General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(MASA-CP-143975) A THREE-AXIS PIGHT SIMULATOR Final Report (Contraves Goerz Corp., Pittsburgh, Pa.) 48 p HC \$3.75 CSCL 148 N75-33062

G3/09 Unclas G3/09 42263

301 Alpha Drive. Pittsburgh. Pa. 15238

The American Subsidiary of Contraves AG, Oerlikon-Bührle Holding

FINAL REPORT

FOR A

THREE-AXIS FLIGHT SIMULATOR

TR-3547

FINAL REPORT
FOR A
THREE-AXIS FLIGHT SIMULATOR
(S.O. K00213)

CONTRACT NO. NA58-31018

PROJECT ENGINEER: Michael G. Mason

TR-3547

Prepared for NASA/MSFC Huntsville, Alabama

TABLE OF CONTENTS

Cocp				PAGE
1.0	INTRO	DUCTION		1-1
2.0	SPECI	FICATION	SUMMARY	2-1
	2.1	MECHAN	ICAL	2-1
		2.1.1	OUTER AXIS	2-1
		2.1.2	MIDDLE AXIS	2-2
		2.1.3	INNER AXIS	2-3
	2.2	ELECTR	ICAL	2-4
		2.2.1	POSITION MODE	2-4
		2.2.2	RATE MODE	2-4
		2.2.3	DATA READOUT	2-4
3.0	TEST	RESULTS		3-1
	APPEN		CCEPTANCE TEST PLAN FOR MODEL 158	

FINAL REPORT

FOR A

THREE-AXIS FLIGHT SIMULATOR

(S.O. K00213)

1.0 INTRODUCTION

The equipment, Model 158-0070, shown in Figure 1, is a three-axis simulator for testing and evaluating inertial measuring units and flight platforms. Each axis is independently digitally controlled by manual or computer commands in either Position or Rate modes. The inner axis is equipped with a 30inch diameter cast aluminum table top which is capable of continuous rotation. Electrical access to the test package is by connectors on the table top which provide 100 lines for experimental use. The system was shipped at the end of May 1975 and installation was completed in the second half of July 1975.

Figure 1. Model 158-0070 Three-Axis Flight Simulator

The information contained hardin is being made available as the property of, and for the purposes of, CONTRAVES-GOERZ CORPORATION, Subsidiary of CONTRAVES AG, DERLIKON-BUHRLE HOLDING. It cannot be femfully reproduced in any form nor dissigned to any third Party, nor used for any purpose other than that for which it has been made available to you, without the specific written consent of CONTRAVES-GOERZ CORPORATION.

2.0 SPECIFICATION SUMMARY

2.1 MECHANICAL

2.1.1 OUTER AXIS

Range ±95°

Orthogonality 5 arc seconds

Wobble 5 arc seconds

Bearings Precision ball

Torque Motor 300 ft-1bs

Position Readout

Fine 12-inch Inductosyn

720 poles

Coarse 2-pole resolver

Rate Readout

Transducer DC Tachometer

Ripple 0.1%

Scale Factor 9.5 ±1 v/rad/sec

2.1.2 MIDDLE AXIS

Range ±170°

Orthogonality 5 arc seconds

Wobble 5 arc seconds

Bearings Precision ball

Torque Motors 33 ft-lb, total

Position Readout

Fine 12-inch Inductosyn

720 poles

Coarse 2-pole resolver

Rate Readout

Transducer DC Tachometer

Ripple 0.1%

Scale Factor 9.5 ±1 v/rad/sec

2.1.3 INNER AXIS

Range Infinite

Orthogonality 5 arc seconds

Wobble 5 arc seconds

Bearings Precision ball

Torque Motor 16 ft-1bs

Position Readout

Fine 12-inch Inductosyn

720 poles

Coarse 2-pole resolver

Rate Readout

Transducer DC Tachometer

Ripple 0.1%

Scale Factor 9.5 ±1 v/rad/sec

2.2 ELECTRICAL

2.2.1 POSITION MODE

Range

Slew rate, direction

Inner Axis 360 degrees

Middle Axis 340 degrees

Outer Axis 190 degrees

Resolution 0.0001 degree

Accuracy <5 arc seconds

Repeatability 0.1 arc second

2.2.2 RATE MCDE

Ranges (CW/CCW)

0 - 99.99 degrees/second
0 - 9.999 degrees/second
0 - 0.9999 degree/second
0 - 0.09999 degree/second
0 - 0.09999 degree/second

VIVIO 01 1411 BOAL

Accuracy ±5% of command

2.2.3 DATA READOUT

Position 1) Visual Display

Computer addressable, TTL compatible

3) 1° pulse

10°/sec, least

distance path

The information contained herein is being made available as the property of, and for the purposes of, CONTRAVES-GOERZ CORPOR. 710N, Subsidiary of CONTRAVES AG, OERLIKON-BUHRLE HOLDING. It cannot be leavefully reproduced in any form nor divulged to any third Party, nor used for any purpose other than that for which it has been made available to you, without the specific written consent of CONTRAVES-GOERZ CORPORATION.

Rate

Hewlett Packard counter using 1° position pulses displays inverse or direct rate.

3.0 TEST RESULTS

The results of the acceptance test on the Model 158-0070 Three-Axis Test Table (TP-3520) are presented in Appendix A.

APPENDIX A

ACCEPTANCE TEST PLAN
FOR
MODEL 158 THREE-AXIS TEST TABLE

TP-3520

ACCEPTANCE TEST PLAN
FOR
MODEL 158 THREE-AXIS TEST TABLE

May, 1975

TP-3520

Prepared for NASA/MSFC Huntsville, Alabama

S.O. K00213

SECTION 1

ELECTRICAL ACCEPTANCE TEST PLAN (FINAL TESTS)

SUBSIDIARY
CONTRAVES AG, OCRLIKON-BÜHRLE HOLDING

うらいにない。していまだ。

CUSTOMER: NASA - MFSC SALES ORDER: X00213 INSTRUMENT: 3-AXIS Mount

TEST PLAN

SPECIFICA	TION	METHOD OF VERIFICATION	TEST PARAMETER		RESULTS	, vo
	SPECIFICATION	VERIFICATION	TEST PARAMETER	-	RESULT	0
best	POSITION MODE			. In	M	0.0
1	ce sec	STP-E-1245B		'n	72	.73
14	l arc	Visual inspection		.36	.36	.36
	BANDWIDTH > 5 Hz	STP-E-2265		30	5	22
	C C C C C C C C C C C C C C C C C C C					
1	.018FS	Visual Inspection		19.	10.	
1				≤1.1	54.3	V/
	Range, 0.005 to 50°/	STP-E-2266		7	7	1
	Acceleration > 1 strategies	STP-E-270		5.8	-55	2.9
1	Rate Trip	STP-E-2266		%sec 100.	55	50
						· · · · ·
		198				
1	M. G. Mada	R Großfrage	D BY WITNESSEED BY (CRESPONDER)	Jed 22	PAGE.	12

SECTION II STANDARD TEST PROCEDURES (ELECTRICAL)

directly in the alignment procedure.

In the mechanical alignment of the Inductosyn, sufficient data is obtained to ascertain the alignment errors of the installed Inductosyn (ref. TR-2029A). The eccentricity error is calculated

The effective pattern webble can be deduced from the variation in amplitude of the windings as the unit is rotated by using the formula.

W = wobble =
$$\frac{\text{Voltage Variation}}{\text{Nominal Variation}} \times \frac{.007}{D} \times 2 \times 10^5$$

D = Diameter of the Inductosyn pattern in inches
This formula is based on a minimum spacing of 0.007 inches.

ELECTRONICS ERROR (Ee)

The only significant electronics errors are due to gain unbalance errors between the current drives to the Inductosyn (a factory adjustment). The verification of this accuracy is obtained by measuring the current balance using a special test fixture in conjunction with G/I STP-

The Fine Error contribution as a result of current unbalance is given by the following formula:

$$E_e = \frac{1}{2\pi} \cdot \frac{1}{n} \cdot \frac{\Delta I}{I} \times 2 \times 10^5$$

n = Electrical speed of the Inductosyn

I = Nominal Current Reading

LI = Total current difference between current drive channels

DATE

Inductosyn drive error is tested using STP

In this test, a measure of the relative magnitude of the sine and cosine drive signals is obtained, as well as a measure of a combination of phase and harmonic distortion error. The former is obtained by direct measurement of voltage across a sampling resistor in RMS form.

