

Equations aux dérivées partielles

El Bouzekraoui Younes — MDAA Saad

Département Sciences du Numérique - Deuxième année 2020-2021

Contents

1	Equ	ations aux dérivées partielles elliptiques	3
	1.1	Partie théorique	3

1 Equations aux dérivées partielles elliptiques

1.1 Partie théorique

• On suppose que $u\in H^1(\Omega)$ pour $w\in H^1_0(\Omega)$ et d'après la formule de Green on a :

$$\int_{\Omega} \nabla u \cdot \nabla w \, dx + \int_{\Omega} \triangle u \cdot w \, dx = \int_{\partial \Omega} \gamma_1(u) \gamma_0(w) \, dx = \int_{\partial \Omega_d} \gamma_1(u) \gamma_0(w) \, dx + \int_{\partial \Omega_n} \gamma_1(u) \gamma_0(w) \, dx$$

on pose $v = u - u_d \in H_0^1(\Omega)$ on a:

$$\int_{\Omega} \nabla(v + u_d) \cdot \nabla w \, dx - \int_{\Omega} f w \, dx = \int_{\partial \Omega_d} \gamma_1(u) \gamma_0(w) \, dx + \int_{\partial \Omega_n} \gamma_1(u) \gamma_0(w) \, dx$$

 donc

$$\int_{\Omega} \nabla v. \nabla w \, dx = \int_{\Omega} fw \, dx + \int_{\partial \Omega_n} g \gamma_0(w) \, dx - \int_{\Omega} \nabla u_d. \nabla w \, dx$$

en effet on a

$$\gamma_1(u) = \frac{\partial u}{\partial n} = g \operatorname{sur} \partial \Omega_n$$

et

$$\gamma_0(w) = w = 0 \text{ sur } \partial\Omega_d \text{ car } w \in H_0^1(\Omega)$$

•