(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-84159

(43)公開日 平成10年(1998) 3月31日

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

H01S 3/18

H01S 3/18

審査請求 未請求 請求項の数14 OL (全 13 頁)

(21)出願番号

特願平8-236334

(22)出顧日

平成8年(1996)9月6日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 上村 信行

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 石橋 明彦

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 長谷川 義晃

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 滝本 智之 (外1名)

最終頁に続く

(54) 【発明の名称】 半導体発光素子およびその製造方法

(57)【要約】

【課題】 p型コンタクト構造を改良することによりし さい値電圧が従来より低い、Nを含有するIII-V族 化合物より構成される半導体発光素子を提供する。

【解決手段】 n型SiC(0001)基板101上に積層された、Nを含有するIII-V族化合物より構成されるレーザ構造102~108を形成する。このp型GaNコンタクト層108の上にp型SiCコンタクト層109を1000Å積層する。これにより、p型コンタクト層と金属との間のバリア高さが従来よりも小さくなり、レーザの動作電圧が低下する。

7/30/2007, EAST Version: 2.1.0.14

【特許請求の範囲】

【請求項1】 Nを含むIIIーV族化合物より成るダブルヘテロ構造と、前記ダブルヘテロ構造の上に積層されたp型の導電性を有するSiCを含むコンタクト層を有する半導体発光素子。

【請求項2】 p型の導電性を有するコンタクト層としてSiCの代わりにZnOを用いる請求項1に記載の半導体発光素子。

【請求項3】 基板にはサファイア、SiC、Si、ZnOまたは酸化物基板を用いる請求項1または2に記載 10の半導体発光素子。

【請求項4】 電極との間のバリア高さが0.5eV以下になるコンタクト層を有する半導体発光素子。

【請求項5】 コンタクト層にZnOまたはSiCを用い、前記コンタクト層と電極とのバリア高さが0. 5 e V以下になる請求項4に記載の半導体発光素子。

【請求項6】 Nを含むIIIーV族化合物より成るダブルへテロ構造と、前記ダブルへテロ構造の上に積層されたp型の導電性を有する、NおよびInを含むIIIーV族化合物よりなるコンタクト層と、前記コンタクト 20 層の上に積層されたIIa族またはIIb族に属する金属の層と、前記IIa族またはIIb族に属する金属の 目の上に積層されたNi層とを有する半導体発光素子。

【請求項7】 $p型の導電性を有する、NおよびInを含むIIIーV族化合物よりなるコンタクト層として、Mgを添加した<math>GaxIn_{1-x}N(0 < x < 1)$ を用いる請求項6に記載の半導体発光素子。

【請求項8】 基板にはサファイア、SiC、Si、ZnOまたは酸化物基板を用いることを特徴とする請求項6に記載の半導体発光素子。

【請求項9】 IIa族またはIIb族に属する金属として、MgまたはZnを用いることを特徴とする請求項6に記載の半導体発光素子。

【請求項10】 p型の導電性を有する、Nを含むII IーV族化合物よりなるコンタクト層を作製するのに際 し、IIa族またはIIb族に属する金属をイオン化し てNを含むIIIーV族化合物のコンタクト層に添加する半導体発光素子の製造方法。

【請求項11】 p型の導電性を有する、Nを含むII I-V族化合物よりなるコンタクト層として、Mgを添 40 加したGaNを用いる請求項10に記載の半導体発光素 子の製造方法。

【請求項12】 Nを含むIII-V族化合物より成る ダブルヘテロ構造と、前記ダブルヘテロ構造の上に積層 されたp型の導電性を有する、Nを含むIII-V族化 合物よりなるコンタクト層と、前記コンタクト層の表面 を含む一部分をIIa族またはIIb族に属する金属を イオン化して添加した層を有することを特徴とする半導 体発光素子。

【請求項13】 p型の導電性を有する、Nを含むII 50 の活性層にまでMgが入り込み、そのためにレーザの特

I-V族化合物よりなるコンタクト層として、Mgを添加したGaNを用いることを特徴とする請求項12に記載の半導体発光素子。

【請求項14】 前記Nを含むIII-V族化合物よりなるコンタクト層の上に、IIa族またはIIb族に属する金属を用いることにより、GaN中にIIa族またはIIb族に属する金属が拡散し、高いキャリア密度を有するp型コンタクト層が形成されてコンタクト抵抗が下がる半導体発光素子。

10 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、Nを含むIII-V族化合物からなる発光素子に関するものである。

[0002]

【従来の技術】次世代高密度情報処理技術のキーデバイスとして、レーザの短波長化が可能な、Nを含むIII -V族化合物半導体は注目を浴びている。

【0003】従来よりNを含むIII-V族化合物半導体より構成されるレーザ構造として、図14に示されている構造が知られている。この構造のキャビティ長は1mm、ストライプ幅20μmで、活性層がMQW構造であるダブルヘテロ構造を有することを特徴としている。この構造により発振波長417nm、しきい値電圧17~40V、しきい値電流0.2~2A、しきい値電流密度4~10kA/cm²、デューティ0.1%の室温バルス発振が実現している(Japanese Journal of Applied Physics Vol.35(19%)pp.L74-L76.、ibid.; Japanese Journal of Applied Physics Vol.35(19%)pp.L217-L220.、ibid.; Applied Physics Letters Vol.68(1996)pp.2105-30 2107.)。

【0004】さらにp型のNを含むIII-V族化合物 半導体と金属より構成されるコンタクト構造として、図 15に示す、p型GaN層の上にMg電極をのせた構造 が知られている(特開平8-64871号公報)。

[0005]

【発明が解決しようとする課題】Nを含む 1 I I - V族 化合物半導体より構成されるレーザ構造に関する技術に 関しては、 $N \text{ i } \text{ b } \text{ G a } \text{ N } \text{ O } \text{ M } \text{ T } \text{ E } \text{ C } \text{ I } \text{ V } \text{ K } \text{ I } \text{$

【0006】前記の、p型のNを含むIII-V族化合物半導体と金属より構成されるコンタクト構造に関する技術に関しては、p型GaN層の上にMg電極をのせた後に加熱処理を行う際に、300℃以上に加熱処理を行えばMgがp型GaN層を超えて拡散し、レーザ構造内の活性層はまなMgが方型GaN層を超えて拡散し、レーザ構造内の活性層はまなMgが方としていませる。

10

性が低下するという問題があった。

【0007】そこで本発明は、コンタクト構造を改良することによりしきい値電圧が従来より低い、Nを含有するIIIーV族化合物より構成される半導体発光素子を提供することを目的とする。

[0008]

【課題を解決するための手段】本件発明者は、上記問題点を解決する、Nを含む I I I - V族化合物からなるレーザ構造に関する技術として、以下(1)~(3)に示す技術を考案した。

【0009】(1) Nを含むIII-V族化合物より成るダブルへテロ構造の上に積層されたp型GaNコンタクト層の上に、図8に示すようにGaNに格子定数が近いSiCまたはZnOを積層する。SiC、ZnOはともに容易にp型の導電性の結晶が得られ、金属との間のバリア高さがGaNよりも小さい。そのため、p型SiCコンタクト層の上にNiを積層した場合、GaNの価電子帯との間のショットキーバリアの高さゆBがp型GaNコンタクト層の場合の半分以下と小さくなり、p型コンタクト層と金属との間の接触抵抗を低減することが20でき、結果としてレーザの動作電圧が低下する。

