 NC 1 NC 1 151 19 max 0 1 0 1 0 1 0 1 0 1 NC			16						-							
148 min 001 3 003 3 0 3 -1.075e-5 9 NC 1 NC 1 149 18 max 0 2 .001 2 0 9 2.377e-4 3 NC 1 NC 1 150 min 0 3 001 3 0 3 -1.151e-5 9 NC 1 NC 1 151 19 max 0 1 0 1 0 1 2.248e-4 3 NC 1 NC 1 152 min 0 1 0 1 0 1 -1.226e-5 9 NC 1 NC 1 153 M7 1 max 0 1 0 1 5.675e-6 9 NC 1 NC 1 154 min 0 1 0 1 -1.041e-4 3 NC			4-									_		_		
149 18 max 0 2 .001 2 0 9 2.377e-4 3 NC 1 NC 1 150 min 0 3 001 3 0 3 -1.151e-5 9 NC 1 NC 1 151 19 max 0 1 0 1 0 1 2.48e-4 3 NC 1 NC 1 152 min 0 1 0 1 0 1 -1.226e-5 9 NC 1 NC 1 153 M7 1 max 0 1 0 1 5.675e-6 9 NC 1 NC 1 154 min 0 1 0 1 -1.041e-4 3 NC 1 NC 1 155 2 max 0 3 .001 2 0 3 5.064e-6 9			17						-							
150 min 0 3 001 3 0 3 -1.151e-5 9 NC 1 NC 1 151 19 max 0 1 0 1 0 1 2.248e-4 3 NC 1 NC 1 152 min 0 1 0 1 0 1 -1.226e-5 9 NC 1 NC 1 153 M7 1 max 0 1 0 1 5.675e-6 9 NC 1 NC 1 154 min 0 1 0 1 -1.041e-4 3 NC 1 NC 1 155 2 max 0 3 .001 2 0 3 5.064e-6 9 NC 1 NC 1 155 2 max 0 3 .002 2 0 3 4.454e-6 9			10	mın				3								
151 19 max 0 1 0 1 0 1 2.248e-4 3 NC 1 NC 1 152 min 0 1 0 1 0 1 -1.226e-5 9 NC 1 NC 1 153 M7 1 max 0 1 0 1 5.675e-6 9 NC 1 NC 1 154 min 0 1 0 1 0 1 -1.041e-4 3 NC 1 NC 1 155 2 max 0 3 .001 2 0 3 5.064e-6 9 NC 1 NC 1 155 2 max 0 3 .002 2 0 3 4.064e-6 9 NC 1 NC 1 156 min 0 2 002 3 4.454e-6 9 NC <t< td=""><td></td><td></td><td>18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			18													
152 min 0 1 0 1 -1.226e-5 9 NC 1 NC 1 153 M7 1 max 0 1 0 1 0 1 5.675e-6 9 NC 1 NC 1 154 min 0 1 0 1 0 1 -1.041e-4 3 NC 1 NC 1 155 2 max 0 3 .001 2 0 3 5.064e-6 9 NC 1 NC 1 156 min 0 2 002 3 0 9 -7.942e-5 3 NC 1 NC 1 157 3 max 0 3 .002 2 0 3 4.454e-6 9 NC 1 NC 1 158 min 0 3 .004 2 .001 3 3.843e-6																
153 M7 1 max 0 1 0 1 5.675e-6 9 NC 1 NC 1 154 min 0 1 0 1 0 1 -1.041e-4 3 NC 1 NC 1 155 2 max 0 3 .001 2 0 3 5.064e-6 9 NC 1 NC 1 156 min 0 2 002 3 0 9 -7.942e-5 3 NC 1 NC 1 157 3 max 0 3 .002 2 0 3 4.454e-6 9 NC 1 NC 1 158 min 0 2 003 3 0 9 -5.475e-5 3 NC 1 NC 1 159 4 max 0 3 .004 2 .001 3 <t< td=""><td></td><td></td><td>19</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			19						-							
154 min 0 1 0 1 0 1 -1.041e-4 3 NC 1 NC 1 155 2 max 0 3 .001 2 0 3 5.064e-6 9 NC 1 NC 1 156 min 0 2 002 3 0 9 -7.942e-5 3 NC 1 NC 1 157 3 max 0 3 .002 2 0 3 4.454e-6 9 NC 1 NC 1 158 min 0 2 003 3 0 9 -5.475e-5 3 NC 1 NC 1 159 4 max 0 3 .004 2 .001 3 3.843e-6 9 NC 1 NC 1 160 min 0 2 005 3 0 9								-						_		
155 2 max 0 3 .001 2 0 3 5.064e-6 9 NC 1 NC 1 156 min 0 2 002 3 0 9 -7.942e-5 3 NC 1 NC 1 157 3 max 0 3 .002 2 0 3 4.454e-6 9 NC 1 NC 1 158 min 0 2 003 3 0 9 -5.475e-5 3 NC 1 NC 1 159 4 max 0 3 .004 2 .001 3 3.843e-6 9 NC 1 NC 1 160 min 0 2 005 3 0 9 -3.008e-5 3 NC 1 NC 1 161 5 max 0 3 .005 2 .002 3 3.233e-6 9		<u> </u>	1			_		•								
156 min 0 2 002 3 0 9 -7.942e-5 3 NC 1 NC 1 157 3 max 0 3 .002 2 0 3 4.454e-6 9 NC 1 NC 1 158 min 0 2 003 3 0 9 -5.475e-5 3 NC 1 NC 1 159 4 max 0 3 .004 2 .001 3 3.843e-6 9 NC 1 NC 1 160 min 0 2 005 3 0 9 -3.008e-5 3 NC 1 NC 1 161 5 max 0 3 .005 2 .002 3 3.233e-6 9 NC 1 NC 1 162 min 001 2 007 3 0 9 </td <td></td> <td></td> <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>3</td> <td></td> <td>1_</td> <td></td> <td>1</td>				min					0			3		1_		1
157 3 max 0 3 .002 2 0 3 4.454e-6 9 NC 1 NC 1 158 min 0 2003 3 0 9 -5.475e-5 3 NC 1 NC 1 159 4 max 0 3 .004 2 .001 3 3.843e-6 9 NC 1 NC 1 160 min 0 2005 3 0 9 -3.008e-5 3 NC 1 NC 1 161 5 max 0 3 .005 2 .002 3 3.233e-6 9 NC 1 NC 1 162 min 001 2007 3 0 9 -5.417e-6 3 9905.782 2 NC 1 163 6 max .001 3 .006 2 .002 3 1.925e-5 3 NC 1 NC 1 164 min 001 2008 3 0 9 0 1 7938.613 2 NC 1			2	max	0		.001		0	3		9		<u>1</u>	NC	1_
