MAXIMAL FUNCTIONS

JASON ZHAO

ABSTRACT. Given a family of linear operators $\{T_t\}_{t>0}$ and $f \in L^p(\mathbb{R}^d)$, we are interested in finding the conditions under which the convergence $T_t f \to f$ holds pointwise almost everywhere. Typically one knows that pointwise convergence holds for a dense subclass of "nice" functions, such as test functions $f \in C_c^{\infty}(\mathbb{R}^d)$ or Schwartz functions $f \in \mathcal{S}(\mathbb{R}^d)$. We would like to pass this result to the limit uniformly in t to extend it to $f \in L^p(\mathbb{R}^d)$. This motivates the analysis of the maximal operator

$$T^*f(x) := \sup_t |T_t f(x)|,$$

and the study of its boundedness on $L^p(\mathbb{R}^d)$. Applications include the ergodic theorem (dynamical systems), the classical Dirichlet problem (PDE), and pointwise a.e. convergence of Fourier series (classical Fourier analysis). These notes draw from [Duo01] and [Ste93].

CONTENTS

1. Approximation to the identity	1
1.1. One-sided maximal function	3
1.2. Maximal function on \mathbb{R}^d	5
2. Weighted maximal inequalities	7
2.1. A_1 condition	8
2.2. A_p condition	Ģ
3. Vector-valued maximal function	11
3.1. The case $p \leq q$	12
3.2. The case $p \ge q$	14
References	15

1. Approximation to the identity

Let $\phi \in L^1(\mathbb{R}^d)$ such that $\int \phi = 1$, then define

$$\phi_t(x) := \frac{1}{t^d} \phi(x/t).$$

We say that the family $\{\phi_t\}_{t>0}$ forms an APPROXIMATION OF THE IDENTITY. The name comes from the convergence of the family to the Dirac measure at the origin δ_0 in the sense of tempered distributions: for any $f \in \mathcal{S}$, it follows from a change of variables and the dominated convergence theorem that

$$\lim_{t\to 0}\langle \phi_t, f\rangle = \lim_{t\to 0} \int_{\mathbb{R}^d} \frac{1}{t^d} \phi(t/x) f(x) \, dx = \lim_{t\to 0} \int_{\mathbb{R}^d} \phi(x) f(tx) \, dx = g(0) = \langle \delta_0, g \rangle.$$

Since the Dirac measure furnishes the identity with respect to the convolution operation, we further have

$$\lim_{t \to 0} (\phi_t * f)(x) = f(x)$$

for any $f \in S$ and $x \in \mathbb{R}^d$. We will consider the following question: in what sense does the convergence $\phi_t * f \to f$ hold, and under what conditions? In particular, we are interested in pointwise convergence and convergence in $L^p(\mathbb{R}^d)$. The latter is immediate;

Date: August 23, 2023.

Theorem 1. Let $1 \le p < \infty$ and suppose $\{\phi_t\}_t$ forms an approximation of the identity, then

$$\lim_{t\to 0} ||\phi_t * f - f||_{L^p} = 0$$

for $f \in L^p(\mathbb{R}^d)$. The convergence holds in the endpoint case $p = \infty$ when $f \in C_0(\mathbb{R}^d)$.

Proof. Using $\int \phi = 1$ and a change of variables, we can write

$$(\phi_t * f)(x) - f(x) = \int_{\mathbb{R}^n} \phi(y) (f(x - ty) - f(x)) dy.$$

Taking the L^p -norm and applying Minkowski's integral inequality to the right, we obtain

$$||\phi_t * f - f||_{L^p} \le \int_{\mathbb{R}^n} |\phi(y)| \, ||f(x - ty) - f(x)||_{L^p_x} \, dy.$$

We need to exploit smallness of the L^1 -norm of ϕ outside a large radius along with smallness of the L^p -norm for $|ty| \ll 1$. For the latter, it follows from the dominated convergence theorem in the case $1 \le p < \infty$ or uniform continuity in the case $p = \infty$ that for every $\varepsilon > 0$ we can choose $\delta > 0$ such that

$$||f(x+h) - f(x)||_{L_x^p} < \frac{\varepsilon}{2||\phi||_{L^1}}$$

whenever $|h| < \delta$. To control the former, choose $t \ll 1$ such that

$$\int_{|y|>\delta/t} |\phi(y)| \, dy < \frac{\varepsilon}{4||f||_{L^p}}.$$

We conclude

$$\begin{aligned} ||\phi_t * f - f||_{L^p} &\leq \left(\int_{|y| \geq \delta/t} + \int_{|y| < \delta/t} ||\phi(y)|| ||f(x - ty) - f(x)||_{L^p_x} dy \\ &\leq 2||f||_{L^p} \int_{|y| > \delta/t} ||\phi(y)|| dy + \frac{\varepsilon}{2||\phi||_{L^1}} \int_{|y| < \delta/t} ||\phi(y)|| dy < \varepsilon. \end{aligned}$$

As a consequence, we know that there exists a sequence $t_k \to 0$ such that

$$\lim_{k\to\infty} (\phi_{t_k} * f)(x) = f(x)$$

for a.e. $x \in \mathbb{R}^d$. Hence if the limit of $\phi_t * f$ exists pointwise, then it must equal f a.e. However, $f \in L^p(\mathbb{R}^d)$ is far from sufficient for establishing pointwise convergence. We do however know that the result holds Schwartz functions $f \in \mathcal{S}$, which form a dense subspace of $L^p(\mathbb{R}^d)$ for $1 \le p < \infty$ and $C_0(\mathbb{R}^d)$ for the endpoint $p = \infty$. Therefore, it suffices to show that the set of functions $f \in L^p(\mathbb{R}^d)$ such that $\phi_t * f \to f$ pointwise a.e. forms a closed subspace of $L^p(\mathbb{R}^d)$. It turns out that this is closely related to establishing a weak-type (p,q) bound for the corresponding MAXIMAL OPERATOR defined as

$$M_{\phi}f(x) := \sup_{t>0} |(\phi_t * f)(x)|.$$

More generally, we have the following theorem:

Theorem 2. Let (X, μ) be a measure space and $\{T_t\}_{t>0}$ be a family of linear operators on $L^p(X, \mu)$. Suppose that the corresponding MAXIMAL OPERATOR

$$T^*f(x) := \sup_{t>0} |T_t f(x)|$$

is weak-type (p,q) for exponents $1 \le p \le \infty$ and $1 \le q < \infty$, then the set

$$\{f \in L^p(X,\mu) : \lim_{t \to 0} T_t f(x) = f(x) \text{ a.e.}\}$$

is closed in $L^p(X, \mu)$.

