

·.f(71,72,73)=(2,+72)(72+23)

Mapping the 0's from the K-map on follows.  $f(x_1,x_2,x_3) = (\overline{x}_1 + \overline{x}_2)(\overline{x}_2 + \overline{x}_3) \text{ which is}$ 

the minimum - cos pos form.

Problem-2.38

Som:

f(x1, x2, x3)= \(\times m(11417) + D(215)



Marring the 1's from the K-map as follows.

f(x1, 22, 23) = 7278+x129+x129 Which is

the minimum-cost sop form

Again, similarly let's find the minimum-cost pos form.



Mapping the ones from the k-map on follows. f(x1, x2, x3, x4) = x1x3+x2x3+ x2 x3x4+ x2 x3x4 This is the minimum-cost sop form Agam, f(x1,x2,x3,x4)=\(\int\_{0,21819,10,15}\)+D(1,3,6,7) 0 (x2+x3+x4) o's from the k-map on follows: f(2,, 72, x3, x4) = (x2+x3)(x2+x3+x4)(x2+x3+x4) This is the minimum-cost pos form

(5)

Solno.

Truth Table Mas and grand all and

|    |      | -  | 21  | 13/2  |       | cros |        |      | - 00  |         | NWO  |         | 90      |
|----|------|----|-----|-------|-------|------|--------|------|-------|---------|------|---------|---------|
| 74 | 72   | 12 | 3   | 24    | ] ;   | F    | 412    | 6.7. | 7. 7  | 1 -     |      |         |         |
| 0  | 0    | 0  | 7   | 0     | 0     | 000  | 3      | 112  | ,73,2 | 4)=2    | m(   | 7,11,1: | 3,14,   |
| 0  | 0    | 10 | 5   | 1     | 1     |      |        |      |       |         |      | 15      | )       |
| 0  | 0    |    | )   | 0     | 1     | 0    | 0)     | - 11 | 110   | 2       | Tex  | 455     |         |
| 0  | 0    | 1  | )   | 1     | 1     | 0    | 7217   | 200  | 10    | 111     | 10   | 1.0     |         |
| 0  | 1    | 1  | 0   | 0     | -     | 6    | 7374   | 6    | 0     | 10      | 1    | 0       |         |
| 0  | 1    |    | 0   | 1     |       | 0.   | 6      | 0    | 0     | M       | 1    |         |         |
| 10 | 11   | 1  | 11  | 10    |       | 0    | 0)     |      |       |         | 11   | 0       |         |
| 0  | 1    |    | 1   | 1     |       | 1    | 11     | 0    | MI    | 個       | 加    | 1       | +X17374 |
| 1  | 1    | 5  | 0   | 1     | 1     | 0    | -      | 018  | 4     | 1       | +    |         | 1       |
| 1  | (    |    | 1   | ) 1   |       | 0    | 10     |      |       | 16      | 1    | 10      | 1       |
| 1  | 1    | 0  | 1   | 1     | )     | 0    | 779 13 |      |       |         |      |         |         |
| 1  | R    | 0  |     | 0122  | BY    | 1    | 902    | 7    | 27374 | 2(1)    | (2X3 | wir     | M       |
| J  | 4    |    |     |       | 9.    | 0    | 1      |      |       |         |      |         | 4.4     |
| 1  | C. 8 | F. | - 0 | - (0) | ce    | KI   | 170    | XX   | -     | (mx     |      | 15751X  | 20      |
| 1  |      | 1  |     | 1     | 0     | 1    | 1/4    | 1    |       | الكيد أ |      |         | all     |
| 1  | 145  | 了从 | 100 | 1     | 1     | PIF  | or out | to   | 100   |         |      |         |         |
| L  |      |    | 1   |       | 20031 | 1    | -      |      | 1     | ,       |      |         | 1       |

Mapping the 1's from the k-map on follows.

