

# How has ridership changed over time?

- Time Series plots of US ridership (UPT)
   & Top 10 States
  - Peak ridership around 2014-2015
  - Half of ridership since Covid
  - There was a decline before Covid
  - California having the highest ridership despite also being a high-unwalkable state.
- Questions & challenges
  - Forecast ridership
  - Why did it peak during 2015?
  - Why hasn't ridership returned to pre-Covid levels yet?



#### Agencies with the highest ridership

- Summary statistics via aggregation
  - The US' most densely populated cities expectedly has the highest ridership between 2002-Present
  - Californian cities occupies 5<sup>th</sup> and 8<sup>th</sup> despite being the state with the most ridership.
  - New York City has 3 agencies in the Top 10
- Questions/Challenges
  - Population density could be a factor of total ridership.

| Agency                                         | city         | UPT           |
|------------------------------------------------|--------------|---------------|
| Massachusetts Bay Transportation Authority     | Boston       | 5,302,250,865 |
| Washington Metropolitan Area Transit Authority | Washington   | 5,249,483,547 |
| Chicago Transit Authority                      | Chicago      | 4,299,462,519 |
| Southeastern Pennsylvania Transportation Autho | Philadelphia | 3,164,852,196 |
| San Francisco Bay Area Rapid Transit District  | Oakland      | 2,315,514,732 |
| MTA Long Island Rail Road                      | New York     | 2,143,060,547 |
| New Jersey Transit Corporation                 | Newark       | 2,119,341,935 |
| Los Angeles County Metropolitan Transportation | Los Angeles  | 1,980,659,087 |
| Metro-North Commuter Railroad Company, dba: MT | New York     | 1,699,575,885 |
| Port Authority Trans-Hudson Corporation        | New York     | 1,656,219,248 |

### How does access to jobs impact transit ridership?

- Scatter plot of jobs near public transit & transit utilization
- Access to jobs is near 1:1
   proportional with the utilization
   of transit
- Questions/Challenges
  - Could delve deeper, unsure what metrics would be used, however.
  - Possibly look towards European or East Asian countries where rail transportation could less proportional (i.e. more jobs per %)



### Which mode of rail transportation is most popular?

- Summary Statistics achieved via aggregation
  - Created City Class bins based of population size
- Light Rail & Commuter Rail are the most popular choices by far.
- Light Rail are popular in densely populated areas, save for the outlier of a Large Metropolis
- Questions & Challenges
  - Why are other forms of rail not as popular
  - Why is do large metropolises prefer commuter rail over light rail

| Mode |     |
|------|-----|
| LR   | 579 |
| CR   | 551 |
| HR   | 303 |
| SR   | 254 |
| MG   | 116 |

| City Class       | Mode |     |
|------------------|------|-----|
| Metropolis       | LR   | 266 |
| City             | LR   | 201 |
| Large Metropolis | CR   | 120 |
| Small City       | CR   | 100 |
| Town             | CR   | 99  |



# How does fare price impact ridership? Does cost, population, and service area impact fare price?

- Filtered data to only include data from 2024 because fare data only accounts for the most recent year
- Average fare price per trip ranges from \$0-\$160.25, with a mean of \$3.89 and median of \$0.99. Most fares in our dataset are less than \$3
- When comparing scatter plots of average fare per trip with UPT, trips/week, and average cost per trip, there doesn't seem to be a strong relationship
  - As fares goes up there is a trend of increased UPT, trips/week, and average cost, but most data points are clustered around the area where fares are less that \$2
- Did hypothesis test using ANOVA for Avg\_Fares\_Per\_Trip\_FY & City\_Class
  - Created categorical column for population using bins using City Class (Town, Small City, City, Metropolis, Large Metropolis) criteria from earlier question
  - P-value (.57) > alpha (.05), so fail to reject H0 no significant difference in average fare price across different population sizes
- Questions/challenges:
  - Was Anova hypothesis test done correctly? When looking at mean fare price across city classes we get these price that seem significantly different across categories
    - Town: \$3.88
    - Small City: \$6.46
    - City: \$7.41
    - Metropolis: \$1.27
    - Large Metropolis: \$2.85
  - What would be the best way to bin service area to create a categorical variable to use for ANOVA hypothesis testing?







## Which factors can be used to predict how much ridership a city will have in the future?

- Created linear regression model to predict ridership
  - X: Mode, TOS, Organization Type, VRM, Avg Cost Per Trip FY, Avg Fares Per Trip FY, score, jobs, trips/week, routes, transit shed (mi2), %transit, & population
  - o y: UPT
- Created dummy variables for our categorical variable (29 columns total for X)
- We got a R-squared score of .549 for our model, which means our model is not doing a good job of predicting UPT using our current variables
- Questions/challenges:
  - Model doesn't perform well, can experiment using different variables to see if we can get a better performing model.
  - Didn't check correlation of variables, which may have impacted model performance
  - What parameters can be used to improve the performance of our model?

```
R-squared score: 0.5486020212205438
Intercept: -2397072.293190535
Coefficients:
 3.40656520e+03
 -3.48344833e+01
                             2.30200616e+02 5.14897939e+04
               2.01547989e+00 3.27220736e+06 -5.39150715e+06
 8.08554135e+06
-4.92130068e+06
               7.94349349e+06 -1.96324237e+06 6.39895540e+06
-1.01235462e+06
               3.18819695e+05 -9.88906152e+05 -3.65616497e+06
               7.28545463e+05 1.92637035e+06 5.80491200e+06
-7.28545463e+05
-4.69111233e+05 2.96287153e+06 2.63363947e+05 -1.61554671e+07
 5.66706049e+06]
```

