

MT3620 Datasheet

Version: v1.7

Release date: 2021-01-26

Document Revision History

Revision	Date	Description
0.5	19 September 2017	Initial release.
0.6	28 September 2017	Revisions.
0.61	2 November 2017	Revisions.
0.62	7 November 2017	Revisions.
0.63	8 November 2017	Minor revisions.
0.65	27 November 2017	Minor revisions.
0.66	19 December 2017	Revisions.
0.67	20 December 2017	Revisions.
0.68	29 December 2017	Revisions.
0.69	2 January 2018	Reviewed changes and fixed typographical errors.
0.70	2 January 2018	Clarifications and edits.
0.71	15 January 2018	Accepted changes, deleted comments; refined GPIO section.
0.72	19 January 2018	Altered minimum battery backup voltage to 2.5v.
0.73	19 January 2018	Simplified power consumption table.
0.74	9 February 2018	Update the Wi-Fi 2.4G/5G specification table.
0.75	16 March 2018	Listed 1.2kbps UART support and changed ADC reference minimum from 1.6V to 1.8V.
0.76	4 April 2018	Removed references to Ao and fixed a couple of typos.
09.77	5 April 2018	Fixed formatting errors in WiFi performance section. Moved SERVICE UART pins to correct section of pin description table.
0.78	24 May 2018	Fixed Wi-Fi channel bandwidth mismatched statement.
1.0	10 September 2019	Refined for public release
1.1	25 September 2019	Correct operation temperature range and update current consumption data
1.2	25 December 2019	Update Crystal Oscillator requirement
1.3	21 January 2020	Removed "code-name 4x4"
1.4	4 April 2020	Remove IEEE 802.11 a/k/r
1.5	22 June 2020	Update Table 25 description.
1.6	18 Aug 2020	Update Wi-Fi feature list
1.7	26 Jan 2021	Update thermal characteristics Removed "code-name 4x4" in sec. 5.2 Pin Description

Table of Contents

		t Revision History	
Table	of C	ontents	3
1	Syste	em Overview	5
-	1.1	General Description	5
	1.2	Main Features	5
		1.2.1 Platform	
		1.2.2 Pluton Security Subsystem	
		1.2.3 Wi-Fi	
		1.2.4 Power Management and Clock Sources	
		1.2.5 Management Interfaces	
	1.0	1.2.6 Technology and Package	
-	1.3	MT3620 Block Diagram	
	1.4	1.3.1 Block Diagram Acronyms	
	•	ication Support	-
	2.1	Application development	
	2.2	RF testing support	
	2.3 2.4	Manufacturing test support	
	•	o Characteristics	
•		Wi-Fi Radio Characteristics	
;	3.1		
		3.1.1 Wi-Fi 2.4GHz Band RF Receiver Specifications	
		3.1.3 Wi-Fi 5GHz Band RF Transmitter Specifications	
		3.1.4 Wi-Fi RF Receiver Blocking Specifications	
:	3.2	Antenna Diversity	
4	_	trical Characteristics	_
-	4.1	Absolute Maximum Rating	16
	4.2	Recommended Operating Range	
	4.3	DC Characteristics	
4	4.4	Crystal Oscillator	16
4	4.5	Current consumption	
4	4.6	PMU Characteristics	
	4.7	ADC Characteristics	
	4.8	I2S PLL Characteristics	
	4.9	PLL1/PLL2 Characteristics	
	4.10	Thermal Characteristics	21
	4.11 4.12	SPI Master Electrical Specifications	
		SPI Slave Electrical Specifications	
		I2S Electrical Specifications	
		I2C Electrical Specifications	
		and Package Specification	
	5.1	Pin Layout	
	5.2	Pin Description.	
	5.3	Pin Multiplexing	
	5.4	Bootstrap	49
	5.5	Package Information	50
	5.6	Top Mark	_
6	Gene	eral	52

Figure / Table List

Figure 1. MT3620 Block Diagram8Figure 2. UART timing diagram22Figure 3. SPI Master timing diagram23Figure 4. SPI Salve timing diagram23Figure 5. I2S MCLK timing diagram24Figure 6. I2S timing diagram25Figure 7. I2C F/S-mode timing diagram26Figure 8. Package pin layout27Figure 9. Package outline drawing51Figure 10. Top Mark51
Table 1. 2.4GHz RF Receiver Specification11
Table 2. 2.4GHz RF Transmitter Specifications
Table 3. 5GHz RF receiver specifications12
Table 4. 5GHz RF Transmitter Specifications
Table 5 RF Receiver Blocking Specifications
Table 6. Absolute maximum rating
Table 7. Recommended Operating Range
Table 8. DC Characteristics
Table 9. Crystal Oscillator Requirement16
Table 10. Current consumption
Table 11. PMU Electrical Characteristics
Table 12. ADC Specification19
Table 13. I2S PLL Specification20
Table 14. PLL1 Specification20
Table 15. PLL2 Specification21
Table 16. Thermal Characteristics21
Table 17. UART Electrical Specifications21
Table 18. SPI Master Electrical Specifications22
Table 19. SPI Slave Electrical Specifications
Table 20. I2S (Slave mode) Electrical Specifications24
Table 21. I2C Electrical Specifications
Table 22. Pin Descriptions
Table 23. Pin Multiplexing
Table 24. Bootstrap Option – Flash Recovery Mode
Table 25. Bootstrap Option – RTC Mode50

1 System Overview

1.1 General Description

MT3620 is a highly integrated single chip tri-core MCU designed to meet the requirements of modern, robust internet-connected devices. It leverages the Microsoft Azure Sphere security architecture to provide an unprecedented level of security to connected device manufacturers. For the lifetime of the device the Azure Sphere system provides device authentication and attestation, supports remote overthe-air software updates to maintain security in the face of evolving attacks, and automates error logging and reporting. Please refer to the "Azure Sphere Platform Overview" document from Microsoft for more information.

MT3620 features an application processor subsystem based on an ARM Cortex-A7 core which runs at up to 500MHz. The chip also includes two general purpose ARM Cortex-M4F I/O subsystems, each of which runs at up to 200MHz. These subsystems were designed to support real-time requirements when interfacing with a variety of on-chip peripherals including UART, I2C, SPI, I2S, and ADC. They are completely general-purpose Cortex-M4F units which may be tailored to specific application requirements. On-chip peripherals may be mapped to any of the three end-user accessible cores, including the CA7.

In addition to these three end-user accessible cores, MT3620 contains a security subsystem with its own dedicated CM4F core for secure boot and secure system operation. There is also a Wi-Fi subsystem controlled by a dedicated N9 32-bit RISC core. This contains a 1x1 dual-band 802.11b/g/n radio, baseband and MAC designed to support both low power and high throughput applications without placing computational load on the user-accessible cores.

MT3620 also includes over 5MB of embedded RAM, split among the various cores. There is a fully-integrated PMU and a real-time clock. Flash memory is integrated in the MT3620 package; see section 1.4 for ordering information. Please refer to the "Azure Sphere MT3620 Support Status" document from Microsoft for information about how much memory and which hardware features are available to end-user applications. Only hardware features supported by the Azure Sphere system are available to MT3620 end-users.

1.2 Main Features

1.2.1 Platform

- ARM Cortex A7 with NEON and FPU support and 64kB L1 instruction cache, 32kB L1 data cache,
 256kB L2 cache, and 4MB system memory for the Azure Sphere operating system and user applications; ideal for high-level user code
- Two general purpose ARM Cortex M4 cores, each with 192kB TCM, 64kB SRAM, and integrated FPU; ideal for real-time control requirements
- In-package serial flash; see Section 1.4 for details
- User-accessible cores support execute-in-place (XIP) from flash
- Five "ISU" serial interface blocks which can be configured as I2C master. I2C slave, SPI master, SPI slave, or UART; I2C runs at up to 1MHz, SPI at up to 40MHz, and UARTs at up to 3Mbps
- Two I2S interfaces supporting slave and TDM slave modes
- Eight-channel, 12-bit, 2MS/s single-ended successive approximation ADC using internal 2.5V or external 1.8V reference
- 76 programmable GPIO pins with programmable drive strength (some multiplexed with other functions)
- 12 PWM outputs

- 24 external interrupt inputs
- Six hardware counter blocks which can count and measure pulses and perform quadrature decoding
- RTC can run from dedicated 32 kHz external input, from on-die 32 kHz oscillator, from on-die ring oscillator, or from main oscillator
- One-time programmable e-fuse block for storing chip-specific information
- Two additional, dedicated UARTs, one for each CM4F I/O subsystem
- Per-core watchdog timers
- Per-core general-purpose timers

1.2.2 Pluton Security Subsystem

- Provides security and secure power management for entire chip
- Dedicated ARM Cortex-M4F security processor with 128kB secured TCM and 64kB secured mask ROM bootloader
- Microsoft Azure Sphere Pluton security engine provides cryptographic engines and hardware root of trust
- Hardware random number generator with entropy monitoring system to ensure true random numbers
- Side-channel attack and tampering counter-measures
- Dedicated, secure one-time programmable e-fuse block for storing security-related configuration information
- Provides secure boot via ECDSA, hardware support for remote attestation and certificate-based security

1.2.3 Wi-Fi

- Dedicated high-performance N9 32-bit RISC core
- Dedicated one-time programmable e-fuse block for storing Wi-Fi specific calibration and configuration information
- IEEE 802.11 b/g/n compliant
- Supports 20MHz bandwidth in 2.4GHz band and 5GHz band
- Dual-band 1T1R mode
- Supports STBC, LDPC, explicit beamforming as the beamformee
- Greenfield, mixed mode, legacy modes support
- IEEE 802.11 e/h/i support
- Security support for WFA WPA/WPA2 personal, WPS2.0
- QoS support of WFA WMM, WMM PS
- Integrated LNA, PA, and T/R switch
- Built-in RX diversity support
- Full TX/RX antenna diversity support via external DPDT switch
- Multiple external support component configuration options for BoM flexibility

1.2.4 Power Management and Clock Sources

- Integrated high efficiency power management unit with single 3.3V power supply input
- Integrated under-voltage lockout, three low drop-out (LDO) regulators and a high efficiency buck converter

- Integrated comparator for supply brown-out detection with configurable threshold
- 26MHz crystal clock support with low power operation mode
- 32kHz crystal real-time clock with external battery-backup supply

1.2.5 Management Interfaces

- 'Recovery' UART for re-loading device firmware
- 'Service' UART for in-production and in-field firmware update and device management

1.2.6 Technology and Package

- Highly integrated 40nm RFCMOS technology
- System-in-package (SIP) serial flash
- 12mm x 12mm 164 pin DR-QFN package
- Designed to support 4-layer PCB construction based on widely supported PCB design rules
- RoHS compliant

1.3 MT3620 Block Diagram

Figure 1. MT3620 Block Diagram

1.3.1 Block Diagram Acronyms

PSE	Wi-Fi packet switch engine	PMU	Power management unit	PWM	Pulse-width modulation
TCM	Tightly-coupled memory	RTC	Real-time clock	GPIO	General purpose input/output
ILM	Instruction local memory	DMA	Direct memory access	FPU	Floating point unit
DLM	Data local memory	I2C	Inter-IC communications	I2S	Inter-IC sound
ADC	Analog to digital converter	NEON	Arm's single instruction multiple data architecture	UART	Universal asynchronous receiver/transmitter

PSE Wi-Fi packet switch engine PMU Power management unit PWM Pulse-width modulation

1.4 Ordering information

Part number	Total flash	Flash configuration
MT3620AN	16MB	2x 8MB dual channel quad SPI

2 Application Support

2.1 Application development

MT3620 was designed in close cooperation with Microsoft as part of the Microsoft security system. Whilst the Cortex-A7 application processor must always run the Azure Sphere secure OS supplied by Microsoft, it is also available for running a custom user-mode application hosted by the secure OS. Microsoft provides a powerful development environment based on the gcc compiler which includes a Visual Studio extension, allowing this application to be developed in C. Visual Studio debugging, including features such as single-step execution, breakpoints, and watchpoints are supported using a SLIP interface to the CA7 via a dedicated Azure Sphere service UART.

