A, unless A and B happen to be the statement analogous to part A of A, is not true.

2, 3} and $C = \{x, y\}$ and $D = \{y\}$ and $C \cap D = \{y\}$, and so ther hand, we have $A \times C = \{(2, y), (2, z), (3, y), (3, z)\}$, Thus $(A \cap B) \times (C \cap D) = \{x\}$

plation. We then have $A \cup B = B \times (C \cup D) = \{(1, x), (1, y), (3, z)\}$. Using $A \times C$ and $B \times D$ to have $(A \times C) \cup (B \times D) = \{(3, z)\}\}$. Thus $(A \cup B) \times (C \cup C)$ to between the situation in this in schematically in Figure 3.3.4

$$\times$$
 $(C \cup D)$

 $B \times D$

3, 4}. Find each of the following

$$-B$$
.

-A.

3.3.2. Let $C = \{a, b, c, d, e, f\}$ and $D = \{a, c, e\}$ and $E = \{d, e, f\}$ and $F = \{a, b\}$. Find each of the following sets.

 $(1) C - (D \cup E).$

(4) $F \cap (D \cup E)$. (5) $(F \cap D) \cup E$.

(2) $(C - D) \cup E$. (3) F - (C - E).

(6) $(C-D)\cup (F\cap E)$.

3.3.3. Let X = [0, 5) and Y = [2, 4] and Z = (1, 3] and W = (3, 5) be intervals in \mathbb{R} . Find each of the following sets.

(1) $Y \cup Z$.

(4) $X \times W$.

(2) $Z \cap W$.

(5) $(X \cap Y) \cup Z$.

(3) Y - W.

(6) $X - (Z \cup W)$.

3.3.4. Let

$$G = \{ n \in \mathbb{Z} \mid n = 2m \text{ for some } m \in \mathbb{Z} \}$$

$$H = \{n \in \mathbb{Z} \mid n = 3k \text{ for some } k \in \mathbb{Z}\}\$$

$$I = \{ n \in \mathbb{Z} \mid n^2 \text{ is odd} \}$$

$$J = \{ n \in \mathbb{Z} \mid 0 \le n \le 10 \}.$$

Find each of the following sets.

(1) $G \cup I$.

(4) J - G.

(2) $G \cap I$.

(5) I - H.

(3) $G \cap H$.

(6) *J* ∩ (G - H).

3.3.5. Given two sets A and B, consider the sets A - B and B - A. Are they necessarily disjoint? Give a proof or a counterexample.

3.3.6. [Used in Section 3.3.] Prove Theorem 3.3.2 parts (i) – (iii) and (vi) – (ix).

3.3.7. [Used in Section **3.3.**] Prove Theorem **3.3.5** parts (i) – (vi).

3.3.8. [Used in Section 3.3.] Prove Theorem 3.3.8 parts (i), (ii), (iv), (v).

3.3.9. Let X be a set, and let A, B, $C \subseteq X$. Suppose that $A \cap B = A \cap C$, and that $(X - A) \cap B = (X - A) \cap C$. Show that B = C.

3.3.10. Let A, B and C be sets. Show that $(A - B) \cap C = (A \cap C) - B = (A \cap C) - (B \cap C)$.

3.3.11. For real numbers a, b and c we know that a - (b - c) = (a - b) + c. Discover and prove a formula for A - (B - C), where A, B and C are sets.