Operation Research I Computer Based Group Assignment

Team Details

	Member Name	Roll Number
→	Deepa Raj	<u>20IM10006</u>
→	Shubham Kumar	<u>20IM10037</u>
→	<u>Mudit Chaudhari</u>	<u>20IM10024</u>
→	Gourav Kumar Shaw	<u>20IM10010</u>

Contribution

→ Formulation : Shubham, Mudit, Deepa, Gourav

→ Coding: Gourav, Shubham→ Debugging: Deepa, Shubham

→ Result Interpretation: Mudit, Gourav
 → Report Preparation: Deepa, Mudit

CASE STUDY: KALPAVRUKSHA SILK COMPANY

ABSTRACT

In this paper we present the case study from **Kalpavruksha silk company.** It focuses on the formulation of the plan to specify the optimal purchase, production scheduling and sales plan for the company for the next twelve weeks. Kalpavruksha silk company has been struggling to stay afloat due to increased costs, obsolescence of machinery and reduced profit margins. The company's mounting losses have forced the General Manager to re-examine the entire working of the company in the framework of yearly planning, right from the purchase of "cocoons," a raw material for reeling silk, to the processing aspects and the sale of silk yarn. In order to process the problem a support tool has been developed which incorporates a linear programming problem as a central feature. The details of the model are described in this report along with various results.

INDEX

- 1. Introduction
- 2. The problem
- 3. Formulation
 - 3.1 problem analysis
 - 3.2 LPP model
 - 3.3 solution
- 4. Question $1 \rightarrow$ Formulation and objective function.
- 5. Question 2
- 6. Question 3
- 7. Question 4
- 8. Question 5
- 9. Question 6
- **10. Question 7**
- 11. **Question 8**
- 12. Question 9
- 13. Lingo Code
- 14. Lingo Result

INTRODUCTION

The Kalpavriksha Silk Company has been engaged in the production and marketing of high quality silk for the last four decades. The company was the market leader in the field of quality silk. However, in recent years, it has been struggling to stay afloat due to increased costs, obsolescence of machinery and reduced profit margins. The company's mounting losses have forced the General Manager to re-examine the entire working of the company in the framework of yearly planning, right from the purchase of "cocoons," a raw material for reeling silk, to the processing aspects and the sale of silk yarn. With a view to improve the effectiveness and efficiency of the company, the General Manager has decided to examine the purchase, production scheduling and sales plan for the company. To start with, he has decided to develop a plan for the forthcoming quarter to decide how much of raw material to purchase and at what time point, how much of each type of silk produce and when, how much of raw material and silk inventory to carry during various periods as well as when and what quantity of silk yarn to sell. Once successful in developing an appropriate methodology, his objective is to extend the rationale for annual operating plans. Briefly, the process of manufacturing silk yarn involves stifling, reeling and re-reeling. The stifling process kills the pupae within the cocoons so that the cocoon can be stored for a few weeks before being taken for further processing known as reeling. The stifling process has an important bearing on the quality of raw silk. Reeling is the process of producing the raw silk from the cocoons. The company has two kinds of reeling mechanisms, namely Charaka and Filature (reeling on a multi-end machine). The raw silks produced from them differ in respect of quality as also Filature silk is finer as compared to the Charaka silk. Before reeling, productivity. cocoons are sorted as good and bad cocoons (includes "double" cocoons). Good quality cocoons can be used for producing filature silk, while double cocoons can be used only for producing dupion silk on the chakras. Of course, dupion silk can be produced using good cocoons also; in the past this was considered an inefficient practice. However, a recent trend, indicating better margins for dupion, has resulted in some companies using good quality cocoons for dupion silk also.

THE PROBLEM

QUESTIONS:

1. Formulate the problem discussed in the case in the framework of a Linear Programming model.

2.Interpret the L.P. results, by providing the recommendations in the form of simple tables/reports that could be easily understood by the management and supervisory staff.

3. What should be the quantity of cocoons purchased, utilized and inventory held for different weeks?

4. What should be the quantity of filature silk produced, sold and inventory held for the different weeks?

5. What should be the quantity of dupion silk produced, sold and inventory held for different weeks?

6. What is the ideal number of reeler and re-reeler days required for filature and dupion silk?

7. Suppose wages for reelers and re-reelers are considered as fixed cost, what is the resulting net profit?

8. Suppose the Renditta for filature and/or dupion silk changes, what are the changes in the solution?

9.If the productivity for filature and/or dupion silk changes, what are the associated changes in the solution?

