MATH201A_Chapter1_TEXTBOOK_Question

TAO XU

2025-10-19

Chapter 1 Exercises

Question 1

A family of sets $\mathcal{R} \subset \mathcal{P}(X)$ is called a **ring** if

it is closed under finite unions and differences

(i.e., if
$$E_1,\dots,E_n\in\mathcal{R},$$
 then $\bigcup_{j=1}^n E_j\in\mathcal{R},$ and if $E,F\in\mathcal{R},$ then $E\smallsetminus F\in\mathcal{R}).$

A ring that is closed under countable unions is called a **-ring**.

- 1. (a) Rings (resp. -rings) are closed under finite (resp. countable) intersections.
 - (b) If \mathcal{R} is a ring (resp. -ring), then \mathcal{R} is an algebra (resp. -algebra) iff $X \in \mathcal{R}$.
 - (c) If \mathcal{R} is a -ring, then

$$\{E \subset X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}\$$

is a -algebra.

(d) If \mathcal{R} is a -ring, then

$$\{E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}\$$

is a -algebra.

Question 2

Complete the proof of **Proposition 1.2**.

Question 3

Let \mathcal{M} be an infinite -algebra.

- (a) Show that $\mathcal M$ contains an infinite sequence of disjoint sets.
- (b) Show that $card(\mathcal{M}) \geq \mathfrak{c}$.

Question 4

An algebra $\mathcal A$ is a -algebra iff $\mathcal A$ is closed under countable increasing unions (i.e., if $\{E_j\}_{j=1}^\infty\subset\mathcal A$ and $E_1\subset E_2\subset\cdots$, then $\bigcup_{j=1}^\infty E_j\in\mathcal A$).

If \mathcal{M} is the -algebra generated by \mathcal{E} ,

then \mathcal{M} is the union of the -algebras generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E} . (Hint: Show that the latter object is a -algebra.)

Question 6

Complete the proof of **Theorem 1.9**.

Question 7

If μ_1, \dots, μ_n are measures on (X, \mathcal{M}) and $a_1, \dots, a_n \in [0, \infty)$, then $\sum_{j=1}^n a_j \mu_j$ is a measure on (X, \mathcal{M}) .

Question 8

If (X, \mathcal{M}, μ) is a measure space and $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$, then

$$\mu(\liminf E_j) \leq \liminf \mu(E_j)$$

Also, $\mu(\limsup E_j) \geq \limsup \mu(E_j)$ provided that

$$\mu\bigg(\bigcup_{j=1}^{\infty} E_j\bigg) < \infty$$

Question 9

If (X, \mathcal{M}, μ) is a measure space and $E, F \in \mathcal{M}$, then

$$\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F).$$

Question 10

Given a measure space (X, \mathcal{M}, μ) and $E \in \mathcal{M}$, define

$$\mu_E(A) = \mu(A \cap E)$$

for $A \in \mathcal{M}$.

Then μ_E is a measure.

Question 11

A finitely additive measure μ is a measure iff

it is continuous from below as in **Theorem 1.8(c)**.

If $\mu(X) < \infty$, then μ is a measure iff

it is continuous from above as in **Theorem 1.8(d)**.

Let (X, \mathcal{M}, μ) be a finite measure space.

- a. If $E, F \in \mathcal{M}$ and $\mu(E\Delta F) = 0$, then $\mu(E) = \mu(F)$.
- b. Say that $E \sim F$ if $\mu(E\Delta F) = 0$; then \sim is an equivalence relation on \mathcal{M} .
- c. For $E, F \in \mathcal{M}$, define $\rho(E, F) = \mu(E\Delta F)$. Then $\rho(E, G) \leq \rho(E, F) + \rho(F, G)$, and hence ρ defines a metric on the space \mathcal{M}/\sim of equivalence classes.

Question 13

Question 14

If μ is a semifinite measure and $\mu(E) = \infty$,

then for any C > 0 there exists $F \subset E$ with $C < \mu(F) < \infty$.

Question 15

Given a measure μ on (X, \mathcal{M}) , define

$$\mu_0(E) = \sup\{\mu(F) : F \subset E, \ \mu(F) < \infty\}.$$

a. μ_0 is a semifinite measure, called the **semifinite part** of μ .

b. If μ is semifinite, then $\mu = \mu_0$. (Use Exercise 14.)

c. There is a measure ν on \mathcal{M} (in general, not unique) which assumes only the values 0 and ∞ such that

$$\mu = \mu_0 + \nu.$$

Question 16

Let (X, \mathcal{M}, μ) be a measure space.

