13-th Hellenic Mathematical Olympiad 1996

Seniors

- 1. In a triangle ABC, points D, E, Z, H, Θ are the midpoints of segments BC, AD, BD, ED, EZ, respectively. Lines BE and $H\Theta$ intersect AC at I and K, respectively. Prove that:
 - (a) AK = 3CK;
 - (b) $HK = 3H\Theta$;
 - (c) BE = 3EI;
 - (d) the area of ABC is 32 times the area of $E\Theta H$.
- 2. In a triangle ABC, AD, BE, CZ are the altitudes and H the orthocenter. Let AI and $A\Theta$ be the internal and external bisectors of angle A, and let M, N be the midpoints of BC, AH, respectively.
 - (a) Prove that MN is perpendicular to EZ.
 - (b) Prove that if MN meets AI and $A\Theta$ at K and L, then KL = AH.
- 3. Prove that among 81 natural numbers whose prime divisors are in the set $\{2,3,5\}$ there exist four numbers whose product is the fourth power of an integer.
- 4. Find the number of functions $f:\{1,2,\ldots,n\}\to\{1995,1996\}$ such that $f(1)+f(2)+\cdots+f(1996)$ is odd.

