TOOKE I TOXKE ALED A TOOKE .C.OOL

Royaume Du Maroc

Ministère de l'Education Nationale, de la Formation Professionnelle, de l'Enseignement Supérieur et de la Recherche Scientifique

Secrétariat d'Etat chargée de l'Enseignement Supérieur et de la Recherche Scientifique

PRESIDENCE CNAEM 2018

Concours National d'Accès aux Ecoles de Management Edition 2018

Filière: ECT

Epreuve: Mathématiques

Durée: 04 heures

Notes à lire par le candidat :

•	L'usage	de la	calcu	latrice	est	interdi
•	L usage	ae ia	caicu	iatrice	est	interd

Nombre de pages : 04

Page de garde

7 75

Durée : 4 heures

Les candidats sont informés que la précision des raisonnements ainsi que le soin apporté à la rédaction et à la présentation des copies seront des éléments pris en compte dans la notation. Il convient en particulier de rappeler avec précision les références des questions abordées. Si, au cours de l'épreuve, un candidat repère ce qui peut lui sembler être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Remarques générales:

L'épreuve se compose de quatre exercices indépendants.

EXERCICE 1

On considère la fonction f définie par $f(t) = \begin{cases} \frac{2e^t}{(1+e^t)^2} & \text{si } t \geq 0 \\ 0 & \text{si } t < 0 \end{cases}$

Partie I

Soit φ la fonction définie par $\varphi(x) = \frac{1}{3} \ln \left(\frac{1+e^x}{2} \right)$.

On désigne par C la courbe représentative de φ dans un repère du plan.

- 2. Déterminer la limite de φ en $-\infty$ puis en $+\infty$.
- 3. Montrer que pour tout réel x, $\varphi'(x) = \frac{e^x}{3(1+e^x)}$.
- 4. Donner le tableau de variations de φ sur \mathbb{R} .
- 5. Montrer que φ est une bijection de $\mathbb R$ vers un intervalle I à déterminer. On note φ^{-1} la bijection réciproque de φ .
- 6. Déterminer pour tout x de I, $\varphi^{-1}(x)$.

Partie II

Par la suite, toutes les variables aléatoires sont définies sur un même espace probabilisé (Ω, A, P) .

- 1. Montrer que f est une densité d'une variable aléatoire réelle. Dans toute la suite de l'exercice, on note X la variable aléatoire réelle de densité f.
- a) Déterminer la fonction de répartition de X, notée F_X.
 - b) Montrer que pour tout réel x, $0 \le F_X(x) < 1$.
 - c) Déterminer $P(\ln(2) \le X \le \ln(3))$.
- 3. a) Montrer que que pour tout réel A strictement positif, $\int_0^A \frac{1}{1+e^t} dt = \ln\left(\frac{2}{1+e^{-A}}\right)$.
 - b) Montrer que pour tout réel A strictement positif, $\int_0^A t f(t) dt = \frac{-2A}{1+e^A} + 2 \ln \left(\frac{2}{1+e^{-A}} \right)$.
 - c) Vérifier que $\lim_{A \to +\infty} \frac{A}{1+\epsilon^A} = 0$.
 - d) En déduire que X admet une espérance et donner sa valeur E(X).
- 4. On considère la variable aléatoire réelle Y définie par $Y=\varphi(X)$.
 - a) Montrer que $P\left(Y \leq \frac{-\ln(2)}{3}\right) = 0$.
 - b) Déterminer la fonction de répartition F_Y de Y.

- c) Déterminer le réel α tel que $F_Y(\alpha) = \frac{1}{2}$.
- 5. Soient X_1 et X_2 deux variables aléatoires réelles indépendantes et de même loi que X. On pose $Z_1 = \sup(X_1, X_2), Z_2 = \sup(\varphi(X_1), \varphi(X_2)), Z_3 = \varphi(Z_1)$ et $Z_4 = \inf(X_1, X_2)$.
 - a) Déterminer les fonctions de répartitions F_{Z_1} , F_{Z_2} et F_{Z_3} respectivement des variables aléatoires Z_1 , Z_2 et Z_3 .
 - b) i) Déterminer $E(Z_1 + Z_4)$, l'espérance de la variable aléatoire $Z_1 + Z_4$.
 - ii) Déterminer $V(Z_1 + Z_4)$, la variance de la variable aléatoire $Z_1 + Z_4$, en fonction de V(X).
 - iii) Déterminer la fonction de répartition F_{Z_4} de la variable aléatoire Z_4 .

EXERCICE 2

On pose pour tout entier naturel n et pour tout réel t, $g_n(t) = \frac{1}{e^{nt}(1+e^t)}$ et $h_n(t) = \frac{1}{e^{nt}(1+e^t)^2}$. On considère les deux suites $(I_n)_{n\geq 0}$ et $(J_n)_{n\geq 0}$ qui sont définies par $I_n = \int_0^{+\infty} g_n(t)dt$ et $J_n = \int_0^{+\infty} h_n(t)dt$.

- 1. a) Vérifier que pour tout entier naturel n et pour tout réel x, $0 < g_n(x) < e^{-nx}$ et $0 < h_n(x) < e^{-nx}$.
 - b) En déduire que pour tout entier naturel non nul n, I_n et J_n sont deux intégrales convergentes.
 - c) Déterminer les valeurs de $\lim_{n \to +\infty} I_n$ et $\lim_{n \to +\infty} J_n$.
 - d) i) Déterminer la valeur de I_0 . (vous pouvez utiliser le résultat suivant sans le démontrer : pour tout réel A strictement positif, $\int_0^A \frac{1}{1+e^t} dt = \ln\left(\frac{2}{1+e^{-A}}\right)$).
 - ii) Déterminer les deux nombres réels a et b tels que $\forall t \in \mathbb{R}, \frac{1}{(1+e^t)^2} = \frac{a}{1+e^t} + \frac{be^t}{(1+e^t)^2}$.
 - iii) En déduire la valeur de J_0 .
- 2. a) Déterminer, pour tout entier naturel n. $I_n + I_{n+1}$ en fonction de n.
 - b) En utilisant la formule trouvée dans la question 2. a), compléter les commandes Scilab suivantes afin qu'elles permettent le calcul de I_n , pour une valeur de l'entier naturel non nul n.

n= input(' Donner une valeur de l'entier naturel non nul n: ')

- c) Montrer que la suite $(I_n)_{n\geq 0}$ est décroissante.
- d) Montrer que pour tout entier naturel $n, \frac{1}{2(n+1)} \leq I_n$.
- e) En déduire la nature de la série $\sum_{n\geq 0}I_n$, on pourra utiliser le fait que la série $\sum_{n\geq 1}\frac{1}{n}$ est divergente et

que
$$\sum_{n=1}^{+\infty} \frac{1}{n} = +\infty$$
.

- 3. a) Exprimer, pour tout entier naturel non nul k, $J_{k-1} + J_k$ en fonction de I_k .
 - b) Écrire un programme en Scilab qui calcule et affiche la valeur de l'intégrale J_n , l'entier naturel non nul n étant donné par l'utilisateur.
 - c) Montrer que pour tout entier naturel non nul n, $\sum_{k=1}^{n} (-1)^{k-1} I_k = J_0 + (-1)^{n+1} J_n$.
 - d) En déduire que la série $\sum_{n\geq 1} (-1)^{n-1} I_n$ est convergente et déterminer sa somme.
 - e) Écrire un programme en Scilab qui calcule et affiche la valeur de $S_n = \sum_{k=1}^n (-1)^{k-1} I_k$. l'entier naturel non nul n étant donné par l'utilisateur.

EXERCICE 3

On considère les matrices :
$$A = \frac{1}{5} \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$
 , $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}$, $Q = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{pmatrix}$

et $I=\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}$. Soient u et v deux vecteurs de \mathbb{R}^3 , on pose $\mathrm{Vect}(u,v)$ le sous espace vectoriel de \mathbb{R}^3 engendré par u et v.

Partie I

- 1. a) Vérifier que PQ = 3I.
 - b) En déduire que P est inversible et déterminer son inverse P^{-1} .
- 2. On pose $F = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\}$ et $f_1 = (1, 1, 1)$
 - a) Déterminer deux vecteurs f_2 et f_3 de \mathbb{R}^3 tels que $F = \text{Vect}(f_2, f_3)$, avec $f_2 = (1, a, b)$ et $f_3 = (c, 1, d)$. où a, b, c et d sont à déterminer.
 - b) Montrer que la famille (f_1,f_2,f_3) est une base de \mathbb{R}^3 .
- 3. a) Vérifier que $A^2 \frac{7}{5}A + \frac{2}{5}I = O$, avec $O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, la matrice nulle.
 - b) Montrer que A est inversible et déterminer son inverse A^{-1} .
 - c) Déterminer le polynôme annulateur de A de la forme $P = X^2 + \gamma X + \delta$, où γ et δ sont deux réels à déterminer.
 - d) Déterminer les valeurs propres éventuelles de A notées α et β , avec $\alpha > \beta$.

e) Vérifier que
$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $A \begin{pmatrix} 1 \\ a \\ b \end{pmatrix} = \beta \begin{pmatrix} 1 \\ a \\ b \end{pmatrix}$ et $A \begin{pmatrix} c \\ 1 \\ d \end{pmatrix} = \beta \begin{pmatrix} c \\ 1 \\ d \end{pmatrix}$.

