Chapitre 22 : Equations et systèmes différentiels non linéaires

On considère un espace de Banach E.

I Généralités

A) Equations résolues du premier ordre

Soit U un ouvert de $\mathbb{R} \times E$, $f: U \to E$ continue.

On considère l'équation différentielle du premier ordre (E): x'(t) = f(t, x(t))

Lorsque f(t, x(t)) ne dépend que de x, l'équation est dite autonome.

Une équation autonome du premier ordre s'écrit donc $(E_{au}): x'(t) = F(x(t))$ où $F: \Omega \to E$ est continue sur Ω ouvert de E.

En posant $U = \mathbb{R} \times \Omega$, ouvert de $\mathbb{R} \times E$, et f(t,x) = F(x), on retrouve la forme générale.

B) Solution de (E)

On appelle solution de (E) un couple (I, φ) où I est un intervalle de \mathbb{R} et $\varphi: I \to E$ de classe C^1 telle que $\forall t \in I, (t, \varphi(t)) \in U$ et $\varphi'(t) = f(t, \varphi(t))$.

C) Condition initiale et problème de Cauchy

Une condition initiale pour (*E*), c'est un couple $(t_0, x_0) \in U$

Résoudre le problème de Cauchy $C_{(E),(t_0,x_0)}:\begin{cases} x'(t)=f(t,x(t))\\ x(t_0)=x_0 \end{cases}$, c'est trouver les solutions (I,φ) de (E) telles que $t_0\in I$ et $\varphi(t_0)=x_0$

D) Ordre de prolongement sur les solutions et solutions maximales

Soient (I, φ) , (J, ψ) deux solutions de (E). On dit que (I, φ) prolonge (J, ψ) lorsque $J \subset I$ et $\varphi_{I,J} = \psi$.

Proposition:

La relation de prolongement est une relation d'ordre partielle sur l'ensemble des solutions de (E).

Attention : il est possible que deux solutions de (*E*) ne soient pas comparables.

Définition :

On appelle solution maximale de (E) une solution (I, φ) maximale pour l'ordre de prolongement, c'est-à-dire que si (J, ψ) prolonge (I, φ) , alors I = J et $\varphi = \psi$.

E) Premières propriétés

• Invariance par translation de la variable de l'ensemble des solutions de (E_{au}) : x'(t) = F(x(t)):

Théorème:

Soient $F: \Omega \subset E \to E$ continue et (I, φ) une solution de (E_{au}) .

Pour tout $a \in \mathbb{R}$, si on pose $I_a = I + a$ et $\forall t \in I_a, \varphi_a(t) = \varphi(t - a)$, alors (I_a, φ_a) est solution de (E_{au}) .

De plus, (I, φ) est maximale si et seulement si (I_a, φ_a) l'est.

Démonstration :

Si (I, φ) est solution, alors $\forall t \in I, \varphi(t) \in \Omega$, donc $\forall t \in I_a, \varphi_a(t) \in \Omega$

De plus, φ_a est de classe C^1 , et $\forall t \in I_a, \varphi'_a(t) = \varphi'(t-a) = F(\varphi(t-a)) = F(\varphi_a(t))$

Caractéristique maximale:

Si (J, ψ) prolonge (I, φ) , alors (J_a, ψ_a) prolonge (I_a, φ_a) .

Inversement, si (J, ψ) prolonge (I_a, φ_a) , alors (J_{-a}, ψ_{-a}) prolonge (I, φ) .

• Equation intégrale associée à un problème de Cauchy :

Proposition:

Soient *U* un ouvert de $\mathbb{R} \times E$, $f: U \to E$ continue et $(t_0, x_0) \in U$.

On considère l'équation différentielle (E): x'(t) = f(t, x(t)).

Soit $\varphi: I \to E$, continue sur l'intervalle I telle que $\forall t \in I, (t, \varphi(t)) \in U$.

On suppose que $t_0 \in I$.

Alors les conditions suivantes sont équivalentes :

- (1) φ est de classe C^1 et (I, φ) est solution du problème de Cauchy $\begin{cases} (E): x'(t) = f(t, x(t)) \\ x(t_0) = x_0 \end{cases}$
- (2) $\forall t \in I, \varphi(t) = x_0 + \int_{t_0}^t f(s, \varphi(s)) ds$

Démonstration:

C'est la même chose que pour les équations linéaires.

• Théorème de prolongement en une borne :

Théorème:

Soient $f: U \subset \mathbb{R} \times E \to E$ continue, (E): x'(t) = f(t, x(t)) et (I, φ) une solution de (E).

On suppose que I=|a,b[où $b\in\mathbb{R}$, et que $\varphi(t)$ a une limite $l\in E$ en b, vérifiant $(b,l)\in U$.

Alors le couple (J, ψ) où $J = I \cup \{b\}$ et $\forall t \in J, \psi(t) = \begin{cases} \varphi(t) & \text{si } t \neq b \\ 1 & \text{si } t = b \end{cases}$ est solution

de (E), qui prolonge (I, φ) .

En particulier, (I, φ) n'est pas maximale

Remarque:

On a la même chose pour l'autre borne.

Démonstration:

Déjà, ψ est continue sur J, et de classe C^1 sur I.

De plus, comme $(b,l) \in U$, on a $\lim_{t \to b^-} f(t,\varphi(t)) = f(b,l)$ par continuité de f en

$$(b,l)$$
 . Or, $\forall t \in I, \psi'(t) = \varphi'(t) = f(t,\varphi(t)) = f(t,\psi(t))$

Donc
$$\lim_{t \to b^-} \psi'(t) = f(b, l) = f(b, \psi(b))$$

Donc ψ est dérivable en b et $\psi'(b) = f(b, \psi(b))$. Donc (J, ψ) est solution de (E). Remarque :

Le théorème de prolongement C^1 est valable pour un espace de Banach, même de dimension infinie.

F) Cas des systèmes différentiels

• De deux équations :

On considère le système (S): $\begin{cases} x'(t) = f(t, x(t), y(t)) \\ y'(t) = g(t, x(t), y(t)) \end{cases}$ où $f, g: U \to E$ sont continues sur l'ouvert U de $f, g: U \to E$.

Si on pose
$$F = E^2$$
, $h: U \subset \mathbb{R} \times F \to F$ et $(E): v'(t) = h(t, v(t))$ et $(E): v'(t) = h(t, v(t))$

avec $v: I \to F$, alors F muni d'une topologie produit est un espace de Banach, $t \mapsto (x(t), y(t))$

et (E) est équivalent à (S).

Une condition initiale de (S) est un triplet $(t_0, x_0, y_0) \in \mathbb{R} \times E \times E$ (c'est-à-dire une condition initiale de (E)). On définit aussi le problème de Cauchy

$$C_{(S),(t_0,x_0,y_0)}: \begin{cases} x'(t) = f(t,x(t),y(t)) \\ y'(t) = g(t,x(t),y(t)) \\ (x(t_0),y(t_0)) = (x_0,y_0) \end{cases}$$

- Cas de $p \ge 2$ équations : analogue.
- Equation d'ordre $r \ge 2$:

On considère l'équation (E_r) : $x^{(r)}(t) = f(t, x(t), ... x^{r-1}(t))$ où $f: U \to E$ est continue sur U, ouvert de $\mathbb{R} \times E^r$.

