WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/13, C07K 16/36, 16/46, A61K **A1** 39/395 // C12N 5/10, 15/85

(11) International Publication Number:

WO 96/40921

(43) International Publication Date: 19 December 1996 (19.12.96)

(21) International Application Number:

PCT/US96/09287

(22) International Filing Date:

6 June 1996 (06.06.96)

(30) Priority Data:

08/480,120

7 June 1995 (07.06.95)

US

(71) Applicant: JOHNSON & JOHNSON [US/US]; One Johnson & Johnson Plaza, New Brunswick, NJ 08933-0001 (US).

(72) Inventors: JOLIFFE, Linda, K.; 16 Davenport Way, Belle Mead, NJ 08502 (US). ZIVIN, Robert, A.; 6 Glenbrook Court, Lawrenceville, NJ 08648 (US). PULITO, Virginia, L.; 37 Winding Way, Flemington, NJ 08822 (US).

(74) Agents: CIAMPORCERO, Audley, A., Jr. et al.; Johnson & Johnson, One Johnson & Johnson Plaza, New Brunswick, NJ 08933-0001 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, MIL, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CDR-GRAFTED ANTI-TISSUE FACTOR ANTIBODIES AND METHODS OF USE THEREOF

(57) Abstract

The present invention provides CDR-grafted antibodies against human tissue factor that retain the high binding affinity of rodent monoclonal antibodies against tissue factor but have reduced immunogenicity. The present humanized antibodies are potent anticoagulants and are thus useful in the treatment and prophylaxis of human thrombotic disease. The invention also provides methods of making the CDR-grafted antibodies and pharmaceutical compositions for the attenuation or prevention of coagulation.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

		GB	United Kingdom	MW	Malawi
AM	Armenia	GE	Georgia	MX	Mexico
ΑT	Austria		-	NE	Niger
ΑÜ	Australia	GN	Guinea	NL	Netherlands
BB	Barbados	GR	Greece	NO	Norway
BE	Belgium	HU	Hungary		Norway New Zealand
BF	Burkina Faso	IE	Ireland	NZ	
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	, KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
cs	Czechosłovakia	LT	Lithuania	TD	Chad
cz	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
ER	Estonia	MD	Republic of Moldova	UA	Ukraine
		MG	Madagascar	UG	Uganda
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN		UZ	Uzbekistan
FR	France		Mongolia Mauritania	VN	Viet Nam
GA	Gabon	MR	Manuams	***	7 704 1 1000

CDR-GRAFTED ANTI-TISSUE FACTOR ANTIBODIES AND METHODS OF USE THEREOF

FIELD OF THE INVENTION

1

5 Monoclonal antibodies capable of inhibiting tissue factor (TF) are useful as anticoagulants.

Conventional rodent monoclonal antibodies, however, have limited use in human therapeutic and diagnostic applications due to immunogenicity and short serum half-life. The present invention provides CDR-grafted monoclonal antibodies against TF that retain the high binding affinity of rodent antibodies but have reduced immunogenicity. The present humanized antibodies are potent anticoagulants and are thus useful in the treatment and prophylaxis of human thrombotic disease. The invention also provides methods of making the CDR-grafted antibodies and pharmaceutical compositions for the attenuation or prevention of coagulation.

20 BACKGROUND OF THE INVENTION

The coagulation of blood involves a cascading series of reactions leading to the formation of fibrin. The coagulation cascade consists of two overlapping pathways, both of which are required for hemostasis. The intrinsic pathway comprises protein factors present in circulating blood, while the extrinsic pathway requires tissue factor, which is expressed on the cell surface of a variety of tissues in response to vascular injury. Davie et al., 1991, Biochemistry 30:10363. Agents that interfere with the coagulation cascade, such

-2-

as heparin and coumarin derivatives, have well-known l therapeutic uses in the prophylaxis of venous thrombosis. Goodman and Gilman, eds., 1980, The Pharmacological Basis of Therapeutics, MacMillan Publishing Co., Inc., New York.

Tissue factor (TF) has been investigated as a target for anticoagulant therapy. TF is a membrane glycoprotein that functions as a receptor for factor VII and VIIa and thereby initiates the extrinsic pathway of the coagulation cascade in response to vascular injury.

In addition to its role in the maintenance of hemostasis by initiation of blood clotting, TF has been implicated in pathogenic conditions. Specifically, the synthesis and cell surface expression of TF has been implicated in vascular disease (Wilcox et al., 1989, Proc. Natl. Acad.

15 <u>Sci.</u> <u>86</u>:2839) and gram-negative septic shock (Warr <u>et al.</u>, 1990, <u>Blood</u> <u>75</u>:1481).

Ruf et al. (1991, Thrombosis and Haemostasis 66:529) characterized the anticoagulant potential of murine monoclonal antibodies against human TF. The inhibition of TF function by most of the monoclonal antibodies that were assessed was dependent upon the dissociation of the TF/VIIa complex that is rapidly formed when TF contacts plasma. Such antibodies were thus relatively slow inhibitors of TF in plasma. One monoclonal antibody, TF8-5G9, was capable of inhibiting the TF/VIIa complex without dissociation of the complex, thus providing an immediate anticoagulant effect in plasma. Ruf et al. suggest that mechanisms that inactivate the TF/VIIa complex, rather than prevent its formation, may provide strategies for interruption of coagulation in vivo.

WO 96/40921

-3-

PCT/US96/09287

The therapeutic use of monoclonal antibodies

l against TF is limited in that currently available
monoclonals are of rodent origin. The use of rodent
antibodies in human therapy presents numerous problems,
the most significant of which is immunogenicity.

- 5 Repeated doses of rodent monoclonal antibodies have been found to elicit an anti-immunoglobulin response termed human anti-mouse antibody (HAMA), which can result in immune complex disease and/or neutralization of the therapeutic antibody. See, e.g., Jaffers et al. (1986)
- 10 <u>Transplantation</u> <u>41</u>:572. While the use of human monoclonal antibodies would address this limitation, it has proven difficult to generate large amounts of human monoclonal antibodies by conventional hybridoma technology.
- Recombinant technology has been used in an effort to construct "humanized" antibodies that maintain the high binding affinity of rodent monoclonal antibodies but exhibit reduced immunogenicity in humans. Chimeric antibodies have been produced in which the variable (V) region of a mouse antibody is combined with the constant (C) region of a human antibody in an effort to maintain the specificity and affinity of the rodent antibody but reduce the amount of protein that is non-human and thus immunogenic. While the immune response to chimeric antibodies is generally reduced relative to the corresponding rodent antibody, the immune response cannot be completely eliminated, because the mouse V region is capable of eliciting an immune response.

Lobuglio et al. (1989) Proc. Natl. Acad. Sci. 86:4220;

30 Jaffers et al. (1986) Transplantation 41:572.

In a recent approach to reducing

- l immunogenicity of rodent antibodies, only the rodent complementarity determining regions (CDRs), rather than the entire V domain, are transplanted to a human antibody. Such humanized antibodies are known as CDR-
- 5 grafted antibodies. CDRs are regions of hypervariability in the V regions that are flanked by relatively conserved regions known as framework (FR) regions. Each V domain contains three CDRs flanked by four FRs. The CDRs fold to form the antigen binding
- 10 site of the antibody, while the FRs support the structural conformations of the V domains. Thus by transplanting the rodent CDRs to a human antibody, the antigen binding domain can theoretically also be transferred. Owens et al. (1994) J. Immunol. Methods
- 15 <u>168</u>:149 and Winter et al. (1993) Immunology Today 14:243 review the development of CDR-grafted antibodies.

Orlandi et al. (1989) Proc. Natl. Acad. Sci.

<u>USA</u> 86:3833 constructed a humanized antibody against the relatively simple hapten nitrophenacetyl (NP). The CDR20 grafted antibody contained mouse CDRs and human FRs, and

- exhibited NP binding activity similar to the native mouse antibody. However, the construction of CDR-grafted antibodies recognizing more complex antigens has resulted in antibodies having binding activity
- 25 significantly lower than the native rodent antibodies. In numerous cases it has been demonstrated that the mere introduction of rodent CDRs into a human antibody background is insufficient to maintain full binding activity, perhaps due to distortion of the CDR
- 30 conformation by the human FR.

For example, Gorman et al. (1991) Proc. Natl. 1 Acad. Sci. 88:4181 compared two humanized antibodies against human CD4 and observed considerably different avidies depending upon the particular human framework region of the humanized antibody. Co et al. (1991) 5 Proc. Natl. Acad. Sci. USA 88:2869 required a refined computer model of the murine antibody of interest in order to identify critical amino acids to be considered in the design of a humanized antibody. Kettleborough et al. (1991) Protein Engineering 4:773 report the 10 influence of particular FR residues of a CDR-grafted antibody on antigen binding, and propose that the residues may directly interact with antigen, or may alter the conformation of the CDR loops. Similarly, Singer et al. (1993) J. Immunol. 150:2844 report that 15 optimal humanization of an anti-CD18 murine monoclonal antibody is dependent upon the ability of the selected FR to support the CDR in the appropriate antigen binding conformation. Accordingly, recreation of the antigenbinding site requires consideration of the potential 20 intrachain interactions between the FR and CDR, and manipulation of amino acid residues of the FR that

for the design of humanized antibodies (<u>see, e.g.</u>, Owens 25 <u>et al.</u>), in all cases the procedure must be tailored and optimized for the particular rodent antibody of interest.

maintain contacts with the loops formed by the CDRs.

While general theoretical guidelines have been proposed

There is a need in the art for humanized antibodies with reduced immunogenicity and comparable binding affinity relative to the parent rodent antibody for various therapeutic applications. In particular,

-6-

there is a need for a humanized antibody against human l tissue factor having anticoagulant activity and useful in the treatment and prevention of thrombotic disease.

SUMMARY OF THE INVENTION

5

35

The present invention is directed to CDR-grafted antibodies capable of inhibiting human tissue factor wherein the CDRs are derived from a non-human monoclonal antibody against tissue factor and the FR and constant (C) regions are derived from one or more human antibodies. In a preferred embodiment, the murine monoclonal antibody is TF8-5G9.

In another embodiment, the present invention provides a method of producing a CDR-grafted antibody

15 capable of inhibiting human tissue factor which method comprises constructing one or more expression vectors containing nucleic acids encoding CDR-grafted antibody heavy and light chains, transfecting suitable host cells with the expression vector or vectors, culturing the transfected host cells, and recovering the CDR-grafted antibody.

The present invention also provides a method of attenuation of coagulation comprising administering a CDR-grafted antibody capable of inhibiting human tissue factor to a patient in need of such attenuation.

The present invention further provides a method of treatment or prevention of thrombotic disease comprising administering a CDR-grafted antibody capable of inhibiting human tissue factor to a patient in need of such treatment or prevention. In a preferred

WO 96/40921 PCT/US96/09287 -7-

embodiment, the thrombotic disease is intravascular l coagulation, arterial restenosis or arteriosclerosis.

Another embodiment of the present invention is directed to a pharmaceutical composition comprising CDRgrafted antibodies capable of inhibiting human tissue 5 factor and further comprising a pharmaceutically acceptable carrier.

BRIEF DESCRIPTION OF THE DRAWINGS

35

10 Fig. 1 provides the nucleotide and deduced amino acid sequences of the heavy chain of murine monoclonal antibody TF8-5G9.

Fig. 2 provides the nucleotide and deduced amino acid sequences of the light chain of murine 15 monoclonal antibody TF8-5G9.

Fig. 3 is a graph depicting the ability of CDR-grafted antibody TF8HCDR1 x TF8LCDR1 to bind to human tissue factor and to compete with murine monoclonal antibody TF85G9 for binding to tissue factor.

- 20 Solid symbols indicate direct binding of TF8HCDR1 x TF8LCDR1 and the positive control chimeric TF85G9 to tissue factor. Open symbols indicate competition binding of TF8HCDR1 x TF8LCDR1 or chimeric TF85G9 with murine monoclonal antibody TF85G9.
- 25 Fig. 4 presents the DNA sequence of expression vector pEe6TF8HCDR20 and the amino acid sequence of the coding regions of the CDR-grafted heavy chain TF8HCDR20.

Fig. 5 presents the DNA sequence of expression vector pEe12TF8LCDR3 and the amino acid sequence of the 30 coding regions of the CDR-grafted light chain TF8LCDR3.

-8-

Fig. 6 is a graph depicting the ability of l CDR-grafted antibody TF8HCDR20 x TF8LCDR3 to bind to human tissue factor.

Fig. 7 is a graph depicting the ability of CDR-grafted antibody TF8HCDR20 x TF8LCDR3 to compete with murine monoclonal antibody TF85G9 for binding to tissue factor.

Fig. 8 is a graph depicting the ability of CDR-grafted antibody TF8HCDR20 \times TF8LCDR3 to inhibit factor X activation.

Fig. 9 provides expression vector
pEe6TF8HCDR20 resulting from the subcloning of CDRgrafted heavy chain TF8HCDR20 into myeloma expression
vector pEehCMV-BqlI. The following abbreviations are
used: VH is the CDR-grafted heavy chain variable

region; Cγ4 is the human IgG4 constant region; pA is the polyadenylation signal; ampR is the β-lactamase gene; and hCMV is human cytomegalovirus.

Fig. 10 provides expression vector
pEe12TF8LCDR3 resulting from the subcloning of CDRgrafted light chain TF8LCDR3 into myeloma expression
vector pEe12. The following abbreviations are used: VL
is the CDR-grafted light chain variable region; CK is
the human kappa constant region; SVE is the SV40 early
promoter; GS is glutamine synthetase cDNA. Other
25 abbreviations are as noted in Fig. 9.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides CDR-grafted
30 antibodies capable of inhibiting human tissue factor
wherein the CDRs are derived from a non-human monoclonal

antibody against tissue factor and the FR and C regions

l are derived from one or more human antibodies. The

present invention further provides methods of making and
using the subject CDR-grafted antibodies.

In accordance with the present invention, the 5 CDR-grafted antibody is an antibody in which the CDRs are derived from a non-human antibody capable of binding to and inhibiting the function of human tissue factor, and the FR and C regions of the antibody are derived from one or more human antibodies. The CDRs derived 10 from the non-human antibody preferably have from about 90% to about 100% identity with the CDRs of the nonhuman antibody, although any and all modifications, including substitutions, insertions and deletions, are contemplated so long as the CDR-grafted antibody 15 maintains the ability to bind to and inhibit tissue factor. The regions of the CDR-grafted antibodies that are derived from human antibodies need not have 100% identity with the human antibodies. In a preferred embodiment, as many of the human amino acid residues as 20 possible are retained in order than immunogenicity is negligible, but the human residues, in particular residues of the FR region, are substituted as required and as taught hereinbelow in accordance with the present Such modifications as disclosed herein are 25 necessary to support the antigen binding site formed by the CDRs while simultaneously maximizing the humanization of the antibody.

Non-human monoclonal antibodies against human tissue factor from which the CDRs can be derived are known in the art (Ruf et al., 1991; Morrisey et al., 1988, Thrombosis Research 52:247) or can be produced by

-10-

well-known methods of monoclonal antibody production

(see, e.g. Harlow et al., eds., 1988, Antibodies, A

Laboratory Manual, Cold Spring Harbor Laboratories, Cold

Spring Harbor, New York). Purified human tissue factor

against which monoclonal antibodies can be raised is

similarly well-known (Morrisey et al., 1987, Cell

50:129) and available to the skilled artisan. Murine

monoclonal antibodies, and in particular murine

monoclonal antibody TF8-5G9 disclosed by Ruf et al. and

Morrisey et al., 1988, Thrombosis Research 52:247, and

U.S. Patent No. 5,223,427 are particularly preferred.

The ordinarily skilled artisan can determine the sequences of the CDRs by reference to published scientific literature or sequence databanks, or by cloning and sequencing the heavy and light chains of the antibodies by conventional methodology. In accordance with the present invention, the cDNA and amino acid sequences of the heavy chain (SEQ ID NOS:1 and 2, respectively) and light chain (SEQ ID NOS:3 and 4, respectively) of murine monoclonal antibody TF8-5G9 are provided. The cDNA and deduced amino acid sequence of the murine TF8-5G9 heavy chain is provided at Figure 1. The cDNA and deduced amino acid sequence of the murine TF8-5G9 light chain is provided at Figure 2.

regions contain three CDRs that combine to form the antigen binding site. The three CDRs are surrounded by four FR regions that primarily function to support the CDRs. The sequences of the CDRs within the sequences of the variable regions of the heavy and light chains can be identified by computer-assisted alignment according to Kabat et al. (1987) in Sequences of Proteins of

-11-

Immunological Interest, 4th ed., United States
1 Department of Health and Human Services, US Government
Printing Office, Washington, D.C., or by molecular
modeling of the variable regions, for example utilizing
the ENCAD program as described by Levitt (1983) J. Mol.
5 Biol. 168:595.

In a preferred embodiment the CDRs are derived from murine monoclonal antibody TF8-5G9. The preferred heavy chain CDRs have the following sequences:

10	CDR1	DDYMH	(SEQ ID NO:5)
	CDR2	LIDPENGNTIYDPKFQG	(SEQ ID NO:6)
	CDR3	DNSYYFDY	(SEQ ID NO:7)

The preferred light chain CDRs have the following 15 sequences:

CDR1	KASQDIRKYLN	(SEQ ID NO:8)
CDR2	YATSLAD	(SEQ ID NO:9)
CDR3	LOHGESPYT	(SEO ID NO:10)

20

The sequences of the CDRs of the murine or other non-human antibody, and in particular the sequences of the CDRs of TF8-5G9, may be modified by insertions, substitutions and deletions to the extent that the CDR-grafted antibody maintains the ability to bind to and inhibit human tissue factor. The ordinarily skilled artisan can ascertain the maintenance of this activity by performing the functional assays described hereinbelow. The CDRs can have, for example, from about 50% to about 100% homology to the CDRs of SEQ ID NOS:5-10. In a preferred embodiment the CDRs have from about

-12-

80% to about 100% homology to the CDRs of SEQ ID NOS:5-10. In a more preferred embodiment the CDRs have from about 90% to about 100% homology to the CDRs of SEQ ID NOS:5-10. In a most preferred embodiment the CDRs have from about 100% homology to the CDRs of SEQ ID NOS:5-10.

The FR and C regions of the CDR-grafted antibodies of the present invention are derived from one or more human antibodies. Human antibodies of the same class and type as the antibody from which the CDRs are derived are preferred. The FR of the variable region of the heavy chain is preferably derived from the human antibody KOL (Schmidt et al., 1983, Hoppe-Seyler's Z. Physiol. Chem. 364:713) The FR of the variable region of the light chain is preferably derived from the human antibody REI (Epp et al., 1974, Eur. J. Biochem.

15 45:513). In accordance with the present invention, it has been discovered that certain residues of the human FR are preferably replaced by the corresponding residue of the non-human antibody from which the CDRs are derived. For example, certain FR residues of TF8-5G9 are preferably retained to achieve optimal binding to antigen.

For convenience, the numbering scheme of Kabat et al. has been adopted herein. Residues are designated by lower case numbers or hyphens as necessary to conform the present sequences to the standard Kabat numbered sequence.

In accordance with the present invention, residues that are retained in the FR region, i.e residues that are not replaced by human FR residues, are determined according to the following guidelines.

Residues that are idiosyncratic to the parent antibody,

WO 96/40921

-13-

e.g. TF8-5G9, relative to a human consensus sequence of l Kabat et al, are retained. Residues of the parent antibody that are in agreement with the consensus sequence are retained if the corresponding residue of the human antibody, e.g. KOL or REI, is idiosyncratic.

PCT/US96/09287

- 5 Residues that are part of the antibody loop canonical structures defined by Chothia et al. (1989) Nature 342:877, such as residue 71 of the heavy and light chains, are retained. FR residues predicted to form loops, such as residues 28-30 of the heavy chain, are
- 10 retained. FR residues predicted to influence the conformation of the CDRs such as residues 48 and 49 preceding CDR2 of the heavy chain, are retained. Residues that have been demonstrated to be critical in the humanization of other antibodies may also be
- 15 retained. The foregoing guidelines are followed to the extent necessary to support the antigen binding site formed by the CDRs while simultaneously maximizing the humanization of the antibody.

The amino acid sequence of a representative 20 CDR-grafted heavy chain variable region derived from murine monoclonal antibody TF8-5G9 and human antibody KOL is shown below. The CDR-grafted heavy chain is designated TF8HCDR1; murine residues were retained in the FR at residues 6, 17, 23, 24, 28, 29, 30, 48, 49,

25 68, 71, 73, 78, 88 and 91. CDRs are underlined.

10 20 30 35ab 50

QVQLVQSGGG VVQPGRLLRL SCKASGFNIK DYYMH--WVR QAPGKGLEWIG
52abc 60 70 80 82abc 90

LIDP--ENGNTIYD PKFQGRFSIS ADTSK--NTAFL QMDSLRPEDTAVY
100 110

30 YCARDNSYYF DYWGQGTPVT VSS (SEQ ID NO:11)

-14-

The amino acid sequence of a representative 1 CDR-grafted light chain variable region derived from murine monoclonal antibody TF8-5G9 and human antibody REI is shown below. The CDR-grafted light chain is designated TF8LCDR1; murine residues were retained in the FR at residues 39, 41, 46 and 105. CDRs are underlined.

10 20 30 40 50

DIQMTQSPSS LSASVGDRVT ITCKASQDIR KYLNWYQQK WKAPKTLIYY

10 60 70 80 90 100

ATSLADGVPS RFSGSGSGTD YTFTISSLQP EDIATYYCLQ HGESPYTFGQ

GTKLEITR (SEQ ID NO:12)

regions TF8HCDR1 and TF8LCDR1 has been demonstrated in accordance with the present invention to be as effective as murine monoclonal antibody TF8-5G9 in binding to human tissue factor. It has been further discovered in accordance with the present invention, by examination of the molecular structure of murine monoclonal antibody TF8-5G9, and by design, construction, and analysis of CDR-grafted antibodies, that the FR regions can be further humanized without the loss of antigen binding activity. In particular, the FR region may retain the human FR residue at residues 6, 17, 68, 73 and 78 of the heavy chain, and residues 39, 41, 16 and 105 of the light chain, with maintenance of antigen binding activity.

In a most preferred embodiment, the heavy

30 chain variable region contains a FR derived from human antibody KOL in which murine monoclonal antibody TF8-5G9

residues are retained at amino acids 23, 24, 28, 29, 30, 1 48, 49, 71, 88 and 91. The preferred heavy chain variable region is designated TF8HCDR20 and has the following sequence.

5 10 20 30 35ab 50 QVQLVESGGG VVQPGRSLRL SCKASGFNIK DYYMH--WVR QAPGKGLEWIGL

52abc 60 70 80 82abc 90 100 IDP--ENGNTIYD PKFQGRFTIS ADNSKNTLFL QMDSLRPEDTAVY YCARDNSYYF

10 110 DYWGQGTPVT VSS (SEQ ID NO:13)

In a most preferred embodiment, the light chain variable region contains a FR derived from human antibody REI in which murine monoclonal antibody TF8-5G9 residues are retained at amino acids 39 and 105. The preferred light chain variable region is designated TF8LCDR20 and has the following sequence.

20 20 30 40 50
DIQMTQSPSS LSASVGDRVT ITCKASQDIR KYLNWYQQKP GKAPKLLIYY
60 70 80 90 100
ATSLADGVPS RFSGSGSGTD YTFTISSLQP EDIATYYCLQ HGESPYTFGQ
GTKLEITR (SEQ ID NO:14)

artisan to make minor modifications of the foregoing sequences, including amino acid substitutions, deletions and insertions. Any such modifications are within the scope of the present invention so long as the resulting CDR-grafted antibody maintains the ability to bind to and inhibit human tissue factor. The ordinarily skilled artisan can assess the activity of the CDR-grafted

antibody with reference to the functional assays l described hereinbelow.

The human constant region of the CDR-grafted antibodies of the present invention is selected to minimize effector function. The intended use of the 5 CDR-grafted antibodies of the present invention is to block the coagulation cascade by inhibition of tissue factor, and thus antibody effector functions such as fixation of complement are not desirable. Antibodies with minimal effector functions include IgG2, IgG4, IgA, IgD and IgE. In a preferred embodiment of the present invention, the heavy chain constant region is the human IgG4 constant region, and the light chain constant region is the human IgG4 kappa constant region.

In that effector functions may not be

desirable for therapeutic uses, the present invention
further contemplates active fragments of the CDR-grafted
antibodies, and in particular Fab fragments and F(ab')₂
fragments. Active fragments are those fragments capable
of inhibiting human tissue factor. Fab fragments and
F(ab')₂ fragments may be obtained by conventional means,
for example by cleavage of the CDR-grafted antibodies of
the invention with an appropriate proteolytic enzyme
such as papain or pepsin, or by recombinant production.
The active fragments maintain the antigen binding sites
of the CDR-grafted antibodies and thus are similarly
useful therapeutically.

The ability of the CDR-grafted antibodies designed and constructed as taught in accordance with the present invention to bind and inhibit human tissue factor can be assessed by functional assays. For example, in a rapid and convenient assay, expression

-17-

vectors containing nucleic acids encoding the CDR
grafted heavy and light chains can be co-transfected into suitable host cells and transiently expressed. The resulting antibodies can be assessed by standard assays for ability to bind human tissue factor, and for ability to compete for binding to tissue factor with the non-human antibody from which the CDRs are derived.

For example, transient expression of nucleic acids encoding the CDR-grafted heavy and light chains in COS cells provides a rapid and convenient system to test antibody gene expression and function. Nucleic acids encoding the CDR-grafted heavy and light chains, respectively, are cloned into a mammalian cell expression vector, for example pSG5, described by Green et al. (1988) Nucleic Acids Res. 16:369 and commercially available from Stratagene Cloning Systems, La Jolla, CA. The pSG5 expression vector provides unique restriction sites for the insertion of the heavy and light chain genes, and in vivo expression is under the control of the SV40 early promoter. Transcriptional termination is signaled by the SV40 polyadenylation signal sequence.

The pSG5-based expression vectors containing nucleic acids encoding the heavy and light chains are cotransfected into COS cells and cultured under conditions suitable for transient expression. Cell culture media is then harvested and examined for antibody expression, for example by an enzyme linked immunosorbent assay (ELISA), to determine that suitable levels of antibody have been produced. An ELISA may then be used to assess the ability of the CDR-grafted antibody to bind to human tissue factor. Human tissue factor is immobilized on a microtiter plate and the COS

cell supernatant containing the CDR-grafted antibody is l added followed by an incubation at room temperature for about one hour. The plates are then washed with a suitable detergent-containing buffer such as phosphate buffered saline (PBS)/Tween, followed by the addition of 5 the components of a suitable detection system. example, horseradish peroxidase conjugated goat antihuman kappa chain polyclonal antibody is added, followed by washing, followed by addition of substrate for horseradish peroxidase, and detection. The CDR-grafted 10 antibodies within the scope of the present invention are those which are capable of binding to human tissue factor to a degree comparable to the non-human antibody from which the CDRs are derived as determined by the foregoing assay.

The ability of the CDR-grafted antibodies to 15 inhibit the activity of human tissue factor in vivo can be conveniently assessed by the following in vitro assay that mimics in vivo coagulation events. In response to vascular injury in vivo, tissue factor binds to factor 20 VII and facilitates the conversion of factor VII to a serine protease (factor VIIa). The factor VIIa-tissue factor complex converts factor X to a serine protease (factor Xa). Factor Xa forms a complex with factor Va (from the intrinsic coagulation pathway), resulting in 25 the conversion of prothrombin to thrombin, which in turn results in the conversion of fibrinogen to fibrin. convenient in vitro functional assay, tissue factor is incubated in the presence of factor VIIa and the CDRgrafted anti-tissue factor antibody produced in the 30 transient expression system described above. is added and the reaction mixture is incubated, followed

by an assay for factor Xa activity utilizing a

1 chromogenic substrate for factor Xa (Spectrozyme FXa,
American Diagnostica, Inc., Greenwich, CT). The ability
of the CDR-grafted antibody to inhibit factor X
activation thus provides a measure of the ability of the
5 CDR-grafted antibody to inhibit the activity of human
tissue factor.

The CDR-grafted antibodies within the scope of the present invention are those which are capable of inhibiting human tissue factor to a degree comparable to 10 the non-human antibody from which the CDRs are derived as determined by the foregoing assay. embodiment, the CDR-grafted antibody has at least 50% of the inhibitory activity of TF8-5G9 for human tissue factor. In a preferred embodiment, the CDR-grafted 15 antibody has at least 70% of the inhibitory activity of TF8-5G9 for human tissue factor. In a more preferred embodiment, the CDR-grafted antibody has at least 80% of the inhibitory activity of TF8-5G9 for human tissue factor. In a most preferred embodiment, the CDR-grafted 20 antibody has at least 90% of the inhibitory activity of TF8-5G9 for human tissue factor.

In another embodiment, the present invention provides a method of producing a CDR-grafted antibody capable of inhibiting human tissue factor. The method comprises constructing an expression vector containing a nucleic acid encoding the CDR-grafted antibody heavy chain and an expression vector containing a nucleic acid encoding the CDR-grafted antibody light chain, transfecting suitable host cells with the expression vectors, culturing the transfected host cells under conditions suitable for the expression of the heavy and

light chains, and recovering the CDR-grafted antibody.

1 Alternately, one expression vector containing nucleic acids encoding the heavy and light chains may be utilized.

Standard molecular biological techniques, for

example as disclosed by Sambrook et al. (1989),

Molecular Cloning: A Laboratory Manual Cold Spring

Harbor Press, Cold Spring Harbor, NY may be used to

obtain nucleic acids encoding the heavy and light chains

of the CDR-grafted antibodies of the present invention.

- 10 A nucleic acid encoding the CDR-grafted variable domain may be constructed by isolating cDNA encoding the antibody to be humanized, e.g. murine monoclonal antibody TF8-5G9, by conventional cloning methodology from the hybridoma producing the antibody, or by
- polymerase chain reaction (PCR) amplification of the variable region genes, as described for example by Winter et al., followed by site-directed mutagenesis to substitute nucleotides encoding the desired human residues into the FR regions. Alternately, the cDNA encoding the human antibody can be isolated, followed by site-directed mutagenesis to substitute nucleotides encoding the desired murine residues into the CDRs.

Nucleic acids encoding the CDR-grafted variable domain may also be synthesized by assembling synthetic oligonucleotides, for example utilizing DNA polymerase and DNA ligase. The resulting synthetic variable regions may then be amplified by PCR. Nucleic acids encoding CDR-grafted variable domains may also be constructed by PCR strand overlap methods that are known in the art and reviewed by Owens et al.

-21-

Accordingly, having determined the desired

amino acid sequences of the CDR-grafted variable domains
in accordance with the present invention, the ordinarily
skilled artisan can obtain nucleic acids encoding the
variable domains. Further, the skilled artisan is aware

that due to the degeneracy of the genetic code, various
nucleic acid sequences can be constructed that encode
the CDR-grafted variable domains. All such nucleic acid
sequence are contemplated by the present invention.

The nucleic acids encoding the CDR-grafted

10 variable domains are linked to appropriate nucleic acids encoding the human antibody heavy or light chain constant region. Nucleic acid sequences encoding human heavy and light chain constant regions are known in the art. It is within the ken of the ordinarily skilled

15 artisan to include sequences that facilitate transcription, translation and secretion, for example start codons, leader sequences, the Kozak consensus sequence (Kozak, 1987, J. Mol. Biol. 196:947) and the like, as well as restriction endonuclease sites to

20 facilitate cloning into expression vectors.

The present invention thus further provides nucleic acids encoding the heavy and light chains of CDR-grafted antibodies capable of inhibiting human tissue factor wherein the CDRs are derived from a murine monoclonal antibody against tissue factor and the FR and C regions are derived from one or more human antibodies.

