Statistik 09. Generalisierte Lineare Modelle

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

stets aktuelle Fassungen: https://github.com/rsling/VL-Deutsche-Syntax

Inhalt

- Generalisierte Lineare Modelle
 - LM und GLM
 - GLM Grundlagen
 - Maximum Likelihood
 - Nominale Unabhängige

- Modellselektion
- Modellevaluation
- Alternativen und Lösungen
- In R

Nächste Woche | Überblick

GLMs

• Generalisierte Lineare Modelle mit Logit-Link = Logistische Regression

- Generalisierte Lineare Modelle mit Logit-Link = Logistische Regression
- Regression zur Modellierung dichotomer Abhängiger

- Generalisierte Lineare Modelle mit Logit-Link = Logistische Regression
- Regression zur Modellierung dichotomer Abhängiger
- Modellselektion f
 ür GLMs

- Generalisierte Lineare Modelle mit Logit-Link = Logistische Regression
- Regression zur Modellierung dichotomer Abhängiger
- Modellselektion f
 ür GLMs
- Modellevaluation f
 ür GLMs

- Generalisierte Lineare Modelle mit Logit-Link = Logistische Regression
- Regression zur Modellierung dichotomer Abhängiger
- Modellselektion f
 ür GLMs
- Modellevaluation f
 ür GLMs
- Problemlösungen (Ausblick):
 Zufallseffekte (GLMMs), Kreuzvalidierung, Bootstrapping, GAMs

Literatur

- Backhaus u. a. 2011
- Zuur u. a. 2009
- Fahrmeir u. a. 2009

Alternation von Genitiv und Kasusidentität in der Maßangabe im Deutschen:

• Wir trinken eine Flasche guten Wein. (Agree=1)

Alternation von Genitiv und Kasusidentität in der Maßangabe im Deutschen:

- Wir trinken eine Flasche guten Wein. (Agree=1)
- Wir trinken eine Flasche guten Weines. (Agree=o)

Alternation von Genitiv und Kasusidentität in der Maßangabe im Deutschen:

- Wir trinken eine Flasche guten Wein. (Agree=1)
- Wir trinken eine Flasche guten Weines. (Agree=o)
- Welche Faktoren beeinflussen die Wahl von Agree=1 oder Agree=0?

Alternation von Genitiv und Kasusidentität in der Maßangabe im Deutschen:

- Wir trinken eine Flasche guten Wein. (Agree=1)
- Wir trinken eine Flasche guten Weines. (Agree=o)
- Welche Faktoren beeinflussen die Wahl von Agree=1 oder Agree=0?
- Unabhängige hier:

Alternation von Genitiv und Kasusidentität in der Maßangabe im Deutschen:

- Wir trinken eine Flasche guten Wein. (Agree=1)
- Wir trinken eine Flasche guten Weines. (Agree=o)
- Welche Faktoren beeinflussen die Wahl von Agree=1 oder Agree=0?
- Unabhängige hier:
 - Kasus der Maßangabe (Nom, Akk, Dat)

Alternation von Genitiv und Kasusidentität in der Maßangabe im Deutschen:

- Wir trinken eine Flasche guten Wein. (Agree=1)
- Wir trinken eine Flasche guten Weines. (Agree=o)
- Welche Faktoren beeinflussen die Wahl von Agree=1 oder Agree=0?
- Unabhängige hier:
 - Kasus der Maßangabe (Nom, Akk, Dat)
 - Definitheit der NP (o, 1)

Alternation von Genitiv und Kasusidentität in der Maßangabe im Deutschen:

- Wir trinken eine Flasche guten Wein. (Agree=1)
- Wir trinken eine Flasche guten Weines. (Agree=o)
- Welche Faktoren beeinflussen die Wahl von Agree=1 oder Agree=0?
- Unabhängige hier:
 - Kasus der Maßangabe (Nom, Akk, Dat)
 - Definitheit der NP (o, 1)
 - Maß ist als Zahl geschrieben (o, 1)

Alternation von Genitiv und Kasusidentität in der Maßangabe im Deutschen:

- Wir trinken eine Flasche guten Wein. (Agree=1)
- Wir trinken eine Flasche guten Weines. (Agree=o)
- Welche Faktoren beeinflussen die Wahl von Agree=1 oder Agree=0?
- Unabhängige hier:
 - Kasus der Maßangabe (Nom, Akk, Dat)
 - Definitheit der NP (o, 1)
 - Maß ist als Zahl geschrieben (o, 1)
- Das Beispiel kommt dann in der R-Session tatsächlich dran.

• LM sagt kontinuierliche Werte voraus

- LM sagt kontinuierliche Werte voraus
- unplausibel für dichotome Abhängige

- LM sagt kontinuierliche Werte voraus
- unplausibel für dichotome Abhängige
- auch als Eintrittswahrscheinlichkeit unplausibel (außerhalb [0,1])

- LM sagt kontinuierliche Werte voraus
- unplausibel für dichotome Abhängige
- auch als Eintrittswahrscheinlichkeit unplausibel (außerhalb [0,1])
- Normalitätsannahmen nicht erfüllt

Illustration der Probleme

Datenpunkte einer dichotomen Abhängigen y zu einer intervallskalierten Unabhängigen x und lineares Modell y~x

• Vorhersage der Eintrittswahrscheinlichkeiten

- Vorhersage der Eintrittswahrscheinlichkeiten
- lineare Kombination der Regressoren wie beim LM

- Vorhersage der Eintrittswahrscheinlichkeiten
- lineare Kombination der Regressoren wie beim LM
- Linearkombination ergibt die Logits (z):

- Vorhersage der Eintrittswahrscheinlichkeiten
- lineare Kombination der Regressoren wie beim LM
- Linearkombination ergibt die Logits (z):

- Vorhersage der Eintrittswahrscheinlichkeiten
- lineare Kombination der Regressoren wie beim LM
- Linearkombination ergibt die Logits (z):

$$z = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \beta_0$$

Link-Funktion

Die Logits werden transformiert in Eintrittswahrscheinlichkeiten mittels der logistischen Funktion (e ist die Euler-Konstante):

$$\hat{p}(y=1) = \frac{1}{1+e^{-z}}$$

Link-Funktion

Die Logits werden transformiert in Eintrittswahrscheinlichkeiten mittels der logistischen Funktion (e ist die Euler-Konstante):

$$\hat{p}(y=1) = \frac{1}{1+e^{-z}}$$

Bei der binären Vorhersage dann:

$$\hat{y} = \begin{cases} 0 & \text{wenn } \hat{p}(y = 1) \le 0.5 \\ 1 & \text{wenn } \hat{p}(y = 1) > 0.5 \end{cases}$$

