Analysis I: Homework 8 and 9

Thomas Fleming

Fri 10 Sep 2021 12:58

Problem (36). Our function will be φ , the cantor-lebesque function. We have already shown it to be continuous and increasing with $\varphi(1)=1, \varphi(0)=0$. Moreover, letting C be the cantor set, we see $[0,1]\setminus C:=C^c$ is open in [0,1] so for all $x\in C^c$, there is an $\varepsilon>0$ so that $(x-\varepsilon,x+\varepsilon)\subseteq C^c$. Then, since for all intervals I in the [0,1] complement of the cantor set, we find $I\subseteq J_{n,k}$ for some $n,k\in\mathbb{N}$, we have $\xi(I)=\{\frac{n}{2^k}\}$, so

$$\overline{D}\left(\varphi\left(x\right)\right) = \lim_{r \to 0} \sup \{\frac{\varphi\left(x+h\right) - \varphi\left(x\right)}{h} : 0 < |h| < r\} = \lim_{r \to 0} \sup \{\frac{0}{h} : 0 < |h| < r\} = 0.$$

Similarly, we find $\underline{D}(\varphi(x)) = 0$. Hence, φ is differentiable at x and since $\varphi' = 0$ almost everywhere, yet φ is not constant by the initial claim, we find φ is not absolutely continuous.

Problem (38). First, note that $\varphi : \mathbb{R} \to \overline{\mathbb{R}}$, $x \mapsto \sqrt{1+x^2}$ is convex and since h is integrable, we see it is finite almost everywhere. Hence, discarding the points for which $h = \infty$, we see jensens inequality yields

$$\sqrt{1+A^2} \le \int_{[0,1]} \sqrt{1+h^2}.$$

For the second inequality, note that since h is nonnegative and $\sqrt{.}$ is an increasing function we have

$$\int_{[0,1]} \sqrt{1+h^2} \le \int_{[0,1]} \sqrt{1+2h+h^2} \le \int_{[0,1]} 1+h = 1+A.$$

Problem (39). • Assume (f_n) does not converge to f in measure. That is, there is an $\varepsilon > 0$ so that for all $N \in \mathbb{N}$

$$m\left(\left\{x \in \mathbb{R} : \left|f_{n_N}\left(x\right) - f\left(x\right)\right| > \varepsilon\right\}\right) > \varepsilon$$

for some $n_N \geq N$. Denote this set A_N . Then, we see

$$\int |f_{n_N} - f| \ge \int_{A_N} |f_{n_N} - f| \ge \int \varepsilon \chi_{A_N} = \varepsilon m(A_N) \ge \varepsilon^2.$$

That is, for some $\varepsilon' = \varepsilon^2 > 0$, and all $N \in \mathbb{N}$ we find an $n_N \geq N$, so that $\int |f_n - f| \geq \varepsilon'$, so f_n does not converge to f in mean.

• First, note that if x = 0 or 1, then $f_n(x) = x$ for all $n \in \mathbb{N}$. Then, if $x \in (0,1)$, the ratio test proves $\sum_{i=1}^{\infty} nx^n < \infty$, hence $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} nx^n = 0$.

To see that f_n converges to 0 in measure denote $E_{\varepsilon;n} = \{x \in [0,1] : nx^n < \varepsilon\}$. Then, suppose $c \in E_{\varepsilon;n}$, then either c=1 or $\lim_{n \to \infty} f_n(c) = 0$. We can exclude the first case as this happens only on a set of measure 0. Hence, fixing $\varepsilon > 0$ and assuming $c \in [0, 1 - \frac{\varepsilon}{2})$ we see there is a $N \in \mathbb{N}$ so that $f_n(c) < \varepsilon$ for all $n \geq N$. So, we have $m(E_{\varepsilon;n}) \leq m([1 - \frac{\varepsilon}{2}, 1]) < \varepsilon$ for all $n \geq N$, so f_n converges to 0 in measure.

• Finally, to show that f does not converge in measure take $\varepsilon = \frac{1}{100}$. Then, we define $a_n = 1 - \left(\frac{1}{100}\right)^{\frac{1}{n+1}}$ we define $s_n = f_n\left(a_n\right)\chi_{[a_n,1]}$. Then, we find f_n dominates s_n for every n, hence

$$\int f_n \ge \int s_n = n \left(\frac{1}{100}^{n+1} - \frac{1}{100} \right) \ge n \left(100^{-2} - \frac{1}{100} \right) = n\delta$$

for all $n\geq 1$. Since this grows linearly with n, we find for sufficiently large n, $n\delta>\varepsilon.$ Hence, it is shown.