158 min 0 2 003 3 0 9 -5.475e-5 3 NC 1 NC 1 159 4 max 0 3 .004 2 .001 3 3.843e-6 9 NC 1 NC 1 160 min 0 2 005 3 0 9 -3.008e-5 3 NC 1 NC 1 161 5 max 0 3 .005 2 .002 3 3.233e-6 9 NC 1 NC 1 162 min 001 2 007 3 0 9 -5.417e-6 3 9905.782 2 NC 1 163 6 max .001 3 .006 2 .002 3 1.925e-5 3 NC 1 NC 1 164 min 001 2 008 3 0	156			min	0		002		0	9		3	NC	1_	NC	1
159 4 max 0 3 .004 2 .001 3 3.843e-6 9 NC 1 NC 1 160 min 0 2 005 3 0 9 -3.008e-5 3 NC 1 NC 1 161 5 max 0 3 .005 2 .002 3 3.233e-6 9 NC 1 NC 1 162 min 001 2 007 3 0 9 -5.417e-6 3 9905.782 2 NC 1 163 6 max .001 3 .006 2 .002 3 1.925e-5 3 NC 1 NC 1 164 min 001 2 008 3 0 9 0 1 7938.613 2 NC 1	157		3	max	0	3	.002	2	0	3	4.454e-6	9	NC	1	NC	1
160 min 0 2 005 3 0 9 -3.008e-5 3 NC 1 NC 1 161 5 max 0 3 .005 2 .002 3 3.233e-6 9 NC 1 NC 1 162 min 001 2 007 3 0 9 -5.417e-6 3 9905.782 2 NC 1 163 6 max .001 3 .006 2 .002 3 1.925e-5 3 NC 1 NC 1 164 min 001 2 008 3 0 9 0 1 7938.613 2 NC 1				min			003					3		1		1
161 5 max 0 3 .005 2 .002 3 3.233e-6 9 NC 1 NC 1 162 min 001 2 007 3 0 9 -5.417e-6 3 9905.782 2 NC 1 163 6 max .001 3 .006 2 .002 3 1.925e-5 3 NC 1 NC 1 164 min 001 2 008 3 0 9 0 1 7938.613 2 NC 1			4	max	0		.004		.001	3	3.843e-6	9		1	NC	1
161 5 max 0 3 .005 2 .002 3 3.233e-6 9 NC 1 NC 1 162 min 001 2 007 3 0 9 -5.417e-6 3 9905.782 2 NC 1 163 6 max .001 3 .006 2 .002 3 1.925e-5 3 NC 1 NC 1 164 min 001 2 008 3 0 9 0 1 7938.613 2 NC 1	160			min	0	2	005	3	0	9	-3.008e-5	3	NC	1	NC	1
162 min 001 2 007 3 0 9 -5.417e-6 3 9905.782 2 NC 1 163 6 max .001 3 .006 2 .002 3 1.925e-5 3 NC 1 NC 1 164 min 001 2 008 3 0 9 0 1 7938.613 2 NC 1			5	max	0	3	.005		.002	3		9	NC	1	NC	1
163 6 max .001 3 .006 2 .002 3 1.925e-5 3 NC 1 NC 1 164 min 001 2 008 3 0 9 0 1 7938.613 2 NC 1					001					9		3	9905.782	2		1
164 min001 2008 3 0 9 0 1 7938.613 2 NC 1			6						.002					1		1
														2		
	165		7	max	.001	3	.007	2	.002		4.392e-5	3	NC		NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		LC
166			min	002	2	01	3	0	9	0	10	6588.65	2	NC	1
167		8	max	.002	3	.008	2	.003	3	6.859e-5	3	NC	3	NC	1
168			min	002	2	012	3	0	9	0	5	5595.727	2	NC	1
169		9	max	.002	3	01	2	.003	3	9.325e-5	3	NC	3	NC	1
170		4.0	min	002	2	<u>013</u>	3	0	9	-4.869e-8	13	4830.346	2	NC	1
171		10	max	.002	3	.011	2	.003	3	1.179e-4	3	NC	3	NC	1
172		44	min	003	2	014	3	0	9	-1.19e-7		4220.754	2	NC	1
173		11	max	.002	3	.012	2	.003	3	1.426e-4	3	NC 2702 000	3_	NC	1
174		40	min	003	2	015	3	0	9	-4.306e-7	9	3723.828	2	NC NC	1
175		12	max	.002	3	.014 017	3	.003	3	1.673e-4 -1.041e-6	3	NC 3311.894	2	NC NC	1
176 177		13	min	003 .003	3	.017 .016	2	.003	3	1.919e-4	3	NC	3	NC NC	1
178		13	max	003	2	018	3	<u>.003</u>	9	-1.652e-6	9	2966.203	2	NC NC	1
179		14	min	.003	3	016 .017	2	.003	3	2.166e-4	3	NC	3	NC NC	1
180		14	max min	004	2	019	3	<u></u> 0	9	-2.262e-6	9	2673.458	2	NC NC	1
181		15	max	.003	3	.019	2	.003	3	2.413e-4	3	NC	3	NC	1
182		10	min	004	2	02	3	0	9	-2.873e-6	9	2423.869	2	NC	1
183		16	max	.003	3	.021	2	.003	3	2.659e-4	3	NC	3	NC	1
184		10	min	004	2	021	3	0	9	-3.483e-6	9	2210	2	NC	1
185		17	max	.004	3	.023	2	.003	3	2.906e-4	3	NC	3	NC	1
186		<u> </u>	min	005	2	021	3	0	9	-4.094e-6	9	2026.069	2	NC	1
187		18	max	.004	3	.025	2	.003	3	3.153e-4	3	NC	3	NC	1
188			min	005	2	022	3	0	9	-4.704e-6	9	1867.497	2	NC	1
189		19	max	.004	3	.027	2	.003	3	3.399e-4	3	NC	3	NC	1
190			min	005	2	023	3	0	9	-5.315e-6	9	1730.61	2	NC	1
191	M8	1	max	.004	2	.028	2	0	9	-1.018e-7	10	NC	1	NC	1
192			min	0	3	023	3	002	3	-2.501e-4	3	NC	1	9376.495	3
193		2	max	.004	2	.027	2	0	9	-1.018e-7	10	NC	1	NC	1
194			min	0	3	022	3	002	3	-2.501e-4	3	NC	1	NC	1
195		3	max	.003	2	.025	2	0	9	-1.018e-7	10	NC	1_	NC	1
196			min	0	3	02	3	002	3	-2.501e-4	3	NC	1_	NC	1
197		4	max	.003	2	.024	2	0	9	-1.018e-7	10	NC	1_	NC	1
198			min	0	3	019	3	002	3	-2.501e-4	3	NC	1_	NC	1
199		5	max	.003	2	.022	2	00	9	-1.018e-7	10	NC	_1_	NC	1
200			min	0	3	018	3	001	3	-2.501e-4	3	NC	1_	NC	1
201		6	max	.003	2	.02	2	0	9	-1.018e-7	10	NC	_1_	NC	1
