

RetroVisor: Nested Virtualization for Multi-laaS VM Availability

Aurélien Wailly¹, Marc Lacoste¹, Hervé Debar²

¹Orange Labs, ²Télécom SudParis

CONTEXT

Problem

Multi-laaS platforms offer low protection against the failure of an hypervisor

Is it possible to replicate execution of a single VM on different hypervisors?

Solution: RetroVisor

Security architecture to seamlessly run a virtual machine on multiple hypervisors simultaneously.

Benefits

- High-availability
- Strong execution guarantees

IMPLEMENTING THE DISPATCHER

Option 1: User-based synchronization

- User handles multiple connections to the hypervisor.
- Sends mouse moves / keystrokes to each hypervisor.
- TVNC clients are available in Python.
- Increased size of client display program.
- User has to perform entire security administration.

EVALUATION (higher is better)

Approach	Easiness	Fault tolerance	Genericity	Security
User	High	High	High	Low
Router	High	Medium	Medium	High
Hypervisor	Low	Low	Low	High

Option 2: Router-based synchronization

- Packets received on router VNC port are replicated.
- Transparent security management.
- Network protocols and management components need to be modified (porting RFB or using UDP tunnel).

Summary

- Strong guarantees of VM execution.
- High availability.
- Leverage nested virtualization.
- Detect failures and recover to a safe state.

Option 3: L0 Hypervisor-based synchronization

- Facade to L1 hypervisors to notify user events to VMs.
 User uses normalized interfaces, increasing security.
- **Error-prone:** each bug in L0 hypervisor severely
- threatens infrastructure security.

We selected the user-based approach as a first implementation of RetroVisor

NEXT STEPS

- More investigation of reaction mechanisms.
- Advanced threat detection through the VESPA framework [ICAC12].

REFERENCES

[CCS12] S. BUTT et al. Self-Service Cloud Computing. CCS 2012.

[VESPA] A. WAILLY, M. LACOSTE, and H. DEBAR. VESPA:

Multi-Layered Self-Protection for Cloud Resources. ICAC'12.

[RFB] T. RICHARDSON and J. LEVINE. The Remote Framebuffer

Protocol. IETF RFC 6143, 2011.

[OSDI10] M. BEN-YEHUDA et al. The Turtles project: Design and Implementation of Nested Virtualization. OSDI'10.

[XenB12] D. WILLIAMS et al.. The Xen-Blanket: Virtualize Once,

Run Everywhere. EUROSYS'12.