Experiment zur Verbesserung der Robustheit von Reinforcement Learning Policies anhand trainiertem Gegenspieler in Simulationen

Bachelorarbeit

vorgelegt am 1. März 2023

Fakultät Wirtschaft

Studiengang Wirtschaftsinformatik

Kurs WWI2020F

von

LEON HENNE

Betreuerin in der Ausbildungsstätte: DHBW Stuttgart:

IBM Deutschland GmbH

Sophie Lang

Senior Data Scientist

Prof. Dr. Kai Holzweißig

Studiendekan Wirtschaftsinformatik

Unterschrift der Betreuerin

Inhaltsverzeichnis

Αł	bkürzungsverzeichnis	III							
Αł	bbildungsverzeichnis	IV							
Ta	abellenverzeichnis	V							
1	Einleitung 1.1 Problemstellung	1 1 2 2 3 3							
2	Diskussion des aktuellen Stands der Forschung und Praxis 2.1 Aufbau der Literaturrecherche 2.2 Verstärkendes Lernen 2.2.1 Wertebasierende Methoden 2.2.2 Strategiebasierende Methoden 2.2.3 Akteur-Kritiker Methoden 2.2.4 Limitierungen und Herausforderungen von RL	4 4 4 6 7 7 8							
3	Durchführung des Laborexperiments	9							
4	Ergebnisse des Laborexperiments	10							
5	Reflexion und Forschungsausblick								
Ar	nhang	12							
Lit	Literaturverzeichnis 1								

Abkürzungsverzeichnis

 $\mathbf{DHBW}\;$ Duale Hochschule Baden-Württemberg

RL Reinforcement Learning

KPI Key Performance Indicator

MARL Multi-Agent Reinforcement Learning

Abbildungsverzeichnis

vereinfachte Darstellung der Interaktion zwischen dem Agenten und seiner Umgebung

Tabellenverzeichnis

1	Konzept Matrix für Artikel zur Simulation und zur Robustheit RL Algorithmen nach	
	Webster/Watson 2002. Legende: RL (Reinforcement Learning), MARL (Multi-Agent	
	Reinforcement Learning), ES (Entwicklung von Simulationsumgebungen), DS (Dro-	
	nensimulation), KS (kompetitive Simulationsumgebungen), DR (Domain Randomi-	
	zation), RRLP (Robustheit von RL Policies), LE (Laborexperimente)	4

