Next Steps: Streaming

Approximate top singular vector in the row arrival model

Smaller space since a weaker model

• [Price '23] shows that if $\sigma_1(A)/\sigma_2(A) \leq O(1)$, then need $\Omega(d^2)$ space to approximate top singular vector

Price also shows that if $\sigma_1(A)/\sigma_2(A) \ge C\sqrt{\log n \cdot \log d}$, then can approximate top singular vector in O(d) space

Can we relax the gap assumption?

ullet Can we assume random order or some benign conditions on A to obtain better algorithms?

Next Steps: Streaming

- Approximate top singular vector in the row arrival model
 - Smaller space since a weaker model
- [Price '23] shows that if $\sigma_1(A)/\sigma_2(A) \leq O(1)$, then need $\Omega(d^2)$ space to approximate top singular vector
- Price also shows that if $\sigma_1(A)/\sigma_2(A) \ge C\sqrt{\log n \cdot \log d}$, then can approximate top singular vector in O(d) space
- Can we relax the gap assumption?
- Can we assume random order or some benign conditions on ${\cal A}$ to obtain better algorithms?

Query lower bounds for LRA

with David Woodruff [NeurlPS '23]