Toshiba Matsushita Display Technology Co., Ltd

PRODUCT INFORMATION

31cm COLOR TFT-LCD MODULE (12.1TYPE)

> LTA121C250F (p-Si TFT)

All information is subject to change without notice. Please read bottom notes.

FEATURES

- (1) 12.1 XGA color display with High Luminance
- (2) Built in Long Life Lamps(MTTF:60,000 h) (Condition/ Ta:25°C, I_{FL}:6.0mA(rms)(continuing lighting), I_{FL}:40kHz)
- **TENTATIV**

(3) Replaceable structure of lamp unit and Mounting compatible with LTD121GA0S (12.1 XGA p-Si TFT), LTD121C3*S (12.1 SVGA a-Si TFT) and LTA121C3*SF(12.1 SVGA p-Si TFT) Series.

RoHS compatible

- (4) Reverse scan function
- (5) RoHS compatible
- (6) Wide operating temperature.

MECHANICAL SPECIFICATIONS

Item	Specifications
Dimensional Outline (typ.)	278.3 (W) x 209.0 (H) x 12.0max (D) mm
Number of Pixels	1024 (W) x 768 (H) pixels
Active Area	245.76 (W) x 184.32(H) mm
Viewing Area	246.8 (W) x 185.4 (H) mm
Pixel Pitch	0.24 (W) x 0.24 (H)
Weight (approximately)	TBD
Backlight	Sidelight (2 CCFLs)

ABSOLUTE MAXIMUM RATINGS

Item	Min.	Max.	Unit	
Supply Voltage	(V_{DD})	-0.3	4.0	V
	(V _{FL})	0	2.0	kV(rms)
FL Driving Frequency (f _{FL})			100	KHz
Input Signal Voltage (V _{IN})		-0.3	V _{DD} +0.3	V
Operating Temperature *1	-20	70	°C	
Storage Temperature	-30	80	°C	
Storage Humidity	10	90	%(RH)	
(Max. wet bulb temperature =	39°C)	10	90	70(KH)

^{*1:} Wet bulb temperature should be 39°C Max., and no condensation of water.

ELECTRICAL SPECIFICATION (*T*a=25°C) (RECOMMENDED OPERATION CONDITION)

Item	Min.	Тур.	Max.	Unit	Remarks	
Supply Voltage	(V_{DD})	3.0	3.3	3.6	V	
	(V_{FL})		TBD		V(rms)	I_{FL} =6.0mA(rms)
FL Start Voltage	(V _{SFL})	TBD			V(rms)	Ta=0°C
Differential Input Voltage	(V_{ID})	100		600	mV	
Common Mode Input Voltage	(<i>V</i> _{CM})	1.0		2.4-(V _{ID})/2	V	
Current Consumption	$(I_{DD})^{*3}$		TBD		mA	
	$(I_{\rm FL})^{*4}$	3.0		6.5	mA(rms)	
Power Consumption*1*2	·		(7.8)		W	I_{FL} =6.0mA(rms)

^{*2.} The surface temperature caused by self heat radiation of cell itself is specified on this item

OPTICAL SPECIFICATION (*T*a=25°C)

Ite	m	Min.	Тур.	Max.	Unit	Remarks
Contrast Ratio	(CR)	(350)	(500)			
Viewing Angle	(Upper+Lower)		100		0	
(<i>CR</i> ≥ 10)	(Left+Right)		120		0	
Response Time	(<i>t</i> _{ON})		10		ms	
	(t_{OFF})		30		ms	
Luminance (L)		(320)	(400)		cd/m ²	I_{FL} =6.0mA(rms)
Lamp Life Time (M	1TBF)* ⁵ * ⁶		60,000		h	

^{*3: 8} color bars pattern *4: Except the efficiency of FL inverter

^{*5 :} Conditions ; Ta=25°C, I_{FL}=6.0mA(rms), continuous lighting
*6 : Definitions of failure ; 1) Lcd luminance becomes half of the minimum value. 2) Lamp doesn't light normally.

^{*}The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Toshiba Matsushita Display Technology or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Toshiba Matsushita Display Technology or others.

