VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT

on

Artificial Intelligence (23CS5PCAIN)

Submitted by

Pooja M (1BM22CS195)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019
Sep-2024 to Jan-2025

B.M.S. College of Engineering,

Bull Temple Road, Bangalore 560019
(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Artificial Intelligence (23CS5PCAIN)" carried out by **Pooja M (1BM22CS195)**, who is a bonafide student of **B.M.S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Lab report has been approved as it satisfies the academic requirements in respect of an Artificial Intelligence (23CS5PCAIN) work prescribed for the said degree.

Sneha S Bagalkot	Dr. Kavitha Sooda
Assistant Professor	Professor & HOD
Department of CSE, BMSCE	Department of CSE, BMSCE

Index

	1	T	1
Sl. No.	Date	Experiment Title	Page No.
1	24-6-2024	Tic –Tac –Toe Game	03
2	01-10-2024	Vacuum cleaner	08
3	08-10-2024	8 Puzzle Game Using DFS and Manhattan Distance	12
4	15-10-2024	8 Puzzle Game Using A* and 8 Puzzle Game Using IDDFS On a Graph	19
5	22-10-2024	Simulated Annealing	28
6	29-10-2024	Implementing A* and hill climbing on 8 Queens	33
7	12-11-2024	Entailment Using Literals	40
8	19-11-2024	FOL using Unification	46
9	26-11-2024	Unification	51
10	03-12-2024	Tic-Tac-Toe using MinMax and 8 Queens using Alpha Beta pruning	56

 $\underline{GITHUB\ LINK:}\ https://github.com/pooja195manjunath/AI$

Program 1-Tic Tac Toe

Algorithm

Section 1	LAB-I
1	The Tac Toca
TO NO.	Algorithm
14	In thalise the bame.
	"Create an empty sk 3 Goard
	Dyne places " Dier as 'X' and languages 'd'
9	Display he Board
	Print in wwent state of the board
3.	Check for Winner.
	· Define a punction but shows
-	. All some for three nathing symbols
to Many Co.	all columns for three matching symbols
2.00	· All diagonals for the matching 3 symbols
	I notes jound then return where
	of not found then return home
4.	Available Moves
1	"Define question to return a list of empty possions
12	
5-	Make Move.
	" Define a function toplace a player's eymbol on the ward
	ward
6.	Compared there logic
3 19	a check but a usone as more of
1	- I no winning more thrik love blorgern move assistix
	· I willow solely various available position
9	"I no wining more check for a blocking more quant's." I wither, selet a vardom available position. User Hore Logic.
	Prompt the later to enter a now and column.
	" Va lida te Uni inpirt
	· Ensure the input is with in the range (0-2) · Ensure the selected position it empty.
	· Ensure the selected ansition it empty
	y valid, make the move
8- Hc	in Game Loop
	Repeat until draw
	· Deeplay the board
	sispend to user lundon
	of the the weeks turn, Then all most function in
The Real Property lies	V
	"I it computer turn, then call computer more fund
1 1 2 2 3	chand I want alter and Diener A.
	"if winner existing the game and
7000	denner exist not e in gain at a
	aunnouse the winner
The second of	space in the board then announce
	place in the board then announce
C TOTAL PROPERTY.	draw a not end the game.
9.	End glame.
	· Display Kujiral board 3 late
	· Print a methage indiating whether there
	was a winner or git was draw.

```
import random
def initialize_board():
  return [[' ' for _ in range(3)] for _ in range(3)]
def display_board(board):
  for row in board:
     print("|'.join(row))
     print('-' * 5)
def check_winner(board):
  for row in board:
     if row[0] == row[1] == row[2] != ' ':
       return row[0]
  for col in range(3):
     if board[0][col] == board[1][col] == board[2][col] != ' ':
       return board[0][col]
  if board[0][0] == board[1][1] == board[2][2] != ' ':
     return board[0][0]
  if board[0][2] == board[1][1] == board[2][0] != ' ':
     return board[0][2]
  return None
def available_moves(board):
  return [(i, j) for i in range(3) for j in range(3) if board[i][j] == '']
def check_two_in_a_row(board, player):
  for row in range(3):
     if board[row].count(player) == 2 and board[row].count('') == 1:
       return row, board[row].index(' ')
  for col in range(3):
```

```
if [board[row][col] for row in range(3)].count(player) == 2:
       empty_index = [row for row in range(3) if board[row][col] == '']
       if empty_index:
         return empty_index[0], col
  if [board[i][i] for i in range(3)].count(player) == 2:
    empty_index = [i for i in range(3) if board[i][i] == ' ']
    if empty_index:
       return empty_index[0], empty_index[0]
  if [board[i][2 - i] for i in range(3)].count(player) == 2:
    empty_index = [i for i in range(3) if board[i][2 - i] == ' ']
    if empty_index:
       return empty_index[0], 2 - empty_index[0]
  return None
def make_move(board, player, move):
  board[move[0]][move[1]] = player
def computer_move(board):
  move = check_two_in_a_row(board, 'O')
  if move:
    make_move(board, 'O', move)
    return
  move = check_two_in_a_row(board, 'X')
  if move:
    make_move(board, 'O', move)
    return
  moves = available_moves(board)
  if moves:
    move = random.choice(moves)
    make move(board, 'O', move)
def user_move(board):
```

```
while True:
     try:
       row = int(input("Enter row (0-2): "))
       col = int(input("Enter column (0-2): "))
       if board[row][col] == ' ':
         make_move(board, 'X', (row, col))
         return
       else:
          print("That spot is already taken. Try again.")
     except (ValueError, IndexError):
       print("Invalid input. Please enter numbers between 0 and 2.")
def play_game():
  board = initialize_board()
  players = ['X', 'O']
  current_player = 0
  for _ in range(9):
     display_board(board)
     if current_player == 0:
       user_move(board)
     else:
       computer_move(board)
     winner = check_winner(board)
     if winner:
       display_board(board)
       print(f"Player {winner} wins!")
       return
    current_player = 1 - current_player
  display_board(board)
  print("It's a draw!")
play_game()
```

```
print("Pooja M")
print("1BM22CS195")
```

```
Output:-
     === RESTART: C:/Users/User/AppData/Local/Programs/Python/Python311/AI lab1.py =
     11
      1.1
      1.1
     Enter row (0-2): 1
Enter column (0-2): 1
      1.1
      |X|
      1.1
      1.1
     OIXI
      1.1
     Enter row (0-2): 1
Enter column (0-2): 2
      1.1
     OIXIX
      1.1
      1.1
     OIXIX
     01 1
     Enter row (0-2): 1
    Enter column (0-2): 0
That spot is already taken. Try again.
Enter column (0-2): 1
That spot is already taken. Try again.
Enter row (0-2): 2
Enter column (0-2): 1
1.1
OIXIX
OIXI
01 1
OIXIX
OIXI
Player O wins!
```

