Vysoké učení technické v Brně

Fakulta informačních technologií

Elektronika pro informační technologie 2021/2022

Semestrální projekt

OBSAH

Príklad 1	3
Príklad 2	6
Príklad 3	8
Príklad 4	
Príklad 5	
Tabuľka výsledkov	16

Stanovte napětí U_{R7} a proud I_{R7}. Použijte metodu postupného zjednodušování obvodu.

sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2\left[\Omega\right]$	$R_3[\Omega]$	$R_4\left[\Omega ight]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
C	100	80	450	810	190	220	220	720	260	180

výpočet celkového napätia:

$$U_{12} = U_1 + U_2$$

$$U_{12} = 100 \text{ V} + 80 \text{ V}$$

$$U_{12} = 180 \text{ V}$$

teraz postupne zjednoduším obvod s cieľom zistiť hodnotu R_{EKW}:

R₄₅ vypočítam:

rezistory R₄ a R₅ sú zapojené

paralelne,

$$R_{45} = \frac{R_4 \cdot R_5}{R_4 + R_5} = \frac{220\Omega \cdot 220\Omega}{220\Omega + 220\Omega} = 110 \Omega$$

rezistory R₄₅ a R₇ sú zapojené do série,

R₄₅₇ vypočítam:

$$R_{457} = R_{45} + R_7 = 110 \,\Omega + 260\Omega = 370\Omega$$

použijem metódu trojuholník → hviezda a zjednoduším obvod

vypočítam hodnoty RA, RB, RC:

$$R_A = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3} =$$

$$= \frac{450\Omega \cdot 810\Omega}{450\Omega + 810\Omega + 190\Omega} =$$

$$= \frac{7290}{29}\Omega \cong 251,3793\Omega$$

$$\begin{split} R_B &= \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3} = \\ &= \frac{450\Omega \cdot 190\Omega}{450\Omega + 810\Omega + 190\Omega} = \\ &= \frac{1710}{29}\Omega \cong 58,9655\Omega \end{split}$$

$$\begin{split} R_C &= \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3} = \\ &= \frac{810\Omega \cdot 190\Omega}{450\Omega + 810\Omega + 190\Omega} = \\ &= \frac{3078}{29}\Omega \cong 106,1379\Omega \end{split}$$

rezistory R_B a R₄₅₇ sú zapojené do série,

R_{B457}, R_{C6} vypočítam:

$$R_{B457} = R_B + R_{457} = \frac{1710}{29}\Omega + 370\Omega =$$

= $\frac{12440}{29}\Omega \cong 428,9655\Omega$

$$R_{C6} = R_C + R_6 = \frac{3078}{29}\Omega + 720\Omega =$$

= $\frac{23958}{29}\Omega \approx 826,1379\Omega$

rezistory R_{B457}a R_{C6} sú zapojené paralelne,

R_{B457C6} vypočítam:

$$\begin{split} R_{B457C6} &= \frac{R_{B457} \cdot R_{C6}}{R_{B457} + R_{C6}} = \\ &= \frac{\frac{12440}{29} \Omega \cdot \frac{23958}{29} \Omega}{\frac{12440}{29} \Omega + \frac{23958}{29} \Omega} = \\ &= \frac{149018760}{527771} \Omega \cong 282,3550 \Omega \end{split}$$

rezistory R_A a R_{B457C6} a R₈ sú zapojené do série,

Rekw vypočítam:

$$\begin{split} R_{EKW} &= R_A + R_{B457C6} \ + \ R_8 = \frac{7\ 290}{29} \varOmega + \frac{149\ 018\ 760}{527\ 771} \varOmega \ + 180 \varOmega = \\ &= \frac{12\ 989\ 250}{18\ 199} \varOmega \cong \ 713,7343\ \varOmega \end{split}$$

keď že hodnotu R_{EKW} poznám, vypočítam hodnotu <u>celkového prúdu I</u> pomocou Ohmovho zákona:

$$I = \frac{U_{12}}{R_{EKW}} = \frac{180 \, V}{\frac{12\,989\,250}{18\,199} \,\Omega} = \frac{36\,398}{144\,325} A \approx 0,2522 \, A$$

