# **SIEMENS**



NK8237 MP4.81 Modbus Gateway

for Sinteso™ and Cerberus® PRO Fire Detection Systems

**Interface Specifications** 

# **Table of Contents**

| About | t this docu | ument                                 | 4  |
|-------|-------------|---------------------------------------|----|
| 1     | Safety      | regulations                           | 7  |
| 1.1   | Countr      | y-specific standards                  | 7  |
| 1.2   |             | bly and installation                  |    |
| 1.3   | Comm        | issioning and testing                 | 7  |
| 1.4   | Dispos      | al and recycling                      | 7  |
| 1.5   | Modific     | cations to system design and products | 7  |
| 2     | Modbu       | Nodbus Interface Specifications       |    |
| 2.1   | Modbu       | ıs Gateway                            | 9  |
|       | 2.1.1       | Modbus Connections                    | 9  |
|       | 2.1.2       | Modbus Functions                      | 9  |
| 2.2   | Modbu       | ıs Data Model                         | 10 |
|       | 2.2.1       | Model Configuration Workflow          | 10 |
|       | 2.2.2       | FS2xxx Register Map                   | 13 |
|       | 2.2.3       | STT20 Register Map                    | 29 |
|       | 2.2.4       | NK823x Gateway Register Map           | 43 |

# About this document

### **Purpose**

This manual is intended as a guide to the Modbus interface provided by the NK823x Gateway for the fire control units of FS20/FS720/STT20 families. The manual presents the application-level information of this interface indicating the fire objects mapping, and describes the corresponding Modbus registry structure and the applicable Modbus functions.



Important: It is assumed that readers of this document are familiar with the Modbus protocol and data communication in general.

#### Scope

This document applies to the Modbus Interface gateway NK823x MP4.81.

### Target audience

This documentation is intended for the following users:

- **Project Managers**
- Project Engineers

#### Documentation resource information

The DMS8000 Documentation Resource Information and Glossary Guide assembles important information regarding documentation resources. This document contains the following:

- Comprehensive definitions of the target audiences for Siemens FS DMS documents
- Training program information including the Siemens intranet link
- A complete list of all available DMS8000 documents
- Instructions for how to obtain a document via the Siemens intranet using the Siemens Asset Portal
- A map of relevant documents for each target audience group
- Customer Support links & resources
- A glossary containing definitions of all terms and acronyms used in DMS8000 documentation

To access the DMS8000 Documentation Resource Information and Glossary Guide (document no. A6V10089056), go to the link and follow the document search instructions below:

https://step.bt.siemens.com/portal/StandardAssetPortal#contextID=Headquarters& workspaceID=Approved&screen=homepage

- 1. In the Simple Search column on the left, set:
  - Search Text: Enter the document number to search for (for example A6V10089056) or type part of the document name.
  - Asset Type: All
- 2. Click Search to start.
- 3. In the resulting area on the right, click on Contents link to show the list of search results.
- 4. In the list, select one or more documents and click the **Download Assets** icon.

 After the download preparation completes (Background Process ...), click Download and follow the instructions of your browser.

For more information such as Siemens news and announcements, visit the STEP Web portal at:

https://workspace.sbt.siemens.com/content/00001123/default.aspx

### Operational and safety regulations



Before groups of persons begin work on the system, they must have read and understood the Safety Regulations  $[\rightarrow 7]$  section in this manual.

## Liability disclaimer for damage or injuries

Before products are delivered, they are tested to ensure they function correctly when used properly. Siemens disclaims all liability for damage or injuries caused by the incorrect application of the instructions, or the disregard of danger advisories. This disclaimer applies in particular to personal injuries or damage caused by:

- Improper and/or incorrect use.
- Disregard of safety instructions in the documentation or on the product.
- Poor maintenance or a lack of maintenance.

We have checked the contents of this manual for agreement with the hardware and software described. Since deviations cannot be precluded entirely, we cannot guarantee full agreement. However, the data in this manual are reviewed regularly and any necessary corrections are included in subsequent editions. Suggestions for improvement are welcome.

### Copyrights and registered trademarks

Brand or product names mentioned in this document may be names protected by copyright law or registered trademarks of other companies. These are mentioned only for identification purposes and have no recommendatory character in regard to the product or manufacturer, unless otherwise stated.

#### **Documentation Conventions**

The following table lists conventions to help you use this document in a quick and efficient manner.

| Convention                                                                                                                                                                                               | Examples                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Numbered Lists (1, 2, 3) indicate a procedure with sequential steps.                                                                                                                                     | <ol> <li>Turn OFF power to the field panel.</li> <li>Disconnect the power cord.</li> <li>Open the cabinet.</li> </ol>                                                                                                            |
| One-step procedures are indicated by a bullet point.                                                                                                                                                     | Expand the Event List.                                                                                                                                                                                                           |
| Conditions that you must complete or must be met before beginning a procedure are designated with a ⊳.  Results, after completing a step or at the end of the entire procedure, are designated with a ⇒. | <ul> <li>▶ The report you want to print is open.</li> <li>1. Click the Print icon</li> <li>⇒ The Print dialog box appears.</li> <li>2. Select the printer and click Print.</li> <li>⇒ The print confirmation appears.</li> </ul> |
| <b>Bold</b> font in a procedure indicates something you should select or type.                                                                                                                           | Type <b>F</b> for Field panels.  Click <b>OK</b> to save changes and close the dialog box.                                                                                                                                       |
| Menu paths are indicated in <b>bold</b> .                                                                                                                                                                | Select File > Text, Copy > Group, which means from the File menu, then select Text,                                                                                                                                              |

|                                                                                                                                                     | Copy and finally Group.                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Error and system messages are displayed in Courier New font.                                                                                        | The message Definition successfully renamed displays in the status bar.                                                                           |
| Italics are used to emphasize a term.                                                                                                               | The Open Processor continuously executes a user-defined set of instructions called the <i>control program</i> .                                   |
| i                                                                                                                                                   | This symbol signifies a Note. Notes provide additional information or helpful hints.                                                              |
| Caution                                                                                                                                             | This is a Caution message and indicates that minor or moderate injury or property damage may occur if a procedure is not followed.                |
| <b>⚠</b> Warning                                                                                                                                    | This is a Warning message and indicates that a serious injury or a severe equipment and property damage may occur if a procedure is not followed. |
| Cross references to other information in printed material are indicated with an arrow and the page number, enclosed in brackets: $[\rightarrow 92]$ | For more information on creating flowcharts, see Flowcharts [→92].                                                                                |

# **Modification index**

Note: For versions more than four years old, please visit the Siemens Asset Portal.

| Modification index. |         |                                                                                                                                                                                                              |  |
|---------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Version             | Date    | Notes                                                                                                                                                                                                        |  |
| A6V10316242_a_en    | 09.2016 | Corresponds with MP4.81  - New WT_Section <i>Active</i> state  - New FS20 MP6.0 Objects in WT_Section, WT_Ctrl, WT_LogChan, and WT_HWObj  - New WT_NK8237Point <i>Fault</i> state  - New NK8237 Clock object |  |
| A6V10316242_a_en    | 09.2015 | Corresponds with MP4.80                                                                                                                                                                                      |  |
| A6V10316242_a_en    | 09.2014 | Corresponds with MP4.70                                                                                                                                                                                      |  |
| A6V10316242_a_en    | 06.2013 | Corresponds with MP4.60                                                                                                                                                                                      |  |

# 1 Safety regulations

This section describes the danger levels and the relevant safety regulations applicable to the use of the products described in this manual. Please read the following work instructions as well as the preceding section *About this document* thoroughly before beginning any work.

# 1.1 Country-specific standards

Siemens products are developed and produced in compliance with the relevant international and European safety standards. Should additional country-specific, and/or local safety standards or regulations concerning project planning, installation, and/or operation of the product(s) apply, then these standards and/or regulations must also be taken into account, in addition to the safety regulations mentioned in the product documentation.

# 1.2 Assembly and installation

The NK8000 units and NE8000 cabinets should always be installed in a clean and stable environment; see the specific requirements given in the Technical Data section of the specific NK823x datasheets.

In particular, keep units and cabinets away from the following:

- High levels of dust
- High temperature and humidity
- Locations where it might became wet
- Vibration and impact

Also, abide by the safety regulations of the connected devices.

# 1.3 Commissioning and testing

- Activate security-, fire- and third party systems or devices *only* in the presence of the person responsible.
- Abide by the safety regulations of the connected sub-systems when working on management stations. This especially applies when switching-off system components.
- Inform people before the testing of alarm devices; take the possibility of panic reactions into account.
- Inform the alarm and fault receiving stations connected to the system before carrying out any tests.

# 1.4 Disposal and recycling

The NK8000 units include electrical and electronic components and must not be disposed of as domestic waste. **Current local legislation must be observed.** 

These devices have been manufactured as much as possible from materials that can be recycled or disposed of in a manner that is not environmentally damaging. However, they contain parts (batteries) that require disposal in a controlled waste stream according to local environmental standards and/or regulations.

# 1.5 Modifications to system design and products



Modifications to a system or to individual products may cause faults or malfunctioning.

# Safety regulations



Modifications to system design and products

Please request written approval from Siemens Building Technologies, FS-DMS, and the relevant authorities concerning intended system modifications and system extensions.

# 2 Modbus Interface Specifications

The Modbus gateway enables Modbus master/client stations to access the FS20/FS720/STT20 fire control units for acquiring the status information.

The gateway also allows for control commands to be transmitted from the Modbus master/client stations to the fire system. A specific agreement with Siemens is required for this type of functions.

This document deals with the application-level communication and illustrates the register maps used for implementing it. For information about the physical protocols involved and the related configuration procedures, please refer to the NK8237 Installation, Configuration, and Commissioning Guide (document no. A6V10316241).

