Math 120 QR

Alex Hernandez Juarez
Fall 2024

Contents

Chapter 1		Page 2
1.1	12.1 Notes (Three Dimensional Coodinate Systems)	2
1.2	12.2 Notes (Vectors)	2
1.3	12.3 Notes (Dot Product)	4
1.4	12.4 Notes (Cross Product)	6
1.5	12.5 Notes (Equations of Lines and Planes)	9
1.6	12.6 Reading Notes (Cylinders and Quadric Surfaces)	12
Chapter 2		D 45
Chapter 2		Page 15
2.1	13.1 Reading Notes(Vector Functions and Space Curves)	15
2.2	13.2 Notes (Derivatives and Integrals of Vector Functions)	15
2.3	13.3 Notes (Arc Length and Curvature)	18
2.4	13.4 Notes (Motion in Space: Velocity and Acceleration)	20

Chapter 1

1.1 12.1 Notes (Three Dimensional Coodinate Systems)

Definition 1.1.1: Distance Formula

Defintion:

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Definition 1.1.2: Equation of a sphere

Defintion: An equation of a sphere with center C(h, k, l), and radius r is

$$(x-h)^2 + (y-k)^2 + (z-l)^2$$

In particular, if the center is the origin O, than an equation of the sphere is

$$x^2 + y^2 + z^2$$

1.2 12.2 Notes (Vectors)

Definition 1.2.1: Vector Addition

If \mathbf{u} and \mathbf{v} are vectors positioned so the initial point of \mathbf{v} is at the terminal point of \mathbf{u} , then the $\mathbf{sum}\ \mathbf{u}$ is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{v} .

Definition 1.2.2: Scalar Multiplication

If c is a scalar and \mathbf{v} is a vector, then the **scalar multiple** $c\mathbf{v}$ is the vector whose length is |c| times the length of \mathbf{v} and whose direction is the same as \mathbf{v} if c > 0 and is opposite to \mathbf{v} if c = 0 or $\mathbf{v} = 0$, then $c\mathbf{v} = 0$

Example 1.2.1:

Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, the vector **a** with representation \overrightarrow{AB} is:

$$a = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

Example 1.2.2:

If $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, then:

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$

$$\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$$

$$c\mathbf{a} = \langle ca_1, ca_2 \rangle$$

Similarly, for three demensional vectors,

$$\langle a_1,a_2,a_3\rangle + \langle b_1,b_2,b_3\rangle = \langle a_1+b_1,a_2+a_3+b_3\rangle$$

$$\langle a_1, a_2, a_3 \rangle - \langle b_1, b_2, b_3 \rangle = \langle a_1 - b_1, a_2 - a_3 - b_3 \rangle$$

$$c\langle a_1, a_2, a_3 \rangle = \langle ca_1, ca_2, ca_3 \rangle$$

Note:-

Properties of vectors: If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors in V_n and c and d are scalars than

- $\bullet \ \mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$
- a + (b + c) = (a + b) + c
- $\mathbf{a} + 0 = \mathbf{a}$
- a + a + -a = 0
- $c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$
- $\bullet (c+d)a = c\mathbf{a} + d\mathbf{a}$
- $(cd)\mathbf{a} = c(d\mathbf{a})$
- $l\mathbf{a} = \mathbf{a}$

1.3 12.3 Notes (Dot Product)

Definition 1.3.1: Dot Product

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **dot product** of **a** and **b** is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Properties of the Dot Product: If \mathbf{a}, \mathbf{b} , and \mathbf{c} are vectors in V_3 and \mathbf{c} is a scalar, then

- 1. $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$
- 2. $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
- 3. $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$
- 4. $(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$
- 5. $\mathbf{0} \cdot \mathbf{a} = 0$

Definition 1.3.2: Geometric Definition of the Dot Product

If θ is the angle between vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$$

Proof:

$$|AB|^2 = |OA|^2 + |OB|^2 - 2|OA||OB|\cos\theta$$

Corollary: If θ is the angle between nonzero vectors **a** and **b**, then

$$\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

Note:-

Two vectors \mathbf{a} and \mathbf{b} are orthogonal if an only if $\mathbf{a} \cdot \mathbf{b} = 0$

The direction angles of a nonzero vector **a** are the angles α , β , and γ (in the interval $[0,\pi]$) that **a** makes with the positive x-, y-, and z-axes, respectively .

