UIT2504 Artificial Intelligence Heuristics-Based Search Strategies

C. Aravindan <AravindanC@ssn.edu.in>

Professor of Computer Science SSN College of Engineering

August 10, 2024

Searching for a solution

- Start with initial state in the working set
- Iterate:
 - Return failure if the working set is empty
 - Choose and remove a state x from the working set
 - If it is a goal state, return solution
 - Else, expand x and add the successor states S(x) to the working set

Search Strategies

- Uninformed:
 - Breadth-First
 - Depth-First
 - Iterative Deepening
 - Bi-Directional Search
- Informed (Heuristics):
 - Best-first Greedy
 - A*
 - Local Search Strategies
- Constraint Satisfaction

Performance Measures

- Completeness
- Time Complexity
- Space Complexity
- Optimality

Exercise

 Practice all the basic search strategies to find a route from Arad to Bucharest in the following state graph

Questions?

• Sometimes, it may be possible to design an evaluation function f(s) that evaluates the "badness" (to be minimized) or "goodness" (to be maximized) of a state s

- Sometimes, it may be possible to design an evaluation function f(s) that evaluates the "badness" (to be minimized) or "goodness" (to be maximized) of a state s
- In such cases, the most desirable state may be chosen from the working set

- Sometimes, it may be possible to design an evaluation function f(s) that evaluates the "badness" (to be minimized) or "goodness" (to be maximized) of a state s
- In such cases, the most desirable state may be chosen from the working set
- Working set is maintained as a priority queue based on the evaluation function f

C. Aravindan (SSN) Al August 10, 2024

- Sometimes, it may be possible to design an evaluation function f(s) that evaluates the "badness" (to be minimized) or "goodness" (to be maximized) of a state s
- In such cases, the most desirable state may be chosen from the working set
- ullet Working set is maintained as a priority queue based on the evaluation function f
- ullet Obviously, the quality of search depends on the evaluation function f

C. Aravindan (SSN) Al August 10, 2024

• Usually, such an evaluation function f(s) is designed based on some heuristics h(s) — estimation of cost of reaching a goal state from state s

- Usually, such an evaluation function f(s) is designed based on some heuristics h(s) estimation of cost of reaching a goal state from state s
- For example, can you think of a heuristics for the route finding problem in a map?

- Usually, such an evaluation function f(s) is designed based on some heuristics h(s) estimation of cost of reaching a goal state from state s
- For example, can you think of a heuristics for the route finding problem in a map? — Straight line distance (SLD) from the current city to the destination city

- Usually, such an evaluation function f(s) is designed based on some heuristics h(s) estimation of cost of reaching a goal state from state s
- For example, can you think of a heuristics for the route finding problem in a map? — Straight line distance (SLD) from the current city to the destination city
- Heuristics should be an easy function to compute!

8/22

C. Aravindan (SSN) Al August 10, 2024

- Usually, such an evaluation function f(s) is designed based on some heuristics h(s) estimation of cost of reaching a goal state from state s
- For example, can you think of a heuristics for the route finding problem in a map? — Straight line distance (SLD) from the current city to the destination city
- Heuristics should be an easy function to compute!
- $h(s^*)$ should be 0 for any goal state s^*

Example: Route finding problem

Straight-line distan	ice
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Find route from Arad to Bucharest

3	2	7
5	8	
1	4	6

• Consider the sliding puzzle, such as

	3	2	7
5	5	8	
	1	4	6

• What may be a good heuristics for this state space?

	3	2	7
5	5	8	
	1	4	6

- What may be a good heuristics for this state space?
- $h_1(s)$: Number of misplaced tiles

• Consider the sliding puzzle, such as

	3	2	7
5	5	8	
	1	4	6

- What may be a good heuristics for this state space?
- $h_1(s)$: Number of misplaced tiles for the above state $h_1(s)=7$

	3	2	7
5	5	8	
	1	4	6

- What may be a good heuristics for this state space?
- $h_1(s)$: Number of misplaced tiles for the above state $h_1(s)=7$
- \bullet $h_2(s)$: Sum of Manhattan distances of tiles from their goal positions

	3	2	7
5	5	8	
	1	4	6

- What may be a good heuristics for this state space?
- $h_1(s)$: Number of misplaced tiles for the above state $h_1(s)=7$
- $h_2(s)$: Sum of Manhattan distances of tiles from their goal positions for the above state $h_2(s) = 2 + 0 + 2 + 2 + 1 + 1 + 4 + 1 = 13$

• Consider the sliding puzzle, such as

	3	2	7
5	5	8	
	1	4	6

- What may be a good heuristics for this state space?
- $h_1(s)$: Number of misplaced tiles for the above state $h_1(s)=7$
- $h_2(s)$: Sum of Manhattan distances of tiles from their goal positions for the above state $h_2(s) = 2 + 0 + 2 + 2 + 1 + 1 + 4 + 1 = 13$
- Which heuristics is better?

10 / 22

C. Aravindan (SSN) Al August 10, 2024

	3	2	7
5	5	8	
	1	4	6

- What may be a good heuristics for this state space?
- $h_1(s)$: Number of misplaced tiles for the above state $h_1(s)=7$
- $h_2(s)$: Sum of Manhattan distances of tiles from their goal positions for the above state $h_2(s) = 2 + 0 + 2 + 2 + 1 + 1 + 4 + 1 = 13$
- Which heuristics is better? an estimate which is closer to the actual is always better!

	3	2	7
5	5	8	
	1	4	6

- What may be a good heuristics for this state space?
- $h_1(s)$: Number of misplaced tiles for the above state $h_1(s)=7$
- $h_2(s)$: Sum of Manhattan distances of tiles from their goal positions for the above state $h_2(s) = 2 + 0 + 2 + 2 + 1 + 1 + 4 + 1 = 13$
- Which heuristics is better? an estimate which is closer to the actual is always better!
- We say that h_2 dominates h_1

	3	2	7
5	5	8	
	1	4	6

- What may be a good heuristics for this state space?
- $h_1(s)$: Number of misplaced tiles for the above state $h_1(s)=7$
- $h_2(s)$: Sum of Manhattan distances of tiles from their goal positions for the above state $h_2(s) = 2 + 0 + 2 + 2 + 1 + 1 + 4 + 1 = 13$
- Which heuristics is better? an estimate which is closer to the actual is always better!
- We say that h_2 dominates h_1
- An admissible heuristics is one which does not overestimate

 \bullet Consider the sliding puzzle, such as

	3	2	7
5	5	8	
	1	4	6

- What may be a good heuristics for this state space?
- $h_1(s)$: Number of misplaced tiles for the above state $h_1(s)=7$
- $h_2(s)$: Sum of Manhattan distances of tiles from their goal positions for the above state $h_2(s) = 2 + 0 + 2 + 2 + 1 + 1 + 4 + 1 = 13$
- Which heuristics is better? an estimate which is closer to the actual is always better!
- We say that h_2 dominates h_1
- An admissible heuristics is one which does not overestimate in our example, both $h_1(x)$ and $h_2(x)$ are admissible

Example: *n*-queens problem

• What may a good heuristics for *n*-queens problem?

Example: *n*-queens problem

- What may a good heuristics for n-queens problem?
- Cost estimate: Number of pairs of queens that are attacking each other, either directly or indirectly

Example: *n*-queens problem

C. Aravindan (SSN)

- What may a good heuristics for n-queens problem?
- Cost estimate: Number of pairs of queens that are attacking each other, either directly or indirectly

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	13	16	13	16
<u>w</u>	14	17	15		14	16	16
17	₩	16	18	15	₩	15	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
18	14	₩	15	15	14	w	16
14	14	13	17	12	14	12	18

Questions?

 As a simple strategy, we may let the evaluation function f to be the same as the heuristics function h

- As a simple strategy, we may let the evaluation function f to be the same as the heuristics function h
- Nodes in the working set (priority queue) are organized based on estimated cost and the one with the least cost is given preference

- As a simple strategy, we may let the evaluation function f to be the same as the heuristics function h
- Nodes in the working set (priority queue) are organized based on estimated cost and the one with the least cost is given preference
- This is a generalization of greedy design strategy, that you have learnt in the previous semester

13 / 22

C. Aravindan (SSN) AI August 10, 2024

Straight-line distan	ce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Find the best route from Arad to Bucharest

Straight-line distance	
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Straight-line distar	ice
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374
	217

Solution found: Arad \rightarrow Sibiu \rightarrow Fagaras \rightarrow Bucharest with total cost

Straight-line distan	ce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Solution found: Arad \rightarrow Sibiu \rightarrow Fagaras \rightarrow Bucharest with total cost 450 ls it optimal?

C. Aravindan (SSN) AI August 10, 2024

Straight-line distan	ce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Solution found: Arad \rightarrow Sibiu \rightarrow Fagaras \rightarrow Bucharest with total cost 450 ls it optimal? — No!

19 / 22

Straight-line distance	
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
7orind	274

20 / 22

Straight-line distan	ce
to Bucharest	cc
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Find a path from lasi to Fagaras

• Is Greedy strategy complete?

- Is Greedy strategy complete? No! not in general
- Is it optimal?

- Is Greedy strategy complete? No! not in general
- Is it optimal? No!
- Time complexity?

- Is Greedy strategy complete? No! not in general
- Is it optimal? No!
- Time complexity? $O(b^m)$
- Space complexity?

- Is Greedy strategy complete? No! not in general
- Is it optimal? No!
- Time complexity? $O(b^m)$
- Space complexity? $O(b^m)$

Questions?

