RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

SESSION ID: CDS-F02

Assume Breach: An Inside Look at Cloud Service Provider Security

David B. Cross

General Manager, Azure Security
Microsoft
@DavidCross_MS

Microsoft Cloud Security Overview

Protect

Security Development Lifecycle & Operational Security Assurance

Network and Identity Isolation

Least Privilege / Just-in-Time (JIT) Access

Vulnerability / Update Management

Detect

Auditing and Certification

Live Site Penetration Testing

Centralized Logging and Monitoring

Fraud and Abuse Detection

Respond

Breach Containment

Coordinated Security Response

Customer Notification

Clouds Are Appealing to Adversaries

- Easily available free trials
- Anonymity
- Tons of compute power
- Limitless storage
- IP blocks rich with Internet-exposed services
- Concentration of vulnerable assets
- High bi-directional bandwidth

Cloud Security is a Shared Responsibility

Azure:

- Perform BigData analysis for intrusion detection of Azure infrastructure
- Manage monitoring and alerting of security events of the platform
- Employ denial of service attack mitigations and detections
- Respond to fraud/abuse and sends Azure security notifications

Customers:

- Configure security of their subscription and applications
- Security monitoring on their Virtual Machines, Roles, Website, etc.
- Can add extra layers of deploying Azure provided security controls
- Respond to alerts from tenant security monitoring and Azure Security notifications

RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

A Day in the Life of an Incident Responder

Azure Security Incident Response

- Goal is to protect, defend and respond to our customer needs
- Let's look at some illustrative examples
 - These are not hypothetical or foreshadowing
 - These are real incidents that have occurred this year (names redacted and changed of course)

Compromised VMs: An Example

Note: although we do not monitor customer VMs and applications without their permission, we do automatically monitor the overall traffic, unusual spikes in activity and suspicious connections

Customer Response

- We notified the customer of potential compromise
 - They were happy we alerted them
 - They immediately analyzed their logs, both on the VM and in Azure Storage:

They noticed that the A/V in their VMs had been turned off

Azure Logging

And event logs showed some...unusual...activity a few days prior:

Azure Logging

- The customer had <u>not</u> been regularly looking at the logs.
 - Or pulling them into the on-premise SIEM they normally use...
 - Alerts and activity were clear and breach activity would have been immediately detected!

- Lesson: It requires both Azure and the customers monitor the assets in the cloud end-to-end
 - It is not a strict wall between the two responsibilities

Another Example: ShellShock

- Botnet Building 101
- 9/24: ShellShock Disclosed
- Attacks begin almost immediately
- laaS (Linux) VMs
 Attacked become
 zombies
- Lesson: stay current for all critical security patches!

Tenant-level Breach Notification

- Notification provided to tenant admins
- Require tenant response / remediation
- 48 hour notice > Immediate
 Deployment Suspension >
 Disable Subscription

Microsoft Azure

The Microsoft Azure Safeguards Team has detected an outbound Denial of Service (DoS) attack originating from your Azure deployment (VIP: , Name:)

It is likely that your deployment has been compromised and is being used in this attack without your knowledge. Azure has seen widespread abuse of a vulnerability in Bash, commonly known as ShellShock, to launch Denial of Service (DoS) attacks from unwilling Azure tenants (details: https://www.us-cert.gov/ncas/alerts/TA14-268A).

We recommend that you fully patch all software, follow your OS vendor's security best practices, and close unnecessary external endpoints immediately. You should then monitor bandwidth usage carefully to ensure that the attack has been fully mitigated.

The Microsoft Azure Safeguards Team ensures that customers abide by the terms of use and investigates allegations of misuse.

