DATASTRUCTURES USED BY 2 PASS ASSEMBLER

1. OPCODE Table(OPTAB)

OPTAB(mnemonic opcode,m/c code,class)

2. Symbol Table(SYMTAB)

SYMTAB(sym-id, name, addr, length)

OPTAB

Instruction (Mnemonic/ Declaration/ Assembler Directive)	Statement Class	Machine Code
STOP	IS	00
ADD	IS	01
SUB	IS	02
MULT	IS	03
MOVER	IS	04
MOVEM	IS	05
COMP	IS	06
BC	IS	07
DIV	IS	08
READ	IS	09
PRINT	IS	10
DC	DL	01
DS	DL	02
START	AD	01
END	AD	02
ORIGIN	AD	03
EQU	AD	04
LTORG	AD	05

Register Table

Reg name	M/c Code
AREG	1
BREG	2
CREG	3
DREG	4

	AL P
1.	START 200
3.	MOVEM AREG, A
4. LOOP	MOVER AREG, A
5.	MOVER CREG, B
11. LAST	STOP
12.	ORIGIN LOOP
13.	MULT CREG, B
14. A	DS 1
15. BACK	EQU LOOP
16. B	DC 1
17 END	

I/C ODE							
	(AD,O1)	(C,200)					
200)	(IS,05)	(1)(S,01)					
201)	(IS,04)	(1)(S,01)					
202)	(IS,04)	(3)(S,03)					
210)	(IS,00)						
	(AD,03)	(S,02)					
202)	(IS,03)	(3)(\$,3)					
203)	(DL,02)	(C,1)					
	(AD,04)	(S,02)					
204)	(DL,01)	(C,1)					
205)	(AD,02)						

SYMTAB							
Sym_id	Sym_name	Sym_addr	length				
1	Α	203	1				
2	LOOP	202	1				
3	В	204	1				
4	ВАСК	202	1				
5	LAST	210	1				

	AL P
	START 101
	READ N
	MOVER BREG, ONE
	MOVEM BREG, TERM
AGAIN	MULT BREG, TERM
	MOVER CREG, TERM
	ADD CREG, ONE
	MOVEM CREG, TERM
	COMP CREG, N
	BC LE, AGAIN
	MOVEM BREG, RESULT
	PRINT RESULT
	STOP
N	DS 1
RESUL	
ONE	DC '1'
TERM	DS 1
	END
	LIVE

I/C CODE

(C,101)

(S,01)

(S,02)

(S,03)

(S,03)

(S,03)

(S,02)

(S,03)

(S,01)

(S,04)

(S,05)

(S,05)

(C,1)

(C,1)

(C,1)

(C,1)

(2)

(2)

(2)

(3)

(3)

(3)

(3)

(2)

(2)

(AD,O1)

(IS,09)

(IS,04)

(IS,05)

(IS,03)

(IS,04)

(IS,01)

(IS,05)

(IS,06)

(IS,07)

(IS,05)

(IS,10)

(IS,00)

(DL,02)

(DL,02)

(DL,01)

(DL,02)

(AD,02)

AL P		I/C CODE				M/C CC	DDE	
	START 101		(AD,O1)	(C,101)				
	READ N	101)	(IS,09)	(S,01)	101) +	09		113
	MOVER BREG, ONE	102)	(IS,04)	(2)(S,02)	102) +	04	2	115
	MOVEM BREG, TERM	103)	(IS,05)	(2)(S,03)	103) +	05	2	116
AGAIN	MULT BREG, TERM	104)	(IS,03)	(2)(\$,03)	104) +	03	2	116
	MOVER CREG, TERM	105)	(IS,04)	(3)(\$,03)	105) +	04	3	116
	ADD CREG, ONE	106)	(IS,01)	(3)(S,02)	106) +	01	3	115
	MOVEM CREG, TERM	107)	(IS,05)	(3)(S,03)	107) +	05	3	116
	COMP CREG, N	108)	(IS,06)	(3)(S,01)	108) +	06	3	113
	BC LE, AGAIN	109)	(IS,07)	(2)(\$,04)	109) +	07	2	104
	MOVEM BREG, RESULT	110)	(IS,05)	(2)(S,05)	110) +	05	2	114
	PRINT RESULT	111)	(IS,10)	(S,05)	111) +	10	0	114
	STOP	112)	(IS,00)		112)+	00	0	000
N	DS 1	113)	(DL,02)	(C,1)	113)			
RESUL	T DS 1	114)	(DL,02)	(C,1)	114)			
ONE	DC '1'	115)	(DL,01)	(C,1)	115) +	00	0	001
TERM	DS 1	116)	(DL,02)	(C,1)	116)			
	END		(AD,02)					

