Série 9

David Wiedemann, Matteo Mohammedi, Nino Courtecuisse

2 mai 2022

a)

Etant donné un groupe G, on construit une présentation de la manière suivante.

- On choisit un ensemble de générateurs A pour G, ceci est toujours possible, quitte à prendre l'ensemble G tout entier.
- On construit le groupe libre à A générateurs F(A).
- On définit l'application $\phi: F(A) \to G$ en envoyant chaque générateur sur l'élément associé.
- En tant que relateurs, on choisit $I = \ker \phi$.

On prétend alors que $\langle A|I\rangle$ est une présentation de G.

En effet, I étant déjà un groupe normal, la présentation $\langle A, I \rangle$ est isomorphe (par définition) à $F(A)_I$ et le premier théorème d'isomorphisme implique que $F(A)/I \simeq G$.

On montre que $\mathbb{Z}_{5\mathbb{Z}} = \langle a|a^5\rangle$. En effet, le groupe $G = \langle a|a^5\rangle$ a précisément 5 éléments, puisque 5 est un nombre premier, on en déduit l'isomorphisme ci-dessus.

De plus $D_{10} = \langle a, b | a^2, b^5, abab \rangle$.

En effet, utilisons la définition de groupe dihédral (démontrée en structures algébriques je crois) $D_{2n} = C_n \rtimes C_2$ ou l'action de C_2 sur C_n est donnée par l'inversion d'éléments.

Alors posons $G = \langle a, b | a^2, b^5, abab \rangle$ et définissons l'application $\phi : F(a, b) \rightarrow$ D_{10} qui envoie a sur (0,1) et b sur (1,0).

Alors ϕ passe au quotient de G et induit une application $\overline{\phi}: G \to D_{10}$, cette application est surjective puisque ϕ l'est.

De plus, on vérifie facilement que G possède 10 éléments (chaque mot a un représentant de la forme $a^k b^j$ avec $0 \le k \le 2$ et $0 \le j \le 5$), ainsi $\overline{\phi}$ est un morphisme surjective entre deux ensembles de même cardinalité, ie. un isomorphisme.

b)

On montre le résultat pour un ensemble de générateurs arbitraires et de relateurs finis.

Soit G un groupe, A un ensemble de générateurs et I un ensemble de relateurs finis tel que $G = \langle A|I\rangle$.

On procède par induction, sur le nombre de générateurs.

Si |I| = 0, le résultat est immédiat en prenant $X = \bigvee_A S^1$ qui aura comme groupe fondamental le groupe libre à A générateurs, ie., G.

Supposons donc maintenant le résultat démontré pour |I| = n et montrons le résultat pour n+1 relateurs.

Soient r_1, \ldots, r_{n+1} nos n+1 relateurs, par hypothese de récurrence, on peut construire un espace dont le groupe fondamental est donné par la présentation $\langle A|r_1, \ldots, r_n\rangle$, appelons cet espace X.

De par notre construction inductive, on sait que X contiendra toujours un sous-espace homéomorphe à $\vee_A S^1$.

On construit maintenant le pushout suivant :

$$S^{1} \xrightarrow{\tilde{r}_{n+1}} X$$

$$\downarrow \qquad \qquad \downarrow$$

$$e^{2} \longrightarrow X'$$

Ou ι est l'inclusion triviale et \tilde{r}_{n+1} est une application ayant le même type d'homotopie que le mot donné par r_{n+1} dans $\vee_A S^1 \subset X$.

Etant donné que X' est obtenu comme attachement cellulaire, le corrolaire de Seifert-Van Kampen vu en cours s'applique et on obtient un pushout de groupes donné par

$$\mathbb{Z} \xrightarrow{\tilde{r}_{n+1}} \langle A | r_1, \dots, r_n \rangle$$

$$\downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \pi_1(X')$$

Et ainsi, $\pi_1(X')$ admet la présentation $\langle A|r_1,\ldots,r_{n+1}\rangle$

 $\mathbf{c})$

Espace avec $\mathbb{Z}_{5\mathbb{Z}}$ comme Groupe Fondamental

Etant donné que $\mathbb{Z}_{5\mathbb{Z}}$ admet la présentation $\langle a|a^5\rangle$, l'espace obtenu par le pushout suivant

$$S^{1} \xrightarrow{r_{5}} S^{1}$$

$$\downarrow^{\iota} \qquad \qquad \downarrow$$

$$e^{2} \longrightarrow S_{1} \cup_{5} e^{2}$$

Où ι est l'inclusion et r_5 est une quelconque application de degre 5. De par la partie b), on sait que cet espace aura $\mathbb{Z}_{5\mathbb{Z}}$ comme groupe fondamental

Espace avec D_{10} comme Groupe Fondamental

On utilise la présentation $\langle \tau, \sigma | \tau^5, \sigma^2, \sigma \tau \sigma \tau \rangle$.

On notera S^1_{σ}, S^1_{τ} pour deux copies distinctes de S^1 .

Fixons $T: S^1 \to S^1_{\sigma} \vee S^1_{\tau}$ l'inclusion de S^1 dans la copie S^1_{τ} du wedge et $\Sigma: S^1 \to S^1_{\sigma} \vee S^1_{\tau}$ l'inclusion de S^1 dans la copie S^1_{σ} du wedge.

On construit alors les pushouts consécutifs suivants :

$$S^{1} \xrightarrow{T^{5}} S^{1}_{\sigma} \vee S^{1}_{\tau}$$

$$\downarrow^{\iota} \qquad \qquad \downarrow$$

$$e^{2} \longrightarrow (S^{1}_{\sigma} \vee S^{1}_{\tau}) \cup_{\tau^{5}} e^{2}$$

Ou T^5 est le lacet T concaténé 5 fois avec lui même.

$$S^{1} \xrightarrow{\Sigma^{2}} (S^{1}_{\sigma} \vee S^{1}_{\tau}) \cup_{\tau^{5}} e^{2}$$

$$\downarrow^{\iota} \qquad \qquad \downarrow$$

$$e^{2} \longrightarrow ((S^{1}_{\sigma} \vee S^{1}_{\tau}) \cup_{\tau^{5}} e^{2}) \cup_{\sigma^{2}} e^{2}$$

Où Σ^2 est la concaténation de Σ avec soi-même. Et finalement, on construit le pushout

$$S^{1} \xrightarrow{S*T*S*T} ((S^{1}_{\sigma} \vee S^{1}_{\tau}) \cup_{\tau^{5}} e^{2}) \cup_{\sigma^{2}} e^{2}$$

$$\downarrow^{\iota} \qquad \qquad \downarrow$$

$$e^{2} \longrightarrow (((S^{1}_{\sigma} \vee S^{1}_{\tau}) \cup_{\tau^{5}} e^{2}) \cup_{\sigma^{2}} e^{2}) \cup_{\sigma\tau\sigma\tau} e^{2} = X$$

De par la partie b, l'espace X ainsi obtenu aura bien $\langle \sigma, \tau | \sigma^2, \tau^5, \sigma \tau \sigma \tau \rangle = D_{10}$ comme groupe fondamental.