【0010】(2)前記p型GaNコンタクト層の代わ りにp型Ga1-xInxN(O<x<1)コンタクト層を 用い、p型Ga1-xInxNコンタクト層の上にMgやZ nのようなIIa族またはIIb族に属する金属の層を 積層し、さらにその上にNi層を積層する。IIa族ま たはIIb族に属する金属の層を積層するのは、GaN 中にIIa族またはIIb族に属する金属が拡散し、高 いp型コンタクト層が形成され、コンタクト抵抗が下が るからである。GaN中にIIa族またはIIb族に属 30 する金属の層は薄ければ薄いほどよく、100 Å以下が 望ましい。なぜならばIIa族またはIIb族に属する 金属の層厚が、その金属の拡散によって薄くなり、ホー ルがp型Gal-xInxNコンタクト層とIIa族または IIb族に属する金属の層との間の障壁をトンネル効果 によって透過しやすくなるためである。また、Ni層を 積層するのは、GaNとの密着性がIIa族またはII b族に属する金属のみを積層する場合に比べて向上する からである。さらにGai-xInxNはInを含む混晶を p型コンタクト層に用いているので、その上にMgをの 40 せて300℃以上に加熱処理を行ってもMgがp型Ga Nコンタクト層を超えて拡散するというようなことはな く、レーザの特性が低下するという問題は起こらない。 【0011】(3)前記p型GaNコンタクト層を作製 するのに、IIa族またはIIb族に属する金属をイオ ン化してNを含むIIIーV族化合物よりなるコンタク ト層に添加する。そうすることによりp型GaNコンター クト層の表面が高濃度にドーピングされて金属との間の バリア高さが小さくなり、p型GaNコンタクト層と金

らに電極形成過程において加熱処理はいっさいおこなわないので、例えばMgがp型GaNコンタクト層を超えて拡散するというような問題は起こらず、レーザの特性が低下することはない。

4

【0012】本発明の半導体発光素子の作製は、図4に示されている有機金属気相エピタキシャル装置を用い、有機金属気相エピタキシシャル成長法により行われるものである。ZnOまたはSiCの積層はCVDにより行われるものである。また、金属の蒸着は真空蒸着装置により行われるものである。また、金属をイオン化してNを含むIII-V族化合物よりなるコンタクト層に添加することは、イオン注入装置により行われるものである。

[0013]

【発明の実施の形態】本発明の、半導体発光素子とその 製造方法ならびに特性について、図面を参照しながら説 明する。

【0014】(実施の形態1)実施の形態1を、図1、図4、図5、図9を用いて説明する。まず最初に有機溶媒による洗浄及び前処理を施され、SiC(0001)基板101を炭素製の基板ホルダ401上に置き、図4に示すような有機金属気相エピタキシャル成長装置内に投入する。この有機金属気相エピタキシャル成長装置は原料ガスの供給が2フロータイプ、すなわち基板に平行に流れるガス流と基板上方から流れるガス流の2つから構成されており、従来よりよく使用されている。SiC(0001)基板101に対して有機溶媒による洗浄及び前処理を行う。

【0015】次に成長室409内を圧力70Torrの水素で満たし、水素雰囲気中でn型SiC(0001) 基板101を炭素製の基板ホルダ401ごとヒータ408で1090℃まで加熱し、表面に付着している吸着ガスや酸化物、水分子等を取り除く。その後n型SiC(0001) 基板101の温度を1000℃まで下げ、トリメチルアルミニウム、アンモニア、シランのガス供給ラインのバルブ403、405、407を開け、トリメチルアルミニウム5.5sccm、アンモニア2.51/min、シラン12.5sccmを流し、n型AlNバッファ層102を300Å積層する。

【0016】n型AINバッファ層102を積層した後、n型SiC(0001)基板101の温度を1030℃まで上げ、トリメチルガリウム、トリメチルアルミニウム、アンモニア、シランのガス供給ラインのバルブ402、403、405、407を開け、トリメチルガリウム2・7sccm、トリメチルアルミニウム8・7sccm、アンモニア2・51/min、シラン12・5sccmを流し、層厚1・5μmのn型A10.2Ga0.8N103を積層する。

バリア高さが小さくなり、p型GaNコンタクト層と金 【0017】n型Alo.2Gao.8N103を積層した 属との間のコンタクト抵抗が小さくなるからである。さ 50 後、トリメチルアルミニウム及びシランのガス供給ライ ン403、407を閉じ、トリメチルガリウム、アンモニアのガス供給ラインのバルブ402、405を開け、トリメチルガリウム2.7sccm、アンモニア2.51/minを流し、アンドープGaN光ガイド層104を1000Å積層する。

