CS 591, Lecture 11

Data Analytics: Theory and Applications Boston University

Babis Tsourakakis

March 1st, 2017

ℓ_1 heavy hitters : State-of-the-art

Larsen, Nelson, Nguyen, Thorup [Larsen et al., 2016]
Another suggestion for the class project (contains a cool graph clustering problem, probably of independent interest)

Today we will use Jelani's exposition for Count-Min sketch from 2016 TUM Summer School.

ℓ_1 point queries

Setting: Strict Turnstile

- $x \in \mathbb{R}^n$
- $x \leftarrow 0$ initially
- At step i we see an update (i, Δ) which causes the change

$$x_i \leftarrow x_i + \Delta$$
.

• Δ can be negative, $x_i \ge 0$ at all times for all $i \in [n]$ When x_i s can also be negative this is called the general turnstile model.

• QUERY(i): Return value \tilde{x}_i in the range $x_i \pm \varepsilon \cdot ||x||_1$.

Heavy Hitters

- HEAVYHITTER: Return a set $L \subseteq [n]$ such that

 $2 |x_i| < \frac{\varepsilon}{2} ||x||_1 \Rightarrow i \notin L$

Today, we present the CountMin sketch [Cormode and Muthukrishnan, 2005], which solves ℓ_1 point query in the general turnstile model.

• C code available by G. Cormode

Python implementation

```
from streamlib import CountMin
cm = CountMin()
cm.processBatch([0, 0,1, 1, 1, 2,4])
for i in xrange(5):
   print i,'u', cm.estimate(i)
```

Observation

Claim: If we can solve point query in small space then we can solve heavy hitters in small space as well (though not necessarily efficient run-time).

- Run point query with $\varepsilon/4$ on each $i \in [n]$
- Output the set of indices i for which we had large estimate of x_i , i.e. at least $(3\varepsilon/4)||x||_1$

- **1** We store hash functions $h_1, ... h_L : [n] \to [t]$, each chosen independently from a 2-wise independent family.
- **2** We store counters $C_{a,b}$ for $a \in [s]$, $b \in [t]$ with $s = \lceil 2/\varepsilon \rceil$, $t = \lceil \log_2(1/\delta) \rceil$.
- **3** Upon an update (i, Δ) , we add Δ to all counters $C_{a,h_a(i)}$ for $a = 1, \ldots, s$.
- 4 To answer query(i), we output $\min_{1 \le a \le s} C_{a,h_a(i)}$.

Source: Count-Min Sketch by G. Cormode

Note that our total memory consumption, in words is $m = O(st) = O(\varepsilon^{-1} \log(1/\delta))$.

Claim:
$$query(i) = x_i \pm \varepsilon ||x||_1 \text{ w.p} \ge 1 - \delta.$$

Proof: Fix i , let $Z_j = 1$ if $h_r(j) = h_r(i)$, $Z_j = 0$ otherwise. Now note that for any $r \in [s]$, $C_{r,h_r(i)} = x_i + \sum_{j \neq i} x_j Z_j$. We have $\mathbb{E}(E) = \sum_{j \neq i} |x_j| \mathbb{E} Z_j = \sum_{j \neq i} |x_j| / t \le \varepsilon / 2 \cdot ||x||_1$. Thus by Markov's inequality $\mathbb{P}(E) = ||x||_1 + ||x||_2 = ||x||_1 + ||x||_2 = ||x||_1 = ||x||_1$. Thus by

have $\mathbb{E}(E) = \sum_{j \neq i} |x_j| \mathbb{E} Z_j = \sum_{j \neq i} |x_j|/t \le \varepsilon/2 \cdot ||x||_1$. Thus by Markov's inequality, $\mathbb{P}(E > \varepsilon ||x||_1) < 1/2$. Thus by independence of the s rows of the CountMin sketch, $\mathbb{P}(\min_r C_{r,h_r(i)} > x_i + \varepsilon ||x||_1) < 1/2^L = \delta$.

Theorem

There is an algorithm solving the ℓ_1 ε -heavy hitter problem in the strict turnstile model with failure probability δ , space $O(\varepsilon^{-1}\log(n/\delta))$, update time $O(\log(n/\delta))$, and query time $O(n\log(n/\delta))$.

Proof.

We can instantiate a point query data structure with failure probability δ/n . Then we point query every $i \in [n]$ and include in our outpust list L only those i for which query returned a value at least $(3\varepsilon/4)\|x\|_1$.

Question: Can we improve the query time?

- Tree has $1 + \lg n$ levels
- We store in memory is $1 + \lg n$ CM sketches, one per level
- Upon an update, we feed that update to the appropriate coordinate at the CM sketch at every level.
 - For α -HHs, and final failure probability δ , each CM sketch has error parameter $\varepsilon=\alpha/4$ and failure probabliity $\eta=\delta\alpha/(4\lg n)$.
- Insight: The value at any ancestor of a node is at least as big as the value at that node.

- Insight: The value at any ancestor of a node is at least as big as the value at that node.
- There can only be at most $2/\alpha$ indices that are $\alpha/2$ heavy hitters
- We move down the tree starting from the root (definitely a HH)
- At each level j of the tree, we keep track of a list L_j of heavy hitters at that level (definitely anything that is α -HH, nothing below $\frac{\alpha}{2}$ HH.

- For any node in L_i we point query its two children.
- If a child has point query output at least $(3\alpha/4)||x||_1$, we include it in L_{j+1} .
- Finally, our final output list L is simply the list corresponding to the bottom-most level of the tree.

For failure probability δ :

- Words of space: $O(\varepsilon^{-1} \lg n \lg((\lg n)/(\alpha \delta)))$
- Update time: $O(\lg n \lg(1/\eta)) = O(\lg n \lg((\lg n)/(\alpha\delta)))$
- Query time: $O(\varepsilon^{-1} \lg n \lg((\lg n)/(\alpha \delta)))$

ℓ_1 heavy hitters : State-of-the-art

Larsen, Nelson, Nguyen, Thorup [Larsen et al., 2016]

For failure probability δ

- Words of space: $O(\varepsilon^{-1} \lg(n/\delta))$
- Update time: $O(\lg(n/\delta))$
- Query time: $O(\varepsilon^{-1} \lg(n/\delta) poly(\lg n))$

references I

Cormode, G. and Muthukrishnan, S. (2005).

An improved data stream summary: the count-min sketch and its applications.

J. Algorithms, 55(1):58-75.

Larsen, K. G., Nelson, J., Nguyễn, H. L., and Thorup, M. (2016).

Heavy hitters via cluster-preserving clustering.

In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS).