- SAFAPS SIM ARCHITECTURE DOCUMENT

Jeremy Harrault

SWORDFISH

– SAFAPS SIM –	Publication date	26/01/2016	- SPARCS -
Stress and Fatigue			5.755
Audit and Prediction	Project name	SAFAPS SIM	Software Product Architecture Resources Control System
Service Simulator	Subject	Architecture Document	Resources Control System
	Chapter name	Objectives of this document	

Objectives of this document

The purpose of this document is to present the architecture of the SAFAPS SIM project. It will contain diagrams as well as explanations to describe the architectural choices in order to fulfil the requirements. The information contained in the document act as a guide in order to fully develop, deploy and setup SAFAPS. Reflexions and reviewed decisions are tracked in this document.

– SAFAPS SIM –
Stress and Fatigue
Audit and Prediction
Service Simulator

Publication date	26/01/2016
Project name	SAFAPS SIM
Subject	Architecture Document
Chapter name	Objectives of this document

– SPARCS –Software Product ArchitectureResources Control System

Glossary and Terminology

- A -

API: Application Programming Interface

_ J _

JSON: JavaScript Object Notation

-S-

S&F: Stress and Fatigue

SAFAPS: Stress and Fatigue Audit and Prediction Service

– SAFAPS SIM –Stress and Fatigue	Publication date	26/01/2016	- SPARCS -
Audit and Prediction	Project name	SAFAPS SIM	Software Product Architecture Resources Control System
Service Simulator	Subject	Architecture Document	Resources Control System
	Chapter name	Document Description	

Document Description

Title	SAFAPS SIM : Architecture Document		
Creation date	25/01/2016		
Publication date	26/01/2016		
Product Owner	Augustin Tataru	taau15md@student.ju.se	
Authors	Jeremy Harrault	hajr15bp@ju.se	
Subject	Architecture Document		
Model version	1.0		
Document version	0.5		

Revisions table

Date	Rev.	Author	Modified Section(s)	Comments	
25/01/16	0.1	Jeremy Harrault	All	Add empty sections	
28/01/16	0.2	Jeremy Harrault	4.	Add context and database view	
29/01/16	0.3	Jeremy Harrault	4.	Add invoice table in database view and add additional information	
02/02/16	0.4	Jeremy Harrault	1. 4.	Remove "Introduction and Management Summary" part. Add the general architecture principals. Add standardization from information viewpoint	
04/02/16	0.5	Jeremy Harrault	4.	Explanation "datetime". Modify Database standardization rules	

SAFAPS SIM –
 Stress and Fatigue
 Audit and Prediction
 Service Simulator

Publication date	26/01/2016
Project name	SAFAPS SIM
Subject	Architecture Document
Chapter name	Table of Contents

SPARCS –Software Product Architecture Resources Control System

Table of Contents

1.	Gen	eral Architecture Principles	1
:	1.1.	Layer View	1
:	1.2.	Restful architecture	1
2.	Arcl	hitectural Design Decisions	2
3.	Vie	vpoints and Views	3
3	3.1.	Context Viewpoint	3
3	3.2.	Functional Viewpoint	4
3	3.3. 3.3.1	•	4
_	3.3.2		
	3.4.	Concurrency Viewpoint	
	3.5.	Development Viewpoint	
3	3.6.	Deployment Viewpoint	
3	3.7.	Operational Viewpoint	6
4.	Qua	lity Property Summary	7
5.	Imp	ortant Scenarios	8
6.	Issu	es Awaiting Resolution	9
7.	Арр	endices 1	0
Lis	st of	Tables	
		SAFAPS SIM global layers	
		Database entity additional information	
		Example of verbs for database table relationships	
		example of naming foreign keys between database tables	
Lis	st of	Figures	
		SAFAPS SIM global architecture	
_		Context diagram	3

– SAFAPS SIM –Stress and Fatigue	Publication date	26/01/2016	- SPARCS -
Audit and Prediction	Project name	SAFAPS SIM	Software Product Architecture Resources Control System
Service Simulator	Subject	Architecture Document	Resources Control System
	Chapter name	General Architecture Principles	

1. General Architecture Principles

1.1. Layer View

Figure 1: SAFAPS SIM global architecture

SAFAPS SIM Web server is able to receive HTTP requests and send HTTP response in return. It is composed of for layers.

Layer	Description
Application server	The application server is first layer that the request goes across. This layer is
	between the software application and the operating system that the web server
	is running on. It catches the HTTP requests received by the server and pass it to
	the implemented web application.
Web service	The web service includes all business logic that will be computed. It includes the router which will call controllers depending on the resource pointed by the resource. Controllers can access and modify values within entities and call the S&F evaluator launching an asynchronous process. The web server takes JSON as input and returns JSON as output
Database	The layer is in charge of storing data for future use
View layer	The view layer is used to lay out the data returned by the web service within HTML to present data onto browser for example.

Table 1: SAFAPS SIM global layers

1.2. Restful architecture

– SAFAPS SIM –	Publication date	26/01/2016	– SPARCS –
Stress and Fatigue			Software Product Architecture
Audit and Prediction	Project name	SAFAPS SIM	Resources Control System
Service Simulator	Subject	Architecture Document	Resources Control System
	Chapter name	Architectural Design Decisions	

2. Architectural Design Decisions

– SAFAPS SIM –	Publication date	26/01/2016	– SPARCS –
Stress and Fatigue			Software Product Architecture
Audit and Prediction	Project name	SAFAPS SIM	Resources Control System
Service Simulator	Subject	Architecture Document	Resources Control System
	Chapter name	Viewpoints and Views	

3. Viewpoints and Views

3.1. Context Viewpoint

Figure 2: Context diagram

SAFAPS SIM is a system that is mainly used by external systems from organizations. Managers from such organizations can send SAFAPS through their external system to SAFAPS SIM and get authenticated using unique authenticating keys. Managers cannot interrogate SAFAPS SIM directly.

