

Σχεδίαση Ψηφιακών Συστημάτων ΕΞΑΜΗΝΙΑΙΑ ΑΣΚΗΣΗ ΘΕΩΡΙΑΣ ΜΕΡΟΣ 02

Τμήμα Μηχανικών Πληροφορικής & Υπολογιστών

(Καθηγητής: Ιωάννης Βογιατζής)

Μάρκος Παντελιδάκης - 18390228 - <u>ice18390228@uniwa.gr</u>

ALU Control Unit

```
1
      LIBRARY ieee;
2
     USE ieee.std_logic_l164.all;
3
   FINTITY ALU_Control IS PORT (
5
          OP_5to0: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
          ALU_op: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
7
          Operation: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
     END ALU_Control;
8
9
10 Farchitecture behavioural of ALU_Control is
11
         signal OP_5to0_sig: STD_LOGIC_VECTOR(3 downto 0);
          signal ALU_op_sig: STD_LOGIC_VECTOR(3 downto 0);
12
   □ begin
13
      with OP_5to0(3 downto 0) select
14
      OP_5to0_sig <=
15
          "0010" when "0000",
16
          "0110" when "0010",
17
          "0000" when "0100",
18
          "0001" when "0101",
19
              "0111" when "1010",
20
          "1111" when others;
21
22
     with ALU_op select
23
      ALU_op_sig <=
           "0010" when "00",
24
          "0110" when "01",
25
          "1111" when others;
26
     with ALU_op select
27
     Operation <=
28
29
         OP_5to0_sig when "10",
          ALU_op_sig when others;
30
      end behavioural;
31
```

Εικ2.1.1: Κώδικας αρχείου VHDL κυκλώματος ελεγκτή Αριθμητικής και Λογικής μονάδας.

```
LIBRARY ieee;
      USE ieee.std_logic_1164.all;
   Figure entity ALU_Control_tb is
     end ALU_Control_tb;
    parchitecture test_b of ALU_Control_tb is
      signal OP_5to0_1: STD_LOGIC_VECTOR(5 DOWNTO 0);
8
      signal ALU_op1 : STD_LOGIC_VECTOR(1 DOWNTO 0);
10
      signal Operation1 : STD_LOGIC_VECTOR(3 DOWNTO 0);
11
12
    component ALU_Control PORT (
13
          OP_5to0: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
          ALU_op: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
14
15
          Operation: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
16
      end component;
17
18
19
      M1: ALU_Control port map (OP_5to0 => OP_5to0_1, ALU_op => ALU_op1, Operation => Operation1);
20
    process
21
      begin
22
         ALU_op1 <= "00";
23
          OP_5to0_1 <= "001001";
24
          wait for 50 ps;
25
26
          ALU_op1 <= "00";
27
          OP_5to0_1 <= "001010";
28
          wait for 50 ps;
29
30
          ALU_op1 <= "01";
31
          OP_5to0_1 <= "100111";
32
          wait for 50 ps;
33
34
          ALU_op1 <= "10";
35
          OP_5to0_1 <= "100000";
36
          wait for 50 ps;
37
38
          ALU op1 <= "10";
39
          OP_5to0_1 <= "100010";
40
          wait for 50 ps;
41
42
          ALU op1 <= "10";
43
          OP_5to0_1 <= "100100";
44
          wait for 50 ps;
45
46
          ALU op1 <= "10";
47
          OP_5to0_1 <= "100101";
48
          wait for 50 ps;
49
50
          ALU op1 <= "10";
51
          OP 5to0 1 <= "101010";
52
          wait for 50 ps;
53
     end process;
54
      end test b;
```

Εικ2.1.2: Κώδικας αρχείου VHDL testbench κυκλώματος ελεγκτή Αριθμητικής και Λογικής μονάδας.

2.2

Πίν2.2: Πίνακας ζητούμενων τιμών για ALU Control.

ALUOp	OP 5to0	Operation (Λειτουργία)	
00	001001	0010	
00	001010	0010	
01	100111	0110	
10	100000	0010	
10	100010	0110	
10	100100	0000	
10	100101	0001	
10	101010	0111	

Οι τιμές που παίρνει έξοδος "Operation" στον παραπάνω πίνακα του ελεγκτή ALU επαληθεύονται στην κυματομορφή της Εικόνας 2.3.

Εικ2.1.3: Παράδειγμα λειτουργίας κυκλώματος ελεγκτή Αριθμητικής και Λογικής μονάδας μέσω κυματομορφής.

