Álgebras de Hopf y grupos afines

Daniel Mejail

20/9/2021

Índice

1	Álgebras 2					
	1.1	Defini	ciones	2		
		1.1.1	El álgebra libre	2		
	1.2	Ejemp		3		
		1.2.1		3		
		1.2.2	El grupo multiplicativo	6		
		1.2.3		8		
	1.3	Produ		11		
		1.3.1	Producto tensorial de módulos	11		
		1.3.2	Producto tensorial de álgebras	14		
2	Coál	Coálgebras y biálgebras				
	2.1	Coálge	ebras	17		
		2.1.1	Definiciones	17		
		2.1.2	Ejemplos	18		
		2.1.3	Producto tensorial de coálgebras	19		
		2.1.4	Dualidad	20		
		2.1.5	Ejemplos	21		
	2.2	Biálge	bras	22		
		2.2.1	Definiciones	22		
		2.2.2	Ejemplos	23		
3	Álgebras de Hopf					
	3.1	La ant	típoda	24		
		3.1.1	Definiciones	25		
		3.1.2	Relación con § 1.2	26		
	3.2	Obser	vaciones	26		
	3.3	El gru	po $Hom_{k-alg}(H,A)$	28		

4	Relación con grupos afines				
	4.1	Recapitulación	29		
	4.2	El grupo $Hom_{k-alq}(H,-)$	31		
		4.2.1 El funtor $Hom_{k-alg}(H,-)$	31		
		4.2.2 Grupos en $\mathbf{CommAlg}_k \to \mathbf{Set}$	32		
	4.3	Equivalencia con grupos afines	3		
Referencias					

1 Álgebras

k denota un anillo conmutatico (con unidad).

1.1 Definiciones

Definición 1.1. Una k-álgebra es un anillo A, junto con un morfismo de anillos

$$\eta_A: k \to A$$

cuya imagen está contenida en el centro Z(A) de A.

Si A es una k-álgebra, la aplicación $(\lambda, a) \mapsto \eta_A(\lambda) a$ define una estructura de k-módulo en A. Con respecto a esta estructura, la multiplicación $\mu_A : A \times A \to A$ es una transformación k-bilineal.

Definición 1.2. Un morfismo de k-álgebras es un morfismo de anillos $f: A \to B$ que es morfismo de k-módulos, es decir,

$$f \circ \eta_A = \eta_B \tag{1}$$

Denotamos el conjunto de morfismos de k-álgebras $A \to B$ por $\mathsf{Hom}_{k-alg}(A,B)$.

1.1.1 El álgebra libre

Dado un conjunto X, llamamos palabra en X a las sucesiones finitas de elementos de X, $x_{i_1} \cdots x_{i_n} \ (n \ge 1)$, o bien a la palabra vacia, \varnothing . Denotamos por $k\{X\}$ ($k\{x_1, \ldots, x_n\}$, si $X = \{x_1, \ldots, x_n\}$) el k-módulo libre con base las palabras en X. La concatenación de palabras,

$$(x_{i_1} \cdots x_{i_n})(x_{i_{n+1}} \cdots x_{i_m}) = (x_{i_1} \cdots x_{i_n} x_{i_{n+1}} \cdots x_{i_m}),$$

define, extendiendo k-bilinealmente, un producto en $k\{X\}$ que lo convierte en k-álgebra. Llamamos a este álegbra, el álgebra libre en X.

Ejemplo 1.3. Si $X = \{x\}$, $k\{x\} = k[x]$, el álgebra de polinomios en una variable. Si $X = \{x, y\}$, entonces $k\{x, y\} \neq k[x, y]$, pues $xy \neq yx$.

El álgebra libre está caracterizada por la siguiente propiedad universal:

Proposición 1.4. Dados un conjunto X, una k-álgebra A y una función $f: X \to A$, existe un único morfismo de k-álgebras $\tilde{f}: k\{X\} \to A$ tal que $\tilde{f}(x) = f(x)$ para todo $x \in X$.

Dicho de otra manera, existe una biyección natural

$$\operatorname{\mathsf{Hom}}_{k-alg}(k\{X\},A) \simeq \operatorname{\mathsf{Hom}}_{\mathbf{Set}}(X,UA) \,, \tag{2}$$

donde UA denota el conjunto subvacente al álgebra A. Por ejemplo, como conjuntos,

$$\operatorname{Hom}_{k-alg}(k\{x,y\},A) = A^2 ,$$

vía $f \mapsto (f(x), f(y)).$

Toda k-álgebra es cociente de un álgebra libre. En general,

$$\operatorname{Hom}_{k-alg}\left(k\{X\}/I,A\right) \simeq \left\{f \in \operatorname{Hom}_{\mathbf{Set}}\left(X,UA\right) : \tilde{f}(I) = 0\right\}. \tag{3}$$

Ejemplo 1.5. En $k\{x,y\}$ podemos considerar el ideal bilátero generado por xy - yx. En este caso, se obtiene el álgebra de polinomios, $k[x,y] \simeq k\{x,y\}/\langle xy - yx\rangle$ y vale que

$$\mathsf{Hom}_{k-alg}(k[x,y],A) \simeq \{(a,b) \in A^2 : ab = ba\}$$
.

1.2 Ejemplos

1.2.1 La recta y el plano afines

De ahora en adelante, asumiremos que A es un álgebra conmutativa. La correspondencia (3) implica, entonces, que existe una biyección natural

$$\operatorname{Hom}_{k-alg}(k[x_1, \ldots, x_n], A) \simeq A^n \qquad f \mapsto (f(x_1), \ldots, f(x_n)), \qquad (4)$$

es decir, todo morfismo de álgebras $f: k[x_1, \ldots, x_n] \to A$, en un álgebra conmutativa, está determinado por los valores que toma en los generadores x_1, \ldots, x_n .

El grupo abeliano (A, +) de un álgebra está determinado por tres funciones: la suma, el neutro y el inverso,

$$+: A \times A \rightarrow A$$
 , $0: \{0\} \rightarrow A$ y $-: A \rightarrow A$,

que obedecen ciertas reglas (+ es asociativa, 0 es un neutro para + y -a es el inverso de a con respecto a +). Queremos expresar las leyes de grupo de manera, en algún sentido, universal; buscamos un objeto algebraico independiente de toda k-álgebra conmutativa A que describa estas reglas. Con este objetivo, vamos a darle una estructura de grupo (abeliano) al conjunto $\mathsf{Hom}_{k-alg}(k[x],A)$ que sea compatible con (4).

Vamos a definir tres morfismos $\Delta: k[x] \to k[x', x''], \ \varepsilon: k[x] \to k \ y \ S: k[x] \to k[x].$ Éstos son los morfismos de álgebras determinados por

$$\Delta(x) = x' + x''$$
 , $\varepsilon(x) = 0$ y $S(x) = -x$. (5)

Cada uno de ellos induce, por precomposición, una función en morfismos:

$$\begin{array}{l} \Delta^* : \operatorname{Hom}_{k-alg} \big(k[x',x''],A \big) \to \operatorname{Hom}_{k-alg} \big(k[x],A \big) \; , \\ \varepsilon^* : \operatorname{Hom}_{k-alg} \big(k,A \big) \to \operatorname{Hom}_{k-alg} \big(k[x],A \big) \; \; \mathbf{y} \\ S^* : \operatorname{Hom}_{k-alg} \big(k[x],A \big) \to \operatorname{Hom}_{k-alg} \big(k[x],A \big) \end{array}$$

(la composición de morfismos de álgebras es un morfismo de álgebras).

Proposición 1.6. Los siguientes diagramas conmutan.

Las flechas horizontales están dadas por (4). El conjunto $\mathsf{Hom}_{k-alg}(k,A)$ posee un único elemento, $\eta_A: k \to A$; en este caso, la función $\mathsf{Hom}_{k-alg}(k,A) \to \{0\}$ es la identificación $\eta_A \mapsto 0$.

Demostración. Por ejemplo, si $f: k[x', x''] \to A$, siguiendo las flechas superior y derecha, obtenemos

$$f \mapsto (f(x'), f(x'')) \mapsto f(x') + f(x'')$$
.

Recorriendo el otro camino, llegamos a

$$f \mapsto \Delta^*(f) = f \circ \Delta \mapsto f \circ \Delta(x) = f(x' + x'')$$
.

Pero f es morfismo de álgebras, así que los dos resultados coinciden.

Observación 1.7. Existe una correspondencia entre morfismos $k[x',x''] \to A$ y pares de morfismos $k[x] \to A$. Podemos describir esta correspondencia de la siguiente manera: si $f: k[x',x''] \to A$ es el morfismo de álgebras determinado por f(x') = a' y f(x'') = a'', el par correspondiente a f es (f',f''), donde $f',f'': k[x] \to A$ son los morfismos de álgebras determinados por f'(x) = a' y f''(x) = a''. Recíprocamente, dados $f',f'': k[x] \to A$, definimos $f: k[x',x''] \to A$ por f(x') = f'(x) y f(x'') = f''(x). Esta relación es, simplemente, (4) en los casos n = 1 y 2:

$$\operatorname{Hom}_{k-alg}(k[x',x''],A) \simeq A^2 = A \times A$$

$$\simeq \operatorname{Hom}_{k-alg}(k[x],A) \times \operatorname{Hom}_{k-alg}(k[x],A) . \tag{6}$$

Dados morfismos de álgebras $f, g: k[x] \to A$, podemos definir la suma de f con g, que denotamos $\Delta^*(f,g)$, como el morfismo determinado por

$$\Delta^*(f,g)(x) = f(x) + g(x) . \tag{7}$$

Por (6), este morfismo no es otro más que el que se obtiene aplicando Δ^* al morfismo $k[x', x''] \to A$ correspondiente al par (f, g).

Proposición 1.8. La suma (7) posee las siguientes propiedades:

- $\Delta^*(f, \Delta^*(g, h)) = \Delta^*(\Delta^*(f, g), h);$
- $\Delta^*(f, \varepsilon^*(\eta_A)) = \Delta^*(\varepsilon^*(\eta_A), f) = f;$
- $\Delta^*(f, S^*(f)) = \Delta^*(S^*(f), f) = \varepsilon^*(\eta_A); y$
- $\bullet \ \Delta^*(f,g) = \Delta^*(g,f).$

Demostración. Las igualdades

$$\Delta^*(f, \Delta^*(g, h))(x) = f(x) + \Delta^*(g, h)(x) = f(x) + (g(x) + h(x)) \quad y$$

$$\Delta^*(\Delta^*(f, g), h)(x) = \Delta^*(f, g)(x) + h(x) = (f(x) + g(x)) + h(x)$$

demuestran, por ejemplo, que Δ^* es asociativa. Haciendo uso de

$$S^*(f)(x) = f(-x) = -f(x)$$
 y $\varepsilon^*(\eta_A)(x) = \eta_A(0) = 0$,

vemos que $\varepsilon^*(\eta_A)$ es un neutro para esta suma y que el morfismo $S^*(f)$ es el inverso de f. Por último, de f(x) + g(x) = g(x) + f(x), deducimos que Δ^* es abeliana.

Las operaciones Δ^* , ε^* y S^* son esencialmente independientes del álgebra A en $\mathsf{Hom}_{k-alg}(k[x],A)$.

Proposición 1.9. Todo morfismo de k-álgebras $\varphi: A \to B$ induce diagramas conmutativos

$$\operatorname{Hom}_{k-alg}\big(k[x',x''],A\big) \xrightarrow{\Delta^*} \operatorname{Hom}_{k-alg}\big(k[x],A\big) \\ \varphi_* \downarrow \qquad \qquad \qquad \downarrow \varphi_* \\ \operatorname{Hom}_{k-alg}\big(k[x',x''],B\big) \xrightarrow{\Delta^*} \operatorname{Hom}_{k-alg}\big(k[x],B\big) \\ \operatorname{Hom}_{k-alg}\big(k,A\big) \xrightarrow{\varepsilon^*} \operatorname{Hom}_{k-alg}\big(k[x],A\big) & \operatorname{Hom}_{k-alg}\big(k[x],A\big) \xrightarrow{S^*} \operatorname{Hom}_{k-alg}\big(k[x],A\big) \\ \varphi_* \downarrow \qquad \qquad \downarrow \varphi_* \qquad \qquad \downarrow \varphi_* \\ \operatorname{Hom}_{k-alg}\big(k,B\big) \xrightarrow{\varepsilon^*} \operatorname{Hom}_{k-alg}\big(k[x],B\big) & \operatorname{Hom}_{k-alg}\big(k[x],B\big) \xrightarrow{S^*} \operatorname{Hom}_{k-alg}\big(k[x],B\big) \\ \end{array}$$

 $con \varphi_*(f) = \varphi \circ f.$

Demostración.
$$\varphi_* \circ X^*(f) = \varphi \circ f \circ X = X^* \circ \varphi_*(f).$$

Podemos interpretar esto de dos maneras. Por un lado, la Proposición 1.9 quiere decir que

$$\Delta^* : \operatorname{Hom}_{k-alg}(k[x', x''], -) \xrightarrow{\cdot} \operatorname{Hom}_{k-alg}(k[x], -) ,$$

$$\varepsilon^* : \operatorname{Hom}_{k-alg}(k, -) \xrightarrow{\cdot} \operatorname{Hom}_{k-alg}(k[x], -) y$$

$$S^* : \operatorname{Hom}_{k-alg}(k[x], -) \xrightarrow{\cdot} \operatorname{Hom}_{k-alg}(k[x], -)$$

$$(8)$$

son transformaciones naturales. Por otro lado, vía la correspondencia (6), el primero de los diagramas muestra que, para cada morfismo $\varphi:A\to B$, la función inducida $\varphi_*:\operatorname{\mathsf{Hom}}_{k-alg}\bigl(k[x],A\bigr)\to\operatorname{\mathsf{Hom}}_{k-alg}\bigl(k[x],B\bigr)$ es un morfismo de grupos, si en cada conjunto $\operatorname{\mathsf{Hom}}_{k-alg}\bigl(k[x],A\bigr)$ la suma está dada por Δ^* .

