DESEMPEÑO DEL RIEGO POR SUPERFICIE EN EL ÁREA DE REGADÍO DE LA CUENCA DEL RÍO TUNUYÁN INFERIOR

TOZZI, FABIÁN¹; MORÁBITO JOSɲ, VALLONE ROSANA¹

¹ Instituto Nacional de Tecnología Agropecuaria – Fac. Ciencias Agrarias-UNCuyo ² Instituto Nacional del Agua – Fac. Ciencias Agrarias-UNCuyo

San Martín 3853, Lujan de cuyo, Mendoza, teléfono: 0261-4963020 ftozzi@mendoza.inta.gov.ar

RESUMEN

El área regadía de la cuenca del río Tunuyán Superior abarca 86.454 ha con derechos de riego superficial. El 83,7% del área de la cuenca es utilizada con fines agrícolas, por ello resulta importante conocer la eficiencia del uso del agua para riego -mediante indicadores- y detectar los principales problemas y soluciones para un desarrollo sustentable de la cuenca. El objetivo general del estudio, en una primera etapa, es caracterizar los parámetros físicos del riego por superficie que permitan posteriormente, en una segunda etapa, conocer el grado de aprovechamiento del agua de riego en el interior de las propiedades agrícolas del área de influencia del Río Tunuyán en su tramo inferior. Se utilizó la metodología de Chambouleyron y Morábito (1982) en riegos sin desagüe al pie y la de Walker & Skogerboe (1987) y los estándares de ASAE (American Society of Agricultural Engineering, 2000) para los casos de riego con desagüe al pie. Se realizó una evaluación de riego cada 800 ha en coincidencia con tres momentos del ciclo de cultivo que implican distintos requerimientos de agua (otoño-invierno, primavera y verano). Se determinaron los principales parámetros físicos del riego por superficie. Los mismos se analizan según unidades de manejo, estación y método de riego. Los resultados obtenidos para la cuenca indican: i) predomina el riego por melgas sin desagüe, texturas de suelo franco, pendientes del 0,05 % al 0,13 %; ii) caudales de manejo y unitario de 113 L s⁻¹ y 2,09 L s⁻¹m⁻¹ respectivamente, longitud promedio de la parcela de riego 91 m, tiempo de aplicación de 1,96 horas; iii) la infiltración básica media de los suelos es de 12 mm h⁻¹; iv) lámina promedio de reposición (dn), bruta (db), infiltrada (dinf), escurrida (de), almacenada (dal) y percolada (dper), 85 mm, 156 mm, 156 mm, 0 mm, 80 mm, 77 mm respectivamente. El trabajo permitió valorar la eficiencia actual de riego en propiedad (comprendida entre 52 - 55 %) y la eficiencia potencial (de manejo) sin considerar el balance salino del suelo (75 %) incluyendo la mejora de la eficiencia de aplicación (del 61 al 83 %) y la de conducción interna (del 85 al 90%). En una segunda etapa se pretende obtener los valores de eficiencia potencial considerando el balance salino del suelo y elaborar recomendaciones a nivel de productor y/o técnico para asegurar una mejora de la eficiencia de riego a nivel de propiedad, acercándola a los valores objetivo.

Palabras clave: parámetros físicos, infiltración básica, caudal unitario, láminas de riego.

INTRODUCCIÓN

El área regadía de la cuenca del río Tunuyán Inferior está ubicada entre 33° 08´ de latitud Sur y entre 68° 29´ de longitud Oeste, la integran los departamento de Rivadavia, Junín, San Martín, Santa Rosa y La Paz y cuenta con una superficie de 86.455 ha con derechos de riego superficial en las 25 Inspecciones de Cauce involucradas (DGI, 2009, datos no publicados). El 94 % del área total de la cuenca es utilizada para actividades agrícolas y el resto está ocupado básicamente por construcciones e infraestructura, cuerpos de agua y vegetación natural.

El uso eficiente del recurso agua es un factor estratégico que adecuadamente manejado garantizaría el desarrollo autosustentable de las zonas regadías. Por ello es indispensable la caracterización de los parámetros físicos del riego superficial que permitan cuantificar las eficiencias o rendimientos de riego actuales y potenciales. Ello posibilitará detectar los principales problemas y diseñar las posibles soluciones del riego agrícola, optimizando de forma general la utilización del recurso agua en una cuenca en continuo crecimiento y con demandas de múltiples sectores.

Los parámetros físicos que determinan el resultado de un evento de riego pueden agruparse en: (i) variables del sistema (parámetros físicos cuya magnitud puede cambiar en un amplio rango en función de la decisión del usuario) y (ii) parámetros del sistema, son parámetros físicos propios del sistema y que tienen poco o ningún margen de cambio (Reyen y Zerihun 1999). Como *parámetros del sistema* podemos considerar: lámina de riego a aplicar (dn), velocidad máxima del agua admitida para evitar erosión, pendiente del terreno (S), coeficiente de rugosidad (n), parámetros de la ecuación de infiltración (A, B, fo) y geometría de surcos. Las *variables del sistema* son: caudal de manejo y/o caudal unitario (Qm, qu), tiempo de aplicación o corte (Tap) y -en menor medida- la longitud de la unidad de riego (L).

Para diseñar la mejora de los sistemas de riego se hace necesaria la caracterización de parámetros físicos ya que éstos influyen en los procesos hidráulicos del riego, determinando la uniformidad y la aplicación del agua sobre la superficie. En el riego, la uniformidad de distribución (DU) es la resultante de variables de diseño y manejo, como así también de características del evento de riego (Pereira, 1999). Por lo tanto la uniformidad de distribución es función del: caudal unitario o de manejo (qu, Om), de la longitud de la unidad de riego (L), de la rugosidad o coeficiente de rugosidad de superficie (n), de la pendiente longitudinal de la unidad de riego (S), de las características de infiltración del suelo (A, B, fo), de la geometría o sección del surco o melga y del tiempo de aplicación o corte (Tap). La eficiencia de aplicación es también dependiente de variables tanto de diseño como de manejo, siendo función de los caudales unitario y de manejo (qu, Qm), de la longitud de la unidad de riego (L), de la rugosidad o coeficiente de rugosidad de superficie (n), de la pendiente longitudinal de la unidad de riego (S), de las características de infiltración del suelo (A, B, fo), de la geometría o sección del surco o melga, del tiempo de aplicación o corte (Tap) y del déficit del agua en el suelo o lámina de reposición (dn). Estas funciones muestran que la eficiencia de aplicación es función tanto de la uniformidad de distribución como del criterio de programación de los riegos (Pereira, 1999).

