Package 'hdpx'

May 10, 2020

```
Title Hierarchical Dirichlet Process for categorical count data
Version 0.1.5.0009
Encoding UTF-8
Depends R(>=3.2)
Imports lsa,
      methods,
      flexclust,
      coda,
      clue,
      Matrix
LazyData true
Description Model categorical count data with a hierarchical Dirichlet
      Process. Includes functions to initialise a HDP with a custom tree
      structure, perform Gibbs sampling of the posterior distribution,
      and analyse the output. The underlying mathematical theory is
      described by Teh et al. (Hierarchical Dirichlet Processes,
      Journal of the American Statistical Association, 2006, 101:476). This R
      package was adapted from open source MATLAB and C code written by Yee Whye
      Teh and available here
      http://www.stats.ox.ac.uk/~teh/research/npbayes/npbayes-r21.tgz.
License file LICENSE
URL https://github.com/nicolaroberts/hdp
BugReports https://github.com/nicolaroberts/hdp/issues
Suggests testthat,
      SomaticCancerAlterations,
      RColorBrewer,
      knitr,
      rmarkdown,
      BiocStyle,
      devtools
Collate 'aaa-classes-input.R'
      'aaa-classes-output.R'
      'aaa-generics-input.R'
      'aaa-generics-output.R'
      'cull_posterior_samples.R'
      'dp_activate.R'
```

2 R topics documented:

'dp_freeze.R'
'hdp.R'
'hdp_addconparam.R'
'hdp_adddp.R'
'hdp_extract_components.R'
'hdp_getstate.R'
'hdp_init.R'
'hdp_multi_chain.R'
'hdp_posterior.R'
'hdp_prior_init.R'
'hdp_quick_init.R'
'hdp_setdata.R'
'iterate.R'
'plot_chain.R'
'plot_components.R'
'stirling.R'
'stirling.closure.R'
'utilities.R'
'utilities_nr3.R'
'277 R'

VignetteBuilder knitr

RoxygenNote 7.0.2

R topics documented:

comp_categ_counts	3
comp_categ_distn	3
comp_cos_merge	4
comp_dp_counts	4
comp_dp_distn	5
cull_posterior_samples	5
dp_activate	6
dp_freeze	7
example_data_hdp	7
example_data_hdp_prior	8
example_known_priors	8
hdpBase-class	8
hdpConparam-class	9
hdpDP-class	0
hdpSampleChain-class	0
hdpSampleMulti-class	3
hdpState-class	5
hdp_addconparam	7
hdp_adddp	7
hdp_extract_components	8
hdp_init	9
hdp_multi_chain	0
hdp_p	0
hdp_posterior	1
hdp_prior_init	2
hdp_quick_init	3

g_counts 3

Index		32
	prop.ex	30
	plotcomp	2
	plotchain	2
	numcomp	20
	mut_example_multi	20
	mut_count	25
	make.stirling	25
	luad_multi	24
	hdp_setdata	24

comp_categ_counts

Get sample vs category counts for each component

Description

Get sample vs category counts for each component

Usage

```
comp_categ_counts(x)
```

Arguments

Χ

hdpSampleChain or hdpSampleMulti

Value

List of matrices (one for each component) counting the sample-category data assignment across all DP nodes. Number of rows is the number of posterior samples, and number of columns is the number of data categories.

comp_categ_distn

Get mean distribution over data categories for each component

Description

Get mean distribution over data categories for each component

Usage

```
comp_categ_distn(x)
```

Arguments

Χ

hdpSampleChain or hdpSampleMulti

Value

List with elements "mean" and "cred.int", containing matrices with the mean (and lower/upper 95% credibility interval) distribution over data categories for each component. Number of rows is the number of components, and number of columns is the number of data categories. Rows sum to 1.

4 comp_dp_counts

comp_cos_merge

Get cos.merge setting

Description

Get cos.merge setting

Usage

```
comp_cos_merge(x)
```

Arguments

Х

 $hdpSampleChain\ or\ hdpSampleMulti$

Value

number of components

comp_dp_counts

Get sample vs component counts for each DP

Description

Get sample vs component counts for each DP

Usage

```
comp_dp_counts(x)
```

Arguments

х

 $hdpSampleChain\ or\ hdpSampleMulti$

Value

List of matrices (one for each DP) counting sample-component assignment (aggregating across data categories). Number of rows is the number of posterior samples, and number of columns is the number of components.

comp_dp_distn 5

comp_dp_distn

Get mean distribution over components for each DP

Description

Get mean distribution over components for each DP

Usage

```
comp_dp_distn(x)
```

Arguments

Х

hdpSampleChain or hdpSampleMulti

Value

List with elements "mean" and "cred.int", containing matrices with the mean (and lower/upper 95% credibility interval) distribution over components for each DP. Number of rows is the number of DPs, and number of columns is the number of components. Rows sum to 1.

```
cull_posterior_samples
```

Cull early posterior samples from a hdpSampleChain object

Description

Extend the 'burn-in' period and reduce the number of posterior samples taken from a sampling chain by culling the first ncull posterior samples. If components have been previously calculated for this sampling chain, they will be removed and must be recalculated.

Usage

```
cull_posterior_samples(chain, ncull)
```

Arguments

chain A hdpSampleChain object

ncull The number of posterior samples to cull

Value

A hdpSampleChain object with the designated 'burn-in' period extended, and the number of posterior samples reduced by ncull

See Also

```
plot_lik, plot_numcluster, plot_data_assigned
```

6 dp_activate

Examples

```
mut_example_chain <- chains(mut_example_multi)[[2]]
plot_lik(mut_example_chain)
plot_numcluster(mut_example_chain)
chain_adj <- cull_posterior_samples(mut_example_chain, 20)
plot_lik(chain_adj)
plot_numcluster(chain_adj)</pre>
```

dp_activate

Activate DP nodes

Description

Specify the number of starting clusters, and activate the DP nodes to be included in the posterior sampling process (hdp_posterior). When initialised, the DP nodes are 'heldout' (not available for posterior sampling).