Corolario 1.10. Existe un funtor G: CommAlg_k \rightarrow Grp tal que

$$U \circ G = \operatorname{Hom}_{k-alg}(k[x], -)$$
,

donde $U: \mathbf{Grp} \to \mathbf{Set}$ es el funtor olvido. Este funtor está definido en objetos por $A \mapsto G(A)$, donde G(A) es el grupo cuyo conjunto subyacente es $\mathsf{Hom}_{k-alg}\big(k[x],A\big)$ y cuya operación binaria está dada por $\Delta^*(A) = \Delta^*$.

La función (biyectiva, por (4))

$$(f \mapsto f(x)) : \operatorname{Hom}_{k-alg}(k[x], A) \to A$$

determina un isomorfismo de grupos $\tau_A: G(A) \to (A, +)$. A su vez, estos isomorfismos determinan un isomorfismo natural $\tau: G \to (-, +)$ de G en el funtor $A \mapsto (A, +)$.

Demostración. Que $\tau_A(f) = f(x)$ es morfismo de grupos, es consecuencia de la conmutatividad del primer diagrama de la Proposición 1.6. Lo único que queda por verificar es la naturalidad de τ . Pero

$$\tau_B \circ \varphi_*(f) = (\varphi \circ f)(x) = \varphi(f(x)) = \varphi \circ \tau_A(f)$$

donde, en el último término, φ denota el morfismo de grupos $(A, +) \to (B, +)$.

1.2.2 El grupo multiplicativo

Dada una k-álegbra A, A^{\times} denota el grupo multiplicativo compuesto por las unidades de A. Dado un morfismo de álgebras $\varphi:A\to B$, se cumple que $\varphi(A^{\times})\subset B^{\times}$ y que φ define, por restricción, un morfismo de grupos $\varphi^{\times}:A^{\times}\to B^{\times}$. Nos referimos, con $(-,\times):\mathbf{CommAlg}_k\to\mathbf{Grp}$, al funtor dado por $A\mapsto A^{\times}$ en objetos y por $\varphi\mapsto\varphi^{\times}$ en morfismos. Escribiremos φ en lugar de φ^{\times} .

Sea $I \triangleleft k[x,y]$ el ideal $I = \langle xy - 1 \rangle$. El cociente

$$k[x, x^{-1}] = k[x, y] / \langle xy - 1 \rangle$$

posee la siguiente propiedad: para toda k-álgebra conmutativa A, la aplicación $\tau_A: f \mapsto f(x)$ es una biyección

$$\operatorname{Hom}_{k-alg}(k[x,x^{-1}],A) \simeq A^{\times} . \tag{9}$$

Esta biyección es natural en A. De manera similar, si definimos

$$k[x', x'', x'^{-1}, x''^{-1}] = k[x', y', x'', y''] / \langle x'y' - 1, x''y'' - 1 \rangle$$

obtenemos una biyección natural

$$\operatorname{Hom}_{k-alg}(k[x', x'', x'^{-1}, x''^{-1}], A) \simeq A^{\times} \times A^{\times}.$$
 (10)

El grupo multiplicativo de un álgebra A está definido por tres funciones:

$$\times : A^{\times} \times A^{\times} \to A^{\times}$$
 , $1 : \{1\} \to A^{\times}$ y $^{-1} : A^{\times} \to A^{\times}$.

Proposición 1.11. Sean $\Delta: k[x,x^{-1}] \to k[x',x'',x'^{-1},x''^{-1}], \ \varepsilon: k[x,x^{-1}] \to k \ y$ $S: k[x,x^{-1}] \to k[x,x^{-1}]$ los morfismos de álgebras determinados por

$$\Delta(x) = x' x''$$
 , $\varepsilon(x) = 1$ $y S(x) = x^{-1}$. (11)

Entonces los siguientes diagramas conmutan.

$$\begin{array}{cccccc} \operatorname{Hom}_{k-alg} \left(k[x',x'',x'^{-1},x''^{-1}],A \right) & \stackrel{\sim}{\longrightarrow} A^{\times} \times A^{\times} & \operatorname{Hom}_{k-alg} \left(k,A \right) & \stackrel{\sim}{\longrightarrow} \left\{ 1 \right\} \\ & \downarrow^{\times} & \downarrow^{\times} & \downarrow^{1} \\ & \operatorname{Hom}_{k-alg} \left(k[x,x^{-1}],A \right) & \stackrel{\sim}{\longrightarrow} A^{\times} & \operatorname{Hom}_{k-alg} \left(k[x,x^{-1}],A \right) & \stackrel{\sim}{\longrightarrow} A^{\times} \\ & & \downarrow^{-1} & \downarrow^{-1} \\ & \operatorname{Hom}_{k-alg} \left(k[x,x^{-1}],A \right) & \stackrel{\sim}{\longrightarrow} A^{\times} \end{array}$$

Las funciones Δ^* , ε^* y S^* son los pullbacks de los morfismos correspondientes. Como en la Proposición 1.6, las flechas horizontales están dadas por (9) y (10). En este caso, como estamos tratando el grupo multiplicativo, identificamos el único elemento del conjunto $\mathsf{Hom}_{k-alg}(k,A) = \{\eta_A\}$ con el único elemento de $\{1\}$.

Se puede demostrar la existencia de una biyección similar a la mencionada en la Observación 1.7:

$$\operatorname{Hom}_{k-alg}\left(k[x',x'',x'^{-1},x''^{-1}],A\right) \simeq \operatorname{Hom}_{k-alg}\left(k[x,x^{-1}],A\right) \times \operatorname{Hom}_{k-alg}\left(k[x,x^{-1}],A\right).$$
 (12)

Esto nos permite darle una estructura de grupo al conjunto $\mathsf{Hom}_{k-alg}(k[x,x^{-1}],A)$ para un álgebra fija A y demostrar resultados análogos a los demostrados en el caso del grupo aditivo. En particular, se deduce el siguiente corolario.

Corolario 1.12. Existe un funtor $G : \mathbf{CommAlg}_k \to \mathbf{Grp} \ tal \ que$

$$U \circ G = \operatorname{Hom}_{k-alg}(k[x, x^{-1}], -)$$
.

Si A es una k-álgebra conmutativa, G(A) es el grupo $\operatorname{Hom}_{k-alg}\left(k[x,x^{-1}],A\right)$ con el producto, el neutro y el inverso dados por Δ^* , ε^* y S^* . Las biyecciones (9) son, con respecto a esta estructura de grupo, isomorfismos de grupos e inducen un isomorfismo natural $\tau: G \xrightarrow{\cdot} (-, \times)$.

1.2.3 GL(2) y SL(2)

Apliquemos las ideas anteriores para describir el producto de matrices. Vamos a escribir Mat(2) para denotar el álgebra de polinomios k[a, b, c, d]. Entonces la aplicación

$$f \mapsto f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} f(a) & f(b) \\ f(c) & f(d) \end{bmatrix} \tag{13}$$

define una biyección

$$\mathsf{Hom}_{k-alq}(\mathsf{Mat}(2), A) \simeq \mathsf{Mat}_{2\times 2}(A) , \qquad (14)$$

identificando $A^4 = \mathsf{Mat}_{2\times 2}(A)$.

Si queremos expresar el producto de matrices de manera universal, lo primero que haremos será duplicar las variables: definimos

$$\mathsf{Mat}(2)^{\otimes 2} = k[a', b', c', d', a'', b'', c'', d'']$$

y buscaremos luego, un morfismo de álgebras $\Delta: \mathsf{Mat}(2) \to \mathsf{Mat}(2)^{\otimes 2}$ que haga conmutar el diagrama

$$\begin{array}{ccc} \operatorname{Hom}_{k-alg} \left(\operatorname{Mat}(2)^{\otimes 2}, A \right) & \stackrel{\sim}{\longrightarrow} & \operatorname{Mat}_{2 \times 2}(A)^2 \\ & & \downarrow \cdot & & \downarrow \cdot \\ \operatorname{Hom}_{k-alg} \left(\operatorname{Mat}(2), A \right) & \stackrel{\sim}{\longrightarrow} & \operatorname{Mat}_{2 \times 2}(A) \end{array}$$

donde \cdot : $\mathsf{Mat}_{2\times 2}(A)^2 \to \mathsf{Mat}_{2\times 2}(A)$ es el producto de matrices con coeficientes en el álgebra A. La flecha inferior está dada por (14) y la flecha superior es la biyección $\mathsf{Hom}_{k-alg}\big(\mathsf{Mat}(2)^{\otimes 2},A\big) \simeq \mathsf{Mat}_{2\times 2}(A)^2$ dada por $f \mapsto \big(f \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}, f \begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix}\big)$. Para que este diagrama conmute, lo que tiene que cumplirse es

$$f\circ\Delta\Big(\begin{bmatrix}a&b\\c&d\end{bmatrix}\Big)=f\Big(\begin{bmatrix}a'&b'\\c'&d'\end{bmatrix}\Big)\,f\Big(\begin{bmatrix}a''&b''\\c''&d''\end{bmatrix}\Big)=f\Big(\begin{bmatrix}a'&b'\\c'&d'\end{bmatrix}\begin{bmatrix}a''&b''\\c''&d''\end{bmatrix}\Big)$$

para todo morfismo de álgebras $f: \mathsf{Mat}(2)^{\otimes 2} \to A$.

Proposición 1.13. Sea $\Delta: \mathsf{Mat}(2) \to \mathsf{Mat}(2)^{\otimes 2}$ el morfismo de álgebras determinado por

$$\Delta\Big(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\Big) = \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix} ,$$

es decir.

Entonces el diagrama conmuta.

Vamos a usar este morfismo Δ para tratar los grupos $\mathsf{GL}_2(A)$ y $\mathsf{SL}_2(A)$, matrices invertibles y, respectivamente, matrices de determinante 1 con coeficientes en A. Introducimos las álgebras

$$\begin{aligned} \mathsf{GL}(2) &= \, \mathsf{Mat}(2)[t]/\left< (ad-bc)\,t-1 \right> \quad \mathsf{y} \\ \mathsf{SL}(2) &= \, \mathsf{GL}(2)/\left< t-1 \right> \, = \, \mathsf{Mat}(2)/\left< ad-bc-1 \right> \; . \end{aligned}$$

Proposición 1.14. Para toda álgebra conmutativa A, la expresión (13) determina biyecciones

$$\operatorname{Hom}_{k-alg} \big(\operatorname{GL}(2), A \big) \, \simeq \, \operatorname{GL}_2(A) \quad y \quad \operatorname{Hom}_{k-alg} \big(\operatorname{SL}(2), A \big) \, \simeq \, \operatorname{SL}_2(A) \ . \tag{16}$$

Demostración. Si $\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \in \mathsf{GL}_2(A)$, por (4), existe un único morfismo de álgebras $f: \mathsf{Mat}(2)[t] \to A$ tal que

$$f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$
 y $f(t) = (\alpha\delta - \beta\gamma)^{-1}$.

Como f es morfismo de álgebras, se verifica que f((ad-bc)t-1)=0 y f pasa al cociente $\mathsf{GL}(2)$. Si la matriz pertenece a $\mathsf{SL}_2(A)$, entonces f(t-1)=0, también, y f se factoriza por $\mathsf{SL}(2)$.

Sean, ahora,

$$\begin{split} \mathsf{GL}(2)^{\otimes 2} &= \, \mathsf{Mat}(2)^{\otimes 2}[t',t'']/\left< (a'd'-b'c')\,t'-1,(a''d''-b''c'')\,t''-1 \right> \quad \mathsf{y} \\ \mathsf{SL}(2)^{\otimes 2} &= \, \mathsf{GL}(2)^{\otimes 2}/\left< t'-1,t''-1 \right> \, = \, \mathsf{Mat}(2)^{\otimes 2}/\left< a'd'-b'c'-1,a''d''-b''c''-1 \right> \, \, . \end{split}$$

Observación 1.15. El morfismo $\Delta : \mathsf{Mat}(2) \to \mathsf{Mat}(2)^{\otimes 2}$ verifica

$$\Delta(ad - bc) = (a'd' - b'c')(a''d'' - b''c'').$$

Extendemos Δ a un morfismo de álgebras Δ : $\mathsf{Mat}(2)[t] \to \mathsf{Mat}(2)^{\otimes 2}[t',t'']$, definiendo

$$\Delta(t) = t' t''.$$

En particular, $\Delta((ad-bc)t-1)=(a'd'-b'c')(a''d''-b''c'')t't''-1$. Componiendo con la proyección de $\mathsf{Mat}(2)^{\otimes 2}[t',t'']$ en $\mathsf{GL}(2)^{\otimes 2}$, concluimos que existe un único morfismo de álgebras $\Delta: \mathsf{GL}(2) \to \mathsf{GL}(2)^{\otimes 2}$ tal que

$$\begin{array}{ccc} \operatorname{Mat}(2)[t] & \stackrel{\Delta}{\longrightarrow} & \operatorname{Mat}(2)^{\otimes 2}[t',t''] \\ & & \downarrow & & \downarrow \\ \operatorname{GL}(2) & \stackrel{\Delta}{\longrightarrow} & \operatorname{GL}(2)^{\otimes 2} \end{array}$$

conmuta. Componiendo con $\mathsf{GL}(2)^{\otimes 2} \to \mathsf{SL}(2)^{\otimes 2},$ obtenemos $\Delta: \mathsf{SL}(2) \to \mathsf{SL}(2)^{\otimes 2}.$

Las álgebras $\mathsf{GL}(2)^{\otimes 2}$ y $\mathsf{SL}(2)^{\otimes 2}$ tienen la propiedad de que, para toda álgebra conmutativa A, existen biyecciones

$$\mathsf{Hom}_{k-alg}\big(\mathsf{GL}(2)^{\otimes 2},A\big) \, \simeq \, \mathsf{GL}_2(A)^2 \quad \text{y} \quad \mathsf{Hom}_{k-alg}\big(\mathsf{SL}(2)^{\otimes 2},A\big) \, \simeq \, \mathsf{SL}_2(A)^2 \qquad (17)$$

dadas por evaluar un morfismo en los generadores de las álgebras.

