- 9 Um avião que está voando horizontalmente com uma velocidade constante de 350 km/h, sobrevoando um terreno plano, deixa cair um fardo com suprimentos. Ignore o efeito do ar sobre o fardo. Quais são as componentes iniciais (a) vertical e (b) horizontal da velocidade inicial do fardo? (c) Qual é a componente horizontal da velocidade imediatamente antes de o fardo se chocar com o solo? (d) Se a velocidade do avião fosse de 450 km/h, o tempo de queda seria maior, menor ou igual?
- 10 Uma bola é chutada a partir do chão, em um terreno plano, com uma certa velocidade inicial. A Fig. 4-30 mostra o alcance R da bola em função do ângulo de lançamento θ_0 . Ordene os três pontos identificados no gráfico por letras de acordo (a) com o tempo que a bola permanece no ar e (b) com a velocidade da bola na altura máxima, em ordem decrescente.
- 11 Na Fig. 4-31 a partícula P está em movimento circular uniforme em torno da origem de um sistema de coordenadas xy. (a) Para que valores de θ a componente vertical r_v do vetor posição possui maior módulo? (b) Para que valores de θ a componente vertical v, da velocidade da FIG. 4-31 Pergunta 11.

FIG. 4-30 Pergunta 10.

- partícula possui maior módulo? (c) Para que valores de θ a componente vertical a, da aceleração da partícula possui maior módulo?
- 12 (a) É possível estar acelerando enquanto se viaja com velocidade escalar constante? É possível fazer uma curva (b) com aceleração nula e (c) com uma aceleração de módulo cons-
- 13 A Fig. 4-32 mostra quatro trilhos (semicírculos ou quartos de círculo) que podem ser usados por um trem que se move com velocidade escalar constante. Ordene os trilhos de acordo com o módulo da aceleração do trem no trecho curvo, em ordem decrescente.

FIG. 4-32 Pergunta 13.

PROBLEMAS

O número de pontos indica o grau de dificuldade do problema

Informações adicionais disponíveis em O Circo Voador da Física, de Jearl Walker, Rio de Janeiro: LTC, 2008.

seção 4-2 Posição e Deslocamento

- •1 Um pósitron sofre um deslocamento $\Delta \vec{r} = 2.0\hat{i} 3.0\hat{j} + 6.0\hat{k}$ e termina com o vetor posição $\vec{r} = 3.0\hat{j} - 4.0\hat{k}$, em metros. Qual era o vetor posição inicial do pósitron?
- •2 Uma semente de melancia possui as seguintes coordenadas: x = -5.0 m, y = 8.0 m e z = 0 m. Determine o vetor posição da semente (a) na notação de vetores unitários e como (b) um módulo e (c) um ângulo em relação ao sentido positivo do eixo x. (d) Desenhe o vetor em um sistema de coordenadas dextrogiro. Se a semente é transportada até as coordenadas (3,00 m, 0 m, 0 m), determine seu deslocamento (e) na notação de vetores unitários e como (f) um módulo e (g) um ângulo em relação ao sentido positivo do eixo x.
- •3 O vetor posição de um elétron é $\vec{r} = (5,0 \text{ m})\hat{1} (3,0 \text{ m})\hat{1} +$ (2,0 m)k. (a) Determine o módulo de \vec{r} . (b) Desenhe o vetor em um sistema de coordenadas dextrogiro.
- ••4 O ponteiro dos minutos de um relógio de parede mede 10 cm da ponta até o eixo de rotação. O módulo e o ângulo do vetor deslocamento da sua ponta devem ser determinados para três intervalos de tempo. Determine (a) o módulo e (b) o ângulo associado ao deslocamento da ponta entre as posições correspondentes a quinze e trinta minutos depois da hora, (c) o módulo e (d) o ângulo correspondente à meia hora seguinte e (e) o módulo e (f) o ângulo correspondente à hora seguinte.

seção 4-3 Velocidade Média e Velocidade Instantânea

- •5 O vetor posição de um ion é inicialmente $\vec{r} = 5.0\hat{i} 6.0\hat{j}$ +2.0k e 10 s, depois passa a ser $\vec{r} = 2.0i + 8.0j - 2.0k$, com todos os valores em metros. Na notação de vetores unitários, qual é a velocidade média $\vec{v}_{\text{méd}}$ durante os 10 s?
- •6 A posição de um elétron é dada por $\vec{r} = 3,00t\hat{i} 4,00t^2\hat{j} +$ 2,00k, com t em segundos e \vec{r} em metros. (a) Qual é a velocidade $\vec{v}(t)$ do elétron na notação de vetores unitários? Quanto vale $\vec{v}(t)$ no instante t = 2,00 s (b) na notação de vetores unitários e como (c) um módulo e (d) um ângulo em relação ao sentido positivo do eixo x?
- •7 Um trem com uma velocidade constante de 60,0 km/h se move na direção leste por 40,0 min, depois em uma direção que faz um ângulo de 50,0° a leste com a direção norte por 20,0 min e, finalmente, na direção oeste por mais 50,0 min. Quais são (a) o módulo e (b) o ângulo da velocidade média do trem durante essa viagem?
- ••8 Um avião voa 483 km para leste, da cidade A para a cidade B, em 45,0 min, e depois 966 km para o sul, da cidade B para uma cidade C, em 1,5 h. Para a viagem inteira, determine (a) o módulo e (b) a direção do deslocamento do avião, (c) o módulo e (d) a direção da velocidade média e (e) a velocidade escalar média.

••9 A Fig. 4-33 mostra os movimentos de um esquilo em um terreno plano, do ponto A (no instante t = 0) para os pontos B $(em \ t = 5,00 \ min), \ C \ (em$ t = 10,0 min) e, finalmente, D (em t = 15,0 min). Considere as velocidades médias do esquilo do ponto A para cada um dos outros. três pontos. Entre essas velocidades médias determine (a) o módulo e (b) o ângulo da que possui o menor módulo e (c) o módulo e (d) o ângulo da que possui o maior módulo.

•••10 O vetor $\vec{r} = 5,00ti$ $+ (et + ft^2)$ j mostra a posição de uma partícula em função do tempo t. O vetor r está em metros, t está em segundos e os fatores e e f são constantes. A Fig. 4-34 mostra o ângulo θ da direção do movimento da partícula em função de t (θ é medido a partir do semieixo x positivo). Determine (a) e e (b) f, indicando suas unidades.

FIG. 4-33 Problema 9.

FIG. 4-34 Problema 10.

seção 4-4 Aceleração Média e Aceleração Instantânea

•11 Uma partícula se move de tal forma que sua posição (em metros) em função do tempo (em segundos) é dada por $\vec{r} = \hat{i} + \hat{j}$ $4t^2\hat{j} + t\hat{k}$. Escreva expressões para (a) sua velocidade e (b) sua aceleração em função do tempo.

•12 A velocidade inicial de um próton é $\vec{v} = 4.0\hat{i} - 2.0\hat{j} + 3.0\hat{k}$; 4.0 s mais tarde, passa a ser $\vec{v} = -2.0\hat{i} - 2.0\hat{j} + 5.0\hat{k}$ (em metros por segundo). Para esses 4,0 s, determine quais são (a) a aceleração média do próton $\vec{a}_{\text{méd}}$ na notação de vetores unitários, (b) o módulo de $\vec{a}_{\text{méd}}$ e (c) o ângulo entre $\vec{a}_{\text{méd}}$ e o semi-eixo x positivo.

•13 A posição \vec{r} de uma partícula que se move em um plano xy é dada por $\vec{r} = (2.00t^3 - 5.00t)\hat{i} + (6.00 - 7.00t^4)\hat{i}$ com \vec{r} em metros e t em segundos. Na notação de vetores unitários, calcule (a) \vec{r} , (b) \vec{v} e (c) \vec{a} para t = 2.00 s. (d) Qual é o ângulo entre o sentido positivo do eixo x e uma reta tangente à trajetória da partícula em t = 2.00 s?

•14 Em um certo instante um ciclista está 40,0 m a leste do mastro de um parque, indo para o sul com uma velocidade de 10,0 m/s. Após 30,0 s o ciclista está 40,0 m ao norte do mastro. dirigindo-se para o leste com uma velocidade de 10,0 m/s. Para o ciclista, durante esse intervalo de 30,0 s quais são (a) o módulo e (b) a direção do deslocamento, (c) o módulo e (d) a direção da velocidade média e (e) o módulo e (f) a direção da aceleração média?

