Propriétés de \mathbb{R}

DARVOUX Théo

Septembre 2023

Exercices.

Exercice 2.1 $[\Diamond \Diamond \Diamond]$

Soient a et b deux nombres réels strictement positifs. Démontrer l'inégalité

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

On a :

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

$$\iff \frac{a^3 + b^3 - a^2 + b^2}{ab} \ge 0$$

$$\iff \frac{(a^2 - 2ab + b^2)(a + b)}{ab} \ge 0$$

$$\iff \frac{(a - b)^2(a + b)}{ab} \ge 0$$

Or $(a-b)^2 \ge 0$, $(a+b) \ge 0$ et $ab \ge 0$.

Ainsi, cette inégalité est vraie pour tout $(a, b) \in \mathbb{R}_+^*$.

Exercice 2.1 $[\Diamond \Diamond \Diamond]$

Soient a et b deux nombres réels strictement positifs. Démontrer l'inégalité

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

On a :

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

$$\iff \frac{a^3 + b^3 - a^2 + b^2}{ab} \ge 0$$

$$\iff \frac{(a^2 - 2ab + b^2)(a + b)}{ab} \ge 0$$

$$\iff \frac{(a - b)^2(a + b)}{ab} \ge 0$$

Or $(a-b)^2 \ge 0$, $(a+b) \ge 0$ et $ab \ge 0$.

Ainsi, cette inégalité est vraie pour tout $(a, b) \in \mathbb{R}_{+}^{*}$.