Darstellung des Effekts der Logit-Transformation

Die transformierten Logits als $\hat{p}(y = 1)$:

• Interpretation der Koeffizienten nur indirekt möglich

Roland Schäfer (FSU Jena) Statistik 09. Generalisierte Lineare Modelle

- Interpretation der Koeffizienten nur indirekt möglich
- β_i positiv \Rightarrow positiver Einfluss auf $\hat{p}(y = 1)$

- Interpretation der Koeffizienten nur indirekt möglich
- β_i positiv \Rightarrow positiver Einfluss auf $\hat{p}(y = 1)$
- β_i negativ \Rightarrow negativer Einfluss auf $\hat{p}(y = 1)$

- Interpretation der Koeffizienten nur indirekt möglich
- β_i positiv \Rightarrow positiver Einfluss auf $\hat{p}(y = 1)$
- β_i negativ \Rightarrow negativer Einfluss auf $\hat{p}(y = 1)$
- Stärke des Einflusses: nicht linear

- Interpretation der Koeffizienten nur indirekt möglich
- β_i positiv \Rightarrow positiver Einfluss auf $\hat{p}(y = 1)$
- β_i negativ \Rightarrow negativer Einfluss auf $\hat{p}(y = 1)$
- Stärke des Einflusses: nicht linear
- linearer Einfluss nur auf die Logits, nicht auf $\hat{p}(y=1)$

Chancen (Odds) des Modells

• Chance (Odds):
$$o(y=1) = \frac{p(y=1)}{1-p(y=1)}$$

- Chance (Odds): $o(y=1) = \frac{p(y=1)}{1-p(y=1)}$
- Die Chancen des Modells verteilen sich (zum Glück) einfach:

Statistik 09. Generalisierte Lineare Modelle

- Chance (Odds): $o(y=1) = \frac{p(y=1)}{1-p(y=1)}$
- Die Chancen des Modells verteilen sich (zum Glück) einfach:

Statistik 09. Generalisierte Lineare Modelle

- Chance (Odds): $o(y=1) = \frac{p(y=1)}{1-p(y=1)}$
- Die Chancen des Modells verteilen sich (zum Glück) einfach:

$$o(y=1) = \frac{p(y=1)}{1-p(y=1)} = e^{z}$$

Beachte: $ln(e^z) = z = Logits$

- Chance (Odds): $o(y=1) = \frac{p(y=1)}{1-p(y=1)}$
- Die Chancen des Modells verteilen sich (zum Glück) einfach:

$$o(y=1) = \frac{p(y=1)}{1-p(y=1)} = e^z$$

Beachte: $ln(e^z) = z = Logits$

• Die Chance liegt offensichtlich in [0, ∞].

- Chance (Odds): $o(y=1) = \frac{p(y=1)}{1-p(y=1)}$
- Die Chancen des Modells verteilen sich (zum Glück) einfach:

$$o(y=1) = \frac{p(y=1)}{1-p(y=1)} = e^z$$

Beachte:
$$ln(e^z) = z = Logits$$

- Die Chance liegt offensichtlich in [0, ∞].
- Mit steigender Wahrscheinlichkeit gehen die Odds gegen ∞.

- Chance (Odds): $o(y=1) = \frac{p(y=1)}{1-p(y=1)}$
- Die Chancen des Modells verteilen sich (zum Glück) einfach:

$$o(y=1) = \frac{p(y=1)}{1-p(y=1)} = e^{z}$$

Beachte:
$$ln(e^z) = z = Logits$$

- Die Chance liegt offensichtlich in [0, ∞].
- Mit steigender Wahrscheinlichkeit gehen die Odds gegen ∞.
- Bei einem Logit von 3 ist die Chance für y = 1 doppelt so hoch wie bei einem Logit von 1.5 usw.

Beziehung zwischen Wahrscheinlichkeit und Odds

In der Interpretation stellen die Odds die Linearität her, die den Wahrscheinlichkeiten bei der log. Regression fehlen.

Effekt-Koeffizienten

Für die Interpretation der einzelnen Koeffizienten β_i im Sinne eines Chancenverhältnisses:

$$or(y=1|x_i)=e^{\beta_i}$$

Effekt-Koeffizienten

Für die Interpretation der einzelnen Koeffizienten β_i im Sinne eines Chancenverhältnisses:

$$or(y=1|x_i)=e^{\beta_i}$$

In Worten: Steigt x_i (intervallskaliert!) um eine Einheit, dann steigt die Chance für y = 1 um e^{β_i} .

Effekt-Koeffizienten

Für die Interpretation der einzelnen Koeffizienten β_i im Sinne eines Chancenverhältnisses:

$$or(y = 1|x_i) = e^{\beta_i}$$

In Worten: Steigt x_i (intervallskaliert!) um eine Einheit, dann steigt die Chance für y = 1 um e^{β_i} .

Ein Chancenverhältnis von 1 entspricht einem Koeffizienten 0, also einem ohne jeglichen Effekt.

Zusammenfassung nach Backhaus et al., S. 437

Beziehungen zwischen den Maßen sowie ihre Wertebereiche.

Einzel-Koeffizient		Gesamtmodell		
Koeffizient	Chancenverhältnis	Logit	Chance	p (y = 1)
β > 0	e ^β > 1	steigt um βx	steigt um <i>e^{βx}</i>	steigt
β < 0	e ^β < 1	sinkt um β <i>x</i>	sinkt um e ^{βx}	sinkt
[-∞,+∞]	[0,+∞]	[-∞,+∞]	[0 + ∞]	[0,1]

Maximum-Likelihood-Schätzung

• Es gibt keine direkte Lösung für die Koeffizientenberechnung.

Maximum-Likelihood-Schätzung

- Es gibt keine direkte Lösung für die Koeffizientenberechnung.
- Das Schätzverfahren funktioniert iterativ.

Maximum-Likelihood-Schätzung

- Es gibt keine direkte Lösung für die Koeffizientenberechnung.
- Das Schätzverfahren funktioniert iterativ.
- Es kommt der sog. Maximum-Likelihood-Schätzer zum Einsatz.

• Es gibt beliebig viele Modelle = Belegungen für die β -Koeffizienten

Roland Schäfer (FSU Jena) Statistik 09. Generalisierte Lineare Modelle

- Es gibt beliebig viele Modelle = Belegungen für die β -Koeffizienten
- Das wahrscheinlichste Modell angesichts der Beobachtungen ist zu finden.

