Course Overview Machine Learning Introduction

BA810: Supervised Machine Learning

Nachiketa Sahoo

What is Machine Learning?

- Machine learning is the "field of study that gives computers the ability to **learn without being explicitly programmed**" (Arthur Samuel 1959).
- "A computer program is said to learn from <u>experience E</u> with respect to some class of <u>tasks T</u> and <u>performance measure P</u> if its performance at tasks in T, as measured by P, **improves with experience E**." (Tom Mitchell)
 - T: detecting spam
 - P: percentage of spam messages correctly identified
 - E: labelled spam/non-spam email messages

Examples of Machine Learning Problems

- Loan default prediction
- Customer churn prediction
- Fraud detection
- Recommender systems (if you like X you'll enjoy Y)
- Medicine (e.g., radiology, detecting disease from scans)

- Self-driving cars (given a sequence of video frames what would the driver do next (brake, accelerate, swerve, etc.))
- Language translation (e.g., Google translate)
- Weather prediction
- Others from your experience?

Today's Class

- 1. Course overview
- 2. Types of machine learning?
- 3. How do we measure prediction accuracy?

Link to Some Other MSBA Courses

Class Structure

- Applied introduction to ML
 - Lots of work with Python
 - Real world and realistic datasets
- Each class
 - Quick recap
 - Day's topic discussion (read/do the assigned material before class)
 - (10min break approximately in the middle)
 - Coding and walking through code together
 - Do the code exercises in class

Course Map (Topics)

- 1. Introduction to Machine Learning
- 2. General predictive models
 - regression and classification
- 3. Model selection
- 4. End-to-end Machine Learning process
- 5. Specific predictive models
 - Support Vector Machines, Decision Tree, Ensembles
- 6. Managing imbalanced data in practice

Books

Deliverables

Attendance:	5%
Class participation:	10%
Individual assignments: 2 × 10% =	20%
Datacamp assignments:	15%
Team project: 5% (proposal) + 15% (final) =	20%
Final Exam:	30%
Total:	100%

Teams for Project

- Four students per team
- Place the team number next to all members' names <u>here</u>
 - Need BU Google account to access
 - Two sheets for two sections (A: morning, B: afternoon)
- After today (10/23), I'll assign the unassigned to a team
- Team Learning tool for individual feedback and assessment
- Project/ProjectInstructions.pdf has detailed guidelines
 - Submit only one copy per team (proposal and final slides/notebooks)

Teaching Assistants

Howard Chang

Peiqi Chen

Weiming (Kevin) Wang

Office hours (TAs or myself) on each weekday; see syllabus for details. Use our slack channel to ask questions, share thoughts/resources.

Academic Integrity

- Do not cheat! If you are unsure if certain things are allowed, ask.
- You are allowed to consult each other, and Generative AI, to *learn* while doing the homework and project, but you must:
 - Disclose who you discussed with
 - The prompts you used for GenAl tool (ChatGPT/BARD/Github Copilot)
 - Write your own code can't copy paste code from elsewhere
 - Be able to defend your answers (why done in certain way)
- Applies to anything you submit must be created/written by you
- You are ultimately individually responsible for what you submit

Course Feedback

- What is working well and what can be improved?
 - Talk to me directly
 - Or share anonymously anytime using this form

Machine Learning vs Traditional Programming

Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed – Arthur Samuel (1959)

Sebastian Raschka, 2016

Different Types of Machine Learning

- 1. Supervised versus unsupervised learning
- 2. Regression versus classification
- 3. Prediction versus inference

Supervised Learning

- We are given labelled data with an outcome variable
- $Y = (Y_1, Y_2, ..., Y_n)$
 - E.g., sales volume or a label (spam, non-spam)
 - Here, *n* is the number of observations in our dataset
- For each Y_i , we also have predictors X_i (aka regressors, covariates)
 - E.g., $X_i = (X1_i, X2_i, ...)$, where X1 is ad spend on TV and X2 is ad spend online
 - Or X could be the words included in an email message
- The goal is to predict Y given X for new unlabeled data

Supervised Learning -- Regression

Predicting a number

Supervised Learning -- Classification

Predicting a label

Unsupervised Learning -- Clustering

- There is no outcome Y in our data
- What can we learn in this case?

