SISO

- 1. If temperature is cold then speed is minimal
- 2. If temperature is cool then speed is slow
- 3. If temperature is pleasant then speed is medium
- 4. If temperature is warm then speed is fast
- 5. If temperature is hot then speed is blast

Consider that the temperature is at 16 and we want our knowledge base to compute the speed.

Fuzzification

Crisp value \$\rightarrow\$ Linguistic variables. 16C \$\rightarrow\$ Cool/Pleasant

Temp Cold Cool Pleasant Warm Hot

0	Υ*	Ν	N	N	Ν
5	Υ	Υ	Ν	Ν	Ν
10	Ν	Υ	Ν	Ν	Ν
12.5	Ν	γ*	Ν	Ν	Ν
15	Ν	Υ	Ν	Ν	Ν
17.5	Ν	Ν	Υ*	Ν	Ν
20	Ν	Ν	Ν	Υ	Ν
22.5	Ν	Ν	Ν	γ*	Ν
25	Ν	Ν	Ν	Υ	Ν
27.5	Ν	Ν	Ν	Ν	Υ
30	Ν	Ν	Ν	Ν	Υ*

The fuzzification of the crisp temperature gives the following membership for the Temperature fuzzy set:

```
f(x; a, b, c) = \max{(\min{(\frac{x-a}{b-a}, \frac{c-x}{c-b}))}, 0)}
```

 $\sum_{\text{text{pleasant}}(T) = \max{(\min{(\frac{T-15}{17.5-15}, \frac{20-17.5})}, 0)} $$ \sum_{\text{text{pleasant}}(16) = \max{(\min{(\frac{16-15}{17.5-15}, \frac{20-16}{20-17.5})}, 0)} = 0.4$$

\sum_{cold} \sum_{cool} \sum_{cool} \sum_{cool}

Temp=16 0	0.3	0.4	0	0
Fire Rule (#) no (#1)	yes (#2)	yes (#3)	no (#4)	no (#5)

Inference

Rules containing the linguistic variables

Rules 2 \& 3

Rule #2 and #3 are firing and are essentially the fuzzy patches made out of the cross products of \$\$\text{cool} \times \text{slow}\$\$ \$\$\text{pleasant} \times \text{medium}\$\$\$

RPM Slow Medium

10	Ν	Ν
20	Υ	Ν
30	γ*	Ν
40	Υ	Ν
50	Ν	γ*
60	Ν	Ν

The fuzzification of the crisp volatile gives the following membership for the Voltage fuzzy set:

 $f(x; a, b, c) = \max{(\min{(\frac{x-a}{b-a}, \frac{c-x}{c-b}))}, 0)}$

 $\sum_{v\in \mathbb{N}}(v) = \max_{v\in \mathbb{N}}(v) = \min_{v\in \mathbb{N}}(v) = \min_{v$

 $\sum_{v\in \mathbb{N}} (\frac{x-40}{50-40}, \frac{60-50}{0.50}), 0)$

Using the min inference method, the output slow is clipped off at 0.3 and medium at 0.4.

Speed	Slow	Medium
10	0	0
12.5	0.125	0
15	0.25	0
17.5	0.3	0
20	0.3	0
22.5	0.3	0
25	0.3	0
27.5	0.3	0
30	0.3	0
32.5	0.3	0
35	0.3	0
37.5	0.3	0
40	0.3	0
42.5	0.3	0.25
45	0.25	0.4
47.5	0.125	0.4
50	0	0.4
52.5	0	0.4
55	0	0.4
57.5	0	0.25
60	0	0

Composition

Create new membership function of the alpha levelled functions for cool and pleasant

The cool and pleasant sets have an output of \$0.3\$ and \$0.4\$ respectively. Using the max composition method, the fuzzy sets for slow and medium have to be given an \$\alpha\$-level cut for these output values respectively.

