Boosting

Victor Kitov

v.v.kitov@yandex.ru

Linear ensembles

Linear ensemble:

$$F_M(x) = f_0(x) + c_1 f_1(x) + ... + c_M f_M(x)$$

Regression: $\hat{y}(x) = F_M(x)$

Binary classification: $score(y|x) = F_M(x)$, $\hat{y}(x) = sign F_M(x)$

- Notation: $f_1(x), ... f_M(x)$ are called base learners, weak learners, base models.
- Too expensive to optimize $f_0(x), f_1(x), ... f_M(x)$ and $c_1, ... c_M$ jointly for large M.
- Idea: optimize $f_0(x)$ and then each pair $(f_m(x), c_m)$ greedily.

Forward stagewise additive modeling (FSAM)

Input:

- training dataset (x_n, y_n) , n = 1, 2, ...N
- loss function $\mathcal{L}(f,y)$
- parametric form of base learner $f(x|\gamma)$ (parametrized by γ)
- the number of base learners M.

Output: approximation function $F_M(x) = f_0(x) + \sum_{m=1}^{M} c_m f_m(x)$

Forward stagewise additive modeling (FSAM)

- Fit initial approximation $f_0(x) = \arg\min_f \sum_{n=1}^N \mathcal{L}(f(x_n), y_n)$
- ② For m = 1, 2, ...M:
 - find next best classifier

$$(c_m, f_m) = \arg\min_{f,c} \sum_{n=1}^{N} \mathcal{L}(F_{m-1}(x_n) + cf(x_n), y_n)$$

reevaluate ensemble

$$F_m(x) = F_{m-1}(x) + c_m f_m(x)$$

Comments

- M should be determined by performance on validation set.
 - may overfit!
- Each step should be coarse to leave room for future base learners improvement:
 - initial approximation may be zero or constant
 - optimization can be coarse (just few steps)
 - base learner should be simple
 - such as trees of depth=1,2,3.
- For some loss functions (see Adaboost) we can solve minimization explicitly.
- For general loss functions gradient boosting should be used.

Table of Contents

- Adaboost
- @ Gradient boosting
- 3 Extensions

Adaboost (discrete version)

Assumptions:

- binary classification task $y \in \{+1, -1\}$
- $f_m(x) \in \{+1, -1\}$
- classification is performed with

$$\hat{y} = sign\{f_0(x) + c_1 f_1(x) + ... + c_M f_M(x)\}$$

• optimized loss is $\mathcal{L}(F(x), y) = e^{-yF(x)}$

Optimization in FSAM can be solved explicitly!

Adaboost (discrete version): algorithm

Input:

- training dataset $(x_n, y_n), n = 1, 2, ...N$
- number of additive weak classifiers M
- a family of weak classifiers $h(x) \in \{+1, -1\}$
 - should be trainable on weighted datasets.

Output: composite classifier
$$F_M(x) = \text{sign}\left(\sum_{m=1}^M c_m f_m(x)\right)$$

Adaboost (discrete version): algorithm

- Initialize observation weights $w_i = 1/N$, i = 1, 2, ...N.
- ② for m = 1, 2, ...M:
 - fit $f_m(x)$ to training data using weights w_i
 - 2 compute weighted misclassification rate:

$$E_{m} = \frac{\sum_{i=1}^{N} w_{i} \mathbb{I}[f_{m}(x) \neq y_{i}]}{\sum_{i=1}^{N} w_{i}}$$

- **o** compute weighting factor $c_m = \frac{1}{2} \ln ((1 E_m)/E_m)$
- of if $E_M > 0.5$ or $E_M = 0$: terminate procedure.
- ullet increase all weights, where misclassification with $f_m(x)$ was made:

$$w_i \leftarrow w_i \frac{1 - E_m}{E_m}, i \in \{i : f_m(x_i) \neq y_i\}$$

3 Return classifier $F_M(x) = \operatorname{sign}\left(\sum_{m=1}^M c_m f_m(x)\right)$

Table of Contents

- Adaboost
- ② Gradient boosting
- 3 Extensions

Motivation

- Problem: For general loss function L FSAM cannot be solved explicitly
- Analogy with function minimization: when we can't find optimum explicitly we use numerical methods
- Gradient boosting: numerical method for iterative loss minimization