Proposición 1.16. Con Δ definido como en la Observación 1.15, los diagramas siguientes conmutan.

$$\begin{array}{cccc} \operatorname{Hom}_{k-alg} \big(\operatorname{GL} (2)^{\otimes 2}, A \big) \stackrel{\sim}{\longrightarrow} \operatorname{GL}_2 (A)^2 & \operatorname{Hom}_{k-alg} \big(\operatorname{SL} (2)^{\otimes 2}, A \big) \stackrel{\sim}{\longrightarrow} \operatorname{SL}_2 (A)^2 \\ & \downarrow^{\cdot} & \downarrow^{\cdot} & \downarrow^{\cdot} \\ \operatorname{Hom}_{k-alg} \big(\operatorname{GL} (2), A \big) \stackrel{\sim}{\longrightarrow} \operatorname{GL}_2 (A) & \operatorname{Hom}_{k-alg} \big(\operatorname{SL} (2), A \big) \stackrel{\sim}{\longrightarrow} \operatorname{SL}_2 (A) \end{array}$$

Las flechas horizontales están dadas por (16) y por (17). La flecha del lado derecho de cada uno de los cuadrados es el producto de matrices.

Proposición 1.17. Si definimos morfismos de álgebras

$$\varepsilon: \mathsf{GL}(2) \to k \quad , \quad S: \mathsf{GL}(2) \to \mathsf{GL}(2) \ ,$$

$$\varepsilon: \mathsf{SL}(2) \to k \quad , \quad S: \mathsf{SL}(2) \to \mathsf{SL}(2)$$

determinados por

$$\varepsilon \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} , \quad \varepsilon(t) = 1 ,$$

$$S \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (ad - bc)^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \quad y \quad S(t) = t^{-1} ,$$
(18)

entonces los siguientes diagramas conmutan.

Identificaciones análogas a (6) y a (12),

$$\mathsf{Hom}_{k-alg}\big(\mathsf{GL}(2)^{\otimes 2},A\big) \simeq \mathsf{Hom}_{k-alg}\big(\mathsf{GL}(2),A\big) \times \mathsf{Hom}_{k-alg}\big(\mathsf{GL}(2),A\big) \ \, \mathbf{y}$$

$$\mathsf{Hom}_{k-alg}\big(\mathsf{SL}(2)^{\otimes 2},A\big) \simeq \mathsf{Hom}_{k-alg}\big(\mathsf{SL}(2),A\big) \times \mathsf{Hom}_{k-alg}\big(\mathsf{SL}(2),A\big) \ \, ,$$

permiten darle a los conjuntos $\operatorname{Hom}_{k-alg}(\operatorname{GL}(2),A)$ y $\operatorname{Hom}_{k-alg}(\operatorname{SL}(2),A)$ estructuras de grupo con el producto determinado por Δ^* . El elemento neutro con respecto a esta operación es $\varepsilon^*(\eta_A) = \eta_A \circ \varepsilon$, donde η_A es el único morfismo en $\operatorname{Hom}_{k-alg}(k,A)$. El inverso de un morfismo f es la composición $S^*(f) = f \circ S$. Se puede verificar, además, que, tanto para $\operatorname{GL}(2)$ como para $\operatorname{SL}(2)$, los pullbacks Δ^* , ε^* y S^* son naturales en A. En particular, la naturalidad de Δ^* implica que, dado un morfismo $\varphi: A \to B$, la función $\varphi_*: \operatorname{Hom}_{k-alg}(\operatorname{GL}(2),A) \to \operatorname{Hom}_{k-alg}(\operatorname{GL}(2),B)$ dada por $\varphi_*(f) = \varphi \circ f$, es, en realidad, un morfismo de grupos. En definitiva, podemos definir un funtor $G: \operatorname{CommAlg}_k \to \operatorname{Grp}$ que en objetos está dado por asociarle a una k-álgebra conmutativa A el grupo $\operatorname{Hom}_{k-alg}(\operatorname{GL}(2),A)$ con el producto dado por Δ^* y que en morfismos está dado por $\varphi \mapsto \varphi_*$. Lo que vale, además, es que evaluar un morfismo $f: \operatorname{GL}(2) \to A$ en los generadores de $\operatorname{GL}(2)$ es un isomorfismo de grupos $\operatorname{Hom}_{k-alg}(\operatorname{GL}(2),A) \to \operatorname{GL}_2(A)$, natural en A y, por lo tanto, determina un isomorfismo natural $G \to \operatorname{GL}_2$, donde GL_2 es el funtor que a un álgebra conmutativa le asigna el grupo de matrices invertibles con coeficientes en el álgebra $\operatorname{GL}_2(A)$. Afirmaciones análogas son ciertas para $\operatorname{SL}(2)$.

1.3 Producto tensorial

Cada vez que quisimos definir un morfismo correspondiente a la operación binaria del grupo que estábamos estudiando, necesitamos "duplicar" las variables, definir una nueva álgebra y enunciar una propiedad universal para este álgebra. A continuación, formalizamos estas ideas.

1.3.1 Producto tensorial de módulos

Empecemos repasando la definición de producto tensorial de k-módulos. Recordemos que k es un anillo conmutativo.

Dados k-módulos A y B, el producto tensorial de A con B es un par compuesto por un k-módulo, denotado en general por $A \otimes_k B$, y una tranformación k-bilineal

$$\otimes : A \times B \to A \otimes_k B$$

que posee la siguiente propiedad universal: dada una transformación k-bilineal $h: A \times B \to C$ en un k-módulo C, existe un único morfismo de k-módulos $t: A \otimes_k B \to C$ tal que $t \circ \otimes = h$.

El producto tensorial $A \otimes_k B$ se puede realizar como cociente del k-módulo libre en el conjunto $A \times B$, o, lo que es lo mismo, $A \otimes_k B$ está generado, como k-módulo por los elementos de la forma $a \otimes b = \otimes (a, b)$, con $a \in A$ y $b \in B$.

Ejemplo 1.18. Dado un k-módulo A, la función $h_0: k \times A \to k$ dada por $h_0(\lambda, a) = \lambda a$ es universal entre las funciones k-bilineales con dominio en $k \times A$: si $h: k \times A \to C$ es bilineal y $h = t \circ h_0$ para cierta $t: A \to C$, entonces

$$t(a) = t(h_0(1,a)) = h(1,a)$$
,

lo que muestra que, si t existe, está determinada por los valores de h en pares de la forma (1,a). Si definimos $t:A\to C$ por t(a)=h(1,a), como h es bilineal, t es morfismo de k-módulos y, más aun,

$$h(\lambda, a) = \lambda h(1, a) = \lambda t(a) = t(\lambda a) = t \circ h_0(\lambda, a)$$
.

Concluimos, así, que A tiene la propiedad universal del producto tensorial $k \otimes_k A$ y podemos identificar canónicamente

$$A \simeq k \otimes_k A$$
.

Esta identificación está dada, explícitamente, por $a \mapsto 1 \otimes a$. Un poco más en general, la función $h_0: k^n \times A \to A^n$ dada por $h_0((\lambda_1, \ldots, \lambda_n), a) = (\lambda_1 a, \ldots, \lambda_n a)$ es universal entre las transformaciones k-bilineales con dominio en $k^n \times A$, mostrando que $k^n \otimes_k A$ se identifica naturalmente con A^n .

Proposición 1.19. El producto tensorial de k-módulos posee las siguientes propiedades: dados k-módulos A, B y C,

$$A \otimes_k (B \oplus C) \simeq (A \otimes_k B) \oplus (A \otimes_k C) ,$$

$$A \otimes_k (B \otimes_k C) \simeq (A \otimes_k B) \otimes_k C ,$$

$$A \otimes_k B \simeq B \otimes_k A .$$

Estos isomorfismos están determinados, respectivamente, por

$$a \otimes (b+c) \mapsto (a \otimes b) + (a \otimes c) ,$$

$$a \otimes (b \otimes c) \mapsto (a \otimes b) \otimes c \quad y$$

$$a \otimes b \mapsto b \otimes a .$$

Observación 1.20. Usando el segundo isomorfismo, identificamos

$$A \otimes_k B \otimes_k C = A \otimes_k (B \otimes_k C) = (A \otimes_k B) \otimes_k C.$$

Escribimos swap o swap $_{A \otimes_k B}$ para referirnos al tercer isomorfismo. Es decir, dados $a \in A$ y $b \in B$,

$$swap(a \otimes b) = swap_{A \otimes_b B}(a \otimes b) = b \otimes a$$
.

Proposición 1.21. Dados conjuntos X e Y, sean k^X , k^Y y $k^{X \times Y}$ los k-módulos libres en los conjuntos X, Y y $X \times Y$. Existe una única transformación bilineal h_0 : $k^X \times k^Y \to k^{X \times Y}$ tal que $h_0(x,y) = (x,y)$. Esta transformación es universal entre todas las transformaciones bilineales con dominio en $k^X \times k^Y$. En consecuencia,

$$k^{X \times Y} \simeq k^X \otimes_{\iota} k^Y$$
.

El isomorfismo está dado en la base por $(x,y) \mapsto x \otimes y$.

Observación 1.22. Dados morfismo de k-módulos $f: A \to A'$ y $g: B \to B'$, la función $A \times B \to A' \otimes_k B'$, definida por $(a,b) \mapsto f(a) \otimes g(b)$ es k-bilineal. Por lo tanto, existe un único morfismo de k-módulos

$$f \otimes g : A \otimes_k B \to A' \otimes_k B' \tag{19}$$

que cumple $(f \otimes g)(a \otimes b) = f(a) \otimes g(b)$. Se verifica, por unicidad, que

$$\mathsf{id}_A \otimes \mathsf{id}_B = \mathsf{id}_{A \otimes_k B} \quad \mathbf{y}$$
$$(f' \otimes g') \circ (f \otimes g) = (f' \circ f) \otimes (g' \circ g) \ .$$

En particular, dado un k-módulo C, obtenemos un funtor $-\otimes_k C: \mathbf{Mod}_k \to \mathbf{Mod}_k$ dado por

$$(\varphi: A \to B) \mapsto (\varphi \otimes \mathsf{id}_C: A \otimes_k C \to B \otimes_k C)$$
.

De ahora en adelante, escribiremos $A \otimes B$ en lugar de $A \otimes_k B$.

Observación 1.23. En una k-álgebra A, la multiplicación es una operación k-bilineal $A \times A \to A$ y determina unívocamente un morfismo $\mu_A : A \otimes A \to A$ y todo morfismo de este tipo define, por composición con $\otimes : A \times A \to A \otimes A$, una transformación k-bilineal. Usando esta correspondencia, podemos dar una definición alternativa de k-álgebras.

Definición 1.24. Una k-álgebra es un k-módulo A junto con morfismos de k-módulos $\eta_A: k \to A$ -la unidad de A- $y \mu_A: A \otimes A \to A$ -el producto en A- que verifican que los siguientes diagramas conmutan.

Una k-álgebra es conmutativa, si y sólo si

$$\mu_A \circ \mathsf{swap} = \mu_A$$
 .

Un morfismo de k-álgebras es un morfismo de k-módulos $f: A \to B$ tal que

$$f \circ \mu_A = \mu_B \circ (f \otimes f)$$
 y $f \circ \eta_A = \eta_B$.

Observación 1.25. Si (A, μ_A, η_A) es una k-álgebra, su álgebra opuesta es $(A, \mu_A^{\mathsf{op}}, \eta_A)$, donde

$$\mu_A^{\sf op} = \mu_A \circ {\sf swap}$$
 .

Denotamos este álgebra por A^{op} . El álgebra A es conmutativa, si $A^{op} = A$, es decir, si el morfismo de módulos $id_A : A \to A^{op}$ es morfimo de álgebras.

1.3.2 Producto tensorial de álgebras

Definimos el producto tensorial de álgebras y enunciamos dos propiedades importantes.

Proposición 1.26. Sean A y B dos k-álgebras (no necesariamente conmutativas) y sea $A \otimes B$ el producto tensorial como k-módulos. La operación k-bilineal definida por

$$(a \otimes b) (a_1 \otimes b_1) = (a a_1) \otimes (b b_1)$$

(productos en A y en B) determina una estructura de k-álgebra en $A \otimes B$. La unidad está dada por $1 \otimes 1$ y los morfismos $j_A : A \to A \otimes B$ y $j_B : B \leftarrow A \otimes B$, dados por $a \mapsto a \otimes 1$ y $b \mapsto 1 \otimes b$, son morfismos de álgebras.

Los morfismos j_A y j_B de la Proposición 1.26 cumplen con que, para todo par $a \in A$ y $b \in B$,

$$j_A(a) j_B(b) = (a \otimes 1) (1 \otimes b) = (a \otimes b) = (1 \otimes b) (a \otimes 1) = j_B(b) j_A(a)$$
.

El álgebra $A \otimes B$ está caracterizada por la siguiente propiedad universal.

Proposición 1.27. Dada un álgebra C y morfimsos $f: A \to C$ y $g: B \to C$ que verifican f(a)g(b) = g(b)f(a) en C para todo par $a \in A$ y $b \in B$, existe un único morfismo de álgebras $f \cdot g: A \otimes B \to C$ tal que

$$(f \cdot g) \circ j_A = f \quad y \quad (f \cdot g) \circ j_B = g . \tag{20}$$

Demostración. Si $\phi:A\otimes B\to C$ es un morfismo de álgebras que cumple con (20), entonces

$$\phi(a \otimes b) = \phi \circ (\mu_{A \otimes B}(j_A(a) \otimes j_B(b)))$$

= $\mu_C \circ (\phi \otimes \phi) \circ (j_A \otimes j_B)(a \otimes b)$
= $\mu_C \circ (f \otimes g)(a \otimes b)$.

