BSYS_EVAL

Ionuţ Cicio

Contents

1	Bsys_eval		3
	1.1	Introduction	3
	1.2	Requirements	3
2	UM	L class diagram	5
3	Data	a types specification	6
	3.1	Interval	6
	3.2	ReactomeDbId	6
	3.3	StableId	6
4	Clas	sses specification	7
	4.1	CatalystActivity	7
	4.2	Compartment	7
	4.3	Event	7
	4.4	FastReaction	7
	4.5	Model	7
	4.6	ModelInstance	7
	4.7	SimulatedModelInstance	8
	4.8	Pathway	8
	4.9	PhysicalEntity	8
	4.10	ReactionLikeEvent	9
	4.11	ReactionParameter??	9
Bibliography 1			0

1 BSYS_EVAL

1.1 Introduction

BSYS_EVAL is a tool meant to help study the likelihood of a given situation in a biological system.

Given a set of target species, a set of constraints on the target species (constraints which model a situation that could present, for example, in a disease) and by taking into account all the reactions that lead to the production, both directly and indirectly, of the target species, the goal is to find a subset of virtual patients for the situation.

TODO: find papers in literature that do similar things; what does this method add compared to other approaches? (i.e. using multiple pathways by generating the fixed point, ensemble of SAs etc...)

TODO: add case study, multiple if possible

1.2 Requirements

The algorithm

TODO: better notation here, write something decent to introduce the algorithm

Algorithm 1: (high level pseudocode)

```
input: S_T, set of PHYSICALENTITY; input: C_T, set of constraints on S_T; input: P_I, set of ignored pathways; input: \varepsilon, \delta \in (0,1); input: seed, random seed; F \leftarrow \text{fixed\_point}(S_T, P_I) model \leftarrow (S_T, S(F), R(F), E(F)) env \leftarrow define env for model V = \emptyset \text{ // set of virtual patients} while \neg halt requested do v \leftarrow \text{parameter assignement for model // virtual patient} if \neg v satisfies structural constraints then continue; if APSG(model, v, env, seed, \varepsilon, \delta) then V \leftarrow V \cup \{v\};
```

The idea is to expand a portion of Reactome

Definition 1 (... Model). A ... model G is a tuple (S_T, S, R, E) where:

- S_T the set of target species
- S is the finite set of species s.t.
 - $ightharpoonup S_T \subseteq S$
 - ightharpoonup S is the transitive closure of S_I within the Reactome graph (to be more precise, the closure within the specified bounds, bounds yet to be defined)

 - $\bullet \ \dot{s} = f(s_1, s_2, s_3, ..., s_n)$
- \bullet R is the finite set of reactions
 - $R = R_{\text{fast}} \cup R_{\text{slow}}$
- E is the set edges in the graph (where and edge goes from a species to a reaction, it also has a stoichiometry)
 - $E \subseteq S \times R \times \mathbb{N}^1$
 - $E = E_{\text{reactant}} \cup E_{\text{product}} \cup E_{\text{modifier}}$
 - ► TODO: account for order (edges also have an "order" attribute, I have to check how it impacts the simulation and if it's optional)

Average quantities

- $S' = S \cup \{S_{\text{avg}} \mid s \in S\}$
- S' = G(S')
- $K: R \to \mathbb{R}_+^{|R|} = \left[10^{-6}, 10^6\right]^{|R|}$
- find k
- subject to
 - structural constraints
 - partial order on k due to
 - fast/non fast reactions (TODO: as given by Reactome, but how?)

$$\forall r_f, r_s \ \left(r_f \in R_{\mathrm{fast}} \land r_s \in R_{\mathrm{slow}}\right) \rightarrow r_f > r_s$$

- reaction modifiers (like above?)
- for all dynamics of environment
 - avg concentration of species consistent to knowledge

$$\begin{split} \exists t_0 \;\; \forall t \;\; \forall s \\ & \left(t > t_0 \land s \in S_{\mathrm{avg}}\right) \to s(t) \in [\text{known range}] \end{split}$$

2 UML class diagram

3 Data types specification

```
• \d = /[0-9]/
• \w = /[A-Za-z0-9_]/

REACTOMEDBID = INTEGER [1]

STABLEID = STRING matching regex /^R-[A-Z]{3}-\d{8}\.\d{2,3}$/ [2]

SID = STRING matching regex /^[a-zA-Z_]\w*$/ [3, Section 3.1.7]

INTERVAL = (min: REAL [0..1], max: REAL [0..1])

MATHML = STRING according to <a href="https://www.w3.org/1998/Math/MathML/">https://www.w3.org/1998/Math/MathML/</a>
```

3.1 Interval

The Interval type represents a real open interval of the type (min, max).

3.2 ReactomeDbId

Other Reactome entities can be identified with a REACTOMEDBID, but it's pattern does not match the definition of SID used to identify objects in SBML. In order to generate a correct SBML Model the REACTOMEDBID must be converted.

```
into(db_id: REACTOMEDBID): SID

POSTCONDITIONS:
    . . .
```

3.3 StableId

The STABLEID type is used to identify a PhysicalEntity or an Event in Reactome, but it's pattern does not match the definition of SID used to identify objects in SBML. In order to generate a correct SBML Model the STABLEID must be converted.

```
into(st_id: STABLEID): SID

POSTCONDITIONS:
. . . .
```

4 Classes specification

4.1 CatalystActivity

The one above is the reason why a PhysicalEntity's role in catalyst_entity has multiplicity 0..*.

"If a Physicalentity can enable multiple molecular functions, a separate Catalystactivity instance is created for each" [4, Page 5]

"If the Physicalentity is a Complex and a component of the complex mediates the molecular function, that component should be identified as the active unit of the Catalystactivity." [4, Page 5]

```
C.CATALYSTACTIVITY.active_unit_is_in_complex
```

4.2 Compartment

4.3 Event

4.4 FastReaction

4.5 Model

4.6 ModelInstance

```
C.ModelInstance.every_reaction_has_a_parameter
```

```
C.ModelInstance.reaction_parameters_are_structurally_valid
```

4.7 SimulatedModelInstance

```
is_valid()

POSTCONDITIONS:
```

4.8 Pathway

4.9 PhysicalEntity

TODO: how should I handle complexes here?

```
produced_by(): REACTIONLIKEEVENT [0..*]

POSTCONDITIONS:
    result = { reaction |
        REACTIONLIKEEVENT(reaction) \( \)
        output(this, reaction) \( \)
        ¬∃ pathway
        IGNOREDPATHWAY(pathway) \( \)
        reactions(pathway, reaction)
    }

TODO: union with CATALYSTACTIVITY
```

fixed_point(): DATABASEOBJECT [0..*]

POSTCONDITIONS:

4.10 ReactionLikeEvent

4.11 ReactionParameter??

• it must satisfy structural constraints

Bibliography

- [1] [Online]. Available: https://reactome.org/content/schema/ DatabaseObject
- [2] [Online]. Available: $\frac{https://reactome.org/documentation/faq/37-general-website/201-identifiers}{}$
- [3] [Online]. Available: https://raw.githubusercontent.com/combine-org/combine-org/combine-org/combine-specifications/main/specifications/files/sbml.level-3.version-2.core.release-2.pdf
- [4] [Online]. Available: $\frac{https://download.reactome.org/documentation/Data}{ModelGlossary_V90.pdf}$