The cosines of these direction angles, $\cos \alpha$, $\cos \beta$, and $\cos \gamma$, are called the **direction cosines** of the vector **a**. Using Corollary 6 with **b** replaced by **i**, we obtain:

$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{|\mathbf{a}||\mathbf{i}|} = \frac{a_1}{|\mathbf{a}|} \tag{1}$$

Similarly, we also have:

$$\cos \beta = \frac{a_2}{|\mathbf{a}|} \quad \text{and} \quad \cos \gamma = \frac{a_3}{|\mathbf{a}|}$$
 (2)

By squaring the expressions in Equations 8 and 9 and adding, we see that:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \tag{3}$$

We can also use Equations 8 and 9 to write:

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle = \langle |\mathbf{a}| \cos \alpha, |\mathbf{a}| \cos \beta, |\mathbf{a}| \cos \gamma \rangle = |\mathbf{a}| \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

Therefore,

$$\frac{1}{|\mathbf{a}|}\mathbf{a} = \langle \cos \alpha, \cos \beta, \cos \gamma \rangle \tag{4}$$

which says that the direction cosines of a are the components of the unit vector in the direction of a.

Definition 1.3.3: Projections

The scalar projection of **b** onto **a** (also called the **component of b along a**) is defined to be the signed magnitude of the vector projection, which is the number $|\mathbf{b}| \cos \theta$, where θ is the angle between **a** and **b**. This is denoted by $\text{comp}_{\mathbf{a}}\mathbf{b}$. Observe that it is negative if $\pi/2 < \theta \leqslant \pi$. The equation

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta = |\mathbf{a}| (|\mathbf{b}| \cos \theta)$$

shows that the dot product of a and b can be interpreted as the length of a times the scalar projection of b onto a. Since

$$|\mathbf{b}|\cos\theta = \frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}|} = \frac{\mathbf{a}}{|\mathbf{a}|}\cdot\mathbf{b}$$

the component of \mathbf{b} along \mathbf{a} can be computed by taking the dot product of \mathbf{b} with the unit vector in the direction of \mathbf{a} . We summarize these ideas as follows.

Scalar projection of b onto a: $\operatorname{comp}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$

Vector projection of b onto a: $\operatorname{proj}_a b = \left(\frac{a \cdot b}{|a|^2}\right) a = \frac{a \cdot b}{|a|^2} a$

1.4 12.4 Notes (Cross Product)

Definition 1.4.1: Cross Product

Given two nonzero vectors $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, suppose that a nonzero vector $\mathbf{c} = \langle c_1, c_2, c_3 \rangle$ is perpendicular to both \mathbf{a} and \mathbf{b} . Then $\mathbf{a} \cdot \mathbf{c} = 0$ and $\mathbf{b} \cdot \mathbf{c} = 0$, and so:

$$a_1c_1 + a_2c_2 + a_3c_3 = 0 (1)$$

$$b_1c_1 + b_2c_2 + b_3c_3 = 0 (2)$$

To eliminate c_3 , we multiply (1) by b_3 and (2) by a_3 and subtract:

$$(a_1b_3 - a_3b_1)c_1 + (a_2b_3 - a_3b_2)c_2 = 0 (3)$$

Equation (3) has the form $pc_1 + qc_2 = 0$, for which an obvious solution is $c_1 = q$ and $c_2 = -p$. So, a solution of (3) is:

$$c_1 = a_2 b_3 - a_3 b_2$$

$$c_2 = a_3 b_1 - a_1 b_3$$

Substituting these values into (1) and (2), we then get:

$$c_3 = a_1 b_2 - a_2 b_1$$

This means that a vector perpendicular to both \mathbf{a} and \mathbf{b} is:

$$\langle c_1, c_2, c_3 \rangle = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$

The resulting vector is called the **cross product** of \mathbf{a} and \mathbf{b} and is denoted by $\mathbf{a} \times \mathbf{b}$.

