$\int_{\epsilon} e^{-\epsilon_s/\tau} \left[P(s) = \frac{1}{2} e^{-\epsilon_s/\tau} \right] U = \langle \epsilon \rangle = \sum_{\epsilon} \epsilon_s P(s) = \frac{1}{4} \sum_{i} \epsilon_s e^{-\epsilon_i/\tau} = \tau^2 \frac{2 \ln x}{9\pi^2} \left[\text{characteristic function: } \sigma = \ln(\Gamma) \right] \text{ when you remove a } \left(\sum_{i} g_1(U_1) g_2(U_2, 0) \right) = \left(\sum_{i} g_1(U_1) g_2(U_2, 0) \right) \left(\sum_{i} g_1(U_1) g_2(U_2, 0) \right) \left(\sum_{i} g_1(U_1) g_2(U_2, 0) \right) \right]$ constraint you expect the entropy to increase Law of increase in entropy is a statistical statement, Law of Thermodynamics, of increase in equilibrium with system of increase in equilibrium with system of increase in entropy is a statistical statement, Law of increase in entropy is a statistical statement, Law of increase in entropy is a statistical statement, Law of increase in entropy is a statistical statement, Law of increase in entropy is a statistical statement, Law of increase in entropy in ent of entropy, when you remove a constraint you expect the entropy increase $\[\]$ 3rd The entropy approaches a constant as $\tau \to 0$ and $\sigma(\tau=0) = \ln g(\tau=0)$ $\[\]$ the multiplicity of the ground state of the system $\[\]$ Thermal contact. $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\]$ $\[\$ $\partial \sigma = \partial \sigma_1 + \partial \sigma_2 = \frac{\partial \sigma_1}{\partial t} \partial U_1 + \frac{\partial \sigma_2}{\partial t} \partial U_2 + \frac{\partial \sigma_3}{\partial t} \partial U_1 + \frac{\partial \sigma_3}{\partial t} \partial U_2 + \frac{\partial \sigma_3}{\partial t} \partial U_1 + \frac{\partial \sigma_3}{\partial t} \partial U_2 + \frac{\partial \sigma_3}{\partial t} \partial U_1 + \frac{\partial \sigma_3}{\partial t} \partial U_2 + \frac{\partial \sigma_3}{\partial t} \partial U_2$ mechanical state) \blacksquare Pressure $P = \langle P_s \rangle = -(\frac{2U}{\delta V})$ (P_s pressure for a particular quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probability of quantum state) $\blacksquare = \sum_s P(s)P_s$ (P(s) probab with the environment, temperature is fixed $\[\]$ Q. pdf for Microstates $\[\]$ S: system, $\[\epsilon, s = (s_s, s_r) \]$ R: reservoir $\[U_0 - \epsilon \]$, $\[P(s_s) = \sum_{s_s} P(s_s, s_R) \]$ P($\[s_s = s_s] \]$ P($\[s_s = s_s] \]$ Q. pdf for Microstates of the System s $\[\]$ P($\[s_s = s_s] \]$ P($\[$ $\epsilon_R(U_0-\epsilon)\simeq\sigma_R(U_0)-\epsilon(rac{\partial x_0}{\partial x_0})$. $\frac{P(1)}{P(2)}=e^{-(\epsilon_s/\tau)}$. Taylor expansion $P(s)\propto e^{-\epsilon_s/\tau}$ probability of microstates in thermal equilibrium with its environment. $P(s)=\frac{1}{2}e^{-\epsilon_s/\tau}$. $P(s)=\frac{1}{2}e^{-\epsilon_s/\tau}$ ex: one particle, only two states state 1 energy 0, and state 2 energy ϵ $\frac{1}{4}z = 1 + e^{-\epsilon/\tau}$ $\frac{1}{4}U = \frac{1}{4+e^{-\epsilon/\tau}}(\epsilon^{e^{\epsilon/\tau}})$ $\frac{1}{4}$ 1. microstates and energetics 1.5 decide the ensemble 2. z get the partition function $\frac{1}{4}$ 0. $z = \frac{1}{4}$ 0 $z = \frac{$ we did now do we relate free energy F to microscopic quantities $F = -\tau \ln z(B,V,N)$ demonstrate $-\tau \ln(z) = U - \tau \sigma$ connection with ThermoDynamics: free energy [Helmholtz free energy] $F \equiv U - \tau \sigma$ demonstrate $F = -\tau \ln z(B,V,N)$ demonstrate $F = -\tau \ln z(B,V,N)$ demonstrate $F = \tau \ln z(B,V,N)$ demonstrate F =In main framework for canonical ensemble from T.D. $\partial F = -\sigma \partial \tau - P \partial v$ \mathbf{I} $\sigma = -\frac{\partial F}{2}$ \mathbf{I} $F = U - \tau \sigma$ \mathbf{I} another expression of σ for an isolated system $\sigma = \log g$ for a system with a given temperature $\tau = -(\frac{\partial F}{\partial r}) = -\sum_{s} p(s) \ln p(s)$ for isolated system $p(s) = \frac{1}{s} \mathbf{I}$ $\sigma = -\ln \frac{1}{s} \sum_{s} P(s) = \ln g$ review $F = -\tau \ln z(\tau)$ system $P_s = -\frac{\partial s_s}{\partial V}$ I for thermal system, carry out ensemble average $P = -\sum_s p(s) \frac{\partial s}{\partial V} = -\sum_s \frac{\tau}{2} \frac{\partial}{\partial v} e^{-\epsilon_s/\tau} = \frac{\tau}{Z} \frac{\partial s}{\partial v} = \tau (\frac{\partial \ln z}{\partial v}) = P$ I using canonical ensemble Proof $\sum_s \epsilon_s \partial p(s) = \tau \partial \sigma$ ideal gas System of particles where they do not interact with each other, point particles one atom in a box $V = L^3$ I $\epsilon = \frac{\hbar^2}{2M} (\frac{\pi}{L})^2 (n_x^2 + n_y^2 + n_z^2) \text{ 1 calculate partition function } Z_1 = \sum_{n_s} \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_y^2 + n_s^2)} = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_y^2 + n_s^2)} \text{ 2 calculate partition function } Z_1 = \sum_{n_s} \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_y^2 + n_s^2)} = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_y^2 + n_s^2)} \text{ 2 calculate partition function } Z_1 = \frac{\pi^{3/2}}{2mL^2} \text{ 3 calculate partition function } Z_2 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_y^2 + n_s^2)} \text{ 2 calculate partition function } Z_2 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 2 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 2 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 2 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 3 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 3 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 3 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 4 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 4 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 4 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 