Proprietà Polinomiali

20 maggio 2016

Introduzione

Ci mettiamo nello spazio delle matrici $m \times n$ a coefficienti in un campo K e le vediamo parametrizzate dalle loro entrate, che pensiamo come indeterminate. Ovvero una matrice A avrà come entrate a_{ij} al variare di i e j. Ci chiediamo quali operazioni / proprietà delle matrici si possano esprimere in termini di **un** polinomio nelle entrate della matrice, e ne deriviamo qualche cosa.

Se doveste riuscire a risolvere alcune delle cose che non hanno risposta non esistate a scrivermi

SOMMA E PRODOTTO DI MATRICI

Date A e B matrici, le entrate della matrice somma A+B e della matrice prodotto AB si ottengono in termini di polinomi nelle entrate di A e di B. In particolare vale $[A+B]_{ij}=A_{ij}+B_{ij}$ e $[AB]_{ij}=A_{ik}B_{kj}$

DETERMINANTE DI UNA MATRICE QUADRATA

Data A matrice quadrata si ha $\det(A)$ è un polinomio nelle entrate di A. In particolare si può usare la formula per la scrittura come permutazione $\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A_{1,\sigma(1)} A_{2,\sigma(2)} \dots A_{n,\sigma(n)}$

POLINOMIO CARATTERISTICO

È piuttosto chiaro che anche il polinomio caratteristico di A si possa esprimere in termini di un polinomio nelle entrate, infatti si ha $\chi_A(t) = \det (A - t \mathrm{id})$

DIAGONALIZZABILE CON AUTOVALORI DISTINTI NELLA CHIUSURA ALGEBRICA

Una matrice quadrata A è diagonalizzabile con autovalori distinti se e solo se Ris $(\chi_A(x), \chi'_A(x)) \not\equiv 0$, dove con Ris indichiamo il risultante. Infatti il risultante di un polinomio con la sua derivata è zero se e solo se il polinomio ha radici doppie. Nel caso del polinomio caratteristico le radici sono proprio gli autovalori e, se sono tutti distinti, allora la matrice A è diagonalizzabile (nella chiusura algebrica) con autovalori distinti.

INVERSA

Le entrate della matrice inversa A^{-1} NON si possono esprimere in termini polinomiali nelle entrate di A perché avremmo grossi problemi quando "A tende alla matrice nul-

la" (almeno sui reali è piuttosto chiaro). Si può però esprimere come frazione algebrica, utilizzando il fatto che $A\cdot A^*=\det{(A)}$ id e quindi $A^{-1}=\frac{A^*}{\det{(A)}}$

POLINOMIO MINIMO

Probabilmente per il polinomio minimo c'è poco da fare visto che non dipende con continuità dalle entrate della matrice (ma non è escluso che si possa riportare in qualche forma ad una frazione algebrica) vedere ad esempio sui reali le matrici del tipo $\begin{pmatrix} 1 & \varepsilon \\ 0 & 1 \end{pmatrix}$ che, per $\varepsilon \neq 0$ hanno polinomio minimo $(x-1)^2$ mentre per $\varepsilon = 0$ diventa (x-1).

DIAGONALIZZABILITÀ

Qui non ne ho assolutamente idea. La domanda è se si riesca a scrivere la diagonalizzabilità (nella chiusura algebrica) in termini di un polinomio nelle entrate. Ci si può chiedere sia se la matrice sia diagonalizzabile in K sia se sia diagonalizzabile in \overline{K}

Triangolabilità

Stesso discorso di sopra, questa volta necessariamente in *K* non algebricamente chiuso.

RANGO FISSATO

Si vorrebbe rispondere alla domanda se una data matrice A ha rango =k (oppure $\le k$). Ad esempio sappiamo rispondere se A è quadrata di ordine n e ci chiediamo rk $A \le n-1$. Basta controllare se det (A) = 0.

Per l'analogo rk $A \leq k$ si potrebbe dire di vedere se sono nulli tutti i determinanti dei minori $(k+1) \times (k+1)$. Il problema è che noi vogliamo che si possa esprimere come **un solo** polinomio, non vorrei avere condizioni multiple.