Soit \mathcal{P} le plan affine euclidien muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$ et soit \mathcal{C} le cercle d'équation $x^2 + y^2 - 2ax - 2bx + c = 0$.

ex1: puissance d'un point par rapport à un cercle

- a) Soit un point P. Si une droite \mathcal{D} passant par P coupe \mathcal{C} en deux points M et M', montrer que $\overline{PM}.\overline{PM'}$ est indépendant de \mathcal{D} et qu'il est égal à $PO^2 r^2$ où r est le rayon du cercle \mathcal{C} . On le note $\mathcal{P}_{\mathcal{C}}(P)$ et on l'appelle la puissance du point P par rapport à \mathcal{C} .
- b) Montrer que si \mathcal{D} est tangente à \mathcal{C} en T, $\mathcal{P}_{\mathcal{C}}(P) = PT^2$. Régionner le plan en fonction du signe de $\mathcal{P}_{\mathcal{C}}(P)$.
- c) Montrer que les quatre points A, B, C, D tels que (AB) et (CD) soient sécantes en I sont cocycliques si et seulement si $\overline{IA}.\overline{IB} = \overline{IC}.\overline{ID}$
- d) Soit P(x,y). Montrer $\mathcal{P}_{\mathcal{C}}(P) = x^2 + y^2 2ax 2by + c$.

ex2: axe radical de deux cercles

- a) Soient \mathcal{C} et \mathcal{C}' deux cercles non concentriques, de centres respectifs O et O'. Montrer que l'ensemble des points du plan ayant même puissance par rapport à ces deux cercles est une droite orthogonale à (OO'). Cette droite s'appelle l'axe radical des deux cercles.
- b) Déterminer l'ensemble des points du plan dont les puissances par rapport à \mathcal{C} et \mathcal{C} ' diffèrent d'une constante k donnée.
- c) Soient C, C' et C" trois cercles de centres distincts. Déterminer l'ensemble des points du plan ayant même puissance par rapport à ces trois cercles.
- d) Soient $x^2 + y^2 6x 8y = 0$ et $x^2 + y^2 + 12x + 2\lambda y + 36 = 0$ les équations de deux cercles \mathcal{C} et \mathcal{C} '. Ecrire l'équation de leur axe radical, déterminer λ pour que les deux cercles soient tangents et préciser alors leur point de contact.

ex3: cercles orthogonaux

On dit que deux cercles sécants C et C' sont orthogonaux si les tangentes à ces deux cercles en l'un de leurs points d'intersection sont orthogonales.

- a) Donner une condition nécessaire et suffisante pour que deux cercles soient orthogonaux faisant intervenir les rayons de ces deux cercles et la distance de leurs centres.
- b) Soient $x^2 + y^2 2ax 2by + c = 0$ et $x^2 + y^2 2a'x 2b'y + c' = 0$ les équations des deux cercles \mathcal{C} et \mathcal{C} . Donner une condition nécessaire et suffisante portant sur a,a',b,b',c,c' pour que ces cercles soient orthogonaux.

ex4: faisceaux de cercles

Etant donnés deux cercles non concentriques \mathcal{C} et \mathcal{C}' , d'axe radical (Δ) , on appelle faisceau de cercles engendré par \mathcal{C} et \mathcal{C}' l'ensemble des cercles (Γ) du plan tels que l'axe radical de \mathcal{C} et (Γ) soit égal à (Δ)

a) Montrer que si \mathcal{C} rencontre (Δ) en deux points A et B, le faisceau de cercles engendré par \mathcal{C} et \mathcal{C} ' est l'ensemble des cercles passant par A et B. On dit alors que A et B sont les "points de base" du faisceau.

On note, pour tout $\alpha \in [0, \pi[, (\Gamma_{\alpha}) \text{ l'ensemble des points M du plan vérifiant } (\widehat{MA}, \widehat{MB}) = \alpha \mod \pi$. Montrer que le faisceau de cercles de points base A et B est l'ensemble des cercles (Γ_{α}) quand α décrit $[0, \pi[$.

- b) Décrire le faisceau quand (Δ) est tangent à \mathcal{C} .
- c) Montrer que si un cercle est orthogonal à deux cercles distincts d'un faisceau, il est orthogonal à tous les cercles du faiceau.
- d) Montrer que si deux cercles non concentriques \mathcal{C} et \mathcal{C}' ne se coupent pas, il existe un faisceau de cercles à points de base tel que le faiceau engendré par \mathcal{C} et \mathcal{C}' soit l'ensemble des cercles du plan orthogonaux à tout cercle de ce faisceau.

Soient A et B ces points de base. Pour tout réel positif α , on note (C_{α}) l'ensemble des points M du plan vérifiant MA/MB= α . Montrer que le faisceau engendré par \mathcal{C} et \mathcal{C} ' est l'ensemble des cercles \mathcal{C}_{α} pour $\alpha \neq 1$.

e) Soient f(x,y) = 0 et g(x,y) = 0 les équations de \mathcal{C} et \mathcal{C} . Montrer qu'un cercle appartient au faisceau engendré par \mathcal{C} et \mathcal{C} ' si et seulement si son équation peut s'écrire sous la forme $\lambda f(x,y) + \mu g(x,y) = 0$ pour deux réels λ et μ .