Usage

```
dp_activate(hdp, dpindex, initcc, seed = sample(1:10^7, 1))
```

Arguments

hdp A hdpState object

dpindex Indices of the DPs to activate (include all parent DPs)

initcc Number of data clusters to start with (every data item is randomly assigned to a

cluster to start with)

seed The (integer) seed that can be set to reproduce output. Default is a random seed

from $1 - 10^7$, reported in the output.

Details

Note that this step can be slow and memory-intensive for very large datasets.

Value

A hdpState object with activated DPs and an initial random cluster allocation for each data item. See hdpState-class

See Also

hdp_init, hdp_addconparam, hdp_adddp, hdp_setdata, hdp_posterior

Examples

```
my_hdp <- hdp_init(ppindex=0, cpindex=1, hh=rep(1, 6), alphaa=rep(1, 3), alphab=rep(2, 3))
my_hdp <- hdp_adddp(my_hdp, 2, 1, 2)
my_hdp <- hdp_adddp(my_hdp, 10, c(rep(2, 5), rep(3, 5)), 3)
my_hdp <- hdp_setdata(my_hdp, 4:13, example_data_hdp)
# active all DPs and start with two data clusters
my_hdp <- dp_activate(my_hdp, 1:13, 2)</pre>
```

dp_freeze 7

dp_freeze	Freeze DP nodes
-----------	-----------------

Description

Freezes previously active DP nodes. A frozen DP node is not included in posterior sampling, but its statistics *are* considered in the sampling of other active DPs. This is useful for conditioning on a previous dataset. First, set up a HDP for one dataset, run the posterior sampling chain, and then freeze all old nodes (except the top DP). Add new DP nodes with new data and run a second posterior sampling chain over the new nodes (*given* the information in the frozen nodes).

Usage

```
dp_freeze(hdp, dpindex)
```

Arguments

hdp A hdpState object

dpindex Indices of the DPs to freeze

Value

A hdpState object with the specified DP nodes frozen. See hdpState-class

See Also

hdp_init, hdp_addconparam, hdp_adddp, hdp_setdata, dp_activate, hdp_posterior

example_data_hdp	Fake categorical count data	

Description

Fake categorical count data with 10 samples and 6 categories. Generated from two underlying categorical data distributions with a different average mixture ratio in the first five samples from the last five samples.

Usage

```
example_data_hdp
```

Format

A numeric count matrix with 10 rows and 6 columns

8 hdpBase-class

```
example_data_hdp_prior
```

Fake categorical count data with priors

Description

Fake categorical count data with 100 samples and 10 categories. Generated from four underlying categorical data distributions. Two of the underlying components are available as known prios in example_known_priors.

Usage

```
example_data_hdp_prior
```

Format

A numeric count matrix with 100 rows and 10 columns

Description

Two example prior components for the example data example_data_hdp_prior. 10 rows (one per data category) and 2 columns (one per prior component, each sums to 1).

Usage

```
example_known_priors
```

Format

A numeric matrix with 10 rows and 2 columns.

hdpBase-class

hdpBase class for the base distribution

Description

hdpBase class for the base distribution

Usage

```
## S4 method for signature 'hdpBase'
as.list(x, ...)
```

hdpConparam-class 9

Arguments

```
x Object of class hdpBase
... unused
```

Methods (by generic)

• as.list: convert to list class

Slots

```
hh parameters for base Dirichlet distribution (pseudocounts)
classqq overall count matrix for data items of each category (rows) in each cluster (columns)
numclass number of clusters
```

hdpConparam-class

hdpConparam class for the DP concentration parameter/s

Description

hdpConparam class for the DP concentration parameter/s

Usage

```
## S4 method for signature 'hdpConparam' as.list(x, ...)
```

Arguments

x Object of class hdpConparam
... unused

Methods (by generic)

• as.list: convert to list class

Slots

```
alphaa shape parameter for the gamma prior over alpha
alphab rate parameter for the gamma prior over alpha
numdp number of DP nodes sharing this concentration parameter
alpha concentration parameter value
totalnd number of data items in each DP with this concentration parameter
totalnt number of tables in each DP with this concentration parameter
```

hdpDP-class

hdpDP class for a DP node

Description

note that the 'items' in parent nodes are the tables of their children

Usage

```
## S4 method for signature 'hdpDP'
as.list(x, ...)
## S4 method for signature 'hdpDP'
numdata(x, ...)
```

Arguments

x Object of class hdpDP unused

Methods (by generic)

• as.list: convert to list class

• numdata: Get number of data items at this DP.

Slots

datacc cluster index for each data item
classnd number of items assigned to each cluster in this DP
classnt number of tables assigned to each cluster in this DP
beta weight on each cluster in this DP (including empty cluster at end)
alpha concentration parameter for this DP
numdata number of data items registered to this DP node
datass value of each data item

hdpSampleChain-class hdpSampleChain class for posterior samples off one MCMC chain

Description

hdpSampleChain class for posterior samples off one MCMC chain

Usage

```
## S4 method for signature 'hdpSampleChain'
as.list(x, ...)
## S4 method for signature 'hdpSampleChain'
sampling\_seed(x, ...)
## S4 method for signature 'hdpSampleChain'
hdp_settings(x, ...)
## S4 method for signature 'hdpSampleChain'
final_hdpState(x, ...)
## S4 method for signature 'hdpSampleChain'
lik(x, ...)
## S4 method for signature 'hdpSampleChain'
numcluster(x, ...)
## S4 method for signature 'hdpSampleChain'
cp_values(x, ...)
## S4 method for signature 'hdpSampleChain'
clust_categ_counts(x, ...)
## S4 method for signature 'hdpSampleChain'
clust_dp_counts(x, ...)
## S4 method for signature 'hdpSampleChain'
numcomp(x)
## S4 method for signature 'hdpSampleChain'
prop.ex(x)
## S4 method for signature 'hdpSampleChain'
comp_cos_merge(x)
## S4 method for signature 'hdpSampleChain'
comp_categ_counts(x)
## S4 method for signature 'hdpSampleChain'
comp_dp_counts(x)
## S4 method for signature 'hdpSampleChain'
comp_categ_distn(x)
## S4 method for signature 'hdpSampleChain'
comp_dp_distn(x)
```

Arguments

Object of class hdpSampleChain

... unused

Methods (by generic)

- as.list: Convert to list class
- sampling_seed: Get random seed used by hdp_posterior
- hdp_settings: Get settings of posterior sampling chain
- final_hdpState: Get hdpState object from the end of the posterior sampling chain
- lik: Get likelihood of data given model over all iterations
- numcluster: Get the number of clusters for each posterior sample
- cp_values: Get matrix of concentration parameter values for each posterior sample
- clust_categ_counts: Get category vs cluster counts for each posterior sample
- clust_dp_counts: Get dp node vs cluster counts for each posterior sample
- numcomp: Get number of extracted components for hdpSampleChain
- prop. ex: Get proportion of dataset explained (on average) for hdpSampleChain
- comp_cos_merge: Get cos.merge setting for hdpSampleChain
- comp_categ_counts: Get sample vs category counts for each component
- comp_dp_counts: Get sample vs component counts for each DP
- comp_categ_distn: Get mean distribution over data categories for each component
- comp_dp_distn: Get mean distribution over components for each DP

Slots

seed Random seed used by hdp_posterior

settings Settings of the posterior sampling chain: burnin, n (number of samples collected), space (iters between samples), cpiter (con param moves between iters)

hdp hdpState object after the final iteration

lik Likelihood of data given model at each iteration

numcluster Number of raw data clusters in each posterior sample

cp_values Matrix of concentration parameter values (one column for each parameter) in each posterior sample (rows).

clust_categ_counts List of matrices (one from each posterior sample) counting the categorycluster data assignment across all DP nodes. Number of rows is the number of categories (constant), and number of columns is the number of clusters in that posterior sample (variable).

clust_dp_counts List of matrices (one from each posterior sample) counting within-DP cluster assignment (aggregating across data categories). Number of rows is the number of DPs (constant), and number of columns is the number of clusters in that posterior sample (variable).

numcomp Number of global components extracted by hdp_extract_components (not including component 0)

prop.ex (Average) proportion of dataset explained by the extracted components

 $\verb|comp_cos_merge| cos.merge| setting| used| by \verb|hdp_extract_components| \\$

comp_categ_counts List of matrices (one for each component) counting the sample-category data assignment across all DP nodes. Number of rows is the number of posterior samples, and number of columns is the number of data categories.

- comp_dp_counts List of matrices (one for each DP) counting sample-component assignment (aggregating across data categories). Number of rows is the number of posterior samples, and number of columns is the number of components.
- comp_categ_distn List with elements mean and cred.int, containing matrices with the mean (and lower/upper 95% credibility interval) distribution over data categories for each component. Number of rows is the number of components, and number of columns is the number of data categories. Rows sum to 1.
- comp_dp_distn List with elements "mean" and "cred.int", containing matrices with the mean (and lower/upper 95% credibility interval) distribution over components for each DP. Number of rows is the number of DPs, and number of columns is the number of components. Rows sum to 1.

hdpSampleMulti-class hdpSampleMulti class for multiple independent hdpSampleChain objects for the same HDP

Description

hdpSampleMulti class for multiple independent hdpSampleChain objects for the same HDP

Usage

```
## S4 method for signature 'hdpSampleMulti'
as.list(x, ...)
## S4 method for signature 'hdpSampleMulti'
chains(x, ...)
## S4 method for signature 'hdpSampleMulti'
numcomp(x)
## S4 method for signature 'hdpSampleMulti'
prop.ex(x)
## S4 method for signature 'hdpSampleMulti'
comp_cos_merge(x)
## S4 method for signature 'hdpSampleMulti'
comp_categ_counts(x)
## S4 method for signature 'hdpSampleMulti'
comp_dp_counts(x)
## S4 method for signature 'hdpSampleMulti'
comp_categ_distn(x)
## S4 method for signature 'hdpSampleMulti'
comp_dp_distn(x)
```

Arguments

x Object of class hdpSampleMulti

... unused

Methods (by generic)

- as.list: Convert to list class
- chains: Get list of hdpSampleChain objects
- numcomp: Get number of extracted components for hdpSampleMulti
- prop.ex: Get proportion of dataset explained (on average) for hdpSampleMulti
- comp_cos_merge: Get cos.merge setting for hdpSampleMulti
- comp_categ_counts: Get sample vs category counts for each component
- comp_dp_counts: Get sample vs component counts for each DP
- comp_categ_distn: Get mean distribution over data categories for each component
- comp_dp_distn: Get mean distribution over components for each DP

Slots

- chains List of hdpSampleChain objects storing multiple independent runs of the posterior sampling chain for the same data and HDP struct
- numcomp Number of global components extracted by hdp_extract_components (not including component 0)
- prop.ex (Average) proportion of dataset explained by the extracted components
- comp_cos_merge cos.merge setting used by hdp_extract_components
- comp_categ_counts List of matrices (one for each component) counting the sample-category data assignment across all DP nodes. Number of rows is the number of posterior samples, and number of columns is the number of data categories.
- comp_dp_counts List of matrices (one for each DP) counting sample-component assignment (aggregating across data categories). Number of rows is the number of posterior samples, and number of columns is the number of components.
- comp_categ_distn List with elements "mean" and "cred.int", containing matrices with the mean (and lower/upper 95% credibility interval) distribution over data categories for each component. Number of rows is the number of components, and number of columns is the number of data categories. Rows sum to 1.
- comp_dp_distn List with elements "mean" and "cred.int", containing matrices with the mean (and lower/upper 95% credibility interval) distribution over components for each DP. Number of rows is the number of DPs, and number of columns is the number of components. Rows sum to 1.

hdpState-class 15

hdpState-class

hdpState class for a Hierarchical Dirichlet Process in one state

Description

hdpState class for a Hierarchical Dirichlet Process in one state

Usage

```
## S4 method for signature 'hdpState'
as.list(x, ...)
## S4 method for signature 'hdpState'
numdp(x, ...)
## S4 method for signature 'hdpState'
numconparam(x, ...)
## S4 method for signature 'hdpState'
base(x, ...)
## S4 method for signature 'hdpState'
conparam(x, ...)
## S4 method for signature 'hdpState'
dp(x, ...)
## S4 method for signature 'hdpState'
dpstate(x, ...)
## S4 method for signature 'hdpState'
ppindex(x, ...)
## S4 method for signature 'hdpState'
cpindex(x, ...)
## S4 method for signature 'hdpState'
numcateg(x, ...)
## S4 method for signature 'hdpState'
base_params(x, ...)
## S4 method for signature 'hdpState'
activating_seed(x, ...)
## S4 method for signature 'hdpState'
pseudoDP(x, ...)
```

