COMPUTING SELECTED TOPICS

Resistencia celular y tiempo de respuesta imunológica en un modelo para la infección del VIH

Instituto Politécnico Nacional Escuela Superior de Cómputo

Ian Yevgeni Hernández Sánchez Junio 22, 2015

INTRODUCCIÓN

El curso de infección del VIH se caracteriza por la existencia de dos periodos principales:

- · Periodo de infección
- · Periodo de latencia

Se considera que el paciente ha adquirido el SIDA cuando el conteo de células-T baja hasta encontrarse entre el 20% y el 30%

INTRODUCCIÓN

Este modelo utiliza formalismos de autómatas celulares para describir la propagación de la infección en tejido linfoide y reproduce la dinámica de tres estados observada en pacientes infectados.

Podemos observar que se forman estructuras de células infectadas propagadas por el tejido, atrapando células sanas y destruyendo el tejido.

MODELO DEL AUTÓMATA CELULAR

Se representa la estructura de los nodos linfáticos mediante un espacio cuadrado de $L \times L$.

Cada uno de los elementos del espacio representa una célula, la cual tiene 4 estados posibles:

ESTADOS POSIBLES

- 1. **Células sanas:** Representan las células *CD*4⁺ y macrófagas.
- 2. **Células infectadas-A:** Son las que han sido infectadas recientemente y no han sido reconocidas por el sistema inmunológico.
- 3. **Células infectadas-B:** Son células infectadas-A, las cuales después de un tiempo ha perdido la capacidad para propagar la infección.
- 4. **Células muertas:** Son células que han muerto a causa de la infección.

MODELO DEL AUTÓMATA CELULAR

La configuración inicial se compone en su mayoría de células sanas, con una pequeña fracción $P_{VIH} = 0,05$ de células infectadas-A, distribuidas de manera aleatoria en el espacio.

Las siguientes reglas se aplican en cada periodo de tiempo transcurrido:

REGLAS DE TRANSICIÓN

1. Una célula sana se convierte en infectada-A si tiene al menos R_a células vecinas infectadas-A o R_b células vecinas infectadas-B. De lo contrario permanece sana.

Esta regla toma en cuenta la propagación de la infección a causa del contacto entre células. En el modelo original $R_a = 1$ y $R_b = 4$.

REGLAS DE TRANSICIÓN

2. Una célula infectada-A propaga la infección durante τ periodos de tiempo, luego se convierte en infectada-B.

El tiempo de respuesta τ es el tiempo que necesita el sistema inmunológico para desarrollar un determinado antígeno y puede variar de 1 a 8 semanas. En el modelo original τ = 4 para todas las células infectadas-A.

REGLAS DE TRANSICIÓN

- 3. Una célula infectada-B muere después de un periodo de tiempo.
- 4. Una célula muerta tiene una probabilidad P_{repl} de ser reemplazada por una célula nueva.

Dicha célula nueva tiene P_{infec} probabilidades de ser infectada-A y $1-P_{infec}$ probabilidades de ser sana.

En el modelo original $P_{repl} = 0.99$ y $P_{infec} = 10^{-5}$.

VARIABLES DEL MODELO

Resistencia celular

Parámetros que involucra:

- $\cdot R_a$
- $\cdot R_b$

Tiempo de respuesta inmunológica

Parámetros que involucra:

 $\cdot \tau$

REFERENCIAS

- 1. Solovey G., Peruani F., Ponce S., Zorzenon R. "On cell resistance and inmune response time lag in a model for the HIV infection". Physica A 343 (2004). Págs. 543 556.
- 2. Zorzenon R., Coutinho S. "Dynamics of HIV infection: A celular automata approach". Physical Review Letters (2001), Vol. 87, No. 16.