

# **MEDICINE**

## **HANDWRITTEN NOTE**

# **MBBS Help**

**<http://mbbshelp.com>**

**<http://www.youtube.com/mbbshelp>**

**<http://www.facebook.com/mbbshelp.com>**

Name : \_\_\_\_\_

Subject : \_\_\_\_\_ **Medicine**



MBBSHELP.COM

CVS

RHEUMATOLOGY

RESPIRATORY

ACID - BASE BALANCE





# PULSE

6

## (I) Pulse Rate

(N) 60 - 100/min

Ab (N)

1) **Bradycardia** - < 60/min.

### Causes

#### Physiological

- 1) Elderly  
(age related SA node degeneration)
- 2) Sleep  
(↓ in sympathetic activity)
- 3) Athletes  
(Basal ↑ in vagal D/c)

#### Pathological

##### I) **CVS Cause**

- 1a) Brady arrhythmias  
(AV Block)
- 2) MI [inf. wall]  
SA node → due to stimulation  
also supplied by vagal n/v nearby  
② coronary artery

##### II) **Non-CVS Causes**

- 1) Hypothyroidism
- 2) Hypothermia  
(directly affects SA Node)

##### 3) Drugs

- a)  $\beta$  blocker
- b) non DHP CCB [cause AV Block]

c) ~~Digoxin~~ Digoxin. effect

##### 4) ↑ ICP

Cushing's reflex = BP↑, HR↑, irregular resp

To perfuse brain systemic  
BP↑ → stimulate baro  
receptors in carotid  
release vagal D/c

↑ Bile  $\Rightarrow$  SA node

⑤ Obstructive jaundice

2) Tachycardia  $> 100/\text{min}$

CAUSES

Physiological

1) Infants ( $\uparrow$  SA node activity)

2) Anxiety  
( $\uparrow$  sympathetic activity)

3) Exercise  
( $\uparrow$  demand)

Sympathetic system  $\leftarrow$  Thoracic n/s  
[Thoracolumbar]

Pathological

① CVS causes

1) Tachyarrhythmias, arrhythmias.

a) PSVT

b) AF

2) MI (ant. wall)

[Stimulation of nearby sympathetic n/s]

② Non-CVS causes.

1) Hyperthyroidism.

2) Fever.

3) Bébi - Bébi

4) Drugs

a)  $\beta$  agonist

b) short acting DHPs [reflex tachycardia due to compensation]

c) Digoxin toxicity

d) Theophyllin

e) Thyroxin.

③ Relative Bradycardia / Faget's Sign Q,

HR doesn't ↑ in proportion to body temperature.

(N) For every  $1^{\circ}\text{C}$  from  $37^{\circ}\text{C}$ .

$\downarrow$   
HR ↑ by  $15-20/\text{min}$  from baseline

For every  $1^{\circ}\text{F}$  from QBF  $\rightarrow$  HR ↑ by  $10/\text{min}$ .

e.g. if Body Temp is  $40^{\circ}\text{C}$ .       $\text{HR} = 112/\text{min}$  (baseline =  $80/\text{min}$ )  
 min expected  $\text{HR} = 80 + 45$   
 $= 125$ .

Causes

Infectious

(also ⊕ SA node)

- 1) Typhoid fever
- 2) Brucella
- 3) Legionella  
(sputum AFB +ve)
- 4) Viral

Non-Infectious

- 1) Drug induced fever
- 2) Self induced fever or Factitious Fever. Q.
- 3) Fraudulent Fever  
(thermometer only).

## (II) Rhythm :-

(N) → Regular = Fixed interval b/w any 2 consecutive pulses



Ab (N)

Physiological

Sinus arrhythmia

HR changes in inspiration & expiration

Pathological.

During Inspiratory Phase

-ve Intrathoracic Pressure

↑ Blood flow into (R) side of heart

Pulmonary vessels dilatation  
(blood pooling)

↓ blood flow into (L) side of heart

CO will ↓

SBP will ↓

Baoroceptor stimulation ↓

Vagal release ↑

HR ~~↓~~ ↑

## During Expiratory Phase.

(+) Intrathoracic Pressure

↓  
↓ blood flow into R side of heart  
↓

Pulmonary vessels are squeezed  
↓

↑ blood flow into L side of heart

CO will ↑

[SBP ↑]

Baroreceptor (+)↑

Vagal ↑

[HR ↓]

## Pathological

I) Regularly irregular rhythm

↓  
predictable      ↓  
variable.

CAUSE :- 1) [Bigeminy Rhythm] ← Digoxin Toxicity

every alternate ventricle contract & depolarize  
is due to premature ventricular ectopic

(N) ECG.



Pulse



Bigemny



premature ventricular ectopic [wide p. QRS prolonged, inverted T.  
due to abnormal depolarization]

Pulse

Bigeminus



↓ due to ectopic.

↓ amplitude due to ↓ ventricle filling time  
hence ↑ stroke volume

II Irregularly Irregular Rhythm

↓ no predictable variation in interval.

CAUSE = Atrial fibrillation. = variable HR

### III PULSE PRESSURE.

How well a. felt

$$\textcircled{N} = \text{SBP} - \text{DBP} [30-60 \text{ mm Hg}]$$

Ab  $\textcircled{N}$

I) ↓ PP. / Threadbare Pulse.

Mech. if  $\boxed{\text{SBP } \downarrow}$  &  $\boxed{\text{DBP } \uparrow}$

↓  
if CO ↓

Stimulate sympathetic activity

↓  
arteriolar constric<sup>n</sup>



PVR ↑

CAUSE = Shock [Hypovolemic, shock]. 12  
not found in septic or neurogenic shock.

12

## II> ↑ PP / Bounding Pulse.

Mech - if SBP ↑ or DBP ↓  
 occurs if COT  
 to ↓ LV st Main → PVR ↓

CO is inversely related to PVR

CAUSE : 1) ↑ CO state

- 1) AR
- 2) MR.
- 3) PDA

Physiological → ♀  
when plasma vol r.

Pathological →

## 1) Hyperthyroidism

$\beta$ , rec +

ionotropic

## chronotropic

$$\text{COT} = \text{TSV} \quad x$$

HRT

(N) vit B<sub>1</sub>, ⊖ NO synthase

## 2) Anaemia

3)  $B_{\text{eff}} - B_{\text{ext}}$

if Def of VGB,  
↳ vaso dilatation

↓ PYR ↓ → COT↑

PVR ↓ as  
arteriole are  
bypassed  
↳ CO↑

- 4) A-V fistula
- 5) Paget's Disease  
[A-V fistula in Bone]

13

Q.  $\subseteq$  [low CO state] will cause [bounding Pulse]?

Ans. severe bradycardia  $\subseteq$  [complete AV Block]

$$SV \uparrow \times HR \downarrow \rightarrow CO \downarrow$$

AV Block  $\rightarrow$  ↓ depolarization of ~~pacemaker~~ Purkinje fibers  
 $\downarrow$   
 Rate  $\downarrow$  [firing speed is less in AVN]  
 $\uparrow$   
 But EDV ↑  
 $\uparrow$   
 SV ↑

## (W) CHARACTER

| Rate                | Rhythm | best assessed in | Radial artery  |
|---------------------|--------|------------------|----------------|
| character / contour | "      | "                | Carotid artery |

## (N) Waveforms of carotid.



$S_1$  is due to closure of AV valves

14



### WAVE

① Perfusion wave

MECH  
It is due to pressure transmission by isovolumetric LV contraction onto carotid.

② Tidal wave

Below of blood ejected into carotid ring its pressure further.

③ Dicrotic wave

Due to back pressure reflection from small vessels

Dicrotic notch represents closure of aortic + pulmonary valve ( $S_2$ )



Recoil of small vessel lead to the pressure impulse



2) **Hypokinetic Pulse**  
⇒ ↓ amplitude

though diastole wave  
is ① but still not felt  
not felt clinically.

↑ CO state

most specific pulse of  
severe AS.



④ **Dicrotic Pulse**

= 2 peaks  
one in Systole  
other in diastole



shock

(Hypovolemic  
cardiogenic)

⑤ **Bifurcations Pulse**

= 2 peaks  
① in Systole  
Best assessed in  
peripheral artery



Most specific pulse  
of

- ① Severe AR.
- ② Severe AR + AS

Brisk isovolumetric ventricular contraction

(↑ LV vol. + ↑ stretching)

↓  
Perfusion wave will shift to (as duration is less)

gets separated from tidal wave.

③ HOCM --- ?

If will make tidal wave to come late.

## V MISCELLANEOUS POINTS IN PULSE.

17

1) PULSUS ALTERNANS - Best assessed in Radial.

Regular alteration of pulse amplitude.



only amplitude changes, interval remain same

most specific pulse.

CAUSE → **LV (Systolic) Dysfunction**

2) PULSE DEFICIT :-

(N) HR - PR ← due to adequate SV = 0  
↳ arterial pulsation is felt  
due to ventricle contract

Ab (N) if  $HR - PR = +ve \Rightarrow$  Pulse Deficit.

CAUSES

1) **AF c variable heart rate**

Pulse ↑  
adequate ventricle filling  
Here 5 HR but 3 PR

2) **Premature Ventricle Ectopics**

less filling time → pulse not felt

If pulse deficit  $> +10/\text{min} \Rightarrow \text{AF only}$

### 3) PULSUS PARADOXUSES :-

(N)  $\text{SBP}_{\text{exp}} - \text{SBP}_{\text{insp}} = 0 \text{ to } 10 \text{ mm Hg.}$

If this difference is  $> +10 \Rightarrow$  ~~Pulse~~ Pulsus Paradoxus.

Exaggeration of Normal Phenomenon. hence paradoxical word is wrong.

**Mech**  $\downarrow$  in  $\text{SBP}_{\text{insp}}$  more than physio limits.

#### CAUSES

(I) CVS :- H/o CVS cause  $\Rightarrow$  **Cardiac Tamponade.**

"Compression" of heart due to pericardial effusion.

(N) During Inspiration,

Blood flow is more in **R** Ventricle

RV wall dilates to accommodate extra blood.



In Tamponade:

Inspiration  
blood.

19



RV wall can't dilate due to ~~pleural~~ pericardial fluid.

→ Septal bulge in LV → ↓ LV filling further

↓  
CO ↓

↓  
SPP ↓ during inspiration.  
than physiological limits.

## 2) Constrictive Pericarditis

Failure of relaxation of heart due to stiff pericardium



## 3) Restrictive Cardiomyopathy

Failure of relaxation of heart due to stiff endomyocardium.



Septum should be spared from stiffness to cause this sign

## II) Non CVS Cause

H/c overall cause →

### Acute exacerbation of asthma or COPD.

2) Pulmonary embolism

3) Kussmaul breathing [due to met-acidosis]

4) Obesity

Q. 5) SVC Obstruction [reason not known].

Deep Inspiratory efforts.

Large -ve intrathoracic pressure

↑↑↑ venous return to the right side

↓  
Septal bulge.

Pulm Paradoxus



Due to extra blood  
septal bulge occurs.



(N) measure of (R) atrial pressure seen in (P) IJV

(N) Height → [0-3cm from sternal angle]

} 5cm below

RA activity.

= [5-8cm from RV activity.]



$Q \subseteq$  wave  $\cup$   $(B)$  right + diastole

$\Rightarrow$  V wave

Q. E wave will be more  
pronounced?

⇒ a game.

Q. Can different wells be more prominent?

$\Rightarrow x$  ~~was~~ descent

The diagram illustrates the sequence of events in the cardiac cycle:

- Opening of valves:** Indicated by arrows pointing towards the chambers.
- Closing of valves:** Indicated by arrows pointing away from the chambers.
- Phases:**
  - isovolumetric contraction:** Between atrial contraction and ventricular contraction.
  - ejection phase:** Between ventricular contraction and ventricular relaxation.
  - isovolumetric relaxation:** Between ventricular relaxation and atrial contraction.

Active RA  
“contractor”

Picture R  
"centre"

Passive blood  
flow from  
RA to RV

Venous  
filling of  
RA via  
 $\text{SVC} + \text{IVC}$

“Reunited  
values  
pulled down  
by RV centre”.

TV bulge into RA. Tricuspid valve (↑ RA pressure) shifted due

↑ RA pressure ↓ RA pressure

↑ RA volume

↑ RA pressure.

## Ab(N) JVP

(I) **a wave** = due to (R) atrial contract

1) **Absent a wave** = if ineffective atrial contract

↓  
**AF**

2) **Large a wave** = if (R) atria contracting against  
Diastolic Wave more resistance

If (R) atria is contracting → Tricuspid valve gives resistance  
 1) Tricuspid valve gives resistance  
 2) RV also gives resistance

cause-

a) **Tricuspid stenosis**

b) RV pressure ↑

RVH  
(concentric)  
↑  
due to (PS)

**PAH**

↓  
RV failure  
(systole)

RV blood retention.

"Compression of RV"

↓  
**Cardiac Tamponade**

1) **Pulmonary embolism**  
2) **RV MI**

3)

3) **Canon a wave** = if RA contracting against closed T. valve.  
**Systolic event** → cause TV closure  
occur if RA & RV are contracting simultaneously

causes → ① **Junctional rhythm.**  
SA node arrest → AV node becomes pacemaker + impulse. Reach. (B) atria & ventricle simultaneously

Rate of Cannon a wave = 50/min, **regular**

## ② **Complete AV Block**

SA node will depolarise atria.  
Purkinje fibres will depolarise ventricles independently

so occasionally atria & ventricle can depolarise simultaneously

Canon a wave is = **intermittent**

## II **X Descent**

N due to tricuspid ring pulled down by RV contract during ejection phase.

R atria is free of significant blood (during this phase)

Ab N

1) Absent X Descent

if R atrial pressure doesn't fall as it contains

b ↓ I ↓ or ↓  
significant Blood or Clot

significant blood  
↑  
(TR)

clot  
↑  
(AF)

24

## ② Deep & Descent

occur if tricuspid ring pulled more downward due to

⇒ Increased RV contractility

③ 1) Cardiac tamponade

2) Constrictive Pericarditis.

III

V Wave

N due to venous filling of R atria

Ab(N)

1) Absent or Low V wave :-

occur if venous filling of RA ↓

Cause - 1) obstructive SVC

2) Large V wave :-

If RA pressure ↑ during venous filling



if venous filling ↑ or ↓ compliance of R atria  
[failure of relaxation]

- 1) constrictive pericarditis
- 2) Restrictive cardiomyopathy

(IV)

## Y Descent

(N) due to passive blood flow from (R) atria to (R) ventricle ab(N)

1) **Rapid Y Descent** :- / FREIDRICH'S SIGN.  
will occur if (R) atrial blood moves very fast into (R) ventricle as soon as Tricuspid valve opens.

All causes  
of large v = Rapid y

2) **Slow y Descent** :-

If (R) atrial blood moves into (R) ventricle slowly.

cause - 1) Tricuspid stenosis  
2) ↑ RV pressure



Causes of Large a = Slow y

y descent absent - if RA blood doesn't move into RV during passive filling phase



occurs if (R) ventricle is fully "compremed."

**Cardiac Tamponade.**

## Signs of JVP

① Abdomino Jugular reflex  
[abdomen compressed for 10 sec]

## Description

if JVP remain elevated by [more than 3cm] even after release of compression for >15 sec

## Causes

Latent RVF ·  
no RVF in basal state + RVF is manifested if RV workload ↑

② Kussmaul's sign

↑ in JVP during inspiratory phase

(N) JVP ↓ during inspiration

if (R) atria fail to relax (N)

Constrictive pericarditis  
Restrictive cardiomyopathy



If basal RA P = TS RVF

Basal atrial 'P' ↑ due to  
if AV valve Stenosis → ventricle failure

Kussmaul's Sign is absent in tamponade. - - - ?

Q. Δ of etiology :-



Ab(N)

①



a) TS

b) constrictive  
Pericarditis

c) Tamponade d) TR.

y is absent

②



ans ② → TS

show y descent

③



①

$\Delta$  = large a  
TS



②

Here a is systole  
 $\downarrow$

Options

① TS

② Junctional  
Rhythm

$\Delta$  = canon aware

$\downarrow$   
Junctional Rhythm

# APEX BEAT

28

(N) due to iso volumetric contraction (D) ventricular contract.



LV apex displaced superiorly

Nature → Tapping.

Site → (L) 5<sup>th</sup> ICS, just medial to mid-clavicular line

Area → < 2.5 cm<sup>2</sup> [localised].

## Ab (N) of Apex

| Ab (N)         | Description                                | Cause                                            |
|----------------|--------------------------------------------|--------------------------------------------------|
| ① Hyperdynamic | Palpable for upto $\frac{2}{3}$ of systole | (L) ventricular volume overload.<br>[↑ co state] |
| ② Sustained    | Palpable for $> \frac{2}{3}$ of systole    | (L) ventricle pressure Overload.<br>eg. AS.      |
| ③ Diffuse      | area $> 2.5 \text{ cm}^2$                  | Dilated cardiomyopathy                           |
| ④ Double       | 2 impulses palpable in systole             | LV aneurysm<br>(complication of MI)              |



Asymmetrical Septal hypertrophy



⑤ Triple: 3 impulses palpable in systole



⑥ Absent non-palpable

Pericardial effusion  
Emphysema  
Obesity  
Dextrocardia Q  
↳ apex goes posteriorly hence not palpable

Q. Double Apex seen in  
① AS [HOCM & subvalvular AS]

- ② TS
- ③ MS
- ④ AR.

# AUSCULTATORY FINDINGS

30

\*  $S_1$ .

due to closure of AV valve.

(N)  $\Rightarrow M_1 T_1$  [mainly contributed by mitral valve].

Split < 20msec.

Site : Apex

\* Pitch : moderate

Any mitral valve sound/murmur.

Best area = Apex

Ab (N)

Factors affecting  
the intensity

soft  $S_1$

Loud  $S_1$

1) Force of isovolumetric ventricular contraction  
if weak force  
eg. Dilated CMP  
LVF,  
RVF  
VSD

Strong force  
eg. MS, TS  
(if atrial P is high)

2) Cond<sup>n</sup> of A-V leaflets  
if fail to strectch  
each other

eg. MR  
TR

calcification of  
leaflet

3) The presence  
of fluid,  
m/s  
air  
fat  
between AV leaflet  
& stethoscope



- if ventricle blood  
vol. ↑.

AR

PR

- if ventricle wall  
thickness ↑  
LVH ← AS  
RVH. ← PS

thin.  
lean.

LMR

All valvular Lesions cause  
Soft S, except MS + TS

a) Most imp  
factor  
Position of AV  
leaflets at onset  
of ventricle  
contrac.



If impulse reaches ventricle late  
+ ventricular blood filling fully  
complete  
↓  
AV leaflets forced to close  
position.

If impulse  
reaches ventricle  
fast +  
ventricle blood  
filling incomplete  
↓  
AV leaflets fully  
open.

- Bradycardia
- PR interval ↑

Tachycardia  
short PR interval

Q. In Hypothyroidism,  $S_1$  is soft-

Q. In Digoxin effect,  $S_1$  is soft ans AV Block  $\rightarrow$  PR ↑ interval

Q Cond<sup>n</sup> causing variable  $S_1$  intensity :-

If variable HR = AF

Q If variable PR interval = 2° AV Block



Progressively PR interval ↑ till atrial impulse fails to conduct to ventricle  
= Wenkebach's phenomenon.

\*  $S_2$

It is due to closure of Semilunar Valves.

(N)  $A_2 P_2$

Aortic valve closes earlier than Pulmonary valve  
 $\downarrow$

LV ejec<sup>n</sup> time is less than RV

Site = For  $A_2$

aortic area

For  $P_2$ .

Pulmonary area

(R) 2<sup>nd</sup> Ics

(L) 2<sup>nd</sup> Ics

Best for  $S_2$

$\rightarrow$  Pulmonary area. [as both sound heard]

Split = 30-60 msec.

During Inspiration → split Increases

33



LV blood vol ↓

LV ejection time ↓

A<sub>2</sub> early

RV blood vol ↑

RV ejection time ↑

P<sub>2</sub> → Late

During Expiration → split Decreases or Expired



LV blood vol ↑

A<sub>2</sub> late.

RV blood vol ↓

P<sub>2</sub> early

~~WV~~  
Ab N of S<sub>2</sub> split

① **Wide Split**



CAUSES

I) **Early A<sub>2</sub>**. (earlier than physio limit)

If LV ejection time ↓

VSD

MR

or

If LV early depolarisation.

WPW syndrome

M/c site → L Q.

accessory pathway

from LA to LV will depolarise

LV early.

→ Type A WPW syndrome

Q (Bundle of Kent)

## WPW SYNDROME

34

- 1) ♂ > ♀
  - 2) L side more common
  - 3) short PR interval
  - 4) S, will be soft Q. -- ?

II)  $P_2$  is Late [Later than physico limit]

② REVERSE SPLIT or P<sub>2</sub>  
PARADOXICAL SPLIT  
CAUSES A<sub>2</sub>

①  $P_2$  is early (earlier than  $A_2$ )

(II)  $A_2$  is Late

(later than  $P_2$ )

↓  
LV ejec' time ↑

↓  
LV Late depolarisation

AS

LBBB

LVF

Q. How to differentiate bet'n Split + Reverse Split.

During Inspiration.

Reverse Split will Decrease RV vol ↑



split Decreases  
[against N rule].

During Expiration

Reverse Split will Increase



split Increases

Q. In. Pulmonary artery HTN.  $S_2$  Split

(A) ①

(B) ↑

(C) No change

→  $P_2$  comes early ---?

Hint - Pulmonary hang out interval

### ③ WIDE + FIXED SPLIT

doesn't vary  $\equiv$  resp. phases.

causes  $\rightarrow$  ASD.

RV blood  $\uparrow \rightarrow$

$P_2$  late  
 $A_2$  early

wide

LV blood  $\downarrow \rightarrow$



Split is fixed

= ventricle blood vol  
remain constant

during Insp. & Exp.



$$\begin{aligned} \text{RV blood} \rightarrow \text{Insp.} &= \uparrow + \downarrow \\ \searrow \text{Exp.} &= \downarrow + \uparrow \end{aligned} \Rightarrow \text{Fixed.}$$

### Intensity of $S_2$

#### Factors

1) Pressure of aorta/  
Pulmonary to close  
SL valves.

2) Cond'n of SL valves  
Leaflets.

Soft

Hypotension

Loud

Systemic HTN  
 $\rightarrow A_2$

P. HTN  $\rightarrow P_2$

calcified

AR

PR

x

\* Single  $S_2$  seen in

AR [ $A_2$  is absent]

PR [ $P_2$  absent]

AS/PS [valves get severely calcified]

## $S_3$ / Ventricle Gallop

It is due to ↑ in ventricle blood volume during early filling phase.

↓  
ventricle vibrations

Causes:-

↓

Systolic dysfunction  
↑ end systole volume

① VF  
RVF  
DCMP  
MI  
LV aneurysm

Atrial venous filling ↑

↓ early filling phase  
↑ blood will enter ventricles from atria  
eg. high CO state  
↓  
MR • TR

Site → LV  $S_3$  → Apex

RV  $S_3$  → Tricuspid area. [① lower parasternal]

Pitch → Low pitch.

Q. In atrial septal defect ← side  $S_3$  → RV  $S_3$  / LV  $S_3$ ?

Ans → RV  $S_3$ .

Q. In VSD, ← side  $\bullet S_3$  = LV  $S_3$



Pulmonary valve is open in systole so blood from RV goes into P. artery ↓

P. vein

↓  
(L) atrium

MV is closed in systole & blood is collected in it <sup>38</sup>  
1st chamber to enlarge is L atria.

Q. In PDA L side  $S_3 = LVS_3$

### $S_4$ / Atrial Gallop

It is due to atria contracting against stiff ventricles → ventricle vibrate

Causes -

- 1) Restrictive CMP
- 2) HOCM
- 3) LVH due to AS
- 4) RVH due to PS
- 5) Acute MI.

In acute MI Both  $S_3 + S_4$ .

↓ Relaxation

↑  
↓ ATP due to ischaemia.

Site -  $LVS_4 \rightarrow$  Apex

$RVS_4 \rightarrow$  Tricuspid area

Pitch - Low pitch.

Q.  $S_3$  can be physiological -True/False

Ans → ♀ • young children • athletes

Q.  $S_4$  can be physio - True / False

39

Q.  $S_3$  represents systolic failure

Q.  $S_4$  represents Diastolic failure

Q.  $S_4$  seen in all except

a) AS [LVH]

b) Constructive Pericarditis [ventricles are trapped  $\rightarrow$  can't vibrate]

c) AR  $\rightarrow$  extreme ventricle dilatation  $\rightarrow$  making it stiff

d) Amyloidosis [RCMP]

Constructive Pericarditis doesn't produce  $S_3$  &  $S_4$ .

### ADDITIONAL    HEART    SOUNDS

Name

Ejection click

Cause

due to sudden  
cessation of opening  
of SL valves as it  
opens = high pressure

Timing

$s_1$                    $s_2$   
early systole

Pitch

High.



L:

Ejection click ↓ in calcified lesions.

2. Opening snap



sudden cessation  
of opening of AV  
valve as it  
opens in high pressure



High

LA pressure ↑ = MS, LA myxoma  
RA pressure ↑ = TS



③ Tumour Polyp

① atrial myxoma  
striking mitral valve

Early diastole

Low

④ Pericardial knock



ventricle walls  
strike [knock] on  
stiff pericardium

Early filling  
phase

High

Most specific sign  
of  
constructive  
pericarditis.

⑤ Non-ejection click

MVP collapse

≥ mid systole

High



In AF. JVP = a wave absent

HS = S<sub>4</sub> ⊖ [if previously present]

### MURMURS

Due to turbulence of blood flow or the



### TYPES

#### I) SYSTOLIC MURMURS

- Name M/c murmur overall Diagnose
- ① Ejection systolic murmur due to turbulence of blood flow due to ejection phase
- or
- Mid-Systolic murmur AS, PS
- or
- ↑ CO states. → [♀].
- or
- ↑ blood flow across SL valves (↑ blood flow across SL valves)
- or
- crescendo-Decrescendo



② Pansystolic murmur  
No peak.

VSD  
[LV pressure remain > RVP throughout systole]



chr. MR  
[LV 'P' remain > LA 'P' throughout systole]  
Chr. TR.

③ Early systolic murmur

If defect closer before mid-systole  
e.g. Small muscular VSD



If pressure gradient become zero ( $\leq$  mid-systole)



(b) Acute MR.

[MI or IE]. LA is not dilated unlike Chr. MR.

During early systole, (L) ventricle blood enters LA

LA 'P' will ↑ rapidly

during mid systole (L) atrial 'P' = (L) ventricle 'P'  
murmur will stop

(c) Acute TR.

④ Late systolic murmur

MR Prolapse



II

## DIASTOLIC

## MURMURS

43

Name

Causes

1) Early Diastolic

murmur.

OR

Decrescendo Murmur

AR, PR

Diagram



2) Mid-Diastolic murmur

Turbulence of blood flow from atria to ventricles.

MS, TS

Q. Early Systolic murmur seen in all except

a) TR (acute)

b) VSD (small mural)

c) papillary m/s necrosis (MI  $\rightarrow$  acute MR)

d) AS

Q. Identify the valvular lesion



a) MS

b) TS

c) PS

d) PS

III

## CONTINUOUS MURMUR

44



- Starts in systole
  - Peaks around  $S_2$
  - Ends in Diastole
- Origin - single site

Mechanisms :-

If Ab(N) pressure gradient is maintained throughout  
Systole + Diastole  
&

If Defect remains open throughout Systole + Diastole

Continuous murmurs are never due  
to valvular lesions

[CAUSES :-

1) Ab(N) communication b/w artery to vein

e.g. A-V fistula

Ruptured sinus of valsalva  
(acute to RAtria connection)

2) Ab(N) communication b/w systemic to PULM

e.g. PDA

(3) ↑ blood flow into blood vessels  
 mammary artery souffle (lactation) 45  
 uterine artery souffle. (♀)

(4) Severe arterial stenosis [ $>70\%$  narrowing of diameter]  
 Renal artery stenosis → bruit

Q. Continuous murmur can be physiological - True/false  
 4 Q, Lactation

Q. All causes continuous murmur except:

a) pt. of CKD on haemodialysis [A-v fistula]

b) severe atherosclerosis (carotid or renal artery stenosis)

~~c) AR + AS~~

d) Lactation.

## D/D of Continuous MURMUR.

### Continuous murmur

To & fro

Systolic-diastolic

Systole



+ Diastole

Origin

single site

single Site

Different sites

Peak around



$S_2$



AS + AR



e.g.

AS + MS



| Name                     | Cause                                                     | Type                  | Site                                                         |
|--------------------------|-----------------------------------------------------------|-----------------------|--------------------------------------------------------------|
| 1) Gibson's murmur       | PDA                                                       | continuous            | (L) upper parasternal area<br>46                             |
| 2) Key Hodgkin's murmur  | AR                                                        | early diastolic       | (L) 3 <sup>rd</sup> ICS<br>= Ekb's area<br>= Neo-aortic area |
| 3) Graham-Steel's murmur | PR                                                        | early diastolic       | (L) 2 <sup>nd</sup> ICS<br>Pulmonary area                    |
| 4) Austin Flint murmur   | AR                                                        | mid-diastolic to late | Apex                                                         |
|                          | Regurgitant jet of AR striking mitral valve.              |                       |                                                              |
| 5) Carey Coomb's murmur  | ARF                                                       | mid-diastolic murmur. | Apex                                                         |
|                          | Turbulence of blood flow over inflamed rough mitral valve |                       |                                                              |
| 6) Dock's murmur         | Severe stenosis of LAD artery (widow's artery)            | continuous murmur.    | 3 <sup>rd</sup> (L) ICS<br>Gum from sternal margin           |



⑦ Still's murmur  
→ Innocent murmur

young children

Ejection systole murmur

Pulmonary area

(relatively ↑ blood flow across Pnlm. valve)

⑧ Rytand's murmur

complete AV Block.

↑ Blood flow across AV valve

mid-diastolic

apex.

### FACTORS AFFECTING MURMURS:-

If blood flow ↑ → all murmur will ↑

except

↓ MVP

HOCM.  
Murmur

Blood flow

1) Respiratory variation.

a) Inspiration

↑ blood on (R) side

b) Expiration

↑ blood on (L) side

c) Valsalva effect  
(Persistent expiration)

Persistent expiratory  
↓ blood on (R) side  
followed by (L) side.

↑ TS, TR, PS, PR  
exception

Pulmonary ejection click  
↓ in inspiration

↑ MS, MR, AS, AR

[Except HOCM, MVP]

All murmur will ↓  
[Except HOCM, MVP].

## II Postural Variation :-

a) Standing

↓ blood flow into R+L side

48

all murmur will ↓  
except HOCM, MVP

b) squatting  
(immediate effect)

↑ blood flow into R+L side

all murmur will ↑  
except HOCM, MVP

## III Effects of Afterload changes :-

Lesion

Afterload ↓  
(aorta 'P' ↓)

Afterload ↑  
(aorta 'P' ↑)

AS

murmur ↑

murmur ↓

Pressure gradient

$$= \frac{LV}{'P'} - \frac{aorta}{'P'}$$

AR

murmur ↓

murmur ↑

Pressure gradient

$$= \frac{aorta}{'P'} - \frac{LV}{'P'}$$

MR



Regurgitant lesions behave similar

# MVP

49

**Cause:** Deficiency of type III collagen in MV leaflets (posterior)  
 ↓  
 ↑ leaflet flexibility  
 ↓  
 surface area of MV leaflet ↑  
 ↓  
 too big for LV cavity

C/F.

Symptoms :-

- 1) Chest pain  
M/c symptom.  
Due to papillary m/c stretching

- 2) Palpitations

ventricle fibre stretching

↓  
produce ventricle ectopic

sign :-

► M/c sign → **Non-eject<sup>n</sup> diet.**

due to doming of MV  
It occurs when LV cavity size ↓ significantly

- 2) Late systolic murmur (MR)

occur when post. leaflet looser contract c ant. leaflet.



If LV cavity blood vol.  $\downarrow$   $\rightarrow$  Prolapser will occur early  
[standing position]  
inspiratory phase

$\downarrow$   
Non-eject<sup>60</sup> click earlier.

$\downarrow$   
murmur will start earlier

[Jnv]

2D Echo  
if prolapsus is  $> 2\text{mm}$  into LA

[T/t]

1) Reassurance. (mostly benign)

2)  $\beta$  blockers (if palpitations) DOC

3) Sx Repave  $\leftarrow$  NYHA symb  $\geq II$

+  
Severe MR on Echo.

# HOCM

51

Cause - AD

mutation of  $\beta$ -myosin heavy chain.  
["Private mutations"]



Asymmetrical proliferation of septum.  
near the LV outflow tract.



Free wall hypertrophy



LV systolic function ↑  
to overcome obstruction

Diastolic func'  
 $\downarrow$  as filling  
is impaired

C/F

Symptom :-

1) Earliest → Dyspnoea  $\leftarrow$  LAP↑  $\leftarrow$  LV'P↑

2) Angina  $\leftarrow$  ↑ LV workload.

+  
Coronary vessels compressed by hypertrophied myocytes

3) Syncope



Fixed CO [CO will not ↑ during demand]

4) \* Sudden cardiac death

→ Irreversible loss of cardiac func<sup>n</sup>

in 1 hour of symptoms

→ HOCM is M/c.

→ SCD is due to ventricular arrhythmias due to ischaemia



②  $\text{Na}^+/\text{K}^+$  atpase

Signs :-

1) Pulse = Bifid  
or  
Pointed finger pulse

⇒ JVP =

If hypertrophied septum bulge  
into (R) atrium

Bernheim's effect      Systolic func<sup>↑</sup> - Brisk rovol. → Percussion  
↓                          confere<sup>"</sup>      wave will  
                            be early

RV 'P' T

- $a \uparrow$
  - $y$  slow

3) Apex = Double / Triple

4)  $s_1$  = Intensity Soft

$S_2 = \text{split Reverse}$

$$S_3 = \text{None}$$

$$S_u = LV S_u + t$$

Lv ejection time ↑  
(due to obstrn")

99

5) Most characteristic sign :-

Type → ejection system

Site → (L) 3<sup>rd</sup> ICS Emb's area



(SAM)  
systolic ant. movement of mitral valve towards septum  
further ↑ ring the obstacle.

2 most imp factors affecting obstruction

Drug

① Contractility

if ↑ → SAM ↑ → obstruction ↑

Digoxin. C/I in HOCM.

② Blood in LV if ↓ → obstruction ↑

(preload)

Diuretics  
Veno Dilators

(Blood act as physical barrier separating MV & septum)

Find

1) CXR → cardiac size (N)

2) ECG →

⇒ (N)



3) Echo -  $\frac{\text{septum thickness}}{\text{LV free wall thickness}}$

$\frac{3}{1}$  [reversed from (N)]

RX

54

- 1)  $\beta$  blocker  $\rightarrow$  Initial DCC  
If CI  $\rightarrow$  Non DHP CCB.  
Doesn't prevent sudden cardiac death.
- 2) AMIODARONE  
given if post H/O ventricular arrhythmia
- 3) Implantable defibrillator Device (intracardiac)  
 $\hookrightarrow$  prevent SCD
- 4) Septal artery sclerosis [ethanol]  
 $\downarrow$   
causes regression of septum.

LMP

# ARF

12/2/18

55

Cause:-

Hypersensitivity reac<sup>n</sup> to Group A β haemolytic Streptococci [Pharyngitis]  
Type II MSN Reac<sup>n</sup>.

C/F & Inv:-

Modified Jones Criteria

Major:- (5)

unique features

Rx

DOC - Aspirin

75mg 1kg/day

① Arthritis

M/c major manifestation

Large joints

asymmetrical

migratory

Non-erosive (non-deformity)

Polyarthritis

Duration ≤ 4 wks

Exception - JACCOUD's  
arthropathy  
(deformities +)

② Carditis

M/c valvular  
Lesion in  
RHD = MS

M/c c of Death = CHF

M/c larger = Endocarditis

M/c valve = Mitral

M/c Lesion = MR

L/c valve = Pulmonary

Hypocarditis = no necrosis  
[Troponin - N]

Pericarditis → Tamponade  
Constructive Pericarditis ] very rare

Date Diuretic  
↓ no response  
Steroids  
↓ no response  
Value replacement

③ Sydenham's Chorea

[Ab against basal ganglia, cerebral cortex]

- Motor = Tongue  
fibrillation +
  - Ext. Rotation of hand.  
["scooping"] +
  - "Milking action"
  - Disappears in sleep
  - $\text{♀} > \text{♂}$
  - Late manifestation.  
 $> 1-7$  months
  - Neuro-psychiatric disorders
- Sedation  
 ↓ no response  
 Valproate.  
 ↓ no response  
 IV Ig Q.Q.  
 (for refractory cases)

④ Subcutaneous Nodules

Site = extensor surface  
Non-tender  
Size - 0.5-2 cm

No t/t required

⑤ Erythema Marginatum

Site - extremities  
Trunk  
(never on face)  
Serpentine edge  
progress fast



Minor Manifestation

- Clinical
- 1) Fever (M/c Symptom)
  - 2) Antihistamines

Lab

- 1) ↑ ESR
- 2) ↑ CRP
- 3) ↑ PR interval on ECG.
- 4) [due to AV node inflammation]

### Essential Criteria

- 1) Evidence of recent streptococcal infec"  
(<45 days)

h/o scarlet fever  
is removed now.

Any one of 3 criterias -

a) throat culture +ve

b) Ab +ve for [ASO ↑ &/or Anti DNase]

c) Rapid streptococcal Ag test

Minimum criteria needed to make Δ of

#### Clinical

#### Major

#### Minor

#### Minors Essential

1) 1<sup>o</sup> ARF

2 major

1

-

or

2

~~1~~ +

+

2) Recurrent ARF

3

+

3) Recurrent ARF

on established RHD

2

+

4) Sydenham's chorea

-

-

5) Indolent Carditis

-

-

-

(~~out any kn cause~~)

## Changes in Jones Criteria.

58

↓  
Low Prevalence  
ARF < 2/1 lakh school  
going children

High Prevalence  
72/1 lakh [India].

Major

Joint Involvement  
= Polyarthritid

Polyarthritis  
or  
Monoarthritis  
or  
Polyarthralgia

Minor

Fever  $> 38.5^{\circ}\text{C}$

$> 38^{\circ}\text{C}$

Arthralgia - Polyarthralgia

Monoarthralgia.

ESR  $> 60 \text{ mm/hour}$

$> 30 \text{ mm/hour}$

Prophylaxis :-

1) 1<sup>o</sup> Prophylaxis :- Streptococcus → ARF  
pharyngitis

⇒ [Ab of choice] = Benzathine Penicillin Single Dose  
(1.2 mU) if  $> 27 \text{ kg}$   
~~if  $\geq 27$~~  0.6 mU if  $< 27 \text{ kg}$ .

Should be started less than 10 days of Pharyngitis  
↓  
of penicillin allergy

Macrolides (erythromycin or azithromycin)

27 2° Prophylaxis ARF → Recurrent ARF

Ab of choice = Benzathine Penicillin.  
(1.2 or 0.6 ml)

59

every 3-4 wks

↓ if allergy to penicillin

Sulfadiazine Q

↓ if allergy

Macrolide

### Duration of 2° prophylaxis.

### Clinical 1

ARF → out  
carditis

1) 5 years or till pt's age 21 yrs  
[if ever is longer]

ARF → carditis

2) 10 yrs or till pt's age 21 yrs.  
[if ever is longer]

ARF → RHD established

3) India - Lifelong ideally  
10 years till pt's age 40 yrs  
(if ever longer)

### D/D of ARF :-

1) Post-Streptococcal Reactive arthritis (PSRA) :-

- Small joints
- Symmetrical
- Duration > 1 month.
- Poor response to aspirin.

27

- (2) P - paediatric  
 A - autoimmune  
 N - neuropsychiatric  
 D - Disorder  
 A - associated i  
 S - streptoc.
- NO other ARF manifestations <sup>60</sup>

## Complications of ARF.

### VALVULAR HEART DISEASE.

MS

Cause - M/c - RHD

M/c non-rheumatic  
 = congenital

Pathophysiology:

↑ LA 'P' (dysphoria early symptom)  
 ↓

↑ Pulm. Vein ↑  
 followed by

↑ Pulm. artery 'P'

↓  
 RV pressure overload.  
 ↓ remodelling

RV [concentric hypertrophy]

↓ Later

RV systolic failure

↓  
 RV blood retention occur

↓  
 RA 'P' ↑ ← Systemic vein 'P' ↑

2nd site of stenosis → Pulmonary artery.

MR

M/c - RHD

M/c non-rheumatic  
 = MVP



↓ CO

↓  
 Gradual LA dilatation.



↓ during diastole

↑ blood will move from LA to LV

↓  
 LV volume overload.

↓ remodelling

LV eccentric hypertrophy

COT

↓ later

LV systolic failure

↓  
 LA 'P' ↑

Symptoms      Mech  
 ① Dyspnoea     $\leftarrow$  LA P'↑

② Haemoptysis  $\leftarrow$  M/c source  
 = Bronchial vein

③ Anasarca     $\leftarrow$  Systemic veins  
 hydrated P'↑

④



④ Recurrent  
 laryngeal n/v

Hoarseness of  
 voice

[Ortner's syndrome]

Signs

Pulse - irregularly irregular  
 rhythm

Pulse Deficit

Due to AF →  
 Pulse

(+)                  (+)

(+)                  (+)

JVP →

Reversal  
 occur

Absent              Prominent  
 a                      b  
 x                      y

due to AF

Apex -      LV (N)

Site - (N)

Nature - Tapping

LV - Dilated + vol. overload

Site - shifted laterally

Nature - Hyperdynamic

## Auscultatory signs

$S_1$  = Loud  
exception - if calcified valves

$S_1$  = soft

62

$S_2$  = split - wide

$S_2$  = split - wide

if RVF occur  $\rightarrow P_2$  late.

LV ejection time ↓ =  $A_2$  early

$S_3$  = never LVS<sub>3</sub>

$S_3$  - LVS<sub>3</sub> ++

if RVF  $\rightarrow RVS_3$  +

$S_4$  = if RVH  $\rightarrow RVS_4$

$S_4$  : LVS<sub>4</sub> ± [in late MR due to extreme LV dilatation making it stiff]

Opening = +ve snap

Opening = -ve snap

becomes ⊖ if calcified valves

## Murmurs

①°

Type = mid-diastolic

①°

Type = pan-systolic

Acute MR = Early systolic

MVP induced = Late systolic

Site - Apex

Site - Apex

Pitch = Low pitch

Pitch - High pitch

If pressure gradient < 40 mmHg  
= low pitch murmur

Stenotic lesions are low pitch  
Regurgitant " are high pitch

Radiation - Nil

Radiation - Interscapular area  
Axilla

Best pt's position - ④ Lateral decubitus

Best pt's position - ④ Lateral decubitus

Phase - Expiratory

Phase - Expiratory

2° murmur = -

### Clinical Criteria for severity

- 1) Opening snap  
 $S_2$ -OS gap inversely related to severity



- 2) Length of murmur is directly related to severity

I<sub>x</sub>

ECG- sequence

- ①(L) atrial enlargement



- ② RVH signs



- ③ RA enlargement

**Btrial enlargement**  
= due to Ms

CXR



2° murmur

↑ blood flow across MV<sub>63</sub> during diastole due to ↑ blood.

= mid-diastolic murmur

= **Functional Ms** → severe MR

1) Apex = shifted laterally

2)  $S_2$  = wide split

3)  $S_3$  = trace of LV $S_3$

4) murmur = mid-diastolic

Loudness or intensity is never a criteria for severity in Valvular Heart Disease

I<sub>x</sub>

ECG

- ① LAE



- 2) RHT signs LVH signs.

CXR



## ② Double atrial shadow



very rare.

64



$S_x$

Preferred  $S_x$  / Initial Process of choice /  $S_x$  in ♀  
Balloon valvotomy

Preferred  $S_x$  = MV Repair

If not possible  
MV Replacement



IVC Done under Lung-Heart Bypass machine.

**Criteria:**

- 1) Isolated MS
- 2) No calcification
- 3) No LA Thrombus

↓ if not fulfilled

**MV Replacement**



Dur. 25 yrs 5-10 yrs

Anticoagulation X  
= lifelong

Age Preference  
= young elderly

Q. 26 yr old, unmarried ♀ . K/c/o RHD c MS  
c/o - dyspnoea on 10 steps . Echo = MVA  $0.8 \text{ cm}^2$ .

Next Line Rx

- observation
- balloon valvotomy
- Bioprosthetic, MV replacement
- Metallic, MV "

Q. same history. O/E - opening snap (+ve.)

ans - (b)

Q. Same history, O/E - Pulse Deficit +20, opening snap (-nt)  
calcification.

ans - (d)

Q. Same history. marred, Q.E - opening snap (B),

MR +

66

Ans → (d)



Give heparin in 1st Trimester  
anticoag in 2nd Trimester - 3rd  
heparin in ~~3rd~~ " delivery.  
2 wks prior to.

**AS**

Cause - H/c age related calcification

Pathophysiology :-

LV pressure overload



LV (concentric) Hypertrophy

↓ later

LV systolic failure

↓  
LA 'P' ↑

Symptoms :-

→ Daze to

→ Angina ← ↑ LV workload      → Palpitations ← LV force of contraction ↑

Mech.

2) Syncope ← fixed co

## 2) Angina [Nocturnal]

← ↓ in Diastolic BP  $\underline{\text{BP}}$  leads to less perfusion

This occurs more during night as sympathetic activity ↑ further ↓ vascular tone.

3) Dyspnoea ← LA 'P' ↑

[Worst Prognosis]

Mortality  $\bar{c}$  in  $1\frac{1}{2}$  yr even  $\bar{c}$  medical tht

Signs:-

→ Pulse - Most specific  
Pauvre et tardive

2) Apex - LV 'P' overload

↓  
Site = N

Nature = Sustained

3)  $S_1$  = Soft

$S_2$  = split = reverse

LV ejec<sup>n</sup> time ↑ → Late  $A_2$

in early stages → narrow split

$S_3$  = + if LVF occurs

$S_4$  = ++

Ejection click = +

3) Dyspnoea ← LA 'P' ↑

Most specific.

