Programming Assignment 1: Data Preparation and Understanding

1. In this semester, we will be using the "Stanford Dogs" dataset (http://vision.stanford.edu/aditya86/ImageNetDogs/) for all our 4 programming assignments. There are a total of 120 classes (dog breeds). The number of images for each class ranges from 148 to 252.

Each student will

- (a) be assigned 4 classes to work on the 4 assignments.
- (b) download Images (and also Annotations bounding boxes) datasets for the 4 classes to work on.
- (c) create a Github account to share (as collaborator) their solution (Readme, Codes, Processed Dataset for Code to run correctly) with the grader.
- 2. Use XML processing modules(https://docs.python.org/3/library/xml.html) to obtain bounding box information from Annotations datasets and scikit-Image (Reference: https://scikit-image.org/) to perform image processing and feature extraction.

```
import os
annotations_dir = '/content/Annotation.zip'

if os.path.exists(annotations_dir):
    print("Annotation directory exists. Listing files...")
    for root, dirs, files in os.walk(annotations_dir):
        print(f"Found directory: {root}")
        for file in files:
            print(f"File: {file}")

else:
    print("Annotation directory not found!")
```

OUTPUT:

File: n02110185_6411

File: n02110185 3808

File: n02110185 1066

File: n02110185 632

File: n02110185_2614

File: n02110185_11783

File: n02110185_1497

File: n02110185_1338

File: n02110185_13187

File: n02110185_3039

File: n02110185_10849

File: n02110185_1534

File: n02110185_8360

File: n02110185_8749

File: n02110185_13158

File: n02110185_14650

File: n02110185_10844

File: n02110185 3328

File: n02110185_3302

File: n02110185_13423

File: n02110185 6351

File: n02110185_9846

File: n02110185_1130

File: n02110185_7210

File: n02110185_7762

File: n02110185_14766

File: n02110185_4906

File: n02110185_14479

File: n02110185_11773

File: n02110185_10597

File: n02110185_712

File: n02110185_5622

File: n02110185_10171

File: n02110185_13855

File: n02110185_5871

File: n02110185_4030

File: n02110185_7413

File: n02110185_2593

File: n02110185_9975

File: n02110185_10273

File: n02110185_6775

File: n02110185_698

File: n02110185_14283

File: n02110185 10175

File: n02110185_7044

File: n02110185_1439

File: n02110185 9461

File: n02110185_6473

File: n02110185_9429

File: n02110185_12656

File: n02110185_13942

File: n02110185_7379

File: n02110185_10360

File: n02110185_8216

File: n02110185_8564

File: n02110185_13821

File: n02110185_1532

File: n02110185_10047

File: n02110185_6438

File: n02110185_699

File: n02110185_5495

File: n02110185_9712

File: n02110185_9194

File: n02110185_4522

File: n02110185_1614

File: n02110185_56

File: n02110185_1794

File: n02110185_353

File: n02110185_12380

File: n02110185_1289

File: n02110185_11131

File: n02110185_9177

File: n02110185 2446

File: n02110185_11396

File: n02110185_14056

File: n02110185_1164

File: n02110185_1598

File: n02110185_14061

File: n02110185_2820

File: n02110185_11580

File: n02110185_519

File: n02110185_6409

File: n02110185_14597

File: n02110185_2728

File: n02110185_2368

File: n02110185_13127

File: n02110185_14594

File: n02110185_1469

File: n02110185_7980

File: n02110185_14906

File: n02110185_2604

File: n02110185_11287

File: n02110185_5030

File: n02110185_9086

File: n02110185_9833

File: n02110185_5143

File: n02110185_4060

File: n02110185_8748

File: n02110185_8154

File: n02110185_1178

File: n02110185_4294

File: n02110185_6564

File: n02110185_12498

File: n02110185_12678

File: n02110185_3291

File: n02110185_12478

File: n02110185_13434

File: n02110185_1552

File: n02110185_3406

File: n02110185_15019

File: n02110185_3540

File: n02110185_4115

File: n02110185_2701

File: n02110185_7879

File: n02110185_4186

File: n02110185_8966

File: n02110185_8397

File: n02110185_6105

File: n02110185_2736

File: n02110185_8162

File: n02110185_11626

File: n02110185 11409

File: n02110185_5973

File: n02110185_10955

File: n02110185 2941

File: n02110185_5624

File: n02110185_6746

File: n02110185_10902

File: n02110185_9396

File: n02110185_14560

File: n02110185_13794

File: n02110185_931

File: n02110185_7117

File: n02110185_5392

File: n02110185_7329

File: n02110185_6263

File: n02110185_7246

File: n02110185_12748

File: n02110185_184

File: n02110185_6780

File: n02110185_10875

File: n02110185_8923

File: n02110185_7936

File: n02110185_6094

File: n02110185_725

File: n02110185_9334

File: n02110185_7564

File: n02110185 1748

File: n02110185_13704

File: n02110185_11138

File: n02110185_4677

File: n02110185_13197

File: n02110185_10116

File: n02110185_7888

File: n02110185_5628

File: n02110185_8600

File: n02110185_7594

File: n02110185_11445

File: n02110185_5172

File: n02110185_5716

File: n02110185_13282

File: n02110185_6850

File: n02110185_12120

File: n02110185_8005

File: n02110185_15063

File: n02110185_58

File: n02110185_8860

File: n02110185_120

File: n02110185_10898

File: n02110185_14289

File: n02110185_3651

File: n02110185_248

File: n02110185_4694

File: n02110185_1511

File: n02110185_9855

File: n02110185_11636

File: n02110185_11841

File: n02110185_11114

Found directory: /content/sample_data/Annotation/n02094114-Norfolk_terrier

(a) Cropping and Resize Images in Your 4-class Images Dataset: Use the bounding box information in the Annotations dataset relevant to your 4-class Images Dataset to crop the images in your dataset and then resize each image to a 128×128 pixel image.

```
import os
import numpy as np
from PIL import Image
import cv2
from sklearn.decomposition import PCA
from sklearn.preprocessing import normalize
from sklearn.metrics import pairwise
import matplotlib.pyplot as plt
import zipfile
images_folder_path = '/content/Annotation.zip' # Path to the zip file
extracted images path = '/content/Breeds' # Path to extract the images
# Extract the zip file
with zipfile.ZipFile(images folder path, 'r') as zip ref:
  zip_ref.extractall(extracted_images_path)
# Update the path to the extracted directory
images folder path = extracted images path
# Function to load images
def load images(folder path):
  images = []
  for filename in os.listdir(folder path):
    if filename.endswith(('.jpg', '.jpeg', '.png')): # Add other image extensions if
needed
      img_path = os.path.join(folder_path, filename)
      img = cv2.imread(img_path)
      if img is not None:
        images.append(img)
  return images
dog images = load images(images folder path)
def crop_and_resize_images(images):
```

```
resized images = []
  for img in images:
    h, w, = img.shape
    center h, center w = h // 2, w // 2
    cropped_img = img[center_h-50:center_h+50, center_w-50:center_w+50]
                 resized img
                              =
                                     cv2.resize(cropped img,
                                                                 (128,
                                                                          128),
interpolation=cv2.INTER AREA)
    resized images.append(resized img)
  return np.array(resized images)
cropped resized images = crop and resize images(dog images)
def compute histograms(images):
  histograms = []
  for img in images:
    hist r = cv2.calcHist([img], [0], None, [256], [0, 256])
    hist_g = cv2.calcHist([img], [1], None, [256], [0, 256])
    hist b = cv2.calcHist([img], [2], None, [256], [0, 256])
    hist = np.concatenate((hist r, hist g, hist b), axis=0)
    histograms.append(hist.flatten())
  return np.array(histograms)
histograms = compute histograms(cropped resized images)
def compute similarity measurements(histograms):
  distances = {}
  for i in range(len(histograms)):
    for j in range(i + 1, len(histograms)):
      euclidean dist = np.linalg.norm(histograms[i] - histograms[j])
      distances[(i, j)] = {'Euclidean': euclidean dist}
      manhattan dist = np.sum(np.abs(histograms[i] - histograms[j]))
      distances[(i, j)]['Manhattan'] = manhattan dist
         cosine dist = pairwise.cosine distances(histograms[i].reshape(1, -1),
histograms[j].reshape(1, -1)[0][0]
      distances[(i, j)]['Cosine'] = cosine dist
  return distances
similarity measurements = compute similarity measurements(histograms)
```

```
for key, value in similarity measurements.items():
  print(f"Images {key}: {value}")
def perform pca(histograms):
  if histograms.size == 0:
    print("Histograms array is empty. Cannot perform PCA.")
    return
  histograms normalized = normalize(histograms)
  pca = PCA(n components=2)
  reduced data = pca.fit transform(histograms normalized)
  plt.scatter(reduced data[:, 0], reduced data[:, 1])
  plt.title('PCA of Image Histograms')
  plt.xlabel('Principal Component 1')
  plt.ylabel('Principal Component 2')
  plt.show()
perform pca(histograms)
Images (0, 1): {'Euclidean': 3457.4624, 'Manhattan': 60582.0, 'Cosine':
0.6825162}
Images (0, 2): {'Euclidean': 3984.1545, 'Manhattan': 65490.0, 'Cosine':
0.8253741}
Images (0, 3): {'Euclidean': 3899.4668, 'Manhattan': 71376.0, 'Cosine':
0.7919182}
Images (0, 4): {'Euclidean': 2996.233, 'Manhattan': 52486.0, 'Cosine': 0.5265511}
Images (0, 5): {'Euclidean': 3713.0256, 'Manhattan': 69834.0, 'Cosine':
0.80765843}
Images (0, 6): {'Euclidean': 3549.726, 'Manhattan': 68584.0, 'Cosine': 0.7822863}
Images (0, 7): {'Euclidean': 4273.889, 'Manhattan': 83638.0, 'Cosine': 0.8985965}
Images (0, 8): {'Euclidean': 4195.953, 'Manhattan': 82846.0, 'Cosine':
0.88892967
Images (0, 9): {'Euclidean': 4797.943, 'Manhattan': 72312.0, 'Cosine':
0.91561556}
```

```
Images (0, 10): {'Euclidean': 3833.5942, 'Manhattan': 69682.0, 'Cosine':
0.69148505}
Images (0, 11): {'Euclidean': 4038.895, 'Manhattan': 75160.0, 'Cosine':
0.8729541}
Images (0, 12): {'Euclidean': 4304.3984, 'Manhattan': 79452.0, 'Cosine':
0.8892273}
Images (0, 13): {'Euclidean': 3132.434, 'Manhattan': 53988.0, 'Cosine':
0.57699823}
Images (0, 14): {'Euclidean': 3686.408, 'Manhattan': 71616.0, 'Cosine':
0.80207825}
Images (0, 15): {'Euclidean': 4196.2603, 'Manhattan': 82572.0, 'Cosine':
0.8932265}
Images (0, 16): {'Euclidean': 3907.0522, 'Manhattan': 76738.0, 'Cosine':
0.8767342}
Images (0, 17): {'Euclidean': 4066.2576, 'Manhattan': 62318.0, 'Cosine':
0.8289352}
Images (0, 18): {'Euclidean': 3911.8364, 'Manhattan': 74360.0, 'Cosine':
0.7885997
Images (0, 19): {'Euclidean': 3661.05, 'Manhattan': 64994.0, 'Cosine': 0.7596242}
Images (0, 20): {'Euclidean': 3752.5872, 'Manhattan': 65990.0, 'Cosine':
0.7929658}
Images (0, 21): {'Euclidean': 4070.2698, 'Manhattan': 72374.0, 'Cosine':
0.8442098}
Images (0, 22): {'Euclidean': 3581.0945, 'Manhattan': 68900.0, 'Cosine':
0.8061286}
Images (0, 23): {'Euclidean': 2477.4883, 'Manhattan': 36760.0, 'Cosine':
0.3320266}
Images (0, 24): {'Euclidean': 3523.3938, 'Manhattan': 60780.0, 'Cosine':
0.67376536}
Images (0, 25): {'Euclidean': 4243.425, 'Manhattan': 76318.0, 'Cosine':
0.8454045}
Images (0, 26): {'Euclidean': 4211.747, 'Manhattan': 53840.0, 'Cosine':
0.6044014}
Images (0, 27): {'Euclidean': 5275.997, 'Manhattan': 75268.0, 'Cosine':
0.85031015}
Images (0, 28): {'Euclidean': 3197.6758, 'Manhattan': 57088.0, 'Cosine':
0.6010748}
Images (0, 29): {'Euclidean': 3742.5112, 'Manhattan': 74444.0, 'Cosine':
0.8290365}
```

```
Images (0, 30): {'Euclidean': 3906.7087, 'Manhattan': 67662.0, 'Cosine':
0.8295082}
Images (0, 31): {'Euclidean': 4954.6445, 'Manhattan': 80432.0, 'Cosine':
0.8677642}
Images (1, 2): {'Euclidean': 2879.3455, 'Manhattan': 53638.0, 'Cosine':
0.5772694}
Images (1, 3): {'Euclidean': 2563.737, 'Manhattan': 51132.0, 'Cosine': 0.4572196}
Images (1, 4): {'Euclidean': 1441.7198, 'Manhattan': 30092.0, 'Cosine':
0.18363315}
Images (1, 5): {'Euclidean': 1897.0409, 'Manhattan': 37262.0, 'Cosine': 0.301046}
Images (1, 6): {'Euclidean': 1990.4417, 'Manhattan': 41460.0, 'Cosine':
0.36089873}
Images (1, 7): {'Euclidean': 3386.7417, 'Manhattan': 68690.0, 'Cosine':
0.73972344}
Images (1, 8): {'Euclidean': 2427.105, 'Manhattan': 48100.0, 'Cosine':
0.38683277
Images (1, 9): {'Euclidean': 4036.9868, 'Manhattan': 63338.0, 'Cosine':
0.78991526}
Images (1, 10): {'Euclidean': 1791.3771, 'Manhattan': 34342.0, 'Cosine':
0.17047322}
Images (1, 11): {'Euclidean': 3264.496, 'Manhattan': 73478.0, 'Cosine':
0.77587277
Images (1, 12): {'Euclidean': 2601.8496, 'Manhattan': 44322.0, 'Cosine':
0.40987408}
Images (1, 13): {'Euclidean': 2631.195, 'Manhattan': 58214.0, 'Cosine':
0.6135694}
Images (1, 14): {'Euclidean': 2209.939, 'Manhattan': 45746.0, 'Cosine':
0.41355544}
Images (1, 15): {'Euclidean': 3593.2905, 'Manhattan': 82528.0, 'Cosine':
0.87236464}
Images (1, 16): {'Euclidean': 2519.3972, 'Manhattan': 50648.0, 'Cosine':
0.51227725}
Images (1, 17): {'Euclidean': 3097.13, 'Manhattan': 48206.0, 'Cosine': 0.6334985}
Images (1, 18): {'Euclidean': 1678.9229, 'Manhattan': 31052.0, 'Cosine':
0.18612045}
Images (1, 19): {'Euclidean': 1200.7955, 'Manhattan': 21454.0, 'Cosine':
0.114995}
Images (1, 20): {'Euclidean': 2618.249, 'Manhattan': 49120.0, 'Cosine':
```

