 5. El radio orbital de Venus (1,08x10⁶ km) coincide con el valor del perihelio de un cometa de periodo 50,0 años. Si el periodo de Venus es de 225 días, la distancia máxima del cometa al Sol es (en 10⁶ km): a) 1,56								
 6. Dos satélites terrestres son enviados fuera del campo gravitatorio terrestre. Uno de ellos tiene un radio orbital de 10° km, y el trabajo necesario para alejarlo es el doble que el necesario para alejar al segundo satélite. La altura de la órbita de este último será (en km): a) 10223 b) 13630 c) 20445 d) 27260 3. 4 En un planeta de radio 6000 km, y en cuya superficie la intensidad de su campo gravitatorio es 11,5 N kg², cae un meteorito sobre su superficie desde una altura igual al radio y con velocidad inicial nula. La velocidad con la que llegaría al suelo es (en km/s): a) 6,9 b) 8,3 c) 10,1 d) 11,8 4. 5 Dados dos planetas, A y B, de igual radio pero diferente densidad. Si se realiza el mismo trabajo cuando en el planeta A se sube 1,0 kg a una altura h=R por encima de su superficie, que en el planeta B cuando la altura es 2R, la relación de densidades d√de es:	1.	마시에 되었는데 이번에 되었다면 하는데 이렇게 하는데 이렇게 되었다면 하는데 이렇게 하는데 하는데 이렇게 하는데 이렇게 되었다면 하는데 하는데 아니라						
radio orbital de 10 ⁴ km, y el trabajo necesario para alejar o es el doble que el necesario para alejar al segundo satélite. La altura de la órbita de este último será (en km): a) 10223 b) 13630 c) 20445 d) 27260 3. 4 En un planeta de radio 6000 km, y en cuya superficie la intensidad de su campo gravitatorio es 11,5 N kg¹, cae un meteorito sobre su superficie desde una altura igual al radio y con velocidad inicial nula. La velocidad con la que llegaría al suelo es (en km/s): a) 6,9 b) 8,3 c) 10,1 d) 11,8 4. 5 Dados dos planetas, A y B, de igual radio pero diferente densidad. Si se realiza el mismo trabajo cuando en el planeta A se sube 1,0 kg a una altura h=R por encima de su superficie, que en el planeta B cuando la altura es 2R, la relación de densidades d _A /d _B es: a) 1/2 b) 2 c) 3/4 d) 4/3 5. 5 Las órbitas - una circular y otra elíptica - de dos satélites de la Tierra coinciden en el perigeo de la elíptica, siendo su radio 20 000 km. Si la relación de los períodos de los satélites es 8:1, la relación entre las distancias del apogeo y del perigeo a la Tierra es: a) 8 b) 7 c) 4 d) 3 6. 6 Con la cantidad de trabajo necesario para subir un cuerpo de 1000 t a la terraza de un edificio de altura aproximada de 400 m, podría ponerse en órbita un satélite de 100 kg en una órbita circular de radio (en km): (Datos: g _a -9,81 N kg², R ₇ -6400 km) a) 2134 b) 4000 c) 8534 d) 12834 7. 5. Un planeta esférico de radio R tiene una densidad uniforme ρ. Siendo G la constante de Gravitación universal, la expresión de la aceleración de la gravedad en la superficie del planeta viene dada por la expresión: a) 4πGρ b) GρR c) Gρ/R² d) 4/3 (GπRρρ e) 4/3 (GπR²ρ) 8. 6. En un punto exterior a la Tierra que se encuentra a una distancia x de su centro la intensidad del campo gravitatorio terrestre es 5.0 Nkg²¹. Tomando el valor del campo en la superficie como 10.0 Nkg²¹, resultaría que el valor aproximado del radio terrestre corresponderia a: a) x/10 b) x/5 c) x/√2 d) x/2 e) 2x√2 9. 7. La velocidad de escape de un p		a) 1,56	b) 1,98	c) 3,94	d) 5,91			
