

# ОЦЕНКА НАПРАВЛЕНИЯ ПРИХОДА ШАЛ ПО ПРЯМОМУ ЧЕРЕНКОВСКОМУ СВЕТУ В ВЕРХНЕМ ТЕЛЕСКОПЕ СФЕРА-3

O. Черкесова<sup>1,3</sup>,

Е. Энтина<sup>1</sup>, Н. Овчаренко<sup>1,2</sup>, В. Галкин<sup>1,2</sup>, К. Азра<sup>1,2</sup>, Е. Бонвеч<sup>1</sup>, Д. Подгрудков<sup>1,2</sup>, Т. Роганова<sup>1</sup>, Д. Чернов<sup>1,2</sup>, В. Иванов<sup>1,2</sup>, Т. Колодкин<sup>1,2</sup>, М. Зива<sup>1,4</sup>

- 1 Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Московский государственный университет имени М.В. Ломоносова;
- 2 Физический факультет, Московский государственный университет имени М.В. Ломоносова;
- 3 Факультет космических исследований, Московский государственный университет имени М.В. Ломоносова;
- 4 Факультет вычислительной математики и кибернетики, Московский государственный университет имени М.В. Ломоносова

ID: 031. E-mail: olga.v.cherkesova@yandex.ru

### Аннотация

Рассмотрены два варианта детектора углового распределения прямого черенковского света для проектируемой установки СФЕРА-3 и их способность оценивать направление прихода ШАЛ. В первом случае используется отверстие в зеркале нижнего телескопа и чувствительная мозаика нижнего телескопа отраженного света, во втором - отдельный компактный детектор. Исследованы перспективы использования нейросетевых методов для уточнения направления прихода ШАЛ.

### Введение

Знание направления прихода ШАЛ с точностью 2-3° дуги точнее определить массовый состав первичных частиц ШАЛ. При развитии каскада ШАЛ черенковский свет излучается в узком конусе, тем не менее, между направлением ШАЛ и углом прихода света есть разница. В данном исследовании для отверстия восстанавливалось направление прихода света, для компактного детектора - направление прихода искусственных событий ШАЛ.

### Методология

#### Отверстие в зеркале

4000 Смоделирована база данных искусственных угловых распределений фотонов фиксированной яркости, с зенитными углами  $[6^{\circ}, 17^{\circ}]$  и азимутальными  $[0^{\circ}, 360^{\circ}].$ Для таких исходных данных моделировалось прохождение света через оптическую схему телескопа (рис. 1) и работа электроники. Моделирование проводилось без учета естественного фона, однако на уровне зеркала учитывалось переотражение фотонов. Восстановление направления прихода света









Рис. 1 Схема детектора с отверстием сверху



Рис. 2a Вычисление Рис. 2b Архитектура центра изображения нейронной сети

Полная процедура для всех изображений включала в себя фильтрацию шумовых фотонов, определение центра пятна, вычисление координат центра пятна относительно центра изображения в полярных координатах, оценку параметров линейной модели методом наименьших квадратов по подмножеству данных, расчет предсказаний линейной модели по набору данных, обучение двухслойной полносвязной нейронной сети минимизировать среднюю абсолютную **Компактный телеской** 

Угловые распределения света получены с помощью кода CORSIKA [1]. Распределение задаётся на сетке 200 × 200 с ячейкой 0.25° × 0.25°. Расположение детектора относительно оси ливня определяется углом азимута  $\psi$  и расстоянием R.

В качестве ключевой точки можно использовать а) максимум или б) центр тяжести распределения. В случае а) находится ячейка с наибольшим количеством фотонов и координаты её центра. В б) координаты находятся по определению центра тяжести. Координаты оси ливня на сетке  $x = sin\theta cos\psi = 0.166$  и  $y = sin\theta sin\psi = 0.198$ (где  $\psi = 50^{\circ}$ , зенитный угол  $\theta = 15^{\circ}$ ), вычитаем их из координат выбранной точки. Ошибка определения направления находится из скалярного произведения реального и найденного направлений, а в случае малых

углов — как расстояние между точками на сетке. Точки а) и б) смещены в одном направлении от реального положения оси ливня (рис. 5). Направление этого смещения приблизительно совпадает с ориентацией пятна света (рис. 6), поэтому можно уменьшить ошибки, прибавляя к точкам а) и б) некоторый сдвиг, вычисляемый как разность координат реального направления и средних координат точек а) и б).