1 Einleitung

1.1 Problemstellung

Reinforcement Learning (RL) findet heutzutage bereits Anwendung in vielerlei Forschungsprojekten wie Deepmind AlphaStar oder OpenAI Five, aber auch in Produkten und Dienstleistungen wie AWSDeepRacer oder Metas Horizon open-source RL-Plattform.¹ RL ist im Bereich des maschinellen Lernens eine Herangehensweise zur Lösung von Entscheidungsproblemen.² Ein Software-Agent leitet dabei durchzuführende Aktionen aus seiner Umgebung ab, mit dem Ziel die kumulierte erhaltene Belohnung zu maximieren, währenddessen sich seine Umgebung durch alle Aktionen verändert.³ Die Umgebungen beinhalten in ihrer einfachsten Form eine simulierte Welt, welche zu jedem Zeitschritt eine Aktion entgegennimmt, und den eigenen nächsten Zustand sowie einen Belohnungswert zurückgibt. ⁴ Da ein Problem beim Einsatz von RL Algorithmen die Limitierungen sein können, Daten in der echten Welt zu sammeln und fürs Training zu verwenden, werden häufig hierfür Simulationsumgebungen eingesetzt.⁵ Eine Limitierung können bspw. Sicherheitsaspekte sein, welche beim Training von Roboterarmen, oder sich autonom bewegenden Systemen auftreten, da die einzelnen physischen Bewegungen nicht vorhersehbar abschätzbar sind.⁶ Simulationen nehmen damit als Testumgebung eine wichtige Rolle ein in der Entwicklung von Kontrollalgorithmen.⁷ Insgesamt bedarf die erfolgreiche Anwendung von Reinforcement Learning demnach nicht nur effiziente Algorithmen, sondern auch geeignete Simulationsumgebungen.⁸ Besonders schwierig, und daher sehr wichtig zu erforschen, ist es die Trainingsumgebung bestmöglich an die echte Welt anzupassen, sodass bspw. die Agenten für Roboter und autonome Fahrzeuge, nach dem Training mit generalisierten Policies in der Realität eingesetzt werden können. 9 In der Forschungsliteratur wird diese beschriebene Problematik als "Sim to real"-Transfer beschrieben. 10 Eine Domäne der echten Welt wird dabei eher selten ausschließlich von veränderten dynamischen Parametern und nur einer Person oder nur einer Organisation geprägt. Oftmals beeinflussen mehrere Parteien teilweise kooperierend aber auch teilweise konkurrierend den eigenen Erfolg, wie bspw. einen dem Wettbewerb unterliegenden Markt. Stellt man sich ein solches Szenario vor, ist es naheliegend, dass auch jene Einflüsse möglichst präzise in die Simulationsumgebung integriert sein müssen, um ein generalisierendes Modell erlernen zu können. Während bereits in Produkten wie Powertac nach Collins/Ketter 2022 die Simulation von Märkten entwickelt wurde, scheint der Einfluss des Gegenspielers in kompetitiven

¹Vgl. Yuxi 2019, S. 4

²Vgl. Schuderer/Bromuri/van Eekelen 2021, S. 3

³Vgl. Schuderer/Bromuri/van Eekelen 2021, S. 3

⁴Vgl. Reda/Tao/van de Panne 2020, S. 1

⁵Vgl. Zhao/Queralta/Westerlund 2020, S. 737

⁶Vgl. Zhao/Queralta/Westerlund 2020, S. 738

⁷Vgl. Cutler/Walsh/How 2014, S. 2

 $^{^8\}mathrm{Vgl.}$ Reda/Tao/van de Panne 2020, S. 8

⁹Vgl. Slaoui u. a. 2019, S. 1

 $^{^{10}\}mathrm{Vgl.}$ Zhao/Queralta/Westerlund 2020, S. 738

Simulationen auf die Robustheit von RL Algorithmen und demnach auf die Lösung des "Sim to real"-Transfers unerforscht.

1.2 Zielsetzung

Daher soll im Rahmen dieser Arbeit untersucht werden, ob die Integrierung eines RL basierten Gegenspielers in einer Simulation die Umgebung so beeinflussen kann, dass die erlernten Verhaltensmodelle, welche im Kontext von RL oftmals als Policies referenziert werden, robuster agieren unter den veränderten dynamischen Bedingungen und alternativen deterministischen Gegenspielern im Testszenario.

Dazu soll eine kompetitive Simulationsumgebung entwickelt werden, in welcher sich zwei konkurrierender Spieler in Form von Flugobjekten spielerisch gegenseitig bekämpfen. In der Simulation werden folgend Policies in drei verschiedenen Szenarien trainiert.

- Training mit regelbasiertem Gegenspieler unter gleichbleibenden Dynamikparametern
- Training mit RL basiertem Gegenspieler unter gleichbleibenden Dynamikparametern
- Training mit regelbasiertem Gegenspieler unter sich verändernden Dynamikparametern

Anschließend werden alle trainierten Policies in einer Reihe von Testszenarien untersucht. Jedes Testszenario verfügt dabei über festgelegte sich vom Training unterscheidende Dynamikparameter und jeweils leicht unterschiedliche Handlungspräferenzen des deterministischen Gegenspielers. Bei der Untersuchung werden jeweils die folgenden Variablen als Key Performance Indicator (KPI) betrachtet.

- durchschnittlich erzielte Belohnung
- Varianz der Belohnungen
- Anzahl an Abstürzen

Aus der Auswertung der Testszenarien kann der Effekt des RL basierten Gegenspielers auf die Robustheit mittels des Vergleichs mit dem regelbasierten Gegenspieler und der Domain Randomization evaluiert werden.

1.3 Forschungsfrage

Aus der beschriebenen Problemstellung und der für den Rahmen dieser Arbeit festgelegten Zielsetzung ergibt sich folgende Forschungsfrage:

Kann durch den Einsatz eines mittels RL trainierten Gegenspielers die Robustheit der gelernten Policy verbessert werden?

Zur Beantwortung der Forschungsfrage werden folgende Hypothesen aufgestellt und im Rahmen der Arbeit untersucht:

Hypothese 1: Die durchschnittlich erzielte Belohnung ist under Verwendung der Policy aus dem Training mit RL basiertem Gegenspieler signifikant und zuverlässig höher als die Policy aus dem Training mit regelbasiertem Gegenspieler.

Hypothese 2: Die Varianz der Belohnung ist under Verwendung der Policy aus dem Training mit RL basiertem Gegenspieler signifikant und zuverlässig geringer als die Policy aus dem Training mit regelbasiertem Gegenspieler.

Hypothese 3: Die Anzahl von Abstürzen ist under Verwendung der Policy aus dem Training mit RL basiertem Gegenspieler signifikant und zuverlässig geringer als die Policy aus dem Training mit regelbasiertem Gegenspieler.

1.4 Forschungsmethodik

Als Forschungsmethodik soll im Rahmen dieser Arbeit ein quantitatives Laborexperiment nach Recker 2021 durchgeführt werden. Hierbei wird häufig nach dem hypothetisch-deduktives Modell vorgegangen, in welchem Hypothesen formuliert, empirische Studien entwickelt, Daten gesammelt, Hypothesen anhand dessen evaluiert und gewonnene Erkenntnisse berichtet werden. ¹¹ Eine Möglichkeit der Untersuchung der Ursache- und Wirkungsbeziehung stellt das Laborexperiment dar. ¹² Dabei wird die kontrollierte Umgebung der Simulation erschaffen, in welcher dessen Aufbau die unabhängige Variable darstellt. Die Metriken anhand die Performance und die Robustheit der trainierten Policies gemessen werden, bilden im Experiment die abhängigen Variablen.

1.5 Aufbau der Arbeit

Insgesamt gliedert sich die Arbeit nach einem Schema von Holzweißig 2022 Die Arbeit beginnt mit einem einleitenden Kapitel in welchem Motivation, Problemstellung, Zielsetzung und Forschungsmethodik erläutert sind. Anschließend wird im zweiten Kapitel der aktuelle Stand der Forschung zu den relevanten Konzepten der Problemstellung wiedergegeben. Im dritten Kapitel wird die Forschungsmethodik durchgeführt, indem die Simulationsumgebung als Messinstrument entwickelt wird sowie verschiedene Messszenarien erläutert und entsprechende Daten gesammelt werden. Daraufhin sind im folgenden vierten Kapitel die gesammelten Messdaten auszuwerten und aufgestellte Hypothesen zu überprüfen. Im Zuge dessen kann ebenso die Forschungsfrage anhand der Annahme oder Ablehnung der Hypothesen beantwortet werden. Abschließend wird im letzten Kapitel ein Fazit zu den erzielten Forschungsergebnissen dargelegt und ein Ausblick auf weitere Forschung gegeben.

 $^{^{11}}$ Vgl. Recker 2021, S. S.89f.

