Data Science & Artificial Intelligence

Algorithms

Test Series 1500+

Lecture - 10

Recap of Previous Lecture

Topic

Mise Questions

Topic

Topics to be Covered

Topic

Ques Fions

Topic

PY CSS

Doubts

#Q. Suppose K_n is a complete graph with 'V' vertices. How many edge disjointness spanning trees are possible?

$$\begin{array}{c|c} \mathbf{B} & \begin{bmatrix} \mathbf{V} \\ \mathbf{4} \end{bmatrix} \\ \mathbf{V} - \mathbf{I} & \mathbf{X} \\ \mathbf{A} \end{array}$$

$$n=4\rightarrow 4\chi$$
 B) $n=4\rightarrow 3\chi$ C) $n=4\rightarrow 1\chi$

Soln: Kn -> Complete graph

 $(49) \quad (43 \Rightarrow 1) \quad (4$

1

4

<u>ug2</u>; Ky -> V=4 MLST n=4
3 colyus odge dis joint MCSTS

#Q. Assume Dijkstra's algorithm is used to find the shortest path from node 'A' in the following graph G:

- The number of edges are not included in any of the shortest path from
- B) Sum of Cost of these edges

#Q. Consider the following statements: Which and True?

Polole

S₁: If graph contain positive and negative edge weight then, Bellman ford always give the correct answer.

True C

S₂: Bellman ford algorithms find out all negative edges weight cycle in the given graph if they are reachable form source.

S₁ only

Both

 S_2 only

None /

Am: B

Bellman Food - SSSP DP Siln:- Algos to Solw SSSP: -ve cet Cycle -w wt edges but 1) Dijlestra's SSSP edgy, (Gardy) 2) Bellman Ford: Dynamic Programmig

PW

#Q. Consider the following directed graph G:

BADCFE

BADFE

What will be shortest path from B to E by using Dijkstra's algorithms?

$$B \rightarrow A \rightarrow D \rightarrow C \rightarrow F \rightarrow E$$
 $9 + 6 + 12 + 10 + 5 = (37)$

B) BADE B
$$\rightarrow$$
 A \rightarrow D \rightarrow E $4+6+50=60$ X

DBDE

#Q. Consider the following directed graph G:

What will be the cost of shortest path from B to E by using Dijkstra's

algorithms?

Soln:

toot	tX et	A	B	C	D	·	F	
SB.]	4	0	90	00	00	\$0	
2B/A}		4		90	10	Ø	80	
EB/A/D/C EBADCES	2 }	4 9 9 9	2 2 2	2 -	10	60 60 37	32	

#Q.

Suppose, there are 8 sorted list of $\frac{n}{8}$ elements each if we merge them into single sorted list of n elements, n is 1000 elements then , what is the difference between key comparisons in worst case and best case?

HAT

elem-cuise companisons

* Murging Algo

Mault: 2-way miging.

In gural, nurging Algo:

Best (asl: min (m,n)

Wort Case: M+n-1

openall: Best (m: 4x (1/8) + 2x (1/4) + 1x 1/2 $\begin{array}{c}
\text{min lomp} \\
\text{at own} \\
\text{nursy}
\end{array}$ $= \begin{bmatrix} 3\eta_{/2} \\
 \end{bmatrix}$ $= n_{12} + n_{12} + n_{12}$ Worst (on = 4(n/4-1) + 2(n/2-1) + 1x(n-1)

= <u>N-4+n-2+</u> n-1 = <u>13n-7</u>

$$Diff = MC - BC$$

$$= 3n-7 - \left(\frac{3n}{2}\right)$$

$$\frac{3n-3n}{2}$$

$$\frac{7}{3}$$

$$\frac{3n-7}{2}$$

$$\frac{1}{3} \times 1000 - 7$$

$$= 3 \times 500 - 7$$

$$= 1500 - 7$$

$$= 1493$$

#Q. Consider an array which contain n indexes [1 to n] Number of inversions in this array are atmost n then which algorithm is best suitable to sort the above arrays.

Insertion sort

Selection sort

B Bubble sort

D Merge sort

Solo: al max no of inversions:

Ti of insultion cost: O(n+d)

n=total no. of olems

d= max no. of invesions

d = O(n) T(: O(n+n) = O(n)

W (: Insertion Sort. $\left(\right) \left(\right)$ ornall we nut a voilid case jour given question. almost sorted array at most_n invusions

#Q. Let G be the directed, weighted graph shown below:

If the cost of the shortest path from A to F is X and number of same cost of A to F is Y then the value of X * Y is _____.

HW - Solm aring Dijksforg: Min (Ost A->F Appr2:
All possible paths from A->F 1) A -> B -> F: 18 + 4 = 22 $B \longrightarrow F \implies 6+2+5+3 \implies 16$ $2 \nearrow A \longrightarrow C \longrightarrow F \implies 6+2+4+1+3$ $A \longrightarrow C \longrightarrow F \implies 6+12=18$ = 16

$$X= min (ost A \rightarrow F = 16)$$

 $Y= Such paths = 2$

$$\frac{\cancel{\cancel{X}}}{\cancel{\cancel{X}}} = \frac{\cancel{\cancel{5}}}{\cancel{\cancel{3}}} = \frac{\cancel{\cancel{3}}}{\cancel{\cancel{3}}}$$

P48: 2024: 2m

Tru no. of distinct MCST of the below graph?

Soln & Kruskal Algo.

edges in MIST
$$= \eta - 1$$

$$= 7 - 1$$

$$= \sqrt{6}$$

$$3 C_1$$

n = 7

Total MISTS

3+3X

#Q. Which of the following algorithm can be used to sort n integers in the range

[1,...10³] in O(n) time?

Selection sort

Radix sort

Bubble sort

Quick sort

 $C > W(:O(n^2)$

> 00000 (n²)

Am: C

Solni n n elems TC: O(n): Radix Sost: TC: O(n*d) n > no of elems d > mar no of digits in any elem of ip am 1-710 - max digits - d-45 T(: 0(n*4) = 0(n)

#Q. Suppose, a graph contain 50 vertices and 120 edges the weight of MST is 300. If the weight of each edge of G is increased by 6, then the weight of MST becomes _____.

Given:
$$n = 50$$
, $e = 120$

Cost $\Rightarrow M(ST)$?

A $\Rightarrow A \Rightarrow B \Rightarrow C$

B $\Rightarrow C$

$$\sqrt{\frac{1}{8}}$$
A
 $\sqrt{\frac{8}{13}}$
 $\sqrt{\frac{8}{13}}$
 $\sqrt{\frac{8}{13}}$
 $\sqrt{\frac{8}{13}}$
 $\sqrt{\frac{11}{13}}$
 $\sqrt{\frac{8}{13}}$
 $\sqrt{\frac{11}{13}}$
 $\sqrt{\frac{8}{13}}$
 $\sqrt{\frac{11}{13}}$
 $\sqrt{\frac{11}{13}}$

> (n-1) e dges in MCST n verteces In gunal MCST 300+ (n-1) * 6 300 + (50-1) * 6 300 300+ 4986 300 | (300 - 6) 300 | 294 = 594

24

2 mins Summary

Topic

Misc Ques Hory

Topic

Topic

Son Hing
Ls Mist
Ls Mist
Ls Wortest paths

Topic

Telegram Link for Aditya Jain sir: https://t.me/AdityaSir_PW