Finite-state Machines: Theory and Applications Weighted Finite-state Automata

Thomas Hanneforth

Institut für Linguistik Universität Potsdam

October 29, 2008

Overview

- Semirings
- Weighted finite-state automata
- Semiring properties
- Closure properties and algebra of weighted finite-state automata
- Shortest-distance algorithms
- Equivalence transformations

Outline

- Semirings and weighted finite-state automata
- Weighted finite-state automata
- Semiring properties
- 4 Closure properties and algebra of weighted finite-state automata
- Shortest-distance algorithms
- 6 Equivalence transformations

- We add *weights* to finite-state machines to enhance their capabilities.
- The notion of a weight is an abstract one: everything which fulfills the conditions of an abstract algebraic structure called a *semiring* can be used as a weight in a FSM.
- So weights can be:
 - Real numbers
 - Probabilities
 - Distances
 - Strings
 - Feature structures
 - Sets
 - Matrices
 - **>** ...

- We add *weights* to finite-state machines to enhance their capabilities.
- The notion of a weight is an abstract one: everything which fulfills the conditions of an abstract algebraic structure called a *semiring* can be used as a weight in a FSM.
- So weights can be:
 - Real numbers
 - Probabilities
 - Distances
 - Strings
 - Feature structures
 - Sets
 - Matrices
 - b ...

- We add *weights* to finite-state machines to enhance their capabilities.
- The notion of a weight is an abstract one: everything which fulfills the conditions of an abstract algebraic structure called a *semiring* can be used as a weight in a FSM.
- So weights can be:
 - Real numbers
 - Probabilities
 - Distances
 - Strings
 - Feature structures
 - Sets
 - Matrices
 - **.**

- We add *weights* to finite-state machines to enhance their capabilities.
- The notion of a weight is an abstract one: everything which fulfills the conditions of an abstract algebraic structure called a *semiring* can be used as a weight in a FSM.
- So weights can be:
 - Real numbers
 - Probabilities
 - Distances
 - Strings
 - Feature structures
 - Sets
 - Matrices
 - **.**.

- We add *weights* to finite-state machines to enhance their capabilities.
- The notion of a weight is an abstract one: everything which fulfills the conditions of an abstract algebraic structure called a *semiring* can be used as a weight in a FSM.
- So weights can be:
 - Real numbers
 - Probabilities
 - Distances
 - Strings
 - Feature structures
 - Sets
 - Matrices
 - · ..

- We add *weights* to finite-state machines to enhance their capabilities.
- The notion of a weight is an abstract one: everything which fulfills the conditions of an abstract algebraic structure called a *semiring* can be used as a weight in a FSM.
- So weights can be:
 - Real numbers
 - Probabilities
 - Distances
 - Strings
 - Feature structures
 - Sets
 - ► Matrices
 - ..

- We add *weights* to finite-state machines to enhance their capabilities.
- The notion of a weight is an abstract one: everything which fulfills the conditions of an abstract algebraic structure called a *semiring* can be used as a weight in a FSM.
- So weights can be:
 - Real numbers
 - Probabilities
 - Distances
 - Strings
 - Feature structures
 - Sets
 - Matrices
 - · ..

- We add *weights* to finite-state machines to enhance their capabilities.
- The notion of a weight is an abstract one: everything which fulfills the conditions of an abstract algebraic structure called a *semiring* can be used as a weight in a FSM.
- So weights can be:
 - ▶ Real numbers
 - Probabilities
 - Distances
 - Strings
 - Feature structures
 - Sets
 - Matrices
 - · ..

- We add *weights* to finite-state machines to enhance their capabilities.
- The notion of a weight is an abstract one: everything which fulfills the conditions of an abstract algebraic structure called a *semiring* can be used as a weight in a FSM.
- So weights can be:
 - Real numbers
 - Probabilities
 - Distances
 - Strings
 - Feature structures
 - Sets
 - Matrices
 - **.**..

- We add *weights* to finite-state machines to enhance their capabilities.
- The notion of a weight is an abstract one: everything which fulfills the conditions of an abstract algebraic structure called a *semiring* can be used as a weight in a FSM.
- So weights can be:
 - Real numbers
 - Probabilities
 - Distances
 - Strings
 - Feature structures
 - Sets
 - Matrices
 - -

- We add *weights* to finite-state machines to enhance their capabilities.
- The notion of a weight is an abstract one: everything which fulfills the conditions of an abstract algebraic structure called a *semiring* can be used as a weight in a FSM.
- So weights can be:
 - Real numbers
 - Probabilities
 - Distances
 - Strings
 - Feature structures
 - Sets
 - Matrices
 - **.**..

Monoid

Definition (Monoid)

An algebraic structure $\langle W, \diamond, \overline{1} \rangle$ is a *monoid* if:

- \bullet is a binary operation on $W: \diamond : W \times W \mapsto W$
- \bullet is associative: $\forall x,y,z\in W: x\diamond y\diamond z=(x\diamond y)\diamond z=x\diamond (y\diamond z)$
- **3** $\overline{1}$ is the identity element for \diamond : $\forall x \in W : x \diamond \overline{1} = \overline{1} \diamond x = x$

Example (The following structures are monoids:)

- $\langle \mathbb{R}, +, 0 \rangle$ (addition of real numbers)
- ullet $\langle \mathbb{R}, \cdot, 1 \rangle$ (multiplication of real numbers)
- $\langle \mathbb{R} \cup \{\infty\}, min, \infty \rangle$ (minimum of real numbers)
- $\langle 2^M, \cup, \emptyset \rangle$ and $\langle 2^M, \cap, M \rangle$ for each set M
- $\langle \Sigma^*, \cdot, \varepsilon \rangle$ (concatenation monoid)
- $\langle 2^{\Sigma^*}, \cdot, \{\varepsilon\} \rangle$ (formal language monoid)
- $\langle \mathcal{F}, \sqcup, \perp \rangle$ (unification of feature structures, \perp = empty feature structure)

Commutative Monoid

Definition (Commutative monoid)

