第7.3节 区间估计

- 一、区间估计基本概念
- 二、正态总体均值与方差的区间估计
- 三、小结

引言

前面,我们讨论了参数点估计.它是用样本算得的一个值去估计未知参数.但是,点估计值仅仅是未知参数的一个近似值,它没有反映出这个近似值的误差范围,使用起来把握不大.区间估计正好弥补了点估计的这个缺陷.

一、区间估计基本概念

1. 置信区间的定义

设总体X的分布函数 $F(x;\theta)$ 含有一个未知参数 θ ,对于给定值 $\alpha(0<\alpha<1)$ 若由样本 X_1,X_2,\cdots , X_n 确定的两个统计量

$$\hat{\theta}_{1} = \hat{\theta}_{1}(X_{1}, X_{2}, \dots, X_{n})$$
和
$$\hat{\theta}_{2} = \hat{\theta}_{2}(X_{1}, X_{2}, \dots, X_{n})$$
满足
$$\hat{\theta}_{1}(X_{1}, X_{2}, \dots, X_{n}) < \hat{\theta}_{2}(X_{1}, X_{2}, \dots, X_{n})$$

则称($\hat{\theta}_1$, $\hat{\theta}_2$)是随机区间.

对未知参数θ的区间估计实际上就是要找到一个随机区间,它能以足够大的概率使θ的真值在其之间.

设总体X的分布函数 $F(x;\theta)$ 含有一个未知参数 θ ,对于给定值 $\alpha(0<\alpha<1)$ 若由样本 X_1,X_2,\cdots , X_n 确定的两个统计量

$$\hat{\theta}_1 = \hat{\theta}_1(X_1, X_2, \dots, X_n)$$
和
$$\hat{\theta}_2 = \hat{\theta}_2(X_1, X_2, \dots, X_n)$$
 满足
$$P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\} = 1 - \alpha$$

则称随机区间($\hat{\theta}_1$, $\hat{\theta}_2$)是 θ 的置信度为 $1-\alpha$ 的置信区间, $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 分别称为置信度为 $1-\alpha$ 的双侧置信区间的置信下限和置信上限, $1-\alpha$ 为置信度(置信水平).

关于定义的说明

被估计的参数 6 虽然未知, 但它是一个常数,

没有随机性,而区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 是随机的.

因此定义中以下表达式

$$P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\} = 1 - \alpha$$

的本质是:

随机区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 以 $1-\alpha$ 的概率包含着参数 θ 的真值,而不能说参数 θ 以 $1-\alpha$ 的概率落入随机区间 $(\hat{\theta}_1, \hat{\theta}_2)$.

由定义可见,

对参数 θ 作区间估计,就是要设法找出两个只依赖于样本的界限(构造统计量)

$$\hat{\boldsymbol{\theta}}_{1} = \hat{\boldsymbol{\theta}}_{1}(\boldsymbol{X}_{1},...\boldsymbol{X}_{n})$$

$$\hat{\boldsymbol{\theta}}_{2} = \hat{\boldsymbol{\theta}}_{2}(\boldsymbol{X}_{1},...\boldsymbol{X}_{n})$$

$$(\hat{\boldsymbol{\theta}}_{1} < \hat{\boldsymbol{\theta}}_{2})$$

一旦有了样本,就把 θ 估计在区间($\hat{\theta}_1$, $\hat{\theta}_2$) 内. 这里有两个要求:

- 1. 要求 θ 以很大的可能被包含在区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 内,就是说,概率 $P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\}$ 要尽可能大. 即要求估计尽量可靠.
- 2. 估计的精度要尽可能的高. 如要求区间长度 $\hat{\theta}_2 \hat{\theta}_1$ 尽可能短,或能体现该要求的其它准则.

可靠度与精度是一对矛盾, 一般是在保证可靠度的条件下 尽可能提高精度.

