Representation-Faithful Aggregation

Arianna Novaro (in lieu of Ulle Endriss)

joint (and ongoing) work with:
Ulle Endriss · ILLC, University of Amsterdam
Zoi Terzopoulou · LAMSADE, University of Paris-Dauphine

Aggregation across disciplines Workshop · December 16, 2021

Three agents have preferences over time slots for a meeting.

How should we aggregate the time slots? Which kind of information should we elicit from the agents?

Option 0: Ask to submit the "whole" interval.

Aggregation of the time slots: Intersection? Union? Plurality? . . .

Option 1: Ask for the preferred starting time and ending time.

A:
$$s = (1, 2, 2), e = (2, 4, 3)$$

B:
$$s = (1, 2, 4), e = (2, 4, 5)$$

Option 1: Ask for the preferred starting time and ending time.

A:
$$s = (1, 2, 2), e = (2, 4, 3)$$

A:
$$s = (1, 2, 2), e = (2, 4, 3)$$
 B: $s = (1, 2, 4), e = (2, 4, 5)$

Aggregation: Use the median on the starting time and ending time.

Arianna Novaro

Option 1: Ask for the preferred starting time and ending time.

A: [2,3] **B**: [2,4]

Aggregation: Use the median on the starting time and ending time.

Option 2: Ask for the preferred starting time and duration.

A:
$$s = (1, 2, 2), d = (1, 2, 1)$$

B:
$$s = (1, 2, 4), d = (1, 2, 1)$$

Option 2: Ask for the preferred starting time and duration.

A:
$$s = (1, 2, 2), d = (1, 2, 1)$$
 B: $s = (1, 2, 4), d = (1, 2, 1)$

B:
$$s = (1, 2, 4), d = (1, 2, 1)$$

Aggregation: Use the median on the starting time and ...?

Arianna Novaro

Motivation

The example shows that, when using an aggregation rule for intervals that is defined in terms of *local* aggregators on the different components, the choice of representation matters.

- ▶ Does this happen *only* for the median-endpoint rule?
- ► Are there any 'good' rules *faithful* to multiple representations?
- ▶ Does the choice of the interval *scale* matter?

Arianna Novaro — 7/2

Talk overview

- 1. Formal framework
- 2. Impossibility results for discrete scales
- 3. Characterisation results for continuous scales
- 4. Conclusions and future work

Arianna Novaro — 8/2

Scales, intervals, and components

- ▶ A scale is a nonempty set $S \subseteq \mathbb{R}$ of real numbers with a minimum and maximum element.
 - $S = \{-3, 0, 2, 4, 7, 10, 12\}$ is a *discrete* scale
 - S' = [a, b] for $a, b \in \mathbb{R}$ is a *continuous* scale
 - S'' = [0, 1] is the *standard continuous* scale
- ▶ A (closed) interval is a nonempty subset $I \subseteq S$ with $\{z \in S \mid x < z < y\} \subseteq I$ for all $x, y \in I$ and $\inf(I), \sup(I) \in I$.
 - The set of all (closed) intervals definable on S is denoted by $\mathcal{I}(S)$.
 - $I = \{0, 2, 4\}$ is an interval of S, while $\{4, 10\}$ is not
 - $I' = \{4\}$ is a degenerate interval of S
- ▶ A component is a function $\gamma : \mathcal{I}(S) \to D$, for a domain D.
 - left endpoint $\ell: I \mapsto \min(I)$
 - right endpoint $r: I \mapsto \max(I)$
 - width $w: I \mapsto \max(I) \min(I)$

Arianna Novaro — 10/22

Faithful and unanimous rules

Fix a set $N = \{1, ..., n\}$ of agents. Each agent $a \in N$ submits an interval $I_a \in \mathcal{I}(S)$, which gives rise to a profile $I = (I_1, ..., I_n)$.

- ▶ An aggregation rule $F: \mathcal{I}(S)^n \to \mathcal{I}(S)$ maps any such profile to a (collective) interval.
- A rule F is faithful to a component-representation $\gamma = (\gamma_1, \dots, \gamma_q)$, if there exists functions $f_k : D_k^n \to D_k$ for $k \in \{1, \dots, q\}$ such that, for any I, F(I) is computed by using each f_k on the component-profile $(\gamma_k(I_1), \dots, \gamma_k(I_n))$.
- ▶ A rule F is component-unanimous if $f_k(x,...,x) = x$ for every $x \in D_k$ and for all $k \in \{1,...,q\}$.

