第七、八章测试题

- 一、选择题(每题3分,共18分)
- 1. 设总体 X 在($\mu \rho$, $\mu + \rho$)上服从均匀分布,则参数 μ 的矩估计量为 ().
- $(\mathsf{A}) \ \frac{1}{\overline{X}} \qquad (\mathsf{B}) \ \frac{1}{n-1} \sum_{i=1}^n X_i \qquad (\mathsf{C}) \ \frac{1}{n-1} \sum_{i=1}^n X_i^2 \quad (\mathsf{D}) \ \overline{X}$
- 2. 设 X 在[0, a]上服从均匀分布,a>0 是未知参数,对于容量为n 的样本 X_1, \cdots, X_n , a 的最大似然估计为(
- (A) $\max\{X_1, X_2, \dots, X_n\}$ (B) $\frac{1}{n} \sum_{i=1}^n X_i$
- (C) $\max\{X_1, X_2, \dots, X_n\} \min\{X_1, X_2, \dots, X_n\}$ (D) $1 + \frac{1}{n} \sum_{i=1}^n X_i$;
- 3. X_1, X_2, X_3 为来自总体 X 的样本,下列 E(X) 的无偏估计中,最有效的为 ()
- (A) $\frac{1}{2}(X_1 + X_2)$ (B) $\frac{1}{3}(X_1 + X_2 + X_3)$
- (c) $\frac{1}{4}(X_1 + X_2 + X_3)$ (D) $\frac{2}{3}X_1 + \frac{2}{3}X_2 \frac{1}{3}X_3$
- 4. 设 (X_1,X_2,\cdots,X_n) 为总体 $N(\mu,\sigma^2)$ $(\mu$ 已知)的一个样本, \overline{X} 为样本均值,则在
- 总体方差 σ^2 的下列估计量中,为无偏估计量的是().
- (A) $\hat{\sigma}_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$; (B) $\hat{\sigma}_2^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$;
- (C) $\hat{\sigma}_3^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$; (D) $\hat{\sigma}_4^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \mu)^2$.
- 5. 设 X_1, \dots, X_n 是来自总体X的样本, $EX = \mu$,下列是 μ 的无偏估计的是().

$$(A) \frac{1}{n} \sum_{i=1}^{n-1} X_i \qquad (B) \frac{1}{n-1} \sum_{i=1}^{n} X_i \qquad (C) \frac{1}{n} \sum_{i=2}^{n} X_i \qquad (D) \frac{1}{n-1} \sum_{i=1}^{n-1} X_i$$

- 6. 在假设检验中, H_0 为原假设。则犯第一类错误是指().
 - $A \times H_0$ 为真,被接受了; $B \times H_0$ 不真,被接受了;
 - C、 H_0 为真,被拒绝了; D、 H_0 不真,被拒绝了。

- 二、填空题(每题5分,共40分)
- 1. 设总体X的概率分布列为:

其中p (0 < p < 1/2) 是未知参数. 利用总体X 的如下样本值:

则 p 的矩估计值为______,极大似然估计值为______.

2. 设总体 X 的密度函数为: $f(x) = \begin{cases} (\lambda + 1)x^{\lambda} & 0 < x < 1 \\ 0 & 其他 \end{cases}$,设 X_1, \dots, X_n 是 X 的样

本,则 λ 的矩估计量为_____,最大似然估计量为_____

- 3. 设总体 X 服从泊松分布,其中 $\lambda > 0$ 是未知参数, X_1, \ldots, X_n 是 X 的一个样本,则 λ 的矩估计量为______,极大似然估计为______.
- 4. 某地区的年降雨量 $X \sim N(\mu, \sigma^2)$,现对其年降雨量连续进行 5 次观察,得数据为: (单位: mm) 587 672 701 640 650 ,则 σ^2 的矩估计值为_____。
- 5. 设 X_1, X_2, \dots, X_n 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,则常数 C=_____时,
- $C\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2$ 是 σ^2 的无偏估计.
- 6. 从一大批电子管中随机抽取100只,抽取的电子管的平均寿命为1000小时,样本均方差为S=40.设电子管寿命分布未知,以置信度为0.95,则整批电子管平均寿命 μ 的

置信区间为(给定 $Z_{0.05} = 1.645$, $Z_{0.025} = 1.96$)______

- 7. 某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取12个子样算得 $S=0.2\,,$ 则 σ 的置信区间为_____($\alpha=0.1\,,\chi^2_{0.05}(11)=19.675\,,\chi^2_{0.95}(11)=4.575\,)$
- 8. 设样本 X_1, X_2, \cdots, X_{25} 来自总体 $N(\mu, 9), \mu$ 未知.对于检验 $H_0: \mu = \mu_0$,

 $H_1: \mu \neq \mu_0$,取拒绝域形如 $\left| \overline{X} - \mu_0 \right| \geq k$,若取a = 0.05,则k 值为______. 三、计算题(共 42 分)

- 1. (10 分) 设批量生产的某种配件内径 X 服从正态分布 $N(\mu, \sigma^2)$,根据随机抽查的 16 只配件测得平均内径 $\bar{x}=3.05$ 毫米,标准差 s=0.16 毫米,
 - (1) 试求这种配件的平均内径 μ 的的置信水平为0.95置信区间;
 - (2) 根据样本数据能否推断 $\sigma^2 = 0.16^2$? ($\alpha = 0.05$)

(査表:
$$t_{0.025}(15) = 2.131$$
, $\chi_{0.975}^2(15) = 6.262$, $\chi_{0.025}^2(15) = 27.488$)

- 2.(10 分) 设批量生产的某种配件内径 X 服从正态分布 $N(\mu, \sigma^2)$,根据随机抽查的 16 只配件测得平均内径 $\bar{x}=3.05$ 毫米,标准差 s=0.16 毫米,
 - (1) 试求这种配件内径的方差 σ^2 的的置信水平为0.95置信区间;
 - (2) 根据样本数据能否推断 $\mu = 3$? ($\alpha = 0.05$)

(查表: $\chi_{0.975}^2(15) = 6.262$, $\chi_{0.025}^2(15) = 27.488$, $t_{0.05}(15) = 2.131$)

3. (11 分) 两种产品长度都服从正态分布,各取 10 个,测长度得: 样本均值 \bar{x}_1 =76.23, \bar{x}_2 =79.43;样本方差 s_1^2 =3.325, s_2^2 =2.225.以水平 α =0.01检验: (1) 两种产品长度的方差有无显著差异($F_{0.005}(9,9)$ =6.54);(2) 两种产品长度的均值有无显著差异($t_{0.005}(18)$ =2.8784)。

4. (11分)甲乙两种原料,其含铁量的抽样数据分别为: