# DETECTION AND PREVENTION OF ADVANCED PERSISTENT THREATS (APT) ACTIVITIES IN HETEROGENOUS NETWORKS USING SIEM AND DEEP LEARNING

Code developed as a part of IBM funded project
Members: Balaji Bharatwaj M, Aditya Reddy M
Research Supervisor – Senthil Kumar T
In support with: Sulakshan Vajipayajula
Architect CTO Office, IMB Security Bangalore – svajipay@in.ibm.com

#### Problem statement

To design a model that detects Advanced Persistent Threats in heterogenous networks using Hidden Markov Models

## Methodology

- 1. Use Wireshark to track the network and obtain the .pcap file
- 2. Export the .pcap file into CSV (Comma separated value) files. Then convert that into a variable dataframe for easy manipulation
- 3. Extract the required features from the variable data frame
- 4. Apply Hidden Markov Model to find the outliers from the dataset
- 5. Results can be visualized as a Dendrogram and Packet analysis diagram

#### **Current Status**

Completed the implementation using Hidden Markov Model and output is visualized using a Dendrogram and Packet Analysis diagram

## **Dataset Information**

DNS log dataset is used for our implementation.

Source of the dataset - secrepo.com - Samples of security related data

| Field       | Туре       | Description                                                    |
|-------------|------------|----------------------------------------------------------------|
| ts          | time       | Timestamp of the DNS request                                   |
| uid         | string     | Unique id of the connection                                    |
| id          | recor<br>d | ID record with orig/resp host/port. See conn.log               |
| proto       | proto      | Protocol of DNS transaction – TCP or UDP                       |
| trans_id    | count      | 16 bit identifier assigned by DNS client; responses match      |
| query       | string     | Domain name subject of the query                               |
| qclass      | count      | Value specifying the query class                               |
| qclass_name | string     | Descriptive name of the query class (e.g. C_INTERNET)          |
| qtype       | count      | Value specifying the query type                                |
| qtype_name  | string     | Name of the query type (e.g. A, AAAA, PTR)                     |
| rcode       | count      | Response code value in the DNS response                        |
| rcode_name  | string     | Descriptive name of the response code (e.g. NOERROR, NXDOMAIN) |
| QR          | bool       | Was this a query or a response? T = response, F = query        |
| AA          | bool       | Authoritative Answer. T = server is authoritative for query    |
| тс          | bool       | Truncation. T = message was truncated                          |
| RD          | bool       | Recursion Desired. T = request recursive lookup of query       |
| RA          | bool       | Recursion Available. T = server supports recursive queries     |
| Z           | count      | Reserved field, should be zero in all queries & responses      |
| answers     | vector     | List of resource descriptions in answer to the query           |
| TTLs        | vector     | Caching intervals of the answers                               |
| rejected    | bool       | Whether the DNS query was rejected by the server               |

Dataset Features - Source: secrepo.com

# Algorithms used

- For Comparison KNN, K-Means
- Implementation HMM

# Results - Output

