

2021103523 黄毓乾

注:老师好,我的作业是左右两栏竖列排版。

Homework 11

2021103523 黄额乾

Section 5.3 38 41

Ex.38 a)

The each X is 0, 1, or 2, and the possible values of To are 1,2,3 and 4.

PLTo=0)=P(X1=0 and X2=0)=0.2x0.2=0.04 Since X, and Xz are in dependent.

P(To=1) = P(X1=1 and X2=0 || X1=0 and X2=1) = 0.5x0.2 \$+0.2x0.5=0.20

P(To=3)=0.30, PCTo=4)=0.09

We draw a Pof pmf table to show it:

to	0		2	3	4	
p(to)	0.04	0.20	0.37	0.30	0.09	

We can get that:

E(To) = 0x0.04 + 1x020 +2x0.37 + 3x0.30 + 4x0.09 = 2.2 There is an exact twice the population mean: E(To)=ZM.

 $E(7^{2}) = 0^{2} \times 0.04 + |^{2} \times 0.20 + 2^{2} \times 0.37 + 3^{2} \times 0.30 + 4^{2} \times 0.09$ = 5.82; And then V(To)=5.82-(2.2)=0.98 There is an exact twice the population variance: $V(T_0) = 2\sigma^2$ $V(T_0) = 2\sigma^2$

The pattern persists all the time, when To=X1+X2+X3+X4 we have E(To)=4M=4x1.1 =4.4; At the same time V(To)=40=196

e) The event { To = 8} occurs when we encounter 2 lights on all 4 trips. ie, $X_i = 2$ for each X_i . Hence, we assume the X_i are independent. $P(T_0=8)=P(X_1=2nX_2=2nX_3=2nX_4=2)=P(X_1=2)$ P(X4=2) = 0.34 = 0.008|

We also can write To = 7 iff exactly three of the Xi are 2 and the remaining Xi is 1.

The probability of the event is

= 4x0.33x0.5=0.054

Hence, P(To=7)=P(To=7)+P(To=8)=0.054+0.0081 = 0.062

Fx.41

We build a table below to describe all 16 possible (x1, x2) pairs. And probabilities are calculated using the independence of X, and X2.

(X1, X2)	1,	1,2	1,3	1,4	2,1	2,2	2,31	2.4
Probability	0.16	0.12	0.08	0.04	0.12	0.09	0.06	0.03
×	1	1.5	2	2.5	1.5	2	2.5	3
L	0	1	2	3	1	0	1	2

(X1, X2)	3,1	3,2	3,3	3,4	4,1	4,2	4.3	4,4
probability	0.08	0.06	0.04	0.02	0.04	0.03	0.02	0.0
×	2	2.5						
r	2	1	0	1	3	2	1	2

a) We obtain the X values from the table above yields the pmf table below:

X 1 1.5 2 2.5 3 3.5 4 P(x) 0.16 0.24 0.25 0.20 0.10 0.04 0.01

b) P(x <2.5) = 0.16+0.24+0.25+0.20=0.85

c) We obtain the r values from the table above yields the pmf table below :

pcr) 0.30 0.40 0.22 0.08

d) When n=6, there are many ways to geta sample average ≤1.5.

Since $\bar{\chi} \leq 1.5$ iff the sum of χ_i is at most b.

P(X < 1.5) = P(1,1,1,1)+P(2,1,1,1)+...+P(1,1,1,2)

+ |7(1,1,2,2)+...+ |7(2,2,1,1)+|(3,1,1,1)+...|(1,1,1,3) =0.44+46.4)3+6(04)(03)2+4(04)2(02)=0.2400

Section 5-4 46, 51, 55

Ex.46

a) The sampling distribution of \bar{x} is centered at $E(\bar{X}) = \mu = 12 \text{ cm}$. The standard deviation of the $\overline{\chi}$ distribution is $\sigma_{\overline{\chi}} = \frac{\sigma_{\overline{\chi}}}{\sqrt{n}} = \frac{0.04}{\sqrt{16}} = 0.0 | cm$

b) When n=64, the sampling distribution of \overline{X} is still centered at $E(\bar{X}) = \mu = 12 \text{ cm}$, but the standard deviation of the X distribution is

 $\sigma_{\overline{\chi}} = \frac{\sigma_{\overline{\chi}}}{\sqrt{n}} = \frac{0.04}{\sqrt{64}} = 0.005 cm$

C) Be cause the decreased variability of \overline{x} that comes with a larger sample size, then x is more likely to be within 0.01cm of the mean with the second,

Ex.51

Individual times are given by X-N (10,2).

OFor day 1, n=5:

P(X < 11) = P(Z < 11-10) = P(Z < 1.12) = 0.8686

@ For day 2, n=6:

P(X < 11) = P(QZ < 11-10) = P(Z < 1.22) = 0.8888

Therefore, we assume the results of the two days are independent, the probability the sample average is at most 11 min on both day =

0.236 x 0.8888 = 0.7720

Ex.55

a) 11 p.M.-6:50 p.M = 250 min.

To $=X_1 + ... + X_{40} = total grading time,$

 $M_{70} = n\mu = 40 \times 6 = 240$

σ₇₀ = σ. In = 37.95

=> P(To <250) \approx p(Z < \frac{250-240}{37.95}) = p(z < 0.26) = 0.6026

b) We know that the sports report begins 260 min after he begins grading papers.

PLTo>260) = P(=>260-240)=P(=>0,53)=0.2981

973504 007469

Section 5.5 58, 70,73

Ex.58

a) E(2/X,+125X2+512X3) = 27E(X,)+125E(X2)+ 512ELX3)

= 27 x200+125 x 250+512×100 = 87850

V(27X1+125X2+512X3)=27V(X1)+125(V(X2)+

5122V(X3)

= 272x 102+1252x122+5122x82

= 19100116

b) We can say that:

The expected value is correct, but the variance is not because the covariances d) If $\mu_1 - \mu_2 = 5$ now also contribute to the variance.

Ex.70

a) $E(Y_i) = \frac{1}{2}$

 $\Rightarrow E(W) = \sum_{i=1}^{n} i \cdot E(Y_i) = \frac{1}{2} \sum_{i=1}^{n} i = \frac{n(n+1)}{4}$

b) V(/i)=+

 $\Rightarrow EV(W) = \sum_{i=1}^{n} i^{2} V(Y_{i}) = 4 \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{24}$

Ex.73

a) Because of the Central Limit Theorem, both are approximately normal

The linear combination of normal rishas

a normal distribution

Therefore, X-Y has approximately a normal distribution with Mx-x=5 and

 $\sigma_{\bar{x}-\bar{Y}} = \sqrt{\frac{8^2}{40} + \frac{6^2}{35}} = 1.62$

C) P(-1 \le X-Y \le 1) \times P(-1-5) \le Z \le 1-5/16213)

= [?(-3.70585-247) \$ 0.0068

P(x-Y=10)=p(Z>10-5)=p(Z>3.08)=0.00/0 Because the probability is very small, which is occurre unlikely. (if M1-M2=5)

Hence, we will doubt the claim.