Definition 1.4.2: Cross Product of two vectors

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ then the **cross product** of \mathbf{a} and \mathbf{b} is:

$$\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$

Note:-

Determinant of order 2:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Note:-

Determinant of order 3:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

Definition 1.4.3: Second definition of cross product

Arithmetic Definition:

$$a \times b = \begin{bmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = |a||b|\sin(\theta)$$
$$\begin{bmatrix} a_2 & a_3 \\ b_2 & b_3 \end{bmatrix} i - \begin{bmatrix} a_1 & a_3 \\ b_1 & b_3 \end{bmatrix} j + \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 k \end{bmatrix}$$
$$= (a_2b_3 - a_3b_2)i - (a_1b_3 - a_3b_1)j + (a_1b_2 - a_2b_1)k$$

The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}

Example 1.4.1: Proof that $\mathbf{a} \times \mathbf{b}$ is orthogonal to both a

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} a_1 - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} a_2 + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} a_3$$

$$= a_1(a_2b_3 - a_3b_2) - a_2(a_1b_3 - a_3b_1) + a_3(a_1b_2 - a_2b_1)$$

$$= a_1a_2b_3 - a_1a_3b_2 - a_2a_1b_3 + a_2a_3b_1 + a_3a_1b_2 - a_3a_2b_1$$

$$= 0$$

Definition 1.4.4: sin definition of cross product

If θ is the angle between **a** and **b** (so $0 \le \theta \le \pi$), then the length of the cross product $\mathbf{a} \times \mathbf{b}$ is given by:

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin(\theta)$$

Proof:

$$\begin{aligned} |\mathbf{a} \times \mathbf{b}|^2 &= (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_1b_2 - a_2b_1)^2 \\ &= a_2^2b_3^2 - 2a_2a_3b_2b_3 + a_3^2b_2^2 + a_3^2b_1^2 - 2a_1a_3b_1b_3 + a_1^2b_3^2 + a_1^2b_2^2 - 2a_1a_2b_1b_2 + a_2^2b_1^2 \\ &= (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2 \\ &= |\mathbf{a}|^2|\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2 \\ &= |\mathbf{a}|^2|\mathbf{b}|^2 - |\mathbf{a}|^2|\mathbf{b}|^2\cos^2\theta \quad \text{(by Theorem 12.3.3)} \\ &= |\mathbf{a}|^2|\mathbf{b}|^2(1 - \cos^2\theta) \\ &= |\mathbf{a}|^2|\mathbf{b}|^2\sin^2\theta \end{aligned}$$

Taking square roots and observing that $\sqrt{\sin^2 \theta} = \sin \theta$ because $\sin \theta \ge 0$ when $0 \le \theta \le \pi$, we have

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$$

Note:-

Two nonzero vectors **a** and **b** are parallel if and only if

$$\mathbf{a} \times \mathbf{b} = 0$$

Example 1.4.2: Geometric interpretation of $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$

If a and b are represented by directed line segments with the same inital point, then they determine a parallelogram with base $|\mathbf{a}|$, altitude $\mathbf{b}\sin(\theta)$ and area

$$A = |\mathbf{a}|(|\mathbf{b}|\sin\theta) = |\mathbf{a} \times \mathbf{b}|$$

Thus we have the following way of interpreting the magnitude of a cross product:

The length of the cross product of $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b}

Note:-

If we apply the following theorem:

The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} , and

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$$

to the standard basis vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ using $\theta = \frac{\pi}{2}$, we obtain

$$\mathbf{i} \times \mathbf{j} = \mathbf{k}$$
 $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ $\mathbf{k} \times \mathbf{i} = \mathbf{j}$

$$\mathbf{j} \times \mathbf{i} = -\mathbf{k}$$
 $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$ $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$

Note:-

If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors and \mathbf{c} is a scalar, then

- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 2. $(c\mathbf{a}) \times \mathbf{b} = c(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (c\mathbf{b})$
- 3. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$
- 4. $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$
- 5. $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
- 6. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$

Example 1.4.3: Proof of property 5 of cross products

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, and $\mathbf{c} = \langle c_1, c_2, c_3 \rangle$, then:

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = a_1(b_2c_3 - b_3c_2) + a_2(b_3c_1 - b_1c_3) + a_3(b_1c_2 - b_2c_1)$$

$$=a_1b_2c_3-a_1b_3c_2+a_2b_3c_1-a_2b_1c_3+a_3b_1c_2-a_3b_2c_1$$

$$=(a_2b_3-a_3b_2)c_1+(a_3b_1-a_1b_3)c_2+(a_1b_2-a_2b_1)c_3$$

$$= (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

Definition 1.4.5: Triple Products

The product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ that occurs in Property 5 is called the *scalar triple product* of the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} .

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

The geometric significance of the scalar triple product can be seen by considering the parallelepiped determined by the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} . The area of the base parallelegram is $A = |\mathbf{b} \times \mathbf{c}|$. If θ is the angle between \mathbf{a} and $\mathbf{b} \times \mathbf{c}$, then the height h of the parallelepiped is $h = |\mathbf{a}| |\cos \theta|$. (We must use $|\cos \theta|$ instead of $\cos \theta$ in case $\theta > \pi/2$.) Therefore, the volume of the parallelepiped is

$$V = Ah = |\mathbf{b} \times \mathbf{c}||\mathbf{a}||\cos\theta| = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

Thus, we have proved the following formula: The volume of the parallelepiped determined by the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} is the magnitude of their scalar triple product:

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

Note:-

If we use the formula in $V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$ and discover that the volume of the parallelepiped determined by \mathbf{a} , \mathbf{b} , and \mathbf{c} is 0, then the vectors must lie in the same plane; that is, they are coplanar

1.5 12.5 Notes (Equations of Lines and Planes)

Definition 1.5.1: Hi

Likewise, a line L in three-dimensional space is determined when we know a point $P_0(x_0, y_0, z_0)$ on L and a direction for L, which is conveniently described by a vector \mathbf{v} parallel to the line. Let P(x, y, z) be an arbitrary point on L and let $\mathbf{r_0}$ and \mathbf{r} be the position vectors of P_0 and P (that is, they have representations $\overrightarrow{OP_0}$ and \overrightarrow{OP}). If \mathbf{a} is the vector with representation $\overrightarrow{P_0P}$, as in Figure 1, then the Triangle Law for vector addition gives

$$\mathbf{r} = \mathbf{r}_0 + \mathbf{a}$$
.

Since **a** and **v** are parallel vectors, there is a scalar t such that $\mathbf{a} = t\mathbf{v}$ Thus

$$r = r_0 + t\mathbf{v}$$

Note:-

If the vector \mathbf{v} that gives the direction of the line L is written in component form as

$$\mathbf{v} = \langle a, b, c \rangle$$
,

then we have $t\mathbf{v} = \langle ta, tb, tc \rangle$. We can also write $\mathbf{r} = \langle x, y, z \rangle$ and

$$\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle,$$

so the vector equation (1) becomes

$$\langle x, y, z \rangle = \langle x_0 + ta, y_0 + tb, z_0 + tc \rangle.$$

Two vectors are equal if and only if corresponding components are equal. Therefore we have the three scalar equations:

$$x = x_0 + at$$
 $y = y_0 + bt$ $z = z_0 + ct$

Example 1.5.1: Line example

Find a vector equation and parametric equations for the line that passes through the point (5, 1, 3) and is parallel to the vector $\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$. Here $\mathbf{r}_0 = \langle 5, 1, 3 \rangle = 5\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $\mathbf{v} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$, so the vector equation (1) becomes

$$\mathbf{r} = (5\mathbf{i} + \mathbf{j} + 3\mathbf{k}) + t(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$$

or

$$\mathbf{r} = (5+t)\mathbf{i} + (1+4t)\mathbf{j} + (3-2t)\mathbf{k}$$

Parametric equations are

$$x = 5 + t$$
 $y = 1 + 4t$ $z = 3 - 2t$

Note:-

In general, if a vector $\mathbf{v} = \langle a, b, c \rangle$ is used to describe the direction of a line L, then the numbers a, b, and c are called *direction numbers* of L. Since any vector parallel to \mathbf{v} could also be used, we see that any three numbers proportional to a, b, and c could also be used as a set of direction numbers for L.

