Training neural nets through Empirical Risk Minimization: Problem Setup

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- The divergence on the ith instance is $div(Y_i, d_i)$ - $Y_i = f(X_i; W)$
- The loss (empirical risk)

$$Loss(W) = \frac{1}{T} \sum_{i} div(Y_i, d_i)$$

• Minimize Loss w.r.t $\left\{w_{ij}^{(k)}, b_j^{(k)}\right\}$ using gradient descent

Notation

- The input layer is the 0th layer
- We will represent the output of the i-th perceptron of the k^{th} layer as $y_i^{(k)}$
 - Input to network: $y_i^{(0)} = x_i$
 - Output of network: $y_i = y_i^{(N)}$
- We will represent the weight of the connection between the i-th unit of the k-1th layer and the jth unit of the k-th layer as $w_{ij}^{(k)}$
 - The bias to the jth unit of the k-th layer is $b_j^{(k)}$

Recap: Gradient Descent Algorithm

- Initialize: To minimize any function Loss(W) w.r.t W
 - $-W^{0}$
 - -k=0
- do
 - $-W^{k+1} = W^k \eta^k \nabla Loss(W^k)^T$
 - -k = k + 1
- while $|Loss(W^k) Loss(W^{k-1})| > \varepsilon$

Recap: Gradient Descent Algorithm

- In order to minimize L(W) w.r.t. W
- Initialize:
 - $-W^{0}$
 - -k = 0
- do
 - For every component i

•
$$W_i^{k+1} = W_i^k - \eta^k \frac{\partial L}{\partial W_i}$$
 Explicitly stating it by component

$$-k = k + 1$$

• while $|L(W^k) - L(W^{k-1})| > \varepsilon$

Training Neural Nets through Gradient Descent

Total training Loss:

$$Loss = \frac{1}{T} \sum_{t} Div(Y_{t}, d_{t})$$

Gradient descent algorithm:

- Assuming the bias is also represented as a weight
- Initialize all weights and biases $\left\{w_{ij}^{(k)}
 ight\}$
 - Using the extended notation: the bias is also a weight
- Do:
 - For every layer k for all i, j, update:

•
$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \eta \frac{dLoss}{dw_{i,j}^{(k)}}$$

Until Loss has converged

The derivative

Total training Loss:

$$Loss = \frac{1}{T} \sum_{t} Div(Y_t, d_t)$$

Total derivative:
$$\frac{dLoss}{dw_{i,j}^{(k)}} = \frac{1}{T} \sum_{t} \frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$$

 So we must first figure out how to compute the derivative of divergences of individual training inputs

Calculus Refresher: Chain rule summary

For any nested function l = f(y) where y = g(z)

$$\frac{dl}{dz} = \frac{dl}{dy} \frac{dy}{dz}$$

For
$$l = f(z_1, z_2, ..., z_M)$$

where $z_i = g_i(x)$

$$\frac{dl}{dx} = \frac{\partial l}{\partial z_1} \frac{dz_1}{dx} + \frac{\partial l}{\partial z_2} \frac{dz_2}{dx} + \dots + \frac{\partial l}{\partial z_M} \frac{dz_M}{dx}$$

$y^{(0)} = x$

The "forward pass"

We will refer to the process of computing the output from an input as the forward pass

We will illustrate the forward pass in the following slides

The "forward pass"

Setting $y_i^{(0)} = x_i$ for notational convenience

Assuming $w_{0j}^{(k)} = b_j^{(k)}$ and $y_0^{(k)} = 1$ -- assuming the bias is a weight and extending the output of every layer by a constant 1, to account for the biases

$y^{(0)} = x$

The "forward pass"

$$z_1^{(1)} = \sum_i w_{i1}^{(1)} y_i^{(0)}$$

$$y^{(0)} = x$$

The "forward pass"

$$z_j^{(1)} = \sum_i w_{ij}^{(1)} y_i^{(0)}$$

$$z_j^{(1)} = \sum_i w_{ij}^{(1)} y_i^{(0)}$$
 $y_j^{(1)} = f_1 (z_j^{(1)})$

$$z_j^{(1)} = \sum_i w_{ij}^{(1)} y_i^{(0)} \quad y_j^{(1)} = f_1 \left(z_j^{(1)} \right) \quad z_j^{(2)} = \sum_i w_{ij}^{(2)} y_i^{(1)}$$

$$y^{(0)} = x$$

$$z^{(1)} \qquad y^{(1)} \qquad z^{(2)} \qquad y^{(2)} \qquad z^{(3)} \qquad f_3 \qquad y^{(3)} \qquad z^{(N-1)} \qquad f_{N-1} \qquad y^{(N)} \qquad y^{(N)} \qquad f_N \qquad f_$$