In accordance with the present invention, representative nucleic acids encoding CDR-grafted heavy and light chains were constructed. The CDR-grafted

30 heavy chain comprises a variable region containing FR regions derived from human antibody KOL and CDRs derived

-22-

from murine monoclonal antibody TF8-5G9 and further

comprises a constant region derived from the heavy chain of human IgG4. The CDR-grafted light chain comprises a variable region containing FR regions derived from human antibody REI and CDRs derived from murine monoclonal

antibody TF8-5G9 and further comprises a constant region derived from human IgG4 kappa chain. Nucleic acids encoding the heavy and light chains were constructed by assembling the variable regions from synthetic nucleotides, amplifying the assembled variable regions

by PCR, purifying the amplified nucleic acids, and lighting the nucleic acid encoding the variable region into a vector containing a nucleic acid encoding the

The sequences of representative nucleic acids
15 encoding CDR-grafted heavy and light chains are
presented as nucleotides 1-2360 of SEQ ID NO:15 and
nucleotides 1-759 of SEQ ID NO:20, respectively.

appropriate human constant region.

The nucleic acid sequence encoding a preferred heavy chain (nucleotides 1-2360 of SEQ ID NO:15) is

20 designated the TF8HCDR20 gene. The nucleic acid sequence contains the following regions: 5' EcoRI restriction site (nucleotides 1-6); Kozak sequence (nucleotides 7-15); start codon and leader sequence (nucleotides 16-72); CDR-grafted variable region

25 (nucleotides 73-423); human IgG4 CH1 domain (nucleotides 424-717); human IgG4 intron 2 (nucleotides 718-1110); human IgG4 hinge (nucleotides 1111-1146); human IgG4 intron 3 (nucleotides 1147-1267); human IgG4 CH2 domain (nucleotides 1268-1594); human IgG4 intron 4

30 (nucleotides 1595-1691); human IgG4 CH3 domain (nucleotides 1692-2012); 3' untranslated region

-23-

(nucleotides 2013-2354); 3' <u>BamHI</u> end spliced to <u>BclI</u> site of expression vector (nucleotides 2355-2360).

The nucleic acid sequence encoding a preferred light chain gene (nucleotides 1-759 of SEQ ID NO:20) is designated the TF8LCDR3 gene. The nucleic acid sequence 5 contains the following regions: 5' EcoRI restriction site (nucleotides 1-5); Kozak sequence (nucleotides 6-8); start codon and leader sequence (nucleotides 9-68); CDR-grafted variable region (nucleotides 69-392); human kappa constant region (nucleotides 393-710); 3' untranslated region (nucleotides 711-753); 3' BamHI end spliced to BclI site of expression vector (nucleotides 754-759).

The foregoing preferred sequences can be modified by the ordinarily skilled artisan to take into account degeneracy of the genetic code, and to make additions, deletions, and conservative and nonconservative substitutions that result in a maintenance of the function of the nucleic acid, i.e. that it encodes a heavy or light chain of a CDR-grafted antibody capable of inhibiting human tissue factor. Restriction sites and sequences that facilitate transcription and translation may be altered or substituted as necessary depending upon the vector and host system chosen for expression.

Suitable expression vectors and hosts for production of the CDR-grafted antibodies of the present invention are known to the ordinarily skilled artisan. The expression vectors contain regulatory sequences, such as replicons and promoters, capable of directing replication and expression of heterologous nucleic acids sequences in a particular host cell. The vectors may

-24-

also contain selection genes, enhancers, signal

sequences, ribosome binding sites, RNA splice sites,
polyadenylation sites, transcriptional terminator
sequences, and so on. The vectors may be constructed by
conventional methods well-known in the art, or obtained
from commercial sources. The expression vectors
preferably have convenient restriction sites at which
the nucleic acids encoding the antibody chains of the
invention are inserted. Myeloma expression vectors in
which antibody gene expression is driven by the human
cytomegalovirus promoter-enhancer or are particularly
preferred.

Expression vectors containing a nucleic acid encoding the CDR-grafted heavy chain under the control of a suitable promoter and expression vectors containing a nucleic acid encoding the CDR-grafted light chain under the control of a suitable promoter are cotransfected into a suitable host cell. In another embodiment, nucleic acids encoding both heavy and light chains are provided in a single vector for transfection of a suitable host cell.

Suitable host cells or cell lines for expression of the CDR-grafted antibodies of the present invention include bacterial cells, yeast cells, insect cells, and mammalian cells such as Chinese hamster ovary (CHO) cells, COS cells, fibroblast cells and myeloid cells. Mammalian cells are preferred. CHO, COS and myeloma cells are particularly preferred. Myeloma cells are preferred for establishing permanent CDR-grafted antibody producing cell lines. Expression of antibodies in myeloma cells, bacteria, and yeast is reviewed by

-25-

Sandhu (1992) Critical Reviews in Biotechnology 12:437.

1 Expression in mammalian cells is reviewed by Owen et al. Transfection of host cells by the expression vectors containing nucleic acids encoding the CDRgrafted heavy and light chains can be accomplished by 5 methods well-known to one of ordinary skill in the art. Such methods include, for example, calcium chloride transfection, calcium phosphate transfection, lipofection and electroporation. Suitable culture methods and conditions for the production of the CDR-10 grafted antibodies are likewise well-known in the art. The CDR-grafted antibodies can be purified by conventional methods, including ammonium sulfate precipitation, affinity chromatography, gel electrophoresis, and the like. The ability of the CDR-15 grafted antibodies to bind to and inhibit human tissue factor can be assessed by the in vitro assays described above.

The CDR-grafted antibodies of the present invention have a variety of utilities. For example, the 20 antibodies are capable of binding to human tissue factor and thus are useful in assays for human tissue factor from body fluid samples, purification of human tissue factor, and so on.

The CDR-grafted antibodies of the present
invention are capable of inhibiting human tissue factor.
Human tissue factor is well-known to be an essential element in the human coagulation cascade. The ability of the antibodies of the present invention to disrupt the coagulation cascade is demonstrated by in vitro
assays in which the antibodies prevent factor X activation. Accordingly, the present antibodies are

-26-

useful in the attenuation of coagulation. The present invention thus provides a method of attenuation of coagulation comprising administering a therapeutically effective amount of CDR-grafted antibody capable of inhibiting human tissue factor to a patient in need of such attenuation.

Numerous thrombotic disorders are characterized by excessive or inappropriate coagulation and are effectively treated or prevented by administration of agents that interfere with the coagulation cascade. Accordingly, the present invention further provides a method of treatment or prevention of a thrombotic disorder comprising administering a therapeutically effective amount of a CDR-grafted antibody capable of inhibiting human tissue factor to a patient in need of such treatment or prevention. In a preferred embodiment, the thrombotic disorder is intravascular coagulation, arterial restenosis or arteriosclerosis. The antibodies of the invention may be used in combination with other antibodies or therapeutic agents.

A therapeutically effective amount of the antibodies of the present invention can be determined by the ordinarily skilled artisan with regard to the patient's condition, the condition being treated, the method of administration, and so on. A therapeutically effective amount is the dosage necessary to alleviate, eliminate, or prevent the thrombotic disorder as assessed by conventional parameters. For example, a therapeutically effective dose of a CDR-grafted antibody of the present invention may be from about 0.1 mg to about 20 mg per 70 kg of body weight. A preferred

-27-

dosage is about 1.0 mg to about 5 mg per 70 kg of body 1 weight.

A patient in need of such treatment is a patient suffering from a disorder characterized by inappropriate or excessive coagulation, or a patient at risk of such a disorder. For example, anticoagulant therapy is useful to prevent postoperative venous thrombosis, and arterial restenosis following balloon angioplasty.

The CDR-grafted antibodies of the present

10 invention are useful in the same manner as comparable therapeutic agents, and the dosage level is of the same order of magnitude as is generally employed with those comparable therapeutic agents. The present antibodies may be administered in combination with a

15 pharmaceutically acceptable carrier by methods known to one of ordinary skill in the art.

Another embodiment of the present invention is directed to a pharmaceutical composition comprising a least one CDR-grafted antibody capable of inhibiting human tissue factor and further comprising a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutically active substances is well-known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated.

Supplementary active ingredients can also be

incorporated into the compositions.

-28-

The antibodies can be administered by wellknown routes including oral and parenteral, e.g.,
intravenous, intramuscular, intranasal, intradermal,
subcutaneous, and the like. Parenteral administration
and particularly intravenous administration is
preferred. Depending on the route of administration,
the pharmaceutical composition may require protective
coatings.

The pharmaceutical forms suitable for injectionable use include sterile aqueous solutions or 10 dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the ultimate solution form must be sterile and fluid. Typical carriers include a solvent or dispersion medium containing, for example, 15 water buffered aqueous solutions (i.e., biocompatible buffers), ethanol, polyol such as glycerol, propylene glycol, polyethylene glycol, suitable mixtures thereof, surfactants or vegetable oils. The antibodies may be incorporated into liposomes for parenteral 20 administration. Sterilization can be accomplished by an art-recognized techniques, including but not limited to, addition of antibacterial or antifungal agents, for example, paraben, chlorobutanol, phenol, sorbic acid or thimersal. Further, isotonic agents such as sugars or 25 sodium chloride may be incorporated in the subject compositions.

Production of sterile injectable solutions containing the subject antibodies is accomplished by incorporating these antibodies in the required amount in the appropriate solvent with various ingredients enumerated above, as required, followed by

-29-

sterilization, preferably filter sterilization. To

l obtain a sterile powder, the above solutions are vacuumdried or freeze-dried as necessary.

The following examples further illustrate the present invention.

-30-

EXAMPLE 1

Isolation and Sequencing of TF8-5G9
Light Chain (LC) and Heavy Chain (HC)

Two DNA libraries were generated from oligo

(dT)-primed TF8-5G9 hybridoma RNA utilizing standard molecular biology procedures as described by Sambrook et al. The cDNA was cloned into the Librarian II plasmid vector from Invitrogen (San Diego, CA), and the libraries were screened for cDNA clones encoding murine

10 IgG HC and LC. A full-length cDNA clone for the heavy chain could not be isolated, despite the construction of two independent libraries. A random primed TF8-5G9 cDNA library was generated to obtain the missing 5' sequence of the heavy chain. Consequently, the heavy chain cDNA was in two pieces: a 5' clone of 390 nucleotides and a 3' clone of 1392 nucleotides. The two HC clones overlap by 292 nucleotides.

by the dideoxy chain termination method of Sanger et al.

(1977) Proc. Natl. Acad. Sci. USA 74:5463. To verify the variable region sequence, sequence was obtained from PCR-amplified cDNA that had been synthesized from total TF8-5G9 hybridoma RNA. Total TF8-5G9 hybridoma RNA was isolated by the guanidinium thiocyanate method of Chrigwin et al. (1970) Biochemistry 18:5294. cDNA was synthesized using the Perkin Elmer (Norwalk, CT) GeneAmp RNA Polymerase Chain Reaction (PCR) kit with an oligo (dT) primer. Components of the same kit were used in the PCR to amplify the LC and HC variable regions using primers based on the sequence that had been obtained for the cDNA clones. The amplified variable region

-31-

fragments were gel-purified and sequenced according to

the method of Tracy et al. (1991) BioTechniques 11:68 on
a Model 373A Applied Biosystems, Inc. (Foster City, CA)
automated fluorescent DNA sequencer. The sequence for
TF8-5G9 LC and HC obtained from RNA amplification and
the sequence obtained from the cDNA clones agreed. The
TF8-5G9 HC variable region sequence with protein
translation is shown in Figure 1 and SEQ ID NO:1, and
that for the LC is shown in Figure 2 and SEQ ID NO:3.

EXAMPLE 2

1 Chimeric LC and HC Expression Vector Construction

In order to test the binding activity of the CDR-grafted anti-TF LC and HC individually, mouse-human 5 chimeric TF8-5G9 LC and HC were constructed. This allowed the CDR-grafted LC to be tested for TF binding ability in combination with the chimeric HC, and the CDR-grafted HC to be tested in combination with the chimeric LC.

- Primers were designed to amplify the TF8-5G9
 LC variable region using as template cDNA clones in the
 Librarian II vector. The 5' primer was designed with an
 EcoRI site while the 3' primer was designed with a NarI
 site. PCR was used to amplify the LC variable region,
- 15 generating a 433 bp fragment with a 5'EcoRI end and 3'NarI end. The fragment included the signal sequence from the TF8-5G9 LC cDNA clone but incorporated a 2 base change in the arginine codon immediately following the ATG start codon. This change retained the arginine
- residue but made the sequence conform to the Kozak consensus sequence in order to potentially improve translation of the LC mRNA. The PCR amplified LC variable region fragment was digested with EcoRI and NarI restriction enzymes and purified by electrophoresis
- on a 2% Nusieve, 1% Seakem agarose gel (FMC Bio Products, Rockland, ME).

The DNA was extracted from the gel slice and purified by the Geneclean (Bio 101, La Jolla, CA) procedure. The full-length chimeric TF8-5G9 LC gene was generated by cloning this DNA into the EcoRI and NarI sites of a pSP73 vector (Promega, Madison, WI) which

-33-

contains the human kappa constant region. The gene was isolated from the pSP73 vector by EcoRI digestion and subcloned into the EcoRI site of the pSG5 mammalian cell expression vector (Stratagene Cloning Systems, La Jolla, CA).

The chimeric TF8-5G9 HC gene was assembled in a manner similar to that of the chimeric LC. Since there was no full-length HC cDNA isolated from the Librarian II vector cDNA libraries, the HC variable region fragment that was generated by the PCR from total TF8-5G9 hybridoma cell RNA was used as the template. Primers which incorporated an EcoRI site at the 5' end and a SacI site at the 3' end were used in the PCR to generate a 430 bp fragment which contained the TF8-5G9 HC Kozak sequence, start codon, signal sequence, and variable region. This fragment was digested with the restriction enzymes EcoRI and SacI, and gel-purified using the same procedure that was used with the chimeric LC construction.

The full-length TF8-5G9 chimeric HC gene was constructed by cloning the variable region fragment into the <u>EcoRI</u> and SacI sites of the pSG5 expression vector containing the human IgG4 constant region.

25

-34-

EXAMPLE 3

Design and Construction of the CDR-Grafted Heavy and Light Chain Genes

The variable region domains of the CDR-grafted 5 HC and LC genes were designed with an <u>EcoRI</u> overhang at the 5' end followed by a Kozak sequence to improve antibody expression. The leader sequences were derived from the heavy and light chains of the murine monoclonal antibody B72.3 (Whittle et al. (1987) Protein

10 Engineering 1:499). The 3' end of the variable regions were designed to have overhangs which allowed for splicing to the appropriate human constant region DNA.

In the initially designed CDR-grafted TF8-5G9 heavy and light chains the CDRs were derived from murine TF8-5G9 sequence while the frameworks were derived primarily from human antibody sequence. The human antibody KOL (Schmidt et al.) was used for the heavy chain frameworks, while the human antibody dimer (Epp et al.) was used for the light chain frameworks.

Several criteria were used to select murine framework residues in the design of the TF8-5G9 CDR-grafted heavy and light chain variable regions. Framework residues which, at a particular position, are idiosyncratic to TF8-5G9 were retained as murine sequence with the assumption that they contributed to its unique binding characteristics. TF8-5G9 murine residues were also retained at framework positions where they were in agreement with the human consensus sequence but where the corresponding residues in KOL or REI were idiosyncratic. Residues that are part of antibody loop

canonical structures such as residue 71 (numbering

-35-

according to Kabat et al.) of the heavy and light chains 1 were also retained as murine sequence. Framework residues that form loops such as residues 26-30 of the HC were kept as TF8-5G9 murine sequence at positions were the murine sequence differed from the human.

5 Residues known to directly influence the conformation of CDRs, such as 48 and 49 immediately preceding CDR2 of the HC, were also retained as murine sequence.

The amino acid sequence of the variable region for the initially designed CDR-grafted TF8-5G9 HC,

10 TF8HCDR1, is shown in SEQ ID NO:11. Murine residues were retained at framework positions 6, 17, 23, 24, 28, 29, 30, 48, 49, 68, 71, 73, 78 88 and 91. The CDR-grafted HC variable region was attached to a human IgG4 constant region.

The amino acid sequence of the variable region for the initially designed CDR-grafted TF8-5G9 LC, TF8LCDR1, is shown in SEQ ID NO:12. Murine residues were retained at framework positions 39, 41, 46 and 105. The CDR-grafted LC variable region was attached to a 20 human kappa constant region.

The variable region for the CDR-grafted HC and LC described above were each assembled from 13 synthetic oligonucleotides which were synthesized by Research Genetics, Inc., Huntsville, AL. These oligonucleotides ranged in length from 42 to 80 bases, and encoded both variable region strands. When the 6 complementary oligonucleotide pairs were annealed, the overhangs generated were 17 to 24 bases in length. These oligonucleotide pairs were combined, annealed at their complementary overhangs, and ligated to give the final full length double-stranded variable regions.

The HC variable region oligonucleotides were l assembled into a 452 bp fragment which contains a 5' EcoRI site and a 3' SacI site. The polymerase chain reaction was used to amplify this fragment. resulting amplified DNA was purified on a 2% Nusieve, 1% 5 Seakem agarose gel (FMC). The appropriate size band of DNA was excised and the DNA was recovered by the Geneclean (Bio 101) procedure. The fragment was then digested with EcoRI and SacI, and purified again by the Geneclean method. This HC variable region fragment with 10 EcoRI and SacI ends was cloned into the EcoRI and SacI sites of the pSport-1 vector (GIBCO-BRL Life Technologies, Gaithersburg, MD). DNA from several clones was isolated and sequenced to verify proper variable region assembly. All clones had unexpected 15 base changes. One clone with the fewest base changes (two mismatches at bases 133 and 140) was selected to be corrected by site-directed mutagenesis according to Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488. Briefly, CJ236 (ung-, dut-) competent cells (Invitrogen pSport vector containing the CDR-grafted HC variable

- 20 Corporation, San Diego, CA) were transformed with the pSport vector containing the CDR-grafted HC variable region with the two base mismatch. Single-stranded, uridine-incorporated DNA templates were purified from phage following M13 helper phage (Stratagene Cloning
- 25 Systems) infection of the transformed cells.

 Mutagenesis oligos containing the desired base changes were synthesized on an Applied Biosystems Model 380B DNA synthesizer. The mutagenesis oligos were annealed to the template DNA, and T7 DNA Polymerase and T4 DNA
- 30 Ligase (MutaGene InVitro Mutagenesis Kit, Bo-Rad Laboratories, Richmond, CA) were used to incorporate the

oligo into a newly synthesized DNA strand. DH5α

competent cells (GIBCO-BRL Life Technologies) were transformed with the double-stranded DNA. The original uridine-incorporated strand is destroyed while the newly synthesized strand containing the mutagenesis oligo is replicated. Phagemid DNA was prepared from the resulting mutagenesis clones and the variable regions were sequence to identify the clones which had incorporated the desired changes. The corrected HC

EcoRI/SacI variable region fragment was excised from the pSport vector, purified and ligated into the EcoRI/SacI sites of a pSG5 vector containing the human IgG4 constant region. This resulted in the generation of a full-length humanized TF8-5G9 HC gene, TF8HCDR1, in the pSG5 COS cell expression vector. The vector was

The CDR-grafted TF8-5G9 LC variable region was also amplified by the PCR from the assembled synthetic oligonucleotides into a 433 bp fragment which contained a 5' EcoRI site and a 3' NarI site. This fragment was purified as described above for the HC, digested with EcoRI and NarI and purified by the Geneclean procedure. This fragment was cloned into the EcoRI and NarI sites of a pSG5 vector which contains the human kappa constant region. This resulted in the generation of a full-length humanized TF8-5G9 LC gene, TF8LCDR1, in the pSG5 COS cell expression vector. Seven clones were

sequenced, and one was found to have the desired CDR-

grafted LC sequence. The vector was designated

pSQ5TF8LCDR1.

EXAMPLE 4

Expression of the CDR-Grafted
Heavy and Light Chain Genes in COS Cells

The transient expression of antibody genes in COS-1 cells provides a rapid and convenient system to test antibody gene expression and function. COS-1 cells were obtained from the American Type Culture Collection (CRL 1650) and cultured in Dulbecco's Modified Eagle Medium (DMEM, from GIBCO BRL Life Technologies) with 10% fetal calf serum. The pSG5TF8HCDR1 expression factor was cotransfected into COS cells with the pSG5 chimeric LC expression vector using the DEAE-Dextran method followed by DMSO shock as described by Lopata et al. (1984) Nucleic Acids Res. 14:5707. After 4 days of culture, media was harvested from the wells and examined for antibody expression levels.

Antibody levels were determined by an ELISA-based assembly assay. Plates were coated with a goat anti-human Fc specific antibody. Various dilutions of the COS cell supernatant containing secreted antibody were added, incubated for one hour, and washed. A horseradish peroxidase-linked goat anti-human kappa chain antibody was added, incubated for one hour at room temperature, and washed. Substrate for the horseradish peroxidase was added for detection. Antibody levels in the COS cell media were found to be nearly undetectable for the TF8HCDR1 x chimeric LC. Upon closer examination of the TF8HCDR1 variable region sequence, it was found that an unexpected base change, which had occurred during the site-directed mutagenesis process described in Example 3, introduced a stop codon into framework 4

-39-

of the TF8HCDR1 gene. This substitution was corrected

by site-directed mutagenesis as described above.

Thorough sequencing of the variable region confirmed that the correction was made with no additional changes introduced. Upon transfection of this corrected

TF8HCDR1 gene with the chimeric LC, reasonable

expression levels were obtained.

COS cells which had been co-transfected with the CDR-grafted LC expression vector, pSGTF8LCDR1, and either the chimeric HC or TF8HCDR1, produced antibody at reasonable levels. Antibody levels in COS cell supernatants ranged from 0.5 µg to 10.0 µg per ml.

15

20

25

-40-

EXAMPLE 5

Binding of the CDR-Grafted TF8-5G9 to Tissue Factor

An ELISA was used to determine the ability of the CDR-grafted TF8-5G9 antibody, TF8HCDR1 x TF8LCDR1,

5 to bind to tissue factor. Tissue factor was immobilized on a microtiter plate. The test COS cell supernatant, containing the CDR-grafted antibody, was added to the well, incubated for one hour at room temperature. Following three washes with PBS/Tween, a goat anti-human lo kappa chain polyclonal antibody conjugated to horseradish peroxidase was added, incubated for one hour at room temperature and washed. Substrate for the horseradish peroxidase was added for detection. The positive control was the TF8-5G9 chimeric antibody. The CDR-grafted TF8-5G9 antibody was able to bind to tissue factor to a degree comparable to the chimeric TF8-5G9 antibody (Figure 3, solid symbols).

The ability of the humanized antibody to compete with murine TF8-5G9 for binding to tissue factor 20 was also examined. Varying amounts of COS cell supernatant containing the test CDR-grafted antibody and a fixed amount of murine TF8-5G9 were added simultaneously to wells coated with tissue factor. Binding was allowed to occur for one hour at room 25 temperature. The wells were washed three times with PBS/Tween. A goat anti-human kappa chain antibody conjugated to horseradish peroxidase was added, incubated for one hour at room temperature and washed. Substrate for the horseradish peroxidase was added for detection. The positive antibody competed as well as

-41-

the chimeric antibody with murine TF8-5G9 for binding to 1 TF.

These data indicate that the initially designed CDR-grafted antibody, TF8HCDR1 x TF8LCDR1, was approximately as active as the chimeric TF8-5G9 in 5 binding to TF and competing with the murine antibody for binding to TF.

10

15

20

25

30

-42-

EXAMPLE 6

Construction and Characterization
of Additional CDR-Grafted Heavy Chains

Upon examination of the molecular structure of 5 murine TF8-5G9, framework residues at positions 27, 68, 73 and 78 were found to lie on the antibody surface and had no discernible contact with the CDRs. framework residues were of murine sequence in TF8HCDR1 but were changed to the human KOL sequence in various 10 combinations to generate a series of CDR-grafted heavy chains with framework residue variations. The changes were made by the process of site-directed mutagenesis as described in Example 3. Each CDR-grafted heavy chain version was expressed in COS cells in combination with 15 the CDR-grafted LC, TF8LCDR1, and tested for its ability to bind TF and compete with murine TF8-5G9 for binding. Every version of the CDR-grafted heavy chain in combination with TF8LCDR1 was shown to bind TF with an affinity comparable to chimeric TF8-5G9. Every CDR-20 grafted HC in combination with TF8LCDR1 was able to compete with murine TF8-5G9 for binding to TF to a degree comparable to the chimeric antibody.

Changes in sequence from murine to human for HC framework positions 6, 7, 68, 73 and 78 did not adversely affect the antigen binding ability of the antibody. The CDR-grafted HC version which had human sequence at all of these positions, and thus was the most humanized HC, was TF8HCDR20.

The complete sequence of the TF8HCDR20 gene

30 was determined. The DNA sequence is shown as a 2360 bp

EcoRI/BamHI insert with protein translation in the

-43-

pEe6TF8HCDR20 expression vector in Figure 4 and SEQ ID 1 NO:15.

The essential regions of the gene are as follows:

	Nucleotide #	Region
5	1-6	5' EcoRI restriction site
	7-15	Kozak sequence
	16-72	Start codon and leader sequence
	73-423	CDR-grafted variable region
	424-717	Human IgG4 CH1 domain
10	718-1110	Human IgG4 intron 2
	1111-1146	Human IgG4 hinge
	1147-1267	Human IgG4 intron 3
	1268-1594	Human IgG4 CH2 domain
	1595-1691	Human IgG4 intron 4
15	1692-2012	Human IgG4 CH3 domain
	2013-2354	3' untranslated region
	2355-2360	3' <u>Bam</u>HI end spliced to <u>Bcl</u>I site of the expression vector

20

25

30

-44-

EXAMPLE 7

Construction and Characterization
of Additional CDR-Grafted Light Chains

The initially designed CDR-grafted LC, 5 TF8LCDR1, contained four framework residues from the murine TF8-5G9 sequence. At two of these positions, 39 and 105, the human REI framework sequence is unique to REI; however, the murine TF8-5G9 LC sequence is in agreement with the human consensus sequence. 10 two murine framework residues, trp41 and thr46, are unique to TF8-5G9. Several versions of the CDR-grafted LC were generated in which the sequence at these four positions were changed from the murine to the human REI in various combinations. These changes were made by . 15 site-directed mutagenesis. Each version of the CDRgrafted LC was expressed in COS cells in combination with the CDR-grafted HC, TF8HCDR20, and tested for ability to bind tissue factor and compete with murine TF8-5G9 for binding. Every version of the CDR-grafted 20 LC, in combination with TF8HCDR20, was shown to bind TF with an affinity comparable to TF8-5G9. Also every CDRgrafted LC version, in combination with TF8HCDR20, was able to compete with murine TF8-5G9 for binding to TF in a manner comparable to the chimeric TF8-5G9 control.

Changes in sequence from murine to human for LC framework positions 39, 41, 46 and 105 did not adversely effect the ability of the antibody to recognize antigen. The CDR-grafted LC of choice was TF8LCDR3, where murine TF8-5G9 sequence was used at positions 39 and 105 because these are in agreement with

the human consensus sequence. The preferred CDR-grafted 1 TF8-5G9 antibody is TF8HCDR20 \times TF8LCDR3.

The complete sequence of the TF8LCDR3 gene was determined and is shown as a 759 bp EcoRI-BamHI insert with protein translation in the pEe12TF8LCDR3 expression 5 vector in Figure 5 and SEQ ID NO:17. The essential regions of the gene are as follows:

	Nucleotide #	Region
	1-5	5' EcoRI restriction site
	6-8	Kozak sequence
10	9-68	Start codon and leader sequence
	69-392	CDR-grafted variable region
	393-710	Human kappa constant region
	711-753	3' untranslated region
	754-759	3'BamHI end spliced to BclI
15		site of the expression vector

20

25

-46-

EXAMPLE 8

CDR-Grafted TF8-5G9 Antibody TF8HCDR20 x TF8LCDR3
Inhibits Human Tissue Factor

The binding of the CDR-grafted TF8-5G9

5 antibody, TF8HCDR20 x TF8LCDR3, to TF was assessed as described in Example 5 and was found to be comparable to that of the chimeric TF8-5G9 as illustrated in Figure 6. The ability of the CDR-grafted TF8-5G9 to compete with the murine antibody for binding to TF is comparable to 10 that of the chimeric TF8-5G9 as shown in Figure 7.

An <u>in vitro</u> assay was used to measure the level of inhibition of factor X activation by the CDR-grafted TF8-5G9 antibody. In this assay, TF forms an active proteolytic complex with factor VII. This

15 complex then converts factor X to factor Xa by proteolysis. The activated Xa enzymatically cleaves a substrate, Spectrozyme FXa, which releases a chromogen. The level of chromogen, as detected by optical density, is an indication of factor X activation due to TF-factor 20 VIIa activity.

The following reaction mixtures were prepared in 12 x 75 mm borosilicate glass tubes.

25 μ l TBS (50 mM Tris, pH 7.4, 150 mM NaCl) 15 μ l 20 mM CaCl₂/1% bovine serum albumin

25 (BSA)

20 μ l human placental tissue factor solution (prepared by reconstituting one vial of Thromborel S, Curtin Matheson Scientific #269-338 with 4.0 ml dH₂O and diluting 1:10 in TBS)

-47-

30 μ l Factor VII (Enzyme Research Labs #HFVII 1007 at 237.66 ng/ml in TBS) 30 μ l TBS or TF8-5G9 or TF8MCDR20 x TF8LCDR3 at 1.18 μ g/ml or as indicated in Fig. 8 The reaction mixtures were incubated at 37°C

- for ten minutes before the addition of Factor X. (In some cases the reaction mixture was preincubated for five minutes before addition of Factor VII or antibody, followed by a ten minute incubation before addition of Factor X.) Thirty μ l of Factor X solution (Enzyme
- Research Labs, DHFX 330, 247.38 μ g/ml TBS) was added and the mixture was incubated at 37°C for three minutes. Factor X activation was terminated by pipetting 40 μ g of reaction mixture into 160 μ l of stop buffer (50 mM Tris, pH 7.4, 100 mM EDTA, 150 mM NaCl) in 96 well microtiter
- 15 plates. Each tube of reaction mixture was pipetted into three microtiter wells. Fifty μl of Spectrozyme FXa substrate (American Diagnostica #222, 1μM/ml TBS) was added to each well. OD₄₀₅ was read on a Molecular Devices kinetic plate reader with readings taken every 20 twenty seconds for ten minutes. Factor X activity was recorded as mOD/minute, and enzyme velocities over the linear portion of the reaction curve were compared to

As shown in Figure 8, the CDR-grafted TF8-5G9 antibody is approximately as effective as the murine TF8-5G9 in inhibiting factor X activation. This indicates that the CDR-grafted TF8-5G9 is functionally

determine inhibition of factor X activation by the anti-

30

active.

-48-

EXAMPLE 9

Construction of the CDR-Grafted Heavy
and Light Chain Myeloma Expression Vectors

For the purpose of establishing a permanent 5 CDR-grafted antibody-producing cell line, the TF8HCDR20 and TF8LCDR3 genes were subcloned into myeloma cell expression vectors. The heavy chain TF8HCDR20 was subcloned into the EcoRI and BclI sites of the pEe6hCMV-BqlII myeloma expression vector described by Stephens et 10 al. (1989) Nucleic Acids Res. 17:7110 to produce pEe6TF8HCDR20. The light chain TF8LCDR3 was subcloned into the EcoTI and BclI sites of the pEe12 myeloma expression vector to produce pEe12TF8LCDR3. and light chain expression vectors are illustrated in 15 Figures 9 and 10, respectively. In both vectors antibody gene transcription was driven by the human cytomegalovirus (hCMV) promoter-enhancer, which lies directly 5' to the multiple cloning site. polyadenylation signal sequence lies 3' to the multiple 20 cloning site and signals the termination of transcription. Each vector contains the ß-lactamase gene to allow for ampicillin selection in E. coli. pEe12 vector contains a glutamine synthetase cDNA gene under the transcriptional control of the SV40 early 25 promoter. Glutamine synthetase allows for myeloma cell transfectants to be selected in glutamine-free media. Myeloma cells are devoid of glutamine synthetase activity and are dependent on a supply of glutamine in the culture media. Cells which have been transfected 30 with the pEel2 vector, containing the glutamine

synthetase gene, are able to synthesize glutamine from 1 glutamate and can survive in the absence of glutamine.

