AMaLGaM IDEAs in Noiseless Black-Box Optimization Benchmarking

Peter A.N. Bosman Centre for Mathematics and Computer Science P.O. Box 94079 1090 GB Amsterdam The Netherlands Peter.Bosman@cwi.nl Jörn Grahl
Johannes Gutenberg
University Mainz
Dept. of Information Systems
& Business Administration
Jakob Welder-Weg 9
D-55128 Mainz, Germany
grahl@uni-mainz.de

Dirk Thierens
Utrecht University
Dept. of Information and
Computing Sciences
P.O. Box 80089
3508 TB Utrecht
The Netherlands
Dirk.Thierens@cs.uu.nl

ABSTRACT

This paper describes the application of a Gaussian Estimation-of-Distribution (EDA) for real-valued optimization to the noiseless part of a benchmark introduced in 2009 called BBOB (Black-Box Optimization Benchmarking). Specifically, the EDA considered here is the recently introduced parameter-free version of the Adapted Maximum-Likelihood Gaussian Model Iterated Density-Estimation Evolutionary Algorithm (AMaLGaM-IDEA). Also the version with incremental model building (iAMaLGaM-IDEA) is considered.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: OptimizationGlobal Optimization, Unconstrained Optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

Keywords

Benchmarking, Black-box optimization, Evolutionary computation $\,$

1. METHOD

Estimation-of-distribution algorithms (EDAs) [7, 8] are an important strand of research on black-box optimization (BBO). EDAs attempt to automatically exploit features of a problem's structure by probabilistically modeling the search space based on previously evaluated solutions and generating new solutions by sampling the probabilistic model.

The general EDA procedure is as follows. A population \mathcal{P} of n solutions is maintained. Through selection, a vector \mathcal{S} is selected from \mathcal{P} . A probability distribution over the solution space is then estimated using \mathcal{S} as a data set. New

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'09, July 8–12, 2009, Montreal Quebec, Canada. Copyright 2009 ACM 978-1-60558-505-5/09/07 ...\$5.00. solutions are generated by sampling the estimated probability distribution. Finally, the newly generated samples are incorporated into the population and the process repeats until a termination criterion has been satisfied.

The EDA considered here is the Adapted Maximum-Likelihood Gaussian Model Iterated Density-Estimation Evolutionary Algorithm (AMaLGaM-IDEA, or AMaLGaM for short). In AMaLGaM, the probability distribution used is the normal, also known as the Gaussian, distribution. This EDA uses maximum-likelihood estimates for the mean and the covariance matrix, estimated from the selected solutions. It has a mechanism that scales up the covariance matrix when required to prevent premature convergence on slopes. It furthermore has a mechanism that anticipates the mean shift in the next generation to speed up descent (in case of minimization) along slopes. For a more extensive description, we refer the interested reader to the literature [1].

In addition to the above base procedure, recently a parameter-free version of AMaLGaM was introduced [3]. After experimental analysis, settings were proposed for all parameters. Guidelines were developed for the minimally required population size that allows unimodal problems to be solved. On multimodal problems a restart mechanism is required to increase the probability of success. The specific restart scheme considered increases the number of solutions upon each restart by alternating between two approaches: a single run with a larger population and more parallel runs. To maximize the joint global effect of the parallel runs, their locality is increased by started them in separate regions that are obtained from clustering the search space first. When increasing the number of parallel runs, the subpopulation size is also increased slightly so as to increase the robustness of the more localized searches.

Distribution estimation in AMaLGaM is done anew from scratch each generation. Subsequent iterations however have much in common and therefore the required population size can be reduced by incremental learning, i.e. combining the distribution estimated from $\mathcal S$ with the distribution used in the previous generation. In iAMaLGaM a memory-decay approach is taken to this end. On unimodal problems the required population size was found to indeed be significantly reduced while at the same time requiring less function evaluations to reach the same solution quality. Results on multimodal landscapes indicated however that if memory resources are not very important, a larger base–population size helps

in optimizing multimodal problems, thus favoring the non-incremental approach. For this reason we tested both AMaL-GaM and iAMaLGaM on the BBOB benchmark.

Next to the full covariance matrix, two other versions of AMaLGaM exist that reduce the number of distribution parameters to be estimated. One version uses Bayesian factorizations to select only the most important covariances while another version allows only variances. If only a few dependencies between problem variables exist, these methods outperform the use of the full covariance matrix in asymptotic complexity for the scalability in terms of required function evaluations and required time. These restrictions however also render the EDA non-rotationally invariant and therefore less generally applicable. For this reason and for the sake of space, we do not submit these variants to the BBOB benchmark here. A closer look at the differences with the full covariance matrix can be found in [3]; BBOB benchmarks for additional variants are given in [2].

For technical completeness, pseudo-code is presented below. A note on the pseudo-code: in iAMaLGaM, for $\hat{\Sigma}(0)$ a matrix with the ML variances on the diagonal and zeros off the diagonal is used. Also, $\hat{\mu}^{\text{Shift}}(t)$ is non–existent for t=0 and for t=1 it is $\hat{\mu}(1)-\hat{\mu}(0)$. SDR stands for standard-deviation ratio, NIS stands for no-improvement stretch.

```
(i)AMaLGaM
   1 \ \eta^{\Sigma} \leftarrow 1; \eta^{\text{Shift}} \leftarrow 1
             (iAMaLGaM: \eta^{\Sigma} \leftarrow 1 - e^{-1.1 \lfloor \tau n \rfloor^{1.2}/D^{1.6}}; \eta^{\text{Shift}} \leftarrow 1 - e^{-1.2 \lfloor \tau n \rfloor^{0.31}/D^{0.50}})
    2 c^{\text{Multiplier}} \leftarrow 1; n^{\text{AMS}} \leftarrow \alpha^{\text{AMS}}(n-1); \text{NIS} \leftarrow 0; t \leftarrow 0
   3 do
    4
                   \mathcal{S} \leftarrow \text{the best } \lfloor \tau n \rfloor \text{ solutions in } \mathcal{P} \text{ (truncation selection)}
                   \hat{\boldsymbol{\mu}}(t) \leftarrow \frac{1}{|\mathcal{S}|} \sum_{i=0}^{|\mathcal{S}|-1} \mathcal{S}_{i}
\hat{\boldsymbol{\Sigma}}(t) \leftarrow (1-\eta^{\Sigma}) \hat{\boldsymbol{\Sigma}}(t-1) + \eta^{\Sigma} \frac{1}{|\mathcal{S}|} \sum_{i=0}^{|\mathcal{S}|-1} (\mathcal{S}_{i} - \hat{\boldsymbol{\mu}}(t)) (\mathcal{S}_{i} - \hat{\boldsymbol{\mu}}(t))^{T}
\hat{\boldsymbol{\mu}}^{\text{Shift}}(t) \leftarrow (1-\eta^{\text{Shift}}) \hat{\boldsymbol{\mu}}^{\text{Shift}}(t-1) + \eta^{\text{Shift}} (\hat{\boldsymbol{\mu}}(t) - \hat{\boldsymbol{\mu}}(t-1))
   5
                    \hat{\boldsymbol{\mu}} \leftarrow \hat{\boldsymbol{\mu}}(t); \hat{\boldsymbol{\Sigma}} \leftarrow c^{\text{Multiplier}} \hat{\boldsymbol{\Sigma}}(t); \boldsymbol{L} \boldsymbol{L}^* \leftarrow \text{Cholesky decomp. of } \hat{\boldsymbol{\Sigma}}
   9
                    \mathcal{P}_0 \leftarrow \text{the best solution in } \mathcal{S}
                    \begin{array}{l} \mathcal{P}_{1...n-1} \leftarrow n-1 \text{ samples from } \mathcal{N}(\hat{\boldsymbol{\mu}},\hat{\boldsymbol{\Sigma}}) = \hat{\boldsymbol{\mu}} + L\mathcal{N}(\boldsymbol{0},\boldsymbol{I}) \\ \text{for } n^{\text{AMS}} \text{ random solutions } \boldsymbol{\mathcal{P}}_j \; (1 \leq j \leq n-1) \\ \text{do } \boldsymbol{\mathcal{P}}_j \leftarrow \boldsymbol{\mathcal{P}}_j + \delta^{\text{AMS}} c^{\text{Multiplier}} \hat{\boldsymbol{\mu}}^{\text{Shift}}(t) \end{array} 
10
11
12
                    if any \mathcal{P}_i better than \mathcal{P}_0 (1 \le i \le n-1)
13
14
15
                            NIS \leftarrow 0
                            if c^{\text{Multiplier}} < 1 then c^{\text{Multiplier}} \leftarrow 1
16
                            \boldsymbol{x}^{\text{avg-imp}} \leftarrow \text{average of all } \boldsymbol{\mathcal{P}}_i \text{ better than } \boldsymbol{\mathcal{P}}_0 \ (1 \leq i \leq n-1)
17
                           SDR \leftarrow \max_{0 \le i \le D-1} \{ |(L^{-1}(x^{\text{avg-imp}} - \hat{\mu}))_i| \} if SDR > \theta^{\text{SDR}} then c^{\text{Multiplier}} \leftarrow \eta^{\text{INC}} c^{\text{Multiplier}}
18
19
20
                     else
                            \begin{aligned} & \text{if } c^{\text{Multiplier}} \leq 1 \text{ then NIS} \leftarrow \text{NIS} + 1 \\ & \text{if } (c^{\text{Multiplier}} > 1) \text{ or } (\text{NIS} \geq \text{NIS}^{\text{MAX}}) \\ & \text{then } c^{\text{Multiplier}} \leftarrow \eta^{\text{DEC}} c^{\text{Multiplier}} \end{aligned} 
21
22
23
                            if (c^{	ext{Multiplier}} < 1) and (	ext{NIS} < 	ext{NIS}^{	ext{MAX}}) then c^{	ext{Multiplier}} \leftarrow 1
24
26
                     t \leftarrow t + 1
             while opt. not found, max. eval. not reached and c^{\text{Multiplier}} > 10^{-10}
```

2. PARAMETERS AND OTHER SETTINGS

For initialization, a uniform sampling in $[-5,5]^D$ was used, where D denotes the dimension of the search space. The experiments according to [5] on the benchmark functions given in [4, 6] have been conducted using the provided C-code.

The AMaLGaM implementation used is also in C. A maximum of 10^6D function evaluations is allowed. No changes were made to parameter-free AMaLGaM as described in [3] and as outlined above. Therefore no parameter tuning was required and the crafting effort CrE [5] is zero.

3. CPU TIMING EXPERIMENT

For the timing experiment the full covariance matrix variant for both AMaLGaM and iAMaLGaM were run with a maximum of 10^6D function evaluations and restarted until 30 seconds has passed (according to Figure 2 in [5]). The experiments have been conducted on an Intel Q6600 Core2Quad 2.4 GHz processor under Fedora Linux release 10 (Cambridge). In 2, 3, 5, 10, 20 and 40 dimensions, the time in 10^{-7} seconds per function evaluation was as follows:

	2	3	5	10	20	40
AMaLGaM	1.9	2.2	3.0	5.0	10	24
iAMaLGaM	1.9	2.3	3.0	5.3	11	29

4. RESULTS AND CONCLUSION

Results from experiments according to [5] on the benchmark functions given in [4, 6] are presented in Figures 1 and 2 and in Table 1 for AMaLGaM and in Figures 3 and 4 and in Table 2 for iAMaLGaM.

