CTFM 2013: Tokyo Institute of Technology

Decidability for type-related problems of 2nd-order λ -calculi and negative translations

Ken-etsu Fujita Gunma University

2013.02.19

Church-style vs. Curry-style

Types (→-fragment of intuitionistic prop. logic)

$$A ::= X \mid (A \rightarrow A)$$

• λ -terms in Church style

$$M ::= x \mid \lambda x : A.M \mid MM$$

• λ -terms in Curry style

$$M ::= x \mid \lambda x.M \mid MM$$

Type-related problems (TCP, TP, TIP)

- Type checking problem (TCP(s): $\Gamma \vdash_s M : A$?)
 Given a context Γ , a λ -term M in s-style, and a type A, determine whether $\Gamma \vdash_s M : A$.
- Type inference problem (TIP(s): $\Gamma \vdash_s M :?$)
 Given Γ and M in s-style,
 determine whether $\Gamma \vdash_s M : A$ for some type A.
- Typability problem (TP(s): ? $\vdash_s M$:?) Given M in s-style, determine whether $\Gamma \vdash_s M$: A for some context Γ and type A.

$\lambda 2$: 2nd-order lambda-calculus and styles

- $\lambda 2$ -types (2nd-order intuitionistic prop. logic with \to , \forall) $A:=X\mid (A\to A)\mid \forall X.A$
- $\frac{\lambda 2\text{-terms in Church style}}{M ::= x \mid \lambda x \colon\! A.M \mid MM \mid \Lambda X.M \mid M[A] }$

- $\frac{\lambda 2\text{-terms in Curry style}}{M ::= x \mid \lambda x. M \mid M M}$

Intermediate structures between Church and Curry

What is a critical property for the (un)decidability?

$\lambda 2$: 2nd-order lambda-calculus and styles

- $\lambda 2$ -types (2nd-order intuitionistic prop. logic with \to , \forall) $A:=X\mid (A\to A)\mid \forall X.A$
- $\frac{\lambda 2\text{-terms in Church style}}{M::=x\mid \lambda x\!:\! A.M\mid MM\mid \Lambda X.M\mid M[A]}$
- $\lambda 2$ -terms in hole-application style $M ::= x \mid \lambda x : A.M \mid MM \mid \Lambda X.M \mid M$
- $\lambda 2$ -terms in domain-free style $M ::= x \mid \lambda x.M \mid MM \mid \Lambda X.M \mid M[A]$
- $\lambda 2$ -terms in type-free style $M ::= x \mid \lambda x.M \mid MM \mid \Lambda.M \mid M$
- $\frac{\lambda 2\text{-terms in Curry style}}{M ::= x \mid \lambda x. M \mid M M}$
- * Putting type annotation helps to find type of terms.
- * How much of the erased information can be recovered from type inference?
- * What annotation determines essentially decidability or undecidability of the problems?

Inference rules for Church $\lambda 2$

$$\frac{x \in \text{dom}(\Gamma)}{\Gamma \vdash_{\text{Ch}} x : \Gamma(x)} \text{ (var)}$$

$$\frac{\Gamma, x : A_1 \vdash_{\operatorname{Ch}} M : A_2}{\Gamma \vdash_{\operatorname{Ch}} \lambda x : A_1 . M : A_1 \to A_2} \ (\to I)$$

$$\frac{\Gamma \vdash_{\operatorname{Ch}} M_1 : A_1 \to A_2 \quad \Gamma \vdash_{\operatorname{Ch}} M_2 : A_1}{\Gamma \vdash_{\operatorname{Ch}} M_1 M_2 : A_2} \ (\to E)$$

$$\frac{\Gamma \vdash_{\operatorname{Ch}} M : A}{\Gamma \vdash_{\operatorname{Ch}} \Lambda X . M : \forall X . A} \ (\forall I)^* \quad \frac{\Gamma \vdash_{\operatorname{Ch}} M : \forall X . A}{\Gamma \vdash_{\operatorname{Ch}} M [A_1] : A[X := A_1]} \ (\forall E)$$

* Eigenvariable condition: $X \not\in \mathrm{FV}(\Gamma)$

Inference rules for $s \in \{ Hole, DF, TF, Cu \}$ are defined similarly.

