Univariate Linear Regression ¶

Importing Numpy for mathematical operations, Pandas for dataframe, Matplotlib and Seaborn for data Visualisation

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv("boston.csv")
df
```

Out[1]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273.0	21.0	391.99
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273.0	21.0	396.90
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90
506 r	ows × 14	colun	nns									
4												•

Checking for Null Values

```
In [2]:
```

```
df.isnull().sum()
```

Out[2]:

CRIM 0 ZN **INDUS** CHAS 0 NOX 0 0 RMAGE 0 0 DIS RAD 0 TAX PTRATIO 0 **LSTAT** 0 MEDV dtype: int64

Visualising Data

In [3]:

```
import seaborn as sns
plt.figure(figsize=(12, 12))
sns.heatmap(df.corr(),annot=True,linewidths=1)
```

Out[3]:

<AxesSubplot:>

LSTAT vs MEDV Plot

In [4]:

```
plt.xlabel('LSTAT')
plt.ylabel('MEDV')
plt.scatter(df.LSTAT,df.MEDV)
```

Out[4]:

<matplotlib.collections.PathCollection at 0x1dc34a1cfd0>

RM vs MEDV Plot

In [5]:

```
plt.xlabel('RM')
plt.ylabel('MEDV')
plt.scatter(df.RM,df.MEDV)
```

Out[5]:

<matplotlib.collections.PathCollection at 0x1dc34a92dc0>

Removing Outliers from Training Data

In [6]:

```
max_threshold=df['RM'].quantile(0.95)
min_threshold=df['RM'].quantile(0.05)
df=df[(df['RM']>min_threshold) & (df['RM']<max_threshold)] #x is training data with removed
df</pre>
```

Out[6]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	l
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273.0	21.0	391.99	
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273.0	21.0	396.90	
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90	
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45	
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90	
454 r	454 rows × 14 columns												

In [7]:

```
#Extracting target variable target=df.MEDV target
```

Out[7]:

```
24.0
       21.6
1
       34.7
3
       33.4
       36.2
501
       22.4
502
       20.6
503
       23.9
504
       22.0
505
       11.9
Name: MEDV, Length: 454, dtype: float64
```

Splitting Train and Test Data

```
In [8]:
```

```
train=df.iloc[:350,:]
test=df.iloc[350:,:]
tgt_test=target.iloc[350:]
tgt_train=target.iloc[:350]
```

```
In [9]:
```

x=df

Building the Model

In [10]:

```
def model(X,Y,lr=0.0001,itr=1000):
    m=c=0
    n=len(X)
    cost_list= []
    for i in range (itr):
        h=m*X +c
        error=Y-h
        cost=(1/n)*sum(error**2)
        cost_list.append(cost)
        md=(-2/n)*np.sum((error)*X)
        cd=(-2/n)*np.sum(error)
        m=m-lr*md
        c=c-lr*cd
        print(cost)

return m,c,cost_list
```

Calling the model and receiving the parameters

```
In [11]:
m,c,cost_list=model(x.RM,x.MEDV)
524.0601541850219
516.2954745582334
508.65605198057887
501.1398658452532
493.7449281412407
486.4692829274804
479.31100581553443
472.26820346058133
465.33901306063865
458.5216018638515
451.81416668373083
445.2149334222205
438.72215660044884
432.3341188970517
426.04913069394627
419.86552962943216
```

Printing Parameters

413.7816801584952 407.7959731202133 401.90682531213747

Slope

```
In [12]:

print("slope parameter")

m

slope parameter

Out[12]:
3.410725916661653

Intercept

In [13]:

print("intercept")
c

intercept

Out[13]:
```

Prediction using test data

0.49843630496613883

```
In [14]:
```

```
ypred=m*test.RM+c
```

Calculating MSE

In [15]:

```
mse=(np.square(np.subtract(ypred,tgt_test))).mean()
mse
```

Out[15]:

62.69464528254029

Visualising Result

Ploting Cost curve

```
In [16]:
```

```
plt.xlabel('Iterations')
plt.ylabel('Cost')
plt.plot(cost_list)
```

Out[16]:

[<matplotlib.lines.Line2D at 0x1dc34b1baf0>]

Result:

MSE from Univariate Linear Regression: 62.69

Multivariate Linear Regression on Boston dataset

Importing required libraries and CSV file in Pandas Dataframe

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df=pd.read_csv("boston.csv")
df
```

Out[1]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273.0	21.0	391.99
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273.0	21.0	396.90
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90
506 r	ows × 14	colun	nns									

In [2]:

df.shape[1]

Out[2]:

14

Finding Correlation between features

In [3]:

```
target=df['MEDV'] #extracting target variable
target
df.corr()
```

Out[3]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS
CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670
ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027
CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176
NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432
PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471
В	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996
MEDV	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929
4								•

Only Keeping the features with high correlation with target

```
In [4]:

X=df
X.drop(['RAD','B','DIS','CHAS','ZN','CRIM','TAX','MEDV','INDUS','NOX','PTRATIO','AGE'],axis
X
```

Out[4]:

	RM	LSTAT
0	6.575	4.98
1	6.421	9.14
2	7.185	4.03
3	6.998	2.94
4	7.147	5.33
501	6.593	9.67
502	6.120	9.08
503	6.976	5.64
504	6.794	6.48
505	6.030	7.88

506 rows × 2 columns

Only kept no of room(RM) and % lower status of the population(LSTAT)

