Joint Entropy, Conditional entropy and Mutual Information

An informal introduction

Consider the following two statements

- 1. Sindhu, an Indian won medal in Olympics, in badminton.
- 2. India has got one Silver medal in Olympics
- Both the statements have something in common and something not.
 - Common: India won medal in Olympics
 - Unique to 1st statement: Who got? & Which game?
 - Unique to 2nd statement: What medal?

Joint entropy

$$H(X,Y) = \sum_{xy \in \mathcal{A}_X \mathcal{A}_Y} P(x,y) \log \frac{1}{P(x,y)}$$

Independent random variables

•Two independent probability distributions $P_X = \{p_1, \dots, p_N\}$ & $Q_Y = \{q_1, \dots, q_M\}$

$$H = -\sum_{i=1}^{N} \sum_{j=1}^{M} p(i, j) \log (p(i, j))$$

$$p(i, j) = p(i)q(j)$$

$$H = -\sum_{i=1}^{N} \sum_{j=1}^{M} p(i)q(j) \log (p(i)q(j))$$

$$= -\sum_{i=1}^{N} \sum_{j=1}^{M} p(i)q(j) [\log p(i) + \log q(j)]$$

$$= -\sum_{i=1}^{N} \sum_{j=1}^{M} p(i)q(j) \log p(i) + -\sum_{i=1}^{N} \sum_{j=1}^{M} p(i)q(j) \log q(j)$$

$$= -\sum_{i=1}^{N} p(i) \log p(i) \{q_1 + \dots + q_M\} + -\sum_{j=1}^{M} q(j) \log q(j) \{p_1 + \dots + p_N\}$$

$$\{q_1 + \dots + q_M\} = \{p_1 + \dots + p_N\} = 1$$

$$H = -\sum_{i=1}^{N} p(i) \log p(i) + -\sum_{j=1}^{M} q(j) \log q(j)$$

$$= H_{p_X} + H_{Q_Y}$$

Conditional entropy of X given $y=b_k$

$$H(X \mid y = b_k) \equiv \sum_{x \in \mathcal{A}_X} P(x \mid y = b_k) \log \frac{1}{P(x \mid y = b_k)}$$

Conditional entropy of X given $y=b_1$

$$H(X | y = b_1) \equiv \sum_{x \in A_X} P(x | y = b_1) \log \frac{1}{P(x | y = b_1)}$$

Conditional entropy of X given y=b₂

$$H(X | y = b_2) \equiv \sum_{x \in A_X} P(x | y = b_2) \log \frac{1}{P(x | y = b_2)}$$

Conditional entropy of X given $y=b_3$

$$H(X | y = b_3) \equiv \sum_{x \in A_X} P(x | y = b_3) \log \frac{1}{P(x | y = b_3)}$$

Conditional entropy of X given Y (for various y s)

$$P(y=b_1).\sum_{x\in\mathcal{A}_X}P(x\,|\,y=b_1)\log\frac{1}{P(x\,|\,y=b_1)}$$

+ P(y=b₂).
$$\sum_{x \in A_X} P(x | y = b_2) \log \frac{1}{P(x | y = b_2)}$$

+
$$P(y=b_3).\sum_{x \in A_X} P(x | y = b_3) \log \frac{1}{P(x | y = b_3)}$$

+ ...

Recall, P(y).P(x|y) = P(x,y)

Conditional entropy of X given Y (i.e. all possible y s)

$$\sum_{xy \in \mathcal{A}_X \mathcal{A}_Y} P(x, y) \log \frac{1}{P(x \mid y)}$$

Chain rule for information

$$\log \frac{1}{P(x,y)} = \log \frac{1}{P(x)} + \log \frac{1}{P(y \mid x)}$$

Information content of x and y

Information content of x

Information content of y given x

Chain rule for entropy

$$H(X,Y) = H(X) + H(Y | X) = H(Y) + H(X | Y)$$

Mutual Information

Entropy (information)
about event X,
after getting
the knowledge of Y

Entropy (information) about event X, without the knowledge of Y

Example – Find H(X,Y), H(X), H(Y), & H(X|Y)

P(x, y)		\boldsymbol{x}					
		1	2	3	4		
	1	1/ ₈ 1/ ₁₆ 1/ ₁₆	1/16	1/32	1/32		
y	2	1/16	$1/_{8}$	1/32	1/32		
	3	1/16	1/16	1/16	1/16		
	4	$1/_{4}$	0	0	0		

Solution for H(X,Y)

Find out information content

	1	2	3	4
1	1/8	1/16	1/32	1/32
2	1/16	1/8	1/32	1/32
3	1/16	1/16	1/16	1/16
4	1/4	0	0	0

	1	2	3	4
1	3	4	5	5
2	4	3	5	5
3	4	4	4	4
4	2	0	0	0

Find out average information content

	1	2	3	4
1	1/8	1/16	1/32	1/32
2	1/16	1/8	1/32	1/32
3	1/16	1/16	1/16	1/16
4	1/4	0	0	0