202		<u> </u>	min	0	3	<u>017</u>	3	001	3	-2.501e-4	3	NC	1_	NC	1
203		7	max	.003	2	.019	2	0	9	-1.018e-7	10	NC	1_	NC	1
204			min	0	3	01 <u>5</u>	3	001	3	-2.501e-4	3	NC	1_	NC	1
205		8	max	.002	2	.017	2	0	9	-1.018e-7	10	NC	1_	NC NC	1
206			min		3	014	3	0		-2.501e-4		NC NC	1	NC NC	1
207		9	max	.002	2	.016	2	0	9	-1.018e-7	<u>10</u>	NC NC	1_1	NC NC	1
208		10	min	0	3	013	2	0	3	-2.501e-4	3	NC NC	<u>1</u> 1	NC NC	1
209		10	max	.002	3	.014	3	<u> </u>	9	-1.018e-7		NC NC	1	NC NC	1
210		11	min max	.002	2	011 .013	2	0	9	-2.501e-4 -1.018e-7	<u>3</u> 10	NC NC	1	NC NC	1
212			min	0	3	01	3	0	3	-2.501e-4	3	NC	1	NC	1
213		12	max	.001	2	.011	2	0	9	-1.018e-7	10	NC	1	NC	1
214		12	min	0	3	009	3	0	3	-2.501e-4	3	NC	1	NC	1
215		13	max	.001	2	.009	2	0	9	-1.018e-7	10	NC	1	NC	1
216		13	min	0	3	008	3	0	3	-2.501e-4	3	NC	1	NC	1
217		14	max	.001	2	.008	2	0	9	-1.018e-7	10	NC	1	NC	1
218			min	0	3	006	3	0	3	-2.501e-4	3	NC	1	NC	1
219		15	max	0	2	.006	2	0	9	-1.018e-7	_	NC	1	NC	1
220		10	min	0	3	005	3	0	3	-2.501e-4	3	NC	1	NC	1
221		16	max	0	2	.005	2	0	9	-1.018e-7	10	NC	1	NC	1
222			min	0	3	004	3	0	3	-2.501e-4	3	NC	1	NC	1
						.001			_	T					

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC	(n) L/z Ratio	<u>LC</u>
223		17	max	0	2	.003	2	0	9	-1.018e-7	10	NC	1	NC	1
224			min	0	3	003	3	0	3	-2.501e-4	3	NC	1	NC	1
225		18	max	0	2	.002	2	0	9	-1.018e-7	10	NC	1	NC	1
226			min	0	3	001	3	0	3	-2.501e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1	-1.018e-7	10	NC	1	NC	1
228			min	0	1	0	1	Ö	1	-2.501e-4	3	NC	1	NC	1
229	M10	1	max	.002	2	.008	2	0	10	1.791e-4	1	NC	3	NC	1
230	IVITO	<u> </u>	min	003	3	008	3	001	1	-5.592e-4		4444.335	2	NC	1
		2		.002	2	.008	2	0	10	1.708e-4		NC	3	NC	1
231			max					•			1				1
232			min	002	3	008	3	001	1	-5.41e-4	3	4839.829	2	NC NC	•
233		3	max	.002	2	.007	2	0	3	1.624e-4	1	NC Tools of the	3	NC	1
234			min	002	3	007	3	001	1	-5.228e-4	3_	5308.348	2	NC	1
235		4	max	.002	2	.006	2	0	3	1.541e-4	_1_	NC	_1_	NC	1
236			min	002	3	007	3	001	1	-5.046e-4	3	5867.263	2	NC	1
237		5	max	.001	2	.006	2	0	3	1.458e-4	1	NC	1	NC	1
238			min	002	3	007	3	0	1	-4.864e-4	3	6539.653	2	NC	1
239		6	max	.001	2	.005	2	0	3	1.374e-4	1	NC	1	NC	1
240			min	002	3	006	3	0	1	-4.682e-4	3	7356.69	2	NC	1
241		7	max	.001	2	.004	2	0	3	1.291e-4	1	NC	1	NC	1
242			min	002	3	006	3	0	1	-4.5e-4	3	8361.284	2	NC	1
243		8		.001	2	.004	2	0	3	1.207e-4	<u> </u>	NC	1	NC	1
		0	max												
244			min	002	3	006	3	0	1	-4.318e-4	3_	9613.827	2	NC NC	1
245		9	max	.001	2	.003	2	0	3	1.124e-4	_1_	NC	1_	NC	1
246			min	001	3	005	3	0	1	-4.136e-4	3	NC	1_	NC	1
247		10	max	0	2	.003	2	0	3	1.041e-4	1_	NC	1_	NC	1
248			min	001	3	005	3	0	1	-3.954e-4	3	NC	1	NC	1
249		11	max	0	2	.002	2	0	3	9.572e-5	1	NC	1	NC	1
250			min	001	3	004	3	0	1	-3.772e-4	3	NC	1	NC	1
251		12	max	0	2	.002	2	0	3	8.738e-5	1	NC	1	NC	1
252			min	001	3	004	3	0	1	-3.59e-4	3	NC	1	NC	1
253		13	max	0	2	.004	2	0	3	7.904e-5	1	NC	1	NC	1
254		13	min	0	3	003	3	0	1	-3.408e-4	3	NC	1	NC	1
		1.1									1				
255		14	max	0	2	.001	2	0	3	7.07e-5	1	NC	1	NC	1
256			min	0	3	003	3	0	1	-3.226e-4	3	NC	1_	NC	1
257		15	max	0	2	0	2	0	3	6.237e-5	_1_	NC	1_	NC	1
258			min	0	3	002	3	0	1	-3.044e-4	3	NC	1_	NC	1
259		16	max	0	2	0	2	0	3	5.403e-5	_1_	NC	_1_	NC	1
260			min	0	3	002	3	0	1	-2.862e-4	3	NC	1_	NC	1
261		17	max	0	2	0	2	0	3	4.569e-5	1	NC	1	NC	1
262			min	0	3	001	3	0	1	-2.68e-4	3	NC	1	NC	1
263		18	max	0	2	0	2	0	3	3.735e-5	1	NC	1	NC	1
264			min	0	3	0	3	0	1	-2.498e-4		NC	1	NC	1
265		19		0	1	0	1	0	1	2.901e-5	1	NC	1	NC	1
		19	max		1	0	1	0	1	-2.316e-4	2	NC NC	1	NC	1
266	N444		min	0			-				3		•		
267	<u>M11</u>	1_	max	0	1	0	1	0	1	1.079e-4	3_	NC	1_	NC NC	1
268			min	0	1	0	1	0	1	-1.358e-5	_1_	NC	1_	NC	1
269		2	max	0	3	00	2	0	1	8.384e-5	3_	NC	_1_	NC	1
270			min	0	2	0	3	0	3	-1.97e-5	1	NC	1_	NC	1
271		3	max	0	3	0	2	0	1	5.974e-5	3	NC	1	NC	1
