Unramified Milnor-Witt K-theory and the Scissors congruence group

Saheb Mohapatra

MM2309, MMath 2nd Year

Supervisor: Utsav Choudhury

Indian Statistical Institute, Kolkata

May 20, 2025

CONTENTS

Contents

1	Introduction		3
	1.1	Goal	3
	1.2	Notes for the reader	3
	1.3	Acknowledgment	4
2	Not	cations	5
3	Unramified Milnor-Witt K-theory		6
	3.1	Milnor-Witt K-theory of fields	6
	3.2	Residue map and its consequences	10
	3.3	Universality of \mathbf{K}_n^{MW}	14
4	Scis	ssors Congruence group	20
5	Results from A^1 -homotopy theory		23
	5.1	Preliminaries	23
	5.2	Unramified Sheaf of sets	25
	5.3	Unramfied Sheaf of groups	34
6	Bib	liography	40

1 Introduction

1.1 Goal

Definition 1.1.1 (Scissors congruence group). Let $F_k :=$ the category of fields over a fixed base field k. We have the functor $P: F \to Ab$, defined pointwise as

$$P(F) := \frac{\mathbb{Z}\{[u]; u \in F^* - \{1\}\}}{<[x] - [y] + [\frac{y}{x}] - [\frac{1-x^1}{1-y^{-1}}] + [\frac{1-x}{1-y}]>}.$$

This group appears in Hutchinson's (See 1) computation of K_2 of a field F. The properties of this group and the intriguing 5-term relation has been explored a lot starting extensively from Suslin (See 3). The approaches so far rely on explicit algebraic computations. This project aims to explore this 5-term relation in the light of A^1 -homotopy theory.

The motivation behind this pursuit comes from works by Morel and others (See 2) on Milnor K- theory and its generalisation, Milnor-Witt K-theory. These two are functors defined on F. But they have been extended to functors on Sm_k , as unramified sheaves of graded abelian groups which are moreover strongly A^1 - invariant (See 5.1.11). This latter notion, that exists in the world of A^1 -homotopy theory enables us to give meanings to the relations appearing in $K_*^M(F)$ or $K_*^{MW}(F)$ (See 3.3.6). Hence, it was expected that if P were extended as a A^1 -invariant sheaf on Sm_k , we could understand the 5-term relation better.

1.2 Notes for the reader

- There is a naive way to extend P as a sheaf on Sm_k (See 4.0.2). We show in Section 4 (See 4.0.3), that this is not a strongly A^1 -invariant sheaf.
- To show this, we first study the theory of unramified sheaves of sets (or groups) on Sm_k in Section 5. This is a recipe to extend a "nice" functor on F_k to a "nice" functor on Sm_k . Several axioms are noted that imply strong A^1 -invariance.

• In theorem (See 3.3.5) of Section 3, we shall see a way to compare strongly A^1 -invariant sheaves of groups on Sm_k , where the Milnor-Witt K-groups K_n^{MW} turn out to be the free strongly A^1 -invariant sheaf generated by the sheaf $\mathbb{G}_m^{\wedge n}$ sending $X \mapsto (O(X)^*)^{\wedge n}$. As a consequence of the result for P(F) (see 4.0.1), we also show in corollary (see 4.0.4), that the sheaf $F \mapsto F^* \wedge F^*$ can not be extended as a strongly A^1 -invariant sheaf on Sm_k .

The questions that still remain are:

- Whether P can be extended as an unramified sheaf in a way similar to K_n^{MW} by defining it for DVR's as the kernel of a certain residue map? Residue maps like this exist (see 3) but the kernel is not in general independent of the choice of uniformizing parameter.
- Suppose we can extend it to an unramified sheaf on Sm_k , whether it is A^1 -invariant? For instance, $\mathbb{Z}(\mathbb{G}_m)$ is A^1 -invariant but not strongly A^1 -invariant and P is a quotient of it. (See 4.0.2)

The theory of unramified sheaves and properties of K_*^{MW} in this text follow 2 closely. Section 4 is an original contribution by the author. Apart from that several proofs in have been elaborated in Sections 3 and 5. One may straightaway go to Section 4 while referring necessary results from Section 3 and 5.

1.3 Acknowledgment

I am highly grateful to my supervisor Utsav Choudhury for suggesting me these questions about the Scissors congruence group in the light of A^1 -homotopy theory.

2 Notations

- \bullet $F_k :=$ Category of fields over k of finite transcedence degree
- O_v denotes the valuation ring of F whenever v is a valuation on F; m_v denote its maximal ideal
- $Sm_k := \text{Category of smooth finite type } k \text{schemes}$
- Sm'_k := Category of essentially smooth k-schemes. It is a noetherian k-scheme which is the inverse limit of a left filtering system with each transition map being an etale affine morphism between smooth k-schemes
- Set := Category of sets
- Ab :=Category of abelian groups
- $\Delta^{op}C :=$ Category of simplicial objects in C
- $H_{\bullet}(k)$ denotes the pointed A^1 -homotopy category of smooth k-schemes.
- We will denote by ν , the catgeory Sm_k occasionally

3 Unramified Milnor-Witt K-theory

3.1 Milnor-Witt K-theory of fields

Definition 3.1.1 (Milnor-Witt K-groups). Consider the graded associative ring generated by the symbols [u] for each $u \in F^*$ and one symbol η of degree (-1) with the following relations:

- (Steinberg Relation) $\forall a \in F^* \{1\}, [a][1-a] = 0$
- $\forall (a,b) \in (F^*)^2, [ab] = [a] + [b] + \eta[a][b]$
- $[u]\eta = \eta[u], \forall u \in F^*$
- $h := \eta[-1] + 2$, then $\eta h = 0$.

Denote this ring by $K_*^{MW}(F)$ and its n^{th} degree part by the abelian group $K_n^{MW}(F)$.

Proposition 3.1.2. Let $\tilde{K}_n^{MW}(F)$ denote the abelian group generated by the symbols of $[\eta^m, u_1, ..., u_r], r = n + m, u_i \in F^*, m \in \mathbb{N}, r \in \mathbb{N}, n \in \mathbb{Z}$ subject to:

- $[\eta^m, u_1, ..., u_r] = 0$ if for some $i, u_i + u_{i+1} = 1$
- $[\eta^m, ..., u_{i-1}, ab, u_{i+1}, ...]$ = $[\eta^m, ..., u_{i-1}, a, u_{i+1}, ...] + [\eta^m, ..., u_{i-1}, b, u_{i+1}, ...] + [\eta^{m+1}, ..., u_{i-1}, a, b, u_{i+1}, ...]$
- $[\eta^{m+2},...,u_{i-1},-1,u_{i+1},...] + 2[\eta^{m+1},...,u_{i-1},u_{i+1},...] = 0.$ Then, the map $[\eta^m,u_1,...,u_r] \to \eta^m[u_1]...[u_r]$ induces an isomorphism $\tilde{K}_n(F) \cong K_n^{MW}(F)$.

Proof. Note that the above map makes sense as all the relations in $\tilde{K_n}(F)$ map to 0 in $K_n^{MW}(F)$, by definition. Let R be the associated graded ring generated by the symbols $[u], u \in F^*$ of degree 1 and η of degree (-1) such that $\eta[u] = [u]\eta, \forall [u]$. Let I be the ideal in R generated by the relations as in the proposition. Then, clearly $K_n^{MW}(F) = \frac{R_n}{R_n \cap I}$. Define a map from R_n to $\tilde{K_n}^{MW}(F)$ sending $\eta^m[u_1]...[u_r]$ to $[\eta^m, u_1, ..., u_r]$. By definition, R_n is generated by such elements. Any element in $R_n \cap I$ is generated by elements of the form $xiy, i \in I, x, y \in R$ such that i is one of the relations as in the proposition and degree (xiy) is n. These map to 0 in $\tilde{K_n}^{MW}(F)$, hence induces a map $K_n^{MW}(F) \to \tilde{K_n}^{MW}(F)$ which is clearly the inverse to the given map.

Remark 3.1.3. For $a \in F^*$, denote by $\langle a \rangle := 1 + \eta[a] \in K_0^{MW}(F)$. So, $h = 1 + \langle -1 \rangle$. Define $\epsilon := -\langle -1 \rangle \in K_0^{MW}(F)$. Then, $\epsilon \eta = \eta$.

- 1. $[ab] = [a] + [b] + \eta[a][b] = [a] + (1 + \eta[a])[b] = [a](1 + \eta[b]) + [b]$ So, $[ab] = [a] + \langle a \rangle [b] = [a] \langle b \rangle + [b].$
- 2. $\langle ab \rangle = 1 + \eta[ab] = 1 + \eta[a] + \eta[b] + \eta^2[a][b] = (1 + \eta[a])(1 + \eta[b])$ as $\eta[u] = [u]\eta$. So, $\langle ab \rangle = \langle a \rangle \langle b \rangle$.
- 3. By 1., $[ab] = [ba] = [a] + [b] < a > = [a] + < a > [b] \implies < a > [b] = [b] < a >$. So, $K_0^{MW}(F) \subset Z(K_*^{MW}(F))$, as elements $\eta^m[u_1]...[u_m]$ generate $K_0^{MW}(F)$.
- 4. $\eta h = 0 \implies 0 = \eta h[1] = (<1>-1)(<-1>+1) = <1>-1 \implies <1>= 1.$ $\implies \eta[1] = 0 \text{ and } [1] = [1] + <1>[1] = 2[1] \text{ (by 1.)}.$ So, $<1>=1 \in K_0^{MW}(F)$ and $[1]=0 \in K_1^{MW}(F)$.
- 5. $< a > < a^{-1} > = < 1 > = 1$, so < a > is a unit in $K_0^{MW}(F)$.
- 6. $\left[\frac{a}{b}\right] + \left(\frac{a}{b} > [b] = [a], \text{ by } 1.$
- 7. By definition, $K_n^{MW}(F)$ for $n \geq 1$, is generated by the products of the form $\eta^m[u_1]...[u_{n+m}]$. But $\eta[a][b] = [ab] - [a] - [b]$. So, we get rid of the power m in η till it is 0. Note that we can do this only because n + m > m as $n \geq 1$.
 - So, $K_n^{MW}(F)$ for $m \ge 1$ is generated by the products of the form $[u_1]...[u_n]$.
- 8. If n < 0 in 7., then $\eta^m[u_1]...[u_r] = \eta^{-n}\eta^r[u_1]...[u_r]$ and $\eta[a] = < a > -1$. So, $K_n^{MW}(F)$ for n < 0 is generated by $\eta^{-n} < u >$, and the product with η , $K_n^{MW}(F) \to K_{n-1}^{MW}(F)$ is surjective for $n \le 0$.
- 9. Define n_{ϵ} as mh, if n = 2m and mh + 1, if n = 2m + 1, elements of $K_0^{MW}(F), n \ge 0$ and $n_{\epsilon} := (-n)_{\epsilon}, n < 0$. $[a^n] = [a^{n-1}] + [a] + \eta[a^{n-1}][a]$ and $[a^{-1}] = -([a] + \eta[a][a])$. So, inductively we have for $n \in \mathbb{Z}$, $[a^n] = n_{\epsilon}[a]$.

Lemma 3.1.4. For $a \in F^*$,

- [a][-a] = 0.
- \bullet < $a > + < a^{-1} >= h$.
- $< a^2 >= 1$.
- $[a][b] = \epsilon[b][a]$.

•
$$[a][a] = [a][-1] = \epsilon[a][-1] = [-1][a] = \epsilon[-1][a]$$
.

Proof. If a = 1, [a] = 0 and we are done. So, let $a \neq 1 \implies (-a) = \frac{1-a}{1-a^{-1}}$. $\implies [-a] = [1-a] - \langle -a \rangle [1-a^{-1}] \implies [a][-a] = [a][1-a] - \langle -a \rangle [a][1-a^{-1}] = 0$ $0 - \langle -a \rangle [a][1-a^{-1}] = \langle -a \rangle \langle a \rangle [a^{-1}][1-a^{-1}] = 0$ using 6.

