第六章 电磁场理论基础

一、选择题

- 1. 感生电动势产生的本质原因是()
 - A. 磁场对导体中自由电子的作用;
 - B. 静电场对导体中自由电子的作用:
 - C. 感生电场(涡旋电场)对导体中自由电子的作用。
- 2. 尺寸相同的铁环与铜环所包围的面积中,通以相同变化的磁通量,环中()
 - A. 感应电动势不同;

B. 感应电动势相同, 感应电流相同;

C. 感应电动势不同, 感应电流相同:

D. 感应电动势相同,感应电流不同。

3. 两根无限长平行直导线载有大小相等方向相反的电流 I, I 以 $\frac{dI}{dt}$ 的变化率增长,一矩形

线圈位于导线平面内(如图),则()

- A. 线圈中无感应电流;
- B. 线圈中感应电流为顺时针方向:
- C. 线圈中感应电流为逆时针方向:
- D. 线圈中感应电流方向不确定。

- 4. 在一通有电流 I 的无限长直导线所在平面内,有一半经为 r 、电阻为 R 的导线环,环中 心距直导线为a,如图所示,且a >> r。当直导线的电流被切断后,沿着导线环流过的电量
- C. $\frac{\mu_0 I r^2}{2aR}$;

- 5. 对位移电流,有下述四种说法,请指出哪一种说法是正确的()
 - A. 位移电流是由变化电场产生的;
 - B. 位移电流是由变化磁场产生的:
 - C. 位移电流的热效应服从焦耳一楞次定律:
 - D. 位移电流的磁效应不服从安培环路定理。
- 6. 在感应电场中电磁感应定律可写成 $\oint_C E_K \cdot dr = -\frac{d\Phi_m}{dt}$, 式中 E_K 为感应电场的电场强度,

此式表明()

- A. 闭合曲线 $C \perp E_K$ 处处相等;
- B. 感应电场是保守力场;
- C. 感应电场的电场线不是闭合曲线;
- D. 在感应电场中不能像静电场那样引入电势的概念。

C.
$$\oint_{I} \vec{H} \cdot d\vec{l} < \oint_{I} \vec{H} \cdot d\vec{l}$$

D.
$$\oint_{\vec{l}} \vec{H} \cdot d\vec{l} = 0$$

8. 用线圈的自感系数 L 来表示载流线圈的磁场能量公式

$$W_m = \frac{1}{2}LI^2 \quad ()$$

- A. 只适用于无限长密绕的螺线管;
- B. 只适用于单匝圆线圈;
- C. 只适用于一个匝数很多, 且密绕的螺线管;
- D. 适用于自感系数为L任意线圈。
- 9. 某广播电台的天线可视为偶极辐射, 原发射频率为 v, 若将发射频率提高到 4v, 其辐射 强度为原来的()倍。
 - A. 16:
- B. 8:
- C. 32:
- D. 256°
- 10. 在某广播电台附近电场强度的最大值为 E_m ,则该处磁感应强度最大值为()(式中 c 为光速)。
 - A. E_m/c^2 ; B. c^2E_m ;
- C. E_m/c ; D. $cE_m \circ$
- 11. 一功率为 P 的无线电台,A 点距电台为 r_A ,B 点距电台为 r_B ,且 $r_B=2r_A$,若电台沿各 方向作等同辐射,则场强幅值 E_A : E_B 为()
- A. 2:1; B. 4:1; C. 8:1;
- D. 16:1°
- 12. 设在真空中沿着 z 轴负方向传播的平面电磁波, 其磁场强度的波的表达式为 $H_x = -H_0 \cos \omega(t + z/c)$, 则电场强度的波的表达式为(

A.
$$E_y = \sqrt{\mu_0 / \varepsilon_0} H_0 \cos \omega (t + z/c)$$
;

B.
$$E_x = \sqrt{\mu_0 / \varepsilon_0} H_0 \cos \omega (t + z/c)$$
;

C.
$$E_v = -\sqrt{\mu_0/\varepsilon_0} H_0 \cos \omega (t + z/c)$$
;

D.
$$E_x = -\sqrt{\mu_0/\varepsilon_0} H_0 \cos \omega (t + z/c)$$
.

- 13. 在均匀媒质中,沿 \vec{r} 方向传播的平面电磁波的方程为 $E = E_0 \cos \omega (t \frac{r}{t})$,
- $H = H_0 \cos \omega (t \frac{r}{t})$, 则其振幅 E_0 、 H_0 与平均能流密度 \overline{S} 的关系为(