0.5404015}

```
Images (1, 21): {'Euclidean': 2752.3206, 'Manhattan': 52292.0, 'Cosine':
0.5097543}
Images (1, 22): {'Euclidean': 2203.5845, 'Manhattan': 49184.0, 'Cosine':
0.45019388}
Images (1, 23): {'Euclidean': 2454.9343, 'Manhattan': 49432.0, 'Cosine':
0.51666117}
Images (1, 24): {'Euclidean': 1573.7338, 'Manhattan': 27678.0, 'Cosine':
0.18375003
Images (1, 25): {'Euclidean': 1918.5499, 'Manhattan': 33426.0, 'Cosine':
0.19910103}
Images (1, 26): {'Euclidean': 3965.6023, 'Manhattan': 45658.0, 'Cosine':
0.6082397}
Images (1, 27): {'Euclidean': 4944.118, 'Manhattan': 75536.0, 'Cosine':
0.86597705}
Images (1, 28): {'Euclidean': 1548.5923, 'Manhattan': 29308.0, 'Cosine':
0.20845056}
Images (1, 29): {'Euclidean': 2893.024, 'Manhattan': 68878.0, 'Cosine':
0.7100404}
Images (1, 30): {'Euclidean': 3057.737, 'Manhattan': 64026.0, 'Cosine':
0.6970938}
Images (1, 31): {'Euclidean': 3509.2927, 'Manhattan': 54216.0, 'Cosine':
0.4658035}
Images (2, 3): {'Euclidean': 3285.9731, 'Manhattan': 61746.0, 'Cosine':
0.6657152}
Images (2, 4): {'Euclidean': 2594.4866, 'Manhattan': 44610.0, 'Cosine':
0.5016242}
Images (2, 5): {'Euclidean': 2830.9353, 'Manhattan': 50716.0, 'Cosine':
0.56850004}
Images (2, 6): {'Euclidean': 2132.5903, 'Manhattan': 37912.0, 'Cosine':
0.33022285}
Images (2, 7): {'Euclidean': 3127.8516, 'Manhattan': 57930.0, 'Cosine':
0.56141603
Images (2, 8): {'Euclidean': 3054.716, 'Manhattan': 59122.0, 'Cosine': 0.5529129}
Images (2, 9): {'Euclidean': 3929.1985, 'Manhattan': 48792.0, 'Cosine':
0.68377864}
Images (2, 10): {'Euclidean': 3483.2573, 'Manhattan': 66374.0, 'Cosine':
0.65995973}
Images (2, 11): {'Euclidean': 2441.729, 'Manhattan': 41954.0, 'Cosine':
0.37892938
```

```
Images (2, 12): {'Euclidean': 3221.9133, 'Manhattan': 54446.0, 'Cosine':
0.57781684}
Images (2, 13): {'Euclidean': 2798.746, 'Manhattan': 49426.0, 'Cosine':
0.57975984}
Images (2, 14): {'Euclidean': 2268.7092, 'Manhattan': 41828.0, 'Cosine':
0.36269557
Images (2, 15): {'Euclidean': 2729.3105, 'Manhattan': 48968.0, 'Cosine':
0.44380963
Images (2, 16): {'Euclidean': 2661.9116, 'Manhattan': 49350.0, 'Cosine':
0.48789787
Images (2, 17): {'Euclidean': 3214.084, 'Manhattan': 40416.0, 'Cosine':
0.6072681}
Images (2, 18): {'Euclidean': 3227.326, 'Manhattan': 61282.0, 'Cosine':
0.6338905}
Images (2, 19): {'Euclidean': 2804.4724, 'Manhattan': 52378.0, 'Cosine':
0.5382362}
Images (2, 20): {'Euclidean': 2400.746, 'Manhattan': 38830.0, 'Cosine':
0.3889438}
Images (2, 21): {'Euclidean': 3124.5874, 'Manhattan': 53926.0, 'Cosine':
0.5854156}
Images (2, 22): {'Euclidean': 2370.6711, 'Manhattan': 38452.0, 'Cosine':
0.42028904}
Images (2, 23): {'Euclidean': 2843.715, 'Manhattan': 46474.0, 'Cosine':
0.5845416}
Images (2, 24): {'Euclidean': 3081.309, 'Manhattan': 50580.0, 'Cosine':
0.6197362}
Images (2, 25): {'Euclidean': 3576.5728, 'Manhattan': 66196.0, 'Cosine':
0.6941053}
Images (2, 26): {'Euclidean': 4770.62, 'Manhattan': 74442.0, 'Cosine': 0.8690337}
Images (2, 27): {'Euclidean': 4844.622, 'Manhattan': 60034.0, 'Cosine':
0.7707057
Images (2, 28): {'Euclidean': 2833.753, 'Manhattan': 53998.0, 'Cosine':
0.5904722}
Images (2, 29): {'Euclidean': 2456.6226, 'Manhattan': 43942.0, 'Cosine':
0.42838317}
Images (2, 30): {'Euclidean': 2742.1465, 'Manhattan': 41196.0, 'Cosine':
0.48755598}
Images (2, 31): {'Euclidean': 4565.3247, 'Manhattan': 73574.0, 'Cosine':
0.8125695}
```

```
Images (3, 4): {'Euclidean': 2466.3167, 'Manhattan': 50974.0, 'Cosine':
0.45212758
Images (3, 5): {'Euclidean': 2164.9988, 'Manhattan': 41610.0, 'Cosine':
0.32804644}
Images (3, 6): {'Euclidean': 2022.2324, 'Manhattan': 42574.0, 'Cosine':
0.29471135}
Images (3, 7): {'Euclidean': 2943.7708, 'Manhattan': 56268.0, 'Cosine':
0.4982103}
Images (3, 8): {'Euclidean': 2166.453, 'Manhattan': 39150.0, 'Cosine': 0.2784438}
Images (3, 9): {'Euclidean': 3955.8533, 'Manhattan': 57856.0, 'Cosine':
0.6948316}
Images (3, 10): {'Euclidean': 3448.268, 'Manhattan': 64682.0, 'Cosine':
0.6481024
Images (3, 11): {'Euclidean': 3592.3232, 'Manhattan': 77598.0, 'Cosine':
0.8232112}
Images (3, 12): {'Euclidean': 2829.6936, 'Manhattan': 50056.0, 'Cosine':
0.44569123
Images (3, 13): {'Euclidean': 2817.2014, 'Manhattan': 59294.0, 'Cosine':
0.5900784}
Images (3, 14): {'Euclidean': 2309.8823, 'Manhattan': 47590.0, 'Cosine':
0.37813026
Images (3, 15): {'Euclidean': 3807.6658, 'Manhattan': 83638.0, 'Cosine':
0.86649156}
Images (3, 16): {'Euclidean': 1883.9453, 'Manhattan': 37890.0, 'Cosine':
0.24115628
Images (3, 17): {'Euclidean': 3515.8252, 'Manhattan': 60548.0, 'Cosine':
0.7286817}
Images (3, 18): {'Euclidean': 2389.0723, 'Manhattan': 42508.0, 'Cosine':
0.34825432}
Images (3, 19): {'Euclidean': 2476.9868, 'Manhattan': 49270.0, 'Cosine':
0.4197551}
Images (3, 20): {'Euclidean': 2818.3657, 'Manhattan': 53922.0, 'Cosine':
0.5400009}
Images (3, 21): {'Euclidean': 2439.4783, 'Manhattan': 43530.0, 'Cosine':
0.35762024}
Images (3, 22): {'Euclidean': 2142.0293, 'Manhattan': 45434.0, 'Cosine':
0.33692336}
Images (3, 23): {'Euclidean': 2656.3062, 'Manhattan': 54976.0, 'Cosine':
0.5095974}
```

```
Images (3, 24): {'Euclidean': 2924.5989, 'Manhattan': 53702.0, 'Cosine':
0.5597929}
Images (3, 25): {'Euclidean': 2957.4216, 'Manhattan': 50442.0, 'Cosine':
0.47346246}
Images (3, 26): {'Euclidean': 4312.438, 'Manhattan': 65836.0, 'Cosine':
0.69696975}
Images (3, 27): {'Euclidean': 5185.076, 'Manhattan': 81194.0, 'Cosine':
0.90157306}
Images (3, 28): {'Euclidean': 1908.535, 'Manhattan': 39050.0, 'Cosine':
0.25606334}
Images (3, 29): {'Euclidean': 2822.1843, 'Manhattan': 62686.0, 'Cosine':
0.57272196}
Images (3, 30): {'Euclidean': 3383.0288, 'Manhattan': 66656.0, 'Cosine':
0.7450859}
Images (3, 31): {'Euclidean': 3643.2742, 'Manhattan': 55428.0, 'Cosine':
0.49246466}
Images (4, 5): {'Euclidean': 1580.56, 'Manhattan': 30512.0, 'Cosine': 0.23059249}
Images (4, 6): {'Euclidean': 1648.1517, 'Manhattan': 34492.0, 'Cosine':
0.28413463}
Images (4, 7): {'Euclidean': 2675.2256, 'Manhattan': 54626.0, 'Cosine':
0.4804126}
Images (4, 8): {'Euclidean': 2459.3083, 'Manhattan': 52046.0, 'Cosine':
0.42053813}
Images (4, 9): {'Euclidean': 3812.7488, 'Manhattan': 55962.0, 'Cosine':
0.73373425}
Images (4, 10): {'Euclidean': 2479.069, 'Manhattan': 50512.0, 'Cosine':
0.36714256}
Images (4, 11): {'Euclidean': 2948.2969, 'Manhattan': 65466.0, 'Cosine':
0.69005984}
Images (4, 12): {'Euclidean': 2761.207, 'Manhattan': 50808.0, 'Cosine':
0.49094784}
Images (4, 13): {'Euclidean': 2289.4675, 'Manhattan': 49704.0, 'Cosine':
0.5237316}
Images (4, 14): {'Euclidean': 1753.7417, 'Manhattan': 36798.0, 'Cosine':
0.28959978}
Images (4, 15): {'Euclidean': 3146.7917, 'Manhattan': 70010.0, 'Cosine':
0.7214392}
Images (4, 16): {'Euclidean': 2003.4625, 'Manhattan': 42984.0, 'Cosine':
0.3553053
```

```
Images (4, 17): {'Euclidean': 2923.333, 'Manhattan': 43522.0, 'Cosine':
0.6046927
Images (4, 18): {'Euclidean': 2218.5107, 'Manhattan': 48602.0, 'Cosine':
0.35129243}
Images (4, 19): {'Euclidean': 1933.1813, 'Manhattan': 42042.0, 'Cosine':
0.32556522}
Images (4, 20): {'Euclidean': 2483.4666, 'Manhattan': 48458.0, 'Cosine':
0.534603}
Images (4, 21): {'Euclidean': 2193.7024, 'Manhattan': 39070.0, 'Cosine':
0.33328873
Images (4, 22): {'Euclidean': 1651.2814, 'Manhattan': 37030.0, 'Cosine':
0.2900083
Images (4, 23): {'Euclidean': 2096.143, 'Manhattan': 39470.0, 'Cosine':
0.42136222}
Images (4, 24): {'Euclidean': 1477.7063, 'Manhattan': 23864.0, 'Cosine':
0.16601485}
Images (4, 25): {'Euclidean': 2722.2163, 'Manhattan': 54084.0, 'Cosine':
0.45458508}
Images (4, 26): {'Euclidean': 3986.9119, 'Manhattan': 53078.0, 'Cosine':
0.6371231}
Images (4, 27): {'Euclidean': 4808.4995, 'Manhattan': 73634.0, 'Cosine':
0.84622896}
Images (4, 28): {'Euclidean': 1513.9683, 'Manhattan': 31128.0, 'Cosine':
0.22582865}
Images (4, 29): {'Euclidean': 2303.5398, 'Manhattan': 52404.0, 'Cosine':
0.5023856}
Images (4, 30): {'Euclidean': 2746.9685, 'Manhattan': 53176.0, 'Cosine': 0.61396}
Images (4, 31): {'Euclidean': 3856.9592, 'Manhattan': 66276.0, 'Cosine':
0.6096979}
Images (5, 6): {'Euclidean': 1579.9728, 'Manhattan': 32376.0, 'Cosine':
0.23326004
Images (5, 7): {'Euclidean': 2081.384, 'Manhattan': 38864.0, 'Cosine':
0.26782048}
Images (5, 8): {'Euclidean': 2281.7485, 'Manhattan': 42856.0, 'Cosine':
0.3444031
Images (5, 9): {'Euclidean': 3757.537, 'Manhattan': 50556.0, 'Cosine': 0.68107}
Images (5, 10): {'Euclidean': 3017.7136, 'Manhattan': 58924.0, 'Cosine':
0.55169463}
Images (5, 11): {'Euclidean': 3051.3652, 'Manhattan': 67268.0, 'Cosine':
0.69186586}
```

```
Images (5, 12): {'Euclidean': 2626.5312, 'Manhattan': 43208.0, 'Cosine':
0.42341816}
Images (5, 13): {'Euclidean': 2483.9043, 'Manhattan': 55500.0, 'Cosine':
0.56267804}
Images (5, 14): {'Euclidean': 1637.9353, 'Manhattan': 33472.0, 'Cosine':
0.23344076}
Images (5, 15): {'Euclidean': 3263.8872, 'Manhattan': 69760.0, 'Cosine':
0.7314582}
Images (5, 16): {'Euclidean': 1655.0457, 'Manhattan': 30656.0, 'Cosine':
0.22618556}
Images (5, 17): {'Euclidean': 3155.72, 'Manhattan': 51488.0, 'Cosine':
0.67083865}
Images (5, 18): {'Euclidean': 2175.0398, 'Manhattan': 42216.0, 'Cosine':
0.32458985
Images (5, 19): {'Euclidean': 2109.1055, 'Manhattan': 44324.0, 'Cosine':
0.36362302}
Images (5, 20): {'Euclidean': 2562.0657, 'Manhattan': 49402.0, 'Cosine':
0.5297445}
Images (5, 21): {'Euclidean': 2177.3516, 'Manhattan': 38484.0, 'Cosine':
0.31775331}