The latter is obtained by observing the peak-to-peak voltage across another sampling resistor. To properly combine these values, they must both be scaled into rms current units.

 v_x = Peak/peak value of lissajous observed across R_{la} and R_{lb} i_x = rms value of difference in current (mostly quadrature error)

 $i_x = 0.35 (V_x/R_1) = guadrature imbalance$

 $i_m = (v_a - v_b)/R_s = magnitude unbalance$

I = Va/Rs = nominal current

 $\frac{\Delta i}{I}$ = Total relative current error = $\frac{1}{I} \sqrt{i_m^2 - i_x^2}$

 $= \frac{1}{V_a} \sqrt{(V_a - V_b)^2 - [.35 V_x(R_s/R_1)]^2}$

ORIGINAL PAGE IS

TOTAL SYSTEM ACCURACY

$$\mathbf{E_T} = \sqrt{\mathbf{E_T}^2 + \mathbf{E_m}^2 + \mathbf{E_e}^2}$$

E, = Peak Inductosyn Error from Manufacturer's data

EQUIPMENT REQUIRED

None - The data required for this test is collected during execution of other tests.

PROCEDURE

Collect data as required from the appropriate test results and fill out Table 1, performing the necessary calculations.

ORIGINAL PAGE IS OF POOR QUALITY

Lanine	DERIVED STATES	EM VCCORVCIA	STP-	-E-12453
		INNER	MIDDLE	OUTER
①	Eccentricity (TIR - inches) : from from TR-2029	69.164	.69.164	1.45.104
. ②	Max Voltage (CD) from TR-2029	31.5:	21.0	19.8
3	Min Voltage (CD) from TR-2029	30.0	20.0	19.00
(4)	Wobble (arc sec) $W = \frac{\bigcirc -\bigcirc \times 2}{3} \times \frac{.007}{10} \times 2 \times 10^5$	6.30	6.30	5.30
(5)	Feak Mechanical Error (arc sec) $E_{m} = 10 \cdot 2 \cdot 4 \cdot \frac{11}{10}$	• 004	. 004	.004
.@	Current Reading Channel 1 from STP	1.6477	-	_
0	Current Reading Channel 2 from STP	1.6478	-	-
(8)	Quadrature Error (lissajous) Reference V _x = 10005 V from STP i _x = 0.35 V _x (R _s /R ₁) Out to the state of the sta	4.2.103		
9	Peak Electronic Error (arc sec) $E_{e} = \frac{1}{2\pi} \frac{1}{(11)} \sqrt{\frac{(0) - (1)^{2} + (2)^{2}}{O^{2}}} \times 2 \times 10^{5}$.024	-	
0	Inductosyn Pattern Effective Diameter IND TYPE EFFECTIVE DIAMETER 12" 11" 8" 7" 7" 6" 5" 4" 3" 2"	11"	il"	11"
0	Inductosyn Electrical Speed (5 number of poles)	360	360	360
0	Inductosyn Transducer - E _I Error - Peak From Vendor Test Data (attach copy)	.5	.75	.75
0	Total System Error ET = $\sqrt{\bigcirc^2 + \bigcirc^2 + \bigcirc^2}$.5	.75	.75
DAT 5: 3	0.75 TESTED BY WITHESSED BY	WITNESSI (CUSTO)		PAGE JF 138

Instrument: MCTION SIMULATOR
Shop Order: KCO 213
Customer: NASA MSFC
Axis:
Specification: > 542 (3dB point)

Test Setup:

Test Equipment:

1. Frequency Response Analyzer

Procedure:

- Place the axis in POSITION mode with the loop closed and ensure that it is stationary.
- Connect the output of the analyzer to the summing junction of IC4 on the COARSE/FINE switch card via a compensation network with the same values as R₂₆, C₁₂, and R₃₄. Adjust amplitude for +0.1° (approximately +5 V).
- Connect TP5 on the coarse fine switch to the input of the frequency response analyzer.
- 4. Measure and record the amplitude and phase of the output signal at suitable frequencies. Record the 3-db point bandwidth.

ORIGINAL PAGE IS OF POOR QUALITY

1

Results:

Bandwidth = 30 Hz

Frequency (Hz)	Output Amplitude (db)	Output Phase (degrees
.2	1.4	- 3.
'4	+1.58	-10.
6	+ 2.28	-21.
'8	+ 1.94	-40.
I.	-5.1	-56.
2.	-13.4	- 25.
4.	-12.04.	-9.
8	-6.0	- 5.
10	-2.5	- 2.
15	+2.77	-55.
30.	-2.5	-165.
40	-10.37	- 237.
	OF POOR QUALITY	

STP-E-2265

Results:

Bandwidth = 16 Hz

Frequency (Hz)	Output Amplitude (db)	Output Phase (degrees
.5	. 0	0
1.	0	-3
2.	0	-3
4.	+ 3	-10
8	+ 8	-50
1,6	-3	-165
32	-16	-265

5.30.75 Wilhard by M. G. Mara C.G.

PAGE

		0.0	
Results:	Bandw:	idth = 22	Hz
Frequency (Hz)	Output Amplitude (db)	Output Phase	(degree
.5	0	-2	
1.	0	- 3	
2	+1.6	- 3	
4.	+ 4.6	-21	
	+4.6	-80	
16	+ 0.4	-128	
22	-3.	-193	
32	-5.	-236	
64	-20.	-313	
	. !		
30.75 Witnessed &	by M.G. Mason C.G.		PAGE

Instrument: MOTION SIMULATOR
Shop Order: K00213
Customer: NASA MSEC
Axis:
Specification: 5% OF COMMAND

Test Setup:

Test Equipment:

1. Time Interval Counter

Procedure:

- Servo the axis under test in the RATE mode, command 99.99°/sec and measure the time for 10 pulses.
- 2. Repeat the test for 9.999, 0.9999, 0.09999°/sec.
- Verify rate operation below 0.005°/sec by commanding progressively lower rates and observing the position display.
- 4. Set rate trip for operation at 100°/sec CW/CCW.
- 5. Measure and record the tach scale factor.

LE ZINLAND DE CHOLOTON

RATE TRIP

STP-E-2266

INNER AXIS

Results:

Rate Trip OK > 100°/500 Tach Scale Factor = 0.166 volts/°/sec

Commanded Pate (°/sec)	Time for 10 pulses de		Accuracy (%)	
	CVV	1 ccw	CW	con
99.99	.09994	.09998	.06	.02
9.999	1.001	. 9998	. 1	.02
0.9999	10.014	10.016	.14	.16
0.09999	100.102	98.870	.1	1.1

RATE ACCURACY & PANGE AND : RATE TEIP

STP-E-2266

SIXY FIGUR

Results:

I

Rate Trip OR / 55% Tach Scale Factor = .173 volts/°/sec

Commanded Rate (°/sec)			Accur	acy (%)
	_ ow	CCW	CW	con
99-95 50.00	. 2001	.1996	. 65	.04
9.999	.9957	.9939	.4	.6
0.9999	10.02	9.92	.2	3
0.09999	104.26	98.089	4.26	1.9

LE ZINLAND DESTRUCTION

RATE TRIP

STF-E-2266

OUTER AXIS.

Results:

Rate Trip OK V

Tach Scale Factor = 1172 volts/°/sec

55% see

Commanded Rate (°/sec)	Time for 10 pulses		Accuracy (%)	
	CW	con	CW	car
99-95 50.00	.1998	1998	.01	.01
9.999	.9971	.9973	.029	. 027
0.9999	10.025	10008	.25	.08
0.09999	101.007	99.141	1.0	0.86

PURPOSE

The purpose of this test is to determine the stall acceleration of an axis, and also any other acceleration at any other point in the rate versus time profile when a step rate command is applied. It is useable in testing for specifications which call for:

- 1) Stall acceleration
- 2) Average time to accelerate to a velocity
- 3) Acceleration and deceleration control with accuracy requirements

In addition, since a large step command is applied to the serve, the test is useable for establishing the levels of current limiting the system when features have been incorporated in the power amplifier circuitry as well as dissipation limiting.

