SMART TRAFFIC MONITORING & CONTROL DENGAN PENGOLAHAN CITRA DIGITAL

PRA PROPOSAL PROYEK AKHIR

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Akhir

oleh:

GRACE NITA LAANANILA 6705184136

D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2021

Latar Belakang

Lalu lintas dapat menjadi parameter kemajuan dari suatu daerah atau kota yang volumenya tinggi. Lalu lintas lancar dan teratur dapat menunjukkan bahwa disiplin berlalu lintas dari penduduknya juga tinggi yang berarti pembangunan pada daerah tersebut berkembang secara baik Dengan bertambah pesatnya jumlah kendaraan dan tidak bertambahnya ruas jalan, tentu saja cepat atau lambat akan terjadinya kemacetan khususnya pada kota-kota besar. Membuat suatu dampak negatif tahun ke tahun terus meningkat dan tidak diimbangi dengan pengaturan sistem lalu lintas yang modern dalam mengatur arus kendaraan pada jalan raya. Salah satu titik dimana rawan kemacetan ialah persimpangan jalan. Walaupun sudah terdapat lampu lalu lintas namun hal tersebut kurang berfungsi saat jam sibuk sehingga terjadi penumpukan volume kendaraan yang berujung pada terjadinya kemacetan. Didalam kemacetan bukan hanya waktu saja yang terbuang namun juga biaya.

Pada Proyek Akhir ini akan dirancang suatu sistem aplikasi Monitoring dan *control* berbasis Pengolahan Citra yang disimulasikan menggunakan Matlab serta Arduino. Cara kerja dari sistem ini dimana kamera *webcam* ditempatkan pada tiang lampu lalu lintas untuk melakukan pengambilan gambar kondisi jalan tersebut. Setelah itu dilakukan pengolahan citra digital yang memiliki dua keluaran yaitu data Jumlah Kendaraan yang terdeteksi dan kondisi ruas jalan sudah melewati batas kemacetan atau belum. Arduino Uno akan mengatur waktu lampu lalu lintas menyala berdasarkan masukan dari sistem.

.

Studi Literatur Penenlitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya	Tahun	Keterangan	Perbedaan Dengan Judul PA
	Ilmiah			Yang Akan Diangkat
1.	Rancang Bangun Lampu	2017	Dalam Penelitian ini penulis	Berbeda dengan Penelitian [1]
	Lalu Lintas Otomatis		merancang suatu sistem lampu	tidak melakukan perhitungan
	Berdasarkan Panjang		lalu lintas berbasis Pengolahan	jumlah kendaraan yang
	Antrian Kendaraan Berbasis		citra digital. Dimana pada	terdektsi dan pada penelitian ini
	Pengolahan Citra Digital.		rancangan ini lampu lalu lintas	melakukan perhitungan jumlah
	[1]		diatur berdasarkan panjang	kendaraan yang terdeteksi.
			antrian kendaraan yang dilihat	
			dari garis batas kemacetan. Pada	
			penelitian ini Dapat	
			mengintegrasikan antara	

			software visual studio dengan prototype lampu lalu lintas.	
2.	Implementasi Pengolahan Citra Dengan Metode Histogram Of Oriented Gradient (HOG) Untuk Pengaturan Waktu Pada Traffic Light Berdasarkan Deteksi Kepadatan Kendaraan. [2]	2017	Dalam Penelitian ini penulis membuat sistem pengatur waktu pada lampu lalu lintas berdasarkan deteksi kepadatan Kendaraan. Disini penulis menggunakan metode Histogram Of Oriented (HOG) untuk menentukan tingkat kepadatan yang terjadi di persimpangan dan menentukan waktu traffic light.	Berbeda dengan Penelitian [2] menggunakan metode HOG dari hasil pencacahan video untuk menentukan kepadatan yang terjadi. Pada penelitian ini untuk menentukan kepadatan suatu jalan membutuhkan garis batas kemacetan (garis tepi) yang diletakkan pada pinggir jalan.
3.	Sistem Pengaturan Lampu Lalu Lintas Berdasarkan Estimasi Panjang Antrian Menggunakan Pengolahan Citra. [3]	2017	pengatur lampu lalu lintas berdasarkan estimasi panjang antrian menggunakan pengolahan citra. Untuk mengatur panjang antrian pada persimpangan yang diukur menggunakan kamera dan diubah menggunakan pengolahan citra digital serta dihitung menggunakan logika Fuzzy.	Berbeda dengan Penelitian [3] tidak melakukan perhitungan jumlah kendaraan yang terdektsi dan pada penelitian ini akan melakukan perhitungan jumlah kendaraan otomatis yang terdeteksi.
4.	Simulasi dan Analisis Sistem Smart Traffic Light Berbasis Pengolahan Citra Digital Dengan Metode Deteksi Tepi dan Segmentasi. [4]	2016	Dalam Penelitian ini penulis melakukan simulasi dan analisis lampu lalu lintas berbasis pengolahan citra digital dimana menggunakan metode deteksi tepi dan segmentasi. Penulis mengembangkan sistem lampu lalu lintas yang bisa mendeteksi ruas mana yang memiliki antrian paling panjang pada persimpangan jalan.	Berbeda dengan Penelitian [4] tidak melakukan perhitungan jumlah kendaraan yang terdeteksi dan pada penelitian ini akan melakukan perhitungan jumlah kendaraan otomatis yang terdeteksi.
5.	Kontrol Traffic Light Otomatis Berbasis Image Processing. [5]	2017	Dalam Penelitian ini penulis merancang suatu sistem dimana Data gambar yang telah didapat dari kamera kemudian diolah menggunakan metode pengolahan citra dengan teknik pengurangan citra. Berdasarkan jumlah piksel putih yang telah didapat tersebut, maka dapat	Berbeda dengan Penelitian [5] tidak melakukan perhitungan jumlah kendaraan yang terdektsi dan pada penelitian ini akan melakukan perhitungan jumlah kendaraan otomatis yang terdeteksi.

