Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #1

2023/02/26

Name:	
Student Number:	

- 1. Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.
 - "\(\infty\)": Let U_1, U_2 be two subspaces of V. If $U_1 \subseteq U_2$, then we $U_1 \cup U_2 = U_2$ is a subspace. If $U_2 \subseteq U_1$, then $U_1 \cup U_2 = U_1$ is a subspace.
 - " \Rightarrow ": Let U_1, U_2 be subspaces of V, we assume $U_1 \cup U_2$ is a subspace. If $U_1 \subseteq U_2$, then we are done.

If $U_1 \not\subseteq U_2$, then we need to show $U_2 \subseteq U_1$.

Take $x \in U_2$, since $U_1 \not\subseteq U_2$, then there must exist some vector in U_1 that is not in U_2 , denote it as y, so $y \in U_1, y \notin U_2$. Since $U_1 \cup U_2$ is a subspace, $x + y \in U_1 \cup U_2$. Since $x \in U_2 \subseteq U_1 \cup U_2$ and $y \in U_1 \subseteq U_1 \cup U_2$, thus we have either $x + y \in U_1$ or $x + y \in U_2$.

If $x + y \in U_2$, then since $x \in U_2$ and U_2 is a subspace, we have $y = (x + y) - x \in U_2$, which contradicts $y \notin U_2$. Thus $x + y \in U_1$. But since $y \in U_1$ and U_1 is a subspace, we have $x = (x + y) - y \in U_1$, therefore $U_2 \subseteq U_1$.

2. Suppose $b \in \mathbf{R}$. Show that the set continuous real-valued functions f on the interval [0,1] such that $\int_0^1 f dx = b$ is a subspace of $\mathbf{R}^{[0,1]}$ if and only if b = 0.

Let $U = \{ f \in [0,1] : f \text{ is continuous and } \int_0^1 f dx = b \}$, recall that the zero element in $\mathbf{R}^{[0,1]}$ is the "zero function" $z : [0,1] \to \mathbf{R}$ defined by z(x) = 0 for all $x \in [0,1]$.

"\Rightarrow": If U is a subspace of $\mathbf{R}^{[0,1]}$, then the zero element is in U, that is z is continuous and $\int_0^1 z dx = b \Rightarrow b = \int_0^1 0 dx = 0$.

"\(= \)": suppose b = 0, so the set $U = \{ f \in [0,1] : f \text{ is continuous and } \int_0^1 f dx = 0 \}$. We want to show U is a subspace.

- 1. the zero function z is continuous and $\int_0^1 z dx = \int_0^1 0 dx = 0$, so $z \in U$.
- 2. $\forall c \in \mathbf{R}, f, g \in U$, we know f + g, cf are continuous functions on [0, 1]. And $\int_0^1 f + g dx = \int_0^1 f dx + \int_0^1 g dx = 0 + 0 = 0$, $\int_0^1 (cf) dx = c \int_0^1 f dx = c\dot{0} = 0$. Therefore $f + g, cf \in U$.

Thus U is a subspace.