Problems with weak structure appear to be the hardest for (i)AMaLGaM. Even within 10^6D evaluations the optimum cannot be found within a desirable precision, especially for larger D. The difference between AMaLGaM and iAMaLGaM is not large which supports the design of the population-size reducing incremental-learning approach used. Consistent with earlier findings, the incremental approach is better on unimodal functions, whereas the non-incremental approach is (slightly) better on multimodal functions, most likely due to the larger base population-size.

5. REFERENCES

- [1] P. A. N. Bosman, J. Grahl, and D. Thierens. Enhancing the performance of maximum-likelihood Gaussian EDAs using anticipated mean shift. In G. Rudolph et al., editors, Parallel Problem Solving from Nature — PPSN X, pages 133–134, Berlin, 2008. Springer-Verlag.
- [2] P. A. N. Bosman, J. Grahl, and D. Thierens. A parameter-free Gaussian EDA called AMaLGaM-IDEA: algorithms and benchmarks. CWI technical report (*To Appear*), 2009.
- [3] P.A.N. Bosman. On emprical memory design, faster selection of Bayesian factorizations and parameter-free Gaussian EDAs. In G. Raidl et al., editors, Proc. of the Genetic and Evolutionary Computation Conference — GECCO-2009, New York, New York, 2009. ACM Press. (To Appear).
- [4] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.
- [5] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [6] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.
- [7] J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea. Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms. Springer-Verlag, Berlin, 2006.
- [8] M. Pelikan, K. Sastry, and E. Cantú-Paz. Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications. Springer-Verlag, Berlin, 2006.

Figure 1: AMaLGaM: Expected Running Time (ERT, \bullet) to reach $f_{\rm opt} + \Delta f$ and median number of function evaluations of successful trials (+), shown for $\Delta f = 10, 1, 10^{-1}, 10^{-2}, 10^{-3}, 10^{-5}, 10^{-8}$ (the exponent is given in the legend of f_1 and f_{24}) versus dimension in log-log presentation. The ERT(Δf) equals to $\#\text{FEs}(\Delta f)$ divided by the number of successful trials, where a trial is successful if $f_{\text{opt}} + \Delta f$ was surpassed during the trial. The $\#\text{FEs}(\Delta f)$ are the total number of function evaluations while $f_{\text{opt}} + \Delta f$ was not surpassed during the trial from all respective trials (successful and unsuccessful), and f_{opt} denotes the optimal function value. Crosses (×) indicate the total number of function evaluations $\#\text{FEs}(-\infty)$. Numbers above ERT-symbols indicate the number of successful trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and quadratic scaling.

