Chapter Four: Reactions in Aqueous Solution

Learning Outcomes:

- ➤Identify compounds as acids or bases, and as strong, weak, or nonelectrolytes
- Recognize reactions by type and be able to predict the products of simple acid–base, precipitation, and redox reactions.
- Calculate molarity and use it to convert between moles of a substance in solution and volume of the solution.
- >Describe how to carry out a dilution to achieve a desired solution concentration.
- Describe how to perform and interpret the results of a titration.

Solutions

- Solution: A homogeneous mixture of two or more pure substances.
- Solvent: substance present in the greatest quantity.
- Solute: substance dissolved in the solvent.
- Electrolyte: Substance whose aqueous solutions contain ions (e.g. NaCl)
- Nonelectrolyte: Substance that does not form ions in solution (e.g. C₁₂H₂₂O₁₁)

Pure water does not conduct electricity.

Pure water,

A nonelectrolyte solution does not conduct electricity.

Sucrose solution, C₁₂H₂₂O₁₁(aq)

An electrolyte solution conducts electricity.

Sodium chloride solution, NaCl(aq)

Dissolution in water

(b) Molecular substances like methanol, CH₃OH, dissolve without forming ions.

Electrolytes

• A strong electrolyte dissociates completely when dissolved in water.

$$HCI(aq) \longrightarrow H^{+}(aq) + CI^{-}(aq)$$

• A weak electrolyte only dissociates partially when dissolved in water.

$$CH_3COOH(aq) \rightleftharpoons H^+(aq) + CH_3COO^-(aq)$$

TABLE 4.3 Summary of the Electrolytic Behavior of Common Soluble Ionic and Molecular Compounds

	Strong Electrolyte	Weak Electrolyte	Nonelectrolyte
Ionic	All	None	None
Molecular	Strong acids (see Table 4.2)	Weak acids, weak bases	All other compounds

Solubility of Ionic Compounds

- Not all ionic compounds dissolve in water.
- A list of *solubility guidelines* is used to decide what combination of ions will dissolve.

Soluble Ionic Compounds		Important Exceptions
Compounds containing	NO ₃	None
	CH ₃ COO ⁻	None
	CI ⁻	Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+}
	Br^-	Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺
	I-	Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺
	SO ₄ ²⁻	Compounds of Sr^{2+} , Ba^{2+} , Hg_2^{2+} , and Pb^{2+}
Insoluble Ionic Compounds		Important Exceptions
Compounds containing	S ²⁻	Compounds of NH ₄ ⁺ , the alkali metal cations,Ca ²⁺ , Sr ²⁺ , and Ba ²⁺
	CO ₃ ²⁻	Compounds of NH ₄ ⁺ and the alkali metal cations
	PO ₄ ³⁻	Compounds of $\mathrm{NH_4}^+$ and the alkali metal cations
	OH ⁻	Compounds of NH ₄ +, the alkali metal cations, Ca ²⁺ , Sr ²⁺ , and Ba ²⁺

You need to know the solubility guidelines on this table.

Precipitation Reactions

- A precipitation reaction involves the formation of an insoluble product or products from the reaction of soluble reactants. The solid is called a precipitate.
- Example: Mixing AgNO₃ and LiCl, both of which are soluble, produces insoluble AgCl.

$$AgNO_3(aq) + LiCl(aq) \rightarrow AgCl(s) + LiNO_3(aq)$$

Precipitation Reaction

Precipitation Reactions

What insoluble compound, if any, will form when solutions of $Pb(NO_3)_2$ and Na_2SO_4 are mixed?

- 1) Note the ions present in the reactants.
- 2) Consider the possible cation-anion combinations.
- 3) Use Table 4.1 to determine if any of the combinations is insoluble.
- 4) Write the chemical equation.

