Métodos Numéricos para Engenharia

MÓDULO 5- FONTES DE ERROS — REPRESENTAÇÃO BINÁRIA PROFESSOR LUCIANO NEVES DA FONSECA

Fontes de erros em Métodos Numéricos

- ▶ Erros de Truncamento
- ▶ Erros de Arredondamento

Erros de Truncamento

- Erros de truncamento são causados por aproximações sucessivas usadas no esquema de cálculo de uma fórmula matemática.
- São erros associados ao truncamento de um processo infinito, que será resolvido por um número finito de passo.
- A maior parte dos algoritmos utilizados em métodos numéricos são iterativos e alcançam a precisão esperada após um certo número de iterações sucessivas, de modo que a resposta é um truncamento de uma série infinita.
- Como exemplo, podemos usar o método de Newton Raphson para calcular a raiz de uma equação f(x)=0, e interromper o cálculo após n iterações. O cálculo exato ocorreria com infinitas iterações. Como paramos com n iterações, assumimos um erro por 'truncar' a série infinita precocemente.

Exemplo: Série de Taylor para encontra neper

A Série de Taylor da função $f(x) = e^x$ em torno do ponto x = 0 é dada por:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots$$

Para encontrarmos um aproximação do número de neper, podemos avaliar a função f(x) no ponto x=1.

Ao escolhermos um N de termos da série, assumimos um certo erro de truncamento Para o cálculo do erro utilizaremos como valor exato a constante %e do scilab

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \cdots$$

```
function exemplo_truncamento(N)

neper=0

for n=0:N

neper=neper+1/factorial(n)

erro_rel(n+1) = abs((neper-%e)/%e)

printf("%2d\t%.17f\t%.0e\n",n+1,neper,erro_rel(n+1))

end

plot(log10(erro_rel))

printf("Valor-exato\t%.17f\n",%e)
endfunction
```



```
exemplo truncamento(1,22)
        1.000000000000000000
                                  6e-01
        2.000000000000000000
                                  3e-01
        2.500000000000000000
                                  8e-02
        2.6666666666666652
                                  2e-02
        2.70833333333333334
                                  4e - 03
        2.71666666666666634
                                  6e - 04
                                  8e-05
        2.71805555555555545
        2.71825396825396837
                                  1e-05
                                  1e-06
        2.71827876984127004
        2.71828152557319225
                                  1e-07
        2.71828180114638451
                                  1e-08
        2.71828182619849290
                                  8e-10
        2.71828182828616871
                                  6e-11
        2.71828182844675936
                                  5e-12
        2.71828182845823019
                                  3e-13
        2.71828182845899491
                                  2e-14
        2.71828182845904287
                                  8e-16
        2.71828182845904553
                                  2e-16
        2.71828182845904553
                                  2e-16
        2.71828182845904553
                                  2e-16
        2.71828182845904553
                                  2e-16
        2.71828182845904553
                                  2e-16
        2.71828182845904553
                                  2e-16
Valor exato
                 2.71828182845904509
```

Notar que o erro de truncamento diminui a cada iteração. No entanto, a partir da iteração 17, este erro para de diminuir. Neste ponto, o erro de truncamento não é mais importante. O que está controlando o resultado é o erro de arredondamento.

Erros de Arredondamento

- Computadores mantêm um número fixo de algarismos significativos durante o cálculo, o que causa erros de arredondamento.
- Erros de arredondamento são a soma das incertezas associadas à representação do sistema de numeração do computador.
- Isso se deve ao fato de números reais serem representados em computadores com um número limitado de bits.
- Para estudarmos os erros de arredondamento, devemos primeiro revisar como os números inteiros e reais são armazenados em um computador

Conversão de decimal/binário e binário/decimal (inteiros)

Caso se queira transformar o número decimal 'a' (exemplo a=74) em binário b devemos:

- Primeiro escolhemos o número n de bits, por exemplo n= 8 bits
- Então formamos o vetor de potência de 2 , $p=[2^{n-1},2^{n-2},...,2^2,2^1,2^0]$, com no exemplo n=8, temos:

$$p = [2^7, 2^6, 2^5, 2^4, 2^3, 2^2, 2^1, 2^0] = [128,64,32,16,8,4,2,1]$$

• Então calculamos o vetor de razões r, que é formado pela parte inteira da divisão a./p

$$\mathbf{r} = int(a./p) = int\left(\left[\frac{74}{128}, \frac{74}{64}, \frac{74}{32}, \frac{74}{16}, \frac{74}{8}, \frac{74}{4}, \frac{74}{2}, \frac{74}{1}\right]\right) = [0, 1, 2, 4, 9, 18, 37, 74]$$

 Se r for par, teremos um bit 0 em b, e se for ímpar teremos um bit 1 em b, então número binário b será:

$$b = [0, 1, 0, 0, 1, 0, 1, 0] = 01001010$$

Para transformarmos o binário b no decimal a2, fazemos:

$$a2 = b * p' = [0, 1, 0, 0, 1, 0, 1, 0] * [128,64,32,16,8,4,2,1]' = 74$$

Algoritmo para a conversão de decimal/binário e binário/decimal (inteiros)

```
function b=dec2binario1(a,n)
     p=-2^{(n-1:-1:0)}
    r=int(a./p)
     \mathbf{b} = \operatorname{modulo}(\mathbf{r}, 2)
     -if((a>(2^n)-1)|(a<0)) b=[] end
   endfunction
 a = 74
 n=8
 p = [2^7, 2^6, 2^5, 2^4, 2^3, 2^2, 2^1, 2^0] = [128,64,32,16,8,4,2,1]
 r = int(a./p) = int(\frac{74}{128}, \frac{74}{64}, \frac{74}{32}, \frac{74}{16}, \frac{74}{8}, \frac{74}{4}, \frac{74}{2}, \frac{74}{1}) = [0, 1, 2, 4, 9, 18, 37, 74]
b = [0, 1, 0, 0, 1, 0, 1, 0]
--> a=74;
--> b=dec2binariol(a,8)
        1. 0. 0. 1. 0. 1. 0.
--> b=dec2binariol(a,10)
        0. 0. 1. 0. 0. 1. 0. 1. 0.
--> b=dec2binariol(a,6)
```

```
function a=binario2dec1(b) =

p= 2^(length(b)-1:-1:0);

a= b*p';

endfunction
```

```
a = b * p' = [0, 1, 0, 0, 1, 0, 1, 0] * [128,64,32,16,8,4,2,1]' = 74
```

```
--> b=[1 0 0 1 0 1 0];

--> a=binario2decl(b)
a =

74.

--> b=[0 0 0 1 0 0 1 0 1 0];

--> a=binario2decl(b)
a =

74.
```

Números negativos – utilizar 1 bit para o sinal

Simplesmente converter valor absoluto do inteiro a, porém com n-1 bits

O Primeiro bit será utilizado para o sinal, 0 ser for positivo, 1 se for negativo

```
--> b=dec2binario2(74,8)
       1. 0. 0. 1. 0. 1.
--> a=binario2dec2(b)
  74.
--> b=dec2binario2(-74,8)
               0. 1. 0. 1.
--> a=binario2dec2(b)
 -74.
```

```
function a=binario2dec2(b)

mathref{binario2dec1} (b(2:length(b)))

a=-(-1)^b(1)*a;

endfunction
```

```
--> b=[0 0 0 0 0 0 0 0];

--> a=binario2dec2(b)
a =
0.

--> b=[1 0 0 0 0 0 0 0];

--> a=binario2dec2(b)
a =
0.
```

