

1. Objetivo del proyecto

Desarrollar un **modelo predictivo de accidentes graves** que, a partir de los factores históricos y ambientales, estime la probabilidad de ocurrencia de accidentes con lesiones incapacitantes o fatales en cada tramo vial y franja horaria.

Objetivos específicos:

- 1. Analizar patrones históricos de accidentes graves según variables de vía, clima y hora.
- 2. Detectar variables que contribuyen más a la severidad de los accidentes.
- 3. Construir un modelo de clasificación que prediga la probabilidad de accidentes graves.
- 4. Proponer un **sistema de alertas y priorización de recursos** para la prevención de accidentes.
- 5. Validar la efectividad del modelo y generar métricas accionables (PR AUC, recall de accidentes graves).

Preguntas de negocio:

Pregunta de negocio	Métrica / Análisis Predictivo	Acción recomendada
1. ¿Cuáles son los tramos viales y franjas horarias con mayor probabilidad de accidentes graves?	Probabilidad de accidente grave por tramo vial × hora (modelo de clasificación, PR AUC, ranking de riesgo)	Priorizar patrullaje y campañas preventivas en tramos/hora de alto riesgo
2. ¿Qué factores contribuyen más a la severidad de los accidentes?	Feature importance / SHAP sobre modelo de severidad (variables como clima, iluminación, tipo de vía, defectos)	Implementar intervenciones focalizadas según causas críticas (p.ej. señalización, alertas climáticas)
3. ¿Cómo afecta la combinación de condiciones climáticas, iluminación y tipo de vía al riesgo de accidentes graves?	Análisis de interacción de variables en el modelo, heatmaps de riesgo	Diseñar políticas preventivas para condiciones específicas, como alertas de lluvia, visibilidad baja o curvas peligrosas
4. ¿Qué impacto tendría la reparación de defectos viales o la mejora de señalización en la reducción de accidentes graves?	Simulaciones "what-if" cambiando variables road_defect o traffic_control_device en el modelo predictivo	Priorizar inversión en infraestructura y señalización según impacto estimado en reducción de accidentes graves
5. ¿Cuál es el número esperado de accidentes graves por día/mes y cómo priorizar recursos preventivos?	Predicción agregada de accidentes graves por día/mes, ranking de tramos viales por riesgo	Planificación operativa de patrullaje, mantenimiento y campañas educativas según pronóstico de riesgo

2. Contexto y problemática

La **Municipalidad de Ciudad X** ha experimentado un aumento sostenido en accidentes de tráfico en los últimos años, especialmente accidentes graves que involucran lesiones incapacitantes o fatales. Este fenómeno genera **costes humanos y económicos elevados**, incluyendo:

- Atención médica de urgencia y hospitalización.
- Daños a la infraestructura vial y vehículos.
- Interrupciones de tráfico que afectan la productividad y el transporte público.
- Costes legales y de seguros.

Actualmente, las decisiones sobre inspecciones viales, patrullaje policial y campañas de seguridad se toman de manera reactiva, es decir, después de que ocurren los accidentes, sin poder anticipar zonas o franjas horarias de alto riesgo.

Problema clave: La ciudad carece de un sistema predictivo que permita **identificar proactivamente los accidentes graves** y priorizar acciones preventivas.

Problema:

- Los accidentes de tráfico representan un riesgo significativo para la seguridad vial y generan costos humanos y económicos considerables.
- Las autoridades y empresas de transporte necesitan priorizar la atención a los accidentes más graves.
- El desafío consiste en predecir la gravedad de un accidente (leve o grave) a partir de datos históricos de incidentes, características de la vía, condiciones climáticas y factores del accidente.
- El dataset presenta desbalance de clases, ya que los accidentes graves representan aproximadamente el 20% del total.

Solución:

- Desarrollo de un modelo de machine learning supervisado capaz de clasificar la gravedad de los accidentes.
- Uso de técnicas de preprocesamiento, como generación de variables temporales y codificación de variables categóricas.
- Comparación de múltiples algoritmos de clasificación:
 - o Decision Tree, Random Forest, Gradient Boosting, XGBoost.
 - Regresión Logística con balanceo de clases y SMOTE.
 - o Algoritmos específicos para clases desbalanceadas: Balanced Random Forest y Easy Ensemble.
- Selección del mejor modelo basado en métricas clave (F1-score, ROC-AUC, Average Precision).
- Despliegue del modelo seleccionado mediante FastAPI para permitir predicciones en tiempo real a partir de inputs de accidentes.