当X是连续型随机变量时,对于给定的 α ,总是按要求 $P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\} = 1 - \alpha$ 求出置信区间,而当X是离散型随机变量时,对于给定的 α ,常常找不到区间 $(\hat{\theta}_1,\hat{\theta}_2)$ 使得 $P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\}$ 恰为 $1-\alpha$. 此时去找区间 $(\hat{\theta}_1,\hat{\theta}_2)$ 使得 $P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\}$ 至少为 $1-\alpha$,且尽可能地接近 $1-\alpha$.

区间估计的直观意义:

若反复抽样多次(各次得到的样本的容量相等,都是n),每个样本值确定一个区间 $(\hat{\theta}_1,\hat{\theta}_2)$,每个这样的区间要么包含 θ 的真值,要么不包含 θ 的真值,按大数定律,包含 θ 真值的约占 $100(1-\alpha)$ %,不包含 θ 真值的约占 100α %,例如,若 α =0.01,反复抽样1000次,则得到的1000个区间中不包含 θ 真值的约仅为10个.

2. 求置信区间的一般步骤(共3步)

- (1) 寻求一个样本 X_1, X_2, \dots, X_n 的函数: $Z = Z(X_1, X_2, \dots, X_n; \theta)$ 其中仅包含待估参数 θ ,并且Z的分布已知且不依赖于任何未知参 数(包括 θ).
- (2) 对于给定的置信度 $1-\alpha$,决定出两个常数a,b, 使 $P\{a < Z(X_1, X_2, \dots, X_n; \theta) < b\} = 1-\alpha$.

(3) 若能从 $a < Z(X_1, X_2, ..., X_n; \theta) < b$ 得到等价的不等式 $\hat{\theta}_1 < \theta < \hat{\theta}_2$, 其中 $\hat{\theta}_1 = \hat{\theta}_1(X_1, X_2, ..., X_n)$, $\hat{\theta}_2 = \hat{\theta}_2(X_1, X_2, ..., X_n)$ 都是统计量, 那么 $(\hat{\theta}_1, \hat{\theta}_2)$ 就是 θ 的一个置信度为 $1-\alpha$ 的置信区间.

样本容量n固定,置信度1-α增大,置信区间 长度增大,可信程度增大,区间估计精度降低.

置信水平1-α固定,样本容量n增大,置信区间 长度减小,可信程度不变,区间估计精度提高.

二、正态总体均值与方差的区间估计

I 单个总体 $N(\mu, \sigma^2)$ 的情况

设给定置信度为 $1-\alpha$,并设 X_1,X_2,\dots,X_n 为 总体 $N(\mu,\sigma^2)$ 的样本, \bar{X},S^2 分别是样本均值和 样本方差.

- 1. 均值 μ 的置信区间
- (1) σ^2 为已知,

 μ 的一个置信度为 $1-\alpha$ 的置信区间 $\left(\overline{X}\pm\frac{\sigma}{\sqrt{n}}u_{\alpha/2}\right)$.

推导过程如下:

因为X是 μ 的无偏估计,

且
$$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1),$$

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$
是不依赖于任何未知参数的,

由标准正态分布的上 α 分位点的定义知

$$P\left\{\left|\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\right| \leq u_{\alpha/2}\right\} = 1-\alpha,$$

$$\mathbb{P}\left\{\overline{X} - \frac{\sigma}{\sqrt{n}}u_{\alpha/2} \leq \mu \leq \overline{X} + \frac{\sigma}{\sqrt{n}}u_{\alpha/2}\right\} = 1 - \alpha,$$

于是得μ的一个置信度为1-α的置信区间

$$\left(\left[\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}, \ \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}\right]\right).$$

这样的置信区间常写成 $\left(\overline{X} \pm \frac{\sigma}{\sqrt{n}} u_{\alpha/2}\right)$.

其置信区间的长度为 $2 \times \frac{\sigma}{\sqrt{n}} u_{\alpha/2}$.

例1 包糖机某日开工包了12包糖, 称得重量(单位: 克)分别为506, 500, 495, 488, 504, 486, 505, 513, 521, 520, 512, 485. 假设重量服从正态分布, 且标准差为 $\sigma=10$, 试求糖包的平均重量 μ 的 $1-\alpha$ 置信区间(分别取 $\alpha=0.10$ 和 $\alpha=0.05$).

