DEBRECENI EGYETEM

Informatikai Kar

Információ Technológia Tanszék

Otthon automatizáció Java-ban

Konzulens: Vágner Anikó Szilvia adjunktus Szerző:
Lakatos István
programtervező informatikus

Köszönetnyilvánítás

Tartalomjegyzék

Kö	Köszönetnyilvánítás							
1.	Bev	ezetés	5					
2.	Ren	endszer áttekintés						
	2.1.	Eszközök	8					
		2.1.1. Szenzorok	8					
		2.1.2. Aktorok	9					
	2.2.	Hálózati réteg	9					
	2.3.	Központi szerver	10					
		2.3.1. Flow-rendszer	10					
		2.3.2. Statisztika	11					
		2.3.3. Kezelőpanel	11					
3. Esz	ĸözök	12						
	3.1.	Hardver választás	13					
		3.1.1. Arduino	13					
		3.1.2. Vezetéknélküli modulok	14					
		3.1.3. Eszköz specifikus hardver	14					
	3.2.	Felépítés	17					
		3.2.1. Példák kész eszközökre	17					
	3.3.	Firmware működés	20					
		3.3.1. Szenzor típusok	20					
		3.3.2. Alvó mód	21					
4. Há	Hálo	ózati réteg	22					
	4.1.	Mesh hálózat	22					
	4.2.	Üzenet küldés	22					
	4.3.	Szoftver működés	22					
			22					

5.	Köz	ponti rendszer	23					
	5.1.	Adatbázis	23					
		5.1.1. Adatbázis kiválasztása	23					
		5.1.2. Tárolási séma	23					
	5.2.	Keretrendszerek	23					
		5.2.1. Spring Boot	23					
		5.2.2. Vaadin	23					
	5.3.	Flow rendszer	23					
		5.3.1. Flow kiértékelés	24					
6.	Teljesítmény							
	6.1.	Hatótáv	25					
	6.2.	Eszköz szám	25					
	6.3.	Áteresztőképesség	25					
7.	Bizt	onság	26					
	7.1.	Megbízott eszközök	26					
	7.2.	Titkosítás	26					
	7.3.	Problémák	26					
8.	Össz	zefoglalás	27					
Iro	Irodalomjegyzék							

Bevezetés

Dolgozatom témaválasztása nem volt nehéz feladat számomra, mivel korábbi érdeklődés alapján már találkoztam az otthon "okosítás" vagy automatizálás témakörével. Rendkívül le tudtak foglalni a hardverközeli, mikrokontrollereket felhasználó projektjem és azoknak kapcsán kezdtem el például különböző környezeti jellemző mérőeszközöket készíteni szabadidőmben. Onnantól kezdve pedig rövid út vezet házak utólagos felokosításának ötletéhez. Foglalkoztat még az is, hogy milyen előnyei lehetnek egy okos otthon rendszernek. Természetesen az elsődleges dolog e szempontból a spórolás lehetősége. Mindenki szeretne lefaragni a számlák összegéből például a fűtés kikapcsolásával, mikor nem vagyunk otthon, vagy a lámpák automatikus lekapcsolásával, ha éppen nem vagyunk a szobában. Másik vonzó tulajdonsága egy okos otthonnak, hogy rengeteg kényelmi funkciót tud nyújtani. Gomb nyomásra leengedhetjük a ház összes sötétítőjét vagy a rendszer meglocsolhatja helyettünk a növényeket. Tervem, hogy ezt az általam fejlesztett rendszert a saját otthonomban használjam jelentős számú mérőeszközöket felhasználya.

Annak a háttérében, hogy mindezt a Java nyelv segítségével tervezem megvalósítani, szintén egyszerű okok állnak. Tanulmányaim során legtöbbször a Java nyelvvel találkozhattam és így szerezhettem jelentősebb belelátást a működésébe és használatába. Így mivel szinte egyedül a Java nyelvhez kapcsolódóan van megfelelő tudásom ahhoz, hogy szakdolgozathoz illő nagyságú munkát készítsek, azt választottam alapnak. Másik fontos oka választásomnak, hogy szakmai gyakorlatom alatt is Java nyelvet használtam és így tudtam ismereteket szerezni több olyan keretrendszerről, amiket használni is szeretnék tapasztalatszerzés céljából, illetve pontosan beleilletek a bennem kialakuló képbe, amit arról a rendszerről alkottam, mely ennek a dolgozatnak az alapját adja.

A dolgozatom során a fő cél egy olyan rendszer elkészítése, mely képes apró eszközök és egy központi egység segítségével automatizált feladatokat elvégezni. Ennek

eléréséhez meg kellett tervezni az apró eszközök hardveres felépítését, fejleszteni egy központi szoftvert, ami képes az eszközöktől érkező adatok feldolgozására és azok alapján a felhasználó által megadott szabályok mentén feladatokat végrehajtására. Felmerült több érdekes kérdés is, melyekre kutatásaim során találtam válaszokat és próbáltam ezen válaszokat felhasználni a fejlesztés során.

A fejlesztés alatt végig úgy hoztam a döntéseket, hogy egy egyszerű háztartásban kell működjön a rendszer. Tehát nem volt célom az, hogy nagy számú felhasználók használják egyszerre vagy éppen több száz eszköz kapcsolódjon a központi rendszerhez. Részletesebben és feladathoz kapcsolódóan is meg fogom fogalmazni az elvárásokat, célokat a rendszerrel szemben, de ezt természetesen a későbbi fejezetekben teszem majd.

Rendszer áttekintés

Ebben a fejezetben egy kezdeti képet szeretnék adni a teljes rendszer alapvető felépítéséről, illetve arról, hogy az egyes rendszer részek felé milyen elvárások vannak. Minden részt kifejtek ebben a fejezetben, de csak annyira, hogy átláthatóvá tegye a dolgozat többi részét. Későbbi fejezetekben viszont majd mélyrehatolóbban nézzük meg a rendszer alapjait.

Alapvetően három részre bontható a rendszer:

- Eszközök, amely magába foglalja az összes mérőeszközt és egyéb kisebb beágyazott rendszereket. Ezek egyszerű mikrokontrollereket használó rendszerek, amiknek annyi szerepe van, hogy vagy adatot szolgáltatnak, vagy valamilyen funkcionalitást végeznek el.
- Hálózati réteg, amely egy egyszerű közvetítőként funkcionál a központi szerver és az eszközök között. Lényegében átalakítja az üzeneteket a két rész között a megfelelő formátumra.
- Központi szerver, amely végzi az adatok feldolgozását és biztosít egy felületet a felhasználó számára, hogy láthassa a rendszer állapotát vagy aktuális adatokat.

2.1. ábra. A rendszer felépítése, a rétegek és eszközök egymás közötti kommunikációja

2.1. Eszközök

Mint már említve volt, ide tartoznak azok a hardverközeli rendszerek, amik vagy adatgyűjtő szerepet töltenek be, vagy valamilyen funkcionalitást képesek végrehajtani. Lehet egy ilyen eszköz például egy hőmérő, légnyomásmérő, földnedvességmérő vagy éppen egy relé.

Ezek az eszközök két csoportba sorolhatók:

- Érzékelők, másnéven szenzorok vagy
- Cselekvők, másnéven aktorok¹

Valójában viszont ez a két csoport nem diszjunkt és később kiderül miért is nem, ha látjuk pontosan melyik mit jelent. Közös bennük, hogy mindegyikben van egy mikrokontroller és egy kommunikációért felelős modul. E mellett mindegyik eszköz tartalmaz még egy specifikus modult is, ami meghatározza, hogy mit is csinál az adott eszköz (pl.: hőmérő esetén egy hőmérséklet- és páratartalom érzékelő), illetve, hogy melyik csoportba tartozik.

2.1.1. Szenzorok

Magától értetődően a szenzorok felelősek az adatok szolgáltatásáért. Működését tekintve a mikrokontroller vezérli az adatgyűjtés és küldés folyamatát. Az idő nagy

¹Ezt az elnevezést magam adtam, mivel nem találkoztam kutatásaim során más megfelelő elnevezés-sel.

részében alvó állapotban van energiatakarékossági szempontok miatt, viszont fix idő-közönként felébred. Mikor felébred lekéri a saját specifikus moduljától a jelenlegi mért állapotot, majd azt megpróbálja közvetíteni a központba. Ezt addig próbálja, amíg nem sikerül, vagyis a központ vissza nem küld egy automatikus jelzést, hogy megérkezett az adat. Szenzorok közé sorolhatók például a sok féle mérőeszközök vagy akár egy mozgásérzékelő is.

2.1.2. AKTOROK

Az aktorok a rendszer olyan részei, amik segítségével a rendszer képes változtatásokat végbe vinni a fizikai világban. Hasonló a helyzet a szenzorok esetéhez, hiszen ugyanúgy a mikrokontroller kezel mindent. Ugyanúgy alvó állapotban van az eszköz az idő nagy részében, viszont jelen esetben nem fix időközönként ébred fel, hanem amikor üzenetet kap a központtól. Ezek az üzenetek állapot beállítási parancsok, vagyis utasítják az eszközt, hogy állítson át vagy cselekedjen valamit. Ha megtörtént a parancs feldolgozása, az eszköz egyből elküldi a központi rendszernek az új állapotát, állapotjelentés formájában, akárcsak a szenzorok, majd megint alvó állapotba kerül a következő parancsig. Aktor lehet például egy elektromos relé vagy egy termosztát is.

Tehát láthatjuk, hogy miért is nem szétválasztható a két csoport. Az aktorokra tekinthetünk olyan szenzorokként, amik képesek még egyéb funkcionalitást is végezni. Így tekintve a szenzorok csoportja tágabb és magába foglalja az aktorok csoportját.

2.2. Hálózati réteg

A hálózati réteg léte elsőnek nem látszik logikusnak. Feleslegesnek tűnhet egy plusz szereplőt bevonni a központi szerver és az eszközök közé. A probléma, ami mégis megköveteli azt, hogy legyen egy köztes réteg, az egy eszközökhöz kötődő döntésből fakad.

A hardveres tervezés alatt találkoztam több vezetéknélküli kommunikációs modullal is. Volt olyan, ami WiFi-t használ a kommunikációhoz, volt ami csak simán rádiófrekvenciás modul volt. Bizonyos okok miatt, amit majd a 3.1.2. alfejezetben fogok leírni, a rádiófrekvenciás modulok mellett döntöttem. Így viszont szükség van egy központi eszközre, ami egy ugyanolyan kommunikációs modullal kell rendelkezzen, mint a többi eszköz. Ahhoz, hogy ezt a modult használni tudjuk, viszont alacsonyabb szintű eszközökhöz kell folyamodni, mint amit a Java nyújtani tud. Pont ezért a hálózati réteg egésze C++-ban íródott.

Lényegében a hálózati réteg tartja fent a kapcsolatot az eszközökkel és alakítja át az üzeneteket a fogadó félnek megfelelő formátumra. Ez az alakítás azért szükséges, mert a kommunikáció a hálózati réteg és a központi szerver között egy TCP kapcsolaton keresztül történik JSON objektumok küldésével, viszont a hálózati réteg és az eszközök között C-beli struct-okat küldünk rádiófrekvenciás jelek segítségével.

2.3. Központi szerver

A legnagyobb funkcionalitást természetesen a központi szerver végzi, hiszen ott lesznek feldolgozva az eszközöktől érkező állapotjelentések és a szerver küldhet állapot beállítási parancsokat is.

Mint említve volt már a központi szerver TCP kapcsolaton keresztül kommunikál a hálózati réteggel. Az onnan érkező üzeneteket a rendszer például a megfelelő formában elmenti az adatbázisban vagy az üzenet hatására elindulhat

A központi szervert is tovább tudjuk bontani több darabra funkcionalitása alapján:

- Flow-rendszer
- Statisztika
- Kezelőpanel

2.3.1. Flow-rendszer

A *Flow-rendszer* onnan kapta a nevét, hogy a felhasználó által megadható szabályokat "flow"-knak neveztem el. A név a beérkező adatok folyamából és azoknak folyamatos feldolgozásából jön. Minden *flow*-nak van feltétele és hatása. Ez a hatás akkor fog bekövetkezni, ha a feltétel teljesül. Részletesebben a 5.3. alfejezetben lesz szó a *flow*-król.

A Flow-rendszer biztosítja az új szabályok létrehozásának, régebbiek módosításának lehetőségét és elmenti az így létrejött változásokat. Másik lényeges feladata ennek a rendszernek még, hogy be is tartassa ezeket a szabályokat. A szabályok betartásáért felelős mechanizmust szintén a 5.3. alfejezetben fogom taglalni. Röviden összefoglalva, ha új adat érkezik, a rendszer megnézi melyik szabályokat érintheti az esemény és kiértékeli azokat. Tulajdonképpen ez a rendszer felelős a szerver legfontosabb és legbonyolultabb funkcióiért.