f1 in 5-D, N=15, mFE=2108 f1 in 20-D, N=15, mFE=32945	f2 in 5-D, N=15, mFE=2941 f2 in 20-D, N=15, mFE=46861
$ \frac{\Delta f}{10} \ \ \frac{\#}{10} \ \ \frac{\text{ERT}}{100} \ \ \frac{10\%}{100} \ \ \frac{90\%}{100} \ \ \frac{\text{RT}_{\text{SUCC}}}{100} \ \ \frac{\#}{1000} \ \ \frac{\text{ERT}}{1000} \ \ \frac{10\%}{1000} \ \ \frac{\text{RT}_{\text{SUCC}}}{1000} \ \ \frac{10\%}{1000} \ \ \frac{\text{RT}_{\text{SUCC}}}{1000} \ \ \frac{10\%}{1000} \ \ \frac{10\%}{$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 15 8.7e2 8.0e2 9.5e2 8.7e2 15 1.7e4 1.6e4 1.7e4 1.7e4 1e-1 15 1.1e3 1.0e3 1.2e3 1.1e3 15 1.9e4 1.8e4 2.0e4 1.9e4
1e-3 15 7.1e2 6.8e2 7.6e2 7.1e2 15 1.4e4 1.3e4 1.5e4 1.4e4	1e-3 15 1.6e3 1.5e3 1.7e3 1.6e3 15 2.4e4 2.3e4 2.5e4 2.4e4 1e-5 15 1.9e3 1.8e3 2.0e3 1.9e3 1.9e3 1.5e3 1.9e4 2.9e4 3.1e4 3.0e4
1e-8 15 1.6e3 1.6e3 1.7e3 1.6e3 15 2.6e4 2.5e4 2.7e4 2.6e4 f3 in 5-D, N=15, mFE=2663112 f3 in 20-D, N=15, mFE=20019153	1e-8 15 2.5e3 2.4e3 2.6e3 2.5e3 15 3.8e4 3.6e4 3.9e4 3.8e4 f4 in 5-D, N=15, mFE=5009424 f4 in 20-D, N=15, mFE=20020305
Δf # ERT 10% 90% RT _{succ} # ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ} # ERT 10% 90% RT _{succ}
10 15 3.2e3 1.0e3 5.5e3 3.2e3 15 1.4e5 9.5e4 1.9e5 1.4e5 15 1.1e5 7.6e4 1.3e5 1.1e5 0 40e-1 30e-1 50e-1 5.6e5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1e-1 15 7.9e5 5.3e5 1.1e6 7.9e5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1e-5 15 8.6e5 5.8e5 1.2e6 8.6e5	1e-5 1e-8
f5 in 5-D, N=15, mFE=491 f5 in 20-D, N=15, mFE=4545	f6 in 5-D, N=15, mFE=7498 f6 in 20-D, N=15, mFE=168697
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1e-3 15 2.9e2 2.7e2 3.1e2 2.9e2 15 3.3e3 3.0e3 3.5e3 3.3e3 1e-5 15 2.9e2 2.7e2 3.1e2 2.9e2 15 3.3e3 3.1e3 3.5e3 3.3e3 3.3e3 3.1e3 3.5e3 3.3e3	1e-3 15 3.0e3 2.8e3 3.3e3 3.0e3 15 8.1e4 7.9e4 8.3e4 8.1e4 1e-5 15 4.4e3 4.2e3 4.7e3 4.4e3 15 1.1e5 1.1e5 1.1e5 1.1e5
1e-8 15 2.9 e2 2.7 e2 3.1 e2 2.9 e2 15 3.3 e3 3.0 e3 3.5 e3 3.3 e3	le-8 15 6.7e3 6.4e3 6.9e3 6.7e3 15 1.5e5 1.5e5 1.6e5 1.5e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
10 15 1.3 e2 1.0 e2 1.6 e2 1.3 e2 15 4.9 e3 4.4 e3 5.4 e3 4.9 e3 1 15 3.2 e2 2.7 e2 3.8 e2 3.2 e2 15 8.8 e3 8.2 e3 9.4 e3 8.8 e3	10 15 3.8e2 3.5e2 4.1e2 3.8e2 15 4.0e4 3.8e4 4.1e4 4.0e4 1 15 1.7e3 1.5e3 1.8e3 1.7e3 15 6.8e4 6.7e4 7.0e4 6.8e4
1e-1 15 1.4e3 5.2e2 2.4e3 1.4e3 15 1.3e4 1.2e4 1.3e4 1e-3 15 3.7e3 1.9e3 5.5e3 3.7e3 15 1.7e4 1.6e4 1.7e4 1.7e4	1e-1 15 2.6e3 2.4e3 2.8e3 2.6e3 15 7.7e4 7.5e4 7.8e4 7.7e4 1e-3 15 3.3e3 3.1e3 3.6e3 3.3e3 15 8.6e4 8.5e4 8.8e4 8.6e4
1e-5 15 3.7e3 1.9e3 5.5e3 3.7e3 15 1.7e4 1.6e4 1.7e4 1.7e4	1e-5 15 3.8e3 3.5e3 4.0e3 3.8e3 15 9.2e4 9.0e4 9.4e4 9.2e4
f9 in 5-D, N=15, mFE=25268 f9 in 20-D, N=15, mFE=112465	f ₁₀ in 5-D, N=15, mFE=3382 f ₁₀ in 20-D, N=15, mFE=46293
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 15 9.2e2 8.3e2 1.0e3 9.2e2 15 1.7e4 1.6e4 1.8e4 1.7e4 1e-1 15 1.2e3 1.1e3 1.3e3 1.2e3 15 2.0e4 1.9e4 2.1e4 2.0e4
1e-3 15 4.8e3 3.4e3 6.3e3 4.8e3 15 8.4e4 8.2e4 8.5e4 8.4e4 1e-5 15 5.3e3 3.9e3 6.9e3 5.3e3 15 8.9e4 8.8e4 9.1e4 8.9e4	1e-3 15 1.6e3 1.4e3 1.7e3 1.6e3 15 2.6e4 2.5e4 2.7e4 2.6e4 1e-5 15 1.9e3 1.8e3 2.0e3 1.9e3 1.5 3.2e4 3.0e4 3.3e4 3.2e4
1e-8 15 5.9e3 4.4e3 7.6e3 5.9e3 15 9.7e4 9.5e4 9.9e4 9.7e4	1e-8 15 2.5 e3 2.6 e3 2.5 e3 15 4.0 e4 3.9 e4 4.2 e4 4.0 e4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
10	10 15 1.1e3 8.3e2 1.4e3
1e-1 15 7.6e2 6.9e2 8.3e2 7.6e2 15 1.2e4 1.1e4 1.2e4 1.2e4 1e-3 15 1.2e3 1.1e3 1.3e3 1.2e3 15 1.7e4 1.6e4 1.8e4 1.7e4	1e-1 15 3.2e3 2.3e3 4.2e3 3.2e3 15 3.6e4 3.3e4 3.9e4 3.6e4 1e-3 15 4.9e3 3.9e3 6.0e3 4.9e3 15 6.4e4 6.0e4 6.8e4 6.4e4
1e-5 15 1.5e3 1.4e3 1.6e3 1.5e3 15 2.3e4 2.1e4 2.4e4 2.3e4 1e-8 15 2.0e3 1.9e3 2.2e3 2.0e3 15 3.2e4 3.0e4 3.3e4 3.2e4	1e-5 15 6.6e3 5.3e3 8.1e3 6.6e3 15 9.5e4 9.1e4 9.8e4 9.5e4 1e-8 15 8.3e3 6.8e3 9.8e3 8.3e3 15 1.2e5 1.2e5 1.3e5 1.2e5
f13 in 5-D, N=15, mFE=4019 f13 in 20-D, N=15, mFE=70149	f14 in 5-D, N=15, mFE=2892 f14 in 20-D, N=15, mFE=42885
