Quantum Computers
Quantum Fourier Transform
Example
Another look: the phase estimation problem

ITIS 6260/8260 Quantum Computing

Lecture 5: Quantum Fourier Transform and Shor's algorithm

Yongge Wang

UNC Charlotte, USA

February 19, 2019

Outline

- Quantum Computers
 - Quantum computers and quantum gates
 - Shor's algorithm
- Quantum Fourier Transform
 - Quantum Fourier Transform
- Example
 - Facotring 15!
- Another look: the phase estimation problem
 - The phase estimation problem

Quantum computers

- A quantum computer contains n qubits.
- if qubits can only be in non-entangled state, then nothing more powerful could be achieved
- The important thing is that these qubits could be entangled. There could be potentially 2ⁿ states, and we could run a function on all these inputs at the same time
- challenges in building quantum computers: how can we restrict many qubits in a controlled environments so that they will not have too much entanglement with outside world and they could sufficiently entangle with each other in a controlled way?

Shor's algorithm

- Shor's algorithm is a quantum algorithm for factoring a number N in O((log N)³) time and O(log N) space
- The algorithm is probabilistic, and gives the correct answer with high probability, and the probability of failure can be decreased by repeating the algorithm
- Prototype: IBM Q (quantum cloud service) presents backend devices include two processors with 5 superconducting qubits (ibmqx2 and ibmqx4), one 16-qubit processor (ibmqx5) and one 20-qubit processor (QS11).
- IBM also announced that they have successfully built and tested a 20-qubit and a 50-qubit machine

Period

Fermat's Little Theorem

$$x^{p-1} \equiv 1 \mod p$$

for all primes p and $x \in \{1, \dots, p-1\}$.

Euler's Theorem

$$x^{(p-1)(q-1)} \equiv 1 \mod pq$$

for all primes p, q and gcd(x, pq) = 1.

Overview

- Shor's algorithm idea: Miller (1976) showed that factorization could be reduced to finding the order of an element.
- order of x: the least r with $x^r = 1 \mod N$
- Steps:
 - chooses random x
 - find its order r
 - compute $gcd(x^{r/2}-1, N)$
 - since $(x^{r/2}-1)(x^{r/2}+1)=x^r-1=0 \mod N$, the process fails only if r is odd or $x^{r/2}=-1$. Thus high probability success.

Shor's Algorithm - Periodicity

An important result from Number Theory:

$$F(a) = x^a \mod N$$

is a periodic function

- Choose N = 15 and x = 7 and we get the following:
 - $7^0 \mod 15 = 1$
 - $7^1 \mod 15 = 7$
 - $7^2 \mod 15 = 4$
 - $7^3 \mod 15 = 13$
 - $7^4 \mod 15 = 1$

Shor's Algorithm - Outline

To factor an odd integer *N*:

- If N is even or in the format of pⁱ, then use conventional computer to factor it
- Choose an integer *n* such that $N^2 < 2^n < 2N^2$
- Choose a random x such that GCD(x, N) = 1
- Create two quantum registers that are entangled
 - Input register: n qubits
 - Output register: n/2 qubits

Shor's Algorithm - Preparing Data

- Use Hardamard transform to put the input register in the uniform superposition of states representing numbers a (mod q).
- Put the output register with all zeros
- This leaves the machine in state

$$\frac{1}{\sqrt{2^n}}\sum_{a=0}^{2^n-1}|a\rangle|0\cdots 0\rangle$$

where *a* the input register of *n* qubits and $|0\cdots 0\rangle$ is the output register

Shor's Algorithm - Computing x^a

- Design a quantum circuit U_f to map $|a\rangle|0\cdots0\rangle$ to $|a\rangle|f(a)\rangle$ where $f(a)=x^a$
- We do not care about the acutal value of $f(a) = x^a$
- Now assume that we measure the output register |f(a)> and discsard the result
- What is left in the |a⟩ register? It should be an equal superposition over all the possible a's that could have led to the observed value f(a):

$$\frac{1}{\sqrt{L}}(|a\rangle+|a+s\rangle+\cdots+|a+(L-1)s\rangle)$$

where s is the period

- But how can we get s?
- Any time we have a periodic signal and want to extract the period, we use Quantum Fourier Transform!

