

Association Rule Mining

Data Mining for Business Intelligence

AGENDA

- Motivating examples and main approach
- Set basics and important metrics
 - Support, confidence and lift
- Apriori property and Apriori algorithm
- Data preparation decisions
- Extension of association rules

ASSOCIATION RULE MINING

- Association rule mining: find all association rules with support and confidence not less than the user-specified minimum support and confidence levels in the DB.
- For small problems, the process of mining association rules is not that complex.
- How about a transaction database with 1 billion transactions and 1 million different items?
- An efficient algorithm is needed!

PHASES IN ASSOCIATION RULE MINING

Phase I

Find all large (or frequent) itemsets with support not less than a user-specified minimum support.

Focus is on I

Phase II

For each large itemset L, find all association rules in the form of a→(L-a) where a and (L-a) are non-empty subsets of L. These rules' confidence must not be less than a given minimum threshold.

II is straightforward

E.g. Find all association rules in the example with 60% or more support and 80% or more confidence.

Large itemsets: Itemsets that have a support not less than the specified threshold.

APRIORI ALGORITHM FOR PHASE I

- An efficient algorithm to discover all large itemsets from a huge database with large number of items.
- Developed by two researchers from IBM Almaden Research Lab.
- Based on the Apriori property

APRIORI PROPERTY

Apriori property: "Any subset of a large itemset must be large"

TID	Items
100	1,3,4,6
200	2,3,5,7
300	1,2,3,5,8
400	2,5,9,10
500	1,4

Minimum support =40%

 $\{2,3,5\}$ is large \rightarrow

{2}, {3}, {5}, {2,3}, {2,5} and {3,5} must be large

How can we use this property to mine large itemsets?

APRIORI ALGORITHM – Phase 1

Initiation

Step 1: Set k = 1. Scan DB one time to find all large 1- itemsets.

Step 2: Increment k. Generate candidate K-itemsets from large (k-1)-itemsets.

Step 3: Filter out non-large k-itemsets from candidate k-itemsets based on their support levels (another DB scan)

Go back to step 2 if candidate k-itemsets exist.

Termination

Stop when no more candidate itemsets can be generated.

PHASE 1: STEP 2 OF APRIORI ALGORITHM

- Candidate k-itemsets are k-itemsets that could be large.
- Why generate candidate k-itemsets only from large (k-1) itemsets?

PHASE 1: STEP 2,3 OF APRIORI ALGORITHM

```
Itemsets: L1,L2

L1(n): the n-th element in itemset L1.
L2(n): the n-th element in itemset L2

e.g if L1 = {eggs,milk,bread} then L1(3) = bread
e.g if L2 = {eggs,milk,cheese} then L1(3) = cheese

L1(1) = L2(1) and L1(2) = L2(2) and L1(3) \neq L2(3)
```

- Step 2: Join:
 - If k=2, simply merge every two unique 1-itemsets into a 2-itemset. Else ->
 - If k>2
 - Sort all items in the large (k-1)-itemsets
 - Find and merge any two joinable (k-1)-itemsets, L1 and L2
 - Joinable? Two large (k-1)-itemsets, L1 and L2, that are joinable must satisfy the following conditions:
 - L1(1)=L2(1) and L1(2)=L2(2) and L1(k-2)=L2(k-2) L1(k-1) \neq L2(k-1)
- Step 3: Prune: prune non-large itemsets generated in step 2

TID	Items
100	1,3,4,6
200	2,3,5,7
300	1,2,3,5,8
400	2,5,9,10
500	1,4

- Minimum support =40%
- ► Minimum confidence =70%

Tid	Items					
100	1, 3, 4, 6					
200	2, 3, 5, 7					
300	1, 2, 3, 5, 8					
400	2, 5, 9, 10					
500	1, 4					
Minimum Support: 40%						

Calculate Support and Prune

- {1} support=3/5=60%
- {2} support=3/5=60%
- {3} support=3/5=60%
- {4} support=2/5=40%
- {5} support=3/5=60%

Large 1-itemset:

- {1} support=3/5=60%
- {2} support=3/5=60%
- {3} support=3/5=60%
- {4} support=2/5=40%
- {5} support=3/5=60%

Generate Itemset

Candidate 2-itemset:

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5}

 ${3,4}$ ${3,5}$

 $|\{4,5\}|$

Minimum Support: 40%

```
      Candidate 2-itemset:

      {1, 2}
      {1, 3}
      {1, 4}
      {1, 5}

      {2, 3}
      {2, 4}
      {2, 5}

      {3, 4}
      {3, 5}

      {4, 5}
```