			diketahui persentase panjang antrian kendaraan dan kepadatan kendaraan. Data persentase yang telah didapat, kemudian dikirim ke mikrokontroler agar dapat mengontrol durasi nyala lampu hijau pada lampu lalu lintas sesuai dengan panjang antrian dan kepadatan kendaraan.	
6.	Desain Sistem Pengatur Lampu Lalu Lintas Dengan Identifikasi Kepadatan Kendaraan Menggunakan Metode Subtraction. [6]	2018	Dalam Penenlitian ini, penulis Menggunakan Metode Subtraction yaitu Teknik ini membandingkan citra objek dengan citra referensi sehingga dapat diketahui jumlah piksel putih pada citra hasil pengurangan citra.	Berbeda dengan Penelitian [6] tidak melakukan perhitungan jumlah kendaraan yang terdektsi dan pada penelitian ini akan melakukan perhitungan jumlah kendaraan otomatis yang terdeteksi.
7.	Sistem Pengatur Lampu Lalu Lintas Menggunakan Image Processing. [7]	2016	Dalam melakukan penelitian ini, penulis menggunakan prototype dengan komputer mini Raspberry Pi. Dirancang dengan bahasa pemrograman Python dan sebagai pustaka tambahan menggunakan OpenCV sebagai pengolahan citra digital.	Berbeda dengan Penelitian [7] menggunakan <i>Raspberry Pi</i> untuk melakukan pengolahan citra. Pada penelitian ini akan menggunakan matlab dalam melakukan proses pengolahan Citra serta arduino dalam pengontrolan lampu lalu lintas.

Rancangan Sistem

Pada perancangan sistem, Cara kerja sistem yaitu kamera webcam dipasang untuk mengambil gambar pada persimpangan dan hasil tersebut menjadi masukan untuk system. Masukan tersebut lalu melewati preprocesing yang diawali dengan gambar berformat RGB diubah ke Grayscale. Lalu dari gambar Grayscale tersebut dikonversi lagi ke format black and white. Gambar black and white tersebut kemudian melalui proses dilasi. Setelah itu kendaraan yang terdeksi akan terhitung. Langkah selanjutnya setelah preprocessing yaitu menentukan objek mana yang dideteksi sebagai mobil setelah objek dapat terdeteksi dicari apakah titik tengah objek sudah melewati batas kemacetan. Dari setiap ruas jalan akan dibandingkan dan hasilnya akan menjadi masukan untuk Arduino Uno yang selanjutnya akan ditentukan waktu lampu lalu lintas menyala.

