Không gian vector - cơ sở

(Vector space - basis)

PiMA 2019

Phuc H. Lam

17/07/2019

PiMA 2019

Ma trân chuyển cơ sở

Nội dung

- 1 Quan hê tuyến tính
- 2 Không gian con của \mathbb{R}^n
- 3 Không gian vector, cơ sở và chiều
 - Không gian vector
 - Cơ sở
 - Chiều
- 4 Ma trân chuyển cơ sở
- 5 Hình chiếu lên không gian con

Quan hệ tuyến tính

Tổ hợp tuyến tính

Quan hê tuyến tính

Tổ hợp tuyến tính

Vector \vec{v} là một **tổ hợp tuyến tính** của các vector $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \in S$ nếu tồn tại $c_1, c_2, \dots, c_n \in R$ sao cho

$$\vec{v} = \sum_{k=1}^{n} c_k \vec{v}_k$$

Ta nói \vec{v} biểu diễn tuyến tính được qua S trên R.

PiMA 2019

Phuc H. Lam

Không gian vector - cơ sở

Hình chiếu lên không gian con

Ví du 1

Quan hê tuyến tính

Với $S(n) = \{1, x, x^2, \dots, x^n\}$, bất kỳ đa thức P(x) hệ số thực có bậc $degP \le n$ biểu diễn tuyến tính được qua S trên R:

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{k=0}^{n} a_k x^k$$

Ví dụ 2

Cho ma trận
$$A \in \mathbb{R}^{n \times k} = \begin{bmatrix} \vdots & \vdots & \dots & \vdots \\ \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_k \\ \vdots & \vdots & \dots & \vdots \end{bmatrix}$$
 và $x = \begin{bmatrix} c_1 & c_2 & \dots & c_k \end{bmatrix}^T \in \mathbb{R}^k$.

Khi đó

$$A\vec{x} = \sum_{i=1}^k c_i \vec{v}_i$$

Phép nhân ma trân với một vector ↔ tổ hợp tuyến tính của các cột của ma trân đó.

5/27

PiMA 2019

Tập sinh

Quan hê tuyến tính

Tập sinh (Spanning set)

Tập sinh Span(S) của S là tất cả các tổ hợp tuyến tính có thể của $h \tilde{u} u h a n$ các vector trong S:

$$\mathsf{Span}(S) = \left\{ \sum_{k=1}^n c_i \vec{v}_i \mid \quad \vec{v}_i \in S, c_i \in \mathbb{R} \ \forall i = 1, 2, \dots, n \right\}$$

PiMA 2019

Phuc H. Lam

Không gian vector - cơ sở

Hình chiếu lên không gian con

Tập sinh

Ví du 1

Với S(n) như trên, Span(S(n)) là tập hợp tất cả các đa thức có bậc không vượt quá n.

Với $S = \{1, x, x^2, \dots, x^n, x^{n+1}, \dots\}$, Span(S) là tập hợp tất cả các đa thức hệ số thực.

Ví du 2

Gọi C_A là tập hợp các vector cột của ma trận $A \in \mathbb{R}^{n \times k}$, khi đó

$$\mathsf{Span}(C_A) = \{A\vec{x} \mid \vec{x}^T \in \mathbb{R}^k\}$$

PIMA 2019

Phụ thuộc tuyến tính (Linear dependence)

■ Các vector $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ được gọi là **phụ thuộc tuyến tính** nếu $c_1, c_2, \dots, c_n \in \mathbb{R}$ không đồng thời bằng 0 sao cho

$$\sum_{k=1}^n c_k \vec{v}_k = \vec{0}$$

■ Các vector $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ được gọi là **độc lập tuyến tính** nếu $\forall c_1, c_2, \dots, c_n \in \mathbb{R}$, ta có:

$$\sum_{k=1}^{n} c_k \vec{v}_k = \vec{0} \Leftrightarrow c_k = 0 \ \forall k = 1, 2, \dots, n$$

Ví du 3

- $\{(1,2,0), (-1,1,0), (0,6,0)\} \text{ phụ thuộc tuyến tính, vì } \\ 2 \cdot (1,2,0) + 2 \cdot (-1,1,0) (0,6,0) = (0,0,0).$
- {(1,0),(0,1)} đôc lập tuyến tính.