PROBLEM ANALYSIS

Filature silk produced=pi/9.4 Dupion silk produced =(qi+ri)/6.5

Filature basin constraint

$$\sum_{i=1}^{12} \frac{pi}{9.4 \cdot 0.8 \cdot 6} + \sum_{i=1}^{12} \frac{pi}{9.4 \cdot 6 \cdot 2.4} \le 70$$

charka constraint

$$\sum_{i=1}^{12} \frac{qi + ri}{1.2 \cdot 6 \cdot 6.5} \le 5$$

reeler constraint

$$\sum_{i=1}^{12} \frac{p_i}{0.8 \cdot 6 \cdot 9.4} + \sum_{i=1}^{12} \frac{q_i + r_i}{1.2 \cdot 6 \cdot 6.5} \le 60$$

re – reeler constraint

$$\sum_{i=1}^{12} \frac{p_i}{6 \cdot 9.4 \cdot 2.4} \le 20$$

Silk sold <= Silk Produced

Filature

$$9.4 \times y_1 \le p_1$$

$$9.4(y_1 + y_2) \le p_2 + p_1$$

$$9.4 \times \sum_{i=1}^{12} y_i = \sum_{i=1}^{12} p_i$$

Dupion

$$6.5 \times z_1 \le q_1 + r_1$$

$$6.5(z_1 + z_2) \le q_1 + r_1 + q_2 + r_2$$

$$6.5 \times \sum_{i=1}^{12} z_i = \sum_{i=1}^{12} (q_i + r_i)$$

Constraint related with inventory

$$p_1 + q_1 \le 0.95 x_1$$

 $p_1 + q_1 + p_2 + q_2 \le (x_1 + x_2)$
 $------$

$$\sum_{i=1}^{12} (p_1 + q_1) \le 0.95 \left(\sum_{i=1}^{12} x_i \right)$$

$$\sum_{i=1}^{12} (r_i) \le 0.04 \left(\sum_{i=1}^{12} x_i \right)$$

Given:

 l_i = Purchased price of cocoon.

 m_i = Sales price of filature silk.

 n_i = Sales price of Dupion silk.

• Total price of Silk =

$$\sum_{i=1}^{12} \left(m_i \cdot y_i + n_i \cdot z_i \right)$$

• Total price of cocoon =

$$\sum_{i=1}^{12} \left(l_i \cdot x_i \right)$$

• Total wages of workers =

$$\sum_{i=1}^{12} 50 \cdot 6 \left[\frac{(p_i)}{9.4 \cdot 0.8 \cdot 6} + \frac{(q_i + r_i)}{6.5 \cdot 1.2 \cdot 6} + \frac{(p_i)}{9.4 \cdot 2.4 \cdot 6} \right]$$

• Total price of Bad cocoon =

$$10\sum_{i=1}^{12} 0.01x_i$$

• Total price of dead pupae =

$$0.6\sum_{i=1}^{12}0.2x_i$$

• Total price of Silk =

$$50\sum_{i=1}^{12} 0.025a_i$$

• Inventory cost of cocoon =

$$\sum_{i=1}^{12} (li) \left[\sum_{i=1}^{i} (xi - pi - qi - ri) \right]$$

• Inventory cost of filature Silk =

$$\sum_{i=1}^{12} mi \left[\sum_{j=1}^{i} \left(\frac{pi}{9.4} - yi \right) \right]$$

• Inventory cost of Dupion Silk =

$$\sum_{i=1}^{12} ni \left[\sum_{j=1}^{i} \left(\frac{(qi+ri)}{6.5} - Zi \right) \right]$$

• Objective Function=>

____Maximize:

$$Z = \sum_{i=1}^{12} \left(m_i \cdot y_i + n_i \cdot z_i \right) - \sum_{i=1}^{12} \left(li \cdot xi \right) - \sum_{i=1}^{12} 50 \cdot 6 \left[\frac{\left(p_i \right)}{9.4 \cdot 0.8 \cdot 6} + \frac{\left(q_i + r_i \right)}{6.5 \cdot 1.2 \cdot 6} + \frac{\left(p_i \right)}{9.4 \cdot 2.4 \cdot 6} \right] + 10 \sum_{i=1}^{12} 0.01 x_i + 0.6 \sum_{i=1}^{12} 0.2 x_i + 50 \sum_{i=1}^{12} 0.025 a_i - \sum_{i=1}^{12} l_i \left[\sum_{j=1}^{i} \left(x_i - p_i - q_i - r_i \right) \right] - \sum_{i=1}^{12} m_i \left[\sum_{j=1}^{i} \left(\frac{p_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{\left(q_i + r_i \right)}{6.5} - Z_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{p_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{\left(q_i + r_i \right)}{6.5} - Z_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{p_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{6.5} - Z_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{6.5} - Z_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{6.5} - Z_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} - y_i \right) \right] - \sum_{i=1}^{i} n_i \left[\sum_{j=1}^{i} \left(\frac{q_i + r_i}{9.4} -$$