$$z_{j}^{(1)} = \sum_{i} w_{ij}^{(1)} y_{i}^{(0)} \quad y_{j}^{(1)} = f_{1} \left(z_{j}^{(1)} \right) \quad z_{j}^{(2)} = \sum_{i} w_{ij}^{(2)} y_{i}^{(1)} \quad y_{j}^{(2)} = f_{2} \left(z_{j}^{(2)} \right)$$

$$z_j^{(3)} = \sum_i w_{ij}^{(3)} y_i^{(2)}$$

$$y^{(0)} = x$$
 $z^{(1)}$
 f_1
 f_2
 f_3
 f_3
 f_{N-1}
 f_{N-1}

$$z_j^{(1)} = \sum_i w_{ij}^{(1)} y_i^{(0)} \quad y_j^{(1)} = f_1 \left(z_j^{(1)} \right) \quad z_j^{(2)} = \sum_i w_{ij}^{(2)} y_i^{(1)} \quad y_j^{(2)} = f_2 \left(z_j^{(2)} \right)$$

$$z_j^{(3)} = \sum_i w_{ij}^{(3)} y_i^{(2)} \qquad y_j^{(3)} = f_3 \left(z_j^{(3)} \right) \qquad \bullet \quad \bullet$$

$$y^{(0)} = x$$

$$y_j^{(N-1)} = f_{N-1} \left(z_j^{(N-1)} \right) \quad z_j^{(N)} = \sum_i w_{ij}^{(N)} y_i^{(N-1)}$$

$$\mathbf{y}^{(N)} = f_N(\mathbf{z}^{(N)})$$

$$y^{(0)} = x$$

Forward Computation

ITERATE FOR k = 1:N

for j = 1:layer-width

$$y_i^{(0)} = x_i$$

$$z_j^{(k)} = \sum_i w_{ij}^{(k)} y_i^{(k-1)}$$

$$y_j^{(k)} = f_k\left(z_j^{(k)}\right) \bigg|$$
 43

Forward "Pass"

- Input: D dimensional vector $\mathbf{x} = [x_i, j = 1 ... D]$
- Set:
 - $-D_0 = D$, is the width of the 0th (input) layer

$$-y_j^{(0)} = x_j, j = 1 \dots D; y_0^{(k=1\dots N)} = x_0 = 1$$

- For layer $k = 1 \dots N$
 - For $j=1\dots D_k$ D_k is the size of the kth layer $z_j^{(k)}=\sum_{i=0}^{D_{k-1}}w_{i,j}^{(k)}y_i^{(k-1)}$

•
$$z_j^{(k)} = \sum_{i=0}^{D_{k-1}} w_{i,j}^{(k)} y_i^{(k-1)}$$

- $y_i^{(k)} = f_k\left(z_i^{(k)}\right)$
- **Output:**

$$-Y = y_j^{(N)}, j = 1...D_N$$

We have computed all these intermediate values in the forward computation

We must remember them - we will need them to compute the derivatives

First, we compute the divergence between the output of the net $y = y^{(N)}$ and the desired output d

We then compute $\nabla_{Y^{(N)}}div(.)$ the derivative of the divergence w.r.t. the final output of the network $y^{(N)}$

We then compute $\nabla_{Y^{(N)}} div(.)$ the derivative of the divergence w.r.t. the final output of the network $y^{(N)}$

We then compute $\nabla_{z^{(N)}} div(.)$ the derivative of the divergence w.r.t. the *pre-activation* affine combination $z^{(N)}$ using the chain rule

48

Continuing on, we will compute $\nabla_{W^{(N)}} div(.)$ the derivative of the divergence with respect to the weights of the connections to the output layer

Continuing on, we will compute $\nabla_{W^{(N)}} div(.)$ the derivative of the divergence with respect to the weights of the connections to the output layer

Then continue with the chain rule to compute $\nabla_{Y^{(N-1)}} div(.)$ the derivative of the divergence w.r.t. the output of the N-1th layer

$$\nabla_{z^{(N-1)}} div(.)$$

$$\nabla_{W^{(N-1)}}div(.)$$

$$\nabla_{Y^{(N-2)}} div(.)$$

$$\nabla_{z^{(N-2)}} div(.)$$

$$\nabla_{Y^{(1)}} div(.)$$

$$\nabla_{z^{(1)}} div(.)$$

$$\nabla_{W^{(1)}}div(.)$$

Backward Gradient Computation

Let's actually see the math..

