Searching PAJ

1/2 ベージ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-006194

(43)Date of publication of application: 10.01.1997

(51)IntCl.

G036 21/00

G030 21/00 G05B 15/02

(21)Application number: 07-155023

(71)Applicant: RICOH CO LTD

(22)Date of filing:

21.06.1995

(72)Inventor: OGAWARA JUICHI

WAMOTO MINORU

(54) IMAGE FORMING DEVICE

(57)Abstract:

PURPOSE: To improve the degree of freedom in layout and to facilitate the change of control by changing the control, without exchanging a ROM.

CONSTITUTION: This image forming device is provided with plural units 201-209 obtained in such a manner that devices and members in a machine are classified by function, to be constituted as one control unit, plural unit control boards 201a to 209a which are provided in the units 201 to 209 respectively and take charge of the control of the corresponding units and a control program transmission equipment 210 for transmitting a previously stored control program to the respective unit control boards 201a to 209a. Each of the unit control boards 201a to 209a is provided with an operation control CPU (not shown by the figure) for taking charge of the control of the corresponding unit, an EEPROM (not shown by the figure) for storing the control program and a communication port and a communication control CPU (not shown by the figure) for multiplex communication

for a signal between unit control means. The control program from the control program transmission equipment 210 is transmitted to the EEPROM of each of the unit control boards 201a to 209a, to be stored

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] [Date of final disposal for application]

[Patent number]

Searching PAJ

2/2 ページ

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本図特許庁(JP)

(12) 公開特許公報(A)

(11)特許出版公開番号

特開平9-6194

(43)公開日 平成9年(1997)1月10日

(51) Int.CI.*	ot CI.* 監別記号 庁内整理書		PI		技術表示箇所	
G03G 21/00	396		G03G 2	1/00	396	
	370				37D	
G05B 15/02		0360-3H	G05B 15	5/02	M	
G06T 1/00			G06F 15/66 J			
			李祖全書	宋閱宋	請求項の数15 ()L (全17頁)
(21) 出版母号	特度平7-155023		(71)出頭人	00000674	17	
				株式会社	リコー	
(22) 出旗日	平成7年(1995) 6月21日			大都京東	田区中馬込1丁目	3番6号
			(72) 発明者	大河原	寿 一	
				大松江東	田区中周达1丁图	13番6号 株式
				会社リコ	一内	
			(72) 発明者	岩本	Į	
			東京都		大田区中局达1丁目3番6号 株式	
				会社リコ	一片	
			(74)代理人	并理士	智井 宏明	
•						•
F			.1			

(54) [発明の名称] 画像形成装置

(57) 【要約】

【目的】 ROMを交換せずに、制御の変更を行えるようにして、レイアウトの自由度を向上させると共に、制御の変更を容易に行えるようにする。

【構成】 造内の設置および各部材を機能別に分類し、 それぞれを一つの制御単位として構成した複数のユニッ ト201~209と、各ユニット201~209内に欧 けられ、それぞれ対応するユニットの制御を受け持つ複 数のユニット制御板201a~209aと,あらかじめ 配憶してある制御プログラムを各ユニット制御板201 a~209aへ伝送する制御プログラム伝送法費210 とを備え、各ユニット制御板201a-209aは、そ れぞれ対応するユニットの制御を受け持つ動作制御用C PU(図示せず)と、制御プログラムを記憶するEEP ROM(図示せず)と、ユニット制御手段間の信号を多 重通信化するための通信用ポートおよび通信制御用CP ひ(図示せず)とを有し、制御プログラム伝送整置21 Oから制御プログラムを各ユニット制御板201a-2 09aのEEPROMに伝送し、記憶させるものであ る。.

(2)

特開平9-6194

I

【特許請求の範囲】

【請求項1】 協内の設置および各部材を協能別に分類し、それぞれを一つの制御単位として構成した複数のユニットと、前配制御単位である各ユニット内に設けられ、それぞれ対応するユニットの制御を受け持つ複数ログラムを各ユニット制御手段へ伝送する制御プログラムを各ユニット制御手段へ伝送する制御プログラムを協立ニット制御を受け持つCPUと、制御プログラムを配憶する第1の記憶手段と、前記複数のユニット制御手段間の信号を多重通信化するためのの重選信手段とを有し、前記制御プログラムを記憶するユニット制御手段間の信号を多重通信化するための多重 記制御プログラムを前記各ユニット制御手段の第1の記憶手段に伝送し、記憶させることを特徴とする画像形成 き置。

【請求項2】 前記第1の記憶手段は、記憶された制御 プログラムの書き換えが可能であることを特徴とする請 求項1記載の画像形成整置。

【請求項3】 前記制御プログラム伝送手段は、前記ユニット制御手段間を接続する選倡媒体に接続可能であり、該選倡媒体を介して各ユニット制御手段の第1の記憶手段に創御プログラムを伝送することを特徴とする請求項1または2記載の画像形成装置。

【請求項4】 前記複数のユニット例御手段で共溫に使用することのできる制御プログラムを共遊制御プログラムを共遊制御プログラムをあらかじめ各ユニット制御手段上に配置された第2の記憶手段に格納しておくことを特徴とする讀求項1,2または3記載の画像形成發展。

【請求項5】 前記共運制御プログラムは、ユニット制御手段間におけるデータ通信およびユニット制御手段と 制御プログラム伝送手段との間におけるデータ通信を行うための通信プロトコルを設定する通信プログラムを含み、前記各ユニット制御手段が、前記通信プログラムに 基づいて他のユニット制御手段および制御プログラム伝送手段とデータ通信を行うことを特徴とする請求項4記載の画像形成装置。

【請求項6】 前配共通制御プログラムは、前配制御プログラム伝送手段から送信された制御プログラムを検知して前記第1の記憶手段に格納するためのダウンロードプログラムを含み、前配各ユニット制御手段が、前記ダウンロードプログラムに基づいて前記制例プログラム伝送手段から送信されてきた制御プログラムを前記第1の記憶手段に格納することを特徴とする請求項4記数の画像形成裝置。

【館水項7】 前記共通制御プログラムは、前記各ユニット制御手段に接続されている制御部品群を誤動作させないための入出力設定プログラムを含み、前記各ユニット制御手段が、前記制御プログラム伝送手段から送信された制御プログラムにしたがって動作を開始する前に、

前記入出力設定プログラムに基づいて、制御部品群の動作を制御することを特徴とする請求項4記載の画像形成 装置。

【請求項8】 前記制阿プログラム伝送手段は、制御プログラムの送信先を複数設定可能な送信先設定手段を有し、前記各ユニット制御手段は、自ユニット制御手段が前記送信先設定手段で送信先として設定された場合に、送信されてきた制御プログラムを受信することを特徴とする請求項1,2または3記載の画像形成差置。

