

「工科数学」葵花宝典

高数、线代、概率、复变

作者: sikouhjw、xajzh、jdldxk

组织: Emstbook

时间: June 28, 2019

版本: 1.00

确实,时 间和空间 是有限的。确实,我们总会有 分开的时候。但是正因为这样, 我们才会努力学习,我们才会 努力前进。我们的信仰是 享受数学。因为"数 学穿越时空"。

目 录

1	声明			1
2	高等	数学试	卷汇总	2
	2.1	高数(-	一)期中	2
	2.2	高数(-	一)期终	2
		2.2.1	复习题 1	2
		2.2.2	复习题 1 答案	2
	2.3	高数(二	二)期中	2
		2.3.1	复习题 1	2
		2.3.2	复习题 1 答案	3
		2.3.3	复习题 2	5
		2.3.4	复习题 2 答案	5
	2.4	高数(二	二)期终	5
		2.4.1	复习题 1	5
		2.4.2	复习题 1 答案	6
		2.4.3	复习题 2	6
		2.4.4	复习题 2 答案	8
		2.4.5	复习题 3	8
		2.4.6	难度与考试近似的题	8
3	线性	代数试	卷汇总	14
4	概率	统计试	卷汇总	15
	4.1	复习题	§ 1	15
	4.2	复习题	[1答案	17
	4.3	复习题	12	19
	4.4	复习题	<u> </u>	22
5	复变	函数试	卷汇总	25
	5.1	复习题	§ 1	25
	5.2	复习题	11	26

第1章 声明

本汇总不得用于商业用途,最新版下载地址: Github (用电脑点击链接即可),不保证题目、答案的正确性,如有错误可通过QQ群(见图 1.1)¹或者邮箱²联系我们

图 1.1: 二维码

点击 Github 后,找到 Emstbook.pdf 后点击,点击 Download 即可 「复习题」是历年真题,「难度与考试近似的题」是如果你太无聊给你写的。(为什么这都还有人问?)

¹⁹⁹¹⁸³²²²⁶

²489765924@qq.com

第2章 高等数学试卷汇总

2.1 高数(一)期中

2.2 高数(一)期终

2.2.1 复习题 1

2.2.2 复习题 1 答案

2.3 高数(二)期中

(C) $\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$

2.3.1 复习题 1

v I	选择题			
1.	微分方程 $(y')^3 + 3\sqrt{y''}$ -	$+ x^4 y''' = \sin x$ 的阶数是	()	
	(A) 1	(B) 4	(C) 2	(D) 3
2.	设 $f(x, y) = x - y - \sqrt{x^2}$	$\overline{f_x} + y^2$, \emptyset $f_x(3,4) = ($)		
	(A) $\frac{3}{5}$	(B) $\frac{2}{5}$	$(C) -\frac{2}{5}$	(D) $\frac{1}{5}$
3.	微分方程 $y' = \frac{y}{x}$ 的一个	特解是()		
	(A) y = 2x		$(C) y = x^2$	(D) $y = \ln x$
4.	若 $z = \ln \sqrt{1 + x^2 + y^2}$,	则 $dz _{(1,1)} = ($)		
	(A) $\frac{dx + dy}{3}$	(B) $\frac{dx + dy}{2}$	(C) $\frac{dx + dy}{1}$	(D) $3(dx + dy)$
5.	设直线 $L:$ $\begin{cases} x + 3y + 2z \\ 2x - y - 10 \end{cases}$	z+1=0 $0z+3=0$,平面 $\eta:42$	$x - 2y + z - 2 = 0$, \square ()
	(A) <i>L</i> 在 η 上	(B) L 平行于 η	(C) L 垂直于 η	(D) L 与 η 斜交
6.	方程 $y' + 3xy = 6x^2y$ 是	$\epsilon($)		
	(A) 二阶微分方程		(B) 非线性微分方程	
	(C) 一阶线性非齐次微分	分方程	(D) 可分离变量的微分	方程
7.		i平面 $x = y$ 的交线是()	
		(B) 双曲线	(C) 椭圆	(D) 抛物线
8.	设 $z = e^{x^2y}$,则 $\frac{\partial^2 z}{\partial x \partial y} = ($)		
	(A) $2y(1+x^3)e^{x^2y}$		(B) e^{x^2y}	
	(C) $2x (1 + x^2y) e^{x^2y}$		(D) $2xe^{x^2y}$	
9.	下列结论正确的是()		-	
	(A) $\vec{a} \times (\vec{b} - \vec{c}) = \vec{a} \times \vec{b}$	$-\vec{a} \times \vec{c}$	(B) 若 $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ 且 \vec{c}	$\vec{a} \neq \vec{0}$,则 $\vec{b} = \vec{c}$

(D) 若 $|\vec{a}| = 1$, $\left| \vec{b} \right| = 1$, 则 $\left| \vec{a} \times \vec{b} \right| = 1$

2.3 高数(二)期中 -3/28-

二、填空题

1. 平面过点 (2,0,0), (0,1,0), (0,0,0.5), 则该平面的方程是

- 2. $\forall y_1 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_1 + y_2 \neq y'' + p(x)y' + q(x)y = f(x)$ 是_____方程的解
- 3. 设 $z = y \arctan x$, 则 $\operatorname{grad} z|_{(1,2)} =$ ______
- 4. 过点 P(0,2,4) 且与两平面 x + 2z = 1 和 y 2z = 2 平行的直线方程是
- 5. $\forall f(x, y) = \arcsin \frac{y}{x}$, $\bigcup f_y(1, 0) =$ ______
- 6. $y = e^x$ 是微分方程 y'' + py' + 6y = 0 的一个特解, 则 $p = _____$
- 7. 已知平面 η_1 : $A_1x + B_1y + C_1z + D_1 = 0$ 与平面 η_2 : $A_2x + B_2y + C_2z + D_2 = 0$, 则 $\eta_1 \perp \eta_2$ 的充要条件是
- 9. 设 $z = e^{xy} + \cos(x^2 + y)$, 则 $\frac{\partial z}{\partial y} =$

三、大题

- 1. 求方程 $\frac{dz}{dx} = -z + 4x$ 的通解
- 2. 求曲线 $2z + 1 = \ln(xy) + e^z$ 在点 $M_0(1, 1, 0)$ 处的切平面和法线方程
- 3. 设由方程组 $\begin{cases} x+y+z=0\\ x^2+y^2+z^2=1 \end{cases}$ 确定了隐函数 x=x(z), y=y(z),求 $\frac{\mathrm{d}x}{\mathrm{d}z}, \frac{\mathrm{d}y}{\mathrm{d}z}$
- 4. 求方程 $y'' + 6y' + 13y = e^t$ 的通解
- 5. 设 $z = x^2y + \sin x + \varphi(xy + 1)$, 且 $\varphi(u)$ 具有一阶连续导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

2.3.2 复习题 1 答案

一、选择题

1. 微分方程 $(y')^3 + 3\sqrt{y''} + x^4y''' = \sin x$ 的阶数是(D)

(D)3

- - (A) $\frac{3}{5}$

- (D) $\frac{1}{5}$

3. 微分方程 $y' = \frac{y}{x}$ 的一个特解是(A)

- (D) $y = \ln x$

- (D) 3(dx + dy)
- (A) y = 2x (B) $e^{y} = x$ (C) $y = x^{2}$ (4. 若 $z = \ln \sqrt{1 + x^{2} + y^{2}}$, 则 $dz|_{(1,1)} = (A)$ (A) $\frac{dx + dy}{3}$ (B) $\frac{dx + dy}{2}$ (C) $\frac{dx + dy}{1}$ (C) $\frac{dx + dy}{1}$ (D) $\frac{dx + dy}{1}$ (C) $\frac{dx + dy}{1}$ (D) $\frac{dx + dy}{1}$ (E) $\frac{dx + dy}{1}$ (C) $\frac{dx + dy}{1}$ (D) $\frac{dx + dy}{1}$ (D) $\frac{dx + dy}{1}$ (D) $\frac{dx + dy}{1}$ (E) $\frac{dx + dy}{1}$ (

- (A) L 在 η 上 (B) L 平行于 η (C) L 垂直于 η (D) L 与 η 斜交
- 6. 方程 $y' + 3xy = 6x^2y$ 是(D)
 - (A) 二阶微分方程

(B) 非线性微分方程

(C) 一阶线性非齐次微分方程

(D) 可分离变量的微分方程

2.3 高数(二)期中 -4/28-

7. 曲面 $\frac{x^2}{9} - \frac{y^2}{4} + \frac{z^2}{4} = 1$ 与平面 x = y 的交线是(B)

(A) 两条直线

(B) 双曲线

(C) 椭圆

(D) 抛物线

8. 设 $z = e^{x^2y}$,则 $\frac{\partial^2 z}{\partial x \partial y} = (C)$

(A) $2y(1+x^3)e^{x^2y}$

(B) e^{x^2y}

(C) $2x(1+x^2y)e^{x^2y}$

(D) $2xe^{x^2y}$

9. 下列结论正确的是(A)

(A)
$$\vec{a} \times (\vec{b} - \vec{c}) = \vec{a} \times \vec{b} - \vec{a} \times \vec{c}$$

(B) 若 $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ 且 $\vec{a} \neq \vec{0}$, 则 $\vec{b} = \vec{c}$

(C)
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$$

(D) 若 $|\vec{a}| = 1$, $|\vec{b}| = 1$, 则 $|\vec{a} \times \vec{b}| = 1$

二、填空题

1. 平面过点 (2,0,0), (0,1,0), (0,0,0.5), 则该平面的方程是 $\frac{x}{2} + y + 2z = 1$

2. $\forall y_1 \not = y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_2 \not = y'' + p(x)y' + q(x)y = f(x)$ 的解, $y_1 + y_2 \not = y'' + p(x)y' + q(x)y = f(x)$ 是 y'' + p(x)y' + q(x)y = 2f(x) 方程的解

3. 设 $\overline{z} = y \arctan x$, 则 $\operatorname{grad} z|_{(1,2)} = \underline{dx + \frac{\pi}{4} dy}$ 4. 过点 P(0,2,4) 且与两平面 x + 2z = 1 和 y - 2z = 2 平行的直线方程是 $\underline{\frac{x}{-2} = \frac{y-2}{2} = \frac{z-4}{1}}$

