

LOONGSON

龙芯 3B1500 处理器用户手册

上册 多核处理器架构与寄存器描述

V1.7

2016 年4 月

龙芯中科技术有限公司

自主决定命运,创新成就未来

版权声明

本文档版权归龙芯中科技术有限公司所有,并保留一切权利。未经书面许可,任何公司和

个人不得将此文档中的任何部分公开、转载或以其他方式散发给第三方。否则,必将追究

其法律责任。

免责声明

本文档仅提供阶段性信息,所含内容可根据产品的实际情况随时更新,恕不另行通知。如

因文档使用不当造成的直接或间接损失,本公司不承担任何责任。

龙芯中科技术有限公司

Loongson Technology Corporation Limited

地址:北京市海淀区中关村环保科技示范园龙芯产业园2号楼

Building No.2, Loongson Industrial Park,

Zhongguancun Environmental Protection Park, Haidian District, Beijing

电话(Tel): 010-62546668

II

传真(Fax): 010-62600826

龙芯中科技术有限公司 Loongson Technology Corporation Limited

阅读指南

《龙芯 3B1500 处理器用户手册》分为上册和下册。

《龙芯 3B1500 处理器用户手册》上册,介绍龙芯 3B1500 多核处理器架构,主要包括多核处理器架构与寄存器描述;

《龙芯 3B1500 处理器用户手册》下册,从系统软件开发者角度详细介绍龙芯 3B1500 所采用的 GS464 高性能处理器核。

修订历史

	文档名:	龙芯 3B1500 处理器用户手册 ——上册
 文档更新记录	版本号:	V1.7
	创建人:	芯片研发部
	创建日期:	2016-04-01

更新历史

序号.	更新日期	版本号	更新内容
1	2012-05-14	V1.0	初稿完成
2	2012-08-02	V1.1	完善部分寄存器描述
3	2012-10-02	V1.2	完善部分寄存器描述
4	2012-11-11	V1.3	修改图表目录格式 增加第八章 全局时钟
5	2013-05-09	V1.4	增加 HT 寄存器描述 更新温度传感器描述 修改矩阵加速器寄存器地址描述
6	2013-06-16	V1.5	增加时钟软件配置说明
7	2013-10-28	V1.6	增加 LS3B1500F 内容
8	2016-04-01	V1.7	根据 LS3B1500G 调整部分处理器核相关描述

手册信息反馈: service@loongson.cn

目 录

1	概过	<u> </u>	1
	1.1	龙芯系列处理器介绍	1
	1.2	龙芯 3B1500 简介	2
2	芯片	片配置与控制	4
	2.1	芯片工作模式	4
	2. 2	控制引脚说明	4
	2. 3	CACHE 一致性	6
	2. 4	系统节点级的物理地址空间分布	6
	2. 5	地址路由分布与配置	8
	2. 6	芯片配置、采样及 PLL 相关寄存器	14
3	GS4	64 处理器核	20
4	片上	_共享高速缓存(SCACHE)	22
5	矩阵	车处理加速器	24
6	处理	里器核间中断与通信	27
7	1/0	中断	29
8	全局	引时钟	32
9	DDR	2/3 SDRAM 控制器配置	33
	9. 1	DDR2/3 SDRAM 参数配置格式	33
	9. 2	DDR2/3 SDRAM 软件编程指南	60
	9.2.	1 初始化操作	60
	9.2.2	2 Leveling	61
	9.2.3	3 单独发起 MRS 命令	63
	9.2.4	4 任意操作控制总线	63
	9.2.5	5 自循环测试模式控制	63
	9.2.6	6 细粒度多通道模式控制	64
	9.2.7	7 ECC 功能使用控制	65
	9.2.8	8 32/16 位窄通道使用控制	65
10) НҮРІ	ERTRANSPORT 控制器	66

10. 1	Нүрв	ERTRANSPORT 硬件设置及初始化	66
10. 2	Нуре	ERTRANSPORT 协议支持	68
10. 3	Нуре	erTransport 中断支持	69
10. 4	Нуре	ERTRANSPORT 地址窗口	70
10	.4.1	HyperTransport 空间	70
10	.4.2	HyperTransport 控制器内部窗口配置	71
10. 5	西	配置寄存器	71
10	.5.1	Bridge Control	73
10	.5.2	Capability Registers	73
10	.5.3	自定义寄存器	76
10	.5.4	接收诊断寄存器	78
10	.5.5	中断路由方式选择寄存器	78
10	.5.6	接收缓冲区初始寄存器	79
10	.5.7	接收地址窗口配置寄存器	79
10	.5.8	中断向量寄存器	81
10	.5.9	中断使能寄存器	84
10	.5.10	Interrupt Discovery & Configuration	86
10	.5.11	POST 地址窗口配置寄存器	87
10	.5.12	可预取地址窗口配置寄存器	89
10	.5.13	UNCACHE 地址窗口配置寄存器	90
10	.5.14	命令发送缓存大小寄存器	91
10	.5.15	数据发送缓存大小寄存器	92
10	.5.16	发送缓存调试寄存器	92
10	.5.17	预加重和输出阻抗寄存器	93
10	.5.18	HyperTransport 总线配置空间的访问方法	94
10. 6	Нүре	ERTRANSPORT 多处理器支持	95
11	低速 I	10 控制器配置	96
11 1	DOL	(DOL V +交供 1 現	0.4
11. 1		/PCI-X 控制器	
11. 2		· 控制器	
11. 3		T 控制器	
	.3.1	数据寄存器(DAT)	
	.3.2	中断使能寄存器(IER)	
11	.3.3	中断标识寄存器(IIR)	102

11.3.4	FIFO 控制寄存器(FCR)103
11.3.5	线路控制寄存器(LCR)104
11.3.6	MODEM 控制寄存器(MCR)105
11.3.7	线路状态寄存器(LSR)105
11.3.8	MODEM 状态寄存器 (MSR)106
11.3.9	分频锁存器107
11.4 SPI	FLASH 控制器
11.4.1	控制寄存器(SPCR)108
11.4.2	状态寄存器(SPSR)108
11.4.3	数据寄存器(TxFIFO)109
11.4.4	外部寄存器(SPER)109
11.4.5	参数控制寄存器(SFC_PARAM)109
11.4.6	片选控制寄存器(SFC_SOFTCS)110
11.4.7	时序控制寄存器(SFC_TIMING)110
11.4.8	SPI Flash 控制器结构111
11.4.9	SPI 主控制器外部接口时序图112
11.4.10	SPI Flash 访问时序图
11.4.11	SPI Flash 控制器使用指南114
11.5 10	空制器配置

图目录

图 1-1 龙芯 3 号系统结构	1
图 1-2 龙芯 3 号节点结构	2
图 1-3 龙芯 3B1500 芯片结构	3
图 3-1 GS464 结构图	21
图 7-1 龙芯 3B1500 处理器中断路由示意图	29
图 10-1 龙芯 3B1500 中 HT 协议的配置访问	94
图 10-2 两片龙芯 3B1500 8 位互联结构	95
图 10-3 两片龙芯 3B1500 16 位互联结构	95
图 11-1 配置读写总线地址生成	99
图 11-2 SPI Flash 控制器结构	111
图 11-3 SPI 主控制器结构	112
图 11-4 SPI Flash 读引擎结构	112
图 11-5 SPI 主控制器时序图	113
图 11-6 SPI 标准读时序	113
图 11-7 SPI 快速读时序	114
图 11-8 SPI 双 I/O 读时序	114

表目录

表 2-1 控制引脚说明	4
表 2-2 节点级的系统全局地址分布	7
表 2-3 节点内的地址分布	7
表 2-4 共享缓存散列配置	8
表 2-5 一级 XBAR 标号与所述模块的对应关系	9
表 2-6 节点 0 一级交叉开关地址窗口寄存器	9
表 2-7 二级 XBAR 处,标号与所述模块的对应关系	12
表 2-8 MMAP 字段对应的该空间访问属性	12
表 2-9 二级 XBAR 地址窗口转换寄存器	13
表 2-10 二级 XBAR 缺省地址配置	14
表 2-11 芯片配置寄存器(物理地址 0x1fe00180)	14
表 2-12 芯片采样寄存器(物理地址 0x1fe00190)	15
表 2-13 芯片结点和处理器核软件倍频设置寄存器(物理地址 0x1fe001b0)	16
表 2-14 芯片内存和 HT 时钟软件倍频设置寄存器(物理地址 0x1fe001c0)	17
表 2-15 芯片处理器核软件分频设置寄存器(物理地址 0x1fe001d0)	18
表 4-1 SCache 锁窗口配置寄存器	22
表 5-1 矩阵处理编程接口说明	24
表 5-2 矩阵处理寄存器地址说明	25
表 5-3 trans_ctrl 寄存器	25
表 5-4 trans_status 寄存器	26
表 6-1 处理器核间中断相关的寄存器及其功能描述	27
表 6-20 号处理器核的核间中断与通信寄存器	27
表 6-31 号处理器核的核间中断与通信寄存器	28
表 6-42 号处理器核的核间中断与通信寄存器	28
表 6-5 3 号处理器核的核间中断与通信寄存器	28
表 7-1 中断控制寄存器	30
表 7-2 节点 0 IO 控制寄存器地址	30
表 7-3 中断路由寄存器的说明	31
表 7-4 中断路由寄存器地址	31
表 9-1 DDR2/3 参数列表	33
表 9-2 DDR2 SDRAM 配置参数寄存器格式	36
表 10-1 HyperTransport 总线相关引脚信号	66

表 10-2 HyperTransport 接收端可接收的命令	68
表 10-3 两种模式下会向外发送的命令	69
表 10-4 默认的 4 个 HyperTransport 接口的地址窗口分布	70
表 10-5 龙芯 3 号处理器 HyperTransport 接口内部的地址窗口分布	70
表 10-6 龙芯 3B1500 处理器 HyperTransport 接口中提供的地址窗口	71
表 10-7 本模块中所有软件可见寄存器	72
表 10-8 Bus Reset Control 寄存器定义	73
表 10-9 Command, Capabilities Pointer, Capability ID 寄存器定义	73
表 10-10 Link Config, Link Control 寄存器定义	74
表 10-11 Revision ID,Link Freq,Link Error,Link Freq Cap 寄存器定义	75
表 10-12 Feature Capability 寄存器定义	76
表 10-13 MISC 寄存器定义	77
表 10-14 接收诊断寄存器	78
表 10-15 中断路由方式选择寄存器	79
表 10-16 接收缓冲区初始寄存器	79
表 10-17 HT 总线接收地址窗口 0 使能(外部访问)寄存器定义	80
表 10-18 HT 总线接收地址窗口 0 基址(外部访问)寄存器定义	80
表 10-19 HT 总线接收地址窗口 1 使能(外部访问)寄存器定义	80
表 10-20 HT 总线接收地址窗口 1 基址(外部访问)寄存器定义	81
表 10-21 HT 总线接收地址窗口 2 使能(外部访问)寄存器定义	81
表 10-22 HT 总线接收地址窗口 2 基址(外部访问)寄存器定义	
表 10-23 HT 总线中断向量寄存器定义(1)	82
表 10-24 HT 总线中断向量寄存器定义(2)	82
表 10-25 HT 总线中断向量寄存器定义(3)	83
表 10-26 HT 总线中断向量寄存器定义(4)	83
表 10-27 HT 总线中断向量寄存器定义(5)	83
表 10-28 HT 总线中断向量寄存器定义(6)	83
表 10-29 HT 总线中断向量寄存器定义(7)	84
表 10-30 HT 总线中断向量寄存器定义(8)	84
表 10-31 HT 总线中断使能寄存器定义(1)	85
表 10-32 HT 总线中断使能寄存器定义(2)	85
表 10-33 HT 总线中断使能寄存器定义(3)	85
表 10-34 HT 总线中断使能寄存器定义(4)	85
表 10-35 HT 总线中断使能寄存器定义(5)	85

表 10-36 HT 总线中断使能寄存器定义(6)	86
表 10-37 HT 总线中断使能寄存器定义(7)	86
表 10-38 HT 总线中断使能寄存器定义(8)	86
表 10-39 Interrupt Capability 寄存器定义	86
表 10-40 Dataport 寄存器定义	87
表 10-41 IntrInfo 寄存器定义(1)	87
表 10-42 IntrInfo 寄存器定义(2)	87
表 10-43 HT 总线 POST 地址窗口 0 使能(内部访问)	88
表 10-44 HT 总线 POST 地址窗口 0 基址(内部访问)	88
表 10-45 HT 总线 POST 地址窗口 1 使能(内部访问)	88
表 10-46 HT 总线 POST 地址窗口 1 基址(内部访问)	88
表 10-47 HT 总线可预取地址窗口 0 使能(内部访问)	89
表 10-48 HT 总线可预取地址窗口 0 基址(内部访问)	89
表 10-49 HT 总线可预取地址窗口 1 使能(内部访问)	89
表 10-50 HT 总线可预取地址窗口 1 基址(内部访问)	90
表 10-51 HT 总线 Uncache 地址窗口 0 使能(内部访问)	90
表 10-52 HT 总线 Uncache 地址窗口 0 基址(内部访问)	91
表 10-53 HT 总线 Uncache 地址窗口 1 使能(内部访问)	91
表 10-54 HT 总线 Uncache 地址窗口 1 基址(内部访问)	91
表 10-55 命令发送缓存大小寄存器	92
表 10-56 数据发送缓存大小寄存器	92
表 10-57 发送缓存调试寄存器	92
表 10-58 预加重和输出阻抗寄存器	94
表 11-1 PCIX 控制器配置头	96
表 11-2 PCI 控制寄存器	97
表 11-3 PCI/PCIX 总线请求与应答线分配	100
表 11-4 LPC 控制器地址空间分布	100
表 11-5 LPC 配置寄存器含义	101
表 11-6 数据传输寄存器定义	102
表 11-7 中断使能寄存器定义	102
表 11-8 中断源寄存器定义	103
表 11-9 中断控制功能表	103
表 11-10 FIFO 控制寄存器	103
表 11-11 线路控制寄存器	104

表 11-12 Modem 控制寄存器	105
表 11-13 线路状态寄存器	105
表 11-14 Modem 状态寄存器	106
表 11-15 分频锁存器 1	107
表 11-16 分频锁存器 2	107
表 11-17 控制寄存器	108
表 11-18 状态寄存器	108
表 11-19 数据传输寄存器	109
表 11-20 外部寄存器	109
表 11-21 分频系数	109
表 11-22 SPI Flash 参数控制寄存器	110
表 11-23 SPI Flash 片选控制寄存器	110
表 11-24 SPI Flash 时序控制寄存器	110
表 11-25 IO 控制寄存器	116
表 11-26 寄存器详细描述	117

1 概述

1.1 龙芯系列处理器介绍

龙芯处理器主要包括三个系列。龙芯 1 号处理器及其 SOC 系列主要面向嵌入式应用,龙芯 2 号超标量处理器及其 SOC 系列主要面向桌面应用,龙芯 3 号多核处理器系列主要面向服务器和高性能机应用。根据应用的需要,其中部分龙芯 2 号也可以面向部分高端嵌入式应用,部分低端龙芯 3 号也可以面向部分桌面应用。上述三个系列将并行地发展。

龙芯 3 号多核系列处理器基于可伸缩的多核互连架构设计,在单个芯片上集成多个高性能处理器核以及大量的 SCache,还通过高速 I/O 接口实现多芯片的互连以组成更大规模的系统。

龙芯 3 号采用的可伸缩互连结构如下图 1-1 所示。龙芯 3 号片内及多片系统均采用二维 mesh 互连结构,其中每个结点由 8*8 的交叉开关组成,每个交叉开关连接四个处理器核以及四个 SCache,并与东(E)南(N)西(W)北(N)四个方向的其他结点互连。因此,2*2 的 mesh 可以连接 16 个处理器核, 4*4 的 mesh 可以连接 64 个处理器核。

图 1-1 龙芯 3 号系统结构

龙芯 3 号的结点结构如下图 1-2 所示。每个结点有两级 AXI 交叉开关连接处理器、片上共享高速缓存(简称 SCache)、内存控制器以及 IO 控制器。其中第一级 AXI 交叉开关(称为 X1 Switch,简称 X1) 连接处理器和 SCache。第二级交叉开关(称为 X2 Switch,简称 X2) 连接 SCache 和内存控制器。

图 1-2 龙芯 3 号节点结构

在每个结点中,最多 8*8 的 X1 交叉开关通过四个 Master 端口连接四个 GS464 处理器核(图中 P0、P1、P2、P3),通过四个 Slave 端口连接统一编址的四个 SCache 块(图中 S0、S1、S2、S3),通过四对 Master/Slave 端口连接东、南、西、北四个方向的其他结点或 IO 结点(图中 EM/ES、SM/SS、WM/WS、NM/NS)。

X2 交叉开关通过四个 Master 端口连接四个 SCache,至少一个 Slave 端口连接一个内存控制器,至少一个 Slave 端口连接一个交叉开关的配置模块(Xconf)用于配置本结点的 X1和 X2 的地址窗口等。还可以根据需要连接更多的内存控制器和 IO 端口等。

龙芯 3 号的互连系统只是定义上层协议,不对传输协议的实现做具体规定,因此,结点之间的互连即可以采用片上网络进行实现,也可以通过 I/O 控制链路实现多芯片的互连。以一个 4 结点 16 核系统为例,既可以通过 4 片 4 核芯片组成,也可以通过 2 片 8 核芯片,或基于一个单芯片 4 节点 16 核芯片组成。由于互连系统的物理实现对软件透明,上述 3 种配置的系统可以运行相同的操作系统进行。

1.2 龙芯 3B1500 简介

龙芯 3B1500 是龙芯 3 号多核处理器系列的第三款产品,是一个配置为双节点的 8 核处理器,采用 32nm 工艺制造,最高工作主频为 1.2GHz(低电压)/1.5GHz(高电压),主要技术特征如下:

- 片内集成8个64位的四发射超标量GS464高性能处理器核;
- 每个处理器核频率单独可设;

- 片内集成 8 MB 的分体共享共享高速缓存(SCache, 由 8 个体模块组成,每个体模块容量为 1M Byte);
- 通过目录协议维护多核及 I/O DMA 访问的 Cache 一致性;
- 片内集成 2 个 64 位 667MHz 的 DDR2/3 控制器, 支持 DDR3-1333;
- 片内集成 2 个 16 位 800MHz 的 HyperTransport 控制器,最高支持 1600MHz 总线;
- 每个 16 位的 HT 端口可以拆分成两个 8 路的 HT 端口使用;
- 片内集成 32 位 33MHz PCI (非标准电压);
- 片内集成 1 个 LPC (非标准电压)、2 个 UART、1 个 SPI、16 路 GPIO 接口;

龙芯 3B1500 号芯片整体架构基于两级互连实现,结构如下图 1-3 所示。

图 1-3 龙芯 3B1500 芯片结构

第一层互连采用两个相连的 6*6 交叉开关,分别用于连接四个 GS464 处理器核(作为主设备)、四个 SCache 模块(作为从设备)、一个 HT 端口(每个端口使用一个 Master 和一个 Slave)以及相邻的节点。一级互连开关连接的 16 位 HT 控制器还可以作为两个 8 位的 HT 端口使用。HT 控制器和一级互联开关相连,其中的 DMA 控制器负责 HT 总线 IO 请求的 DMA 控制并负责片间一致性的维护。龙芯 3B1500 的 DMA 控制器还可以通过配置实现预取、矩阵转置及数据搬运功能。

第二级互连采用两个独立的 5*4 交叉开关,分别连接 4 个 SCache 模块(作为主设备),DDR2 内存控制器、低速高速 I/O(包括 PCI、LPC、SPI等)(节点二没有低速 IO)以及芯片内部的控制寄存器模块。

