Corrected generalized cross-validation for finite ensembles of penalized estimators

Takuya Koriyama

University of Chicago

December 3, 2024

- To appear in Journal of the Royal Statistical Society: Series B (2024)
- Joint work with Pierre C. Bellec (Rutgers), Jin-Hong Du (CMU), Kai Tan (Rutgers), and Pratik Patil (UC Berkeley).

Problem set up

- The response and feature $(y_i, \boldsymbol{x}_i) \in \mathbb{R} \times \mathbb{R}^p \ (i = 1, \dots, n)$ are i.i.d. distributed.
- Consider the high-dimensional regime

$$p/n \to {\sf constant}$$
 for sample size n and dimension p .

ullet We are interested in an estimator $\hat{oldsymbol{eta}}=\hat{oldsymbol{eta}}(oldsymbol{y},oldsymbol{X})$ such that the prediction risk

$$\mathbb{E}\Big[\big(y_0 - \boldsymbol{x}_0^{\top} \hat{\boldsymbol{\beta}}\big)^2 | \boldsymbol{y}, \boldsymbol{X} \Big] \quad \text{where} \quad (y_0, \boldsymbol{x}_0) = ^d (y_i, \boldsymbol{x}_i)$$

is small.

• We consider ensemble estimators $\tilde{oldsymbol{eta}}$ (next slide).

Ensemble estimator $\tilde{oldsymbol{eta}}$

We define ensemble estimator $\tilde{\beta}$ as follows:

Subsampling

$$(I_m)_{m=1}^M \stackrel{iid}{\sim} \mathsf{Uniform}\{I \subset [n] : |I| = k\}$$

for some integers $k \leq n$ and M.

2 Fit the penalized least square

$$\hat{\boldsymbol{\beta}}_m \in \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} rac{1}{k} \| \boldsymbol{y}_{\boldsymbol{I_m}} - \boldsymbol{X}_{\boldsymbol{I_m}} \boldsymbol{\beta} \|^2 + g(\boldsymbol{\beta})$$

for some convex function $g: \mathbb{R}^p \to \mathbb{R}$.

3 Ensemble $(\hat{\beta}_m)_{m=1}^M$ together

$$\tilde{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m.$$

Prediction risk is U-shape in sub-sample size k

Ensemble of Ridge estimators.

Equivalence between subsampling and regularization

Figure 1 in Du et al. [2023].

Adaptive tuning of sub-sample size and penalty

(Recall) Ensemble estimator is $\tilde{m{\beta}} = \frac{1}{M} \sum_{m=1}^{M} \hat{m{\beta}}_m$ where

$$\hat{\boldsymbol{\beta}}_m \in \mathop{\arg\min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \frac{1}{k} \|\boldsymbol{y}_{\boldsymbol{I_m}} - \boldsymbol{X}_{\boldsymbol{I_m}} \boldsymbol{\beta}\|^2 + g(\boldsymbol{\beta}), \quad \boldsymbol{I_m} \sim \mathsf{Uniform} \big\{ I \subset [n] : |I| = k \big\}$$

for each $m \in [M]$.

• (Goal) Select sub-sample size k and penalty g in a data-driven manner so that the ensemble estimator $\tilde{\beta}$ achieves a small prediction risk

$$\mathbb{E}[(y_0 - oldsymbol{x}_0^{ op} \tilde{oldsymbol{eta}})^2 | oldsymbol{y}, oldsymbol{X}] \quad ext{where} \quad (y_0, oldsymbol{x}_0) =^d (y_i, oldsymbol{x}_i)$$

- Since the prediction risk is not observable, we need some proxy;
 - L-fold cross-validation is biased.
 - ▶ Leave one out cross-validation is computationally hard due to high-dimension.
 - Generalized cross-validation (GCV).

