Econometrics - Week 2

William Schill

This file was originally created using Jupyter with Python and HTML and has been saved as a pdf rather than exported to a pdf due to errors in exporting and latex, because of this formatting is a little wonky.

```
In [1]: import numpy as np
   import pandas as pd
   from matplotlib.pyplot import *
   import statsmodels.api as sma
   import statsmodels.stats as sms
   import seaborn as sns
   %matplotlib inline
```

```
In [2]: path = 'C:\\Users\\SchillW\\Documents\\Econ_Coursera\\Wk2\\'
df = pd.read_excel(path+'TestExer2-GPA-round2.xls')
```

In [3]: | df.head()

Out[3]:

	Observation	FGPA	SATM	SATV	FEM
0	1	2.518	4.0	4.0	1
1	2	2.326	4.9	3.1	0
2	3	3.003	4.4	4.0	1
3	4	2.111	4.9	3.9	0
4	5	2.145	4.3	4.7	0

```
In [20]: xa = df['SATV']
    ya = df['FGPA']
    moda = sma.OLS(ya,sma.add_constant(xa))
    fita = moda.fit()
    print fita.summary2()
```

```
Results: Ordinary least squares
______
Model:
              OLS
                          Adj. R-squared:
                                        0.007
Dependent Variable: FGPA
                          AIC:
                                       780.8876
                                       789.7112
Date:
              2017-02-03 10:40 BIC:
                         Log-Likelihood: -388.44
F-statistic: 5.201
No. Observations: 609
Df Model: 1
Df Residuals: 607
                         Prob (F-statistic): 0.0229
            0.008
R-squared:
                         Scale:
                                0.21037
      Coef. Std.Err. t P>|t| [0.025 0.975]
const 2.4417 0.1551 15.7468 0.0000 2.1372 2.7463
              0.0277 2.2805 0.0229 0.0088 0.1174
SATV 0.0631
               11.335
                         Durbin-Watson:
Prob(Omnibus): 0.003
                         Jarque-Bera (JB): 7.694
Skew:
                        Prob(JB):
               0.138
                                          0.021
                         Condition No.:
Kurtosis:
               2.524
______
```

(a)(i)

The coefficient for SATV is 0.0631 amd the p-value is 0.023. Assuming H0 is that SATV has a significant effect on FGPA, we cannot reject the Null to the 95% confidence interval.

```
In [5]: b = fita.params
    FGPA1 = np.dot(sma.add_constant(xa),b.T)
    FGPA2 = np.dot(sma.add_constant((xa+1)),b.T)

ciFGPA1 = sms.weightstats.zconfint(FGPA1, alpha=0.05)
    ciFGPA2 = sms.weightstats.zconfint(FGPA2, alpha=0.05)

print "Confidence Interval for FGPA is :", ciFGPA1
    print "Confidence Interval for FGPA with SATV+1 is :", ciFGPA2

Confidence Interval for FGPA is : (2.7894274148855658, 2.7961653601554843)
    Confidence Interval for FGPA with SATV+1 is : (2.8525132602634113, 2.85925120 55333299)
```

Increase of 1 Point in SATV has 2.25887736248 % effect on mean FGPA

(a)(ii)

The confidence interval for the 1 point increase can be seen above. A 1 point change to SATV is approximately a 2.26% increase in FGPA. The confidence intervals in the summary are based on the p-value and the ones listed above are based on the z-score:

Pvalue confidence interval: 0.009 < t < 0.117 Confidence Interval for FGPA is: (2.7894274148855658, 2.7961653601554843) Confidence Interval for FGPA with SATV+1 is: (2.8525132602634113, 2.8592512055333299)

```
In [21]: xb = df.drop(['FGPA','Observation'],axis=1)
yb = ya
modb = sma.OLS(yb,sma.add_constant(xb))
fitb = modb.fit()
print fitb.summary2()
```

Results: Ordinary least squares							
Model:		OLS		======================================		====== 0.078	
Depender	nt Variable:	FGPA		AIC:		37.3379	
Date:		2017-02-03 10:40		BIC:		54.9852	
No. Obse	ervations:	609		Log-Likelihood:		-364.67	
Df Model	L :	3		F-statistic:		18.24	
Df Resid	duals:	605		Prob (F-stat	istic): 2	.41e-11	
· •		0.083		Scale:		.19521	
				P> t		0.975]	
const	1.5570	0.2161	7.205	4 0.0000	1.1327	1.9814	
SATM	0.1727	0.0319	5.410	4 0.0000	0.1100	0.2354	
SATV	0.0142	0.0279	0.507	1 0.6123	-0.0407	0.0690	
FEM	0.2003	0.0374	5.357	6 0.0000	0.1269	0.2737	
Omnibus:		7.757	Durbin-Watson:			1.912	
Prob(Omnibus):		0.021	Jarque-Bera (JB):		B):	5.727	
Skew:		0.118	Prob(JB):		,	0.057	
Kurtosis:		2.588	Condition No.:			103	

(b)(i)

