EE210: Microelectronics-I

Lecture-32: Differential Amplifiers_4

Instructor - Y. S. Chauhan

Slides - B. Mazhari Dept. of EE, IIT Kanpur

$$A_V < \frac{I_{CQ}R_C}{V_T}$$

$$|A_V| = \frac{1}{V_T} \times \frac{V_{AN} \times V_{AP}}{V_{AN} + V_{AP}}$$

Differential Amplifier with Active Load

Differential amplifier with current mirror load

Bias point is stable, high differential gain and low common mode gain are obtained in this circuit

Note that Q1 & Q2 are matched and Q3 &Q4 are matched

Example

$$\beta_n = \beta_p = 100$$

Bias point is much less sensitive!

Differential Mode Analysis

Norton's Current

$$i_N = -0.5g_m v_{id} - -0.5g_m v_{id}$$
$$= -g_m v_{id}$$

$$R \cong \frac{(R_C + r_o)(R_B + r_{\pi})}{R_B + r_{\pi} + R_C + r_o + \beta r_o}$$

Norton's Resistance

G-Number

$$i_{x2} = \frac{v_x}{2r_{o2}}$$

$$i_{x4} = i_{x2} + \frac{v_x}{r_{o4}}$$

$$\frac{1}{R_N} = \frac{i_X}{v_X} = \frac{i_{X2}}{v_X} + \frac{i_{X4}}{v_X} = \frac{1}{r_{o2}} + \frac{1}{r_{o4}}$$

Differential Mode Analysis

$$i_N = -g_m v_{id}$$

$$R_N = r_{o2} || r_{o4}$$

$$A_{dm} = \frac{v_o}{v_{id}} = -\frac{i_N \times R_N}{v_{id}} = g_{m1} \times r_{o2} \| r_{o4} \|$$

$$R_O = r_{o2} || r_{o4}$$

$$A_{dm} = \frac{v_{o2}}{v_{id}} = 0.5g_m \times r_{o2} \| r_{o4} \|$$

Common Mode Analysis

$$\frac{v_{c1}}{v_{ic}} = -\frac{g_{m1} \times \frac{1}{g_{m3}}}{1 + 2g_{m1}r_{O5}}$$

$$\approx -\frac{1}{2g_{m1}r_{O5}}$$

$$v_{c1} \cong -\frac{v_{ic}}{2g_{m1}r_{O5}}$$

$$\frac{v_O}{v_i} = -g_m \times R_C \| r_O \|$$

$$\frac{v_O}{v_i} = -g_m \times R_C \| r_O \qquad \frac{v_O}{v_i} = -g_m \times R_C \| r_O$$

$$\frac{v_o}{v_{c1}} = -g_{m4} \times r_{o4} \| r_{down}$$
$$\approx -g_{m4} \times r_{o4}$$

$$\frac{v_o}{v_{c1}} = -g_{m4} \times r_{o4} \| r_{down}$$

$$\approx -g_{m4} \times r_{o4}$$

$$\frac{v_o}{v_{ic}} = -\frac{g_{m2}}{1 + g_{m2} \times 2r_{o5}} \times r_{o4} \| r_{down}$$

$$\approx -\frac{r_{o4}}{2r_{o5}}$$

$$v_{c1} \cong -\frac{v_{ic}}{2g_{m1}r_{O5}}$$

$$v_{o} \cong -v_{ic} \times \frac{r_{o4}}{2r_{o5}} - v_{c1} \times g_{m4} \times r_{o4}$$

$$\cong -v_{ic} \times \frac{r_{o4}}{2r_{o5}} + v_{c1} \times g_{m4} \times \frac{r_{o4}}{2r_{o5}} = 0$$

More accurate calculations are needed but common mode gain is expected to be quite small

Example

$$v_{c1} \cong -\frac{v_{ic}}{2g_{m1}r_{O5}} = -0.13mV$$

$$A_{cm} = .01$$

Common Mode gain is much higher!

Summary

$$i_N = -g_m v_{id}$$

$$R_N = r_{o2} || r_{o4}$$

$$A_{dm} = \frac{v_o}{v_{id}} = -i_N \times R_N = g_{m1} \times r_{o2} \| r_{o4} \|$$

$$R_O = r_{o2} || r_{o4}$$

$$A_{cm} =$$

Example

Bias Point

$$I_{EE} = 2mA$$

$$I_{CQ1} = I_{CQ2} = 1mA$$

$$g_{m1} = 38.46m\Box \; ; \; r_{o2} = 100k\Omega$$

$$r_{o5} = 50k\Omega$$

$$A_{dm} = -1.9 \times 10^{3} \; ; \; R_{id} = 5.2K\Omega$$

$$A_{cm} = -10^{-2} \; ; \; R_{ic} = 1.14M\Omega$$

$$CMRR = 1.9 \times 10^{5} = 105.5dB$$
From simulation

The difference a single wire can make!

Additional bias source and sensitive Q-point

$$A_{dm} = 0.5g_{m1} \times r_{o2} || r_{o4}$$

$$A_{cm} \cong -\frac{r_{o3}}{2r_{O5}}$$

Stable bias point

$$A_{dm} = g_{m1} \times r_{o2} || r_{o4}$$

$$A_{cm} \cong$$
 much smaller

General Large Signal Analysis

$$I_{EE} \cong I_{C1} + I_{C2}$$

$$I_{C1} = A \times J_S \times \exp(\frac{V_{BE1}}{V_T})$$

$$I_{C2} = A \times J_S \times \exp(\frac{V_{BE2}}{V_T})$$

$$V_{in1} - V_{BE1} - V_{EB2} - V_{in2} = 0$$

 $V_{BE1} - V_{BE2} = V_{in1} - V_{in2}$

$$I_{C1} = I_{EE} \times \frac{\exp(V_{id}/V_T)}{1 + \exp(V_{id}/V_T)}$$
; $I_{C2} = I_{EE} \times \frac{1}{1 + \exp(V_{id}/V_T)}$

Current I_{EE} switches between the two transistors

Current Switching

How low can the output go?

Poor Negative Swing

Negative Swing

Swing is perfect!

