	Wild						Domesti	cated				
	LA0480 LA15					LA2176	LA0410			A3475		LA4355
1.01.01	0.489	0.308	0.700		0.399				0.505	0.677		0.860
1.01.02	0.753	0.656	0.454	0.626	0.792				0.583	1.144	0.354	0.397
1.01.03 1.01.04	1.066 0.606	0.437	1.057 0.182	0.279 0.881	0.889 0.915				1.090 1.151	1.217 1.259		0.582 0.586
1.01.04	0.666	0.550	0.182		0.915				0.910	0.940		0.510
1.01.15	0.500	0.569	0.577		0.675				0.336	0.940		0.510
1.02.01	0.962	0.840	1.004		0.625				0.839	1.587		0.611
1.02.02	0.436	0.728	0.504	0.359	0.744				0.380	0.514		0.384
1.02.03	0.782	0.131	0.753	0.768	0.525	0.614	0.876	1.071	0.578	0.694	0.747	0.575
1.02.04	0.728	0.170	0.762		0.479				0.305	0.695		0.732
1.02.05	0.524	0.614	0.652		0.641				0.494	0.817	0.692	0.590
1.02.06	0.398	0.166	0.372		0.365				0.369	1.026		0.373
1.02.15 1.02.16	0.911 0.648	0.490	0.287 0.588	0.492 0.119	0.619 0.507				0.663 0.894	0.545 0.586	0.401 0.511	0.315 0.639
1.02.17	0.649	0.361	0.575	0.119	0.507				0.493	0.642		0.839
1.02.18	0.428	0.308	0.357	0.523	0.545				0.299	0.802		0.513
1.02.20	1.036	0.574	0.457	0.632	0.493				0.534	0.936		0.590
1.03.02	0.501	0.516	0.525		0.609				0.375	0.752		0.656
1.03.04	0.475	0.756	0.815	0.340	0.750	0.694	1.241	0.839	0.625	0.966	0.499	0.850
1.03.12	0.693	0.543	1.055		0.935				0.620	0.963		0.878
1.03.16	0.422	0.671	0.425		0.805				0.641	0.643		1.031
1.03.18	0.838	0.383	0.679	0.917	0.807				0.868	1.542		0.571
1.03.19 1.03.20	0.367 0.359	0.441	0.320 0.372		0.491 0.304				0.342 0.928	0.624 0.961		0.199 0.683
1.03.22	0.446	0.351	0.448	0.445	0.304				0.619	0.369		0.589
1.03.23	0.744	0.500	0.814	0.472	0.739				0.709	0.631		0.833
1.04.01	0.719	0.571	0.494	1.090	0.609				0.591	1.024		0.527
1.04.02	0.433	0.390	0.393	0.267	0.427	0.856	0.616	0.646	0.196	0.695	0.336	0.911
1.04.03	0.559	0.518	0.553	0.396	0.590	0.778	0.957	0.491	0.417	0.954	0.531	0.669
1.04.04	0.192	0.270	0.366		0.389				0.573	0.574		0.329
1.04.05	0.310	0.216	0.438		0.359				0.360	0.530		0.260
1.04.12	0.350	0.553	0.288		0.190				0.596	0.519		0.177
1.04.15 1.04.17	0.765 0.545	0.256	0.306 0.654	0.342 0.911	0.633 0.534				0.198 0.315	0.231 0.737		0.183 0.641
1.04.17	0.801	0.341	0.534	0.359	0.507				0.313	0.828		0.409
1.04.20	0.655	0.401	0.403	0.436	0.632				0.533	0.711	0.576	0.497
1.04.21	0.397	0.632	0.539	0.443	0.558				0.576	0.777		0.576
1.04.25	0.470	0.622	0.417	0.467	0.425				0.887	1.109		0.937
1.05.04	0.599	0.265	0.522	0.774	0.386				0.201	0.359		0.258
1.05.11	0.423	0.426	0.661	0.241	0.379				0.334	0.581		0.414
1.05.14	0.576	0.518	0.405	1.445	0.369				0.374	0.889		0.469
1.05.16	0.694	0.275	0.453		0.350				0.551	0.371		0.494
1.05.17 1.05.22	0.644 0.564	0.639	0.958 0.805		0.571 0.390				1.238 0.880	0.754 0.505		0.593 0.441
1.05.24	0.279	0.324	0.803	0.100	0.346				0.337	0.509		0.441
2.04.03	0.368	0.458	0.596		0.490				0.533	0.674		0.785
2.04.04	1.119	1.036	1.013		0.673				1.328	1.547		0.695
2.04.08	1.409	0.777	0.980	0.726	0.731	0.727	0.979	1.192	1.448	1.085	0.785	1.049
2.04.09	0.730	0.328	0.910		0.900				0.831	0.701		1.088
2.04.11	0.662	0.976	0.658	0.762	0.639				1.121	0.994		0.820
2.04.12	1.311	0.807	1.436	1.104	0.605				1.194	1.428		1.108
2.04.14 2.04.17	0.820 0.581	0.441	0.180 0.563	0.506 0.523	0.643				0.483 0.773	0.531		0.948
2.04.17	0.581	0.390	0.563		0.560 1.254				0.773	0.625 1.190		0.676 1.305
2.04.20	1.167	0.333	0.918		0.692				0.373	0.797		0.758
2.04.21	0.546	0.662	0.774		0.402				0.515	0.680		0.860
2004	0.474	0.391	0.507	0.509	0.689				0.437	1.045		0.443
94.4	0.571	0.572	0.433	0.618	0.525	1.238	0.672	0.861	0.491	1.174	0.583	0.666
Acacia	0.465	0.529	0.662		0.599				0.721	0.415		1.044
Apple 404	0.372	0.585	0.762		0.681				0.964	0.791		0.725
Apple 517	0.802	1.251	0.690		0.897				0.808	0.980		1.024
Ausubel	0.910	0.775	0.986	0.724	0.876				1.105	1.110		0.861
B05.10 BMM	0.729 0.665	0.312	0.971 0.948	0.449 1.061	0.531 0.644	0.726			0.458 0.493	0.999		0.909 0.607
BPA1	0.465	0.338	0.586		0.882				0.493	0.831		0.607
Davis Navel	0.655	0.410	0.475	0.343	0.645				0.606	0.269		0.608
Esparato Fresa	0.311	0.299	0.202		0.226				0.246	0.196		0.360
Fd1	0.873	0.363	0.884		0.803		0.796	1.069	0.696	0.678	0.548	0.494
Fd2	0.666	0.398	0.468	0.587	0.624		0.971		1.691	1.390		0.820
Fresa 525	0.673	0.446	0.962		1.011				0.602	0.669		1.427
Fresa SD	0.730	0.192	0.453						0.707	0.913		0.428
Gallo 1 Gallo 2	0.378	0.329	0.463 0.684		0.352 0.591				0.344	0.525		0.391 0.292
Gano 2 Geranium	0.475 0.802	0.129	0.666	0.053 0.563	0.591				0.198	0.863 1.418		0.292
Grape	0.582	0.241	0.843	0.709	0.615				0.703	0.741		0.695
Katie Tomato	0.705	1.030	0.860	1.004	0.751				1.131	1.058		0.919
Kern A2	1.709	0.882	0.943	0.747	0.975	0.848			0.881	1.437	1.135	1.170
Kern B1	0.860	0.409	0.533	0.620	0.863	1.424	1.183	1.089	0.830	1.122	0.906	0.983
Kern B2	1.132	0.715	1.155	0.656	0.762	1.243	1.303	1.069	0.656	1.160	0.945	1.024
KGB1	0.322	0.426	0.171		0.342				0.468	0.548		0.333
KGB2	0.769	0.476	1.197		0.800				0.363	1.047		0.936
MEAP6G	0.513	0.382	0.725		0.624				0.407	0.535		0.955
Mex 03	0.588	0.414	0.573		0.520				0.194	0.728		0.435
Molly Navel	0.524 0.149	0.653 0.112	0.301 0.074		0.651 0.195				0.556 0.339	0.788 0.299		0.733 0.053
Noble Rot	0.149	0.112	0.074		0.195				0.339	0.299		0.053
Peachy	0.440	0.125	0.165	0.269	0.131				0.123	0.211		0.172
Pepper	0.594	0.660	0.571		0.661				0.103	0.448		0.524
Pepper Sub	0.589	0.584	0.802		0.706				0.374	0.931		0.814
Philo Menlo	1.158	0.662	1.250		0.993				0.952	0.972		0.836
Rasp	0.794	0.563	0.718		0.876				0.752	0.909		0.714
Rose	0.200	0.200	0.072		0.208				0.654	0.542		0.569
Supersteak	0.815	0.691	0.769	0.510	0.855	1.146	1.076	0.854	0.542	0.841	0.895	1.092
Triple 3	0.948	0.659	1.295						1.032	1.106		1.157
UK Razz	0.907	0.489	1.072	0.548	0.761	1.191	1.291	1.660	1.111	0.939	0.898	1.208

