BUCK稳压器设计

TI大学计划 钟舒阳 shuyang-zhong@ti.com

芯片选型

Step-Down Switching Regulators

Power Modules (PTH, LMZ, TPS84, TPS82)

- Integrated Inductor and FETs
- Simplest solution with fewest components
- Fastest time to market

Integrated FET Converters (LM5, LM25, TPS54, TPS53, TPS62)

- Integrated power MOSFETs single chip or MCM
- In between module and controller
- Good value with lower Vin and lout requirements

External FET Controllers (LM5, LM25, TPS4, TPS53, TPS51)

- Application and design flexibility available to the user
- More complex and time consuming solution
- Excellent total system value

Controller

TPS40303/4/5 3V to 20V input 10A Output Current 300kHz to 1.2MHz

External FETs

Part number sets frequency

Converter (partially integrated)

TPS54620 4.5V to 17V input 6A Output Current

Internal FETs

Converter (integrated)

TPS62290 2.3V to 6V input 1A Output Current 2.25MHz

FETs, comp, SS, Rt is integrated

Synchronous vs. Non Synchronous

Non-Synchronous Buck

Used When?

- Non-sync for
 - lowest cost
 - High Output Voltage (> =3.3V)

Synchronous Buck

- <u>Sync</u> for
 - Highest Efficiency
 - Low Output Voltage (< 3.3V)
 - High Current (> 3A)

Key Switching Regulator Specs

- Usually found on the front page of the datasheet and in selection charts
- Better specifications may add value and command a higher price against the competition:
 - On Resistance (milliOhms) in DC/DC Converters
 - Lower Rds(on) delivers higher efficiency at full load. Two devices may have same the lout rating, but higher resistance means more heat.
 - Switching Frequency (kHz)
 - Faster frequency means less L & C to store energy to save space and cost.
 - Voltage Accuracy (%)
 - Higher accuracy error amplifier better meet processor voltage tolerances.
 Less precise (lower cost) resistor divider tolerance can be used.
 - Quiescent & Shutdown Current (uA)
 - Quiescent (operating) and Shutdown (disabled) current are key when high efficiency is important at light loads, such as battery operation.

元器件参数计算

设计目标

• 用TPS54160设计一个Buck电源,参数指标如下:

DESIGN PARAMETER	EXAMPLE VALUE
Output Voltage	3.3 V
Transient Response 0 to 1.5A load step	ΔV _{OUT} = 4%
Maximum Output Current	1.5 A
Input Voltage	12 V nom. 8 V to 18 V
Output Voltage Ripple	< 33 mV _{pp}
Start Input Voltage (rising VIN)	7.7 V
Stop Input Voltage (falling VIN)	6.7 V

Selecting the Switching Frequency

- 选择尽量大的开关频率fs可以减小系统体积。可以选择的开关频率范围 取决于芯片内部开关的最小导通时间,输入电压,输出电压,以及频率 飘移限制。
- 最大开关频率应选取下列二式中较小的一个:

$$f_{SW(\max skip)} = \frac{1}{t_{ON}} \times \left(\frac{I_L \times R_{dc} + V_{OUT} + V_d}{V_{IN} - I_L \times R_{DS(on)} + V_d}\right) = 1600 \text{kHz}$$

$$f_{SWshift} = \frac{f_{DIV}}{t_{ON}} \times \left(\frac{I_L \times R_{dc} + V_{OUT(sc)} + V_d}{V_{IN} - I_L \times R_{DS(on)} + V_d}\right) = 2500 \text{kHz}$$

 因此开关频率应小于1600kHz,电路中实际选择1200kHz。通过Rt可以 设置开关频率。

Inductor Selection

电感值根据对于电感电流纹波的要求来选择,最低电感值由下式计算:

$$L_{O(min)} = \frac{V_{IN(max)} - V_{OUT}}{I_{OUT} \times K_{IND}} \times \frac{V_{OUT}}{V_{IN(max)} \times f_{SW}}$$