 $^{^{12}}$ Vgl. Recker 2021, S. 106

2 Diskussion des aktuellen Stands der Forschung und Praxis

2.1 Aufbau der Literaturrecherche

In Anlehnung der Literaturrecherche nach Webster/Watson 2002 wurden alle voraussichtlich benötigten Konzepte für die Durchführung der beschriebenen Forschungsmethodik in Tabelle 1 festgehalten. Alle angeführten Konzepte wurden mittels verschiedener Suchbegriffe in Suchmaschinen, Datenbanken und Bibliotheken wie Google Scholar 2/28/2023, IEEE Xplore 2/28/2023 oder die digitale Bibliothek der Association for Computing Machinery (ACM) ACM Digital Library 2/28/2023 recherchiert. In der daraus gefunden Literatur wurden zitierte Werke ebenfalls nach den beschriebenen Konzepten durchsucht und insgesamt jede Literaturquelle in Tabelle 1 den in ihnen enthaltenen Konzepten zugeordnet.

Artikel	Konzepte							
	RL	MARL	ES	DS	KS	DR	RRLP	LE

Tab. 1: Konzept Matrix für Artikel zur Simulation und zur Robustheit RL Algorithmen nach Webster/Watson 2002. Legende: RL (Reinforcement Learning), MARL (Multi-Agent Reinforcement Learning), ES (Entwicklung von Simulationsumgebungen), DS (Dronensimulation), KS (kompetitive Simulationsumgebungen), DR (Domain Randomization), RRLP (Robustheit von RL Policies), LE (Laborexperimente)

2.2 Verstärkendes Lernen

Verstärkendes Lernen oder als RL in der Fachsprache bezeichnet, definiert einen konzeptionellen Ansatz zielorientiertes Lernen von Entscheidungen zu verstehen und zu automatisieren. ¹³ Dabei besteht der Fokus darauf das ein Agent aus der direkten Interaktion mit seiner Umgebung lernt, ohne das explizite Überwachung notwendig ist. ¹⁴ Der Agent lernt über die Zeit eine optimale Strategie zur Lösung des Entscheidungsproblems aus dem Ausprobieren und Scheitern mittels verschiedener Aktionen die gewünschte Veränderung in seiner Umwelt herzustellen. ¹⁵ Notwendig

 $^{^{13}\}mathrm{Vgl.}$ Sutton/Barto 2018, S. 13

 $^{^{14}\}mathrm{Vgl.}$ Sutton/Barto 2018, S. 13

 $^{^{15}\}mathrm{Vgl.}$ Yuxi 2019, S. 4

dabei ist es, das der Agent den Zustand seiner Umgebung wahrnehmen, und auch durch entsprechende Aktionen beeinflussen kann, sodass die Erreichung des Zielzustandes möglich ist. ¹⁶ Zur Erreichung dieses Zielzustandes muss der Agent alle Aktionen entdecken, welche ihm die größtmögliche kumulierte Belohnung liefern, wobei Aktionen nicht nur die unmittelbare sondern auch zukünftige Belohnungen beeinflussen. ¹⁷ Zusammengefasst lässt sich die beschriebene Interaktion des Agenten mit seiner Umgebung wie folgt in Abbildung 1 darstellen.

Abb. 1: vereinfachte Darstellung der Interaktion zwischen dem Agenten und seiner Umgebung¹⁸

Ein Standardaufbau einer Aufgabe für verstärkendes Lernen kann demnach verstanden werden, als sequentielles Entscheidungsproblem zu dessen Lösung ein Agent zu jedem diskreten Zeitschritt eine Aktion ausführt welche den Zustand der Umgebung verändert. Betrachtet man die technische Umsetzung einer solchen Interaktion zwischen dem Agenten und dessen Umgebung, wird häufig zur Modellierung ein Markov Entscheidungsprozess verwendet. Im Kontext von RL ist der Entscheidungsprozess definiert nach einem Tupel aus folgenden Elementen:²⁰

- $\bullet\,$ Alle Zustände S
- \bullet Alle Aktionen A
- initiale Zustandsverteilung p0(S)
- Übergangswahrscheinlichkeit $T(S_{t+1}|S_t, A_t)$
- Belohnungswahrscheinlichkeit $R(r_{t+1}|S_t, A_t)$

