Department of the Interior U.S. Geological Survey

# LANDSAT 7 (L7) SYSTEM CALIBRATION PARAMETER FILE (CPF) DEFINITION

Version 8.0

October 2017



# LANDSAT 7 (L7) SYSTEM CALIBRATION PARAMETER FILE (CPF) DEFINITION

#### October 2017

| Approved By:           |      |
|------------------------|------|
|                        |      |
| C. Engebretson         | Date |
| Landsat DPAS CCB Chair |      |
| USGS                   |      |

EROS Sioux Falls, South Dakota

## **Executive Summary**

This document describes the contents of the Calibration Parameter File (CPF) generated by the Image Assessment System (IAS) for the Enhanced Thematic Mapper Plus (ETM+). The IAS periodically updates the CPF. This file is stamped with applicability dates and is sent to the Landsat Archive Manager (LAM) for storage and eventual bundling with outbound Level 0 Reformatted Products (LORp). The CPF is also posted on the Landsat web pages for use by International Ground Stations (IGSs) and other interested users. The CPF supplies the radiometric and geometric correction parameters and other relevant coefficients required during Level 0 and Level 1 processing to create products of uniform consistency.

# **Document History**

| Document<br>Number | Document<br>Version | Publication<br>Date | Change<br>Number                                              |
|--------------------|---------------------|---------------------|---------------------------------------------------------------|
| 430-15-01-002-0    | Version 1.0         | February 1998       |                                                               |
| 430-15-01-002-2    | Version 2.0         | July 1998           | IAS980070<br>IAS980071<br>IAS980078<br>IAS980080<br>IAS980098 |
| 430-15-01-002-3    | Version 3.0         | June 1999           | GS CCR 60<br>GS CCR 106<br>GS CCR 110                         |
| IAS-207            | Version 4.0         | January 2000        | DHF CCR 1171                                                  |
| IAS-207            | Version 5.0         | August 2005         | CCR 1819<br>CCR 3921                                          |
| IAS-207            | Version 6.0         | May 2007            | CCR 4788                                                      |
| LSDS-31            | Version 7.0         | March 2014          | CR 5655<br>CR 9662                                            |
| LSDS-31            | Version 8.0         | October 2017        | CR 13160                                                      |

# **Contents**

| Executiv | ive Summary                        | iii |
|----------|------------------------------------|-----|
|          | ent History                        |     |
|          | its                                |     |
|          | Tables                             |     |
|          | n 1 Introduction                   |     |
| 1.1      | Document Organization              | 1   |
| 1.2      | File Structure                     |     |
| 1.3      | Calibration Parameter File Updates |     |
|          | 8.1 Effective Dates                |     |
| 1.3.     | 3.2 File-Naming Conventions        | 2   |
|          | File Content Description           |     |
|          | 1 2 CPF Parameters                 |     |
| Section  | 1 3 CPF ODL                        | 94  |
| 3.1      | Introduction                       | 94  |
| 3.2      | Sample ETM+ CPF ODL File           |     |
| Referen  | nces                               | 134 |

# **List of Tables**

| Table 1-1. Data Types in CPF        | 5  |
|-------------------------------------|----|
| Table 2-1. Landsat 7 CPF Parameters | 93 |

- vi -

#### Section 1 Introduction

This document describes the contents of the Calibration Parameter File (CPF) generated by the Image Assessment System (IAS). The Landsat 7 (L7) functionality of the IAS is responsible for offline assessment of image quality to ensure compliance with the radiometric and geometric requirements of the L7 spacecraft and the Enhanced Thematic Mapper Plus (ETM+) sensor throughout the life of the mission.

In addition to its assessment functions, the IAS periodically performs radiometric and geometric calibration to provide updates to the CPF. This file is stamped with applicability dates and is archived at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and eventually bundled with outbound Level 0 Reformatted Products (L0Rp). The CPF is also made available to the L7 Level 1 production systems, International Ground Stations (IGSs), and other Landsat data users through an online cache system. The CPF supplies the radiometric and geometric correction parameters and other relevant coefficients required during Level 0 and Level 1 processing to create products of uniform consistency across the L7 system.

## 1.1 Document Organization

This document contains the following sections:

- Section 1 introduces the CPF. It describes the CPF structure and language, CPF updates, time stamps, and file-naming conventions, as well as the attributes used to characterize the calibration parameters.
- Section 2 contains a table that lists and describes the CPF parameters. The
  actual prelaunch and post-launch CPFs contain the most recent and accurate
  values available for these parameters.
- Section 3 presents the syntax of the CPF Object Description Language (ODL) and provides a CPF example to illustrate the actual appearance of the file.
- The References section contains a list of reference documents.

## 1.2 File Structure

All parameters are stored as American Standard Code for Information Interchange (ASCII) text using the ODL syntax developed by Jet Propulsion Laboratory (JPL). ODL is a tagged keyword language developed to provide a human-readable data structure to encode data for simplified interchange. The ODL interpreter developed by JPL may, in certain cases, provide for the handling of lexical elements (for example, building blocks) that are included in the Consultative Committee for Space Data Systems (CCSDS) specification of the Parameter Value Language (PVL). PVL is a superset of ODL. The IAS CPF is a pure ODL implementation without any PVL extensions.

The body of the file is composed of two statement types:

1. Attribute assignment statement - used to assign values to parameters

2. Group statements - used to aid in file organization and enhance parsing granularity of parameter sets

The Planetary Data System Standards Reference contains ODL details.

### 1.3 Calibration Parameter File Updates

The IAS regularly releases and distributes CPFs at the beginning of each calendar quarter. In addition to a new CPF for the coming calendar quarter, a CPF delivery also includes new versions of all CPFs for time periods affected by the most recent calibration update. Only the most recent available CPFs should be used in ETM+ data processing.

Prior to switching to bumper operational mode, CPFs need to be released on a regular quarterly basis, primarily because of the Universal Time Code (UTC) corrected (UT1) time corrections and pole wander predictions included in the file. However, the CPFs could be updated at any given time, if needed, and released for the time periods shorter than a calendar quarter.

Following the ETM+ switch to bumper operational mode (April 1, 2007), multiple version updates have been made during any given quarter due to a hardly predictive nature of the scanning mirror bumper parameters. The irregular (mid-quarter) updates do not affect the three-month CPF release schedule.

#### 1.3.1 Effective Dates

Each CPF is time-stamped with an effective date range. The third and fourth parameters in the file—Effective\_Date\_Begin and Effective\_Date\_End—designate the range of valid acquisition dates and are in YYYY-MM-DD format. The parameter file used in processing a scene has an effective date range that includes the acquisition date of the ordered image.

#### 1.3.2 File-Naming Conventions

Through the course of the mission, a serial collection of CPFs is generated and made available for distribution. The probability exists that a CPF will be replaced due to improved calibration parameters for a given period, or perhaps due to a file error. Unique file version numbers are needed as file contents change. The unique 00 version number is reserved for the original CPF, created before the satellite's launch. Version numbers for all quarterly CPFs released after the launch begin with 01. With the start of Collection processing in the summer of 2016 (IAS 10.16 / LPGS 12.8 releases), the CPF naming convention changed. The CPFs used in Collection processing contain the collection number in the file name to designate the collection version.

For Pre-Collection processing, the IAS uses this CPF naming convention (refer to version 7.0 of this document for more details):

 $L7CPFy_1y_1y_1m_1m_1d_1d_1\_y_2y_2y_2m_2m_2d_2d_2.nn$ 

and since the start of Collection processing, the following file-naming procedure is used to name the CPFs:

 $LE07CPF\_y_1y_1y_1m_1m_1d_1d_1\_y_2y_2y_2m_2m_2d_2d_2.cc.nn$ 

where L = Constant for Landsat

E = Constant for sensor (E = ETM+)

07 = Constant for satellite numerical designation

CPF = Three-letter CPF designator

\_ = CPF designator / starting date separator

 $y_1y_1y_1y_1$  = Four-digit effectivity starting year

 $m_1m_1$  = Two-digit effectivity starting month

 $d_1d_1$  = Two-digit effectivity starting day

\_ = Effectivity starting / ending date separator

y<sub>2</sub>y<sub>2</sub>y<sub>2</sub>y<sub>2</sub> = Four-digit effectivity ending year

 $m_2m_2$  = Two-digit effectivity ending month

d<sub>2</sub>d<sub>2</sub> = Two-digit effectivity ending day

= Ending data / collection number separator

cc = Collection number (starts with 01)

. = Ending day / version number separator

nn = Version number for this file (starts with 01)

For example, if the IAS created four CPFs for Collection 1 at three-month intervals, and then updated the first file twice and the second and third files once, the assigned file names would be as follows:

```
File 1 LE07CPF_20000101_20000331_01.01

LE07CPF_20000101_20000331_01.02

LE07CPF_20000101_20000331_01.03

File 2 LE07CPF_20000401_20000630_01.01

LE07CPF_20000401_20000630_01.02

File 3 LE07CPF_20000701_20000930_01.01

LE07CPF_20000701_20000930_01.02

File 4 LE07CPF_20001001_20001231_01.01
```

This example assumes that the effective date ranges do not change. The effective date range for a file can change, however, if a specific problem (e.g., detector outage) is discovered somewhere within the nominal effective range. Assuming this scenario, two CPFs with new names and effective date ranges are created for the period under

consideration. The Effective\_Date\_End for a new pre-problem CPF would change to the day before the problem occurred and the Effective\_Date\_Begin remains unchanged. A post-problem CPF with a new file name would be created with the Effective\_Date\_Begin corresponding to the imaging date when the problem occurred and the Effective\_Date\_End corresponding to the original Effective\_Date\_End for the period under consideration. Both new CPFs, although they appeared for the first time for given effective dates, would have a version number for one higher than the CPF for the quarter they originated. New versions of all other CPFs affected by the updated parameters also would be created.

Suppose, for example, that it was discovered that a detector stopped responding on July 25, 2000. Two new CPFs need to be created that supersede the period represented by file number three, version 2, and a new version of file number four. The new file names and version numbers become:

| File 3 | LE07CPF_20000701_20000930_01.01 |
|--------|---------------------------------|
|        | LE07CPF_20000701_20000930_01.02 |
|        | LE07CPF_20000701_20000725_01.03 |
|        | LE07CPF_20000726_20000930_01.03 |
| File 4 | LE07CPF_20001001_20001231_01.01 |
|        | LE07CPF_20001001_20001231_01.02 |

### 1.4 File Content Description

Table 2-1 lists all CPF parameters. Within this table, each parameter entry is characterized by five attributes:

- 1. Parameter Group Identifies a related set of parameters.
- 2. Parameter Name Uniquely identifies and describes the content of each parameter.
- 3. Value Type Describes the parameter as either static or dynamic. A static value generally remains unchanged over the life of the mission. A dynamic value changes or has the potential to change over the life of the mission. Significant changes to dynamic values trigger a CPF update.
- 4. Data Type Referred to using Hierarchical Data Format (HDF) number type nomenclature, type#, where type is either char (character), int (integer), or float (floating point), and # is a decimal count of the number of bits used to represent the data type. The type mnemonics int and char may be preceded by the letter u, indicating an unsigned value. For example, the data type uint32 refers to an unsigned 32-bit integer value. Table 1-1 shows the data types relevant to the CPF.

| Data Type                    | HDF Nomenclature |
|------------------------------|------------------|
| 8-bit character              | char8            |
| 8-bit unsigned integer       | uint8            |
| 16-bit signed integer        | int16            |
| 32-bit signed integer        | int32            |
| 32-bit floating point number | float32          |

| Data Type                    | HDF Nomenclature |
|------------------------------|------------------|
| 64-bit floating point number | float64          |

Table 1-1. Data Types in CPF

5. Description - Briefly describes the parameter, format, and nominal, expected, or sample value(s). The valid parameter format for numeric data is described using letters S, N, and E. S stands for the sign and can assume values "+" or "-"; if no sign is specified, the "+" sign is assumed. N stands for any digit between 0 and 9. E is used in scientific (exponential) notation to represent the 'multiplication by 10 raised to the power' specified by the value following the letter E. For example, the valid format "SNNN.NNNNESNN" can assume any positive or negative value with a significant ranging from 0.0000 to 999.9999 multiplied by 10 raised to the power of any whole number between -99 and +99.

LSDS-31

- 5 -

# **Section 2 CPF Parameters**

Table 2-1 lists the L7 CPF parameters.

| Parameter<br>Group | Parameter<br>Name    | Value<br>Type | Data<br>Type | Description                                                                                                                                                                                                                                                                                                                                        |
|--------------------|----------------------|---------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FILE_ATTRIBUTES    | Spacecraft_Name      | Static        | char8        | Descriptor used to identify the spacecraft for which the calibration parameters are applicable Valid format: Landsat_7                                                                                                                                                                                                                             |
| FILE_ATTRIBUTES    | Sensor_Name          | Static        | char8        | Descriptor used to identify the sensor for which the calibration parameters are applicable Valid format:<br>Enhanced_Thematic_Mapper_Plus                                                                                                                                                                                                          |
| FILE_ATTRIBUTES    | Effective_Date_Begin | Dynamic       | char8        | Effective start date for this file<br>Valid format: yyyy-mm-dd, where<br>yyyy = 1998-2050, mm = 01-12, and dd = 01-31                                                                                                                                                                                                                              |
| FILE_ATTRIBUTES    | Effective_Date_End   | Dynamic       | char8        | Effective end date for this file Valid format: yyyy-mm-dd, where yyyy = 1998-2050, mm = 01-12, and dd = 01-31                                                                                                                                                                                                                                      |
| FILE_ATTRIBUTES    | CPF_File_Name        | Dynamic       | char8        | Original file name assigned by IAS Valid format: LE07CPF_yyyymmdd_yyyymmdd_cc.nn (for Collection processing), or L7CPFyyyymmdd_yyyymmdd.nn (for Pre- Collection processing), where yyyymmdd = effective start date and effective end date, respectively, cc = collection number (01-99) and nn = incrementing version for within a quarter (00-99) |
| FILE_ATTRIBUTES    | File_Source          | Dynamic       | char8        | Baseline CPF used as a source to create this CPF Valid format: LE07CPF_yyyymmdd_yyyymmdd_cc.nn where yyyymmdd = effective start date and effective end date, respectively, cc = collection number (01-99) and nn = incrementing version for within a quarter (00-99)                                                                               |
| FILE_ATTRIBUTES    | Collection_Number    | Dynamic       | uint8        | Collection version number Valid format: NN, where NN = 01 to 99                                                                                                                                                                                                                                                                                    |
| FILE_ATTRIBUTES    | Version              | Dynamic       | uint8        | CPF version number Valid format: NN, where NN = 00 to 99                                                                                                                                                                                                                                                                                           |
| EARTH_CONSTANTS    | Ellipsoid_Name       | Static        | char8        | Name of the ellipsoid used to represent the semi-major and semi-minor axes of the Earth Valid format: TTTTT, where TTTTT = WGS84                                                                                                                                                                                                                   |
| EARTH_CONSTANTS    | Semi_Major_Axis      | Static        | float64      | Earth semi-major axis; distance in meters from the center of the Earth to the equator Valid format: NNNNNNN.NNN, where NNNNNNN.NNN = 6378137.000                                                                                                                                                                                                   |
| EARTH_CONSTANTS    | Semi_Minor_Axis      | Static        | float64      | Earth semi-minor axis; distance in meters from the center of the Earth to the poles Valid format: NNNNNNN.NNNN, where NNNNNNN.NNNN = 6356752.3142                                                                                                                                                                                                  |
| EARTH_CONSTANTS    | Ellipticity          | Static        | float64      | Ratio describing polar flattening or Earth's deviation from an exact sphere (World Geodetic System 1984 (WGS84) standard) Valid format: N.NNNNNNNNNNNNNNNNN, where N.NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                            |

| Parameter<br>Group | Parameter<br>Name       | Value<br>Type | Data<br>Type | Description                                                                                                                                                                                          |
|--------------------|-------------------------|---------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EARTH_CONSTANTS    | Eccentricity            | Static        | float64      | Number describing the Earth ellipsoid eccentricity squared (WGS84 standard) Valid format: N.NNNNNNNNNNNNNNN, where N.NNNNNNNNNNNNNNNN = 0.00669437999013                                             |
| EARTH_CONSTANTS    | Earth_Spin_Rate         | Static        | float64      | Earth's diurnal spin rate in radians per second Valid format: NN.NNNNNNNNESNN, where NN.NNNNNNNNNNNESNN = 72.921158553E-06                                                                           |
| EARTH_CONSTANTS    | Gravity_Constant        | Static        | float64      | Universal gravitational constant times the mass of the Earth. This parameter is given in units of meters cubed per second squared (m3/s2) Valid format: N.NNNNNNENN, where N.NNNNNNENN = 3.986005E14 |
| EARTH_CONSTANTS    | J2_Earth_Model_<br>Term | Static        | float64      | Term that describes Earth's spherical harmonic Valid format: NNNN.NNESNN, where NNNN.NNESNN = 1082.63E-06                                                                                            |
| ORBIT_PARAMETERS   | WRS_Cycle_Days          | Static        | uint8        | Time period, in days, required for the satellite to view Earth once Valid format: NN, where NN = 16                                                                                                  |
| ORBIT_PARAMETERS   | WRS_Cycle_Orbits        | Static        | uint8        | Number of orbits or paths in a complete World<br>Reference System (WRS) cycle<br>Valid format: NNN, where NNN = 233                                                                                  |
| ORBIT_PARAMETERS   | Scenes_Per_Orbit        | Static        | uint8        | Number of scenes or row locations per orbit<br>Valid format: NNN, where NNN = 248                                                                                                                    |
| ORBIT_PARAMETERS   | Orbital_Period          | Static        | float64      | Time required, in seconds, to complete one orbit Valid format: NNNN.NNNN, where NNNN.NNNN = 5933.0472                                                                                                |
| ORBIT_PARAMETERS   | Angular_Momentum        | Static        | float64      | Angular momentum in orbit, specified in meters squared per second Valid format: NN.NNNNNNEN, where NN.NNNNNNEN = 53.136250E9                                                                         |
| ORBIT_PARAMETERS   | Orbit_Radius            | Static        | float64      | Nominal distance in kilometers (km) from the Earth's center to the spacecraft track Valid format: NNNN.NNNN, where NNNN.NNNN = 7083.4457                                                             |
| ORBIT_PARAMETERS   | Orbit_Semimajor_Axis    | Static        | float64      | Nominal semi-major axis in km of the satellite's orbit Valid format: NNNN.NNNN, where NNNN.NNNN = 7083.4457                                                                                          |
| ORBIT_PARAMETERS   | Orbit_Semiminor_Axis    | Static        | float64      | Nominal semi-minor axis in km of the satellite's orbit Valid format: NNNN.NNNN, where NNNN.NNNN = 7083.4408                                                                                          |
| ORBIT_PARAMETERS   | Orbit_Eccentricity      | Static        | float64      | Nominal eccentricity of the satellite's orbit Valid format: N.NNNNNNNN, where N.NNNNNNNN = 0.00117604                                                                                                |
| ORBIT_PARAMETERS   | Inclination_Angle       | Static        | float64      | Angle in degrees formed by Earth's equatorial and satellite plane  Valid format: NN.NNNN, where NN.NNNN = 98.2096                                                                                    |
| ORBIT_PARAMETERS   | Argument_Of_Perigee     | Static        | float32      | Nominal angle in degrees of point nearest Earth in orbit as measured from ascending node in the direction of satellite motion  Valid format: NN.N, where NN.N = 90.0                                 |
| ORBIT_PARAMETERS   | Descending_Node_<br>Row | Static        | uint8        | Row corresponding to the Earth's equator<br>Valid format: NN, where NN = 60                                                                                                                          |
| ORBIT_PARAMETERS   | Long_Path1_Row60        | Static        | float32      | Longitude in degrees west of the point at which path 1 crossed the equator (row 60)  Valid format: SNN.N, where SNN.N = - 64.6                                                                       |

| Parameter<br>Group     | Parameter<br>Name            | Value<br>Type | Data<br>Type | Description                                                                                                                                                      |
|------------------------|------------------------------|---------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ORBIT_PARAMETERS       | Descending_Node_<br>Time_Min | Static        | char8        | Minimum local solar time of descending node in a.m. hours and minutes  Valid format: HH:MM, where HH:MM = 09:45                                                  |
| ORBIT_PARAMETERS       | Descending_Node_<br>Time_Max | Static        | char8        | Maximum local solar time of descending node in a.m. hours and minutes Valid format: HH:MM, where HH:MM = 10:15                                                   |
| ORBIT_PARAMETERS       | Nodal_Regression_<br>Rate    | Static        | float64      | Rate in degrees per day that the orbital plane rotates with respect to the Earth Valid format: N.NNNNNNNNN, where N.NNNNNNNNN = 0.985647366                      |
| SCANNER_<br>PARAMETERS | Lines_Per_Scan_30            | Static        | uint8        | Detectors per scan for Bands 1-5 and Band 7<br>Valid format: NN, where NN = 16                                                                                   |
| SCANNER_<br>PARAMETERS | Lines_Per_Scan_60            | Static        | uint8        | Detectors per scan for Band 6 Valid format: N, where N = 8                                                                                                       |
| SCANNER_<br>PARAMETERS | Lines_Per_Scan_15            | Static        | uint8        | Detectors per scan for Band 8 Valid format: NN, where NN = 32                                                                                                    |
| SCANNER_<br>PARAMETERS | Scans_Per_Scene              | Static        | int16        | Scans per nominal WRS scene<br>Valid format: NNN, where NNN = 375                                                                                                |
| SCANNER_<br>PARAMETERS | Swath_Angle                  | Dynamic       | float32      | Object space angle in radians of scan mirror travel during active scan time  Valid format: N.NNNNN, where N.NNNNN = 0.26868 (after measurement of as-built ETM+) |
| SCANNER_<br>PARAMETERS | Scan_Rate                    | Static        | float32      | Angular scan velocity in radians per second of the scan mirror Valid format: N.NNNNN, where N.NNNNN = 2.21095                                                    |
| SCANNER_<br>PARAMETERS | Dwell_Time_30                | Static        | float64      | Detector sample time in microseconds for Bands 1-5 and Band 7 Valid format: N.NNNNNNN, where N.NNNNNNN = 9.6110206                                               |
| SCANNER_<br>PARAMETERS | Dwell_Time_60                | Static        | float64      | Detector sample time in microseconds for Band 6 Valid format: N.NNNNNN, where N.NNNNNN = 19.222041                                                               |
| SCANNER_<br>PARAMETERS | Dwell_Time_15                | Static        | float64      | Detector sample time in microseconds for Band 8 Valid format: N.NNNNNNN, where N.NNNNNNN = 4.8055103                                                             |
| SCANNER_<br>PARAMETERS | IC_Line_Length_30            | Static        | int16        | Nominal number of detector samples for the Internal Calibrator (IC) for Bands 1-5 and Band 7 Valid format: NNNN, where NNNN = 1150                               |
| SCANNER_<br>PARAMETERS | IC_Line_Length_60            | Static        | int16        | Nominal number of detector samples for the IC for Band 6 Valid format: NNN, where NNN = 575                                                                      |
| SCANNER_<br>PARAMETERS | IC_Line_Length_15            | Static        | int16        | Nominal number of detector samples for the IC for Band 8 Valid format: NNNN, where NNNN = 2300                                                                   |
| SCANNER_<br>PARAMETERS | Scan_Line_Length_30          | Static        | int16        | Nominal number of detector samples during active scan time for Bands 1-5 and Band 7 Valid format: NNNN, where NNNN = 6320                                        |
| SCANNER_<br>PARAMETERS | Scan_Line_Length_60          | Static        | int16        | Nominal number of detector samples during active scan time for Band 6 Valid format: NNNN, where NNNN = 3160                                                      |
| SCANNER_<br>PARAMETERS | Scan_Line_Length_15          | Static        | int16        | Nominal number of detector samples during active scan time for Band 8 Valid format: NNNNN, where NNNNN = 12640                                                   |

| Parameter<br>Group        | Parameter<br>Name        | Value<br>Type | Data<br>Type | Description                                                                                                                                                             |
|---------------------------|--------------------------|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCANNER_<br>PARAMETERS    | Filter_Frequency_30      | Static        | float32      | Bandwidth in Kilohertz (kHz) of detector pre-<br>sample filter (defined by 3-dB roll-off point) for<br>Bands 1-5 and Band 7<br>Valid format: NN.NN, where NN.NN = 52.02 |
| SCANNER_<br>PARAMETERS    | Filter_Frequency_60      | Static        | float32      | Bandwidth in kHz of detector pre-sample filter (defined by 3-dB roll-off point) for Band 6 Valid format: NN.NN, where NN.NN = 26.01                                     |
| SCANNER_<br>PARAMETERS    | Filter_Frequency_15      | Static        | float32      | Bandwidth in kHz of detector pre-sample filter (defined by 3-dB roll-off point) for Band 8 Valid format: NNN.NN, where NNN.NN = 115.00                                  |
| SCANNER_<br>PARAMETERS    | IFOV_B1234               | Static        | float32      | Angle in µrad subtended by a detector in Bands 1-4 when the scanning motion stops Valid format: NN.N, where NN.N = 42.5                                                 |
| SCANNER_<br>PARAMETERS    | IFOV_B57_along_<br>scan  | Static        | float32      | Along-scan angle in µrad subtended by a detector in Band 5 and Band 7 when the scanning motion stops Valid format: NN.N, where NN.N = 39.4                              |
| SCANNER_<br>PARAMETERS    | IFOV_B57_across_<br>scan | Static        | float32      | Across-scan angle in µrad subtended by a detector in Band 5 and Band 7 when the scanning motion stops  Valid format: NN.N, where NN.N = 42.5                            |
| SCANNER_<br>PARAMETERS    | IFOV_B6                  | Static        | float32      | Angle in µrad subtended by a Band 6 detector when the scanning motion stops Valid format: NN.N, where NN.N = 85.0                                                       |
| SCANNER_<br>PARAMETERS    | IFOV_B8_along_scan       | Static        | float32      | Along-scan angle in µrad subtended by a Band 8 detector when the scanning motion stops Valid format: NN.N, where NN.N = 18.5                                            |
| SCANNER_<br>PARAMETERS    | IFOV_B8_across_<br>scan  | Static        | float32      | Across-scan angle in µrad subtended by a Band 8 detector when the scanning motion stops Valid format: NN.NN, where NN.NN = 21.25                                        |
| SCANNER_<br>PARAMETERS    | Scan_Period              | Static        | float64      | Time in milliseconds of a complete scan cycle, including forward and reverse scans  Valid format: NNN.NN, where NNN.NN = 143.58                                         |
| SCANNER_<br>PARAMETERS    | Scan_Frequency           | Static        | float32      | Number of scans in 1 second (Hz) Valid format: N.NNNNN, where N.NNNNN = 6.96476                                                                                         |
| SCANNER_<br>PARAMETERS    | Active_Scan_Time         | Static        | float32      | Time in µs required for the scan mirror to travel from its scan-line-start to End-Of-Line (EOL) Valid format: NNNNN.NNN, where NNNNN.NNN = 60743.346                    |
| SCANNER_<br>PARAMETERS    | Turn_Around_Time         | Static        | float32      | Time in milliseconds from EOL to next scan-<br>line-start, during which scan mirror motion<br>reverses direction<br>Valid format: NN.NNN, where:<br>NN.NNN = 11.055     |
| SPACECRAFT_<br>PARAMETERS | ADS_Interval             | Static        | float32      | Time in milliseconds between Attitude Displacement Sensors (ADS) samples Valid format: N.N, where N.N = 2.0                                                             |
| SPACECRAFT_<br>PARAMETERS | ADS_Roll_Offset          | Static        | float32      | Amount of time in milliseconds from the start of a Payload Correction Data (PCD) cycle to roll axis measurement Valid format: N.NNN, where N.NNN = 0.375                |
| SPACECRAFT_<br>PARAMETERS | ADS_Yaw_Offset           | Static        | float32      | Amount of time in milliseconds from the start of a PCD cycle to the yaw axis measurement Valid format: N.NNN, where N.NNN = 0.875                                       |
| SPACECRAFT_<br>PARAMETERS | ADS_Pitch_Offset         | Static        | float32      | Amount of time in milliseconds from the start of a PCD cycle to the pitch axis measurement Valid format: N.NNN, where N.NNN = 1.375                                     |

| Parameter<br>Group                                       | Parameter<br>Name           | Value<br>Type | Data<br>Type                   | Description                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------|-----------------------------|---------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPACECRAFT_<br>PARAMETERS                                | Data_Rate                   | Static        | float32                        | ETM+ output bit rate in Megabit per second (Mbps) Valid format: NN.NNN, where NN.NNN = 74.914                                                                                                                                                                                         |
| GROUP:<br>MIRROR_PARAMETERS                              | Error_Conversion_<br>Factor | Static        | float32                        | First half and second half scan mirror error measurement units in microseconds Valid format: N.NNNNNNNN, where N.NNNNNNNN = 0.18845139 (5.306437 MHz)                                                                                                                                 |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM | Forward_Along_<br>SME1_SAM  | Static        | float64<br>array<br>(6 values) | Fifth-order polynomial coefficients that describe the departure from linearity of forward alongscan mirror motion; Scan Angle Monitor (SAM) mode with Scan Mirror Electronics (SME) number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM | Forward_Cross_<br>SME1_SAM  | Static        | float64<br>array<br>(6 values) | Fifth-order polynomial coefficients that describe the deviation of forward cross-scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"                                                  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM | Forward_Angle1_<br>SME1_SAM | Static        | float32                        | Angle in µrad from the start of the scan to the mid-scan point in forward direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67166.9                                                                                                                        |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM | Forward_Angle2_<br>SME1_SAM | Static        | float32                        | Angle in µrad from the mid-scan point to the end of the scan in forward direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67145.9                                                                                                                          |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM | Reverse_Along_<br>SME1_SAM  | Static        | float64<br>array<br>(6 values) | Fifth-order polynomial coefficients that describe the deviation of reverse along-scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"                                                  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM | Reverse_Cross_<br>SME1_SAM  | Static        | float64<br>array<br>(6 values) | Fifth-order polynomial coefficients that describe the deviation of reverse cross-scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"                                                  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM | Reverse_Angle1_<br>SME1_SAM | Static        | float32                        | Angle in µrad from the start of the scan to the mid-scan point in reverse direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67142.8                                                                                                                        |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM | Reverse_Angle2_<br>SME1_SAM | Static        | float32                        | Angle in µrad from the mid-scan point to the end of the scan in reverse direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67169.9                                                                                                                          |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM | Forward_Along_<br>SME2_SAM  | Static        | float64<br>array<br>(6 values) | Fifth-order polynomial coefficients that describe the deviation of forward along-scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"                                                  |

| Parameter<br>Group                                            | Parameter<br>Name           | Value<br>Type | Data<br>Type                   | Description                                                                                                                                                                                                                             |
|---------------------------------------------------------------|-----------------------------|---------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM      | Forward_Cross_<br>SME2_SAM  | Static        | float64<br>array<br>(6 values) | Fifth-order polynomial coefficients that describe the deviation of forward cross-scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"    |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM      | Forward_Angle1_<br>SME2_SAM | Static        | float32                        | Angle in µrad from the start of the scan to mid-<br>scan point in forward direction; SAM mode with<br>SME number 2<br>Valid format: NNNNN.N, where<br>NNNNN.N = 67162.7                                                                 |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM      | Forward_Angle2_<br>SME2_SAM | Static        | float32                        | Angle in µrad from the mid-scan point to the end of the scan in forward direction; SAM mode with SME number 2 Valid format: NNNNN.N, where NNNNN.N = 67162.8                                                                            |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_SAM      | Reverse_Along_<br>SME2_SAM  | Static        | float64<br>array<br>(6 values) | Fifth-order polynomial coefficients that describe the deviation of reverse along-scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"    |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_SAM      | Reverse_Cross_<br>SME2_SAM  | Static        | float64<br>array<br>(6 values) | Fifth-order polynomial coefficients that describe the deviation of reverse cross-scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"    |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_SAM      | Reverse_Angle1_<br>SME2_SAM | Static        | float32                        | Angle in µrad from the start of the scan to the mid-scan point in reverse direction; SAM mode with SME number 2 Valid format: NNNNN.N, where NNNNN.N = 67162.8                                                                          |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_SAM      | Reverse_Angle2_<br>SME2_SAM | Static        | float32                        | Angle in µrad from the mid-scan point to the end of the scan in reverse direction; SAM mode with SME number 2 Valid format: NNNNN.N, where NNNNN.N = 67162.7                                                                            |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_BUMP     | Forward_Along_<br>SME1_Bump | Static        | float64<br>array<br>(6 values) | Fifth-order polynomial coefficients that describe the deviation of forward along-scan mirror motion from linear; bumper mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" |
| GROUP:<br>MIRROR_<br>PARAMETERS<br>GROUP:<br>ANGLES_SME1_BUMP | Forward_Cross_<br>SME1_Bump | Static        | float64<br>array<br>(6 values) | Fifth-order polynomial coefficients that describe the deviation of forward cross-scan mirror motion from linear; bumper mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" |

| Parameter<br>Group                                        | Parameter<br>Name                                                                   | Value<br>Type                                                 | Data<br>Type                              | Description                                                                                                                                                                                                                     |  |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| GROUP:                                                    | Forward_Angle1_                                                                     | For CPFs                                                      | with effective                            | ve dates prior to April 1, 2007                                                                                                                                                                                                 |  |  |
| MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_BUMP           | SME1_Bump                                                                           | Static                                                        | float32                                   | Angle in µrad from the start of the scan to the mid-scan point in forward direction; bumper mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67156.3                                                               |  |  |
|                                                           |                                                                                     | For CPFs                                                      | with effective                            | ve dates of April 1, 2007 and thereafter                                                                                                                                                                                        |  |  |
|                                                           |                                                                                     | Dynamic                                                       | float32<br>array of<br>flexible<br>length | Angle in µrad from the start of the scan to the mid-scan point in forward direction; bumper mode with SME number 1. The array contains daily values over one CPF interval Valid format for each term: NNNNN.N, where N = 0 to 9 |  |  |
| GROUP:                                                    | Forward_Angle2_                                                                     | For CPFs                                                      | with effective                            | ve dates prior to April 1, 2007                                                                                                                                                                                                 |  |  |
| MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_BUMP           | SME1_Bump                                                                           | Static                                                        | float32                                   | Angle in µrad from the mid-scan point to the end of the scan in forward direction; bumper mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67156.7                                                                 |  |  |
|                                                           |                                                                                     | For CPFs with effective dates of April 1, 2007 and thereafter |                                           |                                                                                                                                                                                                                                 |  |  |
|                                                           |                                                                                     | Dynamic                                                       | float32<br>array of<br>flexible<br>length | Angle in µrad from the mid-scan point to the end of the scan in forward direction; bumper mode with SME number 1; the array contains daily values over one CPF interval Valid format for each term: NNNNN.N, where N = 0 to 9   |  |  |
| GROUP:                                                    | Forward_FHSERR_SME1                                                                 | Dynamic                                                       | int16                                     | First-half error of the forward scan angle;                                                                                                                                                                                     |  |  |
| MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_BUMP           | _Bump  (available in all CPFs with effective dates of April 1, 2007 and thereafter) |                                                               | array of<br>flexible<br>length            | bumper mode with SME number 1; the array contains daily values over one CPF interval Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9                                                                     |  |  |
| GROUP:<br>MIRROR_PARAMETERS                               | Forward_SHSERR_SME1<br>_Bump                                                        | Dynamic                                                       | int16<br>array of<br>flexible             | Second-half error of the forward scan angle;<br>bumper mode with SME number 1; the array<br>contains daily values over one CPF interval                                                                                         |  |  |
| GROUP:<br>ANGLES_SME1_BUMP                                | (available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter)  |                                                               | length                                    | Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                          |  |  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_BUMP | Reverse_Along_<br>SME1_Bump                                                         | Static                                                        | float64<br>array<br>(6 values)            | Fifth-order polynomial coefficients that describe the deviation of reverse along the scan mirror motion from linear; bumper mode with SME number 1 Valid format: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"   |  |  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_BUMP | Reverse_Cross_<br>SME1_Bump                                                         | Static                                                        | float64<br>array<br>(6 values)            | Fifth-order polynomial coefficients that describe the deviation of reverse cross-scan mirror motion from linear; bumper mode with SME number 1 Valid format: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"       |  |  |

| Parameter<br>Group                                        | Parameter<br>Name                                                                                                  | Value<br>Type                                                 | Data<br>Type                              | Description                                                                                                                                                                                                                   |  |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| GROUP:                                                    | Reverse_Angle1_                                                                                                    | For CPFs                                                      | with effective                            | ve dates prior to April 1, 2007                                                                                                                                                                                               |  |  |
| MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP                 | SME1_Bump                                                                                                          | Static                                                        | float32                                   | Angle in µrad from the start of the scan to the mid-scan point in reverse direction; bumper mode with SME number 1 Valid format: NNNNN.N where NNNNN.N = 67156.7                                                              |  |  |
|                                                           |                                                                                                                    | For CPFs                                                      | with effective                            | ve dates of April 1, 2007 and thereafter                                                                                                                                                                                      |  |  |
|                                                           |                                                                                                                    | Dynamic                                                       | float32<br>array of<br>flexible<br>length | Angle in µrad from the start of the scan to the mid-scan point in reverse direction; bumper mode with SME number 1; array contains daily values over one CPF interval Valid format for each term: NNNNN.N, where N = 0 to 9   |  |  |
| GROUP:                                                    | Reverse_Angle2_                                                                                                    | For CPFs                                                      | with effective                            | ve dates prior to April 1, 2007                                                                                                                                                                                               |  |  |
| MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_BUMP           | SME1_Bump                                                                                                          | Static                                                        | float32                                   | Angle in µrad from the mid-scan point to the end of the scan in reverse direction; bumper mode with SME number 1 Valid format: NNNNN.N where NNNNN.N = 67156.3                                                                |  |  |
|                                                           |                                                                                                                    | For CPFs with effective dates of April 1, 2007 and thereafter |                                           |                                                                                                                                                                                                                               |  |  |
|                                                           |                                                                                                                    | Dynamic                                                       | float32<br>array of<br>flexible<br>length | Angle in µrad from the mid-scan point to the end of the scan in reverse direction; bumper mode with SME number 1; the array contains daily values over one CPF interval Valid format for each term: NNNNN.N, where N = 0 to 9 |  |  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_BUMP | Reverse_FHSERR_SME1<br>_Bump<br>(available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter) | Dynamic                                                       | int16<br>array of<br>flexible<br>length   | First-half error of the reverse scan angle; bumper mode with SME number 1; the array contains daily values over one CPF interval Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9                       |  |  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME1_BUMP | Reverse_SHSERR_SME1<br>_Bump<br>(available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter) | Dynamic                                                       | int16<br>array of<br>flexible<br>length   | Second-half error of the reverse scan angle; bumper mode with SME number 1; the array contains daily values over one CPF interval Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9                      |  |  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_BUMP | Forward_Along_<br>SME2_Bump                                                                                        | Static                                                        | float64<br>array<br>(6 values)            | Fifth-order polynomial coefficients that describe the deviation of forward along-scan mirror motion from linear; bumper mode with SME number 2 Valid format: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"     |  |  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_BUMP | Forward_Cross_<br>SME2_Bump                                                                                        | Static                                                        | float64<br>array<br>(6 values)            | Fifth-order polynomial coefficients that describe the deviation of the forward cross-scan mirror motion from linear; bumper mode with SME number 2 Valid format: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" |  |  |