Generalized cross validation

For the penalized least square estimator

$$\hat{oldsymbol{eta}}(oldsymbol{y},oldsymbol{X}) \in \operatorname*{arg\,min}_{oldsymbol{eta} \in \mathbb{R}^p} \Big\{ rac{1}{n} \|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|^2 + g(oldsymbol{eta}) \Big\},$$

Generalized cross-validation (GCV) of $\hat{\beta}$ is defined by

$$(\mathsf{GCV} \ \mathsf{of} \ \hat{eta}) := rac{\|y - X\hat{eta}\|^2}{n(1 - \hat{\mathrm{df}}/n)^2} \quad \mathsf{where} \quad \hat{\mathrm{df}} := \mathrm{tr} ig[X rac{\partial \hat{eta}}{\partial y} ig].$$

Estimator $\hat{m{eta}}$	Penalty $g(\boldsymbol{\beta})$	Degrees of freedom $\hat{\mathrm{df}}$	
Lasso	$\lambda \ oldsymbol{eta}\ _1$	$ \hat{S} $	
Ridge	$rac{\mu}{2}\ oldsymbol{eta}\ _2^2$	$\operatorname{tr}\left[\boldsymbol{X} \left(\boldsymbol{X}^{\top} \boldsymbol{X} + n \mu \boldsymbol{I}_{p}\right)^{-1} \boldsymbol{X}^{\top}\right]$	
Elastic net	$\lambda \ \boldsymbol{\beta}\ _1 + \frac{\mu}{2} \ \boldsymbol{\beta}\ _2^2$	$\operatorname{tr}\left[\boldsymbol{X}_{\hat{S}}(\boldsymbol{X}_{\hat{S}}^{\top}\boldsymbol{X}_{\hat{S}}+n\mu\boldsymbol{I}_{p})^{-1}\boldsymbol{X}_{\hat{S}}^{\top}\right]$	

Example of $\hat{\mathbf{df}}$ for specific penalties. Here, $\hat{S} = \{j \in [p] : e_j^\top \hat{\boldsymbol{\beta}} \neq 0\}$ and $\boldsymbol{X}_{\hat{S}}$ is the sub-matrix of \boldsymbol{X} made of columns indexed in \hat{S} .

Consistency of Generalized cross-validation

Theorem (Prediction risk \approx GCV)

$$\mathbb{E}\big[(y_0 - \boldsymbol{x}_0^{\top} \hat{\boldsymbol{\beta}})^2 | \boldsymbol{y}, \boldsymbol{X}\big] \approx \frac{\|\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}\|^2}{n(1 - \hat{\mathrm{df}}/n)^2}$$

	Penalty	Proof
Patil et al. [2021]	Ridge	Random Matrix Theory
Celentano et al. [2023]	Lasso	Convex Gaussian Min-Max Theorem
Bellec and Shen [2022]	strongly convex	Second order Stein's formula

Naive GCV for ensemble estimator

For ensemble estimator $\tilde{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m$, we can think of the naive-GCV:

$$\text{naive-GCV} := \frac{\|\boldsymbol{y} - \boldsymbol{X}\tilde{\boldsymbol{\beta}}\|^2}{n(1 - \tilde{\operatorname{df}}/n)^2} \quad \text{where} \quad \tilde{\operatorname{df}} = \operatorname{tr}\big[\boldsymbol{X}\frac{\partial \tilde{\boldsymbol{\beta}}}{\partial \boldsymbol{y}}\big]$$

Q. Does the naive-GCV consistently estimate the prediction risk?

$$\mathbb{E}ig[(y_0-m{x}_0^ op ilde{m{eta}})^2|m{y},m{X}ig]\stackrel{?}{pprox}$$
 naive-GCV

A. No. The naive-GCV is inconsistent.

Theorem

Under some regularity condition, there exists some positive constant $C \in (0,1)$ such that

$$\liminf_{n\to\infty} \mathbb{P}\Big(\Big|\frac{\mathbb{E}\big[(y_0-\boldsymbol{x}_0^{\top}\hat{\boldsymbol{\beta}})^2|\boldsymbol{y},\boldsymbol{X}\big]}{\textit{naive-GCV}}-1\Big|\geq C\Big)\geq C.$$

Overview of main result: corrected-GCV (CGCV)

$$\mathsf{CGCV} := \underbrace{\frac{\|\boldsymbol{y} - \boldsymbol{X}\tilde{\boldsymbol{\beta}}\|^2}{n(1 - \tilde{\mathrm{df}}/n)^2}}_{= \mathsf{naive-GCV}} - \underbrace{\left(\frac{\tilde{\mathrm{df}}}{n - \tilde{\mathrm{df}}}\right)^2 \left(\frac{n}{k} - 1\right) \frac{1}{M^2} \sum_{m=1}^M \frac{\|\boldsymbol{y}_{I_m} - \boldsymbol{X}_{I_m} \hat{\boldsymbol{\beta}}_m\|^2}{k(1 - \hat{\mathrm{df}}_m/k)^2}}_{=:\mathsf{correction}}.$$

Theorem (Informal)

Either assumption (a) or (b) below is satisfied.

Assumption	Distribution	Response $y = f(x, \epsilon)$	Penalty g
(a)	Gaussian	Linear	strongly convex
(b)	Non-Gaussian	Nonlinear	Ridge

Then, we have (Prediction error) \approx CGCV. More precisely,

$$\mathbb{E}ig[(y_0 - oldsymbol{x}_0^ op ilde{eta})^2 | oldsymbol{y}, oldsymbol{X}ig] = \left\{egin{array}{ll} extit{CGCV} \cdot ig(1 + O_p(n^{-1/2})ig) & extit{under (a)} \ extit{CGCV} + o_p(1) & extit{under (b)} \end{array}
ight.$$

When correction term is small

The theorem implies

$$(\text{Prediction risk}) \approx \text{CGCV} = \underbrace{\frac{\|\boldsymbol{y} - \boldsymbol{X}\tilde{\boldsymbol{\beta}}\|^2}{n(1 - \tilde{\operatorname{df}}/n)^2}}_{= \text{naive-GCV}} - \text{correction}$$

where

correction =
$$\left(\frac{\tilde{\mathrm{df}}}{n-\tilde{\mathrm{df}}}\right)^2 \left(\frac{n}{k}-1\right) \frac{1}{M^2} \sum_{m=1}^M \frac{\|\boldsymbol{y}_{I_m}-\boldsymbol{X}_{I_m}\hat{\boldsymbol{\beta}}_m\|^2}{k(1-\hat{\mathrm{df}}_m/k)^2}.$$

- Naive-GCV overestimates prediction risk.
- Correction term is exactly 0 when sub-sample size k is n.
- Correction term is $O(M^{-1})$. \Rightarrow For infinite-ensemble $(M=\infty)$, the naive-GCV is consistent.

Comparison of CGCV and naive-GCV

Proof: Second order Stein's fomrula

Theorem (Bellec and Zhang [2021])

For almost surely differentiable function $m{f}:\mathbb{R}^n o\mathbb{R}^n$ and $m{z}\sim\mathcal{N}(m{0}_n,m{I}_n)$, we have

$$\mathbb{E}\Big[\big\{\boldsymbol{z}^{\top}\boldsymbol{f}(\boldsymbol{z}) - \nabla\cdot\boldsymbol{f}(\boldsymbol{z})\big\}^2\Big] = \mathbb{E}\Big[\|\boldsymbol{f}(\boldsymbol{z})\|^2 + \operatorname{tr}\big\{\big(\nabla\boldsymbol{f}(\boldsymbol{z})\big)^2\big\}\Big].$$

 Many applications in single index model (Bellec, 2022), multinomial regression (Tan and Bellec, 2023), robust regression (Bellec and Koriyama, 2023).

