Step-1

Given that A is m by n, we have found the number of separate multiplications are involved in each case.

Step-2

(a) A multiplies a vector x with n components.

In the product of Ax every entry involves mn separate multiplications.

Step-3

(b) A multiplies an $^{n \text{ by } p}$ matrix $^{n \text{ and then } AB}$ is $^{m \text{ by } p}$.

Since A is m by n and B is n by p and AB is of order m by p. So in the product AB every entry involves $\hat{a} \in e^{mnp}$ $\hat{a} \in e^{mnp}$ $\hat{a} \in e^{mnp}$

Step-4

(c) A multiplies itself to produce A^2 and here m = n.

Since m = n, the product A^2 involves n^3 separate products and these are n^2 dot products.