Modulhandbuch Medieninformatik Bachelor of Science

Version B_MInf25.0_W

Letzte Änderung: 2025-01-27 14:51:49

Inhaltsverzeichnis

- MB001 Analysis
- MB002 Mathematische Konzepte und Diskrete Mathematik
- MB003 Programmstrukturen 1
- MB004 Informationstechnik
- MB014 Audio und Grundlagen der AV-Bearbeitung
- MB015 Mediengestaltung
- MB052 Einführung in Datenbanken
- MB018 Workshop Audio- / Video-Bearbeitung
- MB019 Deskriptive Statistik und Grundlagen der Linearen Algebra
- MB020 Programmstrukturen 2
- MB044 Unix und Shell-Programmierung
- MB238 Digital Content Creation
- MB038 Compositing-Projekt
- MB043 Systemnahe Programmierung
- MB045 Lineare Algebra
- MB201 Digital Marketing
- MB221 Grundlagen Data Science
- MB252 Mechanik und Elektrotechnik
- MB292 Usability and Mobile
- MB293 Digital Product Management
- MB053 Datenschutz und Medienrecht
- MB059 Web-Anwendungen
- MB085 Grundlagen der Computergrafik
- MB097 Bildbearbeitung und -analyse
- MB209 Applied Data Science and Machine Learning
- MB270 Optik und Interface-Technologie
- MB291 Web- and App-Analytics
- MB040 Algorithmen und Datenstrukturen
- MB102 Geometrische Modellierung und Computeranimation
- MB107 Einführung in die Robotik
- MB116 Technologie der Mediengestaltung und GUI-Programmierung
- MB244 Exploratory Data Analysis
- MB266 Virtual and Augmented Reality
- MB268 Projekt App- und Web-Development
- MB318 Projekt Video Marketing
- MB319 Projekt Video Marketing
- MB057 Fortgeschrittene Objektorientierte Programmierung
- MB118 Soft Skills
- MB121 Software-Projekt
- MB147 Seminar Medieninformatik
- MB257 Auslandssemester
- MB273 Projekt Interfaces
- MB150 Bachelor-Thesis
- MB159 Praktikum
- MB160 Bachelor-Kolloquium

Module

♦ MB001 – Analysis

Verantwortliche:	Hendrik Lam
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB001 – Analysis	Vorlesung	Klausur		120 Min.	3.0	Drittelnoten	jedes Semester	90 Stunden	Hendrik Lam
TB002 – Übg. Analysis	Übung	Teilnahme	50 Seiten		2.0	Bestanden/nicht Bestanden	jedes Semester	60 Stunden	Fikret Koyuncu

Lehrinhalte:

- Bearbeitung von Übungsaufgaben aus dem Themenspektrum der zugehörigen Lehrveranstaltung
- Vorstellung und Diskussion möglicher Lösungswege
- Zahlentypen
- Folgen
 - Bildungsgesetze
 - o Grenzwerte
- Funktionen, Relationen
 - o Funktionstypen
 - o Umkehrfunktion
- Differentialrechnung
 - o Differentiationsregeln
 - Anwendungen der Differentialrechnung (Kurvendiskussionen und Extremwerte)
- Unendliche Reihen
- Integralrechnung
 - Integrationsmethoden
 - o Anwendungen der Integralrechnung
- Funktionen mit zwei Variablen
 - o Partielle Differentiation
 - o Extremwertaufgaben ohne Nebenbedingungen

Qualifikationsziele:

Die Studierenden können ...

- praktische Problemstellungen mathematisch formulieren
- beurteilen, welche analytischen Hilfsmittel zielführend sind
- neue, unklare und ungewöhnliche Aufgabenstellungen als solche erkennen und mit weiterführender Hilfestellung bearbeiten
- Lösungsansätze präsentieren und begründen

Die Studierenden ...

- kennen und verstehen die grundlegenden Begriffe, Aussagen und Methoden der Analysis,
- können mathematische Regeln korrekt anwenden,
- verstehen Beweistechniken.
- erkennen die fundamentale Bedeutung des Grenzwertbegriffes für die Analysis,
- beherrschen die Methoden des Differenzierens und Integrierens,
- können die eindimensionale Differentialrechnung bei praxisorientierten Fragestellungen flexibel in unterschiedlichen Fachgebieten einsetzen und dabei beurteilen, welche analytischen Hilfsmittel für welche Problemstellungen zielführend sind
- erkennen die Anwendbarkeit und den Nutzen der Analysis für unterschiedliche Fachgebiete und deren spezifischen Problemstellungen,
- können praxisorientierte Problemstellungen in mathematische Beziehungen bzw. Modelle umzusetzen und anhand analytischer Modelle weiter bearbeiten
- können neue, unklare und ungewöhnliche Aufgabenstellungen als solche erkennen und zur Bearbeitung weiterführende Hilfestellung in Anspruch nehmen,
- verfügen über gesteigerte Kompetenzen sich Fähigkeit durch Selbststudium anzueignen und sich in neue formale Systeme einzuarbeiten

Verwendbarkeit:

Das Modul ist sinnvoll mit anderen Modulen der Mathematik zu kombinieren und zur Bildung mathematischer Grundlagenkompetenzen in allen naturwissenschaftlichen, ingenieurtechnischen und wirtschaftswissenschaftlichen Studiengängen verwendbar. Es stellt Querbezüge zur Finanzmathematik, Linearen Algebra, Statistik, Physik und Betriebswirtschaftslehre her.

Voraussetzungen und Empfehlungen:

- Schulbildung in mathematischen Grundlagen
- Empfehlung: Brückenkurs Mathematik

Literatur:

• BÖHME, Gert:

Analysis 1.

6. Aufl. Berlin: Springer-Verlag, 1990

• FETZER, Albert; FRÄNKEL, Heiner:

Mathematik 1.

10. bearbeitete Aufl. Berlin: Springer-Verlag, 2008

• FETZER, Albert; FRÄNKEL, Heiner:

Mathematik 2.

6. korrigierte Aufl.. Berlin: Springer-Verlag, 2009

• HENZE, Norbert; Last, Günter:

Mathematik für Wirtschaftsingenieure 1.

2. Aufl. Wiesbaden: Vieweg + Teubner Verlag, 2005

• KUSCH, Lothar:

Mathematik. Aufgabensammlung mit Lösungen. Bd. 3

9. Aufl. Berlin: Cornelsen Verlag, 1995

• OHSE, Dietrich: Mathematik für Wirtschaftswissenschaftler 1. Analysis.

6. Aufl. München: Verlag Vahlen, 2004

• PAPULA, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler 1: Ein Lehr- und Arbeitsbuch für das Grundstudium.

12. überarbeitete und erweiterte Aufl. Wiesbaden: Vieweg + Teubner Verlag, 2009

• PREUSS, Wolfgang; WENISCH, Günter:

Lehr- und Übungsbuch Mathematik 1: Grundlagen - Funktionen - Trigonometrie.

2. neu bearbeitete Aufl. München: Carl Hanser Verlag, 2003

• PREUSS, Wolfgang; WENISCH, Günter:

Lehr- und Übungsbuch Mathematik 2: Analysis.

3. Aufl. München: Carl Hanser Verlag, 2003

• PAPULA, Lothar: Mathematik für Ingenieure und Naturwissenschaftler: Klausur- und Übungsaufgaben 4. überarbeitete und erweiterte Aufl. Wiesbaden: Vieweg + Teubner Verlag, 2010

- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (1. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (1. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (1. Semester)
- E-Commerce Bachelor of Science Version 20.0 (1. Semester)
- Informatik Bachelor of Science Version 25.0 (1. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (2. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (2. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (2. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (1. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (1. Semester)

♦ MB002 – Mathematische Konzepte und Diskrete Mathematik

Verantwortliche:	Sebastian Iwanowski
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB003 – Diskrete Mathematik	Vorlesung	Klausur		120 Min.	5.0	Drittelnoten	jedes Semester	150 Stunden	Sebastian Iwanowski

Lehrinhalte:

- Logik
 - o Einführung
 - Aussagenlogik
 - Prädikatenlogik
- Mengenlehre
 - o Grundlegende Begriffe und Konzepte
 - Relationen
 - o Funktionen
 - Boolesche Algebren
- Beweisführung
 - o Strukturen der mathematischen Beweisführung
 - Vollständige Induktion
 - Beweisstrategien
- Zahlentheorie
 - o Teilbarkeit
 - o Teilen mit Rest
 - o Primzahlen
 - Modulare Arithmetik
- Algebraische Strukturen
 - o Gruppen
 - Körper
- Kombinatorik
 - o Zählformeln für Mengen
 - o Permutationen
- Graphentheorie
 - o Terminologie und Repräsentation
 - Wege in Graphen
 - Bäume
 - o Planare Graphen
 - o Färbungen

Qualifikationsziele:

Nach Abschluss der Veranstaltung besitzen die Studierenden folgende Kompetenzen:

- Beherrschen der grundlegenden mathematischen Begriffe und Konzepte (Definition, Satz, Beweis) und Fähigkeit zur Unterscheidung derselben.
- Beherrschen der Grundlagen und der Formalisierung logischen Denkens.
- Verständnis elementarer Logik und Mengenlehre und des inneren Zusammenhangs dieser Gebiete.
- Darauf aufbauendes Verständnis von Relationen und Funktionen.
- Fähigkeit, elementare Beweisprinzipien wie vollständige Induktion in verschiedenen Kontexten anzuwenden.
- Beherrschen der grundlegenden Sätze der elementaren Zahlentheorie, Gruppen- und Körpertheorie, Kombinatorik und Graphentheorie und selbständige Anwendung an Beispielen.

Verwendbarkeit:

Das Modul ist ein Einführungsmodul. Es liefert die Konzepte für ein tieferes Verständnis der anderen Mathematikmodule wie "Analysis" und "Lineare Algebra". Die vermittelten Konzepte und Inhalte werden gebraucht in den Modulen "Informationstechnik", "Einführung in Digitaltechnik", "Programmstrukturen 1 und 2", "Formale Sprachen", "Algorithmen und Datenstrukturen", "Einführung in Datenbanken" und "Anwendungen der Künstlichen Intelligenz". Außerdem werden die in diesem Modul vermittelten Kenntnisse in allen Mastervorlesungen der IT-orientierten Studiengänge vorausgesetzt.

Voraussetzungen und Empfehlungen:

Mathematik Gymnasium 9. Klasse

Literatur:

• Sebastian Iwanowski / Rainer Lang:

Diskrete Mathematik mit Grundlagen, Springer 2014, ISBN 978-3-658-07130-1 (Print), 978-3-658-07131-8 (Online)

• Albrecht Beutelspacher / Marc-Alexander Zschiegner:

Diskrete Mathematik für Einsteiger.

Vieweg 2004 (2. Auflage), ISBN 3-528-16989-3

• Norman L. Biggs:

Discrete Mathematics.

Oxford University Press 2002, ISBN 0-19-850717-8

• Neville Dean: Diskrete Mathematik.

Pearson Studium, Reihe "im Klartext" 2003, ISBN 3-8273-7069-8

• Christoph Meinel / Martin Mundhenk:

Mathematische Grundlagen der Informatik.

Teubner 2002 (2. Auflage), ISBN 3-519-12949-3

- Computer Games Technology Bachelor of Science Version 23.0 (1. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (1. Semester)
- E-Commerce Bachelor of Science Version 23.0 (1. Semester)
- Informatik Bachelor of Science Version 25.0 (1. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (1. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (1. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (1. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (1. Semester)

♦ MB003 – Programmstrukturen 1

Verantwortliche:	Dennis Proppe
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB004 – Programmstrukturen 1	Vorlesung	Klausur + ggf. Bonus		120 Min.	3.0	Drittelnoten	jedes Semester	90 Stunden	Dennis Proppe
TB005 – Übg. Programmstrukturen 1	Übung	Abnahme	10 Aufgaben	15 Min.	2.0	Bestanden/nicht Bestanden	jedes Semester	60 Stunden	Lars Neumann

Lehrinhalte:

Ausgehend von den Grundlagen der Programmierung wie Datentypen, Verzweigungen und Iterationen werden in der Übung Programmstrukturen 1 in den einzelnen Aufgaben Ein- und Ausgabe, Operatoren, Bedingungen, Schleifen, Strings (sowohl über Stringfunktionen als auch über indizierten Zugriff), Arrays, Records, Mengen, Prozeduren und Funktionen, Zeiger und Listen sowie Dateien und Exceptions behandelt.

Die Inhalte höherer Aufgaben schließen dabei in der Regel die Inhalte der vorherigen mit ein.

- Grundkonzepte der Datenverarbeitung
- Entwurf und Darstellung von Algorithmen
- Allgemeine Aspekte von Programmiersprachen
- Daten in Programmen
 - o Grundlegende Datentypen
 - Variablen, Zuweisungen, Konstanten
- Grundsätzlicher Aufbau von Programmen
- Operatoren und Ausdrücke
- Einfache und strukturierte Anweisungen
- Statische strukturierte Datentypen und ihre Nutzung
 - o Strings
 - Arrays
 - o Records
 - o Sets
- Zeigertypen
 - o Besonderheiten und Probleme bei der Nutzung von Zeigertypen
 - Aufbau dynamischer Datenstrukturen mit Hilfe von Zeigertypen
- Strukturierung von Programmen
 - o Prozeduren und Funktionen
 - o Units

Qualifikationsziele:

Die Studierenden ...

- festigen und vertiefen ihr Wissen zu den in der zugehörigen Vorlesung "Programmstrukturen 1" vorgestellten Konzepten
- beherrschen die Arbeit mit einer modernen Entwicklungsumgebung (Embarcadero Delphi 11.1)
- lernen Grundlagen des Debugging und der Versionsverwaltung kennen
- erweitern ihre Teamfähigkeit durch die eigenständige praktische Anwendung des erlernten Wissens in Zweiergruppen

Die Studierenden ...

- kennen die grundlegenden Konzepte imperativer Programmiersprachen und ihre Umsetzung in der Programmiersprache Pascal und können diese benennen.
- kennen die Syntax, Semantik und Pragmatik als wesentliche Aspekte von Programmiersprachen und können diese unterscheiden.
- kennen die wichtigsten Sprachbestandteile der Programmiersprache Pascal und beschreiben diese.
- setzen die Konzepte und Sprachbestandteile angemessen zur Lösung von Problemstellungen begrenzter Komplexität ein und bauen vollständige Programme für diese Problemstellungen auf.
- kennen die wesentlichen statischen Datenstrukturen imperativer Programmiersprachen, wählen bei der Programmierung zwischen diesen in Abhängigkeit von der Aufgabenstellung sicher aus und setzen sie angemessen zur Realisierung der Programmfunktionalität ein.
- kennen die Realisierung einfacher dynamischer Datenstrukturen und können diese zur Realisierung von Algorithmen nutzen.
- kennen wesentliche Qualitätskriterien für Software und können diese bei der Software-Entwicklung berücksichtigen.
- führen eine Fehlersuche und -beseitigung (Debugging) bei ihren Programmtexten durch.

Verwendbarkeit:

Das Modul ist ein Einführungsmodul in den Themenbereich Programmierung für alle Studiengänge mit Informatikbezug. Die erworbenen Kompetenzen sind insbesondere die Grundlage für das Modul "Programmstrukturen 2", aber auch für die Module "Systemnahe Programmierung" und "UNIX und Shell-Programmierung".

Voraussetzungen und Empfehlungen:

Es wird kein Vorwissen erwartet. Wer sich schon vor Beginn des Studiums vorbereiten möchte, kann sich mit grundlegenden algorithmischen Strukturen in einer beliebigen (imperativen) Programmiersprache beschäftigen. Zudem ist die Installation von Embarcadero Delphi auf dem eigenen Rechner empfehlenswert.

Das Skript und weiteres Material werden individuell jedes Semester über die hochschuleigene Lernplattform zur Verfügung gestellt.

Literatur:

Skript:

• OTTMANN, Thomas; WIDMAYER, Peter:

Programmierung mit PASCAL: Eine Einführung für Programmieranfänger, 9. Aufl., Springer Vieweg, 2018

• Collingbourne, Huw:

The Little Book Of Delphi Programming: Learn To Program with Object Pascal, Dark Neon, 2020

• CANTU, Marco:

Object Pascal Handbook, CreateSpace Independent Publishing Platform, 2015

• GUMM, Heinz-Peter; SOMMER, Manfred:

Einführung in die Informatik.

11. Aufl. München: Oldenbourg Wissenschaftsverlag, 2013.

• MATTHÄUS, Wolf-Gert:

Grundkurs Programmieren mit Delphi: Systematisch programmieren lernen für Einsteiger, 5. Aufl., Springer Vieweg, 2016

• WIRTH, Niklaus:

Algorithmen und Datenstrukturen: Pascal-Version. 5. Aufl., Teubner-Verlag, 2013

- Computer Games Technology Bachelor of Science Version 23.0 (1. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (1. Semester)
- E-Commerce Bachelor of Science Version 23.0 (Wahlmöglichkeit 1. Semester)
- Informatik Bachelor of Science Version 25.0 (1. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (1. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (1. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (1. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (1. Semester)

♦ MB004 – Informationstechnik

Verantwortliche:	Dennis Säring
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB006 – Informationstechnik	Vorlesung	Klausur		60 Min.	5.0	Drittelnoten	jährlich	150 Stunden	Dennis Säring

Lehrinhalte:

- Grundlagen der Halbleitertechnik
- Logikgatter und Schaltnetze
- Zahlendarstellung und Berechnung
- FlipFlop und weitere Speicherstrukturen
- Moderne Rechnerarchitekturen
- Programmcode zu Assembler
- Computerperipherie
- Informationstheorie und Kodierung

Qualifikationsziele:

Die Studierenden ...

- besitzen grundlegende Kompetenzen zum Verständnis der Funktionalität von Rechnern in Bezug auf ihre informationstheoretischen Grundlagen und deren praktische Implementierung
- können Vorgänge der Informationsverarbeitung auf der Maschinenebene theoretisch sowie praktisch umsetze
- sind in der Lage die Umsetzung von Befehlen höherer Sprachebenen in Maschinenbefehle und in deren rechnerinternen Interpretation nachzuvollziehen
- kennen die Ansätze aktueller Rechnerstrukturen und Kommunikationsschnittstellen mit der Peripherie
- sind vertraut mit Informationstheoretischen Ansätzen und unterschiedlichen Kodierungsverfahren.

Verwendbarkeit:

Das Modul "Informationstechnik" ist ein Einführungsmodul und soll ein breites Grundverständnis für die Funktionsweise von Rechnern vermitteln. Die erworbenen Kompetenzen stellen damit die Grundlagen für zum Beispiel die Module "Rechnerstrukturen und Digitaltechnik", "Systemsoftware" und "Großintegrierte Systeme" dar.

Voraussetzungen und Empfehlungen:

Grundlegendes Interesse an der Informationstechnik

Literatur:

- Gumm, Hans-Peter; Sommer, Manfred: Einführung in die Informatik, Oldenbourg, 8. Auflage 2009.
- Müller, Käser, et., al.: Technische Informatik 1, vdf-Hochschulverlag Zürich, 2003
- Schiffmann, Schmitz: Technische Informatik 2, Grundlagen der Computertechnik, Springer-Verlag 1998
- Märtin: Einführung in die Rechnerarchitektur, Fachbuchverlag Leibzig, 2003

- Computer Games Technology Bachelor of Science Version 23.0 (1. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (Wahlmöglichkeit 3. Semester)
- Informatik Bachelor of Science Version 25.0 (1. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (1. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (1. Semester)
 Wirtschaftsinformatik Bachelor of Science Version 23.0 (1. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 3. Semester)

♦ MB014 – Audio und Grundlagen der AV-Bearbeitung

Verantwortliche:	Dennis Säring
Moduldauer:	12 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB082 – Grundlagen der AV-Bearbeitung	Vorlesung	Klausur		60 Min.	2.5	Drittelnoten	jährlich	75 Stunden	Dennis Säring
TB093 – Workshop Audio-Bearbeitung	Workshop	Portfolio-Prüfung	8 Seiten		2.5	Drittelnoten	jährlich	75 Stunden	Michael Hinck

Lehrinhalte:

- Faltungsoperationen
- Bildsensoren
- Farbmodelle und Farbräume
- Diskrete Cosinus-Transformation (DCT)
- JPEG und MPEG
- Bewegungsvektoren und Bézierkurve
- Motion Tracking
- Vorlesung
 - Einführung in die Audiotechnik (dB-Pegel, log. Frequenzen)
 - Einführung in die Mikrofontechnik
 - Erweiterte Anwendungen des Mikrofoneinsatzes
 - Konzepte und Anwendungsproblematiken der Signalverwandlung Analog/Digital und Digital/Analog
 - Konzepte der Audiomischung
 - o Lautsprechertechnik und Lautsprechereigenschaften
- · Praktischer Teil
 - o Projekt zur Thematik Mikrofonierung, Aufnahme, Mixing, Mastering

Qualifikationsziele:

Die Studierenden erlangen ...

- Kenntnisse zu den Thematiken Audiopegel, Audiofrequenzen, Mikrofonierung, Recording und Downmix mit Digital-Recorder und/oder Harddisksystemen, Wiedergabesysteme.
- die Fähigkeit zum selbstständigen Arbeiten mit Aufnahmesystemen und Audio-Schnittsystemen wie z. B. WaveLab oder Nuendo. Mastering auf CD.

Die Studierenden ...

- besitzen alle Grundkenntnisse über Bilddaten und Farbräume
- kennen grundsätzlichen Aspekte, Eigenschaften und unterschiedlichen Verfahren zur Kompression von Video-Daten
- können die erlernten Kenntnisse über praxisrelevanten Videokompressionsverfahren in der Praxis anwenden
- haben ein Verständnis für die Theorie und Anwendung von Bezier-Funktionen

Verwendbarkeit:

Das Modul verbindet den Bereich Audio mit dem Bereich Sound-Design in zum Beispiel Spielen oder Filmen und sollte durch seinen grundlegenden Charakter in Verbindung mit zum Beispiel "Informationstechnik" und "Grundlagen von Computer Games und interaktiven Medien" oder "Mediengestaltung" kombiniert werden.