A monoid $\langle W, \diamond, \overline{1} \rangle$ is called *commutative* if $\forall x, y \in W : x \diamond y = y \diamond x$

Example

The following monoids are commutative:

- $\bullet \ \langle \mathbb{R}, +, 0 \rangle$
- \bullet $\langle \mathbb{R}, \cdot, 1 \rangle$
- $\langle \mathbb{R} \cup \{\infty\}, min, \infty \rangle$,
- $\langle \mathcal{F}, \sqcup, \perp \rangle$,
- ullet $\langle 2^M, \cup, \emptyset \rangle$ and $\langle 2^M, \cap, M \rangle$ for each set M

The following monoids are not commutative:

- $\langle \Sigma^*, \cdot, \varepsilon \rangle$
- $\langle 2^{\Sigma^*}, \cdot, \{\varepsilon\} \rangle$

Definition

Definition (Semiring)

An algebraic structure $\mathcal{K} = \langle W, \oplus, \otimes, \overline{0}, \overline{1} \rangle$ is a semiring if it fulfills the following conditions:

- **1** W is a nonempty set, called the *carrier set* of K.
- ② $\langle W, \oplus, \overline{0} \rangle$ is a commutative monoid with $\overline{0}$ as the identity element for \oplus .
- \bullet $\langle W, \otimes, \overline{1} \rangle$ is a monoid with $\overline{1}$ as the identity element for \otimes .
- \bullet \otimes distributes over \oplus :

$$\forall x, y, z \in W : x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z) \quad (left \ distributivity)$$
$$\forall x, y, z \in W : (y \oplus z) \otimes x = (y \otimes x) \oplus (z \otimes x) \quad (right \ distributivity)$$

5 $\overline{0}$ is an annihilator for \otimes : $\forall w \in W, w \otimes \overline{0} \otimes w = \overline{0}$.

Notational convention

In the following, we will identify a semiring K with its carrier set.

Common semirings

Example (Common semirings)

$\overline{\langle \mathbf{W}, \oplus, \otimes, \overline{0}, \overline{1} angle}$	Name	
$\overline{\langle \{t,f\},\vee,\wedge,f,t\rangle}$	boolean semiring	
$\langle \mathbb{R}, +, \cdot, 0, 1 \rangle$	real semiring	
$\langle [0,1],+,\cdot,0,1 \rangle$	probabilistic semiring	
$\langle \mathbb{R}_{\infty}, min, +, \infty, 0 \rangle$	tropical semiring	
$\langle [0,1], max, \cdot, 0, 1 \rangle$	Viterbi semiring	
$\langle \mathbb{R}_{\infty}, \oplus_{log}, +, \infty, 0 \rangle$	log semiring	$x \oplus_{log} y = -ln(e^{-x} + e^{-y})$
$\langle \mathbb{R}_{-\infty}, max, +, -\infty, 0 \rangle$	arctic semiring	
$\langle [0,1], max, min, 0, 1 \rangle$	fuzzy semiring	
$\langle 2^{\Sigma^*}, \cup, \cdot, \emptyset, \{\varepsilon\} \rangle$	concatenation semiring	2^{Σ^*} = formal languages
$\langle \Sigma^* \cup \{s_\infty\}, \wedge, \cdot, s_\infty, \varepsilon \rangle$	string semiring	\wedge = longest common prefix
$\langle 2^M, \cup, \cap, \emptyset, M \rangle$	set semiring	M is an arbitrary set
$\langle 2^{\mathcal{F}}, \cup, \sqcup, \emptyset, \{\bot\} \rangle$	unification semiring	\mathcal{F} = set of feature structures

String semiring

The string semiring is defined as $\langle \Sigma^* \cup \{s_\infty\}, \wedge, \cdot, s_\infty, \varepsilon \rangle$. That means:

 The longest common prefix operation ∧ plays the role of abstract addition:

$$x \wedge y = z$$
 if $x = zx'$ and $y = zy'$ (z is of maximum length)

• We augment Σ^* with a special string s_{∞} – the infinite string – which is the identity element of \wedge :

$$\forall x \in \Sigma^* \cup \{s_\infty\} : x \land s_\infty = s_\infty \land x = x$$

Example

$$cat \wedge car = ca$$

$$cat \wedge dog = \varepsilon$$

$$dog \wedge dogs = dog$$

$$cat \wedge s_{\infty} = cat$$

Isomorphic semirings

Definition (Isomorphic semirings)

A semiring isomorphism is a function f such that f and f^{-1} are semiring homomorphisms.

Let $K_1 = \langle W_1, \oplus_1, \otimes_1, \overline{0}_1, \overline{1}_1 \rangle$ and $K_2 = \langle W_2, \oplus_2, \otimes_2, \overline{0}_2, \overline{1}_2 \rangle$ be semirings.

A function $f: \mathcal{K}_1 \mapsto \mathcal{K}_2$ is a semiring homomorphism if:

- $f(\overline{1}_1) = \overline{1}_2$
- $f(a \oplus_1 b) = f(a) \oplus_2 f(b)$, for all a and b in \mathcal{K}_1
- $f(a \otimes_1 b) = f(a) \otimes_2 f(b)$ for all a and b in \mathcal{K}_1

Example (Isomorphic semirings)

- The tropical and Viterbi semirings are isomorphic under the -ln().
- ullet The real and log semirings are isomorphic under the ln() function.

Practical importance of semiring isomorphisms

Normally, we -log-transform probabilities to avoid numerical underflow.

Outline

- Semirings and weighted finite-state automata
- 2 Weighted finite-state automata
- Semiring properties
- 4 Closure properties and algebra of weighted finite-state automata
- Shortest-distance algorithms
- 6 Equivalence transformations

Weighted finite-state acceptors

Definition (Weighted finite-state acceptor)

A weighted finite-state acceptor (WFSA) $A=\langle \Sigma,Q,q_0,F,E,\lambda,\rho\rangle$ over a semiring $\mathcal K$ is a 7-tuple with:

- Σ , the finite input alphabet
- Q, the finite set of states
- $q_0 \in Q$, the start state
- $F \subseteq Q$ the set of final states
- $E \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times \mathcal{K} \times Q$, the set of transitions
- $\lambda \in K$, the *initial weight* and
- $\rho: F \mapsto K$, the final weight function

Notation

If t is a transition $\in E$, we denote with w[t] the weight of t and l[t] the label $\in \Sigma \cup \{\varepsilon\}$ of t.

