Since $\alpha_+, \alpha_- \geq 0$, for any $i \in \{1, \ldots, n\}$ the minimum of $(\alpha_+)_i - (\alpha_-)_i$ is $-\tau$, and the maximum is τ . If we recall that for any $z \in \mathbb{R}^n$,

$$||z||_{\infty} = \max_{1 \le i \le n} |z_i|,$$

it follows that the constraints

$$\alpha_+ + \alpha_- = \tau \mathbf{1}_n$$
$$X^\top \lambda = \alpha_+ - \alpha_-$$

are equivalent to

$$||X^{\top}\lambda||_{\infty} \le \tau.$$

The above is equivalent to the 2n constraints

$$-\tau \le (X^{\top}\lambda)_i \le \tau, \quad 1 \le i \le n.$$

Therefore, the dual lasso program is given by

maximize
$$-\frac{1}{2} \left(\|y - \lambda\|_2^2 - \|y\|_2^2 \right)$$
 subject to
$$\|X^{\mathsf{T}}\lambda\|_{\infty} \le \tau,$$

which (since $\|y\|_2^2$ is a constant term) is equivalent to

Program (Dlasso2):

$$\begin{aligned} & \text{minimize} & & \frac{1}{2} \left\| y - \lambda \right\|_2^2 \\ & \text{subject to} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

minimizing over $\lambda \in \mathbb{R}^m$.

One way to solve lasso regression is to use the dual program to find $\lambda = \xi$, and then to use linear programming to find w by solving the linear program arising from the lasso primal by holding ξ constant. The best way is to use ADMM as explained in Section 52.8(4). There are also a number of variations of gradient descent; see Hastie, Tibshirani, and Wainwright [89].

In theory, if we know the support of w and the signs of its components, then w is determined as we now explain.

In view of the constraint $y - Xw = \xi$ and the fact that for an optimal solution we must have $\xi = \lambda$, the following condition must hold:

$$||X^{\top}(Xw - y)||_{\infty} \le \tau. \tag{*}$$