Zum Finden der optimalen Strategie existieren modellbasierende und modellfreie Algorithmen des verstärkenden Lernens.²¹ Bei modellbasierenden Algorithmen wird das Umgebungsverhalten, also die Übergangs- und Belohnungswahrscheinlichkeiten als bekannt vorausgesetzt.²² Unter modellbasierenden Algorithmen wird dynamische Programmierung eingesetzt, um mittels

¹⁶Vgl. Sutton/Barto 2018, S. 2

 $^{^{17}\}mathrm{Vgl.}$ Sutton/Barto 2018, S. 1

¹⁸Enthalten in: Yuxi 2019, S. 5

 $^{^{19}\}mathrm{Vgl.}$ Zhao/Queralta/Westerlund 2020, S. 2

 $^{^{20}}$ Vgl. Zhang/Wu/Pineau 2018, S. 2

 $^{^{21}}$ Vgl. Wang/Hong 2020, S. 3

²²Vgl. Wang/Hong 2020, S. 3

Strategie
evaluation und Strategieiteration die optimale Strategie zu finden. ²³ Unter modell
freien Algorithmen werden die drei verschiedenen Ansätze Wertebasierend, Strategie
basierend und Akteur-Kritiker basierend unterschieden ²⁴ Der Agent im Kontext von modell
freien RL Methoden nur die Zustände S und die Aktionen A, jedoch nicht die Umgebungsverhalten T und die Belohnungswahrscheinlichkeit R. ²⁵

2.2.1 Wertebasierende Methoden

Der Agent sucht in diesem Kontext die optimale Strategie π_{ϕ} , welche allen Zuständen S die jeweilige Aktion A(S) zuordnet, sodass die kummulierte Belohnungswahrscheinlichkeit $R(r_{t+1}|S_t,A_t)$ über alle Zeitschritte t maximal ist. 26 Neben dieser kurzfristigen direkten Belohnung müssen auch die langfristigen zukünftigen Belohnungen aus den neuen Zuständen betrachtet werden, wofür das Konzept der Wertigkeit eingeführt wird.²⁷ Über eine Zustands- oder Aktionswertigkeitsfunktion, oftmals als Q-Funktion referenziert, wird eine Vorhersage über die zu erwartende kumulierte abgezinste zukünftige Belohnung berechnet. 28 Durch den Abzinsungsfaktor $\gamma \in [0,1)$ wird der Einfluss zukünftiger Belohnungen nach ihrer zeitlichen Reihenfolge priorisiert.²⁹ Mit der Wertigkeitsfunktion kann evaluiert werden, welche Strategie langfristig am erfolgreichsten ist, da bspw. manche Aktionen trotz geringer sofortiger Belohnung einen hohen Wert aufweisen können, wenn aus dem zukünftigen Zustand eine hohe Belohnung zu erwarten ist. 30 Die Wertigkeitsfunktion und die daraus berechneten Wertigkeiten von Aktionen oder Zuständen werden über alle Zeitschritte neu geschätzt und stellen mit die wichtigste Komponenten in Algorithmen des verstärkenden Lernens dar. 31 Methoden basierend auf diesem Wertigkeitswert lernen eine Schätzfunktion der Wertigkeit für alle Zustände $(V_{\pi}(s)\forall S)$ und alle Zustandsaktions-Paare $(Q_{\pi}(s_t, a_t) \forall s, a \in (S, A))$ der optimalen Strategie π durch aktualisieren der folgenden Funktionen eins und zwei:³²

(1)
$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

(2) $V(s_t) = \max_{a} Q(s_t, a | \omega)$

Aus den geschätzten Wertigkeit jedes Zustandsaktions Paares kann die optimale Strategie $\pi^*(s)$ durch arg max Q(s, a) bestimmt werden.³³