# 2.1 Modbus Gateway

### 2.1.1 Modbus Connections

Up to four Modbus protocols can be handled, via serial and/or TCP/IP connection:

- Serial connection: two links as Modbus slave in RTU mode over an RS232 or RS485 line.
- TCP/IP connection: Modbus server for four TCP/IP client connections.
   Separate Ethernet ports can be used for BACnet/IP and Modbus TCP/IP for maximum protection of the safety network.

| N              | Modbus hosts and system limits per each connected NK823x unit.                                                                                                     |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Modbus hosts   | Detectors and units per NK823x                                                                                                                                     |  |  |  |
| 1 Modbus host  | <ul> <li>Max. 10,000 detectors.</li> <li>16 FS20/FS720 units</li> <li>OR -</li> <li>12 FS20/FS720 units and 10 STT20 units in FCnet/SAFEDLINK topology.</li> </ul> |  |  |  |
| 2 Modbus hosts | <ul> <li>Max. 5,000 detectors.</li> <li>8 FS20/FS720 units</li> <li>OR -</li> <li>6 FS20/FS720 units and 5 STT20 units in FCnet/SAFEDLINK topology.</li> </ul>     |  |  |  |
| 3 Modbus hosts | <ul> <li>Max. 3,500 detectors.</li> <li>6 FS20/FS720 units</li> <li>OR -</li> <li>5 FS20/FS720 units and 3 STT20 units in FCnet/SAFEDLINK topology.</li> </ul>     |  |  |  |
| 4 Modbus hosts | <ul> <li>Max. 2,500 detectors.</li> <li>4 FS20/FS720 units</li> <li>OR -</li> <li>3 FS20/FS720 units and 2 STT20 units in FCnet/SAFEDLINK topology</li> </ul>      |  |  |  |

### 2.1.2 Modbus Functions

The gateway supports the following Modbus functions:

| Function code | Function                  | Applicable table types | Notes                                    |
|---------------|---------------------------|------------------------|------------------------------------------|
| 0x02          | Read Discrete Input       | Bit Status             |                                          |
| 0x03          | Read Holding<br>Registers | Command, Date and Time | Use it for reading date & time registers |
| 0x04          | Read Input Registers      | Summary; Status;       | Use it for reading                       |

| Function code | Function                  | Applicable table types      | Notes                                                                                                                             |
|---------------|---------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|               |                           | Compact Status              | status information                                                                                                                |
| 0x06          | Write Single Register     | Command;<br>Synchronization | Use it for writing command registers, to perform control actions, and date & time registers, thus synchronizing the NK8237 clock. |
| 0x07          | Read Exception<br>Status  | -                           | Serial Line only                                                                                                                  |
| 0x08          | Diagnostics               | -                           | Serial Line only                                                                                                                  |
| 0x0B          | Get Comm Event<br>Counter | -                           | Serial Line only                                                                                                                  |
| 0x11          | Report Slave ID           | -                           | Serial Line only                                                                                                                  |
| 0x2B / 0x0E   | Read Device ID            | -                           | General NK8237 info.                                                                                                              |

## 2.2 Modbus Data Model

According to the Modbus protocol specifications, the application-level communication between *Modbus devices* occurs via memory tables representing the Modbus *Registers*. In fact, Modbus functions operate on registers to provide both monitor and control I/O.

The gateway is capable of supporting an *Input Register Map* providing a process image of the fire system status for the Modbus master/client stations, which periodically read the input registers and acquire the related conditions. Control actions can also be initiated by the Modbus master/client stations by writing appropriate values in specific *Holding Registers*. This results then in command messages being transmitted to the fire system.

# 2.2.1 Model Configuration Workflow

The detailed definition of the register map implementing the Modbus data model occurs at configuration time. The Composer tool can import the FS20/FS720/STT20 metafile (the object list) and create the register map that represents the fire objects in a simplified set of types as described in the Register Map [ $\rightarrow$  13] section.

The register map can be directly applied or further customized to adapt the addressing scheme to your specific application. Some modifications to the map can be done in the Composer configuration tool, including the tables' base addresses and individual offsets. In addition, all information of the map can be exported into a *CSV file*, then customized externally, and finally re-imported into the Composer environment.



**Tip:** Although various customizations are possible in the Composer tool, detailed modifications to the offset addresses can be better performed using a spreadsheet application (e.g. MS-Office Excel™) on the exported CSV file.

Once finalized, the CSV file can be used for integrating the model information in the Modbus master/client station, and the corresponding register map downloaded into the NK823x unit.



Note: All addressing starts with offset 0.

# 2.2.1.1 Customizing Modbus Maps

- > The following illustrates the overall map customization procedure.
- 1. Start the Composer tool and open the Modbus gateway project.
  - ⇒ The project tree displays in the Composer environment.
- In the Modbus station node, select the Host tab and modify the Modbus Base Address values as needed. Make sure to define a consistent address scheme and avoid any conflicts.
- In the Modbus station node, launch the Node Commands > Export in CSV command and follow the instructions.
  - ⇒ A CSV file is created.
- 4. Using e.g. MS-Office Excel, edit the CSV file.
  - You can modify the ModbusAddress of any object.
- **5.** When the CSV is ready, launch the import procedure on the same node used above for exporting.
  - ⇒ The new map is available in Composer.
- **6.** Download the configuration into the NK823x gateway unit.



**Note:** When modifying the address values, make sure to define a consistent mapping, avoiding any address conflict.



**Note:** The export command also generates a TXT file containing information about supported Modbus functions.

For a detailed description of the configuration process, please refer to the NK8237 Installation, Configuration, and Commissioning Guide (document no. A6V10316241).

# 2.2.1.2 CSV Export File Structure

The CSV export file can be created in Composer using the node command for the Modbus master/client node. It contains the entire set of objects mapped in Modbus registers to represent the fire system.

The CSV file can be used for:

- Modifying the registers address and (re)organize the data memory to optimize the Modbus master/client treatment.
- Feeding the fire system configuration into the Modbus master/client configuration tool.

The following fields (columns) are present in the CSV file:

### SubsystemId

Identifier of the subsystem in the Composer project, and used during file re-import. It cannot be modified.

#### Nodeld

Identifier of the node in the Composer project, and used during file re-import. It cannot be modified.





#### **WARNING**

Composer subsystem and node IDs are used during the re-import to identify the object positions. Any modification to those fields in the imported file are likely to cause the system to fail.

#### **FieldDevice**

Description text of the control unit. Modifications to this field are ignored in the reimport.

#### **ModbusSlaveAddress**

Address of the Modbus slave (range: 1... 247). Modifications to this field are ignored in the re-import.

### **ParentDescription**

Description text of the parent object. Modifications to this field are ignored in the reimport.

### **Description**

Description text of the object. Modifications to this field are ignored in the re-import.

#### **TechnicalText**

Technical text of the object in the Composer project. Modifications to this field are ignored in the re-import.

#### ObjectName

Unique technical tag of the object. It cannot be modified.

### ModbusTable

Name of the table in the Modbus data representation (see FS2xxx Register Map  $[\rightarrow 13]$ ). It cannot be modified.

### **Modbus BaseAddress**

Starting address of the set of Modbus registers associated to the object. Modifications to this field are ignored in the re-import. Note however that the base addresses can be modified in the Composer configuration.



For each object, the actual Modbus register address is determined by summing the **Modbus BaseAddress** and the **ModbusAddress**.

#### CommandRange

Starting address of the set of Modbus Holding Registers associated to the command objects. Modifications to this field are ignored in the re-import. Note however that the base addresses for the command tables can be modified in the Composer configuration.



For each object, the actual Modbus register address is determined by summing the **Modbus BaseAddress** and the **ModbusAddress**.

#### **ModbusAddress**

Object offset address. This value can be changed in the CSV file and re-imported into Composer.

#### CompactAddress

Starting address of the set of Modbus registers associated to the compact tables. Modifications to this field are ignored in the re-import. Note however that the base addresses for the compact tables can be modified in the Composer configuration.



For each object, the actual Modbus register address is determined by summing the **Modbus BaseAddress** and the **ModbusAddress**.

#### Base address for Bit Status Tables

The CSV file contains also the starting addresses of the Bit Status Tables (see Bit Status Tables  $\rightarrow$  21).

Modifications to these fields are ignored in the re-import. Note however that the base addresses for the compact tables can be modified in the Composer configuration.

# 2.2.2 FS2xxx Register Map

### Data Representation

The NK823x Modbus gateway can support multiple fire detection panels or terminals (FC2xxx and FT2xxx). Each panel, terminal and gateway is represented as a virtual Modbus device with its own Modbus Slave Address and a complete register map. The map includes a number of sub-maps that represent the fire units, and a general table for the gateway itself.

#### Fire Control Unit Representation

In the Modbus data representation, *each panel is mapped as a separate Modbus device with an individual address*. The device address is defined at configuration time.

A dedicated register sub-map is used for each panel, including six types of tables. Namely:

### Summary tables

These are a set of word input registers including:

- The overall panel conditions (1 word register).
- The vitality counter (1 word register).
- As many as 525 data change flags (33 word registers) reporting any modifications in the register area (the complete range of 65536 registers is monitored).

#### Status tables

These are word input registers reporting the conditions of all the mapped objects. Each word corresponds with one object and is organized in two bytes: bits 0-7 are used to represent the object operating modes, for example the on/off (inclusion/exclusion) conditions, whereas bits 8-15 contain the abnormal event conditions, such as alarms, fault, and so on.

Status tables cover the entire set of supported objects, grouped by general

Modbus Data Model

categories. A specific status table is dedicated to notifications coming from objects not included in the configuration. Namely:

- Areas
- Sections
- Detection zones
- Detection elements (logical channels)
- Controls
- Control elements (control channels)
- Hardware objects
- Unidentified event (for objects not included in the configuration)

### • Compact status tables

These are available for a limited set of detection objects. The compact status tables are word input registers containing a simplified status representation. In fact, each representation is made up of 4-bit status for zones or 2-bit status for detectors. This results in 4 or even 8 objects being packet in a single word register, thus allowing a faster acquisition whenever communication performances have priority than status details.

The compact tables list includes:

- Detection zones
- Detection elements (logical channels)

#### Bit status tables

For extremely simple applications, a set of bit input registers is also provided for specific objects and events that are combined in very basic 1-bit (on/off) status report. The list of bit input registers includes:

- Detection zone alarmed
- Detection zone pre-alarmed
- Detection zone not ready or in other abnormal state
- Detection zone in test mode or excluded
- Detection element (logical channel) active
- Detection element (logical channel) faulty
- Detection element (logical channel) in test mode or excluded
- Control alarmed
- Control faulty or in other abnormal state
- Control in test mode or excluded
- Control element (control channel) active
- Control element (control channel) faulty
- Control element (control channel) in test mode or excluded
- HW object alarm
- HW object fault
- PS fault
- PS emergency power

### Command tables

The output command tables (read/write holding registers) enables Modbus master/client stations to initiate control commands to the fire control panels. Note that, depending on a configuration setting, certain commands may not be available.

The command tables list includes:

- Global panel acknowledgement
- Global panel reset
- Area manned/unmanned: set day or night mode
- Section on/off: include/exclude all zones belonging to the section
- Detection zone on/off: include/exclude the zone

- Detection element (logical channel) on/off: include/exclude the detector
- Control on/off: include/exclude the actuation group
- Control element (control channel) on/off: include/exclude the actuator

#### Date and Time

See Summary Table [→ 15].

### **Gateway Unit Representation**

A dedicated register sub-map is used for the NK823x unit, including one status table.

#### Status table

This is a word input register reporting the conditions of the gateway. Each word corresponds with one object and is organized in two bytes: bits 0-7 are used to represent the object operating modes, for example the on/off (inclusion/exclusion) conditions, whereas bits 8-15 contain the abnormal event conditions, such as alarms, fault, and so on.

The gateway table includes the following:

- NK8237 Points
- Power Supply

# 2.2.2.1 Summary Table

The Summary table includes one register.

### FC20 synthesis

WT\_FC20 Syn (Input register, default base address: 1000)

One input (read-only) word register reporting 16 general on/off panel conditions in the 16 bits. The following relationship applies:

| Bit     | Information            | Notes about the conditions corresponding to the "1" state (bit active)                                                                                               |
|---------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 (lsb) | Spare                  | Not used                                                                                                                                                             |
| 1       | Spare                  | Not used                                                                                                                                                             |
| 2       | Spare                  | Not used                                                                                                                                                             |
| 3       | Spare                  | Not used                                                                                                                                                             |
| 4       | Reset command required | A reset command is expected by the fire control panel                                                                                                                |
| 5       | Ack command required   | An acknowledged command is expected by the fire control panel                                                                                                        |
| 6       | Control off / test     | One or more control devices have been excluded or set in test mode                                                                                                   |
| 7       | Detection off / test   | One or more detection devices have been excluded or set in test mode                                                                                                 |
| 8       | Emergency power        | Due to missing or faulty mains supply, the panel is operating in battery mode. The delay of the event generation is configurable in the panel (00:00:00 - 02:00:00). |
| 9       | Power supply fault     | Troubles with the power supply: mains or battery failure                                                                                                             |
| 10      | Hardware fault         | One or more faults have been detected in general hardware components                                                                                                 |
| 11      | Control fault          | One or more faults have been detected in control components                                                                                                          |
| 12      | Detection fault        | One or more faults have been detected in detection                                                                                                                   |

| Bit         | Information                | Notes about the conditions corresponding to the "1" state (bit active) |
|-------------|----------------------------|------------------------------------------------------------------------|
|             |                            | components                                                             |
| 13          | Hardware alarm             | One or more alarms have been generated by general hardware components  |
| 14          | Control activation / alarm | One or more alarms have been generated by control components           |
| 15<br>(msb) | Detection alarm / fault    | One or more alarms/faults have been generated by detection components  |

#### 2.2.2.2 **Synchronization Tables**

The Synchronization tables include a fixed number of registers. Namely:

### Life Check

LifeCheck (Input register, default base address: 1010)

One input (read-only) word register that is constantly incremented as long as the NK823x gateway software works properly and the communication with the fire panel and with the Modbus unit is active.

The counter stops being incremented if any of these events occurs:

- The communication between the NK823x gateway and the Modbus unit goes down (this event can be detected and treated by other Modbus units).
- The communication between the NK823x gateway and the fire panel goes down.

| Bit  | Information               | Notes                                                    |
|------|---------------------------|----------------------------------------------------------|
| 0-15 | Panel Vitality<br>Counter | Incremented every 250 msec as long as operating properly |

### **Data Change**

DataChange (Input registers, default base address: 1020)

A set of 33 input word registers (525 bits are used) reporting any modifications in the register area. The complete range of 65536 Modbus registers is covered, with each flag representing changes in one or more registers in a corresponding group of 125 word registers.

The first flag, i.e. the least significant bit of the first change word register, corresponds with the registers 0 to 124, the second flag corresponds with the registers 125 to 249, and so on.

Active flags are automatically reset upon reading the registers that changed and caused the flags activation.

| Word /<br>Bit | Information                          | Notes                                    |
|---------------|--------------------------------------|------------------------------------------|
| 0/0           | Registry 0-124 (00h-7Ch)             | Flag 0                                   |
| 0 / 1         | Registry 125-249 (7Dh-F9h)           | Flag 1                                   |
|               |                                      | Flags 2 to 14 (Word register 0)          |
| 0 / 15        | Registry 1875-1999 (0753h-<br>07CFh) | Flag 15                                  |
|               |                                      | Flags 16 to 522 (Word registers 1 to 32) |
| 32 / 11       | Registry 65375-65499 (FF5F-FFDBh)    | Flag 523                                 |

| Word /<br>Bit                             | Information | Notes    |  |
|-------------------------------------------|-------------|----------|--|
| 32 / 12 Registry 65500-65535 (FFDC-FFFFh) |             | Flag 524 |  |

#### **Date and Time**

DateTime (Holding registers, default base address: 1060)

Three holding (read/write) word registers used for reading or synchronizing the NK823x date and time.

The synchronization must be enabled in the configuration settings and results, in turn, in the synchronization of the fire system (FS20 and then STT20 via FS20).

Alternatively, if the synchronization on these registers is not enabled, the NK823x gateway gets the date and time periodically from the fire system (FS20). In this case, writing to the registers is disabled, and a Modbus error code 0x04 is returned upon trying a write command.

When synchronization occurs, all registers should be written in sequence to prevent any possible data interpretation error. The NK823x gateway acquires the new time stamp when the last of the 3 values gets written.

The three 16-bit registers are organized in 6 byte containing 6 hexadecimal values corresponding with day, month, year, hour, minute, and second, respectively.

| Word /<br>Bit | Information | Notes                                             |
|---------------|-------------|---------------------------------------------------|
| 0 / 0-7       | Day         | 1-31 code in hexadecimal, e.g. 1B hex for day 27. |
| 0 / 8-15      | Month       | 1-12 code in hexadecimal                          |
| 1 / 0-7       | Year        | 10-99 code in hexadecimal                         |
| 1 / 8-15      | Hour        | 0-23 code in hexadecimal                          |
| 2 / 0-7       | Minute      | 0-59 code in hexadecimal                          |
| 2 / 8-15      | Second      | 0-59 code in hexadecimal                          |



**Note:** For detailed information about the time synchronization options on the Modbus host interface, refer to the Modbus interface configuration section of the NK8237 Installation, Configuration, and Commissioning manual (A6V10316241).

### 2.2.2.3 Status Tables

The status tables include an input word register per object. The number of tables depends on the specific systems whose object list is defined at configuration time. For example, there may be 8 area registers corresponding with 8 areas of a given fire system.

The list of object types includes:

#### Area

WT\_Area (Input registers, default base address: 6500)

| Bit     | Information      | Notes                                    |
|---------|------------------|------------------------------------------|
| 0 (lsb) | Non-default mode | Default range for possible abnormal mode |
| 1-3     | _                | Not used                                 |

| Bit  | Information                     | Notes                                                                                             |
|------|---------------------------------|---------------------------------------------------------------------------------------------------|
| 4    | WalkTest1)                      | Walktest active                                                                                   |
| 5    | Manned                          | Set in day (attended) mode                                                                        |
| 6    | Test <sup>1)</sup>              | Set in test mode                                                                                  |
| 7    | Off <sup>1)</sup>               | Excluded                                                                                          |
| 8    | Non-default value <sup>1)</sup> | Abnormal condition such as alarm output(s) disabled or other states resulting in a reduced safety |
| 9-15 | _                               | Not used                                                                                          |

Available only for versions up to MP4.0.

### Section

WT\_Section (Input registers, default base address: 6100)

| Bit            | Information       | Notes                                                                                                                                                                     |
|----------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 (lsb) -<br>3 | _                 | Default range for possible abnormal mode                                                                                                                                  |
| 1-3            | _                 | Not used                                                                                                                                                                  |
| 4              | WalkTest          | Walk test active, all zones in Walk test                                                                                                                                  |
| 5              | _                 | Not used                                                                                                                                                                  |
| 6              | Test              | All zones in test mode                                                                                                                                                    |
| 7              | Off               | All zones excluded                                                                                                                                                        |
| 8              | Non-default value | Abnormal condition resulting in a reduced safety, for example if alarming is excluded while keeping the fault supervision on, or all zones in Alarm verification are off. |
|                |                   | Note that manual zones cannot be in this state, so that it is intended that a section without manual zones is selected.                                                   |
| 9-14           | _                 | Not used                                                                                                                                                                  |
| 15             | Active            | Any of the section's zone has a fire alarm                                                                                                                                |

### **Detection Zone**

WT\_Zone (Input registers, default base address: 1500)

| Bit     | Information       | Notes                                                                                   |
|---------|-------------------|-----------------------------------------------------------------------------------------|
| 0 (lsb) | Non-default mode  | Default range for possible abnormal mode                                                |
| 1-3     | _                 | Not used                                                                                |
| 4       | WalkTest          | Walktest active                                                                         |
| 5       | _                 | Not used                                                                                |
| 6       | Test              | Set in test mode                                                                        |
| 7       | Off               | Excluded                                                                                |
| 8       | Non-default value | Abnormal condition such as zone not ready or other states resulting in a reduced safety |
| 9-13    | _                 | Not used                                                                                |
| 14      | Pre-alarm         | Pre-alarmed <sup>1)</sup>                                                               |
| 15      | Alarm             | Alarmed <sup>1)</sup>                                                                   |

If the Channel Delegation option is configured, the Pre-alarm and Alarm events are on the element level (not the Zone level).

# Detection element (logical channel)

WT\_LogCh (Input registers, default base address: 2500)

| Bit     | Information       | Notes                                            |
|---------|-------------------|--------------------------------------------------|
| 0 (lsb) | Non-default mode  | Default range for possible abnormal mode         |
| 1-5     | _                 | Not used                                         |
| 6       | Test              | Set in test mode                                 |
| 7       | Off               | Excluded                                         |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety |
| 9-10    | _                 | Not used                                         |
| 11      | Test active       | Activated for test                               |
| 12      | _                 | Not used                                         |
| 13      | Fault             | Faulty                                           |
| 14      | Prealarm          | Pre-alarmed                                      |
| 15      | Active / Alarm    | Activated / Alarmed                              |

#### Control

WT\_Ctrl (Input registers, default base address: 3500)

| Bit     | Information         | Notes                                                                                                          |
|---------|---------------------|----------------------------------------------------------------------------------------------------------------|
| 0 (lsb) | Non-default mode    | Default range for possible abnormal mode                                                                       |
| 1-5     | _                   | Not used                                                                                                       |
| 6       | Test                | Set in test mode                                                                                               |
| 7       | Off / Temporary off | Excluded, Excluded temporarily                                                                                 |
| 8       | Non-default value   | Abnormal condition such as drift state (maintenance required) or other anomalies resulting in a reduced safety |
| 9-10    | _                   | Not used                                                                                                       |
| 11      | Test active         | Activated for test                                                                                             |
| 12      | Not ready           | Not ready to switch on, for example if a previous activation is somehow still affecting the detection          |
| 13      | Fault               | Faulty                                                                                                         |
| 14      | _                   | Not used                                                                                                       |
| 15      | Active              | Activated                                                                                                      |

# Control element (control channel)

WT\_CtrlChan (Input registers, default base address: 4800)

| Bit     | Information       | Notes                                            |
|---------|-------------------|--------------------------------------------------|
| 0 (lsb) | Non-default mode  | Default range for possible abnormal mode         |
| 1-5     | _                 | Not used                                         |
| 6       | Test              | Set in test mode                                 |
| 7       | Off               | Excluded                                         |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety |
| 9-10    | _                 | Not used                                         |
| 11      | Test active       | Activated for test                               |
| 12      | _                 | Not used                                         |
| 13      | Fault             | Faulty                                           |
| 14      | _                 | Not used                                         |

| Bit | Information | Notes               |
|-----|-------------|---------------------|
| 15  | Alarm       | Activated / Alarmed |

### Hardware object

WT\_HWObj (Input registers, default base address: 6601)

| Bit     | Information       | Notes                                            |
|---------|-------------------|--------------------------------------------------|
| 0 (lsb) | Non-default mode  | Default range for possible abnormal mode         |
| 1-6     | _                 | Not used                                         |
| 7       | Off               | Excluded                                         |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety |
| 9-12    | _                 | Not used                                         |
| 13      | Fault             | Faulty                                           |
| 14      | _                 | Not used                                         |
| 15      | Alarm             | Activated / Alarmed                              |

### **Power Supply**

WT\_PowerSupply (Input register, default base address: 6600)

| Bit     | Information       | Notes                                                                               |
|---------|-------------------|-------------------------------------------------------------------------------------|
| 0 (lsb) | Non-default mode  | Default range for possible abnormal mode                                            |
| 1-7     | _                 | Not used                                                                            |
| 8       | Non-default value | Currently not used (foreseen for future extensions)                                 |
| 9       | _                 | Not used                                                                            |
| 10      | Emergency Power   | Due to missing or faulty mains supply, the FS20/FS720 is operating in battery mode. |
| 11-12   | _                 | Not used                                                                            |
| 13      | Fault             | Troubles with the power supply: mains or battery failure                            |
| 11-15   | _                 | Not used                                                                            |

## **Unidentified Event**

WT\_Unidentified (Input register, default base address: 8000)

| Bit     | Information       | Notes                                                                      |
|---------|-------------------|----------------------------------------------------------------------------|
| 0 (lsb) | Non-default mode  | Default range for possible abnormal mode                                   |
| 1-7     | _                 | Not used                                                                   |
| 8       | Non-default value | Abnormal condition coming from an object not included in the configuration |
| 9-15    | _                 | Not used                                                                   |

# 2.2.2.4 Compact Status Tables

The compact tables provide a summarized representation for the following objects:

- Detection zones: 4-bit status representation
- Detection elements (logical channels): 2-bit status representation

The corresponding data structures, illustrated here below, are packed in the register areas defined at configuration time. The word input registers contain 4 zones and 8 elements each.

### Detection zone (compact)

CT\_Zone (Input registers, default base address: 8100)

| Bit     | Information                                          | Notes                                                            |
|---------|------------------------------------------------------|------------------------------------------------------------------|
| 0 (lsb) | -                                                    | Not used                                                         |
| 1       | Off and Test mode                                    | Off and test mode                                                |
| 2       | Pre-alarm, Not ready<br>and other abnormal<br>states | Pre-alarm, Not ready, and other abnormal condition <sup>1)</sup> |
| 3       | Alarm                                                | Alarmed <sup>1)</sup>                                            |

If the Channel Delegation option is configured, the Pre-alarm and Alarm events are on the element level (not the Zone level).

### **Detection element (compact)**

CT\_LogChan (Input registers, default base address: 9000)

| Bit     | Information | Notes   |
|---------|-------------|---------|
| 0 (lsb) | Fault       | Faulty  |
| 1       | Active      | Alarmed |

### 2.2.2.5 Bit Status Tables

The bit status tables (input registers) presents single on/off event conditions for specific objects (detection zones, detection elements, controls, and control elements) and related conditions, for example *detection zone alarms*. In all tables, the value 1 indicates that the condition is present on the corresponding object. The list of objects is defined at configuration time.

The table below collects the list of bit status tables.

| Table                      | Information                                         | Related object type | Default base address |
|----------------------------|-----------------------------------------------------|---------------------|----------------------|
| BT_ZoneAlarm               | Detection zone alarmed <sup>1)</sup>                | Detection zones     | 21000                |
| BT_ZonePreAlarm            | Detection zone pre-alarmed <sup>1)</sup>            | Detection zones     | 22000                |
| BT_ZoneNDV&Notready        | Detection zone not ready or in other abnormal state | Detection zones     | 23000                |
| BT_ZoneModeOff&Test        | Detection zone in test mode or excluded             | Detection zones     | 24000                |
| BT_LogChanActive           | Detection element (logical channel) active          | Detection elements  | 10000                |
| BT_LogChanFault            | Detection element (logical channel) faulty          | Detection elements  | 11000                |
| BT_<br>LogChanModeOff&Test | Detection element (logical channel) in test mode or | Detection elements  | 12000                |

| Table                    | Information                                                | Related object type  | Default base address |
|--------------------------|------------------------------------------------------------|----------------------|----------------------|
|                          | excluded                                                   |                      |                      |
| BT_CtrlAlarm&Active      | Control alarmed or activated                               | Controls             | 13000                |
| BT_CtrlNDV&Fault         | Control faulty or in other abnormal state                  | Controls             | 14000                |
| BT_CtrlModeOff&Test      | Control in test mode or excluded                           | Controls             | 15000                |
| BT_CtrlChanActive        | Control element (control channel) active                   | Control elements     | 16000                |
| BT_CtrlChan Fault        | Control element (control channel) faulty                   | Control elements     | 17000                |
| BT_CtrlChanModeOff&Test  | Control element (control channel) in test mode or excluded | Control elements     | 18000                |
| BT_HWObjAlarm            | Hardware object alarm                                      | Hardware components  | 19000                |
| BT_HWObjFault            | Hardware object fault                                      | Hardware components  | 20000                |
| BT_PowerSupplyFault      | Power supply fault                                         | Power supply unit    | 32000                |
| BT_PowerSupplyEmerPow er | Power supply emergency power                               | Power supply battery | 33000                |

If the Channel Delegation option is configured, the Pre-alarm and Alarm events are on the element level (not the Zone level).

### 2.2.2.6 Command Tables

The command tables enable the Modbus master/client to issue control commands to the fire units.

A read/write holding register is foreseen for each of the objects listed below. Given an initial object state, a data value corresponding to a control action can be written in the register to trigger the command that is then expected to modify the object state and therefore cause a corresponding change in the object input registers. Note that the holding registers store the code of the latest command after its execution.

The list of command tables includes:

### Global panel acknowledgement and reset

CMDT\_FC20 (Holding register, default base address 25000)

| State          | Command (dec) | New state after a successful command execution |
|----------------|---------------|------------------------------------------------|
| Ack required   | 12            | Panel acknowledged                             |
| Reset required | 14            | Panel reset                                    |

30.09.2016

### Area manned/unmanned: set day or night mode

CMDT\_Area (Holding register, default base address 31000)

| State    | Command (dec) | New state after a successful command execution |
|----------|---------------|------------------------------------------------|
| Unmanned | 3             | Manned (day mode)                              |
| Manned   | 4             | Unmanned (night mode)                          |

### Section on/off: include/exclude all zones belonging to the section

CMDT\_Section (Holding register, default base address 30000)

| State | Command (dec) | New state after a successful command execution |
|-------|---------------|------------------------------------------------|
| Off   | 5             | On                                             |
| On    | 6             | Off                                            |

### Detection zone on/off: include/exclude the zone

CMDT\_Zone (Holding register, default base address 26000)

| State | Command (dec) | New state after a successful command execution |
|-------|---------------|------------------------------------------------|
| Off   | 5             | On                                             |
| On    | 6             | Off                                            |

# Detection element (logical channel) on/off: include/exclude the detector

CMDT\_LogChan (Holding register, default base address 27000)

| State | Command (dec) | New state after a successful command execution |
|-------|---------------|------------------------------------------------|
| Off   | 5             | On                                             |
| On    | 6             | Off                                            |

## Control on/off: include/exclude the actuation group

 ${\tt CMDT\_Ctrl} \ (Holding \ register, \ default \ base \ address \ 28000)$ 

| State | Command (dec) | New state after a successful command execution |
|-------|---------------|------------------------------------------------|
| Off   | 5             | On                                             |
| On    | 6             | Off                                            |

# Control element (control channel) on/off: include/exclude the actuator

CMDT\_CtrlChan (Holding register, default base address 29000)

| State | Command (dec) | New state after a successful command execution |
|-------|---------------|------------------------------------------------|
| Off   | 5             | On                                             |
| On    | 6             | Off                                            |

# 2.2.2.7 Example of Register Map

The following illustrates an example of an NK8237 register map as it is presented in the Composer configuration tool. In the case of the panel map, the default addresses are listed, which can be customized in the Composer configuration.

| Field Device | Modbus slave address |
|--------------|----------------------|
| NK8237       | 4                    |
| FC20 Panel 1 | 5                    |
| FC20 Panel 2 | 6                    |

Field Devices: example including two FC20 fire panels

| Modbus Table         | Modbus Base<br>Address | Offset | Register         |
|----------------------|------------------------|--------|------------------|
| DateTime             | 1060                   | 0      | Holding register |
| DataChange           | 1020                   | 0      | Input register   |
| LifeCheck            | 1010                   | 0      | Input register   |
| WT_FC20 Syn          | 1000                   | 0      | Input register   |
| WT_Zone              | 1500                   | 0      | Input register   |
| WT_Zone              | 1500                   | 1      | Input register   |
| WT_Zone              | 1500                   | 2      | Input register   |
| WT_LogChan           | 2500                   | 0      | Input register   |
| WT_LogChan           | 2500                   | 1      | Input register   |
| WT_Ctrl              | 3500                   | 0      | Input register   |
| WT_Ctrl              | 3500                   | 1      | Input register   |
| WT_CtrlChan          | 4800                   | 0      | Input register   |
| WT_Section           | 6100                   | 0      | Input register   |
| WT_Section           | 6100                   | 1      | Input register   |
| WT_Area              | 6500                   | 0      | Input register   |
| WT_HWObj             | 6601                   | 0      | Input register   |
| WT_NK8237Point       | 8000                   | 0      | Input register   |
| WT_PowerSupply       | 6600                   | 0      | Input register   |
| CT_Zone              | 8100                   | 0      | Input register   |
| CT_LogCh             | 9000                   | 0      | Input register   |
| BT_ZoneAlarm         | 21000                  | 0      | Discrete input   |
| BT_ZonePreAlarm      | 22000                  | 0      | Discrete input   |
| BT_ZoneNDV&NotReady  | 23000                  | 0      | Discrete input   |
| BT_ZoneModeOff&Test  | 24000                  | 0      | Discrete input   |
| BT_LogChanActive     | 10000                  | 0      | Discrete input   |
| BT_LogChanNDV&Fault  | 11000                  | 0      | Discrete input   |
| BT_LogChanModeOff&Te | 12000                  | 0      | Discrete input   |

| Modbus Table             | Modbus Base<br>Address | Offset | Register         |
|--------------------------|------------------------|--------|------------------|
| st                       |                        |        |                  |
| BT_CtrlAlarm&Active      | 13000                  | 0      | Discrete input   |
| BT_CtrlNDV&Fault         | 14000                  | 0      | Discrete input   |
| BT_CtrlModeOff&Test      | 15000                  | 0      | Discrete input   |
| BT_CtrlChanActive        | 16000                  | 0      | Discrete input   |
| BT_CtrlChanFault         | 17000                  | 0      | Discrete input   |
| BT_CtrlChanModeOff&Te st | 18000                  | 0      | Discrete input   |
| BT_HWObjAlarm            | 19000                  | 0      | Discrete input   |
| BT_HWObjFault            | 20000                  | 0      | Discrete input   |
| BT_PowerSupply           | 32000                  | 0      | Discrete input   |
| BT_EmergencyPower        | 33000                  | 0      | Discrete input   |
| CMDT_FC20                | 25000                  | 0      | Holding register |
| CMDT_Zone                | 26000                  | 0      | Holding register |
| CMDT_LogChan             | 27000                  | 0      | Holding register |
| CMDT_Ctrl                | 28000                  | 0      | Holding register |
| CMDT_CtrlChan            | 29000                  | 0      | Holding register |
| CMDT_Section             | 30000                  | 0      | Holding register |
| CMDT_Area                | 31000                  | 0      | Holding register |

Panel map: default base address of the available tables, organized by object type



**Note:** The default base addresses listed above may not exactly match the addressed of your system. Before using them for any related configuration, please check the actual settings of the Modbus master station in the Composer tool.

For more information on the Composer configuration, refer to the NK8237 Installation, Configuration, and Commissioning Guide (document no. A6V10316241).



## A

### **WARNING**

The convention of Modbus base addresses frequently found, namely 3xxxx for input registers, 4xxxx for holding registers and so on, is not followed by NK8237. Note that some tools strictly based on this convention will not work properly with NK8237.

# 2.2.2.8 FS20/FS720 Fire Objects

This section lists the FS20/FS720 fire objects and the corresponding types in the NK8237 Modbus data model (refer to the Register Map section [ $\rightarrow$  13]).

Here below the complete list of fire objects is presented, organized by model types.

### WT\_FC20

### Sinteso™ FS20:

- FC2020
- FC2030
- FC2040
- FC2060
- FC2080
- FT2040
- FT2080

#### Cerberus PRO™ FS720:

- FC722
- FC724
- FC726
- FT724

#### WT Zone

- Automatic Zone
- Single Alarm Subsystem zone
- Single Exting discharged zone
- Single extinguishing prealarm zone
- Single gas alarm zone
- Single gas warning zone
- Multiple automatic zone
- (Holland) sprinkler zone
- Multi Dependency Zone
- Sprinkler Zone
- Manual FSE Zone
- Manual Zone
- Manual alarm sub-system zone
- Manual Redundancy Alarm
- Technical Zone
- Technical fault sub-system –Zone
- Technical sub-system off zone
- Fault extinguishing system zone
- Technical Gas Alarm
- Fire Subsystem Zone
- Sprinkler Control (ControlSprinklerElem; ZoneSprinklerElem)
- XC10 (ControlXC10Elem; ZoneXC10Elem)
- StandardZoneGas

### WT\_LogChan

- Input channel(ChannelLogInputAlarmDaElem; ChannelLogInputAlarmLimit-SwitchElem)
- Wired Automatic channel (ChannelLogSensorDaAutomaticWiredElem)
- Wireless Automatic channel (ChannelLogSensorDaAutomatic-WirelessElem)
- Wired Manual channel
- Wireless Manual channel (ChannelLogSensorDaManual-WiredElem)
- Collective channel (ChannelLogSensorDaCollectiveElem)
- Gas channel (ChannelLogSensorDaGasElem; ChannelPhysSensorP2GasElem)

30.09.2016

- ByPassable Input (ChannelLogInputAaConfirmationElem; ChannelLogInputAaFaultElem; ChannelLogInputAaSupervisionElem; ChannelLogInputFireElem; ChannelLogInputSprinklerElem; ChannelLogInputSprinkler2Elem)
- Non Bypassable Input (ChannelLogInputBlockedElem; ChannelLogInputDischargedElem; ChannelLogInputFaultElem; ChannelLogInputSubsystemPrealarmElem; ChannelLogInputSubsystemAlarmElem; ChannelLogInputSubsystemFaultElem; ChannelLogInputSubsystemFaultElem; ChannelLogInputSubsystemIsolatedElem)
- Fsd InputLogChannel
- Fsd Output LogChannel
- Led Output
- Release Output channel
- HVAC Output
- HVAC Command
- HVAC Input

### WT Ctrl

- Evac Control
- Evac Unit Control
- Fire Control
- Alarm Control
- RtDevice Control
- RtFault Control
- RtFire Control
- RtSounder Control
- Counter Control Alarm
- Uga Elem Control (ConfigUgaElem)
- Generic Sounders
- Releasing Control Group
- LED element
- Voice Control Group
- HVAC Control Group
- Voice Control
- HVAC Control Event
- HVAC Control Command
- HVAC Control Alarm

### WT\_CtrlChan

- Output Subsystem
- Generic Output
- Fire Output
- RtOutput
- RtVdsOutput
- AlertSounders
- AlertEvacSounders
- EvacSounders
- FireEffectRequest
- SprinklerEffectRequest
- CauseIncidentGeneric

### WT\_Section

- Section (SectionElem)
- SectionSummary

#### WT Area

- Area(AreaElem)
- Station Area

### WT\_HWObj

#### Modules:

- Module Power Supply
- Module Evacuation
- Module Fba
- Module IO
- Module Vds
- Module P2
- Module FCI
- Module Collective
- Module Ethernet
- Module MS9
- ModuleReleasing
- Module CPU
- Module Rt Card
- Legacy Field Bus Modules
- Legacy Modules Lines
- Line Summary

#### Sub-Modules:

- Submodule P2 Element
- Submodule Communication
- Submodule Degrade Element
- Submodule License Element
- Submodule Collective
- Submodule Ms9
- Submodule Nac
- Submodule Firmware

#### **Devices:**

- Device Generic (DeviceP2UnlinkedFDCL221Elem; DeviceP2UnlinkedFDCL221MElem; DeviceP2UnlinkedFDCL221WElem; DeviceP2UnlinkedFDCW221Elem; DeviceP2DetectorOOH740Elem; DeviceP2DetectorOOHC740Elem)
- Config ElementsPrinter Configuration (ConfigPrinterElem; ConfigPrinterGenericElem; ConfigPrinterITCElem)
- Config Evac Elem (ConfigEvacMasterElem; ConfigEvacSlaveElem)
- Generic Configuration Elem (ConfigFatStandardElem; ConfigFatWithFbfElem; ConfigFbfElem; ConfigFrdElem; ConfigFrtElem; ConfigPagerElem; ConfigSttElem; ConfigSynoptic24Elem; ConfigSynoptic48Elem; ConfigVisualizerElem; ConfigFbfAtElem; ChannelLogFrdElem; ChannelLogFrtElem; ConfigCerloopElem)
- Config Fsd (ConfigFsdElem)
- Uga Configuration Elem (ConfigUgaElem)

# 2.2.3 STT20 Register Map

### **Data Representation**

The NK823x Modbus gateway can support multiple fire detection panels or terminals (STT20, FC2xxx and FT2xxx). Each STT20 panel, terminal and gateway is represented as a virtual Modbus device with its own Modbus Slave Address and a complete register map. The map includes a number of sub-maps that represent the fire units, and a general table for the gateway itself.