- Es gibt beliebig viele Modelle = Belegungen für die β -Koeffizienten
- Das wahrscheinlichste Modell angesichts der Beobachtungen ist zu finden.
- In den Beobachtungsdaten für jeden Fall k: $y_b = 1$ oder $y_b = 0$

- Es gibt beliebig viele Modelle = Belegungen für die β -Koeffizienten
- Das wahrscheinlichste Modell angesichts der Beobachtungen ist zu finden.
- In den Beobachtungsdaten für jeden Fall k: $y_k = 1$ oder $y_k = 0$
- Für jeden Beobachtungswert y, betrachtet man:

- Es gibt beliebig viele Modelle = Belegungen für die β -Koeffizienten
- Das wahrscheinlichste Modell angesichts der Beobachtungen ist zu finden.
- In den Beobachtungsdaten für jeden Fall k: $y_k = 1$ oder $y_k = 0$
- Für jeden Beobachtungswert y, betrachtet man:

- Es gibt beliebig viele Modelle = Belegungen für die β -Koeffizienten
- Das wahrscheinlichste Modell angesichts der Beobachtungen ist zu finden.
- In den Beobachtungsdaten für jeden Fall k: $y_k = 1$ oder $y_k = 0$
- Für jeden Beobachtungswert y, betrachtet man:

$$p_k = (\frac{1}{1 + e^{-z_k}})^{y_k} \cdot (1 - \frac{1}{1 + e^{-z_k}})^{1 - y_k}$$

$$p_k = (\frac{1}{1 + e^{-z_k}})^{y_k} \cdot (1 - \frac{1}{1 + e^{-z_k}})^{1 - y_k}$$

• z_k ist der Modell-Logit für die zu y_k empirische gemessenen x.

Roland Schäfer (FSU Jena) Statistik og. Generalisierte Lineare Modelle

$$p_k = (\frac{1}{1+e^{-z_k}})^{y_k} \cdot (1 - \frac{1}{1+e^{-z_k}})^{1-y_k}$$

- z_k ist der Modell-Logit für die zu y_k empirische gemessenen x.
- In den () steht links die vom Model geschätzte Wahrscheinlichkeit $\hat{p}(y_k)$ und rechts jeweils die Gegenwarscheinlichkeit dazu 1 $\hat{p}(y_k)$.

$$p_k = (\frac{1}{1+e^{-z_k}})^{y_k} \cdot (1 - \frac{1}{1+e^{-z_k}})^{1-y_k}$$

- z_k ist der Modell-Logit für die zu y_k empirische gemessenen x.
- In den () steht links die vom Model geschätzte Wahrscheinlichkeit $\hat{p}(y_k)$ und rechts jeweils die Gegenwarscheinlichkeit dazu 1 $\hat{p}(y_k)$.
- Wenn der Modellwert nahe an 0 (z. B. 0.1) und y_k = 0 ist: $p_k = (0.1)^0 \cdot (0.9)^1 = 1 \cdot 0.9 = 0.9$ ("gute" Approximation)

$$p_k = (\frac{1}{1 + e^{-z_k}})^{y_k} \cdot (1 - \frac{1}{1 + e^{-z_k}})^{1 - y_k}$$

- z_k ist der Modell-Logit für die zu y_k empirische gemessenen x.
- In den () steht links die vom Model geschätzte Wahrscheinlichkeit $\hat{p}(y_k)$ und rechts jeweils die Gegenwarscheinlichkeit dazu 1 $\hat{p}(y_k)$.
- Wenn der Modellwert nahe an 0 (z. B. 0.1) und $y_k = 0$ ist: $p_k = (0.1)^0 \cdot (0.9)^1 = 1 \cdot 0.9 = 0.9$ ("gute" Approximation)
- Wenn der Modellwert bei gleichen empirischen Daten umgekehrt ist: $p_k = (0.9)^0 \cdot (0.1)^1 = 1 \cdot 0.1 = 0.1$ ("schlechte" Approximation)

$$p_k = (\frac{1}{1 + e^{-z_k}})^{y_k} \cdot (1 - \frac{1}{1 + e^{-z_k}})^{1 - y_k}$$

- z_{k} ist der Modell-Logit für die zu y_{k} empirische gemessenen x.
- In den () steht links die vom Model geschätzte Wahrscheinlichkeit $\hat{p}(y_h)$ und rechts jeweils die Gegenwarscheinlichkeit dazu 1 – $\hat{p}(y_p)$.
- Wenn der Modellwert nahe an 0 (z. B. 0.1) und $y_b = 0$ ist: $p_b = (0.1)^0 \cdot (0.9)^1 = 1 \cdot 0.9 = 0.9$ ("gute" Approximation)
- Wenn der Modellwert bei gleichen empirischen Daten umgekehrt ist: $p_b = (0.9)^0 \cdot (0.1)^1 = 1 \cdot 0.1 = 0.1$ ("schlechte" Approximation)
- Die p_b messen also die Güte der vom Modell vorhergesagten Wahrscheinlichkeit für jeden beobachteten Datenpunkt.

Bei unabhängigen Ereignissen E_{1..n} gilt:
 P(E₁ + E₂ + ··· + E_n) = ∏ P(E_i)

Bei unabhängigen Ereignissen E_{1..n} gilt:
 P(E₁ + E₂ + ··· + E_n) = ∏ P(E_i)

 Die Wahrscheinlichkeit eines Modells (seine "Likelihood") angesichts aller empirischen Werte y_b ist also:

Bei unabhängigen Ereignissen E_{1..n} gilt:
 P(E₁ + E₂ + ··· + E_n) = ∏ P(E_i)

 Die Wahrscheinlichkeit eines Modells (seine "Likelihood") angesichts aller empirischen Werte y_b ist also:

• Bei unabhängigen Ereignissen $E_{1..n}$ gilt: $P(E_1 + E_2 + \dots + E_n) = \prod_i P(E_i)$

 Die Wahrscheinlichkeit eines Modells (seine "Likelihood") angesichts aller empirischen Werte y_k ist also:

$$L = \prod_{k} p_{k}$$

• Bei unabhängigen Ereignissen $E_{1..n}$ gilt: $P(E_1 + E_2 + \dots + E_n) = \prod_i P(E_i)$

 Die Wahrscheinlichkeit eines Modells (seine "Likelihood") angesichts aller empirischen Werte y_k ist also:

$$L = \prod_{k} p_{k}$$

 Der Maximum Likelihood-Schätzer maximiert L für die Belegungen der β-Koeffizienten (= konkurrierende Modelle).

