R Code: F tests for ANOVA, More Nested Models

(Sleuth3 Sections 5.3 and 5.4)

Spock Trials Example

Question: are the means for judges A through F equal?

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$

 H_A : At least one mean for a judge other than Spock is not equal to the others.

Note: if the null hypothesis is correct, there are effectively two groups:

- 1. All judges other than Spock's (they all have the same mean!)
- 2. Spock's judge

Tasks we need to do:

- 1. Fit the full model
- 2. Create a new variable in the data set representing the groups in the reduced model
- 3. Fit the reduced model
- 4. Call anova to compare the reduced model to the full model

Step 1: Fit the full model

```
fit_full <- lm(Percent ~ Judge, data = juries)</pre>
summary(fit_full)
##
## Call:
## lm(formula = Percent ~ Judge, data = juries)
## Residuals:
##
      Min
                1Q Median
                                30
                                       Max
## -17.320 -4.367 -0.250
                             3.319
                                    14.780
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                             3.0921 11.034 1.47e-13 ***
## (Intercept)
                34.1200
## JudgeB
                -0.5033
                             4.1868 -0.120
                                              0.9049
## JudgeC
                -5.0200
                             3.8566 -1.302
                                              0.2007
## JudgeD
                -7.1200
                             5.7848 -1.231
                                              0.2258
## JudgeE
                 -7.1533
                             4.1868 -1.709
                                              0.0955 .
## JudgeF
                -7.3200
                             3.8566 -1.898
                                              0.0651 .
## JudgeSpock's -19.4978
                             3.8566 -5.056 1.05e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.914 on 39 degrees of freedom
## Multiple R-squared: 0.5083, Adjusted R-squared: 0.4326
## F-statistic: 6.718 on 6 and 39 DF, p-value: 6.096e-05
```

Step 2: Create a new variable in the data set representing the groups in the reduced model

The mutate statement below creates a new variable in the juries data frame called judge_reduced. For each observation in the data set, judge_reduced is "Other" if the Judge was in "A", "B", "C", "D", "E", or "F". Otherwise, judge_reduced is "Spock's".

```
juries <- juries %>%
  mutate(
    judge_reduced = ifelse(Judge %in% c("A", "B", "C", "D", "E", "F"), "Other", "Spock's")
)
head(juries, 15) # just to check and make sure our new variable was created correctly
```

```
## # A tibble: 15 x 3
##
      Percent Judge
                       judge_reduced
##
        <dbl> <chr>
                       <chr>
##
          6.4 Spock's Spock's
   1
##
          8.7 Spock's Spock's
##
   3
         13.3 Spock's Spock's
##
   4
         13.6 Spock's Spock's
##
   5
         15
              Spock's Spock's
##
   6
         15.2 Spock's Spock's
##
   7
         17.7 Spock's Spock's
##
   8
         18.6 Spock's Spock's
## 9
         23.1 Spock's Spock's
## 10
         16.8 A
                      Other
## 11
         30.8 A
                      Other
## 12
         33.6 A
                      Other
## 13
         40.5 A
                      Other
## 14
         48.9 A
                      Other
## 15
         27
              В
                      Other
```

Step 3: Fit the reduced model

```
fit_reduced <- lm(Percent ~ judge_reduced, data = juries)
summary(fit_reduced)</pre>
```

```
##
## Call:
## lm(formula = Percent ~ judge_reduced, data = juries)
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -12.9919 -4.6669
                      0.2581
                               3.7854 19.4081
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         29.492
                                     1.160
                                             25.42 < 2e-16 ***
## judge_reducedSpock's -14.870
                                     2.623
                                             -5.67 1.03e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.056 on 44 degrees of freedom
## Multiple R-squared: 0.4222, Adjusted R-squared: 0.409
## F-statistic: 32.15 on 1 and 44 DF, p-value: 1.03e-06
```

Step 4: Call anova to compare the reduced model to the full model

anova(fit_reduced, fit_full)

```
## Analysis of Variance Table
##
## Model 1: Percent ~ judge_reduced
## Model 2: Percent ~ Judge
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 44 2190.9
## 2 39 1864.5 5 326.46 1.3658 0.2582
```

Because interpretation is important: what is the conclusion? Does this prove that the other judges had the same mean percent of women in their jury pools?

