组织:中国互动出版网(http://www.china-pub.com/)

RFC 文档中文翻译计划(http://www.china-pub.com/compters/emook/aboutemook.htm)

E-mail: ouyang@china-pub.com

译者: 龙天泳 (longty2000) 译文发布时间: 2001-3-30

版权:本中文翻译文档版权归中国互动出版网所有。可以用于非商业用途自由转载,但必须

保留本文档的翻译及版权信息。

Network Working Group Request for Comments: 1332

Obsoletes: RFC 1172

G. McGregor Merit May 1992

RFC1332 端对端协议网间协议控制协议(IPCP)

(RFC1332 The PPP Internet Protocol Control Protocol (IPCP))

本备忘录状态

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

摘要

PPP 协议(端对端协议)[1]提供在点对点链路上面压缩网络层协议信息的标准的方法。同样,PPP 协议定义可扩展的链路控制协议,和为了建立和配置不同的网络层协议的网络控制协议(NCP)族。

本文档定义了为了在 PPP 协议上面建立和配置网间协议[2]的 NCP,以及协商和使用 PPP 协议上 Van Jacobson TCP/IP 报头压缩[3]的方法。

本 RFC 是国际网工作交流协会的串列点协议工作(IETF)小组的成果。

目录

1. 介绍	2
2. 端对端协议网络控制协议(NCP)为 IP	2
2.1 发送 IP 数据报	.3
3. IPCP 配置可选项	3
3.1 IP-地址(IP-Addresses)	.3
3.2 IP-压缩协议	. 4
3.3 IP-地址(IP-Address)	. 4
4. VAN JACOBSON TCP/IP 报头压缩	5
4.1 配置可选项格式	. 5
附录 A. IPCP 推荐的可选项	6
安全考虑	6
参考	.6

1. 介绍

PPP 协议有 3 个主要的部分:

- 1.串行的链路上压缩数据报的方法。
- 2.完成链路建立,配置的数据链路控制协议(LCP)。
- 3.为网络层协议族配置不同的网络层协议的网络控制协议(NCP)。

为了在点到点链路上面建立通信,每个 PPP 协议链路的端都为了配置和试验必须首先发 LCP 包。在链路经过 LCP 选择和建立之后,PPP 必须发送 NCP 包选择和配置一个或一个以上的网络层协议。如果每个被选中的网络层协议都被配置,来自每个网络层协议的数据报就能在链路上面被发送。

链路一直保持通信配置到通信单元 LCP 或 NCP 包明确指示关闭链路,或者一些外部事件发生(计时器呼出休止状态,或者网络管理员干涉)为止。

2. 端对端协议网络控制协议(NCP)为 IP

IP 控制协议(IPCP)负责配置,以及点对点链路的双端上激活和去激活 IP 协议传输。 IPCP 使用和链路控制协议(LCP)同样的包交换 machanism。IPCP 包也可以在 PPP 协议达到网络层的协议阶段以前不被交换。在本阶段达到之前收到的 IPCP 包应该静静地抛弃。

IP 控制协议确切地说除下列情形外,是和链路控制协议[1]同样的东西:

数据链路层协议域

确切地说 IPCP 包是被压缩在协议域类型为十六进制 8021 (IP 控制协议) 的 PPP 协议数据链路层帧的信息字段中的。

编码域

只有代码 1 到 7(Configure-Request,Configure-Ack,Configure-Nak,Configure-Reject,Terminate-Request,Terminate-Ack 和 Code-Reject)被使用。其他的编码应该被处理为未经承认并且应该导致结果 Code-Rejects。

招时

IPCP 包可以在 PPP 协议达到网络-层的协议阶段之前不被交换。执行应该为等待在等待 Configure-Ack 或其他响应的定时器超时之前的认证和线路质量监测完成做好准备。被建议 执行仅仅在用户干涉或可变的时间量后面放弃。

配置可选项类型

IPCP 有在下边定义的的配置可选项的清楚的置值。

2.1 发送 IP 数据报

在任何 IP 包可以被传输之前,PPP 协议必须达到网络-层的协议阶段,IP 控制协议必为 Opened 状态。

确切地说 IP 包是被压缩在协议域类型为十六进制 0021 (网间协议)的 PPP 协议数据链路层帧的信息字段中的。

在 PPP 协议链路上面被传送的 IP 包的最大的长度是和 PPP 协议数据链路层结构的信息字段的最大的长度同样的东西。大的 IP 数据报必须分片传输。

如果系统想避免分片和重组,它应该使用 TCP 的最大分片尺寸选项[4]和 MTU discovery[5]。

3. IPCP 配置可选项

IPCP 配置可选项允许合乎需要的网间协议参数的协商。IPCP 用和 LCP [1]一样的选项 定义格式来分隔各个选项的设置。

IPCP 选项类型域的最新的值在最近的"Assigned Numbers"RFC 中被指定[6]。当前的值象下面这样被分配:

1 IP-地址 (Addresses)

2 IP-压缩协议

3 IP-地址 (Address)

3.1 IP-地址 (IP-Addresses)

描述

IP-地址(Addresses)配置选项的使用已经被反对了。它难以在全部使用本选项的例子中保证协商收敛。RFC[7]1172为向后兼容执行需要提供信息。IP-地址(Address)配置选项代替本选项,并且它的使用是首选的。

本可选项不应该在已经被承认的包含了 IP-Address 和 IP-Addresses 的任意一个选项 Configure-Request 或 Configure-Request 中被发送。

如果 Configure-Reject 为 IP-地址的可选项被收到,或者 Configure-Nak 用 IP-地址的可选项被认为是附加的选项,本可选项可以被发送。

在 IPCP 协议状态达到 Internet 草案标准之后,本可选项也许被废除。

3.2 IP-压缩协议

描述

本配置可选项提供协商特定的压缩协议的使用的方法。在默认情况下,压缩不使用。

IP-压缩协议配置可选项格式的摘要在下边被表示。域从左往右被传送。

0123

01234567890123456789012345678901

| 类型 | 长度 | IP-压缩协议 |

| 数据...