2.Interpret the L.P. results, by providing the recommendations in the form of simple tables/reports that could be easily understood by the management and supervisory staff.

Week	Cocoons purchased (x _i)	Filature sold (y _i)	Dupion sold (z _i)	Good Cocoon for Filature Silk (p _i)	Good Cocoon for Dupion Silk (q _i)	Double Cocoon for Dupion Silk (r _i)
1	2493.474	252.00	15.34445	2368.8	0	99.738
2	4986.947	0.00	30.68891	2368.8	0	199.477
3	0	0.00	0.00	2368.8	0	0
4	7480.421	0.00	0.00	2368.8	0	65.216
5	0	0.00	0.00	2368.8	0	234
6	0	1260.00	82.03336	2368.8	0	234
7	2493.474	252.00	15.34445	2368.8	0	99.73
8	2493.474	0.00	15.34445	2368.8	0	99.73
9	9973.895	0.00	0.00	2368.8	0	0
10	0	0.00	0.00	2368.8	0	234
11	0	0.00	0.00	2368.8	0	0
12	0	0.00	61.37781	2368.8	0	164.95

3. What should be the quantity of cocoons purchased, utilized and inventory held for different weeks?

Week	Cocoons Purchased	Cocoons Utilised	Inventory held
1	2493.474	2468.539	24.935
2	4986.947	2568.278	2443.604
3	0.00	2368.8	74.804
4	7480.421	2368.8	5186.425
5	0.00	2368.8	2817.625
6	0.00	2702.017	115.608
7	2493.474	2468.539	140.543
8	2493.474	2468.539	165.478
9	9973.895	2368.8	7770.573
10	0.00	2368.8	5401.773
11	0.00	2368.8	3032.973
12	0.00	2767.756	265.217

4. What should be the quantity of filature silk produced, sold and inventory held for the different weeks?

Week	Filature produced	Filature sold	Inventory held
1	252	252.00	0.00
2	252	0.00	252
3	252	0.00	504
4	252	0.00	756
5	252	0.00	1008
6	252	1260.00	0.00
7	252	252.00	0.00
8	252	0.00	252
9	252	0.00	504
10	252	0.00	756
11	252	0.00	1008
12	252	0.00	1260

5. What should be the quantity of dupion silk produced, sold and inventory held for different weeks?

Week	Dupion produced	Dupion sold	Inventory held
1	15.344	15.34445	0.00
2	30.688	30.68891	0.00
3	0.00	0.00	0.00
4	10.0333	0.00	10.0333
5	36	0.00	46.0333
6	36	82.03336	0.00
7	15.344	15.34445	0.00
8	15.344	15.34445	0.00
9	0.00	0.00	0.00
10	36	0.00	36
11	0.00	0.00	36
12	25.377	61.37781	0.00

6. What is the ideal number of reeler and re-reeler days required for filature and dupion silk?

Week	Reeler for Filature	Re Reeler for Filature	Reeler for Dupion
1	53	18	3
2	53	18	5
3	53	18	0
4	53	18	2
5	53	18	5
6	53	18	5
7	53	18	3
8	53	18	3
9	53	18	0
10	53	18	5
11	53	18	0
12	53	18	4

7. Suppose wages for reelers and re reelers are considered as fixed cost, what is the resulting net profit?

Net Profit - Rupees, 551551.8

8. Suppose the Renditta for filature and/or dupion silk changes, what are the changes in the solution?

- We get less silk for the same number of raw material is the renditta increases.
- More number of reelers and re-reelers days will be required to handle the increased raw materials which will further reduce the profit
- Hence, the profit margin will reduce with the increase in renditta,

9.If the productivity for filature and/or dupion silk changes, what are the associated changes in the solution?

- If filature productivity rises but dupion keeps the same, we'll be able to generate more filature while using fewer reelers, and vice versa.
- More reelers and re-reelers needed due to lesser productivity.