Voraussetzungen und Empfehlungen:

Grundlagen der Informations- und Signalverarbeitung

Literatur:

- Uwe Kühhirt, Marco Rittermann: Interaktive audiovisuelle Medien
- Millerson: Television Production, Focal Press, London, 1997
- Millerson: Video Camera Techniques, Focal Press, London, 1998
- Poynton: Digital Video, Wiley and Sons, 1996

- Stotz: Computergesteuerte Audio-, Video-Technik, Springer-Verlag
- Weiskamp: Desktop-Video, Addison-Wesley
- Milde: Videokompressionsverfahren im Vergleich. JPEG, MPEG, H.261, XCCC, Wavelets, Fraktale, dpunkt-Verlag, 1995
- Handout W. Köhnsen
- DICKREITER, Michael; HOEG, Wolfgang; DITTEL, Volker; WÖHR, Martin: Handbuch der Tonstudiotechnik.
 - 7. bearbeitete und ergänzte Aufl. München: KG Saur Verlag, 2008

- Computer Games Technology Bachelor of Science Version 23.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (1. Semester)

♦ MB015 – Mediengestaltung

Verantwortliche:	Michael Hinck
Moduldauer:	12 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB075 – Anwendung Mediengestaltung, Grundlagen der Mediengestaltung	Vorlesung mit integrierter Übung	Klausur + ggf. Bonus	16 Seiten	90 Min.	5.0	Drittelnoten	jährlich	150 Stunden	Michael Looft

Lehrinhalte:

- Grundlagen
 - Proportion
 - o Farben
 - Perspektiven
 - Typografie
- Vektorgrafik
 - o Erstellen und Bearbeiten von Pfadobjekten an zunächst einfachen, später komplexeren Beispielen
 - o Techniken zur Herstellung von Signets, Icons, Piktogrammen und Infografiken
- Bildbearbeitung
 - o Selektionen von Bildinhalten
 - Layertechniken (Ebenentechniken)
 - o Freistellen durch unterschiedliche Techniken
 - Arbeiten mit verschiedenen Gruppierungs- und Maskierungsmethoden
 - o Import externer Dateien
 - Komplexe Bildmontage
 - o Besonderheiten von Pixelgrafiken in Print und Web
 - Erstellen von Web-Interfaces
- Desktop Publishing
 - o Erstellen von Dokumenten
 - o Seitenaufbau mehrseitiger Produkte
 - Beachten druckspezifischer Notwendigkeiten (Farbraum, Beschnitt)
 - Zusammenspiel von Text und Bild
 - o Arbeiten mit Vorlagen, sowohl im Großen (Seitentypen)als auch im Kleinen (Absatz- und Objektformate)
- Screendesign
 - Techniken zur grafische Umsetzung für interaktive Medien, Interfaces für Websites, Kenntnis der Stärken und Einzigartigkeiten sowie der Restriktionen
 - o Nutzen der spezifischen typografischen Möglichkeiten

Qualifikationsziele:

Die Studierenden ...

- können das gestalterische Grundlagenwissen umsetzen und besitzen die Fähigkeit, praktische Gestaltungstechniken in den Bereichen Print- und Webdesign anzuwenden.
- besitzen die Fähigkeit zur ästhetisch-sensiblen Wahrnehmung und zu einer kritischen Urteilsfähigkeit auf diesem Gebiet
- besitzen die Fähigkeit zur konstruktiven Zusammenarbeit in teamorientierten Medienprojekten.
- besitzen tief gehende Kenntnisse der speziellen Gestaltungsaspekte in unterschiedlichen Medien (Web, Print).
- besitzen die Fähigkeit zur Umsetzung von Gestaltungsaufgaben sowohl in digitalen als auch gedruckten Medien.
- besitzen das Wissen über die Einschränkungen, aber auch über die besonderen Herausforderungen und Möglichkeiten, die mit dem Design von interaktiven Anwendungen wie z.B. im Internet einhergehen.
- kennen die handelsübliche Software zur Lösung spezieller Gestaltungsprobleme in den Bereichen Bildbearbeitung, Layout, GUI-Design und Typografie allgemein.

Verwendbarkeit:

Das Modul behandelt gestalterische Aspekte im Allgemeinen. Die erworbenen Kompetenzen stellen die gestalterischen Grundlagen für zum Beispiel die Module "Workshop Audio-/Video-Bearbeitung", "Compositing-Projekt", "Digital Content Creation", "Web-Anwendungen", "Game-Engines", "Workshop Special Effects and Movies" und "Technologie der Mediengestaltung und GUI-Programmierung" dar.

Voraussetzungen und Empfehlungen:

Dies ist ein Grundlagenmodul daher gibt es keine Voraussetzungen für eine erfolgreiche Teilnahme.

Es ist zwar empfehlenswert, jedoch nicht notwendig, sich mit der vorgeschlagenen Literatur oder ähnlicher, fachlich aufbereiten Informationen über Farben, Farbmischung, Bildbearbeitung und/oder Typografie auseinander zu setzen. Auch können praktische Erfahrungen mit einem non-destruktiven, Ebenen-orientierten Bildbearbeitungsprogramm nützlich sein.

Literatur:

- EDWARDS, Betty: Garantiert zeichnen lernen. Rowohlt, Reinbek bei Hamburg, 1982
- KORGER, Hildegard: Schrift und Schreiben. Fachbuchverlag Leipzig, 1991
- KRISZTIAN, Gredor; SCHLEMPP-ÜLKER: Ideen visualisieren. Hermann Schmidt, Mainz, 1998
- TSCHICHOLD, Jan: Ausgewählte Aufsätze über Fragen des Buches und der Typografie. Birkhäuser, Basel, 1975
- WILLBERG, Hans Peter; FROSSMANN, Friedrich: Erste Hilfe in Typografie. Hermann Schmidt, Mainz, 1999

- Computer Games Technology Bachelor of Science Version 23.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (1. Semester)

♦ MB052 – Einführung in Datenbanken

Verantwortliche:	Marco Pawlowski
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB020 – Einführung in Datenbanken	Vorlesung	Klausur		60 Min.	3.0	Drittelnoten	jährlich	90 Stunden	Marco Pawlowski
TB021 – Übg. Einführung in Datenbanken	Übung	Abnahme	2 Aufgaben	20 Min.	2.0	Bestanden/nicht Bestanden	jährlich	60 Stunden	Mustapha Zorgati

Lehrinhalte:

Vorlesungsbegleitende praktische Übungen in SQL und zum Datenbankentwurf

- Einführung in die Datenbanktechnologie
- Datenbanksprache SQL Einführung
- Datenbank-Abfrage mit SQL
- Datenbanksprache SQL Einrichten der Datenbank
- Das Entity-Relationship-Datenmodell
- Das Relationale Datenmodell
 - Relationenschemata und Datenabhängigkeiten
 - o Relationale Datenbanken
 - Normalformen
- Datenbank Lebenszyklus

Qualifikationsziele:

Die Studierenden ...

- besitzen die Fähigkeit, ein Datenbanksystem mit SQL zu befragen und in nicht-triviale textuelle Anfrageanforderungen in SQL zu überführen.
- haben grundlegende Kenntnisse über die Ausführung der von ihnen gestellten Anfragen.
- haben die Kompetenz, ein Datenbankentwurfswerkzeug grundlegend zu bedienen.

Die Studierenden ...

- beherrschen die Grundlagen der relationalen Datenbanktechnologie;
- erlangen die Fähigkeit, selbstständig einen Datenbankentwurfsprozess zu planen, eine relationale Datenbank unter Nutzung von SQL einzurichten und die Informationsverarbeitung mittels relationaler Datenbanksysteme unter Nutzung von SQL durchzuführen;
- erlangen die Fähigkeit, mit einem Entwurfstool einen Datenbankentwurfsprozess durchzuführen und mittels SQL selbständig Anfragen an ein Datenbanksystem zu stellen.

Verwendbarkeit:

Das Modul komplementiert Einführungen in die Programmierung ("Einführung in die Programmierung", "Programmstrukturen 1") in allen Studiengängen. Es ist mit den fortgeschrittenen Modulen "Datenbanktheorie und -implementierung" (Bachelor) und "Konzepte der Datenbanktechnologie" (Master) kombinierbar. Das Modul sollte in allen Studiengängen verwendet werden, in denen Datenhaltung wesentlich ist.

Voraussetzungen und Empfehlungen:

Vorausgesetzt wird ein grundlegendes Verständnis der Konzepte von Programmiersprachen.

Empfohlen wird die Einrichtung der in der Übung verwendeten Werkzeuge.

Literatur:

- Elmasri, Ramez; Navathe, Shamkant B.: Grundlagen von Datenbanksystemen. 3. Aufl. München: Pearson Verlag, 2009.
- Meier, Andreas: Relationale Datenbanken Leitfaden für die Praxis. Berlin: Springer-Verlag, 2004.
- Vetter, Max: Aufbau betrieblicher Informationssysteme mittels konzeptioneller Datenmodellierung. 8. Aufl. Stuttgart: Vieweg-Teubner, 1998.
- Vossen, Gottfried:Datenmodelle, Datenbanksprachen und Datenbank-Management-Systeme. 5. Aufl. Oldenbourg-Wissenschaftsverlag, 2008.

Vorlesungsunterlagen

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 24.0 (3. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (3. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (3. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (3. Semester)
- E-Commerce Bachelor of Science Version 23.0 (3. Semester)
- Informatik Bachelor of Science Version 25.0 (3. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (5. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (1. Semester)
- Smart Technology Bachelor of Science Version 24.0 (3. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 5. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (3. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 3. Semester)

♦ MB018 – Workshop Audio- / Video-Bearbeitung

Verantwortliche:	Hendrik Annuth
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB092 - Workshop Audio-/Video-Bearbeitung	Workshop	Portfolio-Prüfung	25 Seiten	45 Min.	5.0	Drittelnoten	jährlich	150 Stunden	Hendrik Annuth

Lehrinhalte:

- Einführung Video-Technologie
 - o Konzepte der Video-Editing-Software
 - o Grundsätzliche Arbeitsabläufe und Verfahren
 - o Dateiformate und Eigenschaften
 - o Effekte
- Konzepte der Video-Editing-Software
 - o Grundsätzliche Arbeitsabläufe und Verfahren
 - o Dateiformate und Eigenschaften
 - o Effekte
 - Rendering und Ausgabeformate
- Aspekte der Rechnerverarbeitung von AV-Daten
 - o Allgemeine Strukturen
 - Speicherung von AV-Daten auf Festplatten
 - o Grafik-Interfaces und GPUs
 - Video-Interfaces
 - o Audio-Interfaces

Qualifikationsziele:

Nach Abschluss der Lehrveranstaltung beitzen die Studierenden folgende Kompetenzen:

Grundlegende Kompetenz zur Erfassung und Durchdringung der technischen, organisatorischen und dramaturgischen Aspekte, die bei der Produktion von Video-Clips mit Rechnern von Bedeutung sind. Dabei geht es auch um den Erwerb der Kompetenz zum professionellen Einsatz industrietypischer Video-Editing-Software.

Erzielt werden soll die Fähigkeit zum freien, aufgabengerechten Umgang mit dem Medium Audio/Video. Zusätzlich soll das Verständnis der in anderen Veranstaltungen präsentierten Grundkonzepte der Informationstechnik durch die Betrachtung praktischer Aufgabenstellungen der AV-Produktion verbessert werden.

Verwendbarkeit:

Das Modul ist mit der Veranstaltung "Mediengestaltung" zu kombinieren, um gestalterische, theoretische Aspekte mit der Praxis effektiv umsetzen zu können.

Voraussetzungen und Empfehlungen:

Das Wissen aus dem Audio-Workshop wird vorausgesetzt. Die korrekte Audiogestaltung ist Teil der Workshopbewertung.

Literatur:

- Uwe Kühhirt, Marco Rittermann: Interaktive audiovisuelle Medien
- Millerson: Television Production, Focal Press, London, 1997
- Millerson: Video Camera Techniques, Focal Press, London, 1998
- Poynton: Digital Video, Wiley and Sons, 1996
- Stotz: Computergesteuerte Audio-, Video-Technik, Springer-Verlag

Studiengänge:

• Medieninformatik Bachelor of Science Version 25.0 (2. Semester)

♦ MB019 – Deskriptive Statistik und Grundlagen der Linearen Algebra

	Andreas Haase Franziska Bönte
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB009 – Deskriptive Statistik, Grundlagen der Linearen Algebra	Vorlesung mit integrierter Übung	Klausur		120 Min.	5.0	Drittelnoten	Sommersemester	150 Stunden	Andreas Haase Franziska Bönte

Lehrinhalte:

- Lineare algebraische Gleichungssysteme
 - o Gauß-Algorithmus
 - Systematisierung des Lösungsverhaltens
 - Unterbestimmte Systeme
- Matrixrechnung
 - o Matrixalgebra
 - o Inverse Matrix
 - o Matrixgleichungen
 - Zusammenhang mit linearen Gleichungssystemen
- Determinanten
 - o Definition
 - o Zusammenhang mit linearen Gleichungssystemen
- Vektorrechnung
 - o Geometrische Vektoren
 - o Rechenregeln
 - Lineare (Un-)Abhängigkeit
 - Rang einer Matrix
 - o Nochmal Gleichungssysteme, Rangkriterium

Im Rahmen der beschreibenden / deskriptiven Statistik werden folgende Themen behandelt:

- Begrifflichkeiten
- Lage- und Streuungsmaße
- Abhängigkeitsmessung bei qualitativen, komperativen und quantitativen Merkmalen insbesondere Regressionsanalyse
- Deskriptive Zeitreihenanalyse mit Trend-, Saison- und Restkomponentenschätzung nach unterschiedlichen Methoden
- Meß- und Indexzahlen

Qualifikationsziele:

Nach der Lehrveranstaltung können die Studierenden ...

- Statistische Daten verdichten und graphisch aussagekräftig darstellen
- Wesentliche Aussagen über Daten anhand geeigneter Kennzahlen treffen und interpretieren
- Die Ableitung von Regressionsformeln verstehen und komplexe Regressions- und deskriptive Zeitreihenanalysen abgestimmt auf den jeweiligen Datensatz durchführen und interpretieren
- sicher im Umgang mit Meß- und Indexzahlen agieren

Nach dem erfolgreichen Besuch der Vorlesung sind die Lernenden in der Lage ...

- lineare algebraische Gleichungssysteme mittels des Gauß-Algorithmus in die Lösbarkeitskategorien (eindeutig lösbar, unendlich viele Lösungen, unlösbar) einzuteilen und ggfs. die Lösung anzugeben.
- die Techniken und Methoden der Vektorrechnung anzuwenden.
- die Techniken und Methoden der Matrixrechnung anzuwenden.
- die Determinante einer niedrigdimensionalen Matrix zu berechnen und den Zusammenhang der Determinante zur Lösungstheorie linearer Gleichungssysteme herzustellen
- einfache technische oder ökonomische Systeme mittels der Techniken und Methoden der linearen Algebra zu modellieren und aus der ermittelten Lösung der mathematischen Formulierung das System quantitativ zu beurteilen.

Verwendbarkeit:

Das Modul "Deskriptive Statistik & Grundlagen der Linearen Algebra" ist ein Einführungsmodul. Zusammen mit dem Modul "Analysis", stellt es die Grundlage für nahezu alle quantitativ ausgerichteten weiterführenden Module und Veranstaltungen des Studienverlaufs dar.

Voraussetzungen und Empfehlungen:

Grundlegende mathematische Kenntnisse, wie sie im Mathematik-Brückenkurs vermittelt werden, werden vorausgesetzt.

Literatur:

• PAPULA, Lothar:

Mathematik für Ingenieure und Naturwissenschaftler,

Band 2, Teil I. 13. Aufl. Wiesbaden: Vieweg + Teubner Verlag 2012

• HELM, Werner; PFEIFER, Andreas; OHSER, Joachim:

Mathematik für Wirtschaftswissenschaftler.

1. Aufl. München: Carl Hanser Verlag 2011

• GRAMLICH, Günter:

Lineare Algebra: Eine Einführung.

1. Aufl. München: Carl Hanser Verlag 2011

• TESCHL, Gerald; TESCHL, Susanne:

Mathematik für Informatiker,

Band 1: Diskrete Mathematik und lineare Algebra.

3. Aufl. Heidelberg: Springer Verlag 2008

• FISCHER, Gerd:

Lineare Algebra: Eine Einführung für Studienanfänger.

18. aktualisierte Aufl. Wiesbaden: Springer Verlag 2014

- Christensen, B.; Christensen, S.; Missong, M.: Statistik klipp \& klar; 2019; Springer Gabler Verlag
- Bamberg, G.; Baur, F; Krapp, M: Statistik; 18. Auflage; 2017; De Gruyter Oldenbourg Verlag; München
- Missong, Martin; Aufgabensammlung zur deskriptiven Statistik; 2005; 7. Auflage; Verlag R. Oldenbourg, München.
- Schneider, Wolfgang; Kornrumpf, J.; Mohr, Walter; Statistische Methodenlehre --- Definitions- und Formelsammlung zur deskriptiven und induktiven Statistik mit Erläuterungen; 1993; Verlag Oldenbourg, München.

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 24.0 (2. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (2. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (2. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (2. Semester)
- E-Commerce Bachelor of Science Version 23.0 (2. Semester)
- Informatik Bachelor of Science Version 25.0 (2. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (2. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (2. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (2. Semester)
- Smart Technology Bachelor of Science Version 24.0 (2. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (2. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (2. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (2. Semester)

♦ MB020 – Programmstrukturen 2

Verantwortliche:	Dennis Proppe
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB010 – Programmstrukturen 2	Vorlesung	Klausur + ggf. Bonus	1 Seiten	120 Min.	3.0	Drittelnoten	jedes Semester	90 Stunden	Dennis Proppe
TB011 – Übg. Programmstrukturen 2	Übung	Abnahme	8 Aufgaben	30 Min.	2.0	Bestanden/nicht Bestanden	jedes Semester	60 Stunden	Gerit Kaleck

Lehrinhalte:

Es wird in die Programmierung mit Java und die Entwicklungsumgebung IntelliJ eingeführt. In der Übung werden die in der Vorlesung vorgestellten Grundkonzepte der objektorientierten Programmierung durch das Lösen verbal forumulierter Aufgabenstellungen in kleinen Teams angewendet. Das Testen und Präsentieren sauber strukturierter Lösungen wird geübt.

Behandelte Grundkonzepte sind:

- Grundkonzept der Programmiersprache Java
 - o Grundlegende Eigenschaften der Sprache
 - o Grundlegender Aufbau von Java-Programmen
 - o Ausführung von Java-Programmen
- Grundlegende Programmelemente
 - Primitive Datentypen in Java
 - o Variablen, Zuweisung, Gültigkeitsbereiche
 - o Operatoren und Ausdrücke
 - o Anweisungen
- Referenzdatentypen
 - o Arrays
 - o Klassen
- Statische Methoden
- Grundlegende Klassen
 - String
 - StringBuilder
 - Wrapper-Klassen f
 ür primitive Datentypen
 - o Enum
- Grundkonzepte der Objektorientierung
 - o Klassen und Instanzen mit Attributen und Methoden
 - o Sichtbarkeit, Packages
 - Konstruktoren
 - Vererbung und Überschreiben
 - o Dynamisches Binden, Polymorphie
 - o Objektorientierte Realisierung rekursiver dynamischer Datenstrukturen (Listen)
 - o Generische Typen
 - o Abstrakte Klassen und Interfaces Deklaration und Nutzung
 - o Realisierung grafischer Benutzungsoberflächen
 - Behandlung von Laufzeitfehlern
 - Klassen zur Realisierung von Dateioperationen

Qualifikationsziele:

Die Studierenden ...

- identifizieren die Basiskonzepte der Objektorientierten Programmierung und stellen diese den Konzepten der prozeduralen Programmierung gegenüber.
- entwickeln Software auf der Grundlage der Kernkonzepte der Objektorientierten Programmierung.
- stellen die grundlegenden Sprachelemente (Datentypen, Anweisungen, Realisierung von objektorientierten Konzepten) von Java zusammen und wählen daraus aus, um Java-Programme mittlerer Komplexität zu entwickeln.
- vergleichen die Programmiersprachen Pascal und Java und stellen ihre Gemeinsamkeiten und Unterschiede heraus.
- setzen eine moderne Entwicklungsumgebung zur Unterstützung der Softwareentwicklung ein und stellen die damit verbundenen Funktionalitäten und Vorgehensweisen dar.
- entwerfen einfache dynamische Datenstrukturen im Kontext einer objektorientierten Programmiersprache.
- erläutern grundlegende Algorithmen, die auf den vermittelten Datenstrukturen arbeiten.
- entwerfen für Programme mittlerer Komplexität durch Einsatz geeigneter Elemente der Programmiersprache Java eine angemessene Modularisierung und legen entsprechende Schnittstellen zwischen den Modulen fest.
- benennen die Grundregeln der benutzungsgerechten Gestaltung von Programmen und nutzen diese, um Benutzungsoberflächen von

Programmen begrenzter Funktionalität sowohl strukturell als auch funktional angemessen zu gestalten.

• kennen die grundlegenden Klassen und ihre Operationen, mit denen dateibezogene Operationen implementiert werden können.

Die Studierenden ...

- kennen die Basiskonzepte objektorientierter Programmiersprachen und können sie in Java umsetzen.
- können einfache dynamische Datenstrukturen im Kontext einer objektorientierten Programmiersprache umsetzen und grundlegende Algorithmen auf diesen Datenstrukturen anwenden.
- sind firm in Nutzung einer aktuellen Version einer verbreiteten Entwicklungsumgebung (IntelliJ).
- können ein vollständiges Software-System kleineren Umfangs ausgehend von einer verbalen Aufgabenstellung realisieren.
- entwickeln Software erfolgreich im kleinen Team.
- ermitteln geeignete Testfälle zur Qualitätssicherung.
- kennen die Grundregeln zur Gestaltung benutzungsgerechter Oberflächen und bedienfreundlicher Software.

Verwendbarkeit:

Das Modul basiert auf den im Modul "Programmstrukturen 1" erworbenen Kompetenzen. Es schafft die Grundlagen für Module der fortgeschrittenen Programmierung in Informatik-Studiengängen, zum Beispiel die Module "Algorithmen und Datenstrukturen", "Fortgeschrittene Objektorientierte Programmierung" und "Web-Anwendungen".

Voraussetzungen und Empfehlungen:

Die in "Programmstrukturen 1" vermittelten Konzepte sollten verstanden sein und flüssig umgesetzt werden können. Die Installation der Entwicklungsumgebung IntelliJ auf dem eigenen Rechner ist empfehlenswert.

