

A Mathematical Analysis of Learning Loss for Active Learning in Regression

Megh Shukla, Shuaib Ahmed

Mercedes-Benz Research and Development India

Active Learning for continuous model refinement?

- 1. Can we recognize real world failures on-the-fly, allowing for continuous model refinement?
- 2. LearningLoss++: A mathematical evolution of Learning Loss to better identify failure use cases

Learning Loss

$$\mathbb{L}_{loss} = \max\left(0, -\operatorname{sign}(l_i - l_j)(\hat{l}_i - \hat{l}_j) + \xi\right)$$
True Loss Predicted Margin

Training: Compares the true and predicted losses for a pair of images; predicted loss margin tries to ensure minimum separation between the predicted loss pair

Drawbacks:

- 1. The objective lacks rigorous theoretical analysis
- 2. The margin hyperparameter leads to exploding weights

LearningLoss++

We show that a KL divergence based objective is equivalent to the original empirical formulation:

$$\mathbb{L}_{loss}(w, \theta_i, \theta_j) = \text{KL}(p||q) = p_i \log \frac{p_i}{q_i} + p_j \log \frac{p_j}{q_j}$$

1. Learning Loss gradient:

$$\nabla_{w} \mathbb{L}_{loss} \in \{0, \pm (\theta_{i} - \theta_{j})\}$$
$$\nabla_{\theta} \mathbb{L}_{loss} \in \{0, \pm w\}$$

2. LearningLoss++ gradient: Embedding for

images i and j

$$\nabla_{w} \mathbb{L}_{loss}(w, \theta_{i}, \theta_{j}) = (q_{i} - p_{i})(\theta_{i} - \theta_{j})$$
$$\nabla_{\theta} \mathbb{L}_{loss}(w, \theta_{i}, \theta_{j}) = (q_{i} - p_{i})w$$

LearningLoss++ introduces a smoothness to the objective, absorbing the predicted loss margin!

Analysis

How does Learning Loss learn to predict losses?

- 1. The weight vector aligns along discriminatory components to explain the predicted losses for an embedding pair
- 2. Role of the predicted loss margin: If the predicted losses are not sufficiently separated, the margin causes repeated updates to the weight vector increasing its norm.

Analysis

Regression analysis allows us to model the true loss with a Gamma distribution What is the probability of sampling two images with similar true losses? (Eq. 1)

$$P(|X - Y| \le \delta) = \int_0^\delta \gamma(x, k, \Theta) \int_0^{x + \delta} \gamma(y, k, \Theta) dy dx + \int_\delta^\infty \gamma(x, k, \Theta) \int_{x - \delta}^{x + \delta} \gamma(y, k, \Theta) dy dx$$

What is the expected gradient for a given true loss separation?

$$\mathbb{E}_{x,y|\delta_2} \left[\nabla_w \mathbb{L}(w,\theta_i,\theta_j) \right] = \lim_{\delta_1 \to \delta_2} \int_{x=0}^{x=\infty} \int_{y=x+\delta_1}^{y=x+\delta_2} (q_i - \frac{x}{2x+\delta_2})(\theta_i - \theta_j) \frac{\gamma(x,k,\Theta)\gamma(y,k,\Theta)}{p(y-x=\delta_2)}$$

Do the above solutions have a closed form solution? Yes, assuming $k \in \mathbb{Z}^+$! Can we use these closed form solutions to gain better insights?

(Eq: 2)

True Loss: l	0.45	0.47	2.87
$\operatorname{Pred} \operatorname{Loss}: \hat{l}$	1.48	1.51	1.63
	$ \cdot : (ext{LearningLoss}) \ \cdot : (ext{LearningLoss}{++})$	$(i=(a),j=\ heta_i-$	

Case 1: The true and predicted losses are similar for a pair of images

A sufficiently trained Learning Loss network goes against intuition and imposes a penalty for a non trivial number of image pairs with true loss margin \leftarrow 8 (Tab: 1)

Case 2: The predicted losses are similar, but the true losses are vastly different.

While the gradient response for Learning Loss is constant, LearningLoss++ gradient reflects the mismatch in true and predicted loss separation (Tab: 2)

LearningLoss++ (right) has a higher degree of correlation with the true loss, consistently identifying *lossy* images in comparison to Learning Loss (left).

Why use LearningLoss++?

- 1. Rigorous analysis for better explainability
- 2. Recognize real world failures on-the-fly!
- 3. Eliminates the margin hyperparameter!
- 4. The revised objective results in a smoother gradient to identify *lossy* images

(Table: 1)										
δ	0.02	0.04	0.06	0.08	0.1	0.125	0.15			
$P_{X,Y,\gamma}$	0.094	0.185	0.274	0.358	0.437	0.527	0.607			
(Table: 2)										
$\delta \rightarrow$	0.0	0.1	0.	2	0.3	0.4	0.5			
LL++ LL	q_i -0.5	q_i -0.5 q_i -0.39 q_i -0.3 q_i -0.25 q_i -0.21 q_i -0.18 \leftarrow constant $c_1 \rightarrow$								