第九章 常微分方程初值问题数值解法

1 引言

本章主要考虑一阶常微分方程初值问题:

$$\begin{cases} y' = f(x, y), \\ y(x_0) = y_0. \end{cases}$$

我们知道, 只要函数f(x,y)适当光滑, 比如关于y满足Lipschitz条件

$$|f(x,y) - f(x,\bar{y})| \le L|y - \bar{y}|,$$

理论上就可以保证上述初值问题的解y = y(x)存在且唯一.

解析方法一般只能求解一些很特殊的方程, 大部分还是需要数值解法, 数值解法是指求解y(x)在一些离散节点

$$x_1 < x_2 < \dots < x_n < x_{n+1} < \dots$$

上的近似值 $y_1, y_2, \ldots, y_n, y_{n+1}, \ldots$ 相邻两个节点的间距 $h_n = x_{n+1} - x_n$ 称为**步长**. 本章中如不特别说明, 总是假定 $h_i = h$, 此时节点为 $x_n = x_0 + nh, n = 0, 1, 2, \ldots$

数值解法是利用已知信息 y_n, y_{n-1}, \dots 逐步计算 y_{n+1} . 如果计算 y_{n+1} 时只用到前一步的值 y_n ,则称之为**单步法**. 如果需要用到前k步的值,则称之为k步法.

2 简单的数值方法与基本概念

2.1 欧拉法与后退欧拉法

用 $\frac{y_{n+1}-y_n}{x_{n+1}-x_n}$ 近似y',则可以得到欧拉公式:

$$y_{n+1} = y_n + h f(x_n, y_n).$$

由初值 y_0 可逐步计算出所有的 y_n .

例1 求解初值问题

$$\begin{cases} y' = y - \frac{2x}{y}, \\ y(0) = 1. \end{cases}$$

解 欧拉公式的具体形式为

$$y_{n+1} = y_n + h(y_n - 2x_n/y_n).$$

取步长h=0.1, 计算结果如下表

x_n	y_n	$y(x_n)$	x_n	y_n	$y(x_n)$
0.1	1.1000	1.0954	0.6	1.5090	1.4832
0.2	1.1918	1.1832	0.7	1.5803	1.5492
0.3	1.2774	1.2649	0.8	1.6498	1.6125
0.4	1.3582	1.3416	0.9	1.7178	1.6733
0.5	1.4351	1.4142	1.0	1.7848	1.7321

这个问题的真实解为 $y = \sqrt{1+2x}$. 从上表可以看出, 欧拉方法的精度很差. 为了分析计算公式的精度, 可以用Taylor公式将 $y(x_{n+1})$ 在 x_n 处展开, 则有

$$y(x_{n+1}) = y(x_n + h) = y(x_n) + y'(x_n)h + \frac{h^2}{2}y''(\xi_n), \quad \xi_n \in (x_n, x_{n+1}).$$

在 $y_n = y(x_n)$ 的前提下, $f(x_n, y_n) = f(x_n, y(x_n)) = y'(x_n)$, 于是可得欧拉法的公式误差为

$$y(x_{n+1}) - y_{n+1} = \frac{h^2}{2}y''(\xi_n) \approx \frac{h^2}{2}y''(x_n),$$

称为此方法的局部截断误差.

欧拉公式也可以从另外一种方式得到. 把微分方程从 x_n 到 x_{n+1} 积分,即有

$$y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} f(t, y(t))dt.$$

石端积分用左矩形公式 $hf(x_n,y(x_n))$, 再用 y_n 代替 $y(x_n)$, 用 y_{n+1} 代替 $y(x_{n+1})$, 这样得到的就是欧拉公式.

如果右端积分用右矩阵公式 $hf(x_{n+1},y(x_{n+1}))$ 近似,则可以得到另一个公式

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}),$$

称为后退的欧拉法.

后退的欧拉法与欧拉法有本质的区别. 欧拉法是一个直接计算 y_{n+1} 的公式, 称作**显式**的, 而后退的欧拉法实际上是一个关于 y_{n+1} 的方程, 需要求解, 称作**隐式**的.

显式和隐式方法各有特点,显式方法比较容易计算,但考虑到数值稳定性时,往往选用隐式方法.

上面的隐式方程通常用迭代法求解

$$y_{n+1}^{(k+1)} = y_n + hf(x_{n+1}, y_{n+1}^{(k)}),$$

其中初值 $y_{n+1}^{(0)}$ 取作 $y_{n+1}^{(0)} = y_n + hf(x_n, y_n)$.

由于f(x,y)对y满足Lipschitz条件,于是就有

$$|y_{n+1}^{(k+1)} - y_{n+1}| = h|f(x_{n+1}, y_{n+1}^{(k)}) - f(x_{n+1}, y_{n+1})| \le hL|y_{n+1}^{(k)} - y_{n+1}|.$$

由此可知, 只要hL < 1, $y_{n+1}^{(k)}$ 就会收敛到 y_{n+1} . 后退欧拉法的局部截断误差与欧拉法是类似的.

2.2 梯形方法

为了得到更高精度的方法,可以把右端积分用梯形求积公式来近似,则得到

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})],$$

称为梯形方法.

梯形方法是隐式单步法, 可以用迭代法求解, 与后退欧拉法一样, 仍然可以用欧拉方法提供初值 $y_{n+1}^{(0)}=y_n+hf(x_n,y_n)$, 迭代公式为

$$y_{n+1}^{(k+1)} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(k)})].$$

关于这个迭代公式的收敛性,与后退欧拉法类似可得

$$|y_{n+1}^{(k+1)} - y_{n+1}| \le \frac{hL}{2} |y_{n+1}^{(k)} - y_{n+1}|,$$

因此如果 $hL < 2, y_{n+1}^{(k)}$ 就会收敛到 y_{n+1} .

2.3 单步法的局部截断误差和阶

求解初值问题的单步法的一般形式可以表示为

$$y_{n+1} = y_n + \varphi(x_n, y_n, y_{n+1}, h),$$

其中 φ 与f(x,y)有关, 当它含有 y_{n+1} 时, 一般就是隐式方法, 若不含 y_{n+1} 就是显式方法, 因此显式单步法可以表示为

$$y_{n+1} = y_n + \varphi(x_n, y_n, h).$$

例如欧拉法中 $\varphi(x,y,h) = hf(x,y)$.

假设在 x_n 之前的各步都没有误差, 当 $y_n = y(x_n)$ 时, 再计算一步, 则有

$$y(x_{n+1}) - y_{n+1} = y(x_{n+1}) - y_n - \varphi(x_n, y_n, h) \equiv T_{n+1}.$$

这个 T_{n+1} 称为显式单步法的**局部截断误差**.

我们前面已经证明了显式欧拉法的局部截断误差 $T_{n+1} = O(h^2)$. 一般的, 如果显式单步法的局部截断误差满足 $T_{n+1} = O(h^{p+1})$, 则称显式单步法具有p阶精度. 由此可知欧拉法具有1阶精度, 后退欧拉法也是具有1阶精度.

对于梯形方法, 由于

$$T_{n+1} = y(x_{n+1}) - y(x_n) - \frac{h}{2} [y'(x_n) + y'(x_{n+1})]$$

$$= hy'(x_n) + \frac{h^2}{2} y''(x_n) + \frac{h^3}{3} y'''(x_n) + O(h^4)$$

$$- \frac{h}{2} [y'(x_n) + y'(x_n) + hy''(x_n) + \frac{h^2}{2} y'''(x_n) + O(h^3)]$$

$$= -\frac{h^3}{12} y'''(x_n) + O(h^4).$$

因此梯形方法是2阶方法.

2.4 改进的欧拉公式

可以看出,虽然梯形方法的精度较高,但算法比较复杂.为了控制计算量,通常只迭代一两次就进入下一步的计算,从而简化了算法.具体来讲,可以先用欧拉公式得到一个初步的近似值 \bar{y}_{n+1} ,

$$\bar{y}_{n+1} = y_n + hf(x_n, y_n),$$

称之为预测值, 再用梯度公式校正一次,

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \bar{y}_{n+1})].$$

或者可以写成如下的平均化形式

$$\begin{cases} y_p = y_n + hf(x_n, y_n), \\ y_c = y_n + hf(x_{n+1}, y_p), \\ y_{n+1} = \frac{1}{2}(y_p + y_c). \end{cases}$$

例2 用改进的欧拉法求解例1.

解 改进的欧拉公式的具体形式为

$$\begin{cases} y_p = y_n + h(y_n - 2x_n/y_n), \\ y_c = y_n + h(y_p - 2x_{n+1}/y_p), \\ y_{n+1} = \frac{1}{2}(y_p + y_c). \end{cases}$$

仍取h = 0.1, 计算结果如下表

$\overline{x_n}$	y_n	$y(x_n)$	x_n	y_n	$y(x_n)$
0.1	1.0959	1.0954	0.6	1.4860	1.4832
0.2	1.1841	1.1832	0.7	1.5525	1.5492
0.3	1.2662	1.2649	0.8	1.6153	1.6125
0.4	1.3434	1.3416	0.9	1.6782	1.6733
0.5	1.4164	1.4142	1.0	1.7379	1.7321

可以看出, 改进的欧拉法的计算精度有了明显提高.

3 龙格-库塔Runge-Kutta方法

前面介绍的欧拉法, 后退欧拉法和梯形方法都可以从微分方程等价的积分形式

$$y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} f(t, y(t))dt$$

得到. 梯形方法用到了2个节点, 它的精度就比只用1个节点的欧拉法和后退欧拉法要高. 因此, 如果用更多的节点来近似上式右端的积分, 可以期望有更高的精度. 一般的公式如下:

$$y_{n+1} = y_n + h \sum_{i=1}^{r} c_i K_i,$$

其中 $K_1 = f(x_n, y_n), K_i = f(x_n + \lambda_i h, y_n + h \sum_{j=1}^{i-1} \mu_{ij} K_j) (i = 2, \dots, r)$. 这里 c_i, λ_i, μ_{ij} 都是常数. 上式称为r级显式Runge-Kutta方法,简称R-K方法.

当 $r=1,c_1=1$ 时,就是欧拉方法,此时阶为p=1. 当 $r=2,c_1=c_2=1/2,\lambda_2=1,\mu_{21}=1$ 时,就是改进的欧拉法,此时阶为p=2(随后证明). 要得到更高的阶,就要增加r. 下面我们只就r=2推导R-K方法,并给出r=3,4时的常用公式.

3.1 二阶显式R-K方法

二阶显式R-K方法的格式为

$$\begin{cases} y_{n+1} = y_n + h(c_1K_1 + c_2K_2), \\ K_1 = f(x_n, y_n), \\ K_2 = f(x_n + \lambda_2 h, y_n + \mu_{21} hK_1), \end{cases}$$

其中 $c_1, c_2, \lambda_2, \mu_{21}$ 是4个待定常数. 我们希望通过适当选取这些常数, 使得阶数p尽可能高. 上面公式的局部截断误差为

$$T_{n+1} = y(x_{n+1}) - y(x_n) - h[c_1 f_n + c_2 f(x_n + \lambda_2 h, y_n + \mu_{21} h f_n)],$$

其中 $y_n = y(x_n), f_n = f(x_n, y_n)$. 利用Taylor展开

$$y(x_{n+1}) = y_n + hy'_n + \frac{h^2}{2}y''_n + O(h^3),$$

其中

$$y'_n = f(x_n, y_n) = f_n,$$

 $y''_n = f'_x(x_n, y_n) + f'_y(x_n, y_n)f_n,$

$$f(x_n + \lambda_2 h, y_n + \mu_{21} h f_n) = f_n + \lambda_2 h f'_x(x_n, y_n) + \mu_{21} h f_n f'_y(x_n, y_n) + O(h^2).$$

