Automate

- Recapitulare, Exemple, Aplicatii
- Translatoare
- Masini Turing

Automat finit: model fizic

Automat finit: model matematic

• Un automat finit este un ansamblu

$$M = (Q, \Sigma, \delta, q_0, F)$$
:

- Q alfabetul starilor
- Σ alfabet de intrare

- $q_0 \in Q$ stare initialã
- F ⊆ Q multimea stãrilor finale

Automate finite cu ɛ-miscari

$$M = (Q, \Sigma, \delta, q_0, F)$$
:

• $\delta: Qx(\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$

functia de tranzitie

Putem avea si ε-tranzitii (automate cu ε-tranzitii)

Teorema:

Pentru orice automat finit cu ɛ-miscari exista un automat finit echivalent.

<u>Obs.</u> Conform def., automatele finite sunt fara ε -miscari

Automat push-down (APD)

Automat push-down (APD)

$$M = (Q, \Sigma, \Gamma, \delta, q_o, Z_o, F)$$

- Q alfabetul stărilor;
- Σ alfabetul de intrare;
- Γ alfabetul memoriei stivă;
- $q_0 \in Q$ stare iniţială;
- $Z_0 \in \Gamma$ simbolul de start al memoriei stivă;
- F⊆ Q mulţimea stărilor finale;
- $\delta: Qx(\Sigma \cup \{\epsilon\})x\Gamma \rightarrow \mathcal{P}(Qx\Gamma^*)$ funcția de tranziție
 - are ca valori submulţimi finite din QxΓ* (posibil multimea vida)

Determinism

$$\mathbf{M} = (\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \boldsymbol{\delta}, \mathbf{q}_{o}, \mathbf{Z}_{o}, \mathbf{F})$$

este determinist dacă:

$$\forall \mathbf{Z} \in \Gamma, \forall \mathbf{q} \in \mathbf{Q}, \forall \mathbf{a} \in \Sigma$$

- 1) $|\delta(\mathbf{q}, \boldsymbol{\varepsilon}, \mathbf{Z})| = 0$ si $|\delta(\mathbf{q}, \mathbf{a}, \mathbf{Z})| <=1$
- 2) $|\delta(\mathbf{q}, \boldsymbol{\varepsilon}, \mathbf{Z})| = 1$ si $|\delta(\mathbf{q}, \mathbf{a}, \mathbf{Z})| = 0$

In caz contrar, automatul nu este determinist

Multimea limbajelor acceptate de APD nedeterministe este strict mai larga decat multimea limbajelor acceptate de APD deterministe

Translator finit

$$M = (Q, \Sigma, D, \delta, q_o, F)$$

- Q alfabetul stărilor;
- Σ alfabetul de intrare;
- D alfabetul de iesire;
- $q_0 \in Q$ stare iniţială;
- F⊆ Q mulţimea stărilor finale;
- $\delta: Qx(\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}_0(Q \times D^*)$ multimea partilor finite

banda de intrare a1 a2 a3 $\mathbf{a}_{\mathbf{n}}$ cap de directie de deplasare citire UC stari cap de scriere banda de iesire

Translator finit

Translator finit

Exemplu:

$$\begin{split} M &= (\ Q, \qquad \Sigma, \quad D, \quad \delta, \quad \ q_o, \quad F \) \\ M &= (\{q_0, q_1\}, \quad \{a\}, \{b\} \ , \quad \delta \ , \quad \ q_0 \ , \quad \{q_1\} \) \\ \delta(q_0, a) &= \{q_1, \{b\}\} \\ d(q_1, \epsilon) &= \{q_1, \{b\}\} \end{split}$$

Translatarea definita de M:

$$T(M) = \{(x,y) | x \in \Sigma^*, y \in D^*, (q_0,x,\varepsilon) | -* (q,\varepsilon,y), q \in F \}$$

Translator push-down

$$M = (Q, \Sigma, \Gamma, D, \delta, q_0, Z_0, F)$$

- Q alfabetul stărilor;
- Σ alfabetul de intrare;
- Γ alfabetul memoriei stivă;
- D alfabetul de iesire;
- $q_0 \in Q$ stare iniţială;
- $Z_0 \in \Gamma$ simbolul de start al memoriei stivă;
- F⊆ Q mulţimea stărilor finale;
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow \mathcal{P}_0(Q \times \Gamma^* \times D^*)$

multimea partilor finite

banda de intrare $\mathbf{a}_{\mathbf{n}}$ cap de directie de deplasare citire varful stivei **Translator** UC push-down stari **Z0** cap de stiva scriere

banda de iesire

Translator push-down

$$M = (Q, \Sigma, \Gamma, D, \delta, q_0, Z_0, F)$$

$$Q = \{q\} \qquad \qquad \delta \ (q, a, E) = \{(q, \epsilon, a)\} \\ \Sigma = \{a, +, *\} \qquad \qquad \delta \ (q, +, E) = \{(q, EE +, \epsilon)\} \\ \Gamma = \{E, +, *\} \qquad \qquad \delta \ (q, *, E) = \{(q, EE +, \epsilon)\} \\ D = \{a, +, *\} \qquad \qquad \delta \ (q, \epsilon, +) = \{(q, EE +, \epsilon)\} \\ Q = q \qquad \qquad \delta \ (q, \epsilon, +) = \{(q, \epsilon, +)\} \\ Z_0 = E \qquad \qquad \delta \ (q, \epsilon, *) = \{(q, \epsilon, *)\}$$

Considerand criteriul stivei vide, descrieti translatarea pe care acesta o defineste.

