PROBLÈME 1 - CENTRALE MP 2011

I étude préliminaire

I.A Convergence des séries de Riemann

I.A.1. Soit $k \ge a+1$. $\forall x \in [k; k, k+1], \ \forall y \in [k-1; k], \ f(x) \le f(k) \le f(y)$ par décroissance de f d'où :

$$\int_{k}^{k+1} f(x) \, \mathrm{d}x \leqslant \int_{k}^{k+1} f(k) \, \mathrm{d}x = f(k) = \int_{k-1}^{k} f(k) \, \mathrm{d}y \leqslant \int_{k-1}^{k} f(y) \, \mathrm{d}y \,.$$

- I.A.2. Question de cours!
 - Pour $\alpha \leq 0$, la série $\sum \frac{1}{n^{\alpha}}$ diverge grossièrement (son terme général ne tend pas vers 0).
 - Pour $\alpha > 1$, on applique la question précédente pour a = 1, et $f(t) = \frac{1}{t^{\alpha}}$

$$\forall \, k \geqslant 2, \, \, \frac{1}{k^{\alpha}} \leqslant \int_{k-1}^{k} \frac{\mathrm{d}t}{t^{\alpha}} \, \, \mathrm{donc} \, \, \forall \, n \geqslant 2, \, \sum_{k-1}^{n} \frac{1}{k^{\alpha}} \leqslant 1 + \int_{1}^{n} \frac{\mathrm{d}t}{t^{\alpha}} = 1 + \left[\frac{t^{1-\alpha}}{1-\alpha} \right]_{1}^{n} \leqslant \frac{\alpha}{\alpha-1} \cdot \frac{1}{n} = 0$$

La suite des sommes partielles $\left(\sum\limits_{k=1}^n\frac{1}{k^{lpha}}\right)_{n\geqslant 1}$ est croissante majorée, elle converge.

- Pour $0 < \alpha \le 1$, on applique aussi la question précédente pour a = 1, et $f(t) = \frac{1}{t}$.

$$\forall \, k \geqslant 1, \, \frac{1}{k^{\alpha}} \geqslant \frac{1}{k} \geqslant \int_{k}^{k+1} \frac{\mathrm{d}t}{t} \, \operatorname{donc} \, \forall \, n \geqslant 2, \, \sum_{k=1}^{n} \frac{1}{k^{\alpha}} \geqslant \sum_{k=1}^{n} \frac{1}{k} \geqslant \int_{1}^{n+1} \frac{\mathrm{d}t}{t} = \ln(n+1) \underset{n \to \infty}{\to} +\infty.$$

Conclusion : la série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

I.A.3. D'après le calcul fait à la question précédente, pour tout $\alpha > 1$, et tout $n \in \mathbb{N}^*$, $1 \leqslant \sum_{k=1}^n \frac{1}{k^{\alpha}} \leqslant \frac{\alpha}{\alpha - 1}$.

On fait tendre n vers l'infini, on obtient alors : $1 \leqslant S(\alpha) = \sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}} \leqslant \frac{\alpha}{\alpha - 1}$.

I.B Première étude asymptotique du reste

I.B.1. $\forall k \ge n \ge 2$, $\int_{k}^{k+1} \frac{\mathrm{d}x}{x^{\alpha}} \le \frac{1}{k^{\alpha}} \le \int_{k-1}^{k} \frac{\mathrm{d}x}{x^{\alpha}}$, donc en sommant, pour tout entier $N \ge n$,

$$\int_{n}^{N+1} \frac{\mathrm{d}x}{x^{\alpha}} \le \sum_{k=n}^{N} \frac{1}{k^{\alpha}} \le \int_{n-1}^{N} \frac{\mathrm{d}x}{x^{\alpha}}$$

soit

$$\left[\frac{x^{1-\alpha}}{1-\alpha}\right]_n^{N+1}\leqslant \sum_{k=n}^N\frac{1}{k^\alpha}\leqslant \left[\frac{x^{1-\alpha}}{1-\alpha}\right]_{n-1}^N.$$

On fait encore tendre N vers l'infini et on obtient :

$$\frac{1}{(\alpha - 1)n^{\alpha - 1}} \leqslant R_n(\alpha) \leqslant \frac{1}{(\alpha - 1)(n - 1)^{\alpha - 1}}.$$

D'où

$$\left| R_n(\alpha) - \frac{1}{(\alpha - 1)n^{\alpha - 1}} \right| \leqslant \frac{1}{(\alpha - 1)(n - 1)^{\alpha - 1}} - \frac{1}{(\alpha - 1)n^{\alpha - 1}} \\
\leqslant \frac{-1}{(\alpha - 1)n^{\alpha - 1}} \left(-\left(1 - \frac{1}{n}\right)^{1 - \alpha} + 1 \right) = \frac{1}{(\alpha - 1)n^{\alpha - 1}} \left(\frac{\alpha - 1}{n} + o\left(\frac{1}{n}\right) \right) = O\left(\frac{1}{n^{\alpha}}\right).$$

Finalement : $R_n(\alpha) = \frac{1}{(\alpha - 1)n^{\alpha - 1}} + O\left(\frac{1}{n^{\alpha}}\right)$.

I.B.2. Soit f la fonction définie sur \mathbb{R}_+^* par $f(x) = \frac{1}{(1-\alpha)x^{\alpha-1}}$.

f est de classe \mathscr{C}^{∞} sur \mathbb{R}_+^* ; d'après la formule de Taylor avec reste intégrale appliquée à f entre k et (k+1) on a :

$$\forall k \in \mathbb{N}^*, f(k+1) = f(k) + f'(k) + \frac{f''(k)}{2} + \int_k^{k+1} \frac{(k+1-t)^2}{2} f'''(t) dt$$

soit

$$\forall k \in \mathbb{N}^*, f(k+1) - f(k) = \frac{1}{k^{\alpha}} - \frac{\alpha}{2} \frac{1}{k^{\alpha+1}} + A_k$$

avec

$$A_k = \int_{t_0}^{k+1} (k+1-t)^2 \frac{\alpha(\alpha+1)}{2t^{\alpha+2}} dt.$$

On a alors:

$$0 \leqslant A_k \leqslant \frac{\alpha(\alpha+1)}{2k^{\alpha+2}} \int_{k}^{k+1} (k+1-t)^2 dt \leqslant \frac{\alpha(\alpha+1)}{2k^{\alpha+2}} \int_{k}^{k+1} dt$$

soit $0 \leqslant A_k \leqslant \frac{\alpha(\alpha+1)}{2k^{\alpha+2}}$.