<u>AIIIOIIS</u>	<u>Cations</u>		
	Na+	Pb ²⁺	
NO ₃ -	soluble NaNO ₃	soluble Pb(NO ₃) ₂	
SO ₄ 2-	soluble Na ₂ SO ₄	insoluble PbSO ₄	

 $Pb(NO_3)_2(aq) + Na_2SO_4(aq) \rightarrow PbSO_4(s) + 2NaNO_3(aq)$

Metathesis (Exchange) Reactions

- Metathesis comes from a Greek word that means "to transpose". The ions in the reactant compounds exchange, or transpose, ions
- The molecular equation lists the reactants and products in the overall reaction and includes the states of matter.

$$AgNO_3(aq) + KCl(aq) \longrightarrow AgCl(s) + KNO_3(aq)$$

- 1) Use the chemical formulas of the reactants to determine which ions are present.
- 2) Write formulas for the products: cation from one reactant, anion from the other. Use charges to write proper subscripts.
- 3) Check solubility rules. If either product is insoluble, a precipitate forms.
- 4) Balance the equation.

Complete Ionic Equation

- In the complete ionic equation all strong electrolytes (strong acids, strong bases, and soluble ionic salts) are dissociated into their ions.
- This more accurately reflects the species that are found in the reaction mixture.

$$Ag^{+}(aq) + NO_{3}^{-}(aq) + K^{+}(aq) + Cl^{-}(aq) \longrightarrow$$

 $AgCl(s) + K^{+}(aq) + NO_{3}^{-}(aq)$

Net Ionic Equation

• To form the net ionic equation, cross out anything that does not change from the left side of the equation to the right.

Ag⁺(aq) + NO₃ (aq) + K⁺(aq) + Cl⁻(aq)
$$\longrightarrow$$

AgCl (s) + K⁺(aq) + NO₃⁻(aq)

 The only things left in the equation are those things that change (i.e., react) during the course of the reaction.

$$Ag^+(aq) + Cl^-(aq) \longrightarrow AgCl(s)$$

 Those things that didn't change (and were deleted from the net ionic equation) are called spectator ions.

Writing Net Ionic Equations

- 1. Write a balanced molecular equation.
- 2. Dissociate all strong electrolytes.
- 3. Cross out anything that remains unchanged from the left side to the right side of the equation (spectator ions).
- 4. Write the net ionic equation with the species that remain.

Example

Overall equation: $Pb(NO_3)_2(aq) + Na_2SO_4(aq) \rightarrow PbSO_4(s) + 2NaNO_3(aq)$ Write the net ionic equation.

Example

Write the net ionic equation for the reaction of HCl(aq) and KOH(aq).

Acids

- Substances that ionize in aqueous solution and increase the concentration of H⁺ when dissolved in water (Arrhenius).
- Proton donors (Brønsted-Lowry).

Bases

- Substances that increase the concentration of OH⁻ when dissolved in water (Arrhenius).
- Proton acceptors, react with H⁺ (Brønsted-Lowry).

Substances do not have to contain OH- to be a base.

Classification: Strong and Weak

- Strong acids completely dissociate in water, whereas weak acids partially dissociate.
- Strong bases dissociate to metal cations and hydroxide anions in water; weak bases only partially react to produce hydroxide anions

TABLE 4.2 Common Strong Acids and Bases		
Strong Acids	Strong Bases	
Hydrochloric acid, HCl	Group 1A metal hydroxides	
Hydrobromic acid, HBr	[LiOH, NaOH, KOH, RbOH, CsOH]	
Hydroiodic acid, HI	Heavy group 2A metal hydroxides [Ca(OH) ₂ , Sr(OH) ₂ , Ba(OH) ₂]	
Chloric acid, HClO ₃	$[Ca(OH)_2, SI(OH)_2, Ba(OH)_2]$	
Perchloric acid, HClO ₄		
Nitric acid, HNO ₃		
Sulfuric acid (first proton), H ₂ SO ₄		

Strong and Weak Electrolyte

TABLE 4.3 Summary of the Electrolytic Behavior of Common Soluble Ionic and Molecular Compounds

	Strong Electrolyte	Weak Electrolyte	Nonelectrolyte
Ionic	All	None	None
Molecular	Strong acids (see Table 4.2)	Weak acids, weak bases	All other compounds

Neutralization Reactions

Generally, when solutions of an acid and a base are combined, the products are a salt and water.