Las evaluaciones de los sistemas de riego a campo juegan un papel fundamental para la optimización de los mismos, brindando valiosa información a los agricultores y/o ingenieros proyectistas para la mejora del diseño y prácticas de manejo. La cuenca bajo estudio no posee actualmente ningún estudio integral que permita caracterizar el riego superficial.

OBJETIVOS

- Generales:
- . Contribuir al mejor aprovechamiento del agua de riego en la cuenca del río Tunuyán Inferior.
- . Caracterizar los principales parámetros físicos del riego por superficie que influyen en la optimización del recurso agua en el interior de las propiedades agrícolas.
 - Específicos:
- . Caracterizar -en función de las zonas de manejo, estación del año y método de riegolos siguientes parámetros físicos: velocidad de infiltración de los suelos, velocidad de avance del frente de agua, caudales de manejo y unitario, tiempo de aplicación, tiempo de riego y longitud de la unidad de riego.
- . Cuantificar las diferentes láminas de riego que permitan -en una segunda etapa- la obtención de indicadores parcelarios como: eficiencias de aplicación, almacenaje y distribución, porcentaje de percolación y porcentaje de escurrimiento.

MATERIALES Y MÉTODOS

Para asegurar una adecuada precisión del estudio se realizó una evaluación de riego cada 800 has (Morábito, 2003). Se evaluaron los riegos en 108 propiedades, por tercios en otoño - invierno, primavera y verano. Las distintas estaciones son coincidentes con momentos del ciclo de cultivo con distintos requerimientos de agua (especialmente en el caso de cultivos permanentes como vid y frutales, predominantes en el área de influencia del río). En la práctica y dado que el río Tunuyán Inferior está dividido en Asociaciones de Usuarios e Inspecciones de Cauce, se contactó a los Gerentes Técnicos de cada una de ellas para ponerlos en conocimiento del estudio y de los requerimientos de la evaluación. A posteriori, disponiendo del listado de Inspectores responsables de la administración y distribución del agua en cada zona, se procedió a organizar el trabajo de campo para llevar a cabo las evaluaciones. Se trató de que las mismas cubrieran la totalidad de las zonas de riego y los canales más representativos de cada una de ellas. El criterio de selección de las fincas donde se realizaría la evaluación de la eficiencia de riego fue elegir aquella propiedad -con derecho de riego superficial- que, en oportunidad de la visita, estuviera recibiendo el turno de riego. Durante la evaluación el agricultor

debía regar según su técnica habitual, de manera que la evaluación permitiese conocer detalladamente su modalidad de riego.

Durante el riego se llevaron a campo las siguientes determinaciones: aforo de caudal ingresado a la propiedad y derivado a la parcela de riego, ensayos de infiltración con el método de doble anillo (en cabeza y pie de la unidad de riego), avance y receso del frente de agua, tiempo de riego, dimensiones de la unidad de riego (largo, ancho y número de surcos o melgas regadas simultáneamente), espaciamiento y perímetro mojado de surco, determinación de la pendiente y perfil de surco. La humedad de suelo (antes y después del riego) se determinó en forma gravimétrica en seis sitios y a dos profundidades. Se muestreó el suelo a dos profundidades para la determinación de textura, conductividad eléctrica del extracto de saturación (CEes), pH en pasta y –por último- se tomaron muestras de agua de riego para determinar su C.E.

Para la caracterización de los parámetros físicos de riego se utilizó la metodología desarrollada por Chambouleyron y Morábito (1982) en riegos sin desagüe al pie y la de Walker & Skogerboe (1987) y los estándares de ASAE (American Society of Agricultural Engineering 2000) para los casos de riego con desagüe al pie.

Los parámetros físicos del riego por superficie calculados en esta primer etapa fueron: velocidad de infiltración de los suelos, velocidad de avance del frente de agua, caudal de manejo y unitario, tiempo de aplicación, tiempo de riego, longitud de la unidad de riego. Tales parámetros fueron posteriormente analizados teniendo en cuenta como variables explicativas: zona de manejo, cultivo y método de riego.

Además, ante la necesidad de cuantificar las láminas de reposición (dn), bruta (db), infiltrada (dinf), escurrida (de), almacenada (dal), percolada (dper) y los distintos indicadores, con la información obtenida a campo se ha aplicado el modelo SIRMOD (Walker, 1993).

RESULTADOS

1.- Evaluaciones realizadas: fechas, cultivos y métodos de riego

La tabla 1 resume las evaluaciones efectuadas, desagregadas por canal, cultivo y método de riego y el cuadro 2 muestra -para cada zona- los porcentajes de los distintos métodos de riego. Además, en función del método de riego (S) corresponde a surcos, (M) melgas, (c/D) con desagüe y (s/D) sin desagüe.

Tabla 1: Cantidad de evaluaciones efectuadas, desagregadas por canal, cultivo y método de riego

	Variable		Estación	Total	Total	
	Variable	Otoño	Primavera	Verano		General
	Chacabuco	1	1	1	3	108
Canal	Constitución	6	6	6	18	
	Desagüe La cañada	1	1	1	3	

	Asoc. Independencia	4	3	4	11	
	La Paz	1	1	1	3	
	Montecaseros	5	4	5	14	
	Asoc. Reducción	8	10	8	26	
	Asoc. San Martín	5	6	4	15	
	Asoc. Santa Rosa	5	5	5	15	
	Frutales	10	15	5	30	108
Cultivo	Hortaliza	1	0	1	2	
Cuitivo	Pasturas	1	2	1	4	
	Viticultura	24	20	28	72	
Método	Melga s/D	32	33	27	92	108
de Riego	Surcos s/D	4	4	8	16	

Tabla 2: Resumen porcentual del la distribución del método de riego por zona de análisis, para toda la cuenca irrigada.

•	anansis, p	iai a tuua	la cuelica l	ii i igaua.		
	Melga	Surco		Melga	Surco	
Canal	s/D	s/D	Total	s/D	s/D	Total
Chacabuco	2	1	3	67%	33%	100%
Constitución	16	2	18	89%	11%	100%
Desagüe La						
cañada	3	0	3	100%	0%	100%
Asoc.						
Independencia	10	1	11	91%	9%	100%
La Paz	2	1	3	67%	33%	100%
Montecaseros	13	1	14	93%	7%	100%
Asoc. Reducción	24	2	26	92%	8%	100%
Asoc. San Martín	14	1	15	93%	7%	100%
Asoc. Santa Rosa	8	7	15	53%	47%	100%
Total General	92	16	108	85%	15%	100%

Como puede verse en las tablas 1 y 2, se ha realizado una total de 108 evaluaciones a campo (33 % en otoño, 34 % en primavera y 33 % en verano). En los métodos de riego superficial utilizados para regar los cultivos en la cuenca de estudio, predominan los sistemas sin desagüe al pie (el riego con desagüe es muy escaso, por lo que no ha sido evaluado en esta oportunidad). Dentro del riego sin desagüe predomina el riego por melgas (85 %) sobre el riego por surcos (15 %). La mayor incidencia de riego por surcos se ha encontrado en los departamentos de Santa Rosa y La Paz.

La célula de cultivo evaluada es bastante similar a la presentada mediante análisis de imágenes satelitales recientes (Femenía y Mustoni; 2009), por lo que los cultivos bajo riego, su distribución en el territorio y el muestreo periódico a lo largo del ciclo agrícola de la muestra bajo estudio resultan representativos de las características agrícolas de la cuenca.

2.-Parámetros físicos y de manejo

En este aspecto se analizaron los siguientes parámetros físicos y de manejo que caracterizan el riego de la zona bajo estudio: ecuación de infiltración de Kostiakov (A y B) (mencionados por Grassi, 1998), infiltración básica del suelo (Ib), parámetros de la ecuación de avance (p y r, Grassi 1998), caudal de manejo utilizado por el regador, caudal unitario (surcos en L s⁻¹ y melgas L/s⁻¹.m⁻¹), pendiente del terreno, tiempo de aplicación o corte (Tap) y láminas de riego.

Infiltración

Las siguientes ecuaciones de infiltración representan la curva potencial de velocidad de infiltración acumulada promedio y la infiltración básica para toda la zona regadía de la cuenca del río Tunuyán Inferior. La misma fue ajustada utilizando 1.876 pares de datos provenientes de los ensayos de infiltración realizados en cabeza y pie en cada una de las propiedades evaluadas.

$$I_{cum} = A.t^B = 13,44.t^{0.373}$$

Ib = 7,30 mm/h

Figura 1: Ecuación potencial de infiltración que ajusta a la totalidad de los ensayos realizados en el área regadía del río Tunuyán Inferior.

Avance

La siguiente ecuación representa la curva de avance para toda la zona regadía de la cuenca del río Tunuyán Inferior y resulta del ajuste de 2.677 pares de datos provenientes de los ensayos de avance realizados en cada una de las propiedades evaluadas:

$$x = p.t^{r} = 12,47.t^{0,489}$$

Figura 2: Avances del frente de agua para distintos tiempos en el área irrigada por el río Tunuyán Inferior.

3.- Caudal de manejo y caudal unitario

La tabla 3 muestra los valores medios y la desviación estándar referida a los caudales de manejo y unitario, por zona de manejo, estación, cultivo y método de riego:

Tabla 3: Valores medios y desviación estándar del caudal de manejo (Qm) y unitario (qu) según zona de manejo y método de riego para la cuenca irrigada del río Tunuyán Inferior

				Cauda		
V	ariable	N	Qm (l s	s ⁻¹)	qu (l s ⁻¹ ớ	l s ⁻¹ m ⁻¹)
			Media	S	Media	S
	Chacabuco	3	45	9	1,8	1,8
	Constitución	18	117	82	2,4	1,3
	Desagüe La cañada	3	145	24	4,6	1,3
	Independencia	11	133	110	2,5	1,7
Canal	La Paz	3	136	96	3,8	3,5
	Montecaseros	13	134	82	2,8	1,7
	Reducción	26	93	73	2,0	1,7
	San Martín	16	133	113	4,0	4,1
	Santa Rosa	15	87	97	3,9	2,7
Cultivo	Frutales	30	97	85	2,8	2,3
	Hortaliza	2	96	82	1,4	1,1
	Pasturas	4	83	48	1,1	0,5
	Viticultura	72	121	93	3,1	2,5
Método de	Melga s/d	93	121	91	2,7	2,3
Riego	Surcos s/d	15	58	49	4,1	2,7
Estación	Otoño	36	142	110	3,1	3,2
	Primavera	37	93	75	2,7	1,9
	Verano	35	100	71	2,9	1,9
	Total	108	107	77	2,9	2,1

El caudal de manejo Qm, no presenta grandes variaciones entre los canales, ya que dentro del mismo canal se observa una gran variación, entre la zona alta de la cuenca y la parte baja y final de la cuenca en donde los caudales de manejo son mayores, acorde a la textura del suelo.

En cuanto al método de riego son mayores en la melga sin desagüe al pie, comparándolo con el surco s/D.

Respecto al caudal unitario (qu), solamente se observa una diferencia significativa según tipo de cultivo, siendo en pasturas y en los cultivos hortícolas, menor que para el caso de cultivos frutícolas.

4.- Pendiente longitudinal, tiempo de aplicación y número de surcos o melgas regados simultáneamente

La tabla 4 presenta los valores medios y la desviación estándar de los parámetros pendiente longitudinal, tiempos de aplicación de la unidad de riego evaluada y número de surcos o melgas regadas en forma simultánea con el turno de riego en función del cultivo y método de riego:

Tabla 4: Valores medios y desviación estándar referidos a la pendiente longitudinal, tiempo de aplicación y número de surcos y/o melgas para el área regadía de la cuenca del río Tunuyán Inferior.

			S (m	m ⁻¹)	Tap (m	nin)	N surc melga	
VAR	IABLES	n	Media	S	Media	S	Media	S
	Frutales	30	0,000631	0,0015	118,4	130,2	11,6	9,6
Cultivo	Hortaliza	2	0,002414	0,0016	101	91	27	18
Cultivo	Pasturas	4	0,000348	0,0015	155	84	5	7
	Viticultura	72	0,000560	0,0012	117	93	23	20
Método	Melga s/d	93	0,000480	0,0013	125	108	20	18
de								
Riego	Surcos s/d	15	0,001333	0,0015	85	62	14	12

Respecto a la pendiente longitudinal (parámetro que influye en la uniformidad de la unidad de riego) evaluada en parcela se observa que la misma es mayor en cultivos hortícolas (se encuentran en la zona alta de la cuenca) y en cultivos regados por surcos sin desagüe. Del mismo modo los tiempos de aplicación son superiores en los cultivos regados por melgas s/d. que en los que lo hacen por surcos s/d. Los valores más bajos corresponden a cultivos hortícolas y esto es coincidente con las láminas a reponer, las que son inferiores a las de los cultivos perennes.

En cuanto al número de surcos o melgas regados en forma simultánea, se observan diferencias estadísticas significativas respecto a los factores *cultivo* y *método de riego*, siendo el número de surcos irrigados en forma simultánea, mayor en los cultivos hortícolas.

Longitud de surcos y melgas

En la tabla 5 se detallan los valores medios y la desviación estándar de la longitud de surcos y melgas evaluados en la zona bajo estudio en función del canal de riego, el cultivo, el método de riego y la época de año de la evaluación.

