Data Mining & Machine Learning

CS37300 Purdue University

September 15, 2017

Classification

- In its simplest form, a classification model defines a decision boundary (h) and labels for each side of the boundary
- Input: $\mathbf{x} = \{x_1, x_2, ..., x_n\}$ is a set of attributes, function f assigns a label y to input \mathbf{x} , where y is a discrete variable with a finite number of values

Discriminative classification

- Model the decision boundary directly
- Direct mapping from inputs x to class label y
- No attempt to model probability distributions
- May seek a discriminant function $f(\mathbf{x};\theta)$ that maximizes measure of separation between classes
- Examples:
 - Perceptrons, nearest neighbor classifiers, support vector machines, decision trees

Probabilistic classification

- Model the underlying probability distributions
 - Posterior class probabilities: p(y|x)
 - Class-conditional and class prior: p(x|y) and p(y)
- Maps from inputs \mathbf{x} to class label y indirectly through posterior class distribution $p(y|\mathbf{x})$
- Examples:
 - Naive Bayes classifier, logistic regression, probability estimation trees

Knowledge representation

Knowledge representation

- Underlying structure of the model or patterns that we seek from the data
 - Defines space of possible models for algorithm to search over
- Model: high-level global description of dataset
 - "All models are wrong, some models are useful"

 G. Box and N. Draper (1987)
 - Choice of model family determines space of parameters and structure
 - Estimate model parameters and possibly model structure from training data

Classification tree

Model space

- How large is the space?
- Can we search exhaustively?
- Simplifying assumptions
 - Binary tree
 - Fixed depth
 - 10 binary attributes

Tree depth	Number of trees
1	10
2	8×10^{2}
3	3 x 10 ⁶
4	2 x 10 ¹³
5	5 x 10 ²⁵

Perceptron

$$f(x) = \begin{cases} 1 & \sum_{j=1}^{\infty} w_j x_j > 0\\ 0 & \sum_{j=1}^{\infty} w_j x_j \le 0 \end{cases}$$

Model space:

weights w, for each of j attributes

Decision rule

Model space:

all possible rules formed from conjunctions of features

Parametric vs. non-parametric models

- Parametric
 - Particular functional form is assumed (e.g., Binomial)
 - Number of parameters is fixed in advance
 - Examples: Naive Bayes, perceptron
- Non-parametric
 - Few assumptions are made about the functional form
 - Model structure is determined from data
 - Examples: classification tree, nearest neighbor

Predictive modeling: learning

Learning predictive models

- Choose a data representation
- Select a knowledge representation (a "model")
 - Defines a **space** of possible models $M=\{M_1, M_2, ..., M_k\}$
- Use search to identify "best" model(s)
 - Search the space of models (i.e., with alternative structures and/or parameters)
 - Evaluate possible models with scoring function to determine the model which best fits the data

Learning predictive models

- Choose a data representation
- Select a knowledge representation (a "model")
 - Defines a **space** of possible models $M=\{M_1, M_2, ..., M_k\}$
- Use search to identify "best" model(s)
 - Search the space of models (i.e., with alternative structures and/or parameters)
 - Evaluate possible models with scoring function to determine the model which best fits the data

Scoring functions

- Given a model M and dataset D, we would like to "score" model M with respect to D
 - Goal is to rank the models in terms of their utility (for capturing D) and choose the "best" model
 - Score function can be used to search over *parameters* and/or *model structure*
- Score functions can be different for:
 - Models vs. patterns
 - Predictive vs. descriptive functions
 - Models with varying complexity (i.e., number parameters)

Predictive scoring functions

- Assess the quality of predictions for a set of instances
 - Measures difference between the prediction M makes for an instance i and the true class label value of i

Predictive scoring functions

- Common score functions:
 - Zero-one loss

$$S_{0/1}(M) = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} I[f(x(i); M), y(i)]$$

where
$$I(a,b) = \begin{cases} 1 & a \neq b \\ 0 & \text{otherwise} \end{cases}$$

Squared loss

$$S_{sq}(M) = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} [f(x(i); M) - y(i)]^2$$

 Do we minimize or maximize these functions? Where's the search?

What space are we searching?