| Parameter<br>Group                                        | Parameter<br>Name                                                                                                  | Value<br>Type                                                 | Data<br>Type                              | Description                                                                                                                                                                                                                              |  |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| GROUP:                                                    | Forward_Angle1_                                                                                                    | For CPFs                                                      | with effecti                              | ve dates prior to April 1, 2007                                                                                                                                                                                                          |  |  |
| MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_BUMP           | SME2_Bump                                                                                                          | Static                                                        | float32                                   | Angle in µrad from the start of the scan to the mid-scan point in forward direction; bumper mode with SME number 2 Valid format: NNNNN.N where NNNNN.N = 67162.7                                                                         |  |  |
|                                                           |                                                                                                                    | For CPFs                                                      | with effecti                              | ve dates of April 1, 2007 and thereafter                                                                                                                                                                                                 |  |  |
|                                                           |                                                                                                                    | Dynamic                                                       | float32<br>array of<br>flexible<br>length | Angle in µrad from the start of the scan to the mid-scan point in the forward direction; bumper mode with SME number 2. The array contains daily values over one CPF interval Valid format for each term: NNNNN.N, where N = 0 to 9.     |  |  |
| GROUP:                                                    | Forward_Angle2_                                                                                                    | For CPFs                                                      | with effecti                              | ve dates prior to April 1, 2007                                                                                                                                                                                                          |  |  |
| MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_BUMP           | SME2_Bump                                                                                                          | Static                                                        | float32                                   | Angle in µrad from the mid-scan point to the end of the scan in the forward direction; bumper mode with SME number 2 Valid format: NNNNN.N where NNNNN.N = 67162.8                                                                       |  |  |
|                                                           |                                                                                                                    | For CPFs with effective dates of April 1, 2007 and thereafter |                                           |                                                                                                                                                                                                                                          |  |  |
|                                                           |                                                                                                                    | Dynamic                                                       | float32<br>array of<br>flexible<br>length | Angle in µrad from the mid-scan point to the end of the scan in the forward direction; bumper mode with SME number 2; the array contains daily values over one CPF interval Valid format for each term: NNNNN.N, where N = 0 to 9.       |  |  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_BUMP | Forward_FHSERR_SME2<br>_Bump<br>(available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter) | Dynamic                                                       | int16<br>array of<br>flexible<br>length   | First-half error of the forward scan angle; bumper mode with SME number 2; the array contains daily values over one CPF interval Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9                                  |  |  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_BUMP | Forward_SHSERR_SME2<br>_Bump<br>(available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter) | Dynamic                                                       | int16<br>array of<br>flexible<br>length   | Second-half error of the forward scan angle; bumper mode with SME number 2; the array contains daily values over one CPF interval Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9                                 |  |  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_BUMP | Reverse_Along_<br>SME2_Bump                                                                                        | Static                                                        | float64<br>array<br>(6 values)            | Fifth-order polynomial coefficients that describe the deviation of reverse along-scan mirror motion from linear; bumper mode with SME number 2 Valid format: for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" |  |  |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_BUMP | Reverse_Cross_<br>SME2_Bump                                                                                        | Static                                                        | float64<br>array<br>(6 values)            | Fifth-order polynomial coefficients that describe the deviation of reverse cross-scan mirror motion from linear; bumper mode with SME number 2 Valid format: for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" |  |  |

| Parameter<br>Group                                        | Parameter<br>Name                                                                                                   | Value<br>Type | Data<br>Type                              | Description                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP:                                                    | Reverse_Angle1_                                                                                                     | For CPFs      | with effecti                              | ve dates prior to April 1, 2007                                                                                                                                                                                                                                    |
| MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_BUMP           | SME2_Bump                                                                                                           | Static        | float32                                   | Angle in µrad from the start of the scan to the mid-scan point in the reverse direction; bumper mode with SME number 2 Valid format is NNNNN.N where NNNNN.N = 67162.8                                                                                             |
|                                                           |                                                                                                                     | For CPFs      | with effecti                              | ve dates of April 1, 2007 and thereafter                                                                                                                                                                                                                           |
|                                                           |                                                                                                                     | Dynamic       | float32<br>array of<br>flexible<br>length | Angle in µrad from the start of the scan to the mid-scan point in the reverse direction; bumper mode with SME number 2; the array contains daily values over one CPF interval Valid format for each term: NNNNN.N, where N = 0 to 9                                |
| GROUP:                                                    | Reverse_Angle2_                                                                                                     | For CPFs      | with effecti                              | ve dates prior to April 1, 2007                                                                                                                                                                                                                                    |
| MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_BUMP           | SME2_Bump                                                                                                           | Static        | float32                                   | Angle in µrad from the mid-scan point to the end of the scan in the reverse direction; bumper mode with SME number 2 Valid format is NNNNN.N where NNNNN.N = 67162.7                                                                                               |
|                                                           |                                                                                                                     | For CPFs      | with effecti                              | ve dates of April 1, 2007 and thereafter                                                                                                                                                                                                                           |
|                                                           |                                                                                                                     | Dynamic       | float32<br>array of<br>flexible<br>length | Angle in $\mu$ rad from the mid-scan point to the end of the scan in the reverse direction; bumper mode with SME number 2; the array contains daily values over one CPF interval Valid format for each term: NNNNN.N, where $N=0$ to $9$                           |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_BUMP | Reverse_FHSERR_SME2<br>_Bump<br>(available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter)  | Dynamic       | int16<br>array of<br>flexible<br>length   | First-half error of the reverse scan angle; bumper mode with SME number 2; the array contains daily values over one CPF interval Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9                                                            |
| GROUP:<br>MIRROR_PARAMETERS<br>GROUP:<br>ANGLES_SME2_BUMP | Reverse_SHSERR_SME2<br>_Bump<br>(available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter)  | Dynamic       | int16<br>array of<br>flexible<br>length   | Second-half error of the reverse scan angle; bumper mode with SME number 2; the array contains daily values over one CPF interval Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9                                                           |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS                      | SME1_BumperA_Dwell_<br>Time<br>(available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter)   | Dynamic       | float32<br>array of<br>flexible<br>length | "Physical" bumper mode mirror model parameter - time from the bumper A pickoff signal to the start of the reverse scan linear motion in microseconds; the array contains daily values over one CPF interval Valid format for each term: NNNNN.NN, where N = 0 to 9 |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS                      | SME1_BumperA_Pickoff_<br>Time<br>(available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter) | Dynamic       | float32<br>array of<br>flexible<br>length | "Physical" bumper mode mirror model parameter - time from the end of the forward scan linear motion to the bumper A pickoff signal in microseconds; the array contains daily values over one CPF interval Valid format for each term: NNNNN.NN, where N = 0 to 9   |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS                      | SME1_BumperA_Offset_<br>Time<br>(available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter)  | Static        | float32                                   | "Physical" bumper mode mirror model parameter - time from bumper A pickoff signal to the start of the reverse active scan in microseconds  Valid format: NNNNN.NN, where NNNNN.NN = 10110.00                                                                       |

| Parameter<br>Group                   | Parameter<br>Name                                                                                                  | Value<br>Type | Data<br>Type                              | Description                                                                                                                                                                                                                                                      |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS | SME1_BumperA_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter)                    | Static        | float32                                   | "Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (reverse) and ends (forward) at bumper A in microradians Valid format: SNNNNN.N, where SNNNNN.N = -68665.0                                             |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS | SME1_BumperB_Dwell_<br>Time  (available in all CPFs with effective dates of April 1, 2007 and thereafter)          | Dynamic       | float32<br>array of<br>flexible<br>length | "Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward scan linear motion in microseconds; the array contains daily values over one CPF interval Valid format for each term: NNNNN.NN, where N = 0 to 9   |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS | SME1_BumperB_Pickoff_<br>Time  (available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter)  | Dynamic       | float32<br>array of<br>flexible<br>length | "Physical" bumper mode mirror model parameter - time from the end of the reverse scan linear motion to the bumper B pickoff signal in microseconds; the array contains daily values over one CPF interval Valid format for each term: NNNNN.NN, where N = 0 to 9 |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS | SME1_BumperB_Offset_<br>Time  (available in all CPFs with effective dates of April 1, 2007 and thereafter)         | Static        | float32                                   | "Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward active scan in microseconds Valid format: NNNNN.NN, where NNNNN.NN = 10110.00                                                                      |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS | SME1_BumperB_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter)                    | Static        | float32                                   | "Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (forward) and ends (reverse) at bumper B in microradians Valid format: SNNNNN.N, where SNNNNN.N = 68607.0                                              |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS | SME2_BumperA_Dwell_<br>Time  (available in all CPFs with effective dates of April 1, 2007 and thereafter)          | Dynamic       | float32<br>array of<br>flexible<br>length | "Physical" bumper mode mirror model parameter - time from bumper A pickoff signal to the start of the reverse scan linear motion in microseconds; the array contains daily values over one CPF interval Valid format for each term: NNNNN.NN, where N = 0 to 9   |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS | SME2_BumperA_Pickoff_<br>Time  (available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter)  | Dynamic       | float32<br>array of<br>flexible<br>length | "Physical" bumper mode mirror model parameter - time from the end of the forward scan linear motion to bumper A pickoff signal in microseconds; the array contains daily values over one CPF interval Valid format for each term: NNNNN.NN, where N = 0 to 9     |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS | SME2_BumperA_Offset_<br>Time<br>(available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter) | Static        | float32                                   | "Physical" bumper mode mirror model parameter - time from bumper A pickoff signal to the start of the reverse active scan in microseconds Valid format: NNNNN.NN, where NNNNN.NN = 10110.00                                                                      |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS | SME2_BumperA_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter)                    | Static        | float32                                   | "Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (reverse) and ends (forward) at bumper A in microradians Valid format: SNNNNN.N, where SNNNNN.N = -68665.0                                             |

| Parameter<br>Group                                       | Parameter<br>Name                                                                                                  | Value<br>Type | Data<br>Type                              | Description                                                                                                                                                                                                                                                    |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS                     | SME2_BumperB_Dwell_<br>Time<br>(available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter)  | Dynamic       | float32<br>array of<br>flexible<br>length | "Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward scan linear motion in microseconds; the array contains daily values over one CPF interval Valid format for each term: NNNNN.NN, where N = 0 to 9 |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS                     | SME2_BumperB_Pickoff_<br>Time  (available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter)  | Dynamic       | float32<br>array of<br>flexible<br>length | "Physical" bumper mode mirror model parameter - time from the end of the reverse scan linear motion to bumper B pickoff signal in microseconds; the array contains daily values over one CPF interval Valid format for each term: NNNNN.NN, where N = 0 to 9   |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS                     | SME2_BumperB_Offset_<br>Time<br>(available in all CPFs with<br>effective dates of April 1,<br>2007 and thereafter) | Static        | float32                                   | "Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward active scan in microseconds Valid format: NNNNN.NN, where NNNNN.NN = 10110.00                                                                    |
| GROUP:<br>BUMPER_MODE_<br>PARAMETERS                     | SME2_BumperB_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter)                    | Static        | float32                                   | "Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (forward) and ends (reverse) at bumper B in microradians Valid format: SNNNNN.N, where SNNNNN.N = 68607.0                                            |
| GROUP:<br>SCAN_LINE_CORRECTOR                            | Primary_Angular_<br>Velocity                                                                                       | Static        | float32                                   | Angular velocity in radians per second of the primary scan line corrector Valid format: N.NNNNN, where N.NNNNN = 0.00966                                                                                                                                       |
| GROUP:<br>SCAN_LINE_CORRECTOR                            | Secondary_Angular_<br>Velocity                                                                                     | Static        | float32                                   | Angular velocity in radians per second of the secondary scan line corrector Valid format: N.NNNNN, where N.NNNNN = 0.00960                                                                                                                                     |
| GROUP:<br>SCAN_LINE_CORRECTOR                            | Primary_Corrector_<br>Motion                                                                                       | Static        | float32<br>array<br>(6 values)            | Fifth-order polynomial coefficients that describe the motion of the primary scan line corrector Valid format for each term: N.NNNNN, where N = 0 to 9                                                                                                          |
| GROUP:<br>SCAN_LINE_CORRECTOR                            | Secondary_Corrector_<br>Motion                                                                                     | Static        | float32<br>array<br>(6 values)            | Fifth-order polynomial coefficients that describe the motion of the secondary scan line corrector Valid format for each term: N.NNNNN, where N = 0 to 9                                                                                                        |
| GROUP:<br>SCAN_LINE_CORRECTOR                            | Unpowered_Pointing_Bias (available in all CPFs with effective dates of July 14, 2003 and thereafter)               | Dynamic       | Float32                                   | The best estimate of the pointing angle of the scan line corrector in its unpowered, "at-rest" pointing position Valid format: N.NNNNNNN, where N.NNNNNNN = 0.0000427                                                                                          |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP: BAND_OFFSETS | Along_Scan_Band_<br>Offsets                                                                                        | Static        | float32<br>array<br>(8 values)            | Nominal displacement in $\mu$ rad from the center of the focal plane to each band's optical axis Valid format: SNNNN.NNN, where S = "+" or "-" and N = 0 to 9                                                                                                  |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP: BAND_OFFSETS | Across_Scan_Band_<br>Offsets                                                                                       | Static        | float32<br>array<br>(8 values)            | Nominal displacement in $\mu$ rad from the center of the focal plane to each band's scan motion axis Valid format: SNNNN.NNN, where S = "+" or "-" and N = 0 to 9                                                                                              |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP: BAND_OFFSETS | Forward_Focal_<br>Plane_Offsets                                                                                    | Static        | float32<br>array<br>(8 values)            | Offset in Instrument Fields of View (IFOVs) for focal plane forward scans Valid format: SNNN.N, where S = "+" or "-" and N = 0 to 9                                                                                                                            |

| Parameter<br>Group                                              | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                   |
|-----------------------------------------------------------------|---------------------------------|---------------|---------------------------------|---------------------------------------------------------------------------------------------------------------|
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP: BAND_OFFSETS        | Reverse_Focal_<br>Plane_Offsets | Static        | float32<br>array<br>(8 values)  | Offset in IFOVs for focal plane reverse scans Valid format: SNNN.N, where S = "+" or "-" and N = 0 to 9       |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Along_<br>Scan_DO_B1    | Static        | float32<br>array<br>(16 values) | Forward along-scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Along_<br>Scan_DO_B1    | Static        | float32<br>array<br>(16 values) | Reverse along-scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Along_<br>Scan_DO_B2    | Static        | float32<br>array<br>(16 values) | Forward along-scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Along_<br>Scan_DO_B2    | Static        | float32<br>array<br>(16 values) | Reverse along-scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Along_<br>Scan_DO_B3    | Static        | float32<br>array<br>(16 values) | Forward along-scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Along_<br>Scan_DO_B3    | Static        | float32<br>array<br>(16 values) | Reverse along-scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Along_<br>Scan_DO_B4    | Static        | float32<br>array<br>(16 values) | Forward along-scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Along_<br>Scan_DO_B4    | Static        | float32<br>array<br>(16 values) | Reverse along-scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Along_<br>Scan_DO_B5    | Static        | float32<br>array<br>(16 values) | Forward along-scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Along_<br>Scan_DO_B5    | Static        | float32<br>array<br>(16 values) | Reverse along-scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Along_<br>Scan_DO_B6    | Static        | float32<br>array<br>(8 values)  | Forward along-scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Along_<br>Scan_DO_B6    | Static        | float32<br>array<br>(8 values)  | Reverse along-scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Along_<br>Scan_DO_B7    | Static        | float32<br>array<br>(16 values) | Forward along-scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Along_<br>Scan_DO_B7    | Static        | float32<br>array<br>(16 values) | Reverse along-scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where N = 0 TO 9 |

| Parameter<br>Group                                              | Parameter<br>Name             | Value<br>Type | Data<br>Type                    | Description                                                                                                    |
|-----------------------------------------------------------------|-------------------------------|---------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Along_<br>Scan_DO_B8  | Static        | float32<br>array<br>(32 values) | Forward along-scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where N = 0 TO 9  |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Along_<br>Scan_DO_B8  | Static        | float32<br>array<br>(32 values) | Reverse along-scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where N = 0 TO 9  |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Across_<br>Scan_DO_B1 | Static        | float32<br>array<br>(16 values) | Forward across-scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Across_<br>Scan_DO_B1 | Static        | float32<br>array<br>(16 values) | Reverse across-scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Across_<br>Scan_DO_B2 | Static        | float32<br>array<br>(16 values) | Forward across-scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Across_<br>Scan_DO_B2 | Static        | float32<br>array<br>(16 values) | Reverse across-scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Across_<br>Scan_DO_B3 | Static        | float32<br>array<br>(16 values) | Forward across-scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Across_<br>Scan_DO_B3 | Static        | float32<br>array<br>(16 values) | Reverse across-scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Across_<br>Scan_DO_B4 | Static        | float32<br>array<br>(16 values) | Forward across-scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Across_<br>Scan_DO_B4 | Static        | float32<br>array<br>(16 values) | Reverse across-scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Across_<br>Scan_DO_B5 | Static        | float32<br>array<br>(16 values) | Forward across-scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where N = 0 TO 9 |
| FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS        | Reverse_Across_<br>Scan_DO_B5 | Static        | float32<br>array<br>(16 values) | Reverse across-scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Across_Scan_<br>DO_B6 | Static        | float32<br>array<br>(8 values)  | Forward across-scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Across_<br>Scan_DO_B6 | Static        | float32<br>array<br>(8 values)  | Reverse across-scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where N = 0 TO 9 |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Across_<br>Scan_DO_B7 | Static        | float32<br>array<br>(16 values) | Forward across-scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where N = 0 TO 9 |

- 19 -

| Parameter<br>Group                                              | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                                                  |
|-----------------------------------------------------------------|---------------------------------|---------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Across_<br>Scan_DO_B7   | Static        | float32<br>array<br>(16 values) | Reverse across-scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where N = 0 TO 9                                                                               |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Forward_Across_<br>Scan_DO_B8   | Static        | float32<br>array<br>(32 values) | Forward across-scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where N = 0 TO 9                                                                               |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>DETECTOR_OFFSETS | Reverse_Across_<br>Scan_DO_B8   | Static        | float32<br>array<br>(32 values) | Reverse across-scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where N = 0 TO 9                                                                               |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>ODD_EVEN_OFFSETS | Forward_Even_<br>Detector_Shift | Static        | float32<br>array<br>(8 values)  | Adjustments in IFOVs to compensate for forward band offsets, even detector layout geometry, and multiplexer sampling for Bands 1-8 Valid format: NNN.N, where N = 0 TO 9                     |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>ODD_EVEN_OFFSETS | Forward_Odd_<br>Detector_Shift  | Static        | float32<br>array<br>(8 values)  | Adjustments in IFOVs to compensate for forward band offsets, odd detector layout geometry, and multiplexer sampling for Bands 1-8 Valid format: NNN.N, where N = 0 TO 9                      |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>ODD_EVEN_OFFSETS | Reverse_Even_<br>Detector_Shift | Static        | float32<br>array<br>(8 values)  | Adjustments in IFOVs to compensate for reverse band offsets, even detector layout geometry, and multiplexer sampling for Bands 1-8 Valid format: NNN.N, where N = 0 TO 9                     |
| GROUP: FOCAL_PLANE_<br>PARAMETERS<br>GROUP:<br>ODD_EVEN_OFFSETS | Reverse_Odd_<br>Detector_Shift  | Static        | float32<br>array<br>(8 values)  | Adjustments in IFOVs to compensate for reverse band offsets, odd detector layout geometry, and multiplexer sampling for Bands 1-8 Valid format: NNN.N, where N = 0 TO 9                      |
| GROUP:<br>ATTITUDE_PARAMETERS                                   | Gyro_To_Attitude_<br>Matrix     | Static        | float32<br>array<br>(9 values)  | Matrix describing the relationship of the gyro axis to the attitude control reference axis  Valid format: SN.NNNNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"                     |
| GROUP:<br>ATTITUDE_PARAMETERS                                   | ADSA_To_ETM_<br>Matrix          | Static        | float32<br>array<br>(9 values)  | Matrix describing the relationship of the Attitude Displacement Sensor Assembly (ADSA) to the ETM+ optical axis Valid format: SN.NNNNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" |
| GROUP:<br>ATTITUDE_PARAMETERS                                   | Attitude_To_ETM_<br>Matrix      | Static        | float32<br>array<br>(9 values)  | Matrix describing the relationship of the attitude control reference axis to the ETM+ optical axis Valid format: SN.NNNNNNNNSNN, where S = "+" or "-", N = 0 to 9, and E = "E"               |
| GROUP:<br>ATTITUDE_PARAMETERS                                   | Spacecraft_Roll_Bias            | Static        | float32                         | Spacecraft roll bias in radians Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNESNN = 0.00000000E+00                                                                                          |
| GROUP:<br>ATTITUDE_PARAMETERS                                   | Spacecraft_Pitch_<br>Bias       | Static        | float32                         | Spacecraft pitch bias in radians Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNNESNN = 0.00000000E+00                                                                                        |
| GROUP:<br>ATTITUDE_PARAMETERS                                   | Spacecraft_Yaw_Bias             | Static        | float32                         | Spacecraft yaw bias in radians Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNESNN = 0.00000000E+00                                                                                           |
| GROUP:<br>ATTITUDE_PARAMETERS                                   | IMU_Drift_Bias_XA               | Static        | float32                         | Inertial Measurement Unit (IMU) XA axis drift bias in radians per second Valid format: SN.NNNNNNNNESNN, where SN.NNNNNNNNESNN = -2.23500000E-06                                              |
| GROUP:<br>ATTITUDE_PARAMETERS                                   | IMU_Drift_Bias_YA               | Static        | float32                         | IMU YA axis drift bias in radians per second Valid format: SN.NNNNNNNNESNN, where SN.NNNNNNNNNESNN = -2.23500000E-06                                                                         |

| Parameter<br>Group                        | Parameter<br>Name            | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                                                                                                       |
|-------------------------------------------|------------------------------|---------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>ATTITUDE_PARAMETERS             | IMU_Drift_Bias_ZA            | Static        | float32                         | IMU ZA axis drift bias in radians per second Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNNESNN = 1.68230000E-06                                                                                                                                 |
| GROUP:<br>ATTITUDE_PARAMETERS             | IMU_Drift_Bias_XB            | Static        | float32                         | IMU XB axis drift bias in radians per second Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNNESNN = 186665000E-06                                                                                                                                  |
| GROUP:<br>ATTITUDE_PARAMETERS             | IMU_Drift_Bias_YB            | Static        | float32                         | IMU YB axis drift bias in radians per second Valid format: SN.NNNNNNNNESNN, where SN.NNNNNNNNESNN = -6.35100000E-07                                                                                                                               |
| GROUP:<br>ATTITUDE_PARAMETERS             | IMU_Drift_Bias_ZB            | Static        | float32                         | IMU ZB axis drift bias in radians per second Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNESNN = 4.84810000E-08                                                                                                                                  |
| GROUP:<br>TIME_PARAMETERS                 | Scan_Time                    | Static        | float32                         | Nominal scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 60743.0                                                                                                                                                                  |
| GROUP:<br>TIME_PARAMETERS                 | Forward_First_Half_<br>Time  | Static        | float32                         | Nominal forward first half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.4                                                                                                                                               |
| GROUP:<br>TIME_PARAMETERS                 | Forward_Second_<br>Half_Time | Static        | float32                         | Nominal forward second half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.6                                                                                                                                              |
| GROUP:<br>TIME_PARAMETERS                 | Reverse_First_Half_<br>Time  | Static        | float32                         | Nominal reverse first half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.6                                                                                                                                               |
| GROUP:<br>TIME_PARAMETERS                 | Reverse_Second_<br>Half_Time | Static        | float32                         | Nominal reverse second half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.4                                                                                                                                              |
| GROUP:<br>TRANSFER_FUNCTION<br>GROUP: IMU | Fn                           | Static        | float64                         | Inertial measurement unit transfer function resonant frequency (Hz) Valid format: N.NNNNNNN, where N.NNNNNNN = 3.3113091                                                                                                                          |
| GROUP:<br>TRANSFER_FUNCTION<br>GROUP: IMU | Zeta                         | Static        | float64                         | Inertial measurement unit transfer function damping coefficient Valid format: N.NNNNNNNN, where N.NNNNNNNN = 0.66882924                                                                                                                           |
| GROUP:<br>TRANSFER_FUNCTION<br>GROUP: IMU | Tau                          | Static        | float64                         | Inertial measurement unit transfer function denominator time constant (seconds) Valid format: SN.NNNNNNNESN, where SN.NNNNNNNESN = -1.6086176E-2                                                                                                  |
| GROUP:<br>TRANSFER_FUNCTION<br>GROUP: IMU | Р                            | Static        | float64                         | Inertial measurement unit transfer function numerator time constant (seconds) Valid format: SN.NNNNNNNESN, where SN.NNNNNNNESN = -4.1138195E-3                                                                                                    |
| GROUP:<br>TRANSFER_FUNCTION<br>GROUP: IMU | Ak                           | Static        | float64                         | Inertial measurement unit transfer function DC gain Valid format: N.NNNNNNN, where N.NNNNNNN = 1.0103061                                                                                                                                          |
| GROUP:<br>TRANSFER_FUNCTION<br>GROUP: ADS | ADS_num                      | Static        | float64<br>array<br>(18 values) | Transfer function numerator coefficients in order a0, a1, a2, a3, a4, a5; one set of six coefficients for each of the three ADS units; determined at 15 degrees C Valid format: SN.NNNNNNNEN, where $S = "+"$ or "-", $N = 0$ to 9, and $E = "E"$ |

| Parameter<br>Group                              | Parameter<br>Name   | Value<br>Type | Data<br>Type                        | Description                                                                                                                                                                                                                                                                     |
|-------------------------------------------------|---------------------|---------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>TRANSFER_FUNCTION<br>GROUP: ADS       | ADS_den             | Static        | float64<br>array<br>(18 values)     | Transfer function denominator coefficients in order b0, b1, b2, b3, b4, b5; one set of six coefficients for each of three ADS units; determined at 15 degrees C Valid format: SN.NNNNNNNEN, where S = "+" or "-", N = 0 to 9, and E = "E"                                       |
| GROUP:<br>TRANSFER_FUNCTION<br>GROUP: ADS       | ADS_num_temp        | Static        | float64<br>array<br>(18 values)     | Temperature-dependent part of the ADS transfer function numerator coefficients in order da0, da1, da2, da3, da4, da5; one set of six coefficients for each of three ADS units; change per degree C Valid format: SN.NNNNNNNESN, where S = "+" or "-", N = 0 to 9, and E = "E"   |
| GROUP:<br>TRANSFER_FUNCTION<br>GROUP: ADS       | ADS_den_temp        | Static        | float64<br>array<br>(18 values)     | Temperature-dependent part of the ADS transfer function denominator coefficients in order da0, da1, da2, da3, da4, da5; one set of six coefficients for each of three ADS units; change per degree C Valid format: SN.NNNNNNNESN, where S = "+" or "-", N = 0 to 9, and E = "E" |
| GROUP:<br>TRANSFER_FUNCTION<br>GROUP: PREFILTER | ADSPre_W            | Static        | float64<br>array<br>(5 values)      | ADS prefilter transfer function quadratic term resonant periods (Note: Given as period instead of frequency so that the transfer function can be set to unity, if necessary, by setting all five values to zero.)  Valid format: N.NNNNNNNNN, where N = 0 to 9                  |
| GROUP:<br>TRANSFER_FUNCTION<br>GROUP: PREFILTER | ADSPre_H            | Static        | float64<br>array<br>(5 values)      | ADS prefilter transfer function quadratic term damping coefficients  Valid format: SN.NNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                 |
| GROUP:<br>TRANSFER_FUNCTION<br>GROUP: PREFILTER | ADSPre_T            | Static        | float64<br>array<br>(5 values)      | ADS prefilter transfer function linear term time constants  Valid format: N.NNNNNNN, where N = 0 to 9                                                                                                                                                                           |
| GROUP:<br>UT1_TIME_PARAMETERS                   | UT1_Year            | Dynamic       | int16 array<br>(180<br>values)      | Year of UT1 time correction prediction; values span 180 days Valid format: YYYY, where YYYY = 1998-2020                                                                                                                                                                         |
| GROUP:<br>UT1_TIME_PARAMETERS                   | UT1_Month           | Dynamic       | char8<br>array<br>(180<br>values)   | Month of UT1 time correction prediction; values span 180 days Valid format: MMM, where MMM = Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec                                                                                                                      |
| GROUP:<br>UT1_TIME_PARAMETERS                   | UT1_Day             | Dynamic       | uint8 array<br>(180<br>values)      | Day of UT1 time correction prediction; values span 180 days Valid format: NN, where NN = 1-31                                                                                                                                                                                   |
| GROUP:<br>UT1_TIME_PARAMETERS                   | UT1_Modified_Julian | Dynamic       | int32 array<br>(180<br>values)      | Modified Julian day; values span 180 days; MJD = Julian day - 2 400 000.5; Julian date is a running day count starting 1 January 4713 B.C. Valid format: NNNNN, where NNNNN = e.g., 50234 (for May 31, 1996)                                                                    |
| GROUP:<br>UT1_TIME_PARAMETERS                   | UT1_X               | Dynamic       | float32<br>array<br>(180<br>values) | X shift pole wander in arc seconds; values span<br>180 days<br>Valid format: N.NNNNN, where N.NNNNN =<br>e.g., 0.45431                                                                                                                                                          |
| GROUP:<br>UT1_TIME_PARAMETERS                   | UT1_Y               | Dynamic       | float32<br>array<br>(180<br>values) | Y shift pole wander in arc seconds; values span<br>180 days<br>Valid format: N.NNNNN, where N.NNNNN =<br>e.g., 0.13454                                                                                                                                                          |
| GROUP:<br>UT1_TIME_PARAMETERS                   | UT1_UTC             | Dynamic       | float32<br>array<br>(180<br>values) | UT1 - UTC time difference in seconds; values span 180 days Valid format: N.NNNNN, where N.NNNNN = e.g., 0.44321                                                                                                                                                                 |

| Parameter<br>Group                                    | Parameter<br>Name | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------|-------------------|---------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>DETECTOR_STATUS                             | Status_Band1      | Dynamic       | char8<br>array<br>(16 values)   | Health status of Band 1's 16 detectors Valid format: ABCDE, where A = 0 (live), 1 (dead), 2 (intermittent) B = 0 (noise in spec, low-gain), 1 (noisy low signal), 2 (noisy high signal), 3 (noisy both signals), 4 (inoperable) C = 0 (noise in spec, high-gain), 1 (noisy low signal), 2 (noisy high signal), 3 (noisy both signal), 2 (noisy high signal), 3 (noisy both signals), 4 (inoperable) D = 0 (dynamic range in spec, low-gain), 1 (fail, high end), 2 (fail, low end), 3 (fail, both ends), 4 (inoperable) E = 0 (dynamic range in spec, high-gain), 1 (fail, low end), 2 (fail, low end), 3 (fail, both ends), 4 (inoperable) |
| GROUP:<br>DETECTOR_STATUS                             | Status_Band2      | Dynamic       | char8<br>array (16<br>values)   | Health status of Band 2's 16 detectors<br>Valid format: as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GROUP:<br>DETECTOR_STATUS                             | Status_Band3      | Dynamic       | char8<br>array (16<br>values)   | Health status of Band 3's 16 detectors Valid format: as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GROUP:<br>DETECTOR_STATUS                             | Status_Band4      | Dynamic       | char8<br>array (16<br>values)   | Health status of Band 4's 16 detectors<br>Valid format: as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GROUP:<br>DETECTOR_STATUS                             | Status_Band5      | Dynamic       | char8<br>array (16<br>values)   | Health status of Band 5's 16 detectors<br>Valid format: as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GROUP:<br>DETECTOR_STATUS                             | Status_Band6      | Dynamic       | char8<br>array (8<br>values)    | Health status of Band 6's 8 detectors<br>Valid format: as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GROUP:<br>DETECTOR_STATUS                             | Status_Band7      | Dynamic       | char8<br>array (16<br>values)   | Health status of Band 7's 16 detectors<br>Valid format: as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GROUP:<br>DETECTOR_STATUS                             | Status_Band8      | Dynamic       | char8<br>array (32<br>values)   | Health status of Band 8's 32 detectors<br>Valid format: as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW | B1L_Prelaunch     | Static        | float32<br>array<br>(16 values) | Band 1 prelaunch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW | B1L_Postlaunch    | Static        | float32<br>array<br>(16 values) | Band 1 post-launch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW | B1L_Current       | Dynamic       | float32<br>array<br>(16 values) | Band 1 current low-gain in counts/W/m^2-ster-<br>µm  Valid format: NN.NNNNN, where N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW | B2L_Prelaunch     | Static        | float32<br>array<br>(16 values) | Band 2 prelaunch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW | B2L_Postlaunch    | Static        | float32<br>array<br>(16 values) | Band 2 post-launch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW | B2L_Current       | Dynamic       | float32<br>array<br>(16 values) | Band 2 current low-gain in counts/W/m^2-ster-<br>µm<br>Valid format: NN.NNNNN, where N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW | B3L_Prelaunch     | Static        | float32<br>array<br>(16 values) | Band 3 prelaunch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW | B3L_Postlaunch    | Static        | float32<br>array<br>(16 values) | Band 3 post-launch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Parameter<br>Group                                     | Parameter<br>Name | Value<br>Type | Data<br>Type                    | Description                                                                                          |
|--------------------------------------------------------|-------------------|---------------|---------------------------------|------------------------------------------------------------------------------------------------------|
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW  | B3L_Current       | Dynamic       | float32<br>array<br>(16 values) | Band 3 current low-gain in counts/W/m^2-ster-<br>µm  Valid format: NN.NNNNN, where N = 0 to 9        |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW  | B4L_Prelaunch     | Static        | float32<br>array<br>(16 values) | Band 4 prelaunch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9    |
| GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW        | B4L_Postlaunch    | Static        | float32<br>array<br>(16 values) | Band 4 post-launch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9  |
| GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW        | B4L_Current       | Dynamic       | float32<br>array<br>(16 values) | Band 4 current low-gain in counts/W/m^2-ster-<br>µm  Valid format: NN.NNNNN, where N = 0 to 9        |
| GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW        | B5L_Prelaunch     | Static        | float32<br>array<br>(16 values) | Band 5 prelaunch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9    |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW  | B5L_Postlaunch    | Static        | float32<br>array<br>(16 values) | Band 5 post-launch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9  |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW  | B5L_Current       | Dynamic       | float32<br>array<br>(16 values) | Band 5 current low-gain in counts/W/m^2-ster-<br>μm<br>Valid format: NN.NNNNN, where N = 0 to 9      |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW  | B6L_Prelaunch     | Static        | float32<br>array<br>(8 values)  | Band 6 prelaunch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9    |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW  | B6L_Postlaunch    | Static        | float32<br>array<br>(8 values)  | Band 6 post-launch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9  |
| GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW        | B6L_Current       | Dynamic       | float32<br>array<br>(8 values)  | Band 6 current low-gain in counts/W/m^2-ster-<br>µm<br>Valid format: NN.NNNNN, where N = 0 to 9      |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW  | B7L_Prelaunch     | Static        | float32<br>array<br>(16 values) | Band 7 prelaunch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9    |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW  | B7L_Postlaunch    | Static        | float32<br>array<br>(16 values) | Band 7 post-launch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9  |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW  | B7L_Current       | Dynamic       | float32<br>array<br>(16 values) | Band 7 current low-gain in counts/W/m^2-ster-<br>µm  Valid format: NN.NNNNN, where N = 0 to 9        |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW  | B8L_Prelaunch     | Static        | float32<br>array<br>(32 values) | Band 8 prelaunch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9    |
| GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW        | B8L_Postlaunch    | Static        | float32<br>array<br>(32 values) | Band 8 post-launch low-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9  |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_LOW  | B8L_Current       | Dynamic       | float32<br>array<br>(32 values) | Band 8 current low-gain in counts/W/m^2-ster-<br>µm  Valid format: NN.NNNNN, where N = 0 to 9        |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B1H_Prelaunch     | Static        | float32<br>array<br>(16 values) | Band 1 prelaunch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9   |
| GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH       | B1H_Postlaunch    | Static        | float32<br>array<br>(16 values) | Band 1 post-launch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9 |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B1H_Current       | Dynamic       | float32<br>array<br>(16 values) | Band 1 current high-gain in counts/W/m^2-ster-<br>µm<br>Valid format: NN.NNNNN, where N = 0 to 9     |

| Parameter<br>Group                                     | Parameter<br>Name | Value<br>Type | Data<br>Type                    | Description                                                                                          |
|--------------------------------------------------------|-------------------|---------------|---------------------------------|------------------------------------------------------------------------------------------------------|
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B2H_Prelaunch     | Static        | float32<br>array<br>(16 values) | Band 2 prelaunch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9   |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B2H_Postlaunch    | Static        | float32<br>array<br>(16 values) | Band 2 post-launch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9 |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B2H_Current       | Dynamic       | float32<br>array<br>(16 values) | Band 2 current high-gain in counts/W/m^2-ster-<br>µm Valid format: NN.NNNNN, where N = 0 to 9        |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B3H_Prelaunch     | Static        | float32<br>array<br>(16 values) | Band 3 prelaunch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9   |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B3H_Postlaunch    | Static        | float32<br>array<br>(16 values) | Band 3 post-launch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9 |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B3H_Current       | Dynamic       | float32<br>array<br>(16 values) | Band 3 current high-gain in counts/W/m^2-ster-<br>µm  Valid format: NN.NNNNN, where N = 0 to 9       |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B4H_Prelaunch     | Static        | float32<br>array<br>(16 values) | Band 4 prelaunch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9   |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B4H_Postlaunch    | Static        | float32<br>array<br>(16 values) | Band 4 post-launch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9 |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B4H_Current       | Dynamic       | float32<br>array<br>(16 values) | Band 4 current high-gain in counts/W/m^2-ster-<br>µm<br>Valid format: NN.NNNNN, where N = 0 to 9     |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B5H_Prelaunch     | Static        | float32<br>array<br>(16 values) | Band 5 prelaunch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9   |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B5H_Postlaunch    | Static        | float32<br>array<br>(16 values) | Band 5 post-launch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9 |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B5H_Current       | Dynamic       | float32<br>array<br>(16 values) | Band 5 current high-gain in counts/W/m^2-ster-<br>µm<br>Valid format: NN.NNNNN, where N = 0 to 9     |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B6H_Prelaunch     | Static        | float32<br>array<br>(8 values)  | Band 6 prelaunch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9   |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B6H_Postlaunch    | Static        | float32<br>array<br>(8 values)  | Band 6 post-launch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9 |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B6H_Current       | Dynamic       | float32<br>array<br>(8 values)  | Band 6 current high-gain in counts/W/m^2-ster-<br>µm Valid format: NN.NNNNN, where N = 0 to 9        |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B7H_Prelaunch     | Static        | float32<br>array<br>(16 values) | Band 7 prelaunch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9   |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B7H_Postlaunch    | Static        | float32<br>array<br>(16 values) | Band 7 post-launch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9 |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B7H_Current       | Dynamic       | float32<br>array<br>(16 values) | Band 7 current high-gain in counts/W/m^2-ster-<br>µm  Valid format: NN.NNNNN, where N = 0 to 9       |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B8H_Prelaunch     | Static        | float32<br>array<br>(32 values) | Band 8 prelaunch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9   |

| Parameter<br>Group                                     | Parameter<br>Name            | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                                                                                        |
|--------------------------------------------------------|------------------------------|---------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B8H_Postlaunch               | Static        | float32<br>array<br>(32 values) | Band 8 post-launch high-gain in counts/W/m^2-<br>ster-µm<br>Valid format: NN.NNNNN, where N = 0 to 9                                                                                                                               |
| GROUP: DETECTOR_GAINS<br>GROUP:<br>DETECTOR_GAINS_HIGH | B8H_Current                  | Dynamic       | float32<br>array<br>(32 values) | Band 8 current high-gain in counts/W/m^2-ster-<br>µm  Valid format: NN.NNNNN, where N = 0 to 9                                                                                                                                     |
| GROUP: BIAS_LOCATIONS                                  | Forward_Bias_<br>Location_30 | Dynamic       | int16                           | Offset, per line, in pixels, from the beginning of the data (Left Hand Offset) to the bias location starting point (start of DC Restore) for Bands 1-5 and Band 7 Valid format: NNN, where NNN = 143                               |
| GROUP: BIAS_LOCATIONS                                  | Forward_Bias_<br>Length_30   | Dynamic       | int16                           | Number of pixels to use, per line, in calculating bias for Bands 1-5 and Band 7 Valid format: NNN, where NNN = 500                                                                                                                 |
| GROUP: BIAS_LOCATIONS                                  | Forward_IC_<br>Region_30     | Dynamic       | int16                           | Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Bands 1-5 and Band 7 Valid format: NNN, where NNN = 814                                      |
| GROUP: BIAS_LOCATIONS                                  | Reverse_Bias_<br>Location_30 | Dynamic       | int16                           | Offset, per line, in pixels, from the beginning of<br>the data (Right Hand Offset) to the bias location<br>starting point (start of DC Restore) for Bands 1-<br>5 and Band 7<br>Valid format: NNN, where NNN = 810                 |
| GROUP: BIAS_LOCATIONS                                  | Reverse_Bias_<br>Length_30   | Dynamic       | int16                           | Number of pixels to use per line, in calculating bias for Bands 1-5 and Band 7                                                                                                                                                     |
| GROUP: BIAS_LOCATIONS                                  | Reverse_IC_<br>Region_30     | Dynamic       | int16                           | Valid format: NNN, where NNN = 500  Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Bands 1-5 and Band 7  Valid format: NNN, where NNN = 810 |
| GROUP: BIAS_LOCATIONS                                  | Forward_Bias_<br>Location_60 | Dynamic       | int16                           | Offset, per line, in pixels, from the beginning of the data (Left Hand Offset) to the bias location starting point (start of DC Restore) for Band 6 Valid format: NNN, where NNN = 85                                              |
| GROUP: BIAS_LOCATIONS                                  | Forward_Bias_<br>Length_60   | Dynamic       | int16                           | Number of pixels to use, per line, in calculating bias for Band 6 Valid format: NNN, where NNN = 275                                                                                                                               |
| GROUP: BIAS_LOCATIONS                                  | Forward_IC_<br>Region_60     | Dynamic       | int16                           | Length of the useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 6 Valid format: NNN, where NNN = 380                                                |
| GROUP: BIAS_LOCATIONS                                  | Reverse_Bias_<br>Location_60 | Dynamic       | int16                           | Offset, per line, in pixels, from the beginning of the data (Right Hand Offset) to the bias location starting point (start of DC Restore) for Band 6 Valid format: NNN, where NNN = 400                                            |
| GROUP: BIAS_LOCATIONS                                  | Reverse_Bias_<br>Length_60   | Dynamic       | int16                           | Number of pixels to use, per line, in calculating bias for Band 6 Valid format: NNN, where NNN = 275                                                                                                                               |
| GROUP: BIAS_LOCATIONS                                  | Reverse_IC_<br>Region_60     | Dynamic       | int16                           | Length of the useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 6 Valid format: NNN, where NNN = 410                                                |
| GROUP: BIAS_LOCATIONS                                  | Forward_Bias_<br>Location_15 | Dynamic       | int16                           | Offset, per line, in pixels, from the beginning of the data (Left Hand Offset) to the bias location starting point (start of DC Restore) for Band 8 Valid format: NNN, where NNN = 286                                             |
| GROUP: BIAS_LOCATIONS                                  | Forward_Bias_<br>Length_15   | Dynamic       | int16                           | Number of pixels to use, per line, in calculating bias for Band 8 Valid format: NNNN, where NNNN = 1000                                                                                                                            |