TEST ACCURACY CONSIDERATIONS

The acceleration measuring accuracy of this test is limited by the test equipment provided and the accuracy with which the rate output scale factor of the equipment is known. Assuming that a rate calibration test has been performed (STP-E-271) for example, the knowledge of the tach scale factor and the amplitude error of the strip chart recorder in measuring rate would not be an accuracy factor in this test, leaving only the inaccuracy due to the timing of the strip chart recorder. It is recommended that the time calibration of the strip chart recorder should be verified prior to conducting the test, in order to obtain a knowledge of this scale factor.

In general, the specification accuracy of the acceleration mode is in the neighborhood of 1% to 10%, which is within the range of the strip chart recorder accuracy time base; in general, strip chart recorders would not be adequate for 1% amplitude checks. Note that the rate calibrations are generally more accurate than this.

TEST EQUIPMENT REQUIRED

The test equipment requirements for this test are a strip chart recorder and the controller.

If the controller is not equipped with a manual input, an auxiliary means of providing step rate commands is required.

TEST PARAMETER DEFINITION REQUIREMENTS

The call for this standard step procedure in the final test specification should include the rates to be commanded, the specification of acceleration and deceleration parameters (either in time to rate or in peak stall acceleration or average acceleration/deceleration. If the test is used to verify acceleration/deceleration calibration levels, then the test should specify acceleration/deceleration settings for the controller, and the accuracy specifications of the acceleration and deceleration measurement at each of the settings.

Cautions:

- on systems with limited angular range, such as rate table systems with wires going to a rotating member without slip rings, care should be taken to make sure that the acceleration transient is initiated and run so that the stops will not be reached diring the tests.
- 2) Prior to running this test, it should be verified that the current limit adjustments have been performed on this unit prior to initiating the test. If it has not been performed, this test may be used to set the current limit adjustment keeping in mind the accuracy of the strip chart recorder. If this is done, be sure and start at the low end of the adjustment (see manual).

TEST PROCEDURE

- 1) Hook up the system under test with the test equipment as shown in the figure.
- 2) Place the system in the proper operating mode by following the manual.

ORIGINAL PAGE IN OF POOR QUALITY

WITNESSED BY WITNESSED BY (CUSTOMER)

- 3) For rate table systems, set up the strip chart recorder, either by calculation or by trial and error, that the traces on the strip chart cover close to the full scale range on the strip chart recorder, and adjust the strip chart recorder speed so that at least five inches of strip chart paper are required to record the acceleration/deceleration transient.
- 4) Setup the rate table to accelerate to rates and decelerate to rates as indicated in the data sheet. Always turn the strip chart recorder on just prior to initiating the acceleration/deceleration transient, and turn the strip chart recorder off after the transient has subsided prior to setting up for the next step command. Perform all of the tests indicated, and record the values on the data sheet.
- 5) Measure the rate voltage versus time slope in order to determine the acceleration from the torque or current channel.
- Measure and record the voltage across the current sampling resistor 6) during the acceleration transient.
- Determine the magnitude of the current limit by dividing the value 7) of the current sampling voltage obtained by the value of the current sampling resistor, and compare it to the value that is supposed to be set.
- Calculate the peak acceleration and stall acceleration from the 8) formulas shown in the attached figure, using either the rate over time or (voltage over time) scale factor method for computation (whichever is most convenient).

ORIGINAL PAGE IN POOR QUALITY

Time to achieve set rate $Rc/T_2 = (K_T)V_1^{'}/T_2 = \alpha p$ Peak Stall Acceleration = $(K_T)V_2^{'}/T_1$ $Rc/T_1 = (K_T)V_1/T_1 = \alpha q$ Average Leveleration to Set Rate

K_T = Tach Scale Factor, O/sec-volt

Rc = Command Rate

ΔR = Peak Rate Error During Acceleration

FIGURE: DETERMINATION OF ACCELERATION/DECELERATION VALUES

DATE TI

TESTED BY

WITNESSED BY (GOERZ) WITNESSED BY (CUSTOMER)

4 P431 6

TEST SET-UP

STP-E-275

STEP ACCELERATION/DECEMENATION TESTS AND CURRENT LIMIT THEF

The Carrier DA

. .

