NAME: M.SIDDARTHA

REG.NO: 21BCE9247

```
In [32]:
             import numpy as np
             import pandas as pd
             import matplotlib.pyplot as plt
             import seaborn as sns
In [33]:
             df = sns.load dataset("car crashes")
In [34]:
             df
Out[34]:
                       speeding
                                  alcohol not_distracted no_previous ins_premium ins_losses abbrev
             0
                 18.8
                           7.332
                                     5.640
                                                    18.048
                                                                   15.040
                                                                                 784.55
                                                                                             145.08
                                                                                                          AL
             1
                 18.1
                           7.421
                                     4.525
                                                    16.290
                                                                  17.014
                                                                                1053.48
                                                                                             133.93
                                                                                                          ΑK
             2
                 18.6
                           6.510
                                     5.208
                                                    15.624
                                                                  17.856
                                                                                 899.47
                                                                                             110.35
                                                                                                          ΑZ
             3
                 22.4
                           4.032
                                     5.824
                                                    21.056
                                                                                             142.39
                                                                                                          AR
                                                                  21.280
                                                                                 827.34
             4
                 12.0
                           4.200
                                     3.360
                                                    10.920
                                                                  10.680
                                                                                 878.41
                                                                                             165.63
                                                                                                          CA
                           5.032
             5
                 13.6
                                     3.808
                                                    10.744
                                                                  12.920
                                                                                 835.50
                                                                                             139.91
                                                                                                         CO
                           4.968
             6
                 10.8
                                     3.888
                                                     9.396
                                                                   8.856
                                                                                1068.73
                                                                                             167.02
                                                                                                          CT
             7
                 16.2
                           6.156
                                     4.860
                                                    14.094
                                                                   16.038
                                                                                1137.87
                                                                                             151.48
                                                                                                          DE
                  5.9
             8
                           2.006
                                     1.593
                                                     5.900
                                                                   5.900
                                                                                             136.05
                                                                                                          DC
                                                                                1273.89
             9
                 17.9
                           3.759
                                     5.191
                                                    16.468
                                                                   16.826
                                                                                1160.13
                                                                                             144.18
                                                                                                          FL
                           2.964
            10
                 15.6
                                     3.900
                                                    14.820
                                                                   14.508
                                                                                 913.15
                                                                                             142.80
                                                                                                         GA
                 17.5
                           9.450
                                                                  15.225
                                                                                             120.92
                                                                                                          ΗΙ
            11
                                     7.175
                                                    14.350
                                                                                 861.18
            12
                 15.3
                           5.508
                                     4.437
                                                    13.005
                                                                                 641.96
                                                                                              82.75
                                                                                                          ID
                                                                  14.994
            13
                 12.8
                           4.608
                                     4.352
                                                    12.032
                                                                  12.288
                                                                                 803.11
                                                                                             139.15
                                                                                                           IL
            14
                 14.5
                           3.625
                                     4.205
                                                    13.775
                                                                  13.775
                                                                                 710.46
                                                                                             108.92
                                                                                                          IN
            15
                 15.7
                           2.669
                                     3.925
                                                    15.229
                                                                  13.659
                                                                                 649.06
                                                                                             114.47
                                                                                                          IΑ
                           4.806
                                     4.272
                                                                                                          KS
            16
                 17.8
                                                    13.706
                                                                  15.130
                                                                                 780.45
                                                                                             133.80
                           4.066
                                     4.922
                                                    16.692
                                                                                                          ΚY
            17
                 21.4
                                                                  16.264
                                                                                 872.51
                                                                                             137.13
            18
                 20.5
                           7.175
                                     6.765
                                                    14.965
                                                                  20.090
                                                                                1281.55
                                                                                             194.78
                                                                                                          LA
            19
                 15.1
                           5.738
                                     4.530
                                                    13.137
                                                                  12.684
                                                                                 661.88
                                                                                              96.57
                                                                                                         ME
            20
                 12.5
                           4.250
                                     4.000
                                                     8.875
                                                                  12.375
                                                                                1048.78
                                                                                             192.70
                                                                                                         MD
```

