

KI-basierte Inhaltsanalyse in R

Austausch zur Nutzung und Entwicklung KI-gestützter Webanwendungen

Agenda

- Update
 - News & Leaderboard-Update
- Input
 - "KI-basierte Inhaltsanalyse in R"
- Diskussion

Leaderboard-Update (18.09.2025)

Arena Score German based on Imarena.ai on Sep 18, 2025

Rechts das aktuelle LMArena-Leaderboard für die Kategorie German mit Blick auf die besten open-weights-Modelle (sowie ausgewählte proprietäre Modelle).

Bemerkenswert:

- GPT-5-high wurde als Spitzenreiter abgelöst von claude-opus-4-1
- Deepseek-v3.1 neu eingestiegen, deutlich vor Deepseek-R1
- Mistral-small-2506 (24B) hält seine Position vor dem hervorragenden Gemma-3-12B-it, liegt nun aber hinter Gemma-3-27b-it.
- Fliegengewicht Gemma-3n-e4b-it liegt vor OpenAl's gpt-oss aber wieder hinter Owen3-32b
- Ausgewiesenes Schlusslicht ist gwen1.5-4b-chat (993)

clause-opus-4-1-20250805-thinking-16k (Proprietary) gpt-4.5-preview-2025-02-27 (Proprietary) gpt-5-high (Proprietary) Qwen3-235B-A22B-instruct-2507 (Apache 2.0) kimi-k2-0711-preview (Modified MIT) Deepseek-V3.1 (MIT) Deepseek-R1 (MIT) Deepseek-V3.1-thinking (MIT) Qwen3-235B-A22B-thinking-2507 (Apache 2.0) Deepseek-V3-0324 (MIT) Deepseek-R1-0528 (MIT) Qwen3-235B-A22B (Apache 2.0) Gemma-3-27B-it (Gemma) mistral-small-2506 (Apaché 2.0) Qwen3-235B-A22B-no-thinking (Apache 2.0) Gemma-3-12B-it (Gemma) Qwen3-Coder-480b-a45b-instruct (Apache 2.0) alm-4.5-air (MIT) Qwen3-30b-a3b-instruct-2507 (Apache 2.0) Command-a-03-2025 (CC-BY-NC) Deepseek-V3 (Deepseek) Qwen3-32b (Apache 2.0) Llama-4-Maverick-17B-128E-Instruct (LLama 4) Gemma-3n-e4b-it (Gemma) apt-oss-120b Meta-Llama-3.1-405b-Instruct-bf16 (Llama 3.1) Meta-Llama-3.1-405b-Instruct-fp8 (Llama 3.1) Mistral-Large-2407 (Mistral Research) QwQ-32B (Apache 2.0)

Gemma-3-4B-it

gwen1.5-4b-chat (Qianwen Licence)

Fokusthema: KI-basierte Inhaltsanalyse in R

 Prompt "high-tech artificial brain extracts information from a book"

(rechts visualisiert von FLUX.1-schnell, seed 1558494386)

Arbeitsdefinition nach Fischer (2025):

KI-basierte → gestützt auf moderne KI (insb. LLMs)

Qualitative → interpretativ, nicht nur quantifizierend

Inhalts- → Kommunikationsinhalte (insb. Texte)

Analyse → hinsichtlich ihrer Bestandteile untersuchen

Source:

Fischer, A. (2025). Die Zukunft der Qualitativen Inhaltsanalyse im Zeitalter Künstlicher Intelligenz. Ein Ablaufmodell KI-basierter Inhaltsanalyse. f-bb-online 03/25.

Fischer, A. (in press). The Future of Qualitative Content Analysis in the Age of Artificial Intelligence. In: J. Dörpinghaus, M. Tiemann (Eds.), Advances in Computational Social Sciences (tba).

Wie kann man sich KI-basierte Inhaltsanalyse vorstellen?

Allgemeine KI-Systeme (z.B. Huggingface/Chat-ui), MAXQDA's KI ASSIST, KI on premises und/oder CLIs

Dr. Andreas Fischer | Source: Fischer, A. (2025). Die Zukunft der Qualitativen Inhaltsanalyse im Zeitalter Künstlicher Intelligenz. Ein Ablaufmodell KI-basierter Inhaltsanalyse. f-bb-online 03/25.

