

Statistical Computing - CWB - 2019

Sharan Maiya (S1608480)

```
# Sources, libraries, seed
source("CWB2019code.R")
library(tidyverse); library(xtable)
set.seed(10)
```

Question 1

Task 1

The function negloglike shown below takes as input the values N, θ , y_1 and y_2 and outputs $l(N,\theta)$.

```
negloglike <- function(param, Y) {
  if (param[1] < max(Y)) { # If N >= max(y1, y2) then return +Infinity
    return(+Inf)
} else { # Otherwise we calculate the negated log-likelihood
    return(sum(
        lgamma(Y + 1),
        lgamma(param[1] - Y + 1),
        -2 * lgamma(param[1] + 1),
        2 * param[1] * log(1 + exp(param[2])),
        -param[2] * sum(Y)
    ))
}
```

Task 2

We seek to use the optim function with negloglike to find a maximum likelihood estimate of N and θ (and in turn ϕ). Since optim is a numerical optimiser it is only guaranteed to find a local minima. It therefore makes sense to try optim at different sensible starting values to try and find the best MLE we can in a grid search. The following parameter values were tried as starting points:

- N: We know we must have $N > max(y_1, y_2)$ so we try both $N = max(y_1, y_2) + 1$ and $N = 2max(y_1, y_2)$.
- θ : Since this is derived from the actual probability ϕ we choose sensible values of ϕ and convert them to a value of θ using the logit function provided. Since ϕ is a probability is makes sense to try starting at the values of 0.01, 0.5 and 0.99.

```
Y <- c(256, 237) # Given data
bestopt <- list(value = +Inf) # Initialise our optimisation
```

```
# Perform the grid search
for (N_start in list(max(Y) + 1, 2 * max(Y))) {
    for (theta_start in lapply(list(0.01, 0.5, 0.99), logit)) {
        # Use optim with the current starting values
        opt <- optim(par = c(N_start, theta_start), fn = negloglike, Y = Y)
        if (opt$value < bestopt$value) { # Update if we found a better minima
            bestopt <- opt
        }
    }
}

# Record MLEs of N and theta
N_hat <- bestopt$par[1]
theta_hat <- bestopt$par[2]
# Obtain MLE of phi
phi_hat <- ilogit(theta_hat)</pre>
```

Table 1: MLEs for \hat{N} , $\hat{\theta}$ and $\hat{\phi}$

\hat{N}	$\hat{ heta}$	$\hat{\phi}$
388.13	0.55	0.64

In Table 1 we see the maximum likelihood estimates for N, θ and consequently ϕ . This means that in order to maximise the likelihood $p(y|N,\phi)$ we would require there to be around 388 people buried at the site, with a probability 0.64 of finding a femur.

Task 3

We now want to take our values for \hat{N} and $\hat{\theta}$ from Table 1 and use optimHess to determine a Hessian **H**. The inverse \mathbf{H}^{-1} will be a joint covariance matrix we can use to compute a 95% confidence interval for N. Here we use Normal approximation.

Table 2: 95% confidence interval for N

2.5%	97.5%
-50.58	826.85

Table 2 shows a 95% confidence interval for N: we are 95% certain the true value of N lies in this range. It is clear that this interval is not very helpful; the lower bound of -50.28 is well below the bound we had already deduced $(N > max(y_1, y_2))$. In fact, values of N below zero are simply nonsensical as we cannot have a negative number of burials. Our upper bound of 826.85 is also considerably high: consider that even if every bone found belonged to a separate person the excavation would still only have found ~60% of the total number of burials should the true N be near this figure. This seems very unlikely.

Question 2

Task 1

We have that the negated log-likelihood $l(N, \theta)$ is given by:

$$l(N,\theta) = \log \Gamma(y_1 + 1) + \log \Gamma(y_2 + 1) + \log \Gamma(N - y_1 + 1) + \log \Gamma(N - y_2 + 1) - 2\log \Gamma(N + 1) + 2N\log(1 + e^{\theta}) - (y_1 + y_2)\theta.$$

We begin with the first partial derivatives:

$$\frac{\partial l(N,\theta)}{\partial N} = \Psi(N - y_1 + 1) + \Psi(N - y_2 + 1) - 2\Psi(N + 1) + 2\log(1 + e^{\theta}),$$

and

$$\frac{\partial l(N,\theta)}{\partial \theta} = \frac{2Ne^{\theta}}{1+e^{\theta}} - (y_1 + y_2).$$

Now we derive expressions for the second order partial derivatives:

$$\frac{\partial^2 l(N,\theta)}{\partial N^2} = \Psi'(N - y_1 + 1) + \Psi'(N - y_2 + 1) - 2\Psi'(N + 1),$$

$$\frac{\partial^2 l(N,\theta)}{\partial \theta^2} = \frac{2Ne^{\theta}}{(1 + e^{\theta})^2}, \text{ and}$$

$$\frac{\partial^2 l(N,\theta)}{\partial N \partial \theta} = \frac{2e^{\theta}}{1 + e^{\theta}}.$$

Task 2

The function myhessian will construct a 2x2 Hessian Matrix for $l(N, \theta)$ using the expressions derived for its second order partial derivatives above. The Hessian matrix will be given by:

$$\frac{\partial^2 l(N,\theta)}{\partial N^2} \qquad \frac{\partial^2 l(N,\theta)}{\partial N \partial \theta} \\ \frac{\partial^2 l(N,\theta)}{\partial \theta \partial N} \qquad \frac{\partial^2 l(N,\theta)}{\partial \theta^2}$$

Below is the implementation of myhessian:

```
myhessian <- function(param, Y) {
    # Extract parameters
    N <- param[1]
    theta <- param[2]

# Compute second order partial derivatives
    thetatwo <- 2 * N * exp(theta) / (1 + exp(theta))^2
    theta_n <- 2 * exp(theta) / (1 + exp(theta))
    ntwo <- psigamma(N - Y[1] + 1, 1) + psigamma(N - Y[2] + 1, 1) - 2 * psigamma(N + 1, 1)

# Return Hessian
    return(matrix(c(ntwo, theta_n, theta_n, thetatwo), nrow = 2, ncol = 2))
}</pre>
```

Let us now use our MLEs \hat{N} and $\hat{\theta}$ to compare the output of myhessian and optimHess.

```
# Find hessian using myhessian
myhess <- myhessian(bestopt$par, Y=Y)</pre>
```

The Hessian matrix **H** determined by optimHess is:

[0.008988309]	1.270193
1.270192513	179.898086

The Hessian matrix \mathbf{H}' determied by myhessian is:

The matrix of relative differences between \mathbf{H} and \mathbf{H}' is:

$$\begin{bmatrix} 5.500008 \times 10^{-9} & 4.574974 \times 10^{-8} \\ 4.574974 \times 10^{-8} & 2.351907 \times 10^{-5} \end{bmatrix}$$

We see from the matrix of relative differences that our two computed Hessian matrices are almost identical. Indeed the largest differnt between two computed values is 2.351907×10^{-5} in the value of $\frac{\partial^2 l(N,\theta)}{\partial \theta^2}$ and even this is extremely close to zero. The reason the two matrices are not exact is likely due to the fact that in myhessian we calculated each value directly from its expression whereas in optimHess these are estimated numerically.

Task 3

Task 4

Question 3

Task 1

Task 2

Task 3

Question 4

Task 1

Task 2

Task 3

Task 4

Appendix