Simone Canevarolo S269893 24 gennaio 2025 s269893@studenti.polito.it

ESAME DI LABORATORIO COMPUTAZIONALE DI SCAMBIO TERMICO

Descrizione del problema

Il problema riguarda la sezione di un conduttore cavo, con passaggio di fluido all'interno e lambito esternamente da un altro fluido con i quali si trova in stato di convezione termica.

Periodicamente, vi è un'alterazione delle condizioni del problema iniziale: per un tempo di 30 secondi, internamente scorre infatti un fluido a temperatura minore ma con stesso coefficiente convettivo. Dopo questo tempo e fino al periodo seguente, della durata di 250 s, le condizioni iniziali vengono ripristinate nei tubi.

Discretizzazione

Al fine di rispondere alle richieste del problema, si deve partire dalla discretizzazione dell'equazione generale.

Conoscendo infatti la seguente formulazione in derivate parziali, valida per qualsiasi problema:

$$\rho \ cp \ \frac{\partial T}{\partial t} = \ \ddot{q} + \frac{\partial T}{\partial x} (k(T) \left(\frac{\partial T}{\partial x} \right)) - h \frac{As}{V} (T - T_f)$$

posso discretizzare e ottenere la seguente equazione

$$T_{i+1}^{m+1} \left(-aa \cdot \left(1 + \frac{\Delta r}{2 \cdot rr} \right) \right) + T_{i}^{m+1} (1 + 2 \cdot aa) + T_{i-1}^{m+1} \left(-aa \cdot \left(1 + \frac{\Delta r}{2 \cdot rr} \right) \right) = T_{i}^{m}$$

con

$$aa = \frac{k \cdot \Delta t}{\Delta r^2 \cdot \rho \cdot cp}$$

Periodicità

Dalla formula del tau, in secondi:

$$\tau = \frac{\rho \ cp \ V}{h \ As}$$

ricavo per il caso corrente, applicando il coefficiente di scambio termico al raggio interno e lo stesso raggio interno ottenuto da semplificazioni della formula, un valore di τ = 5850 s, all'incirca di 1 ora e 37minuti.

Ciò significa che dopo tale istante di tempo si piò considerare l'impianto a regime periodico, dopo oltre 23 cicli di funzionamento. Nel nostro codice, lo considereremo effettivo dal 24esimo nei calcoli.

Grafici

• Evoluzione della temperatura al raggio interno ed esterno nel tempo

Sono stati operati 40 cicli di funzionamento. All'istante t = 5850 s è stata posizionata una linea verticale che illustra il momento in cui l'impianto funziona a regime.

Si osserva un andamento periodico molto accentuato al raggio interno mentre le variazioni di temperatura sono sensibilmente ridotte al raggio esterno.

Profilo di temperatura del condotto a regime quando la temperatura del raggio esterno è massima

Abbiamo da questo grafico la conferma di quanto ipotizzato prima: per via di un coefficiente di scambio termico diverso di due ordini di grandezza, l'andamento della temperatura a regime della sezione del tubo conduttore assume un andamento quasi logaritmico. Infatti, è il principale motivo per cui la variazione di temperatura sul bordo sinistro è nettamente maggiore di quella sul ordo destro durante un periodo.

Temperatura massima al raggio esterno in condizioni di funzionamento a regime

La temperatura massima al raggio esterno del tubo di metallo in condizioni di regime è 319.23793 K.

• Accuratezza numerica del valore massimo di temperatura

Usando un opportuno vettore con i vari delta di raggio da utilizzare nel problema che rendono più o meno accurata la soluzione, otteniamo questo andamento della temperatura massima nell'impianto a regime.

Confronto con un caso analogo di tubo in resina

Nel caso di un tubo in resina, che ha proprietà diverse quali una minore densità volumetrica, un maggiore calore specifico e una minore conducibilità termica, osserviamo alcune differenze.

In primis, è minore il τ , che si attesta su un valore compreso tra 13 e 14 cicli invece di oltre 23. In pratica, l'impianto impiega molto meno tempo ad arrivare a regime.