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA
22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26	MI
23	9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN
24	17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS
25	16.1	6.923	5.474	14.812	13.524	790.32	144.45	МО
26	21.4	8.346	9.416	17.976	18.190	816.21	85.15	MT
27	14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
28	14.7	5.439	4.704	13.965	14.553	1029.87	138.71	NV
29	11.6	4.060	3.480	10.092	9.628	746.54	120.21	NH
30	11.2	1.792	3.136	9.632	8.736	1301.52	159.85	NJ
31	18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
32	12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
33	16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
34	23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
35	14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН
36	19.9	6.368	5.771	18.308	18.706	881.51	178.86	OK
37	12.8	4.224	3.328	8.576	11.520	804.71	104.61	OR
38	18.2	9.100	5.642	17.472	16.016	905.99	153.86	PA
39	11.1	3.774	4.218	10.212	8.769	1148.99	148.58	RI
40	23.9	9.082	9.799	22.944	19.359	858.97	116.29	SC
41	19.4	6.014	6.402	19.012	16.684	669.31	96.87	SD
42	19.5	4.095	5.655	15.990	15.795	767.91	155.57	TN
43	19.4	7.760	7.372	17.654	16.878	1004.75	156.83	TX
44	11.3	4.859	1.808	9.944	10.848	809.38	109.48	UT
45	13.6	4.080	4.080	13.056	12.920	716.20	109.61	VT
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI

In [35]: sns.get_dataset_names()

```
Out[35]: ['anagrams', 'anscombe', 'attention',
```

```
'brain_networks',
'car_crashes',
'diamonds',
'dots',
'dowjones',
'exercise',
'flights',
'fmri',
'geyser',
'glue',
'healthexp',
'iris',
'mpg',
'penguins',
'planets',
'seaice',
'taxis',
'tips',
'titanic']
```

In [36]:

df.info

Out[36]:				me.info of	total speed	ding alcohol	not_distracted	no_prev
			remium \	5	10.010	45.040	704 55	
	0	18.8	7.332	5.640	18.048	15.040	784.55	
	1	18.1	7.421	4.525	16.290	17.014	1053.48	
	2	18.6	6.510	5.208	15.624	17.856	899.47	
	3	22.4	4.032	5.824	21.056	21.280	827.34	
	4	12.0	4.200	3.360	10.920	10.680	878.41	
	5	13.6	5.032	3.808	10.744	12.920	835.50	
	6	10.8	4.968	3.888	9.396	8.856	1068.73	
	7	16.2	6.156	4.860	14.094	16.038	1137.87	
	8	5.9	2.006	1.593	5.900	5.900	1273.89	
	9	17.9	3.759	5.191	16.468	16.826	1160.13	
	10	15.6	2.964	3.900	14.820	14.508	913.15	
	11	17.5	9.450	7.175	14.350	15.225	861.18	
	12	15.3	5.508	4.437	13.005	14.994	641.96	
	13	12.8	4.608	4.352	12.032	12.288	803.11	
	14	14.5	3.625	4.205	13.775	13.775	710.46	
	15	15.7	2.669	3.925	15.229	13.659	649.06	
	16	17.8	4.806	4.272	13.706	15.130	780.45	
	17	21.4	4.066	4.922	16.692	16.264	872.51	
	18	20.5	7.175	6.765	14.965	20.090	1281.55	
	19	15.1	5.738	4.530	13.137	12.684	661.88	
	20	12.5	4.250	4.000	8.875	12.375	1048.78	
	21	8.2	1.886	2.870	7.134	6.560	1011.14	
	22	14.1	3.384	3.948	13.395	10.857	1110.61	
	23	9.6	2.208	2.784	8.448	8.448	777.18	
	24	17.6	2.640	5.456	1.760	17.600	896.07	
	25	16.1	6.923	5.474	14.812	13.524	790.32	
	26	21.4	8.346	9.416	17.976	18.190	816.21	
	27	14.9	1.937	5.215	13.857	13.410	732.28	
	28	14.7	5.439	4.704	13.965	14.553	1029.87	
	29	11.6	4.060	3.480	10.092	9.628	746.54	
	30	11.2	1.792	3.136	9.632	8.736	1301.52	
	31	18.4	3.496	4.968	12.328	18.032	869.85	
	32	12.3	3.936	3.567	10.824	9.840	1234.31	
	33	16.8	6.552	5.208	15.792	13.608	708.24	