Enfoque:

- Exploración y análisis del dataset para entender distribución, valores faltantes y relaciones entre variables.
- No se gestionaron outliers, ya que la eliminación afectaría la clase minoritaria (accidentes graves).
- Implementación de validación cruzada para evaluar estabilidad y generalización de los modelos:
 - o GridSearchCV para Logistic Regression y Random Forest.
 - StratifiedKFold para Balanced Random Forest y Easy Ensemble.
- Métricas principales consideradas:
 - o Precision, Recall, F1-score, ROC-AUC y Average Precision, enfocándose en la detección de accidentes graves.
- Selección del Balanced Random Forest como modelo final debido a su balance entre precisión y recall para la clase minoritaria.

Conclusiones

- Los modelos de ensamble balanceados (Balanced RF, Easy Ensemble) muestran mejor capacidad para detectar accidentes graves en datasets desbalanceados.
- La regresión logística con balance de clases o SMOTE mejora el recall de la clase minoritaria pero puede reducir precisión general.
- Random Forest y Gradient Boosting funcionan bien con la clase mayoritaria, pero requieren técnicas adicionales para manejar el desbalance.
- La validación cruzada confirmó la estabilidad y generalización del Balanced RF.
- Lessons Learned:
- El manejo del desbalance es crítico para modelos de clasificación de accidentes.
- La selección de métricas adecuadas (AP, F1-score) es esencial para interpretar correctamente el desempeño.
- La implementación de un API permite llevar el modelo a un entorno práctico de predicción en tiempo real, facilitando decisiones preventivas y de gestión de riesgos.

3. Datos proporcionados por el cliente/ciudad

Los datos históricos de accidentes contienen **información detallada sobre las condiciones del accidente**, incluyendo:

Variable	Descripción	Tipo de dato
crash_date	Fecha del accidente	datetime
crash_hour	Hora del accidente	int
crash_day_of_week	Día de la semana	categórica
crash_month	Mes	categórica
traffic_control_device	Dispositivo de control de tráfico involucrado	categórica
weather_condition	Condiciones climáticas	categórica
lighting_condition	Condiciones de iluminación	categórica
first_crash_type	Tipo inicial del accidente	categórica
trafficway_type	Tipo de vía	categórica
alignment	Alineación de la vía	categórica
roadway_surface_cond	Estado de la superficie	categórica
road_defect	Defectos en la vía	categórica
crash_type	Tipo global del accidente	categórica
intersection_related_i	Si ocurrió en intersección	binaria
damage	Extensión del daño	categórica
prim_contributory_cause	Causa principal del accidente	categórica
num_units	Número de vehículos involucrados	numérica
most_severe_injury	Lesión más grave	categórica
injuries_total	Total de lesiones	numérica
injuries_fatal	Número de lesiones fatales	numérica
injuries_incapacitating	Lesiones incapacitantes	numérica
injuries_non_incapacitating	Lesiones no incapacitantes	numérica
injuries_reported_not_evident	Lesiones reportadas no evidentes	numérica
injuries_no_indication	Sin indicio de lesión	numérica

Esta información **permite modelar la probabilidad de que un accidente sea grave** según múltiples factores combinados (hora, tipo de vía, clima, control de tráfico, etc.).

4. Beneficio esperado:

Con estos datos se pueden construir modelos de **predicción de accidentes graves**, que permitirán:

- Priorizar inspecciones y mantenimientos en zonas de alto riesgo.
- Ajustar patrullaje policial y señalización preventiva.
- Diseñar campañas educativas dirigidas a los horarios y vías de mayor riesgo.
- Reducir la frecuencia y gravedad de accidentes, optimizando recursos públicos.

Beneficios específicos para la ciudad:

- Reducción de accidentes graves: a través de intervenciones preventivas focalizadas.
- Optimización de recursos públicos: mejor distribución de patrullaje, inspección vial y mantenimiento.
- Decisiones basadas en datos: priorización objetiva y reproducible.
- Mejora de la seguridad ciudadana y fortalecimiento de la reputación de la administración.
- **Potencial para futuras ampliaciones:** integración con sistemas de tráfico en tiempo real o IoT vial para generar alertas dinámicas.

5. Alcance del proyecto

Datos utilizados: variables descritas en el dataset (fecha, hora, tipo de vía, clima, iluminación, defectos, causa, número de vehículos, severidad de lesiones, etc.).

Salida esperada:

- Modelo predictivo que, dado un tramo vial y franja horaria, calcule la probabilidad de accidente grave.
- Dashboard de visualización con mapas de riesgo y métricas de severidad.

• Informe con **recomendaciones de priorización de recursos** para prevención de accidentes.

6. Posibles acciones basadas en los resultados

- Patrullaje vial focalizado: enviar recursos a zonas/hora de mayor riesgo.
- Inspecciones y mantenimiento vial: priorizar reparaciones donde la superficie o defectos elevan riesgo.
- Campañas educativas: horarios y vías críticas según patrones detectados.
- Alertas tempranas: integración futura con sistemas de tráfico en tiempo real.