In addition to the Cortex-A7 application processor subsystem, MT3620 includes two Cortex-M4F I/O subsystems. The two M4F I/O subsystems are primarily intended to support real-time I/O processing but can also be used for general purpose computation and control. The M4F cores may run any enduser-provided operating system, or run a 'bare metal app' with no operating system.

Debugging on the I/O subsystems is supported through a shared multi-core SWD channel with SWO support. There is also optional support for higher bandwidth trace via a 16-bit ARM TPIU interface. Each Cortex-M4F core also has a dedicated UART which can be used to support debugging if necessary.

Operation of MT3620 security features and Wi-Fi networking is isolated from, and runs independently of, end user applications. As such, security features and Wi-Fi are only accessible via defined APIs and are robust to programming errors in end-user applications regardless of whether these applications run on the CA7 or the user-accessible CM4F cores.

2.2 Hardware config & control

Microsoft-provided libraries support a variety of functions including hardware configuration, network communication, and use of the MT3620 peripherals. Please refer to the latest "Azure Sphere MT3620 Support Status" document from Microsoft for information about currently supported hardware configurations, network communications, and peripherals. Note that due to the secure nature of the Azure Sphere system, features not yet supported by Microsoft are not available by any other means.

2.3 RF testing support

MT3620 can enter a radio test mode that allows test lab personnel or automated test equipment to set low-level radio parameters and transmit and receive custom test signals and packets. This functionality is suitable for radio emissions compliance testing of an MT3620-based product.

The MT3620 radio test mode can also be used to support per-device production line Wi-Fi calibration and test. Production test RF equipment from test equipment suppliers such as LitePoint will include support for MT3620.

2.4 Manufacturing test support

MT3620 allows manufacturers to create custom manufacturing test applications using the same application development tools used to create end-user applications. These test applications support in-circuit functional testing during manufacturing. Microsoft will provide documentation and utilities to allow these tests to integrate with factory processes.

3 Radio Characteristics

3.1 Wi-Fi Radio Characteristics

3.1.1 Wi-Fi 2.4GHz Band RF Receiver Specifications

The specification in table below is measured at the antenna port, which includes the frond-end loss.

Table 1. 2.4GHz RF Receiver Specification

			Performance			
Parameter	Description		TYP		T	
		MIN	Main	Aux	MAX	Unit
Frequency range	Center channel frequency	2412			2484	MHz
, , ,	DBPSF, 1 Mbps DSSS	-	-94.6	-97.1	-90.0	dBm
	DQPSF, 2 Mbps DSSS	-	-91.6	-94.1	-87.0	dBm
	DQPSF, 5.5 Mbps CCK	-	-89.6	-92.1	-85.0	dBm
	DQPSF, 11 Mbps CCK	-	-86.6	-89.1	-82.0	dBm
	BPSK rate 1/2, 6 Mbps OFDM	-	-91.6	-94.1	-87.0	dBm
DV '''	BPSK rate 3/4, 9 Mbps OFDM	-	-89.3	-91.8	-86.0	dBm
RX sensitivity	QPSK rate 1/2, 12 Mbps OFDM	-	-88.5	-91.0	-84.0	dBm
	QPSK rate 3/4, 18 Mbps OFDM	-	-86.1	-88.6	-82.0	dBm
	16QAM rate 1/2, 24 Mbps OFDM	-	-82.8	-85.3	-81.0	dBm
	16QAM rate 3/4, 36 Mbps OFDM	-	-79.4	-81.9	-78.0	dBm
	64QAM rate 1/2, 48 Mbps OFDM	-	-75.2	-77.7	-73.0	dBm
	64QAM rate 3/4, 54 Mbps OFDM	-	-73.9	-76.4	-71.0	dBm
	MCS 0, BPSK rate 1/2	-	-90.9	-93.4	-87.0	dBm
	MCS 1, QPSK rate 1/2	-	-87.7	-90.2	-86.0	dBm
RX Sensitivity	MCS 2, QPSK rate 3/4	-	-85.3	-87.8	-84.0	dBm
BW=20MHz Mixed mode 800ns Guard Interval Non-STBC	MCS 3, 16QAM rate 1/2	-	-82.3	-84.8	-81.0	dBm
	MCS 4, 16QAM rate 3/4	-	-78.8	-81.3	-77.0	dBm
	MCS 5, 64QAM rate 2/3	-	-74.4	-76.9	-74.0	dBm
Nou-21RC	MCS 6, 64QAM rate 3/4	-	-73.0	-75.5	-71.0	dBm
	MCS 7, 64QAM rate 5/6	-	-71.8	-74.3	-69.0	dBm
	1 Mbps DSSS	-20	-10	- I	-	dBm
	11 Mbps CCK	-20	-10		-	dBm
Maximum Receive	6 Mbps OFDM	-20	-10		-	dBm
Level	54 Mbps OFDM	-20	-10		-	dBm
	HT20 MCS0	-20	-10		-	dBm
	HT20 MCS7	-20	-20		-	dBm
	BPSK rate 1/2, 6 Mbps OFDM	16	34		-	dBm
	BPSK rate 3/4, 9 Mbps OFDM	15	31		-	dBm
	QPSK rate 1/2, 12 Mbps OFDM	13	30		-	dBm
	QPSK rate 3/4, 18 Mbps OFDM	11	27		-	dBm
	16QAM rate 1/2, 24 Mbps OFDM	8	25		-	dBm
Receive Adjacent	16QAM rate 3/4, 36 Mbps OFDM	4	23		-	dBm
Channel Rejection	64QAM rate 1/2, 48 Mbps OFDM	0	22		-	dBm
-	64QAM rate 3/4, 54 Mbps OFDM	-1	22		-	dBm
	MCS 0, BPSK rate 1/2	16	33		-	dBm
	MCS 1, QPSK rate 1/2	13	29		-	dBm
	MCS 2, QPSK rate 3/4	11	26		-	dBm
	MCS 3, 16QAM rate 1/2	8	24		-	dBm
	MCS 4, 16QAM rate 3/4	4	20		-	dBm

	Description		Performance					
Parameter			T	TYP		Linit		
		MIN	Main	Aux	MAX	Unit		
	MCS 5, 64QAM rate 2/3	0	18		-	dBm		
	MCS 6, 64QAM rate 3/4	-1	17		-	dBm		
	MCS 7, 64QAM rate 5/6	-2	15		-	dBm		
Receiver Residual PER	All rates, -50dBm input power	-	-		0.005	%		

3.1.2 Wi-Fi 2.4GHz Band RF Transmitter Specifications

The specification in table below is measured at the antenna port, which includes the front-end loss.

Table 2. 2.4GHz RF Transmitter Specifications

Parameter	Description	Performance				
Parameter	Description		TYP	MAX	Unit	
Frequency range		2412	-	2484	MHz	
	1 Mbps DSSS	-	16 ⁽¹⁾	-	dBm	
O	11 Mbps CCK	-	16 ⁽¹⁾	-	dBm	
Output power with	6 Mbps OFDM	-	16 ⁽¹⁾	-	dBm	
spectral mask and EVM compliance	54 Mbps OFDM	-	16 ⁽¹⁾	-	dBm	
Evivi compliance	HT20 MCS 0	-	16 ⁽¹⁾	-	dBm	
	HT20 MCS 7	-	16 ⁽¹⁾	-	dBm	
	1 Mbps DSSS	-	15 ⁽¹⁾	-	dBm	
Output power with	11 Mbps CCK	-	15 ⁽¹⁾	-	dBm	
spectral mask and	6 Mbps OFDM	-	15 ⁽¹⁾	-	dBm	
EVM compliance (at -	54 Mbps OFDM	-	15 ⁽¹⁾	-	dBm	
40°C and 85°C)	HT20 MCS 0	-	15 ⁽¹⁾	-	dBm	
	HT20 MCS 7	-	15 ⁽¹⁾	-	dBm	
	1 Mbps DSSS	-	-	-10	dB	
	11 Mbps CCK	-	-	-10	dB	
TX EVM	6 Mbps OFDM	-	-	-5	dB	
IXEVIVI	54 Mbps OFDM	-	-	-25	dB	
	HT20, MCS 0	-	-	-5	dB	
	HT20, MCS 7	-	-	-28	dB	
Output power variation ⁽²⁾	TSSI closed-loop control across all temperature range and channels and VSWR \leq 1.5:1.	-1.5	-	1.5	dB	
Carrier suppression		-	-	-30	dBc	
Harmonic Output	2nd Harmonic	-	-45	-43	dBm/MHz	
Power	3nd Harmonic	-	-45	-43	dBm/MHz	

Note 1: Low power PA.

Note 2: VDD33 voltage is within $\pm 5\%$ of typical value.

The specification in table below is measured at the antenna port, which includes the front-end loss.

Table 3. 5GHz RF receiver specifications

			Performar	Performance			
Parameter	Description		TYP		T		
		MIN	Main	Aux	MAX	Unit	
Frequency range	Center channel frequency	5180	-		5825	MHz	
	BPSK rate 1/2, 6 Mbps OFDM	-	-90.0	-91.5	-86.0	dBm	
	BPSK rate 3/4, 9 Mbps OFDM	-	-87.7	-89.2	-85.0	dBm	
	QPSK rate 1/2, 12 Mbps OFDM	-	-87.0	-88.5	-83.0	dBm	
	QPSK rate 3/4, 18 Mbps OFDM	-	-84.5	-86.0	-81.0	dBm	
RX sensitivity	16QAM rate 1/2, 24 Mbps OFDM	-	-81.3	-82.8	-75.0	dBm	
	16QAM rate 3/4, 36 Mbps OFDM	-	-78.0	-79.5	-72.0	dBm	
	64QAM rate 1/2, 48 Mbps OFDM	-	-73.6	-75.1	-70.0	dBm	
	64QAM rate 3/4, 54 Mbps OFDM	-	-72.2	-73.7	-68.0	dBm	
	MCS 0, BPSK rate 1/2	-	-89.3	-90.8	-86.0	dBm	
	MCS 1, QPSK rate 1/2	-	-86.3	-87.8	-84.0	dBm	
RX Sensitivity	MCS 2, QPSK rate 3/4	-	-83.8	-85.3	-82.0	dBm	
BW=20MHz HT	MCS 3, 16QAM rate 1/2	-	-80.8	-82.3	-76.0	dBm	
Mixed mode 800ns Guard Interval	MCS 4, 16QAM rate 3/4	-	-77.3	-78.8	-74.0	dBm	
	MCS 5, 64QAM rate 2/3	-	-72.8	-74.3	-72.0	dBm	
Non-STBC	MCS 6, 64QAM rate 3/4	-	-71.4	-72.9	-70.0	dBm	
	MCS 7, 64QAM rate 5/6	-	-70.2	-71.7	-66.0	dBm	
	6 Mbps OFDM	-30	-10	-10		dBm	
Maniana Paratira Laval	54 Mbps OFDM	-30	-20		-	dBm	
Maximum Receive Level	MCS0	-30	-15		-	dBm	
	MCS7	-30	-20	-20		dBm	
	BPSK rate 1/2, 6 Mbps OFDM	16	24	24		dBm	
	BPSK rate 3/4, 9 Mbps OFDM	15	23	23		dBm	
	QPSK rate 1/2, 12 Mbps OFDM	13	21		-	dBm	
	QPSK rate 3/4, 18 Mbps OFDM	11	19		-	dBm	
	16QAM rate 1/2, 24 Mbps OFDM	8	15		-	dBm	
	16QAM rate 3/4, 36 Mbps OFDM	4	10		-	dBm	
	64QAM rate 1/2, 48 Mbps OFDM	0	5		-	dBm	
Receive Adjacent	64QAM rate 3/4, 54 Mbps OFDM	-1	3		-	dBm	
Channel Rejection	MCS 0, BPSK rate 1/2	16	24		-	dBm	
	MCS 1, QPSK rate 1/2	13	21		-	dBm	
	MCS 2, QPSK rate 3/4	11	19		-	dBm	
	MCS 3, 16QAM rate 1/2	8	16		-	dBm	
	MCS 4, 16QAM rate 3/4	4	12		-	dBm	
	MCS 5, 64QAM rate 2/3	0	7		-	dBm	
	MCS 6, 64QAM rate 3/4	-1	5		-	dBm	
	MCS 7, 64QAM rate 5/6	-2	3		-	dBm	
Receiver Residual PER	All rates, -50dBm input power	-	-		0.005	%	

3.1.3 Wi-Fi 5GHz Band RF Transmitter Specifications

The specification in table below is measured at the antenna port, which includes the frond-end loss.

Table 4. 5GHz RF Transmitter Specifications

Parameter	I Description –	Performance				
		MIN	TYP	MAX	Unit	
Frequency range		5180	-	5825	MHz	
Output power with spectral mask and EVM compliance	6 Mbps OFDM	-	14(1)	-	dBm	
	54 Mbps OFDM	-	14(1)	-	dBm	
	HT20, MCS 0	-	14 ⁽¹⁾	-	dBm	
	HT20, MCS 7	-	14(1)	-	dBm	

Parameter	Description	Performance				
Parameter	Description	MIN	TYP	MAX	Unit	
Output power with	6 Mbps OFDM	-	13 ⁽¹⁾	-	dBm	
spectral mask and	54 Mbps OFDM	-	13 ⁽¹⁾	-	dBm	
EVM compliance (at -	HT20 MCS 0	-	13(1)	-	dBm	
40°C and 85°C)	HT20 MCS 7	-	13 ⁽¹⁾	-	dBm	
	6 Mbps OFDM	-	-	-5	dB	
T) (5) (8 4	54 Mbps OFDM	-	-	-25	dB	
TX EVM	HT20, MCS 0	-	-	-5	dB	
	HT20, MCS 7	-	-	-28	dB	
Output power variation ⁽²⁾	TSSI closed-loop control across all temperature range and channels and VSWR \leq 1.5:1.	-1.5	-	1.5	dB	
Carrier suppression		-	-	-30	dBc	
Harmonic Output	2nd Harmonic	-	-45	-43	dBm/MHz	
Power	3nd Harmonic	-	-45	-43	dBm/MHz	

Note 1: Low power PA

Note2: VDD33 voltage is within $\pm 5\%$ of typical value.

3.1.4 Wi-Fi RF Receiver Blocking Specifications

The specification in table below is measured at the antenna port, which includes the front-end loss.

Table 5 RF Receiver Blocking Specifications

Davamatar	Description	Performance				
Parameter	Description	MIN	TYP	MAX	Unit	
Receiver In-band	2.4 GHz CW and BT interfering signal @ ±20MHz offset	-47	-	-	dBm	
Blocking ⁽¹⁾	2.4 GHz CW and BT interfering signal @ ±25MHz offset	-40	-	-	dBm	
CW and BT interferers	5 GHz CW interfering signal @ ±20MHz offset	-35	-	-	dBm	
Receiver Out-band	25 ≤ f < 2300 MHz	-28	-	-	dBm	
Blocking ⁽¹⁾	2300 ≤ f < 2395 MHz	-40	-	-	dBm	
CW interferer	2483.5 < f ≤ 2583.5 MHz	-45	-	-	dBm	
	CDMA UL: 824 – 849 MHz	-20	-	-	dBm	
	CDMA DL: 869 – 894 MHz	-10	-	-	dBm	
Receiver Out-band	GSM UL: 880 – 915 MHz	-10	-	-	dBm	
Blocking ⁽¹⁾	GSM DL: 925 – 960 MHz	-10	-	-	dBm	
CDMA, GSM, DCS and	DCS UL: 1710 – 1785 MHz	-13	-	-	dBm	
PCS interferers ⁽²⁾	DCS DL: 1805 – 1880 MHz	-20	-	-	dBm	
	PCS UL: 1850 – 1910 MHz	-20	-	-	dBm	
	PCS DL: 1930 – 1990 MHz	-20	-	-	dBm	
Receiver Out-band	5G receiver only, interfering signal: 2400 < f ≤ 2483.5 MHz	-20	-	-	dBm	
Blocking ⁽¹⁾ WIFI interferers	2G receiver only, interfering signal: 5125 < f ≤ 5850 MHz	-20	-	-	dBm	

Note 1: The desired signal's strength is 3 dB above the Maximum RX sensitivity. **PER** \leq **10%**.

Note 2: Except harmonic mixing..

3.2 Antenna Diversity

MT3620 can support two modes of antenna diversity.

- RX diversity
- It uses the WFo_RXA_AUX_IN and WFo_RXG_AUX_IN as the RX port for RX diversity function. No external antenna select pins are required.
- TX/RX diversity

It needs an additional DPDT and two control pins (ANT_SEL) to implement this feature.

MT3620 can support hardware based antenna selection. It measures the RX power on default antenna, and then another antenna when receiving the packet preamble. Before starting receiving payload, it selects the suitable antenna based on power consumption measurement data.

4 Electrical Characteristics

4.1 Absolute Maximum Rating

Table 6. Absolute maximum rating

Symbol	Parameters	Maximum rating	Unit
VDD33	3.3V Supply Voltage	-0.3 to 3.63	V
T _{STG}	Storage Temperature	-40 to +125	°C
VESD	ESD protection (HBM)	2000	V

4.2 Recommended Operating Range

Table 7. Recommended Operating Range

Symbol	Rating	MIN	Typical	MAX	Unit
VDD33	3.3V supply	2.97	3.3	3.63	٧
AVDD_3V3_RTC	RTC supply when using internal ring oscillator	2.5	3.3	3.63	٧
	RTC supply when using crystal oscillator	2.0	3.3	3.63	٧
T _{AMBIENT}	Ambient Temperature	-40	=	85	°C

4.3 DC Characteristics

Table 8. DC Characteristics

Symbol	Parameter	Conditions	MIN	MAX	Unit
V_{IL}	Input Low Voltage	LVTTL	-0.28	0.8	V
V_{IH}	Input High Voltage		2.0	3.63	V
V _{OL}	Output Low Voltage	I _{OL} = 4~16 mA	-0.28	0.4	V
V _{OH}	Output High Voltage		2.4	VDD33+0.33	V
R _{PU}	Input Pull-Up Resistance	PU=high, PD=low	40	190	ΚΩ
R _{PD}	Input Pull-Down Resistance	PU=low, PD=high	40	190	ΚΩ

4.4 Crystal Oscillator

The table below lists the requirement for the main crystal .

Table 9. Crystal Oscillator Requirement

Parameter	Value
Frequency	26MHz.
Frequency stability	±10 ppm @ 25°C
Aging	±3 ppm/year

4.5 Current consumption

Table 10. Current consumption

** All data preliminary **

Power		Details		Typical current	Hardware	
mode	Description	Subsystem	Power state	consumption	wake-up latency	
	Only RTC	Pluton CM4 subsystem	Off			
	domain is on. Memory is	CA7 subsystem	Off		24ms	
RTC mode	not retained,	CM4F I/O subsystems	Off	0.01mA or 0.02mA (*1)	(crystal and PLL lock,	
	requires a cold boot to	Wi-Fi subsystem	Off	0.02111/1 (1)	PMU time	
	resume.	Buses/peripherals	Off			
		Pluton CM4 subsystem	On			
Worst-case	All subsystems apart from Wi-Fi running at full speed	CA7 subsystem	On	220mA	N/A, 650us WiFi subsystem resume latency	
power consumptio		IO 0/1 CM4 subsystems	On	Worst case		
n, no Wi-Fi		Wi-Fi subsystem	Light sleep	380mA (*2)		
		Buses/peripherals (*3)	On		,	
		Pluton CM4 subsystem	On			
		CA7 subsystem	On			
Worst-case power	All subsystems	IO 0/1 CM4 subsystems	On	520mA (*4)		
consumptio	running at full	Wi-Fi subsystem	On	Worst case	N/A	
n with Wi-Fi (*2)	speed, Wi-Fi very active	Buses/peripherals (*3)	On	750mA (*2)		
	,	RF (A or G Band)	On			
		Flash (*5)	On			

Note $^*1: 0.01$ mA/0.02mA with/without external 3.3v source PMIC control switch respectively.

Note *2 : The current values are measured under typical case (TT silicon and $^25C/1.15V$) and the TDP (maximum thermal design power) includes simulation worst case condition (TT/ $^125C/1.15V/MC99$, MC99 is PTPX power simulation library).

Note *3: It depends on how busy the peripherals are and how they are configured.

Note *4 : This data is based on 100% Wi-Fi transmission on the 5GHz band at 14dBm.

Note *5: Depends on I/O loading and flash power consumption.

4.6 PMU Characteristics

Table 11. PMU Electrical Characteristics

242445752		PERFORMAN	CE		
PARAMETER	CONDITIONS	MIN	TYPICAL	MAX	UNIT
General		•	•	•	
UVLO power- on threshold voltage		2.65	2.7	2.75	V
UVLO power- off threshold voltage		2.45	2.5	2.55	V
UVLO hysteresis		-	200	-	mV
Switching regulat	tor				
Input voltage		2.97	3.3	3.63	V
Output voltage	Default voltage setting in the programmable range ¹	1.55	1.6	1.9	V
Output current		-	-	800	mA
Quiescent current	<1mA load current	-	150	-	uA
Line regulation	3V to 3.6V input voltage range @ no load	-	-	1	%
Load regulation	200mA to 600mA load current	-	-	0.05	mV/mA
Efficiency	400mA load current	-	85	-	%
Over-current shutdown	Threshold	0.96	1.6	4	А
Digital LDO					
Input voltage		1.55	1.6	1.9	V
Output voltage		0.86	1.15	1.3	V
Output current		-	-	420	mA
Quiescent current		-	40	50	uA
Analog LDO (ALD	00)				
Input voltage		2.97	3.3	3.63	V
Output voltage		2.3	2.5	2.7	V
Output current		-	-	50	mA
Quiescent current		-	-	50	uA
PMU deep sleep	mode				
Input voltage		2.97	3.3	3.63	V

PARAMETER	CONDITIONS	PERFORMANCE				
		MIN	TYPICAL	MAX	UNIT	
Output voltage	CLDO output voltage ALDO is off		0.85 0		V	
Output current		-	-	10	mA	
Quiescent current		-	-	30	uA	

4.7 ADC Characteristics

This section specifies the electrical characteristics of the ADC.

Table 12. ADC Specification

Symbol	Parameter	Min	Typical	Max	Unit
N	Resolution	-	12	-	bit
FC	Clock Rate	-	2	-	MHz
FS	Sampling Rate @ N-Bit (1)	-	2	-	MSPS
TS	Sample period	-	0.5	-	μS
VPP	Input Swing (4)	-	-	1.8	V
VIN	Input voltage (4)	0	-	1.8	
SC	Sampling capacitance	-	4	-	pF
RIN	Input Impedance: Unselected channel Selected channel	400M -	- 10K	-	Ohm
	Dither waveform type	-	Sawtooth	-	
	RMS noise added at input (3)	0.2	0.3	0.4	LSB
	Dither step size (programmable)	0	4	4	LSB
Navg	Number of samples averaged in hardware (programmable) (5)	1	32	64	
Tdither	Dither period (level, programmable) (6)	1	16	16	TS (7)
	Dither magnitude	0	64	64	LSB
DNL	Differential nonlinearity without dithering and averaging	-	± 1	± 2	LSB
INL	Integral nonlinearity without dithering and averaging	-	± 2	± 4	LSB
DNLdither+ average	Differential nonlinearity with dithering and averaging	-	± 0.5	± 1	LSB
INLdither+ average	Integral nonlinearity with dithering and averaging	-	-	± 2	LSB
OE	Offset error	-	-	± 10	mV
FSE	Full swing error	=	-	± 50	mV
SNR	Signal-to-noise ratio (2)	60	63	66	dB
	Current consumption	-	-	400	μΑ
	Power-down current	-	-	1	μΑ

Note1: Given that FS=2MHz Note2: At 1K Hz Input Frequency

Note3: Programmable by changing comparator tail current

Note4: 1.77V when dithering is on.

Note5: Programmable number 1,2,4,8,16,32,64.

Note6: Programmable number 1,2,4,8,16. The number of averaging should be equal or larger than the number of

dithering level.

Note 7: TS = time of sampling period, i.e. 0.5us.

4.8 I2S PLL Characteristics

The section describes the I2S PLL (XPLL) electrical characteristics.