34	23.9	5.497	10.038	23.661	20.554	688.75
35	14.1	3.948	4.794	13.959	11.562	697.73
36	19.9	6.368	5.771	18.308	18.706	881.51
37	12.8	4.224	3.328	8.576	11.520	804.71
38	18.2	9.100	5.642	17.472	16.016	905.99
39	11.1	3.774	4.218	10.212	8.769	1148.99
40	23.9	9.082	9.799	22.944	19.359	858.97
41	19.4	6.014	6.402	19.012	16.684	669.31
42	19.5	4.095	5.655	15.990	15.795	767.91
43	19.4	7.760	7.372	17.654	16.878	1004.75
44	11.3	4.859	1.808	9.944	10.848	809.38
45	13.6	4.080	4.080	13.056	12.920	716.20
46	12.7	2.413	3.429	11.049	11.176	768.95
47	10.6	4.452	3.498	8.692	9.116	890.03
48	23.8	8.092	6.664	23.086	20.706	992.61
49	13.8	4.968	4.554	5.382	11.592	670.31
50	17.4	7.308	5.568	14.094	15.660	791.14

	ins_losses	abbrev
0	145.08	AL
1	133.93	AK
2	110.35	AZ
3	142.39	AR
4	165.63	CA
5	139.91	CO
6	167.02	CT
7	151.48	DE
8	136.05	DC
9	144.18	FL
10	142.80	GA
11	120.92	HI
12	82.75	ID
13	139.15	IL
14	108.92	IN
15	114.47	IA
16	133.80	KS
17	137.13	KY
18	194.78	LA
19	96.57	ME
20	192.70	MD
21	135.63	MA
22	152.26	MI
23	133.35	MN
24	155.77	MS
25	144.45	MO
26	85.15	MT
27	114.82	NE
28	138.71	NV
29	120.21	NH
30	159.85	NJ
31	120.75	NM
32	150.01	NY
33	127.82	NC
34	109.72	ND
35	133.52	OH
36	178.86	OK
37	104.61	OR
38	153.86	PA
39	148.58	RI

```
116.29
                          SC
40
41
            96.87
                          \mathsf{SD}
42
          155.57
                          \mathsf{TN}
43
          156.83
                          TX
44
          109.48
                          \mathsf{U}\mathsf{T}
          109.61
45
                          VT
46
          153.72
                          VA
47
          111.62
                          WA
48
          152.56
                          WV
49
           106.62
                          WI
```

In [37]:

df.describe()

Out[37]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses
count	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000
mean	15.790196	4.998196	4.886784	13.573176	14.004882	886.957647	134.493137
std	4.122002	2.017747	1.729133	4.508977	3.764672	178.296285	24.835922
min	5.900000	1.792000	1.593000	1.760000	5.900000	641.960000	82.750000
25%	12.750000	3.766500	3.894000	10.478000	11.348000	768.430000	114.645000
50%	15.600000	4.608000	4.554000	13.857000	13.775000	858.970000	136.050000
75%	18.500000	6.439000	5.604000	16.140000	16.755000	1007.945000	151.870000
max	23.900000	9.450000	10.038000	23.661000	21.280000	1301.520000	194.780000

In [38]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	total	51 non-null	float64
1	speeding	51 non-null	float64
2	alcohol	51 non-null	float64
3	not_distracted	51 non-null	float64
4	no_previous	51 non-null	float64
5	ins_premium	51 non-null	float64
6	ins_losses	51 non-null	float64
7	abbrev	51 non-null	object
1.6	C1 (C4/7)	1 1 1 (4)	

dtypes: float64(7), object(1)

memory usage: 3.3+ KB

In [39]:

df.head()

Out[39]:

:		total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
	0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
	1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK

		total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
	2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
	3	22 <u>4</u>	4 032	5 824	21 056	21 280	827 34	142 39	ΔR
[40]:	df	tail.	()						
ut[40]:		total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
	46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
	47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
	48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
	49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
	50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY
[41]:	df	head	(3)						
t[41]:		total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
	0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
	1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
	2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
42]:	df	.isnu	11().sum(()					
42]:	not no ins ins abb	eeding cohol	racted ous ium es	0 0 0 0 0 0					
[43]:	<pre>df.isnull().any()</pre>								
[43]:	ald not no_ ins ins abb	eeding ohol	racted ous ium ees	False False False False False False False False					

