An example of division that gives a remainder is $2x^6 - 13x^5 + 75x^3 + 2x^2 - 60$ divided by $x^2 - 5$:

The answer is:
$$2x^4 - 13x^3 + 10x^2 + 10x + 52 + \frac{50x + 200}{x^2 - 5}$$
.

8.1.4 Derivatives of Polynomials

The built-in function polyder can be used to calculate the derivative of a single polynomial, a product of two polynomials, or a quotient of two polynomials, as shown in the following three commands.

k = polyder(p)

Derivative of a single polynomial. p is a vector with the coefficients of the polynomial. k is a vector with the coefficients of the polynomial that is the derivative.

k = polyder(a,b)

Derivative of a product of two polynomials. a and b are vectors with the coefficients of the polynomials that are multiplied. k is a vector with the coefficients of the polynomial that is the derivative of the product.

[n d] = polyder (u, v) Derivative of a quotient of two polynomials. u and v are vectors with the coefficients of the numerator and denominator polynomials. n and d are vectors with the coefficients of the numerator and denominator polynomials in the quotient that is the derivative.

The only difference between the last two commands is the number of output arguments. With two output arguments MATLAB calculates the derivative of the quotient of two polynomials. With one output argument, the derivative is of the product.