ei do terceiro excluído
i da contradição
eis da identidade
eis do elemento dominante
eis da idempotência
i da dupla negação
eis da comutatividade
eis eis

MP (modus ponens)	MT (modus tollens)	Conj (conjunção)
$p \rightarrow q, p$	$p \rightarrow q, \neg q$	p, q
∴. q	$.$. $\neg p$	$\therefore p \wedge q$
Ad (adição)	SD (silogismo disjuntivo)	SH (silogismo hipotético)
<i>p</i>	$p \lor q, \neg p$	$p \rightarrow q, q \rightarrow r$
2 00 1/ 00		* 00 1 00

A é uma tautologia se e só se A(p/V) e A(p/F) são tautologias.

Método de Quine

A é uma contradição se e só se A(p/V) e A(p/F) são contradições.

A é contingência se e só se A(p/V) e A(p/F) têm valores lógicos diferentes.

diz-se um argumento correcto se $A_1 \wedge A_2 \wedge \cdots \wedge A_n \rightarrow B$ for uma tautologia. Neste caso também se costuma escrever

$$A_1, A_2, \ldots, A_n \models B$$

Um literal é uma variável proposicional ou a sua negação; por exemplo, $p \in \neg p$ são literais (ditos literais complementares).

Uma fbf diz-se uma forma normal disjuntiva (FND) se for da forma $C_1 \vee C_2 \vee \cdots \vee C_n$, onde cada C_i é uma conjunção de literais (chamada conjunção fundamental).

Analogamente, uma fbf diz-se uma forma normal conjuntiva (FNC) se for da forma $D_1 \wedge D_2 \wedge \cdots \wedge D_n$, onde cada D_i é uma disjunção de literais (chamada disjunção fundamental).

p	q	f(p,q)	Partes FND	Partes FNC
V	V	V	$p \wedge q$	
V	F	V	$p \land \neg q$	
F	V	F		$p \vee \neg q$
F	F	V	$\neg p \land \neg q$	S. Contraction and Section 1

Assim, f(p, q) pode ser escrita nas formas:

$$f(p,q) \equiv (p \wedge q) \vee (p \wedge \neg q) \vee (\neg p \wedge \neg q)$$
 (FND)

$$f(p, q) \equiv p \vee \neg q \text{ (FNC)}.$$

Um conjunto de conectivos lógicos diz-se completo se toda a fbf do cálculo proposicional é equivalente a uma fbf onde figuram apenas conectivos desse conjunto. É claro que

$$\{\neg, \land, \lor, \rightarrow\}$$

é completo, por definição.

$$\neg [\exists x \, P(x)] \equiv \forall x \, [\neg P(x)], \quad \neg [\forall x \, P(x)] \equiv \exists x \, [\neg P(x)].$$

Predicados unários

Sentença atómica	Interpretação
Tet(a)	a é um tetraedro
Cube(a)	a é um cubo
Dodec(a)	a é um dodecaedro
Small(a)	a é pequeno
Medium(a)	a é médio
Large(a)	a é grande

Predicados binários

Sentença atómica	Interpretação
SameSize(a, b)	a tem o mesmo tamanho que b
SameShape(a, b)	a tem a mesma forma que b
Larger(a,b)	a é maior que b
Smaller(a, b)	a é menor que b
SameCol(a, b)	a está na mesma coluna que b
SameRow(a, b)	a está na mesma linha que b
Adjoins(a, b)	a e b estão localizados em casas adjacentes (mas não na diagonal)
LeftOf(a,b)	a está numa coluna à esquerda de b
RightOf(a, b)	a está numa coluna à direita de b
FrontOf(a, b)	a está numa linha à frente de b
BackOf(a, b)	a está numa linha atrás de b

Predicados ternários

Sentença atómica	Interpretação
Between(a, b, c)	a,be c estão na mesma coluna, linha ou diagonal, e a está entre b e $c.$

Princípio de Indução Matemática (PIM). Seja P(n), $n \in \{a, a+1, \ldots\}$, uma proposição. Para provar que P(n) é verdadeira para qualquer $n \ge a$ basta:

- (Passo inicial) Mostrar que P(a) é verdadeira.
- (2) (Passo indutivo) Mostrar que a implicação P(k)→P(k+1) é verdadeira para qualquer k ≥ a.
- (1) Distributividade: $\sum_{i \in I} c a_i = c \sum_{i \in I} a_i$.
- (2) Associatividade: $\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i.$
- (3) Comutatividade: $\sum_{i \in I} a_i = \sum_{i \in I} a_{p(i)}$ para qualquer bijecção (permutação) $p : I \rightarrow I$.
- (4) Progressão constante: ∑_{i∈I} c = c |I|.
- (5) Aditividade dos índices: $\sum_{i \in I} a_i + \sum_{i \in J} a_i = \sum_{i \in (I \cup J)} a_i + \sum_{i \in (I \cap J)} a_i \text{ (sendo J um conjunto finito também)}.$
- (6) Mudança de variável: ∑_{i∈I} a_{f(i)} = ∑_{j∈J} a_j, para qualquer função bijectiva f : I → J; mais geralmente, para qualquer função f : I → J, ∑_{i∈I} a_{f(i)} = ∑_{j∈J} (a_j · #(f⁻¹({j}))).

٧	ά fos:
	Grafo simples: Não tem arestas múltiplas nem lacetes e tem arestas sem direção.
	Multigrafo: Tem arestas múltiplas e sem direção, não tem lacetes.
	Pseudografo: Tem arestus múltiplas e sem direção, tem lacetes.
	Grafo dinigido simples: Grafo simples com arestas com direção.
	Grafo dinigido: Pseudografo com arestus com direção.
	Arestus múltiplas: Vvo EV(G), Vv EV(G), Vo + V1: existe mais do que 1 aresta que liga vo e V1.
	Caminho! Seja (V, E) um grato. Um caminho de comprimento n em (V, E) é uma sucessão
	Vo, a1, V1,, Vn-1, an, vn, onde cada vj é um vértice em V e cada aj uma arestu que liga vj-1 e vj.
	Matriz de inadência: Suponhamos G=(V, E) um grafo tal que V= (V,, Vn 4 e E= (a1,, am). A matriz
	de incidência B de G tem n linhas e m colunas e as entradas de B são O ou 1. No lugar (i, i) de B temos 1
	se e só se Vi Eaj. Relembrar que as arestas são da forma aj= {vi,vj} se aj ligar vie vj.
	Matriz de adjacincia: Suponhamos G=(V, E) um grafo tulque V= {Vn,, vn}. A matriz de adjacincia A é uma
	matriz nxn com entrada (i, j) igual ao número de arestas que ligam V; e V;.
	Grav de um vértice V (deg(v)/grav(v)/g(v)): O grav de um vértice V é o número de arestas que conectam com
	V (sendo que la cetes contam como 2 conexões distintas).
	Lema dos apertos de mão: Seja G=(V, E) um grafo com n vírtices em arestes e Basua matriz de incidência:
	Soma dos elementos) (soma das) S (soma dos clementos) S
	$\sum_{i=1}^{n} deg(v_i) = \sum_{i=1}^{n} \left(\text{Soma dos elementos} \right) = \left(\text{soma dos elementos} \right) = \sum_{i=1}^{n} \left(\text{soma dos elementos} \right) = \sum_{i=1}^{n} 2 = 2\sum_{j=1}^{n} 1 = 2(m-1+1) = 2m$
	Logo, o ni de arestas de um grafo é dado por $\frac{1}{2} \sum_{v \in G} deg(v)$.
_	Seja G=(V, E) um grafo com n vértices e matriz de adjacência A. A entrada (i, j) de A m m EIN é o número
	de caminhos de comprimento m que unem v; e vj. Se m=1, é o número de caminhos de comprimento 1, ou
	seja, o número de arestas que ligam Vi e Vj. Se m=0, A=In, ou seja, é o número de caminhos de
	comprimento O, estes caminhos apenas existem entre V; e V;.
	Grafo euleriano: Um grafo Géeuleriano se existe um caminho fechado (começa e acaba no mesmo virtice) tal que
	cada aresta aparece exatamente uma vez neste caminho. Géeuleriano = 6 for conexo e ograv de qualquer
	virtice de G for par.

Grato conexo: Um grafo é conexo se para qualquer par de vértices de G existir um caminho que os liga.

Grato completo: Um grafo écompleto se para qualquer par de vértices distintos de G, existe exatemente uma aresta que os liga. Grafos isomorfos: Os grafos G, c G2 são isomorfos se existe uma bijeção f de vértices de G, para rértices de G2 tal que o número de arestus entre VEG, e UEG, i igual ao número de arestus entre f(v)∈G2 e f(u)∈G2. Grafo regular: Um grafo 6 é regular de grau d se cada vértice de 6 tem grau d. Todos os grafos completos são regulars. Num grafo regular temos, pelo lema dos apertos de mão, que #arestas = (d/2) x # vértices. Assim né par oudépar. Grafo semi-euleriano: Um grafo e semi-euleriano se existe um caminho tal que cada aresta aparece exatamente uma vez neste caminho. G é semi-euleviano é euleviano => 6 for conexo e todos os vértices têm grau par ou exatemente 2 vértices têm gravimpar. Arvore: Uma árvore e um grafo conexo sem ciclos (um ciclo é um caminho fechado sem arestas repetidas). Um grafo G é uma árvore => entre qualquer par de vértices existe exatamente um caminho que os liga sem arestas repetidas. Arvore com raiz: Seja Guma árvore. Fixamos um vírticar como raíz de Georientamos as arestas de G: - Orientamos cada aresta que sai de v na direção oposta de r. - Se já temos uma aresta orientada que entra em VEG, orientamos todas as outras arestas que saiam de V na direção oposta de V. Profundidade: A profundidade de VEG, sendo 6 uma ávvore com raíz, é: -prof(r)=0 -Sejam V, u ∈ G véltices tal que , então prof(u)=prof(v)+1 U é ascendente de V (=) prof(u) = prof(v)-1 -U é descendente de V => prof(v)=prof(v)+1. Grafo bipartido: Um grafo G=(V, E) é bipartido se podemos separar V em V, e V2, V1 + V2, tal que para qualquer aresta de 6, esta liga dois vértices de subconjuntos diferentes. - Se uma árvore 6 tem n vértices, en tão: G tem N-1 arestas. $\underset{v \in V}{\sum} deg(v) = 2 \# arestas = 2(n-1)$ - nj ć o número de vévices em 6 com grav d. Se d>n temos sempre nd=0. -2(n-1)=2#arestas=vev deg(v)=\$\frac{1}{2}(d\times nd) e \$\frac{1}{2}nd=n.

Teoria	n do.	ร ทเ	íme	ros																							
	1500				. Yv	h.c	E 71	, d	ŧ0	Jа	,rE	7:	n:	gxc	4+1	Λ	0 <	15	d -	1							
						., .,				,	,			1													
- Di	1500	de	n	ov d	.de	10:	N= (1 X (-	d) +	ا ج	M =	(-a)xd	+ r													
					70.			(.,													red	=> >	0			
-Div	11500	de.	n pe	or d	n c	ð: (-	-h):	=CLXc	d+1	(=) \	n =	(-a)	×d -	- r =	(-a)	×d -	·d +	d-r	= (.	-4-1)xd	+ (d	~r)				
		u C		, 0,			, ,,	9(**)							1										v q s	1770	,
-Di	visao	de 1	n pay	- d	dr	ን	· (-	n) =	axl-	- q)+	γ ⇒) ¹	n= (-a)v	(-d) - r -	= (-a) x (-	d)+	d - a	-r=	(-a-			\sim	\sim		
	(q+1)		٠ ا	•	.	, .		• • •	٧٠								, , ,			•		17	,				
	(9)	/A a		<i>,</i>	•																						
Div	visor	dev	m in	teim.	de	7	í di	Visar	duv	m ini	te iva	ne	7	se.	$\exists a \in$	7.1	n=0	xd									
					40			,,,		1100	Ciro	,			٥٩٥			74									
Νύ	meros	DYIY	70 S :	(Jm	ກທ໌ກ	ne ro	Drin	00 C	, um	int	LIVO	005	itiva	p d	iforer	nte d	1	Com	0.00	W4 (20	, ,	res iv	teim	(1)	· p).	
	Se														110.5					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						P	
			,) · · · · ·	10 0																		
Fac	Moniza	N (Clo	ori	ma:	Yr	1EIN	J.r	1	00	de	Sev	esc	nto	CO	mo	υm	orod	luh	O.X	X	DV	. (O)	n p		OK Y	úmer	os
	prim		_																								
	é vi	na	pem	nuta	~ (A))	de	D4.	10	ן (מיז) ע					1717-	, , , , , ,		. ,0			(0) /			·			1/	
			7		250		T '')																			
Ma	zior o	livi sa	or ∽	mum	\ : {) izen	nos i	ave	d ć	o m	najo	r div	isor	Con	num	de	m	e r) m	nel	N 50	. d	(UY	n di	VI (0	v de	
	me					\		•											, ,							5,0	
	-Sup	onho	amo	s av	e M) = &	14, 2 x	, 3 ^K 3	x 5 ^k	Ś _X .	. X I	OKP	en	= 2	i2 x 3	i's x	5 is		מ א	ip , e	nt~	o YY	ndc	(m,	n)=		
	-Sup.	in()	<ο, i 2	$\left(\begin{array}{c} x \\ x \end{array} \right)$	mil	n(K3	ر (دا,	, 5m	nin()	Ks,is	λ) Χ.	X	pm	in (K	p,ip)			,								
							•					ì	•														
Αl	govit	mo	de	Eucli	des.	m	dc (m_{i}	n) =	md	c(n	n.r	nm	od v	n)	on	de	n	nod	m	ćε) R (tn	da d	ivisi	~ 40	
	T . I			h po								''	·	.,	, , ,												
						,		•																			
- Par	ra m	EIN	, Yn >	,2,	def	 hlm	NO S	Z	= {	0,1,	, , Y	m - 1	ر ا														
	at		,					777			,																
	-a-,	. 1																									
	-ax _r	•																									
	-atn					- 1	mo	d m)																		
	a-,									ody	n																
	0 =n	'																									
	-ax		1								seno	lo q	رد ا	η=a [.]	1 e	χ	= U	Xm	b								
		•												U													

