ALTERNATIVE SIMPLEX METHOD (DUAL SIMPLEX METHOD)

Recall that the method deals with situations where we have a simplex tableau with the following features:

- Some of the right-hand side values (b_i) are negative
- All the reduced costs satisfy the optimality condition.

The method <u>attempts to restore feasibility</u> (make the right-hand side values non-negative) without forcing the reduced costs to violate the optimality condition.

Dual simplex algorithm is just the <u>opposite</u> of the primal simplex algorithm.

If it fails, the conclusion is that the problem is infeasible.

Procedure:

1. Find a negative basic variable.

If there is none we have the optimal solution; if there is more than one <u>find the most negative</u>. Suppose this variable is the basic variable in the r. constraint. This gives the variable to come out of the basis.

2. In row r look for negative coefficients a'rj.

If there are none there is no feasible solution to the problem. For negative coefficients a'rj in this row find the

$$\min \left| \frac{c_j'}{a_{rj}} \right| \bullet$$

3. Carry out the usual Simplex Transformation with a'rs as pivot.

Dual simplex method differs from the Simplex Method only in the way in which it selects the variables to leave and enter (in that order) the basis.

Example:

Min Z =
$$4 x_1 + 6 x_2 + 18 x_3$$

s.t.
$$x_1 + 3 x_3 \ge 3$$

 $x_2 + 2 x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$

Min Z =
$$4 x_1 + 6 x_2 + 18 x_3$$

s.t.
$$-x_1 - 3 x_3 \le -3$$

 $-x_2 -2 x_3 \le -5$
 $x_1, x_2, x_3 \ge 0$

$$-x_1$$
 - $3x_3$ + x_4 = -3
 $-x_2$ - $2x_3$ + x_5 = -5

 $NBV = (x_1, x_2, x_3)$ $BV(x_4, x_5) = -3, -5$ (No feasible)

Full Simplex Solution

Min Z =
$$4 x_1 + 6 x_2 + 18 x_3$$

s.t.
$$x_1 + 3 x_3 \ge 3$$

 $x_2 + 2 x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$

$$x_1 + 3 x_3 -x_4 + x_6 = 3$$

 $x_2 + 2x_3 -x_5 + x_7 = 5$

$$\mathbf{w} = \mathbf{x}_6 + \mathbf{x}_7$$

$$-w - x_1 - x_2 - 5x_3 + x_4 + x_5 = -8$$

Dual Problem

Max
$$Z' = 3y_1 + 5y_2$$

s.t.
$$y_1 \le 4$$

 $y_2 \le 6$
 $3y_1 + 2y_2 \le 18$

$$y_1,y_2 \ge 0$$

Two-phase(Full) simplex

BASIS	X ₁	X 2	Х3	X4	X 5	X 6	X 7	RHS	RATI O
X 6	1	0	3<	-1	0	1	0	3	1
X 7	0	1	2	0	-1	0	1	5	2.5<
-w	-1	-1	-5<	1	1	0	0	-8	
-Z	4	6	18	0	0	0	0	0	
X 3	1/3	0	1	-1/3	0	1/3	0	1	
X 7	2/3	1	0	2/3	-1	-2/3	1	3	3<
-w	2/3	-1	0	-2/3	1	5/3	0	-3	
-Z	-2	6	0	6	0	-6	0	-18	
X 3	1/3	0	1	-1/2	0	1/3 /	′ 0 /	1	
X 2	-2/3	1	0	2/3	-1	2/3/	1/	3	
-w	0	0	0	0	0	<u>/1</u>	<u>/1</u>	0	
-Z	2	0	0	2	6	/ -2	/-6	-36	

Dual Solution (with simplex)

BASIS	y 1	y 2	y 3	y 4	y 5	RHS	RATI O
y 3	1	0	1	0	0	4	-
y 4	0	1<	0	1	0	6	6<
y 5	3	2	0	0	1	18	9
Z'	-3	-5<	0	0	0	0	
y ₃	1	0	1	0	0	4	4
\mathbf{y}_2	0	1	0	1	0	6	-
y 5	3	0	0	-2	1	6	2
Z '	-3	0	0	5	0	30	
y 3	0	0	1	2/3	-1/3	2	
y 2	0	1	0	1	0	6	
y 1	1	0	0	-2/3	1/3	2	
Z'	0	0	0	3	1	36	

NEW SOLUTION (Alternative Simplex)

Initial tableau for the alternative simplex method

BASIS	X 1	X 2	X 3	X 4	X 5	RHS	1
X 4	-1	0	-3	1	0	-3	
X 5	0	-1<	-2	0	1	-5<	—
-Z	4	6	18	0	0	0	
RATI		6<	9				
						_	_

Leaving variable x₅

Entering variable x₂

Initial and the first tableau for the alternative simplex method

Leaving variable x₄

Entering variable x₃

Initial and the first two table for the alternative simplex method

BASIS	X 1	X 2	X 3	X 4	X 5	RHS	1
X4	-1	0	-3	1	0	-3 -5<	
X 5	0	-1<	-2	0	1	-5<	
-Z	4	6	18	0	0	0	
RATI		6<	9				
О							
X4	-1	0	-3<	1	0	-3< 5	
X 2	0	1	2	0	-1	5	
-Z	4	0	6	0	6	-30	
RATI	4		2<				
0							
X 3	1/3	0	1	-1/3	0	1	
X 2	-2/3	1	0	2/3	-1	3	
-Z	2	0	0	2	6	-36	

