Ders 12 - Kruskal Wallis Testi (İlişkisiz k örneklem)

Nihat Tak

2023-05-19

Kruskal-Wallis testi

- k bağımsız örnekleme ilişkin parametrik olmayan tekniklerden birisidir.
- Kruskal Wallis k Örneklem Testi, k tane örneklemin aynı kitleden gelip gelmediğini ortaya koymaya yöneliktir.(Uyum İyiliği Testi)
- Parametrik varyans analizi yapmaya uygun veriler olmadığı durumda kullanıldığı için, bu test Kruskal Wallis Tek Yönlü Varyans Analizi olarak da adlandırılır.

Varsayımları

- Veriler, n_1, n_2, \ldots, n_k büyüklüğünde k tane rasgele örneklemden oluşur.
- Gözlemler hem örneklem içinde hem de örneklemler arasında bağımsızdır.
- İlgilenilen değişken süreklidir.
- Ölçme düzeyi en az sıralayıcıdır.

Adımları

1. Adım Hipotezler kurulur.

 H_0 : Kitleler benzer dağılımlara sahiptir.

 H_1 : Kitlelerin dağılımları birbirinden farklıdırlar.

veya

$$H_0: \tau_1 = \tau_2 = \dots = \tau_k$$

 H_1 : En az bir τ_i farklıdır.

 τ_i :i' inci deneme etkisi

2.Adım Test istatistiği hesaplanır.

- Örneklemdeki verilere, hangi örnekleme ait olduklarına bakılmaksızın, büyüklük sırasına göre sıra sayıları verilir.
- Örneklemlere ait sıra sayıları toplamları Ri, ve örneklem birim sayıları ni olmak üzere test istatistiği hesaplanır.

 $n = n_1 + n_2 + \ldots + n_k$ olmak üzere,

$$H = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(n+1)$$

Burada;

k = Örnek (grup) sayısı

n = (k) gruptaki örnek sayısı $n = \sum n_i$

 n_i = i. gruptaki gözlem sayısı

 R_i = i. gruptaki sıra no toplamı

3. Adım Kritik tablo değeri bulunur.

k=3 ve $n_1,n_2,\ldots,n_k<5$ olması durumunda $H_{\alpha;n_1;n_2;n_3}$ kritik değeri tablodan bulunur.

3. Adım Karar verilir.

 $H > H_{\alpha:n_1:n_2:n_3}$ ise H_0 red,

Büyük Örneklem

- Örneklem sayısı k>3 ve örneklem büyüklükleri $n_1,n_2,\ldots,n_k\geq 5$ olması durumunda, H α kritik değer tablodan belirlenemez.
- Büyük örneklem/örneklemler durumunda H istatistiği, serbestlik derecesi (v = k 1) olan χ^2 dağılımına yaklaşır.
- Hesaplanan H istatistiği, $\chi^2_{\alpha,(k-1)}$ değeri ile karşılaştırılır.

 $H > \chi^2_{\alpha,(k-1)}$ ise H_0 red edilir.

Aynı Değerli Gözlemler

• Aynı değerli gözlemler söz konusu olduğunda test istatistiğine düzeltme işlemi uygulanır.

 t_i :tekrarlanan gözlem değerlerinin sayıları

$$D.T. = 1 - \frac{\sum (t_i^3 - t_i)}{(n^3 - n)}$$

$$H^* = H/D.T.$$

Farklı Grupların Saptanması

- Uygulanan teste, hesaplanan H_{hesap} test istatistiği değeri H_{tablo} değerinden daha küçük olması halinde H_0 hipotezini red edemeyiz. Bu durumda gruplar aynı ana kütleden rassal olarak çekilmiş birer rassal örneklemdir sonucuna varılır. Yani gruplarda yer alan gözlem değerlerinin birbirinden farklı olmadığı kararına varılır.
- Uygulanan teste, hesaplanan H_{hesap} test istatistiği değeri H_{tablo} değerinden daha büyük olması halinde H_0 hipotezini red edilir. Bu durumda grupların farklı olduğu sonucuna varılır.
- Hangi grupların birbirinden farklı olduğunu ortaya koymak üzere farklı grupların saptanması işlemi yapılır.

 Farklı grupların saptanması için izlenilebilecek yollardan bir tanesi Miller tekniğidir. Grup sayısı 3 ve gruplardaki birim sayıları n≤5 iken, karşılaştırılmak istenen iki R (gruba ait rankların ortalaması) arasındaki farkın büyüklüğüne bakarak, bu farkın istatistik bakımından önemli olup olmadığı kararlaştırılır.

