Is lithium going to run out?

- Is there enough lithium for xEVs and other applications?
- Chart shows relative abundance of elements in earth's crust:

- We see that Li is between 20 and 100 times more abundant than Pb and Ni
- Still challenging to find in nature since very reactive and not usually found in its free state, but in compounds
- Cd and Hg—usage deprecated because of toxicity-1000 times less common than Li

1.2.6: Is lithium going to run out?

How much lithium is in a lithium-ion cell?

- The lithium content in a lithium-ion cell is actually quite small
- Consider an LCO cell (positive electrode = LiCoO₂)
 - □ Lithium content in LiCoO₂ is only 7 % by weight
 - LiCoO $_2$ comprises $\lesssim 33\,\%$ of cell weight, so Li content of electrode \approx 2 % of cell weight
 - \Box Electrolyte (\approx 10 \% of cell weight) also contains some dissolved lithium
 - □ Overall, total lithium content in high-energy cell \lesssim 3 % by weight

Dr. Gregory L. Plett University of Colorado Colorado Springs

1.2.6: Is lithium going to run out?

So, what does this mean?

- So, lithium content in high-energy cell $\lesssim 3\%$ by weight
- xEV cells weigh about 7 kg kWh⁻¹: Li content ≈ 0.2 kg kWh⁻¹
- 200-mile EV needs \approx 60 kWh battery: Li content \approx 12 kg / EV
 - \square PHEV batteries \lesssim 10 % of EV-battery capacity
 - HEV batteries require even less capacity
- 1 million EVs would consume ≤ 12 000 tons of Li (without recycling); 1 million P/HEVs would consume ≤ 1 200 tons
- Known available supply of Li is over 200 billion tons, including from seawater
 - □ Each human being presently alive could own more than 2000 EVs, without recycling!

Summary

- Lithium is one of the most abundant elements on the planet!
- A simple approximate analysis shows that known available supply of lithium is more than sufficient to meet demand for consumer electronics, xEVs, and other applications, even without recycling
 - □ Recycling only improves the picture
- Note that other elements, such as cobalt, are also used in lithium-ion cells are are more scarce than lithium (but this gets less press)

Dr. Gregory L. Plett University of Colorado Colorado Springs

Introduction to Battery Management Systems | Battery Boot Camp | 4 of 5

1.2.6: Is lithium going to run out?

Credits

Credits for photos in this lesson

- Graph on slide 1: By Gordon B. Haxel, Sara Boore, and Susan Mayfield from USGS; vectorized by User:michbich [Public domain], (http://pubs.usgs.gov/fs/2002/fs087-02/) via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Elemental_abundances.svg
- Piles of lithium salts on slide 2: By Luca Galuzzi (Lucag), edit by Trialsanderrors [CC BY-SA 2.5 (http://creativecommons.org/licenses/by-sa/2.5)], via Wikimedia Commons, https://commons.wikimedia.org/wiki/File: Piles_of_Salt_Salar_de_Uyuni_Bolivia_Luca_Galuzzi_2006_a.jpg
- Tesla S on slide 3: CCO Public Domain (https://pixabay.com/en/service/terms), cropped from original at

https://pixabay.com/en/car-electric-tesla-s-electric-car-1209912/

Dr. Gregory L. Plett | University of Colorado Colorado Springs

Introduction to Battery Management Systems | Battery Boot Camp | 5 of 5