【0018】アンドープGaN光ガイド層104を積層した後、n型SiC(0001)基板101の温度を680℃まで下げ、トリメチルガリウム、トリメチルインジウム、アンモニアのガス供給ラインのバルブ402、404、405を開け、トリメチルガリウム2.7sccm、トリメチルインジウム27sccm、アンモニア101/minを流し、アンドープGa0.85 In0.15 N活性層105を100Å積層する。

【0019】アンドープGa0.85 I no.15 N活性層105を100Å積層した後、トリメチルインジウムのガス供給ラインのバルブ404を閉じ、n型SiC(0001) 基板101の温度を1030℃まで上げ、トリメチルガリウム、アンモニアのガス供給ラインのバルブ402、405を開け、トリメチルガリウム2.7sccm、アンモニア2.51/minを流し、アンドープG20aN光ガイド層106を1000Å積層する。

【0020】アンドープGaN光ガイド層106を1000Å積層した後、トリメチルガリウム、トリメチルアルミニウム、アンモニア、シクロペンタジエニルマグネシウムのガス供給ラインのバルブ402、403、405、406を開け、トリメチルガリウム2.7sccm、トリメチルアルミニウム8.7sccm、アンモニア2.51/min、シクロペンタジエニルマグネシウム5.0sccmを流し、p型A10.2Ga0.8Nクラッド層107を1.0μm積層する。

【0021】p型A10.2Ga0.8Nクラッド層107を積層した後、トリメチルアルミニウムのガス供給ラインのバルブ403を閉じ、トリメチルガリウム、シクロペンタジエニルマグネシウムのガス供給ラインのバルブ402、406を開け、トリメチルガリウム2.7sccm、アンモニア2.51/min、シクロペンタジエニルマグネシウム5.0sccmを流し、p型GaNコンタクト層108を1000Å積層する。

【0022】その後、水素のガス供給ラインのバルブのみを開け、圧力70Torrの水素雰囲気中でSiC(0001)基板101の温度を700℃に設定し、1時間アニールを行い、p型のドーパントであるマグネシウムを活性化する。アニール終了後、SiC(0001)基板101の温度を室温まで戻し、レーザ構造102~108が積層されたSiC(0001)基板101を有機金属気相エピタキシャル成長装置の外へ取り出す

【0023】次にp型GaNコンタクト層108が積層 3である。移動度はp型及びn型Alo.2Gao.8Nクラされた基板101に厚さ1000Åのp型SiC層10 ッド層107、103、およびp型GaNコンタクト層9を、p型GaNコンタクト層108の上に積層する方 50 108、p型SiCコンタクト層109それぞれ10c

法を説明する。p型GaNコンタクト層が積層された基板101をプラズマCVD装置内に投入し、シラン、メタンおよびトリメチルアルミニウムをプラズマCVD装置内に流し、層厚1000ÅのAlがドープされたp型SiCコンタクト層109をCVD法によりp型GaNコンタクト層108上全面にわたって積層する。プラズマCVD装置の代わりに光CVD装置を用いても同様な結果が得られる。

【0024】次にp型SiCコンタクト層が積層された 基板101に幅10μmの領域を残して厚さ1000ÅのSiO2絶縁層110を、p型SiCコンタクト層109の上に積層する方法を、図5を用いて説明する。 【0025】n型SiC(0001)基板101をCV D装置内に投入し、層厚1000ÅのSiO2110をCVD法によりp型SiCコンタクト層109上全面にわたって積層する。CVD装置としては、光CVD装置を用いてもよく、またプラズマCVD装置を用いてもよい。

【0026】次にSiO₂110を全面に積層されたn 20 型SiC(0001)基板101に対してSiO₂11 0上全面にレジスト501を塗布する。

【0027】レジスト501を塗布されたn型SiC (0001) 基板101に対して幅 10μ mのすきまが開いているマスク502をかぶせ、光を照射してマスク502に覆われていない部分のレジストを化学変化させて取り除く。その後、マスクを取り外しHF: NH_4F = 1:10の水溶液を用い、レジストが取り除かれた部分の SiO_2110 を取り除く。その後アセトンおよびO2プラズマによりレジスト501を取り除く。このようにしてp型SiC3ンタクト層109上に幅 10μ mの領域以外の部分に厚さ10004の SiO_2110 が積層される。

【0028】最後にレーザ構造が積層されたSiC基板101に対して、真空蒸着装置を用いて基板101裏面にチタン111、金112を、p型SiCコンタクト層109の表面にそれぞれの厚さが1500Åのニッケル113及び金114を蒸着させ、基板101をキャビティ長1mmにへき開してレーザを完成させる。

【0029】本発明の、上記レーザの特性を以下に述べる。まず光学的特性について述べる。レーザの発振波長は410nmである。端面の反射率はフロント、リアとも22%である。またレーザの内部損失は10cm⁻¹、共振器における損失は20cm⁻¹である。

【0030】次に電気的特性について述べる。p型及びn型Alo.2Gao.8Nクラッド層107、103、およびp型GaNコンタクト層108、p型SiCコンタクト層109のキャリア密度はそれぞれ1×10¹⁸/cm³である。移動度はp型及びn型Alo.2Gao.8Nクラッド層107、103、およびp型GaNコンタクト層108、p型SiCコンタクト層100名れぞわ10c

 $m^2/V \cdot s$, $250 cm^2/V \cdot s$, $10 cm^2/V \cdot s$ s、 $20cm²/V \cdot s$ であり、十分抵抗率の小さいp 型およびn型クラッド層107、103、およびp型G aNコンタクト層108、p型SiCコンタクト層10 9が製造されている。

【0031】また、p型SiCコンタクト層109と二 ッケル113の間で1×10-4Ω · c m²と従来のp型 GaNコンタクト層を用いた場合に比べて2桁抵抗の小 さいオーム性接触が実現し、さらに裏面のn型SiC基 板101とチタン111との間にもオーム性接触が実現 している。p型SiCコンタクト層109とニッケル1 13の間で従来のp型GaNコンタクト層を用いた場合 に比べて2桁抵抗の小さいオーム性接触が得られるの は、SiCとニッケルとの間のバリア高さが0.3eV 以下と従来のGaNとニッケルとの間のバリア高さの半 分以下であるからである。レーザの電流-電圧-光出力 特性は図9の太線のようになり、細線に示す従来のもの より特性が良い。しきい値電流は100mAと、従来の レーザ構造よりも小さくなっている。レーザの動作電圧 は10 Vと、従来のレーザの1/3になる。これはp型 20 SiCコンタクト層109とニッケル113の間で従来 のp型GaNコンタクト層を用いた場合に比べて2桁抵 抗の小さいオーム性接触が得られるからである。

【0032】なお、上記SiC基板101の代わりにS i基板等の導電性基板、またはサファイアや、ZnO、 LiAIO2等の酸化物基板を用いても同様な結果が得 られる。また、p型SiCコンタクト層の代わりにp型 ZnOコンタクト層を用いても同様な効果が得られる。 【0033】(実施の形態2)実施の形態2を、図2、 図4、図6、図10、図12を用いて説明する。SiС (0001)基板201上にp型Alo.2Gao.6Nクラ ッド層207までのレーザ構造202~207を積層す るまでは実施の形態1に同じである。

【0034】p型Alo.2Gao.8Nクラッド層207を 積層した後、トリメチルアルミニウムのガス供給ライン のバルブ403を閉じ、n型SiC(0001)基板2 01の温度を700℃まで下げ、トリメチルガリウム、 トリメチルインジウム、アンモニア、シクロペンタジエ ニルマグネシウムのガス供給ラインのバルブ402、4 04、405、406を開け、トリメチルガリウム2. 7sccm、トリメチルインジウム27sccm、アン モニア101/min、シクロペンタジエニルマグネシ ウム5. Osccmを流し、p型Gao.sIno.1Nコン タクト層208を1000Å積層する。