Gambar 1. Model Sistem Perancangan Sistem

- [1] Utama, Rian Prasetya. 2017. Rancang Bangun Lampu Lalu Lintas Otomatis Berdasarkan Panjang Antrian Kendaraan Berbasis Pengolahan Citra Digital[TA]. Bandung(ID): Telkom University.
- [2] Fibriliyanti, Yanita, Faradila, Lusi Risky, dan Taqwa, Ahmad. 2017.
 Implementasi Pengolahan Citra Dengan Metode *Histogram Of Oriented Gradient*(HOG) Untuk Pengaturan Waktu Pada *Traffic Light* Berdasarkan Deteksi
 Kepadatan Kendaraan. Jawa Tengah: Universitas Maria Kudus.
- [3] Adzikirani, Asmara, Rosa Andrie, dan P.A., Dedi Kusbianto. 2017. Sistem Pengaturan Lampu Lalu Lintas Berdasarkan Estimasi Panjang Antrian Menggunakan Pengolahan Citra. Jurnal Informatika Polinema. 3(3): 20-26.
- [4] Priutomo, Danding Adhi, Magdalena, Rita, dan Andini, Nur. 2016. Simulasi dan Analisis Sistem *Smart Traffic Light* Berbasis Pengolahan Citra Digital Dengan Metode Deteksi Tepi dan Segmentasi. *eProceedings of Engineering*. 3(1): 478-485.
- [5] Djavendra, Geminiesty Lathifasari. 2017. Kontrol *Traffic Light* Otomatis Berbasis *Image Processing*[TA]. Batam: Politeknik Negeri Batam.
- [6] Djavendra, Geminiesty Lathifasari, Aisyah, Siti, Jamzuri, Eko Rudiawan. 2018. Desain Sistem Pengatur Lampu Lalu Lintas Dengan Identifikasi Kepadatan Kendaraan Menggunakan Metode *Subtraction*. Jurnal Nasional Teknik Elektro. 7(2). 130-137.
- [7] Hidayat, Muhammad Taufiq. 2016. Sistem Pengatur Lampu Lalu Lintas Menggunakan *Image Processing*[Skripsi]. Makassar(ID) : UIN Alauddin Makassar.

Form Kesediaan Membimbing Proyek Akhir

Tanggal: 27 Februari 2021

Kami yang bertanda tangan dibawah in i:

CALON PEMBIMBING 1

Kode : IDI

Nama : Indrarini Dyah Irawati, S.T., M.T.

CALON PEMBIMBING 2

Kode : DUM

Nama : Dadan Nur Ramadan, S.Pd., M.T.

Menyatakan bersedia menjadi dosen p embimbing Proyek Akhir bagi mahasiswa berikut,

NIM : 6705184136

Nama : Grace Nita Laananila

Prodi / Peminatan : D3TT/

Calon Judul PA : Smart Traffic Monitoring & Control Berbasis Pengolahan Citra Digital

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Akhir yang berlaku.

Calon Pembimbing 1

Dr. Indrarini Dyah Irawati

Calon Pembimbing 2

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl. Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

Daftar Nilai Hasil Studi Mahasiswa

NIM (Nomor Induk Mahasiswa) : 6705184136 Dosen Wali : TAR / TENGKU AHMAD RIZA Program Studi : D3 Teknologi Telekomunikasi

Nama : GRACE NITA LAANANILA

2018/2019 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	AB	
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	С	
DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ	
DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	AB	
DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ	
DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	В	
DUH1A2	LITERASI TIK	ICT LITERACY	2	А	
HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	АВ	
	Jumlah SKS				
	IPS				

2018/2019 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1A2	OLAH RAGA	SPORT	2	А	
	Jumlah SKS				
	IPS				

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	С	
DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	AB	
DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	С	
DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	В	
DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	ВС	
HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	АВ	
LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	AB	
	Jumlah SKS				
	IPS				

2018/2019 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
	Jumlah SKS				
	IPS				

2019/2020 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	AB	
DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	AB	
DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	AB	
DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ	
DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	ВС	
DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	С	
DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	ВС	
	Jumlah SKS				
	IPS				

2019/2020 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А	
DMH2A2	KERJA PRAKTEK	INTERSHIP	2	Α	
DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	ВС	
DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	А	
DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB	
DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB	
DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	АВ	
DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	В	
	Jumlah SKS				
	IPS				

2019/2020 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
	Jumlah SKS				
	IPS				

2020/2021 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	AB	
UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	А	
UWI3E1	HEI	HEI	1	А	
VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	AB	
VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	А	
VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	AB	
VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	А	
	Jumlah SKS				
	IPS				

2020/2021 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
VPI3GC	MAGANG	APPRENTICE	12		
VTI3F4	PROYEK AKHIR	FINAL PROJECT	4		
	Jumlah SKS				
	IPS				

Jumlah SKS	: 96 SKS		IPK: 3.24	
Tingkat III	: 96 SKS	Belum Lulus	IPK: 3.24	
Tingkat II	: 88 SKS	Belum Lulus	IPK: 3.19	
Tingkat I	: 41 SKS	Lulus tanggal 17-07-2019	IPK: 3.09	

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 01 Maret 2021 14:44:46 oleh GRACE NITA LAANANILA