2.3.2. Statisztika

A rendszer használata során természetesen szeretnék néha visszanézni régebbi méréseket. Lehet ennek sok oka, például szeretnénk megnézni mennyivel volt hidegebb az előző hónapban, vagy leellenőrizhetjük mennyit volt bekapcsolva a fűtés. Tehát elég könnyen adja magát az elvárás, hogy tudjunk statisztikákat nézni a múltbeli adatokról.

Ehhez viszont el kell tárolni minden adatot, hogy később is tudjunk valamit mutatni a felhasználónak. Az adatbázis-rendszer kiválasztásánál ez volt az egyik legnagyobb szempont. A választás a **MongoDB**-re jutott, viszont a döntés mögött álló érveket majd a 5.1. alfejezetben fogom ismertetni. Mindemellett ahhoz, hogy az a sok adat, amit elmentenénk ne foglaljon sok tárhelyet, nem külön mentődnek el, ahogy beérkeznek a szerverhez, hanem percenként átlagolva kerül az adatbázisba. Ezzel igaz, hogy egy kicsi pontosságot vesztünk, mikor visszanézzük a statisztikákat, viszont ha jobban belegondolunk nincs is szükségünk arra, hogy például 10 másodpercenkénti részekre lebontva lássuk a múlt heti hőmérsékletet. Ami azt illeti még a percenkénti lebontás is túl aprónak tűnik bizonyos helyzetekben, de természetesen a lementett adatok segítségével elő tudunk állítani akár napi vagy havi átlagokat is. Mindezt grafikonokon és idő-soros diagrammokon mutatva, a felhasználó könnyedén tud következtetések levonni magának.

2.3.3. Kezelőpanel

A kezelőpanel szolgáltatja a felhasználó számára a valós idejű adatokat. Itt jelennek meg a beérkező állapotjelentések az eszközöktől legelőször, illetve aktorok esetében itt lesz lehetőségünk kézzel átállítani az eszköz állapotát, vagyis állapot beállító parancsokat küldeni.

Lehetővé válik így, hogy a felhasználó akár a munkahelyéről is megnézhesse hogy áll az otthona, esetleg nem hagyta-e nyitva az ajtót reggel. Ez a pár másopercenként frissülő kezelő felület minden eszköztípushoz külön mini megjelenítő modulokat rendel, aminek köszönhetően akár pár pillanat alatt megtalálhatjuk a számunkra fontos információkat.

Eszközök

Az előző fejezetben megtudtuk, mit csinálnak az eszközeink. Szintén megismertük, hogy mit is jelent a *szenzor* és az *aktor* fogalma, illetve, hogy miben különböznek. Ebben a fejezetben ecsetlve lesz, milyen hardverek lettek kiválasztva az eszközök összeállítására, illetve meg lesznek indokolva ezen választások is.

Ugye tudjuk szintén az előző fejezetből, hogy minden eszköz "agya" egy mikrokontroller. Ez a kicsi és alacsony teljesítményű processzor felelős az adatgyűjtés folyamatának koordinálásáért. Mivel nincs kiterjedt tudásom a mikrokontrollerek programozásának terén, számomra a legkönnyebb volt az **Arduino** fejlesztői környezetek mellett letenni a voksom.

Másik fontos alkotóelem, a vezetéknélküli modul. Ebben a választásban már természetesen megszorítás volt, hogy a kiválasztott modul kompatibilis legyen Arduinokkal. Habár nem volt egyszerű döntés, egy **nRF24L01**+ adó-vevő integrált áramkört felhasználó modult választottam.

Ahogy korábban említettem harmadik része az eszközeinknek változó, még pedig az határozza meg, hogy mit szeretnénk elérni az adott szenzorral vagy aktorral. A fejlesztés elején kiválasztottam pár eszköztípust, amit el szerettem volna készíteni és támogatni a kész rendszerben. A teljesség igénye nélkül be fogok mutatni pár szenzor és aktor modult, mint például a hőmérséklet mérésére szolgáló **DHT22** hő- és légnedvesség mérő szenzor modult.