let us find the correlation

```
In [44]:
             cor = df.corr()
In [45]:
             cor
Out[45]:
                                total
                                       speeding
                                                    alcohol not_distracted no_previous ins_premium
                                                                                                        ins_losses
                            1.000000
                                       0.611548
                                                  0.852613
                                                                  0.827560
                                                                                0.956179
                                                                                              -0.199702
                                                                                                         -0.036011
                     total
                 speeding
                            0.611548
                                       1.000000
                                                  0.669719
                                                                  0.588010
                                                                                0.571976
                                                                                              -0.077675
                                                                                                         -0.065928
                  alcohol
                            0.852613
                                       0.669719
                                                  1.000000
                                                                  0.732816
                                                                                0.783520
                                                                                              -0.170612
                                                                                                        -0.112547
           not_distracted
                            0.827560
                                       0.588010
                                                  0.732816
                                                                  1.000000
                                                                                0.747307
                                                                                              -0.174856
                                                                                                         -0.075970
                            0.956179
              no_previous
                                       0.571976
                                                  0.783520
                                                                  0.747307
                                                                                1.000000
                                                                                              -0.156895
                                                                                                         -0.006359
                                     -0.077675
                                                                                              1.000000
                                                                                                          0.623116
             ins_premium
                           -0.199702
                                                 -0.170612
                                                                  -0.174856
                                                                               -0.156895
```

let us draw the correlation 2d matrix

-0.112547

-0.036011 -0.065928

```
In [46]:
    plt.figure(figsize=(10,10))
    sns.heatmap(cor,annot=True)
```

-0.075970

-0.006359

1.000000

0.623116

Out[46]: <AxesSubplot:>

ins_losses

SCATTER PLOT

```
In [47]:
    plt.figure(figsize=(8,8))
    sns.scatterplot(x="total",y = "speeding",data = df)
```

Out[47]: <AxesSubplot:xlabel='total', ylabel='speeding'>

inference fom the above graph: from the above graph we can say that the total number of drivers involoved in fatal collisions is linearly proportional percentage drivers invloved in fatal collisions who were speeding

```
In [48]:
            sns.scatterplot(x="total",y="alcohol",data = df,color="r")
           <AxesSubplot:xlabel='total', ylabel='alcohol'>
Out[48]:
             10
              8
           alcohol
              6
              4
              2
               5.0
                      7.5
                                   12.5
                                                 17.5
                             10.0
                                          15.0
                                                        20.0
                                                               22.5
```

inference fom the above graph: from the above graph we can say that the total number of drivers involoved in fatal collisions is linearly proportional percentage drivers invloved in fatal collisions who were distracted

LINE PLOT

```
In [49]:
           sns.lineplot(x="total",y="no_previous",data = df)
           <AxesSubplot:xlabel='total', ylabel='no_previous'>
Out[49]:
             22
             20
                                  MW MW
             18
             16
           no previous
             14
             12
             10
              8
              6
                            10.0
                                   12.5
                      7.5
                                         15.0
                                                17.5
                                                       20.0
                                                             22.5
               5.0
                                         total
```

inference fom the above graph: from the above graph we can say that the total number of drivers involved in fatal collisions is linearly proportional to percentage of drivers involved in fatal collisions who do not have previous

DIS PLIOT

```
In [50]: sns.displot(df["ins_losses"])
```

Out[50]: <seaborn.axisgrid.FacetGrid at 0x2b1db4e5430>

inference fom the above graph: from the above graph we can say that ins_losses mostly lies between 100 and 160 and highest at 140

REL PLOT

```
In [51]: sns.relplot(x="alcohol",y="speeding",data = df,hue="abbrev")
```

Out[51]: <seaborn.axisgrid.FacetGrid at 0x2b1dd0129a0>

inference fom the above graph: from the above graph we can say that when alocohol consumption is increasing speeding also increases

BAR PLOT

```
plt.figure(figsize=(13,14))
    sns.barplot(x="abbrev", y="total", data = df)
    plt.show()
```


inference fom the above graph: among all state ND has total no.of highest collisions

JOINT PLOT

```
In [53]: sns.jointplot(x="ins_premium",y="ins_losses",data = df)
```

Out[53]: <seaborn.axisgrid.JointGrid at 0x2b1dd394400>

inference fom the above graph:ins_premium and ins_looses are direvtly proportional

BOX PLOT

```
In [54]:
    plt.figure(figsize=(15,17))
    sns.boxplot(x=df["total"], y=df["alcohol"], data = df)
```

Out[54]: <AxesSubplot:xlabel='total', ylabel='alcohol'>

inference fom the above graph: from the above graph we can say that there are no outliers