SF1625 Envariabelanalys Föreläsning 18

Lars Filipsson

Institutionen för matematik KTH

- Andragradskurvor
 - ellips (o cirkel)
 - parabel $y = x^{2}$
 - hyperbel

- Parameterkurvor
- Kurvlängd

Linjer

Andragradskurvor: ellipser, parabler, hyperbler

Nyhet: parametrisering (ett annat sätt att framställa en kurva)

Parametrisering

Linjer med ekvation resp parameterframställning:

Från ekvation till parameterframställning

$$y = 2x + 3$$
 har en parametrisering $x = t, \ y = 2t + 3, \ t \in \mathbb{R}$

$$y = -4x - 1$$
 har en parametrisering $\chi = -4x - 1$ har en parametrisering $\chi = -4x - 1$ har en parametrisering $\chi = -4x - 1$

$$t \in \mathbb{R}$$

Parametrisering

Från parameterframställning till ekvation

 $x=t,\ y=5t+2,\ t\in\mathbf{R}$, är en parametrisering av en linje som också ges av en ekvation y=5x+2

 $(x,y)=(2t+3,t+1),\ t\in\mathbf{R}$, är en parametrisering av en linje som också ges av en ekvation

$$x = 2t+3$$
 gr $t = \frac{x-3}{2}$
oh $y = \frac{x-3}{2}+1$
 $y = \frac{x-3}{2}+1$

Parametriserad parabel

Parabel med ekvation och parameterframställning:

En parametrisering av $y=x^2$ är t ex $x=t,\ y=t^2,\ t\in\mathbb{R}.$

En parametrisering av den bit av parabeln med ekvation $y = 2x^2 + 1$ som startar i (-1,3) och slutar i (2,9) är

Parametriserad parabel

Parametrisera parabeln med ekvation $x + y^2 = 3$

$$\begin{cases} x = t \\ y = \sqrt{3-t} \text{ on } t \leq 3 \end{cases} \text{ ou } y = -\sqrt{3-t} \text{ on } t > 3,$$

Parametriserad parabel

Två olika sätt att beskriva samma kurva:

Parabeln består av alla punkter (x, y) sådana att $x + y^2 = 3$

Parabeln består av alla punkter (x, y) sådana att $x = 3 - t^2$ och y = t för $t \in \mathbb{R}$

Parametriserad cirkel

Cirkel med ekvation och parameterframställning:

Parametrisering av enhetscirkeln i filmen. $x = \cos t$, $y = \sin t$, t från 0 till 2π

Parametrisera cirkeln med medelpunkt i (2, 1) och radie 3.

Parametrisering

Parametrisera kurvan $\underbrace{x^2 + 8x + y^2 - 4y = 80}$. Vilken slags kurva är det?

(=)
$$(x+4)^2 - 16 + (y-2)^2 - 4 = 80$$

(=) $(x+4)^2 + (y-2)^2 = 100$
Cirhel, radie 10, medelpunhl (-4,2)
Porametrivity: $\begin{cases} x = -4 + 10\cos t \\ y = z + 10\sin t \end{cases}$ $t \in [0,2\pi]$

Ellips med ekvation och parameterframställning:

En viss ellips med medelpunkt i origo har ekvation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Samma ellips har parameterframställning

$$x = a \cos t$$
, $y = b \sin t \mod t$ från 0 till 2π .

En Mirs m. samma hawarlar and oth current i (3,1)

has elevi
$$(x-2)^2$$
 t $\frac{(y-1)^2}{5^2} = 1$ o par: $\begin{cases} x=2+a\cos t \\ y=1+b\sin t \end{cases}$

Parametrisera ellipsen
$$x^2 + 4y^2 = 2$$
. $(=)$ $\frac{x^2}{2} + 2y^2 = 1$
 $(=)$ $\frac{x^2}{(\sqrt{z})^2} + \frac{y^2}{(\sqrt{x})^2} = 1$
Parametrisera ellipsen $x^2 + 4y^2 = 2$. $(=)$ $\frac{x^2}{2} + 2y^2 = 1$

$$(=)$$
 $\frac{x^2}{(\sqrt{z})^2} + \frac{y^2}{(\sqrt{x})^2} = 1$

$$(=)$$
 $\frac{x^2}{(\sqrt{x})^2} + \frac{y^2}{$

Hyperbel: Se boken

Längd *L* av kurva med parametrisering $(x(t), y(t)), t \in [a, b]$:

$$L = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2}} dt$$

$$OBS \text{ om functions luna } y = f(x) \text{ mod. } [\sigma, \begin{cases} x = t \\ y = f(t) \end{cases}$$

$$L = \int_{a}^{b} \sqrt{1 + f'(t)^{2}} dx$$

Cirkeln $x = 2 \cos t$, $y = 1 + 2 \sin t$, $0 \le t \le 2\pi$, har längd

$$x=2cont$$
 sor $x'(t)=-2sint$
 $y=1+2sint$ $y'(t)=2cont$

Beräkna längden av kurvan som parametriseras genom

$$\begin{cases} x(t) = 3t^{2} & \text{för } t \in [0, 1]. \\ y(t) = 2t^{3} & \text{för } t \in [0, 1]. \end{cases}$$

$$L = \int_{0}^{1} \sqrt{36t^{2} + 36t^{4}} dt = \int_{0}^{1} \sqrt{36t^$$

Beräkna längden av kurvan x = t, $y = \ln(1 - t^2)$, $0 \le t \le 1/2$.

Läxa inför seminariet

Att göra:

Räkna Hemuppgifter6.pdf. Läs vid behov exempel i boken och gör enklare uppgifter där.

En minitenta

- **1.** Bestäm volymen av den rotationskropp som uppstår då $y = \cos x$, på intervallet $0 \le x \le \pi/2$, roteras kring y-axeln.
- **2.** Avgör om den generaliserade integralen $\int_1^\infty \frac{e^{-x} + x^2}{x + x^4}$ är konvergent.
- **3.** Bestäm värdemängden till $f(x) = xe^{2x-1}$.
- **4.** Bestäm Taylorpolynomet p av grad 1 kring x = 1/2 till $f(x) = \arcsin x$. Avgör om felet garanterat är mindre än 0.1 om f(x) approximeras med p(x) för x mellan 1/2 och 3/4.