

Mecánica Intermedia (FIS 311)

Licenciatura en Física

Profesor: J. R. Villanueva e-mail: jose.villanueva@uv.cl

Tarea 4

- 1. Hállese la función de energía potencial de las fuerzas conservativas que hay entre las funciones de fuerza siguientes:

- $\begin{array}{lll} \text{(a)} & F_x = f_1(x), & F_y = f_2(y), & F_z = f_3(z). \\ \text{(b)} & F_x = \frac{a}{x^2 + y^2}, & F_y = \frac{b}{x^2 + y^2}, & F_z = 0. \\ \text{(c)} & F_x = \frac{ax}{x^2 + y^2 + z^2}, & F_y = \frac{ay}{x^2 + y^2 + z^2}, & F_z = \frac{az}{x^2 + y^2 + z^2}. \end{array}$

- (d) $F_x = x y^2 z$, $F_y = x^2 y z$, $F_z = \frac{x^2 y^2}{2}$. (e) $F_x = \frac{a+x}{x^2+y^2+z^2} e^{-ax}$, $F_y = \frac{b+y}{x^2+y^2+z^2} e^{-by}$, $F_z = \frac{c+z}{x^2+y^2+z^2} e^{-cz}$.
- 2. Encontrar las fuerzas conservativas para las que las siguientes son las funciones de energía potencial escalares:
 - (a) $V(x,y,z) = \frac{1}{2} \ln(x^2 + y^2 + z^2)$
 - (b) $V(r, \theta, \phi) = \frac{a \cos \theta}{r^2}$
 - (c) $V(x, y, z) = \frac{1}{2}(k_1x^2 + k_2y^2 + k_3z^2)$
 - (d) $V(r, \theta, \phi) = \frac{e^{-k \cos \theta}}{r}$
- 3. Calcular el trabajo realizado por las siguientes fuerzas a lo largo de las trayectorias indicadas:
 - (a) $\vec{F} = 4y\hat{1} + 2x\hat{1} + \hat{k}$ a lo largo de la hélice $x = 4\cos\phi$, $y = 4\sin\phi$, $z = 2\phi$, desde $\phi = 0$ hasta $\phi = 2\pi$.
 - (b) $\vec{F} = 2xz\hat{1} + 3z^2\hat{j} + y^2\hat{k}$ a lo largo de la recta x = 2y = 4z desde el origen hasta el punto (4, 2, 1).
- 4. Una partícula de masa m se mueve a lo largo del eje X bajo la influencia de un campo de fuerza conservativa cuyo potencial es V(x). Si la partícula se encuentra en las posiciones x_1 y x_2 en los respectivos tiempos t_1 y t_2 , demostrar que si E es la energía total,

$$t_2 - t_1 = \sqrt{\frac{m}{2}} \int_{x_1}^{x_2} \frac{\mathrm{d}x}{\sqrt{E - V(x)}}.$$

5. Una partícula de masa m y carga q se mueve con velocidad constante v en un campo magnético uniforme \vec{B} . Si escogemos el campo magnético \vec{B} paralelo al eje OZ, y la velocidad inicial de la partícula dada por $v_0 = (0, u, v)$, muestre que

1

- (a) $v_x = u \sin \omega t$, $v_y = u \cos \omega t$, $v_z = v$.
- (b) $x = x_0 + (u/\omega)(1 \cos \omega t)$, $y = y_0 + (u/\omega)\sin \omega t$, $z = z_0 + vt$, donde x_0, y_0, z_0 son las posiciones inicial de la partícula a lo largo de los ejes X, Y, Z, respectivamente.
- (c) También mostrar que la proyección de la trayectoria en el plano XY es una ecuación de la circunferencia dada por

$$\left(x - x_0 - \frac{u}{\omega}\right)^2 + \left(y - y_0\right)^2 = \frac{u^2}{\omega^2}.$$

La partícula, así, se mueve sobre la superficie del cilindro circular recto cuya sección transversal es el círculo representado por la ecuación anterior.

6. Una partícula de carga positiva, e, y masa m pasa por un filtro de velocidades compuesto por un campo eléctrico uniforme, \vec{E} , dirigido a lo largo del sentido positivo del eje y,

$$\vec{E} = E \hat{1}$$

y un campo magnético uniforme dirigido a lo largo del eje z,

$$\vec{B} = B \hat{k}$$
.

- (a) ¿Para qué velocidad inicial dirigida a lo largo del eje x pasará la partícula cargada por dicho filtro sin desviarse?
- (b) Demuéstrese que una partícula cuya velocidad inicial esté en el plano xy y forme cierto pequeño ángulo, α , con el sentido positivo de x, volverá a cortar nuevamente al eje x al cabo de cierto tiempo. Hállese el punto en que ocurre este nuevo cruce de la partícula que tenga la velocidad deseada hallada en la parte (a).
- 7. Una fuerza $\vec{F}(x) = (a-2bx)\hat{\imath}$, actúa sobre una partícula de masa m, donde a y b son constantes positivas.
 - (a) Determinar la energía potencial V(x).
 - (b) Hacer gráficos de F(x) y V(x).
 - (c) Discuta el movimiento de la partícula para diferentes valores de la energía.
- 8. En un espectrómetro de masas, se acelera un ión positivo de una sola carga $(q = 1.602 \times 10^{-19} [c])$ por medio de una diferencia de potencial de 1000 [V]. Luego pasa por un campo magnético uniforme en el que $B = 0.1 [Wb/m^2]$, y se desvia en una trayectoria circular de radio R = 0.182 [m]. Determinar:
 - (a) La velocidad del ión;
 - (b) la masa del ión en kilogramos y en unidades de masa atómica (uma);
 - (c) el número de masa del ión.
- 9. De acuerdo con la teoría de las fuerzas nucleares de Yukawa, la fuerza de atracción entre dos nucleones tiene un potencial de la forma

$$V(r) = -K\frac{e^{-\alpha r}}{r}, \qquad K > 0, \ \alpha > 0.$$

- (a) Encontrar la fuerza.
- (b) Discutir los tipos de movimiento que son posibles para la masa m bajo dicha fuerza.

