

David Krepskhy Italo Jackson de Souza Gloor Lucas Felipe de Lima

Experiência 12 - Modem FSK

Data de realização do experimento:

12 de Novembro de 2015

Série/Turma:

1000/1011

Prof. Dr. Jaime Laelson Jacob

1 Resumo

Análise prática de circuitos Moduladores e Demoduladores Digitais FSK.

Sumário

Q	Conclusão	12
7	Metodologia e Desenvolvimento 7.1 Modulador FSK	7 7 10
_	Note delegie a Description de	-
6	Circuito demodulador	6
5	Circuito modulador FSK	5
4	Modulação BFSK	4
3	Teoria	4
2	Introdução	3
1	Resumo	1

2 Introdução

Dada a sua vasta aplicação em sistemas de telecomunicações, as técnicas de modulação e demodulação FSK são conhecimentos fundamentais para o engenheiro eletricista. É encontrada em vários cenários, indo desde a transmissão de sinais sem fio, até a comunicação em linhas de transmissão de potência. Neste trabalho foi abordado, de forma experimental, a análise do funcionamento de um esquema de comunicação FSK (Frequency Shift Keying), onde foram utilizados um circuito modulador com VCO e um demodulador não-coerente, onde o objetivo principal é proporcionar ao aluno um melhor entendimento das condições de operação dos tais circuitos eletrônicos.

3 Teoria

4 Modulação BFSK

A modulação FSK ("Frequency Shift Keying") é uma técnica de modulação que consiste em variar a frequência da portadora em função do sinal modulante, no caso o sinal digital a ser transmitido. Pode-se considerar que este tipo de modulação é equivalente a modulação FM analógica.

A amplitude da onda portadora modulada é mantida constante durante todo o processo de modulação, quando o sinal digital apresenta nível lógico "1"a frequência da portadora é alterada para posteriormente ser detectada no processo de demodulação. A frequência resultante transmitida será a frequência da onda portadora f_c diminuida de uma frequência de desvio f_d . Ou seja

$$f_r = f_c - f_d \tag{1}$$

Para a ocorrência de um nível lógico "0", a frequência resultante será a frequência da portadora mais a frequência de desvio.

$$f_r = f_c + f_d \tag{2}$$

Figura 1: Modulação FSK

A Figura 1 mostra um sinal modulante, uma portadora $f_c = 5kHz$ com $f_d = 3kHz$. É possível observar um sinal em 8kHz quando o sinal modulante é "1"e em 2kHz quando o sinal

modulante é "0", ou seja, o esquema FSK se utiliza da frequência como um meio de transportar a informação, sendo que, para cada frequência f_i , é mapeado um simbolo s_i .

A largura de banda utilizada na transmissão de sinais modulados em FSK é:

$$BW = 2 \cdot \Delta f + 2B.$$

Onde BW é a largura de banda ocupada, Δf é a variação de frequência para representar os bits e B é a banda ocupada desde $f_c + \Delta f$ até o primeiro nódulo da onda sinc, a qual representa o espectro de um nível do sinal. Esse fato fica evidente ao analisarmos a figura 2, a qual mostra o espectro de um sinal FSK.

Figura 2: Espectro de uma sinal modulado com FSK.

5 Circuito modulador FSK

A figura 3 representa o diagrama de blocos de um modulador FSK, onde um sinal de mensagem entra em $Digital\ Signal\ e$, através do VCO ($Voltage\ Controled\ Oscillator$), modifica a frequência da onda de saída. A frequência da portadora, f_c , é dada por um circuito que pode ser feito com um resistor e um capacitor, os quais determinam o período de oscilação da frequência central.

Figura 3: Modulador FSK com VCO.

6 Circuito demodulador

O detector utilizado é um detector coerente, ou seja, possui as informações de fase e frequência da portadora. O método escolhido para a demodulação é através de um PLL, o qual rastreia a frequência do sinal recebido de forma a ser aplicada no detector coerente.

Figura 4: Detector coerente com PLL.

O funcionamento do circuito da figura 15 é melhor entendido se analisarmos o diagrama de blocos da figura 4. Nesta imagem é possível ver que o trabalho do CI 565 consiste em extrair as informações de fase e frequência do sinal transmito, de modo a produzir, com um VCO, um sinal semelhante, o qual é utilizado como referência para aplicação no detector coerente.

Desta forma é possível obter na saída a representação binaria do dado transmitido.