 $^{^{23}\}mathrm{Vgl.}$ Yuxi 2019, S. 5

²⁴Vgl. Yuxi 2019, S. 5

²⁵Vgl. Cutler/Walsh/How 2014, S. 2

²⁶Vgl. Reda/Tao/van de Panne 2020, S. 2

²⁷Vgl. Wang/Hong 2020, S. 3

²⁸Vgl. Yuxi 2019, S. 5

²⁹Vgl Yuxi 2019, S. 5

³⁰Vgl. Sutton/Barto 2018, S. 6

³¹Vgl. Sutton/Barto 2018, S. 6f.

 $^{^{32}\}mathrm{Vgl.}$ Zhang/Wu/Pineau 2018, S. 2

 $^{^{33}\}mathrm{Vgl.}$ Zhang/Wu/Pineau 2018, S. 2

2.2.2 Strategiebasierende Methoden

Methoden welche die Strategie durch dessen Parametrisierung anstelle einer Wertigkeitsfunktion optimieren werden als strategiebasierend bezeichnet. Diese Methodik kann beim Trainieren deterministischer Strategien zu unerwarteten Aktionen führen, weshalb häufig das Optimieren einer Wahrscheinlichkeitsverteilung für alle Aktionen bevorzugt wird. Als Subklasse der RL Methoden wird der statistische Gradientenabstieg verwendet um die parametrisierte Strategie π_{θ} hinsichtlich der maximalen langfristigen kumulierten Belohnung zu optimieren. Die Strategie π_{θ} oder auch $\pi(a|s,\theta)$ beschreibt dabei die Wahrscheinlichkeit Aktion a im Zustand s auszuwählen unter dem Parametervektor θ . Zur Optimierung der Strategie wird die Funktion der kumulierten Belohnungen J nach dem Parameter der Gewichte θ wie folgt in Formel drei abgeleitet und der optimierte Parametervektor anhand Formel vier aktualisiert.

(3)
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=1}^{T} r(s_{t}, a_{t}) \right) \right]$$

(4) $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Zusammengefasst kann Formel vier und fünf dabei so interpretiert werden, dass die logarithmierte Wahrscheinlichkeit Aktion a_t im Zustand s_t auszuwählen erhöht werden soll, wenn a_t in einer höheren kumumlierten Belohnung resultiert.³⁹

2.2.3 Akteur-Kritiker Methoden

Unter Akteur-Kritiker Methoden werden hybride wertebasierende und strategiebasierende Methoden verstanden, welche zugleich die Strategie optimieren und eine Wertefunktion approximieren. Die strategiebasierende Methodik mit der lernenden Strategie agiert dabei als Akteur, wohingegen die Wertefunktion, welche jeder Aktion und jedem Zustand einen Behlohnungswert zuweist, als Kritiker handelt. Der Akteur wählt somit aus seiner Wahrscheinlichkeitsverteilung die auszuführende Aktionen aus, während der Kritiker diese anhand seiner Wertigkeit bewertet. Betrachtet man den Trainingsprozess von Akteur-Kritiker basierten Methoden ist dieser wie folgt aufgebaut: dieser wie folgt

- Aktueller Zustand der Umgebung als Eingabe dem Akteur und Kritiker übergeben
- Akteur liefert eine auszuführende Aktion basierend auf dem Umgebungszustand

 $^{^{34}\}mathrm{Vgl.}$ Zhang/Wu/Pineau 2018, S. 2

 $^{^{35}}$ Vgl. Ningombam 2022, S. 3

 $^{^{36}}$ Vgl. Ningombam 2022, S. 3

³⁷Vgl. Sutton/Barto 2018, S. 321

³⁸Vgl. Wang/Hong 2020, S. 6

³⁹Vgl. Wang/Hong 2020, S. 6

⁴⁰Vgl. Zhang/Wu/Pineau 2018, S. 2f.