Δf # ERT 10% 90% RT _{succ} # ERT 10% 90% RT _{succ} 10 15 5.5 e 2 4.9 e 2 6.1 e 2 5.5 e 2 15 1.2 e 4 1.1 e 4 1.3 e 4 1.2 e 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 15 8.9e2 8.2e2 9.7e2 8.9e2 15 1.6e4 1.5e4 1.7e4 1.6e4 1e-1 15 1.2e3 1.1e3 1.3e3 1.2e3 15 2.2e4 2.1e4 2.3e4 2.2e4	1 15 1.9e2 1.6e2 2.0e2 1.9e2 15 5.3e3 4.8e3 5.8e3 5.3e3 1e-1 15 3.5e2 3.3e2 3.5e2 3.5e2 15 9.1e3 8.4e3 9.9e3 9.1e3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-3 15 8.1e2 7.5e2 8.7e2 8.1e2 15 1.6e4 1.5e4 1.7e4 1.6e4 1e-5 15 1.3e3 1.2e3 1.4e3 1.3e3 1.5e4 1.5e4 1.5e4 1.7e4 1.6e4 15 2.3e4 2.2e4 2.5e4 2.3e4
1e-8 15 3.5e3 3.4e3 3.6e3 3.5e3 15 5.8e4 5.7e4 5.9e4 5.8e4 f15 in 5-D, N=15, mFE=622081 f15 in 20-D, N=15, mFE=1121104	1e-8 15 2.1e3 2.0e3 2.2e3 2.1e3 15 3.4e4 3.3e4 3.6e4 3.4e4
Δf # ERT 10% 90% RT _{succ} # ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ} # ERT 10% 90% RT _{succ}
10 15 8.5e2 7.7e2 9.4e2 8.5e2 15 4.7e4 2.7e4 6.7e4 4.7e4	10
1e-1 15 1.0e5 6.2e4 1.5e5 1.0e5 15 5.3e5 4.4e5 6.4e5 5.3e5 1e-3 15 1.0e5 6.1e4 1.5e5 1.0e5 15 5.4e5 4.5e5 6.4e5 5.4e5	1e-1 15 3.1e4 1.9e4 4.3e4 3.1e4 15 4.0e5 3.0e5 5.0e5 4.0e5
1e-5 15 1.0e5 6.1e4 1.5e5 1.0e5 15 5.6e5 4.6e5 6.5e5 5.6e5 1e-8 15 1.1e5 6.4e4 1.6e5 1.1e5 15 5.8e5 4.8e5 6.8e5 5.8e5	1e-5 15 6.4e4 4.4e4 8.5e4 6.4e4 15 1.2e6 9.7e5 1.5e6 1.2e6 1e-8 15 6.5e4 4.5e4 9.0e4 6.5e4 15 1.3e6 9.8e5 1.5e6 1.3e6
f17 in 5-D, N=15, mFE=48296 f17 in 20-D, N=15, mFE=611698	f ₁₈ in 5-D, N=15, mFE=91310 f ₁₈ in 20-D, N=15, mFE=1447848
10 15 2.0e1 1.1e1 2.9e1 2.0e1 15 8.6e2 7.0e2 1.0e3 8.6e2	10 15 1.6e2 1.4e2 1.8e2 1.6e2 15 4.5e3 4.0e3 5.1e3 4.5e3
1 15 3.2e2 2.8e2 3.6e2 3.2e2 15 8.0e3 7.5e3 8.6e3 8.0e3 1e-1 15 2.4e3 7.2e2 4.1e3 2.4e3 15 1.7e4 1.6e4 1.9e4 1.7e4	1 15 6.5e2 5.7e2 7.4e2 6.5e2 15 1.2e4 1.1e4 1.3e4 1.2e4
1e-3 15 1.0e4 5.5e3 1.5e4 1.0e4 15 1.4e5 8.5e4 2.0e5 1.4e5 1e-5 15 2.1e4 1.7e4 2.6e4 2.1e4 15 2.8e5 2.2e5 3.5e5 2.8e5	1e-3 15 2.2e4 1.6e4 3.0e4 2.2e4 15 1.2e5 6.6e4 1.7e5 1.2e5 1e-5 15 3.7e4 3.0e4 4.4e4 3.7e4 15 3.6e5 3.1e5 4.2e5 3.6e5
le-8 15 2.9e4 2.5e4 3.2e4 2.9e4 15 4.7e5 4.1e5 5.3e5 4.7e5 f19 in 5-D, N=15, mFE=1351746 f19 in 20-D, N=15, mFE=20004979	1e-8 15 3.9e4 3.3e4 4.6e4 3.9e4 15 5.5e5 4.7e5 6.4e5 5.5e5 f20 in 5-D, N=15, mFE=3041916 f20 in 20-D, N=15, mFE=20021930
\$\Delta f\$ # ERT 10% 90% RT_{succ} # ERT 10% 90% RT_{succ} 10 15 3.8e1 3.4e1 4.3e1 3.8e1 15 7.4e2 7.0e2 7.8e2 7.4e2	Δf # ERT 10% 90% RT _{Succ} # ERT 10% 90% RT _{Succ} 10 15 6.3e1 5.6e1 7.1e1 6.3e1 15 1.7e3 1.6e3 1.8e3 1.7e3
1 15 1.1e3 8.7e2 1.4e3 1.1e3 15 3.4e4 3.3e4 3.5e4 3.4e4	1 15 2.4e4 1.6e4 3.2e4 2.4e4 15 4.1e6 3.5e6 4.7e6 4.1e6
1e-1 15 8.8e4 5.7e4 1.2e5 8.8e4 14 2.6e6 1.1e6 5.0e6 1.6e6 1e-3 15 5.1e5 3.9e5 6.2e5 5.1e5 5 5.5e7 5.1e7 5.8e7 2.0e7	1e-1 15 9.2e5 6.2e5 1.2e6 9.2e5 0 68e-2 47e-2 77e-2 1.8e7 1e-3 15 9.5e5 6.4e5 1.3e6 9.5e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
10 15 1.2e2 9.7e1 1.5e2 1.2e2 15 2.8e4 3.9e3 5.3e4 2.8e4 1 15 4.3e4 1.0e4 7.7e4 4.3e4 10 1.6e7 1.2e7 2.0e7 8.6e6	10 15 2.1e2 1.7e2 2.6e2 2.1e2 15 3.8e3 3.3e3 4.3e3 3.8e3 1 15 7.4e3 3.4e3 1.2e4 7.4e3 11 1.1e7 6.6e6 1.4e7 8.6e6
1e-1 15 5.8e4 2.0e4 9.7e4 5.8e4 9 2.2e7 1.8e7 2.6e7 1.2e7	1e-1 15 5.5 e4 3.0 e4 8.6 e4 5.5 e4 0 69e-2 69e-2 20e-1 4.0 e4
1e-3 15 6.2e4 2.3e4 1.1e5 6.2e4 9 2.2e7 1.8e7 2.6e7 1.2e7 1e-5 15 6.5e4 2.3e4 1.1e5 6.5e4 9 2.2e7 1.8e7 2.6e7 1.2e7	1e-3 15 7.0e4 3.9e4 1.1e5 7.0e4
1e-8 15 6.7e4 2.3e4 1.1e5 6.7e4 9 2.2e7 1.9e7 2.6e7 1.2e7 f23 in 5-D, N=15, mFE=98806 f23 in 20-D, N=15, mFE=5833084	1e-8 15 7.2e4 3.7e4 1.1e5 7.2e4 f24 in 5-D, N=15, mFE=5009460 f24 in 20-D, N=15, mFE=20021121
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 15 3.6e3 3.2e3 4.1e3 3.6e3 15 3.7e4 3.3e4 4.0e4 3.7e4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1e-3 15 3.2e4 2.2e4 4.2e4 3.2e4 15 4.9e5 3.7e5 6.2e5 4.9e5 1e-5 15 3.3e4 2.3e4 4.4e4 3.3e4 15 8.1e5 4.1e5 1.2e6 8.1e5	le-3 2 3.6e7 3.4e7 3.8e7 5.0e6
1e-5 15 3.5e4 2.5e4 4.4e4 5.3e4 15 8.1e5 4.1e5 1.2e6 6.1e5 1e-8 15 3.5e4 2.5e4 4.6e4 3.5e4 15 8.5e5 4.5e5 1.3e6 8.5e5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 1: AMaLGaM: Shown are, for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{\rm opt} + \Delta f$ (ERT, see Figure 1); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{\rm opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

