সূচকের গল্প

গুণের গণনার খেলা

চলো আমরা একটি গল্প পড়ি।

অনেক অনেক বছর আগে কোন অঞ্চলে একজন রাজা ছিলেন। একদিন রাজার দরবারে এক বিদেশি পর্যটক এলেন, সাথে নিয়ে এলেন ভীষণ সুন্দর এক চিত্রকর্ম। রাজা খুশি হয়ে পর্যটককে সেই চিত্রকর্মের মূল্য দিতে চাইলেন। কিন্তু পর্যটক সরাসরি কোন মূল্য না চেয়ে বললেন, "এই চিত্রকর্মের মূল্য

দেওয়ার নিয়ম একটু ভিন্ন। " রাজা জিজ্ঞেস করলেন, "বলো দেখি কি নিয়ম!" পর্যটক বললেন, টানা ৫০ দিন ধরে এর মূল্য নিবেন। প্রথম দিন তিনি ১ টাকা নিবেন। দ্বিতীয় দিন তার দ্বিগুণ, অর্থাৎ ২ টাকা। তার পরের দিন নিবেন দ্বিতীয় দিনের দ্বিগুণ, অর্থাৎ ৪ টাকা। এভাবে তিনি ৫০ দিন ধরে ঐ চিত্রকর্মের মূল্য নিবেন। হিসাবটি অনেকটা নিচের ছকের মত।

ছক ০.১

দিন	গুণের কাজ	টাকার পরিমাণ
٥		٥
২ -	5 × \$	ş
9	2 × 2	8
8	8 × ২	Ъ

রাজা ভাবলেন, এ আর এমন কি, তিনি রাজি হয়ে গেলেন। এভাবে প্রত্যেকদিন পর্যটক এসে রাজ দরবার থেকে মূল্য নিয়ে যান। কিন্তু ২০ দিন যাওয়ার পর রাজার টনক নড়ে বসলো। ভাবো তো কি কারণে সেটি হল? তোমরা ছক ০.১ এর ন্যায় একটি ছক খাতায় তৈরি করে ৫ম দিন হতে ২০তম দিন পর্যন্ত টাকার পরিমাণটি নির্ণয় করো।

কিন্তু পর্যটক কী পদ্ধতিতে হিসাবটি দাঁড় করিয়েছে, তা কি ধরতে পারছো? হিসাবটি বুঝার জন্য হাতে কলমে আরও একটি কাজ করে দেখি, চলো।

কাগজ ভাঁজের খেলা

কাগজ ভাঁজের খেলাটি খেলার জন্য নিচের ধাপগুলো অনুসরণ করো:

 A4 বা বড় খাতার মাপের একটি কাগজ নাও।

- কাগজটির চারপাশে এমনভাবে কলম দিয়ে দাগ টানো যেন কাগজটিকে একটি আয়তক্ষেত্র মনে হয়।
- কোনো ভাঁজ নেই এক ভাঁজ দুই ভাঁজ
- ৩. এখন কাগজটিকে সমান ২ ভাগে ভাঁজ করো কোনো ভাঁজ নেই এবং ভাঁজ বরারবর কলম দিয়ে দাগ টানো।
 ফলে দুইটি ঘর পাওয়া গেল।
- 8. আগের ভাঁজটি ঠিক রেখেই আবার কাগজটিকে ২ ভাগে ভাঁজ করো এবং আগের মত করেই দাগ দাও। এবার কয়টি সমান ঘর পাওয়া গেলো?
- ৫. অনুরূপ ভাবে আগের ভাঁজটি ঠিক রেখে আরও ৩ বার ভাঁজ করো এবং দাগ দাও।

একই ভাবে ভাঁজ করতে থাকলে কত তম ভাঁজে কয়টি ঘর পাওয়া যাবে নিচের ছকে (১.১) পূরণ করার চেষ্টা করো।

পরবর্তীতে, দুইটি সমান ভাঁজের জায়গায় প্রতিবারে ৩ টি করে ভাঁজ করো এবং মোট ৪ বার ভাঁজ করে ছক ১.১ এর ন্যায় ছক ১.২ পুরণ করো।

ছক ১.১		
কত তম ভাঁজ?	ঘর সংখ্যা	
১ম	২	
২য়		
৩ য়		
8র্থ		
৫ম		

ছক ১.২		
কত তম ভাঁজ?	ঘর সংখ্যা	
১ম	৩	
২য়		
ু য়		
8র্থ		

এবার চলো আমরা শ্রেণিকক্ষে বসেই একটি কাজ করি। তোমাদের যাদের রোল জোড় সংখ্যা তারা ৬ সংখ্যাটি নিচের ছকে লিখো এবং যাদের রোল বিজোড় তারা ৫ সংখ্যাটি নিজের ছকে লিখো।

ছক ১.৩

সংখ্যা	কতটি সংখ্যা রয়েছে?

এখন, তুমি যে সংখ্যাটি নিলে, সেই সংখ্যাটিকে, সেই সংখ্যাটি দিয়ে ১ বার গুণ করো এবং তা নিচের ছকের

ন্যায় পূরণ করো। ভেবে দেখো কি হতে পারে? তোমার রোল যদি বিজোড় হয় তাহলে দুটি ৫ গুণাকারে থাকবে। অর্থাৎ, গুণাকার হবে (-) তোমার রোল যদি জোড় হয় তাহলে দুটি ৬ গুণাকারে থাকবে। অর্থাৎ, গুণাকার হবে (-) তেমার রোল যদি জোড় হয় তাহলে দুটি ৬ গুণাকারে থাকবে। অর্থাৎ, গুণাকার হবে (-)

ছক ১.৪

গুণাকার	গুণফল	গুণাকারে আলাদাভাবে একই সংখ্যা কতটি রয়েছে?
□×□		

এখন আগের বারের মতই, সেই সংখ্যাটি দিয়ে ২ বার গুণ করো এবং নিচের ছকে গুণাকারে লেখো। গুণফল কত পেলে?

ছক ১.৫

গুণাকার	গুণফল	গুণাকারে আলাদাভাবে একই সংখ্যা কতটি রয়েছে?
□×□×□		

এমন করে ৩ বার, ৪ বার ও ৫ বার গুণ করো এবং নিচের ছকে লেখো। সুবিধার জন্য আংশিক পূরণ করে দেয়া হয়েছে ছকটি

ছক ১.৬

গুণাকার	গুণফল	গুণাকারে আলাদাভাবে একই সংখ্যা কতটি রয়েছে?

ছকটি পূরণ করা হলে তোমরা আরেকটি কাজ করো। এবার সংখ্যাটিকে ১০ বার, ১১ বার এবং ১২ বার গুণ করে নিচের ছকে শুধু গুণাকারে লেখো।

ছক ১.৭

গুণাকার	গুণাকারে আলাদাভাবে একই সংখ্যা কতটি রয়েছে?

ছকে গুণাকারে লিখতে অনেক জায়গা ও সময় লাগলো, তাই না? কিন্তু, আসলে খুব সহজে, অল্প জায়গায় ও একদম অল্প সময়ে এরকম বড় বড় গুণাকারগুলো লিখে ফেলা সম্ভব।

চিন্তা করে দেখো, তো ছক ১.৩ থেকে ছক ১.৬ -এ, প্রতি ক্ষেত্রে গুণাকারে কতটি করে সংখ্যা ছিল? আমরা খুব সহজেই সেটির সাহায্যে গুণাকারটিকে অন্য উপায়ে লিখতে পারি। এক্ষেত্রে আমরা আরেকটি ছকের সাহায্য নিবো।

ছক ১.৮

গুণাকার	গুণফল	গুণাকারে আলাদাভাবে একই সংখ্যা কতটি রয়েছে?	গুণফল লেখার নতুন উপায়
50 × 50	500	\ \	\$0 [₹]
20 × 20 × 20	5000	9	50°
20 × 20 × 20 × 20	50000	8	\$0 ⁸
50 × 50 × 50 × 50 × 50	\$00000	œ	20¢

তোমরা কি বুঝতে পারছো এখানে কি হচ্ছে? এখানে যতটি একই সংখ্যা গুণাকারে রয়েছে আগে সেটিকে লেখা হচ্ছে এবং এর পরে যতবার রয়েছে তাকে সেই সংখ্যাটির উপরে ডান পাশে বসানো হয়েছে।

এখন নিজেরা দেখো তো কাজটি করতে পারো কিনা। নিচের ছকটি পুরণ করে ফেলো।

ছক ১.৯

তোমার নেয়া সংখ্যাটি কত ছিল? ৫ নাকি ৬?	গুণাকার	গুণফল	গুণাকারে আলাদাভাবে একই সংখ্যা কতটি রয়েছে?	গুণফল লেখার নতুন উপায়
			\$	□ ₹
			9	
			8	□8
			Œ	
			Ŀ	

এবার চিন্তা করো। তুমি তোমার নেয়া সংখ্যাটিকে ১০ বার, ১১ বার এবং ১২ বার গুণ করে ছক পূরণ করেছিলে। কাজটি করতে কষ্ট হয়েছিল তাই না? তাহলে নিচের ছকটিতে নতুন যে নিয়ম শিখলে সেটি অনুযায়ী দেখো তো লিখতে পারো কীনা?

ছক ১.১০

তোমার নেয়া সংখ্যাটি কত ছিল? ৫ নাকি ৬?	গুণাকার	গুণফল	গুণাকারে আলাদাভাবে একই সংখ্যা কতটি রয়েছে?	গুণফল লেখার নতুন উপায়

খেয়াল করো: চিত্র ৭.২.৩-তে দেখো, একই সংখ্যা বার বার গুণ আকারে লেখার বদলে আমরা ঐ সংখ্যার ডানপাশে উপরে ছোট করে নির্দেশ করে দিচ্ছি একই সংখ্যাকে কতবার গুণ করা হয়েছে। গণিতের ভাষায় একে বলে সূচক। নিচের ছবিটি দেখো।

৩ হলো ভিত্তি। আর ৩-কে যেহেতু ৪ বার গুণ করা হয়েছে, তাই ৪ হলো ৩-এর সূচক। আমরা নতুন আরও একটি শব্দ শিখেছি- শক্তি বা power.