Yöntem

• Ortalamalar arası fark dağılımının standart sapması bulunur.

$$\sigma_{\overline{R}_1 - \overline{R}_2} = \frac{\sqrt{n(n+1)}}{12} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

- Buna göre üç \overline{R} değerinden ilk ikisinin karşılaştırılması amaçlandığında;
- $\left|\overline{R_1}-\overline{R_2}\right|$ farkının istatistik bakımından önemli olup olmadığını belirlemek üzere

$$\frac{\left|\overline{R}_{1}-\overline{R}_{2}\right|}{\sigma_{\overline{R}_{1}-\overline{R}_{2}}}$$

değerinin H_0 koşulunda gözlenebilecek, K-W tablosundan okunan $H_{\alpha;n_1;n_2;n_3}$ değeri karekökü ile karşılaştırması yapılarak

$$\left|\frac{\left|\overline{R}_{1}-\overline{R}_{2}\right|}{\sigma_{\overline{R}_{1}-\overline{R}_{2}}}>\sqrt{H_{\alpha};n_{1};n_{2};n_{3}}\right|$$

ise $\overline{R_1}$ ve $\overline{R_2}$ farklıdır.

Örnek 1 Bir taşıma şirketi, aynı nitelik ve miktardaki kolilerin kamyonete yüklenmesi için geçen süreleri Sabah, Öğleden sonra ve Gece olmak üzere 3 farklı zaman diliminde karşılaştırmak istemektedir. Bu amaçla, sabah 4 işçinin, öğleden sonra 4 işçinin ve gece 3 işçinin yükleme sürelerini belirlemiştir. Yükleme zamanları için yükleme süreleri arasında farklılık var mıdır?

ZAMAN YÜKLEME SÜRELERİ (dakika)

Sabah: 28 30 30 34

Öğleden sonra: 33 34 36 38

Gece: 43 46 52

1. Adım Hipotezler kurulur.

 H_0 : Üç farklı zaman diliminde gözlenen süreler, bu üç zaman için birbirinden farklı değildir. (Kitleler benzer dağılımlara sahiptir.)

 H_1 : Üç farklı zaman diliminde gözlenen süreler, bu üç zaman için birbirinden farklıdır. (Kitlelerin dağılımları birbirinden farklıdırlar.)

2. Adım Test istatistiği hesaplanır.

Sabah	Sıra no	Ort. Sıra no	Öğ.sonr	Sıra no	Ort Sıra no	Gece	Sıra no	Ort. Sıra no
28	1	1	33	4	4	43	9	9
30	2	2,5	34	6	5,5	46	10	10
30	3	2,5	36	7	7	52	11	11
34	5	5,5	40	8	8			
		R ₁			R ₂			R ₃

$$\begin{array}{c} \blacksquare & R_1 = 1 + 2, 5 + 2, 5 + 5, 5 = 11, 5 \\ R_2 = 4 + 5, 5 + 7 + 8 = 24, 5 \\ R_3 = 9 + 10 + 11 = 30 \end{array}$$

$$n=n_1+n_2+n_3$$
 olmak üzere,
 $R_1+R_2+R_3=n(n+1)/2$

Test istatistiği,

$$H = \frac{12}{11(11+1)} \left[\frac{(11,5)^2}{4} + \frac{(24,5)^2}{4} + \frac{(30)^2}{3} \right] - 3(11+1) = 7,96$$

□ Aynı değerli gözlemler için düzeltme terimi hesaplanır.

 t_1 =2 (30 değerine sahip gözlem sayısı) t_2 =2 (34 değerine sahip gözlem sayısı)

□ Düzeltme işlemi sonunda test istatistiği; H*=H/D.T.=7,96/0,991=8,03

3. Adım Kritik tablo değeri bulunur.

$$H_{0,005;4;4;3} = 5.59$$

4. Adım Karar verilir.

 $H^*=8.03>5.59=H_{0,005;4;4;3}$ olduğundan H_0 reddedilir. Yani, üç farklı zaman dilimindeki yükleme süreleri birbirinden farklıdır.

Üç farklı zamanda yükleme yapan firmanın sabah, öğleden sonra ve akşam yükleme sürelerinin birbirinden farklı olduğu önceki uygulamada istatistiksel olarak ortaya konmuştur.

Buna göre hangi yükleme sürelerinin birbirinden farklı olduğunu bulunuz.

Sabah	Sır a no	Ort. Sıra no	Öğ.sonr	Sıra no	Ort Sıra no	Gece	Sıra no	Ort. Sıra no
28	1	1	33	4	4	43	9	9
30	2	2,5	34	6	5,5	46	10	10
30	3	2,5	36	7	7	52	11	11
34	5	5,5	40	8	8			
Toplam		R ₁			R ₂			R ₃

İşlem sırasında $R_1=11.5$, $R_2=24.5$, $R_3=30$ bulunmuştur. Ortalamaları alındığında

$$\overline{R}_1 = 11,5/4 = 2,875; \overline{R}_2 = 24,5/4 = 6,125; \overline{R}_3 = 30/3 = 10$$

Elde edilir.Bunlar ikişer ikişer karşılaştırılacaktır.

 $k=3, n_1=4, n_2=4, n_2=3$ ve $\alpha=0.05$ için tablo değeri K-W $H_{tablo}=H_{0.05;4;4;3}=5.59$ Tablo değerinin karekökü= 2,36

 $\overline{R_1}$ ve $\overline{R_2}$ arasındaki farkın önemliliği;

$$\left|\overline{R_1} - \overline{R_2}\right| = |2.875 - 6.125| = 3.25$$

$$\sigma_{\overline{R}_1 - \overline{R}_2} = \frac{\sqrt{n(n+1)}}{12} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = \frac{\sqrt{11(11+1)}}{12} \cdot \sqrt{\frac{1}{4} + \frac{1}{4}} = 2,34$$

$$\frac{\left|\overline{R}_{1} - \overline{R}_{2}\right|}{\sigma_{\overline{R}_{1} - \overline{R}_{2}}} = \frac{\left|2,875 - 6,125\right|}{2,34} = 1,39$$

1,39 < 2,36 nedeniyle, bu fark önemli bulunmamıştır.

Sabah ve öğle yükleme sürelerinin birbirinden farklı olmadığı sonucuna varılır.

 $\overline{R_1}$ ve $\overline{R_3}$ arasındaki farkın önemliliği;

$$|\overline{R_1} - \overline{R_3}| = |2.875 - 10| = 7.125$$

$$\sigma_{\overline{R}_1 - \overline{R}_3} = \frac{\sqrt{n(n+1)}}{12} \cdot \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \frac{\sqrt{11(11+1)}}{12} \cdot \sqrt{\left(\frac{1}{4} + \frac{1}{3}\right)} = 2,53$$

$$\frac{\left|\overline{R}_{1} - \overline{R}_{3}\right|}{\sigma_{\overline{R}_{1} - \overline{R}_{3}}} = \frac{7,125}{2,53} = 2,82$$

2,82> 2,36 nedeniyle, bu fark önemli bulunmuştur..

Sabah ve akşam yükleme sürelerinin birbirinden farklı olduğu sonucuna varılır.

 $\overline{R_2}$ ve $\overline{R_3}$ arasındaki farkın önemliliği;

$$\left| \overline{R_2} - \overline{R_3} \right| = |6.125 - 10| = 3.875$$

$$\sigma_{\overline{R_2} - \overline{R_3}} = \frac{\sqrt{n(n+1)}}{12} \cdot \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \frac{\sqrt{11(11+1)}}{12} \cdot \sqrt{\left(\frac{1}{4} + \frac{1}{3}\right)} = 2,53$$

$$\frac{\left| \overline{R_2} - \overline{R_3} \right|}{\sigma_{\overline{R_3} - \overline{R_3}}} = \frac{3,875}{2,53} = 1,53$$

1,5 < 2,36 nedeniyle, bu fark önemli bulunmamıştır.

Öğle ve akşam yükleme sürelerinin birbirinden farklı olmadığı sonucuna varılır.

Örnek 2 Televizyon kanallarından birinde yayınlanan bir tartışma programının izlenme sürelerinin, izleyicilerin öğrenim düzeylerine göre farklılık gösterip göstermediği saptanmak istenmektedir. Bu amaçla, 4 öğrenim düzeyine sahip izleyicilerin bu programı ne kadar süre izledikleri belirlenmiştir.

İlköğretim	Lise	Üniversite	Lisansüstü
43	50	80	60
48	58	85	95
52	60	90	120
55	75	120	240
60	75	160	240
64	82	200	
80		240	
90			

1. Adım Hipotezler kurulur.

 H_0 : Farklı öğrenim düzeylerine sahip izleyicilerin programı izleme süreleri farklı değildir. (Kitleler benzer dağılımlara sahiptir.)

 H_1 : Farklı öğrenim düzeylerine sahip izleyicilerin programı izleme süreleri farklıdır. (Kitlelerin dağılımları birbirinden farklıdırlar.)

