Prof. F. Bottacin, N. Rodinò, R. Sánchez

3° Appello — 8 settembre 2014

Esercizio 1. Sia $V = M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2 a coefficienti reali. Sia $U \subset V$ il sottospazio formato dalle matrici A tali che il vettore (1,-2) appartiene al nucleo di A. Sia $W \subset V$ il sottospazio formato dalle matrici B tali che l'immagine di B è contenuta nella retta di equazione y = 2x.

- (a) Si determini la dimensione e una base dei sottospazi U e W.
- (b) Si determini la dimensione e una base di U + W e $U \cap W$.
- (c) Data la matrice $C = \begin{pmatrix} 4 & 2 \\ t & -1 \end{pmatrix}$ si dica per quale valore di t l'insieme $\{C + A \mid \text{per ogni } A \in U\}$ è un sottospazio vettoriale di V.
- (d) Si determini (se possibile) una base di un sottospazio vettoriale $L \subset V$ tale che $U \oplus L = W \oplus L = U + W$.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ la funzione lineare di matrice (rispetto alle basi canoniche)

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & t & -2 \end{pmatrix}$$

- (a) Si dica per quale valore di t l'immagine di f ha dimensione 1. Per tale valore di t si trovi una base di Ker(f) e una base di Im(f).
- (b) Per il valore di t trovato nel punto (a), si determini una base $\{v_1, v_2\}$ di \mathbb{R}^2 tale che la matrice di f rispetto alla base canonica di \mathbb{R}^3 e alla base $\{v_1, v_2\}$ di \mathbb{R}^2 abbia la seconda riga nulla.
- (c) Si dica per quali valori di t esiste una funzione lineare $g: \mathbb{R}^2 \to \mathbb{R}^3$ tale che $f \circ g: \mathbb{R}^2 \to \mathbb{R}^2$ sia l'identità.
- (d) Dopo aver posto t=0, sia $h\colon \mathbb{R}^2\to\mathbb{R}^3$ la funzione lineare definita ponendo

$$h(v) \cdot w = v \cdot f(w), \quad \forall v \in \mathbb{R}^2, w \in \mathbb{R}^3.$$

Si scriva la matrice di h rispetto alle basi canoniche.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & t & 1 - t \\ 2t - 1 & t & t \end{pmatrix}$$

- (a) Si dica per quali $t \in \mathbb{R}$ gli autovalori di f sono reali, specificando i casi in cui tali autovalori hanno molteplicità maggiore di 1.
- (b) Si determini per quali valori di t la matrice A è diagonalizzabile sul campo dei numeri reali.
- (c) Si determini il valore di t per cui esiste una base ortonormale di autovettori di f e si scriva una tale base.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sia ℓ la retta passante per il punto (1,1,-2) e parallela al vettore $v_{\ell} = (1,0,-1)$ e sia \mathcal{S} la sfera di centro C = (1,-2,1) e raggio 3.

- (a) Si determini la distanza di C dalla retta ℓ e il punto C' simmetrico di C rispetto a ℓ .
- (b) Si determinino le equazioni parametriche di due rette sghembe r e s passanti rispettivamente per i punti $R_1 = (4, 2, -1)$ e $S_1 = (2, 3, 1)$ e incidenti la retta ℓ rispettivamente nei punti R_2 e S_2 , in modo tale che R_2 e S_2 siano i punti di minima distanza delle rette r e s.
- (c) Si scrivano le equazioni parametriche delle rette di direzione $\langle (2,-1,2) \rangle$ tangenti alla sfera \mathcal{S} e incidenti la retta ℓ .

Prof. F. Bottacin, N. Rodinò, R. Sánchez

3º Appello — 8 settembre 2014

Esercizio 1. Sia $V = M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2 a coefficienti reali. Sia $U \subset V$ il sottospazio formato dalle matrici A tali che il vettore (3,-1) appartiene al nucleo di A. Sia $W \subset V$ il sottospazio formato dalle matrici B tali che l'immagine di B è contenuta nella retta di equazione y = 3x.

- (a) Si determini la dimensione e una base dei sottospazi U e W.
- (b) Si determini la dimensione e una base di U + W e $U \cap W$.
- (c) Data la matrice $C = \begin{pmatrix} 2 & 6 \\ -1 & t \end{pmatrix}$ si dica per quale valore di t l'insieme $\{C + A \mid \text{per ogni } A \in U\}$ è un sottospazio vettoriale di V.
- (d) Si determini (se possibile) una base di un sottospazio vettoriale $L \subset V$ tale che $U \oplus L = W \oplus L = U + W$.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ la funzione lineare di matrice (rispetto alle basi canoniche)

