Comparative Analysis:

Naive Bayes:

· Introduction:

- Naive Bayes is a probabilistic classification algorithm based on Bayes' theorem.
- o It assumes independence between features given the class label.

· Method/Working:

- o Calculates probabilities of each class based on the conditional probabilities of features.
- Fast and simple, making it suitable for large datasets with high dimensionality.

Artificial Neural Network (ANN):

· Introduction:

- ANN is a computational model inspired by the human brain's neural structure.
- · It is widely used for complex tasks, including image recognition and natural language processing.

· Method/Working:

- o Composed of interconnected nodes (neurons) organized in layers (input, hidden, output).
- Employs backpropagation for training by adjusting weights to minimize error.

Random Forest:

· Introduction:

- o Random Forest is an ensemble learning method using multiple decision trees.
- o It provides robustness and reduces overfitting compared to individual trees.

· Method/Working:

- o Constructs multiple decision trees during training.
- Makes predictions by aggregating the results of individual trees (voting or averaging).

k-Nearest Neighbors (KNN):

· Introduction:

- KNN is a lazy learning algorithm for classification and regression.
- o It makes predictions based on the majority class or average of k nearest neighbors.

Method/Working:

- o Memorizes the training dataset and performs computations at prediction time.
- o Sensitive to the choice of 'k' (number of neighbors).

Decision Tree (DT):

• Introduction:

- o Decision Tree is a tree-like model used for classification and regression.
- o It recursively splits the dataset based on the most significant attributes.

• Method/Working:

- o Builds a tree structure where each node represents a decision.
- o Eager learning, constructs the entire tree during the training phase.

Support Vector Machine (SVM):

• Introduction:

- o SVM is a powerful classification algorithm.
- o It finds the hyperplane that maximally separates classes in feature space.

• Method/Working:

- o Maps data into high-dimensional space to find the optimal hyperplane.
- o Effective in high-dimensional spaces, particularly in tasks with clear class separation.

```
import pandas as pd
import numpy as np
import sklearn
import matplotlib.pyplot as plt
%matplotlib inline
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
print("Imported!")
```

```
file = pd.read_csv("./heart-missing-classification-dataset.csv")
file.head()
```

a	age	sex	<pre>chest_pain_type</pre>	resting_bp	cholestoral	${\tt fasting_blood_sugar}$	restecg	max_hr	exang	oldpeak	slope	num_major_vessel
0 63	3.0	1.0	3.0	145.0	233.0	1.0	0.0	150.0	0.0	2.3	0.0	0.
1 37	7.0	1.0	NaN	130.0	250.0	0.0	1.0	187.0	0.0	3.5	0.0	0.
2 41	1.0	0.0	1.0	130.0	204.0	0.0	0.0	172.0	0.0	1.4	2.0	0.
3 56	6.0	1.0	1.0	120.0	NaN	0.0	1.0	178.0	0.0	NaN	2.0	Nat
A 57	7 0	Λ Λ	0.0	120.0	321 0	0.0	1 ∩	163 N	1 0	0.6	2 0	,^

```
x = file.drop("target",axis=1)
y = file["target"]

import random
x.fillna(x.mean(),inplace=True) # x = x.fillna(x.mean())
y.fillna(random.randint(0,1),inplace=True) # y = y.fillna(random.randint(0,1))
y.isna().sum()

0

from sklearn.model_selection import train_test_split
# np.random.seed(50)
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=50)
x_train
```

	age	sex	<pre>chest_pain_type</pre>	resting_bp	cholestoral	fasting_blood_sugar	restecg	max_hr	exang	oldpeak	slope	num_majo
168	63.0	1.0	0.0	130.0	254.0	0.0	0.0	147.000000	0.0	1.4	1.000000	
66	51.0	1.0	2.0	100.0	222.0	0.0	1.0	143.000000	1.0	1.2	1.000000	
148	44.0	1.0	2.0	120.0	226.0	0.0	1.0	169.000000	0.0	0.0	2.000000	
290	61.0	1.0	0.0	148.0	203.0	0.0	1.0	161.000000	0.0	0.0	2.000000	
222	65.0	1.0	3.0	138.0	282.0	1.0	0.0	174.000000	0.0	1.4	1.000000	
					•••							
70	54.0	1.0	2.0	120.0	258.0	0.0	0.0	147.000000	0.0	0.4	1.000000	
132	42.0	1.0	1.0	120.0	295.0	0.0	1.0	162.000000	0.0	0.0	1.390411	
289	55.0	0.0	0.0	128.0	205.0	0.0	2.0	130.000000	1.0	2.0	1.000000	
109	50.0	0.0	0.0	110.0	254.0	0.0	0.0	149.651568	0.0	0.0	2.000000	
176	60.0	1.0	0.0	117.0	230.0	1.0	1.0	160.000000	1.0	1.4	2.000000	
040 re	1	2 001	Imno									•

