

FCC PART 15.247 MEASUREMENT AND TEST REPORT

For

Starbridge Networks L.L.C.

3265 Meridian Parkway, STE # 134 Weston, FL 33331, USA

FCC ID: VYJ-1702

Report Type:

Product Type:

Original Report

VDSL2 802.11b/g/n 4 port Managed Switch Router

Gardon Zhang

Test Engineer: Gardon Zhang

Report Number: RSZ120710001-00B

Report Date: 2012-08-07

Alvin Huang

Reviewed By: RF Leader

Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F, the 3rd Phase of WanLi Industrial Building,

Test Laboratory: Shi Hua Road, Fu Tian Free Trade Zone

Shenzhen, Guangdong, China Tel: +86-755-33320018

Fax: +86-755-33320018 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

* This report contains data that are not covered by the NVLAP accreditation and are marked with an asterisk "★" (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	6
EXTERNAL I/O CABLEBLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) - CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	11
Measurement Uncertainty	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST ROCEDURE TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	15
APPLICABLE STANDARD	15
Measurement Uncertainty	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
Test Data	17
FCC §15.247(a) (2) – 6 dB BANDWIDTH TESTING	38
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER	
rec 315.247(0) (3) - MAAIMUM I LAK OUTI UT TOWEK	<u></u> 2

APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	52
TEST PROCEDURE	52
Test Data	52
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	66
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	66
Test Procedure	66
Test Data	67
FCC §15.247(e) - POWER SPECTRAL DENSITY	76
APPLICABLE STANDARD	76
TEST EQUIPMENT LIST AND DETAILS.	76
TEST PROCEDURE	76
Test Data	76

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Starbridge Networks L.L.C.*'s product, model number: *1702 (FCC ID: VYJ-1702)* or the "EUT" in this report is a *VDSL2 802.11b/g/n 4 port Managed Switch Router*, which was measured approximately: 19.0 cm (L) x 14.5 cm (W) x 4.0 cm (H), rated input voltage: DC 12.0V adapter.

Report No.: RSZ120710001-00B

Adapter Information: AC Adapter Model: SEF1200100A1BA; Input: 100-240V~50/60Hz 0.3A;

Output: 12.0V_{DC} 1.0A.

Objective

This Type approval report is prepared on behalf of *Starbridge Networks L.L.C. in* accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: VYJ-1702.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, Shihua Road, Futian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 4 of 89

^{*} All measurement and test data in this report was gathered from production sample serial number: 00EF4E2ED72 (Assigned by Applicant). The EUT was received on 2012-07-10.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

FCC Part 15.247 Page 5 of 89

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 802.11b, 802.11g and 802.11n-HT20 mode, 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

Report No.: RSZ120710001-00B

EUT for 802.11b, 802.11g and 802.11n-HT20 modes were tested with Channel 1, 6 and 11. 802.11n-HT40 modes were tested with Channel 3, 6 and 9.

EUT Exercise Software

Test software: Wi-Fi test software kit (provided by the Applicant)

Equipment Modifications

No modification was made to the unit tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	PC	VOSTRO 220S	127BP2X
DELL	Keyboard	L100	CNORH656658907BL05DC
DELL	Mouse	MOC5UO	G1900NKD
DELL	LCD Monitor	E178WFPC	CN-OWY564-64180-7C4-2SQH
SAST	Modem	AEM-2100	0293
Huawei	DSLAM	MA5105	N/A

FCC Part 15.247 Page 6 of 89

External I/O Cable

Cable Description	Length (m)	From/Port	То
Shielded Detachable Mouse Cable	1.5	Host PC	Mouse
Shielded Detachable Serial Cable	1.2	Host PC	Modem
Shielded Detachable K/B Cable	1.5	Host PC	Keyboard
Shielded Detachable VGA Cable	1.5	Host PC	Monitor
Shielded Detachable RJ45 Cable	1.5	EUT	Host PC
Shielded Detachable RJ11 Cable	1.5	EUT	DSLAM
Unshielded Detachable DC Power Cable	1.5	Adapter	EUT

Report No.: RSZ120710001-00B

Block Diagram of Test Setup

FCC Part 15.247 Page 7 of 89

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b)(1), §2.1091	Maximum Permissible exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a),	Conducted Emissions	Compliance
§15.247(d)	Spurious Emissions at Antenna Port	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Report No.: RSZ120710001-00B

FCC Part 15.247 Page 8 of 89

FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RSZ120710001-00B

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Mode Frequency		Ante	Antenna Gain		Conducted Power		Power	MPE Limit
Mode	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm ²)
802.11b	2462	3	1.995	17.53	56.62	20	0.0225	1
802.11g	2437	3	1.995	15.31	33.96	20	0.0135	1
802.11n-HT20	2462	3	1.995	16.84	48.31	20	0.0192	1
802.11n-HT40	2437	3	1.995	15.68	36.98	20	0.0147	1

Result: Compliance

FCC Part 15.247 Page 9 of 89

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSZ120710001-00B

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

This product has two monopole antennas with the unique type of connector, and the maximum gain is 3 dBi, which fulfill the requirement of this section, and please refer to the external photos.

Result: Compliant.

FCC Part 15.247 Page 10 of 89

FCC §15.207 (a) - CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on CISPR 16-4-4, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratory Corp. (Shenzhen) is 2.4 dB (k=2, 95% level of confidence).

Report No.: RSZ120710001-00B

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

FCC Part 15.247 Page 11 of 89

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Report No.: RSZ120710001-00B

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2011-11-24	2012-11-23
Rohde & Schwarz	L.I.S.N.	ESH2-Z5	892107/021	2011-11-17	2012-11-16
Com-Power	L.I.S.N.	LI-200	12208	N/A	N/A
Com-Power	L.I.S.N.	LI-200	12208	N/A	N/A
Rohde & Schwarz	Pulse limiter	ESH3Z2	DE25985	2012-07-08	2013-07-07
BACL	CE Test software	BACL-CE	V1.0	-	-

^{*} Statement of Traceability: Bay Area Compliance Laboratory Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN, and the other relevant equipments were connected to the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207, with the worst margin reading of:

13.67 dB at 20.990 MHz in the Line conductor mode

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Gardon Zhang on 2012-07-18.

FCC Part 15.247 Page 12 of 89

Test Mode: Transmitting

AC 120V / 60Hz, Line:

Co	onducted Emission	ons	FCC Part 15.207		
Frequency (MHz)	Corrected Amplitude (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave.)
20.990	36.33	12.64	50.00	13.67	Ave.
19.590	34.76	12.67	50.00	15.24	Ave.
0.175	39.05	10.27	55.29	16.24	Ave.
0.175	48.68	10.27	65.29	16.61	QP
20.990	41.42	12.64	60.00	18.58	QP
19.590	38.29	12.67	60.00	21.71	QP
0.230	30.39	10.26	53.71	23.32	Ave.
0.390	25.64	10.26	49.14	23.50	Ave.
0.230	40.18	10.26	63.71	23.53	QP
0.390	31.24	10.26	59.14	27.90	QP
0.195	36.27	10.27	64.71	28.44	QP
0.195	18.91	10.27	54.71	35.80	Ave.

FCC Part 15.247 Page 13 of 89

AC 120V / 60Hz, Neutral:

Co	Conducted Emissions			FCC Part 15.20)7
Frequency (MHz)	Corrected Amplitude (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave.)
20.990	35.72	12.46	50.00	14.28	Ave.
19.930	34.94	12.55	50.00	15.06	Ave.
0.175	48.23	10.24	65.29	17.06	QP
0.175	37.69	10.24	55.29	17.60	Ave.
0.445	39.03	10.25	57.57	18.54	QP
20.995	40.75	12.46	60.00	19.25	QP
0.240	42.79	10.25	63.43	20.64	QP
19.940	39.03	12.55	60.00	20.97	QP
0.315	36.23	10.25	61.29	25.06	QP
0.240	26.47	10.25	53.43	26.96	Ave.
0.445	19.29	10.25	47.57	28.28	Ave.
0.315	17.87	10.25	51.29	33.42	Ave.

