DEEPSER-toolkit

Jaebok Kim
Human Media Interaction
University of Twente

Goals

- Off-the-shelf training models and building speech emotion recognition (SER) applications
- Customizing own models and reproducing experiments
- 100% python codes for soft programmers

Requirements

- OS
 - MAC OSX >= 10.10.5 (Yosemite)
 - Required packages will be installed by "brew"
 - Ubuntu >= 16.04
 - Required packages will be installed by "apt-get"
 - Windows? Not tested but may work...
- Python
 - Tested on 2.7x and 3.5x
 - Required packages will be installed by "pip"
- Details of installation can be found in README.md files of each git-hub repository.

Components

- Recognizer (https://github.com/batikim09/LIVE_SER/)
 - Recognizing emotion by using voice activity detection and a trained keras/tensorflow model
- Trainer
 - Extracting features, building and optimizing a keras/tensorflow model

Recognizer

https://github.com/batikim09/LIVE SER/

Input stream can be both file and live microphone.

An example script (OSX)

- Find your available microphones
 - python ./src/offline_ser.py
- Run recognizer
 - python ./src/offline_ser.py -d_id 1 -p_mode 1 -f_mode 1 -log ./output/live.wav.csv -md ./model/AIBO.si.ENG.cw.raw.2d.res.lstm.gpool.dnn.1.h5 -c_len 1600 -m_t_step 16000 -tasks 'arousal:3,valence:3' -vd 1000 s_ratio 0.7
 - -d_id 1: you find your device index is 1
 - -p_mode 1: classification mode
 - -f_mode 1: raw wave form, depending on your trained model
 - -log ...: store all recognized results into a file
 - -md ...: your trained model
 - -c_len 1600: time-steps in each contextual window
 - -m_t_step 16000: maximum time-steps for each utterance
 - -tasks ...: your classification tasks and their number of classes
 - -vd 1000: minimum duration of speech to recognize
 - -s_ratio 0.7: minimum proportion of speech segments in total segments

VAD and feature extraction

The time steps in a contextual window and maximum time steps per utterance depend on features & model.

For example, log spectrogram windows have 10 time steps of each 25ms long frame but overlaps, 10 windows per utterance make maximum time steps 100 (\sim = 1sec).

Raw form windows have 1600 time steps (1600 samples \sim = 100ms), 10 windows per utterance make maximum time steps 16000 (=1sec).

Pre-trained models

- Two English models provide arousal and valence (3 class each) predictions
 - ./model/AIBO.si.ENG.cw.raw.2d.res.lstm.gpool.dnn.1.h5
 - Raw, RESNET-LSTM-DNN
 - Based on "Deep Temporal Models using Identity Skip-Connections for Speech Emotion Recognition, ACMMM17"
 - ./model/si.ENG.cw.mspec_mm.3d.rc3d.1.h5
 - Mel-spec + RESNET-3DCNN
 - Based on "Learning spectro-temporal features with 3D CNNs for speech emotion recognition, ACII17"
- Their performances are more less same.

Automatic Gain Normalization

- Gains are really crucial to performance.
- After starting the script, practice several utterances with various gains.
- It collects gains and finds minimum and maximum gains for min-max normalization.

Next steps

- Nice demos, visualization? Students' projects?
- Provide more models recognizing various contexts: gender...

Trainer (TBD)