Notar que temos duas representações para o zero.

```
0000 0000
1000 0000
```

Soma de números Binários

```
--> a1=63;
--> a2=5;
--> a3=a1+a2
--> bl=dec2binariol(al,8)
       0. 1. 1. 1. 1. 1. 1.
--> b2=dec2binariol(a2,6)
       0. 0. 1. 0. 1.
--> b3=SomaBinaria(b1,b2,%t);
 [00111111]
+ [00000101]
 [01000100]
--> a=binario2dec3(b3)
```

```
0 + 0 + V0 = 0 (+0)
0 + 0 + V1 = 1 (+0)
0 + 1 + V0 = 1 (+0)
0 + 1 + V1 = 0 (+1)
1 + 1 + V0 = 0 (+1)
1 + 1 + V1 = 1 (+1)
```

```
\begin{array}{ccc}
001111111 & 0+0=0 \\
00000101 & 0+1=1 \\
\hline
01000100 & 1+1+1=11
\end{array}
```

```
function b3=SomaBinaria (b1,b2,prt)
  [b1,b2]=Compatibiliza Tamanhos(b1,b2)
3 --- n=length(b1)
   ---v1=0
   --- for (k=n:-1:1)
   b3(1, k) = b1(k) + b2(k) + v1
   ----v1=0
   -if b3(k) == 2 then
9 b3 (k)=0
   ----v1=1
   -----elseif b3(k) == 3 then
   b3(k)=1
   14 ---- end
15 --- end
16 -- if (prt) then
17 ..... printf("..%s\n+.%s\n=.%s.\n",...
18 print bl (b1), print bl (b2), print bl (b3))
19 ....end ....
20 endfunction
```

```
function [b1,b2]=Compatibiliza_Tamanhos(b1,b2)

n1=length(b1)

n2=length(b2)

if (n1>n2) then //length(b1) <>length(b2)

b2=[zeros(1:n1-n2) b2]

elseif (n2>n1)

b1=[zeros(1:n2-n1) b1]

end
endfunction
```

Números negativos – Complemento 2

Simplesmente converter valor absoluto do inteiro a, porém com n-1 bits

Trocar o valor de todos os bits e somar 1

```
--> b=dec2binario3(74,8)
--> a=binario2dec3(b)
  74.
--> b=dec2binario3(-74,8)
                    0. 1.
--> a=binario2dec3(b)
```

```
function b=dec2binario3(a,n)

b=dec2binario1(abs(a),n)

if(a<0) then b=comple2(b) end

if( a<(-2^(n-1)) | a>(2^(n-1)-1) then b=[] end

endfunction
```

```
function a=binario2dec3(b)
sinal = b(1)
if (sinal) then b=comple2(b) end
a= (-1) *sinal * binario2dec1(b);
endfunction
```

```
function b=comple2(b)

b=bitcmp(b,1) -- // inverter bits

b=SomaBinaria(b,[0.1],%f) -- // somar 1-
endfunction
```

Subtração de números Binários

Com complemento 2, o mesmo algoritmo de soma pode ser utilizado na subtração. Basta somar o número negativo.

Para compatibilizar tamanhos, deve-se completar número, se for negativo, com 1's e não com 0's

```
A - B = A + (-B)
```

```
--> a1=63:
--> a2=-5;
--> a3=a1+a2
  58.
--> bl=dec2binario3(al,8)
       0. 1. 1. 1. 1. 1. 1.
--> b2=dec2binario3(a2,6)
      1. 1. 0. 1. 1.
--> b3=SomaBinaria(bl,b2,%t);
  [00111111]
 [11111011]
 [00111010]
--> a=binario2dec1(b3)
  58.
```

```
+ 00111111 (63)
+ 111011 (-5)
?
```

```
+ 00111111 (63)
+ 11111011 (-5)
00111010 (58)
```

 $flag = 1 \Rightarrow imprime \ resultados$ $flag = 0 \Rightarrow n\~ao \ imprime \ resultados$

$$0 + 0 + V0 = 0 (+0)$$

$$0 + 0 + V1 = 1 (+0)$$

$$0 + 1 + V0 = 1 (+0)$$

$$0 + 1 + V1 = 0 (+1)$$

$$1 + 1 + V0 = 0 (+1)$$

$$1 + 1 + V1 = 1 (+1)$$

• Conversão de números reais: decimal/binário e binário/decimal

Caso se queira transformar o número decimal 'a' (exemplo a=74.1) em binário b devemos:

- Primeiro escolhemos n bits para a parte inteira, e m bits para depois da vírgula (n=8, m=4)
- Então formamos o vetor de potência de 2, $p = [2^{n-1}, 2^{n-2}, ..., 2^2, 2^1, 2^0, 2^{-1}, 2^{-2} ... 2^{-m}]$,
- com no exemplo n=8 e m=4, temos:

$$p = [2^7, 2^6, 2^5, 2^4, 2^3, 2^2, 2^1, 2^0, 2^{-1}, 2^{-2}, 2^{-3}, 2^{-4}] = \left[128,64,32,16,8,4,2,1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16}\right]$$

