Z

(19) RU (11) 2 039 019 (13) C1

 $^{(51)}$ MIK⁶ C 03 C 13/02

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 5040473/33, 29.04.1992
- (46) Дата публикации: 09.07.1995
- (56) Ссылки: Авторское свидетельство СССР N 525634, кл. С 03С 13/00, 1975.Авторское свидетельство СССР N 1261923, кл. С 03С 13/06, 1986.
- (71) Заявитель:
 Научно-исследовательская лаборатория
 базальтовых волокон Института проблем
 материаловедения АН Украины (UA)
- (72) Изобретатель: Трефилов Виктор Иванович[UA], Сергеев Владимир Петрович[UA], Махова Мария Федоровна[UA], Джигирис Дмитрий Данилович[UA], Мищенко Евгений Семенович[UA], Чувашов Юрий Николаевич[UA], Бочарова Ирина Николаевна[UA], Горбачев Григорий Федорович[UA]

တ

0

တ

0

(73) Патентообладатель:
Научно-исследовательская лаборатория
базальтовых волокон Института проблем
материаловедения АН Украины (UA)

(54) СТЕКЛО ДЛЯ СТЕКЛОВОЛОКНА

(57) Реферат:

Использование: для производства непрерывных и грубых волокон. Сущность изобретения: стекло для стекловолокна содержит, в мас. оксид кремния 47,5 57,8 БФ SiO_2 , оксид алюминия 17,1 19 БФ Al_2O_3 , оксид титана 1,2 2 БФ TiO_2 , оксид железа 3,8 8,5 БФ Fe_2O_3 , оксид железа 3,4 7,0 БФ FeO, оксид марганца 0,11 0,19 БФ MnO, оксид

кальция 6,5 10,8 БФ СаО, оксид магния 2,3 7,5 БФ MgO, оксид калия 0,8 2,5 БФ К $_2$ О, оксид натрия 2,2 4,6 БФ Na $_2$ О, оксид серы 0,01 0,20 БФ SO $_3$, оксид фосфора 1,1 2,0 БФ P_2 О $_5$, оксид скандия 0,03 1,2 БФ Sc $_2$ О $_3$, оксид цинка 0,05 1,0 БФ ZnO. Соотношение Al $_2$ O $_3$ /(Ca+MgO)<2,0. Устойчивость в 2N HCI (98°C, 3 ч) 98 98,9% в Ca(OH) $_2$ 99,1 99,8% 1 з.п. ф-лы, 4 табл.

(19) RU (11) 2 039 019 (13) C1

(51) Int. Cl. 6 C 03 C 13/02

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 5040473/33, 29.04.1992

(46) Date of publication: 09.07.1995

- (71) Applicant: Nauchno-issledovatel'skaja laboratorija bazal'tovykh volokon Instituta problem materialovedenija AN Ukrainy (UA)
- (72) Inventor: Trefilov Viktor Ivanovich[UA], Sergeev Vladimir Petrovich[UA], Makhova Marija Fedorovna[UA], Dzhigiris Dmitrij Danilovich[UA], Mishchenko Evgenij Semenovich[UA], Chuvashov Jurij Nikolaevich[UA], Bocharova Irina Nikolaevna[UA], Gorbachev Grigorij Fedorovich[UA]

ത

0

ი ი

0

 α

(73) Proprietor: Nauchno-issledovatel'skaja laboratorija bazal'tovykh volokon Instituta problem materialovedenija AN Ukrainy (UA)

(54) GLASS FOR FIBER GLASS

(57) Abstract:

FIELD: glass industry. SUBSTANCE: glass has, wt.-% silicon oxide (SiO₂) 47.5-57.8; aluminium oxide (Al₂O₃) 17.1-19; titanium oxide (TiO₂) 1.2-2; ferric oxide (Fe₂O₃) 3.8-8.5; ferrous oxide (FeO) 3.4-7.0; manganese oxide (MnO) 0.11-0.19; calcium oxide (CaO) 6.5-10.8; magnesium oxide (MgO) 2.3-7.5; potassium oxide (K₂O) 0.8-2.5; sodium

oxide (Na₂O) 2.2-4.6; sulfur oxide (SO₂) 0.01-0.20; phosphorus pentoxide (P₂O₅) 1.1-2.0; scandium oxide (Sc₂O₃) 0.03-1.2; zinc oxide (ZnO) 0.05-1.0. Ratio is Al $_2$ O₃/(Ca+MgO)<2,0. Stability in 2N HCl (98 C, 3 h) is 98-98.9% in Ca(OH) $_2$ is 991.-99.8% Glass is used production of unbroken and rough fibers. EFFECT: enhanced quality of glass. 2 cl, 4 tbl