Mindezek után kitérek arra, hogy a fent említett hardvereket hogyan kell összekötni, hogy egy működő eszközt kaphassunk. Szerencsémre az összerakási folyamat nem igényelt jelentős villamosmérnöki tudást, elég volt néhány kábellel összekötni a megfelelő ki- és bemeneteket.

3.1. Hardver választás

3.1.1. ARDUINO

Az Arduino-k egyszerűen használható AVR mikrokontroller alapú fejlesztői platfromok, melyeknek az a céljuk, hogy megkönnyítsék az elektronikával való ismerkedést az átlag emberek számára. Ezeket az eszközöket az Arduino, mint vállalat tervezte, illetve tervezi, hiszen folyamatosan újabb és újabb Arduino platformok kerülnek nap világra. Az Arduino vállalatnak fő célja az volt az Arduino eszközök tervezésénél, hogy minél több embernek legyen elérhető az elektronikus eszközökkel való barkácsolás. Mindezt úgy próbálják elérni, hogy olcsón előállíthatóak az eszközök, hogy leegyszerűsítették a programozást, illetve hogy minden hardver tervet nyílt forrásúvá tettek.

Az én választásom is a fent említett előnyök miatt esett az Arduino fejlesztői platformokra. A nyílt források miatt kínai Arduino klónok lepték el a piacot. Az írás időpontjában akár 1000 forintért is hozzájuthatunk egy ilyen klónhoz, de akár az eredetit is beszerezhetjük szintén nem túl drágán körülbelül 6000 forintért magyarországi internetes boltokból.

A legfontosabb érv számomra mégis az, hogy nagyon egyszerű programozni az Arduino-kat. Ezért is figyeltem fel rájuk és töltöm sokszor szabadidőmet Arduino-kat használó saját projektekkel. A platformok mellé az Arduino vállalat aktívan fejleszt egy saját programozási környezetet és egy programozási nyelvet is. Az "Arduino" programozási nyelv valójában egy olyan C/C++ könyvtár, amely egyszerűsíti az eszközök használatóhoz kapcsolódó programozási feladatokat. Például ahhoz, hogy egy LED-et villogtassunk elég a következő kód:

```
// the setup function runs once when you press reset or power the board
void setup() {
    // initialize digital pin LED_BUILTIN as an output.
    pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
    // turn the LED on (HIGH is the voltage level)
    digitalWrite(LED_BUILTIN, HIGH);
    // wait for a second
delay(1000);
```

```
// turn the LED off by making the voltage LOW
digitalWrite(LED_BUILTIN, LOW);
// wait for a second
delay(1000);
}
```

3.1. ábra. Hivatalos Blink.ino Arduino példakód

Továbbá mivel C/C++ az alap nyelv az Arduino "nyelv" támogat minden olyan C vagy C++-beli nyelvi elemet, amit a avr-gcc fordítóprogram támogat.

3.1.2. VEZETÉKNÉLKÜLI MODULOK

3.1.3. Eszköz specifikus hardver

Közös megszorítás volt természetesen minden eszköz specifikus modul kiválasztásánal, hogy könnyedén lehessen használni Arduino-kkal. Ez általában abban nyilvánult meg, hogy az interneten találtam-e Arduino-khoz írt könyvtárakat, amik az adott modul képességeinek használatát teszik lehetővé. Választási szempontom volt még, hogy mennyire drága az eszköz. Néhol érdemes feláldozni a mérési pontosságot ahhoz, hogy ne kelljen sok pénzt kiadni. Mivel minden eszköztípus más érzékelőt vagy más funkciót elvégző alkatrészt tartalmaz, illetve mivel konkrétan akármilyen funkciójú eszközt megtervezhetünk, ezért nem tudok minden eszköz specifikus modult bemutatni. Viszont korábban említettem, hogy kiválasztottam pár szenzort és aktort, amit megterveztem és támogattam a rendszer fejlesztése során. Ezek a következőek:

- Hő- és páratartalom szenzor
- Mozgásérzékelő szenzor
- Föld nedvesség szenzor
- Elektromos relé aktor

A hő- és páratartalom szenzor elkészítéséhez az úgynevezett DHT22 modult használtam, ami egyszerre képes hőmérsékletet és páratartalmat mérni. Eredetileg nem terveztem, hogy egy szenzor akár többféle adatot is tud szolgáltatni a központi rendszernek, de mivel egy ilyen kettő-az-egyben modult találtam, ezért hamar változtattam az eredeti elképzeléseimen. Azért ezt a DHT22 modult választottam, mert szinte csak ehhez találtam Arduino-t használó példákat. Pontosságát tekintve a $\pm 2\%$ -os páratartalom és ± 0.5 °C-os hőmérséklet hibahatár bőven megfelelt az én céljaimra. A modul ára is aránylag kedvező, hiszen az írás időjében körülbelül 3000 forintért beszerezhető egy-egy darab.