I.B.3. D'après **I.B.2**) :

$$\forall k \in \mathbb{N}^*, \ f(k+1) - f(k) - \frac{1}{k^{\alpha}} + \frac{\alpha}{2} \frac{1}{k^{\alpha+1}} = A_k$$

d'où en sommant, pour $N \geqslant n \geqslant 1$:

$$0 \leqslant f(N+1) - f(n) - \sum_{k=n}^{N} \frac{1}{k^{\alpha}} + \frac{\alpha}{2} \sum_{k=n}^{N} \frac{1}{k^{\alpha+1}} = \sum_{k=n}^{N} A_k \leqslant \frac{\alpha(\alpha+1)}{2} \sum_{k=n}^{N} \frac{1}{k^{\alpha+2}} \cdot \frac{1}{2} \sum_{k=n}^{N} \frac{1}{k^{\alpha+2$$

On fait tendre N vers l'infini, on obtient alors, puisque $\lim_{x\to +\infty} f(x)=0$:

$$0 \leqslant -f(n) - R_n(\alpha) + \frac{\alpha}{2} R_n(\alpha + 1) \leqslant \frac{\alpha(\alpha + 1)}{2} R_n(\alpha + 2).$$

D'aprés I.B.1) on a :

$$R_n(\alpha+1) = \frac{1}{\alpha n^{\alpha}} + \mathcal{O}\left(\frac{1}{n^{\alpha+1}}\right) \quad \text{et} \quad R_n(\alpha+2) \underset{n \to \infty}{\sim} \frac{1}{(\alpha+1)n^{\alpha+1}} = \mathcal{O}\left(\frac{1}{n^{\alpha+1}}\right),$$
 d'où $-f(n) - R_n(\alpha) + \frac{1}{2n^{\alpha}} = \mathcal{O}\left(\frac{1}{n^{\alpha+1}}\right)$ c'est à dire : $R_n(\alpha) = \frac{1}{(\alpha-1)n^{\alpha-1}} + \frac{1}{2n^{\alpha}} + \mathcal{O}\left(\frac{1}{n^{\alpha+1}}\right)$.

II Formule de Taylor et nombres de Bernoulli

II.A Nombres de Bernoulli

II.A.1. Soient $p \in \mathbb{N}^*$, I un intervalle de \mathbb{R} non réduit à un point, et $f: I \to \mathbb{C}$ une fonction de classe \mathscr{C}^{∞} sur I.

Posons:
$$g = \sum_{i=0}^{p-1} a_i f^{(i)}$$
. Alors:

$$\sum_{j=1}^{p} \frac{g^{(j)}}{j!} = \sum_{j=1}^{p} \frac{1}{j!} \sum_{i=0}^{p-1} a_i f^{(i+j)} = \sum_{k=1}^{2p-1} \left(\sum_{i=0}^{k-1} \frac{a_i}{(k-i)!} \right) f^{(k)}$$
$$= a_0 f' + \sum_{k=2}^{p} \left(\sum_{i=0}^{k-1} \frac{a_i}{(k-i)!} \right) f^{(k)} + \sum_{k=p+1}^{2p-1} \left(\sum_{i=0}^{k-1} \frac{a_i}{(k-i)!} \right) f^{(k)}.$$

Soit alors $(a_n)_{n\in\mathbb{N}}$ la suite réelle définie par : $\begin{cases} a_0 = 1 \\ \forall k \geqslant 2, \ a_{k-1} = -\sum_{i=0}^{k-2} \frac{a_i}{(k-i)!} \end{cases}$

L'égalité précédente devient alors :

$$\sum_{i=1}^{p} \frac{g^{(j)}}{j!} = f' + \sum_{k=r+1}^{2p-1} \left(\sum_{i=0}^{k-1} \frac{a_i}{(k-i)!} \right) f^{(k)} = f' + \sum_{l=1}^{p-1} \left(\sum_{i=0}^{l+p-1} \frac{a_i}{(l+p-i)!} \right) f^{(p+l)}.$$

On pose alors : $\forall l \in [1; p-1]$: $b_{l,p} = \sum_{i=0}^{l+p-1} \frac{a_i}{(l+p-i)!}$, et on obtient le résultat demandé.

II.A.2. Soit maintenant $(a_n)_{n\in\mathbb{N}}$ une suite répondant aux conditions de la question précédente.

D'après le calcul fait à la question précédente : $\forall p \in \mathbb{N}^*, \ \forall f \in \mathscr{C}^{\infty}(I,\mathbb{C})$:

$$\sum_{i=1}^{p} \frac{g^{(j)}}{j!} = a_0 f' + \sum_{k=2}^{p} \left(\sum_{i=0}^{k-1} \frac{a_i}{(k-i)!} \right) f^{(k)} + \sum_{l=1}^{p-1} \left(\sum_{i=0}^{l+p-1} \frac{a_i}{(l+p-i)!} \right) f^{(p+l)} = f' + \sum_{l=1}^{p-1} b_{l,p} f^{(p+l)}$$

soit

$$(a_0 - 1)f' + \sum_{k=2}^{p} \left(\sum_{i=0}^{k-1} \frac{a_i}{(k-i)!} \right) f^{(k)} + \sum_{l=1}^{p-1} \left(\left(\sum_{i=0}^{l+p-1} \frac{a_i}{(l+p-i)!} \right) - b_{l,p} \right) f^{(p+l)} = 0.$$

Pour $f(x) = x^p$, cette égalité s'écrit :

$$p(a_0 - 1)x^{p-1} \sum_{k=2}^{p} \left(\sum_{i=0}^{k-1} \frac{a_i}{(k-i)!} \right) \frac{p!}{(p-k)!} x^{p-k} = 0.$$

C'est un polynôme nul, donc ses coefficients sont nuls, et par suite :

$$a_0 = 1$$
 et $\forall k \ge 2$, $a_{k-1} = -\sum_{j=0}^{k-2} \frac{a_j}{(k-j)!}$

ou encore, en posant : p = k - 1 et i = k - j = p + 1 - j :

$$a_0 = 1$$
 et $\forall p \ge 1, \ a_p = -\sum_{i=2}^{p+1} \frac{a_{p+1-i}}{i!}$.