上述两级互连开关都采用读写分离的数据通道,数据通道宽度为 128bit,工作在与处理器核相同的频率,用以提供高速的片上数据传输。

基于龙芯 3B1500 可扩展互联架构,两片 8 核龙芯 3B1500 可以通过 HT 端口连接构成两芯片 16 核的 SMP 结构。

2 芯片配置与控制

2.1 芯片工作模式

龙芯 3B1500 有两种工作模式:

- 单芯片模式。系统只集成 1 片龙芯 3B1500,是一个两节点的非均匀访存多处理器系统(CC-NUMA)。
- 多芯片互连模式。系统中包含 2 片龙芯 3B1500,通过龙芯 3B1500 的 HT0 端口进行互连,是一个四节点的非均匀访存多处理器系统(CC-NUMA)。

2.2 控制引脚说明

龙芯 3B1500 的控制引脚包括 DO_TEST、ICCC_EN、NODE_ID[1:0]、CLKSEL[15:0]、PCI_CONFIG。

表 2-1 控制引脚说明

信号	上下拉	作用	
DO TEST	上拉	1'b1 表示功能模式	
DO_TEST	上松	1'b0 表示测试模式	
1'b1 表示多芯片一致性互联模式		性互联模式	
ICCC_EN	下拉	1'b0 表示单芯片模式	
		在多芯片一致性互连	模式下表示处理器号
NODE_ID[1:0]		主处理器设为 2'b00	;
		从处理器设为 2'b10	
上电时钟控制	上电时钟控制		
			HT 时钟控制
		信号	作用
			1'b1:表示 HT 控制器时钟采用 CLKSEL[14:10]控制
		CLKSEL[15]	1'b0: 初始倍频为1倍频,可由软件进行重新配置
CLKSEL[1	5:0]		2'b00: 控制器时钟为 PHY 时钟频率(PHY 时钟 bypass
			时为 3.2G) 除以 2
			2'b01:控制器时钟为PHY时钟频率(PHY时钟 bypass
			时为 3.2G) 除以 4
			2'b10: 控制器时钟为 PHY 时钟频率(PHY 时钟 bypass

	时为 3.2G) 除以 8
	2'b11: 控制器时钟取决于 PCICONF[7]: 1'b1 普通输
	入时钟 100MHz, 1'b0 差分输入时钟 200MHz
	3'b000: PHY 时钟为 800M(HT 总线 200/400)
	3'b001: PHY 时钟为 1.2G(HT 总线 200/300/600)
	3'b010: PHY 时钟为 1.6G(HT 总线 200/400/800)
	3'b011: PHY 时钟为 2.0G(HT 总线 200/500/1000)
CLKSEL[12:10]	3'b100: PHY 时钟为 2.4G
	(HT 总线 200/300/400/600/1200)
	3'b101: PHY 时钟为 2.8G(HT 总线 200/1400)
	3'b110: PHY 时钟为 3.2G(HT 总线 200/400/800/1600)
	3'b111: PHY 时钟取决于 PCICONF[7]: 1'b1 普通输入
	时钟 100MHz,1'b0 差分输入时钟 200MHz

(PCICONF[7]: 1'b1 普通输入时钟 100MHz, 1'b0 差分输入时钟 200MHz)

DDR 的时钟频率要求

MEMCLK(主板输入的时钟) 必须在 25MHz~200MHz 之间 mem_clock 是最后内存的运行频率,可以参考下表的倍频系数。

内存控制器时钟控制

CLKSEL[9:6]	倍频系数	CLKSEL[9:6]	倍频系数
4'b1111	1	4'b1110	26
4'b1101	12	4'b1100	24
4'b1011	11	4'b1010	22
4'b1001	10	4'b1000	20
4'b0xxx	初始倍频为	1倍频,可由软件	进行重新配置

处理器核及节点的时钟频率要求

SYSCLK(主板输入的时钟)必须在 25MHz~200MHz 之间 Core_clock 是最后处理器核的运行频率,可以参考下表的倍频系数。

处理器核及节点时钟控制

CLKSEL[5:0]	处理器核 倍频系数	CLKSEL[5:0]	节点倍频系数
6'b110xx0	40	6'b1xx100	40

		6'b101xx0	32	6'b1xx010	32	
		6'b100xx0	24	6'b1xx000	24	
		6'b110xx1	18	6'b1xx101	18	
		6'b101xx1	16	6'b1xx011	16	
		6'b100xx1	12	6'b1xx001	12	
		6'b111xx0	2	6'b1xx110	2	
		6'b111xx1	1	6'b1xx111	1	
		6'b0xxxxx	初始倍频为1	倍频, 可由软件	进行重新配置	
PCI_CONFIG[7:0]	7 6:5 I 4 3 2 1 注*: 6 0	1'b0 差分输入时 PCIX 总线速度选 PCIX 总线模式选 PCI 主设备模式 1'b1 系统从 PCI 1'b0 由 GPIO[0] 使用外部 PCI 件	性择 空间启动 决定启动空间 型裁 PCIX 总线模型 PCI 33	CLKp/n)		
GPIO[1:0]			制使能(调试模 :拉表示从 SPI Fla		需要下拉 長示从 LPC Flash 耳	文指

2. 3 Cache 一致性

龙芯 3B1500 由硬件维护处理器以及通过 HT 端口接入的 I/O 之间的 Cache 一致性,但硬件不维护通过 PCI 接入到系统中的 I/O 设备的 Cache 一致性。在驱动程序开发时,对通过 PCI 接入的设备进行 DMA(Direct Memory Access)传输时,需要由软件进行 Cache 一致性维护。

2.4 系统节点级的物理地址空间分布

龙芯 3 号系列处理器的系统物理地址分布采用全局可访问的层次化寻址设计,以保证系统开发的扩展兼容。整个系统的物理地址宽度为 48 位。按照地址的高 4 位,整个地址空间被均匀分布到 16 个结点上,即每个结点分配 44 位地址空间。

龙芯 3B1500 采用双节点 8 核配置, 因此龙芯 3B1500 芯片集成的 DDR 内存控制器、

HT 总线、PCI 总线的对应地址都包含在从 0x0 (含)至 0x2000_0000_0000 (不含)的 44 位地址空间内,具体各设备地址分布请参见后续相关章节。

节点 号	地址[47:44]位	起始地址	结束地址
0	0	0x0000_0000_0000	0x1000_0000_0000
1	1	0x1000_0000_0000	0x2000_0000_0000
2	2	0x2000_0000_0000	0x3000_0000_0000
3	3	0x3000_0000_0000	0x4000_0000_0000
4	4	0x4000_0000_0000	0x5000_0000_0000
5	5	0x5000_0000_0000	0x6000_0000_0000
6	6	0x6000_0000_0000	0x7000_0000_0000
7	7	0x7000_0000_0000	0x8000_0000_0000
8	8	0x8000_0000_0000	0x9000_0000_0000
9	9	0x9000_0000_0000	0xa000_0000_0000
10	0xa	0xa000_0000_0000	0xb000_0000_0000
11	0xb	0xb000_0000_0000	0xc000_0000_0000
12	Охс	0xc000_0000_0000	0xd000_0000_0000
13	0xd	0xd000_0000_0000	0xe000_0000_0000
14	0xe	0xe000_0000_0000	0xf000_0000_0000
15	0xf	0xf000_0000_0000	0x1_0000_0000_0000

表 2-2 节点级的系统全局地址分布

在每个节点的内部,44 位地址空间又进一步均匀分布给结点内连接的可能最多 8 个设备。其中低43 位地址由4个 SCache 模块所拥有,高43 位地址则进一步按地址的[43:42]位分布给连接在4个方向端口的设备上。根据芯片和系统结构配置的不同,如果某端口上没有连接从设备,则对应的地址空间是保留地址空间,不允许访问。

设备	地址[43:41]位	节点内起始地址	节点结束地址
SCache	0,1,2,3	0x000_0000_0000	0x800_0000_0000
东	4	0x800_0000_0000	0xa00_0000_0000
南	5	0xa00_0000_0000	0xc00_0000_0000
西	6	0xc00_0000_0000	0xe00_0000_0000
北	7	0xe00_0000_0000	0x1000_0000_0000

表 2-3 节点内的地址分布

例如节点 0 的东端口设备的基地址为 0x0800_0000,节点 1 的东端口设备的基地址为 0x1800_0000_0000, 依次类推。

不同于方向端口的映射关系,龙芯 3B1500 可以根据实际应用的访问行为,来决定 SCache 的交叉寻址方式。节点内的 4 个 SCache 模块一共对应 43 位地址空间,而每个 S 模块所对应的地址空间根据地址位的某两位选择位确定,并可以通过软件进行动态配置修改。系统中设置了名为 SCID_SEL 的配置寄存器来确定地址选择位,如下表所示。在缺省情况下采用[6:5]地位散列的方式进行分布,即地址[6:5]两位决定对应的 SCache 编号。节点 0 上的寄存器地址 0x3FF00400,节点 1 上的寄存器地址为 0x1000_3FF04400。两个节点上的散列方式可以分别配置。如果使用双芯片互连系统,节点 2 的寄存器地址为 0x2000_3FF08400,节点 3 的寄存器地址为 0x30003FF0C400。

简单的说,不同结点的配置空间基址分别为 0x3FF00000 + 0x1000_00004000 * NODE。 这个原则对所有的 0x3FF00000 空间配置寄存器都适用。

SCID_SEL	地址位选择	SCID_SEL	地址位选择
4'h0	6: 5	4'h8	23:22
4'h1	9: 8	4'h9	25:24
4'h2	11:10	4'ha	27:26
4'h3	13:12	4'hb	29:28
4'h4	15:14	4'hc	31:30
4'h5	17:16	4'hd	33:32
4'h6	19:18	4'he	35:34
4'h7	21:20	4'hf	37:36

表 2-4 共享缓存散列配置

2.5 地址路由分布与配置

龙芯 3B1500 的路由主要通过系统的两级交叉开关实现。一级交叉开关可以对每个 Master 端口接收到的请求进行路由配置,每个 Master 端口都拥有 8 个地址窗口,可以完成 8 个地址窗口的目标路由选择。每个地址窗口由 BASE、MASK 和 MMAP 三个 64 位寄存器 组成,BASE 以 K 字节对齐;MASK 采用类似网络掩码高位为 1 的格式;MMAP 的低三位 表示对应目标 Slave 端口的编号,MMAP[4]表示允许取指,MMAP [5]表示允许块读,MMAP [7]表示窗口使能。

窗口命中公式: (IN_ADDR & MASK) == BASE

由于龙芯 3 号缺省采用固定路由,在上电启动时,配置窗口都处于关闭状态,使用时需要系统软件对其进行使能配置。

在一级 XBAR 处,标号与所述模块的对应关系如表 2-5 所示。

标号	缺省值
0	共享缓存块 0
1	共享缓存块 1
2	共享缓存块 2
3	共享缓存块 3
4	相邻节点
5、6	保留
7	HT 模块

表 2-5 一级 XBAR 标号与所述模块的对应关系

节点 0 的地址窗口转换寄存器如下表所示。节点 1 的地址窗口基址是在节点 0 的地址基础上增加 $0x1000_0000_4000$,即对应于 $Core4_Win0_Base$ 的地址是 $0x1000_3FF0_6000$ 。

(对于节点 0, 为 HT0; 对于节点 1, 对 HT1)

不同结点的配置空间基址分别为 $0x3FF00000 + 0x1000_00004000 * NODE$ 。这个原则对 所有的 0x3FF00000 空间配置寄存器都适用。

地址	寄存器	地址	寄存器
0x3ff0_2000	CORE0_WIN0_BASE	0x3ff0_2100	CORE1_WIN0_BASE
0x3ff0_2008	CORE0_WIN1_BASE	0x3ff0_2108	CORE1_WIN1_BASE
0x3ff0_2010	CORE0_WIN2_BASE	0x3ff0_2110	CORE1_WIN2_BASE
0x3ff0_2018	CORE0_WIN3_BASE	0x3ff0_2118	CORE1_WIN3_BASE
0x3ff0_2020	CORE0_WIN4_BASE	0x3ff0_2120	CORE1_WIN4_BASE
0x3ff0_2028	CORE0_WIN5_BASE	0x3ff0_2128	CORE1_WIN5_BASE
0x3ff0_2030	CORE0_WIN6_BASE	0x3ff0_2130	CORE1_WIN6_BASE
0x3ff0_2038	CORE0_WIN7_BASE	0x3ff0_2138	CORE1_WIN7_BASE
0x3ff0_2040	CORE0_WIN0_MASK	0x3ff0_2140	CORE1_WIN0_MASK
0x3ff0_2048	CORE0_WIN1_MASK	0x3ff0_2148	CORE1_WIN1_MASK
0x3ff0_2050	CORE0_WIN2_MASK	0x3ff0_2150	CORE1_WIN2_MASK
	CORE0_WIN3_MASK		
	CORE0_WIN4_MASK		
		_	CORE1_WIN5_MASK
			CORE1_WIN6_MASK

表 2-6 节点 0 一级交叉开关地址窗口寄存器

0x3ff0_2078	CORE0_WIN7_MASK	0x3ff0_2178	CORE1_WIN7_MASK
0x3ff0_2080	CORE0_WIN0_MMAP	0x3ff0_2180	CORE1_WIN0_MMAP
0x3ff0_2088	CORE0_WIN1_MMAP	0x3ff0_2188	CORE1_WIN1_MMAP
0x3ff0_2090	CORE0_WIN2_MMAP	0x3ff0_2190	CORE1_WIN2_MMAP
0x3ff0_2098	CORE0_WIN3_MMAP	0x3ff0_2198	CORE1_WIN3_MMAP
0x3ff0_20a0	CORE0_WIN4_MMAP	0x3ff0_21a0	CORE1_WIN4_MMAP
0x3ff0_20a8	CORE0_WIN5_MMAP	0x3ff0_21a8	CORE1_WIN5_MMAP
0x3ff0_20b0	CORE0_WIN6_MMAP	0x3ff0_21b0	CORE1_WIN6_MMAP
0x3ff0_20b8	CORE0_WIN7_MMAP	0x3ff0_21b8	CORE1_WIN7_MMAP
0x3ff0_2200	CORE2_WIN0_BASE	0x3ff0_2300	CORE3_WIN0_BASE
0x3ff0_2208	CORE2_WIN1_BASE	0x3ff0_2308	CORE3_WIN1_BASE
0x3ff0_2210	CORE2_WIN2_BASE	0x3ff0_2310	CORE3_WIN2_BASE
0x3ff0_2218	CORE2_WIN3_BASE	0x3ff0_2318	CORE3_WIN3_BASE
0x3ff0_2220	CORE2_WIN4_BASE	0x3ff0_2320	CORE3_WIN4_BASE
0x3ff0_2228	CORE2_WIN5_BASE	0x3ff0_2328	CORE3_WIN5_BASE
0x3ff0_2230	CORE2_WIN6_BASE	0x3ff0_2330	CORE3_WIN6_BASE
0x3ff0_2238	CORE2_WIN7_BASE	0x3ff0_2338	CORE3_WIN7_BASE
0x3ff0_2240	CORE2_WIN0_MASK	0x3ff0_2340	CORE3_WIN0_MASK
0x3ff0_2248	CORE2_WIN1_MASK	0x3ff0_2348	CORE3_WIN1_MASK
0x3ff0_2250	CORE2_WIN2_MASK	0x3ff0_2350	CORE3_WIN2_MASK
0x3ff0_2258	CORE2_WIN3_MASK	0x3ff0_2358	CORE3_WIN3_MASK
0x3ff0_2260	CORE2_WIN4_MASK	0x3ff0_2360	CORE3_WIN4_MASK
0x3ff0_2268	CORE2_WIN5_MASK	0x3ff0_2368	CORE3_WIN5_MASK
0x3ff0_2270	CORE2_WIN6_MASK	0x3ff0_2370	CORE3_WIN6_MASK
0x3ff0_2278	CORE2_WIN7_MASK	0x3ff0_2378	CORE3_WIN7_MASK
0x3ff0_2280	CORE2_WIN0_MMAP	0x3ff0_2380	CORE3_WIN0_MMAP
0x3ff0_2288	CORE2_WIN1_MMAP	0x3ff0_2388	CORE3_WIN1_MMAP
0x3ff0_2290	CORE2_WIN2_MMAP	0x3ff0_2390	CORE3_WIN2_MMAP
0x3ff0_2298	CORE2_WIN3_MMAP	0x3ff0_2398	CORE3_WIN3_MMAP
0x3ff0_22a0	CORE2_WIN4_MMAP	0x3ff0_23a0	CORE3_WIN4_MMAP
0x3ff0_22a8	CORE2_WIN5_MMAP	0x3ff0_23a8	CORE3_WIN5_MMAP
0x3ff0_22b0	CORE2_WIN6_MMAP	0x3ff0_23b0	CORE3_WIN6_MMAP
0x3ff0_22b8	CORE2_WIN7_MMAP	0x3ff0_23b8	CORE3_WIN7_MMAP

0x3ff0_2400	EAST_WIN0_BASE	0x3ff0_2500	SOUTH_WIN0_BASE
0x3ff0_2408	EAST_WIN1_BASE	0x3ff0_2508	SOUTH_WIN1_BASE
0x3ff0_2410	EAST_WIN2_BASE	0x3ff0_2510	SOUTH_WIN2_BASE
0x3ff0_2418	EAST_WIN3_BASE	0x3ff0_2518	SOUTH_WIN3_BASE
0x3ff0_2420	EAST_WIN4_BASE	0x3ff0_2520	SOUTH_WIN4_BASE
0x3ff0_2428	EAST_WIN5_BASE	0x3ff0_2528	SOUTH_WIN5_BASE
0x3ff0_2430	EAST_WIN6_BASE	0x3ff0_2530	SOUTH_WIN6_BASE
0x3ff0_2438	EAST_WIN7_BASE	0x3ff0_2538	SOUTH_WIN7_BASE
0x3ff0_2440	EAST_WIN0_MASK	0x3ff0_2540	SOUTH_WIN0_MASK
0x3ff0_2448	EAST_WIN1_MASK	0x3ff0_2548	SOUTH_WIN1_MASK
0x3ff0_2450	EAST_WIN2_MASK	0x3ff0_2550	SOUTH_WIN2_MASK
0x3ff0_2458	EAST_WIN3_MASK	0x3ff0_2558	SOUTH_WIN3_MASK
0x3ff0_2460	EAST_WIN4_MASK	0x3ff0_2560	SOUTH_WIN4_MASK
0x3ff0_2468	EAST_WIN5_MASK	0x3ff0_2568	SOUTH_WIN5_MASK
0x3ff0_2470	EAST_WIN6_MASK	0x3ff0_2570	SOUTH_WIN6_MASK
0x3ff0_2478	EAST_WIN7_MASK	0x3ff0_2578	SOUTH_WIN7_MASK
0x3ff0_2480	EAST_WIN0_MMAP	0x3ff0_2580	SOUTH_WIN0_MMAP
0x3ff0_2488	EAST_WIN1_MMAP	0x3ff0_2588	SOUTH_WIN1_MMAP
0x3ff0_2490	EAST_WIN2_MMAP	0x3ff0_2590	SOUTH_WIN2_MMAP
0x3ff0_2498	EAST_WIN3_MMAP	0x3ff0_2598	SOUTH_WIN3_MMAP
0x3ff0_24a0	EAST_WIN4_MMAP	0x3ff0_25a0	SOUTH_WIN4_MMAP
0x3ff0_24a8	EAST_WIN5_MMAP	0x3ff0_25a8	SOUTH_WIN5_MMAP
0x3ff0_24b0	EAST_WIN6_MMAP	0x3ff0_25b0	SOUTH_WIN6_MMAP
0x3ff0_24b8	EAST_WIN7_MMAP	0x3ff0_25b8	SOUTH_WIN7_MMAP
		ı	
0x3ff0_2600	WEST_WIN0_BASE	0x3ff0_2700	NORTH_WIN0_BASE
0x3ff0_2608	WEST_WIN1_BASE	0x3ff0_2708	NORTH_WIN1_BASE
0x3ff0_2610	WEST_WIN2_BASE	0x3ff0_2710	NORTH_WIN2_BASE
0x3ff0_2618	WEST_WIN3_BASE	0x3ff0_2718	NORTH_WIN3_BASE
0x3ff0_2620	WEST_WIN4_BASE	0x3ff0_2720	NORTH_WIN4_BASE
0x3ff0_2628	WEST_WIN5_BASE	0x3ff0_2728	NORTH_WIN5_BASE
0x3ff0_2630	WEST_WIN6_BASE	0x3ff0_2730	NORTH_WIN6_BASE
0x3ff0_2638	WEST_WIN7_BASE	0x3ff0_2738	NORTH_WIN7_BASE