Proof. Let $\{f_n\}_n$ be a sequence of functions converging to $f \in L^p(X,\mu)$ in norm and such that $T_t f_n \to f_n$ pointwise a.e., we want to show that $T_t f \to f$ pointwise a.e. For $x \in X$ such that $T_t f_n(x) \to f_n(x)$, it follows from the triangle inequality that

$$\limsup_{t\to 0} |T_t f(x) - f(x)| \le \limsup_{t\to 0} |T_t (f - f_n)(x) - (f - f_n)(x)| \le T^* (f - f_n)(x) + |(f - f_n)(x)|.$$

It follows that

 $\mu\{x \in X : \limsup_{t \to 0} |T_t f(x) - f(x)| > \lambda\} \le \mu\{x \in X : T^*(f - f_n)(x) > \lambda/2\} + \mu\{x \in X : |(f - f_n)(x)| > \lambda/2\}$

$$\leq \left(\frac{2C}{\lambda}||f-f_n||_{L^p}\right)^q + \left(\frac{2}{\lambda}||f-f_n||_{L^p}\right)^p \stackrel{n\to\infty}{\longrightarrow} 0,$$

where in the first inequality we use sub-additivity of the measure μ , and in the second inequality we apply the weak-type (p,q)-inequality and Chebyshev's inequality. As this holds for all $\lambda > 0$, we can write

$$\mu\{x \in X : \limsup_{t \to 0} |T_t f(x) - f(x)| > 0\} \le \sum_{k=1}^{\infty} \mu\{x \in \mathbb{R}^d : \limsup_{t \to 0} |T_t f(x) - f(x)| > 1/k\} = 0,$$

which shows $T_t f(x) \to f(x)$ for a.e. $x \in \mathbb{R}^d$, as desired.

1.1. One-sided maximal function. Let $f \in L^1_{loc}(\mathbb{R})$, then the one-sided Hardy-Littlewood maximal function of f is defined by

$$Mf(x) := \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |f(t)| dt.$$

The operator *M* is known as the one-sided Hardy-Littlewood maximal operator. It is clear that the operator is sub-linear, and it follows from the dominated convergence theorem that the averaging operator

$$A_h f(x) := \frac{1}{h} \int_x^{x+h} |f(t)| dt$$

is continuous. As the maximal operator is defined pointwise as the supremum of the averaging operators indexed by h > 0, it follows that Mf is lower semi-continuous. Thus we can view the maximal operator as a "smoothing" operator, allowing us to make quantitative comparisons between pointwise values of a generic function. Furthermore it controls the approximation to the identity formed by the step function $\phi := \mathbb{1}_{[0,1]}$, so in view of Theorem 2, we aim to show a weak-type (p,q)-inequality to conclude the classical Lebesgue differentiation theorem;

Theorem 3 (Lebesgue differentiation theorem). Let $f \in L^1_{loc}(\mathbb{R})$, then

$$f(x) = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

for a.e. $x \in \mathbb{R}$.

Points where the Lebesgue differentiation theorem hold are known as Lebesgue Points. Dimensional analysis shows that no weak-type (p,q) inequality can hold in the off-diagonal case $p \neq q$. Indeed, for $\alpha > 0$, set $f_{\alpha}(x) := f(x/\alpha)$. Then by a change of variables,

$$Mf_{\alpha}(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |f(t/\alpha)| dt = \sup_{h>0} \frac{\alpha}{h} \int_{x/\alpha}^{x/\alpha+h/\alpha} |f(t)| dt = \sup_{h>0} \frac{1}{h} \int_{x/\alpha}^{x/\alpha+h} |f(t)| dt = Mf(x/\alpha)$$

and

$$||f_{\alpha}||_{L^p} = \left(\int_{\mathbb{R}} f(t/\alpha) dt\right)^{1/p} = \alpha^{1/p}||f||_{L^p}.$$

Therefore a weak-type (p,q) inequality applied to f_{α} gives

$$\alpha^{1/q}||Mf||_{L^{q,\infty}} \lesssim \alpha^{1/p}||f||_{L^p},$$

where the bound can only hold uniformly provided that p = q. We will give the original proof of the weak-type (1,1) inequality due to F. Riesz in [Rie32], relying on a precursor of the Calderon-Zygmund decomposition;

Lemma 4 (Rising sun lemma). Let $F : [a,b] \to \mathbb{R}$ be continuous and let $A \subseteq (a,b)$ be the set of $x \in (a,b)$ such that there exists $y \in (x,b)$ satisfying F(y) > F(x). Then there exists an at most countable collection of disjoint open intervals $\{(a_k,b_k)\}_k$ such that

$$A = \bigcup_{k} (a_k, b_k), \qquad F(a_k) \le F(b_k).$$

FIGURE 1. The points b_k form the "peaks" of the "hills" casting "shadows" on the region (a_k, b_k) as the "sun rises".

Proof. It is clear by definition and continuity that A is open, so, assuming it is non-empty, we know that it takes the form of an at most countable disjoint union of open intervals. It remains to verify $F(a_k) \leq F(b_k)$. Assume otherwise, i.e. $F(a_k) > F(b_k)$. By the extreme value theorem, we can find $x \in [a_k, b_k)$ satisfying

$$F(x) = \max_{y \in [a_k, b_k]} F(y).$$

If $x > a_k$, then by definition of A we know F(y) > F(x) for some $y \in (x, b)$. It follows that

$$F(b_k) < F(a_k) \le F(x) < f(y)$$
.

We claim that $y \in (b_k, b)$, which by definition implies $b_k \in A$, a contradiction. Indeed, if the claim fails, then $y \in [a_k, b_k]$, contradicting the choice of x as maximising f on $[a_k, b_k]$. This completes the proof. \Box

Theorem 5 (One-sided Hardy-Littlewood maximal inequality). *Let* $f \in L^1(\mathbb{R})$, *then*

$$|\{x \in \mathbb{R} : Mf(x) > \lambda\}| \le \frac{1}{\lambda} \int_{Mf > \lambda} |f(t)| dt.$$

In particular, the maximal operator is weak-type (1,1) and strong-type (p,p) for 1 .

Proof. The strong-type (∞, ∞) inequality is clear, so Marcinkiewicz interpolation furnishes the strong-type (p, p) inequalities for 1 provided we show the weak-type <math>(1, 1)-inequality. We argue using the rising sun lemma, letting $F : \mathbb{R} \to \mathbb{R}$ be the continuous function

$$F(x) := \int_{-\infty}^{x} |f(t)| dt - \lambda x.$$

Observe that $Mf(x) > \lambda$ if and only if there exists h > 0 such that F(x+h) - F(x) > 0. This allows us to write the super-level set $Mf(x) > \lambda$ as an ascending union of sets $A_k \subseteq [-k, k]$ given by

$$\begin{aligned} \{x \in \mathbb{R} : Mf(x) > \lambda\} &= \{x \in \mathbb{R} : F(y) > F(x) \text{ for some } y \in (x, \infty)\} \\ &= \bigcup_{k \in \mathbb{N}} \{x \in [-k, k] : F(y) > F(x) \text{ for some } y \in (x, k)\} =: \bigcup_{k \in \mathbb{N}} A_k. \end{aligned}$$

The rising sun lemma yields disjoint open intervals $\{(a_i, b_i)\}_i$ such that

$$A_k = \bigcup_i (a_i, b_i), \qquad F(a_i) \leq F(b_i).$$

It follows from σ -additivity and the construction of F that

$$\int_{A_k} |f(t)| \, dt = \sum_i \int_{a_i}^{b_i} |f(t)| \, dt = \sum_i \lambda(b_i - a_i) + F(b_i) - F(a_i)$$

$$\geq \sum_i \lambda(b_i - a_i) = \lambda |A_k|.$$

Taking $k \to \infty$, monotone convergence furnishes the maximal inequality.

Remark. A strong-type (1,1) inequality is impossible; suppose without loss of generality that $f \in L^1_{loc}(\mathbb{R})$ has non-zero mass in [-1,0], then for x < -1 we have the pointwise bound

$$Mf(x) \ge \frac{1}{|x|} \int_{x}^{0} |f(t)| dt \ge \frac{1}{|x|} \int_{-1}^{0} |f(t)| dt \gtrsim_{f} \frac{1}{|x|}.$$

Following the proof of Theorem 2, we obtain as a consequence the Lebesgue differentiation theorem. Making appropriate modifications, we can in fact prove a slightly stronger statement;

Corollary 6. Let $f \in L^1_{loc}(\mathbb{R})$, then

$$\lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| \, dt = 0$$

for a.e. $x \in \mathbb{R}$.

Proof. The result holds for test functions $C_c^{\infty}(\mathbb{R})$ by application of uniform continuity. In the general case, taking suitable cutoffs allows us to assume without loss of generality $f \in L^1(\mathbb{R})$. Let $\{f_n\}_n \subseteq C_c^{\infty}(\mathbb{R})$ converge to f in $L^1(\mathbb{R})$ and pointwise a.e. By the triangle inequality,

$$\limsup_{h \to 0} \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| dt \le M(f - f_n)(x) + |f_n(x) - f(x)|.$$

It follows that

$$\begin{split} |\{x \in \mathbb{R}: \limsup_{h \to 0} \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| \, dt > \lambda\}| &\leq |\{M(f - f_n) > \frac{\lambda}{2}\}| + |\{|f_n - f| > \frac{\lambda}{2}\}| \\ &\leq \frac{2}{\lambda} ||f - f_n||_{L^1} + \frac{2}{\lambda} ||f - f_n||_{L^1} \stackrel{n \to \infty}{\longrightarrow} 0 \end{split}$$

where in the first inequality we use sub-additivity of the Lebesgue measure, in the second inequality we apply the weak-type (1,1)-inequality and Markov's inequality. As this holds for all $\lambda > 0$, we can write

$$|\{x \in \mathbb{R} : \limsup_{h \to 0} \int_{x}^{x+h} |f(t) - f(x)| \, dt > 0\}| \le \sum_{k=1}^{\infty} |\{x \in \mathbb{R} : \limsup_{h \to 0} \int_{x}^{x+h} |f(t) - f(x)| \, dt > 1/k\}| = 0$$

which completes the proof.

Remark. Because the proof relies on a density argument, it offers no quantitative rate for the speed of convergence. Indeed, the convergence can be arbitrarily slow.

1.2. **Maximal function on** \mathbb{R}^d . Let $f \in L^1_{loc}(\mathbb{R}^d)$, the Hardy-Littlewood maximal function of f is defined by

$$Mf(x) := \sup_{r>0} \frac{1}{B_r(x)} \int_{B_r(x)} |f(y)| dy.$$

The study of this operator is almost completely analogous to the one-sided operator, however we require a different proof of the weak-type (1,1) which does not rely on the available order structure when d=1. We replace the rising sun lemma with a covering argument and the scaling property of Lebesgue measure.

Lemma 7 (Vitali-Wiener covering lemma). Given a finite collection of balls $\{B_{r_j}(x_j)\}_{j\in J}$, there exists a subcollection $I\subseteq J$ of pair-wise disjoint balls such that

$$\bigcup_{j\in I} B_{r_j}(x_j) \subseteq \bigcup_{i\in I} B_{3r_i}(x_i).$$

Proof. We construct the sub-collection by running the following algorithm:

- (a) Add the ball of largest radius to the sub-collection.
- (b) Discard all balls intersecting the sub-collection.
- (c) If no balls remain, then we are done. Otherwise, we iterate the algorithm.

By construction, the sub-collection consists of pair-wise disjoint balls. Let $B_{r_i}(x_i)$ be a ball added in step (a) and $B_{r_j}(x_j)$ be a ball discarded in step (b). We chose r_i as the maximum radius of all balls at that point in the procedure, so it follows that $r_i \le r_i$. Hence by the triangle inequality

$$B_{r_i}(x_i) \subseteq B_{3r_i}(x_i)$$
.

A ball must be either added or discarded, so the algorithm is exhaustive.

Theorem 8 (Hardy-Littlewood maximal inequality). *The Hardy-Littlewood maximal operator M is weak-type* (1,1) *and strong-type* (p,p) *for* 1 .

Proof. The strong-type (∞, ∞) inequality is clear, so Marcinkiewicz interpolation furnishes the strong-type (p, p) inequalities for 1 provided we show the weak-type <math>(1, 1) inequality. Let $K \subseteq \mathbb{R}^d$ be a compact subset satisfying

$$K \subseteq \{x \in \mathbb{R}^d : Mf(x) > \lambda\}.$$

We claim that

$$|K| \lesssim_d \frac{1}{\lambda} ||f||_{L^1}.$$

The weak-type (1,1) inequality follows immediately from inner regularity of the Lebesgue measure and monotone convergence. By construction, for every $x \in K$ there exists r(x) > 0 such that

$$|B_{r(x)}(x)| \le \frac{1}{\lambda} \int_{B_{r(x)}(x)} |f(y)| dy.$$

The collection $\{B_{r(x)}(x)\}_x$ forms a cover of K, so we use compactness to extract a finite sub-cover, and the Vitali-Wiener covering lemma to extract a sub-collection of disjoint balls B_i satisfying $K \subseteq \bigcup_i 3B_i$. Thus

$$|K| \le \sum_{j} |3B_{j}| = 3^{d} \sum_{j} |B_{j}| = \frac{3^{d}}{\lambda} \sum_{j} \int_{B_{j}} |f(y)| \, dy \le \frac{3^{d}}{\lambda} ||f||_{L^{1}},$$

proving the claim, as desired.

We finish this section with an answer to our original question of a.e. pointwise convergence when convolving against an approximation to the identity.

Theorem 9. Suppose $\{\phi_t\}_t$ forms an approximation to the identity such that $|\phi| \leq \psi$ for radially decreasing $\psi \in L^1(\mathbb{R}^d)$, then the maximal operator M_{ϕ} is weak-type (1,1) and strong-type (p,p) for 1 . Furthermore

$$\lim_{t \to 0} (\phi_t * f)(x) = f(x)$$

for a.e. $x \in \mathbb{R}^d$ when $f \in L^p(\mathbb{R}^d)$ for $1 \le p < \infty$ and $f \in C_0(\mathbb{R}^d)$ in the endpoint case $p = \infty$.

Proof. The maximal operator M_{ϕ} inherits the weak-type (1,1) and strong-type (p,p) inequalities from the Hardy-Littlewood maximal operator provided that we verify the pointwise bound

$$M_{\phi}f(x) \leq ||\psi||_{L^1}Mf(x).$$

The pointwise convergence result would then follow from Theorem 2. Fix t > 0 and observe that $|\phi_t * f| \le \psi_t * |f|$. We can find a sequence of non-negative radially decreasing simple functions $\phi_k := \sum_j a_{j,k} \mathbb{1}_{B_{j,k}}$, where $B_{j,k}$ are balls centered at the origin and $a_{j,k} > 0$, increasing pointwise to ϕ_t as $k \to \infty$. Observe that

$$||\phi_k||_{L^1} = \sum_j a_{j,k} |B_{j,k}|, \qquad \lim_{k \to \infty} ||\phi_k||_{L^1} = ||\psi_t||_{L^1} = ||\psi||_{L^1}.$$

Moreover, by definition of the maximal function, $(\mathbb{1}_{B_{j,k}} * |f|)(x) \le |B_{j,k}| Mf(x)$. Collecting our results, we conclude from monotone convergence that

$$|(\phi_t * f)(x)| \le \lim_{k \to \infty} \sum_j a_{j,k} (\mathbb{1}_{B_{j,k}} * |f|)(x) \le ||\psi||_{L^1} M f(x).$$

Since *t* was arbitrary, this completes the proof.

Remark. As an application to partial differential equations, define the Poisson Kernel by

$$P_t(x) := rac{\Gamma\left(rac{n+1}{2}
ight)}{\pi^{rac{n+1}{2}}} rac{t}{(t^2 + |x|^2)^{rac{n+1}{2}}}.$$

One can show that $u(t,x):=(P_t*f)(x)$ solves the Laplace's equation $\Delta u=0$ on the upper-half plane \mathbb{R}^{d+1}_+ , with, by the theorem, the boundary data u(0,x)=f(x) satisfied a.e. whenever $f\in L^p(\mathbb{R}^d)$. Similarly, define the Gauss-Weierstrass kernel by

$$W_t(x) := t^{-n} e^{\pi |x|^2/t^2}$$

One can show that $u(t,x) := (W_t * f)(x)$ solves the heat equation $\partial_t u - \Delta u = 0$ with, by the theorem, the initial data u(0,x) = f(x) satisfied a.e. whenever $f \in L^p(\mathbb{R}^d)$.

2. Weighted maximal inequalities

It is of interest to characterise the non-negative Borel measures $d\mu$ such that the maximal operator M satisfies a strong-type (p, p) inequality with respect to $d\mu$, that is,

$$||Mf||_{L^p(d\mu)} \lesssim_{p,d} ||f||_{L^p(d\mu)}$$

for some $1 . The proof of the Hardy-Littlewood maximal inequality relied on the scaling property of the Lebesgue measure <math>|\alpha E| = \alpha^d |E|$ for any measurable $E \subseteq \mathbb{R}^d$ and scalar $\alpha > 0$, however it would have sufficed to use the weaker "doubling" property $|2B| \lesssim |B|$ for any ball $B \subseteq \mathbb{R}^d$. More generally, we say that a Radon measure μ on \mathbb{R}^d is a doubling measure if

$$\sup_{x \in \mathbb{R}^d, r > 0} \frac{\mu(B_{2r}(x))}{\mu(B_r(x))} < \infty.$$

Define the maximal operator with respect to μ by

$$M_{\mu}f(x) := \sup_{r>0} \frac{1}{\mu(B_r(x))} \int_{B_r(x)} |f(y)| \, d\mu(y).$$

Then replicating the proof of the Hardy-Littlewood maximal inequality furnishes an analogous result for M_{μ} ,

Theorem 10. Let μ be a doubling measure on \mathbb{R}^d . The maximal operator M_{μ} is weak-type (1,1) and strong-type (p,p) for $1 with respect to <math>\mu$, i.e.

$$||M_{\mu}f||_{L^{1,\infty}(d\mu)} \lesssim ||f||_{L^{1}(d\mu)}, \qquad ||M_{\mu}f||_{L^{p}(d\mu)} \lesssim ||f||_{L^{p}(d\mu)}.$$

This shows that $Mf \lesssim Mf_{\mu}$ is a sufficient condition for the usual maximal operator M satisfying a weak-type (1,1) inequality and strong-type (p,p) inequality with respect to μ . Furthermore, we can restrict our attention to measures of the form $d\mu = \omega dx$ for some non-negative locally integrable ω : $\mathbb{R}^d \to [0,\infty)$.

Theorem 11. Let μ be a non-negative Borel measure on \mathbb{R}^d and $1 \le p < \infty$. If the maximal operator satisfies the weak-type (p,p) inequality with respect to μ , that is,

$$\lambda \mu(\lbrace x \in \mathbb{R}^d : Mf(x) > \lambda \rbrace)^{1/p} \lesssim ||f||_{L^p(d\mu)}$$

then $d\mu \ll dx$.

Proof. Let $K \subseteq \mathbb{R}^d$ be compact such that |K| = 0, we want to show that $\mu(K) = 0$. Define

$$U_n := \{ x \in \mathbb{R}^d : \operatorname{dist}(x, K) < 1/n \}.$$

These are nested open neighborhoods of K satisfying $\bigcup_n U_n = K$. Setting $f_n := \mathbb{1}_{U_n \setminus K}$, by the dominated convergence theorem

$$\int_{\mathbb{R}^d} |f_n|^p d\mu \stackrel{n\to\infty}{\longrightarrow} 0.$$

Let $x \in K$, then since K has Lebesgue measure zero,

$$Mf_n(x) \geq \frac{1}{|B_{1/n}(x)|} \int_{B_{1/n}(x)} \mathbb{1}_{U_n/K}(y) \, dy = \frac{1}{|B_{1/n}(x)|} \int_{\mathbb{R}^d \setminus K} \mathbb{1}_{B_{1/n}(x)}(y) \, dy = \frac{1}{|B_{1/n}(x)|} \int_{\mathbb{R}^d} \mathbb{1}_{B_{1/n}(x)}(y) \, dy = 1.$$

It follows from the weak-type (p, p) inequality that

$$\mu(K) \leq \mu(\lbrace x \in \mathbb{R}^d : Mf_n(x) > 1/2 \rbrace) \lesssim \frac{\int_{\mathbb{R}^d} |f_n|^p d\mu}{(1/2)^p} \xrightarrow{n \to \infty} 0.$$

This completes the proof.

2.1. A_1 **condition.** We say that $\omega : \mathbb{R}^d \to [0, \infty)$ is a WEIGHT if it is non-negative, locally integrable, and $\omega \not\equiv 0$. We abuse notation by writing ω for the associated measure

$$\omega(E) := \int_E \omega(y) \, dy.$$

The weight satisfies the A_1 condition, writing $\omega \in A_1$, if

$$M\omega(x) \leq \omega(x)$$

for a.e. $x \in \mathbb{R}^d$.

Proposition 12. Let $\omega : \mathbb{R}^d \to [0, \infty)$ be a weight. The following are equivalent:

- (a) $\omega \in A_1$.
- (b) For all balls $B \subseteq \mathbb{R}^d$ and a.e. $x \in B$, we have

$$\frac{1}{|B|} \int_B \omega(y) \, dy \lesssim \omega(x).$$

(c) For all balls $B \subseteq \mathbb{R}^d$ and measurable f > 0, we have

$$\frac{1}{|B|} \int_{B} f(y) \, dy \lesssim \frac{1}{\omega(B)} \int_{B} f(y) \, \omega(y) \, dy.$$

Proof. (a) \Longrightarrow (b). Fix a ball $B \subseteq \mathbb{R}^d$ of radius r > 0, By the A_1 condition, we can choose a generic $x \in B$ such that $M\omega(x) \lesssim \omega(x)$. It follows that

$$\frac{1}{|B|} \int_{B} \omega(y) \, dy \le \frac{1}{|B|} \int_{B_{2r}(x)} \omega(y) \, dy \le \frac{|B_{2r}(x)|}{|B|} M \omega(x) \lesssim 2^d \omega(x).$$