Summary

- The naive-GCV is inconsistent to the prediction error of ensemble estimators.
- We proposed the corrected GCV and showed its consistency under Gaussian setting and non-Gaussian setting.
- arXiv:2310.01374

Reference I

- P. C. Bellec and Y. Shen. Derivatives and residual distribution of regularized M-estimators with application to adaptive tuning. In *Conference on Learning Theory*, 2022.
- P. C. Bellec and C.-H. Zhang. Second-order stein: Sure for sure and other applications in high-dimensional inference. *The Annals of Statistics*, 49(4):1864–1903, 2021.
- M. Celentano, A. Montanari, and Y. Wei. The lasso with general gaussian designs with applications to hypothesis testing. *The Annals of Statistics*, 51(5):2194–2220, 2023.
- J.-H. Du, P. Patil, and A. K. Kuchibhotla. Subsample ridge ensembles: Equivalences and generalized cross-validation. In *International Conference on Machine Learning*, 2023.
- P. Patil, Y. Wei, A. Rinaldo, and R. Tibshirani. Uniform consistency of cross-validation estimators for high-dimensional ridge regression. In *International Conference on Artificial Intelligence and Statistics*, 2021.

${\sf Appendix}$

Consistency of CGCV under assumption (a)

Assumption (a)

• $(y_i, x_i)_{i=1}^n \in \mathbb{R} imes \mathbb{R}^p$ are iid distributed according to

$$y_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}^* + \epsilon_i, \quad \boldsymbol{x}_i \sim \mathcal{N}(\boldsymbol{0}_p, \boldsymbol{\Sigma}), \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

for some $\beta^* \in \mathbb{R}^p$, $\Sigma \succ 0$ and $\sigma > 0$.

- g is strongly convex with respect to Σ ^a (e.g., Ridge, Elastic net).
- p = O(k) for sub-sample size k.

athe map $\boldsymbol{\beta} \mapsto g(\boldsymbol{\beta}) - \mu \boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}$ is convex for some $\mu > 0$

Theorem (Prediction risk \approx GCCV)

If the assumption (a) is satisfied, we have

$$\mathbb{E}[(y_0 - \boldsymbol{x}_0^{\top} \tilde{\boldsymbol{\beta}})^2 | \boldsymbol{y}, \boldsymbol{X}] = [1 + O_P(n^{-1/2})] \cdot CGCV$$
 as $n \to \infty$

Consistency of CGCV under Assumption (b)

Assumption (b)

- $g(\beta) = \lambda \|\beta\|^2$ for some $\lambda > 0$.
- $\mathbb{E}[y_i] = 0$ and $\mathbb{E}[y_i^{4+\delta}] < +\infty$ for some $\delta > 0$.
- $x_i = ^d \Sigma^{1/2} z_i$ for some $\Sigma \succ 0$ and $z_i \in \mathbb{R}^p$ has iid entries such that $\mathbb{E}[z_{ij}] = 0$, $\mathbb{E}[z_{ii}^2] = 1$, and $\mathbb{E}[z_{ii}^{4+\delta}] < +\infty$.
- $p/n \to \phi \in (0, \infty)$, $p/k \to \psi \in [\phi, \infty]$.

Theorem

$$\mathbb{E}[(y_0 - \boldsymbol{x}_0^{\top} \tilde{\boldsymbol{\beta}})^2 | \boldsymbol{y}, \boldsymbol{X}] = CGCV + o_P(1)$$
 as $n \to +\infty$

Proof outline

Prediction risk of $\hat{\beta}$, denoted by $R(\hat{\beta})$, can be written as

$$\begin{split} R(\hat{\boldsymbol{\beta}}) &= \mathbb{E}\big[(y_0 - \boldsymbol{x}_0^{\top} \hat{\boldsymbol{\beta}})^2 | \boldsymbol{y}, \boldsymbol{X}\big] \\ &= \mathbb{E}\Big[\big\{\epsilon_0 - \boldsymbol{x}_0^{\top} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)\big\}^2 | \boldsymbol{y}, \boldsymbol{X}\Big] \qquad \text{by } y_0 = \boldsymbol{x}_0^{\top} \boldsymbol{\beta}^* + \epsilon_0 \\ &= \sigma^2 + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*) \boldsymbol{\Sigma} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*) \qquad \qquad \text{by } \boldsymbol{x}_0 \sim \mathcal{N}(\boldsymbol{0}_p, \boldsymbol{\Sigma}), \ \epsilon_0 \sim \mathcal{N}(0, \sigma^2). \end{split}$$