WEST_WIN0_MASK	0x3ff0_2740	NORTH_WIN0_MASK
WEST_WIN1_MASK	0x3ff0_2748	NORTH_WIN1_MASK
WEST_WIN2_MASK	0x3ff0_2750	NORTH_WIN2_MASK
WEST_WIN3_MASK	0x3ff0_2758	NORTH_WIN3_MASK
WEST_WIN4_MASK	0x3ff0_2760	NORTH_WIN4_MASK
WEST_WIN5_MASK	0x3ff0_2768	NORTH_WIN5_MASK
WEST_WIN6_MASK	0x3ff0_2770	NORTH_WIN6_MASK
WEST_WIN7_MASK	0x3ff0_2778	NORTH_WIN7_MASK
WEST_WIN0_MMAP	0x3ff0_2780	NORTH_WIN0_MMAP
WEST_WIN1_MMAP	0x3ff0_2788	NORTH_WIN1_MMAP
WEST_WIN2_MMAP	0x3ff0_2790	NORTH_WIN2_MMAP
WEST_WIN3_MMAP	0x3ff0_2798	NORTH_WIN3_MMAP
WEST_WIN4_MMAP	0x3ff0_27a0	NORTH_WIN4_MMAP
WEST_WIN5_MMAP	0x3ff0_27a8	NORTH_WIN5_MMAP
WEST_WIN6_MMAP	0x3ff0_27b0	NORTH_WIN6_MMAP
WEST_WIN7_MMAP	0x3ff0_27b8	NORTH_WIN7_MMAP
	WEST_WIN1_MASK WEST_WIN2_MASK WEST_WIN3_MASK WEST_WIN4_MASK WEST_WIN5_MASK WEST_WIN6_MASK WEST_WIN7_MASK WEST_WIN0_MMAP WEST_WIN1_MMAP WEST_WIN3_MMAP WEST_WIN3_MMAP WEST_WIN4_MMAP WEST_WIN5_MMAP	WEST_WIN1_MASK 0x3ff0_2748 WEST_WIN2_MASK 0x3ff0_2750 WEST_WIN3_MASK 0x3ff0_2758 WEST_WIN4_MASK 0x3ff0_2760 WEST_WIN5_MASK 0x3ff0_2768 WEST_WIN6_MASK 0x3ff0_2770 WEST_WIN7_MASK 0x3ff0_2778 WEST_WIN0_MMAP 0x3ff0_2780 WEST_WIN1_MMAP 0x3ff0_2788 WEST_WIN2_MMAP 0x3ff0_2790 WEST_WIN3_MMAP 0x3ff0_2790 WEST_WIN4_MMAP 0x3ff0_27a0 WEST_WIN5_MMAP 0x3ff0_27a8 WEST_WIN5_MMAP 0x3ff0_27a8

在龙芯 3B1500 的二级 XBAR 中有 CPU 地址空间(包括 HT 空间)、DDR2 地址空间、以及 PCI 地址空间共三个 IP 相关的地址空间。地址窗口是供 CPU 和 PCI-DMA 两个具有 Master 功能的 IP 进行路由选择和地址转换而设置的。CPU 和 PCI-DMA 两者都拥有 8 个地址窗口,可以完成目标地址空间的选择以及从源地址空间到目标地址空间的转换。每个地址窗口由 BASE、MASK 和 MMAP 三个 64 位寄存器组成,BASE 以 K 字节对齐,MASK 采用类似网络掩码高位为 1 的格式,MMAP 的低三位是路由选择。

在二级 XBAR 处,标号与所述模块的对应关系如表 2-7 所示对应新地址空间的编号(其中 DDR2 的标号为 0, PCI/Local IO 编号为 2, 配置寄存器模块连接在端口 3 上)。

表 2-7 二级 XBAR 处, 标号与所述模块的对应关系

标号	缺省值
0	0 号 DDR2/3 控制器
1	空
2	低速 I/O(PCI,LPC 等)
3	配置寄存器

如下表。MMAP[4]表示允许取指,MMAP[5]表示允许块读,MMAP[7]表示窗口使能。

表 2-8 MMAP 字段对应的该空间访问属性

[4]	[5]	[7]
允许取指	允许块读	窗口使能

二级 XBAR 的地址配置与一级 XBAR 的地址配置相比增加了地址转换的功能。相比之下,一级 XBAR 的窗口配置不能对 Cache 一致性的请求进行地址转换,否则在 SCache 处的地址会与处理器一级 Cache 处的地址不一致,导致 Cache 一致性的维护错误。

窗口命中公式: (IN_ADDR & MASK) == BASE

新地址换算公式: OUT ADDR = (IN ADDR & ~MASK) | {MMAP[63:10],10'h0}

节点 0 的地址窗口转换寄存器如下表。节点 1 的地址窗口基址是在节点 0 的地址基础上增加 0x1000_0000_4000,即对应于节点 1 的 CPU_Win0_Base 的地址是 0x1000_3FF0_4000。

不同结点的配置空间基址分别为 $0x3FF00000 + 0x1000_00004000 * NODE$ 。这个原则对 所有的 0x3FF00000 空间配置寄存器都适用。

地址 寄存器 缺省值 描述 CPU 窗口 0 的基地址 3ff0 0000 CPU_WIN0_BASE 0x0CPU 窗口 1 的基地址 0x1000 0000 3ff0 0008 CPU WIN1 BASE CPU_WIN2_BASE CPU 窗口 2 的基地址 3ff0 0010 0x0CPU_WIN3_BASE CPU 窗口 3 的基地址 3ff0 0018 0x0CPU 窗口 4 的基地址 3ff0 0020 CPU_WIN4_BASE 0x0CPU_WIN5_BASE CPU 窗口 5 的基地址 3ff0 0028 0x0CPU 窗口 6 的基地址 3ff0 0030 CPU_WIN6_BASE 0x03ff0 0038 CPU_WIN7_BASE CPU 窗口 7 的基地址 0x03ff0 0040 CPU_WIN0_MASK CPU 窗口 0 的掩码 0xffff_ffff_f000_0000 CPU 窗口 1 的掩码 0xffff_ffff_f000_0000 3ff0 0048 CPU_WIN1_MASK 3ff0 0050 CPU 窗口 2 的掩码 0x0CPU_WIN2_MASK 3ff0 0058 CPU 窗口 3 的掩码 0x0CPU_WIN3_MASK CPU_WIN4_MASK CPU 窗口 4 的掩码 0x03ff0 0060 CPU 窗口 5 的掩码 3ff0 0068 CPU_WIN5_MASK 0x0CPU 窗口 6 的掩码 3ff0 0070 CPU_WIN6_MASK 0x03ff0 0078 CPU_WIN7_MASK CPU 窗口 7 的掩码 0x0CPU 窗口 0 的新基地址 3ff0 0080 CPU_WIN0_MMAP 0xf0CPU 窗口 1 的新基地址 0x1000 00f2 3ff0 0088 CPU_WIN1_MMAP 3ff0 0090 CPU_WIN2_MMAP CPU 窗口 2 的新基地址 3ff0 0098 CPU_WIN3_MMAP CPU 窗口 3 的新基地址 3ff0 00a0 CPU_WIN4_MMAP CPU 窗口 4 的新基地址 0x0CPU 窗口 5 的新基地址 3ff0 00a8 CPU_WIN5_MMAP 0x0CPU 窗口 6 的新基地址 3ff0 00b0 CPU_WIN6_MMAP 0 3ff0 00b8 CPU_WIN7_MMAP CPU 窗口 7 的新基地址 3ff0 0100 PCI_WIN0_BASE PCI 窗口 0 的基地址 0x8000 0000 PCI 窗口 1 的基地址 3ff0 0108 PCI_WIN1_BASE 0x0PCI 窗口 2 的基地址 3ff0 0110 PCI_WIN2_BASE 0x0PCI 窗口 3 的基地址 3ff0 0118 PCI_WIN3_BASE 0x0PCI 窗口 4 的基地址 3ff0 0120 PCI_WIN4_BASE 0x0

表 2-9 二级 XBAR 地址窗口转换寄存器

PCI_WIN5_BASE	PCI 窗口 5 的基地址	0x0
PCI_WIN6_BASE	PCI 窗口 6 的基地址	0x0
PCI_WIN7_BASE	PCI 窗口 7 的基地址	0x0
PCI_WIN0_MASK	PCI 窗口 0 的掩码	0xffff_ffff_8000_0000
PCI_WIN1_MASK	PCI 窗口 1 的掩码	0x0
PCI_WIN2_MASK	PCI 窗口 2 的掩码	0x0
PCI_WIN3_MASK	PCI 窗口 3 的掩码	0x0
PCI_WIN4_MASK	PCI 窗口 4 的掩码	0x0
PCI_WIN5_MASK	PCI 窗口 5 的掩码	0x0
PCI_WIN6_MASK	PCI 窗口 6 的掩码	0x0
PCI_WIN7_MASK	PCI 窗口 7 的掩码	0x0
PCI_WIN0_MMAP	PCI 窗口 0 的新基地址	0xf0
PCI_WIN1_MMAP	PCI 窗口 1 的新基地址	0x0
PCI_WIN2_MMAP	PCI 窗口 2 的新基地址	0
PCI_WIN3_MMAP	PCI 窗口 3 的新基地址	0
PCI_WIN4_MMAP	PCI 窗口 4 的新基地址	0x0
PCI_WIN5_MMAP	PCI 窗口 5 的新基地址	0x0
PCI_WIN6_MMAP	PCI 窗口 6 的新基地址	0
PCI_WIN7_MMAP	PCI 窗口 7 的新基地址	0
	PCI_WIN6_BASE PCI_WIN7_BASE PCI_WIN0_MASK PCI_WIN1_MASK PCI_WIN2_MASK PCI_WIN3_MASK PCI_WIN5_MASK PCI_WIN6_MASK PCI_WIN6_MASK PCI_WIN7_MASK PCI_WIN1_MMAP PCI_WIN1_MMAP PCI_WIN3_MMAP PCI_WIN3_MMAP PCI_WIN4_MMAP PCI_WIN5_MMAP PCI_WIN5_MMAP	PCI_WIN6_BASE PCI 窗口 6 的基地址 PCI_WIN7_BASE PCI 窗口 7 的基地址 PCI_WIN0_MASK PCI 窗口 0 的掩码 PCI_WIN1_MASK PCI 窗口 1 的掩码 PCI_WIN2_MASK PCI 窗口 2 的掩码 PCI_WIN3_MASK PCI 窗口 3 的掩码 PCI_WIN4_MASK PCI 窗口 4 的掩码 PCI_WIN5_MASK PCI 窗口 5 的掩码 PCI_WIN6_MASK PCI 窗口 6 的掩码 PCI_WIN7_MASK PCI 窗口 7 的掩码 PCI_WIN0_MMAP PCI 窗口 1 的新基地址 PCI_WIN1_MMAP PCI 窗口 1 的新基地址 PCI_WIN3_MMAP PCI 窗口 3 的新基地址 PCI_WIN4_MMAP PCI 窗口 3 的新基地址 PCI_WIN5_MMAP PCI 窗口 4 的新基地址 PCI_WIN5_MMAP PCI 窗口 5 的新基地址 PCI_WIN5_MMAP PCI 窗口 5 的新基地址 PCI_WIN5_MMAP PCI 窗口 5 的新基地址

根据缺省的寄存器配置,芯片启动后,CPU的 0x00000000 - 0x0fffffff的地址区间(256M) 映射到 DDR2 的 0x00000000 - 0x0fffffff的地址区间,CPU 的 0x10000000 - 0x1fffffff区间 (256M) 映射到 PCI 的 0x10000000 - 0x1fffffff区间,PCIDMA 的 0x80000000 - 0x8fffffff的地址区间(256M) 映射到 DDR2 的 0x00000000 - 0x0fffffff的地址区间。软件可以通过修 改相应的配置寄存器实现新的地址空间路由和转换。

此外,当出现由于 CPU 猜测执行引起对非法地址的读访问时,8 个地址窗口都不命中,由配置寄存器模块返回全 0 的数据给 CPU,以防止 CPU 死等。

 基地址
 高位
 所有者

 0x00000_00000_00000_00000
 0x00000_00000_10000_00000
 0 号 DDR 控制器

 0x00000_00000_10000_00000
 0x00000_00000_20000_00000
 低速 I/O (PCI 等)

表 2-10 二级 XBAR 缺省地址配置

2.6 芯片配置、采样及 PLL 相关寄存器

龙芯 3B1500 中的芯片配置寄存器(Chip_config)及芯片采样寄存器(Chip_sample)提供了对芯片的配置进行读写的机制。

表 2-11 芯片配置寄存器(物理地址 0x1fe00180)

位域	字段名	访问	复位值	描述
3:0	-	RW	4'b7	保留

4	MC0_disable_ddr2_confspace	RW	1'b0	是否禁用 MC0 DDR 配置空间
5	-	RW	1'b0	保留
6	-	RW	1'b0	保留
7	MC0_ddr2_resetn	RW	1'b1	MC0 软件复位(低有效)
8	MC0_clken	RW	1'b1	是否使能 MC0
9	MC1_disable_ddr2_confspace	RW	1'b0	是否禁用 MC1 DDR 配置空间
10	-	RW	1'b0	保留
11	-	RW	1'b0	保留
12	MC1_ddr2_resetn	RW	1'b1	MC1 软件复位(低有效)
13	MC1_clken	RW	1'b1	是否使能 MC1
26:24	HT0_freq_scale_ctrl	RW	3'b111	HT 控制器 0 分频
27	HT0_clken	RW	1'b1	是否使能 HT0
30:28	HT1_freq_scale_ctrl	RW	3'b111	HT 控制器 1 分频
31	HT1_clken	RW	1'b1	是否使能 HT1
42:40	Node0_freq_ ctrl	RW	3'b111	节点0分频
43	-	RW	1'b1	
46:44	Node1_freq_ ctrl	RW	3'b111	节点1分频
47	-	RW	1'b1	
63:56	Cpu_version	R	2'h35	CPU 版本
95:64				(空)
127:96	Pad1v8_ctrl	RW	6'h780	1v8 pad 控制
其它		R		保留

表 2-12 芯片采样寄存器(物理地址 0x1fe00190)

位域	字段名	访问	复位值	描述
31:0	Compcode_core	R		
47:32	Sys_clkseli	R		板上倍频设置
55:48	Bad_ip_core	R		core7-core0 是否坏
57:56	Bad_ip_ddr	R		2 个 DDR 控制器是否坏
61:60	Bad_ip_ht	R		2 个 HT 控制器是否坏
83:80	Compcode_ok	R		
88	Thsens0_overflow	R		温度传感器 0 上溢(超过 125℃)
89	Thsens1_overflow	R		温度传感器 1 上溢(超过 125℃)
				温度传感器 0 摄氏温度
103:96	Thsens0_out	R		结点温度=Thens0_out0 -100
				温度范围 -40 度 - 125 度
				温度传感器 1 摄氏温度
111:104	Thsens1_out	R		结点温度=Thens0_out1 -100
				温度范围 -40 度 - 125 度
其它		R		保留

以下几组软件倍频设置寄存器用于设置在 CLKSEL 配置为软件控制模式下,各个时钟

的工作频率。其中,MEM CLOCK 配置对应内存控制器及总线时钟频率;CORE CLOCK 对应处理器核时钟频率;NODE CLOCK 对应片上互连网络及三级共享高速缓存频率;HT CLOCK 对应 HT 控制器时钟频率。

每个时钟配置一般有三个参数,DIV_REFC、DIV_LOOPC、DIV_OUT。最终的时钟频率为(参考时钟/DIV_REFC*DIV_LOOPC)/DIV_OUT。

而对于 HT CLOCK 来说,前两个参数是由引脚配置决定的,无法更改,只有 DIV_OUT (HTx_DIV_HT_CORE) 是可以软件配置的。其工作频率为 CLKSEL[12:10]配置的 PHY 时钟频率 / DIV OUT。

软件配置 CORE CLOCK 与 NODE CLOCK 时,建议将 PD_L1 设为 1,PD_L2/PD_L3 设为 0; Serial_mode 设置为 0; BYPASS_REFIN_L2 设为 1。这样不使用 L1 PLL,而使得 SYSPLL 工作在 NODE 与 CORE CLOCK 独立模式下,能够得到更好的时钟精度。

软件控制模式下,默认对应的时钟频率为外部参考时钟的频率(对于 CORE CLOCK 与 NODE CLOCK,都为引脚 SYS_CLK 的对应频率;对于 MEM CLOCK,为引脚 MEM_CLK 对应频率),需要在处理器启动过程中对时钟进行软件设置。各个时钟设置的过程应该按照以下方式:

- 1) 设置寄存器中除了 SEL_PLL_*及 SOFT_SET_PLL 之外的其它寄存器,也即这两个寄存器在设置的过程中写为 0:
- 2) 其它寄存器值不变,将 SOFT_SET_PLL 设为 1;
- 3) 等待寄存器中的锁定信号 LOCKED_*为 1;
- 4) 将 SEL_PLL_*设为 1, 此时对应的时钟频率将切换为软件设置的频率

表 2-13 芯片结点和处理器核软件倍频设置寄存器(物理地址 0x1fe001b0)

位域	字段名	访问	复位值	描述
0	SEL_PLL_NODE	RW	0x0	Node 时钟非软件 bypass 整个 PLL
1	SEL_PLL_CORE	RW	0x0	Core 时钟非软件 bypass 整个 PLL
2	SOFT_SET_PLL	RW	0x0	允许软件设置 PLL
3	BYPASS_L1	RW	0x0	Bypass L1 PLL
4	BYPASS_L2_NODE	RW	0x0	Bypass L2 Node PLL
5	BYPASS_L2_CORE	RW	0x0	Bypass L2 Core PLL
6	BYPASS_REFIN_L2	RW	0x0	L2 的输入是否 Bypass L1 PLL
7	LOCKEN_L1	RW	0x0	允许锁定 L1 PLL
8	LOCKEN_L2_NODE	RW	0x0	允许锁定 L2 Node PLL
9	LOCKEN_L2_CORE	RW	0x0	允许锁定 L2 Core PLL
11:10	LOCKC_L1	RW	0x0	判定 L1 PLL 是否锁定使用的相位

				的精度
13:12	LOCKC_L2_NODE	RW	0x0	判定 L2 Node PLL 是否锁定使用的 相位的精度
15:14	LOCKC_L2_CORE	RW	0x0	判定 L2 Core PLL 是否锁定使用的相位的精度
16	LOCKED_L1	R	0x0	L1 PLL 是否锁定
17	LOCKED_L2_NODE	R	0x0	L2 Node PLL 是否锁定
18	LOCKED_L2_CORE	R	0x0	L2 Core PLL 是否锁定
19	PD_L1	R/W	0x0	关闭 L1 PLL(LS3B1500F)
20	PD_L2_NODE	R/W	0x0	关闭 L2 Node PLL(LS3B1500F)
21	PD_L2_CORE	R/W	0x0	关闭 L2 Core PLL(LS3B1500F)
23:22	Serial_mode	R/W	0x0	PLL 使用模式(LS3B1500F) 00 – L2 PLL 锁定不依赖于 L1 PLL 11 – L2 PLL 锁定依赖于 L1 PLL
31:26	L1_DIV_REFC	RW	0x1	L1 PLL 输入参数
41:32	L1_DIV_LOOPC	RW	0x1	L1 PLL 输入参数
47:42	L1_DIV_OUT	RW	0x1	L1 PLL 输入参数
53:48	L2_DIV_REFC_NODE	RW	0x1	L2 Node PLL 输入参数
63:54	L2_DIV_LOOPC_NODE	RW	0x1	L2 Node PLL 输入参数
69:64	L2_DIV_OUT_NODE	RW	0x1	L2 Node PLL 输入参数
75:70	L2_DIV_REFC_CORE	RW	0x5	L2 Core PLL 输入参数
85:76	L2_DIV_LOOPC_CORE	RW	0x0	L2 Core PLL 输入参数
91:86	L2_DIV_OUT_CORE	RW	0x1	L2 Core PLL 输入参数
其它		RW		保留