LINGO Code

```
\mathtt{MAX} = (932.17*y1+849.37*y2+825.25*y3+828.46*y4+851.64*y5+859.94*y6+811.56*y7+770.58*y8+828.46*y4+851.64*y5+859.94*y6+811.56*y7+770.58*y8+828.46*y4+851.64*y5+859.94*y6+811.56*y7+770.58*y8+828.46*y4+851.64*y5+859.94*y6+811.56*y7+770.58*y8+828.46*y4+851.64*y5+859.94*y6+811.56*y7+770.58*y8+828.46*y4+851.64*y5+859.94*y6+811.56*y7+770.58*y8+828.46*y4+851.64*y5+859.94*y6+811.56*y7+770.58*y8+828.46*y4+851.64*y5+859.94*y6+811.56*y7+770.58*y8+828.46*y4+851.64*y5+859.94*y6+811.56*y7+770.58*y8+828.46*y4+851.64*y5+859.94*y6+811.56*y7+770.58*y8+828.46*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y4+851.64*y44851.64*y4851.64*y44851.64*y44851.64*y4851.64*y44851.64*y44851.64*y44851.64*y44851.64*y4851.64*
  729.73*y9+713.91*y10+731.70*y11+783.02*y12 ) +
                                               (561.79*z1+518.35*z2+483.14*z3+488.30*z4+496.92*z5+509.17*z6+488.22*z7+454.57*z8+
  431.33*z9+413.20*z10+420.72*z11+447.84*z12 ) -
                                               ( 81.94*x1+75*x2+77.15*x3+74.72*x4+76.96*x5+76.18*x6+70.63*x7+67.95*x8+61.69*x9+
  63.68*x10+64.79*x11+67.23*x12 ) +
                                            +p10+p11+p12 ) + 0.12*( x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12 )-
                                            +q9+q10+q11+q12)/46.8)+((r1+r2+r3+r4+r5+r6+r7+r8+r9+r10+r11+r12)/46.8) +
                                                ((p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12)/135.36)) - (0.15/52)*(9687.33*(0.106*p1-p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12)/135.36)
y1) + 8755.16*(0.106*p2-y2) + 7905.79*(0.106*p3-y3) + 7080.54*(0.106*p4-y4) +
                                            6252.08*(0.106*p5-y5)+5400.44*(0.106*p6-y6)+4540.5*(0.106*p7-y7)+3728.94*(0.106*p8-y6)+4540.5*(0.106*p7-y7)+3728.94*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+4540.5*(0.106*p8-y6)+454
y8) +2958.36* (0.106*p9-y9) +2228.63* (0.106*p10-y10) +1514.72* (0.106*p11-y11) +
 783.02* (0.106*p12-y12)+ 5713.55* (0.154*(q1+r1)-z1)+5151.76* (0.154*(q2+r2)-z2)+ 4633.41* (0.154*(q3+r3)-z3)+4150.27* (0.154*(q4+r4)-z4)+3661.97* (0.154*(q5+r5)-z5)+
                                            3165.05*(0.154*(q6+r6)-z6)+2655.88*(0.154*(q7+r7)-z7)+2167.66*(0.154*(q8+r8)-z8)+
 1713.09*(0.154*(q9+r9)-z9)+1281.76*(0.154*(q10+r10)-z10)+868.56*(0.154*(q11+r11)-z11)+
                                            447.84*(0.154*(q12+r12)-z12)+ 857.92*(0.99*x1-p1-q1-r1)+775.98*(0.99*x2-p2-q2-r2)+
  700.98*(0.99*x3-p3-q3-r3)+623.83*(0.99*x4-p4-q4-r4)+549.11*(0.99*x5-p5-q5-r5)+