Thus, the prediction risk of the ensemble $\tilde{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m$ is given by

$$R(\tilde{\boldsymbol{\beta}}) = \sigma^2 + \left\{ \left(\frac{1}{M} \sum_{m=1}^{M} \hat{\boldsymbol{\beta}}_m \right) - \boldsymbol{\beta}^* \right\} \boldsymbol{\Sigma} \left\{ \left(\frac{1}{M} \sum_{m=1}^{M} \hat{\boldsymbol{\beta}}_m \right) - \boldsymbol{\beta}^* \right\}$$
$$= \frac{1}{M^2} \sum_{m=1}^{M} \sum_{\ell=1}^{M} \left[\sigma^2 + (\hat{\boldsymbol{\beta}}_m - \boldsymbol{\beta}^*) \boldsymbol{\Sigma} (\hat{\boldsymbol{\beta}}_\ell - \boldsymbol{\beta}^*) \right].$$

Proof outline

The naive-GCV for $\tilde{\pmb{\beta}} = \frac{1}{M} \sum_{m=1}^M \hat{\pmb{\beta}}_m$ is given by

$$\text{naive-GCV} = \frac{\|\boldsymbol{y} - \boldsymbol{X}\tilde{\boldsymbol{\beta}}\|^2}{n(1 - \tilde{\operatorname{df}}/n)^2} = \frac{\frac{1}{M^2} \sum_{m=1}^M \sum_{\ell=1}^M (\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}_m)^\top (\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}_\ell)}{n(1 - \tilde{\operatorname{df}}/n)^2}$$

Lemma

For all $m, \ell \in [M]$, we have

$$(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}_m)^{\top}(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}_{\ell}) \approx \left[\sigma^2 + (\hat{\boldsymbol{\beta}}_m - \boldsymbol{\beta}^*)^{\top} \boldsymbol{\Sigma}(\hat{\boldsymbol{\beta}}_{\ell} - \boldsymbol{\beta}^*)\right] \cdot D_{m\ell},$$
where $D_{m\ell} = n - \mathrm{df}_m - \mathrm{df}_{\ell} + \frac{\mathrm{df}_m \mathrm{df}_{\ell}}{|I_m||I_{\ell}|} |I_m \cap I_{\ell}|.$

Using this lemma,

$$\text{naive-GCV} \approx \frac{1}{M^2} \sum_{m=1}^{M} \sum_{\ell=1}^{M} \left[\sigma^2 + (\hat{\boldsymbol{\beta}}_m - \boldsymbol{\beta}^*)^\top \boldsymbol{\Sigma} (\hat{\boldsymbol{\beta}}_\ell - \boldsymbol{\beta}^*) \right] \cdot \frac{D_{m\ell}}{n(1 - \tilde{\operatorname{df}}/n)^2}$$

Proof outline

Lemma (Concentration of $D_{m,\ell}$)

$$\frac{D_{m,\ell}}{n(1-\tilde{\mathrm{df}}/n)^2} \approx 1 + \mathbf{1}\{m=\ell\} \cdot (\frac{n}{k} - 1) \frac{(\tilde{\mathrm{df}}/n)^2}{(1-\tilde{\mathrm{df}}/n)^2}.$$