Dummy-Kodierung

Wie bei der LM-Variante der ANOVA müssen kategoriale Unabhängige mit mehr als zwei Ausprägungen als dichotome Dummy-Variablen kodiert werden.

Dummy-Kodierung

Wie bei der LM-Variante der ANOVA müssen kategoriale Unabhängige mit mehr als zwei Ausprägungen als dichotome Dummy-Variablen kodiert werden.

Beispiel für dreiwertige Variable A und Dummy-Regressoren $x_{1..3}$

	A = 1	A = 2	A = 3
x ₁ =	1	0	0
$\mathbf{x_2}^- =$	0	1	0
x ₃ =	0	0	1

Dummy-Kodierung

Wie bei der LM-Variante der ANOVA müssen kategoriale Unabhängige mit mehr als zwei Ausprägungen als dichotome Dummy-Variablen kodiert werden.

Beispiel für dreiwertige Variable A und Dummy-Regressoren $x_{1..3}$

	A = 1	A = 2	A = 3
x ₁ =	1	0	0
$\mathbf{x_2} =$	0	1	0
x ₃ =	0	0	1

Achtung! De facto gibt es für einen kategorialen Regressor mit *k* Ausprägungen nur *k* – 1 Dummies (s. Abschnitt zum Intercept).

Nominale Unabhängige in Modellgleichungen

Beispiel für eine als $x_{1..3}$ dummy-kodierte Unabhängige A und eine intervallskalierte Unabhängige x_4 :

Nominale Unabhängige in Modellgleichungen

Beispiel für eine als $x_{1..3}$ dummy-kodierte Unabhängige A und eine intervallskalierte Unabhängige x_4 :

$$\hat{p}(y=1)=\frac{1}{1+e^{-z}}$$

$$\mathsf{mit}\; z = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_0$$

Nominale Unabhängige in Modellgleichungen

Beispiel für eine als $x_{1...3}$ dummy-kodierte Unabhängige A und eine intervallskalierte Unabhängige x_4 :

$$\hat{p}(y=1) = \frac{1}{1+e^{-z}}$$

$$\mathsf{mit}\; z = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_0$$

Dabei treten die Werte auf:

• x_{1..3}: 0 oder 1

Nominale Unabhängige in Modellgleichungen

Beispiel für eine als $x_{1...3}$ dummy-kodierte Unabhängige A und eine intervallskalierte Unabhängige x_4 :

$$\hat{p}(y=1) = \frac{1}{1+e^{-z}}$$

mit
$$z = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_0$$

Dabei treten die Werte auf:

- x_{1.3}: 0 oder 1
- Wenn $x_1 = 1$, dann $x_2 = 0$ und $x_3 = 0$ usw.

(Wh.:) Für die Interpretation der einzelnen Koeffizienten β_i im Sinne eines Chancenverhältnisses:

$$or(y = 1|x_i) = e^{\beta_i}$$

(Wh.:) Für die Interpretation der einzelnen Koeffizienten β_i im Sinne eines Chancenverhältnisses:

$$or(y = 1|x_i) = e^{\beta_i}$$

In Worten für nominale Regressoren bzw. ihr dichotomen Dummies:

(Wh.:) Für die Interpretation der einzelnen Koeffizienten β_i im Sinne eines Chancenverhältnisses:

$$or(y = 1|x_i) = e^{\beta_i}$$

In Worten für nominale Regressoren bzw. ihr dichotomen Dummies:

Wenn $x_i = 1$ (x_i ist dichotom skaliert!), dann ist die Chance o(y = 1) um e^{β_i} höher als bei $x_i = 0$.

(Wh.:) Für die Interpretation der einzelnen Koeffizienten β_i im Sinne eines Chancenverhältnisses:

$$or(y = 1|x_i) = e^{\beta_i}$$

In Worten für nominale Regressoren bzw. ihr dichotomen Dummies:

Wenn $x_i = 1$ (x_i ist dichotom skaliert!), dann ist die Chance o(y = 1) um e^{β_i} höher als bei $x_i = 0$. Andere Fälle gibt es wegen der dichotomen Skalierung nicht. • "Intercept" (β_0) in GLMs \neq Schnittpunkt mit y-Achse

- "Intercept" (β_0) in GLMs \neq Schnittpunkt mit y-Achse
- intervallskalierte Regressoren:

- "Intercept" (β_0) in GLMs \neq Schnittpunkt mit y-Achse
- intervallskalierte Regressoren:
 - einfachstes binomiales GLM: $\hat{p}(y = 1) = \beta_1 x_1 + \alpha_1 x_2 + \alpha_2 x_3 + \alpha_3 x_4 + \alpha_4 x_5 + \alpha_5 x_5 +$

- "Intercept" (β_0) in GLMs \neq Schnittpunkt mit y-Achse
- intervallskalierte Regressoren:
 - einfachstes binomiales GLM: $\hat{p}(y = 1) = \beta_1 x_1 + \alpha_1 x_2 + \alpha_2 x_3 + \alpha_3 x_4 + \alpha_4 x_5 + \alpha_5 x_5 +$
 - ▶ Wenn $x_1 = 0$, wird β_0 vorhergesagt.

- "Intercept" (β_0) in GLMs \neq Schnittpunkt mit y-Achse
- intervallskalierte Regressoren:
 - einfachstes binomiales GLM: $\hat{p}(y = 1) = \beta_1 x_1 + \alpha_2 x_2 + \alpha_3 x_4 + \alpha_4 x_5 + \alpha_5 x_4 + \alpha_5 x_5 +$
 - Wenn $x_1 = 0$, wird β_0 vorhergesagt.
- bei Dummy-Variablen wird eine zur Referenz-Kategorie:

- "Intercept" (β_0) in GLMs \neq Schnittpunkt mit y-Achse
- intervallskalierte Regressoren:
 - einfachstes binomiales GLM: $\hat{p}(y = 1) = \beta_1 x_1 + \alpha_1$
 - Wenn $x_1 = 0$, wird β_0 vorhergesagt.
- bei Dummy-Variablen wird eine zur Referenz-Kategorie:
 - ► GLM mit drei Dummies: $\hat{p}(y = 1) = \beta_{Akk} \cdot x_{Akk} + \beta_{Dat} \cdot x_{Dat} + Nom$

- "Intercept" (β_0) in GLMs \neq Schnittpunkt mit y-Achse
- intervallskalierte Regressoren:
 - einfachstes binomiales GLM: $\hat{p}(y = 1) = \beta_1 x_1 + \alpha_1$
 - ▶ Wenn $x_1 = 0$, wird β_0 vorhergesagt.
- bei Dummy-Variablen wird eine zur Referenz-Kategorie:
 - ► GLM mit drei Dummies: $\hat{p}(y = 1) = \beta_{Akk} \cdot x_{Akk} + \beta_{Dat} \cdot x_{Dat} + Nom$ ► "Alle Regressoren werden o" heißt hier, es liegt Nom vor.