••15 Um carro se move sobre um plano xy com componentes da aceleração $a_x = 4.0 \text{ m/s}^2$ e $a_y = -2.0 \text{ m/s}^2$. A velocidade inicial tem componentes $v_{0x} = 8.0 \text{ m/s e } v_{0y} = 12 \text{ m/s}$. Na notação de vetores unitários, qual é a velocidade do carro quando atinge a maior coordenada y?

••16 Um vento moderado acelera um seixo sobre um plano horizontal xy com uma aceleração constante $\vec{a} = (5,00 \text{ m/s}^2)\mathbf{i} +$ $(7,00 \text{ m/s}^2)$ j. No instante t = 0, a velocidade é (4,00 m/s)i. Quais são (a) o módulo e (b) o ângulo da velocidade do seixo após ter se deslocado 12,0 m paralelamente ao eixo x?

••17 Uma partícula deixa a origem com uma velocidade inicial $\vec{v} = (3.00\hat{i})$ m/s e uma aceleração constante $\vec{a} = (-1.00\hat{i})$ -0,500j) m/s2. Quando ela atinge o máximo valor de sua coordenada x, quais são (a) a sua velocidade e (b) o seu vetor

••18 A velocidade \vec{v} de uma partícula que se move no plano xy é dada por $\vec{v} = (6.0t - 4.0t^2)\vec{i} + 8.0\vec{j}$, com \vec{v} em metros por segundo e t (> 0) em segundos (a) Qual é a aceleração no instante t = 3.0 s? (b) Em que instante (se isso é possível) a aceleração é nula? (c) Em que instante (se isso é possível) a velocidade é nula? (d) Em que instante (se isso é possível) a velocidade escalar da partícula é igual a 10 m/s?

•••19 A aceleração de uma partícula que se move apenas em um plano horizontal xy é dada por $\vec{a} = 3t\hat{i} + 4t\hat{j}$, onde \vec{a} está em metros por segundo ao quadrado e t em segundos. Em t = 0, o vetor posição $\vec{r} = (20,0 \text{ m})\hat{i} + (40,0 \text{ m})\hat{j}$ indica a localização da partícula, que nesse instante tem uma velocidade $\vec{v} = (5.00 \text{ m/s})i$ + (2,00 m/s)j. Em t = 4,00 s, determine (a) o vetor posição em termos dos vetores unitários e (b) o ângulo entre a direção do movimento e o semi-eixo x positivo.

•••20 Na Fig. 4-35 a partícula A se move ao longo da reta y = 30 mcom uma velocidade constante \vec{v} de módulo 3,0 m/s e paralela ao eixo x. No instante em que a partícula A passa pelo eixo y a partícula B deixa a origem com velocidade inicial zero e aceleração constante \vec{a} de módulo 0,40 m/s². Para que valor do ângulo θ entre \vec{a} e o semi-eixo y positivo acontece uma colisão?

FIG. 4-35 Problema 20.

seção 4-6 Análise do Movimento de um Projétil

•21 Um projétil é disparado horizontalmente de uma arma que está 45,0 m acima de um terreno plano, emergindo da arma com uma velocidade de 250 m/s. (a) Por quanto tempo o projétil permanece no ar? (b) A que distância horizontal do ponto de disparo ele se choca com o solo? (c) Qual é o módulo da componente vertical da velocidade quando o projétil se choca com o solo?

•22 No Campeonato Mundial de Atletismo de 1991, em Tóquio. Mike Powell saltou 8,95 m, batendo por 5 cm um recorde de 23 anos para o salto em distância estabelecido por Bob Beamon. Suponha que a velocidade de Powell no início do salto era de 9,5 m/s (aproximadamente igual à de um velocista) e que g = 9.8m/s² em Tóquio. Calcule a diferença entre o alcance de Powell e o máximo alcance possível para uma partícula lançada com a mesma velocidade.

 23 O recorde atual de salto de motocicleta é de 77,0 m, estabelecido por Jason Renie. Suponha que ele parta da rampa fazendo um ângulo de 12° com a horizontal e que as alturas no início e no final do salto sejam iguais. Determine a velocidade inicial, desprezando a resistência do ar.

- •24 Uma pequena bola rola horizontalmente até a borda de uma mesa de 1,20 m de altura e cai no chão. A bola chega ao chão a uma distância horizontal de 1,52 m da borda da mesa. (a) Por quanto tempo a bola fica no ar? (b) Qual é a velocidade da bola no instante em que chega à borda da mesa?
- •25 Um dardo é arremessado horizontalmente com uma velocidade inicial de 10 m/s em direção a um ponto P, o centro de um alvo de parede. Ele atinge um ponto Q do alvo, verticalmente abaixo de P, 0,19 s depois do arremesso. (a) Qual é a distância PQ? (b) A que distância do alvo foi arremessado o dardo?
- •26 Na Fig. 4-36, uma pedra é lançada em um rochedo de altura h com uma velocidade inicial de 42,0 m/s e um ângulo $\theta_0 = 60,0^\circ$ com a horizontal. A pedra cai em um ponto A, 5,50 s após o lançamento. Determine (a) a altura h do rochedo, (b) a velocidade da pedra imediatamente antes do impacto em A e (c) a máxima altura H alcançada acima do solo.

FIG. 4-36 Problema 26.

•27 Um certo avião tem uma velocidade de 290,0 km/h e está mergulhando com um ângulo $\theta = 30,0^{\circ}$ abaixo da horizontal quando o piloto libera um chamariz (Fig. 4-37). A distância horizontal entre o ponto de lançamento e o ponto onde o chamariz se choca com o solo é d = 700 m. (a) Quanto tempo o chamariz passou no ar? (b) De que altura foi lançado?

FIG. 4-37 Problema 27.

- •28 Uma pedra é lançada de uma catapulta no instante t = 0, com uma velocidade inicial de módulo 20,0 m/s e um ângulo de $40,0^{\circ}$ acima da horizontal. Quais são os módulos das componentes (a) horizontal e (b) vertical do deslocamento da pedra em relação à catapulta em t = 1,10 s? Repita os cálculos para as componentes (c) horizontal e (d) vertical em t = 1,80 s e para as componentes (e) horizontal e (f) vertical em t = 5,00 s.
- ••29 Um mergulhador salta com uma velocidade horizontal de 2,00 m/s de uma plataforma que está 10,0 m acima da superfície da água. (a) A que distância horizontal da borda da plataforma está o mergulhador 0,800 s após o início do salto? (b) A que distância vertical acima da superfície da água está o mergulhador nesse instante? (c) A que distância horizontal da borda da plataforma o mergulhador atinge a água?
- ••30 O trebuchet era uma máquina de arremesso construída para atacar as muralhas de um castelo durante um cerco. Uma grande pedra podia ser arremessada contra uma muralha

para derrubá-la. A máquina não era instalada perto da muralha, porque os operadores seriam um alvo fácil para as flechas disparadas do alto das muralhas do castelo. Em vez disso, o trebuchet era posicionado de tal forma que a pedra atingia a muralha na parte descendente de sua trajetória. Suponha que uma pedra seja lançada com uma velocidade $v_0 = 28.0$ m/s e um ângulo $\theta_0 = 40.0^{\circ}$. Qual é a velocidade da pedra se ela atinge a muralha (a) no momento em que chega à altura máxima de sua trajetória parabólica e (b) depois de cair metade da altura máxima? (c) Qual é a diferença percentual entre as respostas dos itens (b) e (a)?

