18.745: LECTURE 23

PROFESSOR: VICTOR KAČ SCRIBES: DAVID MEYER AND CHRISTOPHER DAVIS

From now on, let \mathfrak{g} be an arbitrary finite-dimensional Lie Algebra over an algebraically closed field \mathbb{F} of characteristic 0.

Theorem. (Weyl Complete Reducibility) If \mathfrak{g} is semisimple, then any finite-dimensional \mathfrak{g} -module V is completely reducible, ie: for any submodule U there exists a complementary submodule U' so that $V = U \oplus U'$.

Corollary. Any finite-dimensional \mathfrak{g} -module is isomorphic to a direct sum of irreducible \mathfrak{g} -modules.

Theorem. (Levi) Let \mathfrak{g} be any finite-dimensional Lie Algebra over \mathbb{F} , and $R(\mathfrak{g})$ the radical of \mathfrak{g} . Then there exists a semisimple subalgebra \mathfrak{s} of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{s} + R(\mathfrak{g})$. (As previously noted, $\mathfrak{s} \cap R(\mathfrak{g}) = \{0\}$).

Theorem. (Mal'cev) In Levi's theorem, if \mathfrak{s}_1 is another semisimple subalgebra of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{s}_1 + R(\mathfrak{g})$, then there exists an automorphism ϕ of \mathfrak{g} such that $\phi(\mathfrak{s}) = \mathfrak{s}_1$.

Recall that a "projector" of a vector space V to a subspace $U \subset V$ is a linear operator P on V such that P(V) = U and P(u) = u for all $u \in U$. Note that $V = U \oplus Ker(P)$ for any projector P.

Given a projector P_0 of V to U, any other projector of V to U is of the form $P = P_0 + A$ where $A(V) \subset U$ and A(U) = 0.

Proof. (Weyl's Theorem) Consider $End\ V$ as a \mathfrak{g} -module, with: a*A = [a,A] = aA - Aa, for $a \in \mathfrak{g}$, $A \in End\ V$. Notational Remark: since V is a \mathfrak{g} -module, we are identifying elements of \mathfrak{g} with elements of $End\ V$. Hence, "aA" and "Aa" represent composition in $End\ V$, while a*A represents the \mathfrak{g} -module action defined above.

Let M be the subspace of End V consisting of all A such that $A(V) \subset U$ and A(U) = 0. This is a submodule of End V:

$$(a*A)V = (aA - Aa)V \subset a(A(V)) + A(a(V)) \subset a(U) + A(V) \subset U$$

$$(a * A)U = (aA - Aa)U \subset a(A(U)) + A(a(U)) \subset a(0) + A(U) = 0$$

Pick an arbitrary projector $P_0: V \longrightarrow U$, and define the following 1-cocycle:

$$f: \mathfrak{g} \longrightarrow M; f(a) = a * P_0 = aP_0 - P_0a$$

It is clear f maps into M since a and P_0 commute on U, and:

$$(aP_0 - P_0a)V \subset a(P_0(V)) + P_0(a(V)) \subset a(U) + P_0(V) \subset U$$

f is also clearly a 1-cocycle, since:

$$f([a,b]) = [a,b] * P_0 = a * (b * P_0) - b * (a * P_0) = a * f(b) - b * f(a).$$

Date: December 2nd, 2004.

(the second equality is just the defining property of a g-module)

Thus, by the main theorem of Lecture 22, f is trivial: there exists $A \in M$ such that f(a) = a * A for all $a \in \mathfrak{g}$. Equivalently: $a * P_0 = a * A$, or $a * (P_0 - A) = 0$. Let $P = P_0 - A$. Observe that P is just a projector of V to U, and we have a * P = 0, ie, aP = Pa, for all $a \in \mathfrak{g}$. Hence, Ker(P) is a-invariant for all $a \in \mathfrak{g}$, and thus Ker(P) is a \mathfrak{g} -submodule of V. Since $V = U \oplus Ker(P)$, Ker(P) is a \mathfrak{g} -submodule of V complementary to U, as desired.