Arguments x

Object of class hdpState

16 hdpState-class

... unused

Methods (by generic)

• as.list: Convert to list class

• numdp: Get number of DPs

• numconparam: Get number of concentration parameters

· base: Get base distribution

• conparam: Get list of concentration parameters

• dp: Get list of DP nodes

• dpstate: Get state of every DP

• ppindex: Get parent process index of every DP

• cpindex: Get concentration parameter index of every DP

• numcateg: Get number of data categories

- base_params: Get parameters of the base Dirichlet distribution (like psuedocounts across categories).
- activating_seed: Get seed used to initialse clustering
- pseudoDP: Get index of frozen pseudo-data DP nodes for prior info (only if initialised via hdp_prior_init)

Slots

numconparam number of concentration parameters
base base distribution (hdpBase object)
conparam concentration parameters (list of hdpConparam objects)
dp DP nodes (list of hdpDP objects)
dpstate state of DP nodes for posterior sampling process: active (2), frozen (1), or heldout (0)
ppindex parent node index for each DP
cpindex concentration parameter index for each DP
ttindex DP index of those sharing a concentration parameter
initce number of initial clusters
seed_activate random seed used to initiate cluster membership
pseudoDP (Optional) index of pseudodata nodes (only if initialised via hdp_prior_init)

hdp_addconparam 17

hdp_addconparam	Add concentration parameters to a hdpState object

Description

Add concentration parameters to a hdpState object by specifying the shape and rate parameters of the gamma prior/s. DPs using these new concentration parameters can be added with hdp_adddp. Data is assigned via hdp_setdata. When initialised, the DP nodes are 'heldout' (not available for posterior sampling) and will need to be activated (see dp_activate). Finally, the posterior sampling process (a Gibbs sampler) is run via hdp_posterior.

Usage

```
hdp_addconparam(hdp, alphaa, alphab)
```

Arguments

hdp A hdpState object

alphaa Shape hyperparameters for the gamma priors over the DP concentration param-

eters.

alphab Rate hyperparameters for the gamma priors over the DP concentration parame-

ters.

Value

A hdpState object updated with the new concentration parameters. See hdpState-class

See Also

```
hdp_init, hdp_adddp, hdp_setdata, dp_activate, hdp_posterior
```

Examples

```
 \begin{array}{lll} hdp\_example <- \ hdp\_init(c(\emptyset,\ 1,\ 1),\ c(1,\ 2,\ 2),\ rep(1,\ 6),\ rep(2,\ 2),\ rep(\emptyset.5,\ 2)) \\ hdp\_example <- \ hdp\_addconparam(hdp\_example,\ rep(1,\ 2),\ rep(1,\ 2)) \\ \end{array}
```

hdp_adddp

Add DPs to a hdpState object

Description

Add DP nodes to a hdpState object and specify each parent relationship and concentration parameter. Concentration parameters can be added to a hdpState object with hdp_addconparam. Data is assigned via hdp_setdata. When initialised, the DP nodes are 'heldout' (not available for posterior sampling) and will need to be activated (see dp_activate). Finally, the posterior sampling process (a Gibbs sampler) is run via hdp_posterior.

Usage

```
hdp_adddp(hdp, numdp, ppindex, cpindex)
```

Arguments

hdp A hdpState object

numdp The number of DPs to add

ppindex Index (or indices) of the parental process(es) for the new DPs.

cpindex Index (or indices) of the concentration parameters for the new DPs.

Value

A hdpState object with the updated HDP structure. See hdpState-class

See Also

```
hdp_init, hdp_setdata, dp_activate, hdp_posterior
```

Examples

```
my_hdp <- hdp_init(ppindex=0, cpindex=1, hh=rep(1, 6), alphaa=rep(1, 3), alphab=rep(2, 3))
# add two more DPs with parent '1' and concentration parameter '2'
my_hdp <- hdp_adddp(my_hdp, 2, 1, 2)
my_hdp
hdp_example <- hdp_init(c(0, 1, 1), c(1, 2, 2), rep(1, 6), rep(2, 2), rep(0.5, 2))
# add six more DPs, three with parent '2', three with parent '3',
# and all with concentration parameter '2'
hdp_example <- hdp_adddp(hdp_example, 6, c(2, 2, 2, 3, 3, 3), 2)
hdp_example</pre>
```

hdp_extract_components

Extract major components from the raw clusters

Description

If prior components included via hdp_prior_init are preserved by hdp_extract_components, they are prefixed with "P". Any new components in this case are prefixed with "N".

Usage

```
hdp_extract_components(x, cos.merge = 0.9, min.sample = 1)
```

Arguments

X	hdpSampleChain or hdpSampleMulti object
cos.merge	Merge components with cosine similarity above this threshold (default 0.90)
min.sample	Components must have significant exposure in at least this many samples (i.e. those DP nodes with data assigned) (default 1)

Value

A hdpSampleChain or hdpSampleMulti object updated with component information

hdp_init 19

See Also

hdp_posterior, hdp_multi_chain, plot_comp_size, plot_comp_distn, plot_dp_comp_exposure

Examples

hdp_extract_components(mut_example_multi)

hdp_init

Initialise a hdpState object

Description

Initialise a hdpState object with one or more DP nodes and their parent relationships, the parameters of the base Dirichlet distribution, and a set of hyperparameters for the gamma priors over the DP concentration parameters. Further DP nodes can be added with hdp_adddp, and further concentration parameters can be added with hdp_addconparam. Data is assigned via hdp_setdata. When initialised, the DP nodes are 'heldout' (not available for posterior sampling) and will need to be activated (see dp_activate). Finally, the posterior sampling process (a Gibbs sampler) is run via hdp_posterior.