DATE

	GOER.	Z OPT	HCAL COMPANY PROPERTED	AND CURRENT LIMIT TEST	CTP-E-1":
5	9	a,meas	8		
3	TACH SCALE FACTOR = 1/66 V/0/Sec. Rs = 0.25s.	aspoc			
	Sec. R.	apmoas 180/sec	8: 8:		
}	10/10	a spec	0.		
]	4), = Ioi =	d I	19:2		
0	FACTOR	ρ ^{α,}	4.8		
	SCALE	V2	55.3		
	TACH 8	V1	50		
]		Temeas	2		
]		Tzspec	.87		
	AXIS	Timeas	.15		
0	MAIGH	Tispoc			
)	0	SAFE	220		
	DATE	- 1 1	TESTED BY	WITNESSED BY WITNESSED BY	: 2131

	GOER GOER	INCO	ORFORATED	INY	AND					EST			STP-	E-17:	
								_	-		-	-	1	!	!
0	. 075.a	a _a meas	25												-
		aspec								1	1.				
	TACH SCALE FACTOR = 173 V/° /Sec.	apmeas,	15												
	73 4	a spec	1.0												
		L D	21.3											!	1
	ACTOR	> ^{Ω,}	9.1												
)	CALE F	V2	6.7											1	
1	CACH S	Vı	5.7			1									
]		T2meas	9.											1	
	(a)	Tzspec	18.				6								
	E AXIS	Timeas	9.												-
	MIDDLE	Tispec													
1	2	SATE SALE	220											!	
1	DATE 5.08.75		TESTED BY		WITN	ESSEI	BY	CN	1 18	ITNES	SSED	BY			::::

	INCORPORATED	AND CURRENT LIMIT TEST	STR-E-ZT;
	a ineas		
	spec		
30			
TACH SCALE FACTOR = 172 v/%er	RS Spec apmeas		
17:	I p a 30.7		
FACTOR	y 7.1.		
H SCALE	V 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
TAC	T2meas V1		
	25pec T2		
AXIS	Timeas T2		
OUTER AXIS	T spec		
10.	SO Lis		
DATE 5.29.7		WITNESSED BY WITNESSED BY (GOERZ) (CUSTOMER)	· · · · · · · · · · · · · · · · · · ·

SECTION III MECHANICAL ACCEPTANCE TEST PLAN (IN PROCESS TESTS)

	RESULTS	125 151 4.	1.2 2.6 2.5	2.9	2.25	PAGE
CUSTOMER: SALES ORDER: INSTRUMENT:	TEST PARAMETER					WITHNESSED BY (CUSTOMER)
CO SI DIAN ITEST PLAN	METHOD OF VERIFICATION	STP-M-2261	STP-M-201A	STP-M-213	STP-M-213	ROWNESSED BY
SUBSIDIARY SUBSIDIARY STRIKON-BÜHRLE HOLDING	SPECIFICATION	Unbalance, 5 ft-1b	Wobble, 5 arc sec	Orthogonality, 5 arc sec (inner to middle)	Orthogonality, 5 arc sec (inner to outer)	4. Qualpoor
CONTRAVES AG. OCRLINON-BÜHRL	ITEM	н	73	6	4	6
CD CO	SPEC	r	un	u7	ın	DATE 4 /22 /75

SECTION IV
STANDARD TEST PROCEDURES
(MECHANICAL)

The information contained nervin is being made available as the property of, and for the purposes of CONTRAVES GOERZ CONTRAVES GOERZ CONTRAVES AG, OFFICEON BUBBLE HOLDING It cannot be landfully reproduced in any form nor disolved to any third Party, nor used for any purpose other than that for which is her been mild available to you, without the specific written consent of CONTRAVES GOERZ CONTORATION.

