## **Abstract & Introduction**

- 本文的工作主要是基于CA/Browser论坛2011年发布的条例对互联网证书进行的评估。
- 作者收集了大量的互联网证书,评估了它们对于条例的遵守情况,以及条例发布前后违规情况的变化趋势。
- 同时作者通过自动化生成概述模板来描述各issuer的证书组成,结合违规统计数据来分析全世界CA的签发证书情况(以此来监视PKI及主动发现重大违规现象)。

# **Guidelines and Requirements**

PKI的安全威胁促使各种规定条例出台,如"Baseline Requirements for the Issuance and Management of Policy-Trusted Certificates",RFC 5280等,这篇文章主要关注能通过证书审查验证的:Subject identity,Certificate contents,Certificate Extensions,cryptographic algorithm,key requirements。

- Identity Verification and Contents:由于非EV证书的信任级无法确定,条例要求证书中的issuer,Subject,issuance process要有清晰定义。
  - 条例要求叶子证书的最长有效期为5年,2015年4月 后降为39个月,EV证书不超过27个月。

TABLE I. X.500 NAME REQUIREMENTS.

| X.500 Issuer Fields  |                                                                 |  |
|----------------------|-----------------------------------------------------------------|--|
| Organization         | Required; a name or trademark that identifies the issuing CA    |  |
| Country              | Required; code of country where the CA business is located      |  |
| Common Name          | Optional; if present, should accurately identify the issuing CA |  |
| X.500 Subject Fields |                                                                 |  |

| X.500 Subject Fields |                                                                   |  |
|----------------------|-------------------------------------------------------------------|--|
| Common Name          | Deprecated, must contain a single IP or FQDN if present           |  |
|                      | Subject Alternative Name extension must list applicable names     |  |
| Organization         | Optional, may only appear if verified by the CA                   |  |
|                      | Required for extended validation certificates                     |  |
| Location             | Covers the Street Address, Locality, State and Postal Code fields |  |
|                      | Must appear if an Organization name is listed, mustn't otherwise  |  |
|                      | Location must be verified by the CA if present                    |  |
| Country              | Required if an organization is listed, must match its location    |  |
|                      | If no organization is listed, may appear based on                 |  |
|                      | - the top-level domain of one of the applicable domain name;      |  |
|                      | - IP geolocation of either an applicable IP or the applicant      |  |
| Registration         | Covers Business Category, Incorporation Locality/State/Country    |  |
|                      | Required for extended validation, may not appear otherwise        |  |
|                      | Registration number must also appear in Serial Number field       |  |

#### • Cryptographic Requirements:

- O CA/Browser研讨会接受使用RSA、DSA、EC密钥的证书。
  - RSA密钥至少2048-bit, 三个例外允许1024-bit 的密钥: (1) 2014年之前过期的叶子证书;
    - (2) 2011年签发的中间CA证书; (3) 2011年之前签发的根证书(只签发叶子证书的根证书)。此外, (1) CA必须保证模数的因子不得小于752, 不能是某个素数的幂, 不能是已知有漏洞的; (2) e必须是[216+1, 2256-1]区间的一个奇数。
  - DSA的密钥至少2048-bit同时有一个224或256-bit的因子。同时CA要检查生成元的阶。
  - 支持的椭圆曲线为NIST P-256, P-384, P-521。
     CA必须部分或完全使用NIST SP 800-56A中描

述的ECC公钥校验条例来检查申请人的公钥合法性。

- 支持的摘要算法为SHA-1,SHA-256, SHA-384, SHA-512。2011年之前签发的根证书可以用 MD5自签名。
- 证书序列号要是非线性的,同时包含至少20-bit 的熵。
- Certificate Extensions: 对于不同类型的证书(root, intermediate CA or endpoint)条例对Extension的要求 不同。

TABLE II. EXTENSIONS OF ENDPOINT CERTIFICATES.