 3. 4 En un planeta de radio 6000 km, y en cuya superficie la intensidad de su campo gravitatorio es 11,5 N kg¹, cae un meteorito sobre su superficie desde una altura igual al radio y con velocidad inicial nula. La velocidad con la que llegaría al suelo es (en km/s): a) 6,9 b) 8,3 c) 10,1 d) 11,8 4. 5 Dados dos planetas, A y B, de igual radio pero diferente densidad. Si se realiza el mismo trabajo cuando en el planeta A se sube 1,0 kg a una altura h=R por encima de su superficie, que en el planeta B cuando la altura es 2R, la relación de densidades d_A/d_B es: a) 1/2 b) 2 c) 3/4 d) 4/3 5. 5 Las órbitas - una circular y otra elíptica - de dos satélites de la Tierra coinciden en el perigeo de la elíptica, siendo su radio 20 000 km. Si la relación de los períodos de los satélites es 8:1, la relación entre las distancias del apogeo y del perigeo a la Tierra es: a) 8 b) 7 c) 4 d) 3 6. 6 Con la cantidad de trabajo necesario para subir un cuerpo de 1000 t a la terraza de un edificio de altura aproximada de 400 m, podría ponerse en órbita un satélite de 100 kg en una órbita circular de radio (en km): (Datos: g_o= 9,81 N kg²¹, R₁= 6400 km) a) 2134 b) 4000 c) 8534 d) 12834 7. 5. Un planeta esférico de radio R tiene una densidad uniforme ρ. Siendo G la constante de Gravitación universal, la expresión de la aceleración de la gravedad en la superficie del planeta viene dada por la expresión: a) 4πGρ b) GρR c) Gρ/R² d) 4/3 (GπRρ) e) 4/3 (GπR²ρ) 8. 6. En un punto exterior a la Tierra que se encuentra a una distancia x de su centro la intensidad del campo gravitatorio terrestre es 5,0 Nkg²¹. Tomando el valor del campo en la superficie como 10,0 Nkg²¹, resultaría que el valor aproximado del radio terrestre corresponder	2.	radio orbital de 10 ⁴ km, y el trabajo necesario para alejarlo es el doble que el necesario para alejar al						
gravitatorio es 11,5 N kg¹, cae un meteorito sobre su superficie desde una altura igual al radio y con velocidad inicial nula. La velocidad con la que llegaría al suelo es (en km/s): a) 6,9 b) 8,3 c) 10,1 d) 11,8 4. 5 Dados dos planetas, A y B, de igual radio pero diferente densidad. Si se realiza el mismo trabajo cuando en el planeta A se sube 1,0 kg a una altura h=R por encima de su superficie, que en el planeta B cuando la altura es 2R, la relación de densidades d _A /d _B es: a) 1/2 b) 2 c) 3/4 d) 4/3 5. 5 Las órbitas - una circular y otra elíptica - de dos satélites de la Tierra coinciden en el perigeo de la elíptica, siendo su radio 20 000 km. Si la relación de los períodos de los satélites es 8:1, la relación entre las distancias del apogeo y del perigeo a la Tierra es: a) 8 b) 7 c) 4 d) 3 6. 6 Con la cantidad de trabajo necesario para subir un cuerpo de 1000 t a la terraza de un edificio de altura aproximada de 400 m, podría ponerse en órbita un satélite de 100 kg en una órbita circular de radio (en km): (Datos: g₀= 9,81 N kg¹, R₁= 6400 km) a) 2134 b) 4000 c) 8534 d) 12834 7. 5. Un planeta esférico de radio R tiene una densidad uniforme ρ. Siendo G la constante de Gravitación universal, la expresión de la aceleración de la gravedad en la superficie del planeta viene dada por la expresión de la aceleración de la gravedad en la superficie del planeta viene dada por la expresión en la Tierra que se encuentra a una distancia x de su centro la intensidad del campo gravitatorio terrestre es 5,0 Nkg¹. Tomando el valor del campo en la superficie como 10,0 Nkg¹, resultaría que el valor aproximado del radio terrestre correspondería a: a) x/10 b) x/5 c) x/√2 d) x/2 e) 2x√2 9. 7. La velocidad de escape de un planeta de radio R y densidad ρ es v. La velocidad de escape para un planeta de radio 2R y densidad 2ρ será: a) v/2 b) v c) 2v d) (2√2)v e) 3v		a) 10223	b) 13630	c) 20445	d) 27260			