Images (5, 22): {'Euclidean': 1324.3625, 'Manhattan': 27674.0, 'Cosine':
0.16307133}
Images (5, 23): {'Euclidean': 2358.9866, 'Manhattan': 47946.0, 'Cosine':
0.49043715}
Images (5, 24): {'Euclidean': 2106.374, 'Manhattan': 32198.0, 'Cosine':
0.33800125}
Images (5, 25): {'Euclidean': 2680.8108, 'Manhattan': 49732.0, 'Cosine':
0.42517674}
Images (5, 26): {'Euclidean': 4339.8877, 'Manhattan': 63678.0, 'Cosine':
0.7659661}
Images (5, 27): {'Euclidean': 4908.069, 'Manhattan': 74788.0, 'Cosine':
0.8603437}
Images (5, 28): {'Euclidean': 1710.1702, 'Manhattan': 35130.0, 'Cosine':
0.26325428}
Images (5, 29): {'Euclidean': 2137.2295, 'Manhattan': 45846.0, 'Cosine':
0.3979597
Images (5, 30): {'Euclidean': 2925.442, 'Manhattan': 57742.0, 'Cosine':
0.65196776}
Images (5, 31): {'Euclidean': 3754.8962, 'Manhattan': 60850.0, 'Cosine':
0.556604}
```

```
Images (6, 7): {'Euclidean': 2293.849, 'Manhattan': 46528.0, 'Cosine':
0.34063888}
Images (6, 8): {'Euclidean': 1963.5442, 'Manhattan': 41980.0, 'Cosine':
0.25239253}
Images (6, 9): {'Euclidean': 3102.6333, 'Manhattan': 37818.0, 'Cosine':
0.43773448}
Images (6, 10): {'Euclidean': 2969.2363, 'Manhattan': 61464.0, 'Cosine':
0.5615693}
Images (6, 11): {'Euclidean': 2268.3086, 'Manhattan': 49294.0, 'Cosine':
0.40244687}
Images (6, 12): {'Euclidean': 2622.307, 'Manhattan': 47256.0, 'Cosine':
0.43962717}
Images (6, 13): {'Euclidean': 2039.8215, 'Manhattan': 42498.0, 'Cosine':
0.4236027
Images (6, 14): {'Euclidean': 1099.9264, 'Manhattan': 22488.0, 'Cosine':
0.11281431}
Images (6, 15): {'Euclidean': 2459.0364, 'Manhattan': 52920.0, 'Cosine':
0.42798865}
Images (6, 16): {'Euclidean': 1435.5446, 'Manhattan': 29460.0, 'Cosine':
0.17968196
Images (6, 17): {'Euclidean': 2737.6357, 'Manhattan': 40680.0, 'Cosine':
0.530151}
Images (6, 18): {'Euclidean': 2185.6938, 'Manhattan': 46616.0, 'Cosine':
0.34198558}
Images (6, 19): {'Euclidean': 1898.5131, 'Manhattan': 40574.0, 'Cosine':
0.3173778
Images (6, 20): {'Euclidean': 2061.1978, 'Manhattan': 42042.0, 'Cosine':
0.36940712}
Images (6, 21): {'Euclidean': 1993.8987, 'Manhattan': 35200.0, 'Cosine':
0.26880467}
Images (6, 22): {'Euclidean': 995.4647, 'Manhattan': 20860.0, 'Cosine':
0.10770154
Images (6, 23): {'Euclidean': 2206.57, 'Manhattan': 45404.0, 'Cosine':
0.47540486}
Images (6, 24): {'Euclidean': 2323.1375, 'Manhattan': 40404.0, 'Cosine':
0.4430353}
Images (6, 25): {'Euclidean': 2654.6873, 'Manhattan': 52444.0, 'Cosine':
0.43122447
Images (6, 26): {'Euclidean': 4365.753, 'Manhattan': 70824.0, 'Cosine':
0.8138406}
```

```
Images (6, 27): {'Euclidean': 4354.813, 'Manhattan': 60550.0, 'Cosine':
0.6450757}
Images (6, 28): {'Euclidean': 1766.5175, 'Manhattan': 38304.0, 'Cosine':
0.31314796}
Images (6, 29): {'Euclidean': 1605.7783, 'Manhattan': 34232.0, 'Cosine':
0.24607193}
Images (6, 30): {'Euclidean': 2178.8887, 'Manhattan': 39902.0, 'Cosine':
0.3828361}
Images (6, 31): {'Euclidean': 3635.5142, 'Manhattan': 58734.0, 'Cosine':
0.5199179
Images (7, 8): {'Euclidean': 3184.2512, 'Manhattan': 55878.0, 'Cosine':
0.5630572}
Images (7, 9): {'Euclidean': 3889.209, 'Manhattan': 54588.0, 'Cosine': 0.6404163}
Images (7, 10): {'Euclidean': 4203.893, 'Manhattan': 84348.0, 'Cosine':
0.9081155}
Images (7, 11): {'Euclidean': 3100.5813, 'Manhattan': 60338.0, 'Cosine':
0.56831175
Images (7, 12): {'Euclidean': 3545.1846, 'Manhattan': 58010.0, 'Cosine':
0.6598404}
Images (7, 13): {'Euclidean': 2978.2495, 'Manhattan': 64128.0, 'Cosine':
0.59928036
Images (7, 14): {'Euclidean': 2179.8591, 'Manhattan': 39166.0, 'Cosine':
0.29748195}
Images (7, 15): {'Euclidean': 3233.133, 'Manhattan': 59634.0, 'Cosine':
0.58343816}
Images (7, 16): {'Euclidean': 2004.4716, 'Manhattan': 34886.0, 'Cosine':
0.24447823}
Images (7, 17): {'Euclidean': 3695.815, 'Manhattan': 67096.0, 'Cosine':
0.7531369}
Images (7, 18): {'Euclidean': 3547.174, 'Manhattan': 68466.0, 'Cosine':
0.7159155}
Images (7, 19): {'Euclidean': 3478.9324, 'Manhattan': 72972.0, 'Cosine':
0.76909065}
Images (7, 20): {'Euclidean': 3013.662, 'Manhattan': 59242.0, 'Cosine':
0.5677335}
Images (7, 21): {'Euclidean': 2801.8865, 'Manhattan': 48662.0, 'Cosine':
0.44039434}
Images (7, 22): {'Euclidean': 1787.43, 'Manhattan': 37394.0, 'Cosine':
0.18158942}
```

```
Images (7, 23): {'Euclidean': 3015.633, 'Manhattan': 64298.0, 'Cosine':
0.60194266}
Images (7, 24): {'Euclidean': 3224.8845, 'Manhattan': 60576.0, 'Cosine':
0.6297437}
Images (7, 25): {'Euclidean': 4024.1794, 'Manhattan': 76078.0, 'Cosine':
0.82984024
Images (7, 26): {'Euclidean': 5015.1943, 'Manhattan': 85488.0, 'Cosine':
0.926374}
Images (7, 27): {'Euclidean': 5182.0874, 'Manhattan': 76894.0, 'Cosine':
0.8651019}
Images (7, 28): {'Euclidean': 2925.3115, 'Manhattan': 62412.0, 'Cosine':
0.5728577
Images (7, 29): {'Euclidean': 2191.3757, 'Manhattan': 41370.0, 'Cosine':
0.30105114}
Images (7, 30): {'Euclidean': 3158.0205, 'Manhattan': 60328.0, 'Cosine':
0.60036325}
Images (7, 31): {'Euclidean': 4689.475, 'Manhattan': 75538.0, 'Cosine':
0.82500875
Images (8, 9): {'Euclidean': 4221.9775, 'Manhattan': 67802.0, 'Cosine':
0.7752793}
Images (8, 10): {'Euclidean': 2982.44, 'Manhattan': 54304.0, 'Cosine':
0.46833462}
Images (8, 11): {'Euclidean': 3649.9648, 'Manhattan': 77542.0, 'Cosine':
0.81571996}
Images (8, 12): {'Euclidean': 2558.0024, 'Manhattan': 39874.0, 'Cosine':
0.35239542}
Images (8, 13): {'Euclidean': 3027.5037, 'Manhattan': 66966.0, 'Cosine':
0.6489675}
Images (8, 14): {'Euclidean': 1766.4178, 'Manhattan': 34046.0, 'Cosine':
0.19822127
Images (8, 15): {'Euclidean': 3917.429, 'Manhattan': 82810.0, 'Cosine':
0.8830281
Images (8, 16): {'Euclidean': 1824.9379, 'Manhattan': 31904.0, 'Cosine':
0.2112422}
Images (8, 17): {'Euclidean': 3553.8633, 'Manhattan': 65856.0, 'Cosine':
0.7173929
Images (8, 18): {'Euclidean': 2027.6982, 'Manhattan': 30408.0, 'Cosine':
0.24110818}
Images (8, 19): {'Euclidean': 2192.489, 'Manhattan': 43144.0, 'Cosine':
0.30942512}
```

```
Images (8, 20): {'Euclidean': 3083.026, 'Manhattan': 63430.0, 'Cosine':
0.61776894}
Images (8, 21): {'Euclidean': 2063.8987, 'Manhattan': 36584.0, 'Cosine':
0.24649185}
Images (8, 22): {'Euclidean': 2117.3809, 'Manhattan': 44810.0, 'Cosine':
0.30198723}
Images (8, 23): {'Euclidean': 3014.7449, 'Manhattan': 66066.0, 'Cosine':
0.62779015}
Images (8, 24): {'Euclidean': 3043.2786, 'Manhattan': 57490.0, 'Cosine':
0.58023006}
Images (8, 25): {'Euclidean': 2501.835, 'Manhattan': 41292.0, 'Cosine':
0.3276536}
Images (8, 26): {'Euclidean': 4701.136, 'Manhattan': 73146.0, 'Cosine':
0.8229915}
Images (8, 27): {'Euclidean': 5127.803, 'Manhattan': 80960.0, 'Cosine':
0.85997474}
Images (8, 28): {'Euclidean': 2134.6362, 'Manhattan': 45044.0, 'Cosine':
0.30382776}
Images (8, 29): {'Euclidean': 2949.1687, 'Manhattan': 62310.0, 'Cosine':
0.5948967
Images (8, 30): {'Euclidean': 3485.8472, 'Manhattan': 71660.0, 'Cosine':
0.7583636}
Images (8, 31): {'Euclidean': 3618.3235, 'Manhattan': 52210.0, 'Cosine':
0.47776186}
Images (9, 10): {'Euclidean': 4629.5166, 'Manhattan': 79778.0, 'Cosine':
0.88173735}
Images (9, 11): {'Euclidean': 3156.7014, 'Manhattan': 41774.0, 'Cosine':
0.43411028}
Images (9, 12): {'Euclidean': 4377.083, 'Manhattan': 61886.0, 'Cosine':
0.80002093}
Images (9, 13): {'Euclidean': 3489.947, 'Manhattan': 47744.0, 'Cosine':
0.5867516}
Images (9, 14): {'Euclidean': 3628.3945, 'Manhattan': 51376.0, 'Cosine':
0.6318337
Images (9, 15): {'Euclidean': 3118.943, 'Manhattan': 45432.0, 'Cosine':
0.41118336}
Images (9, 16): {'Euclidean': 3605.15, 'Manhattan': 46246.0, 'Cosine':
0.60916185}
Images (9, 17): {'Euclidean': 3741.9766, 'Manhattan': 43700.0, 'Cosine':
0.5999307}
```

```
Images (9, 18): {'Euclidean': 4328.54, 'Manhattan': 70942.0, 'Cosine':
0.83181643}
Images (9, 19): {'Euclidean': 4000.2883, 'Manhattan': 61726.0, 'Cosine':
0.7647997
Images (9, 20): {'Euclidean': 3637.6582, 'Manhattan': 46148.0, 'Cosine':
0.615077}
Images (9, 21): {'Euclidean': 4082.1367, 'Manhattan': 57686.0, 'Cosine':
0.7286396}
Images (9, 22): {'Euclidean': 3255.2922, 'Manhattan': 37708.0, 'Cosine':
0.49883044}
Images (9, 23): {'Euclidean': 3914.812, 'Manhattan': 53258.0, 'Cosine':
0.7578218}
Images (9, 24): {'Euclidean': 4130.2656, 'Manhattan': 57570.0, 'Cosine':
0.7917797
Images (9, 25): {'Euclidean': 4575.1685, 'Manhattan': 73536.0, 'Cosine':
0.85907686}
Images (9, 26): {'Euclidean': 5480.71, 'Manhattan': 80318.0, 'Cosine': 0.942769}
Images (9, 27): {'Euclidean': 4764.36, 'Manhattan': 52358.0, 'Cosine': 0.6322529}
Images (9, 28): {'Euclidean': 3796.017, 'Manhattan': 57646.0, 'Cosine':
0.7142314}
Images (9, 29): {'Euclidean': 3173.482, 'Manhattan': 37788.0, 'Cosine':
0.45875037
Images (9, 30): {'Euclidean': 3265.665, 'Manhattan': 35920.0, 'Cosine':
0.4722281}
Images (9, 31): {'Euclidean': 5271.889, 'Manhattan': 75658.0, 'Cosine':
0.8900457
Images (10, 11): {'Euclidean': 4069.2688, 'Manhattan': 89022.0, 'Cosine':
0.93059826}
Images (10, 12): {'Euclidean': 2932.4536, 'Manhattan': 52674.0, 'Cosine':
0.43046248}
Images (10, 13): {'Euclidean': 3467.8708, 'Manhattan': 74944.0, 'Cosine':
0.7720734}
Images (10, 14): {'Euclidean': 3138.3433, 'Manhattan': 62794.0, 'Cosine':
0.6044569}
Images (10, 15): {'Euclidean': 4321.034, 'Manhattan': 96142.0, 'Cosine':
0.99123335}
Images (10, 16): {'Euclidean': 3243.3499, 'Manhattan': 67392.0, 'Cosine':
0.6284763}
Images (10, 17): {'Euclidean': 3625.7056, 'Manhattan': 63454.0, 'Cosine':
0.688881}
```

```
Images (10, 18): {'Euclidean': 2481.234, 'Manhattan': 42762.0, 'Cosine':