### Road Map for Finishing

- Finish answering our remaining analysis questions
- Do additional exploratory analysis for questions we've already answered
  - Try additional metrics (i.e., compare ridership by Urbanized Area (UZA) instead of city)
  - o Improve linear regression model by changing parameters and variables
  - Create a forecast for total US rail ridership
- Clean up code and use markdown cells/comments to add documentation
- Begin final analysis and writing final report

### **Data Dictionary**

| Rank                             | Numeric | Ranking amongst other regions                                                                                                                      |
|----------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                             | Text    | Name of City & State                                                                                                                               |
| Score                            | Numeric | Overall Transit Score weighted by TCI, # of<br>Jobs, and average Trips per Week. Higher<br>score means better transit service<br>Scaled [0.0:10.0] |
| Transit Connectivity Index (TCI) | Numeric | A normalized ranking of the sum of weekly bus<br>& train traffic per region. Higher ranking<br>means denser transit connectivity<br>Scaled [0:100] |
| Jobs                             | Numeric | Jobs within 30-minute access of public transport                                                                                                   |
| Trips/Week                       | Numeric | Transit Trips per Week within 1/2 Mile                                                                                                             |
| Routes                           | Numeric | Total number of Transit Routes within ½ Mile                                                                                                       |
| Transit Shed                     | Numeric | Size of geographic area accessible within 30 minutes by public transportation in square miles                                                      |
| %Transit                         | Numeric | % of commuters who use transit                                                                                                                     |
| Population                       | Numeric | Population of Region                                                                                                                               |

| Field                                                                                                           | Туре    | Description                                                      |
|-----------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------|
| Agency                                                                                                          | Text    | Name of service provider agency                                  |
| Mode                                                                                                            | Text    | Mode of transportation:                                          |
|                                                                                                                 |         | <ul> <li>Alaska Railroad (AR)</li> </ul>                         |
|                                                                                                                 |         | Cable car (CC)                                                   |
|                                                                                                                 |         | Commuter rail (CR)                                               |
|                                                                                                                 |         | Heavy rail (HR)                                                  |
|                                                                                                                 |         | Hybrid rail (YR)                                                 |
|                                                                                                                 |         | Inclined plane (IP)                                              |
|                                                                                                                 |         | Light rail (LR)     Managail (Automated dividences transit       |
|                                                                                                                 |         | <ul> <li>Monorail/Automated guideway transit<br/>(MG)</li> </ul> |
|                                                                                                                 |         | Streetcar (SR)                                                   |
| Type of Service (TOS)                                                                                           | Text    | How services are provided:                                       |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                         | 1.0     | Directly operated (DO)                                           |
|                                                                                                                 |         | Purchased transportation (PT)                                    |
| Headquarters (HQ) City                                                                                          | Text    | City of Agency's Headquarters                                    |
| HQ State                                                                                                        | Text    | State of Agency's Headquarters                                   |
| Urbanized Area (UZA) SQ Miles                                                                                   | Numeric | Urbanized Area (UZA): Region containing at                       |
|                                                                                                                 |         | least 50,000 people                                              |
|                                                                                                                 |         | The size of the UZA                                              |
| UZA Population                                                                                                  | Numeric | The population of the UZA                                        |
| Service Area Population                                                                                         | Numeric | Service Area: A ¾ mile radius surrounding a                      |
| от поставительной поставительной поставительной поставительного поставительного поставительного поставительного |         | rail station                                                     |
|                                                                                                                 |         |                                                                  |
|                                                                                                                 |         | The population within a service area                             |
| Service Area SQ Miles                                                                                           | Numeric | Total area covered by the service area                           |
| Unlinked Passenger Trips (UPT)                                                                                  | Numeric | Total number of times a person has boarded                       |
| A .T. I all                                                                                                     | <b></b> | the railway                                                      |
| Avg Trip Length                                                                                                 | Numeric | Average length of trip                                           |
| Fares                                                                                                           | Numeric | Total revenue made from fares                                    |
| Operating Expenses                                                                                              | Numeric | Total expenses from operating the railway                        |
| Avg Cost per Trip                                                                                               | Numeric | Expenses divided by total number of trips                        |
| Avg Fares per Trip                                                                                              | Numeric | Total fares divided by total number of trips                     |
| Year                                                                                                            | Numeric | Year of data collected                                           |
| Vehicle Revenue Miles (VRM)                                                                                     | Numeric | Actual & scheduled miles during revenue                          |
|                                                                                                                 | I       | service (excluding maintenance & training)                       |