Splitting Train and Test data

```
In [5]:
```

```
X.shape[1]
train=X.iloc[:300,:]
test=X.iloc[300:,:]
target_train=target.iloc[:300]
ytrue=target.iloc[300:]
```

Inserting 1s in train data

This is required since intercept(theta0) will also be calculated together with other weights.

```
In [6]:
```

```
ones = np.ones((train.shape[0],1))
train = np.hstack((ones,train))
ones = np.ones((test.shape[0],1))
test = np.hstack((ones,test))
print(train.shape)
(300, 3)
```

Building Model

```
In [7]:
```

```
def model(X,Y,lr=.0001,itr=3000):
    n=X.shape[1];
    theta=np.ones(n)
    err_list=[]

for i in range (itr):
        h=np.dot(X,theta)
        e=np.sum(np.square(h-Y))
        err_list.append(e/X.shape[0])
        grad = (np.dot(X.T,(h-Y))/X.shape[0])
        theta = theta - lr*grad

    return theta,err_list
```

Calling Model

```
In [8]:
```

```
theta,err_list=model(train,target_train)
```

Printing the parameters

```
In [9]:
```

```
theta
Out[9]:
```

```
Error Plot
```

array([1.43462609, 4.76132763, -0.60958751])

In [10]:

plt.plot(err_list)

Out[10]:

[<matplotlib.lines.Line2D at 0x22a153e1c70>]

Getting Prediction

In [11]:

ypred=np.dot(test,theta)

```
In [12]:
```

```
ypred
```

```
Out[12]:
```

```
array([30.44951206, 27.02069385, 27.07432536, 31.71562031, 31.66315139,
       27.49195325, 32.81964592, 29.45476509, 30.25850762, 23.79168725,
       17.40752232, 26.93814054, 22.96773683, 26.45336371, 27.04529257,
       21.58774389, 18.41937871, 19.2477976 , 25.50609245, 22.78057293,
       27.64188738, 27.60498488, 25.5039825 , 21.45572688, 28.24786729,
       28.95801953, 27.73916292, 22.60115785, 23.29650918, 27.11374166,
       25.14707261, 21.02558884, 25.37712284, 28.04471435, 27.36388776,
       25.29596506, 23.40490038, 23.0654084, 25.09592051, 23.99378964,
       24.18716145, 32.56476403, 27.30077685, 28.93963759, 31.3537938,
       23.65029401, 21.79346274, 28.58246038, 29.37460574, 30.88300809,
       28.69030911, 29.41276515, 24.70159118, 30.72569459, 23.49084503,
       26.30246448, 20.28325322, 23.79409007, 23.6092159 , 22.81238686,
       27.14891358, 22.54763839, 20.75316815, 20.14024924, 40.01436475,
       14.04945074, 16.53087003, 11.70183327, 23.11116913, 30.98081723,
       33.03572171, 25.2216697, 23.99428885, 3.59834188, -2.00903776,
       28.06135896, 18.92587986, 20.83544738, 17.37076835, 17.78755205,
       24.12055603, 19.7474108 , 13.40707071, 12.74568547, 3.56043988,
       7.77876095, 6.34518757, 5.74055994, 6.0043355, 14.38828252,
       18.20604861, 18.80955797, 9.75846489, 21.67408563, 19.49780612,
       21.80903908, 20.12321957, 16.65499286, 8.75086386, 11.02857783,
       13.62203708, 19.24890912, 19.54544598, 14.85142259, 11.07902331,
       14.48493013, 6.90922744, 20.74185499, 12.08589324, 22.00160214,
       22.68265956, 20.19533724, 2.5185278, 13.73875291, 0.4085197,
       14.36049102, 18.0046883 , 10.44929669, 17.22816041, 20.06390595,
       22.80349318, 20.46063599, 19.73142071, 16.2957156, 17.47089275,
       14.63957453, 19.66206749, 22.11316946, 17.80320497, 17.13302923,
       20.90641028, 21.96599979, 24.69281841, 22.19102136, 21.74550555,
       18.81236569, 21.19450942, 14.60272414, 8.95493863, 14.27925453,
       15.65805049, 20.03654277, 20.93226589, 20.82111128, 14.80535127,
       17.57013286, 20.78164286, 21.1760665 , 19.831616 , 20.21693075,
       22.93762016, 22.31327498, 20.88912994, 26.4306264, 22.06345614,
       21.45046739, 18.30006152, 19.37145455, 21.54214626, 21.42732306,
       23.33085568, 22.86239409, 22.98380351, 26.1724975 , 22.93896251,
       20.24164045, 19.31962241, 17.02047023, 18.59843214, 19.63857925,
       20.86755311, 23.24754469, 23.32961545, 27.56090262, 16.21643378,
       16.08286805, 20.91997983, 11.50388307, 19.89257475, 23.10124369,
       24.60786333, 28.85538028, 30.78115205, 22.51749407, 21.25648327,
       25.03869027, 21.41376238, 22.57048879, 16.39375663, 12.60064137,
        7.59151054, 18.90640307, 21.78365609, 21.28637692, 21.36595941,
       17.70261365, 14.21150214, 20.42657454, 22.21718651, 18.74568832,
       21.39575875, 26.93134796, 25.03889662, 31.21157409, 29.83295895,
       25.34188214])
```

Calculating MSE

```
In [13]:
```

```
MSE = np.square(np.subtract(ypred,ytrue)).mean()
```

```
In [14]:
MSE
Out[14]:
47.340435510898544
```

Closed Form

```
In [15]:

def normal(X, Y):
    theta = np.dot((np.linalg.inv(np.dot(X.T,X))), np.dot(X.T,Y))
    return theta

In [16]:
w=normal(train,target_train)
```

Printing parameters from closed form

```
In [17]:

w
Out[17]:
array([-36.37478967, 9.99214379, -0.21425652])
```

Calculating MSE for Closed Form

```
In [18]:

MSE = np.square(np.subtract(np.dot(test,w),ytrue)).mean()

In [19]:

MSE
```

Out[19]:

77.77401808489346

Result

MSE from Multivariate: 47.34

MSE from Closed Form: 77.77

Breast Cancer with Single feature

Importing all required libraries and loading breast cancer dataset to pandas dataframe.