• Então calculamos o vetor de razões r, que é formado pela parte inteira da divisão a./p

$$r = int(a./p) = int\left(\left[\frac{\frac{74.1}{128}, \frac{74.1}{64}, \frac{74.1}{32}, \frac{74.1}{16}, \frac{74.1}{8}, \frac{74.1}{4}, \frac{74.1}{2}, \frac{74.1}{1}, \frac{74.1}{1/2}, \frac{74.1}{1/4}, \frac{74.1}{1/8}, \frac{74.1}{1/16}\right]\right) = [0, 1, 2, 4, 9, 18, 37, 74, 148, 296, 592, 1185]$$

 Se r for par, teremos um bit 0 em b, e se for ímpar teremos um bit 1 em b, então número binário b será:

$$b = [0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1] = 01001010.0001$$

Para transformarmos o binário b no decimal a2, fazemos:

$$a2 = bp' = [0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0] * \left[128,64,32,16,8,4,2,1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16}\right]' = 74.0625$$

Algoritmo para a conversão de decimal/binário e binário/decimal (reais)

```
function b = dec2binario4(a,n,m) //real positivo

p = 2^(n-1:-1:-m);

r = int(a./p)

b = modulo(r,2)

endfunction
```

```
function a=binario2dec4(b,n,m)//real-positivo-
p= 2^(n-1:-1:-m);
a---a=-b*p';
endfunction
```

```
--> b=dec2binario4(74.0625,8,4);

--> print_b2(b,8,4)
ans =

"[01001010.0001]"

--> a=binario2dec4(b,8,4)
a =

74.0625
```

```
--> b=dec2binario4(74.33,8,4);

--> print_b2(b,8,4)
ans =

"[01001010.0101]"

--> a=binario2dec4(b,8,4)
a =

74.3125
```

```
--> b=dec2binario4(74.5,8,4);

--> print_b2(b,8,4)
ans =

"[01001010.1000]"

--> a=binario2dec4(b,8,4)
a =

74.5
```

```
--> b=dec2binario4(74.33,8,15);

--> print_b2(b,8,15)
ans =

"[01001010.010101000111101]"

--> a=binario2dec4(b,8,15)
a =

74.329987
```

```
--> b=dec2binario4(74.75,8,4);

--> print_b2(b,8,4)
ans =

"[01001010.1100]"

--> a=binario2dec4(b,8,4)
a =

74.75
```

```
--> b=dec2binario4(74.0,8,4);

--> print_b2(b,8,4)
ans =

"[01001010.0000]"

--> a=binario2dec4(b,8,4)
a =

74.
```

Ponto Flutuante Binário

Os números reais são normalmente armazenados na notação de ponto flutuante.

$$x = (-1)^{Sinal} (2^{Expoente-Bias})(1.matissa)$$

- ▶ Nesta representação (n,m)=(8,24) temos:
- ▶ 1 bit para o sinal
- temos 8 bits para o expoente
- 24 bits para a mantissa.
- ► Este é o padrão IEEE 754 32 bits

Conversão de Ponto Flutuante Binário para Decimal *e* = [010001001101001010101111000010]

sinal n=8 -> 8 bits de expoente

m=24 -> 23 (+1) bits de mantissa

```
sinal = [0] E = [1000 \ 1001] E_d = [1000 \ 1001]_2 = 137_{10} M = [1 \ 101 \ 0010 \ 1001 \ 0101 \ 1100 \ 0010] \quad (+1) \text{ bits de mantissa} M_d = [1.10100101001011100 \ 0010]_2 = 1.6451952457427978515625_{10} Bias = (2^{n-1} - 1) = 127
```

```
function a=float2dec(e,n,m)

sinal= e(1)

E = e(2:n+1)

Ed = binario2decl(E)

M = [1 e(n+2:n+m)] // -+ 1 bit

Md = binario2dec4(M,1,m-1)

Bias = 2^(n-1)-1

a = (-1)^sinal * (Md) * 2^(Ed-Bias)

endfunction
```

```
a = (-1)^{sinal} (2^{E_d - Bias}) (M_d) = (-1)^0 (2^{10}) (1.6451952457427978515625) = 1684.679931640625
```

Conversão de decimal para Ponto Flutuante Binário

```
a = 1684.679931640625
n = 8
         m = 24
sinal = 0 (0 se positivo, 1 se negativo)
E_d = floor(\log_2|a|) = 10
Bias = 2^{n-1} - 1 = 127
E = E_d + Bias = 10 + 127 = 137_{10} = [1000 \ 1001]_2
M_d = |a| 2^{-Ed} = |1684.679931640625|2^{-10} = 1.64519524574279785\overline{15625}
M = [1.101\ 0010\ 1001\ 0101\ 1100\ 0010]
e = [sinal \ E \ M(2:m)]
e = [0 \ 10001001 \ 1010010101010111000010]
     --> a=1684.679931640625:
```

--> e=dec2float(a,8,24,%t);

[10001001] [1.10100101001010111000010]

```
function e=dec2float(a,n,m,prt)
2 --- sinal = 0;
3 --- if (a<0) then sinal = 1; end</pre>
4 Bias = 2^(n-1) -1;
5 --- Ed = floor(log2(abs(a)))+Bias;
E = dec2binariol(Ed,n);
7      Md= abs(a) * 2^(-(Ed-Bias));
M = dec2binario4(Md, 1, m-1);
10 --- if (Ed<0) - then
   -----e=-[sinal-zeros(1:n+m-1)-]
12 ---- printf("underflow\n")
13 --- end
14 --- if (Ed>2*Bias+1) then
15 ---- e= [sinal ones(1:n+m-1)]
16 ---- printf("overflow\n")
17 --- end
18 if (prt) then printfloat(e,n,m) end
19 endfunction
```

Exemplo – float com n = 3 (expoente) e m=4 (mantissa)

			Expoente												
		[000] = -3	[001] = -2	[010] = -1	[011]=0	[100] = 1	[101] = 2	[110] = 3	[111] = 4						
	[1.000] = 1.000	0.125	0.25	0.5	1	2	4	8	16						
	[1.001] = 1.125	0.140625	0.28125	0.5625	1.125	2.25	4.5	9	18						
sa	[1.010] = 1.250	0.15625	0.3125	0.625	1.25	2.5	5	10	20						
antissa	[1.011] = 1.375	0.171875	0.34375	0.6875	1.375	2.75	5.5	11	22						
an	[1.100] = 1.500	0.1875	0.375	0.75	1.5	3	6	12	24						
Σ	[1.101] = 1.625	0.203125	0.40625	0.8125	1.625	3.25	6.5	13	26						
	[1.110] = 1.750	0.21875	0.4375	0.875	1.75	3.5	7	14	28						
	[1.111] = 1.875	0.234375	0.46875	0.9375	1.875	3.75	7.5	15	30						

--> tabela_floating_point(3,4)

Nan	-3.	-2.	-1.	0.	1.	2.	3.	4.
1.	0.125	0.25	0.5	1.	2.	4.	8.	16.
1.125	0.140625	0.28125	0.5625	1.125	2.25	4.5	9.	18.
1.25	0.15625	0.3125	0.625	1.25	2.5	5.	10.	20.
1.375	0.171875	0.34375	0.6875	1.375	2.75	5.5	11.	22.
1.5	0.1875	0.375	0.75	1.5	3.	6.	12.	24.
1.625	0.203125	0.40625	0.8125	1.625	3.25	6.5	13.	26.
1.75	0.21875	0.4375	0.875	1.75	3.5	7.	14.	28.
1.875	0.234375	0.46875	0.9375	1.875	3.75	7.5	15.	30.

--> grafico_floating_point(3,4)

--> tabela_floating_point(3,4)

Nan	-3.	-2.	-1.	0.	1.	2.	3.	4.
1.	0.125	0.25	0.5	1.	2.	4.	8.	16.
1.125	0.140625	0.28125	0.5625	1.125	2.25	4.5	9.	18.
1.25	0.15625	0.3125	0.625	1.25	2.5	5.	10.	20.
1.375	0.171875	0.34375	0.6875	1.375	2.75	5.5	11.	22.
1.5	0.1875	0.375	0.75	1.5	3.	6.	12.	24.
1.625	0.203125	0.40625	0.8125	1.625	3.25	6.5	13.	26.
1.75	0.21875	0.4375	0.875	1.75	3.5	7.	14.	28.
1.875	0.234375	0.46875	0.9375	1.875	3.75	7.5	15.	30.

- Vemos que a resolução não é linear.
- Perdemos resolução nos números (com módulo) maiores, pois a resolução é inversamente proporcional ao expoente.
- O maior número representável (30), que depende de n
- Todos os número maiores que 30 serão armazenados em 30(overflow)
- Todos os números menores que -30 serão armazenados -30 (overflow)

--> tabela_floating_point(3,4)

Nan	-3.	-2.	-1.	0.	1.	2.	3.	4.
1.	0.125	0.25	0.5	1.	2.	4.	8.	16.
1.125	0.140625	0.28125	0.5625	1.125	2.25	4.5	9.	18.
1.25	0.15625	0.3125	0.625	1.25	2.5	5.	10.	20.
1.375	0.171875	0.34375	0.6875	1.375	2.75	5.5	11.	22.
1.5	0.1875	0.375	0.75	1.5	3.	6.	12.	24.
1.625	0.203125	0.40625	0.8125	1.625	3.25	6.5	13.	26.
1.75	0.21875	0.4375	0.875	1.75	3.5	7.	14.	28.
1.875	0.234375	0.46875	0.9375	1.875	3.75	7.5	15.	30.

- Todos os números entre -0.125 e zero, serão armazenados em -0.125(underflow)
- Todos os números entre 0 e 0.125 serão armazenados em 0.125 (underflow.

- Ao variarmos m (mantissa),, vemos claramente que a resolução aumenta com m.
- No entanto, o valor máximo (~30) parece ser definido pelo expoente n

n = 2 e m = 4

> tabela_floating_point(2,4)											
Nan	-1.	0.	1.	2.							
1.	0.5	1.	2.	4.							
1.125	0.5625	1.125	2.25	4.5							
1.25	0.625	1.25	2.5	5.							
1.375	0.6875	1.375	2.75	5.5							
1.5	0.75	1.5	3.	6.							
1.625	0.8125	1.625	3.25	6.5							
1.75	0.875	1.75	3.5	7.							
1.875	0.9375	1.875	3.75	7.5							

- Ao variarmos n (expoente), mantendo m (mantissa) constante, vemos um aumento no número que pode ser representado aumenta (7.5, 30 e 480).
- No entanto, a resolução parece não depender do expoente
- Notar o underflow visível no gráfico n=2, m=4

n = 3 e m = 4

n = 4 e m=4

> tab	ela_floating_p	point(4,4)														
Nan	-7.	-6.	-5.	-4.	-3.	-2.	-1.	0.	1.	2.	3.	4.	5.	6.	7.	8.
1.	0.0078125	0.015625	0.03125	0.0625	0.125	0.25	0.5	1.	2.	4.	8.	16.	32.	64.	128.	256.
1.125	0.008789062	0.017578125	0.03515625	0.0703125	0.140625	0.28125	0.5625	1.125	2.25	4.5	9.	18.	36.	72.	144.	288.
1.25	0.009765625	0.01953125	0.0390625	0.078125	0.15625	0.3125	0.625	1.25	2.5	5.	10.	20.	40.	80.	160.	320.
1.375	0.010742188	0.021484375	0.04296875	0.0859375	0.171875	0.34375	0.6875	1.375	2.75	5.5	11.	22.	44.	88.	176.	352.
1.5	0.01171875	0.0234375	0.046875	0.09375	0.1875	0.375	0.75	1.5	3.	6.	12.	24.	48.	96.	192.	384.
1.625	0.012695312	0.025390625	0.05078125	0.1015625	0.203125	0.40625	0.8125	1.625	3.25	6.5	13.	26.	52.	104.	208.	416.
1.75	0.013671875	0.02734375	0.0546875	0.109375	0.21875	0.4375	0.875	1.75	3.5	7.	14.	28.	56.	112.	224.	448.
1.875	0.014648438	0.029296875	0.05859375	0.1171875	0.234375	0.46875	0.9375	1.875	3.75	7.5	15.	30.	60.	120.	240.	480.