 4. 5 Dados dos planetas, A y B, de igual radio pero diferente densidad. Si se realiza el mismo trabajo cuando en el planeta A se sube 1,0 kg a una altura h=R por encima de su superficie, que en el planeta B cuando la altura es 2R, la relación de densidades d_k/d_B es: a) 1/2 b) 2 c) 3/4 d) 4/3 5. 5 Las órbitas - una circular y otra elíptica - de dos satélites de la Tierra coinciden en el perigeo de la elíptica, siendo su radio 20 000 km. Si la relación de los períodos de los satélites es 8:1, la relación entre las distancias del apogeo y del perigeo a la Tierra es: a) 8 b) 7 c) 4 d) 3 6. 6 Con la cantidad de trabajo necesario para subir un cuerpo de 1000 t a la terraza de un edificio de altura aproximada de 400 m, podría ponerse en órbita un satélite de 100 kg en una órbita circular de radio (en km): (Datos: g_o = 9,81 N kg¹, R_T = 6400 km) a) 2134 b) 4000 c) 8534 d) 12834 7. 5. Un planeta esférico de radio R tiene una densidad uniforme ρ. Siendo G la constante de Gravitación universal, la expresión de la aceleración de la gravedad en la superficie del planeta viene dada por la expresión: a) 4πGρ b) GρR c) Gρ/R² d) 4/3 (GπRρ) e) 4/3 (GπR²ρ) 8. 6. En un punto exterior a la Tierra que se encuentra a una distancia x de su centro la intensidad del campo gravitatorio terrestre es 5,0 Nkg¹¹. Tomando el valor del campo en la superficie como 10,0 Nkg¹¹, resultaría que el valor aproximado del radio terrestre correspondería a: a) x/10 b) x/5 c) x/√2 d) x/2 e) 2x√2 9. 7. La velocidad de escape de un planeta de radio R y densidad ρ es v. La velocidad de escape para un planeta de radio 2R y densidad 2ρ será: a) v/2 b) v c) 2v d) (2√2)v e) 3v <th>3.</th><th colspan="6">gravitatorio es 11,5 N kg⁻¹, cae un meteorito sobre su superficie desde una altura igual al radio y con velocidad inicial nula. La velocidad con la que llegaría al suelo es (en</th>	3.	gravitatorio es 11,5 N kg ⁻¹ , cae un meteorito sobre su superficie desde una altura igual al radio y con velocidad inicial nula. La velocidad con la que llegaría al suelo es (en						
mismo trabajo cuando en el planeta A se sube 1,0 kg a una altura h=R por encima de su superficie, que en el planeta B cuando la altura es 2R, la relación de densidades d _A /d _B es: a) 1/2 b) 2 c) 3/4 d) 4/3 5. 5 Las órbitas - una circular y otra elíptica - de dos satélites de la Tierra coinciden en el perigeo de la elíptica, siendo su radio 20 000 km. Si la relación de los períodos de los satélites es 8:1, la relación entre las distancias del apogeo y del perigeo a la Tierra es: a) 8 b) 7 c) 4 d) 3 6. 6 Con la cantidad de trabajo necesario para subir un cuerpo de 1000 t a la terraza de un edificio de altura aproximada de 400 m, podría ponerse en órbita un satélite de 100 kg en una órbita circular de radio (en km): (Datos: g₀= 9,81 N kg², R₁= 6400 km) a) 2134 b) 4000 c) 8534 d) 12834 7. 5. Un planeta esférico de radio R tiene una densidad uniforme ρ. Siendo G la constante de Gravitación universal, la expresión de la aceleración de la gravedad en la superficie del planeta viene dada por la expresión: a) 4πGρ b) GρR c) Gρ/R² d) 4/3 (GπRρ) e) 4/3 (GπR²ρ) 8. 6. En un punto exterior a la Tierra que se encuentra a una distancia x de su centro la intensidad del campo gravitatorio terrestre es 5,0 Nkg²¹. Tomando el valor del campo en la superficie como 10,0 Nkg²¹, resultaría que el valor aproximado del radio terrestre correspondería a: a) x/10 b) x/5 c) x/√2 d) x/2 e) 2x√2 9. 7. La velocidad de escape de un planeta de radio R y densidad ρ es v. La velocidad de escape para un planeta de radio 2R y densidad 2ρ será: a) v/2 b) v c) 2v d) (2√2)v e) 3v		a) 6,9	b) 8,3	c) 10,1	d) 11,8			