其中K_{IND}是纹波系数,一般选取0.2-0.4。本设计中选择0.2,计算得到最小电感值为7.6uH。实际选择10uH电感。

选择电感时还要考虑电流值,本例中电感电流有效值为1.506A,峰值为1.62A。
 因此选择MSS6132-103,有1.64A的饱和电流和1.9A的rms电流。

Output Capacitor

- 选择输出电容需考虑3个因素: 系统稳定性、输出电压纹波和暂态响应。
- 输出电容足够大,以便在负载突然变化时维持输出电压。当负载发生变化时,稳 压器往往需要几个开关周期的时间才能做出相应的调整,在此之前需要由输出电 容给负载维持供电。满足上述条件的最小输出电容为:

$$C_{OUT} > \frac{2 \times \Delta I_{OUT}}{f_{SW} \times \Delta V_{OUT}}$$

其中 ΔI_{OUT} 是电流变化量, ΔV_{OUT} 是允许的电压最大变化量。此设计中当负载由0变为1.5A时要求电压变化小于4%,这样得到 C_{OUT} =18.9uF。

当负载电流突然变化时,电感会产生电压过冲,输出电容必须足够大才能吸收这个过冲,满足这个条件的电容值由下式计算:

$$C_{OUT} > L_{O \times} \frac{\left(I_{OH}^2 - I_{OL}^2\right)}{\left(V_f^2 - V_i^2\right)}$$

其中 I_{OH} 和 I_{OL} 分别是输出电流的最大值和最小值, V_f 是电压过冲的峰值, V_i 是电容电压的初始值。对于本设计,负载从0变为1.5A时电压变化小于4%,即 V_f =1.04*3.3=3.432V,计算得到 C_{OUT} =25.3uF。

Output Capacitor(cont.)

• 下式为满足输出电压纹波条件的电容值计算公式:

$$C_{OUT} > \frac{1}{8 \times f_{SW}} \times \frac{1}{\left(\frac{V_{OUT(ripple)}}{I_{RIPPLE}}\right)}$$

其中f_{SW}是开关频率,V_{OUT(ripple)}是允许的电压纹波,I_{RIPPLE}是电感电流纹波。此处计算得到C_{OUT}=0.7uF。

• 为满足输出电压纹波条件, 电容的等效串联电阻(ESR)需满足以下条件:

$$R_{ESR} = \frac{V_{OUT(ripple)}}{I_{RIPPLE}} = 147m\Omega$$

- 结论:满足上述全部条件的最小电容值 C_{OUT} =25.3uF,考虑到电容的性能会随时间下降,设计时留一定裕量,选择47uF/6.3V的X7R电容,其ESR为5m Ω 。
- 电容上能承受的电流纹波是有限的,电容datasheet上会给出电流纹波的有效值。对本设计,通过以下公式计算:

$$I_{COUT(rms)} = \frac{V_{OUT} \times (V_{IN(max)} - V_{OUT})}{\sqrt{12} \times V_{IN(max)} \times L_O \times f_{SW}} = 64.8mA$$

Catch Doide

- 续流二极管必须能够承受大于V_{inmax}的反向电压,其电流额定值必须大于 电感电流的峰值。为了降低损耗,应选择正向导通压降尽量小的二极管 。开关电源中一般选取肖特基二极管,因为其正向导通压降比较低。
- 通常来说,具有较大电压和电流的二极管,其正向导通压降也会比较高。本设计中最大输入电压是18V,因此选择最大反向电压为20V的二极管。具体选择型号为B220A,其正向导通压降为0.5V。
- 选择二极管时还要考虑其能够承受的功率。功率由下式计算:

$$P_{D} = \frac{\left(V_{IN(max)} - V_{OUT}\right) \times I_{OUT} \times V_{fd}}{V_{IN(max)}} + \frac{C_{j} \times f_{SW} \times \left(V_{IN} + V_{fd}\right)^{2}}{2}$$