| Parameter<br>Group                                                 | Parameter<br>Name            | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                                                |
|--------------------------------------------------------------------|------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: BIAS_LOCATIONS                                              | Forward_IC_<br>Region_15     | Dynamic       | int16                           | Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 8 Valid format: NNNN, where NNNN = 1635         |
| GROUP: BIAS_LOCATIONS                                              | Reverse_Bias_<br>Location_15 | Dynamic       | int16                           | Offset, per line, in pixels, from the beginning of the data (Right Hand Offset) to the bias location starting point (start of DC Restore) for Band 8 Valid format: NNNN, where NNNN = 1610 |
| GROUP: BIAS_LOCATIONS                                              | Reverse_Bias_<br>Length_15   | Dynamic       | int16                           | Number of pixels to use, per line, in calculating bias for Band 8 Valid format: NNNN, where NNNN = 1000                                                                                    |
| GROUP: BIAS_LOCATIONS                                              | Reverse_IC_<br>Region_15     | Dynamic       | int16                           | Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 8 Valid format: NNNN, where NNNN = 1646         |
| GROUP:<br>DETECTOR_BIASES_B6<br>GROUP: DETECTOR_<br>BIASES_B6_LOW  | B6L_Bias_Prelaunch           | Static        | float32<br>array<br>(8 values)  | Band 6 prelaunch low-gain bias in digital counts<br>Valid format: NN.NN, where N = 0 to 9                                                                                                  |
| GROUP:<br>DETECTOR_BIASES_B6<br>GROUP: DETECTOR_<br>BIASES_B6_LOW  | B6L_Bias_Postlaunch          | Static        | float32<br>array<br>(8 values)  | Band 6 post-launch low-gain bias in digital counts  Valid format: NN.NN, where N = 0 to 9                                                                                                  |
| GROUP:<br>DETECTOR_BIASES_B6<br>GROUP: DETECTOR_<br>BIASES_B6_LOW  | B6L_Bias_Current             | Dynamic       | float32<br>array<br>(8 values)  | Band 6 current low-gain bias in digital counts<br>Valid format: NN.NNN, where N = 0 to 9                                                                                                   |
| GROUP:<br>DETECTOR_BIASES_B6<br>GROUP: DETECTOR_<br>BIASES_B6_HIGH | B6H_Bias_Prelaunch           | Static        | float32<br>array<br>(8 values)  | Band 6 prelaunch high-gain bias in digital counts  Valid format: SNN.NN, where S = "+" or "-" and N = 0 to 9                                                                               |
| GROUP:<br>DETECTOR_BIASES_B6<br>GROUP: DETECTOR_<br>BIASES_B6_HIGH | B6H_Bias_Postlaunch          | Static        | float32<br>array<br>(8 values)  | Band 6 post-launch high-gain bias in digital counts  Valid format: SNN.NN, where S = "+" or "-" and N = 0 to 9                                                                             |
| GROUP:<br>DETECTOR_BIASES_B6<br>GROUP: DETECTOR_<br>BIASES_B6_HIGH | B6H_Bias_Current             | Dynamic       | float32<br>array<br>(8 values)  | Band 6 current high-gain bias in digital counts Valid format: SNN.NNNN, where S = "+" or "-" and N = 0 to 9                                                                                |
| GROUP: ACCA_BIASES<br>GROUP:<br>ACCA_BIASES_LOW                    | B1L_ACCA_Bias                | Dynamic       | float32<br>array<br>(16 values) | Band 1 low-gain Automated Cloud Cover<br>Assessment (ACCA) bias in digital counts for<br>detectors 1-16<br>Valid format: NN.NN, where N = 0 to 9                                           |
| GROUP: ACCA_BIASES<br>GROUP:<br>ACCA_BIASES_LOW                    | B2L_ACCA_Bias                | Dynamic       | float32<br>array<br>(16 values) | Band 2 low-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9                                                                                       |
| GROUP: ACCA_BIASES GROUP: ACCA_BIASES_LOW                          | B3L_ACCA_Bias                | Dynamic       | float32<br>array<br>(16 values) | Band 3 low-gain ACCA bias in digital counts for detectors 1-16                                                                                                                             |
| GROUP: ACCA_BIASES<br>GROUP:<br>ACCA_BIASES_LOW                    | B4L_ACCA_Bias                | Dynamic       | float32<br>array<br>(16 values) | Band 4 low-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9                                                                                       |
| GROUP: ACCA_BIASES<br>GROUP:<br>ACCA_BIASES_LOW                    | B5L_ACCA_Bias                | Dynamic       | float32<br>array<br>(16 values) | Band 5 low-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9                                                                                       |
| GROUP: ACCA_BIASES<br>GROUP:<br>ACCA_BIASES_LOW                    | B6L_ACCA_Bias                | Dynamic       | float32<br>array<br>(8 values)  | Band 6 low-gain ACCA bias in digital counts for detectors 1-8 Valid format: NN.NNN, where N = 0 to 9                                                                                       |

| Parameter<br>Group                                           | Parameter<br>Name | Value<br>Type | Data<br>Type                    | Description                                                                                                                 |
|--------------------------------------------------------------|-------------------|---------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| GROUP: ACCA_BIASES<br>GROUP:<br>ACCA_BIASES_LOW              | B7L_ACCA_Bias     | Dynamic       | float32<br>array<br>(16 values) | Band 7 low-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9                        |
| GROUP: ACCA_BIASES                                           | B8L_ACCA_Bias     | Dynamic       | float32<br>array                | Band 8 low-gain ACCA bias in digital counts for detectors 1-32                                                              |
| GROUP:<br>ACCA_BIASES_LOW                                    |                   |               | (32 values)                     |                                                                                                                             |
| GROUP: ACCA_BIASES GROUP:                                    | B1H_ACCA_Bias     | Dynamic       | float32<br>array<br>(16 values) | Band 1 high-gain ACCA bias in digital counts for detectors 1-16                                                             |
| ACCA_BIASES_HIGH  GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH | B2H_ACCA_Bias     | Dynamic       | float32<br>array<br>(16 values) | Band 2 high-gain ACCA bias in digital counts for detectors 1-16                                                             |
| GROUP: ACCA_BIASES<br>GROUP:<br>ACCA_BIASES_HIGH             | B3H_ACCA_Bias     | Dynamic       | float32<br>array<br>(16 values) | Band 3 high-gain ACCA bias in digital counts for detectors 1-16                                                             |
| GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH                   | B4H_ACCA_Bias     | Dynamic       | float32<br>array<br>(16 values) | Band 4 high-gain ACCA bias in digital counts for detectors 1-16                                                             |
| GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH                   | B5H_ACCA_Bias     | Dynamic       | float32<br>array<br>(16 values) | Band 5 high-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9                       |
| GROUP: ACCA_BIASES<br>GROUP:<br>ACCA_BIASES_HIGH             | B6H_ACCA_Bias     | Dynamic       | float32<br>array<br>(8 values)  | Band 6 high-gain ACCA bias in digital counts for detectors 1- 8 Valid format: SNN.NNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: ACCA_BIASES<br>GROUP:<br>ACCA_BIASES_HIGH             | B7H_ACCA_Bias     | Dynamic       | float32<br>array<br>(16 values) | Band 7 high-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9                       |
| GROUP: ACCA_BIASES<br>GROUP:<br>ACCA_BIASES_HIGH             | B8H_ACCA_Bias     | Dynamic       | float32<br>array<br>(32 values) | Band 8 high-gain ACCA bias in digital counts for detectors 1-32 Valid format: NN.NN, where N = 0 to 9                       |
| GROUP:<br>ACCA_THRESHOLDS                                    | Thresh_B3         | Dynamic       | float32                         | Band 3 ACCA threshold<br>Valid format: N.NNNN, where N.NNNN = 0.0800                                                        |
| GROUP:<br>ACCA_THRESHOLDS                                    | Thresh_B3_Lower   | Dynamic       | float32                         | Band 3 land reflectance threshold<br>Valid format: NN.NN, where NN.NN = 0.07                                                |
| GROUP:<br>ACCA_THRESHOLDS                                    | Thresh_B56_High   | Dynamic       | float32                         | Bands 5-6 high-composite threshold Valid format: NNN.NNN, where NNN.NNN = 225.000                                           |
| GROUP:<br>ACCA_THRESHOLDS                                    | Thresh_B56_Low    | Dynamic       | float32                         | Bands 5-6 low-composite threshold Valid format: NNN.NNN, where NNN.NNN = 210.000                                            |
| GROUP:<br>ACCA_THRESHOLDS                                    | Thresh_B6         | Dynamic       | float32                         | Band 6 threshold - maximum cloud temperature Valid format: NNN.NNN, where NNN.NNN = 300.000                                 |
| GROUP:<br>ACCA_THRESHOLDS                                    | Thresh_B45_Ratio  | Dynamic       | float32                         | Bands 4-5 ratio threshold<br>Valid format: N.NNNN, where N.NNNN = 1.0000                                                    |
| GROUP:<br>ACCA_THRESHOLDS                                    | Thresh_B42_Ratio  | Dynamic       | float32                         | Bands 4-2 ratio threshold Valid format: N.NNNNN, where N.NNNNN = 2.16248                                                    |
| GROUP:<br>ACCA_THRESHOLDS                                    | Thresh_B43_Ratio  | Dynamic       | float32                         | Bands 4-3 ratio threshold<br>Valid format: N.NNNN, where N.NNNN = 2.3500                                                    |
| GROUP:<br>ACCA_THRESHOLDS                                    | Thresh_NDSI_Max   | Dynamic       | float32                         | Normalized Difference Snow Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000                                 |
| GROUP:<br>ACCA_THRESHOLDS                                    | Thresh_NDSI_Min   | Dynamic       | float32                         | NDSI floor<br>Valid format: SN.NNNN, where<br>SN.NNNN = -0.2500                                                             |

| Parameter<br>Group                       | Parameter<br>Name    | Value<br>Type | Data<br>Type | Description                                                                                                                                     |
|------------------------------------------|----------------------|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>ACCA_THRESHOLDS                | Thresh_NDSI_Snow     | Dynamic       | float32      | NDSI threshold used to identify snow<br>Valid format: NN.NNNN, where<br>NN.NNNN = 0.8000                                                        |
| GROUP:<br>ACCA_THRESHOLDS                | Cloud_Percent_Min    | Dynamic       | float32      | Minimum cloud cover percentage required for pass two Valid format: N.NNNN, where N.NNNN = 0.4000                                                |
| GROUP:<br>ACCA_THRESHOLDS                | Desert_Index         | Dynamic       | float32      | Desert index (Thresh_45_Ratio/<br>Thresh_42_Ratio)<br>Valid format: N.NNN, where N.NNN = 0.500                                                  |
| GROUP:<br>ACCA_THRESHOLDS                | Thresh_Snow_Percent  | Dynamic       | float32      | Maximum snow cover percentage allowed to use looser cloud properties for pass two Valid format: N.NNNN, where N.NNNN = 1.0000                   |
| GROUP:<br>ACCA_THRESHOLDS                | Thermal_Effect_High  | Dynamic       | float32      | Maximum allowable pass two percentage cloud cover increase allowed using looser cloud properties Valid format: NN.NNNN, where NN.NNNN = 35.0000 |
| GROUP:<br>ACCA_THRESHOLDS                | Thermal_Effect_Low   | Dynamic       | float32      | Maximum allowable pass two percentage cloud cover increase allowed using narrower cloud properties  Valid format: NN.NNN, where NN.NNN = 25.000 |
| GROUP:<br>ACCA_THRESHOLDS                | B6Max_Maxthresh_Diff | Dynamic       | float32      | Minimum difference allowed between maximum cloud temperature and maximum thermal threshold Valid format: NN.NNN, where NN.NNN = 2.000           |
| GROUP:<br>SOLAR_SPECTRAL_<br>IRRADIANCES | B1_Solar_Irradiance  | Dynamic       | float32      | Mean solar exoatmospheric spectral irradiance for Band 1 in W/(m² µm) Valid format: NNNN.NNN, where N = 0 to 9                                  |
| GROUP:<br>SOLAR_SPECTRAL_<br>IRRADIANCES | B2_Solar_Irradiance  | Dynamic       | float32      | Mean solar exoatmospheric spectral irradiance for Band 2 in W/(m² µm) Valid format: NNNN.NNN, where N = 0 to 9                                  |
| GROUP:<br>SOLAR_SPECTRAL_<br>IRRADIANCES | B3_Solar_Irradiance  | Dynamic       | float32      | Mean solar exoatmospheric spectral irradiance for Band 3 in W/(m² µm) Valid format: NNNN.NNN, where N = 0 to 9                                  |
| GROUP:<br>SOLAR_SPECTRAL_<br>IRRADIANCES | B4_Solar_Irradiance  | Dynamic       | float32      | Mean solar exoatmospheric spectral irradiance for Band 4 in W/( $m^2 \mu m$ ) Valid format: NNNN.NNN, where N = 0 to 9                          |
| GROUP:<br>SOLAR_SPECTRAL_<br>IRRADIANCES | B5_Solar_Irradiance  | Dynamic       | float32      | Mean solar exoatmospheric spectral irradiance for Band 5 in W/( $m^2 \mu m$ ) Valid format: NNNN.NNN, where N = 0 to 9                          |
| GROUP:<br>SOLAR_SPECTRAL_<br>IRRADIANCES | B7_Solar_Irradiance  | Dynamic       | float32      | Mean solar exoatmospheric spectral irradiance for Band 7 in W/( $m^2 \mu m$ ) Valid format: NNNN.NNN, where N = 0 to 9                          |
| GROUP:<br>SOLAR_SPECTRAL_<br>IRRADIANCES | B8_Solar_Irradiance  | Dynamic       | float32      | Mean solar exoatmospheric spectral irradiance for Band 8 in W/(m² µm) Valid format: NNNN.NNN, where N = 0 to 9                                  |
| GROUP:<br>THERMAL_CONSTANTS              | K1_Constant          | Static        | float32      | Thermal calibration constant 1 in W/m^2-ster-<br>µm<br>Valid format: NNN.NN, where NNN.NN = 666.09                                              |
| GROUP:<br>THERMAL_CONSTANTS              | K2_Constant          | Static        | float32      | Thermal calibration constant 2 kelvin Valid format: NNNN.NN, where NNNNN.NN = 1282.71                                                           |

| Parameter<br>Group                                                 | Parameter<br>Name | Value<br>Type | Data<br>Type                   | Description                                                                                                                                               |
|--------------------------------------------------------------------|-------------------|---------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_LOW  | B1L_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 1, low-gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9       |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_LOW  | B2L_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 2, low-gain, W/m^2-ster- $\mu$ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_LOW  | B3L_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 3, low-gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9       |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_LOW  | B4L_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 4, low-gain, W/m^2-ster- $\mu$ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_LOW  | B5L_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 5, low-gain, W/m^2-ster- $\mu$ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_LOW  | B6L_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 6, low-gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9       |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_LOW  | B7L_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 7, low-gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9       |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_LOW  | B8L_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 8, low-gain, W/m^2-ster- $\mu$ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_LOW  | B1H_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 1, high-gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9      |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_HIGH | B2H_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 2, high-gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9      |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_HIGH | B3H_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 3, high-gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9      |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_HIGH | B4H_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 4, high-gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9      |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_HIGH | B5H_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 5, high-gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9      |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_HIGH | B6H_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 6, high-gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9      |
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_HIGH | B7H_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 7, high-gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9      |

| Parameter<br>Group                                                 | Parameter<br>Name | Value<br>Type | Data<br>Type                   | Description                                                                                                                                                                           |
|--------------------------------------------------------------------|-------------------|---------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>SCALING_PARAMETERS<br>GROUP: SCALING_<br>PARAMETERS_HIGH | B8H_Lmin_Lmax     | Static        | float32<br>array<br>(2 values) | Post-calibration 8-bit dynamic range scaling factors for Band 8, high-gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9                                  |
| GROUP:<br>MTF_COMPENSATION                                         | B1_weights_along  | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute along-scan Modulation Transfer Function Compensation (MTFC) for Band 1 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>MTF_COMPENSATION                                         | B1_weights_across | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 1 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                            |
| GROUP:<br>MTF_COMPENSATION                                         | B2_weights_along  | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 2 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                             |
| GROUP:<br>MTF_COMPENSATION                                         | B2_weights_across | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 2 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                            |
| GROUP:<br>MTF_COMPENSATION                                         | B3_weights_along  | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 3 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                             |
| GROUP:<br>MTF_COMPENSATION                                         | B3_weights_across | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 3 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                            |
| GROUP:<br>MTF_COMPENSATION                                         | B4_weights_along  | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 4 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                             |
| GROUP:<br>MTF_COMPENSATION                                         | B4_weights_across | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 4 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                            |
| GROUP:<br>MTF_COMPENSATION                                         | B5_weights_along  | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 5 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                             |
| GROUP:<br>MTF_COMPENSATION                                         | B5_weights_across | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 5 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                            |
| GROUP:<br>MTF_COMPENSATION                                         | B6_weights_along  | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 6 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                             |
| GROUP:<br>MTF_COMPENSATION                                         | B6_weights_across | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 6 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                            |
| GROUP:<br>MTF_COMPENSATION                                         | B7_weights_along  | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 7 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                             |
| GROUP:<br>MTF_COMPENSATION                                         | B7_weights_across | Dynamic       | float64<br>array<br>(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 7 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9                                            |

| Parameter<br>Group                                  | Parameter<br>Name     | Value<br>Type | Data<br>Type                    | Description                                                                                                                                |
|-----------------------------------------------------|-----------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>MTF_COMPENSATION                          | B8_weights_along      | Dynamic       | float64<br>array<br>(5 values)  | Weighting function coefficients used to compute along-scan MTFC for Band 8 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP:<br>MTF_COMPENSATION                          | B8_weights_across     | Dynamic       | float64<br>array<br>(5 values)  | Weighting function coefficients used to compute across-scan MTFC for Band 8 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: MEMORY_EFFECT<br>GROUP: ME_MAGNITUDES        | B1_ME_Magnitude       | Dynamic       | float32<br>array<br>(16 values) | Band 1 memory effect magnitude measured in Digital Numbers (DNs) Valid format: NNN.NNNNNNN, where N = 0 to 9                               |
| GROUP: MEMORY_EFFECT<br>GROUP: ME_MAGNITUDES        | B2_ME_Magnitude       | Dynamic       | float32<br>array<br>(16 values) | Band 2 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9                                                 |
| GROUP: MEMORY_EFFECT<br>GROUP: ME_MAGNITUDES        | B3_ME_Magnitude       | Dynamic       | float32<br>array<br>(16 values) | Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9                                                 |
| GROUP: MEMORY_EFFECT<br>GROUP: ME_MAGNITUDES        | B4_ME_Magnitude       | Dynamic       | float32<br>array<br>(16 values) | Band 4 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9                                                 |
| GROUP: MEMORY_EFFECT<br>GROUP: ME_MAGNITUDES        | B5_ME_Magnitude       | Dynamic       | float32<br>array<br>(16 values) | Band 5 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9                                                 |
| GROUP: MEMORY_EFFECT<br>GROUP: ME_MAGNITUDES        | B6_ME_Magnitude       | Dynamic       | float32<br>array<br>(8 values)  | Band 6 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9                                                 |
| GROUP: MEMORY_EFFECT<br>GROUP: ME_MAGNITUDES        | B7_ME_Magnitude       | Dynamic       | float32<br>array<br>(16 values) | Band 7 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9                                                 |
| GROUP: MEMORY_EFFECT<br>GROUP: ME_MAGNITUDES        | B8_ME_Magnitude       | Dynamic       | float32<br>array<br>(32 values) | Band 8 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9                                                 |
| GROUP: MEMORY_EFFECT<br>GROUP:<br>ME_TIME_CONSTANTS | B1_ME_Time_Constant   | Dynamic       | float32<br>array<br>(16 values) | Band 1 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where N = 0 to 9                                                 |
| GROUP: MEMORY_EFFECT<br>GROUP:<br>ME_TIME_CONSTANTS | B2_ME_Time_Constant   | Dynamic       | float32<br>array<br>(16 values) | Band 2 time constant measured in minor frames<br>Valid format: NNNN.NNNNNNN, where<br>N = 0 to 9                                           |
| GROUP: MEMORY_EFFECT<br>GROUP:<br>ME_TIME_CONSTANTS | B3_ME_Time_Constant   | Dynamic       | float32<br>array<br>(16 values) | Band 3 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where N = 0 to 9                                                 |
| GROUP: MEMORY_EFFECT<br>GROUP:<br>ME_TIME_CONSTANTS | B4_ME_Time_Constant   | Dynamic       | float32<br>array<br>(16 values) | Band 4 time constant measured in minor frames<br>Valid format: NNNN.NNNNNNN, where<br>N = 0 to 9                                           |
| GROUP: MEMORY_EFFECT<br>GROUP:<br>ME_TIME_CONSTANTS | B5_ME_Time_Constant   | Dynamic       | float32<br>array<br>(16 values) | Band 5 time constant measured in minor frames<br>Valid format: NNNN.NNNNNNN, where<br>N = 0 to 9                                           |
| GROUP: MEMORY_EFFECT<br>GROUP:<br>ME_TIME_CONSTANTS | B6_ME_Time_Constant   | Dynamic       | float32<br>array<br>(8 values)  | Band 6 time constant measured in minor frames<br>Valid format: NNNN.NNNNNNN, where<br>N = 0 to 9                                           |
| GROUP: MEMORY_EFFECT<br>GROUP:<br>ME_TIME_CONSTANTS | B7_ME_Time_Constant   | Dynamic       | float32<br>array<br>(16 values) | Band 7 time constant measured in minor frames<br>Valid format: NNNN.NNNNNNN, where<br>N = 0 to 9                                           |
| GROUP: MEMORY_EFFECT<br>GROUP:<br>ME_TIME_CONSTANTS | B8_ME_Time_Constant   | Dynamic       | float32<br>array<br>(32 values) | Band 8 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where N = 0 to 9                                                 |
| GROUP: GHOST_PULSE                                  | Ghost_Pulse_Endpoints | Dynamic       | float32<br>array<br>(2 values)  | Beginning and ending fractional minor frames that bound IC ghost pulse Valid format: NNNN.NNNN, where N = 0 to 9                           |

| Parameter<br>Group                                 | Parameter<br>Name           | Value<br>Type | Data<br>Type                    | Description                                                                                                             |
|----------------------------------------------------|-----------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>SCAN_CORRELATED_SHIFT                    | SCS_Reference_<br>Detectors | Dynamic       | uint8 array<br>(7 values)       | Scan correlated shift reference detector, one per band Valid format: NN, where NN = 1-16                                |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_LOW  | B1L_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(16 values) | Magnitude of Band 1 low-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9   |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_LOW  | B2L_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(16 values) | Magnitude of Band 2 low-gain shift in digital numbers  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_LOW  | B3L_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(16 values) | Magnitude of Band 3 low-gain shift in digital numbers  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_LOW  | B4L_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(16 values) | Magnitude of Band 4 low-gain shift in digital numbers  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_LOW  | B5L_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(16 values) | Magnitude of Band 5 low-gain shift in digital numbers  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_LOW  | B7L_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(16 values) | Magnitude of Band 7 low-gain shift in digital numbers  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_LOW  | B8L_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(32 values) | Magnitude of Band 8 low-gain shift in digital numbers  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_HIGH | B1H_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(16 values) | Magnitude of Band 1 high-gain shift in digital numbers  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_HIGH | B2H_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(16 values) | Magnitude of Band 2 high-gain shift in digital numbers  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_HIGH | B3H_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(16 values) | Magnitude of Band 3 high-gain shift in digital numbers  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_HIGH | B4H_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(16 values) | Magnitude of Band 4 high-gain shift in digital numbers  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_HIGH | B5H_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(16 values) | Magnitude of Band 5 high-gain shift in digital numbers  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_HIGH | B7H_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(16 values) | Magnitude of Band 7 high-gain shift in digital numbers  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>SCAN_CORRELATED_SHIFT<br>GROUP: SCS_HIGH | B8H_SCS_Magnitudes          | Dynamic       | float32<br>array<br>(32 values) | Magnitude of Band 8 high-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |

| Parameter<br>Group                              | Parameter<br>Name                | Value<br>Type | Data<br>Type | Description                                                                                                                                                                                        |
|-------------------------------------------------|----------------------------------|---------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_LOW  | Correction_<br>Reference_B1_Low  | Static        | uint8        | Striping correction methodology flag, relative to band average or reference detector, Band 1, low-gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)   |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_LOW  | Correction_<br>Reference_B2_Low  | Static        | uint8        | Striping correction methodology flag, relative to band average or reference detector, Band 2, low-gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)   |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_LOW  | Correction_<br>Reference_B3_Low  | Static        | uint8        | Striping correction methodology flag, relative to band average or reference detector, Band 3, low-gain  Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)  |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_LOW  | Correction_<br>Reference_B4_Low  | Static        | uint8        | Striping correction methodology flag, relative to band average or reference detector, Band 4, low-gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)   |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_LOW  | Correction_<br>Reference_B5_Low  | Static        | uint8        | Striping correction methodology flag, relative to band average or reference detector, Band 5, low-gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)   |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_LOW  | Correction_<br>Reference_B6_Low  | Static        | uint8        | Striping correction methodology flag, relative to band average or reference detector, Band 6, low-gain  Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)  |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_LOW  | Correction_<br>Reference_B7_Low  | Static        | uint8        | Striping correction methodology flag, relative to band average or reference detector, Band 7, low-gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)   |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_LOW  | Correction_<br>Reference_B8_Low  | Static        | uint8        | Striping correction methodology flag, relative to band average or reference detector, Band 8, low-gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)   |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_HIGH | Correction_<br>Reference_B1_High | Static        | uint8        | Striping correction methodology flag, relative to band average or reference detector, Band 1, high-gain  Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_HIGH | Correction_<br>Reference_B2_High | Static        | uint8        | Striping correction methodology flag, relative to band average or reference detector, Band 2, high-gain  Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_HIGH | Correction_<br>Reference_B3_High | Static        | uint8        | Striping correction methodology flag, relative to band average or reference detector, Band 3, high-gain  Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_HIGH | Correction_<br>Reference_B4_High | Static        | uint8        | Striping correction methodology flag, relative to band average or reference detector, Band 4, high-gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)  |

| Parameter<br>Group                                                         | Parameter<br>Name                | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                                                        |
|----------------------------------------------------------------------------|----------------------------------|---------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_HIGH                            | Correction_<br>Reference_B5_High | Static        | uint8                           | Striping correction methodology flag, relative to band average or reference detector, Band 5, high-gain  Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_HIGH                            | Correction_<br>Reference_B6_High | Static        | uint8                           | Striping correction methodology flag, relative to band average or reference detector, Band 6, high-gain  Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_HIGH                            | Correction_<br>Reference_B7_High | Static        | uint8                           | Striping correction methodology flag, relative to band average or reference detector, Band 7, high-gain  Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) |
| GROUP: STRIPING<br>GROUP:<br>STRIPING_FLAG_HIGH                            | Correction_<br>Reference_B8_High | Static        | uint8                           | Striping correction methodology flag, relative to band average or reference detector, Band 8, high-gain  Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) |
| GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW           | Detector_Noise_<br>Level_B1_Low  | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of image region data for each detector of Band 1, low-gain Valid format: N.NNNNNN, where N = 0 to 9                                                                             |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_LOW  | Detector_Noise_<br>Level_B2_Low  | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of image region data for each detector of Band 2, low-gain Valid format: N.NNNNNN, where N = 0 to 9                                                                             |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_LOW  | Detector_Noise_<br>Level_B3_Low  | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of image region data for each detector of Band 3, low-gain Valid format: N.NNNNNN, where N = 0 to 9                                                                             |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_LOW  | Detector_Noise_<br>Level_B4_Low  | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of image region data for each detector of Band 4, low-gain Valid format: N.NNNNNN, where N = 0 to 9                                                                             |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_LOW  | Detector_Noise_<br>Level_B5_Low  | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of image region data for each detector of Band 5, low-gain Valid format: N.NNNNNN, where N = 0 to 9, where NN.NNNN = CPF                                                        |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_LOW  | Detector_Noise_<br>Level_B6_Low  | Dynamic       | float32<br>array<br>(8 values)  | Standard deviation of image region data for each detector of Band 6, low-gain Valid format: N.NNNNN, where N = 0 to 9                                                                              |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_LOW  | Detector_Noise_<br>Level_B7_Low  | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of image region data for each detector of Band 7, low-gain Valid format: N.NNNNNN, where N = 0 to 9                                                                             |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_LOW  | Detector_Noise_<br>Level_B8_Low  | Dynamic       | float32<br>array<br>(32 values) | Standard deviation of image region data for each detector of Band 8, low-gain Valid format: N.NNNNNN, where N = 0 to 9                                                                             |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_HIGH | Detector_Noise_<br>Level_B1_High | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of image region data for each detector of Band 1, high-gain Valid format: N.NNNNNN, where N = 0 to 9                                                                            |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_HIGH | Detector_Noise_<br>Level_B2_High | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of image region data for each detector of Band 2, high-gain Valid format: N.NNNNNN, where N = 0 to 9                                                                            |

| Parameter<br>Group                                                                 | Parameter<br>Name                  | Value<br>Type | Data<br>Type                    | Description                                                                                                              |
|------------------------------------------------------------------------------------|------------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_HIGH         | Detector_Noise_<br>Level_B3_High   | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of image region data for each detector of Band 3, high-gain Valid format: N.NNNNNN, where N = 0 to 9  |
| GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH                  | Detector_Noise_<br>Level_B4_High   | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of image region data for each detector of Band 4, high-gain Valid format: N.NNNNNN, where N = 0 to 9  |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_HIGH         | Detector_Noise_<br>Level_B5_High   | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of image region data for each detector of Band 5, high-gain Valid format: N.NNNNNN, where N = 0 to 9  |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_HIGH         | Detector_Noise_<br>Level_B6_High   | Dynamic       | float32<br>array<br>(8 values)  | Standard deviation of image region data for each detector of Band 6, high-gain Valid format: N.NNNNN, where N = 0 to 9   |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_HIGH         | Detector_Noise_<br>Level_B7_High   | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of image region data for each detector of Band 7, high-gain Valid format: N.NNNNNN, where N = 0 to 9  |
| GROUP: HISTOGRAM<br>GROUP: DETECTOR_NOISE<br>GROUP:<br>DETECTOR_NOISE_HIGH         | Detector_Noise_<br>Level_B8_High   | Dynamic       | float32<br>array<br>(32 values) | Standard deviation of image region data for each detector of Band 8, high-gain Valid format: N.NNNNN, where N = 0 to 9   |
| GROUP: HISTOGRAM<br>GROUP:<br>DET_SHUTTER_NOISE<br>GROUP:<br>DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_<br>Level_B1_Low | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of shutter region data for each detector of Band 1, low-gain Valid format: N.NNNNNN, where N = 0 to 9 |
| GROUP: HISTOGRAM<br>GROUP:<br>DET_SHUTTER_NOISE<br>GROUP:<br>DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_<br>Level_B2_Low | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of shutter region data for each detector of Band 2, low-gain Valid format: N.NNNNNN, where N = 0 to 9 |
| GROUP: HISTOGRAM<br>GROUP:<br>DET_SHUTTER_NOISE<br>GROUP:<br>DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_<br>Level_B3_Low | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of shutter region data for each detector of Band 3, low-gain Valid format: N.NNNNNN, where N = 0 to 9 |
| GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW             | Det_Shutter_Noise_<br>Level_B4_Low | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of shutter region data for each detector of Band 4, low-gain Valid format: N.NNNNNN, where N = 0 to 9 |
| GROUP: HISTOGRAM<br>GROUP:<br>DET_SHUTTER_NOISE<br>GROUP:<br>DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_<br>Level_B5_Low | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of shutter region data for each detector of Band 5, low-gain Valid format: N.NNNNNN, where N = 0 to 9 |
| GROUP: HISTOGRAM<br>GROUP:<br>DET_SHUTTER_NOISE<br>GROUP:<br>DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_<br>Level_B6_Low | Dynamic       | float32<br>array<br>(8 values)  | Standard deviation of shutter region data for each detector of Band 6, low-gain Valid format: N.NNNNN, where N = 0 to 9  |
| GROUP: HISTOGRAM<br>GROUP:<br>DET_SHUTTER_NOISE<br>GROUP:<br>DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_<br>Level_B7_Low | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of shutter region data for each detector of Band 7, low-gain Valid format: N.NNNNNN, where N = 0 to 9 |

| Parameter<br>Group                                                       | Parameter<br>Name                   | Value<br>Type | Data<br>Type                    | Description                                                                                                                          |
|--------------------------------------------------------------------------|-------------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW   | Det_Shutter_Noise_<br>Level_B8_Low  | Dynamic       | float32<br>array<br>(32 values) | Standard deviation of shutter region data for each detector of Band 8, low-gain Valid format: N.NNNNNN, where N = 0 to 9             |
| GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_<br>Level_B1_High | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of shutter region data for each detector of Band 1, high-gain Valid format: N.NNNNNN, where N = 0 to 9            |
| GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_<br>Level_B2_High | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of shutter region data for each detector of Band 2, high-gain Valid format: N.NNNNNN, where N = 0 to 9            |
| GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_<br>Level_B3_High | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of shutter region data for each detector of Band 3, high-gain Valid format: N.NNNNNN, where N = 0 to 9            |
| GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_<br>Level_B4_High | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of shutter region data for each detector of Band 4, high-gain Valid format: N.NNNNNN, where N = 0 to 9            |
| GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_<br>Level_B5_High | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of shutter region data for each detector of Band 5, high-gain Valid format: N.NNNNNN, where N = 0 to 9            |
| GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_<br>Level_B6_High | Dynamic       | float32<br>array<br>(8 values)  | Standard deviation of shutter region data for each detector of Band 6, high-gain Valid format: N.NNNNN, where N = 0 to 9             |
| GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_<br>Level_B7_High | Dynamic       | float32<br>array<br>(16 values) | Standard deviation of shutter region data for each detector of Band 7, high-gain Valid format: N.NNNNNN, where N = 0 to 9            |
| GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_<br>Level_B8_High | Dynamic       | float32<br>array<br>(32 values) | Standard deviation of shutter region data for each detector of Band 8, high-gain Valid format: N.NNNNN, where N = 0 to 9             |
| GROUP: HISTOGRAM<br>GROUP:<br>REFERENCE_DETECTORS                        | Reference_Detector_B1               | Dynamic       | uint8                           | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 1 Valid format: NN, where NN = 15 |
| GROUP: HISTOGRAM<br>GROUP:<br>REFERENCE_DETECTORS                        | Reference_Detector_B2               | Dynamic       | uint8                           | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 2 Valid format: NN, where NN = 12 |

| Parameter<br>Group                                            | Parameter<br>Name               | Value<br>Type | Data<br>Type | Description                                                                                                                                                                                     |
|---------------------------------------------------------------|---------------------------------|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: HISTOGRAM<br>GROUP:<br>REFERENCE_DETECTORS             | Reference_Detector_B3           | Dynamic       | uint8        | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 3 Valid format: NN, where NN = 08                                                            |
| GROUP: HISTOGRAM<br>GROUP:<br>REFERENCE_DETECTORS             | Reference_Detector_B4           | Dynamic       | uint8        | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 4 Valid format: NN, where NN = 07                                                            |
| GROUP: HISTOGRAM<br>GROUP:<br>REFERENCE_DETECTORS             | Reference_Detector_B5           | Dynamic       | uint8        | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 5 Valid format: NN, where NN = 14                                                            |
| GROUP: HISTOGRAM<br>GROUP:<br>REFERENCE_DETECTORS             | Reference_Detector_B6           | Dynamic       | uint8        | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 6 Valid format: NN, where NN = 01                                                            |
| GROUP: HISTOGRAM<br>GROUP:<br>REFERENCE_DETECTORS             | Reference_Detector_B7           | Dynamic       | uint8        | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 7 Valid format: NN, where NN = 10                                                            |
| GROUP: HISTOGRAM<br>GROUP:<br>REFERENCE_DETECTORS             | Reference_Detector_B8           | Dynamic       | uint8        | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 8 Valid format: NN, where NN = 27                                                            |
| GROUP: HISTOGRAM<br>GROUP:<br>SATURATION_THRESHOLDS           | Saturation_Bin_<br>Threshold_B1 | Dynamic       | uint16       | Number of pixels that a bin must have to be tested as a saturation bin, Band 1 Valid format: NNNNN, where NNNNN = 1000                                                                          |
| GROUP: HISTOGRAM<br>GROUP:<br>SATURATION_THRESHOLDS           | Saturation_Bin_<br>Threshold_B2 | Dynamic       | uint16       | Number of pixels that a bin must have to be tested as a saturation bin, Band 2 Valid format: NNNNN, where NNNNN = 1000                                                                          |
| GROUP: HISTOGRAM<br>GROUP:<br>SATURATION_THRESHOLDS           | Saturation_Bin_<br>Threshold_B3 | Dynamic       | uint16       | Number of pixels that a bin must have to be tested as a saturation bin, Band 3 Valid format: NNNNN, where NNNNN = 1000                                                                          |
| GROUP: HISTOGRAM<br>GROUP:<br>SATURATION_THRESHOLDS           | Saturation_Bin_<br>Threshold_B4 | Dynamic       | uint16       | Number of pixels that a bin must have to be tested as a saturation bin, Band 4 Valid format: NNNNN, where NNNNN = 1000                                                                          |
| GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS                 | Saturation_Bin_<br>Threshold_B5 | Dynamic       | uint16       | Number of pixels that a bin must have to be tested as a saturation bin, Band 5 Valid format: NNNNN, where NNNNN = 1000                                                                          |
| GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS                 | Saturation_Bin_<br>Threshold_B6 | Dynamic       | uint16       | Number of pixels that a bin must have to be tested as a saturation bin, Band 6 Valid format: NNNNN, where NNNNN = 1000                                                                          |
| GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS                 | Saturation_Bin_<br>Threshold_B7 | Dynamic       | uint16       | Number of pixels that a bin must have to be tested as a saturation bin, Band 7 Valid format: NNNNN, where NNNNN = 1000                                                                          |
| GROUP: HISTOGRAM GROUP: SATURATION THRESHOLDS                 | Saturation_Bin_<br>Threshold_B8 | Dynamic       | uint16       | Number of pixels that a bin must have to be tested as a saturation bin, Band 8 Valid format: NNNNN, where NNNNN = 1000                                                                          |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_NUMBER | Adjacent_Bin_<br>Number_B1      | Dynamic       | uint8        | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 1 Valid format: N, where N = 2 (default) |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_NUMBER | Adjacent_Bin_<br>Number_B2      | Dynamic       | uint8        | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 2 Valid format: N, where N = 2 (default) |