272			min	0	2	002	3	001	3	-2.581e-5	1	NC	1	NC	1
273		4	max	0	3	0	2	0	1	3.563e-5	3	NC	1	NC	1
274			min	0	2	002	3	001	3	-3.192e-5	1	NC	1	NC	1
275		5	max	0	3	0	2	0	1	1.153e-5	3	NC	1	NC	1
		J		0	2		3	_	3			NC NC	1	NC NC	1
276		_	min			003		002		-3.804e-5	1		•		
277		6	max	0	3	0	2	0	1	5.318e-6	<u>10</u>	NC NC	1_	NC NC	1
278			min	0	2	004	3	002	3	-4.415e-5	1_	NC	1_	NC	1
279		7	max	0	3	0	2	0	10	6.065e-6	<u>10</u>	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		Rotate [r	LC	(n) L/y Ratio	LC		LC_
280			min	0	2	005	3	002		5.027e-5	1	NC	1	NC	1
281		8	max	0	3	0	2	0			10	NC	1_	NC	1
282			min	0	2	005	3	003		5.077e-5	3	NC	1_	NC	1
283		9	max	0	3	.001	2	0		7.56e-6	10	NC	1_	NC	1
284		40	min	0	2	006	3	003		8.487e-5	3	NC	1_	NC	1
285		10	max	0	3	.002	2	0		.307e-6	10	NC	1_	NC NC	1
286		4.4	min	0	2	006	3	003		1.09e-4	3	NC NC	1_	NC NC	1
287		11	max	0	3	.002	2	0		.055e-6	10	NC	1_	NC NC	1
288		40	min	0	2	007	3	003		.331e-4	3	NC NC	1_	NC NC	1
289		12	max	0 001	3	.003	3	003		.802e-6 .572e-4	10	NC NC	1	NC NC	1
290 291		13	min	.001	3	007 .003	2	003 0		.055e-5	<u>3</u> 10	NC NC	1	NC NC	1
292		13	max	001	2	003	3	003		.813e-4	3	NC NC	1	NC NC	1
293		14		.001	3	.007	2	<u>003</u> 0		1.13e-5	10	NC NC	1	NC NC	1
294		14	max min	001	2	008	3	003		2.054e-4	3	NC NC	1	NC NC	1
295		15	max	.001	3	.005	2	<u>003</u> 0		.204e-5	10	NC	1	NC NC	1
296		10	min	001	2	008	3	003		2.295e-4	3	9569.597	2	NC	1
297		16	max	.001	3	.006	2	<u>.005</u>		.279e-5	10	NC	1	NC	1
298		10	min	001	2	008	3	003		2.536e-4	3	8080.032	2	NC	1
299		17	max	.001	3	.007	2	<u>.000</u>		.354e-5	10	NC	1	NC	1
300			min	002	2	008	3	003		2.777e-4	3	6932.728	2	NC	1
301		18	max	.001	3	.008	2	0		.429e-5	10	NC	3	NC	1
302			min	002	2	008	3	003		3.018e-4	3	6038.668	2	NC	1
303		19	max	.002	3	.009	2	0		.503e-5	10	NC	3	NC	1
304			min	002	2	008	3	002		3.259e-4	3	5335.538	2	NC	1
305	M12	1	max	.001	1	.009	2	.001		.461e-4	3	NC	1	NC	1
306			min	0	3	008	3	0	10 -1	.647e-5	10	NC	1	NC	1
307		2	max	.001	1	.009	2	.001	3 3	.461e-4	3	NC	1	NC	1
308			min	0	3	008	3	0	10 -1	.647e-5	10	NC	1	NC	1
309		3	max	.001	1	.008	2	.001		.461e-4	3	NC	1_	NC	1
310			min	0	3	007	3	0		.647e-5	10	NC	1	NC	1
311		4	max	.001	1	.008	2	.001		.461e-4	3	NC	1_	NC	1
312			min	0	3	007	3	0		.647e-5	10	NC	1_	NC	1
313		5	max	.001	1	.007	2	0		.461e-4	3	NC	1_	NC	1
314			min	0	3	006	3	0		.647e-5	10	NC	1_	NC	1
315		6	max	0	1	.007	2	0		.461e-4	3	NC	1_	NC NC	1
316			min	0	3	006	3	0			10	NC NC	1_	NC NC	1
317		7	max	0	1	.006	2	0		.461e-4	3	NC	1_	NC NC	1
318			min	0	3	005	3	0		.647e-5	10	NC NC	1_	NC NC	1
319 320		8	max min	0	3	.006 005	3	<u> </u>	3 3	.461e-4 .647e-5	3	NC NC	1	NC NC	1
321		9			1	005 .005	2	0		.647e-5	3	NC NC	1	NC NC	1
322		3	max min	0	3	005	3	0			10	NC NC	1	NC NC	1
323		10	max	0	1	.005	2	0		.461e-4	3	NC	1	NC	1
324		10	min	0	3	004	3	0			10	NC	1	NC NC	1
325		11	max	0	1	.004	2	0		.461e-4	3	NC	1	NC	1
326			min	0	3	004	3	0			10	NC	1	NC	1
327		12	max	0	1	.004	2	0		.461e-4	3	NC	1	NC	1
328		12	min	0	3	003	3	0			_	NC	1	NC	1
329		13	max	0	1	.003	2	0		.461e-4	3	NC	1	NC	1
330			min	0	3	003	3	0			10	NC	1	NC	1
331		14	max	0	1	.003	2	0		.461e-4	3	NC	1	NC	1
332			min	0	3	002	3	0				NC	1	NC	1
333		15	max	0	1	.002	2	0		.461e-4	3	NC	1	NC	1
334			min	0	3	002	3	0			10	NC	1	NC	1
335		16	max	0	1	.002	2	0		.461e-4	3	NC	1	NC	1
336				0	3	001	3					NC			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

338 min 0 3 0 3 0 10 -1.647e-5 10 NC 339 18 max 0 1 0 2 0 3 3.461e-4 3 NC 340 min 0 3 0 3 0 10 -1.647e-5 10 NC 341 19 max 0 1 0 1 0 1 3.461e-4 3 NC 342 min 0 1 0 1 0 1 -1.647e-5 10 NC	1 N 1 N 1 N 1 N 1 N 1 N	1
339 18 max 0 1 0 2 0 3 3.461e-4 3 NC 340 min 0 3 0 3 0 10 -1.647e-5 10 NC 341 19 max 0 1 0 1 0 1 3.461e-4 3 NC 342 min 0 1 0 1 0 1 -1.647e-5 10 NC	1 N 1 N 1 N 1 N 1 N	IC 1 IC 1 IC 1
340 min 0 3 0 3 0 10 -1.647e-5 10 NC 341 19 max 0 1 0 1 0 1 3.461e-4 3 NC 342 min 0 1 0 1 -1.647e-5 10 NC	1 N 1 N 1 N 1 N	IC 1 IC 1 IC 1
341 19 max 0 1 0 1 0 1 3.461e-4 3 NC 342 min 0 1 0 1 0 1 -1.647e-5 10 NC	1 N 1 N 1 N	IC 1 IC 1
342 min 0 1 0 1 -1.647e-5 10 NC	1 N 1 N	IC 1
	1 N	
343	1 N	NC 1
		10
0	4 1	<u>IC 1</u>
0.0		IC 1
		NC 1
		IC 1
	2 N	IC 1
363 11 max .007 3 .025 2 0 3 6.423e-5 3 NC	4 N	IC 1
	2 N	IC 1
365 12 max .007 3 .024 2 .001 3 6.406e-5 3 NC	4 N	IC 1
11		IC 1
33.		IC 1
		IC 1
		IC 1
0.0		IC 1
		<u>IC 1</u>
0.0		IC 1
		NC 1 NC 1
		IC 1 IC 1
		IC 1
		NC 1
		IC 1
		5.395 3
		IC 1
392 min024 2047 3 0 9 -1.28e-5 9 408.494	3 868	0.684 3
393 7 max .021 3 .061 2 .008 3 2.158e-4 3 NC	5 N	IC 1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
394			min	024	2	059	3	0	9	-1.191e-5	9	368.468	2	8262.602	3
395		8	max	.021	3	.071	2	.008	3	2.09e-4	3	NC	5	NC	1
396			min	024	2	067	3	0	9	-1.102e-5	9	340.213	2	8183.291	3
397		9	max	.021	3	.077	2	.008	3	2.023e-4	3	NC	5	NC	1
398			min	024	2	071	3	0	9	-1.013e-5	9	323.474	2	8380.657	3
399		10	max	.021	3	.079	2	.007	3	1.955e-4	3_	NC	5_	NC	1
400			min	024	2	072	3	0	9	-9.245e-6	9	315.723	2	8849.641	3
401		11	max	.021	3	.078	2	.007	3	1.888e-4	3	NC	5	NC	1
402			min	024	2	07	3	0	9	-8.357e-6	9	316.05	2	9630.661	3
403		12	max	.021	3	.073	2	.006	3	1.82e-4	3	NC	5	NC	1
404			min	024	2	064	3	0	9	-7.469e-6	9	324.816	2	NC	1
405		13	max	.021	3	.064	2	.005	3	1.753e-4	3	NC	5	NC	1
406			min	024	2	055	3	0	9	-6.58e-6	9	343.858	2	NC	1
407		14	max	.021	3	.051	2	.005	3	1.686e-4	3	NC	5	NC	1
408			min	024	2	043	3	0	9	-5.692e-6	9	377.413	2	NC	1
409		15	max	.02	3	.033	2	.004	3	1.618e-4	3	NC	5	NC	1
410			min	024	2	028	3	0	9	-4.804e-6	9	434.785	2	NC	1
411		16	max	.02	3	.012	2	.003	3	1.509e-4	3	NC	5	NC	1
412			min	024	2	01	3	0	9	-4.52e-6	9	538.716	2	NC	1
413		17	max	.02	3	.01	3	.002	3	3.999e-5	3	NC	5	NC	1
414			min	024	2	015	2	0	9	-1.863e-5	9	761.901	2	NC	1
415		18	max	.02	3	.032	3	.001	3	1.84e-5	3	NC	4	NC	1
416			min	024	2	046	2	0	9	-9.569e-6	9	1475.866	2	NC	1
417		19	max	.02	3	.055	3	0	3	-3.293e-8	15	NC	1	NC	1
418			min	024	2	078	2	0	9	-1.497e-6	3	NC	1	NC	1
419	M9	1	max	.007	3	.023	3	.003	3	7.195e-3	3	NC	1	NC	1
420			min	008	2	019	2	0	9	-4.932e-3	2	NC	1	NC	1
421		2	max	.007	3	.013	3	.002	3	3.554e-3	3	NC	4	NC	1
422			min	008	2	011	2	0	10	-2.44e-3	2	4777.882	3	NC	1
423		3	max	.007	3	.004	3	.001	1	7.258e-5	1	NC	4	NC	1
424			min	008	2	003	2	0	10	-2.067e-5	3	2477.874	3	NC	1
425		4	max	.007	3	.004	2	.002	1	5.789e-5	1	NC	4	NC	1
426			min	008	2	004	3	001	3	-2.913e-5	3	1769.736	3	NC	1
427		5	max	.007	3	.01	2	.002	1	4.32e-5	1	NC	4	NC	1
428			min	008	2	011	3	002	3	-3.759e-5	3	1432.841	3	9243.29	3
429		6	max	.007	3	.016	2	.002	1	2.852e-5	1	NC	4	NC	1
430			min	008	2	016	3	003	3	-4.605e-5	3	1245.553	3	8057.902	3
431		7	max	.007	3	.02	2	.001	1	1.383e-5	1	NC	4	NC	1
432			min	008	2	02	3	004	3	-5.45e-5	3	1135.497	3	7379.438	
433		8	max	.007	3	.023	2	.001	1	-2.517e-7	10	NC	4	NC	1
434			min		2	022	3	005		-6 296e-5	3	1053.788		7010.877	
435		9	max	.007	3	.025	2	0	1	1.566e-6	10	NC	4	NC	1
436		Ť	min	008	2	024	3	005	3	-7.142e-5	3	1002.021	2	6863.766	_
437		10	max	.007	3	.026	2	<u>.000</u>	1	3.384e-6	10	NC	4	NC	1
438		10	min	008	2	024	3	005	3	-7.988e-5	3	978.048	2	6901.205	
439		11	max	.007	3	.025	2	<u>.005</u>	10	5.202e-6	10	NC	4	NC	1
440			min	008	2	023	3	005	3	-8.834e-5	3	979.053	2	7118.267	3
441		12	max	.007	3	.024	2	<u>.005</u>	10	7.02e-6	10	NC	4	NC	1
442		12	min	008	2	024	3	005	3	-9.68e-5	3	1006.164	2	7538.286	3
443		13	max	.007	3	.021	2	005 0	10	8.838e-6	10	NC	4	NC	1
444		13	min	008	2	018	3	004	3	-1.053e-4	3	1065.062	2	8221.047	3
444		11			3		2					NC	4	NC	
		14	max	.007		<u>.016</u>		004	10	1.066e-5	<u>10</u>				1
446		4.5	min	008	2	014	3	004	3	-1.137e-4	3	1168.865	2	9289.233	
447		15	max	.007	3	.011	2	0	10	1.247e-5	10	NC	4	NC	1
