Big Oh and Unit Testing

CSSE 221

Fundamentals of Software Development Honors

Rose-Hulman Institute of Technology

Efficiency is important

- Example?
- Not all a software problem
- Algorithms
 - Inherent complexity
 - Assume time spent is a function of the size of the input
 - Big-Oh focuses on the most important part of the function!

Now: plot y=18x + 5, y=18x, y = 5x, y=x² Which grows most quickly?

Efficiency is important

y=x²

$$y = 5x$$

- Simple Rule: Drop lower order terms and constant factors.
 - 7n 3 is O(n)
 - $8n^2\log n + 5n^2 + n$ is $O(n^2\log n)$

- Special classes of algorithms:
 - logarithmic: $O(\log n)$
 - linear O(n)
 - quadratic $O(n^2)$
 - polynomial $O(n^k)$, k 1
 - exponential $O(a^n)$, n > 1

Also: constant: O(1)

Figure 5.1
Running times for small inputs

Figure 5.2
Running times for moderate inputs

