### SENSITIVITY ANALYSIS

Annie Chen

February 5, 2020

### UNMEASURED CONFOUNDING

- With matching, we aim to achieve balance on *observed* covariates.
- But...there's no guarantee that there is balance on unobserved variables that we did not match on.

# SENSITIVITY ANALYSIS

- How sensitive are estimates of an average causal effect to the potential effects of unobservable treatment selection patterns?
- An unobserved covariate, C, will induce a material degree of bias only
  if it is sufficiently associated with both treatment assignment, D, and
  the outcome, Y.<sup>1</sup>
- What does the DAG look like?

### REVIEW OF OMITTED VARIABLE BIAS

 Suppose the true model can be represented by the "long" regression formula:

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 C_i + \epsilon_i$$

where  $C_i$  denotes an unobserved (confounding) variable, and  $D_i$  is the treatment.

In the case of OVB,

$$Y_i = \beta_0^* + \beta_1^* D_i + \epsilon_i^*$$

if

$$C_i = \gamma_0 + \gamma_1 D_i + \nu_i$$

Then,

$$Y_{i} = \beta_{0} + \beta_{1}D_{i} + \beta_{2}(\gamma_{0} + \gamma_{1}D_{i} + \nu_{i}) + \epsilon_{i}$$

$$Y_{i} = \beta_{0} + \beta_{2}\gamma_{0} + (\beta_{1} + \beta_{2}\gamma_{1})D_{i} + \beta_{2}\nu_{i} + \epsilon_{i}$$

and

$$\beta_1^{\star} = \beta_1 + \beta_2 \gamma_1$$

### IMBENS-STYLE SENSITIVITY ANALYSIS

• Where U (unobserved confounder) and D (treatment) are binary (0 or 1), the bias of the treatment effect  $(\tau)$  is:

$$\mathbb{E}[\hat{\tau}] - \tau = \mathbb{P}(U_i = 1|D_i = 1) - \mathbb{P}(U_i = 1|D_i = 0)$$
$$\times \mathbb{E}[Y_i|U_i = 1] - \mathbb{E}[Y_i|U_i = 0]$$

- Where  $\delta \equiv \mathbb{P}(U_i = 1 | D_i = 1) \mathbb{P}(U_i = 1 | D_i = 0)$  is the difference in average  $U_i$  between treatment conditions  $\gamma \equiv \mathbb{E}[Y_i | U_i = 1] \mathbb{E}[Y_i | U_i = 0]$  represents the effect of  $U_i$  on  $Y_i$ .
- The bias is  $\delta \gamma$  (similar to the OVB formula we just saw in the regression context:  $\mathbb{E}[\hat{\tau}] = \tau + \delta \gamma$ ).
- What assumption did we make for this to be true?

### RETURN TO LALONDE EXAMPLE

```
data(lalonde, package = "Matching")
```

TABLE 1: OLS Results

|          | re78        |
|----------|-------------|
| treat    | 1,651.331   |
|          | (646.178)   |
| age      | 53.498      |
|          | (39.719)    |
| educ     | 409.823     |
|          | (157.929)   |
| married  | -172.412    |
|          | (851.525)   |
| black    | -2,197.024  |
|          | (735.325)   |
| re75     | 0.146       |
|          | (0.103)     |
| Constant | 738.590     |
|          | (2,058.213) |

• What is half the magnitude of the treatment coefficient?

library(lm.beta)

# The range of delta is 0,1

 $delta \leftarrow seq(0.001, 1, by = 0.01)$ 

```
# using standardized coeffs beta_half <- lm.beta(model1)$standardized.coef[2]/2 c(lm.beta(model1)$standardized.coef[2], beta_half)  
## treat treat ## 0.1228638 0.0614319  
\delta = \mathbb{P}(U_i = 1|D_i = 1) - \mathbb{P}(U_i = 1|D_i = 0)
```

• Exercise: Using  $\delta$  and beta\_half, solve for  $\gamma$  (remember:  $\mathbb{E}[\hat{\tau}] = \tau + \delta \gamma$ ). Then plot  $\delta$  (x-axis) and  $\gamma$  (y-axis).

7/18

```
# Solve for gamma = E[Y_i | U_i = 1] - E[Y_i | U_i = 0]
g <- beta_half/delta
```

```
ggplot(data.frame(delta = delta, g = g), aes(x = delta, y = g)) +
  geom_path() +
  xlab(expression(delta)) + ylab(expression(gamma)) +
  ylim(0, 1) + theme_bw()
```



• How are the covariates related to the treatment?

