- $U\subseteq \mathbb{R}^n$ ist offen, wenn $\forall \vec{x}\in U\exists \varepsilon>0: B(\vec{x},\varepsilon)\subseteq U$
 - $\ B(\vec{x},r) = \vec{x} \in \mathbb{R}^n : ||\vec{x} \vec{y}|| < r$
 - um jeden Punkt gibt es Platz
 - * Platz = Kugel mit gewissem Radius um Punkt herum

Stetigkeit für ...

- Ist $U \subseteq \mathbb{R}^n$ offen, $f: U - > \mathbb{R}$
 - f stetig in U, wenn
 - * Kriterien der [[Stetigkeit]] gelten
 - auch im mehrdimensionalen
 - z.B. $\forall \varepsilon > 0 \exists \delta > 0 \forall \vec{x} \in U : |\vec{x} \vec{x_0}| < \delta = > |f(\vec{x}) f(\vec{x_0})| < \varepsilon$
 - f stetig auf U, wenn f in jedem Punkt von U stetig ist
 - Folgenkriterium
 - * f ist genau dann stetig in $\overrightarrow{x_0}$, wenn für jede Folge $\overrightarrow{x_n}$ mit Grenzwert $\overrightarrow{x_0}$ auch der Limes der Funktionswerte=f($\overrightarrow{x_0}$) gilt

Grenzwerte für ...

- $A = \lim \overrightarrow{x} \to \overrightarrow{x_0} f(\overrightarrow{x_0}) = \lim x \to x_0 \lim y \to y_0 f(x,y) = \lim y \to y_0 \lim x \to x_0 f(x,y)$
 - Grenzwerte unterschiedlich <==> Grenzwert existiert nicht
 - Ableitungen der beiden iterierten Grenzwerte können existieren, ohne dass der Grenzwert existiert

Partielle Ableitung

- f: $U -> \mathbb{R}$ ist differenzierbar in x_0 , wenn f eine erste Näherung zulässt
 - $\ \exists l: \mathbb{R} - > \mathbb{R} \ \text{linear:} \ f(\overrightarrow{x}) = f(\overrightarrow{x_0}) + l(\overrightarrow{x} \overrightarrow{x_0}) + ||\overrightarrow{x} \overrightarrow{x_0}|| r(\overrightarrow{x}) \ \text{mit} \ \lim_{x \to x_0} r(\overrightarrow{x}) = 0$
- Vorgehensweise:
 - für f(x,y)
 - $-\frac{\partial f}{\partial x}$ = Ableitung von f(x,y) nach x jedoch ist y konstant
 - * bzw. wird angenommen
- partielle Ableitung kann existieren, obwohl f nicht differenzierbar
 - sind alle partielle Ableitungen stetig in $x_0 <==>$ differenzierbar
- Richtungsableitung
 - partielle Ableitung entlang einer Richtung möglich
 - entspricht Änderungsrate entlang des Vektor n
 - Richtung ≠ Achsen/Variablen

-
$$\frac{\partial f}{\partial \overrightarrow{n}} = l(\overrightarrow{n})$$

st gilt wenn f in x_0 differenzierbar

Gradient von f

• Koordinaten der linearen Abbildung als Vektor

- $\frac{\partial f}{\partial \overrightarrow{n}} = \langle \operatorname{grad}(f)(\overrightarrow{x_0}), \overrightarrow{n} \rangle$
 - Richtungsableitung = Skalarprodukt von Gradient und Richtungsvektor
 - $< grad(f)(\overrightarrow{x_0}), \overrightarrow{n} >$
 - * Gradient von f zeigt in Richtung des größten Anstiegs
 - * senkrecht zu Gradient findet keine Änderung statt
 - <-....>=0

[[Differentialrechnung]]