Top Risks Resulting in Tenant Breach

Risk	Mitigation
Internet Exposed RDP or SSH Endpoints	Network ACLs or Host-based Firewall; Strong passwords; VPN or SSH Tunnels
Virtual Machine Missing Security Patches	Keep Automatic Updates Enabled
Web Application Vulnerability	Securing Azure Web Applications; Vulnerability scan/penetration test
Weak Admin/Co-Admin Credentials	Azure Multi-Factor Authentication; Subscription Management Certificate
Unrestricted SQL Endpoint	Azure SQL Firewall
Storage Key Disclosure	Manage Access to Storage Resources
Insufficient Security Monitoring	Azure Security and Log Management

RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

How we Protect the Infrastructure

Responding to Incidents

- Example: the FTP Bug timeline
- Background of Incident:
 - Data uploaded to Azure Websites through FTP was accessible to other customers

Our Internal Tracking Process

Heartbleed

- OpenSSL Privilege Escalation
- Broad media attention
- Azure Infrastructure: < 24 hours to declare all clear
- Scanned public Azure and notified vulnerable customers

ShellShock

- Bash Privilege Escalation
- Less publicity than Heartbleed yet higher risk
- Azure Infrastructure: 2 hours to declare "all clear"
- Scanned public Azure and notified vulnerable customers

MS14-066

- Windows Schannel Privilege Escalation
- Began roll out of updated of updated images within 6mins of patch release
- Notified impacted customers via Azure Security Advisory

	Service/Feature/Device	Investigation Complete	Uses OpenSSL	Vulnerable
Azure	Cloud Services (Web and Worker Role)	✓	No	No
	Virtual Machines (IaaS) Windows	✓	No	No
	Virtual Machines (IaaS) Linux	✓	Yes	Yes
	Windows Azure Traffic Manager (WATM)	✓	No	No
	Virtual Networking	✓	No	No
	Storage (Tables, Blobs, Queues)	✓	No	No
	Web sites	✓	Yes	No
	Mobile Services	✓	Yes	No
	Service Bus	✓	No	No
	Tasks	✓	No	No
	Workflow	✓	No	No
	CDN	✓	Yes	No
	StorSimple	✓	Yes	No
Azure Active Directory	Microsoft Online Directory Service	✓	No	No
	Organizational Identity	✓	No	No
	Access Control Service	✓	No	No
	Rights Management Service	✓	No	No
	Identity Access Management	✓	No	No
	Multi-factor Authentication	✓	Yes	No
Quick Create Gallery	Ubuntu (all versions)	✓	Yes	No
	OpenSuse	✓	Yes	No
	CentOS	✓	Yes	No
	Puppet Server	✓	Yes	No
	Chef	✓	Yes	No
	Oracle SQL VM	✓	Yes	No
	Windows (all flavors)	✓	No	No

Heartbleed Status Tracking

Network Attack Protection: Cloud vs. Cloud

Cloud Provider C

35M packets per second of attack traffic

- Azure OneDDoS drops < 90% of DoS traffic at Edge
- The cause....cloud vs. cloud

RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

Managing Abuse

Growth of Abuse Cases Over Time

Types of Abuse

- SPAM
- Phishing
- DoS
- Hacking
- Copyright Infringement
- Illegal Activities
- ...

Report Abuse at:

https://cert.microsoft.com

Abuse Incident

 Customer received this notification from Azure incident response team:

In Depth Analysis of Abuse Attacks

- The customer (Linux) VMs had been compromised
- They actually <u>did</u> monitor all their logs
 - But they did not received any alerts
 - Azure detected attacker due compromise VMs used to attack others e.g. DoS
- What happened?
 - They asked Microsoft Support for help...
 - Deeper analysis of many VMs was necessary

Azure Security: Forensic Analysis

- In Azure, we can perform detailed large-scale forensics analysis of VMs
 - This is an emerging area that is currently in private preview with select customers
- We do this for trial VMs that have been shutdown for fraud, abuse and other bad behavior to collect/detect such indicators
 - We don't execute this on customer assets without their consent
 - Would be intrusion and violation of our data privacy agreement

Performing Forensic Analysis

- But when you need assistance in a <u>large-scale breach</u>, and with your permission...
 - We can perform detailed analysis
- What did we find?
 - There was a zero-day attack on a Linux-based application
 - That was not known in the industry yet...and never seen in the wild
- Yes, we analyze Linux and not just Windows!

