Projektowanie Efektownych Algorytmów Projekt 19/12/2023

259113 Hubert Belkot

(4) Simulated Annealing

Spis streści	strona
Sformułowanie zadania	2
Metoda	3
Algorytm	4
Dane testowe	6
Procedura badawcza	7
Wyniki	9
Analiza wyników	17

1. Sformulowanie Zadania

Zadanie polega na rozwiązaniu problemu komiwojażera, polegającego na znalezieniu najkrótszej trasy, odwiedzającej wszystkie miasta dokładnie raz, uwzględniając powrót do miasta początkowego. Problem należy rozwiązać z wykorzystaniem algorytmu symulowanego wyżarzania (simulated annealing). Należy opracować, zaimplementować oraz zbadać efektywność algorytmu. Zbadać również wpływ wyboru wartości zmiennych początkowych, takich jak schemat chłodzenia, długość epoki, oraz wybór rozwiązania w sąsiedztwie, na działanie algorytmu. W ramach zadania należy przedstawić i opisać etapy realizacji projektu i wyciągnąć wnioski z uzyskanych pomiarów.

2. Metoda

Algorytm symulowanego wyżarzania, inspirowany procesem wyżarzania metalu, czyli nagrzany metal jest stopniowo schładzany, co pozwala ustabilizować jego strukturę. W algorytmie mamy podobny proces, występuje tu parametr sterujący będący odpowiednikiem temperatury, który maleje w trakcie wykonywania algorytmu. Im wyższą wartość ma ten parametr, tym bardziej chaotyczne mogą być zmiany. Dzięki zmianie parametrów początkowych, będziemy badać wyniki i ich wpływ na jakoś algorytmu.

3. Algorytm

Rysunek 1: Algorytm symulowanego wyżarzania

Wybranie pierwszej ścieżki było pseudolosowe. Lista liczb całkowitych została wypełniona została wypełniona wierzchołkami od 1 do N-1, aby zamienić ze sobą losowo wybrane indeksy N-razy

Prawdopodobieństwo przyjęcia gorszego rozwiązania odbywało się na podstawie wzoru:

$$P = \exp\left(-\frac{(nowyKoszt) - (staryKoszt)}{temperatura}\right)$$

Wzór 1: Prawdopodobieństwo przyjęcia gorszego rozwiązania.

3.1: Wybór temperatury.

Wybór zmniejszania temperatury odbywał się na dwa sposoby:

- Pierwszym sposobem był schemat geometryczny, który zmniejszał temperaturę obliczając iloczyn starej temperatury oraz współczynnika alpha, który był w zakresie (0;1).

```
Odwołania:0
static double NewTempGeometric(double oldTemp, double alpha)
{
   return oldTemp * alpha;
}
```

Rysunek 2: Geometryczne zmniejszenie temperatury

- Drugim sposobem było wykorzystanie chłodzenia logarytmicznego. Nowa temperatura była wynikiem aktualnej temperatury podzielonej przez logarytm z liczby wykonanych kroków.

```
1 odwołanie
static double NewTempLog(double oldTemp, int n)
{
    return oldTemp / Math.Log(n);
}
```

Rysunek 3: Logarytmiczne zmniejszanie temperatury.

3.2 Metody przeglądania sąsiedztwa

Metoda typu "Swap", polegała na wylosowaniu dwóch losowych indeksów z mieszczących się w liście, a następnie zamianie miejscami wierzchołków z wylosowanych wcześniej miejsc. Warunkiem było wylosowanie dwóch różnych indeksów.

Druga metoda "Invert", polegała na odwróceniu kolejności losowego fragmentu aktualnej ścieżki. Tak jak w poprzedniej metodzie, losowaliśmy dwa indeksy, w zakresie naszej listy, które były różne oraz w zakresie tych indeksów wykonywaliśmy odwrócenie ścieżki.

4. Dane testowe

Do sprawdzenia poprawności algorytmu zostały użyte instancje (z ich wartością optymalną):

- tsp_6_1.txt, 132
- tsp_6_2.txt, 80
- tsp_10.txt, 212

Do zbadania złożoności czasowej algorytmu, zostały użyte poniższe instancje. Pierwsze instancje, służą do porównania algorytmu symulowanego wyżarzania z algorytmem HeldKarp'a oraz BruteForce'a.

- tsp_6_1.txt
- tsp_6_2.txt
- tsp_10.txt
- tsp_12.txt
- tsp_13.txt
- tsp_14.txt
- tsp_15.txt
- gr17.tsp.txt
- gr21.tsp.txt
- gr48.txt
- gr96.txt
- gr120.txt
- gr137.txt
- gr202.txt
- gr229.txt
- gr431.txt

Ze źródeł:

- http://jaroslaw.mierzwa.staff.iiar.pwr.wroc.pl/pea-stud/tsp/
- Teaching (uni-heidelberg.de)

5. Procedura badawcza

Należało zbadać wpływ parametrów algorytmu, takich jak, długość epoki, temperatura minimalna, schemat chłodzenia, oraz metodę wyboru rozwiązania w sąsiedztwie, na jakość rozwiązania i czas działania algorytmu.

Do tego został przygotowany plik tsp.ini (format_pliku: nazwa_instancji liczba_wykonań rozwiązanie optymalne [ścieżka_optymalna] nazwa_pliku.csv).

```
tsp_6_1.txt 5 132 [0 1 2 3 4 5 0]
tsp 6 2.txt 5 80 [0 5 1 2 3 4 0]
tsp_10.txt 5 212 [0 3 4 2 8 7 6 9 1 5 0]
tsp 12.txt 5 264 [0 1 8 4 6 2 11 9 7 5 3 10 0]
tsp_13.txt 5 269 [0 10 3 5 7 9 11 2 6 4 8 1 12 0]
tsp_14.txt 5 282 [0 10 3 5 7 9 13 11 2 6 4 8 1 12 0]
tsp_15.txt 5 291 [0 10 3 5 7 9 13 11 2 6 4 8 14 1 12 0 ]
gr17.tsp.txt 5 2085 [0 15 11 8 4 1 9 10 2 14 13 16 5 7 6 12 3]
gr21.tsp.txt 5 2707 [ 0 6 7 5 15 4 8 2 1 20 14 13 12 17 9 16 18 19 10 3 11 0 ]
gr48.txt 5 5046 [?]
gr96.txt 3 55209 [?]
gr120.txt 3 6942 [?]
gr137.txt 3 69853 [?]
gr202.txt 3 40160 [?]
gr229.txt 3 134602 [?]
gr431.txt 3 171414 [?]
outTest.csv
```

Każda instancja rozwiązywana była zgodnie z przyjętą liczbą jej wykonań, dla przykłądu tsp_10.txt została wykonana 5 razy. Do pliku wyjściowego był zapisywany: jako nagłówek, dane odczytywane z pliku .init dla konkretnej instancji, pod spodem czas wykonania [ms], optymalne rozwiązanie oraz ścieżka. Poniżej fragment pliku wyjściowego zapisanego w formacie .csv dla tsp_10.txt:

```
tsp_10.txt 5 212 [03428769150]

1562 212 [0084175932600]

1575 212 [0054682139700]

1530 212 [0042368159700]

1528 212 [0021853796400]

1512 212 [0025386941700]
```

Temperatura początkowa była obliczana dla każdej instancji na podstawie kosztu początkowego rozwiązania pomnożonego przez współczynnik alpha. Współczynnik alpha uwzględniany w schemacie chłodzenia geometrycznego był zawsze równy 0,9999. Czas mierzono w milisekundach po każdym wykonaniu się instancji, a następnie wyciągano średnią z każdego pomiaru dla danej instancji.

Wykonane zostało 5 badań mających wpływ na jakość i czas wykonywania rozwiązania:

- 1) Wpływ wyboru temperatury minimalnej Zbadane zostały trzy przypadki, temperatury minimalnej tj: 10⁻¹⁰, 10⁻¹⁵, 10⁻²⁰. Została zastosowana długość epoki równa 10 oraz sposób chłodzenia geometrycznego. Zastosowano tutaj metodę rozwiązania zamiany sąsiedztwa typu "swap".
- 2) Wpływ wyboru schematu chłodzenia Przebadany został wpływ zastosowania chłodzenia geometrycznego oraz logarytmicznego. Dla chłodzenia logarytmicznego długość epoki była równa N*7500, gdzie N jest liczbą wierzchołków instancji, dla chłodzenia geometrycznego pozostała wartość epoki 10. Zastosowano tutaj metodę rozwiązania zamiany sąsiedztwa typu "swap".
- 3) Wpływ długości epoki Przebadane wpływu długości epoki dla chłodzenia geometrycznego oraz logarytmicznego przebadano po trzy przypadki długości epoki: 10,15 i 20. Z wykorzystaniem schematu geometrycznego, oraz długość epoki N*1500, N*7500 i N*15000, gdzie N jest liczbą wierzchołków instancji, dla schematu logarytmicznego. Wykorzystana metoda rozwiązania w sąsiedztwie pozostałą metodą typu "swap".
- 4) Wpływ wyboru metody rozwiązania w sąsiedztwie Zbadano wpływ metody rozwiązania w sąsiedztwie, mamy tu do wyboru dwie metody: metodę typu "swap" oraz "invert.

