Exercises

7.2.1 Exercises

In Exercises 1 - 6, find the standard equation of the circle and then graph it.

1. Center
$$(-1, -5)$$
, radius 10

2. Center
$$(4, -2)$$
, radius 3

3. Center
$$\left(-3, \frac{7}{13}\right)$$
, radius $\frac{1}{2}$

4. Center
$$(5, -9)$$
, radius $ln(8)$

5. Center
$$(-e, \sqrt{2})$$
, radius π

6. Center
$$(\pi, e^2)$$
, radius $\sqrt[3]{91}$

In Exercises 7 - 12, complete the square in order to put the equation into standard form. Identify the center and the radius or explain why the equation does not represent a circle.

7.
$$x^2 - 4x + y^2 + 10y = -25$$

8.
$$-2x^2 - 36x - 2y^2 - 112 = 0$$

9.
$$x^2 + y^2 + 8x - 10y - 1 = 0$$

10.
$$x^2 + y^2 + 5x - y - 1 = 0$$

11.
$$4x^2 + 4y^2 - 24y + 36 = 0$$

12.
$$x^2 + x + y^2 - \frac{6}{5}y = 1$$

In Exercises 13 - 16, find the standard equation of the circle which satisfies the given criteria.

13. center
$$(3,5)$$
, passes through $(-1,-2)$

14. center
$$(3,6)$$
, passes through $(-1,4)$

15. endpoints of a diameter:
$$(3,6)$$
 and $(-1,4)$

16. endpoints of a diameter:
$$(\frac{1}{2}, 4), (\frac{3}{2}, -1)$$

- 17. The Giant Wheel at Cedar Point is a circle with diameter 128 feet which sits on an 8 foot tall platform making its overall height is 136 feet.² Find an equation for the wheel assuming that its center lies on the y-axis and that the ground is the x-axis.
- 18. Verify that the following points lie on the Unit Circle: $(\pm 1, 0)$, $(0, \pm 1)$, $\left(\pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{2}\right)$, $\left(\pm \frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$ and $\left(\pm \frac{\sqrt{3}}{2}, \pm \frac{1}{2}\right)$
- 19. Discuss with your classmates how to obtain the standard equation of a circle, Equation 7.1, from the equation of the Unit Circle, $x^2 + y^2 = 1$ using the transformations discussed in Section 1.7. (Thus every circle is just a few transformations away from the Unit Circle.)
- 20. Find an equation for the function represented graphically by the top half of the Unit Circle. Explain how the transformations is Section 1.7 can be used to produce a function whose graph is either the top or bottom of an arbitrary circle.
- Find a one-to-one function whose graph is half of a circle. (Hint: Think piecewise.)

<u>Answers</u>

1.
$$(x+1)^2 + (y+5)^2 = 100$$

3.
$$(x+3)^2 + (y - \frac{7}{13})^2 = \frac{1}{4}$$

5.
$$(x+e)^2 + (y-\sqrt{2})^2 = \pi^2$$

2.
$$(x-4)^2 + (y+2)^2 = 9$$

4.
$$(x-5)^2 + (y+9)^2 = (\ln(8))^2$$

6.
$$(x-\pi)^2 + (y-e^2)^2 = 91^{\frac{2}{3}}$$

504

7.
$$(x-2)^2 + (y+5)^2 = 4$$

Center $(2, -5)$, radius $r = 2$

9.
$$(x+4)^2 + (y-5)^2 = 42$$

Center $(-4,5)$, radius $r = \sqrt{42}$

11.
$$x^2 + (y-3)^2 = 0$$

This is not a circle.

13.
$$(x-3)^2 + (y-5)^2 = 65$$

15.
$$(x-1)^2 + (y-5)^2 = 5$$

17.
$$x^2 + (y - 72)^2 = 4096$$

8.
$$(x+9)^2 + y^2 = 25$$

Center $(-9,0)$, radius $r=5$

10.
$$(x + \frac{5}{2})^2 + (y - \frac{1}{2})^2 = \frac{30}{4}$$

Center $(-\frac{5}{2}, \frac{1}{2})$, radius $r = \frac{\sqrt{30}}{2}$

12.
$$(x + \frac{1}{2})^2 + (y - \frac{3}{5})^2 = \frac{161}{100}$$

Center $(-\frac{1}{2}, \frac{3}{5})$, radius $r = \frac{\sqrt{161}}{10}$

14.
$$(x-3)^2 + (y-6)^2 = 20$$

16.
$$(x-1)^2 + (y-\frac{3}{2})^2 = \frac{13}{2}$$