Recíprocamente, si $\phi: A \otimes B \to C$ es el morfismo de módulos $\phi = \mu_C \circ (f \otimes g)$, entonces como f y g son morfismos de álgebras, f(1) = 1 = g(1) y ϕ cumple (20). Resta verificar que, si f y g cumplen con las hipótesis del enunciado, entonces $f \cdot g := \mu_C \circ (f \otimes g)$ es morfismo de álgebras. Pero

$$(f \cdot g)(a \, a_1 \otimes b \, b_1) = f(a \, a_1) \, g(b \, b_1) = f(a) \, f(a_1) \, g(b) \, g(b_1)$$
$$= f(a) \, g(b) \, f(a_1) \, g(b_1)$$
$$= (f \cdot g)(a \otimes b) \, (f \cdot g)(a_1 \otimes b_1) .$$

En particular, si C es conmutativa, existe una biyección natural

$$\operatorname{\mathsf{Hom}}_{k-alg}(A,C) \times \operatorname{\mathsf{Hom}}_{k-alg}(B,C) \simeq \operatorname{\mathsf{Hom}}_{k-alg}(A \otimes B,C)$$
 (21)

dado por $(f,g) \mapsto \mu_C \circ (f \otimes g)$. En otras palabras, el producto tensorial (junto con los morfismos de la Proposición 1.26) es el *coproducto* en la categoría **CommAlg**_k.

Observación 1.28. En el Ejemplo 1.18, vimos que $A \simeq k \otimes A$ como k-módulos, naturalmente, vía $a \mapsto 1 \otimes a$. Pero este morfismo coincide con el morfismo de álgebras $j_A : A \to k \otimes A$ de la definición de producto tensorial de álgebras (Proposición 1.26). Teniendo esto en cuenta idenitficamos naturalmente $k \otimes A \simeq A \simeq A \otimes k$ como álgebras.

Observación 1.29. Sea $\varphi: A \to B$ morfismo de k-álgebras y sea C otra k-álgebra. Por la Observación 1.22, existe un único morfismo de módulos $\varphi \otimes \operatorname{id}_C: A \otimes C \to B \otimes C$ tal que $\varphi \otimes \operatorname{id}_C(a \otimes c) = \varphi(a) \otimes c$. Ahora bien, por la Proposición 1.27, existe un único morfismo de álgebras $\varphi \cdot \operatorname{id}_C: A \otimes C \to B \otimes C$ tal que el diagrama siguiente conmuta.

Pero la conmutatividad de este diagrama quiere decir que

$$\varphi \cdot \mathrm{id}_C(a \otimes c) = \varphi \cdot \mathrm{id}_C(j_A(a) j_C(c)) = j_B(\varphi(a)) j_C(\mathrm{id}_C(c))$$
$$= \varphi(a) \otimes c .$$

Es decir, el morfismo de módulos $\varphi \otimes id_C$ es, en realidad, morfismo de álgebras. En particular, obtenemos un funtor $-\otimes C: \mathbf{Alg}_k \to \mathbf{Alg}_k$ dado por

$$(\varphi: A \to B) \mapsto (\varphi \otimes id_C: A \otimes C \to B \otimes C)$$
.

Observación 1.30. En términos de los morfismos μ_A , μ_B y swap : $A \otimes B \to B \otimes A$, el producto en $A \otimes B$ está dado por

$$\mu_{A \otimes B} = (\mu_A \otimes \mu_B) \circ (\mathsf{id}_A \otimes \mathsf{swap} \otimes \mathsf{id}_B) \ . \tag{22}$$

En adelante, escribiremos simplemente $\mu_C \circ (f \otimes g)$ en lugar de $f \cdot g$ para referirnos al morfismo de álgebras inducido en el producto tensorial.

Sea A una k-álgebra. Dados $a, b \in A$, por (22), sabemos que $(a \otimes 1)(1 \otimes b) = (1 \otimes b)(a \otimes 1)$ en $A \otimes A$. Si $A = k\{X\}/I$, el siguiente resultado muestra cómo describir el producto $A \otimes A$ como cociente de un álgebra libre, a partir de la presentación de A.

Proposición 1.31. Sea $A = k\{X\}/I$ una k-álgebra generada por el conjunto X. Sean X', X'' dos copias del conjunto X y sean $I' \triangleleft k\{X'\}$ e $I'' \triangleleft k\{X''\}$ los ideales biláteros correspondientes a I determinados por identificar las copias. Entonces $A \otimes A$ es isomorfa como k-álgebra a

$$A^{\otimes 2} := k\{X' \sqcup X''\}/\left\langle I', I'', X'X'' - X''X'\right\rangle \ ,$$

donde $X' \sqcup X''$ denota la unión disjunta de las copias de X y $\langle I', I'', X'X'' - X''X' \rangle$ es el ideal bilátero generado por I', I'' y los elementos de la forma x'y'' - y''x' con $x' \in X'$ e $y'' \in X''$ (no necesariamente correspondientes al mismo elemento de X).

Demostración. Definimos morfismos $\varphi', \varphi'' : A \to A^{\otimes 2}$ por $\varphi'(x) = x'$ y $\varphi''(x) = x''$, donde $x' \in X'$ y $x'' \in X''$ son las copias del elemento $x \in X$. Dado que

$$\varphi'(x) \varphi''(y) = x' y'' y'' x' = \varphi''(y) \varphi'(x) ,$$

en $A^{\otimes 2}$, para todo par $x,y\in X$, por la Proposición 1.27, existe un único morfismo $\varphi:A\otimes A\to A^{\otimes 2}$ tal que

$$\varphi(x \otimes y) = \varphi'(x) \varphi''(y) = x' y''$$

para todo par $x,y\in X$. En la dirección opuesta, definimos $\psi: k\{X'\sqcup X''\}\to A\otimes A$ por

$$\psi(x') = x \otimes 1 \quad \text{y} \quad \psi(y'') = 1 \otimes y$$

si x' es copia de x e y'' es copia de y. Pero este morfismo de álgebras se anula en el ideal $\langle I', I'', X'X'' - X''X' \rangle$. Por lo tanto, determina unívocamente un morfismo $\psi: A^{\otimes 2} \to A \otimes A$. Se puede ver que φ y ψ son inversos uno de otro.

Con este último resultado, podemos ver que el "producto de matrices" $\Delta: \mathsf{Mat}(2) \to \mathsf{Mat}(2) \otimes \mathsf{Mat}(2)$ está dado por

$$\Delta \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \otimes \begin{bmatrix} a & b \\ c & d \end{bmatrix} ,$$

es decir,

$$\Delta(a) = a \otimes a + b \otimes c \quad , \quad \Delta(b) = a \otimes b + b \otimes d$$

$$\Delta(c) = c \otimes a + d \otimes c \quad \text{y} \quad \Delta(d) = c \otimes b + d \otimes d .$$

Observación 1.32. Sea H = k[x], $k[x,x^{-1}]$, $\mathsf{GL}(2)$ o $\mathsf{SL}(2)$. En la sección 1.2, vimos cómo definir un morfismo de álgebras $\Delta: H \to H^{\otimes 2}$ en cada uno de estos casos y afirmamos que el pullback $\Delta^*: \mathsf{Hom}_{k-alg}\big(H^{\otimes 2},A\big) \to \mathsf{Hom}_{k-alg}\big(H,A\big)$ permite definir una estructura de grupo en el conjunto de morfismos $H \to A$. La validez de esta afirmación la habíamos visto como consecuencia de ciertas identificaciones particulares para cada caso: (6), (12). Ahora podemos ver que el argumento es válido en general. Supongamos dada un álgebra H y un morfismo de álgebras $\Delta: H \to H^{\otimes 2}$. Entonces, por la Proposición 1.31,

$$\mathsf{Hom}_{k-alg}(H^{\otimes 2},A) \simeq \mathsf{Hom}_{k-alg}(H\otimes H,A)$$

y, por (21), si A es conmutativa,

$$\mathsf{Hom}_{k-alg}(H \otimes H, A) \simeq \mathsf{Hom}_{k-alg}(H, A) \times \mathsf{Hom}_{k-alg}(H, A)$$
.

Por medio de estas biyecciones, obtenemos una función

$$\Delta^*\,:\, \mathrm{Hom}_{k-\mathit{alg}}\big(H,A\big)\,\times\, \mathrm{Hom}_{k-\mathit{alg}}\big(H,A\big)\,\rightarrow\, \mathrm{Hom}_{k-\mathit{alg}}\big(H,A\big)$$

dada por

$$\Delta^*(f,g) = \mu_A \circ (f \otimes g) \circ \Delta .$$

Ahora bien, que esta operación binaria en el conjunto de morfismos sea asociativa, admita un elemento neutro y sea tal que todo morfismo posea un inverso con respecto a la misma, dependerá de las propiedades del morfismo Δ .

2 Coálgebras y biálgebras

2.1 Coálgebras

2.1.1 Definiciones

En la Definición 1.24, dimos una definición de k-álgebra en términos de ciertos diagramas. La idea en la definición de k-coálgebra es dar vuelta todas las flechas que aparecen en aquellos diagramas. Adelantándonos a la sección 4, la noción de coálgebra aparece naturalmente, teniendo en cuenta que el funtor $\mathsf{Hom}_{k-alg}(-,-)$ es contravariante en el primer lugar: si un grupo afín es un funtor representable por una k-álgebra conmutativa, $G = \mathsf{Hom}_{k-alg}(H,-)$, junto con (entre otras cosas) una transformación natural $m: G \times G \xrightarrow{\cdot} G$ —la multiplicación en el grupo—, entonces esta transformación m deberá estar inducida por un morfismo correspondiente $\Delta: H \to H \otimes H$ (jen la dirección opuesta!) y las propiedades de m deberán verse reflejadas en propiedades de Δ .

Definición 2.1. Una k-coálgebra es un k-módulo C junto con morfismos de k-módulos $\varepsilon_C: C \to k$ -la counidad de C- y $\Delta_C: C \to C \otimes C$ -el coproducto en C- que verifican que los siguientes diagramas conmutan.

Una k-coálgebra es coconmutativa, si

$$\operatorname{swap} \circ \Delta_C = \Delta_C$$
 .

Un morfismo de k-coálgebras es un morfismo de k-módulos $f: C \to D$ tal que

$$\Delta_D \circ f = (f \otimes f) \circ \Delta_C \quad y \quad \varepsilon_D \circ f = \varepsilon_C .$$

Observación 2.2. Si $(C, \Delta_C, \varepsilon_C)$ es una k-coálgebra, su coálgebra opuesta es $(C, \Delta_C^{\mathsf{op}}, \varepsilon_C)$, donde

$$\Delta_C^{\mathsf{op}} = \mathsf{swap} \circ \Delta_C$$
 .

Dentamos esta coálgebra por C^{cop} . La coálgebra C es coconmutativa, si $C^{\mathsf{cop}} = C$, es decir, si el morfismo de módulos $\mathsf{id}_C : C \to C^{\mathsf{cop}}$ es morfismo de coálgebras.

2.1.2 Ejemplos

Ejemplo 2.3. El k-módulo k es el k-módulo libre generado por el elemento 1. Las expresiones

$$\Delta(1) = 1 \otimes 1$$
 y $\varepsilon(1) = 1$

determinan unívocamente morfismos de k-módulos $\Delta: k \to k \otimes k$ y $\varepsilon: k \to k$. Estos morfismos dan a k una estructura de coálgebra que denominaremos "estructura usual de coálgebra en k". Nos estaremos refiriendo a esta estructura, si usamos la notación Δ_k o ε_k . Con esta estructura, dada una coálgebra $(C, \Delta_C, \varepsilon_C)$, el morfismo de módulos $\varepsilon_C: C \to k$ es morfismo de coálgebras.

Ejemplo 2.4. Sea X un conjunto y sea k[X] el k-módulo libre con base X. Definimos morfismos de módulos $\Delta: k[X] \to k[X] \otimes k[X]$ y $\varepsilon: k[X] \to k$ dando sus valores en los generadores:

$$\Delta(x) = x \otimes x \quad y \quad \varepsilon(x) = 1$$
.

La terna $(k[X], \Delta, \varepsilon)$ es una coálgebra: como los diagramas en la Definición 2.1 son diagramas de k-módulos, basta notar que, para todo generador $x \in X$, se cumple

$$\begin{split} (\Delta \otimes \operatorname{id}) \circ \Delta(x) &= (x \otimes x) \otimes x = x \otimes (x \otimes x) = (\operatorname{id} \otimes \Delta) \circ \Delta(x) \;, \\ (\varepsilon \otimes \operatorname{id}) \circ \Delta(x) &= 1 \otimes x \sim x \quad \mathbf{y} \\ (\operatorname{id} \otimes \varepsilon) \circ \Delta(x) &= x \otimes 1 \sim x \end{split}$$

El Ejemplo 2.3 es un caso particular de esta construcción.

