Digitalna logika, zadaci za rješavanje na predavanjima

7. Aritmetički sklopovi

1. Ternarno poluzbrajalo koristi sljedeći kod: 0≡00, 1≡11, 2≡01. Neka su ulazi sklopa označeni s x₁x₀ (prva znamenka) i y_1y_0 (druga znamenka) a izlazi r_1r_0 (znamenka rezultata) i c_{out} (prijenos). Koja od ponuđenih funkcija predstavlja $r_0(x_1,x_0,y_1,y_0)$?

a)
$$\sum m(2,3,8,10,12,14) + \sum d(1,4,5,6,7,9,13)$$
 d) $\sum m(1,3,4,5,12,15) + \sum d(2,6,8,9,10,11,14)$ e) $\sum m(3,5,7,11,14) + \sum d(2,4,8,9,13,15)$

d)
$$\sum m(1,3,4,5,12,15) + \sum d(2,6,8,9,10,11,14)$$

b)
$$\sum m(1,4,5,7,12,15) + \sum d(2,6,8,9,10,11,14)$$

e)
$$\sum m(3,5,7,11,14) + \sum d(2,4,8,9,13,15)$$

c)
$$\sum m(1,5,8) + \sum d(3,7,13,14,15)$$

2. Pomoću 4 potpuna zbrajala (FA) i 4 sklopa NE izgrađeno je 4-bitno binarno oduzimalo koje se temelji na pribrajanju B-komplementa. Ako na njegove ulaze dovedemo a=1110 i b=0110, izračunajte rezultat operacije a-b te prijenose između pojedinih potpunih zbrajala ($sklopova\ FA$). Označimo te prijenose s c_4 , c_3 , c_2 , c_1 (c_4 je prijenos potpunog zbrajala koje radi s bitovima operanada najveće težine). Prijenosi c4,c3,c2,c1 su:

d) 1011

b) 1000

e) 1110

c) 0100

f) ništa od navedenog

3. Zadan je dekadski kod koji za svaku dekadsku znamenku koristi 4 bita. Pri tome znamenke 0-3 kodira kao binarno zapisane brojeve 1-4, a znamenke 4-9 kao binarno zapisane brojeve 6-11 (primjerice, znamenka 4 ima kod 0110). Projektirajte sklop na čiji se ulaz dovodi kôd jedne znamenke (označimo bitove kao b₃b₂b₁b₀), a na izlazu generira kôd njezinog 9-komplementa (označimo bitove izlaza k₃k₂k₁k₀). Kako glasi minimalni oblik izlaza k₂? Napomena: u slučaju više minimalnih oblika, u ponuđenim odgovorima naveden je jedan.

a)
$$b_2b_1 + b_3\overline{b_1}$$

d)
$$b_3 \overline{b_0} + b_2 b_1$$

b)
$$b_2b_0+\overline{b}_2\overline{b}_1\overline{b}_0$$

e)
$$b_2 b_1 + \bar{b_1} \bar{b_0}$$

c)
$$b_2b_1 + b_3\bar{b}_1\bar{b}_0$$

f) ništa od navedenog

4. Projektant digitalnih sklopova želio je napraviti 8-bitno binarno zbrajalo. No, prilikom izrade sklopa, pogriješio je i umjesto potpunog zbrajala (F) na nekim je mjestima upotrijebio je potpuno oduzimalo (D), prema slici. Ako na ulaz takvog "zbrajala" dovedemo brojeve B8 i AF, što će biti rezultat (s)?

a) 0B

c) 3F

e) C0

b) 4B

d) A1

f) ništa od navedenoga

5. Nad brojem 4321₍₁₆₎ potrebno je izvršiti aritmetički posmak udesno za 5 bitova. Rezultat je:

- a) 0432₍₁₆₎
- c) F219₍₁₆₎

e) 0219₍₁₆₎

- b) F432₍₁₆₎
- d) F5A3₍₁₆₎

f) ništa od navedenoga

6. Što će biti na izlazima Y₃Y₂Y₁Y₀ sklopa sa slike, ako se na ulaze dovede D₃D₂D₁D₀=1101, A₁A₀=10?

- a) 0111
- b) 1101
- c) 1011
- d) 1110
- e) 1010
- f) ništa od navedenog

- 7. (rezervni) Sklop za množenje 5-bitnog broja 4-bitnim brojem sastoji se od četiri posmaknuta peteroulazna zbrajala i potrebnog broja logičkih sklopova I. Koliko je potrebno logičkih sklopova I za ostvarivanje ovog množila?
 - a) 30
- b) 26
- c) 20
- d) 15
- e) 16
- f) ništa od navedenoga