

# **MDS7101**

Estadística: Teoría y Aplicaciones

## **ESCRIBAS**

Naomí Cautivo B. Máximo Flores Valenzuela

## ÍNDICE

| 1. | Semana 1: Repaso de probabilidades               | 3 |
|----|--------------------------------------------------|---|
|    | 1.1. Notaciones básicas                          | 3 |
|    | 1.2. Propiedades básicas de P                    | 3 |
|    | 1.3. Variables aleatorias                        |   |
|    | 1.3.1. Variables aleatorias discretas            | 3 |
|    | 1.3.2. Variables aleatorias continuas            | 3 |
|    | 1.3.3. Funciones de densidad                     | 3 |
|    | 1.3.4. Esperanza de una variable aleatoria       | 4 |
|    | 1.3.5. Varianza de una variable aleatoria        | 4 |
|    | 1.3.6. Estandarización de una variable aleatoria | 4 |
|    | 1.4. Distribuciones discretas                    |   |
|    | 1.4.1. Distribuciones continuas                  | 5 |
|    | 1.4.2. Covarianza de dos variables aleatorias    | 6 |
|    | 1.4.3. Correlación de dos variables aleatorias   | 6 |

#### 1. SEMANA 1: REPASO DE PROBABILIDADES.

- ¿Qué es una probabilidad? Una probabilidad es una medida de incertidumbre.
- Tiene dos enfoques: frecuentista y bayesiano. Para el frecuentista, la probabilidad es algo inherente a la naturaleza, y su paradigma de cálculo es casos favorables/casos totales. Para el bayesiano, la probabilidad es un invento del ser humano, y ya no se usa la fórmula anterior.

## 1.1. NOTACIONES BÁSICAS

En el curso, usaremos  $\Omega$  para denotar el espacio muestral,  $\omega$  para los eventos, y  $\mathbb P$  para la medida de probabilidad, que corresponde a una función que asigna una probabilidad a cualquier evento en  $\mathcal F$ , donde  $\mathcal F$  es una colección de subconjuntos de  $\Omega$ , no necesariamente una partición.

## 1.2. PROPIEDADES BÁSICAS DE P

- ① La probabilidad del espacio muestral debe ser siempre 1, es decir,  $\mathbb{P}(\Omega) = 1$ .
- ② La probabilidad es no negativa, es decir, para cualquier evento  $A \in \mathcal{F}$ ,  $\mathbb{P}(A) \geq 0$ .
- ③ La probabilidad de la unión de eventos disjuntos es la suma de sus probabilidades por separado, es decir,  $\mathbb{P}\left(\bigcup_{i}A_{i}\right)=\sum_{i}\mathbb{P}(A_{i})$  cuando  $\forall i\neq j, A_{i}\cap A_{j}=\emptyset$ .

#### 1.3. VARIABLES ALEATORIAS

## (i) Nota

Por convención, en este curso usaremos letras mayúsculas para denotar las variables aleatorias (en adelante, abreviadas como v. a.).

Son funciones que toman elementos del espacio muestral, y les asigna a cada uno un número real. Podemos definir una v. a. X como  $X:\Omega\to\mathbb{R}$ . Por ejemplo, sea X el número de caras en el lanzamiento de una moneda no cargada 3 veces, entonces  $X=\{0,1,2,3\}$ , porque son las distintas cantidades de caras que pueden salir.

#### 1.3.1. VARIABLES ALEATORIAS DISCRETAS

Se dice que X es una v. a. discreta si toma valores de un conjunto finito, o infinito numerable, y además  $\forall x, \mathbb{P}(X=x) \neq 0$ .

#### 1.3.2. VARIABLES ALEATORIAS CONTINUAS

Se dice que X es una v. a. continua si X toma cualquier valor real con probabilidad cero, es decir,  $\forall x, \mathbb{P}(X=x)=0$ .

#### 1.3.3. FUNCIONES DE DENSIDAD

Existen dos funciones de densidad que permiten ver el comportamiento de una variable aleatoria.

- PDF: Probability Density Function (f(x)). Describe cómo se distribuye la probabilidad a lo largo de los posibles valores de la v. a. En específico,  $\mathbb{P}(a \le X \le b) = \int_a^b f(x) \, \mathrm{d}x$ .
- CDF: Cummulative Density Function (F(x)). Acumula la probabilidad desde  $-\infty$  hasta un valor x en el dominio. En específico,  $F(x) = \mathbb{P}(X \le x)$ .

Estas funciones están directamente relacionadas mediante la fórmula  $F(x) = \int_{-\infty}^x f(t) \, \mathrm{d}t$ , lo que puede ser observado gráficamente en la Figura 1.



Figura 1: Funciones "PDF" (f(x)) y "CDF" (F(x)).

Si se conoce F, podemos conocer la probabilidad de un intervalo mediante la siguiente fórmula  $\mathbb{P}(a \le X \le b) = F(b) - F(a)$ .

#### 1.3.4. ESPERANZA DE UNA VARIABLE ALEATORIA

Definimos la esperanza de una variable aleatoria para las v. a. discretas y continuas como:

- X discreta:  $\mathbb{E}[X] = \sum_{\Omega} x \cdot \mathbb{P}(X = x)$ .
- X continua:  $\mathbb{E}[X] = \int_{\mathbb{R}_X} x \cdot f(x) \, \mathrm{d}x$ .