Ejemplo 2.5. Sea k[x] el álgebra de polinomios en una indeterminada. Sean $\Delta: k[x] \to k[x] \otimes k[x]$ y $\varepsilon: k[x] \to k$ los morfismos de álgebras dados en el generador x por

$$\Delta(x) = x \otimes 1 + 1 \otimes x \quad y \quad \varepsilon(x) = 0.$$

En particular, Δ y ε definen, olvidándonos de la estructura adicional, morfismos de módulos cuyo dominio es el k-módulo libre con base en el conjunto $\{1, x, x^2, \dots\}$. Por ejemplo,

$$\Delta(1) = 1 \otimes 1 \quad \mathbf{y}$$

$$\Delta(x^2) = \Delta(x)^2 = (x \otimes 1 + 1 \otimes x)^2 = x^2 \otimes 1 + 2(x \otimes x) + 1 \otimes x^2.$$

Estos morfismos satisfacen

$$\begin{split} (\Delta \otimes \operatorname{id}) \circ \Delta(x) &= (x \otimes 1) \otimes 1 + x \otimes (1 \otimes 1) = x \otimes (1 \otimes 1) + (x \otimes 1) \otimes 1 \\ &= (\operatorname{id} \otimes \Delta) \circ \Delta(x) \;, \\ (\varepsilon \otimes \operatorname{id}) \circ \Delta(x) &= 0 \otimes 1 + 1 \otimes x = 1 \otimes x \quad \mathbf{y} \\ (\operatorname{id} \otimes \varepsilon) \circ \Delta(x) &= x \otimes 1 + 1 \otimes 0 = x \otimes 1 \;. \end{split}$$

Para demostrar que los diagramas de la Definición 2.1 conmutan y que $(k[x], \Delta, \varepsilon)$ es una coálgebra, necesitamos, en principio, demostrar, al menos, que estas igualdades son válidas reemplazando x por cualquier otra potencia, ya que los morfismos en la definición de coálgebra son morfismos de módulos. Pero, por definición, Δ y ε son morfismos de álgebras. Esto implica que id \otimes Δ , Δ \otimes id, ε \otimes id e id \otimes ε son morfismos de álgebras, como así también las identificaciones $k \otimes k[x] \simeq k[x] \simeq k[x] \otimes k$. Asumiendo que esta afirmación es cierta (ver las Observaciones 1.28 y 1.29), basta verificar las igualdades

$$\begin{split} (\Delta \otimes \operatorname{id}) \circ \Delta &= (\operatorname{id} \otimes \Delta) \circ \Delta \ , \\ (\varepsilon \otimes \operatorname{id}) \circ \Delta &= j \quad \mathbf{y} \\ (\operatorname{id} \otimes \varepsilon) \circ \Delta &= j \ , \end{split}$$

para el generador x del álgebra k[x] (aquí, $j:k[x]\to k\otimes k[x]$ es el isomorfismo de álgebras $x\mapsto 1\otimes x$ y $j:k[x]\to k[x]\otimes k$ es $x\mapsto x\otimes 1$). Pero esto ya lo hemos demostrado.

2.1.3 Producto tensorial de coálgebras

Dadas coálgebras $(C, \Delta_C, \varepsilon_C)$ y $(D, \Delta_D, \varepsilon_D)$, el producto tensorial de módulos $C \otimes D$ admite una estructura natural de coálgebra de manera que los morfismos de módulos $p_C : C \otimes D \to C$ y $p_D : C \otimes D \to D$ dados por

$$p_C(c \otimes d) = c \varepsilon_D(d)$$
 y $p_D(c \otimes d) = \varepsilon_C(c) d$

sean morfismos de coálgebras. Definimos

$$\Delta_{C\otimes D} = (\mathsf{id}_C \otimes \mathsf{swap}_{C\otimes D} \otimes \mathsf{id}_D) \circ (\Delta_C \otimes \Delta_D) \quad \text{y} \quad \varepsilon_{C\otimes D} = \varepsilon_C \otimes \varepsilon_D \ . \tag{23}$$

En cuanto a la counidad, estamos identificando $k \otimes k \simeq k$ (como k-módulos):

$$\varepsilon_{C\otimes D}(c\otimes d) = (\varepsilon_C\otimes \varepsilon_D)(c\otimes d) = \varepsilon_C(c)\,\varepsilon_D(d)$$

(es decir, $\varepsilon_{C\otimes D} = \mu_k \circ (\varepsilon_C \otimes \varepsilon_D)$). Veamos que, con estas definiciones, p_C y p_D son morfismos de coálgebras: por un lado,

$$\Delta_C \circ p_C(c \otimes d) = \Delta_C(c \varepsilon_D(d)) = \Delta_C(c) \varepsilon_D(d)$$

y, por otro, si escribimos $\Delta_C(c) = \sum_{(c)} c' \otimes c''$ y $\Delta_D(d) = \sum_{(d)} d' \otimes d''$,

$$(p_C \otimes p_C) \circ \Delta_{C \otimes D}(c \otimes d) = (p_C \otimes p_C) \Big(\sum_{(c) (d)} c' \otimes d' \otimes c'' \otimes d'' \Big)$$

$$= \sum_{(c) (d)} c' \varepsilon_D(d') \otimes c'' \varepsilon_D(d'') = \Big(\sum_{(c)} c' \otimes c'' \Big) \cdot \varepsilon_D \Big(\sum_{(d)} d' \varepsilon_D(d'') \Big)$$

$$= \Delta_C(c) \varepsilon_D(d) .$$

Entonces p_C respeta coproductos; en cuanto a las counidades,

$$\varepsilon_C \circ p_C(c \otimes d) = \varepsilon_C(c \varepsilon_D(d)) = \varepsilon_C(c) \varepsilon_D(d) = \varepsilon_{C \otimes D}(c \otimes d)$$
.

La verificación para p_D es análoga.

Ejemplo 2.6. Dados conjuntos X e Y, el isomorfismo de módulos

$$k[X \times Y] \simeq k[X] \otimes k[Y]$$
,

dado por $(x,y) \mapsto x \otimes y$, es un morfismo de coálgebras:

$$\Delta_{k[X\times Y]}(x,y) = (x,y)\otimes(x,y) \mapsto (x\otimes y)\otimes(x\otimes y) ,$$

$$\Delta_{k[X]\otimes k[Y]}(x\otimes y) = (\mathrm{id}\otimes\mathrm{swap}\otimes\mathrm{id})((x\otimes x)\otimes(y\otimes y)) ;$$

en cuanto a la counidad,

$$\varepsilon_{k[X\times Y]}(x,y) = 1 = 1\cdot 1 = (\varepsilon_{k[X]}\otimes \varepsilon_{k[Y]})(x\otimes y)$$
.

2.1.4 Dualidad

Sean U, U', V y V' cuatro k-módulos. Sean $f: U \to U'$ y $g: V \to V'$ morfismos de módulos. Recordemos que podemos definir el producto tensorial $f \otimes g: U \otimes V \to U' \otimes V'$ como el morfismo determinado por

$$(f \otimes q)(u \otimes v) = f(u) \otimes q(v) ,$$

en tensores elementales. Esto determina unívocamente un morfismo

$$\lambda : \operatorname{Hom}_k(U, U') \otimes \operatorname{Hom}_k(V, V') \to \operatorname{Hom}_k(V \otimes U, U' \otimes V')$$
, (24)

de manera que $\lambda(f \otimes g)$ sea el morfismo dado por $v \otimes u \mapsto f(u) \otimes g(v)$. Notamos que este morfismo incorpora un intercambio en el orden de U y de V. Notamos, también, que los grupos abelianos $\mathsf{Hom}_k(-,-)$ son k-módulos y el morfismo λ es k-lineal.

Teorema 2.7. Si, en (24), alguno de los pares (U, U'), (V, V') o (U, V) está compuesto por k-módulos libres f.g., entonces λ es un isomorfismo.

Demostración. Usar que $\prod_i = \bigoplus_i$, si el conjunto de índices es finito y que conmutan con Hom_k y con \otimes .

Corolario 2.8. 1. El morfismo de módulos $\lambda: U^* \otimes V^* \to (V \otimes U)^*$ es un isomorfismo, si U o si V son libres f.g.

2. El morfismo de módulos $\lambda: V \otimes U^* \to \operatorname{Hom}_k(U,V)$ es un isomorfismo, si U o si V son libres f.g.

En el primer caso, λ está dado por

$$\lambda(f \otimes g) = (v \otimes u \mapsto f(u) g(v))$$

y, en el segundo caso, por

$$\lambda(v \otimes f) = (u \mapsto f(u) v) .$$

Proposición 2.9. Sea (C, Δ, ε) una coálgebra. Entonces, la terna $(C^*, \Delta^* \circ (\lambda \circ \mathsf{swap}), \varepsilon^*)$, donde $\lambda : C^* \otimes C^* \to (C \otimes C)^*$ es el morfismo (24), es un álgebra.

Demostración. El primer diagrama de la Definición 2.1 induce

Es decir, $\Delta^* \circ (\lambda \circ \mathsf{swap})$ es asociativo. De manera análoga, mediante dualizando el diagrama de la counidad, se deduce que ε^* es una unidad para este producto.

Proposición 2.10. Sea (A, μ, η) un álgebra. Si A es libre y f.g. como k-módulo, entonces la terna $(A^*, (\lambda \circ \mathsf{swap})^{-1} \circ \mu^*, \eta^*)$ es una coálgebra.

Demostración. La demostración es dual a la de la Proposición 2.9. Para poder definir el coproducto, necesitamos que λ sea un isomorfismo, lo cual es cierto, bajo las hipótesis del enunciado.

2.1.5 Ejemplos

Ejemplo 2.11. Sea C la coálgebra de un conjunto X. El álgebra dual C^* se identifica con el álgebra de funciones $X \to k$. Toda funcional $f: C \to k$ está determinada por sus valores en X. Dadas $f, f_1 \in C^*$, el producto $\mu(f \otimes f_1)$ es la funcional determinada por

$$\mu(f \otimes f_1)(x) = (\lambda \circ \operatorname{swap})(f \otimes f_1)(\Delta(x)) = f(x) f_1(x)$$
.

(El orden del producto del lado derecho, si bien superfluo, es el correcto). En cuanto a la unidad, el isomorfismo $k^* \simeq k$ está dado por identificar id_k con 1. Entonces la unidad de C^* es la función

$$\eta(1)(x) = \mathrm{id}_k(\varepsilon(x)) = 1$$
.

Ejemplo 2.12. Sea $A = \mathsf{Mat}_{n \times n}(k)$ el álgebra de matrices cuadradas con coeficientes en el anillo conmutativo k, con el producto e identidad usuales. Como k-módulo, A es libre con base las matrices E^{ij} . Sea $\{x_{ij}\}_{i,j}$ la base dual en A^* . La estructura de coálgebra dual está dada por los morfismos

$$\Delta(x_{ij}) = \sum_{k=1}^{n} x_{ik} \otimes x_{kj} \quad y \quad \varepsilon(x_{ij}) = \delta_{ij} .$$

Notamos que $\mu^*(x_{ij})(E^{pq} \otimes E^{rs}) = x_{ij}(E^{pq} E^{rs}) = \delta^{qr} x_{ij}(E^{ps}) = \delta^{qr} \delta_{ip} \delta_{js}$ y que esto coincide con

$$\lambda \circ \operatorname{swap} \Big(\sum_{k=1}^n x_{ik} \otimes x_{kj} \Big) (E^{pq} \otimes E^{rs}) \, = \, \sum_{k=1}^n x_{ik} (E^{pq}) \, x_{kj} (E^{rs}) \; .$$

En cuanto a la counidad, $\varepsilon(x_{ij}) \in k^* \simeq k$ y el isomorfismo está dado por identificar $f \in k^*$ con f(1). Entonces, como $\eta(1) = I$, la matriz identidad,

$$\varepsilon(x_{ij})(1) = x_{ij}(I) = \delta_{ij}$$
.

2.2 Biálgebras

El k-módulo k tiene estructura de álgebra, dada por el producto y la unidad del anillo k, y estructura de coálgebra como en el Ejemplo 2.3. Denotamos, por el momento, estas estructuras por (k, μ, η) y por (k, Δ, ε) , respectivamente. Entonces podemos verificar que se cumplen las siguientes igualdades:

$$\begin{array}{c} (\mu\otimes\mu)\circ(\mathsf{id}\otimes\mathsf{swap}\otimes\mathsf{id})\circ(\Delta\otimes\Delta)(1\otimes1) \,=\, 1\otimes1 \,=\, \Delta\circ\mu(1\otimes1)\;,\\ \\ \mu\circ(\varepsilon\otimes\varepsilon)(1\otimes1) \,=\, 1\,=\,\varepsilon\circ\mu(1\otimes1)\;,\\ \\ (\eta\otimes\eta)\circ\Delta(1) \,=\, 1\otimes1 \,=\, \Delta\circ\eta(1)\;,\\ \\ \varepsilon\circ\eta(1) \,=\, 1\,=\,\varepsilon(1) \quad \text{y}\quad \eta\circ\varepsilon(1) \,=\, 1\,=\,\eta(1)\;. \end{array}$$

Las primeras dos ecuaciones implican que $\mu: k \otimes k \to k$ es morfismo de coálgebras. Análogamente, la primera y la tercera implican que $\Delta: k \to k \otimes k$ es morfismo de álgebras. También se comprueba que η es morfismo de coálgebras y que ε es morfismo de álgebras. Es decir, (k, μ, η) y (k, Δ, ε) son compatibles y forman lo que se llama una biálgebra.

2.2.1 Definiciones

Definición 2.13. Sea B un k-módulo con estructuras de álgebra (B, μ, η) y de coálgebra (B, Δ, ε) . Entonces B se dice k-biálgebra, si se cumple cualquiera de las dos condiciones equivalentes siquientes:

- μ y η son morfismos de coálgebras;
- Δ y ε son morfismos de álgebras.

Un morfismo de biálgebras es un morfismo de módulos que es morfismo de álgebras y coálgebras.

