TD n°1: Optimisation sans Contraintes

Exercice 1. Soit $f: IR^2 \to IR$ telle que

$$f(x, y) = \frac{1}{4}x^4 - xy + y^2$$

On s'intéresse au problème (P) $\min_{\mathbb{R}^2} f(x, y)$

- 1. Montrer que (P) admet une solution.
- 2. Calculer les points critiques de f.
- 3. Résoudre (P).

Exercice 2. On considère f définie sur IR² par

$$f(x, y) = x^4 + y^4 - 2(x - y)^2$$

1. Montrer qu'il existe $(\alpha, \beta) \in IR^2_+$ (et les déterminer) tels que

$$f(x,y) \ge \alpha \|(x,y)\|^2 + \beta$$

pour tout $(x, y) \in IR^2$, où la notation $\|.\|$ désigne la norme euclidienne de IR^2 . On déduire que le problème

$$(P) \quad \min_{(x,y)\in IR^2} f(x,y)$$

possède au moins une solution.

- 2. La fonction f est-elle convexe sur IR^2 ?
- 3. Déterminer les points critiques de f, et préciser leurs natures.
- 4. Résoudre alors le problème (P).

Exercice 3. Soit le problème d'optimisation suivant :

$$(P) \quad \min_{(a,b)\in IR^2} J(a,b), \quad avec \quad J(a,b) = \int_{-1}^{1} (x^3 - ax - b)^2 dx$$

- 1. Montrer que le problème (P) est quadratique.
- 2. Ce problème, admet-il une solution?
- 3. Déterminer cette solution.

Exercice 4. Soit $a \in IR$. On définit la fonction f_a par

$$f_a:(x,y) \to x^2 + y^2 + axy - 2x - 2y$$

- 1. Etudier selon la valeur de a l'existence de solutions au problème d'optimisation $(P) \min_{(x,y) \in IR^2} f_a(x,y)$
- 2. Lorsque $a \in]-2,2[$, résoudre le problème précédent.

Exercice 5. On souhaite calculer les points de minimum locaux de la fonction

$$f(x, y) = x^3 + 3xy^2 - 15x - 12y$$

- 1. Donner les points critiques de f.
- 2. Donner le ou les points de minimum locaux.
- 3. Les points de minimum locaux obtenus sont-ils globaux?

Exercice 6. On considère les points du plan M_1, M_2 et M_3 de coordonnées $(x_1, y_1), (x_2, y_2)$ et (x_3, y_3) , et la fonction f définie sur IR^2 par

$$f(a,b) = \sum_{i=1}^{3} (y_i - ax_i - b)^2$$

On supposera de plus que les x_i ne sont pas tous égaux.

- 1. Montrer que f n'admet qu'un seul point critique (a^*,b^*) .
- 2. Exprimer b^* en fonction de a^* .
- 3. Montrer que f est strictement convexe.
- 4. En déduire que f admet un unique minimum global sur IR².
- 5. Que fait-t-on concrètement dans cet exercice en cherchant à trouver a et b qui minimisent la fonction f?

Exercice 7. Etudier, suivant le paramètre α , l'existence du minimum sur IR^3 , de la fonction

$$J: x \to \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + \frac{3}{2}x_3^2 + \alpha x_1 x_3 + x_2 x_3 - x_1 - x_2 - x_3$$