解 $\sigma=10$, n=12,

计算得 $\bar{x} = 502.92$,

(1) 当 $\alpha = 0.10$ 时, $1 - \frac{\alpha}{2} = 0.95$, 查表得 $u_{\alpha/2} = u_{0.05} = 1.645$,

附表2-1

$$\overline{x} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2} = 502.92 - \frac{10}{\sqrt{12}} \times 1.645 = 498.17,$$

$$\overline{x} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2} = 502.92 + \frac{10}{\sqrt{12}} \times 1.645 = 507.67,$$

即μ的置信度为90%的置信区间为

(498.17, 507.67).

(2)
$$\stackrel{\text{def}}{=} \alpha = 0.05$$
 $\stackrel{\text{in}}{=} 1 - \frac{\alpha}{2} = 0.975$,

查表得

$$u_{\alpha/2} = u_{0.025} = 1.96,$$

附表2-2

同理可得µ的置信度为95%的置信区间为

(497.26, 508.58).

从此例可以看出,

当置信度 $1-\alpha$ 较大时,置信区间也较大;

当置信度 $1-\alpha$ 较小时,置信区间也较小.

然而, 置信水平为 $1-\alpha$ 的置信区间并不是惟一的. 以上例来说, 若给定 $\alpha=0.05$, 则又有

$$P\left\{-z_{0.04} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{0.01}\right\} = 0.95,$$

$$P\left\{\overline{X} - \frac{\sigma}{\sqrt{n}} z_{0.01} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}} z_{0.04}\right\} = 0.95.$$
故
$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{0.01}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{0.04}\right)$$

• 也是置信水平为0.95的置信区间.

(2) σ^2 为未知,

 μ 的置信度为 $1-\alpha$ 的置信区间 $\left(\bar{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$.

推导过程如下:

由于区间 $\left(\overline{X}\pm\frac{\sigma}{\sqrt{n}}u_{\alpha/2}\right)$ 中含有未知参数 σ ,不能

直接使用此区间,

但因为 S^2 是 σ^2 的无偏估计, 可用 $S = \sqrt{S^2}$ 替换 σ ,

又根据第六章第三节的推论知 $\frac{\bar{X} - \mu}{\varsigma / \sqrt{n}} \sim t(n-1)$,

$$\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n-1).$$

故
$$P\left\{-t_{\alpha/2}(n-1) \leq \frac{\overline{X}-\mu}{S/\sqrt{n}} \leq t_{\alpha/2}(n-1)\right\} = 1-\alpha,$$

$$\mathbb{EP} P\left\{\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1) \leq \mu \leq \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right\} = 1 - \alpha,$$

于是得 μ 的置信度为 $1-\alpha$ 的置信区间

$$\left(\overline{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2} (n-1)\right).$$

例2 有一大批糖果,现从中随机地取16袋,称得重量(克)如下:

设袋装糖果的重量服从正态分布, 试求总体均值 μ 的置信度为 0.95的置信区间.

附表3-1

查t(n-1)分布表可知: $t_{0.025}(15) = 2.1315$,

计算得 $\bar{x} = 503.75$, s = 6.2022,

得μ的置信度为95%的置信区间

$$\left(503.75 \pm \frac{6.2022}{\sqrt{16}} \times 2.1315\right) \quad \text{II} \quad (500.4, \quad 507.1).$$

就是说估计袋装糖果重量的均值在500.4克与507.1克之间,这个估计的可信程度为95%.

若依此区间内任一值作为μ的近似值,

其误差不大于
$$\frac{6.2022}{\sqrt{16}} \times 2.1315 \times 2 = 6.61$$
(克).

这个误差的可信度为95%.

例3 (续例1) 如果只假设糖包的重量服从正态分布 $N(\mu,\sigma^2)$, 试求糖包重量 μ 的 95% 的置信区间.

解 此时 σ 未知, n=12,

$$\alpha = 0.05$$
, $\bar{x} = 502.92$, $s = 12.35$,

附表3-2

查t(n-1)分布表可知: $t_{0.025}(11) = 2.201$,

于是
$$\frac{s}{\sqrt{n}}t_{\alpha/2}(n-1) = \frac{12.35}{\sqrt{12}} \times 2.201 = 7.85,$$

得μ的置信度为95%的置信区间 [495.07, 510.77].