- ••31 Um avião, mergulhando com velocidade constante em um ângulo de 53,0° com a vertical, lança um projétil a uma altitude de 730 m. O projétil chega ao solo 5,00 s após o lançamento. (a) Qual é a velocidade do avião? (b) Que distância o projétil percorre horizontalmente durante o percurso? Quais são as componentes (c) horizontal e (d) vertical da velocidade do projétil no momento em que chega ao solo?
- ••32 Durante uma partida de tênis, um jogador saca a 23,6 m/s, com o centro da bola deixando a raquete horizontalmente a 2,37 m de altura em relação à quadra. A rede está a 12 m de distância e tem 0,90 m de altura. (a) A bola passa para o outro lado da quadra? (b) Quando a bola chega à rede, qual é a distância entre o centro da bola e o alto da rede? Suponha que, nas mesmas condições, a bola deixe a raquete fazendo um ângulo 5,00° abaixo da horizontal. Nesse caso, (c) a bola passa para o outro lado da quadra? (d) Quando a bola chega à rede, qual é a distância entre o centro da bola e o alto da rede?
- ••33 Em uma cortada, um jogador de voleibol golpeia a bola com força, de cima para baixo, em direção à quadra adversária. É difícil controlar o ângulo de uma cortada. Suponha que uma bola seja cortada de uma altura de 2,30 m, com uma velocidade inicial de 20,0 m/s e um ângulo para baixo de 18,00°. Se o ângulo para baixo diminuir para 8,00°, a que distância adicional a bola atingirá a quadra adversária?
- ••34 Uma bola de futebol é chutada a partir do chão com uma velocidade inicial de 19,5 m/s e um ângulo para cima de 45°. No mesmo instante um jogador a 55 m de distância, na direção do chute, começa a correr para receber a bola. Qual deve ser sua velocidade média para que alcance a bola imediatamente antes que toque o gramado?
- ••35 A velocidade de lançamento de um projétil é cinco vezes maior que a velocidade na altura máxima. Determine o ângulo de lançamento θ₀.
- ••36 Um arremessador de peso de nível olímpico é capaz de lançar o peso com uma velocidade inicial $v_0 = 15,00$ m/s de uma altura de 2,160 m. Que distância horizontal é coberta pelo peso se o ângulo de lançamento θ_0 é (a) 45,00° e (b) 42,00°? As respostas mostram que o ângulo de 45°, que maximiza o alcance dos projéteis, não maximiza a distância horizontal quando a altura inicial e a altura final são diferentes.
- ••37 Uma bola é lançada a partir do solo. Quando ela atinge uma altura de 9,1 m sua velocidade é $\vec{v} = (7,6\hat{i} + 6,1\hat{j})$ m/s, com \hat{i} horizontal e \hat{j} para cima. (a) Qual é a altura máxima atingida pela bola? (b) Qual é a distância horizontal coberta pela bola? Quais são (c) o módulo e (d) o ângulo (abaixo da horizontal) da velocidade da bola no instante em que atinge o solo?
- ••38 Você lança uma bola em direção a uma parede com uma velocidade de 25,0 m/s e um ângulo $\theta_0 = 40,0^{\circ}$ acima da horizon-

tal (Fig. 4-38). A parede está a uma distância d = 22,0 m do ponto de lançamento da bola. (a) A que distância acima do ponto de lançamento a bola atinge a parede? Quais são as componentes (b) horizontal e (c) vertical da velocidade da bola ao atingir a parede? (d) Ao atingir a parede, ela já passou pelo ponto mais alto da trajetória?

FIG. 4-38 Problema 38.

- ••39 Um rifle que atira balas a 460 m/s é apontado para um alvo situado a 45,7 m de distância. Se o centro do alvo está na mesma altura do rifle, para que altura acima do alvo o cano do rifle deve ser apontado para que a bala atinja o centro do alvo?
- ••40 Uma bola de beisebol deixa a mão do lançador horizontalmente com uma velocidade de 161 km/h. A distância até o rebatedor é 18,3 m. (a) Quanto tempo a bola leva para percorrer a primeira metade da distância? (b) E a segunda metade? (c) Que distância a bola cai livremente durante a primeira metade? (d) E durante a segunda metade? (e) Por que as respostas dos itens (c) € (d) não são iguais?
- ••41 Na Fig. 4-39 uma bola é jogada para a esquerda a partir da extremidade esquerda de um terraço, situado a uma altura h acima do solo. A bola chega ao solo 1,50 s depois, a uma distância d = 25.0 mdo edifício e fazendo um ângulo $\theta = 60.0^{\circ}$ com a horizontal. (a)

FIG. 4-39 Problema 41.

Determine o valor de h. (Sugestão: Uma forma de resolver o problema é inverter o movimento, como se você estivesse vendo um filme de trás para a frente.) Quais são (b) o módulo e (c) o ângulo em relação à horizontal com o qual a bola foi jogada?

- ••42 Uma bola de golfe recebe uma tacada no chão. A velocidade da bola em função do tempo é mostrada na Fig. 4-40, onde t = 0é o instante em que a bola foi golpeada. (a) Que distância a bola de golfe percorre na horizontal antes de voltar ao nível do solo? (b) Qual é a altura máxima atingida pela bola acima do solo?
- ••43 Na Fig. 4-41 uma bola é lan-

FIG. 4-40 Problema 42.

27

25

23 21

çada com uma velocidade de 10,0 m/s e um ângulo de 50,0° com a horizontal. O ponto de lançamento fica na base de uma rampa de comprimento horizontal $d_1 = 6,00 \text{ m}$ e altura $d_2 = 3,60$ m. No topo da

FIG. 4-41 Problema 43.

rampa está localizado um platô. (a) A bola aterrissa na rampa ou no platô? No momento em que a bola aterrissa, quais são (b) o módulo e (c) o ângulo do deslocamento da bola em relação ao ponto de lancamento?

••44 Em 1939 ou 1940 Emanuel Zacchini levou seu número de bala humana a novas alturas. Depois de ser disparado por um canhão, passou por cima de três rodas-gigantes antes de cair em uma rede (Fig. 4-42). (a) Tratando Zacchini como uma partícula, determine a que distância vertical ele passou da primeira rodagigante. (b) Se ele atingiu a altura máxima ao passar pela rodagigante do meio, a que distância vertical passou dessa roda-gigante? (c) A que distância do canhão devia estar posicionado o centro da rede (desprezando a resistência do ar)?

FIG. 4-42 Problema 44.

••45 Quando vê um inseto pousado em uma planta perto da superfície da água, o peixe-arqueiro coloca o focinho para fora e lança um jato de água na direção do inseto para derrubá-lo na água (Fig. 4-43). Embora o peixe veja o inseto na extremidade de um segmento de reta de comprimento d, que faz um ângulo \phi com a superfície da

FIG. 4-43 Problema 45.

água, o jato deve ser lançado com um ângulo diferente, θ_0 , para que sua trajetória parabólica intercepte o inseto. Se $\phi = 36,0^{\circ}$, d = 0,900 m e a velocidade de lançamento é 3,56 m/s, qual deve ser o valor de θ_0 para que o jato esteja no ponto mais alto da trajetória quando atinge o inseto?

••46 Na Fig. 4-44 uma bola é arremessada para o alto de um edifício, caindo 4,00 s depois a uma altura h = 20,0 m acima da altura de lançamento. A trajetória da bola no final tem uma inclinação $\theta = 60^{\circ}$ em relação à horizontal. (a) Determine a distância horizontal d coberta pela bola. (Veja a sugestão do Problema 41.) Quais são (b) o módulo e (c) o

Problema 46.

ângulo (em relação à horizontal) da velocidade inicial da bola?

- ••47 Um rebatedor golpeia uma bola quando o centro da bola está a 1,22 m acima do solo. A bola deixa o taco do rebatedor fazendo um ângulo de 45° com o solo. Nesse lancamento a bola tem um alcance horizontal (distância até voltar à altura de lançamento) de 107 m. (a) A bola conseguirá passar por um alambrado de 7,32 m de altura que está a uma distância horizontal de 97,5 m do ponto de lançamento? (b) Qual é a distância entre o alto do alambrado e o centro da bola quando a mesma chega ao alambrado?
- ••48 Alguns jogadores de basquetebol parecem flutuar no ar durante um salto em direção à cesta. A ilusão depende em boa parte da capacidade de um jogador experiente de trocar rapidamente a bola de mão durante o salto, mas pode ser acentuada pelo fato de que o jogador percorre uma distância horizontal maior na parte superior do salto do que na parte inferior. Se um jogador salta com uma velocidade inicial $v_0 = 7,00$ m/s e um ângulo $\theta_0 = 35.0^{\circ}$, que porcentagem do alcance do salto o jogador

passa na parte superior do salto (entre a altura máxima e metade da altura máxima)?

salto antes de chegar a uma encosta. Considere um salto no qual a velocidade inicial é $v_0=10$ m/s, o ângulo é $\theta_0=9.0^\circ$, a pista antes do salto é aproximadamente plana e a encosta tem uma inclinação de 11,3°. A Fig. 4-45a mostra um pré-salto no qual o esquiador desce no início da encosta. A Fig. 4-45b mostra um salto que começa no momento em que o esquiador está chegando à encosta. Na Fig. 4-45a o esquiador desce aproximadamente na mesma altura em que começou o salto. (a) Qual é o ângulo ϕ entre a trajetória do esquiador e a encosta na situação da Fig. 4-45a? Na situação da Fig. 4-45b (b) o esquiador desce quantos metros abaixo da altura em que começou o salto e (c) qual é o valor de ϕ ? (A queda maior e o maior valor de ϕ podem fazer o esquiador perder o equilíbrio.)