6. $y = e^x$ 是微分方程 y'' + py' + 6y = 0 的一个特解, 则 p = -7

7. 已知平面 η_1 : $A_1x + B_1y + C_1z + D_1 = 0$ 与平面 η_2 : $A_2x + B_2y + C_2z + D_2 = 0$, 则 $\eta_1 \perp \eta_2$ 的充要条件是 $A_1A_2 + B_1B_2 + C_1C_2 = 0$

8. 微分方程 y'' + 2y' + 5y = 0 的通解为 $y = C_1 e^{-x} \sin(2x) + C_2 e^{-x} \cos(2x)$

9. $\forall z = e^{xy} + \cos(x^2 + y)$, $y = \frac{\partial z}{\partial y} = xe^{xy} - \sin(x^2 + y)$

三、大题

1. 求方程 $\frac{dz}{dx} = -z + 4x$ 的通解 解 运用一阶线性非齐次微分方程公式,得

$$z = e^{-\int dx} \left(\int 4x e^{\int dx} dx + C \right) = e^{-x} \left(\int 4x e^x dx + C \right)$$
$$= e^{-x} \left(4(x-1)e^x + C \right) = 4(x-1) + Ce^{-x}$$

2. 求曲线 $2z + 1 = \ln(xy) + e^z$ 在点 $M_0(1,1,0)$ 处的切平面和法线方程

3. 设由方程组 $\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$ 确定了隐函数 x = x(z), y = y(z),求 $\frac{dx}{dz}, \frac{dy}{dz}$ 解 对方程组 $\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$ 两式求微分,得

$$\begin{cases} dx + dy + dz = 0 \\ 2x dx + 2y dy + 2z dz = 0 \end{cases}$$

2.4 高数(二)期终 -5/28-

解得

$$\begin{cases} \frac{dx}{dz} = -\frac{x+2z}{2x+z} \\ \frac{dy}{dz} = -\frac{y+2x}{2y+z} \end{cases}$$

4. 求方程 $y'' + 6y' + 13y = e^t$ 的通解

解 方程 $y''+6y'+13y=e^t$ 对应的齐次方程 y''+6y'+13y=0 的特征方程为 $r^2+6r+13=0$,解得 $r = -3 \pm 2i$,那么齐次方程的通解为 $C_1e^{-3t}\sin(2t) + C_2e^{-3t}\cos(2t)$ 设特解为 ae^t , 代入方程 $y'' + 6y' + 13y = e^t$ 后解得 $a = \frac{1}{20}$ 综上, 方程 $y'' + 6y' + 13y = e^t$ 的通解为 $C_1e^{-3t}\sin(2t) + C_2e^{-3t}\cos(2t) + \frac{e^x}{20}$

5. 设 $z = x^2y + \sin x + \varphi(xy+1)$, 且 $\varphi(u)$ 具有一阶连续导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

2.3.3 复习题 2

2.3.4 复习题 2 答案

2.4 高数(二)期终

2.4.1 复习题 1

一、选择题(每小题 3 分, 共 24 分)

1.	方程 $y'' - 3y' + 2y = e^x$	的待定特解 y* 的一个	·形式是 y* = ()	
	(A) e^x	(B) ax^2e^x	(C) ae^x	(D) axe^{x}
2.	过点 (3, 1, -2) 且通过直	$23.64 + \frac{x-4}{5} = \frac{y+3}{2} = \frac{z}{1}$ 的平	面方程()	
	(A) $5x + 2y + z - 15 = 0$)	(B) $\frac{x-3}{8} = \frac{y-1}{-9} = \frac{z+2}{-22}$	
	(C) $8x - 9y - 22z - 59 =$	= 0	(D) $\frac{x-3}{5} = \frac{y-1}{2} = \frac{z+2}{1}$	
3.	设 $f(x, y) = \ln\left(x + \frac{y}{2x}\right)$,则 $f_y(1,0) = ($)		

(A) 1 (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) 0 4. $D = \{(x,y)|0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant 2\}$,利用二重积分的性质, $\iint_D \frac{1}{\sqrt{x^2+y^2+2xy+16}} \, \mathrm{d}x \, \mathrm{d}y$ 的最佳 估值区间为()

(A) $\left[\frac{2}{5}, \frac{1}{2}\right]$ (B) $\left[\frac{1}{5}, \frac{1}{2}\right]$ (C) $\left[\frac{2}{5}, 1\right]$

5. Ω 由柱面 $x^2 + y^2 = 1$ 、平面 z = 1 及三个坐标面围成的在第一卦限内的闭区域,则 $\iiint_{\Omega} xy \, dV = ()$

(A) $\int_{0}^{\pi} d\theta \int_{0}^{1} d\rho \int_{0}^{1} \rho^{3} \sin\theta \cos\theta dz$ (B) $\int_{0}^{2\pi} \int_{0}^{1} d\rho \int_{0}^{1} \rho^{2} \sin\theta \cos\theta dz$ (C) $\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} d\rho \int_{0}^{1} \rho^{2} \sin\theta \cos\theta dz$ (D) $\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} d\rho \int_{0}^{1} \rho^{3} \sin\theta \cos\theta dz$

6. 设 $L \neq xoy$ 平面上的有向曲线,下列曲线积分中,()是与路径无关的

(A) $\int_{I} 3yx^{2} dx + x^{3} dy$ (B) $\int_{I} y \, dx - x \, dy$

(D) $\int_{I} 3yx^{2} dx + y^{3} dy$ (C) $\int_L 2xy \, dx - x^2 \, dy$

7. 设 L 为圆周 $\begin{cases} x = a \cos t \\ y = a \sin t \end{cases}$ $(0 \leqslant t \leqslant 2\pi)$, 则 $\oint_L (x^2 + y^2) ds = ($)

(C) $2\pi a^3$ (A) a^3 (D) $3\pi a^3$ 2.4 高数(二)期终 -6/28-

8. 下列级数中收敛的是()

(A)
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$$
 (C) $\sum_{n=1}^{\infty} \frac{1}{2(n+1)}$ (D) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$

(C)
$$\sum_{n=1}^{\infty} \frac{1}{2(n+1)}$$

(D)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$$

二、填空题(每空 3 分, 共 24 分)

1. 微分方程 $\frac{dy}{dx} = -3y + e^{2x}$ 的通解是 y

1. 微分方程 $\frac{dy}{dx} = -3y + e^{2x}$ 的通解是 $y = \underline{\hspace{1cm}}$ 2. 平行于 y 轴且通过曲线 $\begin{cases} x^2 + y^2 + 4z^2 = 1 \\ x^2 = y^2 + z^2 \end{cases}$ 的柱面方程是 $\underline{\hspace{1cm}}$ 3. 设 $z = x^2y + xy^2$, 则 $dz = \underline{\hspace{1cm}}$ 4. $\iint_D y^2 \sin^3 x \, dx \, dy = \underline{\hspace{1cm}}$ (区域 D 为: $-4 \le x \le 4, -1 \le y \le 1$)
5. 设 D 为平面闭区域: $x^2 + y^2 \le 1$, 则 $\iint_D \sqrt{x^2 + y^2} \, dx \, dy$ 化为极坐标系下二次积分的表达

6. 设 L 是任意一条分段光滑的有向闭曲线, 则 $\oint_L 2xy \, dx + x^2 \, dy =$ ______

 $x^2 + y^2 + z^2 = 4(z \ge 0)$ 与平面 z = 0 围成区域的表面, 取外侧.

8. 级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} x^n$ 的收敛半径为_____

三、综合题(请写出求解过程,8 小题,共 52 分)

1. 求过点 (2,1,1), 且与直线 $\begin{cases} x-y+3z-7=0\\ 3x+5y-2z+1=0 \end{cases}$ 垂直的平面方程. $(6\, \%)$

- 2. 设 $z = f(e^{x+y}, \sin(xy))$, 且 f 具有一阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$. (6分)
- 3. 计算 $\iint_D (x^2 + y) dx dy$, D 是曲线 $y = x^2, x = y^2$ 围成的闭区域. (8分)
- 4. 计算 $\iiint_{\Omega} (x^2 + y^2) dx dy dz$, 其中 Ω 是由圆锥面 $z^2 = x^2 + y^2$ 及平面 z = 2 围成的闭区域. (6分)
- 5. 计算 $\int_{\Gamma} x^3 dx + 3zy^2 dy x^2y dz$, 其中 Γ 是从点 A(2,2,1) 到原点 O 的直线段 AO. (6分)
- 6. 空间区域 Ω 由开口向下的旋转抛物面 $z = 1 x^2 y^2$ 与平面 z = 0 所围, Ω 的表面取外侧 为 Σ , 利用高斯公式计算 $\iint_{\Sigma} x^2 y z^2 \, \mathrm{d}y \, \mathrm{d}z - x y^2 z^2 \, \mathrm{d}z \, \mathrm{d}x + z (1 + x y z) \, \mathrm{d}x \, \mathrm{d}y$. (8分)
- 7. 判断级数 $\sum_{n=1}^{\infty} \frac{n^e}{e^n}$ 的敛散性. (6分)
- 8. 求幂级数 $\sum_{n=0}^{\infty} (2n+1)x^{2n} (x \in (-1,1))$ 的和函数. (6分)

2.4.2 复习题 1 答案

2.4.3 复习题 2

一、选择题(每小题 3 分, 共 24 分)

1. 微分方程 $y'' - 6y' + 9y = (6x^2 + 2) e^x$ 的待定特解的一个形式可为 ()

(A)
$$y^* = (ax^2 + bx + c) e^x$$

(B)
$$y^* = x (ax^2 + bx + c) e^x$$

(D) $y^* = x^2 (x^2 + 1) e^x$

(C)
$$y^* = x^2 (ax^2 + bx + c) e^x$$

(D)
$$y^* = x^2 (x^2 + 1) e^x$$

2. 设向量 \vec{a} 的三个方向角为 α 、 β 、 γ , 且已知 α = 60° 、 β = 120° , 则 γ = ()