Summary of decidability

Styles	TCP	TIP	TP
Church	yes	yes	no [Schubert98]
Hole-application	Yes	Yes	No [FS2013]
Domain-free	No	No	$No\left[extsf{FS2000} ight]$
Type-free	No	No	$No\left[extsf{FS2010} ight]$
Curry	no	no	no [Wells99]

Figure 1: Decidability of TCP, TIP, and TP for $\lambda 2$

- $\begin{tabular}{ll} \hline \bullet & TCP([]), TIP([]): Decidable \\ & Hole-application style says how to apply $(\to I)$, \\ & but leaves instance information out of $(\forall E)$. \\ \end{tabular}$
- TCP(Df), TIP(Df): UndecidableDomain-free style says how to apply $(\forall E)$, but misses polymorphic domains* out of $(\rightarrow I)$.
- TP is so hard, and undecidable for any style. Put more annotations!

$\lambda 2$: 2nd-order lambda-calculus and styles

original Church-style

$$M ::= x^{\mathbf{A}} \mid \lambda x^{\mathbf{A}} \cdot M \mid MM \mid \Lambda X \cdot M \mid M[A]$$

fully annotated Church-style (too much redundant annotations)

$$M ::= x \mid \lambda x : A.M^A \mid M^A M^A \mid \Lambda X.M^A \mid M^A[A]$$

partially annotated Church-style

$$M ::= x \mid \lambda x : A.M \mid MM \mid \Lambda X.M \mid M^{\mathbf{A}}[A]$$

Church style

$$M ::= x \mid \lambda x : A \cdot M \mid MM \mid \Lambda X \cdot M \mid M[A]$$

hole-application style

$$M ::= x \mid \lambda x : A.M \mid MM \mid \Lambda X.M \mid M$$

domain-free style

$$M ::= x \mid \lambda x.M \mid MM \mid \Lambda X.M \mid M[A]$$

type-free style

$$M ::= x \mid \lambda x.M \mid MM \mid \Lambda.M \mid M$$

Curry style

$$M ::= x \mid \lambda x.M \mid MM$$

^{*} A forgetful map $| \ |$ is defined from s-style to t-style (s > t).

^{*} We propose a framework to handle related systems not only $\lambda 2$ but also λ^{\exists} .

Inference rules for fully annotated Church λ^{\exists}

$$\frac{x \in \text{dom}(\Gamma)}{\Gamma \vdash x : \Gamma(x)} \text{ (var)}$$

$$\frac{\Gamma, x : A \vdash M : \bot}{\Gamma \vdash \lambda x^A . M : \neg A} \text{ (} \neg I\text{)} \qquad \frac{\Gamma \vdash M_1 : \neg A \quad \Gamma \vdash M_2 : A}{\Gamma \vdash M_1 M_2 : \bot} \text{ (} \neg E\text{)}$$

$$\frac{\Gamma \vdash M_1 : A \quad \Gamma \vdash M_2 : B}{\Gamma \vdash \langle M_1, M_2 \rangle : A \land B} \text{ (} \land I\text{)}$$

$$\frac{\Gamma \vdash M_1 : A \land B \quad \Gamma, x : A, y : B \vdash M_2 : C}{\Gamma \vdash \text{let } \langle x^A, y^B \rangle = M_1 \text{ in } M_2 : C} \text{ (} \land E\text{)}$$

$$\frac{\Gamma \vdash M : B[X := A]}{\Gamma \vdash \langle A, M \rangle_{\exists X.B} : \exists X.B} \text{ (} \exists I\text{)}$$

$$\frac{\Gamma \vdash M_1 : \exists X.A \quad \Gamma, x : A \vdash M_2 : B}{\Gamma \vdash \text{let } \langle X, x^A \rangle = M_1 \text{ in } M_2 : B} \text{ (} \exists E\text{)}^*$$

* eigenvariable condition: $X \notin FV(\Gamma, B)$

$TP(\lambda 2)$ and $TP(\lambda^{\exists})$

Styles	$TCP(\lambda 2)$	$TCP(\lambda^{\exists})$	$TP(\lambda 2)$	$TP(\lambda^{\exists})$
full Church	yes	yes	yes	yes
partial Church	yes	yes	yes/no	yes/no [F2013]
Church	yes	yes	no	no [F2011,13]
Hole-application	yes	yes	no	no [F2013]
Domain-free	no	no	no	no [Nakazawa,et.al.08]
Type-free	no	no	no	no [FS2009]
Curry	no	no	no	no [F2011]

