

Logic Gates

AND Function

Text Description ⇒ Output Y is TRUE if inputs A AND B are TRUE, else it is FALSE.

Logic Symbol
$$\Rightarrow A = AND - Y$$

Truth Table \Rightarrow

INPUTS		OUTPUT	
A	В	Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	
AND Gate Truth Table			

Boolean Expression \Rightarrow Y = A x B = A • B = AB

OR Function

Text Description \Rightarrow Output Y is TRUE if input A <u>or</u> B is TRUE, else it is FALSE.

Logic Symbol
$$\Rightarrow \begin{pmatrix} A \\ B \end{pmatrix}$$
 OR Y

Truth Table ⇒

INPUTS		OUTPUT	
A	В	Y	
0	0	0	
0	1	1	
1	0	1	
1	1	1	
OR Gate Truth Table			

$$V$$
 OR Symbol Boolean Expression $\Rightarrow Y = A + B$

4

NOT Function (inverter)

Text Description ⇒ Output Y is TRUE if input A is FALSE, else it is FALSE. Y is the inverse of A.

Logic Symbol
$$\Rightarrow A - NOT - Y$$

Truth Table ⇒

INPUT	OUTPUT	
A	Y	
0	1	
1	0	
NOT Gate Truth Table		

Boolean Expression
$$\Rightarrow \gamma = \overline{A}^{\text{NOT}}$$

Alternative Notation

$$Y = A'$$

$$Y = !A$$

NAND Function

Text Description ⇒

Output Y is FALSE if inputs A <u>AND</u> B are TRUE, else it is TRUE.

Truth Table ⇒

INPUTS		OUTPUT	
Α	В	Y	
0	0	1	
0	1	1	
1	0	1	
1	1	0	
NAND Gate Truth Table			

Boolean Expression
$$\Rightarrow Y = \overline{A \times B} = \overline{AB}$$

NOR Function

Text Description ⇒

Output Y is FALSE if input A <u>or</u> B is TRUE, else it is TRUE.

Logic Symbol
$$\Rightarrow$$
 A \Rightarrow NOR \Rightarrow Y A bubble is an inverter. This is an OR Gate with its output inverted.

Truth Table ⇒

INPUTS		OUTPUT	
A	В	Y	
0	0	1	
0	1	0	
1	0	0	
1	1	0	
NOR Gate Truth Table			

Boolean Expression
$$\Rightarrow Y = \overline{A + B}$$

$$Y = (A+B).(A.B)$$

Truth Table:

A	В	A+B	A.B	(A+B). (A.B)
0	0	0	0	0
0	1	1	0	0
1	0	1	0	0
1	1	1	1	1

Y = (A+B).(A.B)

Circuit Diagram:

$$Y = \overline{(A+B)+(A.B)}$$

Truth Table:

A	В	A+B	A.B	(A+B)+(A.B)	(A+B)+(A.B)
0	0	0	0	0	1
0	1	1	0	1	0
1	0	1	0	1	0
1	1	1	1	1	0

$$Y = (A+B)+(A.B)$$

Circuit Diagram:

