lmię i nazwisko	Nr indeksu	Kierunek	Wydział (skrót)	Data	Wersja sprawozdania
Dawid Królak	145383	Informatyka	WIIT	25.01.2021	1.0
Nr ćwiczenia	Tytuł ćwiczenia				
204	Badanie oddziaływania pola magnetycznego na przewodnik z prądem.				

1. Wyniki pomiarowe.

Tabela 1. Zależność natężenia prądu od wychylenia ramki i liczby uzwojeń

	n = 5			n = 10			n = 15	
<i>x</i> [cm]	$I_{P}\left[\mathbf{A}\right]$	$I_L\left[\mathrm{A} ight]$	<i>x</i> [cm]	$I_P[A]$	$I_L\left[\mathrm{A} ight]$	<i>x</i> [cm]	$I_P\left[\mathrm{A} ight]$	$I_L\left[\mathrm{A} ight]$
0	0,000	0,00	0	0,000	0,000	0	0,000	0,000
2	0,282	0,304	2	0,140	0,155	2	0,091	0,111
4	0,556	0,616	4	0,288	0,311	4	0,187	0,208
6	0,854	0,946	6	0,437	0,467	6	0,290	0,314
8	1,158	1,258	8	0,590	0,622	8	0,393	0,422
10	1,464	1,572	10	0,749	0,782	10	0,503	0,532

n = 20			n = 25		
<i>x</i> [cm]	$I_P[A]$	$I_L\left[\mathrm{A} ight]$	<i>x</i> [cm]	$I_P[A]$	$I_L\left[\mathrm{A} ight]$
0	0,000	0,00	0	0,000	0,00
2	0,065	0,077	2	0,059	0,062
4	0,142	0,158	4	0,120	0,123
6	0,220	0,238	6	0,172	0,191
8	0,300	0,318	8	0,245	0,260
10	0,386	0,398	10	0,315	0,328

2. Wyznaczenie zależności siły elektrodynamicznej od natężenia prądu płynącego przez uzwojenia ramki.

W doświadczeniu siłę elektrodynamiczną dla poszczególnych wychyleń ramki obliczono ze wzoru:

$$F_{ED} = cx (1)$$

Gdzie x to wartość wychylenia, a c jest stałą wyznaczoną z wartości przyspieszenia grawitacyjnego, masy i rozmiarów przyrządu pomiarowego, i która wynosi:

$$c = (2,65 \pm 0,05) \frac{N}{m}$$

Poszczególnym wychyleniom ramki odpowiadają więc następujące wartości siły elektrodynamicznej:

$$x = 0 \to F_{ED} = 0$$

 $x = 2 \to F_{ED} = 0,053 \pm 0,001$

$$x = 4 \rightarrow F_{ED} = 0,106 \pm 0,002$$

 $x = 6 \rightarrow F_{ED} = 0,159 \pm 0,003$
 $x = 8 \rightarrow F_{ED} = 0,212 \pm 0,004$
 $x = 10 \rightarrow F_{ED} = 0,265 \pm 0,005$

Zależność siły elektrodynamicznej od natężenia prądu dla różnych uzwojeń ramki

Wykres 1: Zależność siły elektrodynamicznej od natężenia prądu

3. Wyznaczenie zależności siły elektrodynaczminej od liczby uzwojeń.

Korzystając z wykresu 1. odczytano przybliżone wartości F_{ED} dla jednej stałej wartości prądu.

Tabela 2: Siła elektrodynamiczna w zależności od ilości zwojów, dla stałego natężenia prądu

0,000	0,000
5	0,037
10	0,075
15	0,108
20	0,140
25	0,173

Zależność siły elektrodynamicznej od liczby zwojów dla stałego natężenia prądu (I = 0,2A)

Wykres 2: Zależność siły elektrodynamicznej od liczby zwojów

4. Wyznaczenie wartości indukcji pola magnetycznego B pomiędzy biegunami magnesu.

Najbardziej zbliżony do linii prostej jest wykres zależności F_{ED} od I dla ilości zwoi równej 5.

Metodą regresji liniowej wyznaczono współczynnik nachylenia a_R tej prostej oraz błąd:

$$a_R = 0.174161253 \frac{N}{A}$$

$$\Delta a_R = 0,0012079 \frac{N}{A}$$

Korzystając ze wzoru:

$$B = \frac{a_R}{na} \tag{2}$$

Obliczono wartość indukcji pola magnetycznego dla n = 5, oraz

$$a = (13, 0 \pm 0, 2)cm = (0, 13 \pm 0, 002)m$$

$$B = \frac{0,174161253}{5 \cdot 0.13} = 0,267940389T$$

$$\Delta B = B \cdot \left(\left| \frac{\Delta a_R}{a_R} \right| + \left| \frac{-\Delta a}{a} \right| \right) = 0,267940389 \cdot \left(\left| \frac{0,0012079}{0,174161253} \right| + \left| \frac{-0,002}{0,13} \right| \right) = 0,00598 \approx 0,006T$$

Ostateczna postać wyniku:

$$B = (0,268 \pm 0,006)T$$

Rachunek jednostek:

$$B = [T] = \frac{[\frac{N}{A}]}{[m]} = \frac{[N]}{[A \cdot m]} = \frac{[J]}{[A \cdot m^2]} = \frac{[kg \cdot m^2]}{[A \cdot m^2 \cdot s^2]} = \frac{[kg]}{[A \cdot s^2]}$$

5. Wnioski

Im więcej zwojów tym mniejsze musi być natężenie prądu aby ramka wychyliła się na taką samą odległość. Zwiększenie natężenia powoduje wywarcie większej siły na ramkę i w rezultacie większe jej wychylenie. Im więcej zwojów tym mniej zależność siły elektrodynamicznej od natężenia prądu zachowuje liniowość. Jest to prawdopodobnie spowodowane większymi stratami energii przy większej liczbie zwoi.