CLASE 06 - TABLAS DE CONTINGENCIA

OCE 313 - Técnicas de análisis no paramétricos.

Dr. José Gallardo Matus

Pontificia Universidad Católica de Valparaíso

09 May 2022

PLAN DE LA CLASE

1.- Introducción

- Tablas de contingencia
- Prueba de chi cuadrado.
- Distribución chi cuadrado.
- Test exacto de Fisher.
- Interpretación test no paramétricos con R.

2). Práctica con R y Rstudio cloud.

- Prácticas R Prueba chi cuadrado y fisher.
- Realizar gráficas avanzadas con ggplot2.

TABLAS DE CONTINGENCIA

- Se usan comúnmente para resumir datos de variables categóricas (ej. Cualitativas, dicotómicas).
- Se utilizan para investigar la asociación de dos o más variables categóricas una de las cuales es una variable respuesta y otra es una variable predictora.

Tratamiento	Respuesta +	Respuesta -
Si	a	С
No	b	d

PRUEBA DE CHI CUADRADO

Esta prueba contrasta frecuencias observadas con las frecuencias esperadas de acuerdo con la hipótesis nula.

Hipótesis

 H_0 : Variable predictora y respuesta son independientes.

H₁: Variable predictora y respuesta NO son independientes.

Supuestos:

- Los datos provienen de una muestra aleatoria.
- El tamaño de muestra es lo suficientemente grande para que el número esperado en las categorías sea mayor 5 y que ninguna frecuencia sea menor que 1.

ESTUDIO DE CASO: ABUNDANCIA DE TIBURONES

En la siguiente tabla se muestra la abundancia de tiburones en 2 islas Chilenas.

Especie	Tiburón mako	Tiburón azul
Isla 1	30	80
Isla 2	15	95

Hipótesis

H₀: La abundancia de tiburones mako y azul es independiente de las islas.

H₁: La abundancia de tiburones mako y azul es dependiente de las islas.

CÁLCULO DE ESTADÍSTICO CHI CUADRADO

¿Cómo se calcula el estadístico Chi cuadrado?

$$X^2 = \sum \frac{(freq.obs. - freq.esp.)^2}{(freq.esperada)} = \sum \frac{(O - E)^2}{(E)}$$

Frecuencia esperada

```
## [,1] [,2]
## [1,] 22.5 87.5
## [2,] 22.5 87.5
## X-squared
## 6.285714
```

DISTRIBUCIÓN CHI CUADRADO

VALOR CRITICO Y DISTRIBUCIÓN CHI-2

Se rechaza hipótesis nula, y por lo tantoconcluimos que no hay diferencia en los tratamientos.

Valor crítico para p= 0,05 y 1 gl = 3,84

PRUEBA DE CHI CUADRADO CON R

```
# Crea matriz de datos
datos \leftarrow c(30, 15, 80, 95)
dim(datos) \leftarrow c(2,2)
# Test de Chi-squared en R (chisq.test)
chisq.test(datos, correct = FALSE)
##
##
    Pearson's Chi-squared test
##
## data: datos
## X-squared = 6.2857, df = 1, p-value = 0.01217
```

PRUEBA DE FISHER

- Se utiliza en tablas de contingencia.
- ▶ Se prefiere cuando el número de observaciones es pequeño.
- Pero es válido para cualquier tamaño de observaciones.
- Requiere calcular las probabilidades individuales para las distintas maneras en que pueden aparecer las frecuencias dentro de las 4 celdas, manteniendo constantes las frecuencias marginales, sumando las probabilidades correspondiente a las pregunta de interes.

ESTUDIO DE CASO: PREFERENCIA DE ALIMENTACION EN MOLUSCOS

En la siguiente tabla se muestra la preferencia de alimentación de una especie de molusco.

Sexo	Food A	Food B
Macho	7	3
Hembra	1	9

Hipótesis

 H_0 : La preferencia de alimentos A y B es independiente del sexo. H_1 : La preferencia de alimentos A es mayor en Machos

Fuente: Modificado de Clifford and Taylor, 2008

PROBABILIDAD EXACTA DE FISHER

Tratamiento	Respuesta +	Respuesta -	Total
1	а	b	g = a + b
2	С	d	h = c + d
Total	e = a + c	f = b + d	n

Probabilidad exacta de Ficher.

$$P(a) = \frac{e! * f! * g! * h!}{a! * b! * c! * d! * n!}$$

PROBABILIDAD EXACTA DE FISHER

Preferencia de alimentación con totales marginales.

Food A	Food B	Total
7	3	10
1	9	10
8	12	20
	7	1 9

Probabilidad exacta de Ficher.

$$P(a) = \frac{8! * 12! * 10! * 10!}{7! * 3! * 1! * 9! * 20!}$$

TABLAS DE CONTINGENCIA ALTERNATIVAS

Generadas de todas las permutaciones posibles.

Sexo	Α	В	Tot.
M	<u>0</u>	10	10
Н	8	2	10
Tot.	8	12	20

Sexo	A	В	Tot-
М	<u>1</u>	9	10
Н	7	3	10
Tot.	8	12	20

Sexo	Α	В	Tot.
М	2	8	10
Н	6	4	10
Tot.	8	12	20

Sexo	Α	В	Tot.
М	<u>3</u>	7	10
Н	5	5	10
Tot.	8	12	20

Sexo	A	В	Tot.
М	<u>4</u>	6	10
Н	4	6	10
Tot.	8	12	20

Sexo	Α	В	Tot.
М	<u>5</u>	5	10
Н	3	7	10
Tot.	8	12	20

Sexo	Α	В	Tot.
М	<u>6</u>	4	10
Н	2	8	10
Tot.	8	12	20

Sexo	Α	В	Tot.
М	<u>7</u>	3	10
Н	1	9	10
Tot.	8	12	20

Sexo	Α	В	Tot.
M	<u>8</u>	2	10
Н	0	10	10
Tot.	8	12	20

DISTRIBUCIÓN DE PROBABILIDAD

 H_0 : La preferencia de alimentos A y B es independiente del sexo.

 \mathbf{H}_1 : La preferencia de alimentos A es mayor en Machos.

a	P(a)
0	0,00036
1	0,00953
2	0,07502
3	0,24006
4	0,35008
5	0,24006
6	0,07502
7	0,00953
8	0,00036
_	

La probabilidad de obtener un valor de a mayor o igual que 7 = P(7) + P(8) = 0,00953 + 0,00036 = 0,00989.

Conclusión: Se rechaza H_0 .

PRUEBA EXACTA DE FISHER CON R

```
Prueba fisher \leftarrow matrix(c(7, 3, 1, 9), nrow= 2)
fisher.test(Prueba_fisher, alternative = "greater")
##
## Fisher's Exact Test for Count Data
##
## data: Prueba fisher
## p-value = 0.009883
## alternative hypothesis: true odds ratio is greater than
## 95 percent confidence interval:
## 1.836563
                  Tnf
## sample estimates:
## odds ratio
## 17.27587
```

RESUMEN DE LA CLASE

- ► Tablas de contingencia.
- Prueba de chi cuadrado.
- Distribución chi cuadrado.
- Test exacto de Fisher.
- Interpretación test no paramétricos con R.