The pEe6TF8HCDR20 expression vector is a 7073 bp plasmid whose DNA sequence is shown in Figure 4 and SEQ ID NO:15. The coding regions of the TF8HCDR20 gene are translated. The essential regions of this vector are described below:

- Nucleotides #1-2360: The TF8HCDR20 CDR-grafted HC gene is described in Example
 The HC gene was inserted as an EcoRI/BamHI fragment into the EcoRI/BclI sites of the pEe6hCMV-BglII vector.
- 2. Nucleotides #2361-2593: This region encodes the SV40 early gene polyadenylation signal (SV40 nucleotides 2770-2537), which acts as a transcriptional terminator. This fragment is flanked by a 5' Bcl I site and a 3' BamHI site. The 3' BamHI end of the heavy chain gene was spliced to the 5' Bcl I site of the polyadenylation signal, thus eliminating both sites.
- 3. Nucleotides #2594-3848: This region is a <u>BamHI-BqlI</u> fragment from pBR328
 (nucleotides 375-2422) but with a deletion between the Sal and AvaI sites (pBR328 nucleotides 651-1425) following the addition of a Sal I linker to the AvaI site. This region contains the Col El bacterial origin of replication.
- 4. Nucleotides #3849-4327: This is a <u>Bgl</u>I
 XmnI fragment site from the B-lactamase gene of pSP64 (Promega Corporation,

 Madison, WI). This gene provides ampicillin resistance to bacteria transformed with this vector.
- 5. Nucleotides #4328-4885: This is an XmnI-HindIII fragment of the ColE1 based plasmid pCT54 described by Emtage et al. (1983) Proc. Natl. Acad. Sci. USA

10

15

- 80:3671. The <u>Hind</u>III site was converted to a <u>Bql</u>II site by the addition of a linker following the addition of the hCMV promoter described below.
- 6. Nucleotides #4886-7022: These
 nucleotides encode the Pst-1m fragment of
 human cytomeglovirus (hCMV) strain AD 169
 described by Greenway et al. (1982) Gene
 18:355 containing the region coding for
 the hCMV middle intermediate early
 promoter. This Pst-1m fragment was
 cloned into the HindIII site of pEe6hCMV
 by addition of oligonucleotides of the
 following sequence to either end of the
 fragment:
 - 5' GTCACCGTCCTTGACACGA 3'
 - 3' ACGTCAGTGGCAGGAACTGTGCTTCGA 5'

The resulting 2100 bp fragment was inserted such that the promoter directed transcription towards the EcoRI site of pEe6hCMV. The oligonucleotide above served to recreate the complete 5' untranslated sequence of the hCMV-MIE gene the added irrelevant sequence at the very 5' end of the fragment. The HindIII site at the 5' end was subsequently converted to a BglII site by the addition of a further linker.

- 7. Nucleotides #7023-7073: The pSP64 polylinker with the <u>Bam</u>HI and <u>Sa</u>II sites removed.
- 25 The pEel2TF8LCDR3 expression vector is a 7864 bp plasmid whose DNA sequence is shown in Figure 5 and SEQ ID NO:17. The coding regions of the TF8LCDR3 gene are translated. The essential regions of this expression vector are described below:
- Nucleotides #1-759: The TF8LCDR3 CDR-grafted LC gene is described in Example 7. The gene was inserted as an

ECORI/BamHI fragment into the ECORI/BclII sites of the pEel2 expression vector.

- Nucleotides #760-3284: These regions of pEe12 are identical to the regions encoded by nucleotides 2361-4885 of the pEe6TF8HCDR20 vector described above (regions #2-5).
- 3. Nucleotides #3285-5736: This region encodes the Chinese hamster ovary glutamine synthetase cDNA under the transcriptional control of the SV40 early promoter and followed by the SV40 polyadenylation and splice signals from 10 the pSV2.dhfr vector described by Subramani et al. (1981) Mol. Cell. Biol. The following describes the derivation of this region: A 1200 bp NaeI-PvuII fragment, containing a complete GS coding sequence, was excised from the Chinese hamster ovary cDNA clone λ GS1.1 described by Hayward et al. (1986) 15 Nucleic Acid Res. 14:999. After addition of a HindIII linker to the NaeI site and a BqlII linker to the PvuII site (hence destroying the Nael and Pvull sites), the 1200 bp fragment was cloned in place of DHFR sequences in pSV2.dhfr between the HindIII and BglII sites to form pSV2.GS. 20 The single remaining PvuII site in pSV2BamGS was converted to a BamHI site by addition of an oligonucleotide linker to form pSV2BamGS. An EcoRI site in the GS cDNA was destroyed by site directed mutagenesis without altering the amino acid sequence in pSV2BamGS and the HindIII site was destroyed by filling in 25 with DNa polymerase I. The 2451 bp BamHI fragment from this plasmid, containing the complete SV40-GS hybrid transcription unit, was excised and inserted at the BqlII site of pEe6hCMV-BqlII site of pEe6hCMV-BglII such that transcription from the sV40 early promoter proceeds 30 towards the hCMV promoter.

1

4. Nucleotides #5737-7864: This region is identical to the hCMV promoter and pSP64 polylinker encoded by nucleotides 4886-7073 of the pEe6TF8HCDR20 vector described above (regions 6 and 7).

For the purpose of ensuring that both the pEe6TF8HCDR20 and peE12TF8LCDR3 vectors co-transfected myeloma cells, the vectors were joined in linear concatamers. Both the pEe6TF8HCDR20 and pEe12TF8LCDR3 vectors were digested at the unique SalI site. The SalI linearized pEe6TF8HCDR20 vector was phosphatased at its 5' ends to prohibit ligation of two pEe6TF8HCDR20 vectors onto each other. This phosphatased HC vector was ligated in a 2:1 molar ratio to the Sal linearized pEe12TF8LCDR3. The resulting concatamers were most likely of the following composition:

PEe6TF8HCDR20 | pEe12TF8LCDR3 | pEe6TF8HCDR20 |

This concatamerized DNA was extracted with phenol and chloroform, and precipitated with ammonium acetate and 20 ethanol. The DNA precipitate was resuspended in distilled water to a concentration of 1 μ g/ μ L and used to transfect myeloma cells.

25

-53-

EXAMPLE 10

Development of NSO Expression Cell Lines

Stably transformed cell lines expressing the humanized TF8-5G9 antibody were prepared by transfecting 5 CDR-grafted heavy and light chain expression vectors into NSO mouse myeloma cells. Selection of transfected cells was carried out using the dominant selectable marker gene, glutamine synthetase (GS).

The NSO mouse myeloma cell line, obtained from

10 Celltech, Ltd., is a subclone derived from NS-1 and does
not express intracellular light chains. These cells
were cultured in Dulbecco's modified Eagle's medium
(DMEM) with added glutamine and 10% fetal bovine serum
(FBS). To prepare for transfection, the cells were

15 harvested in mid-log phase of the growth cycle, centrifuged for 5 minutes, washed with phosphate buffered saline (PBS), centrifuged again, and the cell pellet was resuspended in 2.2 mL of PBS. The final cell concentration was 2.18 x 10⁷ mL. Cells were maintained on ice during the entire procedure.

The DNA to be transfected (pEe12TF8LCDR3 \times pEe6TF8HCDR20) was prepared as a concatamer as described in Example 9. The DNA and NSO cells were added to a 0.4 cm BioRad Gene Pulser cuvette in the following order:

40 μ L (40 μ g) DNA concatamer 320 μ L double distilled water 40 μ L 10 x PBS

400 μ L NSO cells (8.72 x 10 6 cells)

Transfection was performed by electroporation 30 following a protocol provided by Celltech, Ltd. In this procedure, the cells and DNA in PBS buffer were exposed

to a brief, high voltage pulse of electricity causing l transient micropores to form on the cell membrane. DNA transfer takes place through these openings. To prepare for electroporation, the suspension of NSO cells and DNA was gently mixed and incubated on ice for 5 minutes.

- 5 The cuvette was placed in a BioRad Gene Pulser and given 2 consecutive electrical pulses at settings of 3 μ F (capacitance) and 1.5V (voltage). Following electroporation, the cuvette was returned to the ice for 5 minutes. The suspension was then diluted in prewarmed 10 growth medium and distributed into seven 96-well plates. Control plates containing cells electroporated without DNA were also prepared at the same time to measure the presence of spontaneous mutants. Plates were placed in a 37°C incubator with 5% CO₂.
- Glutamine synthetase, encoded by the GS gene, is an enzyme that converts glutamate to glutamine. NSO cells require glutamine for growth due to inadequate levels of endogenous GS gene expression. In the DNA concatamer, this gene is located on the pEel2TF8LCDR3 vector. Transfected cells which incorporate the GS gene become glutamine-independent. Cells not integrating the GS gene into their genome would remain glutamine-dependent and would not survive in glutamine-free medium. Approximately 18 hours post electroporation, all plates were fed with glutamine-free selection medium and returned to the incubator until viable colonies appeared.

Approximately 3 weeks after transfection, distinct macroscopic colonies were observed. These were 30 screened for expression of the intact humanized antibody using the assembly ELISA as described in Example 5.

Tissue culture supernatants from wells containing l colonies were screened at a 1:10 dilution. Positive wells showing activity greater than the 25 ng/mL standard were subcultured and expanded for further analysis.

For selection of high producers, antibody production was quantitated after a 96 hour growth period. Tissue culture flasks were seeded with 2 x 10⁵ cells/mL in 10 mL of selection medium and incubated at 37°C, 5% CO₂ for 96 hours. At the end of that time 10 period, an aliquot was taken to determine cell concentration and antibody titer. Evaluation of antibody production was calculated as μg/mL and pg/cell/96 hours. The highest producers from this transfection were:

15	Cell Line	μg/mL	pg/cell/96 hour
	2B1	26.3	24.3
	3E11	27.6	59.9
	4G6	30.2	41.9

20

25

-56-

EXAMPLE 11

CDR Grafted Antibody TF8HCDR20 x TF8LCDR3 Inhibits Tissue Factor In Vivo

CDR grafted antibody TF8HCDR20 x TF8LCDR3 was 5 compared to murine antibody TF8-5G9 for its ability to protect rats from experimentally induced disseminated intravascular coagulation (DIC). In the DIC model, rats are challenged with human thromboplastin (a crude tissue extract containing TF activity), resulting in fibrinogen consumption and death. Pretreatment of rats with anti-TF antibody was demonstrated to protect rats from fibrinogen consumption and death as follows.

Human thromboplastin was prepared as described in U.S. Patent 5,223,427. Saline control or 30 μ /ml of TF8-5G9 or CDR-grafted antibody was injected through the tail vein of rats, followed by injection of thromboplastin equivalent to 200 ng of recombinant TF. Clotting times were determined at T=0 and T=1 minute as a measure of fibrinogen concentration. Clotting times 20 are proportional to fibrinogen concentration, with a 60 second clotting time corresponding to an 80% reduction in fibrinogen concentration. Clotting times of greater than 60 seconds cannot be accurately measured and were recorded as 60 seconds.

25 Survivability and clotting times for three representative studies are shown below.

		Survi	ivors	
	Study	Controls	TF8-5G9	CDR-grafted Ab
20	1	0/8	5/8	6/8
30	2	0/8	4/7	7/8
	3	0/8	8/8	3/7

1			Clo	otting Times Controls		
_	Stud T=0		Stud T=0		Stuc T=0	ly #3 <u>T=1</u>
	16 16 17 15 16 16	>60 >60 >60 >60 >60 >60 >60 >60	18 18 18 18 16 18 17	>60 >60 >60 >60 >60 >60 >60 >60	19 21 18 19 18 18 18	>60 >60 >60 >60 >60 54 >60 >60 >60
10				otting Times		
	$\frac{\mathbf{T}=0}{\mathbf{T}}$		$\frac{\texttt{Stud}}{\texttt{T}=\texttt{0}}$		$\frac{\mathtt{T}=\mathtt{0}}{\mathtt{T}}$	ly #3 <u>T=1</u>
15	16 15 15 15 16 16 16	36 41 33 31 >60 >60 33 33 >60	18 18 17 18 17 17 17	34 36 >60 >60 50 34 34	19 18 19 18 18 19 19	28 29 29 29 28 40 40 34 >60
				otting Times rafted TF8-5G9		
	Study T=0		Stud <u>T=0</u>		Stud T=0	$\frac{\mathbf{T}=1}{\mathbf{T}}$
25 30	16 16 22 16 15 16	>60 >60 >60 37 32 >60 >60	17 17 18 18 17 18 17	>60 33 32 >60 32 31 31	21 18 17 20 17 18 18	>60 34 >60 35 58 33 31

Twenty-three of the twenty-four control rats

1 had clotting times of greater than 60 seconds indicating
that virtually all untreated rats were consuming more
than 80% of their fibrinogen. Both the CDR-grafted and
murine antibody treated rats had similar clotting times

5 at one minute of 44.5 and 40 seconds. Further, only six
of the murine antibody treated rats and nine of the CDRgrafted antibody treated rats had clotting times in
excess of 60 seconds. Accordingly, both the murine and
CDR-grafted antibodies were able to neutralize TF and

10 thus protect rats from fibrinogen consumption and death.

PCT/US96/09287 WO 96/40921

-59-

SEQUENCE LISTING

1

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Joliffe, Linda K. Zivin, Robert A. Pulito, Virginia L.

5

10

- (ii) TITLE OF INVENTION: CDR-GRAFTED ANTI-TISSUE FACTOR ANTIBODIES AND METHODS OF USE THEREOF
- (iii) NUMBER OF SEQUENCES: 20
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Scully, Scott, Murphy & Presser
 - (B) STREET: 400 Garden City Plaza
 - (C) CITY: Garden City

 - (D) STATE: New York
 (E) COUNTRY: United States
 - (F) ZIP: 11530
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS 15
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 07-JUN-1995 (C) CLASSIFICATION:
 - (viii)- ATTORNEY/AGENT INFORMATION:

 - (A) NAME: DiGiglio, Frank S. (B) REGISTRATION NUMBER: 31,346
 - (C) REFERENCE/DOCKET NUMBER: 9598
 - (ix) TELECOMMUNICATION INFORMATION:

 - (A) TELEPHONE: (516) 742-4343 (B) TELEFAX: (516) 742-4366
 - (C) TELEX: 230 901 SANS UR

25

20

30

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO: 1	:									
1		(i	() () ()	A) L: B) T C) S	CE CI ENGTI YPE: TRANI OPOLO	H: 1 nuc DEDN	489 leic ESS:	base aci dou	pai d	rs								
5		(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	C)						•		
J		(ix		A) N	E: AME/1 OCAT:			.139	1									
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:1:							
10	GGT	CCTT	ACA I	ATG : Met :	AAA : Lys (TGC :	AGC ' Ser '	TGG (Trp 5	GTC : Val	ATC Ile	TTC Phe	TTC (Phe 1	CTG Leu 1	ATG (Met)	GCA (Ala '	GTG Val	4	19
	GTT Val	ACA Thr 15	GGG Gly	GTC Val	AAT Asn	TCA Ser	GAG Glu 20	ATT Ile	CAG Gln	CTG Leu	CAG Gln	CAG Gln 25	TCT Ser	GGG Gly	GCT Ala	GAG Glu	9	97
15	CTT Leu 30	GTG Val	AGG Arg	CCA Pro	GGG Gly	GCC Ala 35	TTA Leu	GTC Val	AAG Lys	TTG Leu	TCC Ser 40	TGC Cys	AAA Lys	GCT Ala	TCT Ser	GGC Gly 45	14	١5
	TTC Phe	AAC Asn	ATT Ile	AAA Lys	GAC Asp 50	TAC Tyr	TAT Tyr	ATG Met	CAC His	TGG Trp 55	GTG Val	AAG Lys	CAG Gln	AGG Arg	CCT Pro 60	GAA Glu	19)3
20	CAG Gln	GGC Gly	CTG Leu	GAG Glu 65	TGG Trp	ATT Ile	GGA Gly	TTG Leu	ATT Ile 70	GAT Asp	CCT Pro	GAG Glu	AAT Asn	GGT Gly 75	AAT Asn	ACT Thr	24	1
20	ATA Ile	TAT Tyr	GAC Asp 80	CCG Pro	AAG Lys	TTC Phe	CAG Gln	GGC Gly 85	AAG Lys	GCC Ala	AGT Ser	ATA Ile	ACA Thr 90	GCA Ala	GAC Asp	ACA Thr	28	19
	TCC Ser	TCC Ser 95	AAC Asn	ACA Thr	GCC Ala	TAC Tyr	CTG Leu 100	CAG Gln	CTC Leu	AGC Ser	AGC Ser	CTG Leu 105	ACA Thr	TCT Ser	GAG Glu	GAC Asp	33	7
25	ACT Thr 110	GCC Ala	GTC Val	TAT Tyr	TAC Tyr	TGT Cys 115	GCT Ala	AGA Arg	GAT Asp	AAC Asn	TCG Ser 120	TAC Tyr	TAC Tyr	TTT Phe	GAC Asp	TAC Tyr 125	38	5

1	TGG Trp	GGC Gly	CAA Gln	GGC Gly	ACC Thr 130	ACT Thr	CTC Leu	ACA Thr	GTC Val	TCC Ser 135	TCA Ser	GCC Ala	AAA Lys	ACG Thr	ACA Thr 140	CCC Pro	433
	CCA Pro	TCT Ser	GTC Val	TAT Tyr 145	CCA Pro	CTG Leu	GCC Ala	CCT Pro	GGA Gly 150	TCT Ser	GCT Ala	GCC Ala	CAA Gln	ACT Thr 155	AAC Asn	TCC Ser	481
5	ATG Met	GTG Val	ACC Thr 160	CTG Leu	GGA Gly	TGC Cys	CTG Leu	GTC Val 165	AAG Lys	GGC Gly	TAT Tyr	TTC Phe	CCT Pro 170	GAG Glu	CCA Pro	GTG Val	529
															ACC Thr		577
10															GTG Val		625
															GTT Val 220		673
7.5															AGG Arg		721
15															TCT Ser		769
															CTG Leu		817
20	CCT Pro 270	AAG Lys	GTC Val	ACG Thr	TGT Cys	GTT Val 275	GTG Val	GTA Val	GAC Asp	ATC Ile	AGC Ser 280	AAG Lys	GAT Asp	GAT Asp	CCC Pro	GAG Glu 285	865
	GTC Val	CAG Gln	TTC Phe	AGC Ser	TGG Trp 290	TTT Phe	GTA Val	GAT Asp	GAT Asp	GTG Val 295	GAG Glu	GTG Val	CAC His	ACA Thr	GCT Ala 300	CAG Gln	913
25	ACG Thr	CAA Gln	CCC Pro	CGG Arg 305	GAG Glu	GAG Glu	CAG Gln	TTC Phe	AAC Asn 310	AGC Ser	ACT Thr	TTC Phe	CGC Arg	TCA Ser 315	GTC Val	AGT Ser	961

ı	GAA Glu	CTT Leu	CCC Pro 320	ATC Ile	ATG Met	CAC His	CAG Gln	GAC Asp 325	TGG Trp	CTC Leu	AAT Asn	GGC Gly	AAG Lys 330	GAG Glu	TTC Phe	AAA Lys	1009
					AGT Ser												1057
5	TCC Ser 350				GGC Gly												1105
					CAG Gln 370												1153
10					TTC Phe												1201
	GGG Gly	CAG Gln	CCA Pro 400	GCG Ala	GAG Glu	AAC Asn	TAC Tyr	AAG Lys 405	AAC Asn	ACT Thr	CAG Gln	CCC Pro	ATC Ile 410	ATG Met	GAC Asp	ACA Thr	1249
15					TTC Phe												1297
رــ	TGG Trp 430	GAG Glu	GCA Ala	GGA Gly	AAT Asn	ACT Thr 435	TTC Phe	ACC Thr	TGC Cys	TCT Ser	GTG Val 440	TTA Leu	CAT His	GAG Glu	GGC Gly	CTG Leu 445	1345
	CAC His	AAC Asn	CAC His	CAT His	ACT Thr 450	GAG Glu	AAG Lys	AGC Ser	CTC Leu	TCC Ser 455	CAC His	TCT Ser	CCT Pro	GGT Gly	AAA Lys 460	T	1391
20	GAT	CCCA	GTG :	rcct'	rgga	GC C	CTCT	GGTC	C TA	CAGG	ACTC	TGA	CACC!	TAC (CTCC	ACCCCT	1451
	CCC'	rgta:	raa 2	ATAA	AGCA	cc cz	AGCA	CTGC	C TT	GGAC	CC						1489

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 460 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

-63-

(ii) MOLECULE	TYPE:	protein
---------------	-------	---------

l

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Lys Cys Ser Trp Val Ile Phe Phe Leu Met Ala Val Val Thr Gly
1 5 10 15

Val Asn Ser Glu Ile Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg 5 20 25 30

Pro Gly Ala Leu Val Lys Leu Ser Cys Lys Ala Ser Gly Phe Asn Ile 35 40 45

Lys Asp Tyr Tyr Met His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu 50 55 60

Glu Trp Ile Gly Leu Ile Asp Pro Glu Asn Gly Asn Thr Ile Tyr Asp 10 65 70 75 80

Pro Lys Phe Gln Gly Lys Ala Ser Ile Thr Ala Asp Thr Ser Ser Asn 85 90 95

Thr Ala Tyr Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val 100 105 110

Tyr Tyr Cys Ala Arg Asp Asn Ser Tyr Tyr Phe Asp Tyr Trp Gly Gln 15 125

Gly Thr Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Pro Ser Val 130 135 140

Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr 145 150 155 160

Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr 20 165 170 175

Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val 180 185 190

Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser 195 200 205

Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala 25 210 220

1	Ser 225	Ser	Thr	Lys	Val	Asp 230	Lys	Lys	Ile	Val	Pro 235	Arg	Asp	Сув	Gly	Cys 240
	Lys	Pro	Сув	Ile	Cys 245	Thr	Val	Pro	Glu	Val 250	Ser	Ser	Val	Phe	Ile 255	Phe
	Pro	Pro	Lys	Pro 260	Lys	Asp	Val	Leu	Thr 265	Ile	Thr	Leu	Thr	Pro 270	Lys	Val
5	Thr	Сув	Val 275	Val	Val	Asp	Ile	Ser 280	ГÀЗ	Asp	Asp	Pro	Glu 285	Val	Gln	Phe
	Ser	Trp 290	Phe	Val	Asp	Asp	Val 295	Glu	Val	His	Thr	Ala 300	Gln	Thr	Gln	Pro
	Arg 305	Glu	Glu	Gln	Phe	Asn 310	Ser	Thr	Phe	Arg	Ser 315	Val	Ser	Glu	Leu	Pro 320
10	Ile	Met	His	Gln	Asp 325	Trp	Leu	Asn	Gly	Lys 330	Glu	Phe	Lys	Cys	Arg 335	Val
	Asn	Ser	Ala	Ala 340	Phe	Pro	Ala	Pro	Ile 345	Glu	Lys	Thr	Ile	Ser 350	Lys	Thr
	Lys	Gly	Arg 355	Pro	Lys	Ala	Pro	Gln 360	Val	Tyr	Thr	Ile	Pro 365	Pro	Pro	Lys
15	Glu	Gln 370	Met	Ala	Lys	Asp	Lys 375	Val	Ser	Leu	Asn	Сув 380	Met	Ile	Thr	Asr
	Phe 385	Phe	Pro	Glu	Asp	Ile 390	Thr	Val	Glu	Trp	Gln 395	Trp	Asn	Gly	Gln	Pro 400
	Ala	Glu	Asn	Tyr	Lys 405	Asn	Thr	Gln	Pro	Ile 410	Met	Asp	Thr	Asp	Gly 415	Ser
20	Tyr	Phe	Val	Tyr 420	Ser	Lys	Leu	Asn	Val 425	Gln	Lys	Ser	Asn	Trp 430	Glu	Ala
	Gly	Asn	Thr 435	Phe	Thr	Сув	Ser	Val 440	Leu	His	Glu	Gly	Leu 445	His	Asn	His
	His	Thr 450	Glu	Lys	Ser	Leu	Ser 455	His	Ser	Pro	Gly	Lys 460				

25

	(-,		u m 1	11011	ron	SEQ	יייי	10:3	•									
1		(i)	() ()	QUENCA) LIB) T'C) S'C)	ENGTI YPE: TRANI	H: 9. nuc. DEDNI	37 b leic ESS:	ase aci dou	pair d	s								
5) FE	LECUI ATURI A) Ni B) Lo	E: AME/I	KEY:	CDS											
		(xi) SE	QUEN	CE DI	ESCR	IPTI	ON:	SEQ :	ID N	0:3:							
10	GGA	Met	G CGG	g GCG g Ala	C CC	o Ala	r CAG a Gli	G TT	T TT	r GGG	G ATO y Ilo 10	e Le	G TTO	G CT	C TG	G TTT p Phe 15	49)
	CCA Pro	GGT Gly	ATC Ile	AGA Arg	TGT Cys 20	GAC Asp	ATC Ile	AAG Lys	ATG Met	ACC Thr 25	CAG Gln	TCT Ser	CCA Pro	TCC Ser	TCC Ser 30	ATG Met	97	,
15	TAT Tyr	GCA Ala	TCG Ser	CTG Leu 35	GGA Gly	GAG Glu	AGA Arg	GTC Val	ACT Thr 40	ATC Ile	ACT Thr	TGT Cys	FAR TAR	GCG Ala 45	AGT Ser	CAG Gln	145	,
	GAC Asp	ATT Ile	AGA Arg 50	AAG Lys	TAT Tyr	TTA Leu	AAC Asn	TGG Trp 55	TAC Tyr	CAG Gln	CAG Gln	AAA Lys	CCA Pro 60	TGG Trp	AAA Lys	TCT Ser	193	,
20	CCT Pro	AAG Lys 65	ACC Thr	CTG Leu	ATC Ile	TAT Tyr	TAT Tyr 70	GCA Ala	ACA Thr	AGC Ser	TTG Leu	GCA Ala 75	GAT Asp	GGG Gly	GTC Val	CCA Pro	241	
	TCA Ser 80	AGA Arg	TTC Phe	AGT Ser	GGC Gly	AGT Ser 85	GGA Gly	TCT Ser	GGG Gly	CAA Gln	GAT Asp 90	TAT Tyr	TCT Ser	CTA Leu	ACC Thr	ATC Ile 95	289	1
	AGC Ser	AGC Ser	CTG Leu	GAG Glu	TCT Ser 100	GAC Asp	GAT Asp	ACA Thr	GCA Ala	ACT Thr 105	TAT Tyr	TAC Tyr	TGT Cys	CTA Leu	CAA Gln 110	CAT His	337	•
25	GGT Gly	GAG Glu	AGC Ser	CCG Pro 115	TAC Tyr	ACG Thr	TTC Phe	GGA Gly	GGG Gly 120	GGG Gly	ACC Thr	AAG Lys	CTG Leu	GAA Glu 125	ATA Ile	AAC Asn	385	

ı	AGG Arg	GCT Ala	GAT Asp 130	GCT Ala	GCA Ala	CCA Pro	ACT Thr	GTA Val 135	TCC Ser	ATC Ile	TTC Phe	CCA Pro	CCA Pro 140	TCC Ser	AGT Ser	GAG Glu	433
					GGA Gly												481
5	TAC Tyr 160	CCC Pro	AAA Lys	GAC Asp	ATC Ile	AAT Asn 165	GTC Val	AAG Lys	TGG Trp	AAG Lys	ATT Ile 170	GAT Asp	GGC Gly	AGT Ser	GAA Glu	CGA Arg 175	529
	CAA Gln	AAT Asn	GGC Gly	GTC Val	CTG Leu 180	AAC Asn	AGT Ser	TGG Trp	ACT Thr	GAT Asp 185	CAG Gln	GAC Asp	AGC Ser	AAA Lys	GAC Asp 190	AGC Ser	577
10	ACC Thr	TAC Tyr	AGC Ser	ATG Met 195	AGC Ser	AGC Ser	ACC Thr	CTC Leu	ACG Thr 200	TTG Leu	ACC Thr	AAG Lys	GAC Asp	GAG Glu 205	TAT Tyr	GAA Glu	625
	CGA Arg	CAT His	AAC Asn 210	AGC Ser	TAT Tyr	ACC Thr	тст Сув	GAG Glu 215	GCC Ala	ACT Thr	CAC His	AAG Lys	ACA Thr 220	TCA Ser	ACT Thr	TCA Ser	673
7.5					AGC Ser							TAG	AGAC	AAA (GGTC	CTGAGA	726
15	CGC	CACC	ACC I	AGCT	cccc	AG C	rcca:	rcct1	A TC	rtcc	CTTC	TAA	GGTC	TTG (GAGG	CTTCCC	786
	CAC	AAGC	GAC (CTAC	CACTO	GT TO	GCGG:	IGCT	CA	AACC!	CCT	CCC	CACC!	rcc :	rtct(CCTCCT	846
	CCT	CCCT	TTC (CTTG	GCTT	TT A	rcat(GCTA	A TA	rttg	CAGA	AAA:	TATT	CAA !	TAAAC	STGAGT	906
	CTT	rgca(CTT (GAAA	AAAA	AA AA	AAAA	AAAA	A A								937
20																	

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 234 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- 25 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

1 Met Arg Ala Pro Ala Gln Phe Phe Gly Ile Leu Leu Trp Phe Pro 1 5 10 15

Gly Ile Arg Cys Asp Ile Lys Met Thr Gln Ser Pro Ser Ser Met Tyr 20 25 30

Ala Ser Leu Gly Glu Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp 35 40 45

Ile Arg Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Trp Lys Ser Pro 50 55 60

Lys Thr Leu Ile Tyr Tyr Ala Thr Ser Leu Ala Asp Gly Val Pro Ser 65 70 75 80

Arg Phe Ser Gly Ser Gly Ser Gly Gln Asp Tyr Ser Leu Thr Ile Ser 10 85 90 95

Ser Leu Glu Ser Asp Asp Thr Ala Thr Tyr Tyr Cys Leu Gln His Gly 100 105 110

Glu Ser Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Asn Arg 115 120 125

Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln
130 135 140

Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr 145 150 155

Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln 165 170 175

Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr 20

Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg 195 200 205

His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro 210 215 220

Asn Val Lys Ser Phe Asn Lys Asn Glu Cys 25 225 230

```
(2) INFORMATION FOR SEQ ID NO:5:
 1
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: double
                 (D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
 5
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
          Asp Asp Tyr Met His
10 (2) INFORMATION FOR SEQ ID NO:6:
           (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 17 amino acids
                 (B) TYPE: amino acid
                (C) STRANDEDNESS: double
(D) TOPOLOGY: linear
         (ii) MOLECULE TYPE: peptide
15
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
          Leu Ile Asp Pro Glu Asn Gly Asn Thr Ile Tyr Lys Pro Lys Phe Gln
                                                    10
          Gly
20
     (2) INFORMATION FOR SEQ ID NO:7:
          (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 8 amino acids (B) TYPE: amino acid
                (C) STRANDEDNESS: double
                (D) TOPOLOGY: linear
25
         (ii) MOLECULE TYPE: peptide
```

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
- 1 Asp Asn Ser Tyr Tyr Phe Asp Tyr
- (2) INFORMATION FOR SEQ ID NO:8:
- 5 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: 10 Lys Ala Ser Gln Asp Ile Arg Lys Tyr Leu Asn
 - (2) INFORMATION FOR SEQ ID NO:9:
- 15 (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 7 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