【請求項9】 前記制御プログラム伝送手段は、全ての制御プログラムの送信が終了すると、制御プログラム送信終了信号を送信し、各ユニット制御手段は、制御プログラム送信終了信号を受信すると動作を開始することを特徴とする解求項1、2または3記載の画像形成装置。

【請求項10】 前記制御プログラム伝送手段が、前記 複数のユニット制御手段の何れか一つに設置されている ことを特徴とする請求項1または2記載の画像形成装 最。

【請求項11】 前記制御プログラム伝送手段が、画像形成芸質本体と別体の装置として構成され、前記制御プログラム伝送手段と画像形成装置とを接続する接続手段を設け、前記制御プログラム伝送手段を前記接続手段から着脱可能としたことを特徴とする請求項請求項1または2記載の画像形成裝置。

【請求項12】 機内の装置および各部材を機能別に分 類し、それぞれを一つの制御単位として構成した複数の ユニットと、前記制御単位である各ユニット内に殴けら れ、それぞれ対応するユニットの制御を受け持つ複数の ユニット制御手段と、あらかじめ記憶してある制御プロ グラムを各ユニット側御手段へ伝送する制御プログラム 伝送手段と、前配各ユニット制御手段間を接続する通信 **媒体とを備え、前記複数のユニット制御手段は、それぞ** れ対応するユニットの制御を受け持つCPUと、前配性 数のユニット制御手段間の信号を多重通信化するための 多重通信手段と、前記多重通信手段および通信媒体によ って形成された多重通信網上の各ユニット制御手段のネ ットワークアドレスを設定するためのアドレス設定端子 とを有し、前記各ユニット制御手段のネットワークアド レスが前記アドレス政定端子によって設定されることを 特徴とする面位形成装置。

【請求項13】 前配アドレス酸定端子のネットワークアドレスの設定は、前配各ユニット制御手段を搭載する差板の配線パターンを直接HIGHまたはLOWに設定することにより行うことを特徴とする請求項12記載の画像形成装置。

【請求項14】 前記各ユニット制御手段のアドレス設定端子を、ジャンパー森を介してHIGHまたはLOWに設定することができるように前配各ユニット制御手段を搭載する差板の配線パターンを設定し、前記アドレス50 設定端子のネットワークアドレスの変更を可能としたご

(3)

将開平9-6194

とを特徴とする請求項12記載の画像形成装置。

【請求項15】 前記各ユニット制御手段のアドレス設定端子を、スイッチを介してHIGHまたはLOWに設定することができるように前記各ユニット制御手段を搭載する基板の配線パターンを設定し、前記アドレス設定端子のネットワークアドレスの変更を可能としたことを特徴とする請求項12記載の画像形成装置。

3 .

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、彼写様、プリンター等 10 の画像形成装置に関し、より詳細には、他内の装置および各部材を機能別に分類し、それぞれを一つの制御単位 として複数のユニットを構成し、該複数のユニット間で 多重通信を行う画像形成装置に関する。

[0002]

【従来の技術】従来、複写機等の関係形成装置においては、機内にメイン側衛部と呼ばれる制御ユニットを設け、この制御ユニットが機内に配置されているほとんどの部品を直接駆動・制御する、いわゆる、集中制御方式が一般的であった。

【0003】また、上記メイン制御部の負荷を軽減するために、関係形成装置内の部品をいくつかの部品群に分割して制御する分散制御方式が採用されている。この分散制御方式は、画像形成装置内の部品をいくつかの部品群に分割し、分割された部品群のそれぞれに該部品群に合まれる部品を制御するための制御部を設け、それぞれの制御部を通信媒体を介して接続し、相互にデータ伝送を行えるようにして機械を制御するものである。

【0004】なお、分散制御方式では、部品鮮を制御する各制御部上に、あらかじめそれぞれの制御プログラムを格納したROM等の不揮発性記憶整量を搭載しておく必要がある。このため、画像形成建置内の全ての制御部上にROMが配設されている。

[0005]

【発明が解決しようとする課題】しかしながら、上記従来の分散制御方式の画像形成装置によれば、各制御部が運動して動作しているため、画像形成装置の制御を変更する場合には、画像形成装置内の全ての制御部上のROMを交換する必要があるが、このROMの交換によって、以下の問題点があった。

【0006】第1に、ROMの交換ができる位置に各制 御部を配置する必要があるため、レイアウト上の創約が 発生するという問題点があった。第2に、ROMの交換 に人手および時間がかかるため、制御の変更を容易に行 えないという問題点があった。

【0007】本発明は上記に鑑みてなされたものであって、ROMを交換せずに、制御の変更を行えるようにして、レイアウトの自由度を向上させると共に、制御の変更を容易に行えるようにすることを目的とする。

[0008]

【課題を解決するための手段】上記の目的を達成するために、請求項1に係る画像形成整置は、機内の軽量および各部材を機能別に分類し、それぞれを一つの制御単位として構成した複数のユニットと、前記制御単位である各ユニット内に設けられ、それぞれ対応するユニットの制御を受け持つ複数のユニット制御手段と、あらかじめ記憶してある制御プログラムを各ユニット制御手段で、前記複数のユニット制御手段は、それぞれ対応するユニットの制御を受け持つCPUと、制御プログラムを配憶する第1の記憶手段と、前記複数のユニット制御手段間の信号を多重通信化するための多重通信手段とを有し、前記制御プログラム伝送手段から前記制御ブログラムを前記各ユニット制御手段の第1の記憶手段に伝送し、記憶させるものである。

【0009】また、請求項2に係る画像形成装置において、前記第1の配電手段は、配価された制御プログラムの書き換えが可能なものである。

【0010】また、請求項3に係る画像形成装置において、前記制御プログラム伝送手段は、前記ユニット制御手段間を接続する通信媒体に接続可能であり、該通信媒体を介して各ユニット制御手段の第1の記憶手段に制御プログラムを伝送するものである。

[0011] また、商来項4に係る画像形成設置は、前記複数のユニット制御手段で共通に使用することのできる制御プログラムを共通制御プログラムとし、この共通制御プログラムをあらかじめ各ユニット制御手段上に配置された第2の配置手段に格納しておくものである。

【0012】また、請求項5に係る國像形成装置は、前記共通制御プログラムが、ユニット制御手段間におけるデータ通信およびユニット制御手段と制御プログラム伝送手段との間におけるデータ通信を行うための通信プロトコルを設定する通信プログラムを含み、前記各ユニット制御手段が、前記通信プログラムに基づいて他のユニット制御手段および制御プログラム伝送手段とデータ通信を行うものである。

【0013】主た、請求項6に係る画像形成装置は、前記共選制御プログラムが、前記制御プログラム伝送手段から送信された制御プログラムを検知して前記第1の記憶手段に格納するためのダウンロードプログラムを含み、前記各ユニット制御手段が、前記ダウンロードプログラムに基づいて前記制御プログラム伝送手段から送信されてきた制御プログラムを前記第1の記憶手段に格納するものである。