Table 13. I2S PLL Specification

Symbol	Parameter	Min	Typical	Max	Unit
F _{in}	Input Clock Frequency	0.1	-	120	MHz
BW	PLL Bandwidth	-	2	-	MHz
	Ouput Clock Frequency (VDD=3.3±10%)	500	-	1500	MHz
F _{out}	Ouput Clock Frequency (VDD=2.5±10%)	500	-	1000	MHz
N	Feedback Divide Ratio	1	-	128	
J _{LT}	Output Clock Long Term Jitter (Delay 10us)	-	20	-	RMS ps
J _P	Output Clock Period Jitter	-	50	-	P-P ps
J _{PH}	Output Clock Phase Jitter	-	20	-	RMS ps
DVDD	Digital Power Supply	1.035	1.15	1.265	V
AVDD	Analog Power Supply	2.25	2.5	2.75	V
ı	Current Consumption	-	-	3	mA
I _{off}	Power Down Current	-	-	1	uA
T _{settle}	PLL settling time	-	-	20	us

4.9 PLL1/PLL2 Characteristics

PLL1 and PLL2 are used in a cascaded mode to generate the 960MHz clock for WiFi. This section describes the PLL1 and PLL2 electrical characteristics.

Table 14. PLL1 Specification

Symbol	Parameter	Min	Typical	Max	Unit
F _{in}	Input Clock Frequency	20	-	52	MHz

Symbol	Parameter	Min	Typical	Max	Unit
F _{out}	Output Clock Frequency	640	-	832	MHz
DVDD	Digital Power Supply	-	1.15	-	V
AVDD	Analog Power Supply	-	3.3	-	V
T _{settle}	PLL settling time	-	-	50	us

Table 15. PLL2 Specification

Symbol	Parameter	Min	Typical	Max	Unit
F _{in}	Input Clock Frequency	20	-	32	MHz
F _{out}	Output Clock Frequency	-	960	-	MHz
DVDD	Digital Power Supply	-	1.15	-	V
AVDD	Analog Power Supply	-	3.3	-	V
T _{settle}	PLL settling time	-	-	300	us

4.10 Thermal Characteristics

 Θ_{JC} assumes that all the heat is dissipated through the top of the package, while Ψ_{Jt} assumes that the heat is dissipated through the top, sides, and the bottom of the package. Thus it's suggested to use Ψ_{Jt} to estimate the junction temperature.

Table 16. Thermal Characteristics

Complete I		Performance				
Symbol	Description	Typical	Unit			
Tյ	Maximum Junction Temperature (Plastic Package)	125	°C			
Θ_{JA}	Junction to ambient temperature thermal resistance[1]	17.11	°C/W			
Θ _{JC}	Junction to case temperature thermal resistance	6.09	°C/W			
Ψ_{Jt}	Junction to the package thermal resistance ^[2]	1.71	°C/W			

Note:

- [1] JEDEC 51-7 system FR4 PCB size: 76.2mm x 114.3mm, 4-layes
- [2] 12mm x 12mm DR-QFN package

4.11 UART Electrical Specifications

Table 17. UART Electrical Specifications

SYMBOL	PARAMETER	TEST CONDITIONS	P	PERFORMANCE				
STIVIBOL	PARAIVIETER	TEST CONDITIONS	MIN	TYP	MAX	Unit		
TX _{BR}	Supported TX Baud Rate	-	-	-	3(*1)	Mbps		
RX _{BR}	Supported RX Baud Rate	-	-	-	3(*1)	Mbps		
TXerror	UART Tx Baud Rate Error Rate	-	-	-	0.25	%		
RXerror	Acceptable Error Rate on Rx Baud Rate	-	-	-	3	%		

Figure 2. UART timing diagram

4.12 SPI Master Electrical Specifications

Table 18. SPI Master Electrical Specifications

SYMBOL	DADAMETED	CONDITIONS	PERF	ORMAN	NCE	Unit
STIVIBUL	PARAMETER	CONDITIONS	MIN	TYP	MAX	Unit
fSPI	Serial Clock Cycle Time	-	T_{cycle}			ns
tSCK_rising	SCK rising	-	-	-	-	ns
tSCK_falling	SCK falling	-	-	-	-	ns
tSCKL	SCK Low Pulse	-	½ *T _{cycle}	-	-	ns
tSCKH	SCK High Pulse	-	½ *T _{cycle}	-	-	ns
tSDO_OD	SCK Falling Edge to SDO Delay Time	-	-	-	1/4*T _{cycle}	ns
tSDI_setup	SDI to SCK Rising Setup Time	-	1/4*T _{cycle}	-	-	ns
tSDI_hold	SCK Rising to SDI Hold Time	-	0	-	-	ns
tCSB_setup	CSB Falling to SCK Falling Setup Time	-	34	-	-	ns
tCSB_hold	SCK Rising to CSB Rising Hold Time	-	9	-	-	ns

 T_{cycle} is 25ns for which maximum frequency is 40MHz.

SPI Master (Mode0)

Figure 3. SPI Master timing diagram

4.13 SPI Slave Electrical Specifications

Table 19. SPI Slave Electrical Specifications

SYMBOL	PARAMETER	CONDITIONS	PER	RFORMAN	CE	Unit
STIVIBOL	PARAIVIETER	CONDITIONS	MIN	TYP	MAX	Offic
fSPI	Serial Clock Cycle Time	-	T_{cycle}	-	-	ns
tSDO_OD	SCK Falling Edge to SDO Delay Time	-	-	-	½*T _{cycle}	ns
tSDI_setup	SDI to SCK Rising Setup Time	-	4	-		ns
tSDI_hold	SCK Rising to SDI Hold Time	-	0	-		ns

 T_{cycle} is 25ns for which maximum frequency is 40MHz.

SPI Slave (Mode0)

Figure 4. SPI Salve timing diagram

4.14 I2S Electrical Specifications

Table 20. I2S (Slave mode) Electrical Specifications

CVAADOL	DADAMETED	TEST COMPLETIONS	Р	ERFORMANCE		11
SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	Unit
t MCLKY	MCLK Output Frequency (MCLK Cycle Time)	-	-	-	12.288	MHz
	Clock Pulse Width Low	-	45	-	55	%
tmclkds	Clock Pulse Width High	-	45	-	55	%
tsw	I2SWS→I2SCK Set Up Time	-	8	-	-	ns
thw	I2SCK→I2SWS Hold Time	-	0	-	-	ns
tdCD	I2SCK↓→I2SDO Delay Time	-	-	-	32	ns
t sD	I2SDI→I2SCK↑Setup Time	-	8	-	-	ns
thD	I2SCK↑→I2SDI Hold Time	-	0	-	-	ns
tr	Rise Time (Including MCLK, TX)	-	-	-	8	ns
t f	Fall Time (Including MCLK, TX)	-	-	-	8	ns

Figure 5. I2S MCLK timing diagram

Figure 6. I2S timing diagram

4.15 I2C Electrical Specifications

Table 21. I2C Electrical Specifications

CVMADO	DADAMETER	TECT COMPLETION	PEF	PERFORMANCE				
SYMBOL	PARAMETER	TEST CONDITION	MIN	TYP	MAX	Unit		
Standard M	1ode		1		T	Т		
f scl	SCL Clock Frequency	-	0	-	100	KHz		
t hd:sta	Hold Time(Repeated) START Condition.	After This Period, The First Clock Pulse is Generated	4.0	-	-	uS		
tıow	Low Period of SCL Clock	-	4.7	-	-	uS		
t ніgн	HIGH Period of SCL Clock	-	4.0	-	-	uS		
t su:sta	Set-up Time for a Repeated START Condition	-	4.7	-	-	uS		
t hd:dat	Data hold time	I ² C-bus device	0	-	-	uS		
t su:dat	Data Set-up Time	-	250	-	-	nS		
t r	Rise Time of Both SDA and SCL Signals	-	-	-	1000	nS		
tf	Fall Time of Both SDA and SCL Signals	-	-	-	300	nS		
t su:sto	Set-up Time for STOP Condition	-	4.0	-	-	uS		
t _{BUF}	Bus free time between a STOP and START		4.7		-	uS		
Сь	Capacitive Load for Each Bus Line	-	-	-	400	pF		
Fast Mode		_						
fscl	SCL Clock Frequency	-	0	-	400	KHz		
t hd:sta	Hold Time(Repeated) START Condition.	After This Period, The First Clock Pulse is 0 Generated		1	-	uS		
tLOW	Low Period of SCL Clock	-	1.3	-	-	uS		
t ніGн	HIGH Period of SCL Clock	-	0.6	-	-	uS		
t su:sta	Set-up Time for a Repeated START Condition	-	0.6	-	-	uS		
t hd:dat	Data hold time	I ² C-bus device	0	-	-	uS		
t su:dat	Data Set-up Time	-	100	-	-	nS		
tr	Rise Time of Both SDA and SCL Signals	-	20	-	300	nS		
tf	Fall Time of Both SDA and SCL Signals	-	20 × (V _{DD} / 5.5V)	-	300	nS		
t su:sto	Set-up Time for STOP Condition	-	0.6	-	-	uS		
t _{BUF}	Bus free time between a STOP and START		1.3			uS		

Сь	Capacitive Load for Each Bus Line	-	-	-	60	pF
Fast Mod	e Plus					
f scL	SCL Clock Frequency	-	0	-	1000	KHz
thd:sta	Hold Time(Repeated) START Condition.	After This Period, The First Clock Pulse is Generated	0.26	-	-	uS
tıow	Low Period of SCL Clock	-	0.5	-	-	uS
t HIGH	HIGH Period of SCL Clock	-	0.26	-	-	uS
t su:sta	Set-up Time for a Repeated START Condition	-	0.26	-	-	uS
t hd:dat	Data hold time	I ² C-bus device	0	-	-	uS
t su:dat	Data Set-up Time	-	50	-	-	nS
t r	Rise Time of Both SDA and SCL Signals	-	-	-	120	nS
tf	Fall Time of Both SDA and SCL Signals	-	20 × (V _{DD} / 5.5V)	-	120	nS
t su:sto	Set-up Time for STOP Condition	-	0.26	-	-	uS
t _{BUF}	Bus free time between a STOP and START		0.5	-	-	uS
Сь	Capacitive Load for Each Bus Line	-	-	-	60	pF

Figure 7. I2CF/S-mode timing diagram

5 Pin and Package Specification

5.1 Pin Layout

MT3620 uses DR QFN package of 164 pins with 12mm x12mm dimension.

Figure 8. Package pin layout

5.2 Pin Description

This section describes the MT3620 pin functionality. There are totally 165 pins for MT3620 including power and ground pins and the large central EPAD. Note that the pin number column reflects the package pin number.

For the 'Type' column, P = power, I = input, OL = output low, OH = output high, A = analog, D = digital, RF = radio frequency. The 'PU/PD' column shows if there is a default internal pull-up or pull-down resistor at chip reset. The 'I/O' column indicates if a pin is an input or output at chip reset, and in the latter case whether the pin is driven high or low.

Pins named 'RESERVED' should not be connected. Pins named 'TEST' much be connected in the manner described. Pins named 'NC' are not connected inside the chip and may be left unconnected on the PCB..