Literatur:

- Christian Ullenboom: Java ist auch eine Insel. 17. Auflage, Rheinwerk Verlag, 2023
- Hans-Peter Habelitz: Programmieren lernen mit Java. 7. Auflage, Rheinwerk Computing, 2022
- Michael Bonacina: Java Programmieren für Einsteiger: Der leichte Weg zum Java-Experten! 2. Auflage, BMU Verlag, 2018
- Markus Neumann: Java Kompendium: Professionell Java programmieren lernen. BMU Verlag, 2019
- Dietmar Ratz et al.: Grundkurs Programmieren in Java. 8. Auflage, Carl Hanser Verlag, 2018
- Michael Inden: Einfach Java: Gleich richtig programmieren lernen. dpunkt.verlag, 2021
- David Kopec: Algorithmen in Java, 32 Klassiker vom Rucksackproblem bis zu neuronalen Netzen, 1. Aufl. Rheinwerk Computing, 2021
- Kathy Sierra et al.: Java von Kopf bis Fuß: Eine abwechslungsreiche Entdeckungsreise durch die objektorientierte Programmierung. O'Reilly, 2023
- Ralph Steyer: Einführung in JavaFX/OpenJFX: Moderne GUIs für RIAs und Java-Applikationen. 2. Aufl., Springer Vieweg, 2022
- Anton Epple: JavaFX 8: Grundlagen und fortgeschrittene Techniken. dpunkt.verlag, 2015
- Sergey Grinev: Mastering JavaFX 10: Build advanced and visually stunning Java applications. Packt Publishing, 2018
- Herbert Schildt: Introducing JavaFX 8 Programming (Oracle Press). Mcgraw-Hill Education, 2015

- Computer Games Technology Bachelor of Science Version 23.0 (2. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (2. Semester)
- E-Commerce Bachelor of Science Version 23.0 (Wahlmöglichkeit 2. Semester)
- Informatik Bachelor of Science Version 25.0 (2. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (2. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (2. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (2. Semester)
- Smart Technology Bachelor of Science Version 24.0 (2. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (2. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (2. Semester)

♦ MB044 – Unix und Shell-Programmierung

Verantwortliche:	Malte Heins
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB019 – Übg. Unix und Shell-Programmierung, Unix und Shell-Programmierung	Vorlesung mit integrierter Übung	Abnahme	5 Aufgaben	35 Min.	5.0	Bestanden/nicht Bestanden	Sommersemester	150 Stunden	Martin Dietze Malte Heins

Lehrinhalte:

Das Modul gliedert sich in folgende Inhalte:

- Systemstruktur
- Shell-Kommandos
- Dateisystem und Rechteverwaltung
- Filter und Pipelines
- Skriptprogrammierung mit der Shell
- POSIX-Konformität und nützliche Erweiterungen durch die bash
- Reguläre Ausdrücke
- Skriptsprachen
- Das make-System
- Prozessverwaltung

Zusätzlich werden in der Übung praxisrelevante Aspekte der Shell-Programmierung behandelt, die nicht Bestandteil der Vorlesung sind. Die Bearbeitung der Übungsaufgaben folgt parallel zum Stoff der Vorlesung in Zweiergruppen mit Abnahme und Diskussion der Lösungen.

Qualifikationsziele:

Die Studierenden ...

- können die Vorteile und Gefahren von Skriptsprachen in der Software-Entwicklung am Beispiel der Unix-Shell sh abschätzen.
- haben ein Grundverständnis über interne Abläufe im Unix-Kern bei der Prozessverwaltung.
- haben ein Verständnis für die sequentielle Verarbeitung, wie Filterung und Auswertung von großen Datenmengen in Textform.
- kennen sowohl die Flexibilität als auch die Fehleranfälligkeit von dynamischen Sprachen und haben eine Vorstellung davon, wann und wie sich die Produktivität beim Arbeiten mit Skriptsprachen im Vergleich zu kompilierten Sprachen verändert.
- können mit Filtern und Pipes arbeiten und diese zu einfachen Programmen beziehungsweise Skripten kombinieren.
- beherrschen reguläre Ausdrücke praktisch für die Verarbeitung von Texten und Auszeichnungssprachen an und kennen deren Mächtigkeit und Grenzen.
- haben Grundkenntnisse über die Konfiguration von Build-Werkzeugen.
- finden sich durch den Umgang mit Unix-Systemen nun auch in einem Umfeld zurecht, in dem ihnen lediglich eine textbasierte Konsole zur Interaktion mit einem System zur Verfügung steht.

Verwendbarkeit:

Das Modul kann mit anderen fortgeschrittenen Modulen zur Software-Technik kombiniert werden, insbesondere mit "Systemnaher Programmierung" und den Themengebieten Betriebssysteme, Compilerbau, Skriptsprachen und Webentwicklung. Zudem schafft es Grundlagen und Verständnis für die Verarbeitung und Analyse großer Datenmengen (Data Science / Big Data).

Voraussetzungen und Empfehlungen:

Vorausgesetzt wird ein grundlegendes Verständnis der Konzepte der imperativen Programmierung.

Empfohlen wird die Einrichtung der in der Übung verwendeten Werkzeuge.

Literatur:

- Kofler, Michael: Linux: Das umfassende Handbuch, Rheinwerk Computing, 2023, ISBN: 978-3836284424
- Dietze, Martin: Praxiskurs Unix-Shell, O'Reilly Verlag GmbH & Co. KG; 2011, ISBN: 978-3897215658
- Robbins, Arnold; Beebe, Nelson H.F.: Klassische Shell-Programmierung, O'Reilly Verlag GmbH & Co. KG; 2006, ISBN: 978-3897214415
- Kernighan, Brian W.; Pike, Rob: UNIX-Werkzeugkasten: Programmieren mit UNIX, Hanser Fachbuch, 1986, ISBN:

978-3446142732

• Friedl, Jeffrey E. F.: Reguläre Ausdrücke, O'Reilly Verlag GmbH & Co. KG, 2007, ISBN: 978-3897217201

- Computer Games Technology Bachelor of Science Version 23.0 (2. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (2. Semester)
- Informatik Bachelor of Science Version 25.0 (2. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (2. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (4. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (2. Semester)

♦ MB238 – Digital Content Creation

Verantwortliche:	Christian-Arved Bohn
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB085 – Prakt. Interaktive Geometrische Modellierung	Übung	Abnahme	5 Aufgaben	30 Min.	3.0	Drittelnoten	jährlich	90 Stunden	Stefan Wagemann
TB100 - Prakt. Fortgeschrittene Interaktive Modellierung	Übung	Abnahme	5 Aufgaben	30 Min.	2.0	Drittelnoten	jährlich	60 Stunden	Stefan Wagemann

Lehrinhalte:

Themen die besprochen werden sind u.a. fortgeschrittene Modellierungstechniken, digitale Bildhauerei, Erstellung von 3D Objekten mittels Photogrammetrie, 3D Objekte für Spiel-Engine (Unreal) optimieren und präsentieren.

Modellierung mittels Modellierungssoftware. Themen die besprochen werden sind u. a. Koordinatensysteme, Grundkörper, Modifikatoren, komplexe virtuelle Szenen, Licht, Kamera, Texturen, Shader, Renderer, Compositing, Modelle für 3D Darstellung im Web, Spiele und Onlinespiele.

Qualifikationsziele:

Nach Abschluss der Veranstaltung besitzen die Studierenden die Fähigkeit,

- dreidimensionale Objekte und komplette virtuelle Szenen mittels entsprechender Modellierungssoftware sicher und effizient zu erstellen,
- den Nutzen und mögliche Verwendungen solcher Modellierungen zu erkennen und
- diesbezüglich die Anforderungen einer anwendungsbezogenen Modellierung einzuschätzen und in einen Arbeitsprozess umzusetzen.

Verwendbarkeit:

Das Modul kann zu einem beliebigen Zeitpunkt innerhalb des Studium absolviert werden, da keine Voraussetzungen aus anderen Modulen notwendig sind. Wünschenswert aber nicht notwendig ist die Belegung parallel zu oder nach den Modulen der Computergrafik.

Voraussetzungen und Empfehlungen:

keine

Literatur:

- BRUGGER, Ralf: Professionelle Bildgestaltung in der 3D-Computergrafik. Addison-Wesley, Bonn, Paris, 1995.
- DUIN, Heiko; SYMANZIK, Günter; CLAUSSEN, Ute: Beleuchtungsalgorithmen in der Computergrafik. Springer, 1996

- Computer Games Technology Bachelor of Science Version 23.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (2. Semester)

♦ MB038 – Compositing-Projekt

Verantwortliche:	Hendrik Annuth
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB077 - Compositing-Projekt	Projektarbeit	Abnahme	25 Aufgaben	45 Min.	5.0	Drittelnoten	jährlich	150 Stunden	Hendrik Annuth

Lehrinhalte:

- Technische Probleme und Lösungsansätze
- Dramaturgische Probleme und Lösungsansätze
- Optimierung der Organisationsabläufe
- Einführung in das Video-Compositing
- Ebenenspezifische Arbeitsabläufe
- Keyframe-Konzepte
- Strukturierung großer Projekte
- Parameter zur Optimierung von Kompressionsverfahren
- Präsentation und Diskussion der Konzepte

Qualifikationsziele:

Nach Abschluss der Lehrveranstaltung besitzen die Studierenden folgende Kompetenzen:

Grundlegende Kompetenz zur Erfassung der technischen, organisatorischen und dramaturgischen Aspekte, die bei der digitalen Produktion von Video-Clips von Bedeutung sind.

Die Fähigkeit industrietypische Video-Compositing-Software professionell einzusetzen.

Das Verständnis für die auftretenden Schnittstellen-Probleme.

Fähigkeit zum freien, aufgabengerechten Umgang mit dem Medium Audio/Video, Einübung

in die Arbeit in kleinen Projektgruppen und die Präsentation von Arbeitsergebnissen im Forum.

Verwendbarkeit:

Das Modul sollte in Verbindung mit dem Modul "Bildbearbeitung und -analyse" gehört werden, innerhalb dessen 2D Verfahren zur Bildsynthese behandelt werden.

Voraussetzungen und Empfehlungen:

Das Wissen aus dem Audio-Workshop, Audio-Video-Workshop und der Mediengestaltung wird vorausgesetzt. Die korrekte Anwendung der erworbenen Kompetenzen fließt in die Projektbewertung mit ein.

Literatur:

- Joseph Campbell: The Hero with a Thousand Faces, Pantheon Books 1949
- Syd Field: Screenplay, Dell Publishing Company 1979
- Uwe Kühhirt, Marco Rittermann: Interaktive audiovisuelle Medien
- Millerson: Television Production, Focal Press, London, 1997
- Millerson: Video Camera Techniques, Focal Press, London, 1998
- Poynton: Digital Video, Wiley and Sons, 1996
- Stotz: Computergesteuerte Audio-, Video-Technik, Springer-Verlag
- Weiskamp: Desktop-Video, Addison-Wesley

Studiengänge:

• Medieninformatik Bachelor of Science Version 25.0 (3. Semester)

♦ MB043 – Systemnahe Programmierung

Verantwortliche:	Christian Uhlig
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB072 – Systemnahe Programmierung	Vorlesung	Klausur		120 Min.	2.0	Drittelnoten	jährlich	60 Stunden	Christian Uhlig
TB074 – Übg. Systemnahe Programmierung	Übung	Abnahme	4 Aufgaben	35 Min.	3.0	Bestanden/nicht Bestanden	jährlich	90 Stunden	Malte Heins

Lehrinhalte:

- Typische Elemente und Eigenschaften eines C-Programms
- Datentypen
 - o Ganzzahl- und Aufzählungstypen, Wahrheitswerte als Ganzzahlen
 - o Fließkommatypen, Grundlagen von Fließkommazahlen
 - o Strukturierte Typen
 - Vereinigungstypen
 - Zeigertypen
 - Arraytypen
- Funktionszeiger und ihre Anwendungsbereiche
- Konvertierungen
- Arrays und ihre Beziehung zu Zeigern
- Ausdrücke
 - Konstanten
 - o Grundlegende Ausdrücke (Zuweisungen, Funktionsaufrufe, etc.)
 - o Arithmetische Ausdrücke
 - o Boolesche Ausdrücke, Vergleichsoperatoren, logische Operatoren
 - o Bitweise Operatoren
 - o Arbeit mit Zeigern und Zeigerarithmetik
 - Vorrang und Assoziativität
 - Aspekte der Auswertung (Auswertungsreihenfolge, verkürzte Auswertung, sequence points)
- Anweisungen, insbesondere Verzweigungen und Schleifen
- Dynamische Speicherverwaltung
- Übersetzungsprozess und C-Präprozessor
- Funktionsaufrufe in Maschinen, Aufrufstapel
- Gefahren der Sprache C am Beispiel eines Buffer Overflows mit Manipulation der Rücksprungadresse

Bearbeitung von Übungsaufgaben parallel zum Stoff der Vorlesung in Zweiergruppen mit Abnahme und Diskussion der Lösungen. Zusätzlich werden im Rahmen der Übungsaufgaben praxisrelevante Aspekte der Anwendungsentwicklung mit der Programmiersprache C und der C-Standardbibliothek behandelt, die nicht Bestandteil der Vorlesung sind.

Qualifikationsziele:

Die Studierenden ...

- formulieren Programme in der Programmiersprache C unter Berücksichtigung der Besonderheiten der Programmiersprache insbesondere in Hinblick auf undefiniertes Verhalten, Plattformabhängigkeiten und Unsicherheiten bestimmter Sprachkonstrukte (z.B. Zeigerarithmetik und fehlende Boundary Checks).
- erläutern in groben Zügen die Repräsentation von Daten und die Abläufe in einem Rechner bei der Ausführung von Anweisungen und Auswertung von Ausdrücken in einer höheren Programmiersprache, insbesondere im Rahmen von Unterprogrammaufrufen.
- erstellen maschinennahe Programme unter besonderer Berücksichtigung von Effizienzaspekten bezogen auf den konstanten Faktor des realisierten Algorithmus
- erläutern typische Gefahren bei Verwendung der Programmiersprache C wie z.B. buffer overflows und berücksichtigen diese Aspekte in der Softwareentwicklung

Verwendbarkeit:

Das Modul setzt auf den konzeptionellen Inhalten des Moduls "Programmstrukturen 1" und der im Modul "Programmstrukturen 2" erworbenen fortgeschrittenen Programmiererfahrung auf. Es kann mit anderen fortgeschrittenen Modulen zur Software-Technik kombiniert werden, insbesondere mit "Algorithmen und Datenstrukturen", und schafft die notwendigen Voraussetzungen für Anschlussmodule (z.B. im Bereich der Computergrafik), die Kenntnisse in der Programmiersprache C erfordern.

Voraussetzungen und Empfehlungen:

Vorausgesetzt werden Grundkenntnisse in statisch getypten imperativen Programmiersprachen, die insbesondere charakteristische Datentypen und Kontrollstrukturen (Sequenz, Selektion, Iteration) umfassen und idealerweise auch bereits den Umgang mit Zeigern. Diese Kenntnisse sollten mit gefestigter Programmierpraxis in einer entsprechenden Sprache verbunden sein. Gegebenenfalls empfiehlt es sich, die Kenntnisse am Beispiel einfacher Programmieraufgaben im Vorwege aufzufrischen, um den Einstieg zu erleichtern.

Weiterhin wird ein sicherer Umgang mit der Kommandozeile zum Einsatz der Softwarewerkzeuge in der Übung vorausgesetzt. Gegebenenfalls empfiehlt es sich, die entsprechenden Kenntnisse vorzugsweise am Beispiel der UNIX-Kommandozeile im Vorwege aufzufrischen.

Literatur:

- Harbison, Samuel; Steele, Guy L.: C A Reference Manual, 5th edition, Prentice Hall, New Jersey, 2002
- Kernighan, Brian W.; Ritchie, Dennis M.: C Programming Language, Prentice Hall, New Jersey, 1998
- Standard zur Programmiersprache, insbesondere ISO/IEC 9899:1999 und ISO/IEC 9899:2011

- Computer Games Technology Bachelor of Science Version 23.0 (3. Semester)
- Informatik Bachelor of Science Version 25.0 (3. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (3. Semester)
- Smart Technology Bachelor of Science Version 24.0 (3. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (3. Semester)

♦ MB045 – Lineare Algebra

Verantwortliche:	Andreas Haase
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB068 – Lineare Algebra	Vorlesung	Klausur		120 Min.	5.0	Drittelnoten	jährlich	150 Stunden	Andreas Haase

Lehrinhalte:

- Wiederholung: Grundlagen der linearen Algebra
- Determinanten
 - o der Entwicklungssatz von Laplace
 - o lineare Gleichungssysteme
- Vektorräume
 - o Definition, Beispiele und Eigenschaften
 - Unterräume
 - o Lineare Abhängigkeit, Basis und Dimension
- Euklidische und unitäre Vektorräume
 - Skalarprodukt und Norm
 - Orthogonalität
 - o Orthogonal- und Orthonormalbasen
- Analytische Geometrie
 - o Darstellung von Geraden und Ebenen
 - Lagebeziehung zwischen linearen geometrischen Objekten
 - o Einfache nichtlineare Objekte am Beispiel
- Abbildungen
 - Lineare Abbildungen
 - Affine Abbildungen
 - Koordinatentransformationen
- Eigenwerte und Eigenvektoren
 - o Charakteristisches Polynom, Eigenwerte, Eigenvektoren
 - o Diagonalisierung
 - o Matrixfunktionen

Qualifikationsziele:

Nach dem erfolgreichen Besuch der Veranstaltung können die Studierenden ...

- die Determinante eine Matrix beliebiger Dimension berechnen und den Zusammenhang zur Lösungstheorie linearer Gleichungssysteme herstellen.
- die Vektorraumaxiome nennen und eine gegebene Menge mit Verknüpfungen darauf überprüfen ob diese ein Vektorraum (über R oder C) ist.
- Die Definition eines Unterraums nennen; Teilmengen von Vektorräumen darauf überprüfen ob diese Unterräume sind.
- das Konzept der linearen Abhängigkeit von Vektoren erklären; Teilmengen von Vektorräumen auf lineare Abhängigkeit überprüfen.
- die Definition einer Basis nennen. Teilmengen von Vektorräumen darauf überprüfen, ob diese eine Basis sind.
- die Definition eines Skalarproduktes nennen; verschiedene lineare Abbildungen auf Vektorräumen darauf überprüfen ob diese ein Skalarprodukt sind.
- die Definition einer Norm nennen; den Zusammenhang zwischen Skalarprodukt und Norm nennen.
- Die Definition einer Orthonormalbasis nennen; eine Orthonormalbasis aus einer gegebenen Basis konstruieren (Gram-Schmidt-Verfahren).
- die Parameter und Koordinatendarstellung von Geraden und Ebenen formulieren; Lagebeziehungen zwischen linearen geometrischen Objekten berechnen; Lagebeziehungen zwischen linearen und einfachen nichtlinearen Geometrischen Objekten berechnen.
- die Definition einer linearen Abbildung nennen; lineare Abbildungen mittels Matrix-Vektor-Schreibweise ausdrücken. Eigenschaften gegebener linearer Abbildungen bestimmen.
- die Definition einer affinen Abbildung nennen; affine Abbildungen mittels Matrix-Vektor-Schreibweise ausdrücken. Eigenschaften gegebener affiner Abbildungen bestimmen.
- Koordinatentransformationen als affine Abbildung durchführen; die affine Abbildung einer Koordinatentransformation berechnen; aktive und passive Koordinatentransformationen unterscheiden.
- das charakteristische Polynom einer Matrix aufstellen; die Eigenwerte einer Matrix berechnen; die Eigenvektoren einer Matrix berechnen.
- eine Matrix diagonalisieren.

• bestimmte Funktionen einer Matrix berechnen.

Verwendbarkeit:

Die im Modul "Lineare Algebra" erworbenen Kompetenzen stellen die Grundlage für zum Beispiel die weiterführenden Module "Grundlagen der Computergrafik", "Systemmodellierung" oder "Bildbearbeitung und -analyse" dar.

Voraussetzungen und Empfehlungen:

Das Modul "Lineare Algebra" baut auf den in der Veranstaltung "Grundlagen der Linearen Algebra" aus dem Modul "Deskriptive Statistik und Grundlagen der Linearen Algebra" erworbenen Kenntnissen und Fähigkeiten auf. Hierzu gehören Kenntnisse zu Vektoren, Vektoralgebra, Matrizen, Matrixalgebra, Lösen von linearen Gleichungssystemen mittels Gauß-Verfahren.

Literatur:

• GRAMLICH, Günter M.:

Lineare Algebra: Eine Einführung.

5. aktualisierte Aufl. München: Carl Hanser Verlag 2021

• FISCHER, Gerd:

Lernbuch Lineare Algebra und Analytische Geometrie.

4. Aufl. Wiesbaden: Vieweg + Teubner Verlag 2019

• ANTON, Howard:

Elementary Linear Algebra.

John Wiley & Sons Inc 2019

• FARIN, Gerald; HANSFORD, Dianne:

Lineare Algebra: Ein geometrischer Zugang,

Springer Verlag 2003

• FISCHER, Gerd:

Lineare Algebra: Eine Einführung für Studienanfänger.

18., aktualisierte Aufl. Wiesbaden: Springer Verlag 2013

• LIESEN, Jörg; MEHRMANN, Volker:

Lineare Algebra: Ein Lehrbuch über die Theorie mit Blick auf die Praxis.

1. Aufl. Wiesbaden: Vieweg + Teubner Verlag 2011

• ZIESCHANG, Heiner:

Lineare Algebra und Geometrie.

1. Aufl. Stuttgart, Teubner Verlag 1997

- Computer Games Technology Bachelor of Science Version 23.0 (3. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (3. Semester)
- Informatik Bachelor of Science Version 25.0 (3. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (3. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (3. Semester)

♦ MB201 – Digital Marketing

Verantwortliche:	Jan-Paul Lüdtke
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB094 – Digital Marketing	Vorlesung	Klausur + ggf. Bonus		60 Min.	2.0	Drittelnoten	jährlich	60 Stunden	Jan-Paul Lüdtke
TB095 – Digital Marketing Projekt	Projektarbeit	Schriftl. Ausarbeitung (ggf. mit Präsentation)	15 Seiten		3.0	Drittelnoten	jährlich	90 Stunden	Jan-Paul Lüdtke

Lehrinhalte:

- Abgrenzung des digitalen Marketings
- Customer Journey und multioptionaler Kaufprozess
- Zielsetzung im digitalen Marketing
- Instrumente des digitalen Marketings
- Offline-Marketing mit Online-Push
- Erfolgsmessung im digitalen Marketing

Qualifikationsziele:

Die Studierenden...

- kennen die besonderen Funktionen des digitalen Marketings innerhalb der Marketingdisziplin.
- verstehen das Konzept der Customer Journey und die damit verbundenen Herausforderungen für die Gestaltung modernen Marketings.
- kennen die Ziele des digitalen Marketings und verstehen die Grundlagen effektiver Zieldefinition.
- kennen die relevanten Instrumente und Kanäle des digitalen Marketings (SEA, SEO, Social Media, Affiliate, E-Mail & Push Marketing, Displaymarketing) und verstehen, wann und wie diese im Rahmen eines kundenorientierten digitalen Marketings eingesetzt werden.
- kennen die Einsatzmöglichkeiten des Offline-Marketings, um damit online Aufmerksamkeit zu erzeugen.

