UNIVERSIDADE FEDERAL DO MARANHÃO

FUNDAÇÃO Instituída nos termos da Lei nº 5.152, de 21/10/1996 - São Luís - Maranhão

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA **DEPARTAMENTO DE FÍSICA**

1. DADOS DE IDENTIFICAÇÃO

Curso	FÍSICA							
Disciplina		ELETROMAGNETISMO II					Código	DEFI0235
Carga Horária			90 H/A		Créditos	6.0.0		
Pré-Requisito(s)			ELETROMAGNETISMO I, Física Matemática III					

2. EMENTA

Equações de Maxwell e ondas eletromagnéticas. Equação de continuidade. Conservação de energia e momento do campo eletromagnético. Polarização da luz. Graus de liberdade do campo eletromagnético. Equações de movimento. Ondas eletromagnéticas em meios dielétricos. Radiação.

3. OBJETIVOS

Partindo das equações de Maxwell, obter as equações de onda cujas soluções descrevem a propagação de ondas eletromagnéticas. Apresentar os conceitos de potenciais eletromagnéticos como ferramental matemático para solucionar e descrever a propagação das ondas eletromagnéticas no vácuo e em meios dielétricos. Usar as soluções das equações de ondas para cargas em movimento para descrever o fenômeno da radiação eletromagnética.

4. CONTEÚDO PROGRAMÁTICO

5. BIBLIOGRAFIA

5.1 BÁSICA:

- D. J. Griffiths, Eletrodinâmica, 3ª ed. São Paulo: Pearson Education, 2011, p. 424.
- J. R. Reitz, F. J. Milford e R. W. Christy, Fundamentos da Teoria Eletromagnética, 3ª ed. Rio de Janeiro: Campus, 1982.
- R. K. Wangsness, Electromagnetic Fields, 2^a ed. New York: John Wiley & Sons, 1986.
- M.A.Heald and J. B. Marion, Classical Electromagnetic Radiation, Dover, 3a edição, 2012, p. 592.

5.2 APOIO:

- J. D. Jackson, *Classical Electrodynamics*, 3^a ed. New York: John Wiley & Sons, 1998.
- R. P. Feynman, Lições de Física Eletromagnetismo e Matéria, vol. II. Porto Alegre: Bookman, 2008, p. 624.
- K. D. Machado, Teoria do Eletromagnetismo, 1^a ed., vol. 2. Ponta Grossa: UEPG, 2002.
- K. D. Machado, Teoria do Eletromagnetismo, vol. 3. Ponta Grossa: UEPG, 2006, p. 1100.
- W. Hayt e J. A. Buck, *Eletromagnetismo*, 7^a ed. São Paulo: McGraw-Hill Interamericana, 2008, p. 339.

Aprovado em Assembléia Departamental

Em / /