Linear classification

Topics we'll cover

- 1 Linear decision boundary for binary classification
- 2 The Perceptron algorithm
- 3 Maximizing the margin
- The soft-margin SVM

Linear decision boundary for classification: example

- What is the formula for this boundary?
- What label would we predict for a new point x?

Linear classifiers

Binary classification problem: data $x \in \mathbb{R}^d$ and labels $y \in \{-1, +1\}$

- Linear classifier:
 - Parameters: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$
 - Decision boundary $w \cdot x + b = 0$
 - On point x, predict label $sign(w \cdot x + b)$
- If the true label on point x is y:
 - Classifier correct if $y(w \cdot x + b) > 0$

A loss function for classification

What is the **loss** of our linear classifier (given by w, b) on a point (x, y)?

One idea for a loss function:

- If $y(w \cdot x + b) > 0$: correct, no loss
- If $y(w \cdot x + b) < 0$: loss = $-y(w \cdot x + b)$

A simple learning algorithm

Fit a linear classifier w, b to the training set using **stochastic gradient descent**.

- Update w, b based on just one data point (x, y) at a time
- If $y(w \cdot x + b) > 0$: zero loss, no update
- If $y(w \cdot x + b) \le 0$: loss is $-y(w \cdot x + b)$

The Perceptron algorithm

- Initialize w = 0 and b = 0
- Keep cycling through the training data (x, y):
 - If $y(w \cdot x + b) \le 0$ (i.e. point misclassified):
 - w = w + yx
 - b = b + y

The Perceptron in action

85 data points, linearly separable.

Perceptron: convergence

If the training data is linearly separable:

- The Perceptron algorithm will find a linear classifier with zero training error
- It will converge within a finite number of steps.

But is there a better, more systematic choice of separator?

The hard-margin support vector machine

- 1 The margin of a linear classifier
- 2 Maximizing the margin
- 3 A convex optimization problem
- Support vectors

The learning problem

Given: training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}.$

Find: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y^{(i)}(w \cdot x^{(i)} + b) > 0$ for all i.

By scaling w, b, can equivalently ask for

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i

Maximizing the margin

Given: training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$. Find: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i .

Maximize the **margin** γ .

A formula for the margin

Close-up of a point z on the positive boundary.

A quick calculation shows that $\gamma = 1/\|\mathbf{w}\|$.

In short: to maximize the margin, minimize ||w||.

Maximum-margin linear classifier

• Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2$$
 s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \geq 1$ for all $i = 1, 2, \dots, n$

- This is a convex optimization problem:
 - Convex objective function
 - Linear constraints
- This means that:
 - the optimal solution can be found efficiently
 - duality gives us information about the solution

Support vectors

Support vectors: training points that lie exactly on the margin, i.e. $y^{(i)}(w \cdot x^{(i)} + b) = 1$.

 $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the support vectors.

Small example: Iris data set

Fisher's iris data

150 data points from three classes:

- iris setosa
- iris versicolor
- iris virginica

Four measurements: petal width/length, sepal width/length

Small example: Iris data set

Two features: sepal width, petal width.

Two classes: setosa (red circles), versicolor (black triangles)

The soft-margin support vector machine

- 1 Data that isn't linearly separable
- 2 Adding slack variables for each point
- 3 Revised convex optimization problem
- 4 Setting the slack parameter

Recall: maximum-margin linear classifier

Given: $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}.$

Find: the linear separator w that perfectly classifies the data and has maximum margin.

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2$$

s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1$ for all $i = 1, 2, \dots, n$

Solution $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the support vectors.

What if data is not separable?

The non-separable case

Idea: allow each data point $x^{(i)}$ some **slack** ξ_i .

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \|w\|^2 + C \sum_{i=1}^n \xi_i$$
 s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1 - \xi_i$ for all $i = 1, 2, \dots, n$ $\xi \ge 0$

Wine data set

Here C = 1.0

The tradeoff between margin and slack

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1 - \xi_i$ for all $i = 1, 2, \dots, n$
 $\xi \ge 0$

Back to Iris

C = 1

Sentiment data

Sentences from reviews on Amazon, Yelp, IMDB, each labeled as positive or negative.

- Needless to say, I wasted my money.
- He was very impressed when going from the original battery to the extended battery.
- I have to jiggle the plug to get it to line up right to get decent volume.
- Will order from them again!

Data details:

- Bag-of-words representation using a vocabulary of size 4500
- 2500 training sentences, 500 test sentences

What C to use?

С	training error (%)	test error (%)	# support vectors
0.01	23.72	28.4	2294
0.1	7.88	18.4	1766
1	1.12	16.8	1306
10	0.16	19.4	1105
100	0.08	19.4	1035
1000	0.08	19.4	950

Cross-validation

Results of 5-fold cross-validation:

Chose C=0.32. Test error: 15.6%