

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

1. (Currently amended) A negative type photosensitive resin

composition which comprises:

(A) 100 parts of a polyamide having a structural unit represented by the following formula (1) and having a photopolymerizable unsaturated double bond: ~~100 parts by mass,~~

(B) 1-50 parts of a monomer having a photopolymerizable unsaturated double bond: ~~1-50 parts by mass,~~

(C) 1-20 parts of a photopolymerization initiator: ~~1-20 parts by mass~~, and

(D) 5-30 parts of a melamine resin: ~~5-30 parts by mass~~,

... (1)

... (1)

(where X is a 2-4 valent aromatic group and Y is a 2-4 valent aromatic group, i and j are integers of 0-2 and satisfy $i + j = 2$, k is an integer of 2-150, R_A is independently a monovalent organic group having a photopolymerizable unsaturated double bond and represented by the following formula (2) or a saturated aliphatic group of 1-4 carbon atoms, and R_B is independently a hydrogen atom or a monovalent organic group having a photopolymerizable unsaturated double bond and represented by the following formula (3), with the proviso that when the total mol number of R_B is assumed to be 100 mol%, not less than 10 mol% and not more than 50 mol% thereof is the monovalent organic group having a photopolymerizable unsaturated double bond and represented by the following formula (3),

where R_8 is a hydrogen atom or an organic group of 1-3 carbon atoms, R_9 and R_{10} are independently a hydrogen atom or an organic group of 1-3 carbon atoms, and q is an integer of 2-10,

where R_3 is a hydrogen atom or an organic group of 1-3 carbon atoms, R_4 and R_5 are independently a hydrogen atom or an organic group of 1-3 carbon atoms, and m is an integer of 2-10).

2. (Original) A negative type photosensitive resin composition according to claim 1, wherein the polyamide (A) having a photopolymerizable unsaturated double

bond is a polybenzoxazole precursor having a structural unit represented by the following formula (4):

(where X_1 is a divalent aromatic group, Y_1 is a tetravalent aromatic group, n is an integer of 2-150, and R_1 and R_2 are independently a hydrogen atom or a monovalent organic group having a photopolymerizable unsaturated double bond and represented by the following formula (3), with the proviso that when the total mol of R_1 and R_2 is assumed to be 100 mol%, not less than 10 mol% and not more than 50 mol% of R_1 and R_2 are the monovalent organic groups having a photopolymerizable unsaturated double bond and represented by the following formula (3):

where R_3 is a hydrogen atom or an organic group of 1-3 carbon atoms, R_4 and R_5 are independently a hydrogen atom or an organic group of 1-3 carbon atoms, and m is an integer of 2-10).

3. (Original) A negative type photosensitive resin composition according to claim 1, wherein the polyamide (A) having a photopolymerizable unsaturated double

bond is a polyimide precursor having a structural unit represented by the following formula (5):

(where X_2 is a tetravalent aromatic group, and the $-\text{COOR}_6$ group and the $-\text{COOR}_7$ group, and the $-\text{CONH}-$ group adjacent thereto are in the ortho position to each other, Y_2 is a divalent aromatic group, p is an integer of 2-150, and R_6 and R_7 are independently a monovalent organic group having a photopolymerizable unsaturated double bond and represented by the following formula (2) or a saturated aliphatic group of 1-4 carbon atoms:

where R_8 is a hydrogen atom or an organic group of 1-3 carbon atoms, R_9 and R_{10} are independently a hydrogen atom or an organic group of 1-3 carbon atoms, and q is an integer of 2-10).

4. (Original) A negative type photosensitive resin composition according to any one of claims 1-3, wherein the melamine resin (D) has a polymerization degree of not less than 1.0 and not more than 2.2.

5. (Original) A negative type photosensitive resin composition according to any one of claims 1-3, wherein the melamine resin (D) is a hexamethoxymethylated melamine.

6. (Previously presented) A method for forming a heat resistant and chemical resistant relief pattern which comprises:

- (1) coating the negative type photosensitive resin composition according to any one of claims 1-3 on a substrate,
- (2) subjecting the coating to exposure by irradiating with active rays through a patterning mask,
- (3) dissolving and removing the unexposed portions of the coating using a developer to form a relief pattern, and
- (4) heating the coating at a temperature of not lower than 200°C to cure the coating.

7. (Original) A method for producing a semiconductor device which includes forming a relief pattern by the relief pattern forming method according to claim 6.

8. (Cancelled)

9. (Previously presented) A method for forming a heat resistant and chemical resistant relief pattern which comprises:

- (1) coating the negative type photosensitive resin composition according to claim 4 on a substrate,
- (2) subjecting the coating to exposure by irradiating with active rays through a patterning mask,
- (3) dissolving and removing the unexposed portions of the coating using a developer to form a relief pattern, and
- (4) heating the coating at a temperature of not lower than 200°C to cure the coating.

10. (Previously presented) A method for producing a semiconductor device which includes forming a relief pattern by the relief pattern forming method according to claim 9.

11. (Previously presented) A method for forming a heat resistant and chemical resistant relief pattern which comprises:

- (1) coating the negative type photosensitive resin composition according to claim 5 on a substrate,
- (2) subjecting the coating to exposure by irradiating with active rays through a patterning mask,
- (3) dissolving and removing the unexposed portions of the coating using a developer to form a relief pattern, and
- (4) heating the coating at a temperature of not lower than 200°C to cure the coating.

12. (Previously presented) A method for producing a semiconductor device which includes forming a relief pattern by the relief pattern forming method according to claim 11.