Metody Obliczeniowe w Nauce i Technice

Sprawozdanie z Laboratorium 1

Dominik Jeżów

GR NR 4

Specyfikacje sprzętowe urządzenia:

• System: 80SM (LENOVO_MT_80SM_BU_idea_FM_Lenovo ideapad 310-15ISK)

• Procesor: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz

• Pamięć RAM: 8GB

• Środowisko: Jupyther Notebook

Ćwiczenie zrealizowane w języku Julia 1.8.5, wraz z wykorzystaniem pakietu Plots oraz PrettyTables

0. Opis ćwiczenia

Ćwiczenie polegało na zaimplementowaniu funkcji generujące wielomiany interpolacyjne oraz zbadanie tych wielomianów. Zaimplementowałem dwie funkcje generujące - generującą wielomian za pomocą metody Lagrange'a oraz drugą generującą za pomocą metody Newtona (ilorazów różnicowych)

1. Metody tworzenia wielomianów

Skorzystałem z dwóch metod tworzenia wielomianów interpolacji. Wynikiem powinna być ta sama funkcja, jednak zachodzą drobne różnice między nimi:

• Metoda Lagrange'a

Wartości w węzłach zgadzają się nawet dla dużej ilości węzłów. W zależności od sposobu wybierania węzłów największa liczba dla jakiej wygenerowana zwraca wartości w zaokrągleniu takie same wartości jest różna:

- Węzły równoodległe na osi OX dla liczby węzłów równej 333 wygenerowana funkcja zwraca NaN
- Zera Czebyszewa dla liczby węzłów równej 360 wygenerowana funkcja zwraca NaN

Metoda Newtona

Wygenerowana funkcja zwraca niedokładne wartości już dla niewielkiej liczby węzłów (3 w przypadku równych odstępów, a 15 dla zer Czebyszewa), dla epsilonu ustawionego na 5e-7 liczba węzłów, dla których wartości wciąż się zgadzają, jest równa około 20 niezależnie od wyboru węzłów.

2. Wybierane węzły

Generowałem dla liczby naturalnej n wielomian interpolacyjny z n węzłami z dwoma sposobami dobierania tych węzłów - równoodległe od siebie na osi x oraz węzły Czebyszewa (dalej nazywane zerami Czebyszewa)

Równoodległe

Dla n większych od 9 można zauważyć duże grzbiety na krańcach przedziału, dla liczb nieparzystych są znacznie większe:

Rys.1 Porównanie funkcji i interpolacji dla n=9

Rys.2 Porównanie funkcji i interpolacji dla n=10

Rys.3 Porównanie funkcji i interpolacji dla n=11

Rys.4 Porównanie funkcji i interpolacji dla n=12

Zera Czebyszewa

Dla węzłów Czebyszewa grzbiety głównie występują na środku przedziału o raz ich wielkość nie przekracza 1.5 wartości amplitudy między sąsiednimi ekstremami funkcji wejściowej. Dla n=40 otrzymujemy jeszcze zadowalające wyniki które są bardzo zbliżone do funkcji wejściowej.

Rys.5 Porównanie funkcji i interpolacji dla n=13

Rys.7 Porównanie funkcji i interpolacji dla n=30

Rys.8 Porównanie funkcji i interpolacji dla n=40

Porównanie

Do n = $8 \text{ funkcje z użyciem tych dwóch rodzin węzłów są ze sobą porównywalne i można z nich korzystać wymiennie, później do n=40 lepszym wyborem są zera Czebyszewa. Dla n > 40 obie metody sobie nie radzą.$

n	zera Czebyszewa	Równe odstępy
3	48.40	48.63
4	48.72	47.71
5	50.17	46.45
6	48.84	55.73
7	60.17	62.50
8	64.89	49.60
9	45.57	139.63
10	50.04	84.29
11	35.69	147.54
12	42.45	43.96
15	32.00	3738.10
20	40.92	102.83
30	20.73	876354.13
40	13.06	226340209.79
45	3872.46	26931696658.07
50	213744.74	39953062637.16

Tab.1 Maksymalna amplituda między funkcją a interpolacją

n	zera Czebyszewa	Równe odstępy
3	28.93	30.27
4	16.39	15.94
5	35.81	26.48
6	16.20	25.31
7	25.05	31.36
8	23.78	16.98
9	20.34	50.28
10	16.94	33.13
11	16.29	44.61
12	12.96	19.80
15	14.39	925.81
20	10.93	26.85
30	5.24	141508.84
40	2.30	30732364.47
45	201.47	3396941100.49
50	12853.89	4750808259.35

Tab.1 Średnia kwadratowa różnicy między funkcją a interpolacją

3. Wnioski

Do interpolacji metodą wielomianową najlepiej użyć metody Lagrange'a.

Sposób dobierania węzłów ma znaczenie dla wartości większych wartości n

Dla dużej liczby węzłów interpolacja ma ogromne odchylenia względem funkcji interpolowanej