#for naive bayes
from sklearn import naive_bayes
model_NB = naive_bayes.BernoulliNB()
model_NB.fit(x_train,y_train)

▼ BernoulliNB BernoulliNB()

 $print(f"The model's Accuracy with Naive Bayes algorithm is: \\ \{model_NB.score(x_test,y_test)*100:.2f\}\%") \\ nb = model_NB.score(x_test,y_test)*100 \\ .2f\}\%") \\ nb = model_NB.score(x_test,y_test)*100 \\ .2f$

The model's Accuracy with Naive Bayes algorithm is: 75.41%

from sklearn import svm

Set the 'dual' parameter explicitly and increase 'max_iter'
model_SVM = svm.LinearSVC(dual=False, max_iter=100) # You can adjust max_iter as needed

 ${\tt model_SVM.fit}(x_{\tt train},\ y_{\tt train})$

```
LinearSVC
print(f"The model's Accuracy with SVM algorithm is: {model_SVM.score(x_test,y_test)*100:.2f}%")
svm =model_SVM.score(x_test,y_test)*100
            The model's Accuracy with SVM algorithm is: 72.13%
# using KNN
from sklearn import neighbors
\verb|model_KNN| = neighbors.KNeighborsClassifier(n\_neighbors=7) | \verb| \#this(n\_neighbors) | number | can vary choose your number. | (n\_neighbors) | number | can vary choose your number. | (n\_neighbors) | number | can vary choose your number. | (n\_neighbors) | number | can vary choose your number. | (n\_neighbors) | number | (n\_neighbors) | (n\_neighbor
model_KNN.fit(x_train,y_train)
                                  KNeighborsClassifier
             KNeighborsClassifier(n_neighbors=7)
print(f"The model's \ Accuracy \ with \ KNN \ algorithm \ is: \ \{model\_KNN.score(x\_test,y\_test)*100:.2f\}\%")
knn = model_KNN.score(x_test,y_test)*100
            The model's Accuracy with KNN algorithm is: 72.13%
# using Decision Tree
from sklearn import tree
model_DT = tree.DecisionTreeClassifier(max_depth=5,max_leaf_nodes=2) #number can vary, and is optional
model_DT.fit(x_train,y_train)
                                                    DecisionTreeClassifier
             DecisionTreeClassifier(max_depth=5, max_leaf_nodes=2)
print(f"The model's Accuracy with Decision Tree algorithm is: \\ \{model\_DT.score(x\_test,y\_test)*100:.2f\}\%"\}
dt = model_DT.score(x_test,y_test)*100
            The model's Accuracy with Decision Tree algorithm is: 68.85%
# Random forest
from sklearn.ensemble import RandomForestClassifier
model_RF = RandomForestClassifier(n_estimators=200) #optional can vary.
model_RF.fit(x_train,y_train)
                                    {\tt RandomForestClassifier}
            RandomForestClassifier(n_estimators=200)
print(f"The model's Accuracy with RandomForest Classifier algorithm is: {model_RF.score(x_test,y_test)*100:.2f}%")
rf = model_RF.score(x_test,y_test)*100
```

The model's Accuracy with RandomForest Classifier algorithm is: 70.49%

```
# ANN
np.random.seed(50)
# Build an ANN model
model = keras.Sequential([
   layers.Input(shape=(x_train.shape[1],)),
   layers.Dense(64, activation='relu'),
   layers.Dense(3, activation='softmax')
])
# Compile the model
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# Train the model
model.fit(x_train, y_train, epochs=50, batch_size=32, validation_data=(x_test, y_test))
# Evaluate the model on the test set
test loss, test accuracy = model.evaluate(x test, v test)
print(f"Test Accuracy: {test_accuracy * 100:.2f}%")
ann = test_accuracy*100
    Epoch 1/50
                           =======] - 1s 27ms/step - loss: 50.9611 - accuracy: 0.5041 - val_loss: 35.1187 - val_accuracy: 0.508
    8/8 [==:
    Epoch 2/50
    8/8 [============] - 0s 8ms/step - loss: 24.4259 - accuracy: 0.5041 - val_loss: 9.9913 - val_accuracy: 0.4754
    Epoch 3/50
    8/8 [=========== ] - 0s 7ms/step - loss: 7.1887 - accuracy: 0.3967 - val loss: 9.7982 - val accuracy: 0.4590
    Epoch 4/50
    8/8 [=====
                        =======] - 0s 8ms/step - loss: 8.6073 - accuracy: 0.4463 - val_loss: 3.9155 - val_accuracy: 0.3934
    Epoch 5/50
    8/8 [=====
                       ========] - 0s 8ms/step - loss: 4.9363 - accuracy: 0.3760 - val loss: 4.7325 - val accuracy: 0.4918
    Epoch 6/50
    8/8 [=====
                               :===] - 0s 8ms/step - loss: 4.2742 - accuracy: 0.3802 - val_loss: 3.3513 - val_accuracy: 0.4262
    Epoch 7/50
    8/8 [=============] - 0s 8ms/step - loss: 2.7712 - accuracy: 0.4132 - val_loss: 2.5979 - val_accuracy: 0.5082
    Epoch 8/50
                      :========] - 0s 7ms/step - loss: 2.0394 - accuracy: 0.4587 - val_loss: 1.9012 - val_accuracy: 0.4590
    8/8 [=====
    Epoch 9/50
    Epoch 10/50
    8/8 [======
                 Epoch 11/50
                          :=======] - 0s 8ms/step - loss: 0.7817 - accuracy: 0.6198 - val_loss: 0.7749 - val_accuracy: 0.6885
    8/8 [===:
```