2. Adım Test istatistiği hesaplanır.

İlköğr.	Ort.	lise	Ort.	Üniv.	Ort.	Lis.üstü	Ort
	Sıra		Sıra		Sıra		Sıra
	no		no		no		no
43	1	50	3	80	8	60	19
48	2	58	6	85	13,5	95	20,5
52	4	60	8	90	16	120	25
55	5	75	11,5	120	17,5	240	25
60	8	75	11,5	160	20,5	240	25
64	10	82	15	200	22		
80	13,5			240	23		
90	17,5						
	R ₁		R ₂		R ₃		R ₄

$$R_1=1+2+...+17,5=61$$

 $R_2=3+6+...+15=55$

$$R_3 = 8 + 13,5 + ... + 23 = 120,5$$

$$R_4 = 19 + 20,5 + ... + 25 = 114,5$$

$$n = n_1 + n_2 + n_3 + n_4$$
 olmak üzere,
 $n_1 + n_2 + n_3 + n_4 = n(n+1)/2$

□ Test istatistiği,

$$H = \frac{12}{26(26+1)} \left[\frac{(61)^2}{8} + \frac{(55)^2}{6} + \frac{(120,5)^2}{7} + \frac{(114,5)^2}{5} \right] - 3(26+1) = 15,32$$

Aynı değerli gözlemler için düzeltme terimi hesaplanır.

 t_1 =3 (60 değerine sahip gözlem sayısı)

 $t_2=2$ (75 değerine sahip gözlem sayısı)

 $t_3=2$ (80 değerine sahip gözlem sayısı)

 $t_4=2$ (90 değerine sahip gözlem sayısı)

 t_5 =2 (120 değerine sahip gözlem sayısı) t_6 =3 (240 değerine sahip gözlem sayısı)

$$D.T. = 1 - \frac{(3^3 - 3) + (2^3 - 2) + \dots + (3^3 - 3)}{26^3 - 26} = 0,996$$

□ Düzeltme işlemi sonunda test istatistiği; H*=H/D.T.=15,32/0,996=15,385

3. Adım Kritik tablo değeri bulunur.

$$\chi^2_{0.05,(4-1)} = 7.815$$

36

4. Adım Karar verilir.

 $H^* = 15.385 > 7.815 = \chi^2_{0.05,(4-1)}$ olduğundan H0 red edilir.

Farklı öğrenim düzeylerine sahip izleyicilerin programı izleme süreleri farklıdır.

Büyük Örneklemlerde Farklı Grupların Saptanması

- Grup sayısının 3'ten büyük olduğu ve her gruptaki birim sayısının da 5'ten büyük olduğu durumlarda söz konusudur.
- Bu örneklemelerde K-W testinin χ^2 yaklaşımı ile gerçekleştirildiğini görmüştük.

$$\frac{\left|\overline{R}_{1}-\overline{R}_{2}\right|}{\sigma_{\overline{R}_{1}-\overline{R}_{2}}} > \sqrt{\chi^{2}\alpha_{d.f}}$$

 $H_h > \chi^2_{\alpha,v}$ olursa H_0 reddediliyor ve gruplar arsındaki farkın önemli olduğu sonucuna varılıyordu.

Örnek (devam) Televizyondaki siyaset alanı programını izleyen 4 farklı öğrenim düzeyindeki izleyicilerin izleme süreleri karşılaştırılarak, grupların birbirinden farklı olduğu görülmüştür.

Buna göre İlköğretim ve lise öğrenim düzeyi ile İlköğretim ve lisans üstü öğrenim düzeyindeki izleyicilerin izleme süreleri arasında fark olup olmadığını $\alpha=0.05$ anlamlılık düzeyinde test ediniz.

İlköğr.	Ort. Sıra no	lise	Ort. Sıra no	Üniv.	Ort. Sıra no	Lis.üstü	Ort Sıra no
43	1	50	3	80	8	60	19
48	2	58	6	85	13,5	95	20,5
52	4	60	8	90	16	120	25
55	5	75	11,5	120	17,5	240	25
60	8	75	11,5	160	20,5	240	25
64	10	82	15	200	22		
80	13,5			240	23		
90	17,5						
	R ₁		R ₂		R ₃		R ₄
Toplam	61		55		120,5		114,5

