Agenda:

Target Sum

Min Jumps

N digit number

7 2.5 ms ->5 Ques

Contest -> 8th Fen Thursday

Discussion -> 9th Fcb

Pass -> 260% (3 Quu)

R1 R2 R3

2 Days 9 Days 20 Days

5 Quas , DP, 1 Graphs

Placement

1) Mock Interview

(2) Contest

Revision & PSP 270%.

5 classes -> Feb

1. Given an integer array A of size N and B.

Find whether their exist a subset in A whose

sum equal B.

A = [3, 34, 4, 12, 5, 2] B = 9 (7) (4, 5) (3, 4, 2) (7)

BF: no to all subsers

TC: O(2")

A : [] : A int dp (N+13 [B+1] = <-17 AP CNJ CBJ int ox [] bool is Possible (int M, int B) < N-1,0 N-1,8 J (8==0) resure true () (B < 0) return false if (N==0) scrom false O,B if (ap [u][B] i=-1) ector ap [u](B) ap [N][B] = (is Possible (N-1 , B- as [N-1]) 11 is possible (N-1,B)) ecturn ap [N][B] TC:0(N*B) Sc: 0(N*B) RS > min (0,13)

$$A = \langle 3, 1, 4, 9, 7, 2 \rangle$$
 $B = 6$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2, 7, 2 \rangle$
 $A = \langle 3, 1, 4, 9, 7, 2, 7,$

SUM -

			0	\	. 2	3	4	5	. 6	
		0	Τ	F	F	F	F	F	F	
cnt	3	•	٢	F	F	T	4	* F	F	
	1	2	7	T	4	T	T	F	F	
	4	3	T			*		*		
	9	J	7							
	7	5	T							
	2	b	٢						*	

i= N, j=w

while (170 be 170) <

abein Jumps from in iax to

```
1 141 142 143
         int dp [n]
          apcn-13=0
 for (i= n-2; i 20; i--) <
     int min steps = INT_MAX
 for (j=i+1; j &min (N-1, i+ Aci); j++) <
  minsteps = min (minsteps, dp cj)
 if (minsteps! = INT~MAX)
dp Ci3 = minsteps + 1
                                  TC:O(N2)
   apcid = minsteps
                                  SC:O(N)
return 46 COJ
                                 7c: 0cm)
                                  Sc: OU)
```


N-1,5 N-1,5-2 N-1,5-3 N-1,5-4


```
int ap CN+13 ES+13 = <-17
int cont (int 10) int 5) <
  if (N = = 0 8& S = = 0) retorn 1
  y (N==0 11 S==0) return 0
  if (abcusces ;=-1) reman abcusces
   int ans =0
   J (N==1) 4
      for (d=1; d =9; d++) <
      if (d = s)

ans += cnt (N-1, s-d)
    else L
      for (d = 0; d = 9; d ++) <
      if (d = s)

ans += cnt (N-1, s-d)
    apenjesj = ans
   return ans
                        TC: O(N *S)
                         sc: 0 (N*S)
```

4. Rotten Oranges

mat [N] [M]
$$\rightarrow$$
 1 fresh \rightarrow 2 rotten

Every minute any fresh orange adjacent to a rotten orange becomes rotten, find min time when all oranges become rotten.

If not possible, return -1.

	િ	\	2	3		
0	104	_0 2-	— '	0	1 • •	
1	2	0	0	0	02	7=2
2		2	0	0	10	
3		1 0 4	0	1	12	

(9,4,1) (3,4,1) (3,1,1) (3,3,1) (10,2) (2,4,2) (2,1,2)

class triplet <

queve < triplet > q

for (i=0; ien; i++) <

for (j=0; j < m; j++) <

g. enqueue ((i,j, 07)

y. enqueue ((i,j, 07)

int row [4] = <-1, 0, 1, 07 int col [4] = <0, 1,0,-1> int maxtime=0 while () of compty ()) < Triplet t= q. front q. deprese) mantime = max (mantime, t.time) for (int nbr=0; nbr <4; nbr++) int nore = tit + row Enbri int nbrj=t.j + col [nbr] if contri 20 BL obrien nbrj 20 & nbrj<m > (1==[frdn) [irdn] +om dd q. enqueux (<nbri, nbrj, t: time +17) mat Coprid Coprid == 2

int
$$col C43 = \langle -1, 0, 1, 0 \rangle$$

int $col C43 = \langle 0, 1, 0, -1 \rangle$
 $UDLR$