Nel tubo in resina, l'oscillazione della temperatura al raggio interno è maggiore, arrivando nello stesso tempo all'incirca a gradi centigradi di temperatura in meno rispetto al caso del tubo visto in precedenza. Allo stesso modo, è ridotta anche l'oscillazione di temperatura al raggio esterno, risultando ancora minore di quella presente nel tubo in metallo.

Chiaramente ad influire su quest'ultimo aspetto è la minore conducibilità termica.

Energia trasferita al fluido all'interno del condotto

Inserisco i valori delle perdite per unità di lunghezza interne al tubo, considerando tutto il calcolo al netto di una lunghezza di 1 metro per l'area di scambio.

Nel caso del tubo in metallo, ottengo una dissipazione di circa 2.5 MJ, mentre nel caso dello stesso tubo in resina ottengo poco meno di 1 MJ, 967 KJ, trasferito in un'ora di funzionamento a regime.

Quale tubatura utilizzare?

In seguito allo studio effettuato, al fine di minimizzare le perdite di calore per unità di lunghezza nel tubo, il modello più conveniente termicamente è quello in resina.

In un ipotetico acquisto, vi sarebbero numerose variabili in più da considerare, quali il costo e la disponibilità dei materiali e se è conveniente rispetto al caso della tubatura in metallo, al netto di imprevisti e situazioni scomode che potrebbero verificarsi.