Si $(B, \mu, \eta, \Delta, \varepsilon)$ es una biálgebra,

$$\begin{split} B^{\mathsf{op}} &:= (B, \mu^{\mathsf{op}}, \eta, \Delta, \varepsilon) \;, \\ B^{\mathsf{cop}} &:= (B, \mu, \eta, \Delta^{\mathsf{op}}, \varepsilon) \; \; \mathbf{y} \\ B^{\mathsf{op\,cop}} &:= (B, \mu^{\mathsf{op}}, \eta, \Delta^{\mathsf{op}}, \varepsilon) \end{split}$$

son biálgebras. Por ejemplo, si queremos ver que B^{op} es biálgebra, tenemos que verificar que $\mu^{op}: B \otimes B \to B$ es morfismo de coálgebras, es decir, que se cumple

$$(\mu^{\mathsf{op}} \otimes \mu^{\mathsf{op}}) \circ \Delta_{\otimes} = \Delta \circ \mu^{\mathsf{op}} \quad y$$
$$\varepsilon \circ \mu^{\mathsf{op}} = \varepsilon_{\otimes} ,$$

donde $\Delta_{\otimes} = (\mathsf{id} \otimes \mathsf{swap} \otimes \mathsf{id}) \circ (\Delta \otimes \Delta)$. El lado derecho de la primera igualdad es igual a

$$\Delta \circ \mu \circ \mathsf{swap} = (\mu \otimes \mu) \circ \Delta_{\otimes} \circ \mathsf{swap}$$
 ,

porque μ es morfismo de coálgebras, mientras que el lado izquierdo es igual a

$$(\mu \otimes \mu) \circ (\mathsf{swap} \otimes \mathsf{swap}) \circ \Delta_{\otimes}$$
.

Será suficiente demostrar que

$$(\mathsf{swap} \otimes \mathsf{swap}) \circ (\mathsf{id} \otimes \mathsf{swap} \otimes \mathsf{id}) \circ (\Delta \otimes \Delta) = (\mathsf{id} \otimes \mathsf{swap} \otimes \mathsf{id}) \circ (\Delta \otimes \Delta) \circ \mathsf{swap}$$
.

Evaluando el lado derecho en un tensor elemental $x \otimes y$, se obtiene

$$x \otimes y \mapsto y \otimes x \mapsto \left(\sum_{(y)} y' \otimes y''\right) \otimes \left(\sum_{(x)} x' \otimes x''\right) \mapsto \sum_{(y) (x)} y' \otimes x' \otimes y'' \otimes x''$$

pero si evaluamos el lado izquierdo,

$$x \otimes y \mapsto \left(\sum_{(x)} x' \otimes x''\right) \otimes \left(\sum_{(y)} y' \otimes y''\right) \mapsto \sum_{(x) (y)} x' \otimes y' \otimes x'' \otimes y''$$
$$\mapsto \sum_{(x) (y)} y' \otimes x' \otimes y'' \otimes x'' .$$

Para ver que μ^{op} respeta la counidad, como k es conmutativo, se comprueba que

$$\begin{array}{lll} \varepsilon \circ \mu^{\sf op} \, = \, \varepsilon_{\otimes} \circ {\sf swap} \, = \, \mu_k \circ (\varepsilon \otimes \varepsilon) \circ {\sf swap}_{B \otimes B} \, = \, \mu_k \circ {\sf swap}_{k \otimes k} \circ (\varepsilon \otimes \varepsilon) \\ & = \, \mu_k \circ (\varepsilon \otimes \varepsilon) \, = \, \varepsilon_{\otimes} \, \, . \end{array}$$

2.2.2 Ejemplos

Ejemplo 2.14. Sea $\mathsf{Mat}(m) = k[x_{11}, \ldots, x_{mm}]$ el álgebra de polinomios en m^2 variables. Si definimos

$$\Delta(x_{ij}) = \sum_{k} x_{ik} \otimes x_{kj} \quad \text{y} \quad \varepsilon(x_{ij}) = \delta_{ij} ,$$

entonces Δ y ε se extienden de manera única como morfismos de álgebras Δ : $\mathsf{Mat}(m) \to \mathsf{Mat}(m) \otimes \mathsf{Mat}(m)$ y ε : $\mathsf{Mat}(m) \to k$. Entonces, por cómo fueron definidos, $\mathsf{Mat}(m)$, junto con Δ y ε es una biálgebra (lo único que hay que verificar es que Δ y ε dan una estructura de coálgebra, la compatibilidad con el álgebra polinomial es automática).

Ejemplo 2.15. Sea X un monoide con producto $\mu: X \times X \to X$ y elemento neutro $e \in X$ y sea k[X] la coálgebra en el conjunto subyacente a X (c.f. el Ejemplo 2.4). Le damos al k-módulo k[X] (libre en X) una estructura de álgebra con producto y unidad

$$x \otimes y \mapsto \mu(x,y)$$
 y $\eta(1_k) = e \in X$.

Contamos, entonces, con estructuras de álgebra y de coálgebra en k[X]. Pero, como $\mu(x \otimes y) = \mu(x, y) \in X$, si $x, y \in X$, deducimos que

$$\Delta(\mu(x,y)) = \mu(x,y) \otimes \mu(x,y) = \mu_{\otimes}((x \otimes x) \otimes (y \otimes y)) = \mu_{\otimes}(\Delta(x) \otimes \Delta(y)) ,$$

$$\varepsilon(\mu(x,y)) = 1 = \mu_k(\varepsilon(x) \otimes \varepsilon(y)) ,$$

$$\Delta(\eta(1)) = \Delta(e) = e \otimes e = \eta \otimes \eta(1) ,$$

$$\varepsilon \circ \eta(1) = \varepsilon(e) = 1 = \eta_k(1) ,$$

de lo que se deduce que Δ y ε son morfismos de álgebras.

3 Álgebras de Hopf

3.1 La antípoda

Sea (A, μ, η) un álgebra y (C, Δ, ε) una coálgebra. El grupo abeliano $\mathsf{Hom}_k(C, A)$ de k-morfismos es, en realidad, un k-módulo y viene equipado con una aplicación k-bilineal denominada $producto\ de\ convolución$: dados $f,g:C\to A$ (de módulos), la convolución de $f\ con\ g$ es la composición

$$f * g = \mu \circ (f \otimes g) \circ \Delta . \tag{25}$$

Dado que (25) es una composición de morfismos de módulos, deducimos que $f * g \in \text{Hom}_k(C,A)$. Si $x \in C$, entonces $\Delta(x) = \sum_{(x)} x' \otimes x''$ y

$$f * g(x) = \sum_{(x)} f(x') g(x'') . \qquad (26)$$

Proposición 3.1. La terna $(\mathsf{Hom}_k(C,A), *, \eta_A \circ \varepsilon_C)$ es una k-álgebra. Además, el morfismo de k-módulos $\lambda : A \otimes C^* \to \mathsf{Hom}_k(C,A)$ es morfismo de k-álgebras.

En el enunciado, haciendo abuso de notación, estamos denotando la unidad del álgebra por $\eta_A \circ \varepsilon_C$, cuando, precisamente, es el morfismo $1 \mapsto \eta_A \circ \varepsilon_C$. Notemos que $\eta_A \circ \varepsilon_C \in \mathsf{Hom}_k(C,A)$ por ser composición de morfismos de módulos, con lo que la unidad propuesta tiene el dominio y el codominio correctos.

Demostración. En primer lugar, observamos que, tanto $f \otimes g \mapsto f * g$, como $1 \mapsto \eta_A \varepsilon_C$ son morfismos de módulos. Lo que se afirma en el enunciado es que la convolución es,

como operación binaria, asociativa y que $\eta_A \varepsilon_C$ es un elemento neutro (a izquierda y a derecha) para este producto.

$$f * (g * h) = \mu_A (f \otimes (\mu_A (g \otimes h) \Delta_C)) \Delta_C$$

$$= \mu_A (\mathsf{id}_A \otimes \mu_A) (f \otimes (g \otimes h)) (\mathsf{id}_C \otimes \Delta_C) \Delta_C$$

$$= \mu_A (\mu_A \otimes \mathsf{id}_A) ((f \otimes g) \otimes h) (\Delta_C \otimes \mathsf{id}_C) \Delta_C$$

$$= (f * g) * h.$$

En cuanto a la unidad,

$$(\eta_A \, \varepsilon_C) * f = \mu_A \, (\eta_A \otimes \mathsf{id}_A) \, (\mathsf{id}_k \otimes f) \, (\varepsilon_C \otimes \mathsf{id}_C) \, \Delta_C = \mathsf{id}_k \otimes f = f \, .$$

Análogamente, $f * (\eta_A \varepsilon_C) = f$.

En cuanto al morfismo $\lambda: A \otimes C^* \to \operatorname{\mathsf{Hom}}_k\bigl(C,A\bigr)$, dados $a \otimes f, a_1 \otimes f_1 \in A \otimes C^*$, y $x \in C$,

$$\lambda(a \otimes f) * \lambda(a_1 \otimes f_1)(x) = \sum_{(x)} (f(x') a) (f_1(x'') a_1) = \left(\sum_{(x)} f(x') f_1(x'')\right) a a_1,$$

que es igual a $\lambda(aa_1 \otimes ff_1)(x)$, ¡pues el producto en C^* es exactamente, la convolución en $\mathsf{Hom}_k(C,k)$!

3.1.1 Definiciones

En particular, si $(H, \mu, \eta, \Delta, \varepsilon)$ es una biálgebra, podemos considerar la convolución en $\operatorname{\sf End}_k(H)$.

Definición 3.2. Un endomorfismo $S \in \text{End}_k(H)$ es una antípoda, si

$$S * \mathsf{id} = \mathsf{id} * S = \eta \circ \varepsilon . \tag{27}$$

Definición 3.3. Un álgebra de Hopf es una biálgebra con antípoda y un morfismo de álgebras de Hopf es un morfismo de las biálgebras correspondientes.

Observación 3.4. La condición natural $S' \circ f = f \circ S$ para un morfismo $f: H \to H'$ es redundante.

Observación 3.5. No toda biálgebra admite una antípoda, pero, si existe, es única: si $S, S_1 \in \operatorname{End}_k(H)$ son antípodas en una biálgebra H, entonces

$$S = S * (\eta \varepsilon) = S * (id * S_1) = (S * id) * S_1 = (\eta \varepsilon) * S_1 = S_1$$
.

Observación 3.6. Un endomorfismo $S \in \text{End}_k(H)$ es una antípoda, si satisface

$$\sum_{(x)} x' S(x'') = \varepsilon(x) 1 = \sum_{(x)} S(x') x'', \qquad (28)$$

para todo $x \in H$.

Observación 3.7. Sea B una biálgebra. Toda antípoda $S \in \operatorname{End}_k(B)$ da lugar a un morfismo de biálgebras $S: B \to B^{\operatorname{op \, cop}}$. Recíprocamente, si $S: B \to B^{\operatorname{op}}$ es un morfismo de álgebras y B está generada, como álgebra, por un conjunto X, entonces S es antípoda, si verifica (28) para todo $x \in X$.

Ejemplo 3.8. Sea G un grupo y sea k[G] la biálgebra del monoide subyacente. Si definimos $S: k[G] \to k[G]$ por $S(x) = x^{-1}$ para $x \in G$, podemos ver, usando que $\Delta(x) = x \otimes x$, que S es antípoda:

$$x S(x) = S(x) x = 1 = \varepsilon(x) 1.$$

$$(29)$$

Recíprocamente, si G es un monoide y k[G] admite una antípoda S, entonces (29) implica que $S(x) \in G$ y es un inverso para x en G.

3.1.2 Relación con $\S 1.2$

Proposición 3.1. Las álgebras $\mathsf{GL}(2)$ y $\mathsf{SL}(2)$, junto con los morfismos Δ y ε dadas por las expresiones

$$\Delta \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \otimes \begin{bmatrix} a & b \\ c & d \end{bmatrix} , \quad \Delta(t) = t \otimes t ,$$

$$\varepsilon \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} , \quad \varepsilon(t) = 1 ,$$

son ejemplos de biálgebras conmutativas.

Proposición 3.2. Las biálgebras GL(2) y SL(2), junto con el morfismo S definido por

$$S\begin{bmatrix} a & b \\ c & d \end{bmatrix} = (ad - bc)^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \quad y \quad S(t) = t^{-1} = ad - bc \quad (=1),$$

son ejemplos de álgebras de Hopf conmutativas.

La conmutatividad de GL(2) y SL(2) implica que S es una involución: $S^2 = id$.

Observación 3.9. Las álgebras de Hopf $\mathsf{GL}(2)$ y $\mathsf{SL}(2)$ no son coconmutativas:

$$\Delta(a) = a \otimes a + b \otimes c \neq a \otimes a + c \otimes b = \operatorname{swap} \circ \Delta(a) .$$

3.2 Observaciones

Observación 3.10. Dada una coálgebra (C, Δ, ε) , decimos que $x \in C$ es primitivo, si

$$\Delta(x) = x \otimes 1 + 1 \otimes x . \tag{30}$$

El conjunto Prim(C) de elementos primitivos es un k-submódulo. Definimos el conmutador de $x, y \in C$ como

$$[x,y] = \mu(x \otimes y) - \mu(y \otimes x) = x \cdot y - y \cdot x . \tag{31}$$

Si ahora B es biálgebra, entonces, para todo $x \in \mathsf{Prim}(B)$, se verifica que

$$x = \varepsilon(x) 1 + x \varepsilon(1) = \varepsilon(x) 1 + x$$
,

pues $\varepsilon(1) = 1$ ($\varepsilon: B \to k$ es morfismo de las estructuras de álgebras) y, por lo tanto,

$$\varepsilon(x) = 0$$
.

Por otro lado, la igualdad $\Delta(x \cdot y) = \Delta(x) \Delta(y)$ (Δ es morfismo) implica que

$$\Delta[x,y] = [\Delta(x), \Delta(y)].$$

En particular, para $x, y \in \mathsf{Prim}(B)$,

$$\Delta(x \cdot y) = 1 \otimes (x \cdot y) + (x \cdot y) \otimes 1 + x \otimes y + y \otimes x \quad y$$

$$\Delta[x, y] = [x, y] \otimes 1 + 1 \otimes [x, y] .$$

En definitiva, el submódulo Prim(B) es cerrado por el "corchete" [x, y]. Toda biálgebra tiene asociada, de esta manera, una k-álgebra de Lie.