7 Metodologia e Desenvolvimento

7.1 Modulador FSK

A partir do gerador de áudio do módulo MCA 8801, foi gerado uma onda quadrada, simulando dessa forma um trem de pulsos, do tipo NRZ (Non-Return-to-Zero). O sinal foi ajustado para uma frequência de 1kHz, tensão de $400mV_p$ e ciclo ativo de 50%.

Para ajusta a portadora do modulador FSK contido no módulo MCA 8801, foi ajustado, sem sinal de dados, uma frequência de 10kHz a uma tensão de $1V_p$.

Ajustado o sinal de dados e a portadora, os sinal de dados foi ligado no modulador, podendo assim obter os respectivos sinais mostrados na figura 5

Figura 5: Sinal Modulante e Modulado.

De forma a obter o deslocamento de frequência em resposta a onda quadrada, foi-se variando a amplitude do sinal de dados e, utilizando o cursor do osciloscópio, para obter as frequências f_1 e f_2 . Os resultados foram montados na seguinte tabela.

$V_p[mV]$	$f_1[kHz]$	$f_2[kHz]$	$2\Delta f[kHz]$
400	19,10	-	-
360	19,23	-	-
320	20,83	-	-
280	16,13	3,67	12,46
240	16,67	4,63	12,04
200	14,71	4,71	10,00
160	13,89	6,58	7,31
120	13,16	7,82	5,34
80	11,36	9,26	2,10
40	11,36	10,00	1,36

Figura 6: Obtenção de f_2 para $80mV_p$.

Figura 7: Obtenção de f_1 para $80mV_p$.

Figura 8: Obtenção de f_2 para $40mV_p$.

Figura 9: Obtenção de f_1 para $40mV_p$.

Observe na tabela, que somente existirá valor mensurável de f_2 quando $V_p \geq 280 mV$. Isso indica que o sinal só será FSK quando sua tensão de pico assumir valores menores que 280 mV, caso contrário, é muito difícil verificar a forma de onda quando há um bit '1', conforme as figuras 10 e 11.

Figura 10: Sinal Modulante e Modulado para $380mV_p$.

Figura 11: Sinal Modulante e Modulado para $320mV_p$.

Na figura 12 mostra o limiar de funcionamento do FSK, observe que a forma de onda quando ocorre bit '1' é bem definida.

Figura 12: Sinal Modulante e Modulado para $280mV_p$.

De modo a determinar se existe linearidade entre tensão modulante e frequência modulada, foi gerada através do Matlab, uma curva relacionando $V_p \ge 2\Delta f$.

Figura 13: $V_p \ge 2\Delta f$.

Embora, a curva não seja puramente linear, podemos dizer que a relação é linear uma vez que devemos levar em consideração possíveis imprecisões e erros de medição e calibração. Mesmo assim, o resultado é bastante consistente.

Na figura 14 vemos uma descontinuidade de fase. Isso ocorre quando $2\Delta f$ não é múltiplo da taxa de bit $(\frac{1}{T_b})$.

Figura 14: Descontinuidade de Fase do FSK.

7.2 Demodulador

Para a demodulação do sinal modulado FSK, foi montado o circuito da figura 15, com base no CI 565 que corresponde a um PLL (Phase-Locked Loop).

Figura 15: Circuito Demodulador FSK.

Conectado o modulador e com um ajuste fino em R_{v1} , foi possível recuperar o sinal modulante conforme a figura 16.

Figura 16: Sinal Modulante e Sinal Demodulado.

Ao desconectar a entrada de dados do modulador e posteriormente, conectar a entrada do modulador ao ground, foi realizada a medição da frequência correspondente a saída VCO (pino 4). Dessa forma, encontramos uma frequência VCO de 10,66kHz.

Figura 17: Frequência VCO sem dados.

Reconectando a entrada de dados no modulador, podemos também verificar a frequência correspondente a saída VCO. Sendo assim, encontramos agora uma frequência de 13,18kHz.

Figura 18: Frequência VCO com dados.

8 Conclusão

O presente experimento teve como objetivo verificar a modulação FSK através do módulo MCA 8801 e a demodulação FSK com base no CI 565 PLL. Para modulação observou-se que só é possível estimar f_2 para sinal modulante com $V_p \leq 280mV$, caso contrário é díficil identificar quando há um bit "1"no sinal modulante. Verificou-se também que existe uma relação linear entre a tensão modulante e a frequência modulada.

Com o circuito de demodulação foi possível recuperar o sinal modulante. As frequências observadas no VCO foram de 10,66kHz e 13,18kHz.

Referências

[1] T. Abrao. Notas de aula, unid.5 - modulação e sistemas de comunicação digitais m-ask, m-psk, m-fsk e esquemas ortogonais, 2015.