On appelle solution de (E_r) un couple (I, φ) où I est un intervalle, et $\varphi: I \to E$ est de classe C^r telle que $\forall t \in I, (t, \varphi(t)...\varphi^{(r-1)}(t)) \in U$ et $\varphi^{(r)}(t) = f(t, \varphi(t),...\varphi^{(r-1)}(t))$

On peut ramener (E_r) à un système de r équations d'ordre 1 :

Pour r = 2 par exemple, $(E_2): x''(t) = f(t, x(t), x'(t))$

Alors
$$(E_2) \Leftrightarrow (S)$$
:
$$\begin{cases} x'(t) = y(t) \\ y'(t) = f(t, x(t), y(t)) \end{cases} \Leftrightarrow (E) : v'(t) = h(t, v(t))$$

Où
$$h: U \subset \mathbb{R} \times E^2 \to E^2$$

 $(t,x,y) \mapsto (y,f(t,x,y))$

Une condition initiale de (E_r) est $(t_0, x_0, ... x_{r-1}) \in U$.

Le problème de Cauchy associé est $\begin{cases} (E_r) \\ \forall i \leq r-1, x^{(i)}(t_0) = x_i \end{cases}$

G) Exemples

• Equations différentielles linéaires :

On considère l'équation L: x'(t) = a(t).x(t) + b(t), où $b: I_0 \to E$ et $a: I_0 \to L_C(E)$ sont continues.

Théorème de Cauchy pour les équations différentielles linéaires :

Sous les hypothèses précédente,

- (1) Tout problème de Cauchy admet une solution maximale
- (2) Son domaine de définition est I_0
- (3) Toute solution est restriction de cette solution maximale.

Démonstration:

(1) D'après le théorème de Cauchy déjà vu, pour tout $(t_0,x_0) \in I_0 \to E$, il existe $\varphi:I_0 \to E$ de classe C^1 unique telle que $\forall t \in I_0, \varphi'(t) = a(t).\varphi(t) + b(t)$ et $\varphi(t_0) = x_0$.

Alors (I_0, φ) est solution maximale :

Si (I, ψ) est une autre solution maximale, alors $I \subset I_0$, et $\varphi_{I} = \psi$ car φ et ψ sont solution sur I du même problème de Cauchy.

Comme ψ est maximale et (I_0, φ) la prolonge, on a $(I_0, \varphi) = (I, \psi)$

- (3) Si (J, ψ) est une autre solution comme ci-dessus, on voit que $\psi = \varphi_I$
- $(E): x'(t) = 1 + x(t)^2 (E = \mathbb{R})$

Equation autonome:

Soit (I, φ) une solution de (E), $\varphi(t_0) = x_0$

Alors
$$\forall t \in I, \frac{\varphi'(t)}{1 + \varphi(t)^2} = 1$$

Donc $\forall t \in I$, $\left[\operatorname{Arctan} \varphi(t) \right]_{t_0}^t = t - t_0$

Donc $\forall t \in I$, Arctan $\varphi(t) = \operatorname{Arctan} x_0 + t - t_0 \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$

Donc
$$I \subset I_0 = \left[\operatorname{Arctan} x_0 - t_0 - \frac{\pi}{2}, \operatorname{Arctan} x_0 - t_0 + \frac{\pi}{2} \right]$$

Et $\forall t \in I, \varphi(t) = \tan(\operatorname{Arctan} x_0 - t_0 + t)$

Synthèse:

Si on pose $\forall t \in I_0, \varphi_0(t) = \tan(\operatorname{Arctan} x_0 - t_0 + t)$, alors (I_0, φ_0) est l'unique solution maximale du problème de Cauchy. Toute autre solution en est restriction.

Remarque:

On voit ici que pour une équation non linéaire, la taille des solutions maximales n'est pas prévisible.

• $(E): x'(t) = x(t)^{1/3}$ (Autonome, $E = \mathbb{R}$)

On va montrer que tout problème de Cauchy a une infinité de solutions.

Le problème $C:\begin{cases} x'(t) = x(t)^{1/3} \\ x(0) = 0 \end{cases}$ admet comme solution $(\mathbb{R},0)$

On pose pour a > 0 et b < 0, $\varphi_{a,b} : t \mapsto \begin{cases} 0 \text{ si } t \in [b, a] \\ (\frac{2}{3})^{3/2} (t - a)^{3/2} \text{ si } t \ge a \end{cases}$. Alors: $(\frac{2}{3})^{3/2} (b - t)^{3/2} \text{ si } t \le b$

(1) $\varphi_{a,b}$ est de classe C^1 (on a bien un raccordement C^1 en a et b)

(2) $\varphi_{a,b}$ est solution de (E):

Pour
$$t > a$$
, $\varphi'_{a,b}(t) = (\frac{2}{3})^{1/2} (t-a)^{1/2} = (\varphi_{a,b}(t))^{1/3}$

Pour d'autres problèmes de Cauchy, on translate le long de Ox.

Remarque:

Contrairement à ce qui se passe pour les équations linéaires, la continuité de f ne suffit pas pour assurer l'unicité.

II Théorème de Cauchy-Lipschitz pour les équations d'ordre 1

A) Le théorème de Cauchy-Lipschitz local

(Totalement inutile en pratique)

Théorème:

Soit E un espace de Banach, U un ouvert de $\mathbb{R} \times E$, $f: U \to E$ de classe C^1 .

Pour toute condition initiale $(t_0, x_0) \in U$, le problème de Cauchy $\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0 \end{cases}$ admet une et une seule solution locale, c'est-à-dire qu'il existe $\alpha > 0$

et
$$\beta > 0$$
 tels que $t_0 - \alpha, t_0 + \alpha [\times B_o(x_0, \beta) \subset U$, et $\varphi_0 : t_0 - \alpha, t_0 + \alpha [\to B_o(x_0, \beta)]$ de classe C^1 telle que
$$\begin{cases} \forall t \in t_0 - \alpha, t_0 + \alpha [\varphi_0'(t)] = f(t, \varphi(t)) \\ \varphi_0(t_0) = x_0 \end{cases}$$

Et pour toute autre solution (I,φ) , $\varphi_{0/I\cap I_0}=\varphi_{/I\cap I_0}$ où $I_0=]t_0-\alpha,t_0+\alpha[$

Remarque:

Le théorème est vrai si on remplace «f est de classe C^1 » par «f est continue et localement lipschitzienne en x », c'est-à-dire que pour tout $(t_0, x_0) \in U$, il existe un voisinage $[t_0 - \alpha, t_0 + \alpha] \times B_f(x_0, \beta) \subset U$ de (t_0, x_0) et une constante K > 0 tels que

$$\forall (t, x, y) \in [t_0 - \alpha, t_0 + \alpha] \times B_f(x_0, \beta) \times B_f(x_0, \beta), ||f(t, x) - f(t, y)|| \le K||x - y||$$

L'hypothèse est moins forte puisque si f est de classe C^1 , elle est automatiquement continue et localement lipschitzienne.

Démonstration du théorème (avec l'hypothèse moins forte) :

Comme f est continue et localement lipschitzienne, quitte à diminuer le voisinage de (t_0, x_0) , on peut trouver α, β, M, K strictement positifs tels que :

(1)
$$[t_0 - \alpha, t_0 + \alpha] \times B_f(x_0, \beta) \subset U$$

(2)
$$\forall (t, x) \in [t_0 - \alpha, t_0 + \alpha] \times B_f(x_0, \beta), ||f(t, x)|| \le M$$

(3)
$$\forall (t, x, y) \in [t_0 - \alpha, t_0 + \alpha] \times B_f(x_0, \beta) \times B_f(x_0, \beta), ||f(t, x) - f(t, y)|| \le K||x - y||$$

- (4) $\alpha . M \leq \beta$
- (5) $\alpha . K < 1$

On considère l'espace métrique X des fonctions continues de $[t_0 - \alpha, t_0 + \alpha]$ dans $B_f(x_0, \beta)$ muni de la distance d définie par la norme infinie, et l'application Φ qui à $h \in X$ associe g définie par $g(t) = x_0 + \int_{t_0}^t f(s, h(s)) ds$.

Alors:

X est un espace métrique complet, car c'est une partie fermée de l'espace de Banach des fonctions continues de $[t_0 - \alpha, t_0 + \alpha]$ dans E muni de la norme $\|\cdot\|_{\infty}$.

Pour $h \in X$, on a:

- $g = \Phi(h)$ est bien définie et continue sur $[t_0 \alpha, t_0 + \alpha]$ (d'après 1)
- $g \in X$ (d'après (2) et (4))

De plus, pour $h_1, h_2 \in X$ et $t \in [t_0 - \alpha, t_0 + \alpha]$, en notant $\varepsilon(t)$ le signe de $t - t_0$, on a

$$\|\Phi(h_1)(t) - \Phi(h_2)(t)\|_{E} = \left\| \int_{t_0}^{t} (f(s, h_1(s)) - f(s, h_2(s))) ds \right\|_{E}$$

$$\leq \varepsilon(t) \int_{t_0}^{t} K \|h_1(s) - h_2(s)\|_{E} ds \leq \alpha K d(h_1, h_2)$$

Donc $\|\Phi(h_1) - \Phi(h_2)\|_{\infty} \le \alpha K d(h_1, h_2)$, c'est-à-dire que Φ est αK -lipschitzienne, donc contractante.

Ainsi, on peut appliquer le théorème du point fixe à Φ : il existe un unique point fixe φ qui est l'unique solution sur $[t_0-\alpha,t_0+\alpha]$ de l'équation intégrale associée à $C_{(E),(t_0,x_0)}$. Ce problème a donc une unique solution maximale dans $[t_0-\alpha,t_0+\alpha]$ et, plus généralement, dans tout sous-intervalle de $[t_0-\alpha,t_0+\alpha]$ contenant t_0 .

D'où le résultat.

Remarque:

La condition « localement lipschitzienne » est celle qui entraîne l'unicité de la solution.

Pour l'existence, en dimension finie, on a le théorème de Cauchy-Arzelã:

Si f est continue, tout problème de Cauchy admet au moins une solution (locale)

B) Théorème de Cauchy-Lipschitz global

Théorème:

On suppose $f:U\to E$ de classe C^1 sur U ouvert de $\mathbb{R}\times E$. Soit $(t_0,x_0)\in U$. Alors :

- (1) Le problème de Cauchy $\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0 \end{cases}$ a une unique solution maximale (I, φ) .
- (2) I est un intervalle ouvert (voisinage de t_0)
- (3) Toute autre solution du problème de Cauchy est restriction de (I, φ)

Remarque:

L'énoncé est vrai avec f seulement continue et localement lipschitzienne en x. Démonstration :

- (1) et (3) découlent du théorème de Cauchy–Lipschitz local.
- (2) est conséquence du théorème de prolongement en une borne. Remarque :

Le théorème local est maintenant conséquence de ce théorème, et ne sert plus à rien.

III Application à des équations remarquables

A) Equations scalaires à variables séparables

Pour une équation de la forme (E): $x'(t) = a(t) \times b(x(t))$, $a: I_0 \to \mathbb{R}$, $b: J_0 \to \mathbb{R}$.

Ici,
$$U = I_0 \times J_0$$
, $f: U \to \mathbb{R}$
 $(t,x) \mapsto a(t) \times b(x)$

On suppose a et b C^1 pour appliquer le théorème de Cauchy–Lipschitz (global) Remarque :

Il suffit que a soit continue et b de classe C^1 ou localement lipschitzienne.

Résolution du problème de Cauchy $\begin{cases} x'(t) = a(t) \times b(x(t)) \\ x(t_0) = x_0 \end{cases}$

- Si $b(x_0) = 0$, la solution maximale est (I_0, x_0) , fonction constante.
- Si $b(x_0) \neq 0$, alors la solution maximale (I, φ) vérifie $\forall t \in I, b(\varphi(t)) \neq 0$.

En effet, si il existe $t_1 \in I$ tel que $b(\varphi(t_1)) = 0$, alors (I, φ) et (I_0, x_1) , où $x_1 = \varphi(t_1)$ fonction constante, sont deux solutions maximales du problème de Cauchy

$$\begin{cases} (E) \\ x(t_1) = x_1 \end{cases}$$
. Donc $I = I_0$ et $\varphi = x_1$.

Donc b ne s'annule pas sur $\varphi(I) = J$ intervalle.

Soit G une primitive de 1/b sur J.

On a alors
$$\forall t \in I$$
, $\frac{\varphi'(t)}{b(\varphi(t))} = a(t)$

Donc
$$G(\varphi(t)) - G(\varphi(t_0)) = \int_{t_0}^{t} a(s)ds = A(t)$$

De plus, G est un C^1 -difféomorphisme (G' ne s'annule pas).

Donc $\varphi(t) = G^{-1}(G(x_0) + A(t))$ est solution du problème de Cauchy sur *I*.

Morale:

Pour une équation à variables séparables x'(t) = a(t)b(x(t)) où a, b sont de classe C^1 , il y a dichotomie entre les deux cas :

- $\forall t \in I, b(x(t)) = 0$
- $\forall t \in I, b(x(t)) \neq 0$

B) Equations scalaires d'ordre 2

On considère (E): x''(t) = f(t, x(t)x'(t)): correspond à toute la mécanique du point en physique.

Théorème:

Si f est de classe C^1 sur l'ouvert $U \subset \mathbb{R}^3$, à valeur réelles, alors pour toute condition initiale $(t_0, x_0, v_0) \in U$, le problème $\begin{cases} (E) \\ x(t_0) = x_0 \text{ a une unique solution} \\ v(t_0) = v_0 \end{cases}$

maximale, et toute solution est restriction de cette solution (c'est-à-dire que pour une position et une vitesse initiales données, il n'y a qu'une seule trajectoire possible..!)

Démonstration:

Il suffit de se ramener au système d'ordre 1 associé :

$$(E) \Leftrightarrow \begin{cases} x'(t) = y(t) \\ y'(t) = f(t, x(t), y(t)) \end{cases}$$

C) Equations et systèmes autonomes

• Théorème de Cauchy–Lipschitz :

On considère une équation différentielle autonome (E_{au}) : x'(t) = F(x(t))

Si $F: \Omega \subset E \to E$ est de classe C^1 , alors pour toute condition initiale $(t_0, x_0) \in \mathbb{R} \times \Omega$, le problème de Cauchy $C_{(E_{\mathrm{au}}), (t_0, x_0)}$ a une unique solution maximale et toute solution est restriction de cette solution.

Si (I, φ) est la solution maximale de $C_{(E_{\mathrm{au}}),(t_0,x_0)}$, alors la solution maximale de $C_{(E_{\mathrm{au}}),(t_0,x_0)}$ est (I_{t_0},φ_{t_0})

Remarque:

Pour une équation autonome, il suffit donc de résoudre $C_{(E_m)(0,x_0)}$.

• Trajectoire:

On appelle trajectoire de (E_{au}) : x'(t) = F(x(t)) une courbe paramétrée $I \to E$ où $t \mapsto \varphi(t)$

 (I, φ) est solution maximale.

Proposition:

Si $F: \Omega \subset E \to E$ est de classe C^1 , alors l'ensemble des trajectoires de E_{au} forme une partition de $\mathbb{R} \times \Omega$; autrement dit, deux trajectoires différentes sont disjointes.

Démonstration:

C'est toujours le théorème de Cauchy-Lipschitz.

Trajectoires particulières:

(1) Les « points » : correspondent aux solutions maximales constantes.

Mais $x(t) = x_0$ est solution de (E_{au}) si et seulement si $F(x_0) = 0$

Un tel point x_0 s'appelle position d'équilibre (en physique) ou point critique (en math)

(2) Les trajectoires fermées, c'est-à-dire telles que φ n'est pas injective.

Proposition (Hors programme):

Si F est de classe C^1 , les solutions maximales (I, φ) sont :

- Soit injectives
- Soit périodiques, c'est-à-dire que $I = \mathbb{R}$ et il existe T > 0 tel que φ est T-périodique.

Démonstration:

Supposons que la solution maximale (I, φ) ne soit pas injective.

Alors il existe $a, b \in I$ distincts tels que $\varphi(a) = \varphi(b)$ et on peut supposer a < b.

On a alors, en posant T = a - b > 0, $(I, \varphi) = (I_T, \varphi_T)$.

En effet, ce sont deux solutions maximales du même problème de Cauchy

$$\begin{cases} x'(t) = F(x(t)) \\ x(b) = x_0 = \varphi(b) \end{cases}$$
, car, pour (I_T, φ_T) (clair pour (I, φ)):

$$b \in I_T = I + (b - a) \operatorname{car} a \in I$$
,

$$\varphi_T(b) = \varphi(b-T) = \varphi(a) = \varphi(b)$$

Donc I = I + T. Donc $I = \mathbb{R}$ et $\varphi_T = \varphi$ donc φ est T-périodique.

• Equations autonomes scalaires x'(t) = F(x(t)), où $F: I \subset \mathbb{R} \to \mathbb{R}$ est de classe C^1 : c'est un cas particulier d'équation à variables séparables.

Exercice:

Résoudre $x'(t) = \sin(x(t))$

Méthode : on utilise le théorème de Cauchy–Lipschitz pour résoudre $\begin{cases} x'(t) = \sin(x(t)) \\ x(0) = x_0 \end{cases}$

Remarque « géométrique » :

- (1) Comme l'équation est autonome, il suffit de résoudre le problème de Cauchy en $t_0 = 0$
- (2) Le théorème de Cauchy–Lipschitz s'applique car la fonction sinus est de classe C^1 ; on a donc une unique solution maximale (I, φ)
- (3) Si (I, φ) est solution maximale, alors $(I, \varphi + 2k\pi), k \in \mathbb{Z}$ aussi.
- (4) Si (I, φ) est solution maximale, alors $(I, -\varphi)$ aussi.

Avec (3) et (4) : on peut supposer que $x_0 \in [0, \pi]$

Si $x_0 = 0$, la solution maximale est $(\mathbb{R}, 0)$

Si $x_0 = \pi$, la solution maximale est (\mathbb{R}, π)

Si $x_0 \in]0, \pi[$, alors $t \mapsto \sin(\varphi(t))$ ne s'annule pas sur I.

Donc
$$\forall t \in I, \frac{\varphi'(t)}{\sin(\varphi(t))} = 1$$

Sur
$$]0, \pi[, \int \frac{dx}{\sin x} = \ln(\tan \frac{x}{2})$$

On intègre sur $[t_0, t]$:

$$\ln\left(\frac{\tan\frac{\varphi(t)}{2}}{\tan\frac{x_0}{2}}\right) = t - t_0$$

Donc $\tan \frac{\varphi(t)}{2} = \tan(\frac{x_0}{2})e^{t-t_0}$

Or,
$$\forall t \in I, 0 < \varphi(t) < \pi$$

(Car s'il existe t tel que $\varphi(t) \ge \pi$, alors il existe t_1 tel que $\varphi(t_1) = \pi$ donc par unicité de la solution, $\varphi = \pi$; de même pour 0)

Donc
$$\forall t \in I, \frac{\varphi(t)}{2} \in \left]0, \frac{\pi}{2}\right[$$

Donc
$$\forall t \in I, \varphi(t) = 2\operatorname{Arctan}\left(\tan\left(\frac{x_0}{2}\right)e^{t-t_0}\right)$$

Remarque:

Stabilité des équilibres :

Les équilibres sont les conditions initiales pour lesquelles $x_0 = n\pi, n \in \mathbb{Z}$

Si n est pair, l'équilibre est instable : un petit écart à l'équilibre fera tendre $\varphi(t)$ vers $n\pi \pm \pi$ quand t tend vers $+\infty$:

Si *n* est impair, l'équilibre est stable :

• Cas des systèmes autonomes d'ordre 2 scalaires :

On considère le système
$$(S)$$
: $\begin{cases} x'(t) = F(x(t), y(t)) \\ y'(t) = G(x(t), y(t)) \end{cases}$, où $F, G: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ sont

continues.

Théorème:

Si F et G sont de classe C^1 , tout problème de Cauchy a une unique solution maximale (I, φ) et les autres solutions en sont restriction.

Champ de vecteurs associé:

On note
$$(\vec{i}, \vec{j})$$
 la base canonique de \mathbb{R}^2 , \vec{V} : $\Omega \to \mathbb{R}^2$ $M = (x,y) \mapsto \vec{V}(M) = F(x,y)\vec{i} + G(x,y)\vec{j}$

La représentation graphique de \vec{V} permet une construction approchée par la méthode d'Euler point par point des trajectoires et détermine l'allure des trajectoires.

Exemple : Lottka-Volterra (proies-prédateurs)

On considère le système
$$(S)$$
:
$$\begin{cases} x'(t) = x(t)(y(t) - b) \\ y'(t) = y(t)(a - x(t)) \end{cases}$$
 où a , b sont positifs.

y(t): effectif des lapins à l'instant t.

x(t): effectif des renards à l'instant t.

On a $\vec{V}(x, y) = x(y-b)\vec{i} + y(a-x)\vec{j}$

Points d'équilibre : (0,0) et (a,b)

Remarque:

On a une intégrale première, c'est-à-dire une fonction $H:\mathbb{R}^2\to\mathbb{R}$, constante sur la trajectoire.

En effet, $H(x, y) = y + x - b \ln y - a \ln x$ convient.

« Méthode » pour trouver H:

On a avec les équations
$$dt = \frac{dx}{x(y-b)}$$
, $dt = \frac{dy}{y(a-x)}$.