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv("breast_cancer.csv")
```

In [2]:

df

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	
564	926424	М	21.56	22.39	142.00	1479.0	
565	926682	М	20.13	28.25	131.20	1261.0	
566	926954	М	16.60	28.08	108.30	858.1	
567	927241	М	20.60	29.33	140.10	1265.0	
568	92751	В	7.76	24.54	47.92	181.0	
569 r	ows × 33 c	olumns					
4							

Visualising Data and Pre-Processing

```
In [3]:
```

```
df.info()
```

RangeIndex: 569 entries, 0 to 568 Data columns (total 33 columns): Non-Null Count Dtype # Column -----0 id int64 569 non-null 1 diagnosis 569 non-null object 569 non-null 2 radius_mean float64 3 texture mean 569 non-null float64 4 float64 perimeter_mean 569 non-null 5 area mean 569 non-null float64 6 569 non-null float64 smoothness_mean 7 compactness mean 569 non-null float64 8 float64 concavity_mean 569 non-null float64 concave points_mean 569 non-null float64 10 569 non-null symmetry_mean 11 fractal_dimension_mean 569 non-null float64 12 radius_se 569 non-null float64 13 texture se 569 non-null float64 float64 perimeter se 569 non-null area se 569 non-null float64 smoothness_se 569 non-null float64 17 569 non-null float64 compactness_se 569 non-null float64 concavity_se 19 float64 concave points se 569 non-null float64 symmetry_se 569 non-null fractal_dimension_se float64 21 569 non-null radius_worst 569 non-null float64 float64 texture_worst 569 non-null 24 perimeter_worst 569 non-null float64 float64 25 area worst 569 non-null 569 non-null float64 26 smoothness_worst 27 compactness_worst 569 non-null float64 float64 28 569 non-null concavity_worst

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(31), int64(1), object(1)

memory usage: 146.8+ KB

Unnamed: 32

symmetry_worst

concave points_worst

Droping id and Unnamed 32 column

fractal dimension worst 569 non-null

id column is not required for prediction and unnamed 32 has all null values. So, dropping these two column.

float64 float64

float64

float64

569 non-null

569 non-null

0 non-null

```
In [4]:
```

29

```
X=df.drop(['id','Unnamed: 32'],axis=1)
X.replace({'M':1,'B':0},inplace=True)
```

In [5]:

```
X.info()
 14 al ca_sc
                                  JUJ HUH-HULL
                                                    I TOU COA
 15 smoothness se
                                  569 non-null
                                                    float64
                                569 non-null
                                                    float64
 16 compactness_se
 17 concavity_se
                                569 non-null
                                                    float64
                                569 non-null
569 non-null
 18 concave points_se
                                                    float64
                                  569 non-null
 19 symmetry_se
                                                    float64
 20 fractal_dimension_se 569 non-null float64
21 radius_worst 569 non-null float64
                              569 non-null
569 non-null
 22 texture_worst
                                                   float64
 23 perimeter_worst
                                                    float64
                               569 non-null float64
569 non-null float64
569 non-null float64
569 non-null float64
 24 area_worst
 25 smoothness_worst
 26 compactness_worst
 27 concavity_worst
 28 concave points_worst 569 non-null float64
29 symmetry_worst 569 non-null float64
 30 fractal_dimension_worst 569 non-null
                                                    float64
dtypes: float64(30), int64(1)
memory usage: 137.9 KB
```

Trying to visualise first few columns of dataset

In [6]:

sns.pairplot(df.iloc[:,1:5],hue='diagnosis')

Out[6]:

<seaborn.axisgrid.PairGrid at 0x2abdaff9e50>

In [7]:

plt.scatter(df.radius_worst,df.diagnosis)

Out[7]:

<matplotlib.collections.PathCollection at 0x2abdf651ca0>

Feature Selection

Trying to select required features from analysing correlation matrix and heatmap

In [8]:

X.corr()

Out[8]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	sr
diagnosis	1.000000	0.730029	0.415185	0.742636	0.708984	
radius_mean	0.730029	1.000000	0.323782	0.997855	0.987357	
texture_mean	0.415185	0.323782	1.000000	0.329533	0.321086	
perimeter_mean	0.742636	0.997855	0.329533	1.000000	0.986507	
area_mean	0.708984	0.987357	0.321086	0.986507	1.000000	
smoothness_mean	0.358560	0.170581	-0.023389	0.207278	0.177028	
compactness_mean	0.596534	0.506124	0.236702	0.556936	0.498502	
concavity_mean	0.696360	0.676764	0.302418	0.716136	0.685983	
concave points_mean	0.776614	0.822529	0.293464	0.850977	0.823269	
symmetry_mean	0.330499	0.147741	0.071401	0.183027	0.151293	
fractal_dimension_mean	-0.012838	-0.311631	-0.076437	-0.261477	-0.283110	
radius_se	0.567134	0.679090	0.275869	0.691765	0.732562	
texture_se	-0.008303	-0.097317	0.386358	-0.086761	-0.066280	
perimeter_se	0.556141	0.674172	0.281673	0.693135	0.726628	
area_se	0.548236	0.735864	0.259845	0.744983	0.800086	
smoothness_se	-0.067016	-0.222600	0.006614	-0.202694	-0.166777	
compactness_se	0.292999	0.206000	0.191975	0.250744	0.212583	
concavity_se	0.253730	0.194204	0.143293	0.228082	0.207660	
concave points_se	0.408042	0.376169	0.163851	0.407217	0.372320	
symmetry_se	-0.006522	-0.104321	0.009127	-0.081629	-0.072497	
fractal_dimension_se	0.077972	-0.042641	0.054458	-0.005523	-0.019887	
radius_worst	0.776454	0.969539	0.352573	0.969476	0.962746	
texture_worst	0.456903	0.297008	0.912045	0.303038	0.287489	
perimeter_worst	0.782914	0.965137	0.358040	0.970387	0.959120	
area_worst	0.733825	0.941082	0.343546	0.941550	0.959213	
smoothness_worst	0.421465	0.119616	0.077503	0.150549	0.123523	
compactness_worst	0.590998	0.413463	0.277830	0.455774	0.390410	
concavity_worst	0.659610	0.526911	0.301025	0.563879	0.512606	
concave points_worst	0.793566	0.744214	0.295316	0.771241	0.722017	
symmetry_worst	0.416294	0.163953	0.105008	0.189115	0.143570	
fractal_dimension_worst	0.323872	0.007066	0.119205	0.051019	0.003738	

31 rows × 31 columns

In [9]:

```
plt.figure(figsize=(25, 25))
sns.heatmap(X.corr(),annot=True,linewidth=1)
```

Out[9]:

<AxesSubplot:>

Extract target

In [10]:

target=X.diagnosis

```
In [11]:
```

```
target
Out[11]:
1
       1
3
       1
4
       1
564
       1
565
       1
       1
566
567
       1
568
Name: diagnosis, Length: 569, dtype: int64
```

Splitting into train and test

```
In [12]:
```

```
train=X.iloc[:400,:]
test=X.iloc[400:,:]
train_target=target.iloc[:400]
test_target=target.iloc[400:]
```

In [13]:

train

Out[13]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	CC
0	1	17.99	10.38	122.80	1001.0	0.11840	
1	1	20.57	17.77	132.90	1326.0	0.08474	
2	1	19.69	21.25	130.00	1203.0	0.10960	
3	1	11.42	20.38	77.58	386.1	0.14250	
4	1	20.29	14.34	135.10	1297.0	0.10030	
		•••	•••				
395	0	14.06	17.18	89.75	609.1	0.08045	
396	0	13.51	18.89	88.10	558.1	0.10590	
397	0	12.80	17.46	83.05	508.3	0.08044	
398	0	11.06	14.83	70.31	378.2	0.07741	
399	0	11.80	17.26	75.26	431.9	0.09087	

400 rows × 31 columns

```
In [14]:
```

test

Out[14]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	cc
400	1	17.91	21.02	124.40	994.0	0.12300	
401	0	11.93	10.91	76.14	442.7	0.08872	
402	0	12.96	18.29	84.18	525.2	0.07351	
403	0	12.94	16.17	83.18	507.6	0.09879	
404	0	12.34	14.95	78.29	469.1	0.08682	
564	1	21.56	22.39	142.00	1479.0	0.11100	
565	1	20.13	28.25	131.20	1261.0	0.09780	
566	1	16.60	28.08	108.30	858.1	0.08455	
567	1	20.60	29.33	140.10	1265.0	0.11780	
568	0	7.76	24.54	47.92	181.0	0.05263	

169 rows × 31 columns

In [15]:

target

Out[15]:

1

567

568

Name: diagnosis, Length: 569, dtype: int64

Logistic Regression with single feture

In [16]:

train_uni=train.radius_worst
test_uni=test.radius_worst

```
In [17]:
```

```
def model Uni(X,Y,lr=0.01,itr=100000):
    print("Starting model")
    m=X.shape[0]
    w=0
    cost_list=[]
    bias=0
    cost_prev = 1e10
    change = 10000
    while (change>1e-5):
                                          #Calculating Linear estimation
        linear=w*X+bias
        ypred=(1/(1+np.exp(-linear)))
                                          #Putting Linear estimation on sigmoid function
        cost=np.sum(np.square(ypred-Y))
        cost_list.append(cost)
        dw=(1/m)*np.dot(X.T,(ypred-Y))
        db=(1/m)*np.sum(ypred-Y)
        #print(cost)
        w=w-lr*dw
        bias=bias-lr*db
        change = abs((cost - cost_prev))
        cost_prev = cost
        if change < 1e-6 :</pre>
            break
        itr=itr-1
    #plt.plot(ypred)
    return w,bias,cost_list
```

```
In [18]:
```

0.8658272452976603

```
train_uni.shape

Out[18]:
(400,)
```

Calling Model and recieving parameters

```
In [19]:
m,c,cost_list=model_Uni(train_uni,train_target)
Starting model
In [20]:
m
Out[20]:
```

In [21]:

c

Out[21]:

-14.144941014426436

Error Plot

In [22]:

```
plt.plot(cost_list)
```

Out[22]:

[<matplotlib.lines.Line2D at 0x2abe29b1dc0>]

Predicting using Test Data

```
In [23]:
```

```
def predict(X,w=m,bias=c):
    n=X.shape[0]
    #ypred=[]
    for i in range (n):
        linear=w*X+bias
        ypred=1/(1+np.exp(-linear))
    ans=[]
    for i in ypred:
        if(i>0.5):
            ans.append(1)
        else:
            ans.append(0)
    print(ans)
    return ans
```

In [24]:

```
test_uni.shape[0]
```

Out[24]:

169

Testing Output

```
In [25]:
```

```
ypred=predict(test_uni)
```

In [26]:

```
unique_elements, counts_elements = np.unique(ypred, return_counts=True)
print("Frequency of unique values of the said array:")
print(np.asarray((unique_elements, counts_elements)))
```

```
Frequency of unique values of the said array: [[ 0 1] [118 51]]
```

```
In [27]:
```

```
unique_elements, counts_elements = np.unique(test_target, return_counts=True)
print("Frequency of unique values of the said array:")
print(np.asarray((unique_elements, counts_elements)))
```

```
Frequency of unique values of the said array: [[ 0 1] [130 39]]
```

Calculating F1 Score

```
In [28]:
```

```
from sklearn.metrics import f1_score
f1_score(test_target, ypred, average='micro') #Using Sklearn for metric calculation
```

Out[28]:

0.9053254437869822

Result

F1 Score: 0.90

Logistic Regression with multiple features ¶

Importing Pandas, Numpy, Matplotlib, Seaborn libraries for creating Dataframe, doing mathematical operations efficiently, ploting graphs for better visualisation of data and results respectively.

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv("breast_cancer.csv")
```

In [2]:

df

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	
564	926424	М	21.56	22.39	142.00	1479.0	
565	926682	М	20.13	28.25	131.20	1261.0	
566	926954	М	16.60	28.08	108.30	858.1	
567	927241	М	20.60	29.33	140.10	1265.0	
568	92751	В	7.76	24.54	47.92	181.0	
569 r	ows × 33 c	olumns					
4							

Pre-processing

Deleting unnecessary colomns

```
In [3]:
```

```
X=df.drop(['id','Unnamed: 32'],axis=1)
X
```

Out[3]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	CC		
0	М	17.99	10.38	122.80	1001.0	0.11840			
1	М	20.57	17.77	132.90	1326.0	0.08474			
2	М	19.69	21.25	130.00	1203.0	0.10960			
3	М	11.42	20.38	77.58	386.1	0.14250			
4	М	20.29	14.34	135.10	1297.0	0.10030			
564	М	21.56	22.39	142.00	1479.0	0.11100			
565	М	20.13	28.25	131.20	1261.0	0.09780			
566	М	16.60	28.08	108.30	858.1	0.08455			
567	М	20.60	29.33	140.10	1265.0	0.11780			
568	В	7.76	24.54	47.92	181.0	0.05263			
569 rows × 31 columns									
4							•		

Replacing characters of target feature to 1s and 0s

There are two categories in target column M for Malignant and B for Benign. Replacing M with 1 and B with 0.

```
In [4]:
```

```
X=X.replace({'M':1,'B':0})
X
```

Out[4]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	CC
0	1	17.99	10.38	122.80	1001.0	0.11840	
1	1	20.57	17.77	132.90	1326.0	0.08474	
2	1	19.69	21.25	130.00	1203.0	0.10960	
3	1	11.42	20.38	77.58	386.1	0.14250	
4	1	20.29	14.34	135.10	1297.0	0.10030	
564	1	21.56	22.39	142.00	1479.0	0.11100	
565	1	20.13	28.25	131.20	1261.0	0.09780	
566	1	16.60	28.08	108.30	858.1	0.08455	
567	1	20.60	29.33	140.10	1265.0	0.11780	
568	0	7.76	24.54	47.92	181.0	0.05263	
	ows × 31 co	olumns					
4							

Checking for Correlation

In [5]:

X.corr()

