Semaine 1 du 15 septembre 2025 (S38)

I Rappels et compléments d'algèbre linéaire (1ère partie)

- 1 Produits et espaces vectoriels d'applications
- 1.1 Espaces vectoriels produits
- 1.2 Applications à valeurs dans un ev
- 2 Sommes d'espaces vectoriels
- 2.1 Rappels de première année : sommes, sommes directes, supplémentaires
- 2.2 Généralisation à plus de deux sev
- 3 Matrices par blocs
- 3.1 Définition
- 3.2 Opérations par blocs
- 4 Matrices semblables
- 5 Sous-espaces vectoriels stables
- 5.1 Définitions et premières propriétés
- 5.2 Stabilité et matrices triangulaires par blocs

6 Exercices à connaître

L'exercice 6.2 est très long. Vous pourrez ne donner qu'une partie des questions, par exemple (1 et 2), (1 et 3) ou (5).

6.1 Image d'une base par un endomorphisme

Soit F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie.

- 1) Déterminer une condition nécessaire et suffisante pour qu'il existe un endomorphisme u tel que Ker(u) = F et Im(u) = G.
- **2)** Construire un tel endomorphisme u avec $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ dans \mathbb{R}^3 et $G = \{\lambda(2, -1, -1) \mid \lambda \in \mathbb{R}\}$.

6.2 Une caractérisation des homothéties

Soit $f \in \mathcal{L}(E)$, où E est un \mathbb{K} -espace vectoriel.

1) Déterminer l'ensemble des endomorphismes de E laissant stables tous les sev de dimension 1.

Cette question est archi-classique, et n'est pas toujours présentée sous cette forme.

On pourra se demander le lien entre

$$\forall x \in E, \exists \lambda \in \mathbb{K}, f(x) = \lambda x$$

et

$$\exists \lambda \in \mathbb{K}, \forall x \in E, f(x) = \lambda x.$$

- 2) Déterminer l'ensemble des endomorphismes de E laissant stables tous les sev de dimension 2.
- 3) Si E est de dimension finie, en déduire le « centre » de $\mathcal{L}(E)$, c'està-dire l'ensemble endomorphismes qui commutent avec tous les endomorphismes (on pourra remarquer qu'un tel endomorphisme commute nécessairement avec les projections sur toutes les droites vectorielles).

6.3 Noyaux itérés

Soit f un endomorphisme d'un espace de dimension finie n non nulle. On définit, pour tout entier naturel p:

$$F_p = \operatorname{Ker}(f^p)$$
 et $G_p = \operatorname{Im}(f^p)$

(f^p désigne l'itérée d'ordre p de f : $f^0=\mathrm{Id}$ et, $f^{p+1}=f\circ f^p$).

- 1) Démontrer que, des deux suites de s.e.v. (F_p) et (G_p) , l'une est croissante et l'autre décroissante (pour l'inclusion).
- 2) Démontrer qu'il existe un plus petit entier naturel r tel que $F_r = F_{r+1}$, et démontrer qu'alors, pour tout entier naturel p supérieur ou égal à r, $F_p = F_{p+1}$.
- 3) Démontrer qu'il existe un plus petit entier naturel s tel que $G_s = G_{s+1}$, et démontrer qu'alors, pour tout entier naturel p supérieur ou égal à s, $G_p = G_{p+1}$. Y-a-t-il un lien entre r et s?
- 4) Démontrer que G_s et F_r sont supplémentaires dans E.

6.4 « Inégalité triangulaire » et une autre inégalité autour du rang

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies et $u, v \in \mathcal{L}(E, F)$.

- 1) a) Montrer que $rg(u+v) \leq rg(u) + rg(v)$.
 - **b)** En déduire que $|rg(u) rg(v)| \le rg(u+v)$.
- 2) On suppose que E = F, et dim E = n. Montrer l'encadrement :

$$rg(u) + rg(v) - n \le rg(u \circ v) \le inf(rg(u), rg(v)).$$

6.5 Endomorphismes nilpotents

Soit E un \mathbb{K} -espace vectoriel de dimension $n \ge 1$. On dit que $f \in \mathcal{L}(E)$ est nilpotent lorsqu'il existe $k \ge 1$ tel que $f^k = 0$.

1) Montrer qu'il existe un unique entier $p \in \mathbb{N}^*$ tel que $f^{p-1} \neq 0$ et $f^p = 0$. Cet entier est appelé *indice de nilpotence* de f.

Dans cet énoncé, on considère $f \in \mathcal{L}(E)$ nilpotent d'indice p.

- 2) Montrer qu'il existe $x \in E$ tel que $\mathscr{F} = (x, f(x), \dots, f^{p-1}(x))$ est une famille libre.
- 3) En déduire que $p \leq n$.
- 4) On suppose dans cette question que p = n. Déterminer $\operatorname{Mat}_{\mathscr{F}}(f)$ et $\operatorname{rg}(f)$.
- 5) Donner un exemple d'espace vectoriel E de dimension n et d'endomorphisme $f \in \mathcal{L}(E)$ nilpotent d'indice n.