Cryptography Lecture 17

Arkady Yerukhimovich

October 28, 2024

Outline

- 1 Lecture 16 Review
- 2 A Modern Cryptography Approach (Chapter 8.Intro)
- 3 A Brief Intro to Number Theory (Chapter 8.1)
- 4 A Brief Intro to Group Theory (Chapter 8.1)

Lecture 16 Review

- AES review
- Feistel Networks and DES
- Davies-Meyer Transform

Outline

- 1 Lecture 16 Review
- 2 A Modern Cryptography Approach (Chapter 8.Intro)
- 3 A Brief Intro to Number Theory (Chapter 8.1)
- 4 A Brief Intro to Group Theory (Chapter 8.1)

How to instantiate private-key crypto, so far:

- Use primitives like PRGs, PRFs, PRPs to build encryption, MACs
- Instantiate PRPs using block-ciphers

How to instantiate private-key crypto, so far:

- Use primitives like PRGs, PRFs, PRPs to build encryption, MACs
- Instantiate PRPs using block-ciphers

What's The Problem?

How to instantiate private-key crypto, so far:

- Use primitives like PRGs, PRFs, PRPs to build encryption, MACs
- Instantiate PRPs using block-ciphers

What's The Problem?

 All block-cipher constructions rely on sequence of random-looking steps (e.g., random permutation, shift bits, taking subsets of bits,...)

How to instantiate private-key crypto, so far:

- Use primitives like PRGs, PRFs, PRPs to build encryption, MACs
- Instantiate PRPs using block-ciphers

What's The Problem?

- All block-cipher constructions rely on sequence of random-looking steps (e.g., random permutation, shift bits, taking subsets of bits,...)
- No way to formalize a clean (falsifiable) reason for why these are secure

How to instantiate private-key crypto, so far:

- Use primitives like PRGs, PRFs, PRPs to build encryption, MACs
- Instantiate PRPs using block-ciphers

What's The Problem?

- All block-cipher constructions rely on sequence of random-looking steps (e.g., random permutation, shift bits, taking subsets of bits,...)
- No way to formalize a clean (falsifiable) reason for why these are secure
- Just have to trust that block-ciphers (e.g., AES, DES) are secure

How to instantiate private-key crypto, so far:

- Use primitives like PRGs, PRFs, PRPs to build encryption, MACs
- Instantiate PRPs using block-ciphers

What's The Problem?

- All block-cipher constructions rely on sequence of random-looking steps (e.g., random permutation, shift bits, taking subsets of bits,...)
- No way to formalize a clean (falsifiable) reason for why these are secure
- Just have to trust that block-ciphers (e.g., AES, DES) are secure

Key Question

How can we build crypto on clean mathematical foundations?

4 L P 4 BP P 4 E P 4 E P 9 Y Y Y

5 / 17

Instead, modern crypto builds cryptographic primitives from clean, mathematical problems (e.g., factoring)

 Allows reducing security of primitives to solving (well studied) mathematical problem

- Allows reducing security of primitives to solving (well studied) mathematical problem
- Problems are (often) studied even outside of crypto

- Allows reducing security of primitives to solving (well studied) mathematical problem
- Problems are (often) studied even outside of crypto
- Assumptions are easy to state and understand

- Allows reducing security of primitives to solving (well studied) mathematical problem
- Problems are (often) studied even outside of crypto
- Assumptions are easy to state and understand
- Can be stated asymptotically, not relying on fixed input/output sizes

Instead, modern crypto builds cryptographic primitives from clean, mathematical problems (e.g., factoring)

- Allows reducing security of primitives to solving (well studied) mathematical problem
- Problems are (often) studied even outside of crypto
- Assumptions are easy to state and understand
- Can be stated asymptotically, not relying on fixed input/output sizes

Added Functionality

We will show next week, how this modern crypto approach leads to the development of *public-key* cryptography.

Outline

- Lecture 16 Review
- 2 A Modern Cryptography Approach (Chapter 8.Intro)
- 3 A Brief Intro to Number Theory (Chapter 8.1)
- 4 A Brief Intro to Group Theory (Chapter 8.1)

 \bullet $\,\mathbb{Z}$ - set of Integers

- ullet Z set of Integers
- For integer n, $||n|| = \lfloor \log n \rfloor + 1$ is the number of bits to represent n
 - ullet We require efficient algorithms to run in time poly(||n||)

- ullet Z set of Integers
- For integer n, $||n|| = |\log n| + 1$ is the number of bits to represent n
 - We require efficient algorithms to run in time poly(||n||)
- a|b-a divides b ($\exists c \in \mathbb{Z}$ s.t. ac=b)

- ullet Z set of Integers
- For integer n, $||n|| = \lfloor \log n \rfloor + 1$ is the number of bits to represent n
 - We require efficient algorithms to run in time poly(||n||)
- a|b-a divides b ($\exists c \in \mathbb{Z}$ s.t. ac=b)
- If a|b and a > 0, $a \notin \{1, b\}$ then a is a factor of b

- ullet Z set of Integers
- For integer n, $||n|| = \lfloor \log n \rfloor + 1$ is the number of bits to represent n
 - We require efficient algorithms to run in time poly(||n||)
- a|b-a divides b $(\exists c \in \mathbb{Z} \text{ s.t. } ac=b)$
- If a|b and a > 0, $a \notin \{1, b\}$ then a is a factor of b
- Positive integer p > 1 is *prime* if it has no factors

- ullet Z set of Integers
- For integer n, $||n|| = \lfloor \log n \rfloor + 1$ is the number of bits to represent n
 - We require efficient algorithms to run in time poly(||n||)
- a|b-a divides b $(\exists c \in \mathbb{Z} \text{ s.t. } ac=b)$
- If a|b and a > 0, $a \notin \{1, b\}$ then a is a factor of b
- Positive integer p > 1 is *prime* if it has no factors
- An integer p > 1 that is not prime is *composite*

- ullet Z set of Integers
- For integer n, $||n|| = \lfloor \log n \rfloor + 1$ is the number of bits to represent n
 - We require efficient algorithms to run in time poly(||n||)
- a|b-a divides b $(\exists c \in \mathbb{Z} \text{ s.t. } ac=b)$
- If a|b and a > 0, $a \notin \{1, b\}$ then a is a factor of b
- Positive integer p > 1 is *prime* if it has no factors
- An integer p > 1 that is not prime is *composite*

Fundamental Theorem of Arithmetic

All positive integers n>1 can be expressed uniquely (up to ordering) as $n=\prod p_i^{\ell_i}$ for primes p_i

Definition

For $a,b\in\mathbb{Z}$, gcd(a,b)=c s.t. c is the largest integer so that c|a and c|b

Properties of gcd:

Arkady Yerukhimovich Cryptography October 28, 2024 9 / 17

Definition

For $a,b\in\mathbb{Z}$, gcd(a,b)=c s.t. c is the largest integer so that c|a and c|b

- If c|ab and gcd(a,c) = 1, then c|b
 - If p is prime, then p|ab implies that p|a or p|b

Definition

For $a,b\in\mathbb{Z}$, gcd(a,b)=c s.t. c is the largest integer so that c|a and c|b

- If c|ab and gcd(a,c) = 1, then c|b
 - If p is prime, then p|ab implies that p|a or p|b
- ② If a|N, b|N, and gcd(a,b) = 1 then ab|N

Definition

For $a,b\in\mathbb{Z}$, gcd(a,b)=c s.t. c is the largest integer so that c|a and c|b

- If c|ab and gcd(a,c) = 1, then c|b
 - If p is prime, then p|ab implies that p|a or p|b
- ② If a|N, b|N, and gcd(a,b) = 1 then ab|N
- ullet If $a,b\in\mathbb{Z}^+$, there exist $X,Y\in\mathbb{Z}$ such that $Xa+Yb=\gcd(a,b)$
 - gcd(a, b) is the smallest positive integer that can be written like this

Definition

For $a,b\in\mathbb{Z}$, gcd(a,b)=c s.t. c is the largest integer so that c|a and c|b

- If c|ab and gcd(a,c) = 1, then c|b
 - If p is prime, then p|ab implies that p|a or p|b
 - ② If a|N, b|N, and gcd(a,b) = 1 then ab|N
 - $lacksquare{3}$ If $a,b\in\mathbb{Z}^+$, there exist $X,Y\in\mathbb{Z}$ such that $Xa+Yb=\gcd(a,b)$
 - gcd(a, b) is the smallest positive integer that can be written like this
- $gcd(a, b) = gcd(b, [a \mod b])$ if a, b > 1 such that $b \nmid a$

Goal

Given Integers a, b find c = gcd(a, b).

GCD(a, b):

10 / 17

Arkady Yerukhimovich Cryptography October 28, 2024

Goal

Given Integers a, b find c = gcd(a, b).

GCD(a, b):

• If b|a, return b

Goal

Given Integers a, b find c = gcd(a, b).

GCD(a, b):

- If b|a, return b
- ② Else, return $GCD(b, [a \mod b])$

Goal

Given Integers a, b find c = gcd(a, b).

GCD(a, b):

- If b|a, return b
- ② Else, return $GCD(b, [a \mod b])$

Extended Euclidean Algorithm:

• Also lets you find X, Y such that Xa + Yb = gcd(a, b)

Goal

Given Integers a, b find c = gcd(a, b).

GCD(a, b):

- If b|a, return b
- ② Else, return $GCD(b, [a \mod b])$

Extended Euclidean Algorithm:

• Also lets you find X, Y such that Xa + Yb = gcd(a, b)

Both of these are poly-time in ||a|| and ||b||

Modular Arithmetic

Notation: For Integers a, b, N

• $[a \mod N] - a \mod N$, (e.g. $[15 \mod 7] = 1$)

Modular Arithmetic

Notation: For Integers a, b, N

- $[a \mod N] a \mod N$, (e.g. $[15 \mod 7] = 1$)
- $a = b \mod N$ if $[a \mod N] = [b \mod N]$
 - We say, a is congruent to b mod N

Notation: For Integers a, b, N

- $[a \mod N] a \mod N$, (e.g. $[15 \mod 7] = 1$)
- $a = b \mod N$ if $[a \mod N] = [b \mod N]$
 - ullet We say, a is congruent to $b \mod N$
- Note that:

$$a = [b \mod N] \implies a = b \mod N$$
, but $a = b \mod N \implies a = [b \mod N]$

Notation: For Integers a, b, N

- $[a \mod N] a \mod N$, (e.g. $[15 \mod 7] = 1$)
- $a = b \mod N$ if $[a \mod N] = [b \mod N]$
 - ullet We say, a is congruent to $b \mod N$
- Note that:

$$a = [b \mod N] \implies a = b \mod N$$
, but $a = b \mod N \implies a = [b \mod N]$

Example: $8 \neq [3 \mod 5]$, but $8 = 3 \mod 5$

Congruence Relation

Congruence $\mod N$ is an *equivalence relation* that obeys standard rules of arithmetic.

If $a = a' \mod N$, and $b = b' \mod N$ then:

- $\bullet \ a+b=a'+b' \bmod N$
- $ab = a'b' \mod N$

Congruence Relation

Congruence $\mod N$ is an *equivalence relation* that obeys standard rules of arithmetic.

If $a = a' \mod N$, and $b = b' \mod N$ then:

- $\bullet \ a+b=a'+b' \bmod N$
- $ab = a'b' \mod N$

Example: $[654321 \cdot 54301 \mod 100] = [21 \cdot 1 \mod 100] = 21$

Congruence Relation

Congruence $\mod N$ is an *equivalence relation* that obeys standard rules of arithmetic.

If $a = a' \mod N$, and $b = b' \mod N$ then:

- $\bullet \ a+b=a'+b' \bmod N$
- $ab = a'b' \mod N$

Example: $[654321 \cdot 54301 \mod 100] = [21 \cdot 1 \mod 100] = 21$

But, this congruence relation does not necessarily respect division

Example: $3 \cdot 2 = 6 = 15 \cdot 2 \mod 24$, but $3 \neq 15 \mod 24$

Congruence Relation

Congruence $\mod N$ is an *equivalence relation* that obeys standard rules of arithmetic.

If $a = a' \mod N$, and $b = b' \mod N$ then:

- $\bullet \ a+b=a'+b' \bmod N$
- $ab = a'b' \mod N$

Example: $[654321 \cdot 54301 \mod 100] = [21 \cdot 1 \mod 100] = 21$

But, this congruence relation does not necessarily respect division

Example: $3 \cdot 2 = 6 = 15 \cdot 2 \mod 24$, but $3 \neq 15 \mod 24$

Division mod N

Let $b, N \in \mathbb{Z}, b \ge 1, N > 1$, b is invertible $\mod N$ (i.e., can divide by b) if and only if $\gcd(b, N) = 1$

- オロトオ部トオミトオミト ミーから(

Goal

For $b, N \in \mathbb{Z}$, find $b^{-1} \mod N$

Goal

For $b, N \in \mathbb{Z}$, find $b^{-1} \mod N$

Idea: Use extended Euclidean algorithm

• Find $X, Y \in \mathbb{Z}$ s.t. Xb + YN = gcd(b, N)

Goal

For $b, N \in \mathbb{Z}$, find $b^{-1} \mod N$

Idea: Use extended Euclidean algorithm

- Find $X, Y \in \mathbb{Z}$ s.t. Xb + YN = gcd(b, N)
- Recall that for b^{-1} to exist, gcd(b, N) = 1

Goal

For $b, N \in \mathbb{Z}$, find $b^{-1} \mod N$

Idea: Use extended Euclidean algorithm

- Find $X, Y \in \mathbb{Z}$ s.t. Xb + YN = gcd(b, N)
- Recall that for b^{-1} to exist, gcd(b, N) = 1
- $Xb + YN = 1 \implies Xb = 1 YN \implies Xb = 1 \mod N$

Goal

For $b, N \in \mathbb{Z}$, find $b^{-1} \mod N$

Idea: Use extended Euclidean algorithm

- Find $X, Y \in \mathbb{Z}$ s.t. Xb + YN = gcd(b, N)
 - Recall that for b^{-1} to exist, gcd(b, N) = 1
 - $Xb + YN = 1 \implies Xb = 1 YN \implies Xb = 1 \mod N$
 - $X = b^{-1} \mod N$

Outline

- Lecture 16 Review
- 2 A Modern Cryptography Approach (Chapter 8.Intro)
- 3 A Brief Intro to Number Theory (Chapter 8.1)
- 4 A Brief Intro to Group Theory (Chapter 8.1)

Definition of a Group

Definition of a Group

A group is a set G with a binary operation (\cdot) such that:

• Closure: $\forall g, h, \in G, g \cdot h \in G$

Definition of a Group

- Closure: $\forall g, h, \in G, g \cdot h \in G$
- ullet Identity: \exists element $1_G \in G$ s.t. $\forall g \in G, 1_G \cdot g = g \cdot 1_G = g$

Definition of a Group

- Closure: $\forall g, h, \in G, g \cdot h \in G$
- ullet Identity: \exists element $1_G \in G$ s.t. $\forall g \in G, 1_G \cdot g = g \cdot 1_G = g$
- Inverse: $\forall g \in G, \exists h \in G \text{ s.t. } g \cdot h = h \cdot g = 1_G$

Definition of a Group

- Closure: $\forall g, h, \in G, g \cdot h \in G$
- ullet Identity: \exists element $1_G \in G$ s.t. $\forall g \in G, 1_G \cdot g = g \cdot 1_G = g$
- Inverse: $\forall g \in G, \exists h \in G \text{ s.t. } g \cdot h = h \cdot g = 1_G$
- Associativity: $\forall g_1, g_2, g_3 \in G, (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$

Definition of a Group

A group is a set G with a binary operation (\cdot) such that:

- Closure: $\forall g, h, \in G, g \cdot h \in G$
- ullet Identity: \exists element $1_{\mathcal{G}} \in \mathcal{G}$ s.t. $\forall g \in \mathcal{G}, 1_{\mathcal{G}} \cdot g = g \cdot 1_{\mathcal{G}} = g$
- Inverse: $\forall g \in G, \exists h \in G \text{ s.t. } g \cdot h = h \cdot g = 1_G$
- Associativity: $\forall g_1, g_2, g_3 \in G, (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$

Additional definitions:

Definition of a Group

A group is a set G with a binary operation (\cdot) such that:

- Closure: $\forall g, h, \in G, g \cdot h \in G$
- Identity: \exists element $1_G \in G$ s.t. $\forall g \in G, 1_G \cdot g = g \cdot 1_G = g$
- Inverse: $\forall g \in G, \exists h \in G \text{ s.t. } g \cdot h = h \cdot g = 1_G$
- Associativity: $\forall g_1, g_2, g_3 \in G, (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$

Additional definitions:

• G is abelian if commutativity holds: $\forall g, h \in G, g \cdot h = h \cdot g$

Definition of a Group

A group is a set G with a binary operation (\cdot) such that:

- Closure: $\forall g, h, \in G, g \cdot h \in G$
- ullet Identity: \exists element $1_{\mathcal{G}} \in \mathcal{G}$ s.t. $\forall g \in \mathcal{G}, 1_{\mathcal{G}} \cdot g = g \cdot 1_{\mathcal{G}} = g$
- Inverse: $\forall g \in G, \exists h \in G \text{ s.t. } g \cdot h = h \cdot g = 1_G$
- Associativity: $\forall g_1, g_2, g_3 \in G, (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$

Additional definitions:

- G is abelian if commutativity holds: $\forall g, h \in G, g \cdot h = h \cdot g$
- ullet $|{\it G}|$ order of ${\it G}$ (number of elements in ${\it G}$) For us $|{\it G}|<\infty$

Definition of a Group

A group is a set G with a binary operation (\cdot) such that:

- Closure: $\forall g, h, \in G, g \cdot h \in G$
- Identity: \exists element $1_G \in G$ s.t. $\forall g \in G, 1_G \cdot g = g \cdot 1_G = g$
- Inverse: $\forall g \in G, \exists h \in G \text{ s.t. } g \cdot h = h \cdot g = 1_G$
- Associativity: $\forall g_1, g_2, g_3 \in G, (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$

Additional definitions:

- G is abelian if commutativity holds: $\forall g, h \in G, g \cdot h = h \cdot g$
- ullet $|{\it G}|$ order of ${\it G}$ (number of elements in ${\it G}$) For us $|{\it G}|<\infty$

Definition of a Group

A group is a set G with a binary operation (\cdot) such that:

- Closure: $\forall g, h, \in G, g \cdot h \in G$
- ullet Identity: \exists element $1_{\mathcal{G}} \in \mathcal{G}$ s.t. $\forall g \in \mathcal{G}, 1_{\mathcal{G}} \cdot g = g \cdot 1_{\mathcal{G}} = g$
- Inverse: $\forall g \in G, \exists h \in G \text{ s.t. } g \cdot h = h \cdot g = 1_G$
- Associativity: $\forall g_1, g_2, g_3 \in G, (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$

Additional definitions:

- G is abelian if commutativity holds: $\forall g, h \in G, g \cdot h = h \cdot g$
- ullet $|{\it G}|$ order of ${\it G}$ (number of elements in ${\it G}$) For us $|{\it G}|<\infty$

Examples:

Definition of a Group

A group is a set G with a binary operation (\cdot) such that:

- Closure: $\forall g, h, \in G, g \cdot h \in G$
- ullet Identity: \exists element $1_{\mathcal{G}} \in \mathcal{G}$ s.t. $\forall g \in \mathcal{G}, 1_{\mathcal{G}} \cdot g = g \cdot 1_{\mathcal{G}} = g$
- Inverse: $\forall g \in G, \exists h \in G \text{ s.t. } g \cdot h = h \cdot g = 1_G$
- Associativity: $\forall g_1, g_2, g_3 \in G, (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$

Additional definitions:

- G is abelian if commutativity holds: $\forall g, h \in G, g \cdot h = h \cdot g$
- ullet $|{\it G}|$ order of ${\it G}$ (number of elements in ${\it G}$) For us $|{\it G}|<\infty$

Examples:

ullet The integers, \mathbb{Z} , form an abelian group under addition

Definition of a Group

A group is a set G with a binary operation (\cdot) such that:

- Closure: $\forall g, h, \in G, g \cdot h \in G$
- Identity: \exists element $1_G \in G$ s.t. $\forall g \in G, 1_G \cdot g = g \cdot 1_G = g$
- Inverse: $\forall g \in G, \exists h \in G \text{ s.t. } g \cdot h = h \cdot g = 1_G$
- Associativity: $\forall g_1, g_2, g_3 \in G, (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$

Additional definitions:

- G is abelian if commutativity holds: $\forall g, h \in G, g \cdot h = h \cdot g$
- ullet |G| order of G (number of elements in G) For us $|G|<\infty$

Examples:

- ullet The integers, \mathbb{Z} , form an abelian group under addition
- ullet The integers, \mathbb{Z} , are not a group under multiplication (no inverses)

Arkady Yerukhimovich Cryptography October 28, 2024 15 / 17

Definition of a Group

A group is a set G with a binary operation (\cdot) such that:

- Closure: $\forall g, h, \in G, g \cdot h \in G$
- Identity: \exists element $1_G \in G$ s.t. $\forall g \in G, 1_G \cdot g = g \cdot 1_G = g$
- Inverse: $\forall g \in G, \exists h \in G \text{ s.t. } g \cdot h = h \cdot g = 1_G$
- Associativity: $\forall g_1, g_2, g_3 \in G, (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$

Additional definitions:

- G is abelian if commutativity holds: $\forall g, h \in G, g \cdot h = h \cdot g$
- ullet $|{\it G}|$ order of ${\it G}$ (number of elements in ${\it G}$) For us $|{\it G}|<\infty$

Examples:

- ullet The integers, \mathbb{Z} , form an abelian group under addition
- ullet The integers, \mathbb{Z} , are not a group under multiplication (no inverses)
- $\mathbb{Z}_N = \{1, \dots, N-1\}$ is a group under addition, mod N

Arkady Yerukhimovich Cryptography October 28, 2024 16 / 17

- Proof:
 - $ac = bc \implies (ac)c^{-1} = (bc)c^{-1} \implies a(cc^{-1}) = b(cc^{-1})$ $\implies a \cdot 1_G = b \cdot 1_G \implies a = b$

Arkady Yerukhimovich Cryptography October 28, 2024 16 / 17

- 2 Let |G| = m, $\forall g \in G, g^m = 1$

Arkady Yerukhimovich Cryptography October 28, 2024 16 / 17

- **2** Let |G| = m, $\forall g \in G, g^m = 1$
 - Proof (for abelian groups): Consider $(gg_1), (gg_2), \ldots, (gg_m)$ where $g_1, \ldots, g_m \in G$ Since $(gg_i) = (gg_j)$ iff $g_i = g_j$ (by [1]), each of the (gg_i) is distinct Now, we have that

$$g_1 \cdot g_2 \cdots g_m = (gg_1) \cdot (gg_2) \cdots (gg_m) = g^m \cdot (g_1 \cdot g_2 \cdots g_m)$$

First equality holds because the (gg_i) are all possible values in G. So, $g^m=1$

- \bigcirc $\forall a, b, c \in G$, if ac = bc, then a = b
- 2 Let |G| = m, $\forall g \in G$, $g^m = 1$
- **1** Let |G| = m, then for any $g \in G$ and any $x \in \mathbb{Z}$, $g^x = g^{[x \mod m]}$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

- \bullet $\forall a, b, c \in G$, if ac = bc, then a = b
- **2** Let |G| = m, $\forall g \in G, g^m = 1$
- **1** Let |G| = m, then for any $g \in G$ and any $x \in \mathbb{Z}$, $g^x = g^{[x \mod m]}$
 - Proof:

Let x = qm + r where $q, r \in \mathbb{Z}$ and $r = [x \mod m]$

$$g^{x} = g^{qm+r} = g^{qm} \cdot g^{r} = (g^{m})^{q} \cdot g^{r} = 1_{G}^{q} \cdot g^{r} = g^{r}$$

- \bigcirc $\forall a, b, c \in G$, if ac = bc, then a = b
- 2 Let |G| = m, $\forall g \in G$, $g^m = 1$
- **3** Let |G| = m, then for any $g \in G$ and any $x \in \mathbb{Z}$, $g^x = g^{[x \mod m]}$
- Let |G| = m, and let $e > 0 \in \mathbb{Z}$. Define $f_e : G \to G$ by $f_e(g) = g^e$. If gcd(e, m) = 1, then f_e is a permutation over G. If $d = e^{-1} \mod m$, then $f_d = f_e^{-1}$.

