AutoML: Hyperparameter Optimization Wrap Up

Bernd Bischl Frank Hutter Lars Kotthoff Marius Lindauer <u>Jakob Richter</u>

From HPO to AutoML

So far we covered

- Mechanisms to select ML algorithms for a data set (algorithm selection)
- HPO as black-box optimization
 - ▶ Grid- and random search, EAs, BO
- HPO as a grey box problem
 - Hyperband, BOHB
- Neural Architecture Search (NAS)
 - One-Shot approaches, DART
- Dynamic algorithm configuration (learning to learn)
 - Adapt configuration during training

From HPO to AutoML

Lecture Overview

What is missing?

What do I need to know as an AutoML user?

- Nothing, because it is automatic.
- Understand limitations of AutoML and framework.
- Know how to interpret the results.
- Maybe: Preprocessing and feature extraction.

Ingredients to implement an AutoML?

- HPO algorithm
- ML / Pipeline framework
- Parallelization / Multifidelity
- Process encapsulation and time capping

Choice of Learning Algorithm

- A plethora of learners exists, for different data sets different models are likely needed.
- Studies [Fernandez-Delgado et al. 2014] and experience show:
 One these is often good on tabular data:
 - penalized regression
 - SVM
 - gradient boosting
 - random forests
 - (neural networks)
- Example: Auto-Sklearn 2.0 [Feurer et al. 2020] uses:
 - extra trees
 - gradient boosting
 - passive aggressive
 - random forest
 - linear model

Choice of Search Space for a Learning Algorithm

Ranges often selected based on experience

- See other AutoML frameworks: e.g. Auto-Sklearn
 2.0 [Feurer et al. 2020]
- Sensitivity analysis often does not exist for ML algorithms
- Check literature on specific ML algorithm

Options for automation:

- Use huge search space to cover all possibilities (combine with meta-learning for good initial design for Bayesian optimization)
- Use results of meta-experiments to obtain smaller search space that is estimated to work well.

Algorithm	Hyperparameter	Type	Lower	Upper	Trafe
glmnet					
(Elastic net)	alpha	numeric	0	1	
	lambda	numeric	-10	10	27
rpart					
(Decision tree)	cp	numeric	0	1	
	maxdepth	integer	1	30	
	minbucket	integer	1	60	
	minsplit	integer	1	60	
kknn					
(k-nearest neighbor)	k	integer	1	30	
svm					
(Support vector machine)	kernel	discrete	-	-	
	cost	numeric	-10	10	2
	gamma	numeric	-10	10	2
	degree	integer	2	5	
ranger					
(Random forest)	num.trees	integer	1	2000	
	replace	logical	-	-	
	sample.fraction	numeric	0.1	1	
	mtry	numeric	0	1	$x \cdot y$
	respect.unordered.factors	logical	-	-	
	min.node.size	numeric	0	1	n
xgboost					
(Gradient boosting)	nrounds	integer	1	5000	
	eta	numeric	-10	0	2
	subsample	numeric	0.1	1	
	booster	discrete	-	-	
	max_depth	integer	1	15	
	min_child_weight	numeric	0	7	2
	colsample_bytree	numeric	0	1	
	colsample bylevel	numeric	0	1	
	lambda	numeric	-10	10	2
	alpha	numeric	-10	10	2

Taken from [Probst et al. 2019].

Choice of Search Space for a Learning Algorithm

Ranges often selected based on experience

- See other AutoML frameworks: e.g. Auto-Sklearn
 2.0 [Feurer et al. 2020]
- Sensitivity analysis often does not exist for ML algorithms
- Check literature on specific ML algorithm

Options for automation:

- Use huge search space to cover all possibilities (combine with meta-learning for good initial design for Bayesian optimization)
- Use results of meta-experiments to obtain smaller search space that is estimated to work well.