3.2. ábra. DHT22 hő- és páratartalom érzékelő modul

A mozgásérzékelő szenzor elkészítéséhez PIR szenzort használtam. A PIR feloldása a "passive infrared", vagyis az infravörös fények változását képes érzékelni a szenzor. Ilyen PIR szenzorokat használnak például a mozgásra felkapcsoló kertilámpák is. Ezek egyszerű eszközök, általában működésük annyiból áll, hogy amikor mozgást érzékelnek elindul egy időzítő és az amíg le nem jár, addig a modul magas jelet ad. Ahogy az időzítő lejárt eltűnik a jel. Ennek a jelnek az értelmezése rendkívül egyszerű Arduino-kkal. Elég ha rákötjük a PIR szenzor kimenetét az Arduino egyik bemenetére és figyeljük mikor változik a bemeneten a jel. Az időzítő hossza és a modul érzékenysége kézzel állítható az eszközön. Ahogy az előző esetben is, most se magas az ára egy ilyen modulnak. Körülbelül ezek a szenzor modulok is 3000 forintba kerülnek.

3.3. ábra. PIR mozgásérzékelő modul

A föld nedvesség szenzor még a mozgásérzékelő szenzornál is egyszerűbb mérő-eszközt igényel. A legegyszerűbb módja annak, hogy a föld nedvességét megmérjük az, hogy két föld alá dugott fémlemez között megmérjük a föld ellenállását. Minél kisebb az ellenállás, annál nedvesebb a föld. Ezt az elvet használó érzékelő modulokat könnyedén lehet találni és nem is drágán. Egy-egy ilyen érzékelő ára 1500 forint körül mozog

az írás pillanatában. Ahhoz, hogy működésre bírjük ezeket az eszközöket, szintén csak annyi a dolgunk a kimenetet az Arduino egyik bemenetére kötjük és onnan leolvassuk az ellenállás értékét. Abból tudunk következtetni mennyire száraz vagy nedves a föld.

3.4. ábra. Föld nedvességmérő modul

Az elektromos relé aktor esetében egy 5 voltos relére volt szükségem. Ha magasabb feszültséget igénylő relét akartam volna használni, akkor plusz alkatrészekre lett volna szükségem ahhoz, hogy Arduino-val irányíthassam. Egy relé alapvetően úgy működik, mint egy akármilyen villanykapcsoló, a különbség csak annyi, hogy elektromos jellel lehet kapcsolni. A relé egyik oldalára az irányítani kívánt áramkört kell bekötni, a másikra a mi esetünkben az Arduino egy kimenetét és az említett 5 voltot. Így a kimenet fel- és lekapcsolásával a bekötött áramkört is kapcsolgatjuk. Az ára a reléknek rendkívül változó tud lenni, annak függvényében, hogy mekkora teljesítményt bírnak ki. Én egy 10 ampert kibíró relé mellett döntöttem, ami 2500 forint körüli összegbe kerül.

3.5. ábra. Elektromos relé modul

3.2. Felépítés

Így, hogy minden alkatrészt kiválasztottunk a következő feladat, hogy össze is rakjuk az eszközeinket. Az első és legfontosabb lépés, hogy áramot kapjon a fő alkatrészünk, az Arduino. Magán az Arduino-n elhelyezett feszültség szabályzónak köszönhetően, képesek vagyunk akár egy 9V-os elemmel is megoldani az áramellátást. A példa kedvéért most maradjunk ennél a megoldásnál annak okán, hogy ne kelljen fölösleges feszültség átalakításokkal foglalkozni. Valójában úgy terveztem viszont az eszközt, hogy egy tölthető, 3.7V-os lithiumion-akkumulátor üzemeltesse a szenzorjainkat, aktorjainkat.

