Instructor: Professor Lawrence Teitelman

Analysis of Algorithms - CS 700/323 Lecture #4 – February 24, 2016

Notes by: Kok Teng Lee

Selection Sort

for i=0 to n-1 find max and place it in position n-i-1 swap(a,indexMax,n-1)

	Swap	Comparison
Best	n-1	n-1
Average	n-1	(n(n-1))/2
Worst	n-1	(n(n-1))/2

Insertion Sort

- Good for small array
- Data is mostly sorted

	Swap	Comparison
Best	n-1	n-1
Average	n-1	(n(n-1))/4
Worst	n-1	(n(n-1))/2

^{*}Batch Insertion sort: Log n to search sorted array to find insertion point

^{**}Sentinel is needed to ensure that it doesn't go out of bound

Instructor: Professor Lawrence Teitelman

Shell Sort: $O(n^{1.5}) \le O(n^2)$

MergeSort

Divide And Conquer

$$T(n) = 2T(n/2) + n - 1$$

Worst Case: n-1

(not in-place)

$$T(n) = 2T(\frac{n}{2}) + n - 1, n = 2k$$

$$S(k) = T(n), S(0) = T(1) = 0$$

$$S(k-1) = T(\frac{n}{2})$$

$$\frac{S(k)}{2^k} = \frac{2S(k-1)}{2^{k-1}} + \frac{2^{k-1}}{2^k}$$

Range Transformation:

$$R(k) = \frac{S(k)}{2^k}$$

$$R(k) = R(k-1) + 1 - \frac{1}{2^k}$$

$$R(k-1) - R(k-2) = 1 - \frac{1}{2^{k-1}}$$

$$R(1) - R(0) = 1 - \frac{1}{2^1}$$

$$k + 1 - [2 - (\frac{1}{2})^k] = k - 1 + (\frac{1}{2})^k$$

$$R(k) - 0 = k - 1 + (\frac{1}{2})^k$$

$$S(k) = 2^k, R(k) = 2^k [k - 1 + (\frac{1}{2})^k]$$

$$= 2^k, k - 2^k + 1 = 2^{\lg n}, \lg n - 2^{\lg n} + 1 = n\lg n - n + 1$$

Instructor: Professor Lawrence Teitelman

Quicksort

In-place, Analysis in Section 14.2

Two-headed monster approach:

- 1. Left find bigger
- 2. Right find smaller
- 3. Swap (once both is found)

How to pick X:

- 1) First/Last
- 2) Random
- 3) Median of 3 scores

$$T(n) = T(n-1) + n - 1$$

Worst Case Like Bubblesort: $\frac{n(n-1)}{2}$

Best Case: n log n

Homework 3 Solutions:

T(1)=0:T(1)=0		
T(1)=0;T(n)=T(n-1)+n-1 $T(2)=T(1)+(2-1)$		
=T(1)+1=0+1;		
T(0) = ()-		
$T(1) = 0, \qquad [T(n) - T(n)] = n-1$		
T(2) - 1 (n-1) = n2 Upper Bound < 0 (n2) T(5) - 1		
Loner Band > O(n)		
$f(x) = ax^2 + bx + c$ $f(n) - I(i) = (n-i)n^2$		
f(1) = 0 = a + b + 2		
f(0)=0=(C)		
(a) = 1 = 4a+2b+6		
a = -b; a = -b;		
-2b=1		
b = - 1		
$a = \int_{a}^{a}$		