1 Efficient Frontier

Let a portfolio of N assets be π , whose expected return is μ and the co-variance is Σ .

1.1 Efficient Frontier with 3 Assets

According to the paper, the expected return of the portfolio, $E = \sum_{i=1}^{N} \pi_i \mu_i = \boldsymbol{\pi}^t \boldsymbol{\mu}$. The risk is analogous to the variance of the returns, i.e. $V = \sum_{i=1}^{N} \sum_{j=1}^{N} \sigma_{ij} \pi_i \pi_j = \boldsymbol{\pi}^t \boldsymbol{\Sigma} \boldsymbol{\pi}$.

Given $\mu = m$ and $\Sigma = C$ for a 3 assets, we can generate 100 random portfolios, where each portfolio $\pi = (\pi_1 \pi_2 \pi_3)^t$ s.t. $\mathbf{1}^t \pi = 1$ by y=randn(3,1); y=y/norm(y,1). Then we can calculate E - V for each of the portfolios by $E=y^+*m$; $V=sqrt(y^+*C*y)$.

Finally I make the scatter plot and on the same figure I Figure 1: Efficient Portfolio plot the efficient frontier using estimateFrontier function. As expected all the random portfolios were on the correct one side of the frontier.

1.2 Efficient Frontier with 2 Assets

Figure 2: Efficient Frontier for 2 Asset Portfolios

Figure 3: Distribution of 2 Asset Returns

$1.3 \quad Use \ of \ {\tt linprog} \ in \ NaiveMV$

1.4 Efficient Frontier : NaiveMV vs CVX

