The influence of complex thermal treatment on mechanical properties of metallic glass

Qinglong Liu

Master student Advisor: Nikolai V. Priezjev

> March 28, 2019 MIEM, HSE

Qing-Long Liu, Nikolai V. Priezjev, The influence of complex thermal treatment on mechanical properties of amorphous materials. Computational Materials Science 161 (2019) 93-98

How thermal cycling treatment change the properties of metallic glasses?

- 1, Pros of metallic glass: high strength and elastic limit, high resistance to corrosion, etc.
- 2, Cons of metallic glass: low ductility, brittle fracture due to shear band formation, especially in aged samples.
- 3, Our purpose: investigate the microscopic details of the thermal cycling processing on metallic glass, as well as the degree of relaxation, elastic, etc.
- 4, Our method: MD simulation to heat the samples above T_g , quench with different cooling rates and apply thermal cycling treatments.

Details of the model

Lennard-Jones (LJ) potential for Kob-Andersen binary mixture model:

$$V_{\alpha\beta}(r) = 4 \,\varepsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right]$$

- 1, Parameters for α , $\beta = A$, B particles: $\varepsilon_{AA} = 1.0$, $\varepsilon_{AB} = 1.5$, $\varepsilon_{BB} = 0.5$, $\sigma_{AA} = 1.0$, $\sigma_{AB} = 0.8$, $\sigma_{BB} = 0.88$, and $m_A = m_B$
- 2, Number of A atoms: 48 000
- 3, Number of B atoms: 12 000
- 4, Glass transition temperature of the KA model, $T_g \approx 0.435, \varepsilon/k_B$ (reduced units)
- 5, 3D periodic boundary conditions 6, Nosé-Hoover thermostat, LAMMPS package

Steps:

- Equilibrate the sample at $T=0.7\,\varepsilon/k_B$, higher than T_g .
- ② Anneal the sample to $T_{LJ}=0.2\,\varepsilon/k_B$ with four different cooling rates $10^{-2}\varepsilon/k_B\tau$, $10^{-3}\varepsilon/k_B\tau$, $10^{-4}\varepsilon/k_B\tau$, and $10^{-5}\varepsilon/k_B\tau$.
- **3** Repeatedly heat and cool the samples at P=0, with the thermal amplitude ΔT_{LJ} from 0.0 to $0.19\,\varepsilon/k_B$ during 100 cycles with the period $T=2000\,\tau$.
- **3** Samples were strained along the \hat{x} direction at P=0 with the strain rate $\dot{\varepsilon}_{xx}=10^{-5}\,\tau^{-1}$.

Aging, density and thermal amplitudes

The variation of temperature T_{LJ} (in units of ε/k_B) during first 5 periods, for the thermal amplitudes $\Delta T_{LJ} = 0.05 \, \varepsilon/k_B$, $0.10 \, \varepsilon/k_B$, $0.15 \, \varepsilon/k_B$, and $0.19 \, \varepsilon/k_B$. The black line denotes the data at the constant temperature $T_{LJ} = 0.2 \, \varepsilon/k_B$.

Potential energy vs period

The potential energy series during the first and last ten cycles with the thermal amplitudes $\Delta T_{LJ} = 0.0, \, 0.05 \, \varepsilon/k_B, \, 0.1 \, \varepsilon/k_B, \, 0.15 \, \varepsilon/k_B, \, and \, 0.19 \, \varepsilon/k_B$. The sample was initially annealed with the cooling rate of 10^{-2} (left), $10^{-5} \, \varepsilon/k_B \, \tau$ (right), respectively. The enlarged view of the same data at the end of the last cycle is displayed in the inset.

Potential energy vs ΔT_{LJ}

The dependence of the potential energy after 100 cycles, U_{100}/ε , as a function of the thermal amplitude ΔT_{LJ} (in units of ε/k_B) for glasses initially annealed with the cooling rates of $10^{-2}\varepsilon/k_B\tau$, $10^{-3}\varepsilon/k_B\tau$, $10^{-4}\varepsilon/k_B\tau$, and $10^{-5}\varepsilon/k_B\tau$.

Distribution of atomic displacements

The distribution of atomic displacements during one cycle for the thermal amplitude $\Delta T_{IJ}=0.10~\varepsilon/k_B$.

The probability distribution of atomic displacements during the second cycle for the indicated values of the thermal amplitude ΔT_{IJ} .

Stress-strain curves and elastic modulus

The variation of tensile stress, σ_{xx} (in units of $\varepsilon\sigma^{-3}$), as a function of strain, ε_{xx} , for samples annealed with four different cooling rates. The strain rate is $\dot{\varepsilon}_{xx}=10^{-5}\,\tau^{-1}$. The tensile tests were performed after the thermal treatment with amplitudes $\Delta T_{LJ}=0.0,\,0.05\,\varepsilon/k_B,\,0.10\,\varepsilon/k_B,\,0.13\,\varepsilon/k_B,\,0.15\,\varepsilon/k_B,\,0.17\,\varepsilon/k_B,\,a.0.19\,\varepsilon/k_B$

The dependence of the stress overshoot σ_Y (in units of $\varepsilon\sigma^{-3}$) as a function of samples annealed with cooling rates $10^{-2}\varepsilon/k_B\tau$, $10^{-3}\varepsilon/k_B\tau$, $10^{-4}\varepsilon/k_B\tau$, and $10^{-5}\varepsilon/k_B\tau$. The variation of the elastic modulus E (in units of $\varepsilon\sigma^{-3}$) versus thermal amplitude is shown in the inset.

Conclusions

- **1** MD simulations of binary Lennard-Jones glasses under periodic thermal treatment $(\Delta T_{LJ} < T_g)$.
- 2 Thermal cycling leads to relaxed states, potential energy levels lower than those in the aged samples.
- **9** Potential energy first decreases and acquires a local minimum as ΔT_{LJ} increasing, then go up.
- Stress overshoot and the elastic modulus weakly depend on the cooling rate except for the lowest rate.
- Inverse correlation between the potential energy levels and mechanical properties.

Thanks for your attention! Any suggestions?

