Практическая работа №2

Пример. Выполнить отделение корней уравнения $x^2 - \sqrt{x+4} = 0$ графическим методом.

Решение

Вычислим значение функции $x^2 - \sqrt{x+4} = 0$ на некотором отрезке [a, b] и найдем «соседние» точки, в которых функция y = y(x) принимает значения разных знаков. Для функции $x^2 - \sqrt{x+4} = 0$ областью определения является полуинтервал [-4; + ∞). Для вычислений выберем отрезок [-4;6] с шагом 1.

Для построения графика выбираем команду: Вставка \rightarrow секция Диаграммы \rightarrow Точечная \rightarrow Точечная с гладкими кривыми (рис. 2.12)

Точки пресечения графика функции $y = x^2 - \sqrt{x+4} = 0$ с осью Оx находятся на отрезках [-2,-1] и [1,2].

Выполнить отделение корней для функции своего варианта.

№ п/п	Уравнение	№ п/п	Уравнение
1	$x^3 - 3x^2 + 3 = 0$	11	$2 - x = \ln x$
2	$x+2=e^{2x}$	12	$x + \lg x = 0.5$
3	$x^3 + 3x^2 - 2 = 0$	13	$(x+1)^2 = e^{-x}$
4	$3x + \cos x + 1 = 0$	14	$(2-x)e^x = 1$
5	$x^3-12x-5=0$	15	$x^2 + 4\sin x + 1 = 0$
6	$(x+1)^3 + \ln x = 0$	16	$4\cos x - 2x^3 = 0$
7	$2^{x}(x+1)=1$	17	$x^3 + 6x^2 - 5 = 0$
8	$\sqrt{x+1} = x$	18	$\sqrt{x+1}=2x$
9	$x - \cos x = 0$	19	$2\cos x + 3x = 0$
10	$x + \ln \frac{x}{2} = 0$	20	$\cos x + x + 1 = 0$