• Can be written as molecular, complete ionic, or net ionic equations.

$$\begin{array}{c} \operatorname{HCl}(aq) + \operatorname{NaOH}(aq) \longrightarrow \operatorname{H_2O}(l) + \operatorname{NaCl}(aq) \\ \operatorname{(acid)} \quad \operatorname{(base)} \quad \operatorname{(water)} \quad \operatorname{(salt)} \\ \\ \operatorname{H^+}(aq) + \operatorname{Cl^-}(aq) + \operatorname{Na^+}(aq) + \operatorname{OH^-}(aq) \longrightarrow \\ & \qquad \qquad \operatorname{H_2O}(l) + \operatorname{Na^+}(aq) + \operatorname{Cl^-}(aq) \\ \\ \operatorname{H^+}(aq) + \operatorname{OH^-}(aq) \longrightarrow \operatorname{H_2O}(l) \end{array}$$

Neutralization Reactions

Gas-Forming Reactions

- These reactions do not give the product expected for a metathesis reaction.
- The expected product decomposes to give a gaseous product (e.g. CO₂, SO₂, or H₂S).

$$\begin{split} \mathsf{CaCO}_3\left(s\right) + 2\mathsf{HCI}\left(\mathit{aq}\right) &\longrightarrow \mathsf{CaCI}_2\left(\mathit{aq}\right) + \mathsf{CO}_2\left(\mathit{g}\right) + \mathsf{H}_2\mathsf{O}\left(\mathit{l}\right) \\ \mathsf{NaHCO}_3\left(\mathit{aq}\right) + \mathsf{HBr}\left(\mathit{aq}\right) &\longrightarrow \mathsf{NaBr}\left(\mathit{aq}\right) + \mathsf{CO}_2\left(\mathit{g}\right) + \mathsf{H}_2\mathsf{O}\left(\mathit{l}\right) \\ \mathsf{SrSO}_3\left(s\right) + 2 \; \mathsf{HI}\left(\mathit{aq}\right) &\longrightarrow \mathsf{SrI}_2\left(\mathit{aq}\right) + \mathsf{SO}_2\left(\mathit{g}\right) + \mathsf{H}_2\mathsf{O}\left(\mathit{l}\right) \\ \mathsf{Na}_2\mathsf{S}\left(\mathit{aq}\right) + \mathsf{H}_2\mathsf{SO}_4\left(\mathit{aq}\right) &\to \mathsf{Na}_2\mathsf{SO}_4\left(\mathit{aq}\right) + \mathsf{H}_2\mathsf{S}\left(\mathit{g}\right) \end{split}$$

Redox Reactions

Oxidation-Reduction Reactions

- An oxidation occurs when an atom or ion loses electrons.
- A reduction occurs when an atom or ion gains electrons.
- One cannot occur without the other.

Substance **oxidized** (loses electron)

ce Substance
l reduced
(gains
electron)

Oxidation Numbers

To determine if an oxidation-reduction reaction has occurred, we assign an **oxidation number** to each element in a neutral compound or charged entity.

- The **oxidation number** may be a positive or negative number.
- The sum of the oxidation numbers in a neutral compound is 0.
- The sum of the oxidation numbers in a polyatomic ion is the **charge** on the ion.
- An oxidation-reduction reaction is one in which some of the elements change oxidation number during the course of the reaction.
- In a balanced equation the sum of the changes in oxidation numbers is zero.

Oxidation Numbers

Rules to assign oxidation numbers (ox. #).

1. Each atom in free element has ox. # = 0.

 $Zn O_2 O_3 I_2 S_8 P_2$

2. In simple ions, ox. # = charge on ion.

 -1 for Cl^- +2 for Mg²⁺

3a. The ox. # of O is normally -2, except in peroxides.

O is -2 in NO

O is -1 in Na₂O₂

Oxidation Numbers

3b. The ox. # of H is +1 when bonded to nonmetals and -1 when bonded to metals.

H is +1 in CH₄ H is -1 in CaH₂

3c. The ox. # of F is ALWAYS -1 with all other elements.

FeF₃ PF₅ SF₆ OF₂

The ox. # of Cl, Br and I are always -1, except when combined with O or F, then are positive.

