Многочлены Чебышёва

1. Последовательность многочленов $\big(T_n(x)\big)_{n\in\mathbb{N}}$ определяется рекуррентно: $T_0(x)=1,\,T_1(x)=x$ и

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 при $n \in \mathbb{N}$.

Докажите, что $T_n(\cos\varphi) = \cos(n\varphi)$ для любого $\varphi \in \mathbb{R}$.

- **2.** Пусть $P \in \mathbb{R}[x]$ многочлен степени n, старший коэффициент которого равен 1. Докажите, что если $|P(x)| \leq \frac{1}{2^{n-1}}$ при всех $x \in [-1,1]$, то $P(x) = \frac{1}{2^{n-1}} T_n(x)$.
- **3.** Числа $x_1, x_2, \ldots, x_n \in [-1, 1]$ попарно различные. Докажите, что $\sum_{i=1}^n 1/\prod_{j\neq i} |x_j-x_i| \geq 2^{n-2}$.
- **4.** Пусть $P \in \mathbb{R}[x]$ приведённый многочлен положительной степени. Оказалось, что $|P(x)| \leq 2$ при всех $x \in [a,b]$. Докажите, что $b-a \leq 4$.
- **5.** Дан многочлен $P \in \mathbb{R}[x]$ степени $n \in \mathbb{N}$ такой, что $|P(x)| \leq 1$ при всех $x \in [-1,1]$. Докажите, что для любого $x \notin [-1,1]$ верно неравенство $|P(x)| \leq |T_n(x)|$.
- **6.** Докажите, что если |y|>1, то выполнено равенство $T_n(y)=rac{1}{2}(y-\sqrt{y^2-1})^n+rac{1}{2}(y+\sqrt{y^2-1})^n.$
- 7. Пусть a_0, a_1, \ldots, a_n действительные числа такие, что $|a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0| \le 1$ при всех $x \in [-1, 1]$. Докажите, что тогда при всех $x \in [-1, 1]$ выполнено неравенство $|a_0 x^n + a_1 x^{n-1} + \ldots + a_n| \le 2^{n-1}$.
- 8. а) Для любого натурального n приведите пример многочлена P с целыми коэффициентами такого, что $P(x+x^{-1})\equiv x^n+x^{-n}.$
- **b)** Докажите, что если оба числа α и $\cos(\alpha \pi)$ рациональные, то $\cos(\alpha \pi) \in \{0, \pm 1/2\}$.