Tabla 5: Valores medios y desviación estándar de la longitud de surcos y melgas según cultivo, canal de distribución, época del año y método de riego, cuantificada en función del cuartel de riego (Long cuartel, m)

	Variable	-	Long cuartel	(m)
	Variable	n	Media	S
	Chacabuco	3	81	19
	Constitución	18	98	23
	Desagüe La cañada	3	101	10
Canal	Independencia	11	92	34
Canal	La Paz	3	102	39
	Montecaseros	13	99	24
	Reducción	26	79	32
	San Martín	16	91	24

	Santa Rosa	15	95	20
	Frutales	30	83,9	25,3
Cultiva	Hortaliza	2	83	54
Cultivo	Pasturas	4	107	17
	Viticultura	72	94	27
Método de	Melga s/d	93	92	27
Riego	Surcos s/d	15	86	26
	Otoño	36	90	29
Estación	Primavera	37	96	24
	Verano	35	88	29
Total T	unuyán Inferior	108	93	25

No se observan diferencias significativas en función del cultivo dado que los cuarteles están sistematizados a 80 a 95 m de longitud, distancia independiente del tipo de cultivo y/o del método de riego. Dicha sistematización está definida por las labores culturales y - en menor medida- por la uniformidad de las parcelas de riego.

5.- Láminas de Riego

La tabla 6 presenta los valores medios y la desviación estándar de las láminas de reposición (dn), bruta (db), infiltrada (dinf), escurrida (de), almacenada (dal) y percolada (dper), expresadas en mm y agrupadas según estación, tipo de cultivo y método del riego para la zona regadía del río Tunuyán Inferior (para cada caso se indica el tamaño de la muestra *n*).

Tabla 6: Láminas: de reposición (dn), bruta (db), infiltrada (dinf), escurrida (de), almacenada (dal) y percolada (dper), expresadas en mm y agrupadas según estación, cultivo y método de riego para la zona regadía del río Tunuyán Inferior

					<u> </u>		Lámina	s de 1	riego (m	m)				
Vai	riable	n	dn		db		Dinf		de		dal		dper	
			Media	S	Media	S	Media	S	Media	S	Media	S	Media	S
	Otoño	36	90	35	179	129	179	129	0	0	85	35	94	123
Estación	Primavera	37	80	41	160	85	160	85	0	0	78	38	85	86
	Verano	35	85	36	128	99	128	99	0	0	77	34	51	88
	Frutales	30	86	34	131	59	131	59	0	0	80	33	55	53
Cultivo	Hortaliza	2	31	14	106	103	106	103	0	0	27	8	79	112
Cuitivo	Pasturas	4	69	34	79	16	79	16	0	0	66	29	13	25
	Viticultura	72	87	38	172	122	172	122	0	0	82	36	90	117
Método	Melga s/d	92	89	37	162	110	162	110	0	0	84	35	80	105
de Riego	Surcos s/d	16	65	32	122	79	122	79	0	0	60	30	62	79
T	otal	108	85	37	156	104	156	104	0	0	80	36	77	99

De la lectura de la tabla 6 se desprende que en cuanto a la lámina de reposición (dn) los cultivos frutícolas y vitícolas necesitan mayores láminas que los cultivos

hortícolas (debido al perfil explorado por las raíces). Respecto de la lámina bruta (db) se observa que las mismas son mayores que las láminas de reposición (dn), tanto en la estación como en el cultivo evaluado. La época otoñal, coincide -en los cultivos perennes- con la aplicación poscosecha de mayores láminas de riego.

Asimismo no se observan diferencias con lo expresado para la lámina bruta en relación a la lámina infiltrada (dinf) puesto que todas las parcelas evaluadas fueron sin desagüe al pie. Respecto a la lámina almacenada (dal) se observa que los valores medidos en cultivos perennes (vid, frutales) resultaron mayores que los de los cultivos hortícolas.

Por último, se observan valores superiores de lámina percolada (dper) en la estación otoñal (se recuerda que dicha lámina es igual a la diferencia entre la lámina bruta y la lámina almacenada, por considerar nulo el escurrimiento).

6.- Eficiencias

A partir del cálculo de las distintas láminas que caracterizan al proceso del riego de un cultivo se procedió a la obtención de los valores de eficiencia (de conducción, aplicación, almacenaje, distribución y uso interno) utilizando los modelos ERFIN (Morábito y otros, 1991) y SIRMOD (Walker, 1993), comparándolos entre sí.

Las eficiencias calculadas responden a las siguientes definiciones:

- -ECI (eficiencia de conducción interna): caudal recibido en la parcela regada respecto del caudal derivado en bocatoma de finca (sólo calculada por ERFIN)
- -EAP: (eficiencia de aplicación) cociente entre el volumen de agua almacenado en el perfil de suelo y el volumen de agua entrado a la parcela
- -EDI: (eficiencia de distribución) lámina media infiltrada en el cuarto más perjudicado respecto de la lámina media infiltrada en todo el perfil
- -EAL: (eficiencia de almacenaje) lámina almacenada en el perfil -después del riego- respecto de la lámina que se esperaba almacenar
- -ERI: (eficiencia de riego interna) producto de la eficiencia de aplicación y la eficiencia de conducción interna. (En el caso del modelo SIRMOD el valor de ERI se obtiene multiplicando la EAP -obtenida en la corrida del SIRMOD- por el valor de ECI que se obtiene de la aplicación del modelo ERFIN). Es de destacar que el modelo SIRMOD calcula, además, la EDIa: (eficiencia de distribución absoluta) cociente entre la lámina mínima y la lámina media infiltradas en la parcela.

La tabla 7 muestra -para cada ciclo y estación estudiados- los valores de eficiencias (ECI, EAP, EAL, EDI y EUI) y los tiempos de avance obtenidos y medidos en el área dominada por el río Tunuyán Inferior obtenidas con los modelos ERFIN (Morábito y otros, 1991) y SIRMOD (Walker 1993).