úlohou je zistiť prúd I_{R7} a napätie U_{R7}, preto vypočítam celkové <u>napätie rezistoru U_{RB457C6}</u>:

$$U_{RB457C6} = R_{RB457C6} \cdot I = \frac{149\ 018\ 760}{527\ 771} \Omega \cdot \frac{36\ 398}{144\ 325} A = \frac{59\ 607\ 504}{837\ 085} V \cong 71{,}2084\ V$$

paralelne zapojené rezistory R_{B457} a R_{C6} majú rovnaké napätie a to $U_{RB457C6}$, čiže $U_{RB457} = U_{RB457C6}$, ale preteká nimi rozdielny prúd, takže vypočítam hodnotu $I_{RB457:}$

$$I_{RB457} = \frac{U_{RB457C6}}{R_{B457}} = \frac{\frac{59607504}{837085}V}{\frac{12440}{29}\Omega} = \frac{23958}{144325}A = 0,1660A$$

vieme, že sériovo zapojenými rezistormi preteká rovnaký prúd a preto

$$I_{RR457} = I_{R7} = 0.1660 A$$

zostáva už iba vypočítať hodnotu U_{R7}, tú vypočítam pomocou Ohmovho zákona:

$$U_{R7} = R_7 \cdot I_{R7} = 260 \Omega \cdot 0,166 A = 43,1600 V$$

Stanovte napětí U_{R1} a proud I_{R1} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1[\Omega]$	$R_2\left[\Omega ight]$	$R_3 [\Omega]$	R ₄ [Ω]	$R_5 [\Omega]$
Н	220	190	360	580	205	560

cieľom v tomto príklade je vypočítať prúd I_{R1} a napätie U_{R1}, vzorce pre výpočet:

$$I_{R1} = \frac{U_i}{R_i + R_1}$$

$$U_{R1} = R_1 \cdot I_{R1}$$

najskôr si vytvorím náhradný obvod pre rezistor R₁ -

následne prekreslím obvod bez rezistoru R₁ a bez napäťového zdroja, postupne zjednodušujem obvod:

zjednoduším obvod s cieľom vypočítať hodnotu R_i:

rezistory R₄ a R₅ sú zapojené do série, hodnotu R₄₅ vypočítam:

$$R_{45} = R_4 + R_5 = 205 \Omega + 560 \Omega = 765 \Omega$$

rezistory R₃ a R₄₅ sú zapojené paralelne, hodnotu R₃₄₅ vypočítam:

rezistory R₂ a R₃₄₅ sú zapojené paralelne, hodnotu $R_{2345} = R_i$ vypočítam:

$$R_{i} = \frac{R_{2} \cdot R_{345}}{R_{2} + R_{345}} = \frac{360 \ \Omega \cdot \frac{88740}{269} \Omega}{360 \ \Omega + \frac{88740}{269} \Omega} = \frac{177480}{1031} \Omega \cong 2000$$

$$\approx 172,1436 \ \Omega$$

zjednoduším obvod s cieľom vypočítať hodnotu R_{EKW} :

rezistory R₄ a R₅ sú zapojené do série, hodnotu R₄₅ vypočítam:

$$R_{45} = R_4 + R_5 = 205 \Omega + 560 \Omega = 765 \Omega$$

rezistory R₃ a R₄₅ sú zapojené paralelne, hodnotu R₃₄₅ vypočítam:

$$R_{345} = \frac{R_3 \cdot R_{45}}{R_3 + R_{45}} = \frac{580 \Omega \cdot 765 \Omega}{580 \Omega + 765 \Omega} = \frac{443 700}{1345} \Omega =$$
$$= \frac{88 740}{269} \Omega \cong 329,8885 \Omega$$

