

Tutorial 2: Properties of Pure Substances & First Law Analysis

Note: numerical solution are based on one approach to solving the tutorial questions. Other approaches can also be correct and could lead to slightly different numerical answers.

Conceptual Questions:

- **1.** Water in a kettle is heated at constant pressure. Describe the immediate changes in <u>phase</u>, <u>temperature</u>, and <u>volume</u> if the initial water is:
- (a) saturated vapor
- (b) compressed liquid
- (c) saturated liquid
- (d) superheated vapor
- **2.** Why are temperature and pressure dependent properties in the saturated mixture region?
- 3. Is it possible to have water vapour at 0°C? If so, how?
- **4.** Describe the variables in the relationship: $u = u_f + x u_{fg}$. Particularly, what do the subscripts indicate? Where does one find these properties for a given substance?

Problem Solving Questions:

- **5. (a)** A sealed, rigid container holds 2kg of nitrogen at 101.3 kPa (1.013 bar) and 30 $^{\circ}$ C. What is the volume of the container and how many moles of nitrogen are present? What is the molar mass of nitrogen? (R_{N2} = 0.2968 kJ/kg K and R_u = 8.314 kJ/kmol K).
 - **(b)** The container is heated so that the temperature of nitrogen increases by 100°C. Assuming ideal gas, what is the change in pressure in the container?

[ans: (a) $V = 1.78 \text{ m}^3$, N = 0.072 kmol, M = 28 kg/kmol, (b) $P_2 - P_1 = 33.4 \text{ kPa}$]

School of Engineering, University of Edinburgh Engineering Thermodynamics 2

6. A 1-m³ rigid tank with air at 1 MPa and 100°C is connected to an air-line. A valve is opened and allows additional air to enter the tank until the pressure reaches 5 MPa. The valve is then closed and the temperature inside the tank is 160°C. Assume air as an ideal gas with R = 0.287 kJ/kgK.

- (a) What is the mass of air inside the tank before and after the process?
- **(b)** Heat is transferred from the tank to the surroundings and cools the air in the tank down to room temperature (25°C). What is the pressure inside the tank afterward?

 $[(a) m_1 = 9.34 \text{ kg}, m_2 = 40.2 \text{ kg } (b) 3439 \text{ kPa}]$

7. Complete the following table for the following property substances. Use tables in back of book for various substances

	Substance	P [kPa]	T [°C]	Quality, x	v [m³/kg]	u [kJ/kg]	h [kJ/kg]	Phase
Α	R-134a		0	0.6				
В	R-134a		20					Sat. vapour
С	R-134a		-10		0.1200			
D	Ammonia ¹	1000	200					
Е	Ammonia ¹		-20			997		
F	Nitrogen ¹	500	100 K					
G	CO ₂ ¹	1000	-5					

¹ Tables can be found in 'Fundamentals of Thermodynamics (8th Ed.)' by Borgnakke and Sonntag

- 8. A 0.15 m³ rigid tank contains 2 kg of water at 150 kPa (1.5 bar). Determine the
 - a) Temperature
 - b) Enthalpy
 - c) Mass of each phase of water

[(a) T = 111.37C (b) 609.6 kJ/kg, (c) $m_g = 0.128 \text{ kg}$, $m_f = 1.872\text{kg}$]

School of Engineering, University of Edinburgh Engineering Thermodynamics 2

- **9.** Find the specific internal energy of water at the given states for 7 MPa (70 bar) and plot the states on T-v, P-v diagrams. Show where the states lie with respect to the saturated liquid-vapor dome. (Note: rough estimations of state location on the diagrams are expected if exact numerical values on axis are not provided).
 - a) Saturated vapor
 - b) Saturated liquid
 - c) $T = 700^{\circ}C$
 - d) $T = 100^{\circ}C$
 - e) Quality (x) = 95%

[(a) 2580.48 kJ/kg, (b) 1257 kJ/kg, (c) 3448.6 kJ/kg. (d)416.94 kJ/kg, (e) 2514.33 kJ/kg]

- **10.** A piston/cylinder device with initial volume of 0.5 L contains refrigerant R134a at -10°C, 200 kPa. Stops are placed so that the cylinder can expand an additional 25% of the initial volume. Heat is transferred to the cylinder until the refrigerant temperature reaches 30°C.
 - (a) Is the piston at the stops in the final state?
 - (b) What is the work done during this process?
 - (c) What is the heat transfer during the process?
 - (d) If the diameter of the piston is 0.04 m atmospheric pressure of 101.3 kPa is acting on the piston, what is the mass of the piston in kg?

[(a) no, (b) 18.6 J, (c) 0.172 kJ, (d) 12.6 kg]