Chapitre 0

Logique (rudiment

Table des matières

Ι	Algèbre de Boole	3
II	Déduction naturelle	7
III	Raisonement par l'absurde	9
IV	Prédicat	11

 $\textbf{D\'efinition:} \quad \text{Un } \underline{\text{proposition}} \text{ est un \'enonc\'e qui est soit vrai, soit faux.}$

Exemple:

$$A:$$
 " B est vraie" $B:$ " A est fausse" Le système $\{A,B\}$ est une auto-contradiction

 $\begin{tabular}{ll} \bf D\'efinition: & \underline{\bf D\'emontrer} \ une \ proposition \ revient \ \grave{a} \ prouver \ qu'elle \ est \ vraie \end{tabular}$

Première partie

Algèbre de Boole

Définition: Soient A et B deux propositions. La proposition \underline{A} et \underline{B} est définie par la table de vérité suivante :

A	B	A et B
\overline{V}	V	V
\overline{V}	F	F
\overline{F}	V	F
\overline{F}	F	F

Définition: Soient A et B deux propositions. La proposition \underline{A} ou \underline{B} est définie par la table de vérité suivante :

A	B	A ou B
\overline{V}	V	V
V	F	V
\overline{F}	V	V
\overline{F}	F	F

Définition: Soit A une proposition. La <u>négation</u> de A, notée $\mathrm{non}(A)$ est définie par :

A	non(A)
\overline{V}	F
F	V

Définition: Deux propositions A et B sont <u>équivalentes</u> si elles ont la même table de vérité. Dans ce cas, on note $A \iff B$

Proposition: Soient A, B et C trois propositions.

- 1. $(A \text{ et } B) \text{ et } C \iff A \text{ et } (B \text{ et } C)$
- $2. \ A \ {\rm et} \ A \iff A$
- 3. A et $B \iff B$ et A
- 4. $(A \text{ ou } B) \text{ ou } C \iff A \text{ ou } (B \text{ ou } C)$
- 5. A ou $A \iff A$
- 6. A ou $B \iff B$ ou A
- 7. non (non (A)) $\iff A$
- 8. A et (B ou $C) \iff A$ et B ou A et C
- 9. A ou (B et $C) \iff (A$ ou B) et (A et C)
- 10. non $(A \text{ et } B) \iff \text{non } (A) \text{ ou non } (B)$
- 11. non $(A \text{ ou } B) \iff \text{non } (A) \text{ et } \text{non } (B)$

Preuve:

8.

	1	. ~	~				1 (4 . 5 . 6 . 6 . 6 .
A	$\mid B \mid$	C	B ou C	A et $(B $ ou $C)$	A et B	A et C	$A \in B$ ou $A \in C$
\overline{V}	V	V	V	V	V	V	V
\overline{V}	V	F	V	V	F	F	V
\overline{V}	F	V	V	V	F	V	V
\overline{V}	F	F	F	F	F	F	F
F	V	V	V	F	F	F	F
F	V	F	V	F	F	F	F
F	F	V	V	F	F	F	F
F	F	F	F	F	F	F	\overline{F}

10.

A	B	A et B	non $(A \text{ et } B)$	non(A)	non(B)	\mid non (A) ou non (B)
\overline{V}	V	V	F	F	F	F
\overline{V}	F	F	V	F	V	V
\overline{F}	V	F	V	V	F	V
\overline{F}	F	F	V	V	V	V

Définition: Soient A et B deux propositions. La proposition $\underline{A \implies B}$ (A implique B) est définie par :

A	B	$A \implies B$
V	V	V
\overline{V}	F	F
\overline{F}	V	V
\overline{F}	F	V

Définition: Soient A et B deux propositions telles que $A\Longrightarrow B$ est vraie. On dit que A est une <u>condition suffisante</u> pour que B soit vraie. On dit que B est une <u>condition nécessaire</u> pour que A soit vraie.

Proposition (Contraposée): Soient A et B deux propositions.

$$(A \implies B) \iff (\text{ non } B \implies \text{ non } A)$$

A	B	non A	non B	$non B \Longrightarrow non A$	$A \Longrightarrow B$
\overline{V}	V	F	F	V	V
$Preuve:\overline{V}$	F	F	V	F	F
\overline{F}	V	V	F	V	V
\overline{F}	F	V	V	V	V

Proposition: Soient A et B deux propositions.

$$(A \Longrightarrow B) \Longleftrightarrow ((A \Longrightarrow B) \text{ et } (B \Longrightarrow A))$$

Preuve:

A	B	$A \iff B$	$A \implies B$	$B \implies A$	$(A \Longrightarrow B) \text{ et } (B \Longrightarrow A)$
\overline{V}	V	V	V	V	\overline{V}
\overline{V}	F	F	F	V	\overline{F}
\overline{F}	V	F	V	F	\overline{F}
\overline{F}	F	V	V	V	\overline{V}

Proposition: Soient A et B deux propositions.

$$(A \Longrightarrow B) \iff (B \text{ ou non } (A))$$

Preuve:

On obtient par contraposée

$$\mathrm{non}\;(A\implies B)\iff (A\;\;\mathrm{et}\;\;\mathrm{non}\;(B))$$

donc

Deuxième partie

Déduction naturelle

Dans ce paragraphe, A et B sont deux propositions.

A et B

$\begin{array}{c} \underline{\text{Comment d\'emontrer A et B ?}}\\ --\text{ On d\'emontre A}\\ --\text{ On d\'emontre B} \end{array}$

Comment utiliser l'hypothèse A et B?

On utilise A ou on utilise B.

A ou B

 $\frac{\text{Comment démontrer } A \text{ ou } B \text{ ?}}{\text{On essaie de démontrer } A. \text{Si on y arrive, alors on a prouvé } A \text{ ou } B \text{ sinon on démontre } B.$

 $\overline{\text{On suppose } A \text{ faux. On démontre } B.}$

Comment utiliser l'hypothèse A ou B?

On fait une disjonction des cas :

- Cas 1 : On suppose A
- Cas 2 : On suppose B

$A \implies B$

 $\frac{\text{Comment démontrer } A \implies B \ ?}{\text{On suppose } A. \text{ On démontre } B.}$

Comment utiliser l'hypothèse $A \implies B$?

On démontre A. On utilise B.

Troisième partie

Raisonement par l'absurde

Situation :

Soient A et B deux propositions. On veut montrer $A \Longrightarrow B$. On suppose \underline{A} . On suppose aussi \underline{B} faux. On cherche à faire apparaître une contradiction ($\frac{1}{2}$) Quatrième partie

Prédicat

IV Prédicat

Définition: Un prédicat $\mathscr{P}(x)$ est un énoncé dont la valeur de vérité dépend de l'objet $\boldsymbol{x},$ élément d'un ensemble E.

Le <u>domaine de validité</u> de ${\mathscr P}$ est l'ensemble des valeurs x de E pour lequelles ${\mathscr P}(x)$ est vraie:

$$\{x \in E \mid \mathscr{P}(x)\}$$

Remarque (Notation):

On écrit

$$\forall x \in E, \mathscr{P}(x)$$

pour dire que $\mathcal{P}(x)$ est vraie pour tous les x de E.

On écrit

$$\exists x \in E, \mathscr{P}(x)$$

pour dire qu'il existe (au moints) un élément $x \in E$ pour lequels $\mathscr{P}(x)$ est vraie.

On écrit

$$\exists ! x \in E, \mathscr{P}(x)$$

pour dire qu'il existe un <u>unique</u> élément $x \in E$ tel que $\mathscr{P}(x)$ est vraie.

 $\forall x \in E, \mathscr{P}(x)$

Comment démontrer $\forall x \in E, \mathcal{P}(x)$?

Soit $x \in E$ (fixé quelconque). Montrons $\mathscr{P}(x)$.

Comment utiliser $\forall x \in E, \mathscr{P}(x)$?

On choisit (spécialise) une ou plusieurs (voir toutes) valeurs de x et on exploite $\mathscr{P}(x)$.

Exemple:

Soient $a, b, c \in \mathbb{R}$. On suppose que

$$\forall n \in \mathbb{N}, a + b \times 2^n + c \times 3^n$$

Montrons que a = b = c = 0.

On sait que (S):
$$\begin{cases} a+b+c=0 & (n=0) \\ a+2b+3c=0 & (n=1) \\ a+4b+9c=0 & (n=2) \end{cases}$$

Montrons que
$$a = b = c = 0$$
.
On sait que (S) :
$$\begin{cases} a + b + c = 0 & (n = 0) \\ a + 2b + 3c = 0 & (n = 1) \\ a + 4b + 9c = 0 & (n = 2) \end{cases}$$

$$(S) \iff \begin{cases} a + b + c = 0 \\ b + 2c = 0 \\ 3b + 8c = 0 \end{cases} \iff \begin{cases} a + b + c = 0 \\ b + 2c = 0 \\ 2c = 0 \end{cases} \iff \begin{cases} c = 0 \\ b = 0 \\ a = 0 \end{cases}$$