rezistory R_2 a R_{345} sú zapojené do série, hodnotu $R_{2345} = R_{EKW}$ vypočítam:

$$R_{EKW} = R_2 + R_{345} = 360 \Omega + \frac{88740}{269} \Omega =$$

= $\frac{185580}{269} \Omega = 689,8885 \Omega$

keď že poznám hodnoty celkového napätia U a celkového odporu R_{EKW} , vypočítam hodnotu celkového prúdu \underline{I} :

$$I = \frac{U}{R_{EKW}} = \frac{220 V}{\frac{185 580}{269} \Omega} = \frac{2959}{9279} A \approx 0.3189 A$$

následne vypočítam <u>hodnotu U_i </u>, viem, že paralelne zapojené rezistory majú rovnaké napätie, čiže $U_i = U_{R2}$ zostavím rovnicu podľa 2. Kirchhoffového zákona:

$$0 = U_{R345} + U_{R2} - U$$

$$U_i = U - R_{345} \cdot I$$

$$U_i = 220 V - \frac{88740}{269} \Omega \cdot \frac{2959}{9279} A = \frac{188360}{1031} V \approx 0.3189 V$$

už zostáva iba vypočítať hodnoty I_{R1} a U_{R1}:

$$I_{R1} = \frac{U_i}{R_i + R_1} = \frac{\frac{118360}{1031}V}{\frac{177480}{1031}\Omega + 190\Omega} = \frac{11836}{37337}A \approx 0.3170 A$$

$$U_{R1} = R_1 \cdot I_{R1} = 190 \,\Omega \cdot \frac{11836}{37337} A \cong 60,2309 \,V$$

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu uzlových napětí (U_A, U_B, U_C) .

sk.	U [V]	I ₁ [A]	I ₂ [A]	$R_1[\Omega]$	$R_2 [\Omega]$	$R_3[\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
Е	135	0,55	0,65	52	42	52	42	21

vyjadrím jednotlivé prúdy pomocou uzlových napätí:

$$I_{R1} = \frac{U_A}{R_1}$$

$$I_{R2} = \frac{U_C}{R_2}$$

$$I_{R3} = \frac{U_B - U_C}{R_3}$$

$$I_{R4} = \frac{U_A - U_B}{R_4}$$

$$I_{R5} = \frac{U_A - U_B - U}{R_5}$$

podľa Kirchhoffových zákonov zostavím rovnice pre jednotlivé uzly A, B, C:

$$A: I_1 - I_{R1} - I_{R4} - I_{R5} = 0$$

$$B: I_2 - I_{R3} + I_{R4} + I_{R5} = 0$$

$$C: -I_2 - I_{R2} + I_{R3} = 0$$

$$A: \frac{1}{R_1}U_A + \frac{1}{R_4}(U_A - U_B) + \frac{1}{R_5}(U_A - U_B - U) = I_1$$

$$B: \frac{1}{R_4}(U_A - U_B) + \frac{1}{R_5}(U_A - U_B - U) - \frac{1}{R_3}(U_B - U_C) = -I_2$$

$$C: -\frac{1}{R_2}U_C + \frac{1}{R_3}(U_B - U_C) = I_2$$

$$A: U_A \left(\frac{1}{R_1} + \frac{1}{R_4} + \frac{1}{R_5} \right) + U_B \left(-\frac{1}{R_4} - \frac{1}{R_5} \right) = I_1 + \frac{U}{R_5}$$

$$B: U_A \left(\frac{1}{R_4} + \frac{1}{R_5} \right) + U_B \left(-\frac{1}{R_3} - \frac{1}{R_4} - \frac{1}{R_5} \right) + U_C \frac{1}{R_3} = -I_2 + \frac{U}{R_5}$$

