

DETERMINATION DES EFFORTS ET DES LOIS DE MOUVEMENT EN DYNAMIQUE

1 **OBJECTIFS**

1.1 Objectif technique

Objectif:

L'objectif de ce TP est de choisir un moteur (couple maximal, vitesse maximale) afin d'actionner la barrière de péage.

1.2 Contexte pédagogique

Analyser:

☐ A2 – Définir les frontières de l'analyse

Modéliser:

- B2 Proposer un modèle de connaissance et de comportement
- B3 Valider un modèle

Résoudre:

- ☐ C1 Proposer une démarche de résolution
- ☐ C2 Mettre en œuvre une démarche de résolution analytique
- ☐ C3 Mettre en œuvre une démarche de résolution numérique

1.3 Évaluation des écarts

L'objectif de ce TP est de vérifier si le moteur de la barrière est compatible avec le besoin du client en analysant les résultats établis analytiquement.

Problème 1

Problème 2

Problème 3

Problème 4

Hypothèses:

On suppose que le moteur est directement accouplé à la barrière. On cherche à résoudre le problème en statique.

Problématique :

Donner le couple moteur à fournir par le moteur en fonction de l'angle d'ouverture de la barrière.

Résultats attendus

- Donner la démarche de résolution du problème (graphe de liaison, schéma cinématique, paramétrage)
- Tracer le couple moteur en fonction de l'angle d'ouverture de la barrière sous Python [résolution analytique].
- [Facultatif] Tracer du couple moteur en fonction de l'angle d'ouverture de la barrière sous SolidWorks [résolution numérique].
- Confrontation des courbes sous Python.

Hypothèses:

On suppose que le moteur est directement accouplé à la barrière. On cherche à résoudre le problème en dynamique. Le temps d'ouverture de la barrière est fixé à 1 seconde. On utilise une loi de vitesse en trapèze.

Problématique :

Donner le couple moteur à fournir par le moteur en fonction de l'angle d'ouverture de la barrière.

Résultats attendus

- Donner la démarche de résolution du problème.
- Tracer le couple moteur en fonction de l'angle d'ouverture de la barrière sous Python [résolution analytique].
- Tracer le couple moteur en fonction du temps sous Python [résolution analytique].
- Tracer le couple moteur en fonction de l'angle d'ouverture de la barrière sous SolidWorks [résolution numérique].
- [Facultatif] Tracer le couple moteur en fonction du temps sous SolidWorks [résolution numérique].
- Confrontation des courbes sous Python.

Hypothèses:

On suppose que le moteur est accouplé à la barrière par l'intermédiaire du système de transformation de mouvement. On cherche à résoudre le problème en statique.

Problématique :

Donner le couple moteur à fournir par le moteur en fonction de l'angle d'ouverture de la barrière.

Résultats attendus

- Donner la démarche de résolution du problème
- Tracer le couple moteur en fonction de l'angle d'ouverture de la barrière ou du temps sous Python [résolution analytique].
- Tracer le couple moteur en fonction de l'angle d'ouverture de la barrière ou du temps sous SolidWorks [résolution numérique].
- Confrontation des courbes sous Python

Hypothèses:

On suppose que le moteur est accouplé à la barrière par l'intermédiaire du système de transformation de mouvement. On cherche à résoudre le problème en dynamique. Le temps d'ouverture de la barrière est fixé à 1 seconde.

Problématique :

Donner le couple moteur à fournir par le moteur en fonction de l'angle d'ouverture de la barrière.

Résultats attendus

- Donner la démarche de résolution du problème.
- Tracer le couple moteur en fonction de l'angle d'ouverture de la barrière ou du temps sous Python [résolution analytique].
- Tracer du couple moteur en fonction de l'angle d'ouverture de la barrière ou du temps sous SolidWorks [résolution numérique].
- Confrontation des courbes sous Python

2 Annexes

2.1 Ingénierie Système

2.1.1 Diagramme des exigences

2.1.2 Diagramme de définition des blocs