448		40	min	008	2	009	3	003	3	-1.222e-4	3	1346.37	2	NC NC	1
449		16	max	.007	3	.004	2	0	10	1.383e-5	<u>10</u>	NC 4007 000	4	NC NC	1
450			min	008	2	003	3	002	3	-1.234e-4	3	1667.999	2	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.007	3	.003	3	0	10	4.732e-5	3	NC	4	NC	1
452			min	008	2	005	2	001	3	-4.946e-5	9	2358.915	2	NC	1
453		18	max	.007	3	.011	3	0	10	1.874e-3	3	NC	4	NC	1
454			min	008	2	015	2	0	9	-3.415e-3	2	4568.721	2	NC	1
455		19	max	.007	3	.019	3	0	3	3.732e-3	3	NC	1	NC	1
456		1	min	008	2	025	2	0	9	-6.89e-3	2	NC	1	NC	1
457	M13	1	max	0	9	.023	3	.007	3	3.799e-3	3	NC	1	NC	1
458	IVITO		min	003	3	019	2	008	2	-3.234e-3	2	NC	1	NC	1
459		2	max	<u>.005</u>	9	.055	3	.006	3	4.679e-3	3	NC	4	NC	1
				003	3		2						3	NC NC	1
460			min			042		008	2	-3.985e-3	2				•
461		3	max	0	9	.083	3	.006	3	5.56e-3	3		4	NC	1
462			min	003	3	061	2	008	2	-4.737e-3	2	1396.235	3	NC	1_
463		4	max	0	9	.103	3	.006	3	6.441e-3	3	NC	<u>4</u>	NC	_1_
464			min	003	3	075	2	009	2	-5.488e-3	2	1054.291	3	NC	1
465		5	max	0	9	.112	3	.008	3	7.321e-3	3	NC	4	NC	1
466			min	003	3	082	2	011	2	-6.239e-3	2	939.818	3	NC	1
467		6	max	0	9	.112	3	.011	3	8.202e-3	3	NC	4	NC	1
468			min	003	3	084	2	014	2		2		3	NC	1
469		7	max	0	9	.104	3	.013	3	9.083e-3	3	NC	4	NC	1
470			min	003	3	079	2	017	2	-7.742e-3	2		3	9336.455	2
471		8		<u>003</u> 0	9	.091	3	.016	3	9.963e-3	3		4	NC	1
		0	max												
472			min	003	3	072	2	02	2	-8.494e-3	2	1236.246	3_	6809.333	2
473		9	max	0	9	.078	3	.019	3	1.084e-2	3	NC	4_	NC	4
474			min	003	3	064	2	023	2	-9.245e-3	2	1526.877	3	5586.408	2
475		10	max	0	9	.072	3	.021	3	1.172e-2	3		4	NC	4
476			min	004	3	06	2	024	2	-9.997e-3	2	1719.153	3	5190.674	2
477		11	max	0	9	.078	3	.023	3	1.085e-2	3	NC	4	NC	4
478			min	004	3	064	2	023	2		2	1526.876	3	5541.774	3
479		12	max	0	9	.091	3	.023	3	9.968e-3	3	NC	4	NC	1
480			min	004	3	072	2	02	2	-8.494e-3	2		3	5457.613	3
481		13	max	<u></u> 0	9	.104	3	.022	3	9.09e-3	3		4	NC	1
482		13	min	004	3	079	2	017	2	-7.742e-3	2	1036.689	3	5789.973	3
-		4.4											_		
483		14	max	0	9	.113	3	.02	3	8.212e-3	3	NC 0.40,000	4_	NC	1
484			min	004	3	084	2	014	2	-6.991e-3	2	940.893	3	6600.625	3
485		15	max	0	9	.113	3	.018	3	7.334e-3	3		4	NC	1
486			min	004	3	082	2	011	2	-6.24e-3	2	939.817	3	8160.517	3
487		16	max	0	9	.103	3	.015	3	6.455e-3	3	NC	4	NC	1_
488			min	004	3	075	2	009	2	-5.488e-3	2	1054.291	3	NC	1
489		17	max	0	9	.084	3	.012	3	5.577e-3	3	NC	4	NC	1
490			min	004	3	061	2	008	2		2		3	NC	1
491		18	max	0	9	.056	3	.009	3	4.699e-3	3	NC	4	NC	1
492			min	004	3	042	2	008	2	-3.985e-3			3	NC	1
493		19		<u>.004</u>	9	.024	3	.007	3	3.821e-3	3	NC	1	NC	1
		19	max		3		2	008				NC NC	1	NC NC	1
494	N440		min	004		019			2		2		•		
495	M16	1	max	0	9	.019	3	.007	3	4.013e-3	2	NC	1_	NC	1
496			min	0	3	025	2	008	2		3	NC	1_	NC	1
497		2	max	0	9	.036	3	.009	3	4.947e-3	2		4	NC	_1_
498			min	0	3	057	2	008	2	-3.631e-3	3	2692.303	2	NC	1_
499		3	max	0	9	.05	3	.012	3	5.881e-3	2	NC	4	NC	1
500			min	0	3	083	2	008	2		3		2	NC	1
501		4	max	0	9	.061	3	.014	3	6.815e-3	2		4	NC	1
502			min	0	3	102	2	009	2		3		2	NC	1
503		5	max	0	9	.068	3	.017	3	7.749e-3	2	NC	4	NC	1
504		5		0	3	113	2	011	2		3	963.579	2	8776.88	3
		_	min		_										
505		6	max	0	9	.07	3	.019	3	8.684e-3	2		4_	NC 7070 FC0	1
506			min	0	3	<u>113</u>	2	014	2		3	953.38	2	7279.569	3
507		7	max	0	9	.068	3	.02	3	9.618e-3	2	NC	4	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
508			min	0	3	107	2	017	2	-6.89e-3	3	1032.051	2	6461.471	3
509		8	max	0	9	.063	3	.021	3	1.055e-2	2	NC	4	NC	1
510			min	0	3	<u>095</u>	2	02	2	-7.542e-3	3	1199.342	2	6071.805	
511		9	max	0	9	.058	3	.021	3	1.149e-2	2	NC	4_	NC	4
512		40	min	0	3	084	2	023	2	-8.194e-3	3	1433.852	2	5578.07	2
513		10	max	0	9	.055	3	.02	3	1.242e-2	2	NC 1700 110	4	NC	4
514			min	0	3	078	2	024	2	-8.846e-3	3	1582.413	2	5183.321	2