$$A = \begin{pmatrix} 2 & t & -2 \\ -1 & 3 & 1 \end{pmatrix}$$

- (a) Si dica per quale valore di t l'immagine di f ha dimensione 1. Per tale valore di t si trovi una base di Ker(f) e una base di Im(f).
- (b) Per il valore di t trovato nel punto (a), si determini una base $\{v_1, v_2\}$ di \mathbb{R}^2 tale che la matrice di f rispetto alla base canonica di \mathbb{R}^3 e alla base $\{v_1, v_2\}$ di \mathbb{R}^2 abbia la seconda riga nulla.
- (c) Si dica per quali valori di t esiste una funzione lineare $g: \mathbb{R}^2 \to \mathbb{R}^3$ tale che $f \circ g: \mathbb{R}^2 \to \mathbb{R}^2$ sia l'identità.
- (d) Dopo aver posto t=0, sia $h\colon \mathbb{R}^2\to\mathbb{R}^3$ la funzione lineare definita ponendo

$$h(v) \cdot w = v \cdot f(w), \quad \forall v \in \mathbb{R}^2, w \in \mathbb{R}^3.$$

Si scriva la matrice di h rispetto alle basi canoniche.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} t & 0 & 1 - t \\ 0 & 1 & 0 \\ t & 2t - 1 & t \end{pmatrix}$$

- (a) Si dica per quali $t \in \mathbb{R}$ gli autovalori di f sono reali, specificando i casi in cui tali autovalori hanno molteplicità maggiore di 1.
- (b) Si determini per quali valori di t la matrice A è diagonalizzabile sul campo dei numeri reali.
- (c) Si determini il valore di t per cui esiste una base ortonormale di autovettori di f e si scriva una tale base.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sia ℓ la retta passante per il punto (-2, 5, -1) e parallela al vettore $v_{\ell} = (0, 1, -1)$ e sia \mathcal{S} la sfera di centro C = (2, 1, 1) e raggio 3.

- (a) Si determini la distanza di C dalla retta ℓ e il punto C' simmetrico di C rispetto a ℓ .
- (b) Si determinino le equazioni parametriche di due rette sghembe r e s passanti rispettivamente per i punti $R_1 = (3,3,1)$ e $S_1 = (1,-2,0)$ e incidenti la retta ℓ rispettivamente nei punti R_2 e S_2 , in modo tale che R_2 e S_2 siano i punti di minima distanza delle rette r e s.
- (c) Si scrivano le equazioni parametriche delle rette di direzione $\langle (2,1,-2) \rangle$ tangenti alla sfera \mathcal{S} e incidenti la retta ℓ .

Prof. F. Bottacin, N. Rodinò, R. Sánchez

 $3^{\rm o}$ Appello — 8 settembre 2014

Esercizio 1. Sia $V = M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2 a coefficienti reali. Sia $U \subset V$ il sottospazio formato dalle matrici A tali che il vettore (2,1) appartiene al nucleo di A. Sia $W \subset V$ il sottospazio formato dalle matrici B tali che l'immagine di B è contenuta nella retta di equazione y = -2x.

- (a) Si determini la dimensione e una base dei sottospazi U e W.
- (b) Si determini la dimensione e una base di U + W e $U \cap W$.
- (c) Data la matrice $C = \begin{pmatrix} -3 & 6 \\ 2 & t \end{pmatrix}$ si dica per quale valore di t l'insieme $\{C + A \mid \text{per ogni } A \in U\}$ è un sottospazio vettoriale di V.
- (d) Si determini (se possibile) una base di un sottospazio vettoriale $L \subset V$ tale che $U \oplus L = W \oplus L = U + W$.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ la funzione lineare di matrice (rispetto alle basi canoniche)

$$A = \begin{pmatrix} 2 & 6 & -2 \\ 3 & t & -3 \end{pmatrix}$$

- (a) Si dica per quale valore di t l'immagine di f ha dimensione 1. Per tale valore di t si trovi una base di Ker(f) e una base di Im(f).
- (b) Per il valore di t trovato nel punto (a), si determini una base $\{v_1, v_2\}$ di \mathbb{R}^2 tale che la matrice di f rispetto alla base canonica di \mathbb{R}^3 e alla base $\{v_1, v_2\}$ di \mathbb{R}^2 abbia la seconda riga nulla.
- (c) Si dica per quali valori di t esiste una funzione lineare $g: \mathbb{R}^2 \to \mathbb{R}^3$ tale che $f \circ g: \mathbb{R}^2 \to \mathbb{R}^2$ sia l'identità.
- (d) Dopo aver posto t=0, sia $h\colon \mathbb{R}^2\to\mathbb{R}^3$ la funzione lineare definita ponendo

$$h(v) \cdot w = v \cdot f(w), \quad \forall v \in \mathbb{R}^2, w \in \mathbb{R}^3.$$

Si scriva la matrice di h rispetto alle basi canoniche.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} t & t & 2t - 1 \\ 1 - t & t & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Si dica per quali $t \in \mathbb{R}$ gli autovalori di f sono reali, specificando i casi in cui tali autovalori hanno molteplicità maggiore di 1.
- (b) Si determini per quali valori di t la matrice A è diagonalizzabile sul campo dei numeri reali.
- (c) Si determini il valore di t per cui esiste una base ortonormale di autovettori di f e si scriva una tale base.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sia ℓ la retta passante per il punto (3, -1, -3) e parallela al vettore $v_{\ell} = (0, 1, -2)$ e sia \mathcal{S} la sfera di centro C = (0, 1, -1) e raggio 3.

