2013级《微积分A》期中试题

班级	学 号	姓名
54.纵	すり	灶口

(本试卷共6页,十一个大题. 试卷后面空白纸撕下做草稿纸,试卷不得拆散.)

题号	_	1.1	11]	四	五.	六	七	八	九	+	+ 1	总分
得分												

- 一. 填空题 (每小题 4 分, 共 20 分)
- 1. 设向量 \vec{a} 的方向角分别为 $\alpha = \frac{\pi}{3}$, β 为锐角, $\gamma = \pi \beta$,且 $|\vec{a}| = 4$,则 $\vec{a} = \underline{\qquad}$
- 2. 与两直线 $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z-1}{1}$ 及 $\begin{cases} x=1 \\ y=-1+t$ 都平行,并且过原点的平面方程为: $z=2+t \end{cases}$
- 3. 设函数 z = z(x, y) 由方程 $\frac{x}{z} = \ln \frac{z}{y}$ 确定,则 dz =_______.
- 5. 设 $f(x,y) = e^{\sqrt{x^2 + y^6}}$,则函数在(0,0)点关于x的偏导是否存在:_____(是、否) 在(0,0)点关于y的偏导是否存在:_____(是、否)
- 二. $(8 \, \mathcal{G})$ 设 $z = f(xe^y, x^2 y^2) + g(\frac{y}{x})$, 其中 f 有二阶连续偏导数, g 具有二阶连续导数,

$$\vec{x}\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}.$$

- 三. (8 分) 设 D 是由直线 y=x, y=2 和曲线 $x=y^3$ 所围成的区域,计算二重积分 $I=\iint\limits_\Omega \sin\frac{x}{y} dx dy$ 的值.
- 四. (8 分) 设 A(3,2,-3), B(3,6,0), 求数量场 $u = y^x + \arctan \frac{x}{z}$ 在点 A 处的梯度及 u 在 A 点沿 \overrightarrow{AB} 方向的方向导数.

五. (8 分) 求锥面 $z = 3 - \sqrt{3(x^2 + y^2)}$ 与球面 $z = 1 + \sqrt{1 - x^2 - y^2}$ 所围成的立体 V 的体积.

六. (8 分) 求曲线 C: $\begin{cases} x^2 - z = 0 \\ 3x + 2y + 1 = 0 \end{cases}$ 在点 P(1,-2,1) 处的切线 L 的标准方程; 并证明该切线 L 与直线 L_1 : $\begin{cases} 3x - 5y + 5z = 0 \\ x + 5z + 1 = 0 \end{cases}$ 垂直.

七. (8分) 求函数 $f(x,y) = x^2 + 4xy + 9y^2 - 2x + y$ 的极值点和极值.

八. (8 分) 计算 $I = \iiint_V (x^3y^{10} + x^6y^5e^z + z^3)dV$, 其中 V 是由球面 $x^2 + y^2 + z^2 = 2z$ 与锥面 $z = \sqrt{x^2 + y^2}$ 所围成的空间区域. (注: 取 $z \ge \sqrt{x^2 + y^2}$ 部分)

- 九. (8 分) 设有椭球面 $S: \frac{x^2}{2} + y^2 + \frac{z^2}{4} = 1$ 及平面 $\pi: 2x + 2y + z + 5 = 0$,
 - (1) 在椭球面 S 上求一点 $M(x_0, y_0, z_0)$ 使其切平面与 π 平行;
 - (2) 利用拉格朗日乘数法求 S 与 π 的最短距离.
- 十. (8 分) 设曲线 $\begin{cases} x^2 = 2z \\ y = 0 \end{cases}$ 绕 z 轴旋转一周所生成的曲面为 S,曲面 S 与平面 z = 1, z = 2 围成的空间区域记为 Ω . (1) 写出曲面 S 的方程;
 - (2) 计算三重积分 $I = \iiint_{\Omega} \frac{1}{x^2 + y^2 + z^2} dx dy dz$.
- 十一. (8 分) 设函数 f(u) 在 $(0,+\infty)$ 内具有二阶连续导数,且 $z=f(\sqrt{x^2+y^2})$ 满足等式

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

(1) 验证 $f''(u) + \frac{f'(u)}{u} = 0$; (2) 若 f(1) = 0, f'(1) = 1, 求函数 f(u) 的表达式.