(A)
$$120^{\circ}$$

(B)
$$60^{\circ}$$

(C)
$$45^{\circ}$$

(D)
$$30^{\circ}$$

	2.4 局数(二)期终			_7/28_
3.	设 $z = \arctan e^{xy}$, 则 $\frac{\partial z}{\partial y}$	<u> </u>		
			$(C) - \frac{xe^{xy}}{1 + e^{2xy}}$	(D) $\frac{xe^{xy}}{1+e^{2xy}}$
4.	D 为平面区域 $x^2 + y^2$	≪ 4,利用二重积分的性	生质, $\iint_D (x^2 + 4y^2 + 9) dx$	x dy 的最佳估值区
	间为()			
			(C) $[52\pi, 100\pi]$	(D) $[9\pi, 25\pi]$
5.		$z^2 + z^2 \leqslant 2, x \geqslant 0$, 则以		
6.	• • • • • • • • • • • • • • • • • • • •	· · · · • •	(C) $\iint_{\Omega} z dv = 0$ b) 的有向直线段, 则 $\int_{L} 2e^{-z}$	
		(B) $6y_0$		
7.	Σ 为平面 $x+y+z=1$ 与	i三坐标面所围区域表面	的外侧,则 $\iint_{\Sigma} (2y+3z) dy$	dz + (x+2z) dz dx +
	(y+1) dx dy = ()			
	(A) 0	(B) $\frac{1}{6}$	(C) $\frac{2}{3}$	(D) $\frac{5}{3}$
8.	交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1}$	$\frac{1}{3^{n-1}} \left(\right)$		
	(A) 发散	(B) 条件收敛	(C) 绝对收敛	(D) 无法确定
- \	填空题(每空 3 分 , 共 2	4分)		
1		持解的阶数 最低的党系数	数齐次线性微分方程是_	
				_
2	直线 L: { v = t + 2	和平面 π : $2x + 3y + 3z$	7-8=0的交占是	
	z = 2t - 1	ти т щ и т 2и т 3у т 3х	. o o 113/2/m/2	
3	$(z = 2t - 1)$ 设 $z = xy^3$,则 dz =			
		次序后, $\int_0^2 dy \int_{v^2}^{2y} f(x, y) dy$	dx =	
		$1 \leqslant y \leqslant 3, 0 \leqslant z \leqslant 2 \}, \mathbb{I}$		-
			成 D 的正向边界曲线,由相	———— 各林公式知 ∫, (3 <i>x</i> –
	y + 4) d $x + (5y + 3x - 6)$, , , , , , , , , , , , , , , , , , , ,	JL (
7.			— 曲面积分 ∬ _Σ (x² + y²) dS	S =
	,) 的和为		
	(' '	,		
Λ.	综合题(8小题,共52	分)		
1.	求方程 $\frac{dy}{dx} = \frac{xy}{1+x^2}$ 的通	解. (6分)		
	设 $z = \ln(x^2 - y)$,而 y			
3.	计算 $\iint_D (x^2 + y^2) dx dx$	y , D 为曲线 $x^2 - 2x + y^2$	$x^2 = 0, y = 0$ 围成的在第一	一象限的闭区域.(6

Ξ

- 分)
- 4. 计算三重积分 $\iint_{\Omega}z\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$, 其中 Ω 是由圆锥面 $z=\sqrt{x^2+y^2}$ 与球面 $z=\sqrt{2-x^2-y^2}$ 围 成的区域.(6分)
- 5. 用高斯公式计算 $\iint_{\Sigma} \left(a^2x+x^3\right)\,\mathrm{d}y\,\mathrm{d}z+y^3\,\mathrm{d}z\,\mathrm{d}x+z^3\,\mathrm{d}x\,\mathrm{d}y$,其中 Σ 为球面 $x^2+y^2+z^2=a^2$,取外侧.(8分)
- 6. 用格林公式计算 $\oint_C x^2 y \, \mathrm{d}x x y^2 \, \mathrm{d}y$, 其中 C 为圆周 $x^2 + y^2 = 4$, 取正向. (8 分)
- 7. 判断级数 $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}(2n-1)}$ 的敛散性. (6 分)

2.4 高数(二)期终 -8/28-

8. 在区间 (-1,1) 内求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的和函数 s(x). (6分)

2.4.4 复习题 2 答案

2.4.5 复习题 3

一、选择题

miu抄下来

二、填空题

1.	微分方程 $y' = 3y$ 的通解是	y =			
_		_ ,	21→1	pd → + - v →	

2. 已知向量 \vec{a} 与 \vec{b} 方向相反, 且 $|\vec{b}|$ = $3|\vec{a}|$,则 \vec{b} 由 \vec{a} 表示为 \vec{b} = ______

3. 设
$$z = x^3 y + \sin(x + y)$$
, 则 $\frac{\partial z}{\partial x} =$

5. 设
$$\Omega = \left\{ 0 \leqslant x \leqslant 3, 0 \leqslant y \leqslant \frac{\pi}{2}, 0 \leqslant z \leqslant 2 \right\}$$
,则 $\iiint_{\Omega} xz \sin y \, dx \, dy \, dz = \underline{\hspace{1cm}}$

6.
$$L$$
 为曲线 $y = x^2$ 上从点 $(0,0)$ 到点 $(1,1)$ 的一段弧, 则 $\int_L \sqrt{y} \, ds =$ ______

7. L 为圆周 $x^2 + y^2 = a^2$ 的正向边界曲线, 由格林公式知 $\oint_L (x^2 y \cos x + 2xy \sin x - y^2 e^x) dx +$

三、综合题

- 1. 求过点 (3,1,3), 且与直线 $\begin{cases} x-2y+2z-7=0\\ x+5y-z+1=0 \end{cases}$ 垂直的平面方程.
- 2. 已知 $z = e^{2x-y}$,而 $x = \sin t$, $y = t^2$,求 $\frac{dz}{dt}$
- 3. 计算 $\iint_D x e^{-y^2} dx dy$, D 是曲线 x = 0, $y = x^2$, $y = \sqrt{2}$ 围成的在第一象限的闭区域.
- 4. 计算以 xoy 面上的圆周 $x^2 + y^2 = 4$ 围成的闭区域为底, 以旋转抛物面 $z = x^2 + y^2$ 为顶的 曲顶柱体的体积.
- 5. 计算曲面积分 $\iint_{\Sigma} (x^2 + y^2) dS$, 其中 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ 被平面 z = 2 截下的带锥顶部 分.
- 6. 利用高斯公式计算 $I=\iint_{\Sigma}\left(x^3z+2x\right)\,\mathrm{d}y\,\mathrm{d}z-x^2yz\,\mathrm{d}z\,\mathrm{d}x-x^2z^2\,\mathrm{d}x\,\mathrm{d}y$,其中 Σ 是由开口向 下的旋转抛物面 $z = 2 - x^2 - y^2$ 与平面 z = 1 围成立体 Ω 的表面, 取外侧.
- 7. 判断级数 $\sum_{n=1}^{+\infty} \frac{2\cdot 4\cdot 6\cdot \cdots \cdot (2n)}{1\cdot 4\cdot 7\cdot \cdots \cdot (3n-2)}$ 的敛散性.
- 8. 求级数 $\sum_{n=1}^{+\infty} nx^{n+1} (x \in (-1,1))$ 的和函数.

2.4.6 难度与考试近似的题

一、选择题

1. 微分方程 y' = p(x)y 的通解是() (A) $y = e^{\int p(x) dx}$ (B) $y = Ce^{\int -p(x) dx}$ (C) $y = Ce^{\int p(x) dx}$ (D) y = Cp(x) 2.4 高数(二)期终 -9/28-

2.4 高数(二)期终 -10/28-

	(A) 连续	(B) 不连续	(C) 不一定存在	(D) 一定存在
16.	级数 $\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n+1}} \right)$			
	(A) 发散	(B) 收敛	(C) 条件收敛	(D) 绝对收敛
17.	曲面 $z = \sqrt{x^2 + y^2}$ 与平	面 $z = 1$ 所围立体的体积	[为()	
	(A) $\iiint_{\Omega} (x^2 + y^2) dv$		(B) $\int_0^{2\pi} d\theta \int_0^1 r dr \int_r^1 dz$	
	(C) $\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{0}^{x}$	$dz^{x^2+y^2}$ dz	(D) $\int_0^{2\pi} d\theta \int_0^1 r dr \int_0^1 dz$:
18.	方程 $y'' - 3y' + 2y = 3x$	$c - e^x$ 的特解形式为 ()	
			(C) $ax + b + ce^x$	(D) $(ax + b)xe^x$
19.	设 \overrightarrow{AB} 与 u 轴的夹角为	$\frac{\pi}{3}$, $M \overrightarrow{AB} \approx u$ 轴上的投	影是()	L
			(C) $ \overrightarrow{AB} \cos \frac{\pi}{3}$	(D) $ \overrightarrow{AB} \sin \frac{\pi}{3}$
20.	过点 $M_1(3,-2,1), M_2(-1)$	1,0,2)的直线方程是()		
	(A) -4(x-3) + 2(y+2)	+(z-1)=0	(B) $\frac{x-3}{4} = \frac{y+2}{2} = \frac{z-1}{1}$	
	(C) $\frac{x+1}{4} = \frac{y}{2} = \frac{z-2}{1}$		(D) $\frac{x-3}{4} = \frac{y+2}{-2} = \frac{z-1}{-1}$	
21	直线 $\begin{cases} x + y + 3z = 0 \end{cases}$	与平面 $x-y-z+1=0$	的夹角是()	
21.	x - y - z = 0	У ГЩ ж у 2,11 = 0	1170/11/2 ()	
	(A) 60°	(B) 0°	(C) 30°	(D) 90°
	$\int \frac{1}{r^{y}} \sin(x^{2})$	y), $\stackrel{\omega}{=} xy \neq 0$,		
22.		(y),	$0 时, f_{\mathcal{X}}(0, y) = ()$	
	`	(B) 1	(C) 2	(D) 不存在
		` ′		
23.	曲线 $\begin{cases} 1 & 2 & 4 \\ 1 & 2 & 4 \end{cases}$ 在	$E_{\perp}\left(1,2,\frac{3}{2}\right)$ 处的切线与 z	x 轴的正向所成的倾角是	:()
	(y-2.			
24	(A) arctan 1 D 是铂形闭区域 0 < r	(B) 30°	(C) 60° $\iint_{D} (x + y + 1) \mathrm{d}x \mathrm{d}y , $ 利用	(D) 90° 一重积分的性质
27.	I 的最佳估计区间为($\eta_D(x+y+1)\mathrm{d}x\mathrm{d}y,\eta_{\eta\eta\eta}$	1一至仍为111工灰,
	(A) [0, 1]	(B) [0, 2]	(C) [1, 3]	(D) 2, 8
25.) 到 $B(0,0)$ 的一段弧,则		(2) 2, 0
		(B) $\int_{1}^{0} x dy$	· -	(D) $\int_0^1 \sqrt{y} dy$
26.	0.0	时, $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$ (0.1	30 45 5
	(A) 可能不同时收敛	(B) 不可能同时收敛	(C) 必同时收敛	(D) 必同时发散
27.	非齐次线性微分方程 x	$'' - 2x' + 5x = te^t \sin 2t \ \dot{\exists}$	的特解形式 $x^* = ($)	
	$(A) (At + B)e^t \sin 2t$		(B) $e^t[(At+B)\cos 2t + ($	$[Ct + D)\sin 2t]$
	(C) $t(At + B)e^t \sin 2t$		(D) $te^t[(At + B)\cos 2t +$	· · · · · · · · · · · · · · · · · · ·
28.			在 y 轴上的分向量为 (
	(A) 5	. , ,	(C) -5	(D) $-5\vec{j}$
29.	两向量 \vec{a} 、 \vec{b} 平行的充		. → →	, → →
0.0			(C) $\vec{a} \cdot \vec{b} = \vec{0}$	
30.	$f(x,y)$ 在点 (x_0,y_0) 处两	内个惼导致仔仕是 $f(x,y)$	(x_0, y_0) 处可微的())