 $[-a] = [-1] + \langle -1 \rangle [a]$. Multiplying by [a], we get $0 = [a][-1] + \langle -1 \rangle [a][a] \Longrightarrow [a][a] = -\langle -1 \rangle [a][-1] = \epsilon[a][-1]$. Note that by 2., $\epsilon^2 = 1$ and $[-1] + \langle -1 \rangle [-1] = [1] = 0 \Longrightarrow \epsilon[-1] = [-1] \Longrightarrow \epsilon[a][-1] = [a][-1]$. Similarly, $[a][a] = [-1][a] = \epsilon[a][-1] = \epsilon[-1][a]$.

To show $\langle a^2 \rangle = 1$, it is enough to show that $\eta[a^2] = 0$. But $[a^2] = (2 + \eta[-1])[a]$ as [a][a] = [-1][a]. So, $\eta[a^2] = 0$.

Now,
$$[ab][-ab] = 0 \implies ([a] + \langle a \rangle [b])([-a] + \langle -a \rangle [b]) = 0$$

$$\implies 0 = [a][-a] + < -a > [a][b] + < a > [b][-a] + < -a^2 > [b][b].$$

 \implies < a > ([b][-a]+ < -1 > [a][b])+ < -1 > [-1][b] = 0. Further simplifying by $[b][-1] = \epsilon[-1][b]$ and [-a] = [a]+ < a > [-1], we get < a > ([b][a]+ < -1 > [a][b]) = 0. As < a > is a unit, we have $[b][a] = \epsilon[a][b]$.

Definition 3.1.5 (Grothendieck-Witt Ring). It is defined to be the isomorphism classes of non-degenerate symmetric bi-linear forms over F, denoted by GW(F). Let $\langle u \rangle \in GW(F)$ denote the quadratic form $F^2 \to F$; $(x, y) \mapsto uxy$.

Proposition 3.1.6. GW(F) has the presentation with:

- Generators: $\{\langle u \rangle; u \in F^*\}$
- Relations: $\langle uv^2 \rangle = \langle u \rangle; \langle u \rangle + \langle -u \rangle = 1 + \langle -1 \rangle;$ $\langle u \rangle + \langle v \rangle = \langle u + v \rangle + \langle uv(u + v) \rangle \text{ if } u + v = 0.$

Proposition 3.1.7. By the second relation above, the subgroup generated by $h := 1 + \langle -1 \rangle$ is actually an ideal. Define W(F) := GW(F)/h, the Witt ring of F. The following square

is Cartesian:

 $I(F) := Ker(rank : W(F) \to \frac{\mathbb{Z}}{2\mathbb{Z}}), \text{ called the fundamental ideal of } F.$

Proposition 3.1.8. By the properties of $\langle a \rangle \in K_0^{MW}(F)$, $\langle uv^2 \rangle = \langle u \rangle$; $\langle u \rangle + \langle -u \rangle = 1 + \langle -1 \rangle$; $\langle u \rangle + \langle v \rangle = \langle u + v \rangle + \langle uv(u+v) \rangle$. So, we have a map $GW(F) \to K_0^{MW}(F)$ which turns out be an isomorphism.

Proof. (See 2)
$$\Box$$

Lemma 3.1.9. The above map gives a $\mathbb{Z}[F^*/(F^*)^2]$ -module structure on $K_*^{MW}(F)$.

Proof. Since the map in the above proposition is an isomorphism, $\langle u \rangle$ and α makes sense as $K_*^{MW}(F)$ is a $K_0^{MW}(F)$ -module. But by the first relation of GW(F), $\langle uv^2 \rangle = \langle u \rangle$, extending linearly we get a $\mathbb{Z}[F^*/(F^*)^2]$ -module structure on $K_*^{MW}(F)$.

Lemma 3.1.10. If F is a field where every unit is a square, i.e., F is quadratically closed, then $K_*^{MW}(F) \to K_*^M(F)$ is an isomorphism in degree ≥ 0 . $K_*^{MW}(F) \to K_*^W(F)$ is an isomorphism in degree < 0.

Proof. $<-1>=< a^2>=1$ for some $a\in F^*$. So, $2\eta=0 \implies \eta[a^2]=2\eta[a]=0 \implies \eta[u]=0, \forall u\in F^*$. Hence, [ab]=[a]+[b] and the lemma follows.

3.2 Residue map and its consequences

Theorem 3.2.1. Let F be a field with discrete valuation v, and uniformising parameter π . Then, $\exists!$ morphisms of graded groups $\partial_{\pi,v}: K_*^{MW}(F) \to K_{*-1}^{MW}(k(v))$ which commutes with the multiplication by η map such that:

- $\partial_{\pi,v}([\pi][u_2]...[u_n]) = [\bar{u_2}]...[\bar{u_n}]$
- $\partial_{\pi,v}([u_1][u_2]...[u_n]) = 0.$

for $u_i \in O_v^*$.

Proof. Existence: Define the map $\Theta_{\pi}: F^* \to K_*^{MW}(F)[\zeta]$ by $\pi^n u \mapsto [\bar{u}] + n_{\epsilon} < \bar{u} > \zeta$ where $K_*^{MW}(F)[\zeta]$ is defined to be the quotient of the polynomial ring in 1 variable over $K_*^{MW}(F)$, i.e., $K_*^{MW}(F)[T]$, by the relation $T^2 - [-1]T$.

Note that this map makes sense as any element of F^* is uniquely represented as $\pi^n u$ for unique $n \in \mathbb{Z}$ and $u \in O_v^*$. Sending the units of F as above and $\eta \to \eta$, we claim Θ_{π} induces a map from $K_*^{MW}(F)$.

- 1. Let $\pi^n u \in F^*$. If $n > 0, 1 \pi^n u \in O_v^*$ and $1 \bar{\pi}^n u = 1 \implies \theta_\pi (1 \pi^n u) = [1] = 0$. So, $\theta_\pi(\pi^n u)\theta_\pi(1 \pi^n u) = 0$. If n = 0, then $1 u \in \pi^m v$. If m > 0, we are done as before. If m = 0, $\theta_\pi(u)\theta_\pi(1 u) = [\bar{u}][1 \bar{u}] = 0$ in $K_*^{MW}(k(v))[\zeta]$. If $n < 0, 1 \pi^n u = \pi^n(-u)(1 \pi^{-n}u^{-1})$ where $(-u)(1 \pi^{-n}u^{-1}) \in O_v^*$. Expanding $\theta_\pi(\pi^n u)\theta_\pi(1 \pi^n u)$, we get $[\bar{u}][-\bar{u}] + n_\epsilon < \bar{u} > \zeta[-\bar{u}][\zeta] + n_\epsilon < -\bar{u} > [\bar{u}][\zeta] + n_\epsilon^2 < -1 > \zeta^2$. By lemma (see ref), $[\bar{u}][-\bar{u}] = 0$. Observe that $n_\epsilon^2[-1] = n_\epsilon(n_\epsilon[-1]) = n_\epsilon[(-1)^n] = [(-1)^{n^2}] = [(-1)^n]$ as $n^2 \equiv n \pmod{2}$. So, the previous expression becomes $n_\epsilon(<-\bar{u}>([\bar{u}]-[-\bar{u}])+<-1>[-1])\zeta$. Now, $[\bar{u}]-[-\bar{u}]=[\bar{u}]-[\bar{u}]-[-1]-\eta[\bar{u}][-1]=-<\bar{u}>[-1]$. So, the expression inside the bracket is $0 \implies \theta_\pi(\pi^n u)\theta_\pi(1 \pi^n u) = 0$.
- 2. Let $a := \pi^n u$; $b := \pi^m v$. $\theta_{\pi}([ab] - [a] - [b] - \eta[a][b]) = [\bar{u}\bar{v}] - [\bar{u}] - [\bar{v}] - \eta[\bar{u}][\bar{v}] + \zeta((n+m)_{\epsilon} < \bar{u} > < \bar{v} > -(n_{\epsilon} + m_{\epsilon}) < \bar{u} > < \bar{v} > +(n_{\epsilon}m_{\epsilon} - < -1 > n_{\epsilon}m_{\epsilon}) < \bar{u} > < \bar{v} >)$. Note that $(n+m)_{\epsilon} = n_{\epsilon} + m_{\epsilon} + \eta n_{\epsilon} m_{\epsilon} [-1]$. We show it for $n, m \geq 0$ and the other cases follow similarly. If n = 2k, m = 2l, then $(n+m)_{\epsilon} = (k+l)h = n_{\epsilon} + m_{\epsilon} + \eta n_{\epsilon} m_{\epsilon} [-1]$ as

 $\eta n_{\epsilon} m_{\epsilon} [-1] = \eta k h m_{\epsilon} [-1] = 0. \text{ If } n = 2k, m = 2l+1, \text{ then } (n+m)_{\epsilon} = (k+l)h+1; n_{\epsilon} + m_{\epsilon} + \eta n_{\epsilon} m_{\epsilon} [-1] = kh+lh+1+\eta k h m_{\epsilon} [-1] = (k+l)h+1. \text{ If } n = 2k+1, m = 2l+1, \text{ then } (n+m)_{\epsilon} = (k+l+1)h; n_{\epsilon} + m_{\epsilon} + \eta n_{\epsilon} m_{\epsilon} [-1] = kh+1+lh+1+\eta (kh+1)(lh+1)[-1] = (k+l)h+2+\eta [-1] = (k+l+1)h \text{ as } h = 2+\eta [-1]. \text{ So, } \theta_{\pi}([ab]-[a]-[b]-\eta [a][b]) = 0.$

3. As $[-1] \mapsto [-1]$ and $\eta \mapsto \eta$ under θ_{π} , relation (3) and (4) hold.

Uniqueness: Note that $\theta_{\pi}: K_*^{MW}(F) \to K_*^{MW}(k(v))[\zeta]$ is a morphism of graded rings. But $K_*^{MW}(k(v))[\zeta]$ is a free $K_*^{MW}(k(v))$ -module of rank 2.

 $\implies \theta_{\pi}(\alpha) = s_v^{\pi}(\alpha) + \partial_v^{\pi}(\alpha)\zeta$ for unique $s_v^{\pi}(\alpha), \partial_v^{\pi}(\alpha) \in K_*^{MW}(k(v))$. Note that from the definition of θ_{π} ,

- s_v^{π} is a morphism of rings. This is the unique map $K_*^{MW}(F) \to K_*^{MW}(k(v))$ with $\eta \mapsto \eta$ and $[\pi^n u] \mapsto [\bar{u}]$.
- $\theta_{\pi}([\pi][u_2]...[u_n]) = ([\bar{u}_2]...[\bar{u}_n])\zeta$. Note that $\partial_v^{\pi}([\pi]) = 1$. If ρ is any other uniformizing parameter, i.e., $\rho = u\pi$; so $\partial_v^{\pi}(\rho) = [\bar{u}], u \in O_v^*$. Clearly, $\partial_v^{\pi}([u_1]...[u_n]) = 0$.

Now, given these above two properties of ∂_v^{π} , and the fact that $K_n^{MW}(F)$ is generated by the products of the form $[u_1]...[u_n]; u_i \in F^*$, we are done. For a simple example, let $x = [u_1][u_2]; u_1 = \pi^n v_1; u_2 = \pi^m v_2; n, m \in \mathbb{Z}; v_i \in O_v^*$.

Without loss of generality, we can assume n=m=1 as otherwise, [a][a]=[a][-1]; $[a^{-1}]=-([a]+\eta[a][a])$. So, $x=[\pi v_1][\pi v_2]=([\pi]+[v_1]+\eta[\pi][v_1])[u_2]=[\pi][\pi v_2]+[v_1][\pi v_2]+\eta[\pi][v_1][\pi v_2]$. Again using [a][a]=[a][-1]; $[ab]=[a]+[b]+\eta[a][b]$, the image of this element under ∂_v^{π} is completely determined by the two properties.

Remark 3.2.2. • $\partial_v^{\pi}([-\pi]\alpha) = <-1> s_v^{\pi}(\alpha); \alpha \in K_*^{MW}(F)$

- $\partial_v^{\pi}([u]\alpha) = < -1 > [\bar{u}]\partial_v^{\pi}(\alpha); u \in O_v^*$
- $\partial_v^{\pi}(\langle u > \alpha) = \langle \bar{u} \rangle \partial_v^{\pi}(\alpha); u \in O_v^*$

These follow at once from the definition of θ_{π} and working with the generators of $K_n^{MW}(F)$.