On doit résoudre
$$\frac{dy}{y(a-x)} = \frac{dx}{x(y-b)}$$
, c'est-à-dire $\frac{(y-b)dy}{y} = \frac{(a-x)dx}{x}$

Donc $y - b \ln y = a \ln x - x + \text{cte}$

En effet, si (I,(x,y)) est une solution telle que x et y sont positives, alors

$$\frac{dH(x(t), y(t))}{dt} = x'(t)\frac{\partial H}{\partial x}(x(t), y(t)) + y'(t)\frac{\partial H}{\partial y}(x(t), y(t))$$
$$= x(y - b)(1 - \frac{a}{x}) + y(a - x)(1 - \frac{b}{y}) = 0$$

Etude rigoureuse:

Pour une condition initiale $\begin{cases} x(0) = x_0 \\ y(0) = y_0 \end{cases}$

 1^{er} cas : $x_0 = 0$: la solution maximale est (\mathbb{R}, φ) où $\forall t \in \mathbb{R}, \varphi(t) = (0, y_0 e^{at})$

 $2^{\text{ème}}$ cas : $y_0 = 0$: la solution maximale est (\mathbb{R}, φ) où $\forall t \in \mathbb{R}, \varphi(t) = (x_0 e^{-b.t}, 0)$

 $3^{\text{ème}} \text{ cas} : \text{si } x_0 > 0 \text{ et } y_0 > 0 :$

Soit (I, φ) la solution maximale, $\varphi(t) = (x(t), y(t))$

On a $\forall t \in I, x(t) > 0, y(t) > 0$

(Si x s'annule en un point, par unicité de la solution, on trouvera que x est nul)

On a donc $\forall t \in I, H(x(t), y(t)) = \text{cte} = H(x_0, y_0)$

Or,
$$C_k = \{(x, y) \in \mathbb{R}_+^{*2}, x + y - a \ln x - b \ln y = k \}$$
 est compact. En effet :

Il est borné:

On pose $\alpha(x) = x - a \ln x$, $\beta(y) = y - b \ln y$

Alors
$$\alpha'(x) = 1 - \frac{a}{x}$$

$$\begin{array}{c|cccc}
 & 0 & a & +\infty \\
\hline
\alpha' & - & 0 & + \\
\hline
\alpha & +\infty & +\infty \\
\hline
\alpha(a) & & +\infty
\end{array}$$

Supposons C_k non borné.

Soit alors $(x_n, y_n)_{n \in \mathbb{N}} \in C_k^{\mathbb{N}}$ telle que $x_n \to +\infty$ ou $y_n \to +\infty$; supposons par exemple que c'est $(x_n)_{n \in \mathbb{N}}$. Alors $\alpha(x_n) \to +\infty$.

Donc $\forall n \in \mathbb{N}, \alpha(x_n) + \beta(y_n) \ge \alpha(x_n) + \beta(b) \to +\infty$, ce qui est impossible car $\forall n \in \mathbb{N}, \alpha(x_n) + \beta(y_n) = k$

 C_k est fermé : $H:\mathbb{R}_+^{*2} \to \mathbb{R}$ est continue donc $C_k = H^{-1}\{k\}$ est un fermé de \mathbb{R}_+^{*2}

Attention : ce n'est pas forcément pour autant un fermé de \mathbb{R}^2 (\mathbb{R}_+^{*2} est un fermé de lui-même mais pas de \mathbb{R}^2 par exemple)

Soit $(x_n, y_n)_{n \in \mathbb{N}} \in C_k^{\mathbb{N}}$ tendant vers $(\bar{x}, \bar{y}) \in \mathbb{R}^2$

Alors $\bar{x} > 0$ et $\bar{y} > 0$

(Car si $x_n \to 0$, alors $\alpha(x_n) \to +\infty$ et $\alpha(x_n) + \beta(y_n) \to +\infty$)

Comme *H* est continue en $(\bar{x}, \bar{y}) \in \mathbb{R}^{*2}_{+}$, on a $H(\bar{x}, \bar{y}) = k$

Donc C_k est fermé, donc compact.

Ainsi, la solution maximale est définie sur \mathbb{R} , c'est-à-dire $I = \mathbb{R}$.

En effet, supposons que I =]u,v[où v est fini (I est ouvert d'après le théorème de Cauchy-Lipschitz)

Comme la trajectoire est incluse dans C^k compact, x et y sont bornées sur I.

Donc x' et y' aussi. Comme v est fini, x' et y' sont donc intégrables sur [0, v[, donc

 $x(t) = x_0 + \int_0^t x'(s)ds$ a une limite finie l quand t tend vers v. De même, y a une limite m.

D'après le théorème de prolongement en une borne, en posant x(v) = l, y(v) = m, on obtient une solution de S sur [u, v] ce qui contredit le caractère maximal de (I, φ) .

On a la même chose pour u.

Donc $I = \mathbb{R}$

Montrons maintenant que la solution maximale est périodique :

On a $\forall t \in \mathbb{R}, \alpha(x(t)) + \beta(y(t)) = k$

On suppose que $x_0 \in]0, a[, y_0 \in]0, b[$

Alors il existe $t_1 > 0$ tel que $y(t_1) > b$

En effet, sinon on a $\forall t > 0, y(t) \in]0, b[$, donc x'(t) = x(t)(y(t) - b) < 0

Donc x est décroissant, et $\forall t \ge 0, x(t) < a$, donc $\forall t \ge 0, y'(t) = y(t)(a - x(t)) > 0$

Donc x est décroissant minoré, y croissant majoré. Donc x(t), y(t) tendent vers des limites finies $\widetilde{\alpha}$, $\widetilde{\beta}$ quand t tend vers $+\infty$.

Donc
$$\lim_{t \to +\infty} x'(t) = \widetilde{\alpha}(\widetilde{\beta} - b)$$
, $\lim_{t \to +\infty} y'(t) = \widetilde{\beta}(a - \widetilde{\alpha})$.

Comme x et x' ont des limites finies, celle de x' est donc nulle, et pareil pour y'.

Donc
$$\widetilde{\alpha}(\widetilde{\beta} - b) = 0$$
 et $\widetilde{\beta}(a - \widetilde{\alpha}) = 0$

Mais
$$(\widetilde{\alpha}, \widetilde{\beta}) \in C_k$$
, donc $\widetilde{\alpha} > 0$, $\widetilde{\beta} > 0$. Donc $\widetilde{\alpha} = a$ et $\widetilde{\beta} = b$

Mais alors
$$k = \alpha(a) + \beta(b) = \alpha(\widetilde{\alpha}) + \beta(\widetilde{\beta})$$

Or, $\alpha(a) = \min_{x>0} \alpha(x)$ atteint seulement en x = a, $\beta(b) = \min_{y>0} \beta(y)$, atteint uniquement en y = b. Donc C_k est réduit à (a,b), ce qui est impossible car $(x_0, y_0) \in C_k$.

De même, il existe $t_2 > t_1$ tel que $x(t_2) = a$,...

On a ainsi $t_1 < t_2 < t_3 < t_4 < t_5$

Or,
$$\forall t, \alpha(x(t)) + \beta(y(t)) = k$$

En particulier, $\alpha(x(t_i)) = k - \beta(b)$ pour j = 1,3,5

Or, l'équation $\alpha(x) = \lambda$ a au plus deux solutions.

Donc deux des nombres $x(t_1)$, $x(t_3)$, $x(t_5)$ sont égaux.

Si par exemple $x(t_1) = x(t_5)$, alors $\varphi(t_1) = \varphi(t_5)$ donc φ est $t_5 - t_1$ périodique.

