Intro to Logarithms

Definition

The base-b logarithm of n is defined to be the number p for which $b^p = n$. In other words,

$$\log_b n = p$$

if and only if

$$b^p = n$$

1. Complete the following table. If given a logarithmic equation, write the equivalent exponential equation. If an exponential equation is given, produce the equivalent logarithmic equation.

Logarithmic form	$\log_2 8 = 3$	logo (125)3	$\log_3 x = 3$	$\log x = 2$			
Exponential form	23=8	$5^3 = 125$			$10^x = 6$	$e^y = 6$	$b^0 = 1$

Special Bases

Common log (base 10)

Natural log (base e)

$$\log_{10} x =$$

$$\log_e x =$$

2. Use your calculator to evaluate the logarithms

a.
$$\ln 3 =$$

c.
$$\frac{\ln 4+3}{9} =$$

b.
$$\frac{\ln 20 - \log 3}{\log 20 + \ln 3} =$$

d.
$$e^{\frac{\ln 16 - \ln 4}{\log 100}} =$$

Without the Calculator

3. Use the definition to find the value of the following logs without a calculator:

a. $log_8 8$

d. $\log_5\left(\frac{1}{25}\right)$

 $g. \quad log \, 100$

b. $\log_6 1$

e. $\ln e^3$

h. $\log_{\frac{1}{2}} 27$

c. log₃ 81

f. log₂ 8

i. $\log_3 \frac{1}{27}$

Inverses

4. Graph $f(x) = 2^x$ and it's inverse $f^{-1}(x) = \log_2 x$ on your calculator. Compare their domains and ranges. Do you remember the relationship between the domains and ranges of inverse functions?

x	$f(x)=2^x$
-1	
0	
1	
2	

x	$f^{-1}(x) = \log_2 x$
$\frac{1}{2}$	
1	
2	
4	

Graphing Log Functions

Plot two points and the asymptote. (Protip: choose values of x that make the argument equal to the base and equal to 1). Then find domain and range.

х	$f(x) = \log_{\frac{1}{2}} x$
1	
1/2	

x	$f(x) = -\log_2 x - 1$
1	
2	

x	$f(x) = \log_3(x - 2)$
3	
5	

Domain:

Domain:

Domain:

Range: $(-\infty, \infty)$

Range: $(-\infty, \infty)$

Range: $(-\infty, \infty)$