【0035】その後、実施の形態1と同様に圧力70下 orrの水素雰囲気中でSiC(0001)基板201 の温度を670℃に設定し、1時間アニールを行い、p 型のドーパントであるマグネシウムを活性化する。アニ ール終了後、SiC(0001)基板201の温度を室 温まで戻し、SiC(0001)基板201を有機金属 50 の分布を表し、細線が従来のレーザ素子内のMgの分布

気相エピタキシャル成長装置の外へ取り出す。

【0036】その後、実施の形態1と同様に幅10μm の領域以外の部分に厚さ1000ÅのSiO2絶縁層2 09を、p型Gao.g I no.1Nコンタクト層208の上

【0037】その後、実施の形態1と同様にn型SiC 基板の裏面にチタン210および金211を蒸着する。 さらに真空蒸着装置を用いてp型Gao.s I no.1 Nコン タクト層208の表面に厚さ50ÅのMg212を蒸着 させ、さらにMg212の上に厚さ1000ÅのNi2 13および厚さ1000ÅのAu214を蒸着させ、基 板201を650℃にして10分間加熱する。

【0038】最後に基板201を室温まで戻し、へき開 によりキャビティ長1mmに加工して発光素子を完成さ せる。

【0039】本発明の、上記レーザの特性を以下に述べ る。まず光学的特性について述べる。レーザの発振波長 は410 n mである。端面の反射率はフロント、リアと も22%である。またレーザの内部損失は15cm-1、 共振器における損失は20 c m-1である。

【0040】次に電気的特性について述べる。p型およ びn型Alg.2Gag.8Nクラッド層207、203のキ ャリア密度はそれぞれ1×10¹⁸/cm³である。移動 度はp型およびn型Alo.2Gao.8Nクラッド層20 7, 2037h7h10cm2/V·s, 250cm2/ V・sであり、十分抵抗率の小さいp型およびn型クラ ッド層207、203、およびp型Gao.9 I no.1Nコ ンタクト層208が製造されている。また、p型Ga0. 9In0.1Nコンタクト層208とニッケル213の間で 1×10⁻³Ω·cm²と従来のp型GaNコンタクト層 を用いた場合に比べて1桁抵抗の小さいオーム性接触が 実現し、さらに裏面のn型SiC基板201とチタン2 10との間にもオーム性接触が実現している。

【0041】p型Gao.9Ino.1Nコンタクト層201 とニッケル113の間で従来に比べて1桁抵抗の小さい オーム性接触が得られるのは、p型Gao.9 Ino.1Nコ ンタクト層208にMg層212からMgが拡散して、 表面付近に1018/cm3台後半以上の高いp型キャリ ア密度を持った低抵抗のp型Gao.9 I no.1Nコンタク ト層208が形成されているためであり、さらにMg層 212の層厚がMgの拡散によって30A以下と薄くな り、ホールがp型Gao.9 I no.1 Nコンタクト層208 とMg層212との間の障壁をトンネル効果によって透 過しやすくなるためである。

【0042】また、本発明の、上記レーザ素子内のMg の分布および従来の、図15に示すようなMgを含む金 属をp型GaNに直接積層した電極を有するレーザ素子 内のMgの分布を調べると、図12のようになる。図1 2において、太線が本発明の、上記レーザ素子内のMg

を表す。図12よりMgの拡散は、上記レーザ素子に関 してはp型Gao.9 I no.1Nコンタクト層208のとこ ろで止まっており、従来のレーザ素子のように活性層付 近までMgが拡散するようなことはない。p型コンタク ト層にInを含む混晶を用いているので、Mgをのせて 加熱処理を行ってもMgがp型Gao.s Ino.1Nコンタ クト層208を超えて拡散することがないからである。 レーザの電流-電圧-光出力特性は図10の太線のよう になり、細線に示す従来のものより特性が良い。しきい 値電流は120mAと、従来のレーザ構造よりも小さく なっている。レーザの動作電圧は12Vと、従来のレー ザの2/5になる。これはp型Gao.9 I no.1 Nコンタ クト層208とニッケル213の間で従来に比べて1桁 抵抗の小さいオーム性接触が得られ、さらにMgの拡散 がp型Gao.s Ino.1Nコンタクト層208のところで 止まっているからである。