2^m-dimensional QFT

• 2^m -dimensional QFT is the $2^m \times 2^m$ matrix F_{2^m} defined by

$$\textit{F}_{2^m}[\textit{i},\textit{j}] = \omega^{\textit{ij}}/\sqrt{2^m}$$

where $\omega = e^{2\pi i/2^m}$ is the 2^m -th root of unity. That is,

$$\mathsf{QFT}_{2^m} = \frac{1}{\sqrt{2^m}} \left(\begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{2^m-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(2^m-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{2^m-1} & \omega^{2(2^m-1)} & \cdots & \omega^{(2^m-1)^2} \end{array} \right)$$

2^m-dimensional QFT

Examples

$$QFT_2 = H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$QFT_{2^2} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}$$

Fast Fourier Transform FFT

- For a $2^m \times 2^m$ matrix F and a quantum state $|\phi\rangle$ of m qubits, it takes 2^{2m} operations to compute $F|\phi\rangle$
- FFT computes $A|x\rangle$ in $O(m2^m)$ steps
- for F₄, if we move even columns (0 and 2) to the left, we got

$$F_4' = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & i & -i \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -i & i \end{pmatrix} = \begin{pmatrix} H & AH \\ H & -AH \end{pmatrix}$$

where
$$A = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$
 is the phase shift operation

Fast Fourier Transform FFT

Generally we have

$$F_{2^m} = rac{1}{\sqrt{2}} \left(egin{array}{ccc} F_{2^{m-1}} & AF_{2^{m-1}} \\ F_{2^{m-1}} & -AF_{2^{m-1}} \end{array}
ight)$$

where

$$A = \left(\begin{array}{ccc} 1 & & & \\ & \omega & & \\ & & \ddots & \\ & & & \omega^{2^{m-1}-1} \end{array}\right)$$

• Thus there is an algorithm to implement $F_{2^m}|\phi\rangle$ in $O(m2^m)$ steps. By quantum circuit speed up, we can implement $F_{2^m}|\phi\rangle$ with a quantum circuit of $O(m^2)$ gates

- Let us first define QFT_{2^m} which is the same as QFT except with the output qubits in reverse order
- Specifically, if an integer $k \in \{0, \dots, 2^m 1\}$ is written in binary notation as $k_{m-1}k_{k-2}\cdots k_0$ then we define

$$|\widetilde{\mathsf{QFT}}_{2^m}|j_{m-1}\cdots j_0\rangle = \frac{1}{\sqrt{2^m}}\sum_{k=0}^{2^m-1}\omega_{2^m}^{jk}|k_0k_1\cdots k_{m-1}\rangle$$

(cf. the j-th column of QFT₂ m)

- $\widetilde{\mathsf{QFT}}_2|j\rangle$ is just the Hadamard transform
- For general $m \ge 2$, the following circuit computes QFT_{2^{m+1}}

 We next show that the quantum circuit in the previous slides compute

$$\widetilde{\mathsf{QFT}}_{2^{m+1}}|j_mj_{m-1}\cdots j_0\rangle = \frac{1}{\sqrt{2^{m+1}}}\sum_{k=0}^{2^{m+1}-1}\omega_{2^{m+1}}^{jk}|k_0k_1\cdots k_m\rangle$$

Let

$$j' = j_m j_{m-1} \cdots j_1$$

 $k' = k_{m-1} k_{m-2} \cdots k_0$

• So $\widetilde{\mathsf{QFT}}_{2^m}$ maps $|j\rangle$ to

$$\frac{1}{\sqrt{2^m}} \sum_{k'=0}^{2^m-1} \omega_{2^m}^{j'k'} |k'_0 k'_1 \cdots k'_{m-1}\rangle |j_0\rangle$$

The controlled phase-shifts then transform this state to

$$\frac{1}{\sqrt{2^m}} \sum_{k'=0}^{2^m-1} \omega_{2^m}^{j'k'} \omega_{2^{m+1}}^{j_0 k'_0} \omega_{2^m}^{j_0 k'_1} \cdots \omega_{2^2}^{j_0 k'_{m-1}} |k'_0 k'_1 \cdots k'_{m-1}\rangle |j_0\rangle$$

