

PolygonGNN: Representation Learning for Polygonal Geometries with Heterogeneous Visibility Graph

Dazhou Yu 2024

Background: polygonal representation

- Capturing and encoding the characteristics of polygonal geometries
- Polygon p: an ordered set of coordinates
- A representation learning model on multipolygon is desired

Challenges & Contributions

- Conserving inner-polygonal & inter-polygonal relationships
 - heterogeneous visibility graphs
- Quadratic complexity from pairwise relationships
 - heterogeneous spanning tree sampling
- Rotation and translation invariance
 - lossless rotation-translation-invariant geometric representation.

Overview of PolygonGNN Framework

Heterogeneous Visibility Graphs

- Node V: polygon vertex
- Node feature X: coordinates
- Edge E: polygon shape + visibility relationship

Heterogeneous Spanning Tree Sampling

- Edge E: polygon shape + visibility relationship
- Sampling visibility edge

Graph Geometric Representation

- Distance
- Distance
- Angle
- Edge Type
- Edge Type

Multipolygon-GNN

Overview of PolygonGNN Framework

Datasets

Name	Number of samples	Number of classes	Polygon type	Task
MNIST-P-2	10,000	90	multipolygon	Digit classification
Building-2-R	3,469	10	multipolygon	Building shape classification
Building-2-C	5,000	10	multipolygon	Building shape classification
Building-S	5,000	10	Single polygon	Building shape classification
DBSR- cplx46K	46,567	2	multipolygon	Partially containing classification

Effectiveness

Dataset	Metric	ResNet1D	VeerCNN	NUFT-DDSL	NUFT-IFFT	PolygonGNN
MNIST-P-2	Acc	$0.794 \pm .012$	0.667±.019	$0.559 \pm .014$	0.357±.029	$0.897 \pm .004$
	Prec	$0.810 \pm .018$	$0.709 \pm .017$	$0.593 \pm .013$	$0.391 \pm .027$	$0.901 \pm .010$
	F1	$0.794 \pm .012$	$0.667 \pm .018$	$0.561 \pm .014$	$0.357 \pm .028$	$0.897 \pm .007$
	AUC	0.995±.001	$0.986 \pm .008$	$0.964 \pm .005$	$0.908 \pm .010$	$0.997 \pm .000$
Building-2-C	Acc	0.146±.020	$0.121 \pm .005$	$0.088 \pm .023$	$0.059 \pm .031$	$0.537 \pm .025$
	Prec	$0.175 \pm .026$	$0.125 \pm .007$	$0.108 \pm .030$	$0.072 \pm .034$	$0.578 \pm .026$
	F1	$0.145 \pm .021$	$0.111 \pm .006$	$0.086 \pm .024$	$0.060 \pm .038$	$0.537 \pm .025$
	AUC	$0.860 \pm .055$	$0.836 \pm .010$	$0.738 \pm .051$	$0.703 \pm .055$	$0.985 \pm .008$
Building-2-R	Acc	$0.464 \pm .014$	$0.372 \pm .060$	$0.244 \pm .028$	$0.244 \pm .013$	$0.663 \pm .011$
	Prec	$0.505 \pm .014$	$0.375 \pm .111$	$0.278 \pm .029$	$0.287 \pm .015$	$0.696 \pm .021$
	F1	$0.451 \pm .014$	$0.352 \pm .079$	$0.223 \pm .023$	$0.229 \pm .025$	$0.646 \pm .015$
	AUC	$0.855 \pm .005$	$0.843 \pm .025$	$0.736 \pm .008$	$0.710 \pm .009$	$0.964 \pm .008$
Building-S	Acc	$0.749 \pm .016$	$0.643 \pm .059$	$0.847 \pm .005$	$0.814 \pm .002$	$0.984 \pm .007$
	Prec	$0.773 \pm .015$	$0.658 \pm .073$	$0.861 \pm .005$	$0.846 \pm .001$	$0.983 \pm .007$
	F1	$0.748 \pm .018$	$0.644 \pm .055$	$0.847 \pm .006$	$0.817 \pm .001$	$0.984 \pm .007$
	AUC	$0.954 \pm .005$	$0.934 \pm .021$	$0.986 \pm .001$	$0.984 \pm .000$	$0.999 \pm .000$
DBSR-cplx46K	Acc	0.955±.012	$0.986 \pm .001$	$0.990 \pm .001$	$0.990 \pm .001$	$0.992 \pm .001$
	Prec	$0.956 \pm .010$	$0.986 \pm .001$	$0.990 \pm .001$	$0.987 \pm .001$	$0.992 \pm .001$
	F1	0.955±.012	$0.986 \pm .001$	$0.990 \pm .001$	$0.990 \pm .001$	$0.992 \pm .001$
	AUC	0.995±.001	$0.997 \pm .000$	$0.997 \pm .000$	$0.997 \pm .000$	0.998±.000