2.4 高数(二)期终 -11/28-

31.		(B) 充分条件 $\{x^2 + y^2 + z^2 \le 1, z \ge 0\}$,		(D) 以上都不是)
		(B) $\iiint_V y dV = 0$		· · JJJ V
32.	设 $f(x) = \begin{cases} x, & x \in [-\pi] \\ 1, & x \in [0, 1] \end{cases}$	τ,0) 的傅里叶级数的和函 π)	i数为 $S(x)$,则 $S(0) = ($)
	(A) 0	(B) 1	(C) $\frac{1}{2}$	(D) $-\frac{1}{2}$
33.	级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \left(\right)$			
	(A) 发散	(B) 条件收敛	(C) 绝对收敛	(D) 以上都不对
Ξ,:	填空题			
1.	以ex,xex 为解的阶数量	最低的常系数线性齐次微	分方程是	
		= (1, 2, 3) 为法向量的平面		
3.	设 $z = \sin\left(x^2 + y\right)$,则	$\frac{\partial^2 z}{\partial x \partial y} = \frac{1}{1} \leq x^2 + y^2 \leq 4, $ 那么 \iint_I		
		$z^2 \leqslant 4$,则 $\iiint_{\Omega} x^2 \sin(yz)$		
		人点 (1,-1) 到 (1,1) 的一段		
7.		+ y) dx dz + (x + yz) dy dz		其中 Σ 是由六张平
		= 2, z = 1, z = 3 围成的方		
		+ 1 / 1 + · · · 是)
		通解是 y =		
	-	,且 $ \vec{a} = 4$,则 $Prj_{\vec{l}}\vec{a} = $		
11.	汉 $f(x, y) = \tan(xy^2)$,	则 $f_x(0,2) =$		
		万次分元, J_1 dx J_{2-x} J面 $z = x^2 + y^2$ 与上半		
			$z = \sqrt{2 - x^2 - y^2}$	· 国风的区域,则
	$\iiint_{\Omega} xyz dx dy dz = \underline{\qquad}$ 设 是球面 $x^2 + y^2 + z$	$g^2 = 1$, $\iiint_{\Sigma} (x^2 + y^2 + z)$	2) dS -	
		$y^2 + x) dy = \underline{\qquad}$		$\frac{1}{(x-1)^2 + v^2} = a^2$
			- ************************************	
		y 1 x) dy =	, 共中 L /	
16.	的正向			
17.	的正向 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 员设 $z = x^y$,则 $\frac{\partial z}{\partial x} =$	圭收到	敛(填条件收敛或绝对收敛	效)
17.	的正向 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 员设 $z = x^y$,则 $\frac{\partial z}{\partial x} =$	圭收到	敛(填条件收敛或绝对收敛	效)
17.18.	的正向 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 员设 $z = x^y$,则 $\frac{\partial z}{\partial y} = $ 积分 $\iint_D xy dx dy = $	圭收会	数(填条件收敛或绝对收敛 0 为 $0 \le x \le 2, 0 \le y \le 4$	效) 4 .
17.18.19.	的正向 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 员设 $z = x^y$,则 $\frac{\partial z}{\partial y} = $ 积分 $\iint_D xy dx dy = $ L 为 $y = x^2$ 点 $(0,0)$ 到	是	数(填条件收敛或绝对收敛 0 为 $0 \le x \le 2, 0 \le y \le 6$ \overline{y} 0 $0 \le x \le 2, 0 \le y \le 6$	效) 4 .
17.18.19.20.	的正向 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 员设 $z = x^y$,则 $\frac{\partial z}{\partial y} = $	皇收缩 ,其中 <i>I</i>	效(填条件收敛或绝对收敛 ① 为 0 ≤ x ≤ 2,0 ≤ y ≤ 4 √ ds = 寸条件收敛.	效) 4 .
17.18.19.20.21.	的正向 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 是 设 $z = x^y$,则 $\frac{\partial z}{\partial y} = $ 积分 $\iint_D xy dx dy = $ L 为 $y = x^2$ 点 $(0,0)$ 到 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ 当 p 满	是	数(填条件收敛或绝对收敛	效) 4 .
17.18.19.20.21.22.	的正向 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 是 设 $z = x^y$,则 $\frac{\partial z}{\partial y} =$ 积分 $\iint_D xy dx dy =$ L 为 $y = x^2$ 点 $(0,0)$ 到 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ 当 p 满 方程 $ye^x dx - (1 + e^x)$ 设 $z = \ln \sqrt{1 + x^2 + y^2}$,	是	效(填条件收敛或绝对收敛 ① 为 0 ≤ x ≤ 2,0 ≤ y ≤ 4 √ ds =	效) 4 . 一
17.18.19.20.21.22.23.24.	的正向 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 是 设 $z = x^y$,则 $\frac{\partial z}{\partial y} = $ 积分 $\iint_D xy dx dy = $ 见 为 $y = x^2$ 点 $(0,0)$ 到 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ 当 p 混 方程 $ye^x dx - (1 + e^x)$ 设 $z = \ln \sqrt{1 + x^2 + y^2}$,函数 $z = x^2 + y^2$ 在点 $P($ 改换二次积分的积分数	是	数(填条件收敛或绝对收敛 0 为 $0 \le x \le 2, 0 \le y \le 4$ \overline{y} ds =	效) 4 . 一 ⁻ ⁻ ⁻ ⁻ ⁻
17.18.19.20.21.22.23.24.25.	的正向 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 是 设 $z = x^y$,则 $\frac{\partial z}{\partial y} = $ 积分 $\iint_D xy dx dy = $ 见 为 $y = x^2$ 点 $(0,0)$ 到 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ 当 p 混 方程 $y = x^2$ 化	是	数(填条件收敛或绝对收敛 0 为 $0 \le x \le 2, 0 \le y \le 6$ $\overline{0}$ ds =	效) 4 . 一 ⁻ ⁻ ⁻ ⁻ ⁻

2.4 高数(二)期终 -12/28-

- 27. Σ 是 xoy 平面上的圆域: $x^2 + y^2 \leqslant 1$, 取下侧, 则 $\iint_{\Sigma} dx dy =$ ______
- 28. 级数 $\sum_{n=1}^{\infty} \frac{3^n + 4^n}{7^n}$ 的和为___
- 29. e^{x^2} 的 x 的幂级数展开式为_____
- 30. 微分方程 x''' 2x'' x' + 2x = 0 的通解是
- 31. 过点 (1,0,1) 及以 (1,2,3) 为方向向量的直线的对称式方程为
- 32. 函数 $z = x^y$ 的全微分 dz =
- 34. 交换二次积分的次序 $\int_0^1 dy \int_{-1}^{-y} f(x,y) dx =$ ______
- 35. 若 L 为抛物线 $y^2 = 2x$ 上介于 (2, -2) 与 (2, 2) 两点间的曲线段,则 $\int_L y \, ds =$ ______
- 36. 若 Σ 是曲面 $x^2 + y^2 + z^2 = 1$, 则 $\iint_{\Sigma} dS =$ ______
- 37. 函数 $f(x) = 3^x$ 的幂级数展开式为