Verwendbarkeit:

- Das Wissen kann im "Projekt E-Commerce" und in "Online-Plattform (Konzeption & Aufbau)" verwendet werden, um geeignete Marketingkampagnen für die Projektpartner zu planen und zu umzusetzen.
- Das Wissen der Instrumente ist hilfreich im Modul "Multi-Channel Retailing", um die Herausforderungen und Lösungsansätze für moderne Einzelhändler mit physischem und digitalem Vertrieb zu verstehen.

Voraussetzungen und Empfehlungen:

Kenntnisse der Grundlagen des E-Commerce sind notwendig.

Literatur:

- Decker, Alexander (2019). Der Social-Media-Zyklus Schritt für Schritt zum systematischen Social-Media-Management im Unternehmen-Springer Fachmedien Wiesbaden, Gabler Verlag
- Kamps, Ingo; Schetter, Daniel (2020). Performance Marketing Der Wegweiser zu einem mess- und steuerbaren Online-Marketing Einführung in Instrumente, Methoden und Technik, Gabler Verlag
- Kreutzer, Ralf (2018). Praxisorientiertes Online-Marketing Konzepte Instrumente Checklisten, Gabler Verlag
- Olbrich, Rainer; Schultz, Carsten D.; Holsing, Christian (2019). Electronic Commerce und Online-Marketing Ein einführendes Lehr- und Übungsbuch, Gabler Verlag

- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 3. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (5. Semester)
- E-Commerce Bachelor of Science Version 23.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 3. Semester)

♦ MB221 – Grundlagen Data Science

Verantwortliche:	Hendrik Annuth
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB104 – Data Literacy	Vorlesung	Klausur	9 Seiten	60 Min.	3.0	Drittelnoten	jährlich	90 Stunden	Hendrik Annuth
TB121 – Übg. Data Science	Übung	Abnahme	15 Aufgaben	30 Min.	2.0	Bestanden/nicht Bestanden	jährlich	60 Stunden	Emre Kilic

Lehrinhalte:

Nach dem Besuch des "Data Literacy" Moduls können die Studierenden ...

- Geschäftsanforderungen interpretieren
- Besprechen von Geschäftsanforderungen für die Implementierung
- Ändern von Geschäftsfragen in analytische Fragen
- Das Erklären von Datenquellen
- Das Diskutieren von KPIs, Metriken und Kennzahlen
- Die Bewertung der Datenqualität

Daten verstehen und transformieren

- Erläutern verschiedener Datentypen und Auswirkungen auf die Analyse
- Vergleiche verschiedener Klassifikationen von Daten
- Erläutern von Datenstruktur und die Auswirkungen auf die Analyse
- Verwendung grundlegender statistischer Methoden
- Erläutern der für die Analyse erforderlichen Aggregationen
- Vergleiche von Verteilungsarten und erläutern Sie die Auswirkungen auf die Analyse
- Bewertung der Notwendigkeit von Datenverwaltung und -sicherheit
- Datenstrukturen transformieren

Entwerfen und Interpretieren von Visualisierungen

- Verwendung grundlegender Visualisierungsmethoden
- Geschichtenerzählen mit Visualisierungen
- Feststellen, ob die Visualisierung die analytische Frage beantworten kann
- Interpretation der Visualisierung, um Beobachtungen zu erstellen
- Erläutern von Ausreißern, Trends und Beziehungen zwischen Datenelementen
- Herleitung einer Hypothese und Empfehlung für Analyseschritte
- Testen von Daten auf Korrelationen und Ursachen

Auf Ergebnisse reagieren

- Entscheiden, welche Erkenntnisse aus der Analyse gewonnen wurden
- Empfehlung von Maßnahmen basierend auf der Analyse
- Prognostizieren der möglichen Folgen von Maßnahmen zur Minimierung unbeabsichtigter Ereignisse
- Bewertung und Integration von Feedback in einen Aktionsplan
- Die ethische und angemessene Verwendung von Daten und Erkenntnissen
- Auswahl einer passenden Problemstellung
- Identifikation von Datenquellen oder Möglichkeiten der Datenerfassung für die Problemstellung
- Einfache Auswertungstechniken für Datensätze
- Einführung in Programmiersprachen R und Python auf Anfängerniveau
- Einlesen von Standarddatenformaten
- Erstellung und Verarbeitung von Standarddatenformaten (csv, xslx, txt)

Qualifikationsziele:

- Transformation einer konkreten Problemstellung in einen datengetriebenen Entscheidungsprozess
- Entwicklung von einfachen Modellen zur Unterstützung von Entscheidungsprozessen
- Verständnis für die Erstellung und Verarbeitung von Standarddatenformaten (csv, xslx, txt) in R und Python
- Erfahrung mit Selbstorganisation in der Gruppe
- Erfahrung mit Ergebnispräsentationen

Das Modul "Data Literacy" stattet die Studierenden mit den wichtigsten Vokabeln aus und vermittelt das Grundlagenwissen in Data Literacy & Analytics.

Die Studierenden können die verschiedenen Aspekte von Daten verstehen und erklären:

- Verstehen, was Data Analytics ist
- Verstehen, wie diese Techniken in realen Situationen angewendet werden
- Verständnis für die Unterschiede von Data Literacy und Data-Literacy-Kultur?
- Die Fähigkeit, die Auswirkungen von Daten auf zukünftige Stellenbeschreibungen, Rollen und Verantwortlichkeiten einzuschätzen
- Datenterminologie und Grundlagen
- Verschiedene Arten von Daten
- Datenbereitschaftsbewertung
- Grundlegende statistische Ansätze
- Aufbau und Bewertung von Hypothesen
- Grundlegende Datenvisualisierungen
- Entscheidungsfindung mit Statistiken und Analysen
- Ethik, Erklärbarkeit und Qualität der Daten

Die Studierenden werden nach erfolgreicher Teilnahme am Modul in der Lage sein, datengesteuerte Anwendungsfälle zu identifizieren, zu bewerten und zu definieren, um damit einen geschäftlichen Wert zu generieren.

Die Hauptaspekte, die die Studenten in diesem Modul behandeln, sind:

1. Die Fähigkeit, Daten zu verstehen

Kenntnisse in Daten und Analysen, die es den Studierenden ermöglichen, Daten einzulesen, zu verstehen und zu interpretieren.

2. Fähigkeit, mit Daten zu arbeiten

Das Arbeiten mit Daten bedeutet, dass eine Person Datensätze sinnvoll Visualisieren und Analysen kann.

3. Fähigkeit zur Datenanalyse

Das Analysieren von Daten beinhaltet die Fähigkeiten Fragen zu stellen, die den Prozess auf Geschäftsziele fokussieren, und Trends und Mustern innerhalb der Daten zu erkennen.

4. Data Storytelling

Schließlich können die Studierenden mithilfe von Daten Hypothese aufstellen und argumentativ Positionen vertreten.

Zusammen mit diesen vier Schlüsselmerkmalen werden die Studierenden ihre Fähigkeiten in datengestützter Entscheidungsfindung durch die vier Analyseebenen schärfen: beschreibend, diagnostisch, prädiktiv und präskriptiv.

Verwendbarkeit:

Das Modul stellt eine Einführung in den Bereich Data Science dar. Es lässt sich sowohl mit Veranstaltungen aus den Wirtschaftswissenschaften, als auch mit anderen Grundlagenthemen aus dem Bereich Data Science kombinieren. Das Modul vermittelt eine Einleitung in das Gestalten datenorientierter Prozesse und bereitet somit die Anwendung von Data-Science- und Machine-Learning-Verfahren vor und somit auch vertiefende Veranstaltungen in der Datenvisualisierung und im Machine Learning.

Voraussetzungen und Empfehlungen:

Basiswissen der Mathematik wie Bruchrechnung und einfache Logikregeln wie die Auswahl von Maxima und Minima werden vorausgesetzt, zusätzlich ein Basisverständnis über Wertschöpfungsprozessen in Unternehmen.

Literatur:

- Data Literacy: How to Make Your Experiments Robust and Reproducible; Academic Press 2017; Neil Smalheiser
- Data Literacy: A User's Guide; SAGE Publications 2015; David Herzog
- The Basics of Data Literacy; National Science Teachers Association 2014; Michael Bowen, Anthony Bartley
- Data Analytics for Absolute Beginners: A Deconstructed Guide to Data Literacy; Independently published 2019; Oliver Theobald
- Introduction to Robotics; Addison Wesley 1991; Phillip John McKerrow
- Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking; O'Reilly Media 2013; Foster Provost, Tom Fawcett
- The Truthful Art: Data, Charts, and Maps for Communication; New Riders 2016; Alberto Cairo
- The Signal and the Noise: Why So Many Predictions Fail but Some Don't; Penguin 2013; Nate Silver
- Naked Statistics: Stripping the Dread from the Data; Brilliance Corp 2014; Charles Wheelan
- The Art of Statistics: Learning from Data; Pelican Books 2019; David Spiegelhalter

siehe Vorlesung

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 24.0 (3. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (Wahlmöglichkeit 3. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (1. Semester)

- E-Commerce Bachelor of Science Version 23.0 (1. Semester)
- Informatik Bachelor of Science Version 25.0 (3. Semester)
 Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 3. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 3. Semester)

♦ MB252 – Mechanik und Elektrotechnik

Verantwortliche:	Carsten Burmeister
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch/englisch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB108 – Grundlagen der Elektrotechnik, Grundlagen der Mechanik	Vorlesung mit integrierter Übung	Klausur		150 Min.	5.0	Drittelnoten	Wintersemester	150 Stunden	Carsten Burmeister Andreas Haase

Lehrinhalte:

- Maßsystem und Einheiten
- Kinematik
- Dynamik (Translation und Rotation)
- Die Newtonschen Gesetze
- Arbeit, Leistung und Energie
- Impuls- und Energieerhaltung
- Reibungskräfte
- Bewegung starrer Körper
- Physikalische Größen, Einheiten, Gleichungen
- Lineare Gleichstromkreise
 - o Grundbegriffe: Strom, Spannung, Arbeit, Leistung, Wirkungsgrad
 - Das Ohmsche Gesetz
 - o Spannungsquellen
 - o Stromquellen
 - Die Kirchhoffschen Sätze
 - o Strom- und Spannungsteiler
 - Berechnung von Netzwerken mit einer Quelle
 - Lineare Überlagerung mehrerer Quellen
 - o Ersatzspannungs- und -stromquellen
 - o Leistungsanpassung
 - Knotenpotenzialverfahren
- Das Kondensatorgesetz
 - Elektrische Ladung und ihre Wirkung
 - Kapazität von Kondensatoren
 - Energie des elektrischen Feldes
 - $\circ \ \ Zusammenschaltung \ von \ Kondensatoren$
- Das Induktionsgesetz
 - Magnetische Feldgrößen
 - o Durchflutungsgesetz
 - o Ferromagnetismus
 - o Induktion
 - Energie des magnetischen Feldes
 - o Selbst- und Gegeninduktivität

Qualifikationsziele:

Die Studierenden ...

- besitzen ein Verständnis linearer elektrotechnischer Grundzusammenhänge und deren Wirkungsweisen in Gleichstromkreisen.
- haben Kenntnis der Anwendung von linearen elektrischen Kreisen in der Energieübertragung, in der Nachrichtenübertragung und bei Übergangsvorgängen.
- haben die Fähigkeit, Wirkungsweisen linearer Schaltungen zu verstehen und zu berechnen.
- besitzen die Fähigkeit zur Abstraktion bei der Beschreibung komplexer linearer Systeme, speziell Matrixgleichungssysteme.

Die Lernenden beherrschen nach erfolgreichem Besuch der Lehrveranstaltung grundlegende physikalischen Gesetzmäßigkeiten und verstehen die Arbeitsweise der Physik, die zum Verständnis mechanischer, aber auch in nachfolgenden Veranstaltungen zu behandelnde nicht-mechanischer Phänomene erforderlich sind. Sie können ...

- die vorgestellten physikalischen Begriffe und Gesetze der Mechanik selbständig erklären und zueinander in Beziehung setzen bzw. gegeneinander abgrenzen.
- für ausgesuchte Aufgaben aus der Mechanik selbständig eine Lösungsstrategie entwickeln.

- Aufgaben unter Anwendung der erlernten physikalischen und mathematischen Mittel und Methoden eigenständig lösen.
- das Ergebnis einer gelösten Aufgabe kritisch bewerten und daraus Schlüsse und Folgerungen ziehen.

Verwendbarkeit:

Das Modul bereitet auf weiterführende Fächer der Ingenieurwissenschaften und technischen Informatik vor. So ist es z.B. mit der Übertragungstechnik zu kombinieren oder mit Industrie 4.0.

Voraussetzungen und Empfehlungen:

- Sicherer Umgang mit den Grundrechenarten (Addition, Subtraktion, Multiplikation, Division)
- Kenntnisse in Algebra (Gleichungen, Ungleichungen, Funktionen)
- Grundkenntnisse in Geometrie und Trigonometrie
- Verständnis für grundlegende physikalische Größen und Einheiten

Literatur:

- Halliday, Resnick, Walker: Halliday Physik, Wiley-VCH (2017)
- Kersten (Hrsg.), Tipler: Physik für Studierende der Naturwissenschaften und Technik, Springer Spektrum (2019)
- Giancoli: Physik: Lehr- und Übungsbuch, Pearson (2019)
- Meschede: Gerthsen Physik, Springer Spektrum (2015)
- Harten: Physik: Eine Einführung für Ingenieure und Naturwissenschaftler, Springer Vieweg (2021)
- Hagmann, G.: Grundlagen der Elektrotechnik. Aula-Verlag, 2000 (7. Auflage)
- Führer, A.; Heidemann, K.; Nerreter, W.: Grundgebiete der Elektrotechnik, Bd. 1: Stationäre Vorgänge. Hanser-Verlag, 1990
- Paul, R.: Elektrotechnik: Grundlagenlehrbuch, Bd. 1: Felder und einfache Stromkreise. Springer-Verlag, 1993 (3. Auflage)
- Paul, S.: Grundlagen der Elektrotechnik und Elektronik 1: Gleichstromnetzwerke und ihre Anwendungen. Springer-Verlag, 2014 (5.Auflage)
- Papula, L.: Mathematik für Ingenieure, Bd. 2. Vieweg, 2000 (9. Auflage)

- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (Wahlmöglichkeit 3. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (1. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 3. Semester)
- Smart Technology Bachelor of Science Version 24.0 (1. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (1. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (1. Semester)

♦ MB292 – Usability and Mobile

Verantwortliche:	Atilla Wohllebe					
Moduldauer:	6 Monate					
Unterrichtssprache:	Deutsch					

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB283 – Mobile Commerce and App Economy, User Experience	Vorlesung	Klausur + ggf. Bonus		60 Min.	5.0	Drittelnoten	Wintersemester	150 Stunden	Florian Hermsdorf Paul Bartusch Kristina Zöllner Olde Lorenzen-Schmidt

Lehrinhalte:

- User Experience:
 - o Entstehung und Geschichte der Usability / User Experience
 - o Grundlagen Wahrnehmung und Informationsverarbeitung, Kognitive Prozesse und Aufmerksamkeitssteuerung
 - o Gestaltgesetze
 - o Heuristiken und Standards nach Nielsen und DIN ISO
 - o UX-Implikationen aus den Erkenntnissen der Behavioral Sciences
 - o Usability und Bedürfnisse der User im E-Commerce
 - Usability Testing und Methoden im Produktentwicklungsprozess
- Mobile Commerce & App Economy:
 - o Einleitung: Abgrenzung und Relevanz Mobile Commerce und App Economy
 - Technische Grundlagen mobile Endgeräte:
 - Mobiles Internet
 - Sensorik
 - Anwendungstechnologien
 - Betriebssysteme
 - o Kunden- und Businessseitige Betrachtung und Einordnung:
 - Nutzungsszenarien & Multi-Screen
 - Geschäftsmodelle im Mobile Commerce
 - Monetarisierung von Apps
 - Rolle des Smartphone in der Commerce-Wertschöpfung
 - App- und Mobile Marketing:
 - Vermarktung von Apps
 - Mobile Marketing Kanäle
 - Mechanismen zur Nutzeraktivierung und -bindung
 - App CRM mit In-App Messages und Push Notifications
 - Location-Based Marketing über GPS und Beacons
 - Rechtliche Einordnung
 - o Marketing und Vertrieb über Smart Devices und Wearables

Qualifikationsziele:

Die Studierenden...

- verfügen über Kenntnis der physiologischen und der daraus resultierenden wahrnehmungspsychologischen Merkmale in Hinblick auf menschliche Informationsverarbeitung.
- verfügen über die Kenntnis der gängigen Definitionen von Usability, User Experience, Richtlinien und Normen (insbesondere auch bei mobilen Anwendungen / Apps) sowie über ausgewählte Erkenntnisse der Verhaltensforschung im Kontext des E-Commerce sowie die Kenntnis qualitativer und quantitativer Methoden zur Überprüfung der Usability und User Experience.
- besitzen die Fähigkeit ein Interaktionsdesign zu einer Aufgabenstellung nutzerzentriert zu entwickeln, insbesondere mit Fokus auf mobile Anwendungen im Kontext des E-Commerce.
- besitzen Kenntnisse über Smartphone-spezifische Dienste wie Location-Based Services und deren Möglichkeit zur kommeriellen Nutzung sowie diesbeügliches Wissen über rechtliche und datenschutztechnische Herausforderungen.

Verwendbarkeit:

Die vermittelten Fähigkeiten können bei der Konzeption und Realisierung digitaler Plattformen, insbesondere Online-Shops, angewendet werden. Insbesondere können die erworbenen Kenntnisse in Advanced Digital Marketing, Online-Plattform (Konzeption & Aufbau) und im Projekt E-Commerce eingesetzt werden.

Voraussetzungen und Empfehlungen:

Notwendig sind grundlegende Kenntnisse des E-Commerce und digitaler Kundeninteraktionen. Hilfreich sind grundlegende Kenntnisse im Bereich Web-Technologien bzw. Web-Entwicklung.

Literatur:

- Aichele, C. Schönberger, M. (2016). App-Entwicklung effizient und erfolgreich. Spinger Vieweg.
- Dakíc, M. (2023). Mobile App Development for Businesses.
- Gast, O. (2018). User Experience im E-Commerce. Spinger Gabler.
- Heinemann, G. (2018). Die Neuausrichtung des App- und Smartphone-Shopping. Spinger Gabler.
- Pannafino, J., McNeil, P. (2017). UX Methods: A Quick Guide to User Experience Reaearch Methods. CDUXP
- Weichert, S., Quint, G. Bartel, T. (2021). Quick Guide UX Management. Springer Gabler.
- Wohllebe, A. (2024). Praxisguide App-Marketing. Springer Gabler.

- E-Commerce Bachelor of Science Version 23.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (3. Semester)
- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 5. Semester)

♦ MB293 – Digital Product Management

Verantwortliche:	Atilla Wohllebe
Moduldauer:	6 Monate
Unterrichtssprache:	Deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB284 – Digital Product Management	Vorlesung	Klausur + ggf. Bonus		60 Min.	5.0	Drittelnoten	Wintersemester	150 Stunden	Atilla Wohllebe

Lehrinhalte:

- Einführung Digital Product Management
- Konzeption von Produkten
 - o Erarbeitung einer Product Vison
 - Lösungsentwicklung im Rahmen der Product Discovery (Design Sprint)
 - Validierung von Produktideen am Market
- Datengetriebene Produktentwicklung
 - Entwicklung und Weiterentwicklung von Produkten
 - o Agile Arbeitsweisen (Scrum, Kanban)
 - Erhebung und Priorisierung von Anforderungen
 - o DevOps Grundlegende Gedanken und Methoden

Qualifikationsziele:

Die Studierenden...

- verfügen über weitgehende Kenntnisse zum Management digitaler Produkte und Services, insbesondere mit Blick auf deren konzeptionelle (Weiter-) Entwicklung.
- sind in der Lage, mit Hilfe geeigneter Methoden eine Product Vision zu entwickeln und diese im Rahmen einer Product Discovery in konkrete Lösungsansätze zu übersetzen und zu validieren.
- verfügen außerdem über Kenntnisse agiler Arbeitsweisen und aktueller Vorgehensweisen in der Softwareentwicklung und können diese in den Kontext des Digital Product Managements einordnen.

Verwendbarkeit:

Das Wissen kann im "Projekt E-Commerce" verwendet werden.

Voraussetzungen und Empfehlungen:

Keine

Literatur:

- Düsterbeck, F., Einemann, I. (2022). Product Ownership meistern Produkte erfolgreich entwickeln. dpunkt.verlag, Heidelberg.
 - Hoffmann, S. (2020). Digitales Produktmanagement: Methoden Instrumente Praxisbeispiele. Springer Gabler, Wiesbaden. https://link.springer.com/book/10.1007/978-3-658-30629-8
 - Kim, G., Humble, J., Debois, P., Willis, J., Forsgren, N. (2022). Das DevOps Handbuch Teams, Tools und Infrastrukturen erfolgreich umgestalten. O'Reilly / dpunkt.verlag, Heidelberg.
 - Kittlaus, H., Clough, P. (2009). Software Product Management and Pricing Key Success Factors for Software Organizations. Springer Berlin, Heidelberg. https://link.springer.com/book/10.1007/978-3-540-76987-3
 - Pranam, A. (2018). Product Management Essentials Tools and Techniques for Becoming an Effective Technical Product Manager. Apress Berkeley, CA. https://link.springer.com/book/10.1007/978-1-4842-3303-0
 - Wagenblatt, A. (2019). Software Product Management Finding the Right Balance for YourProduct Inc.. Springer Cham. https://link.springer.com/book/10.1007/978-3-030-19871-8

- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 3. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (5. Semester)
- E-Commerce Bachelor of Science Version 23.0 (3. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)

- Medieninformatik Bachelor of Science Version 25.0 (3. Semester)
 Smart Technology Bachelor of Science Version 24.0 (5. Semester)

♦ MB053 – Datenschutz und Medienrecht

Verantwortliche:	Gerd Beuster
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB078 – Datenschutz, Medienrecht	Vorlesung	Klausur		180 Min.	5.0	Drittelnoten	Sommersemester		Jens Brelle Behrang Raji

Lehrinhalte:

- Einführung und Rechtsgrundlagen
- Medienfreiheit und Individualrechte
- Grundlagen des Medien und Äußerungsrechts
- Grundlagen des Urheberrechts
- Überblick Gewerbliche Schutzrechte (Marken, Designs, Patente)
- Grundlagen des Werbe- und Wettbewerbsrechts
- Rechtsverletzungen und Folgen
- Onlinerecht: Domainrecht, Internetrecht, Social Media-Recht, KI-Recht
- Grundlagen des Lizenzvertragsrechts
- Grundlagen Software- und Projektverträge
- Medienrechtliche Praxis: Aktuelle Entwicklungen und wichtige Urteile
- Gesetzliche Grundlagen des Datenschutzes
 - Anwendung und praktische Umsetzung des Bundesdatenschutzgesetzes (BDSG)
 - Wesentliche Grundlagen aus ausgewählten bereichsspezifischen und bereichsübergreifenden Datenschutzgesetzen
 - o Rechte, Pflichten und Aufgaben des betrieblichen Datenschutzbeauftragten zur Einrichtung des Datenschutzmanagements
 - Datenschutz in der Werbepraxis
- Technisch-organisatorischer Datenschutz
 - o Grundanforderungen und Grundfunktionen der IT-Sicherheit in Bezug auf die Anforderungen der Datenschutzgesetze
 - o Risikomanagement und Schlüsseltechnologien zur Realisierung des technisch-organisatorischen Datenschutzes
 - o Kosten-/Nutzen des Datenschutzes
 - o Verfahren zur Umsetzung des gesetzlichen Anforderungen des technisch-organisatorischen Datenschutzes
 - o Auswahlverfahren zu geeigneten und angemessenen IT-Sicherheitsmechanismen

Qualifikationsziele:

Die Studierenden erarbeiten im Rahmen der Lehrveranstaltung Verständnis für die Grundzüge des Medien- und des Urheberrechts sowie für angrenzende Rechtsgebiete des gewerblichen Rechtsschutzes. Sie verstehen zwischen den unterschiedlichen Rechtsgebieten zu unterscheiden und erwerben Kenntnisse praxisnaher Anwendungsfelder, die ein nachhaltiges Problembewusstsein schaffen, auf dessen Grundlage juristische Fragestellungen identifiziert und auf Rechtsanwanderebene beurteilt werden können.