4 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 4 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar^2}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 4 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 4 calculate partition function } Z_1 = \sum_{n_s} e^{-\frac{\hbar}{2M^2} (\frac{\pi}{L})^2 (n_s^2 + n_s^2 + n_s^2)} \text{ 4 calculate partition$ a ratio of two densities $n=\frac{1}{n}$ $\mathbf{I}_{n}=(\frac{M\tau}{2\pi\hbar^2})^{3/2}=\frac{1}{\lambda^3}$ quantum concentration \mathbf{I}_{n} $\lambda=(\frac{2\pi\hbar^2}{M\tau})^{1/2}$ where λ is the thermal wavelength \mathbf{I}_{n} $F=-\tau\ln z=-\tau\ln\frac{n_{\epsilon}}{n}$ \mathbf{I}_{n} $U=\tau^2\frac{\partial\ln z}{\partial\tau}=\frac{3}{2}\tau$ \mathbf{I}_{n} $U=\frac{3}{2}N\tau$ internal energy of a system with N particles \mathbf{I}_{n} N atoms in a box if particles do not interact $Z_2=\sum_{n_{\epsilon},n_{\epsilon},n_{\epsilon},n_{\epsilon}}$ N identical particles in a box. $Z_n = \frac{1}{30} Z_1^N = \frac{1}{30} (n_0 v)^N$ $\frac{1}{3} U = \frac{3}{3} = n \tau$ equation of state $pV = n\tau$ we describe the total energy as a force towards equilibrium. Helmholtz free energy F, F is a minimum for a system in thermal contact with a reservoir R, if the volume of the system is kept constant. Consider the total energy of the system is kept constant. plus the reservoir temperature. $\partial \sigma_{total} = \partial \sigma + \partial \sigma_R$ $\frac{1}{4}$ $\partial \sigma_R = \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\partial \sigma_{total} = \partial \sigma + \frac{1}{\pi} \partial U_R$ $\frac{1}{4}$ $\frac{$ find (s) I two approaches, use canonical ensemble approach, energetics table, partition function, or minimize F with respect to s I F = U - $\tau\sigma$ I $\sigma(s) \approx \ln\left(\frac{N}{N} + \frac{1}{2}\right) - (\frac{N}{2} + s) \ln\left(\frac{1}{2} - \frac{s}{N}\right)$ I $U(s) \approx -2smB$ I Free energy $F(s) = U(s) - \tau\sigma(s) = -2smB + -(\frac{N}{2} + s)\tau\ln\left(\frac{1}{2} + \frac{s}{N}\right) + (\frac{N}{2} - s)\tau\ln\left(\frac{1}{2} - \frac{s}{N}\right)$ I $U(s) \approx -2smB$ I Free energy $F(s) = U(s) - \tau\sigma(s) = -2smB + -(\frac{N}{2} + s)\tau\ln\left(\frac{1}{2} + \frac{s}{N}\right) + (\frac{N}{2} - s)\tau\ln\left(\frac{1}{2} - \frac{s}{N}\right)$ At equilibrium $F(s) \rightarrow \min$. $\frac{\partial F}{\partial s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember | spin axis | $\frac{\pi}{s} = 0$ | remember $\sum_{i=1}^{\infty} e^{-sh\omega/\tau} = \frac{1}{1-e^{-sh\omega/\tau}} \prod_{i=1}^{\infty} (1-x)(1+x+x^2+\ldots) = 1 \text{ and } \therefore (1+x+x^2+\ldots) = \frac{1}{(1-\varepsilon)} \prod_{i=1}^{\infty} A \text{ wrange number of photons } \langle s \rangle = \frac{1}{\varepsilon} \sum_{i=1}^{\infty} se^{-sh\omega/\tau} = \frac{1}{e^{-sh\omega/\tau}} \text{ plank distribution for any number of photons in a } \frac{1}{(1-\varepsilon)} \prod_{i=1}^{\infty} \frac{1}{(1-\varepsilon)} \prod_{i=1}^$ microstates, in a cavity the eigenstates of EM waves are modes, lets first look at a single mode $\epsilon_s = s\hbar\omega$, $s = 0, 1, 2, \dots$ I, $Z = \sum_{i=1}^{\infty} I$ single mode of frequency omego and average energy: $\langle \epsilon \rangle = \hbar \omega \, \langle s \rangle = \frac{\hbar \omega}{ab\omega(t-1)}$ if $\tau << \hbar \omega$ then τ if $\tau << \hbar \omega$ then $\epsilon^{\hbar \omega/\tau}$ Now: in a cavity, we have multiple modes Q/ what are the modes, A/ From EM: For a perfectly conducting cavity of L^3 $E_x = E_{x0} \sin \omega t \cos \frac{n_x \pi x}{2} \sin \frac{n_x \pi y}{2} \sin \frac{n_x \pi z}{2}$ in $E_x = E_{x0} \sin \omega t \cos \frac{n_x \pi z}{2} \sin$ dependence, the rest is spatial dependence $\[\[\] \nabla \cdot \vec{E} = 0 \] \[\[\] E_{20} n_x + E_{y0} n_y + E_{z0} n_z = \vec{E}_0 \cdot \vec{n} = 0 \]$ field vector and n vector are perpendicular $\[\]$ For a given \vec{N} we can choose two independent $\[\] \vec{e}_0 \rightarrow \vec{n} = 0 \]$ for each \vec{n} two distinct modes $\[\] Q$ / how is ω related to (n_x, n_y, n_z) sub. eigenmodes into wave equation $\[\] \[\] C^2 (\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} + \frac{\partial}{\partial y^2}$ $\omega_{n_xn_yn_z} \text{Now consider all modes, the modes are independent } U = 2 \sum\nolimits_{n_xn_xn_z} \left\langle \epsilon_{n_xn_yn_z} \right\rangle \mathbb{I} \sum\nolimits_{n_xn_xn_z} \left\langle \epsilon_{n_xn_xn_z} \right\rangle \mathbb{I} \sum\nolimits_{n_xn_x$ stephan-Boltzmann law of radiation $\mathbf{I}U = v \int \partial \omega U \omega \mathbf{I}U_\omega = \frac{\hbar}{\pi^2 c^2} \frac{\omega^3}{e^{\hbar\omega/\tau} - 1}$ (plank radiation law) $\tau = 2.73K \mathbf{I}Q/\sigma A/a$ t constant volume $\partial \sigma = \frac{\partial U}{\tau}$ where $\partial U = \tau \partial \sigma - P \partial v \mathbf{I}\sigma(\tau) = \int_0^\tau \frac{\partial u}{\tau} \frac{4\pi^2 V}{45} (\frac{\tau}{\hbar c})^3 \propto \tau^3$ will dl Phonons in solids quantum harmonic oscillator, partition function $Z = \frac{1}{1-e^{-\hbar\omega/\tau}} \mathbf{I}$ photon gas numbers of em modes is infinite, phonon gas of number of elastic modes is finite $1 \over t$ photon two possible polarizations, phonon longitudinal 1 and transverse 2 $1 \over t$ $U = \frac{3\pi}{2} \int_{t}^{t} \int_{t}^{t} dt n^2 \frac{hu_{r}}{2L} (t - \frac{1}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}{2L})(\frac{x}$ $\theta = \hbar v (6\pi^2 \frac{N}{W})^{1/3} \frac{1}{V}$ of particular interest: low $\tau < < \theta$ where $x_D \to \infty$ $\frac{1}{V}$ Chemical potential μ flow form high μ to low μ , diffusive contact - particles, which way would the particles flow. $\frac{1}{V}$ chemical potential μ flow form high μ to low μ , diffusive contact - particles flow. exchange thermal contact - temperature exchange consider $s_1 + s_2$, $N_1 + N_1 + V_2$, τ Helmholtz free energy F for $s_1 + s_2 \rightarrow$ minimum F = $F_1 + F_2 = U_1 + U_2 - \tau(\sigma_1 - \sigma_2)$ Now consider a small variation $\partial P = (\frac{\partial F_1}{\partial N_1})\partial N_1 + (\frac{\partial F_2}{\partial N_2})\partial N_2 = 0$ exchange consider $s_1 + s_2$, $N_1 + V_2 + V_3$. Helmholtz free energy F for $s_1 + s_2 \rightarrow$ minimum F = $(\frac{\partial F_2}{\partial N_2})T_1, V_2 + V_3$. Lefine: $\mu(T,V,N) \equiv \left(\frac{\partial F}{\partial N}\right)_{\tau,V}$ by: pressure $\partial \sigma = \frac{\partial u}{\partial v} + \frac{F\partial v}{\partial N}$ and $\partial v + \mu\partial N$ have $\partial v = \frac{\partial u}{\partial N} + \frac{F\partial v}{\partial N} = \frac{\partial u}{\partial N} + \frac{\partial u}{\partial N} = \frac{\partial u}{\partial N} + \frac{$ $S+R \text{ is an isolated system} \qquad \textbf{w11 d2 when system constant temperature and volume} \qquad \textbf{U}_0 = \textbf{U}_R + \textbf{U} \ \textbf{1} \ \textbf{N}_0 = \textbf{S}_R \cdot \textbf{g}_s = \textbf{g}_R \cdot \textbf{1} \ \textbf{1} \ \textbf{P}(\textbf{S}_n) \\ \textbf{0}_1 = \textbf{S}_1 \ \textbf{0}_1 = \textbf{S}_2 \ \textbf{0}_2 = \textbf{S}_2 \ \textbf{0}_3 = \textbf{S}_3 \ \textbf{0}_3 = \textbf{S}_4 \ \textbf{0}_3 = \textbf{S}_4 \ \textbf{0}_3 = \textbf{S}_4 \ \textbf{0}_3 = \textbf{S}_4 \ \textbf{0}_4 \ \textbf{0}_4 = \textbf{S}_4 \ \textbf{0}_4 \ \textbf{0}_4 = \textbf{S}_4 \ \textbf{0}_4 = \textbf{S}_4 \ \textbf{0}_4 \ \textbf{0}_$ $\Delta \sigma_R = -(N_1 - N_2)(\frac{\partial \sigma_k}{\partial N_0})U_0 - (\epsilon_{s1} - \epsilon_{s2})(\frac{\partial \sigma_s}{\partial N_0})N_0 \\ \boxed{\textbf{I}} = \frac{\Delta N}{\tau} \mu - \frac{\Delta \epsilon}{\tau} \\ \boxed{\textbf{I}} \frac{P(S_1,N_1)}{P(S_2,N_2)} = \frac{\exp[(N_1\mu - \epsilon_s)/\tau]}{\exp[(N_2\mu - \epsilon_s)/\tau]} \\ \boxed{\textbf{I}} P(s_N) = \frac{1}{Z_s} \\ = \sum_{N=0}^{\infty} \sum_{S(n)} NP(S_n) = \frac{\tau}{Z_s} \frac{\partial z_s}{\partial \mu} \\ \boxed{\textbf{I}} \text{ Approach number 1 } \mu = (\frac{\partial F}{\partial N})_{\tau,V} \\ \boxed{\textbf{I}} F = -\tau \ln z \\ \boxed{\textbf{I}} I \\ \boxed{\textbf{I}} P(s_N) = \frac{1}{Z_s} \\ \boxed{\textbf{I}} P(s_N) =$ $Z_1 = n_Q \cdot v \stackrel{\text{\scriptsize I}}{\blacksquare} F = -\tau [N \ln z_1 - \ln N] \stackrel{\text{\scriptsize I}}{\blacksquare} \frac{\partial z}{\partial N} = [-\tau \ln z_1 + \partial N \ln \left(\frac{n}{z}\right)^{\frac{\alpha}{2}} \sqrt{2\pi n} \stackrel{\text{\scriptsize I}}{\blacksquare} \left(\frac{\partial z}{\partial N}\right)_{T,V} = -\tau \ln \frac{n}{n_Q} \text{ and } \text{density} = \ln \frac{V}{n_Q} + \tau \ln \left(\frac{n(n)}{n_Q}\right) \stackrel{\text{\scriptsize I}}{\blacksquare} \mu_{tot}(h) = \mu_{tot}(h) = \mu_{tot}(h) \stackrel{\text{\scriptsize I}}{\blacksquare} \mu_{tot}(h) = \mu_{tot}(h) = \mu_{tot}(h) = \mu_{tot}(h) = \mu_{tot}(h) = \mu_{tot}(h) = \mu_{t$ $n(h) = \frac{n(0)}{e^{\mu h/\tau}} = n(0)e^{-Mgh/\tau}$ \mathbb{I} PV = nRT \mathbb{I} $n_{\uparrow} = n(0)$ $\frac{e^{2mB/\tau}}{e^{2mB/\tau+1}}$ \mathbb{I} $n_{\downarrow} = \frac{n(0)}{e^{2mB/\tau+1}}$ \mathbb{I} $n_{\downarrow} = \frac{n(0)}{e^{2mB/\tau$ If Grand partition function $Z_g = \sum_{i} \sum_{n=1}^{\infty} e^{(\mu n - \epsilon_i)/\tau}$ If $i \in I$ Some Einstein Distribution $f_{BE} = \frac{1}{e^{(\nu - \mu)/\tau} + 1}$ If $i \in I$ Fermi-Dirac Distribution $f_{BE} = \frac{1}{e^{(\nu - \mu)/\tau} + 1}$ In classical limit $f \approx e^{(\mu - \epsilon)/\tau}$ If $i \in I$ In classical limit $f \approx e^{(\mu - \epsilon)/\tau}$ If $i \in I$ In classical limit $f \approx e^{(\mu - \epsilon)/\tau}$ If $i \in I$ In classical limit $f \approx e^{(\mu - \epsilon)/\tau}$ If $i \in I$ In classical limit $f \approx e^{(\mu - \epsilon)/\tau}$ If $i \in I$ In classical limit $f \approx e^{(\mu - \epsilon)/\tau}$ If $i \in I$ In classical limit $f \approx e^{(\mu - \epsilon)/\tau}$ If $i \in I$ In classical limit $f \approx e^{(\mu - \epsilon)/\tau}$ If $i \in I$ In classical limit $i \in I$ $P = -(\frac{\partial r}{\partial r})_{T,N} = \frac{\pi r}{v} \ \ \ \| \text{Microstates: orbital + internal } \ \| \epsilon = \epsilon_n + \epsilon_{int} \ \ \| \text{One orbital } Z_{int} = \sum_{i=1}^{N-1} \epsilon^{-i\epsilon_{int}/\tau} \ \ \| \text{Reversible isothermal expansion } p_f v_f = p_f v_i = N \tau \ \| \ \Delta \sigma = \sigma_f - \sigma_i \ \| \ \Delta \sigma = \sigma_f - \sigma_i \ \| \ \Delta \sigma = 0 \ \| \ v_f = V \| \ v_i = V \| \ v_f = V \|$ $\begin{bmatrix} \mathbf{T}^{2} \\ \mathbf{T}^{$ For classical ideal gas $\mu=\tau$ ln $\frac{\alpha}{n_0}$ If $g_{Boltsman}=\frac{\beta_0}{n_0}e^{-i\tau}<<1$ If $g_{Boltsman}=\frac{\beta_0}{n_0}e^{-i\tau}<<1$ If $g_{Boltsman}=\frac{\beta_0}{n_0}e^{-i\tau}<<1$ If $g_{Boltsman}=\frac{\beta_0}{n_0}e^{-i\tau}<<1$ If $g_{Boltsman}=\frac{\beta_0}{n_0}e^{-i\tau}<\frac{\beta_0}{n_0}e^{-i\tau}<1$ If $g_{Boltsman}=\frac{\beta_0}{n_0}e^{-i\tau}<1$ If $g_{Boltsman}=\frac{\beta_0}{n_0$ $c_v \approx \frac{3}{2}K_BN$, $c_v \approx N + \epsilon_T \approx \tau$ quantum $c_v \approx \frac{4}{5}K_BN$, $c_v \approx N + \epsilon_T \approx \tau$ quantum $c_v \approx \frac{4}{5}K_BN$, $c_v \approx N + \epsilon_T \approx \tau$ quantum $c_v \approx \frac{4}{5}K_BN$, $c_v \approx N + \epsilon_T \approx \tau$ quantum $c_v \approx \frac{4}{5}K_BN$, $c_v \approx N + \epsilon_T \approx \tau$ quantum $c_v \approx \frac{4}{5}K_BN$, $c_v \approx N + \epsilon_T \approx \tau$ quantum $c_v \approx \frac{4}{5}K_BN$, $c_v \approx N + \epsilon_T \approx \tau$ quantum $c_v \approx \frac{4}{5}K_BN$, $c_v \approx N + \epsilon_T \approx \tau$ quantum $c_v \approx \frac{4}{5}K_BN$, $c_v \approx N + \epsilon_T \approx \tau$ quantum $c_v \approx \tau$ quantum c $\frac{-\tau}{k}$ $\frac{\tau}{k}$ $\frac{\tau}{k}$ $\frac{\pi}{k}$ $\frac{\pi$ $\partial U = Q + W$ [Second law: difference between heat and work [$(\Delta \sigma_{total}) = (\Delta \sigma)_{RL} + (\Delta \sigma)_s = \frac{Q_b}{r_b} + \frac{Q_l}{r_b} + 0$ [Efficiency $q = \frac{Q_b}{r_b} - \frac{Q_l}{r_b}$]. For a reversible cycle $q = 1 - \frac{r_b}{r_b}$ [Probability of thermal energy $q_s = \frac{Q_b}{r_b} - \frac{Q_l}{r_b}$]. isothermal $PV = N\tau$ is isentropic $PV^\gamma = constant$ where $\gamma > 1$ is $1 \rightarrow 2$ isothermal expansion $\Delta = 0$ and PV = constant and $P = Cont \cdot \frac{1}{V}$ and $|Q_{12}| = |W_{12}| = \int p\partial V = N\tau_N \ln \left(\frac{v^2}{v^2}\right) - N\tau \ln \left(\frac{v^2}{v$ Irreversible cycle $\Delta \tau = (\tau_R - \tau_D) \approx 0$ I reversible cycle $\Delta \sigma_s = \int \frac{\partial \sigma}{\tau}$ in reversible there is no net entropy increase $\frac{1}{\epsilon} \Delta \sigma_R = \int \frac{-\partial \sigma}{\tau}$ 1 $\Delta \sigma_{total} = 0$ wild day 1 chemical work $\frac{1}{\epsilon} \partial \omega = -p \partial v + \mu \partial N$. Assuming no mechanical work for $\partial w_l = \partial w_{c1} + \partial w_{c2} = M_2 \partial N_1 + M_2 \partial N_2$ - total number of particles I ideal gas $\mu = \tau \ln \left(\frac{n}{n_0}\right)$ I $W_c = \tau \ln \left(\frac{n}{n_0}\right)$ I Why G $\partial G = \partial U - \partial (\tau \sigma) + \partial (pv)$ I What happens for spontaneous charges $\Delta \sigma_{total} = \Delta \sigma_s - \frac{Q_s}{L} \Delta Q_s \leq W^1$ does not incur reversibility I Simple case if $\omega_s^1 = 0$ the process is reversible, $\Delta G_s = 0$ $\frac{1}{8}$ G_s reaches minimum when equilibrium $\frac{1}{8}$ $W_s \neq 0$ and $\partial w^1 = \mu \partial N$ $\frac{1}{8}$ $G_F - G_i \leq \omega^1$ $\frac{1}{8}$ the maximum amount of work the system can deliver the decrease in Gibbs free energy. $\frac{1}{8}$ Now lets $\partial \omega^1 = \mu \partial N$ $\frac{1}{8}$ Extensive and Intensive Quantity $G_{total} = G_{1+2} = G_1 + G_2 = 2G_1$ $\frac{1}{8}$ $U_{total} = U_1 + U_2 = 2U_1$ $\frac{1}{8}$ intensive quantities, no dependence on number of particles, σ temperature, P pressure, n density, μ chemical potential $\frac{1}{2}$ extensive quantities, dependence on number of particles, σ entropy, F free energy, V volume, N number of particles $\frac{1}{2}$ Example of simple ideal gas $\mu = \tau \ln \left(\frac{n}{P_{o,T}}\right) \frac{1}{2} F(T,V,\mu) = N\tau [\ln \left(\frac{n}{n_{o,T}}\right) - 1] \frac{1}{2}$ Gibbs free energy $G = F + pV = N\tau \ln \left(\frac{n}{n_{\sigma}}\right) = N\mu$

1