Сокеты и сети. Часть 2

AKOC #18

OSI

Open Systems Interconnections

Стек ТСР/IР	Модель OSI (Open Systems Interconnections)	Примеры	
Уровень процессов	Уровень приложений (Application)	HTTP, FTP, SSH, Telnet	
	Уровень представления (Presentation)	ASCII, GZIP, binary	
	Уровень сеанса (Session)	NetBIOS, SSL	
Транспортный уровень	Уровень транспорта (Transport)	TCP, UDP	
Уровень Internet	Уровень сети (Network)	IPv4, IPv6, IPX, AppleTalk	
Уровень сетевого интерфейса	Уровень канала (Data Link)	PPP, IEEE 802.2 (Ethernet)	
	Физический уровень (Physical)	USB, IEEE 802.11 IEEE 802.3 (Ethernet)	

Заголовок ТСР

Байты	0			1					2	3			
03	Порт отправителя								Порт получателя				
47		Порядковый номер пакета											
811	Поря	Порядковый номер подтверждаемого пакета (с флагом АСК)											
1215	Размер заголовка в 32- битных словах	000	N S	C E	U R G	A C K	P S H	RST	S Y N	F I N	Размер окна (буфера для прием данных, ожидаемых при ответе		
1619	Контрол	Контрольная сумма заголовка и данных						ка	И		Указатель на порядковый номер пакета, в котором заканчивается приоритетных блок данных		
20		Дополнительные опции											

Взаимодействие по ТСР

Взаимодействие по ТСР

- Все пакеты имеют порядковый номер, который присваивает ядро ОС
- Задача ядра сделать видимость непрерывного потока данных в обе стороны
- Ввод-вывод как с обычными каналами read/write
- socket(AF_..., SOCK_STREAM, 0)

Операции ввода-вывода

```
    read(fd,buf,count) → recv(fd,buf,count,flags=0)

    write(fd,buf,count) → send(fd,buf,count,flags=0)

• recv(fd,buf,count,flags) →
      recvfrom(fd,buf,count,flags,
               struct sockaddr, *src_addr = NULL,
               socklen_t *addrlen = NULL)
• send(fd,buf,count,flags) →
        sendto(fd,buf,count,flags,
               struct sockaddr, *src_addr = NULL,
               socklen_t *addrlen = NULL)
```

SOCK_STREAM: кроме TCP

- Протокол Novell SPX (historic)
- Локальное взаимодействие AF_UNIX

```
socket( AF_..., SOCK_STREAM, 0) последний параметр — номер протокола; 0 — автоматический выбор для пары AF_..., SOCK_...
```

Инструменты для взаимодействия

- **telnet** терминал для текстового вводавывода через сокеты
- netcat или nc аналог cat, но работает с сетевыми соединениями

Поточное взаимодействие: HTTP

Запрос

```
GET /index.html HTTP/1.1
Host: www.example.com
Connection: keep-alive
DNT: 1
User-Agent: Mozilla/5.0 . . .
Accept-Encoding: gzip, deflate
Accept-Language: ru, en
```

Ответ

Шифрование

- Уровень сеанса в модели OSI
- В модели ТСР это уровень процессов
- Поток данных передается по TCP, его интерпретация задача процесса в пространстве пользователя
 - > openssl s_client -connect www.yandex.ru:443

Типы сокетов

- SOCK_STREAM двунаправленных поток данных
- **SOCK_DGRAM** односторонние сообщения (UDP)
- SOCK_RAW пакеты IP (уровень сети)
- SOCK_PACKET (Linux) фреймы Ethernet (уровень канала)

Пакеты UDP

Байты	0	1	2	3	
04	Порт отп	равителя	Порт назначения		
58	Длина	пакета	Контролы	ная сумма	

- Односторонние сообщения
- Максимальная длина: MTU - sizeof(ip_header) - sizeof(udp_header)
- Процесс получатель сам обязан сформировать ответ

UDP v.s TCP

- Нет требуется установление соединения (SYN/SYN+ACK) и его завершение (FIN/FIN+ACK)
- Не контролируется порядок пакетов
- Не требуется отправка пакетов в подтверждение получения

Сценарии использования:

- 1. Торренты
- 2. Эмуляция *уровня канала* (VPN)

Канальный уровень сети

- Адресация по МАС-адресам
- На физическом уровне пассивные (хабы) или активные (свитчи) коммутаторы
- МАС-адрес связан с конкретным устройством и не меняется (в теории, но не на практике) при конфигурации

