CSE512 Fall 2019 - Machine Learning - Homework 3

October 7, 2019

Name: Anmol Shukla

Solar ID: 112551470

NetID: anmshukla

 $Email\ address:\ Anmol.shukla@stonybrook.edu$

Names of people whom I have discussed the homework with: None

1 Question 1

1.1.1.	Bayes Risk is given by: $R(a_i x) = \sum_{j} L(a_i c_j) p(c_j x)$
	where L is the cost of taking action a; given a class of
	$R(Y=1 X) = L(Y=1 \hat{Y}=1) P(\hat{Y}=1 X) + L(Y=1 \hat{Y}=0) P(\hat{Y}=0 X)$
	is no risk loss when
	prediction is correct
	= L(Y=1 Y=0) P(Y=0 X) cost of false positive
-50	$= \alpha \cdot (1 - \eta(x))$
4//	
	$R(Y=0 X) = L(Y=0 \hat{Y}=1)P(\hat{Y}=1 X) + L(Y=0 \hat{Y}=0)P(\hat{Y}=0 X)$
	Das this is a right prediction
	$= L(Y=0 \hat{Y}=1). P(\hat{Y}=1 X)$
	$= 1.\eta(x) \Rightarrow \eta(x)$
	Optimal bayes classifier minimizes the risk
	canned with CamScanner

	The state of the s
1.1.2.	Following from 1.1.1
	total risk for a data point x tohose nearest neighbor is "z"=r(x)
	r(x) = error we make when we make a wrong decision
	a wrong decision is made when label (x) \neq label (Z)
	$8(x) = L(Y=0 \hat{Y}=1)P(\hat{Y}=1 x)P(\hat{Y}=0 z) + L(Y=1 \hat{Y}=1)P(\hat{Y}=0 x)P(\hat{Y}=1 z)$
	1 ~
	$\gamma(x) = \eta(x) \left(1 - \eta(z)\right) + \alpha \left(1 - \eta(x)\right) \eta(z)$
	but as n -> 00 (no. o) training data)
	but as n→∞ (no. of training data) x→z or z→x
	$(1-\eta(x)) = \eta(x) (1-\eta(x)) + \times \eta(x) (1-\eta(x))$
	76c) = (1+x) n(x) (1-n6c)
	canned with amScanner

1.1.3	To prove $\gamma(x) \leq (1+\alpha) \gamma^*(x) (1-\gamma^*(x))$
	from previous question, we know that
	$\gamma(x) = (1+x) \eta(x) (1-\eta(x))$
	$\gamma^{*}(x) = \min \left(\eta(x), \alpha \left(1 - \eta(x) \right) \right)$
1	$\therefore s^*(x) = \eta(x) \text{if} \eta(x) < \langle (1 - \eta(x)) \rangle - 0$
	$= \alpha(1-\eta(x)) \qquad \eta(x) > \alpha(1-\eta(x)) - 2$
	We can prove the lower bound on $s^*(x)$ when $r^*(x) = \eta(x)$ from eq (1), $s^*(x) = \eta(x)$
	1
	Now, we need to prove: $r(x) < (1+x) r^*(x) (1-r^*(x))$
	$\frac{1}{2}(x) \leq (1+2) \leq (1-\eta(x)) \left(1-\alpha(1-\eta(x))\right)$
	subs. the value of $r(00)$ $(1/2) \eta(x) (1-\eta(x)) = (1/2) \chi(1/\eta(x)) (1-\chi(1-\eta(x)))$
	To. prove: η(x) < α (1-α(1-η(a)) - 1)
	Since $\gamma^*(x) = \alpha (1 - \eta(x))$ in the above case
	it follows that M(x) > \((1-n(x))
	Also $\alpha > + \dots - \eta(x) < -\alpha (1 - \eta(x))$
	$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} \right) \right)$
	$ -n(x) \leq - - - - - - - - - - - - - - - - - -$
	$\therefore 1-\eta(x) < \alpha(1-\alpha(1-\eta))$
	canned with $\eta(x) < \alpha(1-\alpha(1-\eta(x))$
<u>C3</u>	CamScanner We have proved eq 1

1.1.4. from 1.1.3 we know that r(x) ≤ (1+x) x*(x) (1-x*(x))
taking expectation on both the sides
$E[s(x)] \leq (+x) E[s^*(x) (1-s^*(x))]$
$\leq (1+x) \left(E[r^{*}(x)] - E[r^{*}(x)^{2}] \right) - 1$
Now, we know that E[x2] = E[x]2 + Var[x]
$E[Y^{k}(x)^{2}] \geq E[Y^{k}(x)]^{2}$
$R \leq (1td) R^* - (1td) R^{*2} \left[\cos E[r(\omega)] = K^* \right]$
$R \leq (1+d) R^* (1-R^*)$
Alonce Proved.
CamScanner CamScanner