Die Studierenden sind fähig, in ihrem späteren Wirkungskreis datenschutzrechtliche Fragestellungen einzuordnen, um bei Bedarf auf Spezialistenunterstützung gezielt zurückgreifen zu können. Erwerb eines Grundlagenwissens im nationalen und europäischen Datenschutzrecht.

Verwendbarkeit:

Die Studierenden können Ihre Kenntnisse verwenden, wenn sich in ihrer beruflichen Praxis rechtliche Fragen stellen.

Voraussetzungen und Empfehlungen:

Lesekompetenz wird vorausgesetzt. Fachkompetenz im Gebiet Recht ist nicht notwendig.

Literatur:

Recht allgemein

• Engisch, Einführung in das juristische Denken, 12. Aufl. 2018 (Bearbeiter: Würtenberger/Otto).

Kommentare Datenschutzrecht

- Freund/Schmidt/Hepp/Roschek, DSGVO Praxis-Kommentar, 1.Aufl. 2022
- Kühling/Buchner, DSGVO

- Taeger/Gabel, DSGVO BDSG TDDDG
- Simitis/Hornung/Spiecker gen. Döhmann, DSGVO mit BDSG

Einführungen Datenschutzrecht

• BfDI, Info 1, 2020 – Gesetzestexte und Erläuterungen (https://www.bfdi.bund.de/SharedDocs/Publikationen/Infobroschueren/INFO1.pdf)

Medienrecht

Fechner / Mayer
 Vorschriftensammlung zum Medienrecht
 18. Aufl. 2023, Verlag C., F. Müller

• Udo Branahl

Medienrecht - Eine Einführung

8. Auflage 2019, Verlag Springer VS

• Cohausz / Wupper

Gewerblicher Rechtsschutz und angrenzende Gebiete - Leitfaden für die

2. Auflage 2014, Carl Heymanns Verlag (Erscheinungstermin August 2014)

• Prof. Dr. Thomas Hoeren

Skriptum Internetrecht (Stand März 2023)

Skriptum IT-Vertragsrecht (zusammen mit Stefan Pinelli) Mai 2024

https://www.itm.nrw/lehre/materialien/

- Computer Games Technology Bachelor of Science Version 23.0 (2. Semester)
- E-Commerce Bachelor of Science Version 23.0 (2. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (4. Semester)

♦ MB059 – Web-Anwendungen

Verantwortliche:	Marian Gajda
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB027 – Web-Anwendungen	Vorlesung	Klausur		75 Min.	3.0	Drittelnoten	jährlich	90 Stunden	Marian Gajda
TB028 – Übg. Web-Anwendungen	Übung	Abnahme	3 Aufgaben	45 Min.	2.0	Bestanden/nicht Bestanden	jährlich	60 Stunden	Marian Gajda

Lehrinhalte:

- Basiskonzepte des WWW
 - o Klassische Auszeichnungsmöglichkeiten in HTML
 - HTML-Formulare und ihre Möglichkeiten
 - o Style Sheets
 - o CSS-Animationen
 - Templating
 - Responsive Design
- Dynamik in Web-Seiten mit Javascript
 - Client-seitige Dynamik
 - Server-seitige Dynamik
- Asynchronous Javascript

Bearbeitung von Übungsaufgaben, die sich am Stoff der Vorlesung orientieren, in Zweiergruppen mit Abnahme der Lösungen. Erstellt wird eine im Verlaufe der einzelnen Übungseinheiten komplexer werdende Web-Anwendung, wobei die einzelnen Schritte aufeinander aufbauen, so dass am Ende eine komplexe Web-Anwendung entsteht, die einen Großteil der in der Vorlesung erlernten Techniken und Konzepte nutzt.

Qualifikationsziele:

Die Studierenden ...

- sind in der Lage, die in der Vorlesung vermittelten theoretischen Hintergründe selbst praktisch anzuwenden.
- haben umfangreiche Kenntnisse und praktische Erfahrungen zu den Themen HTML, CSS, serverseitiger Dynamik, clientseitiger Dynamik mit JavaScript und AJAX, Einsatz JSON zum Austausch von Daten zwischen Client und Server, Einsatz von Cookies und Sessions zum temporären Speichern von Daten.
- steigern ihre Teamfähigkeit durch intensive Arbeit in Zweierteams und Kommunikation über auftretende Probleme in der ganzen Gruppe.

Die Studierenden ...

- führen die technischen Randbedingungen des Internet auf und benennen ihre Auswirkungen.
- beschreiben die konzeptionellen Aspekte von Stylesheets und der zentralen Möglichkeiten zur Festlegung der Darstellung in den Cascading Stylesheets und nutzen diese zur Erzeugung angestrebter Darstellungsweisen.
- können responsive Web-Layouts erstellen
- kennen wichtige Konzepte, Sprachen, Frameworks und Architekturen zur Realisierung dynamischer Webseiten auf, wählen zwischen diesen problembezogen aus und nutzen sie zur Erstellung dynamischer Webseiten.
- geben die zusätzliche Konzepte und Sprachelemente von HTML 5 an und entwerfen damit Webseiten.
- nutzen die theoretisch vermittelten Inhalte zur eigenständigen Realisierung von Webanwendungen begrenzter Komplexität.

Verwendbarkeit:

Das Modul baut auf den Kompetenzen auf, die durch Module des Themenbereichs Programmierung in Informatik-Studiengängen, insbesondere "Programmstrukturen 1", "Programmstrukturen 2" und "Algorithmen und Datenstrukturen", vermittelt werden. Es schafft die Voraussetzungen für Module im fortgeschrittenen Studienverlauf, in denen Kenntnisse zur Realisierung von Web-Anwendungen benötigt werden. Dies kann beispielsweise in den Modulen "Software-Projekt", "E-Commerce Grundlagen" und der Bachelor-Thesis der Fall sein.

Voraussetzungen und Empfehlungen:

Die Studierenden müssen gegebenen Quelltext lesen und fehlerfrei reproduzieren können. Die in vorigen Veranstaltungen erlernten Fertigkeiten im Umgang mit einem Versionskontrollsystem wird in der Übung vorausgesetzt. Es ist hilfreich, wenn die Grundlagen der

Netzwerktechnik (Hostname, IP-Adresse, Port) bekannt sind.

Zur Vorbereitung auf Heimarbeit kann ein beliebiger Quelltext-Editor installiert werden.

Literatur:

- WOLF, Jürgen: HTML5 und CSS Das umfassende Handbuch 2019
- ACKERMANN, Philipp: JavaScript Das umfassende Handbuch 2019
- LABORENZ, Kai: CSS: Das umfassende Handbuch. Galileo Computing, 2011
- GASSTON, Peter: Moderne Webentwicklung: Geräteunabhängige Entwicklung Techniken und Trends in HTML5, CSS3 und JavaScript, dpunkt.verlag, 2014
- WORLD WIDE WEB CONSORTIUM: HTML 5. http://www.w3.org/TR/2014/WD-html5-20140617/

- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (4. Semester)
- E-Commerce Bachelor of Science Version 14.0 (4. Semester)
- Informatik Bachelor of Science Version 25.0 (4. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (4. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (4. Semester)
- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (4. Semester)

♦ MB085 – Grundlagen der Computergrafik

Verantwortliche:	Christian-Arved Bohn
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB066 – Grundlagen der Computergrafik	Vorlesung	Klausur		90 Min.	2.0	Drittelnoten	jährlich	60 Stunden	Christian-Arved Bohn
TB071 – Prakt. Grundlagen der Computergrafik	Praktikum	Abnahme	5 Aufgaben	25 Min.	3.0	Drittelnoten	jährlich	90 Stunden	Philipp Munz

Lehrinhalte:

Die Veranstaltung gibt einen Überblick über wesentliche Aspekte der generativen Computergrafik. Konkret werden die Algorithmen des Raytracings und der Projektion als geometrische Abbildung behandelt und jeweils die Teilaspekte Projektion, Verdeckung und Beleuchtungsrechnung dargestellt. Es werden intensiv Methoden der linearen Algebra besprochen, die geometrische Abbildungen zur Konstruktion von virtuellen Szenen und zur Projektion verwenden. Es folgen praktische Aspekte, die es hier zu beachten gilt und deren hardwarenahe Realisierung (z.B. "Clipping", "Buffer"). Die Technik der Texturierung wird aus mathematischer Sicht behandelt und anhand von praktischen Beispielen erläutert. Einen Einblick in weiterführende Herausforderungen der Computergrafik geben die Grundlagen der globalen Beleuchtungsrechnung ("Rendering Equation").

OpenGL, affine Transformationen, 2D- und 3D-Anwendungen, lokale Beleuchtungsmodelle, Texturierung, Picking, Viewports, Transparenz, Vertex-Arrays, Simulationen, Shader

Qualifikationsziele:

Die Studierenden

- sind in der Lage, die in der Vorlesung vermittelten theoretischen Hintergründe selbst praktisch mit OpenGL anzuwenden und sicher zu handhaben.
- haben umfangreiche Kenntnisse und praktische Erfahrungen zu den Themen OpenGL, Callback-Prinzip, 2D-Anwendungen, Matrixstacks, 3D-Szenen, Displaylisten, lokale Beleuchtung, Texturierung, Picking, Viewports und Blending,
- haben sich die Grundlagen von Vertex-Arrays, Simulationen und Shadern erarbeitet und
- steigern ihre Teamfähigkeit durch intensive Arbeit in Zweierteams und Kommunikation über auftretende Probleme in der ganzen Gruppe.

Studierenden werden Fähigkeiten,

- grundlegende Probleme der generativen Computergrafik einzuordnen und zu klassifizieren und
- entsprechende Lösungsstrategien vorzuschlagen und zu implementieren

vermittelt.

Verwendbarkeit:

Die generative 3D-Computergrafik berührt inhaltlich einige Grundgedanken der 2D Bildbearbeitung. Das Modul "Bildbearbeitung und - analyse" bietet sich daher als Kombination mit diesem Modul an.

Voraussetzungen und Empfehlungen:

Grundlagen der Mathematik, Vektorrechnung, Lineare Algebra

Literatur:

Skript:

- Vorlesungsskript unter http://cg.viswiz.de/ => Lehrveranstaltungen => Computergrafik 1
- Weiteres Material unter http://www.fh-wedel.de/mitarbeiter/ne/praktikum-grundlagen-der-computergrafik-fh/material/

Online-Quellen:

- The OpenGL Programming Guide The Redbook (http://www.glprogramming.com/red/)
- The OpenGL Reference Manual The Bluebook (http://www.glprogramming.com/blue/)
- NeHe Productions (http://nehe.gamedev.net/)

Bücher:

- Computergrafik und OpenGL Eine systematische Einführung, Dieter Orlamünder / Wilfried Mascolus, Hanser, 2004, ISBN: 3-446-22837-3
- Jetzt lerne ich OpenGL : der einfache Einstieg in die Schnittstellenprogrammierung, Lorenz Burggraf, Markt und Technik, 2003, ISBN: 3-8272-6237-2
- Hearn, M. P. Baker: Computer Graphics with OpenGL, Pearson Education International, 2004.
- Peter Shirley et al.: Fundamentals of Computer Graphics, A K Peters, 2005.

- Computer Games Technology Bachelor of Science Version 23.0 (4. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 4. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (4. Semester)
- Smart Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 4. Semester)
- Technische Informatik Bachelor of Science Version 20.0 (Wahlmöglichkeit 4. Semester)

♦ MB097 – Bildbearbeitung und -analyse

Verantwortliche:	Dennis Säring
	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB076 – Bildbearbeitung und -analyse	Vorlesung	Klausur		60 Min.	2.0	Drittelnoten	Sommersemester	60 Stunden	Dennis Säring
TB083 - Prakt. Bildbearbeitung und -analyse	Übung	Abnahme	5 Aufgaben		3.0	Drittelnoten	jährlich	90 Stunden	Hermann Höhne

Lehrinhalte:

- Einführung in die Bildbearbeitung
- Visualisierung und Bildanpassung
- Komposition und Filterung
- Fourier-Transformation und Frequenzfilter
- Lineare und nicht-lineare Registrierung
- Segmentierung und Texturanalyse
- Klassifikationsverfahren
- Selbstständiges Einarbeiten in den C++17 Standard auf Basis des vorhandenen Hintergrundwissens um C
- Selbstständiges Einarbeiten in die Basisfunktionen von OpenCV bei minimaler Hilfestellung
- Implementierung von Algorithmen zur Bildbearbeitung und -analyse:
 - Punktweise Transformationen (Fensterung, Gamma-Korrektur)
 - o Lineare Faltungsfilter und morphologische Filter
 - o Affine Transformationen und Interpolation
 - o Farb- und Texturanalyse
 - o Grundlagen der Objekterkennung inklusive Segmentierung und Formerkennung

Qualifikationsziele:

Die Studierenden ...

- haben ein Verständnis für die Struktur digitale Bilddaten
- erkennen die Möglichkeiten der Darstellung und Anpassung von digitalen Bildern
- können das Konzept der Bildkomposition und der Bildfilterung in praktischen Übungen umsetzen
- sind in der Lage Bilddaten in Frequenz- und Ortsbereich zu analysieren und zu bearbeiten
- verfügen über die theoretischen Grundlagen zur Registrierung von Bilddaten
- kennen unterschiedliche Ansätze Objekte in Bilddaten automatisch zu klassifizieren und zu segmentieren
- sammeln im Praktikum Erfahrungen beim Implementieren von Algorithmen zur Bildbearbeitung
- vertiefen durch praktisches Umsetzen die in der zugehörigen Vorlesung theoretisch erläuterten Algorithmen zur Bildbearbeitung und -analyse
- üben das selbstständige Erweitern ihrer Kenntnisse in Programmiersprachen
- üben das selbstständige Einarbeiten in eine vorgegebene Bibliothek
- können diese Fähigkeiten im kommerziellen oder akademischen Umfeld praktisch nutzen

Verwendbarkeit:

Das Modul kann in Verbindung mit dem Modul "Grundlagen der Computergrafik" gehört werden, da letzteres sich viel mit 2D-Algorithmen befasst und auch die Verfahren der Bildbearbeitung sich oftmals in 3D bewegen. Aufgrund aktueller Entwicklungen in der Forschung wird dieser Zusammenhang sich in naher Zukunft verstärken.

Viele Inhalte sind für Aufgaben der industriellen Bildverarbeitung weiterführend nutzbar in Veransaltungen mit Themen des autonomen Fahrens, der Robotik und Automatisierungstechnik.

Voraussetzungen und Empfehlungen:

Zur Vorbereitung auf das Praktikum kann auf dem heimischen Rechner eine Entwicklungsumgebung für C++ installiert werden. Das in den vorigen Veranstaltungen erworbe Wissen über die Syntax von C und die objektorientierten Konzepte von Java können zweks Kombination wiederholt werden.

Literatur:

- Burger, Burge: Digitale Bildverarbeitung, Springer-Verlag 2005
- Handels: Medizinische Bildverarbeitung, Vieweg+Teubner 2009

• Howse, Minichino: Learning OpenCV 4 Computer Vision with Python 3, Packt Publishing 2020

- Computer Games Technology Bachelor of Science Version 23.0 (4. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 4. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (4. Semester)
- Smart Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Technische Informatik Bachelor of Science Version 20.0 (4. Semester)

♦ MB209 – Applied Data Science and Machine Learning

Verantwortliche:	Ulrich Hoffmann
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB061 - Applied Data Science and Machine Learning	Vorlesung	Schriftl. Ausarbeitung (ggf. mit Präsentation)	20 Seiten	15 Min.	5.0	Bestanden/nicht Bestanden	jährlich	150 Stunden	Christo Zonnev

Lehrinhalte:

Vorlesung

- Einführung
 - o Maschinelles Lernen warum, wie, was / Grundlagen
- Data-Science-Grundlagen
 - Wiederholung der erforderlichen Mathematik & Statistik
 - Daten-Algorithmen
 - Einführung in allgemeinen Software-Werkzeuge für Data-Sience
- Grundlagen des maschinelles Lernen
 - Daten-Algorithmen
- Einführung in Software-Werkzeuge des maschinellen Lernens
- Graph-Daten
 - Verarbeitung von Graphenstrukturen
 - Soziale Netzwerke
- neuronale Netze
 - o neuronale Netze im Detail
 - Software-Werkzeug Keras
 - Software-Werkzeug Tensorflow
- Kursretrospektive

Praktischer Teil

- Projektaufgeenstellung
 - o Ideenfindung
 - o Aufgabenverteilung
- Projekt-Präsentationen

Qualifikationsziele:

Nach Abschluss des Moduls besitzen die Studierenden...

- Kenntnisse über wesentliche Fragestellungen des maschinellen Lernens
- Kenntnisse über das systematische Vorgehen bei der Durchführung von Machine-Learning-Projekte und die beteiligten Schritten
- Kenntnisse der auftretenden Herausforderungen im Machine-Learning-Projekten
- Kenntnisse wesentlicher Begriffe des Maschinellen Lernens und die Fähigkeit sie gezielt und präzise einzusetzen
- Kenntnisse unterschiedlicher Machine-Learning-Aufgaben, verschiedener Machine-Learning-Verfahren (Algorithmen)
- die Fähigkeit die Einsatzgebiete, Arbeitsweise und Eigenschaften von Machine-Learning-Verfahren zu benennen
- Fähigkeit Machine-Learning-Projekte bezüglich Ihrer Qualität systematisch zu untersuchen und zu bewerten.
- Kennnisse über verschiedene Machine-Learning-Werkzeugen und ihre Anwendungsgebiete
- Fähigkeiten im Umgang mit ausgewählten Machine-Learning-Werkzeugen
- die Fähigkeit gegebene Daten für das maschinelle Lernen aufzubereiten
- die Fähigkeit Daten auf Eignung zum maschinellen Lernens zu überprüfen

Verwendbarkeit:

Das Modul lässt sich sinnvoll mit dem Modulen "Bildverarbeitung- und Analyse" und "Statistik" kombinieren, bei denen Grundlagen und ein wesentliches Anwendungsgebiet des maschinellen Lernens vermittelt werden. In den Modulen "Projekt Intelligente Systeme" und "Projekt Intelligente Umgebungen" können die erworbenen Kompetenzen in umfangreichen, interdisziplinären Projekten je nach gewählter Aufgabe eingesetzt werden.

Voraussetzungen und Empfehlungen:

Grundlegende Kenntnisse in Mathematik und Statistik:

• Vertrautheit mit den grundlegenden mathematischen Konzepten und statistischen Methoden, die für das Verständnis und die Anwendung von Data-Science-Techniken und maschinellem Lernen erforderlich sind.

Grundlagen der Informatik und Programmierung:

• Grundkenntnisse in Informatik und Programmierung, insbesondere im Umgang mit Software-Werkzeugen und Programmiersprachen, die in der Data-Science und im maschinellen Lernen eingesetzt werden (z.B. Python, Keras, TensorFlow).

Verständnis von Datenstrukturen und Algorithmen:

• Kenntnisse über grundlegende Datenstrukturen und Algorithmen, einschließlich der Verarbeitung von Graphenstrukturen und sozialen Netzwerken, die für die Anwendung von maschinellem Lernen relevant sind.

Literatur:

- Bishop: Neural Networks for Pattern Recognition, Oxford Press 1995
- Sutton, Barto: Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998
- Brause: Neuronale Netze,

Teubner, 1991

• Raschka: Python Machine Learning,

Packt, 2015

- Müller, Guido: Introduction to Machine Learning with Python, O'Reilly, 2016
- Richert, Coelho: Building Machine Learning Systems with Python, Packt. 2018
- Goodfellow: Deep Learning (Adaptive Computation and Machine Learning) MIT Press, 2017
- Géron: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems O'Reilly, 2017

- Computer Games Technology Bachelor of Science Version 23.0 (4. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 23.0 (2. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (4. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (4. Semester)
- Smart Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 4. Semester)

♦ MB270 – Optik und Interface-Technologie

Verantwortliche:	Christian-Arved Bohn
Moduldauer:	6 Monate
Unterrichtssprache:	Deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB172 – Prakt. Optik	Übung	Praktikumsbericht / Protokoll	10 Seiten		0.5	Drittelnoten	jährlich	15 Stunden	Jürgen Günther
TB267 – Echtzeitsysteme, Interface-Technologie, Optik	Vorlesung	Klausur + ggf. Bonus		150 Min.	4.5	Drittelnoten	Sommersemester	135 Stunden	Andreas Haase Sergei Sawitzki

Lehrinhalte:

Kommunikation zwischen Mensch und Computer wird rapide wichtiger und damit auch digitale/elektronische Schnittstellen dafür. Das Modul schafft die Grundlage für das Konzipieren von Mensch-/Maschineschnittstellen. Echtzeitsysteme bilden dabei die Basis für fortgeschrittene Sensorik und die technische Optik das Verstehen grafischer Ein- und Ausgabegeräter (Displaysysteme, Projektionstechnik, optisches Tracking, etc.).

