Работа 4.3.2

Дифракция света на ультрозвуковой волне в жидкости

Шарапов Денис, Печин Максим, Б05-005

1 Аннотация

Цель работы: изучить дифракцию света на синусоидальной акустической решётке, провести наблюдения на фазовой решётке методом тёмного поля.

В работе используются: оптическая скамья, осветитель, длиннофокусные объективы, кювета с жидкость, кварцевый излучатель с микрометрическим винтом, генератор ультразвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

2 Результаты измерений и обработка данных

2.1 Исследование по дифракционной картине

Оценим *по порядку величины* скорость звука как удвоенное расстояние между наиболее чёткими дифракционными картинами:

$$n=67\,$$
 дел,
$$\lambda \approx 67 \cdot 10 \cdot 2 = 1340\,$$
 мкм,
$$v=\lambda \cdot \nu \approx 1840\,$$
 м/с.

Эта величина не является точной, т. к. оценка проводилась по факту наибольшей видимости, поэтому подсчёт погрешностей не имеет смысла.

Таблица 1: Результаты измерения положений дифракционных максимумов

ν, МΓц	x_m , MKM				
	0	+1	-1	+2	-2
1,4570	0	196	-172	384	344
2,1515	0	272	-260	_	_
4,3971	0	584	-540	ı	_

Таблица 2: Результаты измерений скорости звука

ν , Мгц	1,4570	2,1515	4,3971
k	182 ± 3	266 ± 4	562 ± 12
<i>v</i> , м/с	1430 ± 20	1450 ± 20	1400 ± 30

График зависимости $x_m(m)$ приведён на рис. 1.

2.2 Исследование методом тёмного поля

Цена деления шкалы микроскопа определяется как

$$1$$
 дел = 45 мкм.

Найдём длину ультразвуковой волны. Результаты измерений в таблице 3. Откуда получим

$$v = 1419 \pm 40$$
 m/c.

Рис. 1: Графики зависимости положения дифракционных максимумов от их порядка

Рис. 2: Графики зависимости длины УЗ волны от периода

Таблица 3: Результат измерения длин волн

ν , Мгц	1,7070	2,0866	4,2673
п, дел	65	44	43
m, линий	8	7	14
Λ , MKM	183	142	69

3 Вывод

В работе не удалось провести достаточное количество измерений и получить достаточно чёткие полосы. В основном это связано с особенностями оборудования, применяемого в опыте — генератором частот.

Так или иначе, удалось с неплохой точностью измерить скорость звука в воде используя волны как синусои-дальную решётку. Кроме того, была изучена дифракция света на акустической решётке, был применён и изучен метод тёмного поля в наблюдении фазовых объектов.