- **Problem** (40). The first function will be $f_n = \chi_{(n,\infty)}$. We note that for all $x, x \notin (n, \infty)$ for all $n \ge \lceil x \rceil$, so (f_n) converges point wise. On the other hand for $\varepsilon = \frac{1}{2}$, we see $m\left(\{x \in \mathbb{R} : |f_n(x) f(x)| > \frac{1}{2}\}\right) = m\left((n,\infty)\right) = \infty > \varepsilon$, so (f_n) does not converge in measure (hence not in mean).
 - For the second function define the following sequence of intervals. $A_1 = [0,1], \ A_{2^k} = \left[0,\frac{1}{2^k}\right]$ and $A_{2^k+c} = \left[\frac{c}{2^k},\frac{c+1}{2^k}\right]$ for $c < 2^k$. This essentially enumerates all partitions with endpoints being a rational with denominators powers of 2 and consecutive numerators. Since the collection $\{A_{2^k+c}: 0 \le c < 2^k\}$ covers [0,1] for every $k \in \mathbb{N}$, we see for all $N \in \mathbb{N}$ and $x \in [0,1]$, the function $f_n = \chi_{A_n}$ will have $f_n(x) = 1$ for some (infinitely many) $n \ge N$, so it will not converge to 0 pointwise. On the other hand, we see $|f_n 0| = f_n = \chi_{A_n}$, so $\int |f_n 0| = m(A_n)$. Moreover, for all $k \in \mathbb{N}$ we find an $N = \lfloor \log_2(n) \rfloor$ so that $m(A_n) < \frac{1}{2^k}$ for all $n \ge N$, so f_n does in fact converge in mean and in measure.
 - For the third function we adopt the same intervals from part 2, but we instead define the function $f_n = 2^n \chi_{A_n}$. Recalling that $m(A_n) \geq \frac{1}{2^n}$ for all n, we see $\int |f_n 0| = \int 2^n \chi_{A_n} = 2^n m(A_n) \geq \frac{2^n}{2^n} = 1$ for all $n \in \mathbb{N}$. Hence for all $\varepsilon < 1$ we find convergence in mean to fail. Moreover, f_n still fails to converge pointwise. Lastly, recall for all $k \in \mathbb{N}$ there is a $N \in \mathbb{N}$ so that $m(A_n) \leq \frac{1}{2^k}$ for all $n \geq N$, hence for all $\varepsilon > \frac{1}{2^k}$ we find the convergence in measure criterion holds. Since there is a $k \in \mathbb{N}$ so that $0 < \frac{1}{2^k} < \varepsilon$ for all $\varepsilon > 0$, we see convergence in measure does in fact hold true.

Problem (41). First, note that $||g||_1 = \int_S |g| \le \operatorname{esssup}(g) \cdot m(S) = ||g||_{\infty}$ as all values taken on a set of measure > 0 will be smaller in modulus than esssup (g). Then, we find

$$\begin{split} \int_S |f| \int_S |g| &= \|f\|_1 \|g\|_1 \\ &\geq \|f\|_1 \|g\|_\infty \text{ by the first result.} \\ &\geq \|fg\|_1 \text{ by holder's inequality.} \\ &= \int_S |fg| \\ &\geq \int_S 1 \text{ by assumption.} \\ &= 1 \end{split}$$

5

Problem (42). 1. First, we prove the case $s < \infty$. Let $f \in L^s(S)$. Then, we define r so that $\frac{1}{s} + \frac{1}{r} = \frac{1}{p}$ (hence $\frac{s}{p}$ and $\frac{r}{p}$ are conjugate). Then, as we aim to show $||f||_p$ finite, we see it suffices to show $||f||_p^p = \int_S |f|^p = ||f^p||_1$ finite. We see

$$||f||_{p}^{p} = ||1f||_{p}^{p}$$

$$= ||1^{p}f^{p}||_{1}$$

$$\leq ||1||_{\frac{r}{p}}||f^{p}||_{\frac{s}{p}}$$

$$= (\int_{S} 1^{\frac{r}{p}})^{\frac{p}{r}} \left(\int_{S} |f^{p}|^{\frac{s}{p}}\right)^{\frac{p}{s}}$$

$$= ||1||_{p}^{\frac{1}{r}}||f||_{s}^{p}$$

$$= m(S)^{\frac{1}{r}} ||f||_{s}^{p}$$

$$\leq \infty.$$

We find this finite by assumption, hence $f \in L^p(S)$, so the claim is shown. Next, we show the case $s = \infty$. In this case $f \in L^p(S)$ is bounded almost everywhere (else its essup would be infinite). Then, we see for $p < \infty$ $\int_S |f|^p \le \int_S \operatorname{esssup}(f)^p = S \|f\|_\infty^p < \infty$ by assumption so the claim holds. It is clear that if $m(S) = \infty$ this does not hold. For an example, sake $S = [0, \infty]$ and $f = \frac{1}{x}$, we see $\|f\|_1 = \int_{[0,\infty]} \frac{1}{x} = \infty$, however $\|f\|_2 = (\int_{[0,\infty]} \frac{1}{x^2})^{\frac{1}{2}}$. As $\frac{1}{x^2}$ is integrable on $[0,\infty]$ we find its root to be finite, hence $f \in L_2([0,\infty])$ but $f \notin L_1([0,\infty])$.