Calculate Support and Prune

EXAMPLE: GENERATE ASSOCIATION RULES

Large 2- and 3-itemsets:

$$\{1, 3\}$$
 support= $2/5=40\%$

$$\{1, 4\}$$
 support= $2/5=40\%$

$$\{2, 3\}$$
 support= $2/5=40\%$

$$\{2, 5\}$$
 support= $3/5=60\%$

$$\{3, 5\}$$
 support= $2/5=40\%$

$$\{2, 3, 5\}$$
 support = $2/5 = 40\%$

Candidate rules:

$$1->3$$
, $3->1$, $1->4$, $4->1$, $2->3$, $3->2$, $2->5$, $5->2$, $3->5$, $5->3$

$$2->3,5$$
 $2,3->5$ $2,5->3$ $3->2,5$ $3,5->2$

$$2,5->3$$

$$3 - > 2,5$$

5 -> 2.3

Large 1-itemset:

- support=3/5=60% {1}
- {2} support=3/5=60%
- {3} support=3/5=60%
- support=2/5=40%
- support=3/5=60%

Is Confidence >= 70%?

Association rules:

4->1 (100% confidence)

2->5 (100% confidence)

5->2 (100% confidence)

2,3->5 (100% confidence)

3,5->2 (100%) confidence

confidence(X -> Y) = support(X U Y) / support(X).

confidence $(4 -> 1) = support(\{1,4\})/support(\{4\}) = .4/.4 = 1.0 or 100%$ confidence(3 ->2,5) = support($\{2,3,5\}$)/support($\{3\}$) = .4/.6 ~ .67 or 67% confidence(5 -> 2,3) = support($\{2,3,5\}$)/support($\{5\}$) = .4/.6 ~ .67 or 67% confidence(2,3 ->5) = support $(\{2,3,5\})$ /support $(\{2,3\})$ = .4/.4 ~ 1.0 or 100%

EXAMPLE: GENERATE ASSOCIATION RULES (PHASE II)

			Large (Frequent) Item Sets (Suppor							
			egg-a bread-b		00		bread-a soda-b	egg-a milk-b bread-		egg-a bread-b soda-c
	1	1	C)	0	0	()	0	0
	2	1 1		0	1	()	1	0	
	3	0	C)	0	0	(0	0
	4 0		1	1 0		1		0	1	
	5	0	C)	0	1	(0	0
Support		0.4	0.4	1	0.2	0.4	0.2	2	0.2	0.2
Rules		Confidence (Min level >= 0.6)								
a->b or a,b->c		0.667	0.667	7	0.333	0.500	0.250	0	.500	0.500
b>a or b,c->a		0.667	0.500)	1.000	0.667	1.000	0	.500	1.000
a,c->b a->b,c								0	.500	1.000
a->b,c					NΙΛ			0	.333	0.333
b->a,c c->a,b					NA				.333	
c->a,b								0	.625	1.000

Association Rule Mining

Data Mining for Business Intelligence

AGENDA

- Motivating examples and main approach
- Set basics and important metrics
 - Support, confidence and lift
- Apriori property and Apriori algorithm
- Data preparation decisions
- Extension of association rules

DATA PREPARATION DECISIONS

"Unit of analysis" decision

"Item" decision: product, brand or category

trans id		egg	milk	bread	soda
	1	1	1	0	0
	2	1	1	1	0
	3	0	0	1	0
	4	1	0	1	1
	5	0	1	1	0

cust id	egg	milk	bread	soda
1	1	1	0	0
2	1	1	1	0
3	1	0	1	1
4	0	1	1	0

date	egg	milk	bread	soda
11/1/2010	1	1	1	0
11/2/2010	1	1	1	1

Decisions depend on applications of rules

EXTENSIONS OF ASSOCIATION RULES

Quantitative association rules

 Consider the quantity of an item in a transaction (e.g. 1 Egg -> 1 Milk, 2 Egg -> 3 Milk)

Hierarchical association rules

- Considers multiple item levels e.g., product subcategory and category, e.g.,
- (category) frozen items → dairy items
- (subcategory) frozen vegetables → soymilk

Sequential patterns

- Group items by transactions, transactions by customers
- E.g., a customer buys Spiderman tends to buy Spiderman 2 at the next visit (transaction)

Inter-transaction association rules

• If the stock price of Microsoft goes down, the stock price of Sun (or IBM) tends to go up next

