Logic Design Styles

Dinesh Sharma

Microelectronics Group, EE Department IIT Bombay, Mumbai

July 26, 2016

Improving Pseudo nMOS

- In the pseudo-nMOS NOR circuit on the left, static power is consumed when the output is 'LOW'
- We would like to turn the pMOS off when A OR B is TRUE.
- The OR logic can be constructed by using a Pseudo-nMOS NAND of \overline{A} and \overline{B} as in the circuit on the right.
- But then what about the pMOS drive of this circuit?

Improving Pseudo nMOS

- In the pseudo-nMOS NOR circuit on the left, static power is consumed when the output is 'LOW'
- We would like to turn the pMOS off when A OR B is TRUE.
- The OR logic can be constructed by using a Pseudo-nMOS NAND of \overline{A} and \overline{B} as in the circuit on the right.
- But then what about the pMOS drive of this circuit?

Pseudo nMOS without Static Power

- The output of the circuit on the right is 'LOW' when both \overline{A} and \overline{B} are 'HIGH' (A = B = 0).
- We would like to turn its pMOS off when NOR of A and B is 'TRUE'
- But this can be provided by the circuit on the left!
- So the two circuits can drive each other's pMOS transistors and avoid static power consumption.

Pseudo nMOS without Static Power

- The output of the circuit on the right is 'LOW' when both \overline{A} and \overline{B} are 'HIGH' (A = B = 0).
- We would like to turn its pMOS off when NOR of A and B is 'TRUE'
- But this can be provided by the circuit on the left!
- So the two circuits can drive each other's pMOS transistors and avoid static power consumption.

Cascade Voltage Switch Logic

This kind of logic is called Cascade Voltage Switch Logic (CVSL).

It can use any network f and its complementary network \overline{f} in the two cross-coupled branches.

- Like CMOS static logic, there is no static power consumption.
- Like CPL, this logic requires both True and Complement signals. It also provides both True and complement outputs. (Dual Rail Logic).
- Like pseudo nMOS, the inputs present a single transistor load to the driving stage.
- The circuit is self latching. This reduces ratioing requirements.