Systèmes autonomes linéaires :

Soit
$$A \in M_2(\mathbb{R})$$
, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

On considère le système
$$\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = A \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
.

Le théorème de Cauchy–Lipschitz s'applique.

Allure des trajectoires :

- Si $A = PDP^{-1}$ est diagonalisable, en posant $Y = P^{-1}X$, on est ramené à Y' = DY

Avec
$$D = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$
, c'est-à-dire si $Y = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$, alors $\begin{cases} x'_1(t) = \lambda x_1(t) \\ y'_1(t) = \lambda y_1(t) \end{cases}$

Donc
$$x_1(t) = Ae^{\lambda t}, y_1(t) = Be^{\mu t}$$

Si A = B = 0, la trajectoire est réduite à un point.

Si A = 0 et $B \neq 0$ ou $A \neq 0$ et B = 0: on a une $\frac{1}{2}$ droite ouverte.

Si $A \neq 0$ et $B \neq 0$:

On a
$$\left(\frac{x_1(t)}{A}\right)^{\mu} = \left(\frac{y_1(t)}{B}\right)^{\lambda}$$

Si $\lambda \mu > 0$: on a une courbe de type parabolique $y_1 = Cx_1^{\mu/\lambda}$, $\mu/\lambda > 0$

Si $\lambda\mu < 0$: on a une courbe de type hyperbolique $y_1 = Cx_1^{\mu/\lambda}$, $\mu/\lambda < 0$

Si $\mu = 0$: on a $y_1 = \text{cte}$, donc une demi-droite.

- Si A est trigonalisable, $A = PTP^{-1}$ où $T = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ (χ_A est scindé, non à racines

simple donc a une racine double)

$$\begin{cases} x'_{1}(t) = \lambda x_{1}(t) + y_{1}(t) \\ \lambda x_{1}(t) = \lambda x_{1}(t) + y_{1}(t) \end{cases}$$

$$y'_1(t) = \lambda y_1(t)$$

Donc
$$\begin{cases} y_1(t) = \alpha e^{\lambda t} \\ x_1(t) = (\alpha t + \beta) e^{\lambda t} \end{cases}$$

Si $\alpha = 0$, on a une demi-droite.

Sinon,
$$\lambda t = \ln \frac{y_1(t)}{\alpha}$$
 donc $x_1 = \left(\alpha \ln \frac{y_1}{\alpha} + \beta\right) \frac{y_1}{\alpha} = (\ln y_1 + c)y_1$

- Si A a deux valeurs propres $\lambda, \overline{\lambda}$:

On peut écrire $\lambda = re^{i\alpha}$ où $\alpha \in]0, \pi[, r > 0 ;$ Alors A est semblable à $r\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = R$ (car A et R sont \mathbb{C} —diagonalisables

avec les mêmes valeurs propres, donc sont C-semblables, donc R-semblables)

$$\begin{cases} x'_1(t) = r(\cos\alpha.x_1(t) - \sin\alpha.y_1(t)) \\ y'_1(t) = r(\sin\alpha.x_1(t) + \cos\alpha.y_1(t)) \end{cases}$$

On pose $z(t) = x_1(t) + iy_1(t)$.

Alors z est de classe C^1 , et

 $\forall t \in \mathbb{R}, z'(t) = x_1(t)(r\cos\alpha + r.i\sin\alpha) + y_1(t)(-r\sin\alpha + r.i\cos\alpha)$

$$= re^{i\alpha}x_1(t) + iy_1(t)re^{i\alpha} = z.re^{i\alpha}$$

Donc $\forall t \in \mathbb{R}, z(t) = Ce^{r \cdot e^{i\alpha}t}$ où C = z(0)

Pour C = 1:

$$z = e^{r \cdot t \cos \alpha} e^{ir \cdot t \sin \alpha}$$

Pour $r \neq 0$, en polaires, $\begin{cases} \rho(t) = e^{r.t\cos\alpha} \\ \theta(t) = r.t\sin\alpha \end{cases}$

Donc si $\alpha \neq \frac{\pi}{2}$, $\rho = e^{\theta \cdot \cot \alpha}$ et si $\alpha = \frac{\pi}{2}$, $\rho = 1$.

On a donc une spirale logarithmique si $\alpha \neq \frac{\pi}{2}$.

Remarque:

Si les valeurs propres de A sont imaginaires pures, les trajectoires sont des ellipses.

Equation autonome d'ordre 2 scalaire x''(t) = F(x(t), x'(t))

 $F: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ est de classe C^1 . On pose y(t) = x'(t); on est ramené à $\begin{cases} x'(t) = y(t) \\ y'(t) = F(x(t), y(t)) \end{cases}$

IV Exercices et compléments

A) Sur le domaine de définition des solutions maximales

Soit E un espace de Banach, $f: \mathbb{R} \times E \to E$ de classe C^1 ; on considère l'équation

(E): x'(t) = f(t, x(t)). Alors on a les résultats suivants :

(1) Si f est bornée, toute solution maximale est définie sur \mathbb{R} . En effet:

Comme f est de classe C^1 , d'après le théorème de Cauchy-Lipschitz, toute solution maximale est définie sur un intervalle ouvert I = [a, b].

Supposons que *b* est fini.

Soit
$$t_0 \in I$$
. On a $\forall t \ge t_0, \varphi(t) = \varphi(t_0) + \int_{t_0}^t \varphi'(t) dt$

Or, φ' est bornée sur $[t_0, b]$. Donc φ' est intégrable car b est fini. Donc φ admet une limite finie *l* en *b*.

En prolongeant φ en $\widetilde{\varphi}$ par $\widetilde{\varphi}(b) = l$, on a une solution $\widetilde{\varphi}$ qui prolonge φ car $\lim \varphi'(t) = \lim f(t, \varphi(t)) = f(b, l)$, ce qui est impossible car φ est maximale.

Donc *b* est infini. De même pour *a*.

Donc la solution maximale est définie sur R.

(2) Soit $f: \mathbb{R}^3 \to \mathbb{R}$ de classe C^1 et bornée. Alors toute solution maximale de x''(t) = f(t, x(t), x'(t)) est définie sur \mathbb{R} .

En effet:

D'après le théorème de Cauchy-Lipschitz, si (I, φ) est une solution maximale, alors I = |a,b|, ouvert.

On suppose que *b* est fini.

Soit alors $t_0 \in [a,b]$.

Alors φ'' est bornée sur $[t_0, b[$, donc intégrable.

Donc φ' a une limite finie l en b.

Comme b est fini, φ' est intégrable sur $[t_0, b[$, donc φ a une limite finie l' en b.

Donc $\psi = (\varphi, \varphi')$ est prolongeable de façon C^1 en $\widetilde{\psi}$ sur [a, b], avec $\widetilde{\psi}(b) = (l, l') = (\widetilde{\varphi}(b), \widetilde{\varphi}'(b))$

Puis $\lim_{t \to \infty} \widetilde{\varphi}(t) = f(b, l, l') = f(b, \psi(b))$ et $\widetilde{\varphi}$ prolonge φ , ce qui est impossible.

Donc $b = +\infty$, et de même $a = -\infty$. (3) On considère le système $(S):\begin{cases} x'(t) = t - x(t)^2 \\ x(0) = x_0 > 0 \end{cases}$. Alors la solution maximale est définie sur $a,+\infty$ où $a \in \mathbb{R}$.

