Learning Deep Generative Models of Graphs

School of Industrial and Management Engineering, Korea University

Jong Kook, Heo

Contents

* Research Purpose

DGMG

Experiments

Conclusion

Research Purpose

Overview

- Learning Deep Generative Models of Graphs(arXiv, 2018)
 - 2022년 3월 11일 기준 418회 인용
 - Pointer Networks 와 Show and Tell 의 제1저자인 Oriol Vinyals 가 참여
 - Synthetic Graph와 Molecular graph 등 다양한 그래프를 생성 할 수 있으며, Conditional Generation 도 일부분 가능 (본 리뷰에서는 Unconditional Molecular Generation 에 초점을 맞추어 진행)

Learning Deep Generative Models of Graphs

Yujia Li ¹ Oriol Vinyals ¹ Chris Dyer ¹ Razvan Pascanu ¹ Peter Battaglia ¹

Figure 1. Depiction of the steps taken during the generation process.

- Sequential Graph Generation Process
 - DGMG의 그래프 생성 과정은 크게 3가지 단계로 구성되어 있음
 - 1. Add Node: 현재까지 생성된 분자에서 **어떤 타입의 원자를 추가**할지 결정(Terminate 포함)
 - 2. Add Edge: (1) 에서 추가된 원자를 **어떤 타입의 결합으로 연결**할지 결정(Terminate 포함)
 - 3. Node Select: (1) 과 (2)로 정해진 원자 결합을 기존 분자의 **어디에 연결 할지** 결정

Sequential Graph Generation Process

 $u_{V}^{(t+1)} = prop(h_{V}^{(t)}, G)$

- GNN의 Message Passing을 이용한 분자 생성을 위해 DGMG는 5가지 모듈로 구성
 - 1. Graph Propagation Module: node 와 edge 특성을 T번 반복하여 message passing
 - \checkmark Incoming message aggregation : $a_v = \sum_{u:(u,v)\in E} f_e(h_u,h_v,x_{u,v}) \ \forall v \ in \ V$
 - ✓ Node update: $h'_v = f_n(a_v, h_v) \,\forall v \, in \, V$
 - $\checkmark \quad h_V^{(t+1)} = prop(h_V^{(t)}, G) \text{ where } h_V = \{h_1, ..., h_{|V|}\}$

1 round of propagation $prop(h_V, G)$

Graph G = (V, E) $h_v: node \ feature \ for \ v \in V$ $x_{u,v}: edge \ feature \ for \ (u,v) \in E$ $f_e: Concat \ and \ MLP$ $f_n: GRUCell$

Sequential Graph Generation Process

- GNN의 Message Passing을 이용한 분자 생성을 위해 DGMG는 5가지 모듈로 구성
 - 2. Graph Representation Module: T 번의 Propagation 후의 Graph level representation 을 추출
 - \checkmark Gate function: $g_v^G = \sigma(g_m(h_v))$
 - \checkmark Node mapping: $h_v^G = f_m(h_v)$
 - \checkmark Gated Sum for Graph Representation: $h_G = \sum_{v \in V} g_v^G \odot h_v^G = R\left(h_V^{(T)}, G\right)$

 h_v : node feature after Trounds of propagation

 g_m , f_m : Linear mapping function σ : Sigmoid Function

$$h_V^{(T)} = prop^{(T)}(h_V, G)$$

$$h_G = R\left(h_V^{(T)}, G\right) = \sum_{v \in V} g_v^G \odot h_v^G$$

Sequential Graph Generation Process

- GNN의 Message Passing을 이용한 분자 생성을 위해 DGMG는 5가지 모듈로 구성
 - 3. Add Node Module: 그래프 정보로부터 새롭게 추가될 원자를 샘플링, 해당 노드 벡터를 초기화
 - \checkmark Add Node function: $f_{add \ node}(G) = softmax(f_{an}(h_G))$
 - ✓ Initialization for newly added node: $h_{v_{new}} = f_{init}(R(h_V^{(T)}, G), x_{v_{new}})$

 f_{an} : MLP function f_{init} : Linear function x_v : input feature(i.e. atom type)

$$h_G = R\left(h_V^{(T)}, G\right) = \sum_{v \in V} g_v^G \odot h_v^G$$

If stop → Terminate

- Sequential Graph Generation Process
 - GNN 의 Message Passing 을 이용한 분자 생성을 위해 DGMG 는 5가지 모듈로 구성
 - 4. Add Edge Module: 그래프 정보와 새롭게 추가될 원자를 입력하여 어떤 타입의 결합으로 연결할지 결정
 - Add Edge function
 - edge feature 가 없는 경우 $f_{add\ edge}(G,v) = \sigma(f_{ae}(h_G,h_{v_{new}}))$

 f_{ae} : MLP function

If stop → Go to Add Node

- Sequential Graph Generation Process
 - GNN의 Message Passing을 이용한 분자 생성을 위해 DGMG는 5가지 모듈로 구성
 - 5. Node Select Module: 새로운 원자와 해당 결합을 기존 그래프의 어떠한 노드에 연결할지 결정
 - ✓ Node Select with Scoring
 - \triangleright edge feature 가 있는 경우 $s_u = Softmax\left(f_s(h_u, h_{v_{new}})\right) \forall u \in V$

 f_s : MLP function h_e : edge feature (i.e.bond type)

- \triangleright edge feature 가 있는 경우 $s_u = Softmax\left(f_s(h_u, h_{v_{new}}, h_e)\right) \forall u \in V$
- ✓ 새로운 edge 가 추가된 후 1. Graph Propagation, 2. Graph Representation, 4. Add Edge 순서로 진행

Experiments

Training Results

- Maximize Log-likelihood
 - ✓ 하나의 Graph 는 node indexing 에 따라 여러가지 순서로 표현이 가능 → Possible Orderings = (# of nodes)!
 - ✓ 따라서 node ordering $strategy(\pi)$ 의 분포까지 고려하여 계산하여야함
 - ▶ 만약 ordering의 분포를 알 수 없다면 Random Ordering 이라 가정
 - ▶ 분자 그래프의 경우 Canonical SMILES 라는 순서로 원자 순서를 표기 가능(Fixed Ordering)
 - Fixed Ordering 이 존재할 경우 Negative Log-likelihood 가 더 작음(학습이 더 잘됨)

$$\mathbb{E}_{p_{data}(G,\pi)}[\log p(G,\pi)] = \mathbb{E}_{p_{data}(G)}\mathbb{E}_{p_{data}(\pi|G)}[\log p(G,\pi)]$$

Table 2. Molecule generation results. N is the number of permutations for each molecule the model is trained on. Typically the number of different SMILES strings for each molecule < 100.

Arch	Grammar	Ordering	N	NLL	%valid	%novel
LSTM	SMILES	Fixed	1	21.48	93.59	81.27
LSTM	SMILES	Random	< 100	19.99	93.48	83.95
LSTM	Graph	Fixed	1	22.06	85.16	80.14
LSTM	Graph	Random	O(n!)	63.25	91.44	91.26
Graph	Graph	Fixed	1	20.55	97.52	90.01
Graph	Graph	Random	O(n!)	58.36	95.98	95.54

Experiments

- ❖ Evaluation of Generated Molecules(논문외)
 - DGMG Generation with ZINC dataset
 - ✓ ZINC Dataset: Molecular Distribution Learning & Goal-Directed Generation 을 위한 분자 데이터셋
 - ✓ 그림 1.: Train Dataset
 - ✓ 그림 2.: DGMG 를 통해 생성한 분자(**빈 칸은 화학적으로 유효하지 않은 분자를 생성한것으로 추정됨**)
 - ✓ 그림 3. 합성 가능성(SA), Drug-likeness(QED) 등 분자의 화학 지표에 대한 학습 데이터셋과 생성된 분자의 분포 비교

Conclusion

Limitation

- Validity Problem: DGMG 는 화학적 유효성에 대한 가정이 생성 과정에 들어가있지 않기 때문에 invalid 한 분자를 생성하는 경우가 발생
- Long Sequence Problem : DGMG 는 생성 과정이 매우 길기 때문에 큰 분자를 잘 생성하지 못함

• Ordering Problem: 하나의 그래프를 표현하거나 생성하는 과정 무수히 많은 Permutation 이 존재하기 때문에 학습이 어려움

 $Max P(e_{2,3}|G)$

 $Max P(e_{1.3}|G)$