Towards a New Level of Action Understanding

Dahua Lin
The Chinese University of Hong Kong

Action Recognition

Classify human actions in short videos

Presenting weather forecast

Climbing a rope

Temporal Action Localization

Temporally localize and classify human actions in long videos.

Spatio-Temporal Action Detection

Spatially detection plus temporally localization of human actions in long videos.

Why Action Understanding is Difficult

Understanding action require analysis of both appearance and motion.

Evolution of Techniques

Two Stream
ConvNets

Breakthroughs in Action
Understanding

2017

3D ConvNets

Transformer Based
Models

Boost performance with the help of large-scaled

New Trends

Omni-source

Make use of large-scaled web data

FineGym

Fine-grained video dataset

Feichtenhofer, Christoph, Axel Pinz, and Andrew Zisserman. "Convolutional two-stream network fusion for video action recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Two Stream Convolutional Networks

Utilize both appearance and motion information to predict actions in video

Wang, Limin, et al. "Temporal segment networks: Towards good practices for deep action recognition." European conference on computer vision. Springer, Cham, 2016.

Temporal Segment Network

Long-range modeling using multiple video segments

From 2D to 3D Convolution

2D Convolution

Spatial feature from spatially neighboring pixels

Spatiotemporal feature from both spatially and temporally neighboring pixels

From Two Stream to 3D ConvNets

Contiguous image frames

C3D, I3D, R(2+1)D, CSN, SlowFast, ...

Carreira, Joao, and Andrew Zisserman. "Quo vadis, action recognition? a new model and the kinetics dataset." proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

I3D (Inflated 3D ConvNets)

Inflate 2D networks to 3D networks

3D convolutional kernels are **Inflated** from successfully trained image classification networks

A Closer Look at Spatiotemporal Convolutions for Action Recognition S3D: Single Shot multi-Span Detector via Fully 3D Convolutional Networks Video Classification with Channel-Separated Convolutional Networks

Parameter-Efficient 3D Networks

Feichtenhofer, Christoph, et al. "Slowfast networks for video recognition." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.

SlowFast Networks

Appearance and motion evolves at different rate, thus can be handled efficiently in different manner.

Arnab, Anurag, et al. "Vivit: A video vision transformer." arXiv preprint arXiv:2103.15691 (2021). Vaswani, Ashish, et al. "Attention is all you need." arXiv preprint arXiv:1706.03762 (2017).

Video Transformer

Transformer a successful model in NLP and start to emerge in computer vision, including video understanding.

Unified Framework for Video Understanding

Single Framework

Multiple Tasks

Action Recognition

Temporal Action Localization

Spatio-Temporal Action Detection

Various Models

Two Stream based Models

3D Convnet based Models

Transformer based Models

Unified Model Design

Unified Model Design

Modular design allows for unified model configuration

```
Example Config of TSN
                                                                                           Example config of I3D
model = dict(
                                                                  model = dict(
    type='Recognizer2D',
                                                                      type='Recognizer3D',
                                                                      backbone=dict(
    backbone=dict(
        type='ResNet',
                                                                          type='ResNet3d',
                                                Backbone
        pretrained='torchvision://resnet50',
                                                                          pretrained2d=True,
        depth=50,
                                                                          pretrained='torchvision://resnet50',
        norm eval=False),
                                                                          depth=50,
    cls head=dict(
                                                                          # omit some parameters),
        type='TSNHead',
                                                                      cls head=dict(
        num classes=400,
                                                                          type='I3DHead',
                                                   Head
        in channels=2048,
                                                                          num classes=400,
        spatial_type='avg',
                                                                          in_channels=2048,
        consensus=dict(type='AvgConsensus', dim=1),
                                                                          spatial type='avg',
        dropout ratio=0.4,
                                                                          dropout ratio=0.5,
                                                                          init std=0.01),
        init std=0.01),
```

Unified Frame Loader

Single frame sampler for multiple type of frames required by different models.

Independent RGB frames from multiple segments (e.g. for training TSN)

```
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=3),
```

Contiguous Flow frames from multiple segments (e.g. for training TSN)

```
dict(type='SampleFrames', clip_len=5, frame_interval=1, num_clips=3),
```

Contiguous frames (e.g. for training 3D networks)

```
dict(type='SampleFrames', clip_len=32, frame_interval=2, num_clips=1),
```

FineGym

Towards Finer-grained Action Recognition

Semantic Granularities

FineGym: A Hierarchical Video Dataset for Fine-grained Action Understanding. D. Shao, Y. Zhao, B. Dai, D. Lin. CVPR 2020.

FineGym

530 well-defined categories

- ✓ Rich semantic & temporal structures
- ✓ Action-centric

Omni-Source

Towards larger-scaled dataset with less cost

Motivation

Motivation

Unlabeled Dataset

Labeled Dataset

Target

Dataset

OmniSource Pipeline

Data Efficiency

Note: Since the resolution of images and videos might be different. For fair comparison, we assume that each image is 100KB and one minute video is 12MB. We assume IG videos last 30 seconds on average.

Improvement on Kinetics & Downstream Tasks

	✓ V.S. →						
Arch	Backbone	Pretrain	w/o. Omni	w/. Omni	Δ		
TSN-3seg	ResNet50	ImageNet	70.6 / 89.4	73.6 / 91.0	+3.0 / +1.6		
TSN-3seg	ResNet50	IG-1B	73.1 / 90.4	75.7 / 91.9	+2.6 / +1.5		
TSN-3seg	Efficient-b4	ImageNet	73.3 / 91.0	75.2 / 92.0	+1.9 / +1.0		
SlowOnly-4x16	ResNet50	-	72.9 / 90.9	76.8 / 92.5	+3.9 / +1.6		
SlowOnly-4x16	ResNet50	ImageNet	73.8 / 90.9	76.6 / 92.5	+2.8 / +1.6		
SlowOnly-8x8	ResNet101	-	76.3 / 92.6	80.4 / 94.4	+4.1 / +1.8		
SlowOnly-8x8	ResNet101	ImageNet	76.8 / 92.8	80.5 / 94.4	+3.7 / +1.6		
irCSN-32x2	irCSN-152	IG-65M	82.6 / 95.3	83.6 / 96.0	+1.0 / +0.7		

Table 1. Recognition performance improvement on Kinetics400.

Table 2. Detailed results of transfer learning.

Top-1 accuracies on the official split-1 are reported.

Architecture	w/. ImageNet-pretrain	w/. OmniSource	UCF101-Top1	HMDB51-Top1		
TSN-3seg	✓		91.51	63.53	TT 0	
ResNet50	✓	√	93.29	65.88	V.S.	
TSN-3seg Efficient-b4	✓		92.52	66.27	v.s.	
	✓	✓	93.05	66.54		
	✓		94.69	69.35	v.s.	
SlowOnly-4x16 ResNet50	✓	✓	95.98	70.71	V . D .	
			94.05	65.82	37 C	
		✓	96.01	70.98	v.s.	
	✓		96.40	76.41	v.s.	
SlowOnly-8x8 ResNet101	✓	✓	97.38	78.95	v . D .	
			96.61	75.82	17 C	
		√	97.52	79.02	v.s.	

Summary

- Action recognition models evolves from two stream, 3D convolution, to the use of transformers
- Modular design allow unified model composition in MMAction2
- Carefully designed datasets and effective use of large scale web data help improving action recognition models