- 4. Algebraic sum of oxidation numbers
 - = 0 for a neutral compound
 - = overall charge for an ion

Displacement Reactions $\begin{array}{c} Mg(s) + 2 \operatorname{HCl}(aq) \longrightarrow Mg\operatorname{Cl}_2(aq) + H_2(g) \\ Oxidation number & 0 & +1 & -1 & +2 & -1 & 0 \\ \end{array}$ Oxidation number $\begin{array}{c} Mg(s) + 2 \operatorname{HCl}(aq) \longrightarrow Mg\operatorname{Cl}_2(aq) + H_2(g) \\ +1 & -1 & +2 & -1 & 0 \\ \end{array}$ $\begin{array}{c} Mg(s) + 2 \operatorname{HCl}(aq) \longrightarrow Mg\operatorname{Cl}_2(aq) + H_2(g) \\ +1 & -1 & +2 & -1 & 0 \\ \end{array}$ $\begin{array}{c} Mg(s) + 2 \operatorname{HCl}(aq) \longrightarrow Mg\operatorname{Cl}_2(aq) + H_2(g) \\ +1 & -1 & +2 & -1 & 0 \\ \end{array}$ $\begin{array}{c} Mg(s) + 2 \operatorname{HCl}(aq) \longrightarrow Mg\operatorname{Cl}_2(aq) + H_2(g) \\ +1 & -1 & +2 & -1 & 0 \\ \end{array}$ $\begin{array}{c} Mg(s) + 2 \operatorname{HCl}(aq) \longrightarrow Mg\operatorname{Cl}_2(aq) + H_2(g) \\ +1 & -1 & +2 & -1 & 0 \\ \end{array}$ $\begin{array}{c} Mg(s) + 2 \operatorname{HCl}(aq) \longrightarrow Mg\operatorname{Cl}_2(aq) + H_2(g) \\ +1 & -1 & +2 & -1 & 0 \\ \end{array}$ $\begin{array}{c} Mg(s) + 2 \operatorname{HCl}(aq) \longrightarrow Mg\operatorname{Cl}_2(aq) + H_2(g) \\ +1 & -1 & +2 & -1 & 0 \\ \end{array}$

Activity Series

 $H_2(g) + MgCl_2(aq)$ 0 +2 -1

2 HCl(aq) + Mg(s)

Oxidation +1 -1 number

	Activity Series of Metals in Aqueous Solution	
Metal	Oxidation Reaction	
Lithium	$Li(s) \longrightarrow Li^{+}(aq) + e^{-}$	
Potassium	$K(s) \longrightarrow K^+(aq) + e^-$	
Barium	$Ba(s) \longrightarrow Ba^{2+}(aq) + 2e^{-}$	
Calcium	$Ca(s) \longrightarrow Ca^{2+}(aq) + 2e^{-}$	4
Sodium	$Na(s) \longrightarrow Na^+(aq) + e^-$	
Magnesium	$Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$	
Aluminum	$Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}$	
Manganese	$Mn(s) \longrightarrow Mn^{2+}(aq) + 2e^{-}$	ses
Zinc	$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$	rea
Chromium	$Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$) in
Iron	$Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$	ation
Cobalt	$Co(s) \longrightarrow Co^{2+}(aq) + 2e^{-}$	xida
Nickel	$Ni(s) \longrightarrow Ni^{2+}(aq) + 2e^{-}$	Ease of oxidation increases
Tin	$Sn(s) \longrightarrow Sn^{2+}(aq) + 2e^{-}$	ase
Lead	$Pb(s) \longrightarrow Pb^{2+}(aq) + 2e^{-}$	174
Hydrogen	$H_2(g) \longrightarrow 2 H^+(aq) + 2e^-$	
Copper	$Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$	
Silver	$Ag(s) \longrightarrow Ag^{+}(aq) + e^{-}$	
Mercury	$Hg(l) \longrightarrow Hg^{2+}(aq) + 2e^{-}$	
Platinum	$Pt(s) \longrightarrow Pt^{2+}(aq) + 2e^{-}$	
Gold	$Au(s) \longrightarrow Au^{3+}(aq) + 3e^{-}$	

Any metal on the list can be oxidized by the ions of elements below it.

Displacement Reactions

Elements higher on the activity series are more reactive. They will exist as ions. The element below will exist as the element.

Molarity

- Two solutions can contain the same compounds but be quite different because the proportions of those compounds are different.
- Molarity is one way to measure the amount dissolved, or the concentration of a solution.