Speed	Slow	Medium	Output of 2 Rules
10	0	0	0
12.5	0.125	0	0.125
15	0.25	0	0.25
17.5	0.3	0	0.3
20	0.3	0	0.3
22.5	0.3	0	0.3
25	0.3	0	0.3
27.5	0.3	0	0.3
30	0.3	0	0.3
32.5	0.3	0	0.3
35	0.3	0	0.3
37.5	0.3	0	0.3
40	0.3	0	0.3
42.5	0.3	0.25	0.3
45	0.25	0.4	0.4
47.5	0.125	0.4	0.4
50	0	0.4	0.4
52.5	0	0.4	0.4
55	0	0.4	0.4
57.5	0	0.25	0.25
60	0	0	0

Defuzzification

Examine the fuzzy sets of slow and medium and contain a speed value in rpm.

Now we have to find a way to obtain one single number from the curve. One number corresponding to the speed of the air conditioner's motor.

Centroid

Weighted Speed = \$\text{output of 2 rules} \times \text{speed}\$

Speed Slow Medium (Output of 2 Rules	Weighted Speed
---------------------	-------------------	----------------

10	0	0	0	0
12 0.	125	0	0.125	0

Speed	Slow	Medium	Output of 2 Rules	Weighted Speed
12.5	0.25	0	0.25	1.5625
15	0.3	0	0.3	3.75
17.5	0.3	0	0.3	5.25
20	0.3	0	0.3	6
22.5	0.3	0	0.3	6.75
25	0.3	0	0.3	7.5
27.5	0.3	0	0.3	8.25
30	0.3	0	0.3	9
32.5	0.3	0	0.3	9.75
35	0.3	0	0.3	10.5
37.5	0.3	0	0.3	11.25
40	0.3	0	0.3	12
42.5	0.3	0.25	0.3	12.75
45	0.25	0.4	0.4	18
47.5	0.125	0.4	0.4	19
50	0	0.4	0.4	20
52.5	0	0.4	0.4	21
55	0	0.4	0.4	22
57.5	0	0.25	0.25	14.375
60	0	0	0	0

Sum of output is 5.925

Sum of weighted speed is 218.687

The computation leads to a single value for the speed - an average computed with respect to the centre of gravity of the output fuzzy set.

Computed speed is \$\frac{218.687}{5.925}=36.91\$RPM

Mean of maxima

Speed	Weighted	Output of 2 Rules	Medium	Slow	Speed
18	ļ.	0.4	0.4	0.25	45
19	ļ	0.4	0.4	0.125	47.5
20	ļ.	0.4	0.4	0	50
21	ļ.	0.4	0.4	0	52.5
22	ļ	0.4	0.4	0	55

Sum of output is 2

Sum of weighted speed is 100

Computed speed it \$\frac{100}{2}=50\$RPM

MISO

We have a pole of length \$1\$, mass \$m\$ as its head and mass \$M\$ at its base, both connected by a weightless shaft. As application of a force \$F\$ is required to control the pole at the base, which can be moved on a horizontal axis.

It is possible to approach the control of the cart pole without the use of differential equations by rules like:

```
If \hat s \approx \hat z_{approximately_zero}(a_{z}) & $d \theta / dt$ is \hat z_{approximately_zero}(a_{z})
Then $F$ is \hat z_{approximately_zero}(a_{z})
```

Fuzzification

Consider the fuzzy partition of the linguistic variable *angle* (\$\theta\$) expressed through the linguistic terms *negative* (\$n_{\theta}\$), *approximately zero* (\$az_{\theta}\$) and *positive* (\$p_{\theta}\$).

The same can be said about the angular velocity (\$\Theta\$) and for the applied force (\$F\$)

- negative (\$n_{\Theta}\$), approximately zero (\$az_{\Theta}\$) and positive (\$p_{\Theta}\$)
- negative (\$n_{F}\$), approximately zero (\$az_{F}\$) and positive (\$p_{F}\$).

There are nine possible rules for the partitioned fuzzy sets of angle, angular velocity and force.

n_{Ω} az_{Ω} \$p_{\Theta}\$

\$n_{\theta}\$	\$n_{f}\$	\$n_{f}\$	\$az_{f}\$
\$az_{\theta}\$	\$n_{f}\$	\$az_{f}\$	\$p_{f}\$
\$p_{\theta}\$	\$az_{f}\$	\$p_{f}\$	\$p_{f}\$

The rule base must be refined further to fine tune the controle. More terms are added, comprising:

- negative big
- negative medium
- negative small
- approximately zero
- positive small
- positive medium
- positive big
 - 1. If \$\theta\$ is \$a_{z}\$ and \$\Theta\$ is \$a_{z}\$ then \$F\$ is \$a_{z}\$
 - 2. If \$\theta\$ is \$p_{s}\$ and \$\Theta\$ is \$p_{s}\$ then \$F\$ is \$p_{s}\$
 - 3. If $\hat s_{s}^{s}$ and $\hat s_{z}^{s}$ then F^{s} is p_{s}^{s}
 - 4. If \$\theta\$ is \$a_{z}\$ and \$\Theta\$ is \$n_{s}\$ then \$F\$ is \$p_{s}\$
 - 5. If \$\theta\$ is \$n_{s}\$ and \$\Theta\$ is \$n_{b}\$ then \$F\$ is \$p_{s}\$

```
6. If $\theta$ is $p_{b}$ and $\Theta$ is $p_{s}$ then $F$ is $p_{m}$
```

- 7. If \$\theta\$ is \$p_{m}\$ and \$\Theta\$ is \$a_{z}\$ then \$F\$ is \$p_{m}\$
- 8. If \$\theta\$ is \$a_{z}\$ and \$\Theta\$ is \$n_{m}\$ then \$F\$ is \$p_{m}\$
- 9. If \$\theta\$ is \$p_{b}\$ and \$\Theta\$ is \$a_{z}\$ then \$F\$ is \$p_{b}\$
- 10. If \$\theta\$ is \$a_{z}\$ and \$\Theta\$ is \$n_{b}\$ then \$F\$ is \$p_{b}\$
- 11. If \$\theta\$ is \$p_{s}\$ and \$\Theta\$ is \$p_{b}\$ then \$F\$ is \$n_{s}\$
- 12. If $\hat s= x_{z}\$ and $\hat s= x_{s}\$ then \$F\$ is $x_{s}\$
- 13. If \$\theta\$ is \$n_{s}\$ and \$\Theta\$ is \$n_{s}\$ then \$F\$ is \$n_{s}\$
- 14. If \$\theta\$ is \$n_{s}\$ and \$\Theta\$ is \$a_{z}\$ then \$F\$ is \$n_{s}\$
- 15. If \$\theta\$ is \$a_{z}\$ and \$\Theta\$ is \$p_{m}\$ then \$F\$ is \$n_{m}\$
- 16. If \$\theta\$ is \$n_{m}\$ and \$\Theta\$ is \$a_{z}\$ then \$F\$ is \$n_{m}\$
- 17. If \$\theta\$ is \$n {b}\$ and \$\Theta\$ is \$n {s}\$ then \$F\$ is \$n {m}\$
- 18. If \$\theta\$ is \$a_{z}\$ and \$\Theta\$ is \$p_{b}\$ then \$F\$ is \$n_{b}\$
- 19. If \$\theta\$ is \$n_{b}\$ and \$\Theta\$ is \$a_{z}\$ then \$F\$ is \$n_{b}\$

	\$n_{b}\$	\$n_{m}\$	\$n_{s}\$	\$a_{z}\$	\$p_{s}\$	\$p_{m}\$	\$p_{b}\$
\$\theta_{max}\$	-67.5	-45	-22.5	0	22.5	45.0	67.5
\$\theta_{min}^{1}\$	-45	-22.5	0	22.5	45	67.5	90
\$\theta_{min}^{2}\$	-90	-67.5	-45	-22.5	0	22.5	45
\$\Theta_{max}\$	-33.75	-22.5	-11.25	0	11.25	22.5	33.75
\$\Theta_{min}^{1}\$	-22.5	-11.25	0	11.25	22.5	33.75	45
\$\Theta_{min}^{2}\$	-45	-33.75	-22.5	-11.25	0	11.25	22.5
\$F_{max}\$	-7.5	-5	-2.5	0	2.5	5	7.5
\$F_{min}^{1}\$	-5	-2.5	0	2.5	5	7.5	10
\$F_{min}^{2}\$	-10	-7.5	-5	-2.5	0	2.5	5

Consider $\hat s=36$ (p_{s} and p_{s}) and $\hat s=2.25$ (a_{z}).