- \bullet $\forall a, b, c \in G$, if ac = bc, then a = b
- 2 Let |G| = m, $\forall g \in G, g^m = 1$
- **1** Let |G| = m, then for any $g \in G$ and any $x \in \mathbb{Z}$, $g^x = g^{[x \mod m]}$
- Let |G| = m, and let $e > 0 \in \mathbb{Z}$. Define $f_e : G \to G$ by $f_e(g) = g^e$. If gcd(e, m) = 1, then f_e is a permutation over G. If $d = e^{-1} \mod m$, then $f_d = f_e^{-1}$.
 - Proof: Enough to prove that f_d is inverse of f_e For any $g \in G$, we have:

$$f_d(f_e(g)) = f_d(g^e) = (g^e)^d = g^{ed} = g^{[ed \mod m]} = g^1 = g$$

- \bigcirc $\forall a, b, c \in G$, if ac = bc, then a = b
- 2 Let |G| = m, $\forall g \in G$, $g^m = 1$
- **3** Let |G| = m, then for any $g \in G$ and any $x \in \mathbb{Z}$, $g^x = g^{[x \mod m]}$
- Let |G| = m, and let $e > 0 \in \mathbb{Z}$. Define $f_e : G \to G$ by $f_e(g) = g^e$. If gcd(e, m) = 1, then f_e is a permutation over G. If $d = e^{-1} \mod m$, then $f_d = f_e^{-1}$.

Notation: Let G be a group such that |G| = m

ullet For $g \in \mathcal{G}$, define $< g >= \{g^0, g^1, \ldots\}$ — the items generated by g

Arkady Yerukhimovich Cryptography October 28, 2024

- ullet For $g \in {\mathcal G}$, define $< g >= \{ g^0, g^1, \ldots \}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- ullet < g >= $\{g^0,\ldots,g^{i-1}\}$ is a *subgroup* of G

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- ullet $< g >= \{g^0, \dots, g^{i-1}\}$ is a *subgroup* of G
 - $g^x = g^{[x \mod i]}$

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- $\langle g \rangle = \{g^0, \dots, g^{i-1}\}$ is a *subgroup* of *G*
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- ullet $< g >= \{g^0, \dots, g^{i-1}\}$ is a *subgroup* of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is cyclic if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- $\langle g \rangle = \{g^0, \dots, g^{i-1}\}$ is a *subgroup* of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

• g is called the generator of G

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- $\langle g \rangle = \{g^0, \dots, g^{i-1}\}$ is a subgroup of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

ullet g is called the generator of G

Useful property: If |G| is prime, then G is cyclic. Moreover, all $g \in G$ except 1 are generators

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- ullet $< g >= \{g^0, \dots, g^{i-1}\}$ is a *subgroup* of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

ullet g is called the generator of G

Useful property: If |G| is prime, then G is cyclic. Moreover, all $g \in G$ except 1 are generators

Examples:

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- $\langle g \rangle = \{g^0, \dots, g^{i-1}\}$ is a *subgroup* of *G*
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

ullet g is called the generator of G

Useful property: If |G| is prime, then G is cyclic. Moreover, all $g \in G$ except 1 are generators

Examples:

• $\mathbb{Z}_{N} = <1>$

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- $\bullet < g >= \{g^0, \ldots, g^{i-1}\}$ is a *subgroup* of *G*
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

• g is called the generator of G

Useful property: If |G| is prime, then G is cyclic. Moreover, all $g \in G$ except 1 are generators

Examples:

- $\mathbb{Z}_{N} = <1>$
- \mathbb{Z}_p^* Not all $g \in \mathbb{Z}_p^*$ are generators: $\langle 2 \rangle = \{1, 2, 4\} \neq \mathbb{Z}_7^*$ but, $\langle 3 \rangle = \{1, 3, 9 = 2, 6, 4, 5\}$ is a generator.

Arkady Yerukhimovich Cryptography October 28, 2024 17 / 17