Universidade do Minho

31 de outubro de 2018

 $1^{\underline{o}}$ Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2h15min

Este teste é constituído por 5 questões. Todas as respostas devem ser devidamente justificadas.

1. Seja $A = \{a, b\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4\}, A, A \cup \{\Delta\}, \delta, 0, 4, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0			$(1, \Delta, D)$
1	(2, a, D)	(3, a, E)	
2	(1,b,D)		
3	(3, a, E)	(3,b,E)	$(4, \Delta, C)$

A máquina \mathcal{T} calcula uma função parcial $g: A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- **b)** Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}aaabaab)$.
- c) Identifique o domínio D da função g.
- d) Para cada elemento $u \in D$, determine a palavra g(u).

 $\mathbf{2}$. Construa uma máquina de Turing \mathcal{T} , com duas fitas, que calcule a função

$$g: \mathbb{N}_0 \longrightarrow \mathbb{N}_0 .$$

$$n \longmapsto 3n$$

3. Seja A o alfabeto $\{a,b\}$. Considere a linguagem

$$L = \{ua^n : u \in A^*, |u|_b = n\}.$$

- a) Construa uma máquina de Turing que reconheça L e descreva informalmente a estratégia dessa máquina.
- **b)** Explique se o problema de decisão P(w): " $w \in \overline{L \cap b^*a^*}$?" é ou não decidível.

(v.s.f.f.)

4. Seja $A = \{a, b\}$ e seja \mathcal{M} uma máquina de Turing que reconhece a linguagem

$$K = \{ w \in A^* : |w|_a = |w|_b \}$$

e para a qual a configuração inicial de qualquer palavra de \overline{K} é uma configuração de ciclo. Seja $\mathcal T$ a seguinte máquina de Turing não-determinista,

- a) Indique uma palavra $u \in A^*$ para a qual é possível computar a configuração $(2, \underline{\Delta}bbbaabaa)$ a partir da configuração inicial $(0, \underline{\Delta}u)$ de u. Indique a sequência de configurações que permitem passar de $(0, \underline{\Delta}u)$ para $(2, \underline{\Delta}bbbaabaa)$ e justifique se a palavra u é aceite por \mathcal{T} .
- b) Para que palavras $v \in A^*$, pode ser computada uma configuração de ciclo a partir de $(0, \underline{\Delta}v)$? Justifique.
- c) Para que palavras $x \in A^*$, pode ser computada uma configuração de rejeição a partir de $(0, \underline{\Delta}x)$? Justifique.
- d) Identifique, justificando, a linguagem L reconhecida por \mathcal{T} .
- e) Diga, justificando, se a linguagem L é recursiva.
- 5. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) Uma máquina de Turing \mathcal{T} é um algoritmo se e só se a linguagem $L(\mathcal{T})$ é recursiva.
 - **b)** A palavra $x^3yx^2yxyx^2yxyx^3y^2x^3yx^3yx^2yx^3yx^6y^2x^2yx^2yx^2yx^2y^2x^6yx^4yxyxy^2$ é o código de alguma máquina de Turing.
 - c) Se L e K são linguagens tais que $L \cap K$ e $L \cap \overline{K}$ são ambas recursivamente enumeráveis, então L é recursivamente enumerável.
 - d) Se \mathcal{T} é a máquina de Turing da questão 1, então existe uma máquina de Turing \mathcal{T}' tal que a linguagem reconhecida pela composição sequencial $\mathcal{T} \longrightarrow \mathcal{T}'$ é $\{a,b\}^*$.

(FIM)

$$\text{Cotação:} \left\{ \begin{array}{l} \textbf{1.} & 4,25 \text{ valores } (1+1+1+1,25) \\ \textbf{2.} & 2 \text{ valores} \\ \textbf{3.} & 3,25 \text{ valores } (2+1,25) \\ \textbf{4.} & 5,5 \text{ valores } (1,5+1+1+1+1) \\ \textbf{5.} & 5 \text{ valores } (1,25+1,25+1,25+1,25) \end{array} \right.$$