

IRF530 IRF530FI

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR

TYPE	V _{DSS}	R _{DS(on)}	I _D
IRF530	100 V	< 0.16 Ω < 0.16 Ω	16 A
IRF530FI	100 V		11 A

- TYPICAL $R_{DS(on)} = 0.12 \Omega$
- AVALANCHE RUGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- REPETITIVE AVALANCHE DATA AT 100°C
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- 175°C OPERATING TEMPERATURE
- APPLICATION ORIENTED CHARACTERIZATION

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SOLENOID AND RELAY DRIVERS
- DC-DC & DC-AC CONVERTER
- AUTOMOTIVE ENVIRONMENT (INJECTION, ABS, AIR-BAG, LAMP DRIVERS Etc.)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Parameter Value		
		IRF530	IRF530FI	
V_{DS}	Drain-source Voltage (V _{GS} = 0)	10	00	V
V_{DGR}	Drain- gate Voltage (RGS = 20 k Ω)	10	00	V
V_{GS}	Gate-source Voltage	±	20	V
I _D	Drain Current (continuous) at T _c = 25 °C	16	11	Α
I _D	Drain Current (continuous) at T _c = 100 °C	11	7.8	А
I _{DM} (•)	Drain Current (pulsed)	64	64	Α
P_{tot}	Total Dissipation at T _c = 25 °C	90	40	W
	Derating Factor	0.6	0.27	W/°C
Viso	Insulation Withstand Voltage (DC)	-	2000	V
T _{stg}	Storage Temperature	-65 to 175		°C
Tj	Max. Operating Junction Temperature	17	°C	

^(•) Pulse width limited by safe operating area

March 1998 1/6

⁽¹⁾ $I_{SD} \le 11 \text{ A}$, $di/dt \le 200 \text{ A/}\mu\text{s}$, $V_{DD} \le V_{(BR)DSS}$, $Tj \le T_{JMAX}$

THERMAL DATA

			TO-220	TO220-FI	
R _{thj-case}	Thermal Resistance Junction-case	Max	1	3.75	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62	5	°C/W
R _{thc-sink}	Thermal Resistance Case-sink	Тур	0.	.5	°C/W
Tı	Maximum Lead Temperature For Soldering Pu	ırpose	30	00	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I_{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, δ < 1%)	16	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_i = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	100	mJ

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	900			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating$ $T_c = 125 ^{\circ}C$			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	2	3	4	٧
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V I _D = 8 A		0.12	0.16	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 \text{ V}$	16			Α

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_{D} = 8 \text{ A}$	5	8		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0		950 150 50	1300 270 70	pF pF pF

2/6

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Time Rise Time	$V_{DD} = 50 \text{ V}$ $I_{D} = 8 \text{ A}$ $R_{G} = 4.7 \Omega$ $V_{GS} = 10 \text{ V}$		12 20	16 28	ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} =80 V I _D =16 A V _{GS} = 10 V		32 9 13	44	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	V _{DD} = 80 V I _D =16 A		11	15	ns
t _f	Fall Time	$R_G = 4.7 \Omega$ $V_{GS} = 10 V$		12	17	ns
t _c	Cross-over Time			25	35	ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				16 64	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 16 A V _{GS} = 0			1.6	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 16 \text{ A}$		150		ns
Qrr	Reverse Recovery	,		0.8		μC
I _{RRM}	Charge Reverse Recovery Current			10		А

^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %
(•) Pulse width limited by safe operating area

TO-220 MECHANICAL DATA

DIM.		mm			inch	
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

4/6

ISOWATT220 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.4		0.7	0.015		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

57

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1998 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

6/6