Objectives in Supervised Learning Prediction vs Inference

- **Prediction:** Given new data point *X*, predict a response *Y*
- $\hat{Y} = \hat{f}(X)$ where \hat{f} is our estimate of f and \hat{Y} is our prediction of Y
 - We don't primarily care what \hat{f} looks like treat it as a black box
 - The goal is accurate prediction of Y given some observed X
- ullet From such \hat{f} we can't say what'd happen if X is manipulated
 - That is causal inference, requires randomized trial (or approximation of it)

Objectives in Supervised Learning Prediction vs Inference

- Inference: Again, we start by estimating $\hat{Y} = \hat{f}(X)$
 - But now we care about the kind of relation between Y and Xs
 - \hat{f} is not a black box any more
- Example: what are the key determinants of customer churn?
 - Reducing these factors to reduce churn
- The goal is causal inference
 - To estimate what will happen to Y if we manipulate an X
 - Generally, can't draw causal conclusion from predictive models

Interpretability or Flexibility Of predictive models

Source: Tibshirani et al.

Flexibility

Supervised Learning Workflow

- Define the problem
- Collect labelled training data
 - And clean them
- Choose an ML algorithm, and fit a model to the data
- Evaluate the model according to your chosen metric
- Use the model to predict on new data

Linear Regression

- Simple approach to supervised learning
- Assumes linear relationship between predictors and outcome

Linear Regression

• A simple linear regression model Y = f(X) $Y = \beta_0 + \beta_1 X_1 + e$

- β_0 : intercept, β_1 : slope
- e: unobserved randomness we cannot model ("error")
- ullet Our goal is to estimate the parameters of this model, eta_0 and eta_1
 - How do we do this?

Linear Regression

- A simple linear regression model Y = f(X) $Y = \beta_0 + \beta_1 X_1 + e$
- ullet Suppose we have some parameters \hat{eta}_0 and \hat{eta}_1 is the slope
 - Notice the hats these are parameter estimates from data
- Then we can predict as $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1$
- Measure the error in prediction as $\operatorname{res}_i = Y_i \widehat{Y}_i$ (i'th residual)
 - \hat{eta}_0 and \hat{eta}_1 are chosen to minimize the sum of squares of these residuals

Residuals

Measuring Prediction Performance

- One measure of performance is the average squared residual Mean Squared Error $(MSE) = (res_1^2 + res_2^2 + \cdots + res_n^2)/n$
 - Why squared?
- Using every observation in your training dataset compute

$$MSE_{train} = \frac{1}{n} \sum_{i}^{n} res_{i}^{2} = \frac{1}{n} \sum_{i}^{n} \left(y_{i} - \hat{f}(x_{i}) \right)^{2}$$

- Can we use this as a measure of prediction performance of the regression model in future data?
 - It'll be too optimistic (error too low) since the model has seen the data

The Train-Test Paradigm

Estimating *Generalization Error*

Keep a test dataset that was not used for training

- Compute MSE on test data
 - For every observation in test data compute $\operatorname{res}_i^2 = (Y_i \hat{Y}_i)^2$
 - Then compute MSE_{test} by averaging these test residual squares
- Advantages? Drawbacks?

Assessing Prediction Performance

- Mean squared error easier to interpret if taken a square root (why?)
 - RMSE: root mean square error
- How good is an RMSE?
 - For a baseline, fit the simplest model possible: a linear regression just with an intercept term, no x variable called a *null model*
 - What is the prediction $y \diamondsuit of$ this model for any observation?
 - Hint: same for all observations
 - What is the RMSE of this null model?

Overview of ML Model Development Process

- 1. Load and explore data, training-test split
- 2. Clean and consider transformations
- 3. Create processes and pipelines
- 4. Evaluate various predictive models
- 5. Finetune the most promising model
- 6. Estimate error on unused test-data

Use only training data

Do not consult the test data — it'll invalidate the test data for estimating error on future data

Use test data

Only to estimate error, not to tune/select model to minimize

- Let's see a first example using scikit-learn
 - Links at "Slides/List of lab notebooks.gdoc"

Summary

- Supervised machine learning
 - Learning how to predict uncertain outcomes from other observed variables (features)
- Type of ML exercises
 - Supervised
 - Classification vs regression
 - For prediction (BA810) vs for causal inference (BA830)
 - Measuring generalization error through train-test splitting
 - Unsupervised (BA820)

- First example of ML work using scikit-learn library in Python
 - Review and do the exercises

Declare teams today

Regression models next class