Algorithm for Pass 1 of 2 pass Assembler

- 1. loc_cntr := 0; pooltab_ptr := 1; POOLTAB[1] := 1; littab_ptr := 1; symtab_ptr := 1;
- 2. While next stmt is not an END stmt
 - (a) If label is present then
 - (b) If an LTORG stmt then
 - (c) If START or ORIGIN stmt then
 - (d) If an EQU stmt then
 - (e) If a declaration stmt then
 - (f) If an imperative stmt then
- 3. (Processing of END stmt)
 - (a) Perform step 2(b)
 - (b) Generate Intermediate code.
 - (C) Goto Pass 2.

Algorithm for Pass 1 of 2 pass Assembler (contd....)

```
(a) If label is present then
      this label = symbol in label field
      Enter(this label, loc cntr) in SYMTAB
(b) If an LTORG stmt then
      i. Process literals LITTAB[POOLTAB[pooltab ptr]].....LITTAB[littab ptr-1]
      to allocate memory and put the address field. Update loc_cntr.
      ii. Pooltab_ptr:=pooltab_ptr+1; iii. POOLTAB[pooltab_ptr] := littab_ptr;
(c) If START or ORIGIN stmt then
      loc cntr := value in operand field
(d) If an EOU stmt then
      this_addr=value of <address spec> , update the SYMTAB entry
(e) If a declaration stmt then
      code=code of declaration stmt,
                                      size=size req by DC/DS.
       update the SYMTAB entry
      loc cntr=loc cntr+size, generate Intermediate code
(f) If an imperative stmt then
      code=m/c code from MOT, loc cntr=loc cntr+length of instr
      If operand is literal then
                 this_lit=literal in operand field
                 LITTAB[littab_ptr]=this_lit
                 littab ptr=littab ptr+1
      else
                 this_entry=SYMTAB entry no of operand
                 symtab ptr=symtab ptr+1
```

Algorithm for Pass 2 of 2 pass Assembler

- 1. code area addr=addr of code area, pooltab ptr=1, loc cntr=0
- 2. While next stmt is not an END stmt
- (a) clear machine_code_buffer
- (b) If an LTORG stmt
 - (i) Process literals in

LITTAB[POOLTAB[pooltab_ptr]]......LITTAB[POOLTAB[pooltab_ptr+1]-1] assemble literals in machine code buffer.

(ii) size=size of memory req for literals

(iii)pooltab_ptr=pooltab_ptr+1

- (c) If a START or ORIGIN stmt then
 - (i) loc_cntr=value specified in operand field
- (ii) size=0

- (d) If a declaration stmt
 - (i) If a DC stmt then

Assemble the const in machine_code_buffer.

- (ii) size=size of memory required by DC/DS stmt
- (e) If an imperative stmt
 - (i) Get operand address from SYMTAB or LITTAB
 - (ii) Assemble instr in machine_code_buffer.
- (iii) size=size of instr

- (f) If size \ll 0 then
 - (i) Move contents of machine_code_buffer to the address code_area_addr+loc_cntr
 - (ii) loc_cntr=loc_cntr+size
- 3.Processing of END stmt
- (a) Perform step 2(b) and 2(f)
- (b) Write code_area into output file.

