CSCI 5622 Fall 2020

Prof. Claire Monteleoni

Today

- Discriminative learning II
 - Logistic regression
 - Empirical risk minimization
 - Regularization
 - Support vector machines (SVM)

with much credit to S. Dasgupta and T. Jaakkola

Decision boundary

Probability predictions

 The model also permits us to evaluate probabilities over the possible class labels such as

$$P(y=1|\underline{x};\hat{\theta}) = \frac{P(\underline{x},y=1;\hat{\theta})}{\sum_{y'\in\{-1,1\}} P(\underline{x},y';\hat{\theta})}$$

Data in \mathbb{R}^d , with labels $\{+1, -1\}$

What model do we use for P(y|x)?

Recall: for Gaussian classes with common covariance,

$$\log \frac{P(y=+1|x)}{P(y=-1|x)} = w \cdot x + b$$

Use b = 0 for convenience (we'll put it in later – or else add an extra feature to each x)

Rearranging,
$$P(y|x) = \frac{1}{1 + e^{-y(w \cdot x)}}$$

This is the <u>logistic regression</u> model

Logistic function

$$P(y|x) = \frac{1}{1 + e^{-y(w \cdot x)}}$$

Convert linear function (w . x) into probability values via the <u>Logistic function</u>, g:

Notation: let $\theta = w$, $\theta_0 = b$, and g is the logistic function. The logistic regression (probabilistic) classifier is

$$P(y|\mathbf{x}, \theta, \theta_0) = g\left(y(\theta^T\mathbf{x} + \theta_0)\right)$$

To learn this model from data, we want to choose parameters to maximize this probability. For a labeled, i.i.d. training set of size n, maximize (conditional) log-likelihood: n

$$L(\theta, \theta_0) = \prod_{t=1} P(y_t | \mathbf{x}_t, \theta, \theta_0)$$

We compute with logs for simplicity: $I(\theta,\theta_0) =$

$$= \log \prod_{t=1}^{n} P(y_t | \mathbf{x}_t, \theta, \theta_0) = \sum_{t=1}^{n} \log P(y_t | \mathbf{x}_t, \theta, \theta_0)$$

And we will actually *minimize* the negative log-likelihood: $-I(\theta,\theta_0)$.

$$-l(\theta, \theta_0) = \sum_{t=1}^{n} \underbrace{-\log P(y_t | \mathbf{x}_t, \theta, \theta_0)}^{\text{log-loss}}$$

$$-l(\theta, \theta_0) = \sum_{t=1}^{n} \underbrace{-\log P(y_t | \mathbf{x}_t, \theta, \theta_0)}^{\log - \log P(y_t | \mathbf{x}_t, \theta, \theta_0)}$$

$$= \sum_{t=1}^{n} -\log g(y_t(\theta^T \mathbf{x}_t + \theta_0))$$

$$= \sum_{t=1}^{n} \log [1 + \exp(-y_t(\theta^T \mathbf{x}_t + \theta_0))]$$

This is a convex objective function, so min value is unique.

Can minimize it iteratively, using (stochastic) gradient descent

Stochastic gradient descent:

- Choose a random example from the training set (x_t, y_t)
- For each parameter take a step in the opposite direction from the derivative at (x_t, y_t) . [partial deriv. w.r.t. θ , θ_0]

$$\theta_0 \leftarrow \theta_0 + \eta \cdot y_t [1 - P(y_t | \mathbf{x}_t, \theta, \theta_0)]$$

$$\theta \leftarrow \theta + \eta \cdot y_t \mathbf{x}_t [1 - P(y_t | \mathbf{x}_t, \theta, \theta_0)]$$

- The learning rate η governs step-size.
- [Note: Similar to Perceptron, but updates take into account probability of making a mistake.]

Regularization

- Simpler classifiers tend to have better generalization properties. So to reduce overfitting, add a regularization term.
- Also known as a complexity penalty on θ .
- For regularized logistic regression, minimize:

$$\frac{\lambda}{2} \|\theta\|^2 + \sum_{t=1}^n \log \left[1 + \exp\left(-y_t(\theta^T \mathbf{x}_t + \theta_0)\right) \right]$$

 λ , the regularization constant, manages this trade-off.

Empirical Risk Minimization

Methods that output a classifier by optimizing an objective of the form:

$$\hat{\theta} = \arg\min_{\theta} \lambda \cdot \text{Complexity}(\theta) + \frac{1}{n} \sum_{t=1}^{n} \text{Loss}(\theta, (x_t, y_t))$$

are a class of ML algorithms known as (regularized) Empirical Risk Minimization (ERM).

First term is known as Regularizer, second term as Empirical Risk (or Empirical Loss).

Empirical Risk Minimization

Widely-used (regularized) ERM methods:

- Logistic Regression
- Support Vector Machine (SVM)
 - We will motivate SVM with large margin classification.

maximize γ_g subject to

To find
$$\underline{\theta}^*$$
: $\frac{y_i(\underline{\theta} \cdot \underline{x}_i)}{\|\underline{\theta}\|} \ge \gamma_g, \quad i = 1, \dots, n$

To find
$$\underline{\theta}^*$$
:

maximize
$$\frac{1}{\|\underline{\theta}\|}$$
 subject to
$$\frac{y_i(\underline{\theta} \cdot \underline{x}_i)}{\|\underline{\theta}\|} \ge \frac{1}{\|\underline{\theta}\|}, \quad i = 1, \dots, n$$

To find
$$\underline{\theta}^*$$
: $\max_{\underline{\theta}} \frac{1}{\|\underline{\theta}\|}$ subject to $y_i(\underline{\theta} \cdot \underline{x}_i) \geq 1, \quad i = 1, \dots, n$

To find
$$\underline{\theta}^*$$
: minimize $\|\underline{\theta}\|$ subject to $y_i(\underline{\theta} \cdot \underline{x}_i) \geq 1, \quad i = 1, \dots, n$

- This is a quadratic programming problem (quadratic objective, linear constraints)
- The solution is unique, typically obtained in the dual

Sparse solution

The solution in **sparse** in two ways:

- 1) The number of support vectors is small
- 2) The resulting $\underline{\theta}^*$ vector will have small L-2 norm
 - usually just a few parameters with values significantly > 0.

Is sparse solution good?

 We can simulate test performance by evaluating Leave-One-Out Cross-Validation error

$$LOOCV(\underline{\theta}^*) \le \frac{\# \text{ of support vectors}}{n}$$

Linear classifiers (with offset)

•A linear classifier with parameters $(\underline{\theta}, \theta_0)$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{x} + \theta_0)$$

$$= \begin{cases} +1, & \text{if } \underline{\theta} \cdot \underline{x} + \theta_0 > 0 \\ -1, & \text{if } \underline{\theta} \cdot \underline{x} + \theta_0 \le 0 \end{cases}$$

To find
$$\underline{\theta}^*, \theta_0^*$$
: minimize $\frac{1}{2} ||\underline{\theta}||^2$ subject to $y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \ge 1, \quad i = 1, \dots, n$

 Still a quadratic programming problem (quadratic objective, linear constraints)

The impact of offset

 Adding the offset parameter to the linear classifier can substantially increase the margin

Support vector machine (version so far)

- Several desirable properties
 - maximizes the margin on the training set (pprox good generalization)
 - the solution is unique and sparse (\approx good generalization)

But...

- the solution is sensitive to outliers, and labeling errors, as they may drastically change the resulting max-margin boundary
- if the training set is not linearly separable, there's no solution!

Relaxed quadratic optimization problem

penalty for constraint violation

minimize
$$\frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^n \xi_i$$
 subject to $y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \geq 1 - \xi_i, \quad i = 1, \dots, n$ $\xi_i \geq 0, \quad i = 1, \dots, n$ slack variables permit us to violate some of the margin constraints

Relaxed quadratic optimization problem

penalty for constraint violation

minimize
$$\frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^{n} \xi_i$$
 subject to $y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \geq 1 - \xi_i, i = 1, \dots, n$ $\xi_i \geq 0, i = 1, \dots, n$

large $C \Rightarrow$ few (if any) violations small $C \Rightarrow$ many violations slack variables
permit us to violate
some of the margin
constraints

Relaxed quadratic optimization problem

penalty for constraint violation

minimize
$$\frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^n \xi_i$$
 subject to $y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \geq 1 - \xi_i, i = 1, \dots, n$ $\xi_i \geq 0, i = 1, \dots, n$

large $C \Rightarrow$ few (if any) violations small $C \Rightarrow$ many violations slack variables
permit us to violate
some of the margin
constraints

we can still interpret the margin as $1/\|\underline{\theta}^*\|$

Soft-margin SVM

- We relaxed the optimization problem by adding slack variables
- So not all the constraints need to be met
- The solution therefore need not:
 - Classify all training points with a margin
 - Correctly classify all training points
- The margin is still the region within $\frac{1}{||\underline{\theta}^*||}$ of the decision boundary

Relaxed quadratic optimization problem

$$\min \frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^n \xi_i \text{ subject to}$$

$$y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \geq 1 - \xi_i, \quad i = 1, \dots, n$$

$$\xi_i \geq 0, \quad i = 1, \dots, n$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = 1$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = 0$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = -1$$

Support vectors and slack

The solution now has three types of support vectors

$$\min \frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^n \xi_i \quad \text{subject to}$$

$$y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \geq 1 - \xi_i, \quad i = 1, \dots, n$$

$$\xi_i \geq 0, \quad i = 1, \dots, n$$

$$\xi_i \geq 0, \quad i = 1, \dots, n$$

$$\xi_i = 0 \quad \text{constraint is tight and there's no slack}$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = 1$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = 0$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = -1$$

Support vectors and slack

The solution now has three types of support vectors

$$\min \min \frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^n \xi_i \text{ subject to}$$

$$y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \geq 1 - \xi_i, \quad i = 1, \dots, n$$

$$\xi_i \geq 0, \quad i = 1, \dots, n$$

$$\xi_i \geq 0, \quad i = 1, \dots, n$$

$$\xi_i = 0 \text{ constraint is tight but there's no slack}$$

$$\xi_i \in (0, 1) \text{ non-zero slack but the point is classified correctly}$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = 1$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = -1$$

Support vectors and slack

The solution now has three types of support vectors

$$\min \operatorname{minimize} \ \frac{1}{2} \|\underline{\theta}\|^2 \ + \ C \sum_{i=1}^n \xi_i \ \operatorname{subject to}$$

$$y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \ \geq \ 1 - \xi_i, \ i = 1, \dots, n$$

$$\xi_i \ \geq \ 0, \ i = 1, \dots, n$$

$$\xi_i = 0 \ \text{constraint is tight but there's no slack}$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = 1 \ \underline{\theta}^* \cdot \underline{x} + \theta_0^* = 0$$

$$\underline{\theta}^* \cdot \underline{x} + \theta_0^* = -1$$

• C=100

• C=10

• C= I

• C=0.1

 C potentially affects the solution even in the separable case

 C potentially affects the solution even in the separable case

• C = 0.1

 C potentially affects the solution even in the separable case

 \bullet C = 0.01

