Homework 2

Assigned: Jan 22, 2021 Due: Jan 29, 2021

Let us consider a non-inverting amplifier shown in Fig. 1. We assume that the op-amp input impedance R_i is **infinite**, the output impedance R_o is **non-zero**, and the open-loop gain A is a **finite constant**. There is a disturbance current I_o injected into the amplifier output terminal.

Figure 1: Schematic of a non-inverting amplifier.

Figure 2: Equivalent circuit model.

Fig. 2 shows the equivalent circuit model. Here, the output stage of the op-amp is modeled as a dependent voltage source with a series output impedance R_o . The output from

the dependent voltage source is $V_a = AV_e$, where V_e is the differential voltage applied to the op-amp input signal port. Note that the amplifier output voltage V_o is not equal to V_a because $R_o \neq 0$.

Problem 1

- (a) Find an expression for V_o in terms of V_a and I_o as the input variables.
- (b) Find an expression for V_e in terms of V_i and V_o as the input variables.
- (c) Complete the block diagram in Fig. 3.

Figure 3: Block diagram.

Problem 2

For $R_o = 50 \Omega$, $R_1 = 1 \text{ k}\Omega$, and $R_2 = 9 \text{ k}\Omega$, find the amplifier gain V_o/V_i when

- (a) $A = 10^5$
- (b) $A \to \infty$

Problem 3

For $R_o = 50 \,\Omega$, $R_1 = 1 \,\mathrm{k}\Omega$, and $R_2 = 9 \,\mathrm{k}\Omega$, find the amplifier output impedance V_o/I_o when

- (a) $A = 10^5$
- (b) $A \to \infty$

Problem 4

Let us consider an op-amp circuit shown in Figure 4. We assume that the op-amp is **ideal**, i.e., the input impedance R_i is infinite, the output impedance R_o is zero, and the open-loop gain A is infinite.

Figure 4: Schematic of a non-inverting amplifier.

- (a) Derive the transfer function $V_o(s)/V_i(s)$
- (b) Plot the Bode plot and the step response.