FCC Part 15.247 Page 14 of 89

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Report No.: RSZ120710001-00B

Based on CISPR 16-4-4, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is 4.0 dB(k=2, 95% level of confidence).

EUT Setup

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

FCC Part 15.247 Page 15 of 89

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: RSZ120710001-00B

Frequency Range	RBW	Video B/W	Detector
30MHz – 1000 MHz	100 kHz	300 kHz	QP
1000 MHz - 25 GHz	1 MHz	3 MHz	PK
1000 MHz – 25 GHz	1 MHz	10 Hz	Ave.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
НР	Amplifier	8447E	1937A01057	2011-11-24	2012-11-23
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2011-11-17	2012-11-16
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2012-11-27
Mini-Circuits	Amplifier	ZVA-213+	N/A	2011-11-24	2012-11-23
Sunol Sciences	Horn Antenna	DRH-118	A052304	2011-12-01	2012-11-30
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23
the electro- Mechanics Co.	Horn Antenna	3116	9510-2270	2011-10-14	2012-10-13
R&S	Auto test Software	EMC32	V6.30	-	-

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

For the radiated emissions test, the adapter and other relevant equipments were connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz and peak and Average detection modes for frequencies above 1 GHz.

FCC Part 15.247 Page 16 of 89

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Report No.: RSZ120710001-00B

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247</u>, with the worst margin reading of:

0.79 dB at 500.0 MHz in the Horizontal polarization

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Gardon Zhang on 2012-07-17.

Test Mode: Transmitting

FCC Part 15.247 Page 17 of 89

30 MHz-25 GHz 802.11b mode:

1	11b moae	- · ·										
Indica	ited		Table	Ante	nna	Cor	rection	Factor	FCC	Part 15.247	/15.205/1	5.209
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/QP/Ave.)	Angle Degree	Height (m)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment
	•	•		Ι	ow Cha	annel (24	12 MHz	z)	· · · · ·			
2412.0	105.48	PK	34	1.2	V	29.60	3.03	26.50	111.61	/	/	Fund.
2412.0	89.14	Ave.	34	1.2	V	29.60	3.03	26.50	95.27	/	/	Fund.
2412.0	104.02	PK	85	1.1	Н	29.60	3.03	26.50	110.15	/	/	Fund.
2412.0	87.42	Ave.	85	1.1	Н	29.60	3.03	26.50	93.55	/	/	Fund.
500.0	53.01	QP	98	1.0	Н	15.92	1.86	26.10	44.69	46.00	1.31*	Spurious
625.0	48.71	QP	124	1.0	Н	17.42	3.25	26.50	42.88	46.00	3.12*	Spurious
2386.6	37.96	Ave.	55	1.4	Н	29.60	3.03	26.50	44.09	54.00	9.91	Spurious
2491.5	37.17	Ave.	203	1.3	V	30.20	3.11	26.50	43.98	54.00	10.02	Spurious
2337.5	37.89	Ave.	125	1.3	V	29.00	2.98	26.50	43.37	54.00	10.63	Spurious
4824.0	29.95	Ave.	62	1.1	V	34.60	4.30	26.50	42.35	54.00	11.65	Harmonic
2386.6	51.69	PK	55	1.4	Н	29.60	3.03	26.50	57.82	74.00	16.18	Spurious
2491.5	50.94	PK	203	1.3	V	30.20	3.11	26.50	57.75	74.00	16.25	Spurious
9648.0	17.55	Ave.	41	1.2	V	39.80	5.98	26.50	36.83	54.00	17.17	Harmonic
2337.5	50.26	PK	125	1.3	V	29.00	2.98	26.50	55.74	74.00	18.26	Spurious
4824.0	42.54	PK	62	1.1	V	34.60	4.30	26.50	54.94	74.00	19.06	Harmonic
7236.0	17.59	Ave.	38	1.2	Н	37.90	5.22	26.50	34.21	54.00	19.79	Harmonic
9648.0	32.69	PK	41	1.2	V	39.80	5.98	26.50	51.97	74.00	22.03	Harmonic
7236.0	33.67	PK	38	1.2	Н	37.90	5.22	26.50	50.29	74.00	23.71	Harmonic
				M	iddle C	hannel (2	437 MI	łz)				
2437.0	104.55	PK	61	1.2	V	29.60	3.03	26.50	110.68	/	/	Fund.
2437.0	88.64	Ave.	61	1.2	V	29.60	3.03	26.50	94.77	/	/	Fund.
2437.0	102.24	PK	76	1.2	Н	29.60	3.03	26.50	108.37	/	/	Fund.
2437.0	85.76	Ave.	76	1.2	Н	29.60	3.03	26.50	91.89	/	/	Fund.
500.0	52.86	QP	91	1.0	Н	15.92	1.86	26.10	44.54	46.00	1.46*	Spurious
625.0	48.46	QP	110	1.0	Н	17.42	3.25	26.50	42.63	46.00	3.37*	Spurious
2490.2	36.64	Ave.	7	1.2	V	30.20	3.11	26.50	43.45	54.00	10.55	Spurious
2385.5	36.97	Ave.	53	1.3	Н	29.60	3.03	26.50	43.10	54.00	10.90	Spurious
2331.2	37.55	Ave.	237	1.4	V	29.00	2.98	26.50	43.03	54.00	10.97	Spurious
4874.0	29.34	Ave.	37	1.1	V	34.60	4.36	26.50	41.80	54.00	12.20	Harmonic
2385.5	51.29	PK	53	1.3	Н	29.60	3.03	26.50	57.42	74.00	16.58	Spurious
2490.2	50.22	PK	7	1.2	V	30.20	3.11	26.50	57.03	74.00	16.97	Spurious
9748.0	17.24	Ave.	64	1.3	V	39.80	6.10	26.50	36.64	54.00	17.36	Harmonic
2331.2	50.29	PK	237	1.4	V	29.00	2.98	26.50	55.77	74.00	18.23	Spurious
4874.0	42.58	PK	37	1.1	V	34.60	4.36	26.50	55.04	74.00	18.96	Harmonic
7311.0	17.59	Ave.	92	1.2	Н	37.90	5.09	26.50	34.08	54.00	19.92	Harmonic
9748.0	32.68	PK	64	1.3	V	39.80	6.10	26.50	52.08	74.00	21.92	Harmonic
7311.0	34.18	PK	92	1.2	Н	37.90	5.09	26.50	50.67	74.00	23.33	Harmonic

