Introduction to Machine Learning

Lecture 3: Regression

Alexis Zubiolo alexis.zubiolo@gmail.com

Data Science Team Lead @ Adcash

November 3, 2016

Before we start

Would you be interested in a more advanced course? I can propose

- Machine learning from scratch (how to implement an ML algorithm with no library)
- ► A more advanced version of this course (with more theoretical technical details)
- Large-scale machine learning

Regression in Machine Learning

This lecture is about regression in Machine learning.

Reminder: In regression, the output *y* is **continous**.

Example:

- **Price estimation**: y = price (e.g. 50000 BGN for a house)
- ▶ **Predicting the future** (*e.g.* weather forecast): *y* = temperature or amount of rain

Regression in Machine Learning: Applications

Domains of application:

- ▶ Price estimation/prediction
- Weather forecast
- Production quantity estimation
- Stock option price prediction
- ▶ Fit statistical model to data
- Physics & chemistry
- ... and others

Linear and polynomial regression

Purpose of regression: **approximate solutions** of **overdetermined systems**.

In this course, we will see

- ► Linear regression
- ► Polynomial regression

Linear regression

Linear regression

Principal components:

- Old problem (least-squares method usually credited to Carl Friedrich Gauss in 1795)
- Several ways to approximate the data
 - Linear model
 - Polynomial model (remember kernels from SVMs)
 - ▶ Fit a distribution
 - **.** . . .
- Several ways to formulate the problem
 - Least Squares
 - Support Vector regression
 - •
- Several ways to solve the problem

Linear regression with ordinary least-squares

Linear regression: Estimate y as a **linear** function of x:

$$\hat{y} = w^T x$$

Least squares: Penalty (loss) is a **quadratic** function

$$\ell\left(\hat{y},y\right) = \left(\hat{y} - y\right)^2$$

• ,	••	' ' '	
50	1	30	
76	2	48	
26	1	12	
102	3	90	
	50 76 26	50 1 76 2 26 1	50 1 30 76 2 48 26 1 12

living area (m²) | **# bedrooms** | price (1000's euros)

50	1	30
76	2	48
26	1	12
102	3	90

living area (m²) | **# bedrooms** | price (1000's euros)

Variable standardization

Variables have various magnitudes. Example:

- Living area: Up to a few hundreds m²
- ▶ Price: Up to a few 100 000s BGN (and even more)

This can be an issue when training a regression model.

Variable standardization

Variables have various magnitudes. Example:

- ► Living area: Up to a few hundreds m²
- Price: Up to a few 100 000s BGN (and even more)

This can be an issue when training a regression model.

It is possible to calculate the $standard\ score\ z$ of a variable x

$$z = \frac{x - \mu}{\sigma}$$

where

- $ightharpoonup \mu$ is the mean of the variable
- $ightharpoonup \sigma$ is its standard deviation

Variable standardization

Variables have various magnitudes. Example:

- ▶ Living area: Up to a few hundreds m²
- Price: Up to a few 100 000s BGN (and even more)

This can be an issue when training a regression model.

It is possible to calculate the **standard score** z of a variable x

$$z = \frac{x - \mu}{\sigma}$$

where

- $\blacktriangleright \mu$ is the mean of the variable
- $ightharpoonup \sigma$ is its standard deviation

Another option: Scale between 0 and 1

$$z = \frac{x - \min}{\max - \min}$$

Overfitting and underfitting

Illustration on a generated example: Try to fit the function

$$y = f(x) = \cos\left(\frac{3\pi}{2}x\right) + \text{noise}$$

for $x \in [0, 1]$, with a polynomial regression

Overfitting and underfitting

Illustration on a generated example: Try to fit the function

$$y = f(x) = \cos\left(\frac{3\pi}{2}x\right) + \text{noise}$$

for $x \in [0, 1]$, with a polynomial regression

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

Optimal parameters can be chosen with cross-validation over a grid:

Split the data into train/test

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

- Split the data into train/test
- ▶ Choose a degree $d \in \{1, ..., 20\}$

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

- Split the data into train/test
- ▶ Choose a degree $d \in \{1, ..., 20\}$
- Train on the train set with this degree

As for classification models, parameter selection plays a key role in the regression performance:

- Degree of the polynomial
- Regularization parameter

- Split the data into train/test
- ▶ Choose a degree $d \in \{1, ..., 20\}$
- Train on the train set with this degree
- Test the model on the test set

Fitting a distribution

$$\hat{y} = f(x) = Ae^{\frac{(x - x_0)^2}{2\sigma^2}}$$

Alternatives to least squares

It is possible to use a different loss function ℓ . Remember, we had

$$\ell\left(\hat{y},y\right) = (\hat{y} - y)^2$$

Alternatives to least squares

It is possible to use a different loss function ℓ . Remember, we had

$$\ell\left(\hat{y},y\right) = (\hat{y} - y)^2$$

We can use support vector machines for regression (SVR):

- ▶ If within the margin (i.e. $-\epsilon \le \hat{y} y \le +\epsilon$) then no penalty
- linear or quadratic penalty outside the margin (see flip-chart for illustration)

This loss function is called ϵ -insensitive.

Alternatives to least squares

It is possible to use a different loss function ℓ . Remember, we had

$$\ell\left(\hat{y},y\right) = (\hat{y} - y)^2$$

We can use support vector machines for regression (SVR):

- ▶ If within the margin (i.e. $-\epsilon \le \hat{y} y \le +\epsilon$) then no penalty
- linear or quadratic penalty outside the margin (see flip-chart for illustration)

This loss function is called ϵ -insensitive.

Note: We can use kernels as for SVM

Thank you! Questions?