• By the fact that $\omega_N = \omega_{rN}^r$ for any r, N, we have

$$\begin{array}{l} \frac{1}{\sqrt{2^m}} \sum_{k'=0}^{2^m-1} \omega_{2^{m+1}}^{2j'k'+j_0k'_0+2j_0k'_1+\cdots+2^{m-1}j_0k'_{m-1}} |k'_0k'_1\cdots k'_{m-1}\rangle |j_0\rangle \\ = \frac{1}{\sqrt{2^m}} \sum_{k'=0}^{2^m-1} \omega_{2^{m+1}}^{jk'} |k'_0k'_1\cdots k'_{m-1}\rangle |j_0\rangle \end{array}$$

Aftr the Hadamard transform, we get

$$\frac{1}{\sqrt{2^{m+1}}} \sum_{k'=0}^{2^{m}-1} \sum_{k_{m}=0}^{1} (-1)^{k_{m}j_{0}} \omega_{2^{m+1}}^{jk'} |k'_{0}k'_{1} \cdots k'_{m-1}\rangle |k_{m}\rangle$$

Since

$$(-1)^{k_m j_0} = (-1)^{k_m j} = \omega_{2^{m+1}}^{j(2^m k_m)},$$

the final state is

$$\begin{array}{l} \frac{1}{\sqrt{2^{m+1}}} \sum_{k'=0}^{2^m-1} \sum_{k_m=0}^{1} \omega_{2^{m+1}}^{jk'+j(2^m k_m)} |k_0' k_1' \cdots k_{m-1}'\rangle |k_m\rangle \\ = \frac{1}{\sqrt{2^{m+1}}} \sum_{k=0}^{2^{m+1}-1} \omega_{2^{m+1}}^{jk} |k_0 k_1 \cdots k_m\rangle \end{array}$$

Total number of gates:

$$g(1) = 1$$

 $g(m+1) = g(m) + m + 1$
 $g(m) = \sum_{j=1}^{m} j = {m+1 \choose 2}$

Fast Fourier Transform FFT - QFT needed gates

- Specifically, QFT could be done by a sequence of simple quantum R_i and S_{i,k} gates
- R_i is the Hardamard transform on the jth bit
- $S_{j,k}$ operates on the bits in positions j and k with j < k

where
$$\theta_{k-j} = \pi/2^{k-j}$$
.

Fast Fourier Transform FFT - QFT process

 To perform a quantum Fourier transform, we apply the matrices in the order (from left to right)

$$R_{l-1}, S_{l-2,l-1}, R_{l-2}, S_{l-3,l-1}, \cdots, R_1, S_{0,l-1}, S_{0,l-2}, \cdots, S_{0,2}, S_{0,1}, R_0$$

• This will map the input state $|a\rangle$ to the state (cf, the *a*-th column of F_{2^n}):

$$\frac{1}{\sqrt{2^n}}\sum_{j=0}^{2^n-1}\omega^{aj}|j\rangle$$

How to learn period s

After measurement, we got a state like

$$\frac{1}{\sqrt{L}}(|r\rangle+|r+s\rangle+\cdots+|r+(L-1)s\rangle)$$

The QFT maps this state to

$$\frac{1}{\sqrt{2^{n}L}} \sum_{j=0}^{2^{n}-1} \sum_{l=0}^{L-1} \omega^{(r+ls)j} |j\rangle$$

• Easy case $s|2^n$ and the general case $s \nmid 2^n$

How to learn period s: easy case $s|2^n$

- For $\frac{1}{\sqrt{2^nL}}\sum_{j=0}^{2^n-1}\sum_{l=0}^{L-1}\omega^{(r+ls)j}|j\rangle$, which j can be observed?
- Ignore the global phase ω^r and just look at $\sum_{l=0}^{L-1} \omega^{jsl}$
- If 2^n //js, then ω^{js} , ω^{2js} , ω^{3js} , ... point in different directions in the complex plane. Thus the destructive interference will cancel each other out.
- If $2^n|js$ or $j=k2^n/s$ for some k, then $\omega^{js}, \omega^{2js}, \omega^{3js}, \cdots$ point to the same direction and produce constructive interference.
- Repeat this for several times, get a list of j's of multiples of $2^n/s$: $j_1 = k_1 2^n/s$, $j_2 = k_2 2^n/s$, \cdots
- Use GCD to get $2^n/s$ and then s.