C:
$$U_B \frac{1}{R_3} + U_C \left(-\frac{1}{R_2} - \frac{1}{R_3} \right) = I_2$$

$$A: U_A\left(\frac{1}{52} + \frac{1}{42} + \frac{1}{21}\right) + U_B\left(-\frac{1}{42} - \frac{1}{21}\right) = 0.55 + \frac{135}{21}$$

$$B: U_A\left(\frac{1}{42} + \frac{1}{21}\right) + U_B\left(-\frac{1}{52} - \frac{1}{42} - \frac{1}{21}\right) + U_C\frac{1}{52} = -0.65 + \frac{135}{21}$$

C:
$$U_B \frac{1}{52} + U_C \left(-\frac{1}{42} - \frac{1}{52} \right) = 0.65$$

$$A: \ U_A \frac{33}{364} - U_B \frac{1}{14} = \frac{977}{140}$$

B:
$$U_A \frac{1}{14} - U_B \frac{33}{364} + U_C \frac{1}{52} = \frac{809}{140}$$

$$C: U_B \frac{1}{52} - U_C \frac{47}{1092} = \frac{13}{20}$$

vypočítam jednotlivé prúdy pomocou Cramerovho pravidla:

$$|D| = \begin{vmatrix} \frac{33}{364} & -\frac{1}{14} & 0\\ \frac{1}{14} & -\frac{33}{364} & \frac{1}{52}\\ 0 & \frac{1}{52} & -\frac{47}{1092} \end{vmatrix} = \frac{5}{49686}$$

$$|D_{U_A}| = \begin{vmatrix} \frac{977}{140} & -\frac{1}{14} & 0\\ \frac{809}{140} & -\frac{33}{364} & \frac{1}{52}\\ \frac{13}{20} & \frac{1}{52} & -\frac{47}{1092} \end{vmatrix} = \frac{229}{38220} \quad U_A = \frac{|D_{U_A}|}{|D|} = \frac{\frac{229}{38220}}{\frac{5}{49686}} = \frac{2977}{50}$$

$$|D_{U_B}| = \begin{vmatrix} \frac{33}{364} & \frac{977}{140} & 0\\ \frac{1}{14} & \frac{809}{140} & \frac{1}{52}\\ 0 & \frac{13}{20} & -\frac{47}{1092} \end{vmatrix} = -\frac{2213}{993720} \quad U_B = \frac{|D_{U_B}|}{|D|} = \frac{-\frac{2213}{993720}}{\frac{5}{49686}} = -\frac{2213}{100}$$

$$|D_{U_C}| = \begin{vmatrix} \frac{33}{364} & -\frac{1}{14} & \frac{977}{140} \\ \frac{1}{14} & -\frac{33}{364} & \frac{809}{140} \\ 0 & \frac{1}{52} & \frac{13}{20} \end{vmatrix} = -\frac{17}{6760} \qquad U_C = \frac{|D_{U_{AC}}|}{|D|} = \frac{-\frac{17}{6760}}{\frac{5}{49686}} = -\frac{2499}{100}$$

$$U_A = \frac{2977}{50}V = 59,54V$$

$$U_B = -\frac{2213}{100}V = -22,13V$$

$$U_C = -\frac{2499}{100}V = -24,99V$$

keďže už poznám hodnoty U_A , U_B , U_C tak môžem vypočítať prúd I_{R3} a napätie U_{R3} :

$$U_{R3} = U_B - U_C = -22,13V + 24,99V = 2,86V$$

$$I_{R3} = \frac{U_B - U_C}{R_3} = \frac{2,86 \, V}{52 \, \Omega} = 0,055 \, A$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot sin(2\pi ft)$, $u_2 = U_2 \cdot sin(2\pi ft)$.

