```
Variables actually used in tree construction:

[1] "lstat" "rm" "dis"

Number of terminal nodes: 8

Residual mean deviance: 12.65 = 3099 / 245

Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-14.1000 -2.0420 -0.0536 0.0000 1.9600 12.6000
```

Notice that the output of summary() indicates that only three of the variables have been used in constructing the tree. In the context of a regression tree, the deviance is simply the sum of squared errors for the tree. We now plot the tree.

```
> plot(tree.boston)
> text(tree.boston,pretty=0)
```

The variable lstat measures the percentage of individuals with lower socioeconomic status. The tree indicates that lower values of lstat correspond to more expensive houses. The tree predicts a median house price of \$46,400 for larger homes in suburbs in which residents have high socioeconomic status (rm>=7.437 and lstat<9.715).

Now we use the cv.tree() function to see whether pruning the tree will improve performance.

```
> cv.boston=cv.tree(tree.boston)
> plot(cv.boston$size,cv.boston$dev,type='b')
```

In this case, the most complex tree is selected by cross-validation. However, if we wish to prune the tree, we could do so as follows, using the prune.tree() function:

prune.tree()

```
> prune.boston=prune.tree(tree.boston,best=5)
> plot(prune.boston)
> text(prune.boston,pretty=0)
```

In keeping with the cross-validation results, we use the unpruned tree to make predictions on the test set.

```
> yhat=predict(tree.boston,newdata=Boston[-train,])
> boston.test=Boston[-train,"medv"]
> plot(yhat,boston.test)
> abline(0,1)
> mean((yhat-boston.test)^2)
[1] 25.05
```

In other words, the test set MSE associated with the regression tree is 25.05. The square root of the MSE is therefore around 5.005, indicating that this model leads to test predictions that are within around \$5,005 of the true median home value for the suburb.

8.3.3 Bagging and Random Forests

Here we apply bagging and random forests to the Boston data, using the randomForest package in R. The exact results obtained in this section may

depend on the version of R and the version of the randomForest package installed on your computer. Recall that bagging is simply a special case of a random forest with m = p. Therefore, the randomForest() function can be used to perform both random forests and bagging. We perform bagging Forest() as follows:

```
> library(randomForest)
> set.seed(1)
> bag.boston=randomForest(medv~.,data=Boston,subset=train,
    mtry=13, importance=TRUE)
> bag.boston
Call:
 randomForest(formula = medv \sim ., data = Boston, mtry = 13,
    importance = TRUE, subset = train)
               Type of random forest: regression
                    Number of trees: 500
No. of variables tried at each split: 13
          Mean of squared residuals: 10.77
                  % Var explained: 86.96
```

The argument mtry=13 indicates that all 13 predictors should be considered for each split of the tree—in other words, that bagging should be done. How well does this bagged model perform on the test set?

```
> yhat.bag = predict(bag.boston,newdata=Boston[-train,])
> plot(yhat.bag, boston.test)
> abline(0,1)
> mean((yhat.bag-boston.test)^2)
[1] 13.16
```

The test set MSE associated with the bagged regression tree is 13.16, almost half that obtained using an optimally-pruned single tree. We could change the number of trees grown by randomForest() using the ntree argument:

```
> bag.boston=randomForest(medv~.,data=Boston,subset=train,
    mtry=13, ntree=25)
> yhat.bag = predict(bag.boston,newdata=Boston[-train,])
> mean((yhat.bag-boston.test)^2)
[1] 13.31
```

Growing a random forest proceeds in exactly the same way, except that we use a smaller value of the mtry argument. By default, randomForest() uses p/3 variables when building a random forest of regression trees, and \sqrt{p} variables when building a random forest of classification trees. Here we use mtry = 6.

```
> set.seed(1)
> rf.boston=randomForest(medv\sim.,data=Boston,subset=train,
    mtry=6,importance=TRUE)
> yhat.rf = predict(rf.boston,newdata=Boston[-train,])
> mean((yhat.rf-boston.test)^2)
[1] 11.31
```

The test set MSE is 11.31; this indicates that random forests yielded an improvement over bagging in this case.

Using the importance() function, we can view the importance of each variable.

importance()

```
> importance(rf.boston)
        %IncMSE IncNodePurity
         12.384
                      1051.54
crim
          2.103
                         50.31
zn
indus
          8.390
                       1017.64
          2.294
                         56.32
chas
nox
         12.791
                       1107.31
rm
         30.754
                       5917.26
         10.334
                       552.27
age
dis
         14.641
                       1223.93
rad
          3.583
                         84.30
                        435.71
          8.139
tax
ptratio
         11.274
                        817.33
black
          8.097
                        367.00
         30.962
                       7713.63
```

Two measures of variable importance are reported. The former is based upon the mean decrease of accuracy in predictions on the out of bag samples when a given variable is excluded from the model. The latter is a measure of the total decrease in node impurity that results from splits over that variable, averaged over all trees (this was plotted in Figure 8.9). In the case of regression trees, the node impurity is measured by the training RSS, and for classification trees by the deviance. Plots of these importance measures can be produced using the varImpPlot() function.

varImpPlot()

```
> varImpPlot(rf.boston)
```

The results indicate that across all of the trees considered in the random forest, the wealth level of the community (lstat) and the house size (rm) are by far the two most important variables.

8.3.4 Boosting

Here we use the gbm package, and within it the gbm() function, to fit boosted regression trees to the Boston data set. We run gbm() with the option distribution="gaussian" since this is a regression problem; if it were a binary classification problem, we would use distribution="bernoulli". The argument n.trees=5000 indicates that we want 5000 trees, and the option interaction.depth=4 limits the depth of each tree.

gbm()

The summary() function produces a relative influence plot and also outputs the relative influence statistics.

```
> summary(boost.boston)
    var rel.inf
    lstat
           45.96
          31.22
2
      rm
3
      dis
           6.81
4
     crim
            4.07
5
     nox
            2.56
6
           2.27
 ptratio
7
    black
           1.80
8
           1.64
     age
9
     tax
           1.36
10
   indus
           1.27
11
    chas 0.80
12
     rad
            0.20
13
     zn 0.015
```

We see that lstat and rm are by far the most important variables. We can also produce partial dependence plots for these two variables. These plots illustrate the marginal effect of the selected variables on the response after dependence integrating out the other variables. In this case, as we might expect, median plot house prices are increasing with rm and decreasing with lstat.

```
> par(mfrow=c(1,2))
> plot(boost.boston,i="rm")
> plot(boost.boston,i="lstat")
```

We now use the boosted model to predict med on the test set:

```
> yhat.boost=predict(boost.boston,newdata=Boston[-train,],
         n.trees=5000)
> mean((yhat.boost-boston.test)^2)
[1] 11.8
```

The test MSE obtained is 11.8; similar to the test MSE for random forests and superior to that for bagging. If we want to, we can perform boosting with a different value of the shrinkage parameter λ in (8.10). The default value is 0.001, but this is easily modified. Here we take $\lambda = 0.2$.

```
> boost.boston=gbm(medv~.,data=Boston[train,],distribution=
   "gaussian", n. trees = 5000, interaction.depth = 4, shrinkage = 0.2,
   verbose=F)
> yhat.boost=predict(boost.boston,newdata=Boston[-train,],
         n.trees=5000)
> mean((yhat.boost-boston.test)^2)
[1] 11.5
```

In this case, using $\lambda = 0.2$ leads to a slightly lower test MSE than $\lambda = 0.001$.