(b) \implies (c). Fix a ball $B \subseteq \mathbb{R}^d$ and measurable $f \ge 0$. We can write

$$\frac{1}{|B|} \int_{B} f(y) \, dy = \frac{1}{\omega(B)} \int_{B} f(y) \left(\frac{1}{|B|} \int_{B} \omega(z) \, dz \right) dy$$
$$\lesssim \frac{1}{\omega(B)} \int_{B} f(y) \, \omega(y) \, dy.$$

(c) \Longrightarrow (a). Let $x \in \mathbb{R}^d$ be a Lebesgue point of ω . Fix 0 < r < R, letting $B := B_R(x)$ and $f := \mathbb{1}_{B_r(x)}$ in (c) gives

$$\frac{|B_r(x)|}{|B_R(x)|} \lesssim \frac{\omega(B_r(x))}{\omega(B_R(x))}.$$
 (*)

Rearranging, we obtain

$$\frac{1}{|B_R(x)|} \int_{B_R(x)} \omega(y) \, dy \lesssim \frac{1}{|B_r(x)|} \int_{B_r(x)} \omega(y) \, dy \xrightarrow{r \to 0} \omega(x).$$

Taking the supremum over R on the left, we conclude $M\omega(x) \lesssim \omega(x)$ for every Lebesgue point $x \in \mathbb{R}^d$, completing the proof.

Remark. The characterisation (b) implies that $\widetilde{M}\omega(x)\lesssim \omega(x)$, where \widetilde{M} is the uncentered maximal function

$$\widetilde{M}f(x) := \sup_{B \ni x \text{ ball}} \int_{B} |f(y)| dy.$$

The inequality (*) implies that ω is a doubling measure, while (c) implies $Mf \lesssim M_{\omega}f$. It follows from Theorem 10 that the maximal operator M is weak-type (1,1) and strong-type (p,p) for $1 with respect to the measure <math>\omega$. In fact, the A_1 condition characterises exactly the measures for which the weighted weak-type (1,1) inequality holds.

Theorem 13. Let $\omega : \mathbb{R}^d \to [0, \infty)$ be a weight. Then the maximal operator M is weak-type (1,1) with respect to ω , i.e.

$$\omega(\lbrace x \in \mathbb{R}^d : Mf(x) > \lambda \rbrace) \lesssim \frac{1}{\lambda} \int_{\mathbb{R}^d} |f(x)| \omega(x) dx$$

if and only if $\omega \in A_1$.

Proof. The converse was shown in the remark above, so it remains to establish the forward implication. We will aim towards the characterisation (c) in Proposition 12 of the A_1 condition. For any $x \in B_r(x_0)$, we have $B_r(x_0) \subseteq B_{2r}(x)$ and $2^d |B_r(x_0)| = |B_{2r}(x)|$. Thus

$$\frac{1}{|B_r(x_0)|} \int_{B_r(x_0)} f(y) \, dy \le \frac{2^d}{|B_{2r}(x)|} \int_{B_{2r}(x)} f(y) \, dy$$

for any $f \ge 0$ measurable. It follows that

$$\frac{2^{-d-1}}{|B_r(x_0)|} \int_{B_r(x_0)} f(y) \, dy < Mf(x).$$

Suppose f is supported in $B_r(x_0)$, then taking λ equal to the left-hand side in the weak-type (1,1)-inequality and rearranging, we obtain

$$\frac{1}{|B_r(x_0)|} \int_{B_r(x_0)} f(y) \, dy \lesssim \frac{1}{\omega(B_r(x_0))} \int_{B_r(x_0)} f(x) \omega(x) \, dx,$$

as desired.

2.2. A_p condition. Let $1 , we say that a weight <math>\omega : \mathbb{R}^d \to [0, \infty)$ satisfies the A_p condition, writing $\omega \in A_p$, if

$$\sup_{B\subseteq\mathbb{R}^d \text{ balls}} \left(\frac{1}{|B|} \int_B \omega(y) \, dy\right) \left(\frac{1}{|B|} \int_B \omega(y)^{-p'/p} dy\right)^{p/p'} < \infty.$$

We note for convenience that the above condition is equivalent to

$$\sup_{B\subseteq \mathbb{R}^d \text{ balls}} \frac{\omega(B)}{|B|^p} \big| \big| \omega^{-\frac{1}{p-1}} \big| \big|_{L^1(B)}^{p-1} < \infty.$$

We record some easy properties of the A_p class,

(a) The A_p condition is invariant under translation $\omega(x) \mapsto \omega(x - x_0)$, scalar multiplication $\omega(x) \mapsto \lambda \omega(x)$, and rescaling $\omega(x) \mapsto \omega(\lambda x)$.

10 JASON ZHAC

(b) The A_p class is increasing in p, that is, $A_p \subseteq A_q$ whenever $1 \le p < q < \infty$; this follows from Holder's inequality,

$$\begin{aligned} ||\omega^{-\frac{1}{q-1}}||_{L^{1}(B)}^{q-1} &\leq \left(||\omega^{-\frac{1}{q-1}}||_{L^{\frac{q-1}{p-1}}(B)}|B|^{1-\frac{p-1}{q-1}}\right)^{q-1} \\ &\leq ||\omega^{-\frac{1}{p-1}}||_{L^{p-1}(B)}^{p-1}|B|^{q-p}. \end{aligned}$$

(c) We have $\omega \in A_p$ if and only if $\omega^{-p'/p} \in A_{p'}$.

Proposition 14. Let $\omega : \mathbb{R}^d \to [0, \infty)$ be a weight and 1 . The following are equivalent:

- (a) $\omega \in A_p$.
- (b) For balls $B \subseteq \mathbb{R}^d$ and measurable $f \ge 0$, we have

$$\left(\frac{1}{|B|}\int_B f(y)\,dy\right)^p \lesssim \frac{1}{\omega(B)}\int_B f(y)^p \omega(y)\,dy.$$

Proof. (a) \implies (b). Fix a ball $B \subseteq \mathbb{R}^d$. By Holder's inequality

$$\frac{1}{|B|} \int_B f(y) \, dy \le \frac{1}{|B|} \left(\int_B f(y)^p \omega(y) \, dy \right)^{1/p} \left(\int_B \omega(y)^{-p'/p} \, dy \right)^{1/p'}.$$

Thus by the A_p condition

$$\left(\frac{1}{|B|}\int_B f(y)\,dy\right)^p \leq \frac{1}{|B|^p}\left(\int_B f(y)^p\omega(y)\,dy\right)\left(\int_B \omega(y)^{-p'/p}\,dy\right)^{p/p'} \lesssim \frac{1}{\omega(B)}\int_B f(y)^p\omega(y)\,dy.$$

(b) \implies (a). Fix $\varepsilon > 0$ and set $f := (\omega + \varepsilon)^{-\frac{1}{p-1}}$. Then

$$\frac{\omega(B)}{|B|^p} \left(\int_B (\omega + \varepsilon)^{-\frac{1}{p-1}} dy \right)^p \lesssim \int_B (\omega + \varepsilon)^{-\frac{p}{p-1}} \omega dy \lesssim \int_B (\omega + \varepsilon)^{-\frac{1}{p-1}} dy.$$

Rearranging,

$$\frac{\omega(B)}{|B|^p} \left(\int_B (\omega + \varepsilon)^{-\frac{1}{p-1}} dy \right)^{p-1} \lesssim 1.$$

By monotone convergence, letting $\varepsilon \to 0$ we conclude $\omega \in A_p$.