Molarity (
$$M$$
) = $\frac{\text{moles of solute}}{\text{volume of solution in liters}}$

Molarity (*M*) is often expressed as the number of moles of solute in one liter of *solution*.

Example: Molarity of a Solution

What is the molar concentration of NaF in a solution prepared by dissolving 2.51 g of NaF in enough water to form 200. mL of solution?

Molarity of Ions

One mole of K_2SO_4 dissolves in water to form two moles of K^+ ions and one mole of SO_4^{2-} ions.

$$K_2SO_4(s) \xrightarrow{H_2O} 2K^+(aq) + SO_4^{2-}(aq)$$

Example: Molarity of Ions in a Solution

In the following pair of solutions, indicate which has a higher concentration of K+ ions. A 0.100 M $\rm K_2SO_4$ solution or a 0.150 M KCl solution.

Example: Molarity of Ions in Mixed Solutions

Indicate the concentration of each ion present in the solution formed by mixing 34.6 mL of 0.100 M $\rm K_2SO_4$ and 18.3 mL of 0.150 M KCl.

Preparing a Solution

Dilution

Solutions of lower concentration can be prepared by dilution of more concentrated solutions of known molarity

Dilution

In a dilution problem: moles of solute in dilute solution = moles of solute in the concentrated solution

$$M_{conc} \times V_{conc} = M_{dil} \times V_{dil}$$

Use this formula only for dilution problems, <u>not</u> for problems involving reaction equations.

Examples

- 1) Describe how you would prepare a 50.0 mL solution of 4.00 M K_2SO_4 . Calculate the volume of 4.00 M K_2SO_4 that is needed to prepare 600. mL of a 0.0200 M solution of K_2SO_4 . Calculate the molar concentration of K^+ ions in the 0.0200 M solution.
- 2) A 35.0 mL sample of 1.00 M KBr and a 60.0 mL sample of 0.600 M KBr are mixed. The solution is then heated to evaporate water until the total volume is 50.0 mL. What is the molarity of the KBr in the final solution?

Molarities in Stoichiometric Calculations

Stoichiometry Calculations for Reactions in Solution

- Molarity is a conversion between volume

 (L) of solution and moles of solute. For a
 2.00 molar solution of KCI:
 - 2.00 mol KCl = 1 L KCl
- In stoichiometric calculations with equations molarity is used to calculate moles of solute from volume of solution analogous to using molar mass to calculate moles from mass of a solid.

Example:

Calculate the mass of lead(II) sulfate formed in the reaction of 145 mL of 0.123 M lead(II) nitrate and excess sodium sulfate.

Titration

The analytical technique in which one can calculate the concentration of a solute in a solution.

Titrations

- In a **titration**, the concentration and volume of a *known* solution is used to determine the *unknown* concentration of a second solution.
- **Equivalence point**: the point in a titration where stoichiometrically *equivalent* amounts of the two reactants have been added.

Titration Using Phenolphthalein Indicator

- Left: acidic solution with indicator added
- Center: end point very slight pink color
- Right: pink color after excess base added

Example

Calculate the molarity of an HCl solution if 26.4 mL of the solution neutralizes 30.0 mL of a 0.120 molar solution of $Ba(OH)_2$.

Example

A 16.0 mL aliquot of a 0.220 M solution of H_2SO_4 is titrated with a 0.211 M NaOH solution. What volume (mL) of base will it take to reach the equivalence point?

Example

What mass of lead(II) chloride forms in the reaction of 24.3 mL of 1.34 *M* lead(II) nitrate and 38.1 mL of 1.22 *M* sodium chloride?

Example

Consider 6.82 g $Sr(NO_3)_2$ is dissolved in enough water to form 0.500 L solution. A 0.100 L sample is withdrawn and titrated with a 0.0335 M solution of Na_2CrO_4 . What volume of Na_2CrO_4 solution is needed to precipitate all the $Sr^{2+}(aq)$ as $SrCrO_4$?

Example

A 1.248 g limestone rock, which contains $CaCO_3$ and other compounds, is pulverized and treated with 30.00 mL of 1.035 M HCl solution. The excess acid requires 11.56 mL of 1.010 M NaOH for neutralization. Calculate the percent by mass of calcium carbonate in the rock, assuming it is the only substance reacting with the HCl solution.