Weighted finite-state acceptors

Example (WFSA accepting/generating politicians' speeches)

• Under the assumption that we **add** weights along a path (and in the end **add** the weight of the reached final state), this WFSA defines the following weighted language:

$$L(A_{blabla}) = \{bla \rightarrow 1, blabla \rightarrow 2, blablabla \rightarrow 3, \dots, bla^n \rightarrow n\}.$$

- This means: A_{blabla} can measure the length of these speeches.
- This in turn shows: Weighted finite-state automata can **count!**

Weighted finite-state acceptors

Example (WFSA mapping words to word indices)

- Again, if we **add** weights along a path we obtain for each accepted word a unique number, for example: $fox \mapsto 2 + 4 + 0 + 0 = 6$.
- This technique is also called *perfect hashing*.

Weighted finite-state transducers

Definition (Weighted finite-state transducer)

A weighted finite-state transducer (WFST) $A = \langle \Sigma, \Delta, Q, q_0, F, E, \lambda, \rho \rangle$ over a semiring $\mathcal K$ is a 8-tuple with

- Σ , the finite input alphabet
- \bullet Δ , the finite output alphabet
- Q, the finite set of states
- $q_0 \in Q$, the start state
- $F \subseteq Q$ the set of final states
- $E \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times (\Delta \cup \{\varepsilon\}) \times \mathcal{K} \times Q$, the set of transitions
- $\lambda \in K$, the *initial weight* and
- $m{\circ}\
 ho: F \mapsto K$, the *final weight function* mapping final states to elements in $\mathcal K$

Weighted finite-state transducers

Example

Weight of a string - the Master formula

Definition (Master formula)

Let $A = \langle \Sigma, Q, q_0, F, E, \lambda, \rho \rangle$ be a WFSA and $\mathcal{K} = \langle W, \oplus, \otimes, \overline{0}, \overline{1} \rangle$ the semiring associated with A. Let $\pi = t_1 t_2 \dots t_k$ be a path in A, that is, a sequence of adjacent transitions.

Let $\omega[\pi]$ be the abstract multiplication of the weights along π :

$$\omega[\pi] = w[t_1] \otimes w[t_2] \otimes \ldots \otimes w[t_k].$$

Let $x \in \Sigma^*$ be a string, such that $x = l[t_1] \cdot l[t_2] \cdot \ldots \cdot l[t_k]$.

Let $\Pi(P, x, P')$ be the set of paths starting at states in P, ending in states in P' and thereby deriving the string x.

The weight $[\![A]\!](x)$ assigned to a given string x is defined as follows:

$$\llbracket A \rrbracket(x) = \bigoplus_{f \in F, \pi \in \Pi(\{q_0\}, x, \{f\})} \lambda \otimes \omega[\pi] \otimes \rho(f)$$

$$[\![A]\!](x) = \overline{0}, \text{ if } \Pi(\{q_0\}, x, F) = \emptyset.$$

- For each path labeled with x, starting at the start state and reaching a final state, we combine a constant weight λ , the weight of the individual transitions and the weight assigned to that final state by **abstract multiplication**.
- There may be more than one path for x, if A is non-deterministic. In that case, we *abstractly add* the weights of all paths.
- This in turn means: if A is deterministic there is at most on path for x in A. The contribution of \bigoplus can then be neglected.
- If there is no path for x, the weight assigned to x is $\overline{0}$. Thus, $\overline{0}$ – the identity element of \oplus – signals, that a certain word x is **not** accepted by A.
- Note that $[\![A]\!](x)$ is a function mapping $x \in \Sigma^*$ to elements in \mathcal{K} .

- For each path labeled with x, starting at the start state and reaching a final state, we combine a constant weight λ , the weight of the individual transitions and the weight assigned to that final state by **abstract multiplication**.
- There may be more than one path for x, if A is non-deterministic. In that case, we *abstractly add* the weights of all paths.
- This in turn means: if A is deterministic there is at most on path for x in A. The contribution of \bigoplus can then be neglected.
- If there is no path for x, the weight assigned to x is $\overline{0}$. Thus, $\overline{0}$ – the identity element of \oplus – signals, that a certain word x is **not** accepted by A.
- Note that $[\![A]\!](x)$ is a function mapping $x \in \Sigma^*$ to elements in \mathcal{K} .

- For each path labeled with x, starting at the start state and reaching a final state, we combine a constant weight λ , the weight of the individual transitions and the weight assigned to that final state by **abstract multiplication**.
- There may be more than one path for x, if A is non-deterministic. In that case, we *abstractly add* the weights of all paths.
- This in turn means: if A is deterministic there is at most on path for x in A. The contribution of \bigoplus can then be neglected.
- If there is no path for x, the weight assigned to x is $\overline{0}$. Thus, $\overline{0}$ – the identity element of \oplus – signals, that a certain word x is **not** accepted by A.
- Note that $[\![A]\!](x)$ is a function mapping $x \in \Sigma^*$ to elements in \mathcal{K} .

- For each path labeled with x, starting at the start state and reaching a final state, we combine a constant weight λ , the weight of the individual transitions and the weight assigned to that final state by **abstract multiplication**.
- There may be more than one path for x, if A is non-deterministic. In that case, we *abstractly add* the weights of all paths.
- This in turn means: if A is deterministic there is at most on path for x in A. The contribution of \bigoplus can then be neglected.
- If there is no path for x, the weight assigned to x is $\overline{0}$. Thus, $\overline{0}$ – the identity element of \oplus – signals, that a certain word x is **not** accepted by A.
- Note that $[\![A]\!](x)$ is a function mapping $x \in \Sigma^*$ to elements in \mathcal{K} .