Remark. Letting $f := \mathbb{1}_{B_r(x)}$ and $B := B_{2r}(x)$ in (b) gives

$$\left(\frac{|B_r(x)|}{|B_{2r}(x)|}\right)^p \lesssim \frac{\omega(B_r(x))}{\omega(B_{2r}(x))},$$

which implies A_p weights are doubling measures. Furthermore, (b) implies $|Mf|^p \lesssim M_\omega(|f|^p)$, so it follows from Theorem 10 that the maximal operator M is weak-type (p,p). If we were to show that an A_p weight is an A_q weight for some 1 < q < p, then M would furthermore satisfy a strong-type (p,p) inequality by interpolating between the weak-type (q,q) inequality and the trivial strong-type (∞,∞) inequality. This follows from a reverse Holder's inequality.

Lemma 15 (Reverse Holder's inequality). Let $\omega \in A_p$, then there exists r > 0 such that

$$\left(\frac{1}{|B|}\int_{B}\omega(y)^{r}\,dy\right)^{1/r}\lesssim \frac{1}{|B|}\int_{B}\omega(y)\,dy$$

uniformly over all balls $B \subseteq \mathbb{R}^d$.

Theorem 16. Let $\omega : \mathbb{R}^d \to [0, \infty)$ be a weight and $1 \le p < \infty$. The maximal operator M is strong-type (p, p) with respect to ω if and only if $\omega \in A_p$.

Proof. The proof of the forward implication is analogous to that of Theorem 13. To prove the converse, by Marcinkiewicz interpolation it suffices to show that $\omega \in A_q$ for some 1 < q < p. Recall that $\omega \in A_p$ if and only if $\omega^{-p'/p} \in A_{p'}$. Applying the reverse Holder inequality to the latter, there exists r > 1 such that

$$\left(\frac{1}{|B|}\int_B \omega(y)^{-p'r/p}\,dy\right)^{1/r}\lesssim \frac{1}{|B|}\int_B \omega(y)^{-p'/p}\,dy.$$

Recall $\omega \in A_p$ if and only if

$$\frac{\omega(B)}{|B|} \left(\frac{1}{|B|} \int_B \omega(y)^{-p'/p} dy \right)^{p/p'} \lesssim 1.$$

Combining with the reverse Holder inequality, we obtain

$$\left(\frac{\omega(B)}{|B|}\right)^{p'/p} \left(\frac{1}{|B|} \int_B \omega(y)^{-p'r/p} \, dy\right)^{1/r} \lesssim 1.$$

Since r > 1, there exists 1 < q < p such that p'r/p = q'/q, i.e. q - 1 = (p - 1)/r. Rewriting the exponents above in terms of q and raising the exponents on both sides by p/p', we obtain

$$\frac{\omega(B)}{|B|} \left(\frac{1}{|B|} \int_B \omega(y)^{-q'/q} \, dy \right)^{q/q'} \lesssim 1,$$

i.e. $\omega \in A_q$. This completes the proof.

3. Vector-valued maximal function

The weak-type (1,1) inequality and strong-type (p,p) inequalities extend to functions $f: \mathbb{R}^d \to \ell^q(\mathbb{N})$ taking values in the sequence spaces for $1 < q \le \infty$. We denote the norms

$$|f(x)| := ||f(x)||_{\ell_n^q}, \qquad ||f||_{L^p} := \left(\int_{\mathbb{R}^d} |f(x)|^p dx\right)^{1/p}.$$

The vector-valued maximal function of f is defined by

$$\overline{M}_q f(x) := ||M f_n(x)||_{\ell_n^q}.$$

Theorem 17 (Vector-valued maximal inequality). Let $1 < p, q < \infty$ and $f : \mathbb{R}^d \to \ell^q(\mathbb{N})$, then the vector-valued maximal operator \overline{M}_q satisfies the weak-type (1,1) inequality,

$$|\{x \in \mathbb{R}^d : \overline{M}_q(x) > \lambda\}| \lesssim_{d,p} \frac{1}{\lambda} ||f||_{L^1},$$

and the strong-type (p, p) inequality,

$$||\overline{M}_q f||_{L^p} \lesssim_{d,p} ||f||_{L^p}.$$

Remark.

• Both the weak-type (1,1) and strong-type (p,p) inequalities fail in the case q=1. Fix $N \in \mathbb{N}$, we divide the unit interval into sub-intervals of length 1/N,

$$[0,1] = [0,1/N] \cup \cdots \cup [(N-1)/N,1] =: I_1 \cup \cdots \cup I_N.$$

Define $f_N : \mathbb{R} \to \ell_n^1(\mathbb{N})$ by

$$f_N := (\mathbb{1}_{I_1}, \dots, \mathbb{1}_{I_N}, 0, \dots).$$

Then $|f_N| = \mathbb{1}_{[0,1]}$ and $||f_N||_{L^p} = 1$. On the other hand, for any $x \in [0,1]$, observe $I_n \subseteq [x - n/N, x + n/N]$ and $I_n \subseteq [x - N/2, x + N/2]$. Arguing combinatorially, we can bound below

 $\overline{M}_1 f_N$ pointwise by

$$\overline{M}_1 f_N(x) = \sum_{n=1}^N \sup_{r>0} \frac{1}{2r} \int_{x-r}^{x+r} \mathbb{1}_{I_n}(y) \, dy$$
$$\gtrsim \sum_{n=1}^{\lfloor N/2 \rfloor} \frac{1}{n/N} |I_n| \gtrsim \sum_{n=1}^{\lfloor N/2 \rfloor} \frac{1}{n} \gtrsim \log N$$

for any $x \in [0,1]$. This shows that $||\overline{M}_1 f_N||_{L^{p,\infty}} \gtrsim \log N$ for $N \gg 1$.

• The strong-type (∞, ∞) bound fails dramatically for all $1 < q < \infty$ in that there exists a bounded function $f : \mathbb{R} \to \ell^q(\mathbb{N})$ such that $\overline{M}_q f \equiv \infty$. Define

$$f := (\mathbb{1}_{[2^{n-1},2^n]})_{n \in \mathbb{N}}.$$

Then $|f(x)| = \mathbb{1}_{[0,\infty)}$ and $||f||_{L^{\infty}} = 1$. On the other hand, observe that $[2^{n-1}, 2^n] \subseteq [x - 2^{n+1}, x + 2^{n+1}]$ for any $|x| \le 2^n$. We can therefore bound below the maximal function pointwise by

$$M1_{[2^{n-1},2^n]}(x) \ge \frac{1}{2^{n+2}} \int_{[x-2^{n+1},x+2^{n+1}]} 1_{[2^{n-1},2^n]}(y) \, dy \ge \frac{1}{8}$$

for any $|x| \leq 2^n$. Hence

$$\overline{M}_q f(x) = \left(\sum_{n: 2^n \ge |x|} \left| M \mathbb{1}_{[2^{n-1}, 2^n]}(x) \right|^q \right)^{1/q} \ge \left(\sum_{n: 2^n \ge |x|} \frac{1}{8^q} \right)^{1/q} = \infty.$$