Figure 2: AMaLGaM: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running time (left) or Δf . Left subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D, to fall below $f_{\rm opt} + \Delta f$ with $\Delta f = 10^k$, where k is the first value in the legend. Right subplots: ECDF of the best achieved Δf divided by 10^k (upper left lines in continuation of the left subplot), and best achieved Δf divided by 10^{-8} for running times of D, 10D, 100D, 10DD, 100D, 100D,

Figure 3: iAMaLGaM: Expected Running Time (ERT, \bullet) to reach $f_{\rm opt} + \Delta f$ and median number of function evaluations of successful trials (+), shown for $\Delta f = 10, 1, 10^{-1}, 10^{-2}, 10^{-3}, 10^{-5}, 10^{-8}$ (the exponent is given in the legend of f_1 and f_{24}) versus dimension in log-log presentation. The ERT(Δf) equals to $\#\text{FEs}(\Delta f)$ divided by the number of successful trials, where a trial is successful if $f_{\text{opt}} + \Delta f$ was surpassed during the trial. The $\#\text{FEs}(\Delta f)$ are the total number of function evaluations while $f_{\text{opt}} + \Delta f$ was not surpassed during the trial from all respective trials (successful and unsuccessful), and f_{opt} denotes the optimal function value. Crosses (×) indicate the total number of function evaluations $\#\text{FEs}(-\infty)$. Numbers above ERT-symbols indicate the number of successful trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and quadratic scaling.