注: PLL ouput = (clk_ref/div_refc * div_loopc) / div_out。

表 2-14 芯片内存和 HT 时钟软件倍频设置寄存器(物理地址 0x1fe001c0)

位域	字段名	访问	复位值	描述
0	SEL _MEM_PLL	RW	0x0	MEM 时钟非软件 bypass 整个 PLL
1	SOFT_SET_MEM_PLL	RW	0x0	允许软件设置 MEM PLL
2	BYPASS_MEM_PLL	RW	0x0	Bypass MEM_PLL
3	LOCKEN_MEM_PLL	RW	0x0	允许锁定 MEM_PLL
5:4	LOCKC_MEM_PLL	RW	0x0	判定 MEM PLL 是否锁定使用的相 位的精度
6	LOCKED_MEM_PLL	R	0x0	MEM_PLL 是否锁定
13:8	MEM_PLL_DIV_REFC	RW	0x1	MEM PLL 输入参数
23:14	MEM_PLL_DIV_LOOPC	RW	0x41	MEM PLL 输入参数
29:24	MEM_PLL_DIV_OUT	RW	0x0	MEM PLL 输入参数
32	SEL_HT0_PLL	RW	0x0	HT0 非软件 bypass PLL
33	SOFT_SET_HT0_PLL	RW	0x0	允许软件设置 HT0 PLL

34	BYPASS_HT0_PLL	RW	0x0	Bypass HT0_PLL
35	LOCKEN_HT0_PLL	RW	0x0	允许锁定 HT0 PLL
37:36	LOCKC_HT0_PLL	RW	0x0	判定 HTO PLL 是否锁定是采用的相位精度
38	LOCKED_HT0_PLL	R	0x0	HT0_PLL 是否锁定
45:40	HT0_DIV_HTCORE	RW	0x1	HT0 Core PLL 输入参数
48	SEL_HT1_PLL	RW	0x0	HT1 非软件 bypass PLL
49	SOFT_SET_HT1_PLL	RW	0x0	允许软件设置 HT1 PLL
50	BYPASS_HT1_PLL	RW	0x0	Bypass HT1_PLL
51	LOCKEN_HT1_PLL	RW	0x0	允许锁定 HT1 PLL
53:52	LOCKC_HT1_PLL	RW	0x0	判定 HT1 PLL 是否锁定是采用的相位精度
54	LOCKED_HT1_PLL	R	0x0	HT1_PLL 是否锁定
61:56	HT1_DIV_HTCORE	RW	0x1	HT1 Core PLL 输入参数
其它		RW		保留

表 2-15 芯片处理器核软件分频设置寄存器(物理地址 0x1fe001d0)

位域	字段名	访问	复位值	描述
2:0	core0_freqctrl	RW	0x7	核 0 分频控制值
3	core0_en	RW	0x1	核 0 时钟使能
6:4	core1_freqctrl	RW	0x7	核 1 分频控制值
7	core1_en	RW	0x1	核 1 时钟使能
10:8	core2_freqctrl	RW	0x7	核 2 分频控制值
11	core2_en	RW	0x1	核 2 时钟使能
14:12	core3_freqctrl	RW	0x7	核 3 分频控制值
15	core3_en	RW	0x1	核 3 时钟使能
18:16	core4_freqctrl	RW	0x7	核 4 分频控制值
19	core4_en	RW	0x1	核 4 时钟使能
22:20	core5_freqctrl	RW	0x7	核 5 分频控制值
23	core5_en	RW	0x1	核 5 时钟使能
26:24	core6_freqctrl	RW	0x7	核 6 分频控制值
27	core6_en	RW	0x1	核 6 时钟使能
30:28	core7_freqctrl	RW	0x7	核7分频控制值
31	core7_en	RW	0x1	核7时钟使能
			注:	软件分频后的时钟频率值等于原来
				的(分频控制值+1)/8
63:32	Reserved	RW	32'hFFFFFI	保留
64	Core0_pre_resetn	RW	0x1	核 0 的预复位控制(LS3B1500F)
65	Core0_soft_resetn	RW	0x1	核 0 的软件复位控制 (LS3B1500F)
66	Core1_pre_resetn	RW	0x1	核 1 的预复位控制(LS3B1500F)
67	Core1_soft_resetn	RW	0x1	核 1 的软件复位控制 (LS3B1500F)
68	Core2_pre_resetn	RW	0x1	核 2 的预复位控制(LS3B1500F)

龙芯 3B1500 处理器用户手册

69	Core2_soft_resetn	RW	0x1	核 2 的软件复位控制 (LS3B1500F)
70	Core3_pre_resetn	RW	0x1	核 3 的预复位控制(LS3B1500F)
71	Core3_soft_resetn	RW	0x1	核 3 的软件复位控制 (LS3B1500F)
72	Core4_pre_resetn	RW	0x1	核 4 的预复位控制(LS3B1500F)
73	Core4_soft_resetn	RW	0x1	核 4 的软件复位控制 (LS3B1500F)
74	Core5_pre_resetn	RW	0x1	核 5 的预复位控制(LS3B1500F)
75	Core5_soft_resetn	RW	0x1	核 5 的软件复位控制 (LS3B1500F)
76	Core6_pre_resetn	RW	0x1	核 6 的预复位控制(LS3B1500F)
77	Core6_soft_resetn	RW	0x1	核 6 的软件复位控制 (LS3B1500F)
78	Core7_pre_resetn	RW	0x1	核7的预复位控制(LS3B1500F)
79	Core7_soft_resetn	RW	0x1	核7的软件复位控制(LS3B1500F)

3 GS464 处理器核

GS464 是四发射 64 位的 MIPS 兼容的高性能处理器核,面向高性能计算和高端嵌入式等应用。

在龙芯 3B1500 中的 8 个 GS464 核通过以及 SCache 模块通过 AXI 互联网络形成一个分布式共享 SCache 的多核结构。

GS464 的主要特点如下:

- MIPS64 兼容;
- 提供 X86 虚拟机指令;
- 四发射超标量结构,两个定点、两个浮点、一个访存部件;
- 每个浮点部件都支持全流水双精度浮点乘加运算;
- 访存部件支持 128 位存储访问, 虚地址和物理地址各为 48 位:
- 支持寄存器重命名、动态调度、转移预测等乱序执行技术;
- 64 项全相联 TLB,独立的 16 项指令 TLB,可变页大小;
- 一级指令 Cache 64KB, 4 路组相联;
- 一级数据 Cache 64KB, 4 路组相联;
- 独立不共享 Victim Cache 128KB,减少冲突失效;
- 支持 Non-blocking 访问及 Load-Speculation 等访存优化技术;
- 支持 Cache 一致性协议,可用于片内多核处理器;
- 指令 Cache 实现奇偶校验,数据 Cache 实现 ECC 校验;
- 支持标准的 EJTAG 调试标准,方便软硬件调试;
- 标准的 128 位 AXI 接口。

GS464 的结构如下图所示。GS464 更多的详细介绍请参考 GS464 用户手册以及 MIPS64 用户手册。

图 3-1 GS464 结构图

4 片上共享高速缓存(SCache)

SCache 模块是与 GS464 处理器 IP 配套设计的模块。该模块既可以和 GS464 对接,使 GS464 成为包括 SCache 在内的处理器 IP; 也可以通过 AXI 网络连接多个 GS464 以及多个 SCache 模块,形成片内多处理器的 CMP 结构。SCache 模块的主要特征包括:

- 通过目录支持 Cache 一致性协议。
- 采用四路组相联结构。
- 运行时可动态关闭。
- 支持 ECC 校验。
- 支持 DMA 一致性读写和预取读。
- 支持 16 种 SCache 散列方式。
- 支持按窗口锁 SCache。

为降低功耗,SCache 的 TAG、目录和数据可以分开访问,SCache 状态位、w 位与 TAG 一起存储,TAG 存放在 TAG RAM 中,目录存放在 DIR RAM 中,数据存放在 DATA RAM 中。失效请求访问 SCache,同时读出所有路的 TAG、目录和数据,并根据 TAG 来选出数据和目录。替换请求、重填请求和写回请求只操作一路的 TAG、目录和数据。

为提高一些特定计算任务的性能,SCache 增加了锁机制。落在被锁区域中的 SCache 块会被锁住,因而不会被替换出 SCache (除非四路 SCache 中都是被锁住的块)。通过 confbus 可以对 SCache 模块内部的四组锁窗口寄存器进行动态配置,但必须保证四路 SCache 中一定有一路被锁住。因此 SCache 锁住的区域大小没有限制,只要不超过 SCache 大小的 3/4 就可以。此外当 SCache 收到 DMA 写请求时,如果被写的区域在 SCache 中命中且被锁住,那么 DMA 写将直接写入到 SCache 而不是内存。

WALDSTON WELLTHOLD					
名称	地址	位域	描述		
Slock0_valid	0x3ff00200	[63:63]	0 号锁窗口有效位		
Slock0_addr	0x3ff00200	[47:0]	0 号锁窗口锁地址		
Slock0_mask	0x3ff00240	[47:0]	0 号锁窗口掩码		
Slock1_valid	0x3ff00208	[63:63]	1 号锁窗口有效位		
Slock1_addr	0x3ff00208	[47:0]	1 号锁窗口锁地址		
Slock1_mask	0x3ff00248	[47:0]	1号锁窗口掩码		
Slock2_valid	0x3ff00210	[63:63]	2 号锁窗口有效位		
Slock2_addr	0x3ff00210	[47:0]	2 号锁窗口锁地址		
Slock2_mask	0x3ff00250	[47:0]	2 号锁窗口掩码		
Slock3_valid	0x3ff00218	[63:63]	3 号锁窗口有效位		
Slock3_addr	0x3ff00218	[47:0]	3 号锁窗口锁地址		

表 4-1 SCache 锁窗口配置寄存器

Slock3 mask	0x3ff00258	[47:0]	3 号锁窗口掩码
SIOCKS_IIIask	UAJ11UU2JU	[+7.0]	

举例来说, 当一个地址 addr 使得 slock0_valid && ((addr & slock0_mask) == (slock0_addr & slock0_mask))为 1 时, 这个地址就被锁窗口 0 锁住了。

不同结点的配置空间基址分别为 $0x3FF00000 + 0x1000_00004000 * NODE$ 。这个原则对 所有的 0x3FF00000 空间配置寄存器都适用。

5 矩阵处理加速器

龙芯 3B1500 中内置了两个独立于处理器核的矩阵处理加速器,其基本功能是通过软件的配置,实现对存放在内存中矩阵进行从源矩阵到目标矩阵的行列转置或搬移功能。两个加速器分别集成在龙芯 3B1500 的两个 HyperTransport 控制器内部,通过 1 级交叉开关实现对 SCache 及内存的读写,并且能够维护 Cache 一致性。

完成转置功能时,由于转置前同一 Cache 块的元素顺序在转置后的矩阵中是分散的,如果提前读入多行数据,使得这些数据能够以 Cache 行为单位进行写入目标矩阵的地址空间,则能提高读写效率。因此矩阵处理加速器中设置了一个大小为 32 行的缓存区,实现横向方式写入(从源矩阵读入到缓冲区),纵向读出(由缓冲区写入到目标矩阵)。

矩阵处理的工作过程为先读入 32 行源矩阵数据,再将该 32 行数据写入到目标矩阵,依次下去,直至完成整个矩阵的转置或搬运。矩阵处理加速器还可以根据需要,仅进行预取源矩阵而不写目标矩阵,以此方式来实现对数据进行预取到 SCache 的操作。

与转置不同,进行矩阵搬移工作时可以直接以 Cache 块为单位进行读写操作。因为读写操作可能不是同时进行,需要对读回来的数据进行缓冲处理,因此矩阵搬移模块实现了一块64*64bit 的缓存区,提供四个读端口和四个写端口。为了提高 Cache 块的读写效率,本模块要求源矩阵的起始地址,每行搬运字节数及行宽均是 32 字节的整数倍,对矩阵的列数则没有要求,并且硬件不考虑矩阵地址不对齐的情况。

转置和搬移操作涉及的源矩阵可能是位于一个大矩阵中的一个小矩阵,因此,其矩阵地址可能不是完全连续,相邻行之间的地址会有间隔,需要实现更多的编程控制接口。通过设置矩阵元素的大小,本模块还支持对源矩阵的行和列同时进行放大处理,但要求放大后的矩阵大小不能超出所在大矩阵。

下面表 5-1 到 5-4 说明了矩阵处理涉及到的编程接口。

地址 属性 说明 名称 0x3ff00700 RW 源矩阵起始地址 src_start_addr 0x3ff00708 dst_start_addr RW 目标矩阵起始地址 0x3ff00710 RW 源矩阵的一行元素个数 row 0x3ff00718 RW 源矩阵的一列元素个数 col 0x3ff00720 RW 源矩阵所在大矩阵的行跨度(字节) src_stride 0x3ff00728 dst stride RW 目标矩阵所在大矩阵的行跨度(字节) 0x3ff00730 RW 转置控制寄存器 trans_ctrl 0x3ff00738 RO 转置状态寄存器 trans_status

表 5-1 矩阵处理编程接口说明

表 5-2 矩阵处理寄存器地址说明

地址	名称
0x3ff00700	0 号转置模块的 src_start_addr
0x3ff00708	0 号转置模块的 dst_start_addr
0x3ff00710	0 号转置模块的 row
0x3ff00718	0 号转置模块的 col
0x3ff00720	0 号转置模块的 src_stride
0x3ff00728	0 号转置模块的 dst_stride
0x3ff00730	0 号转置模块的 trans_ctrl
0x3ff00738	0 号转置模块的 trans_status
0x10003ff04700	1 号转置模块的 src_start_addr
0x10003ff04708	1 号转置模块的 dst_start_addr
0x10003ff04710	1 号转置模块的 row
0x10003ff04718	1 号转置模块的 col
0x10003ff04720	1 号转置模块的 src_stride
0x10003ff04728	1 号转置模块的 dst_stride
0x10003ff04730	1 号转置模块的 trans_ctrl
0x10003ff04738	1 号转置模块的 trans_status

对于节点 2 和节点 3 来说,对应的转置模块基地址分别为 0x20003ff08700 和 0x30003ff0c700。

表 5-3 trans_ctrl 寄存器

字段	说明
0	fetch_en,是否允许读源矩阵。
1	store_en,是否允许写目标矩阵。为 0 时,转置过程只预取源矩阵,但不写目标矩阵。
2	源矩阵读取完毕后,是否有效中断。
3	目标矩阵写入完毕后,是否有效中断,
74	Arcmd, 读命令内部控制位。当 arcache 为 4'hf 时, 必须设为 4'he 或 4'hf, 其中 4'he 表示读分配, 4'hf
	表示读不分配。当 arcache 为其它值时无意义。
118	Arcache,读命令内部控制位。为 4'hf 时,使用 cache 通路,为 4'h0 时,使用 uncache 通路。其它值
	无意义。
1512	Awcmd,写命令内部控制位。当 awcache 为 4'hf 时,必须设为 4'hb。当 awcache 为其它值时无意义。
1916	Awcache,写命令内部控制位。为 4'hf 时,使用 cache 通路,为 4'h0 时,使用 uncache 通路。其它值
	无意义。

2120	element_width,矩阵的元素大小。00表示 1 个字节,01表示 2 个字节,10表示 4 个字节,11表示 8
	个字节
22	trans_yes,为 1 表示进行转置;为 0 表示不转置

表 5-4 trans_status 寄存器

字段	说明
0	源矩阵读取完毕
1	目标矩阵写入完毕

6 处理器核间中断与通信

龙芯 3B1500 为每个处理器核都实现了 8 个核间中断寄存器(IPI)以支持多核 BIOS 启动和操作系统运行时在处理器核之间进行中断和通信,其说明和地址见表 6-1 到表 6-5。

名称	读写权限	描述
IPI_Status	R	32 位状态寄存器,任何一位有被置 1 且对应位使能情况下,处
		理器核 INT4 中断线被置位。
IPI_Enable	RW	32 位使能寄存器,控制对应中断状态位是否有效
IPI_Set	W	32 位中断置位寄存器,往对应的位写 1,则 STATUS 寄存器对
		应的位被置1
IPI_Clear	W	32 位中断清除寄存器,往对应的位写 1,则 STATUS 寄存器对
		应的位被清 0
MailBox0	RW	缓存寄存器,供启动时传递参数使用,按 64 或者 32 位的 uncache
		方式进行访问。
MailBox01	RW	缓存寄存器,供启动时传递参数使用,按 64 或者 32 位的 uncache
		方式进行访问。
MailBox02	RW	缓存寄存器,供启动时传递参数使用,按 64 或者 32 位的 uncache
		方式进行访问。
MailBox03	RW	缓存寄存器,供启动时传递参数使用,按 64 或者 32 位的 uncache
		方式进行访问。

表 6-1 处理器核间中断相关的寄存器及其功能描述

龙芯 3B1500 节点 0 的处理器核间中断相关的寄存器及其功能描述如下,节点 1 的处理器核相关寄存器的地址是在节点 0 的地址基础上增加 $0x1000_0000_4000$,如对应于 Core4_IPI_Status 的地址是 $0x1000_3FF0_5000$ 。

不同结点的配置空间基址分别为 $0x3FF00000 + 0x1000_00004000 * NODE$ 。这个原则对 所有的 0x3FF00000 空间配置寄存器都适用。

名称	地址	权限	描述
Core0_IPI_Status	0x3ff01000	R	0 号处理器核的 IPI_Status 寄存器
Core0_IPI_Enalbe	0x3ff01004	RW	0 号处理器核的 IPI_Enalbe 寄存器
Core0_IPI_Set	0x3ff01008	W	0 号处理器核的 IPI_Set 寄存器
Core0 _IPI_Clear	0x3ff0100c	W	0 号处理器核的 IPI_Clear 寄存器
Core0_MailBox0	0x3ff01020	RW	0 号处理器核的 IPI_MailBox0 寄存器
Core0_ MailBox1	0x3ff01028	RW	0 号处理器核的 IPI_MailBox1 寄存器
Core0_ MailBox2	0x3ff01030	RW	0 号处理器核的 IPI_MailBox2 寄存器
Core0_ MailBox3	0x3ff01038	RW	0 号处理器核的 IPI_MailBox3 寄存器

表 6-20 号处理器核的核间中断与通信寄存器

名称	地址	权限	描述
Core1_IPI_Status	0x3ff01100	R	1 号处理器核的 IPI_Status 寄存器
Core1_IPI_Enalbe	0x3ff01104	RW	1 号处理器核的 IPI_Enalbe 寄存器
Core1_IPI_Set	0x3ff01108	W	1 号处理器核的 IPI_Set 寄存器
Core1 _IPI_Clear	0x3ff0110c	W	1 号处理器核的 IPI_Clear 寄存器
Core1_MailBox0	0x3ff01120	R	1 号处理器核的 IPI_MailBox0 寄存器
Core1_ MailBox1	0x3ff01128	RW	1 号处理器核的 IPI_MailBox1 寄存器
Core1_MailBox2	0x3ff01130	W	1 号处理器核的 IPI_MailBox2 寄存器
Core1_ MailBox3	0x3ff01138	W	1 号处理器核的 IPI_MailBox3 寄存器