- For each path labeled with x, starting at the start state and reaching a final state, we combine a constant weight λ , the weight of the individual transitions and the weight assigned to that final state by *abstract multiplication*.
- There may be more than one path for x, if A is non-deterministic. In that case, we *abstractly add* the weights of all paths.
- This in turn means: if A is deterministic there is at most on path for x in A. The contribution of \bigoplus can then be neglected.
- If there is no path for x, the weight assigned to x is $\overline{0}$. Thus, $\overline{0}$ – the identity element of \oplus – signals, that a certain word x is **not** accepted by A.
- Note that $[\![A]\!](x)$ is a function mapping $x \in \Sigma^*$ to elements in \mathcal{K} .

Master formula

Example (Weight interpretation)

WFSA A with numerical weights $(\lambda = \overline{1} \text{ in all cases})$

$$[A](ba) =$$

Weights interpreted in the tropical semiring: $min(\{0.5+0.7+0.4,0.6+0.6+0.7\})=1.6$

Weights interpreted in the probabilistic SR: $0.5 \cdot 0.7 \cdot 0.4 + 0.6 \cdot 0.6 \cdot 0.7 = 0.392$

Weights interpreted in the Viterbi semiring: $max(\{0.5 \cdot 0.7 \cdot 0.4, 0.6 \cdot 0.6 \cdot 0.7\}) = 0.252$

Weights interpreted in the (max, min) SR: $max(\{min(\{0.5, 0.7, 0.4\}), min(\{0.6, 0.6, 0.7\})\}) = 0.6$

Master formula

Example $(A_{lieben}$ representing some forms of German verb lieben)

$$[\![A_{lieben}]\!](liebst) = \varepsilon \cdot \varepsilon \cdot \varepsilon \cdot Verb \cdot \varepsilon \cdot \varepsilon \cdot pres \ 2 \ sg$$

Why are semirings a suitable weight structure for finite-state automata?

• The fact that the semiring is composed out of two monoids gives us:

- ▶ two identity elements $\overline{0}$ and $\overline{1}$: $\overline{0}$ signals that some string is not part of the language accepted by the FSM, and $\overline{1}$, which gives us a notion of a "trivial" weight
- a high degree of freedom in which order to compute weights (by associativity)
- \bullet Commutativity of \oplus gives us the freedom to consider the paths according to the master formula in any order
- Distributivity of ⊗ enables us to factor out common "weight prefixes" of different paths (this property is for example important for weighted determinization)
- The annihilation relationship between \otimes and $\overline{0}$ causes any path which contains a transition with weight $\overline{0}$ to be invalid

Why are semirings a suitable weight structure for finite-state automata?

- The fact that the semiring is composed out of two monoids gives us:
 - ▶ two identity elements $\overline{0}$ and $\overline{1}$: $\overline{0}$ signals that some string is not part of the language accepted by the FSM, and $\overline{1}$, which gives us a notion of a "trivial" weight
 - a high degree of freedom in which order to compute weights (by associativity)
- \bullet Commutativity of \oplus gives us the freedom to consider the paths according to the master formula in any order
- Distributivity of ⊗ enables us to factor out common "weight prefixes" of different paths (this property is for example important for weighted determinization)
- The annihilation relationship between \otimes and $\overline{0}$ causes any path which contains a transition with weight $\overline{0}$ to be invalid

- The fact that the semiring is composed out of two monoids gives us:
 - ▶ two identity elements $\overline{0}$ and $\overline{1}$: $\overline{0}$ signals that some string is not part of the language accepted by the FSM, and $\overline{1}$, which gives us a notion of a "trivial" weight
 - a high degree of freedom in which order to compute weights (by associativity)
- \bullet Commutativity of \oplus gives us the freedom to consider the paths according to the master formula in any order
- Distributivity of ⊗ enables us to factor out common "weight prefixes" of different paths (this property is for example important for weighted determinization)
- The annihilation relationship between \otimes and $\overline{0}$ causes any path which contains a transition with weight $\overline{0}$ to be invalid

- The fact that the semiring is composed out of two monoids gives us:
 - ▶ two identity elements $\overline{0}$ and $\overline{1}$: $\overline{0}$ signals that some string is not part of the language accepted by the FSM, and $\overline{1}$, which gives us a notion of a "trivial" weight
 - a high degree of freedom in which order to compute weights (by associativity)
- \bullet Commutativity of \oplus gives us the freedom to consider the paths according to the master formula in any order
- Distributivity of ⊗ enables us to factor out common "weight prefixes" of different paths (this property is for example important for weighted determinization)
- The annihilation relationship between \otimes and $\overline{0}$ causes any path which contains a transition with weight $\overline{0}$ to be invalid

- The fact that the semiring is composed out of two monoids gives us:
 - ▶ two identity elements $\overline{0}$ and $\overline{1}$: $\overline{0}$ signals that some string is not part of the language accepted by the FSM, and $\overline{1}$, which gives us a notion of a "trivial" weight
 - a high degree of freedom in which order to compute weights (by associativity)
- \bullet Commutativity of \oplus gives us the freedom to consider the paths according to the master formula in any order
- Distributivity of ⊗ enables us to factor out common "weight prefixes" of different paths (this property is for example important for weighted determinization)
- The annihilation relationship between \otimes and $\overline{0}$ causes any path which contains a transition with weight $\overline{0}$ to be invalid

- The fact that the semiring is composed out of two monoids gives us:
 - ▶ two identity elements $\overline{0}$ and $\overline{1}$: $\overline{0}$ signals that some string is not part of the language accepted by the FSM, and $\overline{1}$, which gives us a notion of a "trivial" weight
 - a high degree of freedom in which order to compute weights (by associativity)
- \bullet Commutativity of \oplus gives us the freedom to consider the paths according to the master formula in any order
- Distributivity of ⊗ enables us to factor out common "weight prefixes" of different paths (this property is for example important for weighted determinization)
- The annihilation relationship between \otimes and $\overline{0}$ causes any path which contains a transition with weight $\overline{0}$ to be invalid

Significance of semirings

- The tropical semiring is the classical semiring of all kinds of shortest-distance / best-analysis problems
- The *probabilistic semiring* plays a important role in statistical language processing for computing string probabilities.
- The same is true for the *Viterbi semiring*, since it is related to processing tasks where we are interested in the analysis with the highest probability.
- The *string semiring* is used in string processing tasks, computational morphology.