Another way of describing a line L is to eliminate the parameter t from Equations 2. If none of a, b, or c is 0, we can solve each of these equations for t:

$$t = \frac{x - x_0}{a}$$
 $t = \frac{y - y_0}{b}$ $t = \frac{z - z_0}{c}$

Equating the results, we obtain

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

These equations are called symetric equations of L

Definition 1.5.2: Line segment

The line segment from r_0 to r_1 is given by the vector equation

$$\mathbf{r}(t) = (1 - t)\mathbf{r_0} + tr_1 \quad 0 \le t \le 1$$

Definition 1.5.3: Planes

A plane in space is determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector \mathbf{n} that is orthogonal to the plane. This orthogonal vector \mathbf{n} is called a **normal vector**. Let P(x, y, z) be an arbitrary point in the plane, and let $\mathbf{r_0}$ and \mathbf{r} be the position vectors of P_0 and P. Then the vector $\mathbf{r} - \mathbf{r_0}$ is represented by $\overrightarrow{P_0P}$. The normal vector \mathbf{n} is orthogonal to every vector in the given plane. In particular, \mathbf{n} is orthogonal to $\mathbf{r} - \mathbf{r_0}$ and so we have

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0 \tag{1.1}$$

which can be rewritten as

$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0 \tag{1.2}$$

These can be reffered to as the vector equation of the plane

To obtain a scalar equation for the plane, we write $\mathbf{n} = \langle a, b, c \rangle$, $\mathbf{r} = \langle x, y, x \rangle$, and $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$. then the vector equation becomes:

$$\langle a, b, c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

Expanding the left side of this equation gives the following:

A scalar equation of the plane through the point $P_0(x_0, y_0, z_0)$ with normal vector $\mathbf{n} = \langle a, b, c \rangle$ is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

by colecting terms can be rewritten as:

$$ax + by + cz + d = 0$$

Definition 1.5.4: Distance of a plane

In order to find a formula for the distance D from a point $P_1(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0, we let $P_0(x_0, y_0, z_0)$ be any point in the given plane and \mathbf{b} be the vector corresponding to P_0P_1 . Then

$$\mathbf{b} = \langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle$$

From Figure, you can see that the distance D from P_1 to the plane is equal to the absolute value of the scalar projection of **b** onto the normal vector $\mathbf{n} = \langle a, b, c \rangle$. Thus,

$$D = |\text{comp}_{\mathbf{n}}\mathbf{b}| = \frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|}$$

$$= \frac{|a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0)|}{\sqrt{a^2 + b^2 + c^2}}$$

$$= \frac{|(ax_1 + by_1 + cz_1) - (ax_0 + by_0 + cz_0)|}{\sqrt{a^2 + b^2 + c^2}}$$

1.6 12.6 Reading Notes (Cylinders and Quadric Surfaces)

Definition 1.6.1: Cylinder

A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given line and pass through a given plane curve.

Definition 1.6.2: Quadric Surfaces

A Quadric Surface is the graph of a second-degree equation in three variables x, y, and z. The most general such equation is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fzx + Gx + Hy + Iz + J = 0$$

where A, B, C, ..., J are constants, but by translation and rotation it can be brought into one of the two standard forms

$$Ax^{2} + By^{2} + Cz^{2} + J = 0$$
 or $Ax^{2} + By^{2} + Iz = 0$

Example 1.6.1: Graphs of Quadric Surfaces PT 1

Ellipsoid:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

All traces are ellipses. If a=b=c, the ellipsoid is a sphere.

$$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.

$$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{h^2}$$

Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where c < 0 is illustrated,

Example 1.6.2: Quadric Surfaces Pt 2

$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Horizontal traces are ellipses. Vertical traces in the planes x=k and y=k are hyperbolas if $k\neq 0$ but are pairs of lines if k=0.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Horizontal traces in z = k are ellipses if k > c or k < -c. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

14

Chapter 2

2.1 13.1 Reading Notes(Vector Functions and Space Curves)

Definition 2.1.1: Vector Value Functions

A vector-valued function, or vector function, is simply a function whose domain is a set of real numbers and whose range is a set of vectors. We are most interested in vector functions r whose values are three-dimensional vectors. If f(t), g(t), and h(t) are the components of the vector $\mathbf{r}(t)$, then f, g, and g are real-valued functions called the **component functions** of r and we can write

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

We use the letter t to denote the independent variable because it represents time in most applications of vector functions.