Proposition 3.2.3. Let $E \subset F$ be a field extension with discrete valuation v on F restricting to w on E with valuation rings O_v and O_w respectively. Let π be a uniformizing parameter of v and ρ of w with $\rho = u\pi^e$; $u \in O_v^*$, i.e., the ramification index is e.

Then, $\partial_v^{\pi}(\alpha) = e_{\epsilon} < \bar{u} > \partial_w^{\rho}(\alpha); \alpha \in K_*^{MW}(E)$. Here, $\alpha \in K_*^{MW}(E)$ is seen as an element of $K_*^{MW}(F)$. Similarly, $\partial_w^{\rho}(\alpha) \in K_*^{MW}(k(w))$ is seen as an element of $K_*^{MW}(k(v))$.

Proof. The following square is commutative:

$$K_*^{MW}(F) \xrightarrow{\theta_{\pi}} K_*^{MW}(k(v))[\zeta]$$

$$\uparrow \qquad \qquad \qquad \downarrow^{\psi}$$

$$K_*^{MW}(E) \xrightarrow{\theta_{\varrho}} K_*^{MW}(k(w))[\zeta]$$

where ψ is defined by $[a] \mapsto [a]$ and $\zeta \mapsto [\bar{u}] + e_{\epsilon} < \bar{u} > \zeta$. Let $w\rho^n \in E$; $n \in \mathbb{Z}$, $w \in O_w^* \subset O_v^*$. So, $\theta_{\rho}(w\rho^n) = [\bar{w}] + n_{\epsilon} < \bar{w} > \zeta$. Let $d := \theta_{\pi}(w\rho^n) = \theta_{\pi}(wu^n\pi^{ne}) = [w\bar{u}^n] + (ne)_{\epsilon} < w\bar{u}^n > \zeta$. Using $[a^n] = n_{\epsilon}[a]$, we get $d = [\bar{w}] + n_{\epsilon}[\bar{u}] + n_{\epsilon}\eta[\bar{w}][\bar{u}] + n_{\epsilon}e_{\epsilon} < \bar{w} > (1 + \eta n_{\epsilon}[\bar{u}])\zeta = [\bar{w}] + n_{\epsilon} < \bar{w} > [\bar{u}] + n_{\epsilon}e_{\epsilon} < \bar{w} > (1 + \eta n_{\epsilon}[\bar{u}])\zeta = [\bar{w}] + n_{\epsilon}[\bar{u}] < \bar{w} > + n_{\epsilon}e_{\epsilon} < \bar{w} > \zeta + n_{\epsilon}^2e_{\epsilon} < (\bar{u} > -1)\zeta < \bar{w} >$. So, we get $d = [\bar{w}] + n_{\epsilon} < \bar{w} > [\bar{u}] + n_{\epsilon}^2e_{\epsilon} < \bar{u} > < \bar{w} > \zeta - n_{\epsilon}^2e_{\epsilon} < \bar{w} > \zeta + n_{\epsilon}e_{\epsilon} < \bar{w} > \zeta$. Now, observe that $e_{\epsilon}n_{\epsilon}(1 - n_{\epsilon}) < \bar{u} > = e_{\epsilon}n_{\epsilon}(1 - n_{\epsilon})(1 + \eta[\bar{u}]) = e_{\epsilon}n_{\epsilon}(1 - n_{\epsilon}) + e_{\epsilon}n_{\epsilon}(1 - n_{\epsilon})\eta[\bar{u}]$. If $n_{\epsilon} = kh$, then $n_{\epsilon}\eta = 0$. If $n_{\epsilon} = kh + 1$, then $1 - n_{\epsilon} = -kh \implies (1 - n_{\epsilon})\eta = 0$. So, the second term is 0.

$$\implies e_{\epsilon} n_{\epsilon} (1 - n_{\epsilon}) < \bar{u} > = e_{\epsilon} n_{\epsilon} (1 - n_{\epsilon})$$

$$\implies e_{\epsilon} n_{\epsilon} (1 - n_{\epsilon}) < \bar{u} > < \bar{w} > = e_{\epsilon} n_{\epsilon} (1 - n_{\epsilon}) < \bar{w} >$$

$$\implies e_{\epsilon}n_{\epsilon} < \bar{u} > < \bar{w} > -e_{\epsilon}n_{\epsilon}^2 < \bar{u} > < \bar{w} > = e_{\epsilon}n_{\epsilon} < \bar{w} > -e_{\epsilon}n_{\epsilon}^2 < \bar{w} >$$

So, $d = [\bar{w}] + n_{\epsilon}[\bar{u}] < \bar{w} > +e_{\epsilon}n_{\epsilon} < \bar{w} > < \bar{u} > \zeta$. Hence the diagram commutes. To get the relation as in the preparation, we just take the second coordinates of θ_{π} and θ_{ρ} .

Theorem 3.2.4. First observe that if we define $\mathbf{K}_n^{MW}(O_v) := Ker(\partial_v^{\pi}) \subset K_n^{MW}(F)$, by the previous proposition it is independent of the choice of uniformising parameter π . Also, the definition of residue map implies $\mathbf{K}_*^{MW}(O_v)$ is a graded ring.

As a ring $\mathbf{K}_*^{MW}(O_v)$ is generated by η and $[u] \in K_1^{MW}(F); u \in O_v^*$.

Proof. Let Q_* denote the graded abelian group obtained by quotienting $K_*^{MW}(F)$ by the subring A_* generated by $\eta, [u]; u \in O_v^*$. Let π be a uniformising parameter and $\partial_v^{\pi}: K_*^{MW}(F) \to K_*^{MW}(k(v))$. Note that, by definition of ∂_v^{π} , $A_* \mapsto 0$ in $K_*^{MW}(k(v))$. So,

we have $\partial_v^{\pi}: Q_* \to K_*^{MW}(k(v))$.

 $K_*^{MW}(k(v))$ -module structure on Q_* :

Let $E_* := \bigoplus_{n \in \mathbb{Z}} E_n$ where $E_n := \{ f \in End(Q_*) : f(Q_n) \subset Q_{m+n}; \forall m \in \mathbb{Z} \}$. E_* is called the graded ring of endomorphisms of Q_* .

Let $\bar{a} \in k(v)^*$, for $a \in O_v^*$. Suppose $\bar{a} = \bar{b}$ for some $b \in O_v^*$; $\implies b = \beta a$ where $\beta \equiv 1 \pmod{\pi}$. This is because $a - b = \pi^k u$ and $b \in O_v^*$, $k \geq 1$. $\implies b = a(1 - \pi^k u a^{-1})$ where $\beta = 1 - \pi^k u a^{-1} \equiv 1 \pmod{\pi}$ and $[b] = [a] + [\beta] + \eta[\beta][a]$. So, it is sufficient to check that $[\beta][d] \in A_*$ for $d \in F^*$. Writing $d = \pi^n u$; $n \in \mathbb{Z}$, $u \in O_v^*$ and using relations in $K_*^{MW}(F)$, it is enough to show that products of the form $[1 - \pi^n v][\pi] \in A_*$; $n > 0, v \in O_v^*$.

If n = 1, $[1 - \pi v][\pi v] = 0 \implies [\pi v] = [\pi](1 + \eta[v]) + [v] \implies [1 - \pi v][\pi](1 + \eta[v]) \in A_*$ but $1 + \eta[v] = \langle v \rangle$, a unit in $K_*^{MW}(F)$ and $\langle v^2 \rangle = 1$.

If $n \ge 2$, $1 - \pi^n v = (1 - \pi) + \pi (1 - \pi^{n-1} v) = (1 - \pi)(1 + \pi (\frac{1 - \pi^{n-1}}{1 - \pi})) = (1 - \pi)(1 - \pi w)$ for $w \in O_v^*$. So, $[1 - \pi^n v][\pi] = [1 - \pi][\pi] + [1\pi w][\pi] + \eta[1 - \pi][1 - \pi w][\pi] = [1 - \pi w][\pi] \in A_*$ by n = 1 case.

Similarly, $\eta \in E_{-1}$.

Since the module action is defined by lifting elements and multiplying in $K_*^{MW}(F)$, they satisfy the Milnor-Witt relations. So, we have a $K_*^{MW}(k(v))$ -module structure on Q_* . Let $[\pi] \in Q_1 = K_1^{MW}(F)/A_1$. $K_{*-1}^{MW(k(v))} \xrightarrow{f} Q_*$ defined by $\alpha \mapsto \alpha[\pi]$ is clearly a section of ∂_v^{π} : $Q_* \to K_{*-1}^{MW}(k(v))$. Now, if we show f is onto, we are done as then $\operatorname{Ker}(\partial_v^{\pi}) \subset A_* \subset \operatorname{Ker}(\partial_v^{\pi})$. So, $\mathbf{K}_*^{MW}(O_v)$ has the required generators. But any element of $K_*^{MW}(F)$ is a sum of elements of the form $\eta^m[\pi][u_2]...[u_n]$ and $\eta^m[u_1]...[u_n]$; $u_i \in O_v^*$ and the latter type of elements are in A_* while the former elements are in $Im(f) = Q_*$, hence we are done.

Theorem 3.2.5. There is a split short exact sequence of $K_*^{MW}(F)$ -modules:

$$0 \longrightarrow K_n^{MW}(F) \longrightarrow K_n^{MW}(F(T)) \xrightarrow{\sum \partial_{(P)}^P} \bigoplus_P K_{n-1}^{MW}(F[T]/P) \longrightarrow 0$$

where P runs over monic irreducibles in F[T].

Proof. (See 2)
$$\Box$$

Theorem 3.2.6. K_n^{MW} , $n \in \mathbb{Z}$ is a strongly A^1 -invariant sheaf of abelian groups on Sm_k .

Proof. Note that for all $n \in \mathbb{Z}$, $K_n^{MW}(F)$ is a $K_0^{MW}(F)$ -module, which by (see 3.1.9) gives a $\mathbb{Z}[F^*/(F^*)^2]$ -module structure on it that is clearly functorial. Also, we have the product $F^* \times K_n^{MW}(F) \to K_{n+1}^{MW}(F)$ induced by the grading in $K_*^{MW}(F)$ which is also functorial in F. So, we have (D4)(i) and (D4)(ii),

The residue maps ∂_v^{π} gives (D4)(iii), by (see 3.2.3) as we are taking ramification index 1. (B0), (B1) and (B2) clearly follow from our previous results on $K_n^{MW}(F)$.

By (see 3.2.3), (B3) follows. (HA)(i) follows from (see 3.2.5). (HA)(ii) follows from our definition of ∂_v^{π} .

The axioms (B4) and (B5) are also satisfied (see 2).

By (see 5.3.11), K_n^{MW} is an unramified sheaf of abelian groups on Sm_k that is also strongly A^1 -invariant.

3.3 Universality of \mathbf{K}_n^{MW}

Definition 3.3.1. Let $n \geq 1$ and $(\mathbb{G}_m)^{\wedge n}$ be the element of $Shv(\nu_{Nis})$ associated to the presheaf $S: X \to (O^*(X))^{\wedge n}$. Hence, it can be treated as an element of $H_{\bullet}(k)$, pointed by 1.

Proposition 3.3.2. $S \in Preshv(\nu)$ as in the above definition is an unramified sheaf of pointed sets.

Proof. As per definition of unramified presheaves and by the properties of the structure sheaf for a scheme, it is a Zariski sheaf. It is enough to check axiom (A1) to show it's a Nisnevich sheaf, as (A2) is clear from the properties of structure sheaf. For (A1), let $i: E \subset F$ be a separable extension in F_k , v a discrete valuation on F that restricts to w on E with ramification index 1. $S(O_w) \to S(O_v)$ is clear by choosing suitable models as in (see 5.2.9).

The second part also follows by noting that for a family of pointed sets $E_{\alpha} \in E$ where E is also a pointed set, we have $\bigcap_{\alpha} (E_{\alpha})^{\wedge n} = (\bigcap_{\alpha} E_{\alpha})^{\wedge n}$.

