環論 (第16回)の解答

問題 16-1 の解答

f(x) が K[x] の既約元とする. 仮に、

$$f(x) = g_1(x)g_2(x) \ (g_1(x), g_2(x) \in K[x])$$

と分解できたとする. $g_1(x) \mid f(x)$ であり, f(x) は K[x] の既約元なので, $g_1(x) \in K^{\times}$ または $g_1(x) = cf(x)$ ($c \in K^{\times}$) となる ($K[x]^{\times} = K^{\times}$ に注意). これより, $\deg g_1(x) = 0$ または $\deg g_2(x) = 0$. よって, f(x) は K 上既約である.

逆に f(x) は K 上既約とする。 $g(x) \mid f(x)$ とすると, $f(x) = g(x)h(x) \; (h(x) \in K[x])$ と表せる。 f(x) は K 上既約なので, $g(x) \in K^{\times}$ または $h(x) \in K^{\times}$. これより, $g(x) \in K[x]^{\times}$ または $g(x) \sim f(x)$. よって, f(x) は K[x] の既約元である.

問題 16-2 の解答

定理 16-1 より, f(x) が $\mathbb Z$ 上既約を示せばよい. もし, $\mathbb Z$ 上可約だと仮定すると, f(x) はモニックなので.

$$f(x) = (x - a)(x^2 + bx + c) \quad (a, b, c \in \mathbb{Z})$$

の形に表せる. このとき, f(x) は整数の根 a を持つことになり矛盾. 従って f(x) は \mathbb{Z} 上既約.

問題 16-3 の解答

(1) $f(x)=x^4-5x^2+10$ は p=5 でアイゼンシュタインの定理の条件を満たす. 従って f(x) は $\mathbb Q$ 上既約である.

(2) $g_1(x) = g(x+1)$ と置くと,

$$g(x) = \frac{x^5 - 1}{x - 1}$$

より,

$$g_1(x) = \frac{(x+1)^5 - 1}{x} = x^4 + 5x^3 + 10x^2 + 10x + 5.$$

 $g_1(x)$ は p=5 でアイゼンシュタインの定理の条件を満たす. 従って $g_1(x)$ は $\mathbb Q$ 上既約. 従って g(x) も $\mathbb Q$ 上既約である.

(3) $h(x) = x^2 + y(y+1)x + (y-1)(y+1)$ と変形する. h(x) は p = y+1 でアイゼンシュタインの定理の条件を満たす. 従って h(x) は $\mathbb{C}[y]$ 上既約である.

copyright ⓒ 大学数学の授業ノート