PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-295369

(43) Date of publication of application: 09.10.2002

(51)Int.CI.

F04B 39/02 F04C 18/02

F04C 29/02

(21)Application number: 2001-100085

(71)Applicant: TOYOTA INDUSTRIES CORP

(22)Date of filing:

30.03.2001

(72)Inventor: MOTONAMI HIROYUKI

KUROKI KAZUHIRO **MIZUFUJI TAKESHI**

(54) DYNAMOELECTRIC COMPRESSOR AND LUBRICANT CIRCULATION METHOD FOR DYNAMOELECTRIC COMPRESSOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a technique effective for rationally lubricating desired lubrication points by using lubricant, in a dynamoelectric compressor provided with an electric motor as a driving source for driving a coolant-compressing mechanism.

SOLUTION: A storage part 45a is formed in the bottom of a motor chamber 45 of a scroll type compressor 1, and a transfer passage 4a is formed at a position in a center housing 4 corresponding to the storage part 45a. The lubricant separated from a discharged coolant by an oil separator 80 and fed to the back side of a movable scroll 20 by pressure difference is stored in the storage part 45a via a driving mechanism 23. The lubricant L tentatively stored in the storage part 45a is transferred to the intake part side of the compressing mechanism 21 through the transfer passage 4a by pressure difference. The lubricant is transferred to the oil

separator 80 together with the discharged coolant discharged from a compression chamber 32. Thus, the lubricant included in the discharged coolant is circulated between the back side of the movable scroll 20 and it.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2002-295369 (P2002-295369A) (43)公開日 平成14年10月9日(2002.10.9)

(51) Int. C1. 7	識別記号	F I デーマコート*(参考)
F 0 4 B	39/02	F O 4 B 39/02 G 3H003
F 0 4 C	18/02 3 1 1	F 0 4 C 18/02 3 1 1 Y 3H029
	29/02 3 1 1	29/02 3 1 1 F 3H039
	審査請求 未請求 請求項の数4 OI	(全8頁)
(21)出願番号	特願2001-100085 (P2001-100085)	(71)出願人 000003218
(22)出願日	平成13年3月30日 (2001. 3. 30)	株式会社豊田自動織機 愛知県刈谷市豊田町2丁目1番地
		(72)発明者 元浪 博之
		愛知県刈谷市豊田町2丁目1番地 株式会社
		豊田自動織機製作所内
	•	(72)発明者 黒木 和博
	·	愛知県刈谷市豊田町2丁目1番地 株式会社
		豊田自動織機製作所内
		(74)代理人 100064344
	·	弁理士 岡田 英彦 (外3名)

最終頁に続く

(54) 【発明の名称】電動圧縮機および電動圧縮機の潤滑油循環方法

(57)【要約】

冷媒の圧縮機構を駆動する駆動源として電動 モータを備えた電動圧縮機において、潤滑油を用いて所 望の潤滑箇所の潤滑を合理的に行うのに有効な技術を提 供する。

【解決手段】 スクロール型圧縮機1のモータ室45の 底部には貯留部45aが形成され、センターハウジング 4には貯留部45aに対応した位置に移送路4aが設け られている。吐出冷媒からオイルセパレータ80によっ て分離され、圧力差によって可動スクロール20背面側 へ供給された潤滑油は、駆動機構23を経由して貯留部 45 aに貯留される。貯留部45 aに一旦貯留された潤 滑油Lは、圧力差によって移送路4aを通じて圧縮機構 21の吸入部側へ移送される。この潤滑油は、圧縮室3 2から吐出される吐出冷媒とともにオイルセパレータ8 0 へ移送される。而して、吐出冷媒に含まれる潤滑油は 可動スクロール20の背面側との間で循環されることと なる。

【特許請求の範囲】

【請求項1】 吸入冷媒を圧縮し高圧化して吐出する圧縮機構と、電動モータを介して前記圧縮機構を駆動する駆動軸と、該駆動軸の軸受け機構と、前記電動モータを収容する密閉されたモータ室と、吸入から吐出に至る冷媒の流通経路を前記モータ室と連通させる連絡路とを有する電動圧縮機であって、

吐出側領域の潤滑油を吐出冷媒と前記軸受け機構との間の圧力差によって該軸受け機構へ供給する潤滑油供給経路と、前記軸受け機構へ供給された潤滑油を該軸受け機 10 構側と吸入側領域との圧力差によって該吸入側領域へ移送する潤滑油移送経路とを備えていることを特徴とする電動圧縮機。