The derivative w.r.t the actual output of the final layer of the network is simply the derivative w.r.t to the output of the network

$$\frac{\partial Div(Y,d)}{\partial y_i^{(N)}} = \frac{\partial Div(Y,d)}{\partial y_i}$$

Calculus Refresher: Chain rule

For any nested function l = f(y) where y = g(z)

$$\frac{dl}{dz} = \frac{dl}{dy} \frac{dy}{dz}$$

$$\frac{\partial Div}{\partial z_i^{(N)}} = \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} \frac{\partial Div}{\partial y_i^{(N)}}$$

$$\frac{\partial Div}{\partial z_i^{(N)}} = f_N' \left(z_i^{(N)} \right) \frac{\partial Div}{\partial y_i^{(N)}}$$

$$\frac{\partial Div}{\partial w_{ij}^{(N)}} = y_i^{(N-1)} \frac{\partial Div}{\partial z_j^{(N)}}$$

$$\frac{\partial Div}{\partial w_{ij}^{(N)}} = y_i^{(N-1)} \frac{\partial Div}{\partial z_j^{(N)}}$$

For the bias term $y_0^{(N-1)} = 1$

Calculus Refresher: Chain rule

For
$$l = f(z_1, z_2, ..., z_M)$$

where $z_i = g_i(x)$

$$\frac{dl}{dx} = \frac{\partial l}{\partial z_1} \frac{dz_1}{dx} + \frac{\partial l}{\partial z_2} \frac{dz_2}{dx} + \dots + \frac{\partial l}{\partial z_M} \frac{dz_M}{dx}$$

$$\frac{\partial Div}{\partial y_i^{(N-1)}} = \sum_j w_{ij}^{(N)} \frac{\partial Div}{\partial z_j^{(N)}}$$

$$\frac{\partial Div}{\partial y_i^{(N-1)}} = \sum_j w_{ij}^{(N)} \frac{\partial Div}{\partial z_j^{(N)}}$$

$$\frac{\partial Div}{\partial z_i^{(N-1)}} = f'_{N-1} \left(z_i^{(N-1)} \right) \frac{\partial Div}{\partial y_i^{(N-1)}}$$

$$\frac{\partial Div}{\partial w_{ij}^{(N-1)}} = y_i^{(N-2)} \frac{\partial Div}{\partial z_j^{(N-1)}}$$

For the bias term $y_0^{(N-2)} = 1$

$$\frac{\partial Div}{\partial y_i^{(N-2)}} = \sum_j w_{ij}^{(N-1)} \frac{\partial Div}{\partial z_j^{(N-1)}}$$

$$\frac{\partial Div}{\partial z_i^{(N-2)}} = f'_{N-2} \left(z_i^{(N-2)} \right) \frac{\partial Div}{\partial y_i^{(N-2)}}$$

$$\frac{\partial Div}{\partial y_1^{(1)}} = \sum_j w_{ij}^{(2)} \frac{\partial Div}{\partial z_j^{(2)}}$$

$$\frac{\partial Div}{\partial z_i^{(1)}} = f_1' \left(z_i^{(1)} \right) \frac{\partial Div}{\partial y_i^{(1)}}$$

$$\frac{\partial Div}{\partial w_{ij}^{(1)}} = y_i^{(0)} \frac{\partial Div}{\partial z_j^{(1)}}$$

Gradients: Backward Computation

Initialize: Gradient w.r.t network output

$$\frac{\partial Div}{\partial y_i^{(N)}} = \frac{\partial Div(Y, d)}{\partial y_i}$$

$$\frac{\partial Div}{\partial z_i^{(N)}} = f_k' \left(z_i^{(N)} \right) \frac{\partial Div}{\partial y_i^{(N)}}$$

For k = N - 1..0

For i = 1: layer width

$$\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}} \boxed{\frac{\partial Div}{\partial z_i^{(k)}} = f_k' \left(z_i^{(k)} \right) \frac{\partial Div}{\partial y_i^{(k)}}}$$

$$\frac{\partial Div}{\partial z_i^{(k)}} = f_k' \left(z_i^{(k)} \right) \frac{\partial Div}{\partial y_i^{(k)}}$$

$$\forall j \; \frac{\partial Div}{\partial w_{ij}^{(k+1)}} = y_i^{(k)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$