Proof. (Levi's Theorem, using induction on dim \mathfrak{g}) If $Rad(\mathfrak{g})$ is not abelian, consider $\bar{\mathfrak{g}} = \mathfrak{g}/[Rad(\mathfrak{g}), Rad(\mathfrak{g})]$. Since $dim(\bar{\mathfrak{g}}) < dim(\mathfrak{g})$, by the inductive assumption there exists semisimple $\bar{\mathfrak{s}} \subset \bar{\mathfrak{g}}$ such that $\bar{\mathfrak{g}} = \bar{\mathfrak{s}} + Rad(\bar{\mathfrak{g}})$. Hence $\mathfrak{g} = \mathfrak{g}_1 + Rad(\mathfrak{g})$, where \mathfrak{g}_1 is the preimage of $\bar{\mathfrak{s}}$ in \mathfrak{g} , and $dim(\mathfrak{g}_1) < dim(\mathfrak{g})$. Now apply the inductive assumption to \mathfrak{g}_1 , so that we can write $\mathfrak{g}_1 = \mathfrak{s} + Rad(\mathfrak{g}_1)$, with \mathfrak{s} semisimple. Thus $\mathfrak{g} = \mathfrak{s} + (Rad(\mathfrak{g}_1) + Rad(\mathfrak{g}))$. Note that $Rad(\mathfrak{g}_1) + Rad(\mathfrak{g})$ is an ideal of \mathfrak{g} : Write an arbitrary element of $Rad(\mathfrak{g}_1) + Rad(\mathfrak{g})$ as a + b, where $a \in Rad(\mathfrak{g}_1)$ and $b \in Rad(\mathfrak{g})$. Write an arbitrary element of \mathfrak{g} as c + d, where $c \in \mathfrak{g}_1$ and $d \in Rad(\mathfrak{g})$. Then

$$[a+b,c+d] = [a,c+d] + [b,c+d]$$
$$= [a,c] + [a,d] + [b,c+d],$$

We have $[a,c] \in Rad(\mathfrak{g}_1)$ because $Rad(\mathfrak{g}_1)$ is an ideal of \mathfrak{g}_1 , [a,d], $[b,c+d] \in Rad(\mathfrak{g})$ because $Rad(\mathfrak{g})$ is an ideal. Furthermore, $Rad(\mathfrak{g}_1) + Rad(\mathfrak{g})$ is solvable, because $(Rad(\mathfrak{g}_1) + Rad(\mathfrak{g}))^{(n)} \subseteq Rad(\mathfrak{g}_1)^{(n)} + Rad(\mathfrak{g})$, which follows from the fact that $Rad(\mathfrak{g}_1)$ is a sub-algebra and $Rad(\mathfrak{g})$ is an ideal of \mathfrak{g} . Hence, if $Rad(\mathfrak{g}_1)^{(n)} = 0$, and $Rad(\mathfrak{g})^{(m)} = 0$, then $(Rad(\mathfrak{g}_1) + Rad(\mathfrak{g}))^{(m+n)} = 0$. Hence, we have a solvable ideal of \mathfrak{g} which contains $Rad(\mathfrak{g})$, so we conclude that our ideal is in fact $Rad(\mathfrak{g})$, yielding the equality

$$\mathfrak{g} = s + Rad(\mathfrak{g}).$$

What remains is to consider the case when $Rad(\mathfrak{g})$ is abelian. Consider the \mathfrak{g} -module structure $End\ \mathfrak{g}$ defined by:

$$a * m = (ad \ a)m - m(ad \ a)$$

for $a \in \mathfrak{g}$, $m \in End \mathfrak{g}$. Further, consider the following submodule of $End \mathfrak{g}$:

$$\tilde{M} = \{ m \in End \ \mathfrak{g} | m(\mathfrak{g}) \subset Rad(\mathfrak{g}) \ \text{and} \ m(Rad(\mathfrak{g})) = 0 \}$$

Let $M = \tilde{M}/\tilde{R}$ where $\tilde{R} = \{ad(a) | a \in Rad(\mathfrak{g})\}$. Note that since $Rad(\mathfrak{g})$ is abelian, it acts trivially on M. Hence, M is actually an \mathfrak{s} -module. (where $\mathfrak{s} = \mathfrak{g}/Rad(\mathfrak{g})$)

Exercise 23.1: Show that \tilde{M} is a submodule of $End(\mathfrak{g})$, and \tilde{R} is a submodule of \tilde{M} .

Proof. \tilde{M} is clearly a subspace of $End(\mathfrak{q})$. Given $a \in \mathfrak{q}$ and $m \in \tilde{M}$:

$$(a*m)(\mathfrak{g}) \subset (ad\ a)m(\mathfrak{g}) + m((ad\ a)\mathfrak{g}) \subset (ad\ a)Rad(\mathfrak{g}) + m(\mathfrak{g}) \subset Rad(\mathfrak{g})$$

 $(a*m)(Rad(\mathfrak{g})) \subset (ad\ a)m(Rad(\mathfrak{g})) + m(ad\ a)(Rad(\mathfrak{g})) \subset (ad\ a)0 + m(Rad(\mathfrak{g})) = 0$ Hence $a*m \in \tilde{M}$. So \tilde{M} is a submodule of $End(\mathfrak{g})$.

R is also clearly a subspace of $End(\mathfrak{g})$. Given $ad\ a \in R$, with $a \in Rad(\mathfrak{g})$:

$$(ad\ a)(\mathfrak{g}) = [a, \mathfrak{g}] \subset Rad(\mathfrak{g})$$
$$(ad\ a)(Rad(\mathfrak{g})) = [a, Rad(\mathfrak{g})] = 0$$

Hence \tilde{R} is a subspace of \tilde{M} . To see that it is a submodule, note that for $ad\ a\in \tilde{R}$ and $b\in \mathfrak{g}$:

$$b*(ad\ a) = (ad\ b)(ad\ a) - (ad\ a)(ad\ b) = [ad\ b, ad\ a] = ad([b,a]) \in \tilde{R}$$

Let P_0 be a projector of \mathfrak{g} to Rad \mathfrak{g} , and consider the following 1-cocycle:

$$f: s \to M$$

 $a \to (\operatorname{ad} \tilde{a})P_0 - P_0(\operatorname{ad} \tilde{a}),$

where \tilde{a} is any preimage of a under the map $\mathfrak{g} \to \mathfrak{g}/\mathrm{Rad}\ \mathfrak{g}$.

Exercise 23.2: The map f above is a well-defined 1-cocycle.

Proof. Let $b \in \text{Rad } \mathfrak{g}$.

$$(\operatorname{ad} \tilde{a})P_0 - P_0(\operatorname{ad} \tilde{a}) - ((\operatorname{ad} \tilde{a} + \tilde{b})P_0 - P_0(\operatorname{ad} \tilde{a} + \tilde{b})) =$$

$$(\operatorname{ad} \tilde{b})P_0 - P_0(\operatorname{ad} \tilde{b}) = \operatorname{ad} - \tilde{b},$$

since we are assuming Rad \mathfrak{g} is abelian, and since P_0 acts as the identity on Rad \mathfrak{g} . Hence, the map f is well-defined, since the target of our map is \tilde{M}/\tilde{R} .

It remains to make sure that our map is indeed a 1-cocycle. In the notation above, it's clear that $[\tilde{a}, \tilde{b}]$ maps to [a, b]. So, on one hand,

$$f([a,b]) = (\operatorname{ad} [\tilde{a}, \tilde{b}])P_0 - P_0(\operatorname{ad} [\tilde{a}, \tilde{b}])$$

and on the other hand

$$\begin{split} af(b) - bf(a) &= (\text{ad } a)f(b) - f(b)(\text{ad } a) - (\text{ad } b)f(a) + f(a)(\text{ad } b) \\ &= (\text{ad } a)((\text{ad } \tilde{b})P_0 - P_0(\text{ad } \tilde{b})) - ((\text{ad } \tilde{b})P_0 - P_0(\text{ad } \tilde{b}))(\text{ad } a) \\ &- (\text{ad } b)((\text{ad } \tilde{a})P_0 - P_0(\text{ad } \tilde{a})) + ((\text{ad } \tilde{a})P_0 - P_0(\text{ad } \tilde{a}))(\text{ad } b) \\ &= (\text{ad } [\tilde{a}, \tilde{b}])P_0 - P_0(\text{ad } [\tilde{a}, \tilde{b}]). \end{split}$$