- (a) Si determini la distanza di C dalla retta ℓ e il punto C' simmetrico di C rispetto a ℓ .
- (b) Si determinino le equazioni parametriche di due rette sghembe r e s passanti rispettivamente per i punti $R_1 = (1, 4, 2)$ e $S_1 = (0, 4, -3)$ e incidenti la retta ℓ rispettivamente nei punti R_2 e S_2 , in modo tale che R_2 e S_2 siano i punti di minima distanza delle rette r e s.
- (c) Si scrivano le equazioni parametriche delle rette di direzione $\langle (2,-1,-2) \rangle$ tangenti alla sfera \mathcal{S} e incidenti la retta ℓ .

Prof. F. Bottacin, N. Rodinò, R. Sánchez

 $3^{\rm o}$ Appello — 8 settembre 2014

Esercizio 1. Sia $V = M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2 a coefficienti reali. Sia $U \subset V$ il sottospazio formato dalle matrici A tali che il vettore (1,3) appartiene al nucleo di A. Sia $W \subset V$ il sottospazio formato dalle matrici B tali che l'immagine di B è contenuta nella retta di equazione y = -3x.

- (a) Si determini la dimensione e una base dei sottospazi U e W.
- (b) Si determini la dimensione e una base di U + W e $U \cap W$.
- (c) Data la matrice $C = \begin{pmatrix} 3 & -1 \\ t & 2 \end{pmatrix}$ si dica per quale valore di t l'insieme $\{C + A \mid \text{per ogni } A \in U\}$ è un sottospazio vettoriale di V.
- (d) Si determini (se possibile) una base di un sottospazio vettoriale $L \subset V$ tale che $U \oplus L = W \oplus L = U + W$.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ la funzione lineare di matrice (rispetto alle basi canoniche)

$$A = \begin{pmatrix} -3 & 6 & 3\\ 1 & t & -1 \end{pmatrix}$$

- (a) Si dica per quale valore di t l'immagine di f ha dimensione 1. Per tale valore di t si trovi una base di Ker(f) e una base di Im(f).
- (b) Per il valore di t trovato nel punto (a), si determini una base $\{v_1, v_2\}$ di \mathbb{R}^2 tale che la matrice di f rispetto alla base canonica di \mathbb{R}^3 e alla base $\{v_1, v_2\}$ di \mathbb{R}^2 abbia la seconda riga nulla.
- (c) Si dica per quali valori di t esiste una funzione lineare $g: \mathbb{R}^2 \to \mathbb{R}^3$ tale che $f \circ g: \mathbb{R}^2 \to \mathbb{R}^2$ sia l'identità.
- (d) Dopo aver posto t=0, sia $h\colon \mathbb{R}^2\to\mathbb{R}^3$ la funzione lineare definita ponendo

$$h(v) \cdot w = v \cdot f(w), \quad \forall v \in \mathbb{R}^2, w \in \mathbb{R}^3.$$

Si scriva la matrice di h rispetto alle basi canoniche.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} t & 2t - 1 & t \\ 0 & 1 & 0 \\ 1 - t & 0 & t \end{pmatrix}$$

- (a) Si dica per quali $t \in \mathbb{R}$ gli autovalori di f sono reali, specificando i casi in cui tali autovalori hanno molteplicità maggiore di 1.
- (b) Si determini per quali valori di t la matrice A è diagonalizzabile sul campo dei numeri reali.
- (c) Si determini il valore di t per cui esiste una base ortonormale di autovettori di f e si scriva una tale base.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sia ℓ la retta passante per il punto (3, -3, -4) e parallela al vettore $v_{\ell} = (1, 2, 0)$ e sia \mathcal{S} la sfera di centro C = (1, -1, -1) e raggio 3.

- (a) Si determini la distanza di C dalla retta ℓ e il punto C' simmetrico di C rispetto a ℓ .
- (b) Si determinino le equazioni parametriche di due rette sghembe r e s passanti rispettivamente per i punti $R_1 = (-4, -2, 1)$ e $S_1 = (3, 2, -2)$ e incidenti la retta ℓ rispettivamente nei punti R_2 e S_2 , in modo tale che R_2 e S_2 siano i punti di minima distanza delle rette r e s.
- (c) Si scrivano le equazioni parametriche delle rette di direzione $\langle (1, -2, -2) \rangle$ tangenti alla sfera \mathcal{S} e incidenti la retta ℓ .