Program 2 - Vacuum Cleaner

Algorithm:


```
class VacuumCleaner:
  def __init__(self, grid):
     self.grid = grid
     self.position = (0, 0)
  def clean(self):
     x, y = self.position
     if self.grid[x][y] == 1:
       print(f"Cleaning position { self.position }")
        self.grid[x][y] = 0
     else:
        print(f"Position {self.position} is already clean")
  def move(self, direction):
     x, y = self.position
     if direction == 'up' and x > 0:
        self.position = (x - 1, y)
     elif direction == 'down' and x < len(self.grid) - 1:
        self.position = (x + 1, y)
     elif direction == 'left' and y > 0:
        self.position = (x, y - 1)
     elif direction == 'right' and y < len(self.grid[0]) - 1:
        self.position = (x, y + 1)
     else:
        print("Move not possible")
  def run(self):
     rows = len(self.grid)
     cols = len(self.grid[0])
     for i in range(rows):
        for j in range(cols):
```

```
self.position = (i, j)
          self.clean()
    print("Final grid state:")
    for row in self.grid:
       print(row)
def get_dirty_coordinates(rows, cols, num_dirty_cells):
  dirty_cells = set()
  while len(dirty_cells) < num_dirty_cells:
    try:
       coords = input(f"Enter coordinates for dirty cell {len(dirty_cells) + 1} (format: row,col): ")
       x, y = map(int, coords.split(','))
       dirty_cells.add((x, y))
       else:
         print("Coordinates are out of bounds. Try again.")
    except ValueError:
       print("Invalid input. Please enter coordinates in the format: row,col")
  return dirty_cells
rows = int(input("Enter the number of rows: "))
cols = int(input("Enter the number of columns: "))
num_dirty_cells = int(input("Enter the number of dirty cells: "))
if num_dirty_cells > rows * cols:
  print("Number of dirty cells exceeds total cells in the grid. Adjusting to maximum.")
  num_dirty_cells = rows * cols
initial_grid = [[0 for _ in range(cols)] for _ in range(rows)]
dirty_coordinates = get_dirty_coordinates(rows, cols, num_dirty_cells)
```

```
for x, y in dirty_coordinates:
    initial_grid[x][y] = 1

vacuum = VacuumCleaner(initial_grid)

print("Initial grid state:")

for row in initial_grid:
    print(row)

vacuum.run()

print("Pooja M")

print("1BM22CS195")

Output:
```

Program 3 - 8 Puzzle Game Using DFS

Algorithm:


```
class PuzzleState:
  def __init__(self, board, empty_pos, moves=[]):
     self.board = board
     self.empty_pos = empty_pos
     self.moves = moves
  def is_goal(self):
     return self.board == [1, 2, 3, 4, 5, 6, 7, 8, 0]
  def get_possible_moves(self):
     x, y = self.empty_pos
     moves = []
     for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
       nx, ny = x + dx, y + dy
       if 0 \le nx \le 3 and 0 \le ny \le 3:
          new_board = self.board[:]
           new_board[x * 3 + y], new_board[nx * 3 + ny] = new_board[nx * 3 + ny], new_board[x * 3 + ny]
+y
          moves.append((new_board, (nx, ny)))
     return moves
def dfs(initial_state):
  stack, visited = [initial_state], set()
  while stack:
     current_state = stack.pop()
     if current_state.is_goal():
       return current_state.moves
     visited.add(tuple(current_state.board))
     for new_board, new_empty_pos in current_state.get_possible_moves():
       new_state = PuzzleState(new_board, new_empty_pos, current_state.moves + [new_board])
       if tuple(new_board) not in visited:
          stack.append(new_state)
  return None
def print_matrix(board):
```

```
for i in range(0, 9, 3):
     print(board[i:i+3])
  print()
def main():
  initial\_board = [1, 2, 3, 4, 0, 5, 7, 8, 6]
  empty_pos = initial_board.index(0)
  initial_state = PuzzleState(initial_board, (empty_pos // 3, empty_pos % 3))
  print("Initial state:")
  print_matrix(initial_board)
  solution = dfs(initial_state)
  if solution:
     print("Solution found:")
     for step in solution:
       print_matrix(step)
  else:
     print("No solution found.")
if name == " main ":
  main()
print("Pooja M")
print("1BM22CS195")
Output:
```

```
main()
Output:-
      Type "help", "copyright", "credits" or "license()" for mor
>>>
           == RESTART: C:/Users/User/AppData/Local/Programs/Python
      Initial state:
      [1, 2, 3]
      [4, 0, 5]
      [7, 8, 6]
      Solution found:
      [1, 2, 3]
      [4, 5, 0]
[7, 8, 6]
      [1, 2, 3]
      [4, 5, 6]
[7, 8, 0]
>>>
Code:-
Using Manhattan Distance
class SlidingPuzzleSolver:
  def __init__(self, initial_state):
    self.initial_state = initial_state
    self.goal_state = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
  def manhattan_distance(self, state):
    distance = 0
    for i in range(3):
      for j in range(3):
        if state[i][j] != 0:
           goal_i = (state[i][j] - 1) // 3
          goal_j = (state[i][j] - 1) % 3
          distance += abs(i - goal_i) + abs(j - goal_j)
    return distance
```

8 Puzzle Game Using Manhattan Distance:

Algorithm:

Aigui	1411111.
-	Algorithm wing Mannastan distance
	Hillianten
-	the state of the sacral state and agric - A
-	star hart alpha pure 12 Extate a
	god state of the
	Start with the sural state and organical goal state of the pure 12 Extate a provery queme
- 4	161 - 61+ 6(2)
2	- Start rate weed by Algorithm
-	Jan = g(a) + h(a) used & nigorithon Jan = manus w & btopica ib the way
	gin = quality
	Ala) = Mr francitie value ming
	4101 = 100
	Canallas),
_	1 1 1 3 1 0
3	Manhattan distance aluation.
	calculate the Sum between its
	whent parition and it goal position
4.	* while the printy from the
	* while the owing queen empty
	FARA W. A. A. C.
-	DIAME TO MAKE DISTRICT
_	T state of me govern me
	right.
	veightant of wound of rooms
	right.
	. For out of the reightour calculate the
	The maker of earn atival and it
	The the and down
	path to whather then added of the
	pronty.
-	T 2 12 0
5	Termination. Forzel gets toked when the goal it ashing
- 1	forzel gets topical when the goal it will

```
def manhattan_distance(state, goal_state):
  distance = 0
  for i in range(3):
     for j in range(3):
        if state[i][j] != 0:
           goal_i = (state[i][j] - 1) // 3
           goal_j = (state[i][j] - 1) \% 3
           distance += abs(i - goal_i) + abs(i - goal_j)
  return distance
def get_neighbors(state):
  i, j = next((i, j) \text{ for } i \text{ in } range(3) \text{ for } j \text{ in } range(3) \text{ if } state[i][j] == 0)
  moves = [(i-1, j), (i+1, j), (i, j-1), (i, j+1)]
  return [swap(state, i, j, x, y) for x, y in moves if 0 \le x \le 3 and 0 \le y \le 3]
def swap(state, i1, j1, i2, j2):
  new_state = [row[:] for row in state]
  new_state[i1][j1], new_state[i2][j2] = new_state[i2][j2], new_state[i1][j1]
  return new_state
def dfs_with_manhattan(state, goal, visited=set()):
  if state == goal:
     return [state]
  visited.add(str(state))
  neighbors = sorted(get_neighbors(state), key=lambda x: manhattan_distance(x, goal))
  for neighbor in neighbors:
     if str(neighbor) not in visited:
        path = dfs_with_manhattan(neighbor, goal, visited)
        if path:
           return [state] + path
  return None
```

```
# Take user input for initial state
initial_state = [[int(x) for x in input(f"Enter row {i+1}: ").split()] for i in range(3)]
goal_state = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]

solution = dfs_with_manhattan(initial_state, goal_state)
if solution:
    print("Solution found:")
    for state in solution:
        print(*state, sep=\n', end=\n\n')
else:
    print("No solution found.")
print("Pooja M")
print("1BM22CS195")
```

```
if solution:
    print("Solution found:")
    for state in solution:
        print(*state, sep='\n', end='\n\n')
else:
    print("No solution found.")
Output:-

>>

==== RESTART: C:/Users/User/AppData/Local/Programs/I
Enter row 1: 1 0 3
Enter row 2: 4 2 6
Enter row 3: 7 5 8
Solution found:
[1, 0, 3]
[4, 2, 6]
[7, 5, 8]
[1, 2, 3]
[4, 0, 6]
[7, 5, 8]
[1, 2, 3]
[4, 5, 6]
[7, 0, 8]
[1, 2, 3]
[4, 5, 6]
[7, 0, 8]
```