Co	nta	20	احام	a:																									
-	Sa	ia	<u> </u>	ł un	n (a	h(lub	to S		م ا ۵	lou	u I	4 Λ		ာကပ်	000 56	de	den	oent	os er	· Λ									
		9														al .			b), a			В.							
	0 .	,	, ,			1/	امان	N	. 17	1 0	21_	اما	10	21															
	ז נוע	1 4	pic) da	n M	קוט	pijco	ipao	· [/	+ X [_) =	1/41	×IL)I															
	Prin	n cí	pic	do	ia	diçã	ú : S	c A	NB	=Ø	∫ ⇒	lΑι	ıBl:	=lA	+11	3l.													
	Par	loor	+	٠, ٢,		Sai		5.	100	colo	41.410	40	coh	0 h	م ما م	a a t	7	1)200	- 0		+1	V	ما	5 ₁ /	<i>C</i> • "	,	///	suces	~
	10																		perm								- '	svæs:	540
																			·		•				_	_r)!			
									ns esav			\leftrightarrow		<i>Ye</i> {	mu 1,	TCLÇ	χο 1-1 ^l	de 1 1.											
	\					m			,			1:1			ro	\ r) - 1 ^l	J											
						•	7		<		6	→	{ <		50	5		i	. 6 .],	<u> </u>		5.0	<		;			
)	ر ا	2	ر)(+1			ls	2	56	2 5	2 ` .)							+η ΄, - 1				
	Car	-			V .	<i>.</i>				1							`											1	
	Cor		ון חומ	•		-											Pin		lmero	de	Com	bina	coes	dc.	5,00	rr,e	ela	gual a	9
		(n	r)!			•				·				.,															
_	(2/+	F(1)	n	n	z [A]	V)	1 · α) 60	.1.	anto	2 d	· ~	. K , Y	n-K	e' (in,	ĸ)												
													y			0.11													
	Per	mu	rtag	æs	cor	n (લ	petie	~ ~ : 6£	Pin	,r)=	nr																		
	Mυ	l6:-	- 50	bcoi	ገ(ሆ	ito:	Um.	mult	1-50 <u>!</u>	bcon	מטו	160	de :	5 e	um	con	iunto	onc	de pe	vmit	mos	. a 1	epeh	. ~ (SQ10	de el	emen.	tos	de S.	
		_		nplo	_						3					,	3		,								5		
			_	S4 1	1 2	2 2	ζé	(m	multi	i-sut	o coh	iant	, de	· {1.	2 3}	Pode	mas	abe	eviar	11.1	1.2.2	2}	Oo ra	(2	v1 3	x2 0	ر ع ل		
												yvi ic	· ac		(L,)	1006	ری	OO	2010()		1-,-	(~)	Pario	, , ,	2,,,	, e , o ,	ررر		
			_		۳.				13,4							2	1.				,			,	1				
					_			-									{a₁ € *		a3,0	13/9	,43)	(po	rex	empl	0)				
	Col														1			o de	mult	6-sul	oconji	untos	de	r ek	men t	os dui	m Col	njunto d	com
		Y	1 6	jem(ָסיורע	e		(Y) ₁ Y) · (())-	TV -	΄, γ	1-1)	= ((11+1	(-1,1													