f = x, x2x3 + x, x2x4 + x, x3x4 + x2x3x4



The number of gates needed to implementation the function is: stop and thegrise most The cost of f = total now of gates + total no.  $= (2+1+1) + {(2)(3)+(2)(1)+(3)(1)}$ (4+1)+ (19(4)+(4)81) = 2i 9(x1,72,73,74) = \(\int(2,4,0;10,15) + D(0,13,14). え,え,え, 511-10101 17,2324 04 X1 X2 X3 11 8 त्रायुत्रक्ष : The minimum cost sop expression is 9(1,72,73,74) = \$1,73 24+ \$223 74+ 7173 14+71,2273







## 9= 72×3 ×4 + ×1×2×3×4+ ×1×3×4+ 71×3×4

f has 4 gates and 12 inputs.

g has 5 gates and 17 inputs.



minimum cost - 7 gates and 22 inputs.





Solo f (x1, x2, x3) = \(\Sigma\) (1,2,3,4,5,6) & tuptuo



$$f = \overline{\chi}_1 \chi_3 + \overline{\chi}_1 \chi_2 + \chi_1 \overline{\chi}_2 + \chi_1 \overline{\chi}_3$$







Problem - 2.65

Som: Overilog code is given below:

module State ( $x_1, x_2, x_3, x_4, f_1, f_2$ );

input  $x_1, x_2, x_3, x_4$ ;

output  $f_1, f_2$ ;

assign  $f_1 = (x_1 & x_3) | (x_1 & x_2) | (x_2 & x_3) | (x_2 & x_3) | (x_3 & x_4) | (x_3 & x_3 & x_4) | (x_3 & x_4) | (x_4 & x_4) | (x_4 & x_4) | (x_5 & x_4)$ 

endmodule

 $\int 2 = \chi_{1} \chi_{2} \tilde{\chi}_{3} \tilde{\chi}_{4} + \tilde{\chi}_{1} \tilde{\chi}_{2} \chi_{3} \chi_{4} + \chi_{1} \tilde{\chi}_{2} \tilde{\chi}_{3} \chi_{4} + \chi_{2} \tilde{\chi}_{4})$   $\Rightarrow \int 2 = (\chi_{1} \tilde{\chi}_{3} + \tilde{\chi}_{1} \chi_{3}) (\tilde{\chi}_{2} \chi_{4} + \chi_{2} \tilde{\chi}_{4})$   $\Rightarrow \int 2 = ((\chi_{1} \tilde{\chi}_{3} + \tilde{\chi}_{1} \chi_{3}) (\tilde{\chi}_{2} \chi_{4} + \chi_{2} \tilde{\chi}_{4}))$   $= (\chi_{1} \tilde{\chi}_{3} + \tilde{\chi}_{1} \chi_{3}) (\tilde{\chi}_{2} \chi_{4} + \chi_{2} \tilde{\chi}_{4}))$   $= (\chi_{1} \tilde{\chi}_{3} + \tilde{\chi}_{1} \chi_{3}) + (\tilde{\chi}_{2} \chi_{4} + \chi_{2} \tilde{\chi}_{4}))$   $= (\chi_{1} \tilde{\chi}_{3}) (\tilde{\chi}_{1} \chi_{3}) + (\tilde{\chi}_{2} \chi_{4}) (\tilde{\chi}_{2} + \chi_{4})$   $= (\tilde{\chi}_{1} + \chi_{3}) (\chi_{1} + \tilde{\chi}_{3}) + (\chi_{2} + \tilde{\chi}_{4}) (\tilde{\chi}_{2} + \chi_{4})$ 

= (\(\frac{1}{2}\)\(\lambda\_1 + \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\f x3x1+ x1x3+ x2x4+ x2x4 ingut x2xxxxxxxxxx (St. 12 tugles F2 = f1 (proved) assign fe=(x18x28x38x4) (6x18xx8xx4)=1+ (MARINES ON BEAG) 1 (WALLERS EVER) module was a series and a subom でことはできますナススンスコマリナ、ストモンズコスタナズスとメラズリ xx3(x2x9+x2x9)+ x1x3(x2x4+x2x9) 82 = (x1x3 + x1x3)(x2x4 + x2x4)