(a)	Identify the number of neutrons in a nucleus of polonium-210 $\binom{210}{84}$ Po.
	Tick (✓) one box.
	84
	126
	210
	294
(b)	A polonium-210 nucleus is formed when a stationary nucleus of bismuth-210 decays. A beta-minus (β^-) particle is emitted in this decay. Outline, with reference to β^- decay, why bismuth-210 and polonium-210 have different
	proton numbers.

(c)

The kinetic energies of β^- particles emitted from a sample of bismuth-210 are analysed. These β^- particles have a range of kinetic energies.

The total energy released when each nucleus of bismuth-210 decays to a nucleus of polonium-210 is 1.2 MeV.

Figure 1 shows the variation with E_k of the number of β^- particles that have the kinetic energy E_k .

number of β^- with E_k $0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \quad 1.2$ $E_k \, / \, \mathrm{MeV}$

explain now during β ⁻ de	-igure 1 supp	ort the hypo	tnesis that a t	nira particie is	produce

(d) This third particle is an electron antineutrino.

Explain why an electron antineutrino, rather than an electron neutrino, is produced durin β^- decay.	ng

(e) A large tank of water is used as part of an electron antineutrino detector. An electron antineutrino $\overline{\mathbf{v}}_{\mathbf{e}}$ enters the tank and interacts with a proton (p).

Figure 2 represents this interaction.

Figure 2

Identify X and Y.

(2)

(2)

			
The range of the electromag			
The table below gives the ranuclear interaction.	ange of the strong nucl	ear interaction and the range o	if the weal
Interaction	Range / m		
	10 ⁻¹⁵		
strong nuclear			
strong nuclear weak nuclear	10 ⁻¹⁸		
weak nuclear Deduce whether the positro	n or the electron antine	eutrino is likely to travel the sho	orter
weak nuclear	n or the electron antine	utrino is likely to travel the sho	orter
weak nuclear Deduce whether the positro	n or the electron antine	eutrino is likely to travel the sho	orter
weak nuclear Deduce whether the positro	n or the electron antine	eutrino is likely to travel the sho	orter
weak nuclear Deduce whether the positro	n or the electron antine	eutrino is likely to travel the sho	orter

(Total 15 marks)

5.

A muon and an antimuon annihilate to produce the minimum number of photons.

What is the maximum wavelength of the photons?

A $5.9 \times 10^{-15} \text{ m}$

0

B 1.2×10^{-14} m

0

C $5.9 \times 10^{-9} \text{ m}$

0

D 1.2×10^{-8} m

0

(Total 1 mark)

6.

Which row describes the nature of the strong nuclear force between two nucleons at separations of 0.25 fm, 2.0 fm and 8.0 fm?

	At a separation of 0.25 fm	At a separation of 2.0 fm	At a separation of 8.0 fm	
Α	attractive	repulsive	negligible	0
В	repulsive	attractive	attractive	C
С	negligible	repulsive	attractive	С
D	repulsive	attractive	negligible	0

(Total 1 mark)

7.

What are the products when a free neutron decays?

A p + e^- + v_e

0

B p + e⁺ + \bar{v}_{e}

0

C p + e⁻ + \bar{v}_{e}

0

D p + e⁺ + $v_{\rm e}$

0

(Total 1 mark)

(2)

3		PhysicsAndMa	athsTutor.
1.	(a)	Determine whether the following reaction is a possible decay for the neutral pion π^0 .	
		$\pi^0 ightarrow e^- + \mu^+ + \overline{\nu}_e$	
			(2)
	(b)	State the two possible quark configurations of a π^0 .	
		1	
		2	
			(1)
	(c)	A student suggests that the kaon K^0 and the anti-kaon $\overline{K^0}$ are the same particle.	

A student suggests that the kaon K^0 and the anti-kaon $\overline{K^0}$ are the same particle.
Discuss whether this suggestion is correct.

The particle would have a rest energy between that of an electron and half that of a nucleon. Discuss whether a kaon, a muon and a pion each have the properties of the predicted particle. Information about these three particles is in the Data and Formulae Booklet.	nucleon. Discuss whether a kaon, a muon and a pion each have the properties of the predicted particle.	The nucleus is held together by a force. It was predicted that a particle exists that is responsible for this force. The particle itself must experience this force.
particle.	particle.	•
Information about these three particles is in the Data and Formulae Booklet.	Information about these three particles is in the Data and Formulae Booklet.	• • • • • • • • • • • • • • • • • • • •
·		Information about these three particles is in the Data and Formulae Booklet.

(4)

(Total 9 marks)

A deuterium nucleus and a tritium nucleus fuse together to produce a helium nucleus and particle **X**.

$${}^2_1\mathrm{H} + {}^3_1\mathrm{H} \rightarrow {}^4_2\mathrm{He} + \mathbf{X}$$

What is X?

Α	an electron	0

(Total 1 mark)