WHAT IS CLAIMED IS:

- 1. A process for synthesizing photocurable
- poly(ethynyl)carbosilane comprising the steps of: 2
- a. mixing dichlorosilane and trichlorosilane reagents; 3
- b. adding sub-stoichiometric amounts of alkali metal; 4
- c. adding excess sodium acetylide. 5

6

- 2. A process for synthesizing photocurable 7
- poly(ethynyl)carbosilane comprising the steps of:
- a. mixing dichlorosilane and trichlorosilane reagents in the .9
- presence of methylene bromide; 10
- b. adding sub-stoichiometric amounts of alkali metal; 11
- c. adding excess sodium acetylide. 12

- 3. A process for synthesizing photocurable poly(ethynyl) 14
- carbosilane comprising the steps of: 15
- a. mixing dichlorosilane and trichlorosilane reagents in the 16
- presence of methylene bromide; 17

18

formamide.

b. adding sub-stoichiometric amounts of sodium metal; 1 c. adding excess sodium acetylide. 4. A process for synthesizing photocurable poly(ethynyl) carbosilane comprising the steps of: a. mixing dichloromethylsilane and trichlorophenylsilane reagents in the presence of methylene bromide; b. adding sub-stoichiometric amounts of sodium metal; c. adding excess sodium acetylide. 9 10 5. A process for synthesizing photocurable poly(ethynyl) 11 carbosilane compresing the steps of: 12 a. mixing dichloromethylsilane and trichlorophenylsilane 13 reagents in the presence of methylene bromide; 14 b. adding sub-stoichiometric amounts of molten sodium metal 15 under flowing argon gas; 16 c. adding excess sodium acetylide dissolved in dimethyl

- 6. A process for synthesizing photocurable poly(ethynyl)
- carbosilane comprising the steps of:
- a. forming a dispersion of sub-stoichiometric amounts of 3
- alkali metal; 4
- b. adding dichlorosilane and trichlorosilane reagents; and
- c. adding excess sodium acetylide.

- 7. A process for synthesizing photocurable poly(ethynyl) 8
- carbosilane compaising the steps of: 9
- a. forming a dispersion of sub-stoichiometric amounts of 10
- molten sodium metal in a solvent; 11
- b. adding dichlorosilane and trichlorosilane reagents; 12
- c. adding excess sodium acetylide. 13

- 8. A process for synthesizing photocurable poly(ethynyl) 15
- carbosilane comprising the steps\of: 16
- a. forming a dispersion of sub-stoichiometric amounts of 17
- molten sodium metal in a solvent; 18

- b. adding dichloromethylsilane and trichlorophenylsilane
- and reagents; 2
- c. adding excess sodium acetylide in dimethylbromide. 3.

- 9. A process for synthesizing photocurable poly(ethynyl)
- carbosilane comprising the steps of:
- 7 a. forming a dispersion of sub-stoichiometric amounts of
- molten sodium metal in xylene;
- b. adding dichlomomethy silane and trichlorophenylsilane 9
- reagents; 10
- c. adding excess sodium acetylide in dimethylbromide. 11

- 10. A process for synthesizing photocurable poly(ethynyl) 13
- carbosilane comprising the steps of: 14
- a. forming a dispersion of sub-stoichiometric amounts of 15
- molten sodium metal in xylene 16
- b. adding dichloromethylsilane \backslash and trichlorophenylsilane 17
- reagents; 18

- 1 c. filtrating insoluble by-products;
- 2 d. evaporating xylene solvent from poly(chloro)carbosilane
- 3 polymer;
- 4 e. dissolving said aforementioned polymer in tetrahydro
- 5 furan; and
- 6 f. adding excess sodium acetylide dissolved in dimethyl
- 7 bromide.
- 8
- 9 11. A process of forming a photo-curable pre-ceramic
- 10 polymer, poly(ethynyl) -carbos lane to silicon carbide
- 11 ceramic comprising the steps of
- 12 a. reacting sodium acetylide with organo-chlorosilanes;
- 13 and
- b. condensing (polymerizing) the resultant organo-
- 15 (ethynyl) chlorosilane product of step a with an excess
- 16 of an alkali metal.
- 17 12. A process of forming a photo-curable pre-ceramic