TEST . LIPMENT:

1 Tooling Mirror 1 Automatic Autocollimator, Kollmorgen K-342 1 X-Y Plotter - HP No. 7000AM or equivalent

FIGURE 1

PROCEDURE:

- 1. Make test setup as shown in Figure 1.
- 2. Establish autocollimation through 360 degrees of shaft rotation.
- On the graph from the X-Y plotter, draw the smallest circle inscribing the wobble graph. Draw the largest circle possible circumscribing the wobble graph.
- 1. The radial difference is the total range of the random wabble.

ORIGINAL PAGE IS OF POOR QUALITY

Instrument: 700-0080 (155-0070) Shop Order: K218 OUTER AXIS Customer: NASA - MAPSIALL. INNER AXIS Specification Requirement: 5 see MEE /MIODIE CRTHOGONALITY AUTOCOLLIMATOR ERROR E ORIGINAL PAGE IS OF POOR QUALITY . Task Determine the perpendicularity error between two intersecting gimbal exes. Tost Setup Set up an autocollimator or theodolite with an autocollimating eyepiece with a resolution of 0.2 arc seconds minimum, such that autocollimation can be establisheduath the mirror placed on the center of the inner axis. Mount an adjustable double surface mirror on the inner axis and align it perpendicular to the axis of rotation. Two tooling mirrors are to be used if the shaft does not have a central perforation. Test Procedure. Establish autocollimation and measure and record the shaft direction in the scordinate parallel to the outer axis. Rotate the inner axis about itself 185°. Measure and record the shaft direction. Rotate the inner exis about the outer axis 180° and measure and record the shaft direction as above. Rotate the incer axis about itself 180° and measure the shaft direction. Repeat each measurement 3 times. Data Reduction Average the readings of the first two sets of measurements. Average the readings of the second two sets of measurements. The angular difference between the two averages equals 2 times the orthogonality error &. OUTER AXIS 180° OUTER AXIS OF ANGULAR POSITION OF THE INVER ANDS ANGULAR POSITION OF THE INNER AXIS DATER Axis at 181 包裝配 Axis at Dº Differ Axis at D° Diver Axis at 180° SG. | Inner Axis 56.2 17.9 Inner Axis Inner Axis! 79.1 Inner Axis At At 18.2 Λt Λt 55.9 29.1 Elo.Co Start Pos. Start Pos. Start Pos. Start Pos. 18.1 56.0 56.Z Inner Axis 19.3 58./ 27.6 53.8 Inner Axis Inner Axio Inner Axis 180° From 180° From 180° From 180° From 57.8 -4341 27.5 Start Pes. Start Pos. Start Pos. Start Pos. AIS . 27.5 53.Q 58.Q Avg 1. Set; Avg 2. Set! Avg 2. Set; Avg 1. Set 28.4 550 12.7 57.0 Diff. Between Averages = 25 = 55.3 Diff. Between Averages = 26 = 24.6 25 --19.1 15.3 OUTED AXIS O.A. A ZE = 5,8 Average Orthogonality Error & = 2-9 Arc Sec Witnessed (Goerz) 100 Josted By . Witnessed (Customer) PAGE. to Huy few to what house 4/21/75 OF /

ORTHOGONALITY TEST SOME SET
Instrument: 700-60 PO (/5B-6070) Unit: Shop Order: RZIZ Customer: NASA- MARESWALL OUTER AXIS
Specification Requirement: Second E
OF POOR QUALITY
Task Datermine the perpendicularity error between two intersecting gimbal axes.
Test Setup Set up an autocollimator or theodolite with an autocollimating eyepiece with a resolution of 0.2 arc seconds minimum, such that autocollimation can be established with the mirror placed on the center of the inner axis. Mount an adjustable double surface mirror on the inner axis and align it perpendicular to the axis of rotation. Two tooling mirrors are to be used if the shaft does not have a central perforation.
Test Procedure Establish autocollimation and measure and record the shaft direction in the co- ordinate parallel to the outer axis. Rotate the inner axis about itself 160°. Measure and record the shaft direction. Rotate the inner axis about the outer axis 180° and measure and record the shaft direction as above. Rotate the inner axis about itself 180° and measure the shaft direction. Repeat each measurement 3 times.
Data Reduction Average the readings of the first two sets of measurements. Average the resoirge of the second two sets of measurements. The angular difference between the two averages equals 2 times the orthogonality error £.
ANGULAR POSITION OF THE INNER AXIS ANGULAR POSITION OF THE INNER AXIS