Searching over models/patterns

- Consider a **space** of possible models $M = \{M_1, M_2, ..., M_k\}$ with parameters θ
- Search could be over model structures or parameters, e.g.:
 - **Parameters**: In a linear regression model, find the regression coefficients (β) that minimize squared loss on the training data
 - Model structure: In a decision trees, find the tree structure that maximizes accuracy on the training data

Example model: Naive Bayes classifiers

Classification as probability estimation

- Instead of learning a function f that assigns labels
- Learn a conditional probability distribution over the output of function f
- $P(f(x) | x) = P(f(x) = y | x_1, x_2, ..., x_p)$
- Can use probabilities for the other two tasks
 - Classification
 - Ranking

Bayes rule for probabilistic classifier

$$P(Y|\mathbf{X}) = \frac{P(\mathbf{X}|Y)P(Y)}{P(\mathbf{X})}$$

Bayes rule

$$= \frac{P(\mathbf{X}|Y)P(Y)}{[P(\mathbf{X}|Y=+)P(Y=+)] + [P(\mathbf{X}|Y=-)P(Y=-)]}$$

$$\propto P(\mathbf{X}|Y)P(Y)$$

Denominator: normalizing factor to make probabilities sum to 1 (can be computed from numerators)

Naive Bayes classifier

$$P(Y|\mathbf{X}) \propto P(\mathbf{X}|Y)P(Y) \qquad \begin{array}{c} \mathbf{Bayes} \\ \mathbf{rule} \end{array}$$

$$\propto \prod_{i=1}^m P(X_i|Y)P(Y)$$
 Naive assumption

Assumption: Attributes are conditionally independent given the class

Naive Bayes classifier

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})}$$
$$= \frac{\prod_{i} p(x_{i}|y) p(y)}{\sum_{j} p(\mathbf{x}|y_{j})p(y_{j})}$$

Model space:

parameters in conditional distributions $p(x_i|y)$ parameters in prior distribution p(y)

NBC learning

$$\begin{split} P(BC|A,I,S,CR) &= \frac{P(A,I,S,CR|BC)P(BC)}{P(A,I,S,CR)} \\ &= \frac{P(A|BC)P(I|BC)P(S|BC)P(CR|BC)P(BC)}{P(A,I,S,CR)} \\ &\propto P(A|BC)P(I|BC)P(S|BC)P(CR|BC)P(BC) \end{split}$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

NBC parameters = CPDs+prior

```
CPDs: P(A BC)
P(I BC)
P(S BC)
P(CR BC)
Prior: P(BC)
```

Score function

Likelihood

• Let
$$D = \{x(1), ..., x(n)\}$$

Assume the data D are independently sampled from the same distribution:

$$p(X|\theta)$$

 The likelihood function represents the probability of the data as a function of the model parameters:

$$L(\theta|D) = L(\theta|x(1),...,x(n))$$

$$= p(x(1),...,x(n)|\theta)$$

$$= \prod_{i=1}^n p(x(i)|\theta)$$
 If instances are independent, likelihood is product of probs

Likelihood (cont')

- Likelihood is not a probability distribution
 - Gives relative probability of data given a parameter
 - Numerical value of L is not relevant, only the ratio of two scores is relevant, e.g.,:

$$\frac{L(\theta_1|D)}{L(\theta_2|D)}$$

- Likelihood function: allows us to determine unknown parameters based on known outcomes
- Probability distribution: allows us to predict unknown outcomes based on known parameters

NBCs: Likelihood

 NBC likelihood uses the NBC probabilities for each data instance (i.e., probability of the class given the attributes)

i = 1, j = 1

$$L(heta|D) = \prod_{i=1}^n p(y_i|\mathbf{x}_i; heta)$$
 General likelihood $\propto \prod_{i=1}^n p(\mathbf{x}_i|y_i; heta)p(y_i| heta)$ Bayes rule $\propto \prod_{i=1}^n \prod_{j=1}^n p(x_{ij}|y_i; heta)p(y_i| heta)$ Naive assumption

Search

Maximum likelihood estimation

- Most widely used method of parameter estimation
- "Learn" the best parameters by finding the values of heta that maximizes likelihood:

$$\hat{\theta}_{MLE} = \arg\max_{\theta} L(\theta)$$

Often easier to work with loglikelihood:

$$l(\theta|D) = log L(\theta|D)$$

$$= log \prod_{i=1}^{n} p(x(i)|\theta)$$

$$= \sum_{i=1}^{n} log p(x(i)|\theta)$$

Likelihood surface

If the likelihood surface is convex we can often determine the parameters that maximize the function analytically