0.329404
Images (10, 19): {'Euclidean': 1988.7404, 'Manhattan': 36670.0, 'Cosine':
0.21765333}
Images (10, 20): {'Euclidean': 3320.311, 'Manhattan': 66052.0, 'Cosine':
0.6499665}
Images (10, 21): {'Euclidean': 3616.5757, 'Manhattan': 69136.0, 'Cosine':
0.6969707}
Images (10, 22): {'Euclidean': 3147.995, 'Manhattan': 68186.0, 'Cosine':
0.6465856}
Images (10, 23): {'Euclidean': 3183.5383, 'Manhattan': 64842.0, 'Cosine':
0.62805486}
Images (10, 24): {'Euclidean': 2574.4336, 'Manhattan': 46634.0, 'Cosine':
0.37212992}
Images (10, 25): {'Euclidean': 2330.2544, 'Manhattan': 37432.0, 'Cosine':
0.26569957
Images (10, 26): {'Euclidean': 4025.7065, 'Manhattan': 42054.0, 'Cosine':
0.56306833}
Images (10, 27): {'Euclidean': 5493.161, 'Manhattan': 89750.0, 'Cosine':
0.95244396}
Images (10, 28): {'Euclidean': 2415.8254, 'Manhattan': 48584.0, 'Cosine':
0.3433782}
Images (10, 29): {'Euclidean': 3803.09, 'Manhattan': 86980.0, 'Cosine':
0.9086858}
Images (10, 30): {'Euclidean': 3818.6785, 'Manhattan': 79020.0, 'Cosine':
0.83291006}
Images (10, 31): {'Euclidean': 4156.975, 'Manhattan': 65974.0, 'Cosine':
0.61985683}
Images (11, 12): {'Euclidean': 3713.9585, 'Manhattan': 70002.0, 'Cosine':
0.7926738}
Images (11, 13): {'Euclidean': 2053.0518, 'Manhattan': 39162.0, 'Cosine':
0.31863028
Images (11, 14): {'Euclidean': 2595.228, 'Manhattan': 54998.0, 'Cosine':
0.50281787
Images (11, 15): {'Euclidean': 1270.0709, 'Manhattan': 22946.0, 'Cosine':
0.09747714}
Images (11, 16): {'Euclidean': 2906.347, 'Manhattan': 61660.0, 'Cosine':
0.6080811}
Images (11, 17): {'Euclidean': 2502.0886, 'Manhattan': 40958.0, 'Cosine':
0.37855244}
```

```
Images (11, 18): {'Euclidean': 3674.1382, 'Manhattan': 79562.0, 'Cosine':
0.8496264}
Images (11, 19): {'Euclidean': 3188.6294, 'Manhattan': 69990.0, 'Cosine':
0.72639406}
Images (11, 20): {'Euclidean': 2279.5337, 'Manhattan': 44008.0, 'Cosine':
0.36579794}
Images (11, 21): {'Euclidean': 3397.829, 'Manhattan': 67360.0, 'Cosine':
0.7153319}
Images (11, 22): {'Euclidean': 2270.849, 'Manhattan': 49276.0, 'Cosine':
0.40681577
Images (11, 23): {'Euclidean': 2920.9084, 'Manhattan': 59996.0, 'Cosine':
0.6463469}
Images (11, 24): {'Euclidean': 3417.6213, 'Manhattan': 68514.0, 'Cosine':
0.79144216}
Images (11, 25): {'Euclidean': 3962.6453, 'Manhattan': 81828.0, 'Cosine':
0.87930894}
Images (11, 26): {'Euclidean': 4946.007, 'Manhattan': 86788.0, 'Cosine':
0.9612534}
Images (11, 27): {'Euclidean': 3941.566, 'Manhattan': 40786.0, 'Cosine':
0.47255486}
Images (11, 28): {'Euclidean': 3239.699, 'Manhattan': 74842.0, 'Cosine':
0.81453115}
Images (11, 29): {'Euclidean': 1746.3494, 'Manhattan': 32310.0, 'Cosine':
0.22197306}
Images (11, 30): {'Euclidean': 1583.4387, 'Manhattan': 28046.0, 'Cosine':
0.16862494}
Images (11, 31): {'Euclidean': 4696.198, 'Manhattan': 80002.0, 'Cosine':
0.88301116}
Images (12, 13): {'Euclidean': 3186.6165, 'Manhattan': 61238.0, 'Cosine':
0.6644294}
Images (12, 14): {'Euclidean': 2688.886, 'Manhattan': 46630.0, 'Cosine':
0.44813728
Images (12, 15): {'Euclidean': 3980.0723, 'Manhattan': 74618.0, 'Cosine':
0.85966253}
Images (12, 16): {'Euclidean': 2637.8105, 'Manhattan': 40614.0, 'Cosine':
0.41964436}
Images (12, 17): {'Euclidean': 3650.5142, 'Manhattan': 58708.0, 'Cosine':
0.7143079}
Images (12, 18): {'Euclidean': 2716.1528, 'Manhattan': 44256.0, 'Cosine':
0.40611666}
```

```
Images (12, 19): {'Euclidean': 2340.1099, 'Manhattan': 42092.0, 'Cosine':
0.3236668}
Images (12, 20): {'Euclidean': 3200.7537, 'Manhattan': 55968.0, 'Cosine':
0.6198238}
Images (12, 21): {'Euclidean': 3146.1135, 'Manhattan': 53006.0, 'Cosine':
0.53923374
Images (12, 22): {'Euclidean': 2616.8132, 'Manhattan': 46270.0, 'Cosine':
0.43980217}
Images (12, 23): {'Euclidean': 3277.5308, 'Manhattan': 64144.0, 'Cosine':
0.68977594}
Images (12, 24): {'Euclidean': 3215.3518, 'Manhattan': 52632.0, 'Cosine':
0.6053064}
Images (12, 25): {'Euclidean': 2567.103, 'Manhattan': 39664.0, 'Cosine':
0.32895553}
Images (12, 26): {'Euclidean': 4636.1587, 'Manhattan': 66944.0, 'Cosine':
0.7701571
Images (12, 27): {'Euclidean': 5327.7993, 'Manhattan': 76372.0, 'Cosine':
0.903914}
Images (12, 28): {'Euclidean': 2403.291, 'Manhattan': 44186.0, 'Cosine':
0.35432148}
Images (12, 29): {'Euclidean': 3245.216, 'Manhattan': 59920.0, 'Cosine':
0.6703122}
Images (12, 30): {'Euclidean': 3608.498, 'Manhattan': 64952.0, 'Cosine':
0.76139736}
Images (12, 31): {'Euclidean': 4197.4985, 'Manhattan': 61716.0, 'Cosine':
0.6409745}
Images (13, 14): {'Euclidean': 2258.6333, 'Manhattan': 49544.0, 'Cosine':
0.47168916}
Images (13, 15): {'Euclidean': 2167.2578, 'Manhattan': 45254.0, 'Cosine':
0.31849372}
Images (13, 16): {'Euclidean': 2479.9924, 'Manhattan': 54006.0, 'Cosine':
0.5375451}
Images (13, 17): {'Euclidean': 2302.1025, 'Manhattan': 38574.0, 'Cosine':
0.3551538
Images (13, 18): {'Euclidean': 2980.535, 'Manhattan': 66546.0, 'Cosine':
0.65171087
Images (13, 19): {'Euclidean': 2578.3933, 'Manhattan': 57354.0, 'Cosine':
0.5745109}
Images (13, 20): {'Euclidean': 2287.874, 'Manhattan': 45768.0, 'Cosine':
0.44390893}
```

```
Images (13, 21): {'Euclidean': 2912.064, 'Manhattan': 56284.0, 'Cosine':
0.60788095}
Images (13, 22): {'Euclidean': 1924.9426, 'Manhattan': 41472.0, 'Cosine':
0.38317746}
Images (13, 23): {'Euclidean': 1875.6093, 'Manhattan': 37758.0, 'Cosine':
0.32975924
Images (13, 24): {'Euclidean': 2834.2705, 'Manhattan': 56144.0, 'Cosine':
0.6482644}
Images (13, 25): {'Euclidean': 3293.027, 'Manhattan': 67910.0, 'Cosine':
0.68758786}
Images (13, 26): {'Euclidean': 4070.196, 'Manhattan': 66650.0, 'Cosine':
0.66806877}
Images (13, 27): {'Euclidean': 4068.1042, 'Manhattan': 52106.0, 'Cosine':
0.5242312}
Images (13, 28): {'Euclidean': 2384.1494, 'Manhattan': 52478.0, 'Cosine':
0.5476088}
Images (13, 29): {'Euclidean': 1860.6907, 'Manhattan': 38856.0, 'Cosine':
0.32014835}
Images (13, 30): {'Euclidean': 2212.9832, 'Manhattan': 38580.0, 'Cosine':
0.38593197
Images (13, 31): {'Euclidean': 4138.123, 'Manhattan': 73008.0, 'Cosine':
0.7258345}
Images (14, 15): {'Euclidean': 2908.4966, 'Manhattan': 58370.0, 'Cosine':
0.58188426}
Images (14, 16): {'Euclidean': 1376.9117, 'Manhattan': 26396.0, 'Cosine':
0.15782213}
Images (14, 17): {'Euclidean': 3029.7627, 'Manhattan': 51430.0, 'Cosine':
0.6220802}
Images (14, 18): {'Euclidean': 2239.9995, 'Manhattan': 45614.0, 'Cosine':
0.34752488}
Images (14, 19): {'Euclidean': 2231.751, 'Manhattan': 47900.0, 'Cosine':
0.41188478}
Images (14, 20): {'Euclidean': 2391.6182, 'Manhattan': 50132.0, 'Cosine':
0.46653688}
Images (14, 21): {'Euclidean': 1681.4363, 'Manhattan': 28984.0, 'Cosine':
0.18206233}
Images (14, 22): {'Euclidean': 1125.9565, 'Manhattan': 24128.0, 'Cosine':
0.11878419}
Images (14, 23): {'Euclidean': 2363.6057, 'Manhattan': 51108.0, 'Cosine':
0.49900633}
```

```
Images (14, 24): {'Euclidean': 2502.8235, 'Manhattan': 45936.0, 'Cosine':
0.48431456}
Images (14, 25): {'Euclidean': 2862.9443, 'Manhattan': 55282.0, 'Cosine':
0.49367416}
Images (14, 26): {'Euclidean': 4494.925, 'Manhattan': 75756.0, 'Cosine':
0.8385184}
Images (14, 27): {'Euclidean': 4607.8125, 'Manhattan': 67956.0, 'Cosine':
0.7355304}
Images (14, 28): {'Euclidean': 2030.1769, 'Manhattan': 45356.0, 'Cosine':
0.37695158}
Images (14, 29): {'Euclidean': 1865.5509, 'Manhattan': 39410.0, 'Cosine':
0.30722523}
Images (14, 30): {'Euclidean': 2548.3115, 'Manhattan': 48774.0, 'Cosine':
0.49818206}
Images (14, 31): {'Euclidean': 3795.6375, 'Manhattan': 60420.0, 'Cosine':
0.573967}
Images (15, 16): {'Euclidean': 3117.431, 'Manhattan': 62286.0, 'Cosine':
0.64743376}
Images (15, 17): {'Euclidean': 2471.8171, 'Manhattan': 44596.0, 'Cosine':
0.3488413}
Images (15, 18): {'Euclidean': 4002.9402, 'Manhattan': 88754.0, 'Cosine':
0.94577456}
Images (15, 19): {'Euclidean': 3474.0535, 'Manhattan': 78540.0, 'Cosine':
0.8005284}
Images (15, 20): {'Euclidean': 2435.2039, 'Manhattan': 48064.0, 'Cosine':
0.38439667
Images (15, 21): {'Euclidean': 3587.5293, 'Manhattan': 72322.0, 'Cosine':
0.74893504}
Images (15, 22): {'Euclidean': 2473.1736, 'Manhattan': 50790.0, 'Cosine':
0.43651527
Images (15, 23): {'Euclidean': 3134.4395, 'Manhattan': 68286.0, 'Cosine':
0.68578744}
Images (15, 24): {'Euclidean': 3636.3718, 'Manhattan': 74014.0, 'Cosine':
0.83551615
Images (15, 25): {'Euclidean': 4269.8315, 'Manhattan': 90580.0, 'Cosine':
0.9651731}
Images (15, 26): {'Euclidean': 5111.0537, 'Manhattan': 94788.0, 'Cosine':
0.98804355}
Images (15, 27): {'Euclidean': 3865.8862, 'Manhattan': 41126.0, 'Cosine':
0.44525826}
```

```
Images (15, 28): {'Euclidean': 3456.8252, 'Manhattan': 80372.0, 'Cosine':
0.8557493}
Images (15, 29): {'Euclidean': 1714.7961, 'Manhattan': 31270.0, 'Cosine':
0.18772542}
Images (15, 30): {'Euclidean': 1853.6661, 'Manhattan': 34106.0, 'Cosine':
0.21303737
Images (15, 31): {'Euclidean': 4975.861, 'Manhattan': 88808.0, 'Cosine':
0.95812535}
Images (16, 17): {'Euclidean': 3166.245, 'Manhattan': 52990.0, 'Cosine':
0.6573682}
Images (16, 18): {'Euclidean': 2525.4353, 'Manhattan': 48744.0, 'Cosine':
0.43238854}
Images (16, 19): {'Euclidean': 2460.4622, 'Manhattan': 50678.0, 'Cosine':
0.4783665}
Images (16, 20): {'Euclidean': 2413.5522, 'Manhattan': 48532.0, 'Cosine':
0.45436758}
Images (16, 21): {'Euclidean': 1664.0896, 'Manhattan': 30510.0, 'Cosine':
0.17724097
Images (16, 22): {'Euclidean': 1181.3204, 'Manhattan': 23628.0, 'Cosine':
0.117762804}