En particulier, $a_1 = -\frac{1}{2}$ et $a_2 = \frac{1}{12}$

Montrons enfin par récurrence sur p que : $\forall p \in \mathbb{N}, \ |a_p| \leqslant 1$.

Ceci est évident pour p=0; soit $p\geqslant 1$ tel que : $\forall k\in [0;p-1], |a_k|\leqslant 1$.

Alors : $\forall i \in [2; p+1], |a_{p+1-i}| \le 1$. D'où : $|a_p| = \left| \sum_{i=2}^{p+1} \frac{a_{p+1-i}}{i!} \right| \le \sum_{i=2}^{p+1} \frac{1}{i!} \le e-2 \le 1$. Cela achève la récurrence.

II.A.3.

- (a) $\forall p \in \mathbb{N}^*, |a_p| \leq 1$, donc $\forall p \in \mathbb{N}, \forall z \in \mathbb{C}, |a_p z^p| \leq |z|^p$. Si |z| < 1, alors la série $(\sum |z|^p)$ converge, et par comparaison de séries à termes positifs, la série $\sum_{p \in \mathbb{N}} a_p z^p$ converge absolument. On note alors : $\varphi(z) = \sum_{p=0}^{+\infty} a_p z^p$.
- (b) Pour tout $z \in \mathbb{C}$ tel que |z| < 1, les deux séries : $e^z 1 = \sum_{n=1}^{+\infty} \frac{z^n}{n!}$ et $\varphi(z) = \sum_{p=0}^{+\infty} a_p z^p$ sont absolument convergentes ; donc si $(e^z 1)\varphi(z) = \sum_{n=1}^{\infty} d_n z^n$ est la série produit de Cauchy de ces deux séries, le rayon de convergence de cette série est a priori $\geqslant 1$ et l'on a d'après les formules du cours :

$$\forall n \in \mathbb{N}^*, \ d_{n+1} = \sum_{p=1}^{n+1} \frac{a_{n+1-p}}{p!} = a_n + \sum_{p=2}^{n+1} \frac{a_{n+1-p}}{p!} = 0 \text{ et } d_1 = a_0 = 1.$$

Ainsi, pour tout $z \in \mathbb{C}$ tel que |z| < 1, $(e^z - 1)\varphi(z) = z$ et $\varphi(z) = \frac{z}{e^z - 1}$ si $z \neq 0$.

(c) Pour tout $z \in \mathbb{C}$ tel que |z| < 1, posons :

$$\psi(z) = \varphi(z) - a_1 z = \frac{z}{e^z - 1} + \frac{z}{2} = \frac{2z + z(e^z - 1)}{2(e^z - 1)} = \frac{z + ze^z}{2(e^z - 1)}$$

Alors $\psi(-z) = \frac{z + ze^{-z}}{2(1 - e^{-z})} = \frac{(z + ze^{-z})e^z}{2(1 - e^{-z})e^z} = \psi(z)$, et $\psi(z) = 1 + \sum_{k=2}^{+\infty} a_k z^k$ est la somme d'une série entière paire sur D(0,1).

On en déduit : $\forall k \in \mathbb{N}^*, \ a_{2k+1} = 0$

Enfin,
$$a_4 = -\sum_{i=2}^{5} \frac{a_{5-i}}{i!} = -\left(\frac{a_0}{5!} + \frac{a_1}{4!} + \frac{a_2}{3!} + \frac{a_3}{2!}\right) = -\left(\frac{1}{120} - \frac{1}{48} + \frac{1}{72}\right) = -\frac{6 - 15 + 10}{720} = -\frac{1}{720}$$

(ce résultat peut aussi s'obtenir en faisant un développement limité de $x \mapsto \frac{x}{e^x - 1}$ à l'ordre 4 en 0).

II.B Formule de Taylor

II.B.1. Soit f la fonction définie sur \mathbb{R}_+^* par $f(x) = \frac{1}{(1-\alpha)x^{\alpha-1}}$, où α est un réel strictement supérieur à 1. On fixe un entier naturel non nul p et on note :

$$g = a_0 f + a_1 f' + \dots + a_{2p-1} f^{(2p-1)}$$

Remarquons d'abord que puisque f est de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} , g l'est aussi.

Appliquons à g la formule de Taylor avec reste intégrale entre k et (k+1) à l'ordre 2p:

$$g(k+1) = g(k) + \sum_{j=1}^{2p} \frac{1}{j!} g^{(j)}(k) + \frac{1}{(2p)!} \int_{k}^{k+1} g^{(2p+1)}(t) (k+1-t)^{2} dt$$

$$= g(k) + \sum_{j=1}^{2p} \frac{1}{j!} g^{(j)}(k) + \frac{1}{(2p)!} \int_{0}^{1} g^{(2p+1)}(k+t) (1-t)^{2} dt$$

$$= f'(k) + \sum_{l=1}^{2p} b_{l,2p} f^{(l+2p)}(k) + \frac{1}{(2p)!} \int_{0}^{1} \left(\sum_{i=0}^{2p-1} a_{i} f^{(i+2p+1)}(k+t) \right) (1-t)^{2} dt.$$