【0014】また、前末項7に係る画像形成甚世は、前記共通制御プログラムが、前記各ユニット制御手段に接続されている制御部品群を誤動作させないための入出力設定プログラムを含み、前記各ユニット制御手段が、前記制仰プログラム伝送手段から送信された制御プログラムにしたがって動作を開始する前に、前記入出力設定プ

(4)

特開平9-6194

5

ログラムに参づいて、制御部品群の動作を制御するもの である。

【0015】また、請求項8に係る画像形成装置は、前記制御プログラム伝送手段が、制御プログラムの送信先を複数改定可能な送信先股定手段を有し、前記各ユニット制御手段は、自ユニット制御手段が前配送信先設定手段で送信先として設定された場合に、送信されてまた制御プログラムを受信するものである。

【0016】また、請求項9に係る画像形成装置は、前記制御プログラム伝送手段は、全ての制御プログラムの送信が終了すると、制御プログラム送信終了信号を送信し、各ユニット制御手段は、制御プログラム送信祭了信号を受信すると動作を開始するものである。

【0017】また、請求項10に係る画像形成基量は、 前記制御プログラム伝送手段が、前記複数のユニット制 御手段の何れか一つに設置されているものである。

【0018】また、請求項11に係る画像形成袋世は、前記制御プログラム伝送手段が、画像形成袋賃本体と別体の袋賃として構成され、前記制御プログラム伝送手段と画像形成袋賃とを接続する接続手段を設け、前記制御プログラム伝送手段を前記接続手段から奢脱可能としたものである。

【0019】また、謂求項12に係る画像形成裝置は、 機内の装置および各部材を機能別に分類し、それぞれを 一つの例仰単位として構成した複数のユニットと,前記 制御単位である各ユニット内に設けられ、それぞれ対応 するユニットの制御を受け持つ複数のユニット制御手段 と、あらかじめ記憶してある刷御プログラムを各ユニッ ト制御手段へ伝送する制御プログラム伝送手段と、前記 各ユニット制御手段間を接続する通信媒体とを備え、前 記複数のユニット制御手段は,それぞれ対応するユニッ トの制御を受け持つCPUと、前記複数のユニット制御 手段間の信号を多慮通信化するための多重通信手段と、 前記多重過信手段および通信機体によって形成された多 重通僧網上の各ユニット制御手段のネットワークアドレ スを設定するためのアドレス設定端子とを有し、前記各 ユニット制御手段のネットワークアドレスが前記アドレ ス設定端子によって設定されるものである。

【0020】また、請求項13に係る画像形成装置において、前記アドレス設定端子のネットワークアドレスの 40 設定は、前記各ユニット制御手段を搭載する基板の配線パクーンを直接HIGHまたはLOWに設定するものである。

【0021】また、請求項14に係る画像形成裝置において、前記各ユニット制御手段のアドレス設定端子を、ジャンパー線を介してHIGHまたはLOWに設定することができるように前記各ユニット制御手段を搭載する 差板の配線パターンを設定し、前記アドレス設定端子のネットワークアドレスの変更を可能としたものである。【0022】また、請求項15に係る画像形成裝置は、

前記各ユニット制御手段のアトレス設定端子を、スイッチを介してHIGHまたはLOWに設定することができるように前記各ユニット制御手段を搭載する差板の配線パターンを設定し、前記アドレス設定端子のネットワー

クアドレスの変更を可能としたものである。

[0023]

【作用】本発明の画像形成裝置(請求項1)は、制御プログラム伝送手段が、あらかじめ記憶してある制御プログラムを各ユニット制御手段へ伝送すると、各ユニット 制御手段は受信した制御プログラムを第1の記憶手段に記憶する。したがって、ROM等の第1の記憶手段の交換を行うことなく、制御プログラムの変更が可能となる。

【0024】また、本発明の画像形成装置(請求項2)は、記憶された制御プログラムの管き換えが可能な第1の記憶手段を用いることにより、第1の記憶手段の制御プログラムを管き換えて、制御プログラムの変更が可能である。

【0025】また、本発明の画像形成装置(請求項3) 20 は、制御プログラム伝送手段を、ユニット制御手段問を接続する通信媒体に接続し、該通信媒体を介して各ユニット制御手段の第1の記憶手段に制御プログラムを伝送する。したがって、あらたな伝送媒体を付加することなく、制御プログラム伝送手段から制御プログラムを送信することができる。

【0026】また、本発明の画像形成装置(請求項4)は、複数のユニット制御手段で共通に使用することのできる制御プログラムを共通制御プログラムとし、この共通制御プログラムをあらかじめ各ユニット制御手段上に配置された第2の記憶手段に結納しておく。したがって、創御プログラム低送手段から送信する制御プログラムのデータ量が小さくなる。

【0027】また、本発明の関係形成装置(簡求項5)は、ユニット制御手段間におけるデータ通信およびユニット制御手段と制御プログラム伝送手段との間におけるデータ通信を行うための通信プロトコルを設定する通信プログラムを共通制御プログラムとしてあらかじめ各ユニット制御手段の第1の記憶手段に格納しておく。したがって、発電の動作開始直後に、各ユニット制御手段間および制御プログラム伝送手段との間で通信を行うことができる。

【0028】また、本発明の国像形成装置(請求項6)は、都御プログラム伝送手段から送信された制御プログラムを検知して第1の配憶手段に格納するためのダウンロードプログラムを共通制御プログラムとしてあらかじめ各ユニット制御手段の第1の配憶手段に格納しておく。したがって、各ユニット制御手段がダウンロードプログラムに基づいて制御プログラム伝送手段から送信されてきた制御プログラムをダウンロードするので、制御プログラム伝送手段の負荷が軽減される。

-4-

(5)

袋鼠平9-6194

【0029】また、本発明の画像形成陸置(請収項7) は、各ユニット制御手段に接続されている制御部品群を 誤動作させないための入出力設定プログラムを共通制御 プログラムとしてあらかじめ各ユニット副御手段の第1 の記憶手段に格納しておく。したがって、各ユニット制 例手段は、制御プログラムが送信される前の状態におい ても、入出力設定プログラムに益づいて制御部品群の動 作の制御が可能である。

7

[0030] また、本発明の画像形成装置(請求項8) は、制御プログラム伝送手段は、送信先設定手段を用い て側御プログラムの送信先を複数設定可能であり、各二 ニット制御手段は、自ユニット制御手段が送信先設定手 段で送信先として設定されている場合に、送信されてき た制御プログラムを受信するので、制御プログラム伝送 手段から一度に複数のユニット制御手段へ制御プログラ ムを送信できる。

【0031】また,本発明の画体形成装置(請求項9) において、制御プログラム伝送手段は、全ての制御プロ グラムの送信が終了すると、制御プログラム送信終了信 号を送信する。各ユニット制御手段は,制御プログラム 伝送手段から制御プログラム送信終了信号を受信すると 動作を開始する。換書すれば、制御プログラム伝送手段 から全ての制御プログラムの送信が終丁し、全てのユニ ット制御手段の通信準備が完了してから、ユニット制御 手段間の通信が開始されるので、通信信号の未受信・未 処理等の問題がなくなる。

