Лабораторная работа № 1

Знакомство с Cisco Packet Tracer

Абд эль хай Мохамад

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы 3.1 Построение простейшей сети	7
4	Выводы	24
5	Контрольные вопросы	25

Список иллюстраций

3.1	Модель простой сети с концентратором
3.2	Настройка статического IP-адреса
3.3	События в режиме моделирования
3.4	Информация о PDU
3.5	Challenge Me
3.6	Структуру пакета ICMP
3.7	Коллизии
3.8	Название рисунка
3.9	Название рисунка
3.10	Название рисунка
3.11	Название рисунка
3.12	Название рисунка
3.13	Название рисунка
3.14	Название рисунка
3.15	Название рисунка
3.16	Название рисунка
3.17	Название рисунка
3.18	Название рисунка

Список таблиц

1 Цель работы

Здесь приводится формулировка цели лабораторной работы. Формулировки цели для каждой лабораторной работы приведены в методических указаниях.

Цель данного шаблона — максимально упростить подготовку отчётов по лабораторным работам. Модифицируя данный шаблон, студенты смогут без труда подготовить отчёт по лабораторным работам, а также познакомиться с основными возможностями разметки Markdown.

2 Задание

- 1. Установить на домашнем устройстве Cisco Packet Tracer.
- 2. Постройте простейшую сеть в Cisco Packet Tracer, проведите простейшую настройку оборудования.

3 Выполнение лабораторной работы

3.1 Построение простейшей сети

В рабочем пространстве разместил концентратор (Hub-PT) и четыре оконечных устройства РС. Соединил оконечные устройства с концентратором прямым кабелем.

Рис. 3.1: Модель простой сети с концентратором

Щёлкнув последовательно на каждом оконечном устройстве, статические IP-адреса 192.168.1.11, 192.168.1.12, 192.168.1.13, 192.168.1.14 с маской подсети 255.255.255.

Рис. 3.2: Настройка статического ІР-адреса

Рис. 3.3: События в режиме моделирования

в режим моделирования. Я выбрал «Добавить простой PDU (P)» на панели инструментов и щелкнул сначала на ПКО, затем на ПК2.

В рабочей области появились два конверта с указанием пакетов, а в списке событий на панели моделирования появилось На панели моделирования нажмите кнопку «Воспроизвести» и наблюдайте за перемещением пакетов ARP и ICMP от устройства PC0 к устройству PC2 и обратно.

Рис. 3.4: Информация о PDU

Рис. 3.5: Challenge Me

Рис. 3.6: Структуру пакета ІСМР

Рис. 3.7: Коллизии

Рис. 3.8: Название рисунка

Рис. 3.9: Название рисунка

Рис. 3.10: Название рисунка

Рис. 3.11: Название рисунка

Рис. 3.12: Название рисунка

Рис. 3.13: Название рисунка

Рис. 3.14: Название рисунка

Рис. 3.15: Название рисунка

Рис. 3.16: Название рисунка

Рис. 3.17: Название рисунка

Рис. 3.18: Название рисунка

4 Выводы

Здесь кратко описываются итоги проделанной работы.

5 Контрольные вопросы

Дайте определение следующим понятиям: концентратор, коммутатор, маршрутизатор, шлюз (gateway). В каких случаях следует использовать тот или иной тип сетевого оборудования?

Определение сетевого оборудования:

Концентратор - это устройство, которое объединяет несколько сегментов сети в единую локальную сеть. Он передает данные от одного устройства к другому в пределах сети, но не имеет возможности принимать решения о маршрутизации или управлении трафиком. Коммутатор

Коммутатор - это устройство, которое принимает данные от устройства и передает их только тому устройству, для которого данные предназначены. Он обеспечивает более эффективное управление трафиком в сети, поскольку данные передаются только тем устройствам, которым они действительно нужны. Маршрутизатор

Маршрутизатор - это устройство, которое принимает данные из различных сетей и принимает решения о том, куда направить эти данные, используя информацию из сетевых протоколов. Он позволяет соединять несколько сетей и обеспечивает передачу данных между ними. Шлюз (Gateway)

Шлюз (или gateway) - это устройство, которое соединяет разные сети, преобразуя протоколы передачи данных. Он работает как точка входа или выхода для сети, позволяя устройствам в разных сетях обмениваться данными. Использование сетевого оборудования

Концентратор: Используется в небольших сегментированных сетях, где требуется просто

Коммутатор: Рекомендуется для более крупных сетей, где требуется более эффективное у

Маршрутизатор: Используется для соединения различных сетей, таких как локальные сети

Шлюз (Gateway): Применяется для связи разнородных сетей, например, для соединения ло

Дайте определение следующим понятиям: ip-адрес, сетевая маска, broadcast adpec.

IP-адрес (Internet Protocol address) - это уникальный числовой идентификатор, присваиваемый каждому устройству в сети, чтобы оно могло быть идентифицировано и обмениваться данными с другими устройствами в сети. IP-адрес состоит из четырех числовых сегментов, разделенных точками, например, 192.168.1.1. Сетевая маска

Сетевая маска (subnet mask) - это числовой параметр, определяющий, какая часть IP-адреса относится к сети, а какая - к устройству в этой сети. Она используется для разделения IP-адреса на две части: сетевую и хостовую, и определяет, какие биты адреса относятся к сети. Broadcast адрес

Broadcast адрес - это специальный адрес в сети, который используется для передачи данных всем устройствам в этой сети. При отправке данных на broadcast адрес, все устройства в сети получают эти данные. Использование сетевых терминов

IP-адрес: Каждое устройство в сети должно иметь уникальный IPадрес, чтобы быть идентифицированным в сети и обмениваться данными с другими устройствой

Сетевая маска: Сетевая маска определяет, какая часть IP-адреса относится к сети, а какая часть IP-адреса относитс

Broadcast адрес: При необходимости отправить данные всем устройствам в сети, использ

Как можно проверить доступность узла сети?

Для проверки доступности узла сети можно воспользоваться несколькими способами: Использование командной строки (Windows или macOS)

Ping: Используйте команду "ping" с IP-адресом или доменным именем устройства, чтобы

ping 192.168.1.1

В ответ вы получите информацию о времени отклика и потерянных пакетах.

Использование сетевых утилит (Linux)

Ping: Аналогично Windows и macOS, команда "ping" также доступна в большинстве дистри

Использование специализированных программ и сервисов

Утилиты мониторинга сети: Существуют специализированные программы и сервисы, такие к

Использование сетевых сканеров

Nmap: Этот инструмент может использоваться для сканирования сети и определения досту

Программы мониторинга сети

Wireshark: Это инструмент анализа сетевых пакетов, который может использоваться для

Выбор метода зависит от ваших потребностей и уровня детализации, необходимой для проверки доступности узлов в сети.