

Quantum Computing on OpenShift

Parul Singh Software Engineer Office of CTO, Red Hat Ismael Faro
Tech Lead Cloud
IBM Quantum

Luciano Bello Qiskit Dev team IBM Quantum

IBM Quantum

Agenda

Quantum Computing on OpenShift

Future of computing

OpenShift Qiskit Operator

Demo how to launch a development env for implementing quantum algorithm using Qiskit & OpenShift

Example circuit

Qiskit developer from IBM will demo how to implement circuits using Qiskit

The world's most powerful "bits + neurons" system

Oak Ridge National Laboratory **US Department of Energy**

Summit supercomputer specs

200,000

trillion calculations per second

9216

IBM Power 9 processors

27,648

NVIDIA GPUs

250 PB

File System

IBM Red Hat Enterprise Linux (RHEL) v 7.4

Operating System

Are there still intractable problems?

Bits & Qubits

It's *impossible* to completely represent the molecular configuration of caffeine on today's most powerful supercomputers, but we could represent it using 160 qubits

How many bits do we need for caffeine?

We need approximately 10⁴⁸ bits to represent the energy configuration of a single caffeine molecule at a single instant.

This is 1 to 10% of the total number of atoms in the Earth.

Hard versus easy problems

Quantum Computing on OpenShift

Quantum Computing on OpenShift

Exploring best practices for classical computers to offload work to quantum computers in the cloud in a co-processor model.

Quantum Computing on OpenShift

NVIDIA GPU Example

IBM Q Example

IBM Quantum

Quantum Systems

- Lead the world in application systems (29 Devices)
- Lead the world in quantum research

Quantum Cloud and Software

- Open source projects (Qiskit)
- IBM Quantum Services,
 Quantum Experience,
 Quantum Lab, Systems
 access

Quantum Community

- Education, Researcher,
 Developers, Business
- Lead quantum software ecosystem development

Research

Production

Qiskit

Qiskit [quiss-kit] is an open source SDK for working with quantum computers at the level of pulses, circuits and algorithms.

- Application, Programs
- Patterns and Circuits Library
- Transpiler (Analyze, Synthesize, Map, Optimize)
- Experimentalist tools and Pulses tools
- Simulators
- IBMQ Provider

y @qiskit

The Software Stack

OpenShift Quantum User Qiskit, Qiskit Experience Open Source Operator + Lab (Development) IBM Quantum API Cloud OpenShift Qiskit as a Service Quantum Operator Near Time Compute (Runtime) Real Quantum Devices k8s

Key Personas

Key Personas

Quantum Algorithm Scientist:

 Builds quantum circuits to provide algorithm-level functionality

Traditional Application Architect / Developer:

- Builds the overall application architecture leveraging combinations of both classical and quantum algorithms.

OpenShift Qiskit operator

Red Hat Quantum Computing Roadmap

Our general goal

- Define how the classical and the quantum can be connected together
- OpenShift provides best of classical computing environments
- IBM Research has developed quantum computers based on superconducting qubits

Prototyping to define the best practices for running heterogenous workflows in a co processor model using OpenShift and IBM Quantum Services

OpenShift Qiskit Operator

Operator sets up a development environment with an integrated Jupyter Notebook and pre-installed dependencies for running quantum circuits on IBMQ Account using Qiskit.

OpenShift Qiskit Operator Demo

Qiskit Circuit Demo

Resources

Project Repo: https://github.com/qiskit-community/openshift-quantum-operators

OperatorHub: https://operatorhub.io/operator/ibm-quantum-operator

IBM Quantum Experience and Account: https://quantum-computing.ibm.com

Qiskit: <u>qiskit.org</u>

Presentation and Demo Notebook:

https://github.com/1ucian0/qiskit-presentations/tree/ibmcloudday/2021-01-21_IBM_Cloud_Day

Questions

Thank you