Basic results (1/3)

Question: Are there any rules that are faithful and unanimous for both the left-right and the left-width representation?

 \Rightarrow We start by proving some basic Lemmas (here: just a subset).

Lemma. Designing a rule that is both an (ℓ, r) -rule and an (ℓ, w) -rule is equivalent to designing an (ℓ, r, w) -rule.

Arianna Novaro — 12/22

Basic results (2/3)

Lemma. For the component-aggregators f_ℓ and f_r of any given (ℓ, r, w) -rule, it must be the case that $f_\ell = f_r$.

Lemma. For the component-aggregators f_{ℓ} , f_r and f_w of any given (ℓ, r, w) -rule defined on a scale S with $\min(S) = 0$, it must be the case that $f_{\ell} = f_r = f_{w \mid S}$.

Basic results (3/3)

Lemma. For any given (ℓ, r) -rule F with $f_{\ell} = f_r$ that is defined on a scale S and any point profiles $x, y \in S^n$ with $x \geq y$, it is the case that $f(x) \geq f(y)$ for $f := f_{\ell} = f_r$.

y	 x
y_1	 x_1
:	:
y_n	 x_n
f(y)	 f(x)

Arianna Novaro — 14/22

The case for 2 agents

Lemma. For n=2 and any given discrete scale S, every (ℓ, r, w) -rule is a dictatorship.

 \Rightarrow Same widths in input imply same widths in output, as (ℓ, w) -faithful.

$$\begin{array}{c|cccc} x & y & y-x \\ \hline f(x,y) & y & y-f(x,y) \end{array}$$

Arianna Novaro

The case for 2 agents

Lemma. For n=2 and any given discrete scale S, every (ℓ,r,w) -rule is a dictatorship.

 \Rightarrow Same widths in input imply same widths in output, as (ℓ, w) -faithful.

 \Rightarrow Transitivity of local dictatorships on points $(x,y),(y,z)\to(x,z)$.

$$\begin{array}{c|cccc}
x & x & 0 \\
y & z & z-y \\
\hline
x & x & 0
\end{array}
\qquad
\begin{array}{c|cccc}
y & y & 0 \\
y & z & z-y \\
\hline
y & y & 0
\end{array}$$

 \Rightarrow Induction on # of points in [x,y]: every (x,y) has (same) dictator.

Arianna Novaro — 16/22

Impossibility result for n agents

Theorem. For any given discrete scale S, every interval aggregation rule that is both an (ℓ,r) -rule and an (ℓ,w) -rule must be a dictatorship.

- $\Rightarrow \min(S) = 0$: follows from unanimity, the result for 2 agents, and the contrapositive of this Inductive Lemma:
 - Inductive Lemma. For any given $n \geq 2$ and any given scale S with $\min(S) = 0$, if there exists a nondictatorial (ℓ, r, w) -rule for n+1 agents, then also for n agents.
- $\Rightarrow \min(S) = b \neq 0$: construct a scale $S' = \{x b \mid x \in S\}$ and proceed by contradiction (there is a non-dictatorial rule ...).

Arianna Novaro — ______ 17/22

Special scale and restricted domain

What is special about this scale (no degenerate intervals)?

Arianna Novaro — 18/22

Characterisation of weighted averaging rules

An (ℓ, r) -rule F is an (ℓ, r) -weighted averaging rule if there are constants $a_1, \ldots, a_n \in [0, 1]$ with $a_1 + \cdots + a_n = 1$ such that $f_{\ell}(x) = f_r(x) = a_1 \cdot x_1 + \cdots + a_n \cdot x_n$ for every $x \in S^n$.

Theorem. For any continuous scale S, a continuous interval aggregation rule is both an (ℓ,r) -rule and an (ℓ,w) -rule if and only if it is an (ℓ,r) -weighted averaging rule.

- \Rightarrow Use of Cauchy's functional equation: f(x) + f(y) = f(x+y).
- \Rightarrow Prove that for the scale S=[0,1] every continuous (ℓ,r,w) -rule is an (ℓ,r) -weighted averaging rule.
- Adding anonymity, we get $a_i = \frac{1}{n}$ for all $i \in N$.

Summary and open questions

- ► The choice of representation of intervals heavily influences the aggregation rules we can design.
- ▶ Discrete scales: impossible to design nondictatorial rules that are faithful both to left-right and left-width representation.
- ► Continuous scales: weighted averaging rules are the only ones faithful both to left-right and left-width representation.

- ▶ What about similar questions in *other areas* of SCT?

Credits to Freepik @ flaticon.com