515		11	max	0	9	.058	3	.019	3	1.149e-2	2	NC	4_	NC 5570.070	4
516		40	min	0	3	084	2	023	2	-8.192e-3	3	1433.852	2	5578.079	
517		12	max	0	9	.063	3	.018	3	1.055e-2	2	NC	4_	NC 0707.000	1
518		40	min	0	3	095	2	02	2	-7.538e-3	3	1199.342	2	6797.692	2
519		13	max	0	9	.067	3	.016	3	9.618e-3	2	NC	4	NC 04.40.405	1
520		4.4	min	0	3	107	2	017	2	-6.884e-3	3	1032.051	2	9142.135	
521		14	max	0	9	.07	3	.015	3	8.684e-3	2	NC 050.00	4_	NC NC	1
522		4.5	min	0	3	113	2	014	2	-6.23e-3	3	953.38	2	NC NC	1
523		15	max	0	9	.068	3	.013	3	7.75e-3	2	NC	4_	NC NC	1
524		4.0	min	0	3	113	2	011	2	-5.575e-3	3	963.579	2	NC NC	1
525		16	max	0	9	.061	3	.011	3	6.816e-3	2	NC	4	NC NC	1
526		47	min	0	3	102	2	009	2	-4.921e-3	3	1089.437	2	NC NC	1
527		17	max	0	9	.05	3	.009	3	5.882e-3	2	NC	4	NC NC	1
528		40	min	0	3	083	2	008	2	-4.267e-3	3	1450.094	2	NC NC	•
529		18	max	0	9	.036	3	.008	3	4.948e-3	2	NC	4	NC NC	1
530		40	min	0	3	057	2	008	2	-3.613e-3	3	2692.303	2	NC NC	1
531		19	max	0	9	.019	3	.007	3	4.014e-3	2	NC NC	1	NC NC	1
532	NAAE	1	min	0	3	025	2	008	2	-2.959e-3	3	NC NC	1	NC NC	1
533	M15		max	0	1	0	1	0	1	3.909e-4	3		1		
534		2	min	0	3	<u> </u>	15	0	1	-4.519e-5	2	NC NC	1_	NC NC	1
535			max	0	2	002	4	0	3	7.761e-4	3	NC NC	1	NC NC	1
536		3	min	0		002 0		0	1	-4.187e-4	2	NC NC	1	NC NC	1
537 538		3	max	<u> </u>	3	003	15 4	.002 003	3	1.161e-3 -7.922e-4	<u>3</u>	NC NC	1	9430.308	
539		4	min		3	003 001	15	.005	2	1.547e-3	3	NC NC	1	NC	4
540		4	max	<u> </u>	2	001 005	4	005	3	-1.166e-3	2	NC NC	1	5199.256	
541		5		0	3	005 002	15	.008	2	1.932e-3	3	NC NC	1	NC	4
542		J	max	0	2	002	4	011	3	-1.539e-3	2	8712.469	4	3411.466	
543		6	min max	0	3	000 002	15	.012	2	2.317e-3	3	NC	3	NC	4
544		0	min	001	2	002	4	015	3	-1.913e-3	2	7332.463	4	2483.48	3
545		7	max	<u>001</u> 0	3	002	15	.016	2	2.702e-3	3	NC	3	NC	4
546			min	001	2	002	4	02	3	-2.286e-3	2	6502.572	4	1941.114	
547		8	max	0	3	002	15	.019	2	3.087e-3	3	NC	3	NC	4
548			min	001	2	002	4	025		-2 66e-3	2	6004.513	4	1600.283	
549		9	max	0	3	002	15	.022	2	3.473e-3	3	NC	5	NC	4
550		 	min	002	2	01	4	029	3	-3.033e-3	2	5736.428	4	1377.292	_
551		10	max	0	3	002	15	.025	2	3.858e-3	3	NC	5	NC	4
552		10	min	002	2	01	4	033	3	-3.407e-3	2	5651.618	4	1230.126	
553		11	max	0	3	002	15	.027	2	4.243e-3	3	NC	5	NC	4
554			min	002	2	01	4	035	3	-3.78e-3	2	5736.428	4	1136.731	3
555		12	max	.001	3	002	15	.027	2	4.628e-3	3	NC	3	NC	4
556			min	002	2	009	4	036	3	-4.154e-3	2	6004.513	4	1086.164	
557		13	max	.001	3	002	15	.026	2	5.013e-3	3	NC	3	NC	4
558		· ·	min	002	2	009	4	035	3	-4.527e-3	2	6502.572	4	1075.232	
559		14	max	.002	3	002	15	.023	2	5.399e-3	3	NC	3	NC	4
560			min	003	2	008	4	032	3	-4.901e-3	2	7332.463	4	1108.606	
561		15	max	.001	3	0	2	.019	1	5.784e-3	3	NC	1	NC	4
562		T	min	003	2	007	4	027	3	-5.274e-3	2	8712.469	4	1203.492	
563		16	max	.001	3	0	2	.014	1	6.169e-3	3	NC	1	NC	4
564		T.	min	003	2	005	4	018	3	-5.648e-3	2	NC	1	1406.638	
					_			.0.10		3.0.000	_		_	. 100.000	

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.002	3	.002	2	.006	1	6.554e-3	3	NC	1	NC	4
566			min	003	2	004	4	007	3	-6.021e-3	2	NC	1	1864.732	3
567		18	max	.002	3	.004	2	.007	3	6.94e-3	3	NC	1	NC	4
568			min	004	2	002	4	01	2	-6.395e-3	2	NC	1	3319.843	3
569		19	max	.002	3	.005	2	.025	3	7.325e-3	3	NC	1	NC	1
570			min	004	2	0	9	025	2	-6.768e-3	2	NC	1	NC	1
571	M16A	1	max	.001	2	.002	2	.008	3	2.109e-3	3	NC	1	NC	1
572			min	002	3	001	3	008	2	-2.177e-3	2	NC	1	NC	1
573		2	max	.001	2	0	2	.002	3	2.028e-3	3	NC	1	NC	1
574			min	002	3	002	4	003	2	-2.077e-3	2	NC	1	9144.774	3
575		3	max	.001	2	0	15	.003	1	1.948e-3	3	NC	1	NC	4
576			min	002	3	004	4	004	3	-1.976e-3	2	NC	1	5174.686	3
577		4	max	0	2	001	15	.005	1	1.867e-3	3	NC	1	NC	4
578			min	001	3	005	4	007	3	-1.876e-3	2	NC	1	3936.234	3
579		5	max	0	2	002	15	.007	1	1.787e-3	3	NC	1	NC	4
580			min	001	3	007	4	01	3	-1.776e-3	2	8712.469	4	3400.005	3