- f) Qu'est ce que vous pouvez conclure pour α et β ? Justifier votre réponse.
- - \nearrow b) Montrer que pour tout entier naturel $n, A^n = PD^nP^{-1}$.

Partie II

Application en probabilité

On considère trois positions A, B et C distinctes deux à deux se trouvant sur un cercle. Un mobile se déplace entre les positions A, B et C de la façon suivante, pour tout entier naturel n,

si à l'instant n, il est à l'une des trois positions, alors à l'instant n+1, soit il y reste avec une probabilité de $\frac{3}{5}$, soit il se déplace vers l'une des deux autres positions d'une façon équiprobable (c'est-à-dire avec la même probabilité).

On note les événements :

- A_n "le mobile se trouve à la position A à l'instant n".
- B_n "le mobile se trouve à la position B à l'instant n".
- C_n "le mobile se trouve à la position C à l'instant n".

On pose $P(A_n)=a_n$ la probabilité de l'événement A_n , $P(B_n)=b_n$ la probabilité de l'événement B_n et $P(C_n)=c_n$ la probabilité de l'événement C_n . Initialement, à l'instant n=0, le mobile se trouve dans une des trois positions avec $a_0 = \frac{1}{2}$, $b_0 = \frac{1}{3}$ et $c_0 = \frac{1}{6}$.

- 1. a) Montrer que pour tout entier naturel n, $a_{n+1} = \frac{3}{5}a_n + \frac{1}{5}b_n + \frac{1}{5}c_n$.
 - b) Exprimer pour tout entier naturel n, b_{n+1} en fonction de a_n , b_n et c_n .
 - c) Exprimer pour tout entier naturel n, c_{n+1} en fonction de a_n , b_n et c_n .
- 2. Exprimer, pour tout entier naturel n, $\begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{pmatrix}$ en fonction de $\begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$

Э.	Recopier et compléter le		
	A=	lb suivant afin qu'il calcule et affiche les valeurs	a15, b15 et c15.
	U=		
	for :		

U=.... end disp(.....)

- 4. Déterminer, pour tout entier naturel n, a_n , b_n et c_n en fonction de n.
- 5. En déduire les valeurs de $\lim_{n\to +\infty} a_n$, $\lim_{n\to +\infty} b_n$ et $\lim_{n\to +\infty} c_n$.

EXERCICE 4

Une entreprise de construction des ampoules utilise deux machines A et B distinctes qui fonctionnent indépendamment l'une de l'autre. On suppose que A produit 40% des ampoules et B produit 60% des ampoules. La probabilité pour qu'une ampoule construite par la machine A soit défectueuse est 0.05 alors que la probabilité pour qu'une ampoule construite par la machine B soit défectueuse est 0.1. On note l'événement D: "l'ampoule est défectueuse" et P(D) est la probabilité de l'événement D.

- a) Déterminer P(D).
 - b) Déterminer $P(D \cap A)$, la probabilité de l'événement $D \cap A$.
 - c) On choisit au hasard une ampoule à la sortie de l'entreprise. On constate que cet ampoule est défectueuse. Calculer la probabilité de l'événement "l'ampoule provient de la machine A".
- 2. On suppose de plus que le nombre des ampoules produites en une heure par A est une variable aléatoire X qui suit la loi de Poisson de paramètre $\lambda=10$. On considère la variable aléatoire Y représentant le nombre des ampoules défectueuses produites par la machine A en une heure.
 - a) Pour tout entier naturel k, exprimer P(X = k) en fonction de k, puis déterminer la valeur de l'espérance E(X) de X et la valeur de la variance V(X) de X.
 - b) Soient k et n deux entiers naturels. Déterminer la probabilité P(Y = k | X = n), (la probabilité de l'événement (Y=k) sachant l'événement (X=n)), dans les cas suivants :
 - i) k > n.
 - ii) $k \leq n$.
 - c) En déduire, en utilisant le système complet d'événements $(X=j)_{j\in\mathbb{N}}$, que Y suit une loi de Poisson de paramètre β , à préciser.
 - d) Écrire un programme Scilab, en utilisant la fonction grand, qui renvoie une matrice à une ligne et 1000 colonnes, qui simule la variable aléatoire Y.

FIN DE L'ÉPREUVE