探究 Taylor 公式视角下的偏移问题

华南师范大学数学科学学院 (510631) 陈禧杰

摘要 自从在 2016 年全国卷 I 的理科第 21 题中出现了一道"极值点偏移"的题目后,全国各地都开始对此类型的题目进行研究,方法层出不穷,比较常见的方法有构造函数法、比值代换、差值代换、对数均值不等式法等,更有延伸的题型——"拐点偏移",本文透过高等数学中的 Taylor 公式对该两类型的偏移问题进行剖析,得到两条证明偏移问题的判定定理。

关键词 Taylor 公式; 极值点偏移; 拐点偏移

一、极值点偏移和拐点偏移

极值点的定义大家是比较熟悉的, 即若 $f(x_0)$ 是函数 f(x) 的极大 (小) 值, 则 x_0 为函数 f(x) 的极大 (小) 值点, 但 拐点的定义可能不甚了解.

定义 $1^{[1]}$ 设 f(x) 在 x_0 处连续. 若曲线 y = f(x) 在 $(x_0, f(x_0))$ 左右两侧的上下凹凸性相反, 则称 $(x_0, f(x_0))$ 为 曲线 y = f(x) 的拐点.

结合函数凹凸性的等价定义[1], 可得:

性质 $1^{[1]}$: 若 f(x) 二阶可导, 有 $f''(x_0) = 0$ 且在 x_0 两

侧的二阶导数异号,则 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点.

1. 极值点偏移

定义 $2^{[2]}$ 已知函数 y = f(x) 在 (a,b) 上连续, 且在区间 (a,b) 内只有一个极值点 x_0 . 对任意满足 $f(x_1) = f(x_2) = m(m$ 为常数), 且 $a < x_1 < x_0 <$

 $x_2 < b$ 的 x_1, x_2 , 若都有 $x_1 + x_2 > 2x_0$, 则称函数 f(x) 在 (a,b) 上极值点 x_0 左偏; 若都有 $x_1 + x_2 < 2x_0$, 则称函数 f(x) 在 (a,b) 上极值点 x_0 右偏.

极值点 x_0 左偏的图示可参看图 1.

2. 拐点偏移

在极值点偏移的基础上,各地模拟题中又出现了拐点偏移,此类题型一般以某些函数在拐点两侧"凹凸程度"不同,导致函数图像关于拐点不具有中心对称性作为命题背景.下面给出拐点偏移的定义.

例 3 (2016 年高联福建预赛) 已知 x,y,z>0, 求 $\frac{4xz+yz}{x^2+y^2+z^2}$ 的最大值.

分析 在结论中令 $k_1=k_2=k_3=1, m_2=4, m_3=1,$ 则 $S_{\max}=\frac{\sqrt{17}}{2}.$

例 4 (2015 年《数学教学》947 问题) 已知 $x^2 + y^2 + z^2 =$ 1, 求 xy + 2xz 的最大值.

分析 由于求最大值, 因而考虑正数情况. 在推论中令 $k_1=k_2=k_3=1, m_2=1, m_3=2,$ 则 $S_{\max}=\frac{\sqrt{5}}{2}.$

例 5 (2012 年高联甘肃预赛) 已知 $x^2 + y^2 + z^2 = 1$, 求 xy + yz 的最大值.

分析 由于求最大值, 因而只考虑正数情况. 在推论中令 $k_1=k_2=k_3=m_2=m_3=1,$ 则 $S_{\max}=\frac{\sqrt{2}}{2}.$

例 6 (2009 年高联浙江预赛) 已知 $x^2 + y^2 + z^2 = 1$, 求 $\sqrt{2}xy + yz$ 的最大值.

分析 由于求最大值, 因而只考虑正数情况. 在推论中令

 $k_1 = k_2 = k_3 = 1, m_2 = \sqrt{2}, m_3 = 1, 则 S_{\text{max}} = \frac{\sqrt{3}}{2}.$ 最后, 给出其 n 元推广形式, 有兴趣的读者可自行证明.

变式 (n 元形式) 已知 $x_1, x_2, \cdots, x_n \in \mathbb{R}^+$,常数 $k_1, k_2, \cdots, k_n, m_2, m_3, \cdots, m_n \in \mathbb{R}^+$,其中 $n \geq 3, n \in \mathbb{N}$,求 $S_n = \frac{x_1 \sum_{i=2}^n m_i x_i}{\sum_{i=2}^n k_i x_i^2}$ 的最大值.

