# Wind Physics Measurement Project SS 2016

# Lecture 4: Lidar measurements



Marijn Floris van Dooren Julian Hieronimus ForWind – Wind Energy Systems

> marijn.vandooren@uni-oldenburg.de julian.hieronimus@uni-oldenburg.de





### **Outline**

- Introduction
- Continuous-wave and pulsed Lidar
- Vertical profilers
- Advanced applications
- Summary
- Task





### Introduction





## Lidar: Light detection and ranging

- Remote sensing device (like radar)
- Several types and applications of Lidar:
  - Lidar speed guns used by the police
  - Elevation maps by airborne Lidar
  - Lidar for distance measurements in physics and astronomy
  - Lidar for wind energy
- Wind Lidars are Doppler Lidars





## **Lidar systems**









Wind Physics Measurement Project – SS2016 Lecture 4 – Lidar measurements / Page 5





## Measurement of the radial wind speed







### Measurement of the radial wind speed



 $V_{rad} = V \cdot e_{LOS} = [u \ v \ w] \cdot [\cos(\beta) \sin(\alpha) \ \cos(\beta) \cos(\alpha) \ \sin(\beta)]$ 





## Doppler effect: principle

- Afrequency shift is measured if there is relative movement between the wave source and the receiver
- Knowing the frequency of the source  $(f_0)$ , it is is possible to computation relative and orientation measured frequency  $(f_r)$

$$f_r = f_0 \left( 1 + \frac{v}{c} \right) = f_0 + f_D$$

Fig. Charly Whisky





## **Doppler effect: exercise**

$$\lambda_0 = 1.5 \, \mu m$$
 $c = 3 \cdot 10^8 \, \frac{m}{s}$ 
 $v_{rad} = 0.1 \, \frac{m}{s}$ 
 $f_0 = ?$ 
 $f_D = ?$ 
 $f_r = ?$ 

The aerosol does not emit spontaneously light ⇒ the Doppler effect applies on both ways to and from the particles

$$f_r = f_0 + \frac{2v_{rad}}{\lambda_0} = f_0 + f_D$$



## **Doppler effect: exercise**

$$\lambda_0 = 1.5 \, \mu m$$
 $c = 3 \cdot 10^8 \, m/_S$ 
 $v_{rad} = 0.1 \, m/_S$ 
 $f_0 = 2 \cdot 10^{14} = 200 \, THz$ 
 $f_D = 1.33 \cdot 10^5 = 133 \, KHz$ 
 $f_r \approx 200 \, THz$ 

$$f_r = f_0 + \frac{2v_{rad}}{\lambda_0} = f_0 + f_D$$





### Heterodyne detection: the beat tone



t [s]





### Heterodyne detection: application



- A reference beam and the received backscattered light are merged in an optical mixer
- The interferece of the two waves generates a beating signal
- A photo-diode samples the beating signal

 $f_0$ : Laser frequency

 $f_D$  : Doppler frequency





## **Continuous-wave and pulsed Lidar**



#### Laser source

#### Wind-lidar categories:

- Continuous wave,  $cw \rightarrow distance = focus point$
- Pulsed  $\rightarrow$  distance = time of flight





- Range up to a few hundred metres
- Range up to a few kilometres

High sampling rate

$$\Delta r = \frac{4r^2\lambda}{A}$$

- $\Delta r = \frac{4r^2\lambda}{A} \qquad \begin{array}{l} \text{- Focus length } r \\ \text{- Wavelength } \lambda \\ \text{- Aperture Surface} A \end{array}$

$$\Delta r \approx t_p/2$$
 -- Pruissel tenggith  $t_p$ 





## **Continuous wave lidars (i)**

The focus distance defines the position of the measured point position of the measured point position of the measured point be set sequentially.

be set sequentially

- The different focus distances have to depends on entially

- The telescope aperture surface A depends on:
  - The focus distance r
  - The wavelength λ
  - The telescope aperture surface

$$\Delta r = \frac{4r^2\lambda}{A}$$



Fig.: Lindelöw, 2007





## **Continuous wave lidars (ii)**



Slide: M.Harris, Natural Power





### Pulsed lidars (i)



- For each pulse the heterodyne signal is segmented
- For each segment tm (range gate) the power spectrum is computed.
- From the time t the distance of the measurement point is evaluated
- For each range gate, the power spectrum is calculated
- Noise is filtered out by averaging the spectrum of n laser pulses
- The Doppler peaks are identified

Fig.: J.-P. Cariou, Leosphere.