:========] - 0s 8ms/step - loss: 0.6499 - accuracy: 0.7107 - val_loss: 0.8232 - val_accuracy: 0.6230

8/8 [===========] - 0s 8ms/step - loss: 0.5705 - accuracy: 0.7231 - val_loss: 0.7261 - val_accuracy: 0.7541

8/8 [=============] - 0s 8ms/step - loss: 0.5436 - accuracy: 0.7686 - val_loss: 0.7711 - val_accuracy: 0.6230

=======] - 0s 8ms/step - loss: 0.6002 - accuracy: 0.7314 - val_loss: 0.8059 - val_accuracy: 0.6230

:========] - 0s 7ms/step - loss: 0.5622 - accuracy: 0.7149 - val_loss: 0.6914 - val_accuracy: 0.6393

=======] - 0s 8ms/step - loss: 0.5511 - accuracy: 0.7562 - val_loss: 0.6907 - val_accuracy: 0.6393

=======] - 0s 11ms/step - loss: 0.5152 - accuracy: 0.7686 - val loss: 0.6854 - val accuracy: 0.7377

:=========] - 0s 7ms/step - loss: 0.5088 - accuracy: 0.7769 - val loss: 0.7223 - val accuracy: 0.6393

========] - 0s 9ms/step - loss: 0.5470 - accuracy: 0.7190 - val_loss: 0.6629 - val_accuracy: 0.6885

=======] - 0s 7ms/step - loss: 0.5005 - accuracy: 0.7603 - val_loss: 0.6719 - val_accuracy: 0.6885

=======] - 0s 8ms/step - loss: 0.5017 - accuracy: 0.7686 - val_loss: 0.6555 - val_accuracy: 0.7049

========] - 0s 9ms/step - loss: 0.4956 - accuracy: 0.7645 - val_loss: 0.6627 - val_accuracy: 0.7049

========] - 0s 9ms/step - loss: 0.4960 - accuracy: 0.7645 - val_loss: 0.6507 - val_accuracy: 0.6885

===] - 0s 8ms/step - loss: 0.5380 - accuracy: 0.7397 - val_loss: 0.6869 - val_accuracy: 0.6230

Epoch 12/50

8/8 [===== Epoch 14/50

Enoch 15/50

8/8 [====== Epoch 16/50

Epoch 17/50 8/8 [=====

Epoch 18/50 8/8 [======

Epoch 19/50

8/8 [====== Epoch 20/50 8/8 [======

Epoch 21/50

Epoch 22/50 8/8 [=====

Epoch 23/50

8/8 [====== Epoch 25/50 8/8 [======

Epoch 26/50

8/8 [====== Epoch 27/50 8/8 [======

Epoch 28/50

8/8 [===== Epoch 29/50

8/8 [====== Epoch 24/50

8/8 [====== Epoch 13/50

```
'Score': [nb, svm, knn, dt, rf,ann]
scores_df = pd.DataFrame(model_scores)
scores_df
                Model
                          Score
     0
          Naive Bayes 75.409836
                 SVM 72.131148
      1
      2
                 KNN 72.131148
plt.figure(figsize=(10, 6))
plt.bar(scores_df['Model'], scores_df['Score'], color='darkred')
plt.xlabel('Models')
plt.ylabel('Accuracy Score')
plt.title('Comparison of Model Scores')
plt.ylim(0, 100) # Assuming scores are between 0 and 1 (accuracy)
plt.show()
```

'Model': ['Naive Bayes', 'SVM', 'KNN', 'Decision Tree', 'Random Forest','ANN'],

model_scores = {

