Customer Data Analysis (Task 2)

Revision (2)

In [3]:

- 1 import pandas as pd
- 2 **import** numpy as np
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns

In [4]:

1 data = pd.read_csv('dataset_nan (1).csv')

In [8]:

1 data.head()

Out[8]:

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines
0	7590- VHVEG	Female	NaN	Yes	No	NaN	No	No phone service
1	5575- GNVDE	Male	NaN	No	No	34.0	Yes	Nc
2	3668- QPYBK	Male	NaN	No	No	2.0	Yes	Nc
3	7795- CFOCW	Male	NaN	No	No	45.0	No	No phone service
4	9237- HQITU	Female	NaN	No	No	2.0	Yes	Nc

5 rows × 21 columns

In [9]:

1 data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):
```

#	Column	Non-Null Count	Dtype
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen	7000 non-null	float64
3	Partner	7043 non-null	object
4	Dependents	7043 non-null	object
5	tenure	6896 non-null	float64
6	PhoneService	7043 non-null	object
7	MultipleLines	7043 non-null	object
8	InternetService	7043 non-null	object
9	OnlineSecurity	7043 non-null	object
10	OnlineBackup	7043 non-null	object
11	DeviceProtection	7043 non-null	object
12	TechSupport	7043 non-null	object
13	StreamingTV	7043 non-null	object
14	StreamingMovies	7043 non-null	object
15	Contract	7043 non-null	object
16	PaperlessBilling	7043 non-null	object
17	PaymentMethod	7043 non-null	object
18	MonthlyCharges	7043 non-null	float64
19	TotalCharges	7043 non-null	float64
20	Churn	7043 non-null	object

dtypes: float64(4), object(17)

memory usage: 1.1+ MB

```
In [10]:
```

1 data.isnull().sum()

Out[10]:

customerID 0 gender 0 SeniorCitizen 43 Partner 0 Dependents 0 tenure 147 PhoneService 0 MultipleLines 0 InternetService 0 OnlineSecurity 0 OnlineBackup 0 DeviceProtection 0 TechSupport 0 StreamingTV 0 StreamingMovies 0 Contract 0 PaperlessBilling 0 PaymentMethod 0 0 MonthlyCharges TotalCharges 0 Churn 0 dtype: int64

In [12]:

1 data.shape

Out[12]:

(7043, 21)

In [28]:

1 data.describe()

Out[28]:

	SeniorCitizen	tenure	MonthlyCharges	TotalCharges
count	7000.000000	6896.000000	7043.000000	7043.000000
mean	0.163143	33.041473	64.761692	2283.300440
std	0.369522	24.382260	30.090047	2265.000258
min	0.000000	1.000000	18.250000	18.800000
25%	0.000000	10.000000	35.500000	402.225000
50%	0.000000	30.000000	70.350000	1400.550000
75%	0.000000	56.000000	89.850000	3786.600000
max	1.000000	72.000000	118.750000	8684.800000

```
In [43]:
 1 data['TotalCharges'].value_counts().sort_values().tail(10)
Out[43]:
19.45
            6
20.15
            6
19.55
            7
            7
45.30
19.90
            8
            8
19.65
20.05
            8
19.75
            9
20.20
           11
2283.30
           12
Name: TotalCharges, dtype: int64
In [46]:
 1 data['MonthlyCharges'].value_counts().sort_values().tail(20)
Out[46]:
20.40
         30
20.45
         31
19.40
         31
19.50
         32
20.20
         35
20.10
         37
19.60
         37
19.80
         38
20.35
         38
20.25
         39
19.75
         39
20.15
         40
19.55
         40
19.65
         43
19.70
         43
20.00
         43
19.90
         44
19.95
         44
19.85
         45
20.05
         61
Name: MonthlyCharges, dtype: int64
```