【0032】また、本発明の画像形成装置(請求項1 0)は、制御プログラム伝送手段が、複数のユニット制 御手段の何れか一つに設置されているので、特別に制御 プログラム伝送手段の設置を考える必要がない。

【0033】また,本発明の画像形成装置(請求項1 1)は、画像形成装置本体と別体の設置として構成され た制御プログラム伝送手段を、接続手段を介して画像形 **成処債に発脱可能に接続する。したがって、制御プログ ラムの送信終了後に制御プログラム伝送手段を取り外す** ことができる。

【0034】また、本発明の画像形成裝置(躊求項1 2) は、多重通信手段および通信媒体によって形成され た多重通信網上の各ユニット側御手段のネットワークア ドレスを設定するためのアドレス設定端子を用いて、各 40 ユニット制御手段のネットワークアドレスを瞠定する。 すなわち、訓御プログラム等のソフトウェアで設定する 必要がなくなるので、ネットワークアドレスの違いのみ による制御プログラムの違いをなくして、制御プログラ ゛ムの統―化を図ることができる。

【0035】また、本発明の画像形成装置(請求項】 3) は、アドレス設定端子のネットワークアドレスの設 定は、各ユニット制御手段を搭載する基板の配線パター ンを直接HIGHまたはLOWに設定して行う。したが って, ネットワークアドレスの設定にかかるコストを極 50 03は、4段の輪紙カセット103-1~103-4を有し

力小さく抑えることができる。

【0036】また、本発明の画像形成盛置(請求項1 4) は、各ユニット制御手段のアドレス設定端子を、ジ ャンパー急を介してHIGHまたはLOWに設定するの で,アドレス設定端子のネットワークアドレスの変更が 容易となる。

【0037】また、本発明の画像形成磁置(請求項1 5) は、各ユニット制御手段のアドレス設定端子を、ス イッチを介してHIGHまたはLOWに設定するので、 アドレス設定端子のネットワークアドレスの変更が容易 となる。

[0038]

【実施例】以下、本発明の画像形成装置を核写機に適用 した場合を例として、図面を参照して詳細に説明する。 【0039】図1は、本実施例の複写優の構成を示す説 明図であり、101は、コピー画像を作成するための短 写機本体を示し、102は、原稿を原稿銃取位置まで鍛 送するための原稿自動給送裝置(以下、ADFと記載す る)を示し、103は、配録紙の給紙部となるパンク給 紙部を示している。

【0040】ここで、恒写松本体101は、保担持体と しての感光体ドラム104と、感光体ドラム104次面 を所定の位位に帯電するための帯電チャージャ111 と、所定位置に載置された原稿から原稿画像を読み取 り、悠光体ドラム104表面に静電漕像を形成するスキ ヤナー112と、感光体ドラム104表面に形成された 移電潜像をトナー現像して可視像であるトナー像を形成 する現像部113と、感光体ドラム104表面に形成さ れたトナー像を、転写位置114で記録紙に転写する転 30 写部115と、転写処理後の感光体ドラム104嵌面か ら残留トナーを除去するためのクリーニング部116 と、パンク給紙部103から給紙された記録紙を転写位 位114へ搬送する中間ローラ133と、中間ローラ1 33に到達した記録紙を検知するための中間ローラセン サ134と、所定のタイミングで記録紙を転写位置11 4へ搬送するレジストローラ135と、レジストローラ 135に到途した記録紙を検知するためのレジストセン サ136と,記録紙上に転写されたトナー像を記録紙に 定着させるための定常部141と、定者部141に到達 した記録紙を検知するための定着部入口センサ142 と、配録紙の搬送方向を切り替える分岐爪144と、記 録紙を慢外に排紙する排紙ローラ145と、排紙ローラ 145に到達した記録紙を検知するための排紙センサ1 46と、排紙ローラ145により機外に排紙された記録 紙を載量するための排紙トレイ147と、記録紙の両面 に画像を形成する場合において、表面の画像形成が終了 した記録紙を収納するための両面トレイ150とから探 成されている。

【0041】また、本実施例において、パンク給紙部1

(6)

特開平9-6194

ており、それぞれの裕紙カセット103-1~103-4を 後述する4つのパンクユニット(パンク1ユニット20 7-1~207-4)に分類し、独立して制御する構成である。

【0042】図2は、本実施例の要部である複写機の制御系の構成を示すプロック図であり、図示の如く、像内の装置および各部材を機能別に分類し、それぞれを一つの制御単位として構成した複数のユニット201~209内に設けられ、それぞれ対応するユニットの制御を受け持つ動作制御用CPU302(図3番照)を有した複数のユニット制御板2012~2092と、あらかじめ記憶してある制御プログラムを各ユニット制御板2012~2092と、複数のユニット制御板2012~2092と、複数のユニット制御板2012~2092とでの通信線211とを備えている。

【0043】なお、本実施例では、通信媒体として通信 線211を用いたが、特にこれに限定するものではな く、電波または光による無線を用いてもよい。

【0044】上記各ユニット201~209内において、ユニット制御板201a~209aは、以下に示すように、自ユニットの状態を検知するためのセンサ類や自ユニットの各部を動作させるための各種アクチュエータに接続されている。

【0045】ここで、操作ユニット201のユニット制 御板201aには、オペレータが各種設定を行うための キー入力装置、各種メッセージをオペレータへ通知する ための表示装置等が接続されている。

【0046】また、帯電チャージャ111の制御を行う 帯電ユニット202のユニット制御板202aには、感 光体ドラム104の電位を測定する電位センサ、帯電チャージャ111に電圧を印加する高圧電源、帯電チャー ジャ111の精掃を行うためのチャージャクリーナ等が 接続されている。

【0047】また、スキャナー112の制御を行う珍光・光学ユニット203のユニット制御板203aには、光学系の位置を検出する位置SW(スイッチ)、各種異常検知センサ、スキャナモータ、ハロゲンタンブ学が接続されている。

【0048】また、現像部113の制御を行う現像ユニット204のユニット制御板204aには、感光体ドラム104上のトナー撮皮を測定する温度センサ、現像部113内のトナー量を検知する剤有無センサ、現像モータ、バイアス電源等が接続されている。

【0049】主た、転写部115の制御を行う転写ユニット205のユニット制御板205aには、高圧電源等が接続されている。

【0050】また、クリーニング部116の制御を行う

10

クリーニングユニット206のユニット制御板206a にはブレード,ソレノイドが接続されている。

【0051】また、バンク絵紙部103を構成するバンク1ユニット207-1~バンク4ユニット207-4のユニット的卸板2072-1~2072-4には、それぞれ上昇モータ、呼出ソレノイド、給紙クラッチ、上限センサ、給紙センサ、紙有無センサ、紙サイズセンサ、バンクセットセンサ等が接続されている。

【0052】また、記録紙120の搬送に関する制御を行う搬送ユニット208のユニット制御板208aには、船紙モータ、レジストクラッチ、中間ローラセンサ、レジストセンサ等が接続されている。

【0053】さらに、定意部141および排紙部の制御を行う定者・排紙ユニット209のユニット制御板209aには、定意モータ、定君ヒータ、分岐ソレノイド、温産センサ、定者入口センサ、排紙センサ等が接続されている。

【0054】なお、説明を簡単にするために、図2では、複数のユニットとして、ユニット201-209の9組のユニットを示すが、その他に、例えば、手差し給紙ユニット、両面給紙ユニット等があり、特に、ユニットの構成はこれに限定するものではない。

【0055】図3は、図2に示したユニット制御板20 1a~209aの制御ブロック図である。なお、ユニッ ト制御植201a-209aは、向一の構成であるた め、ここでは、操作ユニット201のユニット制御板2 01aを例として説明する。ユニット制御板201a は、他のユニット訓御板202a~209aとの通信に 関する制御を行う通信制御用CPU301と、自ユニッ トの動作制御を行う動作制御用CPU302と,通信線 211を介してデータ送受信を行うための通信用ポート 303と、通信制御用ブログラム等の各ユニット制御板 201a~209aで共通に使用するプログラム(共通 制御プログラム)が配置されているROM(第2の記憶 手段) 304と、自ユニットの制御シーケンス用プログ ラムのように各ユニット制御板201a~209aによ って異なる制御プログラムを記憶するためのEEPRO M (第1の記憶手段) 305と、制御アータ類を記憶す るRAM306と、アクチュエータ、センサ類等とのイ 40 ンタフェースを行うための入出力ポート307と、アド レスパス、データバスおよびコントロールパスにより得 成された,上記各部を接続するためのパス308と,パ ス308のアドレスパスに接続され、各ユニット制御板 2011~209aのネットワークアドレスを設定する ためのアドレス設定選子309とから構成されている。 【0056】上記構成において、通信制御用CPU30 1が運信用ポート303の監視を行い、動作制御用CP U302が入出力ポート307の監視を行っている。こ こで、外部ユニット(他のユニット制御板202a~2 50 09a) から通信線211を介して通信用ポート303 (7)

特開平9-6194

11

に入力された情報は、通信制御用CPU301のプロトコルにしたがって取り込まれ、RAM306に格納される。また、制御プログラム伝送装置210からから通信総211を介して通信用ボート303に入力された情報は、通信制御用CPU301のプロトコルにしたがって取り込まれ、EEPROM305に格納される。さらに、動作制御用CPU302は、ROM304およびEEPROM305に記憶されている制御プログラムに基づいて、必要に応じてRAM306を使用して、上記各部を制御する。

【0057】なお、本実施例では、通信制御用CPU301と動作制御用CPU302の2つのCPUを使用するが、動作制御用CPU302で通信制鋼を兼ねて、CPUを1つにしても良い。また、本実施例では、制御プログラムの書き換えが可能な第1の記憶手段として、試気的に書き換えが可能なEEPROM305を使用するが、特にこれに限定するものではなく、例えば、RAM等を用いても良い。

【0058】図4は、図2に示した制御プログラム伝送 装置210の主要部分の制御プロック図である。各ユニ 20ット制御板201a~209aの制御プログラムが格納されている制御プログラム格納用ROM401と、通信線211に接続され、通信線211とデータ送受信を行うための通信用ボート402と、通信用ボート402の 監視を行うと共に、制御プログラム格納用ROM401の内容を送信するための通信制御用CPU403とから 構成される。なお、404は、アドレスバス、データバスおよびコントロールバスを示す。

【0059】次に、図5(a)~(c)を参照して、各ユニット制御板20la~209 & 上のアドレス設定調子309のアドレス設定方法について説明する。

【0060】先ず、同図(a)は、アドレス設定端子309のネットワークアドレスの設定を、各ユニット制御板201a~209aを搭載する基板の配線パターンを直接HIGHまたはLOWに設定することにより行うものである。図示の如く、アドレス設定端子309が8ピン(すなわち、8ピット)で構成されているとすると、アドレス設定端子309の8ピンのそれぞれに回路A―1または回路A―2のどちらかの回路を接続し、どのピンにどの回路を接続したかの組合せによってユニット制御板201a~209aのアドレスを設定する。

【0061】 また、 間図(b)は、アドレス設定端子309のネットワークアドレスの設定を、ジャンパー線を介してHIGHまたはLOWに設定することができるようにしたものであり、これによって、アドレス設定端子309のネットワークアドレスの変更を可能としたものである。図示の如く、アドレス設定端子309の8ピン全てに対して回路Bを接続し、どのピンの回路にジャンパー線を挿入するかの組合せによってユニット制御板2012~209aのアドレスを設定する。

12

【0062】また、同図(c)は、アドレス設定端子309のネットワークアドレスの設定を、スイッチ(SW)を介してHIGHまたはLOWに設定することができるようにしたものであり、これによって、アドレス設定端子309のネットワークアドレスの変更を可能としたものである。図示の如く、アドレス設定端子309の8ピン全てに対して回路Cを接続し、接続したSWのオン/オフの設定を組合せることによってユニット制御板201a~209aのアドレスを設定する。

10 【0063】なお、本実施例では、同図(c)の方法で 各ユニット創御板201a~209aのアドレス設定端 子309にネットワークアドレスを設定したものとす る。

[0064]以上の標成において、①制御プログラム伝 送佐置の送信動作、②各ユニット制御板の受信動作、③ 制御プログラムを送信する際のバケットの構成、③本実 施例の効果、⑤他の実施例(空形例)の順で、その動作 を説明する。

【0065】の制御プログラム伝送整置の送信動作図6は、制御プログラム伝送整置210の送信動作を示すフローチャートである。本実施例では、複写機に電視が投入されるかまたは複写機のリセット動作が行われると、制御プログラム伝送変置210が送信動作を開始するものとする。先ず、各ユニット制御板201a~209aと運信を行い、各ユニット制御板201a~209aのEEPROM305に制御シーケンス用プログラムが格納されているかの確認および格納されている場合にはその制御シーケンス用プログラムのパージョンの確認(後述する図7のステップS704における制御プログラム確認命令に相当)を行う(S601)。

【0066】次に、ステップS602において、制御プログラム (制御シーケンス用プログラム) が格納されているか否かに基づいて、格納されている場合にはステップS603へ進み、格納されていない場合にはステップ 5605へ進む。

【0067】ステップS603では、格納されている制御シーケンス用プログラムのパーションと、制御プログラム伝送整置210上の制御プログラムのパーションと一致するか否かを判断し、一致している場合にはステップS7S604~進み、一致していない場合にはステップS605~進む。