Significance of semirings

- The tropical semiring is the classical semiring of all kinds of shortest-distance / best-analysis problems
- The *probabilistic semiring* plays a important role in statistical language processing for computing string probabilities.
- The same is true for the *Viterbi semiring*, since it is related to processing tasks where we are interested in the analysis with the highest probability.
- The *string semiring* is used in string processing tasks, computational morphology.

Significance of semirings

- The tropical semiring is the classical semiring of all kinds of shortest-distance / best-analysis problems
- The *probabilistic semiring* plays a important role in statistical language processing for computing string probabilities.
- The same is true for the *Viterbi semiring*, since it is related to processing tasks where we are interested in the analysis with the highest probability.
- The *string semiring* is used in string processing tasks, computational morphology.

Significance of semirings

- The tropical semiring is the classical semiring of all kinds of shortest-distance / best-analysis problems
- The *probabilistic semiring* plays a important role in statistical language processing for computing string probabilities.
- The same is true for the *Viterbi semiring*, since it is related to processing tasks where we are interested in the analysis with the highest probability.
- The *string semiring* is used in string processing tasks, computational morphology.

Weighted rational languages

Weighted rational languages as monoid homomorphisms

Weighted regular relations

Definition (Weighted regular relation)

Outline

- Semirings and weighted finite-state automata
- Weighted finite-state automata
- Semiring properties
- 4 Closure properties and algebra of weighted finite-state automata
- Shortest-distance algorithms
- 6 Equivalence transformations

Closure

An important operation on semiring elements is the *closure* operation *.

Definition (Closure)

Let $\mathcal{K} = \langle W, \oplus, \otimes, \overline{0}, \overline{1} \rangle$ be a semiring. The *closure* a^* of $a \in W$ is defined as:

$$a^* = \bigoplus_{n=0}^{\infty} a^n = \overline{1} \oplus a \oplus (a \otimes a) \oplus (a \otimes a \otimes a) \dots = \overline{1} \oplus a \oplus a^2 \oplus a^3 \dots$$

Example (Closures in different semirings)

Semiring	a	a*
tropical	0.5	$0.5^* = 0 \min 0.5 \min (0.5 + 0.5) \min \dots = 0$
Viterbi	0.5	$0.5^* = 1 \text{ max } 0.5 \text{ max } (0.5 \cdot 0.5) \text{ max } \dots = 1$
real	$\frac{1}{2}$	$\left(\frac{1}{2}\right)^* = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2$
string	cat	$cat^* = \varepsilon \wedge cat \wedge cat \cdot cat \wedge \ldots = \varepsilon$
concatenation	$\{a,b\}$	$\{a,b\}^* = \{\varepsilon\} \cup \{a,b\} \cup (\{a,b\} \cdot \{a,b\}) \cup \dots =$
		$\{\varepsilon, a, b, aa, ab, ba, bb, \ldots\}$
unification	$\{[f\!:\!a]\}$	$\{[f:a]\}^* = \{\bot\} \cup \{[f:a]\} \cup \ldots = \{\bot, [f:a]\}$

Semirings differ with respect a number of formal properties.

Definition (Semiring properties)

Let $\mathcal{K} = \langle W, \oplus, \otimes, \overline{0}, \overline{1} \rangle$ be a semiring.

- Finiteness: K is said to be *finite* if W is finite.
- Commutativity: K is said to be *commutative* if \otimes is commutative: $\forall x,y \in W: x \otimes y = y \otimes x$. Note that \oplus is commutative by definition.
- **Idempotency**: K is said to be *idempotent* if \oplus is idempotent: $\forall x \in W : x \oplus x = x$
- **Boundedness**: \mathcal{K} is said to be *bounded* if $\overline{1}$ is an annihilator for \oplus : $\forall x \in W : \overline{1} \oplus x = x \oplus \overline{1} = \overline{1}$
- k-Closedness: K is said to be k-closed (for a fixed integer k) if

$$\forall x \in W: \bigoplus_{n=0}^k x^n = \bigoplus_{n=0}^{k+1} x^n$$

Properties of individual semirings

The tropical, Viterbi and string semirings are idempotent, bounded and 0-closed:

	+idempotent	+bounded	0-closed
tropical	$a \min a = a$	$a \min 0 = 0$	$a^0 = a^1 = 0 \text{ min } a = 0$
Viterbi	$a \max a = a$	$a \max 1 = 1$	$a^0 = a^1 = 1 \text{ max } a = 1$
string	$a \wedge a = a$	$a\wedge\varepsilon=\varepsilon$	$a^0 = a^1 = \varepsilon \wedge a = \varepsilon$

The real semiring is not idempotent, not bounded and not k-closed:

	-idempotent	-bounded	-k-closed	
Real	$a + a = 2a \neq a$	$a+1 \neq a$	$\sum_{n=0}^{\infty} a^n = \begin{cases} \infty \\ \frac{1}{1-a} \end{cases}$	$\begin{array}{l} \text{if } n \geq 1 \\ \text{if } n < 1 \end{array}$

Closed semiring

Definition (Closed semiring)

Let $\mathcal{K} = \langle W, \oplus, \otimes, \overline{0}, \overline{1} \rangle$ be a semiring. \mathcal{K} is called *closed* if

• Every finite or infinite sum of elements $a_i \in W$ is in W too:

$$\forall \{a_1, \dots, a_n\} \subseteq W : \bigoplus_{i=1}^n a^i \in W$$

- Associativity and commutativity hold for countable sums:
- Distributivity hold for countable sums:

$$\forall \{a_1,\ldots,a_n\}, \{b_1,\ldots,b_m\} \subseteq W : \bigoplus_{i=1}^n a^i \otimes \bigoplus_{j=1}^m b^j = \bigoplus_{i=1}^n \left(\bigoplus_{j=1}^m (a^i \otimes b^j)\right)$$

Note

Closed semirings play an important role in shortest-distance algorithms.