 - (ii) MOLECULE TYPE: peptide
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: Tyr Ala Thr Ser Leu Ala Asp

25

(2)	INFORMA	TION	FOR	SEO	ID	NO:	10:
-----	---------	------	-----	-----	----	-----	-----

1 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9 amino acids (B) TYPE: amino acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Leu Gln His Gly Glu Ser Pro Tyr Thr

10 (2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

15

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
- Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
 1 5 10 15
- Leu Leu Arg Leu Ser Cys Lys Ala Ser Gly Phe Asn Ile Lys Asp Tyr

20

- Tyr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile
- Gly Leu Ile Asp Pro Glu Asn Gly Asn Thr Ile Tyr Asp Pro Lys Phe
- Gln Gly Arg Phe Ser Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Phe 65 70 75 80

25

-71-

Leu Gln Met Asp Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Tyr Cys l Ala Arg Asp Asn Ser Tyr Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Pro 100 105 110 Val Thr Val Ser Ser 115 5 (2) INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 108 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 10 (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 15 Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile Arg Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Trp Lys Ala Pro Lys Thr Leu Ile Tyr Tyr Ala Thr Ser Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Phe Thr Ile Ser Ser Leu Gln Pro 20 Glu Asp Ile Ala Thr Tyr Tyr Cys Leu Gln His Gly Glu Ser Pro Tyr

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Thr Arg

25

PCT/US96/09287 WO 96/40921

-72-

12	1	INFORMATION	FOR	SEO	TD	NO-13-

l (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 117 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

5

10

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg

Ser Leu Arg Leu Ser Cys Lys Ala Ser Gly Phe Asn Ile Lys Asp Tyr 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile

Gly Leu Ile Asp Pro Glu Asn Gly Asn Thr Ile Tyr Asp Pro Lys Phe

Gln Gly Arg Phe Thr Ile Ser Ala Asp Asn Ser Lys Asn Thr Leu Phe

Leu Gln Met Asp Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Tyr Cys

Ala Arg Asp Asn Ser Tyr Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Pro

Val Thr Val Ser Ser 115

20

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 108 amino acids

 - (B) TYPE: amino acid (C) STRANDEDNESS: single
- 25 (D) TOPOLOGY: linear

30

PCT/US96/09287

5

(ii) MOLECULE TYPE: peptide

1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly

Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile Arg Lys Tyr

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile

Tyr Tyr Ala Thr Ser Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly

Ser Gly Ser Gly Thr Asp Tyr Thr Phe Thr Ile Ser Ser Leu Gln Pro 10

Glu Asp Ile Ala Thr Tyr Tyr Cys Leu Gln His Gly Glu Ser Pro Tyr

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Thr Arg

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7073 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide 20
 - (ix) FEATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: 61..717
 - (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 1111..1146

30

25

-74-

1		(ix	(;	ATURI A) Ni B) Lo	AME/1			31	594								
		(ix	(1	ATURI A) Ni B) Lo	AME/I			220	012								
5		(xi) SE	QUEN	CE DI	ESCR:	IPTIC	ON:	SEQ :	ID N	0:15	:					
	GAA	rtcg	CCT	CCAC	CATGO	GA A	rgga(GCTG	G GT	CTTT	CTCT	TCT	TCTT	GTC	AGTA	ACTACA	6
	GGT Gly 1	GTA Val	CAC His	TCA Ser	CAA Gln 5	GTT Val	CAG Gln	CTG Leu	GTG Val	GAG Glu 10	TCT Ser	GGA Gly	GGA Gly	GGA Gly	GTA Val 15	GTA Val	10
10	CAA Gln	CCT Pro	GGA Gly	AGG Arg 20	TCA Ser	CTG Leu	AGA Arg	CTG Leu	TCT Ser 25	TGT Cys	FAa Tya	GCT Ala	AGT Ser	GGA Gly 30	TTC Phe	AAT Asn	15
	ATC Ile	AAG Lys	GAC Asp 35	TAT Tyr	TAT Tyr	ATG Met	CAC His	TGG Trp 40	GTC Val	AGA Arg	CAA Gln	GCT Ala	CCT Pro 45	GGA Gly	AAA Lys	GGA Gly	20
15	CTC Leu	GAG Glu 50	TGG Trp	ATA Ile	GGT Gly	TTA Leu	ATT Ile 55	GAT Asp	CCT Pro	GAG Glu	AAT Asn	GGT Gly 60	AAC Asn	ACG Thr	ATA Ile	TAT Tyr	25
	GAT Asp 65	CCC Pro	AAG Lys	TTC Phe	CAA Gln	GGA Gly 70	AGA Arg	TTC Phe	ATA Ile	ATT Ile	TCT Ser 75	GCA Ala	GAC Asp	AAC Asn	TCT Ser	AAG Lys 80	300
20	AAT Asn	ACA Thr	CTG Leu	TTC Phe	CTG Leu 85	CAG Gln	ATG Met	GAC Asp	TCA Ser	CTC Leu 90	AGA Arg	CCT Pro	GAG Glu	GAT Asp	ACA Thr 95	GCA Ala	341
	GTC Val	TAC Tyr	TTT Phe	TGT Cys 100	GCT Ala	AGA Arg	GAT Asp	AAC Asn	AGT Ser 105	TAT Tyr	TAC Tyr	TTC Phe	GAC Asp	TAC Tyr 110	TGG Trp	GGC Gly	39
	CAA Gln	GGA Gly	ACA Thr 115	CCA Pro	GTC Val	ACC Thr	GTG Val	AGC Ser 120	TCA Ser	GCT Ala	TCC Ser	ACC Thr	AAG Lys 125	GGC Gly	CCA Pro	TCC Ser	44
25	GTC Val	TTC Phe 130	CCC Pro	CTG Leu	GCG Ala	CCC Pro	TGC Cys 135	TCC Ser	AGG Arg	AGC Ser	ACC Thr	TCC Ser 140	GAG Glu	AGC Ser	ACA Thr	GCC Ala	49

-75-

ı	GCC CTG GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CCG GTG ACG GTG Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150 155	540
	TCG TGG AAC TCA GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG GCT Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165 170 175	588
5	GTC CTA CAG TCC TCA GGA CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 180 185 190	636
	CCC TCC AGC AGC TTG GGC ACG AAG ACC TAC ACC TGC AAC GTA GAT CAC Pro Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His 195 200 205	684
10	AAG CCC AGC AAC ACC AAG GTG GAC AAG AGA GTT GGTGAGAGGC CAGCACAGGG Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val 210 215	737
	CAGGGAGGT GTCTGCTGGA AGCCAGGCTC AGCCCTCCTG CCTGGACGCA CCCCGGCTGT	797
	GCAGCCCCAG CCCAGGGCAG CAAGGCATGC CCCATCTGTC TCCTCACCCG GAGGCCTCTG	857
	ACCACCCCAC TCATGCTCAG GGAGAGGGTC TTCTGGATTT TTCCACCAGG CTCCGGGCAG	917
	CCACAGGCTG GATGCCCCTA CCCCAGGCCC TGCGCATACA GGGGCAGGTG CTGCGCTCAG	977
15	ACCTGCCAAG AGCCATATCC GGGAGGACCC TGCCCCTGAC CTAAGCCCAC CCCAAAGGCC	1037
	AAACTCTCCA CTCCCTCAGC TCAGACACCT TCTCTCCTCC CAGATTCGAG TAACTCCCAA	1097
	TCTTCTCTCT GCA GAG TCC AAA TAT GGT CCC CCA TGC CCA TCA TGC CCA Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro 1 5 10	1146
20	GGTAAGCCAA CCCAGGCCTC GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC	1206
	TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACGCATCC ACCTCCATCT CTTCCTCAGC	1266
	A CCT GAG TTC CTG GGG GGA CCA TCA GTC TTC CTG TTC CCC CCA AAA Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 1 5 10 15	1312
25	CCC AAG GAC ACT CTC ATG ATC TCC CGG ACC CCT GAG GTC ACG TGC GTG Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 20 25 30	1360

1	GTG Val	GTG Val	GAC Asp	GTG Val 35	AGC Ser	CAG Gln	GAA Glu	GAC Asp	CCC Pro 40	GAG Glu	GTC Val	CAG Gln	TTC Phe	AAC Asn 45	TGG Trp	TAC Tyr	1408
	GTG Val	GAT Asp	GGC Gly 50	GTG Val	GAG Glu	GTG Val	CAT His	AAT Asn 55	GCC Ala	AAG Lys	ACA Thr	AAG Lys	CCG Pro 60	CGG Arg	GAG Glu	GAG Glu	1456
5	CAG Gln	TTC Phe 65	AAC Asn	AGC Ser	ACG Thr	TAC Tyr	CGT Arg 70	GTG Val	GTC Val	AGC Ser	GTC Val	CTC Leu 75	ACC Thr	GTC Val	ATG Met	CAC His	1504
	CAG Gln 80	GAC Asp	TGG Trp	CTG Leu	AAC Asn	GGC Gly 85	AAG Lys	GAG Glu	TAC Tyr	AAG Lys	TGC Cys 90	AAG Lys	GTC Val	TCC Ser	AAC Asn	AAA Lys 95	1552
10	GGC Gly	CTC Leu	CCG Pro	TCC Ser	TCC Ser 100	ATC Ile	GAG Glu	AAA Lys	ACC Thr	ATC Ile 105	TCC Ser	AAA Lys	GCC Ala	AAA Lys			1594
	GGT	GGA	ccc i	ACGG	GTG	CG AC	GGC	CACA	r GG2	ACAG	AGGT	CAGO	CTCG	SCC (CACCO	CTCTGC	1654
	CCT	GGA(GTG 1	ACCG	CTGT	GC C	AACC:	rctg:	CCC	CTAC						CCA Pro	1709
15	CAG Gln	GTG Val	TAC Tyr	ACC Thr 10	CTG Leu	CCC Pro	CCA Pro	TCC Ser	CAG Gln 15	GAG Glu	GAG Glu	ATG Met	ACC Thr	AAG Lys 20	AAC Asn	CAG Gln	1757
	GTC Val	AGC Ser	CTG Leu 25	ACC Thr	TGC Cys	CTG Leu	GTC Val	AAA Lys 30	GGC Gly	TTC Phe	TAC Tyr	CCC Pro	AGC Ser 35	GAC Asp	ATC Ile	GCC Ala	1805
20	GTG Val	GAG Glu 40	TGG Trp	GAG Glu	AGT Ser	AAT Asn	GGG Gly 45	CAG Gln	CCG Pro	GAG Glu	AAC Asn	AAC Asn 50	TAC Tyr	AAG Lys	ACC Thr	ACG Thr	1853
	CCT Pro 55	CCC Pro	GTG Val	CTG Leu	GAC Asp	TCC Ser 60	GAC Asp	GGC Gly	TCC Ser	TTC Phe	TTC Phe 65	CTC Leu	TAC Tyr	AGC Ser	AGG Arg	CTA Leu 70	1901
25	ACC Thr	GTG Val	GAC Asp	AAG Lys	AGC Ser 75	AGG Arg	TGG Trp	CAG Gln	GAG Glu	GGG Gly 80	TAA Aan	GTC Val	TTC Phe	TCA Ser	GTC Val 85	TCC Ser	1949

1	GTG ATG CAT Val Met His	GAG GCT CT Glu Ala Le 90	TG CAC AAC (eu His Asn)	CAC TAC ACA His Tyr Thr 95	CAG AAG AGG Gln Lys Ser 100	r Leu Ser	1997
	CTG TCT CTG Leu Ser Leu 105	ı Gly Lys	SAGTGCCAG G	GCCGGCAAG CO	CCCCCCTCC C	CGGGCTCTC	2052
5	GGGGTCGCGC	GAGGATGCTT	GGCACGTACC	CCGTCTACAT	ACTTCCCAGG	CACCCAGCAT	2112
,	GGAAATAAAG	CACCCACCAC	TGCCCTGGGC	CCCTGTGAGA	CTGTGATGGT	TCTTTCCACG	2172
	GGTCAGGCCG	AGTCTGAGGC	CTGAGTGACA	TGAGGGAGGC	AGAGCGGGTC	CCACTGTCCC	2232
	CACACTGGCC	CAGGCTGTGC	AGGTGTGCCT	GGGCCACCTA	GGGTGGGGCT	CAGCCAGGGG	2292
	CTGCCCTCGG	CAGGGTGGGG	GATTTGCCAG	CGTGGCCCTC	CCTCCAGCAG	CAGGACTCTA	2352
10	GAGGATCATA	ATCAGCCATA	CCACATTTGT	AGAGGTTTTA	CTTGCTTTAA	AAAACCTCCC	2412
	ACACCTCCCC	CTGAACCTGA	AACATAAAAT	GAATGCAATT	GTTGTTGTTA	ACTTGTTTAT	2472
	TGCAGCTTAT	AATGGTTACA	AATAAAGCAA	TAGCATCACA	AATTTCACAA	ATAAAGCATT	2532
	TTTTTCACTG	CATTCTAGTT	GTGGTTTGTC	CAAACTCATC	AATGTATCTT	ATCATGTCTG	2592
	GATCCTCTAC	GCCGGACGCA	TCGTGGCCGG	CATCACCGGC	GCCACAGGTG	CGGTTGCTGG	2652
15	CGCCTATATC	GCCGACATCA	CCGATGGGGA	AGATCGGGCT	CGCCACTTCG	GGCTCATGAG	2712
	CGCTTGTTTC	GGCGTGGGTA	TGGTGGCAGG	CCCGTGGCCG	GGGGACTGTT	GGGCGCCATC	2772
				GTGCTCAACG			2832
				GAGCGTCGAC			2892
20				CATCACAAAA			2952
				CAGGCGTTTC			3012
				GGATACCTGT			
				AGGTATCTCA			3072
				GTTCAGCCCG			3132
25				G11CAGCCCG			3192

	GGTAACAGGA	TTAGCAGAGC	GAGGTATGTA	GGCGGTGCTA	CAGAGTTCTT	GAAGTGGTGG	3312
1	CCTAACTACG	GCTACACTAG	AAGGACAGTA	TTTGGTATCT	GCGCTCTGCT	GAAGCCAGTT	3372
	ACCTTCGGAA	AAAGAGTTGG	TAGCTCTTGA	TCCGGCAAAC	AAACCACCGC	CTCTGCT GAAGCCAGTT CCACCGC TGGTAGCGGT 34 GATCTCA AGAAGATCCT 34 CACGTTA AGGGATTTTG 35 ATTAAAA ATGAAGTTTT ACCAATG CTTAATCAGT 36 ATGCCAGC AGGAAGGCC 37 AGCCAGC CGGAAGGGCC 38 AGCCAGC CGGAAGGGCC 39 TTGTTGC CATTGCTACA 39 GCTCCGG TTCCCAACGA 40 TTAGCTC CTTCGGTCCT 40 TGGTTAT GGCAGCACTG 41 TGACTGG TGAGTACTCA 42 TCATTGG AAAACGTTCT 43 AGTTCGAT GTAACCCACT 44 AGTTCGTT GTAACCCACT 45 AGTTCGAT GTAACCCACT 45 AGGAAATG TTGAATACTC 45 AGCCGCGCAC ATTTCCCCGA 46 AGCCGCGCAC ATTTCCCCGA 46 AGCCACCACT 47 AGCCACCACCACT 48 AGCCACCACCACCACCACCACCACCACCACCACCACCACC	3432
	GGTTTTTTTG	TTTGCAAGCA	GCAGATTACG	CGCAGAAAAA	AAGGATCTCA	AGAAGATCCT	3492
=	TTGATCTTTT	CTACGGGGTC	TGACGCTCAG	TGGAACGAAA	ACTCACGTTA	AGGGATTTTG	3552
5	GTCATGAGAT	TATCAAAAAG	GATCTTCACC	TAGATCCTTT	TAAATTAAAA	ATGAAGTTTT	3612
	AAATCAATCT	AAAGTATATA	TGAGTAAACT	TGGTCTGACA	GTTACCAATG	CTTAATCAGT	3672
	GAGGCACCTA	TCTCAGCGAT	CTGTCTATTT	CGTTCATCCA	TAGTTGCCTG	ACTCCCCGTC	3732
	GTGTAGATAA	CTACGATACG	GGAGGGCTTA	CCATCTGGCC	CCAGTGCTGC	AATGATACCG	3792
10	CGAGACCCAC	GCTCACCGGC	TCCAGATTTA	TCAGCAATAA	ACCAGCCAGC	CGGAAGGGCC	3852
	GAGCGCAGAA	GTGGTCCTGC	AACTTTATCC	GCCTCCATCC	AGTCTATTAA	TTGTTGCCGG	3912
	GAAGCTAGAG	TAAGTAGTTC	GCCAGTTAAT	AGTTTGCGCA	ACGTTGTTGC	CATTGCTACA	3972
	GGCATCGTGG	TGTCACGCTC	GTCGTTTGGT	ATGGCATCAT	TCAGCTCCGG	TTCCCAACGA	4032
15	TCAAGGCGAG	TTACATGATC	CCCCATGTTG	TGCAAAAAAG	CGGTTAGCTC	CTTCGGTCCT	4092
上ン	CCGATCGTTG	TCAGAAGTAA	GTTGGCCGCA	GTGTTATCAC	TCATGGTTAT	GGCAGCACTG	4152
	CATAATTCTC	TTACTGTCAT	GCCATCCGTA	AGATGCTTTT	CTGTGACTGG	TGAGTACTCA	4212
	ACCAAGTCAT	TCTGAGAATA	GTGTATGCGG	CGACCGAGTT	GCTCTTGCCC	GGCGTCAACA	4272
	CGGGATAATA	CCGCGCCACA	TAGCAGAACT	TTAAAAGTGC	TCATCATTGG	AAAACGTTCT	4332
20	TCGGGGCGAA	AACTCTCAAG	GATCTTACCG	CTGTTGAGAT	CCAGTTCGAT	GTAACCCACT	4392
	CGTGCACCCA	ACTGATCTTC	AGCATCTTTT	ACTTTCACCA	GCGTTTCTGG	GTGAGCAAAA	4452
	ACAGGAAGGC	AAAATGCCGC	AAAAAAGGGA	ATAAGGGCGA	CACGGAAATG	TTGAATACTC	4512
	ATACTCTTCC	TTTTTCAATA	TTATTGAAGC	ATTTATCAGG	GTTATTGTCT	CATGAGCGGA	4572
25	TACATATTTG	AATGTATTTA	GAAAAATAAA	CAAATAGGGG	TTCCGCGCAC	ATTTCCCCGA	4632
2)	AAAGTGCCAC	CTGACGTCTA	AGAAACCATT	ATTATCATGA	CATTAACCTA	TAAAAATAGG	4692

-79-

	CGTATCACGA	GGCCCTGATG	GCTCTTTGCG	GCACCCATCG	TTCGTAATGT	TCCGTGGCAC	4752
1	CGACGACAAC	CCTCAAGAGA	AAATGTAATC	ACACTGGCTC	ACCTTCGGGT	GGGCCTTTCT	4812
	GCGTTTATAA	GGAGACACTT	TATGTTTAAG	AAGGTTGGTA	AATTCCTTGC	GGCTTTGGCA	4872
	GCCAAGCTAG	AGATCTCTAG	CTTCGTGTCA	AGGACGGTGA	CTGCAGTGAA	TAATAAAATG	4932
5	TGTGTTTGTC	CGAAATACGC	GTTTTGAGAT	TTCTGTCGCC	GACTAAATTC	ATGTCGCGCG	4992
,	ATAGTGGTGT	TTATCGCCGA	TAGAGATGGC	GATATTGGAA	AAATCGATAT	TTGAAAATAT	5052
	GGCATATTGA	AAATGTCGCC	GATGTGAGTT	TCTGTGTAAC	TGATATCGCC	ATTTTTCCAA	5112
	AAGTGATTTT	TGGGCATACG	CGATATCTGG	CGATAGCGCT	TATATCGTTT	ACGGGGGATG	5172
	GCGATAGACG	ACTTTGGTGA	CTTGGGCGAT	TCTGTGTGTC	GCAAATATCG	CAGTTTCGAT	5232
10	ATAGGTGACA	GACGATATGA	GGCTATATCG	CCGATAGAGG	CGACATCAAG	CTGGCACATG	5292
	GCCAATGCAT	ATCGATCTAT	ACATTGAATC	AATATTGGCC	ATTAGCCATA	TTATTCATTG	5352
	GTTATATAGC	ATAAATCAAT	ATTGGCTATT	GGCCATTGCA	TACGTTGTAT	CCATATCATA	5412
	ATATGTACAT	TTATATTGGC	TCATGTCCAA	CATTACCGCC	ATGTTGACAT	TGATTATTGA	5472
15	CTAGTTATTA	ATAGTAATCA	ATTACGGGGT	CATTAGTTCA	TAGCCCATAT	ATGGAGTTCC	5532
	GCGTTACATA	ACTTACGGTA	AATGGCCCGC	CTGGCTGACC	GCCCAACGAC	CCCCCCCAT	5592
	TGACGTCAAT	AATGACGTAT	GTTCCCATAG	TAACGCCAAT	AGGGACTTTC	CATTGACGTC	5652
	AATGGGTGGA	GTATTTACGG	TAAACTGCCC	ACTTGGCAGT	ACATCAAGTG	TATCATATGC	5712
	CAAGTACGCC	CCCTATTGAC	GTCAATGACG	GTAAATGGCC	CGCCTGGCAT	TATGCCCAGT	5772
20		ATGGGACTTT					5832
		GCGGTTTTGG					5892
		TCTCCACCCC					5952
		AAAATGTCGT					6012
25		GGTCTATATA					6072
	GCCATCCACG	CTGTTTTGAC	CTCCATAGAA	GACACCGGGA	CCGATCCAGC	CTCCGCGGCC	6132

	GGGAACGGTG	CATTGGAACG	CGGATTCCCC	GTGCCAAGAG	TGACGTAAGT	ACCGCCTATA	6192
l	GAGTCTATAG	GCCCACCCC	TTGGCTTCTT	ATGCATGCTA	TACTGTTTTT	GGCTTGGGGT	6252
	CTATACACCC	AGAACGGTG CATTGGAACG CGGATTCCCC GTGCCAAGAG TGACGTAAGT ACCGCCTATA AGTCTATAG GCCCACCCCC TTGGCTTCTT ATGCATGCTA TACTGTTTTT GGCTTGGGGT FATACACCC CCGCTTCCTC ATGTTATAGG TGATGGTATA GCTTAGCCTA TAGGTGTGGG FATTGACCA TTATTGACCA CTCCCCTATT GGTGACGATA CTTTCCATTA CTAATCCATA CATGGCTCT TTGCCACAAC TCTCTTTATT GGCTATATGC CAATACACTG TCCTTCAGAG CTGACACGG ACTCTGTATT TTTACAGGAT GGGGTCTCAT TTATTATTTA CAAATTCACA ATACAACAC CACCGTCCCC AGTGCCCGCA GTTTTTATTA AACATAACGT GGGATCTCCA GCGAATCTC GGGTACGTGT TCCGGACATG GGCTCTTCTC CGGTAGCGGC GGAGCTTCTA ATCCGAGCC CTGCTCCCAT CCCTCCAGCG ACTCATGGTC GCTCGGCAGC TCCTTGCTCC AACAGTGGA GGCCAGACTT AGGCACAGCA CGATGCCCAC CACCACCAGT GTGCCGCACA GGCCGTGGC GGTAGGGTAT GTGTCTGAAA ATGAGCTCGG GGAGCGGGCT TGCACCGCTG CGCATTTGG AAGACTTAAG GCAGCGCAG AAGAAGATGC AGGCAGCTGA GTTGTTGTGT CTGATAAGA GTCAGAGGTA ACTCCCGTTG CGGTGCTGTT AACGGTGGAG GGCAGTGTAG CTGAGCAGT ACTCGTTGCT GCCGCGCGC CCACCAGACA TAATAGCTGA CAGACTAACA ACTGTTCCT TTCCATGGGT CTTTTCTGCA GTCACCGTCC TTGACACGAA GCTTGGGCTG CAGGGTCGATC GACTCTAGAG GATCCATCCC CGGGCGAGCT C	6312				
	TTATTGACCA	TTATTGACCA	CTCCCCTATT	GGTGACGATA	CTTTCCATTA	CTAATCCATA	6372
_	ACATGGCTCT	TTGCCACAAC	TCTCTTTATT	GGCTATATGC	CAATACACTG	TCCTTCAGAG	6432
5	ACTGACACGG	ACTCTGTATT	TTTACAGGAT	GGGGTCTCAT	TTATTATTTA	CAAATTCACA	6492
	TATACAACAC	CACCGTCCCC	AGTGCCCGCA	GTTTTTATTA	AACATAACGT	GGGATCTCCA	6552
	CGCGAATCTC	GGGTACGTGT	TCCGGACATG	GGCTCTTCTC	CGGTAGCGGC	GGAGCTTCTA	6612
	CATCCGAGCC	CTGCTCCCAT	CCCTCCAGCG	ACTCATGGTC	GCTCGGCAGC	TCCTTGCTCC	6672
LO	TAACAGTGGA	GGCCAGACTT	AGGCACAGCA	CGATGCCCAC	CACCACCAGT	GTGCCGCACA	6732
	AGGCCGTGGC	GGTAGGGTAT	GTGTCTGAAA	ATGAGCTCGG	GGAGCGGGCT	TGCACCGCTG	6792
	ACGCATTTGG	AAGACTTAAG	GCAGCGGCAG	AAGAAGATGC	AGGCAGCTGA	GTTGTTGTGT	6852
	TCTGATAAGA	GTCAGAGGTA	ACTCCCGTTG	CGGTGCTGTT	AACGGTGGAG	GGCAGTGTAG	6912
. –	TCTGAGCAGT	ACTCGTTGCT	GCCGCGCGCG	CCACCAGACA	TAATAGCTGA	CAGACTAACA	6972
15	GACTGTTCCT	TTCCATGGGT	CTTTTCTGCA	GTCACCGTCC	TTGACACGAA	GCTTGGGCTG	7032
	CAGGTCGATC	GACTCTAGAG	GATCGATCCC	CGGGCGAGCT	С		7073

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 219 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear 20

(ii) MOLECULE TYPE: protein

25

-81-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

I Gly Val His Ser Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val
1 5 10 15

Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Lys Ala Ser Gly Phe Asn 20 25 30

Ile Lys Asp Tyr Tyr Met His Trp Val Arg Gln Ala Pro Gly Lys Gly
35 40 45

Leu Glu Trp Ile Gly Leu Ile Asp Pro Glu Asn Gly Asn Thr Ile Tyr 50 60

Asp Pro Lys Phe Gln Gly Arg Phe Ile Ile Ser Ala Asp Asn Ser Lys 65 70 75 80

Asn Thr Leu Phe Leu Gln Met Asp Ser Leu Arg Pro Glu Asp Thr Ala 10 85 90 95

Val Tyr Phe Cys Ala Arg Asp Asn Ser Tyr Tyr Phe Asp Tyr Trp Gly 100 105 110

Gln Gly Thr Pro Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 115 120 125

Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala 15 130 135 140

Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 145 150 155 160

Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala 165 170 175

Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val 20 180 185 190

Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His 195 200 205

Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val 210 215

25

PCT/US96/09287

-82-

- (2) INFORMATION FOR SEQ ID NO:17:
- ı (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro 1 5

- (2) INFORMATION FOR SEQ ID NO:18:
- 10
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 109 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: 15

Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 1 5 10 15

Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 20 25 30

Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val 20

Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln

Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Met His Gln 65 70 75 80

Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly 85 90 95 25

Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys 100

1

5

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 107 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
- Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu 10

Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe

Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu

Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe 15

Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly

Asn Val Phe Ser Val Ser Val Met His Glu Ala Leu His Asn His Tyr

Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 20

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 7864 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

30

-84-

(ii) MOLECULE TYPE: peptide

1

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 9..711

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

5	AATTCACCAT	GGGTGTGCCA	ACTCAGGTAT	TAGGATTACT	GCTGCTGTGG	CTTACAGATG	60
	CAAGATGTGA	TATCCAAATG	ACACAATCTC	CTTCTTCTCT	AAGTGCTTCT	GTCGGAGATA	120
	GAGTAACAAT	TACATGTAAG	GCGAGTCAGG	ACATTAGAAA	GTATTTAAAC	TGGTATCAGC	180
	AAAAACCTGG	GAAGGCTCCT	AAGCTACTGA	TTTATTATGC	AACAAGTTTG	GCAGATGGAG	240
	TACCTTCTAG	ATTTTCTGGT	TCTGGCTCTG	GAACAGACTA	CACATTCACA	ATTTCTTCTC	300
10	TCCAACCTGA	GGACATTGCT	ACATACTACT	GCCTACAACA	TGGTGAGAGT	CCGTATACAT	360
	TTGGACAAGG	AACAAAACTA	GAGATCACAA	GAACTGTTGC	GGCGCCGTCT	GTCTTCATCT	420
	TCCCGCCATC	TGATGAGCAG	TTGAAATCTG	GAACTGCCTC	TGTTGTGTGC	CTGCTGAATA	480
	ACTTCTATCC	CAGAGAGGCC	AAAGTACAGT	GGAAGGTGGA	TAACGCCCTC	CAATCGGGTA	540
15	ACTCCCAGGA	GAGTGTCACA	GAGCAGGACA	GCAAGGACAG	CACCTACAGC	CTCAGCAGCA	600
	CCCTGACGCT	GAGCAAAGCA	GACTACGAGA	AACACAAAGT	CTACGCCTGC	GAAGTCACCC	660
	ATCAGGGCCT	GAGCTCGCCC	GTCACAAAGA	GCTTCAACAG	GGGAGAGTGT	TAGAGGGAGA	720
	AGTGCCCCCA	CCTGCTCCTC	AGTTCCAGCC	TGGGGATCAT	AATCAGCCAT	ACCACATTTG	780
	TAGAGGTTTT	ACTTGCTTTA	AAAAACCTCC	CACACCTCCC	CCTGAACCTG	AAACATAAAA	840
20	TGAATGCAAT	TGTTGTTGTT	AACTTGTTTA	TTGCAGCTTA	TAATGGTTAC	AAATAAAGCA	900
	ATAGCATCAC	: AAATTTCACA	AATAAAGCAT	TTTTTTCACT	GCATTCTAGT	TGTGGTTTGT	960
	CCAAACTCAT	CAATGTATCT	TATCATGTCT	GGATCCTCTA	CGCCGGACGC	ATCGTGGCCG	1020
	GCATCACCGG	CGCCACAGGI	GCGGTTGCTG	GCGCCTATAT	CGCCGACATC	ACCGATGGGG	1080
25	AAGATCGGGC	CTCGCCACTTC	GGGCTCATGA	GCGCTTGTTT	CGGCGTGGGI	ATGGTGGCAG	1140