Dla każdego zestawu badań, został zmierzony średni czas wykonania oraz policzona wartość błędu procentowego.

6. Wyniki

1) Wpływ wyboru temperatury minimalnej

Rysunek 4: zależność czasu od wielkości instancji i temperatury minimalnej

Rysunek 5: błąd procentowy w zależności od wielkości instancji i temperatury minimalnej.

		błąd [%]			czas wykonania[ms]		
Wielkość inst	tancji	tMin=10^-10	tMin=10^-15	tMin=10^-20	tMin=10^-10	tMin=10^-15	tMin=10^-20
	6	0%	0%	0%	10,2	1225,8	1352,2
	6	0%	0%	0%	8,4	1196,6	1497
	10	1%	0%	0%	11,2	1258,4	1541,4
	12	25%	7%	5%	10,6	1264,6	1661,2
	13	34%	16%	14%	11,2	1294,2	1684,4
	14	41%	22%	21%	12,6	1336,8	1723,8
	15	45%	27%	24%	11,4	1364	1735
	17	42%	19%	18%	14,4	1501,4	1900,8
	21	92%	57%	58%	16,2	1700,8	2136
	48	218%	188%	183%	23,8	2655	3290
	96	457%	416%	408%	41,3	4689	5832
	120	527%	494%	490%	55,0	5521,66667	6850,33333
	137	674%	621%	625%	56,0	6624,66667	8087
	202	504%	476%	478%	72,0	9081	11271
	229	797%	770%	770%	82,7	10499,3333	12802,6667
	431	1228%	1169%	1167%	159,7	19984,6667	24157

Tabela 1: tabela wyników dla pierwszej grupy badań.

2) Wpływ wyboru schematu chłodzenia

Rysunek 6: zależność błędu procentowego od schematu chłodzenia

Rysunek 7: zależność czasu wykonywania się algorytmu od schematu chłodzenia

		błąc	[%]	czas wykonania[ms]		
Wielkość instancji		logarytmiczne	geometryczne	logarytmiczne	geometryczne	
	6	0%	0%	205,6	1225,8	
	6	0%	0%	184,6	1196,6	
	10	0%	0%	377,6	1258,4	
	12	13%	7%	456	1264,6	
	13	19%	16%	500,4	1294,2	
	14	22%	22%	545,8	1336,8	
	15	31%	27%	594,6	1364	
	17	23%	19%	765,6	1501,4	
	21	59%	57%	1076,8	1700,8	
	48	187%	188%	3594,4	2655	
	96	411%	416%	12631,66667	4689	
	120	480%	494%	18843,66667	5521,666667	
	137	621%	621%	25366	6624,666667	
	202	471%	476%	49848	9081	
	229	763%	770%	66718,33333	10499,33333	
	431	1153%	1169%	228926,6667	19984,66667	

Tabela 2: tabela wyników dla drugiej grupy badań.

3) Wpływ długości epoki na rozwiązania

Dla chłodzenia logarytmicznego wykorzystano długość epoki kolejni 1500*N, 7500*N oraz 15000*N, gdzie N jest liczbą wierzchołków. Z kolei dla chłodzenia geometrycznego 10, 15,20.

Rysunek 8: zależność błędu procentowego od schematu długości epoki dla chłodzenia geometrycznego

Rysunek 9: zależność czasu wykonania algorytmu dla różnych długości epok dla chłodzenia geometrycznego

Wielkość instanc	ji	błąd			czas		
		epoka = 10	epoka = 15	epoka =20	epoka = 10	epoka =15	epoka =20
	6	0%	0%	0%	1226	1307	1467
	6	0%	0%	0%	1197	1293	1446
	10	0%	0%	0%	1258	1320	1700
	12	7%	7%	8%	1265	1366	1844
	13	16%	15%	11%	1294	1394	1872
	14	22%	19%	21%	1337	1426	1929
	15	27%	28%	27%	1364	1460	1976
	17	19%	19%	21%	1501	1659	2233
	21	57%	65%	57%	1701	1876	2537
	48	188%	187%	190%	2655	2975	4008
	96	416%	417%	411%	4689	5420	7242
1	20	494%	497%	489%	5522	6269	8392
1	37	621%	629%	622%	6625	7668	10268
2	02	476%	480%	476%	9081	10513	14031
2	29	770%	773%	768%	10499	12278	16484
4	31	1169%	1166%	1171%	19985	23387	31212

Tabela 3: Tabela wyników dla trzeciej grupy badań, dla chłodzenia geometrycznego

Rysunek 10: zależnosć błędu procentowego od wielkości epoki dla chłodzenia logarytmicznego.