结论
$$(S_n)_{\max} = \frac{1}{2} \sqrt{\sum_{i=2}^n \left(\prod_{j\neq 1,i}^n k_j m_i^2\right) / \prod_{i=1}^n k_i}.$$

注 若 n=2 时, $(S_2)_{\text{max}}=\frac{1}{2}\sqrt{\frac{m_2^2}{k_1k_2}}$, 其结果与上式亦吻合.

参考文献

- [1] 中国数学会普及工作委员会及数学奥林匹克委员会. 2017 年高中数学联赛备考手册 [M]. 上海: 华东师范大学出版社, 2017.
- [2] 中国数学会普及工作委员会及数学奥林匹克委员会. 2013 年高中数学联赛备考手册 [M]. 上海: 华东师范大学出版社, 2013.

定义 $3^{[2]}$ 已知函数 y = f(x) 在 (a,b) 上连续, 且在区间 (a,b) 内只有一个拐点 x_0 . 对任意满足 $f(x_1) + f(x_2) = 2f(x_0)$, 且 $a < x_1 < x_0 < x_2 < b$ 的 x_1, x_2 , 若都有 $x_1 + x_2 > 2x_0$, 则称函数 f(x)

在 (a,b) 上拐点 x_0 左偏; 若都有 $x_1 + x_2 < 2x_0$, 则称函数 f(x) 在 (a,b) 上拐点 x_0 右偏.

拐点偏移的题目一般是针对 f(x) 是 (a,b) 上的单调函数而言的, 以拐点左偏为例, 见图 2.

特别地, a 可为 $-\infty$, b 可为 $+\infty$.

二、Taylor 公式

高中阶段经常会遇到含有 e^x 和 $\ln x$ 的超越函数, 若能用简单的多项式函数来近似替代此类函数, 而且误差又能满足要求, 那么对函数值的近似计算具有重要意义, 且在导数大题中可用于放缩来简化不等式证明, 而在高等数学中的Taylor 公式便能达到这个效果.

定义 $4^{[1]}$ 若 f(x) 在 x_0 的某邻域 $U(x_0)$ 内有 n+1 阶 导数, 则对任意的 $x \in U^{\circ}(x_0)$, 存在 ξ 介于 x 和 x_0 之间, 使 $f(x) = T_n(x) + R_n(x)$, 其中 $T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$ 为 f(x) 在 点 x_0 处 的 n 阶 Taylor 多 项 式, $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$ 为 Taylor 公式的 Lagrange 型余项, 其中 $\xi = x_0 + \theta(x - x_0)(0 < \theta < 1)$. (补充: 某邻域 $U(x_0)$ 的含义是指以 x_0 为中心,以某一常数 r(r > 0) 作为半径的一个开区间 $(x_0 - r, x_0 + r)$, $U^{\circ}(x_0) = U(x_0)/\{x_0\}$)

中学阶段可以直观地理解为当 n 越大时, $T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ 与函数 f(x) 的图像就越相似.

三、Taylor 公式与偏移问题的联系

事实上,极值点偏移与函数的轴对称性有关,而拐点偏移则与函数的中心对称性有关,可以分别对应中学阶段熟悉的二次函数与三次函数. 已知二次函数具有轴对称性,其极值点恰为其对称轴,而三次函数具有中心对称性,其对称中心恰为其拐点. 所以在偏移问题上,按照定义 2 和定义 3 的背景,二次函数不发生极值点偏移,即 $\frac{x_1+x_2}{2}=x_0(x_0)$ 为极值点);三次函数不发生拐点偏移,即 $\frac{f(x_1)+f(x_2)}{2}=f(x_0)$ 时有 $\frac{x_1+x_2}{2}=x_0(x_0)$ 为拐点). 然而,当 f(x) 在点 x_0 处的二阶 Taylor 多项式 $T_2(x)$ 和三阶 Taylor 多项式可以用于逼近别为二次函数和三次函数,而且 Taylor 多项式可以用于逼近

原函数, 所以可以尝试通过分别对 f(x) 与 $T_2(x)$ 和 f(x) 与 $T_3(x)$ 的差异进行分析, 将 Taylor 公式与偏移问题联系起来, 下面来看看如何应用作差法分析其差异.

