PATENT SPECIFICATION

(11) 1 216 534

DRAWINGS ATTACHED

- 21) Application No. 8726/68 (22) Filed 22 Feb. 1968
- 31) Convention Application No. B69907/30g Gbm
- 32) Filed 3 March 1967 in
- 33) Germany (DT)
- 15) Complete Specification published 23 Dec. 1970
- il) International Classification A 61 m 5/00
- i2) Index at acceptance A5R 33C2 33G

54) IMPROVEMENTS IN OR RELATING TO CONTAINERS FOR STORING AND DISPENSING MEDICINAL LIQUIDS

We, B. Braun International n.b.H., a limited liability Company, oruised under Swiss Law of 14 Tiergartenisse, Liestal, Switzerland, do hereby dere the invention, for which we pray that patent may be granted to us, and the thod by which it is to be performed, to particularly described in and by the owing statement: -

this invention relates to a container made physiologically acceptable plastics for the age and dispensing of infusions or medi-

ll rinsing solutions.

reviously known containers for the age and dispensing of sterile liquids have a small capacity of at most 1 litre. When ensing large quantities of sterile liquids, or example in peritoneal dialysis or for stening sterile compresses, it is therefore ssary when using infusion solution coners continually to change containers.

addition to the extra work which is lved for the hospital staff the amount of lling involved increases the danger of

ection.

itherto the use of large capacity coners has met with considerable difficulbecause the safest method of preparing keeping sterile infusion and rinsing solu-

for medicinal purposes, namely sterion in flowing, superheated steam is not

ible with large containers.

eam sterilisation of large quantities of id cannot therefore be used because with increasing diameter of the sterilisation tainer the time taken for the temperature the centre of the bulk of liquid to reach filisation temperature is too long for actical purposes. This has therefore a conerable detrimental effect on the economics dispensing large quantities of liquid in

rge sterile containers. It is an object of this invention therefore avoid or at least reduce these disadvant-

exercing to the invention there is procontainer made of physiologically plastics for the storage and dis-5s. 0d. (25p)]

pensing of infusions or medicinal rinsing solutions having a capacity of at least 5 litres and being of generally flat configuration the container having a maximum depth between opposed generally flat sides of 60 mm and each of said opposed generally flat sides being provided with inwardly extending recesses or indentations connected to the other

The container has great advantages. As a result of its flat design with a maximum container depth of 60 mm the heat penetration distance is reduced to 30 mm, provided that during sterilisation steam can reach the container of liquid from both sides. This also makes possible the rapid heating of large quantities of liquid. It also enables rapid cooling to take place after sterilisation. This measure also prevents caramelisation of the sugar frequently contained in the solutions. The flat container also offers considerable advantages as regards handling, as it is space saving, can be easily and economically transported and can be stacked for storage purposes. The flat design permits the assembly of several containers in a very limited space, e.g. in the form of a "battery" in very close proximity to the sick bed.

This container can be produced with various capacities above 5 litres, but the most preferred is 5 to 10 litres.

The recesses or indentations in each of the generally flat sides are advantageous both for the heat transfer and the maintenance of shape.

The recesses or indentations of one of the generally flat sides may face and be connected to the recesses or indentations of the opposing side.

Desirably the recesses or indentations in one of the generally flat sides are connected 90

to the opposing side by welding.

The container can be provided at one end with an outlet opening having a closure member to which can be connected transfer devices for the transfer of sterile solutions 95 or blood. Preferably the container is de-

generally flat side.

80

ロマー ステス

signed in such a way that it has a rubber stopper and preferably an air vent tube which passes through the inside of the container from the rubber stopper to the 5 opposite end of the container, which is the highest point during emptying of the container, the rubber stopper and the air tube being designed in such a way that a venting device can be connected by piercing the 10 rubber stopper, permitting the container to be vented in a sterile manner when it is being emptied. It is also desirable for the wall of the container at the end opposite the outlet opening to be capable of being 15 pierced by a canula for the sterile ventilation of the container during emptying.

The present container therefore offers the possibility of direct dispensing of sterile solutions avoiding a transfer to a suitable 20 intermediate container (e.g. irrigator), so that reinfection and the repyrogenisation linked therewith does not occur. Instead of this, the liquid can be removed by a commercially available transfer device, the con-25 tainer being ventilated in the manner above

described.

The container is preferably made of poly-

propylene or polyethylene.

An embodiment by way of example of the 30 container is subsequently described great detail with reference to the accompanying drawing in which: -

Fig. 1 shows a sectional view of a container according to the invention on the line

35 I—I of Fig. 2.

Fig. 2 shows a container according to Fig. 1 ready for use in a section on line II—II of Fig. 1 and

Fig. 3 shows an enlarged sectional view

40 of the closure.

As can be seen from Figs. 1 and 2 the container 1 is flat and of rectangular shape. Along its generally flat sides 2 there are opposed recesses or indentations 3 which are 45 welded together inside the container. The container has a countersunk handle 4 for

carrying purposes.

The container is provided with an outlet opening having a closure 5 which as regards 50 size corresponds with the closure of a blood preserving bottle according to DIN 58,361. The closure has a rubber stopper 6 which is held in place by a screw cap 7 with a small plastic tear off disc 8. The screw cap 55 7 and the tear off disc 8 are protected by a flanged cap 9 against unauthorised open-

For balancing the pressure when the container is being emptied a plastic vent pipe 10 60 is provided, to which a sterile venting device 11 is connected when drawing off liquid. This vent pipe extends when the container is in position to be emptied into the air space above the liquid, so that the air required

for pressure equalisation does not have to bubble through the sterile solution. Furthermore direct venting is possible by inserting a venting canula 12 with connected air filter into the container air space.

The venting device 11 and the draw off unit 13 for draining the sterile liquid are connected up simply by piercing the rubber

stopper 6.

WHAT WE CLAIM IS:-

1. A container made of physiologically acceptable plastics for the storage and dispensing of infusions or medicinal rinsing solutions having a capacity of at least 5 litres and being of generally flat configuration the container having a maximum depth between opposed generally flat sides of 60 mm and each of said opposed generally flat sides being provided with inwardly extending recesses or indentations connected to the other generally flat side.

2. A container according to Claim 1 wherein the recesses or indentations of one of the generally flat sides face and are connected to the recesses or indentations of the

opposing side.

3. A container according to Claim 1 or 2 wherein the recesses or indentations of one of the generally flat sides are connected

to the opposing side by welding.

4. A container according to Claim 1, 2 or 3 including an outlet opening at one end thereof provided with a closure member adapted for the connection of a liquid transfer device thereto.

5. A container according to Claim 4 10k wherein the closure member comprises a rubber stopper and including a vent tube extending within the container from the rubber stopper to the end of the container opposite thereto whereby a tapered cannula 10 of a sterile venting device can be connected to the vent tube by piercing through the rubber stopper.

6. A container according to Claim 4 or 5 wherein the container wall at the end of 11. the container opposite the outlet opening is capable of being pierced by a tapered vent-

ing cannula.

7. A container according to any one of the preceding claims made of polypropylene 11

or polyethylene.

8. A container substantially as shown in and as hereinbefore described with reference to the accompanying drawings.

> For the Applicants, FRANK B. DEHN & CO., Chartered Patent Agents, Imperial House, 15/19 Kingsway, London, W.C.2.

Printed for Her Majesty's Stationery Office by Burgess & Son (Abingdon), Ltd.—1970. Published at The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