 5. 5 Las órbitas - una circular y otra elíptica - de dos satélites de la Tierra coinciden en el perigeo de la elíptica, siendo su radio 20 000 km. Si la relación de los períodos de los satélites es 8:1, la relación entre las distancias del apogeo y del perigeo a la Tierra es: a) 8 b) 7 c) 4 d) 3 6. 6 Con la cantidad de trabajo necesario para subir un cuerpo de 1000 t a la terraza de un edificio de altura aproximada de 400 m, podría ponerse en órbita un satélite de 100 kg en una órbita circular de radio (en km): (Datos: g₀= 9,81 N kg¹, R₁= 6400 km) a) 2134 b) 4000 c) 8534 d) 12834 7. 5. Un planeta esférico de radio R tiene una densidad uniforme ρ. Siendo G la constante de Gravitación universal, la expresión de la aceleración de la gravedad en la superficie del planeta viene dada por la expresión: a) 4πGρ b) GρR c) Gρ/R² d) 4/3 (GπRρ) e) 4/3 (GπR²ρ) 8. 6. En un punto exterior a la Tierra que se encuentra a una distancia x de su centro la intensidad del campo gravitatorio terrestre es 5,0 Nkg¹¹. Tomando el valor del campo en la superficie como 10,0 Nkg¹¹, resultaría que el valor aproximado del radio terrestre correspondería a: a) x/10 b) x/5 c) x/√2 d) x/2 e) 2x√2 9. 7. La velocidad de escape de un planeta de radio R y densidad ρ es v. La velocidad de escape para un planeta de radio 2R y densidad 2ρ será: a) v/2 b) v c) 2v d) (2√2)v e) 3v 	4.	mismo trabajo cuando en el planeta A se sube 1,0 kg a una altura h=R por encima de su superficie, que en el planeta B cuando la altura es 2R, la relación de densidades						
 de la elíptica, siendo su radio 20 000 km. Si la relación de los períodos de los satélites es 8:1, la relación entre las distancias del apogeo y del perigeo a la Tierra es: a) 8 b) 7 c) 4 d) 3 6. 6 Con la cantidad de trabajo necesario para subir un cuerpo de 1000 t a la terraza de un edificio de altura aproximada de 400 m, podría ponerse en órbita un satélite de 100 kg en una órbita circular de radio (en km): (Datos: g₀= 9,81 N kg¹, R₁= 6400 km) a) 2134 b) 4000 c) 8534 d) 12834 7. 5. Un planeta esférico de radio R tiene una densidad uniforme ρ. Siendo G la constante de Gravitación universal, la expresión de la aceleración de la gravedad en la superficie del planeta viene dada por la expresión: a) 4πGρ b) GρR c) Gρ/R² d) 4/3 (GπRρ) e) 4/3 (GπR²ρ) 8. 6. En un punto exterior a la Tierra que se encuentra a una distancia x de su centro la intensidad del campo gravitatorio terrestre es 5,0 Nkg¹¹. Tomando el valor del campo en la superficie como 10,0 Nkg¹¹, resultaría que el valor aproximado del radio terrestre correspondería a: a) x/10 b) x/5 c) x/√2 d) x/2 e) 2x√2 9. 7. La velocidad de escape de un planeta de radio R y densidad ρ es v. La velocidad de escape para un planeta de radio 2R y densidad 2ρ será: a) v/2 b) v c) 2v d) (2√2)v e) 3v 		a) 1/2	b) 2	c) 3/4	d) 4/3			