                                            472.15*(0.99*x6-p6-q6-r6)+395.97*(0.99*x7-p7-q7-r7)+ 325.34*(0.99*x8-p8-q8-r8)+
  257.39*(0.99*x9-p9-q9-r9)+195.7*(0.99*x10-p10-q10-r10)+132.02*(0.99*x11-p11-q11-r11)+67.23
  *(0.99*x12-p12-q12-r12));
              q1 \le 0.95*x1-p1;
               q2 \le 0.95 \times x2 - p2 + 0.95 \times x1 - p1 - q1;
               q3 <= 0.95*x3-p3+0.95*x2-p2-q2+0.95*x1-p1-q1;
               q4 \le 0.95*x4-p4+0.95*x3-p3-q3+0.95*x2-p2-q2+0.95*x1-p1-q1;
               q5 \le 0.95 \times x5 - p5 + 0.95 \times x4 - p4 - q4 + 0.95 \times x3 - p3 - q3 + 0.95 \times x2 - p2 - q2 + 0.95 \times x1 - p1 - q1;
               \hat{q6} <= 0.95 \times x6 - \hat{p6} + 0.95 \times x5 - \hat{p5} - \hat{q5} + 0.95 \times x4 - \hat{p4} - \hat{q4} + 0.95 \times x3 - \hat{p3} - \hat{q3} + 0.95 \times x2 - \hat{p2} - \hat{q2} + 0.95 \times x1 - \hat{p1} - \hat{q1};
                0.95*x1-p1-q1;
               q8 \le 0.95 \times x - p8 + 0.95 \times x - p7 - q7 + 0.95 \times x - p6 - q6 + 0.95 \times x - p5 - q5 + 0.95 \times x - p4 - q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x - p3 - q3 + q4 + 0.95 \times x -
 0.95*x2-p2-q2+0.95*x1-p1-q1;
               0.95*x3-p3-q3+0.95*x2-p2-q2+0.95*x1-p1-q1;
               q10<= 0.95*x10-p10+0.95*x9-p9-q9+0.95*x8-p8-q8+0.95*x7-p7-q7+0.95*x6-p6-q6+0.95*x5-p5-q5
  +0.95*x4-p4-q4+0.95*x3-p3-q3+0.95*x2-p2-q2+0.95*x1-p1-q1;
               q11 <= 0.95 \times x11 - p11 + 0.95 \times x10 - p10 - q10 + 0.95 \times x9 - p9 - q9 + 0.95 \times x8 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x6 - p8 - q8 + 0.95 \times x7 - p7 - q7 + 0.95 \times x7 - p
 p6-q6+0.95*x5-p5-q5+0.95*x4-p4-q4+0.95*x3-p3-q3+0.95*x2-p2-q2+0.95*x1-p1-q1;
              q12 = 0.95 * x12 - p12 + 0.95 * x11 - p11 - q11 + 0.95 * x10 - p10 - q10 + 0.95 * x9 - p9 - q9 + 0.95 * x8 - p8 - q8 + 0.95
  *x7-p7-q7+0.95*x6-p6-q6+0.95*x5-p5-q5+0.95*x4-p4-q4+0.95*x3-p3-q3+0.95*x2-p2-q2+0.95*x1-
p1-a1:
               r1 <= 0.04*x1;
               r2 \le 0.04*x2+0.04*x1-r1;
               r3 \le 0.04*x3+0.04*x2-r2+0.04*x1-r1;
               r4 \le 0.04*x4+0.04*x3-r3+0.04*x2-r2+0.04*x1-r1;
               r5 \le 0.04*x5+0.04*x4-r4+0.04*x3-r3+0.04*x2-r2+0.04*x1-r1;
               r6 \le 0.04 \times x6 + 0.04 \times x5 - x5 + 0.04 \times x4 - r4 + 0.04 \times x3 - r3 + 0.04 \times x2 - r2 + 0.04 \times x1 - r1;
               r7 \le 0.04 \times x7 + 0.04 \times x6 - r6 + 0.04 \times x5 - x5 + 0.04 \times x4 - r4 + 0.04 \times x3 - r3 + 0.04 \times x2 - r2 + 0.04 \times x1 - r1;