Table 22. Pin Descriptions

Pin #	Pin name	Major Functions	Type	Pin description	PU/P D	I/O	Supply domain
Reset, o	clock, RTC						
125	SYSRST_N			System reset, active low. When held in reset the chip is not in a power saving mode and the PMU is active (unless PMU_EN is held low).	PU	I	DVDD_3V3
148	RESERVED		DI	no connection necessary, external pull-down is optional	PD	I	DVDD_3V3
10	MAIN_XIN		AI	Main crystal oscillator input	NA	I	AVDD_1V6_XO
70	WAKEUP		DI	External wakeup from RTC mode (deepest sleep mode)	NA	I	AVDD_3V3_RTC
69	EXT_PMU_EN		DO	External power supply enable output	NA	ОН	AVDD_3V3_RTC
72	RTC_XIN		AI	Realtime clock crystal oscillator input. If not using an external RTC crystal then do not connect this pin.	NA	I	AVDD_3V3_RTC
73	RTC_XOUT		AO	Realtime clock crystal oscillator output. If not using an external RTC crystal then do not connect this pin.	NA	О	AVDD_3V3_RTC
GPIO							

Pin #	Pin name	Major Functions	Туре	Pin description	PU/P D	I/O	Supply domain
13	GPIOo	GPIOo/PWMo	DIO	Interrupt-capable GPIO multiplexed with PWM output	NA*	I	DVDD_3V3
14	GPIO1	GPIO1/PWM1	DIO	Interrupt-capable GPIO multiplexed with PWM output	NA*	I	DVDD_3V3
15	GPIO2	GPIO2/PWM2	DIO	Interrupt-capable GPIO multiplexed with PWM output	NA*	I	DVDD_3V3
16	GPIO ₃	GPIO3/PWM3	DIO	Interrupt-capable GPIO multiplexed with PWM output	NA*	I	DVDD_3V3
17	GPIO4	GPIO4/PWM4	DIO	Interrupt-capable GPIO multiplexed with PWM output	NA*	I	DVDD_3V3
18	GPIO ₅	GPIO ₅ /PWM ₅	DIO	Interrupt-capable GPIO multiplexed with PWM output	NA*	I	DVDD_3V3
19	GPIO6	GPIO6/PWM6	DIO	Interrupt-capable GPIO multiplexed with PWM output	NA*	I	DVDD_3V3
20	GPIO ₇	GPIO7/PWM7	DIO	Interrupt-capable GPIO multiplexed with PWM output	NA*	I	DVDD_3V3
21	GPIO8	GPIO8/PWM8	DIO	Interrupt-capable GPIO multiplexed with PWM output	NA*	I	DVDD_3V3
22	GPIO9	GPIO9/PWM9	DIO	Interrupt-capable GPIO multiplexed with PWM output	NA*	Ι	DVDD_3V3
25	GPIO10	GPIO10/PWM10	DIO	Interrupt-capable GPIO multiplexed with PWM output	NA*	I	DVDD_3V3
26	GPIO11	GPIO11/PWM11	DIO	Interrupt-capable GPIO multiplexed with PWM output	NA*	I	DVDD_3V3
27	GPIO12		DIO	Interrupt-capable GPIO	NA*	Ι	DVDD_3V3
28	GPIO13		DIO	Interrupt-capable GPIO	NA*	I	DVDD_3V3
29	GPIO14		DIO	Interrupt-capable GPIO	NA*	I	DVDD_3V3
30	GPIO15		DIO	Interrupt-capable GPIO	NA*	Ι	DVDD_3V3
31	GPIO16		DIO	Interrupt-capable GPIO	NA*	Ι	DVDD_3V3
32	GPIO17		DIO	Interrupt-capable GPIO	NA*	I	DVDD_3V3
33	GPIO18		DIO	Interrupt-capable GPIO	NA*	I	DVDD_3V3
34	GPIO19		DIO	Interrupt-capable GPIO	NA*	Ι	DVDD_3V3
35	GPIO20		DIO	Interrupt-capable GPIO	NA*	I	DVDD_3V3
36	GPIO21		DIO	Interrupt-capable GPIO	NA*	I	DVDD_3V3

Pin #	Pin name	Major Functions	Туре	Pin description	PU/F D	I/O	Supply domain
37	GPIO22		DIO	Interrupt-capable GPIO	NA*	I	DVDD_3V3
38	GPIO23		DIO	Interrupt-capable GPIO	NA*	I	DVDD_3V3
I2C, SI	I, and UART interfac	e					
39	GPIO26	GPIO26/SCLKo/TXDo	DIO	GPIO multiplexed with ISU o functions	NA	I	DVDD_3V3
40	GPIO27	GPIO27/MOSIo/RTSo/ SCLo	DIO	GPIO multiplexed with ISU o functions	NA	I	DVDD_3V3
42	GPIO28	GPIO28/MISOo/RXDo/ SDAo	DIO	GPIO multiplexed with ISU o functions	NA	I	DVDD_3V3
43	GPIO29	GPIO29/CSAo/CTSo	DIO	GPIO multiplexed with ISU o functions	NA	I	DVDD_3V3
45	GPIO30	GPIO30/CSB0	DIO	GPIO multiplexed with ISU o functions	NA	I	DVDD_3V3
46	GPIO31	GPIO31/SCLK1/TXD1	DIO	GPIO multiplexed with ISU 1 functions	NA	I	DVDD_3V3
47	GPIO32	GPIO32/MOSI1/RTS1/S CL1	DIO	GPIO multiplexed with ISU 1 functions	NA	I	DVDD_3V3
48	GPIO33	GPIO33/MISO1/RXD1/ SDA1	DIO	GPIO multiplexed with ISU 1 functions	NA	I	DVDD_3V3
49	GPIO34	GPIO34/CSA1/CTS1	DIO	GPIO multiplexed with ISU 1 functions	NA	I	DVDD_3V3
50	GPIO35	GPIO35/CSB1	DIO	GPIO multiplexed with ISU 1 functions	NA	I	DVDD_3V3
51	GPIO36	GPIO36/SCLK2/TXD2	DIO	GPIO multiplexed with ISU 2 functions	NA	I	DVDD_3V3
52	GPIO37	GPIO37/MOSI2/RTS2/ SCL2	DIO	GPIO multiplexed with ISU 2 functions	NA	I	DVDD_3V3
53	GPIO ₃ 8	GPIO38/MISO2/RXD2/ SDA2	DIO	GPIO multiplexed with ISU 2 functions	NA	I	DVDD_3V3
54	GPIO39	GPIO39/CSA2/CTS2	DIO	GPIO multiplexed with ISU 2 functions	NA	I	DVDD_3V3
55	GPIO40	GPIO40/CSB2	DIO	GPIO multiplexed with ISU 2 functions	NA	I	DVDD_3V3
113	GPIO66	GPIO66/SCLK3/TXD3	DIO	GPIO multiplexed with ISU 3 functions	NA	I	DVDD_3V3
114	GPIO67	GPIO67/MOSI3/RTS3/ SCL3	DIO	GPIO multiplexed with ISU 3 functions	NA	I	DVDD_3V3

Pin #	Pin name	Major Functions	Туре	Pin description	PU/P D	I/O	Supply domain
115	GPIO68	GPIO68/MISO3/RXD3/ SDA3	DIO	GPIO multiplexed with ISU 3 functions	NA	I	DVDD_3V3
116	GPIO69	GPIO69/CSA3/CTS3	DIO	GPIO multiplexed with ISU 3 functions	NA	I	DVDD_3V3
117	GPIO70	GPIO70/CSB3	DIO	GPIO multiplexed with ISU 3 functions	NA	I	DVDD_3V3
119	GPIO71	GPIO71/SCLK4/TXD4	DIO	GPIO multiplexed with ISU 4 functions	NA	Ι	DVDD_3V3
120	GPIO72	GPIO72/MOSI4/RTS4/ SCL4	DIO	GPIO multiplexed with ISU 4 functions	NA	I	DVDD_3V3
122	GPIO73	GPIO73/MISO4/RXD4/ SDA4	DIO	GPIO multiplexed with ISU 4 functions	NA	I	DVDD_3V3
123	GPIO74	GPIO74/CSA4/CTS4	DIO	GPIO multiplexed with ISU 4 functions	NA	I	DVDD_3V3
124	GPIO ₇₅	GPIO75/CSB4	DIO	GPIO multiplexed with ISU 4 functions	NA	Ι	DVDD_3V3
ADC							
58	GPIO41	GPIO41/ADCo	ADIO	GPIO multiplexed with ADC input	NA	Ι	AVDD_2V5_ADC
59	GPIO42	GPIO42/ADC1	ADIO	GPIO multiplexed with ADC input	NA	Ι	AVDD_2V5_ADC
60	GPIO43	GPIO43/ADC2	ADIO	GPIO multiplexed with ADC input	NA	Ι	AVDD_2V5_ADC
61	GPIO44	GPIO44/ADC3	ADIO	GPIO multiplexed with ADC input	NA	Ι	AVDD_2V5_ADC
62	GPIO45	GPIO45/ADC4	ADIO	GPIO multiplexed with ADC input	NA	I	AVDD_2V5_ADC
63	GPIO46	GPIO46/ADC5	ADIO	GPIO multiplexed with ADC input	NA	Ι	AVDD_2V5_ADC
64	GPIO47	GPIO47/ADC6	ADIO	GPIO multiplexed with ADC input	NA	I	AVDD_2V5_ADC
65	GPIO48	GPIO48/ADC7	ADIO	GPIO multiplexed with ADC input	NA	I	AVDD_2V5_ADC
I2S inte	erface						
101	GPIO56	GPIO56/TX0	DIO	GPIO multiplexed with I2S o	NA	Ι	DVDD_3V3
102	GPIO ₅₇	GPIO57/MCLKo	DIO	GPIO multiplexed with I2S o	NA	Ι	DVDD_3V3
103	GPIO58	GPIO58/FSo	DIO	GPIO multiplexed with I2S o	NA	Ι	DVDD_3V3

Pin #	Pin name	Major Functions	Туре	Pin description	PU/P D	I/O	Supply domain				
104	GPIO59	GPIO59/RXo	DIO	GPIO multiplexed with I2S o	NA	I	DVDD_3V3				
105	GPIO60	GPIO6o/BCLKo	DIO	GPIO multiplexed with I2S o	NA	I	DVDD_3V3				
108	GPIO61	GPIO61/TX1	DIO	GPIO multiplexed with I2S 1	NA	I	DVDD_3V3				
109	GPIO62	GPIO62/MCLK1	DIO	GPIO multiplexed with I2S 1	NA	I	DVDD_3V3				
110	GPIO63	GPIO63/FS1	DIO	GPIO multiplexed with I2S 1	NA	I	DVDD_3V3				
111	GPIO64	GPIO64/RX1	DIO	GPIO multiplexed with I2S 1	NA	I	DVDD_3V3				
112	GPIO65	GPIO65/BCLK1	DIO	GPIO multiplexed with I2S 1	NA	I	DVDD_3V3				
Manag	Management and debug interfaces										
98	SWD_DIO		DIO	ARM SWD for Cortex CM4F debug	PU	I	DVDD_3V3				
99	SWD_CLK		DI	ARM SWD for Cortex CM4F debug	PD	I	DVDD_3V3				
100	SWO		DO	ARM SWO for Cortex CM4F debug	NA	OL	DVDD_3V3				
94	DEBUG_RXD		DI	Reserved for debug	PU	I	DVDD_3V3				
95	DEBUG_TXD		DO	Reserved for debug	PD	ОН	DVDD_3V3				
96	DEBUG_RTS		DO	Reserved for debug	PD	ОН	DVDD_3V3				
97	DEBUG_CTS		DI	Reserved for debug	PU	I	DVDD_3V3				
127	SERVICE_TXD		DO	Service port	NA	ОН	DVDD_3V3				
128	SERVICE_RTS		DO	Service port	NA	ОН	DVDD_3V3				
129	SERVICE_RXD		DI	Service port	NA	I	DVDD_3V3				
130	SERVICE_CTS		DI	Service port	NA	I	DVDD_3V3				
131	RESERVED				NA	OL	DVDD_3V3				
134	RECOVERY_RXD		DI	Recovery port	PU	I	DVDD_3V3				
135	RECOVERY_TXD		DO	Recovery port	PU	ОН	DVDD_3V3				