Definition (Semiring properties)

Let $\mathcal{K} = \langle W, \oplus, \otimes, \overline{0}, \overline{1} \rangle$ be a semiring.

- Left divisibility: K is said to be *left divisible* if $\forall x \in W, x \neq \overline{0}$, $\exists y \in W$ such that $y \otimes x = \overline{1}$ (that is, every element has a *left inverse*)
- Weak left divisibility: \mathcal{K} is said to be weakly left divisible if $\forall x,y\in W, x\oplus y\neq \overline{0}, \exists z\in W: x=(x\oplus y)\otimes z.$ If z is unique we write $z=(x\oplus y)^{-1}\otimes x.$
- $\overline{0}$ -divisor-freeness: \mathcal{K} is said to be $\overline{0}$ -divisor-free if $\neg \exists x, y \in W, x, y \neq \overline{0}$, such that $x \otimes y = \overline{0}$
- $\overline{0}$ -sum-freeness: \mathcal{K} is said to be $\overline{0}$ -sum-free if $\neg \exists x, y \in W, x, y \neq \overline{0}$, such that $x \oplus y = \overline{0}$

Example (Weak left divisibility)

$$\forall \mathbf{x}, \mathbf{y} \in \mathbf{W}, \mathbf{x} \oplus \mathbf{y} \neq \overline{\mathbf{0}}, \exists \mathbf{z} \in \mathbf{W} : \mathbf{x} = (\mathbf{x} \oplus \mathbf{y}) \otimes \mathbf{z}.$$

- In the tropical semiring: x = 0.5, y = 0.2, z = 0.3 $(0.5 \min 0.2) + 0.3 = 0.5$ $-(0.5 \min 0.2) + 0.5 = -0.2 + 0.5 = 0.3$ $\mathbf{a}^{-1} = -\mathbf{a}$
- In the real semiring: $x = \frac{3}{10}, y = \frac{2}{10}, z = \frac{3}{5}$ $(\frac{3}{10} + \frac{2}{10}) \cdot \frac{3}{5} = \frac{3}{10}$ $\frac{1}{\frac{3}{10} + \frac{2}{10}} \cdot \frac{3}{10} = 2 \cdot \frac{3}{10} = \frac{3}{5}$ $\mathbf{a}^{-1} = \frac{1}{2}$
- In the string semiring: x = cats, y = cars, z = ts $(cats \land car) \cdot ts = ca \cdot ts = cats$ $(cats \land car)^{-1} \cdot cats = ca^{-1} \cdot cats = ts$ $\mathbf{a}^{-1} = inverse \ strings$

Left and right semirings

Definition (Left and right semirings)

A semiring K is called a *left semiring* if it is left distributive.

A semiring K is called a *right semiring* if it is right distributive.

Example (String semiring)

The string semiring is only a left semiring:

$$x \cdot (cat \wedge car) = xcat \wedge xcar = xca$$

$$(cat \wedge car) \cdot s = ca \cdot s = cas \neq cats \wedge cars = ca$$

Natural order

Definition (Natural order)

Let K be an idempotent semiring. We may define a partial order \leq_K – called the *natural order* – on the elements in K in the following way:

$$a \leq_{\mathcal{K}} b \equiv a \oplus b = a$$

Theorem ($\leq_{\mathcal{K}}$ is a partial order)

 $\leq_{\mathcal{K}}$ is reflexive, antisymmetric and transitive.

Proof.

- Reflexivity:
- 2 Antisymmetry:
- Transitivity:

Natural order

Based on the notion of a natural order we can define more semiring properties:

Definition

Let $\mathcal{K} = \langle W, \oplus, \otimes, \overline{0}, \overline{1} \rangle$ be a semiring. Let $\leq_{\mathcal{K}}$ be a partial order on the elements in \mathcal{K} .

- **Negativity**: \mathcal{K} is said to be *negative* if $\overline{1} \leq_{\mathcal{K}} \overline{0}$. \mathcal{K} is said to be *positive* if $\overline{0} \leq_{\mathcal{K}} \overline{1}$.
- Monotonicity: K is said to be *monotonic* if for all $x, y, z \in W$:

$$(x \leq_{\mathcal{K}} y) \to (x \oplus z \leq_{\mathcal{K}} y \oplus z)$$

$$(x \leq_{\mathcal{K}} y) \to (x \otimes z \leq_{\mathcal{K}} y \otimes z)$$

$$(x \leq_{\kappa} y) \to (z \otimes x \leq_{\kappa} z \otimes y)$$

• Superiority: K is said to be superior if for all $x, y \in W$:

$$x \leq_{\mathcal{K}} x \otimes y$$
 and

$$y \leq_{\mathcal{K}} x \otimes y$$

Natural order: significance

Superiority and Monotonicity are important properties for shortest-distance algorithms on WFSA:

- Superiority, that is $x \leq_{\mathcal{K}} x \otimes y$, means that the weight x of a string will not get better if you multiply it with the weight y of another transition.
- Monotonicity ensures an optimal substructure of shortest-distance problems: a problem where we haven to decide whether $x \otimes z \leq_{\mathcal{K}} y \otimes z$ holds can be reduced to the question whether $x \leq_{\mathcal{K}} y$ holds.

Theorem

- Every superior semiring is negative.
- 2 Every bounded semiring is idempotent.

Proof.