【請求項2】 請求項1に記載した電動圧縮機であって、

前記軸受け機構へ供給された潤滑油を貯留する貯留部が 設けられていることを特徴とする電動圧縮機。

【請求項3】 吸入冷媒を圧縮し高圧化して吐出する圧縮機構と、電動モータを介して前記圧縮機構を駆動する駆動軸と、該駆動軸の軸受け機構と、前記電動モータを収容する密閉されたモータ室と、吸入から吐出に至る冷媒の流通経路を前記モータ室と連通させる連絡路とを有する電動圧縮機において、

吐出側領域の潤滑油を吐出冷媒と前記軸受け機構との間の圧力差によって該軸受け機構へ供給し、前記該軸受け機構側の潤滑油を該軸受け機構側と吸入側領域との圧力差によって該吸入側領域へ移送し、該潤滑油を前記圧縮機構の圧縮動作にともなって再び前記吐出側領域へ移送することで潤滑油の循環を行うことを特徴とする電動圧縮機の潤滑油循環方法。

【請求項4】 請求項3に記載した電動圧縮機の潤滑油循環方法であって、

前記軸受け機構へ供給された潤滑油を貯留することを特 徴とする電動圧縮機の潤滑油循環方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、冷媒の圧縮機構を 駆動する駆動源として電動モータを備えた電動圧縮機に 関する。

[0002]

【従来の技術】特開平5-312156号公報には、エアコン、冷凍機などの回転圧縮機として利用される一般的なスクロール型圧縮機が開示されている。このスクロール型圧縮機は、固定スクロールに対して可動スクロールを旋回させることによって、両スクロール間に形成される圧縮室で冷媒を圧縮して高圧化し、固定スクロールの吐出部から吐出するように構成されている。

[0003]

【発明が解決しようとする課題】ところで、上記のようなスクロール型圧縮機において、従来、可動スクロール 50

の背面には駆動軸の軸受け機構が設けられている。そして、例えばこの軸受け機構へ潤滑油を供給することにより軸受け機構の潤滑性の維持を図ることができる。しかしながら、上記公報には、軸受け機構に潤滑油を使用するに際し具体的な技術の提唱がなされていない。そこで本発明では、冷媒の圧縮機構を駆動する駆動源として電動モータを備えた電動圧縮機において、潤滑油を用いて所望の潤滑箇所の潤滑を合理的に行うのに有効な技術を提供することを課題とする。

[0004]

【課題を解決するための手段】前記課題を解決するために、本発明の電動圧縮機は請求項1および2に記載の通りに構成される。また、本発明の電動圧縮機の潤滑油循環方法は請求項3および4に記載の通りである。なお、本発明は、電動圧縮機において、運転過程で生じる冷媒の圧力差を用いることによって吐出側領域の潤滑油を、軸受け機構側との間で簡便に循環することができるようにした技術である。

【0005】請求項1に記載した電動圧縮機では、冷媒 の圧縮を行う圧縮機構の駆動軸は電動モータに接続され ている。従って、駆動源である電動モータを起動させる ことよって、吸入冷媒が圧縮機構を介して圧縮され高圧 化されて吐出冷媒として吐出される。この圧縮機構とし ては、例えば固定スクロールに対して可動スクロールを 旋回させて冷媒の圧縮動作を行うスクロール型の圧縮機 構や、シリンダボア内でピストンを往復動させることで 冷媒の圧縮動作を行う往復動式の圧縮機構等がある。電 動モータを収容するモータ室は密閉されており、このモ ータ室は吸入から吐出に至る冷媒の流通経路と連絡路を 介して連通されている。これにより、流通経路を移動す る冷媒の一部がモータ室内でいわゆる「よどみ」状態と なる。また、流通経路側とモータ室側との間に圧力差が あると、両者間の圧力が均等になるように冷媒が流動す るため、従って、流通経路側の冷媒とモータ室内側の冷 媒との間で熱移動が生じ、モータ室内の電動モータが冷 却されることとなる。この際、電動モータの冷却に関与 する冷媒は、流通経路を移動する冷媒の一部であり、電 動圧縮機の圧縮仕事に対する影響が少ない。本発明の電 動圧縮機は、更に、潤滑油供給経路、潤滑油移送経路を 40 備えている。潤滑油供給経路は、吐出側領域の潤滑油、 好適にはオイルセパレータ等を介して吐出冷媒から分離 された吐出冷媒中の潤滑油を、圧力差を用いて駆動軸の 軸受け機構へ供給する経路である。吐出冷媒中の潤滑油 は、軸受け機構よりも高圧の吐出圧雰囲気であるため、 吐出側領域と軸受け機構とが連通する経路を設けること で、吐出冷媒中の潤滑油を圧力差によって軸受け機構側 へ容易に供給することができる。そして、軸受け機構へ 供給された潤滑油は、軸受け機構の潤滑に用いられるこ ととなる。なお、潤滑油が軸受け機構へ供給される際、