| Parameter<br>Group                                               | Parameter<br>Name             | Value<br>Type | Data<br>Type | Description                                                                                                                                                                                      |
|------------------------------------------------------------------|-------------------------------|---------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_NUMBER    | Adjacent_Bin_<br>Number_B3    | Dynamic       | uint8        | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 3  Valid format: N, where N = 2 (default) |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_NUMBER    | Adjacent_Bin_<br>Number_B4    | Dynamic       | uint8        | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 4 Valid format: N, where N = 2 (default)  |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_NUMBER    | Adjacent_Bin_<br>Number_B5    | Dynamic       | uint8        | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 5 Valid format: N, where N = 2 (default)  |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_NUMBER    | Adjacent_Bin_<br>Number_B6    | Dynamic       | uint8        | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 6 Valid format: N, where N = 2 (default)  |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_NUMBER    | Adjacent_Bin_<br>Number_B7    | Dynamic       | uint8        | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 7 Valid format: N, where N = 2 (default)  |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_NUMBER    | Adjacent_Bin_<br>Number_B8    | Dynamic       | uint8        | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 8 Valid format: N, where N = 2 (default)  |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_THRESHOLD | Adjacent_Bin_<br>Threshold_B1 | Dynamic       | uint8        | Number of adjacent bin pixels that cannot be exceeded for the Band 1 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)                             |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_THRESHOLD | Adjacent_Bin_<br>Threshold_B2 | Dynamic       | uint8        | Number of adjacent bin pixels that cannot be exceeded for the Band 2 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)                             |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_THRESHOLD | Adjacent_Bin_<br>Threshold_B3 | Dynamic       | uint8        | Number of adjacent bin pixels that cannot be exceeded for the Band 3 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)                             |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_THRESHOLD | Adjacent_Bin_<br>Threshold_B4 | Dynamic       | uint8        | Number of adjacent bin pixels that cannot be exceeded for the Band 4 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)                             |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_THRESHOLD | Adjacent_Bin_<br>Threshold_B5 | Dynamic       | uint8        | Number of adjacent bin pixels that cannot be exceeded for the Band 5 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)                             |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_THRESHOLD | Adjacent_Bin_<br>Threshold_B6 | Dynamic       | uint8        | Number of adjacent bin pixels that cannot be exceeded for the Band 6 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)                             |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_THRESHOLD | Adjacent_Bin_<br>Threshold_B7 | Dynamic       | uint8        | Number of adjacent bin pixels that cannot be exceeded for the Band 7 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)                             |
| GROUP: HISTOGRAM<br>GROUP: ADJACENT_BINS<br>GROUP: BIN_THRESHOLD | Adjacent_Bin_<br>Threshold_B8 | Dynamic       | uint8        | Number of adjacent bin pixels that cannot be exceeded for the Band 8 candidate saturation bin to be a valid saturation bin  Valid format: NN, where NN = 10 (default)                            |

| Parameter<br>Group                     | Parameter<br>Name   | Value<br>Type | Data<br>Type | Description                                                                            |
|----------------------------------------|---------------------|---------------|--------------|----------------------------------------------------------------------------------------|
| GROUP: HISTOGRAM                       | Start_pixel_B1      | Dynamic       | uint8        | Leftmost pixel in the window to be tested, Band                                        |
| GROUP: STARTING_PIXEL                  |                     |               |              | 1 Valid format: NNN, where NNN = 243                                                   |
| GROUP: HISTOGRAM                       | Start_pixel_B2      | Dynamic       | uint8        | Leftmost pixel in the window to be tested, Band                                        |
| GROUP: STARTING_PIXEL                  |                     |               |              | 2 Valid format: NNN, where NNN = 218                                                   |
| GROUP: HISTOGRAM                       | Start_pixel_B3      | Dynamic       | uint8        | Leftmost pixel in the window to be tested, Band                                        |
| GROUP: STARTING_PIXEL                  |                     | 27.16110      |              | 3                                                                                      |
|                                        |                     |               |              | Valid format: NNN, where NNN = 193                                                     |
| GROUP: HISTOGRAM GROUP: STARTING_PIXEL | Start_pixel_B4      | Dynamic       | uint8        | Leftmost pixel in the window to be tested, Band                                        |
| GROUP, STARTING_PIXEL                  |                     |               |              | Valid format: NNN, where NNN = 168                                                     |
| GROUP: HISTOGRAM                       | Start_pixel_B5      | Dynamic       | uint8        | Leftmost pixel in the window to be tested, Band                                        |
| GROUP: STARTING_PIXEL                  |                     |               |              | 5                                                                                      |
| GROUP: HISTOGRAM                       | Ctart pixel DC      | Dynamic       | uint8        | Valid format: NNN, where NNN = 97  Leftmost pixel in the window to be tested, Band     |
| GROUP: STARTING PIXEL                  | Start_pixel_B6      | Dynamic       | ullito       | 6                                                                                      |
|                                        |                     |               |              | Valid format: NNN, where NNN = 31                                                      |
| GROUP: HISTOGRAM                       | Start_pixel_B7      | Dynamic       | uint8        | Leftmost pixel in the window to be tested, Band                                        |
| GROUP: STARTING_PIXEL                  |                     |               |              | 7 Valid format: NNN, where NNN = 123                                                   |
| GROUP: HISTOGRAM                       | Start_pixel_B8      | Dynamic       | uint8        | Leftmost pixel in the window to be tested, Band                                        |
| GROUP: STARTING_PIXEL                  |                     | 27.16110      |              | 8                                                                                      |
|                                        |                     |               |              | Valid format: NNN, where NNN = 536                                                     |
| GROUP: HISTOGRAM GROUP: WINDOW_WIDTH   | Window_Samples_B1   | Dynamic       | uint8        | Width of the window, in pixels, to be tested, Band 1                                   |
| GROOP: WINDOW_WIDTH                    |                     |               |              | Valid format: NNNNN, where NNNNN = 5874                                                |
| GROUP: HISTOGRAM                       | Window_Samples_B2   | Dynamic       | uint8        | Width of the window, in pixels, to be tested,                                          |
| GROUP: WINDOW_WIDTH                    |                     |               |              | Band 2                                                                                 |
| GROUP: HISTOGRAM                       | Window_Samples_B3   | Dynamic       | uint8        | Valid format: NNNNN, where NNNNN = 5874  Width of the window, in pixels, to be tested, |
| GROUP: WINDOW_WIDTH                    | Willidow_Samples_b3 | Dynamic       | ullito       | Band 3                                                                                 |
|                                        |                     |               |              | Valid format: NNNNN, where NNNNN = 5874                                                |
| GROUP: HISTOGRAM                       | Window_Samples_B4   | Dynamic       | uint8        | Width of the window, in pixels, to be tested,                                          |
| GROUP: WINDOW_WIDTH                    |                     |               |              | Band 4 Valid format: NNNNN, where NNNNN = 5874                                         |
| GROUP: HISTOGRAM                       | Window_Samples_B5   | Dynamic       | uint8        | Width of the window, in pixels, to be tested,                                          |
| GROUP: WINDOW_WIDTH                    |                     |               |              | Band 5                                                                                 |
|                                        |                     |               |              | Valid format: NNNNN, where NNNNN = 5874                                                |
| GROUP: HISTOGRAM GROUP: WINDOW_WIDTH   | Window_Samples_B6   | Dynamic       | uint8        | Width of the window, in pixels, to be tested, Band 6                                   |
| GROOT . WINDOW_WIDTH                   |                     |               |              | Valid format: NNNNN, where NNNNN = 2937                                                |
| GROUP: HISTOGRAM                       | Window_Samples_B7   | Dynamic       | uint8        | Width of the window, in pixels, to be tested,                                          |
| GROUP: WINDOW_WIDTH                    |                     |               |              | Band 7                                                                                 |
| GROUP: HISTOGRAM                       | Window_Samples_B8   | Dynamic       | uint8        | Valid format: NNNNN, where NNNNN = 5874  Width of the window, in pixels, to be tested, |
| GROUP: WINDOW_WIDTH                    | Willdow_Samples_Bo  | Dynamic       | unito        | Band 8                                                                                 |
| _                                      |                     |               |              | Valid format: NNNNN, where NNNNN = 11748                                               |
| GROUP: HISTOGRAM                       | Window_Scans_B1     | Dynamic       | uint8        | Number of scans in the window to be tested,                                            |
| GROUP: WINDOW_LENGTH                   |                     |               |              | Band 1 Valid format: NNN, where NNN = 375                                              |
| GROUP: HISTOGRAM                       | Window_Scans_B2     | Dynamic       | uint8        | Number of scans in the window to be tested,                                            |
| GROUP: WINDOW_LENGTH                   |                     |               |              | Band 2                                                                                 |
| ODOUB HIOTOCO                          | )                   | <u> </u>      |              | Valid format: NNN, where NNN = 375                                                     |
| GROUP: HISTOGRAM GROUP: WINDOW_LENGTH  | Window_Scans_B3     | Dynamic       | uint8        | Number of scans in the window to be tested,<br>Band 3                                  |
| CINODI . WIINDOW_LLINGIII              |                     |               |              | Valid format: NNN, where NNN = 375                                                     |

| Parameter<br>Group                              | Parameter<br>Name   | Value<br>Type | Data<br>Type                    | Description                                                                                           |
|-------------------------------------------------|---------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------|
| GROUP: HISTOGRAM<br>GROUP: WINDOW_LENGTH        | Window_Scans_B4     | Dynamic       | uint8                           | Number of scans in the window to be tested,<br>Band 4<br>Valid format: NNN, where NNN = 375           |
| GROUP: HISTOGRAM<br>GROUP: WINDOW_LENGTH        | Window_Scans_B5     | Dynamic       | uint8                           | Number of scans in the window to be tested,<br>Band 5<br>Valid format: NNN, where NNN = 375           |
| GROUP: HISTOGRAM<br>GROUP: WINDOW_LENGTH        | Window_Scans_B6     | Dynamic       | uint8                           | Number of scans in the window to be tested,<br>Band 6<br>Valid format: NNN, where NNN = 375           |
| GROUP: HISTOGRAM<br>GROUP: WINDOW_LENGTH        | Window_Scans_B7     | Dynamic       | uint8                           | Number of scans in the window to be tested,<br>Band 7<br>Valid format: NNN, where NNN = 375           |
| GROUP: HISTOGRAM<br>GROUP: WINDOW_LENGTH        | Window_Scans_B8     | Dynamic       | uint8                           | Number of scans in the window to be tested,<br>Band 8<br>Valid format: NNN, where NNN = 375           |
| GROUP: HISTOGRAM<br>GROUP:<br>OVERLAPPING SCANS | Overlap_Scans_B1    | Dynamic       | uint8                           | Number of overlapping scans between the windows to be tested, Band 1 Valid format: NNN, where NNN = 0 |
| GROUP: HISTOGRAM<br>GROUP:<br>OVERLAPPING_SCANS | Overlap_Scans_B2    | Dynamic       | uint8                           | Number of overlapping scans between the windows to be tested, Band 2 Valid format: NNN, where NNN = 0 |
| GROUP: HISTOGRAM<br>GROUP:<br>OVERLAPPING_SCANS | Overlap_Scans_B3    | Dynamic       | uint8                           | Number of overlapping scans between the windows to be tested, Band 3 Valid format: NNN, where NNN = 0 |
| GROUP: HISTOGRAM<br>GROUP:<br>OVERLAPPING_SCANS | Overlap_Scans_B4    | Dynamic       | uint8                           | Number of overlapping scans between the windows to be tested, Band 4 Valid format: NNN, where NNN = 0 |
| GROUP: HISTOGRAM<br>GROUP:<br>OVERLAPPING_SCANS | Overlap_Scans_B5    | Dynamic       | uint8                           | Number of overlapping scans between the windows to be tested, Band 5 Valid format: NNN, where NNN = 0 |
| GROUP: HISTOGRAM<br>GROUP:<br>OVERLAPPING_SCANS | Overlap_Scans_B6    | Dynamic       | uint8                           | Number of overlapping scans between the windows to be tested, Band 6 Valid format: NNN, where NNN = 0 |
| GROUP: HISTOGRAM<br>GROUP:<br>OVERLAPPING_SCANS | Overlap_Scans_B7    | Dynamic       | uint8                           | Number of overlapping scans between the windows to be tested, Band 7 Valid format: NNN, where NNN = 0 |
| GROUP: HISTOGRAM<br>GROUP:<br>OVERLAPPING_SCANS | Overlap_Scans_B8    | Dynamic       | uint8                           | Number of overlapping scans between the windows to be tested, Band 8 Valid format: NNN, where NNN = 0 |
| GROUP: IMPULSE_NOISE                            | Median_Filter_Width | Static        | uint8                           | Width of median filter Valid format: N, where N = 3                                                   |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD     | B1L_Threshold       | Dynamic       | float32<br>array<br>(16 values) | Band 1 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9             |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD     | B2L_Threshold       | Dynamic       | float32<br>array<br>(16 values) | Band 2 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9             |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD     | B3L_Threshold       | Dynamic       | float32<br>array<br>(16 values) | Band 3 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9             |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD     | B4L_Threshold       | Dynamic       | float32<br>array<br>(16 values) | Band 4 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9             |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD     | B5L_Threshold       | Dynamic       | float32<br>array<br>(16 values) | Band 5 low-gain noise threshold for an inequal case                                                   |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD     | B6L_Threshold       | Dynamic       | float32<br>array<br>(8 values)  | Band 6 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9             |

| Parameter<br>Group                                   | Parameter<br>Name   | Value<br>Type | Data<br>Type                    | Description                                                                                |
|------------------------------------------------------|---------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------|
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD          | B7L_Threshold       | Dynamic       | float32<br>array<br>(16 values) | Band 7 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9  |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD          | B8L_Threshold       | Dynamic       | float32<br>array<br>(32 values) | Band 8 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9  |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD          | B1H_Threshold       | Dynamic       | float32<br>array<br>(16 values) | Band 1 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD          | B2H_Threshold       | Dynamic       | float32<br>array<br>(16 values) | Band 2 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD          | B3H_Threshold       | Dynamic       | float32<br>array<br>(16 values) | Band 3 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD          | B4H_Threshold       | Dynamic       | float32<br>array<br>(16 values) | Band 4 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD          | B5H_Threshold       | Dynamic       | float32<br>array<br>(16 values) | Band 5 high-gain noise threshold for an inequal case                                       |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD          | B6H_Threshold       | Dynamic       | float32<br>array<br>(8 values)  | Band 6 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD          | B7H_Threshold       | Dynamic       | float32<br>array<br>(16 values) | Band 7 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 |
| GROUP: IMPULSE_NOISE<br>GROUP: IN_THRESHOLD          | B8H_Threshold       | Dynamic       | float32<br>array<br>(32 values) | Band 8 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD | B1L_Sigma_Threshold | Dynamic       | float32<br>array<br>(16 values) | Band 1 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9    |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD | B2L_Sigma_Threshold | Dynamic       | float32<br>array<br>(16 values) | Band 2 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9    |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD | B3L_Sigma_Threshold | Dynamic       | float32<br>array<br>(16 values) | Band 3 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9    |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD | B4L_Sigma_Threshold | Dynamic       | float32<br>array<br>(16 values) | Band 4 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9    |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD | B5L_Sigma_Threshold | Dynamic       | float32<br>array<br>(16 values) | Band 5 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9    |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD | B6L_Sigma_Threshold | Dynamic       | float32<br>array<br>(8 values)  | Band 6 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9    |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD | B7L_Sigma_Threshold | Dynamic       | float32<br>array<br>(16 values) | Band 7 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9    |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD | B8L_Sigma_Threshold | Dynamic       | float32<br>array<br>(32 values) | Band 8 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9    |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD | B1H_Sigma_Threshold | Dynamic       | float32<br>array<br>(16 values) | Band 1 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9   |

| Parameter<br>Group                                                                       | Parameter<br>Name    | Value<br>Type | Data<br>Type                    | Description                                                                                                                            |
|------------------------------------------------------------------------------------------|----------------------|---------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD                                     | B2H_Sigma_Threshold  | Dynamic       | float32<br>array<br>(16 values) | Band 2 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9                                               |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD                                     | B3H_Sigma_Threshold  | Dynamic       | float32<br>array<br>(16 values) | Band 3 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9                                               |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD                                     | B4H_Sigma_Threshold  | Dynamic       | float32<br>array<br>(16 values) | Band 4 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9                                               |
| GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD                                           | B5H_Sigma_Threshold  | Dynamic       | float32<br>array<br>(16 values) | Band 5 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9                                               |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD                                     | B6H_Sigma_Threshold  | Dynamic       | float32<br>array<br>(8 values)  | Band 6 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9                                               |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD                                     | B7H_Sigma_Threshold  | Dynamic       | float32<br>array<br>(16 values) | Band 7 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9                                               |
| GROUP: IMPULSE_NOISE<br>GROUP:<br>IN_SIGMA_THRESHOLD                                     | B8H_Sigma_Threshold  | Dynamic       | float32<br>array<br>(32 values) | Band 8 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9                                               |
| GROUP: COHERENT_NOISE                                                                    | Frequency_Components | Dynamic       | uint8                           | Number of frequency components derived<br>during waveform analysis for coherent noise<br>correction<br>Valid format: NN, where NN = 10 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_MEANS | B1_Frequency_Mean    | Dynamic       | float32<br>array<br>(10 values) | Band 1 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9                                        |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_MEANS | B2_Frequency_Mean    | Dynamic       | float32<br>array<br>(10 values) | Band 2 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9                                        |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_MEANS | B3_Frequency_Mean    | Dynamic       | float32<br>array<br>(10 values) | Band 3 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9                                        |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_MEANS | B4_Frequency_Mean    | Dynamic       | float32<br>array<br>(10 values) | Band 4 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9                                        |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_MEANS | B5_Frequency_Mean    | Dynamic       | float32<br>array<br>(10 values) | Band 5 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9                                        |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_MEANS | B6_Frequency_Mean    | Dynamic       | float32<br>array<br>(10 values) | Band 6 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9                                        |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_MEANS | B7_Frequency_Mean    | Dynamic       | float32<br>array<br>(10 values) | Band 7 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9                                        |

- 43 -

| Parameter<br>Group                                                                           | Parameter<br>Name  | Value<br>Type | Data<br>Type                    | Description                                                                                        |
|----------------------------------------------------------------------------------------------|--------------------|---------------|---------------------------------|----------------------------------------------------------------------------------------------------|
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_MEANS     | B8_Frequency_Mean  | Dynamic       | float32<br>array<br>(10 values) | Band 8 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9    |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_SIGMAS    | B1_Frequency_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 1 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9   |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_SIGMAS    | B2_Frequency_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 2 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9   |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_SIGMAS    | B3_Frequency_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 3 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9   |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_SIGMAS    | B4_Frequency_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 4 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9   |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_SIGMAS    | B5_Frequency_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 5 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9   |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_SIGMAS    | B6_Frequency_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 6 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9   |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_SIGMAS    | B7_Frequency_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 7 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9   |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP:<br>FREQUENCY_SIGMAS    | B8_Frequency_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 8 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9   |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MINIMUMS | B1_Frequency_Min   | Dynamic       | float32<br>array<br>(10 values) | Band 1 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MINIMUMS | B2_Frequency_Min   | Dynamic       | float32<br>array<br>(10 values) | Band 2 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MINIMUMS | B3_Frequency_Min   | Dynamic       | float32<br>array<br>(10 values) | Band 3 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |

| Parameter<br>Group                                                                           | Parameter<br>Name | Value<br>Type | Data<br>Type                    | Description                                                                                        |
|----------------------------------------------------------------------------------------------|-------------------|---------------|---------------------------------|----------------------------------------------------------------------------------------------------|
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MINIMUMS | B4_Frequency_Min  | Dynamic       | float32<br>array<br>(10 values) | Band 4 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MINIMUMS | B5_Frequency_Min  | Dynamic       | float32<br>array<br>(10 values) | Band 5 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MINIMUMS | B6_Frequency_Min  | Dynamic       | float32<br>array<br>(10 values) | Band 6 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MINIMUMS | B7_Frequency_Min  | Dynamic       | float32<br>array<br>(10 values) | Band 7 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MINIMUMS | B8_Frequency_Min  | Dynamic       | float32<br>array<br>(10 values) | Band 8 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MAXIMUMS | B1_Frequency_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 1 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MAXIMUMS | B2_Frequency_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 2 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MAXIMUMS | B3_Frequency_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 3 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MAXIMUMS | B4_Frequency_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 4 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MAXIMUMS | B5_Frequency_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 5 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MAXIMUMS | B6_Frequency_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 6 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MAXIMUMS | B7_Frequency_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 7 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |

| Parameter<br>Group                                                                           | Parameter<br>Name | Value<br>Type | Data<br>Type                    | Description                                                                                        |
|----------------------------------------------------------------------------------------------|-------------------|---------------|---------------------------------|----------------------------------------------------------------------------------------------------|
| GROUP: COHERENT_NOISE<br>GROUP: CN_FREQUENCY_<br>PARAMETERS<br>GROUP: FREQUENCY_<br>MAXIMUMS | B8_Frequency_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 8 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MEANS                 | B1_Phase_Mean     | Dynamic       | float32<br>array<br>(10 values) | Band 1 phase means measured in radians<br>Valid format: NNNNNNN, where N = 0 to 9                  |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MEANS                 | B2_Phase_Mean     | Dynamic       | float32<br>array<br>(10 values) | Band 2 phase means measured in radians Valid format: NNNNNNN, where N = 0 to 9                     |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MEANS                 | B3_Phase_Mean     | Dynamic       | float32<br>array<br>(10 values) | Band 3 phase means measured in radians Valid format: NNNNNNN, where N = 0 to 9                     |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MEANS                 | B4_Phase_Mean     | Dynamic       | float32<br>array<br>(10 values) | Band 4 phase means measured in radians Valid format: NNNNNNN, where N = 0 to 9                     |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MEANS                 | B5_Phase_Mean     | Dynamic       | float32<br>array<br>(10 values) | Band 5 phase means measured in radians Valid format: NNNNNNN, where N = 0 to 9                     |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MEANS                 | B6_Phase_Mean     | Dynamic       | float32<br>array<br>(10 values) | Band 6 phase means measured in radians Valid format: NNNNNNN, where N = 0 to 9                     |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MEANS                 | B7_Phase_Mean     | Dynamic       | float32<br>array<br>(10 values) | Band 7 phase means measured in radians Valid format: NNNNNNN, where N = 0 to 9                     |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MEANS                 | B8_Phase_Mean     | Dynamic       | float32<br>array<br>(10 values) | Band 8 phase means measured in radians Valid format: NNNNNNN, where N = 0 to 9                     |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_SIGMAS                | B1_Phase_Sigma    | Dynamic       | float32<br>array<br>(10 values) | Band 1 phase sigmas measured in radians Valid format: NNNNNNN, where N = 0 to 9                    |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_SIGMAS                | B2_Phase_Sigma    | Dynamic       | float32<br>array<br>(10 values) | Band 2 phase sigmas measured in radians Valid format: NNNNNNN, where N = 0 to 9                    |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_SIGMAS                | B3_Phase_Sigma    | Dynamic       | float32<br>array<br>(10 values) | Band 3 phase sigmas measured in radians Valid format: NNNNNNN, where N = 0 to 9                    |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_SIGMAS                | B4_Phase_Sigma    | Dynamic       | float32<br>array<br>(10 values) | Band 4 phase sigmas measured in radians Valid format: NNNNNNN, where N = 0 to 9                    |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_SIGMAS                | B5_Phase_Sigma    | Dynamic       | float32<br>array<br>(10 values) | Band 5 phase sigmas measured in radians Valid format: NNNNNNN, where N = 0 to 9                    |

| Parameter<br>Group                                                              | Parameter<br>Name | Value<br>Type | Data<br>Type                    | Description                                                                        |
|---------------------------------------------------------------------------------|-------------------|---------------|---------------------------------|------------------------------------------------------------------------------------|
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_SIGMAS   | B6_Phase_Sigma    | Dynamic       | float32<br>array<br>(10 values) | Band 6 phase sigmas measured in radians<br>Valid format: NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_SIGMAS   | B7_Phase_Sigma    | Dynamic       | float32<br>array<br>(10 values) | Band 7 phase sigmas measured in radians Valid format: NNNNNNN, where N = 0 to 9    |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_SIGMAS   | B8_Phase_Sigma    | Dynamic       | float32<br>array<br>(10 values) | Band 8 phase sigmas measured in radians Valid format: NNNNNNN, where N = 0 to 9    |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MINIMUMS | B1_Phase_Min      | Dynamic       | float32<br>array<br>(10 values) | Band 1 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MINIMUMS | B2_Phase_Min      | Dynamic       | float32<br>array<br>(10 values) | Band 2 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MINIMUMS | B3_Phase_Min      | Dynamic       | float32<br>array<br>(10 values) | Band 3 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MINIMUMS | B4_Phase_Min      | Dynamic       | float32<br>array<br>(10 values) | Band 4 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MINIMUMS | B5_Phase_Min      | Dynamic       | float32<br>array<br>(10 values) | Band 5 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MINIMUMS | B6_Phase_Min      | Dynamic       | float32<br>array<br>(10 values) | Band 6 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MINIMUMS | B7_Phase_Min      | Dynamic       | float32<br>array<br>(10 values) | Band 7 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MINIMUMS | B8_Phase_Min      | Dynamic       | float32<br>array<br>(10 values) | Band 8 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MAXIMUMS | B1_Phase_Max      | Dynamic       | float32<br>array<br>(10 values) | Band 1 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MAXIMUMS | B2_Phase_Max      | Dynamic       | float32<br>array<br>(10 values) | Band 2 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MAXIMUMS | B3_Phase_Max      | Dynamic       | float32<br>array<br>(10 values) | Band 3 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MAXIMUMS | B4_Phase_Max      | Dynamic       | float32<br>array<br>(10 values) | Band 4 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9  |

| Parameter<br>Group                                                                       | Parameter<br>Name  | Value<br>Type | Data<br>Type                    | Description                                                                             |
|------------------------------------------------------------------------------------------|--------------------|---------------|---------------------------------|-----------------------------------------------------------------------------------------|
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MAXIMUMS          | B5_Phase_Max       | Dynamic       | float32<br>array<br>(10 values) | Band 5 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9       |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MAXIMUMS          | B6_Phase_Max       | Dynamic       | float32<br>array<br>(10 values) | Band 6 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9       |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MAXIMUMS          | B7_Phase_Max       | Dynamic       | float32<br>array<br>(10 values) | Band 7 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9       |
| GROUP: COHERENT_NOISE<br>GROUP:<br>CN_PHASE_PARAMETERS<br>GROUP: PHASE_MAXIMUMS          | B8_Phase_Max       | Dynamic       | float32<br>array<br>(10 values) | Band 8 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9       |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MEANS | B1_Magnitude_Mean  | Dynamic       | float32<br>array<br>(10 values) | Band 1 magnitudes means measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MEANS | B2_Magnitude_Mean  | Dynamic       | float32<br>array<br>(10 values) | Band 2 magnitudes means measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MEANS | B3_Magnitude_Mean  | Dynamic       | float32<br>array<br>(10 values) | Band 3 magnitudes means measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MEANS | B4_Magnitude_Mean  | Dynamic       | float32<br>array<br>(10 values) | Band 4 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9     |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MEANS | B5_Magnitude_Mean  | Dynamic       | float32<br>array<br>(10 values) | Band 5 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9     |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MEANS | B6_Magnitude_Mean  | Dynamic       | float32<br>array<br>(10 values) | Band 6 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9     |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MEANS | B7_Magnitude_Mean  | Dynamic       | float32<br>array<br>(10 values) | Band 7 magnitudes means measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS             | B8_Magnitude_Mean  | Dynamic       | float32<br>array<br>(10 values) | Band 8 magnitudes means measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS            | B1_Magnitude_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 1 magnitudes sigmas measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9 |

| Parameter<br>Group                                                                          | Parameter<br>Name  | Value<br>Type | Data<br>Type                    | Description                                                                             |
|---------------------------------------------------------------------------------------------|--------------------|---------------|---------------------------------|-----------------------------------------------------------------------------------------|
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_SIGMAS   | B2_Magnitude_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 2 magnitudes sigmas measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_SIGMAS   | B3_Magnitude_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 3 magnitudes sigmas measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_SIGMAS   | B4_Magnitude_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 4 magnitudes sigmas measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_SIGMAS   | B5_Magnitude_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 5 magnitudes sigmas measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_SIGMAS   | B6_Magnitude_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 6 magnitudes sigmas measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_SIGMAS   | B7_Magnitude_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 7 magnitudes sigmas measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_SIGMAS   | B8_Magnitude_Sigma | Dynamic       | float32<br>array<br>(10 values) | Band 8 magnitudes sigmas measured in DNs<br>Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MINIMUMS | B1_Magnitude_Min   | Dynamic       | float32<br>array<br>(10 values) | Band 1 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MINIMUMS | B2_Magnitude_Min   | Dynamic       | float32<br>array<br>(10 values) | Band 2 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MINIMUMS | B3_Magnitude_Min   | Dynamic       | float32<br>array<br>(10 values) | Band 3 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MINIMUMS | B4_Magnitude_Min   | Dynamic       | float32<br>array<br>(10 values) | Band 4 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9  |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MINIMUMS | B5_Magnitude_Min   | Dynamic       | float32<br>array<br>(10 values) | Band 5 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9  |

| Parameter<br>Group                                                                              | Parameter<br>Name | Value<br>Type | Data<br>Type                    | Description                                                                            |
|-------------------------------------------------------------------------------------------------|-------------------|---------------|---------------------------------|----------------------------------------------------------------------------------------|
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MINIMUMS     | B6_Magnitude_Min  | Dynamic       | float32<br>array<br>(10 values) | Band 6 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MINIMUMS     | B7_Magnitude_Min  | Dynamic       | float32<br>array<br>(10 values) | Band 7 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MINIMUMS     | B8_Magnitude_Min  | Dynamic       | float32<br>array<br>(10 values) | Band 8 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MAXIMUMS     | B1_Magnitude_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 1 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MAXIMUMS     | B2_Magnitude_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 2 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MAXIMUMS     | B3_Magnitude_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 3 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_<br>MAXIMUMS | B4_Magnitude_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 4 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MAXIMUMS     | B5_Magnitude_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 5 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MAXIMUMS     | B6_Magnitude_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 6 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MAXIMUMS     | B7_Magnitude_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 7 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 |
| GROUP: COHERENT_NOISE<br>GROUP: CN_MAGNITUDE_<br>PARAMETERS<br>GROUP:<br>MAGNITUDE_MAXIMUMS     | B8_Magnitude_Max  | Dynamic       | float32<br>array<br>(10 values) | Band 8 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 |

| Parameter<br>Group                                                                                            | Parameter<br>Name    | Value<br>Type | Data<br>Type               | Description                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------|----------------------|---------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW                | High_AD_Level_B1_low | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 1, low-gain Valid format: NNN, where NNN = 255 (default)  |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW                | High_AD_Level_B2_low | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 2, low-gain  Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW                | High_AD_Level_B3_low | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 3, low-gain  Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW                | High_AD_Level_B4_low | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 4, low-gain  Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW                | High_AD_Level_B5_low | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 5, low-gain  Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW                | High_AD_Level_B6_low | Dynamic       | uint8 array<br>( 8 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 6, low-gain  Valid format: NNN, where NNN = 255 (default) |
| GROUP:<br>DETECTOR_SATURATION<br>GROUP: AD_CONVERTER_<br>SATURATION<br>GROUP: AD_CONVERTER_<br>SATURATION_LOW | High_AD_Level_B7_low | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 7, low-gain  Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW                | High_AD_Level_B8_low | Dynamic       | uint8 array<br>(32 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 8, low-gain  Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW                | Low_AD_Level_B1_low  | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 1, low-gain  Valid format: NNN, where NNN = 0 (default)    |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW                | Low_AD_Level_B2_low  | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 2, low-gain Valid format: NNN, where NNN = 0 (default)     |

| Parameter<br>Group                                                                              | Parameter<br>Name     | Value<br>Type | Data<br>Type               | Description                                                                                                                                       |
|-------------------------------------------------------------------------------------------------|-----------------------|---------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW  | Low_AD_Level_B3_low   | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 3, low-gain Valid format: NNN, where NNN = 0 (default)      |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW  | Low_AD_Level_B4_low   | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 4, low-gain  Valid format: NNN, where NNN = 0 (default)     |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW  | Low_AD_Level_B5_low   | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 5, lowgain Valid format: NNN, where NNN = 0 (default)       |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW  | Low_AD_Level_B6_low   | Dynamic       | uint8 array<br>(8 values)  | Digital count at which the analog-to-digital converter saturates at the low end; Band 6, low-gain  Valid format: NNN, where NNN = 0 (default)     |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW  | Low_AD_Level_B7_low   | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 7, low-gain  Valid format: NNN, where NNN = 0 (default)     |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW  | Low_AD_Level_B8_low   | Dynamic       | uint8 array<br>(32 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 8, low-gain  Valid format: NNN, where NNN = 0 (default)     |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B1_high | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 1, high-gain  Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B2_high | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 2, high-gain  Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B3_high | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 3, high-gain  Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B4_high | Dynamic       | uint8 array<br>(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 4, high-gain Valid format: NNN, where NNN = 255 (default)  |

| Parameter<br>Group                                                                              | Parameter<br>Name     | Value<br>Type | Data<br>Type                   | Description                                                                                                                                       |
|-------------------------------------------------------------------------------------------------|-----------------------|---------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B5_high | Dynamic       | uint8 array<br>(16 values)     | Digital count at which the analog-to-digital converter saturates at the high end; Band 5, high-gain  Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B6_high | Dynamic       | uint8 array<br>(8 values)      | Digital count at which the analog-to-digital converter saturates at the high end; Band 6, high-gain Valid format: NNN, where NNN = 255 (default)  |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B7_high | Dynamic       | uint8 array<br>(16 values)     | Digital count at which the analog-to-digital converter saturates at the high end; Band 7, high-gain  Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B8_high | Dynamic       | uint8 array<br>( 32<br>values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 8, gain  Valid format: NNN, where NNN = 255 (default)      |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B1_high  | Dynamic       | uint8 array<br>(16 values)     | Digital count at which the analog-to-digital converter saturates at the low end; Band 1, high-gain  Valid format: NNN, where NNN = 0 (default)    |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B2_high  | Dynamic       | uint8 array<br>(16 values)     | Digital count at which the analog-to-digital converter saturates at the low end; Band 2, high-gain  Valid format: NNN, where NNN = 0 (default)    |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B3_high  | Dynamic       | uint8 array<br>(16 values)     | Digital count at which the analog-to-digital converter saturates at the low end; Band 3, high-gain  Valid format: NNN, where NNN = 0 (default)    |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B4_high  | Dynamic       | uint8 array<br>(16 values)     | Digital count at which the analog-to-digital converter saturates at the low end; Band 4, high-gain  Valid format: NNN, where NNN = 0 (default)    |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B5_high  | Dynamic       | uint8 array<br>(16 values)     | Digital count at which the analog-to-digital converter saturates at the low end; Band 5, high-gain  Valid format: NNN, where NNN = 0 (default)    |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B6_high  | Dynamic       | uint8 array<br>( 8 values)     | Digital count at which the analog-to-digital converter saturates at the low end; Band 6, high-gain Valid format: NNN, where NNN = 0 (default)     |

| Parameter<br>Group                                                                               | Parameter<br>Name            | Value<br>Type | Data<br>Type                   | Description                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------|------------------------------|---------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH  | Low_AD_Level_B7_high         | Dynamic       | uint8 array<br>(16 values)     | Digital count at which the analog-to-digital converter saturates at the low end; Band 7, high-gain  Valid format: NNN, where NNN = 0 (default)                                           |
| GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH  | Low_AD_Level_B8_high         | Dynamic       | uint8 array<br>( 32<br>values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 8, gain Valid format: NNN, where NNN = 0 (default)                                                 |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_<br>B1_low | Dynamic       | uint8 array<br>(16 values)     | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 1, low-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_<br>B2_low | Dynamic       | uint8 array<br>(16 values)     | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 2, low-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_<br>B3_low | Dynamic       | uint8 array<br>(16 values)     | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 3, low-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_<br>B4_low | Dynamic       | uint8 array<br>(16 values)     | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 4, low-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_<br>B5_low | Dynamic       | uint8 array<br>(16 values)     | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 5, low-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_<br>B6_low | Dynamic       | uint8 array<br>(8 values)      | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 6, low-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_<br>B7_low | Dynamic       | uint8 array<br>(16 values)     | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 7, low-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_<br>B8_low | Dynamic       | uint8 array<br>(32 values)     | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 8, low-gain Valid format: NNN, where NNN = 255 (default) |

| Parameter<br>Group                                                                                | Parameter<br>Name             | Value<br>Type | Data<br>Type               | Description                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------|-------------------------------|---------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW  | Low_Analog_Level_<br>B1_low   | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 1, low-gain Valid format: NNN, where NNN = 0 (default)     |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW  | Low_Analog_Level_<br>B2_low   | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 2, low-gain Valid format: NNN, where NNN = 0 (default)     |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW  | Low_Analog_Level_<br>B3_low   | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 3, low-gain Valid format: NNN, where NNN = 0 (default)     |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW  | Low_Analog_Level_<br>B4_low   | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 4, low-gain Valid format: NNN, where NNN = 0 (default)     |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW  | Low_Analog_Level_<br>B5_low   | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at low end; Band 5, low-gain Valid format: NNN, where NNN = 0 (default)         |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW  | Low_Analog_Level_<br>B6_low   | Dynamic       | uint8 array<br>(8 values)  | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 6, low-gain Valid format: NNN, where NNN = 0 (default)     |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW  | Low_Analog_Level_<br>B7_low   | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 7, low-gain Valid format: NNN, where NNN = 0 (default)     |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW  | Low_Analog_Level_<br>B8_low   | Dynamic       | uint8 array<br>(32 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 8, low-gain Valid format: NNN, where NNN = 0 (default)     |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_<br>B1_high | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 1, high-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_<br>B2_high | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 2, high-gain Valid format: NNN, where NNN = 255 (default) |

| Parameter<br>Group                                                                                | Parameter<br>Name             | Value<br>Type | Data<br>Type               | Description                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------|-------------------------------|---------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_<br>B3_high | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 3, high-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_<br>B4_high | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 4, high-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_<br>B5_high | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 5, high-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_<br>B6_high | Dynamic       | uint8 array<br>(8 values)  | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 6, high-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_<br>B7_high | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 7, high-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_<br>B8_high | Dynamic       | uint8 array<br>(32 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 8, high-gain Valid format: NNN, where NNN = 255 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_<br>B1_high  | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 1, high-gain Valid format: NNN, where NNN = 0 (default)    |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_<br>B2_high  | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 2, high-gain Valid format: NNN, where NNN = 0 (default)    |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_<br>B3_high  | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 3, high-gain Valid format: NNN, where NNN = 0 (default)    |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_<br>B4_high  | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 4, high-gain Valid format: NNN, where NNN = 0 (default)    |

| Parameter<br>Group                                                                                | Parameter<br>Name            | Value<br>Type | Data<br>Type               | Description                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------|------------------------------|---------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_<br>B5_high | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 5, high-gain Valid format: NNN, where NNN = 0 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_<br>B6_high | Dynamic       | uint8 array<br>(8 values)  | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 6, high-gain Valid format: NNN, where NNN = 0 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_<br>B7_high | Dynamic       | uint8 array<br>(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 7, high-gain Valid format: NNN, where NNN = 0 (default) |
| GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_<br>B8_high | Dynamic       | uint8 array<br>(32 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 8, high-gain Valid format: NNN, where NNN = 0 (default) |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW                                         | B1L_RTemp_Prelaunch          | Static        | float64                    | Band 1 prelaunch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00                                                                |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW                                         | B1L_RTemp_Postlaunch         | Static        | float64                    | Band 1 post-launch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00                                                              |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW                                         | B1L_RTemp_Current            | Dynamic       | float64                    | Band 1 current low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00                                                                  |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW                                         | B2L_RTemp_Prelaunch          | Static        | float64                    | Band 2 prelaunch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00                                                                |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW                                         | B2L_RTemp_Postlaunch         | Static        | float64                    | Band 2 post-launch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00                                                              |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW                                         | B2L_RTemp_Current            | Dynamic       | float64                    | Band 2 current low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00                                                                  |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW                                         | B3L_RTemp_Prelaunch          | Static        | float64                    | Band 3 prelaunch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00                                                                |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW                                         | B3L_RTemp_Postlaunch         | Static        | float64                    | Band 3 post-launch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00                                                              |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW                                         | B3L_RTemp_Current            | Dynamic       | float64                    | Band 3 current low gain calibration reference<br>temperature in degrees C<br>Valid format: SNNN.NNN, where<br>SNNN.NNN = 25.00                                                         |

| Parameter<br>Group                                        | Parameter<br>Name    | Value<br>Type | Data<br>Type | Description                                                                                                                     |
|-----------------------------------------------------------|----------------------|---------------|--------------|---------------------------------------------------------------------------------------------------------------------------------|
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B4L_RTemp_Prelaunch  | Static        | float64      | Band 4 prelaunch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00         |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B4L_RTemp_Postlaunch | Static        | float64      | Band 4 post-launch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00       |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B4L_RTemp_Current    | Dynamic       | float64      | Band 4 current low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00           |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B5L_RTemp_Prelaunch  | Static        | float64      | Band 5 prelaunch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1        |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B5L_RTemp_Postlaunch | Static        | float64      | Band 5 post-launch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1      |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B5L_RTemp_Current    | Dynamic       | float64      | Band 5 current low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1          |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B6L_RTemp_Prelaunch  | Static        | float64      | Band 6 prelaunch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1        |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B6L_RTemp_Postlaunch | Static        | float64      | Band 6 post-launch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1      |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B6L_RTemp_Current    | Dynamic       | float64      | Band 6 current low gain calibration reference<br>temperature in degrees C<br>Valid format: SNNN.NNN, where<br>SNNN.NNN = -182.1 |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B7L_RTemp_Prelaunch  | Static        | float64      | Band 7 prelaunch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1        |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B7L_RTemp_Postlaunch | Static        | float64      | Band 7 post-launch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1      |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B7L_RTemp_Current    | Dynamic       | float64      | Band 7 current low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1          |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B8L_RTemp_Prelaunch  | Static        | float64      | Band 8 prelaunch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00         |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B8L_RTemp_Postlaunch | Static        | float64      | Band 8 post-launch low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00       |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_LOW | B8L_RTemp_Current    | Dynamic       | float64      | Band 8 current low gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00           |

