Úkol #2 Úloha 1 Str.: 1 / 1

Úloha 1: Chyba aproximace

Nejprve si převedeme velikost úhlových stupňů $\alpha=-2,-1,0,1,2$ na velikost úhlu v míře obloukové dle vzorce

 $\frac{\alpha}{x} = \frac{180^{\circ}}{\pi}$ tj. $\frac{\alpha}{180^{\circ}} [\circ] = \frac{x}{\pi} [\text{rad}].$

Symbolem ... budeme označovat hodnoty aproximované. Výpočty a aproximace budeme provádět na 5 významných číslic. Konkrétně v našem případě máme :

α [°]	-2	-1	0	1	2
x [rad]	-0.03490658	-0.01745329	0	0.01745329	0.03490658
\hat{x} [rad]	-0.034906	-0.017453	0	0.017453	0.034906

Nyní stanovme absolutní a relativní chybu výsledku, který dostaneme, použijeme-li Taylorovy polynomy $c(x)=1-\frac{1}{2}x^2$ a s(x)=x jako aproximace funkcí $\cos(x)$ a $\sin(x)$ v okolí nuly. Absolutní chyby ε_c , ε_s a relativní chyby ρ_c , ρ_s jsou dány vztahy

$$\varepsilon_c = |c(\hat{x}) - \cos(x)|, \quad \varepsilon_s = |s(\hat{x}) - \sin(x)|, \qquad \rho_c = \left|\frac{c(\hat{x}) - \cos(x)}{\cos(x)}\right|, \quad \rho_s = \left|\frac{s(\hat{x}) - \sin(x)}{\sin(x)}\right|.$$

Výpočty realizujeme v programu Matlab a výsledky zapíšeme do tabulky.

$c(\hat{x})$	0.99939	0.99984	1	0.99984	0.99939
$\cos(x)$	0.9993908	0.9998476	1	0.9998476	0.9993908
ε_c	$0.41437 \cdot 10^{-7}$	$0.12391 \cdot 10^{-8}$	0	$0.12391 \cdot 10^{-8}$	$0.41437 \cdot 10^{-7}$
$ ho_c$	$0.41462 \cdot 10^{-7}$	$0.12393 \cdot 10^{-8}$	0	$0.12393 \cdot 10^{-8}$	$0.41462 \cdot 10^{-7}$
$s(\hat{x})$	-0.034906	-0.017453	0	0.017453	0.034906
$\sin(x)$	-0.03489949	-0.01745240	0	0.01745240	0.03489949
ε_s	$0.65033 \cdot 10^{-5}$	$0.59356 \cdot 10^{-6}$	0	$0.59356 \cdot 10^{-6}$	$0.65033 \cdot 10^{-5}$
$ ho_s$	$0.18634 \cdot 10^{-3}$	$0.34010 \cdot 10^{-4}$	NaN	$0.34010 \cdot 10^{-4}$	$0.18634 \cdot 10^{-3}$

K tomu abychom rozhodli zda převládá zaokrouhlovací chyba $e_{zao} = \hat{f}_{FPA}(\hat{x}) - \hat{f}_{EA}(\hat{x})$ nebo chyba metody $e_{met} = \hat{f}_{EA}(\hat{x}) - f(\hat{x})$ musíme stanovit

$$e_{zao,c} = c(\hat{x}) - \cos(x)$$
 $e_{zao,s} = s(\hat{x}) - \sin(x)$
 $e_{met,c} = \cos(x) - \cos(\hat{x})$ $e_{met,s} = \sin(x) - s(\hat{x})$

$e_{zao,c}$	$-0.41437 \cdot 10^{-7}$	$0.12391 \cdot 10^{-8}$	0	$0.12391 \cdot 10^{-8}$	$-0.41437 \cdot 10^{-7}$
$e_{met,c}$	$-0.20417 \cdot 10^{-7}$	$51051 \cdot 10^{-8}$	0	$-0.51051 \cdot 10^{-8}$	$-0.20417 \cdot 10^{-7}$
$e_{zao,s}$	$-0.65033 \cdot 10^{-5}$	$-0.59356 \cdot 10^{-6}$	0	$0.59356 \cdot 10^{-6}$	$0.65033 \cdot 10^{-5}$
$e_{met,s}$	$-0.58468 \cdot 10^{-6}$	$-0.29248 \cdot 10^{-6}$	0	$0.29248 \cdot 10^{-6}$	$0.58468 \cdot 10^{-6}$

Z tabulky je vidět, že převažuje zaokrouhlovací chyba.