

멀티클라우드, 글로벌 스케일로 시작하다

클라우드바리스타 커뮤니티 제4차 컨퍼런스

[세션4] CB-Ladybug : 멀티클라우드 애플리케이션 서비스 통합 운용 및 관리

김 수 영 CB-Ladybug 프레임워크 리더 김 경 은 Cloud-Barista 커뮤니티 멤버

카페모카(Café Mocha) 한잔 어떠세요?

이번 세션은…

응용/도메인/기관 특화 SW

멀티클라우드 서비스 공통 플랫폼

목 차

- **1** CB-Ladybug 개발 현황
 - CB-Ladybug 개요 및 기본 기능
 - CB-Ladybug 개발 전략
 - CB-Ladybug 제공 서비스
 - CB-Ladybug 기본 구조 및 개발 로드맵
 - V CB-Ladybug 활용 서비스 시나리오 및 기술 시연
- 2 멀티클라우드 쿠버네티스 서비스(MCKS) 개발 현황

멀티클라우드 애플리케이션의 배포와 관리는?

CB-Ladybug 개요

- 멀티클라우드 애플리케이션 운용 및 통합 관리 프레임워크(CB-Ladybug)
 - 멀티클라우드 인프라 상에서 운용되는, 멀티클라우드 애플리케이션(MC-App)의 생성, 배포, 실행 및 라이프사이클 제어와 클라우드 간 연계 관리 기능을 제공하는 프레임워크

<CB-Ladybug 개념도>

멀티클라우드 애플리케이션

- 멀티클라우드 (네이티브) 애플리케이션 (Multi-Cloud (Native) Application, MC-App)
 - 클라우드 네이티브 방식을 기반으로, 멀티클라우드 인프라에서의 운용을 위해 생성, 배포, 실행되는 애플리케이션
 - 전세계 다양한 클라우드를 통합 활용할 때, 보다 효과적인 클라우드 네이티브 애플리케이션
 - 글로벌 스케일의 동적 오케스트레이션을 활용 → 높은 근접성과 자원 최적화를 이루어 성능 향상 및 비용 감소 달성
- 클라우드 네이티브 (Cloud Native) 방식
 - 클라우드 컴퓨팅 모델을 활용해서 서비스의 중지 없이 쉽고 빠르게 배포하고, 피드백을 받아 즉각적으로 수정/반영할 수 있는 초고속 선순환 서비스 구조를 만드는 애플리케이션 개발/실행/운영 방식

CB-Ladybug 기본 기능

단위 App 준비/개발 단위 App 이미지 생성/등록 (1) MC-App 패키지 개발/관리 (구성, 배치/실행 요청사항, 품질 정책 등) (2) MC-App 실행 요청 (3) (4) MC-App 운영관리 MC-App 모니터링 (실행환경, MC-App 자체) MC-App 라이프사이클 제어 MC-App 자동 관리 설정 제어 (5) MC-App 종료 및 자원 반환 <사용자 시나리오>

CB-Ladybug 개발 전략

- 1단계: 멀티클라우드 환경에 적합한 애플리케이션 실행환경 제공 기술 개발
 - 애플리케이션 실행환경(쿠버네티스, 아파치 메소스, 도커 스웜 등) 중 쿠버네티스를 대상으로 멀티클라우드 인프라 상에서 운용 가능성/적합성 확인 및 검증
- 2단계: 멀티클라우드 환경에 최적화된 애플리케이션 운용 및 통합 관리 기술 개발
 - 멀티클라우드 환경을 고려한 애플리케이션 실행 요청 사항의 도출 및 적용
 - 클라우드 인지 애플리케이션 배치 알고리즘 등 개발

CB-Ladybug 단계별 제공 서비스

- 1단계: 사용자 관리형 멀티클라우드 쿠버네티스 서비스(MCKS) 제공
- 2단계: 멀티클라우드에 최적화된 애플리케이션 운용 및 통합 관리 서비스(MCAS) 제공

- 기술/노하우
- 구성 및 실행 정보 학습

% NS: NameSpace

MCIR: Multi-Cloud Infra Resource
MCIS: Multi-Cloud Infra Service

MCKS: Multi-Cloud Kubernetes Service
MCAS: Multi-Cloud Application Service
MCAR: Multi-Cloud Application Runtime