The case $q = \infty$ follows from the usual scalar-valued maximal inequality since

$$\overline{M}_{\infty}f = ||Mf_n||_{\ell_n^{\infty}} \le M||f_n||_{\ell_n^{\infty}} = M|f|.$$

As remarked, the strong-type (∞, ∞) inequality fails in the case $1 < q < \infty$, and so we need to take a more subtle approach paralleling the proof of boundedness for Calderon-Zygmund operators. Interchanging the sum and integral and applying the scalar-valued maximal inequality gives

$$||\overline{M}_p f||_{L^p}^p = \int_{\mathbb{R}^d} \sum_{n \in \mathbb{N}} |M f_n(x)|^p dx \lesssim \sum_{n \in \mathbb{N}} \int_{\mathbb{R}^d} |f_n(x)|^p dx = ||f||_{L^p}^p.$$

This furnishes the strong-type (p,p) inequality for the diagonal p=q. The case 1 reduces by Marcinkiewicz interpolation to showing the weak-type <math>(1,1) inequality, which we will prove via a Calderon-Zygmund decomposition. The case q follows from duality and a weighted maximal inequality.

3.1. **The case** $p \le q$. We prove the weak-type (1,1)-inequality via the higher dimensional successor of the rising sun lemma, relying crucially on the dyadic structure of \mathbb{R}^d :

Lemma 18 (Calderon-Zygmund decomposition). Let $f \in L^1(\mathbb{R}^d)$ and $\lambda > 0$, there exists a decomposition f = g + b, where g is the "good" part and b is the "bad" part, such that

- (a) $|g| \leq \lambda$ a.e.,
- (b) $b = f \mathbb{1}_{\bigcup_k Q_k}$, where $\{Q_k\}_k$ is a collection of cubes with pair-wise disjoint interiors satisfying

$$\lambda < \frac{1}{|Q_k|} \int_{Q_k} |b(y)| dy \le 2^d \lambda.$$

Proof. Since $f \in L^1(\mathbb{R}^d)$, we can sub-divide \mathbb{R}^d into dyadic cubes $Q \subseteq \mathbb{R}^d$ satisfying

$$\frac{1}{|Q|} \int_{O} |f(y)| dy \le \lambda.$$

We run the following algorithm: fixing one such cube Q, we sub-divide it into 2^d congruent dyadic cubes. Consider one of these smaller cubes $Q' \subseteq Q$, if it satisfies

$$\frac{1}{|Q'|} \int_{Q'} |f(y)| dy > \lambda \tag{*}$$

then we stop the algorithm and add Q' to the collection of cubes in the support of b. Such a cube satisfies

$$\lambda < \frac{1}{|Q'|} \int_{Q'} |f(y)| dy \leq \frac{2^d}{|Q|} \int_{Q} |f(y)| dy \leq 2^d \lambda.$$

If Q' does not satisfy (*), we continue the algorithm, further sub-dividing Q' into 2^d congruent dyadic cubes and examining each one. It remains only to check $|g| \le \lambda$ a.e. Suppose $x \notin \bigcup_k Q_k$, then by construction the average of |f| is bounded by λ for any dyadic cube containing x. Let $x \in Q$, we can find a radius $r_Q > 0$ such that $B_{r_Q}(x) \subseteq Q$ and $|B_{r_Q}(x)| \sim |Q|$. Since Lebesgue points are generic, we conclude

$$|f(x)| = \lim_{r \to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| \, dy \lesssim \lim_{x \in Q, \, \text{diam } Q \to 0} \frac{1}{|Q|} \int_Q |f(y)| \, dy < \lambda$$

for a.e. *x* in the support of *g*.

Proof of Theorem 17 for $p \le q$. It suffices by the strong-type (q,q) inequality and Marcinkiewicz interpolation to establish the weak-type (1,1) inequality. For $f \in L^1(\mathbb{R}^d)$, we perform a Calderon-Zygmund decomposition f = g + b at the level $\lambda > 0$. By the triangle inequality,

$$|\{x \in \mathbb{R}^d : \overline{M}_q f(x) > \lambda\}| \le |\{x \in \mathbb{R}^d : \overline{M}_q g(x) > \lambda/2\}| + |\{x \in \mathbb{R}^d : \overline{M}_q b(x) > \lambda/2\}|.$$

We claim that the contributions from the "good" and "bad" parts given on the right are controlled by $||f||_{L^1}/\lambda$, which would complete the proof. It follows from Chebyshev's inequality, the strong-type (q,q) inequality, and the "good" inequality $|g| \le \lambda$ a.e. that the "good" part satisfies

$$|\{x \in \mathbb{R}^d : \overline{M}_q g(x) > \lambda/2\}| \le \frac{||\overline{M}_q g||_{L^q}^q}{(\lambda/2)^q} \lesssim \frac{||g||_{L^q}^q}{\lambda^q} \le \frac{||g||_{L^1}}{\lambda} \le \frac{||f||_{L^1}}{\lambda}.$$

The result above continues to hold replacing the "good" part by the average of the "bad" part on every cube,

$$b_n^{\text{ave}} := \sum_k \mathbb{1}_{Q_k} \frac{1}{|Q_k|} \int_{Q_k} |b_n(y)| \, dy.$$

Indeed, by construction of b, we have the "good" inequality for b^{ave} ,

$$|b^{\operatorname{ave}}(x)| \leq \frac{1}{|Q_k|} \int_{Q_k} |b(y)| \, dy \leq 2^d \lambda.$$

We claim that $\overline{M}_q b \lesssim \overline{M}_q b^{\text{ave}}$ whenever $x \notin \bigcup_k 2Q_k$; it would follow that

$$\begin{split} |\{x \in \mathbb{R}^d : \overline{M}_q b(x) > \lambda/2\}| &\leq \sum_k |2Q_k| + |\{x \not\in \bigcup_k 2Q_k : \overline{M}_q b(x) > \lambda/2\}| \\ &\leq \frac{2^d}{\lambda} \sum_k \int_{Q_k} |b(y)| \, dy + |\{x \not\in \bigcup_k 2Q_k : \overline{M}_q b^{\text{ave}}(x) \gtrsim \lambda\}| \lesssim \frac{||f||_{L^1}}{\lambda}, \end{split}$$

completing the proof. Fix $x \notin \bigcup_k 2Q_k$ and choose r > 0 such that $B_r(x)$ intersects Q_k for some k. It follows that $2r > \text{length } Q_k$, so $Q_k \subseteq B_{r+\text{length } Q_k \sqrt{d}}(x) \subseteq B_{r(1+2\sqrt{d})}(x)$.

Since *b* is supported in $\bigcup_k Q_k$, we can write

$$\begin{split} Mb_n(x) &= \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |b_n(y)| \, dy = \sup_{r>0} \frac{1}{|B_r(x)|} \sum_k \int_{Q_k \cap B_r(x)} |b_n(y)| \, dy \\ &\lesssim \sup_{r>0} \frac{1}{|B_{r(1+2\sqrt{d})}(x)|} \int_{B_{r(1+2\sqrt{d})}(x)} \sum_k \mathbb{1}_{Q_k}(z) \left(\frac{1}{|Q_k|} \int_{Q_k} |b_n(y)| \, dy \right) dz \leq \overline{M} b_n^{\text{ave}}(x), \end{split}$$

for every n. This proves the claim, concluding the proof.