More F Test Examples (part 1)

In all cases the full model has a separate mean for all 7 judges: μ_1 for judge A, μ_2 for judge B, μ_3 for judge F, and μ_7 for Spock's judge.

We estimate this model with: fit_full <- lm(Percent ~ Judge, data = juries)

The sample size is n = 46, so the degrees of freedom for the full model is: 46 - 7 = 39

Null Hypothesis	Reduced Model Groups	Reduced df, Extra df	R Code and Output
$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7$	1 group: • all judges	Reduced: 46-1=45 Extra: 45 - 39 = 6 7 - 1 = 6	anova(fit_full) Analysis of Variance Table Response: Percent Df Sum Sq Mean Sq F value Pr(>F) Judge 6 1927.1 321.18 6.7184 6.096e-05 *** Residuals 39 1864.5 47.81
$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7$	1 group: • all judges	Reduced: 46-1=45 Extra: 45 - 39 = 6 7 - 1 = 6	<pre>fit_reduced <- lm(Percent ~ 1, data = juries) anova(fit_reduced, fit_full) Analysis of Variance Table Model 1: Percent ~ 1 Model 2: Percent ~ Judge Res.Df RSS Df Sum of Sq F Pr(>F) 1 45 3791.5 2 39 1864.4 6 1927.1 6.7184 6.096e-05 ***</pre>
$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$	2 groups: • A,B,C,D,E,F • Spock's Judge	Reduced: 46-2=44 Extra: 44 - 39 = 5 7 - 2 = 5	<pre>juries <- juries %>% mutate(judges_grouped = ifelse(Judge %in% c("A", "B", "C", "D", "E", "F"), "grouped", Judge)) fit_reduced <- lm(Percent ~ judges_grouped, data = juries) anova(fit_reduced, fit_full) Analysis of Variance Table Model 1: Percent ~ judges_grouped Model 2: Percent ~ Judge Res.Df RSS Df Sum of Sq F Pr(>F) 1 44 2190.9 2 39 1864.5 5 326.46 1.3658 0.2582</pre>

6

More F Test Examples (part 2)

In all cases the full model has a separate mean for all 7 judges: μ_1 for judge A, μ_2 for judge B, μ_3 for judge F, and μ_7 for Spock's judge.

We estimate this model with:

fit_full <- lm(Percent ~ Judge, data = juries)</pre>

The sample size is n = 46, so the degrees of freedom for the full model is: 46 - 7 = 39

Null Hypothesis	Reduced Model Groups	Reduced df, Extra df	R Code and Output
$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$	3 groups: • A,B,C,D,E • F • Spock's Judge	Reduced: 46-3=43 Extra: 43 - 39 = 4 7 - 3 = 4	<pre>juries <- juries %>% mutate(judges_grouped = ifelse(Judge %in% c("A", "B", "C", "D", "E"), "grouped", Judge)) fit_reduced <- lm(Percent ~ judges_grouped, data = juries) anova(fit_reduced, fit_full) Analysis of Variance Table Model 1: Percent ~ judges_grouped Model 2: Percent ~ Judge Res.Df RSS Df Sum of Sq F Pr(>F) 1 43 2104.7 2 39 1864.5 4 240.28 1.2565 0.3035</pre>
$\mu_1 = \mu_2 = \mu_3 = \mu_4$	4 groups: • A,B,C,D • E • F • Spock's Judge	Reduced: 46-4=42 Extra: 42 - 39 = 3 7 - 4 = 3	<pre>juries <- juries %>% mutate(judges_grouped = ifelse(Judge %in% c("A", "B", "C", "D"), "grouped", Judge)) fit_reduced <- lm(Percent ~ judges_grouped, data = juries) anova(fit_reduced, fit_full) Analysis of Variance Table Model 1: Percent ~ judges_grouped Model 2: Percent ~ Judge Res.Df RSS Df Sum of Sq F Pr(>F) 1</pre>