PiMA 2019 Phuc H. Lam

Ma trân chuyển cơ sở

Quan hê tuyến tính

Cho
$$S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}.$$

Nhận xét 1: S phụ thuộc tuyến tính \Leftrightarrow tồn tại 1 vector \vec{v}_i biểu diễn tuyến tính được qua những vector còn lai.

Nhận xét 2: S độc lập tuyến tính \Leftrightarrow các vector trong Span(S) có biểu diễn tuyến tính duy nhất qua S.

PiMA 2019

Phuc H. Lam

Không gian con của ℝⁿ Không gian vector, cơ sở và ch

hiều

trận chuyển cơ sở Hình chiếu lên không gian con

Không gian con của \mathbb{R}^n

PiMA 2019

Không gian con của \mathbb{R}^n

Không gian con của \mathbb{R}^n (Subspace)

 $V \subset \mathbb{R}^n$ là **không gian con** của \mathbb{R}^n nếu V thoả:

- $\vec{0} \in V$
- $\vec{v} \in V, c \in \mathbb{R} \Rightarrow c\vec{v} \in V$
- $\vec{v}, \vec{w} \in V \Rightarrow \vec{v} + \vec{w} \in V$

Ví du 4

- Mặt phẳng $(D_1): x y + z = 0$ là không gian con của \mathbb{R}^3 . (Có thể kiểm chứng)
- Mặt phẳng (D_2) : x y + z = 2 không phải là không gian con của \mathbb{R}^3 , vì $(0,0,0) \notin (D_2).$

PiMA 2019

Không gian con của \mathbb{R}^n

Phần bù trưc giao (orthogonal complement)

Cho V là không gian con của \mathbb{R}^n . **Phần bù trực giao** V^{\perp} của V được xác định như sau:

$$V^{\perp} = \{ \vec{x} \in \mathbb{R}^n : \vec{x} \cdot \vec{v} = 0 \ \forall \vec{v} \in V \}$$

 V^{\perp} là không gian con của \mathbb{R}^n .

Lưu ý:
$$(V^{\perp})^{\perp} = V$$

Không gian trưc giao (Orthogonal subspaces)

2 không gian con V, W của \mathbb{R}^n được gọi là **trực giao** nếu

$$\vec{v} \cdot \vec{w} = 0 \ \forall \vec{v} \in V, \vec{w} \in W$$

PiMA 2019

Phuc H. Lam

Không gian vector

Không gian vector (Vector space)

Không gian vector V trên trường \mathbb{R} là một tập hợp, với 2 phép tính: cộng vector (+) và nhân vector với một số thực (\cdot) , sao cho $\forall \vec{u}, \vec{v}, \vec{w} \in V, c, d \in \mathbb{R}$, ta có các tính chất:

Không gian vector, cơ sở và chiều

- Giao hoán của phép công: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- Z Kết hợp của phép cộng: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- Tồn tại vector 'không' $\vec{0} \in V : \vec{0} + \vec{u} = \vec{u} + \vec{0}$
- Tồn tại vector đối $-\vec{u} \in V : (-\vec{u}) + \vec{u} = 0$
- Nhân kết hợp với số thực : $c(d\vec{u}) = (cd)\vec{u}$
- Phân phối của phép nhân với phép công: $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$
- Phân phối của phép cộng với phép nhân: $(c+d)\vec{u} = c\vec{u} + d\vec{u}$
- Phép nhân với $1 \in \mathbb{R} : 1\vec{u} = \vec{u}$

Ví du cho không gian vector

- Tập hợp các ma trận $m \times n$, với phép công và nhân vô hướng ma trận.
- Tập hợp các đa thức hệ số thực, với phép công đa thức và nhân đa thức với một số thực.

PiMA 2019

Không gian con của không gian vector (Subspace)

Cho không gian vector V trên trường \mathbb{R} . $U\subset V$ được gọi là **không gian con** của V nếu U thoả:

- **1** 0 ∈ *U*
- $\vec{v} \in V, c \in \mathbb{R} \Rightarrow c\vec{v} \in U$
- $\vec{u}, \vec{v} \in U \Rightarrow \vec{u} + \vec{v} \in U$

Nhận xét: $Span(U) \subset V$

PiMA 2019

Phuc H. Lam

Không gian vector, cơ sở và chiều Ma trân chuyển cơ sở Hình chiếu lên không gian con

Cơ sở

Cơ sở (basis)

Cho không gian vector V với U là không gian con. Một **cơ sở** của U là một tập hợp $S \subset U$ thoá:

- Các vector trong S độc lập tuyến tính với nhau.
- Span(S) = U

Biểu diễn trong cơ sở

Cho không gian vector U, có $S = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$ là một cơ sở hữu hạn. Với $\vec{u} \in U$, ký hiệu $[\vec{u}]_S$ là biểu diễn của \vec{u} qua cơ sở S, với

$$[\vec{u}]_{S} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

là môt vector trong \mathbb{R}^n thoả

$$\vec{u} = \sum_{i=1}^{n} x_i \vec{u}_i$$

PiMA 2019

Cơ sở

Ví du 5

Trong \mathbb{R}^2 , $(u_1, u_2) = \frac{2u_2 - u_1}{3}(1, 2) + \frac{2u_1 - u_2}{3}(2, 1)$, và $S = \{(1, 2), (2, 1)\}$ độc lập tuyến tính, nên S là một cơ sở cho \mathbb{R}^2 .

Với vector $\vec{u} = (u_1, u_2) \in \mathbb{R}^2$, ta có:

$$[\vec{u}]_{S} = \left(\frac{2u_2 - u_1}{3}, \frac{2u_1 - u_2}{3}\right)$$

Từ ví du trên \rightarrow một không gian như \mathbb{R}^n có thể có vô số cơ sở.

PIMA 2019

Quan hê tuyến tính

Cơ sở chính quy (Standard basis)

Trong không gian \mathbb{R}^n , hệ cơ sở chính quy gồm các vector

$$S_n = \{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\},$$

với $\vec{e}_k = (0, 0, \dots, 1, \dots, 0)$ (số 1 nằm ở vị trí thứ k)

Như vậy, với vector $\vec{u} = (u_1, u_2, \dots, u_n) \in \mathbb{R}^n$, ta có:

$$\vec{u} = \sum_{i=1}^{n} u_i \vec{e}_i \Rightarrow \vec{u} \equiv [\vec{u}]_{S_n}$$

PiMA 2019

Quan hệ tuyến tính Không gian con của \mathbb{R}^n Không gian vector, cơ sở và chiều Ma trận chuyển cơ sở Hình chiếu lên không gian con

Cơ sở

Cơ sở

Các tính chất của cơ sở

Cho *U* là một không gian vector.

- S là một cơ sở của $U \Rightarrow \forall \vec{u} \in U$, tồn tại **duy nhất một** cách biểu diễn \vec{u} dưới dạng tổ hợp tuyến tính của hữu hạn các vector trong S.
- S_1, S_2 là các cơ sở hữu hạn khác nhau của $U \Rightarrow S_1, S_2$ có cùng số phần tử.

Từ tính chất thứ $2 \rightarrow \text{định nghĩa chiều}$.