Pin #	Pin name	Major Functions	Туре	Pin description	PU/P D	I/O	Supply domain		
136	RECOVERY_RTS		DO	Recovery port	PD	ОН	DVDD_3V3		
137	RECOVERY_CTS		DI	Recovery port	PU	I	DVDD_3V3		
138	IOo_GPIO85	IOo_GPIO85/IOo_RXD	DI	Dedicated GPIO multiplexed with UART for I/O CM4F o	PU	I	DVDD_3V3		
139	IOo_GPIO86	IOo_GPIO86/IOo_TXD	DO	Dedicated GPIO multiplexed with UART for I/O CM4F o	PD	ОН	DVDD_3V3		
140	IOo_GPIO87	IOo_GPIO87/IOo_RTS	DO	Dedicated GPIO multiplexed with UART for I/O CM4F o	PU	ОН	DVDD_3V3		
141	IOo_GPIO88	IOo_GPIO88/IOo_CTS	DI	Dedicated GPIO multiplexed with UART for I/O CM4F o	PU	I	DVDD_3V3		
142	IO1_GPIO89	IO1_GPIO89/IO1_RXD	DI	Dedicated GPIO multiplexed with UART for I/O CM4F 1	PU	I	DVDD_3V3		
143	IO1_GPIO90	IO1_GPIO90/IO1_TXD	DO	Dedicated GPIO multiplexed with UART for I/O CM4F 1	PD	ОН	DVDD_3V3		
145	IO1_GPIO91	IO1_GPIO91/IO1_RTS	DO	Dedicated GPIO multiplexed with UART for I/O CM4F 1	PD	ОН	DVDD_3V3		
146	IO1_GPIO92	IO1_GPIO92/IO1_CTS	DI	Dedicated GPIO multiplexed with UART for I/O CM4F 1	PU	I	DVDD_3V3		
147	RESERVED				NA	OL	DVDD_3V3		
Wi-Fi	Wi-Fi								
11	WF_ANTSELo		DO	Wi-Fi antenna select for external DPDT switch	NA	OL	DVDD_3V3		
12	WF_ANTSEL1		DO	Wi-Fi antenna select for external DPDT switch	NA	OL	DVDD_3V3		
162,16 3	WF_A_RFIO		RF	5GHz Wi-Fi antenna port (unbalanced). If not used connect to ground to avoid leakage current.	NA	I/O	AVDD_3V3_WF_A		
155,15 6	WF_G_RF_IOP		Kr	2.4GHz Wi-Fi antenna port (differential). If not used connect to ground to avoid leakage current.	NA	I/O	AVDD_3V3_WF_G		
153,15 4	WF_G_RF_ION		KF	2.4GHz Wi-Fi antenna port (differential). If not used connect to ground to avoid leakage current.	NA	I/O	AVDD_3V3_WF_G		
159	WF_A_RF_AUXIN			5GHz Wi-Fi receive diversity port. If not used connect to ground to avoid leakage current.	NA	I	AVDD_3V3_WF_A		
149	WF_G_RF_AUXIN		RF	2.4GHz Wi-Fi receive diversity port. If not used connect to ground to avoid leakage current.	NA	I	AVDD_3V3_WF_G		
PMU	PMU								

Pin #	Pin name	Major Functions	Type	Pin description	PU/P D	I/O	Supply domain
81	PMU_EN		DI	Internal PMU override. If driven low, MT3620 is turned off and in a very low power state, equivalent to RTC mode power consumption. Only the PMU quiescent current will be drawn. When released, the PMU will start up.	NA	I	NA
32	RESERVED				NA	OL	NA
0,91	VOUT_1V6		PO	Output from internal 1.6V buck converter	NA	О	NA
88,89	AVDD_3V3_BUCK		PI	3.3V power rail for internal 1.6V buck DC-DC converter	NA	Ι	NA
2,93	AVSS_3V3_BUCK		P	Ground for internal 1.6V buck converter	NA	NA	NA
Ю	AVDD_3V3		PI	3.3V power rail	NA	I	NA
37	PMU_CAP		A	Connect a capacitor between this pin and AVDD_3V3_BUCK to maintain PMU stability.	NA	I/O	NA
66	AVDD_1V6_CLDO		PI	1.6V power rail for the internal 1.15V core LDO	NA	I	NA
34	SENSE_1V15		AI	Sense input to stabilise the 1.15V power supply	NA	I/O	NA
35	VOUT_1V15		PO	Output from internal 1.15V LDO	NA	О	NA
'9	VOUT_2V5		PO	Output from internal 2.5V LDO	NA	O	NA
Miscell	aneous						
5	I2S_MCLKo_ALT		AO	Analog alternative to MCLKo	NA	О	NA
6	I2S_MCLK1_ALT		AO	Analog alternative to MCLK1	NA	О	NA
ower 8	k ground						
23	DVDD_1V15		PI	1.15V power rail	NA	NA	NA
4	DVDD_1V15		PI	1.15V power rail	NA	NA	NA
7	DVDD_1V15		PI	1.15V power rail	NA	NA	NA
7	DVDD_1V15		PI	1.15V power rail	NA	NA	NA
8	DVDD_1V15		PI	1.15V power rail	NA	NA	NA

Pin #	Pin name	Major Functions	Type	Pin description	PU/P D	I/O	Supply domain
106	DVDD_1V15		ΡΙ	1.15V power rail	NA	NA	NA
121	DVDD_1V15		ΡΙ	1.15V power rail	NA	NA	NA
126	DVDD_1V15		ΡΙ	1.15V power rail	NA	NA	NA
132	DVDD_1V15		ΡΙ	1.15V power rail	NA	NA	NA
24	DVDD_3V3		ΡΙ	3.3V power rail	NA	NA	NA
56	DVDD_3V3		ΡΙ	3.3V power rail	NA	NA	NA
107,11 8	DVDD_3V3		ΡΙ	3.3V power rail	NA	NA	NA
133,14 4	DVDD_3V3		ΡΙ	3.3V power rail	NA	NA	NA
66	AVDD_2V5_ADC		ΡΙ	2.5V power rail for ADC	NA	NA	NA
67	VREF_ADC		AI	Reference voltage input for ADC	NA	NA	AVDD_2V5_ADC
68	AVSS_2V5_ADC		P	Ground for ADC	NA	NA	NA
2,3	AVDD_3V3_WF_A _PA		ΡΙ	3.3V power rail for 5GHz Wi-Fi power amplifier	NA	NA	NA
151	AVDD_3V3_WF_G _PA		ΡΙ	3.3V power rail for 2.4GHz Wi-Fi power amplifier	NA	NA	NA
160	AVDD_3V3_WF_A TX		ΡΙ	3.3V power rail for 5GHz Wi-Fi transmit	NA	NA	NA
158	AVDD_3V3_WF_G TX		ΡΙ	3.3V power rail for 2.4GHz Wi-Fi transmit	NA	NA	NA
6	AVDD_1V6_WF_T RX		ΡΙ	1.6V power rail for Wi-Fi transmit/receive	NA	NA	NA
7	AVDD_1V6_WF_A FE		ΡΙ	1.6V power rail for Wi-Fi analog front end	NA	NA	NA
9	AVDD_1V6_XO		ΡΙ	1.6V power rail for main crystal oscillator	NA	NA	NA
74	AVDD_3V3_XPLL		ΡΙ	3.3V power rail for internal I2S phase-locked loop	NA	NA	NA
71	AVDD_3V3_RTC		ΡΙ	Power rail for real-time clock	NA	NA	NA

Pin #	Pin name	Major Functions	Type	Pin description	PU/P D	I/O	Supply domain
1,41,83 ,164, 165	GND		P	Ground	NA	NA	NA
4,5,8,1 50,152, 157,161	NC				NA	NA	NA

GPIO2

GPIO3

(0x3001_0020[11:8])

0001

0101

0110

0111

0000 *

PWM[2]

EINT[2]

GPIO[2]

ANTSEL4

GPIO[3]

* GPIOo-23 have configurable defaults for internal pull-up / pull-down resistors. These may be configured using e-fuses and become active about 27.6ms after power on (based on a 26MHz crystal). These defaults persist a chip reset.

5.3 Pin Multiplexing

The pin multiplexing can be controlled via the configuration register from ox3001_0020 to ox3001_004Ch in CA7 configuration register space (PINMUX_AON section). Each pin's hardware power-on default function will be the pin multiplexing of CR value "0000". For the IO pin multiplexing feature, MT3620 provides a programmable flexibility for users to define the state of the IO when the chip enters sleep mode.

The driving strength of all pins is programmable: 4mA, 8mA, 12mA, and 16mA. The default setting for all pins are 4mA. The slew rate, the driving strength, and the pull up/down of IOs can be individually configured via control registers.

Note: the 24 dedicate GPIO and the 25 signals of five I2C/SPI/UART interface sets are using the GPIO with additional 0.15mA low driving strength IO which is meets low speed rise/fall time requirement.

CR IO name Value Default Default Name Dir Description PU/PD (CR Address) dir Default 0000 * GPIO[0] 1/0 GPIO 0 0001 PWM[0] 0 PWM 0 GPI00 (0x3001 0020[3:0]) 0101 EINT[0] PD External interrupt 0110 GPIO[0] 1/0 GPIO 0 0111 ANTSEL2 0 Antenna select 2 0000 * GPIO[1] 1/0 GPIO 1 0001 PWM[1] 0 PWM 1 GPIO1 0011 ICAP_TRIG_EXT WIFI capture mode trigger signal (0x3001_0020[7:4]) PD ı EINT[1] 0101 External interrupt 0110 GPIO[1] 1/0 GPIO 1 О ANTSEL3 0111 Antenna select 3 0000 * GPIO[2] 1/0 GPIO 2

0

1

1/0

0

1/0

PD

PD

Table 23. Pin Multiplexing

PWM 2

External interrupt

GPIO 2

Antenna select 4

GPIO 3

IO name (CR Address)	CR Value Default *	Name	Dir	Default dir	Default PU/PD	Description
(0x3001_0020[15:12])	0001	PWM[3]	0			PWM 3
	0100	WF_LED_B	I/O			WIFI action LED indication signal
	0101	EINT[3]	ı			External interrupt
	0110	GPIO[3]	I/O			GPIO 3
	0111	ANTSEL5	0			Antenna select 5
	0000 *	GPIO[4]	I/O			GPIO 4
	0001	PWM[4]	0			PWM 4
GPIO4	0010	MCU_JTCK	I			N9 JTAG debugger
(0x3001_0020[19:16])	0101	EINT[4]	I	I	PD	External interrupt
	0110	GPIO[4]	I/O			GPIO 4
	0111	ANTSEL6	0			Antenna select 6
	0000 *	GPIO[5]	I/O			GPIO 5
	0001	PWM[5]	0			PWM 5
	0010	MCU_JTMS	1			N9 JTAG debugger
GPIO5	0100	WF_LED_B	I/O	ı	PD	WIFI action LED indication signal
(0x3001_0020[23:20])	0101	EINT[5]	_			External interrupt
	0110	GPIO[5]	I/O			GPIO 5
	0111	ANTSEL7	0			Antenna select 7
	0000 *	GPIO[6]	I/O			GPIO 6
GPIO6	0001	PWM[6]	0			PWM 6
(0x3001_0020[27:24])	0010	MCU_JTDI	ı	ı	PD	N9 JTAG debugger
	0101	EINT[6]	ı			External interrupt
	0110	GPIO[6]	I/O			GPIO 6
	0000 *	GPIO[7]	1/0			GPIO 7
GPIO7	0001	PWM[7]	0			PWM 7
(0x3001_0020[31:28])	0010	MCU_JTRST_B	ı	ı	PD	N9 JTAG debugger
"	0101	EINT[7]	ı			External interrupt
	0110	GPIO[7]	1/0			GPIO 7
GPIO8	0000 *	GPIO[8]	1/0			GPIO 8
(0x3001_0024[3:0])	0001	PWM[8]	0	I	PD	PWM 8
	0010	MCU_DBGIN	ı			N9 JTAG debugger

IO name (CR Address)	CR Value Default *	Name	Dir	Default dir	Default PU/PD	Description
	0011	ICAP_TRIG_EXT	I			WIFI capture mode trigger signal
	0101	EINT[8]	I			External interrupt
	0110	GPIO[8]	I/O			GPIO 8
	0000 *	GPIO[9]	I/O			GPIO 9
GPIO9	0001	PWM[9]	0			PWM 9
	0011	ICAP_TRIG_EXT	I	ı	PD	WIFI capture mode trigger signal
(0x3001_0024[7:4])	0100	TDATA[12]	0	'	PD	TPIU trace port
	0101	EINT[9]	I			External interrupt
	0110	GPIO[9]	I/O			GPIO 9
	0000 *	GPIO[10]	I/O			GPIO 10
GPIO10	0001	PWM[10]	0	I		PWM 10
(0x3001_0024[11:8])	0010	MCU_DBGACKN	0		PD	N9 JTAG debugger
	0101	EINT[10]	1			External interrupt
	0110	GPIO[10]	I/O			GPIO 10
	0000 *	GPIO[11]	I/O			GPIO 11
	0001	PWM[11]	0			PWM 11
GPIO11	0010	MCU_JTDO	0			N9 JTAG debugger
(0x3001_0024[15:12])	0100	WF_LED_B	I/O	I	PD	WIFI action LED indication signal
	0101	EINT[11]	ı			External interrupt
	0110	GPIO[11]	I/O			GPIO 11
	0000 *	GPIO[12]	I/O			GPIO 12
	0001	TCLK	0			TPIU trace port
GPIO12	0010	PLUTON_TCLK	0			PLUTON TPIU trace port
(0x3001_0024[19:16])	0011	IO0_TCLK	0	ı	PD	IO0 TPIU trace port
	0100	IO1_TCLK	0			IO1 TPIU trace port
	0101	EINT[12]	ı			External interrupt
	0110	GPIO[12]	1/0			GPIO 12
	0000 *	GPIO[13]	1/0			GPIO 13
GPIO13	0001	TDATA[0]	0		PD	TPIU trace port
(0x3001_0024[23:20])	0010	PLUTON_TDATA [0]	0	I		PLUTON TPIU trace port