Qualifikationsziele:

Studenten und Studentinnen wissen Grundlagen der technischen Optik, um Projektionssysteme und die Mathematik der projektiven Geometrie zu verstehen und beurteilen zu können. Sie kennen Grundlagen der Sensorik, wissen, wie Microcontroller zu verwenden und zu programmieren sind und kennen sich mit hardwarenahen Schnittstellen aus.

Verwendbarkeit:

Entwicklung von Mensch-/Maschineschnittstellen, Vorlesungen und Projekte im Themenbereich der Virtuellen Realität.

Voraussetzungen und Empfehlungen:

Keine

Literatur:

- Hubert B. Keller: Entwicklung von Echtzeitsystemen: Einführung in die Entwicklung zuverlässiger softwarebasierter Funktionen unter Echtzeitbedingungen, Springer, 2019
- Heinz Wörn: Echtzeitsysteme: Grundlagen, Funktionsweisen, Anwendungen, Springer 2005
- G. Schröder, H Treiber: Technische Optik: Grundlagen und Anwendungen, Vogel Communications Group GmbH & Co. KG, 2014
- Werner Geafer: Optik und Konstruktion, Grundlagen und Anwendungen: Eine Einführung in die technische Optik, mit Formelsammlung, Joy Edition, Buchverlag and more, 2023

Studiengänge:

• Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 4. Semester)

♦ MB291 – Web- and App-Analytics

Verantwortliche:	Atilla Wohllebe
Moduldauer:	6 Monate
Unterrichtssprache:	Deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB126 – Web-Analytics Projekt	Übung	Schriftl. Ausarbeitung (ggf. mit Präsentation)			3.0	Drittelnoten	jährlich	90 Stunden	Atilla Wohllebe
TB282 - Web- and App-Analytics	Vorlesung	Klausur + ggf. Bonus		60 Min.	2.0	Drittelnoten	Sommersemester	60 Stunden	Atilla Wohllebe

Lehrinhalte:

Vorlesung Web- & App-Analytics:

- Digital Analytics Grundlagen
- Messung und Interpretation von Metriken
- Optimierung von Websites und Apps

Übung Web-Analytics Projekt:

- Implementierung einer Web-Analytics-Software
- Definition von Website-Zielen, Ereignissen und KPIs
- Auswertung von Web-Analytics-Daten

Qualifikationsziele:

Die Studierenden...

- kennen die unterschiedlichen Arten von Daten und deren Gewinnung zur Analyse des Nutzerverhaltens auf Websites und in Apps.
- können daraus gewonnenen Kennzahlen konzipieren und interpretieren
- sind in der Lage, datenbasierte Verbesserungsvorschläge technischer und inhaltlicher Art auf Basis der zielgerichteten Analyse zu erarbeiten.
- können aussagefähige Reportings für das Web-Controlling entwickeln.

Verwendbarkeit:

Die erworbenen Fähigkeiten und Kenntnisse sind unter anderem in "Digital Marketing" und "Usability & Mobile" hilfreich. Ferner können sie in "Online-Plattform (Konzeption & Aufbau)" und im "Projekt E-Commerce" verwendet werden.

Voraussetzungen und Empfehlungen:

Vorausgesetzt werden ein grundlegendes Verständnis für betriebswirtschaftliche Zusammenhänge und erste Kenntnisse zu den Grundlagen des E-Commerce.

Literatur:

- Ahrholdt, D., Greve, G., Hopf, G. (2023). Online-Marketing-Intelligence. Springer Gabler.
- Halfmann, M., Schüller, K. (2022). Marketing Analytics. Springer Gabler.
- Hassler, M. (2019). Digital und Web Analytics. mitp.
- Kaushik, A. (2009). Web Analytics 2.0. John Wiley & Sons.
- Kreutzer, R. (2021). Praxisorientiertes Online-Marketing. Springer Gabler.
- Von Heeren, R. (2019). Praxisbuch: Professionelle Web-Analyse mit Google Analytics und Google Tag Manager.

- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (Wahlmöglichkeit 4. Semester)
- E-Commerce Bachelor of Science Version 23.0 (2. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 4. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 4. Semester)

♦ MB040 – Algorithmen und Datenstrukturen

Verantwortliche:	Christian Uhlig
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB015 – Algorithmen und Datenstrukturen	Vorlesung	Klausur		90 Min.	3.0	Drittelnoten	jährlich	90 Stunden	Christian Uhlig
TB016 – Übg. Algorithmen und Datenstrukturen	Übung	Abnahme	2 Aufgaben	75 Min.	2.0	Bestanden/nicht Bestanden	Wintersemester	60 Stunden	Malte Heins

Lehrinhalte:

- Analyse von Algorithmen
 - Laufzeit und Speicherbedarf
 - o Groß-O / Groß-Omega / Groß-Theta Notationen
 - Amortisierte Laufzeitanalyse
 - Iterative vs rekursive Implementierungen
- Sortieren und Suchen
- Listenstrukturen
 - o Verkettete Listen (lineare Listen, Ringlisten, einfach und doppelt verkettete Listen)
 - o Arraybasierte Listen
 - Skiplisten
- Baumstrukturen
 - o Binäre Suchbäume
 - o Balancierte Suchbäume: 2-3-Bäume
 - o Balancierte Binäre Suchbäume: Rot/Schwarz-Bäume
 - o Spreizbäume
 - o Tries
 - Arraybasierte Binäre Heaps
- Hash-Tabellen
- Abstrakte Datentypen und ihre Implementierung
 - o Listen
 - Mengen
 - o Verzeichnisse
 - o Warteschlangen
- Java Collections Framework

Bearbeitung von Übungsaufgaben parallel zum Stoff der Vorlesung in Zweiergruppen mit Abnahme und Diskussion der Lösungen. Zusätzlich werden im Rahmen der Übungsaufgaben praxisrelevante Aspekte der Anwendungsentwicklung mit der Programmiersprache Java behandelt, die nicht Bestandteil der Vorlesung sind.

Qualifikationsziele:

Die Studierenden ...

- analysieren, diskutieren und vergleichen einfache Algorithmen und Datenstrukturen hinsichtlich ihres Bedarfs an Laufzeit und Speicher.
- differenzieren bei der Analyse von Algorithmen hinsichtlich best case, worst case und average case.
- differenzieren die Laufzeit von Algorithmen nach ihrem konstanten Faktor und ihrem Wachstum in Abhängigkeit von der Problemgröße.
- beurteilen die Laufzeit von Algorithmen ausgehend von Komplexitätsklassen in den Groß-O-, Groß-Omega- und Groß-Theta-Notationen.
- nennen und erläutern wesentliche Aspekte, Funktionsweisen und Eigenschaften von Algorithmen zum Suchen und Sortieren.
- erläutern die Differenzierung in abstrakte Datentypen und ihre Implementierung.
- nennen und erläutern typische abstrakte Datentypen wie Listen, Mengen, Verzeichnisse und Warteschlangen mit ihren Operationen und Anwendungsbereichen.
- nennen und erläutern Motivation, Funktionsweise und Eigenschaften typischer Implementierungen abstrakter Datentypen mit verketteten Listen, Arrays, Baumstrukturen und Hash-Tabellen.
- wählen zu einer gegebenen Problemstellung einen geeigneten abstrakten Datentypen nebst einer geeigneten Implementierung aus.
- wenden die Elemente allgemein der objektorientierten Programmierung und speziell der Programmiersprache Java zur Lösung algorithmischer Problemstellungen an
- wenden die abstrakten Datentypen und Implementierungen des Java Collections Frameworks an

Verwendbarkeit:

Das Modul setzt unmittelbar auf den Inhalten des Moduls "Programmstrukturen 2" auf und eignet sich damit als Weiterqualifikation im Anschluss an "Programmstrukturen 2" und das "Programmierpraktikum". Es kann ergänzend mit fortgeschrittenen Modulen zur Software-Technik kombiniert werden, insbesondere mit "Software-Design", "Fortgeschrittene Objektorientierte Programmierung" und "Systemnahe Programmierung".

Voraussetzungen und Empfehlungen:

Vorausgesetzt werden Grundkenntnisse der prozeduralen und der objektorientierten Programmierung, insbesondere in der Programmiersprache Java. Diese Kenntnisse sollten insbesondere die Abbildung abstrakter Datentypen per Interfaces und abstrakter Klassen und die Verwendung einfacher generischer Typen umfassen. Es empfiehlt sich, bereits vorhandenes Grundlagenwissen zu Arraylisten, zu verketteten Listen und zu Sortieralgorithmen im Vorwege aufzufrischen.

Literatur:

- Sedgewick, Robert; Wayne, Kevin: Algorithms, 4th Edition, Addison-Wesley, 2011
- Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford: Introduction to Algorithms, 3rd Edition, The MIT Press, 2009
- Knuth, Donald E.: The Art of Computer Programming Vol. 1 Fundamental Algorithms, 3rd Edition, Addison-Wesley, 1997
- Knuth, Donald E.: The Art of Computer Programming Vol. 3 Sorting and Searching, 2nd Edition, Addison-Wesley, 1998
- Wirth, Niklaus: Algorithmen und Datenstrukturen, 5. Auflage, Teubner, 2013
- Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D.: The Design and Analysis of Computer Algorithms, 1st Edition, Pearson, 1975
- Aho, Alfred V.; Hopcroft, John E.; Ullman, Jeffrey D.: Data Structures and Algorithms, Addison-Wesley, 1983
- Aho, Alfred V.; Ullman, Jeffrey D.: Foundations of computer science, Computer Science Press, 1992
- Dokumentation zur Java-API

- Computer Games Technology Bachelor of Science Version 23.0 (3. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (3. Semester)
- E-Commerce Bachelor of Science Version 23.0 (Wahlmöglichkeit 3. Semester)
- Informatik Bachelor of Science Version 25.0 (3. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (3. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (5. Semester)
- Smart Technology Bachelor of Science Version 24.0 (3. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (3. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (3. Semester)

♦ MB102 – Geometrische Modellierung und Computeranimation

Verantwortliche:	Christian-Arved Bohn
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB081 – Geometrische Modellierung und Computeranimation	Vorlesung	Klausur		90 Min.	2.0	Drittelnoten	jährlich	60 Stunden	Christian-Arved Bohn
TB084 - Prakt. Geometrische Modellierung und Computeranimation	Praktikum	Abnahme	4 Aufgaben	25 Min.	3.0	Drittelnoten	jährlich	90 Stunden	Philipp Munz

Lehrinhalte:

Grundlagen der Interpolation mittels Polynomen, geometrische Modellierung mit starkem Fokus auf Polyeder, Basistechniken der Computeranimation (z. B. Interpolation von Animationspfaden), Kollisionserkennung und -behandlung, Darstellung von Orientierungen (z. B. Quaternionen), Grundlagen globaler Beleuchtungsmodelle.

Vertex-Arrays, Splinekurven, Splineflächen, Bézierkurven, Bézierflächen, Animation, Euler-Integration, Penalty-Methode, Partikelsysteme, Raytracing, Quaternionen, Voronoi-Parkettierung

Qualifikationsziele:

Studierende

- erlangen Kenntnisse über die Generierung von Computeranimationen,
- erhalten das Bewusstsein für Probleme bei der Generierung von Computeranimationen und
- erlernen das Beherrschen der betreffenden Grundlagen (z.B. Darstellung von Orientierungen, Polynome, Interpolation).

Aufbauend auf den Inhalten des Praktikums "Grundlagen der Computergrafik" und vertiefend zu den Inhalten der gleichnamigen Vorlesung erlangen die Studierenden im Praktikum "Geometrische Modellierung und Computeranimation" die Fähigkeit

- Kurven und Flächen mittels Spline- und Bézier-Interpolationen unter Zuhilfenahme von Vertex-Arrays visuell darzustellen,
- Kollisionserkennung und -reaktion (z.B. mit der Penaltymethode) umzusetzen,
- Animationen aufgrund ihrer Kenntnisse physikalischer Grundlagen mittels Euler-Integration zu erstellen,
- Partikelsysteme z.B. zur Visualisierung von Schwarmverhalten zu erzeugen.

Ggf. werden darüber hinaus gehende Themen wie Raytracing, Quaternionen und Voronoi-Parkettierung in einzelnen Aufgaben angeboten, zu denen die Studierenden dadurch grundlegende Kenntnisse erlangen.

Verwendbarkeit:

Das Modul sollte in Verbindung mit "Grundlagen der Computergrafik" gehört werden, da es bei vielen Themen - vor allem in den zugehörigen Übungen - Überschneidung gibt.

Voraussetzungen und Empfehlungen:

Grundlagen der Mathematik, Vektorrechnung, Lineare Algebra

Literatur:

- Donald Hearn und M. Pauline Baker: Computer Graphics with OpenGL, Prentice Hall International, 2003.
- T. Möller, E. Haines: Real-Time Rendering, Peters, Wellesley, 2008.
- Philip Dutre, Kavita Bala, Philippe Bekaert: Advanced Global Illumination, Peters, Wellesley, 2006.

Skript:

- Vorlesungsskript unter http://cg.viswiz.de/ => Lehrveranstaltungen => Computergrafik 2
- Weiteres Material unter http://www.fh-wedel.de/mitarbeiter/ne/praktikum-geometrische-modellierung-und-computeranimation/material/

- Computer Games Technology Bachelor of Science Version 23.0 (5. Semester)
 Medieninformatik Bachelor of Science Version 25.0 (5. Semester)
 Smart Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 5. Semester)

♦ MB107 – Einführung in die Robotik

Verantwortliche:	Ulrich Hoffmann
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB080 - Einführung in die Robotik	Vorlesung	Klausur		60 Min.	2.0	Drittelnoten	Wintersemester	60 Stunden	Ulrich Hoffmann
TB086 – Prakt. Robotik	Praktikum	Praktikumsbericht / Protokoll	10 Seiten	10 Min.	3.0	Drittelnoten	Wintersemester	90 Stunden	Hermann Höhne

Lehrinhalte:

Anhand eines Projekts werden die Inhalte aus der Vorlesung praktisch umgesetzt. Die konkreten Zielsetzungen werden jedes Jahr angepasst. Schwerpunkt liegt bei den Grundlagen zur Programmierung mobiler Roboter bis hin zu einfachem autonomen Fahren. Der Charakter des Praktikums liegt beim praktischen betreuten Umsetzen von Verfahren, welche zuvor in der Vorlesung präsentiert worden sind.

- Strukturen der Fertigungstechnik
- Flexible Fertigungszellen
- Industrieroboter
- Strukturen und Aufbau von Robotern
- Kinematik
- Antriebe
- Effektoren
- Steuerstrategien
- Koordinatentransformationen
- Punkt-zu-Punkt-Steuerung
- Steuerung mit Interpolation
- Mensch-Maschine-Kommunikation
- Roboter-Programmiersysteme
- Roboter-Sprachen
- Intelligente Sensorik
- Integration von Optischen Sensoren

Qualifikationsziele:

Nach Bearbeitung des Praktikums sind die Studierenden in der Lage ...

- Lerninhalte der Vorlesung im Rahmen eigener Erfahrungen zu vertiefen.
- Ein gegebenes Roboterprogrammiersystem zu nutzen.
- Techniken zum Sammeln, Glätten und Bewerten von Sensordaten anzuwenden.
- Typische Problemstellungen mittels grundlegender Algorithmen zu lösen.
- Eigene Ideen und Lösungsansätze zu implementieren.
- Versuchsergebnisse in einer schriftlichen Dokumentation zu präsentieren.

Die Studierenden ...

- besitzen fundierte Kenntnisse der technischen Grundlagen der Robotik.
- besitzen ausgehend von den Entwicklungstendenzen im Bereich der Flexiblen Fertigungstechnik die grundlegende Kompetenz für das Verständnis für Funktionsweisen und Einsatzschwerpunkte von Industrierobotern.
- verfügen über die Kompetenz, die Möglichkeiten der Verbindung von Robotern mit "intelligenten" Sensoren zu durchdringen, insbesondere die Erkennung und Einschätzung der Eigenschaften optischer Sensorsysteme.
- können verschiedene Konzepte der Offline-Programmierung von Industrierobotern identifizieren.
- verstehen aktuelle Entwicklungstendenzen zur Erhöhung der Selbständigkeit bei Robotern.

Verwendbarkeit:

Das Modul lässt sich sinnvoll mit dem Modulen "Bildbearbeitung und -analyse" und "Projekt Eingebettete Systeme" kombinieren. Es wendet Inhalte der Module "Elektronik", "Halbleiterschaltungstechnik" und "Systemnahe Programmierung" praktisch an und kann damit gut in technischen Studiengängen verwendet werden. In einem konsekutiven Studiengang kann das Modul als Grundlage für das Master-Modul "Robotics" dienen.

Voraussetzungen und Empfehlungen:

- Kentnisse in Linearer Algebra
- Grundlegende Fähigkeiten imperative Programme zu erstellen und auf Software-Bibliiotheken zuzugreifen
- Grundkenntnisse und grundlegende Fähigkeiten in der Programmierung von Bildverarbeitungsalgorithmen und der Benutzung einschlägiger Bibliotheken.

Literatur:

- Hertzberg, J: "Mobile Roboter: Eine Einführung aus Sicht der Informatik", eXamen.press, 2012
- Prat: "Sensordatenfusion und Bildverarbeitung zur Objekt- und Gefahrenerkennung", 2010
- McKerrow: Introduction to Robotics, Addison Wesley, 1990
- Wirth: Flexible Fertigungssysteme, Hüthig-Verlag
- Vukobratovic: Introduction to Robotics, Springer, 1995
- Blume, Dillmann: Frei Programmierbare Roboter, Vogel Verlag
- Blume, Jakob: Programmiersprachen für Industrieroboter, Vogel Verlag, 1985

- IT-Ingenieurwesen Bachelor of Science Version 25.0 (5. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)
- Smart Technology Bachelor of Science Version 24.0 (5. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (5. Semester)

♦ MB116 – Technologie der Mediengestaltung und GUI-Programmierung

Verantwortliche:	Ulrich Hoffmann
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB089 – Technologie der Mediengestaltung und GUI-Programmierung	Vorlesung	Portfolio-Prüfung	20 Seiten	60 Min.	5.0	Drittelnoten	jährlich	150 Stunden	Ole Nass

Lehrinhalte:

- Motivation, Begriffe und Konzepte
 - Mensch-Computer-Interaktion (MCI): Ziele, Herausforderungen, Modelle
 - o Überblick, Technologien webbasierter Programmierung
- Menschliche Informationsverarbeitung und ihre Bedeutung für die MCI
 - Modelle zur Informationsverarbeitung
 - o Sinne und ihre Relevanz
 - Wahrnehmungsgesetze und Gedächtnis
 - o Handlungspsychologie und das Interface als Handlungsraum
 - Handlungsprozesse und Fehlerbehandlung
- Interaktion im Dialog
 - o Funktions- und ablauforientierte Interaktion
 - $\circ \ Gestaltungsgrunds \"{a}tze$
 - o Wahrnehmungsbasierte Organisation komplexer Informationen
 - Navigation in multimedialen Anwendungen
 - o Normen, Gesetze, Richtlinien
 - o Barrierefreiheit
- Technologien für Dynamische Webseiten
 - o Client-Server-Modell
 - Frameworks
- Begriffe: Mandantenfähigkeit, Backend, Backoffice, Frontend, Template
- Konkrete Technologien für unterschiedliche Clients
 - Auswahl aktueller Technogien
 - Übungen: z. B. HTML5, CSS, AJAX, JavaScript, Webapp, Flash, Flex / Air...

Qualifikationsziele:

Studierende erhalten ...

- die Fähigkeit, aktuelle Technologien der Programmierung von webbasierten Medien funktional und operativ zu durchdringen,
- die Fähigkeit, die Aspekte, mit denen spezielle Gestaltungsvorstellungen umzusetzen sind, zu erkennen,
- das Verständnis der physiologischen und psychologischen Grundkonzepte von Interaktionen, das die Zusammenhänge zwischen menschlicher Informationsverarbeitung und Konzepten zur Analyse und Gestaltung interaktiver Systeme transparent macht,
- das Verständnis der softwareergonomischen Richtlinien / Normen zu den Informationstechnik-Verordnungen zur Barrierefreiheit sowie
- das Verständnis der unterschiedlichen Hardwarekonzepte für interaktive Ein- und Ausgabemedien.

Verwendbarkeit:

Das Modul baut die erworbenen Kenntnisse und Fähigkeiten der Module zur Programmierung ("Programmstrukturen 1", "Programmstrukturen 2") auf und deckt den Aspekt Benutzeroberflächenentwurfs ab, der für die Gestaltung von Gerätebenutzeroberflächen wesentlich ist.

Voraussetzungen und Empfehlungen:

- Vertrautheit mit webbasierten Technologien wie HTML5, CSS und JavaScript.
- Fähigkeit zur Entwicklung dynamischer Webseiten und Anwendungen.

Literatur:

- Böhringer, J., Bühler, P., Schlaich, P., Sinner, D. (2014): Kompendium der Mediengestaltung, 6. Auflage, Berlin: Springer Verlag (4 Bände: Konzeption, Technik, Print, Digital)
- Butz, A., Krüger, A. (2014): Mensch-Maschine-Interaktion. München: De Gruyter/ Oldenbourg

- Dahm, M. (2006): Grundlagen der Mensch-Computer-Interaktion. München: Pearson Studium
- Hammer, N., Bensmann, K. (2011): Webdesign für Studium und Beruf. Webseiten planen, gestalten und umsetzen. 2. Aufl. Berlin: Springer Verlag.
- Heinecke, A.M. (2012): Mensch-Computer-Interaktion. 2. Aufl. Berlin: Springer
- Khazaeli, C.D. (2005): Systemisches Design, Intelligente Oberflächen für Information und Interaktion. Reinbek: Rowohlt Verlag
- Malaka, R., Butz, A., Hußmann, H. (2009): Medieninformatik. Eine Einführung. München: Pearson Studium
- Preim, B., Dachselt, R. (2015): Interaktive Systeme, Band 1+2. Berlin: Springer Vieweg
- Sharp, Helen; Rogers, Yvonne; Preece, Jenny (2007): Interaction Design: Beyond Human-Computer Interaction. 2nd edition, New York: Wiley.
- Stephanidis, Constantine (ed) (2009): Universal Access in Human Computer Interaction. Intelligent and Ubiquitous Interaction Environments. 5th International Conference UAHCI 2009, San Diego, CA, USA (LNCS 5615). Berlin, New York: Springer

- Informatik Bachelor of Science Version 25.0 (3. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (5. Semester)
- Smart Technology Bachelor of Science Version 24.0 (5. Semester)

♦ MB244 – Exploratory Data Analysis

Verantwortliche:	Hendrik Annuth
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB079 - Data Visualization, Feature Engineering	Vorlesung	Klausur	9 Seiten	60 Min.	3.0	Drittelnoten	Wintersemester	90 Stunden	Hendrik Annuth
TB090 – Übg. Exploratory Data Analysis	Übung	Abnahme	20 Aufgaben	30 Min.	2.0	Bestanden/nicht Bestanden	jährlich	60 Stunden	Marco Pawlowski

Lehrinhalte:

- Machine-Learning-Verfahren Naive Bayes und Random Forest
- Data Transformation
- Data Augmentation
- Feature Embedding
- Feature Analysis: Feature Importance, Partial Dependencies; Data Leakage
- Unstructured Data
- Zeitreihen
- Erweiterte Einführung in R und Python
- Wichtigste Pakete zur Datenverarbeitung in R und Python
- Verwendung der gängigsten Visualisierungsverfahren in R und Python
- Erstellung von Diagrammen, Graphen und Histogrammen
- Zusammenstellung von Informationsgrafiken zur gleichzeitigen Darstellung
 - Das Pyramidenprinzip
 - Auswahlkriterien für Balken-, Torten- und Streudiagramme, Histogramme, Graphen
 - Metriken und Dashboards
 - Einführung in die Datenreinigung, -aufbereitung und -erweiterung
 - Einführung in die Topologie
 - Automatisierte Visualisierungsanwendungen
 - Clustering Methoden k-Means, Self-organizing Maps, Hierarchical Clustering
 - Dimensionalitätsreduktionsverfahren: PCA, T-SNE, UMAP

Qualifikationsziele:

- Ein gutes Verständnis, wie beliebige Daten in einen Vektor umgewandelt bzw. als solches aufgefasst werden können, um verschiedene Datenarten für den Einsatz von Machine-Learning-Verfahren nutzbar zu machen
- Sicheres Beherrschen von Verfahren zur Datenreinigung, Data Augmentation und Datentransformation, um bewusst Problemen im Lernprozess vorzubeugen
- Kenntnis von Normalisierungstechniken, um die Ergebnisse von Machine-Learning-Verfahren zu verbessern
- Ein solides Verständnis von kategorischen und kontinuierlichen Datentypen, deren Konvertierung, von Einstellungsparametern und deren Auswirkungen auf ein Machine-Learning-Verfahren
- Ein Verständnis und Lösungsansätze beim Umgang mit Daten, die Zeitreihen enthalten
- Einsatz von Visualisierungstechniken, um aus Datensätzen verbesserten inhaltlichen Nutzen ziehen zu können
- Bewusstsein für die gezielte Auswahl von Graphen, Diagrammen und Tabellen zum Zwecke der Hervorhebung von Erkenntnissen aus Datensätzen
- Grundverständnis für die Funktionsweise aktueller Softwarelösungen und Pakete für die Visualisierung und Aufbereitung von Daten
- Erschließung von Datensätzen und deren Besonderheiten durch die Programmiersprachen R und Python
- Die Fähigkeit, Visualisierungstechniken im Kontext der Datensatzanalyse so einzusetzen, dass Datensätze durch den Erkenntnisgewinn sinnvoll aufbereitet und erweitert werden können
- Verständnis zur Visualisierung hochdimensionaler Daten
- Sicherer Umgang mit der Programmierung in R und Python und den dazugehörigen Entwicklungsumgebungen
- Erfahrung mit dem Laden, Verarbeiten und Visualisieren von komplexen Datensätzen
- Fähigkeit zur programmatischen Erstellung von verschiedenen Diagrammen, Graphen und Histogrammen
- Erfahrung mit dem Zusammenstellen verschiedener Informationsgrafiken im Kontext der Aufbereitung einer zielgerichteten Fragestellung

Verwendbarkeit:

Das Modul kann sinnvoll mit Modulen aus der Informatik und aus den Wirtschaftswissenschaften kombiniert werden. Es kann überall dort verwendet werden, wo vorliegende Daten analysiert und das Ergebnis dieser Analyse zu Kommunikationszwecken visualisiert werden müssen. Das Modul ist eine wichtige Vorbereitung auf das Modul "Machine Learning". Ebenfalls wird die Veranstaltung "Prognose und Simulation", das "Praktikum Data Science", das "Projekt Data Science" und die Ergebnispräsentation innerhalb der Bachelorthesis vorbereitet.

Voraussetzungen und Empfehlungen:

Das Modul setzt erweiterte Programmierkenntnisse voraus. Sprachelemente aus Python und R werden vorgestellt und verwendet. Dabei werden Konzepte wie Zeiger, Speicherreservierung und Garbage-Collection als bekannt vorausgesetzt. Mathematisches Grundwissen aus den Veranstaltungen Mathematik 1 und 2, aus den Gebieten Statistik und Linearer Algebra wird in der Veranstaltung vorausgesetzt.

Literatur:

- Feature Engineering and Selection: A Practical Approach for Predictive Models; Chapman and Hall 2019; Max Kuhn and Kjell Johnson:
- Feature Engineering for Machine Learning Models: Principles and Techniques for Data Scientists; O'Reilly 2018; Alice Zheng, Amanda Casari
- The Art of Feature Engineering Essentials for Machine Learning; Cambridge University Press 2020; Pablo Duboue

Siehe auch Veranstaltung Machine Learning

- Visual Display of Quantitative Information; Bertrams 2001; Edward R Tufte
- Say It With Charts: The Executives's Guide to Visual Communication: The Executive's Guide to Visual Communication; McGraw-Hill; Gene Zelazny
- The Pyramid Principle: Logic in Writing and Thinking: Logical Writing, Thinking and Problem Solving; Financial Times Series 1996; Barbara Minto
- The Elements of Statistical Learning; Springer 2009; Trevor Hastie, Robert Tibshirani, Jerome Friedman
- Datenvisualisierung: Vom Diagramm zur Virtual Reality; UTB 2018; Peter Fischer-Stabel
- Storytelling mit Daten: Die Grundlagen der effektiven Kommunikation und Visualisierung mit Daten; Vahlen 2017; Cole Nussbaumer Knaflic, Mike Kauschke
- The Truthful Art: Data, Charts, and Maps for Communication (Voices That Matter); New Riders 2016; Alberto Cairo
- Infografik: Komplexe Daten professionell visualisieren; Rheinwerk Design 2018; Raimar Heber
- Data Visualization: A Practical Introduction; Princeton University Press 2019; Kieran Healy
- Datenvisualisierung mit Tableau; mitp 2018; Alexander Loth
- Learning Python; O'Reilly and Associates 2013; Mark Lutz
- Basic Elements of Computational Statistics; Springer 2017; Wolfgang Karl Härdle, Ostap Okhrin, Yarema Okhrin
- Data Science mit Python: Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn; mitp 2017; Jake VanderPlas

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 23.0 (3. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (3. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)

♦ MB266 – Virtual and Augmented Reality

Verantwortliche:	Christian-Arved Bohr						
Moduldauer:	12 Monate						
Unterrichtssprache:	Deutsch						

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB091 - Virtual und Augmented Reality	Vorlesung	Klausur		90 Min.	2.0	Drittelnoten	jährlich	60 Stunden	Christian-Arved Bohn
TB257 - Prakt. Virtual Reality	Projektarbeit	Abnahme	1 Aufgaben	30 Min.	8.0	Drittelnoten	jedes Semester	240 Stunden	Marian Gajda

Lehrinhalte:

Wahrnehmung des Menschen, insbesondere Techniken und Algorithmen für Stereo-Rendering, Projektionssysteme (Projektoren und Projektionsflächen), allgemeine Methoden des Tracking und Beispiele für Tracking-Devices. Komplexe Projektionen (Beamer-basiert, nicht-planare Projektionsflächen), großflächige, gekachelte Projektionen, Kalibrierung von Augmented Reality Systemen, optisches Tracking, Simulation von 3D-Klang, haptische Ein-/Ausgabegeräte, besondere Datenstrukturen und Algorithmen für die Echtzeitvisualisierung.

Modellierung mittels Modellierungssoftware. Themen die besprochen werden sind u. a. Koordinatensysteme, Grundkörper, Modifikatoren, komplexe virtuelle Szenen, Licht, Kamera, Texturen, Shader, Renderer, Compositing, Modelle für 3D Darstellung im Web, Spiele und Onlinespiele.

Qualifikationsziele:

Nach Abschluss des Moduls verfügen die Studierenden über einen grundlegenden Einblick in Algorithmen, die sich hinter den Anwendungen der Virtual und Augmented Reality verbergen, wie z., B. Algorithmen des optischen Trackings mittels digitaler Kameras und deren Kalibrierung, die Generierung von 3D Audio-Signalen, die Interaktion über haptische Geräte und die Verwendung allgemeiner, nicht-planarer Projektionsflächen. Neben diesen technischen Konzepten, besitzen Sie einen detaillierten Einblick in den Entwurf von Virtual Reality Szenen und Objekten.

Studierende erlangen ...

- allgemeine Kenntnisse über die Virtuelle Realität und deren Anwendung und
- ein Verständnis der technischen Problemstellungen, um entsprechende Lösungsansätze zu entwickeln.

Nach Abschluss der Veranstaltung besitzen die Studierenden die Fähigkeit,

- dreidimensionale Objekte und komplette virtuelle Szenen mittels entsprechender Modellierungssoftware sicher und effizient zu erstellen.
- den Nutzen und mögliche Verwendungen solcher Modellierungen zu erkennen und
- diesbezüglich die Anforderungen einer anwendungsbezogenen Modellierung einzuschätzen und in einen Arbeitsprozess umzusetzen.

Verwendbarkeit:

Im Modul "Virtual und Augmented Reality" ist Computergrafik ein zentraler Bestandteil für Thematik rund um das Rendern virtueller Szenen. Hierfür werden die Inhalte der Veranstaltungen "Grundlagen der Computergrafik" und "Geometrische Modellierung und Computeranimation" auf den Kontext dieses Moduls übertragen.

Voraussetzungen und Empfehlungen:

Voraussetzungen für diese Veranstaltung sind die allgemeinen Grundlagen der Computergrafik wie Projektion, die Rendering Pipeline, Raytracing und Texturierung. Wünschenswert aber nicht Voraussetzung ist Wissen über Computeranimation, d.h. z.B. Euler Integration, Interpolation und die Darstellung von Orientierungen.

Literatur:

- Doug A. Bowman, Ernst Kruijff, Joseph J. Laviola: 3D User Interfaces: Theory and Practice, Addison-Wesley Longman, 2004.
- Ralf Dörner, et al.: Virtual und Augmented Reality (VR/AR): Grundlagen und Methoden der Virtuellen und Augmentierten Realität, Springer Vieweg, 2013.
- BRUGGER, Ralf: Professionelle Bildgestaltung in der 3D-Computergrafik. Addison-Wesley, Bonn, Paris, 1995.
- DUIN, Heiko; SYMANZIK, Günter; CLAUSSEN, Ute: Beleuchtungsalgorithmen in der Computergrafik. Springer, 1996

- Computer Games Technology Bachelor of Science Version 23.0 (5. Semester)
 Medieninformatik Bachelor of Science Version 25.0 (5. Semester)

♦ MB268 – Projekt App- und Web-Development

Verantwortliche:	Christian-Arved Bohn
Moduldauer:	6 Monate
Unterrichtssprache:	Deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB259 - Projekt App- und Web-Development	Projektarbeit	Schriftl. Ausarbeitung (ggf. mit Präsentation)		30 Min.	5.0	Drittelnoten	jedes Semester	150 Stunden	Christian-Arved Bohn

Lehrinhalte:

Das Projekt führt in aktuelle Prinzipien der Programmierung für mobile Devices und Web-Browser ein. Anhand einer konkreten Aufgabenstellung wird eine komplette Applikation entwickelt, in der aktuelle Entwicklungsumgebungen und Programmpakete analysiert und auf die konkrete Anwendung bezogen selektiert werden. Deren Verknüpfung zu einer Applikation im Rahmen eines Client-Server-Modells ist zentraler Fokus des Projekts. Hierbei wird besonderer Wert auf Aktualität und einer effizienten Kombination der avisisierten Bibliotheken gelegt.

Qualifikationsziele:

Studenten und Studentinnen

- sind in der Lage, die in Ihrem Studium gewonnene Programmiererfahrung im Rahmen eines Client-Server Modells zu verwirklichen, das effizient und robust auf mobilen Devices ausführbar ist,
- beherrschen den sicheren Umgang mit hochaktuellen Bibliotheken der Web-Programmierung,
- besitzen durch das Arbeiten an separaten Programmmodulen innerhalb eine mittelgroßen Gruppe ein gesteigerte Teamfähigkeit.

Verwendbarkeit:

Da das Projekt sehr programmierlastig ist, eignet es sich hervorragend als Spielwiese für die im Studium erworbenen, grundlegenden Programmierkenntnisse, z.B. in dem Modul Prgrammstrukturen 1.

Voraussetzungen und Empfehlungen:

Erfahrung in Programmierung, Vorlesung "Programmstrukturen 1".

Literatur:

- Aichele, Schönberger: App-Entwicklung effizient und erfolgreich: Eine kompakte Darstellung von Konzepten, Methoden und Werkzeugen, Springer 2016
- Ben Frain: Responsive Web Design with HTML5 and CSS: Build future-proof responsive websites using the latest HTML5 and CSS techniques, Packt Publishing, 2022
- HTML und CSS: Das umfassende Handbuch zum Lernen und Nachschlagen. Inkl. JavaScript, Responsive Webdesign, React und Angular u. v. m., Rheinwerk Computing, 2023

- Informatik Bachelor of Science Version 25.0 (5. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)

♦ MB318 – Projekt Video Marketing

Verantwortliche:	Hendrik Annuth					
Moduldauer:	12 Monate					
Unterrichtssprache:	None					

Bestandteile:

Das Modulhandbuch (XML) aus CAS Campus enthält keine Teilleistungen!

Lehrinhalte:	
None Lehrinhalte nicht angegehen	

Qualifikationsziele:

None Qualifikationsziele nicht angegeben.

Verwendbarkeit:

None Verwendbarkeit nicht angegeben.

Voraussetzungen und Empfehlungen:

None Voraussetzungen und Empfehlungen nicht angegeben.

Literatur:

None

Studiengänge:

• Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)

♦ MB319 – Projekt Video Marketing

Verantwortliche:	Hendrik Annuth					
Moduldauer:	6 Monate					
Unterrichtssprache:	None					

Bestandteile:

Das Modulhandbuch (XML) aus CAS Campus enthält keine Teilleistungen!

Lehrinhalte:	
None Lehrinhalte nicht angegeben.	

Qualifikationsziele:

None Qualifikationsziele nicht angegeben.

Verwendbarkeit:

None Verwendbarkeit nicht angegeben.

Voraussetzungen und Empfehlungen:

None Voraussetzungen und Empfehlungen nicht angegeben.

Literatur:

None

Studiengänge:

• Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 5. Semester)

♦ MB057 – Fortgeschrittene Objektorientierte Programmierung

Verantwortliche:	Christian Uhlig
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB024 – Fortgeschrittene Objektorientierte Programmierung	Vorlesung	Klausur		120 Min.	2.0	Drittelnoten	Sommersemester	60 Stunden	Christian Uhlig
TB025 – Übg. Fortgeschrittene Objektorientierte Programmierung	Übung	Abnahme	4 Aufgaben	35 Min.	3.0	Bestanden/nicht Bestanden	jährlich	90 Stunden	Malte Heins

Lehrinhalte:

- Generische Typen / Java Generics
- Verschachtelte Typen
- Funktionswerte in OO-Sprachen (Funktionale Interfaces, Lambda-Ausdrücke, Methodenreferenzen)
- Funktionale Programmierung mit Java Streams
- Nebenläufigkeit (Threads, Racing Conditions, Synchronisation, Waitsets, volatile Variablen, Java Memory Model / happens-before-Relation, nebenläufige Auswertung von Streams, Executors, Futures, Fork-Join-Tasks, Thread-sichere Collections)

Bearbeitung von Übungsaufgaben parallel zum Stoff der Vorlesung in Zweiergruppen mit Abnahme und Diskussion der Lösungen. Zusätzlich werden im Rahmen der Übungsaufgaben praxisrelevante Aspekte der fortgeschrittenen OOP behandelt, die nicht Bestandteil der Vorlesung sind.

Qualifikationsziele:

Die Studierenden ...

- wenden fortgeschrittene Konzepte objektorientierter Programmiersprachen wie parametrische Polymorphie und Funktionswerte zur Konstruktion wiederverwendbarer Softwarekomponenten an.
- nennen und erläutern die Grundlagen generischer Datentypen und ihre Korrespondenz mit Konzepten objektorientierter Sprachen (Schnittstellen, abstrakte Klassen, konkrete Klassen, Polymorphie).
- entwerfen und implementieren generische Datentypen mit Java Generics und nutzen hierbei beschränkte Typparameter, generische Methoden und parametrisierte Typen mit Wildcards.
- definieren Funktionswerte per anonymer Klassen, Lambda-Ausdrücke und Methodenreferenzen.
- wenden Prinzipien funktionaler Programmierung in objektorientierten Sprachen am Beispiel von Java Streams an.
- nennen und erläutern Motivation, Grundlagen und Herausforderungen nebenläufiger Programmierung.
- wenden Primitiven nebenläufiger Programmierung in Java an (Erzeugen von Threads, Thread-Kommunikation / Synchronisation, usw.).
- nennen und erläutern die Herausforderungen gemeinsamer Zustände von Threads, das Java-Speichermodell und die happensbefore-Relation und wenden diese Kenntnisse zur Vermeidung von racing conditions und data races an.
- nennen und erläutern die Vorzüge funktionaler Programmierung für die parallele Auswertung von Berechnungen am Beispiel von Java Streams.
- definieren Stream-Pipelines unter Berücksichtigung der Anforderungen und Konsequenzen einer nebenläufigen Auswertungsstrategie.

Verwendbarkeit:

Das Modul setzt unmittelbar auf den Inhalten des Moduls "Programmstrukturen 2" auf und eignet sich damit als Weiterqualifikation im Anschluss an "Programmstrukturen 2" und das "Programmierpraktikum". Es kann ergänzend insbesondere mit dem Modul "Software-Design" kombiniert werden.

Voraussetzungen und Empfehlungen:

Vorausgesetzt werden gefestigte theoretische und praktische Kenntnisse in objektorientierter Programmierung im Allgemeinen und in der Programmiersprache Java im Speziellen. Gegebenenfalls empfiehlt es sich, die Kenntnisse im Vorwege anhand einfacher Übungsaufgaben aufzufrischen.

Literatur:

- Gosling, James; Joy, Bill; Steele, Guy; Bracha, Gilad; Buckley, Alex; Smith, Daniel: The Java Language Specification, Java SE 11 Edition, 2018
- Bloch, Joshua: Effective Java: A Programming Language Guide, 3rd Edition, Addison-Wesley, 2017
- Lea, Doug: Concurrent Programming in Java: Design Principles and Patterns, 2nd Edition, Addison-Wesley, 1999
- Goetz, Brian; Peierls, Tim; Bloch, Joshua; Bowbeer, Joseph; Holmes, David; Lea, Doug: Java Concurrency in Practice, Addison-

Wesley, 2006

- Urma, Raoul-Gabriel; Fusco, Mario; Mycroft, Alan: Java 8 in Action: Lambdas, Streams, and Functional-Style Programming, Manning Publications, 2014
- Ullenboom, Christian: Java ist auch eine Insel, 12. Auflage, Galileo Press GmbH, 2016
- Louden, Kenneth C.: Programming Languages: Principles and Practice, 2nd Edition, Thomson Learning, 2002

- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (Wahlmöglichkeit 4. Semester)
- Informatik Bachelor of Science Version 25.0 (4. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 20.0 (Wahlmöglichkeit 4. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (Wahlmöglichkeit 4. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- Smart Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 4. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (4. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (4. Semester)

♦ MB118 – Soft Skills

Verantwortliche:	Frank Bargel
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB042 – Assistenz	Assistenz	Schriftl. Ausarbeitung (ggf. mit Präsentation)	15 Seiten		3.0	Bestanden/nicht Bestanden	jedes Semester	90 Stunden	Frank Bargel
TB043 - Communication Skills	Workshop	Schriftl. Ausarbeitung (ggf. mit Präsentation)	15 Seiten		2.0	Bestanden/nicht Bestanden	jedes Semester	60 Stunden	Anna-Magdalena Kölzer

Lehrinhalte:

Communication Skills

Im Rahmen des Workshops werdendie folgenden Inhalte behandelt:

- Selbstanalyse (Fragebogen) als Grundlage für Bewerbungen
- Rhetorik & Präsentation (Theorie und Praxis)
- Struktur und Aufbau von Bewerbungsunterlagen
- Bewerbungsprozess
- Interview (Theorie und Praxis)
- Assessment Center (Theorie)
- Persönlichkeitsfragebogen und Testverfahren (Intelligenz und Konzentration) (Praxis)
- Gruppenübungen (Praxis)

Assistenz

Im Rahmen der Assistenz werden die Studierenden von den Hochschullehrern mit konkreten (Teil)-Projekten betraut. Diese können ein weites Spektrum umfassen. So sind z.B. die Durchführung kleinerer empirischer Umfragen oder auch die eigenständige Recherche und Ausarbeitung spezieller Fachinhalte denkbar. Ebenso in Betracht kommen die Durchführung von Tutorien oder Übungen. Die Assistenz ist selbständig zu bearbeiten und kann die Abstimmung mit anderen Studierenden erfordern.

Qualifikationsziele:

Nach Abschluss des Moduls haben die Studierenden die Fähigkeit erworben, in Kooperation mit den Dozenten und Assistenten, ihr Wissen und ihre Erfahrungen aus früheren Veranstaltungen der Betriebswirtschaftslehre, Mathematik und Informatik an Studierende jüngerer Semester weiter zu geben. Mit zunehmender Dauer des Semesters verbinden die Studierenden Kenntnisse aus dem Workshop "Communication Skills" mit ihrer Assistenztätigkeit.

Die Studierenden verfügen nach dem Besuch des Workshops über folgende Kompetenzen:

- Besitz verbesserter persönlicher Soft Skills, wie sie für Studium oder Beruf erforderlich sind
- Sensibilität für menschliche Interaktionen und Betriebsprozesse
- Besitz erweiterter rhetorischer Fähigkeiten im Rahmen von Präsentationen, Vorträgen und Referaten sowie sozialer Kompetenz
- Kenntnis der Bedeutung von verbalen und nonverbalen Signalen für die eigene Kommunikation sowie die Fähigkeit, diese zu erkennen
- Fähigkeit zum angemessenen Verhalten bei Teamarbeit oder Projekten
- Fähigkeit zur Selbstdarstellung bei Bewerbungen, Interviews, Assessment-Centern.