| Parameter<br>Group                                         | Parameter<br>Name    | Value<br>Type | Data<br>Type | Description                                                                                                                     |
|------------------------------------------------------------|----------------------|---------------|--------------|---------------------------------------------------------------------------------------------------------------------------------|
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B1H_RTemp_Prelaunch  | Static        | float64      | Band 1 prelaunch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00        |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B1H_RTemp_Postlaunch | Static        | float64      | Band 1 post-launch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00      |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B1H_RTemp_Current    | Dynamic       | float64      | Band 1 current high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00          |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B2H_RTemp_Prelaunch  | Static        | float64      | Band 2 prelaunch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00        |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B2H_RTemp_Postlaunch | Static        | float64      | Band 2 post-launch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00      |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B2H_RTemp_Current    | Dynamic       | float64      | Band 2 current high gain calibration reference<br>temperature in degrees C<br>Valid format: SNNN.NNN, where<br>SNNN.NNN = 25.00 |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B3H_RTemp_Prelaunch  | Static        | float64      | Band 3 prelaunch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00        |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B3H_RTemp_Postlaunch | Static        | float64      | Band 3 post-launch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00      |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B3H_RTemp_Current    | Dynamic       | float64      | Band 3 current high gain calibration reference<br>temperature in degrees C<br>Valid format: SNNN.NNN, where<br>SNNN.NNN = 25.00 |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B4H_RTemp_Prelaunch  | Static        | float64      | Band 4 prelaunch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00        |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B4H_RTemp_Postlaunch | Static        | float64      | Band 4 post-launch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00      |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B4H_RTemp_Current    | Dynamic       | float64      | Band 4 current high gain calibration reference<br>temperature in degrees C<br>Valid format: SNNN.NNN, where<br>SNNN.NNN = 25.00 |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B5H_RTemp_Prelaunch  | Static        | float64      | Band 5 prelaunch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1       |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B5H_RTemp_Postlaunch | Static        | float64      | Band 5 post-launch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1     |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH | B5H_RTemp_Current    | Dynamic       | float64      | Band 5 current high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1         |

| Parameter<br>Group                                            | Parameter<br>Name     | Value<br>Type | Data<br>Type                    | Description                                                                                                                                |
|---------------------------------------------------------------|-----------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH    | B6H_RTemp_Prelaunch   | Static        | float64                         | Band 6 prelaunch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1                  |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH    | B6H_RTemp_Postlaunch  | Static        | float64                         | Band 6 post-launch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1                |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH    | B6H_RTemp_Current     | Dynamic       | float64                         | Band 6 current high gain calibration reference<br>temperature in degrees C<br>Valid format: SNNN.NNN, where<br>SNNN.NNN = -182.1           |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH    | B7H_RTemp_Prelaunch   | Static        | float64                         | Band 7 prelaunch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1                  |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH    | B7H_RTemp_Postlaunch  | Static        | float64                         | Band 7 post-launch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1                |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH    | B7H_RTemp_Current     | Dynamic       | float64                         | Band 7 current high gain calibration reference<br>temperature in degrees C<br>Valid format: SNNN.NNN, where<br>SNNN.NNN = -182.1           |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH    | B8H_RTemp_Prelaunch   | Static        | float64                         | Band 8 prelaunch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00                   |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH    | B8H_RTemp_Postlaunch  | Static        | float64                         | Band 8 post-launch high gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00                 |
| GROUP: REFERENCE_<br>TEMPERATURES<br>GROUP: REFERENCE_HIGH    | B8H_RTemp_Current     | Dynamic       | float64                         | Band 8 current high gain calibration reference<br>temperature in degrees C<br>Valid format: SNNN.NNN, where<br>SNNN.NNN = 25.00            |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B1L_SCoeff_Prelaunch  | Static        | float64<br>array<br>(16 values) | Band 1 prelaunch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9     |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B1L_SCoeff_Postlaunch | Static        | float64<br>array<br>(16 values) | Band 1 post-launch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9   |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B1L_SCoeff_Current    | Dynamic       | float64<br>array<br>(16 values) | Band 1 current low gain calibration temperature sensitivity coefficient  Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9      |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B2L_SCoeff_Prelaunch  | Static        | float64<br>array<br>(16 values) | Band 2 prelaunch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9     |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B2L_SCoeff_Postlaunch | Static        | float64<br>array<br>(16 values) | Band 2 post-launch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9   |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B2L_SCoeff_Current    | Dynamic       | float64<br>array<br>(16 values) | Band 2 current low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $S = "+"$ or "-" and $N = 0$ to $9$ |

| Parameter<br>Group                                            | Parameter<br>Name            | Value<br>Type | Data<br>Type                    | Description                                                                                                                              |
|---------------------------------------------------------------|------------------------------|---------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B3L_SCoeff_Prelaunch         | Static        | float64<br>array<br>(16 values) | Band 3 prelaunch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9   |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B3L_SCoeff_Postlaunch        | Static        | float64<br>array<br>(16 values) | Band 3 post-launch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B3L_SCoeff_Current           | Dynamic       | float64<br>array<br>(16 values) | Band 3 current low gain calibration temperature sensitivity coefficient  Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9    |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B4L_SCoeff_Prelaunch         | Static        | float64<br>array<br>(16 values) | Band 4 prelaunch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9   |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B4L_SCoeff_Postlaunch        | Static        | float64<br>array<br>(16 values) | Band 4 post-launch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B4L_SCoeff_Current           | Dynamic       | float64<br>array<br>(16 values) | Band 4 current low gain calibration temperature sensitivity coefficient  Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9    |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B5L_SCoeff_Prelaunch         | Static        | float64<br>array<br>(16 values) | Band 5 prelaunch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9   |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B5L_SCoeff_Postlaunch        | Static        | float64<br>array<br>(16 values) | Band 5 post-launch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B5L_SCoeff_Current           | Dynamic       | float64<br>array<br>(16 values) | Band 5 current low gain calibration temperature sensitivity coefficient  Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9    |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B6L_SCoeff_Prelaunch         | Static        | float64<br>array<br>(8 values)  | Band 6 prelaunch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9   |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B6L_SCoeff_Postlaunch        | Static        | float64<br>array<br>(8 values)  | Band 6 post-launch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B6L_SCoeff_Current           | Dynamic       | float64<br>array<br>(8 values)  | Band 6 current low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9     |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B6L_SCoeffOff_<br>Prelaunch  | Static        | float64<br>array<br>(8 values)  | Band 6 prelaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9     |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B6L_SCoeffOff_<br>Postlaunch | Static        | float64<br>array<br>(8 values)  | Band 6 post-launch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9   |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW | B6L_SCoeffOff_<br>Current    | Dynamic       | float64<br>array<br>(8 values)  | Band 6 current offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9       |

| Parameter<br>Group                                             | Parameter<br>Name         | Value<br>Type | Data<br>Type                    | Description                                                                                                                               |
|----------------------------------------------------------------|---------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW  | B7L_SCoeff_<br>Prelaunch  | Static        | float64<br>array<br>(16 values) | Band 7 prelaunch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9    |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW  | B7L_SCoeff_<br>Postlaunch | Static        | float64<br>array<br>(16 values) | Band 7 post-launch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW  | B7L_SCoeff_Current        | Dynamic       | float64<br>array<br>(16 values) | Band 7 current low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9      |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW  | B8L_SCoeff_<br>Prelaunch  | Static        | float64<br>array<br>(32 values) | Band 8 prelaunch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9    |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW  | B8L_SCoeff_<br>Postlaunch | Static        | float64<br>array<br>(32 values) | Band 8 post-launch low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_LOW  | B8L_SCoeff_Current        | Dynamic       | float64<br>array<br>(32 values) | Band 8 current low gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9      |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B1H_SCoeff_Prelaunch      | Static        | float64<br>array<br>(16 values) | Band 1 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9   |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B1H_SCoeff_Postlaunch     | Static        | float64<br>array<br>(16 values) | Band 1 post-launch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B1H_SCoeff_Current        | Dynamic       | float64<br>array<br>(16 values) | Band 1 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9     |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B2H_SCoeff_Prelaunch      | Static        | float64<br>array<br>(16 values) | Band 2 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9   |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B2H_SCoeff_Postlaunch     | Static        | float64<br>array<br>(16 values) | Band 2 post-launch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B2H_SCoeff_Current        | Dynamic       | float64<br>array<br>(16 values) | Band 2 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9     |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B3H_SCoeff_Prelaunch      | Static        | float64<br>array<br>(16 values) | Band 3 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9   |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B3H_SCoeff_Postlaunch     | Static        | float64<br>array<br>(16 values) | Band 3 post-launch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B3H_SCoeff_Current        | Dynamic       | float64<br>array<br>(16 values) | Band 3 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9     |

| Parameter<br>Group                                             | Parameter<br>Name            | Value<br>Type | Data<br>Type                    | Description                                                                                                                                     |
|----------------------------------------------------------------|------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B4H_SCoeff_Prelaunch         | Static        | float64<br>array<br>(16 values) | Band 4 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9         |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B4H_SCoeff_Postlaunch        | Static        | float64<br>array<br>(16 values) | Band 4 post-launch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9       |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B4H_SCoeff_Current           | Dynamic       | float64<br>array<br>(16 values) | Band 4 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9           |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B5H_SCoeff_Prelaunch         | Static        | float64<br>array<br>(16 values) | Band 5 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9         |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B5H_SCoeff_Postlaunch        | Static        | float64<br>array<br>(16 values) | Band 5 post-launch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $S = "+"$ or "-" and $N = 0$ to $9$ |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B5H_SCoeff_Current           | Dynamic       | float64<br>array<br>(16 values) | Band 5 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9           |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B6H_SCoeff_Prelaunch         | Static        | float64<br>array<br>(8 values)  | Band 6 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9         |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B6H_SCoeff_Postlaunch        | Static        | float64<br>array<br>(8 values)  | Band 6 post-launch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $S = "+"$ or "-" and $N = 0$ to $9$ |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B6H_SCoeff_Current           | Dynamic       | float64<br>array<br>(8 values)  | Band 6 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9           |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B6H_SCoeffOff_<br>Prelaunch  | Static        | float64<br>array<br>(8 values)  | Band 6 prelaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9            |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B6H_SCoeffOff_<br>Postlaunch | Static        | float64<br>array<br>(8 values)  | Band 6 post-launch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9          |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B6H_SCoeffOff_<br>Current    | Dynamic       | float64<br>array<br>(8 values)  | Band 6 current offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9              |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B7H_SCoeff_<br>Prelaunch     | Static        | float64<br>array<br>(16 values) | Band 7 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9         |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B7H_SCoeff_<br>Postlaunch    | Static        | float64<br>array<br>(16 values) | Band 7 post-launch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9       |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B7H_SCoeff_Current           | Dynamic       | float64<br>array<br>(16 values) | Band 7 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9           |

| Parameter<br>Group                                             | Parameter<br>Name             | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                        |
|----------------------------------------------------------------|-------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B8H_SCoeff_<br>Prelaunch      | Static        | float64<br>array<br>(32 values) | Band 8 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9                            |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B8H_SCoeff_<br>Postlaunch     | Static        | float64<br>array<br>(32 values) | Band 8 post-launch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9                          |
| GROUP: SENSITIVITY_<br>TEMPERATURES<br>GROUP: SENSITIVITY_HIGH | B8H_SCoeff_Current            | Dynamic       | float64<br>array<br>(32 values) | Band 8 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9                              |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>TRENDING_COEFFS              | Lamp1_Coeffs                  | Static        | float32<br>array<br>(2 values)  | Time since launch coefficients for Lamp 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                          |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>TRENDING_COEFFS              | Lamp2_Coeffs                  | Static        | float32<br>array<br>(2 values)  | Time since launch coefficients for Lamp 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                          |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW            | B1L_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 1 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW            | B1L_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 1 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9    |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW            | B1L_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 1 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW            | B1L_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 1 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW            | B1L_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 1 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW            | B1L_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 1 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW            | B1L_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 1 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW            | B1L_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 1 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9  |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW            | B1L_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 1 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW            | B2L_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 2 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9      |

| Parameter<br>Group                                  | Parameter<br>Name             | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                        |
|-----------------------------------------------------|-------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B2L_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 2 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9    |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B2L_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 2 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B2L_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 2 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B2L_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 2 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9    |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B2L_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 2 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B2L_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 2 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B2L_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 2 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9     |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B2L_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 2 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B3L_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 3 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B3L_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 3 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9     |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B3L_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 3 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B3L_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 3 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B3L_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 3 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B3L_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 3 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B3L_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 3 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9       |

| Parameter<br>Group                                  | Parameter<br>Name             | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                       |
|-----------------------------------------------------|-------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B3L_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 3 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B3L_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 3 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B4L_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 4 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B4L_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 4 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9    |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B4L_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 4 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B4L_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 4 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9     |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B4L_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 4 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9   |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B4L_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 4 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B4L_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 4 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B4L_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 4 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9    |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B4L_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 4 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B5L_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 5 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B5L_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 5 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B5L_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 5 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B5L_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 5 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9     |

| Parameter<br>Group                                  | Parameter<br>Name             | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                        |
|-----------------------------------------------------|-------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B5L_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 5 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B5L_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 5 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B5L_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 5 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B5L_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 5 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9     |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B5L_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 5 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B7L_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 7 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B7L_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 7 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9     |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B7L_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 7 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B7L_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 7 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B7L_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 7 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9    |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B7L_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 7 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B7L_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 7 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B7L_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 7 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9  |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B7L_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 7 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW | B8L_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(32 values) | Band 8 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9       |

| Parameter<br>Group                                   | Parameter<br>Name             | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                         |
|------------------------------------------------------|-------------------------------|---------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW  | B8L_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(32 values) | Band 8 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW  | B8L_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(32 values) | Band 8 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9          |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW  | B8L_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(32 values) | Band 8 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW  | B8L_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(32 values) | Band 8 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9     |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW  | B8L_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(32 values) | Band 8 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW  | B8L_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(32 values) | Band 8 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW  | B8L_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(32 values) | Band 8 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_LOW  | B8L_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(32 values) | Band 8 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9          |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B1H_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 1 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; high-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B1H_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 1 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 1 - lamp 1 on, lamp 2 off; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B1H_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 1 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; high-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B1H_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 1 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B1H_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 1 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B1H_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 1 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B1H_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 1 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9       |

| Parameter<br>Group                                   | Parameter<br>Name             | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                        |
|------------------------------------------------------|-------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B1H_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 1 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B1H_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 1 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B2H_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 2 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B2H_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 2 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9    |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B2H_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 2 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode  Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B2H_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 2 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9     |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B2H_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 2 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9   |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B2H_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 2 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B2H_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 2 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B2H_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 2 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9    |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B2H_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 2 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B3H_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 3 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B3H_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 3 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9    |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B3H_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 3 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B3H_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 3 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9     |

| Parameter<br>Group                                   | Parameter<br>Name             | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                         |
|------------------------------------------------------|-------------------------------|---------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B3H_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 3 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B3H_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 3 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B3H_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 3 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B3H_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 3 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9     |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B3H_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 3 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B4H_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 4 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B4H_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 4 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9     |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B4H_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 4 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B4H_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 4 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B4H_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 4 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B4H_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 4 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B4H_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 4 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B4H_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 4 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9  |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B4H_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 4 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B5H_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 5 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9       |

| Parameter<br>Group                                   | Parameter<br>Name             | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                         |
|------------------------------------------------------|-------------------------------|---------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B5H_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 5 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9  |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B5H_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 5 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B5H_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 5 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B5H_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 5 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9    |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B5H_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 5 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B5H_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 5 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B5H_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 5 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9     |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B5H_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 5 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B7H_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 7 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B7H_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 7 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9  |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B7H_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 7 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B7H_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 7 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B7H_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 7 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B7H_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 7 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B7H_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(16 values) | Band 7 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9       |

| Parameter<br>Group                                   | Parameter<br>Name             | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                         |
|------------------------------------------------------|-------------------------------|---------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B7H_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(16 values) | Band 7 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9     |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B7H_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(16 values) | Band 7 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B8H_Rad_State1_<br>Prelaunch  | Static        | float32<br>array<br>(32 values) | Band 8 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B8H_Rad_State1_<br>Postlaunch | Static        | float32<br>array<br>(32 values) | Band 8 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9  |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B8H_Rad_State1_<br>Current    | Dynamic       | float32<br>array<br>(32 values) | Band 8 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9         |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B8H_Rad_State2_<br>Prelaunch  | Static        | float32<br>array<br>(32 values) | Band 8 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9      |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B8H_Rad_State2_<br>Postlaunch | Static        | float32<br>array<br>(32 values) | Band 8 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B8H_Rad_State2_<br>Current    | Dynamic       | float32<br>array<br>(32 values) | Band 8 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9        |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B8H_Rad_State3_<br>Prelaunch  | Static        | float32<br>array<br>(32 values) | Band 8 prelaunch IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9       |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B8H_Rad_State3_<br>Postlaunch | Static        | float32<br>array<br>(32 values) | Band 8 post-launch IC lamp effective spectral radiance in W/m^2-ster-µm;<br>State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9  |
| GROUP: LAMP_RADIANCE<br>GROUP:<br>LAMP_RADIANCE_HIGH | B8H_Rad_State3_<br>Current    | Dynamic       | float32<br>array<br>(32 values) | Band 8 current IC lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9         |

| Parameter<br>Group                                                | Parameter<br>Name              | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------|--------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: LAMP_REFERENCE                                             | Lmp_Rtemp_<br>PreLaunch        | Static        | float32<br>array<br>(14 values) | Prelaunch IC lamp radiance reference temperatures in degrees C Valid format: SNNN.NNN, where S = "+" or "-" and N = 0 to 9 T1 = Cal shutter flag temp T2 = Backup shutter flag temp T3 = Silicon focal plane array temp T4 = Cold focal plane monitor temp T5 = Cal lamp housing temp T6 = Scan line corrector temp T7 = Cal shutter hub temp T8 = Ambient pre-amp temp (high) T9 = Ambient pre-amp temp (low) T10 = Cold pre-amp temp (B7) T11 = Post-amp temp (B4) T12 = Primary mirror amp temp T13 = Secondary mirror temp T14 = Pan band post-amp temp |
| GROUP: LAMP_REFERENCE                                             | Lmp_Rtemp_<br>Postlaunch       | Static        | float32<br>array<br>(14 values) | Post-launch IC lamp radiance reference temperatures in degrees C Valid format: SNNN.NNN, where S = "+" or "-" and N = 0 to 9  Descriptions of T1 through T14 are the same as above                                                                                                                                                                                                                                                                                                                                                                          |
| GROUP: LAMP_REFERENCE                                             | Lmp_Rtemp_Current              | Dynamic       | float32<br>array<br>(14 values) | Current IC lamp radiance reference temperatures in degrees C Valid format: SNNN.NNN, where S = "+" or "-" and N = 0 to 9 Descriptions of T1 through T14 are the same as above                                                                                                                                                                                                                                                                                                                                                                               |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B1L_Coefficients_<br>Detector1 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_LOW | B1L_Coefficients_<br>Detector2 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_LOW | B1L_Coefficients_<br>Detector3 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B1L_Coefficients_<br>Detector4 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_LOW | B1L_Coefficients_<br>Detector5 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B1L_Coefficients_<br>Detector6 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_LOW | B1L_Coefficients_<br>Detector7 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Parameter<br>Group                                                | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                       |
|-------------------------------------------------------------------|---------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B1L_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B1L_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B1L_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B1L_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B1L_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B1L_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B1L_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B1L_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B1L_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, low-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW          | B2L_Coefficients_<br>Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_LOW | B2L_Coefficients_<br>Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |

| Parameter<br>Group                                                | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                       |
|-------------------------------------------------------------------|---------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_LOW | B2L_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B2L_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, low-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B3L_Coefficients_<br>Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B3L_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_LOW | B3L_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B3L_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B3L_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |

| Parameter<br>Group                                       | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                       |
|----------------------------------------------------------|---------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_<br>Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, low-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |

| Parameter<br>Group                                       | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                       |
|----------------------------------------------------------|---------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, low-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_<br>Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |

| Parameter<br>Group                                                | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                       |
|-------------------------------------------------------------------|---------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B5L_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B5L_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B5L_Coefficients_<br>Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B5L_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B5L_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B5L_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B5L_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B5L_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B5L_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B5L_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B5L_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B5L_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_LOW | B5L_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, low-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |

| Parameter<br>Group                                                | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                       |
|-------------------------------------------------------------------|---------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B7L_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, low-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |

| Parameter<br>Group                                                | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                       |
|-------------------------------------------------------------------|---------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients<br>_Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW          | B8L_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |

| Parameter<br>Group                                       | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                       |
|----------------------------------------------------------|---------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector17 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 17 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector18 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 18 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector19 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 19 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector20 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 20 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector21 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 21 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector22 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 22 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector23 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 23 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector24 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 24 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector25 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 25 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector26 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 26 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector27 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 27 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector28 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 28 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector29 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 29 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector30 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 30 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_<br>Detector31 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 31 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |

| Parameter<br>Group                                                 | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                        |
|--------------------------------------------------------------------|---------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_LOW  | B8L_Coefficients_<br>Detector32 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, low-gain, detector 32 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B1H_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |

| Parameter<br>Group                                        | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                        |
|-----------------------------------------------------------|---------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 1, high-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |

| Parameter<br>Group                                        | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                        |
|-----------------------------------------------------------|---------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 2, high-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |

| Parameter<br>Group                                        | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                        |
|-----------------------------------------------------------|---------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 3, high-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_<br>Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_<br>Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |

| Parameter<br>Group                                                 | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                        |
|--------------------------------------------------------------------|---------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B4H_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B4H_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B4H_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B4H_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B4H_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 4, high-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B5H_Coefficients_<br>Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B5H_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B5H_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B5H_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B5H_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B5H_Coefficients_<br>Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B5H_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B5H_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH          | B5H_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP:<br>REFLECTIVE_IC_COEFFS<br>GROUP:<br>REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |

| Parameter<br>Group                                        | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                        |
|-----------------------------------------------------------|---------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 5, high-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B7H_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B7H_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 6 Valid format: SNNN.NNNNNNN, where = + or - and N = 0 to 9        |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |

- 87 -

| Parameter<br>Group                                        | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                        |
|-----------------------------------------------------------|---------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 7, high-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients<br>_Detector1  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector2  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B8H_Coefficients_<br>Detector3  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B8H_Coefficients_<br>Detector4  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector5  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector6  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector7  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector8  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |

| Parameter<br>Group                                        | Parameter<br>Name               | Value<br>Type | Data<br>Type                    | Description                                                                                                        |
|-----------------------------------------------------------|---------------------------------|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector9  | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector10 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector11 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector12 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector13 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector14 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector15 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector16 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector17 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 17 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B8H_Coefficients_<br>Detector18 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 18 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector19 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 19 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector20 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 20 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector21 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 21 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector22 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 22 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector23 | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 23 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |

| Parameter<br>Group                                        | Parameter<br>Name                  | Value<br>Type | Data<br>Type                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------|------------------------------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector24    | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 24 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector25    | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 25 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector26    | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 26 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector27    | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 27 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector28    | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 28 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector29    | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 29 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector30    | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 30 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector31    | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 31 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_<br>Detector32    | Dynamic       | float32<br>array<br>(18 values) | IC coefficients for Band 8, high-gain, detector 32 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GROUP: B6_VIEW_COEFFS                                     | B6_View_Coefficients_<br>Detector1 | Static        | float32<br>array<br>(15 values) | View factor coefficients for Band 6, detector 1 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 a1 = Scan line corrector view factor a2 = Central baffles (heater) a3 = Secondary mirror and mask view factor a4 = Primary mirror and mask view factor a5 = Scan mirror view factor a6 = Black body (isolated) view factor a7 = Black body (control) view factor a8 = Cold focal plane control view factor a9 = Cold focal plane monitor view factor a10 = Baffle (tube) view factor a11 = Baffle (support) view factor a12 = Telescope housing view factor (vbb = Blocked aperture black body view factor Vsh = Blocked aperture shutter view factor |
| GROUP: B6_VIEW_COEFFS                                     | B6_View_Coefficients_<br>Detector2 | Static        | float32<br>array<br>(15 values) | View factor coefficients for Band 6, detector 2<br>Valid format: SNNN.NNNNNNNNN, where S =<br>"+" or "-" and N = 0 to 9<br>Descriptions of the 15 coefficients are the same<br>as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Parameter<br>Group             | Parameter<br>Name                  | Value<br>Type | Data<br>Type                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------|------------------------------------|---------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP: B6_VIEW_COEFFS          | B6_View_Coefficients_<br>Detector3 | Static        | float32<br>array<br>( 15<br>values) | View factor coefficients for Band 6, detector 3 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above                                                                                                                                                                                                                                                   |
| GROUP: B6_VIEW_COEFFS          | B6_View_Coefficients_<br>Detector4 | Static        | float32<br>array<br>( 15<br>values) | View factor coefficients for Band 6, detector 4 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above                                                                                                                                                                                                                                                   |
| GROUP: B6_VIEW_COEFFS          | B6_View_Coefficients_<br>Detector5 | Static        | float32<br>array<br>( 15<br>values) | View factor coefficients for Band 6, detector 5 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above                                                                                                                                                                                                                                                   |
| GROUP: B6_VIEW_COEFFS          | B6_View_Coefficients_<br>Detector6 | Static        | float32<br>array<br>( 15<br>values) | View factor coefficients for Band 6, detector 6 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above                                                                                                                                                                                                                                                   |
| GROUP: B6_VIEW_COEFFS          | B6_View_Coefficients_<br>Detector7 | Static        | float32<br>array<br>( 15<br>values) | View factor coefficients for Band 6, detector 7 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above                                                                                                                                                                                                                                                   |
| GROUP: B6_VIEW_COEFFS          | B6_View_Coefficients_<br>Detector8 | Static        | float32<br>array<br>( 15<br>values) | View factor coefficients for Band 6, detector 8 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above                                                                                                                                                                                                                                                   |
| GROUP:<br>B6_TEMP_MODEL_COEFFS | B6_Temp_Model_Parm                 | Dynamic       | float32<br>array<br>(6 values)      | Coefficients used to calculate scan mirror temperature where (a1) = Scan mirror / secondary mirror adjustment factor, (a2) = Average secondary mirror temperature, and (a3) - (a6) = reserved  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and  SNNN.NNNNNNNN = +1.0178 (a1)  SNNN.NNNNNNNNN = +0.0 (a2)  SNNN.NNNNNNNNN = +0.0 (a3)  SNNN.NNNNNNNNN = +0.0 (a4)  SNNN.NNNNNNNNN = +0.0 (a5)  SNNN.NNNNNNNNN = +0.0 (a6) |
| GROUP:<br>THERMISTOR_COEFFS    | Black_Body_Isolated_<br>Temp       | Static        | float32<br>array<br>(6 values)      | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                         |
| GROUP:<br>THERMISTOR_COEFFS    | Black_Body_Control_<br>Temp        | Static        | float32<br>array<br>(6 values)      | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                         |
| GROUP:<br>THERMISTOR_COEFFS    | Cold_FP_Control_<br>Temp           | Static        | float32<br>array<br>(6 values)      | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                         |
| GROUP:<br>THERMISTOR_COEFFS    | Cold_FP_Monitor_<br>Temp           | Static        | float32<br>array<br>(6 values)      | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                         |
| GROUP:<br>THERMISTOR_COEFFS    | Cal_Shutter_Flag_<br>Temp          | Static        | float32<br>array<br>(6 values)      | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                         |
| GROUP:<br>THERMISTOR_COEFFS    | Backup_Shutter_<br>Flag_Temp       | Static        | float32<br>array<br>(6 values)      | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                                                                                                                                                                                                                         |

| Parameter<br>Group          | Parameter<br>Name                    | Value<br>Type | Data<br>Type                   | Description                                                                                           |
|-----------------------------|--------------------------------------|---------------|--------------------------------|-------------------------------------------------------------------------------------------------------|
| GROUP:<br>THERMISTOR_COEFFS | Baffle_Heater_Temp                   | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Silicon_FP_Array_<br>Temp            | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Primary_Mirror_Temp                  | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Secondary_Mirror_<br>Temp            | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Scan_Line_Corrector_<br>Temp         | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Baffle3_Tube_Temp                    | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Baffle2_Support_<br>Temp             | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Cal_Lamp_Housing_<br>Temp            | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Cal_Shutter_Hub_<br>Temp             | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Ambient_Preamp_<br>HighCh_Temp       | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Ambient_Preamp_<br>LowCh_Temp        | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Postamp_Temp_B4                      | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Cold_Preamp_B7_<br>Temp              | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Pan_Band_Postamp_<br>Temp            | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Telescope_Housing_<br>Temp           | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Primary_Mirror_<br>Mask_Temp         | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Secondary_Mirror_<br>Mask_Temp       | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Telescope_<br>Baseplate_Temp         | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP:<br>THERMISTOR_COEFFS | Mem_Heat_Sink_<br>Power_Supply1_Temp | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |

| Parameter<br>Group            | Parameter<br>Name                     | Value<br>Type | Data<br>Type                   | Description                                                                                                                                                                                                           |
|-------------------------------|---------------------------------------|---------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GROUP:<br>THERMISTOR_COEFFS   | Mem_Heat_Sink_<br>Power_Supply2_Temp  | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9                                                                                                                 |
| GROUP:<br>THERMISTOR_COEFFS   | Mux1_Power_Supply_<br>Temp            | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data (telemetry value contains the power supply temperature for "active" Mux, which could be either Mux 1 or Mux 2) Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9  |
| GROUP:<br>THERMISTOR_COEFFS   | Mux1_Electronics_<br>Temp             | Static        | float32<br>array<br>(6 values) | Calibration coefficients for raw data (telemetry value contains the power supply temperature for "active" Mux, which could be either Mux 1 or Mux 2)  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 |
| GROUP: LAMP_CURRENTS          | Tec_Lamp_i1                           | Static        | float32<br>array<br>(2 values) | Calibration coefficients for raw data (telemetry value contains current in mA of primary onboard calibration lamp, telemetry name = TECLAMP1I)  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9       |
| GROUP: LAMP_CURRENTS          | Tec_Lamp_i2                           | Static        | float32<br>array<br>(2 values) | Calibration coefficients for raw data (telemetry value contains current in mA of primary onboard calibration lamp, telemetry name = TECLAMP2I)  Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9       |
| GROUP: FILL_PATTERNS          | Band_Fill_Pattern                     | Static        | uint8 array<br>(2 values)      | Fill pattern used to fill erroneous or missing image data minor frames Valid format: NNN, where NNN = (0, 255) (alternating 0, 255's)                                                                                 |
| GROUP:<br>REFLECTANCE_RESCALE | Reflectance_Additive_Fact or          | Static        | float32<br>array<br>(7 values) | Post-calibration 16-bit dynamic range additive reflectance scaling factors for Bands 1-5, Band 7, and Band 8, Valid format: SN.NNNNNN, where S = "+" or "-" and N = 0 to 9                                            |
| GROUP:<br>REFLECTANCE_RESCALE | Reflectance_Multiplicative<br>_Factor | Static        | float32<br>array<br>(7 values) | Post-calibration 16-bit dynamic range multiplicative reflectance scaling factors for Bands 1-5, Band 7, and Band 8, Valid format: N.NNNNNNESNN, where S = "+" or "-" and N = 0 to 9                                   |

Table 2-1. Landsat 7 CPF Parameters

## Section 3 CPF ODL

## 3.1 Introduction

The ODL syntax employs the following conventions:

- Parameter definition is in the form of parameter = value.
- Value can be either a scalar or an array. Array values are enclosed in parentheses and are separated by commas.
- Parameter arrays can and do exist on multiple lines.
- A carriage return <CR> and line feed <LF> end each line in the file.
- Blank spaces and lines are ignored.
- Each line of comments must begin with /\* and end with \*/, including comments embedded on the same line as a parameter definition.
- Quotation marks are required for values that are text strings, including single characters. The exceptions to this rule are the GROUP and END\_GROUP identifiers or values, which do not use quotation marks. The parameters Effective\_Date\_Begin and Effective\_Date\_End also do not have quotation marks. ODL recognizes dates if they follow prescribed formats.
- In general for ODL, case is not significant. However, for the CPF, the case is significant for keyword and group names. All group names are in all capital letters and keywords are in mixed case.
- Indentation is not significant but is used for readability.
- The reserved word END concludes the file.
- Most parameter values have been derived during prelaunch instrument and spacecraft testing and analysis. Formats for CPF numerical parameters are accurate; however, negative signs are not explicitly stated. A data dictionary that declares each parameter's data type and value range has been defined.

## 3.2 Sample ETM+ CPF ODL File

The following is a prototype of a CPF file that contains valid parameter values for the first calendar quarter of 2007. To present the format structure, the hypothetical bumper mode specific parameters are also included in this example.

- 94 -

```
GROUP = FILE_ATTRIBUTES
 Spacecraft_Name = "Landsat_7"
 Sensor_Name = "Enhanced_Thematic_Mapper_Plus"
 Effective_Date_Begin = 2007-01-01
 Effective_Date_End = 2007-03-31
 CPF_File_Name = "LE07CPF_20070101_20070331_01.02"
 File_Source = "LE07CPF_20070101_20070331_01.01"
 Collection_Number = 1
 Version = 2
END_GROUP = FILE_ATTRIBUTES
GROUP = EARTH_CONSTANTS
  Ellipsoid_Name = "WGS84"
 Semi_Major_Axis = 6378137.000
 Semi_Minor_Axis = 6356752.3142
 Ellipticity = 0.00335281066474
 Eccentricity = 0.00669437999013
 Earth_Spin_Rate = 72.921158553E-06
```

```
Gravity_Constant = 3.986005E14
  J2_Earth_Model_Term = 1082.63E-06
END_GROUP = EARTH_CONSTANTS
GROUP = ORBIT_PARAMETERS
 WRS_Cycle_Days = 16
  WRS_Cycle_Orbits = 233
  Scenes_Per_Orbit = 248
  Orbital_Period = 5933.0472
  Angular_Momentum = 53.136250E9
 Orbit_Radius = 7083.4457
  Orbit_Semimajor_Axis = 7083.4457
  Orbit_Semiminor_Axis = 7083.4408
  Orbit_Eccentricity = 0.00117604
  Inclination_Angle = 98.2096
 Argument_Of_Perigee = 90.0
 Descending_Node_Row = 60
  Long_Pathl_Row60 = -64.6
 Descending_Node_Time_Min = "09:45"
  Descending_Node_Time_Max = "10:15"
 Nodal_Regression_Rate = 0.985647366
END_GROUP = ORBIT_PARAMETERS
GROUP = SCANNER_PARAMETERS
 Lines_Per_Scan_30 = 16
 Lines_Per_Scan_60 = 8
 Lines_Per_Scan_15 = 32
 Scans_Per_Scene = 375
 Swath\_Angle = .26868
  Scan_Rate = 2.21095
 Dwell_Time_30 = 9.6110206
  Dwell_Time_60 = 19.222041
 Dwell_Time_15 = 4.8055103
  IC_Line_Length_30 = 1150
  IC_Line_Length_60 = 575
  IC_Line_Length_15 = 2300
  Scan\_Line\_Length\_30 = 6320
  Scan_Line_Length_60 = 3160
  Scan_Line_Length_15 = 12640
 Filter_Frequency_30 = 52.02
  Filter_Frequency_60 = 26.01
 Filter_Frequency_15 = 115.00
  IFOV_B1234 = 42.5
  IFOV_B57_along_scan = 39.4
  IFOV_B57_across_scan = 42.5
  IFOV_B6 = 85.0
  IFOV_B8_along_scan = 18.5
  IFOV_B8_across_scan = 21.25
  Scan_Period = 143.58
  Scan_Frequency = 6.96476
 Active Scan Time = 60743.346
 Turn_Around_Time = 11.055
END_GROUP = SCANNER_PARAMETERS
GROUP = SPACECRAFT_PARAMETERS
  ADS_Interval = 2.0
 ADS_Roll_Offset = 0.375
 ADS_Pitch_Offset = 0.875
 ADS_Yaw_Offset = 1.375
 Data Rate = 74.914
END_GROUP = SPACECRAFT_PARAMETERS
GROUP = MIRROR_PARAMETERS
 Error_Conversion_Factor = 0.18845139
 GROUP = ANGLES_SME1_SAM
   Forward_Along_SME1_SAM = (0.000000E+00,-2.188024E-03,3.507066E-01,-
1.638834E+01,3.070082E+02,-2.016646E+03)
    Forward_Cross_SME1_SAM = (-8.926001E-07,2.945449E-04,-2.799967E-02,1.024417E+00,-
1.579172E+01,8.644595E+01)
   Forward_Angle1_SME1_SAM = 67166.9
   Forward_Angle2_SME1_SAM = 67145.9
```

```
Reverse_Along_SME1_SAM = (0.000000E+00,2.717297E-03,-3.610215E-01,1.637412E+01,-
3.045525E+02.1.987221E+03)
                           Reverse_Cross_SME1_SAM = (-7.702087E-07, 1.318691E-04, -4.507913E-03, -8.416380E-08, -8.41680E-08, -8.416
02,5.421192E+00,-5.563424E+01)
                           Reverse_Angle1_SME1_SAM = 67142.8
                           Reverse_Angle2_SME1_SAM = 67169.9
              END_GROUP = ANGLES_SME1_SAM
             GROUP = ANGLES_SME1_BUMP
                              Forward_Along_SME1_Bump = (1.177376E-19, -2.713081E-03, 3.605800E-01, -1.618500E+01,
 3.001900E+02, -1.965000E+03)
                           Forward_Cross_SME1_Bump = (-3.159000E-07, 4.831800E-06, -1.336000E-03, 6.273300E-02, -
1.174500E+00, 7.932400E+00)
                           Forward_Angle1_SME1_Bump =
 (68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68000.9,68000.9,68000.9,680000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000
68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 6
8302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9
 302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9
02.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68
2.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9
   .9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9
9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9)
                             Forward_Angle2_SME1_Bump =
 (69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,690
 69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5
 9050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5
050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.
50.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69
0.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,
  .5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5
 5,69050.5,69050.5,69050.5,69050.5,69050.5)
                              Forward_FHSERR_SME1_Bump =
 883,-883)
                              Reverse_Along_SME1_Bump = (-4.065758E-2, 2.074688E-03, -3.345100E-01, 1.567300E+01, -
 2.953100E+02, 1.954000E+03)
                             Reverse_Cross_SME1_Bump = (-5.611700E-07, -1.018300E-06, -1.553500E-04, 2.048200E-03,
1.075500E-01, -1.450700E+00)
                           Reverse_Angle1_SME1_Bump =
 (68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,682
68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 6
8234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,
234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,6
34.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3
4.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3
   .3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3
3,68234.3,68234.3,68234.3,68234.3,68234.3)
                             Reverse_Angle2_SME1_Bump =
 (68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.
 68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3
 8889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68
889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,6889.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,689.5,68
89.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3
9.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3
  .3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,689.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,699.3,6
3,68889.3,68889.3,68889.3,68889.3,68889.3)
                              Reverse_FHSERR_SME1_Bump =
```

```
790.-790)
              END_GROUP = ANGLES_SME1_BUMP
             GROUP = ANGLES SME2 SAM
                             Forward_Along_SME2_SAM = (0.000000E+00, -2.100656E-03, 3.401124E-01, -1.558871E+01,
 2.878695E+02, -1.877441E+03)
                            Forward_Cross_SME2_SAM = (-2.374600E-09, -8.188300E-06, 1.072700E-04, -3.646200E-03,
 1.456200E-01, -1.486700E+00)
                            Forward_Angle1_SME2_SAM = 67162.7
                            Forward_Angle2_SME2_SAM = 67162.8
                             Reverse_Along_SME2_SAM = (0.000000E+00, 2.746938E-03, -3.415100E-01, 1.534667E+01, -
2.872800E+02, 1.892100E+03)
                              Reverse_Cross_SME2_SAM = (-6.351600E-07, 1.258700E-05, -7.787700E-04, 1.767400E-02, -
 1.108500E-01, -1.597100E-01)
                            Reverse_Angle1_SME2_SAM = 67162.8
                            Reverse_Angle2_SME2_SAM = 67162.7
              END_GROUP = ANGLES_SME2_SAM
              GROUP = ANGLES_SME2_BUMP
                            Forward_Along_SME2_Bump = (0.000000E+00, -2.463915E-03, 3.546100E-01, -1.609400E+01,
2.987000E+02, -1.956800E+03)
                             \texttt{Forward\_Cross\_SME2\_Bump} = (-3.344900E-07, \ 7.778000E-06, \ -1.768700E-03, \ 8.061500E-02, \ -1.768700E-03, \ 8.061500E-03, \ -1.768700E-03, \ -1.768700E
1.463400E+00, 9.512300E+00)
                              Forward_Angle1_SME2_Bump =
 (67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.
 67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,6
7162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162
162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7
62.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7
2.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,
   .7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7
7,67162.7,67162.7,67162.7,67162.7,67162.7)
                            Forward_Angle2_SME2_Bump =
 (67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,671
67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 67162.8, 6
 7162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,
162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,6
62.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8
2.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,671
  .8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,6716
8,67162.8,67162.8,67162.8,67162.8,67162.8)
                             Forward_FHSERR_SME2_Bump =
 883,-883)
                            Reverse_Along_SME2_Bump = (0.000000E+00, 2.234071E-03, -3.347900E-01, 1.554200E+01,
 2.927500E+02, 1.936900E+03)
                            Reverse_Cross_SME2_Bump = (-6.024100E-07, 6.736100E-06, -1.153000E-03, 5.158900E-02, -1.158900E-02, -
9.145700E-01, 5.977300E+00)
                            Reverse_Angle1_SME2_Bump =
 (67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,671
 67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67
7162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162
162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.
62.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8
```

```
2.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,
   .8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,6716
8,67162.8,67162.8,67162.8,67162.8)
                                                Reverse_Angle2_SME2_Bump =
 (67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,671
67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7
7162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162
162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7
62.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7
2.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7
 .7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,6
7,67162.7,67162.7,67162.7,67162.7,67162.7)
                                                Reverse FHSERR SME2 Bump =
 790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -7
790,-790)
                      END GROUP = ANGLES SME2 BUMP
END_GROUP = MIRROR_PARAMETERS
GROUP = BUMPER_MODE_PARAMETERS
                        SME1 BumperA Dwell Time =
 (9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 977
8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9
 .8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,
0.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8
70.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.
770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700
9770.8,9770.8,9770.8,9770.8,9770.8,9770.8)
                        SME1_BumperA_Pickoff_Time =
   (511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511
511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 
11.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 5
1.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 51
   .0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.
0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0)
                        SME1_BumperA_Offset_Time = 10110.0
                        SME1_BumperA_Angle = -69000.0
                        SME1_BumperB_Dwell_Time =
   (9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.
 7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7
     .7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801
1.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,980
01.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,98
801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9
9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7)
                         SME1_BumperB_Pickoff_Time =
 (439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6,
 439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6
39.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6
9.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6
   .6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439
6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6)
                      SME1_BumperB_Offset_Time = 10110.0
                        SME1_BumperB_Angle = 69000.0
                        SME2_BumperA_Dwell_Time =
 (9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 9770.8, 977
8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.
 .8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,
 0.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,
```

