凸优化第 10 周作业

1 预习作业

下节课没有小测。

2 作业题

1. (编程题) 考虑等式约束优化问题:

$$\begin{aligned} & \min & & \frac{1}{2} x^\top P x + q^\top x \\ & \text{s.t.} & & A x = b, \end{aligned}$$

其中 $x \in \mathbb{R}^n$, $P \in \mathbb{S}^n_+$, $q \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ 。

使用牛顿方法求解上述优化问题, 采用回溯直线搜索方法, 自己设定参数和初始点. 停止准则为牛顿减量 $\lambda(x)^2 < 10^{-5}$. 求出原问题和对偶问题的最优解, 函数最优值。分别画出对数误差 $\log(f(x_k) - p^*)$ 和下降步长 t_k 关于迭代次数 k 的图像。

请使用 Q1_data 文件夹中提供的数据求解以上问题。我们给出了 m=100, n=200 时对应的矩阵 P,q,A,b.

2. (编程题) 分别用障碍函数法和原对偶内点法求解下述二次规划问题:

$$\min \ \frac{1}{2} x^{\top} P x + q^{\top} x$$
 s.t. $Ax = b$
$$x \succeq 0,$$

其中 $x \in \mathbb{R}^n$, $P \in \mathbb{S}^n_+$, $q \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

- (a) 障碍函数法要求:
 - i. 阈值误差 $\varepsilon = 10^{-8}$ 。
 - ii. 请画出对数对偶间隙 $\log \frac{n}{t}$ 与 Newton 迭代次数 k 之间的关系图。
 - iii. 给出原对偶最优解 x^*, λ^*, v^* 和最优值 p^* 。

障碍函数法中参数 μ 建议选取 $\mu = 10$ 或者自行选取。

- (b) 原对偶内点法要求:
 - i. 原误差 $||r_{\text{pri}}||_2 \le 10^{-8}$, 对偶误差 $||r_{\text{data}}||_2 \le 10^{-8}$, 代理对偶间隙 $\hat{\eta} \le 10^{-8}$ 。

- ii. 分别画出 $\log \hat{\eta}$ 和 $\log \left\{ (\|r_{\text{pri}}\|_2^2 + \|r_{\text{dual}}\|_2^2)^{\frac{1}{2}} \right\}$ 与 Newton 迭代次数 k 之间的关系图。
- iii. 给出原对偶最优解 x^*, λ^*, v^* 和最优值 p^* 。

请使用 Q2_data 文件夹中的数据求解以上两个问题。我们给出了 m = 100, n = 200 时对应的矩阵 P, q, A, b,以及初始点 x_0, λ, v 。

3. (编程题) Consider the following minimization problem:

$$\min f(x_1, x_2) = \frac{1}{2} \left(x_1^2 + 100x_2^2 \right).$$

Suppose the starting point is $x^{(0)} = (100, 1)^{\top}$ and we are using the negative gradient as our descent direction.

Consider the **Heavy ball Method** with $\alpha = 4/121$ and $\beta = 81/121$, then

- (a) plot the corresponding $x^{(k)}$ on the 2D plane and $f(x^{(k)})$ vs k using semi-log plot.
- (b) and compare the convergence rate of the Heavy Ball Method to that of standard gradient method by plotting the semi-log plot of $f(x^{(k)})$ vs k.

The algorithms stops when the 2-norm of gradient is less than 10^{-8} .

4. (选做题) Let $a_i \in \mathbb{R}^n$, $i = 1, 2, \dots, m$, and assume that

$$A = \begin{bmatrix} a_1^\top \\ \vdots \\ a_m^\top \end{bmatrix}$$

has rank n. Define $\phi_i(x) \triangleq -\log(a_i^\top x - b_i)$, $i = 1, 2, \dots, m$. Assume that $D = \{x \in \mathbb{R}^n | Ax - b > 0\}$ is non-empty. Define $\phi(x) = \sum_{i=1}^m \phi_i(x)$.

(a) For any $x \in D$, prove that

$$(\nabla \phi(x))^{\top} (\nabla^2 \phi(x))^{-1} \nabla \phi(x) \le m.$$

(b) Let $f_t(x) \triangleq tc^{\top}x + \phi(x)$, where $c \in \mathbb{R}^n$, and x^* be a minimizer of $f_t(x)$. Let $\mu > 1$. Prove that

$$\sqrt{(\nabla f_{\mu t}(x^*))^{\top}(\nabla^2 f_{\mu t}(x^*))^{-1}\nabla f_{\mu t}(x^*)} \le (\mu - 1)\sqrt{m}.$$

(Hint: Use the fact $\begin{bmatrix} vv^\top & v \\ v^\top & 1 \end{bmatrix} \succeq 0$ and Schur's complement.)

3 作业说明

- 1. 编程作业需要撰写报告(包含推导步骤和程序运行结果)。请将报告(pdf 电子版)和代码(编程语言不限)一起打包提交至网络学堂。
- 2. **请大家务必在截止时间之前提交作业**,迟交一周以内的作业得分是卷面分的 50%,迟交超过一周的作业 不得分。
- 3. 每次作业的满分是25分,做选做题有额外加分,但每次作业总分不超过25分。