```
1 data['tenure'].value_counts().sort_values().tail(20)
Out[49]:
18.0
         97
67.0
         98
11.0
         99
15.0
         99
68.0
        100
13.0
        109
6.0
        110
10.0
        116
12.0
        117
70.0
        119
9.0
        119
8.0
        123
        131
7.0
5.0
        133
71.0
        170
4.0
        176
3.0
        200
        238
2.0
72.0
        362
1.0
        477
Name: tenure, dtype: int64
In [29]:
 1 data['Contract'].value_counts()
Out[29]:
Month-to-month
                   3875
Two year
                   1695
One year
                   1473
Name: Contract, dtype: int64
In [30]:
   data.groupby(['Contract']).mean()
Out[30]:
               SeniorCitizen
                               tenure MonthlyCharges TotalCharges
      Contract
Month-to-month
                   0.209665 18.637457
                                           66.398490
                                                      1369.254581
      One year
                   0.129781 42.185286
                                           65.048608
                                                      3034.172980
                   0.085951 57.071810
                                           60.770413
                                                      3720.405133
      Two year
```

In [49]:

In [50]:

1 data.groupby(['Contract']).std()

Out[50]:

	SeniorCitizen	tenure	MonthlyCharges	TotalCharges
Contract				
Month-to-month	0.407122	17.701433	26.926599	1613.879008
One year	0.336178	18.915116	31.840539	2229.058541
Two year	0.280375	17.729130	34.678865	2566.043071

In [51]:

1 sns.distplot(data['MonthlyCharges'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[51]:

<AxesSubplot:xlabel='MonthlyCharges', ylabel='Density'>

In [52]:

1 sns.distplot(data['TotalCharges'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[52]:

<AxesSubplot:xlabel='TotalCharges', ylabel='Density'>

In [58]:

```
1 x=np.log(data['TotalCharges'])
2 x
```

Out[58]:

```
0
        3.396185
1
        7.544068
2
        4.683519
3
        7.517928
4
        5.021575
7038
        7.596141
7039
        8.904209
        5.847739
7040
7041
        5.725544
7042
        8.831201
```

Name: TotalCharges, Length: 7043, dtype: float64

In [59]:

```
1 sns.distplot(x)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[59]:

<AxesSubplot:xlabel='TotalCharges', ylabel='Density'>

In [61]:

1 data.corr()

Out[61]:

	SeniorCitizen	tenure	MonthlyCharges	TotalCharges
SeniorCitizen	1.000000	0.013521	0.221101	0.102831
tenure	0.013521	1.000000	0.238635	0.822171
MonthlyCharges	0.221101	0.238635	1.000000	0.650468
TotalCharges	0.102831	0.822171	0.650468	1.000000

In [62]:

1 sns.countplot(data['Contract'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[62]:

<AxesSubplot:xlabel='Contract', ylabel='count'>

In [74]:

```
1 sns.pairplot(data, size=2.5)
2 plt.show();
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\axisgrid.py:1912: UserWar
ning: The `size` parameter has been renamed to `height`; please update your
code.

warnings.warn(msg, UserWarning)

In [85]:

```
1 df=data.groupby(['gender','Contract','StreamingTV']).sum()
```

2 df

Out[85]:

			SeniorCitizen	tenure	MonthlyCharges	TotalCharges
gender	Contract	StreamingTV				
Female	Month-to-	No	218.0	16492.0	66951.55	1154480.40
	month	No internet service	7.0	2592.0	5225.85	54220.25
		Yes	174.0	15462.0	56128.90	1397275.15
	One year	No	23.0	9637.0	14964.45	663014.05
		No internet service	6.0	5094.0	3490.20	107882.60
		Yes	72.0	15744.0	29537.65	1477329.25
	Two year	No	14.0	7847.0	9275.40	544931.60
		No internet service	8.0	15473.0	7053.65	344740.85
		Yes	46.0	24073.0	34804.75	2219896.55
Male	Month-to- month	No	218.0	16727.0	66348.05	1166864.15
	monui	No internet service	5.0	2152.0	5468.75	44952.50
		Yes	185.0	16335.0	57171.05	1488069.05
	One year	No	31.0	10112.0	15150.35	691204.65
		No internet service	10.0	5676.0	4088.10	121039.00
		Yes	48.0	15665.0	28585.85	1408867.25
	Two year	No	14.0	9316.0	11049.60	656548.95
		No internet service	16.0	15587.0	6840.30	351999.50
		Yes	47.0	23870.0	33982.15	2187969.25

In [89]:

- df=data.groupby(['gender','Contract','InternetService']).mean()
 df

Out[89]:

			SeniorCitizen	tenure	MonthlyCharges	TotalCharges
gender	Contract	InternetService				
Female	Month-to-	DSL	0.129195	16.988034	50.615698	885.677990
	month	Fiber optic	0.297170	21.047801	86.794564	1891.825117
		No	0.027344	10.800000	20.413477	211.797852
	One year	DSL	0.083032	39.660650	62.285612	2494.652158
		Fiber optic	0.263736	52.728938	99.584982	5299.743590
		No	0.036364	30.502994	20.899401	646.003593
	Two year	DSL	0.075410	59.378289	70.843344	4264.237987
		Fiber optic	0.175355	65.112676	104.508920	6814.285681
		No	0.024691	47.904025	21.770525	1064.014969
Male	Month-to- month	DSL	0.133117	15.736395	49.835427	776.099919
		Fiber optic	0.304265	22.937380	87.249105	2048.044439
		No	0.018797	8.747967	20.405784	167.733209
	One year	DSL	0.093750	41.407534	60.550514	2556.429966
		Fiber optic	0.196226	51.451128	97.952820	5088.700564
		No	0.051020	29.409326	20.751777	614.411168
	Two year	DSL	0.084639	59.846395	70.096875	4263.484375
		Fiber optic	0.158140	65.254630	104.633102	6852.792593
		No	0.051118	50.280645	21.784395	1121.017516

In [91]:

- df=data.groupby(['gender','Contract','PaymentMethod']).mean()
 df

Out[91]:

			SeniorCitizen	tenure	MonthlyCharges	TotalCharges
gender	Contract	PaymentMethod				
Female	Month-to- month	Bank transfer (automatic)	0.172078	25.091803	70.094355	1883.260968
		Credit card (automatic)	0.197761	24.525926	68.736481	1845.695556
		Electronic check	0.278261	17.765816	74.510572	1408.485491
		Mailed check	0.088942	10.794937	45.327512	521.916388
	One year	Bank transfer (automatic)	0.160622	46.165803	67.863472	3311.482383
		Credit card (automatic)	0.147208	46.469388	71.164213	3553.013198
		Electronic check	0.203704	46.814815	79.819136	3973.195370
		Mailed check	0.049080	29.355422	47.859036	1599.449096
	Two year	Bank transfer (automatic)	0.098592	61.904930	64.880877	4179.465088
		Credit card (automatic)	0.099644	59.542254	64.407368	4005.764561
		Electronic check	0.086420	60.493827	81.613580	5082.524074
		Mailed check	0.025773	41.895288	39.566753	1881.928351
Male	Month-to- month	Bank transfer (automatic)	0.212996	25.480000	67.964337	1892.105376
		Credit card (automatic)	0.210332	23.640741	66.632784	1766.514286
		Electronic check	0.279956	19.366404	75.470477	1534.443933
		Mailed check	0.074310	10.559091	46.685895	575.659263
	One year	Bank transfer (automatic)	0.174359	45.873737	67.114394	3314.492424
		Credit card (automatic)	0.095000	44.731343	64.844030	3165.395771
		Electronic check	0.162162	45.864130	78.461351	3748.259730
		Mailed check	0.035503	29.404762	40.857602	1375.256140
	Two year	Bank transfer (automatic)	0.100719	61.737410	65.149821	4138.369355
		Credit card (automatic)	0.119048	60.263514	64.436318	4106.247973
		Electronic check	0.126437	61.689655	86.870115	5450.290805
		Mailed check	0.015957	45.679348	37.576596	1873.872074

In [100]:

```
plt.figure(figsize=(15,4))
sns.countplot(data['PaymentMethod'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[100]:

<AxesSubplot:xlabel='PaymentMethod', ylabel='count'>

In [23]:

The contract that company make more profite is Month-to-month contract

In [106]:

```
sns.histplot(data['gender'])
```

Out[106]:

<AxesSubplot:xlabel='gender', ylabel='Count'>

In [109]:

```
plt.figure(figsize=(15,4))
sns.histplot(data=data, x=data['PaymentMethod'], hue=data['gender'], multiple="dodge",
```

