

Las Americas Institute of Technology

Nombre:

Jesus Alberto Beato Pimentel.

Matricula:

2023-1283.

Institución académica:

Instituto Tecnológico de las Américas (ITLA).

Materia:

Física Aplicada 1.

Tema del trabajo:

Practica II, Movimiento rectilíneo.

Maestra/o:

Lidia Noelia Almonte Rosario.

Fecha:

05/10/2023.

Las Americas Institute of Technology

Física Aplicada

TEMA: Movimiento rectilíneo

1) Un ave vuela hace el este. Su distancia tomando como referencia un rascacielos esta por $x(t) = 28.0 \ m + (12.4 \ ^m) \ t - (0.0450 \ _m_3) \ t^3$.

s s

¿cual es la velocidad instantanea del ave cuando t = 8.00 s?

Kusica Aplicada
Practica Monimaianto restelinea
1) Un ane mula hacia d este su distancia temando + (124 %) + - (0.0460 m 3) ()
à buil es la extoridad instantanca del une aumo l-80001
U1 = lim Ax At-10 At
$V_{1}(t) = (12.4 \text{ m/s}) - (0.125 \text{ m/s}) t^{2}$
V: (8.002) = (12.4 m/2) - (0.135 m/2) (8.005) Vi (8.002) = (12.4 m/2) - (0.135 m/2) (41.002) Vi (8.002) = 12.4 m/2 - 8.44 m/2
Vi (8.00s) = 3.76 m/s

2) Un automóvil viaja en la dirección +x sobre un camino recto y nivelado. En los primeros 4.00 s de su movimiento, la velocidad media del automóvil es $v_{med-x} = 6.25 \ m/s$ ¿Cuál distancia viaja el automóvil en 4 s?

3) La velocidad de un automóvil en función del tiempo está dada por

², donde
$$\alpha = 3.00$$
 m y $\beta = 0.100$ — m/s^3 . $v_x(t) = \alpha + \beta t$ s

a) Calcule la aceleración media entre t=0 y t= 5.00 s.

2) Ha velocidad de um automovil en función del transperson del
a) labarle la acolonación media entre +=0 ny +=5.000
amed = Au/At
$\Delta v = V_x(5.00s) - V_x(0)$, $\Delta t = 5.00s - 0$
and = (5.000) - (0) = (0x + \beta (5.000) - (0x + \beta (0))^2 5.000
Amed = $\alpha + 26B - \alpha = 25B = 26(0.100 \text{ m/s}^3)$ 5.00s 5.00s 5.00s

b) Calcule la aceleración instantánea en t = 0 y en t = 5.00 s

1	5.00x 0.50 m/s2
ы	Calcula la acaleración instantamea en +=0 y+=500s.
	C = 3.00 m/s $C = 3.00 m/s$ $C = 3.00 m/s$ $C = 3.00 m/s$
	+=0 2x (0) = 44 (3.00 m/s + 0.00 m/s.(0)) 2x (0) = 0 m/s.
100	t = (6) =
	1x(5,000) = 44(3,00 m/s + 0.400 m/s - (5,000))
-	1x(5 ms) = 44 (3 m m/s + 2 5 m/s)
	ax(5.000) = am/e2

4) La posición del parachoques frontal de un automóvil de pruebas controlado por un microprocesador está dada por

$$x(t) = 2.17 m + (4.80 \underline{\ }_{s}^{m_2}) t^2 - (0.100 \underline{\ }_{s}^{m_6}) t^6$$

a) Obtenga su posición y aceleración en los instantes en que tiene velocidad cero. Ej.: 2.18

4) Plu posición del pagachaques frantal de um automo vel de princha controlado por un micropassandos está dada pa:
X(t) = 2.17m + (4.80 32) +2 - (0.100 m) +6
a) Obtenga su posición y acelegación en los instantes en que Tiemo velocidad cono. V(+)=0
en que Tiene velocidad cono. V(+)=0
V(+)= \$4 (2.49 m + 48m/c ² .4°-0.405 m/c ⁶ .4°) 0 = \$44 (2.13 m + 4.5 m/c ² .4°-0.405 m/c ⁶ .4°) = 9.60 m/c ² .4 - 0.605 m/c ⁵ .4° + (9.60 m/c ² -0.605 m/c ⁵ .4°)=0
$\frac{4^{4}-9.60\text{m/s}^{2}}{0.600\text{m/s}^{2}}=46.00s^{2}-16.00s^{2}-2.83s}$
Posicion y aceleración del automóvil
H-(0s)
x(0) - 2.17m a(0) = 4+ (9.60ml2 - (-0.600 m/25.6) 1 = 2.835
Pasicion: x(2.83) = 2.17m + 4.50 m/s2. (2.835) -0.400 m/s6.
11.139
aceleración:
A(2.83)= 41(9.60 m/s. +-0.600 m/s. +5)

Movimiento con aceleración constante

- 5) Un antílope corre con aceleración constante y cubre la distancia de 70.0 m entre dos puntos en 7.00 s. Su rapidez al pasar por el segundo punto es 15.0 m/s.
- a) ¿Qué rapidez tenía en el primer punto?
- b) ¿Qué aceleración lleva?