The coefficients are listed above and assuming the H0 is that the variables have a significant impact of FGPA, we can reject the Null for SATV when SATM and FEM are included.

```
In [8]: b2 = fitb.params
        FGPA3 = np.dot(sma.add_constant(xb),b2.T) #prediction
        xb2 = xb.copy()
        xb2['SATV'] = xb2['SATV']+1.0
        FGPA4 = np.dot(sma.add_constant(xb2),b2.T) #prediction
        ciFGPA3 = sms.weightstats.zconfint(FGPA3, alpha=0.05)
        ciFGPA4 = sms.weightstats.zconfint(FGPA4, alpha=0.05)
        print "Confidence Interval for FGPA is :", ciFGPA3
        print "Confidence Interval for FGPA with SATV+1 is :", ciFGPA4
       Confidence Interval for FGPA is: (2.7822678481821517, 2.8033249268589073)
       Confidence Interval for FGPA with SATV+1 is: (2.7964297447224977, 2.81748682
        33992534)
In [9]: print "\n=======\n"
        print "Increase of 1 Point in SATV has ",
        (np.mean(FGPA4)/np.mean(FGPA3)-1.0)*100.0, '% effect on mean FGPA'
        _____
```

Increase of 1 Point in SATV has 0.507086610525 % effect on mean FGPA

(b)(ii):

The confidence intervals for all of the variables p-values can be found in the table above. The confidence interval for FGPA with a 1 point increase in SATV for the model with more variables is seen above. The effect of a 1 point increase here is 0.51% which makes sense as the variable has a far less significant impact when accompanied by the other variables.

Confidence Interval for FGPA is: (2.7822678481821517, 2.8033249268589073) Confidence Interval for FGPA with SATV+1 is: (2.7964297447224977, 2.8174868233992534)

Out[10]:

	FGPA	SATM	SATV	FEM
FGPA	1.000000	0.195040	0.092167	0.176491
SATM	0.195040	1.000000	0.287801	-0.162680
SATV	0.092167	0.287801	1.000000	0.033577
FEM	0.176491	-0.162680	0.033577	1.000000

```
In [11]: sns.heatmap( corchk.corr())
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0xa675f98>

(c):

SATM and SATV have a 0.288 correlation which is lowering the significance of SATV in part b(ii). SATV could be dropped with out any significant effect on the model.

Comparing F tests for regression a and regression b:

```
In [14]: g = 3.0-1.0 ##difference in number of parameters so 3 versus 1
       n = np.shape(xb)[0]
       k = np.shape(xb)[1] + 1 #adding in the constant
       F = ((fitb.rsquared - fita.rsquared) / g) / ( (1-fitb.rsquared)/(n-k) )
       Fcheck = (fitb.ess - fita.ess)/(fitb.centered_tss - fitb.ess) * (n-k)/g
       print "\n========\n"
       print "Manual calculation of F test"
       print F
       print Fcheck
       print "g=",g, " n=",n, " k=",k
       print "\n========\n"
       print "Sqaure root of F = ", np.sqrt(F)
       _____
       Manual calculation of F test
       24.5651939993
       24.5651939993
       g = 2.0 n = 609 k = 4
       _____
       Sqaure root of F = 4.95632868153
In [15]:
      print "\n=========\n"
       print "statsmodels F test calculation for comaprison"
       F2 = fitb.compare_f_test(fita)
       print F2
       print np.sqrt(F2[0])
       ______
       statsmodels F test calculation for comaprison
       (24.565193999316588, 5.5276752534973362e-11, 2.0)
```

4.95632868153

d(i):

I read the question as regarding the outcome of the model and not the SATV variable itself. The calculation for the F test (using part against part b) shows that the the F value exceeds the critical value of 3.9 and we can reject the Null hypothesis. We can confirm this using statsmodels method built into the fit as shown above.

d(ii):

Analytically, it can be shown that the F-test is approximately equal to the t-test squared. However in each calculation, this was unachievable. The statsmodels method derived a value of 8.66E-13 is close to the numerical calculation seen below that of 7.88E-13. In no way was I able to get a value of 4.956 for the t-test.

We know that:

$$t=(y_{bar1}-y_{bar0})/(s_p*\sqrt(1/n_0+1/n_1))$$
 where s_p = s pooled = $s_p=((n_0-1)*s_0^2+(n_1-1)*s_1^2)/(n_0+n_1-2)$ so $t^2=(y_{bar1}-y_{bar0})^2/(s_p^2*(1/n_0+1/n_1))$

For a single outcome, and large n, we know that $s/\sqrt(n-k) pprox s/\sqrt(n)$

And
$$(s/\sqrt(n))^2 pprox e'e/n$$

 $(y_{bar1} - y_{bar0})^2 \approx e'_1 e_1 - e'_0 e_0$

We can substitute this into our equation for t which gives us:

$$1/s_p^2 * (1/n_0 + 1/n_1) \approx e_p' * e_p * (1/n_0 + 1/n_1)$$

And using the same method in squaring the numerator of the t-statistic we have:

4.9726862464

The above result is approximately equal to the square root of the F-test.