$$\begin{split} \text{naive-GCV} &\approx \frac{1}{M^2} \sum_{m=1}^M \sum_{\ell=1}^M \left[\sigma^2 + (\hat{\boldsymbol{\beta}}_m - \boldsymbol{\beta}^*)^\top \boldsymbol{\Sigma} (\hat{\boldsymbol{\beta}}_\ell - \boldsymbol{\beta}^*) \right] \\ &+ \frac{1}{M^2} \sum_{m=1}^M \left[\sigma^2 + (\hat{\boldsymbol{\beta}}_m - \boldsymbol{\beta}^*)^\top \boldsymbol{\Sigma} (\hat{\boldsymbol{\beta}}_m - \boldsymbol{\beta}^*) \right] \cdot (\frac{n}{k} - 1) \frac{(\tilde{\mathrm{df}}/n)^2}{(1 - \tilde{\mathrm{df}}/n)^2} \\ &= R(\tilde{\boldsymbol{\beta}}) + \frac{1}{M^2} \sum_{m=1}^M R(\hat{\boldsymbol{\beta}}_m) \cdot (\frac{n}{k} - 1) \frac{(\tilde{\mathrm{df}}/n)^2}{(1 - \tilde{\mathrm{df}}/n)^2} \end{split}$$

Obtain CGCV

We have shown that

$$R(\tilde{oldsymbol{eta}}) pprox ext{naive-GCV} - rac{1}{M^2} (rac{n}{k} - 1) rac{(ilde{ ext{df}}/n)^2}{(1 - ilde{ ext{df}}/n)^2} \sum_{m=1}^M R(\hat{oldsymbol{eta}}_m).$$

Using (prediction risk of $\hat{m{\beta}}_m$) pprox (GCV of $\hat{m{\beta}}_m$ fitted on $(y_i, m{x}_i)_{i \in I_m}$)

$$R(\hat{\boldsymbol{\beta}}_m) \approx \frac{\|\boldsymbol{y}_{I_m} - \boldsymbol{X}_{I_m} \hat{\boldsymbol{\beta}}_m\|^2}{k(1 - \hat{\mathrm{df}}_m/k)},$$

we are left with

$$R(\tilde{\boldsymbol{\beta}}) \approx \underbrace{\left(\text{naive-GCV}\right) - \frac{1}{M^2} (\frac{n}{k} - 1) \frac{(\tilde{\operatorname{df}}/n)^2}{(1 - \tilde{\operatorname{df}}/n)^2} \sum_{m=1}^{M} \frac{\|\boldsymbol{y}_{I_m} - \boldsymbol{X}_{I_m} \hat{\boldsymbol{\beta}}_m\|^2}{k(1 - \operatorname{df}_m/k)^2}}_{= \operatorname{CGCV}}$$

Proof of Lemma 1: Second order Stein's formula

Recall that Lemma 1 claims

$$\left(\sigma^2 + (\hat{\boldsymbol{\beta}}_m - \boldsymbol{\beta}^*)^\top \boldsymbol{\Sigma} (\hat{\boldsymbol{\beta}}_\ell - \boldsymbol{\beta}^*)\right) \cdot D_{m\ell} \approx (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}_m)^\top (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}_\ell),$$

where
$$D_{m\ell} = n - \mathrm{df}_m - \mathrm{df}_\ell + \frac{\mathrm{df}_m \mathrm{df}_\ell}{|I_m||I_\ell|} |I_m \cap I_\ell|$$
.

Theorem (Bellec and Zhang [2021])

For almost surely differentiable function $m{f}:\mathbb{R}^n o\mathbb{R}^n$ and $m{z}\sim\mathcal{N}(m{0}_n,m{I}_n)$, we have

$$\mathbb{E}\Big[\big\{\boldsymbol{z}^{\top}\boldsymbol{f}(\boldsymbol{z}) - \nabla\cdot\boldsymbol{f}(\boldsymbol{z})\big\}^2\Big] = \mathbb{E}\Big[\|\boldsymbol{f}(\boldsymbol{z})\|^2 + \operatorname{tr}\big\{\big(\nabla\boldsymbol{f}(\boldsymbol{z})\big)^2\big\}\Big].$$