= Bisferiens

LV Dilated + vol. overload

Site = shifted laterally

Nature = Hyperdynamic

$S_1$  = soft

$S_2$  = Single  $P_2$ .

aorta valve leaflets fail to strike.

$S_3$  = ++

$S_4$  = + Late AR.

(-)

#### 47 1° Murmur

Type: Ejection Systolic murmur      Type: Early diastolic

Site: (R) 2<sup>nd</sup> ICS [Aortic area - 1st]

68

Site: (L) 3<sup>rd</sup> ICS [Erb's Area]

2<sup>nd</sup> Aortic Area  
or

Neo-aortic area



Pitch: Low

Pitch = high

Radiation: Common carotid  
[or neck]

Radiation = towards apex

after striking arch of aorta

if radiation to axilla

Radiation to apex

= COLE - CECIL MURMUR

= GALLAVERDIN PHENOMENA

Best Pt's Position =  
Leaning forward. ✓      ✓

Phase - expiration      ✓

#### 2° Murmur

Not seen in AS

↳ Austin-Flint murmur  
mid- Late diastole

↳ Functional AS

T: Blood flow across  
aortic valve

[ejection Systole].

## Clinical Criteria for Severity

- 1)  $S_1$  = Soft
- 2)  $S_2$  = Reverse split
- 3)  $S_3$  =  $\oplus$
- 4)  $S_4$  =  $\ominus$

\* Severe Silent AS

- $\Rightarrow$  associated MS
- $\Rightarrow$  LVF

$\downarrow$  CO  
Hence sound  $\ominus$

$I_x$

[ECG] = Sequence  
① LVH signs

② LA enlargement



ST Depression  
T inversion

→ Strain pattern

[CXR]

Cardiac Size =  $\textcircled{N}$

Rx

Severe or severe  
AS                      AR  
Similar

[Area  $< 1 \text{ cm}^2$ ]

↓  
NYHA symptoms

$> II$  (symptomatic)

1) Any peripheral sign of AR  
 $\Rightarrow$  Pulse - Bisferiens

3) Aper - Displaced Laterally

4)  $\pm S_1$  - soft

5)  $S_5$  -  $\oplus$

Q  $1^\circ$  murmur = Duration.

$\Rightarrow$  Presence of  $2^\circ$  murmur  
= Austin-Flint murmur

[ECG] = sequence

① LVH

② LA enlargement



ST Normal  
T upright

as inner myocytes receive blood from cavity

[CXR]

enlarged

I (asymptomatic)



Preferred  $S_x$  = Aortic Valve Replacement

Q. 60yr old ♂,  $\in$  Aortic valve pressure gradient of 60 mmHg  
 k/o AS, c/o - equivocal dyspnoea symptoms  
 Next step?

- Ans.
- observation
  - Treadmill test
  - Aortic Valve Replacement
  - Diuretics.

Q. Same pt underwent treadmill test [Bruce Protocol]  
 c/o Dyspnoea & Fatigue at 11 min of exercise

Next step

Ans.



## Bruce Protocol

### Bruce Stage

I

Duration

71

0 - 2:59 min

II

3 - 5:59 "

III

6 - 8:59 "

IV

9 - 11:59 "

Pt. considered symptomatic if c/o dyspnoea / fatigue

$\leq$  Stage II

Asymptomatic if c/o dyspnoea / fatigue

$>$  Stage III

\* Severe AS + NYHA-I + underlying CABG = Aortic valve Replacement

### (R) SIDED VALVULAR LESIONS

#### Lesion

#### M/c Cause

#### Other cause

1) TS

RHD

(X)

2) TR

RV dilatation.

[eg. Pulmonary embolism]

cor-pulmonale

M/c Valvular Lesion  
due to CARCINOID

3) PS

Congenital

Carcinoid  
Rubella

4) PR

Press PAH

Carcinoid

Valve fibrillation

→ Regurgitation

Ring fibrillation

→ Stenosis

L/MR

INFECTIVE

ENDOCARDITIS

72

[AUSE :-

Predisposing Causes

- 1) M/c Valvular Lesion = MR > AR.
- 2) M/c congenital HD = VSD [R ventricle has vegetation]
- 3) M/c cyanotic cong. HD = TOF [L ventricle has vegetation]
  - ↳ systemic embolism.
- 4) Least common HD leading to IE = ASD
- 5) MC non-CV risk = " " " = IV Drug Abuse

Micro-organisms

\* According to nature of valve affected.



HIV is the only virus to cause IE.

\* According to Onset of

73

↓  
Acute

[<2wks]

M/c = Staph aureus

Other

Strepto β-haemolytic

Fungus

Subacute

[>2wks]

M/c = Strepto. Viridans

Other

Staph coagulase neg.

Fungus

\* Typical Bacteria of IE

1) Strepto Viridans

2) " Bovis [ Gallolyticus] → ass/ε Colonie Cancer/Polyp.

3) Staph aureus → M/c in IV Drug Abuse → (R) sided

4) Enterococci → M/c in IV Drug Abuse → (L) sided.

5) HACEK group

C/F + Ix

Modified DUKE's Criteria

2 MAJOR

5 MINOR

3 EXCLUSION

\* Major Criteria -

(1) Evidence of micro-organisms consistent c IE.

1) ≥ 2 Blood culture + of Typical Bacteria  
OR

2) Persistent Bacteremia of micro-organism consistent c IE.  
OR

≥ 2 Blood culture +  
[separated by 12 hours]

≥ 3 Blood culture +  
out of ≥ 4 samples  
[1st & Last sample separated by 1 hr]

37 > 1 Blood Culture } of Coxiella Burnetii  
or  
IgG T

74

(II) Evidence of Endocarditis [ECHO]

- ↓  
Endo  
① Oscillating Mass Lesion. on valve or its structure  
or  
② Intra-cardiac abscess  
or  
③ New valvular regurgitant lesion  $\leftarrow$  M/c CVS  
complication of IE.  
or  
④ Partial Dehiscence of prosthetic valve

\* Minor Criteria

- 1) H/o Predisposing cause = RHD, I.V. Drug Abuser.  
2) Fever  $> 38^\circ\text{C}$   $\leftarrow$  M/c symptom  
3) Immune phenomena = R.R.O.G.  
R  $\rightarrow$  Roth's Spots  $\rightarrow$  Immune complex vasculitis in Retina  
Oval  
Pale centre.  $\in$  haemorrhagic margin

Other causes -

a) SLE

b) CLL

c)

O  $\rightarrow$  Osler's Nodes  $\rightarrow$  Immune complex deposition  
Finger tips / Palms / Soles.  
Tender  
Palpable.

G → GN → Immune Complex deposited in  
S. C<sub>3</sub> levels ↓

75

R → RA factor +ve

#### 4) Vascular Events

\* Major Arterial Embolisation

[L sided] M/c site → Brain [MCA territory → Paralysed]  
→ Spleen  
M/c organism → Staph Aureus  
M/c valvular IE → Mitral valve

\* Septic Pulmonary Infarcts

[R sided].

\* Mycotic aneurysm



\* Haemorrhagic stroke [if mycotic aneurysm rupture in  
Brain ↳

\* Conjunctiva petechiae.

M/c Peripheral Sign of IE.

\* Janeway Lesion = Palms.

Macular [non-palpable]

Non-tender

5) Blood Culture Positive of micro-org consistent w/ IE  
(not satisfying major criteria)

or

Serology +ve.

Definitive  $\Delta$  of IE = 2 Major

or

1 Major + 3 Minor

or

ALL 5 minor

76

\* Exclusion Criteria

- 1) Firm alternate  $\Delta$  of Fever established.
- 2) If fever subsided  $\leq$  4 days of Antibiotic Use.
- 3) If there is no histopathological evidence of IE  $< 4$  days of Antibiotic Use.

Rx + Prophylaxis of IE = given in supplement

14/2/18

# CARDIOMYOPATHY

77

Definition :-

Diseases of endomyocardium

Not due to valvular Heart disease.

↳ Cong. Heart disease

↳ HTN

↳ Ischaemia

↳ Pericardial Disease

Types :-

Dilated CMP (M/c pattern)

HOCM

Restrictive  
CMP (Least common)

I Defect:

↓ contractility

Obstruct " to LV outflow  
↳ overcome obstruction

failure of relaxation

↓ in diastolic func "

↓ in systolic func  
+  
Preserved diastolic  
func " till late  
stages

↑ in systolic func  
+  
(↓ cavity space)  
↓ diastolic func

↓ systolic func  
preserved.

Gross atrial  
Dilatation

## DILATED CMP

CAUSE -> Idiopathic (M/c cause)

Rx - supportive. [chr. HF = low EF]

Mc 2° cause - alcohol

Mech :- a) Direct ethanol effect

b) Becoz of Cobalt [cardiotoxic agent]

(foam ↓ stabilizing agent)

- Risk :- Mutation of alcohol dehydrogenase  
 • Mutation of ACE (?)

Dose of alcohol =  $\geq 120 \text{ gm/day}$  for 5-10 years

Rx = reversible in 3-6 months of cessation.

Other CVS manifestations of alcohol ( $\geq 30 \text{ g/d}$ )

- 1) Dyslipidemia  
 a)  $H/c = \uparrow TG$   
 b)  $\uparrow HDL Q.$   
 c)  $\uparrow LDL$



- 2) Effect on BP  
 Acute - vasodilatation =  $\downarrow BP$   
 Chronic - (+) sympathetic system =  $\uparrow BP$

- 3) CVS events  
 a) CAD  $\rightarrow \downarrow \text{risk by } \uparrow HDL$  [French paradox]  
 b) stroke  $\rightarrow \uparrow \text{risk}$  due to  $\uparrow BP$

(\*)

- 4) Arrhythmia  
 alcohol binge  $\rightarrow AF$  [Holiday Heart Syndrome]

### III) Genetic Causes

MOI

1) AD

Q. Gene/Protein

TTN / Titin

↓  
Sarcoplasmic protein. (N)  
helps in contractile

Unique feature  
<sub>79</sub>

M/c genetic cause of  
DCMP.

2) AR

DSP / Desmoplakin

↓  
Desmosome protein  
(N) helps in synchro.  
contractile

Arrhythmogenic  
RV Dysplasia. (ARVD)

↓  
sudden cardiac death  
in young population.

- { wooly hairs +  
thick palmar skin +  
ARVD 

ECG.   
V<sub>1</sub> -   
epsilon wave.

(N) V<sub>1</sub> = 

3) X-R

TAZ / Jafazzin

↓  
(N) helps in compaction  
of ventricle cavity  
during embryonic  
development

LV non compaction.

\* LV thrombus since  
birth.



Embryonic



## IV Post Myocarditis

80

### A Causes :-

#### 1) Infectious

- 1) MC Viral - Coxsackie B  
other viral infec"
- Parvovirus B19
- HIV
- Hepatitis C

#### 2) Bacterial

M/c - Diphtheria [death is by myocarditis]

Rx - anti-toxin

#### 3) Protozoa

M/c - Trypanosoma Cruzi  
[chaga's Disease]

Rx - Benznidazole

#### 4) Parasite

M/c - Giardimella

Rx - Albendazole

#### Non-infectious

1) M/c - Sarcoidosis [lung involved]

M/c site → LV free wall

M/c pattern → DCMP > RCMP

Rx = steroids

2) Giant cell Myocarditis

(no lung involvement)

Rx - steroids.

3) Hypersensitivity Myocarditis

cause - Thiazide

Indomethacin

Methyldopa

Rx - cessation of drug  
+ steroids

## IV. Tako-Tsubo CMP / BROKEN HEART SYNDROME / 81 APICAL BALLOONING SYNDROME

C/F - ♀ + ↑ catecholamine release  
↓  
vasoconstrictor of LV apex  
↓  
LV apex non-contractile  
↓  
During systole RV apex bulge out in systole  
like balloon.

Ix - ECG - STT

Thrombin = ↑ or N

coronary angiography → no thrombus

ECHO - LV apex bulging out in systole.



→ Resembles a jar used to trap octopus  
↓  
hence called Tako-Tsubo.

Rx - reversible, so supportive therapy

+ α blocker followed by β blocker [like phenoxybenzamine]  
cytome]

## VI . Peri-Partum CMP

Mech:- 1> Autoimmune damage to myocytes by foetal Ag<sup>82</sup>.

2> Prolactin fragments → myocyte damage

C/F:- occurs in 3<sup>rd</sup> trimester - 6 months post delivery

**Risk ↑** → Twin Delivery  
multipara  
age > 30 yrs

**Rx** -> Diuretics

2> **Bromocriptine** [by ⊖ Prolactin].

→ also used in Type 2 DM.

# RESTRICTIVE CMP

83

Pathology :- Infiltration → Fibrosis

## (I) Infiltration

A) In between myocytes

e.g. Amyloidosis

↑ M/CC of RCMP

010

### Types

1) **1<sup>o</sup> amyloidosis**

#### Protein/cause

AL / multiple  
myeloma

Waldenstrom  
macroglobulinemia

NHL

Age - > 50 yrs  
M/organ -  
Renal

M/CC = CVS  
of death

unique - Black eye  
Raccoon eye.

Factor Xa adsorb on  
AL protein leading to ↑  
in blood → blood def. of Xa.  
[Ecchymosis]

2) **Familial**

Transthyretin [liver]

↑  
genetic

Age > 20 yrs

M/C = CVS

Organ

M/CC of - CVS  
death

unique = ascending  
neuropathy

1) Liver Transplant

only cond' where liver  
Transplantation  
is done to out  
Liver failure

2)

New Rx

TAFAMIDIS

↳ stabilizes  $\alpha$  transthyretin

84

3) Senile  
Cardiac  
Amyloidosis

Transthyretin  
↓ Age.

Age > 70 yrs

M/c organ }  
M/c of } CVS  
death

Tafamidis

- \* 2° amyloidosis doesn't cause restrictive CMP
- \* ECG will show low voltage QRS as amyloid is poor conductor
- \* Echo = ↑ ventricle wall QRS

### (B) Infiltration inside Myocyte.

1) Haemochromatosis

M/c pattern  $\rightarrow$  DCMPI > RCMPI  
of CMP

M/c of death in untreated pt  $\rightarrow$  CVS

M/c of death in treated pt  $\rightarrow$  HCC

Rx - Phlebotomy  $\rightarrow$  [CMP is reversible]

2) Fabry's Disease

Cause - Def<sup>n</sup> of  $\alpha$ -galactosidase  
↓  
Glycosphingolipid accumulate

c/F.

85

1) CVS → RCMP

2) Kidney → (GBM damage)

3<sup>rd</sup> H/c systemic cause of Nephrotic Syndrome

3) Abdomen - Angiokeratoma Q

Rx - Kidney Bx = GBM.  $\equiv$  zebra bodies  
(electron microscopy)

Rx

Recombinant Galactosidase. [stop the progression of Ds]

## (II) Fibrosis

1) Radiation [ca breast/lung] } supportive Rx.

2) Systemic sclerosis

3) Loeffler's Endocarditis

Eosinophilia

Release of ↓ Basic Protein.

Fibrosis

Rx - Steroid (by ↓ eosinophils)



Rx of Acute HF :-

Acute HF = Acute cardiogenic Pulm. edema



AIM OF Rx - shift alveolar fluid into capillaries  
 ↓  
 by ↓ capillary hydrostatic pressure  
 ↓  
 Achieved by ↓ R sided Preload

1> Diuretic [Furosemide]  
 +  
 2> Morphine [venodilator]  
 +  
 3> O<sub>2</sub> inhalation.

Initial Rx

87

Systolic BP

<90

Cardiogenic  
Shock

[cardiac index  
<2.2 L/min/m<sup>2</sup>  
+ SBP <90 for >30 min]

Add - Dobutamine

[slight vasodilator  
effect also]

>110.

↓ PCO by ↓  
afterload.

Add. Vasodilators

N - Nitroprusside

N - ~~NTG~~ NTG

N - Nesiritide

Add - ↓

DOC - NOR-EPINEPHRINE

Rx of Chv. Heart Failure ⊂ ↓ EF.

↓  
Fluid Overload

(+)

(-)

Diuretic

- - - - - → Standard t/t

1> ACE Inhibitors

By ↓ remodelling + ↓ afterload.

a> Metoprolol

b> Carvedilol

c> Bisoprolol

↳ vasodilators also

2> β blocker

By ↓ workload + ↓ sympathetic activity



Chr. ↓ CO → Chr ↑ aldosterone (by (+)RAAS)



Rx of Chro. HF in Preserved Ejection Fraction



# PERICARDIAL DISEASES

89

## Acute Pericarditis



## ACUTE PERICARDITIS

Cause - H/c - Idiopathic

Symp -  
H/c - chest pain [due to rubbing in mediastinal pleura]

Ac. Pericarditis

Site - H/c Retrosternum

Nature - sharp pain

Radiation - Trapezius

Aggravating factors - Supine (as area of contact in pleura ↑)

Relieving - Leaning forward  
factor Not relieved by nitrate

Ischaemic Pain

Retrosternum

Dull / constricting

Never sharp

① arm, forearm

Never Radiate to Trapezius

Exertion

Cold Temp

Rest

Sublingual nitrate

Sign - Most Specific  $\Rightarrow$  Pericardial Rub.

90

- Crackling sound due to rubbing of 2 inflamed pericardial layers
- Diastolic Phase

I<sub>x</sub>

ECG :-



I

PR segment depression +  
ST concave upwards ST elevation  
[Smiling Phase ST elevation]



II

ST(N) + PR segment (N) or Normal ↓



III

T wave inversion



IV

(N) ECG [Recovery phase]

# ECG

91

Ac. Pericarditis

① ST↑ concave upward

② ST↑ all lead.

seen in almost except - ~~other~~  
AVR, V<sub>1</sub>

③ ST N followed by T inversion

Ac. MI

convex upward.

specific lead

T inversion occur before  
T normalize



⊖

⊕

④ trace of reciprocal ST depression in Opp. wall lead

⊖



Deep q Wave

depth > 25% of R wave  
+  
Duration > 1 mm.

Rx - 1) underlying cause  
2) idiopathic:

DOC → NSAIDS

↓ no response

Colchicine

anti-inflammatory +  
anti-fibrotic

steroid

no response

## TAMPOONADE

Cause - H/c (world) - idiopathic

H/c in India - TB

Pathophysio - Acute

"Compression" of heart +  
venous roots + Aortic roots



Compensatory vigorous  
ventricle contract" to  
maintain CO.

Obstructive  
or      shock  
Compressive

Symptoms -

H/c → Dyspnoea due to  
↓ in resp. H/c  
perfusion

\* Not due to Pulmonary  
congestion.

Lungs - Oliguria

Signs -

Pulse - Pulse Paradoxus  
≥ 90% cases

(-) in Tamponade

## CONSTRICITIVE PERICARDITIS

92

idiopathic

TB

Chronic

"Failure of relaxation" of  
heart due to stiff Pericardium  
+ CO is preserved

↓                          ↓  
↓ venous  
return  
(100mL)

Compensatory vigorous  
ventricle contract"  
to maintain CO

H/c → Swelling.

due to ↑ in venous  
return.

Hydrostatic 'P' ↑ in systemic  
veins

≤ 1/3rd case

## Absent Pulm Paradoxus in Tamponade

93

1> AR      Tamponade

2> CHF

JVP

Deep x

y = Absent

a = Prominent



Deep x

y = Rapid

[failure of relaxation of RA]

Kussmaul = -

(+)

Sign as venous return  
doesn't significantly  
in Tamponade

Apex - Non-Localised

Non-Localised

soft

S<sub>1</sub>/S<sub>2</sub> soft

(-)

S<sub>3</sub>/S<sub>4</sub> (-)

Pericardial knock (+)  
[3<sup>rd</sup> HS]

I<sub>X</sub>

① CXR - ↑ cardiac shadow  
(Not true cardiomegaly)

CXR - cardiac size normal  
+  
calcified pericardium



27 ECG =

QRS amplitude ↓  
[Electric alternans]

ECG

QRS amplitude ↓

94

[Non specific ST ↓ or T ↓]



1 ← ECG lead.



Rx

Emergency Pericardacentesis

Routine - Pericardectomy



[ECHO]

Needle [subxiphoid area]

### Signs

1) Auenbrugger's Sign

### Description

Epigastric Bounding

### Bent A

Massive pericardial effusion

2) Beck's Triad

↓ BP + ↑ JVP +  
soft HS

Tamponade

3) Ewart's Sign.

compress L side  
airway

Massive Pericardial effusion

collapse of distal lungs

↓  
Bronchial Breath sound

L Infrascapular area

4) Broadbent's sign

systolic retraction of apex  
due to fibrous pulling

constrictive pericarditis.

"Square root" sign → constrictive pericarditis.  
[Pressure changes in RV]



LMR

# SYSTEMIC HTN

96

## Classification [AHA guidelines Nov 2017]

|                 | <u>SBP</u> |      | <u>DBP</u> |
|-----------------|------------|------|------------|
| 1) Normotensive | <120       | AND  | <80        |
| 2) Elevated     | 120 - 129  | AND  | <80        |
| 3) Stage I HTN  | 130 - 139  | (Or) | 80 - 89    |
| 4) Stage II HTN | >140       | (Or) | >90        |

## Causes

I. Essential / 1° HTN (no identifiable cause)  
M/c cause

II. 2° HTN (identifiable cause)



1) M/c 2° cause - Reno-Parenchymal  
[cIN, Chr KD].

M/c Mech → vol. overload

2) 2<sup>nd</sup> M/c → Reno-Vascular  
[Renal artery stenosis]

Mech - Ⓛ RAAS

DOC - ACE-I in U/L stenosis

3) Activating Mutation of Sodium channel of tubule.

DCT - Na<sup>+</sup> channel

Δ GORDEN'S SYNDROME

CD = Ⓛ Na<sup>+</sup> channel

Δ - Liddle's Syndrome

DOC - Thiazide

DOC = Amiloride.

97

## 4). Endocrine causes.

### Endocrine

a) Hypothyroid

### Type of HT

DBP ↑

(compress bld. vessels)

### Edema

(+)

Myxoedema

Conn's Syndrome

DBP ↑

(-)

b) Chr. ↑ aldosterone  
↳ vessels fibrosis

ANP released

↓

"Escape" Mechanism

c) Hyperthyroidism

SBP ↑

(due to ↑ CO)

(-)

d) Phaeochromocytoma

SBP + DBP ↑

(-)

sustained HT > episodic HT

## 5). Miscellaneous causes

a) M/c long. CV cause of HTN ⇒ Coarctation of Aorta

b) Systemic HTN ← sympathetic ↑ ⇒ Obstructive sleep Apnoea

Pulm. HTN ← hypoxia

c) PCOD = Insulin resistance  
[acanthosis nigra]

d) Drug NSAIDS by ↓ GFR  
Corticoesteroid  
estrogen



## Symptom

1) M/c - Dyspnoea [due to CHF]

$$\text{M/c of CHF} = \boxed{\text{HTN}}$$

2) M/c symp due to HTN → Occipital Headache

3) Sign → LVS<sub>4</sub> + (due to LVH)

I<sub>x</sub> -

ECG changes

1) LVH signs

2) LA enlargement

3) LAD

Rx

Stable

≥ 2 readings on ≥ 2 occasions

should be ↑ to Δ HTN



## \* Lifestyle Modification

99

- 1) wt. Reduce
- 2)  $\downarrow \text{Na} \leq 1.5 \text{ gm/day}$
- 3)  $\uparrow \text{K} 3.5-5 \text{ gm/day}$  cause smooth M/s relaxation
- 4) **DASH DIET**

Dietary Action To Stop HTN

$\downarrow \text{Na}^+$   $\downarrow$  Fat dairy product,  
 $\uparrow$  Fruits + veg.,  $\downarrow$  saturated fat

5) Break Walk / Exercise  $\geq 150 \text{ min/wk}$

6) Alcohol  $\text{♂} < 30 \text{ g/d}$   $\text{♀} < 15 \text{ g/d}$

## Other Terms

1) Resistant HTN  
if  $\text{BP} \geq \frac{140}{90}$  despite  $\geq 3$  drug (one of  $\leq 2$  diabetic)  
or

if  $\text{BP} < \frac{140}{90}$   $\cong \geq 4$  drug

M/CC  $\rightarrow$  Non-compliance

2) White Coat HTN

In clinic if  $\text{SBP} > 20$  or  $\text{DBP} > 10$  from non denoted readings.

3) HTN Emergency = If  $\boxed{\text{BP} > 180/120}$   $\cong$  Target Organ Damage

I.v. Labetalol  $\leftarrow 1\right)$  Haemorrhage Stroke

I.v. ~~Nitro~~ NTG or Nifedipine  $\leftarrow 2\right)$  Ac. cardiogenic Pulm. Oedema

I.v. NTG  $\leftarrow 3\right)$  Ac. MI

I.v. Esmolol  $\leftarrow 4\right)$  Aortic Dissec<sup>n</sup>

Nimodipine  $\leftarrow 5\right)$  SAH

\* Mean BP reduction → 25% from presentation value  
$$\left[ DBP + \frac{1}{3} PP \right] < 1-2 \text{ hrs.}$$
 100

\* DOC for HT Emergency = I.V. Nicardipine

\* 4) HTN Urgency =  $\frac{BP > 160}{120}$  + no target organ damage

Rx = combination of oral drugs.  
[OPD]

5) Orthostatic Hypotension

if SBP ↓ by  $> 20$  ] in 3 min of standing

DBP ↓ by  $> 10$

M/c cause → Hypovolemia

2° HTN associated with  
orthostatic HTN

= Phaeochromocytoma

Chr. vol. depleted.

↑

due to Chr. vasoconstrict.

# IHD

101

Stable Angina

Unstable Angina

Non-ST ↑  
MI  
(Subendocardial)

ST ↑  
MI  
[Transmural]

20-30 min

> 30 min

Duration  
= 2-10 min

20 min

⊕

⊕

Pain at rest

⊕

ECG at rest

N

ST depression  
[except Prinzmetal  
Angina]

ST depression

ST elevation.

Trophonins

N

N

-↑

↑

Symptoms

M/c → chest pain

Painless MI → Autonomic Dysfunction  
[DM, elderly]



'Angina' equivalent symptoms

a) Unexplained sweating

b) " Dyspnoea

c) Sense of impending Doom

Signs M/c → LEVIN SIGN [Holding Palm or Fist against  
retrosternum]

Pulse - if tachycardia = Ant. wall

Bradycardia = Inf. wall

JVP - if Kussmaul sign = RV MI.

S<sub>2</sub> = if split is wide = RVMI [late P<sub>2</sub>]  
 if split is reversed = LVMI [late A<sub>2</sub>]

102

poor prognosis S<sub>3</sub> - if + → indicate systolic failure  
 [Infarct > 40%]

S<sub>4</sub> - +

[more common than S<sub>3</sub>]

### Murmurs -

Papillary M/s Necrosis

Acute MR

early Systolic

Septal Rupture of ventricle

VSD

Pansystolic

### I<sub>x</sub> ① ECG

#### Sequence of changes

1>



(> 50% of R wave height)

2>



3>



#### Mech

Leakage of K<sup>+</sup>

[Similar to hyperkalemia]

Early Repolarisation of infarcted m/s

Non-specific

4)



Pathological Q wave

Necrosis

103

NO use of thrombolytic therapy



V<sub>7</sub> - V<sub>9</sub> - ST ↑  
or

V<sub>1</sub> - V<sub>9</sub> → reciprocal ST ↓

RV<sub>4</sub>

⑥ Inf wall

⑧ coronary via post  
descending

II, III, aVF  
<sub>104</sub>

⑦ Antero-Lateral  
MI

⑨ main coronary

V<sub>1</sub> - V<sub>6</sub>, I, aVL

$$RxOc = CABG \text{ (not PCI)}$$

not ~~far~~ flexible

⑩ Cardiac F  
Markers

Time to ↑ in blood  
(after symptoms)

Time to N

1) Heart Type FA  
Binding Protein

2 hrs

24 hrs

2) Myoglobin

3 hrs

24 hrs

3) Troponin I [Best]  
T

6 hrs

10-14 days

4) CPK-MB

6 hrs

72 hrs

→ Preferred over Troponin of re-infarct 3-10 days

Troponin can be used in re-infarct.

if >20% ↑ from baseline

Rx (I) ST ↑ MI

105

Initial Rx

Role

1> **Aspirin** [non-enteric coated] Essential in all  
Dose - 325mg chewable

if O<sub>2</sub> saturation is ↓

2> **O<sub>2</sub> inhalation**

Analgesic

3> **I.V. Morphine**

+  
Ac. cardiogenic Pulmonary edema

4>

C/I in **RVMI**

[↓ Preload → further ↓ CO]

4>

**Nitrate**

coronary vasodilatation.

+  
↑ BPT

C/I - **RVMI**

5>

**β blocker**  
metofenadol

↓ workload

C/I - Asthma

PR interval > 0.25 sec

6>

**ACEI**

All pts. for initial 48 hours

↓  
continue if HT (+)

7> **High Dose Statins**

Anti-inflammatory +

Atorva 80mg/d.

Plaque stabilizing Property.

8> **Clopidogrel**

300mg loading Dose

of pt undergoing procedure

PCI.

Definitive Rx = PCI > Thrombolysis

106

If ST↑ MI Presented to



If symptom < 12 hours duration.  
+ ST↑



## Rx (II) Non-ST ↑ MI / Unstable Angina

107

### Std. Rx

1) Anti-platelets = aspirin + dabigatran

+

2) Anti-thrombotic agents. = LMWH or Thrombin (-)

+

### ③ Nitrate

+

### ④ β blocker

↓ if there is no relief

Add CCB

↓ if no relief

PCI

## (III) Stable Angina

↳ Aspirin Life long

↳ Sublingual dinitrate

↳ Rx risk factors

### PRINZMETAL ANGINA

Cause - Idiopathic vasospasm of epicardial coronary artery. [non-atherosclerotic]

M/c artery affected → (R) Coronary

C/F -

↳ Smoker + young age

\* Associated symptoms = Raynaud's phenomenon

\* Pain = 12 AM to 8 AM.

I<sub>x</sub> - ECG - ST ↑  
Thiopronin = N

108

- R<sub>x</sub> -
- 1) Acute → vasodilators = Nitrate → CCB α-Blocker
  - 2) Maintenance → CCB
  - 3) C/I → Aspirin  
β Blocker → ⊖/Lower vasodilator PG<sub>I</sub>  
→ ↓ pt. vasoconstriction

Q. In intraoperative MI ⊂ drug not used.

- Ⓐ Heparin → Best ECG Lead V<sub>5</sub> or V<sub>4</sub>
- Ⓑ Atropine if AV Block
- Ⓒ CCB
- Ⓓ NTG.

LMP.

## AORTIC DISSECTION

[causes -

- 1) M/c → HTN      M/c site → ascending aorta (R)  
Lateral wall
- 2)
- 3) Large vessel vasculitis  
Takayasu  
Giant cell arteritis.
- 4) Drug - cocaine
- 5) ♂



Types

A/c to Site of Origin [Stanford classification]

(A)

Ascending aorta  
more common  
more fatal

(B)

Descending aorta

A/c to Extension [DeBakey classification]

I

II

III A

III B

to descending aorta also

Limited to ascending aorta

Above diaphragm

Below diaphragm.

Symptom M/c - chest pain

Retrosternal + Tearing Pain + Radiation to intercapsular area<sup>110</sup>

Sign Asymmetrical Pulses

Acute Aortic Regurgitation. [due to type A dissec]

Ix

1) CXR → Wide mediastinum

+  
① Sided Pleural effusion (20%)

↓  
D/D of Oesophageal Rupture

↓  
H/o vomiting

2) Unstable pt. → Trans oesophageal ECHO.

3) If pt. is stable → CT

4) Gold Std. Ix → MR angio

Rx

Initial Rx → BP

High or N

Low

(Target SBP 100-120 mm Hg)

I.V. fluid.

I.V. ESMOLOL

Definitive Rx

Type

↓  
A

Urgent surgical  
Repair.

↓

B

Conservative

do surgery if

- \* Impending rupture
- \* Limb / Visceral ischaemia



# RHEUMATOLOGY



# IMMUNE SYSTEM

115

## INNATE

- 1) ANATOMICAL BARRIER
- 2) PRR's (pattern Recognizing Receptors)  
Inflammasome Proteins (Sensors)
- 3) Anti-Microbial Peptides (AMPs)  
Lysozymes - Tears/Saliva

## 4) NK cells (BOUNCERS)

### Largest WBC

Regulated by T cells (IL-2)

Immune + Tumour surveillance

Non-immune mediated action

Only immune cell → non-MHC  
restricted action.

(virus infected / mutated cells  
are also checked by these cells)

## 5) MONOCYTE - MACROPHAGE SYSTEM (Police)

## 6) Dendritic cells (Most Potent APC's)

## 7) GRANULOCYTE SERIES (N, B, E)

## 8) COMPLEMENT CASCADE. Regulators of immune response

## a) CYTOKINE

## ADAPTIVE

### 1) B cells (HUMORAL)

- express CD<sub>19,20</sub> on surface
- when activated

### PLASMA CELLS

### ↓ Immunoglobulins (antibodies)

## 2) T cells (cell mediated)

- CD<sub>4</sub> " CD<sub>8</sub>  
(Helper) (cytotoxic)  
Most Potent level of  
immunity

# IMMUNE EXCESS DISORDERS

116

## INNATE (AUTOINFLAMMATORY)

### FAMILIAL MEDITERRANEAN FEVER (FMF)

(Recurrent Poly-Serofitis)\*

EPID - 10-20 yrs, ♂>♀

ETIOPATH - Inherited defect of MEFV gene

Overexpression of the PRR's  
INNATE EXCESS STATE

C/F → Recurrent Febrile Illness  
(each last for 6-8 weeks)

constitutional symp :- Anorexia  
wt. loss  
myalgia

|           |                    |                 |                     |
|-----------|--------------------|-----------------|---------------------|
| HL ↓      |                    |                 |                     |
| Pleuritis | Peritonitis        | Arthritis       | Pericarditis        |
| D/D - TB  | D/D - Appendicitis | D/D Juvenile RA | D/D Rheumatic fever |

A :- Clinical suspicion → GS (Genetic testing MEFV gene)

Rx :- COLCHICIN - Favourable response + longterm remission.

Dreaded complication :- 2° Amyloidosis - Nephrotic syndrome  
High Mortality

Recurrent Febrile Illness → Unconfirmed Infection  
= Rheumatology

## ADAPTIVE AUTOIMMUNE DISORDER

### ORGAN SPECIFIC

Myasthenia Gravis

Graue's

Pernicious Anaemia

### SYSTEMIC

= RHEUMATOLOGY

Study of systemic autoimmune disorders.

## ANTIBODY TESTING

117

### INDEX

LUPUS group  
(Skin rash)  
"wolf-Bite"

- 1) SLE
- 2) Systemic sclerosis
- 3) Sjogrens (sicca)
- 4) M.C.T.D.
- 5) Rheumatoid

ARTHRITIS  
Approach.

- 1) RA
- 2) Spondylo arthropathy
- 3) Crystal induced
- 4) CHARCOT's joint (neuropathic)

VASCULITIS

- 1) Misc. Pain syndrome
  - fibromyalgia
  - chronic fatigue syndrome

## ANTIBODY

### ANA

### CLINICAL SIGNIFICANCE (Best Screening)

M/c Ig found in autoimmune disorders  
(>98% of case)

MOST SENSITIVE Ig

### ELISA

METHODS → IF (Preferred)

Qualitative Result (+/-)  
Hence it is non specific

- 1) Quantitative (Result in titres)
  - <1:160 = + in 20% Healthy population
  - >1:160 = SIGNIFICANT (More specific)
- 2) IF PATTERN (due to the A)

### IF PATTERN

#### M/c - SPECKLED

#### Homogenous

#### Rim pattern

#### Centromere

#### Nuclear Pattern

### ANTIBODY

Anti-Ro/La [SSA/SSB]

Anti-dsDNA - M/c in SLE

Anti-smith - Most specific for SLE

Anti-centromere (specific)

Anti-topoisomerase-1 (SCL-70 commercial)

### DIAGNOSIS

SICCA SYNDROME.

} SLE

→ Localised Systemic Sclerosis

→ Systemic sclerosis

## ANTIBODY

Anti-Sm  
(not preferred)

Anti-dsDNA  
(preferred)

APLA  
(phospholipid)

Anti-Histone  
(specific for  
Drug induced  
SLE)

## CLINICAL SIGNIFICANCE

(Astie Role  
in SLE)

MOST SPECIFIC for SLE  
Only in 10% (lacks sensitivity)  
NO correlation  $\cong$  disease activity

② Sensitive + Specific  
correlates  $\cong$  disease severity  
Associated  $\cong$   $\uparrow$  Risk - nephritis/CNS involvement.

Present in 60-70% cases of SLE  
Associated  $\cong$  vascular thrombosis (fetal Loss)  
Most recent to be ~~included~~ included in  
Δ criteria of SLE.

|     |                |                                                                                     |
|-----|----------------|-------------------------------------------------------------------------------------|
| CVS | <sup>HIC</sup> | ACEI, $\beta$ blockers, Thiazides, Statins<br>Methyldopa, Hydralazine, Procainamide |
|-----|----------------|-------------------------------------------------------------------------------------|

|                |                            |
|----------------|----------------------------|
| Anti-microbial | INH, Dapsone, Sulfonamides |
|----------------|----------------------------|

|     |                          |
|-----|--------------------------|
| CNS | Phenytoin, carbamazepine |
|-----|--------------------------|

|     |                |
|-----|----------------|
| GIT | Sulfasalazine, |
|-----|----------------|

|      |                  |
|------|------------------|
| Endo | Propylthiouracil |
|------|------------------|

|      |                 |
|------|-----------------|
| Misc | d-penicillamine |
|------|-----------------|

|     |                                  |
|-----|----------------------------------|
| New | Interferons<br>Anti-TNF $\alpha$ |
|-----|----------------------------------|

| ANTIBODY                       | CLINICAL SIGNIFICANCE. (Prognostic Role)                   |                                         |
|--------------------------------|------------------------------------------------------------|-----------------------------------------|
| Anti-Ro/La<br>Crosses placenta | ↑ Risk of congenital Lupus<br>↓ Risk of maternal Nephritis | SSA/SSB<br>Astro Role in sicca syndrome |
| Anti- Ribosomal P              | ↑ Neuro-psychiatric convulsion + Psychosis                 | ↑ Risk of CNS Lupus                     |
| Anti- Neuronal Ab              | ↑ Neuropathy<br>R. Painful, Axonal                         |                                         |
| Anti- erythrocyte              | Hemolytic anaemia                                          | ↑ Risk of hematological involvement     |
| Anti- platelet                 | Thrombocytopenia                                           |                                         |

| ANTIBODY                                                    | CLINICAL SIGNIFICANCE                                                                                            |                         |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------|
| Anti- centromere                                            | Localised Scleroderma (CREST syndrome)                                                                           | Astro Role in ssc       |
| Anti- SCL70                                                 | Diffuse ssc                                                                                                      |                         |
| Anti- U <sub>3</sub> RNP                                    | ↑ Risk of PAH + RPGN                                                                                             | Prognostic Role in ssc. |
| Anti- U1RNP                                                 | specific for Mixed connective Tissue Disorder                                                                    |                         |
| Rheumatoid factor (RAF)<br>IgM Ig against Fc portion of IgG | Best screening Test for RA (PROT. SENSITIVE)<br>Correlate - Risk Bone erosions (PROGNOSIS)<br>Non-specific for A |                         |

ACPA / Anti- CCP  
(Most specific  
for R.A.)

Anti-cyclic citrullinated Protein Ab.  
(Aster Role in RA) 121

ANCA  
(anti-neutrophil  
cytoplasmic Ag)

Vasculitis (Aster Role)

cANCA  
Anti- PR3  
(proteinase-3)

pANCA  
Anti- MPO  
(myeloperoxidase)

## SLE

M/c autoimmune disorder

Epid - 20-40 yrs. ♀ > ♂

Cause - Idiopathic M/c

- Risk factors -
- 1) GENETIC - TREX-1 gene defect
  - 2) CHROMOSOMAL - Klinefelter's syn.
  - 3) INFECTIONS - EBV
  - 4) TOXINS - UV Rays, Silicosis

Manifestation

Clinical Description.

1) Cutaneous

a) Acute :- MALAR RASH

b) Chronic :- DISCOID RASH

2) Oral ulcers

excluding - a) nutritional b) infective

c) Behcet's disease

Considered as

SLE

3) Alopecia

excluding - a) Nutritional (Iron, Zn)

(considered as SLE)

b) Endocrine - thyroiditis (Hypo)

c) Drug induced

4) Synovitis (90%)  
(Non erosive  
arthritis)

M/c Symmetrical polyarthriti  
NEVER DEFORMITY / Bone Disease

|                     |                                        |     |
|---------------------|----------------------------------------|-----|
| 5) RENAL            | Proteinuria $> 3+$ , Granular/RBC cast | 122 |
| 6) CNS              | Neuropsy., Neuropathy                  |     |
| 7) ANAEMIA          | Hemolytic - Hb $\leq 10\text{ g/dL}$   |     |
| 8) LEUCOPENIA       | WBC $\leq 4000$ or Lympho $\leq 1000$  |     |
| 9) Thrombocytopenia | Platelet $\leq 1,00,000$               |     |

### Δ :- SLICC Criteria (Systemic Lupus International Collaborative Clinics)

| 9 clinical<br>ABOVE<br>manifestations | 6 Immunological.                    | $\geq 4$ confirms SLE<br>(at least 1 of each)           |
|---------------------------------------|-------------------------------------|---------------------------------------------------------|
|                                       | 1) ANCA ② AnticSm<br>3) Anti Ds DNA | ④ APLA ⑤ Direct Coombs Test +ve<br>⑥ Low serum C3 Level |

Rx



Rx : IV Methyl Prednisolone **PULSE** → Oral Prednisolone  
 $1\text{ gm/day} = 3-5 \text{ days}$

(Lifetime)

$1-2\text{ mg/kg/day}$   
 ↓  
 Add steroid sparing  
 MYCOPHENOLATE MOFETI

## Approved alternatives to methylprednisolone

123

RITUXIMAB (Mab  $\ominus$  CD<sub>20</sub>)

BELIMUMAB (Mab  $\ominus$  BAF)

## POOR PROGNOSIS

|                              |                                     |                      |                                                  |                            |
|------------------------------|-------------------------------------|----------------------|--------------------------------------------------|----------------------------|
| Affects Productive age group | unpredictable course of the disease | High cost of therapy | Long Term Adverse drug Rxn of immuno suppression | NO CURE (lifelong therapy) |
|------------------------------|-------------------------------------|----------------------|--------------------------------------------------|----------------------------|

ACUTE ← MORTALITY IN SLE.

↓  
CHRONIC/ Longterm

- 1) Thrombotic events - cardiac failure
- 2) Opportunistic Disease



>98% have systemic involvement.

epid - 30-50 yrs, ♀ > ♂

cause - H/c - idiopathic

Risk factors → 1) INFECTION → CMV, Parv B19

2) TOXIN EXPOSURE - Scleroderma, "Toxic Oil Syndrome"

C/F  $\downarrow$  H/c

1) RAYNAUD's → can precede skin changes  $\geq 10$  yrs



2) SKIN changes : Hands + face

|                                                    | HANDS                                                       | FACE                    |
|----------------------------------------------------|-------------------------------------------------------------|-------------------------|
| a) DEDAMATOUS                                      | Puffiness of finger                                         | Face                    |
| b) INDURATIVE                                      | claw hand deformity                                         | Mask-like               |
| c) SCLEROSIS<br>(most specific)<br>(HOST SPECIFIC) | Autoresorp of terminal phalanx<br>↓<br>shortening of digits | "FISH-MOUTH" appearance |

#### CLASSIFICATION - Based on Extent of skin involvement

|                            |                    |                  |                                    |
|----------------------------|--------------------|------------------|------------------------------------|
| ONLY SKIN<br>(<2% cases)   | Restricted to face | Proximal - elbow | only organ.                        |
| MORPHIA                    | Distal to elbow    | Trunk +          | SCLERODERMA                        |
| En-coup-de-sabre<br>Lesion | ↓<br>Localised     | ↓<br>Diffuse     | SINE<br>SYNDROME<br>(Least common) |
| sickle                     | SSC                |                  |                                    |

Suspected →

SSc

125

Face & Distal to elbow

LOCALISED SSc

Anti-Centromere  $\oplus$

Proximal to elbow

DIFFUSE SSc

SCL-70 / Topoisomerase - 1 Ab  $\oplus$



'CREST'

Also called

✓ Calcinosis

✓ Raynaud's (Doc = CCB)

✓ Esoph. dysmotility (GERD)

✓ Telangiectasia  $\xrightarrow{s}$  sclerodactyly

Above features are M/c E

Localised >> Diffuse



More risk of organ involvement

Lung: - M/c type of ILD in autoimmune disorder

NSIP (non-specific interstitial  
↳ Doc - Steroids + pneumonia)

↳ Pulmonary artery HTN

(Doc - Sildenafil)

RPGN

(Renal crisis) (Doc - Captopril)

Rx = ONLY PALLIATIVE

NO CURE

Unfavourable Prognosis

# SICCA SYNDROME

(Sjogren's Syndrome)

126

M/c manifestation - Dryness of Eyes & Mouth.

Lymphocytic infiltration of exocrine glands

## CAUSES

### 1° SICCA (Idiopathic) Rate

[SICCA - is the Disease]

- High Risk → Systemic (extraglandular manifestations)
- High titres → SSA/SSB Ab
- High Risk → LYMPHOMA (M/e of death in SICCA)
- Majority → Immunosuppressants.
- POOR PROGNOSIS

### M/c

### 2° SICCA

[Underlying disease]

- SLE, SSC, MCTD, RA, vasculitis
- 1° Biliary Cirrhosis
- chr. autoimmune Hepatitis
- only Glandular symptoms
- Low titres - SSA/SSB
- NO risk of Lymphoma
- Rx - only palliative  
FAVOURABLE PROGNOSIS

## C/F

### GLANDULAR.

### SYSTEMIC

| Involved       | C/F                              | TEST                 | Rx                 |                                                                                                                                                                         |
|----------------|----------------------------------|----------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lacrimal Gland | Dry-eye                          | Schirmer             | Artificial tears   | <p>LUNGS - M/c - NScf</p> <p>Isolated PAH</p> <p>Renal - (M/c)</p> <p>Distal RTA -</p> <p>- Interstitial nephritis</p> <p>Liver - Cirrhosis</p> <p>CNS - neuropathy</p> |
|                | corneal or conjunctival erosions | Rose Bengal Test     | Protective glasses |                                                                                                                                                                         |
| Salivary       | Dry-mouth                        | Gonto pho-Mesg       | Hydration          |                                                                                                                                                                         |
| Pancreas       | Hab's syndrome                   | Stool FAT estimation | Enzyme replacement | LYMPHOMA - most dreaded                                                                                                                                                 |

Rx 2° SICCA → only palliative

127

1° SICCA → Depends on organ involvement

GOOD PROGNOSIS (majority are 2°)

### POOR PROGNOSTIC FACTORS

- 1) Elderly onset (>40). ♀
- 2) B/L parotid enlarged
- 3) Systemic +
- 4) High titres of SSA/SSB.

### OVERLAP SYNDROMES

Epid = 10-20 yrs, ♀ >> ♂

C/F = (SLE/ SSC/ SICCA) + (R.A.)

Screening =      ↓      ↓  
Ab                  ANA      RAF  
                    +ve      +ve



| Rx                    |  | SLE Dominant      | RA Dominant |
|-----------------------|--|-------------------|-------------|
| Immuno suppression    |  | DMARDs            |             |
| Non-erosive arthritis |  | Erosive arthritis |             |

PROGNOSIS - Better than individual disease  
Better response to therapy

## APPROACH TO JOINT DISORDERS

128



## APPROACH TO INFLAMMATORY ARTHRITIS



# MIC Pattern of Joint Involvement in Diseases

129

↓  
Most Imp parameter for Diagnosis of arthritis

## RHEUMATOID ARTHRITIS

Epid- 30,50 yrs, ♀ > ♂

H/c - Idiopathic

Risk Factors - 1) GENETIC = **HLA-DR4** (Most cases = sporadic)  
2) INFECTION = **Mycoplasma, EBV**

C/F

ARTICULAR (predominant)

EXTRA-ARTICULAR

- Inflammatory Poly-arthritides
- Appendicular Dominant
- Spine involvement - Rare
  - ↳ H/c - Atlanto-axial jt.
- Symmetrical, small jts. of hand  
Wrist, MCP jt + PIP jt



- STAGE-RA
- 1) SYNOVITIS
  - 2) PANNUS FORMATION
  - 3) BONE EROSION
    - ↓  
Jt. Destrucn
    - Jt. Deformity  
(irreversible stage  
of Disease)

EPISCLERITIS

LUNG | H/c usual Interstitial Pneumonia (UIP)  
H/c → ♂

Pleuroperitoneal

Valvular H/c → MR

MUSCULO-SKELETAL

↓ Myopathy ↓ Osteopenia  
Fast progress - OA

FELTY's (RA + spleen)

↓  
Anæmia / Neutropenia  
Risk of Lymphoma  
Least common  
≤ 1% - advanced RA  
Early DMARD Rx

$\Delta$  :- EULAR (European League against Rheumatism)  
Guidelines - A scoring system 130

(A) PATTERN of joint involvement (Max : 5)

- 1 jt (Predom- Large) → 0
- 2-10 jts → 1
- 1-3 jts → 2
- 4-10 jts (Predom- small) → 3
- > 10 jts → 5

(B) SEROLOGY (Both RAF + ACPA) [Max = 3]

NEGATIVE → 0

MILD  $\oplus$  [ $< 3 \times$  upper  
normal  
limit] → 2

STRONG  $\oplus$  [ $> 3 \times$  upper limit] → 3

(C) DURATION

- |             |  |
|-------------|--|
| < 6 wks - 0 |  |
| > 6 wks - 1 |  |

(D) ACUTE PHASE REACTANT

NEGATIVE → 0

ELEVATED → 1

$\Delta$  =  $\geq 6$  confirms RA.

RADIOLOGY  $\otimes$  → Not recommended for Asse.

|                 |                                                                                                         |                                                                                                                                |
|-----------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| OLD CRITERIA :- | X-Ray Hand<br>↓<br>X-Ray - Least sensitive test<br><b>MRI</b> - MOST SENSITIVE test<br>↓<br>Impractical | = Bone Erosions<br>↓<br>Late, irreversible stage<br>Earliest feature of RA<br>Juxta-articular osteopenia<br>↓<br>NON-SPECIFIC. |
|-----------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|

Rx Most preferred method → STAGE the severity

CDAI (Clinical Disease Activity Index)

| 2.8 - 10     | 10 - 22           | > 22                     |
|--------------|-------------------|--------------------------|
| MILD RA      | MODERATE RA       | SEVERE RA                |
| Single DMARD | COMBINATION DMARD | Early use of Biologicals |

Prognosis :- Favourable → **REMISSION** → can be achieved in 60-85% cases

#### **POOR PROGNOSTIC FACTORS** :-

- 1) Elderly ( $> 60$ )
- 2) ♀
- 3)  $> 10$  yrs @ onset
- 4) High titres of RRF
- 5) Delay in initiation of DMARD  $\geq 3$  months

| DMARDs                | InD <sup>n</sup>                                                            | ADR                                                                | Follow-up                                          |
|-----------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|
| METHOTREXATE<br>(MTx) | 1st choice<br>(⑥ single or combination.)                                    | BM↓, Hepatotoxicity<br>(Dose dependent S/E)                        | CBC, LFT - 3 monthly                               |
|                       | Back bone of Biologicals                                                    | MTx induced ILD<br>unpredictable<br>Permanent C/I to MTx use       | CXR, PFT<br>Baseline & Annually                    |
|                       |                                                                             | Teratogenicity                                                     | Counseling                                         |
| HYDROXY-CHLOROQUINE   | safest in ⑥ + 2nd choice                                                    | Bull's macula pathology (irreversible)                             | Fundus, Exam,<br>Perimetry Baseline & annually SOS |
| SULFASALAZINE         | Safe in ⑥ + 3rd choice                                                      | Gastritis<br>Hepatotoxicity                                        | LFT - Baseline + 3 monthly                         |
| LEFLUNAMIDE           | Approved as Mono Rx<br>Completed Family<br>MODEST efficacy<br>(limited use) | No synergy w other DMARDs<br>6x ↑ Hepatotoxicity<br>Teratogenicity | Stop ≥ 2 ovulatory cycles before conception.       |

**BIOLOGICALS** = Pathophysiology of R.A.

133

↑↑↑ Pro-inflammatory cytokines

TNF $\alpha$  most potent

(MOST PREFERRED)

Anti-TNF $\alpha$  agents

+ IL-1

ANAKINRA

IL-6

TOCILIZUMAB

Stimulates T cell

MODULATOR = ABATERCEPT

+

Stimulates B cell

RITUXIMAB

Intracellular signalling pathways of inflammation

e.g. ~~JAK~~ JAK - Janus associated Kinase

TOFACITINIB - Tyrosine kinase  $\Theta$  of  
JAK. - 1st oral Biological

| ANTI - TNF $\alpha$ AGENTS |            | ADALIMUMAB, GOLIMUMAB |
|----------------------------|------------|-----------------------|
| ETARNACEPT                 | INFliximab | S/C every 2-3 wks     |

~~ETARNACEPT~~

chimeric form  
Mab against  
TNF $\alpha$  receptor

Limited  
efficacy

Common

INFliximab

chimeric Mab  
against  
TNF $\alpha$  itself

Excellent  
efficacy  
Anaphylaxis

PEGYLATED CERTOLIZUMAB

Fully Humanised MAb  
against  
TNF $\alpha$  itself

Equal efficacy  
Safety

S/C every  
6-8 weeks

Common ADR  $\Rightarrow$  Reactivation of TB.

134

Hence, Screening for active dormant TB is mandatory before Anti-TNF  $\alpha$  agents.

Tuberculin (MANTOUX)

$\rightarrow$  MOST SENSITIVE.

$\rightarrow$  BCG vaccination.  
(false +ve)

WHO  $\rightarrow$  In countries (BCG vac.)

Best screening Test is

Interferon  $\gamma$  assay

(TB-GOLD/ quantification)  
quantiferon

## SPONDYLOARTHO PATHY

Group of Disorders characterised by

### COMMON FEATURES

- 1) Seronegative RAF -ve
- 2) HLA B27 +ve Strong family History
- 3) 1° site - "Enthesis" Junc' Btw Bone & Tendon.
- 4) Axial Involvement is not Uncommon.
- 5) Extraarticular manifestations predominate
- 6) Excellent response to NSAIDs  $\rightarrow$  1<sup>st</sup> Line of Rx

SpA are D/D - Inflammatory Polyarthritides

I

# ANKYLOSING SPON. / BECHETROW'S / MARIE-STRUMPELL DISEASE<sup>35</sup>

Epid - 10-20yrs, ♂ > ♀, 90% - HLA B27

C/F ARTICULAR  
(Axial Dominant)

|                         |                                                      |
|-------------------------|------------------------------------------------------|
| Sacro-iliac Joint - H/C | LBP (non-specific)<br>always B/L<br>But asymmetrical |
| Lumbar spine            | Restricted esp.<br>movement toward bending           |
| Thoracic spine          | Restricted Help.<br>movement                         |
| Cervical spine          | Highest risk of #<br>in Lower part of<br>Cx spine    |

EXTR-ARTICULAR  
(Predominant)  
70% → Recurrent U/L  
ANT. UVEITIES

A

BEFORE

Spine Involvement

AFTER

HLA-B27 → +ve  
-ve  
~~X~~

≥ 2 common features  
of SpA

(confirms A.S.)

MRI proven Sacroileitis

≥ 1 common feature of SpA

| NORMAL                            | STAGES                                          | Rx                                |
|-----------------------------------|-------------------------------------------------|-----------------------------------|
| vertebral<br>Body                 | ENTHESIS                                        | NSAIDS 136                        |
| Tendon of<br>Paraspinal<br>Muscle | MARROW EDEMA                                    | BEST TIME for<br>Biologicals.     |
|                                   | MARGINAL SYN<br>DESMOPHYTES<br>(unique feature) | DMARDs                            |
|                                   | FUSION<br>(ANKYLOSIS)                           | Biologicals<br>(All TNF α agents) |

MRI is mandatory

Only Test → Detect the stage of A.S.

### Rx - UNFAVOURABLE

unlike RA only 10-15% active complete Remission

| II PSORIATIC                                                                                                                                                                            | III ENTEROPATHIC                                                                                                                       | IV REACTIVE                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M/c - "Guttate"<br>Pustular type of psoriasis                                                                                                                                           | M/c - U.c. / Crohn's Disease<br><u>Common Pathology</u><br>Bowel Disease & Severity of activity<br>Severity of arthritis               | Post - infective<br>F. / UTI      CHLAMYDIA<br>URBAN      S. Typhi<br>Travel      Shigella<br>Diarrhoea                                                                  |
| M/c - ONCHOLYSIS'<br>(nail pitting)<br>Skin Lesions<br>10% urethritis ant<br>↓<br>Symmetrical polyarthritis<br>(Predom - small jts)<br>mimic RA - 5-10% pts<br>arthritis > skin changes | M/c - Diarrhoea<br>Most-specific = Pyoderma gangrenosum<br>(Unique in U.c.)<br>↓<br>Asymmetrical polyarthritis<br>(Predom - Large jts) | M/c → febrile illness<br>→ KERATODERMA<br>BLENNORRHAGIA<br>(Keratotic, Painless plaques - sole + Palm)<br>↓<br>Asymmetrical - polyarthritis<br>(Predom - wt bearing jts) |

- Early DIP jt  $\oplus$   
 X-Ray  $\rightarrow$  pencil in cup deformity
- MTx
  - Anti-TNF $\alpha$  agents
  - Tofacitinib.

Sulfasalazine  
 Anti-TNF $\alpha$

## CHICKENGUNYA ARTHRITIS

137

Hydroxychloroquine  
 (additional anti-inflammatory action)

## CRYSTAL INDUCED

| GOUT                                                   |                                                                                        | PSEUDO GOUT                                                                                          |                     |
|--------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------|
| Crystal                                                | Mon. Sodium urate (M.S.U.)                                                             | $\text{Ca}^{2+}$ pyrophos. dihydrate (C.P.P.D)                                                       |                     |
| Epid                                                   | 30-50 yrs $\sigma > \varphi$                                                           | $> 50$ yrs $\sigma > \varphi$                                                                        |                     |
| Etiopath                                               | 90% - Renal Defect in Urate excretion.<br>10% - Diet / Drugs (Pyrazinamide / Thiazide) | 90% - Jt. Degeneration.<br><br>10% - Hypercalcemia = Severe PTH adenoma So, early Paraneoplastic Syn |                     |
| C/F                                                    | Acute - Inflammatory MONO- ARTHRITIS<br>(M/c - 1st MTP, ankle jt)                      | Acute, inflammatory OLIGO<br>(M/c - Knee, Hips, shoulder)                                            |                     |
| Screening                                              | Serum Uric Acid                                                                        | NON-SPECIFIC NORMAL VALUE DOESN'T exclude                                                            | S. $\text{Ca}^{2+}$ |
| Synovial Fluid Analysis                                | NEEDLE SHAPED                                                                          | RHOMBOID SHAPED                                                                                      |                     |
| Polarising microscopy<br><br>↓<br>Demonstrate crystals | STRONG +ve Birefringence<br><br>Gold Std.                                              | MILD +ve Refringence                                                                                 |                     |

Rx

Acute Attack

Colchicine  
Canakinumab

MAB  
IL-1 $\beta$

NSAIDs

138

Renal Failure

FEBUXOSTAT (X-O-I)

Hepatic excretion.

Additional anti-inflammatory

Intra-articular  
steroids

Chronic  
Prevention

TARGET Uric acid < 6mg/dL

1st Line = X-O-Inhibitors

(Allopurinol, Febuxostat)

Refractory cases

PEGLOTICASE

Regulated uricase  
debulking action on  
tubules

Encourage Physio  
therapy

Avoid unnecessary  
 $\text{Ca}^{2+}$ /vit D<sub>3</sub>  
supplements

In elderly  
Majority require  
Jt. Replacement Sx.

Unfavourable

Prog

Favourable

## CHARCOT'S

139

1st described → Tabes (Neurosyphilis)

Associations :- HI = DM, Leprosy, Amyloidosis

### Pathophysiology

#### NEUROVASCULAR

Autonomic neuropathy



Disrupts Micro-circulation

#### NEURO-TRAUMA

Sensory neuropathy



Recurrent Microtrauma

### DEGENERATION



Loss of pain sensation  
(neuropathic jt)

M/C Forefoot Jt → Hind foot Jt → Ankle Jt

Ass XR → "Loose Bodies" in jt. cavity

Only Rx Strict Immobilization → Total Rest



facilitate recovery of  
Jt.

only palliative → Unfavourable Prog.

# VASCULITIS

140

## Ⓐ Based - Pathological Mechanisms

| ANTIBODY (ANCA)<br>MEDIATED | IMMUNE-complex<br>MEDIATED | T-cell mediated      |
|-----------------------------|----------------------------|----------------------|
| Wegener's (W.G.)            | Hep. B - PAN               | Giant cell arteritis |
| Churg Strauss (C.S.S.)      | Hep C - Cryoglob           | Takayasu's           |
| M.P.A.                      | H.S.P.                     | W.G.                 |
| Microscopic polyangiitis    | (Henoch-Schonlein Purpura) | C.S.S.               |

## Ⓑ Based - Size of vessel affected (Preferred)

| LARGE                | MEDIUM               | SMALL                      |
|----------------------|----------------------|----------------------------|
| Giant cell arteritis | Polyarteritis nodosa |                            |
| Takayasu             | Kawasaki             |                            |
| ↓                    |                      |                            |
| ANCA +ve             |                      | ANCA -ve                   |
| Anti-PR3             | Anti- MPO            | H.S.P. vs Hypersensitivity |
| W.G.                 | M.P.A.               | Cryoglobulinemia           |
|                      | C.S.S.               | BECHET's Disease           |

# G.C.A.

141

>50 yrs, ♀ > ♂

C/F → Artery Involved (Carotid)

| Ble. of EXTERNAL CAROTID   | Ble. of INT. CAROTID           | PATHOLOGY                 |
|----------------------------|--------------------------------|---------------------------|
| H/c - <u>Sub. Temporal</u> | 1st Br. Ophthalmic A.          | Polymyalgia<br>Rheumatica |
| Headache (worse-subpine)   | End artery -<br>No collaterals |                           |
| ± Diplopia                 |                                |                           |
| ± Jaw claudication Pain    | ↓<br>Permanent<br>BLINDNESS    |                           |
| ± Paresthesia over Jaw     |                                |                           |

ESR (screening) >60 (significant)

Gold Std →

- ↳ Temporal A. → Minimum > 2 cm Length.
- ↳ Biopsy → HPE - Granulomatous vasculitis

Rx = Steroids → Relief of symptoms

↳ only drug ⊂ prevent dreaded complication  
= BLINDNESS

Early Rx = GOOD ↗ PROGNOSIS



## TAKAYASUS / AORTIC ARCH SYNDROME

142

Epid - 10-20 yrs,  $\text{♀} > \text{♂}$

C/F - Depends on artery involved = All direct Br. of AORTA

| SUBCLAVIAN (H/c)                                     | CAROTID VERTEBRAL    | COELIAC                             | RENAL                | CORONARY $< 1\%$        |
|------------------------------------------------------|----------------------|-------------------------------------|----------------------|-------------------------|
| VIL claudication<br>Unequal/ABSENT PULSELESS DISEASE | Recurrent TIA/Stroke | Chv.<br>mesenteric<br>Insufficiency | Refractory HTN (RAS) | Acute Coronary Syndrome |
|                                                      |                      |                                     |                      |                         |

Δ - CT - AORTOGRAPHY Gold Std

Rx - Immunosuppression + Angioplasty  
(specific) (Palliation)

POOR PROGNOSIS

## KAWASAKI's / Mucocutaneous L.N. Syndrome

H/c vasculitis ;  $< 5$  yrs,  $\text{♂} > \text{♀}$

Replaced R.H.D. → H/c cause of cardiac death in children due to Acquired heart Disease

### AHA Guidelines

H/c manifestation → Febrile episode

Any Fever - on/after 4<sup>th</sup> Day (min. dur 5 days)<sup>80</sup>

If - 4/5 of following features are  $\oplus$

1> 90% B/L non-exudative conjunctivitis

2> Erythema over extremities

3> Peri-anal Rash

4> Strawberry Tongue

5> non-suppurative single, cervical L.N.

Rx- IV Ig + Long term Aspirin prophylaxis

- Relieve symptoms
  - Reduces risk of coronary involvement to 4-6%
  - Cannot reverse coronary atherosclerosis

Dreaded complication : CORONARY ANEURYSM

RUPTURE (4-6% case)

THROMBOSIS 95% of cases

↓  
Elective angioplasty prevents.

Prognosis - FAVOURABLE

ULINASTATIN :- Neutrophil elastase Inhibitor.  
(New, approved) only IgG refractory case.

|       |                                       |                                    |
|-------|---------------------------------------|------------------------------------|
| PAN   | SYSTEMIC<br>NECROTISING<br>VASCULITIS | MPA (Part of PAN prior to)<br>1999 |
| Epid. | 30-50 yrs.                            | $0^{\circ} > \varnothing$          |

Etiology      Classical      H/C - Idiopathic

30% Chx. Hep B infection

|                                                                                                                                                                     |                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| <p><b>Pathology</b></p> <p>Immune complex<br/>Mediated</p> <p>↓<br/>fibrinoid necrosis</p> <p>Bifurcation of Medium vessel</p> <p>↓<br/>Microaneurysm formation</p> | <p>ANCA - mediated vasculitis</p> <p>↓</p> <p>Small vessel predominant</p> <p>↓</p> <p>70% Anti-MPO +ve.</p> |
| <p>c/F <u>H/C</u> 90% arthralgia</p> <p>HEMATURIA - <u>c out GN</u><br/>(rupture of micro aneurysm)</p>                                                             | <p>-</p> <p><u>always due to GN</u></p>                                                                      |
| <p>CNS -</p>                                                                                                                                                        | <p>Mononeuritis - multiplex (Neuropathy) - asymmetrical</p>                                                  |

SKIN =

## Raynaud's phenomenon

Digital gangrene, LIVEDO

Purpuric Rash

144

Gonadal arteries  
mimic torsion

Pulmonary  
Spaeed  
But bronchies  
may be involved

Alveolar H<sup>o</sup>ge  
(ANCA +ve → D/D - Good Pastuer's  
Syndrome)

Asis - Exception

Biopsy - Gold Std

Renal angio-  
new aneurysm @  
Bifurcation of vessels.

Rx Immunosuppressants → Favourable Prognosis

## WEGENER'S GRANULOMATOSIS.

or chronic Granulomatous angitis

30-50 yrs, ♂ > ♀

Closest D/D → Good Pastuer's.

| C/F | Pulmonary                                                                                                                                                 | Renal                                                                                                                                                                                                                                   | Eyes                                                                              |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| H/c | <ul style="list-style-type: none"> <li>Lungs</li> <li>• B/L abscess</li> <li>• Multiple thin walled cavity</li> <li>• Alveolar H<sup>o</sup>ge</li> </ul> | <ul style="list-style-type: none"> <li>URT - u specific</li> <li><u>H/c - ch4. sinusitis</u></li> <li>• Nasal bridge deformity</li> <li>• Serous otitis media</li> <li>• Subglottic stenosis<br/>(change in timbre of voice)</li> </ul> | <p>↓ RPGN</p> <p>H/c - Pan-uveitis</p> <p>SKIN</p> <p>Purpuric Rash over L.L.</p> |

Serology 70% Anti PR3 +ve (Wegener's Antigen)  
(SCREENING) 30% Anti MPO +ve 945

Anti: Absence cannot exclude W.G.

BEST TEST → LUNG BIOPSY

Rx cyclophosphamide → favourable response  
GOOD & PROGNOSIS

CHURG

CHURG STRAUSS (eosinophilia & granulomatous angitis)

30-50yo. ♂>♀

c/f

| PULMONARY                                 | RENAL | SKIN involvement            |
|-------------------------------------------|-------|-----------------------------|
| LUNG<br>URTI                              |       |                             |
| Late onset<br>asthma<br>allergic rhinitis | RPGN  | Purpuric/<br>urticular rash |

W.G. can be differentiated by ocular involvement

Asy- short course of steroids

Lung Biopsy / skin Rx = eosinophilic  
vasculitis

Rx - short course of steroids

favourable prognosis, long term remission

GOOD & PROGNOSIS

# H.S.P. (ANAPHYLACTOID PURPURA)

146

> 90% cases - occur < 10 yrs, age  $M > F$ .

ADULT H.S.P.

HYPERSensitivity  
VASCULITIS

EPID - 20-40 yrs,  $M > F$

Etiopath Post Infective H/C - preceded by URTI

| PALPABLE PURPURA                                |                             |                       |
|-------------------------------------------------|-----------------------------|-----------------------|
| C/F                                             | Distribution                | Generalised           |
| LL + Buttocks<br>Common<br>Abd. pain, Malena    | Mucous memb.<br>involvement | Uncommon              |
| 3-5% - IgA deposits<br>on GBM - Gross Hematuria | Renal involvement           | NEVER occurs          |
| Capillaries                                     | Site - Biopsy<br>(Gold std) | Post capillary venule |

Rx - Reassurance/ Self Limiting Disease.

# ESSENTIAL MIXED CRYOGLOBULINEMIA (EMC)

147

↓  
usually indicate  
Idiopathic cause

Majority = 90% = (2°) cause

✓ Multiple myeloma

✓ Chro. Hep. C., Hep B

Lymphoproliferative states

Pathophys:- Exposure to cold → cryoglobulins ppt  
( $T < 37^\circ\text{C}$ ) | ( $\text{Ig} \subseteq \text{ppt.}$ )

H/c - Skin capillaries

98% - multiple areas of skin

necrosis

Renal tubules

A.T.N. (direct toxicity)

Δsu - Incubate plasma in cold bath → ppt.  $\oplus$

Rx + Prog - underlying cause (unfavourable)

## BEHICET'S DISEASE → HLA B5 $\frac{1}{148}$

lepid - 30-50 yrs, ♀ > ♂ (worse in ♂)

### MAJOR

Recurrent, painful,  
oral aphthous  
ulcers

### MINOR

- 1) Recurrent superficial thrombophlebitis
- 2) Bl. Hypopyon
- 3) Erythema nodosum
- 4) Painful genital ulcers
- 5) Pathergy Test +ve

Skin Prick  $> 5\text{mm}$  deep

↓  
Induration  $(+)$

Δsu - MAJOR + 2 MINOR - confirm.

Rx - Steroids - excellent response

Favourable Prognosis

## FIBROMYALGIA (Pain Sensitivity Syndrome)

Epid - 30-50 yrs, ♀ > ♂

Risk - Stress

Pathophys - ↓ Blood flow to Thalamus

(MINOR) ↓ cortisol response to stress

C/F - Multiple aches + pains (somatic complaint)  
≥ 3 months

- Associated w Defect of NREM sleep

Ass - Clinical - 18 point pain testing (screening)  
(> 11/18 +ve tenderness → significant)

MR spectroscopy - gold std.

Rx - Pregabalin.  
Gabapentin  
TCA  
SSRI.

Unfavourable Prognosis → Prone to analgesic abuse  
Poor Q.L.I.

# CHRONIC FATIGUE SYNDROME

150

20-40yrs, ♂ > ♀

e/F - FATIGUE  $\geq 6$  weeks

Ass - of exclusion

- 1) Obesity
- 2) Substance abuse
- 3) All medical causes

- 1) Nutritional
- 2) Endocrine  
Hypo thy, DM.
- 3) Ch4- Infection
- 4) autoimmune
- 5) neoplasm

Rx = Lifestyle Modification



# RESPIRATORY

## LUNG DEVELOPMENT

152

5 stages

- 1) Embryonic stage → Lung buds
- 2) Pseudoglandular Stage → upto terminal Bronchiole
- 3) Canalicular - Alveolar ducts
- 4) Saccular - Primitive alveoli
- 5) Alveolar - Mature alveoli

## BRONCHOPULMONARY SEQUESTRATION

Defn: Separation of part of lung during development from tracheobronchial tree & separate blood supply.



Separated & having  
separate covering

M/c  
separated part in adjacent lung  
of ~~or~~ & covered by lung's pleura

M/c site → (L) lower lobe post basal segment

M/c Blood → Thoracic aorta  
supply

IOC:- CT Angiography or MR angiography

Rx- Resection if pt. is symptomatic

## SURFACTANT

153

- 1) Dipalmitoyl Phosphatidyl choline / Lecithin.
- 2) Produced by Type II pneumocyte
- 3) also by Clara cells.
- 4) Removed by Alveolar macrophage

### 5) Functions :-

- a) surface Tension ↓
- b) maintain alveolar stability/ FRC
- c) Compliance

6) Surfactant "index" starts at **20wks**

Peak at **35wks**

So, if < 35wks → Respiratory distress syndrome  
or  
Hyaline membrane Disease.

### Pathophysiology of RDS



## X-Ray Findings :-

154

- 1) Reticulo granular granular pattern
- 2) Ground glassing
- 3) white out Lungs
- 4) ↓ lung volume  
(↓ FRC)

## Inv :-

Lecithin > 2 ⇒ MATURE LUNG.

Sphingomyelin

Rx :- mild to moderate ⇒ O<sub>2</sub> + CPAP

Severe ⇒ Invasive Mech. ventilation +  
Surfactant Deficiency Replacement

Surfactant [Hyaline appear pink on Biopsy]

## PULMONARY ALVEOLAR PROTEINOSIS

Surfactant clearance is impaired

Etiology :- 1° form (M/C) → Auto Ab against GM-CSF

2° form → ✓ Acute Silicosis  
✓ Haemato poetic malignancy  
✓ Immunodeficiency

Silica particles are toxic to alveolar macrophage  
Ch. Silicosis pt. are prone to TB.

In malignancy, macrophages are not matured enough  
to carry out func.

In immunodeficiency, macrophages ↓

Pathophysiology -  
 ↓ Diffusion from  $O_2$  → Hypoxemia. 155

- Δ :- alveolar
- 1) Broncho pulmonary Lavage → milky white
  - 2) BAL → PAS +ve
  - 3) CT Chest → CRAZY PAVING PATTERN

Rx - Whole Lung Lavage

### WIEBELS LUNG MODEL



Functional / ventilatory unit/  
 Acinus = Distal to terminal Bronchiole

Radiological unit / 2° Pulmonary Lobule

= Roof of a group of acinus (5-7)

involved in EMPHYSEMA



upto terminal Bronchiole = Conducting Pathway

(R) Main Bronchus

**Aspiration** is more common  
 this side as it is short,  
 stout, straight

(L) Main Bronchus

**Bronchiectasis** more common  
 in (L) lower part → narrow  
 angulated & drainage

## BPS Segments + ASPIRATION PNEUMONIA

156

M/c segment involved in Asp. Pneumonia =

⑧ Lower Lobe superior

/ seg or ⑧ upper

M/c segment involved in Asp. Pneumonia in supine Lobe Post

Lobe

Post

" " " Asp. Pneumonia in sitting /standing  
= ⑧ Lower Lobe posterior Basal

" " " Asp. Pneumonia in Bending forward  
⑧ middle Lobe

Best Inv:- **Bronchoscopy**

## HEMOPTYSIS

Lung → High Pr. Systemic circulation ⇒ Bronchial artery  
↓ Low Pr. Pulmonary " ⇒ Pulmonary artery

M/c source of hemoptysis → Bronchial artery

M/c source of massive hemoptysis ↑

M/c of hemoptysis in India → TB

M/c of " worldwide → TB

M/c of Death in hemoptysis → Asphyxiation. ↓ Blood clot.

## APPROACH TO HEMOPTYSIS

157



AIMS

### PERSISTENT CASES-

Br. artery embolisation

Resection of affected lobe

Source of hemoptysis in Mitral Stenosis =

[Rupture of Pulmonary Bronchial  
venous connec. → Br. veins]

Source of hemoptysis in Pulmonary Embolism → Pulmonary artery

H/C source of hemoptysis in TB → Br. artery

Rasmussen's aneurysm → Pulmonary artery

Rasmussen's

organism that causes pseudohemophy's  
= *Serratia marcescens*

158

### INTRAPLEURAL PR.

Lung always tries to collapse to centre



Chest wall always tries to move outward



There is a Balancing force Between the 2

↓  
-ve Intrapleural Pressure (IPP)

[ Usually -ve during (N) respiration  
Maintains equilibrium Lung volume  $\Rightarrow$  FRC / Relaxing volume ]

(N) Value = -2 to -6 cm H<sub>2</sub>O.



More -ve IPP

Deep Inspiration.

Pneumony

Collapse

Fibrosis

Less -ve IPP / +ve IPP

1) Forced Expiration.

\* Cough, valsalva manoeuvre

2) Pushing lesions

3) \* Tension Pneumothorax

\* Maligne ..

## COMPLIANCE

159

- Stretchability of Lung.
- Change in unit volume per unit change in pressure

$$C = \frac{\Delta V}{\Delta P}$$

Static compliance = air flow & resistance not considered

Dynamic  $\rightarrow$  air flow + air resistance considered

## EMPHYSEMA PATHOPHYSIOLOGY

Insp: Exp. = 2s : 3s      early closure



if elastic fibres

Damaged.



→      Air Trapping  
emphysema at  
end expiration.



Dynamic Hyperinflation

### CXR

1) Bl ~~H~~ Hypertranslucency

2) Flat Diaphragm

3) Tubular Heart

4) Barrel shaped chest wall

↓ diameter of airway

↑ Airway resistance

↓ Dynamic compliance  
in emphysema

Loss of elastic fibres  
↑ static compliance

Emphysema -  
RV ↑

FRC ↑

TLCT

- ↓ compliance
- 1) Surfactant Deficiency
  - 2) ARDS
  - 3) Pulmonary edema
  - 4) Fibrosis / ILD
  - 5) 100% O<sub>2</sub> damage

- ↑ compliance 160
- 1) old age
  - 2) Emphysema
  - Static compl ↑
  - Dynamic compl + (↑ airway resistance)



HOOVER's SIGN → Paradoxical inward movement of lower ribcage during inspiration  
severe COPD

↓  
since diaphragm is not there, that's why.

## HISTOLOGY OF ALVEOLI

161

### TYPE I

Pavement epithelium  
Vulnerable to damage  
More surface area



### TYPE II

Secretes surfactant  
can divide & reconstitute  
Type I cells  
More No.

## ZONES OF LUNG

Vertical regions based on hydrostatic Pressure

$P_A$  = alveolar pressure

$P_a$  = arterial "

$P_v$  = venous "

Zone 1 =  $P_A > P_a > P_v$

$P_A > P_a > P_v$

$P_a > P_A > P_v$

2 =  $P_a > P_A > P_v$

$P_a > P_v > P_A$

3 =  $P_a > P_v > P_A$

(N) Lung = combination of Zone II & III.

## DEAD SPACE =

Area ventilated but no sufficient gas exchange (blood flow)

Anatomical D.S.

Physiologic D.S.

Ext. nares upto Terminal  
Bronchiale.

PDS = Anat DS + Alveolar D.S.

Measured by Fowler's method

In (N) Alveolar D.S. = 0

$N_2$  used

(N) P.D.S. = Anat D.S.

\* Bohr's equation

### $\uparrow$ Anat D.S.

- 1> Neck extension
- 2> Bronchodilation
- 3> Old age

### $\uparrow\uparrow$ Alv. D.s -



### $\downarrow$ Anat D.S.

- 1> Neck Flexion

2> Bronchoconstriction

3> Orotracheal intubation / Tracheostomy

Bypass . . . . .  
nasal airway

Bypass oral,  
nasal airway

162

### COPD



wasted ventilation

=

### P. Embolism



In P. embolism , predominant Defect is in Perfusion

### MECHANISMS OF HYPOXEMIA

(I) V/P mismatch (H/lc)

(II) Shunt

(III) Diffusion Defect

(IV) Hypoventilation

II SHUNT-

Bypass of blood  $\rightarrow$  out oxygenation.  
(Diversion)

163

INTRACARDIAC

R → L shunt

INTRAPULMONARY

⇒ Sev. Pneumonia

⇒ ARDS



Less responsive to supplemental  $O_2$ .

Rx = Mechanical Ventilation.

Rx infection.

Cure pathology.

$\frac{V}{P}$  Ratio

Max. Ventilation  
Max. Perfusion  
Min. V/P ratio

Min. ventilation.  
Min. perfusion  
Max. V/P ratio

|         | V   | P     | V/P | $PAO_2$ | $PA CO_2$ |
|---------|-----|-------|-----|---------|-----------|
| APEX    | 2 L | 0.5 L | 4.  | 130     | 28        |
| MIDZONE | 4 L | 5 L   | 0.8 | 104     | 35        |
| BASE    | 6 L | 10 L  | 0.6 | 92      | 42        |

1° TB  $\Rightarrow$  Mid & Lower Lobe

164

2° TB  $\Rightarrow$  Apex.

↳ active disease due to proliferation of Bacilli

Reason

$\uparrow O_2$  tension

$\uparrow V/P$  ratio.

### DIFFUSION CAPACITY OF LUNG $\equiv$ $DLCO$

↓

↑ DLCO

1) Fibrosis o/ ILD

2) Severe emphysema

3) Pneumonia

4) ARDS

5) Sarcoidosis

6) P. embolism

7) Anaemia

8) Pul. HTN

No blood flow exchange

↳ Polycythaemia

2) Exercise ( $\uparrow$  Blood flow)

3) Alveolar H<sub>g</sub>e

↳ good pastewi's  
Wegener

4) Acute Asthma

↳ sed eosinophil inflammation

↓ NO produc"

P. vasodilatation

↑ DLCO

New FeNO = Test for Acute Asthma

## SPIROMETRY

Tidal volume = Normally in/out =  $500\text{ mL}^{165}$

IRV = air accommodated to effort after Tidal inhalation =  $3000\text{ mL}$

ERV = air expired to effort after Tidal expiration =  $1100\text{ mL}$

RV = Air that remains after ~~flex~~ forcible expiration =  $1200\text{ mL}$



VC = Volume exhaled forcibly after max. inhalation.

$$TV + ERV + IRV$$

$$IC = TV + IRV$$

$$FRC = ERV + RV$$

$$TLC = \underbrace{TV + IRV + ERV + RV}_{VC} + \underbrace{ERV}_{FRC} + IC$$

Conventional Spirometer = can't measure

166

- RV
- FRC
- TLC

Methods for  $\left. \begin{matrix} \text{RV} \\ \text{FRC} \\ \text{TLC} \end{matrix} \right\}$  He Dilution Method  
N<sub>2</sub> washout

Body Plethysmography. (Best)

### DYNAMIC LUNG VOL

1) Forced Vital Capacity = Rapid & forcible VC

$$\boxed{\text{FeV}_1} = \text{FVC} @ \text{end of 1st sec} = 80\%$$

2) Timed Vital Capacity →  $\boxed{\text{FeV}_2}$  FVC @ end of 2<sup>nd</sup> sec = 90%.

$$\boxed{\text{FeV}_3} \quad \text{FVC} @ \text{end of 3rd sec} = 98\%$$

3) PEFR = Peak expiratory Flow Rate

→ Peak of FVC

→ Indicates large airflow flow

→ 400-500 mL/min

4) MEFV → Avg. velocity during mid portion of exhalation.

→ sensitive indication of small airway function

→ 300 mL/min

| <u>N</u>                                                 | <u>OBSTRUCTIVE</u>                                        | <u>RESTRICTIVE</u>                                                  |
|----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|
| FVC <u>N</u>                                             | FeV <sub>1</sub> ↓↓                                       | FeV <sub>1</sub> <u>(N)</u> ↓                                       |
| FeV <sub>1</sub> <u>N</u>                                | FVC <u>N</u>                                              | FVC ↓↓                                                              |
| $\frac{\text{FeV}_1}{\text{FVC}} = \underline{\text{N}}$ | $\frac{\text{FeV}_1}{\text{FVC}} = \downarrow \downarrow$ | $\frac{\text{FeV}_1}{\text{FVC}} = \uparrow / \underline{\text{N}}$ |



### OBSTRUCTIVE

- 1) Asthma
- 2) Bronchiectasis
- 3) COPD
  - ChE. Bronchitis
  - Emphysema

### RESTRICTIVE

- ↓                          ↓
- Intrinsic RLD      Extrinsic RLD
  - Pul. parenchyma      Pul. parenchyma  
involved            unininvolved.

- |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"> <li>1) Fibrosis</li> <li>2) Pneumonia</li> <li>3) Sarcoidosis</li> <li>4) Occupational lung<br/>disease</li> </ul> | <ul style="list-style-type: none"> <li>1) Kyphoscoliosis</li> <li>2) Neuromuscular<br/>Disease           <ul style="list-style-type: none"> <li>a) GBS</li> <li>b) Poliomyelitis</li> <li>c) Myasthenia<br/>Gravis</li> <li>d) Amy. Lat Sclerosis</li> </ul> </li> <li>3) Diaphragmatic<br/>Dysfunction</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## EMPHYSEMA

1) Obstructive

$$2) \frac{FeV_1}{FVC} \downarrow$$

3) RV↑, FRC↑, TLC↑

4) Compliance

Static  $\frac{1}{C_{DLCO}}$  ↑  
Dynamic  $\frac{1}{C_{DLCO}}$  ↓

## FIBROSIS / ILD

168

1) Restrictive

$$2) \frac{FeV_1}{FVC} \uparrow / \textcircled{N}$$

3) RV↓, FRC↓, TLC↓

4) Compliance ↓

5) DLCO ↓

## INTERPRETATION OF SPIROMETRY



## FLOW VOLUME LOOPS





## RESTRICTIVE



$$\text{If } \frac{\text{FeV}_1}{\text{Frc}} \text{ } \textcircled{N} \Rightarrow \text{All } \textcircled{N}$$

## $\text{Isp}_{\text{O}_2}$ on ~~less~~<sup>more</sup> exertion

↓ DLCO      ↓ (young ♀)

## 10 Pulmonary HTN



## KUSSMAUL'S BREATHING :-

## Rapid 'Deep' Breathing



e.g. sev. Metabolic acidosis  $\rightarrow$  DKA, Uraemia

170

## 2) CHEYNE STOKES BREATHING.

$\rightarrow$  Periodic Breathing  $\equiv$  cyclical Pattern.



$\rightarrow$  altered response to  $\text{CO}_2$ .

e.g. CHF, narcotic overdose, Head injury

## 3) BIOTS BREATHING

$\rightarrow$  Irregular respiration  $\equiv$  Apnoea

e.g. Meningitis  
 $\uparrow$  ICP



## 4) ATAXIC BREATHING

Inregularly irregular respiration  $\equiv$   $\uparrow$  Apnoea



e.g. Brainstem injury.

## BREATH SOUNDS

171

Ab (N)

- (N) → vesicular Breathing
- Similar to sounds of Hustling of leaves
- Low pitch, soft
- I:E = 3:1  
No pause.

- Bronchial Breathing
- Similar to tracheal sound
- High pitch, Harsh
- I:E = 1:1  
pause

- 1) Tubular Breathing → Consolidation
- 2) Cavernous " → cavity
- 3) Amphoric " → Metallic quality  
e.g. Bronchopleural fistula

### ADVENTITIOUS BREATH SOUNDS :-

WHEEZE (musical)

Produced when airflow past an obstruction due to vibration of airways

Monophonic  
Local involvement

e.g.  
Bronchial Tumour

Rhonchi :- Low pitch wheeze

Polyphonic  
Diffuse involvement

e.g.  
Asthma, COPD

CREPTS/ CRACKLES/ RALES

Non-musical sounds

1) When air flows into secretions

⇒ Bubbling noise

cause crepts

BRONCHIECTASIS

2) When alveoli suddenly pop open during inspiration



ILD



Fine crepts

## (B) Fine & Coarse Crepts

172

- 1) P. edema (fine > coarse)
- 2) Pneumonia
- 3) TB

STRIDOR - Loud, audible, inspiratory & expiratory wheeze

due to Laryngospasm

F.B.

Laryngeal edema

Subglottic stenosis

LES-

| PULLING                                                      | NO PULL/PUSH               | PUSHING LESION                                                      |
|--------------------------------------------------------------|----------------------------|---------------------------------------------------------------------|
| Collapse<br>Fibrosis                                         | Consolidation              | Pleural effusion<br>Pneumothorax                                    |
| <u>Percussion</u> = Dull in collapse<br>Impaired in fibrosis | Dull note                  | Stony dull in P. eff.<br>Hyper-resonant/Tympanic<br>in pneumothorax |
| Auscultation                                                 | Bronchial breathing +      | BS ↓ to -                                                           |
| CXR                                                          | Atelectasis<br>Bronchogram | Pl. eff = white<br>meniscoid fluid level.                           |
| collapse - Homogenous white                                  |                            | Pneumothorax<br>= Black Ⓛ                                           |
| Fibrosis - Heterogeneously white                             |                            | compressed lung margin                                              |

## ~~P~~ PLEURAL EFFUSION

## HYDROPPNEUMOTHORAX 173

|                           |     |     |
|---------------------------|-----|-----|
| Straight line of dullness | (-) | (+) |
| Shifting dullness         | (-) | (+) |
| Suspirior splash          | (-) | (+) |
| Sound of coin.            | (-) | (+) |

## RESPIRATORY FAILURE

Low  $\text{P}_{\text{O}_2} < 60 \text{ mmHg}$ , High  $\text{P}_{\text{CO}_2} > 45 \text{ mmHg}$ .

(HYPOXIA)

(HYPERCAPNIA)

Type I RF - Hypoxemic RF

Type II RF - Hypercapnic RF

Type III RF - Perioperative RF due to lung atelectasis associated with general anaesthesia

Type IV RF - due to hypoperfusion of respiratory m/s due to shock.

### TYPE I

Diffusion defect

↓ Transfer of  $\text{O}_2$ .



$$\text{PAO}_2 = \text{N}$$

$$\text{PaO}_2 = \downarrow$$

$$\text{P}_{(\text{A}-\text{a})\text{O}_2} = \uparrow\uparrow$$

$$\text{Paco}_2 = \text{N}/\downarrow$$

### TYPE II

Hypoventilation

↓ Resp. effort

$$\text{PAO}_2 = \downarrow$$

$$\text{PaO}_2 = \downarrow$$

$$\text{P}_{(\text{A}-\text{a})\text{O}_2} = \text{N}$$

$$\text{Paco}_2 = \uparrow$$

pH  $\downarrow\downarrow$  (Respiratory Acidosis)

## CAUSES

Pneumonia

ARDS

ILD

Pulmonary edema

P. Thromboembolism [Highest]  
 $P_{A-aO_2}$

$R_x O_2 + R_x$  of underlying disease

If pt. not improving

Pneumonia

ARDS

Invasive +ve pressure ventilation preferred

## CENTRAL CAUSE

Narcotic use

174

Head injury

## OBSTRUCTION

F-B.

Severe COPD

## PERIPHERAL

Neuromuscular Disorder

## DIAPHRAGM CAUSE

Palsy

$\Rightarrow$  [COPD] - pneumothorax

$O_2 + R_x$  underlying cause

If pt. not improving

[COPD / NMD]

Non-invasive +ve pressure ventilation is 1st choice

NIPPV [ BiPAP (NIV commonly used)  
CPAP

If no response  $\Rightarrow$  IPPV

C/I of non-Invasive ventilation

- 1) altered sensorium
- 2) ↑ chances of aspiration
- 3) cardiac arrest
- 4) Hemodynamically unstable
- 5) Unco-operative pts.

- 6) Claustrophobic
- 7) Active GI Bleed 175
- 8) Recent Facial Trauma or Sx.

## ARDS

Defn:- Acute shortness of Breath + Hypoxemia + Diffuse Pulmonary infiltrate

Causes:-

DIRECT

- 1) Pneumonia
- 2) Aspiration of gastric content
- 3) Lung contusion
- 4) Near drowning
- 5) Toxin inhalation

INDIRECT

- 1) Sepsis (M/c).
- 2) Severe trauma
- 3) Blood: multiple Blood Transfusion.
- 4) Severe Burns.
- 5) Pancreatitis

OTHER NAMES :-

- 1> Noncardiogenic Pul. edema
- 2> ↑ permeability Pul. "
- 3> Low pressure Pul. "
- 4> Diffuse Alveolar Damage (most characteristic)
- 5> Shock Lung
- 6> Wet Lung

Pathogenesis

Cardiogenic P. edema

Non-cardiogen P. Edema

## CARDIOGENIC P. Edema



PCWP = ↑ in CPE.