Script

```
% Esame di Lacoste - 24/01/2025
% Simone Canevarolo
% 24/01/2025
% s269893@studenti.polito.it
clear all
close all
clc
%% Punti 1, 2, 3
rin = 1e-2; % m
ss = 5e-2; % m
rout = rin+ss; % m
rovol = 7800; % kg/m<sup>3</sup>
cp = 500; \% J/kg/K
kk = 25; % W/m/K
Tin = 50+273; % K
Tout = Tin; % K
hout = 20; % W/m<sup>2</sup>/K
hin = 2000; \% W/m^2/K
tcon = 30; % s
freq = 0.004; % Hz
dr = 1e-4; % m
rr = (rin:dr:rout)';
Nr = length(rr);
dt = 1; % s
tper = 1/freq; % s
nper = 40;
tt = (0:dt:nper*tper);
Nt = length(tt);
timeper = 0; % secondo corrente all'interno del periodo
per = 1; % periodo corrente
Tm = Tin*ones(Nr,1);
Traggioin = Tin*ones(Nt,1);
Traggioout = Tout*ones(Nt,1);
```

```
Tmaxright = 0;
Tsave = Tm;
zz = 0;
for ii = 2:Nt
    timeper = timeper+dt;
    aa = kk*dt/dr^2/rovol/cp;
    sub_diag = -aa.*(1-dr./2./rr);
    main_diag = (1+2*aa)*ones(Nr,1);
    \sup_{diag} = -aa.*(1+dr./2./rr);
    Band = [[sub_diag(2:end);0], main_diag, [0;sup_diag(1:end-1)]];
    AA = spdiags(Band,-1:1,Nr,Nr);
    bb = Tm;
    if timeper < 10</pre>
        Tin = 50+273; % K
        % Robin
        AA(1,1) = kk/dr+hin;
        AA(1,2) = -kk/dr;
        bb(1) = hin*Tin;
        % Robin
        AA(end,end-1) = -kk/dr;
        AA(end,end) = kk/dr+hout;
        bb(end) = Tout*hout;
    elseif timeper >= 10 && timeper <= 40</pre>
        Tin = 10+273; % K
        % Robin
        AA(1,1) = kk/dr+hin;
        AA(1,2) = -kk/dr;
        bb(1) = hin*Tin;
        % Robin
        AA(end,end-1) = -kk/dr;
        AA(end,end) = kk/dr+hout;
        bb(end) = Tout*hout;
    elseif timeper > 40
        Tin = 50+273; % K
        % Robin
```

```
AA(1,1) = kk/dr+hin;
        AA(1,2) = -kk/dr;
        bb(1) = hin*Tin;
        % Robin
        AA(end,end-1) = -kk/dr;
        AA(end,end) = kk/dr+hout;
        bb(end) = Tout*hout;
    end
    TT = AA \backslash bb;
    Traggioin(ii) = TT(1);
    Traggioout(ii) = TT(end);
    if timeper == tper
        timeper = 0;
        per = per+1;
    end
    if per > 24
        if Traggioout(ii) > Tmaxright
            Tmaxright = Traggioout(ii);
            Tsave = TT;
       end
       zz = zz+1;
       if zz <= 3600
           qout(zz) = abs(hin*(TT(1)-Tin)*(2*pi*rin));
       end
    end
    Tm = TT;
end
tau = rovol*cp/hout*rout/2;
qouttot = sum(qout, 'all');
figure(1)
plot(tt,Traggioin-273,'LineWidth',2)
hold on
plot(tt,Traggioout-273,'LineWidth',2)
title('Andamento T nel tempo al raggio interno ed esterno, tubo in metallo')
xlabel('tempo [s]')
ylabel('Temperatura [°C]')
```

```
hold on
xline(tau)
legend('T raggio interno', 'T raggio esterno', 'Tau', 'Location', 'best')
fprintf('La temperatura massima al raggio esterno del tubo di metallo in condizioni di
regime è %.5f K \n', Tmaxright)
figure(2)
plot(rr,Tsave-273,'LineWidth',2)
title('Profilo temperatura quando T raggio esterno è massima')
xlabel('Lunghezza [m]')
ylabel('Temperatura [°C]')
fprintf('Energia trasferita al condotto interno in una ora di funzionamento con
tubatura in metallo: %.5f J \n', qouttot)
%% Punto 4 - accuratezza numerica del valore massimo di temperatura
drvett = sort([5e-3 2e-3 1e-3 5e-4 2e-4 1e-4]);
errmax = zeros(length(drvett),1);
for jj = 1:length(drvett)
    dr = drvett(jj);
    rr = (rin:dr:rout)';
    Nr = length(rr);
    dt = 1; % s
    tper = 1/freq; % s
    nper = 50;
    tt = (0:dt:nper*tper);
    Nt = length(tt);
    timeper = 0; % secondo corrente all'interno del periodo
    per = 1; % periodo corrente
    Tm = Tin*ones(Nr,1);
    Traggioin = Tin*ones(Nt,1);
    Traggioout = Tout*ones(Nt,1);
    Tmax = 0;
    for ii = 2:Nt
        timeper = timeper+dt;
        aa = kk*dt/dr^2/rovol/cp;