 6. 6 Con la cantidad de trabajo necesario para subir un cuerpo de 1000 t a la terraza de un edificio de altura aproximada de 400 m, podría ponerse en órbita un satélite de 100 kg en una órbita circular de radio (en km): (Datos: g₀= 9,81 N kg⁻¹, R₁= 6400 km) a) 2134 b) 4000 c) 8534 d) 12834 7. 5. Un planeta esférico de radio R tiene una densidad uniforme ρ. Siendo G la constante de Gravitación universal, la expresión de la aceleración de la gravedad en la superficie del planeta viene dada por la expresión: a) 4πGρ b) GρR c) Gρ/R² d) 4/3 (GπRρ) e) 4/3 (GπR²ρ) 8. 6. En un punto exterior a la Tierra que se encuentra a una distancia x de su centro la intensidad del campo gravitatorio terrestre es 5,0 Nkg⁻¹. Tomando el valor del campo en la superficie como 10,0 Nkg⁻¹, resultaría que el valor aproximado del radio terrestre correspondería a: a) x/10 b) x/5 c) x/√2 d) x/2 e) 2x√2 9. 7. La velocidad de escape de un planeta de radio R y densidad ρ es v. La velocidad de escape para un planeta de radio 2R y densidad 2ρ será: a) v/2 b) v c) 2v d) (2√2)v e) 3v 	5.	de la elíptica, siendo su radio 20 000 km. Si la relación de los períodos de los satélites es 8:1, la						
 de altura aproximada de 400 m, podría ponerse en órbita un satélite de 100 kg en una órbita circular de radio (en km): (Datos: g₀= 9,81 N kg¹¹, R₁= 6400 km) a) 2134 b) 4000 c) 8534 d) 12834 7. 5. Un planeta esférico de radio R tiene una densidad uniforme ρ. Siendo G la constante de Gravitación universal, la expresión de la aceleración de la gravedad en la superficie del planeta viene dada por la expresión: a) 4πGρ b) GρR c) Gρ/R² d) 4/3 (GπRρ) e) 4/3 (GπR²ρ) 8. 6. En un punto exterior a la Tierra que se encuentra a una distancia x de su centro la intensidad del campo gravitatorio terrestre es 5,0 Nkg¹¹. Tomando el valor del campo en la superficie como 10,0 Nkg¹¹, resultaría que el valor aproximado del radio terrestre correspondería a: a) x/10 b) x/5 c) x/√2 d) x/2 e) 2x√2 9. 7. La velocidad de escape de un planeta de radio R y densidad ρ es v. La velocidad de escape para un planeta de radio 2R y densidad 2ρ será: a) v/2 b) v c) 2v d) (2√2)v e) 3v 		a) 8	b) 7	c) 4	d) 3			
 7. 5. Un planeta esférico de radio R tiene una densidad uniforme ρ. Siendo G la constante de Gravitación universal, la expresión de la aceleración de la gravedad en la superficie del planeta viene dada por la expresión: a) 4πGρ b) GρR c) Gρ/R² d) 4/3 (GπRρ) e) 4/3 (GπR²ρ) 8. 6. En un punto exterior a la Tierra que se encuentra a una distancia x de su centro la intensidad del campo gravitatorio terrestre es 5,0 Nkg⁻¹. Tomando el valor del campo en la superficie como 10,0 Nkg⁻¹, resultaría que el valor aproximado del radio terrestre correspondería a: a) x/10 b) x/5 c) x/√2 d) x/2 e) 2x√2 9. 7. La velocidad de escape de un planeta de radio R y densidad ρ es v. La velocidad de escape para un planeta de radio 2R y densidad 2ρ será: a) v/2 b) v c) 2v d) (2√2)v e) 3v 	6.	de altura aproxima	ada de 400 m, podr	ía ponerse en	órbita un satélite			
 de Gravitación universal, la expresión de la aceleración de la gravedad en la superficie del planeta viene dada por la expresión: a) 4πGρ b) GρR c) Gρ/R² d) 4/3 (GπRρ) e) 4/3 (GπR²ρ) 8. 6. En un punto exterior a la Tierra que se encuentra a una distancia x de su centro la intensidad del campo gravitatorio terrestre es 5,0 Nkg¹¹. Tomando el valor del campo en la superficie como 10,0 Nkg¹¹, resultaría que el valor aproximado del radio terrestre correspondería a: a) x/10 b) x/5 c) x/√2 d) x/2 e) 2x√2 9. 7. La velocidad de escape de un planeta de radio R y densidad ρ es v. La velocidad de escape para un planeta de radio 2R y densidad 2ρ será: a) v/2 b) v c) 2v d) (2√2)v e) 3v 		a) 2134	b) 4000	c) 8534	d) 1283	34		
