Sparse Graph Obfuscation

September 26, 2023

1 Preliminaries

1.1 Bounded Functional Encryption

We will use the notation of static, bounded functional encryption as presented in [AR17].

Security

We will slightly weaken the security notion such that the adversary does not choose which circuits it can learn the functional secret key for. Indeed, this is a weaker notion of functional encryption which fixes the adversary's output circuit. We will assume that we get circuit C_1, \ldots, C_d .

See page 8 of [AR17] for now. I'll put in the actual definition later.

$\overline{\operatorname{Exp}_{\mathcal{F},\mathcal{A}}^{\operatorname{real}}(1^{\lambda})}$	$\overline{\operatorname{Exp}^{\operatorname{ideal}}_{\mathcal{F},\operatorname{Sim}}(1^{\lambda})}$
1: $(MPK, MSK) \leftarrow FE.Setup(1^{\lambda})$	1: $(MPK, MSK) \leftarrow FE.Setup(1^{\lambda})$
2: $SK_{C_i} \leftarrow FE.Keygen(MSK, C_i)$ for $i \in [d]$	2: $SK_{C_i} \leftarrow FE.Keygen(MSK, C_i)$ for $i \in [d]$
3: $x_i \leftarrow \mathcal{A}(SK_{C_i})$	3: $x_i \leftarrow \mathcal{A}(SK_{C_i})$
4: $CT_i \leftarrow FE.Enc(MPK, x_i)$	4: $\operatorname{CT}_i \leftarrow \operatorname{Sim}(1^{\lambda}, 1^{ x_i }, \operatorname{MPK}, C_i, \operatorname{SK}_{C_i}, C_i(x_i))$
5: $\alpha \leftarrow \mathcal{A}(\mathrm{CT}_1, \dots, \mathrm{CT}_d)$	5: $\alpha \leftarrow \mathcal{A}(\mathrm{CT}_1, \dots, \mathrm{CT}_d)$
6: return x_1, \ldots, x_d, α	6: return x_1, \ldots, x_d, α

Note that the adversary A and simulator are stateful but we do not include this in the above notation for simplicity.

2 A sketch for the boys

2.1 Graph Label Randomization

Say that we have a sparse graph $\mathcal{G} = (V, E)$ such that |V| = n and $\forall v \in V, \deg(v) = d$. (TODO: padding).

Then, we want to create a pseudo-randomized label mapping of the graph, $\phi : \{0,1\}^{\lambda} \times V \to \{0,1\}^{c \cdot \lambda}$ such that ϕ is deterministic and pseudo-random. In particular, we require that for an adversary that does not know a path from v to $u \in \{v_1, ..., v_p\}$ or u to v where $v \neq u$, then for $K, K' \in \{0,1\}^{\lambda}$,

$$\mathbf{Pr}\left[\mathcal{A}(\phi(K,v),\phi(K,v_1),\ldots\phi(K,v_p),v_1,\ldots,v_p,C_{\Gamma})=1\right] \\ -\mathbf{Pr}\left[\mathcal{A}(\phi(K',v),\phi(K,v_1),\ldots\phi(K,v_p),v_1,\ldots,v_p,C_{\Gamma})=1\right] \leq \mathrm{negl}(\lambda)$$
 (1)

where C_{Γ} is the neighbor function for the embedded space: i.e. $C_{\Gamma} = \phi \circ \Gamma \circ \phi^{-1}$.

2.2 The Construction

Algorithm 1 The circuit for the neighbor function, C_{Γ} .

```
1: function INNER_i(\text{Dec}(\phi(v)) = v, K)

2: u_1, \dots, u_d = \Gamma(v)

3: u = u_i

4: r = \text{PRF}(K, u)

5: return FE.Enc(MPK, (u, K)) where we encrypt with randomness from r.

6: function C_{\Gamma}(\phi(v))

7: for i \in [d] do

8: u_i = \text{FE.Dec}(\text{SK}_{inner}_i, \phi(v))

9: return (u_1, \dots, u_d)
```

Claim 2.1. eq. (1) holds for a given vertex v for any PPT adversary, \mathcal{B} when C_{Γ} is implemented as in algorithm 1.

In order to prove the above, we must show that an adversary which does not know a path from v to $v_1, \ldots v_p$ essentially "learns" nothing of K.

Lemma 2.2 (Does not learn K). For any PPT adversary A

$$\begin{aligned} & \left| \mathbf{Pr}[\mathcal{A}(\phi(K, v_1), \dots, \phi(K, v_p), v_1, \dots, v_p, C_{\Gamma}) = 0] \right| \\ & - \left. \mathbf{Pr}[\mathcal{A}(\phi(K', v_1), \dots, \phi(K', v_p), v_1, \dots, v_p, C_{\Gamma}) = 0] \right| \le negl(\lambda). \end{aligned}$$

Proof. We proceed via showing that for any calls to C_{Γ} , the output is computationally indistinguishable from an output where the adversary is given $\phi(K', v_1), \ldots, \phi(K', v_p)$ for $K' \in \{0, 1\}^{\lambda}$. We proceed via a hybrid argument.

- Hyb₀: The adversary plays the game outlined in section 1.1 where the circuits are inner₁,..., inner_d
- Hyb₂: As the above except that we replace the real protocol with the simulated one, section 1.1

- Hyb₃: As the above except that we replace inner_i with inner'_i where inner'_i invokes the FE simulator, Sim when generating its output. Note that Sim must know the access pattern of A to inner_i in order to simulate the output of inner_i. So, we replace inner'_i working backwards from the last call to the simulator to the first. As the simulator is stateful, we can see that the simulator knows the access pattern.
- Hyb_4 : As the above except that we replace K with K'. We can see that this is valid as both inputs to inner_i' and outputs of inner_i' are independent of K.

From the above hybrid, we can see that if \mathcal{A} can distinguish eq. (2), then \mathcal{A} can distinguish Hyb_4 and Hyb_3 .

Now we can prove Claim 2.1,

Proof of Claim 2.1. First note that the adversary cannot learn $\phi(K, v)$ via calling FE.Enc(K, v) as that would imply breaking lemma 2.2.

Thus, \mathcal{B} can only learn $\phi(K, v)$ via calling C_{Γ} or manipulating given cipher texts. We now proceed to show that this is computationally infeasible via a hybrid algorithm.

- Hyb₀: The adversary plays the game outlined in section 1.1 where the circuits are inner₁,..., inner_d and \mathcal{A} is given $\phi(v_1) = \text{FE.Enc}(v_1, K), \ldots, \phi(v_p) = \text{FE.Enc}(v_p, K)$ where encryption randomness is derived from $\text{PRF}(K, v_1), \ldots, \text{PRF}(K, v_p)$.
- Hyb₁: As the above except that we replace encryption randomness with true random strings fixed for each v_{ℓ} where $\ell \in [p]$.
- Hyb₂: As the above except that we replace inner_i with inner'_i such that if inner_i($\phi(K, u)$) = $\phi(K, v)$, inner'_i($\phi(K, u)$) = \bot . Note that \mathcal{A} cannot distinguish between inner_i and inner'_i because \mathcal{A} does not know the path from v_{ℓ} to v and can thus not find $\phi(K, u)$ from repeated queries of inner_i.
- Hyb₃: As the above except that we replace section 1.1 with section 1.1, the simulated version. Now, note that \mathcal{A} cannot distinguish between simulated $\phi(K, v_{\ell})$ which we will call $\phi(v_{\ell})'$ and the given $\phi(v_{\ell})$.

Indeed the simulated labels, $\phi'(K, v_{\ell})$ are simulated independently of $\phi(K, v)$ as $\mathtt{inner}'_i(K, u) \neq \phi(K, v)$ with high probability for any $u \in V$. Thus,

$$\big| \Pr[\mathcal{B}(v, C_{\Gamma}) = \phi(K, v)] - \Pr[\mathcal{B}\big(v, \phi(K, v_1), \dots, \phi(K, v_p), v_1, \dots, v_p, C_{\Gamma}\big) = \phi(K, v)] \big| \leq \operatorname{negl}(\lambda)$$

And, by lemma 2.2, we have that

$$\mathbf{Pr}[\mathcal{B}(v, C_{\Gamma}) = \phi(K, v)] \leq \mathtt{negl}(\lambda)$$

thus concluding the proof.

${\bf Abstract}$

References

[AR17] Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions, revisited. In *Theory of Cryptography Conference*, pages 173–205. Springer, 2017. 1.1, 1.1