Table S1. Mean of *B. cinerea* lesion size of all isolates across all tomato accessions.

		Wild						Domest	icated				
		LA1547	LA1589	LA1684	LA2093	LA2176	LA480	LA2706	LA3008	LA3475	LA410	LA4345	LA4355
	LA1547		3256	3975	3069	2228	3006	2165	3478	1847	1253	3942	2970
	LA1589	<0.001		5323	4755	3566	4563	3396	4860	3173	2406	5491	4426
	LA1684	0.086	NS		4020	3008	3926	2885	4194	2627	1959	4776	3810
	LA2093	<0.001	NS	NS		3395	4575	3260	4943	2919	2093	5630	4384
	LA2176	<0.001	0.007	<0.001	0.002		5766	4428	5955	4287	3411	6670	5610
Wild	LA480	<0.001	NS	0.067	NS	0.012		5939	4376	6212	6999	3703	4869
	LA2706	<0.001	0.002	<0.001	<0.001	NS	0.003		6071	4564	3785	6716	5794
_	LA3008	0.003	NS	NS	0.607	0.003	NS	0.001		3062	2339	5309	4283
l fed	LA3475	<0.001	<0.001	<0.001	<0.001	NS	<0.001	NS	<0.001		3824	7088	6022
l stic	LA410	<0.001	<0.001	<0.001	<0.001	0.002	<0.001	0.030	<0.001	0.037		7779	6820
Domesticated	LA4345	0.072	0.065	NS	0.030	<0.001	0.018	<0.001	NS	<0.001	<0.001		3601
o	LA4355	<0.001	NS	0.034	NS	0.032	NS	0.010	NS	0.002	<0.001	0.009	

Table S2. Rank order shifts of 97 *B. cinerea* isolates by lesion area across all of the tomato accessions.

Wilcoxon signed-rank test comparing mean $B.\ cinerea$ lesion area on tomato accessions. This tests for a change in the rank order of the 97 isolates between each pair of tomato accessions. A significant p-value suggests that the relative performance of individual isolates is altered from one host to the other. The lower left corner of the chart includes FDR-corrected p-values, the upper right corner includes the test statistic (W). Bold text indicates significance at p<0.01 after correction, italicized text indicates suggestive p-values 0.01 . NS shows nonsignificant interactions.

geneID	tot 1.00410	tot 1.00490	tot A1547	tot A1590	tot 1.41694	tot 1.42002	tot 1.42176	tot_LA2706	tot 1 42009	tot 1.42475	tot 1.0424E	tot 1442EE	TotPhonos	PFAM_NAM	PFAM_DESCRIPTION	BCIN
geneib	tot_LA0410	TOT_LAU480	tot_LAIJ47	101_LA1383	TOT_LATO84	tot_LA2093	tot_LAZ170	TOT_EA2700	tot_LA3008	LOC_LAS475	tot_LA4343	tot_LA4333	TOUTHERIOS		FFAIN_DESCRIPTION	BCIIV
BcT4_8813	1	. 1	. 1	1 1	. 1	. 1	. 1	1 1	1	. 1	. 1		1	2 M20_dimer	Peptidase dimerisation domain	Bcin01g1013 0
BcT4_8803	1	. 1	. 1	1 1	. 1	. 1	. 1	ı 1	1	. 1	. 1	. 1	. 1:	2 HET	Heterokaryon incompatibility protein (HET)	Bcin01g1002
3cT4_6001	1	L 1	L 1	1 1	. 1	. 1	. 1	l 1	1	. 1	. 1	. 1	1	Pectinestera 2 se	a Pectinesterase	Bcin14g0086
-																
BcT4_6000	1	. 1	1 1	1 1	. 1	. 1	. 1	. 1	1	. 1	. 1	. :	1 1	2 MFS_1	Major Facilitator Superfamily	Bcin14g0087 0
BcT4_5778	1	. 1	L 1	1 1	. 1	. 1	. 1	ı 1	1	. 1	. 1	. :	1	2 Pkinase	Protein kinase domain	Bcin15g0411 0
BcT4_2485	1	. 1	. 1	1 1	. 1	. 1	. 1	1 1	1	. 1	. 1	. 1	1 1	2 HET	Heterokaryon incompatibility protein (HET)	NA
BcT4_8805	1	. 1	. 1	1 1	. 1	. 1	. 1	. 1	C	1	. 1	. :	1	1 DUF3506	Domain of unknown function (DUF3506)	Bcin01g1004
BcT4_8749	1	. 1	1 () 1	. 1	. 1	. 1	1 1	1	. 1	. 1		1	1 Ecm29	Proteasome stabiliser	Bcin01g09300
BcT4_6975	1	. 1	. 1	1 1	1	1	1	. 1	1	1	1		1	Semialdhyd	e Semialdehyde dehydrogenase	Bcin12g0368
5011_0373					_										sermanden y de den y drogen de	
BcT4_6901	C) 1	. 1	1 1	. 1	. 1	. 1	1 1	1	. 1	. 1	. :	. 1	1Thi4	Thi4 family	Bcin12g0291 0
3cT4_6018	1	. 1	1 () 1	. 1	. 1	. 1	1 1	1	. 1	. 1		1 1	1 KR	KR domain	Bcin14g0069
BcT4_6003	1	. 1	1 () 1	1	1	1	. 1	1	1	1		1	1 DUF1279	Protein of unknown function (DUF1279)	Bcin14g0084
BcT4_6002														Glyco_hydro		Bcin14g0085
BC14_6002	1			, 1		. 1			1					1_20	Glycosyl flydrolases faifilly 28	
BcT4_5054	1	. 1	ı () 1	. 1	. 1	. 1	. 1	1	. 1	. 1		. 1	1MFS_1	Major Facilitator Superfamily	Bcin01g0501 0
																Bcin11g0581
BcT4_4123	1	. 1	1 1	1 1	. 1	. 0	1	1 1	1	. 1	. 1		. 1	1 Ion_trans	Ion transport protein	0
BcT4_2339	C) 1	L 1	1 1	. 1	. 1	. 1	1 1	1	. 1	. 1	. 1	1 1:	1 CorA	CorA-like Mg2+ transporter protein	Bcin04g0364
_																
BcT4_1921	1	. 1	L () 1	. 1	. 1	. 1	L 1	1	. 1	. 1		1	1 Sugar_tr	Sugar (and other) transporter	Bcin09g0508
BcT4_1613	1	. 1	ı () 1		. 1	1	ı 1	1	1	. 1	. 1		Methyltrans		
3C14_1013				, 1	,		,						. 1	11_23	Methyltransferase domain	Bcin09g01570
3cT4_10249	1	1 1	1 () 1	. 1	. 1	. 1	1 1	1	. 1	. 1	. :	1	1 Cyt-b5	Cytochrome b5-like Heme/Steroi binding domain	d Bcin01g0379 0

Function	More Function	Enzyme	fisher.up.All	fisher.up.Do	fisher.up.Wi	fisher.up.Se
PHD-zinc-finger like domain			0.274715652	0.257708474	0.167028635	0.00333912
Pre-mRNA splicing Prp18-interacting factor			0.274715652	0.257708474	0.167028635	0.00333912
Dopa 4	betalain biosynthesis	У	0.274715652	0.257708474	. 1	0.00333912
Sulfatase	likely miscat: Type I phosphodiesterase/nucleotide pyrophosphatase/phosphate transferase	у	0.474006167	1	1	0.00666803
Indoleamine 2	possibly: trp degradation in tomato. Indoleamine 2,3-dioxygenase		0.337610912	0.647739513	0.47263339	0.01164228
Haloacid dehalogenase-like hydrolase		у	0.216119104	0.412560339	0.064377777	0.01494575
OPT oligopeptide transporter protein			0.141993548	0.264479262	0.282408636	0.01823909
Enoyl-CoA hydratase/isomerase family		у	0.595431476	0.832912721	0.315925912	0.01988198
Aldehyde dehydrogenase family		у	0.027038641	0.048120046	0.180853822	0.02479553
DNA polymerase family B			0.045924725	0.038230181	0.01084408	
Clr5 domain			0.071670613	0.060134627	0.017756436	
Protein of unknown function (DUF3445)			0.071670613	0.196627891	0.017756436	
WSC domain	carbohydrate binding		0.141993548	0.264479262	0.028396574	
2OG-Fe(II) oxygenase superfamily		у	0.095566172	0.155098474	0.031354155	
Phosphotyrosyl phosphate activator (PTPA) protein			0.107344357	0.094811632	0.040557284	
Ubiquitin fusion degradation protein UFD1			0.107344357	0.094811632	0.040557284	
C2H2 type zinc-finger (2 copies)			0.107344357	0.360487301	0.040557284	
ABC-2 type transporter			0.175448052	0.150579732	0.049971041	
Acetyltransferase (GNAT) family		у	0.970918916	1	0.866412802	
Alcohol dehydrogenase GroES-like domain		у	0.975244541	1	0.878110635	
KR domain	kringle, binding		0.933177489	0.990056533	0.913715933	
Phosphopantetheine attachment site			0.988880644	0.983317719	1	

Table S3. a) Genes with significant SNPs for Botrytis virulence in 11 or 12 of the tomato accessions. b) functional categories significantly overrepresented in genes linked to Botrytis virulence response to tomato domestication.

Figure S1. Rank order plot of B. cinerea lesion size on two tomato genotypes.

Each B. cinerea isolate is a straight line tracing mean lesion size on LA1547 to mean on LA0410, the two host genotypes with the most pronounced effect on the rank order of isolates by lesion size (Wilcoxon signed-rank test with FDR-correction, p < 7.18e-17, Table S1).