EE908 Assignment-5 Solution

eMasters in Communication Systems, IITK

EE908: Optimization in SPCOM **Instructor:** Prof. Ketan Rajawat

Student Name: Venkateswar Reddy Melachervu

Roll No: 23156022

Q1. Consider the following linear program $\min c^T x$ s. t. $Ax \le b$ where A is square and full rank

(a) When is the problem infeasible

Solution:

When the set of constraints represented by $Ax \le b$ cannot be satisfied by any vector x. Few scenarios this can happen are:

- If there is no x such that $x \le A^{-1}b$ (A is square and full rank \Rightarrow invertible) Empty feasible region or b is NOT a combination of columns of A i.e. $b \notin \mathcal{R}(A) \Rightarrow$ The optimal value is ∞
- If A, x, c, b have incompatible dimensions $x, c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$
- When the solution is infeasible, the solution to the problem, is said to have a value of ∞
- (b) When is the problem unbounded below

Solution:

- When a feasible solution exists to this problem and the objective function $c^T x < 0$ is such that it decreases indefinitely in the feasible region.
- This condition occurs when x < 0 and c > 0 or x > 0 and c < 0 and the constraint is satisfied i.e for any vector x s. t. $Ax \le b$.
- When the solution is unbounded below, the problem is said to have a solution value of $-\infty$
- (c) When does the problem have a finite solution, and what is it?

Solution:

- The LP will have a finite solution when the objective function c^Tx has a definitive minimum value achievable/solvable within the feasible and bounded region/solutions for $any \ x \ s. \ t. \ Ax \le b$.
- The finite solution for this problem is an optimal value: $x^* = argmin \{c^Tx \mid Ax \le b\}$ or $x^* = \min_{x} c^Tx \ s.t.Ax \le b$

Q2. Show that any linear programming problem can be expressed as $\min c^T x$ s. t. $Ax = b, x_i \ge 0, i = 1, 2, ... n$

Solution:

The general form of optimization is:

$$x^* = \min_{x} c^T x$$

 $s.t.Wx \le c, i = 1,2, ...m$ – inequality constraint (less than)
 $Dx = h$ – equality constraints (x can be +ve or -ve)

To convert above general form to LP form, we need to use two tricks

1. Use **slack variable** s to convert the inequality to equality $Wx \le c \Rightarrow Wx + s = c \ s.t. \ s \ge 0$ $[W \quad I] \begin{bmatrix} x \\ s \end{bmatrix} = c \Rightarrow Ay = c \ Ay = [W \ I], y = \begin{bmatrix} x \\ s \end{bmatrix}$

2. To bring x into the positive domain select $y = \begin{bmatrix} x \\ s \end{bmatrix}$, $x \ge 0$, s > 0,

$$y=u-v \ select \ u,v \ s.t \ \ u \geq 0, v \geq 0, u \geq v$$
 Hence,
$$\min c^T y$$

$$s.t. Ay=b, y_i \geq 0, i=1,2, \dots n$$
 QED

- **Q3.** Conser the following linear program min $c^T x$ s. t. Ax = b
 - (a) When is the problem infeasible?

Solution:

The solution is infeasible when the given constraint is not met:

- When $\{x \mid Ax \neq b\}$ i.e. there is no vector x that satisfies all constraints Ax = b Unmet or inconsistent constraints $b \notin dom\ Ax$
- If some of the constraints of Ax = b, $A_{12}x_1 = b_1$, $A_{22}x_2 = b_2$ etc. are met but some are not met $A_{11}x_1 \neq b_1$ Contradictory constraints
- When the solution is infeasible, the solution to the given minimization problem is said to have a value of ∞
- (b) When is the problem unbounded below

Solution:

- When the constraints Ax = b are met (feasible solution exists) and the objective function $c^Tx < 0$ is such that it decreases indefinitely in the feasible region.
- This condition occurs when x < 0 and c > 0 or x > 0 and c < 0 and the constraint Ax = b is satisfied for any vector x i.e. $\{b \in Ax, b \in \mathbb{R}^m, Ax \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n\}$.
- ullet When the solution is unbounded below, the problem is said to have a solution value of $-\infty$
- (c) When does the problem have a finite solution, and what is it?

