Maximizing a Expression with Constraints

Key Concepts:

- Arithmetic-geometric mean inequality
- Maximization
- Constraints
- Inequalities
- Optimization

Important Definitions:

- Arithmetic-geometric mean inequality: The inequality stating that the arithmetic mean of a set of non-negative numbers is greater than or equal to the geometric mean.
- Maximization: The process of finding the maximum value of an expression.

Examples:

- The inequality 2*sqrt(b/a) <= b/c + c/a</p>
- The constraint a/b + b/c + c/a <= 5

Introduction to Inequalities

- Understanding the concept of inequalities
- Applying inequalities to maximize expressions

Applying the Arithmetic-Geometric Mean Inequality

- Understanding the arithmetic-geometric mean inequality
- Using the inequality to find the maximum value of an expression

Summary:

This problem involves maximizing the expression a/b given the constraint a/b + b/c + $c/a \le 5$, using the arithmetic-geometric mean inequality.