COMPUTATIONAL INTELLIGENCE REPORT (2022-2023) (14-06-2023)

	Name	Mohamed Khaled Hassan Aly	GitHub Account	https://github.com/MoMido1
	Surname	MOTRASH	Repository	https://github.com/MoMido1/Computational_Intellegence_2022
ı	Email	S295805@studenti.polito.it	Exam Date	14-06-2023

TOTAL WORK THROUGH THE YEAR

LABS	Details	Details	Contributors
Lab1	Breadth First	Developed without any external resources	Alone
Set Covering Problem	Depth First	Developed without any external resources	Alone
	Greedy BF	Developed without any external resources	Alone
	A*	Developed without any external resources	Alone
	Link	https://github.com/MoMido1/Computational_Intellegence_2022/tree/main/Lab1	
Lab1_HillClimbing	Description	Solving the same problem of set covering using the same problem function with the same available function.	
	Tweak	The tweak function removes an already covered element and places a new one that is not covered and searches for the new solution if there's any	Alone
	Туре	2 types of Hill Climbing were attempted: - SS -> Steepest-step FI -> First improvement	Alone
	All this code was developed without any external resource or assistance		
	Link	https://github.com/MoMido1/Computational_Intellegence_2022/tree/main/Lab1_Hill_Climping	
Lab2_setCovering+ea Evolutionary Algorithms	Description	Solving the set covering problem using the same problem specifications with Evolutionary Algorithms. No external resources were used	
	Types	Different types of Algorithms were used: - (1 + 1) Algorithm (1 + λ) Algorithm (1, λ) Algorithm (μ , λ) Algorithm	Alone
	Link	https://github.com/MoMido1/Computational_Intellegence_2022/tree/main/lab2_setCovering%2Bea	
GA Set Covering Problem	Details	Applying genetic Algorithm for set covering problem and modifying the hyper parameters	
Genetic Algorithm	Types of Operators	Several operators were used with different probability of selection in each generation: 1- Cross Over i.e (prob = 0.1) 2- Mutation i.e (prob = 0.1) 3- Elitism i.e (prob = 0.8) (ALONE)	Inspired from Lecture Code
	Parent Selection	Tournament selection (pressure = 2) Random parent selection	Inspired from Lecture Code
	Link	https://github.com/MoMido1/Computational_Intellegence_2022/tree/main/GA_ SetCovering_Problem	
Lab3_NIM_Game	Details	4 tasks were attempted to play against random player	
	Expert Player	Using the Nim sum technique to decide	Inspired from Lecture Code

Base-Nim	Here it makes a check based on a base-3 NIM sum	Alone
Min Max	Uses the min max strategy to find the best solution	Inspired from Lecture Code
Reinforcement Leaning	Using Markov Decision Process algorithm for learning	Inspired from online code presented in lecture
Link	https://github.com/MoMido1/Computational_Intellegence_2022/tree/main/Lab3_NIM_Game	

PROJECT (2 ALGORITHMS WERE ATTEMPTED)

Quarto Game	details	Contribution
Expert Player	Places the piece in the best place possible to guarantee the win and if not, it will place it in a place to make the opponent not win in any case. Then selects the piece for the opponent that won't guarantee for the opponent the win	Alone
Minmax Player	Uses Min Max algorithm for better selection of the piece and a better selection of the position.	Alone
Link	https://github.com/MoMido1/Computational_Intellegence_2022/tree/main/quarto	