Program 4 - 8 Puzzle Game Using A*

Algorithm:

Code:

import heapq

```
# Goal state where blank (0) is the first tile
goal_state = [
    [0, 1, 2],
    [3, 4, 5],
    [6, 7, 8]
]
```

```
# Helper functions
def flatten(puzzle):
  return [item for row in puzzle for item in row]
def find_blank(puzzle):
  for i in range(3):
     for j in range(3):
       if puzzle[i][j] == 0:
          return i, j
def misplaced_tiles(puzzle):
  flat_puzzle = flatten(puzzle)
  flat_goal = flatten(goal_state)
  return sum([1 for i in range(9) if flat_puzzle[i] != flat_goal[i] and flat_puzzle[i] != 0])
def generate_neighbors(puzzle):
  x, y = find\_blank(puzzle)
  neighbors = []
  moves = [(-1, 0), (1, 0), (0, -1), (0, 1)]
  for dx, dy in moves:
     nx, ny = x + dx, y + dy
     if 0 \le nx \le 3 and 0 \le ny \le 3:
       new_puzzle = [row[:] for row in puzzle]
       new_puzzle[x][y], new_puzzle[nx][ny] = new_puzzle[nx][ny], new_puzzle[x][y]
       neighbors.append(new_puzzle)
  return neighbors
def is_goal(puzzle):
  return puzzle == goal_state
def print_puzzle(puzzle):
```

```
for row in puzzle:
     print(row)
  print()
def a_star_misplaced_tiles(initial_state):
  # Priority queue (min-heap) and visited states
  frontier = []
  heapq.heappush(frontier, (misplaced_tiles(initial_state), 0, initial_state, []))
  visited = set()
  while frontier:
     f, g, current_state, path = heapq.heappop(frontier)
     # Print the current state
     print("Current State:")
     print_puzzle(current_state)
     h = misplaced_tiles(current_state)
     print(f''g(n) = \{g\}, h(n) = \{h\}, f(n) = \{g + h\}'')
     print("-" * 20)
     if is_goal(current_state):
        print("Goal reached!")
       return path
     visited.add(tuple(flatten(current_state)))
     for neighbor in generate_neighbors(current_state):
       if tuple(flatten(neighbor)) not in visited:
          h = misplaced_tiles(neighbor)
          heapq.heappush(frontier, (g + 1 + h, g + 1, neighbor, path + [neighbor]))
  return None # No solution found
```

Initial puzzle state

```
initial_state = [
    [1, 2, 0],
    [3, 4, 5],
    [6, 7, 8]
]

solution = a_star_misplaced_tiles(initial_state)
if solution:
    print("Solution found!")
else:
    print("No solution found.")
print("Pooja M")
print("1BM22CS195")
```

```
Current State:
                                           Current State:
                                                                              Current State:
    [1, 2, 3]
[8, 0, 4]
[7, 6, 5]
                                                                              [2, θ, 3]
[1, 8, 4]
                                           [8, 6, 4]
[7, 0, 5]
    g(n) = \theta, h(n) = 5, f(n) = 5
                                                                             g(n) = 3, h(n) = 4, f(n) = 7
                                           g(n) = 1, h(n) = 6, f(n) = 7
    Current State:
                                           Current State:
                                                                              Current State:
                                           [8, 2, 4]
                                                                              [8, 4, 3]
    g(n) = 1, h(n) = 4, f(n) = 5
                                                                              [7, 6, 5]
                                           [7, 6, 5]
    Current State:
                                                                              g(n) = 4, h(n) = 3, f(n) = 7
                                           g(n) = 2, h(n) = 5, f(n) = 7
    [8, 4, 3]
[7, 6, 5]
                                           Current State:
                                                                              Current State:
                                           [0, 2, 3]
    g(n) = 2, h(n) = 3, f(n) = 5
                                                                              [1, 0, 4]
                                           [1, 8, 4]
    Current State:
                                           [7, 6, 5]
    [8, 2, 4]
                                                                              g(n) = 4, h(n) = 3, f(n) = 7
                                           g(n) = 2, h(n) = 5, f(n) = 7
    [7, 6, 5]
                                                                              Current State:
                                           Current State:
                                           [1, 2, 3]
[8, 4, 5]
    Current State:
                                                                              [1, 4, 0]
                                           [7, 6, 8]
    [0, 8, 4]
    [7, 6, 5]
                                                                              g(n) = 5, h(n) = 2, f(n) = 7
                                           g(n) = 2, h(n) = 5, f(n) = 7
    g(n) = 1, h(n) = 5, f(n) = 6
                                                                              Current State:
                                           Current State:
    Current State:
    [1, 0, 2]
[8, 4, 3]
                                                                              [1, 4, 3]
                                           [8, 2, 4]
                                                                              [7, 6, 5]
                                                                              g(n) = 6, h(n) = 1, f(n) = 7
    g(n) = 3, h(n) = 3, f(n) = 6
                                           g(n) = 2, h(n) = 5, f(n) =
```

```
[1, 4, 2]
[8, 0, 3]
[7, 6, 5]
                                                                                             Current State:
 Current State:
[1, 2, 3]
[7, 8, 4]
[0, 6, 5]
                                                                                             [8, 4, 5]
[7, 0, 6]
                                              g(n) = 4, h(n) = 4, f(n) = 8
                                                                                             g(n) = 3, h(n) = 6, f(n) = 9
                                              Current State:
 g(n) = 2, h(n) = 6, f(n) = 8
                                                                                             Current State:
                                              [1, 8, 4]
[7, 6, 5]
                                                                                             [1, 3, 4]
[8, 0, 2]
[7, 6, 5]
 Current State:
 [8, 2, 0]
                                              g(n) = 4, h(n) = 4, f(n) = 8
                                                                                             g(n) = 4, h(n) = 5, f(n) = 9
                                              Current State:
 g(n) = 3, h(n) = 5, f(n) = 8
                                                                                             Current State:
                                              [0, 1, 4]
[7, 6, 5]
                                                                                             [8, 1, 3]
[2, 0, 4]
[7, 6, 5]
 Current State:
[8, 1, 3]
[0, 2, 4]
[7, 6, 5]
                                              Current State:
                                                                                             Current State:
                                              [0, 4, 3]
[7, 6, 5]
 g(n) = 3, h(n) = 5, f(n) = 8
                                                                                             [1, 4, 2]
[0, 8, 3]
 Current State:
 [1, 4, 2]
                                                                                             g(n) = 5, h(n) = 4, f(n) = 9
 [8, 0, 3]
                                              Current State:
 [7, 6, 5]
                                                                                             Current State:
                                              [8, 6, 4]
[0, 7, 5]
 g(n) = 4, h(n) = 4, f(n) = 8
                                                                                             [1, 8, 0]
[7, 6, 5]
                                              g(n) = 2, h(n) = 7, f(n) = 9
 Current State:
                                                                                             g(n) = 5, h(n) = 4, f(n) = 9
                                              Current State:
[1, 8, 4]
[7, 6, 5]
                                                                                             Current State:
                                              [8, 6, 4]
                                                                                            [2, 8, 3]
[1, 6, 4]
[7, 0, 5]
                                              [7, 5, 0]
g(n) = 4, h(n) = 4, f(n) = 8
                                             g(n) = 2, h(n) = 7, f(n) = 9
                                                                                      [1, 4, 3]
[7, 6, 5]
                                           Current State:
g(n) = 5, h(n) = 4, f(n) = 9
                                           [2, 0, 8]
Current State:
[8, 1, 3]
[2, 4, θ]
[7, 6, 5]
                                                                                      Current State:
                                                                                     [8, 0, 1]
[2, 4, 3]
[7, 6, 5]
                                           g(n) = 7, h(n) = 2, f(n) = 9
g(n) = 5, h(n) = 4, f(n) = 9
                                           Current State:
                                           [8, 0, 1]
                                                                                     [0, 8, 1]
[2, 4, 3]
[7, 6, 5]
[2, 8, 3]
[1, 4, 5]
                                           [2, 4, 3]
                                           g(n) = 7, h(n) = 2, f(n) = 9
g(n) = 6, h(n) = 3, f(n) = 9
                                                                                     Current State:
[2, 8, 1]
[0, 4, 3]
[7, 6, 5]
                                           Current State:
Current State:
                                           [0, 8, 1]
[8, 1, 0]
                                           [2, 4, 3]
[7, 6, 5]
[7, 6, 5]
                                                                                     Goal reached!
Solution found!
g(n) = 6, h(n) = 3, f(n) = 9
                                           g(n) = 8, h(n) = 1, f(n) = 9
```