Or $\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}_+^*, \ f^{(n)}(x) = (-1)^{n-1} \frac{\alpha \cdots (\alpha + n - 2)}{x^{\alpha + n - 1}}$ donc

$$|R(k)| = \left| \sum_{n=2p+1}^{4p} b_{n-2p,2p} (-1)^{n-1} \frac{\alpha \cdots (\alpha+n-2)}{k^{\alpha+n-1}} + \int_{0}^{1} \left[\sum_{n=2p+1}^{4p} a_{n-2p-1} (-1)^{n-1} \frac{\alpha \cdots (\alpha+n-2)}{(2p)!(k+t)^{\alpha+n-1}} \right] (1-t)^{2} dt \right|$$

$$\leq \sum_{n=2p+1}^{4p} |b_{n-2p,2p}| \frac{\alpha \cdots (\alpha+n-2)}{k^{\alpha+n-1}} + \frac{1}{(2p)!} \int_{0}^{1} \left(\sum_{n=2p+1}^{4p} |a_{n-2p-1}| \frac{\alpha \cdots (\alpha+n-2)}{(k+t)^{\alpha+n-1}} \right) (1-t)^{2} dt$$

$$\leq \left[\sum_{n=2p+1}^{4p} \left(|b_{n-2p,2p}| + \frac{|a_{n-2p-1}|}{(2p)!} \right) \alpha \cdots (\alpha+n-2) \right] k^{-(2p+\alpha)}$$

donc, p étant fixé, $\exists A \in \mathbb{R}, \ \forall \, k \in \mathbb{N}^*, \quad \left| R(k) \right| \leqslant A \, k^{-(2p+\alpha)}$.

II.B.2. D'après la question précédente : $\forall k \in \mathbb{N}^*, \ g(k+1) - g(k) = f'(k) + R(k), \ d'où en sommant :$

$$\forall N \ge n \ge 1, \ \sum_{k=-n}^{N} \frac{1}{k^{\alpha}} + \sum_{k=-n}^{N} R(k) = g(N+1) - g(n)$$
 (*)

 $\operatorname{Or}\ g(N) = \frac{a_0}{(1-\alpha)N^{\alpha-1}} + \sum_{i=1}^{2p-1} a_i (-1)^i \frac{\alpha \dots (\alpha+i-2)}{N^{\alpha+i-1}} \underset{N \to +\infty}{\longrightarrow} 0 \text{ donc en faisant tendre } N \text{ vers l'infini dans}$

$$(*), \text{ on obtient}: |R_n(\alpha) + g(n)| \leqslant AR_n(\alpha + 2p) = \mathcal{O}\left(\frac{1}{n^{\alpha + 2p - 1}}\right), \text{ d'où}: \ R_n(\alpha) = -g(n) + \mathcal{O}\left(\frac{1}{n^{\alpha + 2p - 1}}\right).$$

Cela s'écrit encore : $R_n(\alpha) = -\sum_{i=0}^{2p-1} a_i f^{(i)}(n) + \mathcal{O}\left(\frac{1}{n^{\alpha+2p-1}}\right)$. Or pour $p \geqslant 2$, $a_{2p-1} = 0$, donc pour $p \geqslant 2$, on a :

$$R_n(\alpha) = -\sum_{i=0}^{2p-2} a_i f^{(i)}(n) + O\left(\frac{1}{n^{\alpha+2p-1}}\right).$$

Or on a déjà établi cette égalité dans la première partie pour p=1, elle est donc vraie pour tout entier non nul p.

II.B.3. Pour p = 3, il vient

$$R_n(\alpha) = -\left(\frac{1}{(1-\alpha)n^{\alpha-1}} - \frac{1}{2n^{\alpha}} - \frac{\alpha}{12n^{\alpha+1}} + \frac{\alpha(\alpha+1)(\alpha+2)}{720n^{\alpha+3}}\right) + \mathcal{O}\left(\frac{1}{n^{\alpha+5}}\right)$$

soit, en particulier,

$$R_n(3) = \frac{1}{2n^2} + \frac{1}{2n^3} + \frac{1}{4n^4} - \frac{1}{12n^6} + \mathcal{O}\left(\frac{1}{n^8}\right).$$

III Polynômes de Bernoulli et formule sommatoire d'Euler-Maclaurin

III.A Polynômes de Bernoulli

III.A.1. (a) \diamond Montrons l'existence et l'unicité de A_n par récurrence sur n.

Pour n = 0, A_0 est donné directement et c'est bien un polynôme.

Si A_n existe et est unique alors soit F la primitive de A_n qui s'annule en 0, F est un polynôme et

$$\left(A'_{n+1} = A_n \text{ et } \int_0^1 A_{n+1}(t) \, \mathrm{d}t = 0\right) \Longleftrightarrow \left(A_{n+1} = F + C \ (C \text{ constante}) \text{ et } C = -\int_0^1 F(t) \, \mathrm{d}t\right)$$

donc la constante C existe et est unique et donc le polynôme A_{n+1} existe et est unique.

Ainsi les conditions de **III.1** définissent une unique suite $(A_n)_{n\in\mathbb{N}}$ de polynômes de $\mathbb{R}[X]$.

 \diamond Montrons, par récurrence sur n, que $\deg(A_n) = n$: c'est clair pour n = 0, et si c'est vrai pour n, alors $A'_{n+1}(X) = A_n(X) = \sum_{k=0}^n c_{n,k} X^k$ avec $c_{n,n} \neq 0$ donc $A_{n+1}(X) = \sum_{k=0}^n \frac{c_{n,k}}{k+1} X^{k+1} + c_{n+1,0}$ est de degré n+1.

On peut d'ailleurs montrer en même temps que $c_{n,n} = \frac{1}{n!}$

 \diamond On trouve facilement :

$$A_1 = X - \frac{1}{2}, \ A_2 = \frac{X^2}{2} - \frac{X}{2} + \frac{1}{12}, \ A_3 = \frac{X^3}{6} - \frac{X^2}{4} + \frac{X}{12}$$

(b) Posons $C_n(x) = (-1)^n A_n(1-x)$; C_n est une fonction polynôme et on a :

$$C_0 = 1$$
 et $\forall n \ge 1$, $C'_n(x) = (-1)^{n+1} A'_n(1-x) = (-1)^{n+1} A_{n-1}(1-x) = C_{n-1}(x)$

et

$$\int_0^1 C_n(t) dt = (-1)^n \int_0^1 A_n(1-t) dt = (-1)^n \int_0^1 A_n(u) du = 0.$$

Donc la suite (C_n) vérifie les conditions de **III.1** et donc, par unicité, $C_n = A_n$ pour tout n ce qui donne :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ A_n(x) = (-1)^n A_n(1-x).$$

- (c) \Leftrightarrow Pour $n \ge 2$, $A_n(1) A_n(0) = \int_0^1 A'_n(t) dt = \int_0^1 A_{n-1}(t) dt = 0$ donc $A_n(1) = A_n(0)$.
 - $\diamond \ \, \text{Selon (b)}, \ \, A_{2n-1}(0) = -A_{2n-1}(1-0) = -A_{2n-1}(0) \ \, \text{d'après ci-dessus donc}: \ \, \forall \, n \geqslant 2, \ \, A_{2n-1}(0) = 0.$
- (d) \diamond Montrons, par récurrence sur n, que $A_n(X) = \sum_{k=0}^n \frac{c_{n-k}}{k!} X^k$.

C'est clair pour n=0, et si c'est vrai pour n, alors $A'_{n+1}(X)=A_n(X)=\sum_{k=0}^n\frac{c_{n-k}}{k!}X^k$ donc

$$A_{n+1}(X) = \sum_{k=0}^{n} \frac{c_{n-k}}{(k+1)!} X^{k+1} + c_{n+1} \text{ car } c_{n+1} = A_{n+1}(0). \text{ Ceci donne bien } A_{n+1}(X) = \sum_{k=0}^{n+1} \frac{c_{n+1-k}}{k!} X^{k}.$$

- $\diamond \text{ L'\'egalit\'e } A_{n+1}(1) = A_{n+1}(0) \text{ donne alors } \sum_{k=1}^{n+1} \frac{c_{n+1-k}}{k!} = 0 \text{ soit : } \forall \, n \geqslant 1, \, \sum_{k=0}^{n} \frac{c_k}{(n+1-k)!} = 0.$
- (e) On $c_0 = A_0(0) = 1$ et, pour $n \ge 1$, $c_n = -\sum_{k=2}^{n+1} \frac{c_{n+1-k}}{k!}$ donc, d'après **II.A.2** et par récurrence immédiate : $\forall n \in \mathbb{N}, c_n = a_n$.
- **III.A.2.** (a) Pour $t \in [-1;1]$:

$$|A_n(t)z^n| = \left|\sum_{k=0}^n \frac{a_{n-k}}{k!} t^k\right| |z|^n \le \left(\sum_{k=0}^n \frac{|a_{n-k}|}{k!}\right) |z|^n \le \left(\sum_{k=0}^n \frac{1}{k!}\right) |z|^n \le e|z|^n$$

en utilisant II.A.2. Or la série $\sum_{n\in\mathbb{N}}|z|^n$ converge si |z|<1 donc si $t\in[-1;1]$ et |z|<1, alors $\sum_{n\in\mathbb{N}}A_n(t)\,z^n$ converge.

- (b) Soit z fixé tel que |z| < 1.
 - $\diamond \ u_n: \ t \mapsto A_n(t) \, z^n \ \text{ est de classe } \mathscr{C}^1 \ \text{sur } [0\,;1] \ \text{avec } u_n'(t) = \begin{cases} A_{n-1}(t) \, z^n & \text{si } n \geqslant 1 \\ 0 & \text{si } n = 1 \end{cases}.$

La série $\sum_{n\in\mathbb{N}}u_n$ converge simplement sur $[0\,;1]$ selon (a) et pour tout $n\geqslant 1$, $\|u_n'\|_{\infty}^{[0,1]}\leqslant \mathrm{e}\,|z|^n$ donc $\sum_{n\in\mathbb{N}}u_n'$ converge normalement donc uniformément sur $[0\,;1]$. Le théorème de dérivation terme à terme

permet de conclure, et comme $\sum_{n=1}^{+\infty} A_{n-1}(t) z^n = z \sum_{n=0}^{+\infty} A_n(t) z^n, \ t \mapsto f(t,z) \text{ est de classe } \mathscr{C}^1 \text{ sur } [0\,;1]$ et $\forall t \in [0\,;1], \ \frac{\partial}{\partial t} f(t,z) = z \, f(t,z).$

- ♦ La fonction ci-dessus est donc solution de l'équation différentielle y' = z y donc $\forall t \in [0; 1], f(t, z) = f(0, z) e^{zt}$. Or $f(0, z) = \sum_{n=0}^{\infty} a_n z^n = \varphi(z)$ donc si $t \in [0; 1]$ et 0 < |z| < 1 alors $\sum_{n=0}^{\infty} A_n(t) z^n = \frac{z e^{zt}}{e^z - 1}$.
- (c) \Rightarrow Pour $0 < |z| < 2\pi$, on a $e^z 1 \neq 0$ et $\frac{z e^{z/2}}{e^z 1} + \frac{z}{e^z 1} = z \frac{e^{z/2} + 1}{\left(e^{z/2} 1\right)\left(e^{z/2} + 1\right)}$. On a donc bien si $0 < |z| < 2\pi$, $\frac{z e^{z/2}}{e^z 1} + \frac{z}{e^z 1} = 2 \frac{z/2}{e^{z/2} 1}$.
 - \diamond Ainsi selon (**b**), pour 0 < |z| < 1,

$$\sum_{n=0}^{+\infty} A_n \left(\frac{1}{2}\right) z^n = \frac{z e^{z/2}}{e^z - 1} = 2 \frac{z/2}{e^{z/2} - 1} - \frac{z}{e^z - 1} = 2\varphi\left(\frac{z}{2}\right) - \varphi(z) = 2 \sum_{n=0}^{+\infty} a_n \left(\frac{z}{2}\right)^n - \sum_{n=0}^{+\infty} a_n z^n.$$

Cette égalité reste vraie pour z = 0.