## NON-CARDIOGENIC

176



Damage to capillary endothelium + alveolar epithelium.

↑ Neutrophil entry  
= inflammation.

↑ damage = ↑ inflammatory exudate.

SHOCK LUNG.

## PCWP / Pul. Arterial Occlusion Pressure

→ Swan Ganz Catheter used

→ Indirect measure of LAP

→ In CPE PCWP > 18 mmHg

In NCPE PCWP < 18 mmHg

### Assess Berlin 2012 Definition

1) Acute Onset < 7 days

2) Origin of edema → non-cardiogenic  
PCWP < 18 mmHg

3) B/L diffuse infiltrate in CXR - PA

4)  $\frac{PaO_2}{FiO_2} < \frac{60 \text{ mmHg}}{0.2} = < 300$ .

$\frac{PaO_2}{FiO_2}$       200 - 300 = Mild ARDS

177

$\frac{PaO_2}{FiO_2}$       100 - 200 = Mod. ARDS

$\frac{PaO_2}{FiO_2}$       < 100 = Severe ARDS

Rx

Most Recommended Strategy / Beneficial :-

1) Low Tidal Volume Mechanical Ventilation (4-6 mL/kg Body wt.)

- Assist control mode to avoid ventilation associated Lung Injury

2) Adequate +ve end expiratory Pressure

3) Gluco-corticoid may be helpful.

\* Newer Ventilation Mode :-

1) Extracorporeal Membrane Oxygenation.



Mech :- Blood is pumped into membrane oxygenator & oxygenates blood & sent back into body.

Beneficial in severe ARDS.

## 2) Prone Ventilation.

MECH.:- In prone ventilation, diaphragmatic pressure on lower alveoli ↓ ⇒ ↑ sed alveoli for oxygenation <sup>178</sup>  
~~as wt. of abdomen ↑~~

For Benefit ⇒ Done for 16 consecutive hours.

- Helpful in improving oxygenation in pts w/ severe hypoxemia.
- Not helpful in pt. w/ pre-existing chest wall deformity / severe fibrosis.

## 3) High Frequency Oscillator Ventilation

- Low tidal volume are given w/ ~~more~~ <sup>more</sup> frequency
- Beneficial in few studies

## TRALI

(Transfusion Related Acute Lung Injury)

- occurs in or during 6hr of transfusion.
- Donor Plasma antibodies vs Recipient leukocyte  
→ Mediator release
- Feature of ARDS

Rx = supportive

H/ce of Transfusion related fatalities.

## P. THROMBOEMBOLISM (M/e of cor. Pulmonale)

Migration of thrombus  $\rightarrow$  into Pulmonary artery<sup>179</sup>  
M/e source: Pelvic veins.

### CAUSES

1°

- 1) Protein c, s deficiency
- 2) Factor V Leiden mutation.
- 3) Lupus anticoagulant
- 4) Antiphospholipid antibody syndrome
- 5) Hyper homocystinuria

2°

- 1) Prolonged immobilization
- 2) Recent Trauma. Sx
- 3) High oestrogen state  
e.g. ♀,  
oestrogen containing pills
- 4) malignancy
- 5) Nephrotic syndrome

### PATHOPHYSIOLOGY

#### LUNG



- 1) ↑ Pul. arterial Pressure  
 $\hookrightarrow$  rupture of vessel  
Hemoptysis
- 2) ↑ Alv. Dead space = Hypoxemia  
 $\downarrow$   
Shortness of Breath.
- 3) ↑ Serotonin by platelets  
 $\hookrightarrow$  Bronchospasm  $\rightarrow$  airway  $\uparrow$  resistance

#### HEART



P.A.

↑ R.V. Pressure

RV Dilatation

RV Hypokinesia

Movement of septum into  
LV  $\Rightarrow$  Ventricular

Interdependence

$\downarrow$   
SHOCK [COR  
Pulmonale]

4) Lung ischaemia → ↑ infl.  
mediators

180

5) Pleuritis → chest pain

6) Pleural effusion → Exudate >>  
Transudate

### TRIAD

- 1) ⚡ Chest pain
- 2) SOB (M/c symptom)
- 3) Hemoptysis.

COR PULMONALE :- alteration in str. + function of  
R ventricle due to 1° disorder of Resp.  
System excluding disease of L heart

M/c of char. cor pulmonale → COPD

M/c of Acute " → Massive PTE

↓  
presenting c shock

### DIAGNOSIS

1) ABG → Type I Resp. Failure

2) ECG → M/c → Tachycardia, T wave inversion  $V_1 - V_4$

3) Most specific →  $S, Q_3, T_3$  pattern. → massive PTE

4) CXR → N M/c  
FOCAL OLIGEMIA  
(Westermark Sign)



2) Wedge shaped deformity above diaphragm  
Hampton's hump 181

3) Palla's sign - Dilatation of R Descending Pul. artery

### D-Dimer :-

Fibrin Degradation product

Elevated in PTE

Sensitive not specific

poor predictive value but good neg. predictive value

5) Ioc  $\Rightarrow$  CT Palm. Angio

6) Gold Std  $\Rightarrow$  Invasive Pul angiography

7) V/P scan. - outdated  $\xrightarrow{\text{♀}}$   
 $\xleftarrow[\text{in}]{\text{used}}$  Contrast intolerance.

Rx



## PULMONARY HTN

182

MPAP  $> 25 \text{ mmHg}$  @ rest

MPAP  $> 30 \text{ mmHg}$   $\cong$  exercise

### MECH. WHO CLASSIFICATION

Group I - Direct involvement of Pul. artery

a) Heritable cause/ 1<sup>o</sup> Pul HTN - mutation in BMPR<sub>2</sub>

↑ smooth m/c proliferation

↓  
young ♀.

Biopsy  $\rightarrow$  Plexiform lesion,

b) Connective Tissue Disease

M/c cause is Scleroderma, SLE.

c) Drugs/Toxin - Fenfluramine.

Toxic rapeseed oil

Group 2 - Due to L Heart Disease

Group 3 - Due to Rep. diseases.

COPD / ILD / Bronchiectasis / OSA

Hypoxemia  $\rightarrow$  Pulm. vasoconstriction  $\rightarrow$  P. HTN  $\rightarrow$  Cor Pulmonale

Group 4 - Due to chronic thromboembolic events in Pulm. circulation.

## Group 5 - Miscellaneous / unclear cause

Sarcoidosis

183

Sickle cell Disease

Langerhans cell histiocytosis / eosinophilic

Lymphangiomatosis granuloma  
↓  
(misnomer)

Lymphangiomyomatosis



Group ①, ③, ④

MPAP  $\geq$  25 mm Hg

MPAP  $>$  25 mm Hg

PcWP  $<$  15 mm Hg

PcWP  $>$  15 mm Hg

Rx

GROUP ① & Refractory  
cases from other groups

Other Groups  
Rx underlying disease

1) CCB - Nifedipine (now not  
used)  
frequently)

2) PDE 5 Inhibitor

Sildenafil  
Tadalafil

3) Endothelin Receptor Antagonist  
Bosentan  
Ambrisentan.

- 4) Prostacyclin -  
 Epoprostenol (IV)  
 Fluprostan (Inhaled)

- 5) Guanyl cyclase activators  
 Riociguat

Doc for Low Risk Cases :- Initial monotherapy of Less symptoms either PD5 Inhibitor or ETRA  
 followed by combination Rx.

Doc for High Risk / Emergency - Prostacyclins (Symptoms at Rest)

## PNEUMONIA

Acute resp. illness characterised by Radiological Pulmonary shadowing.

### CLASSIFICATION -





### CLINICAL CLASSIFICATION

#### TYPICAL



- Fever + Productive cough
- Predominant neutrophilic leucocytosis
- Gram staining → reveal organisms

CXR → Alveolar exudate

MIC - Strept. Pneumoniae  
Staph. aureus  
Klebsiella  
Pseudomonas

#### ATYPICAL



Interstitial Inflammation

- Fever + cough → scanty sputum
- Mild Leucocytes
- Gram staining → no organism

CXR - NO alveolar exudate  
→ Interstitial pattern

MIC - Mycoplasma  
Legionelle  
Coxiella  
Chlamydia  
Viral Pneumonia

## TYPICAL PNEUMONIA

186

### (I) STREPT

Risk Factors } M/c -  
Smokers  
alcoholics  
DM

c/F Red Musty sputum

CXR



M/c pattern in CAP

Rx -  $\beta$  Lactam

### (IV) PSEUDOMONAS

→ Frequently occurs as VAP

→ occurs as Recurrent pneumonia in

structural  
Lung disease  
→ cystic fibrosis  
Bronchiectasis

→ Fever, mucopurulent secretion,  
Leucocytosis.

### (II) STAPH

IV drug user  
pneumonia

Fatal pneumonia post  
viral illness

mucopurulent sputum

CXR



B/L, patchy  
involvement

M/c pattern in nosocomial  
Pneumonia

Pneumatocele + cavity +  
Lung abscess. may be  
seen

Rx MRSA = Vancomycin

VRSA = Linezolid

Red currant  
Jelly sputum

CXR



Bulging fissure  
sign

- cavities
- Dense consolidations
- Lower lobe  
involvement  
seen if  
hematogenous  
spread

Rx -

$\beta$  Lactam +  
Aminoglycoside

### (III) KLEBSIELLA

Alcoholics  
DM  
malnourished



CXR

Bulging fissure  
sign

- cavities
- Dense consolidations
- Lower lobe  
involvement  
seen if  
hematogenous  
spread

- B/L infiltration of CXR

187

Rx - Two Antipseudomonal ABs of 2 different classes.

Antipseudomonal ~~AB~~  $\beta$ -lactam + FQ (or) Aminoglycoside

### ATYPICAL PNEUMONIA

MYCOPLASMA / Walking P.

M/c atypical pneumonia

Eaton agent pneumonia

Man  $\rightarrow$  Man transmission.

Extrapulmonary features

1) CNS - GBS  
peripheral neuropathy

2) Ear - Bullous myringitis

3) Blood -  $\uparrow$  cold agglutinins  
Haemolytic anaemia

4) CVS - Myocarditis  
Pericarditis

5) SKIN - Erythema Nodosum

No cell wall (+)

Rx -  $\beta$ -Lactam / FQ / Tetracycline

LEGIONELLA

M/c mode of transmission -  
micro aspiration  $>$  aerosolization

Spreads through contaminated water

Limited man to man transmission  
Special Features :-

1) Associated GI features: diarrhea

2) " CNS features:-

confusion, headache,  
high grade fever

3) Altered LFTs

4)  $\text{S-Na}^+ < 130 \text{ meq}$

Gram staining  $\rightarrow$  no organism

Poor response to  $\beta$ -lactams

old age, immunocompromised

occurs  $\sim$  in 10 days discharge  
from hospital

Rx -  $\beta$ -FQs / Macrolide / Tetracycline

Resp FQs - Levoflo/Moxi

## PNEUMOCYSTIS PNEUMONIA (PCP)

188

H/c opportunistic infection in HIV = TB

H/c pneumonia in HIV = TB

H/c pleural effusion in HIV = TB

H/c fungal pneumonia in HIV = PCP

R/F:-

- 1) CD<sub>4</sub> < 200 / μL in HIV
- 2) Long Term Immuno suppressive Rx
- 3) Organ Transplant
- 4) 1° Immuno compromised

C/F:-

Subacute onset

Fever

Shortness of Breath

Hyoxemia

CXR:-

Perihilar infiltrates

Diffuse interstitial infiltrate

In few - pneumatocele

Complicate as Pneumothorax



Δ :- Visualize the cyst

Wright-Giemsa

Komori-methamine stain.

Broncho-alveolar lavage (Best sample)

Rx - COTRIMOXAZOLE (Septrex)

- If sulphur allergy →
- 1) Clindamycin + Primaquine
  - 2) Trimethoprim + Dapsone
  - 3) Pentamidine
  - 4) Atovaquone

189

DOC for Prophylaxis → COTRIMOXAZOLE

↓

DOC for NOCARDIOSIS.

### VIRAL PNEUMONIA

BIRD FLU ( $H_5N_1$ )

SWINE FLU ( $H_1N_1$ )

- Avian Influenza

- ↑ M → M transmission

- Less M → M transmission

- Epidemic + Pandemic

Epidemic not pandemic

DOC - oseltamivir

DOC - oseltamivir

75mg BD for 5 days

(neuramidase Inhibitor)

Doc prophylaxis - oseltamivir

75mg OD for 10 days

other drugs - Zanamivir  
Peramivir

## ASSESSMENT of SEVERITY

190

Confusion

Urea  $> 7 \text{ mmol/L}$  or  $> 20 \text{ mg}$

RR  $> 30/\text{min}$

B - SBP  $< 90 \text{ mm Hg}$  DBP  $< 60 \text{ mm Hg}$

65 Age age  $> 65$

0-1  $\Rightarrow$  Home Rx & Antibiotic

2  $\Rightarrow$  Hospitalization + Rx

3-5  $\Rightarrow$  Consider as severe pneumonia, may require ICU admission.

## EMPIRICAL REGIMEN FOR HOSPITALISED Pt OF PNEUMONIA



TYPICAL

+

ATYPICAL

$\beta$  lactam

+

Macrolide

# LUNG ABSCESS

191

1° ABS form

M/c type

Due to aspiration

M/c org anim - oral anaerobes

↓

Rx - IV. Clindamycin.

2° form

Occurs due to pre-existing disease process in lung

Bronchial obstruction

Immune deficiency

Staph, Klebsiella

Rx = Broad spectrum ABs

## Strategies to Prevent VAP :-

- 1) Elevation of Head of Bed. 30°-45°
- 2) Oral Decontamination w/ Chlorhexidine
- 3) Sedation vacation (1 sedation)
- 4) Assessment of readiness to extubate daily
- 5) Use of NIV wherever feasible

X Frequent change of Tube X

## ORAL ANAEROBES -

- Peptostreptococci
- Fusobacterium
- Bacteroides

## PLEURAL

## EFFUSION

192

↓  
TRANSUDATE (M/Lc)

LIGHT's CRITERIA

EXUDATE

Ple. fluid. Protein  $< 0.5$   
S. protein

Ple. fluid LDH  $< 0.6$   
S. LDH

Cause -

- 1) CHF (M/Lc overall)
- 2) Hepatic Hydrothorax
- 3) Nephrotic Sx

$> 0.5, 0.6$

Cytology = ? malignant cells

Cell count

Gram staining = ? infection

TB marker = ADA,  
Interferon γ

### Special Features

1) Low glucose ple. fluid ( $< 60 \text{ mg}/\text{dL}$ )

- a) Empyema
- b) Malignancy
- c) RA
- d) TB (Hansen)

2) High Amylase

- a) Pancreatitis
- b) Oesophageal rupture
- c) Malignancy

3) High Lipid Ple. Eff / white coloured

↓  
Chylothorax

PL TGA  $> 110 \text{ mg}/\text{dL}$ . Chyle due to disruption  
of thoracic duct  
H/C - Surgical Trauma  
Malignancy

↓  
Pseudochylothorax

Accumulation of  
cholesterol crystals  
in long standing eff.  
TB, RA, ch. empyema,  
myxoidema  
Cholesterol  $> 200 \text{ mg}/\text{dL}$ .

## \* Parapneumonic eff

M/c of exudative pleural eff

eff associated w/ Pneumonia  
Bronchiectasis  
Lung abscess

193  
[ Milky white BAL  
Alveolar Proteinosis ]

Indications of ICD insertion in parapneumonic eff :-

- 1) Pus in pleural cavity
- 2) pH < 7.2 (pleural fluid)
- 3) Ple f. glucose < 60mg%
- 4) Loculated pleural effusion
- 5) Gram staining reveals organisms

## TB Effusion

- M/c exudative effusion in India

- Occurs due to hypersensitivity  
Response to TB Bacilli in  
Pleural Tissue



- Exudative → Lymphocyte predominant

ADA > 40 IU

IFN Y > 140 pg/mL

↓ mesothelial cells

- Pleural fluid for AFB only positive in 20-30% cases.

Gold Std - Thoracoscopic pleural biopsy + Culture for M. tb.

## Classification of Pneumothorax :-



## TENSION PNEUMOTHORAX

- 1) Large air leak
- 2) Air leak serves as ball valve (or) one way valve mechanism



- 3) ↑↑ Positive intrapleural Pressure
- 4) Compressing adj lung + mediastinal vessels

↓  
↓ VR

↓  
shock (medical emergency)

- 5) Rx - Next step / Best step - Insertion of wide bore needle
  - ② 2<sup>nd</sup> I.c.s. anteriorly mid clavicular line on affected side followed by JCD insertion.

High Inspiratory Pressure alarm on ventilator suggest ~~Po~~ Tension Pneumothorax.

## Pneumo Mediastinum

Air in mediastinum

C/F - Shortness of Breath  
Chest pain

HAMMAN's Crunch → Crunching sound synchronous with heart beat

CXR - Continuous Diaphragm Sign.  
Subcutaneous Emphysema

## ASTHMA

Characterised by recurrent symptoms due to variable & reversible bronchoconstriction caused due to airway hyper-responsiveness to variety of stimuli

COPD - characterised by persistent symptoms & airflow limitation due to airway & alveolar abn caused by significant exposure to noxious stimuli.

### ASTHMA

Allergen related  
Reversible airflow limitation  
Early presentation  
Relief in Bronchodilators

### COPD

Smoking related  
Persistent airflow limitation  
Delayed presentation  
only partial response

## TYPES      PATHOGENESIS

EXTRINSIC / ATOPIC / ALLERGIC

Allergen related

S-IgE ↑

Skin test +ve for allergen

Mild form

Young onset

H/c allergen world

↳ HOUSE DUST MITE / Dermatophagoides

Pollen → cause Thunderstorm

Asthma

196.  
INTRINSIC / NONALLERGIC  
NONATOPIC / IDIOSYNCRATIC

Viral infection ⇒ Trigger

S-IgE N

Skin test -ve for

Severe forms

Late onset

Δ :-

### 1) SPIROMETRY

obstructive

Bronchodilator reversibility =  $\uparrow \text{Fev}_1 > 12\% \text{ (or) } 200\text{cc}$   
after SABA.

$\text{Fev}_1 65\% \xrightarrow[15\text{ min}]{\text{SABA}} \text{Fev}_1 80\%$

### 2) PEFR Variability

>20% diurnal variation.

### 3) METH. CHOLINE challenge Test / Broncho provocation Testing

fall in  $\text{Fev}_1 > 20\%$  after meth. choline.

for airway hyper-responsiveness

### 4) $\text{FeNO} > 50 \text{ PPb}$ ≈ eosinophilic inflammation.

# ACUTE SEVERE ASTHMA

197

C/F -

- 1) Pt. speaks in words
- 2) Can't recline
- 3) RR > 30/min
- 4) HR > 120/min
- 5) B/L Wheeze
- 6) Accessory muscle use

7) Pulse Paradoxus. → [Rapid change in intrapleural pr.]  
causes this.

Functional Parameters :-

- 1) PEFR < 50% predictive value
- 2)  $\text{SpO}_2 < 90\%$
- 3)  $\text{PaO}_2 < 60 \text{ mmHg}$

→ Type I Resp. Failure

→ Type II RF can occur in severe cases

↳ due to fatigue of resp. muscles.

\* Life Threatening Asthma :-

- 1) Patent - altered sensation
- 2) Silent chest
- 3) ↓ Respiratory effort
- 4)  $\text{PaO}_2 < 60 \text{ mmHg}$
- 5)  $\text{PaCO}_2 \uparrow \uparrow$

Rx - 1)  $O_2 +$

2) SABA + (Salbutamol) + Inhaled corticosteroid  
· SAMA (Ipratropium)

2) I.V. Steroid

↳ ↓ Inflammation

↳ ↑ sensitivity of  $\beta_2$  receptor to broncho dilator

3) Theophylline now not used routinely

198

4) In few cases  $\text{IV MgSO}_4$  given

5) In deteriorating / life threatening cases  $\Rightarrow$  **Invasive Mech. ventilation.**

High inspiratory flow  $\leftarrow$   
 $\rightarrow$  Expiration Time  
 $I:E = 1:3 \text{ or } 1:7$

| Step Wise Therapy & Classification | Persistent   |           |          |                |
|------------------------------------|--------------|-----------|----------|----------------|
|                                    | Intermittent | Mild      | Mod      | Sev            |
| Day time sx                        | < 2/week     | > 2/week  | daily    | throughout day |
| Night time awakening               | < 2/month    | > 2/month | > 2/week | daily          |



LDICS  $\rightarrow$  low dose ICS.

HDICS  $\rightarrow$  High dose ICS.

Most imp. in asthma management is pt. self education & active self Mx. 199

### EXERCISE INDUCED ASTHMA

In susceptible individuals, exercise can induce asthma more frequent during cold & dry climate  $\rightarrow$  hot humid condition.

Doc for short term prophylaxis = SABA  $\rightarrow$  Anti-leukotriens / Mast cell stabilizers.

Doc for Long term prophylaxis & corticosteroids  
overall control of disease ]

### ASPIRIN INDUCED ASTHMA



### Samter's TRIAD-

Nasal polyposis + Aspirin sensitivity + Asthma

In susceptible individuals, aspirin blocks Cox pathway & shifts balance towards Lox pathway  $\Rightarrow$  ↑ LTs

↓  
Bronchospasm-

Rx = ICS + Asptc. SABA + Anti-leukotriens + Aspirin desensitization.

### BRITTLE ASTHMA

Unstable Disease  $\in$  frequent exacerbations

(N)

### Lung function

Type 1 Brittle

Persistent fluctuation  
in lung functions



Difficult to Rx asthma

\* Oral corticosteroids  
+ continuous infusion =  
 $\beta_2$  agonist

Type 2 brittle

Near normal lung  
function → Rapid  
fall + death.



Localised anaphylaxis

Laryngospasm

DOC :- Subcutaneous  
Epinephrine +  
Adrenaline

### CORTICOSTEROID RESISTANT ASTHMA

Poor response to Rx after 2 weeks of oral cortico-  
steroids (40mg/day) Rx

steroid sparing drugs can be used.

Anti IgE = Omalizumab

Anti IL5 = Mepolizumab

# COPD

201

(HR. BRONCHITIS:-

Cough & sputum for >3 months in 2 consecutive years

EMPHYSEMA:-

"Destru" distal to terminal bronchiole.

R/F:-

- 1) Smoking
- 2)  $\alpha_1$  AT Deficiency
- 3) Indoor + outdoor pollution.
- 4) Coal exposure

②

- young age
- Less smoking H/o
- Family H/o - Chr. 14, AR.
- B/L Lower predominant
- Bronchiectasis
- Unexplained Liver Disease.

## TYPES OF EMPHYSEMA

CENTRI ACINAR

occurrence Smokers  
M/c overall.  
Upper lobes

Pathology



RB involved  
alveolar duct +  
Sac spared

PANACINAR

$\alpha_1$  AT Def.  
More severe in  
LL



Resp. Bronchiole +  
Alv. Duct + Sac  
involved

DISTAL ACINAR

Adjacent to peracute  
foci.  
upper  $\frac{2}{3}$  rd of Lung



Resp. Bronchiole spared  
Alv. duct + Sac  
involved

## A: → SPIROMETRY

202

$$\frac{FVC}{FEV_1} < 0.7 \approx \text{obstructive}$$

no significant Bronchodilator reversability

GOLD Staging (Global Initiative for Obstructive Lung Disease)

I Mild  $FEV_1 / FVC < 0.7$   $FEV_1 \geq 80\% \text{ Pred. } FEV_1$

II Mild. " " "  $FEV_1 [50-79\%]$  " "

III Severe " " "  $FEV_1 [30-49\%]$  " "

IV very severe. " " "  $FEV_1 < 30\% \text{ pred. value}$

## Prognosis Index

BMI

Obstruction ( $FEV_1$ )

Dyspnoea (MRC scale)

Exercise Capacity  $\Rightarrow$  Distance covered in 6 minute walk test

Low score  $\Rightarrow$  Good Prog.

High score  $\Rightarrow$  Poor Prog., ↑ mortality

CHARACTER

BLUE BLOATER

PINK PUFFERS

PATHOLOGY

Chronic Bronchitis.

Emphysema.

SYMPTOM

Cough = expectoration

Shortness of Breath

APPEARANCE

obese + comfortable at rest

Lean + tachypnoeic at rest

POSTURE

Breath sounds

Rhonchi - Noisy

Less noisy  
Hyperinflated Lung  
obstructive

CXR

↑ Interstitial markings  
obstructive

Rx :-

1> Smoking cessation. → most imp. intervention.

203

2> BRONCHODILATORS

a) LABA

ultra LABA → O.D. Dose

- ✓ Indacaterol.
- ✓ Vilanterol
- ✓ Olodaterol

b) LAMA

Tiotropium

Umidilnidium

Glycopyronium.

3> STEROID :-

a) Inhaled

↓ freq. of exacerbation

b) Systemic

During exacerbation.

4> SELECTIVE PDE<sub>4</sub> INHIBITOR:-

Roflumilast

5> ANTI BIOTICS :-

During exacerbation (H. influenza)

6) MUCOLYTICS -

N Acetyl cysteine

7) If Hypoxemia → Long term O<sub>2</sub> therapy (15 hours a day)  
low flow O<sub>2</sub>

8) Lung volume Reduction Surgery

9> LUNG TRANSPLANTATION (M/c indication for lung transplantation  
is COPD)

10> During exacerbation, 1st choice → non-invasive ventilation.  
> invasive →

## BRONCHIECTASIS

Ab N Permanent Dilatation of bronchi due to loss of muscle & elastic tissue.



C/F :-

copious sputum  
coarse crepts

ETIOLOGY & MECH :-

I) BRONCHIAL OBSTRUCTION

a) **Intramural**



Tumours - Carcinoïd

Sq. cell carcinoma

Small cell carcinoma

b) **Extrinsic compression.**

Enlarged TB hilar LN can compress R middle lobe.

Bronchus → R middle lobe collapse + bronchiectasis

↓  
BROCK's SYNDROME.

## II> BRONCHIAL INJURY

A) Infection

TB, adenovirus

B) <sup>205</sup> Altered Immune response

→ Connective Tissue disorder

→ Allergic Bronchopulmonary Aspergillosis (ABPA)

## III> TRACTION BRONCHIECTASIS in ILDs.

## IV> GENETIC CAUSES

A) 1° ciliary dyskinesia

B) cystic fibrosis

C) Cartilage Defect

William Campbell S., Mounier Kuhn syndrome

D) Yellow Nail Syndrome

Long. Lymphoedema + Yellow nail + Pleural Effusion  
+ Bronchiectasis

## CYSTIC FIBROSIS

Inheritance - AR

Chromosome 7q

Gene - CFTR

Channel - Cl<sup>-</sup>

Mutations - Class I - VI

Mc class II, ΔF508

" Thick secretions "

(I)

Resp. Tract

GRT

Reproductive Tract



watery secretions      Thick viscous secretions  
dehydration

ENac → responsible for pathophysiological process

(II)

Sweat Gland



SCREENING Test  
↑ Sweat Cl- > 60 mg/dL

Other Inv:-

- 1) DNA analysis for mutations
- 2) ↑ Nasal Pot<sup>n</sup> Difference
- 3) CFTR Gene Sequencing :- Gold Std.

## SYSTEMIC MANIFESTATIONS:-

## 1) Respiratory Tract -

URT  
↓Recurrent infections  
Sinusitis

LRT

↓

Recurrent pneumonia  
(M/c pseudomonas), steph.  
Bronchiectasis, Lung abscess  
Emphyema, P. thrombosis,  
Resp. failure, Hypoxemia,  
P. HTN, Cor Pulmonale

## 2) GIT

neonate Meconium ileus.

Liver → Biliary cirrhosis,

GB - Gall stone

207

Pancreas

- Endocrine insufficiency - early manifestations
- DM, → occurs later.

3) Reproductive Tract -



In utero occlusion of vas Deferens  
by thick secretions → AZOOSPERMIA.  
↓  
infertile

Rx

1) CFTR Modulators :-

Ivacaftor - G551D mutation class III

Lumacaftor + Ivacaftor - tried in class II

TYPES OF BRONCHIECTASIS -

(N)



H/C-Cylindrical

Varicose

Saccular

SITES of BXIS -

1) Upper Lobe



1) Cystic fibrosis

2) TB

3) Post radiation BXIS

2) Lower Lobe



- 1) Interstitial Lung Disease
- 2) Ch. recurrent aspiration
- 3) Immunodeficiency state

208

3) Middle Lobe - non-tubercular mycobacterium.



Mycobacterium avium complex (MAC)

Rx of B'XIS-

1) Airway clearance.

Mucolytics

Chest Physiotherapy.

2) Antibiotics

During exacerbation

Prophylaxis

Long term  
Azithromycin  
(6 months)

Inhaled  
Tobramycin  
(1 month on-off)

3) Bronchodilator ICS beneficial in some

4) If Hypoxemia  $\Rightarrow$  O<sub>2</sub>.

5) Localized Disease  $\rightarrow$  Sx

6) Diffused "  $\rightarrow$  Lung Transplantation.

High flow  $O_2$  not recommended. Y?

1) Abolition of Hypoxemic resp. drive

209

2) High  $O_2$  given can cause release of  $CO_2$  from RBC

↳ HALDANE

EFFECT.

IOC :- HRCT Chest

## EOSINOPHILIC LUNG DISEASES

[Peripheral eosinophilia + Lung infiltrates]

### CLASSIFICATION

Unknown cause

Known cause

1) Acute eosinophilic pneumonia

1) PARASITIC INFESTATIONS  
(nematodes)

2) Chronic " "

Loeffler's pneumonia

3) Hypereosinophilic Syndrome

2) ABPA

4) Churg Strauss Sx

3) Drugs:-

Nitrofurantoin

Sulfonamides

Isoniazid

Pencillamine

Hypereosinophilic Syndrome-

Persistent eosinophilia  $> 1500/mm^3$ .

+ end organ infiltration.

### CHARACTER

### Ac. EP

### Ch4. E.P.

Smoking H/o

+++, new onset smokers

±

Asthma H/o

--

++

C/F - Radiology

Acute shortness of Breath  
+ Hypoxemia +  
B/L diffuse infiltrates.

Cough + wheeze.  
Peripheral opacities

Peripheral eosinophilia

Initially not seen but seen  
during later course of disease

Usually seen

|                  | AEP                  | CEP                  |
|------------------|----------------------|----------------------|
| BAL eosinophilia | BAL > 25% eosinophil | BAL > 40% eosinophil |
| Rx               | Steroid              | Steroid              |

## ASPERGILLUS & LUNG

I> HYPERSENSITIVITY RxN. → DOC + steroid

Type I



Asthma

Type I, III, IV



ABPA

II> PNEUMONIA IN IMMUNOCOMPROMISED → DOC + VORICONAZOLE.

= Invasive Aspergillosis

Trans bronchial angio invasion. → may develop hemoptysis.  
Fever + SOB.

DOC for I ~~+~~ ⇒ STEROID.

DOC for II ⇒ VORICONAZOLE

III> COLONISATION IN PREEXISTING LUNG CAVITY

Aspergilloma / Fungall BALL

CXR → Air crescent sign.

⇒ Ball changing its position in decubitus.



Rx - Resection of pt. in symptomatic

## CRITERIA FOR ABPA

211

- 1) Predisposing cond' -
  - Asthma
  - Cystic Fibrosis
- 2) Peripheral **eosinophilia**
- 3) S-IgE → **> 1000 IU**
- 4) Aspergillus specific IgE + IgG will be +ve
- 5) Skin test +ve **Aspergillus fumigatus**
- 6) CXR - **fleeting opacities** → upper zone
- 7) Central (or) Proximal **B' XIS**.

Doc:- Systemic Steroids.

CT Chest -

- Finger in glove
- Toothpaste

## HYPERSensitivity      PNEUMONITIS

or Extrinsic Allergic Alveolitis

Type III + IV HSN

S-IgE → **N**

No. peripheral eosinophilia

**BIOPSY** → non caseating granuloma + cellular bronchiolitis + Interstitial inflammation.

Eos.

| DISEASE              | EXPOSURE           | ANTIGEN                         |
|----------------------|--------------------|---------------------------------|
| 1) Farmer's Lung     | Moldy hay          | Microsporidia fungi             |
| 2) Bagassosis        | Sugarcane dust     | Thermoactinomyces<br>sacchari   |
| 3) Bird fancier Lung | Pigeon excreta     | Avian protein                   |
| 4) Malt worker lung  | Mouldy Barley      | Asp. clavatus                   |
| 5) Hot tub lung      | Contaminated water | Non-Tubercular<br>mycobacterium |

### Diagnostic CRITERIA :-

- 1) Exposure to known antigens.
- 2) Presence of serum precipitins against offending Ag.
- 3) Occurrence of symptoms  $\leq$  in 4-6 hrs of exposure
- 4) Recurrence of symptoms on exposure
- 5) Inspiratory crepitaculation.
- 6) wt. loss

### TYPES

|                       | CT. Chest              |
|-----------------------|------------------------|
| ACUTE - hours to days | Ground glass opacities |
| SUBACUTE - week.      | Centrilobular nodules  |
| CHRONIC - Month       | Fibrosis (upper zone)  |

Rx - Most Important  $\rightarrow$  Avoidance of allergen.  
Systemic steroids

# ILD

213

Defn:- Group of Disorders characterised by predominant involvement of interstitium progressing to fibrosis & vary in mechanism & magnitude.

ETIOLOGY:-

I) Inhalational ILD

Organic Dust

Hypersensitivity  
Pneumonitis

Inorganic Dust

Silica  
Asbestosis

II) Drugs/ Radiotherapy

Amiodarone  
Methotrexate  
Busulfan

III) Connective Tissue Disorder

Scleroderma  
RA  
SLE

IV) IBDs

V) Infection - TB

VI) Malignancy

VII) Sarcoidosis

VIII) Idiopathic

PATHOLOGICAL PATTERNS:-

I) Usual Interstitial Pneumonia (UIP)

2) Non-specific " " (NSIP)

3) Acute Interstitial Pneumonia (AIP)

- 4) Cryptogenic Organizing pneumonia (COP)  
 5) Respiratory Bronchiolitis (RBILD)  
 6) Desquamative Interstitial Pneumonia (DIP)  
 7) Lymphocytic " (LIP)

214

IOC: CT HRCT chest

Confirmatory Test: Surgical Lung Biopsy

### RADIOLOGIC PATTERNS

Reticular Pattern.



CT Chest



Mild opacity = Ground Glass opacity



↑ sed density = consolidation.

↓ Fibrosis



TRACTION  
B<sup>o</sup>XIS

fibrosis + nt  
↓ Lung volume



Honey combing

subpleural involvement  
(near to pleura)

M/C  
form  
usual Interstitial Pneumonia  
or Idiopathic Pul. Fibrosis

C/F. 50-60 yrs ♂ > ♀, Smoker.  
insidious,  
Auscultation - inspiratory crept.  
exam - clubbing

Biopsy Heterogeneous involvement  
Fibroblastic foci

Radiology - B/L Lower zone &  
- subpleural involvement  
- Minimal Ground glass  
opacity  
- Significant Traction Bi'sis  
- Honey combing

Rx + Prognosis Poor response  
to Pirfenidone  
Nintedanib

NSAJP. (M/c form of  
connective tissue  
disorder associated  
ILD)

40-50 yrs ♀ > ♂  
Non-smoker, subacute onset.

No fibroblastic foci  
Lymphocytic inflammation

B/L ground glass opacities  
Minimal Traction Bronchiectasis  
Rare honey combing

Good response to  
steroid

### ACUTE INTERSTITIAL PNEUMONIA / HAMMAR RICH SYNDROME

Pt - present w/ acute SOB + Hypoxemia + Diffuse infiltrate  
Idiopathic ARDS

Rx - supportive. High mortality

### CRYPTOGENIC ORGANISING PNEUMONIA / BRONCHIOLITIS OBLITERANS ORGANISING PNEUMONIA (BOOP)

- 1) Pneumonia like illness
- 2) Proliferation of granulation tissue in airway =>  
MAISON BODIES

3) Presence of Interstitial infiltrate.

216

CXR :- Bl Peripheral Consolidation.

Rx :- STEROID.

### SMOKING AND ILDs

Resp. Bronchiolitis associated ILD

Desquamative Interstitial Pneumonia

Adult Pulmonary Langerhans cell histiocytosis

Acute eosinophilic pneumonia

Pulmonary haemorrhage syndromes

Idiopathic pulmonary fibrosis

### ILDs Less Prevalent In Smokers :-

1) Sarcoidosis

2) Hypersensitivity pneumonitis

### SARCOIDOSIS

Multisystem Disorder characterised by non-caseating Granuloma.

Etiology :- , Autoimmune

2) Propriobacterium

3) Mycobacterium

4) unknown.

5) Genetic susceptibility - HLA DRB<sub>1</sub>, 1101

M/c → Pul. Involvement.

Scadding Staging I- Hilar adenopathy



2/7

II- LN↑ + Lung infiltrates



III- Lung infiltrates alone



IV- Fibrosis



Upper zone predominant Disease

### PHENOTYPES

1) LUPUS PERINIO-

Cutaneous involvement → Bridge of nose  
area beneath eyes + cheeks

2) LOFGREN SYNDROME-

Erythema nodosum, Hilar LN↑  
Uveitis (MC - Anterior), Arthritis

3) UVEO-PAROTID FEVER

Uveitis + Parotiditis + Fever + CN 7<sup>th</sup> Palsy

4:-

1) → release ACE. +  $1,25(\text{OH})_2 \text{ VITD}$

Non-caseating  
granuloma

TS · ACE > titer (N)

Hypercalcemia

2) Blood :- Peripheral lymphopenia - sequestration of lymphocytes  
into lung

3) Bronchoscopy :-

BAL - Lymphocytes       $\frac{\text{CD}4}{\text{CD}8} \uparrow$

4) Biopsy - Non-caseating granuloma

TOC → Incomparable clinical scenario ⇒ Biopsy of involved organ.  
Showing non-caseating granulomas is S/O sarcoidosis

57 CT chest → Lung infiltrates  
LN ↑

218

In TB LN → Caseating ⇒ central hypodensity = peripheral rim enhancement

Sarcoidosis → uniform density

67 Gallium Scan

a) ↑ uptake by Parotid & Lacrimal glands by ↑ uptake by mediastinal LN



"PANDA SIGN"



"LAMBA SIGN"

Rx Steroid + Immunosuppression.

### ↑ LEVELS OF ACE

- 1> Sarcoidosis
- 2> Leprosy
- 3> Gaucher's Disease
- 4> Hyperthyroidism
- 5> Disseminated granulomatous infec' such as.  
6> miliary TB

Pneumonia [Sar Le Ga DM ~~Hyper~~ thymo wale]

## CONNECTIVE TISSUE DISORDER + LUNG

219

### RA

- M/c pulmonary manifestation  
→ pleuritis
- Low Glucose Pleural Effusion
- ILD → NSIP, B'xis
- Rheumatoid ~~Asthma~~ nodule
- CAPLAN's syndrome: RA +  
[Pneumoconiosis]  
[silica expo, coal expo]

### SLE

- M/c pul. manifestation = Pleuritis
- Acute Lupus pneumonitis.  
⇒ Pulmonary capillaritis +  
diffuse alveolar H'ge
- ILD → NSIP.
- Shrinking Lung syndrome



Diaphragmatic involvement in SLE.

### SCLERODERMA

HIDE BOUND CHEST.