3.2. **The case** $p \ge q$. To complete the analogy with Calderon-Zygmund operators, we need a self-adjointness-type result for the maximal operator. This takes the form of a weighted maximal inequality.

Theorem 19 (Weighted maximal inequality). Let $\omega : \mathbb{R}^d \to [0, \infty)$ be a weight and 1 , then the maximal operator <math>M satisfies the bounds

$$||Mf||_{L^{1,\infty}(\omega dx)} \lesssim ||f||_{L^{1}(M\omega dx)}, \qquad ||Mf||_{L^{p}(\omega dx)} \lesssim ||f||_{L^{p}(M\omega dx)}$$

for scalar-valued $f: \mathbb{R}^d \to \mathbb{C}$.

Proof. Appealing to Marcinkiewicz interpolation, the strong-type (p,p) inequality holds provided we show the weak-type (1,1) inequality and strong-type (∞,∞) inequality. The latter follows from the usual strong-type (∞,∞) inequality, remarking that $\omega dx \ll dx$ and $M\omega dx \ll dx$ and $dx \ll M\omega dx$.

It remains to show the weak-type (1,1) inequality. Let $K \subseteq \mathbb{R}^d$ be a compact subset satisfying

$$K \subseteq \{x \in \mathbb{R}^d : Mf(x) > \lambda\}.$$

We claim that

$$\omega(K) \lesssim \frac{1}{\lambda} ||f||_{L^1(M\omega dx)}.$$

The weak-type (1,1) inequality follows immediately from inner regularity of ωdx and monotone convergence. By construction, for every $x \in K$ there exists r(x) > 0 such that

$$|B_{r(x)}(x)| \le \frac{1}{\lambda} \int_{B_{r(x)}(x)} |f(y)| \, dy.$$
 (*)

The collection $\{B_{r(x)}(x)\}_x$ forms a cover of K, so we use compactness to extract a finite sub-cover, and the Vitali-Wiener covering lemma to extract a sub-collection of disjoint balls $B_{r_j}(x_j)$ satisfying $K \subseteq \bigcup_j B_{3r_j}(x_j)$. In place of the scaling property of the Lebesgue measure, we control the measure on the scaled balls with respect to ω by the maximal function of ω . Note $B_{3r_i}(x_j) \subseteq B_{4r_i}(z)$ any $z \in B_{r_i}(x_j)$, so

$$\omega(B_{3r_j}(x_j)) \le \int_{B_{4r_i}(z)} \omega(y) \, dy \le |B_{4r_j}(z)| \, M\omega(z).$$

Integrating both sides against |f| on the ball $B_{r_i}(x_i)$, we obtain

$$\omega(B_{3r_{j}}(x)) \int_{B_{r_{j}}(x_{j})} |f(y)| \, dy \le |B_{4r_{j}}(z)| \int_{B_{r_{j}}(x_{j})} |f(z)| \, M\omega(z) \, dz$$

$$\lesssim_{d} \frac{1}{\lambda} \left(\int_{B_{r_{j}}(x_{j})} |f(y)| \, dy \right) \left(\int_{B_{r_{j}}(x_{j})} |f(z)| \, M\omega(z) \, dz \right),$$

where the second inequality follows from $|B_{4r_i}(z)| \sim |B_{r_i}(x_j)|$ and (*). We conclude

$$\omega(K) \leq \sum_{j} \omega(B_{3r_{j}}(x_{j})) \lesssim_{d} \frac{1}{\lambda} \sum_{j} \int_{B_{r_{j}}(x_{j})} |f(z)| M\omega(z) dz \leq \frac{1}{\lambda} ||f||_{L^{1}(M\omega dz)}$$

as desired. \Box

Remark. If $\omega \equiv 1$ then $M\omega \equiv 1$ and we recover the classical Hardy-Littlewood maximal inequality. For the theorem to be non-vacuous, we need the maximal function $M\omega$ to be finite a.e. This occurs precisely when

$$\sup_{r\gg 1}\frac{1}{r^d}\int_{|y|\leq r}\omega(y)\,dy\lesssim 1.$$

Assume the above holds, then $M\omega(x_0)<\infty$ for any Lebesgue point for ω . Indeed, the averages of ω on small balls are controlled by Lebesgue differentiation theorem, while averages on large balls are controlled by the condition above

$$\frac{1}{|B_r(x_0)|} \int_{B_r(x_0)} \omega(y) \, dy \leq \frac{1}{|B_r(x_0)|} \int_{|y| \leq |x_0| + r} \omega(y) \, dy \lesssim \frac{|B_{|x_0| + r}(0)|}{|B_r(x_0)|} \frac{1}{(|x_0| + r)^d} \int_{|y| \leq |x_0| + r} \omega(y) \, dy \lesssim 1$$

for $r \gg 1$. This shows that $M\omega(x_0) < \infty$. Conversely, suppose $M\omega(x_0) < \infty$, then

$$\frac{1}{r^d} \int_{|y| \le r} \omega(y) \, dy \le \frac{1}{r^d} \int_{B_{|x_0| + r}(x_0)} \omega(y) \, dy \lesssim \frac{(|x_0| + r)^d}{r^d} (M\omega)(x_0) \lesssim 1$$

for $r \ge |x_0|$ uniformly.

Proof of Theorem 17 for $p \ge q$. Observe that $1 < (p/q)' \le \infty$. By duality we can write

$$\begin{split} ||\overline{M}_{q}f||_{L^{p}}^{q} &= |||\overline{M}_{q}f|^{q}||_{L^{p/q}} = \sup_{||\omega||_{L^{(p/q)'}} \le 1} \int_{\mathbb{R}^{d}} |\overline{M}_{q}f(x)|^{q} \omega(x) \, dx = \sup_{||\omega||_{L^{(p/q)'}} \le 1} \int_{\mathbb{R}^{d}} |Mf_{n}(x)|^{q} \omega(x) \, dx \\ &\lesssim \sup_{||\omega||_{L^{(p/q)'}} \le 1} \sum_{n \in \mathbb{N}} \int_{\mathbb{R}^{d}} |f_{n}(x)|^{q} M\omega(x) \, dx = \sup_{||\omega||_{L^{(p/q)'}} = 1} \int_{\mathbb{R}^{d}} |f(x)|^{q} M\omega(x) \, dx \\ &\lesssim \sup_{||\omega||_{L^{(p/q)'}} \le 1} |||f|^{q}||_{L^{p/q}} ||M\omega||_{L^{(p/q)'}} \\ &\lesssim \sup_{||\omega||_{L^{(p/q)'}} \le 1} |||f|^{q}||_{L^{p/q}} ||\omega||_{L^{(p/q)'}} \le ||f||_{L^{p}}^{q}, \end{split}$$

where the first inequality follows from the weighted maximal inequality, the second from Holder's inequality, and the third from the strong-type ((p/q)', (p/q)') bound for the maximal operator.

REFERENCES

[Duo01] Javier Duoandikoetxea. Fourier Analysis. American Mathematical Soc., 2001.

[Rie32] Frédéric Riesz. Sur un Théorème de Maximum de Mm. Hardy et Littlewood. Journal of the London Mathematical Society, s1-7(1):10-13, January 1932.

[Ste93] Elias M. Stein. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, August 1993.