電子工学07

津山工業高等専門学校情報工学科 講師電気通信大学先進理工学科 協力研究員藤田一寿

これからは

- ・電流が流れるか流れないかが重要
- 電流が流れるか流れないかは、電子のエネルギー状態に依存する
- ・それを制御することでトランジスタ, LED, 太陽電 池などを実現している

電流とは

単位時間あたりの電荷の変化で定義される.

$$I = \frac{dQ}{dt}$$

つまり、電流と電子の流れる方向は逆となる.

結晶格子

電流と電流密度

$$I = \frac{dQ}{dt}$$

長さI, 面積Sの筒が面積Sの輪を通り抜けると考えると, 筒に含まれる電荷の量Qは

$$Q = neSl$$

ここでnは伝導電子の密度を表す. Sは電子の平均速度vと移動時間t で表すことができるので

$$Q = nevtS$$

tで微分すると

$$I = nevS$$

電流は、単位時間で面積Sの輪をく ぐった電荷の量と考えることができ る.

よって、単位面積あたりの電流は

$$i = nev$$

と表される.これは電流密度と呼ばれる.

(https://en.wikipedia.org/wiki/File:Periodic_table_%28polyatomic%29.svg)

物質の抵抗

(豊田,半導体の科学とその応用)

導体(金属):電気を通す

半導体:導体と絶縁体の中間

絶縁体:電気をほとんど通さない

$$R = \rho \frac{l}{S}$$
 抵抗率 ρ

金属(導体)

- ・ 鉄, 銅, アルミニウム, チタン, ナトリウム
- ・特徴
 - · 金属結合
 - ・柔らかい
 - ・電気をよく通す(電気抵抗率10-6以下)
 - · 金属光沢

(田中貴金属工業)

(造幣局)

(wikipedia)

自由電子

原子核から弱く束縛された最外殻電子

自由に動き回る(自由電子)

電気伝導 光沢の原因

半導体

- ・ シリコン, ゲルマニウム, ガリウムヒ素
- ・電気抵抗は導体と絶縁体の中間
 - ・ 電気抵抗率は10⁻⁶から10²
- ・電気抵抗が温度で変わる
 - ・温度が高いほうが抵抗が低い
- ・共有結合している
 - ・ 最外殻電子を共有することで安定した個数に する

シリコンの原石

シリコンは最も身近な元素の一つ.石の主要成分の一つ.

(東京大学総合博物館)

抵抗が温度で変わる

(豊田,半導体の科学とその応用)

半導体はどっち?

抵抗が温度で変わる

- 金属は温度が上がると抵 抗が上がる
 - 熱振動による
- ・ 半導体は温度が上がると 抵抗は下がる
 - ・ なぜでしょう?

(豊田、半導体の科学とその応用)

共有結合している

・電子を共有することで安定な電子の個数にする

シリコンK殻 2個
L殻 8個M殻4個

最外殻電子だけで表してみる

8個電子がはいる席があるが、電子は4つしか無い状態

原子1つだけでは最外殻電子が足りない. 隣から借りる

4個の隣の原子から電子を借りれば安定する.

シリコンの結晶はこのように隣の4つの原子から電子を1つづつ借りる構造になっている.

ダイヤモンド構造

・しかし結晶は2次元ではなく3次元の構造をしている.

(豊田、半導体の科学とその応用)

ダイヤモンドと同じ構造をしている.

- ・電子のエネルギーは量子化さ れている.
- 原子同士が近づくと電子の持てるエネルギーの状態が変わる
- エネルギー状態によって電子 の振る舞いが変わる

(豊田、半導体の科学とその応用)

エネルギー準位の分化

- ・原子の数が増えると電子の取れるエネルギーの値 (エネルギー準位)が分裂する.
- ・ 我々が手にとって使っている物質の中にはものすご い数の原子がある.
- ・ものすごい数で分裂するので、分裂したエネルギー 準位同士は非常に近く連続しているとみなせる.
- · これをエネルギーバンドという.

- ・帯
 - ・電子が入れるエネルギーバン ド(許容帯)
- ・ 色がついているところ
 - ・電子が入っている
- · 価電子帯
 - ・ 結合に寄与する電子が所属
- · 伝導帯
 - ・比較的自由に動く電子が所属 (電気の流れに寄与)

エネルギー

伝導帯

禁制帯,禁止帯 (バンドギャップ)

価電子帯

絶縁体:自由電子が極端に少ない

半導体:熱エネルギーなどで一部の電子が伝導体にある.

導体: 伝導帯に電子がある.