ILD NSIP → UIP, Pul. HTN

Mrc of death in scleroderma → Pulmonary cause

### POLYMYOSITIS

- ↑ Anti JO1 ABS (
- Anti Synthetase Sx.
- C/F - 1) Fever  
2) Myositis  
3) ILD  
4) Arthritis  
5) Mechanic Hand

# DIFFUSE ALVEOLAR HYG / Pul HEMOSIDEROSIS

220

## IDIOPATHIC Pul. hemosiderosis

- 1) Intra alveolar bleed
- 2) Fe accumulation as hemosiderin in alveolar macrophages
- 3) Fe deficiency anaemia

## Pul. RENAL SYNDROME

- 1) SLE.
- 2) Good Pasture Syndrome
- 3) Small vessel vasculitis
  - ↳ Wegener's granulomatosis
  - 1) Necrotising granulomatous vasculitis
    - URT → epistaxis, sinusitis
    - LRT → cavities, Diff-Alv-Hyg
  - 2) RPGN
  - 3) necrotising involvement of URT → epistaxis, sinusitis  
LRT → cavities, Diff-Alv-Hyg

## OCCUPATIONAL

## LUNG DISEASES

### SILICOSIS

H/C occupational lung disease worldwide

$< 2.5 \mu$  = Dangerous particles

### ASBESTOSIS

occupation ship building, construction workers

Particle ~~~ curly serpentene  
~~~~ straight amphibole  
(carcinogenic)

### FEATURES



1) Pleural Plaques

↳ Most specific for asbestos

2) Fibrosis

- of duration & exposure

### SILICOSIS

sand blasting, quarrying

crystalline silica  
Amorphous silica  
1) silicotic nodules



2) Merging of nodules → coal macules  
progressive massive fibrosis

### COAL-WORKERS PNEUMOCONIOSIS

Coal miners

Anthracite Bituminous

1) ~~Anthracosis~~

1) Anthracite

2) Bituminous

1) Anthracosis

2) Merging of nodules → coal macules

progressive massive fibrosis

3) complicated CWP

4) ↑ COPD

3) Benign pleural effusion.

4) M/c malignancy associated w/ it  
↓

LUNG CANCER

Smoking + asbestos.  
⇒ synergistic

Most specific  
↳ MESOTHELIOMA

Lower zone Disease

3) Silico-TB:- Chronic exposure

4) Alveolar proteinosis  
Acute exposure

5) Malignancy.  
CXR - Hilar LN +  
egg shell calcification

5) Malignancy

221



### Round Atelectases



Organised Plegg. around segment

↓  
Localised atelectasis

↓  
COMET TAIL appearance

Upper zone Disease

### SLEEP APNOEA

Apnoea - cessation of airflow for at least 10 sec.

Hypopnoea - > 30% reduction in airflow associated w/  
> 3% fall in  $\text{SpO}_2$ .

## SLEEP APNOEA

222

CENTRAL

Resp. effort (-)

Afnoee +

Ruf. drive Θ

## OBSTRUCTIVE

Apnoea 6

## Persisting Res. effect

↑ Collapsibility of airway  
at Neck.

e.g. CHF

四

## Narcotic Abuse

## R/F for obstructive Sleep Apnoea :-

- 1) Obesity
  - 2) O<sup>↑</sup>
  - 3) Craniofacial Ab (1)
  - 4) Hypothyroidism
  - 5) Adenohypophyseal

## PATHOPHYSIOLOGY-

H/c Symptom → Snoring.



## Gold Std A :- Polysomnography

223

- |                     |                                  |
|---------------------|----------------------------------|
| 1> EEG.             | 6> Oronasal flow                 |
| 2> EOG              | 7> Snore mic                     |
| 3> ECG              | 8> Thorax + Abd. movement sensor |
| 4> EMG              | 9> Body position / Limb movement |
| 5> SpO <sub>2</sub> |                                  |

Other scales for assessment :-

- 1> Epworth Sleepiness Scale
- 2> STOP BANG Questionnaire.

SEVERITY of OSA  $\Rightarrow$  APNOEA HYPOPNEA INDEX (AMI)

No. of Apnoea + Hypopnoea  
Hour.

< 5/hr  $\Rightarrow$  N

5-14/hr  $\Rightarrow$  Mild OSA  $\rightarrow$  Behavioural Rx

15-29/hr  $\Rightarrow$  Mod. OSA  $\left.\right\} \text{Medical Rx of choice}$

$\geq 30/\text{hr} \Rightarrow$  Severe OSA CPAP - mild OSA +  
comorbidities

In few cases  $\rightarrow$  Uvulo palatopharyngoplasty.

# MALIGNANCY

224

## 1° LUNG MALIGNANCY :-

Non-Small Cell Lung Cancer (NSCLC)

Small cell Lung cancer (SCLCC)

- 1) Adeno Ca Mc worldwide
- 2) Sq. cell Carcinoma Mc in India
- 3) Large cell "

- 1) Small cell ca / oat cell tumour.

## LOCATION & ASSOCIATION OF TUMOURS :-

1) Central Location  
Cigarette smoking

⇒ Sq. cell  
small cell (strongest association)  
Endobronchial Location.

2) Peripheral Location  
Less smoking

⇒ Adeno ca (♀, young ♂, less smoker)  
Large cell

3) Cavitation

Squamous  
Large.

|                                 | ADENO                                                                                                           | SQUAMOUS                                                                                                       | SMALL CELL                                                                                                                                             |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oncogene                        | KRAS / EGFR / ALK                                                                                               | FGFR, PI3K                                                                                                     | my c, BCL2B5                                                                                                                                           |
| Biopsy                          | Glandular differentiation                                                                                       | Keratinisation + intercellular keratin bridges                                                                 | Small round cell = hyperchromatic nuclei                                                                                                               |
| Features                        | → Lepidic pattern<br>Lung → Lung metastasis<br>Scar Ca → Adeno ca<br>↑ Clubbing → Hypertrophic osteoarthropathy | Central Cigarette Cavity<br>Calcinosis ↑ parathyroid Life threatening<br>↑ parathyroid hormone related peptide | ② chemo + radio sensitive<br>Rapid recurrence<br>↑ metastasis<br>↑ SVC obstruction<br>POOR PROGNOSIS<br>clubbing is rare<br>↑ Paraneoplastic Syndromes |
| Paraneoplastic<br>↳ Hematologic |                                                                                                                 |                                                                                                                |                                                                                                                                                        |

### PARANEOPLASTIC associated in SCLC

- 1) Hyponatremia - SIADH
  - 2) Hypokalemia - ectopic ACTH
  - 3) Hypocalcemia - Calcitonin
  - 4) Lambert Eaton Syndrome
- Mice of ectopic ACTH ↓  
SCLC.

### CLINICAL MANIFESTATIONS of SCLC

- 1> Irritation → Cough (M/e symptom)
- 2> Hemoptysis - tumour infiltrates vessel
- 3> ↑ size & cause → Bronchial obstruction (Fever, SOB)
- 4> Pleural involvement → Pleuritis  
Chest pain, Pleural eff. → SOB.



- 5) Skin & Intercostal n/vs. → chest pain.
  - 6) Pericarditis / Pericardial effusion.
  - 7) Esophagus → dysphagia
  - 8) Recurrent Laryngeal n/r → Hoarseness of voice
  - 9) SVC obstruction.
  - 10) Stellate Ganglion → HORNER's Syndrome  
(sympathetic ganglion)

Migratory thrombophlebitis  
= Trousseau's Syndrome  
+ clubbing = Adeno Ca



- ii) Distant Metastasis      :- Brain / Bone / Liver.  
 H/c site → Brain  
 Most specific → Adrenals.

## INVESTIGATIONS 2

- ⇒ CYTOLOGY      → sputum      } malignant cells  
                        → pleural fluid }

- 27 CXR - PA - Solitary Pnlm. nodule  
Collapse.  
LN ↑  
Pleural eff

- 37 CT- Chest - Precise anatomical Location.

- 4) Gold Std → BIOPSY < CT guided  
Bronchoscopy

5> PET SCAN - staging

227

6> Bone Scan

Rx

NSCLC

Resectable

Stage I, II, IIIA

Surgery

Unresectable

III B, IV

Medical Rx

Squamous

Cisplatin

+ Gemcitabine/ Paclitaxel

SCLC

Medical Rx

Chemo Rx + Radio Rx.

Cisplatin + Etoposide

Adeno

Cisplatin +  
Pembrolizumab.

Targeted Rx

EGFR Antagonist -  
Erlotinib, gefitinib

ALK Antagonist

Crizotinib.

Adeno ♂ / non-smoker / Asian  $\Rightarrow$  EGFR mutation.

Pancoast Tx - usually occurs in Sq cell

Located at apex.

May involve stellate ganglion.

PANCOAST SYNDROME = 1> Tumour in Lung Apex

2> Involve  $\rightarrow$  1st 2 ribs

$\rightarrow$  Stellate Ganglion.

$\rightarrow$  C8 T1 T2  $\rightarrow$  Pain & weakness in ulnar distribution

## TUBERCULOSIS

228

## Tables      NOMENCLATURE

## Tabes Pulmonale - Pul-TB (H/c)

## Tubes mesentrica - Abd. TB

Carries SICCA - Shoulder TB

## Pott's Disease - Spinal TB

*Spina ventosa* - TB Dactylella.

Scrofula - LN TB (M/c extrapulmonary)

*Lupus vulgaris* - Skin TB

## Poncet Disease - TB Rheumatism

ORGANISM & LAB DIAGNOSIS

1) Direct Microscopy → ZN staining / Led FM

Under ZN staining to visualize each mL of sputum should contain 10,000 bacilli

27 Solid Culture → LJ media 6-8 weeks

3) Liquid      => BACTEC  
                  MGIT  
                  Sept. check }  
                  6-8 weeks +ve result  
                  7-10 day

## 47 Rapid Molecular Method

a) CBNAAT → / Gene expert → TB Bacilli + Ref. sensitivity  
2 hours.

by Line probe assay | LPA → TB Bacilli + Drug  
Sensitivity (1st Line + 2nd Line drug) = 48-72 hours

Most Rapid method to identify of TB → Direct microscopy  
229

Most Rapid method for Rifampicin sensitivity = Gene expert

### PRESUMPTIVE TB

Any one of the following

Cough > 2 wks

Fever > 2 weeks

Hemoptysis

wt. loss

Abnormalities on CXR - PA view

### ALGORITHM FOR A of TB

Pt / HIV → PRESUMPTIVE TB



### IGRA / Quantiferon Gold

Advantages:-

- 1> TB specific Ag → CFP & ESAT used
- 2> Less cross-reactivity = BCG, Non-Tubercular mycobacterium
- 3> Blood Test
- 4> Serial Testing can be done to out boosting phenomena
- 5> Single visit to hospital.

## Disadvantage

Can't differentiate Infection vs Active disease

230

## PATHOLOGY

1° TB → unsensitised individual

2° TB / Post 1° TB → sensitised individual

Reinfection  
Reactivation

### 1° TB

→ TB bacilli → mid + lower zone

→ Area of 1st contact

1° focus / Ghon's focus

→ Alveolar macrophage engulf TB bacilli



① Phagolysosome fusion



↑ survival of M.tb.

→ For immunity macrophages reach hilar LN ⇒ LN ↑

Ghon's complex → Ghon's focus + LN ↑

In LN ->

↑ TH<sub>1</sub> response

\* ↑ IFN-γ, TNFα



↑ killing capacity of macrophage



Limit TB

Memory cells are formed



## **2° TB**



231

- TB bacilli reach apex & actively grow.
- Bodys immune response will try to wall off infection.
- After few weeks, Delayed Type HSN Response FB produced & destroys TB bacilli & Lung Parenchyma
- 2° TB is more infectious & it is active disease.
- Calcified Ghon's Complex ⇒ Reinke's Complex.

## TB/HIV

- \* If ART is started 1st → ↑ Risk of immune reconstitution inflammatory syndrome (IRIS)
- Start ATT 1st & merge ART in 2 weeks. to 2 months

ATT = Always The Treatment

- \* If pt. is on TLE regimen. → Rifampicin can be given
- If pt. is on Neviparine / Protease Inhibitor
  - ↓
  - Rifampicin can't be given
  - Rifabutin is given.

DISSET

## DISSEMINATED TB

232

### CLASSICAL MILITARY TB

1<sup>o</sup>/2<sup>o</sup> form

Hematogenous / Lymphogenous spread.

Pathognomonic  $\rightarrow$  Chonoidal Tubercles

Sputum  $\rightarrow$  -ve

CXR - 1-2mm, Blz symmetric

Homogeneous, millet shaped shadowing

### CRYPTIC MILITARY TB

Elderly, chro. symptom

Fever, wt. loss, anaemia

CXR - N

Sputum  $\rightarrow$  -ve

Pt. collapses  $\Rightarrow$  death  $\rightarrow$  autopsy reveals meningeal tubercles

This is also military TB. but hidden one CXR.

## NON-REACTIVE (or) AREACTIVE TB

Rare form

Acute Septicaemic form.

Underlying hematological abnormality

Fatal form

Autopsy shows areas of necrosis  $\pm$  granuloma formation

Rx

New Case = 2HRZE + 4HRE = 6 months = DAILY

Previously Rx = 2HRZES + 1HRZE + 5HRE = 8 months = DAILY

HDRTB = Resistance to both H & R = DAILY

6-9 mnths  $\rightarrow$  E + Z + Kanamycin + Levoflox + Cycloserine + Ethionamide

18 mnths  $\rightarrow$  E + Levoflox + Cycloserine + Ethionamide

XDR-TB :- MDR-TB + Resistance to 1<sup>st</sup> line aminoglycoside  
+ Resistance to 1 FQ

283)

6-12 month = capreomycin + Moxi + PAS + Clofazamine +  
High dose INH + Amoxyclav + Linezolid

18 months = Moxi + PAS + Clofazamine + High Dose INH +  
Amoxyclav + Linezolid

(24 - 30 months)

### NEWER Anti - TB Drugs

BEDAQUILINE / Sartura

2012

Diaxyl quinolone

MOA:- ATP synthase inhibition

S/E - QT Prolongation

DR TB.

Conditional access in India

DELAMANID

2014

Nitroimidazole

MOA:- Mycolic acid synthase inhibitor

S/E - QT Prolongation

DR TB

Soon available in India

Dose - 400mg

duration - 24 weeks.

A

234

# ACIB, BASE, BALANCE & ABG

235

## I) NORMAL VALUES

pH 7.35 - 7.45      pH  $\leq$  7.35  $\Rightarrow$  Acidosis

P<sub>a</sub>CO<sub>2</sub> 35-40 mmHg      pH  $\geq$  7.45  $\Rightarrow$  Alkalosis

HCO<sub>3</sub><sup>-</sup> 22-26 meq      (N) P<sub>a</sub>CO<sub>2</sub> = 40

P<sub>a</sub>O<sub>2</sub> 70-100 mmHg      HCO<sub>3</sub><sup>-</sup> = 26.

## II) Relation Between pH, P<sub>a</sub>CO<sub>2</sub> & HCO<sub>3</sub><sup>-</sup>

↳ Henderson Hasselbach equation

$$\text{pH} = 6.1 + \log \frac{[\text{HCO}_3^-]}{\text{P}_{\text{aCO}_2} \times 0.03} \Rightarrow \text{pH} \propto \frac{\text{HCO}_3^-}{\text{P}_{\text{aCO}_2}}$$

$$\downarrow \text{pH} \uparrow \propto \frac{\text{HCO}_3^- \uparrow}{\text{P}_{\text{aCO}_2} \uparrow} \Rightarrow \frac{\text{BASE}}{\text{ACID}}$$

## III) REGULATION OF PH P<sub>a</sub>CO<sub>2</sub> & HCO<sub>3</sub><sup>-</sup>

Lungs  $\uparrow \downarrow \text{CO}_2 \Rightarrow$  Resp. process

Kidneys  $\uparrow \downarrow \text{HCO}_3^- \Rightarrow$  Met. process

## SIMPLE ACID BASE DISORDER

1° process + Adequate compensatory response

Respiratory Acidosis

pH  $\downarrow$  P<sub>a</sub>CO<sub>2</sub>  $\uparrow$  HCO<sub>3</sub><sup>-</sup>  $\uparrow$

Metabolic Acidosis

pH  $\downarrow$  P<sub>a</sub>CO<sub>2</sub>  $\downarrow$  HCO<sub>3</sub><sup>-</sup>  $\downarrow$

Resp. Alkalosis

pH  $\uparrow$  P<sub>a</sub>CO<sub>2</sub>  $\downarrow$  HCO<sub>3</sub><sup>-</sup>  $\downarrow$

Metabolic alkalosis

pH  $\uparrow$  P<sub>a</sub>CO<sub>2</sub>  $\uparrow$  HCO<sub>3</sub><sup>-</sup>  $\uparrow$

In simple acid base disorder, always  $1^{\circ}$  change & compensation move together 236

In  $1^{\circ}$  resp. process  $\rightarrow$  change in pH w.r.t.  $\text{PaCO}_2 + \text{HCO}_3^-$  in opposite direc'

In  $1^{\circ}$  met. process - change in pH w.r.t.  $\text{PaCO}_3 + \text{HCO}_3^-$  in same direction

### ROME

resp. opp., met. same direction.

Q. pH = 7.33,  $\text{PaCO}_2 = 60$ ,  $\text{HCO}_3^- = 34$   
↓              ↑              ↓ :  $\Rightarrow$  Resp. Acidosis  
acidosis

Q. pH = 7.48,  $\text{PaCO}_2 = 26$ ,  $\text{HCO}_3^- = 16$   
↑              ↓              ↓ :  $\Rightarrow$  Resp. Alkalosis  
alkalosis

Q. pH = 7.27,  $\text{PaCO}_2 = 25$ ,  $\text{HCO}_3^- = 10$   
↑ ↓              ↓              ↓ :  $\Rightarrow$  Met. Acidosis

Q. pH = 7.55,  $\text{PaCO}_2 = 50$ ,  $\text{HCO}_3^- = 40$   
↑              ↑              ↑ :  $\Rightarrow$  Met. Alkalosis

## COMPENSATION

237

### Resp. Acidosis

Acute For every 10mmHg ↑  $\text{PaCO}_2$ ,  $\text{HCO}_3^-$  ↑ by 1 meq.

Chronic For every 10mmHg ↑  $\text{PaCO}_2$ ,  $\text{HCO}_3^-$  ↑ by 4 meq

### Resp. Alkalosis

Acute For every 10mmHg ↓  $\text{PaCO}_2$ ,  $\text{HCO}_3^-$  ↓ by 2 meq

Chronic " " 10mmHg ↓  $\text{PaCO}_2$ ,  $\text{HCO}_3^-$  ↓ by 4 meq

Q Acute F.B. ingestion, pH = 7.32,  $\text{PaCO}_2$  = 70,  $\text{HCO}_3^-$  = 29.

↓                    ↓                    ↑                    ↑  
 Acidosis.

$$40 \xrightarrow{30} 70 \quad 26 \xrightarrow{3} 29.$$

Resp. acidosis is compensated by met. alkalosis.

Q Chr. neuromuscular disorder

$$\begin{array}{ccc} \text{pH} = 7.34 & \text{PaCO}_2 = 60 & \text{HCO}_3^- = 34 \\ \downarrow & \uparrow & \uparrow \end{array}$$

Chr. resp. acidosis

$$40 \xrightarrow{20} 60 \quad 26 \xrightarrow{8} 34$$

Ans:- Chr. resp. acidosis is compensated by met. alkalosis.

Chr. compensated Resp. Acidosis.

## Metabolic Acidosis

$$\text{Acute expected } \text{PaCO}_2 = (1.5 \times \text{HCO}_3^-) + 8 \pm 2. \quad [\text{winter's formula}]^{238}$$

Q. pH = 7.27,  $\text{HCO}_3^- = 10$ ;  $\text{PaCO}_2 = ?$

$$(1.5 \times 10) + 8 \pm 2$$

$$15 + 8 \pm 2$$

$21 - 25 \Rightarrow \text{compensated}$

Q. pH = 7.26,  $\text{PaCO}_2 = 18$ .  $\text{HCO}_3^- = ?$

$$(1.5 \times 6) + 8 \pm 2 = \cancel{9} \pm 2. \quad \cancel{9} \pm 2 = 7 \pm 1.$$

$$9 + 8 \pm 2 = 17 \pm 2 = 15 - 19$$

Met. acidosis  $\approx$  compensatory alkalosis

## Metabolic Alkalosis

$$\text{Expected } \text{PaCO}_2 = [\text{HCO}_3^- + 15]$$



## METABOLIC ACIDOSIS & CONCEPT OF ANION GAP

239



$$(Na^+ + K^+) - (Cl^- + HCO_3^-) = \text{Anion Gap.}$$

$$(Na^+ + K^+) + \text{unmeasured} = (Cl^- + HCO_3^-) + \text{Cations} \quad \text{unmeasured anions}$$

$$(Na^+ + K^+) - (Cl^- + HCO_3^-) = \text{unmeasured anions} - \text{unmeasured cations}$$

$$[\text{Anion Gap}] = \text{unmeasured anions} - \text{unmeasured cations}$$

Common cause of ↑ in Anion Gap = ↑ in unmeasured anions

New formula for Anion Gap

$$(Na^+) - (Cl^- + HCO_3^-) = AG$$

8-12 mEq.

## HIGH AG METABOLIC ACIDOSIS



In pure High AG Metabolic Acidosis

240

Rise in AG = fall in  $\text{HCO}_3^-$

$\text{AG} - 10 = 25 - \text{Given carbonate}$ .

$$\Delta \text{AG} = \Delta \text{HCO}_3^-$$

### CAUSES :-

- I) TOXINS / DRUGS -
  - 1) Methanol
  - 2) Paraldehyde
  - 3) Ethylene glycol / antifreeze
    - ↳ oxalic acid.
    - oxaluria
  - 4) Salicylates
- II) Ketoacidosis -
  - 1) DKA
  - 2) Alcoholic ketoacidosis
  - 3) Starvation
- III) Renal Failure

### IV) Lactic Acidosis

a) Type A Lactic Acidosis  $\Rightarrow$  [Hypoxemia  
 $\downarrow$  perfusion]

e.g. shock

Anaemia

CO poisoning

b) Type B Lactic Acidosis = [Perfusion: N]

e.g. Renal failure

Hepatic failure

Drugs - metformin  
zidovudine

## (N) AGI METABOLIC ACIDOSIS

241



Hyperchloremic Metabolic Acidosis

### RENIN - Angiotensin - Aldosterone System in Acid. Base



(N)



Hypokalemia  
+  
Met. alkalosis

Hypoadosteronism  
Hyperkalemia +  
Met. acidosis

### CAUSES

#### I) GIT CAUSE

- 1) Diarrhea
- 2) Pancreatic fistula
- 3) Uretero sigmoidostomy
- 4) Enterocutaneous fistula

#### II) RENAL CAUSE

- 1) RTA
- 2) Drugs
  - ① Carbonic anhydrase inhibitor
  - ② ACEI
  - ③ ARB
  - ④ Aldosterone antagonist

# RTA

## Type I RTA

## Type II RTA

Met. acidosis + hypokalemia

242

## Type IV RTA

met. acidosis +  
Hyperkalemia  
(H/c type)

### causes

Hyporenemic state  
Aldosterone resistance  
" deficiency

Hyporenemic state  
↳ Diabetic nephropathy  
↳ Chro. tubulo interstitial

## Type I RTA

### - Distal RTA

- $\text{H}^+$  excretion lost at collecting Duct.



## Type II RTA

### Proximal RTA

$\text{HCO}_3^-$  reabsorption lost in PCT



Bicarbonaturia can  
induce Kaliuresis  
Met. acidosis +  
Hypokalemia

## Urine anion gap :-

To differentiate N anion gap Met acidosis of diarrhoea <sup>243</sup> v/s

RTA



$$UAG = [Na^+ + K^+] - Cl^-$$

N value = 0-5.



taking 0 as reference level

(N)

## Renal Handling of Acid



$$RTA = UAG + ve.$$

Diarrhoea :- Met. acidosis.

10,000 H+

Urinary NH4+ is increased.



RTA -

UAG is indirect measure of urinary NH4+ excretion.

UAG is negative in GIT cause diarrhoea  
GIT

## METABOLIC      ALKALOSIS

244

Initiating event

Persisting event

- 1) ECFV contract<sup>n</sup>, hypotension.
- 2) ↓ 1° mineralocorticoid excess → ECFV expand<sup>n</sup> & HTN  
(B) initiating + persisting event)

SALINE    RESPONSIVE / Cl<sup>-</sup> response  
UCl<sup>-</sup> < 20 mEq

- 1) vomiting
- 2) Ryle's Tube aspiration
- 3) Diuretic use
- 4) Post hypercapnic Met. alkalosis

SALINE    UNRESPONSIVE / Cl<sup>-</sup> unresponsive  
UCl<sup>-</sup> > 20 mEq

- 1) 1° Hyperaldosteronism
  - 2) Cushing's syndrome
  - 3) Renin secreting Tumour
  - 4) Renal artery stenosis
  - 5) Liddle's Syndrome
  - 6) Bartter Syndrome
  - 7) Gitelman Syndrome
- HTN      hypo tension

## RESPIRATORY      ACIDOSIS

Type 2 Resp. Failure

## RESPIRATORY      ALKALOSIS

CHRONIC Resp. Alkalosis :-

M/c acid base Ab(N) in critically ill pt

- 1) Pain, Panic, Psychogenic, Progesterone  
⇒ Hyperventilation
- 2) Aspirin
  - a) vomiting → met. ~~acidosis~~ alkalosis

2) High AG metabolic acidosis.

→ When aspirin goes to blood



Metab. alkalosis.

245

3) Theophylline

4) Fever, sepsis (change in sensitivity of Resp. centre)

5) CHF → Pul. oedema → stimulate of chemoreceptors

6) Cirrhosis of Liver → ↑ Glutamate

7) Severe Hypotension Hypoxemia → hyperventilation

8) ↑ ICP

ICU pts are also prone to Resp. alkalosis due to  
pain, panic, psychogenic

Q. pH = 7.32,  $\text{PaCO}_2 = 60$ ,  $\text{HCO}_3^- : 34$ . ↓ ↑ ↑ = <sup>che. compensated</sup>  
<sup>Given value > Expected</sup>  
 $90 \xrightarrow{20} 60$        $26 \xrightarrow{8} 34$  <sup>HCO\_3^-</sup>  
Resp. Acidosis

Q. pH 7.35,  $\text{PaCO}_2 = 60$ ,  $\text{HCO}_3^- = 40$ . ↓ ↑ ↑ = Given value > Expected  
Metab. Resp. acidosis + Add. metabolic alkalosis

Q. pH 7.28  $\text{PaCO}_2 = 60$ ,  $\text{HCO}_3^- = 26$ . ↓ ↑ ↑ = Given value < Expected  
Metab. Resp. acidosis + Add. metabolic acidosis

AG High AG or Normal AG.

246

In pure High AGMA  $\Delta AG = \Delta HCO_3^-$

Rise in AG = fall in  $HCO_3^-$

$$[\text{Given AG} - 10] = [25 - \text{Given } HCO_3^-]$$

Q. Pt. is having DKA.

$$\text{pts AG} = 20 \quad HCO_3^- = 15$$

$$\Delta AG = 20 - 10 \quad \Delta HCO_3^- = 25 - 15 \\ 10 \qquad \qquad \qquad 10$$

$\Rightarrow$  Pure AG Met. Acidosis.

Q. Pt is DKA.

$$\text{Pt. AG} = 20 \quad HCO_3^- = 20$$

$$\Delta AG = 10 \quad \Delta HCO_3^- = 25 - 20 = 5$$

$\Delta AG > \Delta HCO_3^- \rightarrow$  Additional metabolic acidosis: alkalosis

<sup>High</sup>  
Additional AGMA + addition Met. Alk

Q. DKA  $AG = 20 \quad HCO_3^- = 10$

$$\Delta AG = 20 - 10 \quad \Delta HCO_3^- = 25 - 10 \\ = 10 \qquad \qquad \qquad = 15$$

$$\Delta AG < \Delta HCO_3^-$$

High AGMA +  $\textcircled{N}$  AG metabolic acidosis

Compare  $\Delta AG$  &  $\Delta HCO_3^-$  relation.

247

$\Delta AG = \Delta HCO_3^- \Rightarrow$  Pure AGMA

If  $\Delta AG > \Delta HCO_3^- \Rightarrow$  AGMA + additional met.  
alkalosis

If  $\Delta AG < \Delta HCO_3^- \Rightarrow$  AGMA + additional met.  
acidosis

Q      pH - 7.2       $P_{CO_2} - 60$        $HCO_3^- - 19$   
      ↓                  ↑                  ↓

~~Acidosis~~ Acidosis (mixed disturbance)

Reported.

20.



# NEPHROLOGY

# PHYSIOLOGY

250

Kidney performs Diverse func' :-

- 1> Excretory :- urine formation
- 2> Homeostasis :- water & acid base balance
- 3> Hormonal :- erythropoietin synthesis & Vit D activation.

## RENAL BLOOD FLOW

Kidneys are highly vascular.

Receives 25% of c. output

Even in presence of adverse cond' to the renal blood flow -

- 1> Dehydration
- 2> Hypotension
- 3) Renal artery stenosis

↓  
Autoregulatory mechanisms activated

↓  
Maintain adequate GFR.

- 1) ↑ Glomerular capillary Pressure



## RENAL ARTERY STENOSIS

Cause → 1) 90% → atherosclerosis/arteriosclerosis

2) 10% → FMD (fibromuscular Dystrophy)

Pathophysiology →

Activates RAAS

Vasoconstriction

 $\text{Na}^+/\text{H}_2\text{O}$  retenison.M/I/C C/F  $\rightarrow$  Sy. HTN

[M/I/C cause - 2° HTN - Renovascular]

**ESG GUIDELINES** - evaluation + Management

When to suspect/ screen for R.A.S.?

- 1) young HTN (onset <30 yrs of age)
- 2) severe HTN <55 yrs of age ( $>160/110 \text{ mm of Hg}$ )
- 3) HTN emergencies (sudden  $\uparrow$  BP  $\pm$  target organ damage)
- 4) Refractory HTN (uncontrolled  $\geq 3$ , 1st is a diuretic)
- 5) Decline in GFR  $>30\%$  after ACEI therapy (Disrupts autoregulation)
- 6) Asymmetrical kidneys on USG ( $D_{\text{diff.}} \geq 1.5 \text{ cm.}$ )
- 7) Unexplained Renal failure

| Screening Tests                                                                         | Specific                                                                                |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1) <u>Duplex Doppler</u> (Best)<br>- >98% sensitivity<br>- Non-invasive, easy available | 1) Conventional Renal angiography<br><u>GRADING</u><br>% of stenosis      Severity + Rx |
| 2) <u>CT-Renal Angiography</u><br>4/I $\rightarrow$ GFR $\leq 60 \text{ mL/min}$        | <50% (Mild)      No further testing                                                     |
| 3) <u>MR-Renal angiography</u><br>4/I $\rightarrow$ GFR $\leq 30 \text{ mL/min}$        | 50-70% (Moderate)      Follow-up                                                        |
| 4) <u>DTPA Scan</u> (radio-isotope)<br>(functional assessment of kidney)                | >70% (severe)      Always haemodynamically significant<br>↓<br>Elective Rx              |

Rx 1st line → Medical

|                                    |                  |
|------------------------------------|------------------|
| U/L                                | B/L              |
| ACEI                               | ACEI - C/I       |
| (only drug c<br>protects N Kidney) | CCB<br>β blocker |
|                                    | Diuretic         |

MOA of ACEI in U/L RAS.

## Angioplasty 253

- 1) All - severe RAS
- 2) cause in FMD  
(focal stenosis → so, easily Rx  
c angioplasty)
- 3) Refractory Heart failure  
(Flash Pulmonary Oedema)



Prognosis -  
Favourable

## URINE FORMATION

1st step → Ultrafiltration → Glomerulus

Intra-GBM ← Mesangium → outside GBM. (extra-GBM)



a) All Blood Components

RBCs, WBCs, platelets

b) All plasma proteins

(except albumin  $\approx 4.6 \text{ nm}$ )

① Albumin

254

② Lipoproteins

③ AT-III, Protein S, C

## GLOMERULONEPHRITIS

Predominantly affect GBM except Minimal Change Disease  
(only podocytes affected)

1) Dysmorphic Haematuria  
(MPU)

1) NO HEMATURIA

2) RBC cast - Most specific

2) Selective Proteinuria  
(albuminuria)

3) Non-selective proteinuria

3) Dyslipidaemia

4) Glomerular range proteinuria  $\rightarrow$  Hypercoagulable state  
[ $\geq 2 \text{ g/day} / 1.73 \text{ m}^2$ ]

## TUBULES

Reabsorption + Secretion. (concentrating Ability)

Mechanisms:- Tubular transport

A) cellular transport

(across the cell)

B) Paracellular

(in bet' cells of tubule)

1) ACTIVE  $\rightarrow$  ATPase pumps.

PCT

DCT

2) PASSIVE  $\rightarrow$  exchange/  
co-transporter.

Leaky Epithelia

Tight Junctions

Allows BULKY  
Transport

Highly regulated

# DCT

URINE

H<sup>+</sup> secretion  
(most potent)

secretion

Ca<sup>2+</sup>/Mg<sup>2+</sup>

Hypercalciuria

④ Hypocitraturia  
(unknown mech.)

ROLE: WATER BALANCE

PCT

Max. H<sub>2</sub>O reabsorp<sup>n</sup>  
(≈ 70%)

LoH



ADH (vasopressin)

V<sub>2</sub> receptors

AQUAPORIN channels



facilitates H<sub>2</sub>O reabsorp<sup>n</sup>



Restores plasma volume

# BODY

255

Chro. acidemia

Mild Hypokalemia

mild Hypomagnesemia

association = endocrine

Det & CD ⇒  
always Hypo-osmole

FINAL OSM  
(Based on  
fluid status)  
↓  
If Dehydrated

Aldosterone (mineralocorticoid)

↑  
upregulates eNa<sup>+</sup> channels.

( $\leftrightarrow$ )  
↓  
Na<sup>+</sup> reabsorp<sup>n</sup> Secretes  
H<sub>2</sub>O " " H<sup>+</sup>, K<sup>+</sup> in  
exchange

|                                               |                              |                                                   |                                                                         |
|-----------------------------------------------|------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|
| Defn:<br>Hypotonic Polyuria<br>(D. Insipidus) | Excess:-<br>Oliguria (SIADH) | Defn:<br>Addison's<br>(AC + MC Def <sup>-</sup> ) | Excess:-<br>Conn's<br>(CUSHING's Syn.)<br>↓<br>Hypokalemic<br>Alkalosis |
|-----------------------------------------------|------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|

## HYPOKALEMIC ALKALOSIS

Due to aldosterone excess state

Causes: → Endocrine (MIG)

2) Chronic Drug use

- Loop Diuretics
- Thiazides
- Steroids

3) Inherited Channelopathies

## INHERITED CHANNELOPATHIES



Bartter's  
Syndrome

(6 genetic mut<sup>n</sup>)

1) **Repid** → I.U.L → adolescence.

2) **Patho** →  $\text{Na}^+ - \text{K}^+ - 2\text{Cl}^-$  pump  
 $\times \times \times$  - severe

3)  $\times \times \times \text{H}_2\text{O}$  reabsorp<sup>n</sup>

4) **Plasma volume** ↓ ↓ ↓

5) **B.P.** ↓ ↓ ↓

6) **Renin** ↑ ↑ ↑

Angiotensin

Aldosterone ↑ ↑ ↑

7) **Associated Defects**  
(Unknown) mech  
30% - SNHL (Deaf)  
Paracellular  $\text{Ca}^{2+}$  transport defect  
(Hypercalcemia)

8) **C/F** →  
1) Polyhydramnios  
2) Failure to thrive  
3) Hypotension (syncope)  
4) Renal calculi

9) **ABG analysis**

10) **S. K<sup>+</sup>**

Hilteman's  
Syndrome

20 - 30 yrs

$\text{Na}^+ - \text{Cl}^-$  cotransport

$\times$  Mild

$\times$   $\text{H}_2\text{O}$  reabsorp<sup>n</sup>

↓

~~N~~ (N)

↑

↑

Paracellular  $\text{Mg}^{2+}$  transport Defect

Muscle cramps  
Paralytic ileus  
Cardiac arrhythmias

Pseudo-hyper aldosteronism.

Asymptomatic  
Detection - HTN  
in young

LIDDLE's Syndrome  
257

20 - 30 yrs.

e $\text{Na}^+$  c

$\oplus$  Mild

$\oplus$   $\text{H}_2\text{O}$  reabsorp<sup>n</sup>

↑

↑

↓ ↓ ↓

↓ ↓ ↓

Metabolic alkalosis.

Low

|                                           |                             |                                                                                    |                                                                                                               |
|-------------------------------------------|-----------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 10) Exclude chro. use                     | Loop Diuretics              | Thiazide                                                                           | Steroids <del>258</del>                                                                                       |
| 11) Best Test<br>S. Renin                 | ↑↑↑                         | ↑                                                                                  | ↓↓↓                                                                                                           |
| 12) <input checked="" type="checkbox"/> R | HYDRATION                   | K <sup>+</sup> supplements<br>Mg <sup>2+</sup> supplements<br>↓ minimises symptoms | <del>AMILORIDE<br/><u>DOC</u></del><br>ENaC antagonist<br>Safe in ♂<br>Long term use offers cure<br>BEST Prog |
| 13) Prognosis                             | <b>[WORST]</b><br>(no cure) | Favourable                                                                         |                                                                                                               |

## ROLE OF KIDNEY IN ACID BASE BALANCE

Human Body → "Pro-~~acidic~~ acidic state"

Every living cell requires energy (ATP)

During ATP Production → Acid is ~~generated~~.

(N) pH = 7.35 - 7.45 (slightly Basic)

MECHANISMS → ABB → Regulate pH efficiently

| 1) Buffering                                                                   | Respiratory mechanism                                              | Renal Mechanism                                                                                                                     |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| At tissue level<br>$\text{HCO}_3^-$ ( <u>extra cellular</u> )                  | <u>BACKUP</u><br>$\text{PO}_4^{2-}$<br>(Intra cellular)<br>(Bones) | excretes acid in form of $\text{CO}_2$                                                                                              |
| $\downarrow$                                                                   |                                                                    | Most Potent<br>↓<br>Acidification of Urine                                                                                          |
| $[\text{H}^+] + [\text{HCO}_3^-] \rightarrow \text{CO}_2 + \text{H}_2\text{O}$ |                                                                    | Most Imp. form of $\text{H}^+$ Secretion in urine → $\text{NH}_4^+$ ion.<br>Combines $\text{Cl}^- \rightarrow \text{NH}_4\text{Cl}$ |

$V_{H^+}$  &  $V_{Cl^-}$  levels.



Defect in acidification of urine  
( $U_{pH} > 5.5$ ,  $U_{Cl^-}$  - Low in disease)

RTA

①  $H^+$  secretion

$H^+ - K^+$  ATPase



④ Minor role

Aldosterone  
 $H^+ / K^+$  secretion.  
in exchange of  
 $Na^+ + H_2O$ .

②  $HCO_3^-$  reabsorb?

$HCO_3^-$  reabsorb?  
( $H_2O$ -nutrient  
reabsorb?)

③  $HCO_3^-$  regeneration  
(Action - carbonic  
anhydrase)

⑤ Type 2 RTA  
(proximal RTA)

$< 100$  cases (worldwide)

Majority :- cerebral calcification.  
also - marble bone disease  
(osteopetrosis)

Not included in routine classification.



⑥ Type 4 RTA  
(Hyper acidosis)

| <u>RTA</u>        | <u>Type I</u>                                                                                                                                             | <u>Type II</u>                                                                                                                           | <u>Type IV</u><br>260 M/C RTA                                                                         |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| epidemiology.     | <10yr, M>F<br>(Most <del>per</del> severe)                                                                                                                | 20-30yr<br>M=F<br>(mild)                                                                                                                 | >50yr, M=F<br>(Mildest)                                                                               |
| M/C inherited RTA | Inherited                                                                                                                                                 | Inherited                                                                                                                                | M/C RTA                                                                                               |
| Cause             | Inherited                                                                                                                                                 | Inherited                                                                                                                                | Mildest<br>(Acquired)                                                                                 |
| Association.      | <p>30% autoimmune</p> <p>M/c - Sicca syndrome</p> <p>SLE</p> <p><u>M/c TINU</u></p> <p>Mixed connective tissue disorder</p>                               | <p>FANCONI'S syndrome:</p> <ul style="list-style-type: none"> <li>- glycosuria</li> <li>- aminoaciduria</li> <li>- syndactyly</li> </ul> | <p>Early CKI.</p> <p>ACEI/ARB</p> <p>K<sup>+</sup> &amp; par. diurekt.</p> <p>Tetraethylammonium.</p> |
| C/F               | <p>① short stature, Rickets</p> <p>② Hypercalcemia<br/>↓ St-one<br/>↑ Renal calculi<br/>Nephrocalcinosis</p> <p>③ Hypomagnesemia<br/>↓<br/>M/s cramps</p> | <p>① mild acidemia<br/>Asymptomatic</p> <p>② Vit D<sub>3</sub>/PO<sub>4</sub> def.<br/>(2° to loss in urine)<br/>↓<br/>osteomalacia</p>  | <p>① mild acidemia</p> <p>Asymptomatic</p> <p>② Rarely<br/>Hyper K<sup>+</sup><br/>complications</p>  |
| ABG analysis.     | Metabolic Acidosis                                                                                                                                        |                                                                                                                                          |                                                                                                       |
| Anion gap         | (N) anion gap                                                                                                                                             |                                                                                                                                          |                                                                                                       |
| V <sub>AG</sub> . | $(U_{Na^+} + U_{K^+}) - U_{Cl^-}$ [High/Positive]                                                                                                         |                                                                                                                                          |                                                                                                       |
| V <sub>pH</sub>   | always<br>>5.5                                                                                                                                            | maybe <5.5                                                                                                                               | always<br>$\odot$<br><5.5                                                                             |

S. K+

Low

(N)

High

261

Rx

Oral  $\text{HCO}_3^-$  supp.

Oral  $\text{K}^+$

Citrate supp.

↓ Renal calculi

(No cure)

Vit D<sub>3</sub> / P<sub>o4</sub>  
supplements

↓ Bone Disease

X

Stop offending drug  
↳ offers cure.

Prog.

WORST

Favourable

BEST

## ANEMIA

Defect in Erythropoietin Synthesis



Vit D → final step of activation into **Vit D<sub>3</sub>**  
 & its reabsorption occurs in **PCT**

262

↓ if defective

BONE DISORDERS - in nephropathy

only C.K.I - Minimum ( $\geq 6$  months) disease

## RENAL OSTEODYSTROPHY



## ASSESSMENT METHODS IN NEPHROLOGY

263

### S. CREATININE LEVELS (Best) screening Test)

#### C PRODUCED

endogenously @ constant Rate  
By Protein Breakdown.

#### EXCRETED

freely filtered at glomerulus  
Barely secreted/reabsorbed @ tubules

$$S\text{ creatinine} \propto GFR$$



#### Limitations of Test

- nonspecific for  $\Delta$  of nephropathy.
- may not correlate immediate outcome of the disease (Limited Prognostic value)

#### FALSE +ve ↑ S. creatinine

↑ Product'

at High Protein Diet

by strenuous exercise.  
(athletes)

c) Infection (sepsis)

d) Inflammation (A.I.D.)

e) Neoplasms (some)

#### Alternative Test To S. creat

#### S. CYSTATIN - C LEVELS

Produced endogenously  
By all nucleated cells  
@ constant Rate

freely filtered @ glomerulus  
Excretion  $\propto GFR$ .

Adv - not related to Diet or exercise

NOVEL MARKERS OF AKI = specific for  $\Delta$ site of Nephropathy<sup>264</sup>

NGAL (neutrophil gelatinase associated Lipocalcin)

KIM-1 (kidney injury molecule)

IL-18

Tested in spot urine sample

Are secreted by tubules in response to injury.

Hence detectable only in Renal causes of AKI.  
(nephropathy)

TESTS = Detect :- SITE/ CAUSE/ SEVERITY



### PROTEINURIA

Def<sup>n</sup> -  $> 150 \text{ mg/24 hours}$ .

Detected using Dipstick Method  
(very sensitive)

- Non-specific for  $\Delta$ site of Nephropathy
- Valuable in K/c/o - Nephropathy = identify SITE.  
(Based on quantity)

| $< 2 \text{ g/day}$<br>(Tubular Range) | $\geq 2 \text{ g/d} / 1.73 \text{ m}^2$ (Glomerular Range Proteinuria) |
|----------------------------------------|------------------------------------------------------------------------|
| Tubulo-interstitial<br>Disorders       | $< 3.5 \text{ g/d}$<br>Nephritic Range                                 |
|                                        | $\geq 3.5 \text{ g/d}$<br>Nephrotic Range                              |

## ALBUMINURIA

>30mg / 24 hrs

(More specific marker)

265

### QUANTITATIVE TESTS

24hr urinary alb.  
estimation  
(most reliable/  
gold std)

Micro-alb

30 - 300 mg of  
Alb / 24 hrs

Gross-alb

>300mg

(Most Preferred)  
Spot urinary ACR  
(alb / creat. ratio)

30 - 300 mg of  
Alb / gm of creat

>300 mg

USE:- PROGNOSTIC  
↓  
Staging of CKD

- Early marker  
- Reversible stages  
DOC = ACEI

Late / irreversible  
stages

## Approach → HEMATURIA (RBC in urine)

Step 1 - Establish "SIGNIFICANT" (any +) "INSIGNIFICANT"

- $> 3-100 \text{ RBC/hpf} \geq 3 \text{ occasions}$  only observation.
- $> 100 \text{ RBC/hpf}$  single occasion. Repeat after 48 hrs
- GROSS HEMATURIA



### Step 2 - Urine microscopy : RBC morphology in urine

| EUMORPHIC                       | DYSMORPHIC<br>(SOURCE → Renal)<br>Disease → GN | GROSS H.<br>Microscopic Hematuria                        |
|---------------------------------|------------------------------------------------|----------------------------------------------------------|
| Source - Below the Renal Pelvis |                                                |                                                          |
| Renal calculi                   | IgA nephropathy                                | Post-infective<br>causes                                 |
| Cystitis                        |                                                | Post-streptococcal<br>GN (PSGN)                          |
| Carcinoma bladder               |                                                | Hep B - Polyarteritis Nodosa                             |
| ↓                               |                                                | Hep C - Cryoglobulinemia<br>SABE                         |
| <b>Radiological Testing</b>     |                                                |                                                          |
| X-Ray                           |                                                |                                                          |
| USG                             | KUB                                            |                                                          |
| CT                              |                                                |                                                          |
| ↓                               |                                                |                                                          |
| Inconclusive                    |                                                |                                                          |
| ↓                               |                                                |                                                          |
| <b>Cystoscopy ± Biopsy</b>      |                                                |                                                          |