 intensidad del campo gravitatorio terrestre es 5,0 Nkg⁻¹. Tomando el valor del campo en la superficie como 10,0 Nkg⁻¹, resultaría que el valor aproximado del radio terrestre correspondería a: a) x/10 b) x/5 c) x/√2 d) x/2 e) 2x√2 9. 7. La velocidad de escape de un planeta de radio R y densidad ρ es v. La velocidad de escape para un planeta de radio 2R y densidad 2ρ será: a) v/2 b) v c) 2v d) (2√2)v e) 3v 	7.	de Gravitación u del planeta viene	niversal, la expres dada por la expre	sión de la acel sión:	eración de la gi	avedad en la superficie		
escape para un planeta de radio 2R y densidad 2 ρ será: a) v/2 b) v c) 2v d) $(2\sqrt{2})v$ e) 3v	8.	intensidad del ca la superficie con correspondería a:	mpo gravitatorio t no 10,0 Nkg ⁻¹ , re :	errestre es 5,0 sultaría que e	Nkg ⁻¹ . Tomand l valor aproxin	o el valor del campo en nado del radio terrestre		
escape para un planeta de radio 2R y densidad 2 ρ será: a) v/2 b) v c) 2v d) $(2\sqrt{2})v$ e) 3v	a					a es v. La velocidad de		
10.8. Ganímedes, uno de los satélites mayores de Júpiter, tiene un radio orbital	J.	escape para un pl	laneta de radio 2R	y densidad 2	2ρ será:			
	10	. 8. Ganímedes,	uno de los saté	lites mayores	de Júpiter, t	tiene un radio orbital		

aproximadamente 2,8 veces el de la Luna. Sabiendo que la masa de Júpiter es unas 300 veces la de la Tierra, la relación velocidad de Ganímedes/velocidad de la Luna será: b) 100 d) 20 e) 10 a) 830 c) 29

11.	5.	el afelio y 0,6 U	IA en el p	erihelio. La ta respecto	a relación qu	ue hay ei	ntre el cocier	UA la distancia al Sol en nte de energías cinéticas as potenciales es de:	
12.	7.	masa 1 kg pesa	1 Nes	de:		de la Tie	-	en el que un cuerpo de	
		a) 13580	b) 2037	0	c) 28060		d) 56120		
13.	8.	8. Sean dos planetas homogéneos, uno de radio R y masa M , y otro de radio $3R/2$ y la misma masa M . Si en el primero un ascensor sube un cuerpo de 1 kg de masa a una altura R de la superficie y realiza un trabajo W, ¿a qué altura subiría 1 kg en el otro planeta realizando el mismo trabajo?:							
		a) R/2	b) 2R		c) 5R/2		d) 9 <i>R</i> /2		
14.	14. Un satélite está orbitando alrededor de un planeta con una velocidad de 1,70x10 ⁴ m/s, en una órbita de radio 5,25x10 ⁶ m; la energía por unidad de masa mínima para que el satélite escape del campo gravitatorio del planeta es (en 10 ⁸ J/kg):								
			b) 1,25		c) 1,30	,	d) 1,45		
 15. Dos masas de 10²⁰ kg están situadas en reposo en los puntos (0,10) y (0,-10). El trabajo mínimo necesario para que un cohete de 10⁴ kg se desplace desde el punto (0,0) al punto (20,0) es (en J): (todas las distancias están expresadas en UA). G= 6,7x10⁻¹¹ N m² kg⁻²; 1 UA= 150x10⁹ m. a) 49,4 b) 98,4 c) 147 d) 490 									
16.	ene pot	ergía potencial de encial respecto e acción terrestre s	e un saté de la lun e expres	élite respec a, la atrac	to del camp ción gravita	oo gravita	atorio terresti	En el punto en el que la re es 9 veces la energía la Luna respecto de la d) 3	
17.	7.	Una persona pe	esa en el	polo terres	stre 981 N.	Si se tra	slada a otro	planeta esférico de igual	
	masa que la Tierra pero con una densidad superior a la terrestre en un 15%, su peso en un polo planetario sería (expresado en N):								
		950) 1027	•	c) 10	77	d) 1128	
18.	8.	En un planeta	la durac	ión de "sı	u día" es id	gual al t	errestre, sie	endo en su polo la	
		_				_		l radio del planeta es:	
	(ex	presado en km	1)						
	a)	8550	b) 10175		c) 148	380	d) 17415	
