Number Systems

Dmytro Zubov, PhD dmytro.zubov@ucentralasia.org

Naryn, 1:31pm, Sept 29, 2022

Lessons learnt last time

- Purpose of the Physical Layer: Describe the purpose and functions of the physical layer in the network
- Physical Layer Characteristics: Describe characteristics of the physical layer
- Copper Cabling: Identify the basic characteristics of copper cabling
- UTP Cabling: Explain how UTP cable is used in Ethernet networks
- Fiber-Optic Cabling: Describe fiber optic cabling and its main advantages over other media
- Wireless Media: Connect devices using wired and wireless media

What we gonna discuss today?

- Binary Number System: Calculate numbers between decimal and binary systems
- Hexadecimal Number System: Calculate numbers between decimal and hexadecimal systems

Binary Number System

192.168.1.35

Binary and IPv4 Addresses

- Binary numbering system consists of 1s and 0s, called bits
- Decimal numbering system consists of digits 0 through 9
- Hosts, servers, and network equipment using binary addressing to identify each other
- Each address is made up of a string of 32 bits, divided into four sections called octets
- Each octet contains 8 bits (or 1 byte) separated by a dot
- For ease of use by people, this dotted notation is converted to dotted

Convert Between Binary and Decimal Numbering Systems

Video - Convert Between Binary and Decimal Numbering Systems

This video will cover the following:

- Positional notation review
- Powers of 10 review
- Decimal base 10 numbering review
- Binary base 2 numbering review
- Convert an P address in binary to decimal numbering

1x == -

Binary Positional Notation

- Positional notation means that a digit represents different values depending on the "position" the digit occupies in the sequence of numbers
- The decimal positional notation system operates as shown in the tables below

Radix	10	10	10	10
Position in Number	3	2	1	0
Calculate	(10 ³)	(10 ²)	(10 ¹)	(10°)
Position Value	1000	100	10	1

	Thousands	Hundreds	Tens	Ones		
Positional Value	1000	100	10	1		
Decimal Number (1234)	1	2	3	4		
Calculate	1 x 1000	2 x 100	3 x 10	4 x 1		
Add them up	1000	+ 200	+ 30	+ 4		
Result	1,234					

- Binary Positional Notation (cont.)
 - The binary positional notation system operates as shown in the tables below

Radix	2	2	2	2	2	2	2	2
Position in Number	7	6	5	4	3	2	1	0
Calculate	(2 ⁷)	(2 ⁶)	(2 ⁵)	(24)	(2 ³)	(2 ²)	(2 ¹)	(2 ⁰)
Position Value	128	64	32	16	8	4	2	1

Positional Value	128	64	32	16	8	4	2	1
Binary Number (11000000)	1	1	0	0	0	0	0	0
Calculate	1x128	1x64	0x32	0x16	0x8	0x4	0x2	0x1
Add Them Up	128	+ 64	+ 0	+ 0	+ 0	+ 0	+ 0	+ 0
Result	192							

Convert Binary to Decimal

Convert 11000000.10101000.00001011.00001010 to decimal

Positional Value	128	64	32	16	8	4	2	1
Binary Number (11000000)	1	1	0	0	0	0	0	0
Calculate	1x128	1x64	0x32	0x16	0x8	0x4	0x2	0x1
Add Them Up	128	+ 64	+ 0	+ 0	+ 0	+ 0	+ 0	+ 0
Binary Number (10101000)	1	0	1	0	1	0	0	0
Calculate	1x128	0x64	1x32	0x16	1x8	0x4	0x2	0x1
Add Them Up	128	+ 0	+ 32	+ 0	+ 8	+ 0	+ 0	+ 0
Binary Number (00001011)	0	0	0	0	1	0	1	1
Calculate	0x128	0x64	0x32	0x16	1x8	0x4	1x2	1x1
Add Them Up	0	+ 0	+ 0	+ 0	+ 8	+ 0	+ 2	+ 1
Binary Number (00001010)	0	0	0	0	1	0	1	0
Calculate	0x128	0x64	0x32	0x16	1x8	0x4	1x2	0x1
Add Them Up	0	+ 0	+ 0	+ 0	+ 8	+ 0	+ 2	+ 0