【0043】なお、上記SiC基板201の代わりにS i基板等の導電性基板、またはサファイアや、ZnO、 LiAlO2等の酸化物基板を用いても同様な結果が得 られる。

【0044】また、p型Gao.s I no.1 Nコンタクト層 208の表面に蒸着する金属として、Mgの代わりにZ nまたはCaのようなIIa族またはIIb族に属する 金属、またはIIa族またはIIb族に属する金属を含 む金属の多層膜を用いても同様な結果が得られる。

【0045】(実施の形態3)実施の形態3を、図3、 図7、図11、図13を用いて説明する。SiC(00 01) 基板301上にp型GaNコンタクト層308ま でのレーザ構造302~308を積層し、圧力70To r rの水素雰囲気中でアニールを行うことは実施の形態 1に同じである。その後SiC(0001)基板301 の温度を室温まで戻し、SiC(0001)基板301 を有機金属気相エピタキシャル成長装置の外へ取り出

【0046】レーザ構造302~308を積層し、圧力 70Torrの水素雰囲気中でアニールを行ったSiC (0001)基板301を今度はイオン注入装置に投入 し、フラックス密度10¹⁵/cm²の、300eVに加 速されたMgイオンをp型GaNコンタクト層308に 注入する。

【0047】その後、実施の形態1と同様に幅10μm の領域以外の部分に厚さ1000AのSiO2絶縁層3 09を、p型GaNコンタクト層308の上に積層す

【0048】レーザ構造302~308およびSiO2 絶縁層309が積層されたSiC(0001)基板30 1に対して、真空蒸着装置を用いて基板301裏面にチ タン310、金311を、p型GaNコンタクト層30 8の表面に厚さがそれぞれ1500人のニッケル312 および金313を蒸着させ、基板301をキャビティ長 50 aのようなIIa族またはIIb族に属する金属を用い

1 mmにへき開してレーザを完成させる。

【0049】本発明の、上記レーザの特性を以下に述べ る。まず光学的特性について述べる。レーザの発振波長 は410 nmである。端面の反射率はフロント、リアと も22%である。またレーザの内部損失は15cm-1、 共振器における損失は20 c m-1である。

10

【0050】次に電気的特性について述べる。p型およ びn型Alo.2Gao.8Nクラッド層307、303それ ぞれ1×1018/cm3である。移動度はp型およびn 型A 10.2 Gao.8 Nクラッド層307、303それぞれ $10 \text{ cm}^2/\text{V} \cdot \text{s}$ 、 $250 \text{ cm}^2/\text{V} \cdot \text{s}$ であり、十分 抵抗率の小さいp型およびn型クラッド層307、30 3が製造されている。また、p型GaNコンタクト層3 08とニッケル312の間で1×10-3Ω · c m²と従 来のp型GaNコンタクト層を用いた場合に比べて1桁 抵抗の小さいオーム性接触が実現し、さらに裏面のn型 SiC基板301とチタン310との間にもオーム性接 触が実現している。p型GaNコンタクト層308と二 ッケル312の間で従来のp型GaNコンタクト層を用 20 いた場合に比べて1桁抵抗の小さいオーム性接触が得ら れるのは、p型GaNコンタクト層308にMgをイオ ン注入することによってp型GaNコンタクト層308 のキャリア密度が1018/cm3台後半以上となってい るからである。

【0051】また、本発明の、上記レーザ素子内のMg の分布および従来のレーザ素子内のMgの分布を調べる と、図13のようになる。図13において、太線が本発 明の、上記レーザ素子内のMgの分布を表し、細線が従 来の、図15に示すようなMgを含む金属をp型GaN に直接積層した電極を有するレーザ素子内のMgの分布 を表す。図13よりMgの拡散は、上記レーザ素子に関 してはp型GaNコンタクト層308のところで止まっ ており、従来のレーザ素子のように活性層付近までMg が拡散するようなことはない。イオン注入することによ って電極形成過程での加熱処理をおこなわずに済むから である。レーザの電流-電圧-光出力特性は図11の太 線のようになり、細線に示す従来のものより特性が良 い。しきい値電流は100mAと、従来のレーザ構造よ りも小さくなっている。レーザの動作電圧は12Vと、 従来のレーザの2/5になる。これはp型GaNコンタ クト層308とニッケル312の間で従来のp型GaN コンタクト層を用いた場合に比べて1桁抵抗の小さいオ