How to learn period s: harder case $s \nmid 2^n$

- For each state $|j\rangle$ we still have $\sum_{l=0}^{L-1} \omega^{jsl}$. Whether we can observe $|j\rangle$, it depends on whether the sum involves constructive or destructive interference
- Whether $j = \lfloor k \frac{2^n}{s} \rceil$? That is, whether j is the nearest integer to some multiple of $\frac{2^n}{s}$.

Harder case $s \not | 2^n$ and $j = \lfloor k \frac{2^n}{s} \rfloor$

- Assume that $j = k \frac{2^n}{s} + \varepsilon$ for a small $\varepsilon \leq \frac{1}{10}$
- Ignoring normalization, the final amplitude of basis state j
 has the form

$$\sum_{l=0}^{L-1} \omega^{\left(k\frac{2^n}{s} + \varepsilon\right)sl} = \sum_{l=0}^{L-1} \omega^{k2^n l} \omega^{\varepsilon sl} = \sum_{l=0}^{L-1} \omega^{\varepsilon sl}$$

since

$$\omega^{k2^n l} = e^{(2\pi i/2^n)(k2^n l)} = e^{2\pi i k l} = 1$$

ullet This amounts to a rotation around an arepsilon fraction of the unit circle. It will mostly be constructive interference

Harder case $s \not | 2^n$ and $j \neq \lfloor k \frac{2^n}{s} \rfloor$

- Assume that j is not the nearest integer to a multiple of $2^n/s$
- In this case, as we cary I, ω^{jsl} will loop all the way around the unit circle one or more times
- We get mostly destructive interference

Harder case $s \not | 2^n$: continued fractions

- We run the algorithm and get integers $j_1 = \lfloor k_1 \frac{2^n}{s} \rfloor$, $j_2 = \lfloor k_2 \frac{2^n}{s} \rfloor$, etc.
- Whenever an outcome j is observed, we'd like to determine whether it's close to an integer multiple of 2ⁿ/s, and if so what the multiple is?
- Assume that $j = k \frac{2^n}{s} \pm \varepsilon$ for a small ε , then

$$\left|\frac{j}{2^n} - \frac{k}{s}\right| \le \frac{\varepsilon}{2^n}$$

• That is, $\frac{j}{2^n}$ is close to a rational number $\frac{k}{s}$ with smaller denominator s (note that $s \le N$ and $Q \sim N^2$)

Harder case $s \nmid 2^n$: continued fractions

- Assume that $\frac{j}{2^n} \pm \varepsilon = \frac{25001}{100000}$
- expand the input as a continued fraction:

$$\frac{25001}{100000} = \frac{1}{\frac{100000}{25001}} = \frac{1}{3 + \frac{24997}{25001}} = \frac{1}{3 + \frac{1}{\frac{25001}{24991}}} = \frac{1}{3 + \frac{1}{1 + \frac{4}{24997}}}$$

- $\frac{4}{24997}$ is smaller enough to be discarded
- So $\frac{k}{s} = \frac{1}{3 + \frac{1}{4}} = \frac{1}{4}$?
- What happens if k and s have a non-trivial divisor?

Harder case $s \nmid 2^n$: continued fractions

- We run the algorithm multiple times to get $\frac{k_1}{s_1}, \frac{k_2}{s_2}, \cdots$. That is, we goet a list of s_1, s_2, \cdots
- With high probability, s is the least common multiple of s_1, s_2, \cdots

Generalizing of Shor's algorithm

- No success to generalize it to non-abelian groups
- if one can generalize Shor's algorithm to non-abelian groups, then
 - one can solve Graph Isomorphisms in polynomial time
 - Ragev (2005) showed that one could break lattice-based cryptosystems if one could generalize Shor's algorithm to work for a nonabelian group called the dihedral group.