Definition 2.1.2: Limit of Vectors

The **limit** of a vector function **r** is defined by taking the limits of its component functions as follows. If $(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle)$, then

$$\lim_{t \to a} \mathbf{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$$

provided the limits of the component functions exist.

Definition 2.1.3: Space Curves

here is a close connection between continuous vector functions and space curves. Suppose that f, g, and h are continuous real-valued functions on an interval I. Then the set C of all points (x, y, z) in space, where

$$x = f(t)$$
 $y = g(t)$ $z = h(t)$

and (t) varies throughout the interval I, is called a **space curve**. The equations in are called **parametric** equations of C and t is called a **parameter**.

2.2 13.2 Notes (Derivatives and Integrals of Vector Functions)

Definition 2.2.1: Derivatives

The derivative \mathbf{r}' of a vector function \mathbf{r} is defined in much the same way as for real-valued functions:

$$\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

Definition 2.2.2: Derivatives of vectors pt 2

he following theorem gives us a convenient method for computing the derivative of a vector function \mathbf{r} : just differentiate each component of \mathbf{r} . **Theorem** If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, and h are differentiable functions, then

$$\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$$

Example 2.2.1: Proof of Definition 2.2.2

$$\mathbf{r}'(t) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} [\mathbf{r}(t + \Delta t) - \mathbf{r}(t)]$$

$$= \lim_{\Delta t \to 0} \frac{1}{\Delta t} [\langle f(t + \Delta t), g(t + \Delta t), h(t + \Delta t) \rangle - \langle f(t), g(t), h(t) \rangle]$$

$$= \lim_{\Delta t \to 0} \left\langle \frac{f(t + \Delta t) - f(t)}{\Delta t}, \frac{g(t + \Delta t) - g(t)}{\Delta t}, \frac{h(t + \Delta t) - h(t)}{\Delta t} \right\rangle$$

$$= \left\langle \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}, \lim_{\Delta t \to 0} \frac{g(t + \Delta t) - g(t)}{\Delta t}, \lim_{\Delta t \to 0} \frac{h(t + \Delta t) - h(t)}{\Delta t} \right\rangle$$

$$= \langle f'(t), g'(t), h'(t) \rangle$$

A unit vector that has the same direction as the tangent vector is called the \mathbf{unit} tangent vector \mathbf{T} and is defined by

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$$

Definition 2.2.3: Differentiation Rules

Proof: **Theorem** Suppose \mathbf{u} and \mathbf{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Then

- 1. $\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$
- 2. $\frac{d}{dt}[c\mathbf{u}(t)] = c\mathbf{u}'(t)$
- 3. $\frac{d}{dt}[f(t)\mathbf{u}(t)] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$
- 4. $\frac{d}{dt}[\mathbf{u}(t) \cdot \mathbf{v}(t)] = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$
- 5. $\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$
- 6. $\frac{d}{dt}[\mathbf{u}(f(t))] = f'(t)\mathbf{u}'(f(t))$

(Chain Rule)

Noto

We use Formula 4 to prove the following theorem. **Theorem** If $|\mathbf{r}(t)| = c$ (a constant), then $\mathbf{r}'(t)$ is orthogonal to $\mathbf{r}(t)$ for all t.