TABLE 2: OLS delta

|          | treat     |
|----------|-----------|
| age      | 0.003     |
| -        | (0.003)   |
| educ     | 0.018     |
|          | (0.014)   |
| married  | 0.030     |
|          | (0.068)   |
| black    | 0.021     |
|          | (0.063)   |
| re75     | 0.00001   |
|          | (0.00001) |
| Constant | 0.123     |
|          | (0.164)   |
| N        | 445       |
| $R^2$    | 0.010     |

• How do they relate to the outcome?

TABLE 3: OLS gamma

|                | re78        |
|----------------|-------------|
| age            | 58.494      |
|                | (39.976)    |
| educ           | 440.036     |
|                | (165.095)   |
| married        | -122.549    |
|                | (864.001)   |
| black          | -2,161.909  |
|                | (734.904)   |
| re75           | 0.154       |
|                | (0.103)     |
| Constant       | 941.146     |
|                | (2,058.587) |
| N              | 445         |
| R <sup>2</sup> | 0.037       |

- To compare the hypothetical degree of confounding based on the sensitivity parameters with the actual degree of confounding created by some observed covariates, we plot them against the curve.
- We use the standardized coefficients here, but you can also calculate the raw  $\delta$  and  $\gamma$  values, or compute the partial R-squared.<sup>2</sup>

```
library(lm.beta)
# Extract standardized coefficients for age
delta_age <- abs(lm.beta(mod_delta)$standardized.coefficients[2])</pre>
gamma_age <- abs(lm.beta(mod_gamma)$standardized.coefficients[2])</pre>
```

11 / 18

<sup>&</sup>lt;sup>2</sup>Both standardized coeffs and partial r measure the unique contribution of a covariate in a model.

• Do this for other covariates in the model...



# RETURN TO RANDOMIZATION INFERENCE (ROSENBAUM APPROACH)

- Components of RI:
  - Null hypothesis (i.e. no treatment effect)
  - Test-statistic (i.e. Wilcoxon Signed Rank Test)
  - Number of permutations: nCr
  - p-value is ratio of number of times we observe the test-statistic or greater to number of permutations
- Overview of Rosenbaumian SA:
- Set  $\Gamma$  (the sensitivity parameter).<sup>3</sup>
- **②** Compute probability of treatment  $(\pi(X_i))$  for  $\Gamma$  bounds (see lecture slides).
- **3** Conduct RI under the null of  $min\{\pi(X_i)\} = max\{\pi(X_i)\} = 0.5$ .
- Repeat for different values of Γ.

### WILCOXON SIGNED RANK STATISTIC

Wilcoxon Signed Rank Statistic

| Match A  | 7   | 5   | 3  | 4   | 1   |
|----------|-----|-----|----|-----|-----|
| Match B  | 2   | 4   | 3  | 1   | 2   |
| Abs Diff | 5   | 1   | 0  | 3   | 1   |
| Sign     | +   | +   | NA | +   | -   |
| Rank     | 4.0 | 1.5 | NA | 3.0 | 1.5 |

•  $W = \sum_{i=1}^{N} \{S_i \times R_i\}$  where N is the number of pairs where the difference  $\neq 0$ , S is the sign of the matched pairs  $(X_i - X_j)$ , and R denotes the rank.

### • Why is it necessary to match first?

```
##
## Estimate... 1913.8
## AI SE.... 821.46
## T-stat.... 2.3297
## p.val..... 0.019819
##
## Original number of observations...... 445
## Original number of treated obs...... 185
## Matched number of observations (unweighted). 301
```

#### RBOUNDS PACKAGE

 psens gives Rosenbaum's bounds for the p-values from a Wilcoxon signed rank test.

```
library(rbounds)
rosenbaum <- psens(matched_dat, Gamma = 1.5, GammaInc = 0.1)</pre>
```

|   | Gamma | Lower bound | Upper bound |
|---|-------|-------------|-------------|
| 1 | 1.000 | 0.002       | 0.002       |
| 2 | 1.100 | 0.000       | 0.014       |
| 3 | 1.200 | 0.000       | 0.057       |
| 4 | 1.300 | 0.000       | 0.154       |
| 5 | 1.400 | 0.000       | 0.306       |
| 6 | 1.500 | 0.000       | 0.488       |

TABLE 4: Rosenbaum p-values

 Still need to benchmark these hypothetical values against your data by calculating the odds ratios!

# Additional Notes

17 / 18

# PLOT TWIST!

•  $\Gamma$  can be decomposed into the strength of the relationship between confounder and outcome ( $\Delta$ ) and strength of the relationship between the confounder and treatment ( $\Lambda$ ) as

$$\Gamma = \frac{\Delta \Lambda + 1}{\Delta + \Lambda}$$

• Details in Rosenbaum and Silber (2009).