其中 C_i =120pF,求得 P_D =0.632W。该功率大约会造成16°C的温升。

Input Capacitor

TPS54160需要一个X5R或X7R的输入电容,电容值至少需要3uF,其电压等级不得低于输入电压。电容能够承受的纹波电流需要大于输入电流纹波,输入电流纹波计算公式为:

$$I_{CI(rms)} = I_{OUT} \times \sqrt{\frac{V_{OUT}}{V_{IN(min)}}} \times \frac{\left(V_{IN(min)} - V_{OUT}\right)}{V_{IN(min)}}$$

- 电容的容值会随温度和直流偏置电压而变化,因此在开关电源设计中通常选择X5R或X7R的电容,因为其容值比较大,且对温度相对稳定。
- 本设计中,输入电容电压等级至少要为20V,因此选择25V的电容。使用 2个2.2uF/25V的电容并联。

Output Voltage and Feedback Resistors Selection

- 在本设计中,R2选择10.0kΩ,根据公式 $R1 = R2 \times \frac{V_{OUT} 0.8}{0.8}$,得到 R1=31.25kΩ,实际选择最接近的标准电阻31.6kΩ。
- 根据VSENSE引脚的漏电流参数,流过反馈电阻的电流不得小于1μA, 因此R2的值不得大于800kΩ。选择较大的反馈电阻值可以降低静态电流 ,并改善轻载时的效率;但可能造成噪声的增大。

Compensation

 为了获得良好的暂态响应,一般留60°-90的相位裕量。未补偿之前,稳 压器有一个主极点,通常位于300Hz-3kHz,这是由输出电容和负载电阻 造成的。另外有一个极点是由内部的误差放大器造成的。输出电容和 ESR会带来一个零点,零点的频率比两个极点高。

• 计算极点和零点的位置。

$$f_{P(mod)} = \frac{I_{OUT(max)}}{2 \times \pi \times V_{OUT} \times C_{OUT}} = 1.5kHz$$

$$f_{Z(mod)} = \frac{1}{2 \times \pi \times R_{ESP} \times C_{OUT}} = 338kHz$$

Compensation(cont.)

选择穿越频率大于5倍的主极点频率,同时需满足在穿越频率误差放大器的增益必须足够大,该增益又下式计算:

$$G_{MOD(fC)} = \frac{gm_{PS} \times R_{LOAD} \times (2\pi \times f_C \times C_{OUT} \times R_{ESR} + 1)}{2\pi \times f_C \times C_{OUT} \times (R_{LOAD} + R_{ESR}) + 1} = 0.542$$

• 下面计算补偿电路各个元器件的值。

$$R_C = \frac{V_{OUT}}{G_{MOD(fc)} \times gm_{(EA)} \times V_{REF}} = 76.2k\Omega$$

$$C_C = \frac{1}{2\pi \times R_C \times f_{P(mod)}} = 2710pF$$

$$C_f = \frac{C_{OUT} \times R_{ESR}}{R_C} = 6.17pF$$

实际选择R_C=76.8kΩ, C_c=2700pF, C_f=6.8pF

Power Dissipation Estimate

• 以下公式用于评估连续模式下的稳压器功率耗散。

$$\begin{split} P_{COND} &= {I_{OUT}}^2 \times R_{DS(on)} \times \frac{V_{OUT}}{V_{IN}} \\ P_{SW} &= {V_{IN}}^2 \times f_{SW} \times I_{OUT} \times 0.25 \times 10^{-9} \\ P_{GD} &= V_{IN} \times 3 \times 10^{-9} \times f_{SW} \\ P_{Q} &= 116 \times 10^{-6} \times V_{IN} \end{split}$$

总功率耗散

$$P_{TOT} = P_{COND} \times P_{SW} \times P_{GD} \times P_{Q}$$