	$\overline{}$					
90.93	90.05	Tun.O	Tun.P	Def.O	Def.P	Parameter
		0.024	0.069			glmnet
0.98	0.009	0.006	0.038	0.403	1	alpha
0.14	0.001	0.021	0.034	0.004	0	lambda
		0.012	0.038			rpart
0.000	0	0.002	0.025	0	0.01	cp
2	12.1	0.002	0.004	21	30	maxdepth
41.0	3.85	0.006	0.005	12	7	minbucket
49.1	5	0.004	0.004	24	20	minsplit
		0.006	0.031			kknn
30	9.95	0.006	0.031	30	7	k
		0.042	0.056			svm
		0.024	0.030	radial	radial	kernel
920.583	0.002	0.006	0.016	682.478	1	cost
18.19	0.003	0.022	0.030	0.005	1/p	gamma
	2	0.014	0.008	3	3	degree
		0.006	0.010			ranger
1740.1	206.35	0.001	0.001	983	500	num.trees
		0.001	0.002	FALSE	TRUE	replace
0.97	0.323	0.002	0.004	0.703	1	sample.fraction
0.693	0.035	0.003	0.006	$p \cdot 0.257$	\sqrt{p}	mtry
		0.000	0.000	FALSE	TRÚE	respect.unordered.factors
0.513	0.007	0.001	0.001	1	1	min.node.size
		0.014	0.043			xgboost
4550.9	920.7	0.002	0.004	4168	500	nrounds
0.35	0.002	0.005	0.006	0.018	0.3	eta
0.95	0.545	0.002	0.004	0.839	1	subsample
		0.008	0.015	gbtree	gbtree	booster
1	5.6	0.001	0.001	13	6	max_depth
6.98	1.295	0.002	0.008	2.06	1	min_child_weight
0.86	0.419	0.001	0.006	0.752	1	colsample_bytree
0.886	0.335	0.001	0.008	0.585	1	colsample_bylevel
29.75	0.008	0.002	0.003	0.982	1	lambda
6.10	0.002	0.002	0.003	1.113	1	alpha

Table 3: Defaults (peakage defaults (Def.P) and optimal defaults (Def.O)), tunability of the hyperparameters with the package defaults (Tun.P) and our optimal defaults (Tun.O) as reference and tuning space quantiles (q_{0.05} and q_{0.95}) for different parameters of the algorithms.

Choice of Resampling Strategy

For computation of generalization error / cost:

$$c(\pmb{\lambda}) = rac{1}{k} \sum_{i=1}^k \widehat{GE}_{\mathcal{D}_{\mathsf{val}}^i} \left(\mathcal{I}(\mathcal{D}_{\mathsf{train}}^i, \pmb{\lambda})
ight)$$

Rules of thumb:

- Default: 10-fold CV (k = 10)
- Huge datasets: holdout
- Tiny datasets: 10x10 repeated CV
- Stratification for imbalanced classes

Watch out for this:

- Small sample size situation because of imbalancies
- Leave-one-object out
- Time dependencies
- A good AutoML system should let you customize resampling
- Meta-learn good resampling strategy [Feurer et al., 2020]

Choice of Optimization Algorithm

Choose optimization algorithm based on ...

- complexity of search space / budget
- time-costs of evaluations

Complex search space

 \rightarrow EA with exploratory character, TPE, BO with RF

Numerical (lower-dim) search space and tight budget

 \rightarrow BO with GP

Expensive evals

 \rightarrow Hyperband, BOHB

Deep learning

- → Parametrize architectures, then HPO, see above
- \rightarrow NAS

Preprocessing

Ideal AutoML systems should also optimize:

- X Data preprocessing
- Feature engineering
- Feature selection
- ✓ Model training