Gradient descent algorithm

$$L(w) \to \min_{w}, \quad g(w) = \nabla_{w} L(w), \quad w \in \mathbb{R}^{N}$$

Gradient descend algorithm:

• given w move in the direction of steepest descent, given by $\Delta w := -g(w), \ g(w) = \nabla_w L(w)$

Gradient descent algorithm

$$L(w) \to \min_{w}, \quad g(w) = \nabla_{w} L(w), \quad w \in \mathbb{R}^{N}$$

INPUT:

step size ε number of iterations ${\it M}$

<u>ALGORITHM</u>:

initialize wfor m=1,2,...M: $\Delta w=-g(w)$ $w=w+\varepsilon\Delta w$

Modified gradient descent algorithm

$$L(w) \to \min_{w}, \quad g(w) = \nabla_{w} L(w), \quad w \in \mathbb{R}^{N}$$

INPUT:

number of iterations M

ALGORITHM:

initialize wfor m=1,2,...M: $\Delta w=-g(w)$ $c^*=\arg\min_{c>0}L(w+c\Delta w)$ $w=w+c^*\Delta w$

- Now consider $L(f(x_1),...f(x_N)) = \sum_{n=1}^N \mathcal{L}(f(x_n),y_n) \rightarrow \min_{f(\cdot)}$
- Gradient descent performs pointwise optimization, but we need generalization, so we optimize in space of functions.
- Gradient boosting = modified gradient descent in function space:
 - find $z_n = -g(x_n)$, where $g(x_n) = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=f^{m-1}(x_n)}$
 - fit base learner $f_m(x)$ to $\{(x_n, z_n)\}_{n=1}^N$

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

• Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - **1** calculate targets $z_n := -g_n$ $\left(g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}\right)$

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - **1** calculate targets $z_n := -g_n$ $\left(g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}\right)$
 - 2 fit $f_m(\cdot)$ to $\{(x_n, z_n)\}_{n=1}^N$, for example by solving

$$\sum_{n=1}^{N} (f_m(x_n) - z_n)^2 \to \min_{f_m}$$

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ... M:

 - 2 fit $f_m(\cdot)$ to $\{(x_n, z_n)\}_{n=1}^N$, for example by solving

$$\sum_{n=1}^{N} (f_m(x_n) - z_n)^2 \to \min_{f_m}$$

3 solve univariate optimization problem:

$$\sum_{n=1}^{N} \mathcal{L}\left(F_{m-1}(x_n) + c_m f_m(x_n), y_n\right) \to \min_{c_m > 0}$$

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ... M:
 - **1** calculate targets $z_n := -g_n$ $\left(g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}\right)$
 - ② fit $f_m(\cdot)$ to $\{(x_n, z_n)\}_{n=1}^N$, for example by solving

$$\sum_{n=1}^{N} (f_m(x_n) - z_n)^2 \to \min_{f_m}$$

3 solve univariate optimization problem:

$$\sum_{n=1}^{N} \mathcal{L}\left(F_{m-1}(x_n) + c_m f_m(x_n), y_n\right) \to \min_{c_m > 0}$$

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation $f_0(x)$ (might be taken $f_0(x) \equiv 0$)
- ② For each step m = 1, 2, ...M:
 - **1** calculate targets $z_n := -g_n$ $\left(g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}\right)$
 - ② fit $f_m(\cdot)$ to $\{(x_n, z_n)\}_{n=1}^N$, for example by solving

$$\sum_{n=1}^{N} (f_m(x_n) - z_n)^2 \to \min_{f_m}$$

3 solve univariate optimization problem:

$$\sum_{n=0}^{N} \mathcal{L}\left(F_{m-1}(x_n) + c_m f_m(x_n), y_n\right) \to \min_{c_m > 0}$$

$$set F_m(x) = F_{m-1}(x) + c_m f_m(x)$$

Output: approximation function $f_0(x) = f_0(x) + \sum_{m=1}^{M} c_m f_m(x)$

Gradient boosting: examples

In gradient boosting

$$\sum_{n=1}^{N} \left(f_m(x_n) - \left(-\frac{\partial \mathcal{L}(r,y)}{\partial r} |_{r=F_{m-1}(x_n)} \right) \right)^2 \to \min_{f_m}$$