Definition 3.3.3. Fix an irreducible $X \in Sm_k$ with function field F. As X is irreducible, $(O(X)^*)^{\wedge n} \subset (F^*)^{\wedge n}$, where for any pointed set (A, a), $A^{\wedge n} := \frac{A^n}{A \vee ... \vee A}$ where the $A \vee A := \frac{A \coprod A}{A \times \{a\} \sim \{a\} \times A}$. So, we have a map $(O(X)^*)^{\wedge n} \to K_n^{MW}(F)$ such that $(u_1, ..., u_n) \mapsto [u_1]...[u_n]$. But $[u_1]...[u_n] \in \mathbf{K}_n^{MW}(X)$ by definition (see 3.2.1).

Proposition 3.3.4. The map $\sigma_n : (\mathbb{G}_m)^{\wedge n} \to \mathbf{K}_n^{MW}$ (called the canonical symbol map) is a morphism of sheaves on Sm_k .

Proof. It is defined on irreducible schemes and generalised as in (See 5.2.1). By Corollary (see 5.2.11), we just need to show that the following square commutes, as \mathbf{K}_n^{MW} is an unramified sheaf:

$$\mathbb{G}_{m}^{\wedge n}(O_{v}) \xrightarrow{s_{v}} \mathbb{G}_{m}^{\wedge n}(k(v))$$

$$\downarrow \sigma \qquad \qquad \downarrow \sigma$$

$$K_{n}^{MW}(O_{v}) \xrightarrow{s_{v}} K_{n}^{MW}(k(v))$$

Now, $\mathbb{G}_m^{\wedge n}(O_v) = (O_v^*)^{\wedge n}$ and the map s_v is just going mod the maximal ideal of O_v in each coordinate. Since the s_v on the bottom row maps $[u_1]...[u_n] \to [\bar{u_1}]...[\bar{u_n}]$,(see 3.2.1) the diagram commutes.

Theorem 3.3.5. Let $n \geq 1$. The morphism σ_n is the universal morphism from $(\mathbb{G}_m)^{\wedge n}$ to a strongly A^1 -invariant sheaf of abelian groups. That is, given a morphism of pointed sheaves $\phi: (\mathbb{G}_m)^{\wedge n} \to M$ where M is a strongly A^1 -invariant sheaf of abelian groups, there exists a unique morphism of sheaves of abelian groups (pointed by 0) Φ such the following diagram commutes:

Theorem 3.3.6. Suppose M is a strongly A^1 -invariant sheaf of abelian groups on Sm_k . Let $n \geq 1$ be an integer, and let $\phi : \mathbb{G}_m^{\wedge n} \to M$ be a morphism of pointed sheaves. Then, for any $F \in F_k$, there is a unique morphism $\Phi_n(F) : K_n^{MW}(F) \to M(F)$ such that for any $(u_1, ..., u_n) \in (F^*)^n$, $\Phi_n(F)([u_1, ..., u_n]) = \phi(u_1, ..., u_n)$.

Proof. Existence: We claim that it is enough to prove this for the base field k. To see this let $E \in F_k$ be the direct limit of the family E_{α} , each of finite type over k. Since k is perfect, we have each E_{α} finite separable over k, hence $Spec(E_{\alpha}) \to Spec(k)$ is smooth of finite type, and their inverse limit is $Spec(E) \in Sm'(k)$. So, we have the pullback $f_{\alpha}^{-1}: Sm_k \to Sm_{E_{\alpha}}$. $Sm_{E_{\alpha}}$ is endowed with Nisnevich topology such that we have the functor $(f_{\alpha})_*: Shv(Sm_{E_{\alpha}}) \to Shv(Sm_k)$ given by $F \mapsto F \circ f_{\alpha}^{-1}$. It has a left adjoint $f_{\alpha}^*: Shv(Sm_k) \to Shv(Sm_{E_{\alpha}})$, such that if a sheaf is represented by $X \in Sm_k$, then it is mapped to the sheaf $f_{\alpha}^*(X)$ represented by $f_{\alpha}^{-1}(X)$. Pulling back the map $\phi: (\mathbb{G}_{m,k})^{\wedge n} \to M$, we get a map of pointed sheaves on $Sm_{E_{\alpha}}, f_{\alpha}^*\phi: (\mathbb{G}_{m,E_{\alpha}})^{\wedge n} \to f_{\alpha}^*M$.

Clearly $\mathbb{G}_{m,k}$ is represented by k^* and hence by definition, $\mathbb{G}_{m,E_{\alpha}} = f_{\alpha}^*(\mathbb{G}_{m,k})$. This passed onto the smash product as $f_{\alpha}^*(X \wedge Y) = f_{\alpha}^*(X) \wedge f_{\alpha}^*(Y)$ for $X, Y \in Shv(Sm_k)$. By Lemma 5.1.2 (1) in (See 4), we have the bijection $\varinjlim_{\alpha} Hom_{Shv(Sm_{E_{\alpha}})}(f_{\alpha}^*(X), f_{\alpha}^*(F)) \to Hom_{Shv(Sm_E)}(f^*(X), f^*(F))$ for $X \in Sm_k, F \in Shv(Sm_k)$.

In our case, taking the pullback with respect to $k \subset E$, we get the map of pointed sheaves $(\mathbb{G}_m)^{\wedge n} \to f^*(M)$, where again by (See 4), $f^*(M)$ is strongly A^1 -invariant element of $Shv(Sm_E)$. But by definition, evaluating $f^*(M)$ at E we get M(E) by 5.1 (See 4). So, it is enough to prove the statement for F = k.

Since M is a strongly A^1 -invariant sheaf of abelian groups, by (See 2), we have the bijection between the sets $Hom_{Shv(\nu_{Nis})}(((\mathbb{G}_m)^{\wedge n}, 1), (M, 0)) \leftrightarrow Hom_{H_{\bullet}(k)}(\Sigma((\mathbb{G}_m)^{\wedge n}), K(M, 1)) \leftrightarrow M_{-n}(k)$.

For any $(u_1, ..., u_r) \in (k^*)^r$, $r \in \mathbb{N}$, we have pointed morphisms $[u_i] : S^0 \to \mathbb{G}_m$ determined by u_i . Taking the smash product of these morphisms and then the suspension, we get $\Sigma([u_1, ..., u_r]) : \Sigma S^0 \to \Sigma((\mathbb{G}_m)^{\wedge r})$.

By (See 2), we have for $X, Y \in H_{\bullet}(k), \Sigma(X) \vee \Sigma(Y) \vee \Sigma(X \wedge Y) \cong \Sigma(X \times Y)$ and the product map $\mu : \mathbb{G}_m \times \mathbb{G}_m \to \mathbb{G}_m$ induces the map $\Sigma(\mu) = \langle Id_{\Sigma(\mathbb{G}_m)}, Id_{\Sigma(\mathbb{G}_m)}, \eta \rangle$: $\Sigma(\mathbb{G}_m) \vee \Sigma(\mathbb{G}_m) \vee \Sigma((\mathbb{G}_m)^{\wedge 2}) \to \Sigma(\mathbb{G}_m)$.

Now, let $I = \{1, 2, ..., r\} = I_1 \coprod ... \coprod I_n$ be a partition of this finite set. We can define analogously a map $\eta_{I_1,...,I_n} : \Sigma((\mathbb{G}_m)^{\wedge r} \to \Sigma((\mathbb{G}_m)^{\wedge n}))$, by passing to the summand $\Pi_{j=1}^n \mathbb{G}_m^{|I_j|} \to \mathbb{G}_m^{|I_j|} \to \mathbb{G}_m$ is the multiplication map. Suppose we have another partition of I, the claim is that the induced maps in both cases are homotopic, i.e., same as elements of $Hom_{H_{\bullet}(k)}(\Sigma((\mathbb{G}_m)^{\wedge r}), \Sigma((\mathbb{G}_m)^{\wedge n}))$. We illustrate it for the maps $\eta_{12}, \eta_{23} : \Sigma((\mathbb{G}_m)^{\wedge 3}) \to \Sigma((\mathbb{G}_m)^{\wedge 2})$ obtained from μ_{12}, μ_{23} respectively. $\mu_{12} : \mathbb{G}_m^3 \to \mathbb{G}_m^2$; $(x,y,z) \mapsto (xy,z)$ and similarly for μ_{23} .

Lemma 3.3.7. The maps $\mathbb{G}_m \wedge \mathbb{G}_m \to \mathbb{G}_m \wedge \mathbb{G}_m$: $(x \wedge y \mapsto y \wedge x), Id \wedge (x \mapsto x^{-1})$ and $(x \mapsto x^{-1}) \wedge Id$ are all same as elements of $Hom_{H_{\bullet}(k)}(\Sigma(\mathbb{G}_m \wedge \mathbb{G}_m), \Sigma(\mathbb{G}_m \wedge \mathbb{G}_m))$.

Proof. (See
$$5$$
)

Now, let τ_{ij} denote the switch map for indices i and j. Clearly, $\mu_{23}:(x,y,z) \xrightarrow{\tau_{12}} (y,x,z) \xrightarrow{\tau_{23}} (y,z,x) \xrightarrow{\mu_{12}} (yz,x) \xrightarrow{\tau_{12}} (x,yz)$. Let i_j denote the map inverting the i^{th} coordinate, then $\mu_{12}:(x,y,z) \xrightarrow{i_1} (x^{-1},y,z) \xrightarrow{i_2} (x^{-1},y^{-1},z) \xrightarrow{\mu_{12}} ((xy)^{-1},z) \xrightarrow{i_1} (xy,z)$. Using the above lemma, we get the two maps η_{12},η_{23} are homotopic.

The pointed morphism $[ab]: S^0 \to \mathbb{G}_m$ factors as $S^0 \xrightarrow{[a][b]} \mathbb{G}_m \times \mathbb{G}_m \xrightarrow{\mu} \mathbb{G}_m$. Taking the suspension, we get $\Sigma([ab]) = \Sigma([a]) \vee \Sigma([b]) \vee \eta([a][b])$ in the group $Hom_{H_{\bullet}(k)}(\Sigma(S^0), \Sigma(\mathbb{G}_m))$ where the group operation is \vee .

The last relation in the definition of K_n^{MW} follows from similar arguments as in lemma 3.3.7. To prove the Steinberg relation, note that the morphism $[a,1-a]:S^{(0)}\to (\mathbb{G}_m)^{\wedge 2}$ factors in $H_{\bullet}(k)$ through $\tilde{\Sigma}(\mathbb{A}^1-\{0,1\})\xrightarrow{f}\Sigma(\mathbb{G}_m\wedge\mathbb{G}_m)$ as the morphism $Spec(k)\to\mathbb{G}_m\wedge\mathbb{G}_m$ factors through $\mathbb{A}^1-\{0,1\}$. From a result in 5, we have, f is a trivial morphism in $H_{\bullet}(k)$. So, we have proven that the mapping $[\eta^m,u_1,...,u_r]\to\eta^m\Sigma([u_1,...,u_n])\in M(k)$ factors through the relations in $K_n^{MW}(k)$.

Uniqueness: Uniqueness follows as $K_n^{MW}(F)$ is generated by the products $[u_1]...[u_n]$ if $n \geq 1$ and by the commutativity of the diagram in question.

Proof of Theorem 3.3.5. By Lemma 3.45 in (See 2), if M is A^1 -invariant sheaf of pointed sets on Sm_k , then, for any smooth irreducible scheme X with function field F, the map $M(X) \to M(F)$ is injective.

Now, by (See 5.2.11), as \mathbf{K}_n^{MW} is unramified, and that M is also unramified, to give a morphism of sheaves $\Phi: \mathbf{K}_n^{MW} \to M$ it is sufficient to give natural transformation $K_n^{MW}|_{F_k} \to M|_{F_k}$ such that:

- For any discrete valuation v on $F \in F_k$, the image of $\mathbf{K}_n^{MW}(O_v)$ through Φ is inside $M(O_v)$.
- The following square commutes:

$$\mathbf{K}_{n}^{MW}(O_{v}) \xrightarrow{s_{v}} \mathbf{K}_{n}^{MW}(k(v))$$

$$\downarrow^{\Phi} \qquad \qquad \downarrow^{\Phi}$$

$$M(O_{v}) \xrightarrow{M(k(v))}$$

From Theorem (See 3.2.4), $\mathbf{K}_n^{MW}(O_v)$ is generated by the symbols of the form $[u_1]...[u_n], u_i \in O_v^*$. For any such symbol, we have a smooth model X of O_v and a morphism $X \to (\mathbb{G}_m)^{\wedge n}$ which induces $[u_1]...[u_n]$ when composed with $(\mathbb{G}_m)^{\wedge n} \to \mathbf{K}_n^{MW}$. Note that here

 $X \in Shv(Sm_k)$ by the Yoneda embedding. So, composing with ϕ we get an element in $M(X) \subset M(O_v)$ which is also the image under Φ of $[u_1]...[u_n]$. So, we have shown $\mathbf{K}_n^{MW}(O_v) \to M(O_v)$.

For the second property, choose irreducible $X \in Sm_k$ with function field F, Y irreducible closed in X of codimension 1 such that $O_{X,Y} = O_v \subset F$. So, the u_i 's come from the map $Y \to X \to \mathbb{G}_m$. $\Longrightarrow \Phi([u_1]...[u_n]) \in M(O_v)$ comes from $Y \to X \to (\mathbb{G}_m)^{\wedge n} \to M$. Since k(v) is the function field of Y, the required diagram commutes.

4 Scissors Congruence group

The main theorem of this section is the following:

Theorem 4.0.1. Let F be a field such that char(F) = 0 and every element of F^* is a square, then $\not\exists \Phi: K_1^{MW}(F) \to P(F)$ such the following diagram commutes where $\phi: \mathbb{G}_m(F) \to P(F)$ is the canonical map sending $u \to [u], u \in F^* - \{1\}$ and $1 \to 0$.

Proof. Suppose to the contrary such a Φ exists. Then, by definition of σ as in (See 3.2.1), $\Phi([u]) = [u], u \in F^* - \{1\}. \text{ In } K_1^{MW}(F), [u(1-u)] = [u] + [1-u] \implies [u(1-u)] = [u] + [1-u] \in P(F), \forall u \in F^* - \{1\}.$

Observe the following relations in P(F):

1.
$$[x] - [y] + [\frac{y}{x}] - [\frac{1-x^1}{1-y^{-1}}] + [\frac{1-x}{1-y}]$$
 and

2.
$$[1-y] - [1-x] + [\frac{1-x}{1-y}] - [\frac{1-x^1}{1-y^{-1}}] + [\frac{y}{x}]$$
, replacing x by $(1-y)$ and y by $(1-x)$.

Subtracting (2) from (1), we get $[x] + [1-x] = [y] + [1-y], \forall x, y \in F^* - \{1\}.$

So, $[u(1-u)] = [v(1-v)], \forall u, v \in F^* - \{1\}$. Since every element of F is a square, every quadratic equation in F has a solution in F, i.e., given $z \in F^* - \{1\}, \exists u \in F^* - \{1\}$: u(1-u) = z. So, $[x] = [y] \in P(F), \forall x, y \in F^* - \{1\}$. But since we have a 5-term relation as in (1) above in P(F), we have $[x] = 0 \in P(F), \forall x \in F^* - \{1\} \implies P(F) = 0$.

Now, recall from (1) the exact sequence obtained while computing $K_2^M(F)$ using spectral sequence for equivariant homology:

$$P(F) \xrightarrow{z \mapsto z \land (1-z)} F^* \land F^* \xrightarrow{a \land b \mapsto \{a,b\}} K_2^M(F) \longrightarrow 0$$

If P(F) = 0 we have $F^* \wedge F^* \cong K_2^M(F)$ where $F^* \wedge F^* := \frac{F^* \bigotimes_{\mathbb{Z}} F^*}{\langle a \otimes b + b \otimes a \rangle}$. By the above exact sequence, we then have $a \wedge (1-a) = 0, \forall a \in F^* - \{1\}$. Since char(F) = 0, we have that

 $-2, 3 \in F^*$ are \mathbb{Z} -linearly independent as $(-2)^a \neq 3^b$ in $\mathbb{Q}, \forall a, b \in \mathbb{Z}$. Let G = <-2, 3>, the subgroup of F^* generated by 2 and 3. So, G is free abelian of rank 2. Consider the following commutative diagram:

The map on the bottom is injective as $G \bigotimes_{\mathbb{Z}} \mathbb{Q}$ is a vector subspace of $F^* \bigotimes_{\mathbb{Z}} \mathbb{Q}$. Now, $\bigwedge_{\mathbb{Q}}^2 (G \bigotimes_{\mathbb{Z}} \mathbb{Q})$ is a \mathbb{Q} -vector space spanned by $((-2) \otimes 1) \wedge (3 \otimes 1)$ which is 0 in $\bigwedge_{\mathbb{Q}}^2 (F^* \bigotimes_{\mathbb{Z}} \mathbb{Q})$ by our assumption. A contradiction!

So, no such Φ exists.

Remark 4.0.2. • By (see 3.1.10), if F is quadratically closed, $K_1^{MW}(F) \cong K_1^M(F)$ and in the latter we have $[xy] = [x] + [y]; \forall x, y \in F^*$. Applying this to the 5-term relation in P(F), we get $[x] = [y]; \forall x, y \in F^*$ which implies the above the theorem, as then P(F) = 0.

- From (see 6), $\mathbb{Z}(\mathbb{G}_m)$ is a A^1 -invariant sheaf of abelian groups which is not strongly A^1 -invariant, where $\mathbb{Z}(\mathbb{G}_m)(X) = \mathbb{Z}(O(X)^* \{1\})$, the free abelian group generated by elements of $O(X)^* \{1\}$. Similarly, if we define P(X) by the quotient naively, we get a sheaf (after sheafifying). So, $P \in Shv(\nu_{\tau})$.
- Note that since direct limit is exact, we have for a field $F \in F_k$, this new definition of P(F) agrees with the old one since $\mathbb{Z}(\mathbb{G}_m)(F) = \mathbb{Z}(F^* \{1\})$. Again by (see 6), the inclusion as generators of \mathbb{G}_m in $\mathbb{Z}(\mathbb{G}_m)$ sending $1 \in \mathbb{G}_m$ to 0 is a morphism of pointed sheaves. With our new definition of P we get a map of pointed sheaves $\mathbb{G}_m \to P$ obtained by composing $\mathbb{G}_m \to \mathbb{Z}(\mathbb{G}_m) \to P$.
- Suppose that $P \in Shv(\nu_{\tau})$ is strongly A^1 -invariant, then by theorem (see 3.3.6), we

have the following commutative diagram:

But for quadratically closed fields of characteristic 0, we have by theorem (see 4.0.1), a contradiction. So, we have the following theorem.

Theorem 4.0.3. For k, quadratically closed of characteristic 0, P can not be extended (naively) as a strongly A^1 -invariant sheaf of abelian groups on Sm_k .

Corollary 4.0.4. In the naive way as before, $W(F) := F^* \wedge F^*$ can not be extended as a strongly A^1 -invariant sheaf of abelian groups on Sm_k when k is of characteristic 0.

Proof. Suppose it were, again as in case of P(F), we have the following commutative diagram:

Note that our map from $\mathbb{G}_m^{\wedge 2}$ is defined as $a \wedge 1 = 0 = 1 \wedge a \in F^* \wedge F^*; \forall a \in F^*. 0 = [a][1-a] \mapsto a \wedge (1-a)$

But then again as in theorem (see 4.0.1) for k of characteristics $0, 3 \land (-2) \neq 0 \in F^* \land F^*$. A contradiction.

5 Results from A^1 -homotopy theory

In this section, we collect results from A^1 -homotopy theory that has been cited several times in the previous sections. Everywhere in the section, k is a perfect field and Sm_k denotes the category of smooth k-schemes of finite type. Let ν denote this category. For any scheme Xand $x \in X$, $(O_{X,x}, m_x)$ denotes the local ring at x with residue field k(x). In case the point is of codimension 1 in X, we will occasionally denote the residue field by k(v) where v is the discrete valuation at x on K := K(X), the function field of X.

5.1 Preliminaries

Definition 5.1.1 (Nisnevich Topology on Sm_k). Let $\{U_\alpha \to X\}_\alpha$ be a finite family of etale morphisms in ν . It is called a Nisnevich covering if for each point $x \in X$, there exists some $y_\alpha \in U_\alpha$ such that $f_\alpha(y_\alpha) = x$ and $k(y_\alpha) \cong k(x)$ via f_α . The Grothendieck topology generated by this covering is called the Nisnevich topology on ν .

- **Remark 5.1.2.** A covering $\{U_{\alpha} \to X\}_{\alpha}$ is called an etale covering if X is the union of the images of U_{α} 's and the f_{α} 's are etale.
 - It is called a Zariski covering if f_{α} 's are open immersions and their images cover X.
 - Let $Preshv(\nu)$ be the category of presheaves of sets on Sm_k . Let τ denote any one of three topologies Nis, Et, Zar. We call an F in $Preshv(\nu)$ a sheaf in τ -topology if for any covering family in the τ -topology as in the definition, the set F(X) is the equalizer of the two maps on the right:

$$F(X) \longrightarrow \Pi_{\alpha} F(U_{\alpha}) \qquad \Rightarrow \qquad \Pi_{\alpha,\beta} F(U_{\alpha} \times_X U_{\beta})$$

• Denote by $Shv(\nu_{\tau})$ be the full subcategory of sheaves in τ -topology in $Preshv(\nu)$. For any $X \in \nu$, we have the element of $Shv(\nu_{Et})$ defined by $Y \mapsto Hom_{\nu}(Y,X)$. This is a fully faithful embedding. Clearly, from the definition and above remarks, $\nu \subset Shv(\nu_{Et}) \subset Shv(\nu_{Nis}) \subset Shv(\nu_{Zar}) \subset Preshv(\nu)$. 5.1 Preliminaries 24

Definition 5.1.3 (Distinguished square). A distinguished square in ν is a cartesian square such that p is an etale morphism and i is an open immersion and $p^{-1}(X - U) \to (X - U)$ is an isomorphism when both are considered with reduced structures.

$$\begin{array}{ccc}
W & \longrightarrow & V \\
\downarrow & & \downarrow & \downarrow \\
U & \longrightarrow & X
\end{array}$$

Lemma 5.1.4. Let $F \in Preshv(\nu)$. Then, $F \in Shv(\nu_{Nis})$ iff for any distinguished square as above the map $F(X) \to F(U) \times_{F(W)} F(V)$ is bijective, i.e., the following square is cartesian:

$$F(X) \longrightarrow F(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F(V) \longrightarrow F(W)$$

Lemma 5.1.5 (Associated sheaf). For any τ , we have a left adjoint $a_{\tau} : Preshv(\nu) \to Shv(\nu_{\tau})$ to the inclusion, i.e, $Hom_{Shv(\nu_{\tau})}(a_{\tau}(F), G)$ is in a natural bijection with $Hom_{Preshv(\nu)}(F, G)$. This sheaf is obtained by the usual sheafification of Grothendieck topologies.

Definition 5.1.6 (Simplicial Presheaves). Let Δ denote the category of ordered set $[n] := \{0, 1, ..., n\}$ and order-preserving set maps. We have two distinguished maps $d^i : [n-1] \to [n]$ (forgetting i) and $s^i : [n+1] \to [n]$ (repeating i). Denote by $\Delta^{op}Shv(\nu_{\tau})$ the category of functors from $\Delta^{op} \to Shv(\nu_{\tau})$. This is called the category of simplicial sheaves on ν_{τ} .

- Remark 5.1.7. If $S \in Shv(\nu_{\tau})$ (for example \mathbb{G}_m), then it is seen as an element of $\Delta^{op}Shv(\nu_{\tau})$ by treatig it as a simplex whose every degree is the constant sheaf S and all morphisms are identity.
 - For any set E, the presheaf that assigns to each $X \in Sm_k$, the set E is denoted by E. This is also a sheaf in Et and Nis. This gives a functor $Set \to Shv(\nu_{\tau})$ which extends to a functor $\Delta^{op}Set \to \Delta^{op}Shv(\nu_{\tau})$. This is a fully faithful embedding. For a simplicial set K, denote its associated simplicial sheaf by K.

- For each $n \geq 0$ let Δ^n be the standard simplex. $S^1 := \Delta^1/\Delta^0$, where the quotient takes place in $\Delta^{op}Set$.
- Similarly, for $X, Y \in \Delta^{op}Shv(\nu_{\tau}), X \vee Y$ and $X \wedge Y$ makes sense. (Wedge, like quotient, is the colimit of certain diagrams which exist in $\Delta^{op}Shv(\nu_{\tau})$.
- $\Sigma(X) := X \wedge S^1$ is called the suspension.

Definition 5.1.8 (Points in $Shv(\nu_{\tau})$). For $\tau = Nis$ or Zar, a τ -point x is a morphism $x : Spec(K) \to X$ in $Sm_k = \nu$, where residue field of the image of Spec(K) is K.

Definition 5.1.9 (Neighbourhoods). For a τ -point $x \in X$, the neighbourhood of x (Neib $_{\tau}^{x}$) is the category of pairs $f: U \to X; x: Spec(K) \to U$ such that f is etale and U is irreducible and we have some y, τ -point of U with same residue field K which lifts x.

- **Remark 5.1.10.** For $x: Spec(K) \to X$, a τ -point in ν . The fibre of any $F \in Preshv(\nu)$ at x is defined to be $F_x := \varinjlim_{(U \to X, y) \in Neib_{\tau}^x} F(U)$. For example, for the affine line \mathbb{A}^1 , the fibre is $O_{X,x}$.
 - The canonical map $F_x \to a_\tau(F)_x$ is a bijection.
 - A morphism in $Shv(\nu_{\tau})$ is an isomorphism iff it induces bijection at the fibres.

Definition 5.1.11 (A^1 -invariance). For an $S \in \nu_{Nis}$, we have the following definitions:

- A^1 -invariant if for any $X \in \nu$, the map $S(X) \to S(X \times \mathbb{A}^1)$ induced by projection, is a bijection.
- Let it be a sheaf of groups. It is called strongly A^1 -invariant if for $i = 0, 1, H^i_{Nis}(X; S) \to H^i_{Nis}(X \times \mathbb{A}^1; S)$, induced by projection, is a bijection.

5.2 Unramified Sheaf of sets

Definition 5.2.1. An unramified presheaf of sets S on Sm_k is a presheaf of sets such that:

- 1. If $X \in Sm_k$ has irreducible components X_{α} , then the induced map $S(X) \to \Pi_{\alpha}S(X_{\alpha})$ is bijective.
- 2. If U is an open subscheme of $X \in Sm_k$ that is dense in each irreducible component of X, then $S(X) \to S(U)$ is injective.

3. For any irreducible $X \in Sm_k$ and $x \in X$, define $S(O_{X,x}) := \varinjlim_{x \in U, U \in Nb_{Zar}^x} S(U)$, $S(F) := S(O_{X,x_0})$, where x_0 is the generic point of X. Then, by (2), $S(X) \subset S(O_{X,x}) \subset S(F)$, $\forall x \in X^{(1)}$. We demand that the map $S(X) \to \bigcap_{x \in X^{(1)}} \subset S(F)$ is a bijection.

Proposition 5.2.2. Any unramified presheaf as above is automatically a Zariski sheaf.

Proof. Replacing each term in the diagram and using (3) from the above definition we need to show the following diagram is exact: $\bigcap_{x \in X^{(1)}} S(O_{X,x}) \to \prod_{\alpha} \bigcap_{x \in U_{\alpha}^{(1)}} S(O_{U_{\alpha},x}) \stackrel{\rightarrow}{\to} \prod_{\alpha,\beta} \bigcap_{x \in U_{\alpha,\beta}^{(1)}} S(O_{U_{\alpha,\beta},x})$. But $x \in X^{(1)}$ iff $x \in U_{\alpha}^{(1)}$ for some α iff $x \in U_{\alpha,\beta}^{(1)}$ for some β as $U_{\alpha,\beta} = U_{\alpha} \times_X U_{\beta} = U_{\alpha} \cap U_{\beta}$ and $O_{X,x} = O_{U_{\alpha,x}} = O_{U_{\alpha,\beta},x}$ imply the required exactness. \square

Remark 5.2.3. • It is true that for any X essentially smooth over k (see 2) and irreducible with function field F, condition (3) in the above definition holds.

- As we will see next, any strictly A^1 -invariant sheaf on Sm_k is unramified; and any strongly A^1 -invariant sheaf is strictly A^1 -invariant.
- Some examples of unramified sheaves that existed well before this definition are Rost's cycle modules (See 2) and the sheaf associated to the Witt groups (See 2).

Proposition 5.2.4. Strictly (Strongly) A^1 -invariant \implies Unramfified

Definition 5.2.5 (Unramified \tilde{F}_k -datum). We have the following data:

- (D1) A continuous functor $S: F_k \to Set$. By continuous, we mean S(F) is the direct limit of $S(F_\alpha)$'s where F_α 's run over subfields of F of finite type (finitely generated) over k.
- (D2) For any F and any discrete valuation v on F, a subset $S(O_v) \subset S(F)$ Satisfying the following axioms:
- (A1) If $i: E \subset F$ is a separable extension in F_k and v, a discrete valuation on F that restricts to a discrete valuation w on E with ramification index 1, then S(i) maps $S(O_w)$ into $S(O_v)$. Moreover, if the induced extension $\bar{i}: k(w) \to k(v)$ is an isomorphism, then

the following square is cartesian:

$$S(O_w) \xrightarrow{S(O_v)} S(O_v)$$

$$\downarrow \qquad \qquad \downarrow^p$$

$$S(E) \xrightarrow{S(i)} S(F)$$

(A2) Let $X \in Sm_k$ irreducible with function field F. If $x \in S(F)$, then x lies in all but a finite number of $S(O_x)$'s, where x runs over the set $X^{(1)}$.

Theorem 5.2.6. The category of unramified sheaves on \tilde{Sm}_k is equivalent to the category of unramfied \tilde{F}_k -datum.

Proof. As seen in the definition, given an unramified sheaf S on $S\tilde{m}_k$, we can take a smooth model in Sm_k for $F \in \tilde{F}_k$ and evaluate S at it as in definition (see 5.2.1). If v is a discrete valuation of F, there exists $X \in Sm_k, x \in X^{(1)}$ such that function field of X is F and v comes from x. Now, as argued in definition, by using (2), we have $S(O_v) \subset S(F)$. To prove (A1), we have models X and Y in Sm_k irreducible with function fields E and F respectively and a smooth map $f: X \to Y$ mapping the generic point of X to that of Y. This induces the map $S(E) \to S(F)$. We can modify this such that the point $x \in X$ giving x maps to the point $x \in X$ giving x via x. Then, for any open subscheme x0 of x2 containing x3, we have the square:

$$S(U) \longrightarrow S(f^{-1}(U))$$

$$\downarrow \qquad \qquad \downarrow$$

$$S(E) \longrightarrow S(F)$$

Taking the colimit over this diagram, we get $S(O_w)$ maps into $S(O_v)$. Now, the following is an elementary distinguished square over $Spec(O_w)$:

$$Spec(F) \longrightarrow Spec(O_v)$$

$$\downarrow \qquad \qquad \downarrow$$

$$Spec(E) \longrightarrow Spec(O_w)$$

which is the colimit of the following diagram where V is a smooth model for Spec(F) and X is a smooth model for Spec(E).

$$\begin{array}{ccc}
U \times_X V & \longrightarrow & V \\
\downarrow & & \downarrow^p \\
U & \longrightarrow & X
\end{array}$$

By 5.1.4, the required square in (A1) is cartesian. To prove (A2), note that any $s \in S(F)$ by definition, comes from an element in S(U), where U is an open subscheme of X. But as X is irreducible, $U^c \cap X^{(1)}$ is a finite set. So, the element s lies in all $S(O_{X,x}), x \in U$ and the rest of the x's are finite.

For the reverse map, given any \tilde{F}_k -datum S, and any $X \in Sm_k$, define $S(X) := \bigcap_{x \in X^{(1)}} S(O_{X,x}) \subset S(F)$. Extend it to all $X \in Sm_k$ such that (1) is true in definition. Now given a smooth morphism $f: Y \to X$, we can assume Y and X are irreducible with function field E and F respectively. Since image of f is open, we can assume it is dominant. So, if $x \in X^1$, $f^{-1}(x)$ has finitely many irreducible components and the generic points of those components are of codimension 1 in Y. Using (A1) and the definition of S(X), we have the desired map S(f). From second part of (A1) and (see 5.1.4), this gives a sheaf in the Nisnevich topology and is inverse to the earlier functor.

Definition 5.2.7 (Unramified F_k -datum). It is an unramified \tilde{F}_k -datum along with: (D3) For any $F \in F_k$ and a discrete valuation v on F, a map $s_v : S(O_v) \to S(k(v))$, called the specialization map associated to v, such that the following axioms are satisfied:

(A3)(i) If $i: E \subset F$ is an extension in F_k , v, a discrete valuation on F that restricts to a discrete valuation w on E, then S(i) maps $S(O_w)$ to $S(O_v)$ and the following diagram is commutative:

$$S(O_w) \longrightarrow S(O_v)$$

$$\downarrow \qquad \qquad \downarrow$$

$$S(E) \longrightarrow S(F)$$

(A3)(ii) If v as above restricts to 0 on E, then $Image(S(i)) \subset S(O_v)$. Here, $j : E \subset k(v)$ is a field extension. We demand that $S(E) \to S(O_v) \xrightarrow{s_v} S(k(v))$ is equal to S(j).

- (A4)(i) For any X, essentially smooth scheme, local of dimension 2 with closed point $z \in X^{(2)}$, and for any point $y_0 \in X^{(1)}$ with $\bar{y_0}$ essentially smooth scheme, then $s_{y_0} : S(O_{y_0}) \to S(k(y_0))$ maps $\cap_{y \in X^{(1)}} S(O_y)$ into $S(O_{\bar{y_0},z}) \subset S(k(y_0))$.
- (A4)(ii) The composition $\cap_{y \in X^{(1)}} S(O_y) \to S(O_{\bar{y_0},z}) \to S(k(z))$, doesn't depend on the choice of y_0 such that y_0 is essentially smooth over k.

Theorem 5.2.8. The category of unramified sheaves on Sm_k is equivalent to the category of unramfied F_k -datum.

Proof. Given an unramified sheaf S on Sm_k , we have unramified \tilde{F}_k -data. If v is a discrete valuation on $F \in F_k$ with residue field k(v) separable over k, then by choosing smooth models for the closed immersion $Spec(k(v)) \to Spec(O_v)$, we get the specialisation map s_v . We have a smooth X and x a codimension 1 point in X with closure Z. As k(v) is separable over k, we may assume Z is smooth. As $S(O_v)$ is the direct limit of S(U) over all U open (affine say) neighbourhoods U of x iin X, taking the direct limit over $S(U) \to S(U \cap Z)$, we get a map $S(O_v) \to S(k(v))$. Note that k(v) is the function field of Z. To check (A3)(i), we can assume X and Y are irreducible and $f: X \to Y$ a smooth map mapping generic points to each other and v to w. So, (A3)(i) follows as we have the commutative square:

(A3)(ii) follows by choosing similar models where v maps to the generic point of Y (as the vaulation restricts to 0).

To show (A4)(i), note that we have:

$$\bar{y_0} \cap U \longrightarrow U \qquad S(X) \longrightarrow S(O_{y_0})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\bar{y_0} \longrightarrow X \qquad S(\bar{y_0}) \longrightarrow S(k(y_0))$$

Replacing X by any open subscheme U containing z, and $\bar{y_0}$ by $U \cap \bar{y_0}$, we get:

$$S(O_z) \longrightarrow S(O_{y_0})$$

$$\downarrow \qquad \qquad \downarrow$$

$$S(O_{\bar{y_0},z}) \longrightarrow S(k(y_0))$$

So, we get (A4)(i). For the second part, we have:

Now, (A4)(ii) follows as every open set containing z contains all codimension 1 points y such that $z \in \bar{y}$.

Lemma 5.2.9. Given an unramified F_k -datum S, there is a unique way to extend the unramified sheaf of sets $S: \tilde{Sm}_k^{op} \to Set$ to a sheaf $S: (Sm_k)^{op} \to Set$ such that for any discrete valuation v on $F \in F_k$ with separable residue field, the map $S(O_v) \to S(k(v))$ induced by the sheaf structure is the specialization map $s_v: S(O_v) \to S(k(v))$. This sheaf is automatically unramified.

Proof. We first define a restriction map $s(i): S(X) \to S(Y)$ for a closed immersion $i: Y \to X$ in Sm_k of codimension 1. If $Y = \coprod_{\alpha} Y_{\alpha}$ be the decomposition of Y into irreducible components. Then, $S(Y) = \prod_{\alpha} S(Y_{\alpha})$ and s(i) is the product of $s(i_{\alpha}): S(X) \to S(Y_{\alpha})$. Hence, we may assume without loss of generality that Y and X (as image of irreducible is irreducible) are irreducible. Now, we show the existence of $s(i): S(X) \to S(Y)$ such that the following diagram commutes where $y \in Y$ is the generic point of Y.

$$S(X) \xrightarrow{s(i)} S(Y)$$

$$\downarrow \qquad \qquad \downarrow$$

$$S(O_{X,y}) \xrightarrow{s_y} S(k(y))$$

If such a map exists, then by commutativity of the previous diagram and by definition of unramified sheaves, s_y will map S(X) inside $S(O_{Y,z}); \forall z \in Y^{(1)}$. So, to get the above map it is

sufficient to prove that for any $z \in Y^{(1)}$, the image of S(X) through s_y is contained in $S(O_{Y,z})$. Note that z has codimension 2 in X; so by (A4)(i), s_y maps $\bigcap_{x \in X^{(1)}} S(O_{X,x}) \subset \bigcap_{y \in X_z^{(1)}} S(O_y)$ into $S(O_{Y,z})$.

Lemma 5.2.10. Suppose $i: Z \to X$ is a closed immersion in Sm_k of codimension d > 0. Suppose there is a factorisation of i into a composition of codimension 1 closed immersions, with Y_i closed subschemes of X and each smooth over k:

$$Z \xrightarrow{j_1} Y_1 \xrightarrow{j_2} Y_2 \longrightarrow \cdots \xrightarrow{j_d} Y_d = X$$

Then, upon applying S, the composition doesn't depend on the choice of the above factorisation of i:

$$S(X) \xrightarrow{S(j_d)} \cdots \longrightarrow S(Y_2) \xrightarrow{S(j_2)} S(Y_1) \xrightarrow{S(j_1)} S(Z)$$

Denote this composition by S(i).

Proof. We prove this by induction on d. For d = 1, the claim is obvious. So, let $d \ge 2$. As in the arguments earlier, since S is unramified, we can reduce to the case when Z is irreducible with generic point z. Similarly, we can also assume X is irreducible in Sm_k . Now, by the commutativity of the following diagram and the fact that $S(X) \to S(U)$ is injective for U open subscheme of X irreducible in Sm_k , we can reduce to the case of an open subscheme of X containing z, in particular, $Spec(O_{X,z})$:

$$S(X) \xrightarrow{S(j_d)} \cdots \longrightarrow S(Y_2) \xrightarrow{S(j_2)} S(Y_1) \xrightarrow{S(j_1)} S(Z)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S(U) \longrightarrow \cdots \longrightarrow S(Y_2 \cap U) \longrightarrow S(Y_1 \cap U) \longrightarrow S(Z \cap U)$$

Note that as k(z) is separable over k (as z is the generic point of $Z \in Sm_k$, which corresponds to Spec(k(z))), by (A4), $S(X) = \bigcap_{y \in X^{(1)}} S(O_y) \to S(O_{\bar{y_0},z}) \to S(k(z))$ is independent of the choice of y_0 . This proves the claim for d = 2.

Now, for the open set around z, $Spec(O_{X,z})$, we know that as Z is irreducible smooth over k, $O_{X,z}$ is a regular local ring of dimension d as Z is of codimension d in X. So,

there exists a sequence of elements $(x_1, ..., x_d) \in m_{X,z} \leq O_{X,z}$. The following flag induces $Z \cap U \to Y_1 \cap U \to Y_2 \cap U \to ... \to X \cap U$:

$$Spec(A/(x_1,...,x_d)) \longrightarrow Spec(A/(x_2,...,x_d)) \longrightarrow \cdots \longrightarrow Spec(A/(x_d)) \longrightarrow Spec(A/(x_d))$$

where $A := O_{X,z}$. After S acts, we have to show that the resulting sequence is independent of the choice of generators $(x_1, ..., x_d)$. Each such choice of parameters comes from a k(z)-vector space $m_{X,z}/m_{X,z}^2$. Any two bases differ by an element of $Gl_d(k(z))$ which lifts to a matrix $M \in M_d(A)$. If we permute x_i and x_{i+1} , by case d = 2, the composition $S(A) \to S(k(z))$ doesn't change after permutation.

Since A is local, the lift $M \in Gl_d(A)$. Multiplying by a unit of A to some element x_i doesn't change the flag. So, without loss of generality, we may assume that det(M) = 1. Since A is local, $Sl_d(A) = E_d(A)$; so M splits as a product of elementary matrices in A. Since we have handled permutations, we just need to show that the sequence $(x_1 + ax_2, x_2, ..., x_n)$ induces the same map $S(A) \to S(k(z))$. But this is trivial as both sequences induce the same flag.

Now, let $i: Z \to X$ be a closed immersion in Sm_k . As above, X can be covered by open sets U such that the induced closed immersion $U \cap Z \to U$ admits a factorization as in the previous lemma. We have $s_U: S(U) \to S(U \cap Z)$. Applying the previous lemma to the intersection of these U's, we get that the s_U 's are compatible. So, we get $S(i): S(X) \to S(Z)$. Now, for any $f \in Hom_{Sm_k}(Y,X)$, it can be factored as $Y \to Y \times_k X \to X$ where the first map is a closed immersion and the second map is a smooth projection. Applying S, we get $S(f): S(X) \to S(Y \times_k X) \to S(Y)$. If we have a smooth morphism $\pi: X' \to X$ and closed immersion $i: Z \to X$ in Sm_k . Let $p_{X'}: Z \times_X X' \to X'$ and $p_Z: Z \times_X X' \to Z$. Then, the following diagram is commutative:

$$S(X) \xrightarrow{S(\pi)} S(X')$$

$$\downarrow^{S(i)} \qquad \qquad \downarrow^{S(p_{X'})}$$

$$S(Z) \xrightarrow{S(p_z)} S(Z \times_X X')$$

Note that we can reduce to the case using the proof of previous lemma that the closed immersion is of codimension 1 and both X and Z are irreducible. But then the commutativity of the diagram follows from (A3)(i). To prove the functoriality in Sm_k , let $Z \to Y \to X$ in Sm_k . We have the commutative diagram:

Applying S gives us a commutative diagram. It is unramified as a presheaf on Sm_k as the definitions depend on its restriction to $\tilde{Sm_k}$.

Corollary 5.2.11. Let S and G be sheaves of sets on Sm_k with S unramified and G satisfying the first two properties of definition (see 5.2.1); then to give a morphism ϕ between G and S is equivalent to giving a natural transformation $G|_{F_k} \to S|_{F_k}$ such that:

- for any discrete valuation v on $F \in F_k$, the image of $G(O_v)$ under ϕ is contained in $S(O_v)$.
- If the residue field is separable over k, then the induced square commutes:

$$G(O_v) \xrightarrow{s_v} G(k(v))$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\phi}$$

$$S(O_v) \xrightarrow{} S(k(v))$$

Proof. If we have a morphism of sheaves over Sm_k , these two properties are clear. Conversely, suppose we have the two properties, then $G(X) \to S(X)$ exists by definition of G and S on Sm_k and the first property. By the second property, if $Z \to X$ is a closed immersion of

codimension 1, we have:

$$G(X) \longrightarrow G(Z)$$

$$\downarrow \qquad \qquad \downarrow$$

$$S(X) \longrightarrow S(Z)$$

Now, following the proof of the previous two lemmas, we have by S being unramified, a morphism of sheaves.

5.3 Unramfied Sheaf of groups

Definition 5.3.1. Let G be an unramified sheaf of groups on Sm_k (or Sm_k). For any discrete valuation v on $F \in F_k$, let $H_v^1(O_v; G) := G(F)/G(O_v)$, a left G(F)-set pointed by $G(O_v)$. Generalizing this let $y \in X^{(1)}, X \in Sm_k, H_y^1(X; G) := H_y^1(O_{X,y}; G)$. Define the weak product $\Pi'_{y \in X^{(1)}} H_y^1(X; G) \subset \Pi_{y \in X^{(1)}} H_y^1(X; G)$ by the set of "tuples" in $\Pi_{y \in X^{(1)}} H_y^1(X; G)$ such that all but finitely many of the coordinates are the base point of $H_y^1(X; G)$. By the axiom (A2) of unramified datum on F_k , if X is irreducible with function field F, the induced action of G(F) on $\Pi_{y \in X^{(1)}} H_y^1(X; G)$ preserves the weak product. Clearly, the isotropy group of this action of G(F) on the base point of the weak product is $G(X) = \bigcap_{y \in X^{(1)}} H_v^1(X; G)$.

Definition 5.3.2. Let $1 \to H \subset G \Rightarrow E \to F$ be a sequence with G acting on a set E (double arrow denote the left action) which is pointed as a set; H is a subgroup of G and the map $E \to F$ is a G-equivariant map of sets where F is endowed with a trivial action. This sequence is called exact if the isotropy group of the base point of E is H and the kernel of the pointed map (pre-image of the image of the base point of E) between E and F is equal to the orbit under G of the base point of E.

We say it is exact in the strong sense if moreover the map $E \to F$ induces an injection into F of the left quotient set G E. Hence, in this language the following sequence is exact: $1 \to G(X) \to G(F) \rightrightarrows \Pi'_{y \in X^{(1)}} H^1_y(X; G).$

Definition 5.3.3. For any point $z \in X^{(2)}$; $X \in Sm_k$, $H_z^2(X;G) := \text{Orbit of the weak product}$ under the left action of G(F), where $F \in F_k$ is the function field of $X_z := Spec(O_{X,z})$. (Note

that this is the function field of if X is irreducible). Hence, for X essentially smooth with function field F we have a G(F)-equivariant map $\Pi'_{y \in X^{(1)}} H^1_y(X; G) \to \Pi'_{y \in X^{(1)}} H^1_y(X; G) \to H^2_z(X; G)$. So, we have a G(F)-equivariant map $\Pi'_{y \in X^{(1)}} H^1_y(X; G) \to \Pi_{z \in X^{(2)}} H^2_z(X; G)$ and it's not clear whether the image of the weak product in LHS lies in the weak product contained in the RHS. So, we impose that axiom:

(A2') For any irreducible essentially smooth k-scheme X, the image of the above map is contained in the weak product.

So, we have the following diagram; a complex $C^*(X;G)$ of groups, actions and pointed sets:

$$1 \longrightarrow G(X) \hookrightarrow G(F) \quad \exists \quad \Pi'_{y \in X^{(1)}} H^1_y(X;G) \longrightarrow \Pi_{z \in X^{(1)}} H^2_z(X;G)$$

Define for $X \in Sm_k$:

- $\bullet \ \ G^{(0)}(X) := \Pi_{x \in X^{(0)}}' G(k(x))$
- $G^{(1)}(X) := \prod_{x \in X^{(1)}}' H_y^1(X; G)$
- $\bullet \ \ G^{(2)}(X):=\Pi'_{x\in X^{(2)}}H^2_z(X;G)$

Lemma 5.3.4. The presheaf $X \mapsto G^{(i)}(X)$; $i \leq 2$ can be extended to an unramified presheaf of groups on \tilde{Sm}_k . So, they are Zariski sheaves. However, $G^{(0)}$ is also a Nisnevich sheaf.

Definition 5.3.5. We add two more axioms for G which will aid in showing strong A^1 -invariance.