Obervación 3.11. Dada una coálgebra (C, Δ, ε) , decimos que $x \in C$ es grouplike o de grupo, si $x \neq 0$ y $\Delta(x) = x \otimes x$. Denotamos por $\mathcal{G}(C)$ el conjunto de elementos de grupo de C. Si B es biálgebra, entonces $1 \in \mathcal{G}(B) \neq \emptyset$ y, más aun, el conjunto de elementos de grupo es un monoide con el producto y la unidad de B. Y, si B es un álgebra de Hopf, entonces todo elemento $x \in \mathcal{G}(B)$ posee inverso en $\mathcal{G}(B)$. En primer lugar, notemos que, por la Observación 3.7, la antípoda B cumple que

$$(S \otimes S) \circ \Delta = \Delta^{\mathsf{op}} \circ S = \mathsf{swap} \circ \Delta \circ S$$
.

Si, además, $x \in \mathcal{G}(H)$, entonces

$$\Delta(S(x)) = \operatorname{swap} \circ (S \otimes S) \circ \Delta(x) = \operatorname{swap}(S(x) \otimes S(x)) = S(x) \otimes S(x)$$
.

 $(\mathsf{swap}^2 = \mathsf{id})$. Es decir, S(x) es un elemento de grupo, también. La condición de ser de grupo implica, además, que

$$x S(x) = \mu(x \otimes S(x)) = \mu \circ (\mathsf{id} \otimes S) \circ \Delta(x) = \varepsilon(x) 1.$$

Análogamente, $S(x) x = \varepsilon(x) 1$. Pero la igualdad

$$x = \mu \circ (\varepsilon \otimes id) \circ \Delta(x) = \varepsilon(x) x$$

implica que $\varepsilon(x)$ es idempotente. Bajo la hipótesis de que k no posea idempotentes distintos de 0 y 1, se cumple que $\varepsilon(x) = 1$ para todo $x \in \mathcal{G}(H)$ y $S(x) \in \mathcal{G}(H)$ es un inverso.

3.3 El grupo $\mathsf{Hom}_{k-alg}ig(H,Aig)$

Teorema 3.12. Sean H un álgebra de Hopf y A un álgebra conmutativa. Entonces el conjunto $\operatorname{\mathsf{Hom}}_{k-alg}(H,A)$ es un grupo con la convolución heredada de $\operatorname{\mathsf{Hom}}_k(H,A)$. El inverso de $f:H\to A$ está dado por $f\circ S$.

Teorema 3.13. Sean H un álgebra de Hopf y C una coálgebra coconmutativa. Entonces el conjunto $\mathsf{Hom}_{k-coalg}(C,H)$ es un grupo con la convolución heredada de $\mathsf{Hom}_k(C,H)$. El inverso de $g:C\to H$ está dado por $S\circ g$.

Demostración de 3.12. Sean $\psi, \phi \in \mathsf{Hom}_{k-alg}(H, A)$. La convolución $\psi * \phi$ es morfismo de álgebras, si cumple que

$$(\psi * \phi) \circ \mu_H = \mu_A \circ (\psi * \phi \otimes \psi * \phi)$$
.

Como H es biálgebra, $\Delta_H:\, H\to H\otimes H$ es morfismo de álgebras. Entonces

$$(\psi * \phi) \mu_H \equiv \mu_A (\psi \otimes \phi) \Delta_H \mu_H$$

= $\mu_A (\psi \otimes \phi) (\mu_H \otimes \mu_H) (\mathsf{id}_H \otimes \mathsf{swap}_{H \otimes H} \otimes \mathsf{id}_H) (\Delta_H \otimes \Delta_H)$.

Como ψ y ϕ son morfismos de álgebras,

$$(\psi \otimes \phi)(\mu_H \otimes \mu_H) = (\mu_A(\psi \otimes \psi)) \otimes (\mu_A(\phi \otimes \phi)) = (\mu_A \otimes \mu_A)((\psi \otimes \psi) \otimes (\phi \otimes \phi)).$$

Entonces

$$(\psi * \phi) \mu_H = \mu_A (\mu_A \otimes \mu_A) (\psi \otimes \psi \otimes \phi \otimes \phi) (\mathsf{id}_H \otimes \mathsf{swap}_{H \otimes H} \otimes \mathsf{id}_H) (\Delta_H \otimes \Delta_H)$$
$$= \mu_A ((\psi * \phi) \otimes (\psi * \phi)) .$$

En cuanto a la unidad,

$$(\psi * \phi) \eta_H = \mu_A (\psi \otimes \phi) (\eta_H \otimes \eta_H) \Delta_k = \mu_A (\eta_A \otimes \eta_A) \Delta_k = \eta_A$$
.

En definitiva, $\psi * \phi \in \mathsf{Hom}_{k-alg}(H,A)$. Si $c = \eta_A \varepsilon_H$, entonces $c : H \to k \to A$ es composición de morfismos de álgebras y, por lo tanto $c \in \mathsf{Hom}_{k-alg}(H,A)$. La Proposición 3.1 implica que $c * \psi = \psi * c = \psi$ para todo morfismo de álgebras ψ . En particular, $(\mathsf{Hom}_{k-alg}(H,A),*,c)$ es un monoide. Aun no hemos usado que A es conmutativa, ni que H posee antípoda.

Sea S_H la antípoda en H. Entonces

$$\psi * (\psi S_H) = \mu_A (\psi \otimes (\psi S_H)) \Delta_H = \mu_A (\psi \otimes \psi) (\mathsf{id}_H \otimes S_H) \Delta_H$$
$$= \psi \mu_H (\mathsf{id}_H \otimes S_H) \Delta_H = \psi (\mathsf{id}_H * S_H)$$
$$= \psi (\eta_H \varepsilon_H) = \eta_A \varepsilon_H = c.$$

Análogamente, $(\psi S_H) * \psi = c$. Entonces, los morfismos de álgebras poseen un inverso en el álgebra $\mathsf{Hom}_k(H,A)$ dado por precomponer con S_H . Para ver que este inverso es un

inverso en el monoide, usamos que A es conmutativa: como $S_H: H \to H^{\mathsf{op}}$ es morfismo de álgebras, deducimos que

$$(\psi S_H) \mu_H = \psi (\mu_H \operatorname{swap}_{H \otimes H}) (S_H \otimes S_H) = \mu_A (\psi \otimes \psi) \operatorname{swap}_{H \otimes H} (S_H \otimes S_H)$$

$$= (\mu_A \operatorname{swap}_{A \otimes A}) ((\psi S_H) \otimes (\psi S_H)) .$$

Si μ_A swap $_{A\otimes A} = \mu_A$, entonces ψ S_H respeta productos. Esta condición quiere decir que A es conmutativa. En cuanto a la unidad,

$$(\psi S_H) \eta_H = \psi \eta_H = \eta_A .$$

4 Relación con grupos afines

4.1 Recapitulación

Una manera un poco más clara de hacer estas cuentas es usar diagramas: el coproducto $\Delta_H: H \to H \otimes H$ induce

$$H \otimes H$$
 $\operatorname{Hom}_{k-alg} \big(H \otimes H, A \big) \stackrel{\sim}{\longleftarrow} \operatorname{Hom}_{k-alg} \big(H, A \big) \times \operatorname{Hom}_{k-alg} \big(H, A \big)$ $\Delta_H \uparrow$ $\Delta_{H^*} \downarrow$ $\operatorname{Hom}_{k-alg} \big(H, A \big)$

el isomorfismo horizontal está dado por $(\psi, \phi) \mapsto \mu_A(\psi \otimes \phi)$ y el morfismo vertical es precomponer con Δ_H , mostrando que el producto es la convolución; la counidad $\varepsilon_H : H \to k$ induce

$$k \qquad \operatorname{Hom}_{k-alg} \big(k, A \big) \, = \, \big\{ \eta_A \big\} \, \stackrel{\sim}{\longleftarrow} \, \big\{ 1 \big\}$$

$$\varepsilon_H \Big{\uparrow} \qquad \qquad \varepsilon_{H^*} \Big{\downarrow}$$

$$H \qquad \operatorname{Hom}_{k-alg} \big(H, A \big)$$

el isomorfismo horizontal es $1 \mapsto \eta_A$ y el morismo vertical es precomponer con ε_H , mostrando que el elemento neutro es $\eta_A \varepsilon_H$; la antípoda $S_H : H \to H$ induce

$$\begin{array}{ccc} H & & \operatorname{Hom}_{k-alg} \left(H, A \right) \\ S_H & & S_H^* \bigg | \\ H & & \operatorname{Hom}_{k-alg} \left(H, A \right) \end{array}$$

es decir, el inverso es $S_H^*(\psi) = \psi S_H$. Para que S_H^* esté bien definido, se usa la conmutatividad de A. La estructura de álgebra de H define la base $\mathsf{Hom}_{k-alg}(H,A)$, la estructura de coálgebra (biálgebra) da lugar al monoide $(\mathsf{Hom}_{k-alg}(H,A),*,c)$ y la antípoda,

junto con la conmutatividad de A, permiten dar una noción de inverso. Los axiomas de monoide/grupo son consecuencia de los axiomas de coasociatividad, counidad y de la definición de antípoda.

Sean $G_A = \operatorname{Hom}_{k-alg}(H, A)$, $G_A^{\otimes i} = \operatorname{Hom}_{k-alg}(H^{\otimes i}, A)$ para $i \geq 1$. Entonces, la asociatividad del producto tensorial implica que el diagrama siguiente conmuta con todas las flechas isomorfismos:

Ahora, el diagrama de coasociatividad para Δ_H induce un diagrama para G_A que se interpreta como la asociatividad del producto en G_A :

Explícitamente, f*(g*h)=(f*g)*h. De manera similar, el isomorfismo $k\otimes H\simeq H$ induce un isomorfismo

$$G_A = \operatorname{\mathsf{Hom}}_{k-alg} ig(H, A ig) \simeq \operatorname{\mathsf{Hom}}_{k-alg} ig(k \otimes H, A ig)$$

 $\simeq \operatorname{\mathsf{Hom}}_{k-alg} ig(k, A ig) imes \operatorname{\mathsf{Hom}}_{k-alg} ig(H, A ig) = \{ \eta_A \} imes G_A$

y, análogamente, $H \otimes k \simeq H$ induce $G_A \simeq G_A \times \{\eta_A\}$. Así,

$$k \otimes H \xleftarrow{\varepsilon \otimes \operatorname{id}} H \otimes H \xrightarrow{\operatorname{id} \otimes \varepsilon} H \otimes k \qquad \{\eta_A\} \times G_A \xrightarrow{(\varepsilon \otimes \operatorname{id})^*} G_A^{\otimes 2} \xrightarrow{(\operatorname{id} \otimes \varepsilon)^*} G_A \times \{\eta_A\}$$

Observamos, entonces que el elemento neutro de G_A está dado por $\varepsilon^*(\eta_A) = \eta_A \varepsilon$. Por último, para la antípoda tenemos diagramas conmutativos

Si $f \in G_A$, entonces $(\eta \varepsilon)^* f = f \circ (\eta \varepsilon) = \eta_A \varepsilon$, que es el elemento neutro de G_A ; la aplicación $\mu^* : G_A \to G_A^{\otimes 2}$ está dada por $f \mapsto f \circ \mu = \mu_A \circ (f \otimes f)$ y, componiendo con el isomorfismo $G_A^{\otimes 2} \simeq G_A \times G_A$ se obtiene la diagonal diag : $f \mapsto (f, f)$; vía este mismo isomorfismo, $(S \otimes \mathrm{id})^*$ se corresponde con $S^* \times \mathrm{id}_{G_A}$, $(\mathrm{id} \otimes S)^*$ con $\mathrm{id}_{G_A} \times S^*$ y Δ^* con $(f,g) \mapsto f * g$, el producto en G_A . En definitiva, el diagrama siguiente conmuta, mostrando que $f \mapsto f \circ S$ es el inverso en G_A :

4.2 El grupo $\mathsf{Hom}_{k-alg}ig(H,-ig)$

4.2.1 El funtor $\operatorname{Hom}_{k-alq}(H, -)$

Para cada álgebra de Hopf H y cada álgebra conmutativa A, obtenemos un grupo en $G_A = \operatorname{Hom}_{k-alg}(H,A)$. Supongamos que tenemos, además, un morfismo $\varphi: A \to B$ de k-álgebras. Como $\operatorname{Hom}_{k-alg}(H,-): \operatorname{Alg}_k \to \operatorname{Set}$ es funtor, φ induce una función $\varphi_*: G_A \to G_B$, dada por $f \mapsto \varphi \circ f$. Similarmente, se obtiene una $\varphi_*: G_A^{\otimes 2} \to G_B^{\otimes 2}$. Notamos que

$$G_A^{\otimes 2} \xrightarrow{\Delta_A^*} G_A$$

$$\varphi_* \downarrow \qquad \qquad \downarrow \varphi_*$$

$$G_B^{\otimes 2} \xrightarrow{\Delta_B^*} G_B$$

conmuta. Aquí Δ_A^* y Δ_B^* denotan precomposición con Δ en G_A y en G_B , respectivamente. Entonces ambos caminos son iguales: ambos son componer a derecha con Δ y componer a izquierda con φ . En términos de la convolución,

$$\varphi_*(f*g) = \varphi \circ \mu_A \circ (f \otimes g) \circ \Delta = \mu_B \circ (\varphi \otimes \varphi) \circ (f \otimes g) \circ \Delta = \varphi_*(f) * \varphi_*(g) .$$

Es decir, φ_* es morfismo de grupos. Dicho de otra manera, el funtor $\mathsf{Hom}_{k-alg}(H,-)$ se factoriza por la categoría de grupos.

Corolario 4.1. La aplicación que a un álgebra conmutativa A le asigna el grupo dado por el conjunto $\mathsf{Hom}_{k-alg}(H,A)$ junto con la estructura definida en el Teorema 3.12 y que a un morfismo $\varphi: A \to B$ le asigna φ_* determina un funtor $G: \mathbf{CommAlg}_k \to \mathbf{Grp}$. Este funtor verifica

$$U \circ G = \operatorname{Hom}_{k-alg}(H, -)$$
,

 $donde\ U: \mathbf{Grp} \to \mathbf{Set}\ denota\ el\ funtor\ olvido.$

 $^{^{1}}$ Si H es biálgebra y A no necesariamente es conmutativa, entonces se obtiene un monoide.

