Годишен преговор

Вектори. Векторна база

- **1.** Дадени са неколинеарните вектори \vec{a} и \vec{b} и нека $\vec{p} = \vec{a} + \vec{b}$ и $\vec{q} = \vec{a} \vec{b}$. Да се докаже, че необходимо и достатъчно условие \vec{p} и \vec{q} да са перпендикулярни е $|\vec{a}| = |\vec{b}|$. Да се даде геометрично тълкуване на получения резултат.
- **2.** Дадени са векторите \vec{a} и \vec{b} , като $|\vec{a}| = 1$, $|\vec{b}| = 1$ и $\angle(\vec{a}, \vec{b}) = \frac{\pi}{3}$. Да се намери λ , така че векторите $\vec{p} = \lambda \vec{a} + 2\vec{b}$ и $\vec{q} = -\vec{a} + \vec{b}$ да бъдат перпендикулярни.
- **3.** Да се докаже, че ако един вектор е перпендикулярен на три линейно независими вектора, то той е нулев.
- **4.** Дадени са векторите \vec{a} и \vec{b} , като $|\vec{a}| = \frac{3}{2}$ и $|\vec{b}| = 1$. Да се пресметне ъгълът между тях, така че векторите $\vec{p} = \vec{a} + \vec{b}$ и $\vec{q} = \vec{a} \vec{b}$ да образуват ъгъл, равен на $\frac{\pi}{3}$.
- **5.** Да се намери скаларното произведение на векторите \vec{a} и \vec{b} , ако:
 - a) $|\vec{a}| = 2$, $|\vec{b}| = 3$, $\angle(\vec{a}, \vec{b}) = 60^{\circ}$;
 - 6) $|\vec{a}| = 4$, $|\vec{b}| = 1$, $\angle(\vec{a}, \vec{b}) = 135^{\circ}$;
 - B) $|\vec{a}| = \frac{2}{3}, |\vec{b}| = 5, \angle(\vec{a}, \vec{b}) = 30^{\circ};$
 - $\vec{a} = \vec{b}$ и $|\vec{a}| = 7$.
- **6.** Векторите \vec{a} и \vec{b} образуват нормирана база в равнината. Да се намери ъгълът между тях, така че векторът;
 - а) $\vec{u} = \vec{a} + \vec{b}$ да има дължина $\sqrt{3}$;
 - б) $\vec{u} = \vec{a} 2\vec{b}$ да има дължина $\sqrt{2}$.
- **7.** Векторите \vec{a} , \vec{b} и \vec{c} са такива, че $\vec{c} = 2\vec{a} + \vec{b}$ и $\angle(\vec{a}; \vec{b}) = \frac{\pi}{3}$. Намерете дължината на:
 - а) \vec{c} , ако $|\vec{a}|=3$ и $|\vec{b}|=10$;
 - б) \vec{a} , ако $|\vec{b}| = 7$ и $|\vec{c}| = 13$;
 - в) \vec{b} , ако $|\vec{a}| = 5$ и $|\vec{c}| = 14$;
 - г) \vec{c} , ако $\vec{a}\vec{b} = 20$ и $|\vec{a} \vec{b}| = 7$.
- **8.** За векторите \vec{a} , \vec{b} и \vec{c} от пространствена база е изпълнено $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 1$ $\angle(\vec{a}, \vec{b}) = \frac{\pi}{2}$, $\angle(\vec{b}, \vec{c}) = \frac{\pi}{4}$, $\angle(\vec{a}, \vec{c}) = \frac{\pi}{2}$. Да се намери дължината на вектора:
 - a) $\vec{u} = 2\vec{a} \vec{b} + \vec{c}$;
 - $\vec{p} = 3\vec{a} + \vec{c} ;$
 - $\vec{q} = \vec{a} 2\vec{b} 3\vec{c} .$