образам Оценка направления производится аналогично оценке ПО

угловому распределению. Взаимное расположение истинного рассчитанного направлений ливня показано на рис. 3. Синим цветом обозначены углы  $\phi_{o}$ и  $\phi_{\scriptscriptstyle 1}$ , красным –  $\delta_{\scriptscriptstyle 0}$  и  $\delta_{\scriptscriptstyle 1}$ , зелёным – ошибка  $\Omega$ . Ошибка определения направления определения направления находится из скалярного произведения векторов ОА и ОВ и вычисляется следующим образом:



Рис. 3 Расположение истинного и рассчитанного направлений ливня

$$\cos\Omega = \sin\delta_0 \cdot \sin\delta_1 \cdot \cos(\phi_0 - \phi_1) + \cos\delta_0 \cdot \cos\delta_1,$$

$$\delta_i = arcsin\left(rac{\sqrt{x_i^2+y_i^2}}{\sqrt{x_i^2+y_i^2+f^2}}
ight)$$
,  $\phi_i = arccos\left(rac{x_i}{\sqrt{x_i^2+y_i^2}}
ight)$ ,  $f$  = 11.284 см расстояние линзы.

Ошибки оценки без сдвига отображены на рис. 4а, со сдвигом на рис.

# Результаты

#### Ошибки определения направления по угловому распределению

|  | R     | до сдвига    |                      | после сдвига |                      |
|--|-------|--------------|----------------------|--------------|----------------------|
|  |       | по максимуму | по центру<br>тяжести | по максимуму | по центру<br>тяжести |
|  | 100 м | 1.28         | 2.28                 | 0.10         | 0.22                 |
|  | 140 м | 1.46         | 2.78                 | 0.20         | 0.32                 |

#### Ошибки определения направления по образам

|  | R     | до сдвига    |                      | после сдвига |                      |
|--|-------|--------------|----------------------|--------------|----------------------|
|  |       | по максимуму | по центру<br>тяжести | по максимуму | по центру<br>тяжести |
|  | 100 м | 1.2          | 1.7                  | 0.12         | 0.16                 |
|  | 140 м | 1.4          | 2.0                  | 0.14         | 0.19                 |



100 m 150 maximum mass center 100 0.6

Рис. 4а Ошибки оценки направления до сдвига

Рис. 4b Ошибки оценки направления после сдвига





Рис. 5 Опорные точки

Рис. 6 Ориентация пятна

#### Ошибки определения направления для отверстия в зеркале

Точность восстановления прихода света с направления линейной помощью регрессии составила  $0.6^{\circ} \pm 0.3^{\circ}$  (при коэффициенте детерминации R2 = 0.97). Использование полносвязной нейронной сети позволило улучшить точность восстановления  $0.42^{\circ} \pm 0.25^{\circ}$ . направления ДО ошибок Распределение методов представлено на рис. 7.



Рис. 7 Ошибки восстановления направления для отверстия в зеркале

# Заключение

Было показано, что оба метода регистрации прямого света ШАЛ обладают необходимым угловым разрешением лучше градуса дуги. Отверстие в зеркале не может быть использовано для оценок первичной энергии или массы, но даже небольшой по площади специализированный детектор прямого света наряду с направлением прихода ливня может оценивать первичную массу [2].

### Благодарности

Центра Работа оборудования с использованием выполнена сверхвысокопроизводительными коллективпользования НОГО вычислительными ре- сурсами МГУ имени М.В. Ломоносова.

Исследование выполнено за счет гранта Российского научного фонда No 23-72-00006. rscf.ru/project/23-72-00006/

# Источники

[1] D. Heck, J. Knapp, J. N. Capdevielle, et al.// FZKA-6019 (1998).

[2] Н. Овчаренко, О. Черкесова, В. Галкин и др. Возможности оценки массы первичного ядра по угловому распределению прямого черенковского света ШАЛ компактным телескопом // эта конференция, постер #30