吐出冷媒の一部は潤滑油に同伴されて軸受け機構側へ移

4 &送 したがって測過油の毎5

動し、軸受け機構側の圧力が高められることとなる。潤 滑油移送経路は、軸受け機構へ供給された後の潤滑油 を、圧力差を用いて吸入側領域へ移送する経路であり、 例えばモータ室側の貯留部と吸入側領域とを仕切るハウ ジングに形成するのが好ましい。潤滑油とともに潤滑油 供給経路を通じて軸受け機構側へ入り込んだ吐出冷媒に よって軸受け機構側が加圧状態となるため、軸受け機構 側と吸入側領域との間に圧力差を生じる。従って、軸受 け機構側と、吸入側領域のうち軸受け機構側よりも低圧 である箇所とを潤滑油移送経路によって連通させること で、軸受け機構側の潤滑油は圧力差によって容易に吸入 側領域へ移送されることとなる。なお、ここでいう「吸 入側領域」には、吸入冷媒が圧縮機構へ導入される直前 の吸入部以外に、例えばスクロール型圧縮機において吸 入冷媒を圧縮する過程の圧縮室等が含まれるものとす る。すなわち、軸受け機構側を、潤滑油移送経路によっ て圧縮室の低圧側(軸受け機構側よりも低圧箇所)と連 通させることもできる。このようにして、潤滑油移送経 路を通じて吸入側領域へ移送された潤滑油は、圧縮機構 の圧縮動作に伴って再び吐出側領域へ戻される。すなわ 20 ち、この潤滑油は吐出冷媒とともに吐出される。また、 この吐出側領域の潤滑油は、潤滑油供給経路を通じて再 び軸受け機構へ供給される。而して、吐出側領域の潤滑 油は、簡単な構成の潤滑油供給経路、潤滑油移送経路を 介して循環されることとなる。以上のように、請求項1 に記載の電動圧縮機によれば、冷媒に含まれる潤滑油を 循環使用するため合理的である。そのうえ、潤滑油の循 環を冷媒の圧力差を用いて簡便に行うことができる。

【0006】また、請求項2に記載の電動圧縮機には、潤滑油供給経路によって軸受け機構へ移送された後の潤 30 滑油を貯留する貯留部が設けられている。すなわち、この貯留部は、軸受け機構の潤滑に用いられ後の潤滑油、或いは過剰に供給された潤滑油を貯留する領域であり、例えばモータ室の底部に設けられるのが好ましい。これにより、軸受け機構からモータ室の底部へ向けて自重落下した潤滑油を、簡単な構成の貯留部に貯留させることができる。そして、一旦貯留部に貯留された潤滑油は、潤滑油移送経路を介して吸入側領域へ確実に移送される。従って、簡単な構成によって潤滑油の循環を確実に行うことができる。 40

【0007】請求項3に記載した電動圧縮機の潤滑油循環方法では、吐出側領域の潤滑油を軸受け機構へ供給し、吸入側領域へ移送し、再び吐出側領域へ戻すことで潤滑油の循環を行う。なお、これらはいずれも冷媒の圧力差を用いて行う。従って、請求項3に記載した電動圧縮機の潤滑油循環方法によれば、潤滑油の循環を冷媒の圧力差を用いて簡便に行うことができる。

【0008】請求項4に記載した電動圧縮機の潤滑油循環方法では、軸受け機構側から吸入側領域へ移送する前の潤滑油を貯留する。これにより、軸受け機構側から吸 50

入側領域への潤滑油の移送、したがって潤滑油の循環を 確実に行うことができる。

[0009]