ANGULAR (Duter Axis		OF THE INNE Duter Axis	-		
Inner Axis At Start Pos.	10.7 .10.7 .10.6	Inner Axis At Start Pos.	14.4		
Inner Axis 180° From Start Pos.	11.4 11.4 11.4	Inner Axis 180° From Start Pos.	16.8		
Avg 1. Set		Avg 2. Set	15.5		
Diff. Between Averages = 26 = 4.5					

	N OF THE INNER AAIS Outer Axis et 1825				
Inner Axis At Start Pos.	Inner AxisAt Start Pos.				
Inner Axis 180° From Start Pos.	Inner Axis 180° From Start Pos.				
Avg 1. Set	Avg 2. Set!				
Diff. Between Averages = 25 =					

Average Orthogenality Error $\mathcal{E} = 2.25$ Arc Sec

Tested By Witnessed (Boerz) Witnessed (Customer) PAGE 4/21/75 (Cherry forces) 1/05/1/1/25/2000 On Mularia 1/05/

INSTRUMENT:	MOTIGH SIMILATUR
UNIT:	ر و در
SHOP ORDER:	K00213
CUSTOMER:	NASA MSEC.
NOTES:	ر الله الدراعية - ينيدروا المهومتين معاهر الدامية بالمعادية فيت ورايودوريات فيديا الدراعية المستميلين
المرسوم مريد مترياد فرون والمتعومة والمتريد والمتعدد	شاست د العرود وخوارش بوستنسبت معانية بالمستنسبين بمواجه فرودي القياسي " جراز ي الديد بمماريها العا
چە د ئىنىنىدىدىنەرىدى ئىرىسىدىدى روادىدى دو	مد الوقائدي (و) . وهم نصف مع مصدلي فيتصفح بم يصيبو هوم بينواهيا الدوليات المطابعية النبو استحسيس

WHIM 5/166.

TEST SET-UP

SPECIFICATION:

PROCEDURE: .

EQUIPMENT:

Adjust, add, or subtract counterweights as required to counterbalance the axis within the specified value. F x X must be less than specified value.

manual trans	
RESULTS	•

DUMMY LOAD:	F: 3.5 63	
WEIGHT: 300 15	x: 14	
DIMENSIONS:	UNBALANCE = $\mathbf{F} \cdot \mathbf{x} = 49$	mg = 1255 /10

WITHIN 5 4B.

SHOP ORDER	: K0021	13	
CUSTOMER:	•	MSFC	
√? NOTES:	MIDDLE	AXIS	

Spring Scale

Spring Scale

TEST SET-UP

SPECIFICATION:

PROCEDURE: .

EQUIPMENT:

Adjust, add, or subtract counterweights as required to counterbalance the axis within the specified value. F \times X must be less than specified value.

RESULTS	:

DUMMY :	LOAD:	F:	5-5 or
WEIGHT	• • • • • • • • • • • • • • • • • • •	- X:	186.
		<u></u>	

DIMENSIONS: UNBALANCE = $F \cdot x = 99 \text{ M/S} = .51 \text{ H/B}$.

INSTRUMENT: _	METION SIMULATOR
UNIT:	······································
SHOP ORDER:	1510213
CUSTOMER:	MASA MSEC
NOTES:	ي يود چه در ساده دعد در پر رود پرشنجهه ۱۹۵۵ د در سخمه دست است می موده و معدو پرشد و معدو پرشد سر است.
	and the second s
SPECIFICATION:	WITHIN 5 Hills.

TEST SET-UP Counterweights Spring Scale EQUIPMENT:

*

PROCEDURE: .

Spring Scale

Adjust, add, or subtract counterweights as required to counterbalance the axis within the specified value. F \times X must be less than specified value.

RESULTS:

DUMNY LOAD:

r: <u>35 m</u>

WEIGHT:

22 in

DIMENSTONS:

UNBALANCE = $F \cdot x = 770 \text{ mg} = 4.0 \text{ Hds}$

Tilt Axis