Wykład dziesiąty

Całki niewłaściwe

Całka niewłaściwa I rodzaju

Zał. $a \in \mathbb{R}$ – ustalona liczba rzeczywista, f – funkcja R – całkowalna na każdym przedziale $\langle a;T \rangle$, T>a.

Def. Całką niewłaściwą I rodzaju funkcji f na przedziale $\langle a:+\infty \rangle$ nazywamy granicę

$$\lim_{T \to +\infty} \int_{a}^{T} f(x)dx \stackrel{ozn}{=} \int_{a}^{+\infty} f(x)dx$$

Całka niewłaściwa $\int_{a}^{+\infty} f(x)dx$ jest zbieżna, jeśli powyższa granica jest właściwa. Jest rozbieżna w pozostałych przypadkach.

Zał. $a \in \mathbb{R}$ – ustalona liczba rzeczywista; funkcja f jest R – całkowalna na każdym przedziale $\langle T; a \rangle$, T < a. Wówczas można określić całkę niewłaściwą funkcji f na przedziale $(-\infty; a)$:

$$\int_{-\infty}^{a} f(x)dx \stackrel{df}{=} \lim_{T \to -\infty} \int_{T}^{a} f(x)dx$$

Zał. Funkcja f jest R – całkowalna na każdym przedziale ograniczonym na prostej $\mathbb R$. Wówczas

$$\int_{-\infty}^{+\infty} f(x)dx \stackrel{df}{=} \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx$$

gdzie a jest dowolnie ustaloną liczbą rzeczywistą.

Uwaga 1. Całka $\int_{-\infty}^{+\infty} f(x)dx$ jest zbieżna \Leftrightarrow zbieżne są całki $\int_{-\infty}^{a} f(x)dx$ i $\int_{a}^{+\infty} f(x)dx$, niezależnie od siebie.

Tw.1.(kryterium porównawcze) Jeżeli funkcje f i h są określone na przedziale $\langle a:+\infty \rangle$, R – całkowalne na każdym przedziale $\langle a:T \rangle$, T>a oraz $0 \leqslant f(x) \leqslant h(x)$ dla każdego $x \in \langle a:+\infty \rangle$, to

1

- 1. jeżeli całka $\int_{a}^{+\infty} h(x)dx$ jest zbieżna, to całka $\int_{a}^{+\infty} f(x)dx$ jest zbieżna.
- 2. jeżeli całka $\int_a^{+\infty} f(x)dx$ jest rozbieżna, to całka $\int_a^{+\infty} h(x)dx$ jest rozbieżna.

Twierdzenie 1. pozostaje prawdziwe dla przedziałów $(-\infty; a)$.

Całka niewłaściwa II rodzaju

Zał. Funkcja f jest określona w przedziale (a;b), gdzie $a < b \in \mathbb{R}$, zmienia się w sposób nieograniczony w lewostronnym sąsiedztwie punktu b i jest R – całkowalna w każdym przedziale $(a;b-\epsilon)$, $0 < \epsilon < b-a$.

Def. Całką niewłaściwą II rodzaju funkcji f na przedziale $\langle a;b\rangle$ nazywamy granicę

$$\lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) dx \stackrel{ozn}{=} \int_a^b f(x) dx$$

Zał. Funkcja f jest określona w przedziale (a;b), gdzie $a < b \in \mathbb{R}$, zmienia się w sposób nieograniczony w prawostronnym sąsiedztwie punktu a i jest R – całkowalna w każdym przedziale $\langle a+\epsilon;b\rangle$, $0<\epsilon< b-a$.

Def. Całkę niewłaściwą II rodzaju funkcji f na przedziale $\langle a;b\rangle$ nazywamy granicę

$$\lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x) dx \stackrel{ozn}{=} \int_a^b f(x) dx$$

Pojęcia zbieżności oraz rozbieżności dla całek II rodzaju definiujemy analogicznie jak dla całek I rodzaju.

Uwaga 2. $\int_{0}^{1} \frac{dx}{x^{\alpha}}$ jest zbieżna $\Leftrightarrow \alpha < 1$.

Uwaga 3. Jeżeli istnieją całki niewłaściwe II rodzaju funkcji f na przedziałach $\langle a; c \rangle$ oraz $\langle c; b \rangle$, to istnieje całka niewłaściwa II rodzaju funkcji f na przedziale $\langle a; b \rangle$ i zachodzi równość

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Def. Zbieżną całkę niewłaściwą I rodzaju (odp.II rodzaju) funkcji f nazywamy bezwzględnie zbieżną, jeśli jest zbieżna całka funkcji |f|. Jeżeli ta ostatnia całka jest rozbieżna, to całka funkcji f jest warunkowo zbieżna.

Uwaga 4. Jeżeli całka niewłaściwa funkcji |f| jest zbieżna i f jest R – całkowalna na każdym odpowiednim podprzedziałe przedziału zbieżności, to całka funkcji f jest zbieżna (bezwzględnie).