Rysunek 11: zależność czasu wykonania algorytmu od wielkości epoki dla chłodzenia logarytmicznego.

		błąd			6726	
				1 1141500	czas	1 11445000
Wielkość instancji	epoka =N*1500	epoka =N*7500	epoka =N*15000	epoka =N*1500	epoka =N*/500	epoka =N*15000
6	0%	0%	0%	94	206	427
6	0%	0%	0%	74	185	366
10	2%	0%	0%	131	378	710
12	10%	13%	8%	220	456	938
13	23%	19%	13%	202	500	992
14	28%	22%	22%	239	546	1093
15	34%	31%	31%	157	595	1195
17	27%	23%	23%	189	766	1507
21	74%	59%	58%	266	1077	2195
48	201%	187%	183%	1033	3594	7216
96	422%	411%	407%	3209	12632	25015
120	490%	480%	470%	4612	18844	35753
137	633%	621%	611%	6427	25366	49502
202	479%	471%	471%	15814	49848	100682
229	770%	763%	751%	18249	66718	132357
431	1169%	1153%	1150%	83614	228927	462851

Tabela 4: Tabela wyników dla trzeciej grupy badań, dla chłodzenia logarytmicznego

4) Wpływ wyboru metody rozwiązania w sąsiedztwie

Rysunek 12: zależność czasu wykonania algorytmu od metody wyboru sąsiedztwa

Rysunek 13: zależnosć błędu procentowego od metody wyboru sąsiedztwa

Wielkość instancji		błąd		czas	
		invert	swap	invert	swap
	6	0%	0%	1048	1307
	6	0%	0%	1017	1293
	10	0%	0%	1212	1320
	12	8%	7%	1347	1366
	13	15%	15%	1392	1394
	14	23%	19%	1431	1426
	15	27%	28%	1462	1460
	17	22%	19%	1642	1659
	21	62%	65%	1805	1876
	48	196%	187%	2914	2975
	96	419%	417%	5208	5420
	120	497%	497%	6130	6269
	137	623%	629%	7290	7668
	202	486%	480%	10131	10513
	229	780%	773%	11755	12278
	431	1177%	1166%	22377	23387

Tabela 4: Tabela wyników dla czwartej grupy badań, dla metod swap i invert.

7. Analiza wyników

Badanie pierwsze pokazało, że wraz z obniżeniem warunku stopu znacznie wzrósł średni czas wykonywania się algorytmu. Badając błąd procentowy, można zauważyć, że odchylenia od wyników z różnymi parametrami są od siebie odchylone ale nie w znacznym stopniu. W instancjach 137, 202, 229 można zauważyć znaczne wyłamanie się błędu z linii trendu. Najbardziej rzuca się w oczy wysoki poziom błędu instancji 431.

Drugie badanie mające na celu sprawdzenie wpływu sposobu chłodzenia, na efektywność naszego algorytmu. Podobnie jak w pierwszym badaniu, zmiana sposobu chłodzenia nie wpłynęła znacznie na różnicę w błędach procentowych algorytmu. Można zauważyć, że raz w jeden sposób jest lepszy a raz drugi, w zależności od instancji. Inaczej to wygląda jeśli mamy przed sobą czas wykonywania algorytmu. Ze względu na to, ze podniosłem długość epoki, w logarytmicznej metodzie chłodzenia, ponieważ jako współczynnik postanowiłem wykorzystać sumę długości sprawdzonych już epok, otrzymaliśmy bardzo długi czas wykonywania się algorytmu dla wyższych instancji. Za to w geometrycznej metodzie wzrost był liniowy i niewielki.

Trzecie badanie pokazało nam wpływ wyboru różnych długości epok. Dla obu sposobów chłodzenia czas wykonywania się algorytmu wzrósł o znaczny stopień, natomiast tak samo jak w poprzednich badaniach niewiele zmieniała się różnica między kosztami ścieżek. Także w tym przypadku pojawiły się anomalię w wynikach dla instancji 137,202 oraz 229.

Ostatnia, czwarta analiza pokazuje, że niewiele szybszym rozwiązaniem jest rozwiązanie typu swap. Natomiast błędy wynikowe są lepsze po stronie metody invert. W przypadku różnicy w czasie wykonywania i procentu błędu, jest to niewielka różnica.