

Towards a GPU SDN Controller

Eduard Gibert Renart
Eddy Zheng Zhang
Badri Nath

Overview of the presentation

- Introduction
- Gpu Architecture
- Our approach to a GPU SDN Controller handling warp divergence
- Results
- Future work

3

Introduction

- My team:
 - Myself, Eduard Gibert Renart, 2nd year PhD student
 - Dr. Zheng Zhang, GPU Expert
 - Dr. Badri Nath, Networking Expert

GPU

ARCHITECTURE

GPU Architecture

- SM Streaming multiprocessors with multiple processing cores
 - Perform the actual computations
 - Each SM contains 32 processing cores
 - Up to 16 SMs on a card for a maximum of 512 compute cores

=ermi Architecture

Register File (32,768 x 32-bit) LD/ST LD/ST Attribute Setup | Stream Output

GPU Execution Model

- A grid is composed of blocks which are completely independent
- A block is composed of threads which can communicate within their own block
- 32 threads from a warp

Previous Work

- PacketShader a GPU Software Router [SIGCOMM '10].
- SSLShader: Cheap SSL Acceleration with Commodity Processors [NSDI '11].
- Multi-Layer Packet Classification with Graphics Processing Units [CoNEXT '14].

SDN Packet Heterogeneity

Warp Divergence

Our approach to a GPU SDN

CONTROLLER HANDLING WARP DIVERGENCE

Basic Idea

17,000,000 p/s !!! GPU speedup 5.4x

Step 1 - Packet Classification

Rx queue

recv(socket, reply, 2000, 0);

Step 2 - Host to Device

cudaMemcpy(devArray,hostArray,bytes,cudaMemcpyHostToDevice);

RUTGERS

Step 3 - Kernel Execution

kernel<<<gri>dDimensions,numberOfThreads>>>(dataOut,dataIn);

RUTGERS

Step 4 - Device to Host

Tx queue

cudaMemcpy(hostArray,devArray,bytes,cudaMemcpyDeviceToHost);

It scales vertically!!

RESULTS

Results (Kernel only)

Packet Size Heterogeneity

ITGERS

Results (Full Process)

Future

Hybrid Controller

Traditional SDN Controller only CPU.

Hybrid Controller

Any

QUESTIONS?