Once the evaluation result is ready, it is sent back to the external system.

When managers are added to or removed from the external system, it can notify SAFAPS SIM so that they are added to or removed from SAFAPS SIM.

External organizations' financials can consult invoices for the organization in two ways. He can either consult them from his mail or directly from SAFAPS SIM website. Indeed, when an invoice is generated by SAFAPS SIM, it is automatically sent to the external organization.

SAPAFS SIM is a simulation software. To limit the work to do on the back-end of SAFAPS website, the information about the organizations is filled in the system by the SAFAPS administrators.

– SAFAPS SIM –	Publication date	26/01/2016	– SPARCS –
Stress and Fatigue			Software Product Architecture
Audit and Prediction	Project name	SAFAPS SIM	Resources Control System
Service Simulator	Subject	Architecture Document	Resources Control System
	Chapter name	Viewpoints and Views	

3.2. Functional Viewpoint

3.3. Information Viewpoint

3.3.1. Database View

Figure 3: Database entity diagram

Some **additional information** regarding this diagram needs to be given in order to fully understand how to manipulated this presented data:

Table	Column	Additional information
- administrators - managers	- active	The active field represent whether the account is still authorized to use SAFAPS SIM functionalities. The type of this field represent a data with only 2 exclusive possible values. Depending on the database implementation, these values can either be TRUE/FALSE or 1/0. Both are correct.
- invoices	- currency - amount	The currency of the invoice is stored as locale as describe in the RFC 4646 (e.g. en_US, en_UK). The amount is a floating number that can have up to 4 decimals. The stored value is the amount of the invoice converted into the currency stored in the invoice.
- events	- timezone	The time zone of the event is stored as a string in the format "Continent/City".
	- start_time - end_time	These "date" fields store a date in the calendar (MM/DD/YYYY) and a time (hh:mm:ss). On some database instance, this type is also called "datetime"

Table 2: Database entity additional information

– SAFAPS SIM –	Publication date	26/01/2016	– SPARCS –
Stress and Fatigue			Software Product Architecture
Audit and Prediction	Project name	SAFAPS SIM	Resources Control System
Service Simulator	Subject	Architecture Document	Resources Control System
	Chapter name	Viewpoints and Views	

Warning: This diagram has been made without considering the database type or version which is used in the project. It offers a generic model showing how the data are stored and related to each other.

3.3.2. Database Standardization

Hereafter is the naming convention and other rules adopted for the database implementation.

• Tables:

• The table names are fully given in low camel case (lowercase letter with '_' as space between words).

Do	Don't
organizations	Organizations (first letter is uppercase)
organization_invoices	organizationinvoices (no '' between words)

Table 3: Example of naming database tables

• Table IDs:

- Each table representing an entity must have an ID. Only tables made for many-to-many relationships may be without any ID.
- o Entities' ID are "bigint" stored over 19 bits
- o Entities' ID are unique, "non-nullable", primary keys.
- o Entities' ID named 'id'

Foreign keys:

- Foreign keys are supposed to represent one-to-many or one-to-one relationships between two tables.
- o Each of these relationships needs to be defined using a verb.

Example:

One	Can be related to	Verb
Organization	(many) Invoices	Invoices are => 'send to' => Organization
Evaluation	(many) Events	Events are => 'included in' => Evaluation
Evaluation	(one) Result	Result is => 'calculated from' => Evaluation
Result	(one) Evaluation	Evaluation is => 'generating' => Result

Table 4: Example of verbs for database table relationships

Note: For one-to-one relationship, either one or the other table is able to store the foreign key (but not both at once).

O Foreign keys must be named <fk_table_name>_<fk_attribute_name>

Example:

Do	Don't
organization_id	organizationid
evaluation_id	workfor
organization_id	administrator_organization_id

Table 5: Example of naming foreign keys between database tables

– SAFAPS SIM –	Publication date	26/01/2016	– SPARCS –
Stress and Fatigue			Software Product Architecture
Audit and Prediction	Project name	SAFAPS SIM	Resources Control System
Service Simulator	Subject	Architecture Document	Resources Control System
	Chapter name	Viewpoints and Views	

- 3.4. Concurrency Viewpoint
- 3.5. Development Viewpoint
- 3.6. Deployment Viewpoint
- 3.7. Operational Viewpoint

– SAFAPS SIM –	Publication date	26/01/2016	– SPARCS –
Stress and Fatigue			Software Product Architecture
Audit and Prediction	Project name	SAFAPS SIM	Resources Control System
Service Simulator	Subject	Architecture Document	Resources Control System
	Chapter name	Quality Property Summary	

4. Quality Property Summary

– SAFAPS SIM –	Publication date	26/01/2016	– SPARCS –
Stress and Fatigue			Software Product Architecture
Audit and Prediction	Project name	SAFAPS SIM	Resources Control System
Service Simulator	Subject	Architecture Document	Resources Control System
	Chapter name	Important Scenarios	

5. Important Scenarios

– SAFAPS SIM –	Publication date	26/01/2016	– SPARCS –
Stress and Fatigue			Software Product Architecture
Audit and Prediction	Project name	SAFAPS SIM	Resources Control System
Service Simulator	Subject	Architecture Document	Resources Control System
	Chapter name	Issues Awaiting Resolution	

6. Issues Awaiting Resolution

– SAFAPS SIM –	Publication date	26/01/2016	– SPARCS –
Stress and Fatigue			Software Product Architecture
Audit and Prediction	Project name	SAFAPS SIM	Resources Control System
Service Simulator	Subject	Architecture Document	Resources Control System
	Chapter name	Appendices	

7. Appendices