代入 T_{n+1} 的表达式可得

$$T_{n+1} = hf_n + \frac{h^2}{2} [f'_x(x_n, y_n) + f'_y(x_n, y_n)f_n] - h[c_1f_n + c_2(f_n + \lambda_2 h f'_x(x_n, y_n) + \mu_{21} h f_n f'_y(x_n, y_n))] + O(h^3)$$

$$= (1 - c_1 - c_2)hf_n + (\frac{1}{2} - c_2\lambda_2)f'_x(x_n, y_n)h^2 + (\frac{1}{2} - c_2\mu_{21})f'_y(x_n, y_n)h^2 + O(h^3).$$

要使得公式具有至少2阶精度, 即 $T_{n+1} = O(h^3)$, 必须有

$$1 - c_1 - c_2 = 0$$
, $\frac{1}{2} - c_2 \lambda_2 = 0$, $\frac{1}{2} - c_2 \mu_{21} = 0$,

即

$$c_2\lambda_2 = \frac{1}{2}$$
, $c_2\mu_{21} = \frac{1}{2}$, $c_1 + c_2 = 1$.

其解显然不唯一. 令 $c_2 = a \neq 0$, 则

$$c_1 = 1 - a, \quad \lambda_2 = \mu_{21} = \frac{1}{2a}.$$

这样得到的公式就是二阶R-K方法. 如取a=1/2, 就是改进欧拉法.

若取a=1,则 $c_2=1$, $c_1=0$, $\lambda_2=\mu_{21}=1/2$,对应的计算公式为

$$\begin{cases} y_{n+1} = y_n + hK_2, \\ K_1 = f(x_n, y_n), \\ K_2 = f(x_n + h/2, y_n + \frac{h}{2}K_1), \end{cases}$$

称为中点公式, 也可表示为

$$y_{n+1} = y_n + hf(x_n + h/2, y_n + \frac{h}{2}f(x_n, y_n)).$$

要想要得到更高阶的局部截断误差,即使得 $T_{n+1} = O(h^4)$,可以验证r = 2是不够的,即无法通过这4个参数的选取达到这一点.此时需要更高的r.具体推导及常用公式参见课本.

4 单步法的收敛性与稳定性

4.1 收敛性与相容性

设 y_n 是某种数值解法得到的计算解,而 $y(x_n)$ 是精确解,称 $e_n = y(x_n) - y_n$ 为**整体截断误差**. 注意与之前讨论的局部截断误差之间的差别,局部截断误差是指在假设 $y_{n-1} = y(x_{n-1})$ 的情况下,估计 y_n 和 $y(x_n)$ 之间的误差. 收敛性就是指 $h \to 0$ 时,是否有 $e_n \to 0$.

定理1 设显式单步法

$$y_{n+1} = y_n + h\varphi(x_n, y_n, h)$$

具有p阶精度, 且函数 $\varphi(x,y,h)$ 满足利普希兹条件

$$|\varphi(x, y, h) - \varphi(x, \bar{y}, h)| \le L_{\varphi}|y - \bar{y}|,$$

又设初值y0是准确的,则其整体截断误差满足

$$e_n = y(x_n) - y_n = O(h^p).$$

证明 记 \bar{y}_n 是以 $y_n = y(x_n)$ 用公式计算得到的结果, 即

$$\bar{y}_{n+1} = y(x_n) + h\varphi(x_n, y(x_n), h),$$

则 $y(x_{n+1}-)\bar{y}_{n+1}$ 为局部截断误差,由于方法具有p阶精度,因此存在常数C使得

$$|y(x_{n+1}) - \bar{y}_{n+1}| \le Ch^{p+1}$$
.

又根据公式可得

$$|\bar{y}_{n+1} - y_{n+1}| \le |y(x_n) - y_n| + h|\varphi(x_n, y(x_n), h) - \varphi(x_n, y_n, h)| \le (1 + hL_\varphi)|y(x_n) - y_n|,$$
 从而有

$$|y(x_{n+1}) - y_{n+1}| \le |y(x_{n+1}) - \bar{y}_{n+1}| + |\bar{y}_{n+1} - y_{n+1}| \le (1 + hL_{\omega})|y(x_n) - y_n| + Ch^{p+1},$$

即

$$|e_{n+1}| \le (1 + hL_{\varphi})|e_n| + Ch^{p+1}$$
.

递推可得

$$|e_n| \le (1 + hL_{\varphi})^n |e_0| + \frac{Ch^p}{L_{\varphi}} ((1 + hL_{\varphi})^n - 1).$$

由于当 $nh \leq T$ 时, $(1 + hL_{\varphi})^n \leq e^{TL_{\varphi}}$,如果 $e_0 = 0$,由上式可知定理成立. 对于欧拉方法,由于 φ 就是f,因此当f满足利普希兹条件时,欧拉方法收敛. 对于改进的欧拉方法,

$$\varphi(x,y,h) = \frac{1}{2}[f(x,y) + f(x+h,y+hf(x,y))],$$

于是就有

$$|\varphi(x,y,h) - \varphi(x,\bar{y},h)| \le \frac{1}{2} [|f(x,y) - f(x,\bar{y})| + |f(x+h,y+hf(x,y)) - f(x+h,\bar{y}+hf(x,\bar{y}))|]$$

$$\le L(1+hL/2)|y-\bar{y}| \le L(1+h_0L/2)|y-\bar{y}|,$$

这里限定 $h \le h_0$,这表明改进的欧拉法也是收敛的.

4.2 绝对稳定性与绝对稳定域

上一小节关于收敛性的讨论是假定数值方法本身的计算没有误差. 但实际情况并非如此, 会产生误差, 我们关心的是这些误差在计算过程中会不会恶性增长? 需要注意的是, 这个问题不仅与算法有关, 与问题本身也有关. 如同第一章所介绍的, 如果问题本身就是病态的, 那么一般来说不管用什么数值方法来求解, 误差都会增长的很快. 只有对于比较良态的问题, 稳定的数值算法能保持误差不会增长太快.

为了考察求解常微分方程的数值方法的稳定性,通常把微分方程取作模型方程,即

$$y' = \lambda y$$
,

$$y_{n+1} = y_n + h\lambda y_n = (1 + h\lambda)y_n$$
.

假设在 y_n 的计算误差为 ε_n , 容易看出 y_{n+1} 的误差 ε_{n+1} 满足

$$\varepsilon_{n+1} = (1 + h\lambda)\varepsilon_n.$$

因此为了保证欧拉方法是稳定的, 步长h的选取必须保证

$$|1+h\lambda|<1.$$

这个关于 $h\lambda$ 的区域在复平面上是以(-1,0)为圆心,1为半径的圆,称为**绝对稳定域**,而关于h 的区域 在复平面上是以 $-1/\lambda$ 为圆心, $1/|\lambda|$ 为半径的圆(这个圆必定经过原点). 再注意到步长h必须是实数,因此称这个圆与实轴的交为**绝对稳定区间**.

对于中点法(这是一个二阶R-K方法), 容易计算出

$$y_{n+1} = (1 + h\lambda + (h\lambda)^2/2)y_n,$$

因此就有

$$\varepsilon_{n+1} = (1 + h\lambda + (h\lambda)^2/2)\varepsilon_n,$$

因此绝对稳定域由 $|1+h\lambda+(h\lambda)^2/2|<1$ 给出. 如果 λ 是负实数, 容易得到绝对稳定区间为 $-2<h\lambda<0$, 即 $0<h<-2/\lambda$.

下面来看隐式欧拉法, 它对模型方程的公式为

$$y_{n+1} = y_n + h\lambda y_{n+1},$$

即

$$y_{n+1} = \frac{1}{1 - h\lambda} y_n,$$

因此其绝对稳定域为 $1-h\lambda>1$. 当 λ 为负实数时, 其绝对稳定区间为 $0< h<\infty$, 即对任意步长h, 隐式欧拉法都是稳定的.