Week 3(1/3)

Artificial Neuron

Machine Learning with Python

Handong Global University Prof. Youngsup Kim idebtor@gmail.com

Goal

- Understanding Artificial Neuron
- Implementing AND Neuron
- Visualizing AND Neuron

Content

- Artificial Neuron Concept
- AND Gate and AND Neuron
- AND Neuron Implementation
- AND Neuron Visualization

- $y = w_1 x_1$
- y = ax

$$y = ax$$

- $y = w_1 x_1$
- y = ax
- $a \rightarrow \text{slope}, w_1 \rightarrow \text{weight}$

net input:

- **net input:** $w_1x_1 + w_2x_2$
- threshold: θ
- activated: $> \theta$

$$y = \begin{cases} 0 & \text{if } (w_1 x_1 + w_2 x_2 <= \theta) \\ 1 & \text{if } (w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$
 (1)

- **net input:** $w_1x_1 + w_2x_2$
- threshold: θ
- activated: $> \theta$

Artificial Neuron – Computing Weights

Artificial Neuron – Computing Weights

bias

$$y = \begin{cases} 0 & \text{if } (w_1 x_1 + w_2 x_2 <= \theta) \\ 1 & \text{if } (w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$
 (1)

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
 (2)

bias

$$y = \begin{cases} 0 & \text{if } (w_1 x_1 + w_2 x_2 <= \theta) \\ 1 & \text{if } (w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$
 (1)

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
 (2)

bias

$$y = \begin{cases} 0 & \text{if } (w_1 x_1 + w_2 x_2 <= \theta) \\ 1 & \text{if } (w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$
 (1)

Example 1:

- Assume that weight w is set, threshold θ and input x_1, x_2 are given. Determine whether the neuron is activated or not.
 - $\mathbf{w} = (w_1, w_2) = (0.6, 0.3)$
 - $\theta = 0.5$
 - $(x_1, x_2) = (0, 1)$

Example 1:

- Assume that weight w is set, threshold θ and input x_1, x_2 are given. Determine whether the neuron is activated or not.
 - $\mathbf{w} = (w_1, w_2) = (0.6, 0.3)$
 - $\theta = 0.5$
 - $(x_1, x_2) = (0, 1)$
- (1) activated
- (2) not activated

Example 1:

• Assume that weight w is set, threshold θ and input x_1, x_2 are given. Determine whether the neuron is activated or not.

•
$$\mathbf{w} = (w_1, w_2) = (0.6, 0.3)$$

- $\theta = 0.5$
- $(x_1, x_2) = (0, 1)$
- (1) activated
- (2) not activated

 $net input = w_1 x_1 + w_2 x_2$

Example 1:

• Assume that weight w is set, threshold θ and input x_1, x_2 are given. Determine whether the neuron is activated or not.

•
$$\mathbf{w} = (w_1, w_2) = (0.6, 0.3)$$

- $\theta = 0.5$
- $(x_1, x_2) = (0, 1)$
- (1) activated
- (2) not activated

net input

=
$$w_1x_1 + w_2x_2$$

= $0.6 \times 0 + 0.3 \times 1$
= $0.3 < \theta$

Example 1:

• Assume that weight w is set, threshold θ and input x_1, x_2 are given. Determine whether the neuron is activated or not.

•
$$\mathbf{w} = (w_1, w_2) = (0.6, 0.3)$$

- $\theta = 0.5$
- \bullet $(x_1, x_2) = (0, 1)$
- (1) activated✓ (2) not activated

net input

=
$$w_1x_1 + w_2x_2$$

= $0.6 \times 0 + 0.3 \times 1$
= $0.3 < \theta$

AND ^{Truth Table}					
x_1	x_2	y			
0	0	0			
0	1	0			
1	0	0			
1	1	1			

ANI	AND 진리표				
x_1	x_2	y			
0	0	0			
0	1	0			
1	0	0			
1	1	1			

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
(2)

AND 진리표				
x_1	x_2	y		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
(2)

Example:

AND 진리표					
x_1	x_2	y			
0	0	0			
0	1	0			
1	0	0			
1	1	1			

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
 (2)

Example:

Among the following combinations of weight and bias, find one that satisfies the equations (2) above and makes AND Neuron.

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

(2)
$$(w_1, w_2) = (0.5, 0.5), b = -0.3$$

(3)
$$(w_1, w_2) = (0.5, 0.5), b = 0.2$$

$$y = \begin{cases} 0 & \text{if } (b + w_1 x_1 + w_2 x_2 <= 0) \\ 1 & \text{if } (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$
(2)

Example:

Among the following combinations of weight and bias, find one that satisfies the equations (2) above and makes AND Neuron.