- "Intercept" (β₀) in GLMs ≠ Schnittpunkt mit y-Achse
- intervallskalierte Regressoren:
 - einfachstes binomiales GLM: $\hat{p}(y = 1) = \beta_1 x_1 + \alpha_1$
 - ▶ Wenn $x_1 = 0$, wird β_0 vorhergesagt.
- bei Dummy-Variablen wird eine zur Referenz-Kategorie:
 - ► GLM mit drei Dummies: $\hat{p}(y = 1) = \beta_{Akk} \cdot x_{Akk} + \beta_{Dat} \cdot x_{Dat} + Nom$ ► "Alle Regressoren werden o" heißt hier, es liegt Nom vor.

 - Die Dummies modellieren den Unterschied zwischen Referenz (Nom) und den anderen Fällen.

- "Intercept" (β_0) in GLMs \neq Schnittpunkt mit y-Achse
- intervallskalierte Regressoren:
 - einfachstes binomiales GLM: $\hat{p}(y = 1) = \beta_1 x_1 + \alpha_1$
 - Wenn $x_1 = 0$, wird β_0 vorhergesagt.
- bei Dummy-Variablen wird eine zur Referenz-Kategorie:
 - ► GLM mit drei Dummies: $\hat{p}(y = 1) = \beta_{Akk} \cdot x_{Akk} + \beta_{Dat} \cdot x_{Dat} + Nom$ ► "Alle Regressoren werden o" heißt hier, es liegt Nom vor.

 - Die Dummies modellieren den Unterschied zwischen Referenz (Nom) und den anderen Fällen.
 - Die Referenzkategorie sollte die häufigste sein, besonders bei Interaktionen.

Interaktionen

• nichts wesentlich anderes als in LM

Roland Schäfer (FSU Jena) Statistik 09. Generalisierte Lineare Modelle

Interaktionen

- nichts wesentlich anderes als in LM
- vereinte Effekte, die über die Einzeleffekte hinausgehen

Interaktionen

- nichts wesentlich anderes als in LM
- vereinte Effekte, die über die Einzeleffekte hinausgehen
- bei Interpretationsschwierigkeiten ggf. nachlesen

• Signifikanz wird für das Modell und Koeffizienten bestimmt.

- Signifikanz wird für das Modell und Koeffizienten bestimmt.
- Allerdings: Signifikanz heißt nicht automatisch Modellgüte.

- Signifikanz wird für das Modell und Koeffizienten bestimmt.
- Allerdings: Signifikanz heißt nicht automatisch Modellgüte.
- Je "weniger signifikant" ein Regressor, desto wahrscheinlicher kann er ohne Güteverlust entfernt werden.

- Signifikanz wird f
 ür das Modell und Koeffizienten bestimmt.
- Allerdings: Signifikanz heißt nicht automatisch Modellgüte.
- Je "weniger signifikant" ein Regressor, desto wahrscheinlicher kann er ohne Güteverlust entfernt werden.
- Modellselektion: Auswahl des einfachsten Modells mit der größten Modellgüte.

- Signifikanz wird f
 ür das Modell und Koeffizienten bestimmt.
- Allerdings: Signifikanz heißt nicht automatisch Modellgüte.
- Je "weniger signifikant" ein Regressor, desto wahrscheinlicher kann er ohne Güteverlust entfernt werden.
- Modellselektion: Auswahl des einfachsten Modells mit der größten Modellgüte.
- Achtung bei dichotomen Dummy-Regressoren:
 Immer alle Dummies im Modell lassen oder herausnehmen,
 die zu einer kategorialen Unabhängigen gehören!

Weglassen des Regressors mit der geringsten Signifikanz

- Meglassen des Regressors mit der geringsten Signifikanz
- Vergleich des vollen und des reduzierten Modells

- Meglassen des Regressors mit der geringsten Signifikanz
- Vergleich des vollen und des reduzierten Modells
- 3 bei nicht-signifikantem Unterschied: Regressor weglassen

- Meglassen des Regressors mit der geringsten Signifikanz
- Vergleich des vollen und des reduzierten Modells
- 3 bei nicht-signifikantem Unterschied: Regressor weglassen
- von vorne beginnen...

- Meglassen des Regressors mit der geringsten Signifikanz
- Vergleich des vollen und des reduzierten Modells
- 3 bei nicht-signifikantem Unterschied: Regressor weglassen
- von vorne beginnen...

- Meglassen des Regressors mit der geringsten Signifikanz
- Vergleich des vollen und des reduzierten Modells
- 🔞 bei nicht-signifikantem Unterschied: Regressor weglassen
- von vorne beginnen...

Log-Likelihood-Ratio für Likelihood des vollen (L_f) und reduzierten (L_r) Modells: $LR = (-2 \cdot ln(L_r)) - (-2 \cdot ln(L_f))$

- Meglassen des Regressors mit der geringsten Signifikanz
- Vergleich des vollen und des reduzierten Modells
- g bei nicht-signifikantem Unterschied: Regressor weglassen
- von vorne beginnen...

Log-Likelihood-Ratio für Likelihood des vollen (L_f) und reduzierten (L_r) Modells: $LR = (-2 \cdot ln(L_r)) - (-2 \cdot ln(L_f))$

Test: Unter der Ho $L_r = L_f$ ist die LR χ^2 -verteilt mit $df = df_f - df_r$ (df jeweils: Zahl der Regressoren)

- Meglassen des Regressors mit der geringsten Signifikanz
- Vergleich des vollen und des reduzierten Modells
- g bei nicht-signifikantem Unterschied: Regressor weglassen
- von vorne beginnen...

Log-Likelihood-Ratio für Likelihood des vollen (L_f) und reduzierten (L_r) Modells: $LR = (-2 \cdot ln(L_r)) - (-2 \cdot ln(L_f))$

Test: Unter der Ho $L_r = L_f$ ist die LR χ^2 -verteilt mit $df = df_f - df_r$ (df jeweils: Zahl der Regressoren)

Ist die LR größer als der kritische Wert: Regressor im Modell lassen!