Ha megoldottuk az áramellátás kérdését, jöhet a kommunikáció felállítása a központi szerverrel. Ehhez az úgynevezett SPI ("Serial Peripheral Interface") buszt kell használjuk az Arduino és az nRF24L01+ közötti kommunikációhoz. Sajnos magam sem ismerem mélyrehatóan az SPI technológiát, hiszen programtervező informatikusnak tanulok, viszont röviden összefoglalva az SPI egy soros kommunikációs interfész, amely master-slave architektúrára épül. Tehát van egy master eszköz és elviekben tetszőleges számú slave, ahol a master eszköz irányítja teljes egészében a kommunikációt és a slave eszközök csak a master jelére kezdenek el adatot küldeni. Összesen négy kábel elég ahhoz, hogy a kapcsolat létrejöjjön az Arduino és az nRF24L01+ között. Ahogy összekötöttük őket a full-duplex kapcsolaton keresztül máris tudunk adatot küldeni más nRF24L01+-t használó eszközöknek.

Hátra van még az eszköz specifikus rész bekötése. Természetesen ez eszközről eszköre változik, viszont mivel szükség lesz az Arduino megszakítás rendszerére, az egyetlen megszorítás, hogy olyan bemenetre kell bekötni a specifikus eszközt, ahol az Arduino támogatja a megszakításokat. A megszakításokat később, a 3.3. alfejezetben fogom ismertetni.

3.2.1. Példák kész eszközökre

Csak felsorolásszerűen bemutatnám képekben annak a pár eszköznek a felépítését, amelyeket korábban említettem, mint a rendszer által támogatottak. A képek nem feltétlen fedik le a valós, összerakott eszközök felépítését. Ennek oka annyi, hogy másképp nem feltétlen lennének jól értelmezhetőek az ábrák. Például bizonyos esetekben az nRF24L01+ kommunikációs modul nem megfelelő tápfeszültséget kap a képeken, viszont ez nem változtat semmit a valódi bekötési ábra számunkra is lényeges részeihez képest.

• Hő- és páratartalommérő szenzor

3.6. ábra. Hő- és páratartalommérő szenzor

• Mozgásérzékelő szenzor

3.7. ábra. Mozgásérzékelő szenzor

• Elektromos relé aktor

fritzing

3.3. Firmware működés

3.3.1. SZENZOR TÍPUSOK

A fejlesztés közben szembesültem azzal, hogy különbséget kell tegyek szenzorok közt is a kívánt működésüket tekintve. Pontosabban fogalmazva abban különbözhet egyik szenzor a másiktól, hogy mikor kell adatot küldjön a központi szervernek. Gondoljunk bele abba, hogy egy hőmérő szenzor elég, ha fix időközönként elküldi az aktuális állapotát. Ha viszont tegyük fel egy mozgásérzékelő szenzorról beszélünk, akkor azt szeretnénk, hogy ha mozgás van a szobában, akkor egyből elküldje az új adatot a szenzor. Ugyan ez az helyzet például egy ajtózárt irányító aktor esetében is. Azonnal szeretnék értesülni arról, hogy kinyitották a bejárati ajtót, nem pedig akkor, ha éppen úgy esik a fix időközönkénti állapot küldés. A fix időközönként közvetítő szenzort időzített szenzoroknak neveztem el, míg a azokat amik állapotváltozást igényelnek, hogy elküldjék az adatot, reaktív szenzoroknak.

Az eszközök felépítésének bemutatásánál említettem a megszakítások fogalmát és azt, hogy szükségünk lesz rájuk. A megszakítások olyan külső vagy belső jelek, amelyek a feldolgozó egység számára szólnak, hogy azonnali figyelmet igényel valamilyen hardver vagy szoftver. Az Arduino-k esetében egy ilyen megszakítás lehet egy bemeneti jel változás vagy esetleg egy belső időzítő lejárta. Másik fontos tulajdonsága a megszakításoknak az Arduino-knál, hogy egy megszakítás hatására az eszköz képes felébredni alvó állapotból. Így viszont meg is oldottuk a szenzorok közti különbség problémáját, hiszen ha az Arduino normál állapotban van, akkor leolvassuk az aktuális állapotát az eszköznek, elküldjük a központi szerverhez az adatot, majd alvó módba lépünk. Ahhoz hogy az időzett szenzorok fix időközönként közvetítsenek a belső időzítőt kell használni az eszköz felébresztésére, a reaktív szenzorok esetében egy olyan bemenetre kell kötni az érzékelő modult, ahol az Arduino támogatja a megszakításokat. Így elértük azt, hogy ha például valamilyen mozgást érzékelünk az eszköz egyből felébred és elküldi az új állapotot.

