Projeto e Análise de Algoritmos

Hamilton José Brumatto

Bacharelado em Ciência da Computação - UESC

3 de maio de 2017

Crescimento de Funções Propriedades das Classes Atividades $\begin{tabular}{ll} \mbox{Notação Assintótica} \\ \mbox{Classe } O \\ \mbox{Classe } \Theta \\ \mbox{Classe } o \\ \mbox{Classe } \omega \\ \end{tabular}$

Crescimento de Funções

O tempo de execução depende da grandeza da entrada

- É necessário definir uma dimensão para a entrada.
- Problemas numéricos podem depender, ou da quantidade de elementos numéricos ou no número de bits que representa o valor numérico da entrada.
- Problemas baseados em estrutura de dados podem depender da quantidade de elementos da estrutura, como vértices e/ou arestas em um grafo ou árvore.
- Problemas baseados em textos podem depender do número de caracteres ou número de palavras.

O tempo de execução aumenta, de forma positiva, com o tamanho da entrada

- Funções que representam complexidade são consideradas sempre positivas.
- A comparação é assintótica, ou seja, para números grandes, desprezando-se constantes multiplicativas e termos de menor ordem.

Crescimento	10^{2}	10^{3}	10^{5}	10 ⁷	10^{10}
logn	2	3	5	7	10
n	10^{2}	10^{3}	10^{5}	10 ⁷	10^{10}
nlogn	$2 \cdot 10^{2}$	$3 \cdot 10^3$	$5\cdot 10^5$	$7 \cdot 10^{7}$	10^{11}
n^2	10 ⁴	10^{6}	10^{10}	10^{14}	10^{20}
2 ⁿ	$1,2\cdot 10^{30}$	10 ³⁰¹	10 ^{30.103}	$> 10^{3.000.000}$?

Classe O

 $O(g(n))=\{\ f(n):\ \ \text{existem constantes positivas } c\in n_0 \text{ tais}$ que $0\leqslant f(n)\leqslant cg(n)$, para todo $n\geqslant n_0$ }. Ou seja, se $f(n)\in O(g(n))$ significa que f(n) cresce no máximo tão rapidamente quanto g(n)

Classe O: Exemplo

$$n^2+5n\in O(n^2).$$

Queremos: $n^2 + 5n \leqslant cn^2$ para todo $n \geqslant n_0$

Temos: $5n \leqslant (c-1)n^2$, logo c > 1

Vamos tomar: c = 2 por exemplo.

Ficamos com: $5n \leqslant n^2$.

Fazemos $n_0 = 5$

$$n^2 + 5n \in O(n^2)$$
, pois $0 \leqslant n^2 + 5n \leqslant 2n^2$ para todo $n \geqslant 5$

Classe Ω

 $\Omega(g(n)) = \{ f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais } \text{ que } f(n) \geqslant cg(n), \text{ para todo } n \geqslant n_0 \}.$ Ou seja, se $f(n) \in \Omega(g(n))$ significa que f(n) cresce no mínimo tão lentamente quanto g(n)

Classe Ω : Exemplo

$$n^3 - n^2 \in \Omega(n^3)$$
.

Queremos: $n^3 - n^2 \geqslant cn^3$ para todo $n \geqslant n_0$

Temos: $n^2 \leqslant (1-c)n^3$, ou simplesmente: $1 \leqslant (1-c)n^3$

Vamos tomar: $c = \frac{1}{2}$, por exemplo.

Ficamos com: $1 \leqslant \frac{1}{2}n$.

Fazemos $n_0 = 2$

$$n^3-n^2\in\Omega(n^3)$$
, pois $n^3-n^2\geqslant \frac{1}{2}n^3$ para todo $n\geqslant 2$

Classe Θ

$$\Theta(g(n)) = \{ f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais }$$
 que $0 \leqslant c_1 g(n) \leqslant f(n) \leqslant c_2 g(n),$ para todo $n \geqslant n_0 \}.$

Ou seja, se $f(n) \in \Theta(g(n))$ significa que f(n) cresce tão rapidamente quanto g(n)

Classe Θ : Exemplo

$$2n^2+2n\in\Theta(n^2).$$

Queremos: $c_1 n^2 \leqslant 2n^2 + 2n \leqslant c_2 n^2$ para todo $n \geqslant n_0$

Temos: $-2n \leqslant (2-c_1)n^2$, ou simplesmente: $-2 \leqslant (2-c_1)n$

Queremos $(2 - c_1)$ positivo: $c_1 = 1$, por exemplo.

Ficamos com: $-2 \leqslant n$.

Fazemos $n_0 = 1$

Por outro lado: $2n \leq (c_2 - 2)n^2$, ou simplesmente: $2 \leq (c_2 - 2)n$

Vamos tomar: $c_2 = 3$, por exemplo.

Fazemos $n_0 = 2$

 $2n^2+2n\in\Theta(n^2)$, pois $0\leqslant 1.n^2\leqslant 2n^2+2n\leqslant 3.n^2$ para todo $n\geqslant 2$

Classe o

$$o(g(n)) = \{ f(n) :$$
 para toda constante positiva c , existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0 \}$.

Ou seja, se $f(n) \in o(g(n))$ significa que f(n) cresce mais lentamente que g(n)

Classe o: Exemplo

$$100n^2 \in o(n^3).$$

Para todo valor de c > 0 $\exists n_0 > 0$ que satisfaz a definição.

$$100n^2 < cn^3$$
, ou $100 < cn$. Podemos tomar:

$$n_0 = \frac{100}{c} + 1$$

Classe ω

$$\omega(g(n)) = \{ f(n) : \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } f(n) > cg(n), \text{ para todo } n \ge n_0 \}.$$

Ou seja, se $f(n) \in \omega(g(n))$ significa que f(n) cresce mais rapidamente que g(n)

Classe ω : Exemplo

$$\frac{n^3}{1000} \in \omega(n^2).$$

Para todo valor de c > 0 $\exists n_0 > 0$ que satisfaz a definição. $\frac{n^3}{1000} > cn^2$, ou $\frac{n}{1000} > c$. Podemos tomar:

$$n_0 = 1000c + 1$$

A relação de classe entre as funções

•
$$f(n) \in o(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

•
$$f(n) \in O(g(n))$$
 se $0 \leqslant \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$

•
$$f(n) \in \Theta(g(n))$$
 se $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$

•
$$f(n) \in \Omega(g(n))$$
 se $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} \leq \infty$

•
$$f(n) \in \omega(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

Relação de classe é transitiva

Se
$$f(n) \in o(g(n))$$
 e $g(n) \in o(h(n))$, então $f(n) \in o(h(n))$

Se
$$f(n) \in O(g(n))$$
 e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$

Se
$$f(n) \in \Theta(g(n))$$
 e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$

Se
$$f(n) \in \Omega(g(n))$$
 e $g(n) \in \Omega(h(n))$, então $f(n) \in \Omega(h(n))$

Se
$$f(n) \in \omega(g(n))$$
 e $g(n) \in \omega(h(n))$, então $f(n) \in \omega(h(n))$

Propriedade reflexiva na relação de classe

$$f(n) \in O(f(n))$$

$$f(n) \in \Omega(f(n))$$

$$f(n) \in \Theta(f(n))$$

$$f(n) \notin o(f(n))$$

$$f(n) \notin \omega(f(n))$$

Simetria na relação de classe

Simetria direta:

$$f(n) \in \Theta(g(n))$$
 se e somente se $g(n) \in \Theta(f(n))$

Simetria transposta:

$$f(n) \in O(g(n))$$
 se e somente se $g(n) \in \Omega(f(n))$

$$f(n) \in o(g(n))$$
 se e somente se $g(n) \in \omega(f(n))$

Atividades baseadas no CLRS

Leitura: Capítulo 3

• Exercícios: 3.1-1, 3.1-2, 3.1-3, 3.1-4, 3.1-7,

• Problemas: 3-1, 3-2, 3-3a, 3-4: a, b, f.

Resolver a 2ª Lista de Exercícios