 PolygonGNN shows the highest score among all baselines across all datasets

Ablation Study

- Multipolygon-GNN
- Sampling strategy

Dataset	Metric	HAN	HGT	PolygonGNN w/o S	PolygonGNN
MNIST-P-2	Acc	0.865±.013	0.872±.016	$0.880 \pm .009$	$0.897 \pm .004$
	Prec	0.871±.012	$0.877 \pm .010$	$0.885 \pm .012$	$0.901 \pm .010$
	F1	$0.865 \pm .012$	$0.872 \pm .012$	$0.879 \pm .010$	$0.897 \pm .007$
	AUC	0.996±.001	$0.996 \pm .001$	$0.996 \pm .001$	$0.997 \pm .000$
Building-2-C	Acc	0.318±.027	0.347±.023	0.536±.013	0.537±.025
	Prec	$0.331 \pm .045$	$0.367 \pm .041$	$0.568 \pm .014$	$0.578 \pm .026$
	F1	$0.310 \pm .033$	$0.339 \pm .029$	$0.530 \pm .013$	$0.537 \pm .025$
	AUC	$0.932 \pm .014$	$0.944 \pm .015$	$0.984 \pm .003$	$0.985 \pm .008$
Building-2-R	Acc	0.599±.079	$0.637 \pm .071$	$0.659 \pm .020$	$0.663 \pm .011$
	Prec	$0.623 \pm .083$	$0.651 \pm .077$	$0.679 \pm .020$	$0.696 \pm .021$
	F1	$0.585 \pm .080$	$0.625 \pm .076$	$0.642 \pm .019$	$0.646 \pm .015$
	AUC	0.917±.039	$0.946 \pm .026$	$0.969 \pm .010$	$0.964 \pm .008$
Building-S	Acc	0.898±.007	$0.950 \pm .004$	$0.984 \pm .009$	$0.984 \pm .007$
	Prec	0.901±.006	$0.951 \pm .004$	$0.984 \pm .009$	$0.983 \pm .007$
	F1	0.898±.006	$0.950 \pm .004$	$0.984 \pm .009$	$0.984 \pm .007$
	AUC	0.992±.000	$0.998 \pm .000$	$0.999 \pm .000$	$0.999 \pm .000$
DBSR-cplx46K	Acc	0.983±.001	$0.990 \pm .002$	$0.990 \pm .001$	0.992±.001
	Prec	0.983±.001	$0.990 \pm .002$	$0.990 \pm .001$	$0.992 \pm .001$
	F1	0.983±.001	$0.990 \pm .001$	$0.990 \pm .001$	$0.992 \pm .001$
	AUC	0.997±.000	$0.997 \pm .000$	$0.998 \pm .000$	0.998±.000

Embedding Visualization

Visualization of Prediction Cases

Green are correct predictions

- Predictions made by ResNet1D, VeerCNN, NUFT-DDSL, NUFT-IFFT, HAN, HGT, PolygonGNN w/o S, and PolygonGNN
- PolygonGNN adeptly handles minor imperfections

Summary

- Heterogeneous visibility graphs conserving inner-polygonal & inter-polygonal relationships
- Heterogeneous spanning tree sampling to solve quadratic complexity from pairwise relationships
- Lossless rotation-translation-invariant geometric representation
- PolygonGNN advances the representation learning for polygonal geometries, with a particular focus on multipolygons

paper

code