Usage

hdp_init(ppindex, cpindex, hh, alphaa, alphab)

Arguments

ppindex	Index (or indices) of the parental process(es) for the initial DPs. The 'top' DP should have parent process '0' (the base Dirichlet distribution).
cpindex	Index (or indices) of the concentration parameter(s) for the initial DPs.
hh	Parameters of the base Dirichlet distribution (like psuedocounts across categories). Must be a vector with length equal to the number of data item categories.
alphaa	Shape hyperparameters for the gamma priors over the DP concentration parameters.
alphab	Rate hyperparameters for the gamma priors over the DP concentration parameters.

Value

A hdpState object with the initial HDP structure. See hdpState-class

See Also

 $\verb|hdp_quick_init|, \verb|hdp_prior_init|, \verb|hdp_addconparam|, \verb|hdp_adddp|, \verb|hdp_setdata|, \verb|dp_activate|, \verb|hdp_posterior|$ |

20 hdp_p

Examples

```
# initialise a HDP with just one 'top' DP node off the base distribution,
# a uniform Dirichlet base distribution over six possible data categories,
# and three possible concentration parameters to be shared across the HDP tree
# (top DP using conparam number 1), each with hyperparameters (1,2).
hdp_init(ppindex=0, cpindex=1, hh=rep(1, 6), alphaa=rep(1, 3), alphab=rep(2, 3))
# initialise a HDP with one 'top' DP node off the base distribution,
# AND two children DP nodes off that parent. The two children DPs share a different
# concentration parameter (hyperparameters are (2, 0.5)).
hdp_init(ppindex=c(0, 1, 1), cpindex=c(1, 2, 2), hh=rep(1, 6), alphaa=rep(2, 2), alphab=rep(0.5, 2))
```

hdp_multi_chain

Gather multiple independent posterior sampling chains for the same HDP

Description

Gather multiple independent posterior sampling chains for the same HDP

Usage

```
hdp_multi_chain(chain_list)
```

Arguments

chain_list

A list of hdpSampleChain objects for the same data and HDP structure, but run with different random seeds.

Value

A hdpSampleMulti object

See Also

hdp_posterior

hdp_p

HDP posterior samples on example data with priors

Description

Four independent posterior sampling chains for the dataset example_data_hdp_prior, conditioning on two known prior components provided in example_known_priors.

Usage

hdp_p

Format

hdpSampleMulti object

hdp_posterior 21

hdp_posterior Posterior sampling chain across activated DPs.
--

Description

Run a Gibbs sampler over the activated DP nodes of a Hierarchichal Dirichlet Process. Each iteration re-assigns the cluster allocation of every data item. Run burnin iterations, and then collect n samples from the chain with space iterations between each collected sample. To plot output, see plot_lik, plot_numcluster, and plot_data_assigned. Can collect multiple independent HDP sampling chains in a hdpSampleMulti object via hdp_multi_chain. Components are extracted via hdp_extract_components.

Usage

```
hdp_posterior(
  hdp,
  burnin,
  n,
  space,
  cpiter = 1,
  seed = sample(1:10^7, 1),
  verbosity = 0
)
```

Arguments

hdp	A hdpState object
burnin	The number of burn-in iterations.
n	The number of posterior samples to collect.
space	The number of iterations between collected samples.
cpiter	The number of iterations of concentration parameter sampling to perform after each iteration.
seed	The (integer) seed that can be set to reproduce output. Default is a random seed from $1-10^{7}$, reported in the output.
verbosity	Verbosity of debugging statements. 0 (least verbose) – 4 (most verbose). 0 highly recommended - only change for debugging small examples.

Value

A hdpSampleChain object with the salient information from each posterior sample. See hdpSampleChain-class

See Also

```
\verb|hdp_multi_chain|, \verb|hdp_extract_components|, \verb|cull_posterior_samples|, \verb|plot_lik|, \verb|plot_numcluster|, \verb|plot_data_assigned|
```

22 hdp_prior_init

Examples

```
my_hdp <- hdp_init(ppindex=0, cpindex=1, hh=rep(1, 6), alphaa=rep(1, 3), alphab=rep(2, 3))
my_hdp <- hdp_adddp(my_hdp, 2, 1, 2)
my_hdp <- hdp_adddp(my_hdp, 10, c(rep(2, 5), rep(3, 5)), 3)
my_hdp <- hdp_setdata(my_hdp, 4:13, example_data_hdp)
my_hdp <- dp_activate(my_hdp, 1:13, 2)
my_hdp_chain <- hdp_posterior(my_hdp, 100, 100, 10)</pre>
```

hdp_prior_init

Initialise a HDP structure incorporating prior knowledge

Description

Initialise a hdpState object incorporating prior knowlegde of some components (categorical data distributions). The structure has one top parent DP node with no associated data ('active' and available for posterior sampling), and one child DP node per prior component ('frozen' and held out from posterior sampling).

Usage

```
hdp_prior_init(prior_distn, prior_pseudoc, hh, alphaa, alphab)
```

Arguments

prior_distn	Matrix of prior distributions (columns must each sum to 1, number of rows matches number of data categories)
prior_pseudoc	Vector of pseudocounts contributed by each prior distribution
hh	Parameters of the base Dirichlet distribution. Must be a vector with length equal to the number of data item categories.
alphaa	Shape hyperparameters for the gamma priors over the DP concentration parameters.
alphab	Rate hyperparameters for the gamma priors over the DP concentration parame-

Value

A hdpState object with one frozen node per prior component. See hdpState-class

See Also

```
hdp_init
```

ters.

Examples

hdp_quick_init 23

```
hdp <- dp_activate(hdp, 4:104, initcc=4, seed=81479)
hdp <- hdp_posterior(hdp, burnin=2000, n=50, space=50, cpiter=3, seed=1e6)
hdp_ex <- hdp_extract_components(hdp)
plot_comp_size(hdp_ex)
plot_comp_distn(hdp_ex)
plot_dp_comp_exposure(hdp_ex, 5:104, col_comp=rainbow(5))</pre>
```

hdp_quick_init

Initialise a simple, default HDP structure

Description

Initialise a hdpState object with a basic default structure of one top parent DP node with no associated data, and one child DP node per row of data. Every DP node shares the same concentration parameter, and will automatically be 'activated' (made available for posterior samplig). The base distribution is a uniform Dirichlet with psuedocount 1 in each data category. Can immediately run hdp_posterior to collect posterior samples. To define a custom HDP structure, see hdp_init and hdp_prior_init.

Usage

```
hdp_quick_init(data, initcc = 2, alphaa = 1, alphab = 1)
```

Arguments

data	A data.frame or matrix of counts with one row for every sample and one column for every data category.
initcc	Number of initial data clusters (every data item is randomly assigned to a cluster to start with).
alphaa	Shape hyperparameter for the gamma prior over the concentration parameter.
alphab	Rate hyperparameter for the gamma prior over the concentration parameter.

Value

A hdpState object with a basic default structure. See hdpState-class

See Also

```
hdp_init, hdp_posterior, hdp_prior_init
```

Examples

```
my_quick_hdp <- hdp_quick_init(example_data_hdp)
my_quick_hdp_chain <- hdp_posterior(my_quick_hdp, 100, 50, 10, 5)</pre>
```

24 luad_multi

hdp_setdata

Assign data to DP nodes in a hdpState object

Description

Assign data to 'heldout' (state is 0) DP nodes in a hdpState object. 'Heldout' DPs are not available for posterior sampling, and will need to be activated (see dp_activate). The posterior sampling process (a Gibbs sampler) is run via hdp_posterior.

Usage

```
hdp_setdata(hdp, dpindex, data)
```

Arguments

hdp A hdpState object

dpindex Indices of the DPs to assign data to (in same order as rows of data)

data A data. frame or matrix of counts with one row for every sample (same order

as dpindex) and one column for every data category.

Value

A hdpState object updated with the new data. See hdpState-class

See Also

```
hdp_init, hdp_adddp, dp_activate, hdp_posterior
```

Examples

```
example_data_hdp
my_hdp <- hdp_init(ppindex=0, cpindex=1, hh=rep(1, 6), alphaa=rep(1, 3), alphab=rep(2, 3))
my_hdp <- hdp_adddp(my_hdp, 2, 1, 2)
my_hdp <- hdp_adddp(my_hdp, 10, c(rep(2, 5), rep(3, 5)), 3)
my_hdp <- hdp_setdata(my_hdp, 4:13, example_data_hdp)
dp(my_hdp)</pre>
```

luad_multi

Pposterior sampling chains on lung data, conditioned on prior sigs

Description

Four independent HDP sampling chains with lung adenocarcinoma data (first 100 rows of mut_count), conditioning on a library of 30 known prior signatures from https://cancer.sanger.ac.uk/cosmic/signatures (COSMIC v84).

Usage

luad_multi

make.stirling 25

Format

A hdpSampleMulti object with 200 posterior samples, 50 from each chain

make.stirling

Return a function to calculate the unsigned Stirling numbers of the first kind

Description

Return a function to calculate the unsigned Stirling numbers of the first kind

Usage

make.stirling()

Value

A function to caluculate a vector of unsigned Stirling numbers, s(n,k), k=1...n, each divided by the maxium Stirling number in the series. The returned function is a closure with state that includes a list of all the unsigned Stirling number series <= the argument, n, i.e. [s(1,1)], [s(2,1), s(2,2)], ..., [s(n,1), ..., s(n,n)]. Memory usage could be substantial, but the stored state does not include the many trailing zeros in the vectors. For this to work within the hdp package the function returned *must* be called stir.closure.

mut_count

Cancer mutation count data

Description

Mutation count data from SomaticCancerAlterations package. Categories are the 96 base substitution types defined by local trinucleotide context, and the samples include 100 lung adenocarcinomas, 100 ovarian serous carcinomas, and 100 skin cutaneous melanomas. Data is derived from TCGA exome-sequencing studies.

Usage

mut_count

Format

A matrix of mutation counts with 300 rows (one per cancer sample) and 96 columns (one per mutation category)

26 numcomp

mut_example_multi

Posterior sampling chains with cancer mutation data

Description

Four independent HDP sampling chains with data from SomaticCancerAlterations package, saved to mut_count. Categories are the 96 base substitution types defined by local trinucleotide content, and the samples include 100 lung adenocarcinomas, 100 ovarian serous carcinomas, and 100 skin cutaneous melanomas. Data is derived from TCGA exome-sequencing studies. Each sample was assigned to a unique child DP node, with one parent DP node per cancer type, and one grandparent DP node at the top level. Each chain initialised with 10 clusters, then run 5000 burn-in iterations before collecting 50 posterior samples with 200 iterations between each.

Usage

```
mut_example_multi
```

Format

A hdpSampleMulti object with 200 posterior samples, 50 from each chain

numcomp

Get number of extracted components

Description

Get number of extracted components

Usage

numcomp(x)

Arguments

Х

hdpSampleChain or hdpSampleMulti

Value

number of components

plotchain 27

plotchain

Diagnostic plots for HDP posterior sampling chain

Description

Diagnostic plots for HDP posterior sampling chain

Usage

```
plot_lik(
  chain,
  start = 1,
  end = length(lik(chain)),
  col_lik = "blue",
  col_burn = "red",
  xlab = "Iteration"
  ylab = "Likelihood",
)
plot_numcluster(
  chain,
  col = "blue",
  xlab = "Sample",
  ylab = "Number of raw clusters",
)
plot_data_assigned(
  chain,
  legend = TRUE,
  col_early = "hotpink",
  col_late = "skyblue3",
  dat\_prop = 0.995,
  xlab = "Number of raw clusters",
  ylab = "Cumulative prop. of data assigned",
)
```

Arguments

chain	A hdpSampleChain object
start	The starting iteration to plot from (default 1)
end	The final iteration to plot to (default is end of chain)
col_lik	Plot colour of likelihood (default blue)
col_burn	Plot colour of burnin (default red)
xlab	Horizontal axis label
ylab	Vertical axis label
	Other arguments to plot