19.	10 Si a la Tierra, considerada una esfera homogénea, se la añadiese sobre el suelo una capa uniforme de la misma densidad media que la de la Tierra actual, el grosor que debería tener esa capa para que la gravedad superficial fuese exactamente 10,0 m/s 2 , expresado en km, sería: (Tómese R_T = 6400 km)								
	a) 6		b) 124		c) 186		d) 248		
20.	20 (Da	La energía mínir atos: G= 6,67x10 ⁻¹	ma neces ¹ N m² kg	aria para ex ²; M _T = 5,98)	pulsar a la Li k10 ²⁴ kg; M _L =	una de su : 7,35x10 ²	órbita vale (e: kg; r _{orbital lunar n}	xpresada en 10 ²⁷ J): _{nedio} = 3,85x10 ⁸ m)	
	a)	19	b)	38	c)	45	d)	76	

21.	22 El planeta Saturno describe una órbita elíptica alrededor del Sol, con un afelio de					
	1,51x109 km y un perihelio de 1,35x109 km. El cociente entre los valores de las energías					
	cinéticas del planeta en el afelio frente al perihelio es:					
	a) 0,80 b) 0,	89 c) 1,25	d) 1,56			
22.				o perihelio se encuentra a to lineal de la Tierra en el		
	perihelio, respecto a	su valor en el afelio e	s:			
	a) 4% menor	b) 4% mayor	c) Faltan datos	d) Igual		
23.		Halley la distancia mí Sol (posición no visible)		JA y su período 75 años, la		
	a) 3,6 UA		c) 17,2 UA	d) 35 UA		
24.				en órbita circular el 28 de		
		en una órbita a 23258 s: (Dato: R _{Tierra} = 6400		ero de vueltas que cada 10		
	a) 17	b) 24	c) 28	d) 33		
25.				ores de Júpiter mirando a		
	través de su anteojo. Hoy día se sabe que uno de ellos, Ganímedes, describe una órbita circular de radio $r = 1,071 \times 10^6$ km, siendo su período de 7,16 días. ¿Cuánto vale la masa del					
	planeta? (Dato: G =	= 6,67x10 ⁻¹¹ N m ² kg ⁻²)				
	a) 1,20x10 kg	b) 6,50x10 ²⁶ kg	c) 1,90x10 kg	a) 2,50x10 kg		
26.	6. Por definición, la distancia Tierra-Sol es una Unidad Astronómica (UA) y el período de rotación					
	de la Tierra un año. Si la fuerza gravitatoria fuese proporcional a $1/r^3$ en vez de serlo a $1/r^2$, y se colocase un satélite artificial en órbita alrededor del Sol con un período de 8 años, el radio de la					
	órbita del satélite expresado en UA sería:					
	a) 1,7	b) 2,0	c) 2,8	d) 8,0		
27.	7. El perihelio de un cometa está a 0,60 UA del Sol y su afelio a 7,20 UA. El trabajo por unidad de					
	masa que realiza la fuerza de atracción del Sol para llevar al cometa desde el afelio al perihelio expresado en J, es: (Datos: $M_S = 2.0 \times 10^{30}$ kg, $G = 6.67 \times 10^{-11}$ N m ² kg ⁻² ; 1 UA= 1.50×10 ⁸ km)					
	a) 1.24v10 ⁸ ·	b) 1,36x10 ⁹	c) 1.40v10 ⁹	d) 1.61v10 ⁶		
	u) 1,24A10 ,	0, 1,00.10	C) 1,17A10	<i>a)</i> 1,011110		
28.	8. Desde la Tierra se l	lanza un cohete desde su	superficie con una veloc	idad triple que la de escape. La		
	velocidad con la que llegaría al infinito expresada en km/s es: (Datos: $g_0 = 9.81 \text{ m/s}^2$; $R_T = 6366 \text{ km}$)					
	a) 7,9	b) 15,8	c) 21,1	d) 31,6		

- 29. 14.- Se sabe que Ganímedes el mayor satélite de Júpiter describe una trayectoria circular de radio r= 0,00715 UA siendo su período de 7,16 días. ¿Cuántas veces es mayor la masa del sol que la masa de Júpiter?
 - a) 527
- b) 1053
- c) 1512
- d) 2100
- **30.** 15.- Se suben 20 t a una altura de 1 km. La altura (en km) a la que hay que subir 10 kg para realizar el mismo trabajo es ($R_{Tierra} = 6400 \text{ km}$):
 - a) 2000
- b)2889
- c)2909
- d) 3140

Soluciones:

- 1. c) 2. b) 3. b) 4. d) 5. b) 6. d) 7. d) 8. c) 9. d) 10. e) 11. b) 12. a)
- 13. a) 14. d) 15. a) 16. a) 17. c) 18. d) 19. b) 20. b) 21. a) 22. b) 23. d) 24. a)
- 25. c) 26. c) 27. b) 28. d) 29. b) 30. c)