```
In [37]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [38]: df = pd.read_csv('Full_scrape.csv')
```

In [45]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3638 entries, 0 to 3637
Data columns (total 50 columns):
          3638 non-null object
Player
          3638 non-null object
Pos
Age
          3638 non-null int64
          3638 non-null object
\mathsf{Tm}
G
          3638 non-null int64
GS
          3638 non-null int64
MP
          3638 non-null int64
FG
          3638 non-null int64
FGA
          3638 non-null int64
FG%
          3638 non-null float64
3P
          3638 non-null int64
3PA
          3638 non-null int64
3P%
          3638 non-null float64
2P
          3638 non-null int64
2PA
          3638 non-null int64
2P%
          3638 non-null float64
          3638 non-null float64
eFG%
FT
          3638 non-null int64
FTA
          3638 non-null int64
FT%
          3638 non-null float64
ORB
          3638 non-null int64
DRB
          3638 non-null int64
TRB
          3638 non-null int64
AST
          3638 non-null int64
STL
          3638 non-null int64
BLK
          3638 non-null int64
          3638 non-null int64
TOV
PF
          3638 non-null int64
          3638 non-null float64
PER
TS%
          3638 non-null float64
3PAr
          3638 non-null float64
FTr
          3638 non-null float64
ORB%
          3638 non-null float64
DRB%
          3638 non-null float64
TRB%
          3638 non-null float64
AST%
          3638 non-null float64
STL%
          3638 non-null float64
BLK%
          3638 non-null float64
TOV%
          3638 non-null float64
USG%
          3638 non-null float64
OWS
          3638 non-null float64
DWS
          3638 non-null float64
WS
          3638 non-null float64
WS/48
          3638 non-null float64
OBPM
          3638 non-null float64
DBPM
          3638 non-null float64
BPM
          3638 non-null float64
VORP
          3638 non-null float64
          3638 non-null int64
Year
Salary
          3638 non-null float64
dtypes: float64(26), int64(21), object(3)
memory usage: 1.4+ MB
```

In [39]: df.head(10)

Out[39]:		Player	Pos	Age	Tm	G	GS	MP	FG	FGA	FG%	 ows	DWS	ws	WS/48	ОВІ
	0	Arron Afflalo	SG	24	DEN	82	75	2221	272	585	0.465	 2.8	1.4	4.3	0.092	-1
	1	LaMarcus Aldridge	PF	24	POR	78	78	2922	579	1169	0.495	 5.5	3.3	8.8	0.145	
	2	Joe Alexander	SF	23	CHI	8	0	29	1	6	0.167	 0.0	0.0	0.0	0.030	-!
	3	Malik Allen	PF	31	DEN	51	3	456	46	116	0.397	 -0.3	0.3	0.1	0.009	-4
	4	Tony Allen	SG	28	BOS	54	8	889	129	253	0.510	 0.2	1.6	1.9	0.100	-
	5	Rafer Alston	PG	33	тот	52	38	1421	155	446	0.348	 -1.6	1.2	-0.4	-0.013	- ;
	6	Lou Amundson	PF	27	РНО	79	0	1168	152	276	0.551	 1.5	1.3	2.9	0.118	-
	7	Chris Andersen	PF	31	DEN	76	0	1695	142	251	0.566	 3.2	2.7	5.9	0.166	-(
	8	David Andersen	С	29	HOU	63	0	891	147	340	0.432	 0.4	0.9	1.3	0.070	-:
	9	Ryan Anderson	PF	21	ORL	63	6	911	169	388	0.436	 1.7	1.4	3.1	0.161	;

10 rows × 50 columns

```
In [52]: # Get columns
    columns = df.columns
    columns
```

In [75]: # Salary x Year
sns.stripplot(x=df.Year, y=df.Salary);

In [76]: # Salary x Year
sns.boxplot(x=df.Year, y=df.Salary);


```
In [59]: #plot data
df_grouped = df.groupby([df.Year])
#print(df_grouped.groups)
g2010 = df_grouped.get_group(2010)
g2011 = df_grouped.get_group(2011)
g2012 = df_grouped.get_group(2012)
g2013 = df_grouped.get_group(2013)
g2014 = df_grouped.get_group(2014)
g2015 = df_grouped.get_group(2015)
g2016 = df_grouped.get_group(2016)
g2017 = df_grouped.get_group(2017)
g2018 = df_grouped.get_group(2018)
g2019 = df_grouped.get_group(2019)
```

```
In [62]: yearData = [g2010, g2011, g2012, g2013, g2014, g2015, g2016, g2017, g2018, g2019]
for eachYear in yearData:
    print(eachYear['Salary'].agg(np.mean))
```

4495217.947521866 4532404.076246334 4315241.95 4512389.885793872 4549454.985465116 4442079.382978723 4992980.581151833 6149016.659949622 7596788.384615385 7067359.482412061

```
In [86]: #sns.lineplot(x = df.Age, y = df.Salary)
markers = ('o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h')
sns.lineplot(data = df, x = "Age", y = "Salary", hue = "Year", style = "Year", paplt.show()
```



```
In [42]: # Subset by year
         y2010 = df.loc[(df.Year == 2010)]
         y2011 = df.loc[(df.Year == 2011)]
         y2012 = df.loc[(df.Year == 2012)]
         y2013 = df.loc[(df.Year == 2013)]
         y2014 = df.loc[(df.Year == 2014)]
         y2015 = df.loc[(df.Year == 2015)]
         y2016 = df.loc[(df.Year == 2016)]
         y2017 = df.loc[(df.Year == 2017)]
         y2018 = df.loc[(df.Year == 2018)]
         y2019 = df.loc[(df.Year == 2019)]
         # Find average per year
         avg2010 = y2010.Year.mean()
         avg2011 = y2011.Year.mean()
         avg2012 = y2012.Year.mean()
         avg2013 = y2013.Year.mean()
         avg2014 = y2014.Year.mean()
         avg2015 = y2015.Year.mean()
         avg2016 = y2016.Year.mean()
         avg2017 = y2017.Year.mean()
         avg2018 = y2018.Year.mean()
         avg2019 = y2019.Year.mean()
```

```
In [ ]: ax = plt.gca()
    df.plot(kind='line',x='df.Age',y='df.Salary',ax=ax)
```