Observación 4.2. Los diagramas conmutativos que expresan que $\mathsf{Hom}_{k-alg}(H,-)$ se factoriza por \mathbf{Grp} , es decir, que las φ_* son morfismos de grupos, son los mismos diagramas que expresan la naturalidad de

$$\Delta^* : \operatorname{\mathsf{Hom}}_{k-alg}(H,-) \xrightarrow{\cdot} \operatorname{\mathsf{Hom}}_{k-alg}(H \otimes H,-)$$
.

4.2.2 Grupos en $\mathbf{CommAlg}_k \to \mathbf{Set}$

En la categoría $\mathbf{CommAlg}_k \to \mathbf{Set}$ existen productos y objetos terminales. Denotamos por $X \times Y$ el producto de los conjuntos X e Y y por 1 el conjunto con un único elemento, el objeto terminal en \mathbf{Set} . Entonces, dados F, F': $\mathbf{CommAlg}_k \to \mathbf{Set}$, definimos un nuevo funtor

$$(F \times F')(\varphi) = F(\varphi) \times F'(\varphi) : F(A) \times F'(A) \to F(B) \times F'(B)$$

al que llamamos producto de F con F'; definimos, también el funtor 1 dado por $A \mapsto 1$ en objetos y por $\varphi \mapsto id_1$ en morfismos. Notemos que existe un isomorfismo natural

$$1 \simeq \operatorname{Hom}_{k-alq}(k, -)$$

Para cada $F: \mathbf{CommAlg}_k \to \mathbf{Set}$ existe una única transformación natural $F \xrightarrow{\cdot} 1$; en cada objeto A está dada por la única función

$$t: F(A) \xrightarrow{\cdot} 1(A)$$
.

Esto nos permite definir grupos en $CommAlg_k \to Set$.

Observación 4.3. También existen productos y objetos terminales en la categoría de funtores en **Grp**, pero no los necesitaremos para definir grupos afines.

Corolario 4.4. Sea G: CommAlg_k \rightarrow Grp el funtor del Corolario 4.1. Los morfismos $\Delta: H \rightarrow H \otimes H, \ \varepsilon: H \rightarrow k \ y \ S: H \rightarrow H \ determinan \ transformaciones \ naturales$

$$\Delta^*: UG \times UG \xrightarrow{\cdot} UG$$
 , $\varepsilon^*: 1 \xrightarrow{\cdot} UG$ y $S^*: UG \xrightarrow{\cdot} UG$

que cumplen

$$\Delta^* \circ (\mathsf{id} \times \Delta^*) = \Delta^* \circ (\Delta^* \times \mathsf{id})$$

$$\Delta^* \circ ((\varepsilon^* \circ t) \times \mathsf{id}) \circ \mathsf{diag} = \mathsf{id} = \Delta^* \circ (\mathsf{id} \times (\varepsilon^* \circ t)) \circ \mathsf{diag}$$

$$\Delta^* \circ (\mathsf{id} \times S^*) \circ \mathsf{diag} = \varepsilon^* \circ t = \Delta^* \circ (S^* \times \mathsf{id}) \circ \mathsf{diag}$$

$$(32)$$

 $donde id = id_{UG} y diag : UG \rightarrow UG \times UG es la transformación diagonal.$

Observación 4.5. En realidad, sabemos un poco más. La t.n. ε^* debe provenir de la única flecha $1 \to G$, donde 1 es el objeto nulo (objeto inicial y final) de la categoría.

4.3 Equivalencia con grupos afines

Sean G, G': CommAlg_k \to Grp dos funtores. Denotamos por U: Grp \to Set el funtor olvido. En este contexto nos hacemos dos preguntas:

- dada $\tilde{\tau}: UG \to UG'$, jexiste $\tau: G \to G'$ tal que $U\tau = \tilde{\tau}$?
- dadas $\tau_1, \tau_2: G \to G'$ tales que $U\tau_1 = U\tau_2$, ¿vale que $\tau_1 = \tau_2$?

En cuanto a la segunda pregunta, como U es fiel, la conmutatividad del diagrama de la izquierda implica la conmutatividad del de la derecha:

$$U(G(A)) \xrightarrow{U(\tau_{1A})} U(G'(A)) \quad G(A) \xrightarrow{\tau_{1A}} G'(A)$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$U(G(A)) \xrightarrow[U(\tau_{2A})]{} U(G'(A)) \quad G(A) \xrightarrow{\tau_{2A}} G'(A)$$

En cuanto a la primera pregunta, que $\tilde{\tau}$ sea igual a $U\tau$ es equivalente, por fidelidad de U a que, para cada objeto A, $\tilde{\tau}_A: UG(A) \to UG'(A)$ sea morfismo de grupos.

Para cada álgebra A, el objeto G(A) es un grupo. En particular, existe una función $m_A^G: U(G(A)) \times U(G(A)) \to U(G(A))$ para la cual se verifican los axiomas de grupos. Que $\tilde{\tau}_A$ sea morfismo de grupos de G(A) en G'(A) significa que existe un cuadrado conmutativo

$$UG(A) \times UG(A) \xrightarrow{m_A^G} UG(A)$$

$$\tilde{\tau}_A \times \tilde{\tau}_A \downarrow \qquad \qquad \downarrow \tilde{\tau}_A$$

$$UG'(A) \times UG'(A) \xrightarrow{m_A^{G'}} UG'(A)$$

Pero esto querría decir que, en cierto sentido, la multiplicación debería ser natural en los funtores G y G'.

Supongamos, entonces que G y G' son representables, en tanto existen álgebras de Hopf H y H' tales que²

$$U \circ G = \operatorname{Hom}_{k-alg}(H, -)$$
 y $U \circ G' = \operatorname{Hom}_{k-alg}(H', -)$.

Proposición 4.6. La aplicación $\phi \mapsto (\phi^*: f \mapsto f \circ \phi)$ determina una biyección

$$\operatorname{Hom}_{k-alg}(H',H) = U \circ G'(H) \simeq \operatorname{Nat}(U \circ G, U \circ G')$$
(33)

Los morfismos de la Proposición 4.6 son, a priori, morfismos de álgebras, no necesariamente de álgebras de Hopf, ni de biálgebras. Volviendo a las preguntas anteriores, dada $\phi: H' \to H$, ¿existe una t.n. $\tau: G \to G'$ tal que $U\tau = \phi^*$? Como ya hemos mencionado, esto significa que $\phi^*: UG(A) \to UG'(A)$ es morfismo de grupos, para cada A. La estructura de grupo en estos conjuntos está dada por el Teorema 3.12. En particular, ϕ^* es morfismo de grupos, si y sólo si el diagrama siguiente conmuta:

²En cuanto a por qué deben ser de Hopf, ver la Observación 4.9.

$$UG(A) \times UG(A) \xrightarrow{\phi^* \times \phi^*} UG'(A) \times UG'(A)$$

$$\downarrow^{\Delta_{H'}^*} \qquad \qquad \downarrow^{\Delta_{H'}^*}$$

$$UG(A) \xrightarrow{\phi^*} UG'(A)$$

o, equivalentemente, vía el isomorfismo

$$\operatorname{\mathsf{Hom}}_{k-alg}(H,A) \times \operatorname{\mathsf{Hom}}_{k-alg}(H,A) \simeq \operatorname{\mathsf{Hom}}_{k-alg}(H \otimes H,A)$$
 (34)

y el isomorfismo análogo para H', si y sólo si el diagrama

$$\begin{array}{ccc} \operatorname{Hom}_{k-alg} \big(H \otimes H, A \big) & \xrightarrow{(\phi \otimes \phi)^*} \operatorname{Hom}_{k-alg} \big(H' \otimes H', A \big) \\ & \Delta_{H^*} \Big\downarrow & & & \downarrow \Delta_{H'}^* \\ & \operatorname{Hom}_{k-alg} \big(H, A \big) & \xrightarrow{\phi^*} & \operatorname{Hom}_{k-alg} \big(H', A \big) \end{array}$$

conmuta. Es decir, para todo par $f, g: H \to A$, debe ser

$$\mu_A(f \otimes g)(\phi \otimes \phi)\Delta_{H'} = \mu_A(f \otimes g)\Delta_H \phi$$
.

Necesitamos que estos diagramas conmuten para toda A. Pero la conmutatividad para toda álgebra A equivale a la conmutatividad de un único diagrama: tomando A = H y evaluando en el par (id_H, id_H) , deducimos que

$$H \otimes H \xleftarrow{\phi \otimes \phi} H' \otimes H'$$

$$\Delta_H \uparrow \qquad \qquad \uparrow \Delta_{H'}$$

$$H \longleftarrow \qquad \qquad H'$$

debe conmutar. Pero esto quiere decir, exactamente, que $\phi: H' \to H$ es morfismos de coálgebras, también.³ En particular, ϕ es morfismo de biálgebras y, por lo tanto, de álgebras de Hopf. Recíprocamente, si ϕ es de álgebras de Hopf, entonces el último diagrama conmuta y, aplicando el funtor $\operatorname{\mathsf{Hom}}_{k-alg}(-,A)$ se obtiene el anteúltimo diagrama, lo que muestra que, en ese caso, $\phi^*: UG(A) \to UG'(A)$ es morfismo de grupos para toda A.

$$1(A) = 1(A)$$

$$\varepsilon_{H}^{*} \downarrow \qquad \qquad \downarrow^{\varepsilon_{H'}^{*}}$$

$$UG(A) \xrightarrow{\phi^{*}} UG'(A)$$

conmutan para toda álgebra A, en particular, conmutan para A=H y, evaluando en η_H –el único elemento de $\mathbf{1}(H)$ –, se deduce que, para $x\in H'$,

$$\eta_H(\varepsilon_H \phi) = \phi^* \varepsilon_H^*(\eta_H) = \varepsilon_{H'}^*(\eta_H) = \eta_H \varepsilon_{H'}.$$

Pero entonces, componiendo con ε_H a izquierda, podemos "cancelar" y obtener $\varepsilon_H \phi = \varepsilon_{H'}$.

 $^{^3}$ En realidad, resta ver que respeta la counidad, pero esto se deduce haciendo un razonamiento análogo con los diagramas que involucran ε_{H}^* y $\varepsilon_{H'}^*$ y el objeto terminal. Si los diagramas

Teorema 4.7. Dadas álgebras de Hopf H, H', dado un morfismo de álgebras $\phi: H' \to H$, la transformación natural $\phi^*: \operatorname{Hom}_{k-alg}(H, -) \to \operatorname{Hom}_{k-alg}(H', -)$ es morfismo de grupos, si y sólo si ϕ es morfismo de álgebras de Hopf.

Teorema 4.8. La aplicación

$$H \mapsto \operatorname{\mathsf{Hom}}_{k-alg}(H,-) , \phi \mapsto \phi^*$$

define un funtor contravariante fiel y pleno de la categoría de álgebras de Hopf en la categoría de grupos afines, (G, m, u, σ) donde

- $G: \mathbf{CommAlg}_k \to \mathbf{Grp} \ es \ funtor,$
- UG es representable: existe H tal que $UG \simeq \operatorname{Hom}_{k-alg}(H, -)$,
- m, u, σ son transformaciones naturales que hacen de UG un grupo en $\mathbf{Set}^{\mathbf{CommAlg}_k}$.

Observación 4.9. Sea (G, m, u, σ) un grupo afín y sea R un álgebra conmutativa que lo representa. Entonces R admite una estructura de álgebra ed Hopf. Por definición, m define, componiendo con el isomorfismo (34), una t.n.

$$m: \operatorname{\mathsf{Hom}}_{k-alg}(R \otimes R, -) \xrightarrow{\cdot} \operatorname{\mathsf{Hom}}_{k-alg}(R, -)$$
.

Por la Proposición 4.6, existe un morfismo de álgebras $\Delta: R \to R \otimes R$ tal que $\Delta^* = m$. Explícitamente, siguiendo la demostración de la Proposición 4.6, definimos

$$\Delta := m_{R \otimes R}(\mathsf{id}_{R \otimes R}) \in \mathsf{Hom}_{k-alg}(R, R \otimes R)$$
.

Para cada k-álgebra A, existe una función m_A : $\mathsf{Hom}_{k-alg}\big(R\otimes R,A\big)\to \mathsf{Hom}_{k-alg}\big(R,A\big)$. Dado $f:R\otimes R\to A$, ¿qué morfismo es $m_A(f)$? ¿Qué función es m_A ? Por naturalidad,

$$\begin{array}{ccc} \operatorname{Hom}_{k-alg} \big(R \otimes R, R \otimes R \big) & \xrightarrow{m_{R \otimes R}} \operatorname{Hom}_{k-alg} \big(R, R \otimes R \big) \\ & & \downarrow^{f_*} \\ & & \downarrow^{f_*} \\ \operatorname{Hom}_{k-alg} \big(R \otimes R, A \big) & \xrightarrow{m_A} \operatorname{Hom}_{k-alg} \big(R, A \big) \end{array}$$

conmuta y

$$f \circ \Delta = f_* \circ m_{B \otimes B}(\mathsf{id}_{B \otimes B}) = m_A \circ f_*(\mathsf{id}_{B \otimes B}) = m_A(f)$$
.

Entonces $\Delta^* = m$. Hay que ver que Δ es coproducto, pero esto se deduce de aplicar la correspondencia de la Proposición 4.6 a las transformaciones naturales que aparecen en los diagramas que hacen de m un producto.

Referencias

- [1] J. R. Getz and H. Hahn. An Introduction to Automorphic Representations. Springer, 2021
- [2] C. Kassel. Quantum groups. Vol. 155. New York, NY: Springer-Verlag, 1995, pp. xii + 531.
- [3] S. Mac Lane. Categories for the working mathematician. Vol. 5. New York, NY: Springer, 1998, pp. xii + 314.