Модул I. Геометрия

- **9.** Дадени са векторите \vec{a} , \vec{b} и \vec{c} , като $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 3$, $\angle(\vec{a}, \vec{b}) = \angle(\vec{b}, \vec{c}) = \frac{\pi}{3}$, $\angle(\vec{a}, \vec{c}) = \frac{\pi}{2}$. Да се намери дължината на вектора:
 - a) $\vec{u} = \vec{a} + 2\vec{b} + \vec{c}$;
 - б) $\vec{v} = \vec{a} \vec{b} 2\vec{c}$;
 - $\vec{p} = 2\vec{a} + \vec{b} \vec{c} .$
- **10.** Дадени са векторите \vec{a} , \vec{b} и \vec{c} , като $|\vec{a}| = 2$, $|\vec{b}| = |\vec{c}| = 1$, $\angle(\vec{a}, \vec{b}) = \angle(\vec{b}, \vec{c}) = \frac{\pi}{2}$, $\angle(\vec{a}, \vec{c}) = \frac{\pi}{3}$. Да се намери косинусът на ъгъла между векторите:
 - a) $\vec{p} = \vec{a} + \vec{b} \vec{c}$ u $\vec{q} = \vec{a} + 2\vec{b}$;
 - б) $\vec{p} = \vec{a} + 2\vec{b} + \vec{c}$ и $\vec{q} = \vec{a} \vec{b} + \vec{c}$;
 - в) $\vec{p} = \vec{a} \vec{b} + 2\vec{c}$ и $\vec{q} = \vec{a} + \vec{b} + \vec{c}$.
- **11.** Намерете ъгъла между векторите \vec{a} и \vec{b} , ако $|\vec{a}|=1$, $|\vec{b}|=3$ и $\vec{a}\vec{b}=-1,5$.
- ⊠ **A)** 60°
- **Б)** 90°
- **B)** 120°
- **Γ**) 135°
- **12.** Векторите \vec{a} , \vec{b} и \vec{c} са такива, че $|\vec{a}| = 3$, $|\vec{b}| = 2$ и $\angle(\vec{a}; \vec{b}) = \frac{\pi}{3}$. Скаларното произведение на \vec{a} и \vec{b} е равно на:

- **Б)** 3√3
- **B)** 2π
- $\Gamma) \ \frac{\sqrt{6}}{2}$

Вектори. Координати на вектор

- **13.** Дадени са точките M(2;1) и $N(\sqrt{2};-2\sqrt{2})$. Да се намери разстоянието между тях.
- **14.** Дадени са векторите $\vec{a}(-1;0)$ и $\vec{b}(3;2)$ в правоъгълна координатна система. Намерете:
 - a) $\vec{a}\vec{b}$;
 - б) $|\vec{a}|$ и $|\vec{b}|$;
 - B) $\cos \angle (\vec{a}, \vec{b})$.
- **15.** Точка M е средата на отсечката AB. Да се намерят координатите на точка:
 - а) M, ако A(2,1) и B(5,2);
 - б) B, ако A(4,-3) и M(1,3);
- **16.** Дадени са векторите $\vec{a}(2;-1)$, $\vec{b}(-2;1)$ и $\vec{c}(-1;3)$. Да се намерят координатите на вектора:
 - a) $\vec{u} = 2\vec{a} + 3\vec{b} \vec{c}$;
 - б) $\vec{v} = \vec{c} 4\vec{b}$;
 - B) $\vec{p} = \frac{1}{2}\vec{a} + 2\vec{b} 3\vec{c}$.

Аналитична геометрия

17. Правата g е определена от точките $M_1(0;2)$ и $M_2(2;5)$. Намерете:

- а) вектор p, колинеарен на правата;
- б) ъгловия коефициент k.
- **18.** Дадена е права g, определена от ъгловия си коефициент k=2 и точка M(0;-3). Намерете вектор p, колинеарен с правата.
- **19.** Дадена е правата g, определена от $\vec{p}(4;1)$ и M(0;2). Намерете ъгловия коефициент на правата. Намерете декартовото и общото уравнение на правата.
- **20.** Дадени са права g и точка $M \in g$, такава че отношението на разстоянието от точка M до оста Ox към разстоянието от точка M до оста Oy е равно на a. Да се намерят координатите на точка M и да се начертаят M и g, ако:
 - a) g: 2x-5y-10=0 u $a=\frac{3}{5}$;
 - 6) g: x+2y+7=0 и $a=\frac{2}{3}$.
- **21.** Дадени са правите a: y = 3x, b: y = 3x 1, c: y = -3x и $d: y = -\frac{x}{3}$. През точките M(1;3) и N(3;-1) минават съответно правите:
- \boxtimes A) $a \bowtie b$
- **Б)** *c* и *d*
- **B)** *b* и *c*
- Γ) a u d

- 22. Правата от чертежа има уравнение:
- \boxtimes **A)** $y = -\frac{2}{3}x 2$ **B)** $y = -\frac{3}{2}x 2$