1	polymer, poly(ethynyl)-carbosilane to silicon carbide
	ceramic comprising the steps of:
2	a. reacting sodium acetylide with organochloro-silanes;
3	a. reacting sodium acetylide with organic
4	and
. 5	b. condensing (polymerizing) the resultant organo-
. 6	ethynyl)chlorosilane product of step a with an excess of
	an alkali metal sodium.
7	dir dirati mose
8	13. A process of forming a photo-curable pre-ceramic
9	polymer, poly(ethynyl)-carbosilane, to silicon carbide
10	ceramic comprising the steps of:
11	a. reacting sodium acetylide with a mixture of
	organodichlorosilanes and organotrichlorosilanes;
12	
13	and
14	b. condensing (polymerizing) the resultant organo
15	(ethynyl)-chlorosilane product of step a with an excess
16	of an alkali metal.
17	
	$11\sqrt{4}$

18

14. A process according to claim 1 in which the organo 1 chlorosilane is selected from a group of one or more of the 2 dichlorodimethylsilane, trichloro-phenylsilane following: 3 (tri-functional), and methyltrichlorosilane. 4 5 A process of forming a photo-curable pre-ceramic 6 polymer, poly(ethynyl)-carbosilane to silicon carbide ceramic comprising the steps of: a. reacting a sub-stoichiometric amount of an alkali metal with organochloro-silanes; \ \and 1.0 b. reacting the partially polymerized polyorganochloro-11 silane with sodium acetylide. 12 13 16. A process of forming a photo-curable pre-ceramic 14 polymer, poly(ethynyl) - carbosilane to silicon carbide 15 ceramic comprising the steps of: 16 a. reacting a sub-stoichiometric amount of sodium metal

and

with organochlorosilanes;

T.	<u>_</u>	3
	Ī	1
÷	4	į
4	ì	Į
House	į	g
÷	Ē	1
H titell	the street	tried that the
2		
Hart Ban		
a.	-	=
1		
Ē	=	į
ī,		

		b. reacting the partially polymerized polyorganochloro-
	. 1	
	2	silane with sodium acetylide.
5-	3	
	4	17. A process of forming a photo-curable pre-ceramic
*	5	polymer, poly(ethynyl)carbosilane to silicon carbide ceramic
* · · · · · · · · · · · · · · · · · · ·	6	comprising the steps of:
	7	a. reacting a sub-stoichiometric amount of an alkali
	8	metal with a mixture of organodichlorosilanes and
ų Ž	9	organotrichlorosilanes; and
ü C	10	b. reacting the partially polymerized polyorgano-
	11	chlorosplane with sodium acetylide.
	12	
÷ U	13	18.A process according to claim 5 in which the
j J	14	organochlorosilane is selected from a group consisiting
4	15	of one or more of the following: dichlorodimethylsilane,
	16	trichlorophenylsilane (tri-functional), and
	17	methyltrichlorosilane.
	18	
•		116

î	19. A process of forming a photo-curable pre-ceramic
2	polymer, poly(ethynyl)silazane, to silicon nitride ceramic
3	comprising the steps of:
4	a. reacting sodium acetylide with organochlorosilanes;
5 -	and
6	b. condensing (polymerizing) the resultant organo-
7.	(ethynyl)chlorosilane product of step a with ammonia.
8	
9	20. A process of forming a photo-curable pre-ceramic
10	polymer, poly(ethynyl) silazane to silicon nitride ceramic
11	comprising the steps of:
12	a. reacting sodium acetylide with organochloro-
13	silanes; and
14	b. condensing (polymerizing) the resultant organo-
15	(ethynyl) chlorosilane product of step a with ammonia.
16	
17	21. The process of preparing photocurable CERASETTM SZ
18	inorganic polymer comprising the step adding a photo-

1	initiator to CERASETTM SZ inorganic polymer.
2	
3	22. The process of claim 21, in which said photo-initiator
4	is Camphorquinone.
<u>,</u> 5	
6	23. The process of claim 21 in which said photo-initiator is
7	IRGACURE® 1800.
8	
9	24. The process of preparing photocurable allylhydrido-
10	polycarbosilame polymer comprising the step of adding a
11	photo-initiator to allylhydridopolycarbosilane polymer.
12	
13	25. The process of claim 24, in which said photo-initiator
14	is Camphorquinone.
15	
16	26. The process of claim 24, in which said photo-initiator
17	is IRGACURE® 1800.
18	
	1/18

• .	- pro-ceramic
1	27. A process of forming a photo-curable pre-ceramic
2	polymer, poly(ethynyl)silazane, to silicon nitride ceramic
3	comprising the steps of:
4	a. reacting sodium acetylide with a mixture of organo-
. 5	dichlorosilanes and organotrichlorosilanes; and
6	b. condensing (polymerizing) the resultant organo-
7	(ethynyl)chloro-silane product of step a with ammonia.
8	
9	28. A process according to claim 27 in which the
10	organochlorosilane is selected from a group consisting of
11	one or more of the following: dichlorodimethylsilane,
12	trichlorophenylsilane (tri-functional) and methyltri
13	chlorosilane.
14	
15	29. A process of forming a photo-curable pre-ceramic
16	polymer, poly(ethynyl)-silazane to silicon nitride ceramic
17	comprising the steps of:
18	a. reacting a sub-stoichiometric amount of ammonia

₽	
4	
Ü	
N	
Ò	
÷	
L	
2	
·N	
	•
Щ	
<u> </u>	

1	with organo-chlorosilanes; and
2	b. reacting the partially polymerized polyorgano
3	chlorosilazane with sodium acetylide.
4	
5	30. A process of forming a photo-curable pre-ceramic.
6	polymer, poly(ethynyl)-silazane to silicon nitride ceramic
7	comprising the steps of;
8	a. reacting a sub-stoichiometric amount of ammonia
9	with organo-chlorosilanes; and
10	b. reacting the partially polymerized polyorgano
11	chlorosilazane with
12	sodium acetylide.
13	
14	31. A process of forming a photo- curable pre-ceramic
15	polymer, poly(ethynyl)-silazane \to silicon nitride ceramic
16	comprising the steps of:
17	a. reacting a sub-stoichiometric amount of ammonia
18	with with a mixture of organodichlorosilanes and
	\

1	\organotrichlorosilanes; and
2	b. reacting the partially polymerized polyorganoc
3	hlorosilazane with sodium acetylide.
4	
5	32. A process for fabricating a ceramic matrix composites
6	comprising the steps of:
7	a. preparing a solution of thermoplastic photo-curable
8	pre-ceramic polymer;
9	b. passing a pre preg through said solution of
10	thermoplastic photo-curable pre-ceramic polymer;
11	c. applying said pre-preg to a shaped mandrel;
12	d. using light energy to induce cross-linking of said
13	photo-curable pre-ceramic polymer after application to
14	said mandrel whereby said thermoplastic pre-ceramic
15	polymer is curved; and \
16	e. pyrolyzing said cured thermoplastic pre-ceramic
17	polymer matrix composite material.
1Ω	

1	33. A single-step fabrication of continuous ceramic fiber
2 -	ceramic matrix composites employing a thermoplastic
3	photo-curable pre-ceramic polymer in which the component is
4	shape by a variety of standard composite fabrication
5	techniques, such as filament winding, tape winding, and
6	woven cloth winding comprising steps of:
7	a. passing ceramic fiber monofilament, tow, mat, or
8	woven cloth through a solution of said thermoplastic
9	photo-curable pre-ceramic polymer;
10	aa. applying ceramic fiber monofilament, tow, mat, or
11	woven cloth to a shaped mandrel;
12	bb. using photo-energy of the ultraviolet, visible or
13	infrared light spectrum to induce cross-linking
14.	(curing) of the photo-curable pre-ceramic polymer
15	
16	cc. either partially or completely pyrolyzing the now
17	cured pre-ceramic polymer matrix composite
18	material.

- 1 35. A process for synthesizing ceramic matrix composites
- 2 according to claim 34 in which the pre-ceramic polymer is
- 3 poly(ethynyl)carbosilane.
- 5 36. A process for synthesizing ceramic matrix composites
- 6 according to claim 34 in which the pre-ceramic polymer
- 7 yields silicon carbide upon pyrolysis.
- 9 37. A process for synthesizing ceramic matrix composites
- 10 according to claim 34 in which the pre-ceramic polymer
- 11 yields an oxide ceramic upon pyrolysis.
- 12
 13 38. A process for synthesizing ceramic matrix composites
- 14 according to claim 34 in which the pre-ceramic polymer
- 15 yields titanium carbide upon pyrolysis.
- 16
- 17 39. A process for synthesizing ceramic matrix composites
- 18 according to claim 34 in which the pre-ceramic polymer.

yields aluminum nitride upon pyrolysis. 1 A process for synthesizing ceramic matrix composites according to claim 34 in which the pre-ceramic polymer yields silicon nitride upon pyrolysis. 40 A process for synthesizing ceramic matrix composites 41. according to claim 34 in which the pre-ceramic polymer 8 yields aluminum oxide upon pyrolysis. .9 10 Single-step fabrication of continuous ceramic fiber 11 ceramic matrix composites employing a thermoplastic 12 photo-curable pre-ceramic polymer in which the component is 13 shape by a variety of standard composite fabrication 14 techniques, such as filament winding, tape winding, and 15 woven cloth winding under inert\atmosphere comprising steps 16 of: 17

passing ceramic fiber monofilament, tow, mat, or

1		woven cloth through a solution of said thermoplastic
2		photo-curable pre-ceramic polymer;
3		b. applying ceramic fiber monofilament, tow, mat, or
4		woven cloth to a shaped rotating mandrel;
5		c. use of a heated or unheated compaction roller to
6		press the thermoplastic pre-ceramic polymer onto the
7		mandrel;
8		d. using ultraviolet, visible, or infrared light to
9		induce cross-linking (curing) of the photo-curable pre-
10		ceramic polymer thereby rendering a thermoset polymer;
11		e. either partially or completely pyrolyzing the now
12	٠	cured pre-ceramic polymer matrix material; and
13	,	f. followed by the final heat treatment of the shaped
14		ceramic matrix composite "brown body".
15		
16	43.	
17	acc	cording to claim 42 in which the pre-ceramic polymer is
18	po]	ly(ethynyl)carbosilane.

8 .

- 1 44. A process for synthesizing ceramic matrix composites
 2 according to claim 42 in which the pre-ceramic polymer
 3 yields an oxide ceramic upon pyrolysis.
- 5 45. A process for synthesizing ceramic matrix composites 6 according to claim 42 in which the pre-ceramic polymer
- 7 yields silicon nitride upon pyrolysis.
- 9 46. A process for synthesizing ceramic matrix composites
- 10 according to claim 42 in which the pre-ceramic polymer
- 11 yields titanium carbide upon pyrolysis.
- 13 47. A process for synthesizing ceramic matrix composites
- 14 according to claim 42 in which the pre-ceramic polymer
- 15 yields aluminum nitride upon pyrolysis.
- 16
 17 4%. A process for synthesizing ceramic matrix composites
- 18 according to claim 42 in which the pre-ceramic polymer

1	yields silicon carbide upon pyrolysis.
2	A process for synthesizing ceramic matrix composites
4 }	according to claim 42 in which the pre-ceramic polymer
5	yields aluminum oxide upon pyrolysis.
6	
7	50. Single-step fabrication of continuous ceramic fiber
8 .	ceramic matrix composites employing a thermoplastic
9	photo-curable pre-ceramic polymer in which the component is
10	shape by a variety of standard composite fabrication
11	techniques, such as filament winding, tape winding, and
12	woven cloth winding, comprising steps of:
13	a. passing ceramic fiber monofilament, tow, mat, or
14	woven cloth through a solution of said thermoplastic
15	photo-curable pre-ceramic polymer;
16	b. applying ceramic fiber monofilament, tow, mat, or
17	woven cloth to a moving flat substrate;
18	c. using a compaction roller to press the thermo-

₫
4
Ò
N
₽
=
U
Ξ
N
W
1

	1	plastic pre-ceramic polymer coated ceramic fiber onto
	2	flat\substrate;
v.	3	d. using photo-light of the ultraviolet, visible, or
	4	infrared light spectrum to induce cross-linking curing
	5	of the photo-curable pre-ceramic polymer thereby
	6	rendering a thermoset polymer; and
	. 7	e. either partially or completely pyrolyzing the now
	8	cured pre-ceramic polymer matrix coated ceramic fiber
	9.	material.
	10	0 matrix composites
	11	51. A process for synthesizing ceramic matrix composites
	12	according to claim 50 in which the pre-ceramic polymer is
	13	poly(ethynyl)carbosilane.
) -	14	
	15	52. A process for synthesizing ceramic matrix composites
	16	according to claim 50 in which the pre-ceramic polymer
	17	yields an oxide ceramic upon pyrolysis.
	18	
		128
		120

- 1 53. A process for synthesizing ceramic matrix composites
- 2 according to claim 50 in which the pre-ceramic polymer
- yields silicon nitride upon pyrolysis.
- 5 54. A process for synthesizing ceramic matrix composites
- 6 according to claim 50 in which the pre-ceramic polymer
- 7 yields titan um carbide upon pyrolysis.
- 9 55.A process for synthesizing ceramic matrix composites
- according to claim 50 in which the pre-ceramic polymer
- 11 yields a uminum nitride upon pyrolysis.
- 12 56. A process for synthesizing ceramic matrix composites
- 13 according to claim 50 in which the pre-ceramic polymer
- 14 yields silicon carbide upon pyrolysis.
- 15 b

- 16 57. A process for synthesizing ceramic matrix composites
- 17 according to claim 50 in which the pre-ceramic polymer
- 18 yields aluminum oxide upon pyrolysis.