-85-

	GCCCGTGGCC	GGGGGACTGT	TGGGCGCCAT	CTCCTTGCAT	GCACCATTCC	TTGCGGCGGC	1200
1	GGTGCTCAAC	GGCCTCAACC	TACTACTGGG	CTGCTTCCTA	ATGCAGGAGT	CGCATAAGGG	1260
	AGAGCGTCGA	CCTCGGGCCG	CGTTGCTGGC	GTTTTTCCAT	AGGCTCCGCC	CCCCTGACGA	1320
	GCATCACAAA	AATCGACGCT	CAAGTCAGAG	GTGGCGAAAC	CCGACAGGAC	TATAAAGATA	1380
_	CCAGGCGTTT	CCCCTGGAA	GCTCCCTCGT	GCGCTCTCCT	GTTCCGACCC	TGCCGCTTAC	1440
5	CGGATACCTG	TCCGCCTTTC	TCCCTTCGGG	AAGCGTGGCG	CTTTCTCAAT	GCTCACGCTG	1500
	TAGGTATCTC	AGTTCGGTGT	AGGTCGTTCG	CTCCAAGCTG	GGCTGTGTGC	ACGAACCCCC	1560
	CGTTCAGCCC	GACCGCTGCG	CCTTATCCGG	TAACTATCGT	CTTGAGTCCA	ACCCGGTAAG	1620
	ACACGACTTA	TCGCCACTGG	CAGCAGCCAC	TGGTAACAGG	ATTAGCAGAG	CGAGGTATGT	1680
10	AGGCGGTGCT	ACAGAGTTCT	TGAAGTGGTG	GCCTAACTAC	GGCTACACTA	GAAGGACAGT	1740
	ATTTGGTATC	TGCGCTCTGC	TGAAGCCAGT	TACCTTCGGA	AAAAGAGTTG	GTAGCTCTTG	1800
	ATCCGGCAAA	CAAACCACCG	CTGGTAGCGG	TGGTTTTTT	GTTTGCAAGC	AGCAGATTAC	1860
	GCGCAGAAAA	AAAGGATCTC	AAGAAGATCC	TTTGATCTTT	TCTACGGGGT	CTGACGCTCA	1920
3 E	GTGGAACGAA	AACTCACGTT	AAGGGATTTT	GGTCATGAGA	TTATCAAAAA	GGATCTTCAC	1980
15	CTAGATCCTT	TTAAATTAAA	AATGAAGTTT	TAAATCAATC	TAAAGTATAT	ATGAGTAAAC	2040
	TTGGTCTGAC	AGTTACCAAT	GCTTAATCAG	TGAGGCACCT	ATCTCAGCGA	TCTGTCTATT	2100
	TCGTTCATCC	ATAGTTGCCT	GACTCCCCGT	CGTGTAGATA	ACTACGATAC	GGGAGGGCTT	2160
	ACCATCTGGC	CCCAGTGCTG	CAATGATACC	GCGAGACCCA	CGCTCACCGG	CTCCAGATTT	2220
20	ATCAGCAATA	AACCAGCCAG	CCGGAAGGGC	CGAGCGCAGA	AGTGGTCCTG	CAACTTTATC	2280
	CGCCTCCATC	CAGTCTATTA	ATTGTTGCCG	GGAAGCTAGA	GTAAGTAGTT	CGCCAGTTAA	2340
	TAGTTTGCGC	AACGTTGTTG	CCATTGCTAC	AGGCATCGTG	GTGTCACGCT	CGTCGTTTGG	2400
	TATGGCTTCA	TTCAGCTCCG	GTTCCCAACG	ATCAAGGCGA	GTTACATGAT	CCCCCATGTT	2460
25	GTGCAAAAAA	GCGGTTAGCT	CCTTCGGTCC	TCCGATCGTT	GTCAGAAGTA	AGTTGGCCGC	2520
-)	ACTCTTATCA	СТСАТССТТА	TOCONCONOT	CONTANTO	COMPA COCOCO	mccca mcccm	250

	AAGATGCTTT	TCTGTGACTG	GTGAGTACTC	AACCAAGTCA	TTCTGAGAAT	AGTGTATGCG	2640
1	GCGACCGAGT	TGCTCTTGCC	CGGCGTCAAC	ACGGGATAAT	ACCGCGCCAC	ATAGCAGAAC	2700
	TTTAAAAGTG	CTCATCATTG	GAAAACGTTC	TTCGGGGCGA	AAACTCTCAA	GGATCTTACC	2760
	GCTGTTGAGA	TCCAGTTCGA	TGTAACCCAC	TCGTGCACCC	AACTGATCTT	CAGCATCTTT	2820
_	TACTTTCACC	AGCGTTTCTG	GGTGAGCAAA	AACAGGAAGG	CAAAATGCCG	CAAAAAAGGG	2880
5	AATAAGGGCG	ACACGGAAAT	GTTGAATACT	CATACTCTTC	CTTTTTCAAT	ATTATTGAAG	2940
	CATTTATCAG	GGTTATTGTC	TCATGAGCGG	ATACATATTT	GAATGTATTT	AGAAAAATAA	3000
	ACAAATAGGG	GTTCCGCGCA	CATTTCCCCG	AAAAGTGCCA	CCTGACGTCT	AAGAAACCAT	3060
	TATTATCATG	ACATTAACCT	ATAAAAATAG	GCGTATCACG	AGGCCCTGAT	GGCTCTTTGC	3120
LO	GGCACCCATC	GTTCGTAATG	TTCCGTGGCA	CCGAGGACAA	CCCTCAAGAG	AAAATGTAAT	3180
	CACACTGGCT	CACCTTCGGG	TGGGCCTTTC	TGCGTTTATA	AGGAGACACT	TTATGTTTAA	3240
	GAAGGTTGGT	AAATTCCTTG	CGGCTTTGGC	AGCCAAGCTA	GAGATCCGGC	TGTGGAATGT	3300
	GTGTCAGTTA	GGGTGTGGAA	AGTCCCCAGG	CTCCCCAGCA	GGCAGAAGTA	TGCAAAGCAT	3360
. =	GCATCTCAAT	TAGTCAGCAA	CCAGGCTCCC	CAGCAGGCAG	AAGTATGCAA	AGCATGCATC	3420
15	TCAATTAGTC	AGCAACCATA	GTCCCGCCCC	TAACTCCGCC	CATCCCGCCC	CTAACTCCGC	3480
	CCAGTTCCGC	CCATTCTCCG	CCCCATGGCT	GACTAATTTT	TTTTATTTAT	GCAGAGGCCG	3540
	AGGCCGCCTC	GGCCTCTGAG	CTATTCCAGA	AGTAGTGAGG	AGGCTTTTTT	GGAGGCCTAG	3600
	GCTTTTGCAA	AAAGCTAGCT	TGGGGCCACC	GCTCAGAGCA	CCTTCCACCA	TGGCCACCTC	3660
20	AGCAAGTTCC	CACTTGAACA	AAAACATCAA	GCAAATGTAC	TTGTGCCTGC	CCCAGGGTGA	3720
	GAAAGTCCAA	GCCATGTATA	TCTGGGTTGA	TGGTACTGGA	GAAGGACTGC	GCTGCAAAAC	3780
	CCGCACCCTG	GACTGTGAGC	CCAAGTGTGT	AGAAGAGTTA	CCTGAGTGGA	ATTTTGATGG	3840
	CTCTAGTACC	TTTCAGTCTG	AGGGCTCCAA	CAGTGACATG	TATCTCAGCC	CTGTTGCCAT	3900
25	GTTTCGGGAC	CCCTTCCGCA	GAGATCCCAA	CAAGCTGGTG	TTCTGTGAAG	TTTTCAAGTA	3960
-7	CAACCCCAAC	CCTCCACACA	ርር እ አጥጥጥ አ አ ረ	CCACTCCTCT	AAACCCAMAA	ጥርር እር እጥርርጥ	402

GAGCAACCAG CACCCCTGGT TTGGAATGGA ACAGGAGTAT ACTCTGATGG GAACAGATGG 4080 1 GCACCCTTTT GGTTGGCCTT CCAATGGCTT TCCTGGGCCC CAAGGTCCGT ATTACTGTGG 4140 TGTGGGCGCA GACAAAGCCT ATGGCAGGGA TATCGTGGAG GCTCACTACC GCGCCTGCTT 4200 GTATGCTGGG GTCAAGATTA CAGGAACAAA TGCTGAGGTC ATGCCTGCCC AGTGGGAACT 4260 CCAAATAGGA CCCTGTGAAG GAATCCGCAT GGGAGATCAT CTCTGGGTGG CCCGTTTCAT 4320 5 CTTNCATCGA GTATGTGAAG ACTTTGGGGT AATAGCAACC TTTGACCCCA AGCCCATTCC 4380 TGGGAACTGG AATGGTGCAG GCTGCCATAC CAACTTTAGC ACCAAGGCCA TGCGGGAGGA 4440 GAATGGTCTG AAGCACATCG AGGAGGCCAT CGAGAAACTA AGCAAGCGGC ACCGGTACCA 4500 CATTCGAGCC TACGATCCCA AGGGGGGCCT GGACAATGCC CGTGGTCTGA CTGGGTTCCA 4560 10 CGAAACGTCC AACATCAACG ACTTTTCTGC TGGTGTCGCC AATCGCAGTG CCAGCATCCG 4620 CATTCCCCCG ACTGTCGGCC AGGAGAAGAA AGGTTACTTT GAAGACCGCG GCCCCTCTGC 4680 CAATTGTGAC CCCTTTGCAG TGACAGAAGC CATCGTCCGC ACATGCCTTC TCAATGAGAC 4740 TGGCCACGAG CCCTTCCAAT ACAAAAACTA ATTAGACTTT GAGTGATCTT GAGCCTTTCC 4800 TAGTTCATCC CACCCCCCC CAGAGAGATC TTTGTGAAGG AACCTTACTT CTGTGGTGTG 4860 15 ACATAATTGG ACAAACTACC TACAGAGATT TAAAGCTCTA AGGTAAATAT AAAATTTTTA 4920 AGTGTATAAT GTGTTAAACT ACTGATTCTA ATTGTTTGTG TATTTTAGAT TCCAACCTAT 4980 GGAACTGATG AATGGGAGCA GTGGTGGAAT GCCTTTAATG AGGAAAACCT GTTTTGCTCA 5040 GAAGAAATGC CATCTAGTGA TGATGAGGCT ACTGCTGACT CTCAACATTC TACTCCTCCA 5100 20 AAAAAGAAGA GAAAGGTAGA ACACCCCAAG GACTTTCCTT CAGAATTGCT AAGTTTTTTG 5160 AGTCATGCTG TGTTTAGTAA TAGAACTCTT GCTTGCTTTG CTATTTACAC CACAAAGGAA 5220 AAAGCTGCAC TGCTATACAA GAAAATTATG GAAAAATATT CTGTAACCTT TATAAGTAGG 5280 CATAACAGTT ATAATCATAA CATACTGTTT TTTCTTACTC CACACAGGCA TAGAGTGTCT 5340 GCTATTAATA ACTATGCTCA AAAATTGTGT ACCTTTAGCT TTTTAATTTG TAAAGGGGTT 5400 25 AATAAGGAAT ATTTGATGTA TAGTGCCTAG ACTAGAGATC ATAATCAGCC ATACCACATT 5460

	TGTAGAGGTT	TACTTCCTT	TAAAAAACCT	CCCACACCTC	CCCTGAACC	TGAAACATAA	5520
1	AATGAATGCA A	ATTGTTGTTG	TTAACTTGTT	TATTGCAGCT	TATAATGGTT	ACAAATAAAG	5580
	CAATAGCATC	ACAAATTTCA	CAAATAAAGC	ATTTTTTCA	CTGCATTCTA	ACANATANG GTTGTGGTTT CANGGACGGT ATTTCTGTCG GCGATATTGG TTTCTGTGTA GGCGATAGCG ATTCTGTGTG CGCCGATAGA TCANTATTGG TTGGCCATTG AACATTACCG GTCATTAGTT GCCTGGCTGA CGCTGGCTGA CGCTGGCTGA CGCTGGCTGA CGCTGGCTGA CGCTGGCTGA CGCTANATGG CCACTTGGCA CGCTANATGG CCACTTGGCA CGCTANATGG CCACTTGGCA CCACTTGGCA CCACTTGGCA CCACTTGGCA CCACTTGGCA CCGCTANATGG CCACTTGGCA CCACTTTAGTG	5640
	GTCCAAACTC	ATCAATGTAT	CTTATCATGT	CTGGATCTCT	AGCTTCGTGT	CAAGGACGGT	5700
_	GACTGCAGTG	AAAATAATAA	TGTGTGTTTG	TCCGAAATAC	GCGTTTTGAG	ATTTCTGTCG	5760
5	CCTACTAAAT	TCATGTCGCG	CGATAGTGGT	GTTTATCGCC	GATAGAGATG	GCGATATTGG	5820
	AAAAATCGAT	ATTTGAAAAT	ATGGCATATT	GAAAATGTCG	CCGATGTGAG	TTTCTGTGTA	5880
	ACTGATATCG	CCATTTTTCC	AAAAGTGATT	TTTGGGCATA	CGCGATATCT	GGCGATAGCG	5940
	CTTATATCGT	TTACGGGGGA	TGGCGATAGA	CGACTTTGGT	GACTTGGGCG	ATTCTGTGTG	6000
LO	TCGCAAATAT	CGCAGTTTCG	ATATAGGTGA	CAGACGATAT	GAGGCTATAT	CGCCGATAGA	6060
	GGCGACATCA	AGCTGGCACA	TGGCCAATGC	ATATCGATCT	ATACATTGAA	TCAATATTGG	6120
	CCATTAGCCA	TATTATTCAT	TGGTTATATA	GCATAAATCA	ATATTGGCTA	ACAAATAAAG GTTGTGGTTT CAAGGACGGT	6180
	CATACGTTGT	ATCCATATCA	TAATATGTAC	ATTTATATTG	GCTCATGTCC	AACATTACCG	6240
	CCATGTTGAC	ATTGATTATT	GACTAGTTAT	TAATAGTAAT	CAATTACGGG	GTCATTAGTT	⁻ 6300
15	CATAGCCCAT	ATATGGAGTT	CCGCGTTACA	TAACTTACGG	TAAATGGCCC	GCCTGGCTGA	6360
	CCGCCCAACG	ACCCCCGCCC	ATTGACGTCA	ATAATGACGI	T ATGTTCCCAT	AGTAACGCCA	6420
	ATAGGGACTT	TCCATTGACG	TCAATGGGTG	GAGTATTTAC	GGTAAACTGC	CCACTTGGCA	6480
	GTACATCAAG	TGTATCATAT	GCCAAGTACG	CCCCTATTO	G ACGTCAATGA	CGGTAAATGG	6540
20	CCCGCCTGGC	ATTATGCCCA	GTACATGACO	TTATGGGAC	TTCCTACTTC	GCAGTACATC	6600
	TACGTATTAG	TCATCGCTAT	TACCATGGT	ATGCGGTTT	r ggcagtaca	CAATGGGCGT	6660
	GGATAGCGGT	TTGACTCACG	GGGATTTCC	A AGTCTCCAC	C CCATTGACG	CAATGGGAGT	6720
	TTGTTTTGGC	ACCAAAATCA	ACGGGACTT	CCAAAATGT	C GTAACAACT	CCCCCATTG	678
	ACGCAAATGG	GCGGTAGGCG	TGTACGGTG	G GAGGTCTAT	A TAAGCAGAG	CTCGTTTAGTG	684
25	> > CCCCTC> C>	macacmaca)	NCCCCNTCC	.	G ACCTCCATA	G AAGACACCGG	690

GACCGATCCA GCCTCCGCGG CCGGGAACGG TGCATTGGAA CGCGGATTCC CCGTGCCAAG 6960 1 AGTGACGTAA GTACCGCCTA TAGAGTCTAT AGGCCCACCC CCTTGGCTTC TTATGCATGC 7020 TATACTGTTT TTGGCTTCGG GTCTATACAC CCCCGCTTCC TCATGTTATA GGTGATGGTA 7080 TAGCTTAGCC TATAGGTGTG GGTTATTGAC CATTATTGAC CACTCCCCTA TTGGTGACGA 7140 TACTTTCCAT TACTAATCCA TAACATGGCT CTTTGCCACA ACTCTCTTTA TTGGCTATAT 7200 GCCAATACAC TGTCCTTCAG AGACTGACAC GGACTCTGTA TTTTTACAGG ATGGGGTCTC 7260 ATTTATTATT TACAAATTCA CATATACAAC ACCACCGTCC CCAGTGCCCG CAGTTTTAT 7320 TAAACATAAC GTGGGATCTC CACGCGAATC TCGGGTACGT GTTCCGGACA TGGGCTCTTC 7380 TCCGGTAGCG GCGGAGCTTC TACATCCGAG CCCTGCTCCC ATGCCTCCAG CGACTCATGG 7440 10 TCGCTCGGCA TCTCCTTGCT CCTAACAGTG GAGGCCAGAC TTAGGCACAG CACGATGCCC 7500 ACCACCACCA GTGTGCCGCA CAAGGCCGTG GCGGTAGGGT ATGTGTCTGA AAATGAGCTC 7560 GGGGAGCGGG CTTGCACCGC TGACGCATTT GGAAGACTTA AGGCAGCGGC AGAAGAAGAT 7620 GCAGGCAGCT GAGTTGTTGT GTTCTGATAA GAGTCAGAGG TAACTCCCGT TGCGGTGCTG 7680 TTAACGGTGG AGGGCAGTGT AGTCTGAGCA GTACTCGTTG CTGCCGCGCG CGCCACCAGA 7740 15 CATAATAGCT GACAGACTAA CAGACTGTTC CTTTCCATGG GTCTTTTCTG CAGTCACCGT 7800 CCTTGACACG AAGCTTGGGC TGCAGGTCGA TCGACTCTAG AGGATCGATC CCCGGGCGAG 7860 CTCG 7864

20

25

WHAT IS CLAIMED IS:

1

- A CDR-grafted antibody capable of inhibiting human tissue factor wherein the complementarity determining regions (CDRs) are derived from a non-human monoclonal antibody against tissue factor and the framework (FR) and constant (C) regions are derived from one or more human antibodies.
- The CDR-grafted antibody of Claim 1
 wherein said non-human monoclonal antibody is a murine
 10 antibody.
 - 3. The CDR-grafted antibody of Claim 2 wherein said murine antibody is TF8-5G9.
- 4. The CDR-grafted antibody of Claim 1 wherein said CDRs of the heavy chain have the amino acid sequences:

CDR1	DDYMH	(SEQ	ID	NO:5)
CDR2	LIDPENGNTIYDPKFQG	(SEQ	ID	NO:6)
CDR3	DNSYYFDY	(SEQ	ID	NO:7)

and said CDRs of the light chain have the amino acid 20 sequences:

CDR1	KASQDIRKYLN	(SEQ	ID	NO:8)
CDR2	YATSLAD	-{SEQ	ID	NO:9)
CDR3	LOHGESPYT	(SEO	ID	NO:10).

- 5. The CDR-grafted antibody of Claim 1
- 25 wherein the FR of the heavy chain is derived from the human antibody KOL.
 - 6. The CDR-grafted antibody of Claim 1 wherein the FR of the light chain is derived from the human antibody REI.

- 7. The CDR-grafted antibody of Claim 1 l wherein the heavy chain variable region has the amino acid sequence of SEQ ID NO:11.
- 8. The CDR-grafted antibody of Claim 1 or 7 wherein the light chain variable region has the amino 5 acid sequence of SEQ ID NO:12.
 - 9. The CDR-grafted antibody of Claim 1 wherein the heavy chain variable region has the amino acid sequence of SEQ ID NO:13.
- 10. The CDR-grafted antibody of Claim 1 or 9 10 wherein the light chain variable region has the amino acid sequence of SEQ ID NO:14.
 - 11. The CDR-grafted antibody of Claim 1 wherein the heavy chain constant region is the human IgG4 constant region.
- 15 12. The CDR-grafted antibody of Claim 10 wherein the heavy chain constant region is the human IgG4 constant region.
- 13. The CDR-grafted antibody of Claim 1 wherein the light chain constant region is the human20 kappa constant region.
 - 14. The CDR-grafted antibody of Claim 10 wherein the light chain constant region is the human kappa constant region.
- 15. CDR-grafted monoclonal antibody TF8HCDR1 25 x TF8LCDR1.
 - 16. CDR-grafted monoclonal antibody TF8HCDR20
 x TF8LCDR3.
- 17. A fragment of the CDR-grafted antibody of Claim 1 wherein said fragment is capable of inhibiting 30 human tissue factor.

18. The fragment of Claim 17 wherein said
l fragment is an Fab or F(ab'), fragment.

- 19. A method of making the CDR-grafted antibody of Claim 1 comprising cotransfecting a host cell with an expression vector comprising a nucleic acid encoding the CDR-grafted antibody heavy chain and an expression vector comprising a nucleic acid encoding the CDR-grafted antibody light chain; culturing the transfected host cell; and recovering said CDR-grafted antibody.
- 20. A method of making the CDR-grafted antibody of Claim 1 comprising transfecting a host cell with an expression vector comprising a nucleic acid encoding the CDR-grafted antibody heavy chain and a nucleic acid encoding the CDR-grafted antibody light chain; culturing the transfected host cell; and recovering said CDR-grafted antibody.
- 21. The method of Claim 18 or 19 wherein said nucleic acid encoding the CDR-grafted antibody heavy chain has the sequence of nucleotides 1-2360 of SEQ ID 20 NO:15.
 - 22. The method of Claim 18 or 19 wherein said nucleic acid encoding the CDR-grafted light chain has the sequence of nucleotides 1-759 of SEQ ID NO:17.
- 23. The method of Claim 19 or 20 wherein said 25 host cell is a bacterial cell, yeast cell, insect cell or mammalian cell.
 - 24. The method of Claim 23 wherein said mammalian cell is a CHO cell, COS cell or myeloma cell.
- 25. The method of Claim 19 wherein said 30 expression vector comprising a nucleic acid encoding the CDR-grafted antibody heavy chain is pEe6TF8HCDR20.

26. The method of Claim 19 wherein said l expression vector comprising a nucleic acid encoding the CDR-grafted antibody light chain is pEel2TF8LCDR3.

- 27. A nucleic acid encoding the heavy chain of the CDR-grafted antibody of Claim 1.
- 5 28. A nucleic acid encoding the light chain of the CDR-grafted antibody of Claim 1.
 - 29. The nucleic acid of Claim 27 having the sequence of nucleotides 1-2360 of SEQ ID NO:15.
- 30. The nucleic acid of Claim 28 having the 10 sequence of nucleotides 1-759 of SEQ ID NO:17.
- 31. A method of attenuation of coagulation comprising administering a therapeutically effective amount of a CDR-grafted antibody capable of inhibiting human tissue factor to a patient in need of said attenuation.
 - 32. The method of Claim 31 wherein said CDR-grafted antibody is TF8HCDR20 \times TF84CDR3.
- 33. A method of treatment or prevention of thrombotic disorder comprising administering a
 20 therapeutically effective amount of a CDR-grafted antibody capable of inhibiting human tissue factor to a patient in need of said treatment or prevention.
- 34. The method of Claim 33 wherein said thrombotic disorder is intravascular coagulation, 25 arterial restenosis or arteriosclerosis.
 - 35. The method of Claim 33 or 34 wherein said CDR-grafted antibody is TF8HCDR20 x TF8LCDR3.
- 36. A pharmaceutical composition comprising at least one CDR-grafted antibody capable of inhibiting human tissue factor and a pharmaceutically acceptable carrier.

PCT/US96/09287

37. The pharmaceutical composition of Claim 1 36 wherein said CDR-grafted antibody is TF8HCDR20 \times TF8LCDR3.

1/41

Sequence of the murine TF8-5G9 heavy chain cDNA with protein translation. The essential regions of the cDNA are as follows:

<u>Nucleotides</u>	Region
1-10	5' untranslated region.
11-67	Start codon and leader sequence
68-418	Variable region.
419-1390	Murine lgG1 constant region.
1391-1489	3' untranslated region.

Sequence Range: 1 to 1489

	10				20				30			40			
CCT	CCT	TAC	A A	ng au	A TY	בר אר	בר יוץ	20 0	יג יא		مات مات	~ ~	- 	~ ~	A GTG
CCA	GGA	ATG	TT	AC T	T A	T OC	C A		AG TX	AG AJ	AG AJ	kg gz	C TI	10 G(T CAC
			Me	et Ly	/B C)	/8 Se	r T	cp Va	il II	le Pi	ne Ph	ie Le	u Me	et Al	a Val>
								_							,
50			60			70			8	30			90		
•			•			•				•			•		
GIT	ACA	CCC	CIC	AAT	TCX	CYC	ATT	CAG	CIC	CYC	CYC	TCT	GCG	CCI	GAG
CAA	TGT	CCC	CAG	TTA	AGT	CTC	TAA	GTC	GAC	CIC	GTC	AGA	CCC	CCY	CTC
٧٩١	THE	CIA	VAL	VRI	Ser	GIA	TIE	GID	Leu	GID	Gln	Ser	Gly	λla	Glu>
100			1:	LO		1	L20			130			14	10	
_•				•			•			•				•	
CIT	GIG	AGG	CCA	GGG	GCC	TTX	GIC	λλG	TTG	TCC	TCC	λλλ	CCI	TCT	GGC
LAN	UAC	TCC	GGT	CCC	CGG	AAT	CAG	TTC	YYC	AGG	ACG	LIL	CCA	aga	CCC
Ded	AGT	λīij	PIO	GIY	VIE	ren	Val	ГÀВ	rea	Ser	Сув	LYS	Ala	Ser	Gly>
	150			160			11	70		:	180			190	
	•			•				•			•			•	
TTC	XXC	ATT	$\lambda\lambda\lambda$	CYC	TAC	TAT	λTG	CAC	TGG	CTC	λλG	CAG	λGG	CCT	GAA
λλG	TTC	TAA	TIT	CIC	ATG	λTλ	TAC	CIC	YCC	CAC	TTC	CTC	TCC	GGλ	CIT
Phe	Yeu	Ile	Lys	YBD	TYE	TYI	Mat	His	GIL	Val	Lys	Gln	yrg	Pro	Glu>
	20	00		•	210			220			2.	30			
		•		•	•			•			4.	•		•	240
CAG	GGC	cic	CAG	TCG	λTT	CCA	TTG	ATT	CAT	CCT	GAG	AAT	CCT	AAT) ACT
CIC	CCC	CYC	CIC	ACC	TAA	CCI	λλC	TAA	CTA	GGA	CTC	TTA	CCA	W.LaL	TCA
Gln	Gly	Leu	Glu	Trp	Ile	Gly	Leu	Ile	λвр	Pro	Glu	Asn	Gly	λen	Thr>
													_		
		250			20	50			270			280			
373	ጥልጥ	CYC	~~	110	محمد	CNC				. ~					
TAT	ATA	CIC	CCC	Jelle.	336	CAT.	CCC	W/0	~~	ACT.	ATA	ACA	GCA	CAC	ACA
Ile	Tvr	ARD	Pro	Lva	Phe	Gln	Glv	Lve	Ala	Ser	TAL	101	21-	CIG	Thr>
	-,-			-,-	• • • • •		u_j	Dy B	744	361	TIE	1111	Λια	Авр	Thr
290			300			310			3:	20			330		
•			•			•				•			•		
TCC	TCC	YYC	YCY	CCC	TAC	CIC	CYC	CIC	YCC	λGC	CIG	λCλ	TCT	CXC	GAC
AGG	AGG	TTC	ICI	œ	ATG	CYC	CIC	CYC	TCG	TCC	CYC	TCT	λGλ	CIC	CIG
ser	Ser	ARD	The	MA	TYI	Leu	Gln	Leu	Ser	Ser	Leu	Thr	Ser	Glu	yab>

RECTIFIED SHEET (RULE 91) ISA/EP

2/41

FIG. 1 B

370 360 340 350 380 ACT GCC GTC TAT TAC TGT GCT AGA GAT AAC TCG TAC TAC TTT GAC TAC TGA CGG CAG ATA ATG ACA CGA TCT CTA TTG AGC ATG ATG AAA CTG ATG Thr Ala Val Tyr Tyr Cys Ala Arg Asp Asn Ser Tyr Tyr Phe Asp Tyr> 390 400 410 430 TGG GGC CAA GGC ACC ACT CTC ACA GTC TCC TCA GCC AAA ACG ACA CCC ACC CCG GTT CCG TGG TGA GAG TGT CAG AGG AGT CGG TTT TGC TGT GGG Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro> 450 460 480 CCA TCT GTC TAT CCA CTG GCC CCT GGA TCT GCT GCC CAA ACT AAC TCC GGT AGA CAG ATA GGT GAC CGG GGA CCT AGA CGA CGG GTT TGA TTG AGG Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gln Thr Asn Ser> 510 520 500 490 ATG GTG ACC CTG GGA TGC CTG GTC AAG GGC TAT TTC CCT GAG CCA GTG TAC CAC TGG GAC CCT ACG GAC CAG TTC CCG ATA AAG GGA CTC GGT CAC Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val> 560 550 540 ACA GTG ACC TGG AAC TCT GGA TCC CTG TCC AGC GGT GTG CAC ACC TTC TGT CAC TGG ACC TTG AGA CCT AGG GAC AGG TGG CCA CAC GTG TGG AAG .Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe> 610 600 580 CCA GCT GTC CTG CAG TCT GAC CTC TAC ACT CTG AGC AGC TCA GTG ACT GGT CGA CAG GAC GTC AGA CTG GAG ATG TGA GAC TGG TGG AGT CAC TGA Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr> 650 660 630 640 GTG CCC TCC AGC ACC TGG CCC AGC GAG ACC GTC ACC TGC AAC GTT GCC CAC GGG AGG TGG TGG ACC GGG TGG CTC TGG CAG TGG ACG TTG CAA CGG Val Pro Ser Ser Thr Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala> 720 710 700 690 680 CAC CCG GCC AGC AGC ACC AAG GTG GAC AAG AAA ATT GTG CCC AGG GAT GTG GGC CGG TCG TCG TGG TTC CAC CTG TTC. TTT TAA CAC GGG TCC CTA His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp> 760 740 730 TGT GGT TGT AAG CCT TGC ATA TGT ACA GTC CCA GAA GTA TCA TCT GTC ACA CCA ACA TTC GGA ACG TAT ACA TGT CAG GGT CTT CAT AGA CAG Cys Gly Cys Lys Pro Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val> 790 780 TTC ATC TTC CCC CCA AAG CCC AAG GAT GTG CTC ACC ATT ACT CTG ACT AAG TAG AAG GGG GGT TTC GGG TTC CTA CAC GAG TGG TAA TGA GAC TGA Phe Ile Phe Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr>

RECTIFIED SHEET (RULE 91)

