Name = GAUTAM Kumar roll =B19EE031

Lab 6 report

Head of dataset

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

Description of dataset

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

DISTRIBUTION OF INPUT FEATURES

Age Distribution

Gender

Children

BMI

Smoker

Region

Target Variable : Charges

Correlation Plot

```
bmi children
                                        charges
               age
          1.000000
                   0.109272
                              0.042469
                                       0.299008
  age
          0.109272
                   1.000000
                              0.012759
                                       0.198341
  bmi
children 0.042469 0.012759 1.000000
                                       0.067998
charges 0.299008 0.198341
                              0.067998
                                        1.000000
corr = df.corr()
corr.style.background_gradient(cmap='coolwarm')
                         children charges
          age
                  bmi
        1.000000 0.109272 0.042469 0.299008
  age
        0.109272 1.000000 0.012759 0.198341
  bmi
children 0.042469 0.012759 1.000000 0.067998
charges 0.299008 0.198341 0.067998 1.000000
```

Distribution of dependent data

Label Encoding and log of target variable

	age	sex	bmi	children	smoker	region	charges	log_transform
0	19	0	27.900	0	1	3	16884.92400	9.734176
1	18	1	33.770	1	0	2	1725.55230	7.453302
2	28	1	33.000	3	0	2	4449.46200	8.400538
3	33	1	22.705	0	0	1	21984.47061	9.998092
4	32	1	28.880	0	0	1	3866.85520	8.260197

Addition of xo = 1 in input features

	age	sex	bmi	children	smoker	region	хо
436	22	1	31.730	0	0	0	1
886	57	1	28.975	0	1	0	1
514	39	1	28.300	1	1	3	1
928	62	0	39.160	0	0	2	1
417	36	0	22.600	2	1	3	1

Parameters comparison

- Using $\Theta = (X^T X)^{-1} X^T Y$, PARAMETERS = [0.03386144 -0.06066302 0.01140949 0.10016429 1.54669051 -0.03834556 7.0917214]
- Using sklearn linear model: WEIGHTS: [0.03386144 -0.06066302 0.01140949 0.10016429 1.54669051 -0.03834556]
 INTERCEPT: 7.091721404756623

ANALYSIS

- Hence we can see that we got the same set of weights with very minor differences.
- By adding xo = 1, we got the last value of weights equal to intercept.
- The values of y will be calculated by linear combination of x and weights.
- *Y* = *woxo* + *w1x1* + *w2x2* + *WnXn* + *intercept*
- For our built model, we have already accounted for intercept by adding the feature of xo.

ANALYSIS

• Mean Squared Error through self build function: 0.1987110556807042

• Mean Squared Error through sklearn library: 0.19871105568070455

- Hence both the values are nearly same.
- Both models are giving accurate results as their errors are low.

Checking Linearity of features with target

Conclusion

- Hence we learnt about linear regressor model.
- We learnt the method to calculate weights and intercept of the model.
- We found the correlation of output with different input features.
- We learnt to write a function that calculates mean square error.
- We compared error and accuracy of both the models.