Tabla 7: Tiempo de avance (cabeza-pie) en minutos de la unidad de riego y eficiencias de riego (%) en el área dominada por el río Tunuyán Inferior

eficiencias de			Eficier E			•	Eficiencias SIRMOD					
Ciclo	Orden	ECI	EAP	EAL	EDI	EUI	Tav	EAP	EAL	EDI	EUI	
Otoño 07	1	98	80	100	97	79	62	80	100	94	87	
Otoño 07	2	91	86	100	87	79	86	45	100	86	87	
Otoño 07	3	89	33	100	87	29	24	33	100	94	87	
Otoño 07	4	67	83	100	78	56	130	66	80	21	32	
Otoño 07	5	95	39	100	98	37	21	39	100	87	83	
Otoño 07	6	90	47	100	100	42	48	46	100	92	89	
Otoño 07	7	99	12	100	100	12	41	12	100	77	77	
Primavera 07	8	85	50	100	100	42	27	54	100	95	96	
Primavera 07	9	s/d	s/d	s/d	s/d	s/d	s/d	s/d	s/d	s/d	s/d	
Primavera 07	10	91	27	95	100	24	27	27	100	77	77	
Primavera 07	11	91	79	100	100	72	42	79	100	94	91	
Primavera 07	12	89	96	100	95	86	24	95	99	93	92	
Primavera 07	13	96	26	100	80	25	127	20	100	86	52	
Primavera 07	14	96	82	88	45	78	90	89	95	86	54	
verano 07	15	94	57	100	88	54	26	20	100	63	56	
verano 07	16	87	100	57	98	87	60	79	45	65	10	
verano 07	17	89	90	100	90	80	18	100	60	94	92	
verano 07	18	89	100	59	97	89	31	92	55	82	74	
verano 07	19	76	98	98	95	74	s/d	s/d	s/d	s/d	s/d	
Otoño 08	20	70	100	82	100	70	33	97	77	57	46	
Otoño 08	21	93	32	100	99	30	18	33	100	90	88	

	•										
Otoño 08	22	86	100	88	100	86	45	97	84	72	42
Otoño 08	23	91	100	58	97	91	72	94	52	70	64
Otoño 08	24	77	78	100	99	60	30	91	82	40	16
Otoño 08	25	93	53	100	98	49	55	58	100	100	98
Otoño 08	26	96	23	100	98	22	138	19	100	98	97
Otoño 08	27	93	19	100	91	18	22	25	100	97	97
Otoño 08	28	95	31	100	99	30	24	30	100	65	48
Otoño 08	29	90	8	100	100	7	13	9	100	99	99
Otoño 08	30	80	45	100	100	36	32	45	100	90	87
Otoño 08	31	91	91	100	95	83	23	48	96	45	37
Otoño 08	32	91	41	100	97	37	13	40	100	86	80
Otoño 08	33	69	68	100	82	47	413	69	100	100	100
Otoño 08	34	95	47	100	100	45	35	47	100	100	91
Otoño 08	35	79	65	100	98	52	21	65	100	96	90
Primavera 08	36	91	39	100	99	36	73	39	100	88	84
Primavera 08	37	73	92	100	99	67	22	69	100	96	95
Primavera 08	38	51	36	100	49	18	215	36	100	87	98
Primavera 08	39	83	85	100	97	71	16	89	100	77	71
Primavera 08	40	97	100	84	97	97	18	86	71	97	89
Primavera 08	41	88	50	100	96	44	25	50	99	83	61
Primavera 08	42	86	98	98	96	85	74	82	82	54	52
Primavera 08	43	92	43	100	96	40	86	43	100	93	91
Primavera 08	44	75	97	99	96	73	82	100	82	88	84
Primavera 08	45	95	28	100	96	27	34	28	100	88	78

Primavera 08	46	88	20	100	100	18	33	20	100	97	94
Primavera 08	47	91	15	100	97	14	39	15	100	97	96
Primavera 08	48	94	12	100	96	11	44	12	100	97	93
Primavera 08	49	95	66	100	100	63	44	73	100	78	78
Primavera 08	50	94	26	100	92	25	66	26	100	97	96
Primavera 08	51	90	17	100	97	15	26	17	100	97	96
Primavera 08	52	92	74	100	91	68	140	74	100	98	98
Primavera 08	53	84	29	100	94	24	46	31	100	80	81
Primavera 08	54	94	100	90	99	94	13	45	100	94	96
Primavera 08	55	83	46	100	84	38	103	49	100	99	99
Primavera 08	56	95	64	100	97	61	21	70	100	93	93
Primavera 08	57	88	100	94	97	88	38	100	86	99	98
Primavera 08	58	95	97	99	94	93	39	93	94	85	71
Primavera 08	59	96	33	100	98	32	88	33	100	59	39
Primavera 08	60	87	100	82	95	87	114	96	78	63	56
Primavera 08	61	87	16	100	96	14	48	16	100	96	95
Primavera 08	62	86	71	100	85	61	51	68	97	63	42
Primavera 08	63	78	84	100	95	65	120	80	95	80	67
Primavera 08	64	93	60	101	100	56	60	59	100	87	87
Primavera 08	65	95	56	101	100	54	30	55	99	97	82
Verano 08	66	88	74	100	99	64	38	79	100	89	90
Verano 08	67	87	100	50	89	87	71	100	50	74	74
Verano 08	68	85	67	100	90	57	42	67	100	87	74
Verano 08	69	95	74	100	98	70	20	72	98	61	62

Verano 08	70	95	93	100	99	88	25	73	78	36	36
Verano 08	71	97	78	100	89	75	26	67	87	53	54
Verano 08	72	68	100	43	100	68	20	95	96	85	74
Verano 08	73	91	85	100	100	78	12	83	97	84	73
Verano 08	74	79	100	53	98	79	120	97	50	75	14
Verano 08	75	80	52	100	97	42	15	53	100	100	100
Verano 08	76	86	9	100	100	8	9	4	100	99	99
Verano 08	77	75	73	100	92	54	26	73	100	80	72
Verano 08	78	93	56	100	92	52	36	55	100	96	94
Verano 08	79	94	28	100	98	27	37	28	100	87	86
Verano 08	80	95	100	85	100	95	58	89	73	49	47
Verano 08	81	77	53	100	100	40	18	53	100	93	91
Verano 08	82	90	26	100	90	24	25	26	100	52	32
Verano 08	83	73	100	75	95	73	468	99	74	59	12
Verano 08	84	91	39	100	98	36	42	40	100	83	78
Verano 08	85	89	100	99	98	89	74	81	79	55	55
Verano 08	86	82	99	97	92	80	42	99	84	97	95
Verano 08	87	68	100	69	95	68	44	100	57	100	97
Verano 08	88	94	27	100	93	25	21	28	100	86	81
Verano 08	89	82	19	100	89	15	53	18	100	94	91
Verano 08	90	70	100	91	98	70	30	91	83	52	32
Verano 08	91	73	99	95	91	72	41	100	96	98	98
Verano 08	92	78	91	97	81	70	9	51	100	99	98
Verano 08	93	61	96	100	95	58	10	97	100	97	95