ーム性接触が得られるからである。 【0052】なお、上記SiC基板301の代わりにS i基板等の導電性基板、またはサファイアや、ZnO、 LiAIO2等の酸化物基板を用いても同様な結果が得 られる。

【0053】また、p型GaNコンタクト層308にイ オン注入する金属として、Mgの代わりにZnまたはC ても同様な結果が得られる。

[0054]

【発明の効果】上記の方法によって作製されるp型コンタクト層、およびその製造方法により、半導体発光素子の動作電圧が低下し、従来よりも特性が良好な、Nを含むIII-V族半導体レーザが得られる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態の発光素子に関する 構造断面図

【図2】本発明の第2の実施の形態の発光素子に関する 構造断面図

【図3】本発明の第3の実施の形態の発光素子に関する 構造断面図

【図4】本発明の半導体発光素子を作製する、有機金属 気相エピタキシャル装置の構造断面図

【図5】本発明の第1の実施の形態における発光素子に 関する、SiO₂絶縁層形成の手順に関する図

【図6】本発明の第2の実施の形態における発光素子のプロセスに関する図

【図7】本発明の第3の実施の形態における発光素子の プロセスに関する図

【図8】 I I I - V族化合物半導体のバンドギャップと

12 格子定数との関係、およびよく用いられる基板の格子定数を表す図

【図9】本発明の第1の実施の形態の発光素子に関する 電流-電圧-光出力特性を表す図

【図10】本発明の第2の実施の形態の発光素子に関する電流-電圧-光出力特性を表す図

【図11】本発明の第3の実施の形態の発光素子に関する電流-電圧-光出力特性を表す図

【図12】本発明の、第2の実施の形態の発光素子内の Mgの分布および従来の発光素子内のMgの分布を表す 図

【図13】本発明の、第3の実施の形態の発光素子内のMgの分布および従来の発光素子内のMgの分布を表す図

【図14】従来の半導体発光素子に関する構造断面図

【図15】従来のp型コンタクト構造に関する構造断面図

【符号の説明】

108 p型GaNコンタクト層

109 p型SiCコンタクト層

208 p型Gao.9 Ino.1Nコンタクト層

308 p型GaNコンタクト層

【図1】

【図6】

本発明の、第1の実施の形態の半導体発光素子に関する構造断面図

110 SiO₂滟緑膜 114 Au 113 Ni 109 P型SiCコンタクト層 108 p型GaNコンタクト層 107 P型Ala 2Gaa BNクラッド層 106 アンドープGaN光ガイド層 105 Gao.eslno.15N活性層 アンドープGaN光ガイド層 n型A lo. 2G ao. a Nクラッド層 N型A!Nパッファ層 n型SiC基板 Τi 112

本発明の、第2の実施の形態における 発光素子のプロセスに関する図

【図2】

【図9】

本発明の、第2の実施の形態の半導体発光素子に関する構造断面図 本発明の、第1の実施の形態の発光素子に関する 電流一電圧一光出力特性を表す図

【図3】

【図10】

【図4】 本発明の発光素子を製造する、有機金属気相エピタキシャル成長装置の概略図

【図5】

本発明の、第1の実施の形態における半導体発光素子に関する。 SiQz 絶縁層形成の手順に関する図

【図7】 本発明の、第3の実施の形態における発光素子のプロセスに関する図

【図8】

【図11】 本発明の、第3の実施の形態の発光素子に関する 電流一電圧一光出力特性を表す図

【図12】

【図13】

【図14】

【図15】 従来のP型構造に関する構造断面図

フロントページの続き

(72)発明者 原 義博 大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 粂 雅博

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 伴 雄三郎

大阪府門真市大字門真1006番地 松下電器

産業株式会社内