Project Planning Phase

Date	02 November 2022
Team ID	PNT2022TMID17569
Project Name	Project – IOT Based Safety Gadget for Child safety monitoring and notification
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Simulation creation	USN-1	Connect Sensors and Arduino with python code	2	High	Vetrivel K Yogeshwaran M Thirumoorthy M Vignesh J
Sprint-2	Software	USN-2	Creating device in the IBM Watson IoT platform, workflow for IoT scenarios using Node-Red	2	High	Vetrivel K Yogeshwaran M Thirumoorthy M Vignesh J
Sprint-3	MIT App Inventor	USN-3	Develop an application for the Smart farmer project using MIT App Inventor	2	High	Vetrivel K Yogeshwaran M Thirumoorthy M Vignesh J
Sprint-3	Dashboard	USN-3	Design the Modules and test the connect to data base.	2	High	Vetrivel K Yogeshwaran M Thirumoorthy M Vignesh J

Sprint-4	Web UI	USN-4	To make the user to interact with software and find the Location	2	High	Vetrivel K Yogeshwaran M Thirumoorthy M
						Vignesh J

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit

(story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

https://www.visual-paradigm.com/scrum/scrum-burndown-chart/

https://www.atlassian.com/agile/tutorials/burndown-charts

Reference:

https://www.atlassian.com/agile/project-management

https://www.atlassian.com/agile/tutorials/how-to-do-scrum-with-jira-software

https://www.atlassian.com/agile/tutorials/epics

https://www.atlassian.com/agile/tutorials/sprints

https://www.atlassian.com/agile/project-management/estimation

https://www.atlassian.com/agile/tutorials/burndown-charts