TOPOLOGY COMPREHENSIVE EXAM: PHD

Duration: 3hrs. Total: 100 points

(1) (20 points)

Let $i:A\subset X$ be a closed embedding of topological spaces. Recall that a retraction of X to A is a map $r: X \to A$ such that $r \circ i = 1_A$. Show that A is not a retract of X in the following situations. (a) $X = D^2$, $A = S^1$ embedded in X as the boundary

- (b) $X = \mathbb{R}^3$, A = any closed subspace of X homeomorphic to S^1 (c) $X = S^1 \times D^2$ (solid torus), $A = S^1 \times S^1$ (torus) embedded in X as the boundary
- (d) X = Mobius band, A is the boundary circle
- (2) (20 points) The Klein bottle K is the quotient space of $S^1 \times I$ obtained by identifying (z,0) with $(z^{-1},1)$ for $z \in S^1$.

Show that K has a cell complex decomposition $X_0 \subset X_1 \subset X_2 = K$ with one 0-cell, two 1-cells and one 2-cells. The 1-skeleton X_1 is $S^1 \vee S^1$ and X_2 is obtained by attaching a 2-cell to X_1 via the attaching map $S^1 \to S^1 \vee S^1$ given by

Use this to compute $\pi_1(K)$.

(3) (20 points)

Determine the fundamental groups of the following spaces:

- (a) The direct product $\mathbb{R}P^2 \times MB$ of the projective plane and a Mobius
- (b) Two 2-spheres with their equatorial circles identified.