 $\mbox{\mu_{ps}(\theta) = \max{(\min{(\frac{a}-a){b-a}, \frac{c-b})}, 0)}$$ $\mu_{ps}(36) = \max{(\min{(\frac{36-0}{22.5-0}, \frac{45-36}{45-22.5})}, 0)}$$ $\mu_{ps}(36) = \max{(\min{(1.6, 0.4)}, 0)} = 0.4$$$

 $\mbox{\mu_{pm}(\theta) = \max{(\min{(\sqrt{c-b})}, 0)} $ $\sum_{g=\max{(\sqrt{(\sqrt{c-1})}, 0)} $ $\sum_{g=\max{(\sqrt{(0.6, 1.4)}, 0)} = 0.6$} $$

 $\begin{tabular}{l} $$\mu_{az}(\theta) = \max\{(\min\{(\frac{az}(-2.25), 0)\} $ $\\mu_{az}(-2.25) = \max\{(\min\{(\frac{11.25-(-2.25)}{11.25-0})\}, 0)\} $ $\\mu_{az}(-2.25) = \max\{(\min\{(0.8, 1.2)\}, 0)\} = 0.8$$

- 1. If \$\theta\$ is \$p_{s}\$ and \$\Theta\$ is \$a_{z}\$ then \$F\$ is \$p_{s}\$
- 2. If $\hat s = f^{s}$ and f^{s} then f^{s} is p_{m}

Inference

 $\sum_{ps}(F) = \max{(\min_{(\frac{F-a}{b-a}, \frac{c-F}{c-b})}, 0)}$ \$\$\mu_{ps}(F) = \max{(\min_{(\frac{F-0}{2.5-0}, \frac{5-F}{5-2.5})}, 0)}\$\$

 $\mbox{pm}(F) = \max{(\min{(\frac{F-a}{b-a}, \frac{c-F}{c-b})}, 0)}$ \$\$\mu_{pm}(F) = \max{(\min{(\frac{F-2.5}{5-2.5}, \frac{7.5-F}{7.5-5})}, 0)}\$\$

For rule number 3, we take the $\alpha = 1.4\$ For rule number 7, we take the $\alpha = 1.4\$ For rule number 7, we take the $\alpha = 1.4\$

F	\$\mu_{ps}\$	\$\mu_{pm}\$
0	0	0
0.5	0.2	0
1	0.4	0
1.5	0.4	0
2	0.4	0
2.5	0.4	0
3	0.4	0.2
3.5	0.4	0.3
4	0.4	0.6
4.5	0.4	0.6
5	0.2	0.6
5.5	0	0.6
6	0	0.6
6.5	0	0.4
7	0	0.2
7.5	0	0

Composition

F	\$\mu_{ps}\$	\$\mu_{pm}\$	Output
0	0	0	0
0.5	0.2	0	0.2
1	0.4	0	0.4
1.5	0.4	0	0.4
2	0.4	0	0.4
2.5	0.4	0	0.4
3	0.4	0.2	0.4
3.5	0.4	0.3	0.4
4	0.4	0.6	0.6
4.5	0.4	0.6	0.6
5	0.2	0.6	0.6
5.5	0	0.6	0.6
6	0	0.6	0.6
6.5	0	0.4	0.4
7	0	0.2	0.2
7.5	0	0	0

Defuzzification

Maximum Criterion Model

F Output Weighted Output

4	0.6	2.4
4.5	0.6	2.7
5	0.6	3
5.5	0.6	3.3
6	0.6	3.6

Any value of the force between 4 and 6 will do to steady the cartpole.

Mean of Maximum

F Output Weighted Output

4	0.6	2.4
4.5	0.6	2.7
5	0.6	3
5.5	0.6	3.3
6	0.6	3.6

Sum of output is 3
Sum of weighted output is 15
\$\$F=\frac{15}{3} = 5\$\$

COG

F Output Weighted Output

0	0	0
0.1	0.2	0.5
0.4	0.4	1
0.6	0.4	1.5
0.8	0.4	2
1	0.4	2.5
1.2	0.4	3
1.4	0.4	3.5
2.4	0.6	4
2.7	0.6	4.5
3	0.6	5
3.3	0.6	5.5
3.6	0.6	6
3.9	0.4	6.5
4.2	0.2	7
0	0	7.5

Sum of output is 6.2 Sum of weighted output is 24.5 $F=\frac{24.5}{6.2} = 3.95$ \$