Citles

Fabien Hermenier

Episode 3

the goal of DC4Cities is to let existing and new data centres become energy adaptive

adapt

manage the workload wrt. renewable energy availability

be adapted

reply to a regulation of a smart city energy authority

10 partners, 30 months

3 trial sites, 2 periods

metrics energy modeling adaptation mechanisms

Beyond PUE & CUE abstract not business oriented

Measuring the work done Watt per whatever request

Measuring adaptivity
work shifting capabilities

manual modeling expertise, validation, robustness issues

modeling power and performance using machine learning

- dominant variable detection
- model generation
- model validation
- output: functions, plots, ...

HP-trial PV production

x1: irradiation

x2: outside temperature

CSUC VM power consumption

x1: vCPU usage

adapt

be adapted

Energy Adaptive Software Components

attached to an application

exhibit

- working modes
- actuators

- name: pageIndexing
businessUnit: kPage

workingModes:

- name: WM0

actuator: bin/run.sh WM0

performance: !amount '0 kPage/h'

power: !amount '6 W'

- name: WM1

actuator: bin/run.sh WM1

performance: !amount '32 kPage/h'

power: !amount '27 W'

- name: WM2

actuator: bin/run.sh WM2

performance: !amount '60 kPage/h'

power: !amount '33 W'

Each EASC proposes

alternative execution plans matching a power budget

greedy

One consolidator chooses one plan for each EASC maximising ren%

proportional

aggressive

Renewable Energy Adaptive Interface

Data Centre Energy Controller

Data Centre Energy Controller DC Ideal power 80 Service 80 60 60 Quota Serv C 40 40 **Split** Serv B 20 20 Serv. A **Policies** 18:00 15:00 12:00 21:00 3:00 00:9 9:00 10:00 0:00 0:00 4:00 6:00 8:00 14:00 16:00 20:00 0:00 Quota B Quota C Quota A 40 40 40 20 20 20 0 20:00 14:00 16:00 18:00 2:00 14:00 16:00 18:00 20:00 00% 14:00 16:00 18:00 6:00 00. 6:00 8:00 00 0:00 4:00 6:00 00: Energy Adaptive Data (ntre Operation Interface

Lessons learned

The good

it worked at M10 quite scalable

The bad

software && hardware dependent flexibility at the client side

The ugly

some magic assumptions very limited flexibility

The takeover -

shape EASCs for sustainable profitability

pick WMs such as min(penalty(SLO) + penalty(SMA) + price(E))

Energy Adaptive Software Components

attached to an application

exhibit

- working modes
- SLO (cumulative or instant)
- transition costs
- actuators

```
name: pageIndexing
 businessUnit: kPage
 SL0:
 - timeFrom: 00:00:00
    timeTo: 24:00:00
    cumulativeObjective: !amount '200 kPage'
    basePrice: !amount '100 EUR'
    priceModifiers:
    - threshold: !amount '200 kPage'
      penalty: !amount '0 EUR/kPage'
    - threshold: !amount '100 kPage'
      penalty: !amount '-1 EUR/kPage'
    - threshold: !amount '0 kPage'
      penalty: !amount '-100 EUR'
 workingModes:
  - name: WM0
    actuator: bin/run.sh WM0
    performance: !amount '0 kPage/h'
    power: !amount '6 W'
    transitions:
      - target: WM1
        performanceCost: !amount '1 kPage'
      - target: WM2
        performanceCost: !amount '2 kPage'
  - name: WM1
    actuator: bin/run.sh WM1
    performance: !amount '32 kPage/h'
    power: !amount '27 W'
    transitions:
      - target: WM2
        performanceCost: !amount '2 kPage'
  - name: WM2
    actuator: bin/run.sh WM2
    performance: !amount '60 kPage/h'
    power: !amount '33 W'
```

EASC weighted automata with counters

penalty functions for the Smart City Authority
 the SLA

Hewlett Packard Enterprise

grid renewable part

Hewlett Packard Enterprise

6 to 20 moonshot cartridges

Application	Performance	Power (W)
Website	$1050 - 3250 \; \mathrm{Req/s}$	360 - 550
G-indexing	0-565 kPages/h	6-33
E-indexing	0-60 kPages/h	6 - 33

baseline (satisfy perf)

carver

"green" (max renewable)

Resulting running costs

Side tools using simulation

sensitivity analysis smart city authority penalties SLOs

seeking for installation sites

Lesson learned

adaptation requires flexibility at every level from hardware to SLOs

workload affinity is a thing

mixing economy and sustainability makes sense (to me) good pricing value as a consecutive challenge does the energy cost really drive everyone?

http://www.dc4cities.eu