NEURAL NETWORKS

The Neuron

The Neuron

Image courtesy:

http://learn.genetics.utah.edu/content/addiction/neurons/

"Real" Neuron

Artificial Neurons

Artificial Neurons

Artificial Neurons

Fully-Connected Neural Network

BACKPROPAGATION:

Initialize all weights in the network to small, random pumbers.

loop

for each training example (\mathbf{x}, y) do

FORWARDPROP:

For each hidden unit h, $g_h = \sigma(net_h) = \sigma(\sum_i w_{ih}x_i)$

$$\hat{y} = a_k = \sigma(net_k) = \sigma(\sum_h w_h a_h)$$

BACKPROP:

$$\delta_k = \frac{\partial J}{\partial n \ell_k} = (y - \hat{y})\hat{y}(1 - \hat{y})$$

For each weight w_h , $w_h \leftarrow w_h - \eta \delta_k a_h$

For each hidden unit h, $\delta_h = \delta_k w_h a_h (1 - a_h)$

For each weight w_{ih} , $w_{ih} \leftarrow w_{ih} - \eta \delta_h x_i$

end for

end loop

Modern Neural Networks

Automatic Differentiation

- Use the abstraction of a computational graph
- Define your computation and let engine worry about optimization

Forward Pass

Apply the operator

$$\frac{\partial p}{\partial w_1} = x_1$$

Backward Pass

 Adjust parameter using local gradient 3 (scaled by a learning rate)

$$\frac{\partial p}{\partial w_1} = x_1$$

←----

Backward Pass

 Adjust parameter using local gradient 3 (scaled by a learning rate)

$$\frac{\partial r}{\partial p} = 1$$

$$\frac{\partial p}{\partial w_1} = x_1$$

$$\frac{\partial r}{\partial w_1} = \frac{\partial r}{\partial p} \frac{\partial p}{\partial w_1}$$

Preparing Your Data

- Shuffle your data
- Mean center your data
 - Why?
- Normalize the variance
 - Why?
- "Whitening"
 - Decorrelates data
 - Can be hit or miss
- When to do train/test split?

Choosing an Activation Function

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$f(x) = \max(0, x)$$

Initializing Your Network

- Set all weights to 0?
 - Terrible idea
- Set all weights to random values?
 - Small random values
- State-of-the-art: Xavier or Glorot initialization
 - Takes into account fan-in/fan-out of a neuron when initializing its weights

Optimization Methods

Stochastic gradient descent

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla L(\mathbf{w})$$

Stochastic gradient descent + momentum

$$\mathbf{z} \leftarrow \beta \mathbf{z} + \nabla L(\mathbf{w})$$

 $\mathbf{w} \leftarrow \mathbf{w} - \alpha z$

- State-of-the-art approaches:
 - RMSProp
 - Adam

Regularization

Classical Approaches

- Weight decay
 - L2 term
- Early stopping

Modern Approaches

Dropout

Batch normalization