8 Puzzle Game Using IDDFS On a Graph

	Date Pege 4
1-	Pseudo wde: - Ar & puzzke. Initialize priority grun with initial, Set 8(n) = 0 Set h(n): noof misplaced tirl.
٤.	Set h(n) = g(h) + h(n) Set h(n) = g(h) + h(n) while pres 1 = 0: * Remove pur state = "m gonder f(n) * I way state = good state. - Remove & Sel
3	- Reto Set un me new state - Calmare glas in(n), f(n) J good reched then veturn phisology
	pseudoudz :- A* IDFS.
- 1.	Function IDFS (root, goal) for d = 0 fo a: Vey = DLS (root, goal, or Vey + NVI: refurn ref
	Function Drs (mode, good, d) i] d == 0 and node == go
	if dept 20: for choid in nod choid ref = DLS (choid go if vet F NUL: return rely return rely
	The state of the s


```
class Graph:
    def __init__(self):
        self.adjacency_list = {}

    def add_edge(self, u, v):
        if u not in self.adjacency_list:
            self.adjacency_list[u] = []
        self.adjacency_list[u].append(v)

    def depth_limited_dfs(self, node, goal, limit, visited):
        if limit < 0:
            return False
        if node == goal:</pre>
```

```
return True
     visited.add(node)
     for neighbor in self.adjacency_list.get(node, []):
       if neighbor not in visited:
         if self.depth_limited_dfs(neighbor, goal, limit - 1, visited):
            return True
     visited.remove(node) # Allow revisiting for the next iteration
     return False
  def iddfs(self, start, goal, max_depth):
     for depth in range(max_depth + 1):
       visited = set()
       if self.depth_limited_dfs(start, goal, depth, visited):
          return True
     return False
def main():
  graph = Graph()
  # Input number of edges
  num_edges = int(input("Enter the number of edges: "))
  # Input edges
  for _ in range(num_edges):
     edge = input("Enter an edge (format: A B): ").split()
     graph.add_edge(edge[0], edge[1])
  start_node = input("Enter the start node: ")
  goal_node = input("Enter the goal node: ")
  max_depth = int(input("Enter the maximum depth for IDDFS: "))
  if graph.iddfs(start_node, goal_node, max_depth):
     print(f"Goal node {goal_node} found!")
  else:
```

print(f"Goal node {goal_node} not found within depth {max_depth}.")

```
if __name___ == "__main__":
    main()
print("Pooja M")
print("1BM22CS195")
```

```
Enter the number of edges: 14
Enter an edge (format: A B): y p
Enter an edge (format: A B): y x
Enter an edge (format: A B): p r
Enter an edge (format: A B): p s
Enter an edge (format: A B): x f
Enter an edge (format: A B): x h
Enter an edge (format: A B): r b
Enter an edge (format: A B): r c
Enter an edge (format: A B): s X
Enter an edge (format: A B): s z
Enter an edge (format: A B): f u
Enter an edge (format: A B): f e
Enter an edge (format: A B): h 1
Enter an edge (format: A B): h w
Enter the start node: y
Enter the goal node: f
Enter the maximum depth for IDDFS: 3
Goal node f found!
```

Program 5 - Simulated Annealing Algorithm

Algorithm:

6	nm:
	Simulated Annealing Algorithm:
_	1 To the detail
	random solution.
	andom solution. R. Evaluate the objective junction. This is to either minimes or many
	3. Crenciate a new solution inthe
	reighorhood of the workers soluter
	- multilation can be done by
	random value from the urvery
	Polition, this chair that H.
	new solution it closer to the way
	4. Compare the pare solution town
	a. if me now solution it better
	b. if the new solution it works are
	the aneptance probability it gives by p = e-At / F. (new sol)
	by P = en . Af (mrz so
	1 - cover
	5. Gradually lower my temperature on
	- This prover is known at wolling and it ensures that over time
	about which solutions paugex
	about which solution pality


```
Code:
import numpy as np
import math
import random
def objective_function(x):
  """Objective function to minimize: f(x) = x^2"""
  return x ** 2
def simulated_annealing(initial_state, initial_temp, cooling_rate, max_iterations):
  """Simulated Annealing algorithm to find the minimum of the objective function."""
  current_state = initial_state
  current_energy = objective_function(current_state)
  best_state = current_state
  best_energy = current_energy
  temp = initial_temp
  for iteration in range(max_iterations):
     # Generate a new candidate state by perturbing the current state
     candidate_state = current_state + random.uniform(-1, 1)
     candidate_energy = objective_function(candidate_state)
     # Calculate energy difference
     energy_diff = candidate_energy - current_energy
     # If the candidate state is better, or accepted with a certain probability
     if energy_diff < 0 or random.uniform(0, 1) < math.exp(-energy_diff / temp):
       current_state = candidate_state
       current_energy = candidate_energy
     # Update best state found
```

