PRÁCTICA: ALGORITMO DE FIAT-SHAMIR

Objetivo: Implementar la demostración de conocimiento nulo de Fiat-Shamir. **Desarrollo:**

ocsarrono.			
Inicialización			Escoger dos números primos secretos p,q y publicar N=p*q
Identificación secreta de A			Escoger un número secreto s tal que 0 <s<n, con="" es="" n<="" primo="" td="" y=""></s<n,>
Identificación pública de A			Publicar v≡s ² (mod N)
i Iteraciones	Compromiso secreto de A		Escoger un número secreto x tal que 0 <x<n< td=""></x<n<>
	Testigo: A envía a B		Enviar a ≡x (mod N)
	Reto: B envía a A		Enviar un bit e, elegido al azar
	Respuesta: A envía a B	Si e=0	Enviar y ≡x (mod N)
		Si e=1	Enviar y ≡xs (mod N)
	Verificación: B comprueba la información recibida	Si e=0	Comprobar que y ² ≡ a (mod N)
		Si e=1	Comprobar que $y^2 \equiv a * v \pmod{N}$

Ejemplo 1:

- 1. Entrada:
 - a. p=7, q=5
 - b. s=3
 - c. i=2 (número de iteraciones)
 - d. 1ª iteración: x=16, e=0
 - e. 2ª iteración: x=2, e=1
- 2. Salida:
 - a. N=35
 - b. v = 9
 - c. 1ª iteración: a= 11, comprobar que 16 = 11 (mod 35) y dar por válida la iteración
 - d. 2^a iteración: a=4, y=6, comprobar que $6 \equiv 4*9 \pmod{35}$ y dar por válida la iteración

Ejemplo 2:

- 1. Entrada:
 - a. p = 683, q = 811
 - b. s=43215
 - c. i=1 (número de iteraciones)
 - d. 1ª iteración: x=16785, e=1
- 2. Salida:
 - a. N=553913
 - b. v= 295502
 - c. 1^a iteración: a=348421, y=291658, comprobar que $291658^2 \equiv 348421*295502$ (mod 553913) y dar por válida la iteración