Shor's Algorithm - An example

To factor an odd integer *N* (Let's choose 15):

- If N is even or in the format of pⁱ, then use conventional computer to factor it
- Choose an integer $q = 2^n$ such that $N^2 < q < 2N^2$ let's pick $256 = 2^8$
- Choose a random x such that GCD(x, N) = 1 let's pick 7
- Create two quantum registers that are entangled
 - Input register: must contain enough qubits to represent numbers as large as q – 1 up to 255, so we need 8 qubits
 - Output register: must contain enough qubits to represent numbers as large as N-1 up to 14, so we need 4 qubits

Shor's Algorithm - Preparing Data

- Put the input register in the uniform superposition of states representing numbers a (mod q).
- Put the output register with all zeros
- This leaves the machine in state

$$\frac{1}{\sqrt{256}}\sum_{a=0}^{255}|a\rangle|0000\rangle$$

where a the input register of 8 qubits and $|0000\rangle$ is the output register of 4 qubits

Shor's Algorithm - Modular Arithmetic

 Next we compute x^a (mod N) in the output register (uses only CCN gates). Thus the machine will be in the state

$$\frac{1}{\sqrt{256}} \sum_{a=0}^{255} |a\rangle |x^a \bmod N\rangle$$

we are using decimal numbers for simplicity

Input Register	7 ^a mod 15	Output Register
0⟩	7 ⁰ mod 15	1
1>	7 ¹ mod 15	7
2⟩	7 ² mod 15	4
3>	7 ³ mod 15	13
4⟩	7 ⁴ mod 15	1
5⟩	7 ⁵ mod 15	7
6⟩	7 ⁶ mod 15	4
7⟩	7 ⁷ mod 15	13

Shor's Algorithm - Measuring

 After we measure the output register, it will collapse to one of the following:

$$|1\rangle,|4\rangle,|7\rangle,|13\rangle$$

- As an example, we show the case for |1>
- Since the output register collapsed to |1>, the input register will partially collapse to:

$$\frac{1}{\sqrt{64}}|0\rangle + \frac{1}{\sqrt{64}}|4\rangle + \frac{1}{\sqrt{64}}|8\rangle + \frac{1}{\sqrt{64}}|12\rangle + \dots + \frac{1}{\sqrt{64}}|252\rangle$$

The probabilities in this case are $\frac{1}{\sqrt{64}}$ since our register is now in an equal superposition of 64 values $(0,4,8,12,16,20,\cdots,252)$

Shor's Algorithm - QFT

• Let A be the set of all values that $7^a \mod 15$ yielded 1. In our case $A = \{0,4,8,\cdots,252\}$ and

$$\frac{1}{\sqrt{64}}\sum_{a\in A}|a\rangle|1\rangle$$

The QFT maps a state |a> to the state

$$\frac{1}{\sqrt{256}}\sum_{c=0}^{255}\omega^{ac}|c\rangle$$

So the final state of the input register after the QFT is:

$$\frac{1}{\sqrt{64}} \sum_{a \in A} \frac{1}{\sqrt{256}} \sum_{c=0}^{255} \omega^{ac} |c\rangle |1\rangle$$

Shor's Algorithm - QFT

• The QFT will essentially peak the probability amplitudes at integer multiples of q/r, where r is the order of x. In our case r is 4.

$$|0\rangle, |64\rangle, |128\rangle, |192\rangle, \cdots$$

- So we no longer have an equal superposition of states, the probability amplitudes of the above states are now higher than the other states in our register.
- Measure the state of register one, call this value c. Then c
 has a very high probability of being a multiple of q/r
- With our knowledge of q, and m, there are methods of calculating the the order r

Shor's Algorithm - The Factors

Now that we have the period, the factors of N can be determined by taking the greatest common divisor of N with respect to $x^{(P/2)} + 1$ and $x^{(P/2)} - 1$. The idea here is that this computation will be done on a classical computer.