0

$$\forall a \in \mathcal{K}: \ \overline{1} \leq \overline{1} \otimes a = a \quad \text{(by superiority)}$$

 $\forall a \in \mathcal{K}: \ \underline{a} \leq \overline{0} \otimes \underline{a} = \overline{0}$

(by superiority and annihilator property)

 $\forall a \in \mathcal{K}: \ \overline{1} \le a \le \overline{0}$

2

$$a \oplus \overline{1} = a$$

$$\overline{1} \oplus \overline{1} = \overline{1}$$

$$a \oplus a = a$$

(Boundedness)

$$(a=\overline{1})$$

(multiplication with a)

Summary: Semirings and their properties

$\overline{\langle \mathbf{W}, \oplus, \otimes, \overline{0}, \overline{1} \rangle}$	Properties
$\overline{\langle \{t,f\},\vee,\wedge,f,t\rangle}$	boolean semiring: finite, commutative, positive, idem-
	potent, bounded, 0-closed, closed
$\langle \mathbb{R}, +, \cdot, 0, 1 \rangle$	real semiring: infinite, commutative, non-idempotent,
	monotonic, non-bounded, non-k-closed, non-closed
$\langle \mathbb{R}_{\infty}, \oplus_{log}, +, \infty, 0 \rangle$	log semiring: infinite, commutative, non-idempotent,
	monotonic, non-bounded, non-k-closed, non-closed
$\langle \mathbb{R}_{\infty}, min, +, \infty, 0 \rangle$	tropical semiring: infinite, commutative, negative,
	idempotent, monotonic, 0-closed, bounded
$\langle [0,1], max, \cdot, 0, 1 \rangle$	Viterbi semiring: infinite, commutative, negative, idem-
	potent, monotonic, 0-closed, bounded
$\langle \mathbb{R}_{-\infty}, max, +, -\infty, 0 \rangle$	arctic semiring
$\langle [0,1], max, min, 0, 1 \rangle$	fuzzy semiring

Summary: Semirings and their properties

$\overline{\langle \mathbf{W}, \oplus, \otimes, \overline{0}, \overline{1} \rangle}$	Properties
$\langle 2^{\Sigma^*}, \cup, \cdot, \emptyset, \{\varepsilon\} \rangle$	concatenation semiring: infinite, non-commutative, negative, idempotent, non- k -closed, closed, natural order: \subseteq
$\langle \Sigma^*, \wedge, \cdot, \emptyset, \varepsilon \rangle$	string semiring: infinite, left semiring, non-commutative, negative, idempotent, monotonic, bounded, 0-closed, natural order: is_prefix_of
$\langle 2^{\mathcal{F}}, \cup, \sqcup, \emptyset, \{\bot\} \rangle$	unification semiring: infinite, left semiring, commutative, negative, idempotent, monotonic, bounded, 1-closed, natural order: ⊑ (subsumption)

Semiring properties and FSM algebra

Some operations of the FSM algebra require certain properties of the underlying semiring:

- Intersection and composition are only defined for FSMs based on commutative semirings.
- Composition of WFSTs with $\varepsilon: x$ or $x: \varepsilon$ transitions must be parameterized for non-idempotent semirings.
- Shortest-distance algorithms usually require idempotent and negative semirings
- Weighted determinization is only defined for weakly left-divisible semirings.
- Making an FSM connected (remove all paths with path weight $\overline{0}$) usually requires $\overline{0}$ -divisor-freeness

Outline

- Semirings and weighted finite-state automata
- Weighted finite-state automata
- Semiring properties
- 4 Closure properties and algebra of weighted finite-state automata
- Shortest-distance algorithms
- 6 Equivalence transformations

Weighted finite-state acceptors are closed under the following operations:

- Union
- Concatenation
- Closure
- Intersection
- Difference with unweighted finite-state acceptors
- Reversal
- Substitution / homomorphism
- Cross product

Weighted finite-state acceptors are not closed under:

Complementation

The set of weighted finite state transducers is closed under

- Union
- Concatenation
- Closure
- Reversal
- Projection (note that this leads to FSAs)
- Composition
- Inversion

Weighted finite state transducers are **not** closed under

- Complementation
- Intersection (but acyclic and ε -free transducers are)
- Difference

The set of weighted finite state transducers is closed under

- Union
- Concatenation
- Closure
- Reversal
- Projection (note that this leads to FSAs)
- Composition
- Inversion

Weighted finite state transducers are **not** closed under

- Complementation
- Intersection (but acyclic and ε -free transducers are)
- Difference

Weighted closure

Definition (Weighted closure)

Let $A = \langle Q, \Sigma, q_0, F, E, \lambda, \rho \rangle$ be a weighted finite-state acceptor with underlying semiring $\mathcal{K} = \langle W, \oplus, \otimes, \overline{0}, \overline{1} \rangle$.

The *closure* of A – denoted by A^* – is defined as:

$$A^* = \langle Q \cup \{q_0'\}, \Sigma, q_0', F \cup \{q_0'\}, E \cup E_{\varepsilon}, \lambda, \rho' \rangle$$

with

$$E_{\varepsilon} = \{ \langle q, \varepsilon, \rho(q), q'_0 \rangle \mid \forall q \in F \} \cup \{ \langle q'_0, \varepsilon, \overline{1}, q_0 \rangle \}$$

and

$$\rho'(q) = \begin{cases} \rho(q) & \forall q \in F \\ \overline{1} & q = q'_0 \end{cases}$$

Weighted closure

Example (Weighted closure in the tropical semiring)

Example (Weighted closure in the probabilistic semiring)

Weighted intersection

Definition (Intersection of two weighted regular languages)

Let A_1 and A_2 be two weighted finite-state acceptors over alphabets Σ_1 and Σ_2 , resp. The intersection $A_1 \cap A_2$ is defined in the following way:

$$\forall x \in \Sigma_1^* \cap \Sigma_2^* : [A_1 \cap A_2](x) = [A_1](x) \otimes [A_2](x)$$

Weighted intersection

Definition (Weighted intersection of two finite-state acceptors)