Lecture Overview

Preprocessing capabilities differ heavily

Tool Platform Input data source			Tool				data		Data pre- processing	Dat	a type	s dete	cted		Featu	re eng	ineeri	ng	ML T	ssks			ction a neter o		zation		k sta / stop		/ Res		luation nalysis/ on
		Spreadsheet datasets	Image, text		Numerical	Categorical	Datetime	Time-series	Other (Hierarchical types) (7°)	Datetime, categorical processing	Imbalance, missing values	Feature selection, reduction	Advanced feature extraction (8")	Supervised learning (91)	Unsupervised learning (101)	Ensemble	Genetic algorithm	Random search	Bayesian search	Neural architecture search	Quick finding of starting model	Allow maximum limit search time	Restrict time consuming combination of components	Model dashboard	Festure importance	Model explainability and interpretation, and reason code					
TransmogrifAl	Apache Spark	Υ	N	YO	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	N	Υ	Υ	N	N			Υ	Υ						
H2O-AutoML	H2O clusters	Υ	N	Y	Υ	Υ	Υ	Υ	N	Υ	Υ	Υ	N	Υ	N	Υ	N	Υ	N	N	N	Υ	Υ	Υ	Υ	Y					
Darwin (+)	GCP	Υ	N	Y	Υ	Υ	Υ	Υ	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N	N	Υ	Υ	Υ	N	Υ	Υ	Y					
DataRobot (+)	Datarobot & AWS	Υ	Υ	Y	Υ	Υ	N	Υ	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N	N	Υ		Υ	Υ	Υ					
Google AutoML (+)	Google Cloud	N	Υ	Y						N	Υ	Υ	Υ	Υ	Υ		Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ					
Auto-sideam		Υ	N	N	N	N	N	N	N	Y(2")	Υ	Υ	Υ	Υ	N	Υ	N	Υ	Υ	Ν	Υ	Υ	Υ	Υ	Υ	Y					
MLjar (+)	MLJAR Cloud	Ypŋ	N	Y	Υ	Υ	N	N	N	Υ	Y(4")	N	N	Y(87)	N	Υ	N	Υ	N	N	N	N	N	Υ	Υ	N					
Auto_ml		Υ	N	N	N	N	N	N	N	Υ	Υ	Υ	Υ	Υ	N	Υ	N	Υ	Υ	N	N	N	N	Υ	Υ	Y					
TPOT		Υ	N	N	N	N	N	N	N	N	Υ	N	Υ	Υ	N	Υ	Υ	N	N	N	N	Υ	N	Υ	Υ	N					
Auto-keras		Υ	Υ	N	N	N	N	N	N	N	Υ	Υ	N	Υ	N	N	N	Υ	Υ	Υ	Υ	Υ	N	Υ	N	Y					
Ludwig		Υ	Υ	YO	Υ	Υ	N	Υ	Υ	N	Υ	Υ	Υ	Υ	N	Υ	N	Υ	Υ	Υ	Υ	N	N	Υ	Υ	N					
Auto-Weka		Υ	N	N	Υ	Υ	N	N	N	N	Υ	Υ	N	Υ	N	Υ	N	Υ	Υ	N	N	Υ	Υ	Υ	N	N					
Azure ML (+)	Azure	Y	Υ	Y(81)	Υ	Υ	Υ	Υ	N	Υ	Υ	Υ	Υ	Υ	N	Υ	N	Υ	Υ	N		Υ	Υ	Υ	Υ						
Sagemaker (+)	AWS	Υ	Υ	Y	Υ	Υ	Υ	Υ	N	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	Υ	Υ	N		Υ	N	Υ	Υ	Y					
H2O-Driverless Al (+)	H2O clusters	Y(3")	Υ	Y	Υ	Y	Υ	Υ	Υ	Y	Y	Υ	Y	Υ	Y	Y	Υ	Υ	Υ	N	N	N	Y	Y	Y	Y					

Fig. 2. Comparison table of functionality for AutoML tools. (+): commercialized tools: (+): the function is not very stable, it fails for some datasets; (2e): categorical input must be converted into integers; (ae): datasets have to include beaders; (4e): missing values must be represented and NA; (5e): midiaset datasets (abs. include beaders; (4e): missing values must be represented and NA; (5e): midiaset dataset description such as column types; (7e): ability to detect primitive data types and rich data types such as: sett (id. url, phone), numerical (integer, real); (8e): advanced feature processing: bucketing of values, removing features with zero variance or features with drift over time; (9e): supervised learning includes obstantiation, multiclass classification, regression; (10e): unsupervised learning includes obstantiation and explainability refers to techniques ach as LIME, Subpley, Decision Tree Surrogate, Partial Dependence, Individual Conditional Expectation, Lift chart, feature fit, prediction distribution plot, accuracy over time, hot spot and reason codes; In a few empty cells, it is not clear that the functionality is provided from documentations of the tools, to the best of our knowledge.

Taken from [Truong et al. 2019].

Highlighted: Non-commercial AutoML frameworks

- Auto-detection of feature types: some
- Preprocess categoricals: some
- Imputation: all
- Class imbalance handling: all

Cleaning

Data cleaning is hard to fully automate, but a few heuristics exist:

- Remove ID columns, columns with mostly unique values.
- Outlier detection
- ullet Detect time series or spatial data o at the very least, evaluation and resampling needs to be adapted, but feature extraction likely as well

It is highly unclear how much of this is required input by the user (last point is more or less task specification), and what should be automated by the system.

Categorical Features: Dummy Encoding

- Most simple encoding
- Works well with low cardinality categoricals

SalePrice	Central.Air	Bldg.Type
189900	Υ	1Fam
195500	Υ	1Fam
213500	Υ	TwnhsE
191500	Υ	TwnhsE
236500	Υ	TwnhsE

SalePrice	Υ	Bldg.Type.2fmCon	Bldg.Type.Duplex	Bldg.Type.Twnhs	Bldg.Type.TwnhsE
189900	1	0	0	0	0
195500	1	0	0	0	0
213500	1	0	0	0	1
191500	1	0	0	0	1
236500	1	0	0	0	1

Categorical Features: Target / Impact Encoding

- Well known from CART
- Handles high cardinality categoricals, too

Goal: Encodes each categorical x as a single numeric $ilde{x}$

Regression: Impact $(x) = \mathbb{E}(y|x) - \mathbb{E}(y)$

Classification: Impact(x) = logit(P(y = target|x)) - logit(P(y = target))

- Needs regularization (through CV) to prevent target leakage
 [Zumel et al. 2019]
- Advantage: Handles unknown categorical levels on test data

Alternatives:

- factorization machines
- clustering feature levels
- feature hashing

10

0

Common Preprocessing Steps: Missing Values

- Replace missings with imputed values, try not to disturb distribution too much
- Examples: mean, median, mode, sample from histogram, predict value based on other features
- Additional factor column indicating missingness can help if NA-state carries information for target
- Out-Of-Range works often well for tree-based techniques (RF and boosting!), saves extra missingness col
- For inference, simple imputation is often shunned, and multiple, model-based imputation recommended; for prediction naive imputation often works remarkably well

Out of range imputation

Feature Selection

- Filter; for ultra-highdim tasks
- Stepwise / wrapper methods; seldom increases performance when well-regularized learners are used, but quite expensive
- Embedded: CART, lasso, ...
- Selection interesting when predictive performance vs.
 sparseness should be optimized
 → multi-criteria optimization
- Combined feature selection and HPO: [Binder et al. 2020]

Figure 3: Comparison of multi-objective and singleobjective methods applied to the SVM learning algorithm: Performance mmcetest and the fraction of included features ffrac found after 2000 evaluations by baseline BO-SO (tail end of arrows), BO-MO-FE (head of solid arrows) and GA-MO-FE (head of dashed arrows). Each dataset (Table 1) is shown, values are averaged over 10 outer CV runs. Choice of individuals for MO methods described in Section 6.2.

Taken from [Binder et al. 2020].

Common Feature Construction Methods

Reduction:

PCA, ICA, autoencoder

Feature extraction:

- Polynomial features: $x_j \longrightarrow x_j, x_j^2, x_j^3, ...$
- Interactions: $x_j, x_k \longrightarrow x_j, x_k, x_j \cdot x_k$

Feature generation:

• Transform to "circular" features (month, day) e.g. $\tilde{x}_1=sin(2\pi\cdot x/24)$ and $\tilde{x}_2=cos(2\pi\cdot x/24)$

Combine with external data:

- names → gender, ethnicity, age
- home address → household income
- location + date \longrightarrow weather

Imbalanced Classes

- Oversampling of minority class
- Seldom: undersampling of majority class
- Intelligent oversampling strategies which create synthetic observations (SMOTE)

images/smote.png

Lecture Overview

Practical Problems: Stability

AutoML system should:

- never fail to return a result
- terminate within a given time
- save intermediate results and allow to continue

Failure points:

- optimizer can crash (e.g. GP in BO)
- training can crash (e.g. segfault)
- training can run "forever"

Ways out

- Encapsulate train/predict in separate process from HPO
- Ressource limit time and memory of that process by OS
- If learner crashes, run robust fallback (constant predictor)
- Use "robust" HPO, run random config as last resort if proposal fails (exploration)

Practical Problems: Parallelization

Parallelization should allow:

- multiple cores
- multiple nodes

Possible parallelization levels:

- training of learner (threading / GPU)
- resampling
- eval configurations (batch proposal of HPO)

Possible problems:

- Sequential nature of HPO algorithms (e.g. BO)
- $\bullet \ \ \mathsf{Heterogeneous} \ \mathsf{runtimes} \ \mathsf{cause} \ \mathsf{idling} \longrightarrow \mathsf{asynchronous} \ \mathsf{HPO} \ \mathsf{attractive}, \ \mathsf{but} \ \mathsf{more} \ \mathsf{complex}$
- Main memory or CPU-cache becomes bottleneck
- Communication between workers

Lecture Overview

Linear Pipelining

- Applying preprocessing to the whole dataset leads to data leakage
- Preprocessing should have train and predict steps, too
- Can add it to learner, and embed it in CV
- Surprise: Preproc has hyperparameters
- Optimize pipeline jointly:

$$\mathbf{\Lambda} = \mathbf{\Lambda}_{\mathsf{preproc}} imes \mathbf{\Lambda}_{\mathcal{I}}$$

- Still HPO, not much different than for single learner
- Λ "simply" of higher dimension

Nonlinear Pipelines

Ideal to let HPO choose automatically:

- preprocessing
- feature extraction
- learner
- $ightarrow \Lambda$ becomes hierarchical search space!

Suitable optimizers:

- TPE
- Random search, hyperband with sampler that follows the hierarchy
- BO with RF (imputation or hierarchical trees)
- Evolutionary approaches (similar to NAS)

Obtaining Final Model

Options:

- Choose the optimal path as linear pipeline.
- Build ensemble of best configurations (e.g. [Feurer et al., NIPS 2015], [LeDell and Poirier. 2020]).

Current Benchmark on Tabular Data

images/gijsbers_open_2019_tab2.pdf

Table taken from [Gijsbers et al., 2019].

- On some datasets AutoML yields big performance improvements
- On many datasets RF is equally good
- Need more and diverse benchmarks