Definition 2.2.4: Interation of Vectors

The **definite integral** of a continuous vector function $\mathbf{r}(t)$ can be defined in much the same way as for real-valued functions except that the integral is a vector. But then we can express the integral of \mathbf{r} in terms of the integrals of its component functions f, g, and h as follows. (We use the notation of Chapter 5.)

$$\int_{a}^{b} \mathbf{r}(t) dt = \lim_{n \to \infty} \sum_{j=1}^{n} \mathbf{r}(t_{j}^{*}) \Delta t$$

$$= \lim_{n \to \infty} \left[\left(\sum_{i=1}^{n} f(t_{i}^{*}) \Delta t \right) \mathbf{i} + \left(\sum_{i=1}^{n} g(t_{i}^{*}) \Delta t \right) \mathbf{j} + \left(\sum_{i=1}^{n} h(t_{i}^{*}) \Delta t \right) \mathbf{k} \right]$$

and so

$$\int_{a}^{b} \mathbf{r}(t) dt = \left(\int_{a}^{b} f(t) dt \right) \mathbf{i} + \left(\int_{a}^{b} g(t) dt \right) \mathbf{j} + \left(\int_{a}^{b} h(t) dt \right) \mathbf{k}$$

This means that we can evaluate an integral of a vector function by integrating each component function. We can extend the Fundamental Theorem of Calculus to continuous vector functions as follows:

$$\int_{a}^{b} \mathbf{r}(t) dt = \mathbf{R}(t) \Big|_{a}^{b} = \mathbf{R}(b) - \mathbf{R}(a)$$

where **R** is an antiderivative of **r**, that is, $\mathbf{R}'(t) = \mathbf{r}(t)$. We use the notation $\int \mathbf{r}(t) dt$ for indefinite integrals (antiderivatives).

2.3 13.3 Notes (Arc Length and Curvature)

Definition 2.3.1: Length of a space curve

Suppose that the curve has the vector equation $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, $a \leq t \leq b$, or, equivalently, the parametric equations x = f(t), y = g(t), z = h(t), where f', g', and h' are continuous. If the curve is traversed exactly once as t increases from a to b, then it can be shown that its length is

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}} dt$$
 (2.1)

$$= \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt \tag{2.2}$$

Notice that both of the arc length formulas (1) and (2) can be put into the more compact form

$$L = \int_{a}^{b} |\mathbf{r}'(t)| dt \tag{2.3}$$

because, for plane curves $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$,

$$|\mathbf{r}'(t)| = |f'(t)\mathbf{i} + g'(t)\mathbf{j}| = \sqrt{[f'(t)]^2 + [g'(t)]^2}$$

and for space curves $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$,

$$|\mathbf{r}'(t)| = |f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}| = \sqrt{[f'(t)]^2 + [g'(t)]^2 + [h'(t)]^2}$$

A single curve C can be respresented by more than one vector function. For instance the twisted cube

$$r_1(t) = \langle t, t^2, t^3 \rangle \quad 1 \leqslant t \leqslant 2 \tag{2.4}$$

could also be represented by the function

$$r_2(u) = \langle e^u, e^{2u}, e^{3u} \rangle \quad o \le u \le \ln 2$$
 (2.5)

where the connection between the parameters t and u is given by $t = e^u$ We say that equations 2.4 and 2.5 are parameterizations of the curve C. If we were to use Equation 2.3 to compute the length of C using Equations 2.4 and 2.5, we would get the same answer. This is because arc length is a geometric property of the curve and hence is independent of the parametrization that is used.

Definition 2.3.2: Arc Length Function

Now we supose that the curve C is a cruve given by a vector function

$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k} \quad a \le t \le b$$

where \mathbf{r}' is continuous and C is transvered exactly once as t increases from a to b. We define its \mathbf{arc} length functions by

$$s(t) = \int_{a}^{t} |\mathbf{r}'(u)| du = \int_{a}^{t} \sqrt{\left(\frac{dx}{du}\right)^{2} + \left(\frac{dy}{du}\right)^{2} + \left(\frac{dz}{du}\right)^{2}} du \tag{2.6}$$

Thus s(t) is the length of part C between $\mathbf{r}(a)$ and $\mathbf{r}(t)$. If we differentiate both sides of equation 2.6 using part 1 of the Fundamental Theorem of Calculus, we obtain

$$\frac{ds}{dt} = |\mathbf{r}(t)|\tag{2.7}$$

It is often useful to **paramterize a curve with respect to arc length** because arc length arises naturally from the shape of the curve and does not depend on a particular coordinate system of a particular parametrization.