By the Fundamental Theorem on Cohomology, which may be applied because s is semi-simple, there exists $m \in M$ such that $a_m = (\operatorname{ad} \widetilde{a})P_0 - P_0(\operatorname{ad} \widetilde{a})$. But, simply writing out a_m and subtracting, this means that

(1)
$$(\operatorname{ad} \widetilde{a})(P_0 - \widetilde{m}) - (P_0 - \widetilde{m})(\operatorname{ad} \widetilde{a}) = \operatorname{ad} r_a,$$

where \widetilde{m} is a preimage of m in \widetilde{M} , and $r_a \in \text{Rad } \mathfrak{g}$.

Consider the projector $P = P_0 - \tilde{m}$ of \mathfrak{g} to Rad \mathfrak{g} .

Case 1: If all $r_a = 0$, then equation 1 above implies that ad \tilde{a} commutes with P for all $a \in \mathfrak{g}$. In this case, let $s = \operatorname{Ker} P$. Because P is a projector, $s \cap \operatorname{Rad} \mathfrak{g} = 0$ and $\mathfrak{g} = s + \operatorname{Rad} \mathfrak{g}$. So we get that $\mathfrak{g} = s \oplus \operatorname{Rad} \mathfrak{g}$ as vector spaces. This is in fact a direct sum of ideals: that Rad \mathfrak{g} is an ideal is clear, and s is an ideal because, by the commutativity mentioned above, for every $a \in \mathfrak{g}, s_1 \in s$,

$$0 = [a, P(s_1)] = P([a, s_1]).$$

Case 2: Now assume that not all $r_a = 0$. Let $\mathfrak{g}_1 = \{a \in \mathfrak{g} \mid P(\text{ad } a) = (\text{ad } a)P.\}$ This is a subalgebra by the first properties of the adjoint representation. It is a

proper subalgebra by our assumption, and equation 1 together with the facts that $(\operatorname{ad} r_a)P = 0$ since Rad \mathfrak{g} is abelian and $P(\operatorname{ad} r_a) = \operatorname{ad} r_a$ since P is a projector, implies

$$P(\text{ad } a - r_a) = (\text{ad } a - r_a)P.$$

Hence, $\mathfrak{g} = \mathfrak{g}_1 + \text{Rad } \mathfrak{g}$.

Applying the inductive assumption, we can find a subalgebra s of \mathfrak{g}_1 such that $\mathfrak{g}_1 = s + \operatorname{Rad} \mathfrak{g}_1$, a direct sum of vector spaces. Hence, $\mathfrak{g} = s + \operatorname{Rad} \mathfrak{g} + \operatorname{Rad} \mathfrak{g}_1$. As in the proof of Weyl's Theorem, this is equivalent to $\mathfrak{g} = s + \operatorname{Rad} \mathfrak{g}$.

Proof. (Mal'cev's Theorem) Suppose the radical is abelian, and, from Levi's Theorem, we have $\mathfrak{g}=s\oplus \mathrm{Rad}\ \mathfrak{g}$. Let P_s and P_r be the canonical projectors of \mathfrak{g} onto s and $\mathrm{Rad}\ \mathfrak{g}$, respectively. Let $a_r,b_r\in \mathrm{Rad}\ \mathfrak{g}$, and $a_s,b_s\in s$. Say $a=a_r+a_s$, $b=b_r+b_s$. Such decompositions exist and are unique, because of our decomposition of \mathfrak{g} . Because $\mathrm{Rad}\ \mathfrak{g}$ is an ideal, $P_s([a,b])=[s_1,s_2]$, and thus P_s is a Lie algebra homomorphism. Furthermore, by again considering the decomposition $a=a_r+a_s$, it's clear that $P_r+P_s=1$.

Let $s_1 \oplus \text{Rad } \mathfrak{g} = \mathfrak{g}$ be another Levi decomposition.

By the adjoint representation, since it is an ideal, Rad \mathfrak{g} is an s_1 module. Define the 1-cocycle $f: s_1 \to \text{Rad } \mathfrak{g}$ by the formula $f(a) = P_r(a)$.

Exercise 23.3: Check that f is indeed a 1-cocycle.

Proof. Write decompositions of two elements $a, b \in s_1$ as above (in particular, $a_s \in s$, not s_1). Then

$$P_r([a_r + a_s, b_r + b_s]) = [a_r, b_r] + [a_s, b_r] + [a_r, b_s]$$
$$= [a_s, b_r] + [a_r, b_s]$$

since we are assuming Rad \mathfrak{g} to be abelian. This clearly equals

$$[a_r + a_s, P_r(b_r + b_s)] - [b_r + b_s, P_r(a_r + a_s)],$$

and so f is a 1-cocycle.

By the Fundamental Theorem, this cocycle is trivial. So, there exists $r \in \text{Rad } \mathfrak{g}$ such that $P_r(a) = [a, r]$, for any $a \in s_1$. So we have that $P_r = -\text{ad } r$ on s_1 .

Since Rad \mathfrak{g} is abelian, $(ad r)^2 = 0$. Hence $\exp(ad r) = 1 + (ad r)$, and, from Exercise 9.2, that must be an automorphism of \mathfrak{g} . Call it σ .

Let $a \in s_1$. We have

$$\sigma(a) = (1 + \text{ad } r)a = (1 - P_r)a = P_s(a) \in s.$$

Hence, we have an automorphism σ of \mathfrak{g} such that $\sigma(s_1) \subseteq s$. An automorphism is, of course, injective, and by the vector space decompositions $\mathfrak{g} = s \oplus \text{Rad } \mathfrak{g}$ and $\mathfrak{g} = s_1 \oplus \text{Rad } \mathfrak{g}$, we have that the dimensions of s and s_1 are equal. Hence, $\sigma(s_1) = s$.

Exercise 23.4: As in the proof of Levi's Theorem, reduce Mal'cev's Theorem in the case of non-abelian radical Rad $\mathfrak g$ to the case where Rad $\mathfrak g$ is abelian.

Proof. We take a slightly different route, following Jacobson, [Ja62]. Let \mathfrak{N} denote the sum of all the nilpotent ideals of \mathfrak{g} . That \mathfrak{N} is a nilpotent ideal is obvious. We will prove inductively that for every $i \geq 1$, there is an automorphism A_i of \mathfrak{g} such

that $A_i(s_1) \subseteq s + \mathfrak{N}^{(i)}$. Considering dimensions and the fact that \mathfrak{N} is solvable, we will be able to conclude Mal'cev's Theorem.

Considering the equation

$$P_r([a_r + a_s, b_r + b_s]) = [a_r, b_r] + [a_s, b_r] + [a_r, b_s],$$

we see that $P_r([a, b]) \in [\mathfrak{g}, \text{Rad } \mathfrak{g}]$ for each $a, b \in s_1$.

Lemma 1. With notation as above, we have that $[\mathfrak{g}, \operatorname{Rad} \mathfrak{g}] \subseteq \mathfrak{N}$.

Proof. We know from lecture five that $[\operatorname{Rad} \mathfrak{g}, \operatorname{Rad} \mathfrak{g}] \subseteq \mathfrak{N}$. By Engel's Theorem, this is equivalent to ad $[a_r, b_r]$ being nilpotent for $a_r, b_r \in \operatorname{Rad} \mathfrak{g}$. Using the Jacobi identity, and the fact that Rad \mathfrak{g} is an ideal, we get that ad $[a, b_r]$ is nilpotent for any $a \in \mathfrak{g}$.