Let $A_1 = \langle Q_1, \Sigma_1, q_{0_1}, F_1, E_1, \lambda_1, \rho_1 \rangle$ and $A_2 = \langle Q_2, \Sigma_2, q_{0_2}, F_2, E_2, \lambda_2, \rho_2 \rangle$ be two FSAs. $A_1 \cap A_2$, the intersection of A_1 and A_2 , is an acceptor:

$$A = \langle Q_1 \times Q_2, \Sigma_1 \cap \Sigma_2, \langle q_{0_1}, q_{0_2} \rangle, F_1 \times F_2, E, \lambda_1 \otimes \lambda_2, \rho \rangle$$
 where

- $\langle \langle p, q \rangle, a, w_1 \otimes w_2, \langle p', q' \rangle \rangle \in E$ if $\langle p, a, w_1, p' \rangle \in E_1$ and $\langle q, a, w_2, q' \rangle \in E_2$, for all $a \in \Sigma_1 \cap \Sigma_2$.
- $\rho(\langle p, q \rangle) = \rho_1(p) \otimes \rho_2(q), \forall p \in F_1, \forall q \in F_2$

Comments

- The individual weights of the two operands are abstractly multiplied during intersection.
- Note that weighted intersection unlike unweighted intersection is no longer idempotent: $A \cap A \neq A$.
- Weighted composition is defined analogously.

Weighted intersection

Example (Weighted intersection)

Weighted intersection: why is it only possible in commutative semirings?

Weighted composition in non-idempotent semirings

Definition (Composition of two weighted regular relations)

Let T_1 and T_2 be two weighted finite-state transducers over alphabets Σ_1 , Δ_1 and Σ_2 , Δ_2 , resp. The composition $T_1 \circ T_2$ is defined in the following way:

$$\forall x \in \Sigma_1^*, y \in \Delta_2^* : [T_1 \circ T_2](x, y) = \bigoplus_{z \in \Delta_1^* \cap \Sigma_2^*} [T_1](x, z) \otimes [T_2](z, y)$$

Example

Consider the two weighted relations in the real semiring

$$R_1 = \{\langle abcd, ad \rangle \mapsto 1\}$$
 and

$$R_2 = \{\langle ad, dea \rangle \mapsto 1\}.$$

According to the definition above,

$$R_1 \circ R_2 = \{\langle abcd, dea \rangle \mapsto 1\} \text{ with } z = ad.$$

Weighted composition in non-idempotent semirings

Definition (Composition of two weighted finite-state transducers)

Let $T_1 = \langle Q_1, \Sigma_1, \Delta_1, q_{0_1}, F_1, E_1, \lambda_1, \rho_1 \rangle$ and $T_2 = \langle Q_2, \Sigma_2, \Delta_2, q_{0_2}, F_2, E_2, \lambda_2, \rho_2 \rangle$ be two WFSTs. $T_1 \circ T_2$, the composition of T_1 and T_2 , is a transducer:

$$T = \langle Q_1 \times Q_2, \Sigma_1, \Delta_2, \langle q_{0_1}, q_{0_2} \rangle, F_1 \times F_2, E \cup E_{\varepsilon} \cup E_{i,\varepsilon} \cup E_{o,\varepsilon}, \lambda_1 \otimes \lambda_2, \rho \rangle$$
 where

- $E = \{ \langle \langle p, q \rangle, a, b, w_1 \otimes w_2, \langle p', q' \rangle \rangle \mid$ $\exists c \in \Delta_1 \cap \Sigma_2 : \langle p, a, c, w_1, p' \rangle \in E_1 \land \langle q, c, b, w_2, q' \rangle \in E_2 \}$
- $E_{\varepsilon} = \{ \langle \langle p, q \rangle, a, b, w_1 \otimes w_2, \langle p', q' \rangle \rangle \mid \\ \langle p, a, \varepsilon, w_1, p' \rangle \in E_1 \land \langle q, \varepsilon, b, w_2, q' \rangle \in E_2 \}$
- $\bullet E_{i,\varepsilon} = \{ \langle \langle p, q \rangle, \varepsilon, a, w, \langle p, q' \rangle \rangle \mid \langle q, \varepsilon, a, w, q' \rangle \in E_2 \land p \in Q_1 \}$
- $\bullet E_{o,\varepsilon} = \{ \langle \langle p, q \rangle, a, \varepsilon, w, \langle p', q \rangle \rangle \mid \langle p, a, \varepsilon, w, p' \rangle \in E_1 \land q \in Q_2 \}$

Weighted composition in non-idempotent semirings

- The problem is, that there are 4 paths deriving the string pair bc:e with weight 1.0
- By the master formula, paths weights are added
- In idempotent semirings this doesn't cause harm, since $a \oplus a = a$. But in non-idempotent semirings, we are faced with a problem
- Solution: introduce a filter such that all paths except one are deleted

- The problem is, that there are 4 paths deriving the string pair bc:e with weight 1.0
- By the master formula, paths weights are added
- In idempotent semirings this doesn't cause harm, since $a \oplus a = a$. But in non-idempotent semirings, we are faced with a problem
- Solution: introduce a filter such that all paths except one are deleted

- The problem is, that there are 4 paths deriving the string pair bc:e with weight 1.0
- By the master formula, paths weights are added
- In idempotent semirings this doesn't cause harm, since $a \oplus a = a$. But in non-idempotent semirings, we are faced with a problem
- Solution: introduce a filter such that all paths except one are deleted

- The problem is, that there are 4 paths deriving the string pair bc : e with weight 1.0
- By the master formula, paths weights are added
- In idempotent semirings this doesn't cause harm, since $a \oplus a = a$. But in non-idempotent semirings, we are faced with a problem
- Solution: introduce a filter such that all paths except one are deleted

Outline

- Semirings and weighted finite-state automata
- Weighted finite-state automata
- 3 Semiring properties
- 4 Closure properties and algebra of weighted finite-state automata
- 5 Shortest-distance algorithms
- 6 Equivalence transformations

Outline

- Semirings and weighted finite-state automata
- Weighted finite-state automata
- Semiring properties
- 4 Closure properties and algebra of weighted finite-state automata
- Shortest-distance algorithms
- 6 Equivalence transformations

Versions

• 29.10.2008: version 0.1 (initial version)