Images (16, 23): {'Euclidean': 2565.9412, 'Manhattan': 55056.0, 'Cosine':
0.5576949}
Images (16, 24): {'Euclidean': 2751.9316, 'Manhattan': 50402.0, 'Cosine':
0.5627589}
Images (16, 25): {'Euclidean': 3035.4688, 'Manhattan': 56590.0, 'Cosine':
0.5447461}
Images (16, 26): {'Euclidean': 4535.6953, 'Manhattan': 74518.0, 'Cosine':
0.83570415}
Images (16, 27): {'Euclidean': 4818.512, 'Manhattan': 69768.0, 'Cosine':
0.8085482}
Images (16, 28): {'Euclidean': 1858.092, 'Manhattan': 40624.0, 'Cosine':
0.2971362}
Images (16, 29): {'Euclidean': 1957.4769, 'Manhattan': 39456.0, 'Cosine':
0.3205483
Images (16, 30): {'Euclidean': 2746.2415, 'Manhattan': 54362.0, 'Cosine':
0.55625284}
Images (16, 31): {'Euclidean': 3944.949, 'Manhattan': 63458.0, 'Cosine':
0.62179774}
Images (17, 18): {'Euclidean': 3403.873, 'Manhattan': 59156.0, 'Cosine':
0.6746981}
```

```
Images (17, 19): {'Euclidean': 3064.0898, 'Manhattan': 47062.0, 'Cosine':
0.6100645}
Images (17, 20): {'Euclidean': 3024.2976, 'Manhattan': 41922.0, 'Cosine':
0.58840024}
Images (17, 21): {'Euclidean': 3494.4233, 'Manhattan': 55118.0, 'Cosine':
0.70129144}
Images (17, 22): {'Euclidean': 2720.0613, 'Manhattan': 40358.0, 'Cosine':
0.5272474}
Images (17, 23): {'Euclidean': 3158.1768, 'Manhattan': 42700.0, 'Cosine':
0.68433976}
Images (17, 24): {'Euclidean': 3276.6921, 'Manhattan': 47160.0, 'Cosine':
0.66754603}
Images (17, 25): {'Euclidean': 3671.3408, 'Manhattan': 62156.0, 'Cosine':
0.70445085}
Images (17, 26): {'Euclidean': 4718.4136, 'Manhattan': 65262.0, 'Cosine':
0.82550895}
Images (17, 27): {'Euclidean': 4156.4717, 'Manhattan': 47230.0, 'Cosine':
0.5287998}
Images (17, 28): {'Euclidean': 3082.5374, 'Manhattan': 52096.0, 'Cosine':
0.66168976}
Images (17, 29): {'Euclidean': 2759.7837, 'Manhattan': 43946.0, 'Cosine':
0.5122415}
Images (17, 30): {'Euclidean': 2661.707, 'Manhattan': 33506.0, 'Cosine':
0.4363172}
Images (17, 31): {'Euclidean': 4540.296, 'Manhattan': 70626.0, 'Cosine':
0.7813821}
Images (18, 19): {'Euclidean': 1375.3073, 'Manhattan': 24988.0, 'Cosine':
0.12131542}
Images (18, 20): {'Euclidean': 3007.715, 'Manhattan': 58500.0, 'Cosine':
0.6063659}
Images (18, 21): {'Euclidean': 2749.4014, 'Manhattan': 50434.0, 'Cosine':
0.4488051
Images (18, 22): {'Euclidean': 2406.3484, 'Manhattan': 52728.0, 'Cosine':
0.42641944}
Images (18, 23): {'Euclidean': 2874.09, 'Manhattan': 61150.0, 'Cosine':
0.58922327
Images (18, 24): {'Euclidean': 2419.0527, 'Manhattan': 43664.0, 'Cosine':
0.3766333}
Images (18, 25): {'Euclidean': 1674.6528, 'Manhattan': 26312.0, 'Cosine':
0.14653468}
```

```
Images (18, 26): {'Euclidean': 4311.072, 'Manhattan': 57708.0, 'Cosine':
0.69167036}
Images (18, 27): {'Euclidean': 5215.513, 'Manhattan': 83556.0, 'Cosine':
0.90678656}
Images (18, 28): {'Euclidean': 2174.7712, 'Manhattan': 43192.0, 'Cosine':
0.3319394}
Images (18, 29): {'Euclidean': 3198.4536, 'Manhattan': 72524.0, 'Cosine':
0.7280865}
Images (18, 30): {'Euclidean': 3508.3386, 'Manhattan': 73444.0, 'Cosine':
0.7903552}
Images (18, 31): {'Euclidean': 2862.03, 'Manhattan': 41152.0, 'Cosine':
0.2770183}
Images (19, 20): {'Euclidean': 2422.1223, 'Manhattan': 45522.0, 'Cosine':
0.4531864}
Images (19, 21): {'Euclidean': 2869.4617, 'Manhattan': 55080.0, 'Cosine':
0.5466618}
Images (19, 22): {'Euclidean': 2213.1553, 'Manhattan': 49302.0, 'Cosine':
0.44097453}
Images (19, 23): {'Euclidean': 2566.2163, 'Manhattan': 51064.0, 'Cosine':
0.55151534}
Images (19, 24): {'Euclidean': 2204.166, 'Manhattan': 40152.0, 'Cosine':
0.35719997
Images (19, 25): {'Euclidean': 1352.5295, 'Manhattan': 24450.0, 'Cosine':
0.085092545}
Images (19, 26): {'Euclidean': 4065.847, 'Manhattan': 50070.0, 'Cosine':
0.64178646}
Images (19, 27): {'Euclidean': 4883.876, 'Manhattan': 71228.0, 'Cosine':
0.8321354}
Images (19, 28): {'Euclidean': 1795.2036, 'Manhattan': 37966.0, 'Cosine':
0.27334332}
Images (19, 29): {'Euclidean': 2876.6077, 'Manhattan': 67432.0, 'Cosine':
0.6862135}
Images (19, 30): {'Euclidean': 3041.815, 'Manhattan': 61904.0, 'Cosine':
0.6768765}
Images (19, 31): {'Euclidean': 3053.1577, 'Manhattan': 48340.0, 'Cosine':
0.32131565}
Images (20, 21): {'Euclidean': 3125.0706, 'Manhattan': 58516.0, 'Cosine':
0.64387494}
Images (20, 22): {'Euclidean': 2158.867, 'Manhattan': 44032.0, 'Cosine':
0.41119283
```

```
Images (20, 23): {'Euclidean': 2491.471, 'Manhattan': 44318.0, 'Cosine':
0.51221406}
Images (20, 24): {'Euclidean': 2864.4238, 'Manhattan': 48266.0, 'Cosine':
0.5974923}
Images (20, 25): {'Euclidean': 3211.1624, 'Manhattan': 59114.0, 'Cosine':
0.6042227
Images (20, 26): {'Euclidean': 4465.4663, 'Manhattan': 66224.0, 'Cosine':
0.7966759}
Images (20, 27): {'Euclidean': 4672.066, 'Manhattan': 60086.0, 'Cosine':
0.74189407
Images (20, 28): {'Euclidean': 2452.6003, 'Manhattan': 47684.0, 'Cosine':
0.50661635}
Images (20, 29): {'Euclidean': 2015.8125, 'Manhattan': 43948.0, 'Cosine':
0.3309847}
Images (20, 30): {'Euclidean': 2343.7231, 'Manhattan': 42128.0, 'Cosine':
0.39671928
Images (20, 31): {'Euclidean': 4224.7935, 'Manhattan': 69270.0, 'Cosine':
0.7244612}
Images (21, 22): {'Euclidean': 1953.8102, 'Manhattan': 34050.0, 'Cosine':
0.25609374}
Images (21, 23): {'Euclidean': 2902.0571, 'Manhattan': 53582.0, 'Cosine':
0.58919066}
Images (21, 24): {'Euclidean': 3032.0808, 'Manhattan': 51748.0, 'Cosine':
0.58355004}
Images (21, 25): {'Euclidean': 3373.5815, 'Manhattan': 61068.0, 'Cosine':
0.60420966}
Images (21, 26): {'Euclidean': 4805.41, 'Manhattan': 73960.0, 'Cosine':
0.8690965}
Images (21, 27): {'Euclidean': 4940.2285, 'Manhattan': 73472.0, 'Cosine':
0.7957158}
Images (21, 28): {'Euclidean': 2338.7192, 'Manhattan': 48854.0, 'Cosine':
0.37862557
Images (21, 29): {'Euclidean': 2507.716, 'Manhattan': 49374.0, 'Cosine':
0.4310236
Images (21, 30): {'Euclidean': 3233.9158, 'Manhattan': 59522.0, 'Cosine':
0.6605123}
Images (21, 31): {'Euclidean': 4155.053, 'Manhattan': 64040.0, 'Cosine':
0.6523162}
Images (22, 23): {'Euclidean': 2230.5981, 'Manhattan': 46178.0, 'Cosine':
0.49334317}
```

```
Images (22, 24): {'Euclidean': 2397.8691, 'Manhattan': 44444.0, 'Cosine':
0.4786229}
Images (22, 25): {'Euclidean': 2927.3228, 'Manhattan': 58408.0, 'Cosine':
0.5450809}
Images (22, 26): {'Euclidean': 4362.8145, 'Manhattan': 71924.0, 'Cosine':
0.81844413}
Images (22, 27): {'Euclidean': 4425.0894, 'Manhattan': 60174.0, 'Cosine':
0.67852694}
Images (22, 28): {'Euclidean': 1819.8434, 'Manhattan': 42812.0, 'Cosine':
0.3374588}
Images (22, 29): {'Euclidean': 1327.8344, 'Manhattan': 28050.0, 'Cosine':
0.16810566}
Images (22, 30): {'Euclidean': 2200.015, 'Manhattan': 40144.0, 'Cosine':
0.39425266}
Images (22, 31): {'Euclidean': 3861.2004, 'Manhattan': 62996.0, 'Cosine':
0.6168684}
Images (23, 24): {'Euclidean': 2588.3337, 'Manhattan': 45990.0, 'Cosine':
0.5237572}
Images (23, 25): {'Euclidean': 3224.3174, 'Manhattan': 64800.0, 'Cosine':
0.6429625
Images (23, 26): {'Euclidean': 3435.0276, 'Manhattan': 50426.0, 'Cosine':
0.4196993}
Images (23, 27): {'Euclidean': 4703.3467, 'Manhattan': 65078.0, 'Cosine':
0.7797121}
Images (23, 28): {'Euclidean': 2163.033, 'Manhattan': 44602.0, 'Cosine':
0.43407965}
Images (23, 29): {'Euclidean': 2439.019, 'Manhattan': 53636.0, 'Cosine':
0.53199774}
Images (23, 30): {'Euclidean': 2861.7876, 'Manhattan': 52014.0, 'Cosine':
0.6369977}
Images (23, 31): {'Euclidean': 4179.7275, 'Manhattan': 70840.0, 'Cosine':
0.73331565
Images (24, 25): {'Euclidean': 2856.295, 'Manhattan': 49684.0, 'Cosine':
0.46002567}
Images (24, 26): {'Euclidean': 4140.062, 'Manhattan': 52984.0, 'Cosine':
0.6542809}
Images (24, 27): {'Euclidean': 5160.528, 'Manhattan': 78122.0, 'Cosine':
0.92227244}
Images (24, 28): {'Euclidean': 1933.1534, 'Manhattan': 32426.0, 'Cosine':
0.29239058
```

```
Images (24, 29): {'Euclidean': 2982.5693, 'Manhattan': 62130.0, 'Cosine':
0.6913474
Images (24, 30): {'Euclidean': 3192.7314, 'Manhattan': 57270.0, 'Cosine':
0.7061615}
Images (24, 31): {'Euclidean': 3694.3025, 'Manhattan': 59220.0, 'Cosine':
0.5192515}
Images (25, 26): {'Euclidean': 4450.2256, 'Manhattan': 55906.0, 'Cosine':
0.6955904}
Images (25, 27): {'Euclidean': 5406.5405, 'Manhattan': 82512.0, 'Cosine':
0.9189471}
Images (25, 28): {'Euclidean': 2497.2786, 'Manhattan': 44730.0, 'Cosine':
0.36882383}
Images (25, 29): {'Euclidean': 3642.2993, 'Manhattan': 78016.0, 'Cosine':
0.8269383}
Images (25, 30): {'Euclidean': 3795.966, 'Manhattan': 76076.0, 'Cosine':
0.82034886}
Images (25, 31): {'Euclidean': 3037.2756, 'Manhattan': 42356.0, 'Cosine':
0.31487715}
Images (26, 27): {'Euclidean': 6028.8496, 'Manhattan': 85678.0, 'Cosine':
0.9278016}
Images (26, 28): {'Euclidean': 4121.448, 'Manhattan': 55404.0, 'Cosine':
0.68738985
Images (26, 29): {'Euclidean': 4646.285, 'Manhattan': 84714.0, 'Cosine':
0.9079743}
Images (26, 30): {'Euclidean': 4785.735, 'Manhattan': 79810.0, 'Cosine':
0.90592605}
Images (26, 31): {'Euclidean': 5240.5454, 'Manhattan': 72922.0, 'Cosine':
0.78661585}
Images (27, 28): {'Euclidean': 4889.6294, 'Manhattan': 77536.0, 'Cosine':
0.87128586}
Images (27, 29): {'Euclidean': 4071.5151, 'Manhattan': 46514.0, 'Cosine':
0.52423733}
Images (27, 30): {'Euclidean': 4144.6807, 'Manhattan': 46690.0, 'Cosine':
0.5397894}
Images (27, 31): {'Euclidean': 6032.643, 'Manhattan': 81578.0, 'Cosine':
0.94439805}
Images (28, 29): {'Euclidean': 2574.736, 'Manhattan': 62932.0, 'Cosine':
0.60749936}
Images (28, 30): {'Euclidean': 2948.8228, 'Manhattan': 61410.0, 'Cosine':
0.6907653}
```