定理 $1^{[3]}$ 连续函数 f(x) 在 (a,b) 上有二阶导数且只有一个极值点 x_0 , f'(x) 在 (a,x_0) 和 (x_0,b) 上异号, $T_2(x) = f(x_0) + \frac{f''(x_0)}{2}(x-x_0)^2$ 为 f(x) 在 $x = x_0$ 处的二阶 Taylor 多项式, 记差函数为 $D_2(x) = f(x) - T_2(x)$, 对任意满足 $f(x_1) = f(x_2) = m(m$ 为常数), 且 $a < x_1 < x_0 < x_2 < b$ 的 x_1, x_2 :

- (1) 若 $D_2(x)f'(x) < 0$, $\forall x \neq x_0$, 则 $x_1 + x_2 > 2x_0$, 即函数 f(x) 在 (a,b) 上极值点 x_0 左偏;
- (2) 若 $D_2(x)f'(x) > 0$, $\forall x \neq x_0$, 则 $x_1 + x_2 < 2x_0$, 即函数 f(x) 在 (a,b) 上极值点 x_0 右偏.

证明^[3] 不妨设极值点 x_0 为极小值点,类似可证为极大值点的情况. 因为二次函数 $T_2(x) = f(x_0) + \frac{f''(x_0)}{2}(x-x_0)^2$ 是以 $(x_0,f(x_0))$ 为顶点,以 $x=x_0$ 为对称轴,所以 $m>f(x_0)$ 时, $T_2(x)$ 也必定存在两个不等实根 x_1',x_2' 使得 $f(x_1)=f(x_2)=m=T_2(x_1')=T_2(x_2')$,且由二次函数的轴对称性可得 $x_1'+x_2'=2x_0$,故不妨设 $a< x_1'< x_0< x_2'< b$.

(1) 若 $D_2(x)f'(x) < 0$, $\forall x \neq x_0$, 如图 3, 因为 $x = x_0$ 为极小值点, 故 $x \in (a, x_0)$, f'(x) < 0, 所以 $D_2(x) = f(x) - T_2(x) > 0$, 即 f(x) > 0

 $T_2(x)$. 所以 $f(x_1') > T_2(x_1') = f(x_1)$, 又因为 f'(x) < 0, f(x) 单调递减, 所以可推出 $x_1' < x_1$. 同理可证当 $x > x_0$ 时, 有 $x_2' < x_1$. 故由 $x_1' < x_1$ 和 $x_2' < x_2$ 可推出 $x_1 + x_2 > x_1' + x_2' = 2x_0$.

 $(2) 若 <math>D_2(x) f'(x) > 0, \forall x \neq x_0,$ 同理可证得 $x_1 + x_2 < x_1' + x_2' = 2x_0.$

定理 2 连续的函数 f(x) 在 (a,b) 上有三阶导数 且只有一个拐点 x_0 , f''(x) 在 (a,x_0) 和 (x_0,b) 上异号, $T_3(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f'''(x_0)}{6}(x - x_0)^3$ 为 f(x) 在 $x = x_0$ 处的三阶 Taylor 多项式, 记差函数为 $D_3(x) = f(x) - T_3(x)$, 对任意满足 $f(x_1) + f(x_2) = 2f(x_0)$, 且 $a < x_1 < x_0 < x_2 < b$ 的 x_1, x_2 :

- (1) 若 f(x) 单调递增, 当 $x \in (a, x_0)$ 时, f''(x) < 0 > 0且 $D_3'(x) < 0$, 当 $x \in (x_0, b)$ 时, f''(x) > 0 < 0 且 $D_3'(x) > 0$, 则 $x_1 + x_2 < 2x_0$, 即拐点右偏;
 - (2) 若 f(x) 单调递增, 当 $x \in (a, x_0)$ 时, f''(x) < 0 (> 0)

且 $D_3'(x) > 0$, 当 $x \in (x_0, b)$ 时, f''(x) > 0 < 0) 且 $D_3'(x) < 0$, 则 $x_1 + x_2 > 2x_0$, 即拐点左偏;

(3) 若 f(x) 单调递减, 当 $x \in (a, x_0)$ 时, f''(x) < 0 (> 0) 且 $D_3'(x) > 0$, 当 $x \in (x_0, b)$ 时, f''(x) > 0 (< 0) 且 $D_3'(x) < 0$, 则 $x_1 + x_2 < 2x_0$, 即拐点右偏;

(4) 若 f(x) 单调递减, 当 $x \in (a, x_0)$ 时, f''(x) < 0 > 0 且 $D_3'(x) < 0$, 当 $x \in (x_0, b)$ 时, f''(x) > 0 < 0 且 $D_3'(x) > 0$, 则 $x_1 + x_2 > 2x_0$, 即拐点左偏.