例4 设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,其中 σ^2 和 μ 为未知参数,设随机变量L是关于 μ 的置信度为 $1-\alpha$ 的置信区间的长度,求 $E(L^2)$.

解 当 σ^2 未知时,

 μ 的置信度为 $1-\alpha$ 的置信区间为

$$\left(\overline{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right),\,$$

置信区间长度 $L = \frac{2S}{\sqrt{n}} t_{\alpha/2}(n-1)$,

$$L^{2} = \frac{4S^{2}}{n} [t_{\alpha/2}(n-1)]^{2},$$

$$\mathbb{Z} E(\mathbf{S}^2) = E\left[\frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2\right]$$

$$=E\left\{\frac{1}{n-1}\left[\sum_{i=1}^{n}X_{i}^{2}-n\overline{X}^{2}\right]\right\}$$

$$= \frac{1}{n-1} \left\{ \sum_{i=1}^{n} E(X_{i}^{2}) - nE(\overline{X}^{2}) \right\}$$

$$= \frac{1}{n-1} \left\{ \sum_{i=1}^{n} [D(X_i) + E(X_i)^2] - n[D(\overline{X}) + E^2(\overline{X})] \right\}$$

$$= \frac{1}{n-1} \left\{ \sum_{i=1}^{n} [\sigma^{2} + \mu^{2}] - n \left[\frac{\sigma^{2}}{n} + \mu^{2} \right] \right\} = \sigma^{2},$$

于是
$$E(L^2) = E\left(\frac{4S^2}{n}[t_{\alpha/2}(n-1)]^2\right)$$

$$= \frac{4}{n} [t_{\alpha/2}(n-1)]^2 E(S^2) = \frac{4}{n} [t_{\alpha/2}(n-1)]^2 \sigma^2.$$

II.方差 σ^2 的置信区间

根据实际需要, 只介绍μ未知的情况.

方差 σ^2 的置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right).$$

推导过程如下:

因为 S^2 是 σ^2 的无偏估计,

曲于
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

故
$$P\left\{\chi_{1-\alpha/2}^2(n-1) < \frac{(n-1)S^2}{\sigma^2} < \chi_{\alpha/2}^2(n-1)\right\} = 1-\alpha,$$

$$\mathbb{P}\left\{\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)} < \sigma^2 < \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right\} = 1 - \alpha,$$

于是得方差 σ^2 的置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right)$$

进一步可得:

标准差 σ 的一个置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{\sqrt{n-1}S}{\sqrt{\chi_{\alpha/2}^2(n-1)}}, \frac{\sqrt{n-1}S}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}}\right).$$

注意: 在密度函数不对称时,如 χ^2 分布和F分布,习惯上仍取对称的分位点来确定置信区间(如图).

例5 (续例2) 求例2中总体标准差 σ 的置信度为 0.95的置信区间.

解
$$\frac{\alpha}{2} = 0.025$$
, $1 - \frac{\alpha}{2} = 0.975$, $n - 1 = 15$,

查 $\chi^2(n-1)$ 分布表可知: 附表4-1

附表4-2

$$\chi^2_{0.025}(15) = 27.488, \qquad \chi^2_{0.975}(15) = 6.262,$$

计算得 s = 6.2022,

代入公式得标准差的置信区间(4.58, 9.60).

2、两个总体 $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ 的情况

给定置信度为 $1-\alpha$,并设 X_1,X_2,\cdots,X_{n_1} 为第一个总体 $N(\mu_1,\sigma_1^2)$ 的样本, Y_1,Y_2,\cdots,Y_{n_2} 为第二个总体 $N(\mu_2,\sigma_2^2)$ 的样本, \bar{X},\bar{Y} 分别是第一、二个总体的样本均值, S_1^2,S_2^2 分别是第一、二个总体的样本方差.两总体相互独立

讨论两个总体均值差和方差比的估计问题.