Regressoren-Selektion auf Basis des Akaike Information Criterion:

• Ablauf wie bei LR-Test

Regressoren-Selektion auf Basis des Akaike Information Criterion:

- Ablauf wie bei LR-Test
- Maß für Modellvergleich ist das AIC

Regressoren-Selektion auf Basis des Akaike Information Criterion:

- Ablauf wie bei LR-Test
- Maß für Modellvergleich ist das AIC
- Informationstheoretisches Maß:
 Distanz des Modells zur (geschätzten) absoluten Realität

Regressoren-Selektion auf Basis des Akaike Information Criterion:

- Ablauf wie bei LR-Test
- Maß für Modellvergleich ist das AIC
- Informationstheoretisches Maß:
 Distanz des Modells zur (geschätzten) absoluten Realität
- Je kleiner das AIC, desto besser das Modell.

Regressoren-Selektion auf Basis des Akaike Information Criterion:

- Ablauf wie bei LR-Test
- Maß für Modellvergleich ist das AIC
- Informationstheoretisches Maß:
 Distanz des Modells zur (geschätzten) absoluten Realität
- Je kleiner das AIC, desto besser das Modell.
- Achtung: Nur zum Vergleich eingebetteter Modelle verwenden, also bei gleichem Datensatz, und wenn das reduzierte Modell eine Teilmenge der Regressoren des vollen enthält.

Evaluation der Koeffizienten

• Signifikanzbestimmung für einzelne Regressoren

Roland Schäfer (FSU Jena) Statistik 09. Generalisierte Lineare Modelle

Evaluation der Koeffizienten

- Signifikanzbestimmung für einzelne Regressoren
- wie bei LM: Standardfehler für jeden Regressor

Evaluation der Koeffizienten

- Signifikanzbestimmung für einzelne Regressoren
- wie bei LM: Standardfehler für jeden Regressor
- darauf basierend: z-Wert für jeden Regressor...

Evaluation der Koeffizienten

- Signifikanzbestimmung für einzelne Regressoren
- wie bei LM: Standardfehler für jeden Regressor
- darauf basierend: z-Wert für jeden Regressor...
- und z-Test auf Basis der Normalverteilung

• Log-Likelihood-Ratio-Test für Gesamtheit aller Regressoren

Roland Schäfer (FSU Jena) Statistik 09. Generalisierte Lineare Modelle

- Log-Likelihood-Ratio-Test für Gesamtheit aller Regressoren
- volles Modell (ggf. nach Eliminierung von Koeffizienten)

- Log-Likelihood-Ratio-Test für Gesamtheit aller Regressoren
- volles Modell (ggf. nach Eliminierung von Koeffizienten)
- Nullmodell, das nur einen konstanten Term zur Vorhersage nutzt

- Log-Likelihood-Ratio-Test für Gesamtheit aller Regressoren
- volles Modell (ggf. nach Eliminierung von Koeffizienten)
- Nullmodell, das nur einen konstanten Term zur Vorhersage nutzt
- ähnlich den Modellvergleichen im Kapitel "ANOVA als LM"

- auch Vergleich des vollen Modells und Nullmodels
- Interpretation wie gewohnt: Varianzerklärung

- auch Vergleich des vollen Modells und Nullmodels
- Interpretation wie gewohnt: Varianzerklärung

Cox & Snell:
$$R_C^2 = 1 - (\frac{L_0}{L_f})^{\frac{2}{n}}$$

- auch Vergleich des vollen Modells und Nullmodels
- Interpretation wie gewohnt: Varianzerklärung

Cox & Snell:
$$R_C^2 = 1 - (\frac{L_0}{L_f})^{\frac{2}{n}}$$

Problem: Geht nicht bis 1!

- auch Vergleich des vollen Modells und Nullmodels
- Interpretation wie gewohnt: Varianzerklärung

Cox & Snell:
$$R_C^2 = 1 - (\frac{L_0}{L_f})^{\frac{2}{n}}$$

Problem: Geht nicht bis 1!

Nagelkerke:
$$R_N^2 = \frac{R_C^2}{R_{max}^2}$$

mit
$$R_{max}^2 = 1 - (L_0)^{\frac{2}{n}}$$

• gutes GLM ⇒ gute Vorhersagen

- gutes GLM ⇒ gute Vorhersagen
- einfache Vorhersagegüte: Anteil der richtigen Vorhersagen

Roland Schäfer (FSU Jena) Statistik og. Generalisierte Lineare Modelle

- gutes GLM ⇒ gute Vorhersagen
- einfache Vorhersagegüte: Anteil der richtigen Vorhersagen
- instruktiv: Vergleich mit "Baseline"
 (= Anteil der richtigen Vorhersagen bei Vorhersage der modalen Kategorie)

- gutes GLM ⇒ gute Vorhersagen
- einfache Vorhersagegüte: Anteil der richtigen Vorhersagen
- instruktiv: Vergleich mit "Baseline"
 (= Anteil der richtigen Vorhersagen bei Vorhersage der modalen Kategorie)
- Problem wie bei Fehlerreduktion: auch bei starkem Effekt nicht unbedingt Umkehrung der modalen Kategorie

• zugrundegelegte Verteilung: Binomialverteilung

- zugrundegelegte Verteilung: Binomialverteilung
- Überdispersion: Varianz ist größer als für Binomialverteilung angenommen

- zugrundegelegte Verteilung: Binomialverteilung
- Überdispersion: Varianz ist größer als für Binomialverteilung angenommen
- mögliche Gründe:

- zugrundegelegte Verteilung: Binomialverteilung
- Überdispersion: Varianz ist größer als für Binomialverteilung angenommen
- mögliche Gründe:
 - unbeobachtete Heterogenität (fehlende erklärende Variablen)

- zugrundegelegte Verteilung: Binomialverteilung
- Überdispersion: Varianz ist größer als für Binomialverteilung angenommen
- mögliche Gründe:
 - unbeobachtete Heterogenität (fehlende erklärende Variablen)
 - Gruppenbildung (= Beobachtungen nicht unabhängig)

- zugrundegelegte Verteilung: Binomialverteilung
- Überdispersion: Varianz ist größer als für Binomialverteilung angenommen
- mögliche Gründe:
 - unbeobachtete Heterogenität (fehlende erklärende Variablen)
 - Gruppenbildung (= Beobachtungen nicht unabhängig)

- zugrundegelegte Verteilung: Binomialverteilung
- Überdispersion: Varianz ist größer als für Binomialverteilung angenommen
- mögliche Gründe:
 - unbeobachtete Heterogenität (fehlende erklärende Variablen)
 - Gruppenbildung (= Beobachtungen nicht unabhängig)