Out[109]:

<AxesSubplot:xlabel='PaymentMethod', ylabel='Count'>

In [110]:

```
plt.figure(figsize=(15,4))
sns.histplot(data=data, x=data['PaymentMethod'], hue=data['Contract'], multiple="dodge']
```

Out[110]:

<AxesSubplot:xlabel='PaymentMethod', ylabel='Count'>

From the above table the {Month-to-month} contract is the most contract used with [Electronic check] method

In [113]:

```
plt.figure(figsize=(8,4))
sns.histplot(data=data, x=data['Contract'], hue=data['InternetService'], multiple="dodg")
```

Out[113]:

<AxesSubplot:xlabel='Contract', ylabel='Count'>

In [117]:

```
plt.figure(figsize=(8,4))
sns.histplot(data=data, x=data['InternetService'], hue=data['OnlineSecurity'], multiple
```

Out[117]:

<AxesSubplot:xlabel='InternetService', ylabel='Count'>

As showing above graph, about half the DSL servises are online secured while the Fiber optic service is most of it have no security

In [118]:

```
plt.figure(figsize=(15,4))
sns.histplot(data=data, x=data['PaymentMethod'], hue=data['PaperlessBilling'], multiple
```

Out[118]:

<AxesSubplot:xlabel='PaymentMethod', ylabel='Count'>

In [127]:

```
plt.figure(figsize=(12,4))
sns.histplot(data=data, x=data['Contract'], hue=data['DeviceProtection'], multiple="doc
```

Out[127]:

<AxesSubplot:xlabel='Contract', ylabel='Count'>

Mailed check are the only methode has less paperlessBilling

In [121]:

```
plt.figure(figsize=(12,4))
sns.histplot(data=data, x=data['PaymentMethod'], hue=data['StreamingMovies'], multiple=
```

Out[121]:

<AxesSubplot:xlabel='PaymentMethod', ylabel='Count'>

In [205]:

```
plt.figure(figsize=(12,4))
sns.histplot(data=data, x=data['Contract'], hue=data['PaymentMethod'], multiple="dodge'
```

Out[205]:

<AxesSubplot:xlabel='Contract', ylabel='Count'>

In [126]:

```
plt.figure(figsize=(12,4))
sns.histplot(data=data, x=data['Contract'], hue=data['MultipleLines'], multiple="dodge'
```

Out[126]:

<AxesSubplot:xlabel='Contract', ylabel='Count'>

In [189]:

```
plt.figure(figsize=(12,4))
sns.histplot(data=data, x=data['Contract'], hue=data['OnlineBackup'], multiple="dodge",
```

Out[189]:

<AxesSubplot:xlabel='Contract', ylabel='Count'>

Month-to-month payment method need to inhance the online backup

In [220]:

Out[220]:

<AxesSubplot:xlabel='tenure', ylabel='Count'>

In [191]:

```
plt.figure(figsize=(12,4))
sns.histplot(data=data, x=data['tenure'], hue=data['TechSupport'], multiple="dodge", st
```

Out[191]:

<AxesSubplot:xlabel='tenure', ylabel='Count'>

In [193]:

```
plt.figure(figsize=(12,4))
sns.histplot(data=data, x=data['tenure'], hue=data['StreamingMovies'], multiple="dodge")
```

Out[193]:

<AxesSubplot:xlabel='tenure', ylabel='Count'>

In [194]:

Out[194]:

<AxesSubplot:xlabel='tenure', ylabel='Count'>

In [213]:

```
plt.figure(figsize=(12,4))
sns.histplot(data=data, x=data['tenure'], hue=data['Dependents'], multiple="dodge", shr
```

Out[213]:

<AxesSubplot:xlabel='tenure', ylabel='Count'>

In [225]: 1 plt.figure(figsize=(12,4)) 2 sns.histplot(data=data, x=data['tenure'], hue=data['TechSupport'], multiple="dodge", st Out[225]: <AxesSubplot:xlabel='tenure', ylabel='Count'>

Most of the staying customer in the company have partners

```
In [208]:

1  plt.figure(figsize=(12,4))
2  sns.histplot(data=data, x=data['tenure'], hue=data['MultipleLines'], multiple="dodge",

Out[208]:

<AxesSubplot:xlabel='tenure', ylabel='Count'>

800

600

800

900

Wes

MultipleLines
No phone service
No
No
Yes
```