⁴¹Vgl. Sutton/Barto 2018, S. 321

 $^{^{42}\}mathrm{Vgl}.$ Ningombam 2022, S. 3

⁴³Vgl. Ningombam 2022, S. 4

- Der Kritiker bekommt die Aktion als Eingabe und berechnet dessen Wertigkeit mittels Q-Funktion
- Durch die Wertigkeit seiner Aktion kann der Akteur seine Strategie anpassen
- Mit der neuen Strategie führt der Akteur die nächste Aktion im folgenden Zustand aus
- Die Q-Funktion des Kritikers wird mit den neuen Informationen aus der erhaltenen Belohnung angepasst

2.2.4 Limitierungen und Herausforderungen von RL

Trotz signifikanter Errungenschaften bewirkt der Einsatz von den besprochenen RL Algorithmen weiterhin Limitierungen und Risiken für ungewolltes Verhalten.⁴⁴

Eine der Herausforderungen zeigt sich bei der Representation der Agentenumwelt, da RL stark auf diesem Konzept basiert. ⁴⁵ Daraus ergibt sich die Aufgabe, die Umwelt und dessen Verhalten sowie die Wahrnehmung durch den Agenten realitätsgetreu und präzise zu gestalten. ⁴⁶ Neben der Definition und Wahrnehmung des Umweltverhaltens ist die Spezifikation des Ziels des Agenten ein ebenso kritischer Teil, da unerwartete Intentionen aus der Zielstellung abgeleitet werden könnten. ⁴⁷ Zusätzlich teilen RL Algorithmen auch Herausforderungen aus anderen Gebieten des maschinellen Lernens wie Genauigkeit, Interpretierbarkeit und die im Rahmen dieser Arbeit untersuchte Robustheit von Modellen. ⁴⁸

Eine weitere Limitierung stellt der große Suchraum an Aktionen und das unbekannte Verhalten der Umgebung dar. Dies sorgt dafür, dass häufig die Effizienz einzelner Daten sehr gering ist und die Abwägung zwischen Exploration neuer Strategie und der Optimierung bekannter Verhaltensmuster ein wichtiger Bestandteil ist. ⁴⁹ Aufgrund der geringen Effizienz der Daten aber des dennoch hohen Bedarfs an bewerteter Agentenerfahrung wird häufig auf simulierte Daten zurückgegriffen. ⁵⁰ Simulierte Daten werden dabei häufig von möglichst hoch qualitativen Simulationsumgebungen bereitgestellt, da zu dem hohen Bedarf der Methodik häufig Limitierungen in der Sammlung von Daten in der echten Welt bestehen. ⁵¹

Aufgrund dieser Bedeutung der Simulationsumgebung für RL Algorithmen und deren Transfer in die echte Welt wird im nachfolgenden Kapitel dessen Entwicklung genauer betrachtet.

⁴⁴Vgl. Yuxi 2019, S. 7

⁴⁵Vgl. Sutton/Barto 2018, S. 8

⁴⁶Vgl. Sutton/Barto 2018, S. 7

⁴⁷Vgl. Yuxi 2019, S. 7

⁴⁸Vgl. Yuxi 2019, S. 7

⁴⁹Vgl. Yuxi 2019, S. 7

⁵⁰Vgl. Zhao/Queralta/Westerlund 2020, S. 7

 $^{^{51}\}mathrm{Vgl.}$ Yuxi 2019, S. 8

3 Durchführung des Laborexperiments

4 Ergebnisse des Laborexperiments

5 Reflexion und Forschungsausblick

Anhang

Anhangverzeichnis

Anhang 1 Interv	view Transkripte	13
Anhang $1/1$	Interview Transkript: Mitarbeiter eines Unternehmens	13