Ve vztahu pro napětí $u_{L_2}=U_{L_2}\cdot sin(2\pi ft+\varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojú platí pro speciální časový okamžik $\left(t=\frac{\pi}{2\omega}\right)$.

sk.	$U_1[V]$	U ₂ [V]	$R_1[\Omega]$	$R_2 [\Omega]$	L ₁ [mH]	L ₂ [mH]	C ₁ [μF]	C ₂ [μF]	f [Hz]
С	3	4	10	13	220	70	230	85	75

premením jednotky:

sk.	$U_1[V]$	U ₂ [V]	$R_1[\Omega]$	$R_2 [\Omega]$	L ₁ [H]	$L_2[H]$	C ₁ [F]	C ₂ [F]	f [Hz]
С	3	4	10	13	0,22	0,07	$2,3 \cdot 10^{-4}$	$8,5 \cdot 10^{-5}$	75

ako prvé vypočítam uhlovú frekvenciu:

$$\omega = 2\pi f = 2\pi \cdot 75Hz \cong 471,2389 \ rads^{-1}$$

následne vypočítam impedanciu a prekreslím obvod:

$$Z_{L1} = j \cdot \omega \cdot L_1 = j \cdot 471,2389 \ rads^{-1} \cdot 0,22 \ H = 103,6727j$$

$$\begin{split} Z_{L2} &= j \cdot \omega \cdot L_2 = j \cdot 471{,}2389 \ rads^{-1} \cdot 0{,}07 \ H = \\ &= 32{,}9867j \end{split}$$

$$\begin{split} Z_{C1} &= \frac{1}{j \cdot \omega \cdot C_1} = -j \cdot \frac{1}{\omega \cdot C_1} = \\ &= -j \cdot \frac{1}{471,2389 rads^{-1} \cdot 2,3 \cdot 10^{-4} F} = \\ &= -9,2264j \end{split}$$

$$Z_{C2} = \frac{1}{j \cdot \omega \cdot C_2} = -j \cdot \frac{1}{\omega \cdot C_2} =$$

$$= -j \cdot \frac{1}{471,2389 rad s^{-1} \cdot 8,5 \cdot 10^{-5} F} =$$

$$= -24,9655 j$$

následne zostavím rovnice pomocou slučkových prúdov I_A, I_B, I_C:

$$I_A: Z_{L1}I_A + u_1 + Z_{C2}(I_A - I_C) + R_1(I_A - I_B) = 0$$

$$I_A: R_A(I_A - I_A) + \dots + R_A(I_A - I_B) = 0$$

$$I_B: R_1(I_B - I_A) + u_2 + Z_{C1}I_B = 0$$

$$I_C$$
: $R_2I_C - u_2 + Z_{C2}(I_C - I_A) + Z_{L2}I_C = 0$

$$I_A$$
: $I_A(Z_{L1} + Z_{C2} + R_1) - I_B R_1 - I_C Z_{C2} = -u_1$

$$I_B$$
: $-I_A R_1 + I_B (R_1 + Z_{C1}) = -u_2$

$$I_C$$
: $-I_A Z_{C2} + I_C (R_2 + Z_{C2} + Z_{L2}) = u_2$

$$I_A$$
: $(103,6726j - 24,9655j + 10) I_A - 10I_B - (-24,9655j)I_C = -3$

$$I_B$$
: $-10I_A + (10 - 9,2264j)I_B = -4$

$$I_C$$
: $-(-24,9655j)I_A + (13 - 24,9655j + 32,9867j)I_C = 4$

$$I_A$$
: (10 + 78,7101 j) I_A - 10 I_B + (24,9655 j) I_C = -3

$$I_B$$
: $-10I_A + (10 - 9.2264j)I_B = -4$

$$I_C$$
: $(24,9655j)I_A + (13 + 8,0212j)I_C = 4$

pomocou Cramerovho pravidla vypočítam hodnotu I_C , ostatné nepotrebujem, pretože cievkou L_2 prechádza len prúd I_C , čiže môžem tvrdiť, že $I_C = I_{L2}$:

$$|D| = \begin{vmatrix} 10 + 78,7101j & -10 & 24,9655j \\ -10 & 10 - 9,2264j & 0 \\ 24,9655j & 0 & 13 + 8,0212j \end{vmatrix} = 10\ 100 + 9\ 107j$$

