Thin Films of Polypyrrole on Particulate Aluminum

CHRISTOPHER VETTER, XIAONING QI, SUBRAMANYAM V. KASISOMAYAJULA, AND VICTORIA JOHNSTON GELLING

> DEPARTMENT OF COATINGS AND POLYMERIC MATERIALS

NORTH DAKOTA STATE UNIVERSITY, 1735 NDSU RESEARCH PARK DRIVE FARGO, ND 58105

V.J.Gelling@ndsu.edu

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE FEB 2009	2 DEDON'T TYPE				3. DATES COVERED 00-00-2009 to 00-00-2009		
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER		
Thin Films of Polypyrrole on Particulate Aluminum					5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NU	JMBER		
				5e. TASK NUMBER			
				5f. WORK UNIT NUMBER			
North Dakota State	ZATION NAME(S) AND AE e University,Depart SU Research Park I	ment of Coatings an		8. PERFORMING REPORT NUMB	GORGANIZATION ER		
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited					
13. SUPPLEMENTARY NO 2009 U.S. Army Co	otes orrosion Summit, 3-	5 Feb, Clearwater F	Seach, FL				
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF				18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 21	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Acknowledgments

2

Funding:

o Army (ARL), Contract No. W911NF-04-2-0029

Graduate Students

Xiaoning Qi Christopher Vetter Subramanyam V Kasi Somayajula Kiran Bhat Kashi Drew Pavlacky

Undergraduate Students

Emily Johnson Jeffrey Garty

Post-Doctoral Associate

Dr. Maocheng Yan

Laboratory Assistant

Kenneth Croes

Why Conducting Polymers?

- \bigcirc
- Perhaps act as "Smart Coating"
 - Release of Corrosion Inhibiting Anions
- Mixed Potential between surface and ECP
- Perhaps acts as an oxidant to form passive layer

Why Polypyrrole/Flake?

4

Polypyrrole

- Poor mechanical properties
- Poor adhesion
- Solubility issues
- Continuous layer needed

Polypyrrole Coated Flake

- **×** Easy coating incorporation
- Less quantity of conducting polymer required
- Solubility is not an issue

Synthesis

Synthesis Details

Ex #	Al Flake (g)	Pyrrole (ml)	Catechol (g)	(NH4)2S2O8 (g)	H ₂ O (ml)
1	50	11.5	18.2	37.7	1650
2	50	11.5		37.7	1650

Al flake paste combined with:

- DI water
- Catechol ($C_6H_6O_2$)
- $(NH_4)_2S_2O_8$
- Pyrrole monomer

Vacuum filtration & paste dried overnight, then ground using mortar and pestle and passed through a sieve with 150µm pore size

Catechol

Density Test

As Received

Ex 1

Ex 2

Tetrachloroethylene (1.622 g/cm³) Plain Aluminum Flake (2.70 g/cm³) Polypyrrole (0.967 g/cm³)

SEM

As Received Aluminum Flake

PPy (Catechol)

Ex #1

SEM Continued

PPy (no Catechol)

Ex #2

SEM (No Gold) Ex #1

SEM (No Gold) Ex #2

XPS

As-Received Al Flake

From MSDS of Flake 39.00 % aluminum

26.00% aluminum oxide

35.00% 1-methoxy-2propanol

From XPS, it appears the coatings are ~10-20 nm thick

Polypyrrole/Al Flake from Experiment #1

Polypyrrole/Al Flake from Experiment #2

S/N (Dopant Level) S/N = ~3/5 3 dopant ions per 5 pyrrole units $\frac{C/N \text{ (Polymer)}}{C/N = \sim 7/1}$ 4/1 if polypyrrole

S/N (Dopant Level) S/N = ~1/11 1 dopant ions per 11 pyrrole units $\frac{C/N \text{ (Polymer)}}{C/N} = \sim 5/1$

4/1 if polypyrrole

Conductive AFM

12

As-Received Flake

Polypyrrole/AL Flake Ex #1

Current Image

 $\sigma_{\rm ave}$ = 1.6 S/cm

Scan Size $2.5 \times 2.5 \mu m$

Coating Formulation and Assessment

Formulations of Polypyrrole/Flakes

- Formulations prepared at various PVCs of coated and uncoated flakes and were combined with:
 - Epikure 3175 (aluminum) or Epikure 3115 (mica)
 - Epon Resin 828
 - Methyl Isobutyl Ketone (MiBK)

Al 2024-T3 panel application of formulation

- Coatings were applied to sanded and degreased 3" x 6" Al 2024-T3 panels using a 3" drawdown bar at 8 mils
- Panels were allowed to flash off and were then placed in an oven to fully cure

Electrochemical Impedance Spectroscopy

V=IR (DC) V=IZ (AC)

Apply a small sinusoidal potential (~5 to 10 mV) to the open circuit potential at varying frequencies

Measure phase lag (V- I) and current for varying applied frequencies

Presented usually as either a Bode (log modulus vs. log frequency) or a Nyquist plot (Z' vs. Z")

Open Circuit Potentials Al 2024-T3

25% PVC—Aluminum

16

As-Received Flake

Polypyrrole Aluminum Flake

Impedance and PVC---Aluminum Flake

New Directions

18

• Incorporation of corrosion inhibiting anions.

From EDX

Atom %

Atom % Error $(\pm 3\sigma)$

С	N	0	Al	S	Мо
76.04	8.42	14.19	0.76	0.05	0.54

С	N	0	Al	S	Мо
1.67	7.10	1.46	0.07	0.20	.16

Photosynthesis of Polypyrrole

Part 2: Photo-chemical polymerization reactions (UV light)						
Label	Monomer	Oxidant	Pyrrole:Oxidant	Pyrrole:SDS	Pyrrole:pTSA	
PPy-5	Pyrrole	$AgNO_3$	1:1			
PPy-6	Pyrrole	$AgNO_3$	1:1	4:1		
PPy-7	Pyrrole	$AgNO_3$	1:1		4:1	
PPy-8	Pyrrole	AgNO ₃	1:1	4:1	4:1	

Polypyrrole Photo- chemically synthesized (a) without surfactant (PPy-5), (b) SDS as surfactant (PPy-6), (c) pTSA as surfactant (PPy-7), and (d) both SDS and pTSA (PPy-8)

http://dustydavis.com; http://images.politico.com; http://www.terragalleria.com/; http://farm1.static.flickr.com