FCC Part 15.247 Page 18 of 89

Indica	ıted		T 11	Ante	nna	Cor	rection	Factor	FCC	Part 15.247	/15.205/1	5.209			
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/QP/Ave.)	Table Angle Degree	Height (m)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment			
High Channel (2462 MHz)															
2462.0															
2462.0	90.67	Ave.	6	1.2	V	30.20	3.11	26.50	97.48	/	/	Fund.			
2462.0	104.07	PK	102	1.2	Н	30.20	3.11	26.50	110.88	/	/	Fund.			
2462.0	87.34	Ave.	102	1.2	Н	30.20	3.11	26.50	94.15	/	/	Fund.			
500.0	52.75	QP	94	1.0	Н	15.92	1.86	26.10	44.43	46.00	1.57*	Spurious			
625.0	48.52	QP	112	1.0	Н	17.42	3.25	26.50	42.69	46.00	3.31*	Spurious			
2493.7	38.54	Ave.	34	1.3	V	30.20	3.11	26.50	45.35	54.00	8.65	Spurious			
2386.3	37.94	Ave.	61	1.1	Н	29.60	3.03	26.50	44.07	54.00	9.93	Spurious			
4924.0	30.17	Ave.	33	1.3	V	34.60	4.40	26.50	42.67	54.00	11.33	Harmonic			
2337.5	36.67	Ave.	137	1.2	V	29.00	2.98	26.50	42.15	54.00	11.85	Spurious			
2493.7	52.58	PK	34	1.3	V	30.20	3.11	26.50	59.39	74.00	14.61	Spurious			
2386.3	51.28	PK	61	1.1	Н	29.60	3.03	26.50	57.41	74.00	16.59	Spurious			
9848.0	17.26	Ave.	92	1.4	V	39.80	6.09	26.50	36.65	54.00	17.35	Harmonic			
4924.0	43.44	PK	33	1.3	V	34.60	4.40	26.50	55.94	74.00	18.06	Harmonic			
2337.5	50.29	PK	137	1.2	V	29.00	2.98	26.50	55.77	74.00	18.23	Spurious			
7386.0	17.58	Ave.	264	1.2	Н	37.20	5.21	26.50	33.49	54.00	20.51	Harmonic			
9848.0	32.36	PK	92	1.4	V	39.80	6.09	26.50	51.75	74.00	22.25	Harmonic			
7386.0	33.95	PK	264	1.2	Н	37.20	5.21	26.50	49.86	74.00	24.14	Harmonic			

FCC Part 15.247 Page 19 of 89

802.11g mode:

т 11	4 1			A 4		C	4.	E 4	EGG	D 415 345	115 20511	<i>5</i> 200
Indica	S.A.	Detector	Table	Ante	nna	Ant.	rection Cable	Pre-Amp.	Cord.	Part 15.247	/15.205/1 	.5.209
Frequency	Reading	(PK/QP/Ave.)	Angle	Height		Factor	Loss	Gain	Amp.	Limit	Margin	Comment
(MHz)	(dBµV)		Degree	(m)	(H/V)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
				L	ow Cha	annel (24	12 MHz	<u>z)</u>				
2412.0	99.37	PK	67	1.2	V	29.60	3.03	26.50	105.50	/	/	Fund.
2412.0	72.63	Ave.	67	1.2	V	29.60	3.03	26.50	78.76	/	/	Fund.
2412.0	95.38	PK	251	1.3	Н	29.60	3.03	26.50	101.51	/	/	Fund.
2412.0	68.15	Ave.	251	1.3	Н	29.60	3.03	26.50	74.28	/	/	Fund.
500.0	53.18	QP	102	1.0	Н	15.92	1.86	26.10	44.86	46.00	1.14*	Spurious
625.0	48.95	QP	186	1.0	Н	17.42	3.25	26.50	43.12	46.00	2.88*	Spurious
2492.7	36.07	Ave.	52	1.3	V	30.20	3.11	26.50	42.88	54.00	11.12	Spurious
2385.1	36.31	Ave.	102	1.1	Н	29.60	3.03	26.50	42.44	54.00	11.56	Spurious
2335.2	36.25	Ave.	56	1.2	V	29.00	2.98	26.50	41.73	54.00	12.27	Spurious
2492.7	51.28	PK	52	1.3	V	30.20	3.11	26.50	58.09	74.00	15.91	Spurious
9648.0	17.28	Ave.	88	1.4	V	39.80	5.98	26.50	36.56	54.00	17.44	Harmonic
2385.1	50.28	PK	102	1.1	Н	29.60	3.03	26.50	56.41	74.00	17.59	Spurious
2335.2	50.14	PK	56	1.2	V	29.00	2.98	26.50	55.62	74.00	18.38	Spurious
7236.0	17.85	Ave.	67	1.3	Н	37.90	5.22	26.50	34.47	54.00	19.53	Harmonic
4824.0	20.65	Ave.	82	1.1	V	34.60	4.30	26.50	33.05	54.00	20.95	Harmonic
9648.0	33.67	PK	88	1.4	V	39.80	5.98	26.50	52.95	74.00	21.05	Harmonic
4824.0	38.89	PK	82	1.1	V	34.60	4.30	26.50	51.29	74.00	22.71	Harmonic
7236.0	33.67	PK	67	1.3	Н	37.90	5.22	26.50	50.29	74.00	23.71	Harmonic
				Mi	iddle Cl	hannel (2	437 MF	łz)				
2437.0	98.69	PK	102	1.2	V	29.60	3.03	26.50	104.82	/	/	Fund.
2437.0	71.95	Ave.	102	1.2	V	29.60	3.03	26.50	78.08	/	/	Fund.
2437.0	94.68	PK	261	1.1	Н	29.60	3.03	26.50	100.81	/	/	Fund.
2437.0	77.89	Ave.	261	1.1	Н	29.60	3.03	26.50	84.02	/	/	Fund.
500.0	53.44	QP	112	1.0	Н	15.92	1.86	26.10	45.12	46.00	0.88*	Spurious
625.0	49.56	QP	175	1.0	Н	17.42	3.25	26.50	43.73	46.00	2.27*	Spurious
2490.8	37.01	Ave.	37	1.4	V	30.20	3.11	26.50	43.82	54.00	10.18	Spurious
2339.5	37.98	Ave.	48	1.1	V	29.00	2.98	26.50	43.46	54.00	10.54	Spurious
2384.6	36.49	Ave.	88	1.3	Н	29.60	3.03	26.50	42.62	54.00	11.38	Spurious
2490.8	51.28	PK	37	1.4	V	30.20	3.11	26.50	58.09	74.00	15.91	Spurious
9739.2	17.63	Ave.	67	1.2	V	39.80	6.10	26.50	37.03	54.00	16.97	Harmonic
2339.5	51.28	PK	48	1.1	V	29.00	2.98	26.50	56.76	74.00	17.24	Spurious
2384.6	50.22	PK	88	1.3	Н	29.60	3.03	26.50	56.35	74.00	17.65	Spurious
7311.0	17.05	Ave.	44	1.2	Н	37.90	5.09	26.50	33.54	54.00	20.46	Harmonic
4874.0	19.68	Ave.	37	1.3	V	34.60	4.36	26.50	32.14	54.00	21.86	Harmonic
9739.2	32.54	PK	67	1.2	V	39.80	6.10	26.50	51.94	74.00	22.06	Harmonic
7311.0	33.69	PK	44	1.2	Н	37.90	5.09	26.50	50.18	74.00	23.82	Harmonic
4874.0	37.55	PK	37	1.3	V	34.60	4.36	26.50	50.01	74.00	23.99	Harmonic

