Chenkai Weng

+1-224-307-3331 | ckweng@u.northwestern.edu | ckweng.github.io

RESEARCH INTERESTS

Applied cryptography with a focus on secure multi-party computation and zero-knowledge proofs. The design, analysis, and implementation of MPC (e.g., garbled circuits, oblivious transfer, homomorphic encryption, and secret sharing-based protocols) and ZKP protocols (VOLE-based ZK and non-interactive ZK). The building of secure systems by applying cryptography-based privacy-enhancing techniques to various fields, including the database, networking, formal verification, machine learning, health care, and decentralized systems.

EDUCATION

Northwestern University

Evanston, IL

PhD in Computer Science; Advisor: Xiao Wang

Sept. 2019 - Present

Xidian University

Xi'an, China

BSc in Information Security

Sept. 2015 - June 2019

Research & Experience

Research Assistant

Evanston, IL

Northwestern University

Sept. 2020 - Present

- Concrete security of the garbled circuits protocol: attack and fix.
- Design of efficient cryptographic primitives: VOLE and OT protocols.
- Design of scalable and efficient VOLE-ZK and MPC protocols.
- Design, implementation and evaluation of secure systems with cryptography.

AI Research Summer Associate

New York, NY

JPMorgan Chase

Jun. 2023 - Sept. 2023

- Privacy-preserving linear programming with applications to distributed portfolio optimization.
- Communication-efficient multi-verifier ZKP protocol.

Research Intern

Remote

Chainlink Lab

Oct. 2022 - May. 2023

• Design and development of decentralized oracle system.

AI Research Summer Associate

New York, NY

JPMorgan Chase

Jun. 2022 - Sept. 2022

· Research on dishonest-majority maliciously-secure multi-party computation protocol.

Research Intern

Remote

Microsoft Research

May. 2021 - Jul. 2021

Design and development of private aggregation protocol from MPC and differential privacy.

Security Engineering Intern

Beijing, China

Alibaba Group

July 2018 - Jan. 2019

- Survey on secure multi-party computation techniques.
- Implementation of threshold encryption and digital signature schemes based on MPC.
- Implementation of private set intersection protocol and order-preserving encryption schemes.

AWARDS & GRANTS & FELLOWSHIPS

- JPMorgan PhD Fellowship 2023.
- Northwestern Terminal Year Fellowship 2023-24.
- Runner-up for Best Paper Awards, CCS 2021.
- PhD Student Research Award, Computer Science Department, Northwestern University, 2020-21.

* alphabetical order

1. ZKSQL: Verifiable and Efficient Query Evaluation with Zero-Knowledge Proofs

Xiling Li, Chenkai Weng, Yongxin Xu, Xiao Wang, Jennie Rogers Very Large Data Bases (VLDB), 2023

2. SUPERPACK: Dishonest Majority MPC with Constant Online Communication*

Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, Yifan Song, Chenkai Weng Annual International Conference on the Theory and Applications of Cryptology and Information Security (Eurocrypt), 2023

3. AntMan: Interactive Zero-Knowledge Proofs with Sublinear Communication

Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang ACM Conference on Computer and Communications Security (CCS), 2022

4. More Efficient Secure Matrix Multiplication for Unbalanced Recommender Systems

Zhicong Huang, Cheng Hong, Wen-jie Lu, Chenkai Weng, Hunter Qu IEEE Transactions on Dependable and Secure Computing (TDSC)

5. Constant-Overhead Zero-Knowledge for RAM Programs*

Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, Chenkai Weng ACM Conference on Computer and Communications Security (CCS), 2021

6. Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning

Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, Xiao Wang USENIX Security Symposium, 2021

7. Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field

Kang Yang, Pratik Sarkar, Chenkai Weng, Xiao Wang ACM Conference on Computer and Communications Security (CCS), 2021

8. Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean and Arithmetic Circuits

Chenkai Weng, Kang Yang, Jonathan Katz, Xiao Wang IEEE Symposium on Security and Privacy (Oakland), 2021

9. Developing High Performance Secure Multi-Party Computation Protocols in Healthcare: A Case Study of Patient Risk Stratification

Xiao Dong, David Randolph, Chenkai Weng, Abel Kho, Jennie Rogers, Xiao Wang AMIA Informatics Summit, 2021

10. Ferret: Fast Extension for coRRElated oT with small communication

Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, Xiao Wang ACM Conference on Computer and Communications Security (CCS), 2020

11. Better Concrete Security for Half-Gates Garbling (in the Multi-Instance Setting)*

Chun Guo, Jonathan Katz, Xiao Wang, Chenkai Weng, Yu Yu International Cryptology Conference (CRYPTO), 2020

Preprints

1. Precio: Private Aggregate Measurement via Oblivious Shuffling

F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, Melissa Chase

2. Privacy-Preserving Regular Expression Matching using Nondeterministic Finite Automata

Ning Luo, Chenkai Weng, Jaspal Singh, Gefei Tan, Ruzica Piskac, Mariana Raykova

3. PDNS: A Fully Privacy-Preserving DNS

Yunming Xiao, Chenkai Weng, Ruijie Yu, Peizhi Liu, Matteo Varvello, Aleksandar Kuzmanovic

TEACHING EXPERIENCE

Co-lecturer Evanston, IL

Northwestern University

Jan. 2023 - Mar. 2023

• Advanced topics in cryptography: OT-extension, BGW, MPC-in-the-head, PSI protocols.

Teaching Assistant
Northwestern University

Evanston, IL

Sept. 2020 - Dec. 2020

• Introduction to Cryptography

Talks

1. May. 2023 - "SUPERPACK: Dishonest Majority MPC with Constant Online Communication", at Eurocrypt 2023 and NYU Crypto reading group.

- 2. Apr. 2023 "Efficient and Scalable Zero-Knowledge Proofs based on Vector Oblivious Linear Evaluation", at JPMorgan AlgoCRYPT Seminar.
- 3. Nov. 2022 "AntMan: Interactive Zero-Knowledge Proofs with Sublinear Communication", at ACM Conference on Computer and Communications Security (CCS), 2022.
- 4. Sept. 2022 "Efficient Interactive Zero Knowledge Proof Based on VOLE", at Yale University CS talk.
- 5. Nov. 2021 "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field", ACM Conference on Computer and Communications Security (CCS), 2021.
- Aug. 2021 "Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning", USENIX Security Symposium, 2021.
- 7. May. 2021 "Wolverine: Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean and Arithmetic Circuits", IEEE Security & privacy (Oakland), 2021.
- 8. Mar. 2021 "Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs", Security and privacy seminar at Duke University.
- Nov. 2020 "Ferret: Fast Extension for coRRElated oT with small communication", ACM Conference on Computer and Communications Security (CCS), 2020.
- Aug. 2020 "Better Concrete Security for Half-Gates Garbling (in the Multi-Instance Setting)", International Cryptology Conference (CRYPTO), 2020.

SERVICE

Program committee: AsiaCCS 2024.

Conference: CRYPTO 2021-23, ITC 2022, Asiacrypt 2022-23, IEEE S&P (Oakland) 2023, PKC 2023.

Journal: IEEE TDSC, IEEE TIFS, IEEE TCBB, ACM TOPS, IACR JoC.

Software

EMP library

- 1. [EMP-TOOL] Float-point arithmetic based on Boolean circuits. Cryptographic building blocks.
- 2. [EMP-OT] Correlated-OT based on VOLE (The Ferret protocol).
- 3. [EMP-ZK] Interactive zero-knowledge proof protocols based on VOLE.
 - Circuit satisfiability: Arbitrary boolean and arithmetic circuits, and their conversions.
 - Polynomial satisfiability: Degree-2 polynomials.
 - RAM model: ZK table lookup.