FIG. 4-45 Problema 49.

•••50 Uma bola é lançada a partir do solo em direção a uma parede situada a uma distância x (Fig. 4-46a). A Fig. 4-46b mostra a componente v_y da velocidade da bola ao chegar à parede em função da distância x. Qual é o ângulo de lançamento?

FIG. 4-46 Problema 50.

- •••51 O chute de um jogador de futebol americano imprime à bola uma velocidade inicial de 25 m/s. Quais são (a) o menor e (b) o maior ângulo de elevação que ele pode imprimir à bola para marcar um *field goal** a partir de um ponto situado a 50 m da meta, cujo travessão está 3,44 m acima do gramado?
- •••52 Uma bola é lançada a partir do solo com uma certa velocidade. A Fig. 4-47 mostra o alcance R em função ao ângulo de lançamento θ_0 . O tempo de percurso depende do valor de θ_0 ; seja $t_{\text{máx}}$ o maior valor possível desse tempo. Qual é a menor velocidade que a bola possui durante o percurso se θ_0 é escolhido de tal forma que o tempo de percurso é $0.5t_{\text{máx}}$?

FIG. 4-47 Problema 52.

* Para marcar um *field goal* no futebol americano um jogador tem que fazer a bola passar por cima do travessão e entre as duas traves laterais. (N.T.)

- •••53 Uma bola rola horizontalmente do alto de uma escada com uma velocidade de 1,52 m/s. Os degraus têm 20,3 cm de altura e 20,3 cm de largura. Em que degrau a bola bate primeiro?
- •••54 Dois segundos após ter sido lançado a partir do solo, um projétil deslocou-se 40 m horizontalmente e 53 m verticalmente em relação ao ponto de lançamento. Quais são as componentes (a) horizontal e (b) vertical da velocidade inicial do projétil? (c) Qual é o deslocamento horizontal em relação ao ponto de lançamento no instante em que o projétil atinge a altura máxima em relação ao solo?
- •••55 Na Fig. 4-48 uma bola de beisebol é golpeada a uma altura h=1,00 m e apanhada na mesma altura. Deslocando-se paralelamente a um muro, ela passa pelo alto do muro 1,00 s após ter sido golpeada e, novamente, 4,00 s depois, quando está descendo, em posições separadas por uma distância D=50,0 m. (a) Qual é a distância horizontal percorrida pela bola do instante em que foi golpeada até ser apanhada? Quais são (b) o módulo e (c) o ângulo (em relação à horizontal) da velocidade da bola imediatamente após ter sido golpeada? (d) Qual é a altura do muro?

FIG. 4-48 Problema 55.

seção 4-7 Movimento Circular Uniforme

- •56 Um viciado em aceleração centrípeta executa um movimento circular uniforme de período T = 2.0 s e raio r = 3.00 m. No instante t_1 sua aceleração é $\vec{a} = (6.00 \text{ m/s}^2)\hat{\mathbf{i}} + (-4.00 \text{ m/s}^2)\hat{\mathbf{j}}$. Nesse instante, quais são os valores de (a) $\vec{v} \cdot \vec{a}$ e (b) $\vec{r} \times \vec{a}$?
- •57 Em um parque de diversões uma mulher passeia em uma roda-gigante com 15 m de raio, completando cinco voltas em torno do eixo horizontal a cada minuto. Quais são (a) o período do movimento, (b) o módulo e (c) o sentido de sua aceleração centrípeta no ponto mais alto, e (d) o módulo e (e) o sentido de sua aceleração centrípeta no ponto mais baixo?
- •58 Qual é o módulo da aceleração de um velocista que corre a 10 m/s ao fazer uma curva com 25 m de raio?
- •59 Quando uma grande estrela se torna uma supernova seu núcleo pode ser tão comprimido que ela se transforma em uma estrela de nêutrons, com um raio de cerca de 20 km. Se uma estrela de nêutrons completa uma revolução a cada segundo, (a) qual é o módulo da velocidade de uma partícula situada no equador da estrela e (b) qual é o módulo da aceleração centrípeta da partícula? (c) Se a estrela de nêutrons gira mais depressa, as respostas dos itens (a) e (b) aumentam, diminuem ou permanecem as mesmas?
- •60 Um satélite se move em uma órbita circular, 640 km acima da superfície da Terra, com um período de 98,0 min. Quais são (a) a velocidade e (b) o módulo da aceleração centrípeta do satélite?
- •61 Um carrossel de um parque de diversões gira em torno de um eixo vertical com velocidade angular constante. Um homem em pé na borda do carrossel tem uma velocidade escalar constante de 3,66 m/s e uma aceleração centrípeta \vec{a} de módulo 1,83 m/s². O vetor posição \vec{r} indica sua posição em relação ao

eixo do carrossel. (a) Qual é o módulo de \vec{r} ? Qual é o sentido de \vec{r} quando \vec{a} aponta (b) para leste e (c) para o sul?

- •62 Um ventilador realiza 1200 revoluções por minuto. Considere um ponto situado na extremidade de uma das pás, que descreve uma circunferência com 0,15 m de raio. (a) Que distância este ponto percorre em uma revolução? Quais são (b) a velocidade do ponto e (c) o módulo de sua aceleração? (d) Qual é o período do movimento?
- ••63 Uma bolsa a 2,00 m do centro e uma carteira a 3,00 m do centro descrevem um movimento circular uniforme no piso de um carrossel. Elas estão na mesma linha radial. Em um certo instante, a aceleração da bolsa é (2,00 m/s²)î + (4,00 m/s²)ĵ. Qual é a aceleração da carteira nesse instante, em termos dos vetores unitários?
- ••64 Uma partícula se move em uma trajetória circular em um sistema de coordenadas xy horizontal, com velocidade escalar constante. No instante $t_1 = 4,00$ s ela está no ponto (5,00 m, 6,00 m) com velocidade $(3,00 \text{ m/s})\hat{j}$ e aceleração no sentido positivo de x. No instante $t_2 = 10,0$ s ela tem uma velocidade $(-3,00 \text{ m/s})\hat{i}$ e uma aceleração no sentido positivo de y. Quais são as coordenadas (a) x e (b) y do centro da trajetória circular se a diferença $t_2 t_1$ é menor que um período?
- ••65 Em $t_1 = 2,00$ s, a aceleração de uma partícula em movimento circular no sentido anti-horário é $(6,00 \,\mathrm{m/s^2})\hat{\mathbf{i}} + (4,00 \,\mathrm{m/s^2})\hat{\mathbf{j}}$. Ela se move com velocidade escalar constante. Em $t_2 = 5,00 \,\mathrm{s}$, sua aceleração é $(4,00 \,\mathrm{m/s^2})\hat{\mathbf{i}} + (-6,00 \,\mathrm{m/s})\hat{\mathbf{j}}$. Qual é o raio da trajetória da partícula se a diferença $t_2 t_1$ é menor que um período?
- ••66 Uma partícula descreve um movimento circular uniforme em um plano horizontal xy. Em um certo instante ela passa pelo ponto de coordenadas (4,00 m, 4,00 m) com uma velocidade de -5,00î m/s e uma aceleração de +12,5ĵ m/s. Quais são as coordenadas (a) x e (b) y do centro da trajetória circular?
- •••67 Um menino faz uma pedra descrever uma circunferência horizontal com 1,5 m de raio 2,0 m acima do chão. A corda se parte e a pedra é arremessada horizontalmente, chegando ao solo depois de percorrer uma distância horizontal de 10 m. Qual era o módulo da aceleração centrípeta da pedra durante o movimento circular?
- •••68 Um gato pula em um carrossel que está descrevendo um movimento circular uniforme. No instante $t_1 = 2,00$ s a velocidade do gato é $\vec{v}_1 = (3,00 \text{ m/s})\hat{\mathbf{i}} + (4,00 \text{ m/s})\hat{\mathbf{j}}$, medida em um sistema de coordenadas horizontal xy. No instante $t_2 = 5,00$ s, a velocidade é $\vec{v}_2 = (-3,00 \text{ m/s})\hat{\mathbf{i}} + (-4,00 \text{ m/s})\hat{\mathbf{j}}$. Quais são (a) o módulo da aceleração centrípeta do gato e (b) a aceleração média do gato no intervalo de tempo $t_2 t_1$, que é menor que um período?