Promedio 07 - 08		85	65	94	93	55	56	61	91	82	52
Parámetro	Parámetro		EAP	EAL	EDI	EUI	Tav	EAP	EAL	EDI	EUI
Verano 08	108	94	93	95	100	88	97	97	94	99	99
Verano 08	107	43	77	100	100	33	8	76	99	78	71
Verano 08	106	85	84	95	100	72	63	77	92	86	72
Verano 08	105	86	100	94	82	86	117	98	79	51	45
Verano 08	104	69	33	91	100	23	29	34	100	84	85
Verano 08	103	82	100	97	43	82	13	100	79	98	97
Verano 08	102	96	39	100	100	37	19	19	100	95	93
Verano 08	101	75	34	97	100	25	43	35	100	91	88
Verano 08	100	86	100	97	71	86	114	100	37	55	47
Verano 08	99	82	57	100	100	47	34	59	100	93	93
Verano 08	98	78	85	85	99	66	62	86	100	93	90
Verano 08	97	45	80	99	100	36	184	78	99	76	62
Verano 08	96	93	100	93	87	93	49	100	87	84	79
Verano 08	95	83	100	75	95	83	23	92	68	49	42
Verano 08	94	97	45	100	100	43	25	44	100	96	94

Como puede verse los valores de *eficiencia potencial* (de manejo) *de riego* obtenidos con el modelo SIRMOD son -como es de esperar- mayores que las actuales. No obstante ello resultan difíciles de alcanzar y si bien adecuando el manejo del riego los valores a obtener pueden aproximarse, el reto sigue en pie. Para ello deberá trabajarse tanto en la mejora propiamente dicha del riego en finca (adecuada nivelación de las parcelas, corrección de los tiempos de riego y de los caudales unitarios, recálculo de la oportunidad del riego (lámina consumida, lámina óptima de reposición, umbral de riego, etc.) como en la capacitación específica del agricultor. Las posibilidades de alcanzar los valores potenciales están vinculadas –además- a la organización de la entrega del agua fuera de la propiedad (cuadro de turnados de riego) y su ajuste al requerimiento hídrico de los diferentes cultivos (tabla 8).

Tabla 8: Tiempo de avance (cabeza-pie) de la unidad de riego y eficiencias potenciales de riego optimizadas con SIRMOD en el área dominada por el río Tunuyán Inferior

Gt	Orden	Eficiencias (%) y tiempos de avance (min)					
Ciclo		Tav	EAP	EAL	EDI	EUI	
Otoño 07	1	55	80	100	99	99	
Otoño 07	2	97	79	100	96	93	
Otoño 07	3	36	79	100	98	96	
Otoño 07	4	21	77	100	99	49	
Otoño 07	5	21	77	100	99	98	
Otoño 07	6	31	79	100	98	98	
Otoño 07	7	49	77	100	97	96	
Primavera 07	8	29	89	100	96	95	
Primavera 07	9	s/d	s/d	s/d	s/d	s/d	
Primavera 07	10	50	72	100	93	91	
Primavera 07	11	30	79	100	99	98	
Primavera 07	12	21	96	100	98	98	
Primavera 07	13	73	82	100	99	99	
Primavera 07	14	74	93	100	95	92	
verano 07	15	36	87	100	97	96	
verano 07	16	20	90	100	98	97	
verano 07	17	16	83	100	97	97	
verano 07	18	44	82	100	93	91	
verano 07	19	s/d	s/d	s/d	s/d	s/d	
Otoño 08	20	23	80	100	100	99	
Otoño 08	21	23	77	100	99	99	

			ı	ı		
Otoño 08	22	43	78	100	98	97
Otoño 08	23	67	81	100	98	97
Otoño 08	24	43	83	100	98	98
Otoño 08	25	52	78	100	98	97
Otoño 08	26	57	75	100	98	97
Otoño 08	27	27	77	100	98	97
Otoño 08	28	21	83	100	98	98
Otoño 08	29	17	80	100	99	98
Otoño 08	30	35	83	96	98	96
Otoño 08	31	39	82	100	97	96
Otoño 08	32	14	81	100	99	99
Otoño 08	33	37	82	100	99	98
Otoño 08	34	25	84	100	99	99
Otoño 08	35	20	81	100	99	99
Primavera 08	36	71	82	100	99	98
Primavera 08	37	31	93	100	99	99
Primavera 08	38	105	85	100	98	95
Primavera 08	39	20	81	100	99	98
Primavera 08	40	46	95	100	99	98
Primavera 08	41	16	94	100	99	99
Primavera 08	42	93	91	100	98	97
Primavera 08	43	23	90	100	99	99
Primavera 08	44	76	99	98	96	93
Primavera 08	45	36	83	100	96	93

						1
Primavera 08	46	51	95	100	98	97
Primavera 08	47	36	85	100	98	98
Primavera 08	48	62	89	100	96	95
Primavera 08	49	49	81	100	99	98
Primavera 08	50	69	95	100	98	97
Primavera 08	51	37	91	100	98	97
Primavera 08	52	65	89	100	98	96
Primavera 08	53	49	87	100	98	96
Primavera 08	54	20	75	100	99	99
Primavera 08	55	84	88	100	96	93
Primavera 08	56	21	82	100	98	97
Primavera 08	57	34	87	100	99	98
Primavera 08	58	46	95	100	98	97
Primavera 08	59	76	93	100	96	94
Primavera 08	60	80	92	100	98	97
Primavera 08	61	34	91	100	99	98
Primavera 08	62	61	86	100	98	97
Primavera 08	63	77	84	100	97	96
Primavera 08	64	63	84	100	98	96
Primavera 08	65	27	79	100	97	96
Verano 08	66	38	78	100	98	98
Verano 08	67	47	82	100	97	96
Verano 08	68	35	78	100	98	97
Verano 08	69	26	85	100	98	97

Verano 08	70	36	82	100	99	98
Verano 08	71	37	85	100	92	88
Verano 08	72	18	80	100	96	94
Verano 08	73	19	81	100	99	98
Verano 08	74	35	79	100	99	98
Verano 08	75	14	80	100	99	99
Verano 08	76	10	71	100	99	99
Verano 08	77	29	79	100	98	98
Verano 08	78	67	84	100	99	98
Verano 08	79	50	83	100	99	98
Verano 08	80	71	81	100	98	96
Verano 08	81	19	86	100	98	98
Verano 08	82	38	82	100	97	96
Verano 08	83	24	82	100	98	97
Verano 08	84	47	81	100	99	98
Verano 08	85	58	84	100	97	96
Verano 08	86	43	74	100	98	97
Verano 08	87	41	82	100	98	97
Verano 08	88	28	85	100	97	97
Verano 08	89	60	78	100	97	95
Verano 08	90	38	79	100	99	99
Verano 08	91	41	83	100	99	98
Verano 08	92	12	76	100	99	99
Verano 08	93	11	79	100	99	99

