

# Roadmap

- Overview
- How RAG works
- RAG optimizations
- RAG evaluations

# Overview

## What is RAG?

RAG combines information retrieval with generative AI models to enhance the accuracy and relevance of AI-generated content.

It provides an effective and efficient way of programmatically scaffolding queries with additional context.

# Why focus on RAG?

LLMs are not designed to retrieve data - RAG is key to unlocking their potential.

The RAG layer is especially relevant for AI engineering.

## Benefits of RAG

- Groundedness
  - Relevance
  - Accuracy
  - Currentness
  - Domain / proprietary specificity
- Interpretability
- Efficiency

## Prompting vs RAG vs fine-tuning

| Goal             | Prompting    | RAG     | Fine-Tuning  |
|------------------|--------------|---------|--------------|
| Grounding        | <u></u>      | V       | <u></u>      |
| Consistency      | $\checkmark$ | <u></u> | $\checkmark$ |
| Confidence       | V            | <u></u> | V            |
| Interpretability | ×            | V       | ×            |
| Alignment        | <u></u>      | <u></u> | V            |
| Robustness       | <u></u>      | ×       | V            |
| Latency          | X            | <u></u> |              |
| Cost             | ×            | <u></u> | <u></u>      |

## How RAG works

### RAG workflow



# Naive RAG challenges

- Precision
- Recall
- Faithfulness
- Answer relevance
- Accuracy

# Data ingestion

- Discovery
- Acquisition
- Validation
- Transformation
- Loading

## RAG vs fine-tuning



Retrieval-Augmented Generation for Large Language Models: A Survey

# Retrieval optimization

# Chunk optimization

Balance retrieval specificity against generation context.

- Fixed-size
- Intent-based & Recursive
- Strategy-based

# Hybrid retrieval

Capitalize on traditional information retrieval techniques.

- Ensemble (rank aggregation / weighted averaging)
- Cascade (filtering layers)

## Keyword + embedding retrieval



Wei, Huang, and Wang: Retrieval-Augmented Generation for LLM Applications

## Metadata filtering



Neo4j - Graph-based Metadata Filtering to Improve Vector Search in RAG Applications

# Small-to-big retrieval

Optimize for retrieval *and* generation by expanding context after initial search.

- Sentence window retrieval
- Parent document crawler

Similarly, retrieval could proceed recursively to build context.

#### Parent document crawler



<u>ChatGen.ai - The Ultimate Guide on Retrieval Strategies - RAG</u>

## Hypothetical Document Embeddings (HyDE)



### And many more...



Retrieval-Augmented Generation for Large Language Models: A Survey

## OpenAI "RAG Success Story"



A Survey of Techniques for Maximizing LLM Performance

## RAG evaluation

## Information retrieval metrics

- Recall
- Precision
- Mean reciprocal rank (MRR)
- Normalized discounted cumulative gain (NDCG)

# Building an evaluation dataset

- Benchmarks
- Web data
- Synthetic data
- Proprietary data

# RAG testing pyramid

As with traditional applications, it's beneficial to test each unit (retrieval, augmentation, and generation), their integration, and the end-to-end result.

## RAG evaluation dimensions

- Retrieval relevance
- Groundedness
- Adaptability
- Toxicity
- Efficiency

## Retrieval relevance

- ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
- RAGAs (RAG Assessment)

## Groundedness

- Entity linking accuracy
- Semantic similarity scores
- FactScore

# Generation-specific dimensions

- Noise robustness
- Negative rejection
- Information integration
- Counterfactual robustness

# Further considerations

# RAG vs long context

SOTA models boast long context windows and have dramatically improved their performance - but RAG may still be preferable given:

- Expanded scope
- Increased precision
- Reduced cost

# RAGOps

- Vector DBs
- Frameworks + libraries
- RAG 2.0