Figure 2: Decidability of TCP and TP for $\lambda 2, \lambda^{\exists}$

Framework:

- Undecidability of $\lambda 2$ implies that of a corresponding λ^{\exists} via negative trans. (CPS-trans.)
- Decidability of λ^{\exists} implies that of a corresponding $\lambda 2$

Framework

Soundness of t-style $\lambda 2$:

Completeness of t-style $\lambda 2$:

Negative translation (CPS-translation) from $\lambda 2$ into λ^{\exists}

1. CPS-translation:

$$X^* = X, (A \to B)^* = \neg A^* \land B^*, (\forall X.A)^* = \exists X.A^*.$$

2. fully annotated Church $\lambda 2$:

$$M ::= x \mid \lambda x^A \cdot M^B \mid MM^A \mid \Lambda X \cdot M^A \mid M^{\forall X \cdot A} B$$

3. fully annotated Church λ^{\exists} :

$$\begin{split} M ::= x \mid \lambda x \colon & A.M \mid MM \\ \mid \langle M, M \rangle \mid \text{let } \langle x \colon & A, x \colon & B \rangle = M \text{ in } M \\ \mid \langle A, M \rangle_{\exists X.B} \mid \text{let } \langle X, x \colon & A \rangle = M \text{ in } M \end{split}$$

4. CPS-translation: $(x)^* = xa$, $(x^A M^B)^* = (1a + /x - A^*)$

$$(\lambda x^{A}.M^{B})^{*} = (\text{let } \langle x : \neg A^{*}, a : B^{*} \rangle = a \text{ in } M^{*}),$$
 $(MN^{A})^{*} = M^{*}[a := \langle \lambda a : A^{*}.N^{*}, a \rangle],$
 $(\Lambda X.M^{A})^{*} = (\text{let } \langle X, a : A^{*} \rangle = a \text{ in } M^{*}),$
 $(M^{\forall X.A}B)^{*} = M^{*}[a := \langle B^{*}, a \rangle_{\exists X.A^{*}}]$

5. Theorem (sound and complete):

$$\Gamma \vdash_{\mathrm{fullCh}\lambda^2} M : A \text{ if and only if } \neg \Gamma^* \vdash_{\mathrm{fullCh}\lambda^\exists} \lambda a : A^*.M^* : \neg A^*.$$

Commutativity of CPS-translation $*: \lambda 2 \rightarrow \lambda^{\exists}$, inverse

 $\sharp:\lambda^{\exists}\to\lambda 2$ and forgetful mapping $\mid \mid_t^s$

Case of $(M^{\forall X.A}B)$:

$$M^{\forall X.A}B \xrightarrow{\mid |_{\mathrm{ch}}^{\mathrm{fch}}} |M|_{\mathrm{ch}}^{\mathrm{fch}}B \xrightarrow{\mid |_{\mathrm{tf}}^{\mathrm{ch}}} |M|_{\mathrm{tf}}^{\mathrm{fch}}[] \xrightarrow{\mid |_{\mathrm{cu}}^{\mathrm{tf}}} |M|_{\mathrm{cu}}^{\mathrm{fch}}$$

$$\downarrow^{\mathrm{sch}} \downarrow \qquad \qquad \downarrow^{\mathrm{ch}} \downarrow \qquad \qquad \downarrow^{\mathrm{tf}} \downarrow \qquad \qquad \downarrow^{\mathrm{tf}} \downarrow$$

$$M^{*}[a := \langle B^{*}, a \rangle_{\exists X.A^{*}}] \xrightarrow{\mid |_{\mathrm{ch}}^{\mathrm{fch}}} |M^{*}|_{\mathrm{ch}}^{\mathrm{fch}}[a := \langle B^{*}, a \rangle] \xrightarrow{\mid |_{\mathrm{tf}}^{\mathrm{ch}}} |M^{*}|_{\mathrm{tf}}^{\mathrm{fch}}[a := \langle a \rangle] \xrightarrow{\mid |_{\mathrm{cu}}^{\mathrm{tf}}} |M^{*}|_{\mathrm{cu}}^{\mathrm{fch}}$$

