E-411 PRMA

LECTURE 7 - TEST DEVELOPMENT

Christopher David Desjardins

CONSTRUCT VALIDITY

- Evidence that the test *measures* the targeted construct and that it can *place* test takers along that construct
- Developer MUST have theories about the construct, it's def'n, structure, and relationship to other constructs and other tests
- If the test fails to discern test takers, need to know why
- Recall all the various potential sources of error in testing
- All forms of validity could be considered subsets of construct validity

CONSTRUCT VALIDITY EVIDENCE

- Homogeniety
 - Test should be homogeneous if measuring one construct
- Endorsing test items should be positively correlated with total test score
 - What kind of correlation is this?
- What should we do with unrelated items?
 - What does it mean to throw away/rewrite items?
- Homogeneity implies inter item agreement ... how can we measure this?

CONSTRUCT VALIDITY EVIDENCE - CONTD

- Age and Pre/Post
 - Testtakers taking a test in reading should score higher on comprehension if they are older
 - Students getting tutored in reading between a pre and post test should score higher on the post test
- Can we predict how anxiety will change as we get older?

MORE EVIDENCE

- Groups higher on the construct should have higher scores
 method of contrasted groups
 - Measure tendency toward violent behavior
 - Higher scores: The general public or prison inamtes for assault and battery?
- Convergent Test scores on new IQ tests should correlate with scores from an established/validated IQ test (or a related construct)
- Discriminant Test scores should be unrelated to scores from another instrument
 - Students rate each other on leadership and popularity
 - What does it mean if these two are uncorrelated?

FACTOR ANALYSIS

- What should we call this factor?
- If Nervousness is our new instrument to measure the factor, how well does it do?
- What does it mean that social competence is negatively correlated with our factor?

TEST BIAS AND FAIRNESS

- Test bias extent that a test systematically favors one group
 - Can test this statistically using logistic regression
- At item level: differential item functioning
- Errors by raters
- Test fairness the degree a test is fair and used in an equitable way
 - What if we administer a test to a group not involved in the validation sample
- Why should we care about bias and fairness?

REVIEW

Classical Test Theory & Reliability

Test-Retest

Parallel Form

Internal Consistency

Quantifying uncertainty (i.e. standard error of measurement)

REVIEW

Validity

Content

Criterion-Related

Construct

TESTS, TEST, TESTS

TEST DEVELOPMENT

- Conceptualization
- Construction
- Piloting
- Item Analysis
- Revision

TEST CONCEPTUALIZATION

- Identify a need for this test
- Identify a purpose for this test
- No test exists
- People aren't static, so tests need to be revised
- What else should we be thinking about when we're conceptualizing a test?

NORM OR CRITERION-REFERENCED

Does it matter?

Norm-Referenced

- Want high scores on the test to get the item correct and low scores on the test to get the item incorrect
- Want to spread out testtakers

Criterion-Referenced

- Want high scores on the test to get the item correct and low scores on the test to get the item incorrect
- However, each item needs to measure whether a criterion is met

TEST CONSTRUCTION

- Now that we know why, we have to know how
- We need a set of rules for assigning numbers in measurement - scaling
- In psychology, scales are instruments used to measure traits, states, or abilities

SCALES

TYPES OF SCALES

- Nominal, ordinal, interval, or ratio
- Examples?

RATING SCALES

- Testtaker indicates their response to an item by selecting among strengths
- Examples: Stealing
- Likert-Type are common rating scales
- Scores from test could be summed (summative) directly;
 factor analysis or item response theory could be used

SCALE ISSUES

"Downloading movies is the same as stealing"

Strongly Agree Agree Neither Agree/Nor Disagree Disagree Strongly Disagree

Are the distances the same betwen the choices?

What might affect are choices?

MORE SCALES

- Paired comparsions choose between two options scored based on some criteria
- Comparative scaling items are arranged based on some criteria and categorical scaling - items into two or more categories
- Guttman scale items written in a sequential manner such that someone higher on the trait will agree with the strongest statements through the mildest statments

LET'S WRITE SOME ITEMS THAT USE THESE SCALES

Let's brain storm 10 nouns

INTERVAL SCALES

- Could use Thurstone's equal-appearing scale (p 250 251)
- I am skeptical ... what do you think?

