AMME4710: COMPUTER VISION AND IMAGE PROCESSING WEEK 11

Dr. Mitch Bryson

School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney

Facial Detection and Recognition

 Face detection and recognition used in a range of applications including identity verification, security, social media

Face Detection:

- Detecting the presence (and position) of human faces in images
- Facial Recognition:
 - Determining that a face in an image belongs to a certain person X

Applications/Examples

- Face Priority Auto-exposure/focus
- Advertising screens (e.g. Cooler Screens):
 - Detect/recognise faces for targeted advertising
- Apple Face ID:
 - Uses structured light depth sensing plus IR camera to measure face (can't be fooled by pictures, latex models etc.)
 - Built in gaze detection

Challenges

- Variations that make face recognition challenging:
 - (a) Head pose
 - (b) Age
 - (c) Illumination changes
 - (d) Changes in expression
 - (e) Partial occlusion

D. Trigueros, L. Meng and M. Hartnett, "Face Recognition: From Traditional to Deep Learning Methods", https://arxiv.org/abs/1811.00116

Pipelines and Popular Algorithms

- Typical pipeline for facial recognition:
 - Face detection: detect instances of human faces for further analysis
 - Face alignment: use landmark features on the face to normalise the size and orientation
 - Face recognition: apply machine learning principles to classify face according to a specific person X
- Popular Algorithms:
 - Face Detection:
 - Viola-Jones face detector (Haar cascade classifiers)
 - Face Recognition:
 - Eigenfaces
 - Deepface

- A seminal approach to face detection: takes input images and returns bounding box coordinates for detected faces
- Key properties of the approach include robust detection (low false positives/negatives) and computationally fast detection (at the cost that the algorithm is slow to train)

- Algorithm works by scanning a 24x24 pixel region over the image
- At each location, a detector is used to check if the region in question is a face
- The algorithm is then run at increasing scales (detector region size increased), until the region becomes the same size as the image

- Algorithm works by scanning a 24x24 pixel region over the image
- At each location, a detector is used to check if the region in question is a face
- The algorithm is then run at increasing scales (detector region size increased), until the region becomes the same size as the image

- Algorithm works by scanning a 24x24 pixel region over the image
- At each location, a detector is used to check if the region in question is a face
- The algorithm is then run at increasing scales (detector region size increased), until the region becomes the same size as the image

- Algorithm works by scanning a 24x24 pixel region over the image
- At each location, a detector is used to check if the region in question is a face
- The algorithm is then run at increasing scales (detector region size increased), until the region becomes the same size as the image

- Algorithm works by scanning a 24x24 pixel region over the image
- At each location, a detector is used to check if the region in question is a face
- The algorithm is then run at increasing scales (detector region size increased), until the region becomes the same size as the image

- Algorithm works by scanning a 24x24 pixel region over the image
- At each location, a detector is used to check if the region in question is a face
- The algorithm is then run at increasing scales (detector region size increased), until the region becomes the same size as the image

- Algorithm works by scanning a 24x24 pixel region over the image
- At each location, a detector is used to check if the region in question is a face
- The algorithm is then run at increasing scales (detector region size increased), until the region becomes the same size as the image

- Algorithm works by scanning a 24x24 pixel region over the image
- At each location, a detector is used to check if the region in question is a face
- The algorithm is then run at increasing scales (detector region size increased), until the region becomes the same size as the image

- Algorithm works by scanning a 24x24 pixel region over the image
- At each location, a detector is used to check if the region in question is a face
- The algorithm is then run at increasing scales (detector region size increased), until the region becomes the same size as the image

- Viola-Jones face detection uses
 Haar-like features to build weak
 decision stumps that can detect a
 face
- A Haar-like feature is defined by a set of bounding box coordinates for a set of black or white regions that sit within a kernel that can be run over an image via filtering
- The response of a feature is the sum of all pixel intensities in white regions minus sum of pixel intensities in the black regions