| Extension                    | Requirements                                     |  |
|------------------------------|--------------------------------------------------|--|
| G 10 - P 11 1                | Must appear, should not be critical              |  |
| Certificate Policies         | Must include the OID of the issuer's policy      |  |
|                              | May include link to online CPS on issuer website |  |
| CRL Distribution Points      | Must appear, should not be critical              |  |
| CRE Distribution Forms       | Must include HTTP URL of issuer's CRL file       |  |
|                              | Must appear, must not be critical                |  |
| Authority Information Access | Must contain HTTP URL of issuer's OCSP service   |  |
|                              | Should contain HTTP URL of issuer's certificate  |  |
| Basic Constraints            | May appear, must be critical if present          |  |
| Basic Constraints            | CA flag must be set to false                     |  |
| Vay Heaga                    | May appear, should be critical                   |  |
| Key Usage                    | Must not include "Certificate/CRL Signature"     |  |
|                              | Must appear, may be critical                     |  |
| Extanded Vey Hages           | Must include "Client/Server Authentication"      |  |
| Extended Key Usage           | May include "Email Protection"                   |  |
|                              | Should not include any other value               |  |
|                              | Must appear                                      |  |
|                              | Should not be critical, unless subject is empty  |  |
| Subject Alternative Name     | Must include subject's Common Name, if present   |  |
|                              | Must only contain DNS names and IP addresses     |  |
|                              | Should not contain local names or IP addresses   |  |

TABLE III. EXTENSIONS OF INTERMEDIATE CA CERTIFICATES.

| Extension                    | Requirements                                                                                                                     |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Certificate Policies         | Must appear, should not be critical Must include the OID of the CA's issuance policy                                             |  |
|                              | May include link to online CPS on issuer website                                                                                 |  |
| CRL Distribution Points      | Must appear, should not be critical                                                                                              |  |
|                              | Must include HTTP URL of this CA's CRL file                                                                                      |  |
| Authority Information Access | Must appear, must not be critical Must contain HTTP URL of issuer's OCSP service Should contain HTTP URL of issuer's certificate |  |
| Basic Constraints            | Must appear, must be critical CA flag must be set to true Path Length constraint may be set                                      |  |
| Key Usage                    | Must appear, must be critical Must include "Certificate" and "CRL Signature" May include "Digital Signature" for OCSP signing    |  |
| Name Constraints             | May appear, should be critical if present                                                                                        |  |

TABLE IV. EXTENSIONS OF ROOT CA CERTIFICATES.

| Extension          | Requirements                                     |
|--------------------|--------------------------------------------------|
|                    | Must appear, must be critical                    |
| Basic Constraints  | CA flag must be set to true                      |
|                    | Path Length constraint should not be set         |
|                    | Must appear, must be critical                    |
| Key Usage          | Must include "Certificate" and "CRL Signature"   |
| , ,                | May include "Digital Signature" for OCSP signing |
| Extended Key Usage | Must not appear                                  |

# Measuring the Certificate Ecosystem

- Data Collection: 从EFF's SSL Observatory的 IP地址和 Alexa前100w网站爬取的证书。
  - 共获得了8,349,808个不同的证书;
  - 只关注公共信任的证书(非自签名),及2012前一年及后一年这两年窗口期内的证书,所以一共有1,480,028个。

- Path Reconstruction: 这篇文章只关注CA行为,所以不 关心证书链是否合法或完整。
  - 主要也是根据subject, issuer, key Identifier等来 构建chain。

### **Global Evaluation**

- 根据2012年前、后划分为两个时间段。第一个时间段得到809,425个证书和744个不同的intermediates;第二个时间段得到670,603个证书和668个intermediates。
- 2012之前仅0.39%的证书完全符合基准要求和EV条例, 年后上升到0.73%。
- Name Violations: 两个时间段平均每个证书代表的合法域名书从1.96涨到2.2,拥有不同二级域名的证书比例上升。52%-56%.



• Issuance and Subject Identity Violations:

○ 不同类型证书的签发需求比较稳定: 48%,48%,4% VS 49.2%,46.6%,4.2%



Fig. 3. Identification and Issuance Violations



Fig. 5. Cryptographic Violations

- Cryptographic Violations:
  - 大部分都用RSA公钥(3个例外),两个时间段平均 模数从1921-bit涨到2017-bit。
  - Web上有一些EC证书,比如Google用的,但只有客户端支持时才用。
  - 2011-2012发现3个DSA证书,两个用了1024-bit的 模数,第三个用的512bit的。
  - 支持1024-bit的证书4.3%-5.2%。不过签发1024-bit 证书的CA之前发短周期证书。