28 plotcomp

COI	Plot colour for numcluster (default blue)
legend	Logical - should a legend be included? (default TRUE)
col_early	Color ramp side for early posterior samples
col_late	Color ramp side for late posterior samples
dat_prop	Extend horiztonal axis to dat_prop proportion of data assigned

Examples

```
par(mfrow=c(2,2))
lapply(chains(mut_example_multi), plot_lik, bty="L", start=1000)
lapply(chains(mut_example_multi), plot_numcluster, bty="L")
lapply(chains(mut_example_multi), plot_data_assigned, bty="L")
```

plotcomp

Plot extracted components

Description

Plot extracted components

Usage

```
plot_comp_size(
  hdpsample,
  legend = TRUE,
  col_a = "hotpink",
  col_b = "skyblue3",
  xlab = "Component",
  ylab = "Number of data items",
)
plot_comp_distn(
  hdpsample,
  comp = NULL,
  cat_names = NULL,
  grouping = NULL,
  col = "grey70",
  col_nonsig = NULL,
  show_group_labels = FALSE,
  cred_int = TRUE,
  weights = NULL,
  plot_title = NULL,
  group_label_height = 1.05,
  cex.cat = 0.7,
plot_dp_comp_exposure(
  hdpsample,
```

plotcomp 29

```
dpindices,
  col_comp,
  dpnames = NULL,
  main_text = NULL,
  incl_numdata_plot = TRUE,
  incl_comp0 = TRUE,
  incl_comp0 = TRUE,
  ylab_numdata = "Number of data items",
  ylab_exp = "Component exposure",
  leg.title = "Component",
  cex.names = 0.6,
  cex.axis = 0.7,
  mar = c(1, 4, 2, 0.5),
  oma = c(1.5, 1.5, 1, 1),
  ...
)
```

Arguments

9		
hdpsample	$A\ hdp Sample Chain\ or\ hdp Sample Multi\ object\ including\ output\ from\ hdp_extract_components$	
legend	Logical - should a legend be included? (default TRUE)	
col_a	Color ramp side for early posterior samples (if hdpSampleChain) or first chain (if hdpSampleMulti)	
col_b	Color ramp side for late posterior samples (if hdpSampleChain) or last chain (if hdpSampleMulti)	
xlab	Horizontal axis label	
ylab	Vertical axis label	
	Other arguments to plot	
comp	(Optional) Number(s) of the component(s) to plot (from 0 to the max component number). The default is to plot all components.	
cat_names	(Optional) Data category names to label the horizontal axis	
grouping	(Optional) A factor indicating data category groups.	
col	Either a single colour for all data categories, or a vector of colours for each group (in the same order as the levels of the grouping factor)	
col_nonsig	(Optional) Colour for any data category whose 95% credibility interval overlaps with zero (if set, overrides col argument)	
show_group_lab	els	
	Logical - should group labels be added to the top horizontal axis? (default FALSE) (only works if categories alreayd come in orders)	
cred_int	Logical - should 95% credibility intervals be plotted? (default TRUE)	
weights	(Optional) Weights over the data categories to adjust their relative contribution (multiplicative)	
plot_title	(Optional) Character vector of custom plot titles (one for each component plotted)	
group_label_height		
	Multiplicative factor from top of plot for group label placement	
cex.cat	Expansion factor for the (optional) cat_names	
dpindices	Indices of DP nodes to plot	

30 prop.ex

col_comp Colours of each component, from 0 to the max number dpnames (Optional) Names of the DP nodes (Optional) Text at top of plot main_text incl_numdata_plot Logical - should an upper barplot indicating the number of data items per DP be

> included? (Default TRUE) Logical - should components whose credibility intervals include 0 be included

(per DP)? (Default TRUE)

incl_comp0 Logical - should component zero be plotted? (Default TRUE)

ylab_numdata Vertical axis label for numdata plot ylab_exp Vertical exis label for exposure plot

leg.title Legend title

incl_nonsig

cex.names Expansion factor for bar labels (dpnames) in exposure plot

Expansion factor for vertical-axis annotation cex.axis

See ?par mar See ?par oma

Examples

```
mut_example_multi <- hdp_extract_components(mut_example_multi)</pre>
plot_comp_size(mut_example_multi, bty="L")
bases <- c("A", "C", "G", "T")
\label{trinuc_context} \verb| trinuc_context <- paste0(rep(pases, times=6), each=4), \\
                          rep(c("C", "T"), each=48),
                          rep(bases, times=24))
group_factor <- as.factor(rep(c("C>A", "C>G", "C>T", "T>A", "T>C", "T>G"),
                            each=16))
plot_comp_distn(mut_example_multi, cat_names=trinuc_context,
                 grouping=group_factor, col=RColorBrewer::brewer.pal(6, "Set2"),
                 col_nonsig="grey80", show_group_labels=TRUE)
plot_dp_comp_exposure(mut_example_multi, 5:30,
                       RColorBrewer::brewer.pal(12, "Set3"))
plot_dp_comp_exposure(mut_example_multi, 5:30,
                       RColorBrewer::brewer.pal(12, "Set3"),
                       incl_numdata_plot=FALSE, incl_nonsig=FALSE)
```

prop.ex

Get proportion of dataset explained (on average)

Description

Get proportion of dataset explained (on average)