- Viola-Jones face detection uses **Haar-like features** to build weak decision stumps that can detect a face
- A Haar-like feature is defined by a set of bounding box coordinates for a set of black or white regions that sit within a kernel that can be run over an image via filtering
- The response of a feature is the sum of all pixel intensities in white regions minus sum of pixel intensities in the black regions

- Viola-Jones face detection uses **Haar-like features** to build weak decision stumps that can detect a face
- A Haar-like feature is defined by a set of bounding box coordinates for a set of black or white regions that sit within a kernel that can be run over an image via filtering
- The response of a feature is the sum of all pixel intensities in white regions minus sum of pixel intensities in the black regions

Kernel

- Viola-Jones face detection uses
 Haar-like features to build weak
 decision stumps that can detect a
 face
- A Haar-like feature is defined by a set of bounding box coordinates for a set of black or white regions that sit within a kernel that can be run over an image via filtering
- The response of a feature is the sum of all pixel intensities in white regions minus sum of pixel intensities in the black regions

Kernel

- Viola-Jones face detection uses
 Haar-like features to build weak
 decision stumps that can detect a
 face
- A Haar-like feature is defined by a set of bounding box coordinates for a set of black or white regions that sit within a kernel that can be run over an image via filtering
- The response of a feature is the sum of all pixel intensities in white regions minus sum of pixel intensities in the black regions

- Haar-like features can be defined in various arrangements: 3 fundamental types used in Viola-Jones
- For face detection, features
 "respond" to different aspects of
 shading present in faces (i.e. dark
 eyes and light brow, brightness on
 top of nose, shading either side)

Example Haar-like features

 Haar-like features can be defined in various arrangements: 3 fundamental types used in Viola-Jones

Making Haar features fast: Integral Images

- Calculating feature response by summing intensity data in image regions can be computationally expensive for high-resolution images
- Integral images are used to speed up response calculation: integral image is pre-computed once for each image (grayscale)
- Calculating the sum of intensities in a given bounding box can then be computed in constant time from 4 values
- This significantly speeds up computational time for real-time detection and is part of the motivation for the use of Haar-like features

Making Haar features fast: Integral Images

- Calculating feature response by summing intensity data in image regions can be computationally expensive for high-resolution images
- Integral images are used to speed up response calculation: integral image is pre-computed once for each image (grayscale)
- Calculating the sum of intensities in a given bounding box can then be computed in constant time from 4 values
- This significantly speeds up computational time for real-time detection and is part of the motivation for the use of Haar-like features

$$I(x,y) = \sum_{\substack{x' \leq x \ y' \leq y}} i(x',y')$$

Making Haar features fast: Integral Images

- Calculating feature response by summing intensity data in image regions can be computationally expensive for high-resolution images
- Integral images are used to speed up response calculation: integral image is pre-computed once for each image (grayscale)
- Calculating the sum of intensities in a given bounding box can then be computed in constant time from 4 values
- This significantly speeds up computational time for real-time $x_0 < x \le x_1$ detection and is part of the motivation for the use of Haar-like features

	110	186	263	371	450	555	
	111	222	333	444	555	666	
15 + 16 + 14 + 28 + 27 + 11 =							
101 + 450 - 254 - 186 = 111							

$$i(x,y) = I(D) + I(A) - I(B) - I(C)$$

Integral image application example.svg, Wikimedia Commons, Cmglee, CC-BY-4.0

- For a 24x24 image, and four different Haar types, there are approx. 160k different potential feature types
- Even the best Haar features form a "weak classifier" of a face (i.e. detection performance just better than random) when taken alone

Example Haar-like features

- For a 24x24 image, and four different Haar types, there are approx. 160k different potential feature types
- Even the best Haar features form a "weak classifier" of a face (i.e. detection performance just better than random) when taken alone
- Boosting is a classification technique that uses an ensemble of weak classifiers to create a stronger one