三、综合题

- 1. 求过点 (2,0,-3), 且过直线 $\begin{cases} x-2y+4z-7=0\\ 3x+5y-2z+1=0 \end{cases}$ 垂直的平面方程. $(6\, \%)$
- 2. 设 $z = x^y(x > 0)$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$. (6分)
- 3. 计算 $\iint_D x^2 y^2 \,\mathrm{d}x \,\mathrm{d}y$, 其中 $D = \{(x,y)|0\leqslant x\leqslant 1,0\leqslant y\leqslant 1\}$. (6 分)
- 4. 计算 $I = \iiint_{\Omega} (x^2 + y^2) dv$, 其中 Ω 为旋转抛物面 $z = x^2 + y^2$ 与平面 z = 4 所围成的区域. (6分)
- 5. L 是圆环区域 $D:1 \le x^2+y^2 \le 4$ 的正向边界曲线, 计算曲线积分 $\oint_L \sqrt{x^2+y^2} \, \mathrm{d}x + \left[xy^2+y\ln\left(x+\sqrt{x^2+y^2}\right)\right] \, \mathrm{d}y$. (8分)
- 6. 计算 $\iint_{\Sigma} \frac{2}{z} dS$, 其中 Σ 是球面 $x^2 + y^2 + z^2 = 1$ 在平面 $z = \frac{1}{2}$ 上方的部分. (8分)
- 7. 判断级数 $\sum_{n=1}^{\infty} \frac{3^n}{n \cdot 2^n}$ 的敛散性. (6分)
- 8. 求幂级数 $\sum_{n=0}^{\infty} (n+1)x^n$ 在收敛域 (-1,1) 的和函数 s(x). (6 分)
- 9. 求过点 (3,-2,1) , 且与直线 $\frac{x-1}{1}=\frac{y+1}{1}=\frac{z-2}{3}$ 平行的直线方程. $(6\, 分)$
- 10. 设 $z = e^{xy} + \cos(x + y)$, 求 dz. (6分)
- 11. 计算 $\iint_D \frac{y}{x} dx dy$, D 是由直线 y=2x, y=x, x=2, x=4 围成的闭区域. (6分)
- 12. 计算 $\iiint_{\Omega} z \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$, 其中 Ω 由平面 z=3 与旋转抛物面 $x^2+y^2=3z$ 围成的区域. (6 分)
- 13. 计算 $\int_L 2xy \, \mathrm{d}x + x^2 \, \mathrm{d}y$, L 为抛物线 $y = x^2$ 上从 O(0,0) 到 B(1,1) 的一段弧. (6分)
- 14. 利用高斯公式计算 $\iint_{\Sigma} 2xz \, dy \, dz + yz \, dz \, dx z^2 \, dx \, dy$, 其中 Σ 为由上半圆锥面 $z = \sqrt{x^2 + y^2}$ 与上半球面 $z = \sqrt{2 x^2 y^2}$ 所围立体 Ω 的表面, 取外侧. (8分)
- 15. 判断级数 $\sum_{n=1}^{\infty} n2^n$ 的敛散性. (6分)
- 16. 求幂级数 $\sum_{n=0}^{\infty} (n+1)x^n$ 在收敛域 (-1,1) 的和函数 s(x). (6分)
- 17. $z = f(y^2 x^2)$, 其中 f(u) 有连续的二阶偏导数, 求 $\frac{\partial^2 z}{\partial x^2}$. (8分)
- 18. 计算 $\int_L (e^x \sin y 2y) dx + (e^x \cos y 2) dy$, L 为由点 A(1,0) 到 B(0,1), 再到 C(-1,0) 的有向折线. (8分)
- 19. 计算 $\iint_{\Sigma} xy^2 \, dy \, dz + yz^2 \, dz \, dx + zx^2 \, dx \, dy$, 其中 Σ 为球体 $x^2 + y^2 + z^2 \le 4$ 及锥体 $z = \sqrt{x^2 + y^2}$ 的公共部分的外表面. (8分)
- 20. 求级数 $\sum_{n=2}^{\infty} 2nx^n$ 的收敛域及和函数. (8分)

2.4 高数(二)期终 -13/28-

21. 计算曲面积分 $\iint_{\Sigma} (x^2 + y^2) dS$, 其中 Σ 为锥面 $z = \sqrt{3(x^2 + y^2)}$ 被平面 z = 3 截下的带锥 顶的部分. (8分)

- 22. 求函数 $z = x^2 + y^2$ 在适合条件 $\frac{x}{2} + \frac{y}{3} = 1$ 下的极小值. (7分)
- 23. 求方程 $y'' 3y' + 2y = 3e^x$ 的通解. (8分)
- 24. 把 f(x) = x, $(0 < x < \pi)$ 展开为余弦级数. (7分)
- 25. 已知曲线积分 $\int_{(0,0)}^{(x,y)} \left[e^x(x+1)^n + \frac{n}{x+1} f(x) \right] y \, dx + f(x) \, dy$ 与路径无关, 其中 f(x) 可微, f(0) = 0,试确定 f(x),并计算曲线积分的值. (8分)
- 26. 求过点 (2,5,-3) 且与直线 $\begin{cases} x = 5 2t \\ y = 1 + t \end{cases}$ 垂直的平面方程. (5分) z = 7
- 27. 由 $e^x xyz = 0$ 确定了函数 z = z(x, y), 求 $\frac{\partial z}{\partial x}$. (5分)
- 28. 计算 $I = \iint_D (x^2 + y^2) dx dy$, 其中 $D = \{(x, y) | 1 \le x^2 + y^2 \le 4\}$. (5分)
- 29. 利用格林公式, 计算 $\oint_L (2x^2y 2y) dx + (\frac{1}{3}x^3 2x) dy$, 其中 L 为以 $y = x, y = x^2$, 围成区域的正向边界. (8分)
- 31. 求幂级数 $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$ 在收敛域 (-1,1) 内的和函数. (8分)
- 32. 求微分方程 $y'' 2y' + y = e^x$ 的通解. (8分)
- 33. 设函数 f(x) 在 [a,b] 上连续且 f(x) > 0,证明 $\int_a^b f(x) dx \int_a^b \frac{1}{f(x)} dx \ge (b-a)^2$. (5分)
- 34. 设 u = f(x, xy), f 具有二阶连续偏导数, 求 $\frac{\partial u}{\partial x}$, $\frac{\partial^2 u}{\partial x \partial y}$. (7分)
- 35. 求曲面 $e^z z + xy = 3$ 在点 (2, 1, 0) 处的切平面及法线方程. (7分)
- 36. 设 Ω 是曲面 $\Sigma_1: z = \sqrt{x^2 + y^2}$ 与 $\Sigma_2: 2 x^2 y^2$ 所围成的立体, 求 Ω 的体积 V 与表面积 S . (10 分)
- 37. 计算 $\iint_{\Sigma} (z + xy^2) \, dy \, dz + (yz^2 xz) \, dz \, dx + (x^2z + x^3) \, dx \, dy$, 其中 Σ 为 $x^2 + y^2 + z^2 = 4(z \le 0)$,取下侧. (10 分)
- 38. 计算 $\int_L (2xy^3 y^2 \cos x) dx + (1 2y \sin x + 3x^2y^2) dy$,其中 L 为抛物线 $2x = \pi y^2$ 从点 O(0,0) 到点 $A\left(\frac{\pi}{2},1\right)$ 的一段弧. (10 分)
- 39. 求幂级数 $\sum_{n=1}^{\infty} nx^{n-1}$ 的收敛域与和函数. (8分)

第3章 线性代数试卷汇总

第4章 概率统计试卷汇总

4.1 复习题 1

业权时(后时	2	/\	# 21	11

则 $P\{0 < X < \pi/4, \pi/4 < Y < \pi/2\} =$

- 6. 设随机变量 X 的数学期望 $\mathbb{E}(X) = \mu$,方差 $D(X) = \sigma^2$,则由切比雪夫不等式有 $P\{|X \mu| \ge 3\sigma\} \le$
- 7. 设 X_1, X_2 是取自正态总体 $X \sim N(\mu, \sigma^2)$ 的一个容量为 2 的样本, 则 μ 的无偏估计量 $\hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{2}X_2$, $\hat{\mu}_2 = \frac{2}{3}X_1 + \frac{1}{3}X_2$, $\hat{\mu}_3 = \frac{1}{4}X_1 + \frac{3}{4}X_2$ 中最有效的是______

三、解答题(共58分)

- 1. $(10 \, \beta)$ 车间里有甲、乙、丙 3 台机床生产同一种产品,已知它们的次品率依次是 0.05 、 0.1 、 0.2 ,产品所占份额依次是 20% 、 30% 、 50% . 现从产品中任取 1 件,发现它是次品,求次品来自机床乙的概率.
- 2. (10 分)设随机变量 X 的分布函数为 $F(x) = \begin{cases} k ke^{-x^3}, & x > 0 \\ 0, & x \leqslant 0 \end{cases}$, 试求:
- (1) 常数 k;
- (2) X 的概率密度 f(x).
- 3. (10分)设二维随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} \frac{1}{4}, & 2 \leqslant x \leqslant 4, 1 \leqslant y \leqslant 3\\ 0, & \text{其他} \end{cases},$$

试求 (X,Y) 关于 X 与 Y 的边缘概率密度 $f_X(x)$ 与 $f_Y(y)$, 并判断 X 与 Y 是否相互独立.

- 4. (10 分)已知红黄两种番茄杂交的第二代结红果的植株与结黄果的植株的比率为 3:1,现种植杂交种 400 株,试用中心极限定理近似计算,结红果的植株介于 285 与 315 之间的概率. $\left(\Phi\left(\sqrt{3}\right)=0.9582,\Phi\left(\sqrt{2}\right)=0.9207\right)$
- 5. (8分)设二维随机变量(X,Y)的分布律为

		Y	
X	-1	0	1
-1	1/8	1/8	1/8
0	$\frac{1}{8}$	0	$\frac{1}{8}$
1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

求 Cov(X,Y).

6. (10 分)设 $X_1, X_2, ..., X_n$ 为总体 X 的一个样本, 总体 X 的概率密度为:

$$f(x) = \begin{cases} (\alpha+1)x^{\alpha}, & 0 < x < 1 \\ 0, & \text{其他} \end{cases},$$

求未知参数 α 的矩估计.

4.2 复习题 1 答案

\	匹拜越(母越 5 万, 共 2	1 万·)		
1.	从 0, 1, 2,, 9 中任意选	出3个不同的数字,三个	〉数字中不含0与5的概	率是(D)
	(A) $\frac{1}{15}$	(B) $\frac{2}{15}$	(C) $\frac{14}{15}$	(D) $\frac{7}{15}$
2.	某人射击中靶的概率为	3/4. 若射击直到中靶为止	上,则射击次数为3的概率	室为(B)
	$(A) \left(\frac{3}{4}\right)^3$	(B) $\left(\frac{1}{4}\right)^2 \times \frac{3}{4}$	(C) $\left(\frac{1}{4}\right)^3$	(D) $\left(\frac{3}{4}\right)^2 \times \frac{1}{4}$
3.			(x), $F(x)$ 是分布函数, 则	
	(A) $F(-a) = 1 - F(a)$		(B) $F(-a) = \frac{1}{2}F(a)$	
	(C) $F(-a) = F(a)$		(D) $F(-a) = \frac{1}{2} - F(a)$	
4.	设二维随机变量(X,Y)的	的分布律为 $P\{X=i,Y=i\}$	j } = $c \cdot i \cdot j$, i = 1, 2, 3, j =	1, 2, 3, 则 c = (C)
	(A) $\frac{1}{12}$		(C) $\frac{1}{36}$	
5.	设随机变量 X 服从均匀	分布,其概率密度为 $f(x)$	$ x(x) = \begin{cases} \frac{1}{2}, & 1 < x < 3 \\ 0, & 其他 \end{cases} $	D(X) = (B)
	(A) 3	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	(D) 2
6.			的一个样本, \overline{X} , S^2 分别为	
		$^{\circ}$, 服从 $\chi^{2}(n)$ 分布的是 (
	$(A) \sum_{i=1}^{n} X_i^2$	(B) $\frac{\overline{X}}{S/\sqrt{n-1}}$	(C) $\frac{(n-1)S^2}{\sigma^2}$	(D) $\frac{1}{\sigma^2} \sum_{i=1}^n X_i^2$
7.	设 X_1, X_2, \ldots, X_n 是来自	目正态总体 $N(\mu,\sigma^2)$ 的	一个样本, σ^2 未知, \overline{X} 是	是样本均值, S^2 =
	$\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\overline{X}\right)^2$, $\sum_{i=1}^n\left(X_i-\overline{X}\right)^2$	果 $\overline{X} - k \frac{S}{\sqrt{n}}$ 是 μ 的置信度	度为 $1-\alpha$ 的单侧置信下	限,则 k 应取 (C)
	(A) $t_{1-\alpha}(n)$	(B) $t_{\alpha}(n)$	(C) $t_{\alpha}(n-1)$	(D) $t_{\alpha/2}(n-1)$

