Лабораторная работа Поиск Авиахаба Новосибирской области

Гапонов Дмитрий

Постановка задачи:

Найти точки на территории Новосибирской области, являющиеся оптимальными местами создания авиахаба для местного межрайонного сообщения в зависимости от условий:

- оптимального расстояния без учета пассажиропотока;
- оптимального расстояния с учетом пассажиропотока;
- оптимального расстояния без учета пассажиропотока г. Новосибирска.

Выполнение работы:

Сбор данных:

Используя данные с сайта wikipedia.org загружаем список районных центров Новосибирской области, получая название, координаты центра и численность населения района. Так же учитываем что численность города Новосибирска прибавляется к численности города Обь и берется за одну единицу, так как в г. Обь располагается аэропорт г. Новосибирска Толмачево.

	Районный центр	Долгота	Широта	Население
0	Обь	82.7125	54.99167	1655432
1	Баган	77.66667	54.1	15280
2	Болотное	84.4	55.66667	27194

Получение изображения районных центров на карте области:

Используя сервис Static API Карт Yandex и список районных центров получаем изображение.

Преобразование координат:

Площадь области составляет всего 177 756 км², максимальное расстояние в области — около 1000 км, поэтому будем рассматривать задачу как задачу на плоскости, пренебрегая сферообразностью Земли. Поэтому для удобства переведем географические координаты в новые, совпадающими с разрешением изображения: 600х400. Это упростит вычисления и нанесение графики на изображения.

$$x_{new} = 600 \frac{x - 73.4}{13.16}, y_{new} = 450(1 - \frac{y - 52.4}{5.63})$$

Приведем изображение соответствия координат:

Нахождение хаба:

В случае оптимального расстояния без учета пассажиропотока:

Необходимо найти такую точку, чтобы суммарное расстояние до районных центров будет наименьшим. Введем функционал:

$$F(x) = \sum_{i=1}^{n} \rho(x, c_i)$$

где x — координаты точки плоскости, n — количество районных центров, $ho(x,c_i)$ — функция расстояния от точки x до координат районных центров c_i .

Чтобы найти точку хаба необходимо найти минимум заданного функционала:

Для минимизации функционала будем использовать метод покоординатного спуска. Делаем шаги параллельно одной из координат, находя минимум этой координаты, фиксируя вторую.

В качестве начальной точки возьмем точку [400, 150] в новых координатах. Результат минимизации: **80.095290, 54.884554** в географических координатах.

Итерации покоординатного спуска:

	Итерация	Изменяемая координата	Размер шага	f(x)	x
0	0	-1	-1.000000	5282.491033	[400, 150]
1	1	0	105.053482	4729.176323	[294.94651794433594, 150]
2	2	1	102.086906	3696.743444	[294.94651794433594, 252.08690643310547]
3	3	0	10.252706	3689.866059	[305.19922408081766, 252.08690643310547]
4	4	1	0.671318	3689.824389	[305.19922408081766, 251.41558887717838]
5	5	0	0.056931	3689.824177	[305.25615554618616, 251.41558887717838]
6	6	1	0.003357	3689.824176	[305.25615554618616, 251.4122321169204]

Где Изменяемая координата — номер переменной по которой происходит шаг. Все вычисления происходят в новых координатах.

В случае оптимального расстояния с учетом пассажиропотока:

Так как наличие аэропортов лишь предполагается, то в качестве пассажиропотока будем считать процент населения района относительно области, то есть потенциальный пассажиропоток по области.

Тогда функционал приобретёт вид:

$$F(x) = \sum_{i=1}^{n} p_i * \rho(x, c_i)$$

где p_i – отношения численности населения района к населению области.

Аналогично находим минимум функционала, используя начальную точку [100, 100]. Результат минимизации: **82.7125, 54.991669** в географических координатах.