Изобретение относится к составам стекол, предназначенных для производства непрерывных и грубых волокон, которые могут быть использованы для получения различных тканей и нетканых материалов, фильтров, для армирования цементных и гипсовых вяжущих, а также полимеров и других целей.

Цель изобретения снижение кристаллизационной способности, удлинение температурного интервала выработки, обеспечение надежности процесса и повышение устойчивости в кислых средах.

В известных составах стекол, применяемых для стекловолокна, содержится SiO_2 , TiO_2 , Al_2O_3 , Fe_2O_3 , FeO, CaO, MgO, MnO, K_2O , Na_2O , P_2O_5 , La_2O_3 . Для составления шихты в качестве исходного материала используют андезит, корректирующийся кварцевым песком, мелом, доломитом, содой и трехокисью лантана, а в ряде случаев пиролюзитом [1]

Известен состав стекпа, содержащий SiO $_2$, Al $_2$ O $_3$, TiO $_2$, Fe $_2$ O $_3$, FeO, MnO, CaO, MgO, K $_2$ O, Na $_2$ O, SO $_3$ [2]

Исходным сырьем для получения минерального волокна этого состава служит порода типа ортоамфиболитов и амфиболитов как однокомпонентная шихта. Однако такое стекло обладает высокой кристаллизационной способностью, низкой кислотоустойчивостью и из-за узкого интервала выработки не может быть использовано в производстве непрерывных и грубых волокон.

Для устранения указанных недостатков и достижения цели предложены составы, конкретные из которых приведены в табл.1.

Технологические свойства расплавов и физико-химические свойства волокон приведены в табл. 2 и 3 соответственно. Как видно из табл.1, предлагаемое стекло отличается от известного более высоким содержанием оксидов алюминия и трехвалентного железа, что приводит к увеличению кислотоустойчивости. Этот эффект усиливают оксиды фосфора и скандия (как элементы III и V групп таблицы Д.И.Менделеева).

Известно, что оксиды железа, кальция и значительно повышают кристаллизационную способность расплава, что отрицательно отражается на процессе волокнообразования (особенно непрерывных волокон). За счет этого интервал выработки волокон сужается, возрастает обрывность и процесс получения волокон неустойчив. Уменьшение указанных оксидов обеспечивает снижение температуры верхнего предела кристаллизации (Тв.п.к.), удлинение температурного интервала выработки и надежность процесса. Введение оксида цинка приводит к образованию с Al₂O₃ твердого раствора, устойчивого к кислотам. Важным условием является соблюдение соотношения которое должно быть более 1,2, A1 2 3

CaO+MgO

но менее 2,0.

Стекло указанного состава может быть получено как из обычных, используемых в стекловарении исходных компонентов, так и на основе различных природных материалов,

например андезитов, андезитобазальтов, базальтов, диабазов, габбро.

Процесс варки стекла предлагаемого состава осуществляли в печи при температуре 1450°С до получения гомогенного расплава. Формирование волокон происходило устойчиво.

Как следует из табл.3 в сравнении с прототипом, Тв.п.к. предлагаемого состава стекла на 50-80°С ниже, интервал выработки волокна расширен в 6-9 раз, а кислотоустойчивость выше в 2,2-5,3 раза.

Из предлагаемого состава стекла получены также и грубые волокна. Результаты испытаний их физико-химических свойств представлены в табл.4.

Из табл.4 видно, что грубые волокна из стекла предлагаемого состава обладают высокой стойкостью не только к кислотам, но и к насыщенному раствору Ca(OH)₂, что предопределяет их использование при изготовлении фибробетона.

Ассортимент получаемых волокон (непрерывных и грубых), высокая химическая устойчивость в агрессивных средах дает возможность использовать их для производства тканых и нетканых, фильтровальных материалов, армирующих наполнителей композитов, армирования бетонов на основе минеральных вяжущих и др. стойких при эксплуатации в агрессивных средах в химической и других отраслях промышленности, в качестве фильтров грубой, тонкой и сверхтонкой очистки агрессивных сред.

