Corps des nombres réels

OUIKENE Fethia

Department of Mathematics University of Science and Technology of Oran, Algeria

January 23, 2024

Valeur absolue

On définit la valeur absolue sur l'ensemble des nombres réels $\mathbb{R},$ par l'application de \mathbb{R} dans \mathbb{R}_+ et on note |.| par

$$\begin{array}{ccc} |.| & \mathbb{R} & \to & \mathbb{R}_+ \\ x & \mapsto & |x| = \left\{ \begin{array}{c} x \operatorname{si} x \geq 0 \\ -x \operatorname{si} x < 0 \end{array} \right. \end{array}$$

Fonction partie entière

La partie entière d'un nombre réel x est le plus grand entier inférieur ou égal à x, elle est notée par [x] ou E(x). et on a $[x] \le x \le [x] + 1$, $[x] \in \mathbb{Z}$.

Axiome d'Archimed

 $1^{\grave{e}re}$ formule: Soit $x \in \mathbb{R}$, alors il existe un entier naturel n tel que n > x.

 $2^{\grave{e}me}$ formule: Soit $y\in\mathbb{R}$ et x>0, alors il existe $n\in\mathbb{N}^*$ tel que nx>y.

Parties bornées de R

Soit A une partie non vide de \mathbb{R} .

1. On dit que A est majorée si

$$\exists M \in \mathbb{R}, \forall x \in A; x \leq M.$$

Le réel M est appelé majorant de A. Si $\exists M' \in \mathbb{R}/M \leq M'$, alors M' est aussi un majorant de A, en effet, $x \leq M$ et $M \leq M'$ alors $x \leq M'$. On en déduit que le majorant de A n'est pas unique.

L'ensemble des majorants de A est noté $Maj(A) = [M, +\infty[$.

Parties bornées de R

2. On dit que A est minorée si

$$\exists m \in \mathbb{R}, \forall x \in A; x \geq m.$$

Le réel m est appelé minorant de A. Si $\exists m' \in \mathbb{R}/m > m'$, alors m'est aussi un minorant de A, en effet, x > m et m > m' alors x > m'. On en déduit que le minorant de A n'est pas unique.

L'ensemble des minorants de A est noté $Min(A) =]-\infty, m]$.

3. On dit que A est bornée si elle est majorée et minorée.

Maximum et minimum

1. Une partie A non vide de \mathbb{R} admet un maximum α s'il existe un majorant de A appartenant à A.

$$\text{c'est à dire } \left\{ \begin{array}{c} \alpha \text{ un majorant de } \mathbf{\textit{A}} \\ \alpha \in \mathbf{\textit{A}} \end{array} \right. \text{ et on note } \max \mathbf{\textit{A}} = \alpha.$$

2. Une partie A non vide de $\mathbb R$ admet un minimum β s'il existe un minorant de A appartenant à A.

c'est à dire
$$\begin{cases} \beta \text{ un minorant de } A \\ \beta \in A \end{cases}$$
 et on note $\min A = \beta$.

Remarque: max A et min A s'ils existent, ils sont unique.

Borne supérieure et borne inférieure

Soit A une partie non vide et bornée de \mathbb{R} .

1. On appelle borne supérieure de A le plus petit des majorants de A, on la note par $\sup A$.

c'est à dire
$$\begin{cases} \forall x \in A, x \leq \sup A \\ \forall x \in A, x \leq M \end{cases}$$
 alors $\sup A \leq M$.

2. On appelle borne inférieure de *A* le plus grand des minorants de *A*, on la note par inf *A*.

c'est à dire
$$\begin{cases} \forall x \in A, x \geq \inf A \\ \forall x \in A, x > m \end{cases}$$
 alors $\inf A \geq m$.

Caractérisation de la borne supérieure et la borne inférieure

Soit A une partie non vide de \mathbb{R} .

1. Si A est majorée, alors

$$\sup A = M \Leftrightarrow \left\{ \begin{array}{c} \forall x \in A; x \leq M.....M \text{ majorant} \\ \forall \varepsilon > 0, \exists x_{\varepsilon} \in A; M - \varepsilon < x_{\varepsilon}..... \text{le plus petit} \\ \text{des majorants} \end{array} \right.$$

2. Si A est minorée, alors

$$\inf A = m \Leftrightarrow \left\{ \begin{array}{l} \forall x \in A; x \geq m.....m \text{ minorant} \\ \forall \varepsilon > 0, \exists x_\varepsilon \in A; x_\varepsilon < m + \varepsilon..... \text{le plus grand} \\ \text{des minorants} \end{array} \right.$$

Propriétés de la borne supérieure et la borne inférieure

Soient A et B deux parties non vide de \mathbb{R} .

1. Si $A \subset B$ et B est bornée alors A est bornée et on a

$$\inf B \leq \inf A \leq \sup A \leq \sup B$$

2. Si A et B sont bornées alors

$$\sup (A \cup B) = \max (\sup A, \sup B)$$

inf $(A \cup B) = \min (\inf A, \inf B)$

$$\sup (A \cap B) \leq \min (\sup A, \sup B)$$
$$\inf (A \cap B) \geq \max (\inf A, \inf B)$$

$$\sup (-A) = -\inf A \text{ avec } -A = \{-x; x \in A\}$$

Voisinage

Soit $x_0 \in \mathbb{R}, \varepsilon > 0$, on appelle voisinage de x_0 noté $V_{\varepsilon}(x_0)$ un intervalle contenant x_0 de la forme

$$V_{\varepsilon}(x_0) = [x_0 - \varepsilon, x_0 + \varepsilon]$$

$$\forall x \in V_{\varepsilon}(x_0); x_0 - \varepsilon < x < x_0 + \varepsilon \Leftrightarrow -\varepsilon < x - x_0 < \varepsilon \Leftrightarrow |x - x_0| < \varepsilon.$$

Densité de $\mathbb Q$ dans $\mathbb R$:

Etant donnée deux nombres réels a et b/a < b, il existe au moins un nombre rationnel r/a < r < b, on dit que $\mathbb Q$ est dense dans $\mathbb R$ et on note $\overline{\mathbb Q} = \mathbb R$.

C'est à dire entre deux réels, il existe un rationnel.