p17.wxmx 1 / 3

Practical 17

Figure 1:

17. Evaluate $\int_{C_1^+(0)} \exp\left(\frac{2}{z}\right) dz$, where $C_1^+(0)$ denotes the circle $\{z : |z| = 1\}$ with positive orientation. Similarly evaluate $\int_{C_1^+(0)} \frac{1}{z^4 + z^3 - 2z^2} dz$.

1

→ kill(all);

(%00) done

 \rightarrow g(s):=exp(2/s);

(%01) g(s):=exp
$$\left(\frac{2}{s}\right)$$

 \rightarrow residue(g(s), s, 0);

(%02) 0

residue() is not working here. So we find the Laurent series of g at s = 0.

 \rightarrow taylor(g(s), [s, 0, 3, 'asymp]);

$$(\%06)/T/1 + \frac{2}{s} + \frac{2}{s} + \frac{4}{3s} + \dots$$

$$res(g, 0) = 2.$$

→ I:2·%pi·%i·2;

(%o7) 4 %i π

2

Figure 2:

Find
$$\int_{C_3^+(0)} \frac{1}{z^4 + z^3 - 2z^2} dz$$

→ kill(all);

(%00) done

p17.wxmx 2 / 3

 \rightarrow g(s):=1/(s^4+s^3-2·s^2);

(%01) g(s):=
$$\frac{1}{s^4 + s^3 + (-2)s^2}$$

→ load(coma);

coma v.2.1 (Wilhelm Haager, 2019-05-21)

(%o2)

/usr/share/maxima/5.45.1/share/contrib/coma/coma.mac

→ zeros(g(s));

(%o3) **[]**

 \rightarrow poles(g(s));

(%04) [0,0,1.0,-2.0]

→ poles_and_zeros(g(s));

(%t5)

(%05)

 \rightarrow r1:residue(g(s), s, 0);

 $(\%013) - \frac{1}{4}$

 \rightarrow r2:residue(g(s), s, 1);

 $(\%014) \frac{1}{3}$

 \rightarrow r3:residue(g(s), s, -2);

 $(\%015) - \frac{1}{12}$

p17.wxmx 3 / 3

→ I:2·%pi·%i·(r1+r2+r3);

(%o16) **0**

3

Exercise

Figure 3:

3. Evaluate

(a)
$$\int_{C_1^+(-1+i)} \frac{dz}{z^4+4}$$
.

(b)
$$\int_{C_2^+(i)} \frac{dz}{z(z^2 - 2z + 2)}$$
.

(c)
$$\int_{C_2^+(0)} \frac{\exp z \ dz}{z^3 + z}$$
.

(d)
$$\int_{C_2^+(0)} \frac{\sin z \, dz}{4z^2 - \pi^2}.$$

(e)
$$\int_{C_2^+(0)} \frac{\sin z \, dz}{z^2 + 1}.$$