【0068】スアップS605では、各ユニット制御板201a~209aのEEPROM305に制御シーケンス用プログラムが格納されていない場合、または格納されている制御シーケンス用プログラムのパージョンが 制御プログラム伝送装置210の制御プログラムのパージョンと一致しな場合であるので、各ユニット制御板201a~209a~EEPROM305上の制御プログラムを消去する制御プログラムを消去する制御プログラムを消去する制御プログラムを消去する制御プログラムで、各ユニット制御

(8)

特闘平9-6194

13

板201aー209aから消去完了信号が受信されるのを待って、消去が完了すると、ステップS608で削御プログラム格納用ROM401に格納されている制御プログラムを通信用ポート402を介して送信し、制御プログラムの送信が終了すると、ステップS604へ進む。

【0069】ステップS604では、各ユニット制御板2012~2092へ送信終了信号を送信し、処理を終了する。

【0070】なお、本実施例では、各ユニット制御板201a~209aのEEPROM305の内容が消去されたことを確認するために、各ユニット制御板201a~209aから消去完了信号が返ってくるのを待っているが、各ユニット制御板201a~209aがEEPROM305の内容を消去するのにかかる時間をあらかじめ設定しておき、その時間経過後に消去されたものと判断するようにしても良い。

【0071】 また、上記制御プログラム伝送設置210 の送信動作は、リセット動作が行われた場合にのみ実行することも可能であるが、EEPROM305に代えて、RAM等を第1の記憶手段として使用する場合には、電源を切断したり、リセット動作を行うとRAMの内容が消去されるので、上記のように、複写機に電源が投入されるかまたは複写機のリセット動作が行われると、倒御プログラム伝送装置210の送信動作を実行する必要がある。

【0072】 の各ユニット制御板の受信動作 図?は、各ユニット制御板201a~209aの受信動作のフローチャートを示し、本実施例では、複写機に電源が投入されるかまたは復写機のリセット動作が行われ 30 ると、各ユニット制御板201a~209aがROM304にあらかじめ格納されている共通制御プログラムの一つである初期化プログラムにしたがい、以下の処理を実行する。

【0073】先ず、アドレス設定場子309のデータ (ネットワークアドレス)を眩み取り、自ユニット制御 板のネットワークアドレスとして設定する (S701)。次に、初期化プログラムに含まれる通信プロトコルにしたがって通信用ポート303の設定を行い、他のユニット制御板および制御プログラム伝送疫費210との通信を可能とする (S702)。

【0074】続いて、入出力ポート307をハイインビーダンス状態に設定する(S703)。これによって、入出力ポート307に接続されている素子の破壊および誘動作が回避される。ステップS701ーS703の設定を終了すると、各ユニット制御板201a~209aは、常時通信線211を監視するようになり、制御プログラム伝送装置210や他のユニット制御板からの信号が受信可能となる。

【0075】ステップ5704において、創御プログラ

ム伝送器置210から正正PROM305に格納されている制御プログラムについての問い合わせ(制御プログラム確認命令)があると、ステップS705で、各ユニ

ット制御板はEEPROM305に制御プログラムが格納されているか、格納されている場合はその制御シーケンス用プログラムのパージョンはいくつかを判別し、制御プログラム伝送装置210元の硬配結果を送信する。

14

【0076】次に、ステップS706で、創御プログラム伝送設置210からEBPROM305の消去命令が送信されてくると、ステップS707で、EBPROM305の内容を消去し、消去が終了すると消去終了信号を創御プログラム伝送装置210にBEPROM305の消去時間が設定されている場合には、消去終了信号の送信は行わない)。

【0077】続いて、ステップS708で、制御プログラム伝送装置210から制御プログラムが送信されてくるのを待ち(制御プログラム送信待機状態)、制御プログラムが送信されてくると、ステップS709で、ROM304に格納されている共通制御プログラムの一つであるダウンロードプログラムにしたがって、送信されをた制御プログラムを取り込み、EEPROM305に格納する。

【0078】その後、制御プログラムのダウンロードが終了して、ステップS710で、制御プログラム伝送装置210から制御プログラム法信終了信号を受信すると、ステップS711で、各ユニット制御板201a~209aは、日ユニット制御板のEEPROM305に格納された制御プログラムにしたがって動作を開始する。

【0079】③前御プログラムを送信する際のパケットの構成

図8は、翻御プログラム伝送芸世210から送信される 制御プログラムのパケット800の構成を示し、本実施 例では、制御プログラムを一度に複数のユニット制御板 に送信するために、図示の如く、パケットの開始を示し かつ送信先の数を規定しかつ制御プログラムの大きさ等 を規定しているヘッダ部801と、送信先のネットワー クアドレスを規定している送信先指定部802と、送信 される制御プログラムである制御プログラム部803 と、パケット800の終了を示すEOM部804とから なり、パケット800の中に送信先(すなわち、送信先 のユニット制御板)を複数個指定することができる構成 である。

【0080】したがって、制御プログラム伝送装置210から上記パケット800が送信されると、パケット800の送信光指定部802で指定されているユニット制御板は、そのパケット800が自己短に送信されたことを検知し、制御プログラム部803の内容を読み取り、50 BPROM305に格納する。

_ 2 _

(9)

特開平9-6194

15

【0081】上紀パケット800のように、送信先を指定して送信することにより、制御プログラム伝送装置2 10が複数存在する場合にも、複数の制御プログラム伝送装置210から複数のユニット制御板へ確実に制御プログラムを送信することができる。

【0082】 ④本実施例の効果

前述したように本実施例によれば、各ユニット制御板201a-209aによって異なる制御プログラムを制御プログラム伝送監査210の制御プログラム格納用ROM401に格納しておき、制御プログラム伝送装置21 100から各ユニット制御板201a-209aのEEPROM305へ送信して記憶させる構成であるので、制御プログラムの変更を行う場合でも、各ユニット制御でログラム伝送装置210からラム伝送装置210から各ユニット制御板201a-209aへ送信するだけで、容易に制御の変更を行うことができる。したがって、各ユニット制御板201a-209aのROM304を交換する必要がないので、レイアウトの自由度が向20上する。

【0083】また、通常の制御動作時に使用している通信線で11を介して、制御プログラム伝送装置で10から各ユニット制御板201a~209aへ制御プログラムを送信することができるので、あらたに専用の伝送媒体を付加する必要がない。

【0084】また、通信制御用プログラム等の各ユニット制御板201a~209aで共通に使用するプログラム(共通制御プログラム)をROM304に記憶させておき、削御プログラム伝送基位210からは各ユニット制御板201a~209aによって異なる制御プログラムを送信するので、制御プログラム伝送装置210上の制御プログラム格納用ROM401の容量を小さくすることができると共に、制御プログラムのデータ量が小さくなるので、送信時間を短くすることができる。さらに、ROM304内の共通制御プログラムは、各ユニット制御板201a~209aで共通であるので、ユニット制御板201a~209aの共通化や、制御部品の共通化等の妨げにならない。

