

Humboldt-Universität zu Berlin

Source: National Cancer Institute USA

Identification of Cancer Cell Line based on NGS data

Bioinformatics Social Meeting

31.05.2016

Bioinformatics Social Meeting

Agenda

- Motivation Cancer Cell Line NGS
 Identification
- 2. Established methods
- 3. Uniquorn Method
- 4. Outlook: RNA & Panel Seq

The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity

Jordi Barretina^{1,2,3,9,*}, Giordano Caponigro^{4,*}, Nicolas Stransky^{1,*}, Kavitha Venkatesan^{4,*},

Biomarker discovery using panels of cell lines

Cancer Cell Lines

O BERLIAY

- Model organisms
- * Experiment repeatability key

feature

HeLa cell line

Workhorse of drug-research

The problem

MDA-MB-435 cells are derived from M14 Melanoma cells—a loss for breast cancer, but a boon for melanoma research

James M. Rae · Chad J. Creighton ·

Jeanne M. Meck · Bassem R. Haddad ·

Michael D. Johnson

WIDESPREAD INTRASPECIES CROSS-CONTAMINATION OF HUMAN TUMOR CELL LINES ARISING AT SOURCE

Roderick A.F. MacLeod1*, Wilhelm G. Dirks1, Yoshinobu Matsuo2, Maren Kaufmann1, Herbert Milch1 and Hans G. Drexler1

Gold-Standard: STR Not optimized for NGS

http://www.cstl.nist.gov/div831/strbase/fbicore.htm

Loci coverage required

Creator: gabriel maldonado

http://www.cstl.nist.gov/div831/strbase/fbicore.htm

Wet-Lab based

SNP-zygosity matching

Beyond SNP-Zygosity

* SNP-zygosity matching problematic in Cancer NGS

Uniquorn-Method

* Match (predominantly) rare,

somatic passenger mutations

Start + Length

Drop SNP-Zygosity constraint

Comparison Uniquorn

Identification Method for NGS CLs	Physical Sample Required	Experiments Required	Locus coverage required	Zygosity known & valid	Reference genome identical
Tandem- Repeat counting (9)	~	~	*	×	*
SPIA (5)	•	~	•	~	*
NGS SNP (17)	*	*	~	✓	~
NGS All Variants (Uniquorn)	*	*	*	*	~

Uniquorn Workflow

11

Extract position & length of variants

Weighted Similarity

Confidence Score

$$D_{k} = {N \choose k} P_{l}^{k} Q_{l}^{N-k} = \frac{N!}{k! (N-k)!} P_{l}^{k} Q_{l}^{N-k}$$

Likelihood to commit statistical

error type 1 when rejecting H0

that dis-similarity is due to

different CL-identity

$$P_{val}(S_w) = 1 - \sum_{0}^{k-1} D_k = \sum_{k}^{N} D_k$$

$$-Log_e(q - value) \coloneqq C_s$$

Results Uniquorn

> identify_vcf_file("~/BSM/M14.vcf")							
	CL	CL_source	Found_muts	Count_mutations	Conf_score	Conf_score_sig	
192	M14	COSMIC	1082	1705	100	TRUE	
45	M14	CELLMINER	278	286	100	TRUE	
1374	MDAMB435S	CCLE	72	143	100	TRUE	
25	HCT_116	CELLMINER	4	3092	0	FALSE	
6	HCC_2998	CELLMINER	3	9308	0	FALSE	

Bioconductor R-package Uniquorn

MDA-MB-435 cells are derived from M14 Melanoma cells—a loss for breast cancer, but a boon for melanoma research

James M. Rae · Chad J. Creighton ·

Jeanne M. Meck · Bassem R. Haddad ·

Michael D. Johnson

Benchmark DNA-seq

Expected	3555							
Inclusion weight of	1.0	0.5	0.25	0.0				
True positives	3396	3526	3529	3547				
False negatives	159	29	26	8				
False positives	25	67	86	43046				
True negatives	~4 mil.	~4 mil.	~4 mil.	~3.9 mil				
Sensitivity %	96	99	99	99				
Specificity %	99	99	99	99				
F1 %	98	99	98	14				
PPV	99	98	96	8				
		15						

Outlook

RNA-seq

<pre>> identify_vcf_file("~/BSM/BON1.RNA_SEQ.vcf.gz")</pre>							
	CL	CL_source	Found_muts	Count_mutations	Conf_score	Conf_score_sig	
1988	BON1_PLOIDY3	CUSTOM	25799	71833	100	TRUE	
128	NCI-H2342	COSMIC	3	2435	0	FALSE	
6	HCC_2998	CELLMINER	2	9308	0	FALSE	

Panel-seq

<pre>> identify_vcf_file("~/BSM/BON1_panel.vcf",confidence_score = 0)</pre>							
	CL CL_source Found_muts Count_mutations Conf_score Conf_score_sig						
1988	BON1_PLOIDY3	CUSTOM	72	71833	0	TRUE	
922	MDA-MB-436	COSMIC	1	372	0	FALSE	
1	SK_MEL_2	CELLMINER	0	921	0	FALSE	

Summary Key Features

- 1.Add custom "unknown" samples
 - No SNP-zygosity reference

- 3. Integrate into variant callign
- 4.Quick

- 2. Works on
 - DNA-seq (proven)
 - RNA-seq (likely to be proven)
 - Panel-seq (explorative)

5.Detects cross-contamination (likely to be proven)

Pros & Cons

Advantages

- Benchmark: High Sensitivity &Specificity
- ✓ Scalable for High-Throughput
- ✓ Free R-Package *Uniquorn*
- ✓ ~2000 CL samples available

Disadvantages

- X Pair-wisely non-similar NGSlibrary samples
- X Parameter-based
- X Background-noise varies

Take away message

Identify NGS CL data before usage

BiocLite("Uniquorn")

NGS Comparability CL panels

Reference set	Varian ts*	Cancer Cell Lines	Ø Varian ts CL*	Cover ed genes	Variant calling software	SNP MAF filtering
CoSMIC	760	1025	7,4	20965	Caveman Pindel	> 0.0 (all)
CCLE	140	904	1,5	1651	MuTect	>= 0.05
CellMiner	0,68	60	0,01	>20k	GATK	None
* 1 = 100k						

Results Weighted Libraries

Gold Standard

OLDT-UNILERSITA'S BERLIA

Based on
Regularized
name matching
(Only Alpha-numercial +
Reports for exceptions)