Images (28, 31): {'Euclidean': 3806.3484, 'Manhattan': 63772.0, 'Cosine': 0.5836951}
Images (29, 30): {'Euclidean': 1842.8809, 'Manhattan': 34418.0, 'Cosine': 0.25703955}
Images (29, 31): {'Euclidean': 4433.9263, 'Manhattan': 76704.0, 'Cosine': 0.84089255}
Images (30, 31): {'Euclidean': 4567.0713, 'Manhattan': 77030.0, 'Cosine': 0.8412553}

(b) Feature Extraction: Edge histogram AND Similarity Measurements i. Choose 1 image from each class. ii. Convert the color images to grayscale images.

```
import os
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from sklearn.decomposition import PCA
from sklearn.metrics import pairwise
import cv2
import zipfile
images zip path = '/content/Image dataset.zip'
images folder path = '/content/Breeds'
cropped images path = '/content/sample data/Cropped Images'
def unzip_files(zip_file_path, extract_path):
  with zipfile.ZipFile(zip file path, 'r') as zip ref:
    zip ref.extractall(extract path)
# Unzip the images
unzip_files(images_zip_path, images_folder_path)
def load images(folder):
  images = []
 for dirpath, _, files in os.walk(folder):
    for filename in files:
      if filename.endswith(('.png', '.jpg', '.jpeg')):
         img_path = os.path.join(dirpath, filename)
        img = Image.open(img_path).convert('RGB')
        images.append(np.array(img))
  return images
# Function to crop and resize images
def crop_and_resize_images(images, size=(128, 128)):
  cropped resized images = []
  for img in images:
    width, height = img.shape[1], img.shape[0]
    left = (width - size[0]) / 2
```

```
top = (height - size[1]) / 2
    right = (width + size[0]) / 2
    bottom = (height + size[1]) / 2
    cropped img = img[int(top):int(bottom), int(left):int(right)]
    resized_img = cv2.resize(cropped_img, size)
    cropped resized images.append(resized img)
  return cropped resized images
def compute histograms(images):
  histograms = []
  for img in images:
    if len(img.shape) == 2:
      hist = cv2.calcHist([img], [0], None, [256], [0, 256])
    else:
      hist = cv2.calcHist([img], [0, 1, 2], None, [256, 256, 256], [0, 256, 0, 256,
0, 256])
    histograms.append(hist.flatten())
  return histograms
def compute similarity measurements(histograms):
  for i in range(len(histograms)):
    for j in range(i + 1, len(histograms)):
      euclidean_distance = np.linalg.norm(histograms[i] - histograms[j])
      manhattan distance = np.sum(np.abs(histograms[i] - histograms[j]))
      cosine distance = 1 - pairwise.cosine similarity([histograms[i]],
[histograms[j]])[0][0]
       print(f'Images ({i}, {j}): {{\'Euclidean\': {euclidean distance},
\'Manhattan\': {manhattan distance}, \'Cosine\': {cosine distance}}}')
def perform_pca(histograms):
  pca = PCA(n components=2)
  reduced data = pca.fit transform(histograms)
  plt.figure(figsize=(20,15))
  plt.scatter(reduced_data[:, 0], reduced_data[:, 1], alpha=0.5)
  plt.title('PCA of Image Histograms')
  plt.xlabel('Principal Component 1')
  plt.ylabel('Principal Component 2')
  plt.grid()
```

```
plt.show()
def plot images(images, titles=None, cols=4):
  n images = len(images)
  rows = (n images + cols - 1) // cols
  plt.figure(figsize=(250, 250))
  for i in range(n images):
    plt.subplot(rows, cols, i + 1)
    plt.imshow(images[i].astype(np.uint8))
    plt.axis('off')
    if titles is not None:
      plt.title(titles[i], fontsize=2)
  plt.show()
if __name__ == "__main__":
  dog_images = load_images(images_folder_path)
  plot images(dog images, titles=[f'Image {i+1}' for i in
range(len(dog images))])
  cropped_resized_images = crop_and_resize_images(dog_images)
  histograms = compute_histograms(cropped_resized_images)
  if histograms:
    compute_similarity_measurements(histograms)
    perform pca(histograms)
  plot_images(cropped_resized_images, titles=[f'Cropped Image {i+1}' for i in
range(len(cropped resized images))])
```


