Parametrics and Polar Test

Parametric Equations

- 1. Eliminate the parameter and find a rectangular equation for the following parametric equations. Show all work.

 - 1. [3pts] $x = t^3$ and y = 1 t2. [3pts] $y = 4 \sin t$ and $y = 3 \cos t$
- 2. Graph the curve whose parametric equations are given, indicating the orientation of the curve with arrows.
 - 1. [4pts] x = t + 5 and $y = (t 1)^2$ where $-2 \le t \le 2$
 - 2. [4pts] $x(t) = 4\cos t$ and $y(t) = 4\sin t$

Polar Coordinates

- 1. Which of the following is not a possible coordinate for the indicated point.
- 2. Convert (5, -5) to polar coordinates with $0 < \theta < 2pi$
- 3. Convert $(6, 2\pi/3)$ to rectangular coordinates
- 4. Which of the following points is furthest from the origin?
- 5. Which points are between $\theta = \frac{\pi}{4}$ and $\theta = 3\pi/4$?
- 6. Convert to polar: $x^2 y^2 = 16$
- 7. Convert to rectangular: $r = 4 + 4\cos(\theta)$
- 8. Which of the following is the graph of $r = 3 4\cos(\theta)$?
- 9. Which of the following is the graph of $r = -4\cos(\theta)$?
- 10. What are the x-intercepts of $r = \sin(\theta) \cos(\theta)$ 11. What conic section is represented by $r = \frac{1}{2 3\cos(\theta)}$?

True/False

- 1. It is possible for a single point in the plane to have the same coordinates in both rectangular and polar representations.
- 2. A function y = f(x) cannot intersect itself
- 3. The graph of a parametric system cannot intersect itself.
- 4. Every polar graph fails the vertical line test.
- 5. Every point in the plane has infinitely many polar coordinate representations.

Free Response

A baseball pitcher throws a baseball with an initial speed of 138 feet per second at an angle of 20° to the horizontal. The ball leaves the pitcher's hand at a height of 4 feet above the ground.

- 1. [1pt] Find parametric equations that describe the motion of the ball as a function of time. (Assume the ground has a y-coordinate of 0).
- 2. [1pt] How long is the ball in the air?
- 3. [1pt] At what time does the ball reach its maximum height?
- 4. [1pt] What is the maximum height of the ball?
- 5. [1pt] Determine the distance the ball travels.