

Mathématiques

Bac Informatique

Magazine N°3: Continuité

TakiAcademy

تهنی علی قرایتان

Exercice

5 pts

On a représenté le tableau de variation d'une fonction f

X	-∞	-1	3	5	+ ∞
f		****		4	

- 1. Déterminer le domaine de définition de la fonction **f** .
- **2.** Déterminer: $\lim_{\infty} f(x)$; $\lim_{\infty} f(x)$; $\lim_{x\to 0} f(x)$
- **3.** Déterminer: $\lim_{x\to(-1)^+} \text{fof } (x)$; $\lim_{+\infty} \text{ fof } (x)$.
- **4.** Déterminer $f(]-\infty;-1[); f(]3;+\infty[); f(]-1;5[)$.
- 5. Déterminer les asymptotes de f.
- **6.** Montrer que l'équation f(x) = 0 admet une unique solution $\alpha > 5$.
- 7. Déterminer le tableau de signe de f.

Exercice 2

(L) 25 min

5 pts

Soit la fonction **f** définie par le tableau de variation suivant:

- 1. Déterminer le domaine de définition de ${\bf f}$.
- 2. Interpréter les limites de f aux bornes de son domaine de définition.
- 3. Déterminer fof (3); $f(]-\infty,2[)$; $\lim_{x\to+\infty}\left(\frac{4}{f(x)}\right)$; $\lim_{x\to0}f\left(\frac{x+3}{x^2+1}\right)$.

- **4.** Montrer que l'équation $f(x) = \frac{1}{2}$ admet une solution unique α .
- 5. Déterminer le tableau de signe de ${\bf f}$.
- **6.** Déterminer la limite de $f\left(\frac{1}{x}\right)$ au voisinage de $+\infty$.
- 7. Soit la fonction \mathbf{g} définie par : $\mathbf{g}(\mathbf{x}) = \frac{1}{\mathbf{f}(\mathbf{x})}$. Déterminer le domaine de définition de \mathbf{g} .
- **8.** Déterminer les limites de ${\bf g}$ aux bornes de son domaine de définition.

On a représenté la courbe (Γ) d'une fonction ${\bf f}$ définie sur $\left[-3;+\infty\right[$, ainsi que son a asymptote au voisinage de $+\infty$.

1. Par lecture graphique déterminer:

$$\lim_{+\infty} f(x); \lim_{+\infty} \frac{f(x)}{x}; \lim_{+\infty} f(x) - 2x + 1; \lim_{+\infty} \frac{1}{f(x) - 2x} + \frac{1}{5}$$

- 2. Déterminer $\lim_{0} f\left(\frac{x^2 + 5x + 2}{x^2 + 1}\right)$
- **3.** Déterminer, en justifiant, le nombre de solution de l'équation f(x) = 4.
- **4.** Déterminer graphiquement : $\mathbf{f}(]0; +\infty[); \mathbf{f}([-3; +\infty[)$.

Exercice 4 \(\begin{array}{c} 25 \text{ min} \) 5 pts

Le plan est muni d'un repère orthonormé. La figure ci-contre est la représentation graphique d'une fonction définie sur IR.

En utilisant le graphique :

1. Déterminer

$$\lim_{x\to 1^+} f(x); \lim_{x\to 1^-} f(x); \lim_{-\infty} \frac{f(x)}{x}; \lim_{+\infty} \frac{x}{f(x)}.$$

b.
$$\lim_{x \to 3} \frac{1}{f(x)}$$
; $\lim_{x \to -2} x + \frac{1}{2 - f(x)}$; $\lim_{x \to -2} fof(x)$

$$\lim_{x\to+\infty} f\left(\frac{\sqrt{x+2}}{\sqrt{x}}\right); \lim_{x\to1} f\left(\frac{x^2+4x-5}{x^2-1}\right).$$

- 2. a. f est-elle continue à droite en 1 ? Justifier.
 - **b**. f est-elle continue à gauche en 1 ? Justifier.
 - c. f est elle continue en 1?
- **3. f** est elle bijective sur $]-\infty;1[$?
- **4.** Monter que f réalise une bijection $\left]-\infty,-2\right]$ sur un intervalle J qui l'on précisera .

Exercice 5 (1) 25 min 5 pts ——

La courbe $\left(\zeta_{\scriptscriptstyle f}\right)$ ci-dessous est celle d'une fonction définie sur $\mathbb{R}\smallsetminus\left\{1\right\}$.

On admet que les droites d'équations :

$$y=-x+1, \ x=1$$
 et $y=1$ sont des asymptotes à $\left(\zeta_{f}\right)$

1. Par une lecture graphique, déterminer :

$$\lim_{x\to +\infty} f(x)$$
, $\lim_{x\to 1} f(x)$, $\lim_{x\to -\infty} \frac{f(x)}{x}$ et $\lim_{x\to 0} \frac{1}{f(x)-2}$

- **2. a)** Dresser le tableau de variation de *f*
 - **b)** Déterminer $f(]-\infty;1[)$ et $f(]1;+\infty[)$
- **3.** Montrer que 1 'équation f(x) = x + 1 admet une unique solution α dans]1,2[.
- **4.** Soit la fonction définie sur \mathbb{R} par $: g(x) = \begin{cases} f \circ f(x) & \text{si } x \neq 1 \\ 1 & \text{si } x = 1 \end{cases}$
 - **a)** Déterminer g(0); g(2); $\lim_{x\to -\infty} g(x)$ et $\lim_{x\to +\infty} g(x)$,
 - **b)** Montrer que g est continue sur $\mathbb R$.

Nos Locaux

- Sahloul
- Khezama
- Msaken

- Monastir
- Mahdia Kasserine
- CUN
- Ksar Hellal
- Ezzahra
- Tataouine
- El Aouina
- El Mourouj
- Bizerte
- Nabeul
- Kelibia
- Bardo

- Gafsa Tozeur

 - kébili
 - Gabes
- Siliana
- Sfax
- Béja
- Le Kef
- Zaghouan

Jendouba

- Medenine Kairouane
 - Djerba

• Sidi Bouzid

www.takiacademy.com

② 73.832.000

تهنئ على قرايتا ك