◊◊◊ Lycée de Dindéfélo ◊◊◊			A.S.: 2024/2025
Matière : Mathématiques	Niveau : T S2	Date : 09/06/2025	

Problèmes proposés au BAC S2 Sénégal de 1999 à 2022

<u>Problème 1</u> Extrait BAC 1999 1^{er} groupe On Considère la fonction f définie par :

$$f(x) = \begin{cases} x + \ln \left| \frac{x - 1}{x + 1} \right| & \text{si } x \in] - \infty, -1[\cup] - 1, 0[\\ x^2 e^{-x} & \text{si } x \in [0, +\infty[$$

et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$, d'unité 2 cm.

Partie A

- 1 Déterminer l'ensemble de définition D_f de f. Calculer f(-2) et f(3).
- 2 Calculer les limites aux bornes de D_f .
- 3 Étudier la continuité de f en 0.
- 4 a Établir que la dérivée de f est donnée par :

$$f'(x) = \begin{cases} \frac{x^2 + 1}{x^2 - 1} & \text{si } x \in]-\infty, -1[\cup] - 1, 0[\\ xe^{-x}(2 - x) & \text{si } x \in [0, +\infty[\end{cases}$$

- b La fonction f est-elle dérivable en 0 ? Justifier votre réponse.
- \mathbf{c} Dresser le tableau de variations de f.
- 5 Démontrer que l'équation f(x) = 0 admet une solution unique α comprise entre -1,6 et -1,5.
- 6 a Justifier que la droite (D) d'équation y = x est une asymptote à la courbe (C_f) en $-\infty$.
 - b Étudier la position relative de (C_f) par rapport à la droite (D) pour $x \in]-\infty, -1[\cup]-1, 0[$.
 - c Tracer (C_f) .

Partie B:

Soit g la restriction de f à I = [0; 2].

- 1 Montrer que g définit une bijection de I vers un intervalle J à préciser.
- 2 On note g^{-1} la bijection réciproque de g.
 - a Résoudre l'équation $g^{-1}(x) = 1$.
 - b Montrer que $\left(g^{-1}\right)'\left(\frac{1}{e}\right) = e$.
 - **c** Construire $(C_{q^{-1}})$, la courbe de g^{-1} .

$oxdot{ ext{roblème 1}}$ Extrait BAC 1999 1 er groupe On $oxdot{ ext{Partie C}}$:

 β étant un réel strictement positif, on pose :

$$I(\beta) = \int_0^\beta f(x) \, dx$$

- 1 a Interpréter graphiquement $I(\beta)$.
 - b En procédant par une intégration par parties, calculer $I(\beta)$.
- 2 Calculer $\lim_{\beta \to -\infty} I(\beta)$.
- 3 On pose $\beta = 2$.
 - a Calculer I(2).
 - b En déduire la valeur en cm² de l'aire du domaine du plan délimité par la courbe (C_f) , l'axe des abscisses et les droites d'équations x=0 et $x=\frac{4}{e^2}$.

Problème 2 BAC 1999 Remplacement

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{si } x \in]-\infty; 0[\\ \ln\left|\frac{x-1}{x+1}\right| & \text{si } x \in [0; 1[\cup]1; +\infty[$$

et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$ d'unité 2 cm.

Partie A:

- 1 Étudier la continuité de f en 0.
- Montrer que $\forall x \in]0; 1[$, $\frac{f(x)}{x} = \frac{\ln(1-x)}{x} \frac{\ln(1+x)}{x}$
 - \mathbf{b} Étudier la dérivabilité de f en 0.
 - En déduire que (C_f) admet au point d'abscisse 0 deux demi-tangentes dont on donnera les équations.
- 3 Étudier les variations de f.
- 4 Tracer (C_f) .

Partie B:

Soit g la restriction de f à $]1; +\infty[$.

- 1 Montrer que g est une bijection de $]1; +\infty[$ vers un intervalle J à préciser. On notera g^{-1} la bijection réciproque de g.
- 2 Montrer que l'équation g(x) = -e admet une unique solution α sur l'intervalle $]1; +\infty[$. (On ne demande pas de calculer α).
- **3** Montrer que $\forall x \in J, \ g^{-1}(x) = 1 \frac{e^x}{e^x 1}$.

- 4 Construire $(C_{g^{-1}})$. (On indiquera la nature et l'équation de chacune des asymptotes à (C_g) et $(C_{q^{-1}})$).
- ${\bf 5}$ Calculer en ${\rm cm}^2$ l'aire A de l'ensemble des points M(x;y) défini par :

$$\begin{cases} -\ln 7 \le x \le -1\\ 0 \le y \le g^{-1}(x) \end{cases}$$

Problème 3

1