证明 不妨证"若 f(x) 单调递增, 当 $x \in (a, x_0)$ 时, f''(x) < 0 且 $D'_3(x) < 0$, 当 $x \in (x_0, b)$ 时, f''(x) > 0 且 $D'_3(x) > 0$, 则 $x_1 + x_2 < 2x_0$ ", 其他情况类似可证.

 $T_3(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f'''(x_0)}{6}(x - x_0)^3$ 为 f(x) 在 $x = x_0$ 处的三阶 Taylor 多项式,而 $T_3'(x) = f'(x_0) + \frac{f'''(x_0)}{2}(x - x_0)^2$ 恰好等于 f'(x) 在 $x = x_0$ 处的 二阶 Taylor 多项式,而 f'(x) 代替 f(x) 后的 $D_2(x)$ 恰为 $D_3'(x) = f'(x) - T_3'(x)$. 所以当 $x \in (a, x_0)$ 时,f''(x) < 0 且 $D_3'(x) < 0$,当 $x \in (x_0, b)$ 时,f''(x) > 0 且 $D_3'(x) > 0$,可推 得 $D_3'(x) f''(x) > 0$, $\forall x \neq x_0$,由定理 1 可得 f'(x) 在 (a, b) 上极值点 x_0 右偏.

令 $g(x) = f(x) + f(2x_0 - x)$,则 $g'(x) = f'(x) - f'(2x_0 - x)$. 因为 f'(x) 在 (a,b) 上极值点 x_0 右偏,所以对任意满足 $f'(x_1) = f'(x_2)$,且 $a < x_1 < x_0 < x_2 < b$ 的 x_1, x_2 ,若都有 $x_1 + x_2 < 2x_0$,则 $2x_0 - x_1 > x_2 > x_0$. 因为当 $x \in (x_0,b)$ 时, f''(x) > 0,所以 f'(x) 单调递增,得 $f'(2x_0 - x_1) > f'(x_2) = f'(x_1)$,所以 $f'(x_1) - f'(2x_0 - x_1) < 0$,所以当 $x \in (x_0,b)$ 时, g'(x) < 0,所以 g(x) 在 (a,x_0) 上单调递减。同理可得,g(x) 在 (x_0,b) 上单调递增。于是当 $x \in (a,b)$ 且 $x \neq x_0$ 时, $g(x) > g(x_0)$,即 $f(x) + f(2x_0 - x) > 2f(x_0)$.所以 $f(2x_0 - x_1) > 2f(x_0) - f(x_1) = f(x_2)$.又因为 f(x) 在 (a,b) 单调递增,所以 $2x_0 - x_1 > x_2$,即 $x_1 + x_2 < 2x_0$.

四、实战演练

经过上面的分析, 我们从这两个定理中得到了两个用于证明偏移问题的判定定理, 下面来尝试应用到具体的例题当中

例 1 (2016 年高考全国卷 I 理科第 21 题) 已知函数 $f(x) = (x-2)e^x + a(x-1)^2$ 有两个零点. (1) 求 a 的取值范围; (2) 设 x_1, x_2 是 f(x) 的两个零点, 证明: $x_1 + x_2 < 2$.

解析 (1) $f'(x) = (x-1)(e^x + 2a)$, 分类讨论后得 $a \in (0, +\infty)$, 过程略.

(2) 经分析得在 \mathbb{R} 上只存在一个极小值点 $x_0 = 1$ 且 $f(x_1) = f(x_2) = 0$, 故不妨设 $x_1 < 1 < x_2$. f''(x) =

 $xe^{x} + 2a$ 得 $T_{2}(x) = f(x_{0}) + \frac{f''(x_{0})}{2}(x - x_{0})^{2} = (\frac{1}{2}e + a)(x - 1)^{2} - e.$ $D_{2}(x) = f(x) - T_{2}(x) = -\frac{1}{2}e(x - 1)^{2} + (x - 2)e^{x} + e.$ $D'_{2}(x) = (x - 1)(e^{x} - e),$ 易证在 $(-\infty, 1)$ 和 $(1, +\infty)$ 上 $(e^{x} - e)$ 与 (x - 1) 同号, 所以 $D'_{2}(x) \ge 0$ (当 x = 1 时取等号), 所以 $D_{2}(x)$ 是单调递增的, 故在 $(-\infty, 1)$ 上 $D_{2}(x) < D_{2}(1) = 0$, 在 $(1, +\infty)$ 上 $D_{2}(x) > D_{2}(1) = 0$. 同时, 因为 a > 0, $e^{x} > 0$, 所以 $f'(x) = (x - 1)(e^{x} + 2a)$ 在 $(-\infty, 1)$ 上 f'(x) < 0, 在 $(1, +\infty)$ 上 f'(x) > 0. 综上, $D_{2}(x)f'(x) > 0$ (∀ $x \ne 1$), 所以由定理 1 得 $x_{1} + x_{2} < 2x_{0} = 2$

例 2 ([4] 中例 2) 设函数 $f(x) = x \ln x - \frac{1}{2}x^2 + \frac{1}{2}$. (1) 求函数 f(x) 的单调区间; (2) 证明: 当 $x_1 \neq x_2$, 且 $f(x_1) + f(x_2) = 0$ 时, $x_1 + x_2 > 2$.

解析 (1) f(x) 在 $(0,+\infty)$ 上单调递减, 过程略.

(2)令 $f''(x) = \frac{1}{x} - 1 = 0$, 结合性质 1 可分析得 f(x) 在 $(0,+\infty)$ 上只存在一个拐点 $x_0 = 1$, 又 $f(x_1) + f(x_2) = 0 = 2f(1)$, 故不妨设 $0 < x_1 < 1 < x_2$. $T_3(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f'''(x_0)}{6}(x - x_0)^3 = \frac{-(x - 1)^3}{6}$, 所以 $D_3'(x) = (f(x) - T_3(x))' = \ln x + 1 - x + \frac{(x - 1)^2}{2}$, $D_3''(x) = \frac{1}{x} - 1 + (x - 1)$, $D_3'''(x) = -\frac{1}{x^2} + 1$. 因为 $D_3^{(4)}(x) = \frac{2}{x^3} > 0$, 所以 $D_3'''(x)$ 在 $(0, +\infty)$ 上单调递增,又因为 $D_3'''(1) = 0$, 所以 $D_3'(x)$ 在 $(0, +\infty)$ 上单调递增,又因为 $D_3''(1) = 0$, 所以 当 $x \in (0, 1)$ 时, $f''(x) = \frac{1}{x} - 1 > 0$ 且 $D_3'(x) < 0$,当 $x \in (1, +\infty)$ 时, f''(x) < 0 且 $D_3'(x) > 0$,所以由定理 2 可得 $x_1 + x_2 > 2x_0 = 2$.

五、总结

本文通过结合 Taylor 公式和二次函数的轴对称性和三次函数的中心对称性找到解决"极值点偏移"和"拐点偏移"问题的两条判定定理,将两类偏移问题通过 Taylor 公式统一起来. 所以在平时的学习中,若能对这类有明显特征的题目进行问题本源的探究,得出一般化的解题策略,便能做到"四两拨千斤",避免题海战术,提升思维的广阔性.

参考文献

- [1] 刘名生, 冯伟贞, 韩彦昌. 数学分析 (一) [M]. 北京: 科学出版社, 2018.
- [2] 邓启龙. 函数拐点偏移问题的探究 [J]. 中学数学研究 (华南师范大学版), 2021(5上): 37-38.
- [3] 张保成, 伍俊杰. 泰勒公式在极值点偏移问题中的应用 [J]. 中学数学, 2017(21): 80-81.
- [4] 田富德, 陈小燕. 以拐点偏移为背景的函数导数试题命制——兼谈试题处理策略 [J]. 中学数学研究, 2016(02): 10-13.