(A5)(i) For separable field extension $E \subset F$ in F_k and any discrete valuation v on F, restricting to w on E with ramification index 1 and such that $\bar{i}: k(w) \to k(v)$ is an isomorphism, then commutative square of groups induces a bijection $H^1_v(O_v; G) \cong H^1_w(O_w; G)$:

$$G(O_w) \hookrightarrow G(E)$$

$$\downarrow \qquad \qquad \downarrow$$

$$G(O_v) \hookrightarrow G(F)$$

- (A5)(ii) For any etale morphism $X' \to X$ between smooth local k-schemes of dimension 2, with closed point z and z' respectively, inducing an isomorphism on the residue fields $k(z) \cong k(z')$, then the pointed map $H_z^2(X;G) \to H_{z'}^2(X';G)$ has trivial kernel.
 - (A6) For any localisation $U := X_u$ of a smooth k-scheme at some point u of codimension ≤ 1 , the following complex is exact:

$$1 \longrightarrow G(\mathbb{A}^1_U) \hookrightarrow G^{(0)}(\mathbb{A}^1_U) \quad \Rightarrow \quad G^{(1)}(\mathbb{A}^1_U) \longrightarrow G^{(2)}(\mathbb{A}^1_U)$$

and the morphism $G(U) \to G(\mathbb{A}^1_U)$ is an isomorphism.

Theorem 5.3.6 (Strong A^1 -invariance). Let G be an unramified sheaf of groups on Sm_k that satisfies (A2'), (A5) and (A6). Then, it is strongly A^1 -invariant.

Next, we add some axioms which will imply axioms (A4) in some particular cases of \tilde{F}_k -data.

Definition 5.3.7. Let $M_*: F_k \to Ab_*$ be a functor to the category of \mathbb{Z} -graded abelian groups. We assume the following data (D4) and axioms:

- (D4)(i) For any $F \in F_k$, a $\mathbb{Z}[F^*/(F^*)^2]$ -module structure on $M_*(F)$, denoted by $(u,\alpha) \mapsto < u > \alpha \in M_n(F), u \in F^*, \alpha \in M_n(F)$ and it is functorial in F_k .
- (D4)(ii) For any $F \in F_k, n \in \mathbb{Z}$, a map $F^* \times M_{n-1}(F) \to M_n(F) : (u, \alpha) \mapsto [u]\alpha$ functorial in F_k .
- (D4)(iii) For any discrete valuation v on $F \in F_k$ and uniformizing parameter π , a graded epimorphism of degree (-1): $\partial_v^{\pi}: M_*(F) \to M_{*-1}(k(v))$ which is also functorial with respect to $E \subset F$ such that v restricts to a discrete valuation on E of ramification index 1, choosing π in E.
 - (B0) For $(u, v) \in (F^*)^2$, $\alpha \in M_n(F)$, we have $[uv]\alpha = [u]\alpha + \langle u \rangle [v]\alpha$; $[u][v]\alpha = -\langle -1 \rangle [v][u]\alpha$.
 - (B1) For a k-smooth integral domain A with field of fractions F, for any $\alpha \in M_n(F)$, then for all but finitely many points $x \in Spec(A)^{(1)}$, we have for any uniformizing parameter π for x, $\partial_x^{\pi}(\alpha) \neq 0$.

- (B2) For any discrete valuation v on $F \in F_k$ with uniformizing parameter π , one has $\partial_v^{\pi}([u]\alpha) = [\bar{u}]\partial_v^{\pi}(\alpha) \in M_n(k(v)); \partial_v^{\pi}(\langle u \rangle \alpha) = \langle \bar{u} \rangle \partial_v^{\pi}(\alpha) \in M_{(n-1)}(k(v)), \text{ for } u \in (O_v)^*, \alpha \in M_n(F).$
- (B3) For field extension $E \subset F \in F_k$ and for any discrete valuation v that restricts to w on E, with ramification index e, let $\pi \in O_v$ be a uniformizing parameter for v and $\rho \in O_w$ be a uniformizing parameter for w. That is $\rho = u\pi^e$, $u \in (O_v)^*$. Then, one has for $\alpha \in M_*(E)$, $\partial_v^{\pi}(\alpha|_F) = e_{\epsilon} < \bar{u} > (\partial_w^{\rho}(\alpha))|_{k(v)} \in M_*(k(v))$, where $n \in \mathbb{Z}$; $n_{\epsilon} = \Sigma_{i=1}^n < (-1)^{(i-1)} >$. Note that from this as in (See ref), the kernel of the surjective homomorphism ∂_v^{π} is independent of the choice of uniformizing element π . Denote that kernel by $M_*(O_v) \subset M_*(F)$. Note that now clearly, axiom (A2) of \tilde{F}_k -data is equivalent to (B1) here.

Lemma 5.3.8. If M_* satisfies axioms (B1), (B2) and (B3). Then, it satisfies (in each degree) the axioms for an unramified \tilde{F}_k -abelian group datum. Moreover, it satisfied axiom (A5)(i).

Proof. As observed above, since it satisfies (B3), (B1) implies (A2) of unramified \tilde{F}_k -datum, by covering an irreducible $X \in Sm_k$ via finitely many open affine Spec(A)'s where the A's are k-smooth integral domains. (D1) and (D2) are clear from the definition of M_* . To prove (A1), let $E \subset F$ be a separable extension in F_k , v, a discrete valuation on F restricting to one on E, say w of ramification index 1. We have by the functoriality in (D4)(iii):

$$M_*(E) \xrightarrow{\partial_w^{\pi}} M_{*-1}(k(w))$$

$$\downarrow \qquad \qquad \downarrow$$

$$M_*(F) \xrightarrow{\partial_v^{\pi}} M_{*-1}(k(v))$$

Then, by the commutativity of the diagram, clearly $M_*(O_w) \to M_*(O_v)$. Now, suppose that the induced map $k(w) \to k(v)$ is an isomorphism, then again by the commutativity of the previous diagram, where the right vertical map $M_*(k(w)) \to M_*(k(v))$ is an isomorphism. So, if we have $g \in M_*(E)$ such that its image lies in $M_*(O_v)$, then $g \in M_*(O_w)$. This shows that the following square is cartesian:

$$M_*(O_w) \longrightarrow M_*(O_v)$$

$$\downarrow \qquad \qquad \downarrow$$

$$M_*(E) \longrightarrow M_*(F)$$

This proves (A1) and that for each $n,\ M_*$ gives an unramified \tilde{F}_k -datum.

To prove (A5), we simply need to show $H_v^1(O_v; M_*) \cong H_w^1(O_w; M_*)$. Clearly, we have the induced map between these groups by (A1). Again as the previous square is cartesian, the kernel of the map is 0 and it is surjective because of the isomorphism $M_{*-1}(k(w)) \to M_{*-1}(k(v))$. This proves (A5)(i).

Lemma 5.3.9. Suppose M_* satisfies (B0), (B1), (B2) and (B3). So, by above lemma each M_n is a sheaf of abelian groups in \tilde{Sm}_k . By (See ref), $H^1_v(O_v, M_n) = M_n(F)/M_n(O_v)$ and let ∂_v be the projection from $M_n(F)$ to $H^1_v(O_v, M_n)$. So, choosing an uniformizing parameter π we get an isomorphism $\theta_\pi: M_{(n-1)}(k(v)) \xrightarrow{\cong} H^1_v(O_v, M_n)$ and $\partial_v = \theta_\pi \circ \partial_v^\pi$. Similarly, define $s_v^\pi: M_*(F) \to M_*(k(v)); \alpha \mapsto \partial_v^\pi([\pi]\alpha)$, where v is a discrete valuation on F. Then, s_v^π is independent of the choice of π .

Proof. From (B0), for any unit $u \in O_v^*$, uniformizing parameter π and $\alpha \in M_n(F)$: $[u\pi]\alpha = [u]\alpha + \langle u \rangle [\pi]\alpha$. If $\alpha \in M_*(O_v)$, $s_v^{u\pi}(\alpha) = \partial_v^{u\pi}([u\pi]\alpha) = \partial_v^{u\pi}([u]\alpha) + \partial_v^{u\pi}(\langle u \rangle [\pi]\alpha) = \partial_v^{u\pi}(\langle u \rangle [\pi]\alpha)$ as by (B2), $\partial_v^{u\pi}([u]\alpha) = [\bar{u}]\partial_v^{u\pi}(\alpha) = [\bar{u}]0 = 0$. (B2) also implies, $\partial_v^{u\pi}(\langle u \rangle [\pi]\alpha) = \langle \bar{u} \rangle \partial_v^{u\pi}([\pi]\alpha)$. By (B3), the RHS is equal to $\langle \bar{u} \rangle \langle \bar{u} \rangle \partial_v^{u\pi}([\pi]\alpha) = \partial_v^{u\pi}([\pi]\alpha)$. So, the claim is proven.

Lemma 5.3.10. Denote by s_v this map which is independent of π . So, M_* has datum (D3). We demand two more axioms:

(HA)(i) For any $F \in F_k$, the following is a short exact sequence:

$$0 \longrightarrow M_*(F) \longrightarrow M_*(F(T)) \xrightarrow{\sum \partial_{(P)}^P} \bigoplus_{P \in \mathbb{A}_F^1} M_{*-1}(F[T]/P) \longrightarrow 0$$

where P runs over all monic irreducibles in F[T].

(HA)(ii) For any $\alpha \in M_*(F)$, $\partial_{(T)}^T([T]\alpha|_{F(T)}) = \alpha$. Note that this implies $M_*(F) \to M_*(\mathbb{A}^1_F)$ is an isomorphism and $H^1_{Zar}(\mathbb{A}^1_F;M) = 0$.

Suppose M_* satisfies (B0), (B1), (B2), (B3), (HA)(i) and (HA)(ii), then (A1)(ii) (second part), (A3)(i) and (A3)(ii) hold.

Proof. For the second part of (A1)(ii), let π be a uniformizing parameter of O_w which is also a uniformizing parameter of O_v (as the ramification index is 1). By (D4)(iii), the following is a commutative diagram:

By (D4)(i), the morphism $M_*(E) \to M_*(F)$ preserves the product by π . For (A3)(i), $E \subset O_v \subset F$. Let π be a uniformizing parameter of v. Consider the extension $E(T) \subset F; T \mapsto \pi$. The restriction of v is the valuation defined by T on E[T], with ramification index 1. So, we can reduce to the case $E \subset F; v = (T)$ and our claim follows from (HA)(i) and (HA)(ii). \square

Theorem 5.3.11. Let M_* be a functor $F_k \to Ab_*$ with data (D4)(i), (D4)(ii), (D4)(iii) satisfying the axioms (B0), (B1), (B2), (B3), (HA)(i), (HA)(ii), (B4) and (B5). Then, for each $n \in \mathbb{Z}$ with the s_v 's, M_n is an unramified F_k -abelian group datum. So, it defines an unramified sheaf of abelian groups on Sm_k . This M_n is also strongly A^1 -invariant.

6 Bibliography

- 1. KEVIN HUTCHINSON, A New Approach to Matsumoto's Theorem, K-Theory 4: 181-200, 1990
- 2. A^1 -algebraic topology over a field, Fabien Morel; Springer, 2012
- 3. A. A. Suslin, K_3 of a field, and the Bloch group, Trudy Mat. Inst. Steklov., 1990, Volume 183, 180–199
- 4. The Stable A^1 -Connectivity Theorems, Fabien Morel; K-theory (2005)
- 5. STRONGLY A1-INVARIANT SHEAVES(AFTER F.MOREL); TOM BACHMANN
- 6. Connectivity of motivic H–spaces; UTSAV CHOUDHURY; Algebraic and geometric topology 14 (2014)
- 7. An introduction to A^1 -homotopy theory; Fabien Morel
- 8. Homology of linear groups; Kevin P. Knudson
- 9. A¹-homotopy theory of schemes; Fabien Morel and Vladimir Voevodsky
- 10. Algebraic Geometry; R. Hartshorne
- 11. Grothendieck Topologies, Lectures on a seminar, M. Artin, 1962
- 12. Motivic Homotopy Theory, Lectures at a Summer School, in Nordfjordeid, Norway, August 2002; B.I. Dundas, M. Levine, P.A. Østvær, O. Röndigs, V. Voevodsky
- 13. Algebraic K-Theory and Quadratic Forms; Inventiones math. 9, 318-344 (1970)