- We compute
- $GCD(7^{4/2}+1,15)=5$
- $GCD(7^{4/2}-1,15)=3$
- We have successfully factored 15!

The phase estimation problem

- Assuming that we habe a quantum circuit Q acting on n qubits
- Associated with Q is a 2ⁿ x 2ⁿ unitary matrix U
- When n is large, hard to write down U
- Since U is unitary, it has complete, orthonormal collection of eigenvectors

$$|\phi_1\rangle,\cdots,|\phi_{2^n}\rangle$$

and associate eigenvalues

$$e^{2\pi i\theta_1},\cdots,e^{2\pi i\theta_{2^n}}$$

The phase estimation problem

Input: A quantum circuit Q that performs a unitary operation U, along with a quantum state |φ⟩

$$U|\phi
angle=e^{2\pi i heta}|\phi
angle$$

• **Output**: An approximation to $\theta \in [0,1)$

The phase estimation procedure

• Let $\Lambda_m(U)$ dente the unitary transformation on m+n qubits

$$\Lambda_m(U)|k
angle|\phi
angle=|k
angle(U^k|\phi
angle)$$
 where $k\in\{0,\cdots,2^m-1\}$

• If k is larger, then one may needs exponential time (e.g., 2^m) to implement $\Lambda_m(U)$ from U. But we will assume that $\Lambda_m(U)$ could be efficiently implemented

The phase estimation procedure

- After $H^{\otimes m}$, we get $\frac{1}{2^{m/2}}\sum_{k=0}^{2^m-1}|k\rangle|\phi\rangle$
- After $\Lambda_m(U)$, we get $\frac{1}{2^{m/2}}\sum_{k=0}^{2^m-1}|k\rangle(U^k|\phi\rangle)$

The phase estimation procedure

 $\bullet | \phi \rangle$ is an eigenvector of U

$$U^k|\phi\rangle=e^{2\pi i k \theta}|\phi\rangle$$

• That is, after $\Lambda_m(U)$, we get

$$\frac{1}{2^{m/2}}\sum_{k=0}^{2^m-1}|k\rangle(e^{2\pi ik\theta}|\phi\rangle)=\frac{1}{2^{m/2}}\sum_{k=0}^{2^m-1}e^{2\pi ik\theta}|k\rangle|\phi\rangle$$

If we discard the last n qubits, we get

$$\frac{1}{2^{m/2}}\sum_{k=0}^{2^{m-1}}e^{2\pi ik\theta}|k\rangle$$

• If $\theta = \frac{j}{2^m}$ for some $j \le 2^m - 1$. Then we have

$$\frac{1}{2^{m/2}}\sum_{k=0}^{2^{m}-1}e^{2\pi i\frac{jk}{2^{m}}}|k\rangle = \frac{1}{2^{m/2}}\sum_{k=0}^{2^{m}-1}\omega^{jk}|k\rangle$$

where $\omega = e^{2\pi i/2^m}$ is the 2^m -th root of unit

- Let $|\psi_j
 angle=rac{1}{2^{m/2}}\sum_{k=0}^{2^m-1}\omega^{jk}|k
 angle$
- We know that the first m qubits is in one of the state $|\psi_j\rangle$ and we need to determine which one it is. First we show that $|\psi_0\rangle, \cdots, |\psi_{2^m-1}\rangle$ are orthogonal

Note that

$$\langle \psi_j | \psi_{j'}
angle = rac{1}{2^m} \sum_{k=0}^{2^m-1} \omega^{k(j-j')} = rac{1}{2^m} \sum_{k=0}^{2^m-1} \left(\omega^{j-j'}
ight)^k$$

• By the fact that $\sum_{k=0}^{2^m-1} x^k = \frac{x^{2^m}-1}{x-1}$ and $\omega^{2^m}=1$, we have

$$\langle \psi_i | \psi_{i'} \rangle = 1$$
 iff $j = j'$ (and $= 0$) otherwise

• Since $|\psi_0\rangle, \cdots, |\psi_{2^m-1}\rangle$ are orthogonal, there is a unitary transformation F with

$$F|j\rangle = |\psi\rangle$$

• The matrix F can be explicitly described by allowing the vector $|\psi_i\rangle$ to determine the j-th column of F

$$F = \frac{1}{\sqrt{2^m}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{2^m - 1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(2^m - 1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{2^m - 1} & \omega^{2(2^m - 1)} & \cdots & \omega^{(2^m - 1)^2} \end{pmatrix}$$