IO name (CR Address)	CR Value Default *	Name	Dir	Default dir	Default PU/PD	Description
	0011	IO0_TDATA[0]	0			IO0 TPIU trace port
	0100	IO1_TDATA[0]	0			IO1 TPIU trace port
	0101	EINT[13]	1			External interrupt
	0110	GPIO[13]	I/O			GPIO 13
	0000 *	GPIO[14]	I/O			GPIO 14
	0001	TDATA[1]	0			TPIU trace port
GPIO14	0010	PLUTON_TDATA [1]	0			PLUTON TPIU trace port
(0x3001_0024[27:24])	0011	IO0_TDATA[1]	0	l	PD	IO0 TPIU trace port
	0100	IO1_TDATA[1]	0			IO1 TPIU trace port
	0101	EINT[14]	ı			External interrupt
	0110	GPIO[14]	I/O			GPIO 14
	0000 *	GPIO[15]	I/O			GPIO 15
	0001	TDATA[2]	0			TPIU trace port
GPIO15	0010	PLUTON_TDATA [2]	0			PLUTON TPIU trace port
(0x3001_0024[31:28])	0011	IO0_TDATA[2]	0	I	PD	IO0 TPIU trace port
	0100	IO1_TDATA[2]	0			IO1 TPIU trace port
	0101	EINT[15]	1			External interrupt
	0110	GPIO[15]	I/O			GPIO 15
	0000 *	GPIO[16]	I/O			GPIO 16
	0001	TDATA[3]	0			TPIU trace port
GPIO16	0010	PLUTON_TDATA [3]	0			PLUTON TPIU trace port
(0x3001_0028[3:0])	0011	IO0_TDATA[3]	0	I	PD	IOO TPIU trace port
	0100	IO1_TDATA[3]	0			IO1 TPIU trace port
	0101	EINT[16]	_			External interrupt
	0110	GPIO[16]	I/O			GPIO 16
GPIO17	0000 *	GPIO[17]	1/0			GPIO 17
(0x3001_0028[7:4])	0001	TCTL	0	ı	PD	TPIU trace port
	0101	EINT[17]	ı			External interrupt

IO name (CR Address)	CR Value Default	Name	Dir	Default dir	Default PU/PD	Description
	0110	GPIO[17]	I/O			GPIO 17
CNICAR	0000 *	GPIO[18]	I/O			GPIO 18
GPIO18	0100	TDATA[13]	0	,	DD.	TPIU trace port
(0x3001_0028[11:8])	0101	EINT[18]	I	ı	PD	External interrupt
	0110	GPIO[18]	I/O			GPIO 18
	0000 *	GPIO[19]	I/O			GPIO 19
GPIO19	0010	CA7_NTRST	I			CA7 Jtag
(0x3001_0028[15:12])	0101	EINT[19]	I	I	PD	External interrupt
	0110	GPIO[19]	I/O			GPIO 19
	0000 *	GPIO[20]	I/O			GPIO 20
	0001	SWO_I00	0	I		SWO for IO0 CM4
GPIO20	0100	TDATA[14]	0		PD	TPIU trace port
(0x3001_0028[19:16])	0101	EINT[20]	ı			External interrupt
	0110	GPIO[20]	I/O			GPIO 20
	0000 *	GPIO[21]	I/O			GPIO 21
	0001	SWO_IO1	0		PD	SWO for IO1 CM4
GPIO21	0100	TDATA[15]	0			TPIU trace port
(0x3001_0028[23:20])	0101	EINT[21]	ı			External interrupt
	0110	GPIO[21]	I/O			GPIO 21
	0000 *	GPIO[22]	I/O			GPIO 22
GPIO22	0010	CA7_TDI	ı			CA7 Jtag
(0x3001_0028[27:24])	0101	EINT[22]	ı	I	PD	External interrupt
	0110	GPIO[22]	I/O			GPIO 22
	0000 *	GPIO[23]	1/0			GPIO 23
GPIO23	0010	CA7_TDO	0			CA7 Jtag
(0x3001_0028[31:28])	0100	WF_LED_B	I/O	ı	PD	WIFI action LED indication signal
	0101	EINT[23]	ı			External interrupt
	0110	GPIO[23]	I/O			GPIO 23
WF_ANTSEL0	0000 *	ANTSEL0	0			Antenna select 0
(0x3001_002C[3:0])	0010	MCU_DBGACKN	0	0	NA	N9 JTAG debugger
	0100	TDATA[14]	0			TPIU trace port

IO name (CR Address)	CR Value Default *	Name	Dir	Default dir	Default PU/PD	Description
	0110	GPIO[24]	I/O			GPIO 24
	0000 *	ANTSEL1	0			Antenna select 1
WF_ANTSEL1	0010	MCU_JTDO	0	0	NΛ	N9 JTAG debugger
(0x3001_002C[7:4])	0100	TDATA[15]	0		NA	TPIU trace port
	0110	GPIO[25]	I/O			GPIO 25
anuar .	0000	SPIO_SCK	0			SPI master 0
GPIO26	0001	UARTO_TX	0	ı		UART 0
(0x3001_002C[11:8])	0100	SPIO_SCK_S	ı	(A1)	NA	SPI slave 0
	0110 *	GPIO[26]	1/0			GPIO 26
	0000	SPI0_MOSI	0			SPI master 0
GPIO27	0001	UARTO_RTS	0			UART 0
(0x3001_002C[15:12])	0010	I2CO_CLK	I/O	1	NA	12C 0
	0100	SPI0_MOSI_S	ı	(A1)		SPI slave 0
	0110 *	GPIO[27]	I/O			GPIO 27
	0000	SPI0_MISO	ı			SPI master 0
	0001	UARTO_RX	ı			UART 0
GPIO28	0010	I2CO_DATA	I/O	ı	NA	12C 0
(0x3001_002C[19:16])	0100	SPI0_MISO_S	0			SPI slave 0
	0110 *	GPIO[28]	1/0			GPIO 28
	0000	SPIO_CSA	0			SPI master 0
GPIO29	0001	UARTO_CTS	-	I		UART 0
(0x3001_002C[23:20])	0100	SPIO_CS_S	-	(A1)	NA	SPI slave 0
	0110 *	GPIO[29]	1/0			GPIO 29
GPIO30	0000	SPIO_CSB	0	ı		SPI master 0
(0x3001_002C[27:24])	0110 *	GPIO[30]	I/O	(A1)	NA	GPIO 30
	0000	SPI1_SCK	0			SPI master 1
GPIO31	0001	UART1_TX	0			UART 1
(0x3001_002C[31:28])	0100	SPI1_SCK_S	1	ı	NA	SPI slave 1
"	0110 *	GPIO[31]	I/O	(A1)		GPIO 31
	0111	WF_GPIO0	1/0			WIFI GPIO 0
GPIO32	0000	SPI1_MOSI	0	I	NA	SPI master 1

IO name (CR Address)	CR Value Default	Name	Dir	Default dir	Default PU/PD	Description
(0x3001_0030[3:0])	0001	UART1_RTS	0	(A1)		UART 1
	0010	I2C1_CLK	1/0			I2C 1
	0100	SPI1_MOSI_S	I			SPI slave 1
	0110 *	GPIO[32]	1/0			GPIO 32
	0111	WF_GPIO1	1/0			WIFI GPIO 1
	0000	SPI1_MISO	ı			SPI master 1
	0001	UART1_RX	I			UART 1
GPIO33	0010	I2C1_DATA	1/0			I2C 1
(0x3001_0030[7:4])	0100	SPI1_MISO_S	0	I	NA	SPI slave 1
	0110 *	GPIO[33]	1/0			GPIO 33
	0111	WF_GPIO2	1/0			WIFI GPIO 2
	0000	SPI1_CSA	0			SPI master 1
GPIO34	0001	UART1_CTS	ı			UART 1
(0x3001_0030[11:8])	0100	SPI1_CS_S	ı	ı	NA	SPI slave 1
(0.0000_0000[==0])	0110 *	GPIO[34]	1/0	(A1)		GPIO 34
	0111	WF_GPIO3	1/0			WIFI GPIO 3
	0000	SPI1_CSB	0			SPI master 1
GPIO35	0110 *	GPIO[35]	1/0	ı	NA	GPIO 35
(0x3001_0030[15:12])				(A1)	IVA	
	0111	WF_GPIO4	1/0			WIFI GPIO 4
	0000	SPI2_SCK	0			SPI master 2
GPIO36	0001	UART2_TX	0	ı		UART 2
(0x3001_0030[19:16])	0100	SPI2_SCK_S	I	(A1)	NA	SPI slave 2
	0110 *	GPIO[36]	1/0			GPIO 36
	0111	WF_GPIO5	1/0			WIFI GPIO 5
	0000	SPI2_MOSI	0			SPI master 2
GPIO37	0001	UART2_RTS	0	ı		UART 2
(0x3001_0030[23:20])	0010	I2C2_CLK	I/O	(A1)	NA	12C 2
	0100	SPI2_MOSI_S	I	(,,,,,		SPI slave 2
	0110 *	GPIO[37]	1/0			GPIO 37
GPIO38	0000	SPI2_MISO	I			SPI master 2
(0x3001_0030[27:24])	0001	UART2_RX	I	I	NA	UART 2

IO name (CR Address)	CR Value Default	Name	Dir	Default dir	Default PU/PD	Description
	0010	I2C2_DATA	I/O			12C 2
	0100	SPI2_MISO_S	0			SPI slave 2
	0110 *	GPIO[38]	1/0			GPIO 38
CNICAC	0000	SPI2_CSA	0			SPI master 2
GPIO39	0001	UART2_CTS	I	ı	NI A	UART 2
(0x3001_0030[31:28])	0100	SPI2_CS_S	I	(A1)	NA	SPI slave 2
	0110 *	GPIO[39]	1/0			GPIO 39
GPIO40	0000	SPI2_CSB	0			SPI master 2
(0x3001_0034[3:0])	0110 *	GPIO[40]	I/O	(A1)	NA	GPIO 40
GPIO41	0000 *	ADC0	ı			ADC 0
(0x3001_0034[7:4])	0110	GPIO[41]	I/O	I	NA	GPIO 41
GPIO42	0000 *	ADC1	ı			ADC 1
(0x3001_0034[11:8])	0110	GPIO[42]	I/O	I	NA	GPIO 42
GPIO43	0000 *	ADC2	ı			ADC 2
(0x3001_0034[15:12])	0110	GPIO[43]	I/O	I	NA	GPIO 43
GPIO44	0000 *	ADC3	I			ADC 3
(0x3001_0034[19:16])	0110	GPIO[44]	I/O	ı	NA	GPIO 44
GPIO45	0000 *	ADC4	I			ADC 4
(0x3001_0034[23:20])	0110	GPIO[45]	I/O	ı	NA	GPIO 45
GPIO46	0000 *	ADC5	I			ADC 5
(0x3001_0034[27:24])	0110	GPIO[46]	I/O	I	NA	GPIO 46
GPIO47	0000 *	ADC6	I			ADC 6
(0x3001_0034[31:28])	0110	GPIO[47]	I/O	I	NA	GPIO 47