if current_energy < best_energy:

```
best_state = current_state
       best_energy = current_energy
    # Cool down the temperature
     temp *= cooling_rate
     # Print the current state and temperature for debugging
           print(f"Iteration {iteration + 1}: Current State = {current_state:.4f}, Current Energy =
{current_energy:.4f}, Temperature = {temp:.4f}")
  return best_state, best_energy
# Get user input for parameters
try:
  initial_state = float(input("Enter the initial state (starting point): "))
  initial_temp = float(input("Enter the initial temperature: "))
  cooling_rate = float(input("Enter the cooling rate (between 0 and 1): "))
  max_iterations = int(input("Enter the number of iterations: "))
  # Validate cooling rate
  if cooling_rate <= 0 or cooling_rate >= 1:
     raise ValueError("Cooling rate must be between 0 and 1.")
  # Execute the simulated annealing algorithm
        best_state, best_energy = simulated_annealing(initial_state, initial_temp, cooling_rate,
max_iterations)
  # Output the best state and energy found
  print(f"Best State: {best_state:.4f}, Best Energy: {best_energy:.4f}")
except ValueError as e:
  print(f"Invalid input: {e}")
```

print("Pooja M")
print("1BM22CS195")

```
Free Enter the initial state (starting point): 10
     Enter the initial temperature: 12
     Enter the cooling rate (between 0 and 1): 0.2
     Enter the number of iterations: 25
     Iteration 1: Current State = 9.2736, Current Energy = 85.9995, Temperature = 2.4000
     Iteration 2: Current State = 9.2528, Current Energy = 85.6140, Temperature = 0.4800
     Iteration 3: Current State = 8.4448, Current Energy = 71.3150, Temperature = 0.0960
     Iteration 4: Current State = 8.0267, Current Energy = 64.4277, Temperature = 0.0192
     Iteration 5: Current State = 8.0267, Current Energy = 64.4277, Temperature = 0.0038
Iteration 6: Current State = 7.1132, Current Energy = 50.5978, Temperature = 0.0008
     Iteration 7: Current State = 7.0877, Current Energy = 50.2356, Temperature = 0.0002
     Iteration 8: Current State = 7.0877, Current Energy = 50.2356, Temperature = 0.0000
     Iteration 9: Current State = 6.8309, Current Energy = 46.6618, Temperature = 0.0000
     Iteration 10: Current State = 6.8309, Current Energy = 46.6618, Temperature = 0.0000 Iteration 11: Current State = 6.8309, Current Energy = 46.6618, Temperature = 0.0000
     Iteration 12: Current State = 6.1567, Current Energy = 37.9046, Temperature = 0.0000
     Iteration 13: Current State = 6.1567, Current Energy = 37.9046, Temperature = 0.0000
     Iteration 14: Current State = 6.1567, Current Energy = 37.9046, Temperature = 0.0000
Iteration 15: Current State = 6.1567, Current Energy = 37.9046, Temperature = 0.0000
     Iteration 16: Current State = 6.1567, Current Energy = 37.9046, Temperature = 0.0000
     Iteration 17: Current State = 6.1567, Current Energy = 37.9046, Temperature = 0.0000
     Iteration 18: Current State = 6.1567, Current Energy = 37.9046, Temperature = 0.0000
     Iteration 19: Current State = 6.1567, Current Energy = 37.9046, Temperature = 0.0000 Iteration 20: Current State = 5.2467, Current Energy = 27.5274, Temperature = 0.0000
     Iteration 21: Current State = 5.2467, Current Energy = 27.5274, Temperature = 0.0000
     Iteration 22: Current State = 5.2467, Current Energy = 27.5274, Temperature = 0.0000
     Iteration 23: Current State = 4.5909, Current Energy = 21.0761, Temperature = 0.0000
     Iteration 24: Current State = 4.3835, Current Energy = 19.2152, Temperature = 0.0000 Iteration 25: Current State = 3.5823, Current Energy = 12.8326, Temperature = 0.0000
     Best State: 3.5823, Best Energy: 12.8326
```

Program 6 - Implementing A* on 8 Queens

Algorithm:

Aigurium	
	Algorithm by a a
	LAB-6.
	Ala ay
	11 governm for 8 Questi
1	The work with the
	Algorithm for 8 Queen's wing At. Initialization:
	*Place
	THE queens randomly 1.04
	*Place guccons randomly, with one guccon
	* Initialize the priority grave with the start Expand roded: December 1982
	rade and a pronty grave with the start
	= 1 and its heuristic
20	Expand rodes :-
	AD cancer the and
	the provery queue.
	the provery queue to the lowest frame from
	+ If the mode has no worken or
	# of the mode has no writing (n=0), return.
2	Caeners to e solutions.
20	Generate Successions: Foreach green, move it to any war withing i & when o
	for each green move it to any size in
	i de whom o
	· Fau ·
-	g value and the to value (no of experting
	g value and the for value / no of consisting
	queens)
4	
- 1.	Long her societors into brion il gomeni.
	Purh the Surretors ento prionoty Quene: J = 9 + h jor cach surretors and add I've m to prionoty quen.
	Horm La compate quely
	the state of the
	g = wit to reach far wrient state from the
	Stort state.
	D. 191 Solution
50	Repeat unitel Solution
	- Continue expanding and of and control
	Sucuro y until a solution ippound.
	out the same

```
import numpy as np
import heapq

class Node:
    def __init__(self, state, g, h):
        self.state = state # Current state of the board
        self.g = g  # Cost to reach this state
        self.h = h  # Heuristic cost to reach goal
        self.f = g + h  # Total cost

def __lt__(self, other):
```

```
def heuristic(state):
  # Count pairs of queens that can attack each other
  attacks = 0
  for i in range(len(state)):
     for j in range(i + 1, len(state)):
       if state[i] == state[j] or abs(state[i] - state[j]) == j - i:
          attacks += 1
  return attacks
def a_star_8_queens():
  initial_state = [-1] * 8 # -1 means no queen placed
  open_list = []
  closed\_set = set()
  initial_h = heuristic(initial_state)
  heapq.heappush(open list, Node(initial state, 0, initial h))
  while open_list:
     current_node = heapq.heappop(open_list)
     current_state = current_node.state
     closed_set.add(tuple(current_state))
     # Check if we reached the goal
     if current_node.h == 0:
       return current_state
     for col in range(8):
       if current_state[col] == -1: # Only place a queen if none is present in this column
          for row in range(8):
            new_state = current_state.copy()
            new_state[col] = row
```