3/41

FIG. 1 C

820		840				850 *					860				
CCT I GGA ! Pro I	TTC	CYO	TGC	λCλ	CYY	CYC	CAT	CIG	TAG	TCG	TTC	CTA	CTA	CCC	
8	70			880			8:	90		!	900			910	
GTC	CAG	كىلمك	AGC	TYCC:	Jalah	CT N	CAM	e cam	~~~	~~~	*				
CAG	CTC	AAG	TCG	ACC	λλλ	CAT	CTA	CTA	CAC	CIC	CXC	C.T.C.	TYPE	003	GIC Gln>
	93	20		!	930			940			9!	50	960		
ACG	СУУ	ccc	CGG	GAG	GAG	CAG	TTC	AAC	λGC	λCT	كالمل	CCC	TYC 3	~~	• •
TGC	CTT	GGG	GCC	CIC	CTC	GTC	λλG	TIG	TCG	TCA	110	CCC	A COT	CAC	max
Thr	Gln	Pro	yrg	Glu	Glu	Gln	Phe	λen	Ser	Thr	Phe	λīg	Ser	Val	Ser>
		970				30			990						
		•				•			•			1000			
CYY	CLL	ccc	ATC	ATG	CYC	CYC	CAC	TCC	CIC	$\lambda\lambda T$	GGC	λλG	GAG	TTC	λλλ
CT.T.		تانيانيا	TAG	TAC	GIG	CIC	CIG	ACC	CYC	لاملمك		T-17-	\sim	110	TTT Lys>
						•		110	Ded	VRII	GIY	LYB	GIU	Phe	Lys>
1010			020		1030			1040					050		
TGC	λGG	GTC	AAC	λGT	GCA	CCT	TTC	CCT	GCC	ccc	ATC	GAG	λλλ	ACC	λTC
ALL :	TCC	تنكت	TIC	TCX	CCT	CCY	λλG	CCA	CCC	CCC	TAG	८ ₹	ctatate	TY-C	mac.
Cyb .	VIA	AMI	ABD	Ser	VIE	YIE	Phe	Pro	YIE	Pro	Ile	Glu	Lys	Thr	Ile>
1060			10	•			080			1090			11	•	
TCC	λλλ	YCC	$\lambda\lambda\lambda$	GGC	λGλ	ccc	λλG	GCT	CCX	CAG	CTC	TAC	ACC	λTT	CCA
~~~	T.T.T.	166	J-I-I-	CC	TCT	CCC	TTC	CCA	CCT	مكلت	CLC	377	TV-C	<b>The N</b>	
301	Ly=	1111	Lys	CIA	VIA	PTO	TAB	YIE	Pro	Gln	Val	Tyr	Thr	Ile	Pro>
11:	•			1120		1130			1140				1150		
CCI	ccc	λλG	CAG	CXG	ATG	GCC	λλG	GAT	λλλ	GIC	AGT	CIG	<b>XCC</b>	TGC	λTG
	~~	TIL	CIC	GIC	TAC		TTC	CTA	Jakak	CXG	TY	CAC	TYPE	100	mı o
		Lyb	GIU	CIN	met	A.L.	Lys	ABD	Lye	Val	Ser	Leu	Thr	Cys	Met>
	116	•			170			1180			119	90		13	200
ATA A	XCX ₩	CYC	TTC	TTC	CCT	CYY	CYC	ATT	YCI	cic	CAG	TCC	CAG	TGG	AAT
TAT :	Thr	ARD	Phe	Phe	DTO	CIT	CIG	TAA	TGA	CAC	cic	YCC	cic	YCC	TTA Asn>
	_				110	<b>G1</b> 0	ABP	116	Int	ANT	GIU	TTD	Gln	TIP	Yeu>
		1210			1220				1230			1240			
GGG (	cyc	CCY	ccc	CYC	AAC	TAC	λλG	λλC	λCT	CAG	ccc	ATC	ATG	GAC	ACA
		GGT	CCC	crc	TTC	ATG	TTC	TIC	TCA	3	CCC	ጥእር	TAC	~~~	~~
	C 1.C	D	11 n	G1	A					CIP	D	T1 -			
Gly	C 1.C	Pro	Ala	Glu	Yau	TYT	LYB	VAIT	1111	9111	PIU	110	wer	YBD	Thr>
	C 1.C	PLO	YJa YJa	Glu	Yau	171 1270	Lyu	VAL	121		PIU		M6E 290	ysp	Thr>
Gly (	Gln	13	360 VII	GIA	Asn :	L270 •			121	80		1	290		
Gly (	Gln	1: TCT AGA	TAC	TTC	GTC CAG	TAC	AGC TCG	AAG TTC	121 CTC	80 • AAT	CIC	CAG	290 AAG	AGC	<b></b>

## **RECTIFIED SHEET (RULE 91)**

#### 4/41

### FIG. 1 D

1300 1310 TGG GAG GCA GGA AAT ACT TTC ACC TGC TCT GTG TTA CAT GAG GGC CTG ACC CTC CCT TTA TGA AAG TGG ACG AGA CAC AAT GTA CTC CCG GAC Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu> 1350 1370 1360 1380 1390 CAC AAC CAC CAT ACT GAG AAG AGC CTC TCC CAC TCT CCT GGT AAA TG ATC GTG TTG GTG GTA TGA CTC TTC TCG GAG AGG GTG AGA GGA CCA TTT AC TAG His Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys> 1410 1420 1430 1440 CCA GTG TCC TTG GAG CCC TCT GGT CCT ACA GGA CTC TGA CAC CTA CCT GGT CAC AGG AAC CTC GGG AGA CCA GGA TGT CCT GAG ACT GTG GAT GGA 1450 1460 1470 - 1480 CCA CCC CTC CCT GTA TAA ATA AAG CAC CCA GCA CTG CCT TGG ACC C GGT GGG GAG GGA CAT ATT TAT TTC GTG GGT CGT GAC GGA ACC TGG G .

5/41

Sequence of the murine TF8-5G9 light chain cDNA with protein translation. The essential regions of the cDNA are as follows:

FIG. 2 A	(	Nucleot 1-4 5-64 65-385 386-700 707-91 918-93	5 7		Region 5' untranslated. Start codon and leader sequence Variable region. Murine kappa constant region. 3' untranslated region. Poly A tail.								
Sequence Range: 1 to 937													
GGA C ATG CGG GCC CCT GCT CAG TTT TTT GGG ATC TTG TTG CTC TGG TTT CCT G TAC GCC CGG GGA CGA GTC AAA AAA CCC TAG AAC AAC GAG ACC AAM Met Arg Ala Pro Ala Gln Phe Phe Gly Ile Leu Leu Leu Trp Phe													
50	60		70		80		90						
GCT CCA	TAG TCT	ACA CTO	TAG TT	C TAC	ree ere	TCT CCA AGA GGT Ser Pro	AGG AGG	TAC					
100	1:	10	120	)	130		140						
ATA CCT	YCC CYC	cci cic	TCT CA	C TCA	TAG TGA	TCT AAG ACA TTC Cys Lys	CGC TCA	GTC					
150		160		170		+ L80	190						
CTG TAA	ici iic	ATA AAT	TTG AC	C ATG	are are	AAA CCA TTT GGT Lys Pro	ACC TIT	λGλ					
2	00	210		220		230	:	240					
GGA TTC	TCC CAC	TAG AT	ATA CO	TT TGT	TCC AAC	CCA GAT CCT CTA Ala Asp	CCC CAG	CCT					
	250	:	160	2	70	280							
AGT TCT	ANG TCA	ccc rc	CCT AG	EX CCC	GTT CTA	TAT TCT ATA AGA Tyr Ser	CAT TCC	TAG					
290	300		310		320	;	330						
TCG TCG	CYC CLC	YCY CI	CTA TO	er cer	TCN ATA	TAC TGT ATG ACA Tyr Cys	CAT GIT	GTA					

#### 6/41

### FIG. 2B

360 340 350 370 380 GGT GAG AGC CCG TAC ACG TTC GGA GGG GGG ACC AAG CTG GAA ATA AAC CCA CTC TCG GGC ATG TGC AAG CCT CCC CCC TGG TTC GAC CTT TAT TTG Gly Glu Ser Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Asn> 390 400 410 420 430 AGG GCT GAT GCT GCA CCA ACT GTA TCC ATC TTC CCA CCA TCC AGT GAG TCC CGA CTA CGA CGT GGT TGA CAT AGG TAG AAG GGT GGT AGG TCA CTC Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu> 440 450 460 470 CAG TTA ACA TOT GGA GGT GCC TCA GTC GTG TGC TTC TTG AAC AAC TTC GTC AAT TGT AGA CCT CCA CGG AGT CAG CAC ACG AAG AAC TTG TTG AAG Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe> 490 500 510 520 TAC CCC AAA GAC ATC AAT GTC AAG TGG AAG ATT GAT GGC AGT GAA CGA ATG GGG TIT CTG TAG TTA CAG TIC ACC TTC TAA CTA CCG TCA CTT GCT Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg> 530 540 550 560 CAN ANT GGC GTC CTG ANC NGT TGG NCT GAT CNG GNC NGC NAN GNC NGC GIT TTA CCG CAG GAC TTG TCA ACC TGA CTA GTC CTG TCG TTT CTG TCC Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser> 580 590 600 610 620 ACC TAC AGC ATG AGC AGC ACC CTC ACG TTG ACC AAG GAC GAG TAT GAA TEG ATC TEG TAC TEG TEG GAG TEC AAC TEG TTC CTC ATA CTT Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu> 640 CGA CAT AAC AGC TAT ACC TGT GAG GCC ACT CAC AAG ACA TCA ACT TCA GCT GTA TTG TCG ATA TGG ACA CTC CGG TGA GTG TTC TGT AGT TGA AGT Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser> 690 700 CCC ATT GTC AAG AGC TTC AAC AGG AAT GAG TGT TA GAG ACA AAG GTC CTG GGG TAA CAG TTC TCG AAG TTG TCC TTA CTC ACA AT CTC TGT TTC CAG GAC Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys> 730 740 750 760 770 AGA CGC CAC CAG CTC CCC AGC TCC ATC CTA TCT TCC CTT CTA AGG TCT GCG GTG GTC GAG GGG TCG AGG TAG GAT AGA AGG GAA GAT TCC 800 TOT TOG AGG CTT CCC CAC AAG CGA CCT ACC ACT GTT GCG GTG CTC CAA AGA ACC TCC GAA GGG GTG TTC GCT GGA TGG TGA CAA CGC CAC GAG GTT

#### 7/41

# FIG. 2 C

820 830 840 850 **B60** ACC TCC TCC CCA CCT CCT TCT CCT CCT CCC TTT CCT TGG CTT TTA 870 880 890 900 TCA TGC TAA TAT TTG CAG AAA ATA TTC AAT AAA GTG AGT CIT TGC ACT AGT ACG ATT ATA AAC GTC TTT TAT AAG TTA TTT CAC TCA GAA ACG TGA 930 TGA AAA AAA AAA AAA AAA A ACT TIT TIT TIT TIT TIT TIT T



RECTIFIED SHEET (RULE 91)
ISA/EP

#### 9/41

# FIG. 4 A

The pEe6TF8HCDR20 expression vector DNA sequence. The coding regions of the TF8-5G9 CDR-grafted HC gene, TF8HCDR20, are translated.

Sequence Range: 1 to 7073

	10 20					30				40					
GAA	TTC	GCC	GCC	ACC	ATG	GAA	TGG	AGC	TGG	CTC	TTT	crc	TTC	TTC	TTC
CII	AAG	CCC	CGG	TGG	TAC	CTT	ACC	TCG	ACC	CAG	AAA	GAG	AAG	AAG	AAC
					met	GIU	urp	ser	TIP	Val	Phe	Leu	Phe	Phe	Leu>
50			60			7	70			80			90		
TCA	GTA	ACT	ACA	GGT	GTA	CAC	TCA	CAA	CTT	CAG	تعلت	CTV:	CAC	***	663
AGT	CAT	TGA	TCT	CCA	CAT	CTC	ACT	GTT	CAA	GTC	GAC	CAC		ACA	COT
Ser	Val	Thr	Thr	Gly	Val	His	Ser	Gln	Val	Cln	Lau	Val	Glu	Ser	Gly>
11	00		:	L10			120			13	0		1	140	
GG)	GGA	C-Tr.X	C-Tr A	CNA	~~	CCN	300	m->	~~~	101	*			•	
CCI	CCT	CAT	CAT	GTT	GGA	CCT	TCC	AGT	GAC	Mey.	CIG	ACA	TGT	AAG	CCI
Gly	Gly	Val	Val	Gln	Pro	Gly	γιΔ	Ser	Lou	Arg	Leu	Ser	Сув	Lys	Ala>
	150			16	50		1	170			180			19	0
3 ~~	*			<b>`</b>	•			•			•				•
TCA	CCI	AAG	TTA	TAG	TTC	CTG	LTA	ATA	AIG	CYC	TGG	CIC	<b>YCY</b>	CAA	CCT
Ser	Gly	Phe	λsn	Ile	Lys	λsp	Tyr	TYT	Met	His	Tro	Val	Ara	Gln	Ala>
		200			_										
		•			210	220					230	240			
CCT	CCX	<b>XXX</b>	GGA	CTC	CYC	TCG	λTλ	CCT	TTA	ATT	CAT	CCI	GAG	AAT	CCT
Pro	CCT	Lve	CCT	GAG	CIC	YCC	TAT	CCA	AAT	TAA	CTA	CCA	CTC	TTA	CCA Gly>
	,	۵,۰	423	240	010	115	116	GIY	Dea	TTE	VRD	PTO	GIU	ABD	G1A>
		25	•			260			270			28	•		
AAC	YCC	λτλ	TAT	GAT	ccc	AAG	TTC	CAA	GGA	<b>AGA</b>	TTC	ACA	ATT	TCT	GCA
TTG	TGC	TAT	ATA	CIA	GGG	TTC	<b>AAG</b>	CIT	CCT	TCT	AAG	TCT	TAA	AGA	CGT
W911	****	116	TYT	· ABD	PIO	гув	Pne	GIH	GIY	VIG	Phe	Thr	Ile	Ser	Ala>
290			300			33	.0		:	320			330		
GAC	λλC	TCT	AAG	AAT	ACA	CTG	TTC	CTG	CAG	ATG	GAC	TCA	CTC	λGA	CCT
CIC	TIC	λGλ	TTC	TTA	TCT	CYC	AAG	GAC	GTC	TAC	CTG	AGT	GAG	TCT	GGA
ABD	ABD	Ser	Lys	Yen	Thr	Leu	Phe	Leu	Gln	Met	yab	Ser	Leu	yrg	Pro>
34	340 350				360			370			380				
GAG	CAT	λCλ	GCA	GTC	TAC	TAT	TGT	CCT	λGλ	CAT	λλC	AGT	TAT	TAC	TTC
CIC	CTA	TCT	CCI	CAG	λTG	λTλ	<b>XCX</b>	CCA	TCT	CTA	TTG	TCA	ATA	ATG	AAG
Glu	χsp	Thr	λla	Val	IXI	Tyr	Сув	λla	γ <del>τα</del>	λвр	ask	Ser	Tyr	Tyr	Phe>
	390			40	00		4	110			420			4:	30
GAC	TAC	TGG	GCC	CAA	GGA	λCA	CCA	GTC	ACC	CIG	λGC	TCA	GCT	TCC	ACC
CIC	λTG	<b>XCC</b>	$\infty$	CII	CCI	TCT	CCT	CAG	TGG	CAC	TCC	AGT	CCA	λCG	TCC
vab	IAI	IID	GIA	GID	GIA	Thr	PTO	Val	Thr	Val	Ser	Ser	УŢФ	Ser	Thr>

#### 10/41

### FIG. 4 B

440 450 460 470 480 AAG GGC CCA TCC GTC TTC CCC CTG GCG CCC TGC TCC AGG AGC ACC TCC TTC CCG GGT AGG CAG AAG GGG GAC CGC GGG ACG AGG TCC TCG TGG AGG Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser> 520 510 500 490 GAG AGC ACA GCC GCC CTG GGC TGC CTG GTC AAG GAC TAC TTC CCC GAA CTC TCG TGT CGG CGG GAC CCG ACG GAC CAG TTC CTG ATG AAG GGG CTT Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu> 570 530 550 540 CCG GTG ACG GTG TCG TGG AAC TCA GGC GCC CTG ACC AGC GGC GTG CAC GGC CAC TGC CAC AGC ACC TTG AGT CCG CGG GAC TGG TCG CCG CAC GTG Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His> 610 600 590 580 ACC THE CCG GCT GTC CTA CAG TCC TCA GGA CTC TAC TCC CTC AGC AGC TGG AAG GGC CGA CAG GAT GTC AGG AGT CCT GAG ATG AGG GAG TCG TCG Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Scr Ser> 660 650 640 630 GTG GTG ACC GTG CCC TCC AGC AGC TTG GGC ACG AAG ACC TAC ACC TGC CAC CAC TGG CAC GGG AGG TGG TGG AAC CCG TGC TTC TGG ATG TGG ACG Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys> 720 710 700 690 AAC GTA GAT CAC AAG CCC AGC AAC ACC AAG GTG GAC AAG AGA GTT GGT TTG CAT CTA GTG TTC GGG TCG TTG TGG TTC CAC CTG TTC TCT CAA CCA Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val> 760 750 730 740 CAG AGG CCA GCA CAG GGC AGG GAG GGT GTC TGC TGG AAG CCA GGC TCA CTC TCC GGT CGT GTC CCG TCC CTC CCA CAG ACG ACC TTC GGT CCG AGT 800 780 770 GCC CTC CTG CCT GGA CGC ACC CCG GCT GTG CAG CCC CAG CCC AGG GCA CCC CAC CAC CCA CCT CCC TCC CCC CCA CAC CTC CCC CTC CCC TCC CCT 850 820 840 830 GCA AGG CAT GCC CCA TCT GTC TCC TCA CCC GGA GGC CTC TGA CCA CCC COT TOO GTA COG GOT AGA CAG AGG AGT GGG COT COG GAG ACT GGT GGG 910 900 890 880 870 CAC TOA TOC TOA GGG AGA GGG TOT TOT GGA TIT TTO CAC CAG GOT COG GTG AGT ACG AGT CCC TCT CCC AGA AGA CCT AAA AAG GTG GTC CGA GGC

# RECTIFIED SHEET (RULE 91) ISA/EP

#### 11/41

## FIG. 4 C

920 950 930 940 960 GGC AGC CAC AGG CTG GAT GCC CCT ACC CCA GGC CCT GCG CAT ACA GGG CCG TCG GTG TCC GAC CTA CGG GGA TGG GGT CCG GGA CGC GTA TGT CCC 980 990 GCA GGT GCT GCG CTC AGA CCT GCC AAG AGC CAT ATC CGG GAG GAC CCT CGT CCA CGA CGC GAG TCT GGA CGG TTC TCG GTA TAG GCC CTC CTG GGA 1010 1020 1030 1040 1050 GCC CCT GAC CTA AGC CCA CCC CAA AGG CCA AAC TCT CCA CTC CCT CAG CGG GGA CTG GAT TCG GGT GGG GTT TCC GGT TTG AGA GGT GAG GGA GTC 1090 1060 1080 1070 1100 CTC AGA CAC CTT CTC TCC TCC CAG ATT CGA GTA ACT CCC AAT CTT CTC GAG TOT GTG GAA GAG AGG AGG GTC TAA GCT CAT TUA GGG TTA GAA GAG 1120 1130 TOT GOA GAG TOO AAA TAT GGT COO COA TGC COA TGA TGC COA GGT AAG AGA CGT CTC AGG TIT ATA CCA GGG GGT ACG GGT AGT ACG GGT CCA TTC Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro) 1180 1190 1200 CCA ACC CAG GCC TCG CCC TCC AGC TCA AGG CGG GAC AGG TGC CCT AGA GGT TGG GTC CGG AGC GGG AGG TCG AGT TCC GCC CTG TCC ACG GGA TCT 1210 1220 1230 GTA GCC TGC ATC CAG GGA CAG GCC CCA GCC GGG TGC TGA CGC ATC CAC CAT CGG ACG TAG GTC CCT GTC CGG GGT CGG CCC ACG ACT GCG TAG GTG 1250 1260 1270 1280 1290 CTC CAT CTC TTC CTC AGC A CCT GAG TTC CTG GGG GGA CCA TCA GTC TTC CAG CTA CAG AAG CAG TCG T GGA CTC AAG CAC CCC CCT GGT AGT CAG AAG Pro Glu Phe Leu Gly Gly Pro Ser Val Phe> 1300 1310 1320 1330 1340 CTG TTC CCC CCA AAA CCC AAG GAC ACT CTC ATG ATC TCC CGG ACC CCT CAC AME GGG GGT TIT GGG TTC CTG TGA GAG TAC TAG AGG GCC TGG GGA Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro> 1360 1390 CAG CTC ACC TGC GTG GTG GAC GTG AGC CAG GAA GAC CCC GAG GTC CTC CAG TGC AGG CAC CAC CAC CTG CAC TGG GTC CTT CTG GGG CTC CAG Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val> 1420 1440 CAG TTC AAC TGG TAC GTG GAT GGC GTG GAG GTG CAT AAT GCC AAG ACA GTC AAG TTG ACC ATG CAC CTA CCG CAC CTC CAC GTA TTA CCG TTC TGT Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr>

# RECTIFIED SHEET (RULE 91) ISA/EP

12/41

### FIG. 4 D

1450 1460 1470 1480 AMG CCG CCG GAG GAG CAG TTC AAC AGC ACG TAC CGT GTG GTC AGC GTC TTC GGC GCC CTC CTC GTC AAG TTG TCG TGC ATG GCA CAC CAG TCG CAG Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val> 1490 1510 CTC ACC GTC CTG CAC CAG GAC TGG CTG AAC GGC AAG GAG TAC AAG TGC GAG TGG CAG GAC GTG GTC CTG ACC GAC TTG CCG TTC CTC ATG TTC ACG Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys> 1570 1580 1540 1550 1560 AAG GTC TCC AAC AAA GGC CTC CCG TCC TCC ATC GAG AAA ACC ATC TCC TTC CAG AGG TTG TTT CCG GAG GGC AGG AGG TAG CTC TTT TGG TAG AGG Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser> 1600 1590 1610 1620 1630 AAA GCC AAA GG TGG GAC CCA CGG GGT GCG AGG GCC ACA TGG ACA GAG GTC TTT CGG TTT CC ACC CTG GGT GCC CCA CGC TCC CGG TGT ACC TGT CTC CAG Lys Ala Lys> 1650 1670 1640 1660 1680 AGC TOG GCC CAC CCT CTG CCC TGG GAG TGA CCG CTG TGC CAA CCT CTG TCG AGC CGG GTG GGA GAC GGG ACC CTC ACT GGC GAC ACG GTT GGA GAC 1700 1690 1710 1720 1730 TCC CTA CA GGG CAG CCC CGA GAG CCA CAG GTG TAC ACC CTG CCC CCA TCC AGG GAT GT CCC GTC GGG GCT CTC GGT GTC CAC ATG TGG GAC GGG GGT AGG Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser> 1740 1750 1760 1770 1780 CAG GAG GAG ATG ACC AAG AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA GTC CTC CTC TAC TGG TTC TTG GTC CAG TCG GAC TGG ACG GAC CAG TTT Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys> 1790 1800 1820 1810 GGC TTC TAC CCC AGC GAC ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG CCG AAG ATG GGG TCG CTG TAG CGG CAC CTC ACC CTC TCG TTA CCC GTC Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln> 1850 1840 1860 CCG GAG AAC AAC TAC AAG ACC ACG CCT CCC GTG CTG GAC TCC GAC GGC GGC CTC TTG TTG ATG TTC TGG TGC GGA GGG CAC GAC CTG AGG CTG CCG Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly> 1880 1890 1900 1910 1920 TCC TTC TTC CTC TAC AGC AGG CTA ACC GTG GAC AAG AGC AGG TGG CAG AGG AAG AAG GAG ATC TCC TCC GAT TGG CAC CTG TTC TCG TCC ACC GTC Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln>

#### 13/41

## FIG. 4 E

1960 1970 1930 1940 1950 GAG GGG AAT GTC TTC TCA TGC TCC GTG ATG CAT GAG GCT CTG CAC AAC CTC CCC TTA CAG AAG AGT ACG AGG CAC TAC GTA CTC CGA GAC GTG TTG Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn> 1980 1990 2000 2010 2020 CAC TAC ACA CAG AAG AGC CTC TCC CTG TCT CTG GGT AAA T GAG TGC CAG GTG ATG TGT GTC TTC TCG GAG AGG GAC AGA GAC CCA TTT A CTC ACG GTC His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys Xxx> 2050 2060 2030 2040 GGC CGG CAA GCC CCC GCT CCC CGG GCT CTC GGG GTC GCG CGA GGA TGC CCG GCC GTT CGG GGG CGA GGG GCC CGA GAG CCC CAG CGC GCT CCT ACC 2100 2080 2090 TTG GCA CGT ACC CCG TCT ACA TAC TTC CCA GGC ACC CAG CAT GGA AAT AAC CGT GCA TGG GGC AGA TGT ATG AAG GGT CCG TGG GTC GTA CCT TTA AAA GCA CCC ACC ACT GCC CTG GGC CCC TGT GAG ACT GTG ATG GTT CTT TIT COT GGG TGG TGA CGG GAC CCG GGG ACA CTC TGA CAC TAC CAA GAA 2170 2180 2190 TCC ACG GGT CAG GCC GAG TCT GAG GCC TGA GTG ACA TGA GGG AGG CAG AGG TGC CCA GTC CGG CTC AGA CTC CGG ACT CAC TGT ACT CCC TCC GTC 2250 2220 2230 - 2240 2260 AGC GGG TCC CAC TGT CCC CAC ACT GGC CCA GGC TGT GCA GGT GTG CCT TOG CCC AGG GTG ACA GGG GTG TGA CCG GGT CCG ACA CGT CCA CAC GGA 2290 GGG CCA CCT AGG GTG GGG CTC AGC CAG GGG CTG CCC TCG GCA GGG TGG CCC GGT GGA TCC CAC CCC GAG TCG GTC CCC GAC GGG AGC CGT CCC ACC 2330 2320 2340 2350 GGG ATT TGC CAG CGT GGC CCT CCC TCC AGC AGC AGG ACT CTA GAG GAT CCC TAA ACG GTC GCA CCG GGA GGG AGG TCG TCG TCC TGA GAT CTC CTA 2360 2370 2380 2390 2400 CAT AAT CAG CCA TAC CAC ATT TGT AGA GGT TTT ACT TGC TTT AAA AAA GTA TTA GTC GGT ATG GTG TAA ACA TCT CCA AAA TGA ACG AAA TTT TTT 2430 CCT CCC ACA CCT CCC CCT GAA CCT GAA ACA TAA AAT GAA TGC AAT TGT GGA GGG TGT GGA GGG GGA CTT GGA CTT TGT ATT TTA CTT ACG TTA ACA

### 14/41

### FIG. 4 F

2460 2470 2480 2490 2500 TGT TGT TAX CTT GTT TAT TGC AGC TTA TAX TGG TTA CAX ATA AAG CAA ACA ACA ATT GAA CAA ATA ACG TCG AAT ATT ACC AAT GTT TAT TTC GTT 2520 2530 TAG CAT CAC AAA TIT CAC AAA TAA AGC ATT TIT TIC ACT GCA TIC TAG ATC GTA GTG TIT AAA GTG TIT ATT TCG TAA AAA AAG TGA CGT AAG ATC 2570 2560 25B0 2590 TTG TGG TTT GTC CAA ACT CAT CAA TGT ATC TTA TCA TGT CTG GAT CCT AAC ACC AAA CAG GTT TGA GTA GTT ACA TAG AAT AGT ACA GAC CTA GGA 2600 2610 2620 2630 CTA CGC CGG ACG CAT CGT GGC CGG CAT CAC CGG CGC CAC AGG TGC GGT GAT GCG GCC TGC GTA GCA CCG GCC GTA GTG GCC GCG GTG TCC ACG CCA 2670 2680 TGC TGG CGC CTA TAT CGC CGA CAT CAC CGA TGG GGA AGA TCG GGC TCG ACG ACC GCG GAT ATA GCG GCT GTA GTG GCT ACC CCT TCT AGC CCG AGC 2720 2710 2700 CCA CTT CGG GCT CAT GAG CGC TTG TTT CGG CGT GGG TAT GGT GGC AGG GGT GAA GCC CGA GTA CTC GCG AAC AAA GCC GCA CCC ATA CCA CCG TCC 2770 2780 2760 2790 2750 CCC GTG GCC GGG GGA CTG TTG GGC GCC ATC TCC TTG CAT GCA CCA TTC GGG CAC CGG CCC CCT GAC AAC CCG CGG TAG AGG AAC GTA CGT GGT AAG 2810 2820 2800 CTT GCG GCG GCG GTG CTC AAC GGC CTC AAC CTA CTA CTG GGC TGC TTC GAA CGC CGC CGC CAC GAG TTG CCG GAG TTG GAT GAT GAC CCG ACG AAG 2860 2870 2840 2850 CTA ATG CAG GAG TCC CAT AAG GGA GAG CGT CGA CCT CGG GCC GCG TTG GAT TAC GTC CTC AGC GTA TTC CCT CTC GCA GCT GGA GCC CGG CGC AAC 2910 2920 2900 2890 CTG GCG TIT TIC CAT AGG CTC CGC CCC CCT GAC GAG CAT CAC AAA AAT CAC CGC AAA AAG GTA TCC GAG GCG GGG GGA CTG CTC GTA GTG TTT TTA 2960 CGA CGC TCA AGT CAG AGG TGG CGA AAC CCG ACA GGA CTA TAA AGA TAC GCT GCG AGT TCA GTC TCC ACC GCT TTG GGC TGT CCT GAT ATT TCT ATG

#### 15/41

## FIG. 4 G

CAG GCG TIT CCC CCT GGA AGC TCC CTC GTG CGC TCT CCT GTT CCG ACC GTC CGC AAA GGG GGA CCT TCG AGG GAG CAC GCG AGA GGA CAA GGC TGG CTG CCG CTT ACC GGA TAC CTG TCC GCC TTT CTC CCT TCG GGA AGC GTG CAC GGC GAA TOG CCT ATG GAC AGG CGG AAA GAG GGA AGC CCT TCG CAC GCG CTT TCT CAA TGC TCA CGC TGT AGG TAT CTC AGT TCG GTG TAG GTC CGC GAA AGA GTT ACG AGT GCG ACA TCC ATA GAG TCA AGC CAC ATC CAG GTT CGC TCC AAG CTG GGC TGT GTG CAC GAA CCC CCC GTT CAG CCC GAC CAN GCG AGG TTC GAC CCG ACA CAC GTG CTT GGG GGG CAA GTC GGG CTG CGC TGC GCC TTA TCC GGT AAC TAT CGT CTT GAG TCC AAC CCG GTA AGA GCG ACG CGG AAT AGG CCA TTG ATA GCA GAA CTC AGG TTG GGC CAT TCT CAC GAC TTA TCG CCA CTG GCA GCA GCC ACT GGT AAC AGG ATT AGC AGA GTG CTG AAT AGC GGT GAC CGT CGT CGG TGA CCA TTG TCC TAA TCG TCT GCG AGG TAT GTA GGC GGT GCT ACA GAG TTC TTG AAG TGG TGG CCT AAC CGC TCC ATA CAT CCG CCA CGA TGT CTC AAG AAC TTC ACC ACC GGA TTG TAC GGC TAC ACT AGA AGG ACA GTA TIT GGT ATC TGC GCT CTG CTG AAG ATG CCG ATG TGA TCT TCC TGT CAT AAA CCA TAG ACG CGA GAC GAC TTC CCA GTT ACC TTC GGA AAA AGA GTT GGT AGC TCT TGA TCC GGC AAA CAA GGT CAA TGG AAG CCT TTT TCT CAA CCA TCG AGA ACT AGG CCG TTT GTT ACC ACC GCT GGT AGC GGT GGT TTT TTT GTT TGC AAG CAG CAG ATT ACG TGG TGG CGA CCA TCG CCA CCA AAA AAA CAA ACG TTC GTC GTC TAA TGC CGC AGA AAA AAA GGA TCT CAA GAA GAT CCT TTG ATC TTT TCT ACG GGG GCC TCT TIT TIT CCT AGA GTT CTT CTA GGA AAC TAG AAA AGA TGC CCC

### 16/41

### FIG. 4 H

TCT GAC GCT CAG TGG AAC GAA AAC TCA CGT TAA GGG ATT TTG GTC ATG AGA CTG CGA GTC ACC TTG CTT TTG AGT GCA ATT CCC TAA AAC CAG TAC AGA TTA TCA AAA AGG ATC TTC ACC TAG ATC CTT TTA AAT TAA AAA TGA TCT AAT AGT TIT TCC TAG AAG TGG ATC TAG GAA AAT TIA ATT TIT ACT AGT TTT AAA TCA ATC TAA AGT ATA TAT GAG TAA ACT TGG TCT GAC AGT TCA AAA TIT AGT TAG ATT TCA TAT ATA CTC ATT TGA ACC AGA CTG TCA TAC CAA TGC TTA ATC AGT GAG GCA CCT ATC TCA GCG ATC TGT CTA TTT ATG GTT ACG AAT TAG TCA CTC CGT GGA TAG AGT CGC TAG ACA GAT AAA CGT TCA TCC ATA GTT GCC TGA CTC CCC GTC GTG TAG ATA ACT ACG ATA GCA AGT AGG TAT CAA CGG ACT GAG GGG CAG CAC ATC TAT TGA TGC TAT CGG GAG GGC TTA CCA TCT GGC CCC AGT GCT GCA ATG ATA CCG CGA GAC GCC CTC CCG AAT GGT AGA CCG GGG TCA CGA CGT TAC TAT GGC GCT CTG CCA CGC TCA CCG GCT CCA GAT TTA TCA GCA ATA AAC CAG CCA GCC GGA GGT GCG AGT GGC CGA GGT CTA AAT AGT CGT TAT TTG GTC GGT CGG CCT AGG GCC GAG CGC AGA AGT GGT CCT GCA ACT TTA TCC GCC TCC ATC CAG TCC CGG CTC GCG TCT TCA CCA GGA CGT TGA AAT AGG CGG AGG TAG GTC TOT ATT AAT TGT TGC CGG GAA GCT AGA GTA AGT AGT TCG CCA GTT AAT AGA TAA TTA ACA ACG GCC CTT CGA TCT CAT TCA TCA AGC GGT CAA TTA AGT TTG CGC AAC GTT GTT GCC ATT GCT ACA GGC ATC GTG GTG TCA CGC TCA AAC GOG TTG CAA CAA CGG TAA CGA TGT CCG TAG CAC CAC AGT GCG TOG TOG TIT GGT ATG GCT TOA TTC AGC TOC GGT TOC CAA CGA TOA AGG AGC AGC AAA CCA TAC CGA AGT AAG TCG AGG CCA AGG GTT GCT AGT TCC

17/41

## FIG. 4 I

4040 4050 4080 CGA GTT ACA TGA TCC CCC ATG TTG TGC AAA AAA GCG GTT AGC TCC TTC GCT CAA TGT ACT AGG GGG TAC AAC AGG TTT TTT CGC CAA TCG AGG AAG 4090 4100 4110 4130 GGT CCT CCG ATC GTT GTC AGA AGT AAG TTG GCC GCA GTG TTA TCA CTC CCA GGA GGC TAG CAA CAG TCT TCA TTC AAC CGG CGT CAC AAT AGT GAG 4140 4150 4160 ATG GTT ATG GCA GCA CTG CAT AAT TCT CTT ACT GTC ATG CCA TCC GTA TAC CAA TAC CCT CCT GAC GTA TTA AGA GAA TGA CAG TAC GGT AGG CAT 4190 4200 4210 4230 AGA TGC TTT TCT GTG ACT GGT GAG TAC TCA ACC AAG TCA TTC TGA GAA TOT ACG AAA AGA CAC TGA CCA CTC ATG AGT TGG TTC AGT AAG ACT CTT 4240 4250 4260 4270 THE TET ATE CEE CEA CCE AET TEC TET TEC CCE GCE TEA ACA CEE GAT ATC ACA TAC GCC GCT GGC TCA ACG AGA ACG GGC CGC AGT TGT GCC CTA AAT ACC GCG CCA CAT AGC AGA ACT TTA AAA GTG CTC ATC ATT GGA AAA TTA TGG CGC GGT GTA TCG TCT TGA AAT TTT CAC GAG TAG TAA CCT TTT 4340 4350 4360 4370 CGT TCT TCG GGG CGA AAA CTC TCA AGG ATC TTA CCG CTG TTG AGA TCC GCA AGA AGC CCC GCT TIT GAG AGT TCC TAG AAT GGC GAC AAC TCT AGG 4380 4390 4400 4410 4420 AGT TCG ATG TAA CCC ACT CGT GCA CCC AAC TGA TCT TCA GCA TCT TTT TCA AGC TAC ATT GGG TGA GCA CGT GGG TTG ACT AGA AGT CGT AGA AAA ACT TTC ACC AGC GTT TCT GGG TGA GCA AAA ACA GGA AGG CAA AAT GCC TGA AAG TGG TGG CAA AGA CCC ACT CGT TTT TGT CCT TCC GTT TTA CGG 4480 4490 4500 GCA AAA AAG GGA ATA AGG GCG ACA CGG AAA TGT TGA ATA CTC ATA CTC CGT TTT TTC CCT TAT TCC CGC TGT GCC TTT ACA ACT TAT GAG TAT GAG 4550 4520 4530 4540 4560 TTC CIT TIT CAA TAT TAT TGA AGC ATT TAT CAG GGT TAT TGT CTC ATG AMG GAA AAA GTT ATA ATA ACT TOG TAA ATA GTC CCA ATA ACA GAG TAC

18/41

## FIG. 4 J

4570 4580 4590 4600 4610 AGC GGA TAC ATA TIT GAA TGT ATT TAG AAA AAT AAA CAA ATA GGG GTT TCG CCT ATG TAT AAA CTT ACA TAA ATC TIT TTA TIT GTT TAT CCC CAA 4650 CCG CGC ACA TIT CCC CGA AAA GTG CCA CCT GAC GTC TAA GAA ACC ATT CGC GCG TGT AAA GGG GCT TTT CAC GGT GGA CTG CAG ATT CTT TGG TAA 4670 4680 4690 4710 ATT ATC ATG ACA TTA ACC TAT AAA AAT AGG CGT ATC ACG AGG CCC TGA TAX TAG TAC TOT AAT TGG ATA TIT TTA TCC GCA TAG TGC TCC GGG ACT 4720 4730 4740 4750 TOG CTC TIT GOG GCA CCC ATC GTT CGT AAT GTT CCG TGG CAC CGA GGA ACC GAG AAA CGC CGT GGG TAG CAA GCA TTA CAA GGC ACC GTG GCT CCT 4760 4780 CAA CCC TCA AGA GAA AAT GTA ATC ACA CTG GCT CAC CTT CGG GTG GGC GTT GGG AGT TCT CTT TTA CAT TAG TGT GAC CGA GTG GAA GCC CAC CCG 4810 4820 **4B30** 4840 4850 CTT TCT GOG TTT ATA AGG AGA CAC TTT ATG TTT AAG AAG GTT GGT AAA GAA AGA CGC AAA TAT TCC TCT GTG AAA TAC AAA TTC TTC CAA CCA TTT 4860 4870 4880 4890 4900 TTC CTT GCG GCT TTG GCA GCC AAG CTA GAG ATC TCT AGC TTC GTG TCA ANG GAA CGC CGA AAC CGT CGG TTC GAT CTC TAG AGA TCG AAG CAC AGT 4920 4930 4940 AGG ACG GTG ACT GCA GTG AAT AAA ATG TGT GTT TGT CCG AAA TAC TCC TGC CAC TGA CGT CAC TTA TTA TTT TAC ACA CAA ACA GGC TTT ATG 4960 49B0 4990 GCG TIT TGA GAT TTC TGT CGC CGA CTA AAT TCA TGT CGC GCG ATA GTG CGC AAA ACT CTA AAG ACA GCG GCT GAT TTA AGT ACA GCG CGC TAT CAC 5000 5010 5020 5030 GTG TTT ATC GCC GAT AGA GAT GGC GAT ATT GGA AAA ATC GAT ATT TGA CAC AAA TAG CGG CTA TCT CTA CCG CTA TAA CCT TTT TAG CTA TAA ACT 5050 5060 5070 5080 AAA TAT GGC ATA TTG AAA ATG TCG CCG ATG TGA GTT TCT GTG TAA CTG TTT ATA CCG TAT AAC TTT TAC AGC GGC TAC ACT CAA AGA CAC ATT GAC

### 19/41

### FIG. 4 K

5110 5120 5130 5100 ATA TOG COA TIT TITO CAA AAG TGA TIT TITG GGC ATA CGC GAT ATC TGG TAT AGC GGT AAA AAG GTT TTC ACT AAA AAC CCG TAT GCG CTA TAG ACC 5150 5160 5170 5190 CGA TAG CGC TTA TAT CGT TTA CGG GGG ATG GCG ATA GAC GAC TTT GGT GCT ATC GCG AAT ATA GCA AAT GCC CCC TAC CGC TAT CTG CTG AAA CCA 5200 5210 5220 GAC TTG GGC GAT TCT GTG TGT CGC AAA TAT CGC AGT TTC GAT ATA GGT CTG AAC CCG CTA AGA CAC ACA GCG TTT ATA GCG TCA AAG CTA TAT CCA 5240 5250 5260 5270 5280 GAC AGA CGA TAT GAG GCT ATA TCG CCG ATA GAG GCG ACA TCA AGC TCG CTG TCT GCT ATA CTC CGA TAT AGC GGC TAT CTC CGC TGT AGT TCG ACC 5300 5310 5320 CAC ATG GCC AAT GCA TAT CGA TCT ATA CAT TGA ATC AAT ATT GGC CAT GTG TAC CGG TTA CCT ATA GCT AGA TAT GTA ACT TAG TTA TAA CCG GTA 5350 5360 5370 TAG CCA TAT TAT TCA TTG GTT ATA TAG CAT AAA TCA ATA TTG GCT ATT ATC GGT ATA ATA AGT AAC CAA TAT ATC GTA TTT AGT TAT AAC CGA TAA 5390 5400 5410 5420 GGC CAT TGC ATA CGT TGT ATC CAT ATC ATA ATA TGT ACA TIT ATA TTG CCG GTA ACG TAT GCA ACA TAG GTA TAG TAT TAT ACA TGT AAA TAT AAC 5450 5460 GCT CAT GTC CAA CAT TAC CGC CAT GTT GAC ATT GAT TAT TGA CTA GTT CGA GTA CAG GTT GTA ATG GCG GTA CAA CTG TAA CTA ATA ACT GAT CAA 5480 5490 5500 5510 ATT AAT AGT AAT CAA TTA CGG GGT CAT TAG TTC ATA GCC CAT ATA TGG TAA TTA TCA TTA GTT AAT GCC CCA GTA ATC AAG TAT CGG GTA TAT ACC 5530 5540 5550 5560 5570 AGT TOO GOG TTA CAT AAC TTA CGG TAA ATG GOC CGC CTG GOT GAC CGC TCA AGG CGC AAT GTA TTG AAT GCC ATT TAC CGG GCG GAC CGA CTG GCG 5590 5600 CCA ACG ACC CCC GCC CAT TGA CGT CAA TAA TGA CGT ATG TTC CCA TAG GGT TGC TGG GGG CGG GTA ACT GCA GTT ATT ACT GCA TAC AAG GGT ATC

### 20/41

## FIG. 4 L

56	530	5640		5650	56	60	5670
						TGG AGT ACC TCA	
	5680	56	590 *	5700 •		5710	
						ATA TGC TAT ACG	
5720	5730		5740	57	50	5760	
CCC CCC	CTA TTG GAT AAC	ACG TCA TGC AGT	ATG ACG	GTA AAT CAT TTA	666 666 666 668	CCI CCC	ATT ATG TAA TAC
5770	57	780	5790 •		5800	58	110
						AGT ACA TCA TGT	
5820		5830	51	840	5850		5860
						GGC AGT CCG TCA	
51	870	5880		5890	59	900	5910
ATG GGC TAC CCG	CAC CTA	AGC GGT TCG CCA	TTG ACT	CYC CCC	GAT TTC	CAA GTC	TCC ACC AGG TGG
	5920	S	930	5940		5950	
						ATC AAC TAG TTG	
5960	5970		5980	5	990	6000	
						AAA TGG TTT ACC	GCG GTA
6010 *	6	020	6030		6040	60	50
GGC GTG CCG CAC	TAC GGT ATG CCA	GGG AGG CCC TCC	TCT ATA AGA TAT	TAA GCA ATT CGT	GAG CTC CTC GAG	GTT TAG CAA ATC	TGA ACC ACT TGG
6060		6070 *	6	080	6090		6100
GTC AGA CAG TCT	TCG CCT AGC GGA	GGA GAC	GCC ATC	CAC GCT	GTT TTG	ACC TCC TGG AGG	ATA GAA TAT CTT
6	110	6120		6130	61	L40	6150
GAC ACC	GGG ACC	CAT CCA	GCC TCC CGG AGG	CCC CCC	GGG AAC	SCT SCA CCA CCT	TTG GAA AAC CTT

### 21/41

### FIG. 4 M

6160 6170 61B0 6190 CGC GGA TTC CCC GTG CCA AGA GTG ACG TAA GTA CCG CCT ATA GAG TCT GCG CCT AMG GGG CAC GGT TCT CAC TGC ATT CAT GGC GGA TAT CTC AGA 6200 6210 6220 6240 ATA GGC CCA CCC CCT TGG CTT CTT ATG CAT GCT ATA CTG TTT TTG GCT THE CCG GGT GGG GGA ACC GAA GAA TAC GTA CGA TAT GAC AAA AAC CGA 6270 6260 TGG GGT CTA TAC ACC CCC GCT TCC TCA TGT TAT AGG TGA TGG TAT AGC ACC CCA GAT ATG TGG GGG CGA AGG AGT ACA ATA TCC ACT ACC ATA TCG 6330 6300 6320 TTA GCC TAT AGG TGT GGG TTA TTG ACC ATT ATT GAC CAC TCC CCT ATT AAT CGG ATA TCC ACA CCC AAT AAC TGG TAA TAA CTG GTG AGG GGA TAA 6360 6370 63B0 6390 6350 GGT GAC GAT ACT TTC CAT TAC TAA TCC ATA ACA TGG CTC TTT GCC ACA CCA CTG CTA TGA AAG GTA ATG ATT AGG TAT TGT ACC GAG AAA CGG TGT ACT CTC TIT ATT GGC TAT ATG CCA ATA CAC TGT CCT TCA GAG ACT GAC TGA GAG AAA TAA CCC ATA TAC GGT TAT GTG ACA GGA AGT CTC TGA CTG 6470 6440 6450 6460 ACG GAC TOT GTA TIT TTA CAG GAT GGG GTC TCA TIT ATT ATT TAC AAA TGC CTG AGA CAT AAA AAT GTC CTA CCC CAG AGT AAA TAA TAA ATG TTT 6520 6530 6490 6500 6510 TTC ACA TAT ACA ACA CCA CCG TCC CCA GTG CCC GCA GTT TTT ATT AAA AAG TOT ATA TOT TOT GOT GGC AGG GGT CAC GGG CGT CAA AAA TAA TIT 6560 CAT AAC GTG GGA TCT CCA CGC GAA TCT CGG GTA CGT GTT CCG GAC ATG GTA THE CAC CCT AGA GGT GCG CTT AGA GCC CAT GCA CAA GGC CTG TAC 6590 6600 6610 6620 GGC TCT TCT CCG GTA GCG GCG GAG CTT CTA CAT CCG AGC CCT GCT CCC CCG AGA AGA GGC CAT CGC CGC CTC GAA GAT GTA GGC TCG GGA CGA GGG 6640 6660 ATG CCT CCA GCG ACT CAT GGT CGC TCG GCA GCT CCT TGC TCC TAA CAG TAC GGA GGT CGC TGA GTA CCA GCG AGC CGT CGA GGA ACG AGG ATT GTC

### 22/41

## FIG. 4 N

6710 6700 6680 6690 TGG AGG CCA GAC TTA GGC ACA GCA CGA TGC CCA CCA CCA GTG TGC ACC TCC GGT CTG AAT CCG TGT CGT GCT ACG GGT GGT GGT CAC ACG 6750 6730 6740 CGC ACA AGG CCG TGG CGG TAG GGT ATG TGT CTG AAA ATG AGC TCG GGG GCG TGT TCC GGC ACC GCC ATC CCA TAC ACA GAC TIT TAC TCG AGC CCC 6780 6790 6800 6810 AGC GGG CTT GCA CCG CTG ACG CAT TTG GAA GAC TTA AGG CAG CGG CAG TCG CCC GAA CGT GGC GAC TGC GTA AAC CTT CTG AAT TCC GTC GCC GTC 6850 6840 6830 AMG AMG ATG CAG GCA GCT GAG TTG TTG TGT TGT GAT AMG AGT CAG AGG TTC TTC TAC GTC CGT CGA CTC AAC AAC ACA AGA CTA TTC TCA GTC TCC 6900 6880 TAX CTC CCG TTG CGG TGC TGT TAX CGG TGG AGG GCA GTG TAG TCT GAG ATT GAG GGC AAC GCC ACG ACA ATT GCC ACC TCC CGT CAC ATC AGA CTC 6920 6940 6930 6950 6960 CAG TAC TOO TTG CTG CCG CGC GCG CCA CCA GAC ATA ATA GCT GAC AGA GTC ATG AGC AAC GAC GGC GGG CGC GGT GGT CTG TAT TAT CGA CTG TCT 6980 6990 7000 7010 CTA ACA GAC TOT TCC TIT CCA TGG GTC TIT TCT GCA GTC ACC GTC CTT GAT TOT CTG ACA AGG AAA GGT ACC CAG AAA AGA CGT CAG TGG CAG GAA 7020 7030 7040 7050 7060 GAC ACG AAG CTT GGG CTG CAG GTC GAT CGA CTC TAG AGG ATC GAT CCC CTG TGC TTC GAA CCC GAC GTC CAG CTA GCT GAG ATC TCC TAG CTA GGG 7070 CGG GCG AGC TC GCC CGC TCG AG

### 23/41

## FIG. 5 A

The pEe12TF8LCDR3 expression vector DNA sequence. The coding regions of the TF8-5G9 CDR-grafted LC gene, TF8LCDR3, are translated.

Sequence Range: 1 to 7864

	•															
			10			20			_	•			40			50
AAT TTA	TCA AGT	CC	TAC	CCA	GTG CAC Val	CCT	TGA	GTC	CAT	λλT	CCI	AAT	GAC	GAC	GAC	ACC
			60			70			80	<b>}</b>			90			
CIT	ACA	GAT	. GCX	AGA	TCT	GAT	ATC	CAA	ATG	Laca	CAR		. رحم -	, ,,,,,,,		
GAA	TGT	CTA	CCI	TCI	) ACA	CIA	TAC	GII	TAC	TGI	GIT	AGA	GGA	AGA	AGI	<u>.</u>
Leu	Thr	Ast	Ala	λ <del>rg</del>	Сув	λer	Ile	: Gln	Met	Thr	Clr	Ser	Pro	Ser	Ser	•>
100			110	)		1	.20			130			140	)		
CTA	λGT	CCT	TCT	GTC	GGA	GAT	, ycs	GTA	ACA	ייי דינג	' AC2	י דינידי	. 330	· : ccc	: )\c=	-
GAT	TCA	œ	<b>L YC</b> Y	CAG	CCT	CIA	TCI	י כאז	TGI	TAX	TGI	' ACA	TTC	CCC	TC	1
Leu	Ser	λla	Ser	Val	Gly	Yet	) Arg	Val	Thr	Ile	Thr	Сув	Lye	λla	Sea	->
15	50			160			170	)		1	.80			190		
CAG	GAC	ATT	' AGA	λλG	TAT	TIA	λλο	TGG	TAT	CAG	CN	. AAA	CCT	. GGG	: AAC	:
CTC	cic	TA	TCI	, IIC	: ATA	. AAT	TIC	: ACC	: ATA	GIC	GT	TTT	, cos	ccc	TTY	2
Gln	увр	Ile	: yrg	Lys	TAT	Leu	λει	TI	TYI	Gle	Glr	Lys	Pro	Gly	Ly:	3>
	200			2	10			220			230	)		2	40	
CCI	CCI	AAC	CTA	CIC	ATT	TAT	TAT	CCA	A ACA	AG1	TIC	: cc	GAT	· GG2	GT	
CCA	CCY	TIC	CAT	, CYC	TAA	. ATA	L AT	CCI	TCI	TC	XX	: œ1	CIL	( CC1	CA	r
YTE	PTO	Lys	Leu	Leu	Ile	IXI	Ty	: Xla	Thr	Sex	Leu	ı Xla	, yei	Gly	va.	1>
	2	250			260			2	270			280			29	•
CCI	TCI	YCY	TTI	LCI	. CCI	ICI	CCC	TCI	CCA	YC)	GAC	TAC	: אכי	TTC	: אכו	4
GGX	YCY	10:	. <b>YYY</b>	YCY	CCX	. AGA	CCC	: אכיא	CCI	TG1	. cro	) ATC	TCT	AAC	TG	r
PIO	SET	VIĈ	PDe	Ser	Gly	Ser	Gly	; Ser	Gly	Thr	Yel	TYI	Thr	Phe	Th	->
		3	00			310			320	)		3	30			
ATT	TCT	TCI	cro	CAA	CCI	CAC	GAC	ATI	י ככז	, ycx	TAC	TAC	TGC	CTA	CAI	
TAA	λGλ	YC	CYC	GIT	, ccy	CIC	CIC	: TXX	CCD	TG	` ATC	: ATC	: 300	CAT	ملت	r
Ile	Ser	Ser	Leu	Gln	Pro	Glu	, yaz	) Ile	Ala	The	בעד:	TYX	Cys	Lev	Cļi	2>
340			350	) ,		3	60			370			380	)		
			AGT			YCX	TT	CCO	CAN	CC	N AC		CT	GAC	: ATY	•
GTA	CCY	CTC	: TCA	GCC	: ATA	TGI	. אא	/ CC1	. Cli	, cci	TG	TTT	GA7	י כדינ	TAC	2
His	Gly	Glu	Ser	Pro	Tyr	Thr	Phe	Gly	, Clr	Gl)	Thi	. Lye	Len	Glu	ı Ile	•>
39	90			400			410			4	20			430		
λCλ	λGλ	λC	r GTI	. co	ccc	: cc	TC	CIY	TIC	אדג :	אנגו :	2 000	ב כרי	/ JAC-4	ינט י	70
TGT	TCI	K	CN	$\sim$	$= \infty$	: CCC	: אכו	A CA	3 220	TAC	3 220	2 GGC	: cc	ו אמי	(T)	<b>A</b>
Thr	γīΔ	Thi	r Val	λlε	Ala	Pro	Se	r Val	l Phe	: I1e	Pho	Pro	Pro	Sea	λε	<b>p</b> >

### 24/41

## FIG. 5 B

440 450 460 470 480 GAG CAG TTG AAA TCT GGA ACT GCC TCT GTT GTG TGC CTG CTG AAT AAC CTC GTC AAC TIT AGA CCT TGA CGG AGA CAA CAC ACG GAC GAC TTA TTG Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn> 520 530 510 490 500 TTC TAT CCC AGA GAG GCC AAA GTA CAG TGG AAG GTG GAT AAC GCC CTC AAG ATA GGG TCT CTC CGG TTT CAT GTC ACC TTC CAC CTA TTG CGG GAG Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leux 560 540 550 CAA TOG GGT AAC TOO CAG GAG AGT GTO ACA GAG CAG GAC AGC AAG GAC GTT AGC CCA TTG AGG GTC CTC TCA CAG TGT CTC GTC CTG TCG TTC CTG Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp> 590 600 610 **5B0** AGO ACO THE AGO CTC AGO AGO ACO CTG AGG CTG AGO AAA GCA GAC THE TCG TCG ATG TCG GAG TCG TCG TCG GAC TCC GAC TCC TTT CGT CTG ATG Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr> 660 640 650 GAG AAA CAC AAA GTC TAC GCC TGC GAA GTC ACC CAT CAG GGC CTG AGC CTC TTT GTG TTT CAG ATG CGG ACG CTT CAG TGG GTA GTC CCG GAC TCG Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser> TCG CCC GTC ACA AAG AGC TTC AAC AGG GGA GAG TGT T AGA GGG AGA AGT AGO GGG CAG TOT TTO TOG AAG TTG TOO COT CTC ACA A TOT CCC TOT TOA Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys> 760 770 730 740 750 GCC CCC ACC TGC TCC TCA GTT CCA GCC TGG GGA TCA TAA TCA GCC ATA CGG GGG TGG ACG AGG AGT CAA GGT CGG ACC CCT AGT ATT AGT CGG TAT 810 CCA CAT TTG TAG AGG TTT TAC TTG CTT TAA AAA ACC TCC CAC ACC TCC GGT GTA AAC ATC TCC AAA ATG AAC GAA ATT TTT TGG AGG GTG TGG AGG 850 860 820 830 840 CCC TGA ACC TGA AAC ATA AAA TGA ATG CAA TTG TTG TTG TTA ACT TGT GGG ACT TGG ACT TTG TAT TTT ACT TAC GTT AAC AAC AAC AAT TGA ACA 900 870 880 890 910 TTA TTG CAG CTT ATA ATG GTT ACA AAT AAA GCA ATA GCA TCA CAA ATT AAT AAC GTC GAA TAT TAC CAA TGT TTA TTT CGT TAT CGT AGT GTT TAA

### 25/41

## FIG. 5 C

TCA CAA ATA AAG CAT TIT TIT CAC TGC ATT CTA GTT GTG GTT TGT CCA AGT GTT TAT TTC GTA AAA AAA GTG ACG TAA GAT CAA CAC CAA ACA GGT AAC TEA TEA ATG TAT CIT ATC ATG TET GGA TEE TET ACG CEG GAC GCA TTG AGT AGT TAC ATA GAA TAG TAC AGA CCT AGG AGA TGC GGC CTG CGT TCG TGG CCG GCA TCA CCG GCG CCA CAG GTG CGG TTG CTG GCG CCT ATA AGC ACC GGC CGT AGT GGC CGC GGT GTC CAC GCC AAC GAC CGC GGA TAT TOG COG ACA TOA COG ATG GGG AAG ATC GGG CTC GCC ACT TOG GGC TOA AGC GGC TGT AGT GGC TAC CCC TTC TAG CCC GAG CGG TGA AGC CCG AGT TGA GCG CTT GTT TCG GCG TGG GTA TGG TGG CAG GCC CGT GGC CGG GGG ACT CGC GAA CAA AGC CGC ACC CAT ACC ACC GTC CGG GCA CCG GCC CCC ACT GTT GGG CGC CAT CTC CTT GCA TGC ACC ATT CCT TGC GGC GGC GGT TGA CAA CCC GCG GTA GAG GAA CGT ACG TGG TAA GGA ACG CCG CCA GCT CAA CGG CCT CAA CCT ACT ACT GGG CTG CTT CCT AAT GCA GGA GTC CGA GTT GCC GGA GTT GGA TGA TGA CCC GAC GAA GGA TTA CGT CCT CAG GCA TAX GGG AGA GCG TCG ACC TCG GGC CGC CTT GCT GGC CTT TTT CCA COT ATT CCC TCT CGC AGC TGG AGC CCG GCG CAA CGA CCG CAA AAA GGT TAG GCT CCG CCC CCC TGA CGA GCA TCA CAA AAA TCG ACG CTC AAG TCA ATC CGA GGC GGG GGG ACT GCT CGT AGT GTT TTT AGC TGC GAG TTC AGT GAG GTG GCG AAA CCC GAC AGG ACT ATA AAG ATA CCA GGC GTT TCC CCC CTC CAC CGC TTT GGG CTG TCC TGA TAT TTC TAT GGT CCG CAA AGG GGG TGG AAG CTC CCT CCT GCG CTC TCC TGT TCC GAC CCT GCC GCT TAC CGG ACC TTC GAG GGA GCA CGC GAG AGG ACA AGG CTG GGA CGG CGA ATG GCC ATA CCT GTC CGC CTT TCT CCC TTC GGG AAG CGT GGC GCT TTC TCA ATG TAT GGA CAG GCG GAA AGA GGG AAG CCC TTC GCA CCC CGA AAG AGT TAC

### 26/41

## FIG. 5 D

CTC ACG CTG TAG GTA TCT CAG TTC GGT GTA GGT CGT TCG CTC CAA GCT GAG TGC GAC ATC CAT AGA GTC AAG CCA CAT CCA GCA AGC GAG GTT CGA GGG CTG TGT GCA CGA ACC CCC CGT TCA GCC CGA CCG CTG CGC CTT ATC CCC GAC ACA CGT GCT TGG GGG GCA AGT CGG GCT GGC GAC GCG GAA TAG CGG TAA CTA TCG TCT TGA GTC CAA CCC GGT AAG ACA CGA CTT ATC GCC GCC ATT GAT AGC AGA ACT CAG GTT GGG CCA TTC TGT GCT GAA TAG CGG ACT GGC AGC AGC CAC TGG TAA CAG GAT TAG CAG AGC GAG GTA TGT. AGG TGA CCG TCG TCG GTG ACC ATT GTC CTA ATC GTC TCG CTC CAT ACA TCC CGG TGC TAC AGA GTT CTT GAA GTG GTG GCC TAA CTA CGG CTA CAC TAG GCC ACG ATG TCT CAA GAA CTT CAC CAC CGG ATT GAT GCC GAT GTG ATC AAG GAC AGT ATT TGG TAT CTG CGC TCT GCT GAA GCC AGT TAC CTT CGG TTC CTG TCA TAA ACC ATA GAC GCG AGA CGA CTT CGG TCA ATG GAA GCC AAA AAG AGT TGG TAG CTC TTG ATC CGG CAA ACA AAC CAC CGC TGG TAG TIT TIC TCA ACC ATC GAG AAC TAG GCC GTT TGT TTG GTG GCG ACC ATC CGG TGG TIT TTT TGT TTG CAA GCA GCA GAT TAC GCG CAG AAA AAA AGG GCC ACC AAA AAA ACA AAC GTT CGT CGT CTA ATG CGC GTC TTT TTT TCC ATC TCA AGA AGA TCC TTT GAT CTT TTC TAC GGG GTC TGA CGC TCA GTG TAG AGT TOT TOT AGG AAA CTA GAA AAG ATG CCC CAG ACT GCG AGT CAC CAA CGA AAA CTC ACG TTA AGG GAT TTT GGT CAT GAG ATT ATC AAA AAG CTT GCT TTT GAG TGC AAT TCC CTA AAA CCA GTA CTC TAA TAG TTT TTC GAT CTT CAC CTA GAT CCT TTT AAA TTA AAA ATG AAG TTT TAA ATC AAT CTA GAA GTG GAT CTA GGA AAA TTT AAT TIT TAC TTC AAA ATT TAG TTA CTA AAG TAT ATA TGA GTA AAC TTG GTC TGA CAG TTA CCA ATG CTT AAT GAT TTC ATA TAT ACT CAT TTG AAC CAG ACT GTC AAT GGT TAC GAA TTA

#### 27/41

## FIG. 5 E

CAG TGA GGC ACC TAT CTC AGC GAT CTG TCT ATT TCG TTC ATC CAT AGT GTC ACT CCG TGG ATA GAG TCG CTA GAC AGA TAA AGC AAG TAG GTA TCA TGC CTG ACT CCC CGT CGT GTA GAT AAC TAC GAT ACG GGA GGG CTT ACC ACG GAC TGA GGG GCA GCA CAT CTA TTG ATG CTA TGC CCT CCC GAA TGG ATC TGG CCC CAG TGC TGC AAT GAT ACC GCG AGA CCC ACG CTC ACC GGC TAG ACC GGG GTC ACG ACG TTA CTA TGG CGC TCT GGG TGC GAG TGG CCC TCC AGA TTT ATC AGC AAT AAA CCA GCC AGC CGG AAG GGC CGA GCG CAG AGG TCT AAA TAG TCG TTA TTT GGT CGG TCG GCC TTC CCG GCT CGC GTC AAG TGG TCC TGC AAC TTT ATC CGC CTC CAT CCA GTC TAT TAA TTG TTG TTC ACC AGG ACG TTG AAA TAG GCG GAG GTA GGT CAG ATA ATT AAC AAC CCG GGA AGC TAG AGT AAG TAG TTC GCC AGT TAA TAG TTT GCG CAA CGT GGC CCT TCG ATC TCA TTC ATC AAG CGG TCA ATT ATC AAA CGC GTT GCA TGT TGC CAT TGC TAC AGG CAT CGT GGT GTC ACG CTC GTC GTT TGG TAT ACA ACG GTA ACG ATG TCC GTA GCA CCA CAG TGC GAG CAG CAA ACC ATA GGC TTC ATT CAG CTC CGG TTC CCA ACG ATC AAG GCC AGT TAC ATG ATC CCG AAG TAA GTC GAG GCC AAG GGT TGC TAG TTC CGC TCA ATG TAC TAG CCC CAT GTT GTG CAA AAA AGC GGT TAG CTC CTT CGG TCC TCC GAT CGT CCC CTA CAA CAC CTT TTT TCC CCA ATC GAG GAA GCC AGG AGG CTA GCA TOT CAG ANG TAN GTT GGC CGC AGT GTT ATC ACT CAT GGT TAT GGC AGC ACA GTC TTC ATT CAA CCG GCG TCA CAA TAG TGA GTA CCA ATA CCG TCG ACT GCA TAX TTC TCT TAC TGT CAT GCC ATC CGT AAG ATG CIT TTC TGT TGA CGT ATT AAG AGA ATG ACA GTA CGG TAG GCA TTC TAC GAA AAG ACA GAC TGG TGA GTA CTC AAC CAA GTC ATT CTG AGA ATA GTG TAT GCG GCG CTG ACC ACT CAT GAG TTG GTT CAG TAA GAC TCT TAT CAC ATA CGC CGC

### 28/41

## FIG. 5 F

2650 2660 2690 ACC GAG TTG CTC TTG CCC GGC GTC AAC ACG GGA TAA TAC CGC GCC ACA TGG CTC AAC GAG AAC GGG CCG CAG TTG TGC CCT ATT ATG GCG CCG TGT 2700 TAG CAG AAC TIT AAA AGT GCT CAT CAT TGG AAA ACG TIC TIC GGG GCG ATC GTC TTG AAA TTT TCA CGA GTA GTA ACC TTT TGC AAG AAG CCC CGC 2760 AAA ACT CTC AAG GAT CTT ACC GCT GTT GAG ATC CAG TTC GAT GTA ACC TIT TGA GAG TTC CTA GAA TGG CGA CAA CTC TAG GTC AAG CTA CAT TGG 2790 2810 CAC TCG TGC ACC CAA CTG ATC TTC AGC ATC TTT TAC TTT CAC CAG CGT GTG AGC ACG TGG GTT GAC TAG AAG TCG TAG AAA ATG AAA GTG GTC GCA 2850 2860 2880 2840 TTC TGG GTG AGC AAA AAC AGG AAG GCA AAA TGC CGC AAA AAA GGG AAT ANG ACC CAC TOG TIT TTG TOC TTC CGT TIT ACG GCG TIT TIT CCC TIA 2920 2900 2910 2930 AMG GGC GAC ACG GAA ATG TTG AAT ACT CAT ACT CTT CCT TTT TCA ATA TIC CCG CTG TGC CTT TAC AAC TTA TGA GTA TGA GAA GGA AAA AGT TAT TTA TTG AAG CAT TTA TCA GGG TTA TTG TCT CAT GAG CGG ATA CAT ATT AAT AAC TTC GTA AAT AGT CCC AAT AAC AGA GTA CTC GCC TAT GTA TAA 3000 2980 2990 TGA ATG TAT TTA GAA AAA TAA ACA AAT AGG GGT TCC GCG CAC ATT TCC ACT TAC ATA AAT CIT TIT ATT TGT TTA TCC CCA AGG CGC GTG TAA AGG 3050 3060 3040 CCG AAA AGT GCC ACC TGA CGT CTA AGA AAC CAT TAT TAT CAT GAC ATT GGC TTT TCA CGG TGG ACT GCA GAT TCT TTG GTA ATA ATA GTA CTG TAA 3080 3090 3100 AAC CTA TAA AAA TAG GCG TAT CAC GAG GCC CTG ATG GCT CTT TGC GGC TTG GAT ATT TIT ATC CGC ATA GTG CTC CGG GAC TAC CGA GAA ACG CCG 3130 3150 3160 3170 ACC CAT COT TOO TAX TOT TOO GTG GCA COG AGG ACA ACC CTC AAG AGA TGG GTA GCA AGC ATT ACA AGG CAC CGT GGC TCC TGT TGG GAG TTC TCT 3210 3190 3200 3180 AAA TGT AAT CAC ACT GGC TCA CCT TCG GGT GGG CCT TTC TGC GTT TAT TTT ACA TTA GTG TGA CCG AGT GGA AGC CCA CCC GGA AAG ACG CAA ATA

### **RECTIFIED SHEET (RULE 91)**

**ISA/EP** 

#### 29/41

## FIG. 5 G

3250 3220 3230 3240 3260 AAG GAG ACA CTT TAT GTT TAA GAA GGT TGG TAA ATT CCT TGC GGC TTT TTC CTC TGT GAA ATA CAA ATT CTT CCA ACC ATT TAA GGA ACG CCC AAA 3280 3290 3300 GGC AGC CAA GCT AGA GAT CCG GCT GTG GAA TGT GTG TCA GTT AGG GTG CCG TCG GTT CGA TCT CTA GGC CGA CAC CTT ACA CAC AGT CAA TCC CAC 3320 3330 3340 3350 TGG AAA GTC CCC AGG CTC CCC AGC AGG CAG AAG TAT GCA AAG CAT GCA ACC TIT CAG GGG TCC GAG GGG TCG TCC GTC TTC ATA CGT TTC GTA CGT 3370 3380 3390 3400 3410 TOT CAA TTA GTC AGC AAC CAG GCT CCC CAG CAG GCA GAA GTA TGC AAA AGA GTT AAT CAG TCG TTG GTC CGA GGG GTC GTC CGT CTT CAT ACG TTT 3430 3440 3450 GCA TGC ATC TCA ATT AGT CAG CAA CCA TAG TCC CGC CCC TAA CTC CGC CCT ACC TAG ACT TAA TCA GTC GTT GGT ATC ACC GCG GGG ATT GAG GCC 3480 3490 CCA TCC CGC CCC TAA CTC CGC CCA GTT CCG CCC ATT CTC CGC CCC ATG GCT AGG GCC GGG ATT GAG GCG GGT CAA GGC GGG TAA GAG GCG GGG TAC 3510 3520 3530 3540 GCT GAC TAA TIT TIT TTA TIT ATG CAG AGG CCG AGG CCG CCT CGG CCT CGA CTG ATT AAA AAA AAT AAA TAC GTC TCC GGC TCC GGC GGA GCC GGA 3560 3570 3580 3590 CTG AGC TAT TCC AGA AGT AGT GAG GAG GCT TTT TTG GAG GCC TAG GCT GAC TOG ATA AGG TOT TOA TOA CTO OTC OGA AAA AAC CTO OGG ATO OGA 3620 3630 3640 TTT GCA AAA AGC TAG CTT GGG GCC ACC GCT CAG AGC ACC TTC CAC CAT AAA COT TIT TOO ATC GAA CCC COG TGG CGA GTC TCG TGG AAG GTG GTA 3660 3670 3690 GGC CAC CTC AGC AAG TTC CCA CTT GAA CAA AAA CAT CAA GCA AAT GTA CCC CTC GAG TCG TTC AAG GGT GAA CTT GTT TTT GTA GTT CGT TTA CAT 3710 3720 3730 CTT GTG CCT GCC CCA GGG TGA GAA AGT CCA AGC CAT GTA TAT CTG GGT CAA CAC GCA CCG GCT CCC ACT CTT TCA GGT TCG GTA CAT ATA GAC CCA 3750 3780 TGA TGG TAC TGG AGA AGG ACT GGG CTG CAA AAC CGG CAC CCT GGA CTG ACT ACC ATG ACC TCT TCC TGA CGC GAC GTT TTG GGC GTG GGA CCT GAC

30/41

## FIG. 5 H

TGA GCC CAA GTG TGT AGA AGA GTT ACC TGA GTG GAA TTT TGA TGG CTC ACT CGG GTT CAC ACA TCT TCT CAA TGG ACT CAC CTT AAA ACT ACC GAG TAG TAC CTT TCA GTC TGA GGG CTC CAA CAG TGA CAT GTA TCT CAG CCC ATC ATG GAA AGT CAG ACT CCC GAG GTT GTC ACT GTA CAT AGA GTC GGG TGT TGC CAT GTT TCG GGA CCC CTT CCG CAG AGA TCC CAA CAA GCT GGT ACA ACG GTA CAA AGC CCT GGG GAA GGC GTC TCT AGG GTT GTT CGA CCA GTT CTG TGA AGT TTT CAA GTA CAA CCG GAA GCC TGC AGA GAC CAA TTT CAA GAC ACT TCA AAA GTT CAT GTT GGC CTT CGG ACG TCT CTC GTT AAA ANG GON CTC GTG TAN ACG GAT ANT GGN CAT GGT GAG CAN CON GCN CCC TTC CGT GAG CAC ATT TGC CTA TTA CCT GTA CCA CTC GTT GGT CGT GGG CTG GTT TGG AAT GGA ACA GGA GTA TAC TCT GAT GGG AAC AGA TGG GCA GAC CAA ACC TTA CCT TGT CCT CAT ATG AGA CTA CCC TTG TCT ACC CGT CCC TIT TGG TTG GCC TTC CAA TGG CTT TCC TGG GCC CCA AGG TCC GTA GGG AAA ACC AAC CGG AAG GTT ACC GAA AGG ACC CGG GGT TCC AGG CAT TTA CTG TGG TGT GGG CGC AGA CAA AGC CTA TGG CAG GGA TAT CGT GGA AAT GAC ACC ACA CCC GCG TCT GTT TCG GAT ACC GTC CCT ATA GCA CCT GGC TCA CTA CCG CGC CTG CTT GTA TGC TGG GGT CAA GAT TAC AGG AAC CCG AGT GAT GGC GCG GAC GAA CAT ACG ACC CCA GTT CTA ATG TCC TTG AAA TGC TGA GGT CAT GCC TGC CCA GTG GGA ACT CCA AAT AGG ACC CTG TIT ACG ACT CCA GTA CGG ACG GGT CAC CCT TGA GGT TTA TCC TGG GAC TGA AGG AAT CCC CAT GGG AGA TCA TCT CTG GGT GGC CCG TTT CAT CTT ACT TOO TTA GGC GTA COO TOT AGT AGA GAC COA COG GGC AAA GTA GAA NCA TCG AGT ATG TGA AGA CTT TGG GGT AAT AGC AAC CTT TGA CCC CAA NGT AGC TCA TAC ACT TCT GAA ACC CCA TTA TCG TTG GAA ACT GGG GTT

### 31/41

## FIG. 5 I

4380 4390 4400 4410 GCC CAT TCC TGG GAA CTG GAA TGG TGC AGG CTG CCA TAC CAA CTT TAG CGG GTA AGG ACC CTT GAC CTT ACC ACG TCC GAC GGT ATG GTT GAA ATC 4420 4430 4440 CAC CAA GGC CAT GCG GGA GGA GAA TGG TCT GAA GCA CAT CGA GGA GGC GTG GTT CCG GTA CGC CCT CCT CTT ACC AGA CTT CGT GTA GCT CCT CCG 4470 4480 4490 4500 CAT CGA GAA ACT AAG CAA GCG GCA CCG GTA CCA CAT TCG AGC CTA CGA GTA GCT CTT TGA TTC GTT CGC CGT GGC CAT GGT GTA AGC TCG GAT GCT 4520 4530 4540 4550 4560 TCC CAA GGG GGG CCT GGA CAA TGC CCG TGG TCT GAC TGG GTT CCA CGA AGG GTT CCC CCC GGA CCT GTT ACG GGC ACC AGA CTG ACC CAA GGT GCT 4570 4580 4590 4610 ANC GTC CAN CAT CAN CGA CIT TTC TGC TGG TGT CGC CAN TCG CAG TGC TTG CAG GTT GTA GTT GCT GAA AAG ACG ACC ACA GCG GTT AGC GTC ACG 4620 4630 4640 CAG CAT CCG CAT TCC CCG GAC TGT CGG CCA GGA GAA GAA AGG TTA CTT GTC GTA GGC GTA AGG GGC CTG ACA GCC GGT CCT CTT CTT TCC AAT GAA 4660 4670 **4680** 4700 TGA AGA CCG CGG CCC CTC TGC CAA TTG TGA CCC CTT TGC AGT GAC AGA ACT TOT GGC GCC GGG GAG ACG GTT AAC ACT GGG GAA ACG TOA CTG TOT 4710 4720 4730 4740 AGC CAT CGT CGG CAC ATG CCT TCT CAA TGA GAC TGG CCA CGA GCC CTT TCG GTA GCA GGC GTG TAC GGA AGA GTT ACT CTG ACC GGT GCT CGG GAA 4790 4800 CCA ATA CAA AAA CTA ATT AGA CTT TGA GTG ATC TTG AGC CTT TCC TAG CCT TAT CTT TTT GAT TAA TCT GAA ACT CAC TAG AAC TCG GAA AGG ATC 4810 4820 4830 TTC ATC CCA CCC CGC CCC AGA GAG ATC TTT GTG AAG GAA CCT TAC TTC AMG TAG GGT GGG GGG TCT CTC TAG AMA CAC TTC CTT GGA ATG AMG 4860 4870 4880 4890 TOT GGT GTG ACA TAX TTG GAC AAA CTA CCT ACA GAG ATT TAA AGC TCT ACA CCA CAC TGT ATT AAC CTG TTT GAT GGA TGT CTC TAA ATT TCG AGA 4920 AAG GTA AAT ATA AAA TIT TIA AGT GTA TAA TGT GTT AAA CTA CTG ATT TTC CAT TIX TAT TIT AAA AAT TCA CAT ATT ACA CAA TIT GAT GAC TAA

### 32/41

### FIG. 5 J

CTA ATT GTT TGT GTA TTT TAG ATT CCA ACC TAT GGA ACT GAT GAA TGG GAT TAA CAA ACA CAT AAA ATC TAA GGT TGG ATA CCT TGA CTA CTT ACC GAG CAG TGG TGG AAT GCC TTT AAT GAG GAA AAC CTG TTT TGC TCA GAA CTC GTC ACC ACC TTA CGG AAA TTA CTC CTT TTG GAC AAA ACG AGT CTT GAN ATG CON TOT AGT GAT GAT GAG GOT ACT GOT GAC TOT CAN CAT TOT CIT TAC GGT AGA TCA CTA CTA CTC CGA TGA CGA CTG AGA GTT GTA AGA ACT CCT CCA AAA AAG AAG AGA AAG GTA GAA GAC CCC AAG GAC TIT CCT TGA GGA GGT TTT TTC TTC TCT TTC CAT CTT CTG GGG TTC CTG AAA GGA TCA GAA TTG CTA AGT TTT TTG AGT CAT GCT GTG TTT AGT AAT AGA ACT AGT CTT AAC GAT TCA AAA AAC TCA GTA CGA CAC AAA TCA TTA TCT TGA CTT GCT TGC TTT GCT ATT TAC ACC ACA AAG GAA AAA GCT GCA CTG CTA GAA CGA ACC AAA CGA TAA ATG TGG TGT TTC CTT TTT CGA CGT GAC GAT TAC AAG AAA ATT ATG GAA AAA TAT TCT GTA ACC TTT ATA AGT AGG CAT ATG TTC TTT TAA TAC CTT TTT ATA AGA CAT TGG AAA TAT TCA TCC GTA AAC AGT TAT AAT CAT AAC ATA CTG TTT TTT CTT ACT CCA CAC AGG CAT TTG TCA ATA TTA GTA TTG TAT GAC AAA AAA GAA TGA GGT GTG TCC GTA AGA GTG TCT GCT ATT AAT AAC TAT GCT CAA AAA TTG TGT ACC TIT AGC TCT CAC AGA CGA TAA TTA TTG ATA CGA GTT TTT AAC ACA TGG AAA TCG TIT TTA ATT TGT AAA GGG GTT AAT AAG GAA TAT TTG ATG TAT AGT GCC AAA AAT TAA ACA TTT CCC CAA TTA TTC CTT ATA AAC TAC ATA TCA CGG TTG ACT AGA GAT CAT AAT CAG CCA TAC CAC ATT TGT AGA GGT TTT ACT ANC TGA TCT CTA GTA TTA GTC GGT ATG GTG TAA ACA TCT CCA AAA TGA TGC TTT AAA AAA CCT CCC ACA CCT CCC CCT GAA CCT GAA ACA TAA AAT ACG AAA TIT TIT GGA GGG TGT GGA GGG GGA CTT GGA CTT TGT ATT TTA

### 33/41

### FIG. 5 K

5550 5560 5530 5540 5570 GAA TGC AAT TGT TGT TGT TAA CTT GTT TAT TGC AGC TTA TAA TGG TTA CIT ACG TTA ACA ACA ACA ATT GAA CAA ATA ACG TCG AAT ATT ACC AAT 5580 5590 5600 5610 CAA ATA AAG CAA TAG CAT CAC AAA TTT CAC AAA TAA AGC ATT TTT TTC GTT TAT TTC GTT ATC GTA GTG TTT AAA GTG TTT ATT TCG TAA AAA AAG 5620 5640 5650 ACT GCA TTC TAG TTG TGG TTT GTC CAA ACT CAT CAA TGT ATC TTA TCA TGA CGT AAG ATC AAC ACC AAA CAG GTT TGA GTA GTT ACA TAG AAT AGT 5670 5680 5690 5700 5710 TGT CTG GAT CTC TAG CTT CGT GTC AAG GAC GGT GAC TGC AGT GAA TAA ACA GAC CTA GAG ATC GAA GCA CAG TTC CTG CCA CTG ACG TCA CTT ATT TAA AAT GTG TGT TTG TCC GAA ATA CGC GTT TTG AGA TTT CTG TCG CCC ATT TTA CAC ACA AAC AGG CTT TAT GCG CAA AAC TCT AAA GAC AGC GGC 5780 5790 5800 5810 ACT ANA TTC ATG TCG CGC GAT AGT GGT GTT TAT CGC CGA TAG AGA TGG TGA TTT AAG TAC AGC GCG CTA TCA CCA CAA ATA GCG GCT ATC TCT ACC 5820 **5830** 5840 5850 CGA TAT TGG AAA AAT CGA TAT TTG AAA ATA TGG CAT ATT GAA AAT GTC GCT ATA ACC TIT TTA GCT ATA AAC TIT TAT ACC GTA TAA CIT TTA CAG 5860 5880 GCC GAT GTG AGT TTC TGT GTA ACT GAT ATC GCC ATT TTT CCA AAA GTG CGG CTA CAC TCA AAG ACA CAT TGA CTA TAG CGG TAA AAA GGT TTT CAC 5910 5920 5930 5940 ATT TIT GGG CAT ACG CGA TAT CTG GCG ATA GCG CTT ATA TCG TIT ACG TAX AAA CCC GTA TGC GCT ATA GAC CGC TAT CGC GAA TAT AGC AAA TGC 5960 5970 5980 5990 6000 GGG GAT GGC GAT AGA CGA CTT TGG TGA CTT GGG CGA TTC TGT GTG TCG CCC CTA CCG CTA TCT GCT GAA ACC ACT GAA CCC GCT AAG ACA CAC AGC 6010 6020 6030 6040 CAA ATA TOG CAG TTT CGA TAT AGG TGA CAG ACG ATA TGA GGC TAT ATC GTT TAT AGC GTC AAA GCT ATA TCC ACT GTC TGC TAT ACT CCG ATA TAG 6060 6070 6080 GCC GAT AGA GGC GAC ATC AAG CTG GCA CAT GGC CAA TGC ATA TCG ATC CGG CTA TCT CCG CTG TAG TTC GAC CGT GTA CCG GTT ACG TAT AGC TAG

34/41

## FIG. 5 L

TAT ACA TTG AAT CAA TAT TGG CCA TTA GCC ATA TTA TTC ATT GGT TAT ATA TGT AAC TTA GTT ATA ACC GGT AAT CGG TAT AAT AAG TAA CCA ATA ATA GCA TAA ATC AAT ATT GGC TAT TGG CCA TTG CAT ACG TTG TAT CCA TAT CGT ATT TAG TTA TAA CCG ATA ACC GGT AAC GTA TGC AAC ATA GGT TAT CAT AAT ATG TAC ATT TAT ATT GGC TCA TGT CCA ACA TTA CCG CCA ATA GTA TTA TAC ATG TAA ATA TAA CCG AGT ACA GGT TGT AAT GGC GGT TGT TGA CAT TGA TTA TTG ACT AGT TAT TAA TAG TAA TCA ATT ACG GGG ACA ACT GTA ACT AAT AAC TGA TCA ATA ATT ATC ATT AGT TAA TGC CCC TCA TTA GTT CAT AGC CCA TAT ATG GAG TTC CGC GTT ACA TAA CTT ACG AGT AAT CAA GTA TOG GGT ATA TAC CTC AAG GCG CAA TGT ATT GAA TGC GTA AAT GGC CCG CCT GGC TGA CCG CCC AAC GAC CCC CGC CCA TTG ACG CAT TTA CCC GGC GGA CCC ACT GGC GGG TTG CTG GGG GCG GGT AAC TGC TCA ATA ATG ACG TAT GTT CCC ATA GTA ACG CCA ATA GGG ACT TTC CAT AGT TAT TAC TGC ATA CAA GGG TAT CAT TGC GGT TAT CCC TGA AAG GTA TGA CGT CAA TGG GTG GAG TAT TTA CGG TAA ACT GCC CAC TTG GCA GTA ACT GCA GTT ACC CAC CTC ATA AAT GCC ATT TGA CGG GTG AAC CGT CAT CAT CAA GTG TAT CAT ATG CCA AGT ACG CCC CCT ATT GAC GTC AAT GAC GTA GTT CAC ATA GTA TAC GGT TCA TGC GGG GGA TAA CTG CAG TTA CTG GGT AAA TGG CCC GCC TGG CAT TAT GCC CAG TAC ATG ACC TTA TGG GAC CCA TIT ACC GGG CGG ACC GTA ATA CGG GTC ATG TAC TGG AAT ACC CTG TIT CCT ACT TGG CAG TAC ATC TAC GTA TTA GTC ATC GCT ATT ACC ATG AAA GGA TGA ACC GTC ATG TAG ATG CAT AAT CAG TAG CGA TAA TGG TAC CTC ATC CCC TTT TCC CAG TAC ATC AAT GGG CCT GGA TAG CGG TTT GAC CAC TAC GCC AAA ACC GTC ATG TAG TTA CCC GCA CCT ATC GCC AAA CTG

#### 35/41

## FIG. 5 M

6680 6690 6720 TCA CGG GGA TIT CCA AGT CTC CAC CCC ATT GAC GTC AAT GGG AGT TTG AGT GCC CCT AAA GGT TCA GAG GTG GGG TAA CTG CAG TTA CCC TCA AAC 6730 6740 6750 6760 6770 TIT TGG CAC CAA AAT CAA CGG GAC TIT CCA AAA TGT CGT AAC AAC TCC AAA ACC GTG GTT TTA GTT GCC CTG AAA GGT TTT ACA GCA TTG TTG AGG 6790 6800 6810 GCC CCA TTG ACG CAA ATG GGC GGT AGG CGT GTA CGG TGG GAG GTC TAT CGG GGT AAC TGC GTT TAC CCG CCA TCC GCA CAT GCC ACC CTC CAG ATA 6820 6830 6840 ATA AGC AGA GCT CGT TTA GTG AAC CGT CAG ATC GCC TGG AGA CGC CAT TAT TOG TOT CGA GCA AAT CAC TTG GCA GTC TAG CGG ACC TCT GCG GTA 6870 6880 6890 6900 CCA CGC TGT TTT GAC CTC CAT AGA AGA CAC CGG GAC CGA TCC AGC CTC CCT CCC ACA AAA CTC CAG GTA TCT TCT GTG GCC CTG GCT AGG TCG GAG 6950 CCC GGC CGG GAA CGG TGC ATT GGA ACG CGG ATT CCC CGT GCC AAG AGT GCG CCG GCC CTT GCC ACG TAA CCT TGC GCC TAA GGG GCA CGG TTC TCA 6970 6980 6990 7010 CAC GTA AGT ACC GCC TAT AGA GTC TAT AGG CCC ACC CCC TTG GCT TCT CTG CAT TCA TGG CGG ATA TCT CAG ATA TCC GGG TGG GGG AAC CGA AGA 7020 7030 7040 7050 TAT GCA TGC TAT ACT GTT TIT GGC TTG GGG TCT ATA CAC CCC CGC TTC ATA CGT ACG ATA TGA CAA AAA CCG AAC CCC AGA TAT GTG GGG GCG AAG 7080 CTC ATC TTA TAG GTG ATC GTA TAG CTT AGC CTA TAG GTG TGG GTT ATT CAG TAC AAT ATC CAC TAC CAT ATC GAA TCG GAT ATC CAC ACC CAA TAA 7110 7120 7130 7140 CAC CAT TAT TOA COA CTC CCC TAT TGG TGA CGA TAC TTT CCA TTA CTA CTC GTA ATA ACT GGT GAG GGG ATA ACC ACT GCT ATG AAA GGT AAT GAT 7160 7170 7180 7190 7200 ATC CAT AAC ATG GCT CTT TGC CAC AAC TCT CTT TAT TGG CTA TAT GCC TAG GTA TTG TAC CGA GAA ACC GTG TTG AGA GAA ATA ACC GAT ATA CGG 7220 7230 ANT ACA CTG TCC TTC AGA GAC TGA CAC GGA CTC TGT ATT TTT ACA GGA TTA TGT GAC AGG AAG TGT CTG ACT GTG CCT GAG ACA TAA AAA TGT CCT

### 36/41

### FIG. 5 N

CCC AGT GCC CGC AGT TTT TAT TAA ACA TAA CGT GGG ATC TCC ACG CGA GGG TCA CGG GCG TCA AAA ATA ATT TGT ATT GCA CCC TAG AGG TGC GCT ATC TOG GGT ACG TGT TCC GGA CAT GGG CTC TTC TCC GGT AGC GGC GGA TAG AGC CCA TGC ACA AGG CCT GTA CCC GAG AAG AGG CCA TCG CCC CCT GCT TCT ACA TCC GAG CCC TGC TCC CAT GCC TCC AGC GAC TCA TGG TCG CGA AGA TOT AGG CTC GGG ACG AGG GTA CGG AGG TCG CTG AGT ACC AGC CTC GGC AGC TCC TTG CTC CTA ACA GTG GAG GCC AGA CTT AGG CAC AGC GAG CCG TCG AGG AAC GAG GAT TGT CAC CTC CGG TCT GAA TCC GTG TCG ACG ATG CCC ACC ACC ACC ACT GTG CCC CAC AAG GCC GTG GCG GTA GGG TGC TAC GGG TGG TGG TGG TGA CAC GGC GTG TTC CGG CAC CGC CAT CCC TAT GTG TCT GAA AAT GAG CTC GGG GAG CGG GCT TGC ACC GCT GAC GCA ATA CAC AGA CIT TIA CITC GAG CCC CITC GCC CGA ACG TGG CGA CITG CGT TIT GGA AGA CIT AAG GCA GCG GCA GAA GAA GAT GCA GGC AGC TGA GTT AAA CCT TCT GAA TTC CGT CGC CGT CTT CTT CTA CGT CCG TCG ACT CAA CTT GTG TTC TGA TAA GAG TCA GAG GTA ACT CCC GTT GCG GTG CTG TTA CAA CAC AAG ACT ATT CTC AGT CTC CAT TGA GGG CAA CGC CAC GAC AAT ACG GTG GAG GGC AGT GTA GTC TGA GCA GTA CTC GTT GCT GCC GCG CGC TGC CAC CTC CCC TCA CAT CAG ACT CGT CAT GAG CAA CGA CCG CGC GCC GCC ACC AGA CAT AAT AGC TGA CAG ACT AAC AGA CTG TTG CTT TGC ATG CGG TGG TCT GTA TTA TCG ACT GTC TGA TTG TCT GAC AAG GAA AGG TAC GGT CTT TTC TGC AGT CAC CGT CCT TGA CAC GAA GCT TGG GCT GCA GGT CCA GAA AAG ACC TCA GTG GCA GGA ACT GTG CTT CGA ACC CGA CCT CCA

37/41

## FIG. 5 0

7830 7840 7850 7860

CGA TCG ACT CTA GAG GAT CGA TCC CCG GGC GAG CTC G
GCT AGC TGA GAT CTC CTA GCT AGG GGC CCG CTC GAG C



RECTIFIED SHEET (RULE 91)
ISA/EP



RECTIFIED SHEET (RULE 91)
ISA/EP

40/41



RECTIFIED SHEET (RULE 91)
ISA/EP

41/41





RECTIFIED SHEET (RULE 91)
ISA/EP

Inter pnal Application No PCT/US 96/09287

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/13 C07K16/36 A61K39/395 //C12N5/10, C07K16/46 C12N15/85 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED**  $\begin{array}{ll} \text{Minimum documentation searched} & \text{(classification system followed by classification symbols)} \\ IPC 6 & C12N & C07K & A61K \end{array}$ Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category * Citation of document, with indication, where appropriate, of the relevant passages 1-37 Y WO 91 09968 A (CELLTECH LIMITED) 11 July 1991 see examples see claims WO 88 07543 A (SCRIPPS CLINIC AND RESEARCH 1-37 Y FOUNDATION) 6 October 1988 see claims 1-37 WO 94 11029 A (THE SCRIPPS RESEARCH Α INSTITUTE ET AL.) 26 May 1994 see claims WO 94 05328 A (THE SCRIPPS RESEARCH 1-37 A INSTITUTE) 17 March 1994 see examples see claims -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Х Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-'O' document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 0 8. 11. 96 15 October 1996 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016 Nooij, F

1

Inter mal Application No
PC1/US 96/09287

		PC1/US 96/89287
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	In the second second
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JOURNAL OF CRYSTAL GROWTH, vol. 122, no. 1-4, August 1992, AMSTERDAM, NL, pages 253-264, XP002015918 W. RUF ET AL.: "Purification, sequence and crystallization of an anti-tissue factor Fab and its use for the crystallization of tissue factor." see abstract see table 1	1-37
		·
	·	

1

national application No.

PCT/US 96/09287

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.:  31-35 because they relate to subject matter not required to be searched by this Authority, namely:  Remark: Although claims 31-35 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box 11 Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest  The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.

nformation on patent family members

Inter 2011 Application No PCI/US 96/09287

	Atormation on patent family men	PC1/U	96/09287
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9109968	11-07-91	AT-T- 129017 AT-T- 124459 AU-B- 664801 AU-A- 6461294 AU-B- 646009 AU-A- 6974091 AU-B- 649645 AU-A- 7033091 AU-B- 631481 AU-A- 7048691 BG-B- 60462 CA-A- 2037607 CA-A- 2046904 CA-A- 2050479 DE-D- 69020544 DE-T- 69022982 DE-T- 69022982 DE-T- 69022982 EP-A- 0460171 EP-A- 0460171 EP-A- 0460171 EP-A- 0620276 EP-A- 0626390 ES-T- 2079638 ES-T- 2074701 WO-A- 9109967 GB-A,B 2246781 GB-A,B 2246781 GB-A,B 2268745 JP-T- 4505398 JP-T- 4506458 JP-T- 5500312	15-10-95 15-07-95 30-11-95 22-12-94 03-02-94 24-07-91 02-06-94 24-07-91 26-11-92 24-07-91 28-04-95 07-09-92 22-06-91 03-08-95 18-01-96 16-11-95 28-03-96 11-12-91 11-12-91 11-12-91 11-12-91 11-12-91 11-12-91 11-07-91 11-07-91 11-07-91 11-07-91 11-07-91 11-07-91 12-02-92 05-02-92 19-01-94 24-09-92 12-11-92 28-01-93
WO-A-8807543	96-10-88	US-A- 5110730 US-A- 5223427 AU-B- 605864 AU-A- 1627488 EP-A- 0309548	05-05-92 29-06-93 24-01-91 02-11-88 05-04-89

information on patent family members

Inter onal Application No PCI/US 96/09287

Patent document cited in search report	Publication date	Patent mem	Publication date	
WO-A-8807543		FI-A- GR-A- JP-T- US-A-	954347 88100198 1503438 5437864	15-09-95 31-01-89 22-11-89 01-08-95
WO-A-9411029	26-05-94	US-A- AU-A-	5437864 5671594	01-08-95 08-06-94
W0-A-9405328	17-03-94	AU-A-	5093593	29-03-94

Form PCT/ISA/210 (patent family annex) (July 1992)