3.2)
$$\dot{x} = \frac{1}{6} \left[x - \frac{1}{3} \dot{x}^3 - y + I \right]$$

 $\dot{y} = x + a - by$

a)
$$a = \frac{4}{4}$$
 $b = \frac{5}{4}$
 $c = 1$
 $c =$

$$= \frac{4}{3} - \frac{7}{3}$$

$$= \frac{5}{3} \cdot \frac{7}{3} - \frac{4}{3}$$

$$\Delta = \frac{5}{4} \left(\pm \frac{2}{3} \right)^2 + \frac{4}{4} = \frac{20}{81} + \frac{4}{9} = \frac{59}{81}$$

$$x^{*}=\frac{2}{3}$$
 > $I_{c}=\frac{8}{81}+\frac{8}{15}+\frac{4}{5}=\frac{40}{405}+\frac{216}{405}+\frac{324}{405}=\frac{580}{405}$ > 1 not possible

$$x^{*} = -\frac{1}{3} \Rightarrow I_{c} = \frac{40}{405} - \frac{216}{405} + \frac{324}{405} = \frac{68}{405} \stackrel{?}{\sim} 1$$

b)
$$\mathcal{I} = \begin{bmatrix} \frac{1}{6} (1-x^2) & -\frac{1}{6} \\ 1 & -\frac{1}{6} \end{bmatrix}$$

$$\dot{x} = \frac{1}{6} \left[x - \frac{1}{3}x^3 - y + I \right] = 0 \Rightarrow x - \frac{1}{3}x^3 - y + I \Rightarrow \dot{x} = x - \frac{1}{3}x^3 - \frac{x}{6} + \frac{a}{6} + I$$

$$\dot{y} = x + a - by = 0 \Rightarrow y = \frac{x + a}{6}$$

$$T = 0 \Rightarrow \frac{1}{E}(1 - x^2) - b = 0 = 100 - 100x^2 - 1 = 0 \Rightarrow x \Rightarrow t = 0$$

$$\Delta = -100(1-x^2)+100 = x^2 => 0$$

$$\dot{x} = \frac{1}{6} \left[x - \frac{1}{3}x^3 - y + I \right] = 100(x - \frac{1}{3}x^3 - \frac{x + a}{b} + I) = 100(\frac{x^3}{3} - 1 + I) = 0 \Rightarrow I = 1 - \frac{x^3}{3}$$

$$\dot{y} = x + a - by \Rightarrow y = \frac{x + a}{b}$$

$$I_1 = 1 - \frac{aa_1p}{1000} \approx 0.62165$$

$$I_2 = 1 + \frac{4a_1p}{1000} \approx 0.62165$$

$$X^{*} = \frac{1}{3} \Rightarrow 0 = x - \frac{1}{3}x^{3} - x - 1 + 0.6 \Rightarrow x = \sqrt{3 \cdot (-0.4)} \approx -1.06265$$

$$\hat{X} = 0 \Rightarrow y = x - \frac{1}{3}x^{3} + I$$

$$\hat{Y} = 0 \Rightarrow y = x + 1$$

=>
$$\dot{x} = \frac{1}{6} \left[x - \frac{1}{3}x^3 - y + 1 \right]$$

 $\dot{y} = x + 1 - y$

null clines =>
$$\frac{1}{3}z^{2}$$
 => $\frac{x}{3}$ +1 $\frac{x^{3}}{3}$ +1 $\frac{1}{3}z^{2}$ => $\frac{x}{3}$ +1

On slow branch, assume we follow the nullcline
$$\dot{x}=6$$
 (I calculate \dot{y}

$$\dot{y}=\frac{dy}{dt}=x+1-x+\frac{x^3}{3}-1=\frac{x^3}{3}\Rightarrow dt=\frac{3}{x^2}dy$$
 (1)

Derive nullclines $\hat{x} = 0$

$$\frac{dy}{dx} = 1 - x^2 => dy = (1 - x^2) dx$$
 (2)

Set (2) in (1):

$$d = \frac{3}{x} \cdot (1 - x^2) dx$$

Calculate time on slow branch w.
$$x_1 = 2$$
 & $x_2 = 1$

Therefore $= \sum_{x=1}^{n} dt = 2 \int_{x=1}^{2} (1-x^2) dx = Through Mathematica$

$$= 3(\ln 1 - \frac{3}{8})$$