【0085】また、海信線211の通信プロトコルをあ 40 5かじめ共通制御プログラムとして各ユニット制御框2 01a-209 aのROM304へ格納してあるので、 機械の動作開始直後に各ユニット制御板201a-20 9 a 間および制御プログラム伝送装置210との間で通信を行うことができる。

【0086】また、あらかじめダウンロードプログラム を共通制御プログラムとして各ユニット制御板201a ~209aのROM304へ格納してあるので、各ユニット制御板201a~209aがダウンロードプログラムにしたがって、送信されてきた制御プログラムをEE 50

PROM305へ格納することができ、ダウンロードを容易に行うことができる。また、制御プログラム伝送装

16

匿210は制御プログラムを送信するだけで良く、制御 プログラム伝送装置210の負担を軽減することができ

る。

【0087】また、各ユニット制御板201a-209 aに接続されている制御部品群を誤動作させないための入出力設定プログラムを共通制御プログラムとしてあらかじめ各ユニット制御板201a-209aのROM304に格納してあるので、各ユニット制御板201a-209aは、制御プログラムが送信される前の状態においても、入出力設定プログラムに基づいて制御部品群の動作を制御可能である。したがって、制御部品群の誤動作を防止することができる。

【0088】また、各ユニット制御板201a-209 aのネットワークアドレスをハードウェアであるアドレスと記定端子309を用いて設定するので、ソフトウェアで設定する必要がなくなる。したがって、ネットワークアドレスの違いによる制御プログラムの選いを通ることができる起程201a-209a上の制御が品の統一化が容易となる。【0089】また、制御プログラム伝送設置210から温信線211(ネットワーク)を介して制御プログラムを送信する場合にも、あらかじめ各ユニット制御板201a-209a個でアドレスが設定されるので、制御プログラムの送信大等の特定が簡単に行え、制御プログラムの送信が容易となる。

30 【0090】また、図5(g)に示したように、各ユニット制御板201a-209aを搭載する基板の配線パターンを直接HIGHまたはLOWに設定することによりネットワークアドレスの設定を行えるので、ネットワークアドレスの設定にかかるコストを模力小さくすることができる。

【0091】また、図5 (b)に示したように、ジャンパー線を介してHIGHまたはLOWに設定することにより、ネットワークアドレスの設定を行えるので、同一 基板を使用して異なるネットワークアドレスを有した基板を作成することができる。したがって、基板の共通化を図ることができる。

【0092】また、図5(c)に示したように、スイッチ(SW)を介してHIGHまたはLOWに確定することにより、ネットワークアドレスの確定を行えるので、同一整板を使用して異なるネットワークアドレスを有した差板を作成することができる。したがって、基板の共通化を図ることができる。

【0093】また、図8に示したように、一度に複数のユニット制御板に制御プログラムを送信することができるので、制御プログラム伝送装置210からの制御プロ

(10)

ことができる。

特陥平9-6194

17

グラムの送信時間を短縮することができる。また、これによって機械の立ち上げ時間を短くすることができる。【0094】また、各ユニット制御板201ョー209aは、制御プログラム伝送装置210から送信終了信号を受信後、接続の制御動作を開始するので、全てユニット制御板201ョー209ョが同時に制御動作を開始することになる。したがって、通信信号の未受信・未処理等の問題がなくなる。

【0095】⑤他の実施例(変形例)

他の実施例として、図2に示したように制御プログラム 伝送装備210を独立して設ける代わりに、ユニット制 卸板2012~2092の中の一つに制御プログラム伝 送装置210の機能を持たせても良い。例えば、操作ユニット201のユニット制御板2012に、制御プログラム伝送装置を配置する。

【0096】具体的には、図9に示すように、操作ユニット201のユニット制御板2012の中に、制御プログラム格納用ROM901(図4の利御プログラム格納用ROM401と同一)を組み込み、ユニット制御板2012上の通信制御用CPU301と通信用ポート303を使用して制御プログラムを送信する。

【0097】また、他の実施例として、図10に示すように、制御プログラム伝送裝置210を、通信線211に対してコネクタ1001を介して着脱可能に接続する構成としても良い。この構成においては、ユニット制御板201a~209aは、制御プログラム伝送装置210がコネクタ1001に接続されていない場合を考慮して、図7のフローチャートにおいて、ステップ5703の入出力ポート設定後、通信線211を介して制御るラム伝送整世210の存在を確認する必要がある。また、このときのユニット制御板201a~209a上に配置される。電気的に告き換え可能な第1の記憶手段としては、電流切断時にもその内容が消去されない不揮発性の配便設置(例えば、EEPROM、不揮発性RAM等)を使用する必要がある。

[0098]

 あるROMを交換することに代えて、制御プログラム伝送手段からの制御プログラムの送信によって制御の変更が行える。したがって、ユニット制御手段上の部品を容易に交換できない場所でも、ユニット制御手段を配置することが可能となり、レイアウトの自由度を向上させる

18

【0099】また,本発明の画像形成装置(請求項2)は,記憶された制御プログラムの書き換えが可能な第1の記憶手段を用いるため。制御の変更が容易になる。

【0100】また、本発明の画像形成装置(館求項3)は、制御プログラム伝送手段が、ユニット制御手段間を接続する通信媒体に接続可能であり、該通信媒体を介して各ユニット制御手段の第1の記憶手段に制御プログラムを伝送するため、新たに専用の伝送媒体を付加することなく、制御プログラム伝送手段を追加するだけで制御プログラムの送信が行える。

【0101】 生た、本発明の画像形成装置(請求項4)は、複数のユニット制御手段で共通に使用することのできる制御プログラムを共通制御プログラムとし、この共通制御プログラムをあらかじめ各ユニット制御手段上に配置された第2の配態手段に挌納しておくため、制御プログラム伝送手段からは各ユニット制御手段によって異なる制御プログラムのみを送信するので、制御プログラム伝送手段上のROMの容量を小さくすることができると共に、制御プログラムのデータ量が小さくなるので、送信時間を短くすることができる。また、複様の立ち上げを早くすることができる。

【0102】 さらに、ユニット制御手段の第2の記憶手段に格納される共通制御プログラムは、各ユニット制御手段で共通であるので、ユニット制御手段のの共通化や、制御部品の共通化等を図ることができる。

【0103】また、本発明の画像形成裝置(請求項5)は、共通制御プログラムが、ユニット制御手段同におけるデータ通信およびユニット制御手段と制御プログラム 伝送手段との間におけるデータ通信を行うための通信プロトコルを設定する通信プログラムを含み、各ユニット制御手段が、通信プログラムに基づいて他のユニット制御手段および制御プログラム伝送手段とデータ通信を行うため、機械の動作開始直後に各ユニット制御手段問および制御プログラム伝送手段との間で通信を行うことができる。

