Homework 1 - part C

環境建置:

使用 jupyter notebook 和 Visual Studio Code。

組員:

B10615056 黄暉翔 B10615045 陳尚富 B10615046 柯元豪

(A) .

這邊使用 hw1-partB 收集到的資料,來對其使用 deep learning method(multiple hidden layer)。Model summary:

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 32)	128
dropout_1 (Dropout)	(None, 32)	0
dense_2 (Dense)	(None, 16)	528
dropout_2 (Dropout)	(None, 16)	0
dense_3 (Dense)	(None, 3)	51
Total params: 707 Trainable params: 707 Non-trainable params: 0		

Input layer: Activation function 使用 relu,input_dim 為 3 因為只有三個特徵。

Hidden layer: 使用了兩層的 dropout 和一層 dense layer 使用 relu 作為 activation function。
Output layer: dense layer,因為是分類所以選用 softmax 作為輸出層的 activation function。
方法流程:

先將收集到分散的各種類 csv 結合成一個 csv file。但是由於 label 為字串,若是直接轉為數字對於 Ann 或是 deep learning 而言,會更像是二分類法或是 regression,所以要先將 label 轉為 category(類似 one hot encoding)。

	x	Y	z	label
0	0.256187	2.966506	9.409500	Walk
1	-2.669617	4.477294	9.488511	Walk
2	1.357554	-0.193936	9.093455	Walk
3	0.095771	0.088588	9.893144	Walk
4	0.114925	0.088588	9.890749	Walk
28540	-0.052674	0.098165	9.921875	Ride
28541	-0.011971	0.088588	9.921875	Ride
28542	-0.052674	0.098165	9.941029	Ride
28543	-0.035914	0.105348	9.919480	Ride
28544	-0.033520	0.076617	9.902720	Ride

再來應用 sliding window 將所有的 data 取平

均值,window size 這邊定義為 100。然後再將一些 nan 的資料砍掉,前處理就完成了。再來只需要套用上面介紹的 deep learning model 就完成了。

(B) .

由於是將(A)的實作方式,套用在 kaggle 上的資料,因此只在底下列出不同處。

• Attribute 不只有加速度的 X,Y,Z, 而 act 也不只三種, 一樣不需要的 drop 掉

```
data = pd.read_csv('0.csv')
data = data.drop(['index','id','weight','height','age','gender'],axis = 1)
data

attitude.roll attitude.pitch attitude.yaw userAcceleration.x userAcceleration.y userAcceleration.z act
```

在 ANN 的部分 dim 也要做對應的更改,因為特徵變成六種

```
def ANN_model():
    # Using Relu activation, and Adam optimizer, 100 epochs
    model = Sequential()

model.add(Dense(32,input_dim=6,activation='relu',kernel_initializer='uniform'))

model.add(Dropout(0.2))
model.add(Dense(16,activation='relu'))
model.add(Dropout(0.2))

model.add(Dense(6,activation='softmax'))
```

其餘步驟與實作方法皆與(A)相同

(C) .

先將subject.csv 和 device motion data 結合做出time series的資料,依照每個人的資料做出24個csv檔,讀取前20個當training data,用rolling函數做sliding windows後使用ann model訓練。

讀取後面4個一樣做sliding windows 當testing data 後驗證模型準確度。