Lecture 21: Deep Generative Models V: Sequential Generative Models, Deep Reinforcement Learning I

Xuming He SIST, ShanghaiTech Fall, 2019

Outline

- Autoregressive models
 - □ PixelRNN/CNN
- Deep Reinforcement Learning
 - Markov Decision Process

Acknowledgement: CMU, UofT, UCL, Stanford notes

M

Taxonomy of Generative Models

Intuition from Image Generation

How we draw a picture?

We pay attention on each subpart, we iterate in a feedback loop

Can we teach machines to do the same?

Pixel-by-pixel Generation

 A simple way to iterate, employ feedback and capture pixel dependencies

Pixel-by-pixel Generation

Intuition

$$p(\mathbf{x}) = p(x_1, x_2, ..., x_{n^2})$$

Bayes Theorem:

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i | x_1, ..., x_{i-1})$$

A sequential model!

Fully Visible Belief Network

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$p(x) = \prod_{i=1}^n p(x_i|x_1,...,x_{i-1})$$

Likelihood of image x Probability of i'th pixel value given all previous pixels

Then maximize likelihood of training data

Fully Visible Belief Network

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$p(x) = \prod_{i=1}^n p(x_i|x_1,...,x_{i-1})$$

Likelihood of image x

Probability of i'th pixel value given all previous pixels

Complex distribution over pixel

Then maximize likelihood of training data

Complex distribution over pixel values => Express using a neural network!

PixelRNN

Overview

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

PixelRNN

Question: Can we use plain-LSTM to generate images pixels by pixels?

- Ensure information is well propagated in two dimensions
- spatial LSTM (sLSTM)

Spatial LSTM

■ [Theis & Bethge, 2015]

Spatial LSTM

■ [Theis & Bethge, 2015]

Modeling pixels

- Treat pixels as discrete variables
 - □ To estimate a pixel value, do classification in every channel (256 classes)
 - Implemented with a final softmax layer

Figure: Example softmax outputs in the final layer, representing probability distribution over 256 classes.

PixelRNN

Row LSTM and Diagonal LSTM

 $[\mathbf{o}_i, \mathbf{f}_i, \mathbf{i}_i, \mathbf{g}_i] = \sigma(\mathbf{K}^{ss} \circledast \mathbf{h}_{i-1} + \mathbf{K}^{is} \circledast \mathbf{x}_i)$ $\mathbf{c}_i = \mathbf{f}_i \odot \mathbf{c}_{i-1} + \mathbf{i}_i \odot \mathbf{g}_i$ $\mathbf{h}_i = \mathbf{o}_i \odot \tanh(\mathbf{c}_i)$

PixelRNN

Drawbacks

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

Drawback: sequential generation is slow!

[van der Oord et al. 2016]

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

- [van der Oord et al. 2016]
 - 2D convolution on previous layer
 - Apply masks so a pixel does not see future pixels (in sequential order)

[van der Oord et al. 2016]

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

Training: maximize likelihood of training images

$$p(x) = \prod_{i=1}^{n} p(x_i|x_1, ..., x_{i-1})$$

[van der Oord et al. 2016]

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

Training is faster than PixelRNN (can parallelize convolutions since context region values known from training images)

Generation must still proceed sequentially => still slow

Generated Samples

32x32 CIFAR-10

32x32 ImageNet

20

Summary of Autoregressive models

Comparison

PixelCNN	PixelRNN – Row LSTM	PixelRNN – Diagonal BiLSTM
Full dependency field	Triangular receptive field	Full dependency field
Fastest	Slow	Slowest
Worst log-likelihood	-	Best log-likelihood

Other recent improvements

- Gated PixelCNN (Oord et al.)
 - Improve PixelCNN by removing blind spots and replacing ReLU units
- PixelCNN++ (Salimans et al.)
 - Improve PixelCNN by optimization techniques
- Video Pixel Networks (Kalchbrenner et al.)

Summary

Deep Generative Models

Autoregressive models (PixelRNNs, PixelCNNs)	GAN	VAE
 Simple and stable training process (e.g. softmax loss) Best log likelihoods so far 	Sharpest images	Easy to relate image with low- dimensional latent variables
 Inefficient during sampling Don't easily provide simple low-dimensional codes for images 	Difficult to optimize due to unstable training dynamics	Tends to have blurry outputs

Outline

- Autoregressive models
 - □ PixelRNN/CNN
- Deep Reinforcement Learning
 - Markov Decision Process

Acknowledgement: CMU, UofT, UCL, Stanford notes

Reinforcement Learning

Supervised learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

Unsupervised learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

1-d density estimation

2-d density estimation

Reinforcement Learning

- A new class of problems: Reward-based
 - ☐ E.g. Autonomous driving

- What is my next move?
 - Reaching the destination with minimum cost

Reinforcement Learning

- Common theme: control problems where
 - Your actions beget rewards
 - Win the Go game
 - Make money by investing
 - Get home sooner
 - □ But not deterministically
 - A world out there that is not predictable
- From experience of belated/delayed rewards, you must learn to act rationally

- Agent operates in an environment
 - Agent may be you..
 - Environment is the game, the market, the road...

A cartoon of the world

Agent takes actions which affect the environment

- Agent takes actions which affect the environment
- Which changes in a somewhat unpredictable way

- Agent takes actions which affect the environment
- Which changes in a somewhat unpredictable way
- Which affects the agent's situation

- The agent also receives rewards..
- Which may be apparent immediately
- Or not apparent for a very long time

Problem to solve

How must the agent behave to maximize its rewards?