- (c) Encontrar el momento angular L y la energía total E para el movimiento en un círculo de radio a.
- (d) Determinar el periodo del movimiento circular y el periodo de pequeñas oscilaciones radiales.
- 10. Un proyectil disparado desde la Tierra tiene un alcance ℓ y la altura máxima de la trayectoria es h, ¿cuáles son la velocidad inicial y el ángulo de elevación del proyectil en función de h, ℓ y g (despreciando el rozamiento en el aire?)
- 11. En la posición x=0, y=0, un cañon tiene un alcance máximo ℓ_m . Determinar los dos ángulos de elevación para hacer blanco en el punto $x=\ell_m/2, \quad y=\ell_m/4$.
- 12. Una partícula se mueve en un campo de fuerza dado por $\vec{F} = r^2 \vec{r}$, donde \vec{r} es el vector posición de la partícula. Demostrar que el momento angular de la partícula se conserva.
- 13. Una partícula de masa m se mueve a lo largo de la trayectoria dada por

$$x = x_0 + at^2, \qquad y = bt^3, \qquad z = ct,$$

donde x_0 , a, b y c son constantes. Encuentre las siguientes cantidades en un tiempo posterior t: momentum angular \vec{L} , fuerza \vec{F} , y torque $\vec{\tau}$ sobre la partícula. Verifique que se satisface

$$\frac{\mathrm{d}\vec{L}}{\mathrm{d}t} = \vec{r} \times \vec{F} = \vec{\tau}.$$

14. Una partícula de carga positiva e se mueve en el campo eléctrico central

$$\overrightarrow{E} = -\frac{\alpha}{\rho}\widehat{\rho},$$

que hay entre las placas de un condensador cilíndrico, y un campo magnético uniforme

$$\overrightarrow{B} = B\widehat{k},$$

paralelo al eje del condensador.

- (a) Establecer las ecuaciones de movimiento de la partícula en coordenadas cilíndricas.
- (b) Demostrar que la ecuación de movimiento, en función de la variable angular ϕ , que es una coordenada que se puede no considerar, se resuelve fácilmente y da como integral de movimiento

$$m \rho^2 \dot{\phi} + \frac{1}{2} e \rho^2 B = L = \text{constante.}$$

- (c) Demostrar que, utilizando el resultado hallado en (b), la ecuación radial se puede reducir a una ecuación de movimiento unidimensional, que nos dará una segunda integral de movimiento que expresa la conservación de la energía total.
- (d) Si la partícula es emitida desde el cilindro interior (de radio R_1) con una velocidad inicial

$$\overrightarrow{v} = v_0 \, \widehat{\rho}$$

¿cuál debe ser el valor mínimo de v_0 para que la partícula llegue al otro cilindro cuyo radio es R_2 ($R_2 > R_1$). [Sugerencia: el valor mínimo de v_0 se obtendra cuando R_2 sea un punto de retorno.]

- 15. Dos partículas, P y Q, cada una de masa m, son conectadas por una cuerda liviana e inextensible de longitud 2ℓ , la cual pasa a través de un pequeño agujero liso O en una mesa horizontal lisa. La partícula P es libre para deslizarse sobre la mesa, y Q se cuelga libremente por debajo de ella. Inicialmente OQ es de longitud ℓ , y P se proyecta desde el reposo en un ángulo recto respecto a OP con velocidad $(8g\ell/3)^{1/2}$. Demostrar que en el movimiento subsiguiente, la partícula Q llegará a la mesa.
- 16. Una partícula cargada $+e_1$ que se mueve con una velocidad muy alta v_0 a lo largo de una línea recta que pasa a una distancia b de otra carga $+e_2$ de masa m. Suponiendo una ley central de la fuerza de magnitud e_1e_2/r^2 entre e_1 y e_2 , encontrar la energía Q transferida desde e_1 a e_2 durante el encuentro.
- 17. Una pelota de goma de masa 0.2 [kg] golpea el suelo con una velocidad de 8 [m/s] y rebota con aproximadamente la misma velocidad. Si el balón está en contacto con el suelo durante 10⁻³ [s] (fotografías de alta velocidad pueden mostrar esto), ¿cuál es la fuerza ejercida sobre la pelota por el piso?
- 18. Una bala de cañón de masa M se mueve a lo largo de una trayectoria parabólica. Una explosión interna, lo que genera una cantidad de energía E, rompe la bala en dos partes. Una parte de masa kM, con k < 1, continúa en la dirección original, y la otra parte es reducida al reposo. Encuentre la velocidad de la masa kM inmediatamente después de la explosión.
- 19. Dos masas, m_1 y m_2 , están conectadas por un resorte lineal de constante k, y el sistema está inicialmente en reposo sobre una superficie sin fricción. El resorte se comprime una cantidad δ y puesto en libertad. Encontrar la velocidad de cada masa cuando el resorte vuelve a su longitud no deformada natural L.
- 20. Una partícula está obligada a moverse a lo largo del eje X sujeta a una fuerza restauradora -kx y a una fuerza constante F. Discuta su movimiento, y encuntre la frecuencia y la posición del punto de equilibrio.