|                                 | NORMAL                                         | $C_3 = \text{initially Low}$<br>Returns to (N) - 6-8 wks |
|                                 |                                                | Persistently<br>Low<br>complement<br>levels              |

## Approach - PYURIA. (Pus/WBC in urine)

Step 1 : "SIGNIFICANT"  $> 5 \text{ WBC/hpf}$  in centrifuged sample → observe/Repeat if not significant

## Step 2 :- URINE CULTURE.

267

H/c cause of significant pyuric = UTI.



### **STERILE PYURIA**

#### CAUSES

Infective

M/c - Partially Rx UTI.

(>72 hrs antibiotic)

FASTIDIOUS ORGANISMS

(special growth requirement)

Chlamydia

M/c of STD

♀

Renal T.B.

Inflammatory

1) Renal Calculi

2) **Papillary Necrosis**

(severe tubular necrosis)

Vascular insufficiency - Mech.

DM - analgesic abuse

Sickle - Kawasaki Disease

3) Post - Radiotherapy

4) Post - Transplant Rejection.

#### Approach :- CASTS / SEDIMENTS

Common CASTS

But non-specific  
for Diagnosis

M/c cast in urine

HYALINE CAST

Most Benign cast

NO further Rx / test

M/c found in AKI.

M/c cast in nephropathy

GRANULAR / CELLULAR

Present in (B)

Tubulo-interstitial GN

RARE CASTS

(10-15% case)

RBC cast

WBC cast

Muddy Brown Cast

Eosinophilic Cast

Broad/waxy Cast ↑

WORST CAST

DIAGNOSTIC

GN \* (Acute GN)

Pyelonephritis

Acute Tubular Necrosis

Acute Interstitial Nephritis

C.K.I.\*

Indicates total break down of tubules.

## USG - KUB

268

(N)

1) SITE :- Anatomical

2) SIZE :- 7-11 cms

< 7cm (shrunken)

CKI (exception)

Ab (N) & its Interpretation

ECTOPIC → NO relation to function

> 11 cms - Enlarged / Bulky

AKI. → classical in acute Interstitial Nephritis

Early DM nephropathy

Adult PKD (APKD)

HIV associated Nephropathy

Renal Amyloidosis

3) SYMMETRY < 1.5 cms

> 1.5 cms - assymmetrical kidneys.

Pathology ⇒ always in smaller kidney

4) ECHOTEXTURE = (N)

Increased echogenicity

↓  
Active Disease in the Kidney

5) Cortico-Medullary Differentiation (CMD)

Most Imp. parameter

AKI

(Vs)

CKI

Preserved

Loss

6) COLLECTING SYSTEM - (N)

Obstructive uropathy

## GFR ESTIMATION (Functional status)

269

- Most preferred = (Creat. clearance  
(Indirect/ surrogate marker))  
Easy, cheap, no radiation expo
- Cockcroft Gault formulae  
(Estimated)

$$eGFR = \frac{[140 - \text{Age}] \times \text{wt(Kg)} (\delta^7)}{72 \times \text{s.creat}}$$

$$- [ ] \times 0.85 \quad \text{♀}$$

### Dilad

- Inaccurate (esp in AKI)
- only - total Kidney GFR

### Most Reliable/Gold Std :-

- Radio-isotope scan.  
(DTPA, MAG-3)
- Direct method.
- Accurate
- Single Kidney GFR
- Segmental GFR.
- Total Kidney GFR.

### Dilad

- Invasive
- Expensive
- Radiation exposure

### Uses - MEDICAL

- Staging of CKD
- Follow-up - chronic medical Renal Disease  
e.g. DM, HTN, HIV associated Nephropathy
- Dose adjustment of Nephrotoxic drugs

### Uses

- Pre-Transplant assessment of DONOR
- Pre-op assessment of w~~oss~~
- Medicolegal
- Decision making
  - to operate on better kidney  
never done B/L → risk of infection ↑

## INDEX : RENAL DISORDERS

270

| <u>AKI</u>        | <u>Parameters</u>       | <u>CKI</u>      |
|-------------------|-------------------------|-----------------|
| Preserved         | USG = CMD               | Lost            |
| (N) or ↑          | USG - size              | (N) or ↓        |
| Fluctuates - Posm | Osmolarity              | Isothenuria     |
| Hyaline cast      | CASTS                   | Broad waxy cast |
| (-) uncommon      | Anaemia                 | (+) common.     |
| uncommon.         | Renal<br>Osteodystrophy | (+)             |



R.R.T (Renal Replacement Therapy)

## AKI

Def<sup>n</sup>: Abrupt decline in GFR over short period of time<sup>27</sup>

KDIGO Guidelines (Kidney disease improving Global outcome - part of National Kidney Found<sup>n</sup>)  
Any 1

- ↓ U.O.  $\leq 0.5 \text{ mL/kg/h}$   $\geq 6 \text{ h}$  (oliguria).
- ↑ S.Cr.  $\geq 0.3 \text{ mg/dL}$  from Baseline  $\leq 48 \text{ h}$
- ↑ S.Cr.  $\geq 1.5 \times \text{Baseline}$   $\leq 7 \text{ days}$ .  
(50% increase)

### Causes of AKI

#### Pre-Renal

60-85% - HYPOPERFUSION

#### 1) Dehydration

Diarrhoea

Hypoalbuminemia

Massive H<sup>2</sup>O loss

Burns

(Insensitive losses through skin)

#### 2) Hypotension

Cardiogenic

Septic shock.

#### 3) Drugs - disrupt autoregulation.

#### Renal

#### INTRINSIC

95%

Tubulo  
Interstitial  
Disorders.

5%

GN

#### Post-Renal

1-5% - OBSTRUCTIVE  
UROPATHY

C/F

PR

Classical 3 stages

Oliguria <400mL/d

Anuria <100mL/d

Diuretic phase (recovery)

Renal

1) Non-Oliguric AKI

e.g. SEPSIS

(In Tubulo-Interstitial)

2) Hematuria - GN

Post-R

Loin pain<sup>272</sup>

Dysuria

Urgeency

Rarely - Serious UREMIC MANIFESTATIONS

(cause - mortality in A.K.I.)

- 1) Encephalopathy / convulsion
- 2) Pericarditis / shock
- 3) Coagulopathy

ASes → KDIGO Guidelines.

Approach - AKI



| PARAMETER                      | PRE-RENAL                                                                              | RENAL                                                              |
|--------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| MECHANISMS                     | RAAS +<br>↓<br>Na <sup>+</sup> /H <sub>2</sub> O reabsorption<br>↑ Urate reabsorption. | Loss of concentrating ability<br>Nat lost in urine<br>Dilute urine |
| BUN : Creat.                   | >20:1                                                                                  | <12:1.                                                             |
| U <sub>Na</sub>                | <20mEq                                                                                 | >40mEq                                                             |
| F <sub>e</sub> Na <sup>+</sup> | <1%                                                                                    | >2%                                                                |

|                                                 |               |                                   |
|-------------------------------------------------|---------------|-----------------------------------|
| U <sub>osm</sub>                                | > 500 mosm/L  | < 350 mosm/L                      |
| CASTS                                           | Hyaline casts | Granular/ <sup>273</sup> cellular |
| USG- Echotexture                                | (N)           | ↑ / Bright kidney                 |
| <u>Single Best<br/>Novel markers of<br/>AKI</u> | UNDETECTABLE  | DETECTABLE                        |

### Rx PALLIATIVE

#### Indications of Dialysis

- 1) UREA > 100
- 2) CREAT > 7
- 3) SERIOUS UREMIC MANIFESTATIONS
- 4) Refractory Pulmonary edema
- 5) Hyperkalemia > 6.5 mEq
- 6) Refractory pH < 7.20

Single most imp. Indication for emergency Dialysis

#### 7) Ingested Dialysable Toxin

(commonly med. Accidental/suicidal)

a) Salicylates

b) Methanol

c) Lithium

d) Polyethylene glycol (solvent)

### SPECIFIC

Depends on cause

#### (A) Post- Renal AKI

Early Sx relief  
Excellent recovery

#### (B) Pre- Renal AKI

Fluid challenge (1st Line)

Inotropes

Antibiotics

Stop offending drug

Excellent recovery

Delay in Rx  $\Rightarrow$  Progress to ATN

#### (C) RENAL AKI.

↓  
Further evaluation.

## Approach - RENAL AKI

95%

5%

274

| Tubulo-Interstitial | Parameters  | CIN     |
|---------------------|-------------|---------|
| <2g/day             | PROTEINURIA | >2g/day |
| (-)                 | HEMATURIA   | common. |
| Granular            | CASTS       | RBCs.   |

T. I.  $\Rightarrow$

| ATN         | Parameters         | Acute Interstitial Nephritis |
|-------------|--------------------|------------------------------|
| >4%         | Fe Na <sup>+</sup> | 2-4%                         |
| (+)         | USG - size         | enlarged / Bulky             |
| Muddy Brown | CASTS              | Eosinophilia                 |

### ATN (Tubule - M/c site)

#### Anatomy

Prone to  
vascular  
Insufficiency

#### Physiology

Site of conc<sup>n</sup>

#### Direct

Luminal  
Contents

- 1) Untreated Pre-renal
- 2) Sepsis
- 3) Contrast Induced Nephropathy
- 4) Drugs - aminoglycosides
- 5) Toxins - Heavy metal poison.
- 6) Cryoglobulinemia
- 7) Myoglobinuria
- 8) Hemoglobinuria

### AIN

- 1) Allergic Response to Drug (M/c - 95% of case)  
NSAIDs  
Sulfonamides  
Penicillin.  
cephalosporin  
Rifampicin  
FQs  
Dapsone  
Nitrofurantoin  
Contrast agents.
- 2) Viral infec
- 3) autoimmune
- 4) Lympho-proliferative

|                    |                  |                              |
|--------------------|------------------|------------------------------|
| Supportive therapy | Rx               | stop offending Drug          |
| Underlying cause   |                  | supportive Rx <sup>275</sup> |
| 4-6 wks            | Avg.<br>Recovery | 1-2 wks                      |
|                    |                  | < 1 %                        |
| 1-5 %.             | Risk of ESKD     |                              |
| Favourable         | Prognosis        | GOOD                         |

## GLOMERULONEPHRITIS

Causes :-

(A) PATHOLOGICAL :- Mesangial Involvement on Biopsy

(+) Proliferative GN

• Mesangio-proliferative GN  
(IgA, PSGN)

• Crescentic GN (worst Prog)  
(RPGN)

• Membrano-proliferative GN  
MPGN - mesangio-capillary

(-) Non-Proliferative GN

- Minimal Change Disease
- FSGN
- Membranous nephropathy

(B) CLINICAL PRESENTATION of GN (More Preferred)

| Asymptomatic proteinuria<br>microscopic hematuria<br><br>(M/c) | Nephritis<br>→ Hematuria<br>→ HTN<br>→ Rapid ↓ GFR.<br>(M/c - RPGN)<br>→ Proteinuria<br>< 3.5 g/day | Nephrotic<br>→ Anasarca<br>(serous cavity)<br>→ Hypercoagulable State<br>→ Preserved GFR<br><br>GFR<br>> 3.5 g/day<br>1.73 m <sup>2</sup> | Reno-vascular HTN | C.K.I<br>eg. Alport's Syndrome |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|

## Nephritic

- PSGN
- Lupus nephritis
- RPGN

## Nephrotic

children → MCD

Adults → FSGS

Elderly → membranous  
(> 50 yrs) nephropathy

276

### Proliferative GN

### Non-Proliferative

More likely nephritic

More likely nephrotic

## MESANGIO-PROLIFERATIVE

### IgA nephropathy

Worldwide

M/c cause

### PSGN

India

Epidemic

20-30 yrs, ♂ = ♀

5-15 yrs. ♂ = ♀

Etiopath

← Post-infective

M/c preceded by URTI →

Latent Period

< 1<sup>st</sup> week

1-3 weeks

SKIN

Syn-pharyngitic

4-6 weeks

C/F

Recurrent Gross Hematuria

Microscopic hematuria

10-15% - Persistent microscopic

Common  
[clawed nephritis syndrome].

Screening (Serology)

S. IgA - I level ↑↑

Anti-DNAase (70% case +)  
ASO, anti-hyaluronidase

Serum complement

(N)

Initially Low  
Returns to (N) in 6-8 weeks

WhatsApp: +1 (402) 235-1397

|                                |                                                                                                                                                                     |                                                                                                                                                                                            |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Biopsy</u>                  | Mesango- Proliferative changes                                                                                                                                      | 277                                                                                                                                                                                        |
| <u>Immuno<br/>fluorescence</u> | Granular Pattern of Ig deposits                                                                                                                                     |                                                                                                                                                                                            |
|                                | Anti IgA staining                                                                                                                                                   | Anti IgG Staining                                                                                                                                                                          |
| Rx                             | <ul style="list-style-type: none"> <li>Reassurance</li> <li>Majority - self Limiting</li> <li>Risk of RPGN <math>\leq 1\%</math></li> <li>Plasmapheresis</li> </ul> | <ul style="list-style-type: none"> <li>Penicillin - no role in nephropathy</li> <li>To eradicate residual. Infe.</li> <li>Long Term prophylaxis.</li> <li>(X) Low relapse rates</li> </ul> |
| Prognosis                      | BEST among GN                                                                                                                                                       | 2nd Best (Risk of RPGN 1-5%)                                                                                                                                                               |

### POOR PROGNOSTIC FACTORS

- 1) Elderly onset ( $> 40$  yrs)
- 2) Nephrotic
- 3) Progression to **RPGN** — any GN requires RRT  
 $\leq 1$  month of onset

### LUPUS NEPHRITIS

Kidney involvement - most dreaded.

organ involvement in SLE  $\rightarrow$  H/c/c of acute mortality

Deposition of Anti-dsDNA on GBM. (100% specific)

| Type | PATHOLOGY                        | C/F                                                            | Rx           |
|------|----------------------------------|----------------------------------------------------------------|--------------|
| I    | Minimal Mesangial proliferation. | Asympt - Proteinuria<br>microscopic Hematuria<br>Preserved GFR | No active Rx |
| II   | Diffuse mesangial proliferation. |                                                                |              |

|     |                      |                              |                                  |
|-----|----------------------|------------------------------|----------------------------------|
| III | Focal nephritis      | Classical nephritic syndrome | I.v. methyl prednisolone therapy |
| IV  | Diffuse nephritis    | High risk - RPGN (15-20%)    |                                  |
| V   | MPGN/membranous      | Nephrotic Synd.              | oral steroids                    |
| VI  | Glomerular-Sclerosis | CKI                          | consider RRT                     |

RPGN  $\rightleftharpoons$  Crescentic GN  
 (Clinical Asx) (Biopsy pending)

### APPROACH - RPGN

| Anti GBM Ab                                                                                                                                            | ANCA                                                                                                       | Serum. Complement levels                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>GOOD PASTURE'S Syndrome</u><br>Autoimmune (GPS)<br>20-40 yrs ♂ > ♀<br>$\alpha_3$ subunit - Type 4 collagen<br>Goodpasture's Ag<br>Alveolar BM   GBM | <u>Vasculitis</u><br>mimics GPS<br>So, D/D. for Pulmonary-Renal Syndrome<br>- Wegener's<br>- Churg-Strauss | <u>Low C<sub>3</sub></u><br>↓ Anti dsDNA<br>Lupus (SLE)<br>  ⊥ Anti-DNAase<br>PSGN<br>↓ ⊥ HbsAg<br>PAN<br>HCV-Ab<br>Cryoglobulinemia<br>↓ ECHO-SABE |
| (Pulmonary   Renal Syndrome)<br>Alveolar H'ge   RPGN<br>↓<br>Mc among smokers.                                                                         | - microscopic polyangiitis (MPA)<br>Sparse Ig deposits (pauci-immune)                                      | (N) C <sub>3</sub><br>Ig A<br>Henoch-Schonlein Purpura                                                                                              |
| I.F. :- Linear pattern of Ig deposits                                                                                                                  |                                                                                                            |                                                                                                                                                     |
| Rx $\leftarrow$ PLASMAPHERESIS                                                                                                                         |                                                                                                            | Plasma pheresis                                                                                                                                     |
| Pronosis $\leftarrow$ POOR > 70% acute mortality $\rightarrow$                                                                                         |                                                                                                            | Poor Prog.                                                                                                                                          |

# MPGN

Biopsy Based A.S.  
30-50 yrs.  
 $\sigma > \varphi$

279  
70% cases  $\rightarrow$  Low C<sub>3</sub> Level

90% causes  $\rightarrow$  2° causes

## causes

- 1) Infections - Leprosy  
Malaria  
Syphilis  
Hep. B  
Hep. C

- 2) Autoimmune - Type II MPGN Lupus nephritis

- 3) Solid Organ Tumours - [H/c Renal manifestation = MPGN]

- 4) Lymphoproliferative states

## C/F

Majority  $\rightarrow$  "NEPHROTIC SYNDROME"

A.S. Renal Biopsy - Double BM /  
Thickened appearance of GBM.  
[Only INTRA-GBM MESANGIAL involvement]  
 $\hookrightarrow$  causes splitting of GBM.



10% Idiopathic  $\rightarrow$  Rx - Immunosuppressants

| FS GNS<br>(M/c - adults)                                   |                                                       | MEMBRANOUS NEPHROPATHY<br>(M/c > 50 yrs)<br>280                                                              |
|------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 1° (idio)<br>M/c Biopsy findings = sclerosing type of FSGS | 2° causes<br>end point of DM<br>HTN<br>Reflux induced | 85%<br>1° (idio)<br>EM findings (Gold std)<br>Spike & Dome appearance of GBM<br>2° causes<br>Same as in MPGN |
| Most Severe<br><u>Collapsing</u> type of FSGS              | HIV associated nephropathy                            |                                                                                                              |
| C/F - HTN<br>Early & severe features                       |                                                       | <b>NEPHROTIC</b> WORST Hypercoagulable state<br>Hence, max. risk → RV thrombosis.                            |
| Rx underlying disease + strict HTN control                 |                                                       | Anti-coagulation (all cases) + Immunosuppressants                                                            |
| Risk of ESRD                                               | Common - slow<br>15-20 yrs                            | Common - 5-10 yrs                                                                                            |
| Acute mortality                                            | No                                                    | Favourable Prognosis<br>Present (vascular)                                                                   |
|                                                            |                                                       | WORST PROG.                                                                                                  |

# C.K.I.

281

Gradual ↓ GFR ≥ 3 months duration.

Kidneys → Large functional Reserve.

|                  |                        |                     |
|------------------|------------------------|---------------------|
| Clinical Disease | ≥ 70% Loss of nephrons | ≈ 25-40 mL/min eGFR |
|------------------|------------------------|---------------------|

C/F -

1) UREMIC Symptoms (M/c) → M/c neurological feature (90%)

- Encephalopathy / convulsions
- Pericarditis / shock
- Gastritis / Anorexia
- Infertility / Loss of libido
- Proximal myopathy
- Peripheral neuropathy
- Restless Leg syndrome
- Generalised pruritus

Peripheral neuropathy

- (axonal variant)
- Poor recovery despite dialysis

2) FLUID OVERLOAD symptoms

periorbital oedema

peripheral "

CHF

3) Metabolic acidosis

4) ANAEMIA - CKI

5) Renal osteodystrophy

Asy - Done

Rx STAGE of CKI

2 Parameters

Albuminuria

eGFR

Rx

282

I}

Microalbuminuria

90 - 120 mL/min

ACEI +  
strict control  
of Risk factors  
(DM, HTN)

II}

(Reversible stage)

60 - 89 mL/min

III}

Gross (irreversible  
stage)

30 - 59 mL/min

Counsel +  
Prepare for RRT

IV}

V}

Gross

15 - 29 mL/min

RRT is mand-  
atory

ESRD

< 15 mL/min  
( $\geq 90\%$  nephron  
Loss)

Specify Rx - Depends on cause.

DM  
albeto  
APKD

### DIABETIC NEPHROPATHY

Microvascular complication of DM.

Pathophysiology → Hyperglycemia ①

GLYCOSURIA = ↑ urine osm

② ↑ Glycated end products

oxidative injury  
vascular endothelial

HYPOPERFUSION

Microalbuminuria

Macroalbuminuria

↑ Glomerular capillary Pressure  
(already ③)

① ↑ GFR  
supra-④

↓ Capillary HTN

Gradual nephron  
Loss

GLOMERULOSCLEROSIS  
(F.S.G.S.)

② Return to ④

⑤ ESKD ( $> 90\%$  Loss)

| Stage                       | Duration of DM | Alb.                  | eGFR.                    | Rx                         |
|-----------------------------|----------------|-----------------------|--------------------------|----------------------------|
| I Hyper functioning         | 1-5 yrs        | -                     | Supra-N<br>> 120 mL/min. | strict DM control<br>①     |
| II Silent stage             | 5-8 yrs        | +                     | Returns to N             | Adequate Hydration.<br>+ ② |
| III Incipient (subclinical) | 8-12 yrs       | Micro albuminuria +ve | CKI stage I/II           | ACEI /ARB ③                |

Early - EM → Thickening of GBM  
non-specific to ages

|                        |           |       |               |                  |
|------------------------|-----------|-------|---------------|------------------|
| IV OVERT (symptomatic) | 12-18 yrs | GROSS | CKI Stage 3/4 | Consider RRT     |
| V ESRD                 | 18-25 yrs | GROSS | Stage 5       | RRT is mandatory |

LATE/ Advanced/EM → Nodular glomerulosclerosis  
irreversible (K-W - Kimmelstein - Wilson nodules)

## ALPORT'S SYNDROME

284

H/c - X<sup>L</sup> - R defect

20-40 yrs.

♂ > ♀

$\alpha_5$  subunit - Type IV collagen = ABSENT

| H/c<br>GBM                          | Cochlear<br>B.M. | Lens                                                      | Skin                                              |
|-------------------------------------|------------------|-----------------------------------------------------------|---------------------------------------------------|
| G.N.<br>↓<br>Recurrent<br>Hematuria | SNHL             | H/c ≈ 75%<br>Dot & fleck<br>retinopathy<br>(Not specific) | Most specific<br>Ant. Lenticonus<br>(≈ 25% cases) |

4 Sy - Renal Biopsy  $\Rightarrow$  "BASKET - WEAVE" appearance  
of GBM.

only Rx - Renal Transplant:  
 $\hookrightarrow$  Never recurs in graft  
excellent survival

Post-Transplant Complication - Mimic Recurrence (Hematuria)

RARE  $\rightarrow$  [already on Anti-GBM disease  
Immunosuppression] (Ab against  $\alpha_5$  subunit).

## POLYCYSTIC KIDNEY DISEASE

Group of inherited Disorders characterised by <sup>285</sup>

A) multiple cysts in multiple organs

Kidney

Liver

Pancreas

Spleen

B) Berry Aneurysm

↑ risk of SAH

C) Colonic Diverticuloses

↓

Recurrent Colitis.

↓

↑ oxalate reabsorp" from gut

↓

Hyperoxaluria

↓

Oxalate Renal calculi

Mode of  
Inheritance

AD - PKD MIC

AR - PKD Rare

↓

Never survive > 10 yrs  
of age

↓

survive till adulthood

Called - adult - Polycystic KD

APKD-1

APKD-2

PKHD (Hepatic)

POLYCYSTIN - 1

POLYCYSTIN - 2

Fibrocystin

Chromosome 16

Chromosome 4

Chromosome 6

moderate form

mild form

most severe

20-30 yrs.

30-50 yrs of age

I.U. Life / Infancy

c/f

AD

Recurrent Loin Pain <sup>M/c</sup>  
 + Hematuria / fever (Infection in  
 Renal cyst)

- M/c - extra-renal (Hepatic cyst)
- mechanical compression - Bl. radicles
- cholestasis/ Cholangitis

|             |                                |                                |
|-------------|--------------------------------|--------------------------------|
| <u>Asis</u> | USG < 30 yrs                   | 30-59 yrs                      |
| ⊕           | ≥ 2 renal cysts<br>each kidney | ≥ 4 renal cysts<br>≥ 2 in each |
|             | ≥ 1                            |                                |

Rx - Renal Transplant  
 No Recurrence  
 Good Prognosis

AR

- oligohydramnios (30% fetal loss)
- Uremic symptoms in infancy
- ESKD ≈ 10 yrs of age
- Cirrhosis ≤ 10 yrs of age  
 (CAROLI's Disease = Defect of Intra-Hepatic Biliary Radical)

Present ≈ 3% cases

No cure  
 grave prognosis

# RENAL REPLACEMENT THERAPY

287

BEST FORM → TRANSPLANT

- Potential cure
- Better survival
- Better quality of life

DIALYSIS

only filtration.  
Palliative Rx only

Limited Donor Availability

DOMINO Tx

Kidney swapping



HLA Registry

All Sx must be done on  
Same calendar  
(Limits - chain size)

HAPLO-Identical

(MHC / HLA matching) — 6 Ag matching

|          | A  | B  | C   |
|----------|----|----|-----|
| Class I  |    |    |     |
| Class II | DP | DQ | DR. |

> 3 = good match.

≤ 3 = Poor match.

(Less than half match)

- Most imp. HLA match is HLA-DR

↓  
Best success

## DIALYSIS

HEMODIALYSIS (H.D.)

Vascular access

(Cannula, AV fistula)

High Complications Rates

(Bleeding, sepsis, thrombosis)

H.D. center

(Limited availability)

Biocompatible - methyl  
cellulose polymers (filter)  
(High cost)

PERITONEAL (P.D.)

• Intraoperative catheter

placement → done ↓ LA

Low complication rates

(≤ 1% MRK → Peritonitis)

• no problem

only c/I → Part H/O recurrent  
GI Sx

Lower cost - omentum acts as  
filter

|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"> <li>• <u>Risk</u> → Infection transmission<br/>(HIV, HepB, HepC, CMV)</li> </ul>                                                                                                                                                                                            | <ul style="list-style-type: none"> <li>• NO Risk → Installing sterile peritoneal Dialysate fluid</li> </ul>                                      |
| <ul style="list-style-type: none"> <li>• Huge Hemodynamic/osmotic shift → poorly tolerated</li> <li>(M/c) acute comp' → <u>HYPOTENSION</u> <ul style="list-style-type: none"> <li>- Muscle cramps / Fatigue</li> </ul> </li> <li>• Sudden cardiac death<br/>In cardiomyopathy EF &lt; 15%<br/>↳ C/I</li> </ul> | <ul style="list-style-type: none"> <li>• Low shifts → Better Tolerated</li> </ul> <p>Safe in cardiomyopathy<br/>* Post cardiac Sx</p>            |
| <ul style="list-style-type: none"> <li>• Risk → HYPOGLYCEMIA</li> </ul> <p>Preferred form.<br/>Excellent filtration Rate<br/>800 - 1200 mL/min</p>                                                                                                                                                             | <ul style="list-style-type: none"> <li>Risk → HYPERGLYCEMIA/<br/>wt. gain</li> </ul> <p>Poor filtration<br/>15 - 25 mL/min.<br/>Only Back-up</p> |

### DIALYSIS ASSOCIATED AMYLOIDOSIS

- Accumulation of  $\beta_2$  microglobulin ( $\beta_2$ -MG)
- In the musculoskeletal system
- M/C → Entrapment neuropathy
- On dialysis  $\approx$  3-7 yrs
- Neither form (HD/PD) can filter  $\beta_2$ -MG.
- X-Ray Hand- Deposits in metacarpals.
- only Rx = Renal Transplant

## PRE - TRANSPLANT - Indications

289

- 1) APKD
- 2) Horse-shoe Kid
- 3) Obstructive uropathy

} ↑ Risk of infections in the native kidneys

↓  
Post Transplant  
Immunosuppression

Septicaemia → stop Immunosuppressants

↓  
Rejection of Graft



CNS

achin\_mehra9@yahoo.com

PP Prayag Achin ~~mehra~~ mehra



# SEIZURE DISORDER & EPILEPSY

293

## SACCIRE

= to take possession of

## SEIZURE

Polloxydral event due to hypersynchronous CNS discharges



## EPILEPSY

≥ 2 unprovoked seizures

## EPILEPTOGENESIS

↑ GLUTAMATE

excitatory

↓ GABA

Inhibitory



## CLASSIFICATION OF SEIZURES



### DRUGS

Antibiotics - Quinolone

Antivirals - Acyclovir

Antimalarials → mefloquine  
chloroquine

Analgesics → Tramadol

### TOXINS

ABUSE

cocaine

Amphetamine

WITHDRAWAL

Alcohol

### METABOLIC

1)  $\downarrow \text{Na}^+$  (Mic Biochemical Ab(N) ppt.)  
 $\downarrow$  (seizure)

due to cerebral oedema  
 $<100$  ↑

2)  $\uparrow \text{K}^+$ ,  $\downarrow \text{K}^+$  → doesn't cause seizure.

## FOCAL SEIZURES

295

### LOSS OF CONSCIOUSNESS

" Contact

" Cognition

→ (+) = Dys cognitive (complex) ←  
PARTIAL

→ (-) = Non Dys cognitive (simple) ←

### TODD'S PALSY

- Post ictal Paralysis
- Self recoverable

↳ Starts in **1st 24 hours** of onset

### FOCAL SEIZURE



Distal → Proximal

### JACKSONIAN MARCH

→ focal seizure arising from in a Limb.

## GENERALISED

### ABSENCE SEIZURE / PETIT MAL EPILEPSY

### PYKNOLEPSY

- Loss of contact w/ environment
- Tone of Body (N)
- Abrupt onset
- ≤ 30 Sec
- Subtle Motor Signs (+)  
(minor)
- AURA (-)
- NO post ictal confusion

Starts - 4-8 yrs of age

Spontaneous Remission

in 60-70% by 18 years of Age

EEG :- BI/L 2-4 Hz spike + wave

Precipitated by Hyperventilation.  
(1-3 min)



### ATYPICAL ABSENCE SEIZURE

- Loss of consciousness - Less abrupt  
↑ Duration.
- mental Retardation
- Structural Abn
- EEG -  $\leq 2.5$  Hz spike + wave  
(slow)
- Resistant to Anti epileptic Drug

### MYOCLONIC SEIZURE

↓  
jerky movement

CAUSE - 1> Hypoxia

2> Degenerative

H/o Hanging → compresses Carotid  
↓  
cause hypoxia.

297

~~000~~ JUVENILE MYOCLONIC EPILEPSY

- Early Adolescence
- Family H/o
- Chromosome No. 6
- unknown cause. ⇒ x hypoxia  
x Degeneration.

→ B/L Myoclonic jerks

- ↳ on awakening
- ↳ ppt. by

Fatigue  
Alcohol

- IQ N
- Loss of consciousness ⊖
- subtle motor signs ⊖ → Eye blinking  
[AUTOMATISM] → Lip smacking

MAJORITY may turn into GTCS. pt

GENERALISED TONIC CLONIC SEIZURE  
GRAND MALL EPILEPSY

PREMONITORY SYMPTOMS -

Nausea  
vomiting  
Abdominal Pain



[NOTE: Aura seen in Focal Lesions.]



### JUVENILE MYOCLONIC EPILEPSY

- Myoclonus
- Majority → GTCS
- $\frac{1}{3}$ rd → Absence seizure

M/C presentation of JME is MYOCLONUS (AIZM<sub>299</sub>)

### MESIAL TEMPORAL LOBE EPILEPSY

- Focal seizure + Loss of Consciousness [DYSGONITIVE]
- DEJA VU
- Febrile seizure.
- Enlarged Temporal Horn  
Small Temporal Lobe  
Hippocampal Sclerosis
- Resistant to anti-epileptics



S. PROLACTIN  
↑ 30 mins after True Seizure

### ANTI-EPILEPTIC DRUG

A.E.D. X 2 years → TAPER → 3<sup>rd</sup> year  
↓  
Stop.

Sudden withdrawal of Drug ⇒ ppt. seizure.

Seizure ppt. while withdrawal in 1st 3 months more commonly.

|               |                        |               |
|---------------|------------------------|---------------|
| <u>X DRUG</u> | 1st episode of seizure | <u>✓ DRUG</u> |
| Provoked      |                        | Unprovoked    |

- Febrile seizure
- Alcohol withdrawal
- ↓  
BZD - Injectable

- Status epilepticus
- Family H/o (+)
- Abn neurological exam"

Chlordiazepoxide

Oral

for gen. alcohol. withdrawl  
not for seizures

Ab(N) EEG  
CT/MRI.

300

IOC

Seizure  $\Rightarrow$  EEG

DOC =

$\uparrow$  EFFECT

$\downarrow$  SIDE EFFECT

FOCAL

L - Lamotrigine  $\rightarrow$  STEVENS JOHNSON SYNDROME (1%)

O - Oxcarbamazepine  $\rightarrow$   $\downarrow$  Na<sup>+</sup> (SIADH)

C - Carbamazepine  $\rightarrow$  Aplastic anaemia

P - Phenytoin

L - Levetiracetam

irritability mood disorder

[6H]

hypersensitivity

hyperglycemia

hyperplasia of gums

hydantoin syndrome

irsutism

hepatitis

+ megaloblastic anaemia

[ $\uparrow$  excretion of folate]

+ osteomalacia

FETAL HYDANTOIN  $\rightarrow$

Microcephaly

Hypoxia of Limbs

Cleft  $\begin{cases} \text{Lip} \\ \text{Palate} \end{cases}$

Valproate

Phenytoin

Carbamazepine

## GTCS

301

Valproate  
Lamotrigine  
Topiramate

## ABSCENCE

ETHOSUXIMIDE - DOC

Valproate ←  
Lamotrigine

## ATYPICAL ABSENCE SEIZURE

000



## SAFEST A.E.D

Lamotrigine > Carbamazepine > Pheno barbitone  
↓ teratogenicity  
↑ sedative even for fetus

**DOC** → as per seizure type  
monotherapy  
Lowest effective Dose

GTCS → Valproate → Neural Tube →  $\text{N.Preg.} = 1-2\%$ .  
Defect  
 $\bar{c} \text{ A.E.D.} = 10-20\%$ .

A.E.D is not 100% Teratogenic

Do not change Rx During ♀ becoz changing  
Rx can ppt. seizure [Break Through].

Seizure frequency during ♀

50% - Unchanged

20% - ↓

30% - ↑

→ emesis,

Y ↑ in 30%

302

- 1) Lemesis → Labour of drug
  - 2) Hormones

Progesterone  
↑ Seizure  
threshold

Estrogen [epileptogenesis]  
1 seizure  
threshold

## A.E.D. Excreted In Breast Milk



Breast feeding is recommended

AED is also continued

JME

A·E·D. x Lifelong

DOC = Valproate

## Levetriacetam

⇒ DRUGS NOT USED IN JME

→ Carbamazepine

→ Phenytoin

→ Lamotrigine

→ ↑ myoclonus

⇒ PRE ♀ on valproate  
↓ change to  
Levetiracetam

## STATUS EPILEPTICUS

303



### EPILEPSIA PARTIALIS CONTINUA

- Continuous partial seizure
- ⇒ Status epilepticus in focal seizure

1st Drug

LORAZEPAM or MIDAZOLAM  
(0.1 mg/kg)  $\frac{\text{Dose}}{\text{Dose}}$  (0.2 mg/kg)

I.V. A.E.D.

PHENYTOIN

20mg/kg  $\downarrow$  Order kinetics @ 50mg/min  $\downarrow$  cardiotoxic

$\times$  Dextrose  $\Rightarrow$  Phenytin ppts  
Normal Saline  $\equiv$  dextrose

Pos PHENYTOIN  
@ 150mg/min

$\downarrow$  Hypersensitive  
mixed  $\equiv$  Dextrose  
I/M

VALPROATE  
(25mg/kg)

OR

LEVETRIACETAM  
(20-30 mg/kg)

[POST - TRAUMATIC EPILEPSY  $\rightarrow$  LEVE TRIACE TAM.]

$\downarrow$  + Seizure

I.V. MIDAZOLAM

$0.2 \text{ mg/kg} \rightarrow 0.2 - 0.6 \text{ mg/kg/h}$

OR

I.V. PROPOFOL

$| + \text{Seizure}$



## THIOPENTONE

CARBAMAZEPINE → not recommended in status  
as found in oral form

### MOVEMENT DISORDERS

#### ATHETOSIS / CRAWLING

- Slow
- Sinus
- Wriggling
- Seen in Lesions of GLOBUS PALLIDUS → G A P

#### CHOREA / DANCE like movement

Semi purposeful movement



#### CAUSES -

- C - Chorea Gravidarum
- H - Huntington's Chorea
- O - OCP
- R - Rheumatic / Sydenham's Chorea
- E - Endocrine / Thyrotoxicosis.
- A - Atherosclerotic / Senile
- M/c/c ⇒ **SLE**

## HEMIBALLISMUS

⇒ Exclusively on ONE SIDE

305

- ✓ Large Amplitude
  - ✓ Flinging
  - ✓ Proximal
  - ✓ Limb
  - ✓ Lesion ⇒ SUBTHALAMIC NUCLEUS (STN)
- ↓  
C/L

## PARKINSONISM

Degeneration / Atrophy ⇒ SUBSTANTIA NIGRA  
PARS COMPACTA (SNpc)

### LEWY BODY

- Intra-neuronal
- Intra-cytoplasmic
- Eosinophilic inclusion body
- Contains α-synuclein

↓ DA

↑ ACh

Level  $\frac{N}{100\%} \rightarrow 70\%$   
 $\downarrow 30\%$

TREMORS

RIGIDITY

### ETIOLOGY :-

1) DRUGS ⇒ DA ⊥  
(H/c/c of  
2° Parkinsonism)

### TYPICAL ANTIPSYCHOTICS

Haloperidol

CPZ

METOCLOPRAMIDE

DA Depleters ⇒ Methyldopa  
Reserpine

## 2> TOXINS



306

## 3> TRAUMA

BOXERS

## 4> FAMILIAL / GENETIC

MUTATIONS

GENES → α-synuclein gene

PARKIN gene

Chromosome 4

LRRK-2 gene

Chromosome 12

Chromosome 4

( $<40$  yrs       $>40$  yrs)

Age of onset

EARLY ONSET

## 5> IDIOPATHIC -

85-90% pts.

PARKINSON DISEASE. (M/C type)

" PARALYSIS AGITANS



TITUBATION → ⊖ Parkinsonism  
↓ ⊕  
cerebellum

307

## TREMOR

RESTING TREMOR ⇒ PARKINSONISM

INTENTIONAL TREMOR ⇒ CEREBELLAR LESIONS



FLAPPING TREMOR = HEPATIC ENCEPHALOPATHY  
"ASTERIXIS" UREMIC "  
 $\text{CO}_2$  narcosis

FINE TREMORS = THYROTOXICOSIS

### BENIGN ESSENTIAL TREMORS

- 5 - 11 Hz
- AD inheritance
- UL > LL
- ORIGIN = cerebellum
- ↑ anxiety
- ↓ on alcohol consumption
- = Rx → Propranolol



RIGIDITY - BEST Jt to show Rigidity = WRIST  
Resistance to passive movement

LEAD PIPE → EXTRA PYRAMIDAL SYNDROME

superimposed tremors on COG WHEEL → PARKINSONISM

UL = COG WHEEL

LL = LED PIPE

zigzag lead pipe CLASP KNIFE - UMNL

## RIGIDITY

Tone ↑ Flexors = Extensors  
Bidirectional

## SPASTICITY

308

Flexors > Extensors  
unidirectional  
velocity dependent

## GAIT

FESTINATING GAIT → Parkinsonism  
(ready to run)

Kinesia Paradox

↳ ↑ acceleration on running

+ spasticity  
↑ extensor tone  
wk. Distal Proximal  
↑

CIRCUMDUCTION GAIT - Hemiparesis → corticospinal tract

WADDLING GAIT → Myopathy (Proximal)

Lurching GAIT - Polio Lesion → Ant. Horn cells.

BROAD BASED - Cerebellum → Drunken Gait

HIGH STEPPAGE - Foot Drop] neuropathy  
Deep Peroneal N/V

STAMPING → TABES DORSALIS

↳ lesion → post column

loss of vibration

## POSTURAL INSTABILITY

Loss of Postural Reflexes → FALL

### MICROGRAPHIA

small handwriting

(N) I am a doctor

(PD) I am a dent-

MONOTONOUS SPEECH

309

Hypoacusis

MASK LIKE FACE

Depression

Dementia

PARKINSONISM + ATYPICAL PK

SYMMETRICAL  
unresponsive to  
Levodopa

1> Progressive Supranuclear Palsy / STEEL RICHARDSON SYNDROME

- Extended Posture
- Defective downward gaze
- H/o fall ↙ early in this type
- Dementia
- ② Tremors

2> LEWY BODY DEMENTIA (LBD)

Parkinsonism + visual Hallucination

3> MULTIPLE SYSTEM ATROPHY (MSA)

Parkinsonism + cerebellum + Autonomic symptom Instability

4> CORTICO BASILAR DEGENERATION (CBD)

Parkinsonism + myoclonus + Dystonia  
sustained Posturing

RX

310

↓ DA  
(rigidity)

PD

T Ach

(Tremor)



2) ANTIACHOLINERGICS

TRIHEXYPHENYDYL

2) PERIPHERAL DECARBOXYLASE

INHIBITORS

- CARBIDOPA
- BENZERAZIDE

3) MAO B ⊖

- SELEGILINE
- RESAQUILINE  
(neuroprotector)

3) COMT ⊖

- ENTACAPONE
- TOLCAPONE

5) AMANTADINE

↑ DA Level

6) DA + D<sub>2</sub>

- PRAMIPRAZOLE
- Robinivore
- Rotigotine

7) APO MORPHINE

311



## CEREBROVASCULAR ACCIDENT (CVA) STROKE

→ Focal neurological Deficit due to vascular cause  $> 24$  hrs

→ TIA (Transient Ischaemic Attack) -

$< 24$  hrs

most  $\rightarrow$  for 1 hour

20 mL / 100gm brain tissue / min = Ischaemia +  
Infarction  $\ominus$

16 mL / min  $\times$  1 hour = Infarction  $\oplus$

0 mL / min  $\times$  4-10 min = DEATH

### CLASSIFICATION



ISCHEMIC (85%)

EMBOLIC (75%)

THROMBOTIC (25%)

H/c/c

AF.

non-rheumatic  
AF

Most epileptogenic stroke

Embolic  $>$  H/c/g  $>$  Thrombotic

$\downarrow$   
cerebral oedema



HAEMORRHAGIC (15%)

Lacunar Infarcts - sub cortical  
so no seizures

312

## FRONTAL LOBE

1) 1<sup>o</sup> MOTOR AREA



2) MICTURITION AREA



3) SUPPLEMENTARY MOTOR AREA

② Primitive Reflexes



4) BROCA'S AREA

→ word area

→ Located in Inf. Temporal Gyrus



CIVIC LOBE = FRONTAL LOBE

### PARIETAL LOBE

1> 1<sup>o</sup> SENSORY AREA

Localisation of stimulus



2> STEREOGNOSIS

Ability to identify on touch.

3> TASTE

LESION → DYSGUSIA

4> OPTIC RADIATION



SCOTOMA



## 5) ANGULAR GYRUS

314

Stores images a/c

LESION

→ Reading

DEVELOPMENTAL

→ Calculation

a) R to L confusion

→ Naming Fingers

b) DYSGRAPHIA (Reading)

c) DYSLEXIA (Learning)

d) ACALCULIA

e) Finger AGNOSIA

cannot identify

## (N) BOMBAY

B O M B A Y

-

② to ① confusion

GERSTMANN SYNDROME

↓  
Lesion = L Hemisphere

## TEMPORAL LOBE

1) 1<sup>o</sup> AUDITORY AREA

Hearing ↓

LESION → CORTICAL DEAFNESS

2) WERNICKE's AREA

Sup. Temporal Gyrus  
Comprehension

3) OLFACTION → ANOSMIA

4) OPTIC RADIATION → SCOTOMA

5) DEEP / MEDIAL TEMPORAL LOBE  
Memory

## MEMORY

315



Handedness → Right → 90% ]  
                   ↓  
                   Left → 60% ]  
                   Left hemisphere  
                   ↓  
                   Dominant



| APHASIA                                             | COMPR. | NAMING                                                  | REPETITION | FLUENCY                               |
|-----------------------------------------------------|--------|---------------------------------------------------------|------------|---------------------------------------|
| WR.                                                 | (-)    | (-) Neologism                                           | (-)        | (N) / ↑<br>EXPLOSIVE<br>JARGON speech |
| BROCA                                               | (N)    | (-) Telegraphic speech<br>Melodic Circumlocution speech | (-)        | ↓<br>Insight (+)<br>Depression        |
| CONDUCTION<br>arcuate fibres damaged                | (N)    | (-)                                                     | (-)        | (N)                                   |
| TRANS CORTICAL<br>Sensory (Post)                    | (-)    | (-)                                                     | (N)        | (N) / ↑                               |
| TRANS<br>cortical<br>Sensory<br>Motor<br>(Anterior) | (N)    | (-)                                                     | (N)        | ↓                                     |

|                                                      |              |     |                  |     |
|------------------------------------------------------|--------------|-----|------------------|-----|
| Mixed<br>Trans<br>cortical<br>(Isolation<br>aphasia) | (-)          | (-) | (N)<br>Echolalia | (-) |
| Pure<br>Word<br>Deafness<br>Auditory<br>damage       | (-)          | (N) | (-)              | (N) |
| Pure<br>word<br>Blindness<br>(Alexia)                | ↓<br>Reading | (N) | (N)              | (N) |
| Anomic<br>Aphasia                                    | (N)          | (-) | (N)              | (N) |

MC type  
angular gyrus

seen in  
 Alzheimer  
 Head Trauma  
 Metabolic  
 Encephalopathy

SCANNING speech      I AM A DOCTOR  
 ↳ CEREBELLAR Lesion.

⇒ Broca's Lesion ⇒ Couldn't write a dictation

## Ant Cerebral Artery

318



APHASIA  $\rightarrow$  MCA (L)  $\rightarrow$  Broca's, Wernicke's

AMNESIA  $\rightarrow$  Post. cerebellar  $\rightarrow$  medial temporal artery  $\rightarrow$  Hippocampus

GAIT APRAXIA  $\rightarrow$  Ant. cerebral artery  
↳ Ⓛ movement

## Rx [ISCHEMIC]

319

### 1> THROMBOLYSIS

Recombinant tissue Plasminogen activator (rtPA)  
(I.V.) = 0.9 mg/kg  
MAX DOSE = 90mkg  
10% → Loading Dose  
90% → Infusion × 1 hour.

WINDOW PERIOD = 4.5 hours  
from onset

### 2> ANTIPLATELETS

ASPIRIN

NO clopidogrel

### 3> ANTI COAGULANTS

HEPARIN