 - **B)** y = -3x 2

- 23. Определете взаимното положение на двойката прави. Ако правите се пресичат, намерете пресечната им точка и косинуса на ъгъла между тях.
 - a) 2x+2y-5=0 u 2y=3;
 - 6) x+2y-6=0 u $y=3-\frac{x}{2}$;
 - B) 4x + y 1 = 0 $\mu x 2y + 2 = 0$;
 - x + 3y = 0 и 3x + 2y 7 = 0.
- **24.** Да се намери разстоянието от точка A(-2,1) до правата g: 2x + y 7 = 0.
- **25.** Да се намерят координатите на точка B, симетрична на точка A(1;-2) спрямо права p: 4x-3y+15=0.

Модул І. Геометрия

- **26.** Дадени са точките A(-2;1), B(6;-3) и C(2;4). За триъгълник ABC да се намерят:
 - а) координатите на медицентъра G;
 - б) координатите на средите M_a , M_b и M_c съответно на страните BC, AC и AB.
 - в) уравненията на правите a, b и c, на които лежат съответно страните BC, AC и AB на триъгълника;
 - г) уравненията на правите m_a , m_b и m_c , на които лежат медианите съответно от връх $A,\ B$ и C.
 - д) уравненията на правите h_a , h_b и h_c , на които лежат височините съответно от A, B и C.
 - e) координатите на H_a , H_b и H_c петите на височините съответно от A, B и C.
 - ж) периметърът на ΔABC ;
 - з) лицето на ΔABC .

Стереометрия

- **27.** Прав кръгов конус има ъгъл при върха на осното сечение, равен на 2α и сума от дължините на височината и образуващата, равна на a. Намерете повърхнината и обема на конуса. (Резултатът да се приведе във вид на произведение.)
- **28.** Височината на правилна четириъгълна пирамида е h и големината на ъгъла между два съседни околни ръба е α . Да се намерят околната повърхнина и обемът на пирамидата. (Получените изрази да се приведат във вид на произведение.)
- 29. Околните ръбове и ръбовете на горната основа на правилна четириъгълна пресечена пирамида са равни. Периметърът на околна стена на пресечената пирамида е 26 cm. Намерете височината и околната повърхнина на пресечената пирамида, ако апотемата ѝ е 4 cm.
- **30.** В правилна триъгълна пирамида големината на ъгъла между два пресичащи се ръба околен и основен, е α . Радиусът на вписаната в основата окръжност е r. Намерете повърхнината на пирамидата. (Резултатът да се приведе във вид на произведение.)
- **31.** В правилна четириъгълна пирамида двустенният ъгъл между две съседни околни стени е α. Да се определи косинусът на ъгъла β между два съседни околни ръба.
- **32.** Прав кръгов цилиндър има обем a m³, околна повърхнина 3a m² и повърхнина 5a m². Намерете a, радиуса и височината на цилиндъра.
- **33.** Правоъгълен триъгълник с катети a=3 cm, b=4 cm е завъртян около хипотенузата. Да се намерят обемът и повърхнината на полученото тяло.
- **34.** Околната повърхнина на конус K е полукръг с радиус, равен на радиуса на друг конус K_1 . Колко пъти лицето на околната повърхнина на K_1 е по-голямо от лицето на околната повърхнина на K, ако височините им са равни?
- **35.** Околните ръбове на една пирамида имат дължина l. Основата ѝ е правоъгълник, два съседни околни ръба сключват помежду си ъгъл α , а другите два ъгъл 2α . Да се намери обемът на пирамидата.

