

Today's Topics

Sharif University of Technology, Spring 2021

- · Fixed Point
- · Floating Point

Copyright Notice

- Parts (text & figures) of this lecture adopted from:
 - -Computer Organization & Design, The Hardware/Software Interface, 3rd Edition, by D. Patterson and J. Hennessey, MK publishing, 2005.
 - "Computer Organization & Design" handouts, by Prof. Kumar, UIUC, Fall 2007.

Lecture 10

Sharif University of Technology, Spring 2021

Real Numbers in Computers

- · Fixed-Point Representation
 - Example: $d_{23}d_{22}...d_1d_0.f_0f_1f_2f_3f_4f_5f_6f_7$
 - 24-bit: integer bits
 - 8-bit: fraction bits
- Application
 - Used in CPUs with no floating-point unit
 - Embedded microprocessors and microcontrollers
 - Digital Signal Processing (DSP) applications

Lecture 1

Sharif University of Technology, Spring 2021

Real Numbers in Computers

- · Fixed-Point Representation
 - Pros
 - · Simple hardware
 - · Fast computation
 - Cons
 - · Low precision
 - · Small range

Lecture 10

Sharif University of Technology, Spring 2021

Real Numbers in Computers

- · Floating-Point Representation
 - Scientific notation in base 2
 - 1.xxxxxx_{two} * 2^{yyyy}

Lecture 10

Sharif University of Technology, Spring 2021

STUMP .

Floating-Point Notation

- FP Notation Consists of:
 - Fraction (F): 23 bits
 - Exponent (E): 8 bits
 - Sign bit (S)
 - Also called, single precision floating-point
- · N = (-1)5 * F * 2E

	31	30		24	23	22	21		1	0]
۰	5	E	Ехро	nen	t	Fraction					
	Lane	10		Charle I Is	i compaign	f Taska	Janes Car	in - 2021		7	_

Floating-Point Notation (cont.)

- Pros (compared to fixed-point)
 - Very Wide Range
 - More precision bits
- Cons (compared to fixed-point)
 - Arithmetic operation more complicated
 - HW more complicated
 - More time-consuming

Ð	5		Expo	nen	t		Fr	acti	on		
	31	30		24	23	22	21		1	0	
	More Time-consuming										

Floating-Point Notation (cont.)

- · Precision versus Range
- Wider range → less precision?
- More precision -> smaller range?

	31	30		24	23	22	21		1	0	
= 0	S	E	Ехро	nen	t	Fraction					
Ι.	Lect	ure 10		Sharif Ur	niversity	of Techno	logy Spr	ina 2021		9	

Floating-Point Notation (cont.)

- IEEE 754 FP Standard
 - N = (-1)5 * (1 + F) * 2E
 - Significand: 1 + F
 - Fraction: F
 - Used in MIPS and most microprocessors

Floating-Point Notation (cont.)

- · Overflow:
 - Can we have overflow in FP notation?
 - Exponent too large to fit in "Exponent" field
- · Underflow:
 - Non-zero fraction so small to represent
 - · Negative exponent too large to fit

	31 30 24 23				22	22 21 1					
Ð	5	E	Ехро	nen	nent		Fraction				
	Lect	ure 10		Sharif Ur	niversity :	of Techno	loav. Spr	ina 2021		11	

Floating-Point Notation (cont.)

- · Biased-Notation in Exponent Field
 - Used in IEEE 754 FP Standard
 - In order to compare FP numbers faster
 - Uses a bias of 127 in single-precision FP
 - · N = (-1)^S * (1 + F) * 2^(E-bias)

Lecture 10

Sharif University of Technology, Spring 2021

12

Floating-Point Notation (cont.)

- · Biased-Notation in Exponent Field
 - Uses a bias of 127 in single-precision FP
 - N = $(-1)^5$ * (1 + F) * $2^{(E-bias)}$
 - · 0 reserved
 - (-126) represented by -126+127 = 1
 - · (-1) represented by -1+127 = 126
 - (0) represented by 0+127 = 127
 - (+1) represented by 1+127 = 128
 - · (+127) represented by 127+127 = 254
 - · 255 reserved

ecture 10 Sharif University of Technology, Spring 2021

Floating-Point Notation (cont.)

