ACH 2147 — Desenvolvimento de Sistemas de Informação Distribuídos

Aula 27: Segurança (parte 1)

Prof. Renan Alves

Escola de Artes, Ciências e Humanidades — EACH — USP

17/06/2024

Introdução à segurança

Noções básicas

Um sistema confiável (dependable) provê disponibilidade, confiabilidade, segurança (safety), manutenibilidade, confidencialidade e integridade.

- Confidencialidade: refere-se à propriedade de que a informação é divulgada apenas para partes autorizadas.
- Integridade: alterações nos ativos de um sistema só podem ser feitas de maneira autorizada, garantindo precisão e completude.

Introdução à segurança

Noções básicas

Um sistema confiável (dependable) provê disponibilidade, confiabilidade, segurança (safety), manutenibilidade, confidencialidade e integridade.

- Confidencialidade: refere-se à propriedade de que a informação é divulgada apenas para partes autorizadas.
- Integridade: alterações nos ativos de um sistema só podem ser feitas de maneira autorizada, garantindo precisão e completude.

Visão alternativa

Tentamos nos proteger contra ameaças à segurança:

- 1. Divulgação não autorizada de informações (confidencialidade)
- 2. Modificação não autorizada de informações (integridade)
- 3. Negação de uso não autorizada (disponibilidade)

Mecanismos de segurança

- Cifração: transformar dados em algo que um atacante não possa entender, ou que possa ser verificado se foi modificado.
- Autenticação: verificar se uma identidade é verdadeira.
- Autorização: verificar se uma entidade autenticada possui os direitos adequados para acessar recursos.
- Monitoramento e auditoria: rastrear (continuamente) o acesso aos recursos.

Princípios básicos de segurança

 Valores padrão não-triviais: os padrões devem fornecer boa proteção desde o início. Exemplo infame: senha padrão "admin/admin".

- Design aberto: n\u00e3o usar seguran\u00e7a por obscuridade: todo aspecto de um sistema distribu\u00eddo deve estar dispon\u00edvel para revis\u00e3o.
- Separação de privilégios: garantir que aspectos críticos de um sistema nunca possam ser totalmente controlados por uma única entidade.
- Privilégio mínimo: um processo deve operar com a menor quantidade possível de privilégios.
- Mecanismo comum: se vários componentes requerem o mesmo mecanismo, então todos devem receber a mesma implementação desse mecanismo.

Onde implementar mecanismos de segurança?

Observação

Segurança fim-a-fim é cada vez mais comum, o que significa que os mecanismos são implementados no nível de aplicação.

Sobre privacidade

Observação

Privacidade e confidencialidade estão intimamente relacionadas, porém diferentes. Privacidade pode ser invadida, enquanto confidencialidade pode ser violada \Rightarrow garantir confidencialidade não é suficiente para garantir privacidade.

Sobre privacidade

Observação

Privacidade e confidencialidade estão intimamente relacionadas, porém diferentes. Privacidade pode ser invadida, enquanto confidencialidade pode ser violada \Rightarrow garantir confidencialidade não é suficiente para garantir privacidade.

Direito à privacidade

O direito à privacidade é sobre "um direito ao fluxo adequado de informações pessoais". Controle sobre quem pode ver o quê, quando e como ⇒ uma pessoa deve ser capaz de interromper e revogar o fluxo de informações pessoais.

Sobre privacidade

Observação

Privacidade e confidencialidade estão intimamente relacionadas, porém diferentes. Privacidade pode ser invadida, enquanto confidencialidade pode ser violada \Rightarrow garantir confidencialidade não é suficiente para garantir privacidade.

Direito à privacidade

O direito à privacidade é sobre "um direito ao fluxo adequado de informações pessoais". Controle sobre quem pode ver o quê, quando e como ⇒ uma pessoa deve ser capaz de interromper e revogar o fluxo de informações pessoais.

Lei Geral de Proteção de Dados (LGPD)

Lei brasileira que visa proteger os dados pessoais.

Introducão à coguranca

LGPD: princípios

Finalidade	Realização do tratamento para propósitos legítimos, específicos, explícitos e informados ao titular, sem possibilidade de tratamento posterior de forma incompatível com essas finalidades.
Adequação	Compatibilidade do tratamento com as finalidades informadas ao titular, de acordo com o contexto do tratamento.
Necessidade	Limitação do tratamento ao mínimo necessário para a realização de suas finalidades, com abrangência dos dados pertinentes, proporcionais e não excessivos em relação às finalidades do tratamento de dados.
Livre acesso	Garantia, aos titulares, de consulta facilitada e gratuita sobre a forma e a duração do tratamento, bem como sobre a integralidade de seus dados pessoais.
Qualidade dos dados	Garantia, aos titulares, de exatidão, clareza, relevância e atualização dos dados, de acordo com a necessidade e para o cumprimento da finalidade de seu tratamento.
Transparência	Garantia, aos titulares, de informações claras, precisas e facilmente acessíveis sobre a realização do tratamento e os respectivos agentes de tratamento, observados os segredos comercial e industrial.
Segurança	Utilização de medidas técnicas e administrativas aptas a proteger os dados pessoais de acessos não autorizados e de situações acidentais ou ilícitas de destruição, perda, alteração, comunicação ou difusão.
Prevenção	Adoção de medidas para prevenir a ocorrência de danos em virtude do tratamento de dados pessoais.
Não discriminação	Impossibilidade de realização do tratamento dos dados para fins discriminatórios ilícitos ou abusivos

Criptografia

Conceitos básicos

- Texto claro (plaintext): a mensagem ou os dados originais (P)
- Texto cifrado: a versão criptografada do texto claro (C)
- Chave de cifração: entrada E_K para uma função de cifração: $C = E_K(P)$
- Chave de decifração: entrada D_K para uma função de decifração: $P = D_K(C)$

 Noções básicas
 17/06/2024
 8

Criptossistemas

Simétrico : se $P = D_K(E_K(P))$ então $D_K = E_K$.

Assimétrico : se $P = D_K(E_K(P))$ então $D_K \neq E_K$.

Também chamados de sistemas de chave pública com uma chave publicamente conhecida *PK* e chave secreta *SK*

Exemplos

Seja PK_X a chave pública de X e SK_X a chave secreta associada.

Mensagem confidencial : se m deve ser mantida privada: $C = PK_{receptor}(m)$.

Mensagem autenticada : se m deve ser autenticada: $C = SK_{remetente}(m)$.

Criptografia homomórfica

Operações matemáticas no texto claro podem ser realizadas no texto cifrado correspondente: se x e y são dois números, então

$$E_K(x) \star E_K(y) = E_K(x * y)$$

Funções hash

Descrição

Uma função hash H recebe uma mensagem m de comprimento arbitrário como entrada e produz uma sequência de bits h de comprimento fixo como saída:

h = H(m) o comprimento de h sendo constante.

Propriedades necessárias

- Direção única: dado um hash h, é inviável encontrar m tal que h = H(m)
- Resistência a colisão fraca: dado um hash h = H(m), é inviável encontrar m' tal que h = H(m')
- Resistência a colisão forte: dado uma função de hash H, é inviável encontrar m e m' tal que H(m) = H(m')

Funções hash 17/06/2024

Assinatura digital

Alice calcula um resumo de *m*; criptografa o resumo com sua chave privada; o resumo criptografado é enviado junto com *m* para Bob:

Alice: envia
$$[m, sig]$$
 com $sig = SK_A(H(m))$.

Bob descriptografa o resumo com a chave pública de Alice; calcula separadamente o resumo da mensagem. Se ambos coincidirem, Bob sabe que a mensagem foi assinada por Alice:

Bob: recebe [m, sig], calcula h' = H(m) e verifica $h' = PK_{\Delta}(sig)$.

Funções hash 17/06/2024

Gerenciamento de chaves

Essência

Como Alice e Bob obtêm as chaves corretas (geralmente compartilhadas) para que possam estabelecer canais seguros?

Troca de chaves Diffie-Hellman

Assuma dois números grandes, não secretos, p e g (com propriedades matemáticas específicas):

Transferência inconsciente

Transferência inconsciente: definição

Alice tem n mensagens secretas m_1, \ldots, m_n . Bob está interessado em (e tem permissão para) saber apenas a mensagem m_i . Qual mensagem ele quer saber deve ser mantida em segredo para Alice; todas as mensagens $m_j \neq m_i$ devem ser mantidas em segredo para Bob.

Transferência inconsciente

Transferência inconsciente: definição

Alice tem n mensagens secretas m_1, \ldots, m_n . Bob está interessado em (e tem permissão para) saber apenas a mensagem m_i . Qual mensagem ele quer saber deve ser mantida em segredo para Alice; todas as mensagens $m_j \neq m_i$ devem ser mantidas em segredo para Bob.

Transferência inconsciente

Transferência inconsciente: definição

Alice tem n mensagens secretas m_1, \ldots, m_n . Bob está interessado em (e tem permissão para) saber apenas a mensagem m_i . Qual mensagem ele quer saber deve ser mantida em segredo para Alice; todas as mensagens $m_j \neq m_i$ devem ser mantidas em segredo para Bob.

Solução

Bob gera um número Q que Alice, por sua vez, usa para gerar n diferentes chaves de cifração PK_1, \dots, PK_n : $m_i^* = PK_i(m_i)$

Bob usa Q para gerar uma chave de decifração SK_i que corresponde apenas PK_i . Quando Bob recebe m_1^*, \ldots, m_n^* ele pode descriptografar apenas m_i^* . $SK_i(m_i^*)$ (com $i \neq j$) falhará.

Segurança

Transferência inconsciente 1-de-2

Análise

- c=0
 - $Q = g^y$
 - $AK_1 = BK = g^{xy}$ $AK_2 = g^{xy-x^2}$.
- c = 1

 - $Q = g^{x+y}$ $AK_1 = g^{x^2+xy}$
 - $AK_2 = BK = q^{xy}$.

Exemplo de uso de transferência inconsciente

Preliminares

- P_1 e P_2 precisam calcular F(a,b).
- O parâmetro a é secreto e conhecido apenas por P₁; o valor de b é conhecido apenas por P₂.
- $a \in X$ e $b \in Y$; X e Y são finitos.
- Pode-se construir uma matriz F de dimensões |X| × |Y|.
- $\mathbf{F}[i,j] = F(x_i, y_j)$ para cada par $(x_i, y_j) \in \mathbf{X} \times \mathbf{Y}$.

Esboço de solução

- Cria-se $|\mathbf{X}| \cdot |\mathbf{Y}|$ pares de chaves (K_i, K_i)
- P₁ faz transferência inconsciente 1-de-|X|.
- P₂ faz uma transferência inconsciente 1-de-|Y|.

O que é necessário para distribuir chaves

Distribuição de chave simétrica

Observação

Em geral, precisaremos de um canal seguro para distribuir a chave secreta para as partes comunicantes.

Seguranca

O que é necessário para distribuir chaves

Distribuição de chave pública

Observação

Não há necessidade de um canal seguro no caso da chave pública, mas é necessário saber que a chave é autêntica ⇒ ter a chave pública assinada por uma autoridade certificadora. Note que precisamos confiar nessa autoridade ou, de outra forma, garantir que sua assinatura possa ser verificada também.

Gerenciamento de chaves