A set $E \subset X$ is called **locally measurable** if

$$E \cap A \in \mathcal{M}$$
 for all $A \in \mathcal{M}$ such that $\mu(A) < \infty$

Let $\widetilde{\mathcal{M}}$ be the collection of all locally measurable sets.

Clearly $\mathcal{M} \subset \widetilde{\mathcal{M}}$;

if $\mathcal{M} = \widetilde{\mathcal{M}}$, then μ is called **saturated**.

- a. If μ is -finite, then μ is saturated.
- b. $\widetilde{\mathcal{M}}$ is a -algebra.
- c. Define $\tilde{\mu}(E) = \mu(E)$ if $E \in \mathcal{M}$ and $\tilde{\mu}(E) = \infty$ otherwise.

Then $\tilde{\mu}$ is a saturated measure on $\widetilde{\mathcal{M}}$, called the **saturation** of μ .

- d. If μ is complete, so is $\tilde{\mu}$.
- e. Suppose μ is semifinite. For $E \in \widetilde{\mathcal{M}}$, define

$$\overline{\mu}(E) = \sup \{ \mu(A) : A \in \mathcal{M}, A \subset E \}.$$

Then $\overline{\mu}$ is a saturated measure on $\widetilde{\mathcal{M}}$ that extends μ .

f. Let X_1, X_2 be disjoint uncountable sets, $X = X_1 \cup X_2$, and let \mathcal{M} be the -algebra of countable or co-countable sets in X.

Let μ_0 be the counting measure on $\mathcal{P}(X_1)$, and define $\mu(E) = \mu_0(E \cap X_1)$ for $E \in \mathcal{M}$. Then μ is a measure on \mathcal{M} , $\widetilde{\mathcal{M}} = \mathcal{P}(X)$, and in the notation of parts (c) and (e),

$$\tilde{\mu} \neq \overline{\mu}$$
.

Question 17

If μ^* is an outer measure on X and $\{A_j\}_{j=1}^{\infty}$ is a sequence of disjoint μ^* -measurable sets, then

$$\mu^* \left(E \cap \bigcup_{j=1}^{\infty} A_j \right) = \sum_{j=1}^{\infty} \mu^* (E \cap A_j)$$

for any $E \subset X$.

Question 18

Let $A \subset \mathcal{P}(X)$ be an algebra, A_{σ} the collection of countable unions of sets in A,

and $A_{\sigma\delta}$ the collection of countable intersections of sets in A_{σ} .

Let μ_0 be a premeasure on A and μ^* the induced outer measure.

a. For any $E \subset X$ and $\varepsilon > 0$, there exists $A \in A_{\sigma}$ with $E \subset A$ and

$$\mu^*(A) \le \mu^*(E) + \varepsilon$$

- b. If $\mu^*(E) < \infty$, then E is μ^* -measurable iff there exists $B \in A_{\sigma\delta}$ with $E \subset B$ and $\mu^*(B \setminus E) = 0$.
- c. If μ_0 is -finite, the restriction $\mu^*(E) < \infty$ in (b) is superfluous.

Question 19

Let μ^* be an outer measure on X induced from a finite premeasure μ_0 .

If $E \subset X$, define the **inner measure** of E to be

$$\mu_*(E) = \mu_0(X) - \mu^*(E^c).$$

Then E is μ^* -measurable iff $\mu^*(E) = \mu_*(E)$. (Use Exercise 18.)

Let μ^* be an outer measure on X, \mathcal{M}^* the -algebra of μ^* -measurable sets,

and define the outer and inner measures induced by $\bar{\mu}$ as in (1.12).

- a. If $E \subset X$, we have $\mu^*(E) \leq \bar{\mu}(E)$, with equality iff there exists $A \in \mathcal{M}^*$ such that $A \supset E$ and $\mu^*(A) = \mu^*(E)$.
- b. If μ^* is induced from a premeasure, then $\mu^* = \bar{\mu}$. (Use Exercise 18a.)
- c. If $X = \{0, 1\}$, there exists an outer measure μ^* on X such that $\mu^* \neq \bar{\mu}$.