70.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8,970.8

```
770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.8,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700
9770.8,9770.8,9770.8,9770.8,9770.8,9770.8)
             SME2_BumperA_Pickoff_Time =
  (511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511
511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,5
11.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,51
1.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 51
 .0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511
0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,\\
             SME2_BumperA_Offset_Time = 10110.0
             SME2_BumperA_Angle = -69000.0
             SME2_BumperB_Dwell_Time =
  (9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.
 7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7
   .7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801
1.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7
01.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,98
801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,
9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7)
              SME2_BumperB_Pickoff_Time =
 (439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 43
 439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,4
39.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6
9.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6
  .6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439
6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6)
             SME2_BumperB_Offset_Time = 10110.0
             SME2_BumperB_Angle = 69000.0
END_GROUP = BUMPER_MODE_PARAMETERS
GROUP = SCAN_LINE_CORRECTOR
             Primary_Angular_Velocity = 0.0
             Secondary_Angular_Velocity = 0.0
             Primary_Corrector_Motion = (0.00000,0.00000,0.00000,0.00000,0.00000,0.00000)
             Secondary\_Corrector\_Motion = (0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000)
             Unpowered_Pointing_Bias = 0.0000427
END_GROUP = SCAN_LINE_CORRECTOR
GROUP = FOCAL_PLANE_PARAMETERS
              GROUP = BAND_OFFSETS
                          Along\_Scan\_Band\_Offsets = (+3627.944, +2564.567, +1501.002, +438.166, -2577.619, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072.538, -4072
 1473.263,+4692.000)
                           Across_Scan_Band_Offsets = (+1.280,+0.537,-0.270,-1.447,+15.828,+31.762,+15.683,+0.000)
                           Forward\_Focal\_Plane\_Offsets = (+25.0, +50.0, +75.0, +100.0, +171.0, +206.0, +145.0, +0.0)
                          Reverse_Focal_Plane_Offsets = (-25.0, -50.0, -75.0, -100.0, -171.0, -206.0, -145.0, +0.5)
             END_GROUP = BAND_OFFSETS
             GROUP = DETECTOR_OFFSETS
                          Forward_Along_Scan_DO_B1 = (1.250, 1.298, 1.324, 1.250, 1.253, 1.241, 1.254, 1.271, 1.207,
1.260, 1.247, 1.251, 1.234, 1.227, 1.264, 1.243)
                          Reverse_Along_Scan_DO_B1 = (1.241, 1.278, 1.320, 1.230, 1.244, 1.224, 1.256, 1.260, 1.223,
1.255, 1.262, 1.252, 1.251, 1.234, 1.287, 1.258)
                           Forward_Along_Scan_DO_B2 = (1.260, 1.278, 1.263, 1.276, 1.269, 1.246, 1.233, 1.232, 1.281,
 1.229, 1.237, 1.240, 1.228, 1.246, 1.221, 1.267)
                            Reverse_Along_Scan_DO_B2 = (1.249, 1.262, 1.257, 1.258, 1.260, 1.230, 1.234, 1.221, 1.294,
1.224, 1.253, 1.242, 1.244, 1.252, 1.244, 1.282)
                           Forward_Along_Scan_DO_B3 = (1.252, 1.256, 1.267, 1.225, 1.240, 1.261, 1.236, 1.297, 1.203,
1.222, 1.214, 1.193, 1.218, 1.210, 1.269, 1.221)
                          Reverse_Along_Scan_DO_B3 = (1.242, 1.237, 1.260, 1.207, 1.231, 1.244, 1.235, 1.287, 1.213,
 1.218, 1.229, 1.195, 1.238, 1.214, 1.294, 1.237)
                           Forward_Along_Scan_DO_B4 = (1.263, 1.259, 1.286, 1.268, 1.265, 1.269, 1.257, 1.300, 1.281,
 1.265, 1.234, 1.253, 1.232, 1.226, 1.256, 1.301)
                          Reverse_Along_Scan_DO_B4 = (1.253, 1.238, 1.278, 1.246, 1.256, 1.251, 1.257, 1.291, 1.292,
1.263, 1.249, 1.259, 1.250, 1.233, 1.281, 1.317)
                            Forward_Along_Scan_DO_B5 = (1.163, 1.165, 1.144, 1.137, 1.150, 1.120, 1.109, 1.109, 1.100,
 1.095, 1.067, 1.069, 1.058, 1.053, 1.058, 1.027)
                           Reverse_Along_Scan_DO_B5 = (1.047, 1.037, 1.045, 1.068, 1.078, 1.077, 1.075, 1.103, 1.108,
 1.125, 1.107, 1.133, 1.133, 1.151, 1.168, 1.166)
                          Forward_Along_Scan_DO_B6 = (1.904, 2.058, 1.890, 2.055, 1.899, 1.946, 1.820, 1.924)
```

```
Reverse_Along_Scan_DO_B6 = (1.952, 1.899, 1.951, 1.924, 1.964, 1.907, 1.974, 1.924)
   Forward_Along_Scan_DO_B7 = (1.202, 1.190, 1.217, 1.165, 1.185, 1.116, 1.168, 1.117, 1.121,
1.092, 1.110, 1.091, 1.079, 1.058, 1.076, 1.042)
   Reverse_Along_Scan_DO_B7 = (1.034, 1.064, 1.098, 1.074, 1.104, 1.064, 1.135, 1.113, 1.133,
1.133, 1.163, 1.168, 1.170, 1.171, 1.206, 1.199)
    Forward_Along_Scan_DO_B8 = (0.511, 0.508, 0.505, 0.514, 0.513, 0.523, 0.521, 0.511, 0.509,
0.499,\ 0.517,\ 0.513,\ 0.508,\ 0.508,\ 0.516,\ 0.512,\ 0.507,\ 0.523,\ 0.522,\ 0.541,\ 0.499,\ 0.527,\ 0.510,
0.528, 0.518, 0.519, 0.515, 0.518, 0.514, 0.521, 0.499, 0.523)
    Reverse_Along_Scan_DO_B8 = (0.511, 0.508, 0.505, 0.514, 0.513, 0.523, 0.521, 0.511, 0.509,
0.499, 0.517, 0.513, 0.507, 0.508, 0.516, 0.512, 0.514, 0.489, 0.525, 0.504, 0.515, 0.497, 0.522,
0.505, 0.535, 0.497, 0.539, 0.505, 0.544, 0.516, 0.537, 0.523)
    Forward_Across_Scan_DO_B1 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
    Reverse_Across_Scan_DO_B1 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
   Forward_Across_Scan_DO_B2 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
   Reverse_Across_Scan_DO_B2 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
    Forward_Across_Scan_DO_B3 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
   Reverse_Across_Scan_DO_B3 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
    Forward_Across_Scan_DO_B4 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
   Reverse_Across_Scan_DO_B4 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
    Forward_Across_Scan_DO_B5 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
    Reverse_Across_Scan_DO_B5 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
   Forward_Across_Scan_DO_B6 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
   Reverse_Across_Scan_DO_B6 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
   Forward_Across_Scan_DO_B7 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
   Reverse_Across_Scan_DO_B7 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
   Forward_Across_Scan_DO_B8 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,
0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000)
   Reverse_Across_Scan_DO_B8 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
  END_GROUP = DETECTOR_OFFSETS
  GROUP = ODD_EVEN_OFFSETS
   Forward_Even_Detector_Shift = (31.0,56.0,81.0,106.0,177.0,101.0,151.0,14.0)
   Forward_Odd_Detector_Shift = (33.0,58.0,83.0,108.0,179.0,104.0,153.0,18.0)
   Reverse_Even_Detector_Shift = (27.0, 52.0, 77.0, 102.0, 173.0, 105.0, 147.0, 4.0)
   Reverse_Odd_Detector_Shift = (30.0,55.0,80.0,105.0,176.0,107.0,150.0,8.0)
 END_GROUP = ODD_EVEN_OFFSETS
END_GROUP = FOCAL_PLANE_PARAMETERS
GROUP = ATTITUDE_PARAMETERS
  Gyro_To_Attitude_Matrix = (9.99999900E-01, -3.68543600E-04, 2.43062700E-05, 2.43207600E-05, -
2.22997000E-04, -1.00000000E+00, 3.68785400E-04, 9.99999900E-01, -2.22941100E-04)
 ADSA_To_ETM_Matrix = (9.999999800E-01, 1.65108100E-04, 6.51893000E-04, 6.78739000E-05,
9.39659800E-01, -3.42110300E-01, -6.69042800E-04, \ 3.42110300E-01, \ 9.39659600E-01)
 Attitude_To_ETM_Matrix = (9.999999845E-01, 1.18363752E-04, 5.43986578E-04, -1.18213574E-04,
9.99999955E-01, -2.76092898E-04, -5.44019232E-04, 2.76028548E-04, 9.99999814E-01)
  Spacecraft_Roll_Bias = 0.00000000E+00
  Spacecraft_Pitch_Bias = 0.00000000E+00
  Spacecraft_Yaw_Bias = 0.00000000E+00
  IMU_Drift_Bias_XA = -2.23500000E-06
  IMU_Drift_Bias_YA = -2.23500000E-06
  IMU_Drift_Bias_ZA = 1.68230000E-06
  IMU_Drift_Bias_XB = 1.86665000E-06
  IMU_Drift_Bias_YB = -6.35100000E-07
  IMU_Drift_Bias_ZB = 4.84810000E-08
```

```
END_GROUP = ATTITUDE_PARAMETERS
GROUP = TIME PARAMETERS
              Scan_Time = 60743.0
             Forward_First_Half_Time = 30371.4
             Forward_Second_Half_Time = 30371.6
             Reverse_First_Half_Time = 30371.6
             Reverse_Second_Half_Time = 30371.4
 END_GROUP = TIME_PARAMETERS
GROUP = TRANSFER_FUNCTION
              GROUP = IMU
                            Fn = 3.3113091
                            Zeta = 0.66882924
                            Tau = -1.6086176E-2
                             P = -4.1138195E-3
                            Ak = 1.0103061
             END_GROUP = IMU
             GROUP = ADS
                            ADS num =
 ,0.0,0.0,0.0,+9.2111049E2,+1.9766902E2,+1.00000E0)
                            ADS den =
 26650E5, +5.2674623E4, +5.1999651E3, +2.3909029E2, +1.00000000E0, +1.1459413E5, +1.4727717E5, +4.7786443E1, +2.3909029E2, +1.00000000E0, +1.1459413E5, +1.4727717E5, +4.7786443E1, +1.4727717E5, +4.778643E1, +1.478643E1, +1.4786445E1, +1.4786445E1, +1.4786445E1, +1.4786445E1, +1.47864561, +1.47864561, +1.4786461, +1.4786461, +1.4786461, +1.478661, +1.4786661, +1.4786661, +1.4786661, +1.4786661, +1.4786661, +1.478661, +1.478661, +1.4786661, +1.4786661, +1.478
4,+4.3224093E3,+2.3570742E2,+1.0000000E0)
                             3,0.0,0.0,0.0,+2.0618135E2,+4.7466808E0,-2.9005228E-
3,0.0,0.0,0.0,+9.1603744E1,+2.0285055E0,+4.0783070E-2)
                             ADS_den_temp = (+7.6388956E3,+8.7276441E3,+7.5038775E2,+3.2855210E0,-2.1966002E0,-4.6355589E-
3,+9.9464208E3,+1.3229420E4,+1.8093952E3,+9.2350092E1,+2.9068940E0,+4.2219584E-2)
              END_GROUP = ADS
              GROUP = PREFILTER
                            ADSPre_W = (0.000670695, 0.000427279, 0.000667499, 0.000946530, 0.001221428)
                            ADSPre_H = (-0.0748, 0.0133, 0.7994, 0.1824, 1.00157)
                            ADSPre_T = (0.0010191, 0.000015, 0.0, 0.0, 0.0)
              END_GROUP = PREFILTER
END_GROUP = TRANSFER_FUNCTION
GROUP = UT1_TIME_PARAMETERS
  (2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 
 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007
07, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 
   007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007,
 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007
07,2007,2007,2007,2007,2007)
             UT1_Month =
 ("Nov", "Nov", "Dec", "Dec", "Dec", "Dec", "Dec", "Nov", "
 "Dec", "D
Dec", "Dec", "Jan", "Jan, "Jan", "Jan, "Ja
an", "Jan", "Jan, "J
n", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Feb", "Feb"
 ","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb","Feb
   ,"Feb","Feb","Feb","Feb","Feb","Feb","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar",
  "Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","Mar","
Mar", "Mar", "Mar", "Mar", "Mar", "Apr", "Ap
pr","Apr","Apr","Apr","Apr","Apr","Apr","Apr","Apr","Apr","Apr","Apr","Apr","Apr","Apr","Apr","Apr","Apr
r","Apr","Apr","May","May","May","May","May","May","May","May","May","May","May","May","May","May","May","May
 ", "May", "May")
             UT1 Day =
 23,24,25,26,27,28,29,30,31,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,2
```

```
UT1 Modified Julian =
    (54057,54058,54059,54060,54061,54062,54063,54064,54065,54066,54067,54068,54069,54070,54071,54072,
54073,54074,54075,54076,54077,54078,54079,54080,54081,54082,54083,54084,54085,54086,54087,54088,5
  4089,54090,54091,54092,54093,54094,54095,54096,54097,54098,54099,54100,54101,54102,54103,54104,54
105, 54106, 54107, 54108, 54109, 54110, 54111, 54112, 54113, 54114, 54115, 54116, 54117, 54118, 54119, 54120, 54111, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110, 541110,
  21,54122,54123,54124,54125,54126,54127,54128,54129,54130,54131,54132,54133,54134,54135,54136,5413
  7,54138,54139,54140,54141,54142,54143,54144,54145,54146,54147,54148,54149,54150,54151,54152,54153
    ,54154,54155,54156,54157,54158,54159,54160,54161,54162,54163,54164,54165,54166,54167,54168,54169,
54170, 54171, 54172, 54173, 54174, 54175, 54176, 54177, 54178, 54179, 54180, 54181, 54182, 54183, 54184, 54185, 54181, 54182, 54181, 54182, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 54181, 
  4186,54187,54188,54189,54190,54191,54192,54193,54194,54195,54196,54197,54198,54199,54200,54201,54
  202,54203,54204,54205,54206,54207,54208,54209,54210,54211,54212,54213,54214,54215,54216,54217,542
18,54219,54220,54221,54222,54223,54224,54225,54226,54227,54228,54229,54230,54231,54232,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,54233,5
4,54235,54236)
                        \mathtt{UT1}_{-}\mathtt{X} = (-0.02126, -0.02269, -0.02414, -0.02561, -0.02684, -0.02808, -0.02957, -0.03118, -0.03286, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.02808, -0.028
0.03446, -0.03572, -0.03663, -0.03742, -0.03814, -0.03848, -0.03856, -0.03863, -0.03876, -0.03921, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03863, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03864, -0.03
0.04011, -0.04122, -0.04235, -0.04350, -0.04465, -0.04579, -0.04691, -0.04802, -0.04910, -0.05016, -0.04011, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04010, -0.04
0.05120, -0.05220, -0.05318, -0.05413, -0.05504, -0.05593, -0.05679, -0.05761, -0.05840, -0.05917, -0.05679, -0.05679, -0.05761, -0.05840, -0.05917, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05679, -0.05
0.05989, -0.06059, -0.06125, -0.06187, -0.06247, -0.06303, -0.06355, -0.06404, -0.06449, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06492, -0.06402, -0.06402, -0.06402, -0.06402, -0.06402, -0.06402, -0.06
0.06530, -0.06564, -0.06595, -0.06623, -0.06646, -0.06666, -0.06681, -0.06693, -0.06702, -0.06706, -0.06681, -0.06681, -0.06693, -0.06702, -0.06706, -0.06681, -0.06681, -0.06681, -0.06681, -0.06681, -0.06681, -0.06681, -0.06681, -0.06681, -0.06681, -0.06681, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06881, -0.06
0.06706, -0.06703, -0.06696, -0.06684, -0.06669, -0.06650, -0.06626, -0.06599, -0.06568, -0.06532, -0.06500, -0.06696, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.065000, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.06500, -0.0
0.06493, -0.06450, -0.06402, -0.06351, -0.06295, -0.06235, -0.06171, -0.06104, -0.06032, -0.05956, -0.06493, -0.06450, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06493, -0.06494, -0.06494, -0.06494, -0.06494, -0.06494, -0.06494, -0.06494, -0.06494, -0.06494, -0.06494, -0.06
0.05876, -0.05792, -0.05704, -0.05612, -0.05516, -0.05416, -0.05312, -0.05204, -0.05093, -0.04977, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05
0.04858, -0.04734, -0.04607, -0.04476, -0.04342, -0.04203, -0.04061, -0.03916, -0.03767, -0.03614, -0.04858, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04061, -0.04
0.03458, -0.03298, -0.03134, -0.02968, -0.02798, -0.02625, -0.02448, -0.02269, -0.02086, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.019000, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.019000, -0.01900, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.
0.01711, -0.01519, -0.01324, -0.01126, -0.00926, -0.00723, -0.00517, -0.00308, -0.00723, -0.00517, -0.00308, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00723, -0.00
0.00097, 0.00117, 0.00333, 0.00551, 0.00772, 0.00995, 0.01220, 0.01447, 0.01676, 0.01907, 0.02140, 0.02375, 0.01200, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.014000, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.014000, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.014000, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0.0
    .02612, 0.02850, 0.03090, 0.03331, 0.03574, 0.03818, 0.04063, 0.04310, 0.04558, 0.04807, 0.05057, 0.05308, 0.04807, 0.04807, 0.05057, 0.05080, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.048070, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.04807, 0.048070, 0.04807, 0.04807, 0.048070, 0.048070, 0.048070, 0.048070, 0.048070, 0.048070, 0.048070, 0.048070, 0.048070, 0.048070, 0.048070
  05559,0.05812,0.06065,0.06318,0.06573,0.06827,0.07082,0.07338,0.07594,0.07849,0.08105,0.08361,0.0
8617, 0.08873, 0.09128, 0.09383, 0.09638, 0.09892, 0.10146, 0.10400, 0.10652, 0.10904, 0.11155, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11406, 0.11
655, 0.11903, 0.12151, 0.12397, 0.12642, 0.12885, 0.13128, 0.13369, 0.13608, 0.13846, 0.14083, 0.14317, 0.14519, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.14119, 0.141
50,0.14782,0.15011)
                        UT1_Y =
    (0.29018, 0.29078, 0.29127, 0.29199, 0.29307, 0.29435, 0.29579, 0.29730, 0.29881, 0.30016, 0.30114, 0.30189,
  .32298,0.32470,0.32640,0.32810,0.32979,0.33147,0.33316,0.33486,0.33656,0.33827,0.33998,0.34171,0.
34345,0.34520,0.34696,0.34873,0.35051,0.35230,0.35410,0.35591,0.35774,0.35957,0.36141,0.36326,0.3
  792,0.38984,0.39176,0.39369,0.39562,0.39754,0.39947,0.40139,0.40331,0.40523,0.40711,0.40903,0.410
94,0.41284,0.41474,0.41664,0.41852,0.42040,0.42228,0.42414,0.42600,0.42784,0.42968,0.43150,0.4333
2, 0.43512, 0.43691, 0.43868, 0.44045, 0.44220, 0.44393, 0.44565, 0.44735, 0.44904, 0.45071, 0.45236, 0.45400
  , 0.45561, 0.45721, 0.45879, 0.46035, 0.46188, 0.46340, 0.46489, 0.46636, 0.46780, 0.46923, 0.47063, 0.47200, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.46920, 0.469200, 0.46920, 0.46920, 0.469200, 0.469200, 0.469200, 0.469200, 0.46920, 0.46920, 0.46920, 0.469200, 0.469200, 0.469200, 0.469200,
0.47335, 0.47467, 0.47596, 0.47723, 0.47847, 0.47969, 0.48087, 0.48203, 0.48315, 0.48425, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48635, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.486555, 0.486555, 0.486555, 0.486555, 0.486555, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.48655, 0.486
      .48735,0.48832,0.48926,0.49016,0.49103,0.49187,0.49268,0.49345,0.49418,0.49488,0.49554,0.49617,0.
  49676,0.49732,0.49783,0.49831,0.49875,0.49916,0.49952,0.49985,0.50013,0.50038,0.50059,0.50076,0.5
  0089, 0.50098, 0.50103, 0.50104, 0.50101, 0.50093, 0.50082, 0.50066, 0.50047, 0.50023, 0.49995, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49
927, 0.49887, 0.49843, 0.49794, 0.49741, 0.49685, 0.49624, 0.49559, 0.49489, 0.49416, 0.49339, 0.49257, 0.49110, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.49410, 0.494
  72,0.49082,0.48988,0.48890,0.48789,0.48683,0.48573,0.48459,0.48342,0.48220,0.48095)
    (0.08566, 0.08458, 0.08362, 0.08277, 0.08206, 0.08147, 0.08094, 0.08033, 0.07952, 0.07842, 0.07703, 0.07539, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 0.07842, 
  0.07361, 0.07180, 0.07013, 0.06875, 0.06767, 0.06679, 0.06607, 0.06538, 0.06459, 0.06360, 0.06245, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0
    .05987, 0.05846, 0.05700, 0.05561, 0.05436, 0.05331, 0.05246, 0.05181, 0.05130, 0.05087, 0.05039, 0.04977, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.051300, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.05130, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300,
04891, 0.04781, 0.04648, 0.04502, 0.04354, 0.04218, 0.04106, 0.04022, 0.03963, 0.03924, 0.03893, 0.03857, 0.04106, 0.04022, 0.04022, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.04024, 0.0
  3807,0.03738,0.03650,0.03547,0.03435,0.03321,0.03209,0.03105,0.03013,0.02936,0.02873,0.02824,0.02
780, 0.02733, 0.02670, 0.02583, 0.02465, 0.02318, 0.02153, 0.01983, 0.01825, 0.01690, 0.01583, 0.01504, 0.0148, 0.0148, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.0149, 0.01
  45,0.01395,0.01343,0.01279,0.01198,0.01098,0.00980,0.00850,0.00714,0.00580,0.00453,0.00338,0.0023
  9,0.00155,0.00086,0.00025,-0.00036,-0.00109,-0.00205,-0.00334,-0.00497,-0.00686,-0.00888,-
0.01085, -0.01260, -0.01405, -0.01520, -0.01613, -0.01693, -0.01773, -0.01863, -0.01971, -0.02099, -0.01085, -0.01260, -0.01405, -0.01520, -0.01613, -0.01693, -0.01773, -0.01863, -0.01971, -0.02099, -0.01613, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01693, -0.01
0.02246, -0.02409, -0.02581, -0.02754, -0.02921, -0.03076, -0.03216, -0.03339, -0.03446, -0.03542, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03642, -0.03644, -0.03644, -0.03644, -0.03644, -0.03644, -0.03644, -0.03644, -0.03644, -0.03644, -0.03
0.03632, -0.03728, -0.03840, -0.03980, -0.04154, -0.04360, -0.04588, -0.04818, -0.05033, -0.05218, -0.04818, -0.04818, -0.04818, -0.05033, -0.05218, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04818, -0.04
0.05366, -0.05484, -0.05583, -0.05677, -0.05778, -0.05893, -0.06025, -0.06174, -0.06337, -0.06510, -0.06510, -0.06174, -0.06510, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06174, -0.06
0.06684, -0.06854, -0.07012, -0.07155, -0.07281, -0.07389, -0.07485, -0.07573, -0.07663, -0.07764, -0.076684, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07668, -0.07688, -0.07668, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.07688, -0.0
0.07886, -0.08038, -0.08223, -0.08434, -0.08658, -0.08875, -0.09069, -0.09229, -0.09355, -0.09454, -0.08658, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08660, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08669, -0.08
0.09542, -0.09631, -0.09732, -0.09848, -0.09980, -0.10124, -0.10277, -0.10431, -0.10580, -0.10718, -0.09848, -0.09848, -0.09980, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09980, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09
0.10840, -0.10943, -0.11028, -0.11096, -0.11155, -0.11211, -0.11274, -0.11353, -0.11455, -0.11584, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10840, -0.10
0.11739,-0.11911,-0.12083,-0.12241,-0.12368)
```

```
END_GROUP = UT1_TIME_PARAMETERS
GROUP = DETECTOR STATUS
          Status_Band1 =
 ("00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000",
"00000", "00000", "00000", "00000")
"00000","00000","00000","00000")
           Status_Band3 =
"00000", "00000", "00000", "00000")
          Status_Band4 =
 "00000","00000","00000","00000")
          Status_Band5 =
"00000", "00000", "00000", "00000")
          Status_Band6 = ("00000","00000","00000","00000","00000","00000","00000","00000")
           Status Band7 =
 ("00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000",
"00000", "00000", "00000", "00000")
          Status_Band8 =
","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","
00000","00000","00000","00000","00000","00000","00000","00000")
END_GROUP = DETECTOR_STATUS
GROUP = DETECTOR_GAINS
           GROUP = DETECTOR_GAINS_LOW
                      B1L Prelaunch =
(0.81539, 0.81569, 0.80851, 0.81656, 0.80959, 0.81726, 0.81510, 0.81726, 0.81972, 0.82364, 0.81647, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.81569, 0.815690, 0.815690, 0.815690, 0.815690, 0.815690, 0.81569, 0.815690, 0.815690, 0.815690, 0.815600, 0.8156000
0.81558, 0.81421, 0.81637, 0.82413)
                       B1L Postlaunch =
(0.81823, 0.81783, 0.80966, 0.81754, 0.81015, 0.81693, 0.81472, 0.81488, 0.81880, 0.82097, 0.81406, 0.81251, 0.81880, 0.81880, 0.81880, 0.82097, 0.81406, 0.81251, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.81880, 0.818800, 0.818800, 0.818800, 0.818800, 0.818800, 0.818800, 0.818800, 0.818800, 0.818800, 0.8188000, 0.81880
0.81488, 0.81594, 0.81815, 0.82591)
                      B1L_Current =
(0.81799, 0.81750, 0.80957, 0.81749, 0.81003, 0.81677, 0.81467, 0.81498, 0.81855, 0.82083, 0.81422, 0.81251,
0.81532, 0.81641, 0.81808, 0.82585)
                     B2L Prelaunch =
(0.79631, 0.79482, 0.78627, 0.79980, 0.79164, 0.79352, 0.79342, 0.78984, 0.78915, 0.80556, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79323, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79324, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 0.79114, 
0.79721, 0.79393, 0.79909, 0.78627
                      B2L Postlaunch =
(0.79776, 0.79609, 0.78776, 0.80101, 0.79164, 0.79403, 0.79284, 0.78974, 0.78839, 0.80499, 0.79077, 0.79244, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 0.79164, 
0.79657, 0.79395, 0.79720, 0.78602)
                       B2L_Current =
(0.79746, 0.78745, 0.78744, 0.79996, 0.79186, 0.79381, 0.79329, 0.78996, 0.78878, 0.80521, 0.79057, 0.79210,
0.79651, 0.79394, 0.79806, 0.78682
                      B3L_Prelaunch =
(1.02746, 1.02044, 1.02350, 1.02469, 1.02370, 1.03171, 1.03417, 1.02360, 1.01866, 1.02785, 1.01728, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 1.02884, 
1.02192.1.02578.1.01966.1.02212)
                       B3L_Postlaunch =
(1.02799, 1.02041, 1.02390, 1.02421, 1.02328, 1.03097, 1.03486, 1.02379, 1.01888, 1.02687, 1.01693, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.02830, 1.028300, 1.028300, 1.028300, 1.028300, 1.028300, 1.028300, 1.028300, 1.028300, 1.028300, 1.028300, 1.028300, 1.028300, 1.028300, 1.028300, 1.028300, 1.0283000, 1.0283000, 1.0285000, 1.0285000, 1.0285000, 1.02850000, 1.02850000, 1.02850000, 1.028500000000000000
1.02298, 1.02656, 1.01940, 1.02205)
                        B3L Current =
(1.02779, 1.02074, 1.02399, 1.02526, 1.02314, 1.03146, 1.03397, 1.02363, 1.01817, 1.02742, 1.01668, 1.02899, 1.02526, 1.02314, 1.02314, 1.03146, 1.03397, 1.02363, 1.01817, 1.02742, 1.01668, 1.02899, 1.02526, 1.02314, 1.02314, 1.03146, 1.03397, 1.02363, 1.01817, 1.02742, 1.01668, 1.02899, 1.02526, 1.02314, 1.02314, 1.03146, 1.03397, 1.02363, 1.01817, 1.02742, 1.01668, 1.02899, 1.02526, 1.02314, 1.02314, 1.03146, 1.03397, 1.02363, 1.01817, 1.02742, 1.01668, 1.02899, 1.02526, 1.02314, 1.02314, 1.03146, 1.03397, 1.02363, 1.01817, 1.02742, 1.01668, 1.02899, 1.02526, 1.02314, 1.02314, 1.03146, 1.03397, 1.02363, 1.01817, 1.02742, 1.01668, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.028999, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.02899, 1.028990
1.02203,1.02624,1.01991,1.02282)
                      B4L_Prelaunch =
(1.00155, 0.99885, 1.00308, 0.98557, 1.00135, 1.00001, 0.99761, 1.00491, 0.99087, 0.99626, 0.98750, 0.99693,
0.99405,0.99751,0.98913,1.00578)
                       B4L_Postlaunch =
(1.00200, 0.99891, 1.00320, 0.98575, 1.00160, 0.99990, 0.99711, 1.00359, 0.99203, 0.99691, 0.98724, 0.99661,
0.99402,0.99761,0.98844,1.00608)
                      B4L_Current =
(1.00257, 0.99977, 1.00358, 0.98599, 1.00195, 1.00017, 0.99770, 1.00433, 0.99132, 0.99636, 0.98717, 0.99667,
0.99341,0.99711,0.98861,1.00640)
                       B5L_Prelaunch =
(5.03398, 5.06663, 5.07855, 5.05421, 5.08496, 5.02657, 5.04109, 5.08426, 5.06803, 5.08837, 5.04810, 5.04560, 5.06803, 5.08837, 5.08837, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 5.08810, 
5.03738,5.05932,5.03949,5.09518)
```

```
B5L Postlaunch =
 (5.03903, 5.07388, 5.07588, 5.05826, 5.09772, 5.02991, 5.04964, 5.07949, 5.07899, 5.10122, 5.04353, 5.03692,
5.02130,5.04453,5.03642,5.08500)
                                  B5L_Current =
 (5.04091, 5.07587, 5.07901, 5.05802, 5.09723, 5.03077, 5.05160, 5.08235, 5.07142, 5.09768, 5.04620, 5.03239,
5.02648, 5.05153, 5.03273, 5.07932)
                                  \texttt{B6L\_Prelaunch} \; = \; (12.283, 12.474, 13.150, 12.511, 12.805, 12.646, 13.108, 12.794)
                                   B6L_{postlaunch} = (12.426, 12.614, 13.270, 12.625, 12.899, 12.893, 13.217, 12.969)
                                  B6L_Current = (12.435,12.620,13.276,12.628,12.898,12.758,13.211,12.951)
                                  B7L Prelaunch =
 (14.54238, 14.52680, 14.58439, 14.51162, 14.55705, 14.59233, 14.60841, 14.48228, 14.52429, 14.53584, 14.622, 14.54238, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54218, 14.54
07,14.51916,14.21294,14.68861,14.51303,14.49303)
                                  B7L Postlaunch =
 (14.51063, 14.46411, 14.60801, 14.52661, 14.55857, 14.57595, 14.62399, 14.52219, 14.53385, 14.53676, 14.65386, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.65886, 14.
03, 14.54550, 14.19237, 14.68207, 14.50772, 14.47285)\\
                                  B7L Current =
 (14.50706, 14.48280, 14.61788, 14.53490, 14.54235, 14.58111, 14.59652, 14.50995, 14.53182, 14.54217, 14.643)
89,14.52400,14.21692,14.69388,14.51501,14.47046)
                                   B8L Prelaunch =
 (0.98287, 0.99414, 0.98206, 0.99334, 0.99072, 0.99545, 0.98679, 0.99656, 0.98277, 0.98146, 0.98821, 0.98096, 0.98287, 0.98146, 0.98287, 0.98146, 0.9821, 0.98096, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98287, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0.98146, 0
0.98861, 0.98468, 0.98438, 0.99464, 0.99344, 0.97783, 0.99504, 0.98428, 0.99122, 0.98589, 0.99092, 0.98166, 0.98488, 0.99122, 0.98589, 0.99092, 0.98166, 0.98488, 0.99122, 0.98589, 0.99092, 0.98166, 0.98488, 0.99122, 0.98488, 0.99122, 0.98589, 0.99092, 0.98166, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.98488, 0.99122, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0.99148, 0
 .99636,0.98719,0.98780,0.98337,0.99313,0.99575,0.99344,0.98831)
                                   B8L_Postlaunch =
 0.99092, 0.98558, 0.98400, 0.99389, 0.99448, 0.98004, 0.99418, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0
 .99527,0.98667,0.98647,0.98351,0.99448,0.99487,0.99418,0.98914)
                                  B8L Current =
 (0.98400, 0.99576, 0.98222, 0.99448, 0.99022, 0.99586, 0.98529, 0.99645, 0.98271, 0.98083, 0.98657, 0.98103, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.9859, 0.98590, 0.98590, 0.98590, 0.98590, 0.98590, 0.98590, 0.98590, 0.98590, 0.98590, 0.98590, 0.985
0.99092, 0.98558, 0.98400, 0.99389, 0.99448, 0.98004, 0.99418, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.99122, 0.98044, 0.99122, 0.98044, 0.99122, 0.98044, 0.99122, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0.98044, 0
 .99527,0.98667,0.98647,0.98351,0.99448,0.99487,0.99418,0.98914)
                 END_GROUP = DETECTOR_GAINS_LOW
                GROUP = DETECTOR_GAINS_HIGH
                                  B1H_Prelaunch =
 (1.22405, 1.22336, 1.21383, 1.22582, 1.21451, 1.22641, 1.22287, 1.22630, 1.23112, 1.23643, 1.22523, 1.22365, 1.223641, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.22412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412, 1.24412,
1.22483,1.22306,1.22473,1.23711)
                                  B1H Postlaunch =
 (1.22807, 1.22746, 1.21521, 1.22703, 1.21594, 1.22611, 1.22281, 1.22304, 1.22892, 1.23218, 1.22182, 1.21949, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.22811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 1.28811, 
1.22304,1.22464,1.22795,1.23959)
                                   B1H Current =
 (1.22803, 1.22712, 1.21536, 1.22724, 1.21611, 1.22630, 1.22281, 1.22306, 1.22901, 1.23215, 1.22207, 1.21956, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2281, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881, 1.2881,
1.22259,1.22435,1.22788,1.23963)
                                     B2H_Prelaunch =
 (1.19510, 1.19271, 1.18036, 1.20027, 1.18664, 1.18942, 1.18893, 1.18444, 1.18424, 1.20845, 1.18723, 1.18992, 1.18444, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18424, 1.18444, 1.18444, 1.18444, 1.18444, 1.18444, 1.18444, 1.18444, 
1.19510,1.19092,1.19779,1.17906)
                                  B2H Postlaunch =
 (1.19657, 1.19406, 1.18157, 1.20144, 1.18739, 1.19097, 1.18918, 1.18453, 1.18252, 1.20740, 1.18608, 1.18858, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18453, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 1.18454, 
1.19478,1.19085,1.19573,1.17895)
                                   B2H Current =
 (1.19663, 1.18166, 1.18154, 1.20040, 1.18714, 1.19041, 1.18950, 1.18471, 1.18307, 1.20780, 1.18624, 1.18886,
1.19419,1.19057,1.19641,1.17941)
                                  B3H_Prelaunch =
 (1.54197, 1.53259, 1.53429, 1.53718, 1.53629, 1.54845, 1.55294, 1.53678, 1.52820, 1.54297, 1.52711, 1.54436,
1.53459,1.54107,1.52980,1.53289)
                                     B3H Postlaunch =
 (1.54289, 1.53152, 1.53674, 1.53721, 1.53582, 1.54736, 1.55319, 1.53659, 1.52922, 1.54121, 1.52629, 1.54336, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54289, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 
1.53537,1.54075,1.52999,1.53398)
                                  B3H Current =
 (1.54333, 1.53257, 1.53633, 1.53773, 1.53541, 1.54789, 1.55255, 1.53701, 1.52843, 1.54193, 1.52569, 1.54413, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 1.54789, 
1.53439,1.54101,1.53007,1.53442)
                                  B4H Prelaunch =
 (1.50174, 1.49785, 1.50437, 1.47818, 1.50252, 1.49989, 1.49531, 1.50642, 1.48850, 1.49610, 1.48227, 1.49668,
1.49259, 1.49785, 1.48461, 1.50963)
                                   B4H Postlaunch =
 (1.50351, 1.49886, 1.50530, 1.47912, 1.50290, 1.50036, 1.49616, 1.50589, 1.48854, 1.49587, 1.48136, 1.49542,
1.49153,1.49692,1.48315,1.50963)
```

```
B4H Current =
 (1.50367, 1.49969, 1.50557, 1.47950, 1.50283, 1.50040, 1.49576, 1.50606, 1.48807, 1.49590, 1.48144, 1.49577,
1.49192, 1.49748, 1.48375, 1.51046)
                         B5H Prelaunch =
 (7.55469, 7.59878, 7.62118, 7.58419, 7.63018, 7.54119, 7.55799, 7.61848, 7.59718, 7.63598, 7.57749, 7.57069,
7.54699, 7.58149, 7.56809, 7.64298)
                         B5H_Postlaunch =
 (7.55854, 7.61082, 7.61382, 7.58738, 7.64657, 7.54487, 7.57446, 7.61923, 7.61848, 7.65183, 7.56530, 7.55538, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.618484, 7.6184848, 7.618484, 7.618484, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61
7.53195,7.56680,7.55463,7.62749)
                         B5H Current =
 7.53328,7.57133,7.55801,7.62922)
                         B6H_Prelaunch = (23.953,24.325,25.642,24.397,24.969,24.659,25.561,24.949)
                           B6H_Postlaunch = (24.231,24.597,25.876,24.618,25.153,25.142,25.774,25.289)
                         B6H_Current = (24.257,24.700,26.097,24.783,25.211,24.980,25.851,25.424)
                         B7H_Prelaunch =
 (21.82563, 21.80364, 21.87966, 21.77120, 21.83747, 21.89717, 21.93090, 21.74115, 21.78742, 21.79995, 21.95712, 21.89717, 21.93090, 21.74115, 21.78742, 21.79995, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.95712, 21.
57,21.78373,21.30363,22.02712,21.76921,21.74891)
                           B7H Postlaunch =
 (21.77175, 21.70194, 21.91786, 21.79573, 21.84368, 21.86976, 21.94183, 21.78909, 21.80658, 21.81096, 21.9858, 21.81096, 21.9888, 21.81096, 21.9888, 21.81096, 21.9888, 21.81096, 21.9888, 21.81096, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.98888, 21.98888, 21.9888, 21.9888, 21.9888, 21.9888, 21.9888, 21.98888, 21.98888, 21.98888, 21.98888, 21.988
41,21.82407,21.29424,22.02898,21.76738,21.71506)
                         B7H Current =
 (21.75815, 21.72167, 21.93070, 21.80577, 21.81935, 21.86660, 21.92634, 21.79395, 21.80156, 21.81776, 21.989, 21.80156, 21.81776, 21.989, 21.80156, 21.81776, 21.989, 21.80156, 21.81776, 21.989, 21.80156, 21.81776, 21.989, 21.80156, 21.81776, 21.989, 21.80156, 21.81776, 21.989, 21.80156, 21.81776, 21.989, 21.80156, 21.81776, 21.989, 21.80156, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.81776, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 21.8176, 2
36,21.81000,21.31337,22.03100,21.77424,21.70837)
                         B8H Prelaunch =
 (1.47469, 1.49009, 1.47114, 1.49009, 1.48593, 1.49231, 1.48026, 1.49565, 1.47530, 1.47246, 1.48420, 1.47226, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 1.47469, 
1.48269, 1.47732, 1.47610, 1.49231, 1.49130, 1.46730, 1.49423, 1.47550, 1.48715, 1.47803, 1.48735, 1.47459, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.47610, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1.48715, 1
 .49697, 1.48127, 1.48300, 1.47630, 1.48958, 1.49423, 1.49049, 1.48249)
                          B8H Postlaunch =
 (1.47639, 1.49404, 1.47373, 1.49212, 1.48573, 1.49419, 1.47833, 1.49508, 1.47446, 1.47164, 1.48025, 1.47194,
1.48677, 1.47876, 1.47639, 1.49123, 1.49212, 1.47045, 1.49167, 1.47757, 1.48722, 1.47416, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1
 .49330,1.48040,1.48010,1.47565,1.49212,1.49270,1.49167,1.48411)
                          B8H_Current =
 (1.47639, 1.49404, 1.47373, 1.49212, 1.48573, 1.49419, 1.47833, 1.49508, 1.47446, 1.47164, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.47194, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 1.48025, 
 1.48677, 1.47876, 1.47639, 1.49123, 1.49212, 1.47045, 1.49167, 1.47757, 1.48722, 1.47416, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.47105, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1.48722, 1
  .49330,1.48040,1.48010,1.47565,1.49212,1.49270,1.49167,1.48411)