return self.f < other.f

```
→ A* solution: [7, 0, 6, 3, 1, -1, 4, 2]
```

Implementing Hill Climbing on 8 Queens

	Page 25
	Algorithm for Nell Chimberg for 8 guren
	Start with a randown configuration where
0	Start with a randown configuration where one given it placed in each colomin.
, A	dompute the houristic for the wirent
	of hunstic value it zoro, the solution
3.	Generate Neighburing Statut:
	States by moving it to every possible some
	h evistic for each new etate
Ч.	Choose the Best Neighbour.
	wrent state terminate.
5.	Repeat until Soution of achieved.
novol	0 1 1 1
- X/	Junution At souch():
	open Set = Priority aux ()
	while openSit is not empty.
	wrient Node = gen Sit pop ().
	return wrentfoole
	for each neighbour in generate reighbly
The state of the s	the same of the state of the st

import random

```
def heuristic(state):
  # Count pairs of queens that can attack each other
  attacks = 0
  for i in range(len(state)):
     for j in range(i + 1, len(state)):
       if state[i] == state[j] or abs(state[i] - state[j]) == j - i:
          attacks += 1
  return attacks
def hill_climbing_8_queens():
  # Random initial state
  state = [random.randint(0, 7) for _ in range(8)]
  while True:
     current_h = heuristic(state)
     if current_h == 0: # Found a solution
       return state
     next_state = None
     next_h = float('inf')
     for col in range(8):
       for row in range(8):
          if state[col] != row: # Only consider moving the queen
             new_state = state.copy()
            new_state[col] = row
            h = heuristic(new_state)
            if h < next_h:
               next_h = h
               next\_state = new\_state
```

```
if next_h >= current_h: # No better neighbor found
       return None # Stuck at local maximum
     state = next_state
def hill_climbing_with_random_restarts(max_restarts=100):
  for _ in range(max_restarts):
    solution = hill_climbing_8_queens()
    if solution:
       return solution
  return None # No solution found after max_restarts
solution = hill_climbing_with_random_restarts()
if solution:
  print("Hill Climbing solution:", solution)
else:
  print("No solution found after maximum restarts.")
print("Pooja M")
print("1BM22CS195")
Output:
```

```
Hill Climbing solution: [4, 2, 7, 3, 6, 0, 5, 1]
```

Program 7 - Entailment Using Literals

6	LAB-7.	Classmate Date & 5	0 0
	Knowldge Bare: 1. Alice of the mathex of Box	6.	< 1
	2. Bub is the Jather of the	whie.	
1 14	4. A mother is a par	duen.	
	6. Anto IJ someone is a sibling e 7. Alice it mained to	pavid.	
	Mypotheris - charlie of a sobli		
	Permiser - Logical form	From Knowledge beat	1
2-	82: (-)	13-76	1
3.	P3 1 F = P	4-7P	
5. b.	85. 9-7C Pb : P-75	P-38 A138-1Q	
	Permis 2: A > B () alue Bo 6	vare sitihings)	
1.	Entailment. A (Alize is moth	e (since A > 13)	
X.	JBdtwe JBdtwe JMmyt betw John Alice and John Alice and	e (+ -1P)	
3.	I botte		

import re

```
# Helper function to parse user input into logical predicates

def parse_input(input_sentence, knowledge_base):

# Convert the sentence to lowercase for consistency
input_sentence = input_sentence.lower()

# Match patterns for predicates and facts (e.g., 'X is the mother of Y' or 'X is married to Y')

# Fact or Rule: "X is the mother of Y"

mother_match = re.match(r"(\w+) is the mother of (\w+)", input_sentence)

# Fact or Rule: "X is the father of Y"

father_match = re.match(r"(\w+) is the father of (\w+)", input_sentence)

# General rule: "All X have children"

parent_match = re.match(r"all (\w+) have children", input_sentence)

# Rule for parent-child relation and siblings

parent_rule_match = re.match(r"if someone is a parent, their children are siblings", input_sentence)

# General fact: "X is married to Y"
```

```
married_match = re.match(r"(\w+) is married to (\w+)", input_sentence)

# Parsing rules and facts
if mother_match:
    mother, child = mother_match.groups()
    # Add the mother-child relationship to knowledge base
    knowledge_base["Mother"].append((mother.capitalize(), child.capitalize()))
elif father_match:
    father, child = father_match.groups()
    # Add the father-child relationship to knowledge base
    knowledge_base["Father"].append((father.capitalize(), child.capitalize()))
elif parent_match:
    parent = parent_match.group(1)
    # Rule: All X are parents with children
```

```
knowledge_base["ParentRule"].append((parent.capitalize(), "HasChildren")) elif
parent_rule_match:
     # General rule: If someone is a parent, their children are siblings
     knowledge_base["ParentSiblingRule"].append(("Parent", "Siblings"))
  elif married_match:
     spouse1, spouse2 = married_match.groups()
     # Add the married relationship to knowledge base
     knowledge_base["Married"].append((spouse1.capitalize(), spouse2.capitalize()))
# Function to check if two children are siblings
def are_siblings(child1, child2, knowledge_base):
  # Check if both children share the same parent
  parents = set()
  for mother, child in knowledge_base["Mother"]:
     if child == child1:
       parents.add(mother)
     if child == child2:
       parents.add(mother)
  for father, child in knowledge_base["Father"]:
     if child == child1:
       parents.add(father)
     if child == child2:
       parents.add(father)
  return len(parents) > 1 # If both children share a parent, they are siblings
# Function to check the hypothesis "Charlie is a sibling of Bob"
def check_hypothesis(hypothesis, knowledge_base):
  # Parse the hypothesis
  hyp_match = re.match(r''(\w+) is a sibling of (\w+)'', hypothesis.lower())
  if hyp_match:
     child1, child2 = hyp_match.groups()
     # Check if the children are siblings
```

```
if are_siblings(child1.capitalize(), child2.capitalize(), knowledge_base):
       return True
  return False
# Main function for user input and entailment reasoning
def main():
  # Create an empty knowledge base
  knowledge_base = {
     "Mother": [],
     "Father": [],
     "ParentRule": [],
     "ParentSiblingRule": [],
     "Married": []
  }
  print("Enter knowledge base rules. Type 'done' when finished.")
  # Allow the user to input knowledge base facts, rules, or actions
  while True:
     user_input = input("Enter rule: ").strip()
     if user_input.lower() == "done":
       break
     parse_input(user_input, knowledge_base)
  # Print the current knowledge base
  print("\nCurrent Knowledge Base:")
  for category, items in knowledge_base.items():
     print(f"{category}: {items}")
  # Ask for the hypothesis (the statement to check)
  hypothesis = input("\nEnter hypothesis to check: ").strip()
  # Check if the hypothesis is entailed
```

```
if check_hypothesis(hypothesis, knowledge_base):
    print(f"\nConclusion: The hypothesis '{hypothesis}' is entailed by the knowledge base.")
    else:
        print(f"\nConclusion: The hypothesis '{hypothesis}' is NOT entailed by the knowledge base.")

# Run the program
main()

print("Pooja M")
print("1BM22CS195")
```

```
Description

Welcome to the Entailment Checker!

Finter the fact: Alice is the mother of Bob. (e.g., 'Alice is the mother of Bob')

Alice is the mother of Bob

Enter the fact is bob is the father of Charlie. (e.g., 'Bob is the father of Charlie')

Enter the fact is Bob is the father of Charlie. (e.g., 'A father is a parent')

A father is a parent

Enter the fact: A mother is a parent. (e.g., 'A mother is a parent')

A mother is a parent

Enter the fact: All parents have children. (e.g., 'All parents have children')

All parents have children are siblings. (e.g., 'Parents' children are siblings')

Parents' children area siblings

Enter the fact: Alice is married to David. (e.g., 'Alice is married to David')

Alice is married to David

Since Alice is Bob's mother and Bob is Charlie's father, Charlie and Bob are siblings.

Conclusion: Charlie is a sibling of Bob. The hypothesis is entailed by the knowledge base.
```

Observation book

Program 8 - FOL using Unification

LAB-8.	Date SO D
Ca.	and a
Key clements of FOL:- Predicates: - Represent's related	755
Predicates: - Represent's relat	Lonship between
To object.	
Termi - Objects or variable	es in the domain
Quantiles :- descrided.	
+ - Universal mentile	15 A D 43 T
MAND) (V) OR NOT 7 imp Equivalent - logical concert	cv
MAND) (V) OR, NOT, 7 -7 cmp	ins, 4-7
Equivalent - logical concel	eves.
Example at 5-1 3000	
Example of FOL? OAT: The all formans are more; is a human, men 80	1 10
id a human I in a se	ano so craty
and have a company of the last	Salani
Now the will prove for I someone loves everyone is loved by that som	or are the
I someone loves everyone	then everyone
is loved by that som	con c.
	A A STATE OF THE S
1. Premise: - There exists a	
lavel everyo	ucit.
ZX(+ y loves):	(4))
a. londuseon: y y (3x to	iver (2,y))
For every persony, the	is exist someone
x who Tovesty.).	
Deduction Steps:	C. C
. Assume the Premise:	V- (()
From the premise = x	Ad 10.11 (1/A))
we known there exists	a specific
re known there exists a such that	t . ty loverla
. Uneversal Instantiation From ty loves (914	
Evan ty loves (9,4) pretanitiate for
a sprijer individual bi	
a Specific Comments	

Page 3 Lov co (9,6) This holds to any because a loveter Lover (9,6) it true for any Ex Loves (x, b) (6 cours a it k 4. Universal Generalization: Since that holder for any individual b, we generalized Conclusion: By applying universal instantiation ex istential generalization, and generalization, wi " I som one love pewery or of the everyone it loved by the Enter survulce (facto (implications)

```
import re
```

```
# Define a simple function for extracting predicates from sentences
def extract_predicate(sentence):
  # Regular expression to find patterns like Predicate(Argument)
  pattern = r''([A-Za-z]+) \setminus ((\setminus w+) \setminus)''
  match = re.search(pattern, sentence)
  if match:
     predicate = match.group(1)
     subject = match.group(2)
     return predicate, subject
  return None, None
# Function for unification
def unify(fact, query):
  # Check if the fact and query are the same
  if fact == query:
     return True
  # Extract predicate and subject from fact and query
  fact_predicate, fact_subject = extract_predicate(fact)
  query_predicate, query_subject = extract_predicate(query)
  # If predicates match, unify the subjects
  if fact_predicate == query_predicate:
     if fact_subject == query_subject:
       return True
     else:
       # Here, we could handle variable substitution (unification)
       return False
  return False
```

```
# Function to deduce the goal using given rules
def deduct(rules, goal):
  # Try to find unification for the goal from the rules
  for rule in rules:
     if unify(rule, goal):
       print(f"Unification successful: {rule} matches with {goal}.")
       return True
  return False
# Main function to handle user input
def main():
  # Step 1: Get the rules (facts/implications) from the user
  print("Enter the rules (facts/implications). Type 'done' to finish entering rules.")
  rules = []
  while True:
     rule_input = input("Enter rule: ")
     if rule_input.lower() == 'done':
       break
     else:
       rules.append(rule_input.strip())
  # Step 2: Get the goal (query) from the user
  goal_input = input("Enter the goal (query) to prove: ").strip()
  # Step 3: Try to deduce the goal using the given rules
  print("\nAttempting to deduce the goal...")
  if deduct(rules, goal_input):
     print(f"Conclusion: The goal '{goal_input}' is true based on the rules.")
  else:
     print(f"Conclusion: The goal '{goal_input}' cannot be proven with the provided rules.")
```

```
# Run the program
main()
print("Pooja M")
print("1BM22CS195")
```

```
Enter the rules (facts/implications). Type 'done' to finish entering rules.

Enter rule: Loves(Sam, Everyone)

Enter rule: done

Enter the goal (query) to prove: Loves(Everyone, Sam)

Attempting to deduce the goal...

Unification successful: Loves(Sam, Everyone) matches with Loves(Everyone, Sam).

Conclusion: The goal 'Loves(Everyone, Sam)' is true based on the rules.
```

observation book

Program 9 - Unification

Observation book:

Code:

def is_variable(term):

"""

Check if a term is a variable.

```
Variables are typically single lowercase letters.

"""

return isinstance(term, str) and term.islower()

def unify(expr1, expr2, subst={}):

"""

Unify two expressions expr1 and expr2 under the given substitution subst.

"""

if subst is None:

return None # Failure case
if expr1 == expr2:

return subst # Expressions are identical
```

```
if is_variable(expr1):
     return unify_variable(expr1, expr2, subst)
  if is_variable(expr2):
     return unify_variable(expr2, expr1, subst)
  if isinstance(expr1, tuple) and isinstance(expr2, tuple):
     if len(expr1) != len(expr2):
       return None # Different arity
     # Recursively unify each component
     for arg1, arg2 in zip(expr1, expr2):
       subst = unify(arg1, arg2, subst)
       if subst is None:
          return None # Failure
     return subst
  return None # No unification possible
def unify_variable(var, term, subst):
  Unify a variable with a term, updating the substitution.
  if var in subst:
     return unify(subst[var], term, subst) # Apply substitution to var
  if term in subst:
     return unify(var, subst[term], subst) # Apply substitution to term
  if occurs_check(var, term, subst):
     return None # Circular substitution detected
  # Add var -> term to the substitution
  subst = subst.copy()
  subst[var] = term
  return subst
def occurs_check(var, term, subst):
  *****
```

```
Check if var occurs in term (directly or indirectly) to prevent circular substitutions.
  if var == term:
     return True
  if isinstance(term, tuple):
     return any(occurs_check(var, t, subst) for t in term)
  if term in subst:
     return occurs_check(var, subst[term], subst)
  return False
def parse_input(expr):
  Parse user input into a structured format (nested tuples for functions and terms).
  Example: "f(X, g(y))" -> ('f', 'X', ('g', 'y'))
  expr = expr.strip()
  if '(' not in expr:
     return expr # Simple variable or constant
  func_name = expr[:expr.index('(')].strip()
  args = expr[expr.index('(') + 1:expr.rindex(')')].split(',')
  args = [parse_input(arg.strip()) for arg in args]
  return (func_name, *args)
def format_output(expr):
  Convert the nested tuple representation back into a string for output.
  Example: ('f', 'X', ('g', 'y')) \rightarrow "f(X, g(y))"
  if isinstance(expr, str):
     return expr
  return f"{expr[0]}({', '.join(format_output(arg) for arg in expr[1:])})"
```

```
# Main Program
if __name___ == "__main__":
  print("Enter the first term:")
  expr1 = parse_input(input().strip())
  print("Enter the second term:")
  expr2 = parse_input(input().strip())
  print("Unifying.....")
  result = unify(expr1, expr2)
  if result is None:
    print("Unification failed")
  else:
     print("Unification succeeded with substitution:")
     for var, term in result.items():
       print(f"{var} -> {format_output(term)}")
print("Pooja M")
print("1BM22CS195")
```

```
Output

Enter the first term:
  f(x, g(y))
Enter the second term:
  f(a, g(b))
Unifying.....
Unification succeeded with substitution:
  x -> a
  y -> b

=== Code Execution Successful ===
```