Solution:

- The linear program $\min c^T x$ has a finite solution when a feasible solution exists and bounded (not un-bounded below) i.e. $\exists x \ s. \ t. \ Ax = b$ and the objective function $c^T x$ has a lower bound within the feasible region cannot decrease indefinitely without violating the given constraint
- The finite solution exists when x>0 and c>0, the constraint Ax=b is satisfied for any vector x $\{b\in Ax, b\in \mathbb{R}^m, Ax\in \mathbb{R}^m, A\in \mathbb{R}^{m\times n}, x\in \mathbb{R}^n\}$ and the minimum value of the objective function for this condition is $\mathbf{0}$.
- **Q4.** Conser the following linear program $\min c^T x$ s. t. $a^T x \le b$
 - (a) When is the probe infeasible?

Solution:

The solution is infeasible when the given constraint is not met:

- When $\{x \mid a^Tx > b\}$ i.e. there are no vectors x and a that satisfy the constraint $a^Tx \leq b$ Unmet constraint
- When the solution is infeasible, the solution to the given minimization problem is said to have a value of ∞
- (b) When is the problem unbounded below

Solution:

• When the constraints $a^x \le b$ is met (feasible solution exists) and the objective function $c^T x < 0$ is such that it decreases indefinitely in the feasible region.

- This condition occurs when x < 0 and c > 0 or x > 0 and c < 0 and the constraint $a^T x \le b$ is satisfied.
- When the solution is unbounded below, the problem is said to have a solution value of $-\infty$
- (c) When does the problem have a finite solution, and what is it?

Solution:

- The linear program $\min c^T x$ has a finite solution when a feasible solution exists and bounded (not un-bounded below) i.e. $\exists x \ s. \ t. \ a^T x \le b$ and the objective function $c^T x$ has a lower bound within the feasible region cannot decrease indefinitely without violating the given constraint
- The finite solution exists when x > 0 and c > 0, the constraint $a^T x \le b$ is satisfied for any vector x and the minimum value of the objective function for this condition is **0**.

Q5. Solve the following optimization problem for A > 0, $\min x^T Ax \ s. \ t. \|x\|_2^2 = 1$ Hint: Given that the eigenvalue decomposition $A = U \Sigma U^T$, use the change of variable $y = U^T x$ **Solution:**

- The minimization objective program is a quadratic program
- However, the equality constraint $||x||_2^2$ level-2 norm is a non-linear constraint and let's use change of variable as suggested in the hint

Say
$$y = U^T x \Rightarrow x = Uy$$

The objective function $x^T A x = x^T U \Sigma U^T x = (U^T x)^T \Sigma (U^T x) = y^T \Sigma y$
Constraint $||x|| = x^T x = (Uy)^T (Uy) = y^T U^T U y = y^T y = ||y|| (U is Orthogonal $\Rightarrow U^T U = I)$
 $\Rightarrow ||x||_2^2 = ||y||_2^2$
Now the optimization problem becomes - $\min_y y^T \Sigma y$ s. t. $||y||_2^2 = 1$$

Since Σ is a diagonal matrix has positive eigenvalues (A > 0) in its diagonal, the minimum of $y^T \Sigma y$ occurs when y corresponds to the eigenvector associated with the smallest eigenvalue of Σ .

Let $\lambda_{min}(A)$ be the smallest eigenvalue of Σ and u_{mim} be the corresponding eigenvector.
Then the solution to minimization problem is $y = u_{min}$
$x = Uy$ and $y = u_{min}$, the solution is $x = Uu_{min}$

------ End of the Document------

