Taller No. 3

Señales y sistemas II

Departamento de Ingeniería Eléctrica y Electrónica

Universidad Nacional de Colombia sede Bogotá

9 de Junio de 2012

1. En un labor de reingeniería se solicita caracterizar un circuito basado en amplificadores operacionales que realiza cierta labor de filtrado. La figura del circuito se muestra a continuación:

				bo			
	$H(s) = \frac{a_0}{s^{n_1} + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$						
	n	b _U	ao	a_1	a_2	$a_{\mathfrak{z}}$	a_4
Bessel	1	1	1				
	2	3	3	3			
	3	15	15	15	6		
	4	105	105	105	45	10	
	5	945	945	94.5	420	105	15
Butterworth	1	1	1				
	2 3	1	1	1.41			
		1	1	2	2		
	4	1	1	2.61	3.41	2.61	
	5	1	1	3.24	5.24	5.24	3.24
Chebyshev	1	2.86	2.86				
(½ dB)	2	1.43	1.52	1.43			
	3	0.716	0.716	1.53	1.26		
	4	0.358	0.379	1.03	1.72	1.20	
	5	0.179	0.179	0.753	1.31	1.94	1.17
Chebyshev	1	1.97	1.97				
(1 dB)	2	0.983	1.10	1.10			
	3	0.491	0.491	1.24	0.988		
	4	0.246	0.276	0.743	1.45	0.953	
	5	0.123	0.123	0.580	0.974	1.69	0.937

Se sabe que por requerimientos de la aplicación en la que funcionaba el circuito, que este tiene una ganancia de pasabanda de 6 [dB]. Determinar:

- a. La función de transferencia del circuito.
- b. Tipo de filtro.
- c. Frecuencia de corte asociada.
- 2. Diseñar un filtro pasa-altos Butterworth de tercer orden con frecuencia de corte de 10 kHz.
- 3. Determinar la función de transferencia y la realización de un filtro Bessel pasa-banda con frecuencia central de 8 rad/s.
- 4. Diseñar un circuito cuya función de transferencia en voltaje es $H(s) = \frac{s^2 30s + 200}{s^2 + 30s + 200}$, que tipo de filtro es? (Justifique su respuesta).
- 5. Diseñar un filtro Chebyshev (1 dB) rechaza-banda con frecuencia central de 10 kHz.