				, , ,	,,
	c*	$^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1$	$-\Gamma_u)*c^{< t-1>}$	$\Gamma_o = \sigma(W_o[\ a^{< t}$	$[-1>, x^{< t>}] + b_o)$
	а	$c^{< t>} = c^{< t>}$		$c^{< t>} = \Gamma_u * \tilde{c}^{<}$	$t>+\Gamma_f*c^{< t-1>}$
				$a^{} = \Gamma_o * c^{}$	>
	From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to and in the GRU. What should go in the the blanks?				
		Γ_u and $1-\Gamma_u$			
		Γ_u and Γ_r			
		$1-\Gamma_u$ and Γ_u			
		Γ_r and Γ_u			
10.	weather as a se which	er. You've collected equence as $x^{<1>},$ you represent as y y . Should you use a Bidirectional RNN into account more	data for the past 365 $\dots, x^{<365>}$. You've als $^{<1>}, \dots, y^{<365>}$. You'us als Unidirectional RNN of the past 365 \dots , because this allows the information.	endent on the current days on the weather, so collected data on you'd like to build a moder Bidirectional RNN for the prediction of mood backpropagation to co	which you represent ur dog's mood, el to map from this problem? d on day t to take

Unidirectional RNN, because the value of $y^{< t>}$ depends only on

Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not

 $x^{<1>},\dots,x^{< t>}$, but not on $x^{< t+1>},\dots,x^{<365>}$

other days' weather.

Upgrade to submit