## Add metadata features from tracer

Lincoln Harris
7.13.18

## This is the workflow for reading in TRACER output to an existing Seurat object

load libraries

```
Loading required package: ggplot2

Loading required package: cowplot

Attaching package: 'cowplot'

The following object is masked from 'package:ggplot2':

ggsave

Loading required package: Matrix

Load Seurat obj

#load("/Users/lincoln.harris/Desktop/04_tiss_subset_181016.RData")
load("../rawdata/04_tiss_subset_181016_ALL.RData")

dim(tiss_subset@meta.data)

[1] 17516 46
```



## colnames(tiss\_subset@meta.data)

| [1]  | "nGene"                     | "nReads"                     |
|------|-----------------------------|------------------------------|
| [3]  | "orig.ident"                | "well"                       |
| [5]  | "plate"                     | "sample_name"                |
| [7]  | "sample_type"               | "patient_id"                 |
| [9]  | "DOB"                       | "gender"                     |
| [11] | "race"                      | "smokingHx"                  |
| [13] | "histolgy"                  | "driver_gene"                |
| [15] | "driver_mutation"           | "secondary_mutation"         |
| [17] | "Notes"                     | "stage.at.dx"                |
| [19] | "pathlogy_review"           | "biopsy_date"                |
| [21] | "biopsy_type"               | "biopsy_site"                |
| [23] | "biopsy_timing"             | "treatment_status"           |
| [25] | "treatment_navie"           | "treatment_type"             |
| [27] | "treatment"                 | "infections"                 |
| [29] | "pfs"                       | "date_of_death"              |
| [31] | "sort_date"                 | "percent.ercc"               |
| [33] | "free_annotation"           | "cell_ontology_class"        |
| [35] | "percent.ribo"              | "main_seurat_id_cluster"     |
| [37] | "S.Score"                   | "G2M.Score"                  |
| [39] | "Phase"                     | "immune_annotation"          |
| [41] | "general_annotation"        | "immune_subtype_annotation"  |
| [43] | "T_cell_subtype_annotation" | "MF_cell_subtype_annotation' |
| [45] | "Final_immune_annotation"   | "epithelial_subannotation"   |

Read in Tracer data

```
# A/B summary
tracer_summary <- read.csv(".../TCR_analysis/filtered_TCRAB_summary/cell_data.csv", header = T)</pre>
Lets define a new metadata df and add some new cols
meta_edit <- tiss_subset@meta.data</pre>
meta_edit$A_productive <- NA
meta_edit$A_productive <- as.vector(meta_edit$A_productive)</pre>
meta_edit$B_productive <- NA
meta_edit$B_productive <- as.vector(meta_edit$B_productive)</pre>
meta_edit$clonal_group_AB <- NA</pre>
meta_edit$group_size_AB <- NA
Make sure cell IDs look the same
tracer_summary$cell_name <- gsub("[.]", "_", tracer_summary$cell_name)</pre>
find cell name matches btwn meta_edit and tracer_summary this match() function is so much more efficient
that looping!!
match_vec <- match(row.names(meta_edit), tracer_summary$cell_name) # meta_edit first
match_vec1 <- match(tracer_summary$cell_name, row.names(meta_edit)) # tracer_summary first
length(match_vec)
[1] 17516
length(match_vec1)
[1] 2952
head(match_vec)
[1] NA NA NA NA NA
length(unique(match_vec))
[1] 2953
add tracer summary info to meta edit, based on cell name matches
for (i in 1:length(match_vec)){
  currIndex <- match_vec[i]</pre>
  meta_edit$A_productive[i] <- as.vector(tracer_summary$A_productive[currIndex])</pre>
  meta_edit$B_productive[i] <- as.vector(tracer_summary$B_productive[currIndex])</pre>
}
now export to csv
write.csv(meta_edit, "metadata_with_assembled_TCRs.csv")
```