MAIN MEMORY

PAGING - IMPORTANT FORMULAS

POWER OF 2

FOR MAIN MEMORY

Physical Address Space = Size of main memory (2^{M})

Size of main memory = Total number of frames \mathbf{x} Frame size

Frame size = Page size $(2^F = 2^P)$

Total number of frames = Size of main memory / Frame size

If number of frames in main memory = $2^{M} / 2^{F} = 2^{M-F} = 2^{X}$, then number of bits in frame number = X bits

If Page size = 2^{P} , then number of bits in page = $\frac{P}{P}$ bits

If size of main memory = 2^{M} , then number of bits in physical address = M bits

FOR PROCESS

Virtual Address Space = Size of process

Number of pages the process is divided = Process size / Page size

If process size = 2^{X} , then number of bits in virtual address space = X bits

FOR PAGE TABLE

Size of page table = Number of entries in page table \mathbf{x} Page table entry size

Number of entries in pages table = Number of pages the process is divided

Page table entry size = Number of bits in frame number + Number of bits used for optional fields, if any.

page number page offset p d m -n n

In general, if the given address consists of 'n' bits, then using 'n' bits, 2ⁿ locations are possible.

• Then, size of memory = 2^n x Size of one location.

If the memory is **byte-addressable**, then size of one location = 1 byte.

• Thus, size of memory = 2^n bytes.

If the memory is **word-addressable** where 1 word = m bytes, then size of one location = m bytes.

• Thus, size of memory = 2^n x m bytes.