### Fire Control Unit Representation

In the Modbus data representation, *each panel is mapped as a separate Modbus device with an individual address*. The device address is defined at configuration time

A dedicated register sub-map is used for each panel, including six types of tables. Namely:

#### Summary tables

These are a set of word input registers including:

- The overall panel conditions (1 word register).
- The vitality counter (1 word register).
- As many as 525 data change flags (33 word registers) reporting any modifications in the register area (the complete range of 65536 registers is monitored).

#### Status tables

These are word input registers reporting the conditions of all the mapped objects. Each word corresponds with one object and is organized in two bytes: bits 0-7 are used to represent the object operating modes, for example the on/off (inclusion/exclusion) conditions, whereas bits 8-15 contain the event conditions, such as alarms, fault, and so on.

Status tables cover the entire set of supported objects. A specific status table is dedicated to notifications coming from objects not included in the configuration. The status tables list includes:

- Panel
- Activation Mode
- Buzzer
- Communication Link
- Hardware Link
- MEA
- MDHW
- Mains
- Battery
- MCIO
- MDIO
- Functions
- Extinguishing Functions
- UGA
- BOP Evacuation Mode
- Horn
- Element
- Extinguishing Element
- Unidentified event (for objects not included in the configuration)

### Compact status tables

These are available for a limited set of detection objects. The compact status tables are word input registers containing a simplified status representation. In

fact, each representation is made up of 4-bit status for functions or 2-bit status for elements. This results in 4 or even 8 objects being packet in a single word register, thus allowing a faster acquisition whenever communication performances have priority than status details.

The compact tables list includes:

- Functions
- Elements

#### Bit status tables

For extremely simple applications, a set of bit input registers is also provided for specific objects and events that are combined in very basic 1-bit (on/off) status report. The list of bit input registers includes:

- Panel Fault
- Activation Mode Fault
- Activation Mode Abnormal
- Communication Link Fault
- Mains Fault
- Battery Fault
- Function Safety Position Failed
- Function In Command
- Function Wait Position Failed
- Function Fault
- UGA Alarm
- UGA Activated Evacuation
- UGA Fault
- BOP Evacuation Mode On Manual

#### Command tables

The output command tables (read/write holding registers) enables Modbus master/client stations to initiate control commands to the fire control panels. Note that, depending on a configuration setting, certain commands may not be available.

The command tables list includes:

- Panel acknowledgement
- Panel reset
- Buzzer acknowledgement
- Buzzer reset
- Function activation command
- Evacuation command

#### Date and Time

See Summary Table [→ 15].

#### **Gateway Unit Representation**

A dedicated register sub-map is used for the NK823x unit, including one status table.

#### Status table

This is a word input register reporting the conditions of the gateway. Each word corresponds with one object and is organized in two bytes: bits 0-7 are used to represent the object operating modes, for example the on/off (inclusion/exclusion) conditions, whereas bits 8-15 contain the abnormal event conditions, such as alarms, fault, and so on.

The gateway table includes the following:

- NK823x Points
- Power Supply

30

# 2.2.3.1 Summary Table

The Summary table includes one register.

### STT20 synthesis

WT\_STT20 Syn (Input register, default base address: 1000)

One input (read-only) word register reporting 16 general on/off panel conditions in the 16 bits. The following relationship applies:

| Bit     | Information              | Notes about affected objects and conditions corresponding to the "1" state (bit active)                                                                         |
|---------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 (lsb) | Evacuation manual mode   | BOP Alarm function or HLB Alarm function.<br>Legal information for a repeater terminal.                                                                         |
| 1       | Evacuation fault         | BOP Alarm function or HLB Alarm function.<br>Legal information for a repeater terminal.                                                                         |
| 2       | Evacuation active        | BOP Alarm function or HLB Alarm function.<br>Legal information for a repeater terminal.                                                                         |
| 3       | Alarm received           | BOP Alarm function.<br>Legal information for a repeater terminal.                                                                                               |
| 4       | Reset command required   | A reset command is expected by the STT20 panel.                                                                                                                 |
| 5       | Ack command required     | An acknowledgment command is expected by the STT20 panel.                                                                                                       |
| 6       | Function fault           | Standard Function, Stop Fan function, Technical CMSI function, Technical SDI function, or Rearming function. Legal summary information for a repeater terminal. |
| 7       | Wait position failed     | Standard Function, Stop Fan function, Technical CMSI function, Technical SDI function, or Rearming function. Legal summary information for a repeater terminal. |
| 8       | Security position failed | Standard Function, Stop Fan function, Technical CMSI function, Technical SDI function, or Rearming function. Legal summary information for a repeater terminal. |
| 9       | Safety position failed   | Standard Function, Stop Fan function, Technical CMSI function, Technical SDI function, or Rearming function. Legal summary information for a repeater terminal. |
| 10      | Battery fault            | MC20, MCO, MD20, or battery element.                                                                                                                            |
| 11      | Mains fault              | MC20, MCO, MD20, or mains element.                                                                                                                              |
| 12      | Network fault            | SAFEDLINK or Fire Links.                                                                                                                                        |
| 13      | Activation Mode Mixed    |                                                                                                                                                                 |
| 14      | Activation Mode Manual   |                                                                                                                                                                 |
| 15      | STT20 Panel fault        |                                                                                                                                                                 |

# 2.2.3.2 Synchronization Tables

The Synchronization tables include a fixed number of registers. Namely:

### Life Check

LifeCheck (Input register, default base address: 1010)

One input (read-only) word register that is constantly incremented as long as the NK823x gateway software works properly and the communication with the fire panel and with the Modbus unit is active.

The counter stops being incremented if any of these events occurs:

- The communication between the NK823x gateway and the Modbus unit goes down (this event can be detected and treated by other Modbus units).
- The communication between the NK823x gateway and the fire panel goes down.

| Bit  | Information               | Notes                                                    |
|------|---------------------------|----------------------------------------------------------|
| 0-15 | Panel Vitality<br>Counter | Incremented every 250 msec as long as operating properly |

### **Data Change**

DataChange (Input registers, default base address: 1020)

A set of 33 input word registers (525 bits are used) reporting any modifications in the register area. The complete range of 65536 Modbus registers is covered, with each flag representing changes in one or more registers in a corresponding group of 125 word registers.

The first flag, i.e. the least significant bit of the first change word register, corresponds with the registers 0 to 124, the second flag corresponds with the registers 125 to 249, and so on.

Active flags are automatically reset upon reading the registers that changed and caused the flags activation.

| Word /<br>Bit | Information                          | Notes                                    |
|---------------|--------------------------------------|------------------------------------------|
| 0/0           | Registry 0-124 (00h-7Ch)             | Flag 0                                   |
| 0 / 1         | Registry 125-249 (7Dh-F9h)           | Flag 1                                   |
|               |                                      | Flags 2 to 14 (Word register 0)          |
| 0 / 15        | Registry 1875-1999 (0753h-<br>07CFh) | Flag 15                                  |
|               |                                      | Flags 16 to 522 (Word registers 1 to 32) |
| 32 / 11       | Registry 65375-65499 (FF5F-FFDBh)    | Flag 523                                 |
| 32 / 12       | Registry 65500-65535 (FFDC-FFFFh)    | Flag 524                                 |

#### **Date and Time**

DateTime (Holding registers, default base address: 1060)

Three holding (read/write) word registers used for reading or synchronizing the NK823x date and time.

The synchronization must be enabled in the configuration settings and results, in turn, in the synchronization of the fire system (FS20 and then STT20 via FS20).

Alternatively, if the synchronization on these registers is not enabled, the NK823x gateway gets the date and time periodically from the fire system (FS20). In this case, writing to the registers is disabled, and a Modbus error code 0x04 is returned upon trying a write command.

When synchronization occurs, all registers should be written in sequence to prevent any possible data interpretation error. The NK823x gateway acquires the new time stamp when the last of the 3 values gets written.

The three 16-bit registers are organized in 6 byte containing 6 hexadecimal values corresponding with day, month, year, hour, minute, and second, respectively.

| Word /<br>Bit | Information | Notes                                             |
|---------------|-------------|---------------------------------------------------|
| 0 / 0-7       | Day         | 1-31 code in hexadecimal, e.g. 1B hex for day 27. |
| 0 / 8-15      | Month       | 1-12 code in hexadecimal                          |
| 1 / 0-7       | Year        | 10-99 code in hexadecimal                         |
| 1 / 8-15      | Hour        | 0-23 code in hexadecimal                          |
| 2 / 0-7       | Minute      | 0-59 code in hexadecimal                          |
| 2 / 8-15      | Second      | 0-59 code in hexadecimal                          |



**Note:** For detailed information about the time synchronization options on the Modbus host interface, refer to the Modbus interface configuration section of the NK8237 Installation, Configuration, and Commissioning manual (A6V10316241).