Die Studierenden entwickeln im Rahmen der Assistenz unter Anleitung eines Hochschullehrers die Fähigkeiten ...

- fachspezifische Aufgabenstellungen zu analysieren
- problemspezifische Lösungen zu konzipieren und
- als Ergebnis begründet zu präsentieren.

Verwendbarkeit:

Die Inhalte dieses Moduls können gewinnbringend in Projekten, der Bachelor-Thesis und im täglichen Berufsleben genutzt werden.

Voraussetzungen und Empfehlungen:

Fachliche Inhalte der ersten vier Studiensemester

Literatur:

• ARNOLD, Frank:

Management von den besten lernen.

München: Hans Hauser Verlag, 2010

• APPELMANN, Björn:

Führen mit emotionaler Intelligenz.

Bielefeld: Bertelsmann Verlag, 2009

• BIERKENBIEHL, Vera F.:

Rhetorik, Redetraining für jeden Anlass. Besser reden, verhandeln, diskutieren.

12. Aufl. München: Ariston Verlag, 2010

• BOLLES, Nelson:

Durchstarten zum Traumjob. Das ultimative Handbuch für Ein-, Um- und Aufsteiger.

2. Aufl. Frankfurt/New York: Campus Verlag, 2009

• DUDENREDAKTION mit HUTH, Siegfried A.:

Reden halten - leicht gemacht. Ein Ratgeber.

Mannheim/Leipzig: Dudenverlag, 2007

• GRÜNING; Carolin; MIELKE; Gregor:

Präsentieren und Überzeugen. Das Kienbaum Trainingskonzept.

Freiburg: Haufe-Lexware Verlag, 2004

• HERTEL, Anita von:

Professionelle Konfliktlösung. Führen mit Mediationskompetenz.

Handelsblatt, Bd., 6, Kompetent managen.

Frankfurt: Campus Verlag, 2009

• HESSE, Jürgen; SCHRADER, Hans Christian:

Assessment-Center für Hochschulabsolventen.

5. Auflage, Eichborn: Eichborn Verlag, 2009

• MENTZEL, Wolfgang; GROTZFELD, Svenja; HAUB, Christine:

Mitarbeitergespräche.

Freiburg: Haufe-Lexware Verlag, 2009

• MORITZ, Andr; RIMBACH, Felix:

Soft Skills für Young Professional. Alles was Sie für ihre Karriere wissen müssen.

2. Aufl. Offenbach: Gabal Verlag, 2008

• PERTL, Klaus N.:

Karrierefaktor Selbstmanagement. So erreichen Sie ihre Ziele.

Freiburg: Haufe-Verlag, 2005

• PORTNER, Jutta:

Besser verhandeln. Das Trainingsbuch.

Offenbach: Gabal Verlag, 2010

• PÜTTJER, Christian; SCHNIERDA, Uwe:

Assessment-Center. Training für Führungskräfte.

Frankfurt/New York: Campus Verlag, 2009

• PÜTTJER, Christian; SCHNIERDA, Uwe: Das große Bewerbungshandbuch.

Frankfurt: Campus Verlag, 2010

• SCHULZ VON THUN, Friedemann; RUPPEL, Johannes; STRATMANN, Roswitha:

Miteinander Reden. Kommunikationspsychologie für Führungskräfte.

10. Auflage, Reinbek bei Hamburg: rororo, 2003

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 24.0 (4. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (6. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- E-Commerce Bachelor of Science Version 14.0 (5. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)

♦ MB121 – Software-Projekt

Verantwortliche:	Ulrich Hoffmann
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB046 - Projektmanagement	Vorlesung	Klausur		60 Min.	2.0	Drittelnoten	jährlich	60 Stunden	Gerrit Remané
TB047 – Softwareprojekt	Projektarbeit	Praktikumsbericht / Protokoll	30 Seiten	20 Min.	8.0	Drittelnoten	jedes Semester	240 Stunden	Christian-Arved Bohn

Lehrinhalte:

Im Rahmen der digitalen Transformation werden wiederkehrende Aufgaben zunehmend automatisiert. Einmalige Tätigkeiten hingegen lassen sich schwierig automatisieren und werden daher in Zukunft weiter an Bedeutung gewinnen. Diese einmaligen, temporären Aufgaben sind per Definition Projekte; nicht zuletzt aufgrund dieses Umstandes wird Projektmanagement eine der wichtigsten Fähigkeiten für eine erfolgreiche Karriere im 21. Jahrhundert.

Wie schwierig Projektmanagement in der Praxis ist, wird beispielsweise dadurch ersichtlich, dass mehr als 2 von 3 IT-Projekten ihre Ziele verfehlen. Auch wenn die Gründe hierfür im Einzelfall sehr unterschiedlich sein mögen, lassen diese sich doch in zwei breite Gruppen unterteilen. Zur ersten Gruppe zählen fehlende Projektmanagement-Kompetenzen wie Auswahl der Projektmethodik, Projektplanung oder Risikokontrolle. Zur zweiten Gruppe zählen ungenügende Soft Skills, um alle beteiligten Stakeholder zu managen, wie beispielsweise Motivation, Konfliktlösung oder Veränderungsmanagement.

Zielsetzung dieser Veranstaltung ist die Entwicklung wesentlicher Grundlagen in beiden Bereichen: Grundlegende Projektmanagementfähigkeiten (im engeren Sinne) sowie notwendige Softskills eines Projektleiters.

Kurzgliederung:

- Einführung in Projektmanagement
- Projektphasen (Initiierung, Planung, Durchführung, Abschluss)
- Soft Skills (Motivation, Veränderungsmanagement, Feedback, ...)
- Spezifische Ansätze (Wasserfall, Agil, Großprojekte, ...)

Variierende Themen für Software-Projekte, unter anderem aus dem Web-Bereich, die mit objektorientierten Techniken zu lösen sind.

Qualifikationsziele:

Ziel dieses Projekts ist es, den Einsatz von von OO-Techniken in einer größeren Aufgabe in einem Team zu üben. Dabei ist die Themenstellung so gewählt dass zwischen den verschiedenen 2-er-Gruppen die Notwendigkeit der Koordination, Abstimmung und Diskussion, insbesondere über die Schnittstellen der Teilaufgaben, besteht.

Weiter sollen die Modellierung und der Entwurf eines Software-Systems an nichttrivialen praxisnahen Problemstellungen trainiert werden, und so das Wissen aus der Veranstaltung über Software-Design angewandt und gefestigt werden.

Die soziale Kompetenz, Teamfähigkeit und Eigenverantwortung wird durch selbständige Projektplanung und Projektorganisation einschließlich Aufgabenaufteilung, Zeitplanung und Aufwandsschätzung trainiert. Die Teamfähigkeit und die Kommunikationsfähigkeit werden gestärkt. Durch die Verwendung von fertigen Teilsystemen, Bibliotheken und Fremdsoftware, und auch dem Einsatz von Sprachen, die nicht intensiv in den Programmiersprachvorlesungen behandelt werden (Ruby, Python, ...) wird das selbständiges Einarbeiten in neue Umgebungen und Systeme trainiert und gefördert.

- Sie verstehen die spezifischen Charakteristika und Herausforderungen von Projekten (z.B. im Unterschied zu Prozessen)
- Sie können die wichtigsten Projektmanagement-Tools je Projektphase anwenden (Initiierung, Planung, Durchführung, Abschluss)
- Sie können wesentliche Konzepte und Methoden anwenden, um Mensch-bezogene Herausforderungen im Projektumfeld zu analysieren und zu lösen (z.B. Motivation, Feedback, Veränderung)
- Sie können geeignete Projektmanagement-Ansätze (Wasserfall vs. Agil) je nach Projekttyp auswählen

Verwendbarkeit:

Dieses Modul dient als Vorbereitung für die praktischen Anteile einer Bachelor-Thesis.

Voraussetzungen und Empfehlungen:

• Vertrautheit mit den grundlegenden Konzepten und Phasen des Projektmanagements (Initiierung, Planung, Durchführung, Abschluss).

- Verständnis der verschiedenen Projektmanagementmethoden (z.B. Wasserfall, Agile).
- Fähigkeit zur Motivation und zum flexiblen Reagieren auf Änderungen.
- Grundlegende Kenntnisse in der Informatik und objektorientierten Programmiertechniken, insbesondere im Kontext von Software-Projekten.

Literatur:

Uwe Schmidt: Software-Projekt: Organisation und Themen, Unterlagen im Web: http://www.fh-wedel.de/~si/praktika/SoftwarePraktikum/index.html

- Verzuh: The Fast Forward MBA in Project Management, Fifth Edition, New Jersey, 2016
- Wysocki: Effective Project Management Traditional, Agile, Extreme, Seventh Edition, Indianapolis, 2014
- PMI: A Guide to the Project Management Body of Knowledge (Pmbok Guide), Sixth Edition, Newton Square, 2017

- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)

♦ MB147 – Seminar Medieninformatik

Verantwortliche:	Christian-Arved Bohn
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB040 – Seminar	Seminar	Schriftl. Ausarbeitung (ggf. mit Präsentation)	25 Seiten	30 Min.	5.0	Drittelnoten	jedes Semester	150 Stunden	Christian-Arved Bohn

Lehrinhalte:

Fachvorträge mit anschließender Gruppendiskussion.

Qualifikationsziele:

Seminararbeiten dienen insbesondere dem Erlernen von Fertigkeiten zum Erstellen der Bachelor-Thesis. Wesentlich ist die eigenständige Erarbeitung und Darlegung der Inhalte zu einem vorgegebenen Thema unter Einhaltung der Formalia. Die Ausarbeitung soll das Interesse an einer eigenständigen Befassung mit Inhalten aus dem Themengebiet und den Einstieg in die zugehörige wissenschaftliche Fachliteratur und Methodik fördern und anregen. Schließlich ist die obligatorische Präsentation der Ergebnisse ebenfalls Aufgabe innerhalb des Seminars.

Nach erfolgreicher Teilnahme können sie ...

- wissenschaftliche Themen angemessen strukturieren,
- eine eigenständige Zielsetzung erarbeiten und umsetzen,
- Inhalte recherchieren und übersichtlich aufbereiten,
- formale Kriterien sicher beachten und anwenden,
- eine schriftliche Ausarbeitung größeren Umfangs erstellen,
- kontroverse Lehrmeinungen und aktuelle Trends zu einem Thema herausarbeiten,
- ihre Ergebnisse in angemessener Form vortragen und mit den Seminarteilnehmern diskutieren.

Verwendbarkeit:

In dieses Modul soll die Erfahrung aus allen Informatik-, Mathematik- und anwendungsbezogenen Veranstaltungen mit einfließen. Es kann mit beliebigen Modulen weiterer Fachrichtungen kombiniert werden.

Voraussetzungen und Empfehlungen:

Grundlagen des Studienganges sollten gefestigt und ein umfassender Überblick über Spezialgebiete vorhanden sein, um die eigene Fähigkeit, ein bestimmtes, vorgegebenes Thema gemäß den Zielsetzungen des Seminars vorbereiten und zu präsentieren, beurteilen zu können

Literatur:

Recherche nach aufgabenbezogener Literatur, teilweise aufgabenspezifische Vorgabe einzelner Literaturquellen.

Empfehlungen zur Einführung in das wissenschaftliche Arbeiten

- Axel Bänsch, Dorothea Alewell, Wissenschaftliches Arbeiten, 11. Aufl., München [u.a.]: Oldenbourg 2013.
- Werner Heister, Dagmar Weßler-Poßberg, Studieren mit Erfolg: Wissenschaftliches Arbeiten für Wirtschaftswissenschaftler, 2., überarbeitete Auflage, Stuttgart: Schäffer-Poeschel 2011.
- Jens Hiller, Arbeitstechniken und wissenschaftliches Arbeiten, Herne: Kiehl 2017.
- Walter Krämer, Wie schreibe ich eine Seminar- oder Examensarbeit. 3., überarbeitete und aktualisierte Aufl., Frankfurt: Campus 2009.
- Lydia Prexl, Mit digitalen Quellen arbeiten. Richtig zitieren aus Datenbanken, E-Books, YouTube & Co., 2., aktualisierte und erweiterte Aufl., Paderborn: Ferdinand Schöningh (UTB) 2016.
- Manuel René Theisen, Wissenschaftliches Arbeiten: Technik Methodik Form, 15. Aufl., München: Vahlen 2011.

Studiengänge:

• Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)

♦ MB257 – Auslandssemester

Verantwortliche:	Samantha Lauenstein
Moduldauer:	6 Monate
Unterrichtssprache:	Deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB039 – Auslandssemester	Ausland	Ausland			30.0	Drittelnoten	jedes Semester	900 Stunden	Samantha Lauenstein

Lehrinhalte:

Für ein freiwilliges Auslandssemester ist der Umfang der zu leistenden ECTS-Punkte (bzw. der gleichwertige Umfang in lokalen Credits) in der jeweiligen Studienordnung vorgegeben. An der ausländischen Hochschule sind fachspezifische Kurse zu belegen, die mit dem in Wedel belegten Studiengang in ergänzendem Zusammenhang stehen. Das Studienprogramm wird vor der Abreise individuell mit dem International Office vereinbart.

Qualifikationsziele:

Nach Abschluss des Auslandsemester besitzen die Studierenden ...

- fundierte Sprachkompetenzen in englischer, französischer oder spanischer Sprache.
- erweiterte Kenntnisse über die Kultur des Gastlandes.

Verwendbarkeit:

Studierende sammeln sprachliche Erfahrungen und erweitern ihre sozialen Kompetenzen, die sie in ihr Berufsleben nach Studiumsabschluss einbringen können.

Voraussetzungen und Empfehlungen:

Es wird empfohlen, mindestens eine der Sprachen zu beherrschen, die an der ausländischen Hochschule gesprochen wird.

Literatur:

Abhänigig von der ausländischen Hochschule

- Computer Games Technology Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- E-Commerce Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Informatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)
- Smart Technology Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (Wahlmöglichkeit 6. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (Wahlmöglichkeit 6. Semester)

♦ MB273 – Projekt Interfaces

Verantwortliche:	Christian-Arved Bohn
Moduldauer:	6 Monate
Unterrichtssprache:	Deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB264 - Projekt Interfaces	Projektarbeit	Abnahme	1 Aufgaben	30 Min.	5.0	Drittelnoten	Sommersemester	150 Stunden	Christian-Arved Bohn

Lehrinhalte:

Es wird ein hardwarenahes Interface entwickelt, wobei aktuelle Digitaltechnik (Mikrocontroller, Kommunikationschips für LoWaWAN, BLE, WiFi, etc.) verwendet und programmiert wird.

Qualifikationsziele:

Studenten und Studentinnen erhalten ein Gefühl für die Handhabung moderner Schaltkreise und elektrotechnische Grundlagen, um diese in komplexeren funktionellen Einheiten zu verknüpfen.

Verwendbarkeit:

s o

Voraussetzungen und Empfehlungen:

Keine

Literatur:

- T. Karvinen, K. Karvinen: Sensoren Messen und experimentieren mit Arduino und Raspberry Pi, dpunkt.verlag GmbH, 2014
- Klaus Dembowski: Mikrocontroller Der Leitfaden für Maker: Schaltungstechnik und Programmierung für Raspberry, Arduino & Co., dpunkt.verlag GmbH, 2014
- Claus Kühnel: Arduino: Das umfassende Handbuch für Maker, Rheinwerk Computing, 2023

Studiengänge:

• Medieninformatik Bachelor of Science Version 25.0 (Wahlmöglichkeit 6. Semester)

♦ MB150 – Bachelor-Thesis

Verantwortliche:	Sergei Sawitzki
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
BTH – Bachelor-Thesis	Thesis	Abschlussarbeit			12.0	Zehntelnoten	jedes Semester	360 Stunden	Sergei Sawitzki

Lehrinhalte:

Die Bachelor-Thesis soll im Regelfall in Kooperation mit einem Unternehmen erarbeitet werden. Themen aus den Arbeitsgruppen und Laboren der Hochschule sind ebenfalls möglich. Die Arbeit ist als abschließende, vom Studierenden eigenständig aber hochschul- und unternehmensseitig betreutes Projekt zu verstehen. Im Sinne der Zielsetzung der Bachelor-Ausbildung, der Erlangung des ersten berufsqualifizierenden Abschlusses, ist die Arbeit thematisch an einer Problemstellung eines kooperierenden Unternehmens orientiert oder sie besteht aus einer praxisrelevanten hochschulinternen Aufgabe.

Qualifikationsziele:

Die Studierenden ...

- besitzen die Fähigkeit zur Durchführung einer praxisorientierten Arbeit
- können eine Fragestellung selbständig erarbeiten
- können die zu erarbeitende Problematik klar strukturieren
- können die Vorgehensweise und Ergebnisse in einer Ausarbeitung übersichtlich darstellen
- stärken ihre praktischen Fähigkeiten im Projektmanagement-Bereich und zur Selbstorganisation

Verwendbarkeit:

In der Bachelorarbeit finden verschiedene Aspekte des Recherchierens, Experimentierens und Formulierens anwendung, welche in vielen vorangegangenen Veranstaltungen geübt wurden. Dies schließt insbesondere das wissenschaftliche Arbeiten, Seminarvorträge und praktische Übungen mit ein.

Voraussetzungen und Empfehlungen:

Fachliche und persönliche Kompetenzen der zurückliegenden Semester, insbesondere themenabhängig fachverwandte Module und Seminar

Literatur:

themenabhängig

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 24.0 (7. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (7. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (7. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (7. Semester)
- E-Commerce Bachelor of Science Version 23.0 (7. Semester)
- Informatik Bachelor of Science Version 25.0 (7. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (7. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (7. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (7. Semester)
- Smart Technology Bachelor of Science Version 24.0 (7. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (7. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (7. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (7. Semester)

♦ MB159 – Praktikum

Verantwortliche:	Sergei Sawitzki
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB051 – Praktikum	Praktikum	Praktikumsbericht / Protokoll	20 Seiten		17.0	Bestanden/nicht Bestanden	jedes Semester	510 Stunden	Sergei Sawitzki

Lehrinhalte:

- Sammeln von beruflichen Erfahrungen in einem der durch die Prüfungsverfahrensordnung vorgesehenen Tracks:
 - o Business-Track, berufliche Tätigkeit in einem etablierten Unernehmen
 - o Start-up-Track, Vorbereitung der Gründung eines eigenen Unternehmens
 - o Project-Track, Teilnahme an einem größeren Projekt mit wechselnden Projektteams
 - o Science-Track, detaillierte und forschungsorientierte Auseinandersetzung mit einem wissenschaftlichen Themenkomple
- Erstellung eines Praktikumsberichts
- Das berufsbildende Praktikum ist unabhängig vom Track im Umfang von 12 Wochen zu absolvieren

Qualifikationsziele:

Die Studierenden

- erweitern ihre sozialen Kompetenzen und ihre Kontakte zu Unternehmen. Beides können sie nach ihrem Studiumsabschluss gewinnbringend für eine Bewerbung oder das Einleben bei ihrem späteren Arbeitgeber bzw. Gründung eines eigenen Unternehmens verwenden
- können Fach- und Methodenkompetenz auf ausgewählte Abläufe und Problemstellungen des betrieblichen Alltags zu übertragen

Verwendbarkeit:

Die erworbenen Fähigkeiten und Kenntnisse stellen die Grundlage für die Bachelor-Thesis dar.

Voraussetzungen und Empfehlungen:

Fachliche und persönliche Kompetenzen der zurückliegenden Semester, insbesondere themenabhängig fachverwandte Module und "Soft Skills"

Literatur:

themenabhängig

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 24.0 (7. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (7. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (7. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (7. Semester)
- E-Commerce Bachelor of Science Version 23.0 (7. Semester)
- Informatik Bachelor of Science Version 25.0 (7. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (7. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (7. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (7. Semester)
- Smart Technology Bachelor of Science Version 24.0 (7. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (7. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (7. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (7. Semester)

♦ MB160 - Bachelor-Kolloquium

Verantwortliche:	Sergei Sawitzki
Moduldauer:	6 Monate
Unterrichtssprache:	deutsch

Bestandteile:

Teilleistung	Lernform	Prüfungsform	-umfang	-dauer	ECTS	Benotung	Turnus	Aufwand	Lehrende
TB052 - Bachelor-Kolloquium	Kolloquium	Kolloquium		20 Min.	1.0	Drittelnoten	jedes Semester	30 Stunden	Sergei Sawitzki

Lehrinhalte:

- nach Thema der Bachelor-Arbeit unterschiedlich
- Fachvortrag über das Ergebnis der Bachelor-Arbeit
- Diskussion der Qualität der gewählten Lösung
- Fragen und Diskussion zum Thema der Bachelor-Arbeit und verwandten Gebieten

Qualifikationsziele:

Die Studierenden ...

- besitzen die Fähigkeit der konzentrierten Darstellung eines intensiv bearbeiteten Fachthemas.
- verfestigen die Kompetenz, eine fachliche Diskussion über eine Problemlösung und deren Qualität zu führen.
- verfügen über ausgeprägte Kommunikations- und Präsentationsfähigkeiten.

T 7		•	1	• 4
Verv	MAN	Иh	ar	ZOIT
7 (1)	/ Y C 11	uv	aı	MCIU.

Keine.

Voraussetzungen und Empfehlungen:

Fachliche und persönliche Kompetenzen der zurückliegenden Semester, insbesondere themenabhängig fachverwandte Module und Bachelor-Thesis

Literatur:

themenabhängig

- Angewandte Wirtschaftspsychologie & Data Analytics Bachelor of Science Version 24.0 (7. Semester)
- Betriebswirtschaftslehre Bachelor of Science Version 23.0 (7. Semester)
- Computer Games Technology Bachelor of Science Version 23.0 (7. Semester)
- Data Science & Artificial Intelligence Bachelor of Science Version 24.0 (7. Semester)
- E-Commerce Bachelor of Science Version 23.0 (7. Semester)
- Informatik Bachelor of Science Version 25.0 (7. Semester)
- IT-Ingenieurwesen Bachelor of Science Version 25.0 (7. Semester)
- IT-Management / -Consulting & -Auditing Bachelor of Science Version 23.0 (7. Semester)
- Medieninformatik Bachelor of Science Version 25.0 (7. Semester)
- Smart Technology Bachelor of Science Version 24.0 (7. Semester)
- Technische Informatik Bachelor of Science Version 24.0 (7. Semester)
- Wirtschaftsinformatik Bachelor of Science Version 23.0 (7. Semester)
- Wirtschaftsingenieurwesen Bachelor of Science Version 25.0 (7. Semester)