Continuous outcomes

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro RaabeData Scientist

The dataset

```
head(chocolate, 5)
```

final_grade	review_date	cocoa_percent	company_location	bean_type	broad_bean_origin
<dbl></dbl>	<int></int>	<dbl></dbl>	<fct></fct>	<fct></fct>	<fct></fct>
3	2009	0.8	U.K.	"Criollo, Trinitario"	"Madagascar"
3.75	2012	0.7	Guatemala	"Trinitario"	"Madagascar"
2.75	2009	0.75	Colombia	"Forastero (Nacional)"	"Colombia"
3.5	2014	0.74	Zealand	n n	"Papua New Guinea"
3.75	2011	0.72	Australia	n n	"Bolivia"

Construct the regression tree

```
spec <- decision_tree() %>%
  set_mode("regression") %>%
  set_engine("rpart")

print(spec)
```

```
model <- spec %>%
  fit(formula = final_grade ~ .,
      data = chocolate_train)
print(model)
```

```
Decision Tree Model Specification (regression)

Computational engine: rpart
```

```
parsnip model object

Fit time: 20ms
n= 1437

node), split, n, deviance, yval
    * denotes terminal node
```

Predictions using a regression tree

```
# Model predictions on new data
predict(model, new_data = chocolate_test)
```

```
.pred
<dbl>
3.281915
3.435234
3.281915
3.833931
3.281915
3.514151
3.273864
3.514151
```


Divide & conquer

Hyperparameters

Goal for regression trees:

Low variance or deviation from the mean within groups

Design decisions:

- min_n: number of data points in a node needed for further split (default: 20)
- tree_depth : maximum depth of a tree (default: 30)
- cost_complexity: penalty for complexity (default: 0.01)

Set them in very first step:

```
decision_tree(tree_depth = 4, cost_complexity = 0.05) %>%
    set_mode("regression")
```

Understanding model output

```
decision_tree(tree_depth = 1) %>%
  set_mode("regression") %>%
  set_engine("rpart") %>%
  fit(formula = final_grade ~ .,
    data = chocolate_train)
```

Model with tree_depth = 1

• Visualization:

Let's do regression!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Performance metrics for regression trees

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro RaabeData Scientist

How to measure performance?

- Classification problems: accuracy (confusion matrix)
- Regression problems: "correct" is relative, no binary correctness
- ⇒ Measure how far predictions are away from truth

Common metrics for regression

- Mean Absolute Error (MAE)
- Root Mean Square Error (RMSE)

MAE intuition:

MAE = average length of the red bars

Formulas and intuition

$$MAE = rac{1}{n} \sum_{i=1}^{n} |actual_i - predicted_i|$$

• "Sum of absolute deviations divided by the number of predictions"

$$MSE = rac{1}{n} \sum_{i=1}^{n} \left(actual_i - predicted_i
ight)^2$$

"Mean squared error"

Formulas and intuition

$$MAE = rac{1}{n} \sum_{i=1}^{n} |actual_i - predicted_i|$$

 "Sum of absolute deviations divided by the number of predictions"

$$RMSE = \sqrt{rac{1}{n}\sum_{i=1}^{n}{(actual-predicted)^2}}$$
 • "Root of the mean squared errors $\sum_{i=1}^{n}{(actual-predicted)^2}$ • Large errors get higher weight

- "Root of the mean squared error"

Coding: predictions

```
# parsnip and yardstick are included in tidymodels
library(tidymodels)
```

```
# Make predictions and add to test data
predictions <- predict(model, new_data = chocolate_test) %>%
bind_cols(chocolate_test)
```

```
# A tibble: 358 x 7
  .pred final_grade review_date cocoa_percent company_location
  <dbl>
             <dbl>
                        <int>
                                     <dbl> <fct>
1 2.5 2.75
                         2013
                                      0.7 France
2 3.64 3.25
                         2014
                                      0.8 France
         3.5
3 3.3
                         2012
                                      0.7 France
                                      0.72 Fiji
              3.5
4 3.25
                         2011
 ... with 354 more rows, and 2 more variables: bean_type <fct>, broad_bean_origin <fct>
```

Coding: mae() and rmse()

```
# Evaluate using mae()
mae(predictions,
    estimate = .pred,
    truth = final_grade)
```

```
# Evaluate using rmse()
rmse(predictions,
    estimate = .pred,
    truth = final_grade)
```

Let's evaluate!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Cross-validation

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro RaabeData Scientist

Training data

Training data

Test data

501
•••
600

Cross-validated out-of-sample MAE

Fit final model on the full dataset

Coding - Split the data 10 times

```
# Random seed for reproducibility
set.seed(100)

# Create 10 folds of the dataset
chocolate_folds <- vfold_cv(chocolate_train, v = 10)</pre>
```

Coding - Fit the folds

Coding - Collect all errors

```
# A tibble: 20 x 3
           .metric
   id
                    .estimate
   <chr>
             <chr>
                         <dbl>
 1 Fold01
                         0.362
               mae
 2 Fold01
                         0.442
              rmse
3 Fold02
                         0.385
               mae
 4 Fold02
                         0.504
              rmse
```


Coding - Summarize training sessions

```
# Collect and summarize errors of all model runs
collect_metrics(fits_cv)
```

Let's cross-validate!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Bias-variance tradeoff

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Sandro RaabeData Scientist

Hyperparameters

- Chosen by modeler
- e.g. tree_depth
- Check documentation!

?decision_tree

• cost_complexity: The cost/complex

decision_tree() is a way to generate a specification of a model before fitting and allows the model to be

created using different packages in R or via Spark. The main arguments for the model are:

- tree_depth: The maximum depth of a
- min_n: The minimum number of data

Simple model

Size < 80 sqm price = \$40 price = \$95

Complex model

Complex model - overfitting - high variance

Predictions on training set: well done!


```
Predictions on test set: not even close!
```

```
final grade

truth

truth

truth

truth

truth

truth
```

```
mae(train_results,
    estimate = .pred,
    truth = final_grade)
```

```
mae(test_results,
    estimate = .pred,
    truth = final_grade)
```

```
# A tibble: 1 x 3
   .metric .estimate
1 mae      0.204
```

```
# A tibble: 1 x 3
   .metric .estimate
1 mae      0.947
```

Simple model - underfitting - high bias

Large errors on training and test set:

The bias-variance tradeoff

- Simple models -> high bias
- Complex models -> high variance
- Tradeoff between bias and variance
- Build models around the sweet spot

Detecting overfitting

Out-of-sample/CV:

```
collect_metrics(cv_fits)
```

```
# A tibble: 1 x 3
   .metric mean n
1 mae 2.432 5
```

- High CV error
- Overfit / high variance
- Reduce complexity!

In-sample:

```
mae(training_pred,
    estimate = .pred,
    truth = final_grade)
```

```
# A tibble: 1 x 2
  .metric .estimate
1 mae     0.228
```

• Small training error

Detecting underfitting

In-sample:

```
mae(training_pred, estimate = .pred, truth = final_grade)
```

- Large in-sample/training error
- Underfit / high bias
- Increase complexity!

Let's trade off!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