           END GROUP = DETECTOR GAINS HIGH
END_GROUP = DETECTOR_GAINS
GROUP = BIAS_LOCATIONS
             Forward_Bias_Location_30 = 143
            Forward_Bias_Length_30 = 500
             Forward_IC_Region_30 = 814
            Reverse_Bias_Location_30 = 780
            Reverse_Bias_Length_30 = 500
            Reverse_IC_Region_30 = 780
            Forward_Bias_Location_60 = 85
             Forward_Bias_Length_60 = 275
            Forward_IC_Region_60 = 380
            Reverse Bias Location 60 = 380
             Reverse_Bias_Length_60 = 275
            Reverse_IC_Region_60 = 380
             Forward_Bias_Location_15 = 286
             Forward_Bias_Length_15 = 1000
            Forward_IC_Region_15 = 1635
            Reverse_Bias_Location_15 = 1580
            Reverse_Bias_Length_15 = 1000
            Reverse_IC_Region_15 = 1580
 END_GROUP = BIAS_LOCATIONS
GROUP = DETECTOR_BIASES_B6
            GROUP = DETECTOR_BIASES_B6_LOW
                         B6L_Bias_Prelaunch = (31.51,30.12,25.27,29.86,27.84,28.91,25.65,27.87)
                         B6L_Bias_Postlaunch = (25.96, 24.86, 20.14, 24.76, 22.76, 22.93, 20.57, 22.43)
                         B6L_Bias_Current = (29.825,28.782,24.286,28.685,26.768,26.941,24.678,26.463)
              END_GROUP = DETECTOR_BIASES_B6_LOW
             GROUP = DETECTOR_BIASES_B6_HIGH
                         B6H_Bias_Prelaunch = (-66.23,-68.95,-78.39,-69.44,-73.38,-71.30,-77.66,-73.33)
                         B6H_Bias_Postlaunch = (-77.10, -79.26, -88.45, -79.44, -83.35, -83.01, -87.62, -83.98)
```

```
B6H_Bias_Current = (-69.566, -72.634, -82.61, -73.2228, -76.1918, -76.3519, -80.6467, -77.7089)
    END GROUP = DETECTOR BIASES B6 HIGH
END_GROUP = DETECTOR_BIASES_B6
GROUP = ACCA_BIASES
    GROUP = ACCA_BIASES_LOW
         B1L_ACCA_Bias =
(9.91, 9.87, 10.11, 10.02, 10.06, 10.02, 10.12, 10.03, 10.00, 9.97, 10.08, 10.09, 10.02, 10.07, 9.96, 10.03)
         B2L_ACCA_Bias =
(9.95, 10.12, 9.95, 10.09, 9.87, 10.05, 9.98, 10.11, 9.90, 10.14, 9.87, 10.13, 9.83, 10.11, 9.88, 10.16)
         B3L ACCA Bias =
(10.20, 9.79, 10.18, 9.70, 10.08, 9.66, 10.20, 9.84, 10.23, 9.84, 10.24, 9.83, 10.13, 9.72, 10.11, 9.74)
         B4L_ACCA_Bias =
(10.06, 9.99, 9.97, 9.88, 10.00, 9.90, 10.03, 9.92, 10.00, 9.94, 9.77, 9.74, 9.81, 9.78, 9.99, 9.95)
         B5L ACCA Bias =
(10.02, 10.03, 10.00, 9.98, 10.06, 10.07, 10.01, 10.07, 10.09, 10.09, 9.90, 9.97, 10.10, 10.08, 10.07, 10.06)
         B6L_ACCA_Bias = (29.825,28.782,24.286,28.685,26.768,26.941,24.678,26.463)
         B7L ACCA Bias =
(10.23, 10.16, 10.08, 10.08, 10.14, 10.16, 10.20, 10.09, 10.00, 10.02, 10.12, 10.11, 10.04, 10.17, 9.96, 10.10)
          B8L_ACCA_Bias =
(10.49, 9.40, 10.62, 9.48, 10.25, 9.75, 10.26, 9.64, 9.90, 10.37, 10.02, 10.26, 9.10, 10.37, 9.49, 9.90, 9.28, 9.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10.40, 10
5,9.05,9.02,8.60,10.19,8.53,10.02,8.29,8.82,7.99,9.02,7.34,8.98,7.45,8.95)
    END_GROUP = ACCA_BIASES_LOW
    GROUP = ACCA_BIASES_HIGH
         B1H_ACCA_Bias =
(14.86, 14.80, 15.13, 15.00, 15.14, 15.08, 15.23, 15.09, 14.94, 14.93, 15.07, 15.09, 15.08, 15.15, 14.99, 15.08)
         B2H_ACCA_Bias =
(14.92, 15.19, 14.90, 15.13, 14.70, 15.00, 14.93, 15.13, 14.82, 15.18, 14.79, 15.17, 14.71, 15.13, 14.76, 15.18)
         B3H ACCA Bias =
(15.19, 14.58, 15.33, 14.61, 15.07, 14.46, 15.32, 14.80, 15.23, 14.64, 15.24, 14.63, 15.18, 14.55, 15.22, 14.66)
         B4H_ACCA_Bias =
(14.97, 14.84, 14.88, 14.72, 15.03, 14.84, 15.10, 14.88, 15.08, 14.95, 14.64, 14.57, 14.70, 14.66, 14.92, 14.85)
         B5H ACCA Bias =
(14.98, 15.00, 15.05, 15.02, 15.02, 15.04, 15.01, 15.10, 15.18, 15.19, 14.81, 14.93, 15.04, 15.01, 15.04, 15.03)
         B6H_ACCA_Bias = (-69.566,-72.634,-82.61,-73.2228,-76.1918,-76.3519,-80.6467,-77.7089)
         B7H_ACCA_Bias =
(15.32, 15.15, 15.13, 15.11, 15.14, 15.16, 15.31, 15.12, 15.03, 15.04, 15.11, 15.10, 15.02, 15.22, 14.91, 15.13)
         B8H_ACCA_Bias =
(15.85, 14.28, 16.29, 14.39, 15.51, 14.87, 15.49, 14.54, 14.99, 15.60, 15.12, 15.25, 13.80, 15.59, 14.27, 14.82, 15.85, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87, 15.49, 14.87,
14.06, 14.18, 13.46, 13.52, 12.70, 15.49, 12.56, 15.21, 12.21, 13.14, 11.91, 13.21, 10.91, 13.12, 11.16, 13.00)\\
    END GROUP = ACCA BIASES HIGH
END_GROUP = ACCA_BIASES
GROUP = ACCA_THRESHOLDS
    Thresh_B3 = 0.0800
    Thresh_B3_Lower = 0.07
    Thresh_B56_High = 225.000
    Thresh_B56_Low = 210.000
    Thresh_B6 = 300.000
    Thresh_B45_Ratio = 1.0000
    Thresh B42 Ratio = 2.16248
    Thresh_B43_Ratio = 2.3500
    Thresh_NDSI_Max = 0.7000
    Thresh_NDSI_Min = -0.2500
    Thresh_NDSI_Snow = 0.8000
    Cloud_Percent_Min = 0.4000
    Desert_Index = 0.500
    Thresh_Snow_Percent = 1.0000
    Thermal_Effect_High = 35.0000
    Thermal_Effect_Low = 25.000
    B6Max\_Maxthresh\_Diff = 2.000
END_GROUP = ACCA_THRESHOLDS
GROUP = SOLAR_SPECTRAL_IRRADIANCES
    B1_Solar_Irradiance = 2036.000
    B2_Solar_Irradiance = 1856.000
    B3_Solar_Irradiance = 1525.000
    B4_Solar_Irradiance = 1071.000
    B5_Solar_Irradiance = 221.6
    B7_Solar_Irradiance = 81.36
```

```
B8_Solar_Irradiance = 1319.000
END GROUP = SOLAR SPECTRAL IRRADIANCES
GROUP = THERMAL_CONSTANTS
   K1_Constant = 666.09
   K2\_Constant = 1282.71
END_GROUP = THERMAL_CONSTANTS
GROUP = SCALING_PARAMETERS
    GROUP = SCALING_PARAMETERS_LOW
        B1L_Lmin_Lmax = (-6.2, 293.7)
        B2L_Lmin_Lmax = (-6.4,300.9)
        B3L\_Lmin\_Lmax = (-5.0, 234.4)
        B4L_Lmin_Lmax = (-5.1, 241.1)
        B5L_Lmin_Lmax = (-1.0, 47.57)
        B6L_Lmin_Lmax = (0.0, 17.04)
        B7L\_Lmin\_Lmax = (-0.35, 16.54)
        B8L\_Lmin\_Lmax = (-4.7, 243.1)
    END_GROUP = SCALING_PARAMETERS_LOW
    GROUP = SCALING_PARAMETERS_HIGH
        B1H_Lmin_Lmax = (-6.2, 191.6)
        B2H_Lmin_Lmax = (-6.4, 196.5)
        B3H_Lmin_Lmax = (-5.0, 152.9)
        B4H_Lmin_Lmax = (-5.1, 157.4)
        B5H_Lmin_Lmax = (-1.0, 31.06)
        B6H_Lmin_Lmax = (3.2, 12.65)
        B7H_Lmin_Lmax = (-0.35, 10.80)
        B8H_Lmin_Lmax = (-4.7, 158.3)
   END_GROUP = SCALING_PARAMETERS_HIGH
END_GROUP = SCALING_PARAMETERS
GROUP = MTF_COMPENSATION
    Bl_weights_along = (1.56766583,0.00000000,-1.56766583,-0.01966520,-0.01966520)
    Bl_weights_across = (1.45063128,0.00000000,-1.45063128,0.00257381,0.00257381)
    B2_weights_along = (1.61050310,0.00000000,-1.61050310,-0.02774139,-0.02774139)
    B2_weights_across = (1.49221631,0.00000000,-1.49221631,-0.00535953,-0.00535953)
    B3_weights_along = (1.65047774,0.00000000,-1.65047774,-0.03525043,-0.03525043)
    B3_weights_across = (1.52298447,0.00000000,-1.52298447,-0.01120648,-0.01120648)
    B4_weights_along = (1.73786071,0.00000000,-1.73786071,-0.05158080,-0.05158080)
   \mathtt{B4\_weights\_across} = (1.55814152, 0.00000000, -1.55814152, -0.01786521, -0.01786521)
    B5_weights_along = (1.54118459,0.00000000,-1.54118459,-0.01465645,-0.01465645)
    B5_weights_across = (1.43789226,0.00000000,-1.43789226,0.00501156,0.00501156)
    B6_weights_along = (1.74511478,0.00000000,-1.74511478,-0.05293163,-0.05293163)
    B6_weights_across = (1.24858736,0.000000000,-1.24858736,0.04172298,0.04172298)
    B7_{\text{weights}} = (1.47951767, 0.000000000, -1.47951767, -0.00294082, -0.00294082)
    B7_weights_across = (1.42261190,0.00000000,-1.42261190,0.00794044,0.00794044)
    B8_weights_along = (1.94052085,0.00000000,-1.94052085,-0.08907866,-0.08907866)
   B8\_weights\_across = (2.11745387, 0.00000000, -2.11745387, -0.12147250, -0.12147250)
END_GROUP = MTF_COMPENSATION
GROUP = MEMORY_EFFECT
    GROUP = ME_MAGNITUDES
        B6\_ME\_Magnitude = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B8 ME Magnitude =
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
   END_GROUP = ME_MAGNITUDES
    GROUP = ME_TIME_CONSTANTS
        B1_ME_Time_Constant =
(1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0
0,1100.0,1100.0)
        B2_ME_Time_Constant =
(1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 110
0,1100.0,1100.0)
```

```
B3_ME_Time_Constant =
 (1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 110
0,1100.0,1100.0)
                B4_ME_Time_Constant =
(1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 110
0,1100.0,1100.0)
                 B5_ME_Time_Constant =
(1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0
0,1100.0,1100.0)
                B6_ME_Time_Constant = (1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0)
                 B7_ME_Time_Constant =
(1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0
0,1100.0,1100.0)
                 B8 ME Time Constant =
(1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0
0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.
.0,1100.0,1100.0,1100.0,1100.0)
        END GROUP = ME TIME CONSTANTS
END_GROUP = MEMORY_EFFECT
GROUP = GHOST_PULSE
        Ghost_Pulse_Endpoints = (0.00,0.00)
END_GROUP = GHOST_PULSE
GROUP = SCAN_CORRELATED_SHIFT
        SCS_Reference_Detectors = (1,1,1,1,1,1,1)
        GROUP = SCS_LOW
                B8L_SCS_Magnitudes =
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        END_GROUP = SCS_LOW
        GROUP = SCS_HIGH
                B8H SCS Magnitudes =
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        END_GROUP = SCS_HIGH
END_GROUP = SCAN_CORRELATED_SHIFT
GROUP = STRIPING
        GROUP = STRIPING FLAG LOW
                 Correction_Reference_B1_Low = 2
                 Correction_Reference_B2_Low = 2
                Correction_Reference_B3_Low = 2
                Correction_Reference_B4_Low = 2
                Correction_Reference_B5_Low = 2
                Correction_Reference_B6_Low = 0
                Correction_Reference_B7_Low = 2
                Correction Reference B8 Low = 2
         END_GROUP = STRIPING_FLAG_LOW
        GROUP = STRIPING_FLAG_HIGH
                Correction_Reference_B1_High = 2
                 Correction_Reference_B2_High = 2
                Correction_Reference_B3_High = 2
                Correction_Reference_B4_High = 2
                Correction_Reference_B5_High = 2
                Correction Reference B6 High = 0
                 Correction_Reference_B7_High = 2
                Correction_Reference_B8_High = 2
```

```
END_GROUP = STRIPING_FLAG_HIGH
END GROUP = STRIPING
GROUP = HISTOGRAM
               GROUP = DETECTOR_NOISE
                             GROUP = DETECTOR_NOISE_LOW
                                            Detector_Noise_Level_B1_Low =
 (0.779460, 0.772285, 0.728671, 0.763302, 0.786943, 0.776291, 0.770672, 0.739825, 0.804123, 0.737660, 0.7495, 0.804123, 0.770672, 0.78694, 0.804123, 0.770600, 0.78694, 0.804123, 0.770672, 0.78694, 0.804123, 0.78694, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.8041234, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123, 0.804123
92,0.794155,0.765984,0.780631,0.743702,0.759316)
                                             Detector_Noise_Level_B2_Low =
 (0.601029, 0.576235, 0.578696, 0.572740, 0.587501, 0.591210, 0.577901, 0.596892, 0.612274, 0.599762, 0.6019
85,0.572298,0.605657,0.588833,0.586422,0.574523)
                                            Detector_Noise_Level_B3_Low =
 29,0.835847,0.795850,0.819125,0.760094,0.808781)
                                           Detector_Noise_Level_B4_Low =
 (0.373855, 0.357412, 0.410801, 0.401166, 0.386735, 0.385534, 0.351177, 0.388469, 0.298362, 0.346134, 0.4544, 0.4546, 0.386735, 0.386469, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.38669, 0.386690, 0.386690, 0.386690, 0.386690, 0.386690, 0.386600, 0.386600, 0.386600, 0.386600, 0.3866000, 0.3866000, 0.3866000, 0.386600000
76,0.467169,0.430189,0.458503,0.309542,0.349836)
                                            Detector Noise Level B5 Low =
 (0.541758, 0.538805, 0.564040, 0.528059, 0.567236, 0.564582, 0.557496, 0.559557, 0.576319, 0.563746, 0.548719, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.563746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.567746, 0.5
35,0.554186,0.578348,0.541598,0.546643,0.543750)
                                            Detector Noise Level B6 Low =
 (0.38498, 0.40307, 0.39786, 0.37927, 0.38451, 0.38594, 0.37989, 0.37353)
                                            Detector_Noise_Level_B7_Low =
 (0.882830, 0.841372, 0.840801, 0.836801, 0.918675, 0.888781, 0.868970, 0.833833, 0.889666, 0.816621, 0.8723, 0.888689, 0.888689, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.888888, 0.888888, 0.888888, 0.888888, 0.88888, 0.88888, 0.888888, 0.88888, 0.88888, 0.888888, 0.888888, 0.888888, 0.888888, 0.88888
48,0.823312,0.844422,0.839332,0.818657,0.838030)
                                           Detector_Noise_Level_B8_Low = (1.411792, 1.429218, 1.475390, 1.417629, 1.426976, 1.455102,
1.447059, 1.445895, 1.428523, 1.518779, 1.410482, 1.546677, 1.412992, 1.568844, 1.432523,
1.406441, 1.466322, 1.523012, 1.488277, 1.538726, 1.419587, 1.438650, 1.437786, 1.435104,
1.447014,\ 1.411219,\ 1.420777,\ 1.483956,\ 1.469533,\ 1.473144,\ 1.436488,\ 1.435460)
                              END_GROUP = DETECTOR_NOISE_LOW
                             GROUP = DETECTOR_NOISE_HIGH
                                            Detector_Noise_Level_B1_High =
 (1.115767, 1.105730, 1.034492, 1.088057, 1.122772, 1.109671, 1.093771, 1.045665, 1.135931, 1.051208, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.06830, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683, 1.0683
69,1.137889,1.088930,1.113233,1.060574,1.083090)
                                            Detector_Noise_Level_B2_High =
 (0.840525, 0.802531, 0.811894, 0.802952, 0.821014, 0.828448, 0.799075, 0.826498, 0.848278, 0.828466, 0.8339, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848
49,0.787364,0.842703,0.814721,0.810008,0.789331)
                                            Detector_Noise_Level_B3_High =
 (1.171068, 1.145406, 1.154020, 1.185309, 1.152540, 1.197513, 1.145797, 1.079392, 1.168113, 1.152881, 1.19731, 1.168113, 1.152881, 1.19731, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168113, 1.168
19,1.204024,1.142140,1.177719,1.081946,1.158203)
                                            Detector_Noise_Level_B4_High =
 (0.571712, 0.568938, 0.601790, 0.577678, 0.585365, 0.570769, 0.564726, 0.575154, 0.523646, 0.549596, 0.5781
82,0.564183,0.560860,0.580182,0.528458,0.559510)
                                            Detector_Noise_Level_B5_High =
 (0.758784, 0.753994, 0.791165, 0.746657, 0.796592, 0.791935, 0.769362, 0.774648, 0.810945, 0.794850, 0.7724, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.791935, 0.7919350, 0.791950, 0.791950, 0.791950, 0.791950, 0.791950, 0.791950, 0.791950, 0.791950, 0.791950, 0.791950, 0.791950, 0.791950, 0.79
 70,0.783913,0.811670,0.761202,0.770891,0.766004)
                                            Detector_Noise_Level_B6_High =
 (0.63424, 0.64766, 0.63594, 0.62451, 0.62835, 0.64975, 0.62390, 0.60717)\\
                                           Detector_Noise_Level_B7_High =
 (1.292273, 1.226330, 1.215933, 1.208056, 1.337354, 1.291756, 1.261227, 1.208343, 1.296625, 1.183313, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.26930, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.2693, 1.26930, 1.26930, 1.26930, 1.26930, 1.26930, 1.26930, 1.26930, 1.26930, 1.26930, 1.26930, 1.26930, 1.26930, 1.26930, 1.26930, 1.269300
91,1.193715,1.221458,1.216385,1.179451,1.211407)
                                            Detector_Noise_Level_B8_High =
 (2.01844, 2.03392, 2.10339, 1.99754, 2.63946, 2.07794, 2.46647, 2.03946, 2.51454, 2.12575, 2.02078, 2.16917,
1.98090, 2.18632, 2.01149, 1.98286, 2.07499, 2.11379, 2.10509, 2.14305, 2.00573, 2.09848, 2.03111, 2.08271, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2.09849, 2
 .06095, 2.01814, 1.98271, 2.17801, 2.44790, 2.15665, 2.25689, 2.24758)
                             END_GROUP = DETECTOR_NOISE_HIGH
               END_GROUP = DETECTOR_NOISE
               GROUP = DET_SHUTTER_NOISE
                               GROUP = DET_SHUTTER_NOISE_LOW
                                           Det_Shutter_Noise_Level_B1_Low =
 (0.779460, 0.772285, 0.728671, 0.763302, 0.786943, 0.776291, 0.770672, 0.739825, 0.804123, 0.737660, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.74950, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495, 0.7495
92,0.794155,0.765984,0.780631,0.743702,0.759316)
                                             Det_Shutter_Noise_Level_B2_Low =
 (0.601029, 0.576235, 0.578696, 0.572740, 0.587501, 0.591210, 0.577901, 0.596892, 0.612274, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.599762, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.60198, 0.
85,0.572298,0.605657,0.588833,0.586422,0.574523)
```

```
Det_Shutter_Noise_Level_B3_Low =
 29,0.835847,0.795850,0.819125,0.760094,0.808781)
                                Det_Shutter_Noise_Level_B4_Low =
(0.373855, 0.357412, 0.410801, 0.401166, 0.386735, 0.385534, 0.351177, 0.388469, 0.298362, 0.346134, 0.4544, 0.4546, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366735, 0.366755, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.366750, 0.3667500, 0.366750, 0.366750, 0.3667500, 0.3667500, 0.3667500, 0.3667500, 0.3667500, 0.3667500, 
76,0.467169,0.430189,0.458503,0.309542,0.349836)
                                Det_Shutter_Noise_Level_B5_Low =
(0.541758, 0.538805, 0.564040, 0.528059, 0.567236, 0.564582, 0.557496, 0.559557, 0.576319, 0.563746, 0.548776, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.548796, 0.5
35,0.554186,0.578348,0.541598,0.546643,0.543750)
                                Det_Shutter_Noise_Level_B6_Low =
(0.38498, 0.40307, 0.39786, 0.37927, 0.38451, 0.38594, 0.37989, 0.37353)
                                Det_Shutter_Noise_Level_B7_Low =
(0.882830, 0.841372, 0.840801, 0.836801, 0.918675, 0.888781, 0.868970, 0.833833, 0.889666, 0.816621, 0.8723, 0.888689, 0.888689, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.88888, 0.888888, 0.888888, 0.888888, 0.888888, 0.88888, 0.88888, 0.888888, 0.88888, 0.88888, 0.888888, 0.888888, 0.888888, 0.888888, 0.88888
48,0.823312,0.844422,0.839332,0.818657,0.838030)
                                Det_Shutter_Noise_Level_B8_Low = (1.411792, 1.429218, 1.475390, 1.417629, 1.426976,
1.455102, 1.447059, 1.445895, 1.428523, 1.518779, 1.410482, 1.546677, 1.412992, 1.568844,
1.432523, 1.406441, 1.466322, 1.523012, 1.488277, 1.538726, 1.419587, 1.438650, 1.437786,
1.435104,\ 1.447014,\ 1.411219,\ 1.420777,\ 1.483956,\ 1.469533,\ 1.473144,\ 1.436488,\ 1.435460)
                       END_GROUP = DET_SHUTTER_NOISE_LOW
                     GROUP = DET_SHUTTER_NOISE_HIGH
                                Det_Shutter_Noise_Level_B1_High =
(1.115767, 1.105730, 1.034492, 1.088057, 1.122772, 1.109671, 1.093771, 1.045665, 1.135931, 1.051208, 1.0683
69,1.137889,1.088930,1.113233,1.060574,1.083090)
                                Det_Shutter_Noise_Level_B2_High =
(0.840525, 0.802531, 0.811894, 0.802952, 0.821014, 0.828448, 0.799075, 0.826498, 0.848278, 0.828466, 0.8339, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848278, 0.848
49,0.787364,0.842703,0.814721,0.810008,0.789331)
                                Det_Shutter_Noise_Level_B3_High =
(1.171068, 1.145406, 1.154020, 1.185309, 1.152540, 1.197513, 1.145797, 1.079392, 1.168113, 1.152881, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1973, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974, 1.1974,
19,1.204024,1.142140,1.177719,1.081946,1.158203)
                                Det_Shutter_Noise_Level_B4_High =
(0.571712, 0.568938, 0.601790, 0.577678, 0.585365, 0.570769, 0.564726, 0.575154, 0.523646, 0.549596, 0.57812, 0.564726, 0.575154, 0.564726, 0.564726, 0.575154, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.56
82,0.564183,0.560860,0.580182,0.528458,0.559510)
                                Det_Shutter_Noise_Level_B5_High =
70,0.783913,0.811670,0.761202,0.770891,0.766004)
                                Det_Shutter_Noise_Level_B6_High =
 (\, 0.63424 \,, 0.64766 \,, 0.63594 \,, 0.62451 \,, 0.62835 \,, 0.64975 \,, 0.62390 \,, 0.60717 \,) 
                                Det_Shutter_Noise_Level_B7_High =
(1.292273, 1.226330, 1.215933, 1.208056, 1.337354, 1.291756, 1.261227, 1.208343, 1.296625, 1.183313, 1.269313, 1.261227, 1.208343, 1.296625, 1.183313, 1.269313, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.208056, 1.2
91,1.193715,1.221458,1.216385,1.179451,1.211407)
                                Det_Shutter_Noise_Level_B8_High =
(2.01844, 2.03392, 2.10339, 1.99754, 2.63946, 2.07794, 2.46647, 2.03946, 2.51454, 2.12575, 2.02078, 2.16917,
1.98090, 2.18632, 2.01149, 1.98286, 2.07499, 2.11379, 2.10509, 2.14305, 2.00573, 2.09848, 2.03111, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2.08271, 2
.06095, 2.01814, 1.98271, 2.17801, 2.44790, 2.15665, 2.25689, 2.24758)
                     END_GROUP = DET_SHUTTER_NOISE_HIGH
           END_GROUP = DET_SHUTTER_NOISE
           GROUP = REFERENCE_DETECTORS
                     Reference_Detector_B1 = 15
                     Reference Detector B2 = 12
                     Reference_Detector_B3 = 08
                     Reference_Detector_B4 = 07
                     Reference_Detector_B5 = 14
                     Reference_Detector_B6 = 01
                    Reference_Detector_B7 = 10
                     Reference_Detector_B8 = 27
           END_GROUP = REFERENCE_DETECTORS
           GROUP = SATURATION THRESHOLDS
                      Saturation_Bin_Threshold_B1 = 1000
                      Saturation_Bin_Threshold_B2 = 1000
                     Saturation_Bin_Threshold_B3 = 1000
                      Saturation_Bin_Threshold_B4 = 1000
                     Saturation_Bin_Threshold_B5 = 1000
                     Saturation_Bin_Threshold_B6 = 1000
                      Saturation_Bin_Threshold_B7 = 1000
                     Saturation_Bin_Threshold_B8 = 1000
            END_GROUP = SATURATION_THRESHOLDS
           GROUP = ADJACENT_BINS
```

```
GROUP = BIN_NUMBER
     Adjacent_Bin_Number_B1 = 2
      Adjacent_Bin_Number_B2 = 2
      Adjacent_Bin_Number_B3 = 2
      Adjacent_Bin_Number_B4 = 2
      Adjacent_Bin_Number_B5 = 2
     Adjacent_Bin_Number_B6 = 2
      Adjacent_Bin_Number_B7 = 2
     Adjacent_Bin_Number_B8 = 2
   END_GROUP = BIN_NUMBER
    GROUP = BIN_THRESHOLD
     Adjacent_Bin_Threshold_B1 = 10
      Adjacent_Bin_Threshold_B2 = 10
      Adjacent_Bin_Threshold_B3 = 10
      Adjacent_Bin_Threshold_B4 = 10
      Adjacent_Bin_Threshold_B5 = 10
      Adjacent_Bin_Threshold_B6 = 10
      Adjacent_Bin_Threshold_B7 = 10
      Adjacent_Bin_Threshold_B8 = 10
   END_GROUP = BIN_THRESHOLD
  END_GROUP = ADJACENT_BINS
  GROUP = STARTING_PIXEL
   Start_pixel_B1 = 243
   Start_pixel_B2 = 218
   Start_pixel_B3 = 193
   Start_pixel_B4 = 168
   Start_pixel_B5 = 97
   Start_pixel_B6 = 31
   Start_pixel_B7 = 123
   Start_pixel_B8 = 536
  END_GROUP = STARTING_PIXEL
  GROUP = WINDOW_WIDTH
   Window_Samples_B1 = 5874
   Window_Samples_B2 = 5874
   Window_Samples_B3 = 5874
   Window_Samples_B4 = 5874
   Window_Samples_B5 = 5874
   Window_Samples_B6 = 2937
   Window_Samples_B7 = 5874
   Window_Samples_B8 = 11748
  END_GROUP = WINDOW_WIDTH
  GROUP = WINDOW_LENGTH
   Window_Scans_B1 = 375
   Window_Scans_B2 = 375
   Window_Scans_B3 = 375
   Window_Scans_B4 = 375
   Window_Scans_B5 = 375
   Window_Scans_B6 = 375
   Window Scans B7 = 375
   Window_Scans_B8 = 375
  END_GROUP = WINDOW_LENGTH
  GROUP = OVERLAPPING_SCANS
   Overlap_Scans_B1 = 0
   Overlap_Scans_B2 = 0
   Overlap_Scans_B3 = 0
   Overlap_Scans_B4 = 0
   Overlap_Scans_B5 = 0
   Overlap\_Scans\_B6 = 0
   Overlap\_Scans\_B7 = 0
   Overlap_Scans_B8 = 0
 END_GROUP = OVERLAPPING_SCANS
END_GROUP = HISTOGRAM
GROUP = IMPULSE_NOISE
  Median_Filter_Width = 3
  GROUP = IN THRESHOLD
    BlL_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33,
10.33, 10.33, 10.33, 10.33, 10.33)
```

```
B2L_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33,
10.33, 10.33, 10.33, 10.33, 10.33)
     B3L_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33,
10.33, 10.33, 10.33, 10.33, 10.33)
     B4L_Threshold = (20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67,
20.67, 20.67, 20.67, 20.67, 20.67)
     B5L_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33,
10.33, 10.33, 10.33, 10.33, 10.33)
      B6L_Threshold = (20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67)
     B7L_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33,
10.33, 10.33, 10.33, 10.33, 10.33)
     B8L_Threshold = (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 5.17, 6.89, 5.17,
6.89, 5.17, 6.89, 6.89, 6.89, 5.17, 6.89, 5.17, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89,
6.89, 6.89, 6.89, 6.89)
     BlH_Threshold = (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89,
6.89, 6.89, 6.89, 6.89)
     B2H_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33,
10.33, 10.33, 10.33, 10.33, 10.33)
     B3H_Threshold = (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89,
6.89, 6.89, 6.89, 6.89)
     B4H_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33,
10.33, 10.33, 10.33, 10.33, 10.33)
     B5H_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33,
10.33, 10.33, 10.33, 10.33, 10.33)
     B6H_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33)
     B7H_Threshold = (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89,
6.89, 6.89, 6.89, 6.89)
     B8H_Threshold = (4.13, 4.13, 4.13, 5.17, 3.44, 4.13, 4.13, 4.13, 3.44, 4.13, 4.13, 4.13,
5.17, 4.13, 4.13, 5.17, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13,
4.13, 4.13, 4.13, 4.13)
  END_GROUP = IN_THRESHOLD
  GROUP = IN_SIGMA_THRESHOLD
     BlL_Sigma_Threshold = (13.26, 13.38, 14.18, 13.54, 13.13, 13.31, 13.41, 13.97, 12.85, 14.01,
13.78, 13.01, 13.49, 13.24, 13.89, 13.61)
     B2L_Sigma_Threshold = (17.19, 17.93, 17.86, 18.04, 17.59, 17.48, 17.88, 17.31, 16.88, 17.23,
17.16, 18.06, 17.06, 17.55, 17.62, 17.99)
     B3L_Sigma_Threshold = (12.69, 12.96, 12.82, 12.52, 12.83, 12.37, 12.88, 13.61, 12.68, 12.85,
12.44, 12.36, 12.98, 12.61, 13.59, 12.78)
     B4L_Sigma_Threshold = (27.64, 28.91, 25.15, 25.76, 26.72, 26.80, 29.42, 26.60, 34.63, 29.85,
22.74, 22.12, 24.02, 22.54, 33.38, 29.54)
     B5L_Sigma_Threshold = (19.07, 19.18, 18.32, 19.57, 18.22, 18.30, 18.53, 18.47, 17.93, 18.33,
18.83, 18.65, 17.87, 19.08, 18.90, 19.00)
     B6L_Sigma_Threshold = (26.84, 25.64, 25.97, 27.24, 26.87, 26.77, 27.20, 27.66)
      B7L_Sigma_Threshold = (11.70, 12.28, 12.29, 12.35, 11.25, 11.63, 11.89, 12.39, 11.61, 12.65,
11.85, 12.55, 12.24, 12.31, 12.62, 12.33)
     B8L_Sigma_Threshold = (7.32, 7.23, 7.00, 7.29, 7.24, 7.10, 7.14, 7.15, 7.23, 6.80, 7.33,
6.68,\ 7.31,\ 6.59,\ 7.21,\ 7.35,\ 7.05,\ 6.78,\ 6.94,\ 6.72,\ 7.28,\ 7.18,\ 7.19,\ 7.20,\ 7.14,\ 7.32,\ 7.27,
6.96, 7.03, 7.01, 7.19, 7.20)
     B1H_Sigma_Threshold = (9.26, 9.34, 9.99, 9.50, 9.20, 9.31, 9.45, 9.88, 9.10, 9.83, 9.67,
9.08, 9.49, 9.28, 9.74, 9.54)
     B2H_Sigma_Threshold = (12.29, 12.88, 12.73, 12.87, 12.59, 12.47, 12.93, 12.50, 12.18, 12.47,
12.39, 13.12, 12.26, 12.68, 12.76, 13.09)
     B3H_Sigma_Threshold = (8.82, 9.02, 8.95, 8.72, 8.97, 8.63, 9.02, 9.57, 8.85, 8.96, 8.63,
8.58, 9.05, 8.77, 9.55, 8.92)
     B4H_Sigma_Threshold = (18.07, 18.16, 17.17, 17.89, 17.65, 18.10, 18.30, 17.97, 19.73, 18.80,
17.87, 18.31, 18.42, 17.81, 19.55, 18.47)
     B5H_Sigma_Threshold = (13.62, 13.70, 13.06, 13.84, 12.97, 13.05, 13.43, 13.34, 12.74, 13.00,
13.38, 13.18, 12.73, 13.57, 13.40, 13.49)
     B6H_Sigma_Threshold = (16.29, 15.95, 16.25, 16.55, 16.44, 15.90, 16.56, 17.02)
     B7H_Sigma_Threshold = (8.00, 8.43, 8.50, 8.55, 7.73, 8.00, 8.19, 8.55, 7.97, 8.73, 8.14,
8.66, 8.46, 8.49, 8.76, 8.53)
     B8H_Sigma_Threshold = (5.12, 5.08, 4.91, 5.17, 3.91, 4.97, 4.19, 5.07, 4.11, 4.86, 5.11,
4.76, 5.22, 4.73, 5.14, 5.21, 4.98, 4.89, 4.91, 4.82, 5.15, 4.92, 5.09, 4.96, 5.01, 5.12, 5.21,
4.74, 4.22, 4.79, 4.58, 4.60)
  END_GROUP = IN_SIGMA_THRESHOLD
END_GROUP = IMPULSE_NOISE
GROUP = COHERENT_NOISE
```

```
Frequency_Components = 10
GROUP = CN_FREQUENCY_PARAMETERS
GROUP = FREQUENCY_MEANS
 B2_Frequency_Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
 B3_Frequency_Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
 B5_Frequency_Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
 B7_Frequency_Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
 END_GROUP = FREQUENCY_MEANS
GROUP = FREQUENCY_SIGMAS
 END_GROUP = FREQUENCY_SIGMAS
GROUP = FREQUENCY_MINIMUMS
 B7_{\text{Frequency}}Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
 END_GROUP = FREQUENCY_MINIMUMS
GROUP = FREQUENCY_MAXIMUMS
 B8_Frequency_{Max} = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
END_GROUP = FREQUENCY_MAXIMUMS
END_GROUP = CN_FREQUENCY_PARAMETERS
GROUP = CN_PHASE_PARAMETERS
GROUP = PHASE_MEANS
 B5_Phase_Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
 B7_Phase_Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
 END_GROUP = PHASE_MEANS
GROUP = PHASE_SIGMAS
 END_GROUP = PHASE_SIGMAS
GROUP = PHASE_MINIMUMS
 B1_Phase_Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
```

```
B3_Phase_Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B4_Phase_Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B7_Phase_Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B8_Phase_Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
  END_GROUP = PHASE_MINIMUMS
  GROUP = PHASE_MAXIMUMS
   B1_Phase_Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B2_Phase_Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B3_Phase_Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   END_GROUP = PHASE_MAXIMUMS
 END_GROUP = CN_PHASE_PARAMETERS
 GROUP = CN_MAGNITUDE_PARAMETERS
  GROUP = MAGNITUDE_MEANS
   B2_{Magnitude\_Mean} = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B5_{Magnitude\_Mean} = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B6\_Magnitude\_Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   END GROUP = MAGNITUDE MEANS
  GROUP = MAGNITUDE_SIGMAS
   B3_{\text{Magnitude\_Sigma}} = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   END_GROUP = MAGNITUDE_SIGMAS
  GROUP = MAGNITUDE MINIMUMS
   B1_Magnitude_Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B2_{Magnitude_{Min}} = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
    \texttt{B3\_Magnitude\_Min} \ = \ (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 
   B5_{\text{Magnitude\_Min}} = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   \texttt{B8\_Magnitude\_Min} \ = \ (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
  END GROUP = MAGNITUDE MINIMUMS
  GROUP = MAGNITUDE_MAXIMUMS
   B1_Magnitude_Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B2_{\text{Magnitude}} Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B3_{\text{Magnitude\_Max}} = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B4_Magnitude_Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B5_{Magnitude_{Max}} = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   B7_{\text{Magnitude}} = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
   END_GROUP = MAGNITUDE_MAXIMUMS
 END_GROUP = CN_MAGNITUDE_PARAMETERS
END_GROUP = COHERENT_NOISE
GROUP = DETECTOR_SATURATION
 GROUP = AD_CONVERTER_SATURATION
  GROUP = AD_CONVERTER_SATURATION_LOW
```

```
High_AD_Level_B8_low =
255, 255, 255, 255, 255, 255, 255, 255)
          Low\_AD\_Level\_B1\_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_AD\_Level\_B2\_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          low\_AD\_Level\_B3\_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_AD\_Level\_B4\_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_AD\_Level\_B5\_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_AD\_Level\_B6\_low = (0,0,0,0,0,0,0,0)
          Low\_AD\_Level\_B7\_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          END_GROUP = AD_CONVERTER_SATURATION_LOW
       GROUP = AD_CONVERTER_SATURATION_HIGH
          High_AD_Level_B8_high =
255, 255, 255, 255, 255, 255, 255, 255)
          Low\_AD\_Level\_B1\_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_AD\_Level\_B2\_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low_AD_Level_B3_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_AD\_Level\_B4\_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_AD\_Level\_B5\_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_AD\_Level\_B6\_high = (0,0,0,0,0,0,0,0)
          Low_AD_Level_B7_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          END_GROUP = AD_CONVERTER_SATURATION_HIGH
   END_GROUP = AD_CONVERTER_SATURATION
   GROUP = ANALOG_SIGNAL_SATURATION
       GROUP = ANALOG_SIGNAL_SATURATION_LOW
          High_Analog_Level_B1_low =
High_Analog_Level_B2_low =
 (\, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 
          High_Analog_Level_B3_low =
 (\, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 
          High_Analog_Level_B4_low =
High_Analog_Level_B5_low =
High_Analog_Level_B7_low =
High_Analog_Level_B8_low =
255, 255, 255, 255, 255, 255, 255, 255)
          Low\_Analog\_Level\_Bl\_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_Analog\_Level\_B3\_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_Analog\_Level\_B4\_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_Analog\_Level\_B5\_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_Analog\_Level\_B6\_low = (0,0,0,0,0,0,0,0)
          Low\_Analog\_Level\_B7\_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          END_GROUP = ANALOG_SIGNAL_SATURATION_LOW
       GROUP = ANALOG_SIGNAL_SATURATION_HIGH
          High_Analog_Level_B1_high =
```

```
High_Analog_Level_B2_high =
High_Analog_Level_B3_high =
 (\, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 255\,, 
          High_Analog_Level_B4_high =
High_Analog_Level_B5_high =
High_Analog_Level_B6_high = (255,255,255,255,255,255,255,255)
          High_Analog_Level_B7_high =
High_Analog_Level_B8_high =
255, 255, 255, 255, 255, 255, 255, 255)
          Low\_Analog\_Level\_Bl\_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_Analog\_Level\_B2\_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_Analog\_Level\_B3\_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_Analog\_Level\_B4\_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low\_Analog\_Level\_B5\_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
          Low_Analog_Level_B6_high = (0,0,0,0,0,0,0,0)
          Low_Analog_Level_B8_high =
END_GROUP = ANALOG_SIGNAL_SATURATION_HIGH
   END_GROUP = ANALOG_SIGNAL_SATURATION
END_GROUP = DETECTOR_SATURATION
GROUP = REFERENCE_TEMPERATURES
   GROUP = REFERENCE_LOW
      B1L_RTemp_Prelaunch = 25.00
       B1L_RTemp_Postlaunch = 25.00
      B1L_RTemp_Current = 25.00
      B2L_RTemp_Prelaunch = 25.00
      B2L_RTemp_Postlaunch = 25.00
      B2L_RTemp_Current = 25.00
      B3L_RTemp_Prelaunch = 25.00
      B3L_RTemp_Postlaunch = 25.00
      B3L_RTemp_Current = 25.00
      B4L_RTemp_Prelaunch = 25.00
      B4L_RTemp_Postlaunch = 25.00
      B4L_RTemp_Current = 25.00
      B5L_RTemp_Prelaunch = -182.1
      B5L_RTemp_Postlaunch = -182.1
      B5L_RTemp_Current = -182.1
      B6L_RTemp_Prelaunch = -182.2
      B6L_RTemp_Postlaunch = -182.1
      B6L_RTemp_Current = -182.2
      B7L_RTemp_Prelaunch = -182.1
      B7L_RTemp_Postlaunch = -182.1
      B7L RTemp Current = -182.1
      B8L_RTemp_Prelaunch = 25.00
      B8L_RTemp_Postlaunch = 25.00
      B8L_RTemp_Current = 25.00
   END_GROUP = REFERENCE_LOW
   GROUP = REFERENCE_HIGH
       B1H_RTemp_Prelaunch = 25.00
      B1H_RTemp_Postlaunch = 25.00
      B1H_RTemp_Current = 25.00
       B2H_RTemp_Prelaunch = 25.00
      B2H_RTemp_Postlaunch = 25.00
      B2H_RTemp_Current = 25.00
      B3H_RTemp_Prelaunch = 25.00
      B3H_RTemp_Postlaunch = 25.00
      B3H_RTemp_Current = 25.00
      B4H_RTemp_Prelaunch = 25.00
      B4H_RTemp_Postlaunch = 25.00
      B4H_RTemp_Current = 25.00
      B5H_RTemp_Prelaunch = -182.1
```

```
B5H_RTemp_Postlaunch = -182.1
 B5H_RTemp_Current = -182.1
 B6H_RTemp_Prelaunch = -182.2
 B6H_RTemp_Postlaunch = -182.1
 B6H_RTemp_Current = -182.2
 B7H_RTemp_Prelaunch = -182.1
 B7H_RTemp_Postlaunch = -182.1
 B7H_RTemp_Current = -182.1
 B8H_RTemp_Prelaunch = 25.00
 B8H_RTemp_Postlaunch = 25.00
 B8H_RTemp_Current = 25.00
END_GROUP = REFERENCE_HIGH
END GROUP = REFERENCE TEMPERATURES
GROUP = SENSITIVITY_TEMPERATURES
GROUP = SENSITIVITY_LOW
 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0)
 0.0.0.0
 0.0, 0.0, 0.0 )
 0.0, 0.0, 0.0 )
 0.0, 0.0)
 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0 )
 0.0.0.0
 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0 )
 0.0, 0.0
 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0)
 0.0, 0.0 )