二、填空题(每题 3 分, 共 21 分)

- 1. 设 A, B 为随机事件, P(A) = 0.8, P(A B) = 0.3, 则 $P(\overline{AB}) = 0.5$ 2. 设随机变量 X 的分布律为 $P\{x = k\} = c(0.5)^k$, $k = 1, 2, 3, \ldots$, 则常数 c = 13. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$, 则 $P\{|X| < 0.2\} = \frac{1}{125}$ 4. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{c}, & 0 < x < c \\ 0, & \text{其他} \end{cases}$, 则 $\mathbb{E}(X) = \frac{c}{2}$
- 5. 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} \sin x \cdot \cos y, & 0 < x < \pi/2, \ 0 < y < \pi/2 \\ 0, & \text{其他} \end{cases},$$

则 $P\{0 < X < \pi/4, \pi/4 < Y < \pi/2\} = \left(\frac{2-\sqrt{2}}{2}\right)^2$

6. 设随机变量 X 的数学期望 $\mathbb{E}(X) = \mu$, $\overline{f \neq D(X)} = \sigma^2$, 则由切比雪夫不等式有 $P\{|X - \mu| \geq$ 3σ $\leq \frac{1}{9}$

7. 设 X_1, X_2 是取自正态总体 $X \sim N(\mu, \sigma^2)$ 的一个容量为 2 的样本, 则 μ 的无偏估计量 $\hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{2}X_2$, $\hat{\mu}_2 = \frac{2}{3}X_1 + \frac{1}{3}X_2$, $\hat{\mu}_3 = \frac{1}{4}X_1 + \frac{3}{4}X_2$ 中最有效的是 $\hat{\mu}_1$

三、解答题(共58分)

1. (10 分)车间里有甲、乙、丙 3 台机床生产同一种产品,已知它们的次品率依次是 0.05、0.1、0.2,产品所占份额依次是 20%、 30%、 50%. 现从产品中任取 1 件,发现它是次品,求次品来自机床乙的概率.

解 设抽取的产品为次品的事件为 A, 抽取的次品来自机床甲的事件为 B_1 , 抽取的次品来自机床乙的事件为 B_2 , 抽取的次品来自机床丙的事件为 B_3 . 根据全概率公式

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)$$
$$= 0.05 \times 0.2 + 0.1 \times 0.3 + 0.2 \times 0.5 = 0.14$$

根据贝叶斯公式

$$P(B_2|A) = \frac{P(AB_2)}{P(A)} = \frac{P(A|B_2)P(B_2)}{P(A)} = \frac{0.1 \times 0.3}{0.14} = \frac{3}{14}$$

- 2. (10 分)设随机变量 X 的分布函数为 $F(x) = \begin{cases} k k e^{-x^3}, & x > 0 \\ 0, & x \leq 0 \end{cases}$, 试求:
- (1) 常数 k;
- (2) X 的概率密度 f(x).

解

(1) 根据分布函数的性质 $\lim_{x\to+\infty} F(x) = k = 1$

3. (10 分)设二维随机变量 (X,Y) 的概率密度为:

$$f(x,y) = \begin{cases} \frac{1}{4}, & 2 \leqslant x \leqslant 4, 1 \leqslant y \leqslant 3\\ 0, & 其他 \end{cases},$$

试求 (X,Y) 关于 X 与 Y 的边缘概率密度 $f_X(x)$ 与 $f_Y(y)$, 并判断 X 与 Y 是否相互独立.

解
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y = \begin{cases} \int_1^3 \frac{1}{4} \, \mathrm{d}y, & 2 \leqslant x \leqslant 4 \\ 0, & \text{其它} \end{cases} = \begin{cases} \frac{1}{2}, & 2 \leqslant x \leqslant 4 \\ 0, & \text{其它} \end{cases}$$
同理 $f_Y(y) = \begin{cases} \frac{1}{2}, & 1 \leqslant y \leqslant 3 \\ 0, & \text{其它} \end{cases}$, $f_X(x) f_Y(y) = \begin{cases} \frac{1}{4}, & 2 \leqslant x \leqslant 4, 1 \leqslant y \leqslant 3 \\ 0, & \text{其它} \end{cases} = f(x, y)$
因此 $X = Y$ 相互独立

4. (10 分)已知红黄两种番茄杂交的第二代结红果的植株与结黄果的植株的比率为3:1,现种植杂交种400 株,试用中心极限定理近似计算,结红果的植株介于285 与315 之间的概

4.3 复习题2 __19/28-_

率.
$$\left(\Phi\left(\sqrt{3}\right) = 0.9582, \Phi\left(\sqrt{2}\right) = 0.9207\right)$$

解 设结红果的植株的株数为 X, $X \sim B(400, 3/4)$, 则 $\mathbb{E}(X) = 300$, D(X) = 75 根据中心极限定理

$$P(285 \le X \le 315) = P\left(\frac{-15}{\sqrt{75}} \le \frac{X - 300}{\sqrt{75}} \le \frac{15}{\sqrt{75}}\right) = \Phi\left(\sqrt{3}\right) - \Phi\left(-\sqrt{3}\right)$$
$$= 2\Phi\left(\sqrt{3}\right) - 1 = 0.9164$$

5. (8分)设二维随机变量(X,Y)的分布律为

V		Y	
Λ	-1	0	1
-1	<u>1</u> 8	1/8	1/8
0	$\frac{1}{8}$	0	$\frac{1}{8}$
1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

求 Cov(X,Y).

解
$$\mathbb{E}(X) = -1 \times \frac{3}{8} + 1 \times \frac{3}{8} = 0$$
,同理通过计算得 $\mathbb{E}(Y) = 0$, $\mathbb{E}(XY) = 0$
因此 $\text{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 0$

6. (10 分)设 $X_1, X_2, ..., X_n$ 为总体 X 的一个样本, 总体 X 的概率密度为:

$$f(x) = \begin{cases} (\alpha+1)x^{\alpha}, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$$

求未知参数 α 的矩估计.

解
$$\mathbb{E}(X) = \int_0^1 (\alpha+1) x^{\alpha+1} \, \mathrm{d}x = \frac{\alpha+1}{\alpha+2}$$
, $\mu_1 = \overline{X} = \sum_{i=1}^n \frac{X_i}{n}$, 因此 $\alpha = \frac{2\overline{X}-1}{1-\overline{X}}$

4.3 复习题2

此复习题非一份完整的考试卷, 而是多个不同的试卷拼凑.

一、选择题(每题 3 分)

成功的概率为()

4.3 复习题2 -20/28-

17. 设随机变量 $X \sim \chi^2(m_1)$, $Y \sim \chi^2(m_2)$, 且 X 与 Y 相互独立, 则下列结果中不正确的是 ()

4.3 复习题2 -21/28-

(A)
$$X + Y \sim \chi^2(m_1 + m_2)$$

(B)
$$D(Y) = m_2$$

(C)
$$D(X) = 2m_1$$

(D)
$$\mathbb{E}(X) = m_1$$

二、填空题(每题3分)

1. 已知 P(B) = 0.3, $P(\overline{A} \cup B) = 0.7$, 且 A 与 B 相互独立, 则 $P(A) = \underline{\hspace{1cm}}$

2. 设随机变量 X 服从参数为 λ 的泊松分布, 且 $P\{X=0\}=\frac{1}{3}$, 则 $\lambda=$

3. 设 $X \sim N(2, \sigma^2)$, 且 $P\{2 < X < 4\} = 0.2$, 则 $P\{X < 0\} =$ ______

4. 已知 D(X) = 2, D(Y) = 1, 且 X 和 Y 相互独立, 则 D(X - 2Y) =

5. 设 S^2 是从 N(0,1) 中抽取容量为 16 的样本方差, 则 $D(S^2)$ =

6. 一批电子元件共有 100 个, 次品数为 5. 连续两次不放回地从中任取一个, 则第二次才取 得正品的概率为

7. 设事件 A 与 B 相互独立, P(A) = 0.2, P(B) = 0.3, 则 $P(A \cup B) = 0.3$

8. 设 \overline{X} 为总体 $X \sim N(3,4)$ 中抽取的样本 (X_1, X_2, X_3, X_4) 的均值,则 $\overline{P(-1 < \overline{X} < 5)} =$

9. 甲、乙两人独立地进行射击, 甲击中的概率为 0.9, 乙击中的概率为 0.8, 则甲中乙不中的 概率等于

10. 设 $P(A) = P(B) = P(C) = \frac{1}{3}$, P(AB) = P(AC) = 0, $P(BC) = \frac{1}{5}$. 则 A, B, C 中至少有一个发 生的概率为_____

11. 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} Ce^{-3x} \sin y, & x > 0, 0 < y < \frac{\pi}{2} \\ 0. & \text{其他} \end{cases}$

12. 设随机变量 X 服从参数为 3 的指数分布, 则 $P\{X \ge 1\} =$ ____

13. 总体 $Y \sim N(\mu, \sigma^2)$, $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ 为样本均值, S 为样本标准差, 当 σ 为未知时, μ 的置信 度为 $1 - \alpha(0 < \alpha < 1)$ 的双侧置信区间为