Decimal to Binary Conversion

- Start in the 128 position (the most significant bit). Is the decimal number of the octet (n) equal to or greater than 128?
- If no, record a binary 0 in the 128 positional value and move to the 64 positional value
- If yes, record a binary 1 in the 128 positional value, subtract 128 from the decimal number, and move to the 64 positional value
- Repeat these steps through the 1 positional value

 Decimal to Binary Conversion: Convert decimal 168 to binary (168d=10101000b)

```
Is 168 > 128?

Yes, enter 1 in 128 position and subtract 128 (168-128=40) Is 40 > 64?

No, enter 0 in 64 position and move on Is 40 > 32?

Yes, enter 1 in 32 position and subtract 32 (40-32=8) Is 8 > 16?

No, enter 0 in 16 position and move on Is 8 > 8?

Equal. Enter 1 in 8 position and subtract 8 (8-8=0)
```

No values left. Enter 0 in remaining binary positions

128	64	32	16	8	4	2	1
1	0	1	0	1	0	0	0

IPv4 Addresses

- Routers and computers only understand binary, while humans work in decimal. It is important for you to gain a thorough understanding of these two numbering systems and how they are used in networking

Hexadecimal Number System

Hexadecimal and IPv6 Addresses

- To understand IPv6 addresses, we must be able to convert hexadecimal to decimal and vice versa
- Hexadecimal is a base sixteen numbering system, using the digits 0 through 9 and letters A to F
- It is easier to express a value as a single hexadecimal digit than as four binary bit
- Hexadecimal is used to represent IPv6 addresses and MAC addresses

Hexadecimal and IPv6 Addresses (cont.)

	Decimal
	0
١	1
١	2
١	3
١	4
١	5
١	6
١	7
١	8
١	9
ĺ	10
۱	11
١	12
١	13
	14
	15
ķ	

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal
0
1
2
3
4
5
6
7
8
9
А
В
С
D
E
F

- Hexadecimal and IPv6 Addresses (cont.)
 - IPv6 addresses are 128 bits in length. Every 4 bits is represented by a single hexadecimal digit. That makes the IPv6 address a total of 32 hexadecimal values
 - The figure shows the preferred method of writing out an IPv6 address, with each X representing four hexadecimal values
 - Each four hexadecimal character group is referred to as a hextet

Hexadecimal and IPv6 Addresses (cont.)

 Converting Between Hexadecimal and Decimal Numbering Systems

Video – Convert Between Hexadecimal and Decimal Numbering Systems

This video will cover the following:

- Characteristics of the Hexadecimal System
- · Convert from Hexadecimal to Decimal
- Convert from Decimal to Hexadecimal

Decimal to Hexadecimal Conversions

- Follow the steps listed to convert decimal numbers to hexadecimal values:
 - Convert the decimal number to 8-bit binary strings
 - Divide the binary strings in groups of four starting from the rightmost position
 - Convert each four binary numbers into their equivalent hexadecimal digit
- For example, 168 converted into hex using the threestep process:
 - 168 in binary is 10101000
 - 10101000 in two groups of four binary digits is 1010 and 1000
 - 1010 is hex A and 1000 is hex 8, so 168 is A8 in hexadecimal

Hexadecimal to Decimal Conversions

- Follow the steps listed to convert hexadecimal numbers to decimal values:
 - Convert the hexadecimal number to 4-bit binary strings
 - Create 8-bit binary grouping starting from the rightmost position
 - Convert each 8-bit binary grouping into their equivalent decimal digit
- For example, D2 converted into decimal using the three-step process:
 - D2 in 4-bit binary strings is 1110 and 0010
 - 1110 and 0010 is 11100010 in an 8-bit grouping
 - 11100010 in binary is equivalent to 210 in decimal, so **D2** is **210** is decimal

Do you have any questions or comments?