~	Movimiento con acoleración constante
5)	Um antilope come con archeación constante y cubos la distancia de 70.0 m entre dos puntos em 7.00 se rapidez al pasar por el segundo punto es 16.0 m/s.
a)_	¿ Qué supidez temia en al primer punto!
	d= lit + = at2
	70.0m = (4ms) + 2 (a) (7.00s)2
	70.0m - 7.00 + 24.5 a a - 70.0m - 7.00 vi
	24 5
	15.0m/s (V. 490.0m - 7.00m) 7.00s
	15.0m/s = V. + 490.0m - 49.0m . 7.00

367.5m = -24.5 vi + 490.0m - 49.0vi	
-127.5m = -24.5 Wi + 49.0 Wi $-122.5m = 24.5 Wi$	1
	1
$\frac{1}{24.5} = \frac{1}{5.00} = 1$	1
b) à Qué aceleración lleva!	-
70.0m = (5.00 m/s) · (7.00s) + ½ 2 · (7.00s) ² 70.0m = 35.0m + ½ 2 · 49.0s ²	1
- 36.0m = 2 8 . 49.0s2	-
$\frac{d = 2.36 \text{ om}}{49.08^2} = \frac{40.0 \text{ m}}{49.08^2} = \frac{1.43 \text{ m/s}^2}{49.08^2}$	

Cuerpos en Caídas libre

6) Un malabarista arroja un pino del juego de bolos verticalmente hacia arriba con una velocidad inicial de 8.20 m/s. ¿Cuánto tiempo transcurre hasta que el pino regresa a la mano del malabarista?

1 lm malabasista arroja um pino del juego de boles renticalmente hacia arroja um pino del juego de boles de 8.20 mk. à luánto tiempo transcurre hasta que el pino regresa a la mamo del malabanista? h = ho + u + - ½ 9 t ³ 0 = 0 + (8.20 m/e) t - ½ (9.81 m/s ²) t ² t = -b ± \b^2 - 42c
= -D I VD - 4qC
2 = - 1/2 (9.81m/s) b = 8.20 m/s
C=0
$\frac{1}{2(-\frac{1}{2})(9.81 \text{ m/s}^2) \cdot 0}{2(-\frac{1}{2})(9.81 \text{ m/s}^2) \cdot 0}$
+= -8.20 m/s ± 1/67 24 m/s² -4.905 m/s²
+=-8.20 mk ± 8.20 mls = 0 = [0s] -4.905 mls ² -4.905 m/s ²

Velocidad y posición por integración

7) La aceleración de una motocicleta está dada por $a_x(t) = At - Bt^2$, donde A = 1.50 m/s^3 y B = 0.120 m/s^4. La motocicleta esta en reposo en el origen cuando t = 0. Obtenga su posición y velocidad en función de t.

-	Valocidad ny porición por integración.
7)	La acelegación de uma motocideta está dada por 2.(+)= At - B+² dende A= 1.50 m/s³ y B=0.120 m/s². La motocideta esta em reposo em el origen wande t=0. Ostenga su posición y velocidad em función de t A=1.50 m/s²
	0 0 100 101
	ax(+): A+ - B
	Ux(+)= S(AI-Bt2) dt Ux(+)= 4 AI2- 4 BI3+ CI
	0= ± (0) + (1) + (1)
-6	$\begin{array}{l} V_{x}(4) = \frac{1}{2} Af^{2} - \frac{1}{3} Bf^{3} \\ X(4) = \int (\frac{1}{2} Af^{2} - \frac{1}{3} Bf^{3}) df \\ X(4) = \frac{1}{6} Af^{3} - \frac{1}{2} Bf^{4} + Cz \\ y = \frac{1}{6}(0) - \frac{1}{12}(0) + Cz \\ x = 0 \\ x = 0 \end{array}$

- 8) La aceleración de un autobús está dada por $a_x(t) = at \ donde \ a = 1.2 \ m/s^3$
- a) Si la velocidad del autobús en el tiempo t = 1.0 s es 5.0 m/s, ¿Cuál será en t = 2 s?

8) Ha accleración de um autobis esta dada por 2x(+) = 2t donde 2=1.2 m/s ³	1
a) Si la relocidad del cuitosus em al Tiempo += 1.08 es 5.0 m/s d'luid sona em += 28?	1
U(+)= 16+ 5 a(+) H	
$ V(t) = 5.0 \text{ m/s} + \int_{0.6 \text{ m/s}}^{2.0 \text{ s}} 1.2 \text{ m/s}^{3} dt $ $ V(t) = 5.0 \text{ m/s} + [0.6 \text{ m/s}^{3} \cdot t]_{0} $	
$V(t) = 5.0 \text{m/s} + (0.6 \text{m/s}^3 \cdot 2.0 \text{s})$ $V(t) = 5.0 \text{m/s} + 1.2 \text{m/s}$	
V(+) = 6.2m/s	

b) Si la posición del autobús en t = 1.0 s es 6.0 m, ¿Cuál será en t = 2