Out[5]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean sr
diagnosis	1.000000	0.730029	0.415185	0.742636	0.708984
radius_mean	0.730029	1.000000	0.323782	0.997855	0.987357
texture_mean	0.415185	0.323782	1.000000	0.329533	0.321086
perimeter_mean	0.742636	0.997855	0.329533	1.000000	0.986507
area_mean	0.708984	0.987357	0.321086	0.986507	1.000000
smoothness_mean	0.358560	0.170581	-0.023389	0.207278	0.177028
compactness_mean	0.596534	0.506124	0.236702	0.556936	0.498502
concavity_mean	0.696360	0.676764	0.302418	0.716136	0.685983
concave points_mean	0.776614	0.822529	0.293464	0.850977	0.823269
symmetry_mean	0.330499	0.147741	0.071401	0.183027	0.151293
fractal_dimension_mean	-0.012838	-0.311631	-0.076437	-0.261477	-0.283110
radius_se	0.567134	0.679090	0.275869	0.691765	0.732562
texture_se	-0.008303	-0.097317	0.386358	-0.086761	-0.066280
perimeter_se	0.556141	0.674172	0.281673	0.693135	0.726628
area_se	0.548236	0.735864	0.259845	0.744983	0.800086
smoothness_se	-0.067016	-0.222600	0.006614	-0.202694	-0.166777
compactness_se	0.292999	0.206000	0.191975	0.250744	0.212583
concavity_se	0.253730	0.194204	0.143293	0.228082	0.207660
concave points_se	0.408042	0.376169	0.163851	0.407217	0.372320
symmetry_se	-0.006522	-0.104321	0.009127	-0.081629	-0.072497
fractal_dimension_se	0.077972	-0.042641	0.054458	-0.005523	-0.019887
radius_worst	0.776454	0.969539	0.352573	0.969476	0.962746
texture_worst	0.456903	0.297008	0.912045	0.303038	0.287489
perimeter_worst	0.782914	0.965137	0.358040	0.970387	0.959120
area_worst	0.733825	0.941082	0.343546	0.941550	0.959213
smoothness_worst	0.421465	0.119616	0.077503	0.150549	0.123523
compactness_worst	0.590998	0.413463	0.277830	0.455774	0.390410
concavity_worst	0.659610	0.526911	0.301025	0.563879	0.512606
concave points_worst	0.793566	0.744214	0.295316	0.771241	0.722017
symmetry_worst	0.416294	0.163953	0.105008	0.189115	0.143570
fractal_dimension_worst	0.323872	0.007066	0.119205	0.051019	0.003738
31 rows x 31 columns					

31 rows × 31 columns

•

Extracting target Variable

```
In [6]:
```

```
target=X[['diagnosis']]
```

Only kept radius mean and concavity worst features for training and predicting

```
In [7]:
```

```
X=X[['radius_mean','concavity_worst']]
#X=X.values
X
```

Out[7]:

	radius_mean	concavity_worst
0	17.99	0.7119
1	20.57	0.2416
2	19.69	0.4504
3	11.42	0.6869
4	20.29	0.4000
564	21.56	0.4107
565	20.13	0.3215
566	16.60	0.3403
567	20.60	0.9387
568	7.76	0.0000

569 rows × 2 columns

Splitting Data for Train and Test & inserting a colomn of 1 in feature matix

```
In [10]:
xtrain=X.iloc[:400,:]
xtest=X.iloc[400:,:]
ytrain=target.iloc[:400]
ytest=target.iloc[400:]
ones=np.ones((xtrain.shape[0],1))
xtrain=np.hstack((ones,xtrain))
print(xtrain.shape)
ones=np.ones((xtest.shape[0],1))
xtest=np.hstack((ones,xtest))
xtest.shape
(400, 3)
Out[10]:
(169, 3)
In [11]:
print(xtrain.shape,xtest.shape,ytrain.shape,ytest.shape)
(400, 3) (169, 3) (400, 1) (169, 1)
In [12]:
theta=np.zeros((xtrain.shape[1],1))
theta.shape
Out[12]:
```

Building Model

```
In [13]:
```

(3, 1)

```
def model(x,y,theta,lr=0.007,itr=100000):
    cost_list=[]
    n=x.shape[0]

    for i in range (itr):
        l=np.dot(x,theta)
        h=1/(1+np.exp(-1))
        err=h-y
        cost=-(1/n)*np.sum((y*np.log(h))+((1-y)*np.log(1-h)))
        print(cost)
        cost_list.append(cost)

        grad=(1/n)*(np.dot(x.T,err))
        theta=theta-lr*grad

    return theta,cost_list
```

Calling Model

In [14]:

```
theta,cost=model(xtrain,ytrain,theta)
```

In [15]:

```
cost
 diagnosis
              0.686821
 dtype: float64,
 diagnosis
              0.686755
 dtype: float64,
 diagnosis
              0.686689
 dtype: float64,
 diagnosis
              0.686623
 dtype: float64,
 diagnosis
              0.686556
 dtype: float64,
 diagnosis
              0.68649
 dtype: float64,
 diagnosis
              0.686424
 dtype: float64,
 diagnosis
              0.686358
 dtype: float64,
 diagnosis
              0.686292
 dtype: float64,
 diagnosis
              0.686226
```

Plotting the change of cost with increasing in iterations

In [16]:

Prediction

```
In [17]:
```

```
def predict(x,theta):
    l=np.dot(x,theta)
    ypred=1/(1+np.exp(-1))
    ans=[]

for i in ypred:
    if(i>=0.5):
        ans.append(1)
    else:
        ans.append(0)

#print(ypred)
    return ans
```

xtest contains test data and theta are model parameters

```
In [18]:
```

```
ypred=predict(xtest,theta)
```

Result

Printing prediced value of Test Data

```
In [19]:
```

```
ypred
out[19]:
[1,
 0,
 0,
 0,
 0,
 0,
 1,
 0,
 1,
 0,
 0,
 0,
 0,
 1,
 0,
 0,
 0,
 1,
```

F1 Score

```
In [21]:
```

```
from sklearn.metrics import f1_score
f1=f1_score(ytest,ypred,average='micro')
f1
```

Out[21]:

0.9171597633136095

Accuracy

In [22]:

```
# ypred=np.array(ypred, dtype='int64')
# y_= ypred > 0.5
# y_=np.array(y_, dtype='int64')
# acc=(1-np.sum(np.absolute(y_-ytest))/ytest.shape[0])
# acc

def accuracy_1(X, Y, theta):
    lines_1 = np.dot(X,theta)
    y_pred_1 = 1/(1+np.exp(-lines_1))

y_pred_1 = y_pred_1 > 0.5

y_pred_1 = np.array(y_pred_1, dtype='int64')
    acc = (1-np.sum(np.absolute(y_pred_1-Y))/Y.shape[0])*100

print("Accuracy of the model is : ", round(acc,2), "%")
    return y_pred_1
```

In [23]:

```
A = accuracy_1(xtest,ytest,theta)
```

Accuracy of the model is : diagnosis 91.72 dtype: float64 %

Result Summary

F1 Score: 0.9171

Accuracy: 91.72

Naive Baye's Classifier

Importing Pandas, Numpy, Matplotlib, Seaborn libraries for creating Dataframe, doing mathematical operations efficiently, plotting graphs for better visualisation of data and results respectively.