I. 两个总体均值差 $\mu_1 - \mu_2$ 的置信区间

(1) σ_1^2 和 σ_2^2 均为已知,

 $\mu_1 - \mu_2$ 的一个置信度为 $1-\alpha$ 的置信区间

$$\left(\overline{X} - \overline{Y} \pm u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right).$$

推导过程如下:

因为 \overline{X} , \overline{Y} 分别是 μ_1 , μ_2 的无偏估计,

所以 $\overline{X} - \overline{Y}$ 是 $\mu_1 - \mu_2$ 的无偏估计,

由X, Y的独立性及

$$\overline{X} \sim N\left(\mu_1, \frac{\sigma_1^2}{n_1}\right), \quad \overline{Y} \sim N\left(\mu_2, \frac{\sigma_2^2}{n_2}\right),$$

可知
$$\overline{X} - \overline{Y} \sim N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right)$$

或
$$\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}} \sim N(0,1),$$

于是得 $\mu_1 - \mu_2$ 的一个置信度为 $1-\alpha$ 的置信区间

$$\left(\overline{X} - \overline{Y} \pm u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right).$$

(2)
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
, 但 σ^2 为未知,

 $\mu_1 - \mu_2$ 的一个置信度为 $1-\alpha$ 的置信区间

$$\left(\overline{X} - \overline{Y} \pm t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right).$$

$$\sharp + S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}, \quad S_w = \sqrt{S_w^2}.$$

例6机床厂某日从两台机床加工的零件中,分别抽取若干个样品,测得零件尺寸分别如下(单位:cm):

第一台机器 6.2, 5.7, 6.5, 6.0, 6.3, 5.8

5.7, 6.0, 6.0, 5.8, 6.0

第二台机器 5.6, 5.9, 5.6, 5.7, 5.8

6.0, 5.5, 5.7, 5.5

假设两台机器加工的零件尺寸均服从正态分布,且方差相等,试求两机床加工的零件平均尺寸之差的区间估计(α =0.05)

解 用 X 表示第一台机床加工的零件尺寸, 用 Y表示第二台机床加工的零件尺寸,由题 设

$$n_1 = 11$$
, $n_2 = 9$, $\alpha = 0.05$, $t_{0.025}(18) = 2.1009$

经计算,得

$$\bar{x} = 6.0 \qquad (n_1 - 1)s_1^2 = \sum_{i=1}^{n_1} x_i - n_1 \bar{x}^2 = 0.64$$

$$\overline{y} = 5.7 \qquad (n_2 - 1)s_2^2 = \sum_{i=1}^{n_1} y_i - n_2 \overline{y}^2 = 0.24$$

$$S_{\omega} = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} = \sqrt{\frac{0.64 + 0.24}{11 + 9 - 2}} = 0.221$$

置信下限
$$\overline{x} - \overline{y} - t_{0.025}(18)S_{\omega}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = 0.0912$$

置信上限
$$\overline{x} - \overline{y} + t_{0.025}(18)S_{\omega}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = 0.5088$$

故所求 $\mu_1 - \mu_2$ 的置信度为95%的置信区间为 (0.0912, 0.5088).

II.两个总体方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间 仅讨论总体均值 μ_1 , μ_2 为未知的情况.

$$\frac{\sigma_1^2}{\sigma_2^2}$$
的一个置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right).$$

推导过程如下:

曲于
$$\frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1-1), \qquad \frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2-1),$$

且由假设知
$$\frac{(n_1-1)S_1^2}{\sigma_1^2}$$
 与 $\frac{(n_2-1)S_2^2}{\sigma_2^2}$ 相互独立,

根据**F**分布的定义,知 $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1,n_2-1)$,

$$\mathbb{E} \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{\frac{(n_1-1)S_1^2}{\sigma_1^2}/(n_1-1)}{\frac{(n_2-1)S_2^2}{\sigma_2^2}/(n_2-1)} \sim F(n_1-1,n_2-1),$$

$$P\left\{F_{1-\alpha/2}(n_1-1,n_2-1) \le \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \le F_{\alpha/2}(n_1-1,n_2-1)\right\}$$