Cloud Scale Forensics

- Scale from 100's-1000's of cores as needed
- Deployed around the world
- ~45K VMs Analyzed Weekly
- 15+ PBs of collected artifacts
- >100K VMs analyzed during single investigation settings

cloud services

RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

Infrastructure Access Control and Management

Restricted Access Workflow in Azure

TFS

• Incident/Support Request Filed

Authentication

• Credentials collected and 2FA submitted

Attribution

Collecting group membership and claims

Authorization

• Evaluating claims against policies

Access

Access decision enforced

Audit

All actions are logged to Azure storage

Access Control: JiT/JEA/RBAC

- No standing access to any user/administrator
- Our JiT system grants least privilege required to complete tasks
- Everything structured using RBAC and Azure Active Directory

2FA Required to Even Request Access

- All steps logged independently
- Security analytics system monitors access JiT/RBAC requests
 - Alerts when workflows do not correlate with TFS/requests
 - When an admin subverts the process, a Sev 1 incident occurs

#RSAC

Building A Trusted Access Chain

- It doesn't matter how many "jumps" you go through
- If an admin can jump through the steps, a bad guy can follow the same path
- The source computer, and all others in the chain has to be secure or the chain is compromised

Online Services Administration Console

You don't want this:

You want this!

Enforced (Secure) Admin Console

RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

Data Science and Machine Learning

Why Machine Learning is Relevant to Defense

Post Detection Fraud Algorithm Learning

- Fraud: Theft of service; Use of service without intent to pay
 - Example: Stolen payment instrument
- Fraud Storms
 - Potential for Capacity Impact
 - Often lead to spike in Abuse
- ML-based detection
 - Sign-up patterns
 - Compute Usage
 - Bandwidth Usage
 - etc.

Detecting Anomalies

Incident Transfer

Click Here to Acknowledge this Incident

ImagePath=\??\C:\Program Files\Process Hacker 2\kprocesshacker.sys See machine info below

Status Id	Sev Title						Time Raised	
esolved <u>9143756</u>	3 ASM Security Alert: AS	SM0102: AzureEngBld/Build: Driver An	omaly - KProcessHacker2				2015-04-04 06:15:52	
mpacted Service		Owning Service		Team	Assigned To	Commit Date	Customer Name	
zure Engineering Systems		Azure Engineering Systems		Build	None		None	
ocation of device on which the	e incident occurred							
nvironment	Datace	nter	Device Group		Device Name		slice Id	
ROD	None		None		None		None	
ocation of device reporting th	e incident							
nvironment	Datacent	er	Device Group		Device Name		slice Id)
ROD	N/A		Aims Connector				None	
Source				Source Date	Customer Impa	cting	Security Risk	Noise
				2015-04-04 06:15:28	False		False	False
SG ID				Component				
Ione Specified				None Specified				
ee machine info below :==== 2015-04-04 06:15:53 (strong>ComponentName: GroupKey: Dstrong> BeginHop: 20		·						
	> Driver 'KProcessHacker2' has been ac							

Example: Phishing Attacks

- Azure Active Directory and Office 365, automatically detect when a user may have been compromised
- Company admins can configure alerts

Automatic Detection of Stolen Credentials

- Even though a user's password had been stolen...
 - When the attacker tried to logon to Azure from (name your favorite country here...)
 - Customers were alerted automatically!

Intrusion Detection in the Cloud

This attacker is trying to avoid detection by using PowerShell. Think he'll succeed?

Our network monitoring detects his exfiltration and command-and-control activity.

Our machine learning flags his session as unusual relative to previous behavior.

New external IP

IP: 65.52.120.233

Domain: popsectest.cloudapp.net

Process: powershell.exe
User: spoamsvc3

Large outbound data transfer

IP: 65.52.120.233:1337

Domain: popsectest.cloudapp.net

Process: powershell.exe User: _spogmsvc3 Bytes: 11,000K

Beacon

IP: 65.52.120.233:1338

Domain: popsectest.cloudapp.net

Process: svchost.exe User: SYSTEM Interval: 4

MCM: Abnormal activity pattern

Host: CH1YL1ADM004 User: _spogmsvc3 LogonID: 1043

Worst transition score: 100

Overall score: 59

Machine Learning: Data-Driven Offense

- Reduce likelihood of stealth operators
- Decrease MTTC and MTTP
- Leverages the cloud
 - Storage and compute scalability
- Examples:
 - Data-driven pivoting
 - Visualization
 - Identify pivoting

RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

Internal Azure Security Red Teaming

Modeling real-world attacks

- Model emerging threats& use blended threats
- ► Pivot laterally & penetrate deeper
- Exfiltrate & leverage compromised data
- Escape & Evade / Persistence

Identify gaps in security story

- Measures Time to Compromise (MTTC) / Pwnage (MTTP)
- Highlight security monitoring & recovery gaps
- Improves incident response tools & process

Demonstrable impact

- ► Prove the need for Assume Breach
- ► Enumerate business risks
- Justify resources, priorities, & investment needs

Blue Teaming Detect and Respond

Exercises ability to detect & respond

- Detect attack & penetration (MTTD)
- Respond & recover to attack & penetration (MTTR)
- Practiced incident response

Enhances situational awareness

- Produces actionable intelligence
- Full visibility into actual conditions within environment
- ► Data analysis & forensics for attack & breach indicators

Measures readiness & impact

- ► Accurately assesses real-world attacks
- Identifies gaps & investment needs
- Focus on slowing down attackers & speeding recovery
- ► Hardening that prevents future attacks

We Conduct War Games

Exercise ability to respond

- Like a fire drill vs. a real fire
- Standardized operating procedures & improve response
- Reduce Mean Time To Detection (MTTD)
- Reduce Mean Time To Recovery (MTTR)

Procedures

- Attack scenario
- Incident response process
- Post-mortem

Example scenarios

- Service compromise
- Inside attacker
- Remote code execution
- Malware outbreak
- Customer data compromised
- Denial of service

Example: Blue Team Catching the Red Team

- Non-standard user access alert triggered – access didn't go through standard JIT or access approvals
- 2. Log of new user detection: nonstandard user name

TIMESTAMP	▼ Tenar ▼ Role	▼ RoleInst ▼ HostId ▼	FirstSeen	LastSeen	▼ Reason -▼	Anoma ▼	Username	▼ Privileg ▼	UserFla▼
2014-11-19 22:20:00Z	CH3PrdE F	F1	. 2014-11-19 22:23:35Z	2014-11-19 22:23:352	2 1	new user		2	66113
2014-11-19 05:20:00Z	CH3PrdE F	F _ 1	. 2014-11-19 05:24:48Z	2014-11-19 05:24:482	. 1	new 2 r		2	66113
2014-11-18 18:15:00Z	CH1PrdAF	F _ 1	. 2014-11-18 18:18:15Z	2014-11-18 18:18:152	. 1	new user	debug1118	2	66113
2014-11-18 18:20:00Z	CH1PrdA F	F _ 1	. 2014-11-18 18:20:25Z	2014-11-18 18:20:252	. 1	new user	debug1118	2	66113
2014-11-18 18:20:00Z	CH1PrdAF	F _ 1	. 2014-11-18 18:21:24Z	2014-11-18 18:21:242	2 1	new user	debug1118	2	66113
2014-11-18 18:20:00Z	CH1PrdAF	F _ 1	. 2014-11-18 18:22:28Z	2014-11-18 18:22:282			debug1118	2	66113
2014-11-18 18:25:00Z	CH1PrdAF	F _ 1	. 2014-11-18 18:25:25Z	2014-11-18 18:25:252	. 1	new user	debug1118	2	66113
2014-11-18 02:00:00Z	CH1Stag F	F1	2014-11-18 02:02:18Z	2014-11-18 02:02:182	2 1	new user		2	66113

Cloud Operations Summary

- We always assume breach
- We continuously conduct war game and pen test exercises
- Every issue or case is a source of learning and RCA
- We continue to build detection and alerting automation
- We use all learnings and best practices to help all tenants
- We rely on the community to share any missed areas

Call To Action!

Safe DevOps Practices

Use Secure Consoles with whitelisted software and no local admin privs

Auditing for Detection

Ensure logging is enabled and always monitor for attacks and anomalies

No Persistent Admins

Always require MFA, JiT, RBAC

Infrastructure Hygiene

Timely VM and application patching and continuous scanning of baselines

Protect Your Secrets

Periodic secret & credential rolling and protected storage

