1. Geometria Molecular

Para analizar la estructura de cualquier compuesto hay que seguir los siguientes pasos:

- 1. Escribir la formula de Lewis e identificar el atomo central.
- 2. Contar las zonas de alta densidad electronica.
- 3. Determinar su geometria electronica y molecular.
- 4. Determinar los orbitales hibridos que definen el enlace.
- 5. Si hay otro atomo central repetir los pasos.
- 6. Determinar si la molecula es polar o no.

1.1 Especies AB_2

Zonas de alta densidad electronica: 2

Geometria Electronica: Lineal

Hibridacion: sp

Geometria Molecular c/angulo: Lineal (180°)

1.2 Especies AB_3 y AB_2U

Zonas de alta densidad electronica: 3 Geometria Electronica: Plana Trigonal

Hibridacion: sp^2

Geometria Molecular c/angulo: Plana Trigonal (120°) -> Angular (120°)

1.3 Especies AB_4 , AB_3U y AB_2U_2

Zonas de alta densidad electronica: 4

Geometria Electronica: Tetraedrica

Hibridacion: sp^3

Geometria Molecular: Tetraedrica (109,5°) -> Piramide Trigonal (107,3°) ->

Angular $(104,5^{\circ})$

1.4 Especies AB_5 , AB_4U , AB_3U_2 y AB_2U_3

Zonas de alta densidad electronica: 5

Geometria Electronica: Bipiramide trigonal

Hibridacion: sp³d

Geometria molecular: Bipiramide trigonal (120° y 90°) -> Sube y baja

 $(101,6^{\circ} \text{ y } 90^{\circ}) \rightarrow \text{T } (90^{\circ}) \rightarrow \text{Lineal } (180^{\circ})$

1.5 Especies AB_6 , AB_5U y AB_4U2

Zonas de alta densidad electronica: 6

Geometria Electronica: Octaedrica

Hibridacion: sp^3d^2

Geometria Molecuular: Octaedrica (180° y 90°) -> Piramidal Cuadrada

 (90°) -> Cuadrada plana (90°)

Apendice

Glosario

- Geometria Electronica: Distribucion de los pares de electrones en torno al atomo central de una molecula
- Geometria Molecular: Distribucion de los atomos alrededor del atomo central (pares electronicos enlazantes)