	Sets	
Set	Convex?	Comments
Convex hull:	Yes	• conv C will be the smallest convex set that contains C .
• conv $C = \left\{ \sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, 0 \leq 0 \leq 1, 1^T 0 = 1 \right\}$		 conv C will be a finite set as long as C is also finite.
		• conv C win be a finite set as long as C is also finite.
Affine hull:	Yes.	
• aff $C = \{\sum_{i=1}^k \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, 1^T 0 = 1\}$		• A will be the smallest affine set that contains C.
		• Different from the convex set, θ_i is not restricted between 0 and 1
		• aff C will always be an infinite set. If aff C contains the origin, it is also a subspace.
Conic hull:	Yes.	
• $A = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, \theta_i > 0 \text{ for } i = 1, \dots, k \right\}$	100.	• A will be the smallest convex conic that contains C.
$\{ Z_{l=1} \circ_{l} x_{l} \mid x_{l} \in \mathcal{C}, \sigma_{l} \neq \sigma_{l} \text{ for } l \neq 1, \dots, N \}$		• Different from the convex and affine sets, θ_i does not need to sum
		up 1.
Hyperplane:	Yes.	
$\bullet \ \mathcal{H} = \left\{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b \right\}$		• It is an infinite set $\mathbb{R}^{n-1}\subset\mathbb{R}^n$ that divides the space into two
$\bullet \ \mathcal{H} = \left\{ \mathbf{x} \mid \mathbf{a}^{T}(\mathbf{x} - \mathbf{x}_0) = 0 \right\}$		halfspaces.
$\bullet \ \mathcal{H} = \mathbf{x}_0 + a^{\perp}$		• $a^{\perp} = \{ \mathbf{v} \mid \mathbf{a}^{T} \mathbf{v} = 0 \}$ is the set of vectors perpendicular to \mathbf{a} . It passes through the origin.
		• a^{\perp} is offset from the origin by \mathbf{x}_0 , which is any vector in \mathcal{H} .
Halfspaces:	Yes.	
$\bullet \ \mathcal{H}_{-} = \left\{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \le b \right\}$	100.	• They are infinite sets of the parts divided by \mathcal{H} .
$\bullet \ \mathcal{H}_{+} = \left\{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \ge b \right\}$		
Euclidean ball:	Yes.	• $B(\mathbf{x}_c, r)$ is a finite set as long as $r < \infty$.
$\bullet \ B(\mathbf{x}_c, r) = \{\mathbf{x} \mid \ \mathbf{x} - \mathbf{x}_c\ _2 \le r\}$		
$\bullet \ B(\mathbf{x}_c, r) = \left\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{T} (\mathbf{x} - \mathbf{x}_c) \le r \right\}$		 x_c is the center of the ball. r is its radius.
$\bullet \ B(\mathbf{x}_c, r) = \{\mathbf{x}_c + r \ \mathbf{u}\ \mid \ \mathbf{u}\ \le 1\}$		• r is its radius.
Ellipsoid:	Yes.	
$\bullet \mathcal{E} = \left\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \right\}$		$ullet$ ${\cal E}$ is a finite set as long as ${f P}$ is a finite matrix.
• $\mathcal{E} = \{\mathbf{x}_c + \mathbf{A}\mathbf{u} \mid \mathbf{u} \le 1\}$, where $\mathbf{A} = \mathbf{P}^{1/2}$.		• P is symmetric and positive definite, that is, $\mathbf{P} = \mathbf{P}^{T} > 0$.
		• \mathbf{x}_c is the center of the ellipsoid.
		• The lengths of the semi-axes are given by $\sqrt{\lambda_i}$.
		• A is invertible. When it is not, we say that \mathcal{E} is a degenerated ellipsoid (degenerated ellipsoids are also convex).
Norm cone:	Yes.	
• $C = \{[x_1, x_2, \cdots, x_n, t]^T \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{x} _p \le t\} \subseteq \mathbb{R}^{n+1}$		• Although it is named "Norm cone", it is a set, not a scalar.
		• The cone norm increases the dimension of x in 1.
		• For $p=2$, it is called the second-order cone, quadratic cone, Lorentz cone or ice-cream cone.
Polyhedra:	Yes.	
• $\mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_j^T \mathbf{x} \le b_j, j = 1, \dots, m, \mathbf{a}_j^T \mathbf{x} = d_j, j = 1, \dots, p \right\}$		ullet Polyhedron is the result of the intersection of m halfspaces and p hyperplanes.
• $\mathcal{P} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{bmatrix}^T \text{ and } \mathbf{C} = \mathbf{c}$		• The polyhedron may or may not be an infinite set.
$\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_m \end{bmatrix}^T$		• Subspaces, hyperplanes, lines, rays line segments, and halfspaces are all polyhedra.
		• The nonnegative orthant, $\mathbb{R}^n_+ = \{\mathbf{x} \in \mathbb{R}^n \mid x_i \leq 0 \text{ for } i = 1, \dots n\} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{I}\mathbf{x} \geq 0\}$, is a special polyhedron.
Simplex:	Yes.	
• $S = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid 0 \le \mathbf{\theta} \le 1, 1^T \mathbf{\theta} = 1\}$		• Simplexes are a subfamily of the polyhedra set.
• $S = \{ \mathbf{x} \mid \mathbf{x} = \mathbf{v}_0 + \mathbf{V}\mathbf{\theta} \}$, where $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 - \mathbf{v}_0 & \dots & \mathbf{v}_n - \mathbf{v}_0 \end{bmatrix} \in \mathbb{R}^{n \times k}$		• Also called k-dimensional Simplex in \mathbb{R}^n .
• $S = \{ \mathbf{x} \mid \mathbf{A}_1 \mathbf{x} \leq \mathbf{A}_1 \mathbf{v}_0, 1^T \mathbf{A}_1 \mathbf{x} \leq 1 + 1^T \mathbf{A}_1 \mathbf{v}_0, \mathbf{A}_2 \mathbf{x} = \mathbf{A}_2 \mathbf{v}_0 \}$ (Polyhedra form), where		• The set $\{\mathbf{v}_m\}_{m=0}^k$ is a affinely independent, which means $\{\mathbf{v}_1 - \mathbf{v}_0, \dots, \mathbf{v}_k - \mathbf{v}_0\}$ are linearly independent.
Linear inequalities in x Linear equalities in x $\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix} \text{ and } \mathbf{A}\mathbf{V} = \begin{bmatrix} \mathbf{I}_{k \times k} \\ 0_{n-k \times n-k} \end{bmatrix}$		• $\mathbf{V} \in \mathbb{R}^{n \times k}$ is a full-rank tall matrix, i.e., rank $(\mathbf{V}) = k$. All its column vectors are independent. The matrix \mathbf{A} is its left pseudoinverse.

Function	Convex?	Comments
Union: $C = A \cup B$	Not always.	
Intersection: $C = A \cap B$	Yes, if A and B are convex sets.	
• All convex set is quasiconvex, but not all quasiconvex is co	onvex.	

Functions (or operators) and their implications regarding convexity

- Superlevel set (a set) 3.3.6, all convex functions have all convex α sub-level set, but not all functions that have convex α sub-level set are convex (see slide 3.11).

• It is possible to solve quasiconvex functions, even if it is not convex (see Algorithm 4.1). But not all quasiconvex functions that are nonconvex can be solved(?).