1.2.1

	probability of a point being positive = n probability that at least (K+1)/2 out of K points are tve.
	$f(x) = \underset{x}{\text{asymptotic risk }} x(x) \text{ for a point } x \text{ in terms of } \eta(x)$ $\underset{x}{\text{2}} \text{ function } g(\cdot, \cdot) \text{ for a point } x \text{ in terms of } \eta(x)$ $\underset{x}{\text{2}} \text{ function } g(\cdot, \cdot) \text{ for a point } x \text{ in terms of } \eta(x)$
	+ Prob (x is negative but all x+1 points one +ve) $= \eta_0(1-g(\eta, \kappa)) + (1-\eta_0)(g(\eta, \kappa))$
,	= $\eta(a) + \eta(a)g(\eta, K) + g(\eta, K) - \eta(a)g(\eta, K)$ = $\eta(a) + g(\eta, K) - 2\eta(g(\eta, K))$ = $\eta(a) + (1 - 2\eta(a))g(\eta, K)$
	$= \eta(x) + (1 - 2\eta(x)) g(\eta, k)$

2.1

2.1. To Prove: $\frac{\partial (P(y^i \overline{x}^i;\theta))}{\partial \theta_c} = (\delta(c=y^i) - P(c \overline{x}^i;\theta))\overline{x}^i$
we can write log(P(γi Xi;θ)) = δ(c=γi)P(γi=*(xi;θ)+(1-δ(c=γi))P(γi=κ(xi;θ))
for simplicity, we'll write S(c=yi) as S & ≥ as a matrix multipliation
$\frac{a(80)}{P(Y=i X;0)} = \frac{exp(\theta_i^T \bar{X})}{1+ \sum exp(\theta_j^T \bar{X})}$
$P(Y=K \mid X; \theta) = \frac{1}{1+\sum_{i=1}^{K-1} \exp(\theta_i^T X_i^T)}$
log(P(Y X;0)) = 8 Rog P(Y = K X;0) + (1-8) P(Y=K X;0)
$= S \log \left(\frac{\exp \vartheta T \bar{X}}{1 + \exp \vartheta T \bar{X}} \right) + (1 - \delta) \log \left(\frac{1}{1 + \exp \vartheta T \bar{X}} \right)$
$\log P(Y \bar{X};\theta) = 80^{T}\bar{X} - 8\log (1 + \exp \theta^{T}\bar{X}) + (6-1)\log (1 + \exp \theta^{T}\bar{X})$
$\frac{\partial \log P(Y \overline{X};\theta)}{\partial \theta} = 8\overline{X} - 8.\overline{X} \exp \theta^{T} \overline{X} + 8\overline{X} \exp \theta^{T} \overline{X} - \overline{X} \exp \theta^{T} \overline{X}$ $\frac{\partial \log P(Y \overline{X};\theta)}{\partial \theta} = 8\overline{X} - 8.\overline{X} \exp \theta^{T} \overline{X} + 8\overline{X} \exp \theta^{T} \overline{X} - \overline{X} \exp \theta^{T} \overline{X}$
$= S\overline{X} - \overline{X} \exp \theta^{T} \overline{X}$ $1 + \exp \theta^{T} \overline{X}$
but $P_r(Y=c X:\emptyset) = \exp \theta^T X$ $1 + \exp \theta^T \overline{X}$
$\frac{1}{2} \frac{\partial \log P(Y \bar{X};\theta)}{\partial \theta} = 8\bar{X} - \bar{X} P(c \bar{X}^{\bar{z}};\theta)$
$ = (8(c=Y) - P(c X;\theta))X $ $ = (8(c=Y) - P(c X;\theta))X $

2 Question 2

2.3 Implement Logistic Regression with SGD

- 1. max_epoch = 1000, m = 16, $\eta_0 = 0.1$, $\eta_1 = 1$, $\delta = 0.00001$
 - (a) Number of epochs taken before existing = 12

- (c) $L(\theta) = 346.14301852200146$
- 2. Experimenting with values of η_0, η_1
 - (a) $\eta_0 = 10$, $\eta_1 = 5$, epochs = 12, $L(\theta) = 303.0168711323694$
 - (b) The below graph shows the variation of loss vs epochs. Please note that due to high variance of loss in the few initial epochs, I have kept the minimum epochs required to check for the stopping condition is 10 epochs. Therefore, the algorithm doesn't exit at epoch = 2 as shown in the below graph.

3. Evaluation on validation set

4. Confusion Matrices

(a) Training data

(b) Validation data

2.4 Kaggle ChallengeAccuracy from kaggle - 0.47333