f ₁ in 5-D, N=15, mFE=1198 f ₁ in 20-D, N=15, mFE=13503	f2 in 5-D, N=15, mFE=2206 f2 in 20-D, N=15, mFE=22791
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 15 7.1e2 6.5e2 7.7e2 7.1e2 15 1.0e4 1.0e4 1.1e4 1.0e4 1e-1 15 8.8e2 8.1e2 9.5e2 8.8e2 15 1.2e4 1.1e4 1.2e4 1.2e4
1e-3 15 4.4e2 4.2e2 4.7e2 4.4e2 15 6.3e3 6.2e3 6.3e3 6.3e3	1e-3 15 1.2e3 1.1e3 1.2e3 1.2e3 15 1.4e4 1.4e4 1.4e4 1.4e4
1e-5 15 6.8e2 6.5e2 7.0e2 6.8e2 15 8.8e3 8.7e3 8.9e3 8.8e3 1e-8 15 1.0e3 9.7e2 1.0e3 1.0e3 15 1.3e4 1.3e4 1.3e4 1.3e4	1e-5 15 1.4e3 1.3e3 1.4e3 1.4e3 15 1.7e4 1.6e4 1.7e4 1.7e4 1e-8 15 1.7e3 1.6e3 1.8e3 1.7e3 15 2.1e4 2.0e4 2.1e4 2.1e4
f3 in 5-D, N=15, mFE=2131712 f3 in 20-D, N=15, mFE=20018307	f4 in 5-D, N=15, mFE=5008773 f4 in 20-D, N=15, mFE=20017720
Δf # ERT 10% 90% RT _{succ} # ERT 10% 90% RT _{succ} 10 15 9.8e2 4.4e2 1.5e3 9.8e2 15 1.9e5 1.5e5 2.3e5 1.9e5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 15 5.4e4 3.6e4 7.3e4 5.4e4 2 1.3e8 1.2e8 1.5e8 2.0e7	1 2 3.4e7 3.1e7 3.8e7 2.8e6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1e-5 15 3.1e5 1.6e5 4.9e5 3.1e5	$egin{array}{cccccccccccccccccccccccccccccccccccc$
f5 in 5-D, N=15, mFE=232 f5 in 20-D, N=15, mFE=689	f6 in 5-D, N=15, mFE=4600 f6 in 20-D, N=15, mFE=68285
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 15 1.1e2 9.4e1 1.2e2 1.1e2 15 4.6e2 4.3e2 4.8e2 4.6e2	1 15 5.0e2 4.5e2 5.5e2 5.0e2 15 1.2e4 1.2e4 1.2e4 1.2e4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-1 15 8.9e2 7.9e2 9.8e2 8.9e2 15 1.8e4 1.7e4 1.8e4 1.8e4 1e-3 15 1.6e3 1.5e3 1.7e3 1.6e3 15 2.9e4 2.7e4 3.0e4 2.9e4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-5 15 2.3e3 2.1e3 2.4e3 2.3e3 15 4.0e4 3.8e4 4.1e4 4.0e4 1e-8 15 3.5e3 3.3e3 3.6e3 3.5e3 15 5.6e4 5.4e4 5.8e4 5.6e4
f7 in 5-D, N=15, mFE=20656 f7 in 20-D, N=15, mFE=71517	f8 in 5-D, N=15, mFE=11429 f8 in 20-D, N=15, mFE=116850
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 15 6.3 e2 2.6 e2 1.0 e3 6.3 e2 15 4.3 e3 4.0 e3 4.6 e3 4.3 e3	1 15 2.1e3 1.1e3 3.0e3 2.1e3 15 3.4e4 2.9e4 4.0e4 3.4e4
1e-1 15 3.5e3 2.6e3 4.5e3 3.5e3 15 9.5e3 6.8e3 1.2e4 9.5e3 1e-3 15 5.8e3 4.5e3 7.5e3 5.8e3 15 2.2e4 1.5e4 2.9e4 2.2e4	1e-1 15 2.6e3 1.6e3 3.6e3 2.6e3 15 3.8e4 3.3e4 4.4e4 3.8e4
1e-5 15 5.8e3 4.2e3 7.2e3 5.8e3 15 2.2e4 1.5e4 2.9e4 2.2e4	1e-5 15 3.3e3 2.3e3 4.3e3 3.3e3 15 4.5e4 3.9e4 5.0e4 4.5e4
1e-8 15 6.1e3 4.7e3 7.8e3 6.1e3 15 2.3e4 1.6e4 3.0e4 2.3e4 f9 in 5-D, N=15, mFE=13398 f9 in 20-D, N=15, mFE=121138	1e-8 15 3.7e3 2.7e3 4.7e3 3.7e3 15 4.9e4 4.3e4 5.4e4 4.9e4 f10 in 5-D, N=15, mFE=2458 f10 in 20-D, N=15, mFE=23694
Δf # ERT 10% 90% RT _{succ} # ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ} # ERT 10% 90% RT _{succ}
1 15 2.8e3 1.6e3 3.9e3 2.8e3 15 3.4e4 2.9e4 4.0e4 3.4e4	10 15 6.3e2 5.6e2 7.0e2 6.3e2 15 9.5e3 9.1e3 9.8e3 9.5e3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-1 15 1.0e3 8.9e2 1.1e3 1.0e3 15 1.2e4 1.2e4 1.3e4 1.2e4 1e-3 15 1.3e3 1.2e3 1.4e3 1.3e3 15 1.5e4 1.5e4 1.5e4 1.5e4
1e-5 15 4.1e3 2.9e3 5.4e3 4.1e3 15 4.5e4 3.9e4 5.1e4 4.5e4	1e-5 15 1.5e3 1.4e3 1.6e3 1.5e3 15 1.8e4 1.7e4 1.8e4 1.8e4
1e-8 15 4.5e3 3.3e3 5.8e3 4.5e3 15 4.9e4 4.3e4 5.5e4 4.9e4 f11 in 5-D, N=15, mFE=2248 f11 in 20-D, N=15, mFE=18491	1e-8 15 1.9e3 1.8e3 2.0e3 1.9e3 15 2.1e4 2.1e4 2.2e4 2.1e4 f12 in 5-D, N=15, mFE=7372 f12 in 20-D, N=15, mFE=67898
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 15 7.8e2 6.9e2 8.6e2 7.8e2 15 6.0e3 5.7e3 6.3e3 6.0e3	1 15 1.1e3 1.0e3 1.3e3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-1 15 1.5e3 1.3e3 1.7e3 1.5e3 15 2.0e4 1.7e4 2.2e4 2.0e4 1e-3 15 2.2e3 1.9e3 2.4e3 2.2e3 15 3.2e4 3.0e4 3.5e4 3.2e4
1e-5 15 1.5e3 1.4e3 1.6e3 1.5e3 15 1.2e4 1.2e4 1.3e4 1.2e4	1e-5 15 2.8e3 2.4e3 3.2e3 2.8e3 15 4.4e4 4.2e4 4.7e4 4.4e4
le-8 15 1.8e3 1.7e3 1.9e3 1.8e3 15 1.6e4 1.6e4 1.6e4 1.6e4 f13 in 5-D, N=15, mFE=3025 f13 in 20-D, N=15, mFE=40034	1e-8 15 3.6e3 3.2e3 4.2e3 3.6e3 15 5.7e4 5.5e4 5.9e4 5.7e4 f14 in 5-D, N=15, mFE=1975 f14 in 20-D, N=15, mFE=20254