Promedio	07 - 08	41	83	100	98	71
Parámetro		Tav	EAP	EAL	EDI	EUI
Verano 08	108	35	78	100	95	93
Verano 08	107	10	80	100	97	96
Verano 08	106	26	79	100	98	97
Verano 08	105	72	83	100	96	95
Verano 08	104	33	80	100	96	94
Verano 08	103	14	80	100	99	99
Verano 08	102	22	88	100	99	99
Verano 08	101	35	79	100	98	96
Verano 08	100	39	77	100	97	96
Verano 08	99	35	80	100	98	98
Verano 08	98	59	82	100	99	99
Verano 08	97	48	84	100	97	96
Verano 08	96	41	83	100	97	96
Verano 08	95	13	78	100	98	97
Verano 08	94	25	82	100	96	95

DISCUSION DE RESULTADOS

La ecuación de infiltración promedio que caracteriza la cuenca, presenta valores más bajos que los normales para las texturas de suelos predominantes (franco a franco-arenosos), clasificándolas como de la familia de infiltración (F): Lenta (L) a muy lenta (ML). Los suelos se comportan como suelos de textura "franco arcillosos" lo que podría explicarse por lo bajos contenidos de materia orgánica, la existencia de capas compactadas y -de acuerdo a observaciones realizadas en algunas de las evaluaciones- a la presencia de capas de *caliche* que limitan la infiltración del agua en los suelos.

Respecto a las ecuaciones de avance, los valores del coeficiente "p" y del exponente "r" obtenidos de las evaluaciones muestran valores acordes con los

mencionados en la literatura nacional e internacional (Morábito, 2003; Walker y Skogerboe, 1987).

Los caudales de manejo resultaron mayores en los canales *San Martín, Desagüe la Cañada, Santa Rosa y La Paz* respecto a las demás zonas de manejo. Sus magnitudes son adecuadas para obtener eficiencias de riego aceptables en relación a los sistemas de riego mayoritariamente utilizados (sin desagüe al pie). No obstante, en cada Inspección de cauce se podría modificar el caudal de entrega, mejorando la operación del productor. Llevar a cabo estas modificaciones resulta factible ya que la red primaria y secundaria está impermeabilizada en un alto porcentaje.

En cuanto a lo que se refiere a la pendiente longitudinal de las parcelas evaluadas, puede concluirse que lo métodos de riego sin desagüe al pie poseen valores cercanos a 0,00606 m.m⁻¹. Como se ha dicho, esta variable afecta significativamente la uniformidad del riego. Según la simulación realizada con el modelo SIRMOD, corrigiendo este valor a valores normales de 0.0005 m.m⁻¹ se puede optimizar en más de 10 puntos el aprovechamiento y la distribución del recurso agua de riego.

Los mayores tiempos de aplicación (117 min) se observan en parcelas de cultivos perennes, mientras que las variaciones entre los diferentes canales de la red están relacionadas con el caudal de manejo recibido por el productor.

La cantidad promedio de surcos y/o melgas regadas en forma simultánea con un turno de riego es mayor para los cultivos hortícolas (27 surcos) que para los cultivos frutícolas (12 melgas y/o surcos). También influye la época de riego siendo primavera la más crítica, que es cuando el número de surcos o melgas regados simultáneamente se reduce a 11 a 23.

Respecto al largo de la unidad de riego los métodos de riego sin desagüe presentan una longitud promedio de cuartel de 91 m, no existiendo diferencia entre cultivos ni tipo de riego (melgas o surcos), ya que las propiedades están sistematizadas principalmente en función de las labores culturales. En algunos casos se ha modificado la longitud de riego, colocando la acequia regadora en la mitad de la parcela para aumentar la eficiencia de distribución.

Las láminas de reposición no resultan ser diferentes entre sí para las distintas estaciones analizadas, al igual que las láminas brutas, inclusive aquellas de verano, que suelen ser las más elevadas. Ello muestra un manejo poco adecuado del riego en verano, en el ciclo 2007-2008. Por otra parte, las láminas de reposición son mayores en frutales que en cultivos hortícolas, lo que resulta lógico dada la profundidad de suelo explorada por las raíces de los cultivos antes mencionados. El mismo comportamiento puede verse cuando se analizan las láminas almacenadas. En lo que se refiere a las láminas infiltradas se observan diferencias respecto al tipo de cultivo, siendo mayores para frutales que para hortalizas. Los cultivos hortícolas -regados con bajas eficiencias y generalmente en suelos con buen tenor de humedad- logran infiltrar láminas más pequeñas que los frutales.

Los valores obtenidos de la evaluación a campo para las distintas eficiencias fueron los siguientes:

- eficiencia del uso del agua en finca = 52 55 %
- eficiencias de conducción, aplicación, almacenaje y distribución = 85, 65-61, 94 91 y 93-82 %, respectivamente.
- eficiencia de aplicación potencial para la zona, mejorando el manejo del riego en finca y sin considerar el balance salino del suelo = 83 %
- eficiencia de aplicación potencial para la zona, mejorando la conducción (llevándola del 85 al 90 %) en las acequias de la propiedad = 75 %.

CONCLUSIONES Y RECOMENDACIONES

En lo que a métodos de riego superficial utilizados en la cuenca de estudio se refiere puede verse que predomina el *riego sin desagüe al pie;* las más empleadas resultaron las *melgas sin desagüe (85 %)* seguidas de los *surcos sin desagüe (15 %)*. Los departamentos de Santa Rosa (47 %) y La Paz (33 %) tienen la mayor cantidad de propiedades regadas por surcos sin desagüe.

Las velocidades de infiltración representativas de las unidades de suelo del área regadía del río Tunuyán Inferior, se consideran *bajas*, alcanzando valores extremos de infiltración básica de 1 mm h⁻¹ y 55 mm h⁻¹ que corresponden a la clase de Familias de infiltración del SCS-USDA "Muy Lenta (ML)" y "Moderadamente Rápida (Mod. R)", respectivamente.

Respecto a las zonas de manejo analizadas sólo se observan mayores caudales de manejo en la Zona Este de la cuenca. Los cultivos frutícolas (2.8 l s⁻¹ ó l s⁻¹ m⁻¹) presentan caudales unitarios mayores que los hortícolas (1.4 l s⁻¹).

La pendiente de riego es mayor en los surcos sin desagüe al pie (0,00133 m m⁻¹) que en las melgas sin desagüe al pie (0,00048 m m⁻¹). Los tiempos de aplicación del agua fueron mayores en las melgas sin desagüe al pie (125 min).

El número promedio de surcos y/o melgas regadas con un turnado es mayor en los cultivos hortícolas (27 surcos) que en los frutícolas (11 surcos y/melgas).