Anhang 1: Interview Transkripte

Anhang 1/1: Interview Transkript: Mitarbeiter eines Unternehmens

Literaturverzeichnis

- ACM Digital Library (2/28/2023): ACM Digital Library. URL: https://dl.acm.org/.
- Collins, J./Ketter, W. (2022): Power TAC: Software architecture for a competitive simulation of sustainable smart energy markets. In: SoftwareX 20, S. 101217. ISSN: 2352-7110. DOI: https://doi.org/10.1016/j.softx.2022.101217. URL: https://www.sciencedirect.com/science/article/pii/S2352711022001352.
- Cutler, M./Walsh, T. J./How, J. P. (2014): Reinforcement learning with multi-fidelity simulators. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE. DOI: 10.1109/icra.2014.6907423.
- Google Scholar (2/28/2023). URL: https://scholar.google.de/.
- Holzweißig, K. (2022): Wissenschaftliches Arbeiten. In: 6.6.
- IEEE Xplore (2/28/2023). URL: https://ieeexplore.ieee.org/Xplore/home.jsp.
- Ningombam, D. D. (2022): Deep Reinforcement Learning Algorithms for Machine-to-Machine Communications: A Review. In: 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE. DOI: 10.1109/iccnt54827.2022.9984457.
- Recker, J. (2021): Scientific research in information systems: A beginner's guide. Second Edition. Progress in IS. Cham: Springer International Publishing. ISBN: 9783030854362. URL: https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6789173.
- Reda, D./Tao, T./van de Panne, M. (2020): Learning to Locomote: Understanding How Environment Design Matters for Deep Reinforcement Learning. In: *Motion, Interaction and Games*. Hrsg. von Daniele Reda/Tianxin Tao/Michiel van de Panne. New York, NY, USA: ACM, S. 1–10. DOI: 10.1145/3424636.3426907.
- Schuderer, A./Bromuri, S./van Eekelen, M. (2021): Sim-Env: Decoupling OpenAI Gym Environments from Simulation Models. In: *International Conference on Practical Applications of Agents and Multi-Agent Systems*. Springer, Cham, S. 390–393. DOI: 10.1007/978-3-030-85739-4{\textunderscore}39. URL: https://link.springer.com/chapter/10.1007/978-3-030-85739-4_39.
- Slaoui, R. B./Clements, W. R./Foerster, J. N./Toth, S. (2019): Robust Domain Randomization for Reinforcement Learning. In: *CoRR* abs/1910.10537. arXiv: 1910.10537. URL: http://arxiv.org/abs/1910.10537.
- Sutton, R. S./Barto, A. G. (2018): Reinforcement Learning, second edition: An Introduction. MIT Press. ISBN: 9780262352703.
- Wang, Z./Hong, T. (2020): Reinforcement learning for building controls: The opportunities and challenges. In: *Applied Energy* 269, S. 115036. ISSN: 0306-2619. DOI: 10.1016/j.apenergy. 2020.115036.
- Webster, J./Watson, R. T. (2002): Analyzing the Past to Prepare for the Future: Writing a Literature Review. In: MIS Q. 26.2, S. xiii–xxiii. ISSN: 0276-7783.
- Yuxi, L. (2019): Reinforcement Learning Applications. DOI: 10.48550/ARXIV.1908.06973. URL: https://arxiv.org/abs/1908.06973.

Zhang, A./Wu, Y./Pineau, J. (2018): Natural Environment Benchmarks for Reinforcement Learning. DOI: 10.48550/ARXIV.1811.06032. URL: https://arxiv.org/abs/1811.06032.

Zhao, W./Queralta, J. P./Westerlund, T. (2020): Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE. DOI: 10.1109/ssci47803.2020.9308468.

Erklärung

Ich versichere hiermit, dass ich meine Bachelorarbeit mit dem Thema: Experiment zur Verbesserung der Robustheit von Reinforcement Learning Policies anhand trainiertem Gegenspieler in Simulationen selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

(Ort, Datum)

(Unterschrift)