               \texttt{r8} \iff 0.04 \times \texttt{x8} + 0.04 \times \texttt{x7} - \texttt{r7} + 0.04 \times \texttt{x6} - \texttt{r6} + 0.04 \times \texttt{x5} - \texttt{x5} + 0.04 \times \texttt{x4} - \texttt{r4} + 0.04 \times \texttt{x3} - \texttt{r3} + 0.04 \times \texttt{x2} - \texttt{r2} + 0.04 \times \texttt{x1} - \textbf{x5} + 0.04 \times \texttt{x5} 
 r1;
              r9 \le 0.04 \times x9 + 0.04 \times x8 - r8 + 0.04 \times x7 - r7 + 0.04 \times x6 - r6 + 0.04 \times x5 - x5 + 0.04 \times x4 - r4 + 0.04 \times x3 - r3 + 0.04 \times x2 - r4 + 0.04 \times x7 - r7 + 0.04
 r2+0.04*x1-r1;
               \texttt{r10} <= \ 0.04 \times \texttt{x10} + 0.04 \times \texttt{x9} - \texttt{r9} + 0.04 \times \texttt{x} - \texttt{r8} + 0.04 \times \texttt{x7} - \texttt{r7} + 0.04 \times \texttt{x6} - \texttt{r6} + 0.04 \times \texttt{x5} - \texttt{x5} + 0.04 \times \texttt{x4} - \texttt{r4} + 0.04 \times \texttt{x6} + 0.04 \times \texttt{x5} - \texttt{x5} + 0.04 \times \texttt{x6} - \texttt{x6} + 0.04 \times \texttt{x6} + 0.04
  *x3-r3+0.04*x2-r2+0.04*x1-r1;
               \texttt{r11} <= 0.04 * \texttt{x}11 + 0.04 * \texttt{x}10 - \texttt{r}10 + 0.04 * \texttt{x}9 - \texttt{r}9 + 0.04 * \texttt{x}8 - \texttt{r}8 + 0.04 * \texttt{x}7 - \texttt{r}7 + 0.04 * \texttt{x}6 - \texttt{r}6 + 0.04 * \texttt{x}5 - \texttt{x}5 + 0.04 * \texttt{x}8 - \texttt{r}8 + 0.04 * \texttt{x}9 - \texttt{r}9 + 0.04 * \texttt{x}9 - 0.04 * 0.04 * \texttt{x}9 - 0.04 * \texttt{x}9 - 0.04 * 0.04 * 0.04 * 0.04 * 0.04 * 0.04 * 0.04 * 0.04 * 0.04 * 0.04 * 0.04 * 0.04 * 0.04 * 0.04 * 0
  *x4-r4+0.04*x3-r3+0.04*x2-r2+0.04*x1-r1;
            r12 = 0.04 \times x12 + 0.04 \times x11 - r11 + 0.04 \times x10 - r10 + 0.04 \times x9 - r9 + 0.04 \times x8 - r8 + 0.04 \times x7 - r7 + 0.04 \times x6 - r6 + 0.04 \times x7 - r7 
0.04 \times x5 - x5 + 0.04 \times x4 - r4 + 0.04 \times x3 - r3 + 0.04 \times x2 - r2 + 0.04 \times x1 - r1;
               9.4*(y1) \le (p1);
               9.4*(y1+y2) \le (p1+p2);
               9.4*(y1+y2+y3) \leftarrow (p1+p2+p3);
               9.4*(y1+y2+y3+y4) <= (p1+p2+p3+p4);
                9.4*(y1+y2+y3+y4+y5) \le (p1+p2+p3+p4+p5);
```

```
9.4*(y1+y2+y3+y4+y5+y6) \le (p1+p2+p3+p4+p5+p6);
  9.4*(y1+y2+y3+y4+y5+y6+y7) <= (p1+p2+p3+p4+p5+p6+p7);

9.4*(y1+y2+y3+y4+y5+y6+y7) <= (p1+p2+p3+p4+p5+p6+p7);

9.4*(y1+y2+y3+y4+y5+y6+y7+y8) <= (p1+p2+p3+p4+p5+p6+p7+p8);

9.4*(y1+y2+y3+y4+y5+y6+y7+y8+y9) <= (p1+p2+p3+p4+p5+p6+p7+p8+p9);

9.4*(y1+y2+y3+y4+y5+y6+y7+y8+y9+y10) <= (p1+p2+p3+p4+p5+p6+p7+p8+p9+p10);
  9.4*(y1+y2+y3+y4+y5+y6+y7+y8+y9+y10+y11) <= (p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11);