FCC Part 15.247 Page 20 of 89

Indica	ıted		T-1-1-	Ante	nna	Cor	rection	Factor	FCC	Part 15.247	/15.205/1	5.209
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/QP/Ave.)	Table Angle Degree	Height (m)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment
High Channel (2462 MHz)												
2462.0	98.94	PK	61	1.2	V	30.20	3.11	26.50	105.75	/	/	Fund.
2462.0	71.89	Ave.	61	1.2	V	30.20	3.11	26.50	78.70	/	/	Fund.
2462.0	95.13	PK	102	1.0	Н	30.20	3.11	26.50	101.94	/	/	Fund.
2462.0	68.35	Ave.	102	1.0	Н	30.20	3.11	26.50	75.16	/	/	Fund.
500.0	53.30	QP	109	1.0	Н	15.92	1.86	26.10	44.98	46.00	1.02*	Spurious
625.0	49.37	QP	171	1.0	Н	17.42	3.25	26.50	43.54	46.00	2.46*	Spurious
2489.4	37.92	Ave.	61	1.2	V	30.20	3.11	26.50	44.73	54.00	9.27	Spurious
2383.3	36.91	Ave.	223	1.3	Н	29.60	3.03	26.50	43.04	54.00	10.96	Spurious
2325.1	36.28	Ave.	67	1.2	V	29.00	2.98	26.50	41.76	54.00	12.24	Spurious
2489.4	51.29	PK	61	1.2	V	30.20	3.11	26.50	58.10	74.00	15.90	Spurious
9848.0	18.02	Ave.	61	1.2	V	39.80	6.09	26.50	37.41	54.00	16.59	Harmonic
2383.3	50.01	PK	223	1.3	Н	29.60	3.03	26.50	56.14	74.00	17.86	Spurious
2325.1	50.26	PK	67	1.2	V	29.00	2.98	26.50	55.74	74.00	18.26	Spurious
7386.0	17.06	Ave.	88	1.2	Н	37.20	5.21	26.50	32.97	54.00	21.03	Harmonic
9848.0	32.91	PK	61	1.2	V	39.80	6.09	26.50	52.30	74.00	21.70	Harmonic
4924.0	19.07	Ave.	35	1.4	V	34.60	4.40	26.50	31.57	54.00	22.43	Harmonic
7386.0	33.64	PK	88	1.2	Н	37.20	5.21	26.50	49.55	74.00	24.45	Harmonic
4924.0	35.69	PK	35	1.4	V	34.60	4.40	26.50	48.19	74.00	25.81	Harmonic

FCC Part 15.247 Page 21 of 89

802.11n-HT20 mode:

Indica	ated			Ante	nna	Cor	rection	Factor	FCC	Part 15.247	/15.205/1	5.209
	S.A.	Detector	Table Angle	Height	Polar	Ant.	Cable	Pre-Amp.	Cord.			
Frequency (MHz)	riculang	(PK/QP/Ave.)	Degree	(m)	(H/V)	Factor	Loss	Gain	Amp.	Limit (dBµV/m)	Margin (dB)	Comment
(1/1112)	(dBµV)		Ü	. ,		(dB/m)	(dB)	(dB)	(dBµV/m)	(αΒ μ (7111)	(42)	
	T					annel (24					1 .	
2412.0	97.96	PK	87	1.2	V	29.60	3.03	26.50	104.09	/	/	Fund.
2412.0	68.24	Ave.	87	1.2	V	29.60	3.03	26.50	74.37	/	/	Fund.
2412.0	94.36	PK	86	1.1	Н	29.60	3.03	26.50	100.49	/	/	Fund.
2412.0	67.20	Ave.	86	1.1	Н	29.60	3.03	26.50	73.33	/	/	Fund.
500.0	53.43	QP	100	1.0	Н	15.92	1.86	26.10	45.11	46.00	0.89*	Spurious
625.0	49.24	QP	168	1.0	Н	17.42	3.25	26.50	43.41	46.00	2.59*	Spurious
2492.3	36.45	Ave.	7	1.1	V	30.20	3.11	26.50	43.26	54.00	10.74	Spurious
2386.6	36.38	Ave.	111	1.2	Н	29.60	3.03	26.50	42.51	54.00	11.49	Spurious
2335.4	36.21	Ave.	55	1.3	V	29.00	2.98	26.50	41.69	54.00	12.31	Spurious
2492.3	50.93	PK	7	1.1	V	30.20	3.11	26.50	57.74	74.00	16.26	Spurious
9648.0	17.55	Ave.	302	1.2	V	39.80	5.98	26.50	36.83	54.00	17.17	Harmonic
2386.6	50.22	PK	111	1.2	Н	29.60	3.03	26.50	56.35	74.00	17.65	Spurious
2335.4	49.52	PK	55	1.3	V	29.00	2.98	26.50	55.00	74.00	19.00	Spurious
7236.0	18.02	Ave.	52	1.3	Н	37.90	5.22	26.50	34.64	54.00	19.36	Harmonic
4824.0	21.25	Ave.	96	1.2	V	34.60	4.30	26.50	33.65	54.00	20.35	Harmonic
4824.0	39.67	PK	96	1.2	V	34.60	4.30	26.50	52.07	74.00	21.93	Harmonic
9648.0	32.69	PK	302	1.2	V	39.80	5.98	26.50	51.97	74.00	22.03	Harmonic
7236.0	34.15	PK	52	1.3	Н	37.90	5.22	26.50	50.77	74.00	23.23	Harmonic
				Mi	iddle Cl	hannel (2	437 MI	łz)				
2437.0	98.63	PK	13	1.3	V	29.60	3.03	26.50	104.76	/	/	Fund.
2437.0	68.35	Ave.	13	1.3	V	29.60	3.03	26.50	74.48	/	/	Fund.
2437.0	97.25	PK	102	1.1	Н	29.60	3.03	26.50	103.38	/	/	Fund.
2437.0	67.10	Ave.	102	1.1	Н	29.60	3.03	26.50	73.23	/	/	Fund.
500.0	53.53	QP	121	1.0	Н	15.92	1.86	26.10	45.21	46.00	0.79*	Spurious
625.0	48.86	QP	111	1.0	Н	17.42	3.25	26.50	43.03	46.00	2.97*	Spurious
2493.3	36.68	Ave.	44	1.3	V	30.20	3.11	26.50	43.49	54.00	10.51	Spurious
2387.2	36.27	Ave.	68	1.2	Н	29.60	3.03	26.50	42.40	54.00	11.60	Spurious
2334.1	36.09	Ave.	56	1.2	V	29.00	2.98	26.50	41.57	54.00	12.43	Spurious
2493.3	49.66	PK	44	1.3	V	30.20	3.11	26.50	56.47	74.00	17.53	Spurious
9748.0	16.95	Ave.	78	1.2	V	39.80	6.10	26.50	36.35	54.00	17.65	Harmonic
2387.2	49.85	PK	68	1.2	Н	29.60	3.03	26.50	55.98	74.00	18.02	Spurious
2334.1	50.26	PK	56	1.2	V	29.00	2.98	26.50	55.74	74.00	18.26	Spurious
7311.0	17.54	Ave.	64	1.4	Н	37.90	5.09	26.50	34.03	54.00	19.97	Harmonic
4874.0	20.16	Ave.	53	1.2	V	34.60	4.36	26.50	32.62	54.00	21.38	Harmonic
9748.0	32.69	PK	78	1.2	V	39.80	6.10	26.50	52.09	74.00	21.91	Harmonic
4874.0	38.53	PK	53	1.2	V	34.60	4.36	26.50	50.99	74.00	23.01	Harmonic
7311.0	33.59	PK	64	1.4	Н	37.90	5.09	26.50	50.08	74.00	23.92	Harmonic

FCC Part 15.247 Page 22 of 89

Indica	ıted		Table	Ante	nna	Cor	rection	Factor	FCC	Part 15.247	/15.205/1	/15.205/15.209			
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/QP/Ave.)	Angle Degree	Height (m)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment			
	High Channel (2462 MHz)														
2462.0															
2462.0	68.25	Ave.	46	1.4	V	30.20	3.11	26.50	75.06	/	/	Fund.			
2462.0	95.67	PK	53	1.2	Н	30.20	3.11	26.50	102.48	/	/	Fund.			
2462.0	66.71	Ave.	53	1.2	Н	30.20	3.11	26.50	73.52	/	/	Fund.			
500.0	53.33	QP	114	1.0	Н	15.92	1.86	26.10	45.01	46.00	0.99*	Spurious			
625.0	49.25	QP	172	1.0	Н	17.42	3.25	26.50	43.42	46.00	2.58*	Spurious			
2488.7	38.06	Ave.	94	1.2	V	30.20	3.11	26.50	44.87	54.00	9.13	Spurious			
2385.1	36.43	Ave.	45	1.3	Н	29.60	3.03	26.50	42.56	54.00	11.44	Spurious			
2334.3	36.38	Ave.	47	1.4	V	29.00	2.98	26.50	41.86	54.00	12.14	Spurious			
2488.7	52.37	PK	94	1.2	V	30.20	3.11	26.50	59.18	74.00	14.82	Spurious			
9848.0	18.05	Ave.	82	1.2	V	39.80	6.09	26.50	37.44	54.00	16.56	Harmonic			
2385.1	49.66	PK	45	1.3	Н	29.60	3.03	26.50	55.79	74.00	18.21	Spurious			
2334.3	49.68	PK	47	1.4	V	29.00	2.98	26.50	55.16	74.00	18.84	Spurious			
7386.0	17.45	Ave.	44	1.2	Н	37.20	5.21	26.50	33.36	54.00	20.64	Harmonic			
4924.0	20.16	Ave.	68	1.3	V	34.60	4.40	26.50	32.66	54.00	21.34	Harmonic			
9848.0	32.66	PK	82	1.2	V	39.80	6.09	26.50	52.05	74.00	21.95	Harmonic			
4924.0	38.53	PK	68	1.3	V	34.60	4.40	26.50	51.03	74.00	22.97	Harmonic			
7386.0	33.68	PK	44	1.2	Н	37.20	5.21	26.50	49.59	74.00	24.41	Harmonic			

