Assignment 20 (7/31)

Subhadip Chowdhury

This week we covered topics from page 52-66 of the Calculus textbook. You should read those sections. Here are some paractice $\epsilon - N$, $\epsilon - \delta$ proofs. You do not have to submit them. You should expect a problem similar to 1 or 2 in the final exam.

Exercise 1. Give an $\epsilon - N$ proof of the following.

(a)

$$\lim_{n\to\infty}\frac{3}{n^2}=0$$

(b)

$$\lim_{n\to\infty}\frac{n-1}{2+n}=1$$

Note that the N you are trying to find in above proofs, should not depend on n, it can only depend ϵ . Similarly δ in the proof below cannot depend on x. It can depend on c, l and ϵ .

Exercise 2. Give an $\epsilon - \delta$ proof of the following.

(a)

$$\lim_{x\to 2}(3-x)=1$$

(b)

$$\lim_{x \to -2} (3x + 5) = -1$$

Exercise 3. Consider the sequence $\{a_n\}_{n\in\mathbb{N}}$ defined as

$$1,-1,1,-1,1,-1,\dots$$

Prove using $\epsilon - N$ *that* $\lim_{n \to \infty} a_n$ *does not exist.*

Exercise 4. If $\lim_{x\to c} f(x) = l$, then prove that

$$\lim_{x \to c} (2f(x) - 1) = 2l - 1$$

Give an $\epsilon - \delta$ proof.