		T				
IO name (CR Address)	CR Value Default *	Name	Dir	Default dir	Default PU/PD	Description
GPIO48	0000 *	ADC7	I			ADC 7
(0x3001_0038[3:0])	0110	GPIO[48]	1/0	I	NA	GPIO 48
DEBUG_RXD	0000	UART_RX_CA7	I			CA7 debug UART
(0x3001_0038[7:4])	0110 *	GPIO[49]	I/O	I	PU	GPIO 49
DEBUG_TXD	0000	UART_TX_CA7	0			CA7 debug UART
(0x3001_0038[11:8])	0110 *	GPIO[50]	I/O	(A1)	PD	GPIO 50
DEBUG_RTS	0000	UART_RTS_CA7	0			CA7 debug UART
(0x3001_0038[15:12])	0110 *	GPIO[51]	I/O	(A1)	PD	GPIO 51
DEBUG_CTS	0000	UART_CTS_CA7	ı			CA7 debug UART
(0x3001_0038[19:16])	0110 *	GPIO[52]	I/O	1	PU	GPIO 52
SWD_DIO	0000	SWD_DIO	I/O			SWD debugger
(0x3001_0038[23:20])	0100	WF_LED_B	1/0			WIFI action LED indication signal
	0110	GPIO[53]	1/0	l	PU	GPIO 53
SWD_CLK	0000	SWD_CLK (I)	ı			SWD debugger
(0x3001_0038[27:24])	0011	ICAP_TRIG_EXT	I	ı	PD	WIFI capture mode trigger signal
	0110	GPIO[54]	1/0			GPIO 54
	0000	SWO_PLUTON	0			PLUTON SWO output
	0001	SWO_IO0	0			IO0 SWO output
SW0	0010	SWO_IO1	0		NI A	IO1 SWO output
(0x3001_0038[31:28])	0011	ICAP_TRIG_EXT	I	0	NA	WIFI capture mode trigger signal
	0100	WF_LED_B	1/0			WIFI action LED indication signal
	0110	GPIO[55]	I/O			GPIO 55
GPIO56	0000	12S0_TX	0	ı	NI A	125 0
(0x3001_003C[3:0])	0110 *	GPIO[56]	I/O	(A1)	NA	GPIO 56

IO name (CR Address)	CR Value Default	Name	Dir	Default dir	Default PU/PD	Description
	0111	WF_GPIO0	1/0			WIFI GPIO 0
GPIO57	0000	I2SO_MCLK	0			12S O
(0x3001_003C[7:4])	0110 *	GPIO[57]	1/0	(24)	NA	GPIO 57
	0111	WF_GPIO1	I/O	(A1)		WIFI GPIO 1
GPIO58	000	12S0_FS	I			12\$ 0
(0x3001_003C[11:8])	0110 *	GPIO[58]	1/0	ı	NA	GPIO 58
	0111	WF_GPIO2	1/0			WIFI GPIO 2
	0000	12S0_RX	I			125 0
GPIO59	0110 *	GPIO[59]	1/0			GPIO 59
(0x3001_003C[15:12])	0111	WF_GPIO3	I/O	l	NA	WIFI GPIO 3
	0000	I2SO_BCLK	I			125 0
GPIO60	0110 *	GPIO[60]	1/0			GPIO 60
(0x3001_003C[19:16])	0111	WF_GPIO4	I/O	I	NA	WIFI GPIO 4
GPIO61	0000	12S1_TX	0			I2S 1
(0x3001_003C[23:20])	0110 *	GPIO[61]	I/O	I	NA	GPIO 61
	0111	WF_GPIO5	I/O	(A1)		WIFI GPIO 5
	0000	I2S1_MCLK	0			I2S 1
GPIO62 (0x3001_003C[27:24])	0110 *	GPIO[62]	I/O	(A1)	NA	GPIO 62
GPIO63	0000	I2S1_FS	ı			I2S 1
(0x3001_003C[31:28])	0110 *	GPIO[63]	I/O	l	NA	GPIO 63
GPIO64	0000	I2S1_RX	I			125 1
(0x3001_0040[3:0])	0110 *	GPIO[64]	I/O	I	NA	GPIO 64
GPIO65	0000	I2S1_BCLK	I			l2S 1
(0x3001_0040[7:4])	0110 *	GPIO[65]	I/O	I	NA	GPIO 65

IO name (CR Address)	CR Value Default *	Name	Dir	Default dir	Default PU/PD	Description
CNIOCC	0000	SPI3_SCK	0			SPI master 3
GPIO66	0001	UART3_TX	0	ı	NI A	UART 3
(0x3001_0040[11:8])	0100	SPI3_SCK_S	I	(A1)	NA	SPI slave 3
	0110 *	GPIO[66]	1/0			GPIO 66
	0000	SPI3_MOSI	0			SPI master 3
GPIO67	0001	UART3_RTS	0			UART 3
(0x3001_0040[15:12])	0010	I2C3_CLK	1/0		NA	12C 3
	0100	SPI3_MOSI_S	I	(A1)		SPI slave 3
	0110 *	GPIO[67]	1/0			GPIO 67
	0000	SPI3_MISO	I			SPI master 3
GPIO68	0001	UART3_RX	I			UART 3
(0x3001_0040[19:16])	0010	I2C3_DATA	1/0	ı	NA	12C 3
	0100	SPI3_MISO_S	0			SPI slave 3
	0110 *	GPIO[68]	1/0			GPIO 68
	0000	SPI3_CSA	0			SPI master 3
GPIO69	0001	UART3_CTS	ı	ı		UART 3
(0x3001_0040[23:20])	0100	SPI3_CS_S	ı	(A1)	NA	SPI slave 3
	0110 *	GPIO[69]	1/0			GPIO 69
GPIO70	0000	SPI3_CSB	0			SPI master 3
(0x3001_0040[27:24])	0110 *	GPIO[70]	I/O	(A1)	NA	GPIO 70
	0000	SPI4_SCK	0			SPI master 4
GPIO71	0001	UART4_TX	0	ı		UART 4
(0x3001_0040[31:28])	0100	SPI4_SCK_S	ı	(A1)	NA	SPI slave 4
	0110 *	GPIO[71]	1/0			GPIO 71
	0000	SPI4_MOSI	0			SPI master 4
GPIO72	0001	UART4 RTS	0	1		UART 4
(0x3001_0044[3:0])	0010	I2C4_CLK	1/0	ı	NA	12C 4
(* 1212_10[0.0])	0100	SPI4_MOSI_S	ı,c	(A1)	NA	SPI slave 4
	0110 *	GPIO[72]	1/0			GPIO 72
GPIO73	0000	SPI4_MISO	ı	I	NA	SPI master 4

IO name (CR Address)	CR Value Default *	Name	Dir	Default dir	Default PU/PD	Description
(0x3001_0044[7:4])	0001	UART4_RX	I			UART 4
	0010	I2C4_DATA	I/O			12C 4
	0100	SPI4_MISO_S	0			SPI slave 4
	0110 *	GPIO[73]	1/0			GPIO 73
	0000	SPI4_CSA	0			SPI master 4
GPIO74	0001	UART4_CTS	ı	ı		UART 4
(0x3001_0044[11:8])	0100	SPI4_CS_S	ı	(A1)	NA	SPI slave 4
	0110 *	GPIO[74]	1/0			GPIO 74
GPIO75	0000	SPI4_CSB	0			SPI master 4
(0x3001_0044[15:12])	0110 *	GPIO[75]	I/O	(A1)	NA	GPIO 75
	0000	UART_RX_IO0	ı			IO0 CM4 debug UART
IO0_GPIO85	0001	TDATA[4]	0	I	PU	TPIU trace port
(0x3001_0048[23:20])	0110 *	GPIO[85]	1/0			GPIO 85
	0000	UART_TX_IO0	0	1		IO0 CM4 debug UART
100_GPI086	0001	TDATA[5]	0		PD	TPIU trace port
(0x3001_0048[27:24])	0110 *	GPIO[86]	I/O	(A1)		GPIO 86
	0000	UART_RTS_IO0	0			IO0 CM4 debug UART
IO0_GPIO87	0001	TDATA[6]	0	I	PU	TPIU trace port
(0x3001_0048[31:28])	0110 *	GPIO[87]	1/0	(A1)		GPIO 87
	0000	UART_CTS_IO0	ı			IO0 CM4 debug UART
100_GPI088	0001	TDATA[7]	0	I	PU	TPIU trace port
(0x3001_004C[3:0])	0110 *	GPIO[88]	I/O			GPIO 88
	0000	UART_RX_IO1	ı			IO1 CM4 debug UART
IO1_GPIO89	0001	TDATA[8]	0	ı	PU	TPIU trace port
(0x3001_004C[7:4])	0110 *	GPIO[89]	I/O			GPIO 89
	0000	UART_TX_IO1	0			IO1 CM4 debug UART
IO1_GPIO90	0001	TDATA[9]	0	ı	PD	TPIU trace port
(0x3001_004C[11:8])	0110 *	GPIO[90]	I/O	(A1)		GPIO 90
IO1_GPIO91	0000	UART_RTS_IO1	0	ı		IO1 CM4 debug UART
(0x3001_004C[15:12])	0001	TDATA[10]	0	(A1)	PD	TPIU trace port

IO name (CR Address)	CR Value Default *	Name	Dir	Default dir	Default PU/PD	Description
	0110 *	GPIO[91]	1/0			GPIO 91
	0000	UART_CTS_IO1	ı			IO1 CM4 debug UART
IO1_GPIO92	0001	TDATA[11]	0			TPIU trace port
(0x3001_004C[19:16])	0100	WF_LED_B	1/0	I	PU	WIFI action LED indication signal
	0110 *	GPIO[92]	1/0			GPIO 92

5.4 Bootstrap

This section describes the MT3620 bootstrap function. During power up the chip will detect various configuration options and operating modes based on the state of several 'bootstrapping pins'. These pins are not dedicated for this strapping purpose, they are shared with other chip functions. After chip reset, this configuration information is stored in a register which determines the device configuration and operating mode.

The following pins are used for bootstrap:

- DEBUG_TXD
- DEBUG_RTSIOo_TXD
- IOo_RTS
- IO1_TXD
- RECOVERY_TXD
- RECOVERY_RTS

MT3620 system design should follow the following guidelines:

- The bootstrapping pins shall not be used as input functions because an external signal might affect the values sensed at boot.
- These pins shall not be used with an open-drain function because the pull-up resistor would affect the values sensed at boot.
- These pins may default to being outputs before being configured by firmware. This doesn't affect the bootstrapping function but the user should make sure that any boot-time outputs do not conflict with external signals to which these pins are connected.
- Strapping pins should be pulled low or high with a $4.7k\Omega$ resistor.

Each of DEBUG_TXD, IO1_TXD and RECOVERY_RTS must always be pulled low. The other strapping pins should be wired according to the information in Table 24 – Table 25.

Table 24. Bootstrap Option – Flash Recovery Mode

Flash recovery mode	Strapping Pin Name DEBUG_RTS	Description
Normal mode	Pull-down(*)	ROM code jumps to XIP flash to initial standard boot.
Recovery mode	Pull-up	ROM code does not jump to XIP flash but will wait for UART commands on the RECOVERY UART.

Note: No external pull-down resistor is required because internal pull-down is active during power up.

Table 25. Bootstrap Option – RTC Mode

RTC mode(*)	Strapping Pin Name RECOVERY_TXD	Description
Disable	Pull-down	Disable RTC (Real Time Clock) mode.
Enable	Pull-up	Enable RTC mode.

Note: Also known as "Power Down Mode" in Azure Sphere.

5.5 Package Information

MT3620 is DR-QFN 12mmx12mm package and the package diagram is shown below.

Figure 9. Package outline drawing

5.6 Top Mark

Figure 10. Top Mark

6 General

Please make sure to use the most recently issued datasheet before initiating or completing a design. Customers are responsible for the design, operation, suitability and fitness for intended use of their own and customer's third-party customers' applications and products using MediaTek's products. By use of MediaTek's product, customer acknowledges and agrees to have in place appropriate and sufficient system and precaution measures and conduct all necessary testing and modification to minimize risks relating to customer's use of MediaTek's product within customer's product and application. Except as otherwise explicitly provided in the written agreement between MediaTek and customer, MediaTek makes no other warranties with respect to MediaTek's products to customer, expressed, implied, statutory or otherwise, and MediaTek disclaims any implied warranty, including without limitation any implied warranty of merchantability, non-infringement of third party intellectual property right, or fitness for a particular purpose.