También se puede definir como el primer momento de distribución. Los momentos de distribución se definen como  $\mathbb{E}[X], \mathbb{E}[X^2], \mathbb{E}[X^3]$ , etc.

#### 1.3.5. VARIANZA DE UNA VARIABLE ALEATORIA

Definimos la varianza de una v. a. discreta y continua como:

- X discreta:  $\mathbb{V}\mathrm{ar}(X) = \mathbb{E}\big[(X \mathbb{E}[X])^2\big].$
- X continua:  $\mathbb{V}\mathrm{ar}(X) = \int_{\mathbb{R}_X} (X \mathbb{E}(X))^2 \cdot f(x) \, \mathrm{d}x$

Con esto mismo podemos definir la desviación estándar de una variable aleatoria, la cual viene a ser la raíz cuadrada de su varianza. Se le conoce también como  $\sigma$  o STD(X).

#### 1.3.6. ESTANDARIZACIÓN DE UNA VARIABLE ALEATORIA

Sea X una variable aleatoria, se define la variable  $Z=(X-\mu)/\sigma$  con  $\mu=\mathbb{E}[X]$  y  $\sigma=\sqrt{\mathbb{V}\mathrm{ar}(X)}$ . Se dice que Z es la estandarización de X, pues cumple  $\mathbb{E}[Z]=0$  y  $\mathbb{V}\mathrm{ar}(Z)=1$ .

## **Advertencia**

En algunas librerías de programación, la «estandarización» de una v. a. se considera como su «normalización», pero estos términos no son equivalentes.

#### 1.4. DISTRIBUCIONES DISCRETAS

En el curso, veremos principalmente las siguientes distribuciones discretas:

① Bernoulli:  $X := \text{lanzamiento de una moneda sólo una vez. Entonces } X \sim \text{Bernoulli}(p)$ . Sus valores se definen como:

$$X = \begin{cases} 1 \text{ en el caso de éxito} \\ 0 \text{ en el caso de fracaso} \end{cases}$$

Además,  $\mathbb{P}(X=1)=p$  (probabilidad de éxito) y  $\mathbb{P}(X=0)=1-p$  (probabilidad de fracaso). El éxito puede ser, por ejemplo, «obtener cara al lanzar la moneda».

② Binomial: si realizamos el experimento anterior n veces, entonces  $X \coloneqq \text{número de éxitos en}$  n ensayos independientes. Luego,  $X \sim \text{Binomial}(p,n)$ . La probabilidad asociada a k éxitos es la siguiente:

$$\mathbb{P}(X=k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

Además,  $\mathbb{E}(X) = np \text{ y } \mathbb{V}ar(X) = np \cdot (1-p).$ 

Si p es un vector multivariado  $(p_1, p_2, ..., p_n)$ , se transforma en una distribución multinomial, denominada  $X \sim \text{Multinomial}(p, n)$ .

#### 1.4.1. DISTRIBUCIONES CONTINUAS

① Normal:  $X \sim \mathcal{N}(\mu, \sigma^2)$ . Su función de densidad es:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}; \quad x \in \mathbb{R}$$

- Normal estándar: si  $X \sim \mathcal{N}(\mu, \sigma^2)$  y  $Z = (X \mu)/\sigma$ , entonces  $Z \sim \mathcal{N}(0, 1)$ .
- ② "Chi cuadrado" ( $\chi^2$ ): si  $Z \sim \mathcal{N}(0,1)$  entonces:

$$Y = Z^2 \to Y \sim \chi^2_{\text{[1]}}$$

donde el subíndice [1] denota los grados de libertad, que es algo que se tratará en las próximas secciones.

 $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \,$ 

$$t = \frac{Z}{\sqrt{Y/n}} \sim t_{[n]}$$

 $\ \$  Fischer (F): combinamos dos  $\chi^2$  independientes:

$$X_1\sim\chi^2_{[n_1]}\wedge X_2\sim\chi^2_{[n_2]}$$
entonces $F=\frac{X_1/n_1}{X_2/n_2}\sim F_{n_1,n_2}$ 

#### 1.4.2. COVARIANZA DE DOS VARIABLES ALEATORIAS

Medida de cómo en promedio varían linealmente dos variables aleatorias entre sí.

$$\begin{split} \mathbb{C}\mathrm{ov}(X,Y) &= \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] \\ &= \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) \end{split}$$

Si estas variables X,Y son independientes, entonces su covarianza será cero, pues  $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$  por la propiedad heredada de la esperanza.

## **Advertencia**

La implicancia  $\mathbb{C}\mathrm{ov}(X,Y)=0\Rightarrow X,Y$  son independientes es falsa, y es un error muy común asumir que es cierta.

## 1.4.3. CORRELACIÓN DE DOS VARIABLES ALEATORIAS.

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{\mathbb{C}ov}(X,Y)}{\sqrt{\operatorname{\mathbb{V}ar}(X) \cdot \operatorname{\mathbb{V}ar}(Y)}} = \rho(X,Y)$$

Ojo: Correlación en cero no implica que serán variables aleatorias independientes, un caso clave para esto es de que estas estén relacionadas de forma no lineal (por verse en clases).