Sample cases:

•
$$\mathcal{L} = \frac{1}{2} (r - y)^2$$

•
$$\mathcal{L} = [-ry]_+$$

Table of Contents

- Adaboost
- 2 Gradient boosting
- 3 Extensions

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

• Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$

- Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- ② For each step m = 1, 2, ... M:

- Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- 2 For each step m = 1, 2, ...M:
 - For each step m=1,2,...m
 - **1** calculate targets $z_n := -g_n$ $\left(g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}\right)$

- Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- ② For each step m = 1, 2, ...M:
 - **1** calculate targets $z_n := -g_n$ $\left(g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}\right)$
 - ② fit regression tree $f_m(\cdot)$ on $\{(x_n, z_n)\}_{n=1}^N$ with some loss function, get leaf regions $\{R_j^m\}_{j=1}^{J_m}$.

- Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, v_n)$
- ② For each step m = 1, 2, ...M:
 - **1** calculate targets $z_n := -g_n$ $\left(g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}\right)$
 - ② fit regression tree $f_m(\cdot)$ on $\{(x_n, x_n)\}_{n=1}^N$ with some loss function, get leaf regions $\{R_i^m\}_{i=1}^{J_m}$.
 - for each terminal region R_j^{m} , $j = 1, 2, ...J_m$ solve univariate optimization problem:

$$\gamma_j^m = \arg\min_{\gamma} \sum_{x_i \in R_i^m} \mathcal{L}(F_{m-1}(x_i) + \gamma, y_i)$$

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, v_n)$
- ② For each step m = 1, 2, ...M:
 - **1** calculate targets $z_n := -g_n$ $\left(g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}\right)$
 - ② fit regression tree $f_m(\cdot)$ on $\{(x_n, x_n)\}_{n=1}^N$ with some loss function, get leaf regions $\{R_i^m\}_{i=1}^{J_m}$.
 - for each terminal region R_j^{m} , $j=1,2,...J_m$ solve univariate optimization problem:

$$\gamma_j^m = \arg\min_{\gamma} \sum_{x_i \in R_i^m} \mathcal{L}(F_{m-1}(x_i) + \gamma, y_i)$$

• update $F_m(x) = F_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_j^m \mathbb{I}[x \in R_j^m]$

Input: training dataset (x_n, y_n) , n = 1, 2, ...N; loss function $\mathcal{L}(f, y)$ and the number M of successive additive approximations.

- Fit initial approximation with constant: $f_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, v_n)$
- $I_0(x) = \arg \min_{\gamma} \sum_{n=1} \mathcal{L}(\gamma, \gamma)$
- ② For each step m = 1, 2, ... M:
 - calculate targets $z_n := -g_n$ $\left(g_n = \frac{\partial \mathcal{L}(r, y_n)}{\partial r}|_{r=F_{m-1}(x_n)}\right)$
 - ② fit regression tree $f_m(\cdot)$ on $\{(x_n, x_n)\}_{n=1}^N$ with some loss function, get leaf regions $\{R_i^m\}_{i=1}^{J_m}$.
 - for each terminal region R_j^{m} , $j=1,2,...J_m$ solve univariate optimization problem:

$$\gamma_j^m = \arg\min_{\gamma} \sum_{x_i \in R_i^m} \mathcal{L}(F_{m-1}(x_i) + \gamma, y_i)$$

o update
$$F_m(x) = F_{m-1}(x) + \sum_{i=1}^{J_m} \gamma_i^m \mathbb{I}[x \in R_i^m]$$

Output: approximation function $F_M(x)$

Modification of boosting for trees

- Compared to first method of gradient boosting, boosting of regression trees finds additive coefficients individually for each terminal region R_i^m , not globally for the whole classifier $f_m(x)$.
- This is done to increase accuracy: forward stagewise algorithm cannot be applied to find R_j^m , but it can be applied to find γ_i^m , because second task is solvable for arbitrary L.
- Max leaves J
 - interaction between no more than J-1 terms
 - usually $4 \le J \le 8$
- M controls underfitting-overfitting tradeoff and selected using validation set