Lemma 2. As s_1 is semi-simple, we have $[s_1, s_1] = s_1$.

Proof. This follows from the structure theorem: the result holds for a simple Lie algebra t because it contain no non-trivial proper ideals, and thus [t,t] of such an ideal is either 0 or the whole simple algebra, and as t is not abelian, it must be the latter. The result continues to hold under passage to direct sums.

Now, consider any $a \in s_1$. We have just seen that we may write $a = [a_1, a_2]$, for some $a_1, a_2 \in s_1$. Hence, from what we proved above, $P_r(a) \in \mathfrak{N}$. We know that $P_r + P_s = 1$, so we have that $s_1 \subseteq s + \mathfrak{N}^{(1)}$. This provides the first step in our induction, with the identity automorphism playing the role of A_1 .

Simplify notation by assuming that $s_1 \subseteq s + \mathfrak{N}^{(k)}$ (i.e., if necessary, replace s_1 with the isomorphic Lie Algebra $A_k(s_1)$). Because s is semi-simple, $s \cap \text{Rad } \mathfrak{g} = \emptyset$, and hence $P_r(s_1) \subseteq \mathfrak{N}^{(k)}$.

We can make $\mathfrak{N}^{(k)}$ into a s_1 -module by defining $a \cdot z = [P_s(a), z]$. We check that this is indeed a module:

$$\begin{split} [a,b] \cdot z &= [P_s([a,b]),z] \\ &= [[P_s(a),P_s(b)],z] \\ &= -[[P_s(b),z],P_s(a)] - [[z,P_s(a)],P_s(b)] \\ &= [P_s(a),[P_s(b),z]] + [P_s(b),[z,P_s(a)]] \\ &= [P_s(a),[P_s(b),z]] - [P_s(b),[P_s(a),z]] \\ &= a \cdot (b \cdot z) - b \cdot (a \cdot z), \end{split}$$

as required. As $\mathfrak{N}^{(k+1)}$ is an ideal, we can consider also $\mathfrak{N}^{(k)}/\mathfrak{N}^{(k+1)}$ as an s_1 -module, with action $a \cdot \overline{z} = \overline{[P_s(a), z]}$.

From what we saw two paragraphs ago, $[P_r(a), P_r(b)] \in \mathfrak{N}^{(k+1)}$, for $a, b \in s_1$. So,

$$\overline{P_r([a,b])} = \overline{[a_s,b_r]} - \overline{[b_s,a_r]} = a \cdot \overline{b_r} - b \cdot \overline{a_r}.$$

Define the map $f: a \to P_r(a)$. The map is linear because the projector is linear, and the above equation says precisely that f is a one-cocycle. Hence, by the fundamental theorem on cohomology, there is some element $\overline{z} \in \mathfrak{N}^{(k)}/\mathfrak{N}^{(k+1)}$ such that, for any $a \in s_1$, we have $\overline{P_r(a)} = a \cdot \overline{z} = \overline{[P_r(a), z]}$, where z is any lift of \overline{z} .

Let $A = \exp(\operatorname{ad} z)$. Again, from exercise 9.2, this is an automorphism. We have

$$A(a) = a + [z, a] + \frac{1}{2!} [z, [z, a]] + \cdots$$

$$\equiv a + [z, a] \mod \mathfrak{N}^{(k+1)}$$

$$\equiv a_r + a_s + [z, a_r] + [z, a_s] \mod \mathfrak{N}^{(k+1)}$$

and we know $a_s \in \mathfrak{N}^{(k)}$ and $\overline{a_r} = \overline{[a_r, z]}$, so

$$\equiv a_s \bmod \mathfrak{N}^{(k+1)}$$
.

Thus, we have that $A(s_1) \subseteq s + \mathfrak{N}^{(k+1)}$, and we proceed by induction.

As already mentioned, the proof is now complete, when we consider that the dimensions of s and s_1 must be the same.

REFERENCES

[Ja62] N. Jacobson, Lie Algebras, Interscience Publishers, 1962.