^{*}The information contained herein may be changed without prior notice. It is therefore advisable to contact Toshiba Matsushita Display Technology before proceeding with the design of equipment incorporating this product.

Note) The different points between LTA121C250F and LTD121GA0S are the below.

- 1) LTA121C250F lamp unit is different from LTD121GA0S.
- 2) The Metal PCB shield is added in LTA121C250F.
- 3) The rear structure is changed.

The Aluminum back sheet is removed and the Plastic frame design is different from LTD121GA0S.

The screw's position of the PCB-GND and the lamp unit is different from LTD121GA0S.

There are slight differences. (Refer to page.3 rear dimensional outline in detail.)

- 4) LTA121C250F Operating temperature is wider than that of LTD121GA0S.
- 5) LTA121C250F total weight is different from LTD121GA0S. (Refer to page.1 mechanical specification.)

BLOCK DIAGRAM

SEQUENCE OF POWER SUPPLIES AND SIGNALS

TIMING CHART

TIMING SPECIFICATION $^{1)\;2)\;3)\;4)\;5)\;6)\;7)$

Item	Symbol	min.	typ.	max.	unit
Horizontal Scanning Term	<i>t</i> h	1334 x tc	1344 x tc		clock
H-sync Pulse Width	<i>t</i> hw	4 x tc	136 x tc		clock
Horizontal Front Porch	<i>t</i> hfp	4 x tc	24 x tc		clock
Horizontal Back Porch	<i>t</i> hbp	24 x tc	160 x tc		clock
Horizontal Data Sync Period	<i>t</i> hds	32 x tc	296 x tc		clock
Horizontal Display Term	<i>t</i> hd	1024 x tc	1024 x tc	1024 x tc	clock
Frame Period	tv	778 x th	806 x th	860 x th	line
V-sync Pulse Width	<i>t</i> vw	2 x <i>t</i> h	6 x <i>t</i> h		line
V-sync Set Up Time (to H-sync)	<i>t</i> vsu	8 x tc			clock
V-sync Hold Time	<i>t</i> vhd	(thbp+16) x tc			clock
Vertical Front Porch	<i>t</i> vfp	1 x <i>t</i> h	3 x <i>t</i> h		line
Vertical Back Porch	<i>t</i> vbp	2 x th	29 x th		line
Vertical Data Sync Period	<i>t</i> vds	8 x <i>t</i> h	35 x th		line
Vertical Display Term	<i>t</i> vd	768 x th	768 x th	768 x th	line
Clock Period	tc	15.0	15.38		ns

Note 1) Refer to "Timing Chart" and LVDS (THC63LVDF84A-85) specifications by THine Electronics, Inc. corporation.

Note 2) If DE is fixed to "H" or "L" level for certain period while NCLK is supplied, the panel displays black with some flicker.

Note 3) If NCLK is fixed to "H" or "L" level for certain period while DE is supplied, the panel may be damaged.

Note 4) Please adjust LCD operating signal timing and FL driving frequency, to optimize the display quality.

There is a possibility that flicker is observed by the interference of LCD operating signal timing and FL driving condition (especially driving frequency), even if the condition satisfies above timing specifications and recommended operating conditions shown in 3.

Note5) Do not make tv, tvhd and tvds fluctuate.

If tv, tvhd, and tvds are fluctuate, the panel displays black.

Note6) In case of using the long frame period, the deterioration of display quality, noise etc. may be occurred.

Note7) NCLK count of each Horizontal Scanning Time should be always the same.

V-Blanking period should be "n" X "Horizontal Scanning Time". (n: integer)

Frame period should be always the same.

