: 23CIESUM ZENWEH FO UNITAINED NO BTON

Inhomogeous Bison powers $\lambda \rightarrow \lambda(t)$.

PDF (inter-event time $\Delta t, t$) = $\lambda(t+\Delta t)$ e t.

(see (lepter 22 anonymous note).

Let in order to generate Δt :

At

accum(Δt) = $\int PDF(\Delta t') \Delta t' = \mathcal{N} \in [0, 1]$.

accum(
$$\Delta t$$
) = $\int_{0}^{\Delta t} PDF(\Delta t') \Delta t' = \mathcal{U} \in [0, 1]$.

$$\int_{0}^{\Delta t} \frac{\lambda(t + \Delta t') \cdot e}{\lambda(t + \Delta t') \cdot e} \frac{\lambda(t') \lambda(t')}{\lambda(t') \lambda(t')} d\Delta t' = \mathcal{U}.$$

 $\begin{cases}
-\int_{t}^{t+\Delta t} \lambda(t') dt' + \int_{t}^{t} \lambda(t') dt' \\
-e
\end{cases}$

$$\log \left(\int_{t}^{t} \chi(t')dt' = -\log(1-n) = -\log(\sqrt{n}).$$

Lo Generate in Uro, 1)

Lo Solve lost eq. for At.

Poisson Pricen es a Markos Procen lexp. Keinels)

$$\lambda(t) = \mu + \sum_{i < t} \alpha e^{-\beta(t-t_i)}$$

$$= \mu + \sum_{i < t_k} \alpha e^{-\beta(t-t_k+t_k-t_i)} = \sum_{i < t_k} \alpha e^{-\beta(t-t_k+t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \sum_{i < t_k} \alpha e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu + e^{-\beta(t-t_k)} = \mu + \sum_{i < t_k} e^{-\beta(t_k-t_i)}$$

$$= \mu +$$

→ Note that after te, we just need:

*
$$\lambda(t_k)$$
 (= $\lambda(t_k^{-1})$) 7 (it doesn't have
* time elapsed (t-t_k) 7 memory yetr t_k)

Simulation method

Recall that in order to find next to often the: $-\log(1-u) = \int_{t_{k}}^{t} \lambda(t') dt'.$ That combined with $\lambda(t) = \mu + e^{-\beta(t-t_{k})} \left(\lambda(t_{k}) + \lambda - \mu\right)$: $u = 1 - e^{-\beta(t-t_{k})} e^{-\beta(t-t_{k})} e^{-\beta(t-t_{k})} dt'$ $u = 1 - e^{-\beta(t-t_{k})} e^{-\beta(t-t_{k})} e^{-\beta(t-t_{k})}$ $u = 1 - e^{-\beta(t-t_{k})} e^{-\beta(t-t_{k})} e^{-\beta(t-t_{k})}$ $u = 1 - e^{-\beta(t-t_{k})} e^{-\beta(t-t_{k})}$ $u = 1 - e^{-\beta(t-t_{k})} e^{-\beta(t-t_{k})}$ $u = 1 - e^{-\beta(t-t_{k})} e^{-\beta(t-t_{k})}$

Then we apply the composition method.

If we take ten = min (ten, ten); then ten ~ P(ten>t).

Prob($t_{ken} = \min(t_{ken}^{(n)}, t_{ken}^{(n)}) \le t$) = 1- Prob($\min(t_{ken}^{(n)}, t_{ken}^{(n)}) > t$)

= 1- Prob($t_{ken}^{(n)} > t$). Prob($t_{ken}^{(n)} > t$) to probe de que el mos programs sea major que t es que ado uno par se perado (prique auros programs que t. (prique auros benen que se majores).

Theu:

*) Couvate
$$t_{ke_1}^{(n)} \sim P(t_{ke_1}^{(n)} > t) = e^{-\mu(t-t_k)}$$
.

P($t_{ke_1}^{(n)} < t) = A - e^{-\mu(t-t_k)} = A_{\perp} \cdot t_{0}A_{\parallel}$.