- **36.** Радиусите на основите на прав кръгов пресечен конус са 13 cm и 20 cm, а образуващата му е 25 cm. С равнина, успоредна на оста и на разстояние 12 cm от нея, е построено сечение на конуса. Да се намери лицето на сечението.
- **37.** През средите на два основни ръба в правилна триъгълна пирамида е прекарано сечение, успоредно на височината ѝ. Да се намери обемът на пирамидата, ако височината на сечението е h и околна стена образува с основата ъгъл α .
- **38.** Кълбо е пресечено с равнина, която разполовява радиуса му и е перпендикулярна на него. Да се намери повърхнината на кълбото, ако лицето на сечението е Q.
- **39.** Двустенният ъгъл при основата на правилна четириъгълна пирамида е α , а основният ѝ ръб има дължина a. Да се намери лицето на сечението, което минава през основния ръб и образува с равнината на основата ъгъл 30° .
- **40.** Диагоналът d на правоъгълен паралелепипед образува с двете съседни околни стени ъгли, всеки от които е равен на β . Да се намерят обемът на паралелепипеда и ъгълът ϕ , образуван от общия ръб на тези стени и отсечката, съединяваща общия връх на тези ъгли с центъра на срещуположната основа.
- **41.** Права триъгълна призма има за основа равнобедрен триъгълник с ъгъл при върха β и основа, равна на b. Намерете обема на призмата, ако диагоналът на една от еднаквите околни стени образува с равнината на основата ъгъл α .
- **42.** В правилна триъгълна пирамида е прекарана равнина през средите на два основни ръба и перпендикулярна на равнината на основата. Да се намери обемът на отсечената пирамида, ако основният ръб на дадената пирамида е a и двустенният ъгъл при основата ѝ е 30° .
- **43.** Околната повърхнина на прав кръгов пресечен конус е S, а образуващата сключва с оста му ъгъл α . Да се намерят радиусите на пресечения конус, ако отношението им е 2:3.
- **44.** Правоъгълен триъгълник с хипотенуза 5 cm е завъртян около ос в равнината на триъгълника, която минава през единия край на хипотенузата и е перпендикулярна на нея. Да се намерят обемът и повърхнината на образуваното тяло, ако катетът, който минава през същия край на хипотенузата, е 3 cm.
- **45.** Обемът на триъгълна пирамида е V, а две от околните ѝ стени са равнобедрени правоъгълни триъгълници, чиито хипотенузи са равни и образуват помежду си ъгъл α . Да се намери дължината на хипотенузата.
- **46.** Височината на правилна триъгълна призма е h, а правата, минаваща през центъра на горната основа и средата на страна на долната основа, образува с равнината на долната основа ъгъл α . Намерете повърхнината на призмата.
- **47.** В правилна четириъгълна призма са дадени основният ръб a и ъгъл α между телесния диагонал и диагонала на околна стена (който лежи в диагоналното сечение на телесния диагонал). Намерете обема на призмата. (Изразът да се приведе във вид на произведение.)
- **48.** Обемът на правилна четириъгълна пирамида е равен на V, а ъгълът между околната стена и основата е равен на α . Намерете повърхнината на пирамидата.

Модул І. Геометрия

- **49.** Основата на правоъгълен паралелепипед е вписана в окръжност с радиус r. Прилежащата дъга от окръжността на малката страна на основата е 2α . Да се намери обемът на паралелепипеда, ако околната му повърхнина е S. (Резултатът да се приведе във вид на произведение.)
- **50.** Прав кръгов цилиндър е пресечен с равнина, успоредна на височината му, която разделя окръжността на основата, така че по-малката дъга е α . Диагоналът на полученото сечение е d и сключва 60° с равнината на основата на цилиндъра. Да се намери обемът на цилиндъра.
- **51.** При завъртане на квадрат около една от страните му се получава цилиндър с обем 8. Намерете обема на цилиндър, на който осното сечение е същият квадрат.
- **52.** В правилна триъгълна призма два върха на горната основа са съединени със средите на срещуположните им ръбове на долната основа. Ъгълът между получените отсечки, обърнат с отвора си към равнините на основите, е α, а основният ръб на призмата е *a*. Да се намери обемът на призмата. (Резултатът да се приведе във вид на произведение.)
- **53.** Основата на права призма е правоъгълен триъгълник с хипотенуза c и остър ъгъл α . През хипотенузата на долната основа и върха на правия ъгъл на горната основа е прекарана равнина, която образува с долната основа ъгъл β . Намерете обема на триъгълната пирамида, отсечена от призмата.
- **54.** През един основен ръб на правилна триъгълна призма е прекарана равнина, минаваща през средата на срещуположния околен ръб и образуваща с равнината на основата ъгъл α. Намерете лицето на сечението и околната повърхнина на призмата, ако основният ѝ ръб е *а*.
- **55.** Основата ABCD на пирамидата ABCDF е ромб, за който $\angle BAD = 60^{\circ}$. Ортогоналната проекция O на върха F върху равнината на основата е центърът на вписаната в $\triangle ABD$ окръжност с радиус r. Ако острият ъгъл, който равнината (BDF) сключва с равнината на основата, е два пъти по-голям от ъгъла, който FC сключва с основата, да се намери обемът на пирамидата.