

${\bf Optimization-Cas ADi~Cheat~Sheet-WS~21/22}$

import casadi.*	-	Import CasADi into your project, can be done first, if you do not want to type casadi. in front of CasADi functions.
<pre>opt = casadi.Opti()</pre>	-	Initialize an opti object that collects your decision variables, parameters, constraints, cost functions, settings, etc.
<pre>opt.solver('ipopt')</pre>	-	Set the solver for your problem in opt to IPOPT, other solvers like WORHP are also possible.
<pre>dec = opt.variable(n,m)</pre>	-	Generate a symbolic decision variable matrix with size $n \times m$ for your problem, e.g. the inputs u in an optimal control problem.
<pre>par = opt.parameter(n, m)</pre>	_	Generate a symbolic parameter matrix with size $n \times m$ for your problem, e.g. the Pareto parameters of a MOO problem. Before solving of a problem, these parameters have to be replaced with numerical values with the $\mathtt{set_value}$ method.
<pre>opt.set_value(par, num)</pre>	-	Set the value of parameter par to num.
<pre>opt.minimize(cost)</pre>	-	Sets the cost function to be cost. cost has to depend on your decision variables.
<pre>opt.subject_to(input)</pre>	_	Define a constraint for the optimization problem. input is typically a logical expression, e.g. $0 \le dec \le 1$. If no input is given, all constraints are deleted.
<pre>opt.set_initial(dec, num)</pre>	-	Set num as the initial guess for the decision variable dec.
<pre>sol = opt.solve()</pre>	-	Solve the optimization problem in opt and generate a solution object sol that stores all the information of the corresponding optimization process. The sol objects can also be stored in a solution matrix sol(i)= opt.solve().
<pre>x_val = sol.value(x)</pre>	-	Store the computed value of x in $x_val.$
<pre>var = casadi.MX(n,m)</pre>	_	Generate an empty $n \times m$ matrix that you want to fill with values, for example the k-matrix in Runge-Kutta integrators. Do not use opti-variables for this as this can cause problems in the optimization.