Par unicité du développement en série entière en 0, ceci donne :

$$\forall n \in \mathbb{N}, \ A_n\left(\frac{1}{2}\right) = \left(\frac{1}{2^{n-1}} - 1\right) a_n.$$

III.A.3. (a) Montrons par récurrence sur p que, pour tout $p \in \mathbb{N}^*$, on a les tableaux de variations suivants :

x	0	α_{2p-1}	1/2	<u>L</u> /	β_{2p-1}	1
$A_{4p-2}(x)$. 0	<u></u>	<i>/</i>	0	<i>1</i>

	x	0	α_{2p-1}	$\frac{1}{2}$	β_{2p-1}	1
-	$A_{4p-1}(x)$	0 /	<i>></i>	>> 0 <	>	0

x	0	α_{2p}	$\frac{1}{2}$	β_{2p}	1
$A_{4p}(x)$	/	<i>)</i> 0 /	<i>></i>	> 0	<i>></i>

x	0	α_{2p}	$\frac{1}{2}$	β_{2p}	1
$A_{4p+1}(x)$	0	ī	$\nearrow 0$		\

- \diamond Pour p=1, le tableau de de variations de A_2 est bien comme indiqué avec $\alpha_1=\frac{1}{2}-\frac{1}{2\sqrt{3}}$ et $\beta_1=\frac{1}{2}+\frac{1}{2\sqrt{3}}$, puis, comme $A_3'=A_2$ et $A_3\left(\frac{1}{2}\right)=-\frac{3}{4}a_3=0$ et $A_3(0)=A_3(1)=0$, le tableau de variations de A_3 est celui voulu.
 - On en déduit, puisque $A_4' = A_3$ que A_4 croît sur $\left[0,\frac{1}{2}\right]$ donc $A_4\left(\frac{1}{2}\right) = \left(\frac{1}{2^3} 1\right)a_4 > 0$ et donc, grâce à sa stricte monotonie, A_4 a une unique racine $\alpha_4 \in \left]0,\frac{1}{2}\right[$. De même, puisque $A_4(1) = a_4 < 0$, A_4 décroît sur $\left[\frac{1}{2},1\right]$ et a une unique racine $\beta_4 \in \left]\frac{1}{2},1\right[$. On a donc le tableau voulu pour A_4 et donc celui de A_5 en sachant que $A_5(0) = A_5(1) = A_5\left(\frac{1}{2}\right) = 0$.
- \diamond Si le résultat est vrai pour p, du tableau de A_{4p+1} , on déduit le signe de A'_{4p+2} qui donne la décroissance stricte de A_{4p+2} sur $\left[0,\frac{1}{2}\right]$ et sa croissance stricte sur $\left[\frac{1}{2},1\right]$. Si $A_{4p+2}\left(\frac{1}{2}\right)$ était positif, alors A_{4p+2} serait positive non nulle sur $\left[0;1\right]$ mais d'intégrale nulle, ce n'est pas possible.

Donc puisque $\frac{1}{2^{n-1}}-1<0$, $A_{4p+2}\left(\frac{1}{2}\right)<0< a_{4p+2}$. On prouve de même par l'absurde que $A_{4p+2}(0)=A_{4p+2}(1)$ est strictement positif, donc A_{4p+2} s'annule une fois et une seule dans chaque intervalle $\left]0,\frac{1}{2}\right[$ et $\left]\frac{1}{2},1\right[$. On en déduit le signe de A_{4p+2} donc les variations de A_{4p+3} , puis son signe sachant que A_{4p+3} s'annule en $0,\frac{1}{2}$ et 1. Les tableaux de variations de A_{4p+4} et A_{4p+5} s'obtiennent de même et sont bien ceux attendus.

(b) \diamond D'après les tablaux ci-dessus, $||A_{2n}||_{\infty}^{[0,1]} = \max\left(|a_{2n}|, |A_{2n}\left(\frac{1}{2}\right)|\right)$. Or pour $n \geqslant 1$, $|A_{2n}\left(\frac{1}{2}\right)| = \left(1 - \frac{1}{2^{2n-1}}\right)|a_{2n}| < |a_{2n}| \text{ donc } \forall n \geqslant 1$, $\forall x \in [0;1], |A_{2n}(x)| \leqslant |a_{2n}|$. \diamond Puisque $A_{2n+1}(1-x) = -A_{2n+1}(x)$, on a $||A_{2n+1}||_{\infty}^{[0,1]} = ||A_{2n+1}||_{\infty}^{[0,1/2]}$. Mais si $x \in [0;\frac{1}{2}]$, $|A_{2n+1}(x)| = \left|A_{2n+1}(0) + \int_0^x A_{2n}(t) dt\right| = \left|\int_0^x A_{2n}(t) dt\right| \leqslant x ||A_{2n}||_{\infty}^{[0,1]} \text{ car } a_{2n+1} = 0 \text{ si } n \geqslant 1$. Ainsi $\forall n \geqslant 1$, $\forall x \in [0;1], |A_{2n+1}(x)| \leqslant \frac{|a_{2n}|}{2}$.

III.B Formule sommatoire d'Euler-Maclaurin

III.B.1. (a) Montrons par récurrence sur $q \in \mathbb{N}$ (on peut en fait partir de 0) que :

$$f(1) - f(0) = \sum_{j=1}^{q} (-1)^{j+1} \left[A_j(t) f^{(j)}(t) \right]_0^1 + (-1)^q \int_0^1 A_q(t) f^{(q+1)}(t) dt.$$

Pour q=0, la formule se réduit à $f(1)-f(0)=\int_0^1 f'(t)\,\mathrm{d}t$ qui est vraie.

Si elle est vraie pour q, alors, par intégration par parties

$$\int_0^1 A_q(t) f^{(q+1)}(t) dt = \int_0^1 A'_{q+1}(t) f^{(q+1)}(t) dt = \left[A_{q+1}(t) f^{(q+1)}(t) \right]_0^1 - \int_0^1 A_{q+1}(t) f^{(q+2)}(t) dt,$$

et on obtient la formule pour q+1.