Los valores promedio de las láminas de riego fueron: lámina de reposición (dr = 85 mm), lámina bruta (db = 156 mm), lámina infiltrada (dinf = 156 mm), lámina escurrida (de = 0 mm), lámina almacenada (dal 0 80 mm) y lámina percolada (dper = 76 mm). Las láminas almacenadas son mayores en los cultivos frutícolas (80 mm); en los cultivos frutícolas el promedio es de 27 mm.

Esta primera etapa del estudio ha permitido obtener la caracterización integral de los principales parámetros físicos del riego por superficie en el área regadía del río Tunuyán Inferior. Asimismo se han obtenido los valores de eficiencia de riego (EAP,

EAI, EDI y EUI) actuales y potenciales (de manejo). En una segunda etapa de análisis se pretende profundizar la obtención de las eficiencias potenciales (por salinidad) y proponer recomendaciones sencillas, a nivel de técnico y/o productor, para acercar su valor al máximo potencial asegurando una racional utilización del recurso agua de riego para nuestras zonas áridas (Morábito, 2003; Pereira, 1999; Burt et al, 1997; Walker y Skogerboe, 1987; Roscher, 1985; Bos y Nugteren, 1982; Chambouleyron et al, 1982; Merriam y Keller 1978).

Por último, se realizará un análisis geo-estadístico de las variables de interés y un balance salino a nivel de parcela regada.

BIBLIOGRAFIA

ASAE Standars (2000) "Evaluation of irrigation furrows". American Society of Agricultural Engineering EP419.1. USA, p893 – 898.

Bautista, E.; Schlegel, J.L.; Strelkoff, T.; Clemmens, A.J. (2007) "Simulation, design and evaluation of surface irrigation systems with winsrfr". Meeting Proceedings. p. 395-408. United States Department of Agriculture.

Bos, M; and Nugteren J. (1982) "On irrigation efficiencies". Publication 19 ILRI. The Netherlands.

Burt, C.M.; Clemmens, A.J.; Strelkoff, T.S.; Solomon, K.H.; Bliesner, R.D.; Hardy, L.A.; Howell, T.A.; and Eisenhauer, D.E (1997) "Irrigation performance measures: Efficiency and uniformity". Journal of Irrigation and Drainage Engineering, 123(6):423-442.

Chambouleyron J.; Menenti M.; Fornero L.; Morábito J. y Stefanini L (1982) "Evaluación y optimización del uso del agua en grandes redes de riego". INCyTH – IILA, Roma.

Chambouleyron J. y Morábito J. (1982) "Evaluación del riego en fincas". INCyTH-CRA, Mendoza.

Cuesta, T.; Neira, X.; Alvarez, C.; Cancela, J. (2004) "Evaluation of water-use in traditional irrigation. An application to the Lemos Valley irrigation district, northwest of Spain". Agricultural water Management 73 (2005) 223-245.

DGI (2004) "Plan Director de la cuenca del Río Tunuyán". Departamento General de Irrigación, Mendoza.

Femenía, **A. y Mustoni**, **N.** (2009) "Usos del suelo mediante interpretación visual de imágenes de alta resolución". Publicación Interna. Departamento General de Irrigación, Mendoza.

Grassi, C. J. (1998) "Fundamentos del Riego". Centro Interamericano de Desarrollo e Investigación Ambiental y Territorial (CIDIAT). Mérida, Venezuela.

Hernandez, J. y Martinis, N. (2008) "Particularidades de las cuencas hidrogeológicas con fines de riego en la provincial de Mendoza". IV Jornadas de Riego y Fertirriego, 4 y 5 de Diciembre de 2008, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina.

INDEC (2002) "Censo Nacional Agropecuario 2002". Instituto Nacional de Estadísticas y Censos, Gobierno de la República Argentina (www.indec.gov.ar).

Kostiakov, A.N. (1932) "On the dynamics of the coefficient of water-percolation in soils and on the necessity for studying it from a dynamic point of view for purposes of amelioration". VI Congreso Internacional de la Ciencia del Suelo, Paris, Francia.

Merriam, J. and Keller j. (1978) "Farm Irrigation System Evaluation. A guide for management. Department of Agriculture and Irrigation Engineering". Utha State University, Logan, Utha, USA.

Morabito, J. (2003) "Desempeño del riego por superficie en el área de riego del río Mendoza. Eficiencia actual y Potencial". Universidad Nacional de Cuyo – Facultad de Ciencias Agrarias. Tesis de Maestría.

Playán, E.; Lecina, S.; Isidoro, D.; Dechmi, F.; Causapé, J.; Faci, J.M; 2005. "Irrigation evaluation and simulation at the Irrigation District V of Bardenas (Spain)". Agricultural Water Management 73 (2005) 223-245.

Pereira, L. (1999) "Higher performance through combined improvements in irrigation methods and scheduling: a discussion". Agricultural Water Management 40 (1999) 153-169.

Reyen, J.; Zerihun, D. (1999) "Assessment of the performance of border and furrow irrigation systems an the relationship between performance indicators and system variables". Agricultural Water Management, 40 (1999) 353-362.

Roscher, K. (1985) "Surface Irrigation. Characteristics, design and performance. Department of irrigation and civil engineering". Agricultural University, Wageningen. The Netherlands.

Strelkoff, T.S.; Clemmens, A.J.; and Schmidt B.V. (1998) "SRFR, Version 3.31 – A model for simulating surface irrigation in borders, basins and furrows". USWCL, USDA/ARS, 4331 E. Broadway, Phoenix, AZ.

USDA (2009) "WinSRFR 3.1 User Manual". U.S Department of Agriculture, Agricultural Research Service. Arid Land Agricultural Research Center.

Vallone, R.; Maffei, J.; Morábito, J.; Mastroantonio, L.; Lipinski, V.; Filippini, F.; Olmedo, F. (2007) "Mapa utilitario de suelos y riesgo de contaminación edáfica en los oasis irrigados de la provincia de Mendoza". Jornadas de Investigación en Recursos Hídricos, 27 de septiembre de 2007, Espacio para la Ciencias y Tecnología, Mendoza. (2009 en prensa).

Walker, R. (1993) SIRMOD: "Surface Irrigation Simulation Software". Biological and Irrigation Engineering Department". Utah State University, Logan, Utah, USA.

Walker, R. and Skogerboe (1987) "Surface Irrigation Theory and Practice". Utah State University, Prentice – Hall.

Walker, R.; Prestwich, C.; Spofford, T (2006) "Development of revised USDA-NRCS intake families for surface irrigation". Agricultural Water Management 85 (2006) 157-164.