This is done with:

 $A_{\parallel} = e^{-\mu(t-t_k)}$
 $A_{\parallel} = e^{-\mu(t-t_k)}$
 $A_{\parallel} = e^{-\mu(t-t_k)}$
 $A_{\parallel} = e^{-\mu(t-t_k)}$
 $A_{\parallel} = e^{-\mu(t-t_k)}$

*) Generate $t_{ke_1}^{(n)} \sim P(t_{ke_1}^{(n)} > t) = e^{-(2t_{ke_1}^{(n)} + a - \mu + a)} P(A - e^{-(2t_{ke_1}^{(n)} + a - \mu + a)}) P(A - e^{-(2t_{ke_1}^{(n)} + a - \mu + a)}) P(A - e^{-(2t_{ke_1}^{(n)} + a - \mu + a)})$

At $\frac{e^{-\lambda} \log M_2}{\lambda(t_{ke_1}^{(n)} + a - \mu} = e^{-(2t_{ke_1}^{(n)} - t_k)}$
 $\frac{e^{-\lambda} \log M_2}{\lambda(t_{ke_1}^{(n)} + a - \mu} = e^{-(2t_{ke_1}^{(n)} - t_k)}$

At $\frac{e^{-\lambda} \log M_2}{\lambda(t_{ke_1}^{(n)} + a - \mu} = e^{-(2t_{ke_1}^{(n)} - t_k)}$

Take $t_{ke_1} = \min(t_{ke_1}^{(n)}, t_{ke_1}^{(n)})$.

*) Calculate $\lambda(t_{ke_1}^{(n)}) = \mu + e^{-(2t_{ke_1}^{(n)} - t_k)} (\lambda(t_k^{(n)}) - \mu + a)$
 $= \mu + e^{-(2t_{ke_1}^{(n)} - t_k)} (\lambda(t_k^{(n)}) - \mu + a)$

This is in complete agreement with what is above in the

 $\lambda(t_{u+1}) = \mu + \alpha + e^{-\beta(t_{u+1}-t_u)} (\lambda(t_u^+) - \mu)$

Extension to a sivanist procen:

Morkovan?

Alt) =
$$\mu_{A} + \sum_{\substack{t_{1} = t_{1} = t_{1} = t_{1} = t_{1} = t_{1}}} e^{-\beta (t-t_{1}^{(a)})} + \sum_{\substack{t_{1} = t_{1} = t_{1} = t_{1} = t_{1} = t_{1}}} e^{-\beta (t-t_{1}^{(a)})} + \sum_{\substack{t_{1} = t_{1} = t_{1}}} + \sum_{\substack{t_{1} = t_{1} = t_{1}^{(a)} + \sum_{\substack{t_{1} = t_{1} = t_{1}}} e^{-\beta (t-t_{1}^{(a)})} + \sum_{\substack{t_{1} = t_{1} = t$$

Extension to a sivenist procen:

*) According to Ossios & Zhao, Dut = tut - the is taken as:

$$\Delta_{k+1} = min \left\{ \Delta_{k+1}^{(A)}, \Delta_{k+1}^{(2)} \right\}$$
, with $\Delta_{k+1}^{(j)}$ generated as usual:

$$\Delta_{k+1}^{(j)} = \min \left(-\frac{\Lambda}{\Lambda_j} \log u_1^{(j)} \right) - \beta \log \left(\Lambda + \frac{\beta \log u_2^{(j)}}{3_j(t_k^+) - \mu_j} \right)$$

And Check what procen (l) arregards to Δ_{k+1} (= Δ_{k+1}).

*) Update true for next count:
$$t_k \rightarrow t_{k+1} = t_k + \Delta_{k+1}$$
.

*) Update
$$3j(t_{k+1}) = (3j(t_{k}) - \mu j) e^{-\beta(t_{k+1} - t_{k})} + \mu j + d_{k-1}j$$
.