+-+-+-+

类型 2

长度 >= 4

IP-压缩协议

IP-压缩协议域是和显示压缩协议要求的 2 八位字节。给本域的值总是和给那个相同的压缩协议的 PPP 协议数据链路层协议域值同样的东西。

IP-压缩协议域的最新的值在最近的"Assigned Numbers"RFC 中被指定[6]。当前的值象下面 这样被分配:

值(十六进制在中)

协议

002d

Van Jacobson Compressed TCP/IP(用于网络的一组通讯

协议)

数据

数据区是零,或者,由特别压缩协议决定的更多的八位字节的附加数据数据。

缺省

不使用压缩协议。

3.3 IP-地址 (IP-Address)

描述

本配置选项提供协商在链路本端上被使用的IP地址的方法。它允许Confugure-Requestde的发送方声明要求哪个IP地址,或者请求对端提供信息。对端能通过NAKing选项提供本信息,返回有效的IP地址。

如果必须进行关于远程的的 IP 地址的协商,而对端不提供其 Configure-Request 里边可选项,可选项应该被加到 Configure-Nak 上。被给的 IP 地址值必须象远程的的 IP 地址那样可接受,或者显示对端提供信息的要求。

在默认情况下, IP 地址不被分配。

IP-地址(IP-Address)的配置可选项格式的摘要在下边被表示。域从左往右被传送。

0123

01234567890123456789012345678901

| 类型 | 长度 | IP-地址

IP 地址(cont) |

类型 3

长度 6

IP-地址

4 个八位字节 IP 地址是发件人在 Configure-Request 中要求的本端地址。如果全部 4 个八位字节都是零值,它表示请求对端提供 IP-地址信息。 缺省

IP 地址不被分配。

4. Van Jacobson TCP/Ip 报头压缩

Van Jacobson TCP/IP 报头压缩把 TCP/IP 报头降低到 3 字节。这可以显著的改进低速串行线的通信。

IP-压缩协议配置可选项被用来表示收到压缩的包的能力。如果要求双向压缩,链路的每一端都必须独立地请求本可选项。

当传送 IP 包的时候, PPP 协议协议域是对下列值的置值:

值(十六进制在中)

0021 典型 IP。IP 协议不是 TCP, 或包被分割,或者不能压缩。

002d 压缩 TCP。TCP/IP 报头被压缩报都替换。

002f 未压缩 TCP。IP 协议域被时间片标识符替换。

4.1 配置可选项格式

为了协商 Van Jacobson TCP/IP 报头压缩 IP-压缩协议配置选项的格式的摘要在下边被表

示。域从左往右被传送。

0123

 $0 \; 1 \; 2 \; 3 \; 4 \; 5 \; 6 \; 7 \; 8 \; 9 \; 0 \; 1 \; 2 \; 3 \; 4 \; 5 \; 6 \; 7 \; 8 \; 9 \; 0 \; 1 \; 2 \; 3 \; 4 \; 5 \; 6 \; 7 \; 8 \; 9 \; 0 \; 1$

| 类型 | 长度 | IP-压缩协议 |

|最大时间片 ID | 比较时间片 ID |

类型 2

长度 6

IP-压缩协议

002d(十六进制)给 Van Jacobson 的压缩了 TCP/Ip 报头。

最大-时间片身份识别标志(Max-Slot-ID)

Max-Slot-Id 域是表示最大的时间片标识符的 1 八位字节。它比时间片的实际的号码更少,时间片标识符可以取从零到 Max-Slot-Id 的值。

记录:

用 1 时间片仅仅(最大-时间片身份识别标志= 0)可以有有问题的执行。在参考中看讨论[3]。在[3]例子执行将仅仅和 3 一起通过 254 时间片动。

比较-时间片身份识别标志(Comp-Slot-Id)

Comp-Slot-Id 域是表示是否时间片标识符域可以被压缩的 1 八位字节。

- 0 时间片标识符不必被压缩。全部压缩的 TCP 包都必须在每一个变化的 mask 中设置 C 比特,而且必须包括时间片标识符在内。
 - 1 时间片标识符可以被压缩。

如果 PPP 协议链路没有能力在接收中给解压缩模块表示误差,时间片标识符不允许被压缩。在误差后面的同步依靠用时间片标识符接收包。在参考中看讨论[3]。

附录 A. IPCP 推荐的可选项

推荐下列配置可选项:

IP-压缩协议 一 带有至少 4 个时间片--通常为 16 个时间片。

IP-地址 - 仅在拨号线路上。

安全考虑

安全问题不在本记录中被讨论。

参考

[1] Simpson, W., "The Point-to-Point Protocol", RFC 1331, May 1992.

[2]Postel, J., "Internet Protocol", RFC 791, USC/Information Sciences Institute, September

1981.

[3] Jacobson, V., "Compressing TCP/IP Headers", RFC 1144, January 1990.

[4]Postel, J., "The TCP Maximum Segment Size Option and Related Topics", RFC 879, USC/Information Sciences Institute, November 1983.

[5]Mogul, J., and S. Deering, "Path MTU Discovery", RFC 1191, November 1990.

[6]Reynolds, J., and J. Postel, "Assigned Numbers", RFC 1060, USC/Information Sciences Institute, March 1990.

[7]Perkins, D., and R. Hobby, "Point-to-Point Protocol (PPP) initial configuration options", RFC 1172, August 1990.