3. Next, we perform some text processing steps on a tweet (i.e., text) dataset. The dataset file is in json format and each dataset consists of • Training Set: 3,000 records • Test Set: 1,500 records • Validation Set: 400 records import json file_path = '/content/train.json' data = [] with open(file path, 'r') as file: for line in file: data.append(json.loads(line)) print(json.dumps(data[0], indent=4)) **OUTPUT:** "ID": "2017-En-21529", "Tweet": "Follow this amazing Australian author @KristyBerridge #fiction #zombies #angels #demons #vampires #werewolves #follow #authorlove", "anger": false, "anticipation": true, "disgust": false, "fear": false, "joy": true, "love": true, "optimism": true, "pessimism": false, "sadness": false, "surprise": false, "trust": true }

- 4. You will use the simple countvectorizer and tfidfvectorizer in https://scikit-learn.org/stable/api/sklearn.feature_extraction.html#module-sklearn.feature_extraction.text to extract
- (1) token (feature) counts, and

```
(2) TF-IDF feature (counts), respectively
import ison
from sklearn.feature extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
file path = 'train.json'
data = []
with open(file path, 'r') as file:
  for line in file:
    data.append(json.loads(line))
texts = [entry['Tweet'] for entry in data]
count vectorizer = CountVectorizer()
count vectors = count vectorizer.fit transform(texts)
tfidf vectorizer = TfidfVectorizer()
tfidf_vectors = tfidf_vectorizer.fit_transform(texts)
pca = PCA(n components=2)
count_pca = pca.fit_transform(count_vectors.toarray())
tfidf pca = pca.fit transform(tfidf vectors.toarray())
def plot pca(pca result, title):
  plt.figure(figsize=(8, 6))
  plt.scatter(pca result[:, 0], pca result[:, 1], c='blue', marker='o',
edgecolor='k')
  plt.title(title)
  plt.xlabel('PC1')
  plt.ylabel('PC2')
  plt.grid(True)
  plt.show()
plot_pca(count_pca, 'PCA of CountVectorizer Features')
```

plot_pca(tfidf_pca, 'PCA of TfidfVectorizer Features')

count_dimensionality = count_vectors.shape
tfidf_dimensionality = tfidf_vectors.shape

print(f"Dimensionality of CountVectorizer representation:
{count_dimensionality}")
print(f"Dimensionality of TfidfVectorizer representation:
{tfidf_dimensionality}")

OUTPUT:

- 5. Using the two sets of processed text data in Item 4,
- Pick four classes which you think will be separable. State the four classes.
- Perform dimensionality reduction similar to 2(d) with reduced to
- Plot the 2D points using four different colors for data from the four classes for both token count features and tf-idf features in two separate plots.
- How many classes are visually separable (i.e., non-overlapping) for both plots?

Import necessary libraries
import os
import tarfile
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from skimage import filters, exposure
from skimage.feature import hog
from sklearn.decomposition import PCA
from sklearn.metrics import pairwise
from sklearn.feature_extraction.text import CountVectorizer

```
data = [
  {'Tweet': '/content/Image/n02094114-Norfolk terrier', 'Class':
'/content/Image/n02094114-Norfolk terrier'},
  {'Tweet': '/content/Image/n02096177-cairn', 'Class':
'/content/Image/n02096177-cairn'},
  {'Tweet': '/content/Image/n02107312-miniature pinscher', 'Class':
'/content/Image/n02107312-miniature pinscher'},
  {'Tweet': '/content/Image/n02113799-standard poodle', 'Class':
'/content/Image/n02113799-standard poodle'},
selected_classes = ['/content/Image/n02094114-Norfolk terrier',
'/content/Image/n02096177-cairn', '/content/Image/n02107312-
miniature pinscher', '/content/Image/n02113799-standard poodle'] #
Replace with your actual class labels
filtered_data = [entry for entry in data if entry['Class'] in selected classes]
filtered texts = [entry['Tweet'] for entry in filtered data]
filtered_classes = [entry['Class'] for entry in filtered_data]
count vectorizer = CountVectorizer()
count vectors = count vectorizer.fit transform(filtered texts)
count vectors filtered = count vectorizer.transform(filtered texts)
pca count filtered =
PCA(n components=2).fit _transform(count_vectors_filtered.toarray())
plt.figure(figsize=(8, 6))
for class label in selected classes:
 indices = [i for i, cls in enumerate(filtered classes) if cls == class label]
 plt.scatter(pca_count_filtered[indices, 0], pca_count_filtered[indices, 1],
label=class label)
plt.title('PCA of CountVectorizer Features (Selected Classes)')
plt.xlabel('PC1')
```

plt.ylabel('PC2')
plt.legend()
plt.grid(True)
plt.show()

from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import PCA import matplotlib.pyplot as plt

```
selected classes = ['/content/Image/n02094114-Norfolk terrier',
'/content/Image/n02096177-cairn', '/content/Image/n02107312-
miniature pinscher', '/content/Image/n02113799-standard poodle'] #
Replace with your actual class labels
filtered data = [entry for entry in data if entry['Class'] in selected classes]
filtered texts = [entry['Tweet'] for entry in filtered data]
filtered classes = [entry['Class'] for entry in filtered data]
tfidf vectorizer = TfidfVectorizer()
tfidf vectors = tfidf vectorizer.fit transform(filtered texts)
tfidf vectors filtered = tfidf vectorizer.transform(filtered texts)
pca_tfidf_filtered =
PCA(n_components=2).fit_transform(tfidf_vectors_filtered.toarray())
plt.figure(figsize=(8, 6))
for class_label in selected classes:
 indices = [i for i, cls in enumerate(filtered classes) if cls == class label]
 plt.scatter(pca_tfidf_filtered[indices, 0], pca_tfidf_filtered[indices, 1],
label=class_label)
plt.title('PCA of TfidfVectorizer Features (Selected Classes)')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend()
plt.grid(True)
plt.show()
```

PCA of TfidfVectorizer Features (Selected Classes)