seção 4-8 Movimento Relativo em Uma Dimensão

- •69 Um cinegrafista está em uma picape que se move para oeste a 20 km/h enquanto filma um guepardo que também está se movendo para oeste 30 km/h mais depressa que a picape. De repente, o guepardo pára, dá meia-volta e passa a correr a 45 km/h para leste, de acordo com a estimativa de um membro da equipe, agora nervoso, de pé na margem da estrada, no caminho do guepardo. A mudança de velocidade do animal leva 2,0 s. Quais são (a) o módulo e (b) a orientação da aceleração do animal em relação ao cinegrafista e (c) o módulo e (d) a orientação da aceleração do animal em relação do animal em rel
- •70 Um barco está navegando rio acima, no sentido positivo de um eixo x, a 14 km/h em relação à água do rio. A água do rio

está correndo a 9,0 km/h em relação à margem. Quais são (a) o módulo e (b) a orientação da velocidade do barco em relação à margem? Uma criança no barco caminha da popa para a proa a 6,0 km/h em relação ao barco. Quais são (c) o módulo e (d) a orientação da velocidade da criança em relação à margem?

••71 Um homem de aparência suspeita corre o mais rápido que pode por uma esteira rolante, levando 2,5 s para ir de uma extremidade a outra. Os seguranças aparecem e o homem volta ao ponto de partida, correndo o mais rápido que pode, levando 10,0 s. Qual é a razão entre a velocidade do homem e a velocidade da esteira?

seção 4-9 Movimento Relativo em Duas Dimensões

- •72 Um jogador de rúgbi corre com a bola em direção à meta do adversário no sentido positivo de um eixo x. De acordo com as regras do jogo, ele pode passar a bola a um companheiro de equipe desde que a velocidade da bola em relação ao campo não possua uma componente x positiva. Suponha que o jogador esteja correndo com uma velocidade de 4,0 m/s em relação ao campo quando passa a bola com uma velocidade \vec{v}_{BJ} em relação a ele mesmo. Se o módulo de \vec{v}_{BJ} é 6,0 m/s, qual é o menor ângulo que ela deve fazer com a direção x para que o passe seja válido?
- ••73 Dois navios, $A \in B$, deixam o porto ao mesmo tempo. O navio A navega para noroeste a 24 nós e o navio B navega a 28 nós em uma direção 40° a oeste do sul. (1 nó = 1 milha marítima) por hora; veja o Apêndice D.) Quais são (a) o módulo e (b) a orientação da velocidade do navio A em relação ao navio B? (c) Após quanto tempo os navios estarão separados por 160 milhas marítimas? (d) Qual será o curso de B (orientação do vetor posição de B) em relação a A nesse instante?
- ••74 Um avião leve atinge uma velocidade do ar de 500 km/h. O piloto pretende chegar a um ponto 800 km ao norte, mas descobre que deve direcionar o avião 20,0° a leste do norte para atingir seu destino. O avião chega em 2,00 h. Quais eram (a) o módulo e (b) a orientação da velocidade do vento?
- ••75 A neve está caindo verticalmente com uma velocidade constante de 8,0 m/s. Com que ângulo, em relação à vertical, os flocos de neve parecem estar caindo do ponto de vista do motorista de um carro que viaja em uma estrada plana e retilínea a uma velocidade de 50 km/h?
- ••76 Depois de voar por 15 min em um vento de 42 km/h a um ângulo 20° ao sul do leste, o piloto de um avião sobrevoa uma cidade que está a 55 km ao norte do ponto de partida. Qual é a velocidade escalar do avião em relação ao ar?
- ••77 Um trem viaja para o sul a 30 m/s (em relação ao solo) em meio a uma chuva que é soprada para o sul pelo vento. As trajetórias das gotas de chuva fazem um ângulo de 70° com a vertical quando medidas por um observador estacionário no solo. Um observador no trem, entretanto, vê as gotas caírem exatamente na vertical. Determine a velocidade escalar das gotas de chuva em relação ao solo.
- ••78 Um rio de 200 m de largura corre para leste com uma velocidade constante de 2,0 m/s. Um barco com uma velocidade de 8,0 m/s em relação à água parte da margem sul em uma direção 30° a oeste do norte. Determine (a) o módulo e (b) a orientação da velocidade do barco em relação à margem. (c) Quanto tempo o barco leva para atravessar o rio?
- ••79 Duas rodovias se cruzam, como mostra a Fig. 4-49. No instante indicado, um carro de polícia P está a uma distância $d_P = 800$ m do cruzamento, movendo-se com uma velocidade es-

calar $v_P = 80$ km/h. O motorista M está a uma distância $d_M = 600$ m do cruzamento, movendo-se com uma velocidade escalar $v_M = 60$ km/h. (a) Qual é a velocidade do motorista em relação ao carro da polícia na notação de vetores unitários? (b) No instante mostrado na Fig. 4-49, qual é o ângulo entre a velocidade calculada no item (a) e a reta que liga os dois carros? (c) Se os carros mantêm suas velocidades, as respostas dos itens (a) e (b) mudam quando os carros se aproximam da interseção?

FIG. 4-49 Problema 79.

••80 Na vista superior da Fig. 4-50 os jipes P e B se movem em linha reta em um terreno plano e passam ao lado de um guarda de fronteira estacionário A. Em relação ao guarda, o jipe B se move com uma velocidade escalar constante de 20,0 m/s e um ângulo $\theta_2 = 30,0^{\circ}$. Também em relação ao guarda, P acelerou a partir do repouso a uma taxa constante de 0,400 m/s² e

FIG. 4-50 Problema 80.

um ângulo $\theta_1 = 60.0^{\circ}$. Em um certo instante durante a aceleração, P possui uma velocidade escalar de 40.0 m/s. Nesse instante, quais são (a) o módulo e (b) a orientação da velocidade de P em relação a B e (c) o módulo e a orientação da aceleração de P em relação a B?

•••81 O navio A está 4,0 km ao norte e 2,5 km a leste do navio B. O navio A está viajando com uma velocidade de 22 km/h na direção sul; o navio B, com uma velocidade de 40,0 km/h em uma direção 37° ao norte do leste. (a) Qual é a velocidade de A em relação a B em termos dos vetores unitários, com $\hat{\bf i}$ apontando para o leste? (b) Escreva uma expressão (em termos de $\hat{\bf i}$ e $\hat{\bf j}$) para a posição de A em relação a B em função do tempo t, tomando t=0 como o instante em que os dois navios estão nas posições aqui descritas. (c) Em que instante a separação entre os navios é mínima? (d) Qual é essa separação mínima?

•••82 Um rio de 200 m de largura corre com uma velocidade uniforme de 1,1 m/s através de uma floresta, na direção leste. Um explorador deseja sair de uma pequena clareira na margem sul e atravessar o rio em um barco a motor que se move com uma velocidade escalar constante de 4,0 m/s em relação à água. Existe uma outra clareira na margem norte, 82 m rio acima a partir de um ponto da margem sul, exatamente em frente à clareira. (a) Em que direção o barco deve ser apontado para viajar em linha reta

e chegar à clareira da margem norte? (b) Quanto tempo o barco leva para atravessar o rio e chegar à clareira?

Problemas Adicionais

83 Você é seqüestrado por estudantes de ciência política (que estão aborrecidos porque você disse a eles que a ciência política não é uma ciência de verdade). Embora esteja vendado, você pode estimar a velocidade do carro dos seqüestradores (pelo ronco do motor), o tempo de viagem (contando mentalmente os segundos) e a orientação da viagem (pelas curvas que o carro fez). A partir dessas pistas você sabe que foi conduzido ao longo do seguinte percurso: 50 km/h por 2,0 min, curva de 90° para a direita, 20 km/h por 4,0 min, curva de 90° para a direita, 20 km/h por 60 s, curva de 90° para a esquerda, 50 km/h por 30 s. Nesse ponto, (a) a que distância você se encontra do ponto de partida e (b) em que direção em relação à direção inicial você está?