	AL P
1.	START 100
2.	MOVER AREG, A
3. L1	ADD BREG, A
4.	MOVER BREG, B
5.	ORIGIN L1
6.	MOVER BREG,A
7. A	DS 5
8. B	DC 5
9.	END

		I/C CODE					M/C	CODE	
		LC (C,1	00)	(AD,O1)					
6, A		100)		(IS,04) (1)(S,01)		100) 102		l .	1
6, B		101)		(IS,01)		101 102	01	l	1
		102)		(1)(S,01) (IS,04)		102) 107	04	1	2
,Α				(2)(S,03)					
		(S,0	2)	(AD,03)		101) 102	04	1	2
		101)		(IS,04) (2)(S,01)		102)	02	2	
		102)		(DL,02)		5 107)	01		
				SYMT	AB	5	U		
Syr	m_i	d	Sym_	name	Sym_ad	108)			
1			А		102		5		
2			L1		101		1		
3			В		107		1		

	AL P
1.	START 400
2. MC	VER AREG,A1
3. LOOP	SUB BREG, A1
4.	MOVER BREG, B1
5.	ORIGIN 300
6. MO	VER BREG,A1
7. A1	DS 3
8. B1	DC 3
9.	END

		I/C CODE				M/0	CODE		
		LC (C,4	00)	(AD,O1)					
		400)		(IS,04) (1)(S,01)		400) 301		04	1
1		401)		(IS,02)		401) 301		02	1
		402)		(2)(S,01) (IS,04)		402) 304		04	2
				(2)(S,03)					
		(C,3		(AD,03)		300) 301		04	2
		300)		(IS,04) (2)(S,01)		301) 3		02	
		301)		(DL,02)		3 304)		01	
				SYMTA	AB	3		O I	
Syr	m_i	d	Sym_	name	Sym_ad	305)			
1			A1		301		3		
2			LOOF)	401		1		
3			B1		304		1		

	AL	. P
1.		START 250
2. M	OVEM	AREG,A
3. LOOP	MULT	BREG, A
4.	MOVE	EM BREG, B
5. TERM	EQU I	LOOP
6 MO\	/EM BF	REG,A
7. A	DS	3
8. B	DC	3
9.	EN	D

		I/C COD					M/C	CODE	
)		LC (C,250)		(AD,O1)					
	250)			(IS,05) (1)(S,01)		250) 254	05	5	1
		251)		(IS,03)		251) 254	03	3	2
	252)			(2)(S,01) (IS,05)		252) 05 257		2	2
				(2)(S,03)					
		(S,02)		(AD,04)		253) 05 254		2	2
		253)		(IS,05) (2)(S,01)		254)	02	2	
		254)		(DL,02)		3			
SYMTAB					257) 3	0 1			
Sym_id		d	Sym_name		Sym_ad	258)			
1	1		Α		254		3		
2	2		LOOP		251		1		
3	3		В		257		1		
4		TERM		251		1			

AL P							
1.	START						
2. M	OVEM AREG,S1						
3. L1	DIV BREG, S2						
4.	MOVEM BREG, S1						
5. L2	EQU L1						
6. MOVEM BREG,S1							
7. S1	DC 4						
8. S2	DS 3						
9.	END						

			I/C (I/C CODE			M/C CODE			
		LC (C,0	(A 0)	D,O1)						
	00)		(18	S,05))(S,01)		0) 4 1) 5	05		1	
81			(18	5,08)			08	.	2	
			(18)(S,03) S,05)		2) 4	05	5	2	
			(2))(S,01)		-				
				(AD,04)		3) 4	05	•	2	
		3)		S,05))(S,01)		4)	02			
		4)	(D	L,01)		4				
	SYMTAB					5) 3	01			
Sym_id		id	Sym_na	ame	Sym_ac	8)				
1	1		S1		4		1			
2			L1		1		1			
3	3		S2		5		3			
4	4		12		1		1			