Backward Pass

- Output layer (N):
 - For $i = 1 ... D_N$
 - $\frac{\partial Div}{\partial y_i^{(N)}} = \frac{\partial Div(Y,d)}{\partial y_i}$ [This is the derivative of the divergence]
 - $\frac{\partial Div}{\partial z_i^{(N)}} = \frac{\partial Div}{\partial y_i^{(N)}} f_N' \left(z_i^{(N)} \right)$
 - $\frac{\partial Div}{\partial w_{ij}^{(N)}} = y_i^{(N-1)} \frac{\partial Div}{\partial z_j^{(N)}}$ for $j = 0 \dots D_{N-1}$
- For layer k = N 1 downto 1
 - For $i = 1 ... D_k$
 - $\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$
 - $\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} f_k' \left(z_i^{(k)} \right)$
 - $\frac{\partial Div}{\partial w_{ij}^{(k)}} = y_i^{(k-1)} \frac{\partial Div}{\partial z_j^{(k)}}$ for $j = 0 \dots D_{k-1}$

Backward Pass

- Output layer (N):
 - For $i = 1 ... D_N$
 - $\frac{\partial Div}{\partial y_i^{(N)}} = \frac{\partial Div(Y,d)}{\partial y_i}$
 - $\frac{\partial Div}{\partial z_i^{(N)}} = \frac{\partial Div}{\partial y_i^{(N)}} f_N' \left(z_i^{(N)} \right)$
 - $\frac{\partial Div}{\partial w_{ij}^{(N)}} = y_i^{(N-1)} \frac{\partial Div}{\partial z_i^{(N)}}$ for $j = 0 \dots D_{N-1}$
- $\frac{\partial w_{ij}}{\partial z_{j}}$

For layer $k = N - 1 \ downto \ 1$ Very analogous to the forward pass:

- For $i = 1 ... D_k$
 - $\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$ •
 - $\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} f_k' \left(z_i^{(k)} \right)$
 - $\frac{\partial Div}{\partial w_{ij}^{(k)}} = y_i^{(k-1)} \frac{\partial Div}{\partial z_j^{(k)}}$ for $j = 0 \dots D_{k-1}$

Backward weighted combination of next layer

Backward equivalent of activation

Called "Backpropagation" because

propagated "backwards" through

the derivative of the loss is

the network

Using notation $\dot{y} = \frac{\partial Div(Y,d)}{\partial y}$ etc (overdot represents derivative of Div w.r.t variable)

- Output layer (N):
 - For $i = 1 ... D_N$
 - $\dot{y}_i^{(N)} = \frac{\partial Div}{\partial y_i}$
 - $\dot{z}_i^{(N)} = \dot{y}_i^{(N)} f_N' \left(z_i^{(N)} \right)$
 - $\frac{\partial Div}{\partial w_{ii}^{(N)}} = y_j^{(N-1)} \dot{z}_i^{(N)}$ for $j = 0 \dots D_{N-1}$

Called "Backpropagation" because the derivative of the loss is propagated "backwards" through the network

- For layer k = N 1 downto 1
 - For $i = 1 ... D_{k}$
 - $\dot{y}_i^{(k)} = \sum_j w_{ij}^{(k+1)} \dot{z}_j^{(k+1)}$
 - $\dot{z}_{i}^{(k)} = \dot{y}_{i}^{(k)} f_{k}'(z_{i}^{(k)})$

• $\frac{\partial Div}{\partial w_{ji}^{(k)}} = y_j^{(k-1)} \dot{z}_i^{(k)} \text{for } j = 0 \dots D_{k-1}$

Very analogous to the forward pass:

Backward weighted combination of next layer

Backward equivalent of activation

For comparison: the forward pass again

- Input: D dimensional vector $\mathbf{x} = [x_i, j = 1 ... D]$
- Set:
 - $-D_0=D$, is the width of the 0th (input) layer

$$-y_j^{(0)} = x_j, j = 1 \dots D; y_0^{(k=1\dots N)} = x_0 = 1$$

- For
$$j = 1 ... D_k$$

$$\begin{aligned} \bullet & \text{For layer } k = 1 \dots N \\ & - \text{For } j = 1 \dots D_k \\ & \bullet & z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)} \end{aligned}$$

•
$$y_j^{(k)} = f_k\left(z_j^{(k)}\right)$$

Output:

$$-Y = y_j^{(N)}, j = 1...D_N$$

Special cases

- Have assumed so far that
 - 1. The computation of the output of one neuron does not directly affect computation of other neurons in the same (or previous) layers
 - 2. Inputs to neurons only combine through weighted addition
 - 3. Activations are actually differentiable
 - All of these conditions are frequently not applicable
- Will not discuss all of these in class, but explained in slides
 - Will appear in quiz. Please read the slides