- 2011.7.1后没有发现使用MD5签名的证书,2012年 之后没有发现证书使用Debian OpenSSL漏洞产生的 key。
- Extension Constraints: 各类TLS库对扩展约束校验支持不全面。
  - o Root Certificates: 主要是basic constraints, path length constraints, key usage extension
    - 29.6%的根证书有不合法或不完整basic constraint(说明该证书是否有CA能力),还有6个根证书直接签发端证书,应该根证书离线 签发中间证书。
    - 44.7%的根证书不包含key usage extension。 (没有这个扩展时证书可以用于任何用途)
    - extended key usage extension可以使证书用于额外用途(如代码签名), 2.5%的证书违规。
  - Intermediate CA Certificates: 中间CA证书的情况 要好很多,所有情况都是因为扩展没被标记为 critical。
    - 中间证书不应该拥有给整个互联网空间签名的 权利,但只有11个证书用name constraints来 约束它们的能力,13年3月后还剩7个。

#### Endpoint Certificates:

- 最严重的问题是部分端证书的CA-bit, 意味着 这些端证书可以当CA用。共1.4%的证书,均签 发与2012年之前。
- 好消息是这些证书的中间CA都设置path length 为0, 坏消息是GnuTLS 3.0之前的版本不检查 path length。

- 不推荐端证书用additional extended key usage,但有2064个证书被用来代码签名, 3917个证书包含"Any Key Usage"OID。
- Revocation Violations: 改进良多。
  - OCSP支持率79%-98.7%.
  - 不能检查吊销状态的证书数439-176,来自13个 不同的签发者。
- Path Reconstruction Violations: subject key
  Identifier (SKI), Authority key
  Identifier (AKI) 和Authority information
  access (AIA) 的支持比率均上升了,可以帮助重建
  证书链。

## Template-level Analysis

- Challenge 1: 之前的统计不能反映每个证书签发者的行为。
- Challenge 2: 部分根CA会签发一个中间CA证书,然后 委托第三方去签发证书。比如Verizon的GTE CyberTrust Global Root,签发了至少40个中间证书,37个都是其他 组织在管理。
- 条例里面的很多要求其实是针对CA的而不是单个证书的,于是提出这种基于模板的分析方法。
- Template Clustering: 几乎所有CA都使用签发配置文件来签发证书,它包含证书格式、序列号熵源、X.500 subject name中的域,有效期,签名算法,扩展集等,通常这些信息会出现在CA的Certificate Policy Statement (CPS) 里。不同的用途和校验方法就对应不同的配置文件签发证书。由于CPS文件通常不是机器可读的,作者试图对证书进行聚类来重构签发配置文件再分析。

- 把签发过程类似的证书分组,人工介入以消除机器不可读的情况;
- 将不同群集里的违规情况进行对比,以发现不同CA 及委托第三方的差异性。

#### • The Clustering Algorithm:

- 使用一个基于特征向量的距离度量来判断证书的相似性(相似方式签发的)。相关特征有的是数字的(有效期),有的是分类的(签名算法),有的是属性集(扩展)。数字特性用L1度量,分类的用离散方法度量(d(x,y) = 1 iff x = y, 否则是0),属性集用Jaccard距离度量。
- The clustering procedure applies the k-medoid algorithm seeded with the k-means++ initialization step.

#### • Cluster Evaluation:

- 检查集群中心,记录违规情况;
- 用一个规则集来检验单个证书,以判断集群的质量和集群的相关性。
- o 对每个集群出现的template-specific违规情况,检查证书域名的合法性和对应的IP位置。

TABLE V. CLUSTERING FEATURES.

| High Weight                  | Medium Weight           | Low Weight           |
|------------------------------|-------------------------|----------------------|
| Parent CA                    | Subject name fields     | Key size             |
| Signature and key algorithms | CRL distribution points | Issuance date        |
| Set of X.509 extensions      | Extended key usage      | Validity period      |
| Policy identifiers           |                         | Serial number length |
| Authority information access |                         |                      |
| Key usage, basic constraints |                         |                      |

## **Clustering Results and Discussions**

• 一个可视化工具:产生了571个群集,每个至少包含5个证书。



Fig. 11. Distribution of Clusters among CAs. The color scheme reflect the percentage of weak keys in a cluster. The left pane shows the searching interface.

- CA规模与遵守条例的关系:
  - 长尾效应。
  - 委托越多违规越多,小CA违规情况多。
  - CA数量增长速度降低。
  - 非常合规的CA也容易有几个违规多的模板。



Fig. 15. Growth of the Mozilla Root Program.

- DNS分析:解析域名的IP地址,分析服务器的位置是不是和证书列出的国家匹配。发现少量域名所有权更替这类的情况。
- CDN网络: 老问题。