Итерации покоординатного спуска:

	Итерация	Изменяемая координата	Размер шага	f(x)	x
0	0	-1	-1.000000	334.474633	[100, 100]
1	1	0	307.971573	166.162456	[407.97157287597656, 100]
2	2	1	143.699570	54.670683	[407.97157287597656, 243.69956970214844]
3	3	0	16.475799	45.548239	[424.44737187732244, 243.69956970214844]
4	4	1	0.840766	45.091304	[424.44737187732244, 242.85880321182776]
5	5	0	0.133417	45.019748	[424.58078886738394, 242.85880321182776]
6	6	1	0.008153	45.015288	[424.58078886738394, 242.85065060307738]
7	7	0	0.001296	45.014637	[424.5820845851234, 242.85065060307738]

В случае оптимального расстояния без учета пассажиропотока г. Новосибирска.

Так как местом авиахаба с учетом пассажиропотока является аэропорт г. Новосибирска Толмачево (население Новосибирска составляет 65% населения Новосибирской области), то поставим задачу нахождения оптимальной точки для хаба без учета г. Новосибирска.

Тогда функционал приобретет вид:

$$F(x) = \sum_{i=2}^{n} p_i * \rho(x, c_i)$$

Аналогично находим минимум функционала, используя начальную точку [100, 100]. Результат минимизации: **81.200578**, **54.800677** в географических координатах.

Итерации покоординатного спуска:

	Итерация	Изменяемая координата	Размер шага	f(x)	x
0	0	-1	-1.000000	292.173793	[100, 100]
1	1	0	235.084763	204.394465	[335.0847625732422, 100]
2	2	1	157.475433	129.654684	[335.0847625732422, 257.4754333496094]
3	3	0	20.451823	129.003557	[355.5365855892014, 257.4754333496094]
4	4	1	0.633022	129.002095	[355.5365855892014, 258.1084553405526]
5	5	0	0.111553	129.002077	[355.64813833946346, 258.1084553405526]
6	6	1	0.007778	129.002077	[355.64813833946346, 258.1162337249413]
7	7	0	0.001357	129.002077	[355.6494950294443, 258.1162337249413]

Выводы:

Таким образом, найдены оптимальные точки расположения авиахабов, при различных условиях:

- без учета пассажиропотока **80.095290, 54.884554**;
- с учетом пассажиропотока 82.7125, 54.991669;
- без учета пассажиропотока г. Новосибирска **81.200578, 54.800677**.

Приложения:

Код: https://github.com/dgaponov99/AviaHub

Полный список районных центров:

	Районный центр	Долгота	Широта	Население
0	Обь	82.7125	54.99167	1655432
1	Баган	77.66667	54.1	15280
2	Болотное	84.4	55.66667	27194
3	Венгерово	76.74917	55.68333	18621
4	Довольное	79.67361	54.49167	15835
5	3двинск	78.66667	54.7	14037
6	Искитим	83.3	54.63333	59836
7	Карасук	78.03333	53.73333	42882
8	Каргат	80.28333	55.2	15847
9	Колывань	82.73333	55.3	23845
10	Коченёво	82.21667	55.01667	46012
11	Кочки	80.48333	54.33333	13828
12	Краснозёрское	79.25	53.98333	29457
13	Куйбышев	78.3075	55.45028	56815
14	Купино	77.3	54.36667	27740

15	Кыштовка	76.62361	56.5625	10101
16	Маслянино	84.21667	54.33333	23441
17	Мошково	83.62139	55.30694	41784
18	Ордынское	81.9	54.36667	36045
19	Северное	78.36667	56.35	9369
20	Сузун	82.31667	53.78333	31865
21	Татарск	75.96667	55.21667	37990
22	Тогучин	84.38333	55.23333	56258
23	Убинское	79.68333	55.3	14339
24	Усть-Тарка	75.7	55.56667	11196
25	Чаны	76.7625	55.30833	23239
26	Черепаново	83.36667	54.21667	47120
27	Чистоозёрное	76.58056	54.70972	17113