Itt egy picit kitérnék az aktorok működésére is, igaz nem szorosan nem a szenzor típusokhoz kapcsolódik, viszont a megszakításokhoz annál inkább. Mivel az aktorok nem csak üzennek a központi szervernek, hanem fogadnak is onnan érkező parancsokat, az eszköznek normál állapotában kell működnie ahhoz, hogy a parancsot fel tudja dolgozni. Ennek ellenére szeretnénk ha az aktorok is tudnának alvó állapotban lenni

energiatakarékosság miatt. Szerencsére az nRF24L01+ képes nekünk megszakításokat generálni, ha valamilyen üzenet érkezett az eszköz számára. Ez pont tökéletes számunkra, hiszen csak akkor fogjuk így felkelteni az Arduino-t alvó állapotból, ha fel kell dolgozni a központól érkezett parancsot.

3.3.2. ALVÓ MÓD

Hálózati réteg

- 4.1. Mesh hálózat
- 4.2. Üzenet küldés
- 4.3. Szoftver működés
- 4.3.1. Boost

Központi rendszer

- 5.1. Adatbázis
- 5.1.1. Adatbázis kiválasztása
- 5.1.2. TÁROLÁSI SÉMA
- 5.2. Keretrendszerek
- 5.2.1. Spring Boot
- 5.2.2. Vaadin

5.3. Flow rendszer

Ezek az úgynevezett "flow"-k olyanok akárcsak egy-egy szabály. Olyan szabályok melyeknek van egy feltétele és egy hatása. Egy flow akkor lép életbe, ha a hozzátartozó feltétel a rendszer éppen aktuális állapota mellett teljesül. Ekkor a flow hatása végrehajtódik a rendszer által.

A feltétel része lehet egyes eszközök állapotára vonatkozó megszorítások (pl.: 20°C-nál nagyobb a hőmérsékletet mutat a nappaliban elhelyezett hőmérő), a felhasználó vagy külső rendszer által indított kérés az alkalmazáshoz (pl.: gomb nyomás a kezelőfelületen vagy HTTP kérés egy bizonyos címen), egyéb rendszer állapot feltétel (pl.: időponthoz kötődő feltétel) és ezeknek logikai ÉS-sel összekötött kombinációja. A

hatása egy flow-nak állhat eszközök állapotának módosításából, más rendszerhez történő kérésből és egyéb segéd akciókból (pl.: késleltetés). Ezeknek a "hatás elemeknek" egymás után történő végrehajtása adja az adott flow hatását.

A rendszer célja az, hogy a fenti flow-k segítségével a felhasználó szabályo-kat/feladatokat tud leírni, amelyeket a rendszer majd végrehajt. Így tehát lehetséges bizonyos házkörüli dolgok automatizálása.

Pár példa a rendszer használatára:

- ha adott szobában nincs érzékelt mozgás, akkor lekapcsolódik a villany
- ha több hőmérő is alacsony értéket mutat, akkor automatikusan fentebb megy a fűtés
- ha egy virág földje kiszáradna, akkor víz engedődik a virág alatt
- ha reggeli időpont van, akkor beindul a kávéfőző
- ha a levegő szén-monoxid tartalma átlép egy határt, akkor elindul egy jelző berendezés
- ha besötétedik és van mozgás, akkor a sötétítők leengednek és felkapcsol egy villany

5.3.1. Flow kiértékelés

Teljesítmény

- 6.1. Hatótáv
- 6.2. Eszköz szám
- 6.3. Áteresztőképesség

Biztonság

- 7.1. Megbízott eszközök
- 7.2. Titkosítás
- 7.3. Problémák

Összefoglalás

Rengeteg eszköztípus van, amit még meg lehetne valósítani és meg is szeretnék még. Néhány példa:

- Légnyomásmérő szenzor
- Eső érzékelő szenzor
- Fény érzékelő szenzor
- Szén-monoxid érzékelő szenzor
- Ablaksötétítő aktor

Irodalomjegyzék