... am lucrat si cu alte translatoare

Vezi:
LL(1)
LR(*)

Ne reamintim: Analizorul LL(1)

- Automat: (α, β, Π)
 - banda de intrare: α
 - stiva β (stiva de lucru)
 - banda de iesire $\Pi =>$ sirul regulilor de productie
- config. initiala: $(w\$, S\$, \epsilon)$
- config. finala: $(\$, \$, \Pi)$
- tranzitii
 - push $(\mathbf{a}\mathbf{x}\$, \mathbf{A}\boldsymbol{\beta}, \boldsymbol{\Pi})$ $(\mathbf{a}\mathbf{x}\$, \alpha\boldsymbol{\beta}, \boldsymbol{\Pi}\mathbf{i})$ dc.: $\mathbf{M}(\mathbf{A}, \mathbf{a}) = (\alpha, \mathbf{i})$
 - pop $(\mathbf{a}\mathbf{x}\$, \mathbf{a}\beta, \Pi)$ $-(\mathbf{x}\$, \beta, \Pi)$
 - $acc (\$, \$, \Pi) acc$
 - err in celelalte cazuri

Masini Turing

- infinita
- finita la stanga
- ...

Masini Turing

O miscare a masinii Turing consta din:

- se schimba starea
- se inlocuieste simbolul curent de pe banda de intrare
- capul citire/scriere se muta cu o pozitie la stanga sau la dreapta

Masina Turing cu banda infinita

O masina Turing este: $M = (Q, \Sigma, \Gamma, \delta, q_0, \#, F)$

- Q multime finita de stari
- Γ multimea simbolurilor benzii
- # un simbol din Γ , numit simbolul blanc
- Σ o submultime a lui Γ -{#}
- δ este functia de tranzitie

δ:
$$Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L,R\})$$

- q₀ starea initiala
- $F \subset Q$ multimea starilor finale

Masina Turing cu banda infinita

• configuratie $\alpha_1 \neq \alpha_2 \qquad \alpha_1 \alpha_2 \in \Gamma^*, \text{ separate de capul de citire}$ pana la cel mai din stanga/dreapta simbol ne-blank

tranzitie

$$\begin{aligned} (p,Y,L) &\in \delta(q,X_i) \\ X_1X_2...X_{i-1}qX_i \, X_{i+1}...X_n & | -X_1X_2 \, ... \, X_{i-2} \, p \, X_{i-1}YX_{i+1}...X_n \\ (p,Y,R) &\in \delta(q,X_i) \\ X_1X_2...X_{i-1}qX_i \, X_{i+1}...X_n & | -X_1X_2 \, ... \, X_{i-1}Y \, p \, X_{i+1}...X_n \end{aligned}$$

• limbaj acceptat $\{ \mathbf{w} \in \Sigma^* \mid \mathbf{q}_0 \mathbf{w} \mid \mathbf{\alpha}_1 \mathbf{q} \alpha_2 , \mathbf{q} \in \mathbf{F}, \alpha_1 \alpha_2 \in \Gamma^* \}$

Exemplu: masina Turing

Functia de tranzitie

0011?

	Σ		$\Gamma - \Sigma$			
	0	1	X	Y	#	
q_0	(q_1,X,R)			(q ₃ ,Y,R)		0
q_1	$(q_1,0,R)$	(q ₂ ,Y,L)		(q_1,Y,R)		0
q_2	(q ₂ ,0,L)		(q_0,X,R)	(q ₂ ,Y,L)		0
q_3				(q ₃ ,Y,R)	(q ₄ ,# ,R)	0
q_4						1

Masini Turing

• Masina Turing cu o singura banda

versus Masina Turing cu mai multe benzi
O mașină Turing cu k benzi
nu este mai puternică decât o mașină Turing standard

Maşină Turing deterministă (MTD)

versus maşină Turing nedeterministă (MTND)
Cele două sunt computațional echivalente,
adică orice MTND se poate transforma într-o MTD
(și invers).

Masini Turing

Teza lui Church

- Logicianul Alonzo Church a emis ipoteza că maşina Turing este modelul cel mai general de calcul care poate fi propus.
 - maşina Turing este la fel de puternică ca orice alt model de calcul
 - nu înseamnă că poate calcula la fel de repede ca orice alt model de calcul, ci că poate calcula aceleași lucruri
- Acest enunţ nu este demonstrabil în sens matematic.

Dacă avem un model de calcul, putem defini precis ce înțelegem prin complexitate:

- **Timpul** de calcul pentru un şir dat la intrare: este numărul de mutări făcut de maşina Turing înainte de a intra în starea ``terminat";
- **Spațiul** consumat pentru un șir de intrare: este numărul de căsuțe de pe bandă pe care algoritmul le folosește în timpul execuției sale.