What the environment "experiences"

- Responds to some action by the agent
 - □ Changes in response
- Returns some reward (or punishment) to agent

100

RL Problem Setting

What the agent sees

- The agent may observe something about its environment
 - □ Sensor readings, images of a game board, stock indices...
- The agent takes actions
- The agent receives rewards
- This is the agent's world; it must make sense of it
 - Again: Agent's objective is to take the actions that maximize rewards

RL Problem Formulation

- These can be cast of problems of reinforcement learning
- There is no supervisor, only a reward signal
 - Did you get home sooner
 - Did you win the game
 - Did you make money?
- i.e. nobody telling the agent "you did well"

- Reward is a scalar a single number, may be negative
 - Game was won/lost (binary)
 - Time taken to arrive
 - Amount of money made
- Reward may be delayed
 - Wait till the end of the game!
- Agents actions affect its current and future rewards
 - Must optimize actions for maximum reward

RL Problem Formulation

- The agent must model the environment process
 - □ Formulate its own model for the environment based on what it observes
 - ☐ The environment process is unknown to the agent (must be learned from experiences)
- The agent must formulate winning strategy based on the model of its environment
 - Seek for optimal actions (usually in sequence) that maximize the expected total reward
 - Or has to learn the strategy directly from experiences

RL Problem Formulation

How to model the environment?

- The environment's state!
 - This is what will finally decide the rewards
- May be a complex combination of many things
- Generally assumed to be dynamic keeps changing
- The agent's actions can affect the way in which it responds
 - But agent may not be able to observe all of it

RL Problem Formulation

Examples of state

- Fully captures the "status" of the system
 - E.g., in an automobile: [position, velocity, acceleration]
 - In traffic: the position, velocity, acceleration of every vehicle on the road
 - In Chess: the state of the board + whose turn it is next

.

RL Problem Formulation

- How to formulate winning strategy?
 - At each time t the agent:
 - Makes an observation O_t of the environment
 - Receives a reward R_t
 - Performs an action A_t

•
$$H_t = O_0, R_0, A_0, O_1, R_1, A_1, ..., O_t, R_t$$

- The total history at any time is the sequence of observations, rewards and actions
- We need to model this sequence such that at any time t,
 the best A_t | H_t can be chosen
 - The Strategy that maximizes total reward $R_0 + R_1 + \cdots + R_T$

Markov Decision Processes

- Markov assumption:
 - □ All relevant information is encapsulated in the current state
 - i.e. the policy, reward, and transitions are all independent of past states given the current state
- Assume a fully observable environment, i.e. state can be observed directly

MDP

Formal definition

Definition

A Markov Decision Process is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- lacksquare S is a finite set of states
- \blacksquare A is a finite set of actions
- \mathcal{P} is a state transition probability matrix, $\mathcal{P}_{ss'}^{a} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s, A_t = a\right]$
- $lacksquare{\mathbb{R}}$ is a reward function, $\mathcal{R}_s^a = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$
- $ightharpoonup \gamma$ is a discount factor $\gamma \in [0,1]$.

MDPs

State Transition Matrix

For a Markov state s and successor state s', the state transition probability is defined by

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$

State transition matrix \mathcal{P} defines transition probabilities from all states s to all successor states s',

$$\mathcal{P} = \textit{from} egin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \ dots & & & \ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

where each row of the matrix sums to 1.

MDP

Example

MDP

Example

Policy of MDP

Agent's action strategy

Definition

A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}\left[A_t = a \mid S_t = s\right]$$

- A policy fully defines the behaviour of an agent
- MDP policies depend on the current state (not the history)
- i.e. Policies are stationary (time-independent), $A_t \sim \pi(\cdot|S_t), \forall t > 0$

Trajectory of MDP

- Observed instance of an MDP
 - initial state distribution $p(\mathbf{s}_0)$
 - policy $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$
 - transition distribution $p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$
 - reward function $r(\mathbf{s}_t, \mathbf{a}_t)$
- Finite horizon T (infinite case later)
 - Rollout, or trajectory $\tau = (\mathbf{s}_0, \mathbf{a}_0, \mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T)$
 - Probability of a rollout

$$p(\tau) = p(\mathbf{s}_0) \, \pi_{\theta}(\mathbf{a}_0 \,|\, \mathbf{s}_0) \, p(\mathbf{s}_1 \,|\, \mathbf{s}_0, \mathbf{a}_0) \cdots p(\mathbf{s}_T \,|\, \mathbf{s}_{T-1}, \mathbf{a}_{T-1}) \, \pi_{\theta}(\mathbf{a}_T \,|\, \mathbf{s}_T)$$

• Return for a rollout: $r(\tau) = \sum_{t=0}^{T} r(\mathbf{s}_t, \mathbf{a}_t)$

Problems in MDP

- Planning: given a complete MDP as input, compute policy with optimal expected return
 - Goal: maximize the expected return, $R = \mathbb{E}_{p(\tau)}[r(\tau)]$
 - The expectation is over both the environment's dynamics and the policy, but we only have control over the policy.

- Learning: given samples of trajectories of an unknown MDP,
 - □ Prediction: estimate the expected return given a policy
 - Control: find the optimal policy that maximizes the expected return

Summary

- Deep Reinforcement Learning
 - Markov Decision Process
- Roadmap
 - Q learning and DQN
 - Direct approach: Policy gradient method
 - Last lecture: Recent topics in deep learning