FCC Part 15.247 Page 23 of 89

802.11n-HT40 mode:

T J.	atod.			A 4		C		Factor	ECC	Dowt 15 245	115 20511	5 200
Indica	S.A.	Detector	Table	Ante	nna 	Ant.	rection Cable	Pre-Amp.	Cord.	Part 15.247	/15.205/1 	5.209
Frequency		(PK/OP/Ava)	Angle	Height		Factor	Loss	Gain	Amp.	Limit	Margin	Comment
(MHz)	(dBµV)		Degree	(m)	(H/V)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
				L	ow Cha	nnel (242	22 MHz	z)				
2422.0	95.36	PK	82	1.2	V	29.60	3.03	26.50	101.49	/	/	Fund.
2422.0	65.67	Ave.	82	1.2	V	29.60	3.03	26.50	71.80	/	/	Fund.
2422.0	94.36	PK	125	1.2	Н	29.60	3.03	26.50	100.49	/	/	Fund.
2422.0	65.11	Ave.	125	1.2	Н	29.60	3.03	26.50	71.24	/	/	Fund.
500.0	53.04	QP	100	1.0	Н	15.92	1.86	26.10	44.72	46.00	1.28*	Spurious
625.0	48.95	QP	164	1.0	Н	17.42	3.25	26.50	43.12	46.00	2.88*	Spurious
2493.9	34.29	Ave.	14	1.2	V	30.20	3.11	26.50	41.10	54.00	12.90	Spurious
2335.2	34.65	Ave.	83	1.2	V	29.00	2.98	26.50	40.13	54.00	13.87	Spurious
2385.7	33.98	Ave.	7	1.3	Н	29.60	3.03	26.50	40.11	54.00	13.89	Spurious
9688.0	17.05	Ave.	72	1.2	V	39.80	5.99	26.50	36.34	54.00	17.66	Harmonic
7266.0	17.46	Ave.	103	1.3	Н	37.90	5.22	26.50	34.08	54.00	19.92	Harmonic
2335.2	47.69	PK	83	1.2	V	29.00	2.98	26.50	53.17	74.00	20.83	Spurious
2385.7	46.66	PK	7	1.3	Н	29.60	3.03	26.50	52.79	74.00	21.21	Spurious
2493.9	45.68	PK	14	1.2	V	30.20	3.11	26.50	52.49	74.00	21.51	Spurious
4844.0	19.67	Ave.	76	1.4	V	34.60	4.30	26.50	32.07	54.00	21.93	Harmonic
9688.0	32.69	PK	72	1.2	V	39.80	5.99	26.50	51.98	74.00	22.02	Harmonic
7266.0	33.22	PK	103	1.3	Н	37.90	5.22	26.50	49.84	74.00	24.16	Harmonic
4844.0	36.89	PK	76	1.4	V	34.60	4.30	26.50	49.29	74.00	24.71	Harmonic
				Mi	iddle Cl	nannel (2	437 MI	Hz)				
2437.0	96.63	PK	45	1.2	V	29.60	3.03	26.50	102.76	/	/	Fund.
2437.0	66.05	Ave.	45	1.2	V	29.60	3.03	26.50	72.18	/	/	Fund.
2437.0	94.32	PK	70	1.1	Н	29.60	3.03	26.50	100.45	/	/	Fund.
2437.0	64.76	Ave.	70	1.1	Н	29.60	3.03	26.50	70.89	/	/	Fund.
500.0	52.55	QP	99	1.0	Н	15.92	1.86	26.10	44.23	46.00	1.77*	Spurious
625.0	49.10	QP	167	1.0	Н	17.42	3.25	26.50	43.27	46.00	2.73*	Spurious
2495.8	36.33	Ave.	52	1.2	V	30.20	3.11	26.50	43.14	54.00	10.86	Spurious
2389.9	35.22	Ave.	134	1.1	Н	29.60	3.03	26.50	41.35	54.00	12.65	Spurious
2335.7	34.29	Ave.	107	1.3	V	29.00	2.98	26.50	39.77	54.00	14.23	Spurious
9748.0	17.05	Ave.	5	1.2	V	39.80	6.10	26.50	36.45	54.00	17.55	Harmonic
2495.8	48.67	PK	52	1.2	V	30.20	3.11	26.50	55.48	74.00	18.52	Spurious
7311.0	17.54	Ave.	88	1.2	Н	37.90	5.09	26.50	34.03	54.00	19.97	Harmonic
2389.9	46.38	PK	134	1.1	Н	29.60	3.03	26.50	52.51	74.00	21.49	Spurious
4874.0	20.01	Ave.	76	1.3	V	34.60	4.36	26.50	32.47	54.00	21.53	Harmonic
9748.0	32.63	PK	5	1.2	V	39.80	6.10	26.50	52.03	74.00	21.97	Harmonic
2335.8	46.39	PK	107	1.3	V	29.00	2.98	26.50	51.87	74.00	22.13	Spurious
4874.0	37.41	PK	76	1.3	V	34.60	4.36	26.50	49.87	74.00	24.13	Harmonic
7311.0	33.29	PK	88	1.2	Н	37.90	5.09	26.50	49.78	74.00	24.22	Harmonic

FCC Part 15.247 Page 24 of 89

Indica	ited		Table	Ante	nna	Cor	rection	Factor	FCC	Part 15.247	/15.205/1	5.209
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment
				Н	igh Cha	annel (24	52 MH	z)				
2452.0	96.39	PK	64	1.2	V	30.20	3.11	26.50	103.20	/	/	Fund.
2452.0	66.83	Ave.	64	1.2	V	30.20	3.11	26.50	73.64	/	/	Fund.
2452.0	95.02	PK	152	1.1	Н	30.20	3.11	26.50	101.83	/	/	Fund.
2452.0	64.36	Ave.	120	1.1	Н	30.20	3.11	26.50	71.17	/	/	Fund.
500.0	52.42	QP	106	1.0	Н	15.92	1.86	26.10	44.10	46.00	1.90*	Spurious
625.0	49.06	QP	154	1.0	Н	17.42	3.25	26.50	43.23	46.00	2.77*	Spurious
2485.7	36.35	Ave.	301	1.3	V	30.20	3.11	26.50	43.16	54.00	10.84	Spurious
2332.4	35.67	Ave.	225	1.3	V	29.00	2.98	26.50	41.15	54.00	12.85	Spurious
2386.6	34.66	Ave.	61	1.2	Н	29.60	3.03	26.50	40.79	54.00	13.21	Spurious
9808.0	18.09	Ave.	76	1.2	V	39.80	6.09	26.50	37.48	54.00	16.52	Harmonic
2485.7	49.67	PK	301	1.3	V	30.20	3.11	26.50	56.48	74.00	17.52	Spurious
7356.0	17.31	Ave.	94	1.3	Н	37.20	5.21	26.50	33.22	54.00	20.78	Harmonic
4904.0	20.53	Ave.	86	1.4	V	34.60	4.40	26.50	33.03	54.00	20.97	Harmonic
2386.6	46.28	PK	61	1.2	Н	29.60	3.03	26.50	52.41	74.00	21.59	Spurious
4904.0	39.65	PK	86	1.4	V	34.60	4.40	26.50	52.15	74.00	21.85	Harmonic
9808.0	32.66	PK	76	1.2	V	39.80	6.09	26.50	52.05	74.00	21.95	Harmonic
2332.4	46.39	PK	225	1.3	V	29.00	2.98	26.50	51.87	74.00	22.13	Spurious
7356.0	33.02	PK	94	1.3	Н	37.20	5.21	26.50	48.93	74.00	25.07	Harmonic

^{*}Within measurement uncertainty!

FCC Part 15.247 Page 25 of 89

Antenna Port Conducted Spurious Emissions:

802.11b Low Channel, Antenna 1

Report No.: RSZ120710001-00B

802.11b Middle Channel, Antenna 1

FCC Part 15.247 Page 26 of 89

802.11b High Channel, Antenna 1

Report No.: RSZ120710001-00B

802.11g Low Channel, Antenna 1

FCC Part 15.247 Page 27 of 89

802.11g Middle Channel, Antenna 1

Report No.: RSZ120710001-00B

802.11g High Channel, Antenna 1

FCC Part 15.247 Page 28 of 89

802.11n-HT20 Low Channel, Antenna 1

Report No.: RSZ120710001-00B

802.11n-HT20 Middle Channel, Antenna 1

FCC Part 15.247 Page 29 of 89

802.11n-HT20 High Channel, Antenna 1

Report No.: RSZ120710001-00B

802.11n-HT40 Low Channel, Antenna 1

FCC Part 15.247 Page 30 of 89

*

Report No.: RSZ120710001-00B

802.11n-HT40 Middle Channel, Antenna 1

802.11n-HT40 High Channel, Antenna 1

FCC Part 15.247 Page 31 of 89

802.11b Low Channel, Antenna 2

Report No.: RSZ120710001-00B

802.11b Middle Channel, Antenna 2

FCC Part 15.247 Page 32 of 89

441 177 1 61 1 1 4 4 4

Report No.: RSZ120710001-00B

802.11g Low Channel, Antenna 2

FCC Part 15.247 Page 33 of 89

802.11g Middle Channel, Antenna 2

Report No.: RSZ120710001-00B

802.11g High Channel, Antenna 2

FCC Part 15.247 Page 34 of 89

802.11n-HT20 Middle Channel, Antenna 2

FCC Part 15.247 Page 35 of 89

802.11n-HT20 High Channel, Antenna 2

Report No.: RSZ120710001-00B

802.11n-HT40 Low Channel, Antenna 2

FCC Part 15.247 Page 36 of 89

802.11n-HT40 Middle Channel, Antenna 2

802.11n-HT40 High Channel, Antenna 2

FCC Part 15.247 Page 37 of 89

FCC §15.247(a) (2) – 6 dB BANDWIDTH TESTING

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RSZ120710001-00B

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2011-11-17	2012-11-16

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Gardon Zhang from 2012-07-16 to 2012-07-20.

Test Mode: Transmitting

Test Result: Pass.

Please refer to the following tables and plots.

FCC Part 15.247 Page 38 of 89

Channel	Frequency (MHz)	Data Rate (Mbps)	Antenna port	6dB bandwidth (MHz)	Limit (kHz)	Result		
802.11b mode								
Low	2412	1	1	8.16	≥500	Pass		
Low	2412	1	2	8.16	≥500	Pass		
Middle	2437	1	1	8.16	≥500	Pass		
Middle	2437	1	2	8.16	≥500	Pass		
High	2462	1	1	8.16	≥500	Pass		
High	2462	1	2	8.16	≥500	Pass		
			802.11g mode	e				
Low	2412	6	1	16.02	≥500	Pass		
Low	2412	6	2	16.02	≥500	Pass		
Middle	2437	6	1	16.02	≥500	Pass		
Middle	2437	6	2	16.02	≥500	Pass		
High	2462	6	1	16.02	≥500	Pass		
High	2462	6	2	16.02	≥500	Pass		
			802.11n-HT20 m	ode				
Low	2412	6.5	1	17.46	≥500	Pass		
Low	2412	6.5	2	17.40	≥500	Pass		
Middle	2437	6.5	1	17.46	≥500	Pass		
Middle	2437	6.5	2	17.40	≥500	Pass		
High	2462	6.5	1	17.46	≥500	Pass		
High	2462	6.5	2	17.40	≥500	Pass		
			802.11n-HT40 m	ode				
Low	2422	13.5	1	36.48	≥500	Pass		
Low	2422	13.5	2	36.60	≥500	Pass		
Middle	2437	13.5	1	36.48	≥500	Pass		
Middle	2437	13.5	2	36.60	≥500	Pass		
High	2452	13.5	1	36.48	≥500	Pass		
High	2452	13.5	2	36.60	≥500	Pass		

FCC Part 15.247 Page 39 of 89

802.11b Low Channel, Antenna 1

Report No.: RSZ120710001-00B

Date: 16.JUL.2012 03:50:11

802.11b Middle Channel, Antenna 1

Date: 16.JUL.2012 04:20:42

FCC Part 15.247 Page 40 of 89

00 441 TT 1 C1 1 4 4 4

Report No.: RSZ120710001-00B

Date: 16.JUL.2012 04:27:02

802.11g Low Channel, Antenna 1

Date: 17.JUL.2012 05:16:09

FCC Part 15.247 Page 41 of 89

802.11g Middle Channel, Antenna 1

Date: 17.JUL.2012 05:03:24

802.11g High Channel, Antenna 1

Date: 17.JUL.2012 05:32:27

FCC Part 15.247 Page 42 of 89

802.11n-HT20 Low Channel, Antenna 1

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 11:53:32

802.11n-HT20 Middle Channel, Antenna 1

Date: 17.JUL.2012 13:19:30

FCC Part 15.247 Page 43 of 89

.. ____

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 13:28:14

802.11n-HT40 Low Channel, Antenna 1

Date: 19.JUL.2012 11:23:41

FCC Part 15.247 Page 44 of 89

802.11n-HT40 Middle Channel, Antenna 1

Report No.: RSZ120710001-00B

Date: 19.JUL.2012 11:36:40

802.11b Low Channel, Antenna 2

Date: 17.JUL.2012 15:10:59

FCC Part 15.247 Page 45 of 89

802.11b Middle Channel, Antenna 2

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 15:24:37

802.11b High Channel, Antenna 2

Date: 20.JUL.2012 14:06:47

FCC Part 15.247 Page 46 of 89

802.11g Low Channel, Antenna 2

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 15:36:07

802.11g Middle Channel, Antenna 2

Date: 17.JUL.2012 15:58:25

FCC Part 15.247 Page 47 of 89

802.11g High Channel, Antenna 2

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 16:17:15

802.11n-HT20 Low Channel, Antenna 2

Date: 20.JUL.2012 14:16:38

FCC Part 15.247 Page 48 of 89

802.11n-HT20 Middle Channel, Antenna 2

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 16:36:38

802.11n-HT20 High Channel, Antenna 2

Date: 17.JUL.2012 16:42:57

FCC Part 15.247 Page 49 of 89

A 11 TITLIA I CI I I I I A

Report No.: RSZ120710001-00B

Date: 19.JUL.2012 10:17:38

802.11n-HT40 Middle Channel, Antenna 2

Date: 19.JUL.2012 10:28:40

FCC Part 15.247 Page 50 of 89

802.11n-HT40 High Channel, Antenna 1

Date: 19.JUL.2012 10:41:54

FCC Part 15.247 Page 51 of 89

FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER

Applicable Standard

According to §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RSZ120710001-00B

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2011-11-17	2012-11-16

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI Test Receiver.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Gardon Zhang on 2012-07-16 to 2012-07-19.