【発明の実施の形態】以下に、本発明の一実施の形態を図面に基づいて説明する。なお本実施の形態は、本発明を、吸入冷媒を固定スクロールと可動スクロールとの間の圧縮室において圧縮し高圧化して吐出冷媒として吐出するスクロール型圧縮機に適用したものである。ここで、図1は本実施の形態のスクロール型圧縮機1の全体を示す縦断面図である。図2は図1中のII-II線断面矢視図である。なお、図1および図2中の矢印UPは、スクロール型圧縮機1の上方を示すものである。図3および図4は、いずれも第1給油路94に対する第2給油路95の相対位置の一例を示す部分断面図である。

【0010】図1に示すように、本発明における電動圧縮機としてのスクロール型圧縮機1において、固定スクロール2の一端面にはセンターハウジング4の一端面が接合されており、そのセンターハウジング4の他端面にはモータハウジング6が接合されている。また、固定スクロール2の他端面にはフロントハウジング5が接合されている。従って、これらハウジング4~6と固定スクロール2によって圧縮機本体が構成されている。センターハウジング4とモータハウジング6とには、駆動軸8がラジアルベアリング10,12を介して回転可能に支持されており、その駆動軸8のセンターハウジング4側には、駆動軸8に対して偏心した偏心軸14が一体に形成されている。

【0011】偏心軸14にはブッシュ16が一体回転するように嵌合されている。ブッシュ16の一端部にはバ30 ランスウエイト18が一体回転するように取り付けられ、また、ブッシュ16の他端部側には、可動スクロール20が固定スクロール2と対向するようにニードルベアリング22を介して相対回転可能に取り付けられている。この固定スクロール2および可動スクロール20等によって、冷媒の圧縮を行う圧縮機構21が構成されている。なお、ニードルベアリング22は、可動スクロール20における可動スクロール基板24の背面(図1中の右側)に突設された筒状のボス部24a内に収容されている。このニードルベアリング22およびラジアルベ7リング10等によって、可動スクロール20の軸受け機構23が構成されている。

【0012】固定スクロール2は、円板状の固定スクロール基板26の片面に立設した渦巻状、いわゆるインボリュート状の固定渦巻壁(ラップ)28を有している。同様に可動スクロール20は、円板状の可動スクロール基板24の片面に立設した渦巻状(インボリュート状)の可動渦巻壁(ラップ)30を有している。そして、各スクロールは、渦巻壁28,30が互いに噛合すように配置されている。

【0013】固定スクロール2の固定スクロール基板2

6及び固定渦巻壁28、可動スクロール20の可動スクロール基板24及び可動渦巻壁30は、固定渦巻壁28と可動渦巻壁30が摺接部(複数の点)において摺接することで、三日月状の圧縮室(密閉空間)32を形成する。可動スクロール20は偏心軸14の回転(旋回運動)に伴って公転(旋回運動)し、そのとき、バランスウエイト18は可動スクロール20の公転に伴う遠心力を相殺する。駆動軸8と一体に回転する偏心軸14、ブッシュ16、及び偏心軸14と可動スクロール20のボス部24aとの間に介在されたニードルベアリング22とによって、駆動軸8の回転力を可動スクロール20に公転運動として伝えるようになっている。

【0014】センターハウジング4の端面には、同一円 周線上に複数(例えば4個)の自転阻止用の凹部34が 等間隔角度位置に形成されている。センターハウジング 4に固定された固定ピン36と、可動スクロール基板2 4に固定された可動ピン38とは、凹部34に挿入され た状態で止着されている。可動スクロール20は偏心軸 14の回転に伴って凹部34及び固定ピン36、可動ピ ン38によって自転が阻止される。すなわち、凹部34 20 及び固定ピン36、可動ピン38によって可動スクロー ル20の自転防止機構が形成されている。

【0015】固定スクロール基板26には、吐出孔50を開閉するリード弁式の吐出弁52が設けられている。この吐出弁52は、吐出孔50に対応した形状のリード弁54、このリード弁54を保持する弁押え56、リード弁54および弁押え56を固定スクロール基板26に固定する固定ボルト58を有し、固定スクロール基板26に固定する固定ボルト58を有し、固定スクロール基板26に形成された吐出チャンバ25に収納されている。なお、リード弁54の開閉動作は、吐出孔50に連通する圧縮室32と吐出チャンバ25との圧力差で行われる。すなわち、圧縮室32側の圧力が吐出チャンバ25側の圧力よりも高い場合は、リード弁54は開放され、圧縮室32側の圧力が吐出チャンバ25側の圧力よりも高い場合は、リード弁54は閉止される。また、弁押え56は、リード弁54を保持するとともに、リード弁54の最大開度を規制するように構成されている。