$$|D_{I_C}| = \begin{vmatrix} 10 + 78,7101j & -10 & -3 \\ -10 & 10 - 9,2264j & -4 \\ 24,9655j & 0 & 4 \end{vmatrix} = 3596 + 4527j$$

$$I_C = \frac{|D|}{|D_{I_C}|} = \frac{3596 + 4527j}{10100 + 9107j} = 0,4193 + 0,07014j$$

výpočet cieľových hodnôt:

$$U_{L_2} = I_{L_2} \cdot Z_{L_2} = (0.4193 + 0.07014j) \cdot 32,9867j = -2,3137 + 13,8313j$$

$$|U_{L_2}| = \sqrt{Re(U_{L_2})^2 + Im(U_{L_2})^2} = \sqrt{(-2,3137)^2 + (13,8313)^2} = 14,0235 V$$

$$\varphi' = \arctan\left(\frac{Im(U_{L_2})}{Re(U_{L_2})}\right) = \arctan\left(\frac{13,8313}{-2,3137}\right) = -1,4051 \ rad = -80,5035^\circ$$

 φ' nie je konečný uhol, nachádzame sa v druhom kvadrante, takže musím pripočítať 180°:

$$\varphi_{L_2} = \varphi' + 180^\circ = -80,5035^\circ + 180^\circ = 99,4965^\circ$$

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proved'te kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

sk.	U [V]	R [Ω]	C [F]	u _C (0) [V]
Н	8	50	40	4

podľa Ohmovho zákona viem vzorec pre výpočet prúdu:

$$i = \frac{U_R}{R}$$

podľa II. Kirchhoffového zákona vytvorím rovnicu:

$$u_R + u_C - U = 0$$

$$u_R = U - u_C$$

následne zostavím rovnicu pre u_C a vytvorím diferenciálnu rovnicu, potom dosadím vzorec pre prúd a pre u_R a vyjadrím počiatočnú rovnicu, ktorú budem neskôr potrebovať:

$$u_{C}' = \frac{du_{C}}{dt} = \frac{i}{C} = \frac{\frac{U_{R}}{R}}{C} = \frac{U - u_{C}}{C \cdot R}$$

$$u_C' + \frac{u_C}{C \cdot R} - \frac{U}{C \cdot R} = 0$$

$$u_C' + \frac{u_C}{50 \cdot 40} - \frac{8}{50 \cdot 40} = 0$$

$$u_C' + \frac{u_C}{2000} = \frac{1}{250}$$

vypočítam λ z charakteristickej rovnice:

$$\lambda + \frac{1}{R \cdot C} = 0$$

$$\lambda = -\frac{1}{R \cdot C} = -\frac{1}{50 \cdot 40} = -\frac{1}{2000}$$

očakávam riešenie:

$$u_C(t) = K(t) \cdot e^{\lambda \cdot \mathbf{t}}$$

$$u_{\mathcal{C}}(t) = K(t) \cdot e^{-\frac{1}{R \cdot \mathcal{C}} \cdot t}$$

$$u_C(t) = K(t) \cdot e^{-\frac{t}{2000}}$$

do všeobecnej rovnice dosadím očakávané riešenie a zderivujem:

$$u_{\mathcal{C}}'(t) = K'(t) \cdot e^{-\frac{t}{R \cdot C}} + K(t) \cdot \left(-\frac{1}{R \cdot C}\right) \cdot e^{-\frac{t}{R \cdot C}}$$

$$u_C'(t) = K'(t) \cdot e^{-\frac{t}{2000}} + K(t) \cdot \left(-\frac{1}{2000}\right) \cdot e^{-\frac{t}{2000}}$$

dosadím do počiatočnej rovnice:

$$u_C' + \frac{u_C}{2\ 000} = \frac{1}{250}$$

$$K'(t) \cdot e^{-\frac{t}{2000}} + K(t) \cdot \left(-\frac{1}{2000}\right) \cdot e^{-\frac{t}{2000}} + K(t) \cdot \left(-\frac{1}{2000}\right) \cdot e^{-\frac{t}{2000}} = \frac{1}{250}$$

$$K'(t) \cdot e^{-\frac{t}{2000}} = \frac{1}{250}$$

$$K'(t) = \frac{1}{250} \cdot e^{\frac{t}{2000}}$$

rovnicu integrujem, aby som sa zbavila derivácie:

$$\int K'(t) = \int \frac{1}{250} \cdot e^{\frac{t}{2000}} dt$$

$$K(t) = \frac{1}{250} \int e^{\frac{t}{2000}} dt$$

$$K(t) = 8 \cdot e^{\frac{t}{2000}} + k$$

dosadím K(t) do rovnice očakávaného riešenia:

$$u_C(t) = K(t) \cdot e^{-\frac{t}{2000}}$$

$$u_C(t) = \left(8 \cdot e^{\frac{t}{2000}} + k\right) \cdot e^{-\frac{t}{2000}}$$

$$u_C(t) = 8 + k \cdot e^{-\frac{t}{2000}}$$

vypočítam k podľa podmienky $u_c(t) = 4V$; t = 0

$$u_C(t) = 8 + k \cdot e^{-\frac{t}{2000}}$$

$$u_C(0) = 8 + k \cdot e^{-\frac{0}{2000}}$$

$$4 = 8 + k \cdot e^0$$

$$4 = 8 + k \cdot 1$$

$$k = -4$$

zistila som, že: $u_C(t) = 8 - 4 \cdot e^{-\frac{t}{2000}}$

posledný krok je overiť výsledok:

vyjadrím u_C z počiatočnej rovnice:

$$u_{c'} + \frac{u_{c}}{2000} = \frac{1}{250}; \quad u_{c}(t) = 8 + k \cdot e^{-\frac{t}{2000}}$$

$$u_{c'} + \frac{8 + k \cdot e^{-\frac{t}{2000}}}{2000} = \frac{1}{250}$$

$$u_{c'} + \frac{1}{250} + \frac{-4 \cdot e^{-\frac{t}{2000}}}{2000} = \frac{1}{250}$$

$$u_{c'} - \frac{e^{-\frac{t}{2000}}}{500} = 0$$

$$u_{c'} = \frac{e^{-\frac{t}{2000}}}{500}$$

vyjadrené $u_{\mathcal{C}}$ ' dosadím do počiatočnej rovnice, dosadím hodnoty k=-4; t=0:

$$u_{C}' + \frac{u_{C}}{2000} = \frac{1}{250}$$

$$\frac{e^{-\frac{t}{2000}}}{500} + \frac{8+k \cdot e^{-\frac{t}{2000}}}{2000} = \frac{1}{250}$$

$$\frac{e^{-\frac{0}{2000}}}{500} + \frac{8-4 \cdot e^{-\frac{0}{2000}}}{2000} = \frac{1}{250}$$

$$\frac{1}{500} + \frac{4}{2000} = \frac{1}{250}$$

$$\frac{1}{500} + \frac{1}{500} = \frac{1}{250}$$

$$\frac{2}{500} = \frac{1}{250}$$

$$\frac{1}{250} = \frac{1}{250}$$

$$0 = 0$$

TABUĽKA VÝSLEDKOV

príklad	skupina	výsledky	
1.	C	$U_{R7} = 43,1600 V$	
1.		$I_{R_7} = 0.1660 A$	
2.	Н	$U_{R1} = 60,2309 V$	
۷.	п	$I_{R1} = 0.3170 A$	
3.	Е	$U_{R3} = 2,8600 V$	
3.		E	E
4	C	$\left U_{L_{2}} \right = 14,0235 V$	
4.		$\varphi_{L_2} = 99,4965^{\circ}$	
5.	Н	$u_{\mathcal{C}}(t) = 8 - 4 \cdot e^{-\frac{t}{2000}}$	