Канальный уровень сети

- Привязка к МАС-адресу устройства
- Достаточно знать только своих соседей
- Выделяется отдельное устройство маршрутизатор для выхода во внешнюю сеть
- Соотвествие между IP-адресами и MAC-адресами через протокол ARP

Как узнать МАС-адрес

МАС- адрес получа- теля	МАС- адрес отпра- вителя	Допол- нитель- ные опции	Длина	Данные	Конт- роль- ная сумма
6 байт	6 байт	4 байта	2 байта	от 46 до 1500 байт (параметр MTU)	4 байта

- Формируется Ethernet-кадр, содержимое которого не IP-пакет, а ARP-запрос с требуемым адресом
- МАС-отправителя того, кто отправляет
- MAC-получателя широковещательный FF:FF:FF:FF:FF:FF
- Хост с подходящим IP отправляет ARP-ответ
- Инициирующая сторона кэширует ответ (время жизни 30 секунд для Linux)

/usr/sbin/arp # отобразить таблицу arp

Сетевой уровень IPv4

- У каждого хоста есть IP-адрес (для IPv4 не гарантируется уникальность)
- "Серые" адреса не доступны из сети Интернет (например 192.168.х.у)
- Для доставки IP-пакета может потребоваться цепочка маршрутизаторов

```
/bin/route # (в POSIX-системах)
/usr/sbin/ip r # (в Linux)
```

Назначение ІР-адресов

- Статическое явное указание параметров сетевого интерфейса
- Динамическое (протокол DHCP)
 - **DHCPDISCOVER** от 0.0.0.0:68 к 255.255.255.255:67
 - запросить предложения от DHCP-серверов в локальной сети
 - DHCPOFFER от одного из серверов конкретному MAC
 - предложение свободного адреса
 - **DHCPREQUEST** к конкретному серверу
 - запрос получения ранее предложенного адреса
 - **DHCPACK** от сервера
 - подтверждение выдачи адреса

....

- DCHCPRELEASE серверу
 - освобождение (перед выключением)

Реализация DHCP

- UDP пакеты поверх IP
- Сервер на порту 67
- В сообщении OFFER кроме IP-адреса содержится дополнительная информация:
 - адрес маршрутизатора
 - адреса DNS-серверов

/sbin/dhclient

DNS

- ІР адрес определяет маршрут до хоста
- Доменное имя должно быть запоминающимся, например: скатать-акос-без-регистрации-и-смс.рф
- Служба DNS иерархическая система каталогов соответствия имен и IP-адресов
- Сервер DNS работает поверх UDP и TCP на 53 порту; на маршрутизаторах кеширование
- Можно отправлять запросы любым серверам (Google: 8.8.8.8)

```
/usr/bin/nslookup # (простая команда)
/usr/bin/dig # (более продвинутая)
```

Доменные имена

- Полная форма заканчивается символом точки (но для упрощения это часто не требуется от пользователя)
- Несколько типов:
 - A IPv4-адрес хоста для соединения
 - АААА IPv6-адрес хоста для соединения
 - MX имя хоста для электронной почты
 - CNAME имя хоста для соединения

Как посмотреть на разные пакеты

- Консольная утилита **tcpdump**
- Программа wireshark
- Требуются права root

Типы сокетов

- SOCK_STREAM двунаправленных поток данных
- SOCK_DGRAM односторонние сообщения (UDP)
- SOCK_RAW пакеты IP (уровень сети)
- SOCK_PACKET (Linux) фреймы Ethernet (уровень канала)

Типы сокетов

Accessible with PACKET-Sockets / Data Link APIs

Картинка из статьи *Introduction to RAW-sockets.*Jens Heuschkel, Tobias Hoffmar et al. Technische Universität Darmstadt. 2017

Работа с сокетами

- int fd = socket(...) создать сокет
- connect(fd, ...) подключиться
- send/recv обмен данными

Стадия **connect** настраивает заголовки по умолчанию, связанные с *конкретным типом* сокета.

RAW-сокеты

```
sockfd = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)
```

- Работают только из-под рута или настроенным CAP_NET_RAW
- Можно настроить, чтобы добавлялись IP-заголовки (setsockopt IP_HDRINCL)

Сокеты канального уровня:

```
sockfd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL) // фильтр
)
```

Низкоуровневые операции

- Протоколирование действий
- Фильтрация траффика
- Реализация нестандартного протокола передачи данных