Test Mode: Transmitting

FCC Part 15.247 Page 52 of 89

Channel	Frequency (MHz)	Data Rate (Mbps)	Antenna Port	Output Power (dBm)		Limit (dBm)	Result	
802.11b mode								
Low	2412	1	1	16.	.52	30	Pass	
Low	2412	1	2	16.	85	30	Pass	
Middle	2437	1	1	17.28		30	Pass	
Middle	2437	1	2	17.	06	30	rass	
High	2462	1	1	17.	.33	30	Pass	
High	2462	1	2	17.	.53	30	Pass	
			802.	11g mode				
Low	2412	6	1	14.	59	30	Pass	
Low	2412	6	2	14.	82	30	rass	
Middle	2437	6	1	15.	31	30	Pass	
Middle	2437	6	2	15.02		30	1 ass	
High	2462	6	1	15.	.12	30	Pass	
High	2462	6	2	15.17		30	1 455	
			802.11n	-HT20 mode				
Low	2412	6.5	1	13.64	16.47	30	Pass	
Low	2412	6.5	2	13.28	10.47	30	1 455	
Middle	2437	6.5	1	14.16	16.82	30	Pass	
Middle	2437	6.5	2	13.42	10.62	30		
High	2462	6.5	1	14.05	16.84	30	Pass	
High	2462	6.5	2	13.60	10.64		rass	
			802.11n	-HT40 mode				
Low	2422	13.5	1	12.07	15.68	30	Pass	
Low	2422	13.5	2	13.19	13.00		1 455	
Middle	2437	13.5	1	12.06	15.68	30 Pa	Pass	
Middle	2437	13.5	2	13.20	15.00		1 455	
High	2452	13.5	1	12.00	15.62		D	
High	2452	13.5	2	13.17	15.63	30	Pass	

FCC Part 15.247 Page 53 of 89

802.11b RF Output Power, Low Channel, Antenna 1

Report No.: RSZ120710001-00B

Date: 16.JUL.2012 03:59:15

802.11b RF Output Power, Middle Channel, Antenna 1

Date: 16.JUL.2012 04:23:44

FCC Part 15.247 Page 54 of 89

802.11b RF Output Power, High Channel, Antenna 1

Date: 16.JUL.2012 04:28:49

802.11g RF Output Power, Low Channel, Antenna 1

Date: 17.JUL.2012 05:20:03

FCC Part 15.247 Page 55 of 89

802.11g RF Output Power, Middle Channel, Antenna 1

Date: 17.JUL.2012 05:10:51

802.11g RF Output Power, High Channel, Antenna 1

Date: 17.JUL.2012 05:35:40

FCC Part 15.247 Page 56 of 89

802.11n-HT20 RF Output Power, Low Channel, Antenna 1

Date: 17.JUL.2012 11:57:44

802.11n-HT20 RF Output Power, Middle Channel, Antenna 1

Date: 17.JUL.2012 13:23:04

FCC Part 15.247 Page 57 of 89

802.11n-HT20 RF Output Power, High Channel, Antenna 1

Date: 17.JUL.2012 13:31:24

802.11n-HT40 RF Output Power, Low Channel, Antenna 1

Date: 19.JUL.2012 11:26:26

FCC Part 15.247 Page 58 of 89

802.11n-HT40 RF Output Power, Middle Channel, Antenna 1

Date: 19.JUL.2012 11:37:31

802.11n-HT40 RF Output Power, High Channel, Antenna 1

Date: 19.JUL.2012 11:04:37

FCC Part 15.247 Page 59 of 89

802.11b RF Output Power, Low Channel, Antenna 2

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 15:16:18

802.11b RF Output Power, Middle Channel, Antenna 1

Date: 17.JUL.2012 15:25:40

FCC Part 15.247 Page 60 of 89

802.11b RF Output Power, High Channel, Antenna 2

Date: 17.JUL.2012 15:31:28

802.11g RF Output Power, Low Channel, Antenna 2

Date: 17.JUL.2012 15:49:24

FCC Part 15.247 Page 61 of 89

802.11g RF Output Power, Middle Channel, Antenna 2

Date: 17.JUL.2012 16:02:53

802.11g RF Output Power, High Channel, Antenna 2

Date: 17.JUL.2012 16:20:26

FCC Part 15.247 Page 62 of 89

802.11n-HT20 RF Output Power, Low Channel, Antenna 2

Date: 17.JUL.2012 16:32:50

802.11n-HT20 RF Output Power, Middle Channel, Antenna 2

Date: 17.JUL.2012 16:38:35

FCC Part 15.247 Page 63 of 89

802.11n-HT20 RF Output Power, High Channel, Antenna 2

Date: 17.JUL.2012 16:44:57

802.11n-HT40 RF Output Power, Low Channel, Antenna 2

Date: 19.JUL.2012 10:21:03

FCC Part 15.247 Page 64 of 89

802.11n-HT40 RF Output Power, Middle Channel, Antenna 2

Date: 19.JUL.2012 10:25:30

802.11n-HT40 RF Output Power, High Channel, Antenna 2

Date: 19.JUL.2012 10:45:06

FCC Part 15.247 Page 65 of 89

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RSZ120710001-00B

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2011-11-17	2012-11-16

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

FCC Part 15.247 Page 66 of 89

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Gardon Zhang on 2012-07-16 to 2012-07-19.

Test mode: Transmitting

Test Result: Compliance.

Channel	Frequency (MHz)	Antenna port	Delta Peak to band emission (dBc)	Limit (dBc)	Result			
		90	. , ,					
	802.11b mode							
Low	2399.93	Chain 1	45.79	20	Pass			
Low	2399.93	Chain 2	44.55	20	Pass			
High	2483.70	Chain 1	50.75	20	Pass			
High	2483.70	Chain 2	51.58	20	Pass			
		80	2.11g mode					
Low	2391.19	Chain 1	39.30	20	Pass			
Low	2398.09	Chain 2	39.65	20	Pass			
High	2488.70	Chain 1	40.43	20	Pass			
High	2486.00	Chain 2	40.77	20	Pass			
		802.11	ln-HT20 mode					
Low	2399.70	Chain 1	38.10	20	Pass			
Low	2391.88	Chain 2	38.17	20	Pass			
High	2491.70	Chain 1	39.85	20	Pass			
High	2493.50	Chain 2	39.12	20	Pass			
	802.11n-HT40 mode							
Low	2399.41	Chain 1	28.40	20	Pass			
Low	2399.51	Chain 2	29.51	20	Pass			
High	2486.00	Chain 1	36.01	20	Pass			
High	2486.26	Chain 2	35.80	20	Pass			

Report No.: RSZ120710001-00B

Please refer to following plots.

FCC Part 15.247 Page 67 of 89

802.11b Band Edge, Left Side, Antenna 1

Report No.: RSZ120710001-00B

Date: 16.JUL.2012 04:11:42

802.11b Band Edge, Right Side, Antenna 1

Date: 16.JUL.2012 04:32:24

FCC Part 15.247 Page 68 of 89

802.11g Band Edge, Left Side, Antenna 1

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 05:22:54

802.11g Band Edge, Right Side, Antenna 1

Date: 17.JUL.2012 05:37:38

FCC Part 15.247 Page 69 of 89

802.11n-HT20 Band Edge, Left Side, Antenna 1

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 11:59:19

802.11n-HT20 Band Edge, Right Side, Antenna 1

Date: 17.JUL.2012 13:39:31

FCC Part 15.247 Page 70 of 89

802.11n-HT40 Band Edge, Left Side, Antenna 1

Report No.: RSZ120710001-00B

Date: 19.JUL.2012 11:19:19

802.11n-HT40 Band Edge, Right Side, Antenna 1

Date: 19.JUL.2012 11:08:30

FCC Part 15.247 Page 71 of 89

802.11b Band Edge, Left Side, Antenna 2

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 15:19:07

802.11b Band Edge, Right Side, Antenna 2

Date: 17.JUL.2012 15:33:35

FCC Part 15.247 Page 72 of 89

802.11g Band Edge, Left Side, Antenna 2

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 15:53:07

802.11g Band Edge, Right Side, Antenna 2

Date: 17.JUL.2012 16:22:40

FCC Part 15.247 Page 73 of 89

802.11n-HT20 Band Edge, Left Side, Antenna 2

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 16:33:57

802.11n-HT20 Band Edge, Right Side, Antenna 2

Date: 17.JUL.2012 17:17:41

FCC Part 15.247 Page 74 of 89

802.11n-HT40 Band Edge, Left Side, Antenna 2

Report No.: RSZ120710001-00B

Date: 19.JUL.2012 10:34:58

802.11n-HT40 Band Edge, Right Side, Antenna 2

Date: 19.JUL.2012 10:40:14

FCC Part 15.247 Page 75 of 89

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RSZ120710001-00B

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2011-11-17	2012-11-16	

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW = 100 kHz.
- 3. Set the VBW \geq 300 kHz.
- 4. Set the span to 5-30 % greater than the EBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.
- 10. Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log (3 kHz/100 kHz = -15.2 dB).
- 11. The resulting peak PSD level must be ≤ 8 dBm.

Test Data

Environmental Conditions

Temperature:	25 ° C		
Relative Humidity:	56 %		
ATM Pressure:	100.0 kPa		

The testing was performed by Gardon Zhang from 2012-07-16 to 2012-07-20.

FCC Part 15.247 Page 76 of 89

Test Mode: Transmitting

Test Result: Pass

Channel	Frequency (MHz)	Data Rate (Mbps)	Antenna port	Power spectral density (dBm/100kHz)	BWCF (dB)	Power spectral density (dBm/3kHz)		Limit (dBm/3kHz)			
802.11b											
Low	2412	1	1	5.82	-15.2	-9	.38	8			
Low	2412	1	2	6.15	-15.2	-9.05		٥			
Middle	2437	1	1	6.78	-15.2	-8.42		- 8			
Middle	2437	1	2	6.43	-15.2	-8.77					
High	2462	1	1	6.76	-15.2	-8.44		- 8			
High	2462	1	2	6.81	-15.2	-8.39		o			
	802.11g										
Low	2412	6	1	-3.71	-15.2	-18	3.91	- 8			
Low	2412	6	2	-3.49	-15.2	-18	3.69				
Middle	2437	6	1	-2.91	-15.2	-18.11		8			
Middle	2437	6	2	-3.35	-15.2	-18.55					
High	2462	6	1	-3.07	-15.2	-18	3.27	8			
High	2462	6	2	-3.04	-15.2	-18.24		8			
			802.1	1n-HT20 mode							
Low	2412	6.5	1	-4.88	-15.2	-20.08	-17.17	8			
Low	2412	6.5	2	-5.08	-15.2	-20.28					
Middle	2437	6.5	1	-4.62	-15.2	-19.82	-16.82	8			
Middle	2437	6.5	2	-4.65	-15.2	-19.85					
High	2462	6.5	1	-4.53	-15.2	-19.73	-16.79	8			
High	2462	6.5	2	-4.68	-15.2	-19.88					
	802.11n-HT40 mode										
Low	2422	13.5	1	-9.90	-15.2	-25.10	-21.17	8			
Low	2422	13.5	2	-8.22	-15.2	-23.42					
Middle	2437	13.5	1	-9.63	-15.2	-24.83	-20.93	8			
Middle	2437	13.5	2	-8.01	-15.2	-23.21	-20.93				
High	2452	13.5	1	-8.05	-15.2	-23.25	-20.20	8			
High	2452	13.5	2	-7.97	-15.2	-23.17	-20.20				

Report No.: RSZ120710001-00B

FCC Part 15.247 Page 77 of 89

Power Spectral Density, 802.11b Low Channel, Antenna 1

Date: 16.JUL.2012 04:00:56

Power Spectral Density, 802.11b Middle Channel, Antenna 1

Date: 16.JUL.2012 04:22:50

FCC Part 15.247 Page 78 of 89

Power Spectral Density, 802.11b High Channel, Antenna 1

Date: 16.JUL.2012 04:28:20

Power Spectral Density, 802.11g Low Channel, Antenna 1

Date: 17.JUL.2012 05:17:11

FCC Part 15.247 Page 79 of 89

Power Spectral Density, 802.11g Middle Channel, Antenna 1

Date: 17.JUL.2012 05:08:13

Power Spectral Density, 802.11g High Channel, Antenna 1

Date: 17.JUL.2012 05:33:13

FCC Part 15.247 Page 80 of 89

Date: 17.JUL.2012 12:00:10

Power Spectral Density, 802.11n-HT20 Middle Channel, Antenna 1

Date: 17.JUL.2012 13:24:37

FCC Part 15.247 Page 81 of 89

Power Spectral Density, 802.11n-HT20 High Channel, Antenna 1

Report No.: RSZ120710001-00B

Date: 17.JUL.2012 13:29:21

Power Spectral Density, 802.11n-HT40 Low Channel, Antenna 1

Date: 19.JUL.2012 11:27:21

FCC Part 15.247 Page 82 of 89

Power Spectral Density, 802.11n-HT40 Middle Channel, Antenna 1

Report No.: RSZ120710001-00B

Date: 19.JUL.2012 11:38:27

Power Spectral Density, 802.11n-HT40 High Channel, Antenna 1

Date: 19.JUL.2012 11:06:26

FCC Part 15.247 Page 83 of 89

Date: 17.JUL.2012 15:17:05

Power Spectral Density, 802.11b Middle Channel, Antenna 2

Date: 17.JUL.2012 15:26:27

FCC Part 15.247 Page 84 of 89

Power Spectral Density, 802.11b High Channel, Antenna 2

Date: 17.JUL.2012 15:30:21

Power Spectral Density, 802.11g Low Channel, Antenna 2

Date: 17.JUL.2012 15:47:11

FCC Part 15.247 Page 85 of 89

Power Spectral Density, 802.11g Middle Channel, Antenna 2

Date: 17.JUL.2012 15:59:38

Power Spectral Density, 802.11g High Channel, Antenna 2

Date: 17.JUL.2012 16:18:39

FCC Part 15.247 Page 86 of 89

Power Spectral Density, 802.11n-HT20 Low Channel, Antenna 2

Report No.: RSZ120710001-00B

Date: 20.JUL.2012 14:18:34

Power Spectral Density, 802.11n-HT20 Middle Channel, Antenna 2

Date: 17.JUL.2012 16:39:30

FCC Part 15.247 Page 87 of 89

Date: 17.JUL.2012 16:43:37

Power Spectral Density, 802.11n-HT40 Low Channel, Antenna 2

Date: 19.JUL.2012 10:12:04

FCC Part 15.247 Page 88 of 89

Power Spectral Density, 802.11n-HT40 Middle Channel, Antenna 2

Report No.: RSZ120710001-00B

Date: 19.JUL.2012 10:26:44

Power Spectral Density, 802.11n-HT40 High Channel, Antenna 2

Date: 19.JUL.2012 10:43:08

***** END OF REPORT *****

FCC Part 15.247 Page 89 of 89