84 Cortina da morte. Um grande asteróide metálico colide com a Terra e abre uma cratera no material rochoso abaixo do solo, lançando pedras para o alto. A tabela a seguir mostra cinco pares de velocidades e ângulos (em relação à horizontal) para essas pedras, com base em um modelo de formação de crateras. (Outras pedras, com velocidades e ângulos intermediários, também são lançadas.) Suponha que você está em x=20 km quando o asteróide chega ao solo no instante t=0 e na posição x=0 (Fig. 4-51). (a) Em t=20 s, quais são as coordenadas x e y das pedras, de A a E, que foram lançadas em sua direção? (b) Plote essas coordenadas em um gráfico e desenhe uma curva passando pelos pontos para incluir pedras com velocidades e ângulos intermediários. A curva deve dar uma idéia do que você veria ao olhar na direção das pedras e do que os dinossauros devem ter visto durante as colisões de asteróides com a Terra, no passado remoto.

Pedra	Velocidade (m/s)	Ângulo (graus)
A	520	14,0
B	630	16,0
C	750	18,0
D	870	20,0
E	1000	22,0

FIG. 4-51 Problema 84.

85 Na Fig. 4-52 uma bola de massa de modelar descreve um movimento circular uniforme, com um raio de 20,0 cm, na borda de uma roda que está girando no sentido anti-horário com um período de 5,00 ms. A bola se desprende da borda na posição correspondente a 5 horas (como se estivesse no mos-

FIG. 4-52 Problema 85.

trador de um relógio). Ela deixa a borda a uma altura h=1,20 m acima do chão e a uma distância d=2,50 m de uma parede. Em que altura a bola bate na parede?

- 86 Uma partícula descreve um movimento circular uniforme em torno da origem de um sistema de coordenadas xy, movendose no sentido horário com um período de 7,00 s. Em um certo instante o vetor posição da partícula (em relação à origem) é $\vec{r} = (2,00 \text{ m})\hat{i} (3,00 \text{ m})\hat{j}$. Qual é a velocidade da partícula nesse instante, em termos dos vetores unitários?
- 87 Na Fig. 4-53, uma bola é lançada verticalmente para cima, a partir do solo, com uma velocidade inicial $v_0 = 7,00$ m/s. Ao mesmo tempo um elevador de serviço começa a subir, a partir do solo, com uma velocidade constante $v_c = 3,00$ m/s. Qual é a altura máxima atin-

FIG. 4-53 Problema 87.

gida pela bola (a) em relação ao solo e (b) em relação ao piso do elevador? Qual é a taxa de variação da velocidade da bola (c) em relação ao solo e (d) em relação ao piso do elevador?

88 Na Fig. 4-54a, um trenó se move no sentido negativo do eixo x com uma velocidade escalar constante v_i , enquanto uma bola de gelo é atirada do trenó com uma velocidade $\vec{v}_0 = v_{0x}\hat{\mathbf{i}} + v_{0x}\hat{\mathbf{j}}$ em relação ao trenó. Quando a bola chega ao solo, seu deslocamento horizontal Δx_{bs} em relação ao solo (da posição inicial à posição final) é medido. A Fig. 4-54b mostra a variação de Δx_{bs} com v_i . Suponha que a bola chega ao solo na altura aproximada em que foi lançada. Quais são os valores (a) de v_{0x} e (b) de v_{0y} ? O deslocamento da bola em relação ao trenó, Δx_{bs} , também pode ser medido. Suponha que a velocidade do trenó não muda depois que a bola é atirada. Quanto é Δx_{bs} para v_i igual a (c) 5,0 m/s e (d) 15 m/s?

FIG. 4-54 Problema 88.

89 Uma mulher que é capaz de remar um barco a 6,4 km/h em águas paradas se prepara para atravessar um rio longo e retilíneo com 6,4 km de largura e uma correnteza de 3,2 km/h. Tome î perpendicular ao rio e ĵ apontando rio abaixo. Se a mulher pretende remar até um ponto na outra margem diametralmente oposto ao ponto de partida, (a) para que ângulo em relação a î deve apontar o barco e (b) quanto tempo leva para fazer a travessia? (c) Quanto tempo gastaria se, em vez disso, remasse 3,2 km *rio abaixo* e depois voltasse ao ponto de partida? (d) Quanto tempo gastaria se remasse 3,2 km *rio acima* e depois voltasse ao ponto de partida? (e) Para que ângulo deveria direcionar o barco para atravessar o rio no menor tempo possível? (f) Qual seria esse tempo?

90 Na Fig. 4-55, uma estação de radar detecta um avião que se aproxima, vindo do leste. Quando é observado pela primeira vez o avião está a uma distância d_1 = 360 m da estação e θ_1 = 40° acima do horizonte. O avião é rastreado durante uma variação angular $\Delta\theta$ = 123° no plano vertical leste-oeste; sua distância no final dessa variação é d_2 = 790 m. Determine (a) o módulo e (b) a orientação do deslocamento do avião durante este período.

FIG. 4-55 Problema 90.

- **91** Um rifle é apontado horizontalmente para um alvo a 30 m de distância. A bala atinge o alvo 1,9 cm abaixo do ponto para onde o rifle foi apontado. Determine (a) o tempo de percurso da bala e (b) a velocidade escalar da bala ao sair do rifle.
- 92 Um trem francês de alta velocidade, conhecido como TGV (Train à Grande Vitesse), viaja a uma velocidade média de 216 km/h. (a) Se o trem faz uma curva a essa velocidade e o módulo da aceleração sentida pelos passageiros pode ser no máximo de 0,050g, qual é o menor raio de curvatura dos trilhos que pode ser tolerado? (b) Com que velocidade o trem deve fazer uma curva com 1,00 km de raio para que a aceleração esteja no limite permitido?
- 93 Um campo magnético pode forçar uma partícula a descrever uma trajetória circular. Suponha que um elétron que está descrevendo uma circunferência sofra uma aceleração radial de módulo 3,0 × 10¹⁴ m/s² sob o efeito de um certo campo magnético. (a) Qual é o módulo da velocidade do elétron se o raio da trajetória circular é de 15 cm? (b) Qual é o período do movimento?
- **94** O vetor posição de um próton é inicialmente $\vec{r} = 5,0\hat{i} 6,0\hat{j} + 2,0\hat{k}$ e depois se torna $\vec{r} = -2,0\hat{i} + 6,0\hat{j} + 2,0\hat{k}$, com todos os valores em metros. (a) Qual é o vetor deslocamento do próton? (b) Esse vetor é paralelo a que plano?
- 95 Uma partícula P se move com velocidade escalar constante sobre uma circunferência de raio r = 3,00 m (Fig. 4-56) e completa uma revolução a cada 20,0 s. A partícula passa pelo ponto O no instante t = 0. Expresse os vetores a seguir na notação módulo-ângulo (ângulo em relação ao sentido positivo de x). Determine o vetor posição da partícula, em relação a O, nos instantes (a) t = 5,00 s, (b) t = 7,50 s e (c) t = 10,0 s, (d) Determine

FIG. 4-56 Problema 95.

o deslocamento da partícula no intervalo de 5,00 s entre o fim do quinto segundo e o fim do décimo segundo. Para esse mesmo intervalo, determine (e) a velocidade média e a velocidade (f) no início e (g) no fim do intervalo. Em seguida, determine a aceleração (h) no início e (i) no fim do intervalo.

