Ced-9유전자전이사철국화의 유전적안정성과 염견딜성

김명선, 리철준, 리동철

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《화초연구사업을 잘하여 좋은 꽃품종들을 많이 늘이도록 하여야 하겠습니다.》

Ced-9유전자는 식물이 가물과 염, 저온, 비루스에 대한 저항성을 높여주는 아폽토시스억제유전자로서 세계적으로 이러한 스트레스관련유전자들을 식물에 전이시겨 높은 스트레스견딜성을 가진 새로운 품종을 육성하기 위한 연구들[1]에서 많은 성과들이 이룩되였다.

우리는 선발한 *Ced-9*유전자전이사철국화의 유전적안정성과 염견딜성을 밝히기 위한 연구를 하였다.

재료와 방법

식물재료 조직배양한 Ced-9유전자전이사철국화를 리용하였다.

Ced-9유전자전이사철국화의 유전적안정성판정 Ced-9유전자와 함께 식물에 전이된 식물선 발표식자(Hyg)를 리용하여 판정하였다. 8차에 걸쳐 선발배지(MS+NAA 0.1mg/L+Hyg 30mg/L) 에 국화마디를 접종하여 사름률을 조사하고 PCR분석을 하였다.

Ced-9유전자전이사철국화의 NaCl견딜성판정 MS+0.1mg/L NAA+NaCl배지에 국화마디를 접종하여 생장량과 사름률을 조사하는 방법으로 판정하였다.[2, 3]

결과 및 론의

1) Ced-9유전자전이사철국화의 유전적안정성판정

전이된 유전자(*Ced-9*)의 안정성을 보기 위하여 8차까지 계대하면서 Hyg농도가 30mg/L 인 배지에 비전이개체와 전이개체를 접종하고 60일동안 배양한 후 사름률을 보았다.

표 1. 게데시구기 되네ㅠ리시의 단증증에 구는 증증							
계대차수	2 4		6	8			
비전이개체의 사름률/%	0	0	0	0			
전이개체의 사름률/%	92.3 ± 3.52	91.4±4.45	90.5 ± 5.51	85.6 ± 5.43			

표 1 계대차수가 이래요전자이 안정성에 주는 영향

개체수 30개, 배양일수 60d

표 1에서 보는바와 같이 전이개체는 계대차수가 2차일 때 사름률이 92.3%, 계대차수가 8차일 때 85.6%였다. 매 계대에 대조로 리용한 비전이개체의 사름률은 0%였다. 계대 2차와 8차에서 전이개체의 사름률의 차이는 조직배양과정에 개체의 영양상차이로 생겼다고 본다. 계대 8차에서 전기영동상은 유전자전이사철국화에 Ced-9유전자가 존재한다는것을 보여주었다.(그림)

그림. *Ced-*9유전자의 PCR 전기영동상 1-*Ced-*9유전자전이사철국화, 2-100bp Ladder

그림에서 보는바와 같이 *Ced-9*유전자는 크기가 869bp로서 계대 8차에서도 탈락되지 않고 식물속에서 안정하게 존재한다.

2) Ced-9유전자전이사철국화의 NaCl견딜성판정

사철국화에 도입된 *Ced-9*유전자가 발현되는가를 전이 개체와 비전이개체의 NaCl견딜성을 가지고 비교분석하였 다.(표 2)

표 2에서 보는것처럼 배지의 NaCl농도가 높아짐에 따라 조 직배양모의 생육이 억제되는데 NaCl농도가 1%일 때 비전이개 체의 생질량 0.08g에 대하여 전이개체의 생질량은 0.16g으로서 2배 더 컸다. 그러므로 전이개체는 비전이개체에 비하여 높은 NaCl견딜성을 가진다고 볼수 있다.

並	2.	NaClきケバ	소:	식바	I앙모의	씽ᆂ	국메	군	영양	
										Ξ

NaCl농도/%	구분	키/cm	잎수/개	뿌리수/개	뿌리길이/mm	생질량/g
0	대조구	5.1 ± 0.8	5.6±0.9	1.8 ± 0.5	2.9 ± 0.3	0.12 ± 0.02
	시험구	5.2 ± 1.1	5.5 ± 0.9	1.7 ± 0.6	2.8 ± 0.7	0.11 ± 0.03
0.2	대조구	3.5 ± 0.4	4.6 ± 0.7	1.8 ± 0.7	3.1 ± 0.7	0.12 ± 0.03
	시험구	3.7 ± 0.3	5.5 ± 0.4	2.4 ± 0.7	3.1 ± 0.6	0.12 ± 0.01
0.4	대조구	3.5 ± 0.4	4.3 ± 0.6	1.8 ± 0.8	3.1 ± 0.4	0.12 ± 0.02
	시험구	3.7 ± 0.3	5.3 ± 0.7	2.4 ± 0.6	3.1 ± 0.3	0.12 ± 0.02
0.6	대조구	3.4 ± 0.7	4.3 ± 0.6	1.7 ± 0.8	2.6 ± 0.6	0.11 ± 0.03
	시험구	3.5 ± 0.4	5.1 ± 0.5	2.4 ± 0.8	3.3 ± 0.7	0.13 ± 0.03
0.8	대조구	2.5 ± 0.5	4.0 ± 0.4	1.0 ± 0.9	1.7 ± 0.9	0.10 ± 0.02
	시험구	3.5 ± 0.6	5.2 ± 0.6	2.2 ± 0.6	3.3 ± 0.6	0.14 ± 0.03
1.0	대조구	1.8 ± 1.0	2.6 ± 1.5	1.0 ± 0.9	1.0 ± 1.0	0.08 ± 0.05
	시험구	3.3 ± 0.3	5.1 ± 0.7	1.7 ± 0.9	1.8 ± 0.6	0.16 ± 0.03

개체수 30개, 배양일수 40d

맺 는 말

Ced-9유전자전이사철국화는 계대 8차에서 Ced-9유전자가 탈락되지 않고 안정하게 존재한다.

Ced-9유전자전이사철국화는 NaCl농도가 1%인 조건에서 배양할 때 비전이국화에 비하여 생질량이 2배 더 크다.

참 고 문 헌

- [1] P. Xu et al.; Proc. Natl. Acad. Sci., 101, 15805, 2004.
- [2] G. Chunyan et al.; Int. J. Mol. Sci., 16, 2052, 2015.
- [3] M. Aftabi et al.; Molecular Biology, 7, 1, 2018.

주체109(2020)년 7월 5일 원고접수

Genetic Stability and Resistance to Salt of the *Ced-9* Transgenic *Chrysanthemum morifolium* cv. "Sachol"

Kim Myong Son, Ri Chol Jun and Ri Tong Chol

The present study clarified the genetic stability of the *Ced-9* transgenic *C. morifolium* cv. "Sachol" which was selected by the *Agrobacterium*-mediated transformation method. The presense of *Ced-9* gene was identified by the PCR analysis in the transgenic chrysanthemum at 8th subculture. Biomass of *Ced-9* transgenic *C. morifolium* cv. "Sachol" was higher 2 times in 1% of NaCl than control.

Keywords: ced-9 gene, C. morifolium cv. "Sachol", resistance to NaCl