En effet:

Soit $f(t,x) = t - x^2$. Ainsi, f est de classe C^1 .

Ainsi, pour une solution maximale (I, x), on a I = a, b.

Supposons que $a = -\infty$.

Alors $\forall t \leq -1, x'(t) \leq -1 - x(t)^2$

Donc $x(t)^2 + 1 \le -x'(t)$

Donc $1 \le \frac{-x'(t)}{1 + x(t)^2}$.

Soit $t_0 \in I$ tel que $t_0 < -1$.

On intègre sur $[t,t_0]$: $t_0-t \le -[\operatorname{Arctan} x(t)]_t^{t_0} = \operatorname{Arctan} x(t) - \operatorname{Arctan} x(t_0) \le \pi$

Donc $t \ge t_0 - \pi$. Donc $I \subset [t_0 - \pi, +\infty[$ ce qui est absurde vue l'hypothèse.

Donc *a* est infini.

Supposons que *b* est fini.

(i) Alors il existe $t_1 \ge 0$ tel que $x'(t_1) = 0$

(C'est-à-dire que la courbe va couper la parabole)

En effet, sinon comme x'(0) < 0, on a $\forall t \ge 0, x'(t) < 0$.

Donc x est décroissante sur [0,b[.

Comme $\forall t \ge 0, x(t) > \sqrt{t} \ge 0$ (car $\forall t \ge 0, x'(t) < 0$), x est bornée sur $[0, b[: \forall t \ge 0, x(0) \ge x(t) \ge 0]$

Donc $t \mapsto x'(t) = t - x^2$ est bornée sur [0,b[, donc x' est intégrable et x admet une limite finie en b, ce qui est impossible car sinon x serait prolongeable en b.

Donc il existe $t_1 \ge 0$ tel que $x'(t_1) = 0$

(ii) Alors $\forall t \in]t_1, b[, x'(t) > 0$. En effet, supposons que $X = \{t > t_1, x'(t) = 0\}$ n'est pas vide. Il admet alors une borne inférieure t_2 .

On a alors $t_2 > t_1$. En effet :

Posons
$$\varphi(t) = x(t) - \sqrt{t}$$

Alors
$$\varphi'(t_1) = \underbrace{x'(t_1)}_{=0} - \frac{1}{2\sqrt{t_1}} < 0$$

Comme $\varphi(t_1) = 0$, il existe donc $\alpha > 0$ tel que $\forall t \in [t_1, t_1 + \alpha[\varphi(t_1) < 0]$

Donc $t_2 \ge t_1 + \alpha$

Ainsi, $X = \{t \ge t_1 + \alpha, x'(t) = 0\}$. C'est donc un fermé, minoré non vide. Il admet donc un plus petit élément, qu'on note encore t_2 .

Ainsi,
$$\varphi'(t_2) = \underbrace{x'(t_2)}_{=0} - \frac{1}{2\sqrt{t_2}} < 0$$
. Or, $\varphi(t_2) = 0$

Donc il existe $\alpha' > 0$ tel que $t_2 - \alpha' > t_1$ et $\varphi(t_2 - \alpha') > 0$. Ainsi, $x'(t_2 - \alpha') < 0$, ce qui est impossible par définition de t_2 (car alors d'après le théorème des valeurs intermédiaires il existe $t_1 < t < t_2$ tel que x'(t) = 0)

Donc $\forall t \in]t_1, b[, x'(t) > 0]$

Donc $\forall t > t_1, x^2(t) < t < b$

Donc x est bornée, donc x' aussi, et x est prolongeable en b, ce qui est impossible. Donc b est infini.

B) Barrières (HP)

Dans l'exemple précédent, $\alpha: t \mapsto \sqrt{t}$ vérifie sur $]0,+\infty[$:

$$\forall t > 0, \alpha'(t) = \frac{1}{2\sqrt{t}} > f(t, \alpha(t)) = 0$$

Alors pour toute solution (I, φ) où $I \cap]0,+\infty[=]0,b[$, s'il existe $t_0 > 0$ tel que $\varphi(t_0) \le \alpha(t_0)$, alors $\forall t > t_0, \varphi(t) < \alpha(t)$

Plus généralement :

Soit *U* un ouvert de \mathbb{R}^2 , $f: U \to \mathbb{R}$ de classe C^1 et (E): x'(t) = f(t, x(t)).

Une fonction $\alpha: I \to \mathbb{R}$ de classe C^1 est appelée barrière supérieure (resp. barrière inférieure) lorsque

$$\forall t \in I, (t, \alpha(t)) \in U \text{ et } \alpha'(t) > f(t, \alpha(t)) \text{ (resp.} \alpha'(t) < f(t, \alpha(t)))$$

Remarque:

La définition donnée est en fait celle de barrière stricte ; la notion usuelle de barrière correspond à l'inégalité large.

Proposition:

Soit (I, φ) une solution de (E): x'(t) = f(t, x(t)). Si α est une barrière supérieure sur I telle que $\varphi(t_0) \le \alpha(t_0)$ pour $t_0 \in I$, alors $\forall t > t_0, \varphi(t) < \alpha(t)$.

Démonstration:

Supposons qu'il existe $t > t_0$ tel que $\varphi(t) \ge \alpha(t)$.

On pose alors $X = \{t > t_0, \varphi(t) = \alpha(t)\}$

Alors *X* est non vide :

Si $\varphi(t_0) < \alpha(t_0)$, X n'est pas vide par hypothèse (et par continuité de $\varphi - \alpha$), et il est minoré par $t_1 > t_0$ (car au voisinage de t_0 , $\varphi(t_0) \neq \alpha(t_0)$)

Si $\varphi(t_0) = \alpha(t_0)$, on note alors $h = \alpha - \varphi$.

Alors
$$\forall t \ge t_0, h'(t) = \alpha'(t) - \varphi'(t) = \alpha'(t) - f(t, \varphi(t))$$

Et donc
$$h'(t_0) = \alpha'(t_0) - f(t_0, \underbrace{\varphi(t_0)}_{=\alpha(t_0)}) > 0$$

Donc h est croissante au voisinage de t_0 , et $h(t_0) = 0$

Donc il existe a > 0 tel que $\forall t \in [t_0, t_0 + a], h(t) > 0$.

Donc $\forall t \in [t_0, t_0 + a], \varphi(t) < \alpha(t)$. Donc par continuité de $\varphi - \alpha$, X est non vide, et minoré par $t_0 + a > t_0$.

Donc dans les deux cas, X est fermé, non vide et minoré ; on note t_1 son plus petit élément : $t_1 > t_0$.

Au voisinage de t_1 , $h'(t_1) > 0$ car $\varphi(t_1) = \alpha(t_1)$.

Donc il existe $\beta > 0$ tel que $t_1 - \beta > t_0 + a$ et $h(t_1 - \beta) < 0$

Donc h s'annule sur $t_0 + a$, $t_1 - \beta$, ce qui contredit la définition de t_1 .

Exercice:

On considère l'équation (E): $x'(t) = \cos(t) + \cos(x(t))$

- (1) Toute solution maximale est définie sur \mathbb{R} car $f:(t,x)\mapsto \cos t + \cos x$ est de classe C^1 et bornée.
- (2) φ est une solution maximale si et seulement si $\varphi + 2k\pi$ l'est $(k \in \mathbb{Z})$
- (3) φ est solution si et seulement si $\psi: t \mapsto \pi \varphi(t+\pi)$ l'est.