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv("breast_cancer.csv")
```

Out[1]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	
564	926424	М	21.56	22.39	142.00	1479.0	
565	926682	М	20.13	28.25	131.20	1261.0	
566	926954	М	16.60	28.08	108.30	858.1	
567	927241	М	20.60	29.33	140.10	1265.0	
568	92751	В	7.76	24.54	47.92	181.0	
569 rows × 33 columns							
4							•
In []:						

Pre-Processing

Data contains columns like id and Unnamed 32. Id is not required for any type of prediction or training and Unnamed 32 is column of all NULL valus. So, dropping those two columns

```
In [2]:
```

```
X=df.drop(['id','Unnamed: 32'],axis=1)
```

Out[2]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	CC
0	М	17.99	10.38	122.80	1001.0	0.11840	
1	М	20.57	17.77	132.90	1326.0	0.08474	
2	М	19.69	21.25	130.00	1203.0	0.10960	
3	М	11.42	20.38	77.58	386.1	0.14250	
4	М	20.29	14.34	135.10	1297.0	0.10030	
		•••	•••				
564	М	21.56	22.39	142.00	1479.0	0.11100	
565	М	20.13	28.25	131.20	1261.0	0.09780	
566	М	16.60	28.08	108.30	858.1	0.08455	
567	М	20.60	29.33	140.10	1265.0	0.11780	
568	В	7.76	24.54	47.92	181.0	0.05263	
569 r	ows × 31 co	olumns					
4							•

Our target variable 'diagnosis' is a character feature where M denotes Malignant or Cancerous and B denotes Benign or Not cancerous. Changin M to 1 and B to 0 for training purposes.

In [3]:

```
X=X.replace({'M':1,'B':0})
```

Out[3]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	CC
0	1	17.99	10.38	122.80	1001.0	0.11840	
1	1	20.57	17.77	132.90	1326.0	0.08474	
2	1	19.69	21.25	130.00	1203.0	0.10960	
3	1	11.42	20.38	77.58	386.1	0.14250	
4	1	20.29	14.34	135.10	1297.0	0.10030	
564	1	21.56	22.39	142.00	1479.0	0.11100	
565	1	20.13	28.25	131.20	1261.0	0.09780	
566	1	16.60	28.08	108.30	858.1	0.08455	
567	1	20.60	29.33	140.10	1265.0	0.11780	
568	0	7.76	24.54	47.92	181.0	0.05263	

569 rows × 31 columns

Looking at target distribution(Diagnosis)

In [4]:

```
X["diagnosis"].hist()
```

Out[4]:

<AxesSubplot:>

No. of Benign is more that no. of malignant. Data is not properly distributed.

Extracting Target variable

In [5]:

```
target=X[['diagnosis']]
target
```

Out[5]:

	diagnosis
0	1
1	1
2	1
3	1
4	1
564	1
565	1
566	1
567	1
568	0

569 rows × 1 columns

Feature Selection

Now we need to select the input features for training the model. For this Pearson Correlation technique is used. First we analyse the using correlation matrix and heatmap. Only selecting the features which has highest correlation with output feature and also exluding the features which are highly correlated among themselves only.

In [6]:

X.corr()

Out[6]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	sr
diagnosis	1.000000	0.730029	0.415185	0.742636	0.708984	
radius_mean	0.730029	1.000000	0.323782	0.997855	0.987357	
texture_mean	0.415185	0.323782	1.000000	0.329533	0.321086	
perimeter_mean	0.742636	0.997855	0.329533	1.000000	0.986507	
area_mean	0.708984	0.987357	0.321086	0.986507	1.000000	
smoothness_mean	0.358560	0.170581	-0.023389	0.207278	0.177028	
compactness_mean	0.596534	0.506124	0.236702	0.556936	0.498502	
concavity_mean	0.696360	0.676764	0.302418	0.716136	0.685983	
concave points_mean	0.776614	0.822529	0.293464	0.850977	0.823269	
symmetry_mean	0.330499	0.147741	0.071401	0.183027	0.151293	
fractal_dimension_mean	-0.012838	-0.311631	-0.076437	-0.261477	-0.283110	
radius_se	0.567134	0.679090	0.275869	0.691765	0.732562	
texture_se	-0.008303	-0.097317	0.386358	-0.086761	-0.066280	
perimeter_se	0.556141	0.674172	0.281673	0.693135	0.726628	
area_se	0.548236	0.735864	0.259845	0.744983	0.800086	
smoothness_se	-0.067016	-0.222600	0.006614	-0.202694	-0.166777	
compactness_se	0.292999	0.206000	0.191975	0.250744	0.212583	
concavity_se	0.253730	0.194204	0.143293	0.228082	0.207660	
concave points_se	0.408042	0.376169	0.163851	0.407217	0.372320	
symmetry_se	-0.006522	-0.104321	0.009127	-0.081629	-0.072497	
fractal_dimension_se	0.077972	-0.042641	0.054458	-0.005523	-0.019887	
radius_worst	0.776454	0.969539	0.352573	0.969476	0.962746	
texture_worst	0.456903	0.297008	0.912045	0.303038	0.287489	
perimeter_worst	0.782914	0.965137	0.358040	0.970387	0.959120	
area_worst	0.733825	0.941082	0.343546	0.941550	0.959213	
smoothness_worst	0.421465	0.119616	0.077503	0.150549	0.123523	
compactness_worst	0.590998	0.413463	0.277830	0.455774	0.390410	
concavity_worst	0.659610	0.526911	0.301025	0.563879	0.512606	
concave points_worst	0.793566	0.744214	0.295316	0.771241	0.722017	
symmetry_worst	0.416294	0.163953	0.105008	0.189115	0.143570	
fractal_dimension_worst						

31 rows × 31 columns

Looking for correlation from heatmap

In [7]:

```
plt.figure(figsize=(25, 25))
sns.heatmap(X.corr(),annot=True,linewidth=1)
```

Out[7]:

<AxesSubplot:>

The features related to area, perimeter, radius are highly correlated to diagnosis, but also they are correlated to themselves because all are related to radius only. So, taking only one among them.

Choosing radius_mean, texture_mean, smoothness_mean ans features

In [8]:

```
features=X[['radius_mean','texture_mean','smoothness_mean']]
features
```

Out[8]:

	radius_mean	texture_mean	smoothness_mean
0	17.99	10.38	0.11840
1	20.57	17.77	0.08474
2	19.69	21.25	0.10960
3	11.42	20.38	0.14250
4	20.29	14.34	0.10030
564	21.56	22.39	0.11100
565	20.13	28.25	0.09780
566	16.60	28.08	0.08455
567	20.60	29.33	0.11780
568	7.76	24.54	0.05263

569 rows × 3 columns

Splitting train and test data

In [9]:

```
xtrain=features.iloc[:400,:]
xtest=features.iloc[400:,:]
ytrain=target.iloc[:400]
ytest=target.iloc[400:]
#print(xtrain,xtest,ytrain,ytest)
```

In [10]:

```
result = pd.concat([features, target], axis=1)
result
train=result.iloc[:400,:]
test=result.iloc[400:,:]
```

Checking the Distribution of the Data

In [19]:

```
fig, axes = plt.subplots(1, 3, figsize=(18, 6), sharey=True)
sns.histplot(features, ax=axes[0], x="radius_mean", kde=True)
sns.histplot(features, ax=axes[1], x="smoothness_mean", kde=True)
sns.histplot(features, ax=axes[2], x="texture_mean", kde=True)
```

Out[19]:

<AxesSubplot:xlabel='texture_mean', ylabel='Count'>

All the features are following almost Normal/Gaussian **Distribution**

calculating Prior Probabilities

P(Y=y) for all y

```
In [12]:
```

```
def cal_prior(train):
   #Extracting all classes
   classes=sorted(list(train['diagnosis'].unique()))
   #lengh=Total length of the training data
   length=len(train)
   #Calculation prior of all the classes
   prior=[]
   for c in classes:
        #n=No of c in train data
        n=len(train[train['diagnosis']==c])
        prior.append(n/length)
   return prior
```

Calculate P(X=x|Y=y) using Gaussian distribution

```
In [13]:
```

```
def gaussian_likelihood(train,feature,feature_val,label):
   train = train[train['diagnosis']==label]
   mean, std = train[feature].mean(), train[feature].std()
   x = (1 / (np.sqrt(2 * np.pi) * std)) * np.exp(-((feature_val-mean)**2 / (2 * std**2 )))
   return x
```

Naive_Baye's Model

```
In [14]:
```

```
def naive bayes(train, X):
   features = list(train.columns)[:-1]
   prior = cal_prior(train)
   ypred = []
   for x in X:
        labels = sorted(list(train['diagnosis'].unique()))
        likelihood = [1]*len(labels)
        for j in range(len(labels)):
            for i in range(len(features)):
                likelihood[j] *= gaussian_likelihood(train, features[i], x[i], labels[j])
        post_prob = [1]*len(labels)
        for j in range(len(labels)):
            post_prob[j] = likelihood[j] * prior[j]
        ypred.append(np.argmax(post_prob))
   return np.array(ypred)
```

Calling Model on Test data

```
In [15]:
```

```
Y_pred = naive_bayes(train, xtest.values)
```

Printing predicted value

```
In [16]:
```

```
Y_pred
```

```
Out[16]:
```

```
array([1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
      1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0,
      0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
      0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,
      0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
      1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0], dtype=int64)
```

Result

Calculating F1 Score

```
In [17]:
```

```
from sklearn.metrics import confusion_matrix, f1_score
print(f1_score(ytest, Y_pred,average='micro'))
```

0.8402366863905325

F1 Score: 0.84

Result Analysis

Metrics	Linear Regression (Univariate)	Linear Regression (Multi-variate)	Linear Regression (Multi- variate) Closed Form	Logistic Regression (Uni- variate)	Logistic Regression (Multi- variate)	Naïve Bayes Classifier
MSE	62.69	47.34	77.77	NA	NA	NA
F1 Score	NA	NA	NA	0.9	0.91	0.8