Visual Anomaly Detection from Small Samples for Mobile Robots

Hiroharu Kato*, Tatsuya Harada*,**, Yasuo Kuniyoshi*

*The University of Tokyo, Japan Graduate School of Information Science and Technology

**JST PRESTO

Autonomous robots in **real-life settings**

Action planning on the fly

 Unknown and non-stationary environment

Need to comprehend their surroundings

Need to comprehend their surroundings

- Anomaly Detection
 - Influence for action planning
 - Obstacles
 - Higher-priority task (ex. Fallen person)
 - Anomaly Detection Task
 - Security robot
 - News-gathering robot

Anomalies for mobile robots

- Salient in vision
 - Apperance or disappearance of objects

Problems for robots

- Amount of samples <u>at same location</u> is small
 - Difficult to apply statistical methods
 - Observation error or noises
- Amount of samples <u>at same situation</u> is small
 - Must filter out ambient changes

Purpose

- ◆Small samples at same <u>location</u> and <u>situation</u>
 - → Anomaly detection is difficult

Purpose of our work:

To detect anomalies

such as appearance or disappearance of objects

Robust Anomaly detection

against ambient changes from small samples

Example of Anomaly

- Appearance of new poster
 in the presence of ambient changes
 - ex. visit at morning -> visit at night

Intelligent Systems and Informatics Lab. 1S1

Related Work

- Anomaly Detection from small samples
 - Image comparison [K. Primdahl et al., 2005] [J. Sato et al., 2006] [Koyama et al., 2010]
 - Susceptible to ambient changes
 - Clustering based method [H. Neto et al., 2007]
 - Unable to use location information
- Non-uniformalized samples
 - Statistical method using large samples [T. Suzuki et al., 2011]

Requirements

- Non-statistical approach
 - ex. Mixture Gaussian needs thousands of samples
- Utilization of location information
- <u>Utilization of surrounding information</u> for ambient changes
 - → Anomaly detection method from small samples Utilization of surrounding information

Proposal

1. Analysis-By-Synthesis Approach

- Normal sample must be reconstructed by combination of past observations
- Several works for fixed camera [O. Boiman, 2007] [B. Zhao, 2011]
- Robust from small samples

2. Novel approach for reconstruction

- "Anomaly of the change between current observation and past observation"
 - → "Anomaly of the change at the current location referring changes at other locations"

Analysis-By-Synthesis Approach

- Anomaly detection based on reconstruction error [B. Zhao et al., 2011]
- Try to reconstruct current sample by linear combination of small normal samples, and the reconstruction error is anomaly value

$$Anomaly = \min_{\boldsymbol{\alpha_t}} \frac{1}{2} \|\mathbf{X_t} - \mathbf{X}\boldsymbol{\alpha}\|_2^2 + \lambda \|\boldsymbol{\alpha}\|_1$$
Reconstruction error

Use GIST feature for X in this work

Possible Method

Experimental Settings

- Visit in morning -> Visit in night
 - Compute anomaly value with anomalous poster or not

- Compute anomaly value at location 1 (start point) to location 100 (goal point)
- Compare three methods
 - Anomaly = max distance of images at the same location [J. Sato et al., 2006]
 - Anomaly = Reconstruction Error (use of all past observances)
 - Anomaly = Reconstruct Error (use of difference at the same location)

Experimental Result 1

Anomaly = max distance of images at the same location

Susceptible to ambient changes

Experimental Result 2

Anomaly = Reconstruction Error (use of all past observances)

15

False positive

Experimental Result 3

Anomaly = Reconstruct Error (use of difference at the same location)

Anomaly values are relatively high where a poster is seen.

The system is adjusted to ambient changes in location $0 \rightarrow 5$.

Other Successful Cases

Cases of Failure

Sudden change in direction

Inconspicuous in the 2D image

Conclusion & Future Work

Conclusion

 We proposed novel anomaly detection method for mobile robots and demonstrated that it is robust against ambient changes

Future Work

- Image transform using orientation of robot
- Use of 3D image
- Threshold decision method