চিত্ৰ ৭.২.৩

তাহলে বোঝা গেলো যে সূচকের মাধ্যমে আমরা খুব সহজেই বড় একটি গুণের কাজকে এক নিমেষেই সংক্ষেপে প্রকাশ করতে পারি। তাহলে এবার দেখে নেওয়া যাক সূচক দিয়ে সংখ্যাকে প্রকাশ করলে তা কীভাবে পড়বো।

সূচকীয় রাশি	কীভাবে পড়বো?
৩২	৩ to the power ২ বা ৩-এর সূচক বা ঘাত ২। [কোন সংখ্যার সূচক বা ঘাত ২ এর অর্থ হলো সেই সংখ্যাকে বর্গ করা হয়েছে। ৩-এর ক্ষেত্রে তাই আমরা একে ৩ squared অথবা ৩-এর বর্গ-ও বলতে পারি।]
ಅಿ	৩ to the power ৩ বা ৩-এর সূচক বা ঘাত ৩। [কোন সংখ্যার সূচক বা ঘাত ৩ এর অর্থ হলো সেই সংখ্যাকে ঘন করা হয়েছে। ৩-এর ক্ষেত্রে তাই আমরা একে ৩ cubed অথবা ৩-এর ঘন-ও বলতে পারি।]
9 8	৩ to the power ৪, বা ৩ এর সূচক বা ঘাত ৪
9 ¢	৩ to the power ৫, বা ৩ এর সূচক বা ঘাত ৫

এই যে বড় বড় গুণাকারকে সহজে লেখার যে পদ্ধতি দেখানো হল, সেটিই মূলত সূচকীয় পদ্ধতি। এখন আরেকটি বিষয় নিয়ে ভাবি। এতক্ষণ দেখা গিয়েছে, একটি গুণাকার কাঠামোতে, একটি নির্দিষ্ট সংখ্যা বা ভিত্তি যে কয়বার থাকছে, সেই সংখ্যাটিকে ওই ভিত্তির জন্য আমরা সূচক বা ঘাত হিসেবে ব্যবহার করতে পারি। না বুঝতে পারলে উপরের চিত্রটি আবার দেখো।

এবার, ছক ১.৮ থেকে একটি উদাহরণ দেখা যাক।

 $50^{\circ} = 50 \times 50 \times 50$

এখানে ৩ টি ১০ গুণাকারে আছে দেখে ১০ এর উপর ঘাত হিসেবে রয়েছে ৩।

তাহলে চিন্তা করে দেখো, ছক ১.৩ এ তুমি কি করেছিলে? গূনে দেখো সেখানে কতটি সংখ্যা ছিল? সেখানে কিন্তু ১ টি মাত্র সংখ্যা ছিল। আবার উদাহরণ হিসেবে বলা যায়, শুধু ১০ লিখলে সেখানে ১ টিই ১০ থাকে।

এই ক্ষেত্রেও সূচকীয় প্রকাশ করা যায়। আর সেই ঘাত বা সূচকটি আমাদের নতুন শেখা নিয়ম অনুযায়ীই হবে। অর্থাৎ, শুধু একটি সংখ্যা বা ১০ কে লেখা যায় ১০^১ হিসেবে।

তাহলে ছক ১.১১ পূরণ করো। পরবর্তীতে ছক ১.১১ এর ন্যায় ছক নিজের খাতায় অঞ্জন করো এবং ৯ সংখ্যাটির জন্য সেটি পূরণ করো।

ছক-১.১১

সংখ্যা	ঘাত	গুণাকারে লেখো	সূচকীয় পদ্ধতিতে লেখো	গুণফল
	٥	20	202	50
	২	20 × 20		500
	9		50°	5000
50	8	20 × 20 × 20 × 20		\$0000
	Č		\$0°	\$00000
	৬	20 × 20 × 20 × 20 × 20		\$00000

আশা করি তোমরা এতক্ষণে সূচক সম্পর্কে একটি বিস্তারিত ধারণা পেয়ে গেছো। এবার তাহলে আমরা নিচের ছকটি পুরণ করার চেষ্টা করি।

ছক ১.১২

গুণ-আকার	সূচকীয় আকার	ভিত্তি	ঘাত
9 × 9 × 9 × 9 × 9 × 9 × 9 × 9 × 9 × 9 ×			
28 × 28 × 28 × 28 × 28			
$ > \times > $			
22 × 22 × 22 × 22 × 22 × 22 × 22 × 22			
২১			

চলো, আমরা আবার আমাদের সেই কাগজ ভাঁজের খেলার কথা ভাবি। তোমরা সেখান থেকে কি সূচকের কোন ধারণা করতে পারো? যদি পারো, তাহলে, ছক ১.১৪ পূরণ করো এবং পরবর্তীতে প্রতিবারে সমান ৩ ভাগ করে ভাঁজের জন্য ছক ১.১৪ এর ন্যায় নিজের খাতায় ছক অঞ্জন করে পূরণ করো।

ছক ১.১৩

ভাঁজের প্রকৃতি	ভাঁজ সংখ্যা	ঘর সংখ্যা	গুণাকার	সূচকীয় আকার
	٥	২		
	২			
প্রতিবারে সমান ২ ভাগ করে ভাঁজ	9			
ाग यर्ध्य लाख	8			
	¢			

এখন একটি বিষয় চিন্তা করো, তুমি যখন কোন ভাঁজ করো নি, তখনও কিন্তু চারপাশে দাগটানা পুরো কাগজটিকেই একটি ঘর হিসেবে চিন্তা করা যায়।

কোন ভাঁজ না থাকলে ভাঁজ সংখ্যা ০, কিন্তু ঘর কতটি থাকছে? ১ টি। এবার আরেকটি মজার বিষয় দেখো, তুমি প্রতিবারে যে কয়টি করেই ধনাত্মক সংখ্যক ভাঁজ করতে চাও

না কেন, একদম প্রথমবারে, অর্থাৎ শূণ্য ভাঁজে ঘর সেই ১ টিই থাকবে। এখান থেকে তোমরা কিছু বুঝতে পারছো কি?

কাজ:

১) উপরে সেই রাজার অঞ্চের যে ছকটি ছিল সেটিকে তোমার খাতায় নিচের ছকের মত সম্পূর্ণ করো।

দিন	সূচকীয় আকার	টাকার পরিমাণ				
5		5				
ż.	5,	২				
২৯						
90						

০ ও ১ এর সূচক

তোমাদের বিদ্যালয় কর্তৃপক্ষ ঠিক করেছে, তোমাদের শ্রেণিতে মোট ৫ দিন ধরে ক্যান্ডি দেয়া হবে। তবে সেক্ষেত্রে কয়েকটি নিয়ম আছে। প্রথমত কে কতটি করে ক্যান্ডি পাবে, তা নির্ভর করবে প্রত্যেকের রোল নম্বরের উপর। প্রত্যেক শিক্ষার্থীর রোল নম্বরের শেষ অঙ্কের সাপেক্ষে এই ক্যান্ডি প্রদান করা হবে। এখন যাদের রোল এক অঙ্কের, তাদের ওই এক অঙ্কই গ্রহণযোগ্য অঙ্ক।

এখন কীভাবে রোলের শেষ অঞ্চের সাহায্য নিয়ে ক্যান্ডি প্রদান করা হবে?

প্রথম দিন রোলের শেষ অঞ্চ যা, একজন শিক্ষার্থীকে সেই সংখ্যক ক্যান্ডি দেয়া হবে।

পরের দিন, অর্থাৎ দ্বিতীয় দিন একজন শিক্ষার্থীর প্রাপ্ত ক্যান্ডি সংখ্যা হবে, আগের দিনে পাওয়া ক্যান্ডির সংখ্যার সাথে তার রোলের শেষ অঞ্চ গুণ করা হলে, গুণফল যা হবে সেই সংখ্যক।

তৃতীয় দিনে, গত দুইদিন সে যে কয়টি ক্যান্ডি পেয়েছিলো, সেটির সাথে তার রোলের শেষ অঙ্কের যে গুণফল, সেই গুণফলের সংখ্যক ক্যান্ডি পাবে।

এই নিয়মেই বাকি দুইদিন সকলে ক্যান্ডি পাবে।

প্রথমেই তোমরা তোমাদের রোল নম্বর চিন্তা করো এবং নিজের রোলের শেষ অজ্ঞটি নাও। নিয়ম অনুযায়ী, তোমার রোল যদি এক অজ্ঞের হয়, তাহলে সেটিই তোমার রোলের শেষ অজ্ঞ বা গ্রহণযোগ্য অজ্ঞ।

তাহলে, নিচের ছকটি পূরণ করে ফেলো তো।

ছক ১.১৮

রোল	রোলের শেষ অঞ্জ	দিন	প্রাপ্ত ক্যান্ডি সংখ্যা
		১ম দিন	
		২য় দিন	□×□
		৩য় দিন	□×□×□
		৪র্থ দিন	
		৫ম দিন	

এখন তোমরা একটি বিষয় দেখো তো। তোমাদের শ্রেণিতে যাদের রোলের শেষে ০ অথবা ১ ছিল, তারা আসলে ৫ দিন শেষে কতটি ক্যান্ডি পেয়েছে? কিংবা তাঁদের প্রতিদিনের প্রাপ্ত ক্যান্ডির সংখ্যা কত?

খেয়াল করলে দেখবে যাদের রোলের শেষ অজ্ঞা ০ তারা কোনদিনই ক্যান্ডি পায় নি। আবার যাদের রোলের শেষ অজ্ঞা ১, তারা প্রতিদিনই একটি করে ক্যান্ডি পেয়েছে গেছে। অর্থাৎ, তাদের কারোরই প্রতিদিনে প্রাপ্ত ক্যান্ডি সংখ্যায় কোন পরিবর্তন আসে নি। অর্থাৎ ০ ও ১ এর উপর সূচক বসলেও তা যথাক্রমে ০ ও ১ ই থাকে। তবে মনে রাখবে ০ এর উপর কিন্তু কখনও সূচক হিসেবে ০ হয় না। কেন হয় না ভেবে দেখতে পারো কী?