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

(2)
$$(w_1, w_2) = (0.5, 0.5), b = -0.3$$

(3)
$$(w_1, w_2) = (0.5, 0.5), b = 0.2$$

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \quad w_0 = b$$

$$x_1 \quad w_1 \quad \Sigma \quad y$$

$$x_2 \quad x_2 \quad x_3 \quad x_4 \quad x_4 \quad x_5 \quad x_6 \quad$$

- 1. AND(x1, x2)
- 2. AND(x0, x1, x2)
- 3. AND(1, x1, x2)

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

- 1. AND(x1, x2)
- 2. AND(x0, x1, x2)
- 3. AND(1, x1, x2)

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \qquad w_0 = b$$

$$x_1 \qquad w_1 \qquad \Sigma \qquad y$$

$$x_2 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_4 \qquad x_5 \qquad x_6 \qquad$$

```
def AND(x1, x2):
```

- 1. AND(x1, x2)
- 2. AND(x0, x1, x2)
- 3. AND(1, x1, x2)

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \qquad w_0 = b$$

$$x_1 \qquad w_1 \qquad \Sigma \qquad y$$

$$x_2 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_4 \qquad x_5 \qquad x_6 \qquad$$

```
def AND(x1, x2):
```

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \quad w_0 = b$$

$$x_1 \quad w_1 \quad \Sigma \quad y$$

$$x_2 \quad w_2 \quad x_3 \quad w_4 \quad x_4 \quad y$$

```
def AND(x1, x2):
    x = np.array([1, x1, x2]) # input
```

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \quad w_0 = b$$

$$x_1 \quad w_1 \quad \Sigma \quad y$$

$$x_2 \quad w_2 \quad x_3 \quad w_4 \quad x_4 \quad x_5 \quad x_6 \quad$$

```
def AND(x1, x2):
    x = np.array([1, x1, x2]) # input
    w = np.array([-0.7, 0.5, 0.5]) # bias + weight
```

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \qquad w_0 = b$$

$$x_1 \qquad w_1 \qquad \Sigma$$

$$x_2 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_4 \qquad x_5 \qquad x_6 \qquad x_6$$

```
def AND(x1, x2):
    x = np.array([1, x1, x2])  # input
    w = np.array([-0.7, 0.5, 0.5])  # bias + weight
    return
```

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \quad w_0 = b$$

$$x_1 \quad w_1 \quad \Sigma$$

$$x_2 \quad w_2 \quad \Sigma$$

```
def AND(x1, x2):
    x = np.array([1, x1, x2])  # input
    w = np.array([-0.7, 0.5, 0.5])  # bias + weight
    return np.dot(w, x)
```

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \qquad w_0 = b$$

$$x_1 \qquad w_1 \qquad \Sigma \qquad y$$

$$x_2 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_4 \qquad x_5 \qquad x_6 \qquad$$

```
def AND(x1, x2):
    x = np.array([1, x1, x2])  # input
    w = np.array([-0.7, 0.5, 0.5])  # bias + weight
    return np.dot(w, x) > 0
```

(1)
$$(w_1, w_2) = (0.5, 0.5), b = -0.7$$

$$x_0 = 1 \qquad w_0 = b$$

$$x_1 \qquad w_1 \qquad \Sigma \qquad y$$

$$x_2 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_4 \qquad x_5 \qquad x_6 \qquad$$

```
def AND(x1, x2):
    x = np.array([1, x1, x2])  # input
    w = np.array([-0.7, 0.5, 0.5])  # bias + weight
    return int(np.dot(w, x) > 0)
```

```
def AND(x1, x2):
    x = np.array([1, x1, x2])  # input
    w = np.array([-0.7, 0.5, 0.5])  # bias + weight
    return int(np.dot(w, x) > 0)
```

```
print("AND(0, 0) = ", AND(0, 0))
print("AND(0, 1) = ", AND(0, 1))
print("AND(1, 0) = ", AND(1, 0))
print("AND(1, 1) = ", AND(1, 1))

AND(0, 0) = 0
AND(0, 1) = 0
AND(1, 0) = 0
AND(1, 1) = 1
```

```
def AND(x1, x2):
    x = np.array([1, x1, x2])  # input
    w = np.array([-0.7, 0.5, 0.5])  # bias + weight
    return int(np.dot(w, x) > 0)
```

$$AND(x_1, x_2) \begin{cases} -0.7 + 0.5x_1 + 0.5x_2 <= 0 \\ -0.7 + 0.5x_1 + 0.5x_2 > 0 \end{cases}$$
(3)

$$y = ax + b$$

$$AND(x_1, x_2) \begin{cases} -0.7 + 0.5x_1 + 0.5x_2 <= 0 \\ -0.7 + 0.5x_1 + 0.5x_2 > 0 \end{cases}$$
(3)

$$y = ax + b$$

$$-0.7 + 0.5x_1 + 0.5x_2 = 0$$

$$x_2 = -\frac{0.5}{0.5}x_1 + \frac{0.7}{0.5}$$

$$x_2 = -x_1 + 1.4$$
 (4)

$$-0.7 + 0.5x_1 + 0.5x_2 = 0$$

$$x_2 = -\frac{0.5}{0.5}x_1 + \frac{0.7}{0.5}$$

$$x_2 = -x_1 + 1.4$$
 (4)

$$-0.7 + 0.5x_1 + 0.5x_2 = 0$$

$$x_2 = -\frac{0.5}{0.5}x_1 + \frac{0.7}{0.5}$$

$$x_2 = -x_1 + 1.4$$
(4)

- Classification
- Classifier

Summary:

- Understanding Artificial Neuron
- Implementing AND Neuron
- Visualizing AND Neuron
- Next
 - 3-2 Derivatives

Week3(1/3)

Artificial Neuron

Machine Learning with Python

Handong Global University Prof. Youngsup Kim idebtor@gmail.com