1단계: 멀티클라우드 쿠버네티스 서비스 (MCKS)

- 멀티클라우드 환경에서 실행되는 사용자 관리형 쿠버네티스 클러스터 제공
 - 사용자가 직접 멀티클라우드 쿠버네티스 클러스터를 접근하여 활용
 - 사용자가 직접 멀티클라우드 애플리케이션 실행 및 관리 담당

2단계: 멀티클라우드 애플리케이션 서비스 (MCAS)

- 멀티클라우드 애플리케이션 서비스 제공
 - 애플리케이션 실행 요청사항에 적합하도록 멀티클라우드 환경에서의 최적 애플리케이션 실행환경 자동 구성 및 운영
 - 멀티클라우드 애플리케이션 실행환경(MCAR)의 플러그인 방식 지원

CB-Ladybug 기본 구조

VM: Virtual Machine

MC-App: Multi-Cloud Application

MCAR: Multi-Cloud Application Runtime MCKS: Multi-Cloud Kubernetes Service

MCAS: Multi-Cloud Application Service

👾: 쿠버네티스 패키지 관리도구(Helm) 활용하여 제공 예정 기능

(*) 클라우드 인지 스케줄러: 클러스터에 포함된 노드들의 위치나 역량, 자원 현황, 서비스 클라이언트들의 상태 등에 따라 MC-App의 단위 App들을 적절한 위치에 배치 수행

CB-Ladybug 개발 로드맵

카푸치노

'2020.6

- 개념 및 기능 정의
- 공인IP 기반 쿠버네티스 프로비저닝 PoC
- 네트워크 플러그인 검토 PoC
- 데이터 통신, 성능 검증 PoC

에스프레소

*'*2020, 11

- MCKS 규격 정의
- ・단일 클라우드 대상 MCKS 프로토타입 개발 및 시험
- AWS, GCP 지원

카페모카

[']2021. 6

- 멀티클라우드 모델 확장
- 컨트롤 플레인 HA 구성
- 멀티클라우드 네트워크 플러그인 지원
- Azure 지원
- MCAS 설계

아포가토 '2021, 11

- 국내.외 클라우드 지원 확대
- 컨트롤 플레인 HA 구성 고도화
- MCKS 기능 고도화
- MC-App 프로비저닝/라 이프사이클 제어 기능 개발

글로벌 스케일 전자상거래 서비스 시나리오

중앙관리 서비스는 본사 데이터센터에 배치하고, 지역에 특화된 데이터베이스와 마이크로서비스는 각 지역 클라우드 리전에 배치이때, 서비스 이중화를 통해 가용성 확보, 지역 리전 서비스와 중앙 데이터센터 간 발생 데이터 연동

멀티클라우드 서비스 공통 플랫폼

[시연]

글로벌 서비스 런칭을 위한 시험 인프라 제공 서비스

카페모카(Café Mocha) 한잔 어떠세요?

글로벌 서비스 런칭을 위한 시험 인프라 제공 서비스(1/2)

• 서비스 개요

- 글로벌 서비스의 런칭을 위한 다양한 워크로드 및 사용자 입장의 서비스 사용 성능에 관한 사전 분석 필수
- 실험실 수준의 시험 환경을 넘어 실제 글로벌 인프라 환경에서의 시험 인프라 서비스 제공
- 저렴한 클라우드 서비스 활용을 통한 저비용의 글로벌 시험 인프라 환경 제공
- 컨테이너 기반으로 개발된 응용 서비스를 손쉽게 배포/운영/관리할 수 있는 쿠버네티스의 사용자들을 위한 멀티 클라우드 환경에서의 동일 사용자 경험 제공

• 효과

 전세계 각 지역의 사용자들이 체감할 수 있는 서비스 성능 등을 미리 파악하여 서비스의 사전 보완이 가능하며, 다양한 워크로드 시험을 통하여 요구되는 시스템 자원 수요에 대한 대응 전략의 수립을 지원

글로벌 서비스 런칭을 위한 시험 인프라 제공 서비스(2/2)

• 시연 시나리오

멀티클라우드, "글로벌 스케일로 시작하다"

클라우드바리스타 커뮤니티 제4차 컨퍼런스

MCKS:

멀티클라우드 쿠버네티스 서비스

김 경 은 / Cloud-Barista 커뮤니티 멤버

카페모카(Café Mocha) 한잔 어떠세요?

목 차

- 멀티클라우드 쿠버네티스 서비스(MCKS) 개요
- II MCKS 특징 및 차별성
- III MCKS 주요 기술 이슈
- IV MCKS 주요 기술 개발 현황

멀티클라우드 쿠버네티스 서비스(MCKS) 개요

- 쿠버네티스 (Kubernetes)
 - 컨테이너화 된 애플리케이션의 배포, 스케일링, 관리를 자동화 해주는 컨테이너 오케스트레이션 엔진
 - 어플리케이션을 실행하는 한 개 이상의 워커 노드 존재
 - 컨트롤플레인은 워커 노드와 파드 관리를 통해 내결함성과 고가용성을 보장하는 역할 수행

- 멀티클라우드 기반 쿠버네티스 by MCKS
 - 사용자가 온디맨드로 멀티클라우드를 대상으로 쿠버네티스 클러스터를 프로비져닝
 - 사용자가 온디맨드 방식으로 프로비저닝한 쿠버네티스 클러스터를 직접 조회하고 관리
 - 쿠버네티스 생태계를 그대로 활용

< 쿠버네티스 컴포넌트 >

< MCKS 클러스터 생성 프로세스>

MCKS 필요성

멀티클라우드 환경에서 쿠버네티스 운영을 위해서는 수 많은 클라우드 네이티브 서비스 관리해야 하기 때문에 여러 클러스터에 걸쳐 자원을 배치하고 동기화하는 역량이 중요하며 이를 통합 관리할 수 있는 플랫폼이 필요

멀티클라우드 쿠버네티스 요구사항

멀티클라우드의 자원 배치와 동기화

수 많은 클라우드 네이티브 서비스 관리

벤더별 고유 속성과 복잡성 제거

서비스 디스커버리와 고가용성

손쉬운 멀티클라우드 쿠버네티스 구축

사용자가 쉽고 간편하게 온디맨드 방식으로 멀티클라우드 기반 쿠버네티스 클러스터를 생성하고, 확장하고, 통합관리

MCKS 기대효과

글로벌 스케일 사용자 서비스 배치 및 운용

클라우드 벤더 락인 탈피

멀티클라우드 기반 고가용성 제공

멀티클라우드 자원 통합 운용/관리

클라우드 벤더와 지역 한계 없는 글로벌 스케일 확장성 제공

MCKS 특징 및 차별성 (1/2)

- MCKS는 멀티클라우드 단일 쿠버네티스 설치형 서비스
 - 개별 쿠버네티스 서비스(KaaS) : 컨트롤플레인과 워커 노드들이 벤더별로 독립 구성되어, 통합관리를 위해서는 별도의 솔루션/서비스 필요
 - 멀티클라우드 쿠버네티스 서비스(MCKS) : 하나의 컨트롤플레인이 서로 다른 클라우드의 다수 워커 노드들을 리전별로 통합 관리
 - Federation 멀티 클러스터 : 구성 클러스터들의 컨트롤플레인 역할을 하는 호스트 클러스터가 멤버 클러스터들을 통합 관리

< MCKS >

< Federation 멀티 클러스터>

MCKS 특징 및 차별성 (2/2)

- 다양한 클러스터 커스터마이징 가능
 - KaaS : 컨트롤플레인의 관리를 각 클라우드 벤더에서 수행하여 사용자의 다양한 요구사항 수용에 한계
 - MCKS : 사용자에게 컨트롤플레인 커스트마이징과 다양한 선택 옵션 제공 가능

< KaaS와 MCKS 클러스터 관리 비교>

- 편리한 워크로드 간 연동 및 배치 스케줄링
 - KaaS: 각 벤더별 독립적 실행으로 클라우드 간 워크로드 연동이 복잡
 - MCKS : 클라우드, 리전 간 워크로드 연동이 쉽고 용이하며 높은 확장 가능성으로 MSA 환경에 적합

