

CPS-SPC 15 @ Denver CO

MiniCPS: A toolkit for security research on CPS Networks

DANIELE ANTONIOLI (SUTD) NILS OLE TIPPENHAUER (SUTD)

- · Personal:
 - ▶ Daniele Antonioli
 - ► SUTD's ISTD PhD (Prof N.O. TIPPENHAUER)
- SCy-Phy group:
 - ► Applied CPS security research

Why MiniCPS: Cyber-Physical Systems

- CPS are:
 - Complex
 - Critical
 - Connected

Why MiniCPS: Cyber-Physical Systems

- CPS are:
 - Complex
 - Critical
 - Connected
- CPS information may be difficult to:
 - Obtain
 - Prove
 - Share

Why MiniCPS: Cyber-Physical Systems

- CPS are:
 - Complex
 - Critical
 - Connected
- CPS information may be difficult to:
 - Obtain
 - Prove
 - Share
- CPS research requires different expertises:
 - Electronics, Automation
 - Networking, Computer Science
 - ▶ Physics...

Why MiniCPS: SWaT testbed

- Pure Water: 5 US gallons/min, 6.0 7.0 pH, minimum conductivity of 10 µS/cm³
- Recovered Water: 70% processed water, 50% dirty recirculation

Why MiniCPS: SWaT network

- Wired and Wireless links.
- Ethernet/IP, Common Industrial Protocol.

MiniCPS: Vision

- Research Environment:
 - ► Reproducible
 - Extensible
 - ▶ Shareable

MiniCPS: Vision

- Research Environment:
 - Reproducible
 - Extensible
 - Shareable
- Targeted to Cyber-Physical Systems:
 - Network communications
 - Control logic
 - Physical layer interaction

MiniCPS: Vision

- Research Environment:
 - Reproducible
 - Extensible
 - Shareable
- Targeted to Cyber-Physical Systems:
 - Network communications
 - Control logic
 - Physical layer interaction
- Don't reinvent the wheels...
 - But: "Stand on the Shoulders of Giants"
 - ▶ Eg: linux, python, mininet, git

MiniCPS: Diagram

- (C)yber \rightarrow Network Emulator
- (P)hysical \rightarrow Process Simulation, State API
- (S)ystem → Control Logic Simulation

MiniCPS: What is Mininet

- Network-in-a-box emulator:
 - Reproduce (complex) topologies
 - Generating real packets using real protocols

MiniCPS: What is Mininet

- Network-in-a-box emulator:
 - Reproduce (complex) topologies
 - Generating real packets using real protocols
- One Linux kernel, multiple devices:
 - Lightweight virtualization
 - ► Each device is a container

MiniCPS: What is Mininet

- Network-in-a-box emulator:
 - Reproduce (complex) topologies
 - Generating real packets using real protocols
- One Linux kernel, multiple devices:
 - Lightweight virtualization
 - ► Each device is a container
- SDN/OpenFlow development

MiniCPS: Physical Layer API

- Database to represent the (physical) state:
 - Abstract low-level details (SQL query)
 - Use high level semantic functions: get, set

MiniCPS: Physical Layer API

- Database to represent the (physical) state:
 - Abstract low-level details (SQL query)
 - Use high level semantic functions: get, set
- Compatibility layer:
 - Programming Language agnostic
 - Support different storage back-ends

MiniCPS: SWaT example

Control strategy:

- Sensors: level (LIT), flow (FIT)
- Actuators: motorized valve (MV) and pump (P)
- PLC1 takes decision with the aid of PLC2 and PLC3
- Physical process simulation updates the state

Network:

- Realistic addresses (CIDR, MAC, ports)
- Replicate services: web-servers, ENIP client/server
- Optional Attacker and SDN Controller

MiniCPS: SWaT example II

- Passive and Active ARP poisoning MITM attacks
- SDN Controller for ARP poisoning Detection and Mitigation

MiniCPS: Conclusions

- MiniCPS is a CPS research platform:
 - Reproducible
 - Extensible
 - Shareable
- MiniCPS is used to investigate issues in real testbeds:
 - MITM attacks (ettercap)
 - Ethernet/IP reverse-engineering (scapy)
 - SDN controllers development (pox)

MiniCPS: Conclusions

- MiniCPS is a CPS research platform:
 - Reproducible
 - Extensible
 - Shareable
- MiniCPS is used to investigate issues in real testbeds:
 - ► MITM attacks (ettercap)
 - Ethernet/IP reverse-engineering (scapy)
 - ▶ SDN controllers development (pox)
- Contribute:
 - http://scy-phy.github.io/index.html
 - ▶ https://github.com/scy-phy/minicps
- Thank You!

Q & A