### Pulsed lidars (ii)



Slide: J.-P. Cariou, Leosphere.





### Pulsed lidars (ii)



- The weighting function is the convolution of the pulse and the range gate window
- The weighting function is the same for all range gates
- The probe volume is defined by the weighting function





## Peak detection in the spectra

- There is no unique Doppler frequency directly measured by a Lidar, but a spectrum representing the fluctuations within the probevolume
- The line-of-sight
   The line-of-sight velocity is defined by velocity is defined by a so-called peak a so-called peak detection algorithm, of detection algorithm, of which the most common which the most common is the centroid method: is the centroid method:

$$f_{peak} = \frac{\int f \cdot p(f) df}{\int p(f) df}$$







## Peak detection in the spectra

The spectra are normally only providing the power as a function of an amount of Normally only providing the power as a function of an amount of Normally only providing the power as a function of an amount of Normally only providing the power as a function of an amount of Normally only providing the power as a function of an amount of Normally only providing the power as a function of an amount of Normally only providing the power as a function of an amount of Normally only providing the power as a function of an amount of Normally only providing the power as a function of an amount of Normally only providing the power as a function of an amount of Normally only providing the power as a function of an amount of Normally only providing the power as a function of an amount of Normally only providing the power as a function of amount of Normally only providing the power as a function of amount of Normally only providing the power as a function of amount of Normally only providing the power as a function of the Normally only providing the power as a function of the Normally only providing the power as a function of the Normally only providing the power as a function of the Normally only providing the power as a function of the Normally only providing the power as a function of the Normally only providing the power as a function of the Normally on the Normally of the Normally on the Normally on the Normally on the Normally of Normally on the Normally o

$$\Delta f = \frac{bandwith}{N_{bins}}$$
 
$$\Delta v_{LOS} = \Delta f \cdot \lambda_{laser}$$

The first bin corresponds to zero:

$$v_{LOS} = (bin - 1) \cdot \Delta v_{LOS}$$







## The Carrier-to-Noise-Ratio (CNR)

- It is defined in decibel (dB)
- Ratio between noise and signal power
- It depends on the backscatter intensity
  - ⇒ on the distance of the range gate
  - ⇒ on the visibility
  - ⇒ on the aerosol concentration
- Increase with the number of averaged spectra
- Data below a certain threshold should be discarded



Wind Physics Measurement Project – SS2016 Lecture 4 – Lidar measurements / Page 22





## **Vertical profilers**





## From radial wind to wind vector Vertical profilers

- One measurement = One radial wind speed
- At least three measurements in three not linearly dependent directions are required

Standard approach of vertical profiler:

 cw ⇒ Velocity Azimuth Dislplay (VAD): Radial wind speed at several points scanning a vertical cone (one height per scan)

#### Hypothesis: homogeneous wind field

\* three or five directions are also used







# From radial wind to wind vector Velocity Azimuth Display (VAD, cw)



- Radial wind speed commonly sampled at 50Hz
- There is direction anbiguity (the cosinus is an even function)
- New focus distance required to scan a different height

Fittinotion:

$$v_{rad} = b\cos(\varphi - \theta) + a$$

Heroizia o tatlada and of eneticial adviro in el papare el ci

$$v_{hor} = \frac{b}{\cos(\theta)}$$
;  $w = \frac{-a}{\sin(\theta)}$ 

Wind direction: Wind direction:

$$D = b \pm 180$$

is the azimuth and the cone angle  $\varphi$  is the azimuth and  $\vartheta$  the cone angle







# From radial wind to wind vector Comparison with standard anemometer (calibration)

- 10-min average of the horizontal wind direction and speed
- Scatter plot and linear regression of standard anemometry and lidar statistics
- 10-min average fits well
- For the standard deviation it is not so straight-forward...





Fig.: B. Canadillas

# From radial wind to wind vector: Discrepancies with standard anemometer

- Breakdown of the homogeneity model of the flow complex terrain, wakes, shear, veer, turbulent structures
- Atmospheric conditions

   inhomogeneous scatter distribution, clouds, rain, veer
- Accuracy of device components/installation cone angle, sensing range, tilt mounting,
- Accuracy/installation of standard anemometry









## From radial wind to wind vector The standard deviation...

- generally shows a larger scatter
- sometimes has a positive offset

Why?