		1	2	3	4
	1	3	4	5	5
X	2	4	3	5	5
	3	4	4	4	4
	4	2	0	0	0

	1	2	3	4
1	3/8	4/16	5/32	5/32
2	4/16	3/8	5/32	5/32
3	4/16	4/16	4/16	4/16
4	2/4	0	0	0

Find out average information content

	1	2	3	4
1	3/8	4/16	5/32	5/32
2	4/16	3/8	5/32	5/32
3	4/16	4/16	4/16	4/16
4	2/4	0	0	0

Sum up
$$108/32 = 27/8 = 3.4$$
 bits

Solution for H(X) and H(Y)

P((x, y)		6	P(y)			
		1	2	3	4		I (y)
	1	1/8	1/16	1/32	1/32	1/4	2
y	2	1/16	$1/_{8}$	1/32	1/32	$1/_{4}$	2
	3	1/16	1/16	1/16	1/16	$1/_{4}$	2
	4	$1/_{4}$	0	0	0	$1/_{4}$	2
F	P(x)	1/2	1/4	1/8	1/8		
	I (x)	1	2	3	3		

Find average of H(X)

Sum up
$$14/8 = 7/4 = 1.75$$
 bits

Find average of H(Y)

P(y)

$1/_{4}$	
$1/_{4}$	\ /
$1/_{4}$	X
$1/_{4}$	

I (y)	=
2	2/4
2	2/4
2	2/4
2	2/4

Sum up 2 bits

Solution for H(X|Y)

Recall, P(x,y) = P(x|y).P(y)

Solution for H(X|Y)

P(x, y)			P(y)			
		1	2	3	4	
	1	1/8	1/16	1/32	1/32	1/4
y	2	1/16	$1/_{8}$	1/32	1/32	$1/_{4}$
	3	1/16	1/16	1/16	1/16	$1/_{4}$
	4	$1/_{4}$	0	0	0	$1/_{4}$
\overline{P}	P(x)	$1/_{2}$	1/4	1/8	1/8	

$P(x \mid y)$		x				
		1	2	3	4	
	1	1/2	1/4	1/8	1/8	
y	2	$1/_{4}$	$\frac{1}{4}$ $\frac{1}{2}$	1/ ₈ 1/ ₈ 1/ ₄	$1/_{8}$	
	3	$1/_{4}$	$1/_{4}$	$1/_{4}$	$1/_{4}$	
	4	1	0	0	0	

Find out information content of (X|Y)

	1	2	3	4
1	1/2	1/4	1/8	1/8
2	1/4	1/2	1/8	1/8
3	1/4	1/4	1/4	1/4
4	1	0	0	0

	1	2	3	4
1	1	2	3	3
2	2	1	3	3
3	2	2	2	2
4	0	0	0	0

Find out average information content

	1	2	3	4		
1	1/2	1/4	1/8	1/8		
2	1/4	1/2	1/8	1/8	V	
3	1/4	1/4	1/4	1/4	X	
4	1	0	0	0		

	1	2	3	4
1	1	2	3	3
2	2	1	3	3
3	2	2	2	2
4	0	0	0	0

	1	2	3	4
1	1/2	2/4	3/8	3/8
2	2/4	1/2	3/8	3/8
3	2/4	2/4	2/4	2/4
4	0	0	0	0

	1	2	3	4	(sum- up row wise) H(X Y)	
1	1/2	2/4	3/8	3/8	14/8	$\leftarrow H(X Y=1)$
2	2/4	1/2	3/8	3/8	14/8	$\leftarrow H(X Y=2)$
3	2/4	2/4	2/4	2/4	2	← H(X Y=3)
4	0	0	0	0	0	← H(X Y=4)

- H(X) = 1.75 bits
- H(X|Y=4) = 0 & is less than H(X) learning decreases entropy
- H(X|Y=3) = 2 & is greater than H(X) learning increases entropy
- H(X|Y=2) = 1.75 & is equal to H(X) learning doesn't change entropy
- H(X|Y=1) = 1.75 & is equal to H(X) learning doesn't change entropy

	1	2	3	4	(sum-up row wise) H(X Y)
1	1/2	2/4	3/8	3/8	14/8
2	2/4	1/2	3/8	3/8	14/8
3	2/4	2/4	2/4	2/4	2
4	0	0	0	0	0

Find average to get H(X|Y):

$$=P(Y=1). H(X|Y=1)+P(Y=2). H(X|Y=2)$$

$$+P(Y=3). H(X|Y=3)+P(Y=4). H(X|Y=4)$$

$$=(14/8).(1/4) + (14/8).(1/4) + 2.(1/4)+0$$

$$=14/32+14/32+2/4 = 44/32 = 11/8 = 1.37$$
 bits

On an average, H(Y|X) < H(X) i.e. 1.37 < 1.75

Mutual Information

$$I(X;Y) \equiv H(X) - H(X|Y)$$

= 1.75 - 1.37 = 0.38 bits

- •Compute H(Y|X) = 1.62 bits
- $\bullet H(Y) = 2 bits$
- \bullet I(X;Y) = H(Y) H(Y|X) = 2- 1.62 = 0.38 bits