En effet, si φ est solution, alors ψ est de classe C^1 , et:

$$\forall t \in \mathbb{R}, \psi'(t) = -\phi'(t+\pi) = -(\cos(t+\pi) + \cos(\phi(t+\pi)))$$
$$= \cos t + \cos(\pi - \phi(t+\pi)) = \cos t + \cos \psi(t)$$

(4) Soit x une solution maximale. Montrer que s'il existe $t_0 \in \mathbb{R}$ tel que $x(t_0) \in [0, \pi]$, alors $\forall t \ge t_0, x(t) \in [0, \pi]$

Déjà, x est de classe C^{∞} sur \mathbb{R} (par récurrence)

Soit $X = \{t > t_0, x(t) = 0\}$. Supposons que *X* est non vide.

- Si $x(t_0) > 0$, alors X a un plus petit élément $t_1 > t_0$

Etude au voisinage de t_1 :

On a
$$x'(t_1) = \cos t_1 + \cos(\underbrace{x(t_1)}_{=0}) = 1 + \cos t_1 \ge 0$$

Si $t_1 \notin \pi + 2\pi\mathbb{Z}$, alors $t_1 \notin \pi + 2\pi\mathbb{Z}$ ce qui est impossible car on aurait au voisinage de t_1 un tableau de variation de la forme :

$$\begin{array}{c|cccc} & t_1 - \alpha & t_1 & t_1 + \alpha \\ \hline x' & + & + \\ \hline x & & & & \\ \hline \end{array}$$

Et donc d'après le théorème des valeurs intermédiaires x s'annulerait sur $[t_0, t_1 - \alpha]$, ce qui contredit la définition de t_1 .

Si
$$t_1 \in \pi + 2\pi \mathbb{Z}$$
, alors $\cos t_1 = -1$, $x'(t_1) = 0$, $x''(t_1) = 1$

On a donc le tableau de variation :

	$t_1 - \alpha$	t_1		$t_1 + \alpha$
<i>x</i> '''	+	1	+	
<i>x</i> ''		→0-		→ +
x'	+	→ 0 <i>-</i>		→ ⁺
x		→0-		\rightarrow

Et on aura donc encore une contradiction avec la définition de t_1 .

- Si
$$x(t_0) = 0$$
, alors $x'(t_0) = 1 + \cos t_0$

Si $t_0 \notin \pi + 2\pi \mathbb{Z}$, on a $x'(t_0) > 0$, donc x est croissante au voisinage de t_0 , et comme $x(t_0) = 0$, x est strictement positive au voisinage de t_0 , disons sur $[t_0, t_0 + \alpha']$.

Donc X vérifie $X \subset]t_0 + \alpha', +\infty[$. On a donc une borne inférieure $t_1 \ge t_0 + \alpha' > t_0$, et on trouvera encore une contradiction sur la définition de t_1

Si $t_0 \in \pi + 2\pi \mathbb{Z}$, x on aura de même une contradiction.

Donc *X* est vide, et $\forall t > t_0, x(t) > 0$

On fait le même raisonnement pour montrer que $\forall t > t_0, x(t) < \pi$

(5) Soit $P: a \in \mathbb{R} \mapsto P(a) = \varphi_a(2\pi)$ où φ_a est la solution maximale du problème de Cauchy $\begin{cases} x'(t) = \cos t + \cos(x(t)) \\ x(0) = a \end{cases}$.

Montrer que P est croissante, continue et $P([0,\pi]) \subset [0,\pi]$.

En déduire que $x'(t) = \cos t + \cos(x(t))$ a au moins une solution 2π -périodique.

- P est croissante :

Supposons qu'il existe a, b réels tels que a > b et P(a) < P(b).

Alors d'après le théorème des valeurs intermédiaires, il existe $c \in [0,2\pi]$ tel que $\varphi_a(c) = \varphi_b(c) = \lambda$

Donc φ_a et φ_b sont solution du même problème de Cauchy $\begin{cases} x'(t) = \cos t + \cos(x(t)) \\ x(c) = \lambda \end{cases}$

Donc $\varphi_a = \varphi_b$, ce qui est impossible.

- Si $a \in [0, \pi]$, d'après (4), on a $\forall t \ge 0, \varphi_a(t) \in [0, \pi]$

Et en particulier $P(a) = \varphi_a(2\pi) \in [0, \pi]$

- Soient $a,b \in \mathbb{R}$. Par définition de φ_a,φ_b , on a :

 $\forall t \in \mathbb{R}, \varphi_a(t) = a + \int_0^t f(s, \varphi_a(s)) ds$ et une formule analogue pour φ_b

Donc
$$\forall t \in \mathbb{R}, \varphi_a(t) - \varphi_b(t) = b - a + \int_0^t (f(s, \varphi_b(s)) - f(s, \varphi_a(s))) ds$$

Pour $t \in [0, 2\pi]$, on a donc $|\varphi_b(t) - \varphi_a(t)| \le |b - a| + \int_0^t |f(s, \varphi_b(s)) - f(s, \varphi_a(s))| ds$

Or, f est 1-lipschitzienne par rapport à x car :

 $\forall (t, x, y) \in \mathbb{R}^3, |f(t, x) - f(t, y)| = |\cos x - \cos y| \le |x - y|$ (c'est l'inégalité des accroissements finis appliqué à la fonction cosinus)

Donc
$$\forall t \in [0,2\pi], |\varphi_b(t) - \varphi_a(t)| \le |b - a| + \int_0^t |\varphi_b(s) - \varphi_a(s)| ds$$

Donc d'après le lemme de Gronwall :

$$\forall t \in [0, 2\pi], |\varphi_b(t) - \varphi_a(t)| \le |b - a|e^{\int_0^t ds} \le e^{2\pi} |b - a|$$

C'est-à-dire $|P(b)-P(a)| \le e^{2\pi}|b-a|$. Donc P est lipschitzienne, donc continue.

- Ainsi, $P:[0,\pi] \to [0,\pi]$ est continue, donc admet au moins un point fixe $a_0 \in [0,\pi]$.

On note alors $\varphi = \varphi_{a_0}$.

Alors φ est solution de $x'(t) = \cos t + \cos(x(t))$, et φ est 2π –périodique.

En effet:

Considérons $\psi: t \mapsto \varphi(t+2\pi)$.

Alors ψ est solution de l'équation différentielle, car

$$\forall t \in \mathbb{R}, \psi(t) = \varphi'(t+2\pi) = \cos(t+2\pi) + \cos(\varphi(t+2\pi))$$
$$= \cos(t) + \cos(\psi(t))$$

Et
$$\varphi(0) = \psi(0)$$
 car $\psi(0) = \varphi(2\pi) = P(\varphi(0)) = a_0 = \varphi(0)$

Donc $\varphi = \psi$ et φ est 2π –périodique.

Remarque : la même démonstration que dans l'exercice montre que :

Si
$$f: \mathbb{R} \times E \to E$$
 est continue et lipschitzienne en x , alors : $(t,x) \mapsto f(t,x)$

- (1) Toute solution maximale de (E): x'(t) = f(t, x(t)) est définie sur \mathbb{R} .
- (2) Si on note $P_T : a \in \mathbb{R} \mapsto \varphi_a(T)$ où φ_a est solution du problème de Cauchy $C_{(E),(0,a)}$, alors P_T est continue.