Literature Survey Report (Final Project)

S. N o.	Yea r	Author(s)	Paper Title	Methodolo gy Used	Dataset / Domain	Key Findings	Limitations
1	202 5	Fotovvatik hah, F.; Ahmedy, I.; Noor, R.M.; Munir, M.U.	A Systemati c Review of AI- Based Technique s for Automate d Waste Classificat ion	Systematic Literature Review (Kitchenha m & PRISMA guidelines)	Public datasets (TrashNet , TACO, Open Litter Map, etc.)	Deep learning and hybrid models outperfor m traditional ML; roadmap for AI in waste manageme nt	Dataset imbalance, variability, lack of standardizat ion, high computation al cost
2	5	Langley, A.; Lonergan, M.; Huang, T.; Rahimi Azghadi, M.	Analyzing Mixed Constructi on and Demolitio n Waste in Material Recovery Facilities	Review of DL methods (YOLO, Mask R-CNN, Transform ers)	Construct ion & Demolitio n Waste datasets (CODD, ZeroWast e, SODA, synthetic datasets)	DL shows strong results; segmentati on + sensors promising for real- time MRFs	Lack of diverse datasets, poor generalizati on to contaminate d waste, sensor degradation
3	202	Shubham Kumar, Ramesh Kumar	Waste Classificat ion for Sustainabl e Developm ent Using AI and Machine Learning	CNN, Transfer Learning, Hybrid ML Models	TrashNet Dataset & Real-time Waste Images	Proposed hybrid CNN classifier with >90% accuracy; AI crucial for SDGs	Small dataset size, lacks real- world heterogeneo us waste testing
4	202	M. Gupta, R. Mehra	Waste Classificat ion Using Artificial Intelligenc e	Deep CNN + Image Preprocess ing	TrashNet Dataset (6 categories)	Achieved ~92% accuracy; demonstra ted AI feasibility in smart bins	Limited generalizati on; dataset imbalance; needs deployment validation

5	202	Kaggle	Garbage	Image	~15,000	Provides a	Dataset is
	3	Contributor	Classificat	Dataset	labeled	large,	imbalanced
		: Sumanth	ion v2	(Pre-	images	diverse	across
		N.	Dataset	collected &	across 12	dataset for	classes; no
				Annotated)	categorie	training	real-
					s of waste	deep	time/stream
					(cardboar	learning	ing data;
					d, glass,	models in	limited to
					paper,	waste	static
					metal,	classificati	images
					plastic,	on;	without
					trash,	improves	contextual
					clothes,	generalizat	environmen
					shoes,	ion	t
					batteries,	compared	
					biological,	to smaller	
					etc.)	datasets	
						like	
						TrashNet	