Question 21

Let μ^* be an outer measure induced from a premeasure and $\bar{\mu}$ the restriction of μ^* to the μ^* -measurable sets. Then $\bar{\mu}$ is **saturated**. (*Use Exercise 18*.)

Question 22

Let (X, \mathcal{M}, μ) be a measure space, μ^* the outer measure induced by μ according to (1.12), \mathcal{M}^* the -algebra of μ^* -measurable sets, and $\bar{\mu} = \mu^*|_{\mathcal{M}^*}$.

- a. If μ is -finite, then $\bar{\mu}$ is the completion of μ . (Use Exercise 18.)
- b. In general, $\bar{\mu}$ is the saturation of the completion of μ . (See Exercises 16 and 21.)

Question 23

Let A be the collection of finite unions of sets of the form $[a,b] \cap \mathbb{Q}$ where $-\infty \leq a < b \leq \infty$.

- a. A is an algebra on \mathbb{Q} . (Use Proposition 1.7.)
- b. The -algebra generated by A is $\mathcal{P}(\mathbb{Q})$.
- c. Define μ_0 on A by $\mu_0(\emptyset) = 0$ and $\mu_0(A) = \infty$ for $A \neq \emptyset$. Then μ_0 is a premeasure on A, and there is more than one measure on $\mathcal{P}(\mathbb{Q})$ whose restriction to A is μ_0 .

Question 24

Let μ be a finite measure on (X, \mathcal{M}) , and let μ^* be the outer measure induced by μ . Suppose that $E \subset X$ satisfies $\mu^*(E) = \mu^*(X)$ (but not necessarily $E \in \mathcal{M}$).

- a. If $A, B \in \mathcal{M}$ and $A \cap E = B \cap E$, then $\mu(A) = \mu(B)$.
- b. Let $\mathcal{M}_E = \{A \cap E : A \in \mathcal{M}\}$, and define $\nu(A \cap E) = \mu(A)$. Then \mathcal{M}_E is a -algebra on E, and ν is a measure on \mathcal{M}_E .

Question 25

Complete the proof of **Theorem 1.19**.

Question 26

Prove **Proposition 1.20**. (Use Theorem 1.18.)

Prove Proposition 1.22a.

(Show that if $x, y \in C$ and x < y, there exists $z \notin C$ such that x < z < y.)

Question 28

Let F be increasing and right-continuous, and let μ_F be the associated measure. Then

$$\mu_F(\{a\}) = F(a) - F(a^-), \quad \mu_F([a,b]) = F(b^-) - F(a^-), \quad \mu_F([a,b]) = F(b) - F(a^-), \quad \mu_F((a,b)) = F(b^-) - F(a).$$

Question 29

Let E be a Lebesgue measurable set.

- a. If $E \subset N$, where N is the nonmeasurable set described in §1.1, then m(E) = 0.
- b. If m(E)>0, then E contains a nonmeasurable set. (It suffices to assume $E\subset [0,1]$. In the notation of §1.1, $E=\bigcup_{r\in \mathbb{R}}(E\cap N_r)$.)

Question 30

If $E \in \mathcal{L}$ and m(E) > 0, then for any $\alpha < 1$, there is an open interval I such that

$$m(E\cap I)>\alpha\,m(I).$$

Question 31

If $E \in \mathcal{L}$ and m(E) > 0, then the set $E - E = \{x - y : x, y \in E\}$ contains an interval centered at 0. (If I is as in Exercise 30 with $\alpha > \frac{3}{4}$, then E - E contains $(-\frac{1}{2}m(I), \frac{1}{2}m(I))$.)

Question 32

Suppose $\{\alpha_i\}_{i=1}^{\infty} \subset (0,1)$.

$$\begin{array}{l} \text{a. } \prod_{j=1}^{\infty}(1-\alpha_{j})>0 \text{ iff } \sum_{j=1}^{\infty}\alpha_{j}<\infty.\\ \text{(Compare } \sum\log(1-\alpha_{j}) \text{ with } \sum\alpha_{j}.) \end{array}$$

b. Given $\beta \in (0,1)$, exhibit a sequence $\{\alpha_i\}$ such that

$$\prod_{j=1}^{\infty} (1 - \alpha_j) = \beta.$$

Question 33

There exists a Borel set $A \subset [0,1]$ such that

$$0 < m(A \cap I) < m(I)$$

for every subinterval $I \subset [0,1]$. (Hint: Every subinterval of [0,1] contains Cantor-type sets of positive measure.)