LET'S WRITE A TEST!

$$ec{
abla} \cdot ec{D} =
ho$$
 $ec{
abla} imes ec{E} = -rac{\partial ec{B}}{\partial t}$ $ec{
abla} \cdot ec{B} = 0$

WRITING ITEMS

- What content should the items cover?
- What should the format of the items be?
- How many items should be written and for each content area?
- Book recommends writing 2x the number of items for the item bank/pool . . . seems a bit excessive

TYPES OF ITEMS

Selected-response vs constructed response

SELECTED-RESPONSE

- Types
 - Multiple-choice
 - Binary-choice
 - Matching
- Each item will have a stem, correct chioce, and distractors

- A good multiple-choice item in achievement test
 - Only one correct choice
 - Grammatically parallel alternatives
 - Alternatives of similar length
 - Alternatives that fit grammatically with the stem
 - Include as much information in the stem as possible to avoid repetiiton
 - Avoids ridiculous distractors
 - Is not excessively long

FINAL THOUGHTS ON SELECTED-RESPONSE

- There are more than just true/false for binary-choice items
- Matching bank should have more answers choices than items and/or be used more than once
- Guessing is a problem in an achievement setting
- Always forcing a choice in a non-achievement setting

CONSTRUCTED RESPONSE

- Completion items are fill-in-the blank responses
- Short-answer items require a response of a few sentences
- Essay items are long short-answer items demonstrating deeper, more thorough knowledge
- More deeply probe a specific portion of a construct, require more time
- Subjectivity in scoring essays
- What reliability statistic would we report here?

SCORING THE ITEMS

- Cumulative model sum up the items on the test
- Class scoring based on pattern of responses placed with similar testtakers
- Ipsative scoring score on a scale within a test compared to score on another scale on same test
 - Edwards Personal Preference Schedule measures relative strength of different psychological needs
- Could look at both the cumlative scores on seperate scales and the pattern of these scores, profile analysis

PILOTING THE TEST

ITEM ANALYSIS

- Many different ways to analyze items
- Can focus on
 - Difficulty of item
 - Reliability of item
 - Validity of item
 - Discrimination of item

ITEM DIFFICULTY

- Proportion of testtakers that get the item correct
- Higher the item difficulty, the easier the item
 - item-endorsement index
- Can calculate average item difficulty for the test
- Optimal value = $\frac{\Pr(Guess)+1}{2}$

ITEM DIFFICULTY - EXAMPLE

Administer an item to 10 students and 4 students get the item correct

What is the item's difficulty?

If the item was a multiple choice with 5 distractors, what is the optimal item difficulty?

ITEM RELIABILITY

- Internal consistency of the test
- Software often calculates changes in a reliability index (e.g. coefficient alpha) when item is deleted
- Examine factor loadings
- Calculate item-reliability index = $s_i * r_{i,\text{ttscore}}$
 - s_i , the standard deviation of item i
 - $r_{i,\text{ttscore}}$, correlation between item i and total test score

ITEM RELIABILITY INDEX - EXAMPLE

Assume correlation between item 1 and total test score is 0.7

ITEM VALIDITY

- Item-validity index = $s_i * r_{i,crit}$
 - s_i , the standard deviation of item i
 - $r_{i,\text{crit}}$, correlation between item i and criterion measure

ITEM DISCRIMINATION

- Point-biserial correlations Are testtakers with higher abilities more likely to get the item correct?
- IRT's discrimination parameter
- Item discrimination index
 - 1. Discretize total test scores into upper and lower 27%
 - 2. Calculate number of "high" scores that got item correct and number of "low" scores that got item correct
 - 3. Calculate difference
- Examine distractor functioning

Example in R

ISSUES IN TEST DEVELOPMENT

Guessing

Bias in favor of one group - differential item functioning

Test length and duration of testing session

ALTERNATIVES TO ITEM ANALYSIS

Think Alouds

Expert Panels

Interviews

Qualitative Methods

TEST REVISION

- On what basis should we revise our items?
- Too easy or too hard items?
- Items with similar difficulty that are measuring the same concept?
- Items with negative point-biserial correlations?
- Items that on a second/third read through seem unrelated to the construct?
- Items with low factor loadings?
- Based on IRT?

STANDARDIZATION

- We settle on our revisions
- Administer revised version to new sample
- This becomes our comparsion group, our standardization sample

REVISING OLD TESTS

- Tests need to be revised when the domain has significantly changed
- Content of the items is not understood or changed
- Test norms are no longer adequate
- Theory underlying the domain has changed
- Reliability and validity of the instrument can be improved

CROSS- AND CO-VALIDATION

- Cross-validation revalidation of a test on a seperate, independent sample of testtakers
- Item validities should shrink during this process (validity shrinkage)
- Co-validation test validation conducted on two or more tests with the same sample of testtakers
- Creating norms, co-norming
- Cheaper, reduces sampling error by norming on the same sample