Camada 1 – Física Cabeamento

Meios de Transmissão

- A informação, em sua forma analógica ou digital, com modulação ou codificação pode ser transmitida em meios guiados ou sem fio.
- Sem fio
 - Rádio, Microondas, Satélites
- Meios Guiados
 - Par Trançado
 - Cabo Coaxial
 - Fibra Óptica

Meios Guiados / Cabeamento

- Os meios guiados diferem-se entre si com relação ao:
 - o modo de propagação dos sinais,
 - o banda passante,
 - o atenuação,
 - o imunidade ao ruído,
 - o custo,
 - o disponibilidade
 - o confiabilidade
- São o elo mais fraco de uma rede

Cabeamento

- Sob a ação de elementos externos, o sinal presente no cabeamento pode se degradar sob o efeito de interferências externas.
- Os tipos mais comuns de ruído são aqueles causados por:
 - EMI (interferência eletromagnética)
 - RFI (Interferência de Rádio Frequência)

Cabeamento

Fontes de EMI

- o Descargas atmosféricas,
- Circuitos e cabos elétricos
- Lâmpadas fluorescentes.
- o Relés, comutadores

Fontes de RFI

- o motores elétricos
- o fonte de alimentação de alguns equipamentos

Contramedidas:

- Blindagem dos cabos
- Aterramento elétrico

• Foi a mídia utilizada inicialmente nas redes locais

- Vantagens sobre o par trançado:
 - Oferece maior imunidade ao ruído e fuga eletromagnética
 - Permite também a transmissão a distâncias relativamente longas sem distorção e sem necessidade de regenerar o sinal
 - Mais barato que o par trançado blindado.
 - Maior aplicação em ambientes industriais, de controle de processo que necessitam de maior proteção a ruídos

Desvantagens

- Por não ser flexível o suficiente, quebra e apresenta mau contato com facilidade.
- Mais rígido, pode dificultar a manipulação através de canaletas
- Mau contato ou rompimento do cabo pode paralisar toda a rede (topologia tipicamente de barramento)

Conexão tipo T

Terminações em cabos coaxiais

Conector F

Conector T

SMA

Ainda utilizamos cabos coaxiais para:

- -Sistemas circuito interno de tv
- -Rádios / Antenas
- -Equipamentos hospitalares
- -Estações de tv
- -Sistemas de telefonia digital

Cabo de Par Trançado

- Utilizado pela maioria das redes atualmente.
- Utilizado tipicamente em redes com transmissão do tipo banda base a velocidades de
 - o 10Mbps, 100Mbps e 1Gbps
- também pode ser utilizado para transmissões analógicas (telefonia)

Cabos UTP (Sem blindagem)

 Unshielded Twisted Pair = "cabo de par trançado sem blindagem"

Par Trançado

Vantagens:

- o Mais barato,
- o Flexível, fácil instalação.
- Facilidade de manutenção especialmente quando utilizado em redes estruturadas
- Suporta velocidades de até 1 Gbps
- Adição de nova máquina não para a rede

Desvantagens

- limite do comprimento (100 metros)
- baixa imunidade contra interferências eletromagnéticas (EMI)

(Para a maioria dos ambientes atuais não são tão significativas)

- Os cabos blindados se dividem em três categorias:
- FTP (Foiled Twisted Pair)
- STP (Shielded Twisted Pair)
- SSTP (Screened Shielded Twisted Pair)

- FTP (Foiled Twisted Pair)
- blindagem mais simples. Neles, uma fina folha de aço ou de liga de alumínio envolve todos os pares do cabo, protegendo-os contra interferências externas, mas sem fazer nada com relação ao crosstalk, ou seja, a interferência estre os pacotes de cabos

- STP (Shielded Twisted Pair)
- blindagem individual para cada par de cabos.
 Isso reduz o crosstalk e melhora a tolerância do cabo com relação à distância, o que pode ser usado em situações onde for necessário crimpar cabos fora do padrão, com mais de 100 metros

- SSTP(Screened Shielded Twisted Pair)
- blindagem individual para cada par de cabos com uma segunda blindagem externa, envolvendo todos os cabos

Conectores Blindados

 Para melhores resultados, os cabos blindados devem ser combinados com conectores RJ-45 blindados. Eles incluem uma proteção metálica que protege a parte destrançada do cabo que vai dentro do conector, evitando que ela se torne o elo mais fraco da cadeia

Cabos UTP (Unshilded)

Distânciamento mínimo das fontes de EMI.

