Université Assane Seck de Ziguinchor UFR sciences et Technologies Département Informatique Exercices de TD (Feuille 3)

Consignes : Les exercices mis en évidence sont obligatoires pour valider le chapitre 3. Les autres exercices sont optionnels. Il vous est conseillé de les faire après les exercices obligatoires.

- **3.1.1** Soient f(n) et g(n) des fonctions asymptotiquement non négatives. En s'aidant de la définition de base de la notation Θ , prouver que $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.
- **3.1.2** Montrer que, pour deux constantes réelles a et b quelconques avec b > 0, l'on a $(n+a)^b = \Theta(n^b)$. (3.2)
- **3.1.3** Expliquer pourquoi l'affirmation « Le temps d'exécution de l'algorithme A est au moins $O(n^2)$ » n'a pas de sens.
- **3.1.4** Est-ce que $2^{n+1} = O(2^n)$? Est-ce que $2^{2n} = \Theta(2^n)$?
- **3.1.5** Démontrer le théorème 3.1.
- **3.1.6** Démontrer que le temps d'exécution d'un algorithme est Θ (g(n)) si et seulement si son temps d'exécution dans le cas le plus défavorable est O(g(n)) et son temps d'exécution dans le meilleur des cas est Ω (g(n)).
- **3.1.7** Démontrer que $o(g(n)) \cap \omega(g(n))$ est l'ensemble vide.
- **3.2.1** Montrer que, si f(n) et g(n) sont des fonctions monotones croissantes, alors les fonctions f(n) + g(n) et f(g(n)) le sont également ; montrer que, si f(n) et g(n) sont en outre non négatives, $f(n) \cdot g(n)$ est monotone croissante.
- **3.2.2** Démontrer l'équation (3.15).
- **3.2.3** Prouver l'équation (3.18). Montrer aussi que $n! = \omega$ (2ⁿ) et $n! = o(n^n)$.
- **3.2.5** Laquelle de ces deux fonctions est la plus grande asymptotiquement : $\lg(\lg * n)$ ou $\lg *(\lg n)$?
- **3.2.6** Démontrer par récurrence que le *i*-ème nombre de Fibonacci satisfait à l'égalité