Basic Notations

- φ_e The e-th partial computable function (computed by program with code e)
- $\phi_e(x)\downarrow$ The computation of ϕ_e on input x terminates/converges
- φ_e(x)↑ The computation of φ_e on input x diverges
- W_e Domain of φ_e (set of inputs where φ_e converges)
- E_e Range/codomain of φ_e (set of outputs produced by φ_e)
- H(e,x,t) "Program e halts on input x within t steps" predicate
- S(e,x,y,t) "Program e outputs y on input x within t steps" predicate

Special Sets

- $K = \{x \mid x \in W_x\}$ The halting set (x halts on input x)
- R Complement of K
- Tot = $\{e \mid \phi_e \text{ is total}\}\$ Set of indices of total functions

Functions and Operators

χ_a - Characteristic function of set A

```
χ<sub>a</sub>(x) = {
   1 if x ∈ A
   0 if x ∉ A
}
```

sg - Sign function

```
sg(x) = {
  0 if x = 0
  1 if x > 0
}
```

sg - Complemented sign function

```
$\bar{s}g(x) = {
    1 if x = 0
    0 if x > 0
}
```

Function Composition and Operations

- f ∘ g Function composition (f after g)
- f ⊆ g f is a subfunction of g
- $f \cong g$ f and g are extensionally equal (compute same function)
- μy.P(y) Minimization operator (least y satisfying predicate P)

Special Notations

- \bullet $\;\pi$ Standard pairing function encoding two numbers as one
- π_1 , π_2 Projection functions extracting components of pair
- \(\chi_x,y\)\) Alternative notation for pair \((x,y)\)\
- (ω)_i i-th component in coding of tuple ω

Program Composition

- Program concatenation is denoted by juxtaposition (PQ)
- P[i₁,...,ik → h] denotes program P with:
 - Input taken from registers i₁,...,i_k
 - Output placed in register h
 - · Other registers cleared initially

This notation is used extensively in proofs related to universal functions, smn theorem, recursion theorems, and various reducibility results.