Fonte de interferência eletromagnética	Distância mínima recomendada		
Motores ou transformadores elétricos	1,20m		
Conduítes e cabos elétricos	0,30m		
Lâmpadas fluorescentes	0,12m		

Cabos UTP Pinagem

As normas foram desenvolvidas com o intuito de padronizar as instalações.

Imagine se cada instalador resolvesse seguir sua própria sequência de cores?

Pinos do Par trançado

T568-A			T568-B		
E para D	Conector	Cor do Fio	E para D	Conector	Cor do Fio
1	Pino 1	Branco/verde	1	Pino 1	Branco/Laranja
2	Pino 2	Verde	2	Pino 2	Laranja
3	Pino 3	Branco/Laranja	3	Pino 3	Branco/verde
4	Pino 4	Azul	4	Pino 4	Azul
5	Pino 5	Branco/Azul	5	Pino 5	Branco/Azul
6	Pino 6	Laranja	6	Pino 6	Verde
7	Pino 7	Branco/Marron	7	Pino 7	Branco/Marron
8	Pino 8	Marron	8	Pino 8	Marron

RJ – 45 Macho / Fêmea

Rj- 45

Rj- 45 Fêmea

Cabo UTP normal e Cross Over

O cabo crimpado com a mesma disposição de fios em ambos os lados do cabo é chamado de cabo "reto", ou straight.

Este é o tipo "normal" de cabo, usado para ligar os micros ao switch ou ao roteador da rede.

Existe ainda um outro tipo de cabo, chamado de "cross-over" (também chamado de cabo cross, ou cabo cruzado), que permite ligar diretamente dois micros, sem precisar do hub ou switch.

Cabo CROSS funcionamento

No cabo cruzado, a posição dos fios é diferente nos dois conectores, de forma que o par usado para enviar dados (TX) seja ligado na posição de recepção (RX) do segundo micro e vice-versa. De um dos lados a pinagem é a mesma de um cabo de rede normal, enquanto no outro a posição dos pares verde e laranja são trocados. Daí vem o nome crossover, que significa, literalmente, "cruzado na ponta":

Esquema dos contatos de envio e recepção em um cabo cross-over

Conexão Micro a HUB

Os Hubs já fazem um cross conect internamente em suas portas tradicionais. Assim, não é necessário utilizar um cabo cross na ligação de um micro com um hub

Conexão entre a HUBs

Os hubs também possuem uma porta chamada de up-

link, utilizada para conectar um hub a outro hub

(cascateamento). Essa porta não possui um cross interno.

Assim, temos que para conectar hub a hub devemos utilizar:

- -Cabo direto de um porta tradicional com a up-link
- -Cabo cross entre duas portas tradicionais ou duas up-link

Resumo

Conexão com Switches

- Trabalhando com switches, não há que se preocupar se o cabo é do tipo cross ou direto.
- Estes equipamentos possuem uma função chamada auto MDI/MDIX, que detecta e ajusta a conexão ao tipo de cabo utilizado.
- Não confundir auto MDI/MDIX com autosense, que é a capacidade do switch de ajustar a velocidade da conexão.

Categorias: cabos par trançado

- Existem cabos de cat 1 até cat 7.
- Como os cabos cat 5E são suficientes tanto para redes de 100 quanto de 1000 megabits, eles são os mais comuns e mais baratos
- Os cabos são vendidos originalmente em caixas de 300 metros, ou 1000 pés (que equivale a 304.8 metros):

Cat 5E

Os cabos Cat5E são suficientes para as redes 100BASE-TX e 1000BASE-T (1Gigabit/s).

Para a velocidade de 1Gbps, é necessária a utilização dos quatro pares do cabo.

Cada um dos quatro pares deve suportar uma taxa efetiva de 250Mbps em cada direção e simultaneamente (full-duplex), até uma distância de 100m.

Principais ferramentas

Indicações das áreas cada uma com sua função.