  9.4*(y1+y2+y3+y4+y5+y6+y7+y8+y9+y10+y11+y12) = (p1+p2+p3+p4+p5+p6+p7+p8+p9+p10+p11+p12);
  6.5*(z1) \le (q1+r1);
  6.5*(z1+z2) <= (q1+r1+q2+r2);
6.5*(z1+z2+z3) <= (q1+r1+q2+r2+q3+r3);
  6.5*(z1+z2+z3+z4) \le (q1+r1+q2+r2+q3+r3+q4+r4);
  6.5*(z1+z2+z3+z4+z5) <= (q1+r1+q2+r2+q3+r3+q4+r4+q5+r5);
6.5*(z1+z2+z3+z4+z5+z6) <= (q1+r1+q2+r2+q3+r3+q4+r4+q5+r5+q6+r6);
6.5*(z1+z2+z3+z4+z5+z6+z7) <= (q1+r1+q2+r2+q3+r3+q4+r4+q5+r5+q6+r6+q7+r7);
6.5*(z1+z2+z3+z4+z5+z6+z7+z8) <= (q1+r1+q2+r2+q3+r3+q4+r4+q5+r5+q6+r6+q7+r7+q8+r8);
  6.5*(z1+z2+z3+z4+z5+z6+z7+z8+z9) <= (q1+r1+q2+r2+q3+r3+q4+r4+q5+r5+q6+r6+q7+r7+q8+r8+q9
+r9);
  +q9+r9+q10+r10);
  6.5*(z1+z2+z3+z4+z5+z6+z7+z8+z9+z10+z11) <= (q1+r1+q2+r2+q3+r3+q4+r4+q5+r5+q6+r6+q7+r7
+q8+r8+q9+r9+q10+r10+q11+r11);
  +r7+q8+r8+q9+r9+q10+r10+q11+r11+q12+r12);
      <= 70*6*0.8*9.4*0.75;
 p2
     <= 70*6*0.8*9.4*0.75;
     <= 70*6*0.8*9.4*0.75;
     <= 70*6*0.8*9.4*0.75;
     <= 70*6*0.8*9.4*0.75;
     <= 70*6*0.8*9.4*0.75;
  p6
      <= 70*6*0.8*9.4*0.75;
     <= 70*6*0.8*9.4*0.75;
  p9 <= 70*6*0.8*9.4*0.75;
  p10 <= 70*6*0.8*9.4*0.75;
  p11 <= 70*6*0.8*9.4*0.75;
  p12 <= 70*6*0.8*9.4*0.75;
             <= 1.2*6*5*6.5;
  q1
     + r1
              <= 1.2*6*5*6.5;
  q2
      + r2
              <= 1.2*6*5*6.5;
  q3
      + r3
              <= 1.2*6*5*6.5;
      + r4
              <= 1.2*6*5*6.5;
  q5
     + r5
              <= 1.2*6*5*6.5;
      + r6
  96
              <= 1.2*6*5*6.5;
      + r7
  q7
              <= 1.2*6*5*6.5;
  q8
       + r8
      + r9
              <= 1.2*6*5*6.5;
  q10 + r10 <= 1.2*6*5*6.5;
  q11 + r11 <= 1.2*6*5*6.5;
q12 + r12 <= 1.2*6*5*6.5;
  p1
     <= 20*2.4*6*9.4;
  p2
      <= 20*2.4*6*9.4;
      <= 20*2.4*6*9.4;
      <= 20*2.4*6*9.4;
  р5
      <= 20*2.4*6*9.4;
     <= 20*2.4*6*9.4;
  p6
      <= 20*2.4*6*9.4;
  p7
  p8
     <= 20*2.4*6*9.4;
     <= 20*2.4*6*9.4;
  p10 <= 20*2.4*6*9.4;
  pl1 <= 20*2.4*6*9.4;
  p12 <= 20*2.4*6*9.4;
  0.319*p1 + 0.308*q1
                            + 0.308*r1 <= 864;
  0.319*p2
            + 0.308*q2
                            + 0.308*r2 <= 864;
  0.319*p3 + 0.308*q3
                            + 0.308*r3 <= 864;
  0.319*p4 + 0.308*q4
                            + 0.308*r4 <= 864;
```

```
0.319*p5 + 0.308*q5 + 0.308*r5 <= 864;

0.319*p6 + 0.308*q6 + 0.308*r6 <= 864;

0.319*p7 + 0.308*q7 + 0.308*r7 <= 864;

0.319*p8 + 0.308*q8 + 0.308*r8 <= 864;

0.319*p9 + 0.308*q9 + 0.308*r9 <= 864;

0.319*p10 + 0.308*q10 + 0.308*r10 <= 864;

0.319*p11 + 0.308*q11 + 0.308*r11 <= 864;

0.319*p12 + 0.308*q12 + 0.308*r12 <= 864;
```