## **Advanced applications**





## Lidars, not only profilers Scanning Lidar

- Wind field measurements
- Flexible trajectories
- Vortex detection



**ForWind** 

downstream distance [D]



lateral distance [D]

## Lidars, not only profilers Multi-Lidar

- Retrieval of the 3D wind vector
- Reduced probe volume
- Higher sample rate

#### Three concurrent lidars:

$$V_{rad.1} = [u \ v \ w] \cdot [cos(\beta_1)sin(\alpha_1)]$$

$$V_{rad.2} = [u v w] \cdot [cos(\beta_2)sin(\alpha_2)]$$

$$V_{rad, 3} = [u \ v \ w] \cdot [cos(\beta_3)sin(\alpha_3)$$



$$cos(\beta_1)cos(\alpha_1) sin(\beta_1)$$

$$cos(\beta_2)cos(\alpha_2) sin(\beta_2)$$
]

$$cos(\beta_3)cos(\alpha_3) sin(\beta_3)$$

Linear system in the form  $[A] \cdot b = c$ A meaningful solution exists for three linearly independent  $e_{LOS}$ 





## Lidars, not only profilers 2D SpinnerLidar

- 2D wind fields in the inflow of wind turbines
- Feed-forward rotor control
- Detection of incoming gust events









### Lidars, not only onshore Floating wind profilers

- Easy deployable (compared to a mast)
- Power supply issue (small wind turbines, photovoltaic panels, battery, generator)
- Sea-state compensation (relative speed, beam inclination, wave height)







=ig.3E, Flidar



## **Summary**









- FFT analysis of received signal
- Division of signal in range gates for pulsed Lidar
- Averaging over several pulses and indentification of Doppler Peak

- Lidar make use of the Doppler Effect
- The Doppler effect applies to the radial speed only
- Continuous and pulsed Lidars define range differently







### **Tasks**





#### **Tasks**

- 1. SpinnerLidar Spectral Analysis
  - Peak finding in raw spectra
- 1. Spinnethe veos of each spectra and filter outliers
- 2. Comparison.

  PORCHOMOMOTOW SPONDA (pulsed system)

  Meteorological met-mast anemometry
- 3. 3- Define the of each spectra and filter outliers
  Triple-Lidar systems of WindScanners
  - Plot the Wind field from three  $v_{Los}$  measurements

### Comparison

- Wind Lidar vertical profiler (pulsed system)
- Meteorological met-mast anemometry
- 3. 3D vector calculation
  - Triple-Lidar systems of WindScanners
  - Calculate [u v w] from three measurements













## Task 1 Measurement setup

#### **AV04**

- Turbine closest to FINO1
- Inflow measurements
- 1 Hz scans of wind fields with
   312 Hz samping rate of points
- Measurements at different distances
- Not installed in spinner but on nacelle: BLADE interference







# **Task 2 Measurement description**



Wind Physics Measurement Project – SS2016 Lecture 4 – Lidar measurements / Page 44





## Task 2 Measurement setup

#### **VAD**

- Pulsed system
- 0.4 s acc. time(2.5 Hz)
- 25°/s
- Average over scanned sector (!)

#### **Fino**

- 10-min average wind speed
- 10-min average wind direction







### Task 2

## Hint cosine fitting matlab

Fit function:

$$v_{rad} = b\cos(\varphi - \theta) + a$$

Define full etilone itu l Waitoatoin Matlab

$$VADCos = @(param, \varphi) param(1) * cos(\varphi - param(2)) + param(3)$$

Solve funding in the second sense fit parameters and sense fit parameters and sense fit parameters and sense for the sense of the sens

Rember to Rosenta et a de fina estator vedur spara resulta para meter de la compara de

i.e. startv at  $ues = [2\ 10\ 1]$ 







## Task 3 Measurement setup

#### **Multi-Lidar**

- Timee short-range cw
   WindScammers
- 31D wiind vector measurements att Im= 90 m
- 11000 Hz samping rate
- Locatiom: Test field at DTU Risso
  Campus