AF  
prosthetic valve

↓  
WARFARIN

| B                   | <u>POWER</u>              |
|---------------------|---------------------------|
| GRADING (MRC scale) |                           |
| 0                   | → no movement             |
| 1                   | → flickering              |
| 2                   | → with gravity eliminated |
| 3                   | → against gravity         |
| 4                   | → against Resistance      |
| 5                   | → NORMAL                  |

Power

↑ (1/5 → 4/5) → EMBOLIC

↓ (4/5 → 1/5) → THROMBOTIC

# HAEMORRHAGIC STROKE

320



## HTN ICH

### SITES

1) Basal Ganglia (Putamen) ] M/c site HEMI PARESIS

2) Thalamus ← HEMI ANAESTHESIA

3) Cerebellum ← ATAXIA  
↓ VERTIGO ] Rx Decompression diameter > 3cm

Worst

Prognostic Pontine

B/L extensor Plantar

↑ HR  
RR  
Temp  
Sweating



PIN POINT  
PUPIL

\* also seen in -

OP Poisoning  
→ morphine

S.A. Space



### ETIOLOGY

1> Trauma (M/c/c) (non-traumatic)

2> Rupture of Berry Aneurysm (M/c/c spontaneous SAH)

3> A-v malformations

4> Extension from ICH

5> **Idiopathic**

→ LOCATION = Perimesencephalic cistern

→ Angiography → N

→ Source = venous



85% of aneurysm  $\Rightarrow$  ANT. CIRCULATION

15% of "  $\Rightarrow$  POST. CIRCULATION

Less common

$\uparrow$  Risk of Rupture

### M/c cranial n/v

- |                |               |                   |
|----------------|---------------|-------------------|
| Berry Aneurysm | $\Rightarrow$ | III <sup>rd</sup> |
| $\uparrow$ ICH | $\Rightarrow$ | VI <sup>th</sup>  |
| GBS            | $\Rightarrow$ | VII <sup>th</sup> |
| DM             | $\Rightarrow$ | III <sup>rd</sup> |
| HIV            | $\Rightarrow$ | VII <sup>th</sup> |
| Sarcoidosis    | $\Rightarrow$ | VII <sup>th</sup> |
- Paralyzed = VII<sup>th</sup>

C/F-

Onset / Immediate

323



[THUNDER CLAP]  
HEADACHE

Neck Rigidity

Loss of consciousness (transient)

No focal neurological  
Deficit

DELAYED

1) **Vasospasm**



4-14 days after SAH

↑  
Peaks in 1st 7 days  
of onset

M.c.c → mortality  
morbidity

2) **Re-rupture**



may  
rebleed  
if  
undetected

30% re-rupture in 1st month

Peaks in 1st 7 days.



### INVESTIGATIONS

#### NEUROIMAGING

**CT**

Acute H<sup>o</sup>ge (clot)  
calcified

**MRI**

Inflammation  
Infarction  
Ischaemia



IOC

Acute SAH = NCCT (Brain)

Aneurysm = ANGIOGRAPHY



DYE  $\xrightarrow{\ominus}$  MR angio  
 $\xrightarrow{+}$

4 vessel angio  
 $\downarrow$   
 Injected

2 ICA  
 2 VA

$2 \text{ ICA} + 1 \cdot \text{VA}$ .  
 via femoral vein

Digital Subtraction Angiography (DSA)

subtract Bone

Rx

SURGICAL

TITANIUM

↑  
 clipping

PLATINUM

↑  
 coiling (BETTER)



WIDE NECK = clipping



narrow neck = coiling

⇒ NIMODIPINE → Vasospasm

↓  
Intracerebral

⇒ 3H → HTN [160/90]  
Hyperolemia  
Hemodilution  
(I.V. fluid)



### SDH

occurs due to rupture  
of cortical Bridging  
Veins

EDH  
Rupture of middle  
meningeal artery (MMA)

HEAD  
INJURY (closed)

↓  
Headache  
+ neurological  
Deficit

Progresses

Days - weeks - months  
slowly



SEMITLUNAR

Hours - minutes  
Rapidly



LENTICULAR



LUCID INTERVAL = **EDH**



# HEADACHE

328



## TEMPORAL ARTERITIS

Elderly

♀ > ♂

Headache → Throbbing  
Stabbing

Scalp Tenderness → touching inflamed artery

Jaw claudication [SPECIFIC]

↳ Difficulty in chewing food

Blindness ← irreversible

↳ due to involvement of post cerebral  
artery

Inv-

↑ ESR

, Biopsy → Temporal Artery Biopsy

↓

Giant cells

Rx - DOC = STEROIDS

PSEUDO TUMOUR CEREBRI / BENIGN IDIOPATHIC INTRACRANIAL HTN

H/c - young obese, ♀

Headache

Projectile vomiting (nausea Ⓛ)

Papilloedema

Ventricle size N

No focal neurological Deficit

↓ CSF Absorption.

ETIOLOGY

- 1) Hypervitaminosis A
- 2) Expired Tetracycline
- 3) OCP
- 4) Steroid withdrawal (Abrupt)

H/C/C  
↓  
Idiopathic

Rx = ACETAZOLAMIDE

↓ CSF formation.

TENSION HEADACHE

♀ > ♂

H/c 1° Headache = Tension Headache

Associated with DEPRESSION

Tension is not an etiology

Dull Aching Pain

Band like



EPISODIC → < 15 day/mnth = ANALGESICS

Rx ↙ CHRONIC → > 15 day/mnth = T.C.A. ↘ Rx ↗  
Amytryptiline

# MIGRAINE

330

♀ > ♂

4-72 hours

$\geq 2$

|                                     |
|-------------------------------------|
| P → Pulsatile                       |
| U → U/L                             |
| M → Moderate to severe in intensity |
| A → aggravation                     |

+ any 1      ↗ nausea (H.c.)  
                 ↗ Vomiting

or    any 1      ↗ Photophobia  
                 ↗ Photophobia

AURA = visual > sensory



CLASSICAL (20%)

COMMON (80%)

ACCEPTED      THEORY

① Cortical Spreading Dissociation

Main Trigger → vasoconstrictive → [SCOTOMA]

↑  
Intracranial (occipital)

↓  
vasodilatation → FLASHES OF LIGHT

FORTIFICATION  
SPECTRA

vasodilation

331



② SEROTONINERGIC

[5HT  $\ominus$ ]  $\Rightarrow$  throbbing

Rx = 5HT  $\ominus$

NON SELECTIVE  $\rightarrow$  ergotamine

SELECTIVE  $\rightarrow$  1B/1D

[Triptans]

DOC for acute attack

RIZA triptan > SUMA triptan



③ DOPAMINERGIC  $\longrightarrow$  DA  $\ominus$

DA  $\oplus$   $\rightarrow$  nausea

Metoclopramide

PROPHYLAXIS  $\times$  5-6 months

① B  $\ominus$   $\Rightarrow$  Propranolol (widely used)

② TCA  $\Rightarrow$  Amitriptyline

③ CCB → Flunarizine

332

④ A.E.D. → Valproate  
Topiramate  
Gabapentine

Ethosuximide

Not Recommended.

## CLUSTER HEADACHE

♂ > ♀

Peri / Retro orbital Pain

- U/L
- 30 min - 2 hours
- ppt. by consumption of alcohol
- awakens from sleep.

Autonomic ↑  
hyperactivity



Rx = O<sub>2</sub> inhalation (Rxoc)

② 10-12 L/min × 10-15 min

Prophylaxis = Verapamil (Dol)

(lifelong)

# PAIN

333

## SENSITIVE

- Circle of Willis
- Meningeal arteries
- Dural sinuses/veins

## INSENSITIVE

- Duramater
- Arachnoid Mater
- Choroid Plexus
- Ventriculare Ependyma

## D/D of MIGRAINE

- 1) Glaucoma



## ASCENDING / SENSORY



↳ Stamping Gait  
 ROMBERG's TEST      (+) → sways  $\approx$  eyes closed

## SPINOCEBELLAR TRACT

↳ subconscious proprioception



## DESCENDING TRACT

335

## CORTICOSPINAL TRACT



## PARALYSIS

### UMN

Tone ↑ (spasticity)

DTR brisk

Plantar extensor  
[Babinski +]

### LMN

↓ (flaccidity)

Dull / absent

wasting / atrophy ↗

Fasciculation

Twitch → visible  
PALPABLE  
LESSON

↳ Ant. Horn cell.

BROWN  
SEQUARD  
SYNDROME

336



## HEMISECTION of T<sub>3</sub>

337

At T<sub>4</sub> → ~~FL~~ Loss of Spinothalamic → C/L  
Post-column → I/L  
weakness → UMN  
I/L.

At T<sub>43</sub> = P Loss of Post column - I/L  
weakness - LMN, I/L

\*\* Spinthalamic - I/L



AT THE LEVEL ⇒

Spinothalamic  
Post. column → SAME  
LMN SIDE

~~ABOVE~~ BELOW The LEVEL ⇒

Spinothalamic  
↓ opposite side.

P. C. → same side  
UMN



## QQ SPINAL SHOCK

**Transient** LMN weakness below the level of lesion



most occurs

② 48-72 hrs

- Flaccidity
- Areflexia
- Urinary retention.

→ sensory Loss

→ **wasting** (⊖)

339

Transient process

internal nutrition is intact

Spinal shock = LMN - wasting

1st Reflex Recovery-

BULBOCAVERNOUS. → EXTERNAL ANAL SPHINCTER.



BEEVOR SIGN



**BEVOR SIGN**

Supine → Sitting position

If umbilicus moves upward ⇒ Lesion @/below T<sub>10</sub>



**PRONATOR DRIFT SIGN**

weak side

PRONATION + ↓ DRIFT

Injury CS tract  
CVA in evolution.



Descending → (S) }  
→ (M) } LOSS

Burning Pain ⊕

Ascending → (S) }  
→ (M) } LOSS



## QQ SYRINGOMYELIA



AT THE LEVEL → LMN weakness

Below the level → UMN weakness



CHIARI MALFORMATION > 50%  
(Type 1)



Cerebellar tonsillar herniation into foramen  
Magnum



compresses central canal containing CSF



it starts enlarging due to compression



Rx = DECOMPRESSION LAMINECTOMY

| to relieve pressure on ~~the~~ expanding  
| spinal cord from vertebra

#### DISAD

↳ doesn't relieve symptoms.

NOTES (c/f of syringomyelia)

→ Painless burning of hands occur early

↓  
Trophic ulcers

→ absent biceps jerk ( $C_5, C_6$ )

→ extensor plantaris [ $L_5, S_1$ ]



## URINARY BLADDER

FRONTAL (Paracentral lobule) where  $\Rightarrow$  ACA

PONS CENTRE



[A]  $S_2 S_3 S_4$  (-) [AUTONOMOUS BLADDER]

$S_2 S_3 S_4$   
 $\rightarrow$  (-)  $\rightarrow$  sensory  
 $\rightarrow$  Para

$T_{11} - L_2$

++ L Sympathetic

HYPOTONIC  
FLACCID  
LARGE CAPACITY  
OVERFLOW  
INCONTINENCE

[B]  $T_{11} - L_2$  ⊖ [AUTOMATIC BLADDER]

344

$T_{11} - L_2$

⊖ Symb

$S_2, S_3, S_4$

++ < sensory  
parasymp

- HYPER TONIC
- SPASTIC
- LOW CAPACITY
- URGE INCONTINENCE

CONUS MEDULLARIS



S.C. ends opp. to  
 $L_1, L_2$ .

$S_1 - S_5$  segments

KNEE JERK

$L_3 - L_4$  ++ [N]

ANKLE - JERK

$S_1 - S_2$  ⊖

BLADDER

AUTONOMOUS  
(early)  
Intra

CAUDA EQUINA



nerve Roots

$L_1 - L_5$   
 $S_1 - S_5$

⊖

⊖

MIXED (NEUROGENIC)

(Late)

↑  
extra



Asymmetrical

Areflexic

LMN Paralysis



R<sub>x</sub> = **NIFEDINE**  
**CLONIDINE**

# TRIGEMINAL N/V

346



SUPRANUCLEAR → UMN





### FACIAL N/V

TRIGEMINAL      NEURALGIA

Electric shock on Face / TIC DOLOREUX

Rx → Inject<sup>n</sup> of C<sub>2</sub>H<sub>5</sub>OH / glycerol in Gasserian ganglion

RHIZOTOMY - Radio Frequency Ablation

### FACIAL N/V (VII<sup>th</sup>)

#### PONS





Upper  $\frac{2}{3}$ rd Face is having B/L corticocortical innervation

Lower  $\frac{1}{3}$ rd of Face supplied by opposite cortex

A&gt;



CORTICAL LESION  $\Rightarrow$  UMN PARALYSIS  
(subcortical)

B&gt;



PONS LESION  $\Rightarrow$  LMN PARALYSIS

U/L  $\rightarrow$  CAUSE

1) Trauma

2) Herpes zoster virus

[RAMSAY HUNT SYNDROME]

3) Idiopathia [BELL'S PALSY]

B/L

CAUSE

1) UBS

2) HIV

3) Sarcoidosis

## RECOVERY

349

Aberant Reinnervation

1) CROCODILE TEAR SYNDROME

2) SYNKINESIA (smiling Blinking together)

H/o ⇒ S/O CERVICAL CORD INJURY

- 1) Fall from height
- 2) Road traffic accident
- 3) Hanging

## LHERMITTE SYMPTOM

MULTIPLE ON flexion of neck

SCLEROSIS

Pain / electric shock  
across spine

# MYASTHENIA GRAVIS

350

## ACh R<sup>(R)</sup> ANTIBODIES

Destroy > Block



## THYMIC AB(N)



So, Antibodies cross react

↳ 75% Myasthenia Gravis

↳ 65% Hyperplasia  
↳ 10% Thymoma



## PARANEOPLASTIC

MRI  
(chest)

Pure red cell Aplasia  
Pernicious Anemia  
Hypoγ globinemia  
Dermatomyositis

$$\text{♀} : \text{♂} = 3:2$$



3-7% MG

suffer from Hypothyroidism

So,  $\text{Inr} = \text{TSH}, 351$

C/F :-

1) easy fatigability

↳ Proximal

↳ Asymmetrical

2) OCULAR [1st m/s to involve]  
[M/C m/s to involve]

Ptosis

opthalmoplegia

2) FACIAL

snarling

↓  
can't maintain  
smile for long

PEEK  
SIGN



close eyes for some time then  
opens as if seeing through small  
aperture

3) SKELETAL

(N) → DTR

↳ sensory intact  
↳ Bladder  
↳ cognition

## 1) EDROPHONIUM / TENSILON TEST

↓  
shorter acting  
Peripheral action  
[BEST SCREENING TEST]

## 2) ACh R Antibodies

MOST SPECIFIC TEST

+ in 85% of pts. c gen. MG.

→ 50% [Ocular MG.] → [eye symptoms x 3 years]

-ve doesn't rule out MG.

## 3) MUSCLE SPECIFIC TYROSINE KINASE (MUSK)

MUSK Antibodies



## 47 RAPID / REPEATED NERVE STIMULATION (RNS)

353



5> SINGLE FIBRE EMG (SFEMG) S/o MG.

↑  
MOST SENSITIVE TEST  
CONFIRMATORY  
GOLD STD. TEST.



Difference in AP.  $\Rightarrow$  JITTER ↑↑.

Shows myopathic pattern

doesn't record jitter well.

BEST

SFEMG > EDROPHONIUM > RNS

**RX**

354

1> ACh E  $\ominus$

| <u>PYRIDOSTIGMINE</u> |       | <u>NEOSTIGMINE</u>               |
|-----------------------|-------|----------------------------------|
| DOC                   | Ach ↑ | Ach ↑↑↑                          |
| Oncal                 |       | cholinergic crisis<br>Injectable |

2> IMMUNOSUPPRESANTS

MYCOPHENOLATE MOFETIL (MMF) — Best



5> THYMECTOMY

35% MG  $\rightarrow$  Drug Free

85% MG  $\rightarrow$  Symptom Remission

It is Recommended Inspite of medical control. (15-55yr) [MUSK Ab  $\ominus$ ]

**MOST USEFUL**  $\rightarrow$  In Thymoma pts.  
 ↳ local effect  
 ↳ Paraneoplastic synd.

NOT USEFUL IN

<15 yrs



Immuno Def.

>55 yrs



Vestigial

- Ocular MG
- Risk surgery  $\gg$  Disease
- MUSK Ab  $\oplus$  [↓ Benefit]

355

## LAMBERTEN [LEMS]      EATON MYASTHENIC SYNDROME [PARANEOPLASTIC SYNDROME]



C/F :-

weakness skeletal  $>$  Facial  $>$  ocular [MG opp. seq.  
NOTE - ].  
DTR  $\downarrow / \ominus$  [MG, DTR N]  
Bladder involved [MG, Bladder N]

INV :-

- 1) Edrophonium +ve. (weakly +ve compared to MG)
- 2) Rapid N/V stimulation Test



Rx -

356

▷ 3, Diaminopyridine  $\leftarrow$  DOC

3DAP [Tach Release]

MOTOR      NEURON      DISEASE



### ① AMYOTROPHIC LATERAL SCLEROSIS (ALS)

cortico  $\leftarrow$  UMN = LMN  $\leftarrow$  due to AHC

spinal

Tract

weakness is starts distally.

Amyotrophic  $\Rightarrow$  no trophic factors  
weakness occurs.

② 1° LATERAL SCLEROSIS (PLS)

357

Degeneration of CS Tract  $\Rightarrow$  UMN

③ SPINAL MUSCULAR ATROPHY

only LMN

ALS

C/F -

1) Elderly

2) Fasciculations  $\leftarrow$  [PATHOGENOMIC]

3) SUPEROXIDE DISMUTASE (SOD1) Deficiency



- ④ N  $\rightarrow$  eye m/s  
sensory  
Bladder  
Cognition.

⑤



|               |    |
|---------------|----|
| Dysarthria    | +  |
| Dysphagia     | +  |
| Labile effect | +  |
| Gag Reflex    | ++ |

| BULBAR PALSY |                    |
|--------------|--------------------|
| ++           | ALS                |
| ++           | Polio              |
| ⊖            | M.G. [Bulbar M.G.] |

# ATAxia

DRG = DORSAL Root  
ganglion

|                                  | FREIDRICH<br>ATAxia                            | TABES<br>DORSALIS                          | SUBACUTE<br>COMBINED<br>DEGENERATION           |
|----------------------------------|------------------------------------------------|--------------------------------------------|------------------------------------------------|
| <u>TRACTS</u>                    | POST.<br><br>Pyr./c.s.<br><br>Spino cerebellar | POST.                                      | POST.<br><br>Pyr./c.s.<br><br>Peripheral n/vs  |
| <u>VIBRA-</u><br><u>TION</u>     | (-)                                            | (-)                                        | (-)                                            |
| <u>PROPIO-</u><br><u>CEPTION</u> |                                                |                                            |                                                |
| <u>PAIN, TEMP</u>                | (+)                                            | (+)                                        | (+)                                            |
| DTR.                             | (-) Early DRG involved                         | (+)                                        | (+) → (-)<br>neuropathy                        |
| Babinski                         | +ve                                            | (-)                                        | +ve                                            |
| ASSOCIATE<br>DT                  | cardiomyopathy<br>Optic Atrophy<br>DM.         | Syphilis<br>ARP (+)<br>Bladder disturbance | ↓ vit B <sub>12</sub><br>Megaloblastic anaemia |

FREIDRICH's

Tri-nucleotide Repeat sequence = GAA

- AR

- Chr. 9

TABES DORSALIS

Syphilis.

Argyll Robertson Pupil.

Bladder Disturbance

SACB

↓ Vit B<sub>12</sub>.

↓  
Megabolastic  
Anaemia

CEREBELLAR LESIONS

Dysmetria → Past Pointing

Titubation → persistent head nodding

Intentional Tremor

Dysdiadochokinesia

Pendular knee jerk

Romberg's Test (+) → Lesion in Post. column

Broad Based gait

Tendency to fall towards lesion.

# ALZHEIMER DISEASE

361



C/F

- 
- ↓ Ach.
- ACALCULIA  
is not seen.  
[DSM CRITERIA]
  - AGNOSIA  
not seen in early onset  
Alzheimer's (age < 65yrs)  
[ICD CRITERIA]
  - DELUSION → Doctor replaced by enemy  
(false belief)  
" OF DOUBLES
- TROPHY

MNESIA (anterograde)  
PHASIA (Anomia)  
NOSOGNOSIA (unaware)  
PRAXIA  
GNOSIA (can't identify)  
NOSMIA  
SPIRATION PNEUMONIA (cause of death)
- CAPGRAS  
syndrome  
(in 10% of pts)

## BIOPSY

363



### 1) NEUROFIBRILLARY TRIANGLES

Intracellular

Correlate  $\cong$  severity

[TAU] - Hyper  $\text{PO}_4^-$  microtubular protein  
s/o neurodegeneration

Also seen in TAU Pathies

### 1) Fronto Temporal Dementia

- Behavioural Ab<sup>(N)</sup> due to frontal lobe involvement
  - early
  - severe
- memory loss
  - late
  - mild
- Age of onset < 65 yrs.
- insight  $\ominus$

### 2) Progressive Subcortical Gliosis (PSP)

- extended posture
- downward gaze  $\ominus$  fall
- dementia

### 3) Corticobasilar Degeneration [PD + myoclonus + Dystonia]

## 27 SENILE NEURITIC PLAQUES (SNP)

364

- extracellular
- correlate  $\propto$  Age

## CEREBRAL AMYLOID ANGIOPATHY (CAA)



## 3) GRANULOVASCULAR DEGENERATION

Best seen in HIPPOCAMPUS

## HUNTINGTON'S CHOREA

- Huntington gene ] Trinucleotide Repeat Sequence  
[Chromosome 4 - short arm] defect  
 $\text{CAG} > 40$  repeats.
- AD inheritance
  - 2 successive generations are affected
  - 1 Parent affected  
[chance 50%] 1:2
  - If Both parents affected.  
[chance 75%] (3:4)

ANTICIPATION

(11-soys)  $\hookrightarrow O^+$  = early onset 2nd Decade  
 (Father)  
 Mother = Late Onset 4<sup>th</sup> Decade.

LENGTHENING

Larger Defect

$\rightarrow \uparrow$  severe

$\rightarrow$  early onset (from father)



Mother Repeats

400



400

anticipation

↳ occurs due to lengthening.

C/F -



ATROPHY → in CAUDATE NUCLEUS.

$\downarrow$  Ach  $\downarrow$  GABA Intra striatal  
 $\uparrow$  DA

Rx  $\rightarrow$  DA  $\ominus$   $\rightarrow$  Haloperidol

DA Depletor  $\rightarrow$  Tetrabenazine  $\leftarrow$  DOC

## NORMAL PRESSURE HYDROCEPHALUS (NBB)

CSF PRESSURE →  $N = 50 - 150$

$$\hookrightarrow NPH = \boxed{150 - 180}$$

↓ CSF Absorption. ← SAH  
↑ Meningitis

C/F



### MAGNETIC GAIT

- external hip rotation
- shorter strides
- low ground clearance..

SCISSORING GAIT → Spastic CP

CHARLIE CHAPLIN GAIT → Tibial Torsion

Rx

V-P shunt



1st / Most responsive symptom to improve on VP shunt  
ATAxia

## QQ WERNICKE'S ENCEPHALOPATHY

367

■ PREDISPOSED -

1) Hyperemesis

2) Alcohol Intake

B<sub>1</sub> ~~#~~ Deficiency

CO-FACTOR for.

$\alpha$ -Keto glutarate dehydrogenase  
Pyruvate Dehydrogenase

GLUCOSE ACCUMULATION

Mitochondrial Damage

NEUROTOXIC

C/F

GLOBAL confusion

GOA

ophthalmoplegia

Ataxia

Rx

THIAMINE REPLACEMENT X 14 Days.  
(100 mg/day)

1st Improve = ophthalmoplegia

[Glucose Infusion can Precipitate it]

# KORSAKOFF'S PSYCHOSIS / ALCOHOL DEMENTIA

368

DEMENTIA → CONFABULATION

False story to hide  
memory loss

## SITES

Perequeductal Grey Matter

Mamillary Bodies

Holamus → [AMNESTIC DEFECT]

## CONFUSIONAL STATE

- 1) seizure
- 2) T.I.A.
- 3) Metabolic → ↓ glucose  
↓ alcohol

## TRANSIENT GLOBAL AMNESTIA

Both anterograde + Retrograde amnesia

## CNS INFECTIONS

369

### BACTERIAL / PYOGENIC MENINGITIS

M/C/C

Adolescent / Adult = N. MENINGITIDIS  
(epidemic)

Elderly = STEPTO. PNEUMONIA  
(Community acquired)

CSF

Ⓐ appearance  
N

PYOGENIC

|                 |               |                         |
|-----------------|---------------|-------------------------|
| Appearance      | Transparent   | Turbid                  |
| cell count      | $\leq 5$      | Pleocytosis (N $\gg$ L) |
| Protein         | 15-45 mg/dL   | ↑↑                      |
| Glucose         | 40-70 mg/dL   | ↓↓↓                     |
| Cl <sup>-</sup> | 116-126 meq/L | ↓ / N                   |

Hypoglycorrhexia = ↓ CSF Glucose

Rx

N. MENINGITIDES → Ceftriaxone  $\times$  7 Days

S. PNEUMONIAE → Ceftriaxone + vancomycin ]  $\times$  14 Days

>60yrs ↓

LISTERIA → Ampicillin

C/F



± HEADACHE.

370

Dexamethasone

10 ~~mg~~ mg IV Stat

↓  
1st Dose of antibiotic

TBM

M/c Meningitis In India



Endarteritis

↓ Infarct

TBM ATT x 1 month  
↓ sensorium

① ATT induced hepatitis

↳ hepato, encephalo  
pathy

② ↑ ICT →  
cerebral salt  
wasting

③ Infarct

④ Tuberculoma

⑤ Hydrocephalus

Hydrocephalus

Basal Exudates → Tuberculoma

Reactivation

CSF



→ COB-WEB

→ Pleocytosis [L >> N]

→ Protein ↑↑↑

→ Glucose ↓ Cl- ↓↓↓

GOLD STD TEST = Culture of CSF

Rx

ATT x 12-18 months (↓ Reactivation)

Steroids x 2 months [⊖ Endarteritis]

## VIRAL ENCEPHALITIS

371

MICC → ENTEROVIRUS

→ epidemic = ARBOVIRUS

→ sporadic = HSV type 1

## HSV ENCEPHALITIS



CSF

→ xanthochromia

SAH

→ CT scan.

(CSF) N

xanthochromia

→ Traumatic LP

→ Pleocytosis

→ ↑ Protein

→ (N) Glucose

→ Cl<sup>-</sup> ↓

MOST SENSITIVE TEST = PCR FOR HSV IN CSF

MRI

Bitemporal hyperintensities

|       | T <sub>1</sub> | T <sub>2</sub> |
|-------|----------------|----------------|
| Brain | ↑              | ↓              |
| CSF   | ↓              | ↑              |

Rx Acyclovir - 10mg/kg IV q8hly × 14 days





## PROGRESSIVE MULTIFOCAL LEUCOENCEPHALOPATHY (PML)

Jc Virus → Oligodendrocytes  
Inclusion bodies

A/c -

Immunocompromised host

↳ HIV + (80%, m/c host)

Transplant Recipient

C/F - Visual field Defects. (M/c)

Inv

MRI → Hyperintensities

↓ Demyelination

↓ CSF (PCR for Jc virus)

↓ Brain Biopsy

Rx

not available

Prognosis Death 3-6 months of onset

## PRION DISEASE

373

CREUTZFELD JACKOB DISEASE (CJD)

DNA/ RNA -

Transmittable →  
dural Grafts  
corneal Grafts

C/F -

Dementia + myoclonus (M/L)

Inv

EEG - Biphasic waves

Brain Biopsy - spongeform degeneration

Rx - not available

## NCC [Neurocysticercosis]

Agent = Taenia Solium



C/F - Seizure (M/L)

Inv -

CE → CT  
MRI



## STAGES

374

|           |        |
|-----------|--------|
| (viable)  | Oedema |
| VESICULAR | +      |
| (Dying)   |        |
| COLLOIDAL | +++    |
| (Dead)    |        |
| CALCIFIED | -      |

Rx

## ANTI-PARASITIC

**DOC** → ALBENDAZOLE      PRAZIQUENTAL

$\downarrow$   
15 mg/kg/day  $\times$  8-28 days

+ Steroids + A.E.D. x 6 months

↓  
CT Scan

↓  
calcified

Taper 2-3 months

↓  
STOP.

| <u>↓ OTHER</u>                                                                                                                                               | <u>TYPES OF CIBS</u>                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| <div style="border: 1px solid black; padding: 5px; display: inline-block;">AIDP</div><br><4wk<br>Motoric<br>Sensory<br>>90% children<br>mostly<br>GM, Ab +ve | <div style="border: 1px solid black; padding: 5px; display: inline-block;">AMAN</div><br>motoric<br>only<br>children<br>young adult<br>GD & Ab |
|                                                                                                                                                              | <div style="border: 1px solid black; padding: 5px; display: inline-block;">AMSAN</div><br>M = S<br><br>mostly<br>adult<br><br>worst Prog.      |
| <div style="border: 1px solid black; padding: 5px; display: inline-block;">CIDP</div><br>>9wk.                                                               |                                                                                                                                                |

# GUILIAN BARRE SYNDROME

375



- Post infectious
- Demyelinating
- Poly neuropathy

VACCINES causing GBS :-

RABIES (neural)

Influenza

C/F

ASHBURY CRITERIA

→ Ascending Paralysis → Symmetrical  
Distal → Proximal  $\leq 4$  weeks



Areflexia  
Minor sensory  
Bladder - spared

M/c: cranial N/V involved  
= VII<sup>th</sup> (B/L, LMN)

ACUTE      B INFLAMMATORY      DEMYELINATING      POLYNEUROPATHY  
(AIDP)

### VARIANT OF GBS

#### MILLER FISCHER VARIANT / SYNDROME



#### MILLER FISCHER TEST $\leftarrow$ (DNB)

Done in Normal pressure Hydrocephalus  
CSF Drained (30mL)



$\downarrow$   
cognition  
 $\downarrow$   
improved  
 $\swarrow$   
then go for  
V-P-Shunting

### Inv for GBS

- 1) Nerve Condu<sup>n</sup> Study
  - $\downarrow$  N/V condu<sup>n</sup> velocity
  - $\downarrow$  A.P.

## ⇒ CSF

377

↑ Albumin      ] Albumino cytological  
No pleomorphism      ] Dissociation.

RX

- 1) IV Ig  
~~200g~~ 2g m/kg over 50 days.] → Both are equally effective
- 2) Plasmapheresis      Best in 1st 14 Days

Steroids is not recommended

## PROGNOSIS

Recovery occurs in 85% [IV Ig & Plasmapheresis will not alter the sequelae]  
Sequelae → 10%

Death → 5%

|                    | INFLAMMATORY     |               | MYOPATHY | INCLUSION BODY MYOSITIS |
|--------------------|------------------|---------------|----------|-------------------------|
|                    | DERMATO MYOSITIS | POLY MYOSITIS |          |                         |
| AGE                | Any              | >20 yrs       |          | >50 yrs                 |
| MUSCLE INVOL.      | Proximal         | Proximal      |          | Distal                  |
| SKIN Changes       | +                | -             |          | -                       |
| Ass. to malignancy | +(15%)           | -             |          | -                       |
| EYE                | (N)              | (N)           |          | (N)                     |
|                    | (Mus. kinase ↑↑) | ↑↑            |          | ↑↑                      |

## MULTIPLE SCLEROSIS

378



DISSEMINATED

→ Time  
→ Space.

C/F

## 1) SENSORY

## 1st HIC Symptom

↑ exposure to HEAT  $\Rightarrow$  UTHOFF SIGN

## ICE PACK TEST

Cold ⊖ AChE ⇒ In MG pts.  
Weakness ↓

## ② OPTIC NEURITIS

### ③ SPASTICITY

## TYPES





1° PROGRESSIVE MS (PPMS) 15%



2° PROGRESSIVE MS (SPMS)



PROGRESSIVE RELAPSING MS (PRMS)

### STAGING

MS = EXTENDED DISABILITY SCORING SCALE (EDSS)

SAH = HUNT & HESS SCALE

MG = OSSERMAN GRADING

INVMAC DONALD CRITERIA

MRI → Demyelination  
 ↓  
 Plaque ] → Periventricular

CSFRxACUTE ATTACK

METHYL PREDNISOLONE (DOC)

DISEASE MODIFYING AGENTS

2) Glatiramer

3) FingoLimo [ORAL]

4) Natalizumab [BEST] → S/E = PMLE

## D/D of DESCENDING PARALYSIS

381

Botulism

Polio, Porphyria

Diphtheria



# ENDOCRINE

- Dr. Achin



## PROLACTIN

Secreted in Ant Pituitary

Prolactin making cell LACTOTROPH

FUNC:-

- 1> Induce & maintain the process of lactation
  - 2> prolactin hormone  $\xrightarrow{(-)}$  GnRH  $\rightarrow$  LH  $\downarrow$   $\hookrightarrow$  ovulation
- ↓
- sexual drive  $\leftarrow$  ↓ Testosterone  $\hookrightarrow$   $\ominus$  menstruation
- ↓
- Spermato genesis



## HYPEPROLACTINEMIA

### ETIOLOGY -

#### A) PHYSIOLOGICAL

1> Lactation

2> ♀

$\uparrow$  Estrogen  $\xrightarrow{+}$  ↑ PRL

3> Sleep [NREM sleep]

4> Chest wall stimulation

→ nipple stimulation

→ chest trauma or surgery

→ herpetic Lesions

## S&B SYSTEMIC DISORDERS

### 1) Hypothyroidism



### 2) CKD

→ ↓ excretion of prolactin



### 3) SEIZURE

Post Ictal (30 mins)

### C) DRUGS (Iatrogenic)

#### Dopamine $\ominus$

→ Typical Antipsychotics

- ↳ Haloperidol
- ↳ CPZ

→ Atypical Antipsychotics

- ↳ Risperidone

→ Metoclopramide

387

### Dopamine Depleters

CH<sub>3</sub> Dopa

Reserpine

CCB - verapamil

### H<sub>2</sub> ANTAGONIST

Ranitidine

Cimetidine

⇒ These drugs cause hyperprolactinemia due to blockage of Infundibular Pathway

### D) PITUITARY ADENOMA

PROLACTINOMA → M/c type

<10mm

MICRO (90%)

F:M = 20:1

>10mm

MACRO (10%)

F:M = 1:1.

C/F → ♀ → Galactorrhea - 80%  
↳ B/L.



Amenorrhea

↑ PL → ↓ LH

↓ Ovulation

↓ Estrogen

↓ Osteoporosis

Inferility (M/c presentation)

$\sigma^{\rightarrow} \rightarrow \downarrow$  Libido  
 Azoospermia  
 Infertility

388



### S. PROLACTIN

$$(N) = 5 - 25 \mu\text{gm/l}$$



Stop offending drug  
 Reassess PL after 72 hours

### MACROPROLACTIN

Symptoms -  
 Prolactinoma -  
S. Prolactin ↑↑  
 [FALSE HIGH]

PROLACTIN = Peptide hormone  
 (198 A.A)  
 ↳ 85% monomeric

### HOOK EFFECT

Symptoms +  
 Prolactinoma +  
S. Prolactin (N)  
 [FALSE (N)]



Always 1st Line = Medical Rx

PROLACTINOMA ON DA + WANTS TO CONCEIVE

390



Rare < [Headache] DA +  
[BROMOCRIPTINE]  
↓ Vision | no response  
[SURGERY] (TSR)

Prolactinoma in ♀ are asymptomatic

DOC for Prolactoma = CABERGOLINE  
↓  
In ♀  
Long acting  
Convenient intake  
↓ nausea  
Better effect  
BROMOCRIPTINE  
FERTILE ♀ → BROMOCRIPTINE

## GROWTH HORMONE

391

- Released from Ant. Pituitary
- By SOMATOTROPHS (Most abundant cells) 50%
  - Lactotrophs > Gonadotrophs  
(20 - 30%)
  - Gonadotrophs  
(10 - 20%)



GH

CARBOHYDRATE

Diabetogenic

PROTEIN

ANABOLIC

IGF-1

392

Anti-diabetic

FAT

LIPOLYTIC

ANTI-LIPOLYTIC

GH  $\xrightarrow{(+)}$  Lipase  $\rightarrow \uparrow \text{FFA}$

↓  
Insulin

Resistance

↓  
Diabetogenic

$\uparrow \text{GH}$

↳ epiphyseal fusion.

↳ BEFORE = GIGANTISM

↳ AFTER = ACROMEGALY

ACROMEGALY

ETIOLOGY

$\uparrow \text{GH}$

$\uparrow \text{GHRH}$

PITUITARY

↳ Somatotrophic  
Adenoma (M/c)  
↓

Loss of feedback

→ MAMMO SOMATOTROPHIC

ADENOMA  $\rightarrow \uparrow \text{PL}$

$\uparrow \text{GH}$

HYPOTHALAMUS

HAMARTOMA

ECTOPIC

BRONCHIAL CARCINOMA

## ECTOPIC

ISLET CELL CA of PANCREAS

393

C/F

CVS → LVH

Diastolic Dysfunc<sup>n</sup>

HTN

CAD

M/CC of DEATH  
ACUTE MI.

Resp → Nasal turbinate Hypertrophy  
obstructive sleep apnoea (OSA)

GIT → ↑ Liver + spleen (Hepatosplenomegaly)

Q Colonic Polyps >> cancer  
Benign

ENDOCRINE → DM (Insulin resistance)  
Goitre

SKELETAL → Tall stature  
Large digits  
Prognathism

Jaw malocclusion

[↑ space bet<sup>n</sup> lower incisors]

Fleshy nose.

## INVESTIGATION

394

- 1) GH ASSAY → not useful test



- 2) IGF-1 ASSAY  
Best screening Test

- 3) GH SUPPRESSION TEST → confirmatory Test

$$[GH \propto \frac{1}{\text{glucose}}]$$

75 gm glucose (oral)



### INSULIN STIMULATION TEST

$GH \propto \frac{1}{\text{glucose}}$  → on giving Insulin.  
glucose ↓ → GH ↑ (N)

Dwayfum → GH unchanged

## ADH / VASO PRESSIN

395



AQP<sub>1</sub>  
↓  
PCT ← ADH  
Independent

### (N) values

S. Osmolarity = 275 - 295 mosm/L

U<sub>H2O</sub>ne osmolarity = 300 - 1000 mosm/L

St. Na<sup>+</sup>

135 - 145 meq/L

St. K<sup>+</sup>

3.5 - 5 meq/L

## POLYURIA

396

>50ml/kg/day

>3L/day



↑ Solute = ↓ H<sub>2</sub>O

Isosmolar

### SOLUTE/OSMOTIC DIURESIS

Glucose

↓  
Urine osmolality

Mannitol

>300 (N)

Ca<sup>2+</sup>

### DILUTE

H<sub>2</sub>O > Solute

U<sub>ur.</sub> osm < 300

→ DI

→ Psychogenic Polydypsia (PP)

H<sub>2</sub>O Deprivation Test

U<sub>re</sub>- osm. → (↑) = P.P.

↳ unchanged = D.I.

ADH Stimulation Test

U<sub>re</sub>. Osm → (↑) = ADH Def."

↳ unchanged = ADH Resistance

nephrogenic DI



26

| CEREBRAL                                                                                                                                                              | SALT | WASTING | DISEASE                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|--------------------------------------|
| $\uparrow \text{ICT} \rightarrow \text{BNP}$<br>$\downarrow$<br>$\downarrow \text{Na}^+, \downarrow H_2O$<br>$\downarrow$<br>Hyponatremia — Hypovolemia<br>natremesis |      |         | $\uparrow H_2O$<br>$\downarrow Na^+$ |



# SIADH [Syndrome of Inappropriate ADH]

398



## HYPONATREMIA

### HYPOVOLMIC

Cerebral Salt  
Wasting Disease

### EUVOLEMIC

SIADH  
 $\downarrow$   
 **$H_2O$  Loading Test**

Pt. produce less  
urine than  $\textcircled{N}$  pt.

### HYPERVOLMIC

CCF  
CKD  
Chr Liver Disease

$$Rx = H_2O \text{ restriction Rx}$$

ADH  $\ominus \Rightarrow$  DEMECLOCYCLINE  
 $\downarrow$   
 VAPTAN (DOc)

$\boxed{\text{Na}^+}$

399

$\boxed{(\text{N})} = 135 - 145 \text{ meq/L}$

$> 120 = \text{Asymptomatic}$

$\boxed{110 - 120} = \text{GI symptoms}$   
↳ nausea

$\boxed{100 - 110} = \text{mild CNS symptoms}$   
giddiness  
Ataxia

Seizures →  $\boxed{< 100}$  cerebral edema

### PARATHYROID HORMONE

$\downarrow \text{Ca}^{2+} \rightarrow \uparrow \text{PTH}$

↳ Bone = Resorption

↳ Intestine = Absorption

↳ Kidney = Reabsorption

$\boxed{\uparrow \text{PTH}}$

④  $\boxed{2^\circ} \rightarrow \text{CKD}$

Vit D deficiency

Malabsorption.

$\boxed{1^\circ} \rightarrow \text{Parathyroid} \rightarrow \text{Hyperplasia}$

$\boxed{\text{Adenoma}} [\text{M/c/c}]$

M/c type = solitary

M/c site = Inf. Pth Lobule-

$3^\circ$  = PTH hyperplasia  $\rightarrow$  ADENOMA ( $3^\circ$ )  
 $2^\circ$        $1^\circ$

400

## HYPERCALCEMIA

C/F -

- nausea, vomiting
- constipation
- Bony pains (+)
- Renal calculi
- Abdominal Pain
- depression
- Psychosis



Rx -

1) Hydration.

2) Diuretics

Calcimimic  $\rightarrow$  Loop Diuretics

3) Bisphosphonates

(-) osteoclastic activity

DRONATES.

[Delayed onset of Action]

4> GALLIUM  
 5> PLICAMYCIN  $\rightarrow$  Osteoclast (-)

6> CALCITONIN

7> DIALYSIS

PSEUDO      HYPO      PTH

401

↓ Shr.  $\text{Ca}^{2+}$

↑ Sr. PTH

[PTH] Resistance

ALBRIGHT    HEREDITARY    OSTEODYSTROPHY (AHO)

Short stature

~~Round~~ Round Face

short 4<sup>th</sup>/5<sup>th</sup> metacarpal. (Brachydactyly)

PSEUDO      PSEUDO      HYPO      PTH

Shr.  $\text{Ca}^{2+} = \text{N}$

Sr. PTH = N

AHO Phenotype +



|                        | TSH          | FT <sub>3</sub>       | FT <sub>4</sub>       |
|------------------------|--------------|-----------------------|-----------------------|
| HYPOTHYR ( $1^\circ$ ) | $\uparrow$   | $\downarrow$          | $\downarrow$          |
| HYPERTHYR              | $\downarrow$ | $\uparrow$            | $\uparrow$            |
| 2° HYPOTHYR            | $\downarrow$ | $\downarrow$          | $\downarrow$          |
| SUBCLINICAL HYPOTHYR   | $\uparrow$   | Low $\textcircled{N}$ | Low $\textcircled{N}$ |

## HYPOTHYROID

Weight Gain  
Fatigue  
Cold Intolerance  
Constipation  
Menorrhagia

M/c Amenorrhoea

↓ H.R.

mild Diastolic HTN

Delayed Relaxation of  
Jerk  
[HUNG UP REFLEX]

Rx

## HYPOTHYROIDISM

L-Thyroxine  
[1.6 µg/kg/day]

↓ DOSE = elderly  
IHD

↓  
TSH after [6 weeks]  
[(N) = 0.35 - 5]

[Target = 0.35 - 2.5] → L-Thyroxine x Lifelong

|     |             |
|-----|-------------|
| TSH | L-Thyroxine |
| 10  | 75 µgm/day  |
| ↓   | ↓ +25       |
| 8   | 100 µgm/day |

## HYPERTHYROID

403

Weight Loss  
Anxiety  
Heat Intolerance  
Diarrhoea  
Amenorrhoea

↑ H.R.

↑ S.B.P. / ↑ D.B.P.

Fine Tremors  
Exophthalmos

↓  
TSH 6 monthly

## SUBCLINICAL HYPOTHYROID

404

↑ TSH, [FT<sub>3</sub>, FT<sub>4</sub>] low (N)

Rx-

TSH > 10 ⇒ Start L-thyrc



## ADRENALS

405

### CUSHING SYNDROME

LOSS of -ve feedback

#### ETIOLOGY

A> EXOGENEOUS / IATROGENIC [M/c/c]



B> ENDOGENEOUS

↓  
ACTH

↓  
DEPENDENT (90%)

↓  
INDEPENDENT (10%)

Pituitary Adenoma 75%  
F:M = 4:1  
M/c endogenous cause  
→ ECTOPIC ACTH 15%

↓  
ADRENAL F:M = 4:1  
Adenoma (5-9%)  
CA (1%)  
Hyperplasia (<1%)

M/c malignancy → small cell Ca  
of Lung

- medullary ca of thyroid

- Phaeochromocytoma

- CARCINOIDs
  - Bronchial
  - Ghymus
  - Pancreatic

M/c/c → CUSHING DISEASE

Cushing Syndrome due to Pituitary Adenoma.

C/F :-

406

↑ CORTISOL → ↑ Gluconeogenesis

1) PROTEIN → MYOPATHY (proximal)

↳ s/c Tissue tear = **STRIA**E Purplish colour due to rupture of vessels.

↳ THIN SKIN

↳ EASY BRUISING.

2) FAT Redistribution of fat

CENTRIPETAL OBESITY

↳ BUFFALO HUMP  
↳ MOON LIKE FACE

3) DM

4) HYPERNATREMIA



5) ♀

Oligomenorrhea —————> Amenorrhea  
Hirsutism

6) CNS -

↑ appetite  
↓ sleep

Euphoria  
[Psychosis]

407



Chronic ~~alcoholics~~ alcoholics

Cirrhotic pts.

Pts  $\in$  Hyperthyroidism

Pt  $\in$  Depression.

### CLINICAL SUSPICION OF C.S.

WEIGHT GAIN = Thin skin > HTN  
(80%) (80%) (75%)

1st M/c symptom

> central obesity  
(50%)

>  $\downarrow K^+$ , alkaloses  
(15%)



SCREENING TEST

**SP1 SCREENING TEST**

408

- 24 HR. URINARY CORTISOL ↑↑
- MIDNIGHT S. CORTISOL ↑
- ORAL DEXA CHALLENGE TEST [BEST]

1mg DEXAMETHASONE @ 11:00 PM

(oral) ↓

S. CORTISOL @ 9:00 AM

$$\lceil \textcircled{N} = \textcircled{N}$$

$$\lceil \text{C.S.} = \uparrow \quad (\text{due to loss of -ve feedback})$$

↓

**CONFIRMATORY**

4mg 0.5mg DEXA I/V hourly × 2 days

↓

S. cortisol →  $\textcircled{N} = \text{C.S.} \ominus \ominus$

↓  $\uparrow = \text{C.S.} \oplus \oplus$

**[LOW DOSE DEXA TEST]**

↓  
**ETIOLOGY** H/o - exogenous

**ACTH**



MRI can't visualize pituitary adenoma (2-5mm)

**1) INF- PETROSAL SINUS SAMPLING (IPSS)**

**(CRH)**

↓ (+)

ACTH

↓ Sample → Petrosal sinus (PS)

→ Peripheral vein (PV)

RATIO

409

$\frac{PS}{PV}$  ↑ ↓ ⇒ Increased  
PITUITARY ADENOMA

$\frac{PS}{PV}$  ↓ ↑ = Decreased.  
ECTOPIC ACTH

2mg DEXA I.V. 6hrly × 2 Days

↓  
S. ~~cortisol~~ cortisol ↓ = Pituitary Adenoma  
unchanged = Ectopic ACTH.

2) High Dose DEXA TEST

## PITUITARY ADENOMA

## ECTOPIC ACTH

C/F

ONSET → Insidious

Acute

PROGRESSION → Slow

Rapid

HYPERPIGMENTATION → +

+ + + +

IPSS

 $\frac{PS}{PV}$  ↑
 
 $\frac{PS}{PV}$  ↓
 

HIGH DOSE DEXA +ve  
TEST Response

Unchanged.

Rx

Ketoconazole  
Metapyrone  
Etomidate  
Mirtazapine

⊖ cortisol  
synthesis

# HYPERTENSION

410

2°

↓ volume → ↑ Renin → ↑ Aldosterone



AIP = aldosterone induced protein.

Epithelial  
 $\text{Na}^+$  channel

[ENAC]

$\downarrow$   
 $\uparrow \text{Na}^+ \rightarrow \uparrow \text{H}_2\text{O}$

$\downarrow$   
volume (N)

1°

← Mi.c.c.

→ BIL Adiopathic cortical Hyperplasia (60%)

2) Adrenal Adenoma (40%)

M/c/c - CONN SYNDROME



## CLINICAL SUSPICION

411



ALDOSTERONE RENIN RATIO (ARR) > 20

↓  
[CONFIRMATORY TEST]

2 Litres of Normal Saline x 4 Hours

↓  
↑Volume → ↓ Renin - ↓ Ald. ⇒ N

↓

NO suppression of Aldosterone

↙ [SALINE INFUSION TEST]

↓  
ETIOLOGY

↓  
CT Abdomen

ADE NOEMA



<40 yrs

UL

ADRENELECTOMY

>40 yrs [Incidentaloma]

Adrenal venous sampling

ALDOSTERONE

HIGH

HYPERPLASIA.

Rx - Aldosterone (-)  
↳ Spironolactone  
↳ Triamterene

N = watch

Medical Therapy

DfD

412

1) Syndrome of apparent Mineralocorticoid excess  
[SAME]



Lk<sup>t</sup>, Alkalosis

R = STEROIDS → ↓ ACTH

!  
I corteggi.

27 Glucocorticoid Remediable Aldosteronism [GRA]



Rx - STEROIDS → ↓ ACTH → ↓ Aldosterone

## 37 LIDDLES SYNDROME

↑ Functioning of ENAC → ↑  $\text{Na}^+$   
↓  $\text{K}^+$ , alkalosis.

# ADRENAL INSUFFICIENCY

413

*ADDISON DISEASE*  
ADRENAL

Autoimmune (Mcc In world)  
TB (Mcc In India)

**2°**

PITUITARY  
 - Surgery  
 - Trauma  
 - Radiation  
 - Apoplexy



**↓ G.I.C.** ← Activity → **M.C. ↓**

↓ GLUCOSE

↑ Protein Breakdown

↓ Cal. loss

Thin

**ASTHENIA**

M/C + 1st  
symptom

lethargy  
Fatigue

↓  $\text{Na}^+$  ← salt sweating  
 ↑  $\text{M}/\text{C}$  Biochemical  
 Ab(N)

↓ ECF

↓ BP

[ $\text{T K}^+$ , acidosis]

**↑ ACTH**

Hyperpigmentation. (localised)

↳ Oral mucosa

Conjunctiva

Palmar crease

Nipple areola Region

moles, scars

ACTH administration

$\hookrightarrow$  (N)  $\rightarrow$  CORTISOL  $\uparrow$   
 $\hookrightarrow$  Addison's pt  $\rightarrow$  CORTISOL (unchanged)

[ACTH STIMULATION TEST] COSYNTROPIN / SYNACTHEN  
~~Diagnostic Test~~ TEST

$R_x$  = STEROIDS

Hydrocortisone (DOC)

# DIABETES MELLITUS (DM)



Deficiency = TYPE-I

Insulin ↑ → II

Secretion → TYPE-II  
Resistance

| <u>TYPE - I</u>                      |         | <u>TYPE - II</u>              |
|--------------------------------------|---------|-------------------------------|
| - $\beta$ cell Destruction<br>(>90%) |         | secretory Defect              |
| - HLA Mediated                       |         | Insulin Resistance            |
| Anihbulinemia                        |         | Hypersenslvenemia             |
| Age of Onset                         | <30 yrs | >30 yrs                       |
| Habitus                              | thin    | obese                         |
| Family His.                          | ⊕       | ⊕ ⊕ ⊕ ⊕                       |
| HTN                                  | ⊖       | ⊕                             |
| Dyslipidemia                         | ⊖       | ⊕ [↑ TG → ↓ HDL]              |
| DKA                                  |         | Hyperosmolar Non-Ketotic Coma |

|                              |                   |                                             |                  |
|------------------------------|-------------------|---------------------------------------------|------------------|
| 20 yrs                       | → 25 yrs          | 30 yrs                                      | → 35 yrs         |
| RBS ↑↑↑                      | RBS - controlled. | RBS ↑↑↑                                     | RBS ↑↑↑          |
| K.B. ⊕                       | Insulin ↓↓        | K.B. ⊖                                      | OHA ↑↑↑          |
| Obese                        | (OHA)             | OHA                                         | Insulin (Type 1) |
| Insulin (Type 1)             | (Type 2)          | (Type 2)                                    |                  |
| KETOSIS PRONE DIABETES (KPD) | 1.5 DM            | LATENT AUTOIMMUNE DIABETES IN ADULTS (LADA) |                  |

## MATURITY ONSET DIABETES IN ADULTS (MODY)

Onset 5-15 yrs of Age.

Thin

OHA Response

AD Inheritance

DKA (-)

HTN (-)

6 types of MODY

↓

TYPE 3 (M1c type)

↓

HNF -1 $\alpha$  Deficiency

## TYPE-3 DIABETES / BRAIN DIABETES / ALZHEIMER

Insulin Resistance, Deficiency

↓

PPT the cond?

## TYPE-4

Elderly >60 yrs.

OHA response (minimum dose)

## DIAGNOSIS

418



Fasting 8 hrs  $\leftarrow$  Fasting BS  $\geq 126 \text{ mg/dL}$   
or

[Oral GTT]

75gm glucose (oral)  
 $\downarrow$   
2 hr BS  $\geq 200 \text{ mg/dL}$ .

or

[HbA<sub>1c</sub>]  $> 6.5\%$   
[glucose + globin]

## ACUTE COMPLICATION OF DIABETES

[DIABETIC KETOACIDOSIS]

Type-1

① RBS = 250 - 600 mg/dL (Reliable)

② Ketone Bodies  $\rightarrow$  Blood  $\rightarrow$  KETONEMIA  
 $\rightarrow$  Urine  $\rightarrow$  KETONURIA

③  $\downarrow$  pH (Best bedside)

C/F

1) nausea, vomiting (persistent)

K.B.  $\oplus$  CTZ

2) Abdominal Pain  $\pm$  Tenderness

3) ↑ HR

4) TRR [KUSMALL BREATHING]  
Metabolic acidosis → Resp. alkalosis  
 $\text{CO}_2 \rightarrow \begin{cases} \textcircled{1} \text{ acidosis} \\ \textcircled{1} \text{ alkalosis} \end{cases}$

5) Fruity odour → due to acetone

6) **Dehydration** (severe)  
H/c C of mortality

**Rx** -

1) I.V. fluids (4-6 L)  
 $\downarrow$  0.9% NS → To prevent ↑  $\text{Na}^+$ , ↑  $\text{Ca}^{2+}$  → 0.45% NS  
 Most effective Rx. 4-6 hrs → To prevent hypoglycemia  
 $\times \text{ RL} \times$        $\boxed{5\% \text{ Dextrose}}$   
 $\times$                   RBS < 200

2) Insulin

Regular → 10 units/IV Bolus  
 $\downarrow$   
 0.1 U/kg/hr

3) KCl @ 20-40 meq/hr.

4)  $\text{NaHCO}_3$   
 $\text{pH} < 7$

# HYPEROSMOLAR NON-KETOTIC COMA

TYPE=2