MLE for multinomials

- Let $X \in \{1, ..., k\}$ be a discrete random variable with k values, where $P(X=j)=\theta_j$
- Then P(X) is a multinomial distribution:

$$P(X|\theta) = \prod_{j=1}^{k} \theta_j^{I(X=j)}$$

where I(X=j) is an indicator function

• The likelihood for a data set $D=[x_1, ..., x_N]$ is:

$$P(D|\theta) = \prod_{n=1}^{N} \prod_{j=1}^{k} \theta_j^{I(x_n=j)} = \prod_j \theta_j^{N_j}$$

• The maximum likelihood estimates for each parameter are: $\hat{\theta}_j =$ (using Lagrange multipliers)

In this case, MLE can be determined analytically by counting

Learning CPDs from examples

			Xı	
		Low	Medium	High
V	Yes	10	13	17
Y	No	2	13	0

$$P[X_1 = Low | Y = Yes] = \frac{10}{(10+13+17)}$$

P[Y = No] =
$$\frac{(2+13)}{(2+13+10+13+17)}$$

NBC learning

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

P(BC)

$\overline{\mathrm{BC}}$	θ
yes	9/14
no	5/14

P(AIBC)

BC	A	θ
	<= 30	2/9
yes	3140	4/9
	> 40	3/9
	<= 30	3/5
no	3140	0/5
	> 40	2/5

P(IIBC)

$\overline{\mathrm{BC}}$	I	θ
	high	2/9
yes	med	4/9
	low	3/9
	high	2/5
no	med	2/5
	low	1/5

P(SIBC)

BC	S	θ
yes	yes	6/9
	no	3/9
no	yes	1/5
	no	4/5

P(CR I BC)

BC	CR	θ
yes	exc	3/9
	fair	6/9
no	exc	4/5
	fair	1/5

NBC prediction

		- 4 d 4	avadit vatina	<u></u>
age	income	student		buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no
3140	high	no	excellent	?

 What is the probability that a new person will buy a computer?

$$\begin{split} P(BC = yes | A = 31..40, I = high, S = no, CR = exc) \\ &\propto P(A = 31..40 | BC = yes) P(I = high | BC = yes) \\ &P(S = no | BC = yes) P(CR = exc | BC = yes) P(BC = yes) \end{split}$$

P(BC)

BC	θ
yes	9/14
no	5/14

P(AIBC)

BC	A	θ
	<=30	2/9
yes	3140	4/9
	> 40	3/9
	<= 30	3/5
no	3140	$\mid 0/5 \mid$
	> 40	2/5

P(IIBC)

\Box BC	I	θ
	high	2/9
yes	med	4/9
	low	3/9
	high	2/5
no	med	2/5
	low	1/5

P(SIBC)

BC	S	θ
yes	yes	6/9
	no	3/9
no	yes	1/5
	no	4/5

P(CR I BC)

BC	CR	θ
yes	exc	3/9
	fair	6/9
no	exc	4/5
	fair	1/5

Zero counts are a problem

- If an attribute value does not occur in training example, we assign zero probability to that value
- How does that affect the conditional probability P[f(x) | x]?
- It equals 0!!!
- Why is this a problem?
- Adjust for zero counts by "smoothing" probability estimates

Smoothing: Laplace correction

		X _I		
		Low	Medium	High
Y	Yes	10	13	17
	No	2	13	0

$$P[X_1 = High | Y = No] =$$

$$\frac{0}{(2+13+0)+3}$$

Laplace correction

Numerator: **add 1**Denominator: **add k**,
where k=number of
possible values of X

Adds uniform prior

Is assuming independence a problem?

- What is the effect on probability estimates?
 - Over-counting evidence, leads to overly confident probability estimate
- What is the effect on classification?
 - Less clear...
 - For a given input x, suppose f(x) = True
 - Naïve Bayes will correctly classify if P[f(x) = True | x] > 0.5
 ...thus it may not matter if probabilities are overestimated

Naive Bayes classifier

- Simplifying (naive) assumption: attributes are conditionally independent given the class
- Strengths:
 - Easy to implement
 - Often performs well even when assumption is violated
 - Can be learned incrementally
- Weaknesses:
 - Class conditional assumption produces skewed probability estimates
 - Dependencies among variables cannot be modeled

NBC learning

- Model space
 - Parametric model with specific form

 (i.e., based on Bayes rule and assumption of conditional independence),
 - Models vary based on parameter estimates in CPDs
- Search algorithm
 - MLE optimization of parameters (convex optimization results in exact solution)
- Scoring function
 - Likelihood of data given NBC model form