Naïve Bayes classification model for isotopologue detection in LC-HRMS data

Denice van Herwerden, Jake O'Brien, Phil Choi, Kevin V. Thomas, Peter J. Schoenmakers, and Saer Samanipour

30 August 2022

.... Monitoring

Target screening

Suspect screening

Top-down approach Signal

Non-target screening

Bottom-up Approach
Signal

Non-targeted analysis (NTA)

Identify 'all' features

Known & unknown compounds

Bottom-up Approach

Structure Signal

General NTA workflow

Identification

Current Isotopologue detection methods

PREDICTED ISOTOPE PATTERN

Requires:

Information on the molecular formula

Limitation:

- NTA deals with known and unknown compounds
- Different formula can be assigned depending on the database

MASS DIFFERENCE OF 1.0033

Requires:

Arbitrary mass tolerance

Limitation:

- Mass tolerance varies per instrument
- Can result in more false isotopologues when wrongly set

Isotopologue classification model

- No arbitrary thresholds needed
- No prior information required

Naïve Bayes isotopologue classification model

Theoretical assumption

Same molecular formula: C₁₅H₁₂N₂O

Same mass defect (MD)?

: Theoretical isotopologue patterns

For all chemicals

2 691 244 mono-iso pairs

- Training set = 85%
- Test set = 15%

Probabilistic classifier model setup

deMD calculation

Do $C_{15}^{12}H_{12}N_2O$ and $C_{14}^{12}C_1^{13}H_{12}N_2O$ have the same MD?

deMD probability distributions

$$P(A|B) \propto \prod_{er} P(B_{er}|A)$$

It is possible to differentiate between TP and TN isotopologues based on the dEMD values

Model usage

deMD calculation - unknown

Do $C_{15}^{12}H_{12}N_2O$ and $C_{14}^{12}C_1^{13}H_{12}N_2O$ have the same MD?

Isotopologue classification

Classification model performance

Classification model performance

Test set (15% cases)

Obtained score_{FMD} values

True Positive rate =
$$\frac{\text{TP}}{\text{FN+TP}} \cdot 100$$

False Positive rate = $\frac{\text{FP}}{\text{FP}+\text{T}N} \cdot 100$

Optimal score_{EMD} threhshold selected at 0.9997

- $TP_{rate} = 99.0\%$
- $FP_{rate} = 1.8\%$

ROC curve

"In-house" mass difference method

Used by MZmine and CAMERA

Isotopologue detected when remainder < mass tolerance

Comparison with existing method

MASS DIFFERENCE METHOD

TP rate = 16.2 % Mass tolerance = 0.1 mDa

FP rate = 0.02 %

Classification model outperformed the "in-house" mass difference method for theoretical data

CLASSIFICATION MODEL

TP rate = 99.0 % score = 0.9997

FP rate = 1.8 %

Performance for real samples

47 Samples

- 44 wastewater influent
- 3 quality control

LC-HRMS analysis

Feature detection (SAFD)

MZmine

44 Reference isotopic patterns

Compare results

- Time window = 0.1 min
- Mass tolerance = 10 mDa

MS1 feature list

Classification model $score_{EMD} = 0.9997$

1.0033 mass difference (10 mDa)

MS1 feature list

--Annotated isotopes--

Classification model

- $TP_{rate} = 99.8\%$
- $FD_{rate} = 0.5\%$

Mass difference

- $TP_{rate} = 96.3\%$
- $FD_{rate} = 4.8\%$

True Positive rate =
$$\frac{FN}{FN+TP} \cdot 100$$

False Detection rate = $\frac{FP}{FP+TP} \cdot 100$

:: False detected cases

Preceding isotopologues (153 and 154) are either absent or have a lower intensity than the 155.068 peak

Conclusion & outlook

Naïve Bayes classification model based on elemental ratios can be used for the successful detection of isotopologues.

- Outperforming the state of the arts method
- Requiring no prior information on the molecular formula or an arbitrary threshold

Limitations

Cannot distinguish between isotopologues coming from the same monoisotopic mass

Potentials

- Feature reduction for identification in NTA
- Assist in the correct molecular formula assignment

Saer Samanipour

Kevin V. Thomas

Jake W. O'Brien

Peter J. Schoenmakers

Phil M. Choi

Thank you!

Denice van Herwerden d.vanherwerden@uva.nl

Paper

Algorithm on Bitbucket