 This is exactly the discrete Fourier transform and we can denote it as QFT_{2^m}

We can write this as

$$\mathsf{QFT}_{2^m}|j\rangle = \frac{1}{2^{m/2}} \sum_{k=0}^{2^{m-1}} e^{2\pi i j k/2^m} |k\rangle$$

Plug the inverse of QFT_{2^m} into the previous circuit:

Thus, measure the first m qubits and divide it by 2^m to get θ .

• The state of the first *m* qubits before the inverse of QFT is

$$\frac{1}{2^{m/2}}\sum_{k=0}^{2^{m-1}}e^{2\pi ik\theta}|k\rangle$$

Applying the inverse QFT₂^{**} to the m qubits and we get

$$\frac{1}{2^m} \sum_{k=0}^{2^m-1} \sum_{j=0}^{2^{m-1}} e^{2\pi i (k\theta - kj/2^m)} |j\rangle = \sum_{j=0}^{2^m-1} \left(\frac{1}{2^m} \sum_{k=0}^{2^m-1} e^{2\pi i k (\theta - j/2^m)} \right) |j\rangle$$

• The probability to get outcome j is

$$p_{j} = \left| \frac{1}{2^{m}} \sum_{k=0}^{2^{m}-1} e^{2\pi i k (\theta - j/2^{m})} \right|^{2}$$

- Since $\theta \neq j/2^m$, assume that $e^{2\pi ik(\theta-j/2^m)} \neq 1$
- Use the fact that $\sum_{k=0}^{2^m-1} x^k = \frac{x^{2^m}-1}{x-1}$, we get

$$p_{j} = \frac{1}{2^{2m}} \left| \frac{e^{2\pi i(2^{m}\theta - j)} - 1}{e^{2\pi i(\theta - j/2^{m})} - 1} \right|^{2}$$

• Our goal will be to show that the probability p_j is large for values of j that satisfy $j/2^m \sim \theta$ and small otherwise

- Assume that $\theta = \frac{j}{2^m} \pm \varepsilon$
- let

$$a = |e^{2\pi i(2^m \theta - j)} - 1| = |e^{2\pi i \epsilon 2^m} - 1|$$

$$b = |e^{2\pi i(\theta - j/2^m)} - 1| = |e^{2\pi i \epsilon} - 1|$$

SO

$$p_{j} = \frac{1}{2^{2m}} \frac{a^{2}}{b^{2}}$$

 To get a lower bound for p_j, we need to get a lower bound for a and an upper bound for b

- Assume that $\theta = \frac{j}{2^m} \pm \varepsilon$
- let

$$a = |e^{2\pi i(2^m \theta - j)} - 1| = |e^{2\pi i \epsilon 2^m} - 1|$$

$$b = |e^{2\pi i(\theta - j/2^m)} - 1| = |e^{2\pi i \epsilon} - 1|$$

SO

$$p_{j} = \frac{1}{2^{2m}} \frac{a^{2}}{b^{2}}$$

 To get a lower bound for p_j, we need to get a lower bound for a and an upper bound for b

The ratio of the minor arc length to the chord length is at most $\pi/2$, so

$$\frac{2\pi\varepsilon 2^m}{a} \leq \frac{\pi}{2}$$

That is:

$$a > 4\varepsilon 2^m$$

the ratio of arc length to chord length is at least 1, so

$$\frac{2\pi\varepsilon}{b} \geq 1$$

That is:

$$b < 2\pi\varepsilon$$

Putting together, we get

$$p_j \ge \frac{1}{2^{2m}} \frac{16\varepsilon^2 2^{2m}}{2\pi^2 \varepsilon^2} = \frac{4}{\pi^2} > 0.4$$

Q&A

Q&A?