2. Let $f \in L^r(S) \cap L^s(S)$. Denote the following sets, $A = \{x : x \in S, |f(x)| < 1\}$ and $B = \{x : x \in S, |f(x)| > 1\}$. It is clear $A \cup B = S$, with A, B being disjoint. Then, we see if $s \neq \infty$, we have

$$||f||_{p}^{p} = \int_{S} |f|^{p}$$

$$= \int_{A} |f|^{p} + \int_{B} |f|^{p}$$

$$\leq \int_{A} |f|^{r} + \int_{B} |f|^{s}$$

$$\leq \int_{S} |f|^{r} + \int_{S} |f|^{s}$$

$$= ||f||_{r}^{r} + ||f||_{s}^{s}$$

$$< \infty.$$

In the other case where $s = \infty$ we apply the same logic as in 41, that being $|f| \le \operatorname{esssup}(f)$ on all but a set of measure 0, hence they may be

interchanged in the integral:

$$||f||_r^r = \int_S |f|^r$$

$$= \int_S |f|^p |f|^{r-p}$$

$$\leq \int_S |f|^p \underbrace{\left[\text{essup}(f)\right]^{r-p}}_{\text{constant}}$$

$$= ||f||_{\infty}^{r-p} ||f||_p^p < \infty \text{ by assumption.}$$

Problem (43). • First, note that $\int_I \cos(nx) = \int_I \cos^+(nx) + \int_I \cos^-(nx)$. Since I is a bounded interval, we see for all but a set of measure 0 on its boundary, if $x \in I$, then there is an $\varepsilon > 0$ so that $(x - \varepsilon, x + \varepsilon) \in I$. Then, $\cos^-(nx) = \cos^+\left(n\left(x + \frac{\pi}{2n}\right)\right)$, so for almost every x, we find there is an $N \in \mathbb{N}$ so that $x + \frac{\pi}{2n} \in I$ for all $n \geq N$. Moreover it is bounded by g = 1 everywhere, so DCT proves it integrable. Then,

$$\lim_{n \to \infty} \int_{I} \cos(nx) = \lim_{n \to \infty} \int_{I} \cos^{+}(nx) - \lim_{n \to \infty} \int_{I} \cos^{+}\left(n\left(x + \frac{\pi}{2n}\right)\right)$$

$$= \lim_{n \to \infty} \int_{I} \cos^{+}(nx) - \int_{I + \frac{\pi}{2n}} \cos^{+}(nx)$$

$$= \lim_{n \to \infty} - \int_{\left(I + \frac{\pi}{2n}\right) \setminus I} \cos^{+}(nx)$$

$$\geq - \int_{\left(I + \frac{\pi}{2n}\right) \setminus I} 1$$

$$= - \lim_{n \to \infty} \frac{\pi}{2n}$$

$$= 0.$$

The same argument shows $\lim_{n\to\infty}\int_I\cos\left(nx\right)\leq 0$ taking \cos^- instead. Hence, $\lim_{n\to\infty}\int_I\cos\left(nx\right)=0$.

• First, note that an earlier exercise shows $f \in L^{\infty}(\mathbb{R})$. Next, note that

$$\lim_{n \to \infty} \int f \cos(nx) \le \lim_{n \to \infty} \|f \cos(nx)\|_1$$

$$\le \lim_{n \to \infty} \|f\|_{\infty} \|\cos(nx)\|_1$$

$$= \lim_{n \to \infty} \alpha \|\cos(nx)\|_1.$$

Similairly,

$$\lim_{n \to \infty} \int f \cos(nx) \ge \lim_{n \to \infty} -\|f \cos(nx)\|_1$$
$$\ge \lim_{n \to \infty} -\|f\|_{\infty} \|\cos(nx)\|_1$$
$$= -\alpha \|\cos(nx)\|_1.$$

Problem (44). First, note that since $\int_{[a,b]} |f'|^p < \infty$, we find $\int_{[a,x]} |f'|^p + \int_{[x,y]} |f'|^p + \int_{[y,b]} |f'|^p < \infty$. Namely, $\int_{[x,y]} |f'|^p < \infty$, hence $f' \in L^p((a,b))$. Then, let q be p's conjugate and we find

$$\begin{split} |f\left(x\right) - f\left(y\right)| &= \left| \int_{[x,y]} f' \right| \\ &\leq \int_{[x,y]} |f'| \\ &= \|1f'\|_1 \\ &\leq \|1\|_q \|f'\|_p \\ &\leq |x-y|^q \int_{[x,y]} f' \text{ since } f \text{ is increasing }. \end{split}$$

Hence $L = \int_{[a,b]} f'$ and $\alpha = q$, namely the conjugate of p.