        sub\_diag = -aa.*(1-dr./2./rr);
        main\_diag = (1+2*aa)*ones(Nr,1);
        \sup_{diag} = -aa.*(1+dr./2./rr);
        Band = [[sub_diag(2:end);0], main_diag, [0;sup_diag(1:end-1)]];
        AA = spdiags(Band, -1:1, Nr, Nr);
        bb = Tm;
```

```
if timeper < 10</pre>
    Tin = 50+273; % K
    % Robin
    AA(1,1) = kk/dr+hin;
    AA(1,2) = -kk/dr;
    bb(1) = hin*Tin;
    % Robin
    AA(end,end-1) = -kk/dr;
    AA(end,end) = kk/dr+hout;
    bb(end) = Tout*hout;
elseif timeper >= 10 && timeper <= 40</pre>
    Tin = 10+273; % K
    % Robin
    AA(1,1) = kk/dr+hin;
    AA(1,2) = -kk/dr;
    bb(1) = hin*Tin;
    % Robin
    AA(end,end-1) = -kk/dr;
    AA(end,end) = kk/dr+hout;
    bb(end) = Tout*hout;
elseif timeper > 40
    Tin = 50+273; % K
    % Robin
    AA(1,1) = kk/dr+hin;
    AA(1,2) = -kk/dr;
    bb(1) = hin*Tin;
    % Robin
    AA(end,end-1) = -kk/dr;
    AA(end,end) = kk/dr+hout;
    bb(end) = Tout*hout;
end
TT = AA \backslash bb;
if timeper == tper
    timeper = 0;
    per = per+1;
```

```
end
        if per > 24
            if max(TT) > Tmax
                Tmax = max(TT);
            end
        end
        Tm = TT;
    end
    Tmaxvett(jj) = Tmax;
end
figure(3)
semilogx(drvett,Tmaxvett,'LineWidth',2)
title('Temperatura massima al variare di dr')
xlabel('dr [m]')
ylabel('Temperatura massima ')
grid on
%% Punto 5 - Tubo in resina
rovol = 1500; % kg/m<sup>3</sup>
cp = 1500; \% J/kg/K
kk = 5; % W/m/K
dr = 1e-4; % m
rr = (rin:dr:rout)';
Nr = length(rr);
dt = 1; % s
tper = 1/freq; % s
nper = 25;
tt = (0:dt:nper*tper);
Nt = length(tt);
timeper = 0; % secondo corrente all'interno del periodo
per = 1; % periodo corrente
Tm = Tin*ones(Nr,1);
Traggioin = Tin*ones(Nt,1);
Traggioout = Tout*ones(Nt,1);
Tmaxright = 0;
Tsave = Tm;
zz = 0;
for ii = 2:Nt
    timeper = timeper+dt;
```

```
aa = kk*dt/dr^2/rovol/cp;
sub\_diag = -aa.*(1-dr./2./rr);
main\_diag = (1+2*aa)*ones(Nr,1);
\sup_{diag} = -aa.*(1+dr./2./rr);
Band = [[sub_diag(2:end);0], main_diag, [0;sup_diag(1:end-1)]];
AA = spdiags(Band, -1:1, Nr, Nr);
bb = Tm;
if timeper < 10</pre>
    Tin = 50+273; % K
    % Robin
    AA(1,1) = kk/dr+hin;
    AA(1,2) = -kk/dr;
    bb(1) = hin*Tin;
    % Robin
    AA(end,end-1) = -kk/dr;
    AA(end,end) = kk/dr+hout;
    bb(end) = Tout*hout;
elseif timeper >= 10 && timeper <= 40</pre>
    Tin = 10+273; % K
    % Robin
    AA(1,1) = kk/dr+hin;
    AA(1,2) = -kk/dr;
    bb(1) = hin*Tin;
    % Robin
    AA(end,end-1) = -kk/dr;
    AA(end,end) = kk/dr+hout;
    bb(end) = Tout*hout;
elseif timeper > 40
    Tin = 50+273; % K
    % Robin
    AA(1,1) = kk/dr+hin;
    AA(1,2) = -kk/dr;
    bb(1) = hin*Tin;
    % Robin
    AA(end,end-1) = -kk/dr;
    AA(end,end) = kk/dr+hout;
    bb(end) = Tout*hout;
```

```
end
    TT = AA \setminus bb;
    Traggioin(ii) = TT(1);
    Traggioout(ii) = TT(end);
    if timeper == tper
        timeper = 0;
        per = per+1;
    end
    if per > 14
        if Traggioout(ii) > Tmaxright
            Tmaxright = Traggioout(ii);
            Tsave = TT;
       end
       zz = zz+1;
       if zz <= 3600
           qout_res(zz) = abs(hin*(TT(1)-Tin)*(2*pi*rin));
       end
    end
    Tm = TT;
end
tau_res = rovol*cp/hout*rout/2;
qouttot_res = sum(qout_res, 'all');
figure(4)
plot(tt,Traggioin-273,'LineWidth',2)
hold on
plot(tt,Traggioout-273,'LineWidth',2)
title('Andamento T nel tempo al raggio interno ed esterno, tubo in resina')
xlabel('tempo [s]')
ylabel('Temperatura [°C]')
hold on
xline(tau_res)
legend('T raggio interno', 'T raggio esterno', 'Tau', 'Location', 'best')
fprintf('Energia trasferita al condotto interno in una ora di funzionamento con
tubatura in resina: %.5f J', qouttot_res)
```