= 1-\alpha,

$$P\left\{\frac{S_{1}^{2}}{S_{2}^{2}} \cdot \frac{1}{F_{\alpha/2}(n_{1}-1,n_{2}-1)} \leq \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \leq \frac{S_{1}^{2}}{S_{2}^{2}} \cdot \frac{1}{F_{1-\alpha/2}(n_{1}-1,n_{2}-1)}\right\}$$

$$= 1 - \alpha,$$

于是得 $\frac{{\sigma_1}^2}{{\sigma_2}^2}$ 的一个置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right).$$

例7 研究由机器A和机器B生产的钢管内径,随 机抽取机器A生产的管子18只,测得样本方差为 $s_1^2 = 0.34(mm^2)$; 抽取机器**B**生产的管子**13**只,测 得样本方差为 $s_2^2 = 0.29 (mm^2)$. 设两样本相互独 立、且设由机器A和机器B生产的钢管内径分别服 从正态分布 $N(\mu_1,\sigma_1^2), N(\mu_2,\sigma_2^2), \mu_i,\sigma_i^2 (i=1,2)$ 均未知, 求方差比 σ_1^2/σ_2^2 的置信度为0.90的置信 区间.

解 $n_1 = 18$, $n_2 = 13$, $\alpha = 0.10$, $s_1^2 = 0.34(mm^2)$, $s_2^2 = 0.29(mm^2)$,

$$F_{\alpha/2}(n_1-1,n_2-1)=F_{0.05}(17,12)=2.59,$$

$$F_{1-\alpha/2}(17,12) = F_{0.95}(17,12) = \frac{1}{F_{0.05}(12,17)} = \frac{1}{2.38},$$

于是得 $\frac{\sigma_1^2}{\sigma_2^2}$ 的一个置信度为0.90的置信区间

$$\left(\frac{0.34}{0.29} \times \frac{1}{2.59}, \frac{0.34}{0.29} \times 2.38\right) = (0.45, 2.79).$$

例8甲、乙两台机床加工同一种零件,在机床甲 加工的零件中抽取9个样品,在机床乙加工的零件 中抽取6个样品,并分别测得它们的长度(单位:mm), 由所给数据算得 $s_1^2 = 0.245$, $s_2^2 = 0.357$, 在置信度 0.98下, 试求这两台机床加工精度之比 σ_1/σ_2 的胃 信区间. 假定测量值都服从正态分布, 方差分别为 σ_1^2, σ_2^2 .

解
$$n_1 = 9$$
, $n_2 = 6$, $\alpha = 0.02$,
$$F_{1-\alpha/2}(n_1 - 1, n_2 - 1) = F_{0.99}(8, 5) = 10.3,$$

$$F_{\alpha/2}(8,5) = F_{0.01}(8,5) = \frac{1}{F_{0.99}(5,8)} = \frac{1}{6.63}$$

于是得 $\frac{\sigma_1}{\sigma_2}$ 的一个置信度为0.98的置信区间

$$\left(\sqrt{\frac{S_1^2}{S_2^2}} \cdot \frac{1}{F_{\alpha/2}(n_1 - 1, n_2 - 1)}, \sqrt{\frac{S_1^2}{S_2^2}} \cdot \frac{1}{F_{1-\alpha/2}(n_1 - 1, n_2 - 1)}\right)$$

$$= \left(\sqrt{\frac{0.245}{0.357 \times 10.3}}, \sqrt{\frac{0.245 \times 6.63}{0.357}}\right) = (0.258, 2.133).$$

三、小结

正态总体均值与方差的区间估计

1. 单个总体均值 µ 的置信区间

$$\begin{cases} (1) \ \sigma^2 为 已知, \left(\overline{X} \pm \frac{\sigma}{\sqrt{n}} u_{\alpha/2}\right). \\ (2) \ \sigma^2 为 未知, \left(\overline{X} \pm \frac{S_n}{\sqrt{n}} t_{\alpha/2}(n-1)\right). \end{cases}$$

2.单个总体方差 σ^2 的置信区间

$$\left(\frac{(n-1)S_n^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)S_n^2}{\chi_{1-\alpha/2}^2(n-1)}\right).$$

3.两个总体均值差 $\mu_1 - \mu_2$ 的置信区间

$$\sigma_1^2$$
和 σ_2^2 均为已知, $\left(\overline{X} - \overline{Y} \pm u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$.