Program 10 - Tic Tac Toe using Min-Max.


```
import math
# Constants for players
HUMAN = 'O' # Minimizer
AI = 'X'
           # Maximizer
# Initialize empty board
def create_board():
  return [[' ' for _ in range(3)] for _ in range(3)]
# Check if there are any moves left on the board
def is_moves_left(board):
  for row in board:
     if ' 'in row:
       return True
  return False
# Check for a win condition
def evaluate(board):
  # Rows, columns, diagonals check
  for row in board:
     if row[0] == row[1] == row[2] and row[0] != ' ':
       return 1 if row[0] == AI else -1
  for col in range(3):
     if board[0][col] == board[1][col] == board[2][col] and board[0][col] != ' ':
       return 1 if board[0][col] == AI else -1
  if board[0][0] == board[1][1] == board[2][2] and board[0][0] != ' ':
     return 1 if board[0][0] == AI else -1
  if board[0][2] == board[1][1] == board[2][0] and board[0][2] != ' ':
     return 1 if board[0][2] == AI else -1
  return 0 # No winner
# Minimax algorithm with Alpha-Beta Pruning
def minimax(board, depth, is_maximizing, alpha, beta):
  score = evaluate(board)
  # Terminal condition
```

```
if score == 1: # AI wins
     return score - depth # Prefer quicker wins
  if score == -1: # Human wins
     return score + depth # Prefer slower losses
  if not is_moves_left(board): # Draw
     return 0
  if is_maximizing:
     best = -math.inf
     for i in range(3):
       for j in range(3):
          if board[i][j] == ' ':
            board[i][j] = AI
            best = max(best, minimax(board, depth + 1, False, alpha, beta))
            board[i][j] = ' '
            alpha = max(alpha, best)
            if beta <= alpha:
               break
    return best
  else:
     best = math.inf
     for i in range(3):
       for j in range(3):
          if board[i][j] == ' ':
            board[i][j] = HUMAN
            best = min(best, minimax(board, depth + 1, True, alpha, beta))
            board[i][j] = ' '
            beta = min(beta, best)
            if beta <= alpha:
               break
     return best
# Find the best move for the AI
def find_best_move(board):
```

```
best_val = -math.inf
  best_move = (-1, -1)
  for i in range(3):
     for j in range(3):
       if board[i][j] == ' ':
          board[i][j] = AI
          move_val = minimax(board, 0, False, -math.inf, math.inf)
          board[i][j] = ' '
          if move_val > best_val:
            best_val = move_val
            best_move = (i, j)
  return best_move
# Print the board
def print_board(board):
  for row in board:
     print('|'.join(row))
  print('-' * 5)
# Example usage
if __name___ == '__main__':
  board = create_board()
  while is_moves_left(board):
     print_board(board)
     # Human makes a move
     row, col = map(int, input("Enter row and column (0, 1, 2): ").split())
     if board[row][col] == ' ':
       board[row][col] = HUMAN
     else:
       print("Invalid move! Try again.")
       continue
     if evaluate(board) != 0 or not is_moves_left(board):
       break
     # AI makes a move
```

```
print("AI is making a move...")
     ai_move = find_best_move(board)
     board[ai\_move[0]][ai\_move[1]] = AI
     if evaluate(board) != 0 or not is_moves_left(board):
       break
  # Final result
  print_board(board)
  result = evaluate(board)
  if result == 1:
     print("AI wins!")
  elif result == -1:
     print("Human wins!")
  else:
     print("It's a draw!")
print("Pooja M")
print("1BM22CS195")
Output:
```

```
⊋ 1 2
You played:
   X | 0 | X
   - | 0 | -
   - | - | 0
   Computer's turn...
   Computer played:
   X \mid 0 \mid X
   - 0 -
   - | X | O
   Your turn! Enter your move as 'row col' (e.g., '1 2'):
   2 1
   You played:
   X | 0 | X
   0 | 0 | -
   - X 0
   Computer's turn...
   Computer played:
   X | 0 | X
   0 | 0 | X
   - | X | 0
   Your turn! Enter your move as 'row col' (e.g., '1 2'):
   3 1
   You played:
   X | 0 | X
   0 | 0 | X
   0 | X | 0
   It's a draw!
```

Alpha-Beta pruning For 8 Queens.

def is_safe(board, row, col):

.....

Check if it's safe to place a queen at board[row][col]

```
# Check for queen in the same column
  for i in range(row):
     if board[i][col] == 1:
       return False
  # Check for queen in the left diagonal
  for i, j in zip(range(row, -1, -1), range(col, -1, -1)):
     if board[i][j] == 1:
       return False
  # Check for queen in the right diagonal
  for i, j in zip(range(row, -1, -1), range(col, len(board))):
     if board[i][j] == 1:
       return False
  return True
def solve_with_alpha_beta(board, row, alpha, beta):
  *****
  Solve the 8-Queens problem using Alpha-Beta Pruning.
  *****
  if row >= len(board): # All queens placed successfully
     return True
```

```
for col in range(len(board)):
     if is_safe(board, row, col):
       # Place the queen
       board[row][col] = 1
       # Recursive call to place the next queen
       if solve_with_alpha_beta(board, row + 1, alpha, beta):
          return True
       # Backtrack if placing the queen here leads to failure
       board[row][col] = 0
     # Update alpha and beta for pruning (though not strictly necessary for 8-Queens)
     alpha = max(alpha, col)
     if beta <= alpha:
       break # Prune
  return False
def solve_8_queens():
  *****
  Solves the 8-Queens problem and prints the solution.
  *****
  n = 8
  board = [[0 for _ in range(n)] for _ in range(n)]
```

```
# Start solving with Alpha-Beta Pruning
  if solve_with_alpha_beta(board, 0, -float('inf'), float('inf')):
     print("Solution:")
     for row in board:
       print(' '.join('Q' if cell == 1 else '.' for cell in row))
  else:
     print("No solution found.")
# Execute the solver
if __name__ == "__main__":
  solve_8_queens()
print("Pooja M")
print("1BM22CS195")
Output:
     output:-
     Solution: [0, 4, 7, 5, 2, 6, 1, 3]
     Observation book :-
```