<워크로드 간 연동 및 배치 스케줄링 >

MCKS 주요 기술 이슈

이슈	세부내용
이종의 클라우드 간 서로 다른 네트워크의 VM 들을 어떻 게 하나의 쿠버네티스 클러스터로 프로비저닝 할것인가 ?	VM 간 연결은 공인IP 기반으로만 가능하다는 한계 확인
	클라우드 벤더들은 기본적으로 유동IP 제공하고 있으며, 고정IP 서비스를 사용할 경우의 비용문제를 어떻게 극복할 것인가
	IP가 동적으로 변경되었을 경우 이미 구성된 클러스터 노드들은 어떻게 대응해야 할 것인가
멀티클라우드 – 단일 클러스터 환경에서 운영 가능한 네트 워크 플러그인은 ?	Flannel 정상 동작 확인
	서로 다른 클라우드에 설치된 워크로드 간 통신 시 WAN 구간에 대한 통신 보안의 필요성
멀티클라우드 환경에 설치된 쿠버네티스 컨트롤 플레인의 가용성을 어떻게 보장할 것인가 ?	컨트롤 플레인의 엔드포인트는 공인IP 또는 공인 도메인
	컨트롤 플레인 노드들은 단일 클러스터 단일 리전 구성으로 제한

MCKS 주요 기술 개발 현황

- 멀티클라우드 운영 모델 고도화
 - Espresso 버전: 단일클라우드 대상 모델 제공
 - Café Mocha 버전: 멀티클라우드 대상 모델 확대 제공
 - 서로 다른 네트워크 VM들을 하나의 쿠버네티스 클러스터로 프로비저닝 이슈 해결
 - 동적 부여된 공인IP의 IP Alias 등록 및 kubelet node-ip 설정 기법 등 적용
- 멀티클라우드 환경에서 운영 가능한 네트워크 플러그인 제공
 - Canal, Kilo 총 2종 네트워크 플러그인 적용 구현
 - VPN(Wireguard) 기반 Kilo를 통해 서로 다른 클라우드의 워크로드 간 통신 보안 보장
 - 네트워크 정책 적용이 가능한 Canal(Flannel + Calico) 플러그인 적용
- 컨트롤플레인 HA 구성을 통한 가용성 보장
 - HA 구성 모델들에 대한 PoC 수행
 - haproxy를 활용한 HA 구성 모델 적용
 - 향후 CB-Larva 협업 및 고도화 예정
- 현재 AWS,GCP, Azure big-3 지원, 향후 대상 클라우드 확대 예정

멀티클라우드 운영 모델 고도화

• 3가지 운영 모델 개발

멀티클라우드 환경에서 운영 가능한 네트워크 플러그인 제공

• Canal, Kilo 2종 플러그인 적용

Kilo

- 암호화된 L3 네트워크를 제공
- 파드는 호출 대상 서비스의 노드가 다른 네트워크에 있거나 NAT 뒤에 있더라도 안전하게 액세스 가능
- VPN에 대한 공개 및 개인 키와 노드 간에 패킷을 라우팅하는데 필요한 규칙이 자동 설정되어 노드 간 네트워크 메시 생성

Canal

- Flannel을 통해 공인 IP 기반으로 오버레이 구성
- Calico를 통해 네트워크 정책 제공

< Kilo를 통한 노드간 네트워크 메시 구성 예 >

컨트롤플레인 HA 구성을 통한 가용성 보장

Implementation

• HA 구성 모델 PoC 를 통해 haproxy 를 활용한 구성 모델 적용

• 검토 모델

external-lb + (kilo,canal)

haproxy + (kilo, canal)²

haproxy + pure-wireguard (3)

controlplane-2 controlplane-1 worker-1 haproxy *:9998 *:6443 *:6443 worker-2 apiserver apiserver worker-3 controllercontrollermanager scheduler scheduler etcd etcd **GCP** etcd cluster <asia-AWS (ap-northeast-1) northeast3>

https://github.com/cloud-barista https://cloud-barista.github.io

(김수영, 김경은 / contact-to-cloud-barista@googlegroups.com)

"멀티클라우드, 글로벌 스케일로 시작하다"

클라우드바리스타들의 네번째 이야기

Cloud-Barista Community the 4th Conference