PiMA 2019

Chiều

Quan hê tuyến tính

Chiều của một không gian vector (Dimension)

Cho không gian vector V có không gian con U. Nếu U có một cơ sở hữu han S, thì $\mathbf{sô}$ **chiều** $\dim(U)$ của U là số phần tử của S:

$$dim(U) = |S|$$

Quy ước: $dim{\vec{0}} = 0$

Tính chất

- \blacksquare dim(\mathbb{R}^n) = n (xét hê có sở chính quy)
- U là không gian con của V có số chiều hữu hạn \Rightarrow dim(U) \leq dim(V); Đẳng thức xảy ra $\Leftrightarrow U = V$
- Tâp hợp gồm $k > \dim(V)$ vector bất kỳ trong V thì phu thuộc tuyến tính.

Chiều

Quan hê tuyến tính

Lưu ý: Cho V là một không gian con, với dimV=n và $S=\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_n\}$. Khi đó:

S là một cơ sở của V

 $\Leftrightarrow S$ độc lập tuyến tính

 $\Leftrightarrow V \subset \operatorname{Span}(S)$

Ma trận chuyển cơ sở

Ma trân chuyển cơ sở

Câu hỏi: chuyển biểu diễn theo một cơ sở sang biểu diễn theo một cơ sở khác?

Ma trân chuyển cơ sở

Cho không gian vector *n* chiều *U*, các cơ sở $S = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$,

 $T = {\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n}$. Ma trận chuyển cơ sở từ S sang T:

$$M_{S \to T} = \begin{bmatrix} \vec{u}_1 \end{bmatrix}_T \quad [\vec{u}_2]_T \quad \cdots \quad [\vec{u}_n]_T \end{bmatrix}$$

Ma trận trên thoả mãn: $M_{S \to T}[\vec{u}]_S = [\vec{u}]_T \quad \forall \vec{u} \in U$.

Như vây,

$$\Rightarrow \boxed{M_{T \to S} M_{S \to T} = I_n}$$

PiMA 2019

Phuc H. Lam

Quan hê tuyến tính

Ví dụ 5, tiếp theo

Cho
$$E = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
 và $S = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ là các cơ sở của \mathbb{R}^2 . Khi đó:

$$M_{E \to S} = \begin{bmatrix} [e_1]_S & [e_2]_S \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1 & 2\\ 2 & -1 \end{bmatrix}$$

Như vậy, biểu diễn của vector $\begin{bmatrix} u_1 & u_2 \end{bmatrix}'$ qua S là

$$\frac{1}{3} \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2u_2 - u_1 \\ 2u_1 - u_2 \end{bmatrix}$$

17/07/2019

Phuc H. Lam

Hình chiếu lên không gian con

Hình chiếu lên không gian con (Projection on a vector space)

Cho không gian con $V \subset \mathbb{R}^n$ và vector $\vec{v} \in \mathbb{R}^n$. Hình chiếu \vec{u} của \vec{v} lên V thoả:

$$(\vec{v}-\vec{u})\in V^{\perp}$$

Tính chất

Quan hê tuyến tính

- \vec{u} xác định duy nhất: $\vec{u} = \sum_{i=1}^k \operatorname{proj}_{\vec{v}_i}(\vec{v})$, với $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ là một cơ sở trực chuẩn của V.
- $(\vec{v} \vec{u}) \cdot \vec{u} = 0.$
- \vec{u} là nghiệm của min $_{\vec{x} \in V} ||\vec{x} \vec{v}||$.

Ví du: " \mathbb{R}^2 trong \mathbb{R}^3 " \to "hình chiếu"

PiMA 2019

Phuc H. Lam

Hình chiếu lên không gian con

Để chiếu vector \vec{u} lên vector đơn vị \vec{y} :

$$\operatorname{proj}_{\vec{y}}(\vec{u}) = (\vec{y}\vec{y}^T)\vec{u} = P_{\vec{y}}\vec{u}$$

Như vậy, với một cơ sở trực chuẩn của V thì hình chiếu \vec{u} của \vec{v} lên V là

$$\vec{u} = \sum_{i=1}^{k} P_{\vec{v}_i} \vec{v} = (\sum_{i=1}^{k} P_{\vec{v}_i}) \vec{v} = P_V \vec{v}$$

PiMA 2019

Quan hê tuyến tính

Phuc H. Lam