### 2.2.3.3 Status Tables

The status tables include an input word register per object. The number of tables depends on the specific systems whose object list is defined at configuration time. For example, there may be 8 function registers corresponding with 8 functions of a given fire system.

The list of object types includes:

### **Panel**

WT\_Panel (Input registers, default base address: 1100)

| Bit     | Information       | Notes                                                           |
|---------|-------------------|-----------------------------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety                     |
| 1-7     | -                 | Not used                                                        |
| 8       | Non-default value | Abnormal condition such as states resulting in a reduced safety |
| 9-12    | -                 | Not used                                                        |
| 13      | Fault             |                                                                 |
| 14      | -                 | Not used                                                        |
| 15      | Alarm             |                                                                 |

#### **Activation Mode**

WT\_ActivationMode (Input registers, default base address: 1300)

| Bit     | Information       | Notes                                            |
|---------|-------------------|--------------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety      |
| 1-7     | -                 | Not used                                         |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety |
| 9-11    | -                 | Not used                                         |

| Bit   | Information | Notes                |
|-------|-------------|----------------------|
| 12    | Anomaly     | STT20 in mixed mode  |
| 13    | Fault       | STT20 in manual mode |
| 14-15 | -           | Not used             |

### **Buzzer**

WT\_Buzzer (Input registers, default base address: 1400)

| Bit     | Information       | Notes                                            |
|---------|-------------------|--------------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety      |
| 1-7     | -                 | Not used                                         |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety |
| 9-14    | -                 | Not used                                         |
| 15      | Active            |                                                  |

# Communication Link (SafeDlink, Cerloop)ù

WT\_ CommunicationLink (Input registers, default base address: 1500)

| Bit     | Information       | Notes                                                     |
|---------|-------------------|-----------------------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety               |
| 1-7     | -                 | Not used                                                  |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety          |
| 9-12    | -                 | Not used                                                  |
| 13      | Fault             | Communication faulty on local network (SafeDlink/Cerloop) |
| 14-15   | -                 | Not used                                                  |

### **Hardware Link**

WT\_ HWLink (Input registers, default base address: 1600)

| Bit     | Information       | Notes                                                          |
|---------|-------------------|----------------------------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety                    |
| 1-7     | -                 | Not used                                                       |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety               |
| 9-12    | -                 | Not used                                                       |
| 13      | Fault             | Communication faulty with STT20 user interfaces (TAE, US, MCO) |
| 14-15   | -                 | Not used                                                       |

# MEA – *Module Electronique Adressable* (addressable field control module)

WT\_MEA (Input registers, default base address: 1700)

| Bit     | Information       | Notes                                            |
|---------|-------------------|--------------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety      |
| 1-7     | -                 | Not used                                         |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety |
| 9-12    | -                 | Not used                                         |
| 13      | Fault             |                                                  |
| 14-15   | -                 | Not used                                         |

### MDHW – *Matériel Déporté* (Remote Module Hardware)

WT\_MDHW (Input registers, default base address: 1800)

| Bit     | Information       | Notes                                               |
|---------|-------------------|-----------------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety         |
| 1-7     | -                 | Not used                                            |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety    |
| 9-12    | -                 | Not used                                            |
| 13      | Fault             | MD20 fault or Internal bus fault (BBUS, GBUS, PBUS) |
| 14-15   | -                 | Not used                                            |

### Mains Power Supply

WT\_Mains (Input registers, default base address: 1900)

| Bit     | Information       | Notes                                                                                           |
|---------|-------------------|-------------------------------------------------------------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety                                                     |
| 1-7     | -                 | Not used                                                                                        |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety                                                |
| 9-12    | -                 | Not used                                                                                        |
| 13      | Fault             | Mains power supply is not available (on MC20, MCO, or MD20 modules) or mains element is faulty. |
| 14-15   | -                 | Not used                                                                                        |

### **Battery**

WT\_Battery (Input registers, default base address: 2500)

| Bit     | Information       | Notes                                            |
|---------|-------------------|--------------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety      |
| 1-7     | -                 | Not used                                         |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety |
| 9-12    | -                 | Not used                                         |
| 13      | Fault             | Battery fault (on MC20, MCO, or MD20 modules) or |

| Bit   | Information | Notes                  |
|-------|-------------|------------------------|
|       |             | battery element faulty |
| 14-15 | -           | Not used               |

# MCIO - MC20 Input/Output

WT\_MCIO (Input registers, default base address: 3500)

| Bit     | Information       | Notes                                            |
|---------|-------------------|--------------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety      |
| 1-7     | -                 | Not used                                         |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety |
| 9-14    | -                 | Not used                                         |
| 15      | Active            | Input or Output is active                        |

# MDIO – MD20 Input/Output

WT\_MDIO (Input registers, default base address: 4000)

| Bit     | Information       | Notes                                            |
|---------|-------------------|--------------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety      |
| 1-7     | -                 | Not used                                         |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety |
| 9-12    | -                 | Not used                                         |
| 13      | Fault             | Input is faulty                                  |
| 14      | -                 | Not used                                         |
| 15      | Active            | Input or Output is active                        |

# Function – Standard / Stop fan / Fire technical / Technical / Rearming functions

WT\_Function (Input registers, default base address: 5000)

| Bit     | Information                      | Notes                                       |
|---------|----------------------------------|---------------------------------------------|
| 0 (lsb) | Non-default mode                 | Abnormal mode resulting in a reduced safety |
| 1-6     | -                                | Not used                                    |
| 7       | Locked                           | Function locked                             |
| 8       | Non-default value                | Function locked without fault               |
| 9-11    | -                                | Not used                                    |
| 12      | Wait position failed             | Wait position fault                         |
| 13      | Fault                            |                                             |
| 14      | In command or<br>Safety position |                                             |
| 15      | Safety position failed           | Safety position fault                       |

### **Extinguishing Function**

WT\_ExtFunction (Input registers, default base address: 6000)

| Bit     | Information       | Notes                                            |
|---------|-------------------|--------------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety      |
| 1-7     | -                 | Not used                                         |
| 8       | Non-default value | Abnormal condition resulting in a reduced safety |
| 9-11    | -                 | Not used                                         |
| 12      | System fault      | Extinguishing fault report                       |
| 13      | Fault             |                                                  |
| 14-15   | -                 | Not used                                         |

# UGA - Unité de Gestion d'Alarme (evacuation control unit)

WT\_UGA (Input register, default base address: 7000)

| Bit     | Information          | Notes                                       |
|---------|----------------------|---------------------------------------------|
| 0 (lsb) | Non-default mode     | Abnormal mode resulting in a reduced safety |
| 1-5     | -                    | Not used                                    |
| 6       | Evacuation activated |                                             |
| 7       | -                    | Not used                                    |
| 8       | Non-default value    | Evacuation activated without fault          |
| 9-12    | -                    | Not used                                    |
| 13      | Fault                |                                             |
| 14      | -                    | Not used                                    |
| 15      | Alarm                | Alarm received                              |

### **BOP Evacuation Mode**

WT\_BOPEvacuationMode (Input registers, default base address: 7500)

| Bit     | Information       | Notes                                       |
|---------|-------------------|---------------------------------------------|
| 0 (lsb) | Non-default mode  | Abnormal mode resulting in a reduced safety |
| 1-4     | -                 | Not used                                    |
| 5       | Manual (OnManual) | Manual mode                                 |
| 6-7     | -                 | Not used                                    |
| 8       | Non-default value | Manual mode                                 |
| 9-15    | -                 | Not used                                    |

### Horn

WT\_Horn (Input registers, default base address: 7700)

| Bit     | Information      | Notes                                       |  |
|---------|------------------|---------------------------------------------|--|
| 0 (lsb) | Non-default mode | Abnormal mode resulting in a reduced safety |  |
| 1-6     | -                | Not used                                    |  |

| Bit  | Information       | Notes    |
|------|-------------------|----------|
| 7    | Disabled          |          |
| 8    | Non-default value | Disabled |
| 9-15 | -                 | Not used |

# Element – Standard / Power supply elements

WT\_Element (Input registers, default base address: 8200)

| Bit     | Information                      | Notes                                            |
|---------|----------------------------------|--------------------------------------------------|
| 0 (lsb) | Non-default mode                 | Abnormal mode resulting in a reduced safety      |
| 1-7     | -                                | Not used                                         |
| 8       | Non-default value                | Abnormal condition resulting in a reduced safety |
| 9-11    | -                                | Not used                                         |
| 12      | Wait position failed             | Wait position fault                              |
| 13      | Fault                            |                                                  |
| 14      | In command or<br>Safety position |                                                  |
| 15      | Safety position failed           | Safety position fault                            |

### **Extinguishing Element**

WT\_ExtElement (Input registers, default base address: 9200)

| Bit     | Information            | Notes                                            |
|---------|------------------------|--------------------------------------------------|
| 0 (lsb) | Non-default mode       | Abnormal mode resulting in a reduced safety      |
| 1-7     | -                      | Not used                                         |
| 8       | Non-default value      | Abnormal condition resulting in a reduced safety |
| 9-13    | -                      | Not used                                         |
| 14      | Extinguishing released |                                                  |
| 15      | -                      | Not used                                         |

### **Unidentified Event**

 ${\tt WT\_Unidentified} \ (\textbf{Input register}, \ \textbf{default base address} : 9300)$ 

| Bit     | Information       | Notes                                                                      |  |
|---------|-------------------|----------------------------------------------------------------------------|--|
| 0 (lsb) | Non-default mode  | Abnormal mode coming from an object not included in the configuration      |  |
| 1-7     | -                 | Not used                                                                   |  |
| 8       | Non-default value | Abnormal condition coming from an object not included in the configuration |  |
| 9-15    | -                 | Not used                                                                   |  |

# 2.2.3.4 Compact Status Tables

The compact tables provide a summarized representation for the following objects:

- Functions: 4-bit status representation
- Elements: 2-bit status representation

The corresponding data structures, illustrated here below, are packed in the register areas defined at configuration time. The word input registers contain 4 zones and 8 elements each.

### **Functions (compact)**

CT\_Function (Input registers, default base address: 8100)

| Bit     | Information                                                   | Notes    |
|---------|---------------------------------------------------------------|----------|
| 0 (lsb) | -                                                             | Not used |
| 1       | Locked                                                        |          |
| 2       | Fault or<br>Wait position failed or<br>Safety position failed |          |
| 3       | In command or<br>Safety position or<br>Safety position failed |          |

### Element (compact)

CT\_Element (Input registers, default base address: 9000)

| Bit     | Information                                                   | Notes |
|---------|---------------------------------------------------------------|-------|
| 0 (lsb) | Fault or<br>Wait position failed or<br>Safety position failed |       |
| 1       | In command or<br>Safety position or<br>Safety position failed |       |

### 2.2.3.5 Bit Status Tables

The bit status tables (input registers) presents single on/off event conditions for specific types of object (Panel, Faults, Functions, and so on) and related conditions, for example *function in command*. In all tables, the value 1 indicates that the condition is present for at least one of the objects considered. The list of objects is defined at configuration time.

The table below collects the list of bit status tables.

| Table                        | Information | Related object type | Default base address |
|------------------------------|-------------|---------------------|----------------------|
| BT_Panel_Fault               |             | Panel               | 10000                |
| BT_Activation_Mode_Fault     |             | Activation mode     | 11000                |
| BT_ Activation_Mode_Abnormal |             | Activation mode     | 12000                |
| BT_ Communication Link Fault |             | Communication Link  | 13000                |
| BT_ Mains Fault              |             | Mains               | 14000                |

| Table                               | Information | Related object type     | Default base address |
|-------------------------------------|-------------|-------------------------|----------------------|
| BT_ Battery Fault                   |             | Battery                 | 15000                |
| BT_ Function Safety Position Failed |             | Function                | 16000                |
| BT_ Function In Command             |             | Function                | 17000                |
| BT_ Function Wait Position Failed   |             | Function                | 18000                |
| BT_ Function Fault                  |             | Function                | 19000                |
| BT_ UGA Alarm                       |             | Evacuation Control Unit | 20000                |
| BT_ UGA Activated Evacuation        |             | Evacuation Control Unit | 21000                |
| BT_ UGA Fault                       |             | Evacuation Control Unit | 22000                |
| BT_ BOP Evacuation Mode On Manual   |             | Evacuation Mode         | 23000                |

### 2.2.3.6 Command Tables

The command tables enable the Modbus master/client to issue control commands to the fire units.

A read/write holding register is foreseen for each of the objects listed below. Given an initial object state, a data value corresponding to a control action can be written in the register to trigger the command that is then expected to modify the object state and therefore cause a corresponding change in the object input registers. Note that the holding registers store the code of the latest command after its execution.

The list of command tables includes:

### Global panel: acknowledgement and reset

STT20 (Holding register, default base address 25000)

| State          | Command (dec) | New state after a successful command execution |
|----------------|---------------|------------------------------------------------|
| Ack required   | 12            | Panel acknowledged                             |
| Reset required | 14            | Panel reset                                    |

### **Function**

Function Active (Holding register, default base address 27000)

| State | Command (dec) | New state after a successful command execution |  |
|-------|---------------|------------------------------------------------|--|
| Quiet | 1             | Function activated                             |  |
|       |               |                                                |  |

### **BOP/HLB Alarm Function**

Alarm Function Activate Evac (Holding register, default base address 28000)

| State         | Command (dec) | New state after a successful command execution |
|---------------|---------------|------------------------------------------------|
| Not activated | 33            | Evacuation activated                           |
|               |               |                                                |

# 2.2.3.7 Example of Register Map

The following illustrates an example of a register map as it is presented in the Composer configuration tool. In the case of the panel map, the default addresses are listed, which can be customized in the Composer configuration.

| Field Device | Modbus slave address |  |
|--------------|----------------------|--|
| NK8237       | 4                    |  |
| FC20 Panel   | 5                    |  |
| STT20 Panel  | 6                    |  |

Field Devices: example including one FC20 and one STT20 fire panel

| Modbus Table                | Modbus Base<br>Address | Offset | Register         |
|-----------------------------|------------------------|--------|------------------|
| WT_STT20 Syn                | 1000                   | 0      | Input register   |
| LifeCheck                   | 1010                   | 0      | Input register   |
| DataChange                  | 1020                   | 0      | Input register   |
| DateTime (Month/Day)        | 1060                   | 0      | Holding register |
| DateTime (Hour/Year)        | 1060                   | 1      | Holding register |
| DateTime<br>(Second/Minute) | 1060                   | 2      | Holding register |
| WT_Panel                    | 1100                   | 0      | Input register   |
| WT_ActivationMode           | 1300                   | 0      | Input register   |
| WT_Buzzer                   | 1400                   | 0      | Input register   |
| WT_CommunicationLink        | 1500                   | 0      | Input register   |
| WT_CommunicationLink        | 1500                   | 1      | Input register   |
| WT_HWLink                   | 1600                   | 0      | Input register   |
| WT_Mea                      | 1700                   | 0      | Input register   |
| WT_Mea                      | 1700                   | 1      | Input register   |
| WT_MDHW                     | 1800                   | 0      | Input register   |
| WT_MDHW                     | 1800                   | 1      | Input register   |
| WT_MDHW                     | 1800                   | 2      | Input register   |
| WT_Mains                    | 1900                   | 0      | Input register   |

| Modbus Table         | Modbus Base<br>Address | Offset | Register        |
|----------------------|------------------------|--------|-----------------|
| WT_Mains             | 1900                   | 1      | Input register  |
| WT_Battery           | 2500                   | 0      | Input register  |
| WT_Battery           | 2500                   | 1      | Input register  |
| WT_MCIO              | 3500                   | 0      | Input register  |
| WT_MCIO              | 3500                   | 1      | Input registert |
| WT_MCIO              | 3500                   | 2      | Input register  |
| WT_MDIO              | 4000                   | 0      | Input register  |
| WT_MDIO              | 4000                   | 1      | Input register  |
| WT_Function          | 5000                   | 0      | Input register  |
| WT_Function          | 5000                   | 1      | Input register  |
| WT_Function          | 5000                   | 2      | Input register  |
| WT_Function          | 5000                   | 3      | Input register  |
| WT_Function          | 5000                   | 4      | Input register  |
| WT_ExtFunction       | 6000                   | 0      | Input register  |
| WT_ExtFunction       | 6000                   | 1      | Input register  |
| WT_UGA               | 7000                   | 0      | Input register  |
| WT_UGA               | 7000                   | 1      | Input register  |
| WT_BOPEvacuationMode | 7500                   | 0      | Input register  |
| WT_Horn              | 7700                   | 0      | Input register  |
| WT_Horn              | 7700                   | 1      | Input register  |
| WT_Element           | 8200                   | 0      | Input register  |
| WT_Element           | 8200                   | 1      | Input register  |
| WT_Element           | 8200                   | 2      | Input register  |
| WT_ExtElement        | 9200                   | 0      | Input register  |

STT20 map: default base address of the available tables, organized by object type



**Note:** The default base addresses listed above may not exactly match the addressed of your system. Before using them for any related configuration, please check the actual settings of the Modbus master station in the Composer tool.

For more information on the Composer configuration, refer to the NK8237 Installation, Configuration, and Commissioning Guide (document no. A6V10316241).



### A

#### WARNING

The convention of Modbus base addresses frequently found, namely 3xxxx for input registers, 4xxxx for holding registers and so on, is not followed by NK823x. Note that some tools strictly based on this convention will not work properly with NK823x.

# 2.2.4 NK823x Gateway Register Map

### 2.2.4.1 Status Tables

The gateway status tables include two types of input word registers applied to a number of objects.

## NK823x Gateway Points

WT\_NK8237Point (Input registers, default base address: 8000)

This table is applied to six objects:

- NK823x Status
- NK823x Tamper
- Generic Inputs (up to 3 optional signals, which may be used for reporting the power supply supervision)
- Relay Output (optional, reporting a Modbus communication fault)

Therefore, up to six registers are provided, each one corresponding with one object.

| Bit     | Information       | Notes                                                                                                                              |  |
|---------|-------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| 0 (lsb) | Non-default mode  | Currently note used (foreseen for future extensions).                                                                              |  |
| 1-6     | -                 | Not used                                                                                                                           |  |
| 7       | Tamper disabled   | Tamper detection disabled. Note: this information is only available on the tamper register.                                        |  |
| 8       | Non-default value | Currently note used (foreseen for future extensions).                                                                              |  |
| 9       | Abnormal          | Configuration mismatch between gateway and fire system.<br>Note: this information is only available on the NK823x status register. |  |
| 10-12   |                   | Not used                                                                                                                           |  |
| 13      | Fault             | Connection fault.                                                                                                                  |  |
| 14      |                   | Not used                                                                                                                           |  |
| 15      | Alarm             | Activated / Alarmed / Tamper. Note: this information is available on the Tamper, Input and Output registers.                       |  |

# 2.2.4.2 NK823x Objects

This section lists the gateway objects and the corresponding types in the NK823x Modbus data model (refer to the Register Map section [ $\rightarrow$  13]).

### WT NK823xPoint

- Application node (NK823x status)
- NK823x unit tamper

Digital Input Onboard (power supply supervision or generic inputs)

- Digital Output Onboard (Modbus communication fault)
- Clock (NTP connection fault)

Issued by
Siemens Switzerland Ltd
Building Technologies Division
International Headquarters
Gubelstrasse 22
CH-6301 Zug
Tel. +41 41-724 24 24
www.siemens.com/buildingtechnologies

© Siemens Switzerland Ltd, 2015 Technical specifications and availability subject to change without notice.

Document ID A6V10316242\_a\_en NK8000 Technical Material Edition 30.09.2016 Section 2