A.
$$E_0 = H_0; \overline{S} = E_0 H_0;$$

B.
$$\sqrt{\varepsilon}E_0 = \sqrt{\mu}H_0; \overline{S} = \frac{1}{2}E_0H_0;$$

C.
$$\sqrt{\varepsilon}E_0 = \sqrt{\mu}H_0; \overline{S} = E_0H_0;$$

D.
$$\sqrt{\varepsilon_0}E_0 = \sqrt{\mu_0}H_0; \overline{S} = \frac{1}{2}E_0H_0$$

14. 关于电磁波和机械波的性质比较	,下列说法不	正确的是()					
A. 都可以在真空中传播;							
B. 都可以产生衍射、干涉现象;	B. 都可以产生衍射、干涉现象;						
C. 都是能量由近及远地向外传持	C. 都是能量由近及远地向外传播;						
D. 都能产生反射、折射现象。							
15. 如图所示,一矩形线圈以匀速自	无场区平移进	入均匀磁场区,又平移穿出,在 A、B、					
C、 D 的各 I — t 曲线中哪一个符合图中电流随时间的变化关系(逆时针方向定为电流的正方							
向,且不计线圈的自感)()							
$\overline{}$	× × × × × × × × × × × × × × × × × × ×	< × < × < ×					
Α.	B.	7 Å					
$I \uparrow$							
		t					
	D	<i>I</i>					
C. I	D.						
t		t					
二、填空题		1					
1. 如图所示,一长直导线中通有电流 <i>I</i> ,有一与长直导线共							
面、垂直于导线的细金属棒 AB, 以速度 v 平行于长直导线作							
匀速运动,问 I A B							
(1) 金属棒 $A \times B$ 两端的电势 U_A 和 U_B 哪一个较高?							
(2)若将电流 I 反向, U_A 和 U_B 哪一个较高?							
(3) 若将金属棒与导线平行放置, 约	吉果又如何?_						
2. 动生电动势的定义式为 $\varepsilon =$,与动生电动势相联系的非静电力					
为,其非静电性场强	为 $\vec{E}_K = \underline{\hspace{1cm}}$	о					
3. 位移电流 <i>L</i> = , 它与	与传导电流及记	云流电流均能产生效应,但					
它不能产生							
<u> </u>	 (1)	不济的粉 类事计才 为					
4. 涡旋电场是由							
//// 12/火 1/// 1/// 1/// 1/// 1/// 1///		N°					

- 2. 一长直导线中通有电流 I,在其旁有一半径为 R 半金属圆环 ab,二者共面,且直径 ab 与直电流垂直,环心与直电流相距 L,当半圆环以速度 v 平行直导线运动时,试求:
 - (1) 半圆环两端电势差 U_a - U_b ;
- (2) 那端电势高?

- 3. 一无限长直导线上通过稳恒电流 I,电流方向向上,导线旁有一长度为 L 的金属棒,绕其一端 O 在一平面内顺时针匀速转动,转动角速度为 ω ,O 点至导线的垂直距离为 r_0 ,设长直导线在金属棒旋转的平面内,试求:
- (1) 当金属棒转至与长直导线平行、且 O 端向下(即图中 OM 位置)时,棒内感应电动势的大小和方向;
- (2) 当金属棒转至与长直导线垂直、且 O 端靠近导线(即图中 ON 位置)时,棒内的感应电动势的大小和方向。

4. 如图所示,真空中一长直导线通有电流 I=I(t),有一带滑动边的矩形导线框与长直导线平行共面,二者相距 a,矩形线框的滑动边与长直导线垂直,它的长度为 b,并且以匀速 \vec{v} (方向平行长直导线)滑动,若忽略线框中的自感电动势,并设开始时滑动边与对边重合。求:(1) 任意时刻矩形线框内的动生电动势;(2) 任意时刻矩形线框内的感应电动势。

5. 如图,在等边三角形平面回路 ADCA 中存在磁感应强度为 \vec{B} 的均匀磁场,其方向垂直于回路平面,回路上 CD 段为滑动导线,它以匀速 υ 远离 A 端运动,并始终保持回路是等边三角形,设滑动导线 CD 到 A 端的垂直距离为 x,且时间 t=0 时, x=0,试求,在下述两种不同的磁场情况下,回路中的感应电动势 ε 和时间 t 的关系。

(1)
$$\vec{B} = \vec{B}_0 =$$
常矢量

(2)
$$\vec{B} = \vec{B}_0 t$$
, $\vec{B}_0 =$ 常矢量

6. 一个 n 匝圆形细线圈,半径为 b,以匀角速度 ω 绕其某一直径轴转动,该转轴与均匀磁场 \vec{B} 垂直。假定有一个面积为 A(很小)的小铜环,固定在该转动线圈的圆心上,环面与磁场垂直。若大线圈的电阻为 R,自感系数忽略,如图所示。试求在小铜环内产生的感应电动势(忽略小铜环对圆形线圈的感应)。

7. 由粗细均匀的同种材料制作的正三角形导体线圈,边长为a,电阻为R,处于磁感应强度为B的均匀磁场中,线圈平面与磁感应强度垂直,现使线圈绕其一边以恒定角速度 ω 转动。求:(1)线圈中的感应电流;(2)三角形每两个顶点之间的电势差。

8. 已知在某一各向同性介质中传播的线偏振光,其电场分量为

$$E_z = E_0 \cos \pi \times 10^{15} (t + \frac{x}{0.8c}) (SI)$$

式中 $E_0 = 0.08$ V·m, c 为真空光速。试求

- (1) 介质的折射率; (2) 光波的频率;
- (3) 磁场分量的幅值; (4) 平均辐射强度。

9. 如图所示,长度为L的金属棒在均匀磁场 \vec{B} 中绕平行于磁场方向的定轴OO'转动。已知棒相对于磁场 \vec{B} 的方位角为 θ ,棒的角速度为 ω 。求棒中的动生电动势。

