import tensorflow as tf

import pandas as pd
import matplotlib.pyplot as plt

df=pd.read_csv("/content/Churn_Modelling.csv")
df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProduc [.]
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	
3	4	15701354	Boni	699	France	Female	39	1	0.00	
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	

x=df.iloc[:,3:-1]
y=df.iloc[:,-1]

x.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Es
0	619	France	Female	42	2	0.00	1	1	1	
1	608	Spain	Female	41	1	83807.86	1	0	1	

y.head()

0 1

1 2

3 6

4 0

Name: Exited, dtype: int64

x=pd.get_dummies(x)

x.head()

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Geog
0	619	42	2	0.00	1	1	1	101348.88	
1	608	41	1	83807.86	1	0	1	112542.58	
2	502	42	8	159660.80	3	1	0	113931.57	
3	699	39	1	0.00	2	0	0	93826.63	
4	850	43	2	125510.82	1	1	1	79084.10	

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=40)

x_train.head()

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	(
4318	673	77	10	76510.52	2	0	1	59595.66	
471	703	37	1	149762.08	1	1	0	20629.40	
9656	696	32	4	84421.62	1	0	1	52314.71	
8243	825	29	3	148874.01	2	0	1	71192.82	
9984	602	35	7	90602.42	2	1	1	51695.41	

len(x_train)

8000

from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()

x_train=scaler.fit_transform(x_train)
x_test=scaler.transform(x_test)

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import ReLU

model=Sequential()

```
model.add(Dense(units=12,activation="relu"))
model.add(Dense(units=7,activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(units=4,activation="relu"))
model.add(Dropout(0.3))
model.add(Dense(units=1,activation="sigmoid"))
model.compile(optimizer="adam",loss="binary crossentropy",metrics="accuracy")
early stopping=tf.keras.callbacks.EarlyStopping(
  monitor="val loss",
  patience=10,
  min delta=0.001,
  verbose=1,
  mode="auto",
  baseline=None,
  restore best weights=False
model history=model.fit(x train,y train,validation split=0.33,batch size=10,epochs=500,callbacks=early stopping)
  Epoch 1/500
  Epoch 2/500
  Epoch 3/500
  Epoch 4/500
  Epoch 5/500
```

```
Epoch 6/500
 Epoch 7/500
 Epoch 8/500
 Epoch 9/500
 Epoch 10/500
 Epoch 11/500
 Epoch 11: early stopping
y pred=model.predict(x test)
y pred=y pred>0.5
v pred
 array([[False],
    [False],
    [False],
    . . . ,
    [False],
    [False],
    [False]])
model history.history.keys()
 dict keys(['loss', 'accuracy', 'val loss', 'val accuracy'])
plt.plot(model history.history["accuracy"])
plt.plot(model history.history["val accuracy"])
plt.legend(["accuracy","val_accuracy"])
```

<matplotlib.legend.Legend at 0x7fbbdf87fe90>

plt.plot(model_history.history["loss"])
plt.plot(model_history.history["val_loss"])
plt.legend(["loss","val_loss"])

<matplotlib.legend.Legend at 0x7fbbe4ab74d0>

from sklearn.metrics import confusion_matrix,accuracy_score

```
acc_score=accuracy_score(y_test,y_pred)
acc_score
```

0.8645

✓ 0s completed at 3:59 PM