Долговечность тканей, изготовленных из волокна предлагаемого состава превышает долговечность стеклянных тканей примерно в 1,5 раза. Из стекла предлагаемого состава наработаны и испытаны партии непрерывного и грубого волокна в количестве 800 и 1000 кг соответственно.

Физико-химические исследования полученного волокна подтвердили его высокую химическую устойчивость в агрессивных средах.

Формула изобретения:

1. СТЕКЛО ДЛЯ СТЕКЛОВОЛОКНА, включающее SiO_2 , Al_2O_3 , TiO_2 , Fe_2O_3 , FeO_4 МпО, CaO, MgO, K_2O , Na_2O и SO_3 , отличающееся тем, что оно дополнительно содержит P_2O_5 , ZnO и SC_2O_3 при следующем соотношении компонентов, мас.

SiO₂ 47,5 57,8 Al₂O₃ 17,1 19,0 TiO₂ 1,2 2,0 Fe₂O₃ 3,8-8,5 FeO 3,4 7,0 MnO 0,11 0,19 CaO 6,5 10,8 MgO 2,3 7,5 K₂O 0,8 2,5 Na₂O 2,2 4,6 SO₃ 0,01 0,20 P₂O₅ 1,1 2,0 SC₂O₃ 0,03 1,2 ZnO 0,05 1,0

2. Стекло по п.1, отличающееся тем, что

$$1.2 < \frac{Al_2o_3}{CaO+MgO} < 2.0.$$

U 2039019

50

55

R U

Компоненты	Состав волокна, мас. %					
	1	2	3	4	5	
SiO ₂ Al ₂ O ₃ TiO ₂ Fe ₂ O ₃ FeO MnO CaO MgO K ₂ O Na ₂ O SO ₃ P ₂ O ₅ Sc ₂ O ₃ ZnO Al ₂ O ₃ CaO + MgO	56,26 17,20 1,20 4,41 3,50 0,12 6,90 4,00 2,31 2,91 0,01 1,10 0,03 0,05 1,58	52,40 17,80 1,26 5,54 3,98 0,13 7,30 5,00 1,56 2,28 0,05 1,45 0,75 0,50 1,45	49,00 18,28 1,45 5,80 4,20 0,18 8,18 5,40 0,90 2,31 0,10 2,00 1,20 1,00 1,35	57,8 19,0 1,2 3,8 3,4 0,11 7,2 2,3 0,8 2,2 0,05 1,1 0,04 1,0 2,0	47.5 17.1 2.0 7.4 5.2 0.15 6.75 7.5 1,2 3.0 0.1 1.4 0.5 0.2	

Таблица 2

Вязкость, Па [°] с при ^о С					
1450	1400	1350	1300	1250	
510 155	940 220	1900 500	2900 1000	1800 200	
76 710	135 1260	246 2250	565 4000	1150 8600 1250	
	510 155 76	1450 1400 510 940 155 220 76 135 710 1260	1450 1400 1350 510 940 1900 155 220 500 76 135 246 710 1260 2250	1450 1400 1350 1300 510 940 1900 2900 155 220 500 1000 76 135 246 565 710 1260 2250 4000	

Таблица 3

Технологические свойства расплавов и волокон	Состав волокна					
	1	2	3	4	5	
Температура верхнего предела кристаллизации, Тв.п.к., °С	1220	1230	1250	1210	1250	
Температурный интервал выработки, °С	1320-1380	1300-1370	1280-1370	1340-1400	1290-1370	
Средний диаметр волок- на, мкм	9,0	8,9	9,3	-	-	
Предел прочности при растяжении, МПа	2200	2380	2240	-	-	
Потери массы в 2 HCI (90°C,3 ч), мг/5000 см ²	324,1	388,5	789,4	-	-	

Свойства волокон	Составы стекол			
	1	2	3	
Диаметр, мкм Предел прочности при растяжении, МПа	160 280	150 300	155 305	
Устойчивость в средах (98°С, 3 ч), % 2NHCl Са(ОН) ₂	98,9 99,1	98,0 99,6	97,1 99,8	

-5-

R ⊂

20390

9

C