Schätzung des Dispersionsparameters:

$$\hat{\phi} = \sum (\frac{R_P}{df_R})^2$$

wobei: R_p ist das Pearson-Redidual (hier nicht behandelt) und

 df_R die Residual-Freiheitsgrade n – p, p die Anzahl der Modellparameter

• Problem: $\hat{\phi}$ deutlich über 1

- Problem: $\hat{\phi}$ deutlich über 1
- Lösung: Schätzung der Parameter bleibt (im Ergebnis) gleich

Roland Schäfer (FSU Jena) Statistik og. Generalisierte Lineare Modelle

- Problem: $\hat{\phi}$ deutlich über 1
- Lösung: Schätzung der Parameter bleibt (im Ergebnis) gleich
- aber für die Evaluation der Koeffizienten:

- Problem: $\hat{\phi}$ deutlich über 1
- Lösung: Schätzung der Parameter bleibt (im Ergebnis) gleich
- aber für die Evaluation der Koeffizienten:
 - ► Signifikanzschätzung mit größeren Standardfehlern

- Problem: $\hat{\phi}$ deutlich über 1
- Lösung: Schätzung der Parameter bleibt (im Ergebnis) gleich
- aber für die Evaluation der Koeffizienten:
 - Signifikanzschätzung mit größeren Standardfehlern
 - t-Verteilung statt Normalverteilung (z-Werte)

- Problem: $\hat{\phi}$ deutlich über 1
- Lösung: Schätzung der Parameter bleibt (im Ergebnis) gleich
- aber für die Evaluation der Koeffizienten:
 - Signifikanzschätzung mit größeren Standardfehlern
 - t-Verteilung statt Normalverteilung (z-Werte)
- Ein "Quasi-Likelihood-Modell" folgt im Wesentlichen dieser Strategie.

• (Multi-)kollinearität: Abhängigkeit zwischen Regressoren

Roland Schäfer (FSU Jena) Statistik 09. Generalisierte Lineare Modelle

- (Multi-)kollinearität: Abhängigkeit zwischen Regressoren
- Probleme: β-Fehler, Überanpassung, ungenaue Koeffizientenschätzung

- (Multi-)kollinearität: Abhängigkeit zwischen Regressoren
- Probleme: β-Fehler, Überanpassung, ungenaue Koeffizientenschätzung
- Test: Varianzinflations-Faktoren (nicht im Detail behandelt)

- (Multi-)kollinearität: Abhängigkeit zwischen Regressoren
- Probleme: β-Fehler, Überanpassung, ungenaue Koeffizientenschätzung
- Test: Varianzinflations-Faktoren (nicht im Detail behandelt)
- Lösungen z.B.: mehr Daten, Regressoren wegglassen

- (Multi-)kollinearität: Abhängigkeit zwischen Regressoren
- Probleme: β-Fehler, Überanpassung, ungenaue Koeffizientenschätzung
- Test: Varianzinflations-Faktoren (nicht im Detail behandelt)
- Lösungen z. B.: mehr Daten, Regressoren wegglassen
- Test des Modells auf Robustheit trotz Kollinearität (z. B. Kreuzvalidierung)

Varianzhomogenität

Die Residuen werden im GLM zwar anders berechnet, sind aber trotzdem ein Maß für die Varianz.

Die Varianz sollte nicht mit den Regressorausprägungen variieren!

Kreuzvalidierung

• bei Problemen: Test auf Robustheit des Modells

Kreuzvalidierung

- bei Problemen: Test auf Robustheit des Modells
- Idee bei k-facher Kreuzvalidierung:

- bei Problemen: Test auf Robustheit des Modells
- Idee bei k-facher Kreuzvalidierung:
 - teile Daten in *k* Teile

- bei Problemen: Test auf Robustheit des Modells
- Idee bei k-facher Kreuzvalidierung:
 - 1 teile Daten in k Teile
 - Modellanpassung auf k 1 von k Teilen

- bei Problemen: Test auf Robustheit des Modells
- Idee bei k-facher Kreuzvalidierung:
 - teile Daten in k Teile
 - Modellanpassung auf k 1 von k Teilen
 - 3 Prüfung der Vorhersage auf verbleibendem Teil

- bei Problemen: Test auf Robustheit des Modells
- Idee bei k-facher Kreuzvalidierung:
 - 1 teile Daten in k Teile
 - 2 Modellanpassung auf k 1 von k Teilen
 - 3 Prüfung der Vorhersage auf verbleibendem Teil
 - Modell ist Robust, wenn die Parameter in der Kreuzvalidierung nicht wesentlich anders geschätzt werden als im Ursprungsmodell

- bei Problemen: Test auf Robustheit des Modells
- Idee bei k-facher Kreuzvalidierung:
 - 1 teile Daten in k Teile
 - 2 Modellanpassung auf k 1 von k Teilen
 - 3 Prüfung der Vorhersage auf verbleibendem Teil
 - Modell ist Robust, wenn die Parameter in der Kreuzvalidierung nicht wesentlich anders geschätzt werden als im Ursprungsmodell
- wenn k = n: Leave-One-Out-Kreuzvalidierung

- bei Problemen: Test auf Robustheit des Modells
- Idee bei k-facher Kreuzvalidierung:
 - teile Daten in k Teile
 - Modellanpassung auf k 1 von k Teilen
 - 3 Prüfung der Vorhersage auf verbleibendem Teil
 - Modell ist Robust, wenn die Parameter in der Kreuzvalidierung nicht wesentlich anders geschätzt werden als im Ursprungsmodell
- wenn k = n: Leave-One-Out-Kreuzvalidierung
- verwandtes Verfahren: Bootstrapping (mit Zurücklegen)

Einige typische Anwendungsfälle für nicht-binomiale GLMs:

• Zähldaten: Poisson

Einige typische Anwendungsfälle für nicht-binomiale GLMs:

- Zähldaten: Poisson
- · Zähldaten mit Überdispersion: negativ-binomial

Einige typische Anwendungsfälle für nicht-binomiale GLMs:

- · Zähldaten: Poisson
- · Zähldaten mit Überdispersion: negativ-binomial
- bestimmte Intervalldaten in [0, ∞]: Gamma

Einige typische Anwendungsfälle für nicht-binomiale GLMs:

- · Zähldaten: Poisson
- · Zähldaten mit Überdispersion: negativ-binomial
- bestimmte Intervalldaten in [0, ∞]: Gamma
- viele Nullen: zero-inflated Varianten

Einige typische Anwendungsfälle für nicht-binomiale GLMs:

- · Zähldaten: Poisson
- · Zähldaten mit Überdispersion: negativ-binomial
- bestimmte Intervalldaten in [0, ∞]: Gamma
- viele Nullen: zero-inflated Varianten