সূচক নিয়ে কারিকুরি

আমরা একটি অঙুত মহাকাশযানের গল্প শুনি। অঙুত কেন বলছি? কারণ এই মহাকাশযানটির গতিবেগ সবসময় ৪ ভিত্তিতে হয়। অর্থাৎ, এর বেগটি প্রতি সেকেন্ডে ৪ এর কোন না কোন ধনাত্মক ঘাত হয়। আরেকটু সহজে বললে, মহাকাশযানটির ১ সেকেন্ডে অতিক্রান্ত দুরত্ব ৪ এরই কোন ধনাত্মক ঘাত হবে। উদাহরণ হিসেবে আমরা ৪° চিন্তা করতে পারি। এই ক্ষেত্রে মহাকাশযানটি এক সেকেন্ড চললে, ৪° মিটার দূরত্ব অতিক্রম করবে।

তবে মনে রাখতে হবে এই বেগটি কিন্তু নির্দিষ্ট নয়। এটি বাড়তে পারে, আবার কমতেও পারে। শুধু এটুকু নিশ্চিত বেগটি সর্বদাই ৪ এর ঘাত হবে।

মহাকাশ্যানের চালক, মহাকাশ্যানের মনিটরে বসে দেখতে পারেন সময়ের সাপেক্ষে সেই মহাকাশ্যানটি কতদূর অতিক্রম করলো। কিন্তু মজার ব্যাপার হলো, সেই মনিটরে আবার সময়টিও ৪ এর ঘাত হিসেবে দেখা যায়। অর্থাৎ, চালক চাইলেই ২ সেকেন্ড পর অতিক্রান্ত দুরত্ব দেখতে পারবেন না। তিনি ৪° = ৪ সেকেন্ড বা ৪° = ১৬ সেকেন্ড এরকম সময় ব্যবধানেই বিমানের অতিক্রান্ত দুরত্বটি দেখতে পাবেন। মনিটরে সময়ের এই ব্যাপারটি একটি ক্রম মেনেই চলবে। যেমন চালক প্রথমে ৪° সেকেন্ড সময় ব্যবধানে অতিক্রান্ত দুরত্ব দেখতে পাবেন। এরপর এই ৪° সেকেন্ড এর পর হতে, পরবর্তী ৪° সেকেন্ডে মহাকাশ্যানটি কতটুকু দুরত্ব অতিক্রম করলো সেটি দেখতে পাবেন। তারপর, আবার ৪° সেকেন্ড হতে পরবর্তী ৪° সেকেন্ডে অতিক্রান্ত দুরত্বটি দেখতে পারবেন এবং এভাবে চলবে। এটুকু মনে রাখতে হবে, কখনই ৪° সেকেন্ডের পর পরবর্তী ৪৫ সেকেন্ডে অতিক্রান্ত দুরত্ব দেখা যাবে না।

একদিন মহাকাশযানটি চালনা করার সময় চালক দেখলেন তাঁর বেগটি নির্দিষ্ট এবং সেই বেগটি হলো প্রতি

সেকেন্ডে ৪^১ = ৪ মিটার। এটি বাড়ছেও না কমছেও না। তিনি প্রথমে ৪^১ সময় অতিক্রান্ত হওয়ার পর তাঁর অতিক্রান্ত দুরত্বটি দেখতেও পেলেন। তিনি এর পরবর্তী ৪^২ সেকেন্ডে অতিক্রান্ত দুরত্ব দেখার পর, মহাকাশযানটি হঠাৎ একটি ঝাঁকুনি দিয়ে উঠলো এবং এর পরবর্তী সময় ব্যবধান থেকে মনিটরে কোন অতিক্রান্ত দুরত্ব দেখা

গেল না। মহাকাশযানের চালক মুশকিলে পড়লেন, কারণ তাঁর এই অতিক্রান্ত দুরত্বগুলো জানা জরুরি। তুমি কি মহাকাশযান চালককে একটু সাহায্যে করতে পারবে?

চিন্তা করো, মহাকাশযানটি ১ সেকেন্ডে ৪^১ = ৪ মিটার দুরত্ব অতিক্রম করে।

তাহলে, 8° সেকেন্ডে কত দুরত্ব অতিক্রম করবে? ঐকিক নিয়মের ধারণা থেকে আমরা বলতে পারি, 8° সেকেন্ড সময় ব্যবধানে মহাকাশ্যানটির অতিক্রান্ত দুরত্ব হবে $8^\circ \times 8 = 8 \times 8 = 8^\circ$

তাহলে, দ্বিতীয় সময় ব্যবধানে মহাকাশ্যানটির অতিক্রান্ত দূরত্ব কত হবে ভেবে বের করতে পারবে?

মহাকাশযানটি ১ সেকেন্ডে অতিক্রম করে ৪১ = ৪ মিটার

অতএব, ৪^২ সেকেন্ডে অতিক্রম করবে, ৪^২ × ৪ = 8 × 8 × 8 = 8° মিটার

ছক ২.১ (আংশিক পুরণ করা হয়েছে। প্রয়োজনে নিজের খাতায় ছকটি অঞ্জন করে পুরণ করো)

সময় ব্যবধান (সেকেন্ড)	গতিবেগ (মিটার, প্রতি সেকেন্ড)	অতিক্রান্ত দুরত্বের গুণাকার (মিটার)	অতিক্রান্ত দুরত্ব (সূচকীয় আকারে) (মিটার)
82	8	8 ⁵ × 8 = 8	8 ^২
85	8	$8^{\circ} \times 8 = 8 \times 8 \times 8$	8°
8°	8		
88	8		
8¢	8		
8 ⁶	8		
8°	8		

এভাবে উপরের ন্যায় ৭ টি সময় ব্যবধান অতিক্রান্ত হওয়ার পর চালক মহাকাশযানটি অবতরণ করান এবং কারিগরি দলকে মনিটরের তুটি ঠিক করার নির্দেশনা দেন। কিন্তু, পরবর্তী দিন অতি জরুরি একটি কারণে চালককে আবার মহাকাশযানটি চালনা করতে হয়। ফলে মনিটরের ব্রুটিটি থেকেই যায়। তবে, আগের দিন যেমন প্রথম দুটি সময় ব্যবধানে চালক তাঁর অতিক্রান্ত দুরত্ব দেখতে পেয়েছিলেন, এই দিন শুধু প্রথম সময় ব্যবধানে তাঁর অতিক্রান্ত দুরত্ব দেখতে পেলেন এবং বাকি কোন সময় ব্যবধানেই তাঁর অতিক্রান্ত দুরত্ব দেখতে পেলেন না। এদিন আরেকটি ভিন্নতা ছিল। আগের দিনে যেমন প্রতি সময় ব্যবধানে মহাকাশযানটির গতিবেগ একই ছিল, এদিন কিন্তু তাঁর মহাকাশযানের গতিবেগ প্রতিটি সময় ব্যবধানে ভিন্ন ছিল। সেদিনে, তাঁর রকেটের সময় ব্যবধান ও বেগ ছকে দেয়া আছে। প্রতি সময় ব্যবধানে অতিক্রান্ত দুরত্বিটি নির্ণয় করে, তোমরা কী চালককে সাহায্য করতে পারবে?

ছক ২.২ (আংশিক পূরণ করা হয়েছে। প্রয়োজনে নিজের খাতায় ছকটি অঞ্জন করে পূরণ করো)

সময় ব্যবধান (সেকেন্ড)	গতিবেগ (মিটার, প্রতি সেকেন্ড)	অতিক্রান্ত দুরত্বের গুণাকার (মিটার)	অতিক্রান্ত দুরত্ব (সূচকীয় আকারে) (মিটার)
82	8°	$8^{5} \times 8^{6} = (8) \times (8 \times 8 \times 8 \times 8 \times 8)$ = $8 \times 8 \times 8 \times 8 \times 8 \times 8$	8 ^હ
8 ^২	8 ^b		
8°	8°		
88	820		
8¢	88		
8%	85		
8°	8%		
8 ^b	8		

এখন, প্রতিবারে একটি নির্দিষ্ট সময় ব্যবধানে অতিক্রান্ত দুরত্ব নির্ণয় করতে গিয়ে তোমাকে কি করতে হচ্ছে? প্রতিবারে সূচকাকারকে ভেজ্পে গুণাকারে লিখতে হচ্ছে। তারপর গুণাকারে থাকা মোট সংখ্যাগুলো গণনা করতে হচ্ছে। এরপরে আবার সূচকীয় আকারে লিখতে হচ্ছে। এই কাজটি করার জন্য নিশ্চয় অনেক সময় লাগছে, আবার অনেক পরিশ্রম করা লাগছে। কিন্তু আমরা তো দেখেছি সূচকের সাহায্যে অনেক বড় বড় গুণকে সহজে ও কম সময়ে লিখে ফেলা যায়। তবে, প্রতিবার যদি এমনভাবে বড় বড় গুণাকার নিয়ে কাজ করা লাগে তাহলে কি কাজ সহজ হয়? তাই, এসো আমরা আরেকটি নতুন বিষয় শিখি। এবারও তোমাদের জোড়-বিজোড় রোলের সাহায্য নিব। অর্থাৎ, যাদের রোল জোড়, তারা ৬ সংখ্যাটি ব্যবহার করবে এবং যাদের রোল বিজোড় তারা ৫ সংখ্যাটি ব্যবহার করবে।

নিচের ছক-২.৩ ভাল করে লক্ষ্য করো। সাহায্যের জন্য পুরো ছকটি পূরণ করে দেয়া আছে। এর সাহায্যে পরবর্তীতে ছক-২.৪ পূরণ করতে হবে।

ছক-২.৩

(ছকে গুণের ভিত্তি হিসেবে ১০ ধরা হয়েছে।)

গৃহীত	গুণ	গুণের	১ম পদের	গুণের	২য় পদের	গুণফল	গুণফলের
সংখ্যা		১ম	গুণাকার	২য়	গুণাকার		সূচকীয়
		পদ	কাঠামো	পদ	কাঠামো		কাঠামো
	205 × 208	\$ 0₹	20 × 20	\ 08	20 × 20	20 × 20 × 20	20g
					× 20 ×	× 20 × 20 ×	
					50	50	
	১০° × ১০°	১০৽	20 × 20	১০°	20 × 20	20 × 20 × 20	50 6
			× 50		× 50	× 20 × 20 ×	
						50	
50	20 ₈ × 20 ₂	\$0 8	20 × 20	202	50	20 × 20 × 20	5 0 [₡]
			× 20 ×			× 30 × 30	
			50				
	205 × 202	∑ 0 [₹]	20 × 20	202	50	20 × 20 × 20	50°
	202×200	202	50	১০°	20 × 20	20 × 20 × 20	\$0 8
					× 20	× 20	

ছক-২.৪

(ছক ২.৩ এর কাজ অনুযায়ী ১০ এর বদলে তোমার নেয়া সংখ্যাকে ভিত্তি ধরে নিচের ছকে গুণফল কি হবে তা নির্ণয় করো এবং প্রয়োজনে নিজের খাতায় ছকটি সম্পূর্ণ করো।)

গৃহীত	গুণ	গুণের	১ম	গুণের	২য়	গুণফল	গুণফলের
সংখ্যা		১ম	পদের	২য়	পদের		সূচকীয়
		পদ	গুণাকার	পদ	গুণাকার		কাঠামো
			কাঠামো		কাঠামো		
	□ ^২ ×□ ⁸						
	□₂×□8						
	□°×□>						
	□²×□²						
	□°×□°						

এখন ছক-২.৩ ও ছক-২.৪ এর আলোকে তুলনা করার চেষ্টা করো। কি বুঝতে পারলে? যদি একই ভিত্তি হয়, তাহলে দুটি সূচকীয় কাঠামোকে গুণ করা হলে, গুণফলটিও একই ভিত্তির একটি সূচকীয় কাঠামো হয়। নতুন সূচকীয় কাঠামোর সূচক বা ঘাতটি হয়, গুণ্য ও গুণকের সূচক বা ঘাতের যোগফল। এরপরে প্রদত্ত ছকের সাহায্যে বিষয়টি আরও ভালভাবে বোঝা যাবে। ছকটি আংশিক পূর্ণ করা রয়েছে। ছক ২.৫ (ছক-২.৩ ও ছক ২.৪ এর ক্রমিক অনুযায়ী ছকটি পূরণ করতে হবে। ছকটি আংশিক পূরণ করা আছে। তোমার শিখন ও ছক দুটি হতে প্রাপ্ত তথ্যের মাধ্যমে ছকটি সম্পূর্ণ করো)

	ছক-২.	৩ হতে প্রাপ্ত ত	হথ্য	ছক ২.৪	হতে প্রাপ্ত তথ	ſ
ক্রমিক	গুণ	গুণ করার ধাপ	গুণফল	গুল	গুণ করার ধাপ	গুণফল
٥	\$0 ³ × \$0 ⁸	20 ₅₊₈	> 0%	□ ² × □ ⁸		
২	১০° × ১০°		∑ 0⊌	□2× □8		
8	208 × 202		20°	□°× □°		
¢	205 × 202	20 ^{≥+2}	50	□,× □,		
৬	202×200		\$0 ⁸	□°× □°		

একই ভিত্তির দুটি বা ততোধিক সূচকীয় রাশির গুণফলটিকে ওই একই ভিত্তির আরেকটি সূচকীয় আকারে প্রকাশ করা সম্ভব। গুণফলের সূচকটি হবে গুণাকারে থাকা ঐ ভিত্তিরই সকল রাশির সূচকগুলোর যোগফল।

কাজ:

১) সূচকের গুণের নিয়মের সাহয্যে গুণফল নির্ণয় করো। (গুণফল ০ অথবা ১ হলে, ভিত্তিতে ০ অথবা ১ থাকবে সূচকের মান সম্পর্কে যা শিখেছো সেই অনুযায়ী গুণফল লিখবে)

ক্রমিক	সূচকের গুণ	গুণফল (সূচকীয় আকারে)
٥	98 × 99	
২	$O_P \times O_Z$	
9	2 ₄₈ × 2 ₂₄	
8	2525 × 2525	
¢	95 ²⁶ × 95 ⁹²	
৬	$57_{52} \times 57_{28} \times 57_6 \times 57_5$	

- ২) সূচকের গুণের নিয়মের সাহায্যে খাতায় ছক ২.২ এর অনুরূপ ছক অঞ্জন করে তা পূরণ করো।
- ৩) হাসান দুটি সূচকীয় আকারের সংখ্যা গুণ করতে গিয়ে আটকে গিয়েছে। সেই সংখ্যা দুটি হল ৫২ এবং ১২২। সে সংখ্যা দুটিকে ছকের মত করে দুইবার গুণাকারে লিখলো। দেখো তো সে ঠিক লিখেছে কীনা?

যদি হাসানের করা দুটি গুণ প্রক্রিয়ার কোনটি ঠিক হয় তবে সেই প্রক্রিয়ায় তুমি ২^৩ এবং ৫^৪ এর গুণফল নির্ণয় করো। যদি হাসানের করা গুণ প্রক্রিয়া ভুল হয়, তবে তুমি হাসানের ভুলটি চিহ্নিত করে সঠিক গুণফল নির্ণয় করো এবং পরবর্তীতে সঠিকভাবে ২^৩ এবং ৫^৪ এর গুণফল নির্ণয় করো।

সূচকের ভাগ-১

চলো আমরা পূর্বের সেই রাজার গল্পের ন্যায় ভাবার চেষ্টা করি। কিন্তু উল্টোভাবে। দুটো দলে ভাগ হয়ে এই গল্পের কাজটি চিন্তা করব। একটি দলের নাম "ক" এবং আরেকটি দলের নাম "খ"।

"ক" দলের কাছে ২^{১০} = ১০২৪ টি লজেন্স আছে। কিন্তু "খ" দলের কাছে কোন লজেন্স নিই। এখন "ক" দল, "খ" দলকে লজেন্স দেবে। কিন্তু সেখানে একটি নিয়ম আছে।

নিয়মটি হল, "ক" দল, "খ" দলকে প্রতিদিন আগের দিনের অর্ধেক সংখ্যক লজেন্স দেবে। অর্থাৎ, "ক" দল কোন একদিন যে পরিমাণ লজেন্স দেবে পরেরদিন সেটিকে ২ দ্বারা ভাগ করে যে ভাগফল পাওয়া যায়, সেই সংখ্যক লজেন্স দেবে। মনে রাখতে হবে যে, শুধুমাত্র পূর্ণসংখ্যক লজেন্সই দেয়া যাবে। কখনই লজেন্সকে ভেজো অর্ধেক করে, কিংবা সেটিকে আবার অর্ধেক করে দেয়া যাবে না। এভাবে যতদিন লজেন্স দেয়া সম্ভব, ততদিন চলতে থাকবে।

ধরো প্রথম দিনে, "ক" দল, "খ" দলকে ২^৫ সংখ্যক লজেন্স দিয়েছে। তাহলে পরেরদিন কতটি দেবে? কিংবা তার পরেরদিন কতটি দেবে? সেই তথ্য বের করার জন্য এবার ছকটি পুরণ করো।

ছক ৩.১

(যদি কোনদিন লজেন্স দেয়া সম্ভব না হয় অথবা সূচকীয় আকারে প্রকাশ করা সম্ভব না হয়, তবে সেই ঘরে ক্রস চিহ্ন দেবে)

দিন	প্রদত্ত লজেন্স সংখ্যার সুচকীয় আকার	প্রদত্ত লজেন্স সংখ্যার গুণাকার
১ম	₹ [¢]	$2 \times 2 \times 2 \times 2 \times 2$
২য়		$\frac{2 \times 2 \times 2 \times 2 \times 2}{2} = 2 \times 2 \times 2 \times 2 \times 2$
৩য়		
8র্থ		
৫ম		
৬ৡ		
৭ম		

এভাবে ছকের মাধ্যমে তুমি আগের দিনে প্রদত্ত লজেন্স সংখ্যা জেনে পরেরদিন প্রদত্ত লজেন্স সংখ্যা হিসাব করতে পারছো। কিন্তু, তোমার কাছে যদি সরাসরি জানতে চাওয়া হয় যে ৪র্থ দিনে কতটি লজেন্স দেয়া হয়েছে, তুমি কীভাবে বলবে? নিশ্চয় এভাবে ছকের মত করে অথবা প্রতিদিনে প্রদত্ত লজেন্সের তথ্য ব্যবহার করে।

এবার তোমরা কল্পনা করো, শুরুতে "ক" দলের কাছে লজেন্সের পরিমাণ ছিল ২^{২২} টি। প্রথম দিন তারা "খ" দলকে ২^{২০} সংখ্যক লজেন্স প্রদান করে। এরপর পূর্বের নিয়ম মেনেই চকলেট প্রদান থাকে যতদিন সম্ভব হয়। এখন ভাবো তো, তোমার কাছে যদি জানতে চাওয়া হয় ৮ম দিনে "খ" দল কতটি চকলেট পেয়েছে, তা নিচের ছকের সাহায্যে নির্ণয় করো?

ছক ৩.২

দিন	প্রদত্ত লজেন্স সংখ্যার সুচকীয় আকার	প্রদত্ত লজেন্স সংখ্যার গুণাকার
১ম	520	
২য়		$\frac{2 \times 2 \times 2}{2}$ $= 2 \times 2 $
৩য়		
8र्थ		
৫ম		
৬ষ্ঠ		
৭ম		
৮ম		

দেখো, এই কাজটি করতে অনেক পরিশ্রম হচ্ছে এবং অনেক সময়ও ব্যয় হচ্ছে। তাই এ পর্যায়ে চলো, গুণের মত সূচকের ভাগেরও যে সহজ উপায় আছে তা দেখি

আমরা পূর্বে সূচকের গুণের পদ্ধতি যেভাবে ছকের মাধ্যমে দেখেছি, এখানেও সেভাবেই দেখার চেষ্টা করব। তোমরা আবার জোড় ও বিজোড় রোল দুইভাগে ভাগ হয়ে যাও। এবং আবার জোড় রোলধারীরা ৬ সংখ্যাটি নাও এবং বিজোড় রোলধারীরা ৫ সংখ্যাটি নাও।

এবার পরবর্তী ছক-৩.৩ ভাল করে লক্ষ্য করো। সাহায্যের জন্য পুরো ছকটি পূরণ করে দেয়া আছে। এর সাহায্যে পরবর্তীতে ছক-৩.৪ পূরণ করতে হবে।

ছক ৩.৩

গৃহীত সংখ্যা	ভাগ	ভাঁজ্য	১ম পদের গুণাকার কাঠামো	ভাঁজক	২য় পদের গুণাকার কাঠামো	ভাগফল কাঠামো	ভাগফল	ভাগফলের সূচকীয় কাঠামো
	\$08 ÷ \$0 [₹]	\$0 ⁸	20 × 20 ×	\$ 0 ^{\$}	20 × 20	20 × 20 20 × 20 × 20× 20	20 ×	\$0 [₹]
	\$0° ÷ \$0₹	50°	>0 × >0	\$ 0 ^{\$}	20 × 20	20 × 20 20 × 20 × 20	50	202
50	\$0 ⁸ ÷ \$0 ⁵	\$0 8	20 × 20 ×	30 ³	50	20 × 20 × 20× 20	\$0 ×	30°
	20≤ ÷ 20≥	\$0 ^{\$}	20 × 20	20°2	50	20 70 × 70	50	202
	202 ÷ 202	202	50	20 ²	20	70	٥	?

ছক-৩.৪

(ছক ৩.৩ এর ক্রমিক অনুযায়ী ১০ এর বদলে তোমার নেয়া সংখ্যাকে ভিত্তি ধরে নিচের ছকে ভাগ কি হবে তা নির্ণয় করো এবং প্রয়োজনে খাতায় ছকটি সম্পূর্ণ করো)

গৃহীত সংখ্যা	ভাগ	ভাঁজ্য	১ম পদের গুণাকার কাঠামো	ভাঁজক	২য় পদের গুণাকার কাঠামো	ভাগফল কাঠামো	ভাগফল	ভাগফলের সূচকীয় কাঠামো
	□ 8÷□ ²							
	□°÷□³							
	□8÷□>							

ছক-৩.৩ ও ছক-৩.৪ এর আলোকে তুলনা করার চেষ্টা করো। কি বুঝতে পারলে?

যদি ভিত্তি একই হয়, তাহলে দুটি সূচকীয় কাঠামোকে ভাগ করা হলে, ভাগফলটিও একই ভিত্তির নতুন একটি সূচকীয় কাঠামো হয়। নতুন সূচকীয় কাঠামোর সূচক বা ঘাতটি হয়, ভাঁজ্যের সূচক বা ঘাত হতে ভাঁজকের সূচক বা ঘাতের বিয়োগফল। নিচের ছকের সাহায্যে বিষয়টি আরও ভালভাবে বোঝা যাবে। ছকটি আংশিক পূর্ণ করা রয়েছে।

ছক ৩.৫ (ছক-৩.৩ ও ছক ৩.৪ এর ব্যবহৃত তথ্য অনুযায়ী ছকটি পূরণ করতে হবে। ছকটি আংশিক পূরণ করা আছে। তোমার শিখন ও ছক দুটি হতে প্রাপ্ত তথ্যের মাধ্যমে ছকটি সম্পূর্ণ করো)

ক্রমিক	ছক-৩	.৩ হতে প্ৰাপ্ত	তথ্য	ছক ৩.৪ হতে প্রাপ্ত তথ্য			
	ভাগ	ভাগ করার ধাপ	ভাগফল	ভাগ	ভাগ করার ধাপ	ভাগফল	
۵	\$0 ⁸ ÷\$0 [₹]	\$ 0 ^{8-₹}	\$0 [₹]	□8÷□ ^২			
২	50°÷50 [₹]		20 ²	□°÷□²			
9	\$08÷\$05		50 °	□8÷□>			
8	\$0 ⁵ ÷\$0 ⁵	20 ₅₋₂	\$0□	□²÷□²			

একই ভিত্তির দুটি সূচকীয় রাশির ভাগফলটিকে ওই একই ভিত্তির আরেকটি সূচকীয় আকারে প্রকাশ করা সম্ভব। সেক্ষেত্রে ভাগফলের সূচকটি হবে ভাঁজ্যের সূচক হতে ভাঁজকের সূচকের বিয়োগফল।

ঘাত যখন ০

এবার একটি বিষয় লক্ষ্য করো। ছক ৩.২ এর সর্বশেষ সারিতে আমরা কাজটি কি করেছি ভাবো তো? আমরা ১০ কে ১০ দিয়ে ভাগ করেছি মূলত। কিন্তু সূচকীয় ভাগে এটি হয়ে যায় ২০। এখন আমরা সূচকের ভাগের নিয়মটি কি শিখেছি দেখো তো?

সেই নিয়ম থেকে কিন্তু লেখা যায়,
$$\frac{50}{50} = 50^{5-5} = 50^{\circ} = 5$$

মনে করার চেষ্টা করো, আমরা শুরুতেই কাগজ ভাঁজ করার খেলা খেলেছিলাম? সেখানে আমরা কি দেখে এসেছিলাম বলো তো? যখন কোন ভাঁজ নেই, তখনও একটি ঘর পাওয়া যায়। অর্থাৎ ০ ভাঁজে আমরা ১ টি ঘর পেয়েছিলাম। আবার উপর থেকে সূচকের সূত্রের সাহায্যে আমরা কি দেখতে পাচ্ছি? ১০ এর উপর সূচক ০ হলে সেটি ১ হয়।

এবার তাহলে ঝটপট নিচের ছকটি পূরণ করে ফেলো তো।

ছক ৩.৫ (আংশিক পুরণ করা রয়েছে)

ভাগ	সূত্রের সাহায্যে ভাগফলের সূচকীয় প্রক্রিয়া	ভাগফল কাঠামো	ভাগফল	সূত্রের সাহায্যে প্রাপ্ত ভাগফলের সূচকীয় কাঠামো
20 ₈ ÷ 20 ₈	\$0 ₈₋₈	208 208	\$	70°
ર ^ર ÷ ર ^ર				
•9°+ •9°				
9° ÷ 9°				
৬ ^১ ÷ ৬ ^১				

এখান থেকে তোমরা আসলে কি দেখতে পারছো বলো তো? একটু ব্যাখ্যা করলে বলা যায় সাধারণ ভাগের নিয়মে আমরা কোন সংখ্যাকে সেই সংখ্যা দ্বারা ভাগ করলে ভাগফল ১ পাই। এখন চিন্তা করো কখন কোন সংখ্যার উপর সূচক ০ হয়? যখন সেই সংখ্যাটিকে সেই সংখ্যা দ্বারা অথবা সেই সংখ্যার কোন সূচকীয় আকারকে একই আকার দ্বারা ভাগ করা হয়। তারমানে যেকোনো সংখ্যার উপর সূচক ০ হলে সেই সূচকীয় ফলটি হবে ১।

এবার কি তোমার কাগজ ভাঁজের সাথে তুমি কোন মিল খুঁজে পাচ্ছো?

এবার আরেকটি বিষয় নিয়ে ভাবি। o এর উপর কি সূচক o হতে পারে? এবার দেখো আমরা ছক ৩.৫ এরই সাহায্য নিব। চলো ছকটির প্রথম সারিতে আমরা $\mathbf{5o}^8 \div \mathbf{5o}^8$ এর বদলে $\mathbf{o}^8 \div \mathbf{o}^8$ নিয়ে ভাবি। এখন,

ছক ৩.৬

ভাগ	সূত্রের সাহায্যে ভাগফলের সূচকীয় প্রক্রিয়া	ভাগফলকাঠামো	ভাগফল	সূত্রের সাহায্যে প্রাপ্ত ভাগফলের সূচকীয় কাঠামো
o ⁸ ÷o ⁸	O ₈₋₈	$o^8 = \Box$?	o°

এখন বলো তো কেন এটি সম্ভব হচ্ছে না? কারণটি দেখো, আমরা শিখে এসেছি, o^8 হল আসলে o। তাহলে আমরা এই ভাগফল পাই $\frac{o}{o}$ । এখন o কে কি o দিয়ে ভাগ করা সম্ভব? তোমরা ষষ্ঠ শ্রেণিতে কিন্তু দেখে এসেছো যে o দ্বারা কোন সংখ্যাকে ভাগ করা সম্ভব নয়।

তাহলে $\frac{O}{O}$ ও কিন্তু সম্ভব নয়। তাই ০ এর উপর সূচক ০ হতে পারে না। এভাবে চিন্তা করে দেখো, যেকোনো ক্ষেত্রেই ০° নির্ণয় করার জন্য আমাদের ০ কে ০ দিয়ে ভাগ করার প্রয়োজন হয়। যা আমরা করতে পারছি না। এজন্যেই ০ এর উপর সূচক ০ হলে, সেই সূচকের কোন মান থাকে না। এখানে তুমি আসলে কাগজ ভাঁজের কথাও চিন্তা করতে পারো। তুমি কি আসলে ভিত্তি ০ ধরে, অর্থাৎ প্রতিবারে ০ টি করে ভাঁজ করতে পারো কোনভাবে?

০ ব্যতীত যেকোনো সংখ্যার সূচক বা ঘাত ০ হলে সেই সূচকের মান হবে ১।

সূচকের ভাগ-২

চলো আমরা আবার কাগজ নিয়ে কিছু কাজ করি। তোমরা একটি কাগজ কেটে একটি বৃত্ত তৈরি করো। এবার সেই বৃত্তটিকে সমান দুই খণ্ডে কাটো। ফলে দুটি খন্ড তৈরি হল। এবার ভাবো তো এই যেকোনো একটি খন্ড ওই বৃত্তের কত অংশ? সেটি পরবর্তী পৃষ্ঠার ছকে দেখো।

ছক ৪.১

কর্তন সংখ্যা	খন্ড সংখ্যা	একটি খন্ড বৃত্তটির কত অংশ (ভগ্নাংশে)
٥	২	<u>\$</u>

এবার দুটি খন্ডকেই আবার পূর্বের ন্যায় সমান দুইভাবে কাটো এবং ভাবো একটি খন্ড, পূর্ণ বৃত্তের কত অংশ। পূর্বের ন্যায় নিচের ছকটি পূরণ করো।

ছক ৪.২

কর্তন সংখ্যা	খন্ড সংখ্যা	একটি খন্ড বৃত্তের কত অংশ (ভগ্নাংশে লিখো)
২		

এভাবে কাজটি আরও ৩ বার করার চেষ্টা করো এবং নিচের ছকে তোমার প্রাপ্ত তথ্য বসাও।

ছক ৪.৩

কর্তন সংখ্যা	খন্ড সংখ্যা	একটি খন্ড বৃত্তের কত অংশ (ভগ্নাংশে লিখো)
೨		
8		
¢		

দেখো, আমরা প্রত্যেকবারই খন্ড করছি। অর্থাৎ, সাধারণভাবে চিন্তা করলে খন্ড বা ভাগ করার চেষ্টা করছি। এখানে কি সূচকের কোন ধারণা করতে পারো তুমি? তুমি পূর্বের সূচকের ভাগের ধারণাটি একটু ভেবে দেখতে পারো।

তোমাদের সাহায্যের জন্য ছক ৪.১ কিছুটা ব্যাখ্যা করা যাক। দেখো, আমরা ১ বার কেটে খণ্ড পাই কতটি? ২ টি। এবং একেকটি খন্ড বৃত্তের $\frac{5}{2}$ অংশ। এখন দেখো, আমরা প্রতিবার দুটি করে খন্ড করছি বৃত্তকে। তোমরা যদি শুরুতে কাগজ ভাঁজের খেলাটি বুঝে থাকো, তাহলে বলতে পারবে আমাদের ভিত্তি কিন্তু ২। কিন্তু এখানে আমরা ভাগ করছি এবং বিশেষভাবে কেটে, খন্ড করে ভাগ করছি।

তুমি বাকি ছকগুলো দেখলে এবং সেখানে থেকে সূচকের ধারণা ব্যবহার করতে পারলে বুঝতে পারবে এখানে সূচকের ব্যবহার রয়েছে। এদিকে, আমরা যখন কেটে ফেলছি, সেই কাজটিকে আমরা কিন্তু বাদ কিংবা বিয়োগ হিসেবে চিন্তা করতে পারি। তাহলে এবার ভেবে দেখো তো কিছু বুঝতে পারো নাকি?

এখন, আমরা সূচকের ভাগ বোঝার সময় যেভাবে দুটি দলের মাঝে লজেন্স প্রদানের খেলাটি খেলেছিলাম, সেটিই আবার খেলার চেষ্টা করব। পুরো খেলার নিয়মটি আগের মতই থাকবে, শুধু একটিমাত্র পরিবর্তন হবে। সেই খেলায় দলদুটি শুধু পূর্ণসংখ্যক লজেন্স আদান-প্রদান করতে পেরেছিলো। কিন্তু এবার দল দুটি শুধু পূর্ণসংখ্যক নয়, বরং ভগ্নাংশ সংখ্যকও লজেন্সও আদান-প্রদান করতে পারবে। অর্থাৎ, একটি লজেন্সকে চাইলে ২ ভাগ, কিংবা ৪ ভাগ করে সেই অংশগুলোও দেয়া যাবে।

এবার ভেবে দেখো তো কি হতে পারে? পূর্বের ছকটি কল্পনা করো এবং সেটি পূরণ করার চেষ্টা করো তো। ছক ৪.৪ (যদি কোনদিন লজেন্সের সংখ্যাকে সূচকীয় আকারে প্রকাশ করা সম্ভব না হয়, তবে সেই ঘরে ক্রস চিহ্নু দেবে. প্রয়োজনে নিজের খাতায় ছকটি অঞ্জন করে পূরণ করতে পারো।)

দিন	প্রদত্ত লজেন্স সংখ্যার সুচকীয় আকার	প্রদত্ত লজেন্স সংখ্যার গুণাকার
১ম	≥¢	\(\dagger \times
২য়		$\frac{2 \times 2 \times 2 \times 2 \times 2}{2} = 2 \times 2 \times 2 \times 2$
৩য়		
8र्थ		
৫ম		
<i>৬</i> ষ্ঠ		
৭ম		
৮ম		

এখন ভাবো তো কি পরিবর্তন হলো আসলে?

দেখো, এতক্ষণ আমরা যা কিছু দেখেছি, সেখানে সেখানে কোন ক্ষেত্রেই প্রাপ্ত ঘাতটি ঋণাত্মক অথবা শূণ্য হয় নি। তাহলে চলো এবার সেই বিষয়টি দেখি। এক্ষেত্রে মনে রাখবে, আমরা পূর্বে ভাগফলের যে নিয়ম শিখেছি তা কিন্তু সর্বক্ষেত্রেই প্রযোজ্য।

চলো আমরা ঠিক ছক ৩.৩ এর মত করেই এই বিষয়টি শেখার চেষ্টা করব। তবে উলটো উপায়ে। উক্ত ছকে যেটি ভাঁজ্য ছিল, আমরা এখানে সেটিকে ভাঁজক এবং উক্ত ছকে যেটি ভাঁজ্য ছিল সেটিকে ভাঁজ্য ধরব। তবে আমরা ছক ৩.৩ এর মত ক্রমিক অনুসরণ করব না। এবার তাহলে নিচের ছকটি দেখি চলো।

ছক- ৪.৫

গৃহীত সংখ্যা	ভাগ	ভাগ করার ধাপ	ভাগফল	ভাগফল কাঠামো	ভাগফল	ভাগফলের সূচকীয় এবং লব-হর কাঠামো
	50 ⁵ ÷ 50°	20 ^{≥-©}	20-2	20 × 20 × 20	\$ 50	30
	აი°÷ აი ⁸	\$0°°-8	20-2	20 × 20 × 20 20 × 20 × 20	\$ \$0	30
	20°÷ 20°	30°-5	20-2	50	\$ \$0	30
50	50 ⁵ ÷ 50 ⁸	\$0 ^{₹-8}	\$0 ^{-≥}	20 × 20 × 20× 20	20×20	20°
	50°÷ 50 [₹]	50°-≥	\$0 ^{-≥}	\$ \$0 × \$0	20 × 20	20°
	50 ⁵ ÷ 50 ⁸	20 ₂₋₈	\$0 ⁻⁰	20×20×20×20 20	20 × 20× 20 2	<u>\$</u>

এবার এর সাহায্যে আবার আগের ন্যায় ছক ৪.৬ পূরণ করো।

ছক ৪.৬ (গৃহীত সংখ্যাটি হবে, পুনরায় তোমার রোল জোড়, কিংবা বিজোড় কীনা সেই অনুযায়ী ৬ ও ৫ যথাক্রমে। প্রয়োজনে নিজের খাতায় ছকটি এঁকে পূরণ করো।)

গৃহীত সংখ্যা	ভাগ	ভাগ করার ধাপ	ভাগফল	ভাগফল কাঠামো	ভাগফল	ভাগফলের সূচকীয় এবং লব-হর কাঠামো
	*°					
	, ÷ ,					
	° ÷²					
	÷ 8					

কাজ: ১)

ক্রমিক	সূচকের ভাগ	ভাগফল	ভাগফলের সূচকীয় এবং লব-হর কাঠামো (যদি প্রয়োজন হয়)
٥	22 ₂₈ ÷22 _d		
২	৬ ^৭ ÷৬৯		
•	> 9%+ > 9%		
8	۹۶ _{۹۶} ÷۹۶ _۶		
Č	7 ❷₀÷ 7 ❷₂		
৬	28°÷28°		

২) সূচকের ভাগের ধারণা ব্যবহার করে খাতায় ছক ৩.১ এবং ছক ৪.৪ এর অনুরূপ ছক অজ্জন করো এবং সেটি সম্পূর্ণ করো।

৩) আকাশ দুটি সূচকীয় আকারের সংখ্যা ভাগ করতে গিয়ে আর ভাগ করতে পারছে না। সেই সংখ্যা দুটি হল ১৮° এবং ৬^২। সে সংখ্যা দুটিকে ছকের মত করে দুইবার ভাগ করে ভাগফল নির্ণয় করলো। দেখো তো সে ঠিক লিখেছে কীনা?

$$3b^{\circ} \div b^{\circ} = 3b^{\circ-2} = 3b^{\circ} = 3b$$

$$b^{\circ} \div 3b^{\circ} = b^{\circ-2} = b^{\circ-2} = \frac{5}{b}$$

যদি আকাশের করা দুটি ভাগ প্রক্রিয়ার কোনটি ঠিক হয় তবে সেই নিয়মে তুমি ৬⁸ এবং ৪^২ এর ভাগফল নির্ণয় করো। যদি আকাশের করা ভাগ প্রক্রিয়া ভুল হয়, তবে তুমি আকাশের ভুলটি চিহ্নিত করে সঠিক ভাগফল নির্ণয় করো এবং পরবর্তীতে সঠিকভাবে ৬⁸ এবং ৪^২ এর গুণফল নির্ণয় করো।

সূচকের সূচক

আমরা আবার বিদ্যালয় থেকে ৫ দিন ধরে নিজেদের রোলের শেষ অজ্ঞের সমান ক্যান্ডি দেয়ার কথাটি ভাবি। ধরো তোমাদের বিদ্যালয়ে এবার সিদ্ধান্ত নেয়া নেয়া হল যে আগেরবারের মত কেউ একদমই পাচ্ছে না এমন হবে না। সেটি ভুল হয়ে গিয়েছিল। তাই আবার বিদ্যালয় কর্তৃপক্ষ আগেরবারের মত সকলকে ৫ দিন ধরে ক্যান্ডি দেয়ার সিদ্ধান্ত নিল, কিন্তু নতুন নিয়মে।

এবারও তাহলে তোমরা তোমাদের রোল নম্বর চিন্তা করো এবং রোলের শেষ অজ্ঞাটি নাও। তবে এবার এখানে নতুন নিয়ম হয়েছে। যেহেতু আগেরবার যাদের রোলের শেষ অজ্ঞা ০ অথবা ১ ছিল তারা একদমই কোন ক্যান্ডি পায় নি বা খুব কম ক্যান্ডি পেয়েছে, তাই এবার সেই সকল শিক্ষার্থীদের রোলের শেষ অজ্ঞানা ধরে তার জায়গায় ১১ ধরা হবে। অর্থাৎ, যাদের রোলের শেষ অজ্ঞা ০ কিংবা ১, তারা নিজদের রোলের শেষ অজ্ঞের জায়গায় ১১ ধরবে।

পূর্বের থেকে আরেকটি নিয়মে পরিবর্তন এসেছে। আগের নিয়মে প্রথম দিন রোলের শেষ অঞ্জ যা, একজন

শিক্ষার্থীকে সেই সংখ্যক ক্যান্ডি দেয়া হয়েছে। কিন্তু এবার প্রথমদিন সকলেই ১ টি করে ক্যান্ডি পাবে। বাকি নিয়মগুলো আগের মতই রয়েছে। অর্থাৎ, দ্বিতীয় দিন একজন শিক্ষার্থীর প্রাপ্ত ক্যান্ডি সংখ্যা হবে, আগের দিনে পাওয়া ক্যান্ডির সংখ্যার সাথে তার রোলের শেষ অঙ্ক গুণ করা হলে, গুণফল যা হবে সেই সংখ্যক। এভাবে বাকি তিনদিন সকলে ক্যান্ডি পাবে।

ছক ৫.১

(ছকে অবশ্যই গুণফলের সূচক আকারে প্রকাশ করতে হবে। কোন ক্ষেত্রেই তোমাদের গুণফলটিকে প্রকাশ করতে হবে না)

রোল	রোলের শেষ অধ্ঞ	দিন	প্রাপ্ত ক্যান্ডি সংখ্যা
		১ম দিন	5
		২য় দিন	2 × □
		৩য় দিন	2 × □ × □
		৪র্থ দিন	
		৫ম দিন	

উপরের ছকটি পূরণ করা হলে আবার নিচের ছকটি পূরণ করো। তবে এক্ষেত্রে তোমাদের একটি দল হিসেবে কাজ করতে হবে। যে সকল শিক্ষার্থীর রোলের শেষ অঙ্ক মিলে যায়, তাদের নিয়ে একটি দল গঠন হবে। দল গঠন হলে তোমাদের নিজেদের কাছে থাকা ক্যান্ডির গুণের কাজ করতে হবে। গুণটি কি রকম হবে? গুণটি হবে তোমাদের কাছে থাকা প্রতিদিনের ক্যান্ডির গুণফলের সমান। যেমন ধরো, তোমাদের প্রত্যেকের কাছে ২য় দিন কতটি ক্যান্ডি ছিল সেটি গুণ করতে হবে। তাহলে এরপরে ৩য় দিন নিজেদের দলের প্রত্যেকের কাছে কতগুলো ক্যান্ডি ছিল তা গুণ করতে হবে। এভাবে নিচের ছকটি পূরণ করো।

এখানে ছক পূরণের আগে একটি বিষয় ভাবো। ধরো, কোন দল ১০ টি করে ক্যান্ডি পায়। এবং সেই দলে ৫ জন আছে। তাহলে দ্বিতীয় দিন সেই দলের প্রত্যেকে ক্যান্ডি পাবে, ১০ টি করে। এবং ৩য় দিন পাবে ১০২ টি করে। এভাবে ছকটি পূরণ করো

ছক ৫.২

রোল	রোলের শেষ অঞ্জ	দিন	১ জনের প্রাপ্ত ক্যান্ডি সংখ্যা	১ জনের প্রাপ্ত ক্যান্ডি সংখ্যার গুণাকার	দলের সকলের প্রাপ্ত ক্যান্ডি সংখ্যার গুণাকার	সূচকীয় আকারে গুণফল
		১ম দিন	2	5		
		২য় দিন				
		৩য় দিন				
		৪র্থ দিন				
		৫ম দিন				

উপরের ছকটি পূরণ করা হলে নিচের ছকটি দেখো এবং ভাবো তো আসলে কি ঘটনা ঘটছে। এখানে আমরা ধরে নিচ্ছি ১০ এর হারে পাওয়া যায় এবং ধরে নিচ্ছি দলে মোট ৫ জন আছে।

ছক ৫.৩ (একটি ঘর পূরণ করা আছে। তোমার আগের ছক ৫.১ এর সাহায্যে বাকি ঘরগুলো পূরণ করো। ফাঁকা ঘরগুলো কিংবা আংশিক পূর্ণ ঘরগুলো অনুরূপভাবে সম্পূর্ণ করো)

দিন	১ জনের প্রাপ্ত ক্যান্ডি সংখ্যা	১ জনের প্রাপ্ত ক্যান্ডি সংখ্যার গুণাকার	দলের সকলের প্রাপ্ত ক্যান্ডি সংখ্যার গুণাকার	সূচকের গুণের নিয়ম ব্যবহার করে, সূচকীয় আকারে গুণফল
১ম দিন	20°	\$	2 × 2 × 2× 2 × 2	5 = 50°
২য় দিন	50	50	20 × 20 × 20 × 20 × 20	>o¢
৩য় দিন	> 0°	20 × 20	20° × 20° × 20° × 20° × 20°	2020
৪র্থ দিন	১ 0°		$= 20_{\delta+\delta+\delta+\delta+\delta}$	
৫ম দিন	\$0 8			

উপরের ছকটি পূরণ করা হলে একটি বিষয় ভাবো তো।

আমরা শিখে এসেছি, কোন একই সংখ্যা যদি একাধিকবার গুণাকারে থাকে তাহলে, সেই গুণাকার কাঠামোতে সেই সংখ্যাটি যতবার আছে সেটিকে ওই সংখ্যার সূচক হিসেবে বসিয়ে সূচকীয় আকারে লিখতে পারি।

চিন্তা করো, আমরা উপরের ছক ৫.৩ এর ২য় সারিতে কি পাচ্ছি? ৫ টি ১০ গুণাকারে আছে। তাই সূচকের ধারণা ব্যবহার করে আমরা পাচ্ছি, ১০ $^{\alpha}$ । এখন, ৩য় সারিতে আমরা কি পাচ্ছি? ৫ টি ১০ $^{\alpha}$ গুণাকারে আছে। তাহলে চিন্তা করো, ঠিক আগের সারিতে ১০ $^{\alpha}$ এর জায়গায় আমরা যখন শুধু ১০ ব্যবহার করেছি তখন কি হয়েছে? ৫ টি ১০ এর গুণফল, তাই ১০ $^{\alpha}$ । তাহলে আমরা সূচকের ধারণা থেকে কিন্তু বলতেই পারি ৫ টি ১০ $^{\alpha}$ গুণাকারে থাকলে লিখতে পারব (১০ $^{\alpha}$) $^{\alpha}$ । এখন তাহলে সূচকের সেই ধারণা ব্যবহার করে আমরা নিচের ছকটি পুরণ করতে পারি কীনা ভাবো তো।

ছক ৫.৪

গুণ-আকার	সূচকীয় আকার
20 × 20 × 20× 20 × 20	
20° × 20° × 20° × 20° × 20°	
28 × 28 × 28 × 28 × 28 × 28 × 28	
58° × 58° × 58° × 58° × 58° × 58° × 58°	

এবার তাহলে নিচের ছক দুটিকে পুনরায় তুমি এতক্ষণ যা শিখেছো সেই অনুযায়ী পূরণ করে ফেলো।

ছক ৫.৫ (আংশিক পূরণ করা রয়েছে। ফাঁকা ঘরগুলো কিংবা আংশিক পূর্ণ ঘরগুলো অনুরূপভাবে সম্পূর্ণ করো)

দিন	১ জনের প্রাপ্ত ক্যান্ডি সংখ্যা	১ জনের প্রাপ্ত ক্যান্ডি সংখ্যার গুণাকার	দলের সকলের প্রাপ্ত ক্যান্ডি সংখ্যার গুণাকার	সূচকের সূচকীয় আকারে গুণফল
১ম দিন	১০২	5	2 × 2 × 2× 2 × 2	(\$0°) [¢]
২য় দিন	50	50	20 × 20 × 20× 20 × 20	(\$0 ⁵) [@]
৩য় দিন	20≥	50 × 50	$= 20_{\zeta+\zeta+\zeta+\zeta+\zeta} = 20_{\zeta\times 0}$ 20_{ζ} $20_{\zeta} \times 20_{\zeta} \times 20_{\zeta} \times 20_{\zeta} \times 20_{\zeta}$	
৪র্থ দিন	20°			
৫ম দিন	208			

ছক ৫.৬

রোল	রোলের শেষ অঞ্জ	দিন	১ জনের প্রাপ্ত ক্যান্ডি সংখ্যা	১ জনের প্রাপ্ত ক্যান্ডি সংখ্যার গুণাকার	দলের সকলের প্রাপ্ত ক্যান্ডি সংখ্যার গুণাকার	সূচকের সূচকীয় আকারে গুণফল
		১ম দিন	5	>		
		২য় দিন				
		৩য় দিন				
		৪র্থ দিন				
		৫ম দিন				

এখন একটি বিষয় লক্ষ্য করো, আমরা এভাবে যে সূচককে সূচকীয় আকারে প্রকাশ করছি সেটিকে কিন্তু চাইলে শুধুমাত্র সূচকীয় আকারে প্রকাশ করা সম্ভব। ছক ৫.২ ও ছক ৫.৫ এর গুণাকার এবং সর্বশেষ কলাম দুটি মিলিয়ে যে ছকটি পাওয়া যায় সেটি নিচে দেয়া আছে। ছকটি আংশিক পূরণ করে দেয়া আছে।

ছক ৫.৭

(ছক ৫.২ ও ছক ৫.৫ হতে প্রাপ্ত তথ্যের সাহায্যে আংশিক পূরণ করা রয়েছে। তোমার প্রাপ্ত তথ্যের মাধ্যমে বাকি গুলো পূরণ করো)

দলের সকলের প্রাপ্ত ক্যান্ডি সংখ্যার গুণাকার	সূচকের সূচকীয় আকারে গুণফল	সূচকের গুণের নিয়ম ব্যবহার করে, সূচকীয় আকারে গুণফল
2 × 2 × 2× 2 × 2	(\$0°) ^a	\$0°= \$
20 × 20 × 20× 20 × 20	$(20_2)_a$	20¢
20° × 20° × 20° × 20° × 20°	(20,5)%	2020

অনুরূপভাবে দেখো তো ৫.৩ ও ৫.৬ এ তোমাদের প্রাপ্ত তথ্যের সাহায্যে নিচের ছকটি পূরণ করতে পারো কীনা?

ছক ৫.৮

(ছক ৫.৩ ও ছক ৫.৬ হতে তোমার প্রাপ্ত তথ্যের মাধ্যমে পূরণ করো)

দলের সকলের প্রাপ্ত ক্যান্ডি সংখ্যার গুণাকার	সূচকের সূচকীয় আকারে গুণফল	সূচকের গুণের নিয়ম ব্যবহার করে, সূচকীয় আকারে গুণফল

তাহলে কি দেখা যাচ্ছে বলো তো?

১০২ × ১০২ × ১০২ × ১০২ × ১০২ কে লেখা যায় (১০২) হিসেবে এবং (১০২) কে লেখা যায়, ১০২× α =১০১০ হিসেবে।

কাজ:

১) নিচের সূচকপুলো নির্ণয় করো

ক্রমিক	সূচকের গুণাকার	সূচকের সূচক আকার
٥	$P_{28} \times P_{28} \times P_{28} \times P_{28}$	
٤	\$\dagger \times \dagger \times \dagger	
•	აგ°× აგ°	
8	$3F_{9} \times 3F_{9} \times 3F_{9} \times 3F_{9}$	
¢	<i>></i> α8	

২) নিচের সূচকের সংক্ষিপ্ত আকার গুলো নির্ণয় করো

ক্রমিক	সূচকের সূচকাকার	সূচকের সংক্ষিপ্ত আকার
٥	(8o ⁹) ⁵⁵	
২	(৯৯ ^২) ⁸	
•	(৩8°) ^٩	
8	(২-২)"	
Œ	(১৩°) ⁵	

একক কাজ

চিত্রের কার্ডের মত জিনিসটি হল ক্রেডিট কার্ড। ক্রেডিট কার্ডের মাধ্যমে সাধারণত জিনিসপত্র ক্রয় বা মূল্য পরিশোধ করা যায়। মোবাইল ব্যাংকিং এর মত ইলেকট্রনিক উপায়ে টাকা লেনদেনের একটি মাধ্যম হলো ক্রেডিট কার্ড। তবে যে কেউ এই ক্রেডিট কার্ড ব্যবহার করে কোন কিছু কিনতে পারবেন না। সেক্ষেত্রে একটি নিরাপত্তা ব্যবস্থা রয়েছে। তা হল পিন। পিন হল শুধুমাত্র নম্বরের সমন্বয়। এতে শুধু অঞ্জ ছাড়া কোন রকম অক্ষর বা প্রতীক থাকতে পারে না। এই পিন প্রদান না করতে পারলে কেউ সেই

ক্রেডিট কার্ডের সুবিধা ভোগ করতে পারবে না। অর্থাৎ, ক্রেডিট কার্ডের মালিক যদি পিন ভুলে যান, তাহলে তিনিও সেটি ব্যবহার করতে পারবেন না।

এমনিভাবে ছবির বাবা তাঁর ব্যাংকের ক্রেডিট কার্ডের পিন ভুলে গেছেন। তিনি কোনভাবেই সেটি মনে করতে পারছেন না। আবার তাঁর পিন মনে করাটা খুব জরুরি কারণ তিনি ক্রেডিট কার্ডের মাধ্যমে প্রয়োজনীয় জিনিস কেনাকাটা করবেন। তখন ছবির মনে পড়লো নিচের চিত্রের সাহায্যে পিনটি খুঁজে পাওয়া সম্ভব। তোমরা কি ছবিকে সাহায্য করতে পারবে?