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 15 5.8e2 5.5e2 6.0e2 5.8e2 15 8.4e3 8.2e3 8.5e3 8.4e3	1 15 1.1e2 9.7e1 1.3e2 1.1e2 15 2.2e3 2.2e3 2.3e3 2.2e3
1e-1 15 8.1e2 7.7e2 8.5e2 8.1e2 15 1.2e4 1.1e4 1.2e4 1.2e4	1e-1 15 2.5e2 2.3e2 2.7e2 2.5e2 15 3.8e3 3.8e3 3.9e3 3.8e3 1e-3 15 5.7e2 5.4e2 6.1e2 5.7e2 15 7.3e3 7.2e3 7.4e3 7.3e3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-5 15 9.1e2 8.6e2 9.6e2 9.1e2 15 1.1e4 1.1e4 1.2e4 1.1e4 1.e-8 15 1.5e3 1.4e3 1.6e3 1.5e3 1.5e3 1.5e4 1.7e4 1.8e4 1.8e4
f ₁₅ in 5-D, N=15, mFE=485369 f ₁₅ in 20-D, N=15, mFE=4850004	f16 in 5-D, N=15, mFE=223478 f16 in 20-D, N=15, mFE=15774376
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 15 6.6e4 4.5e4 8.6e4 6.6e4 15 2.0e6 1.7e6 2.4e6 2.0e6	1 15 5.3 e3 2.5 e3 8.0 e3 5.3 e3 15 4.6 e4 2.8 e4 6.3 e4 4.6 e4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-1 15 1.5e4 1.1e4 1.9e4 1.5e4 15 1.0e6 7.6e5 1.3e6 1.0e6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-5 15 7.5e4 5.6e4 9.6e4 7.5e4 15 5.6e6 4.3e6 7.0e6 5.6e6
f ₁₇ in 5-D, N=15, mFE=91729 f ₁₇ in 20-D, N=15, mFE=2367259	f18 in 5-D, N=15, mFE=140996 f18 in 20-D, N=15, mFE=4902227
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 15 2.5e2 2.1e2 2.9e2 2.5e2 15 3.0e3 2.9e3 3.1e3 3.0e3 1e-1 15 3.5e3 1.0e3 5.9e3 3.5e3 15 6.1e3 6.0e3 6.3e3 6.1e3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1e-3 15 1.7e4 1.1e4 2.3e4 1.7e4 15 1.9e5 1.1e5 2.8e5 1.9e5	1e-3 15 1.8e4 1.3e4 2.2e4 1.8e4 15 1.3e6 1.0e6 1.6e6 1.3e6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-5 15 3.4e4 2.6e4 4.2e4 3.4e4 15 2.1e6 1.9e6 2.2e6 2.1e6
f19 in 5-D, N=15, mFE=3203492 f19 in 20-D, N=15, mFE=20000786	f20 in 5-D, N=15, mFE=1887912 f20 in 20-D, N=15, mFE=20018542
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 15 1.1e3 8.9e2 1.4e3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1e-3 15 1.4e6 1.1e6 1.8e6 1.4e6 0 72e-3 40e-3 63e-2 4.5e6	1e-3 15 9.7e5 7.6e5 1.2e6 9.7e5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e-8 15 1.0e6 8.0e5 1.2e6 1.0e6
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
10 15 9.0 e1 7.3 e1 1.1 e2 9.0 e1 15 5.8 e3 1.5 e3 1.0 e4 5.8 e3	10 15 1.3 e2 1.1 e2 1.6 e2 1.3 e2 15 3.8 e3 1.6 e3 6.0 e3 3.8 e3
1 15 3.1e4 1.5e4 4.7e4 3.1e4 14 4.4e6 2.8e6 6.5e6 3.9e6 1e-1 15 3.7e4 2.1e4 5.5e4 3.7e4 13 7.6e6 5.0e6 1.0e7 5.4e6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1e-3 15 3.8e4 2.1e4 5.6e4 3.8e4 13 7.7e6 4.8e6 1.1e7 5.4e6	le-3 15 4.2e4 1.7e4 6.8e4 4.2e4
1e-5 15 3.8e4 2.1e4 5.6e4 3.8e4 12 8.5e6 5.4e6 1.2e7 5.2e6 1e-8 15 3.9e4 2.3e4 5.8e4 3.9e4 12 8.6e6 5.7e6 1.2e7 5.3e6	1e-5 15 4.2e4 1.7e4 7.2e4 4.2e4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
10 15 7.7e0 4.7e0 1.1e1 7.7e0 15 6.0e0 4.4e0 7.7e0 6.0e0	10 15 5.1e3 3.6e3 6.7e3 5.1e3 15 3.8e6 3.2e6 4.4e6 3.8e6
1 15 4.0e3 2.3e3 5.8e3 4.0e3 15 8.8e3 8.2e3 9.4e3 8.8e3 1e-1 15 3.0e4 2.0e4 4.2e4 3.0e4 15 1.1e5 7.2e4 1.5e5 1.1e5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1e-3 15 3.7e4 2.5e4 5.1e4 3.7e4 15 2.5e6 2.0e6 3.0e6 2.5e6 1e-5 15 3.8e4 2.6e4 5.1e4 3.8e4 15 2.7e6 2.1e6 3.2e6 2.7e6	1e-3 1 7.2e7 6.9e7 7.5e7 5.0e6
1e-5 15 3.664 2.664 5.164 5.664 15 2.766 2.166 3.266 2.766 1e-8 15 4.064 2.764 5.364 4.064 15 2.766 2.266 3.366 2.766	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 2: iAMaLGaM: Shown are, for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{\rm opt} + \Delta f$ (ERT, see Figure 1); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{\rm opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

Figure 4: iAMaLGaM: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running time (left) or Δf . Left subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D, to fall below $f_{\rm opt} + \Delta f$ with $\Delta f = 10^k$, where k is the first value in the legend. Right subplots: ECDF of the best achieved Δf divided by 10^k (upper left lines in continuation of the left subplot), and best achieved Δf divided by 10^{-8} for running times of D, 10D, 100D, 10DD, 100D, 100D