Special Case 1. Vector activations

 Vector activations: all outputs are functions of all inputs

Special Case 1. Vector activations

$$y_i^{(k)} = f\left(z_i^{(k)}\right)$$

Vector activation: Modifying a z_i potentially changes all, $y_1 \dots y_M$

$$\begin{bmatrix} y_1^{(k)} \\ y_2^{(k)} \\ \vdots \\ y_M^{(k)} \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} z_1^{(k)} \\ z_2^{(k)} \\ \vdots \\ z_D^{(k)} \end{bmatrix} \end{pmatrix}_{95}$$

"Influence" diagram

Scalar activation: Each z_i influences one y_i

Vector activation: Each z_i influences all, $y_1 \dots y_M$

Scalar Activation: Derivative rule

$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{dy_i^{(k)}}{dz_i^{(k)}}$$

 In the case of scalar activation functions, the derivative of the loss w.r.t to the input to the unit is a simple product of derivatives

Derivatives of vector activation

$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_{j} \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$$

Note: derivatives of scalar activations are just a special case of vector activations:

$$\frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} = 0 \ for \ i \neq j$$

- For vector activations the derivative of the loss w.r.t. to any input is a sum of partial derivatives
 - Regardless of the number of outputs $y_j^{(k)}$

$$y_i^{(k)} = \frac{exp\left(z_i^{(k)}\right)}{\sum_j exp\left(z_j^{(k)}\right)}$$

$$y_i^{(k)} = \frac{exp\left(z_i^{(k)}\right)}{\sum_j exp\left(z_j^{(k)}\right)}$$

$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_{j} \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$$

$$y_i^{(k)} = \frac{exp\left(z_i^{(k)}\right)}{\sum_j exp\left(z_j^{(k)}\right)}$$

$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_j \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$$

$$\frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} = \begin{cases} y_i^{(k)} \left(1 - y_i^{(k)} \right) & \text{if } i = j \\ -y_i^{(k)} y_j^{(k)} & \text{if } i \neq j \end{cases}$$

$$y_i^{(k)} = \frac{exp\left(z_i^{(k)}\right)}{\sum_j exp\left(z_j^{(k)}\right)}$$

$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_j \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$$

$$\frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} = \begin{cases} y_i^{(k)} \left(1 - y_i^{(k)} \right) & \text{if } i = j \\ -y_i^{(k)} y_j^{(k)} & \text{if } i \neq j \end{cases}$$

$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_j \frac{\partial Div}{\partial y_j^{(k)}} y_j^{(k)} \left(\delta_{ij} - y_i^{(k)} \right)$$

- For future reference
- δ_{ij} is the Kronecker delta: $\delta_{ij}=1$ if i=j, 0 if $i\neq j$

Backward Pass for softmax output

layer

- Output layer (N):
 - For $i = 1 ... D_N$

•
$$\frac{\partial Div}{\partial y_i^{(N)}} = \frac{\partial Div(Y,d)}{\partial y_i}$$

•
$$\frac{\partial Div}{\partial z_i^{(N)}} = \sum_j \frac{\partial Div(Y,d)}{\partial y_j^{(N)}} y_i^{(N)} \left(\delta_{ij} - y_j^{(N)} \right)$$

•
$$\frac{\partial D}{\partial w_{ij}^{(N)}} = y_i^{(N-1)} \frac{\partial Div}{\partial z_j^{(N)}}$$
 for $j = 0 \dots D_{N-1}$

- For layer k = N 1 downto 1
 - For $i = 1 ... D_k$

•
$$\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$

•
$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} f_k' \left(z_i^{(k)} \right)$$

•
$$\frac{\partial Div}{\partial w_{ij}^{(k)}} = y_i^{(k-1)} \frac{\partial Div}{\partial z_j^{(k)}}$$
 for $j = 0 \dots D_{k-1}$

Vector Activations

$$\begin{bmatrix} y_1^{(k)} \\ y_2^{(k)} \\ \vdots \\ y_M^{(k)} \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} z_1^{(k)} \\ z_2^{(k)} \\ \vdots \\ z_D^{(k)} \end{bmatrix} \end{pmatrix}$$

- In reality the vector combinations can be anything
 - E.g. linear combinations, polynomials, logistic (softmax),
 etc.

Gradients: Backward Computation

For k = N...1

For i = 1:layer width

If layer has vector activation

$$\frac{\partial Div}{\partial z_i^{(k)}} = \sum_{j} \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$$

$$\frac{\partial Div}{\partial y_i^{(k-1)}} = \sum_j w_{ij}^{(k)} \frac{\partial Div}{\partial z_j^{(k)}}$$

Else if activation is scalar

$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}$$

$$\frac{\partial Div}{\partial w_{ij}^{(k)}} = y_i^{(k-1)} \frac{\partial Div}{\partial z_{110j}^{(k)}}$$