14. 设 X, Y 为两个随机变量, 已知 $\mathbb{E}(X) = 1, \mathbb{E}(Y) = 2, \mathbb{E}(XY) = 5, 则 Cov(X, Y - 4) =$

15. 若 P(A) = 0.5, $P(B\overline{A}) = 0.2$,则 P(A + B) =16. 已知随机变量 $X \sim \begin{bmatrix} -1 & 0 & 2 & 5 \\ 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix}$,那么 $\mathbb{E}(X) =$

17. 设 $\hat{\theta}$ 是未知参数 θ 的一个无偏估计量, 则 $\mathbb{E}(\hat{\theta})$ =

18. 随机变量 X 服从均匀分布 U(1,3), 则 P(X > 2) =

19. 设随机变量 $X \sim B(100, 0.15)$, 则 $\mathbb{E}(X) =$

20. 设随机变量 $X \sim N(3,4)$, 已知 $\Phi(1) = 0.8413$, 则 P(X < 1) = 0.8413

21. 设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} 3x^2, & 0 \leq x \leq 1 \\ 0, &$ 其它 \end{cases} ,则 $P\left(X < \frac{1}{2}\right) =$

22. 设随机变量 $X \sim \begin{bmatrix} 0 & 1 & 3 \\ 0.5 & 0.35 & 0.15 \end{bmatrix}$,则 P(X < 2) =______

23. 设随机变量 X 的期望存在, 则 $\mathbb{E}(X - \mathbb{E}(X)) =$

24. 设 X 为随机变量, 已知 D(X) = 2, 那么 D(3X - 5) =

4.4 复习题3 —22/28-

三、计算题

1. (10分)设随机变量 X 与 Y 具有概率密度: $f(x,y) = \begin{cases} \frac{1}{8}(x+y) & 0 \leqslant x \leqslant 2, 0 \leqslant y \leqslant 2 \\ 0 & 其它 \end{cases}$. 试求: D(X), D(Y), 与 D(2X-3Y).

- 2. (10分)某电子计算机主机有 100 个终端,每个终端有 80% 的时间被使用. 若各个终端是 否被使用是相互独立的,试求至少有 15 个终端空闲的概率. $(\Phi(1.25) = 0.8944, \Phi(0.31) = 0.6217$
- 3. (10分)试求正态总体 $N(\mu, 0.5^2)$ 的容量分别为 10, 15 的两独立样本均值差的绝对值大于 0.4 的概率. $(\Phi(1.96) = 0.975)$
- 4. (10分)设总体 X 的密度函数为 $f(x) = \begin{cases} \frac{2}{\theta^2}(\theta x), & 0 < x < \theta \\ 0, &$ 其它 自总体 X 的样本,试求当样本观察值分别为 0.5,1.3,0.6,1.7,2.2,1.2,0.8,1.5,2.0,1.6 时未知参数 θ 的矩估计值.
- 5. (10分)某商店拥有某产品共计 12 件, 其中 4 件次品, 已经售出 2 件, 现从剩下的 10 件产品中任取一件, 求这件是正品的概率.
- 6. (10分)设某种电子元件的寿命服从正态分布 N(40,100),随机地取 5 个元件,求恰有两个元件寿命小于 50 的概率. $(\Phi(1)=0.8413,\Phi(2)=0.9772)$
- 7. (12分)设总体 X 的分布律为 $P\{X = k\} = (1 p)^{k-1}p, k = 1, 2,$ (p 为未知参数), $X_1, X_2, ..., X_n$ 是总体 X 的一个样本, 求 p 的极大似然估计量.
- 8. (10分)两台车床加工同样的零件,第一台出现不合格品的概率是 0.03,第二台出现不合格品的概率是 0.06,加工出来的零件放在一起,并且已知第一台加工的零件数比第二台加工的零件数多一倍.
- (1) 求任取一个零件是合格品的概率.
- (2) 如果取出的零件是不合格品, 求它是由第二台车床加工的概率.
- 9. (10分)某仪器装了 3 个独立工作的同型号电子元件, 其寿命(单位: 小时)都服从同一指数分布, 密度函数为 $f(x) = \begin{cases} \frac{1}{600} e^{-\frac{1}{600}}, & x > 0 \\ 0, & \text{其它} \end{cases}$, 试求此仪器在最初使用的 200 小时内, 至少有一个此种电子元件损坏的概率.

4.4 复习题3

一、选择题(每题 3 分, 共 21 分)

1. 设随机变量 X 分布律为 $P\{X=k\}=pq^{k-1}(p>0,q>0,k=1,2,...)$,则 () (A) p+q=1 (B) $p=\frac{1}{q}-1$ (C) p+q=2 (D) pq=1

2. 从 0, 1, 2, ..., 9 这 10 个数字中随机抽取 1 个数字,则取到奇数的概率为 () (A) $\frac{1}{9}$ (B) $\frac{3}{8}$ (C) $\frac{4}{9}$ (D) $\frac{5}{8}$

3. 一批产品, 优质品占 20%, 进行重复抽样检查, 共取 5 件, 则恰好 3 件是优质品的概率为 ()

4.4 复习题3 -23/28-

- (A) 10×0.2^3
- (B) 0.2^3
- (C) $10 \times 0.2^3 \times 0.8^2$
- (D) $0.2^3 \times 0.8^2$
- 4. 同时掷骰子, 以 X 和 Y 分别代表第 1 和第 2 个骰子的点数, 则 $P\{X + Y = 5\} = ($)
 - (A) $\frac{1}{12}$
- (B) $\frac{1}{0}$

- (C) $\frac{1}{36}$
- (D) $\frac{1}{18}$
- 5. 设 X 为一个随机变量, 且 $\mathbb{E}(X) = 2$, $\mathbb{E}(X^2) = 5$, 则 D(2X) = ()
- (B) 12

- (D) 4
- 6. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, \ldots, X_n 为样本, \overline{X} , S^2 分别为样本均值和样本方差, 则下列选项 服从 $\chi^2(n-1)$ 分布的是 ()
- (B) $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i \mu)^2$ (C) $\frac{\overline{X} \mu}{\sigma / \sqrt{n}}$
- (D) $\frac{\overline{X} \mu}{S/\sqrt{n}}$
- 7. 设 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 都是由样本确定的两个统计量,满足(),则随机区间 $\left(\hat{\theta}_1,\hat{\theta}_2\right)$ 称为 θ 的置信 水平为 95% 的置信区间
 - (A) $P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\} = 0.05$

(B) $P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\} = 0.95$

(C) $P\{\hat{\theta}_1 < \theta\} = 0.95$

(D) $P\{\theta < \hat{\theta}_2\} = 0.95$

二、填空题(每题 3 分, 共 21 分)

- 1. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{x^2}, & a < x < 3a, \\ 0, & 其他. \end{cases}$,则 a =______
- 2. 设随机变量 X 的数学期望 $\mathbb{E}(X) = \mu$,方差 $D(X) = \sigma^2$,则由切比雪夫不等式有 $P\{|X \mu| < \sigma^2\}$
- 4. 设 $\hat{\theta} = \hat{\theta}(X_1, X_2, ..., X_n)$ 是 θ 的一个估计量, 若 $\mathbb{E}\left(\hat{\theta}\right)$ 存在, 且有______ θ 的无偏估计量
- 5. 事件 A 在一次实验中发生的概率为 $\frac{1}{3}$, X 表示在 3 次重复独立试验中发生的次数,则
- 6. 设二维随机变量 (X,Y) 的概率密度为: $f(x,y) = \begin{cases} 4xy, & 0 < x < 1, 0 < y < 1, \\ 0, & 其他. \end{cases}$ $P\left\{0 < X < \frac{1}{2}, \frac{1}{4} < Y < 1\right\} =$
- 7. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{\beta \alpha}, & \alpha < x < \beta, \\ 0, & 其他. \end{cases}$,则 $\mathbb{E}(X) = \underline{\hspace{1cm}}$

三、解答题(共58分)

1.(8分)设随机变量 X 的分布律为

X	-1	0	1	4	7
\overline{P}	0.1	0.2	0.4	0.16	0.14

求:

- (1) $P\{|X-2| \leq 1\}$
- (2) $Y = X^2$ 的分布律
- 2. (10分)设某区域内肥胖者占10%,不胖不瘦者占82%,瘦者占8%,肥胖者患高血压的概 率为 30%, 不胖不瘦者患高血压的概率为 10%, 瘦者患高血压的概率为 5%, 求:

4.4 复习题3 —24/28—

- (1) 该地区的居民患高血压的概率
- (2) 若在该地区任选一人,发现有高血压,属于肥胖者的概率
- 3. (10 分)设 $X \sim N(0,2)$, $Y \sim N(0,1)$, 且相互独立, U = X + Y + 1, V = X Y + 1, 求 Cov(U,V)
- 4. $(10 \, \beta)$ 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} e^{-x}, & x > y, y > 0, \\ 0, & \text{其他.} \end{cases}$,试求: (X,Y) 关于 X = Y 的边缘概率密度 $f_X(x) = f_Y(y)$
- 5. $(10 \, f)$ 某通信系统有 60 台相互独立起作用的交换机,每台交换机能清晰接受信号的概率为 0.90. 系统工作时,要求能清晰接受信号的交换机至少 54 台,求该通信系统能正常工作的概率(结果取最接近的值,其中 Φ (2.58) = 0.9951, Φ (1.36) = 0.9131)
- 6. (10 分)设 $X_1, X_2, ..., X_n$ 为总体 X 的一个样本, 总体 X 服从参数为 $p(0 的两点分布, 其分布律为 <math>P\{X = x\} = p^x(1-p)^{1-x}(x = 0, 1)$, 求未知参数 p 的矩估计

第5章 复变函数试卷汇总

5.1 复习题 1

一、选择题(每小题 3 分, 共 15 分)

1.
$$\frac{(\sqrt{3}-i)^4}{(1-i)^8} = ($$
)

(A)
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$(B) - \frac{1}{8} \left(1 + \sqrt{3}i \right)$$

(C)
$$\frac{1}{8}\left(-1+\sqrt{3}i\right)$$

(D)
$$-\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

2. 设
$$f(z) = 2x^3 + 3y^3i$$
, 则 $f(z)$ ()