【0016】固定スクロール2、センターハウジング4 およびモータハウジング6からなるケーシングの外周部 には、電動モータ49を制御するインバータ60が取付 40 けられている。このインバータ60は、比較的発熱度の 高いスイッチング素子、比較的発熱度の低いコンデンサ 64等を有し、これら構成部品は、高発熱部品と低発熱 部品とに区分されてインバータケース70内に収容され ている。スイッチング素子62はインバータケース70 の筒部70aの外周に配置され、コンデンサ64は取付 基板65に配置されている。インバータケース70の筒 部70aは、その一端が吸入ポート44に接続され、他 端が外部回路の冷媒帰還管路(図示省略)に接続されて いる。 【0017】また、ユニットハウジング70内のスイッチング素子62と、モータハウジング6内の電動モータ49とは、モータハウジング6内とユニットハウジング70内に貫通する3本の導通ピン66及び導線67,68によって接続されており、電動モータ49の駆動に必要な電力は、これらの導通ピン66及び導線67,68を介して供給される。

【0018】なお、導線68とステータコイル46aとの接続箇所は、電動モータ49の圧縮機構部側に設けられている。また、インバータ60はハウジングに対して一体化されており、電動モータ49とインバータ60との接続箇所はハウジングの径方向の外周部に設けられている。すなわち、軸方向の外周部にインバータ等を設ける場合に比して軸長さを極力おさえたコンパクトな大きさになっている。また、電動モータ49とインバータ60との接続箇所は、各々が互いに近接する位置に設けられている。これにより電動モータ49とインバータ60とを極力最短距離で接続することができる。従って、接続部材の長さを短くすることができ、材料コストおよび重量の低減や、電圧降下を抑制することによる性能アップが可能となる。

【0019】モータハウジング6の内周面にはステータ46が固着されており、駆動軸8にはロータ48が固着されている。駆動軸8、ステータ46及びロータ48等によって電動モータ49が構成され、ステータ46のステータコイル46aへの通電によりロータ48及び駆動軸8が一体となって回転する。電動モータ49は、モータハウジング6とセンターハウジング4とによって形成される密閉されたモータ室45に収容されている。

【0020】駆動軸8の偏心軸14が回転することに伴 い、可動スクロール20が公転(旋回)し、固定スクロ ール2に形成された吸入ポート44から導入された冷媒 は、両スクロール2,20の周縁側から固定スクロール 基板26と可動スクロール基板24との間へ流入する。 また、可動スクロール20の公転に伴い、可動ピン38 が固定ピン36の周面に沿って摺動する。そして、偏心 軸14が回転するとき、該偏心軸14にニードルベアリ ング22を介して相対回転可能に取り付けられた可動ス クロール20は、自転することなく駆動軸8の中心軸線 回りに公転する。可動スクロール20が公転することに 伴い、吸入ポート44から導入された冷媒は圧縮室32 へ流入され、圧縮度を強めながら固定スクロール2の中 心方向へ導かれ、高圧化される。そして、高圧化された 冷媒は、固定スクロール基板26の中心位置に形成さ れ、最も高圧となる圧縮室32と連通する吐出孔50へ 流入していく。

【0021】圧縮機構21側とモータ室45とを仕切る センターハウジング4には、圧縮機構21側に形成され た吸入から吐出に至る冷媒の流通経路中の吸入領域を、 50 モータ室45に連通させるための連絡路47が設けられ

ている。すなわち、吸入冷媒の入口は、可動スクロール 基板24の外周面と、該可動スクロール基板24を収容 するスクロール収容空間の内壁面との間に形成される空 間47aに通じており、その空間47aがセンターハウ ジング4に設けた連通孔47bによってモータ室45に 連通されている。上記の空間47aと連通孔47bとに よって連絡路47が構成され、この連絡路47は圧縮機 の運転中、スクロール収容空間内を公転する可動スクロ ール基板24の位置に関係なく、冷媒の流通経路に対し て常に連通状態が維持される。このため、流通経路側の 吸入冷媒とモータ室45側の冷媒との間で連絡路47を 介して熱移動が生ずる。すなわち、高熱側であるモータ 室45側の熱が流通経路側へ移動し、この熱移動によっ て電動モータ49が冷却される。また、モータ室45と 冷媒の吸入領域との間に圧力差が生じたときは、モータ 室45と吸入領域との間には、連絡路47を介して冷媒 の流れが発生する。従って、その冷媒流れに伴い熱が移 動され、電動モータ49は冷却される。かくして、電動 モータ49のオーバーヒートが防止される。