CONNECTOR PIN ASSIGNMENT FOR INTERFACE

CN1 INPUT SIGNAL

Connector: DF19L-20P-1H(56) / HIROSE

Mating Connector: DF19G-20S-1F (FPC), DF19G-20S-1C (Cable) / HIROSE

Terminal No.	Symbol	Function
1	V DD	Power Supply: +3.3V
2	$V_{ extsf{DD}}$	Power Supply: +3.3V
3	<i>V</i> ss	GND
4	<i>V</i> ss	GND
5	RxIN0-	Negative LVDS differential data input (R0-R5,G0)
6	RxIN0+	Positive LVDS differential data input (R0-R5,G0)
7	<i>V</i> ss	GND
8	RxIN1-	Negative LVDS differential data input (G1-G5, B0-B1)
9	RxIN1+	Positive LVDS differential data input (G1-G5, B0-B1)
10	<i>V</i> SS	GND
11	RxIN2-	Negative LVDS differential data input (B2-B5, HS, VS, DE)
12	RxIN2+	Positive LVDS differential data input (B2-B5, HS, VS, DE)
13	<i>V</i> ss	GND
14	CLK-	Clock Signal(-)
15	CLK+	Clock Signal(+)
16	<i>V</i> ss	GND
17	U/D	Vertical Reverse("L" level or Open; Normal, "H" level: Reverse)
18	L/R	Horizontal Reverse("L" level or Open ; Normal, "H" level : Reverse)
19	NC	NC
20	<i>V</i> ss	GND

Note 1) Please connect GND pin to ground. Don't use it as no-connect nor connection with high impedance.

CN2 CCFL POWER SOURCE

Connector: BHR-04VS-1 / JAPAN SOLDERLESS TERMINAL MFG CO., LTD.

Mating Connector⁴⁾: SM04(4.0)B-BHS-1 / JAPAN SOLDERLESS TERMINAL MFG CO., LTD.

Terminal No.	Symbol	Function
1	VFLH1	CCFL Power Supply (high voltage)
2	VFLH2	CCFL Power Supply (high voltage)
3	NC 1)	Non Connection (open)
4	VFLL	CCFL Power Supply (low voltage)

Note 2) NC terminal should be open.

Note 3) See next page.

Note 4) Take away terminal No.3 of the mating connector. If does not take away, it may cause smoke burn of electrical parts by high voltage.

RECOMMENDED TRANSMITTER (THC63LVDF63A,THC63LVDM63A,THC63LVDM63A-85) TO LTD121GA0S INTERFACE ASSIGNMENT

Case1: 6bit Transmitter

THC63LVDF63A,THC63LVDM63A,THC63LVDM63A-85					LTD121GA0S		
Input Terminal No.			Input Signal	Output		rface	
			(Graphics controller output signal)	Signal	(C	(CN1)	
Symbol	Terminal	Symbol	Function	Symbol	Terminal	Symbol	
TIN0	44	R0	Red Pixels Display Data (LSB)				
TIN1	45	R1	Red Pixels Display Data				
TIN2	47	R2	Red Pixels Display Data	TOUT0-	No.5	IN0-	
TIN3	48	R3	Red Pixels Display Data	TOUT0+	No.6	IN0+	
TIN4	1	R4	Red Pixels Display Data				
TIN5	3	R5	Red Pixels Display Data (MSB)				
TIN6	4	G0	Green Pixels Display Data (LSB)				
TIN7	6	G1	Green Pixels Display Data				
TIN8	7	G2	Green Pixels Display Data				
TIN9	9	G3	Green Pixels Display Data	TOUT1-	No.8	IN1-	
TIN10	10	G4	Green Pixels Display Data	TOUT1+	No.9	IN1+	
TIN11	12	G5	Green Pixels Display Data (MSB)				
TIN12	13	В0	Blue Pixels Display Data (LSB)				
TIN13	15	B1	Blue Pixels Display Data				
TIN14	16	B2	Blue Pixels Display Data				
TIN15	18	В3	Blue Pixels Display Data				
TIN16	19	B4	Blue Pixels Display Data	TOUT2-	No.11	IN2-	
TIN17	20	B5	Blue Pixels Display Data (MSB)	TOUT2+	No.12	IN2+	
TIN18	22	HSYNC	H-Sync				
TIN19	23	VSYNC	V-Sync				
TIN20	25	DE	Compound Synchronization Signal				
CLK IN	26	CLK	Data Sampling Clock	TCLK OUT-	No.14	CLK-	
				TCLK OUT+	No.15	CLK+	

Note 1) Please connect NC pin to nothing. Don't connect it to ground nor to other signal input.

RECOMMENDED TRANSMITTER (THC63LVDF63A,THC63LVDM63A,THC63LVDM63A-85) TO LTD121GA0S INTERFACE ASSIGNMENT

Case2: 8bit Transmitter

THC63LVDF63A,THC63LVDM63A,THC63LVDM63A-85					LTD12	1GA0S
Input Te	erminal No.		Input Signal	Output		rface
			(Graphics controller output signal) Sign		(CN1)	
Symbol	Terminal	Symbol	mbol Function Symbol		Terminal	Symbol
TIN0	51	R0	Red Pixels Display Data (LSB)			
TIN1	52	R1	Red Pixels Display Data			
TIN2	54	R2	Red Pixels Display Data	TOUT0-	No.5	INO-
TIN3	55	R3	Red Pixels Display Data	TOUT0+	No.6	IN0+
TIN4	56	R4	Red Pixels Display Data			
TIN6	3	R5	Red Pixels Display Data (MSB)			
TIN7	4	G0	Green Pixels Display Data(LSB)			
TIN8	6	G1	Green Pixels Display Data			
TIN9	7	G2	Green Pixels Display Data			
TIN12	11	G3	Green Pixels Display Data	TOUT1-	No.8	IN1-
TIN13	12	G4	Green Pixels Display Data	TOUT1+	No.9	IN1+
TIN14	14	G5	Green Pixels Display Data(MSB)			
TIN15	15	В0	Blue Pixels Display Data (LSB)			
TIN18	19	B1	Blue Pixels Display Data			
TIN19	20	B2	Blue Pixels Display Data			
TIN20	22	В3	Blue Pixels Display Data			
TIN21	23	B4	Blue Pixels Display Data	TOUT2-	No.11	IN2-
TIN22	24	B5	Blue Pixels Display Data (MSB)	TOUT2+	No.12	IN2+
TIN24	27	HSYNC	H-Sync			
TIN25	28	VSYNC	V-Sync			
TIN26	30	DE	Compound Synchronization Signal			
TIN27	50	NC	Non Connection (open)			
TIN5	2	NC	Non Connection (open)			
TIN10	8	NC	Non Connection (open)	TOUT3-		
TIN11	10	NC	Non Connection (open)	TOUT3+		
TIN16	16	NC	Non Connection (open)	1		
TIN17	18	NC	Non Connection (open)	1		
TIN23	25	NC	Non Connection (open)	1		
CLK IN	31	CLK	Data Sampling Clock	TCLK OUT-	No.14	CLK-
			. 5	TCLK OUT+	No.15	CLK+

Note 1) Please connect NC pin to nothing. Don't connect it to ground nor to other signal input.

256k (k=1024) COLORS COMBINATION TABLE

	Display	R5 R4 R3 R2 R1 R0	G5 G4 G3 G2 G1 G0	B5 B4 B3 B2 B1 B0	Gray Scale Level
	Black			LLLLL	
	Blue	LLLLL	LLLLL	н н н н н н	
	Green	LLLLL	H H H H H H	LLLLL	
Basic	Light Blue	LLLLL	ннннн	ннннн	
Color	Red	ннннн			
	Purple	H H H H H		H H H H H H	
	Yellow	н н н н н	H H H H H		
	White	<u> </u>	<u> </u>	H H H H H H	
	Black				L O
		LLLLLH		LLLLL	L 1
	Dark	LLLLHL			L 2
Gray Scale of	↑	:	:	:	L3
Red	↓ 	:	:	:	L60
	Light	HHHHLH			L61
		HHHHL			L62
	Red	H H H H H			Red L63
	Black			LLLLL	L O
			LLLLLH		L 1
0	Dark		LLLLHL		L 2
Gray Scale of	↑	:	:	:	L3
Green	↓ 	:	:	:	L60
	Light	LLLLL	HHHHLH	LLLLL	L61
			HHHHL		L62
	Green		H H H H H H		Green L63
	Black				L O
				LLLLLH	L 1
Gray	Dark			LLLLHL	L 2
Scale of	<u> </u>	:	:	:	L3
Blue	↓ Light	:	:	:	L60
	Light			HHHHLH	L61
				HHHHL	L62
	Blue			H H H H H H	Blue L63
	Black				L O
		LLLLLH	LLLLLH	LLLLLH	L 1
Gray	Dark	LLLLHL	LLLLHL	LLLLHL	L 2
Scale of	<u> </u>	:	:	:	L3
White & Black	↓ Light	:	:	:	L60
DIACK	Light	HHHHLH	HHHHLH	HHHHLH	L61
	White	H H H H H L	H H H H H L	HHHHL	L62