(B) 仅在
$$6x^2 = 9y^2$$
 上可导, 处处不解析

(A) Ln i =
$$\left(2k\pi - \frac{\pi}{2}\right)$$
 i, ln i = $\frac{\pi}{2}$ i

(B) Ln i =
$$(2k\pi + \frac{\pi}{2})$$
 i, ln i = $-\frac{\pi}{2}$ i

(C) Ln i =
$$\left(2k\pi + \frac{\pi}{2}\right)$$
 i, ln i = $\frac{\pi}{2}$ i

(D) Ln i =
$$\left(2k\pi - \frac{\pi}{2}\right)$$
 i, ln i = $-\frac{\pi}{2}$ i

4.
$$z = 0$$
 是函数 $\frac{1-\cos z}{z-\sin z}$ 的 ()

5. 设 C 为
$$z = (1 - i)t$$
, t 从 1 到 0 的一段, 则 $\int_{C} \bar{z} dz = ($)

$$(A) - 1$$

$$(C)$$
 $-i$

(D) i

二、填空题(每小题 3 分, 共 15 分)

- 1. 若 z + |z| = 2 + i , 则 z =_____
- 2. 若 C 为正向圆周 $|z| = \frac{1}{2}$, 则 $\oint_C \frac{1}{z-2} dz =$ _____
- 3. 若 $z = 2 \pi i$, 则 $e^z =$
- 4. 若 $f(z) = \cos z^2$, 则 f(z) 在 z = 0 处泰勒展开式中 z^4 项的系数 $a_4 =$
- 5. 函数 $f(t) = \sin t$ 的拉普拉斯变换 F(s) =

三、计算题(70分)

- 1. 设 u(x, y) = x 2xy 且 f(0) = 0, 求解析函数 f(z) = u + iv. (10 分)
- 2. 计算积分 $\oint_C \frac{2e^x}{z^5} dz$ 的值, 其中 C 为正向圆周 |z| = 1. (7分)
- 3. 计算积分 $\oint_{\mathbb{C}} \frac{3z+5}{z^2-z} \, \mathrm{d}z$ 的值, 其中 \mathbb{C} 为正向圆周 $|z| = \frac{1}{2}$. (7分)
- 4. 求函数 $\frac{1-\cos z}{z^3}$ 在有限奇点处的留数. (7分) 5. 求函数 $\frac{2z^2+1}{z^2+2z}$ 在有限奇点处的留数. (7分)
- 6. 将 $f(z) = \frac{z}{(z-2)(z-6)}$ 在 2 < |z| < 6 内展开为洛朗级数. (10 分)
- 7. 若函数 $f(z) = ay^3 + bx^2y + i(x^3 + cxy^2)$ 是复平面上的解析函数, 求 a, b, c 的值. (12 分)
- 8. 利用拉普拉斯变换解常微分方程初值问题: $\begin{cases} x''(t) + 6x'(t) + 9x(t) = \mathrm{e}^{-3t} \\ x(0) = 0, x'(0) = 0 \end{cases}$. (10 分)

5.2 复习题 1 答案

一、选择题(每小题 3 分, 共 15 分)

1.
$$\frac{(\sqrt{3}-i)^4}{(1-i)^8} = (D)$$

$$(A) - \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$(C) \frac{1}{8} \left(-1 + \sqrt{3}i \right)$$

2. 设
$$f(z) = 2x^3 + 3y^3i$$
, 则 $f(z)$ (B)

(A) 处处不可导

(C) 处处解析

3. 下列等式正确的是(C)

(A) Ln i =
$$(2k\pi - \frac{\pi}{2})$$
 i, ln i = $\frac{\pi}{2}$ i

(C) Ln i =
$$\left(2k\pi + \frac{\pi}{2}\right)$$
 i, ln i = $\frac{\pi}{2}$ i

4. z = 0 是函数 $\frac{1-\cos z}{z-\sin z}$ 的 (D)

(A) 本性奇点

(B) 可去奇点

(C) 二级极点

 $(B) - \frac{1}{8} \left(1 + \sqrt{3}i \right)$

(D) 仅在 (0,0) 点可导

(D) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$

(B) Ln i = $(2k\pi + \frac{\pi}{2})$ i, ln i = $-\frac{\pi}{2}$ i

(D) Ln i = $(2k\pi - \frac{\pi}{2})$ i, ln i = $-\frac{\pi}{2}$ i

(B) 仅在 $6x^2 = 9y^2$ 上可导, 处处不解析

(D) 一级极点

5. 设 C 为 z = (1 - i)t, t 从 1 到 0 的一段, 则 $\int_C \overline{z} dz = (A)$

(A) - 1

(B) 1

(C) -i

(D) i

二、填空题(每小题 3 分, 共 15 分)

- 1. 若 z + |z| = 2 + i,则 $z = \frac{3}{4} + i$ 2. 若 C 为正向圆周 $|z| = \frac{1}{2}$,则 $\oint_C \frac{1}{z-2} dz = 0$
- 3. 若 $z = 2 \pi i$, 则 $e^z = -e^2$
- 4. 若 $f(z) = \cos z^2$, 则 f(z) 在 z = 0 处泰勒展开式中 z^4 项的系数 $a_4 = -\frac{1}{2}$
- 5. 函数 $f(t) = \sin t$ 的拉普拉斯变换 $F(s) = \frac{1}{s^2+1}$

三、计算题(70分)

1. 设 u(x, y) = x - 2xy 且 f(0) = 0, 求解析函数 f(z) = u + iv. (10分) 解解析函数的 u, v 必定满足 C. - R. 方程, 即

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

 $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=1-2y$, $\frac{\partial v}{\partial y}$ 对 y 积分得 $v=y-y^2+\varphi(x)$ $\frac{\partial u}{\partial y} = -2x = -\frac{\partial v}{\partial x} = -\varphi'(x)$,可以得出 $\varphi(x) = x^2 + C$ 由于 f(0) = 0, 因此 C = 0,即 $f(z) = x - 2xy + i(y - y^2 + x^2)$

2. 计算积分 $\oint_{\mathbb{C}} \frac{2e^x}{z^5} dz$ 的值, 其中 \mathbb{C} 为正向圆周 |z| = 1. (7分) 解 根据高阶导数公式 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} \, \mathrm{d}z$, 那么

$$\oint_C \frac{2e^z}{(z-0)^5} dz = \frac{2\pi i}{4!} (2e^z)^{(4)} \Big|_{z=0} = \frac{\pi i}{6}$$

3. 计算积分 $\oint_C \frac{3z+5}{z^2-z} dz$ 的值, 其中 C 为正向圆周 $|z| = \frac{1}{2}$. (7分) 解

$$\oint_C \frac{3z+5}{z^2-z} dz = 2\pi i \operatorname{Res}_{z=0} \frac{3z+5}{z(z-1)} = 2\pi i \left. \frac{3z+5}{z-1} \right|_{z=0} = -10\pi i$$

4. 求函数 $\frac{1-\cos z}{z^3}$ 在有限奇点处的留数. (7分) 解 对 $\cos z$ 进行洛朗展开, $\cos z = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$, 那么 $1 - \cos z = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n}}{(2n)!}$ 那么 $\frac{1-\cos z}{z^3} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^{2n-3}}{(2n)!}$,根据洛朗系数公式, $\underset{z=0}{\operatorname{Res}} \frac{1-\cos z}{z^3} = c_{-1} = \frac{1}{2}$

5. 求函数 $\frac{2z^2+1}{z^2+2z}$ 在有限奇点处的留数. (7分)

解

$$\operatorname{Res}_{z=0} \frac{2z^2+1}{z^2+2z} = \left. \frac{2z^2+1}{z+2} \right|_{z=0} = \frac{1}{2}, \operatorname{Res}_{z=-2} \frac{2z^2+1}{z^2+2z} = \left. \frac{2z^2+1}{z} \right|_{z=-2} = -\frac{9}{2}$$

6. 将 $f(z) = \frac{z}{(z-2)(z-6)}$ 在 2 < |z| < 6 内展开为洛朗级数. (10 分)解

$$f(z) = \frac{z}{4} \left(\frac{1}{z - 6} - \frac{1}{z - 2} \right) = \frac{z}{4} \left(-\frac{1}{6} \frac{1}{1 - z/6} - \frac{1}{z} \frac{1}{1 - 2/z} \right)$$
$$= \frac{z}{4} \left(-\frac{1}{6} \sum_{n=0}^{\infty} (z/6)^n - \frac{1}{z} \sum_{n=0}^{\infty} (2/z)^n \right)$$
$$= -\frac{1}{4} \left(\sum_{n=0}^{\infty} (z/6)^{n+1} + \sum_{n=0}^{\infty} (2/z)^n \right)$$

7. 若函数 $f(z) = ay^3 + bx^2y + i(x^3 + cxy^2)$ 是复平面上的解析函数, 求 a, b, c 的值. (12 分) 解 若 f(z) 为解析函数,则其实部、虚部满足 C. – R. 方程,设 $u = ay^3 + bx^2y$, $v = x^3 + cxy^2$,则有

$$\begin{cases} \frac{\partial u}{\partial x} = 2bxy = 2cxy = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = 3ay^2 + bx^2 = -3x^2 - cy^2 = -\frac{\partial v}{\partial x} \end{cases}$$

解得

$$\begin{cases} a = 1 \\ b = c = -3 \end{cases}$$

8. 利用拉普拉斯变换解常微分方程初值问题: $\begin{cases} x''(t) + 6x'(t) + 9x(t) = e^{-3t} \\ x(0) = 0, x'(0) = 0 \end{cases}$. (10 分) 解 设 $\mathcal{L}[x] = X(s)$, 对等式两边作拉普拉斯变换

$$\mathcal{L}[x'' + 6x' + 9x] = s^2 X(s) - sx(0) - x'(0) + 6sX(s) - 6x(0) + 9X(s)$$
$$= s^2 X(s) + 6sX(s) + 9X(s) = \frac{1}{s+3}$$

那么有 $X(s) = \frac{1}{(s+3)^3}$,根据拉普拉斯变换的微分性质 $F''(s) = \mathcal{L}[t^2 f(t)]$

$$\frac{1}{(s+3)^3} = \frac{1}{2} \left(\frac{1}{s+3} \right)^{"} = \frac{\mathcal{L}[t^2 e^{-3t}]}{2}$$

那么 $x(t) = \frac{t^2 e^{-3t}}{2}$