【0022】上述した冷却は、従来の如きモータ室内を 吸入冷媒の通路とする方式とは異なり、吸入冷媒の大き な流れを伴わない、いわゆる「よどみ冷却」である。そ して、このような「よどみ冷却」に直接的に関わる吸入 冷媒は、流通経路を流通する吸入冷媒中の一部であり、 吸入冷媒全体の温度を大きく上昇させるには至らない。 このため、吸入冷媒の比体積の増大が抑えられることに なり、圧縮効率が低下するといった不具合を解消するこ とができる。なお、本実施の形態では、吸入冷媒によっ てインバータ60を冷却する構成を採用しているが、イ ンバータ60の発熱量は電動モータ49の発熱量に比べ 30 て極めて少ない。従って、モータ室45内に全ての吸入 冷媒を流通させて電動モータ49を冷却する場合に比べ ると、吸入冷媒でインバータ60を冷却したときの該吸 入冷媒の温度上昇は僅かであり、圧縮効率を低下させる には至らない。また、本実施の形態では、電動モータ4 9 の冷却に低温の吸入冷媒を用いるため、吐出冷媒に比 べると、より高い冷却効果を得ることができる。更に は、吸入冷媒をモータ室45に導く構成によると、電動 モータ49の駆動力を圧縮機構21に伝える駆動軸8の 回りにシール材を設ける必要が無く、構造が簡単でコス 40 ト的に有利となる。

【0023】フロントハウジング5には、吐出チャンバ25から吐出された吐出冷媒中の潤滑油を分離するオイルセパレータ80が設けられている。このオイルセパレータ80は、遠心力を用いた分離機構を有するタイプであり、油分離室81、筒部材82、筒部材82の下方に取り付けられたフィルター84、分離された潤滑油を一旦貯留する貯留部85等によって構成されている。また、油分離室81と貯留部85との間には、これらを連通する通孔83が設けられている。吐出チャンバ25か50

ら吐出された吐出冷媒は、図1中の実線矢印で示すようにオイルセパレータ80へ導入されると、油分離室81で筒部材82と衝突し、この筒部材82のまわりを旋回しながら下降していく。この際、吐出冷媒に含まれる潤滑油は遠心力によって分離され重力にしたがって図1中に破線矢印で示すように移動する。そして、この潤滑油は、通孔83、フィルター84を通過した後、一旦貯留部85に貯留される。一方、潤滑油が分離された吐出冷媒は、筒部材82の開口部82aから吐出ポート86へ移動し、その後、外部回路のコンデンサ(図示省略)へ移送される。

【0024】なお、フロントハウジング5と固定スクロール2との各端面間にはガスケット90が装着されている。図2に示すように、このガスケット90の下方には貯留部85と連通する給油孔91が形成され、また、ガスケット90の上方には給油孔93が形成されている。この給油孔91と給油孔93とは、給油溝92を介部と位置には、潤滑油の第1給油孔93と可動スクロールを位置には、潤滑油の第1給油孔93と可動スクロール20の前面側(図1中の可動スクロール基板24の左側)とを連通するものである。また、第1給油路94は、その可動スクロール側の形状と割また、第1給油路94は、その可動スクロールを変以上の電積が、固定スクロール側よりも狭くなって約り、この第1給油路94を通じて必要以上の電滑油が供給されるのを極力抑えるようになっている。

【0025】図3および図4に示すように、さらに、可 動スクロール基板24の端部であって第1給油路94に 対応した位置には、潤滑油の第2給油路95が設けられ ている。この第2給油路95は、可動スクロール20を その前面側(図1中の可動スクロール20の左側)から 背面側(図1中の可動スクロール20の右側)へ貫通す るものであり、上流側の凹部95aと、この凹部95a から下流側へ延びる孔部95bとによって構成されてい る。すなわち、この第2給油路95は、第1給油路94 と可動スクロール20の背面側(図1中の可動スクロー ル基板24の右側)とを連通するものである。従って、 フロントハウジング5の貯留部85は、潤滑油供給経路 (この第2給油路95と、前記した給油孔91、93、 給油溝92、第1給油路94)によって、可動スクロー ル20の背面側と連通されることとなる。なお、第2給 油路95は可動スクロール基板24に設けられているた め、第1給油路94に対する第2給油路95の相対位置 は、可動スクロール20の回転に伴って変化する。この ため、第2給油路95の凹部95aは、可動スクロール 20の回転位置に関わらず常に第1給油路94と連通さ れるようになっている。そして、吐出圧力雰囲気の貯留 部85は、吸入圧力雰囲気の可動スクロール20の背面 側よりも圧力が高いため、貯留部85に貯留された潤滑 油Lは圧力差によって潤滑油供給経路を可動スクロール

20の背面側へ圧送されるようになっている。なお、この貯留部85に貯留された潤滑油しが、本発明における 吐出側領域の潤滑油に対応している。

【0026】ここで、第1給油路94に対して第2給油路95の相対位置が変化する動作、およびこの際の潤滑油の流れについて図3および図4を参照しながら説明する。

【0027】可動スクロール20が旋回する動作は、図1中では上下方向の往復移動として示される。すなわち、可動スクロール20は、その旋回過程において図3に示すような位置や、図4に示すような位置に配置される。図3に示す位置では、第1給油路94と第2給油路95とが連通することで、第1給油路94から可動スクロール基板24の前面側へ供給された潤滑油の殆どは、第2給油路95を通じて可動スクロール基板24の前面側へ供給される。なお、可動スクロール基板24の前面側へ供給された潤滑油のうちの微少量は、固定スクロール2と可動スクロール20との間の微小なクリアランスを介して両スクロールが摺接する箇所、すなわち可動渦巻壁30の外周側へ供給される。

【0028】また、図4に示す位置では、第1給油路94と第2給油路95とが連通される一方、第2給油路95の凹部95aは可動渦巻壁30の外周側とも連通される。これにより、第1給油路94から可動スクロール基板24の前面側へ供給された潤滑油は、可動スクロール基板24の背面側と可動渦巻壁30の外周側とに分配されて供給される。そして、可動スクロール基板24の背面側へ供給された潤滑油は軸受け機構23の潤滑性を高めるのに使用され、可動渦巻壁30の外周側へ供給された潤滑油は両スクロールが摺接する箇所の潤滑性および30シール性を高めるのに使用される。

【0029】潤滑油供給経路を通じて可動スクロール基板24の背面側へ圧送され、軸受け機構23で使用され、或いは軸受け機構23へ過剰に供給された潤滑油は、軸受け機構23から自重落下し、モータ室45の底部に形成された貯留部45a(凹部)に貯留されるようになっている。

【0030】また、センターハウジング4の低所(1箇所)には、貯留部45aに対応した位置に移送路4a

(本発明における潤滑油移送経路に対応している)が設 40 けられている。この移送路4aは、モータ室45の貯留部45aと、圧縮機構21の吸入部(本発明における吸入側領域に対応している)とを連通するものである。なお、貯留部85の潤滑油が可動スクロール20の背面側へ供給される際、吐出冷媒の一部も前記潤滑油供給経路を通じて同伴されるため、貯留部45aの圧力は、吸入冷媒雰囲気である吸入部よりも高くなる。従って、貯留部45aに一旦貯留された潤滑油上は、圧力差によって移送路4aを通じて圧縮機構21の吸入部側へ移送される。そして、この潤滑油は、圧縮室32で圧縮され高圧 50

化されて吐出される吐出冷媒とともに、吐出孔50からオイルセパレータ80へ移送される。そして、吐出冷媒に含まれる潤滑油は、再度オイルセパレータ80で分離され、潤滑油供給経路を通じて可動スクロール20の背面側へ圧送される。このようにして、吐出冷媒に含まれる潤滑油は、可動スクロール20の背面側との間で循環されることとなる。なお、貯留部45aの容積、移送路4aの流路面積等は、貯留部45aに貯留される潤滑油の量に応じて適宜設定することができる。

【0031】上記構成のスクロール型圧縮機において、電動モータ49が駆動されると、外部回路のエバポレータ(図示省略)から帰還する冷媒はインバータケース70の筒部70a、吸入ポート44を介して圧縮機内へ導入される。この際、筒部70aを通過する冷媒によってインバータ60が冷却される。そして、この冷媒は可動スクロール20の公転に伴って圧縮室32で圧縮されて高圧化され、吐出冷媒として吐出ポート86から外部回路のコンデンサ(図示省略)へ移送される。

【0032】以上のように本実施の形態によれば、吐出 20 冷媒からオイルセパレータ80を介して分離した吐出側 領域の潤滑油を循環使用するため合理的である。そし て、この潤滑油を、潤滑油供給経路(給油孔91,9 3、給油溝92、第1給油路94、第2給油路95)を 通じて軸受け機構23へ供給するため、軸受け機構23 の潤滑性および耐久性を高めることができる。また、軸 受け機構23へ供給された後の潤滑油を、圧力差によっ て貯留部45aから潤滑油移送経路(移送路4a)を通 じて圧縮機構21の吸入部へ移送し、再度潤滑油供給経 路から軸受け機構23へ圧力差によって供給するため、 冷媒の圧力差を用いた潤滑油の簡便な循環回路を形成す ることができる。そのうえ、軸受け機構23から自重落 下した潤滑油を一旦貯留部45aに貯留するため、貯留 された潤滑油を潤滑油移送経路(移送路4a)を介して 圧縮機構21の吸入部へ確実に移送することができる。 【0033】なお、本発明は上記実施の形態のみに限定 されるものではなく、種々の応用や変形が考えられる。 例えば、上記実施の形態を応用した次の各形態を実施す

【0034】(A)上記実施の形態では、吐出冷媒からオイルセパレータ80によって分離された後の潤滑油を軸受け機構23へ供給する場合について記載したが、例えば、オイルセパレータ80とは別の貯留部に貯留された潤滑油を、吐出冷媒と軸受け機構23側との圧力差を用いて軸受け機構23へ供給するように構成することもできる。

ることもできる。

【0035】(B) また、上記実施の形態では、モータ室45の貯留部45aに貯留された潤滑油を移送路4aを介して圧縮機構21の吸入部へ移送する場合について記載したが、貯留部45aから移送される潤滑油の移送先は貯留部45aよりも低圧であればよく、例えば、圧

11

縮室32の低圧側へ潤滑油を移送するように構成するこ ともできる。

【0036】(C) また、上記実施の形態では、センタ ーハウジング4の低所(1箇所)に移送路4aを設ける 場合について記載したが、この移送路4aに加え、同種 の移送路を圧縮機本体の径方向に設けることもできる。 すなわち、移送路を圧縮機本体の径方向に複数設けるこ とができる。このように構成すれば、センターハウジン グ4の低所に少なくとも1つの移送路が配置されること によって、スクロール型圧縮機1が多少傾いて設置され 10 路) た場合に対応することができる。また、移送路を圧縮機 本体の径方向に複数設けることで、低所の移送路を潤滑 油の移送に用い、その他の移送路を冷媒の移送に用いる ことができ、貯留部45 a 側の圧力が過度に上昇するの を回避することができる。

【0037】(D) また、上記実施の形態では、スクロ ール型圧縮機について記載したが、他の種類の圧縮機、 例えばシリンダボア内でピストンを往復動させることで 冷媒の圧縮動作を行う往復動式の圧縮機に本発明を適用 することもできる。

[0038]

【発明の効果】以上詳述したように、本発明によれば、 冷媒の圧縮機構を駆動する駆動源として電動モータを備 えた電動圧縮機において、潤滑油を用いて所望の潤滑箇 所の潤滑を合理的に行うのに有効な技術を実現すること ができる。

【図面の簡単な説明】

【図1】本実施の形態のスクロール型圧縮機1の全体を 示す縦断面図である。

【図2】図1中のII-II線断面矢視図である。

【図3】第1給油路94に対する第2給油路95の相対 位置の一例を示す部分断面図である。

【図4】第1給油路94に対する第2給油路95の相対。 位置の一例を示す部分断面図である。

【符号の説明】

1…スクロール型圧縮機

2…固定スクロール

4…センターハウジング、4 a…移送路(潤滑油移送経

5…フロントハウジング

6…モータハウジング

8…駆動軸

10…ラジアルベアリング

20…可動スクロール

21…圧縮機構

22…ニードルベアリング

23…軸受け機構

32…圧縮室

20 45…モータ室、45a…貯留部

47…連絡路、47a…空間、47b…連通孔

49…電動モータ

80…オイルセパレータ

90…ガスケット

91, 93…給油孔

92…給油溝

94…第1給油路

95…第2給油路

【図1】

【図3】

【図2】

【図4】

フロントページの続き

(72)発明者 水藤 健

愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 Fターム(参考) 3H003 AA05 AB05 AC03 BD05

3H029 AA02 AA15 AB03 BB01 BB35

CC17 CC22 CC26 CC33 CC45

3H039 AA02 AA04 AA12 BB11 BB16

CC11 CC27 CC42