【0104】また、本発明の固復形成装置(請求項6)は、共通制御プログラムが、制御プログラム伝送手段から送信された制御プログラムを検知して第1の記憶手段に格納するためのダウンロードプログラムを含み、各ユニット制御手段が、ダウンロードプログラムに基づいて制御プログラム伝送手段から送信されてきた制御プログラムを第1の記憶手段に格納するため、ダウンロードを容易に行うことができる。また、制御プログラム伝送手

(11)

10

30

化が容易となる。

特照平9-6194

19

ラム伝送手段の負担を軽減することができる。

【0105】また、本発明の画像形成装置(請求項7)は、共通制御プログラムが、各ユニット制御手段に接続されている制御部品群を誤動作させないための入出力設定プログラムを含み、各ユニット制御手段が、制御プログラム伝送手段から送信された制御プログラムにしたがって動作を開始する前に、入出力設定プログラムに基づいて、制御部品群の動作を制御するため、各ユニット制御手段は、制御プログラムが送信される前の状態においても、入出力設定プログラムに基づいて制御部品群の動作を制御可能である。したがって、制御部品群の誤動作を防止することができる。

【0106】また、本発明の画像形成装置(請求項8)は、制御プログラム伝送手段が、制御プログラムの送信先を被数段定可能な送信先段定手段を有し、各ユニット制御手段が、自ユニット制御手段が送信先設定手段で送信先として設定された場合に、送信されてきた制御プログラムを受信するため、一度に複数のユニット制御手段に制御プログラムを送信することができ、制御プログラム伝送手段からの制御プログラムの送信時間を短編することができる。また、これによって機械の立ち上げ時間を短くすることができる。

【0107】また、本発明の画像形成装置(蹟求項9)において、制御プログラム伝送手段は、全ての制御プログラムの送信が終了すると、制御プログラム送信終了信号を送信し、各ユニット制御手段は、制御プログラム送信終了信号を受信すると動作を開始するため、全てユニット制御手段が同時に制御動作を開始することになる。したがって、通信信号の未受信・未処理等の問題がなくなる。

【0108】また、本発明の画像形成装置(請求項10)は、制御プログラム伝送手段が、複数のユニット制御手段の何れか一つに設置されているため、構成の簡略化およびコストの低波を図ることができる。

【0109】また、本発明の画像形成整備(請求項1 1)は、制御プログラム伝送手段が、画像形成装置本体 と別体の装置として標成され、制御プログラム伝送手段 と画像形成装置とを接続する接続手段を設け、制御プロ グラム伝送手段を接続手段から若脱可能としたため、必 要に応じて制御プログラム伝送手段を終着して使用する ことにより、常備の装置として制御プログラム伝送手段 を有する必要がなくなり、制御プログラム伝送手段分の コストダウンを図ることができる。

【0110】また、本発明の画像形成強慢(請求項12)は、機内の装置および各部材を機能別に分類し、それぞれを一つの制御単位として構成した複数のユニットと、制御単位である各ユニット内に設けられ、それぞれ対応するユニットの制御を受け持つ複数のユニット制御手段と、あらかじめ記憶してある制御プログラムを各ユニット制御手段へ伝送する制御プログラム伝送手段と、

20 各ユニット制御手段間を接続する通信媒体とを備え、複 数のユニット制御手段は、それぞれ対応するユニットの 制御を受け持つCPUと、控数のユニット制御手段間の 信号を多重通信化するための多重通信手段と、多重通信 手段および通信媒体によって形成された多重通信領上の 各ユニット制御手段のネットワークアドレスを設定する ためのアドレス設定端子とを有し、各ユニット制御手段 のネットワークアドレスがアドレス欧定端子によって設 定されるため、すなわち、各ユニット制御手段のネット ワークアドレスをハードウェアであるアドレス設定端子 を用いて設定するため、ソフトウェアで設定する必要が なくなる。したがって、ネットワークアドレスの途いに よる制御プログラムの違いを回避して、御御プログラム の共通化を進めることができると共に、制御プログラム の共運化によってユニット制御手段上の制御部品の誌ー

【0111】また、本発明の画像形成装置(請求項13)は、アドレス設定端子のネットワークアドレスの設定は、各ユニット制御手段を搭載する基板の配線パターンを直接HIGHまたはLOWに設定することにより行うため、ネットワークアドレスの設定にかかるコストを極力小さくすることができる。

【0112】また、本発明の画像形成接置(確求項14)は、各ユニット制御手段のアドレス設定端子を、ジャンパー線を介してHIGHまたはLOWに設定することができるように各ユニット制御手段を搭載する基板の配線パターンを設定し、アドレス設定端子のネットワークアドレスの変更を可能としたため、同一基板を使用して異なるネットワークアドレスを有した基板を作成することができる。したがって、基板の共通化を図ることができる。

【0113】さらに、本発明の画像形成整置(請求項15)は、各ユニット制御手段のアドレス設定端子を、スイッチを介してHIGHまたはLOWに設定することができるように各ユニット制御手段を搭載する差板の配線パターンを設定し、アドレス設定端子のネットワークアドレスの変更を可能としたため、同一基板を使用して異なるネットワークアドレスを有した差板を作成することができる。したがって、基板の共通化を図ることができる。

【図面の簡単な説明】

【図1】本実施例の国像形成改量である被写機の構成図である。

【図2】本実施例の要都である複写機の制御系の構成を 示すプロック図である。

【図3】本実施例のユニット制御板の副御ブロック図である。

【図4】本実施例の制御プログラム伝送徳世の主要部分の制御プロック図である。

50 【図5】ユニット制御板上のアドレス設定端子のアドレ

-11-

(12)

特開平9-6194

21

ス段定方法を示す説明図である。

【図6】制御プログラム伝送装置の送<mark>信動作を示すフロ</mark>ーチャートである。

【図7】ユニット制御板の受信動作を示すフローチャートである。

【図8】 剣仰プログラム伝送破値から送信される制御プログラムのパケットの構成図である。

【図9】他の実施例の構成を示す説明図である。

【図10】他の実施例の構成を示す説明図である。

【符号の説明】

201-209 ユニット

201a~209a ユニット制御框

210 制御プログラム伝送装置

211 通信線

301 通信制御用CPU

[21]

302 動作制御用CPU 303 通信用ポート 304 ROM (第2の記憶手段) 305 EEPROM (第1の記憶手段)

22

305 EEPROM (第1の記憶を · 306 RAM

306 RAM 307 入出力ポート

308 パス

309 アドレス設定端子

401 制御プログラム設定用ROM

10 402 通信制御用CPU

403 通信用ポート

801 ヘッダ部

802 送信先指定部

901 制御プログラム設定用ROM

1001 コネクタ

· (図3]

[图4]

(13)

特別平9-6194

[図2]

(14)

特朗平9-6194

(15)

特開平9-6194

[図6]

【図8】

(16)

特開平9-6194

(17)

特開平9-6194