(b) Puisque $A_1(0) = -A_1(1) = -\frac{1}{2}$ et pour $k \ge 1$, $A_{2k}(1) = A_{2k}(0)$ et $A_{2k+1}(1) = A_{2k+1}(0) = 0$, on en déduit, pour tout $p \ge 0$:

$$f(1) - f(0) = \frac{1}{2} (f'(1) + f'(0)) - \sum_{j=1}^{p} a_{2j} (f^{(2j)}(1) - f^{(2j)}(0)) - \int_{0}^{1} A_{2p+1}(t) f^{(2p+2)}(t) dt.$$

III.B.2. \diamond En appliquant le résultat précédent à $f_k : t \mapsto f(k+t)$, on obtient

$$f(k+1) - f(k) = \frac{1}{2} (f'(k+1) + f'(k)) - \sum_{j=1}^{p} a_{2j} (f^{(2j)}(k+1) - f^{(2j)}(k)) - \int_{0}^{1} A_{2p+1}(t) f^{(2p+2)}(t+k) dt$$

$$= \frac{1}{2} (f'(k+1) + f'(k)) - \sum_{j=1}^{p} a_{2j} (f^{(2j)}(k+1) - f^{(2j)}(k)) - \int_{k}^{k+1} A_{2p+1}^{*}(t) f^{(2p+2)}(t) dt$$

donc, en sommant entre n et N, par télescopage,

$$(*) f(N+1)-f(n) = \sum_{k=n}^{N} f'(k) + \frac{1}{2} \left(f'(N+1) - f'(n) \right) - \sum_{j=1}^{p} a_{2j} \left(f^{(2j)}(N+1) - f^{(2j)}(n) \right) - \int_{n}^{N+1} A_{2p+1}^{*}(t) f^{(2p+2)}(t) dt$$

En notant ε_p le signe (constant) de $f^{(2p+2)}$ sur $[n; +\infty[$,

$$\forall t \in [n, +\infty[, \left| A_{2p+1}^*(t) f^{(2p+2)}(t) \right| \le \left\| A_{2p+1} \right\|_{\infty}^{[0,1]} \varepsilon_p f^{(2p+2)}(t),$$

et:

$$\int_{x}^{x} \left| f^{(2p+2)}(t) \right| dt = \varepsilon_{p} \int_{x}^{x} f^{(2p+2)}(t) dt = f^{(2p+1)}(x) - f^{(2p+1)}(n) \underset{x \to +\infty}{\longrightarrow} -f^{(2p+1)}(n)$$

ce qui montre l'intégrabilité de $f^{(2p+2)}$ donc de $A^*_{2p+1}f^{(2p+2)}$ sur $[n;+\infty[$. En écrivant alors (*) sous la forme :

$$\sum_{k=n}^{N} f'(k) = f(N+1) - f(n) - \frac{1}{2} \left(f'(N+1) - f'(n) \right) + \sum_{j=1}^{p} a_{2j} \left(f^{(2j)}(N+1) - f^{(2j)}(n) \right) + \int_{n}^{N+1} A_{2p+1}^{*}(t) f^{(2p+2)}(t) dt,$$

et puisque selon les hypothèses, pour tout j, $f^{(j)}(N+1) \xrightarrow[N \to +\infty]{} 0$, ceci montre la convergence de $\sum_{k \ge n} f'(k)$ et donne, à la limite,

$$\sum_{k=n}^{+\infty} f'(k) = -f(n) + \frac{1}{2}f'(n) - \sum_{j=1}^{p} a_{2j}f^{(2j)}(n) + \int_{n}^{+\infty} A_{2p+1}^{*}(t)f^{(2p+2)}(t) dt.$$

♦ L'inégalité vue plus haut donne

$$\left| \int_{n}^{+\infty} A_{2p+1}^{*}(t) f^{(2p+2)}(t) \, \mathrm{d}t \right| \leq \|A_{2p+1}\|_{\infty}^{[0,1]} \varepsilon_{p} \int_{n}^{+\infty} f^{(2p+2)}(t) \, \mathrm{d}t = -\varepsilon_{p} \|A_{2p+1}\|_{\infty}^{[0,1]} f^{(2p+1)}(n)$$

donc, avec le résultat de A.3.b, et vu que le signe du majorant est positif,

$$\left| \int_{p}^{+\infty} A_{2p+1}^*(t) f^{(2p+2)}(t) \, \mathrm{d}t \right| \leqslant \frac{|a_{2p}|}{2} \left| f^{(2p+1)}(n) \right| \, .$$

III.B.3. En appliquant la formule ci-dessus à $f: x \mapsto \frac{1}{(1-\alpha)x^{\alpha-1}}$ au rang p-1, ce qui est légitime car, comme on a vu au II.B.1, f est de classe \mathscr{C}^{∞} sur tout $[n; +\infty[$ pour $n \in \mathbb{N}^*, f \leq 0$, et

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}_+^*, \ f^{(n)}(x) = (-1)^{n-1} \frac{\alpha \cdots (\alpha + n - 2)}{x^{\alpha + n - 1}}$$

est du signe de $(-1)^{n-1}$ et pour tout $n \in \mathbb{N}$, $f^{(n)}(x) \underset{x \to +\infty}{\longrightarrow} 0$, on obtient :

$$\int_{n}^{+\infty} A_{2p-1}^{*}(t) f^{(2p)}(t) dt = O\left(\frac{1}{n^{2p+\alpha-1}}\right).$$

IV Compléments sur l'erreur

IV.A Encadrement de l'erreur

IV.A.1. Si $n \equiv 1 \mod 4$, alors selon **III.A.3.a**, $A_n \leqslant 0$ sur $\left[0, \frac{1}{2}\right]$ et $A_n \geqslant 0$ sur $\left[\frac{1}{2}, 1\right]$.