Einige typische Anwendungsfälle für nicht-binomiale GLMs:

- Zähldaten: Poisson
- · Zähldaten mit Überdispersion: negativ-binomial
- bestimmte Intervalldaten in [0, ∞]: Gamma
- viele Nullen: zero-inflated Varianten

Das Vademecum, vor allem für R-Benutzer: Zuur u. a. 2009

• typisches gemischtes Modell: mit Zufallseffekten

- typisches gemischtes Modell: mit Zufallseffekten
- Idee: Varianzunterschiede oder Dispersion durch Gruppen

- typisches gemischtes Modell: mit Zufallseffekten
- Idee: Varianzunterschiede oder Dispersion durch Gruppen
- mögliche Gruppen in linguistischen Experimenten:

- typisches gemischtes Modell: mit Zufallseffekten
- Idee: Varianzunterschiede oder Dispersion durch Gruppen
- mögliche Gruppen in linguistischen Experimenten:
 - Werte von einem Probanden bei Befragung, Rating-Studie

- typisches gemischtes Modell: mit Zufallseffekten
- Idee: Varianzunterschiede oder Dispersion durch Gruppen
- mögliche Gruppen in linguistischen Experimenten:
 - Werte von einem Probanden bei Befragung, Rating-Studie
 - ► Werte zu einem Lexem bei Korpusstudie

- typisches gemischtes Modell: mit Zufallseffekten
- Idee: Varianzunterschiede oder Dispersion durch Gruppen
- mögliche Gruppen in linguistischen Experimenten:
 - Werte von einem Probanden bei Befragung, Rating-Studie
 - ► Werte zu einem Lexem bei Korpusstudie
 - Werte aus einer Textsorte bei Korpusstudie

- typisches gemischtes Modell: mit Zufallseffekten
- Idee: Varianzunterschiede oder Dispersion durch Gruppen
- mögliche Gruppen in linguistischen Experimenten:
 - Werte von einem Probanden bei Befragung, Rating-Studie
 - ▶ Werte zu einem Lexem bei Korpusstudie
 - Werte aus einer Textsorte bei Korpusstudie
- ideal: Gruppeneffekte durch zusätzliche normale Regressoren auflösen

- typisches gemischtes Modell: mit Zufallseffekten
- Idee: Varianzunterschiede oder Dispersion durch Gruppen
- mögliche Gruppen in linguistischen Experimenten:
 - Werte von einem Probanden bei Befragung, Rating-Studie
 - ▶ Werte zu einem Lexem bei Korpusstudie
 - Werte aus einer Textsorte bei Korpusstudie
- ideal: Gruppeneffekte durch zusätzliche normale Regressoren auflösen
- sonst (vereinfacht): Schätzung eines Intercepts pro Gruppe

- typisches gemischtes Modell: mit Zufallseffekten
- Idee: Varianzunterschiede oder Dispersion durch Gruppen
- mögliche Gruppen in linguistischen Experimenten:
 - Werte von einem Probanden bei Befragung, Rating-Studie
 - ▶ Werte zu einem Lexem bei Korpusstudie
 - Werte aus einer Textsorte bei Korpusstudie
- ideal: Gruppeneffekte durch zusätzliche normale Regressoren auflösen
- sonst (vereinfacht): Schätzung eines Intercepts pro Gruppe
- Typisch für Zufallseffekte: In der GG sind vermutlich viel mehr Ausprägungen vorhanden, als gemessen (wie z. B. Sprecher oder Lexeme) wurden.

GAMs oder "nichtparametrische Regression"

$$\hat{y} = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n) + \beta_0$$

• f_n : besondere Art von Funktion, die geschätzt wird

Roland Schäfer (FSU Jena) Statistik 09. Generalisierte Lineare Modelle

GAMs oder "nichtparametrische Regression"

$$\hat{y} = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n) + \beta_0$$

- f_n : besondere Art von Funktion, die geschätzt wird
- Wenn die Funktionen ungefähr linear sind, ist ein GLM genauso gut.

GAMs oder "nichtparametrische Regression"

$$\hat{y} = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n) + \beta_0$$

- f_n : besondere Art von Funktion, die geschätzt wird
- Wenn die Funktionen ungefähr linear sind, ist ein GLM genauso gut.
- Interpretation von GAMs: viel schwieriger als GLMs

GAMs oder "nichtparametrische Regression"

$$\hat{y} = f_1(x_1) + f_2(x_2) + \dots + f_n(x_n) + \beta_0$$

- f_n : besondere Art von Funktion, die geschätzt wird
- Wenn die Funktionen ungefähr linear sind, ist ein GLM genauso gut.
- Interpretation von GAMs: viel schwieriger als GLMs
- letzter Ausweg bei schlechtem GLM

In R I

- Modell-Anpassung:
 - > m <- glm(y x1+x2*y3, data=mydata, family="binomial")
 - > summary(m)

In R II

- Modellselektion (wenn nicht von Hand):
 - > drop1(m)
- 8 Varianzinflationsfaktoren:
 - > library(car); vif(m)
- \circ Dispersion $\hat{\phi}$ schätzen:
 - > sum(resid(m, type="pear")^2 / df.residual(m))
- vorhersagegüte:
 - > pred <- ifelse(predict(m) <= 0.5, 0, 1)
 - > tab <- table(pred, mydata\$response)</pre>
 - > sum(diag(tab))/sum(tab)
- Fehlerrate in Kreuzzvalidierung (hier k = 10):
 library(boot); cv.glm(mydata, m, K=10)\$delta

Einzelthemen

- 1 Inferenz
- Deskriptive Statistik
- Nichtparametrische Verfahren
- z-Test und t-Test
- 5 ANOVA
- Freiheitsgrade und Effektstärken
- Power und Severity
- 8 Lineare Modelle
- Generalisierte Lineare Modelle
- Gemischte Modelle

Literatur I

- Backhaus, Klaus, Bernd Erichson, Wulff Plinke & Rolf Weiber. 2011. Multivariate Analysemethoden. 13. Aufl. Berlin etc.: Springer.
- Fahrmeir, Ludwig, Thomas Kneib & Stefan Lang. 2009. Regression Modelle, Methoden und Anwendungen. 2. Aufl. Heidelberg etc.: Springer.
- Zuur, Alain F., Elena N. Ieno, Neil Walker, Anatoly A. Saveliev & Graham M. Smith. 2009. Mixed effects models and extensions in ecology with R. Berlin etc.: Springer.

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.net roland.schaefer@uni-jena.de

l izenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung -Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.