ACÁMICA

¡Bienvenidos/as a Data Science!

Agenda

Proyecto 2 y Hasta Ahora

Explicación: Machine Learning

Break

Explicación: Aprendizaje Supervisado, Árbol de Decisión

Hands-on training

Cierre

¿Dónde estamos?

Cronograma

ploque **ADQUISICIÓN Y EXPLORACIÓN MODELADO DEPLOY** entrega Publicación de **Exploración Feature** Regresión Optimización de Procesam, del de datos **Engineering** parámetros lenguaje natural recomendación SEM 8 **SEM 12 SEM 13** tiempo SEM 9 **SEM 14 SEM 10 SEM 15 SEM 11 SEM 16 SEM 17**

APRENDIZAJE SUPERVISADO

APRENDIZAJE NO SUPERVISADO

BLOQUE 2 (Parte 1)	Regresión	Semana 8	Machine Learning Clasificación, Árboles de decisión, Train test split
		Semana 9	KNN, métricas para la clasificación Conceptos generales Machine Learning Práctica integradora
		Semana 10	Regresión (Regresión Lineal, Árboles de decisión, KNN, métricas) Validación Cruzada y selección de modelos
		Semana 11	Datasets Desbalanceados + Teorema de Bayes Curva ROC Trabajo en el proyecto
	Optimización de parámetros	Semana 12	Optimización de parámetros - Validación cruzada y Gridsearch + lanzamiento entrega 4 Trabajo en el proyecto

BLOQUE 2 (Parte 2)	Procesamiento del lenguaje natural	Semana 13	Modelos avanzados - SVM Sesgo y Varianza
		Semana 14	Ensambles, Bagging, Random forest Ensambles, Boosting
		Semana 15	Redes Neuronales: Descenso por gradiente Redes Neuronales: Perceptrón
		Semana 16	Redes Neuronales: Perceptrón Multicapa Redes Neuronales: Repaso
		Semana 17	Procesamiento del lenguaje natural (NLP)
		Semana 18	Trabajo sobre el proyecto Intro aprendizaje no supervisado + Clustering
	Sistema de recomendación	Semana 19	Métricas de evaluación para clustering Reducción de dimensionalidad: SVD
		Semana 20	PCA Sistemas de recomendación
		Semana 21	Sistemas de recomendación Ecosistema digital Trabajo sobre el proyecto
		Semana 22	Ecosistema digital Puesta en producción

Hasta ahora...

Hasta ahora

- Vimos un poco de programación con Python en un entorno particular, Jupyter, y aprendimos a utilizar muchas de las librerías típicas del ambiente de Data Science (Numpy, Pandas, Matplotlib, Seaborn, etc.)
- Repasamos varios conceptos de estadística: variables aleatorias, distribuciones, correlación, outliers, etc.
- Aprendimos algunas técnicas de preprocesamiento de datos con Pandas y con Scikit-Learn
- Aplicamos estas herramientas al **Análisis Exploratorio de Datos**

Vamos a seguir profundizando en herramientas (programación y librerías) y en estadística a lo largo de las clases. ¡Pero ahora vamos a ver cómo hace la computadora para aprender de los datos!

Machine Learning

Machine Learning - Ejemplo clásico

¿Cual de estos mails parece ser spam?

Hola Juan,

Soy Pedro, el socio del proyecto inmobiliario. Quería avisarte que la reunión del jueves se pasó para el viernes.

Saludos, Pedro. Hola juan_86,

Soy Namubi, príncipe de Nigeria.

Preciso que mande su numero de cuenta bancaria y contraseña para transferir herencia millonaria.

Caricias significativas, Namubi

¿Cual de estos mails parece ser spam?

Soy Pedro, el socio del proyecto inmobiliario. Quería avisarte que la reunión del jueves se pasó para el viernes.

Saludos, Pedro.

Hola juan_86,

Soy Namubi, príncipe de Nigeria.

Preciso que mande su numero de cuenta bancaria y contraseña para transferir herencia millonaria.

Caricias significativas, Namubi

¿Cómo distinguieron Spam de no Spam?

¿Como distinguieron Spam de no Spam?

No es una tarea sencilla de realizar, de hecho hoy en día mucha gente es víctima de publicidad engañosa o estafas por medio de mails.

¿Como distinguieron Spam de no Spam?

No es una tarea sencilla de realizar, de hecho hoy en día mucha gente es víctima de publicidad engañosa o estafas por medio de mails.

La tarea implica un procesamiento de alto nivel de abstracción (saber leer, relacionar conceptos, etc...), por lo cual resulta difícil (casi imposible) programar explícitamente un algoritmo que la realice.

¿Cómo se imaginan un algoritmo (programa) que realice esta tarea?

Algoritmo de detección de spam

Algoritmo de detección de spam

Un algoritmo construido de esta forma 'manual' NO es lo que entendemos por Machine Learning.

Un algoritmo construido de esta forma 'manual' NO es lo que entendemos por Machine Learning.

¿POR QUÉ?

Un algoritmo construido de esta forma 'manual' NO es lo que entendemos por Machine Learning.

¿POR QUÉ?

En Machine Learning el modelo (algoritmo) debe aprender a predecir a partir de los datos.

¿Cuál es la definición de MACHINE LEARNING?

Machine learning (ML) is the <u>scientific study</u> of <u>algorithms</u> and <u>statistical models</u> that <u>computer systems</u> use to perform a specific task without using explicit instructions, relying on patterns and <u>inference</u> instead. It is seen as a subset of <u>artificial intelligence</u>.

Machine learning algorithms build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task. [1][2]:2

Machine learning algorithms are used in a wide variety of applications, such as <u>email filtering</u> and <u>computer vision</u>, where it is difficult or infeasible to develop a conventional algorithm for effectively performing the task.

Machine learning (ML) is the <u>scientific study</u> of <u>algorithms</u> and <u>statistical models</u> that <u>computer systems</u> use to perform a specific task without using explicit instructions, relying on patterns and <u>inference</u> instead. It is seen as a subset of <u>artificial intelligence</u>.

Machine learning algorithms build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task.[1][2]:2

Machine learning algorithms are used in a wide variety of applications, such as <u>email filtering</u> and <u>computer vision</u>, where it is difficult or infeasible to develop a conventional algorithm for effectively performing the task.

Mapa

Mapa

$$f(X) = Y$$

Con este modelo podremos predecir Y, para nuevos datos X de los cuales no conozcamos la salida.

Clasificación

La variable de salida es una categoría:

- Enfermo / Sano
- Gato / Perro / Pájaro
- Spam / no Spam

Regresión

La variable de salida es un valor:

- Precio
- Cantidad

Mapa

En este tipo de algoritmos solo tenemos los datos de entrada X, no hay una salida deseada Y.

Lo que se buscan son patrones de similaridad en los datos de entrada.

Mapa

Aprendizaje Supervisado: Árbol de decisión

Machine Learning

Aprendizaje Supervisado

Clasificación

Modelos

- Árbol de Decisión
- Support Vector Machines
- k-nearest neighbors
- Random Forest
- Perceptrón
- etc...

Árbol de decisión - DataSet iris

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

Árbol de decisión

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
				22	
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

Features X

Target **Y**

Árbol de decisión - Train

Entrenamos un Modelo de **DecisionTree** Clasificador sobre el dataset de iris

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load iris
iris = load iris()
X = iris.data
v = iris.target
tree = DecisionTreeClassifier(max dept(23).fit(X, y)
print(f'Features importance: \n{list(zip(iris.feature names, tree.feature importances ))}'.replace('), ', ')\n'))
Features importance:
[('sepal length (cm)', 0.0)
('sepal width (cm)', 0.0)
('petal length (cm)', 0.5856155514031495)
('petal width (cm)', 0.4143844485968506)]
```

Árbol de decisión - Que paso?

Árbol de decisión - Plot

```
import seaborn as sns
print(list(enumerate(iris.target names)))
chart = sns.scatterplot(x=X[:,2], y=X[:, 3], hue=y);
chart.set xlabel('Petal length')
chart.set ylabel('Petal width');
[(0, 'setosa'), (1, 'versicolor'), (2, 'virginica')]
  2.5
  2.0
Petal width
  0.5
  0.0
                        Petal length
```

Árbol de decisión - Plot

```
import seaborn as sns
              print(list(enumerate(iris.target names)))
               chart = sns.scatterplot(x=X[:,2], y=X[:, 3], hue=y);
               chart.set xlabel('Petal length')
               chart.set ylabel('Petal width');
               [(0, 'setosa'), (1, 'versicolor'), (2, 'virginica')]
                 2.5
                 2.0
                                                                      petal_width < 1.75
              Petal width
                               petal_length
                 0.5
Setosa
                                        Petal length
```


Es una serie de IFs...

¿Por qué ahora decimos que es Machine Learning?

¿Por qué decimos que es Machine Learning?

¿Por qué decimos que es Machine Learning?

Creamos

Selección de modelo y parámetros

Modelo

53

Hands-on training

Hands-on training

DS_Clase_15_ML.ipynb

Recursos

Recursos

Scikit-Learn Decision Trees Explained: Buena (y completa) introducción a Árboles de decisión con Scikit-Learn.

- 2. Capítulo 5, "Machine Learning", de <u>Python Data Science</u>
 <u>Handbook</u>. Acá van a encontrar una introducción general a ML.
- 3. Capítulo 5.08, "In-Depth: Decision Trees and Random Forests", de <u>Python Data Science Handbook</u>. Acá van a encontrar árboles de decisión explicado con código funcional para copiar y pegar en sus proyectos.
- **4.** <u>Video muy interesante</u> sobre el impacto de Machine Learning (Automatización moderna) en la sociedad.

Para la próxima

- Ver los videos de la plataforma "Machine Learning: Árboles de Decisión" y "Validación y testeo de modelos: Validación y testeo" (¡nos salteamos algunos videos!)
- 2. Completar el notebook de hoy
- 3. ¡Terminar la entrega 02 si aún no lo hicieron!

ACÁMICA