The most of customer staying in company who have multiple lines

In [198]:

```
plt.figure(figsize=(12,4))
sns.histplot(data=data, x=data['tenure'], hue=data['PaymentMethod'], multiple="dodge",
```

Out[198]:

<AxesSubplot:xlabel='tenure', ylabel='Count'>

The customers who pay by Bank transfer and credit cards are the most customer are staying in company

In [130]:

```
plt.figure(figsize=(12,4))
sns.histplot(data=data, x=data['InternetService'], hue=data['TechSupport'], multiple="contained by the support of the suppor
```

Out[130]:

<AxesSubplot:xlabel='InternetService', ylabel='Count'>

Fiber optic service need more techSupport

In [132]:

```
plt.figure(figsize=(12,4))
sns.histplot(data=data, x=data['gender'], hue=data['Dependents'], multiple="dodge", shr
```

Out[132]:

<AxesSubplot:xlabel='gender', ylabel='Count'>

In [133]:

Out[133]:

<AxesSubplot:xlabel='Contract', ylabel='Count'>

In [134]:

```
plt.figure(figsize=(12,4))
sns.histplot(data=data, x=data['PaymentMethod'], hue=data['Dependents'], multiple="dodg")
```

Out[134]:

<AxesSubplot:xlabel='PaymentMethod', ylabel='Count'>

The number of dependents accounts are approximate equal for all payment methods

In [25]:

```
plt.figure1(figsize=(12,8))
sns.set_theme(style="darkgrid")
sns.lineplot(data=data, x=data['tenure'], y=data['MonthlyCharges'],hue=data['Contract'])
```

Out[25]:

<AxesSubplot:xlabel='tenure', ylabel='MonthlyCharges'>


```
In [57]:
```

```
plt.figure(figsize=(15,8))
     sns.set_theme(style="darkgrid")
  2
     sns.lineplot(data=data, x=data['tenure'], y=data['MonthlyCharges'],hue=data['SeniorCiti
Out[57]:
<AxesSubplot:xlabel='tenure', ylabel='MonthlyCharges'>
  100
   90
   80
   70
   60
   50
In [44]:
,8))1
arkgn2id")
, x=data['tenure'], y=data['MonthlyCharges'],hue=data['InternetService'], palette = "Set1")
      ◀
Out[44]:
<AxesSubplot:xlabel='tenure', ylabel='MonthlyCharges'>
      InternetService
         Fiber option
  100
   80
 MonthlyCharges
   40
   20
```

```
In [47]:
```

```
ig$ize=(15,8))
le(@tyle="darkgrid")
(data=data, x=data['tenure'], y=data['MonthlyCharges'],hue=data['OnlineSecurity'], palette
Out[47]:
<AxesSubplot:xlabel='tenure', ylabel='MonthlyCharges'>
        OnlineSecurity
         No
         Yes
         No internet service
   80
 MonthlyCharges
   60
   20
In [50]:
ze1(15,8))
yl@="darkgrid")
a=đata, x=data['tenure'], y=data['MonthlyCharges'],hue=data['StreamingTV'], palette = "Set1
Out[50]:
<AxesSubplot:xlabel='tenure', ylabel='MonthlyCharges'>
         StreamingTV
  100
         No
   80
 WonthlyCharges
   60
   40
```

```
In [51]:
e=(15,8))
le=2darkgrid")
da8a, x=data['tenure'], y=data['MonthlyCharges'],hue=data['Dependents'], palette = "Set1")
Out[51]:
<AxesSubplot:xlabel='tenure', ylabel='MonthlyCharges'>
   90
   80
   70
 MonthlyCharges
8
   50
In [55]:
ze=(15,8))
              1
yle="darkgrid")
a=data, x=data['tenure'], y=data['TotalCharges'],hue=data['StreamingTV'], palette = "Set1")
Out[55]:
<AxesSubplot:xlabel='tenure', ylabel='TotalCharges'>
         StreamingTV
   7000
          No
   6000
 4000
gaddes
 3000
TotalCh
   2000
   1000
```

```
In [54]:
```