LCD module is generally designed with precise parts to achieve light weighted thin mechanical dimensions.

In using our Modules, make certain that you fully understand and put into practice the warnings and safety precautions detailed in Engineering Information No.EE-N001,"CAUTIONS AND INSTRUCTIONS FOR TOSHIBA LCD MODULES".

Refer to individual specifications and TECHNICAL DATA sheets (hereinafter called "TD") for more detailed technical information.

1) SPECIAL PURPOSES

A) Toshiba Matsushita Display Technology's Standard LCD Modules have not been customized for operation in extreme environments or for use in applications where performance failures could be life-threatening or otherwise catastrophic.

- B) Since Toshiba Matsushita Display Technology's Standard LCD Modules have not been designed for operation in extreme environments, they must never be used in devices that will be exposed to abnormally high levels of vibration or shock which exceed Toshiba Matsushita Display Technology's published specification limits.
- C) In addition, since Toshiba Matsushita Display Technology Standard LCD Modules have not been designed for use in applications where performance failures could be life-threatening or catastrophic, they must never be installed in aircraft navigation control systems (such as, but not limited to Traffic Collision Avoidance System and Air Traffic Indicator), in military defense or weapons systems, in critical industrial process-control systems (e.g., those involved in the production of nuclear energy), or in critical medical device or patient life-support systems.

2) DISASSEMBLING OR MODIFICATION

DO NOT DISASSEMBLE OR MODIFY the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display.

Toshiba Matsushita Display Technology doses not warrant the module, if customer disassembled or modified it.

3) BREAKAGE OF LCD PANEL

DO NOT INGEST liquid crystal material, DO NOT INHALE this material, and DO NOT CONTACT the material with skin, if LCD panel is broken and liquid crystal material spills out.

If liquid crystal material comes into mouth or eyes, rinse mouth or eyes out with water immediately.

If this material contact with skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.

4) GLASS OF LCD PANEL

BE CAREFUL WITH CHIPS OF GLASS that may cause injuring fingers or skin, when the glass is broken.

5) ELECTRIC SHOCK

DISCONNECT POWER SUPPLY before handling LCD module.

DO NOT TOUCH the parts inside LCD module and the fluorescent lamp's connector or cables in order to prevent electric shock, because high voltage is supplied to these parts from the inverter unit while power supply is turned on.

6) ABSOLUTE MAXIMUM RATINGS AND POWER PROTECTION CIRCUIT

DO NOT EXCEED the absolute maximum rating values under the worst probable conditions caused by the supply voltage variation, input voltage variation, variation in parts' constants, environmental temperature, etc., otherwise LCD module may be damaged.

Employ protection circuit for power supply, whenever the specification or TD specifies it.

Suitable protection circuit should be applied for each system design.

7) RECOMMENDED OPERATION CONDITIONS

The performance and quality of the LCD panel are warranted only when the LCD panel is used within "the recommended operation conditions". Toshiba Matsushita Display Technology Co., Ltd. never warrants the performance and quality of the LCD panel when you use the LCD panel over "the recommended operation conditions", although within "the absolute maximum rating".

To use the LCD panel over "the recommended operation conditions" may have bad influence on the characteristics and reliability of the LCD panel and may shorten the life of the LCD panel.

Therefore, when designing the whole set, not to be over "the recommended operation conditions", you should fully take care of supply voltage change, characteristic of connection parts, serge of input-and-output line, and surrounding temperature.

8) DISPOSAL

When dispose LCD module, obey to the applicable environmental regulations.