Usage

```
prop.ex(x)
```

Arguments Х

hdpSampleChain or hdpSampleMulti

prop.ex 31

Value

number of components

Index

* datasets	<pre>comp_categ_counts,hdpSampleChain-method</pre>
example_data_hdp,7	<pre>(hdpSampleChain-class), 10</pre>
<pre>example_data_hdp_prior, 8</pre>	<pre>comp_categ_counts,hdpSampleMulti-method</pre>
example_known_priors, 8	<pre>(hdpSampleMulti-class), 13</pre>
hdp_p, 20	<pre>comp_categ_distn, 3</pre>
<pre>luad_multi, 24</pre>	<pre>comp_categ_distn,hdpSampleChain-method</pre>
<pre>mut_count, 25</pre>	<pre>(hdpSampleChain-class), 10</pre>
<pre>mut_example_multi, 26</pre>	<pre>comp_categ_distn,hdpSampleMulti-method (hdpSampleMulti-class), 13</pre>
<pre>activating_seed (hdpState-class), 15</pre>	comp_cos_merge, 4
activating_seed,hdpState-method	<pre>comp_cos_merge,hdpSampleChain-method</pre>
(hdpState-class), 15	<pre>(hdpSampleChain-class), 10</pre>
as.list,hdpBase-method(hdpBase-class),	<pre>comp_cos_merge,hdpSampleMulti-method</pre>
8	<pre>(hdpSampleMulti-class), 13</pre>
as.list,hdpConparam-method	comp_dp_counts, 4
(hdpConparam-class), 9	<pre>comp_dp_counts,hdpSampleChain-method</pre>
as.list,hdpDP-method(hdpDP-class), 10	(hdpSampleChain-class), 10
as.list,hdpSampleChain-method	comp_dp_counts,hdpSampleMulti-method
<pre>(hdpSampleChain-class), 10</pre>	(hdpSampleMulti-class), 13
as.list,hdpSampleMulti-method	comp_dp_distn, 5
<pre>(hdpSampleMulti-class), 13</pre>	comp_dp_distn,hdpSampleChain-method
as.list,hdpState-method	(hdpSampleChain-class), 10
(hdpState-class), 15	comp_dp_distn,hdpSampleMulti-method
	(hdpSampleMulti-class), 13
base (hdpState-class), 15	conparam (hdpState-class), 15
base, hdpState-method (hdpState-class),	conparam, hdpState-method
15	(hdpState-class), 15
base_params (hdpState-class), 15	cp_values (hdpSampleChain-class), 10
base_params,hdpState-method	cp_values,hdpSampleChain-method
(hdpState-class), 15	(hdpSampleChain-class), 10
(cpindex (hdpState-class), 15
chains (hdpSampleMulti-class), 13	cpindex,hdpState-method
chains, hdpSampleMulti-method	(hdpState-class), 15
(hdpSampleMulti-class), 13	cull_posterior_samples, 5, 21
clust_categ_counts	do (bdoCtata alasa) 15
(hdpSampleChain-class), 10	dp (hdpState-class), 15
clust_categ_counts,hdpSampleChain-method	<pre>dp,hdpState-method (hdpState-class), 15 dp_activate, 6, 7, 17-19, 24</pre>
(hdpSampleChain-class), 10	
clust_dp_counts (hdpSampleChain-class),	<pre>dp_freeze, 7 dpstate (hdpState-class), 15</pre>
10	
clust_dp_counts,hdpSampleChain-method	<pre>dpstate,hdpState-method (hdpState-class), 15</pre>
(hdpSampleChain-class), 10	(mupstate-crass), 13
comp_categ_counts, 3	example_data_hdp,7

INDEX 33

avammla data han majan 8 9 20	number a hand mathed (hand alone) 10
example_data_hdp_prior, 8, 8, 20	numdata, hdpDP-method (hdpDP-class), 10
example_known_priors, $8, 8, 20$	<pre>numdp (hdpState-class), 15 numdp, hdpState-method (hdpState-class),</pre>
<pre>final_hdpState(hdpSampleChain-class),</pre>	15
10	
<pre>final_hdpState,hdpSampleChain-method</pre>	plot_comp_distn, 19
<pre>(hdpSampleChain-class), 10</pre>	<pre>plot_comp_distn(plotcomp), 28</pre>
	plot_comp_size, 19
hdp, 25	<pre>plot_comp_size (plotcomp), 28</pre>
hdp_addconparam, 6, 7, 17, 17, 19	plot_data_assigned, 5, 21
hdp_adddp, 6, 7, 17, 17, 19, 24	plot_data_assigned (plotchain), 27
hdp_extract_components, 18, 21, 29	plot_dp_comp_exposure, 19
hdp_init, 6, 7, 17, 18, 19, 22-24	<pre>plot_dp_comp_exposure (plotcomp), 28</pre>
hdp_multi_chain, 19, 20, 21	plot_lik, <i>5</i> , <i>21</i>
hdp_p, 20	plot_lik (plotchain), 27
hdp_posterior, 6, 7, 17-20, 21, 23, 24	plot_numcluster, 5, 21
hdp_prior_init, 18, 19, 22, 23	plot_numcluster(plotchain), 27
hdp_quick_init, 19, 23	plotchain, 27
hdp_setdata, 6, 7, 17–19, 24	plotcomp, 28
hdp_settings (hdpSampleChain-class), 10	ppindex (hdpState-class), 15
hdp_settings,hdpSampleChain-method	ppindex,hdpState-method
(hdpSampleChain-class), 10	(hdpState-class), 15
hdpBase-class, 8	prop.ex, 30
hdpConparam-class, 9	prop.ex,hdpSampleChain-method
hdpDP-class, 10	(hdpSampleChain-class), 10
hdpSampleChain-class, 10	prop.ex,hdpSampleMulti-method
hdpSampleMulti-class, 13	(hdpSampleMulti-class), 13
hdpState-class, 15	pseudoDP (hdpState-class), 15
Hupstate-Class, 13	pseudoDP,hdpState-method
lik (hdpSampleChain-class), 10	(hdpState-class), 15
lik,hdpSampleChain-method	(mapstate class), 15
(hdpSampleChain-class), 10	<pre>sampling_seed (hdpSampleChain-class), 10</pre>
luad_multi, 24	sampling_seed,hdpSampleChain-method
iuau_muiti, 24	(hdpSampleChain-class), 10
make.stirling, 25	/ / /
mut_count, 24, 25, 26	
mut_example_multi, 26	
mac_example_marer, 20	
numcateg (hdpState-class), 15	
numcateg,hdpState-method	
(hdpState-class), 15	
numcluster (hdpSampleChain-class), 10	
numcluster,hdpSampleChain-method	
<pre>(hdpSampleChain-class), 10</pre>	
numcomp, 26	
numcomp,hdpSampleChain-method	
<pre>(hdpSampleChain-class), 10</pre>	
numcomp,hdpSampleMulti-method	
<pre>(hdpSampleMulti-class), 13</pre>	
numconparam (hdpState-class), 15	
numconparam, hdpState-method	
(hdpState-class), 15	
numdata (hdpDP-class), 10	