Stat 8678 - SAS Programming & Data Analysis

Chi-Kuang Yeh

2025 - 10 - 27

Table of contents

Pr	reface	3
	Description	3
	Prerequisites	3
	Instructor	3
	Office Hour	3
	Grade Distribution	3
	Assignment	
	Midterm	4
	Topics and Corresponding Lectures	4
	Recommended Textbooks	4
1	Introduction	5
	1.1 Why Bayesian?	5
2	Course Topics and Schedule	6
Re	eferences	8

Preface

Description

This course covers programming using the SAS statistical software package, and it provides an introduction to data analysis stressing the implementation using SAS.

Topics include two main parts:

- 1) **SAS Programming**: data management and manipulation, basic procedures, macro programming;
- 2) **Data Analysis**: descriptive statistical analysis, one- and two-sample inference, basic categorical data analysis, regression analysis, and other selected topics.

Prerequisites

MATH 4544/6544, or equivalent.

Instructor

Chi-Kuang Yeh, I am an Assistant Professor in the Department of Mathematics and Statistics, Georgia State University.

• Office: Suite 1407, 25 Park Place.

• Email: cyeh@gsu.edu.

Office Hour

TBA

Grade Distribution

• TBA

Assignment□ TBA

Midterm

 \square TBA

Topics and Corresponding Lectures

Those chapters are based on the lecture notes. This part will be updated frequently.

Topic	Lecture Covered
Introduction to SAS and modules	1-

Recommended Textbooks

- Statistics 480: Introduction to SAS, The Pennsylvania State University.
- SAS Training, SAS Institute.
- SAS Resources, University of California, Los Angeles.

1 Introduction

The posterior distribution is obtained from the prior distribution and sampling model via *Bayes' rule*:

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{\int_{\Theta} p(y \mid \tilde{\theta})p(\tilde{\theta})d\tilde{\theta}}.$$

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

1 + 1

[1] 2

1.1 Why Bayesian?

2 Course Topics and Schedule

Week	Topics	Key Concepts / Readings	Computing Focus
1	Introduction to	Bayesian vs. Frequentist	Review of R basics
	Bayesian	paradigms; Prior, likelihood,	and reproducible
	Thinking	posterior	workflows
2	Bayesian	Conjugate priors,	Simulating
	Inference for	Beta-Binomial,	posteriors,
	Simple Models	Normal-Normal,	visualization
		Poisson-Gamma	
3	Prior Elicitation	Informative	Prior sensitivity
	and Sensitivity	vs. noninformative priors,	plots
		Jeffreys prior	
4	Monte Carlo	Law of large numbers,	Random sampling
	Integration	sampling-based inference	and Monte Carlo
			approximation
5	Markov Chain	Metropolis-Hastings, Gibbs	Implementing
	Monte Carlo	sampler	MCMC in R
	(MCMC)		
6	Convergence	Trace plots, autocorrelation,	coda, rstan, and
	Diagnostics	Gelman–Rubin statistic	bayesplot packages
7	Hierarchical	Partial pooling, shrinkage,	${ t rstanarm} \ / \ { t brms}$
	Bayesian Models	multilevel structures	
8	Midterm Project:	Posterior inference for	brms, rstanarm,
	Bayesian Linear	regression, model selection	custom Gibbs
	Regression		samplers
9	Bayesian Model	Bayes factors, BIC, DIC,	Practical
	Comparison	WAIC, LOO	comparison via
			cross-validation
10	Model Checking	Posterior predictive checks,	${ t pp_check\ in\ brms}$
	and Diagnostics	residual analysis	
11	Advanced	Hamiltonian Monte Carlo	Using Stan and
	Computation	(HMC), Variational Inference	${\tt CmdStanR}$
12	Bayesian Decision	Utility functions, decision	Simple decision
	Theory	rules, loss minimization	problems in R

Week	Topics	Key Concepts / Readings	Computing Focus
13	Modern Bayesian Methods	Approximate Bayesian computation (ABC), Bayesian	Examples via rstan or tensorflow-
14	Student Project	neural networks Applications and case studies	probability Full workflow
	Presentations		demonstration in R

Interesting Article:

• Goligher, E.C., Harhay, M.O. (2023). What Is the Point of Bayesian Analysis?, American Journal of Respiratory and Critical Care Medicine, 209, 485–487.

References

Knuth, Donald E. 1984. "Literate Programming." Comput.~J.~27~(2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.