 B6L_SCoeff_Prelaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 B6L_SCoeff_Postlaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 B6L_SCoeff_Current = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 B6L_SCoeffOff_Current = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0 )
 0.0, 0.0)
 END_GROUP = SENSITIVITY_LOW
GROUP = SENSITIVITY HIGH
 0.0, 0.0, 0.0 )
```

```
0.0, 0.0, 0.0)
     0.0, 0.0 )
     0.0, 0.0, 0.0)
     0.0, 0.0, 0.0)
      0.0, 0.0)
     0.0, 0.0, 0.0 )
     0.0, 0.0, 0.0)
      \texttt{B3H\_SCoeff\_Current} \ = \ ( \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.
0.0, 0.0)
     0.0, 0.0, 0.0
     0.0, 0.0, 0.0 )
     0.0, 0.0)
     0.0, 0.0, 0.0)
     0.0, 0.0, 0.0
     0.0, 0.0
     B6H_SCoeff_Current = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
     0.0, 0.0, 0.0)
     0.0, 0.0, 0.0
     0.0, 0.0
     END_GROUP = SENSITIVITY_HIGH
END_GROUP = SENSITIVITY_TEMPERATURES
GROUP = LAMP RADIANCE
  GROUP = TRENDING_COEFFS
     Lamp1\_Coeffs = (+0.0, +0.0)
     Lamp2\_Coeffs = (+0.0, +0.0)
  END_GROUP = TRENDING_COEFFS
  GROUP = LAMP RADIANCE LOW
     B1L_Rad_State1_Prelaunch =
(45.787, 45.377, 46.026, 45.784, 46.332, 45.894, 46.752, 45.929, 46.900, 46.087, 46.742, 45.694, 46.361, 45.561, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.361, 45.694, 46.494, 46.494, 46.494, 46.494, 46.494, 46.494, 46.494, 46.494, 46.494, 46.494, 46.494, 46.494, 46.
1,46.177,45.732)
     B1L_Rad_State1_Postlaunch =
(50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0)
     B1L_Rad_State1_Current =
(45.787, 45.377, 46.026, 45.784, 46.332, 45.894, 46.752, 45.929, 46.900, 46.087, 46.742, 45.694, 46.361, 45.56)
1,46.177,45.732)
     B1L_Rad_State2_Prelaunch =
(45.803, 45.365, 45.935, 45.555, 46.116, 45.726, 46.623, 45.706, 46.806, 45.923, 46.497, 45.639, 46.194, 45.33)
5,45.981,45.577)
     B1L_Rad_State2_Postlaunch =
(50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0)
```

```
B1L_Rad_State2_Current =
 (45.803, 45.365, 45.935, 45.555, 46.116, 45.726, 46.623, 45.706, 46.806, 45.923, 46.497, 45.639, 46.194, 45.33
 5,45.981,45.577)
                                      B1L_Rad_State3_Prelaunch =
 (81.684, 80.810, 81.903, 81.323, 82.394, 81.590, 83.226, 81.523, 83.745, 82.168, 83.184, 81.248, 82.648, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 
9,82.374,81.345)
                                      B1L_Rad_State3_Postlaunch =
 (100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100
                                        B1L_Rad_State3_Current =
 (81.684,80.810,81.903,81.323,82.394,81.590,83.226,81.523,83.745,82.168,83.184,81.248,82.648,80.83
 9,82.374,81.345)
                                     B2L_Rad_State1_Prelaunch =
 (92.855, 86.584, 93.161, 87.519, 94.752, 86.906, 95.384, 86.465, 95.068, 88.235, 94.897, 86.732, 94.539, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 
6,93.658,85.806)
                                     B2L_Rad_State1_Postlaunch =
 (100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0,
                                      B2L Rad State1 Current =
 (92.855, 86.584, 93.161, 87.519, 94.752, 86.906, 95.384, 86.465, 95.068, 88.235, 94.897, 86.732, 94.539, 86.82)
6,93.658,85.806)
                                        B2L_Rad_State2_Prelaunch =
 (100.787, 95.042, 101.110, 95.845, 102.845, 95.216, 103.303, 94.719, 102.990, 96.648, 102.735, 94.994, 102.41, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816
3,95.003,101.319,93.884)
                                      B2L_Rad_State2_Postlaunch =
 (100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100
                                      B2L Rad State2 Current =
 (100.787, 95.042, 101.110, 95.845, 102.845, 95.216, 103.303, 94.719, 102.990, 96.648, 102.735, 94.994, 102.41, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816, 103.816
3,95,003,101,319,93,884)
                                      B2L Rad State3 Prelaunch =
 (183.710,171.503,184.161,173.274,187.684,171.997,188.732,171.010,188.371,174.781,187.716,171.468,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171.181,171
 186.974,171.568,185.010,169.558)
                                        B2L_Rad_State3_Postlaunch =
 (200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0)
                                     B2L_Rad_State3_Current =
 (183.710, 171.503, 184.161, 173.274, 187.684, 171.997, 188.732, 171.010, 188.371, 174.781, 187.716, 171.468, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 
186.974,171.568,185.010,169.558)
                                      B3L_Rad_State1_Prelaunch =
 (74.771, 68.694, 75.603, 68.942, 76.300, 69.277, 77.123, 69.013, 75.981, 69.171, 75.813, 69.290, 75.248, 68.87, 69.013, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.8
4,74.268,68.658)
                                      B3L Rad State1 Postlaunch =
 B3L_Rad_State1_Current =
 (74.771, 68.694, 75.603, 68.942, 76.300, 69.277, 77.123, 69.013, 75.981, 69.171, 75.813, 69.290, 75.248, 68.87)
 4,74.268,68.658)
                                      B3L_Rad_State2_Prelaunch =
 (83.835, 78.103, 84.806, 78.339, 85.510, 78.794, 86.371, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.
 7,83.013,77.903)
                                     B3L_Rad_State2_Postlaunch =
 B3L Rad State2 Current =
 (83.835, 78.103, 84.806, 78.339, 85.510, 78.794, 86.371, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 84.271, 78.171, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.
 7,83.013,77.903)
                                      B3L_Rad_State3_Prelaunch =
 (148.358,136.935,150.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203,
149.181,137.271,147.210,136.848)
                                      B3L_Rad_State3_Postlaunch =
 (120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0)
                                     B3L Rad State3 Current =
 (148.358, 136.935, 150.558, 137.800, 151.652, 138.445, 153.268, 137.681, 150.913, 138.026, 150.303, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.2030, 138.2030, 138.2030, 138.2030, 138.2030, 138.2030, 138.2030, 138.2030, 138.20300, 138.20300, 138.20
149.181,137.271,147.210,136.848)
                                   B4L_Rad_State1_Prelaunch =
 (90.684,86.813,91.648,85.361,91.916,86.890,91.548,87.355,91.100,86.758,90.371,86.732,90.606,86.79
4,89.926,87.610)
                                      B4L Rad State1 Postlaunch =
 (100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100
                                      B4L_Rad_State1_Current =
 (90.684, 86.813, 91.648, 85.361, 91.916, 86.890, 91.548, 87.355, 91.100, 86.758, 90.371, 86.732, 90.606, 86.791, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.684, 90.
4,89.926,87.610)
```

```
B4L_Rad_State2_Prelaunch =
 (99.545, 97.781, 100.581, 96.103, 100.861, 97.858, 100.429, 98.329, 99.894, 97.626, 99.123, 97.587, 99.371, 97.888, 100.489, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 100.881, 10
   .661,98.474,98.477)
                                          B4L_Rad_State2_Postlaunch =
 (100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0,
                                        B4L Rad State2 Current =
 (99.545, 97.781, 100.581, 96.103, 100.861, 97.858, 100.429, 98.329, 99.894, 97.626, 99.123, 97.587, 99.371, 97.881, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 99.894, 
   .661,98.474,98.477)
                                           B4L_Rad_State3_Prelaunch =
 (180.297, 174.745, 182.339, 171.777, 182.794, 174.990, 182.165, 176.045, 180.939, 174.523, 179.635, 174.865, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.9390, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939,
180.368,174.777,178.348,176.381)
                                          B4L_Rad_State3_Postlaunch =
 (200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0)
                                        B4L_Rad_State3_Current =
 (180.297, 174.745, 182.339, 171.777, 182.794, 174.990, 182.165, 176.045, 180.939, 174.523, 179.635, 174.865, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.655, 179.655, 179.655, 179.655, 179.655, 179.655, 179.655, 179.655, 179.655, 179.655, 
180.368,174.777,178.348,176.381)
                                          B5L Rad State1 Prelaunch =
 (22.307, 21.710, 22.166, 21.616, 22.084, 21.632, 22.074, 21.576, 22.134, 21.496, 22.005, 21.409, 22.028, 21.53)
 3,22.030,21.432)
                                           B5L_Rad_State1_Postlaunch =
 B5L_Rad_State1_Current =
 (22.307, 21.710, 22.166, 21.616, 22.084, 21.632, 22.074, 21.576, 22.134, 21.496, 22.005, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.409, 21.500, 21.400, 21.500, 21.400, 21.500, 21.400, 21.500, 21.400, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.500, 21.5000, 21.5000, 21.5000, 21.5000, 21.5000, 21.5000, 21.5000, 21.5000, 21.5000, 21.5000, 21.5000, 21.5000, 
3,22.030,21.432)
                                          B5L_Rad_State2_Prelaunch =
 (23.397, 23.405, 23.270, 23.231, 23.191, 23.271, 23.182, 23.288, 23.190, 23.108, 23.053, 22.976, 23.089, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000,
4,23.054,23.045)
                                          B5L_Rad_State2_Postlaunch =
 B5L_Rad_State2_Current =
 (23.397, 23.405, 23.270, 23.231, 23.191, 23.271, 23.182, 23.288, 23.190, 23.108, 23.053, 22.976, 23.089, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000,
 4,23.054,23.045)
                                          B5L_Rad_State3_Prelaunch =
 (43.679, 43.113, 43.429, 42.911, 43.374, 42.978, 43.272, 42.897, 43.283, 42.604, 43.140, 42.467, 43.155, 42.83)
9,43.069,42.487)
                                        B5L_Rad_State3_Postlaunch =
 (50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0)
                                        B5L Rad State3 Current =
 (43.679, 43.113, 43.429, 42.911, 43.374, 42.978, 43.272, 42.897, 43.283, 42.604, 43.140, 42.467, 43.155, 42.83, 42.604, 43.140, 42.467, 43.155, 42.83, 42.604, 43.140, 42.467, 43.155, 42.83, 42.604, 43.140, 42.467, 43.155, 42.83, 42.604, 43.140, 42.467, 43.155, 42.83, 42.604, 43.140, 42.467, 43.155, 42.83, 42.604, 43.140, 42.467, 43.155, 42.83, 42.604, 43.140, 42.467, 43.155, 42.83, 42.604, 43.140, 42.467, 43.155, 42.83, 42.604, 43.140, 42.467, 43.155, 42.83, 42.604, 43.140, 42.467, 43.155, 42.83, 42.604, 43.140, 42.467, 43.155, 42.83, 42.604, 43.140, 42.467, 43.140, 42.467, 43.155, 42.83, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 43.140, 
9,43.069,42.487)
                                          B7L_Rad_State1_Prelaunch =
 (12.224, 11.010, 12.122, 10.999, 12.138, 10.970, 12.140, 11.023, 12.146, 10.957, 12.103, 10.979, 12.128, 10.95
3,12.035,10.990)
                                          B7L_Rad_State1_Postlaunch =
 B7L_Rad_State1_Current =
 (12.224, 11.010, 12.122, 10.999, 12.138, 10.970, 12.140, 11.023, 12.146, 10.957, 12.103, 10.979, 12.128, 10.951, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.
3,12.035,10.990)
                                        B7L Rad State2 Prelaunch =
 (12.661, 11.945, 12.529, 11.926, 12.564, 11.878, 12.545, 11.915, 12.532, 11.850, 12.498, 11.884, 12.504, 11.800, 12.498, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.
1,12.390,11.835)
                                          B7L_Rad_State2_Postlaunch =
 (10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.
                                           B7L Rad State2 Current =
 (12.661, 11.945, 12.529, 11.926, 12.564, 11.878, 12.545, 11.915, 12.532, 11.850, 12.498, 11.884, 12.504, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 
1,12.390,11.835)
                                          B7L Rad State3 Prelaunch =
 (24.885, 22.955, 24.651, 22.925, 24.702, 22.848, 24.685, 22.938, 24.678, 22.807, 24.601, 22.863, 24.632, 22.75, 24.601, 24.885, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.6
4,24.425,22.825)
                                        B7L_Rad_State3_Postlaunch =
 (30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0)
                                          B7L_Rad_State3_Current =
 (24.885, 22.955, 24.651, 22.925, 24.702, 22.848, 24.685, 22.938, 24.678, 22.807, 24.601, 22.863, 24.632, 22.75, 24.601, 24.885, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.6
 4,24.425,22.825)
                                        B8L Rad State1 Prelaunch =
 (99.913, 88.876, 102.090, 89.352, 103.174, 89.855, 103.613, 90.034, 103.929, 91.642, 104.850, 90.456, 104.540, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850
```

```
,91.315,104.027,90.476,105.156,89.298,105.865,89.710,105.337,90.632,105.169,90.085,104.852,90.168
  ,103.097,90.113,102.637,90.968,101.805,89.732)
                                     B8L_Rad_State1_Postlaunch =
 (110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110
110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 
                                     B8L Rad State1 Current =
 (99.913, 88.876, 102.090, 89.352, 103.174, 89.855, 103.613, 90.034, 103.929, 91.642, 104.850, 90.456, 104.540, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850
 ,91.315,104.027,90.476,105.156,89.298,105.865,89.710,105.337,90.632,105.169,90.085,104.852,90.168
  ,103.097,90.113,102.637,90.968,101.805,89.732)
                                     B8L Rad State2 Prelaunch =
 (93.948, 84.423, 96.089, 84.763, 96.898, 85.256, 97.194, 85.395, 97.565, 87.087, 98.395, 86.116, 97.894, 86.73, 98.486, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.8980, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.
9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2
76,96.015,86.142,95.205,85.060)
                                     B8L_Rad_State2_Postlaunch =
 (110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110
110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 
                                     B8L Rad State2 Current =
 (93.948,84.423,96.089,84.763,96.898,85.256,97.194,85.395,97.565,87.087,98.395,86.116,97.894,86.73
9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2
76,96.015,86.142,95.205,85.060)
                                     B8L Rad State3 Prelaunch =
 (182.440,163.589,186.632,164.440,189.408,165.374,190.111,165.489,190.873,166.669,192.347,165.231,
192.365,165.990,191.352,165.694,193.326,164.103,194.511,164.837,193.731,165.855,193.256,165.002,1
93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442)
                                     B8L_Rad_State3_Postlaunch =
 (220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0,
220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 
                                     B8L Rad State3 Current =
 (182.440, 163.589, 186.632, 164.440, 189.408, 165.374, 190.111, 165.489, 190.873, 166.669, 192.347, 165.231, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 
192.365,165.990,191.352,165.694,193.326,164.103,194.511,164.837,193.731,165.855,193.256,165.002,1
93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442)
                  END GROUP = LAMP RADIANCE LOW
                  GROUP = LAMP_RADIANCE_HIGH
                                     B1H_Rad_State1_Prelaunch =
 (45.787, 45.377, 46.026, 45.784, 46.332, 45.894, 46.752, 45.929, 46.900, 46.087, 46.742, 45.694, 46.361, 45.56)
 1,46.177,45.732)
                                    B1H_Rad_State1_Postlaunch =
 (50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0)
                                     B1H_Rad_State1_Current =
 (45.787.45.377.46.026.45.784.46.332.45.894.46.752.45.929.46.900.46.087.46.742.45.694.46.361.45.56
1,46.177,45.732)
                                      B1H_Rad_State2_Prelaunch =
 (45.803, 45.365, 45.935, 45.555, 46.116, 45.726, 46.623, 45.706, 46.806, 45.923, 46.497, 45.639, 46.194, 45.338, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.497, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.623, 46.
5,45.981,45.577)
                                    B1H_Rad_State2_Postlaunch =
 (50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0)
                                    B1H_Rad_State2_Current =
 (45.803, 45.365, 45.935, 45.555, 46.116, 45.726, 46.623, 45.706, 46.806, 45.923, 46.497, 45.639, 46.194, 45.33)
5.45.981.45.577)
                                     B1H_Rad_State3_Prelaunch =
 (81.684, 80.810, 81.903, 81.323, 82.394, 81.590, 83.226, 81.523, 83.745, 82.168, 83.184, 81.248, 82.648, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 
9,82.374,81.345)
                                      B1H_Rad_State3_Postlaunch =
 (100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100
                                     B1H_Rad_State3_Current =
 (81.684, 80.810, 81.903, 81.323, 82.394, 81.590, 83.226, 81.523, 83.745, 82.168, 83.184, 81.248, 82.648, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 80.83, 
9,82.374,81.345)
                                    B2H_Rad_State1_Prelaunch =
 (92.855, 86.584, 93.161, 87.519, 94.752, 86.906, 95.384, 86.465, 95.068, 88.235, 94.897, 86.732, 94.539, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 
6,93.658,85.806)
                                     B2H_Rad_State1_Postlaunch =
 (100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100
                                      B2H Rad State1 Current =
 (92.855, 86.584, 93.161, 87.519, 94.752, 86.906, 95.384, 86.465, 95.068, 88.235, 94.897, 86.732, 94.539, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 86.82, 
6,93.658,85.806)
```

```
B2H_Rad_State2_Prelaunch =
 (100.787, 95.042, 101.110, 95.845, 102.845, 95.216, 103.303, 94.719, 102.990, 96.648, 102.735, 94.994, 102.41
 3,95.003,101.319,93.884)
                                             B2H_Rad_State2_Postlaunch =
 (100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0,
                                             B2H_Rad_State2_Current =
 (100.787, 95.042, 101.110, 95.845, 102.845, 95.216, 103.303, 94.719, 102.990, 96.648, 102.735, 94.994, 102.41, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990, 102.990
 3,95.003,101.319,93.884)
                                              B2H_Rad_State3_Prelaunch =
 (183.710, 171.503, 184.161, 173.274, 187.684, 171.997, 188.732, 171.010, 188.371, 174.781, 187.716, 171.468, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 187.716, 
186.974,171.568,185.010,169.558)
                                             B2H_Rad_State3_Postlaunch =
 (200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0)
                                             B2H_Rad_State3_Current =
 (183.710,171.503,184.161,173.274,187.684,171.997,188.732,171.010,188.371,174.781,187.716,171.468,171.468,171.711.468,171.711.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171
186.974,171.568,185.010,169.558)
                                             B3H Rad State1 Prelaunch =
 (74.771,68.694,75.603,68.942,76.300,69.277,77.123,69.013,75.981,69.171,75.813,69.290,75.248,68.87
 4,74.268,68.658)
                                              B3H_Rad_State1_Postlaunch =
 B3H_Rad_State1_Current =
 (74.771, 68.694, 75.603, 68.942, 76.300, 69.277, 77.123, 69.013, 75.981, 69.171, 75.813, 69.290, 75.248, 68.87, 69.013, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.813, 75.8
 4.74.268.68.658)
                                             B3H_Rad_State2_Prelaunch =
 (83.835, 78.103, 84.806, 78.339, 85.510, 78.794, 86.371, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 84.271, 78.171, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.
 7,83.013,77.903)
                                             B3H_Rad_State2_Postlaunch =
 B3H_Rad_State2_Current =
 (83.835, 78.103, 84.806, 78.339, 85.510, 78.794, 86.371, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 84.271, 78.171, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.271, 84.
 7,83.013,77.903)
                                             B3H_Rad_State3_Prelaunch =
 (148.358,136.935,150.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203,
149.181,137.271,147.210,136.848)
                                           B3H_Rad_State3_Postlaunch =
 (120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120
                                           B3H Rad State3 Current =
 (148.358,136.935,150.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138.203,138
149.181,137.271,147.210,136.848)
                                             B4H_Rad_State1_Prelaunch =
 (90.684,86.813,91.648,85.361,91.916,86.890,91.548,87.355,91.100,86.758,90.371,86.732,90.606,86.79
 4,89.926,87.610)
                                             B4H_Rad_State1_Postlaunch =
 (100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100
                                           B4H_Rad_State1_Current =
 (90.684, 86.813, 91.648, 85.361, 91.916, 86.890, 91.548, 87.355, 91.100, 86.758, 90.371, 86.732, 90.606, 86.791, 90.686, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.8860, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90.886, 90
 4,89.926,87.610)
                                           B4H Rad State2 Prelaunch =
 (99.545, 97.781, 100.581, 96.103, 100.861, 97.858, 100.429, 98.329, 99.894, 97.626, 99.123, 97.587, 99.371, 97.888, 100.429, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 100.8880, 100.888, 100.888, 100.888, 100.8880, 100.888, 100.888, 100.888, 100.888, 100.888, 100.888, 
   .661,98.474,98.477)
                                             B4H_Rad_State2_Postlaunch =
 (100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100
                                             B4H Rad State2 Current =
 (99.545, 97.781, 100.581, 96.103, 100.861, 97.858, 100.429, 98.329, 99.894, 97.626, 99.123, 97.587, 99.371, 97.888, 100.429, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 10
   .661,98.474,98.477)
                                           B4H_Rad_State3_Prelaunch =
 (180.297, 174.745, 182.339, 171.777, 182.794, 174.990, 182.165, 176.045, 180.939, 174.523, 179.635, 174.865, 176.045, 180.939, 174.523, 179.635, 174.865, 176.045, 180.939, 174.523, 179.635, 174.865, 176.045, 180.939, 174.523, 179.635, 174.865, 176.045, 180.939, 174.523, 179.635, 174.865, 176.045, 180.939, 174.523, 179.635, 174.865, 180.939, 174.523, 179.635, 174.865, 180.939, 174.523, 179.635, 174.865, 180.939, 174.523, 179.635, 174.865, 180.939, 174.523, 179.635, 174.865, 180.939, 174.523, 179.635, 174.865, 180.939, 174.523, 179.635, 174.865, 180.939, 174.523, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 
180.368,174.777,178.348,176.381)
                                           B4H_Rad_State3_Postlaunch =
 (200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200
                                           B4H_Rad_State3_Current =
 (180.297, 174.745, 182.339, 171.777, 182.794, 174.990, 182.165, 176.045, 180.939, 174.523, 179.635, 174.865, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 179.635, 
 180.368,174.777,178.348,176.381)
                                             B5H_Rad_State1_Prelaunch =
 (22.307, 21.710, 22.166, 21.616, 22.084, 21.632, 22.074, 21.576, 22.134, 21.496, 22.005, 21.409, 22.028, 21.53, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.4
3,22.030,21.432)
```

```
B5H_Rad_State1_Postlaunch =
 (20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0)
                                                     B5H_Rad_State1_Current =
 (22.307, 21.710, 22.166, 21.616, 22.084, 21.632, 22.074, 21.576, 22.134, 21.496, 22.005, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 22.028, 21.53, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409, 21.409
3,22.030,21.432)
                                                   B5H_Rad_State2_Prelaunch =
 (23.397, 23.405, 23.270, 23.231, 23.191, 23.271, 23.182, 23.288, 23.190, 23.108, 23.053, 22.976, 23.089, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000,
 4,23.054,23.045)
                                                     B5H_Rad_State2_Postlaunch =
 (20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0)
                                                   B5H_Rad_State2_Current =
 (23.397, 23.405, 23.270, 23.231, 23.191, 23.271, 23.182, 23.288, 23.190, 23.108, 23.053, 22.976, 23.089, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.200, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000,
4,23,054,23,045)
                                                   B5H_Rad_State3_Prelaunch =
 (43.679, 43.113, 43.429, 42.911, 43.374, 42.978, 43.272, 42.897, 43.283, 42.604, 43.140, 42.467, 43.155, 42.831, 42.467, 43.140, 42.467, 43.155, 42.831, 42.467, 43.140, 42.467, 43.155, 42.831, 42.467, 43.140, 42.467, 43.155, 42.831, 42.467, 43.140, 42.467, 43.140, 42.467, 43.155, 42.831, 42.467, 43.140, 42.467, 43.155, 42.831, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.
9,43.069,42.487)
                                                   B5H_Rad_State3_Postlaunch =
 (50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0)
                                                     B5H_Rad_State3_Current =
 (43.679, 43.113, 43.429, 42.911, 43.374, 42.978, 43.272, 42.897, 43.283, 42.604, 43.140, 42.467, 43.155, 42.831, 42.467, 43.140, 42.467, 43.155, 42.831, 42.467, 43.140, 42.467, 43.155, 42.831, 42.467, 43.140, 42.467, 43.155, 42.831, 42.467, 43.140, 42.467, 43.140, 42.467, 43.155, 42.831, 42.467, 43.140, 42.467, 43.155, 42.831, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 43.140, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.467, 42.
9.43.069.42.487)
                                                   B7H_Rad_State1_Prelaunch =
 (12.224, 11.010, 12.122, 10.999, 12.138, 10.970, 12.140, 11.023, 12.146, 10.957, 12.103, 10.979, 12.128, 10.95, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.970, 10.9
3,12,035,10,990)
                                                 B7H_Rad_State1_Postlaunch =
 B7H_Rad_State1_Current =
 (12.224, 11.010, 12.122, 10.999, 12.138, 10.970, 12.140, 11.023, 12.146, 10.957, 12.103, 10.979, 12.128, 10.95, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 10.96, 
3,12,035,10,990)
                                                   B7H_Rad_State2_Prelaunch =
 (12.661, 11.945, 12.529, 11.926, 12.564, 11.878, 12.545, 11.915, 12.532, 11.850, 12.498, 11.884, 12.504, 11.800, 12.498, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.504, 12.
1,12,390,11,835)
                                                   B7H_Rad_State2_Postlaunch =
 (10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.
                                                 B7H_Rad_State2_Current =
 (12.661, 11.945, 12.529, 11.926, 12.564, 11.878, 12.545, 11.915, 12.532, 11.850, 12.498, 11.884, 12.504, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.800, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 11.8000, 
1,12,390,11,835)
                                               B7H_Rad_State3_Prelaunch =
 (24.885, 22.955, 24.651, 22.925, 24.702, 22.848, 24.685, 22.938, 24.678, 22.807, 24.601, 22.863, 24.632, 22.75, 24.601, 24.885, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.6
4,24,425,22,825)
                                                   B7H_Rad_State3_Postlaunch =
 (30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0)
                                                   B7H Rad State3 Current =
 (24.885, 22.955, 24.651, 22.925, 24.702, 22.848, 24.685, 22.938, 24.678, 22.807, 24.601, 22.863, 24.632, 22.75, 24.601, 24.885, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.685, 24.6
4,24,425,22,825)
                                                 B8H_Rad_State1_Prelaunch =
 (99.913, 88.876, 102.090, 89.352, 103.174, 89.855, 103.613, 90.034, 103.929, 91.642, 104.850, 90.456, 104.540, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850
   , 91.315, 104.027, 90.476, 105.156, 89.298, 105.865, 89.710, 105.337, 90.632, 105.169, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.085, 90.
 ,103.097,90.113,102.637,90.968,101.805,89.732)
                                                     B8H_Rad_State1_Postlaunch =
 (110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110
110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 
                                                     B8H_Rad_State1_Current =
 (99.913, 88.876, 102.090, 89.352, 103.174, 89.855, 103.613, 90.034, 103.929, 91.642, 104.850, 90.456, 104.540, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850, 104.850
 , 91.315, 104.027, 90.476, 105.156, 89.298, 105.865, 89.710, 105.337, 90.632, 105.169, 90.085, 104.852, 90.168, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.106, 90.1
 ,103.097,90.113,102.637,90.968,101.805,89.732)
                                                   B8H_Rad_State2_Prelaunch =
 (93.948,84.423,96.089,84.763,96.898,85.256,97.194,85.395,97.565,87.087,98.395,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.116,97.894,86.73,86.73,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86.74,86
9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2
 76,96.015,86.142,95.205,85.060)
                                                     B8H Rad State2 Postlaunch =
 (110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110
110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 
                                                     B8H Rad State2 Current =
 (93.948, 84.423, 96.089, 84.763, 96.898, 85.256, 97.194, 85.395, 97.565, 87.087, 98.395, 86.116, 97.894, 86.73, 98.486, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.8980, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.898, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99.8980, 99
 9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2
76,96.015,86.142,95.205,85.060)
```

```
B8H_Rad_State3_Prelaunch =
(182.440, 163.589, 186.632, 164.440, 189.408, 165.374, 190.111, 165.489, 190.873, 166.669, 192.347, 165.231,
192.365,165.990,191.352,165.694,193.326,164.103,194.511,164.837,193.731,165.855,193.256,165.002,1
93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442)
         B8H_Rad_State3_Postlaunch =
(220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0,
220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 
         B8H Rad State3 Current =
(182.440, 163.589, 186.632, 164.440, 189.408, 165.374, 190.111, 165.489, 190.873, 166.669, 192.347, 165.231, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 166.669, 
192.365, 165.990, 191.352, 165.694, 193.326, 164.103, 194.511, 164.837, 193.731, 165.855, 193.256, 165.002, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 193.731, 1
93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442)
    END_GROUP = LAMP_RADIANCE_HIGH
END GROUP = LAMP RADIANCE
GROUP = LAMP_REFERENCE
    Lmp_Rtemp_PreLaunch = (+25.76, +25.76, +25.80, -168.6, +25.09, +25.50, +25.41,
+28.98, +28.98, +24.45, +27.35, +24.45, +23.81, +28.65)
    Lmp_Rtemp_Postlaunch = (+25.0, +25.00, +25.00, -168.6, +25.00, +25.00, +25.00,
+25.00,+25.00,+25.00,+25.00,+25.00,+25.00,+25.00)
    Lmp_Rtemp_Current = (+25.76, +25.76, +25.80, -168.6, +25.09, +25.50, +25.41,
+28.98, +28.98, +24.45, +27.35, +24.45, +23.81, +28.65)
END_GROUP = LAMP_REFERENCE
GROUP = REFLECTIVE_IC_COEFFS
    GROUP = REFLECT_IC_COEFFS_LOW
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
          0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0.0.0.0.0.0.0.0.0.0.0.0.0
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
          0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
```

```
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  \texttt{B4L\_Coefficients\_Detector7} \ = \ (\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
```

```
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
```

```
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
```

```
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 END_GROUP = REFLECT_IC_COEFFS_LOW
 GROUP = REFLECT_IC_COEFFS_HIGH
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    \texttt{B1H\_Coefficients\_Detector14} \ = \ ( \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
```

```
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   \texttt{B3H\_Coefficients\_Detector15} \ = \ ( \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
```

```
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   \texttt{B5H\_Coefficients\_Detector16} \ = \ ( \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 0.0, \ 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
```

```
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
```

```
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
       0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
      0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
      0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
   END_GROUP = REFLECT_IC_COEFFS_HIGH
END GROUP = REFLECTIVE_IC_COEFFS
GROUP = B6_VIEW_COEFFS
   B6_View_Coefficients_Detector1 =
B6_View_Coefficients_Detector2 =
B6_View_Coefficients_Detector3 =
B6_View_Coefficients_Detector4 =
B6_View_Coefficients_Detector5 =
B6_View_Coefficients_Detector6 =
B6_View_Coefficients_Detector7 =
B6_View_Coefficients_Detector8 =
END_GROUP = B6_VIEW_COEFFS
GROUP = B6_TEMP_MODEL_COEFFS
   B6\_Temp\_Model\_Parm = (+1.0178, +0.0, +0.0, +0.0, +0.0, +0.0)
END_GROUP = B6_TEMP_MODEL_COEFFS
GROUP = THERMISTOR_COEFFS
   Black_Body_Isolated_Temp = (16.778000,0.092912,0.00011322,0,0,0)
   Black_Body_Control_Temp = (51.724000,-0.16368,0.000071646,0,0,0)
   Cold_FP_Control_Temp = (110.350500,-0.10204,0,0,0,0)
   Cold_FP_Monitor_Temp = (109.718500,-0.10177,0,0,0,0)
   Cal_Shutter_Flag_Temp = (37.23,-0.16878,3.8161E-05,0.0,0.0,0.0)
   Backup_Shutter_Flag_Temp = (37.230000,-0.16878,0.000038161,0,0,0)
   Baffle_Heater_Temp = (-2.999300,0.093187,0.00026150,0,0,0)
   Silicon_{FP\_Array\_Temp} = (5.139200, 0.086259, 0.00020767, 0, 0, 0)
   Primary_Mirror_Temp = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10)
   Secondary_Mirror_Temp = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10)
   Scan\_Line\_Corrector\_Temp = (109.650000, -2.3891, 0.029481, -1.9470E-04, 6.2209E-07, -7.5546E-10)
   \texttt{Baffle3\_Tube\_Temp} = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10)
   Baffle2_Support_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
   \texttt{Cal\_Lamp\_Housing\_Temp} = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10)
   Cal_Shutter_Hub_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
   Ambient_Preamp_HighCh_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
   Ambient Preamp LowCh Temp = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10)
   Postamp\_Temp\_B4 = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10)
   \texttt{Cold\_Preamp\_B7\_Temp} = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10)
   Pan_Band_Postamp_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
   Telescope_Housing_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
   Primary_Mirror_Mask_Temp = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10)
   Secondary\_Mirror\_Mask\_Temp = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10)
   \texttt{Telescope\_Baseplate\_Temp} = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10)
   Mem_Heat_Sink_Power_Supply1_Temp = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -1.2745E-04, -1.275E-04, -
5.2512E-10)
  {\tt Mem\_Heat\_Sink\_Power\_Supply2\_Temp} = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -1.2745E-04, -1.275E-04, -1.275E
5.2512E-10)
   Mux1_Power_Supply_Temp = (109.484000, -2.42279, 0.0286100, -1.9000E-04, 6.1400E-07, -7.7500E-10)
   \texttt{Mux1\_Electronics\_Temp} \ = \ (109.484000\,, -2.42279\,, 0.0286100\,, -1.9000E-04\,, 6.1400E-07\,, -7.7500E-10\,)
END_GROUP = THERMISTOR_COEFFS
GROUP = LAMP_CURRENTS
   Tec_Lamp_i1 = (95.449, -0.041194)
   Tec_{Lamp_i2} = (95.449, -0.041194)
END_GROUP = LAMP_CURRENTS
```

```
GROUP = FILL_PATTERNS
    Band_Fill_Pattern = (0,255)
END_GROUP = FILL_PATTERNS
GROUP = REFLECTANCE_RESCALE
    Reflectance_Additive_Factor = (-0.100000,-0.100000,-0.100000,-0.100000,-0.100000)
    Reflectance_Multiplicative_Factor = (2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.000000E-05,2.00000E-05,2.000000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.00000E-05,2.0000E-05,2.00000E-05,2.0000E-05,2.0000E-05,2.0000E-05,2.0000E-05,2.0000E-05,2.0000E-05,2.0000E-05,2.0000E-05,2.0000E-05,2.0000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000E-05,2.000
```

## References

Please see <a href="https://landsat.usgs.gov/glossary-and-acronyms">https://landsat.usgs.gov/glossary-and-acronyms</a> for a list of acronyms.

A useful ODL document is the Jet Propulsion Laboratory (JPL), California Institute of Technology's Planetary Data System Standards Reference, Version 3.2, Chapter 12. Object Description Language Specification and Usage, July 24, 1995. This document is online at <a href="http://pds.ipl.nasa.gov">http://pds.ipl.nasa.gov</a>.