581		6	max	0	2	002	15	.008	1	1.706e-3	3	NC	3	NC	4
582			min	001	3	008	4	012	3	-1.675e-3	2	7332.463	4	3166.449	3
583		7	max	0	2	002	15	.008	1	1.626e-3	3	NC	3	NC	4
584			min	001	3	009	4	013	3	-1.575e-3	2	6502.572	4	3110.493	3
585		8	max	0	2	002	15	.008	1	1.545e-3	3	NC	3	NC	4
586			min	001	3	009	4	013	3	-1.474e-3	2	6004.513	4	3189.571	3
587		9	max	0	2	002	15	.008	1	1.465e-3	3	NC	5	NC	4
588			min	0	3	01	4	012	3	-1.374e-3	2	5736.428	4	3398.354	3
589		10	max	0	2	002	15	.007	1	1.384e-3	3	NC	5	NC	4
590			min	0	3	01	4	011	3	-1.274e-3	2	5651.618	4	3758.437	3
591		11	max	0	2	002	15	.006	1	1.304e-3	3	NC	5	NC	4
592			min	0	3	01	4	009	3	-1.173e-3	2	5736.428	4	4323.269	3
593		12	max	0	2	002	15	.005	1	1.223e-3	3	NC	3	NC	4
594			min	0	3	009	4	008	3	-1.073e-3	2	6004.513	4	5199.235	3
595		13	max	0	2	002	15	.004	1	1.143e-3	3	NC	3	NC	1
596			min	0	3	009	4	006	3	-9.725e-4	2	6502.572	4	6599.899	3
597		14	max	0	2	002	15	.003	1	1.062e-3	3	NC	3	NC	1
598			min	0	3	008	4	004	3	-8.721e-4	2	7332.463	4	8991.861	3
599		15	max	0	2	002	15	.001	1	9.816e-4	3	NC	1	NC	1
600			min	0	3	006	4	002	3	-7.718e-4	2	8712.469	4	NC	1
601		16	max	0	2	001	15	0	4	9.011e-4	3	NC	1	NC	1
602			min	0	3	005	4	0	3	-6.714e-4	2	NC	1	NC	1
603		17	max	0	2	0	15	0	4	8.206e-4	3	NC	1	NC	1
604			min	0	3	003	4	0	2	-5.71e-4	2	NC	1	NC	1
605		18	max	0	2	0	15	0	3	7.401e-4	3	NC	1	NC	1
606			min	0	3	002	4	0	2	-4.706e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	6.596e-4	3	NC	1	NC	1
608			min	0	1	0	1	0	1	-3.703e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,l}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253 92	256.00	0 995	1.00	1 000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cby} = \phi (A_V$	$_{/c}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,V}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)				
Avc (in ²)	Avco (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
238.44	288.00	0.897	1.000	1.000	8488	0.70	4411	

Shear perpendicular to edge in x-direction:

V _{bv} =	7(1,/	$(d_0)^{0.2}$	2 da 2	Vf'acas	1.5 (F	a. D-24)
v bx -	' I Vie/	uai	VUa/L	VI CLAI	100	J. D-241

l _e (in)	d _a (in)	λ	f_c (psi)	c _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / Avco) Yed, v Yc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$	
--	--

l _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m p,Na}$	N _{a0} (lb)	Na (lb)	, ,	
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: No

Project description:

Location:

Fastening description:

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Z

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 3>

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

<i>k</i> _c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	5.333	10469				
$\phi N_{cbg} = \phi (A_I)$	Nc / A_{Nco}) $\Psi_{ec,N}$ Ψ_{ed}	$_{l,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\mathscr{V}_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	la) ^{0.2} √daλ√f'c C a1 ^{1.}	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPhi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec,V}$	V $\Psi_{\text{ed,V}} \Psi_{\text{c,V}} \Psi_{\text{h,V}}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$arPsi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{CPG}} = \phi \min[k_{\textit{CP}} N_{\textit{eg}} \; ; \; k_{\textit{CP}} N_{\textit{CbG}}] = \phi \min[k_{\textit{CP}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{g},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{p},\textit{Na}} N_{\textit{a0}} \; ; \; k_{\textit{CP}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{c},\textit{N}} \; \Psi_{\textit{c},\textit{N}} N_{\textit{b}}] \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3	0.20	0.25	45.0 %	1.2	Pass
------------	------	------	--------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.