

Algoritmos baseados em filtragem colaborativa

Prof. Dr. Marcelo G. Manzato e Arthur Fortes da Costa

Filtragem Colaborativa (FC)

Abordagem mais conhecida para se gerar recomendações

- Usada pela maioria dos sistemas comerciais
- Bem entendida, vários algoritmos e versões
- Aplicável em praticamente qualquer domínio (livros, filmes, jogos, ...)

Usar a "sabedoria da multidão" para recomendar itens.

Suposições

- Usuários fornecem avaliações para itens visitados;
- Indivíduos que tinham gostos similares no passado continuarão tendo gostos similares no futuro;
- Preferências permanecem estáveis e consistentes ao longo do tempo.

Tipos de entradas e saídas

(Abordagens tradicionais)

Tipos de Filtragem Colaborativa

A FC pode ser dividida em:

- Baseada em memória
- Baseada em modelo

Abordagens <u>baseadas em memória</u>, podem ser subdivididas em:

1 Vizinhança de usuários

Vizinhança de itens

FC baseada em vizinhança de usuários

Algoritmo

Dado um usuário <u>u</u> e um item <u>i</u> ainda não visto por <u>u</u>:

- 1. Encontre um conjunto de usuários que tenham preferências parecidas com **u** e que tenham avaliado **i**;
- 2. Use (por exemplo) a média de suas avaliações para predizer o nível de satisfação de **u** por **i**;
- 3. Faça isso para todos os itens que **u** ainda não conhece, e recomende os melhores avaliados.

Exemplo

Algumas questões iniciais

- Como saber quais usuários são similares?
- Como calcular a similaridade?
- Quantos vizinhos devemos considerar?
- Como calcular uma predição ou ranking com base nas avaliações dos vizinhos?

Na prática

Similaridades:
Pearson,
Cosseno,
Jaccard, etc.

	ltem1	ltem2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

 $sim(u,v) = \frac{\sum_{i \in I_{ou}} (r_{ui} - \overline{r_{u}})(r_{vi} - \overline{r_{v}})}{\sqrt{\sum_{i \in I_{ou}} (r_{ui} - \overline{r_{u}})^{2}} \sqrt{\sum_{i \in I_{ou}} (r_{vi} - \overline{r_{v}})^{2}}}$ sim = 0,83 sim = 0,60 sim = 0,00 sim = -0,76

sim = 0,83 sim = 0,60 sim = 0,00 $pred(u,i) = \overline{r}_u + \frac{\sum_{v \in U_u} sim(u,v)(r_{vi} - \overline{r}_v)}{\sum_{v \in U_u} sim(u,v)}$

U_u: conj. de usuários mais similares a u que avaliaram

$$\overline{r_{Alice}}$$
= 4 $\overline{r_{User1}}$ = 2.4 $\overline{r_{User2}}$ = 3.8 ...

$$\rightarrow$$
 pred(Alice, Item5) = 4 + [1 / (0.83 + 0.60)] * [0.83 * (3 - 2.4) + 0.60 * (5 - 3.8)] = 4.85

$$\rightarrow$$
 score(Alice, Item5) = 0.83 + 0.60 = 1.43

(média ponderada)

Cuidados

Número de itens co-avaliados

 Em especial para bases muito esparsas, esse número pode ser insuficiente

Escolha do no. de vizinhos mais próximos (k)

 Valores muito baixos ou muito altos podem reduzir a acurácia do sistema

Escalabilidade

 Normalmente sistemas têm milhares de usuários e milhares de produtos

FC baseada em vizinhança de itens

Usuário assistiu:

Recomendação

Algoritmo

Dado um usuário <u>u</u> e um item <u>i</u> ainda não visto por <u>u</u>:

- 1. Encontre um conjunto de itens que tenham avaliações parecidas com *i* e que tenham sido avaliados por *u*;
- Use (por exemplo) a média de avaliações de u desses itens para predizer o nível de satisfação de u por i;
- 3. Faça isso para todos os itens que **u** ainda não conhece, e recomenda os melhores avaliados

Exemplo

Na prática

$\sum_{u \in U_{ij}} (r_{ui} - \overline{r_i})(r_{uj} - \overline{r_j})$	
$sim(i,j) = \frac{\sum_{u \in U_{ij}} (r_{ui} - \overline{r_i})^2}{\sqrt{\sum_{u \in U_{ij}} (r_{uj} - \overline{r_j})^2} \sqrt{\sum_{u \in U_{ij}} (r_{uj} - \overline{r_j})^2}}$	$\overline{)^2}$

	ltem1	ltem2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

k = 2 itens mais
similares a Item5

pred(Alice, Item5)

$$pred(u,i) = \frac{\sum_{j \in I_u} sim(i,j)r_u}{\sum_{j \in I_u} sim(i,j)}$$

I_u: conj. de itens mais similares a i que foram avaliados por

Pré-processamento para FC

FC baseada em vizinhança de itens não resolve por si só o problema da escalabilidade.

Por outro lado

- Possibilidade de calcular antecipadamente (off-line) a similaridade entre todos os pares de itens
- Similaridade de itens tende a ser mais estável do que a similaridade de usuários
- Em tempo de execução, vizinhança usada é pequena, já que contém apenas itens que o usuário avaliou

Abordagens de FC baseadas em modelo

Algoritmos mais conhecidos

- Fatoração de matrizes via:
 - Singular Value Decomposition
 - Gradiente Descendente
- FunkSVD
- SVD++
- Factorization Machines
- Etc.

Singular Value Decomposition

Técnica algébrica que decompõe uma matriz M em um produto de três matrizes:

Usando apenas os k primeiros valores singulares (fatores mais importantes), é possível aproximar M.

Singular Value Decomposition

Singular Value Decomposition

Fatoração de matrizes

Problemas

- Lentidão na decomposição
- Valores desconhecidos (ratings) são interpretados como "zero"

Solução:

- Usar apenas valores conhecidos da matriz de interações
- Treinar as matrizes U e V com gradiente descendente,
 minimizando o erro entre a nota real e a predita

Fatoração de Matrizes

Filtragem Colaborativa

Baseada em memória

 Boa para detectar relacionamentos fortes entre itens próximos entre si (visão local)

Baseada em modelo

 Boa para capturar relações não aparentes na base de dados (visão global)

Filtragem colaborativa

Vantagens

- Técnica bem estudada e entendida
- Funciona bem em vários domínios
- Não precisa de conhecimento especializado

Desvantagens

- Requer colaboração da comunidade
- Esparsidade dos dados
- Sem integração com outras fontes de conhecimento
- Na baseada em modelos, é difícil explicar as recomendações