AMENDMENTS TO THE CLAIMS

LISTING OF CLAIMS

 (Currently Amended) A method for dynamic bin allocation, the method comprising:

obtaining link performance data based on a plurality of test transmissions between two network elements, wherein the plurality of test transmissions utilize at-least-one each of a plurality of transmission mode modes in each of a plurality of frequency ranges; [[and]]

determining a desired transmission scheme, wherein each of the plurality of frequency ranges is designated for at-least one of the at-least-one transmission mode modes based at least in part on the link performance data[[.]]; and

assigning the desired transmission scheme to a connection between the two network elements.

(Original) The method according to claim 1, wherein
 the link performance data are obtained for each of the plurality of frequency
ranges; and

the desired transmission scheme is determined by identifying a desired transmission mode for each of the plurality of frequency ranges based at least in part on the link performance data.

- (Currently Amended) The method according to claim 2, wherein the test transmissions are based on the at least one each of the transmission mode.
- (Original) The method according to claim 1, wherein
 the link performance data are obtained for each of a plurality of predetermined
 transmission schemes; and

the desired transmission scheme is selected from the plurality of predetermined transmission schemes based at least in part on the link performance data.

- (Original) The method according to claim 4, wherein the test transmissions are based on the plurality of predetermined transmission schemes.
- 6. (Original) The method according to claim 1 further comprising communicating the desired transmission scheme to at least one of the two network elements and continue communications between the two network elements based on the desired transmission scheme.

Application Serial No. 10/824,611 Art Unit 4177

 (Original) The method according to claim 1, wherein the plurality of frequency ranges are defined based on a discrete multi-tone (DMT) modulation.

 (Original) The method according to claim 1, wherein the plurality of frequency ranges are defined based on an orthogonal frequency division multiplexint (OFDM) technology.

 (Original) The method according to claim 1, wherein the link performance data comprise at least one of:

a data rate:

an error rate;

a signal-to-interference ratio; and

a signal-to-noise ratio.

 (Currently Amended) The method according to claim 1, wherein the at-leastene plurality of transmission modes comprises at least one of: comprises:

a full duplex mode:

an upstream-only mode; and

a downstream-only mode.

11. (Original) The method according to claim 1, wherein the test transmissions are performed at a maximum transmission power for each of the plurality of frequency ranges.

- (Currently Amended) The method according to claim 1, wherein the twonetwork elements communicate over connection further comprises a digital subscriber line (DSL).
- 13. (Currently Amended) A system for dynamic bin allocation, the system comprising a first network element and a second network element, wherein each of the first network element and the second network element comprises at least a processor module and a transceiver module that are coordinated to

obtain link performance data based on a plurality of test transmissions between the first network element and the second network element, wherein the plurality of test transmissions utilize at least one each of a plurality of transmission mode modes in each of a plurality of frequency ranges; [[and1]]

determine a desired transmission scheme, wherein each of the plurality of frequency ranges is designated for at least one of the at-least one transmission mede modes based at least in part on the link performance data[[.]]; and

assign the desired transmission scheme to a connection between the two network elements.

14. (Original) The system according to claim 13, wherein the link performance data are obtained for each of the plurality of frequency ranges; and the desired transmission scheme is determined by identifying a desired transmission mode for each of the plurality of frequency ranges based at least in part on the link performance data.

15. (Original) The system according to claim 13, wherein

the link performance data are obtained for each of a plurality of predetermined transmission schemes; and

the desired transmission scheme is selected from the plurality of predetermined transmission schemes based at least in part on the link performance data

16. (Currently Amended) A system for dynamic bin allocation, the system comprising:

means for obtaining link performance data based on a plurality of test transmissions between two network elements, wherein the plurality of test transmissions utilize at least one each of a plurality of transmission mode modes in each of a plurality of frequency ranges: [[and]]

means for determining a desired transmission scheme, wherein each of the plurality of frequency ranges is designated for at least one of the at least one transmission mode modes based at least in part on the link performance data[[.]]; and

means for assigning the desired transmission scheme to a connection between the two network elements.

17. (Original) The system according to claim 16, wherein

the link performance data are obtained for each of the plurality of frequency ranges; and

the desired transmission scheme is determined by identifying a desired transmission mode for each of the plurality of frequency ranges based at least in part on the link performance data.

18. (Original) The system according to claim 16, wherein the link performance data are obtained for each of a plurality of predetermined transmission schemes; and

the desired transmission scheme is selected from the plurality of predetermined transmission schemes based at least in part on the link performance data.

19. (Currently Amended) A computer readable medium having code for causing a processor to perform dynamic bin allocation, the computer readable medium comprising:

code adapted to obtain link performance data based on a plurality of test transmissions between the first network element and the second network element, wherein the plurality of test transmissions utilize at-least-one each of a plurality of transmission mode modes in each of a plurality of frequency ranges; and

Application Serial No. 10/824,611

code adapted to determine a desired transmission scheme, wherein each of the plurality of frequency ranges is designated for at least one of the at least one transmission mede modes based at least in part on the link performance data[[.]]; and code adapted to assign the desired transmission scheme to a connection between the two network elements.

(Original) The computer readable medium according to claim 19, wherein
the link performance data are obtained for each of the plurality of frequency
ranges; and

the desired transmission scheme is determined by identifying a desired transmission mode for each of the plurality of frequency ranges based at least in part on the link performance data.

 (Original) The computer readable medium according to claim 19, wherein the link performance data are obtained for each of a plurality of predetermined transmission schemes; and

the desired transmission scheme is selected from the plurality of predetermined transmission schemes based at least in part on the link performance data.