$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
, 但 σ^2 为未知,

$$\left(\overline{X} - \overline{Y} \pm t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right).$$

4. 两个总体方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间

总体均值μ1,μ2为未知

$$\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right).$$

附表2-1

标准正态分布表

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0			0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0	1.64	15	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0			0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7710	0.1737	0.7707	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545

附表2-2

标准正态分布表

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.3015	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9772	0.9778	0.97			798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.98	1	06	9842	0.9846	0.9850	0.9854	0.9853
2.2	0.9861	0.9864	0.98		96	9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.98			906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9990	0.9993	0.9995	0.9997	0.9698	0.9998	0.9999	0.9999	1.0000

附表3-1

t 分布表

n	$\alpha = 0.25$	0.10	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3138	12.7062	31.8207	63.6574
2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0322
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.7064			2.3060	2.8965	3.3554
9	0.7027	2.13	215	2.2622	2.8214	3.2498
10	0.6998	4.1		2.2281	2.7638	3.1693
11	0.6974			2.2010	2.7181	3.1058
12	0.6955	1.3562		2.1788	2.6810	3.0545
13	0.6938	1.3502	1.770>	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208

附表3-2

t 分布表

n	$\alpha_{=0.25}$	0.10	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3138	12.7062	31.8207	63.6574
2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0322
6	0.7176	1.439		2.4469	3.1427	3.7074
7	0.7111	1.414	.2010	2.3646	2.9980	3.4995
8	0.7064	1.396		2.3060	2.8965	3.3554
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208

附表4-1

χ^2 分布表

n	α =0.25	0.10	0.05	0.025	0.01	0.005
1	1.323	2.706	3.841	5.024	6.635	7.879
2	2.773	4.605	5.991	7.378	9.210	10.597
3	4.108	6.251	7.815	9.348	11.345	12.838
4	5.385	7.779	9.488	11.143	13.277	14.860
5	6.626	9.236	11.071	12.833	15.086	16.750
6	7.841	10.645	12.592	14.449	16.812	18.548
7	9.037	12.017	14.067	16.013	18.475	20.278
8	10.219	13.362	15.507	17.535	20.090	21.955
9	11.389	14.684	16.919	19.023	21.666	23.589
10	12.549	15.987	18.307	20.483	23.209	25.188
11	13.701	17.2	- 400	21.920	24.725	26.757
12	14.845	18.5	7.488	23.337	26.217	28.299
13	15.984	19.8	, , 100	24.736	27.688	29.891
14	17.117	20.064	23.685	26.119	29.141	31.319
15	18.245	22.307	24.996	27.488	30.578	32.801
16	19.369	23.542	26.296	28.845	32.000	34.267

附表4-2

χ^2 分布表

n	$\alpha = 0.995$	0.99	0.975	0.95	0.90	0.75
1	7/1/2/1/2	21/1 Z	0.001	0.004	0.016	0.102
2	0.010	0.020	0.051	0.103	0.211	0.575
3	0.072	0.115	0.216	0.352	0.584	1.213
4	0.207	0.297	0.484	0.711	1.064	1.923
5	0.412	0.554	0.831	1.145	1.610	2.675
6	0.676	0.872	1.237	1.635	2.204	3.455
7	0.989	1.239	1.690	2.167	2.833	4.255
8	1.344	1.646	2.180	2.733	3.490	5.071
9	1.735	2.088	2.700	3.325	4.168	5.899
10			3.247	3.940	4.865	6.737
11	6	262	3.816	4.575	5.578	7.584
12	U	.262	4.404	5.226	6.304	8.438
13			5.009	5.892	7.042	9.299
14	4.075	4.660	5.629	6.571	7.790	10.165
15	4.601	5.229	6.262	7.261	8.547	11.037
16	5.142	5.812	6.908	7.962	9.312	11.912

