## **DistilBERT**

Kostek Subbotko

#### **BERT**

- BERT Bidirectional Encoder Representations from Transformer
- Architecture: multi-layer bidirectional Transformer encoder
- Pre-trained using two unsupervised tasks: MaskedLM and Next Sentence Prediction(NSP)
- Fine-tuned on downstream tasks



**BERT Architecture** 

## Transformer encoder

• Based on "Attention is All you need" paper



### Masked LM

- Problem: Previous language models used only unidirectional context, but language understanding is bidirectional
- Solution: Mask 15% of the input words and ask network to predict the masked words:
  - my dog is hairy  $\rightarrow$  my dog is [MASK]
- Too little masking: Too expensive to train
- Too much masking: Not enough context

### Masked LM

- Problem: Mask token never seen at fine-tuning
- Solution: Don't replace with mask 100% of the time. Instead:
- 80% of the time replace with [MASK] my dog is hairy → my dog is [MASK]
- 10% of the time replace with random word my dog is hairy → my dog is apple
- 10% of the time don't do anything my dog is hairy  $\rightarrow$  my dog is hairy
- Effect: Model does not know which words it will be asked to predict so it is forced to keep representation of every input token

## **Next Sentence Prediction**

- When choosing the sentences A and B, 50% of the time B is the actual next sentence that follows A, and 50% of the time it is a random sentence from the corpus:
- Input=[CLS] the man went to [MASK] store [SEP]he bought a gallon [MASK] milk [SEP]

Label=IsNext

- Input=[CLS] the man [MASK] to the store [SEP]penguin [MASK] are flight ##less birds [SEP]
  Label=NotNext
- Token [CLS] is the special symbol for classification output

## BERT - Input



## BERT - Results

#### • GLUE Test results:

| System           | MNLI-(m/mm) | QQP  | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE  | Average |
|------------------|-------------|------|------|-------|------|-------|------|------|---------|
|                  | 392k        | 363k | 108k | 67k   | 8.5k | 5.7k  | 3.5k | 2.5k | -       |
| Pre-OpenAI SOTA  | 80.6/80.1   | 66.1 | 82.3 | 93.2  | 35.0 | 81.0  | 86.0 | 61.7 | 74.0    |
| BiLSTM+ELMo+Attn | 76.4/76.1   | 64.8 | 79.8 | 90.4  | 36.0 | 73.3  | 84.9 | 56.8 | 71.0    |
| OpenAI GPT       | 82.1/81.4   | 70.3 | 87.4 | 91.3  | 45.4 | 80.0  | 82.3 | 56.0 | 75.1    |
| BERTBASE         | 84.6/83.4   | 71.2 | 90.5 | 93.5  | 52.1 | 85.8  | 88.9 | 66.4 | 79.6    |
| $BERT_{LARGE}$   | 86.7/85.9   | 72.1 | 92.7 | 94.9  | 60.5 | 86.5  | 89.3 | 70.1 | 82.1    |

### • Problem: size

| Model     | Hidden<br>layers | Hidden<br>unit size | Attention heads | Feedforward filter size | Max sequence<br>length | Parameters |
|-----------|------------------|---------------------|-----------------|-------------------------|------------------------|------------|
| BERTBASE  | 12 encoder       | 768                 | 12              | 4 x 768                 | 512                    | 110M       |
| BERTLARGE | 24 encoder       | 1024                | 16              | 4 x 1024                | 512                    | 330M       |

## Knowledge Distillation

- Teacher-Student training: compact model is trained to reproduce the distribution of larger model
- Idea: use soft targets instead of class labels
- Teacher's probabilities reveal more information
- In one-hot encoding "similar" classes are orthogonal
- Hinton(2015): use softmax-temperature  $p_i = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$



### **DistilBERT**

- Pre-trained with knowledge distillation
- Same architecture as BERT(base), number of layers reduced by a factor of 2
- Initialized from the teacher by taking one layer out of two
- Loss function consists of L<sub>ce</sub>, L<sub>mlm</sub>, L<sub>cos</sub>
- $L_{ce} = \sum_{i} t_{i} * log(s_{i})$
- L<sub>mlm</sub> masked language modeling loss
- L<sub>cos</sub> cosine embedding loss
- Implementation: https://github.com/huggingface/transformers

# DistilBERT - performance

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

| Model      | Score | CoLA | MNLI | MRPC | QNLI | QQP  | RTE  | SST-2 | STS-B | WNLI |
|------------|-------|------|------|------|------|------|------|-------|-------|------|
| ELMo       | 68.7  | 44.1 | 68.6 | 76.6 | 71.1 | 86.2 | 53.4 | 91.5  | 70.4  | 56.3 |
| BERT-base  | 77.6  | 48.9 | 84.3 | 88.6 | 89.3 | 89.5 | 71.3 | 91.7  | 91.2  | 43.7 |
| DistilBERT | 76.8  | 49.1 | 81.8 | 90.2 | 90.2 | 89.2 | 62.9 | 92.7  | 90.7  | 44.4 |

# DistilBERT - size and inference speed

Table 3: **DistilBERT is significantly smaller while being constantly faster.** Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

| Model      | # param.<br>(Millions) | Inf. time (seconds) |
|------------|------------------------|---------------------|
| ELMo       | 180                    | 895                 |
| BERT-base  | 110                    | 668                 |
| DistilBERT | 66                     | 410                 |

• 40% smaller, 60% faster at interference

# DistilBERT - ablation study

Table 4: **Ablation study.** Variations are relative to the model trained with triple loss and teacher weights initialization.

| Ablation                                                                  | Variation on GLUE macro-score |
|---------------------------------------------------------------------------|-------------------------------|
| $\emptyset$ - $L_{cos}$ - $L_{mlm}$                                       | -5.06                         |
| $\emptyset$ - $L_{cos}$ - $L_{mlm}$<br>$L_{ce}$ - $\emptyset$ - $L_{mlm}$ | -4.07                         |
| $L_{ce}$ - $L_{cos}$ - $\emptyset$                                        | -1.90                         |
| Triple loss + random weights initialization                               | -4.83                         |

 Removing the Masked Language Modeling loss has little impact while the two distillation losses account for a large portion of the performance