Example Haar-like features

$$h(\mathbf{x}) = \mathrm{sgn}\!\left(\sum_{j=1}^{M} lpha_j h_j(\mathbf{x})
ight)$$

- For a 24x24 image, and four different Haar types, there are approx. 160k different potential feature types
- Even the best Haar features form a "weak classifier" of a face (i.e. detection performance just better than random) when taken alone
- Boosting is a classification technique that uses an ensemble of weak classifiers to create a stronger one

Example Haar-like features

- For a 24x24 image, and four different Haar types, there are approx. 160k different potential feature types
- Even the best Haar features form a "weak classifier" of a face (i.e. detection performance just better than random) when taken alone
- Boosting is a classification technique that uses an ensemble of weak classifiers to create a stronger one

Example Haar-like features

$$h(\mathbf{x}) = \mathrm{sgn}\left(\sum_{j=1}^{M} \alpha_j h_j(\mathbf{x})\right)$$
Weak
Weight for j classifier j

- For a 24x24 image, and four different Haar types, there are approx. 160k different potential feature types
- Even the best Haar features form a "weak classifier" of a face (i.e. detection performance just better than random) when taken alone
- Boosting is a classification technique that uses an ensemble of weak classifiers to create a stronger one
- Viola-Jones face detection uses the Adaboost algorithm, with Haar features/associated thresholds acting as weak classifiers, to create a robust detector

Example Haar-like features

$$h(\mathbf{x}) = \mathrm{sgn}\!\left(\sum_{j=1}^{M} lpha_j h_j(\mathbf{x})
ight)$$

Adaboost and VJ Face Detection

- The final classifier is trained for a set of example image patches of real faces, and other non-face objects:
- 1. Each training example is given a weight w_i = 1/N
- 2. For each Haar feature j:
 - 1. Calculate the feature response on each training example, then calculate a threshold value that optimally splits face/no-face based on the weighted error for each training example
 - 2. Assign a weight α_j which is inversely proportionate to the average error for this feature
 - 3. Reduce weights w_i for correctly classified examples, and renormalise weights (sum to 1)
- Each subsequent feature uses a threshold that picks up the mistakes made by the previous feature, so the combined response becomes complimentary

Cascade Classifiers

• For real face detection, most analysed sub-windows are not faces: to speed-up detection, VJ face detection uses an attentional cascade:

- The highest weighted features are applied in an ensemble that has a low false negative (but high false positive)
- Windows that pass this classifier are sent to subsequent stages: faces are detected when the image is labelled as a face by all stages in the cascade
- The original VJ uses 38 stages with over 6000 features to achieve almost zero false negatives and 93% detection rate

Examples

Examples

Haar Cascade Classifiers

- Although popularised for face detection, the same principles can be applied to many different applications including eye detection, hand and gesture detection etc.
- Implementations of Haar Cascade Classifiers:
 - Python (OpenCV): <u>https://docs.opencv.org/2.4/doc/user_guide/ug_t_raincascade.html</u>
 - MATLAB: <u>https://www.mathworks.com/help/vision/ref/visi</u>

Haar Cascade Classifier Demo

- Live online Notebook via Google Colab (*required Google account to run):
- https://colab.research.google.com/drive/10zCvW 7p9Relf i5p7YfOVBWN pm46x1j?usp=sharing
- Download the Python Code and run on your own device ("face_track_demo.zip" under Modules/Week 11)
 - Requires you first install python (https://www.python.org/)
 - Then install modules for OpenCV:
 - pip install opencv-python
 - You can run the demo from the command line/terminal/shell using "python run_face_track.py"

Further Reading and Next Week

References:

- R. Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2010 (Chapter 14)
- P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features", CVPR, 2001.
- Face detection using Haar cascades, OpenCV Notes,
 https://docs.opencv.org/3.0-
 beta/doc/py_tutorials/py_objdetect/py_face_detection/py_face_detection.html