Shrinkage & subsampling

• Shrinkage of general GB, step (d):

$$F_m(x) = F_{m-1}(x) + \alpha c_m f_m(x)$$

- Comments:
 - $\alpha \in (0,1]$
 - $\alpha \downarrow \implies M \uparrow (\alpha M \approx const)$
- Subsampling
 - increases speed of fitting
 - may increase accuracy

Linear loss function approximation

Consider sample
$$(x, y)$$
 and $g(x) = \frac{\partial \mathcal{L}(r, y)}{\partial r}\Big|_{r=F(x)}$

$$\mathcal{L}(F(x) + f(x), y) \approx \mathcal{L}(F(x), y) + g(x)f(x)$$

=> f(x) should be fitted to -g(x).

Quadratic loss function approximation

Define
$$g(x) = \frac{\partial \mathcal{L}(r,y)}{\partial r} \Big|_{r=F(x)}$$
, $h(x) = \frac{\partial^2 \mathcal{L}(r,y)}{\partial r^2} \Big|_{r=F(x)}$
 $\mathcal{L}(F(x) + f(x), y) \approx$
 $\mathcal{L}(F(x), y) + g(x)f(x) + \frac{1}{2}h(x)(f(x))^2 =$
 $= \frac{1}{2}h(x)\left(f(x) + \frac{g(x)}{h(x)}\right)^2 + const(f(x))$

So f(x) should be fitted to -g(x)/h(x) with weight h(x).

• $h(x) \ge 0$ around local minimum.

Case
$$y \in \{1, 2, ...C\}$$

One-vs-all, one-vs-one, error-correcting-codes.

Case
$$y \in \{1, 2, ... C\}$$

One-vs-all, one-vs-one, error-correcting-codes.

Alternatively can optimize $\mathcal{L}(F(x), y)$ for $F(x) \in \mathbb{R}^C$

- $F(x) = \{p(y = c|x)\}_{c=1}^{C}$, y one-hot encoded true class
- $\mathcal{L}(F(x), y) = F(x)^T y = p(y = \text{correct class}|x)$
- $z_n = -\frac{\partial \mathcal{L}(r,y)}{\partial r}|_{r=F_{m-1}(x_n)} \in \mathbb{R}^C$
- $\sum_{n=1}^{N} (f_m(x_n) z_n)^2 \to \min_{f_m}$ yields vector *C*-dim. regression.
- may use quadratic approximation
 - for efficient inverting of $\left(\left.\frac{\partial^2}{\partial r^2}\mathcal{L}(r,y)\right|_{r=F(x)}\right)$ may use diagonal approximation.

xgBoost

- One of the most popular algorithms on kaggle.
- Uses decision trees as base learners:
 - $f_m \in \{f(x) = w_{q(x)}\},\$
 - T total number of leaves.
 - q(x) maps $x \in \mathbb{R}^D$ to leaf number
 - $w \in \mathbb{R}^T$ predictions for leaves.

xgBoost

Loss - 2nd order approximation with with regularization:

$$\mathcal{L}(f_m) = \sum_{n=1}^{N} \mathcal{L}(F^{(m-1)}(x_n), y_n)$$

$$\approx \sum_{n=1}^{N} \left[\mathcal{L}(F^{(m-1)}(x_n), y_n) + g_n f_m(x_n) + \frac{1}{2} h_n f_m^2(x_n) \right]$$

$$+ \gamma T + \frac{1}{2} \lambda \sum_{t=1}^{T} w_t^2$$

- Tree impurity function matches original loss $\mathcal{L}(\cdot,\cdot)$.
- Efficiency optimization:
 - feature values may be discretized for speed
 - parallelization over multiple CPU cores and with GPU

- Loss function \mathcal{L} :
 - $\mathcal{L}(|f(x)-y|)$ regression
 - $F(y \cdot score(y = +1|x))$ binary classification
 - $\mathcal{L}(F(x), y)$ for $F(x), y \in \mathbb{R}^C$ multiclass classification
- Optimization
 - analytical (Adaboost)
 - gradient based
 - based on quadratic approximation
- Base learners
 - continious
 - discrete
- Classification
 - binary
 - multiclass
- Extensions: shrinkage, subsampling