- Symmetric matrix:
 - eigenvector inner product (or dot) with each other is 0.
 - Think about transpose equal itself, or more specifically, each (i,j) entry and (j,i) entry
 - orthornormal eigen basis
 - $-Q^TDQ, Q^{-1}DQ$
- Determinant is the **product** of all eigenvalues, and trace is the **sum** of all eigenvalues. For 2 x 2 matrix A, $x^2 tr(A)x + det(A)$ is the characteristic polynomial
- \bullet Orthogonal Projection P
 - Let A be an m x n matrix with linearly independent columns, and let W = Col(A). Then the projection matrix is

$$x_W = A(A^T A)^{-1} A^T x$$

- -P is linear and symmetric
- $-P^{2} = P.P^{T} = P$
- $P = QQ^T = A(A^TA)^{-1}A^T$, where columns of A(Q) form an basis (ONB) of V
- If (u_1, \ldots, u_r) is an ONB of $V \subseteq \mathbb{R}^n$, then for all $\vec{x} \in \mathbb{R}^n$,

$$\operatorname{proj}_{V}(\vec{x}) = \sum_{i=1}^{r} \langle \vec{x}, \vec{u}_i \rangle \vec{u}_i$$

- eigenvalue 0 or 1
- matrix multiplication
 - A(b1 b2) = (Ab1 Ab2)
 - first row in C is the product of first column of A with the first row in B
- Pythagorean theorem and Cauchy inequality
 - Pythagorean theorem:

$$||\vec{x} + \vec{y}||^2 = ||\vec{x}||^2 + ||\vec{y}||^2$$

holds iff x and y are orthogonal

- Cauchy-Schwardz inequality

$$|\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}||||\vec{y}||$$

equality iff x and y are parallel

- ullet Orthogonal Matrix A
 - A has absolute eigenvalue of 1

- $-\,$ if eigenvalue of orthogonal matrix is 1, meaning it preserves geometry, and -1 if it reverses the geometry
- orthogonoal transformation preserves geometry and length
- $\bullet\,$ l.s.s and some theorems
 - $\ker A^T = \operatorname{im} A^{\perp}$
 - $\ker A^T A = \ker A$
 - $-A\vec{x} = \text{proj}_{im(A)}\vec{x}$
 - $-A^T A \vec{x} = A^T \vec{x}$
- Some common approaches:
 - if we see words like "if every vector xxx", then we are going to find some special matrices that make our proof easy, such as all-ones' or all-zeros matrix.
 - Usually 8(b) follows directly from 8(a). Try come up with the association.
 - $-\,$ when stuck, always think about contrapositives and contradictions.
 - do not panic, do problems step by step.