Donc, l'inégalité : $\forall t \in \left[0, \frac{1}{2}\right], \ g(t) \leqslant g\left(\frac{1}{2}\right), \ \text{implique} : \forall t \in \left[0, \frac{1}{2}\right], \ A_n(t)g(t) \geqslant g\left(\frac{1}{2}\right)A_n(t).$ De même, $\forall t \in \left[\frac{1}{2}, 1\right], \ g(t) \geqslant g\left(\frac{1}{2}\right) \text{ implique} : \forall t \in \left[\frac{1}{2}, 1\right], \ A_n(t)g(t) \geqslant g\left(\frac{1}{2}\right)A_n(t).$

On a donc :
$$\forall t \in [0,1], \ A_n(t)g(t) \geqslant g\left(\frac{1}{2}\right)A_n(t) \ \text{donc} \ \int_0^1 A_n(t)g(t) \ \text{d}t \geqslant g\left(\frac{1}{2}\right)\int_0^1 A_n(t) \ \text{d}t = 0 \ \text{car} \ n \geqslant 1.$$

Le cas $n \equiv 3 \mod 4$ se traite de la même façon.

On peut d'ailleurs résumer les deux cas en :

$$\forall p \in \mathbb{N}, \ (-1)^p \int_0^1 A_{2p+1}(t)g(t) \, \mathrm{d}t \geqslant 0.$$

IV.A.2. \diamond Par définition (vue au **II.B.2**) et d'après [**III.B.3**], on a pour $p \geqslant 1$,

$$\widetilde{S}_{n,2p}(\alpha) = S(\alpha) - R_n(\alpha) - f(n) + \frac{1}{2}f'(n) - \sum_{j=1}^p a_{2j}f^{(2j)}(n) = S(\alpha) - \int_n^{+\infty} A_{2p+1}^*(t)f^{(2p+2)}(t) dt.$$

Or:

$$\int_{n}^{+\infty} A_{2p+1}^{*}(t) f^{(2p+2)}(t) dt = \sum_{k=n}^{+\infty} \int_{k}^{k+1} A_{2p+1}^{*}(t) f^{(2p+2)}(t) dt = \sum_{k=n}^{+\infty} \int_{0}^{1} A_{2p+1}(t) f^{(2p+2)}(t+k) dt,$$

et, en posant, pour $t \in [0;1]$, $g_k(t) = f^{(2p+2)}(t+k)$, on a $g'_k(t) = f^{(2p+3)}(t+k) \ge 0$ (voir **III.B.3**) donc on peut appliquer le résultat de **IV.A.1**.

On obtient que pour tout $k \geqslant n$, $\int_0^1 A_{2p+1}(t) f^{(2p+2)}(t+k) dt$ est du signe de $(-1)^p$ et donc $S(\alpha) - \widetilde{S}_{n,2p}(\alpha)$ est également du signe de $(-1)^p$.

Ceci donne donc $\widetilde{S}_{n,4p}(\alpha) \leqslant S(\alpha) \leqslant \widetilde{S}_{n,4p+2}(\alpha)$ et $\widetilde{S}_{n,4p}(\alpha) \leqslant S(\alpha) \leqslant \widetilde{S}_{n,4p-2}(\alpha)$.

IV.A.3. On a donc
$$\left| S(3) - \widetilde{S}_{100,4}(3) \right| \leqslant \left| a_6 f^{(6)}(100) \right|$$
. Or $f^{(6)}(x) = (-1)^5 \frac{3 \times 4 \times 5 \times 6 \times 7}{x^8} = -\frac{7 \times 6!}{2 \, x^8}$ (voir **III.B.3**) et $a_6 = \frac{1}{42.6!}$ donc $\left| S(3) - \widetilde{S}_{100,4}(3) \right| \leqslant \frac{1}{12} \, 10^{-16} < 10^{-17}$.

IV.B Séries de Fourier

Résultats admis, les séries de Fourier n'étant plus au programme.

IV.C Comportement de l'erreur

IV.C.1. Pour $p \ge 1$, on a

$$f^{(2p)}(n) = -\frac{\alpha \cdots (\alpha + 2p - 2)}{n^{\alpha + 2p - 1}}$$

et

$$f^{(2p+2)}(n) = -\frac{\alpha \cdots (\alpha + 2p - 2)(\alpha + 2p - 1)(\alpha + 2p)}{n^{\alpha + 2p + 1}} = \frac{(\alpha + 2p - 1)(\alpha + 2p)}{n^2} f^{(2p)}(n),$$

et, avec **B.4**,
$$\left| \frac{a_{2p+2} f^{(2p+2)}(n)}{a_{2p} f^{(2p)}(n)} \right| = \frac{(\alpha + 2p - 1)(\alpha + 2p) S(2p + 2)}{4n^2 \pi^2 S(2p)}$$
.

IV.C.2. L'encadrement du **I.A.3** montre que $S(\alpha) \underset{\alpha \to +\infty}{\longrightarrow} 1$ donc, à n fixé, $\left| \frac{a_{2p+2} f^{(2p+2)}(n)}{a_{2p} f^{(2p)}(n)} \right| \underset{p \to +\infty}{\longrightarrow} +\infty$ et notamment, il existe p_0 tel que $\forall p \geqslant p_0$, $\left| \frac{a_{2p+2} f^{(2p+2)}(n)}{a_{2p} f^{(2p)}(n)} \right| > 1$ et donc dans l'écriture

$$\widetilde{S}_{n,2p} = \sum_{k=1}^{n-1} \frac{1}{k^{\alpha}} - f(n) + \frac{1}{2} f'(n) - \sum_{j=1}^{p} a_{2j} f^{(2j)}(n),$$

la dernière somme est somme partielle d'une série (alternée) grossièrement divergente.

On en conclut que n étant fixé, la suite $\left(\widetilde{S}_{n,2p}(\alpha)\right)_{p\geqslant 1}$ ne converge pas vers $S(\alpha)$ quand p tend vers $+\infty$.

Il faut donc choisir simultanément p et n pour que la majoration obtenu au **A.2** soit la meilleure, c'est-à-dire $|a_{2p+2}f^{(2p+2)}(n)|$ le plus petit possible.