(5) 左移扭环寄存器

 $D_0D_1D_2D_3$ 接 Φ ,都可以构成扭环

(6) 右移串入/串出 寄存器

(7) 右移串入/并出寄存器

(8) 右移环形寄存器

模 4 计数器

(9) 右移扭环寄存器

$$\overline{Q}_3$$
 接 D_{SR}
 $M_0 = 1$,
 $M_1 = \begin{cases} 1, #\lambda \\ Q_0 Q_1 Q_2 Q_3 = D_0 D_1 D_2 D_3 \\ 0, 扭环 \end{cases}$

 $D_0D_1D_2D_3$ 接 Φ ,都可以构成扭环

只有两种状态图 $Q_0Q_1Q_2Q_3$

注意:从并入的 $D_0D_1D_2D_3$ 开始循环 模 8 计数器

例1. 用74194 设计模 6 环形计数器

6 FFs

右移

左移

例2. 用74194设计模6 扭环计数器, 画出状态图

初始?

Shift left

例3:分析如图所示的芯片功能,画出状态图

§6.6 序列信号发生器

Series Signal Generator

序列信号: 一组特定的循环数字信号

序列信号发生器:产生一组序列信号的时序电路

类型 Counter-type 计数型Shift-type 移位型

§ 6.6.1 计数型序列信号发生器 Counter-type Series Signal Generator

例:

设计一个产生7位序列信号 1010110 的序列信号 发生器(时间顺序: 从左到右)

结构:

```
    8-1 MUX → 选择 1010110 → 74151
    M-7 计数器 → 7 位 → 74161
```


波形

例2. 用序列信号发生器实现数据并/串转换

Counter and MUX

例3.分析下图电路

计数器从000 到100 循环, 相应的输出为 01010.

74161: M-5 计数器

(000)~(100) (101) 毛刺

$$Z = Q_0 \cdot \overline{Q}_2$$

输出为原状态的输出

状态表

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Z
	0	0	0	0 1	1	0
0	0	1	0		0	1
0	1	0	0	1	1	0
0	1	1	1	0	0	1
1	0	0	0	0	0	0

电路功能:产生01010序列信号的序列信号发生器

作业:

6.2

6.3

6.8

6.12

6.15

6.19

更正: 6.15 图 (b) 161 改为 163

6.19 图