2.3

```
LIBRARY ieee;
2
     USE ieee.std_logic_l164.all;
3
4
    ENTITY ALU_Control IS PORT (
5
          OP_5to0: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
          ALU_op: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
6
7
          Operation: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
8
     END ALU_Control;
9
   architecture behavioural of ALU_Control is
10
11
          signal OP_5to0_sig: STD_LOGIC_VECTOR(3 downto 0);
          signal ALU_op_sig: STD_LOGIC_VECTOR(3 downto 0);
12
13
   □ begin
      with OP_5to0(3 downto 0) select
14
      OP_5to0_sig <=
15
           "0010" when "0000",
16
          "0110" when "0010",
17
          "0000" when "0100",
18
          "0001" when "0101",
19
          "0111" when "1010",
20
          "1111" when others;
21
22
     with ALU_op select
23
     ALU_op_sig <=
           "0010" when "00",
24
          "0110" when "01",
25
          "1111" when others;
26
     with ALU_op select
27
28
     Operation <=
29
          OP_5to0_sig when "10",
30
          ALU_op_sig when others;
31
      end behavioural;
```

Εικ2.3.1: Κώδικας αρχείου VHDL κυκλώματος "TEST_ALUCONTROL_ALU".

```
LIBRARY ieee;
       USE ieee.std_logic_1164.all;
    entity TEST ALUCONTROL ALU to is
 4
     end TEST ALUCONTROL ALU tb;
 5
 6
    architecture test_b of TEST_ALUCONTROL_ALU_tb is
    component TEST_ALUCONTROL_ALU port(
 7
           OP_5to0: IN STD_LOGIC_VECTOR(5 DOWNTO 0);
 8
           ALU_op: IN STD_LOGIC_VECTOR(1 DOWNTO 0);
 9
          ALUinl: in std_logic_vector(3 downto 0);
10
11
          ALUin2: in std_logic_vector(3 downto 0);
12
          ALUoutl: out std_logic_vector(3 downto 0);
13
           zero: out std logic);
     end component;
14
15
     signal OP 5to0 tb: STD LOGIC VECTOR(5 DOWNTO 0);
16
17
     signal ALU_op_tb : STD_LOGIC_VECTOR(1 DOWNTO 0);
     signal ALUinl_tb : std_logic_vector(3 downto 0);
18
     signal ALUin2_tb : std_logic_vector(3 downto 0);
signal ALUout1_tb: std_logic_vector(3 downto 0);
19
20
21
     signal zero_tb : std_logic;
22
     begin
23
    D M1: TEST_ALUCONTROL_ALU port map(
24
     OP_5to0=>OP_5to0_tb, ALU_op=>ALU_op_tb, ALUinl=>ALUinl_tb,
25
26
      - ALUin2=>ALUin2_tb, ALUout1=>ALUout1_tb, zero=>zero_tb);
     process
27
28
       begin
29
           ALUinl tb<="1100";
30
           ALUin2_tb<="1100";
31
           ALU_op_tb<="00";
32
          OP_5to0_tb<="001001";
33
           wait for 50 ps;
34
35
           ALU_op_tb<="00";
36
           OP 5to0 tb<="001010";
37
           wait for 50 ps;
```

```
39
           ALU op tb<="01";
           OP_5to0_tb<="100111";
40
           wait for 50 ps;
41
42
43
           ALU_op_tb<="10";
44
           OP_5to0_tb<="100000";
45
           wait for 50 ps;
46
47
           ALU op tb<="10";
48
           OP 5to0 tb<="100010";
49
           wait for 50 ps;
50
51
           ALU_op_tb<="10";
          OP 5to0 tb<="100100";
52
53
           wait for 50 ps;
54
55
          ALU op tb<="10";
          OP 5to0 tb<="100101";
56
57
           wait for 50 ps;
58
59
          ALU op tb<="10";
           OP_5to0_tb<="101010";
60
           wait for 50 ps;
61
     end process;
62
63
       end test_b;
```

Εικ2.3.2: Κώδικας αρχείου VHDL για το κύκλωμα "TEST_ALUCONTROL_ALU".

<u>2.4</u>

Εικ2.4.1: Παράδειγμα λειτουργίας κυκλώματος "TEST_ALUCONTROL_ALU" μέσω κυματομορφής με τις ζητούμενες τιμές εισόδου.

Από τη παραπάνω κυματομορφή επαληθεύονται οι τιμές που δώσαμε στον πίνακα της άσκησης για τις εξόδους ALUOUT1 και Zero (βλ. Πίν 2.4).

Πίν2.4: Πίνακας τιμών εισόδων-εξόδων κυκλώματος "TEST_ALUCONTROL_ALU".

ALUop	OP 5to0	ALU in1	ALU in 2	ALUOUT1	Zero
00	001001	1100	1100	1000	0
00	001010	1100	1100	1000	0
01	100111	1100	1100	0000	1
10	100000	1100	1100	1000	0
10	100010	1100	1100	0000	1
10	100100	1100	1100	1100	0
10	100101	1100	1100	1100	0
10	101010	1100	1100	0000	1