- 96 Um trenó a vela se move na superfície de um lago congelado com uma aceleração constante produzida pelo vento. Em um certo instante a velocidade do trenó é 6,30î 8,42ĵ. Três segundos depois, devido a uma mudança do vento, o trenó se encontra momentaneamente em repouso. Qual é a aceleração média do trenó nesse intervalo de 3 s?
- 97 Em 3,50 h um balão se desloca 21,5 km para o norte, 9,70 km para leste e 2,88 km para cima em relação ao ponto de lançamento. Determine (a) o módulo da velocidade média do balão e (b) o ângulo que a velocidade média faz com a horizontal.
- **98** Uma bola é lançada horizontalmente de uma altura de 20 m e chega ao solo com uma velocidade três vezes maior que a inicial. Determine a velocidade inicial.
- 99 Um projétil é lançado com uma velocidade inicial de 30 m/s e um ângulo de 60° acima da horizontal. Determine (a) o módulo e (b) o ângulo da velocidade 2,0 s após o lançamento. (c) O ângulo do item (b) é acima ou abaixo da horizontal? Determine (d) o módulo e (e) o ângulo da velocidade 5,0 s após o lançamento. (f) O ângulo do item (e) é acima ou abaixo da horizontal?
- 100 Um aeroporto dispõe de uma esteira rolante para ajudar os passageiros a atravessar um longo corredor. Lauro não usa a esteira rolante e leva 150 s para atravessar o corredor. Cora, que fica parada na esteira rolante, cobre a mesma distância em 70 s. Marta prefere andar na esteira rolante. Quanto tempo leva Marta para atravessar o corredor? Suponha que Lauro e Marta caminhem com a mesma velocidade.
- 101 Um jogador de futebol americano chuta uma bola de tal forma que ela passa 4,5 s no ar e chega ao solo a 46 m do ponto de onde foi lançada. Se a bola deixa o pé do jogador 150 cm acima do solo, qual deve ser (a) o módulo e (b) o ângulo (em relação à horizontal) da velocidade inicial da bola?
- 102 No voleibol feminino o alto da rede está 2,24 m acima do piso e a quadra mede 9,0 m por 9,0 m de cada lado da rede. Ao dar um saque viagem, uma jogadora bate na bola quando ela está 3,0 m acima do piso e a uma distância horizontal de 8,0 m da rede. Se a velocidade inicial da bola é horizontal, determine (a) a menor velocidade escalar que a bola deve ter para ultrapassar a rede e (b) a máxima velocidade que ela pode ter para atingir o piso dentro dos limites da quadra do outro lado da rede.
- 103 A Fig. 4-57 mostra a trajetória retilínea de uma partícula em um sistema de coordenadas xy quando a partícula é acelerada a partir do repouso em um intervalo de tempo Δt_1 . A aceleração é constante. As coordenadas do ponto A são (4,00 m, 6,00 m) e as do ponto B são (12,0 m, 18,0 m). (a) Qual é a razão a_y/a_x entre as componentes da aceleração? (b) Quais são as coordenadas da partícula se o movimento continua durante outro intervalo igual a Δt_1 ?

FIG. 4-57 Problema 103.

- 104 Um astronauta é posto em rotação em uma centrífuga horizontal com um raio de 5,0 m. (a) Qual é a velocidade escalar do astronauta se a aceleração centrípeta tem um módulo de 7,0g? (b) Quantas revoluções por minuto são necessárias para produzir essa aceleração? (c) Qual é o período do movimento?
- **105** (a) Qual é o módulo da aceleração centrípeta de um objeto no equador da Terra devido à rotação da Terra? (b) Qual deveria ser o período de rotação da Terra para que um objeto no equador tivesse uma aceleração centrípeta com um módulo de 9,8 m/s²?

- 106 Uma pessoa sobe uma escada rolante enguiçada, de 15 m de comprimento, em 90 s. Ficando parada na mesma escada rolante, depois de consertada, a pessoa sobe em 60 s. Quanto tempo a pessoa leva se subir a escada e ela estiver em movimento? A resposta depende do comprimento da escada?
- 107 Uma bola de beisebol é golpeada junto ao chão. A bola atinge a altura máxima 3,0 s após ter sido golpeada. Em seguida, 2,5 s após ter atingido a altura máxima, a bola passa rente a um alambrado que está a 97,5 m do ponto onde foi golpeada. Suponha que o solo é plano. (a) Qual é a altura máxima atingida pela bola? (b) Qual é a altura do alambrado? (c) A que distância do alambrado a bola atinge o chão?
- **108** O alcance de um projétil depende não só de v_0 e θ_0 , mas também do valor g da aceleração em queda livre, que varia de lugar para lugar. Em 1936 Jesse Owens estabeleceu o recorde mundial de salto em distância de 8,09 m nos Jogos Olímpicos de Berlim, onde g = 9,8128 m/s². Supondo os mesmos valores de v_0 e θ_0 , que distância o atleta teria pulado em 1956, nos Jogos Olímpicos de Melbourne, onde g = 9,7999 m/s²?
- 109 Durante as erupções vulcânicas, grandes pedaços de pedra podem ser lançados para fora do vulcão; esses projéteis são conhecidos como bombas vulcânicas. A Fig. 4-58 mostra uma seção transversal do monte Fuji, no Japão. (a) Com que velocidade inicial uma bomba teria que ser lançada, com um ângulo $\theta_0 = 35^\circ$ em relação à horizontal, a partir da cratera A, para cair no ponto B, a uma distância vertical h = 3,30 km e a uma distância horizontal d = 9,40 km? Ignore o efeito do ar sobre o movimento da bomba. (b) Qual seria o tempo de percurso? (c) O efeito do ar aumentaria ou diminuiria a resposta do item (a)?

FIG. 4-58 Problema 109.

- 110 Vôos longos em latitudes médias no hemisfério norte encontram a chamada corrente de jato, um fluxo de ar para leste que pode afetar a velocidade do avião em relação à superfície da Terra. Se um piloto mantém uma certa velocidade em relação ao ar (a chamada velocidade do ar), a velocidade em relação ao solo é maior quando o vôo é na direção da corrente de jato e menor quando o vôo é na direção oposta. Suponha que um vôo de ida e volta esteja previsto entre duas cidades separadas por 4000 km, com o vôo de ida no sentido da corrente de jato e o vôo de volta no sentido oposto. O computador da empresa aérea recomenda uma velocidade do ar de 1000 km/h, para a qual a diferença entre as durações dos vôos de ida e de volta é de 70,0 min. Qual é a velocidade da corrente de jato que o computador usou nos cálculos?
- 111 Uma partícula parte da origem no instante t = 0 com uma velocidade de $8,0\hat{j}$ m/s e se move no plano xy com uma aceleração constante igual a $(4,0\hat{i} + 2,0\hat{j})$ m/s². Quando a coordenada x da partícula é 29 m, quais são (a) a coordenada y e (b) a velocidade escalar?

- 112 Um velocista correndo em uma pista circular possui uma velocidade escalar constante de 9,2 m/s e uma aceleração centrípeta de módulo 3,8 m/s². Quais são (a) o raio da pista e (b) o período do movimento circular?
- 113 Um elétron com uma velocidade horizontal inicial de módulo $1,00\times 10^9$ cm/s penetra na região entre duas placas de metal horizontais eletricamente carregadas. Nessa região o elétron percorre uma distância horizontal de 2,00 cm e sofre uma aceleração constante para baixo de módulo $1,00\times 10^{17}$ cm/s² devido às placas carregadas. Determine (a) o tempo que o elétron leva para percorrer os 2,00 cm; (b) a distância vertical que o elétron percorre durante esse tempo; os módulos da componente (c) horizontal e (d) vertical da velocidade quando o elétron sai da região entre as placas.
- 114 Um elevador sem teto está subindo com uma velocidade constante de 10 m/s. Um menino que está no elevador arremessa uma bola para cima, na vertical, de uma altura 2,0 m acima do piso do elevador, no instante em que o piso do elevador se encontra 28 m acima do solo. A velocidade inicial da bola em relação ao elevador é de 20 m/s. (a) Qual é a altura máxima acima do solo atingida pela bola? (b) Quanto tempo a bola leva para cair de volta no piso do elevador?
- 115 Suponha que uma sonda espacial seja capaz de suportar uma aceleração de no máximo 20g. (a) Qual é o menor raio de curvatura que a nave pode suportar quando está se movendo a um décimo da velocidade da luz? (b) Quanto tempo a sonda levaria para completar uma curva de 90° nessas condições?
- **116** Com que velocidade inicial o jogador de basquetebol da Fig. 4-59 deve arremessar a bola, com um ângulo $\theta_0 = 55^\circ$ acima da horizontal, para converter o lance livre? As distâncias horizontais são $d_1 = 1,0$ ft e $d_2 = 14$ ft e as alturas são $h_1 = 7,0$ ft e $h_2 = 10$ ft.
- 117 Um vagão de madeira está se movendo em uma

FIG. 4-59 Problema 116.

linha férrea retilínea com velocidade v_1 . Um franco-atirador dispara uma bala (com velocidade inicial v_2) contra o vagão, usando um rifle de alta potência. A bala atravessa as duas paredes laterais, e os furos de entrada e saída ficam à mesma distância das extremidades do vagão. De que direção, em relação à linha férrea, a bala foi disparada? Suponha que a bala não foi desviada ao penetrar no vagão, mas a velocidade diminuiu de 20%. Suponha ainda que $v_1 = 85$ km/h e $v_2 = 650$ m/s. (Por que não é preciso conhecer a largura do vagão?)