Definition 2.3.3: Curvature

A parametrization $\mathbf{r}(t)$ is called **smooth** on an interval I if \mathbf{r}' is continuous and $\mathbf{r}'(t) \neq 0$ on I. A curve is called smooth if it has a smooth parameterization. A smooth corner has no cusp or sharp corner; when the tangent vector turns it does so continuously.

If C is a smooth curve defined by the vector \mathbf{r} , recall that the unit tangent vector $\mathbf{T}(t)$ is given by

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$$

The curvature of a curve is

$$k = \left| \frac{d\mathbf{T}}{ds} \right| \tag{2.8}$$

where T is the unit tangent vector

The curvature is easier to compute if it is easier to compute if it is expressed in terms of the parameter t instead of s, so we use the chain rule

$$\frac{d\mathbf{T}}{dt} = \frac{d\mathbf{T}}{ds}\frac{ds}{dt} \Rightarrow k = \left|\frac{d\mathbf{T}}{s}\right| = \left|\frac{d\mathbf{T}/dt}{ds/dt}\right|$$

but $ds/dt = |\mathbf{r}'(t)|$ from equation 2.7

$$k(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} \tag{2.9}$$

The curvature of the curve given by the vector function \mathbf{r} is

$$k(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}^n(t)|}{|\mathbf{r}'(t)|^3}$$
(2.10)

Note:-

For the special case of a plane curve with equation y = f(x), we choose x as the parameter and write $\mathbf{r}(x) = x\mathbf{i} + f(x)\mathbf{j}$. Then $\mathbf{r}'(x) = \mathbf{i} + f'(x)\mathbf{j}$ and $\mathbf{r}''(x) = f''(x)\mathbf{j}$. Since $\mathbf{i} \times \mathbf{j} = \mathbf{k}$ and $\mathbf{j} \times \mathbf{j} = 0$, it follows that $\mathbf{r}'(x) \times \mathbf{r}''(x) = f'(x)\mathbf{k}$. We also have $|\mathbf{r}'(x)| = \sqrt{1 + [f'(x)]^2}$ and so, by Theorem 10,

$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}$$
(2.11)

Note:-

At a given point on a smooth space curve $\mathbf{r}(t)$, there are many vectors that are orthogonal to the unit tangent vector $\mathbf{T}(t)$. We single out one by observing that, because $|\mathbf{T}(t)| = 1$ for all t, we have $\mathbf{T}(t) \cdot \mathbf{T}'(t) = 0$ by Theorem 13.2.4, so $\mathbf{T}'(t)$ is orthogonal to $\mathbf{T}(t)$. Note that, typically, $\mathbf{T}'(t)$ is itself not a unit vector. But at any point where $\kappa \neq 0$ we can define the *principal unit normal vector* $\mathbf{N}(t)$ (or simply *unit normal*) as

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$$

We can think of the unit normal vector as indicating the direction in which the curve is turning at each point. The vector

$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

Note:-

We summarize here the formulas for unit tangent, unit normal and binormal vectors, and curvature.

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \quad \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} \quad \mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

Definition 2.3.4: Torision

The **torsion** of a curve is

$$\tau = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N}$$

Torsion is easier to compute if it is expressed in terms of the parameter t instead of s, so we use the Chain Rule to write

$$\frac{d\mathbf{B}}{dt} = \frac{d\mathbf{B}}{ds} \frac{ds}{dt} \quad \text{so} \quad \frac{d\mathbf{B}}{ds} = \frac{d\mathbf{B}/dt}{ds/dt} = \frac{\mathbf{B}'(t)}{|\mathbf{r}'(t)|}$$
$$\tau(t) = \frac{-\mathbf{B}'(t) \cdot \mathbf{N}(t)}{|\mathbf{r}'(t)|}$$

Theorem The torsion of the curve given by the vector function \mathbf{r} is

$$\tau(t) = \frac{[\mathbf{r}'(t) \times \mathbf{r}''(t)] \cdot \mathbf{r}'''(t)}{|\mathbf{r}'(t) \times \mathbf{r}''(t)|^2}$$

2.4 13.4 Notes (Motion in Space: Velocity and Acceleration)