RBs = 600 - 1000 mg/dL

↑ Sr. Osm.

KB (-)

Altered sensorium

Rx =  
1) IV fluid (6-10L)

2) Insulin

## CHRONIC COMPLICATION

DIABETIC NEUROPATHY

### (A) POLYNEUROPATHY

Distal Symmetric sensory  
(M/C type)

1st S lost

glove  
stocking }  
S Loss

Vibration

[128 Hz Tuning Fork]

PARAESTHESIA

→ ANAESTHESIA

Rx

1) Improved Glycemic control

2) Pain L AED = Pregabalin

TCA = Amitriptyline

## (B) MONONEUROPATHY

M/c cranial N/V

 $\underline{\text{III}} > \underline{\text{VII}}$ 

[Pupillary sparing]

Mononeuritis multiplex = Patchy involvement of

↳ M/c/c - metabolic = DM [(B) in India + world]

Infective = LEPROSY

vasculitis = POLYARTERITIS NODOSA

## (C) AUTOIMMUNE AUTONOMIC NEUROPATHY

Hypoglycemic unawareness

 $\beta$ -G avoided in diabetic pts.Intensive control is avoided  $\Rightarrow$   $\uparrow$  Risk of hypoglycemiaHYPOGLYCEMIAWHIPPLES TRIAD

- 1) ↓ Insulin
- 2) ↑ Glucagon
- 3) ↑ Cortisol  
Epinephrine  
GH

**EXTENSIVE FASTING  $\times 72$  hours**



Insulinoma  $\rightarrow$  Radiological  
Sulphonylurea Induced  
↳ SU Levels

### SOMOGYI EFFECT



Rx = Long Acting Insulin.

## DAWN PHENOMENA

(240)

3-5 AM Hyperglycemia

↓  
 Insulinopenia  
 ↓  
 Insulin resistance

(340)

8 AM Hyperglycemia

Rx = ↑ night insulin + insulin sensitizer

## Rx of TYPE-2





### STALK LESIONS

↑ Prolactin

Hypothyroidism (central)

↓ glucose

↓ BP

Central DI

PITUITARY APOPLEXY  
↳ SHEEHAN SYNDROME

↑ Incidence = Sickle cell Disease ]  
DM ]  
HTN ]  
Predisposing Factors



↓  
after few months



⑩ functioning Pituitary  
EMPTY SELLA SYNDROME (Incidental finding)



# MEDICINE (GIT)

427

## Liver

## Intestine

- \* Disorder of Bilirubin met
- \* Acute Viral Hepatitis
- \* Chr. hep / cirrhosis
- \* Comp' of Liver failure
- \* Malabsorption syndrome
- \* Diarrhoea
- \* GI "infe"
- \* IBD
- \* IBS

## BILIRUBIN METABOLISM space of Disse



OATP - organic anion transport protein

## DISORDERS OF BILIRUBIN METABOLISM

### I ↑ Unconjugated Bilirubin

> Increased synthesis -

a) Hemolytic anaemia → ↑ premature destruction of RBCs in periphery

b) Ineffective erythropoiesis → ↑ premature destruction of RBCs in Bone marrow

Cause

- ⇒
  - Thalassemia
  - Megaloblastic anaemia
  - Severe Fe def.
  - Pb poisoning

c) Large haematoma

d) Lobar pneumonia (TRBC destruction in exudate)

ii) ↓ Uptake :-



Gilbert Syndrome -

Duage- Rifampicin

Probenecid (prophylaxis for gout)

Ribavirin (for HPS C virus)

3) ↓ UGT :- (UDP Glucuronyl Transferase)

\* Cong. causes -

Crigler Najjar I

CN II G<sub>6</sub>P

Gilbert Syndrome

UGT

0%

50%

33%

activity

Mode of inheritance

AR

AR

Both (AR>AD)

S.Bil (Total)

>20

6-20

<4

Kernicterus

(+)

Rare

(-)

Mortality

Before 1 year

or about 1/4 -

Adulthood

Not ↑.

Important

| CN I     | CN II | Gilbert Syndrome      |
|----------|-------|-----------------------|
| Inv.     | N     | Lipofuscin<br>pigment |
| Liver B. |       | = Brown colour        |



### \* Acquired causes :-

1) Drugs - Gentamycin  
 Chloramphenicol  
 Pregnanedione

2) Breast Milk Jaundice (Self-Limiting)

FA (-) → UGT of neonate →

No need to stop feeding

3) Lucey Driscoll Syndrome :- (Self Limiting)  
 Maternal Serum Ab (-) UGT of neonate

II) ↑ Conjugated Bilirubin (Isolated).

Liver enzymes (N)

1

Dubin Johnson  
Syndrome

Rotor Syndrome

Mech - Mutation of MRP<sub>2</sub>.

② Mutation of OATP

Mode of inheritance AR

AR.

S-Bil. <4

<4

Kernicterus (-)

(-)

Mortality not ↑

not ↑

Inv

Liver Bx Black Pigmentation.

Normal.

(Epinephrine metabolite N)

excreted by MRP<sub>2</sub>)

BSP clearance  
test

(Bromsulfophen)



(N) BSP clearance ≤ 90 min

∴ MRP<sub>2</sub> absent, hence no clearance of BSP

Delayed clearance of BSP

Rx not Req.Not Req.

Q. E feature will suggest cause of ↑ of unconjugated BIL except :-

a) GB pigmented stones (H. anaemias) True

b) P/s → spherocytes (H. anaemie) True

~~c) Acute hep c viral infection Enzyme ↑ + conjug. ↑~~

d) H/o goit - True (Probeneid)

### ACUTE VIRAL HEPATITIS

caused by hep A to E

Hep A

① Mode of - H/c Feco-oral  
Transmission.

Hep E

H/c Feco-oral

sewer line

② Transmission to - common  
close contact

Rare ↓  
community  
spread.

③

'New epidemic in  
community'

④ Rare - • Blood Transfusion  
Viremia during late  
incubation period

Vertical

• Sexual

⑤ Not a mode  
of transmission

Vertical

BT  
Sexual

|                                                                       | Hep A                                    | Hep E                                                                                   |
|-----------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------|
| C/F                                                                   | M/c cause of Ac. Viral Hep. in children. | M/c of Ac. Viral Hep. in adults.                                                        |
|                                                                       | [M/c of Viral Hep - B]                   | M/c of Ac. Viral Hep. in<br>♂                                                           |
|                                                                       |                                          | [M/c of Viral Hep in ♂ = B]                                                             |
| Relapsing Hepatitis                                                   |                                          | Cholestatic hepatitis.<br>Swollen hepatocytes cause obstruction to intrahep. Bile flow. |
| 2 clinical episodes by same virus in ac. phase (<6mth)                |                                          | [ALP also ↑].                                                                           |
| Inv                                                                   |                                          |                                                                                         |
| Serology                                                              | IgM Anti-HAV<br>= Acute Hep. A infect    | IgM Anti-HEV<br>= Acute Hep E infect                                                    |
| IgG Anti-HAV - Pt is immune                                           |                                          | IgG Anti-HEV - Pt is immune                                                             |
| ↓ Possibilities                                                       |                                          |                                                                                         |
| • Post vaccination ✓                                                  |                                          | • ↑ ✓                                                                                   |
| • Remote recovered past infect ✓                                      |                                          |                                                                                         |
| • Chronic infection. X (virus + > 6mth)                               |                                          | X                                                                                       |
| Complications.                                                        |                                          |                                                                                         |
| 1) Fulminant hepatitis - 0.1%<br>(encephalopathy < 2 wks of Jaundice) |                                          | ♂/non ♀ → 1-2%<br>♀ → 10-20%                                                            |

|                                                  |    |    |
|--------------------------------------------------|----|----|
| 2) Chronic Hep                                   | 0% | 0% |
| (Viral is +ve for >6 months<br>+ Liver damage +) |    |    |
| 3) Carrier.                                      | 0% | 0% |
| (Virus + > 6 months<br>Liver damage -)           |    |    |

~~LMP Topic~~

### Hep B

Mode of ① M/c - vertical  
Transmission

Mother HbeAg +

Risk - 90%

AntiHbe Ab

Risk - 10%

① M/c - Percutaneous.

Needle

1.8 - 6%  
Milk

Viable < 4 days.

>  
BT

1 in 18 lac of  
Blood units.

transfused.

② Percutaneous

Needle

6 - 30% Milk

Viability of virus  
7 days.

M/c BT related risk = (B)

HIV

Needle IV drug  
accidental

RISK.

0.6%

0.3%

1 in 22 lac

|                                                                             | MOT | HIV    | Risk               |
|-----------------------------------------------------------------------------|-----|--------|--------------------|
| (Some donors have low level HBsAg & it NOT detected by routine lab method). |     |        | vertical - 5% risk |
| ③ Sexual Variable                                                           |     | Sexual | 5% risk            |
| <u>Race. MOT</u>                                                            |     |        |                    |
| secreted into saliva = yes                                                  |     | yes.   |                    |
| Human Bite                                                                  | yes | yes.   |                    |
| <u>Not MOT</u>                                                              |     |        |                    |
| • Virus secreted into <del>stool</del> yes                                  |     | yes.   |                    |
| stools                                                                      |     |        |                    |
| • Feco - oral transmission                                                  | No  | No.    |                    |
| (destroyed in stomach)                                                      |     |        |                    |
| • Breast milk secreted yes                                                  |     | yes    |                    |
| " " transmission                                                            | No  | No     |                    |

Secreted:

- Q. All are transmitted by blood except
- a) Hep A      b) Hep A      c) Hep A  
 b) B      b) B      b) B  
 c) C      c) C      c) C  
 d) E      d) HIV      d) G

Q. All causes AVH, transmitted by blood except

- Hep A
- B
- C
- G. → never causes AVH.

Q. M/c mode of transmission of hep B

1) Vertical vs Horizontal

2) Vertical vs Percutaneous vs Sexual vs Human Bite

Q. Hep B not transmitted by

- Saliva
- Semen
- ~~Few-oral~~
- Breast feeding.

C/F

Hep B

Mcc of viral cause of HCC

express HBxAg

Hep C

Mcc viral cause of cirrhosis

[Mcc of cirrhosis = Alcohol]

Q p 53

④ Viral Replication

Mcc viral cause of Chro. Hep =  
(Prevalence wise)

Mcc AVH leading to Chro. Hep.  
or

Max. Risk of chronicity

Mcc of Carrier

Serum sickness like illness

↓ HBsAg + Ab

Joint pain + rash

Insulin Resistance by

- Insulin action

↑ Risk of T<sub>2</sub> DM

In children = LN + Hepatosplenomegaly  
+ Rash

Gianotti Crosti Syndrome

### \* Serology of Hep B Infection

1) If Hep B limited to Acute phase only



2) If hep B converted to chronic infection



| <u>Phase</u>                      | <u>Marker</u>                                                       |
|-----------------------------------|---------------------------------------------------------------------|
| ① I.P.<br>Hep B infection         | HBsAg, HBeAg.<br>Earliest marker of HBsAg.                          |
| ② Acute (Symb)<br>Hep B infection | HBsAg, Ig M Anti HBc<br>Most reliable marker of Ac Hep B infection. |
| ③ Window period                   | Ig M Anti HBc                                                       |
| ④ Recovery period<br>of Ac. Hep B | Ig M Anti HBc, Anti HBs                                             |
| ⑤ Remote past infection           | Ig G, Anti HBc, Anti HBs ±<br>(disappear after year)                |
| ⑥ Chronic infection               | HBs Ag + Ig G Anti HBc                                              |



HAI (Histological Activity Index)  $\leq 3$

$\leq 3$

$> 3$

**Active**

**Inactive.**

Replication +

-

DNA copies.

$\geq 1000 / \text{mL}$

$< 1000 / \text{mL}$

Replication markers :-

- 1) Quantitative marker  $\rightarrow$  DNA copies. ← Most reliable replication marker
- 2) Qualitative marker  $\rightarrow$  HBe Ag.

exception Pre core Mutants of hep B virus



unable to make HBeAg but  
replication +

| DNA   | HBeAg | A                                   |
|-------|-------|-------------------------------------|
| ① (+) | (+)   | Relicative phase of (+) hep B virus |
| ② (+) | (-)   | Pre-core mutants of hep B           |
| ③ (-) | (-)   | Non-replicative phase               |

\* Serology of Hep c Infection :-

① If Hep c limited to Acute phase only



② If Hep c converted into chronic infection



| <u>Complications</u>  | <u>Hep B</u>            | <u>Hep C</u>              |
|-----------------------|-------------------------|---------------------------|
| ① Fulminant Hepatitis | 0.1 - 1%                | 0.1%                      |
| ② Chro. Hep           | 1 - 10%                 | 85% <sup>Inde</sup>       |
| ③ Carrier state       | 0.1 - 30%<br>Mean - 15% | 1.5 - 3.2%<br>Mean - 2.5% |

### Hep D

Inde

Mode of transmission - ① Percutaneous (Non-endemic zone) ✓  
 ② Close contact (endemic zone)

CF-

① H/c AVH leading to fulminant Hepatitis = D  
 or max risk

② Always associated to Hep B

Serology

① Co-infection - Acute hep D + Acute hep B  
 IgM Anti HDV                      IgM Anti HBC

② Superinfection - Acute hep D + Chronic hep B

IgM Anti HDV                      IgG Anti HBC

Comp

① Fulminant Hep. 5% in Co-infection.  
 20% in Superinfection

② Chr. Hep } → depend on Hep B-  
 ③ Carrier }

T/t

① AVH

→ Supportive Care (mostly self limiting).

I.v. fluid of choice = Dextrose as hypoglycemia risk  
 Min. Dextrose Req. = 150 g/day.

If 5% Dx = 3000 mL/d  
 (5g/100mL)

If 10% Dx = 1.5 L/day → Fluid of choice

If 25% Dx > 600 mL/day. → may cause thrombophlebitis.  
 ↳ not used for maintenance  
 reserved for emergency

2) Antivirals.

for Acute Hep C

Interferon α. 12-24 wks

LMR Topic

~~II~~ Chronic Viral Hepatitis

Approach to Chr. Hep B infection



DNA is (+) for Anti-viral if  $\geq 20,000 \text{ IU/mL}$  in HBeAg +  
 if  $\geq 2000 \text{ IU/mL}$  in HBeAg -  
 (Pre-core mutants).

### Anti-viral for Hep B

① Initiate = **(Monotherapy)** from 1st Line agents

1) Interferon α-

- oldest
- less effective in Cirrhosis

2) Entecavir -

- most potent
- ↓ effectiveness in Lamivudine Resistant cases

3) Tenovovir → **DOC**

- safest + effective even in Lamivudine (R) cases

Duration  $\geq 1\text{yr}$

### **(II) Ch. Hep. C Infection**



### Antivirals for Hep C

Initiate = **(Dual)** therapy (oral combination therapy)

INFα → outdated nowadays

Sofosbuvir + Velpatasvir → effective in all 6 genotypes.

→  
Sofosbuvir + Daclatasvir

Duration - 12 wks. for all genotypes.

### FATTY LIVER



Alcoholic Liver

Disease

Patho

Dose → 40-80 g/d = fatty liver

80-160 g/d = cirrhosis

Duration 10-20 yrs

♀ → Dose is half.

Non-Alcoholic Liver Disease

Dose of → 0-20 g/d  
alcohol

Cause - Insulin Resistance

Stages

Mech

① Fatty Liver

Ethanol

① ⊖

TG deposit

② FA metabolism

↑ free FA → (TG)

② Hepatitis

F-L + enzymes ↑

Stages

Mech

① Fatty Liver

TG deposit ↑

Insulin Resistance

↑ TG

Lipolysis

→ free FA ↑

② Hepatitis ← oxidative injury

C/F

- 1) Peripheral Neuropathy  
 direct alcohol effect → pure sensory  
 Pyridoxine def.-induced by alcohol.

- 1) Causes of Insulin Resistance  
 (1) Metabolic obesity  
 (2) Type 2 DM  
 (3) Steroid ( $\ominus$  insulin action)  
 (4) **Hep C**

2. Zieve's Syndrome.

Deep Jaundice due to additional effect of haemolytic induced by alcohol



Q. C/C suggest alcohol as a cause of cirrhosis

(a) Spider angioma] due  $\uparrow$  estrogen  $\rightarrow$  ↓ catabolism in Liver  
 (b) Gynaecomastia

(c) Loss of deep tendon reflex

(d) ascites.

Ix

(1) SGOT  $> 2$  Highly specific  
 SGPT for ALD.  
 (SGPT synthesis needs pyridoxine)

(1) SGOT  $\leq 1$ .  
 SGPT

(e) rGT - ↑

Site = Bile duct + ER

Fat squeeze ER to release rGT.

(g) rGT - ↑

(3) Peripheral Neutrophilia +

TNF $\alpha$  recruits

if neutrophil > 5500/mm<sup>3</sup>  
= Poor Prognosis

-

Rx:

① Fatty Liver = Reversible after cessation

FL = Reversible = Rx of underlying cause → obesity

② Hepatitis Doc-Steroid  
↓ act on TNF $\alpha$ .

Vit E.

↓ act as anti-oxidant

Indication if MADREY's  
alcoholic predominant funcn. > 32

$$= 4.6 \times [PT \text{ of pt} - PT \text{ of control}]_{(12 \text{ sec})} + S \cdot Bil$$

③ Cirrhosis

Best Rx → Liver Transplant

Cirrhosis

Liver Transplant

Recurrence of 1° disease

after LT = Nil of underlying cause Reman treated

# AUTOIMMUNE

447



|                                      |           |                                                                 |
|--------------------------------------|-----------|-----------------------------------------------------------------|
| C/F                                  | ♀         | ♀                                                               |
| Age                                  | 20-40 yrs | 40-60 yrs                                                       |
| Recurrent<br>(months over years)     |           | Pruritus<br>Xanthelasma (cholesterol deficit in the eyelids)    |
| Inv Ab depends on type of<br>AIH M/c |           | Mc/Mast sensitive / Mast specific<br>Ab → Anti mitochondrial Ab |

Inv Ab depends on type of  
AIH M/c

~~Ab~~  $\rightarrow$  (I) M/c  $\rightarrow$  (ANA) Most sensitive  
~~Ab~~  $\rightarrow$  Smooth muscle cell  
~~Ab~~  $\rightarrow$  P-ANCA

(II)  $\rightarrow$  Anti LKM1 (Liver kidney  
 $\downarrow$  microsome)  
 (also +ve in Hep C infection)

(III) - Least common, most severe  
 $\rightarrow$  Liver soluble antigen  
 Most specific

Regenerating hepatocytes

Bx: 

'Pseudo-rosette pattern'

Non-suppurative inflammation fibrosis  
of intrahepatic bile duct

R

① Hepatitis - Steroids (Doc)

① Compensated cirrhosis

Ursodeoxycholic Acid (UDCA)

(solubilize bile to non-toxic)

② Cirrhosis

Decompensated  $\rightarrow$  LT

② Decompensated cirrhosis

LT.

Recurrent after LT  $\rightarrow$

(common upto 50%)

Recurrence after LT  $\rightarrow$  flare

~~LMP Topic~~

## GENETIC

### WILSON'S DISEASE

Patho

AR mut<sup>n</sup> of  
ATP7B

$\downarrow$

$\downarrow$  Cu excretory protein  
in Liver

$\downarrow$   
Cu overload in the body

### HAEMOCHROMATOSIS

AR mut<sup>n</sup> of  
HFE

$\downarrow$

$\downarrow$  Hepcidin [ $\uparrow$  Fe absorption].

$\downarrow$   $\uparrow$  Fe absorption

Fe overload

qF

Liver

Most common  
organ

Liver

age < 20 yr

> 40 yr

Ch. Hepatitis +

+

|                                                                            |                                           |
|----------------------------------------------------------------------------|-------------------------------------------|
| Liver cirrhosis. Macronodular                                              | Mixed or Micronodular                     |
| HCC +                                                                      | ↑↑ (M/c cause of death even in t/td. ft.) |
| 2 <sup>nd</sup> organ affected CNS                                         | CNS                                       |
| ↳ Basal Ganglia                                                            | ↳ Hypothalamic pituitary axis             |
| M/c CNS manifestation                                                      | Hypogonadism                              |
| Frontal lobe                                                               |                                           |
| ↳ neuropsychiatric abnormalities.                                          |                                           |
| Cr. N/v → XII <sup>th</sup> (M/c Cr. N/v affected)<br>(Dysarthria)         |                                           |
| Autoimmune dysfunction.                                                    |                                           |
| ↳ Postural hypotension.                                                    |                                           |
| Not affected → 1. Sensory system<br>2. Motor power.<br>(Pyramidal pathway) |                                           |
| 3 <sup>rd</sup> Colour Change                                              |                                           |
| Eyes                                                                       | Skin.                                     |
| ↓ daytime vision = sunflower cataract                                      | due to Fe + melanin deposits<br>↓         |
| Kayser-Fleischer Ring (vision N)                                           | Bronze Pigmentation.                      |
| Peripheral                                                                 |                                           |

## (4) Functional Effect

Kidneys  
↓  
Proximal Tubular Dysfunction  
↓  
RTA - 2      Fancis Syndrome

Pancreas  
β cells affected  
↓

Bronze DM.

\* Reversible effect of haemochromatosis unlike other

## (5) Structural Damage

RBC Membrane  
↓  
Haemolytic Anaemia

Joints (2d 3rd MCP jt)  
Fe in joints → Pyrophosphate

Ca Pyrophosphate ↑

Pseudogout

(6)

X

CVS - Fe infiltrate inside myocyte

Myocyte contraction ↓



DCMP > RCMP

M/c cause of death ⇒ CVS in untreated pt.

Myocyte relaxation ↓



Inv

(N) Free Cu + Apoceruloplasmin  
↓  
Ceruloplasmin (Bound Cu)

|                                                        |                                                                       |
|--------------------------------------------------------|-----------------------------------------------------------------------|
| <u>Ab(N)</u> ↓ binding of free Cu to apo ceruloplasmin | 1. S. Fe → ↑<br>2. % Transferrin → ↑<br>Saturation                    |
| 1. S. Free Cu → ↑                                      | 3. S. Ferritin ↑                                                      |
| 2. S. Ceruloplasmin → ↓                                | 4. TIBC ↓<br><sup>New</sup> 5. UIBC ↓ = TIBC - S. Fe<br>(unsaturated) |
| 3. S. Total Cu = ↓<br>(mainly in bound form)           | ↑ Most sensitive inv                                                  |
| 4. Urinary free Cu levels - ↑                          | 6. Bx → ↑ Fe.<br>Prussian Blue Stain                                  |
| 5. Bx - Liver Cu > 200 µg/g<br>dry liver wt.           |                                                                       |

|                 |                                                          |
|-----------------|----------------------------------------------------------|
| <u>R</u>        | Hepatitis → Zn (DOC) [50mg/d]                            |
|                 | ↓                                                        |
| ① Cu absorption | Hepatitis →<br>DOC → Phlebotomy                          |
|                 | • 1mL Blood will remove → 0.5mg Fe                       |
|                 | • Single phlebotomy → 500mL Blood.<br>(250mg Fe removed) |
|                 | • Fe overload. > 20g                                     |
|                 | 80 phlebotomy Req.                                       |

|                                                 |                                  |
|-------------------------------------------------|----------------------------------|
| 2) Cirrhosis -                                  | Cirrhosis → Liver Transplant     |
| According to NAZER SCORE                        | Recurrence after LT → rare < 10% |
| • SGOT                                          |                                  |
| • S. Bil                                        |                                  |
| • PT.                                           |                                  |
| ↓                                               |                                  |
| <7      7-9      >9                             |                                  |
| Zinc + LT                                       |                                  |
| Treatment pt. will be lifelong                  |                                  |
| Recurrence after LT → NIL <sup>Zn</sup> therapy |                                  |

Q.  $\text{C}^+$  causes  $\uparrow \text{Cu}$  in Liver = KF Meng -

- a) autoimmune cholangitis
- b) 1° Biliary cirrhosis
- c) 1° sclerosing cholangitis
- d) All

} Ch4. cholestatic conditions

Q. After Phlebotomy manifestation of haemochromatosis ?

Reversible

- Hepatomegaly
- Skin pigmentation
- Diabetes
- CHF

Irreversible

- Cererosis
- Arthritis
- Hypogonadism

Q. HFE mutation  $\uparrow$  risk of  $\text{C}^+$  cancer = Breast  
colon cancer

## COMPLICATIONS OF LIVER FAILURE

### 1) HEPATIC ENCEPHALOPATHY

Mech- ↓ urea cycle



$\uparrow \text{NH}_3$

Astrocyte Damage

C/F- West HAYEY's Grading

|            |     |                                                                                                    |
|------------|-----|----------------------------------------------------------------------------------------------------|
| Restless   | I   | Earliest symptom = altered sleep cycle<br>" sign = altered handwriting<br>(constructional aphaxia) |
| Drowsiness | II  |                                                                                                    |
| Stuporosus | III | Trail making test<br>join to ① to ② 5 numbered circles.                                            |
| Coma       | IV  | (Normal time 15-30s.)                                                                              |

|                             |   |  |
|-----------------------------|---|--|
| Deep coma                   | V |  |
| <u>Inv</u>                  |   |  |
| EEG → ① most characteristic |   |  |

Triphasic large amplitude wave (grade II to IV)

② Slow - Grade V (1-4 Hz)

|                                                   |                                                                 |                                               |
|---------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|
| Rx                                                |                                                                 |                                               |
| ▷ Rx [ppt cause]                                  | Mech.                                                           | Rx                                            |
| ① GI infection                                    | ↑ bacterial proliferation                                       | Ab of choice<br>Atc Rifaximin.<br>(550 mg BD) |
| ② upper GI bleed<br>(ruptured esophageal varices) | Blood protein<br>↓ reach<br>gut bacteria<br>↳ ↑ NH <sub>3</sub> | If vital stable → Ryle's tube aspiration.     |

Rx OC → Endoscopic Band  
Ligation of Varices

Doc → Octreotide

2° prophylaxis -  $\beta$  blockers  
(never in acute bleed)

⑤  $S \cdot K^+ \downarrow$

## L Peristaltis

## I.V. KCl infusion

10-20 mm/ hour.

## Bacterial Profigeration

## ④ Metabolic alkalosis



Rx underlying cause

vomiting  
(Ice cream)

if pH ↓ → eq. shifts to (R)

## ⑤ Constipation

## Bacterial proliferation

Laxative of choice 2

## Lactulose

Cause added p.H.

1

Target 2-3 stools/day  
Otherwise may cause diarrhea

## (6) Myxovolemie

$\uparrow$  Renin  $\rightarrow$   $\uparrow$  aldosterone

GT → BL

1

$S \cdot K^+ / \text{at}$

## Lactate

## Met. alklosis

HCO<sub>3</sub><sup>-</sup>

## Metabolism

So, I.V. fluid → NS

## ⇒ ASCITES

\* Mech. ↑ Sinusoidal pressure (compression by nodules)

+

Na & H<sub>2</sub>O retention ←

↑ NO synthase (NO degraded in Liver)

↓

Aldosterone ↑

↑ NDO

Systemic vasodilation

(Blood pooling in  
systemic circulation)

Pulmonary  
vasodilation

Renin ↑

↑

↓ Renal perfusion ↓

Hepato-Renal  
Syndrome

\* C/F.

Sign  
Mast PUDDLE

Min fluid needed  
120 mL

Shifting dullness

← 500 mL

Fluid thrill

← 1500 mL

\* Inv Ascitic fluid

- Preferred Site → (1) lower quadrant

- Needle Size = Diagnostic 20-22G  
Therapeutic 15G

Umbilicus



## Step ① S-albumin - Ascitic Albumen (SAAC<sub>1</sub>)

$< 1.1$

(⑩ Sinusoidal pressure)

- 1) If S-albumin  $\downarrow$   
eg. Nephrotic Syndrome

- 2) If Ascitic albumin  $\uparrow$

due to  $\uparrow$  Peritoneal venel  
permeability

$> 1.1$

$\uparrow$  Sinusoidal pressure

- 1)  $\uparrow$  Ascitic albumen  $\downarrow$   
  - $\uparrow$  Sinusoidal pressure.
  - Sinusoidal wall is impermeable  
to albumin leak.

Eg. TB peritonci  
cancer

Acute Pancreatitis

Heart (9)



Step 2 - Ascitic Total Protein  $\leftarrow$  if  $SATT > 1.1$ ,

Cirrhosis

$< 2.5$

Non-cirrhotic

(Post-splenectomy ascites<sup>a</sup>)

$> 2.5$

① Ven-occlusive Disease

② Budd-Chiari

③ IVC obstruction

④ CHF / Constrictive Pericarditis

Fibrosis



Rx

Grade

Defn

Rx

I = Mild Ascites

No clinical signs

salt restriction

II = Moderate

Clinical signs +ve

Add diuretics

Respiratory distress -

spirostolactone

(max - 400mg/day)

Furosemide

(max - 160 mg/d)

III. Severe

Resp. Distress +

Large vol. paracentesis  
(5-6L removed)

+

I.V. albumin

(to retain in fluid)

IV Refractory Ascites      No response  
 >7 days of Max dose of Both diuretics      Same as Grade III

(5) Non-Cirrhotic Portal Fibrosis

Age >20 yr

c/f upper GI bleed +  
 ↑

Portal HTN +  
 ↓

Spleen +  
 >7 cm below Costal margin

Jaundice (-)

Encephalopathy (-)

Ascites (-)

Rx - Endoscopic Band ligation +

(6) Extra-hepatic Porta Vein Occlusion

<20 yr.

+

+

+

<7 cm below costal margin

(-)

(-)

(-)

+

### 3. HEPATO - PULMONARY SYNDROME.

Mech. Pulmonary vasodilation



(N) Pulmonary artery diameter

If vasodil = diam  
occur increase



mixing of deoxygenated blood  
on L side

R to L shunt

C/F

Platypnoea - dyspnea ↑ on standing [ diaphragm moves down ]

shunt open

hypoxia ↑ ]

Inv

① ↓ in O<sub>2</sub> saturation by 3% on standing from supine  
Orthodeoxia

Rx → Sclerosis of dilated vessel

2) RxOc = Liver Transplant

# INTESTINAL

## MALABSORPTION DISEASES

due to SI disease

| Proximal       | Distal                    |
|----------------|---------------------------|
| ↑              | ↑                         |
| Fe, FA, Ca, Mg | Bile, Vit B <sub>12</sub> |
| Fat, CHO, ++   | +                         |
| Protein        |                           |

## Tests for malabsorption

### I) For Fat :-

- Gold Std → 72 hour stool fat estimation  
if fat excretion > 6% ⇒ Steatorrhoea



H/C abnormality seen in Malabsorption syndrome

### ② Spot I<sub>x</sub> → Sudan III stain.

+ve if stool fat > 10%

### II) For Carbohydrate :-

- Most specific I<sub>x</sub> → D Xylose Test

Cause of <4.5gm excretion Blood

1) Pyloric stenosis

2) Proximal

SI disease



3) Coeliac disease

4) Bacterial overgrowth syndrome

5) 3rd space loss → ascites

Pleural effusion.

(ii) Renal failure

(iii) Vit B<sub>12</sub> malabsorption  
SCHILLING's TEST

(i) Oral radiolabelled Cobalamine

+  
I.M. vit B<sub>12</sub> (1mg)  
to fill liver

↓  
24 hour Urine collection.

↓  
<10%  
↓  
malabsorption  
↓  
>10% of excretion  
↓  
(N) test

Cobalamine



1) I.F. → Pernicious Anaemia

2) Pancreatic enzyme → Ch. Pancreatitis

3) Ab x 5 days → Bacterial overgrowth syndrome

if remains < 10% → Ileum disease

Q. In dietary deficiency of B<sub>12</sub>, schilling test. (N)

Q. Mut' of cubulin (R)  $\rightarrow$  IMERSLUND CRIESBECK's SYNDROME

#### IV Intestinal Biopsy

Gold Std. Ix or Most Specific Ix for malabsorption.

#### Etiologies of Malabsorption -

| CELIAC SPRUE                                                                                          | TROPICAL SPRUE                                                   |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Cause GLIADIN Hypersensitivity<br>(+ve in gluten)<br>↓<br>Local Contact MS                            | Bacterial Toxin.<br>+<br>Folic acid deficiency (+mucosal repair) |
| Prox SI > Distal SI                                                                                   | Distal SI > Prox SI.                                             |
| Q/F * Age - Typical 6-12 months<br>can occur at any age<br>Spontaneous remission - 2nd decade         | Adults                                                           |
| * Steatorrhoea (large vol, foul smelling)<br>leading to ↓<br>Chronic >4 weeks.                        | ✓                                                                |
| Non-inflammatory<br>(No blood or pus in stool)                                                        |                                                                  |
| * Extra-intestinal manifestations.<br>H/c - Dermatitis Herpetiformis<br>Other - T, DM, IgA deficiency |                                                                  |

## COELIAC SPRUE

## TROPICAL SPRUE

Inv

① Serology +

Most specific Ab = Anti-Endomysial Ab.

Most sensitive Ab = Anti tissue

Transglutaminase (TTG)

Most sensitive + specific Ab / Mc Best  
= Anti TTG

② Biopsy

- Lon of villi + ] renewable after
- Flat mucosa + gluten free
- Lymphocyte infiltration + diet

+

+

+

③ HLA DQ2 (+) in 100% cases.

HLA DQ8 but non-specific

-

R

LX Gluten free diet

Antibiotics → Doxycycline or

Rifaximin.

+

Folic acid.

Duration of Hf → 6 months

2. Steroid. Indications

1) Refractory sprue

2) (no response upto 12 month)

of gluten free diet

2) Celiac shock (↑ gluten load)

3) SI lymphoma

H/c cause of death

## WHIPPLE'S DISEASE

~~Also cause - Tropheryma Whipplei~~



### Other CNS manifestations

- Cerebellar ataxia
  - Myoclonic seizure
  - Encephalopathy
  - P. Neuropathy
  - ① organ not involved in whipple's
  - ② kidney
  - ③ lung
  - ④ eye
  - ⑤ CNS
- 3) CVS - Pericarditis
- M/c - Pericarditis

4) Eye - Uveitis

5) Polyserositis = Ascites  
Pleuritis

Inv B<sub>x</sub> - PAS +ve macrophage containing

D/D → TB

Bacilli  
AFB (-)

TB  
AFB (+)

Rx ① GIT → Ceftriaxone (2wk) → Cotrimoxazole (1yr)

② CNS/CVS → Ceftriaxone (2wk) → Doxycycline }  
(↑ risk of recurrence) + 1 year  
Chloroquine or Hydroxychloroquines }

BACTERIAL Overgrowth Syndrome  
Proliferation of colonic bacteria in prox SI  
Causes -



1) Steatorrhoea      Bile is deconjugated by bacteria in S.I.

Inr.

1) 72 hour stool test.  $>6\%$

2) D-Xylose test

excretion  $<4.5 \text{ gm}$

3) Schilling Test ab (N)

4) S-Folic acid level ↑

(Synthesis by bacteria + reabsorbed by prox. SI mucosa).

5) Lactulose Breath test or H<sup>2</sup> Breath test.



+ve in Breath 2-8 hours after giving Lactulose  
as Bacteria in SI metabolise.

6) Endoscopic jejunal aspirate culture



MIC organism E.coli  $>10^5/\text{mL}$

Rx

1) T/t underlying cause

2) Cyclo Ab. antibiotic [Co-amoxyclav.

Ab x 1 week



gap 3 wk.

↓  
Ab 1wk

## APPROACH TO DIARRHOEA

Essential Criteria for Diarrhoea

Stool Vol.  $> 200 \text{ mg/d}$

Stool wt.  $> 200 \text{ mg/d}$

Duration.



90% Due to infections

Acute & Persistent

If Infectious Diarrhoea

$\geq 90\%$  due to non-infectious

Toxin induced

( $\uparrow$  electrolyte +  $H_2O$  secretion)

Inflammation induced  
(exudative)

- Fever  $\ominus$
- Pus in stool  $\ominus$
- Blood in stool  $\ominus$

$\oplus$

$\oplus$

$\oplus$

If Toxin induced

Preformed  
I.P.  $\tau$  in hours

Enterotoxin  
1-2 days

1) *Bacillus cereus*  
(Chinese Restaurant diarrhoea)

2) *Vibrio cholerae*  
( $\uparrow HCO_3$  in stool - Rice stool  
Watery stool)

2) *Staph. aureus.*

2) Enterotoxigenic *E.Coli*

M/CC of Traveller's diarrhoea

3) *Clostridium Perfringens*

If inflammation induced

I. Mild = mucosa limited. (blood in stool -)

II. M/c Viral diarrhoea in adults = Noro virus  
" " " children = Rota virus

II Mod. = submucosa

1) *Salmonella* → involves ileum  
↓

Bile reabsorp<sup>n</sup> ↓  
↓

Bile in stool.

III Severe

2) *Yersinia* → severe ileum inflammation  
Pseudo appendicitis

③ 3) *Campylobacter* J. M/c infection cause of GBS

III Severe = Deep layers

1) *Shigella* → Toxic encephalopathy  
Ekbli Syndrome

2) *E. histolytica* → flask shaped ulcer

Rx - acute/persistent diarrhea

(1) Essential - Rehydration

I.v. fluid of choice → RL contains

mmol/L  
K<sup>+</sup> 4

Na<sup>+</sup> 130

Ca<sup>2+</sup> 2

Cl<sup>-</sup> 109

Lactate 28

Osmolarity 273

slightly hyperosmolar

(2) Antibiotics

Indication - Mod to severe inflammatory infection diarrhea

If  $\geq 1$  of 3 criteria (+)

a) Fever  $> 101^{\circ}\text{F}$

b) Blood in stool

c) Pus in stool

Empirical = Fluroquinolone.

Chronic Diarrhea

Non-inflammatory  
e.g. Malabsorption  
Syndrome

Inflammatory  
Topic LMR [Ulcerative colitis] IBD  
[Crohn's Disease]

| UC                                                    | CD                                                            |
|-------------------------------------------------------|---------------------------------------------------------------|
| * Risk / associated                                   |                                                               |
| ① Smoking ↓                                           | ↑                                                             |
| ② appendectomy ↓                                      | ↑                                                             |
| ③ Drugs<br>OCP ↔                                      | ↔                                                             |
| Methyldopa ↑                                          | ↔                                                             |
| Ab use in 1 year ↑                                    | ↔                                                             |
| ④ Infections ↔                                        | ↑ Mc = Mycobacterium<br>Para TB.                              |
|                                                       | Infection ↓ risk of CD -<br><i>H. Pylori</i>                  |
| ⑤ Turner's ↑                                          | ↑                                                             |
|                                                       | NOT DOWN SYNDROME                                             |
| ⑥ IL-10 Receptor<br>deficiency                        | ↑                                                             |
| ⑦ anti-inflammatory<br>Early onset IBD.               |                                                               |
| C/F Intestinal                                        |                                                               |
| M/c site → Rectum +<br>Sigmoid.<br>Rectum only        | M/c site → SI + LI > SI only.<br>M/c isolated site - Sigmoid. |
| M/c isolated site - Rectum<br>Site not involved → SI. | Rectum is usually spared                                      |

|                                                  |     |                                           |
|--------------------------------------------------|-----|-------------------------------------------|
| ① Malabsorption synd                             | (-) | (+)                                       |
| ② Bleeding PR (Tenesmus)                         | (+) | (-)                                       |
| ③ Fistula formation                              | (-) | (+) (Transmural involvement)              |
| ④ Toxic Megacolon.<br>(dilatation of colon >6cm) | (+) | (-) Bowel wall or thick stool dilatation  |
| Ulcer → Collar Button<br>○ (non-ulcering)        |     | Cobblestone ulcer<br># (eroding)          |
| Inv                                              |     |                                           |
| ① Stool exam.<br>Lactoferrin                     | (+) | (+)                                       |
| correlate w/ disease activity                    |     |                                           |
| Calprotectin                                     | (+) | (+)                                       |
| Predicts flare/re-lapse                          |     |                                           |
| ② Serology.<br>H/c → ANCA                        |     | Hc Ante<br>Saccharomyces cerevisiae<br>Ab |
| Role → ↑ risk of Pancolitis                      |     | Role → ↑ risk of early complication       |
| ③ Confirm $B_x$                                  |     | $B_x$                                     |

## Rx of Ulcerative Colitis

(I) Mild to mod. severity (stool freq. < 6/day)



II Severe IBD (Stool frequency > 6/day. or shock).



Only in Crohn's Disease (Resistant)



Integrin  $\beta_1$  helps in vascular adhesion

$\beta_1$

$\beta_7$  subunit

Lymphocyte

specific for GIT vessels

Ab against  $\beta_1$  &  $\beta_7$  = NATALIZUMAB.

(used in Multiple Sclerosis)

S/E → Reactivate JC virus

Progressive multifocal leukoencephalopathy

Ab against  $\beta_7$  = VEDOLIZUMAB

## Rx of Crohn's Disease

I. Mild to Mod. IBD



Stool limited

Doc - Oral release

Budesonide



Small + Large intestine

Doc - Oral prednisolone



no response in 4 weeks

Methotrexate

### \* Miscellaneous Points :-

1) Major cause of death → Cancer.

2) Colonic cancer risk → Ulcerative Colitis = Crohn's Disease.

3) Colonie Ca milk  $\downarrow \rightarrow$  Folic acid, ASA agents.

4) Extraintestinal Manifestation of IBD (usually more in CD)

Correlated to Bowel activity

Independent of Bowel activity

Skin - (1) Erythema Nodosum  
(red, hot, tender, nodules on skin)

N - neutrophil infiltration  
N - non-infective  
N - necrosis of skin.  
(2) Pyoderma Gangrenosum

Joints - Migratory Polyarthritis  
(Peripheral joints)

Ankylosing Spondylitis

Eye - Episcleritis

Uveitis

Liver - Non-alcoholic fatty  
Liver Disease

~~Set 1° R~~ Sclerosing Cholangitis

Risk factor for  
Cholangiocarcinoma

Q. M/c extra-intestinal organ affected in IBD - Joints

Q. M/c " " " manifestation.  $\rightarrow$  Erythema Nodosum

Q. C " " " more in UC  $\rightarrow$  Pyoderma  
1° sclerosing cholangitis

Addition Harrison Selected.

Part I → Involuntary wt. loss - Def<sup>n</sup> Cancer

Inv (Table)

Ascites

Table of causes of diarrhoea

Part II - Table of T/t of Hepatitis  
(Exclude doses or regimen)

Table of intestinal Biopsy findings

Protein losing enteropathy  
(1st 2 para - causes  
Inv)