(microfarads), L (millihenries), and ω (hertz) leads to the system $\begin{cases} (50-10i)I_1 + & (50)I_2 + & (50)I_3 = V_1 \\ & (10i)I_1 + (10-10i)I_2 + (10-20i)I_3 = 0 \\ & - & (30i)I_2 + (20-50i)I_3 = -V_2 \end{cases}$ Select V_1 to be 100 millivolts, and solve two cases:

7. (Continuation) A common electrical engineering problem is to calculate currents in an electric circuit. For example, the circuit shown in the figure with R_i (ohms), C_i

^a**a.** The two voltages are in phase; that is,
$$V_2 = V_1$$
.

 $v = 10^4$

^a**b.** The second voltage is a quarter of a cycle ahead of the first; that is, $V_2 = iV_1$.

Use the complex arithmetic version of *Naive_Gauss*, and in each case, solve the sys-

tem for the amplitude (in milliamperes) and the phase (in degrees) for each current I_k . Hint: When $I_k = \text{Re}(I_k) + i \text{Im}(I_k)$, the amplitude is $|I_k|$, and the phase is

 V_2

 $R_{1} = 50$ $R_{1} = 50$ $C_{2} = 5$ $C_{3} = 2$ I_{1} I_{2} I_{3} I_{4} I_{5} I_{1} I_{2} I_{2} I_{3} I_{4} I_{5} I_{5} I_{5} I_{5} I_{7} I_{1} I_{2} I_{3} I_{4} I_{5} I_{5} I

 $(180^{\circ}/\pi)$ arctan[Im(I_k)/Re(I_k)]. Draw a diagram to show why this is so.