END

LINGO Results

LINGO/WIN64 19.0.40 (26 Apr 2021), LINDO API 13.0.4099.270

Licensee info: Eval Use Only License expires: 3 MAY 2022

Global optimal solution found.

Objective value: 284718.5 Infeasibilities: 0.000000 Total solver iterations: 60 Elapsed runtime seconds: 0.21

Model Class:

Total variables: 72
Nonlinear variables: 0
Integer variables: 0

Total constraints: 97
Nonlinear constraints: 0

Total nonzeros: 929
Nonlinear nonzeros: 0

22 1 4 2	22.3	
Variable	Value	Reduced Cost
Y1	252.0000	0.000000
Y2	0.000000	0.8929231
Y3	0.000000	27.46303
Y 4	0.000000	26.63356
Y5	0.000000	5.843346
Y 6	1260.000	0.00000
Y7	252.0000	0.000000
Y8	0.000000	3.942154
Y9	0.000000	47.01498
Y10	0.000000	64.93997
Y11	0.000000	49.20933
Y12	1260.000	0.00000
Z1	15.34445	0.000000
Z2	30.68891	0.000000
Z3	0.000000	21.79435
Z 4	0.000000	18.02802
Z5	0.000000	10.81658
Z 6	82.03336	0.000000
27	15.34445	0.000000
Z 8	15.34445	0.000000
Z 9	0.000000	12.94815
Z10	0.000000	32.23446
Z10 Z11	0.000000	25.90638
Z11 Z12	61.37781	0.000000
X1	2493.474	0.000000
X2	4986.947	0.000000
Х3	0.000000	2.027020
X4	7480.421	0.000000
X5	0.000000	71.86817
X 6	0.000000	1.164536
X7	2493.474	0.000000
X8	2493.474	0.000000
Х9	9973.895	0.000000
X10	0.000000	1.813828
X11	0.000000	2.741972
X12	0.000000	4.996947
P1	2368.800	0.000000
P2	2368.800	0.000000
P3	2368.800	0.000000
P4	2368.800	0.000000
P5	2368.800	0.000000
P6	2368.800	0.000000

P7 P8 P9 P10 P11 P12 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10 Q11 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12	2368.800 2368.800 2368.800 2368.800 2368.800 2368.800 0.000000 0.000000 0.000000 0.000000 0.000000	0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.635501 2.294447 4.574510 3.926658 73.76821 7.369132 2.523852 5.097472 0.1578176 0.1578176 0.1578202 0.1578176 0.000000
Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 22 3 24 25 6 27 28 29 30 31 32 33 4 35 36	Slack or Surplus	Dual Price 1.000000 7.260246 0.000000 0.6557746 0.000000 0.000000 4.845281 2.806826 6.718824 0.000000 0.000000 0.000000 62.83976 6.919193 2.280063 0.7922423E-02 0.000000 3.442474 0.000000 5.380447 1.779169 0.000000 0.000000 0.000000 0.000000 0.000000

27	0 000000	03 54000
37	0.000000	83.54029
38	0.000000	6.932392
39	0.000000	2.293984
40	0.000000	0.000000
41	65.21684	0.000000
42	299.2168	0.00000
43	0.000000	3.449040
44	0.000000	5.393589
45	0.000000	1.785094
46	0.000000	0.1352452E-01
47	234.0000	0.000000
48	234.0000	0.00000
49	0.000000	69.09721
50	0.000000	8.910536
51	0.000000	7.219868
52	0.000000	7.263233
53	0.00000	7.948796
54	0.000000	7.986575
55	0.000000	8.024980
56	0.000000	7.502752
57	0.000000	6.164745
58	0.000000	12.92318
59	0.000000	12.96836
60	0.000000	13.00296
61	0.000000	13.03979
62	134.2611	0.00000
63	34.52211	0.000000
64	234.0000	0.000000
65	168.7832	0.00000
66	0.000000	69.84293
67	0.000000	3.442601
68	134.2611	0.000000
69	134.2611	0.00000
70	234.0000	0.00000
71	0.000000	0.1336154E-03
72	234.0000	0.000000
73	69.04421	0.00000
7 4	338.4000	0.00000
7.5	338.4000	0.000000
76	338.4000	0.000000
77	338.4000	0.00000
78	338.4000	0.00000
79	338.4000	0.00000
80	338.4000	0.000000
81	338.4000	0.00000
82	338.4000	0.00000
83	338.4000	0.000000
84	338.4000	0.000000
85	338.4000	0.00000
86	77.63320	0.00000
87	46.91361	0.000000
88	108.3528	0.000000
89	88.26601	0.00000
90	36.28080	0.00000
91	36.28080	0.000000
92	77.63320	0.000000
93	77.63320	0.00000
94	108.3528	0.00000
95	36.28080	0.00000
96	108.3528	0.000000
97	57.54642	0.00000