118 Você pretende atirar uma bola com uma velocidade escalar de 12,0 m/s em um alvo que está a uma altura h=5,00 m acima

do nível do qual você vai lançar a bola (Fig. 4-60). Você quer que a velocidade da bola seja horizontal no instante em que ela atinge o alvo. (a) Com que ângulo θ acima da horizontal você deve atirar a bola? (b) Qual é a distância horizontal do ponto de lançamento até o alvo? (c) Qual é a velocidade escalar da bola no momento em que atinge o alvo?

FIG. 4-60 Problema 118.

- **119** A Fig. 4-61 mostra a trajetória seguida por um bêbado em um terreno plano, de um ponto inicial i até um ponto final f. Os ângulos são $\theta_1 = 30,0^\circ$, $\theta_2 = 50,0^\circ$ e $\theta_3 = 80,0^\circ$; as distâncias são $d_1 = 5,00$ m, $d_2 = 8,00$ m e $d_3 = 12,0$ m. Quais são (a) o módulo e (b) o ângulo do deslocamento do bêbado de i até f?
- **120** Um projétil é disparado com uma velocidade inicial $v_0 = 30.0$ m/s, a partir do solo, com o objetivo de atingir um alvo que está no solo a uma distância R = 20.0 m, como mostra a Fig. 4-62. Quais são (a) o menor e (b) o maior ângulo de lançamento que permitem que o projétil atinja o alvo?
- **121** O oásis A está 90 km a oeste do oásis B. Um camelo parte de A e leva 50 h para caminhar 75 km 37° ao norte do leste. Em seguida, leva 35 h para caminhar 65 km para o sul

FIG. 4-61 Problema 119.

FIG. 4-62 Problema 120.

- e descansa por 5,0 h. Quais são (a) o módulo e (b) o sentido do deslocamento do camelo em relação a A até o ponto em que ele pára para descansar? Do instante em que o camelo parte do ponto A até o final do período de descanso, quais são (c) o módulo e (d) o sentido da velocidade média do camelo e (e) sua velocidade escalar média? A última vez que o camelo bebeu água foi em A; ele deve estar em B não mais do que 120 h após a partida para beber água novamente. Para que chegue a B no último momento, quais devem ser (f) o módulo e (g) o sentido da velocidade média após o período de descanso?
- 122 Uma surpresa gráfica. No instante t=0, um burrito é lançado a partir de um terreno plano, com uma velocidade inicial de 16.0 m/s e um ângulo de lançamento θ_0 . Imagine um vetor posição \overrightarrow{r} que ligue o ponto de lançamento ao burrito durante toda a trajetória. Plote o módulo r do vetor posição em função do tempo para (a) $\theta_0 = 40.0^\circ$ e (b) $\theta_0 = 80.0^\circ$. Para $\theta_0 = 40.0^\circ$, (c) em que instante r atinge o valor máximo, (d) qual é esse valor e a que distância (e) horizontal e (f) vertical está o burrito em relação ao ponto de lançamento? Para $\theta_0 = 80.0^\circ$, (g) em que instante r atinge o valor máximo, (h) qual é esse valor e a que distância (i) horizontal e (j) vertical está o burrito em relação ao ponto de lançamento?
- **123** No Exemplo 4-7b uma bala é disparada por um canhão situado ao nível do mar com um ângulo de 45° com a horizontal e atinge uma distância de 686 m. Qual seria o aumento da distância atingida pela bala se o canhão estivesse a uma altura de 30 m?
- 124 (a) Se um elétron é lançado horizontalmente com uma velocidade de 3.0×10^6 m/s, qual a distância vertical percorrida pelo elétron ao percorrer uma distância horizontal de 1.0 m? (b) A distância calculada no item (a) aumenta, diminui ou permanece a mesma quando a velocidade inicial aumenta?
- **125** O módulo da velocidade de um projétil quando atinge a altura máxima é de 10 m/s. (a) Qual é o módulo da velocidade do projétil 1,0 s antes de atingir a altura máxima? (b) Qual é o módulo da velocidade do projétil 1,0 s depois de atingir a altura máxima? Se tomamos x = 0 e y = 0 como o ponto de altura máxima e consideramos como sentido positivo do eixo x o sentido da velocidade do projétil nesse ponto, quais são (c) a coordenada

x e (d) a coordenada y do projétil 1,0 s antes de atingir a altura máxima e (e) a coordenada x e (f) a coordenada y do projétil 1,0 s depois de atingir a altura máxima?

- 126 Um coelho assustado, que está se movendo a 6.0 m/s na direção leste, penetra em uma grande área plana de gelo com atrito desprezível. Enquanto o coelho desliza no gelo a força do vento faz com que ele adquira uma aceleração constante de 1.4 m/s² na direção norte. Escolha um sistema de coordenadas com a origem na posição inicial do coelho sobre o gelo e o sentido positivo do eixo x apontando para leste. Em termos dos vetores unitários, quais são (a) a velocidade e (b) a posição do coelho após ter deslizado por 3.0 s?
- **127** O piloto de um avião voa para leste em relação ao solo enquanto um vento sopra a 20 km/h na direção sul. Se a velocidade do avião na ausência de vento é 70 km/h, qual é a velocidade do avião em relação ao solo?
- **128** O lançador em uma partida de softball arremessa a bola de um ponto situado 3,0 pés acima do solo. Um gráfico estroboscópico da posição da bola é mostrado na Fig. 4-63, onde as leituras estão separadas por 0,25 s e a bola foi lançada em t = 0. (a) Qual é o módulo da velocidade inicial da bola? (b) Qual é o módulo da velocidade da bola no instante que atinge a altura máxima em relação ao solo? (c) Qual é essa altura máxima?

FIG. 4-63 Problema 128.

129 A polícia do estado americano de New Hampshire usa aviões para verificar se o limite de velocidade está sendo respeitado nas rodovias. Suponha que um dos aviões possui uma velocidade de cruzeiro de 135 mi/h no ar em repouso. Ele está voando para o norte, mantendo-se diretamente acima de uma rodovia norte-sul. Pelo rádio, um observador no solo informa ao piloto que está soprando um vento de 70,0 mi/h, mas se esquece de informar a direção e o sentido do vento. O piloto observa que, apesar do vento, o avião consegue voar 135 mi ao longo da rodovia em 1,00 h. Em

outras palavras, a velocidade em relação ao solo é a mesma se não houvesse vento. (a) Qual é a direção do vento? (b) Qual é o curso do avião, ou seja, para que direção seu nariz está apontado?

- **130** A posição \vec{r} de uma partícula que se move no plano xy é dada por $\vec{r} = 2t\hat{1} + 2$ sen $[(\pi/4 \text{ rad/s})t]\hat{j}$, onde \vec{r} está em metros e t em segundos. (a) Calcule os valores das componentes x e y da posição da partícula para t = 0; 1,0; 2,0; 3,0 e 4,0 s e plote a trajetória da partícula no plano xy para o intervalo $0 \le t \le 4,0$ s. (b) Calcule os valores das componentes da velocidade da partícula para t = 1,0; 2,0 e 3,0 s. Mostre que a velocidade é tangente à trajetória da partícula e tem o mesmo sentido que o movimento da partícula em todos esses instantes traçando os vetores velocidade no gráfico da trajetória da partícula, plotado no item (a). (c) Calcule as componentes da aceleração da partícula nos instantes t = 1,0; 2,0 e 3,0 s.
- 131 Um golfista arremessa uma bola a partir de uma elevação, imprimindo à bola uma velocidade inicial de 43 m/s e um ângulo de 30° acima da horizontal. A bola atinge o campo a uma distância horizontal de 180 m do local do lançamento. Suponha que o campo seja plano. (a) Qual era a altura da elevação de onde foi arremessada a bola? (b) Qual era a velocidade da bola ao chegar ao campo?
- 132 Uma competição de atletismo é realizada em um planeta de um sistema solar distante. Um arremessador de peso lança o peso de um ponto 2,0 m acima do nível do solo. Um gráfico estroboscópico da posição do peso aparece na Fig. 4 64, onde as leituras foram tomadas a cada 0,50 s e o peso foi arremessado no instante t=0. (a) Qual é a velocidade inicial do peso, em termos dos vetores unitários? (b) Qual é o módulo da aceleração em queda livre no planeta? (c) Quanto tempo após ter sido arremessado o peso toca o solo? (d) Se um arremesso de peso for feito na Terra nas mesmas condições, quanto tempo após o lançamento o peso tocará o solo?

FIG. 4-64 Problema 132.