আরও একটু সূচক

তোমরা জানো, সূর্য থেকে পৃথিবীতে আলো এসে পৌছাতে গড়ে ৮ মিনিট ১৮ সেকেন্ড সময় লাগে। কিন্তু তোমরা কি জানো পৃথিবী থেকে সূর্যের দুরত্ব কতটুকু? সুবিধার জন্য ধরে নেয়া হয় সূর্য থেকে পৃথিবীর দূরত্ব ১৫০০০০০০০ কিলোমিটার।

কাজ: পৃথিবী থেকে সূর্যের দুরত্ব কথায় কত হবে চিন্তা করে বলো তো।

আবার, তোমরা কি জানো আলোর গতিবেগ কতো? গাণিতিক সুবিধার্থে ধারণা করা হয় আলোর গতিবেগ প্রতি সেকেন্ডে ৩০, ০০, ০০, ০০০ মিটার।

কাজ: আলোর বেগ কথায় কত হবে চিন্তা করে বলো তো।

একটু চিন্তা করো, আমরা তো সূচকের সাহায্যে অনেক বড় গুণাকারকে সহজে এবং ছোট আকারে প্রকাশ করে ফেলতে পারি। এখন একটু ভেবে দেখো তো, সূর্য থেকে পৃথিবীর দুরত্ব কিংবা আলোর গতিবেগের মত বড় সংখ্যাকে ছোট আকারে প্রকাশের জন্য আমরা সূচকের কোন সাহায্য নিতে পারি কী না?

আলোর গতিবেগের জন্য প্রদত্ত ছকটি দেখো। এখানে তোমাদের জন্যে কয়েকটি ঘর পূরণ করে দেয়া আছে। তুমি সেগুলোর সাহায্যে বাকিগুলো পূরণ করো এবং সেটির সাহায্যে চিন্তা করো তো ঠিক কি হয়। তবে ছক পূরণ করার সময় অবশ্যই একটি বিষয় মাথায় রাখবে, নিচের দ্বিতীয় কলামে কিন্তু কখনও ভাগ করতে করতে ১ এর চেয়ে ছোট সূচকহীন কোন সংখ্যা আসবে না।

ছক ৭.১

	আলোর গতিবেগঃ সেকেন্ডে ৩০, ০০, ০০০ মিটার (প্রায়)				
সংখ্যা	১০ দ্বারা ভাগ করে প্রকাশ	সূচক আকারে প্রকাশ			
	00000000 x 50	20000000 × 202			
೨०००००००	0000000 x 50 x 50	೨०००००० x ১० ^২			
	000000 × 50 × 50 × 50	೨०००००० x ১০°			

হল ১০০০।

এভাবেই সূচকের সাহায্যে যে শুধু কষ্ট কমানো যায় ব্যাপারটা এমন নয়। বরং অনেক বড় সংখ্যাকে ছোট আকারে প্রকাশ করা যায়।

তাহলে চলো এবার আমরা সূর্য থেকে পৃথিবীর দুরত্বকে ছোট আকারে প্রকাশের জন্য ছক ৭.২ দেখি। এখানেও তোমাদের সুবিধার জন্য কয়েকটি ঘর পুরণ করে দেয়া আছে।

ছক ৭.২

•	পৃথিবী থেকে সূর্যের দুরত্বঃ ১৫০০০০০০০ কি	লোমিটার (প্রায়)	
সংখ্যা	১০ দ্বারা ভাগ করে প্রকাশ	সূচক আকারে প্রকাশ	
	\$6000000 × \$0	26000000 × 202	
	2600000 × 20 × 20	2€00000 × 20≤	
	\$60000 × \$0 × \$0 × \$0	\$60000 × \$0	
\$6000000			
	১৫ ×	50 × 50	

এখানে একটি বিষয় দেখা যাচ্ছে যে ছকের শেষ সারিতে ১৫ এর সাথে ১০ সূচক আকারে রয়েছে। এখন পূর্বের ছকটির কথা চিন্তা করে দেখো তো, আমরা যতক্ষণ পর্যন্ত ভাগ করে ১০ এর চেয়ে ছোট, কিন্তু ১ এর চেয়ে বড় কোন সংখ্যা না পেয়েছি, ততক্ষণ পর্যন্ত প্রক্রিয়াটি চালিয়ে গিয়েছি। এক্ষেত্রেও চাইলে আমরা সেটি করতে পারি। সেটি নিচের বাক্সে সম্পন্ন করো।

|--|

তাহলে কি দেখতে পেলে? সূর্য থেকে পৃথিবীর দুরত্বকে ছোট আকারে প্রকাশ করলে কি পাওয়া যায়? আমরা এতক্ষণ পর্যন্ত প্রায় সবক্ষেত্রেই ১০ এর সূচকের ব্যাপারটি দেখেছি। এখন আমরা সেগুলো নিয়ে একটু চিন্তা করব। আমরা সরাসরি সংখ্যা দিয়ে একটি উদাহরণ দেখার চেষ্টা করি। ১ হাজার। এর গাণিতিক রূপ

১ হাজার = ১০০০					
সংখ্যা	১০ দ্বারা ভাগ করে প্রকাশ	সূচক আকারে প্রকাশ			
	500 × 50	200 × 202			
\$000	50 × 50 × 50	20 × 20≤			
	2 × 20 × 20 × 20	5 × 50°			

এবার দেখো, আমরা ১০০০ = ১ × ১০° পেয়েছি। একটু ভাবো তো কোন সংখ্যার সাথে ১ গুণাকারে থাকলে সেটির কি কোন পরিবর্তন হয়? হয় না তো। সেক্ষেত্রে আমরা লিখতে পারব ১০০০ = ১ × ১০°।

দেখো, সূচকবিহীন সংখ্যা ১ হলে আমরা সেটিকে উহ্য রাখতে পারি।

তাহলে দেখেছো, বাস্তবের বিভিন্ন বড় সংখ্যাকে এভাবে ছোট আকারে প্রকাশ করা যায়। প্রকাশের উপায় নিয়ে, উপরের দুটি উদাহরণ থেকে তোমার অনুধাবন নিচের প্রশ্নের উত্তরের সাহায্যে প্রকাশ করো।

- * ভাগের কাজটি কখন শেষ করব?
- * ভাগ করে সূচক বিহীন যে সংখ্যাটি পাবো, তা কি ১ এর চেয়ে ছোট হতে পারবে? কিংবা ১ এর সমান হতে পারবে?
- * ভাগ করে সূচক বিহীন যে সংখ্যাটি পাবো, তা কি ১০ এর সমান কিংবা বড় হতে পারবে? কাজ: পৃথিবী থেকে চাঁদের দুরত্ব প্রায় ৩, ৮৪, ০০০ কিলোমিটার। এই দুরত্বকে গাণিতিক ভাষায় ছোট আকারে প্রকাশ করো।

একক কাজ

১) তোমরা নিশ্চয় কোভিড-১৯ মহামারী সম্পর্কে অবগত আছো। মারাত্মক ছোঁয়াচে এই মহামারীর কারণে পুরো পৃথিবী একটা বড় সময় স্থবির হয়ে ছিল। আমরা সেই মহামারী নিয়ে একটি একটি গণনা করার চেষ্টা করব। ধরো, একটি বাড়িতে ৩ জন লোক আছে। তারা প্রত্যেকেই কোভিড আক্রান্ত হয়েছে। এখন হিসাব করে দেখা গেল, তাঁরা ৩ জন প্রত্যেকেই ১ দিনে আলাদা-আলাদাভাবে ন্যুনতম ৩ জনকে আক্রান্ত করতে সক্ষম। আবার তাঁদের দ্বারা আক্রান্ত প্রত্যেকে আবার এক দিনে আলাদা-আলাদাভাবে ন্যুনতম ৩ জন করে ব্যাক্তিকে আক্রান্ত করতে সক্ষম।

সূচকের ধারণার সাপেক্ষে বলো তো কোনরকম স্বাস্থ্যবিধি মানা না হলে, পরবর্তী ৫ দিনে সর্বনিম্ন কতজন কোভিড-১৯ আক্রান্ত ব্যাক্তি থাকতে পারবে? ছক অনুযায়ী পূরণ করার চেষ্টা করো। সাহায্যের জন্য চাইলে গাছ-চিত্রটি দেখতে পারো।

দিন	আক্রান্ত রোগীর সংখ্যার গুণাকার	আক্রান্ত রোগীর সংখ্যার সূচকীয় আকার
১ম দিন	•	లి
২য় দিন		
৩য় দিন		
৪র্থ দিন		
৫ম দিন		

এই ধারায় ১১ তম ও ১৪ তম দিন শেষে সর্বনিম্ন কতজন আক্রান্ত রোগী থাকা সম্ভব?

২) খালি ঘরগুলো সঠিকভাবে পুরণ করো

সূচকের গুণ	গুণফল	সূচকের ভাগ	ভাগফল	সূচকের সূচকাকার	সূচকের সংক্ষিপ্ত আকার
Ե [¢] × Ե□	₽ ₂₈	$\mathfrak{d}^{\mathfrak{C}_{\mathcal{V}}}\div\mathfrak{d}^{\square}$	ð _{₹2}	(১৬°)□	১৬ ^{২৪}
28□× 28₂a	> 8 ^{\$\$}	22□ ÷ 22 ₈	22 _p	(২৬□)৬	২ ৬ ^{১২}
□28×€26	€ ^{₹\$}	□o6 ÷ 8₽	8%	(□ ₈) ₂₂	•88
	3 956	$\mathfrak{C}_{\lambda_{\mathfrak{p}}}$ $\div \mathfrak{C}_{\lambda_{\square}}$	<i>৫২°</i>	(Ç8)-c	¢□
ეგ. × □ იგ.	2P.p.p	89 [%] ÷ 89□	89-*	(\$& -9)-২	>७□
		>> >∘ ÷□⊌٩	১ ৯ ^{-৫৭}		

৩) ১০ হাজার, ১ লক্ষ, ১০ লক্ষ, ১ কোটি এবং ১০ কোটি সংখ্যাগুলোকে গাণিতিক ভাষায় ছোট আকারে প্রকাশ করো। দেখো তো মূল সংখ্যায় ১ এর ডানে মোট কতটি শূণ্য রয়েছে। এবার সংখ্যাটিকে ছোট আকারে প্রকাশের পর, যে সূচকীয় সংখ্যাটি পাও, তার সাথে পূর্বের প্রাপ্ত শুণ্যের সংখ্যার মাঝে কোন সম্পর্ক পাওয়া যায় কী?