Solution:

$$X_1 = 0$$
; $X_2 = 3$; $X_3 = 1$ $Z_{min} = 36$

Example:

$$\mathbf{Min}\;\mathbf{Z}=\;x_1+x_2$$

s. t.
$$x_1 + 2x_2 \ge 6$$

 $2x1 + x_2 \ge 6$
 $7x_1 + 8x_2 \le 56$
 $x_1, x_2 \ge 0$

$$-Z + x1 + x2 = 0$$

$$-x_1 - 2x_2 + x_3 = -6$$

 $2x_1 - x_2 + x_4 = -6$
 $7x_1 + 8x_2 + x_5 = 56$

BASIS	X 1	X 2	Х3	X 4	X 5	RHS
X 3	-1	-2	1	0	0	-6
X 4	-2	-1	0	1	0	-6<
X 5	7	8	0	0	1	56
-Z	1	1	0	0	0	0
RATI	0.5<	1				
О						
X 3	0	-3/2<	1	-1/2	0	-3
X 1	1	$\frac{1}{2}$	0	-1/2	0	3
X 5	0	9/2	0	7/2	1	35
-Z	0	1/2	0	1/2	0	-3
RATI		1/3				
0						
\mathbf{X}_2	0	1	-2/3	1/3	0	2
X 1	1	0	1/3	-2/3	0	2
X 5	0	0	3	2	1	26
-Z	0	0	1/3	1/3	0	-4

$$x_1 = 2$$
 $x_2 = 2$ $x_3 = x_4 = 0$ $x_5 = 26$ $Z_{min} = 4$

Example: Different Approximations

Max Z =
$$x_1 + 2 x_2$$

s.t.
$$3 x_1 + x_2 \le 6$$

 $2x1 + x_2 = 5$
 $x_1, x_2 \ge 0$

Two-Phase Simplex

$$Z-x_1-2x_2 = 0$$

 $3x_1 + x_2 + x_3 = 6$
 $2x_1 + x_2 + x_4 = 5$
 $W = x_4$
 $-W-2x_1-x_2 = -5$

Big-M Simplex

$$Z-x_1-2x_2 + M x_4=0$$

$$Z-x_1-2x_2 + M (5-2x_1-x_2)=0$$

$$Z + (-2M-1)x_1+(-M-2)x_2 = -5M$$

$$3x_1 + x_2 + x_3 = 6$$

$$2x_1 + x_2 + x_4 = 5$$

Dual Model

Min Z' =
$$6y_1 + 5 y_2$$

s. t. $3 y_1 + 2 y_2 \ge 1$
 $y_1 + y_2 \ge 2$
 $y_1, y_2 \ge 0$

Alternative Simplex for Dual Model

$$-3y_1 - 2y_2 \le -1$$

 $-y_1 - y_2 \le -2$
 $-Z' + 6y_1 + 5y_2 = 0$
 $-3y_1 - 2y_2 + y_3 = -1$
 $-y_1 - y_2 + y_4 = -2$

Two-Phase

BASIS	X1	X 2	X 3	X 4	RHS	RATIO
Х3	3<	1	1	0	6	2<
X 4	2	1	0	1	5	2.5
-w	-2<	-1	0	0	-5	
Z	-1	-2	0	0	0	
X 1	1	1/3	1/3	0	2	6
X4	0	1/3<	-2/3	1	1	3<
-w	0	-1/3<	2/3	0	-1	
Z	0	-5/3	1/3	0	2	
\mathbf{x}_1	1	0	1	-1	1	1<
X 2	0	1	-2	3/	3	
-W	0	0	0	/1	0	
Z	0	0	-3	5	7	
X 3	1	0	1		1	
X 2	2	1	0		5	
Z	3	0	0		10	

$$x_1 = 0$$
 $x_2 = 5$ $Z_{max} = 10$

Big-M

BASIS	X 1	X 2	X 3	X4	RHS	RATIO
X 3	3<	1	1	0	6	2<
X 4	2	1	0	1	5	2.5
Z	-2M-	-M-2	0	0	-5M	
	1					
X 1	1	1/3	1/3	0	2	6
X 4	0	1/3<	-2/3	1	1	3<
Z	0	-M/3-	2M/3+1/3	0	2	
	1	5/3	1	1	4	1 .
X 1	1	0	1	-1	1	1<
X 2	0	1	-2	3	3	
Z	0	0	-3	M+5	7	
X 3	1	0	1	-1	1	
X 2	2	1	0	-2	5	
Z	3	0	0	M+2	10	

$$x_1 = 0$$
 $x_2 = 5$ $Z_{max} = 10$

Alternative Simplex for Dual Model

BASIS	y 1	y 2	y 3	y 4	RHS	RATIO
y 3	-3	-2	1	0	-1	
y 4	-1	-1<	0	1	-2 <	
-Z'	6	5	0	0	0	
RATIO	6	5<				
y 3	-1	0	1	2	3	
\mathbf{y}_2	1	1	0	-1	2	
-Z'	1	0	0	5	-10	

$$x_1 = 0$$
 $x_2 = 5$
- $Z'_{min} = Z_{max} = 10$