In [53]:

data.groupby(['Contract','InternetService']).sum()

Out[53]:

		SeniorCitizen	tenure	MonthlyCharges	TotalCharges
Contract	InternetService				
Month-to-month	DSL	159.0	19191.0	61418.45	1015136.20
	Fiber optic	636.0	45825.0	185181.10	4191552.55
	No	12.0	4744.0	10694.60	99172.75
One year	DSL	50.0	23077.0	34996.15	1439990.85
	Fiber optic	124.0	28081.0	53242.15	2800424.35
	No	16.0	10770.0	7578.30	228921.60
Two year	DSL	50.0	37142.0	44250.75	2677700.30
	Fiber optic	71.0	27964.0	44861.15	2931646.05
	No	24.0	31060.0	13893.95	696740.35

In [168]:

```
1  n=data.groupby(['Contract','InternetService']).sum().plot(y='TotalCharges',figsize=(23, n
```

Out[168]:

<AxesSubplot:xlabel='Contract,InternetService'>

In [167]:

Out[167]:

<AxesSubplot:xlabel='Contract,InternetService'>

In [169]:

```
1  n=data.groupby(['Contract','InternetService']).sum().plot(y='SeniorCitizen',figsize=(23)
2  n
```

Out[169]:

<AxesSubplot:xlabel='Contract,InternetService'>

Most of senior citizens are pay by month-to-month method with fibar optic as internit service

In [170]:

```
n=data.groupby(['Contract','InternetService']).sum().plot(y='tenure',figsize=(23,10))
n
```

Out[170]:

<AxesSubplot:xlabel='Contract,InternetService'>

In [184]:

```
df=data.groupby(['gender','PaymentMethod']).sum().plot(y='MonthlyCharges',figsize=(25,1))
df
```

Out[184]:

<AxesSubplot:xlabel='gender,PaymentMethod'>

In [196]:

```
df=data.groupby(['StreamingTV','StreamingMovies']).sum().plot(y='MonthlyCharges',figsiz
df
```

Out[196]:

<AxesSubplot:xlabel='StreamingTV,StreamingMovies'>

The income from customers without both the streaming of tv and movies is more than the customers participant in only one of them

Need to inhance the streaming services

In [204]:

```
df=data.groupby(['PhoneService','InternetService']).sum().plot(y='MonthlyCharges',figs:
df
```

Out[204]:

<AxesSubplot:xlabel='PhoneService,InternetService'>

In [218]:

```
df=data.groupby(['Partner','Dependents']).sum().plot(y='MonthlyCharges',figsize=(15,10)
df
```

Out[218]:

<AxesSubplot:xlabel='Partner,Dependents'>

In [223]:

```
df=data.groupby(['DeviceProtection','OnlineSecurity']).sum().plot(y='MonthlyCharges',fi
df
```

Out[223]:

<AxesSubplot:xlabel='DeviceProtection,OnlineSecurity'>

In [232]:

```
df=data.groupby(['TechSupport']).sum().plot(y='MonthlyCharges',figsize=(15,10))
df
```

Out[232]:

<AxesSubplot:xlabel='TechSupport'>

In [234]:

```
df=data.groupby(['TechSupport']).sum().plot(y='TotalCharges',figsize=(15,10))
df
```

Out[234]:

<AxesSubplot:xlabel='TechSupport'>

Conclusion

Most of the revenues are from customers contracting by Month-to-month method, using a fiber optic service and containg most of senior citizens.

However that the most income comes from customes paying by Electronic check, the most stable customer who stay in the company are the customers pay by Bank transfer and credit cards.

The customers who get the streaming services take the two (tv and movie) services or neither of the two

... ..

All the fiber optic services has a phone services.

Most of the staying customer in the company have partners

Customers with no partner or dependents are the most value monthly charged.

The majorty of month-to-month contract has no online backup.

According to monthly revenue, the customer with no device protection or online security have the most monthly charged value.

Using Mailed check as payment method is has less probability for paper billing than any other method.

The income from customer with no tech support is higher than customer with tech support for monthly revenues, although the total revenue is higher for customer with tech support.