1.Grup

$$n_1 = 8; R_1 = 61; \overline{R_1} = 7.625$$

2.Grup

$$n_2 = 6$$
; $R_2 = 55$; $\overline{R_1} = 9.167$

3.Grup

$$n_3 = 7$$
; $R_3 = 120.5$; $\overline{R_1} = 17.21$

4.Grup

$$n_4 = 5$$
; $R_4 = 114.5$; $\overline{R_1} = 22.9$

Tablo değerinin karakökü:

$$\sqrt{\chi_{0.05,3}^2} = \sqrt{7.815} = 2.796$$

• $\overline{R_1}$ ve $\overline{R_2}$ arasındaki farkın önemliliği;

$$\left| \overline{R}_{1} - \overline{R}_{2} \right| = \left| 7,625 - 9,167 \right| = 1,542$$

$$\sigma_{\overline{R}_1 - \overline{R}_2} = \frac{\sqrt{n(n+1)}}{12} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = \frac{\sqrt{26(26+1)}}{12} \cdot \sqrt{\frac{1}{8} + \frac{1}{6}} = 4,13$$

$$\frac{|\overline{R}_1 - \overline{R}|2|}{\sigma_{\overline{R}_1 - \overline{R}_2}} = \frac{1,542}{4,13} = 0,373$$

0,373 < 2,796 olduğundan ilköğretim ve lise öğrenim düzeylerinin izleme süreleri açısından fark yoktur.

 $\overline{R_1}$ ve $\overline{R_4}$ arasındaki farkın önemliliği;

$$\left| \overline{R}_{1} - \overline{R}_{4} \right| = \left| 7,625 - 22,9 \right| = 15,275$$

$$\sigma_{\overline{R}_1 - \overline{R}_4} = \frac{\sqrt{n(n+1)}}{12} \cdot \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = \frac{\sqrt{26(26+1)}}{12} \cdot \sqrt{\left(\frac{1}{8} + \frac{1}{5}\right)} = 4,36$$

$$\frac{\left|\overline{R}_1 - \overline{R}_4\right|}{\sigma_{\overline{R}_1 - \overline{R}_4}} = \frac{15,275}{4,36} = 3,5$$

3,5 > 2,796 olduğundan ilköğretim ve lisans üstü öğrenim düzeylerinin izleme süreleri açısından fark önemli bulunmuştur.

Örnek Kağıt kromotoğrafisi tekniği kullanarak iki farklı Drosophyla Melanaguster soyunda gözlerde Seplapteridin konsantrasyonu aşağıdaki gibi belirlenmiştir. Populasyondaki ölçümlerin normal dağılım olup olmadığı bilinmediğinden ve populasyon varyanslarının eşit olup olmadığı bilinmediğinden Kruskal - Vallis (H) testi kullanarak iki grubu karşılaştırırız.

A Soyu		B Soyu	B Soyu		
40.1	46.8	55.8	59.1		
48.4	39.6	64.2	61.9		
44.5	46.4	60.4	63.2		
41.0	40.0	57.8	59.1		
41.2	46.2	60.0	64.3		

1.Adım Hipotezler kurulur.

 H_0 :İki grubun varyansları eşittir.

 H_1 :İki grubun varyansları eşit değildir.

2.Adım Test istatistiği hesaplanır.

A Soyu	Sıra No:	B Soyu	Sıra No:
39.6	1	55.8	11
40.0	2	57.8	12
40.1	3	59.1	13.5
41.0	4	59.1	13.5
41.2	5	60.0	15
44.5	6	60.4	16
46.2	7	61.9	17
46.4	8	63.2	18
46.8	9	64.2	19
48.4	10	64.3	20
Medyan = 42.75	$n_1 = 10 ; R_1 = 55$	Medyan = 60.2	$n_2 = 10 ; R_2 = 155$

H = -3(n+1)

Burada; k = Örnek (grup) sayısı

n = (k) gruptaki örnek sayısı

 n_i = i. ci gruptaki gözlem sayısı

 R_i = i. ci gruptaki sıra no toplamı

$$H = \frac{12}{20(20+1)} * ((55^2/10) + (155^2/10)) - 3(21) = 14.28$$

H değerlerinin örneklere dağılışı yaklaşık olarak χ^2 dağılışıdır. Bu nedenle (k-1) = (2-1) =1 serbestlik dereceli $\chi^2_{0.01.1}=6.64$ tür.

Bu nedenle farksızlık hipotezi red edilir. Yani iki soyun ortalama dereceleri istatistik olarak birbirinden farklıdır. Eğer aynı değerde bulunan ölçümler için düzeltme yapılırsa düzeltilmiş (H) değeri 14.30 olur ve yine H_0 reddedilir.