- · Double-Precision Floating-Point
 - Uses two words
 - Reduces chances of overflow & underflow
 - Format
 - · Fraction (F): 52 bits
 - · Exponent (E): 11 bits
 - Sign bit (S)
 - Uses a bias of 1023 in double-precision FP

Lactura

ture 10 Sharif University of Technology, Spring 2021

Floating-Point Notation (cont.)

- Double-Precision Floating-Point
 - Fraction (F): 52 bits
 - Exponent (E): 11 bits
 - Sign bit (S)

Lecture 10 Sharif University of Technology, Spring 2021

Floating-Point Notation (cont.)

Single P	recision	Double f	Precision	Object Represented		
Exponent	Exponent Fraction		Fraction			
0	0	0	0	0		
0	Nonzero	0	Nonzero	Denormalized		
1-254	Anything	1-2046	Anything	FP No		
255	255 0		0	Infinity		
255	Nonzero	2047	Nonzero	NaN		

Lecture 10

Sharif University of Technology, Spring 2021

Floating-Point Notation (cont.)

- N = (-1)5 * (1 + F) * 2E
- · Questions on Single Precision FP:
 - Smallest positive number?
 - · 1.0000 0000 0000 0000 0000 000_{two} * 2⁻¹²⁶
 - Smallest absolute negative number?

•	-1.0000	0000	0000	0000	0000	000 _{two}	*	2-126

Floating-Point Notation (cont.)

- · N = (-1)5 * (1 + F) * 2E
- · Questions on Single Precision FP:

Lecture 10

Sharif University of Technology, Spring 2021

Floating-Point Notation (cont.)

- · Denormalized Numbers
 - Smallest positive normalized number
 - = 1.0000 0000 0000 0000 0000 000_{two} * 2⁻¹²⁶
 - = 1. two * 2-126
 - Smaller positive numbers using exponent 0
 - = 0.0000 0000 0000 0000 0000 001_{two} * 2⁻¹²⁶
 - = 1. _{two} * 2⁻¹⁴⁹

Sharif University of Technology, Spring 2021

Floating-Point Notation (cont.)

- Practice:
 - Represent following number in IEEE 754 single-precision FP
 - · (-0.75)
 - $=-\frac{3}{4}=-3 * 2^{-2}=-11_{two} * 2^{-2}=-0.11_{two}$
 - $= -1.1_{two} * 2^{-1} = -1.1_{two} * 2^{127-1} = -1.1_{two} * 2^{126}$

	31	30		24	23	22	21		1	0		
	5	ŧ	Ехро	nen	t	Fraction						
5 D	1		0111	1110		1000	00000	00000	00000	0000		

Sharif University of Technology, Spring 2021

Floating-Point Notation (cont.)

- FP Addition
 - Example:
 - 1.000_{two} * 2⁻¹ + -1.110_{two} * 2⁻²
 - 1.0000_{two} * 2-1 + -0.1110_{two} * 2-1
 - = 0.0010 * 2-1
 - = 1.0 * 2-4

Sharif University of Technology, Spring 2021

Floating-Point Notation (cont.)

- Another Practice:
 - Convert (7.75) in IEEE 754 single-precision FP
 - $= 7 + \frac{3}{4} = 111_{two} * 2^{0} + 11_{two} * 2^{-2} =$ $= 1.11_{two} * 2^2 + 0.0011_{two} * 2^2$
 - $= 1.1111_{two} * 2^2$
 - $= 1.1111_{two} * 2^{2+127} = 1.1111_{two} * 2^{129}$

	31	30		24	23	22	21		1	0	
	5	ŧ	Ехро	nen	t	Fraction					
D	0		1000	0001		11110	00000	00000	00000	0000	

Sharif University of Technology, Spring 2021

Sharif University of Technology, Spring 2021

Backup