Case of $\langle B^*, C \rangle_{\exists X.A^*}$:

$$C^{\sharp}[[]^{\forall X.A^{*\sharp}}B^{*\sharp}] \xrightarrow{||fch| \atop ch} |C^{\sharp}|^{fch}[B^{*\sharp}] \xrightarrow{||fch| \atop tf} |C^{\sharp}|^{fch}[[]] \xrightarrow{||fch| \atop cu} |C^{\sharp}|^{fch}[u]$$

$$\uparrow^{fch} \qquad \uparrow^{ch} \qquad \uparrow^{tf} \qquad \uparrow^{tf} \qquad \uparrow^{tf}$$

$$\langle B^*, C \rangle_{\exists X.A^*} \xrightarrow{||fch| \atop ch} \langle B^*, |C|^{fch}_{ch} \rangle \xrightarrow{||fch| \atop tf} \langle |C|^{fch}_{tf} \rangle \xrightarrow{||fch| \atop cu} |C|^{fch}_{cu}$$

Note that for CPS-types $A^*, B^* ::= X \mid \neg A^* \wedge B^* \mid \exists X.A^*$, we have a unique $\lambda 2$ -type A s.t. $A^{*\sharp} = A$.

Undecidability of TP(partial Church $\lambda 2$) implies that of TP(partial Church λ^{\exists})

1. (Schubert 1998): 2nd order unification of simple instances is undecidable

$$\mathsf{F}A_1 \dots A_n \doteq (\mathsf{F}A'_1 \dots A'_n \to A_0)$$

 $\mathsf{G}B_1 \dots B_m \doteq (\mathsf{G}B'_1 \dots B'_m \to \mathsf{F}A'_1 \dots A'_n)$

F, G are functional unification variables, and $A, B := X \mid (A \rightarrow A)$.

2. partially annotated Church $\lambda 2$:

$$M ::= x \mid \lambda x^{A}.M^{B} \mid MM \mid \Lambda X.M^{A} \mid MA$$

$$M_{0} \stackrel{\text{def}}{=} z (z_{1}((x_{\mathsf{F}}A_{1} \dots A_{n})(x_{\mathsf{F}}A'_{1} \dots A'_{n}))) \quad (\lambda x : A_{0}.(z_{1}x)^{X})$$

$$(z_{2}((y_{\mathsf{G}}B_{1} \dots B_{m})(y_{\mathsf{G}}B'_{1} \dots B'_{m}))) \quad (z_{2}(x_{\mathsf{F}}A'_{1} \dots A'_{n}))$$

- 3. Theorem: The simple instance is solvable iff M_0 is typable. This implies that TP(partial Church $\lambda 2$) is undecidable. Moreover, the following TP(partial Church λ^{\exists}) is undecidable under the framework.
- 4. partially annotated Church λ^{\exists}

$$M ::= x \mid \lambda x. M \mid MM \mid \langle M, M \rangle \mid \text{let } \langle x : A, x : B \rangle = M \text{ in } M \mid \langle A, M \rangle \mid \text{let } \langle X, x : A \rangle = M \text{ in } M$$

References

- 1. Schubert: Second-order unification and type inference for Church-style polymorphism, POPL '98, pp. 279–288, 1998.
- 2. Wells: Typability and type checking in system F are equivalent and undecidable, Ann. Pure Appl. Logic 98, pp. 111–156, 1999.
- 3. Fujita, Schubert: Partially typed terms between Church-style and Curry-style, LNCS 1872, pp. 505–520, 2000.
- 4. Fujita, Schubert: Existential type systems with no types in terms, LNCS 5608, pp. 112–126, 2009.
- 5. Fujita: CPS-translation as adjoint, Theoretical Computer Science 411, pp. 324–340, 2010.
- 6. Fujita: A framework for reduction from $\lambda 2$ -calculi to λ^{\exists} -calculi, Computer Software 28-4, pp. 341–357, 2011.
- 7. Fujita, Schubert: The undecidability of type related problems in the type-free style System F with finitely stratified polymorphic types, Information and Computation 218, pp. 69–87, 2012.
- 8. Fujita, Schubert: Decidable structures between Church-style and Curry-style, submitted, 2013.