KI-Kenntnisse

- KI-Kenntnisse/-Kompetenz (i.S.v. Art. 3, EU KI-VO) ebenso so wichtig wie die Wahl geeigneter Tools
- KI-generierte Analysen können nach Fischer (2025)...
 - ... falsch sein (insb. bei suboptimalem Prompting)
 - ... unfair sein (insb. auch bei impliziten Hinweisen wie Dialekten)
 - ... nicht-deterministisch sein (insb. wenn temperature != 0)
 - ... von jedem Teil des Inputs abhängen (insb. auch bei längeren Dialogen)
 - ... in Zukunft möglichweise nicht mehr verfügbar sein (insb. proprietäre KI-Systeme)
 - ... ressourcenintensiv generiert werden (insb. bei überdimensionierten KI-Systemen & Prompts)

Vierfelderschema nach Fischer (2025)

KI-basierte

Kategorien KI-basierter Inhaltsanalyse auf Basis von Theoriebezug (vertikal) und Verdichtungsintention (horizontal) nach Fischer (2025) – mit *vereinfachenden* Beispielen (in blauen Sprechblasen)

Gegeben sei folgender Text:

"{Text}"

Paraphrasiere alle

angesprochenen Erkenntnisse zur

Frage "{Forschungsfrage}"

Gegeben sei folgender Text:

"[Text]"
Liste alle angesprochenen Punkte
auf, und gliedere deine Liste nach
Kategorien mit Blick auf die Frage
"[Forschungsfrage]"

Zusammenfassungen: KI wird eingesetzt, um eine Zusammenfassung auf der Grundlage eines Korpus spezifischer Materialien erstellen. unabhängig theoretischen Kategorien. KI-basierte Induktion: KI wird eingesetzt. auf der um Grundlage Korpus eines spezifischer Materialien Schlussfolgerungen

theoretischen Kategorien

Konzepten zu ziehen.

KI-basierte Explikation: KI wird eingesetzt, um eine Explikation von Materialien innerhalb eines Korpus auf der Grundlage zusätzlicher
Kontexte/Materialien/Assoziation-en zu erstellen, unabhängig von

KI-basierte Deduktion: KI wird eingesetzt, um auf der Grundlage einer Reihe theoretischer Kategorien und Konzepte Schlussfolgerungen zu bestimmten Materialien in einem Korpus zu ziehen.

theoretischen Kategorien.

Gegeben sei folgender Text: "{Text}" Erläutere, inwiefern der Text Hinweise gibt auf die Frage "{Forschungsfrage}"

Gegeben sei folgender Text:
"{Text}"
Ordne diesen Text einer der
folgenden Kategorien zu:
"{Kategoriensystem}"
Gib die ID der gewählten
Kategorie an ("ID") und begründe
deine Antwort ("Begründung").

Anknüpfend insb. an Mayring (2022) unter Berücksichtigung von Literatur wie Döring und Bortz (2016)

Process Model of Al-based Content Analysis (Fischer, 2025)

Beispiel für Anfragen an KI on-premises in R

- Die Funktion requests rechts realisiert Anfragen per httr-package
- Benötigt wird ein LLM-Server (hier LMStudio im lokalen Netzwerk unter 192.168.2.57)

```
request=function(
 prompt,
  system="Du bist ein renommierter Sozialwissenschaftler.",
  model="gemma-3-12b-it",max=2048, backend="LMStudio"){
   url="192.168.2.57:1234/v1/chat/completions"
   body=list(
        "messages"=list(
         list("role"="system", "content"=system),
         list("role"="user", "content"=prompt)),
       model = model,
       max_tokens = max,
       temperature = 0)
    if(!is.na(stop)) body$stop=c(stop)
   post=httr::POST(url=url, body=body,
       httr::add_headers("accept" = "application/json", "Content-Type" = "application/json"),
       encode="json")
   post=httr::content(post)
    if(length(post$choices)>0)post=post$choices[[1]]$message$content
```

Beispiel für einfache KI-basierte Inhaltsanalyse in R

- template ist ein Prompt-Template für die Inhaltsanalyse (anpassen!)
- texts enthält Beispieltexte (z.B. Passagen eines Interviews)
- sample realisiert eine Zufallauswahl
- filename spezifiziert eine lokale log-Datei (falls was schiefgeht)
- Die for-Schleife geht nun alle samples von Texten durch, schickt den Prompt an die KI, und schreibt die Antwort in eine Liste (und in die Log-Datei)

```
template="Gegeben sei folgender Text: \"{Text}\".\n\n
Formuliere das zentrale Thema des Texts knapp als ein
bis maximal drei Worte in deutscher Sprache."
texts=c("Guten Tag, schön dass Sie da sind",
        "Im Folgenden geht es um die Zukunft der Inhaltsanalyse")
sample=sample(length(texts),length(texts))
filename="Logfile.txt"
results=list()
write("",filename,append=F)
range=1:length(texts)
tla=Sys.time()
for (i in range){
  text=unlist(texts[sample[i]])
  prompt=gsub("\\{text\\}",text,template)
  response=request(prompt,max=1000)
  response=gsub("[ ]*\n[ ]*","\n",gsub("(^[ ]+)|[ ]+$)","",response))
  results[prompt]=response
  output=paste0("\n\n",(i+0),":\n\n",response)
 write(output,filename,append=T)
  print(paste(i,"/",max(range),":\n",output))
t2a=Sys.time()
print(t2a-t1a)
print((t2a-t1a)/length(range))
```

Diskussion

- Fragen?
- Anregungen?
- Erfahrungen?