表 6-3 1 号处理器核的核间中断与通信寄存器

表 6-4 2 号处理器核的核间中断与通信寄存器

名称	地址	权限	描述
Core2_IPI_Status	0x3ff01200	R	2 号处理器核的 IPI_Status 寄存器
Core2_IPI_Enalbe	0x3ff01204	RW	2 号处理器核的 IPI_Enalbe 寄存器
Core2_IPI_Set	0x3ff01208	W	2 号处理器核的 IPI_Set 寄存器
Core2 _IPI_Clear	0x3ff0120c	W	2 号处理器核的 IPI_Clear 寄存器
Core2_MailBox0	0x3ff01220	R	2 号处理器核的 IPI_MailBox0 寄存器
Core2_ MailBox1	0x3ff01228	RW	2 号处理器核的 IPI_MailBox1 寄存器
Core2_ MailBox2	0x3ff01230	W	2 号处理器核的 IPI_MailBox2 寄存器
Core2_ MailBox3	0x3ff01238	W	2 号处理器核的 IPI_MailBox3 寄存器

表 6-5 3 号处理器核的核间中断与通信寄存器

名称	地址	权限	描述
Core3_IPI_Status	0x3ff01300	R	3 号处理器核的 IPI_Status 寄存器
Core3_IPI_Enalbe	0x3ff01304	RW	3 号处理器核的 IPI_Enalbe 寄存器
Core3_IPI_Set	0x3ff01308	W	3 号处理器核的 IPI_Set 寄存器
Core3 _IPI_Clear	0x3ff0130c	W	3 号处理器核的 IPI_Clear 寄存器
Core3_MailBox0	0x3ff01320	R	3 号处理器核的 IPI_MailBox0 寄存器
Core3_ MailBox1	0x3ff01328	RW	3 号处理器核的 IPI_MailBox1 寄存器
Core3_ MailBox2	0x3ff01330	W	3 号处理器核的 IPI_MailBox2 寄存器
Core3_ MailBox3	0x3ff01338	W	3 号处理器核的 IPI_MailBox3 寄存器

上面列出的是龙芯 3B1500 多处理器芯片的节点 0 核间中断相关寄存器列表。在采用两片龙芯 3B1500 互连构成四节点 CC-NUMA 系统时,每个芯片内的节点对应一个系统全局节点编号,节点内处理器核的 IPI 寄存器地址按上表与其所在节点的基地址成固定偏移关系。例如,0号节点0号处理器核的 IPI_Status 地址为 0x3ff01000,其它节点内的 0号处理器核地址偏移增加 0x1000_0000_4000,比如 1号节点的 0号处理器地址则为 0x10003ff05000,依次类推。

不同结点的配置空间基址分别为 $0x3FF00000 + 0x1000_00004000 * NODE$ 。这个原则对 所有的 0x3FF00000 空间配置寄存器都适用。

7 1/0 中断

龙芯 3B1500 芯片最多支持 32 个中断源,连入两个节点各自的中断配置寄存器,如下图 7-1 所示,任意一个 IO 中断源可以被配置为是否使能、触发的方式、以及被路由的目标处理器核中断脚。

图 7-1 龙芯 3B1500 处理器中断路由示意图

中断相关配置寄存器都是以位的形式对相应的中断线进行控制,中断控制位连接及属性配置见下表 7-1。中断使能 (Enable) 的配置有三个寄存器: Intenset、Intenclr 和 Inten。Intenset 设置中断使能,

Intenset 寄存器写 1 的位对应的中断使能被设置,写 0 没有任何作用。Intenclr 清除中断使能,写 0 没有任何作用,Intenclr 寄存器写 1 的位对应的中断使能被清除,写 0 没有任何作用。Inten 寄存器读取当前各中断使能的情况,为 1 时对应的中断源产生的中断可以被路由,为 0 时对应的中断源产生的中断被屏蔽。

脉冲形式的中断信号(如 PCI_SERR)由 Intedge 配置寄存器来选择,写 1 表示脉冲触发,写 0 表示电平触发。中断处理程序可以通过 Intenclr 的相应位来清除脉冲记录。

所有的片内中断(包括 HT、DDR、MT、LPC)都为电平触发。

位域	访问属性/缺省值						
	Intedge	Inten	Intenset	Intenclr	中断源		
3:0	RW / 0	R / 0	W / 0	W / 0	Sys_int0-3		
7:4	RO / 0	R / 0	RW / 0	RW / 0	PCI_INTn		
8	RO / 0	R / 0	RW / 0	RW / 0	Matrix_int0		
9	RO / 0	R / 0	RW / 0	RW / 0	Matrix_int1		
10	RO / 0	R / 0	RW / 0	RW / 0	Lpc		
12 : 11	RW / 0	R / 0	RW / 0	RW / 0	Mc0-1		
13	RW / 0	R / 0	RW / 0	RW / 0	Barrier		
14	RW / 0	R / 0	RW / 0	RW / 0	保留		
15	RW / 0	R / 0	RW / 0	RW / 0	Pci_perr		
23:16	RW / 0	R / 0	RW / 0	RW / 0	HT0 int0-7		
31 : 24	RW / 0	R / 0	RW / 0	RW / 0	HT1 int0-7		

表 7-1 中断控制寄存器

表 7-2 节点 0 IO 控制寄存器地址

名称	地址偏移	描述
Intisr	0x3ff01420	32 位中断状态寄存器
Inten	0x3ff01424	32 位中断使能状态寄存器
Intenset	0x3ff01428	32 位使能设置寄存器
Intenclr	0x3ff0142c	32 位使能清除寄存器
Intedge	0x3ff01434	32 位触发方式寄存器
CORE0_INTISR	0x3ff01440	路由给 CORE0 的 32 位中断状态
CORE1_INTISR	0x3ff01448	路由给 CORE1 的 32 位中断状态
CORE2_INTISR	0x3ff01450	路由给 CORE2 的 32 位中断状态
CORE3_INTISR	0x3ff01458	路由给 CORE3 的 32 位中断状态

节点 1 的处理器核相关寄存器的地址是在节点 0 的地址基础上增加 0x 1000_0000_4000 ,如节点 1 的 Intisr 的地址是 0x 1000_3 FF 0_0 5420。

不同结点的配置空间基址分别为 $0x3FF00000 + 0x1000_00004000 * NODE$ 。这个原则对 所有的 0x3FF00000 空间配置寄存器都适用。

在龙芯 3B1500 中集成了两个节点,每个节点包括 4 个处理器核,上述的 32 位中断源可以通过软件配置选择期望中断的目标处理器核。进一步,中断源可以选择路由到处理器核中断 IP2 到 IP5 中的任意一个,即对应 CP0_Status 的 IP2 到 IP5。每个节点内的 32 个 I/O 中断源中每一个都对应一个 8 位的路由控制器,其格式和地址如下表 7-3 和 7-4 所示。路由寄存器采用向量的方式进行路由选择,如 0x48 标示路由到 3 号处理器的 IP4 上。

表 7-3 中断路由寄存器的说明

位域	说明
3:0	路由的处理器核向量号(第0位代表0号处理器核,第1位代表1
	号)
7:4	路由的处理器核中断引脚向量号(第0位代表IP2,第1位代表IP3)

表 7-4 中断路由寄存器地址

名称	地址偏移	描述	名称	地址偏移	描述
Entry0	0x3ff01400	Sys_int0	Entry16	0x3ff01410	HT0-int0
Entry1	0x3ff01401	Sys_int1	Entry17	0x3ff01411	HT0-int1
Entry2	0x3ff01402	Sys_int2	Entry18	0x3ff01412	HT0-int2
Entry3	0x3ff01403	Sys_int3	Entry19	0x3ff01413	HT0-int3
Entry4	0x3ff01404	Pci_int0	Entry20	0x3ff01414	HT0-int4
Entry5	0x3ff01405	Pci_int1	Entry21	0x3ff01415	HT0-int5
Entry6	0x3ff01406	Pci_int2	Entry22	0x3ff01416	HT0-int6
Entry7	0x3ff01407	Pci_int3	Entry23	0x3ff01417	HT0-int7
Entry8	0x3ff01408	Matrix int0	Entry24	0x3ff01418	HT1-int0
Entry9	0x3ff01409	Matrix int1	Entry25	0x3ff01419	HT1-int1
Entry10	0x3ff0140a	Lpc int	Entry26	0x3ff0141a	HT1-int2
Entry11	0x3ff0140b	Mc0	Entry27	0x3ff0141b	HT1-int3
Entry12	0x3ff0140c	Mc1	Entry28	0x3ff0141c	HT1-int4
Entry13	0x3ff0140d	Barrier	Entry29	0x3ff0141d	HT1-int5
Entry14	0x3ff0140e	保留	Entry30	0x3ff0141e	HT1-int6
Entry15	0x3ff0140f	Pci_perr/serr	Entry31	0x3ff0141f	HT1-int7

8 全局时钟

龙芯 3B1500 芯片内部提供了两个 64 位全局时钟供软件使用。

两个全局时钟的物理地址分别为 0x3FF0_0408 和 0x1000_3FF0_4408。访问时必须使用 UNCACHE 地址。

全局时钟的运行频率与节点时钟(NODE CLOCK)相同,每个时钟周期自增 1。该时钟为只读 64 位,对该时钟的写不产生任何效果。

对于双路系统, NODE2 与 NODE3 的两个全局时钟物理地址分别为 0x2000_3FF0_8408 和 0x3000_3FF0_C408。

9 DDR2/3 SDRAM 控制器配置

龙芯 3B1500 处理器内部集成的内存控制器的设计遵守 DDR2/3 SDRAM 的行业标准 (JESD79)。

9.1 DDR2/3 SDRAM 参数配置格式

参数列表及说明如下表:

表 9-1 DDR2/3 参数列表

	63:56	55:48	47:40	39:32	31:24	23:16	15:8	7:0
0x000	Dll_value_0(RD)		Dll_value_ck(RD	Dll_value_ck(RD)			Version(RD)	
0x008	Dll_value_4(RD)		Dll_value_3(RD)		Dll_value_2(RD)		Dll_value_1(RD)	
0x010	Dll_value_8(RD)		Dll_value_7(RD)		Dll_value_6(RD)		Dll_value_5(RD)	
0x018	Dll_ck_3	Dll_ck_2	Dll_ck_1	Dll_ck_0	Dll_increment	Dll_start_point	Dll_bypass	Init_start
0x020	Dq_oe_end_0	Dq_oe_begin_0	Dq_stop_edge_0	Dq_start_edge_0	Rddata_delay_0	Rddqs_lt_half_0	Wrdqs_lt_half_0	Wrdq_lt_half_0
0x028	Rd_oe_end_0	Rd_oe_begin_0	Rd_stop_edge_0	Rd_start_edge_0	Dqs_oe_end_0	Dqs_oe_begin_0	Dqs_stop_edge_0	Dqs_start_edge_0
0x030				Wrdq_clkdelay_0	Odt_oe_end_0	Odt_oe_begin_0	Odt_stop_edge_0	Odt_start_edge_0
0x038				Dll_rddqs_n_0	Dll_rddqs_p_0	Dll_wrdqs_0	Dll_wrdata_0	Dll_gate_0
0x040	Dq_oe_end_1	Dq_oe_begin_1	Dq_stop_edge_1	Dq_start_edge_1	Rddata_delay_1	Rddqs_lt_half_1	Wrdqs_lt_half_1	Wrdq_lt_half_1
0x048	Rd_oe_end_1	Rd_oe_begin_1	Rd_stop_edge_1	Rd_start_edge_1	Dqs_oe_end_1	Dqs_oe_begin_1	Dqs_stop_edge_1	Dqs_start_edge_1
0x050				Wrdq_clkdelay_1	Odt_oe_end_1	Odt_oe_begin_1	Odt_stop_edge_1	Odt_start_edge_1
0x058				Dll_rddqs_n_1	Dll_rddqs_p_1	Dll_wrdqs_1	Dll_wrdata_1	Dll_gate_1
0x060	Dq_oe_end_2	Dq_oe_begin_2	Dq_stop_edge_2	Dq_start_edge_2	Rddata_delay_2	Rddqs_lt_half_2	Wrdqs_lt_half_2	Wrdq_lt_half_2
0x068	Rd_oe_end_2	Rd_oe_begin_2	Rd_stop_edge_2	Rd_start_edge_2	Dqs_oe_end_2	Dqs_oe_begin_2	Dqs_stop_edge_2	Dqs_start_edge_2
0x070				Wrdq_clkdelay_2	Odt_oe_end_2	Odt_oe_begin_2	Odt_stop_edge_2	Odt_start_edge_2
0x078				Dll_rddqs_n_2	Dll_rddqs_p_2	Dll_wrdqs_2	Dll_wrdata_2	Dll_gate_2
0x080	Dq_oe_end_3	Dq_oe_begin_3	Dq_stop_edge_3	Dq_start_edge_3	Rddata_delay_3	Rddqs_lt_half_3	Wrdqs_lt_half_3	Wrdq_lt_half_3
0x088	Rd_oe_end_3	Rd_oe_begin_3	Rd_stop_edge_3	Rd_start_edge_3	Dqs_oe_end_3	Dqs_oe_begin_3	Dqs_stop_edge_3	Dqs_start_edge_3
0x090				Wrdq_clkdelay_3	Odt_oe_end_3	Odt_oe_begin_3	Odt_stop_edge_3	Odt_start_edge_3
0x098				Dll_rddqs_n_3	Dll_rddqs_p_3	Dll_wrdqs_3	Dll_wrdata_3	Dll_gate_3
0x0A0	Dq_oe_end_4	Dq_oe_begin_4	Dq_stop_edge_4	Dq_start_edge_4	Rddata_delay_4	Rddqs_lt_half_4	Wrdqs_lt_half_4	Wrdq_lt_half_4
0x0A8	Rd_oe_end_4	Rd_oe_begin_4	Rd_stop_edge_4	Rd_start_edge_4	Dqs_oe_end_4	Dqs_oe_begin_4	Dqs_stop_edge_4	Dqs_start_edge_4
0x0B0				Wrdq_clkdelay_4	Odt_oe_end_4	Odt_oe_begin_4	Odt_stop_edge_4	Odt_start_edge_4

0x0B8				Dll_rddqs_n_4	Dil	Dll_wrdqs_4	Dll_wrdata_4	DII 4
								Dll_gate_4
			Dq_stop_edge_5		Rddata_delay_5		•	Wrdq_lt_half_5
	Rd_oe_end_5	Rd_oe_begin_5						Dqs_start_edge_5
0x0D0				Wrdq_clkdelay_5	Odt_oe_end_5	Odt_oe_begin_5	Odt_stop_edge_5	Odt_start_edge_5
0x0D8				Dll_rddqs_n_5	Dll_rddqs_p_5	Dll_wrdqs_5	Dll_wrdata_5	Dll_gate_5
0x0E0	Dq_oe_end_6	Dq_oe_begin_6	Dq_stop_edge_6	Dq_start_edge_6	Rddata_delay_6	Rddqs_lt_half_6	Wrdqs_lt_half_6	Wrdq_lt_half_6
0x0E8	Rd_oe_end_6	Rd_oe_begin_6	Rd_stop_edge_6	Rd_start_edge_6	Dqs_oe_end_6	Dqs_oe_begin_6	Dqs_stop_edge_6	Dqs_start_edge_6
0x0F0				Wrdq_clkdelay_6	Odt_oe_end_6	Odt_oe_begin_6	Odt_stop_edge_6	Odt_start_edge_6
0x0F8				Dll_rddqs_n_6	Dll_rddqs_p_6	Dll_wrdqs_6	Dll_wrdata_6	Dll_gate_6
0x100	Dq_oe_end_7	Dq_oe_begin_7	Dq_stop_edge_7	Dq_start_edge_7	Rddata_delay_7	Rddqs_lt_half_7	Wrdqs_lt_half_7	Wrdq_lt_half_7
0x108	Rd_oe_end_7	Rd_oe_begin_7	Rd_stop_edge_7	Rd_start_edge_7	Dqs_oe_end_7	Dqs_oe_begin_7	Dqs_stop_edge_7	Dqs_start_edge_7
0x110				Wrdq_clkdelay_7	Odt_oe_end_7	Odt_oe_begin_7	Odt_stop_edge_7	Odt_start_edge_7
0x118				Dll_rddqs_n_7	Dll_rddqs_p_7	Dll_wrdqs_7	Dll_wrdata_7	Dll_gate_7
0x120	Dq_oe_end_8	Dq_oe_begin_8	Dq_stop_edge_8	Dq_start_edge_8	Rddata_delay_8	Rddqs_lt_half_8	Wrdqs_lt_half_8	Wrdq_lt_half_8
0x128	Rd_oe_end_8	Rd_oe_begin_8	Rd_stop_edge_8	Rd_start_edge_8	Dqs_oe_end_8	Dqs_oe_begin_8	Dqs_stop_edge_8	Dqs_start_edge_8
0x130				Wrdq_clkdelay_8	Odt_oe_end_8	Odt_oe_begin_8	Odt_stop_edge_8	Odt_start_edge_8
0x138				Dll_rddqs_n_8	Dll_rddqs_p_8	Dll_wrdqs_8	Dll_wrdata_8	Dll_gate_8
0x140	Pad_ocd_clk	Pad_ocd_ctl	Pad_ocd_dqs	Pad_ocd_dq	Pad_enzi		Pad_en_ctl	Pad_en_clk
0x148	Pad_adj_code_dqs	Pad_code_dqs	Pad_adj_code_dq	Pad_code_dq		Pad_vref_internal	Pad_odt_se	Pad_modezi1v8
0x150			Pad_adj_code_clk	Pad_code_lk	Pad_adj_code_cmd Pad_code_cmd		Pad_adj_code_addr	Pad_code_addr
0x158			Pad_comp_okn	Pad_comp_code_c	Pad_comp_code_i	Pad_comp_mode	Pad_comp_tm	Pad_comp_pd
0x160	Rdfifo_empty(RD)		Overflow(RD)		Dram_init(RD)	Rdfifo_valid	Cmd_timming	Ddr3_mode
0x168		Addr_mirror	Cmd_delay	Burst_length	Bank	Cs_zq	Cs_mrs	Cs_enable
0x170	Odt_wr_cs_map		Odt_wr_length	Odt_wr_delay	Odt_rd_cs_map		Odt_rd_length	Odt_rd_delay
0x178								
0x180	Lvl_resp_0(RD)	Lvl_done(RD)	Lvl_ready(RD)		Lvl_cs	tLVL_DELAY	Lvl_req(WR)	Lvl_mode
0x188	Lvl_resp_8(RD)	Lvl_resp_7(RD)	Lvl_resp_6(RD)	Lvl_resp_5(RD)	Lvl_resp_4(RD)	Lvl_resp_3(RD)	Lvl_resp_2(RD)	Lvl_resp_1(RD)
0x190	Cmd_a Cmd_ba			Cmd_cmd	Cmd_cs	Status_cmd(RD)	Cmd_req(WR)	Command_mode
0x198				Srefresh_req				Mrs_req(WR)
0x1A0) Mr_3_cs_0		Mr_2_cs_0		Mr_1_cs_0		Mr_0_cs_0	
			Mr_2_cs_1		Mr_1_cs_1		Mr_0_cs_1	
			Mr_2_cs_2		Mr_1_cs_2			
	Mr_3_cs_3		Mr_2_cs_3		Mr_1_cs_2 Mr_1_cs_3		Mr_0_cs_2 Mr_0_cs_3	
0x1C0						tZQ_CMD		tRDDATA
OATCO	INESET	ICKE	IZM IX	IIVIOD	LQCL	ZQ_CMD	LITEDQSEN	INDDATA

0x1C8	tFAW	tRRD	tRCD	tRP	tREF	tRFC	tZQCS	tZQperiod	
0x1D0	tODTL	tXSRD	tPHY_RDLAT	tPHY_WRLAT	tRAS_max tl			tRAS_min	
0x1D8	tXPDLL	tXP	tWR	tRTP	tRL	tWL	tCCD	tWTR	
0x1E0	tW2R_diffCS	tW2W_diffCS	tR2P_sameBA	tW2P_sameBA	tR2R_sameBA	tR2W_sameBA	tW2R_sameBA	tW2W_sameBA	
0x1E8	tR2R_diffCS	tR2W_diffCS	tR2P_sameCS	tW2P_sameCS	tR2R_sameCS	tR2W_sameCS	tW2R_sameCS	tW2W_sameCS	
0x1F0	Power_up	Age_step	tCPDED	Cs_map	Bs_config	Nc	Pr_r2w	Placement_en	
0x1F8	Hw_pd_3	Hw_pd_2	Hw_pd_1	Hw_pd_0	Credit_16	Credit_32	Credit_64	Selection_en	
0x200	Cmdq_age_16		Cmdq_age_32		Cmdq_age_64		tCKESR	tRDPDEN	
0x208	Wfifo_age		Ffifo_age		Power_stat3	Power_stat2	Power_stat1	Power_stat0	
0x210	Active_age		Cs_place_0	Addr_win_0	Cs_diff_0	Row_diff_0	Ba_diff_0	Col_diff_0	
0x218	Fastpd_age		Cs_place_1	Addr_win_1	Cs_diff_1	Row_diff_1	Ba_diff_1	Col_diff_1	
0x220	Slowpd_age		Cs_place_2	Addr_win_2	Cs_diff_2	Row_diff_2	Ba_diff_2	Col_diff_2	
0x228	Selfref_age		Cs_place_3	Addr_win_3	Cs_diff_3	Row_diff_3	Ba_diff_3	Col_diff_3	
0x230	Win_mask_0				Win_base_0				
0x238	Win_mask_1				Win_base_1				
0x240	Win_mask_2				Win_base_2				
0x248	Win_mask_3			Win_base_3					
0x250		Cmd_monitor	Axi_monitor		Ecc_code(RD)	Ecc_enable	Int_vector	Int_enable	
0x258									
0x260	Ecc_addr(RD)								
0x268	Ecc_data(RD)								
0x270	Lpbk_ecc_mask(RD)	Prbs_init			Lpbk_error(RD)	Prbs_23	Lpbk_start	Lpbk_en	
0x278	Lpbk_ecc(RD)		Lpbk_data_mask	(RD)	Lpbk_correct(RD) Lpbk_counter(RD)				
0x280	Lpbk_data_r(RD)								
0x288	Lpbk_data_f(RD)								
0x290	Axi0_bandwidth_w				Axi0_bandwidth_r				
0x298	Axi0_latency_w				Axi0_latency_r				
0x2A0	Axi1_bandwidth_w				Axi1_bandwidth_r				
0x2A8	Axi1_latency_w				Axi1_latency_r				
	Axi2_bandwidth_w				Axi2_bandwidth_r				
	Axi2_latency_w			Axi2_latency_r					
	Axi3_bandwidth_w				Axi3_bandwidth_r				
	Axi3_latency_w				Axi3_latency_r				
	Axi4_bandwidth_w				Axi4_bandwidth_r				
,_ ,					TATT_UallUWIUII_I				

0x2D8 Axi4_latency_w	Axi4_latency_r
0x2E0 Cmdq0_bandwidth_w	Cmdq0_bandwidth_r
0x2E8 Cmdq0_latency_w	Cmdq0_latency_r
0x2F0 Cmdq1_bandwidth_w	Cmdq1_bandwidth_r
0x2F8 Cmdq1_latency_w	Cmdq1_latency_r
0x300 Cmdq2_bandwidth_w	Cmdq2_bandwidth_r
0x308 Cmdq2_latency_w	Cmdq2_latency_r
0x310 Cmdq3_bandwidth_w	Cmdq3_bandwidth_r
0x318 Cmdq3_latency_w	Cmdq3_latency_r

详细说明列表:

表 9-2 DDR2 SDRAM 配置参数寄存器格式

0x000	位域	读写	缺省值	说明
Dll_value_0	56:48	只读	0x0	第0组数据 DLL 锁定值
Dll_value_ck	40:32	只读	0x0	时钟组 DLL 锁定值
Dll_init_done	25:16	只读	0x0	控制器内部 DLL 锁定信号
				[25:17]:对应 9 组数据的 DLL 锁定信号
				[16:16]:对应时钟组 DLL 锁定信号
Version	15:0	只读	0x1	控制器版本号
0x008				
Dll_value_4	56:48	只读	0x0	第 4 组数据 DLL 锁定值
Dll_value_3	40:32	只读	0x0	第3组数据 DLL 锁定值
Dll_value_2	24:16	只读	0x0	第2组数据 DLL 锁定值
Dll_value_1	8:0	只读	0x0	第1组数据 DLL 锁定值
0x010				
Dll_value_8	56:48	只读	0x0	第8组数据 DLL 锁定值
Dll_value_7	40:32	只读	0x0	第7组数据 DLL 锁定值
Dll_value_6	24:16	只读	0x0	第6组数据 DLL 锁定值
Dll_value_5	8:0	只读	0x0	第 5 组数据 DLL 锁定值
0x018				
Dll_ck_3	63:56	读写	0x0	时钟3延迟值
				[63:63]: bypass 控制
				[62:56]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元

DIL_ck_2					
[54:48]: 当 bypass = 0 时,表示 n/128 个时钟周期 当 bypass = 1 时,表示 n 个延迟单元	Dll_ck_2	55:48	读写	0x0	时钟2延迟值
当bypass = 1 时,表示 n 个延迟单元					[55:55]: bypass 控制
DIL_ck_1					[54:48]:当 bypass = 0 时,表示 n/128 个时钟周期
[47:47]: bypass 控制					当 bypass = 1 时,表示 n 个延迟单元
[46:40]: 当 bypass = 0 时,表示 n/128 个时钟周期 当 bypass = 1 时,表示 n 个延迟单元	Dll_ck_1	47:40	读写	0x0	时钟 1 延迟值
当 bypass = 1 时,表示 n 个延迟单元					[47:47]: bypass 控制
DII_ck_0					[46:40]:当 bypass = 0 时,表示 n/128 个时钟周期
[39:39]: bypass 控制					当 bypass = 1 时,表示 n 个延迟单元
Sas Sas	Dll_ck_0	39:32	读写	0x0	时钟0延迟值
当 bypass = 1 时,表示 n 个延迟单元					[39:39]: bypass 控制
DII_increment 31:24 读写 0x4 每次 DLL 下溢时,起始延迟单元^增加个数 DII_start_point 23:16 读写 0x10 DLL 初始化的起始延迟单元个数 DII_bypass 8:8 读写 0x0 DLL 初始化 bypass 控制。					[38:32]:当 bypass = 0 时,表示 n/128 个时钟周期
DIL_start_point 23:16 读写					当 bypass = 1 时,表示 n 个延迟单元
DIL Dypass	Dll_increment	31:24	读写	0x4	每次 DLL 下溢时,起始延迟单元增加个数
	Dll_start_point	23:16	读写	0x10	DLL 初始化的起始延迟单元个数
U使内存控制器初始化可以继续进行。 正确设置该位的方法是在 Init_start 有效一段时间后再设为 1。而且设置之前相应的 DLL 延迟的最高位(bypass 控制)也应该设置 Init_start 0:0 读写 0x0 控制器初始化开始。 只有当其它的所有相关参数设置好了之后才可以将该位置位,使控制器进行初始化,并向内存发起初始化。只有这个操作完成后内存空间才可以被访问,否则内存空间不可被外部访问。 0x020 Dq_oe_end_0 59:56 读写 0x2 第 0 组数据输出有效时期的结束时间,不可小于Dq_oe_begin_0 Dq_oe_begin_0 51:48 读写 0x2 第 0 组数据输出有效时期的开始时间,不可大于Dq_oe_end_0	Dll_bypass	8:8	读写	0x0	DLL 初始化 bypass 控制。
E确设置该位的方法是在 Init_start 有效一段时间后再设为 1。而且设置之前相应的 DLL 延迟的最高位(bypass 控制) 也应该设置 Init_start 0:0 读写 0x0 控制器初始化开始。 只有当其它的所有相关参数设置好了之后才可以将该位置位,使控制器进行初始化,并向内存发起初始化。只有这个操作完成后内存空间才可以被访问,否则内存空间不可被外部访问。 0x020 Dq_oe_end_0 59:56 读写 0x2 第 0 组数据输出有效时期的结束时间,不可小于Dq_oe_begin_0 Dq_oe_begin_0 51:48 读写 0x2 第 0 组数据输出有效时期的开始时间,不可大于Dq_oe_end_0					该位只有当 Dll_init_done 一直无法锁定时需要设置,
Init_start 0:0 读写 0x0 控制器初始化开始。					以使内存控制器初始化可以继续进行。
Init_start 0:0 读写 0x0 控制器初始化开始。 只有当其它的所有相关参数设置好了之后才可以将该位置位,使控制器进行初始化,并向内存发起初始化。只有这个操作完成后内存空间才可以被访问,否则内存空间不可被外部访问。 0x020 0x020 Dq_oe_end_0 59:56 读写 0x2 第 0 组数据输出有效时期的结束时间,不可小于Dq_oe_begin_0 Dq_oe_begin_0 51:48 读写 0x2 第 0 组数据输出有效时期的开始时间,不可大于Dq_oe_end_0					正确设置该位的方法是在 Init_start 有效一段时间后
Init_start 0:0 读写 0x0 控制器初始化开始。 只有当其它的所有相关参数设置好了之后才可以将该位置位,使控制器进行初始化,并向内存发起初始化。只有这个操作完成后内存空间才可以被访问,否则内存空间不可被外部访问。 0x020 0x020 第 0 组数据输出有效时期的结束时间,不可小于Dq_oe_begin_0 Dq_oe_begin_0 51:48 读写 0x2 第 0 组数据输出有效时期的开始时间,不可大于Dq_oe_end_0					再设为 1。而且设置之前相应的 DLL 延迟的最高位
Q有当其它的所有相关参数设置好了之后才可以将该位置位,使控制器进行初始化,并向内存发起初始化。只有这个操作完成后内存空间才可以被访问,否则内存空间不可被外部访问。 0x020 Dq_oe_end_0 59:56 读写 0x2 第 0 组数据输出有效时期的结束时间,不可小于Dq_oe_begin_0 Dq_oe_begin_0 51:48 读写 0x2 第 0 组数据输出有效时期的开始时间,不可大于Dq_oe_end_0					(bypass 控制)也应该设置
0x020 第 0 组数据输出有效时期的结束时间,不可小于Dq_oe_begin_0 Dq_oe_begin_0 51:48 读写 0x2 第 0 组数据输出有效时期的开始时间,不可大于Dq_oe_end_0	Init_start	0:0	读写	0x0	控制器初始化开始。
0x020 次020 Dq_oe_end_0 59:56 读写 0x2 第 0 组数据输出有效时期的结束时间,不可小于 Dq_oe_begin_0 Dq_oe_begin_0 51:48 读写 0x2 第 0 组数据输出有效时期的开始时间,不可大于 Dq_oe_end_0					只有当其它的所有相关参数设置好了之后才可以将
Ox020 则内存空间不可被外部访问。 Dq_oe_end_0 59:56 读写 0x2 第 0 组数据输出有效时期的结束时间,不可小于 Dq_oe_begin_0 Dq_oe_begin_0 51:48 读写 0x2 第 0 组数据输出有效时期的开始时间,不可大于 Dq_oe_end_0					该位置位,使控制器进行初始化,并向内存发起初始
0x020 59:56 读写 0x2 第 0 组数据输出有效时期的结束时间,不可小于 Dq_oe_begin_0 Dq_oe_begin_0 51:48 读写 0x2 第 0 组数据输出有效时期的开始时间,不可大于 Dq_oe_end_0					化。只有这个操作完成后内存空间才可以被访问,否
Dq_oe_end_0 59:56 读写 0x2 第 0 组数据输出有效时期的结束时间,不可小于 Dq_oe_begin_0 Dq_oe_begin_0 51:48 读写 0x2 第 0 组数据输出有效时期的开始时间,不可大于 Dq_oe_end_0					则内存空间不可被外部访问。
Dq_oe_begin_0 Dq_oe_begin_0 Dq_oe_begin_0 51:48 读写 0x2 第 0 组数据输出有效时期的开始时间,不可大于 Dq_oe_end_0	0x020				
Dq_oe_begin_0 51:48 读写 0x2 第 0 组数据输出有效时期的开始时间,不可大于 Dq_oe_end_0	Dq_oe_end_0	59:56	读写	0x2	第 0 组数据输出有效时期的结束时间,不可小于
Dq_oe_end_0					Dq_oe_begin_0
	Dq_oe_begin_0	51:48	读写	0x2	第 0 组数据输出有效时期的开始时间,不可大于
Dq_stop_edge_0 41:40 读写 0x0 第 0 组数据输出有效时期的结束相位,其与					Dq_oe_end_0
	Dq_stop_edge_0	41:40	读写	0x0	第 0 组数据输出有效时期的结束相位, 其与
Dq_oe_end_0 组合得到的时钟边沿不可早于					Dq_oe_end_0 组合得到的时钟边沿不可早于
Dq_start_edge_0与Dq_oe_begin_0组合得到的时钟边					Dq_start_edge_0与Dq_oe_begin_0组合得到的时钟边
沿					沿

				0 - 比为 1 时提前 1/4 周期
				1 – 对应于 wrdqs_0(第 0 组写 DQS)的上升沿
				2 - 比为 1 时推后 1/4 周期
				3 - 比为 1 时推后 1/2 周期
Dq_start_edge_0	33:32	读写	0x0	第 0 组数据输出有效时期的开始相位, 其与
				Dq_oe_begin_0 组合得到的时钟边沿不可晚于
				Dq_stop_edge_0 与 Dq_oe_end_0 组合得到的时钟边
				沿
				0 – 比为 1 时提前 1/4 周期
				1 – 对应于 wrdqs_0(第 0 组写 DQS)的上升沿
				2 - 比为 1 时推后 1/4 周期
				3 - 比为 1 时推后 1/2 周期
Rddata_delay_0	24:24	读写	0x1	读返回数据在 FIFO 中延迟一周期输出
Rddqs_lt_half_0	16:16	读写	0x0	当读返回 DQS 信号(延时后)相比内部时钟的延迟小
				于半周期时需要设为1
Wrdqs_lt_half_0	8:8	读写	0x0	当 Dll_wrdqs_0 的设置小于 0x40 时需要设为 1
Wrdq_lt_half_0	0:0	读写	0x0	当 Dll_wrdata_0 的设置小于 0x40 时需要设为 1
0x028				
Rd_oe_end_0	59:56	读写	0x1	第 0 组数据读采样有效时期的结束时间,不可小于
				Rd_oe_begin_0
Rd_oe_begin_0	51:48	读写	0x1	第 0 组数据读采样有效时期的开始时间,不可大于
				Rd_oe_end_0
Rd_stop_edge_0	41:40	读写	0x0	第 0 组数据读采样有效时期的结束相位, 其与
				Rd_oe_end_0 组合得到的时钟边沿不可早于
				Rd_start_edge_0 与 Rd_oe_begin_0 组合得到的时钟边
				沿
				0 – 比为 1 时提前 1/4 周期
				1 – 对应于 wrdqs_0(第 0 组写 DQS)的上升沿
				2 – 比为 1 时推后 1/4 周期
				3 - 比为1时推后1/2周期
1 Table 1		1		
Rd_start_edge_0	33:32	读写	0x0	第 0 组数据读采样有效时期的开始相位,其与
Rd_start_edge_0	33:32	读写	0x0	第 0 组数据读采样有效时期的开始相位,其与Rd_oe_begin_0 组合得到的时钟边沿不可晚于
Rd_start_edge_0	33:32	读写	0x0	

Dqs_oe_begin_0 19:16 读写 0x1 第 0 组数据写 DQS 有效时期的开始时间,不可大于 Dqs_oe_end_0 Dqs_stop_edge_0 9:8 读写 0x1 第 0 组数据写 DQS 有效时期的结束相位,其与 Dqs_oe_end_0 组合得到的时钟边沿不可早于 Dqs_start_edge_0 与 Dqs_oe_begin_0 组合得到的时钟边沿 0- 比为 1 时提前 1/4 周期 1- 对应于 wrdqs_0 (第 0 组写 DQS)的上升沿 2- 比为 1 时推后 1/4 周期 2- 比为 1 时推后 1/4 周期 3- 比为 1 时推后 1/2 周期 Dqs_start_edge_0 1:0 读写 0x1 第 0 组数据写 DQS 有效时期的开始相位,其与 Dqs_oe_begin_0 组合得到的时钟边沿不可晚于			1	<u> </u>	
3 - 比为1时推后 1/2 周期					1 – 对应于 wrdqs_0(第 0 组写 DQS)的上升沿
Dqs_oe_end_0 27:24 读写 0x2 第 0 组数据写 DQS 有效时期的结束时间,不可小于 Dqs_oe_begin_0 Dqs_oe_begin_0 19:16 读写 0x1 第 0 组数据写 DQS 有效时期的开始时间,不可大于 Dqs_oe_end_0 Dqs_stop_edge_0 9:8 读写 0x1 第 0 组数据写 DQS 有效时期的结束相位,其与 Dqs_oe_end_0 组合得到的时钟边沿不可早于 Dqs_start_edge_0 与 Dqs_oe_begin_0 组合得到的时钟边沿 0- 比为 1 时提前 1/4 周期 1- 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2- 比为 1 时推后 1/2 周期 Dqs_start_edge_0 1:0 读写 0x1 第 0 组数据写 DQS 有效时期的开始相位,其与 Dqs_oe_begin_0 组合得到的时钟边沿 不可晚于 Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿 沿 一 比为 1 时提前 1/4 周期 1- 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2- 比为 1 时推后 1/4 周期 3- 比为 1 时推后 1/4 周期 3- 比为 1 时推后 1/4 周期 3- 比为 1 时推后 1/2 周期 0x030 Wrdq_clkdelay_0 32:32 读写 0x0 第 0 组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一					2- 比为1时推后1/4周期
Dqs_oe_begin_0 19:16 读写 0x1 第 0 组数据写 DQS 有效时期的开始时间,不可大于Dqs_oe_end_0 Dqs_stop_edge_0 9:8 读写 0x1 第 0 组数据写 DQS 有效时期的结束相位,其与Dqs_oe_end_0 组合得到的时钟边沿不可早于Dqs_start_edge_0 与 Dqs_oe_begin_0 组合得到的时钟边沿 0 - 比为1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿2 - 比为1 时推后 1/2 周期 2 - 比为1 时推后 1/2 周期 3 - 比为1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿2 - 比为1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿4 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿2 - 比为1 时推后 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿2 - 比为1 时推后 1/2 周期 2 - 比为1 时推后 1/2 周期 0x030 \$\frac{\pi}{2}\$ 0x0 第 0 组数据写 DQ 延迟控制信号在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一					3- 比为1时推后1/2周期
Dqs_oe_begin_0 19:16 读写 0x1 第 0 组数据写 DQS 有效时期的开始时间,不可大于Dqs_oe_end_0 Dqs_stop_edge_0 9:8 读写 0x1 第 0 组数据写 DQS 有效时期的结束相位,其与Dqs_oe_end_0 组合得到的时钟边沿不可早于Dqs_start_edge_0 与 Dqs_oe_begin_0 组合得到的时钟边沿 0 - 比为 1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS)的上升沿2 - 比为 1 时推后 1/2 周期 Dqs_start_edge_0 1:0 读写 0x1 第 0 组数据写 DQS 有效时期的开始相位,其与Dqs_oe_begin_0 组合得到的时钟边沿不可晚于Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿不可晚于Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿沿可晚于Ut为 1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS)的上升沿2 - 比为 1 时推后 1/4 周期 2 - 比为 1 时推后 1/4 周期 3 - 比为 1 时推后 1/2 周期 3 - 比为 1 时推后 1/2 周期 0x030 Wrdq_clkdelay_0 32:32 读写 0x0 第 0 组数据写 DQ 延迟控制信号在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一	Dqs_oe_end_0	27:24	读写	0x2	第 0 组数据写 DQS 有效时期的结束时间,不可小于
Dqs_oe_end_0 9:8 读写 0x1 第 0 组数据写 DQS 有效时期的结束相位,其与 Dqs_oe_end_0 组合得到的时钟边沿不可早于 Dqs_start_edge_0 与 Dqs_oe_begin_0 组合得到的时钟边沿 0 - 比为 1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2 - 比为 1 时推后 1/2 周期 3 - 比为 1 时推后 1/2 周期 3 - 比为 1 时推后 1/2 周期					Dqs_oe_begin_0
Dqs_stop_edge_0 9:8 读写 0x1 第 0 组数据写 DQS 有效时期的结束相位,其与 Dqs_oe_end_0 组合得到的时钟边沿不可早于 Dqs_start_edge_0 与 Dqs_oe_begin_0 组合得到的时钟边沿 0 - 比为1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2 - 比为1 时推后 1/2 周期 Dqs_start_edge_0 1:0 读写 0x1 第 0 组数据写 DQS 有效时期的开始相位,其与 Dqs_oe_begin_0 组合得到的时钟边沿不可晚于 Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿 0 - 比为1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2 - 比为1 时推后 1/4 周期 3 - 比为1 时推后 1/2 周期 0x030 Wrdq_clkdelay_0 32:32 读写 0x0 第 0 组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一	Dqs_oe_begin_0	19:16	读写	0x1	第 0 组数据写 DQS 有效时期的开始时间,不可大于
Dqs_oe_end_0 组合得到的时钟边沿不可早于 Dqs_start_edge_0与Dqs_oe_begin_0组合得到的时钟 边沿 0 - 比为1时提前1/4周期 1 - 对应于 wrdqs_0 (第0组写 DQS)的上升沿 2 - 比为1时推后1/4周期 3 - 比为1时推后1/2周期 Dqs_start_edge_0 1:0 读写 0x1 第 0组数据写 DQS 有效时期的开始相位,其与 Dqs_oe_begin_0 组合得到的时钟边沿不可晚于 Dqs_stop_edge_0与Dqs_oe_end_0组合得到的时钟边沿 0 - 比为1时提前1/4周期 1 - 对应于 wrdqs_0 (第0组写 DQS)的上升沿 2 - 比为1时推后1/4周期 3 - 比为1时推后1/2周期 0x030 Wrdq_clkdelay_0 32:32 读写 0x0 第 0组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一					Dqs_oe_end_0
Dqs_start_edge_0 与 Dqs_oe_begin_0 组合得到的时钟 边沿 0 - 比为 1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2 - 比为 1 时推后 1/4 周期 3 - 比为 1 时推后 1/2 周期 Dqs_start_edge_0 1:0 读写 0x1 第 0 组数据写 DQS 有效时期的开始相位,其与 Dqs_oe_begin_0 组合得到的时钟边沿不可晚于 Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿 沿 0 - 比为 1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2 - 比为 1 时推后 1/4 周期 3 - 比为 1 时推后 1/2 周期 0x030 Wrdq_clkdelay_0 32:32 读写 0x0 第 0 组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一	Dqs_stop_edge_0	9:8	读写	0x1	第 0 组数据写 DQS 有效时期的结束相位,其与
					Dqs_oe_end_0 组合得到的时钟边沿不可早于
0 - 比为 1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2 - 比为 1 时推后 1/4 周期 3 - 比为 1 时推后 1/2 周期 Dqs_start_edge_0 1:0 读写 0x1 第 0 组数据写 DQS 有效时期的开始相位,其与 Dqs_oe_begin_0 组合得到的时钟边沿不可晚于 Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿 不可晚于 Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿 不可晚于 Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿 记入 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2 - 比为 1 时推后 1/4 周期 2 - 比为 1 时推后 1/4 周期 3 - 比为 1 时推后 1/2 周期 0x030 Wrdq_clkdelay_0 32:32 读写 0x0 第 0 组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一					Dqs_start_edge_0 与 Dqs_oe_begin_0 组合得到的时钟
1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2 - 比为 1 时推后 1/4 周期 3 - 比为 1 时推后 1/2 周期 Dqs_start_edge_0 1:0 读写 0x1 第 0 组数据写 DQS 有效时期的开始相位,其与 Dqs_oe_begin_0 组合得到的时钟边沿不可晚于 Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿 沿 0 - 比为 1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2 - 比为 1 时推后 1/4 周期 3 - 比为 1 时推后 1/2 周期 Ox030 Wrdq_clkdelay_0 32:32 读写 0x0 第 0 组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一					边沿
2 - 比为 1 时推后 1/4 周期 3 - 比为 1 时推后 1/2 周期 Dqs_start_edge_0 1:0 读写 Ox1 第 0 组数据写 DQS 有效时期的开始相位,其与 Dqs_oe_begin_0 组合得到的时钟边沿不可晚于 Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿					0 - 比为 1 时提前 1/4 周期
3 - 比为 1 时推后 1/2 周期					1 – 对应于 wrdqs_0(第 0 组写 DQS)的上升沿
Dqs_start_edge_0 1:0 读写 0x1 第 0 组数据写 DQS 有效时期的开始相位,其与 Dqs_oe_begin_0 组合得到的时钟边沿不可晚于 Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿 同期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2 - 比为 1 时推后 1/4 周期 3 - 比为 1 时推后 1/4 周期 3 - 比为 1 时推后 1/2 周期 0x030 Wrdq_clkdelay_0 32:32 读写 0x0 第 0 组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一					2- 比为 1 时推后 1/4 周期
Dqs_oe_begin_0 组合得到的时钟边沿不可晚于Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿 沿 0 - 比为1时提前1/4周期 1 - 对应于 wrdqs_0 (第0组写 DQS)的上升沿2 - 比为1时推后1/4周期 3 - 比为1时推后1/2周期 0x030 Wrdq_clkdelay_0 32:32 读写 0x0 第0组数据写 DQ 延迟控制信号在Wrdq_lt_half_0 = 0的时候将本组数据延迟增加一					3 - 比为 1 时推后 1/2 周期
Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边沿 沿 0 - 比为 1 时提前 1/4 周期 1 - 对应于 wrdqs_0 (第 0 组写 DQS) 的上升沿 2 - 比为 1 时推后 1/4 周期 3 - 比为 1 时推后 1/2 周期 0x030 Wrdq_clkdelay_0 32:32 读写 0x0 第 0 组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一	Dqs_start_edge_0	1:0	读写	0x1	第 0 组数据写 DQS 有效时期的开始相位, 其与
沿					Dqs_oe_begin_0 组合得到的时钟边沿不可晚于
0- 比为 1 时提前 1/4 周期 1- 对应于 wrdqs_0 (第 0 组写 DQS)的上升沿 2- 比为 1 时推后 1/4 周期 3- 比为 1 时推后 1/2 周期 0x030 Wrdq_clkdelay_0 32:32 读写 0x0 第 0 组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一					Dqs_stop_edge_0 与 Dqs_oe_end_0 组合得到的时钟边
0x030 第 0 组写 DQS)的上升沿 0x1 时推后 1/4 周期 0x030 32:32 0x0 第 0 组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一					沿
0x030 32:32 读写 0x0 第 0 组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一					0 – 比为 1 时提前 1/4 周期
3 - 比为 1 时推后 1/2 周期					1 – 对应于 wrdqs_0(第 0 组写 DQS)的上升沿
0x030 32:32 读写 0x0 第 0 组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一					2 – 比为 1 时推后 1/4 周期
Wrdq_clkdelay_0 32:32 读写 0x0 第 0 组数据写 DQ 延迟控制信号 在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一					3 - 比为 1 时推后 1/2 周期
在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一	0x030				
	Wrdq_clkdelay_0	32:32	读写	0x0	第0组数据写DQ延迟控制信号
拍					在 Wrdq_lt_half_0 = 0 的时候将本组数据延迟增加一
					拍
Odt_oe_end_0 27:24 读写 0x2 第 0 组数据读 ODT (控制器内部) 有效时期的结束	Odt_oe_end_0	27:24	读写	0x2	第 0 组数据读 ODT (控制器内部) 有效时期的结束
时间,不可小于 Odt_oe_begin_0					时间,不可小于 Odt_oe_begin_0
Odt_oe_begin_0 19:16 读写 0x1 第 0 组数据读 ODT (控制器内部) 有效时期的开始	Odt_oe_begin_0	19:16	读写	0x1	第 0 组数据读 ODT (控制器内部) 有效时期的开始
时间,不可大于 Odt_oe_end_0					时间,不可大于 Odt_oe_end_0
Odt_stop_edge_0 9:8 读写 0x0 第 0 组数据读 ODT (控制器内部) 有效时期的结束	Odt_stop_edge_0	9:8	读写	0x0	第 0 组数据读 ODT(控制器内部)有效时期的结束
相位,其与 Odt_oe_end_0 组合得到的时钟边沿不可					相位,其与 Odt_oe_end_0 组合得到的时钟边沿不可
早于 Odt_start_edge_0 与 Odt_oe_begin_0 组合得到的					早于 Odt_start_edge_0 与 Odt_oe_begin_0 组合得到的

			1	
				时钟边沿
				0 – 比为 1 时提前 1/4 周期
				1 – 对应于 wrdqs_0(第 0 组写 DQS)的上升沿
				2- 比为 1 时推后 1/4 周期
				3 - 比为 1 时推后 1/2 周期
Odt_start_edge_0	1:0	读写	0x0	第 0 组数据读 ODT (控制器内部) 有效时期的开始
				相位, 其与 Odt_oe_begin_0 组合得到的时钟边沿不可
				晚于 Odt_stop_edge_0 与 Odt_oe_end_0 组合得到的时
				钟边沿
				0 – 比为 1 时提前 1/4 周期
				1 – 对应于 wrdqs_0(第 0 组写 DQS)的上升沿
				2 - 比为 1 时推后 1/4 周期
				3 - 比为 1 时推后 1/2 周期
0x038				
Dll_rddqs_n_0	39:32	读写	0x20	读 DQSn 采样延迟值
				[39:39]:bypass 控制
				[38:32]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
Dll_rddqs_p_0	31:24	读写	0x20	读 DQSp 采样延迟值
				[31:31]: bypass 控制
				[30:24]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
Dll_wrdqs_0	23:16	读写	0x7F	写 DQS 延迟值
				[23:23]: bypass 控制
				[22:16]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
Dll_wrdata_0	15:8	读写	0x60	写数据延迟值(应该比 DQS 提前 1/4 周期)
				[15:15]: bypass 控制
				[14:8]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元
Dll_gate_0	7:0	读写	0x0	读 DQS 采样有效时期控制延迟值
				[7:7]: bypass 控制
				[6:0]: 当 bypass = 0 时,表示 n/128 个时钟周期
				当 bypass = 1 时,表示 n 个延迟单元

0x040				
0.040				
0x138				
0.1130				
0x140				
Pad_ocd_clk	58:56	读写	0x0	时钟引脚输出阻抗控制
				000 – 40 欧姆
				001 – 30 欧姆
				010 – 24 欧姆
				011 – 20 欧姆
				100 – 15 欧姆
Pad_ocd_ctl	50:48	读写	0x0	控制引脚输出阻抗控制
				000 – 40 欧姆
				001 – 30 欧姆
				010 – 24 欧姆
				011 – 20 欧姆
				100-15 欧姆
Pad_ocd_dqs	40:40	读写	0x0	DQS 引脚输出阻抗控制
				0-34 欧姆
				1 – 40 欧姆
Pad_ocd_dq	32:32	读写	0x0	DQ 引脚输出阻抗控制
				0-34 欧姆
				1-40 欧姆
Pad_enzi	24:16	读写	0x0	分别对应9个数据组的引脚输入使能
				1 – 使能
				0- 高阻
Pad_en_ctl	8:8	读写	0x0	控制引脚输出使能
				1 – 使能
				0 – 高阻
Pad_en_clk	7:0	读写	0x0	时钟引脚输出使能
				1 – 使能
				0 – 高阻
0x148				
Pad_adj_code_dqs	63:56	读写	0x0	设置当 Pad_code_dqs[0]有效时 DQS 信号附加 CODE

				<u> </u>
				[7:4] N_CODE: 1 使能,0 关闭
				[3:0] P_CODE: 0 关闭, 1 使能
Pad_code_dqs	50:48	读写	0x0	DQS 信号附加 CODE 使能设置
				Bit 2: 0 有效,表示附加码作用于输出及 ODT
				Bit 1:0 有效,表示附加码作用于 SLEWRATE
				Bit 0: 附加 CODE 符号位, 0 为正, 1 为负
Pad_adj_code_dq	47:40	读写	0x0	设置当 Pad_code_dq[0]有效时 DQ 信号附加 CODE
				[7:4] N_CODE:1 使能,0 关闭
				[3:0] P_CODE: 0 关闭,1 使能
Pad_code_dq	34:32	读写	0x0	DQ 信号附加 CODE 使能设置
				Bit 2: 0 有效,表示附加码作用于输出及 ODT
				Bit 1:0 有效,表示附加码作用于 SLEWRATE
				Bit 0: 附加 CODE 符号位, 0 为正, 1 为负
Pad_vref_internal	16:16	读写	0x0	使能内部 VREF 分压电路
				1 - 同时使用内部 VREF 分压与外部引脚输出电压
				0-只使用外部引脚输出电压
Pad_odt_se	8:8	读写	0x0	引脚匹配电阻值控制
				0-60 欧姆
				1 – 120 欧姆
Pad_modezi1v8	0:0	读写	0x0	PAD MODE ZI 1v8
				1 – 使用 PAD 的 ZITEST 输入
				0 – 使用 PAD 的 ZI 输入
0x150				
Pad_adj_code_clk	47:40	读写	0x0	设置当 Pad_code_clk[0]有效时 CLK 信号附加 CODE
				[7:4] N_CODE:1 使能,0 关闭
				[3:0] P_CODE: 0 关闭,1 使能
Pad_code_clk	34:32	读写	0x0	CLK 信号附加 CODE 使能设置
				Bit 2: 0 有效,表示附加码作用于输出及 ODT
				Bit 1: 0 有效,表示附加码作用于 SLEWRATE
				Bit 0: 附加 CODE 符号位,0 为正,1 为负
Pad_adj_code_cmd	31:24	读写	0x0	设置当 Pad_code_cmd[0]有效时 CMD 信号附加
				CODE
				[7:4] N_CODE: 1 使能,0 关闭
				[3:0] P_CODE: 0 关闭,1 使能

Pad_code_cmd	18:16	读写	0x0	CMD 信号附加 CODE 使能设置
				Bit 2: 0 有效,表示附加码作用于输出及 ODT
				Bit 1: 0 有效,表示附加码作用于 SLEWRATE
				Bit 0: 附加 CODE 符号位, 0 为正, 1 为负
Pad_adj_code_addr	15:8	读写	0x0	设置当 Pad_code_addr[0]有效时 ADDR 信号附加
				CODE
				[7:4] N_CODE: 1 使能,0 关闭
				[3:0] P_CODE: 0 关闭,1 使能
Pad_code_addr	2:0	读写	0x0	ADDR 信号附加 CODE 使能设置
				Bit 2: 0 有效,表示附加码作用于输出及 ODT
				Bit 1: 0 有效,表示附加码作用于 SLEWRATE
				Bit 0: 附加 CODE 符号位, 0 为正, 1 为负
0x158				
Pad_comp_okn	40:40	只读	0x0	引脚补偿单元自动调节完成标志
Pad_comp_code_o	39:32	只读	0x0	引脚补偿单元自动调节调整值
Pad_comp_code_i	31:24	读写	0xF0	引脚补偿单元手动设置值
				[7:4] N_CODE: 1 使能,0 关闭
				[3:0] P_CODE: 0 关闭,1 使能
Pad_comp_mode	16:16	读写	0x0	引脚补偿单元设置
				1 – 手动设置 CODE
				0 - 自动调节 CODE
Pad_comp_tm	8:8	读写	0x0	外部引脚测试模块使能
				1 – 使用引脚 COMP_NOUT/COMP_POUT 连接电阻
				0 – 使用引脚 COMP_REXT 连接电阻
Pad_comp_pd	0:0	读写	0x1	引脚补偿单元 Power Down
				1 – Power Down
				0-正常工作
0x160				
Rdfifo_empty	56:48	只读	0x0	PHY 中收集每个 SLICE 的读 FIFO 错误读出标志,当
				对应的 FIFO 为空时发生出队列操作时有效。可以用
				于判断 Rdfifo_valid 无效时,tPHY_RDLAT 的值是否
				设置过小
				每一位分别对应于 SLICE8 SLICE0
Overflow	40:32	只读	0x0	PHY 中每个 SLICE 中的读 FIFO 溢出标志,每一位分

				메라CT GLIGEO GLIGEO
		H 74		别对应于 SLICE8 SLICE0
Dram_init	27:24	只读	0x0	DRAM 初始化完成标志,在 Init_start 设置之后才会
				生效,每一位分别对应于一个片选
Rdfifo_valid	16:16	读写	0x1	表示使用 PHY 内部逻辑控制读数据同步时间
				该位无效时,这个同步时间由 tPHY_RDLAT 决定
Cmd_timming	9:8	读写	0x0	控制线 2T/3T 功能使能
				0 – 1T
				1 – 2T
				2 – 3T
				与其他几个参数需要满足关系式:
				tRDDATA - Cmd_delay - Cmd_timing = CASLAT - 3
				tPHY_WRLAT - Cmd_delay - Cmd_timing = WRLAT
				- 4
Ddr3_mode	0:0	读写	0x1	使用 DDR3 模式时将该位设为 1
0x168				
Addr_mirror	51:48	读写	0x0	表示该 CS 对应的地址需要进行地址镜像
Cmd_delay	41:40	读写	0x0	表示命令总线需要的附加延迟
				有效值为 0/1/2
				与其他几个参数需要满足关系式:
				tRDDATA - Cmd_delay - Cmd_timing = CASLAT - 3
				tPHY_WRLAT - Cmd_delay - Cmd_timing = WRLAT
				- 4
Burst_length	35:32	读写	0x7	表示 DRAM 总线上的突发请求长度,该参数设置应
				与 MRS 参数一致。突发长度为 8 时设为 4'h7,突发
				长度为 4 时设为 4'h3
Bank	27:24	读写	0x7	表示每个片选上的 Bank 数量
				Bank 数为 2 时:
				需设置 Ba_diff = 2 , Addr_win[3:2] = 2'b01
				Bank 数为 4 时:
				需设置 Ba_diff = 1 , Addr_win[3:2] = 2'b10
				Bank 数为 8 时:
				需设置 Ba_diff = 0 , Addr_win[3:2] = 2'b11
Cs_zq	19:16	读写	0x1	使能对应片选信号的 ZQ 请求
Cs_mrs	11:8	读写	0x1	使能对应片选信号的 MRS 请求

)+ E		At Man Lab II M. A. F.
Cs_enable	3:0	读写	0x1	使能对应片选信号
0x170				
Odt_wr_cs_map	63:48	读写	0x8421	对应 CS 发送写命令时,使能的 ODT 信号
				Bit [15:12]: CS3 发读时对应 ODTx 是否有效, x=30
				Bit [11: 8]: CS2 发读时对应 ODTx 是否有效, x=30
				Bit [7:4]: CS1 发读时对应 ODTx 是否有效,x=30
				Bit [3:0]: CS0 发读时对应 ODTx 是否有效, x=30
Odt_wr_length	43:40	读写	0x5	发送写命令时,ODT 信号有效周期数
Odt_wr_delay	35:32	读写	0x0	发送写命令时,ODT 信号与写命令的起始间隔
Odt_rd_cs_map	31:16	读写	0x4812	对应 CS 发送读命令时,使能的 ODT 信号
				Bit [15:12]: CS3 发读时对应 ODTx 是否有效, x=30
				Bit [11: 8]: CS2 发读时对应 ODTx 是否有效,x=30
				Bit [7: 4]: CS1 发读时对应 ODTx 是否有效,x=30
				Bit [3: 0]: CS0 发读时对应 ODTx 是否有效,x=30
Odt_rd_length	11:8	读写	0x5	发送读命令时,ODT 信号有效周期数
Odt_rd_delay	3:0	读写	0x1	发送读命令时,ODT 信号与读命令的起始间隔
0x178				
0x180				
Lvl_resp_0	63:56	只读	0x0	Leveling 操作时,第 0 数据组的反馈信号
Lvl_done	48:48	只读	0x0	Leveling 操作时,表示 Lvl_resp_*有效信号
Lvl_ready	40:40	只读	0x0	Leveling 操作时,表示当前控制器已经进入 Leveling
				操作模式。(用户程序正确设置 Lvl_mode 的值后,
				应该对这个寄存器进行采样,如果值为1表示可以对
				控制器发起 Leveling 请求,也就是说,此时才可以将
				设 Lvl_req 为 1)
Lvl_cs	27:24	读写	0x1	Leveling 操作时,当前控制的片选信号
tLVL_DELAY	23:16	读写	0x10	Leveling 操作时,有效采样延迟周期
				- 単位为时钟周期
Lvl_req	8:8	只写	0x0	Leveling 操作时,向外发起 Leveling 操作请求
Lvl_mode	1:0	读写	0x0	Leveling 模式使能
				00 – 正常功能模式
				01 – Write Leveling 模式
				10 – Gate Leveling 模式

0x188				
Lvl_resp_8	63:56	只读	0x0	Leveling 操作时,第 8 数据组的反馈信号
				当 Lvl_mode == 1 时,为数据线上的反馈
				当 Lvl_mode == 2 时
				Bit[7:5]:内部有效读 DQS 时钟上升沿计数器
				Bit[4:2]:内部有效读 DQS 时钟下升沿计数器
				Bit[1:0]:内部 DQS 采样信号采样 DQS 的反馈
				对于一个正确配置的 Gate Leveling 操作来说
				Bit[7:5]与 Bit[4:2]应该在每一次 Leveling_req 增加
				Burst_length/2 个计数,否则需要调整 Dll_gate_x 的值
Lvl_resp_7	55:48	只读	0x0	Leveling 操作时,第7数据组的反馈信号
Lvl_resp_6	47:40	只读	0x0	Leveling 操作时,第 6 数据组的反馈信号
Lvl_resp_5	39:32	只读	0x0	Leveling 操作时,第 5 数据组的反馈信号
Lvl_resp_4	31:24	只读	0x0	Leveling 操作时,第 4 数据组的反馈信号
Lvl_resp_3	23:16	只读	0x0	Leveling 操作时,第 3 数据组的反馈信号
Lvl_resp_2	15:8	只读	0x0	Leveling 操作时,第 2 数据组的反馈信号
Lvl_resp_1	7:0	只读	0x0	Leveling 操作时,第 1 数据组的反馈信号
0x190				
Cmd_a	63:48	读写	0x0	命令发送模式下,对 DRAM 发出的地址线信号 (最
				高位 bit[15]保留,cmd_a[15]==0)
Cmd_ba	42:40	读写	0x0	命令发送模式下,对 DRAM 发出的 ba 线信号
Cmd_cmd	34:32	读写	0x0	命令发送模式下,对 DRAM 发出的控制信号
				bit2 – RASn
				bit1 – CASn
				bit0 – WEn
Cmd_cs	27:24	读写	0x0	命令发送模式下,对 DRAM 发出的片选信号
Status_cmd	16:16	只读	0x0	表示控制器进入命令发送模式,在 command_mode
				设置之后才会生效
Cmd_req	8:8	只写	0x0	命令发送模式下,对 DRAM 发出一次控制命令
Command_mode	0:0	读写	0x0	使控制器进入命令发送模式
0x198				
Status_sref	43:40	只读	0x0	已经进入自刷新模式,每位分别对应一个片选
		1	1	I
Srefresh_req	35:32	读写	0x0	自刷新控制信号,设1进入自刷新,设0退出自刷新

Mrs_req	Dec all	10.16	ПБ	00	连载长山 Decelorace All 本人 复皮八周动位,A Live
Mrs_req	Pre_all_req	19:16	只写	0x0	请求发出 Precharge All 命令,每位分别对应一个片选
MRS2、MRS3、MRS1、MRS0	Mrs_req	0:0	只写	0x0	
Mr.3.cs_0 63:48 读写 0x0000 向 DRAM CS 0 发送 MRS 3 命令时对应的值 Mr_2.cs_0 47:32 读写 0x0004 向 DRAM CS 0 发送 MRS 2 命令时对应的值 Mr_1.cs_0 31:16 读写 0x0060 向 DRAM CS 0 发送 MRS 1 命令时对应的值 Mr_0.cs_0 15:0 读写 0x0060 向 DRAM CS 0 发送 MRS 0 命令时对应的值 Mr_0.cs_0 15:0 读写 0x0060 向 DRAM CS 0 发送 MRS 0 命令时对应的值 Mr_2.cs_1 47:32 读写 0x0000 向 DRAM CS 1 发送 MRS 3 命令时对应的值 Mr_2.cs_1 47:32 读写 0x0018 向 DRAM CS 1 发送 MRS 3 命令时对应的值 Mr_0.cs_1 15:0 读写 0x0060 向 DRAM CS 1 发送 MRS 0 命令时对应的值 Mr_0.cs_1 15:0 读写 0x0060 向 DRAM CS 1 发送 MRS 0 命令时对应的值 Mr_1.cs_1 31:16 读写 0x0004 向 DRAM CS 1 发送 MRS 3 命令时对应的值 Mr_2.cs_2 47:32 读写 0x0018 向 DRAM CS 2 发送 MRS 3 命令时对应的值 Mr_1.cs_2 31:16 读写 0x0004 向 DRAM CS 2 发送 MRS 3 命令时对应的值 Mr_1.cs_2 31:16 读写 0x0004 向 DRAM CS 2 发送 MRS 3 命令时对应的值 Mr_0.cs_2 15:0 读写 0x0060 向 DRAM CS 2 发送 MRS 3 命令时对应的值 Mr_0.cs_3 47:32 读写 0x0004 向 DRAM CS 2 发送 MRS 3 命令时对应的值 Mr_1.cs_3 31:16 读写 0x0004 向 DRAM CS 3 发送 MRS 3 命令时对应的值 Mr_0.cs_3 47:32 读写 0x0018 向 DRAM CS 3 发送 MRS 3 命令时对应的值 Mr_0.cs_3 47:32 读写 0x0018 向 DRAM CS 3 发送 MRS 3 命令时对应的值 Mr_0.cs_3 31:16 读写 0x0004 向 DRAM CS 3 发送 MRS 3 命令时对应的值 Mr_0.cs_3 47:32 读写 0x0018 向 DRAM CS 3 发送 MRS 3 命令时对应的值 Mr_0.cs_3 47:32 读写 0x0018 向 DRAM CS 3 发送 MRS 1 命令时对应的值 Mr_0.cs_3 47:32 读写 0x0004 向 DRAM CS 3 发送 MRS 0 命令时对应的值 Mr_0.cs_3 47:32 读写 0x0004 向 DRAM CS 3 发送 MRS 0 命令时对应的值 Mr_0.cs_3 47:30 读写 0x0004 向 DRAM CS 3 发送 MRS 0 命令时对应的值 Mr_0.cs_3 47:30 读写 0x0004 向 DRAM CS 3 发送 MRS 0 命令时对应的值 Mr_0.cs_3 47:30 读写 0x0004 向 DRAM CS 3 发送 MRS 0 命令时对应的值 Mr_0.cs_3 47:30 4					命令序列为
Mr_3_cs_0					MRS2、MRS3、MRS1、MRS0
Mr.2_cs_0	0x1A0				
Mr_1_cs_0	Mr_3_cs_0	63:48	读写	0x0000	向 DRAM CS 0 发送 MRS 3 命令时对应的值
Mr_O_cs_0	Mr_2_cs_0	47:32	读写	0x0018	向 DRAM CS 0 发送 MRS 2 命令时对应的值
Nata	Mr_1_cs_0	31:16	读写	0x0004	向 DRAM CS 0 发送 MRS 1 命令时对应的值
Mr_3_cs_1	Mr_0_cs_0	15:0	读写	0x0d60	向 DRAM CS 0 发送 MRS 0 命令时对应的值
Mr_2_cs_1	0x1A8				
Mr_1_cs_1	Mr_3_cs_1	63:48	读写	0x0000	向 DRAM CS 1 发送 MRS 3 命令时对应的值
Mr_0_cs_1	Mr_2_cs_1	47:32	读写	0x0018	向 DRAM CS 1 发送 MRS 2 命令时对应的值
Ox1BO Ga:48 读写 0x0000 向 DRAM CS 2 发送 MRS 3 命令时对应的值 Mr_3_cs_2 63:48 读写 0x0018 向 DRAM CS 2 发送 MRS 2 命令时对应的值 Mr_1_cs_2 31:16 读写 0x0004 向 DRAM CS 2 发送 MRS 1 命令时对应的值 Mr_0_cs_2 15:0 读写 0x0d60 向 DRAM CS 2 发送 MRS 0 命令时对应的值 0x1B8 W W W Mr_3_cs_3 63:48 读写 0x0000 向 DRAM CS 3 发送 MRS 3 命令时对应的值 Mr_2_cs_3 47:32 读写 0x0018 向 DRAM CS 3 发送 MRS 2 命令时对应的值 Mr_1_cs_3 15:0 读写 0x0004 向 DRAM CS 3 发送 MRS 1 命令时对应的值 Mr_0_cs_3 15:0 读写 0x0D60 向 DRAM CS 3 发送 MRS 0 命令时对应的值 0x1C0 U DRAM OS 3 发送 MRS 0 命令时对应的值 0x1C0 U DRAM 初始化前的复位时间 0x1C0 U DRAM 初始化前的复位时间 0x1C0 DRAM 初始化从发复位释放到 CKE 有效时间 0x1C0 DRAM 初始化	Mr_1_cs_1	31:16	读写	0x0004	向 DRAM CS 1 发送 MRS 1 命令时对应的值
Mr_3_cs_2 63:48 读写 0x0000 向 DRAM CS 2 发送 MRS 3 命令时对应的值 Mr_2_cs_2 47:32 读写 0x0018 向 DRAM CS 2 发送 MRS 2 命令时对应的值 Mr_1_cs_2 31:16 读写 0x0004 向 DRAM CS 2 发送 MRS 1 命令时对应的值 Mr_0_cs_2 15:0 读写 0x0d60 向 DRAM CS 2 发送 MRS 0 命令时对应的值 Mr_3_cs_3 63:48 读写 0x0000 向 DRAM CS 3 发送 MRS 3 命令时对应的值 Mr_2_cs_3 47:32 读写 0x0018 向 DRAM CS 3 发送 MRS 2 命令时对应的值 Mr_1_cs_3 31:16 读写 0x0004 向 DRAM CS 3 发送 MRS 1 命令时对应的值 Mr_0_cs_3 15:0 读写 0x0060 向 DRAM CS 3 发送 MRS 0 命令时对应的值 0x1C0 2 2 0x0060 向 DRAM CS 3 发送 MRS 0 命令时对应的值 0x1C0 35:48 读写 0x28 DRAM 初始化前的复位时间单位为 4096 个时钟周期 0CKE 55:48 读写 0x70 DRAM 初始化从复位释放到 CKE 有效时间单位为 4096 个时钟周期 0xPR 47:40 读写 0x80 DRAM 初始化从 CKE 有效到 MRS 命令的时间间隔 0xDD 2 2 2 2 2 0xDD 39:32 读写 0x0C 发送 MRS 命令后至下一条命令的时间间隔 <td>Mr_0_cs_1</td> <td>15:0</td> <td>读写</td> <td>0x0d60</td> <td>向 DRAM CS 1 发送 MRS 0 命令时对应的值</td>	Mr_0_cs_1	15:0	读写	0x0d60	向 DRAM CS 1 发送 MRS 0 命令时对应的值
Mr_2_cs_2 47:32 读写 0x0018 向 DRAM CS 2 发送 MRS 2 命令时对应的值 Mr_1_cs_2 31:16 读写 0x0004 向 DRAM CS 2 发送 MRS 1 命令时对应的值 Mr_0_cs_2 15:0 读写 0x0d60 向 DRAM CS 2 发送 MRS 0 命令时对应的值 0x1B8 ***********************************	0x1B0				
Mr_1_cs_2 31:16 读写 0x0004 向 DRAM CS 2 发送 MRS 1 命令时对应的值 Mr_0_cs_2 15:0 读写 0x0d60 向 DRAM CS 2 发送 MRS 0 命令时对应的值 0x1B8 Mr_3_cs_3 63:48 读写 0x0000 向 DRAM CS 3 发送 MRS 3 命令时对应的值 Mr_2_cs_3 47:32 读写 0x0018 向 DRAM CS 3 发送 MRS 2 命令时对应的值 Mr_1_cs_3 31:16 读写 0x0004 向 DRAM CS 3 发送 MRS 1 命令时对应的值 Mr_0_cs_3 15:0 读写 0x0D60 向 DRAM CS 3 发送 MRS 0 命令时对应的值 0x1CO trESET 63:56 读写 0x28 DRAM 初始化前的复位时间单位为 4096 个时钟周期 tCKE 55:48 读写 0x70 DRAM 初始化从复位释放到 CKE 有效时间单位为 4096 个时钟周期 tXPR 47:40 读写 0x80 DRAM 初始化从 CKE 有效到 MRS 命令的时间单位为 4096 个时钟周期 tMOD 39:32 读写 0x0C 发送 MRS 命令后至下一条命令的时间间隔	Mr_3_cs_2	63:48	读写	0x0000	向 DRAM CS 2 发送 MRS 3 命令时对应的值
Mr_0_cs_2 15:0 读写 0x0d60 向 DRAM CS 2 发送 MRS 0 命令时对应的值 0x1B8 Mr_3_cs_3 63:48 读写 0x0000 向 DRAM CS 3 发送 MRS 3 命令时对应的值 Mr_2_cs_3 47:32 读写 0x0018 向 DRAM CS 3 发送 MRS 2 命令时对应的值 Mr_1_cs_3 31:16 读写 0x0004 向 DRAM CS 3 发送 MRS 1 命令时对应的值 Mr_0_cs_3 15:0 读写 0x0D60 向 DRAM CS 3 发送 MRS 0 命令时对应的值 0x1C0 ***********************************	Mr_2_cs_2	47:32	读写	0x0018	向 DRAM CS 2 发送 MRS 2 命令时对应的值
Ox1B8 Gaided Cox0000 向 DRAM CS 3 发送 MRS 3 命令时对应的值 Mr_3_cs_3 63:48 读写 0x0000 向 DRAM CS 3 发送 MRS 2 命令时对应的值 Mr_2_cs_3 47:32 读写 0x0018 向 DRAM CS 3 发送 MRS 1 命令时对应的值 Mr_1_cs_3 31:16 读写 0x0004 向 DRAM CS 3 发送 MRS 1 命令时对应的值 Mr_0_cs_3 15:0 读写 0x0D60 向 DRAM CS 3 发送 MRS 0 命令时对应的值 0x1C0 ************************************	Mr_1_cs_2	31:16	读写	0x0004	向 DRAM CS 2 发送 MRS 1 命令时对应的值
Mr_3_cs_3 63:48 读写 0x0000 向 DRAM CS 3 发送 MRS 3 命令时对应的值 Mr_2_cs_3 47:32 读写 0x0018 向 DRAM CS 3 发送 MRS 2 命令时对应的值 Mr_1_cs_3 31:16 读写 0x0004 向 DRAM CS 3 发送 MRS 1 命令时对应的值 Mr_0_cs_3 15:0 读写 0x0D60 向 DRAM CS 3 发送 MRS 0 命令时对应的值 0x1C0 tRESET 63:56 读写 0x28 DRAM 初始化前的复位时间单位为 4096 个时钟周期 tCKE 55:48 读写 0x70 DRAM 初始化从复位释放到 CKE 有效时间单位为 4096 个时钟周期 tXPR 47:40 读写 0x80 DRAM 初始化从 CKE 有效到 MRS 命令的时间单位为时钟周期 tMOD 39:32 读写 0x0C 发送 MRS 命令后至下一条命令的时间间隔	Mr_0_cs_2	15:0	读写	0x0d60	向 DRAM CS 2 发送 MRS 0 命令时对应的值
Mr_2_cs_3 47:32 读写 0x0018 向 DRAM CS 3 发送 MRS 2 命令时对应的值 Mr_1_cs_3 31:16 读写 0x0004 向 DRAM CS 3 发送 MRS 1 命令时对应的值 Mr_0_cs_3 15:0 读写 0x0D60 向 DRAM CS 3 发送 MRS 0 命令时对应的值 0x1C0 tRESET 63:56 读写 0x28 DRAM 初始化前的复位时间单位为 4096 个时钟周期 tCKE 55:48 读写 0x70 DRAM 初始化从复位释放到 CKE 有效时间单位为 4096 个时钟周期 tXPR 47:40 读写 0x80 DRAM 初始化从 CKE 有效到 MRS 命令的时间操位为时钟周期 tMOD 39:32 读写 0x0C 发送 MRS 命令后至下一条命令的时间间隔	0x1B8				
Mr_1_cs_3 31:16 读写 0x0004 向 DRAM CS 3 发送 MRS 1 命令时对应的值 Mr_0_cs_3 15:0 读写 0x0D60 向 DRAM CS 3 发送 MRS 0 命令时对应的值 0x1C0 tRESET 63:56 读写 0x28 DRAM 初始化前的复位时间单位为 4096 个时钟周期 tCKE 55:48 读写 0x70 DRAM 初始化从复位释放到 CKE 有效时间单位为 4096 个时钟周期 tXPR 47:40 读写 0x80 DRAM 初始化从 CKE 有效到 MRS 命令的时间单位为时钟周期 tMOD 39:32 读写 0x0C 发送 MRS 命令后至下一条命令的时间间隔	Mr_3_cs_3	63:48	读写	0x0000	向 DRAM CS 3 发送 MRS 3 命令时对应的值
Mr_0_cs_3 15:0 读写 0x0D60 向 DRAM CS 3 发送 MRS 0 命令时对应的值 0x1C0 Cox1C0 DRAM 可见的 DRAM 可见的 <th< td=""><td>Mr_2_cs_3</td><td>47:32</td><td>读写</td><td>0x0018</td><td>向 DRAM CS 3 发送 MRS 2 命令时对应的值</td></th<>	Mr_2_cs_3	47:32	读写	0x0018	向 DRAM CS 3 发送 MRS 2 命令时对应的值
Ox1CO Cox1CO Cox1CO Cox1CO Cox1CO DRAM 初始化前的复位时间单位为 4096个时钟周期 tCKE 55:48 读写 0x70 DRAM 初始化从复位释放到 CKE 有效时间单位为 4096个时钟周期 tXPR 47:40 读写 0x80 DRAM 初始化从 CKE 有效到 MRS 命令的时间单位为时钟周期 tMOD 39:32 读写 0x0C 发送 MRS 命令后至下一条命令的时间间隔	Mr_1_cs_3	31:16	读写	0x0004	向 DRAM CS 3 发送 MRS 1 命令时对应的值
tRESET63:56读写0x28DRAM 初始化前的复位时间单位为 4096 个时钟周期tCKE55:48读写0x70DRAM 初始化从复位释放到 CKE 有效时间单位为 4096 个时钟周期tXPR47:40读写0x80DRAM 初始化从 CKE 有效到 MRS 命令的时间单位为时钟周期tMOD39:32读写0x0C发送 MRS 命令后至下一条命令的时间间隔	Mr_0_cs_3	15:0	读写	0x0D60	向 DRAM CS 3 发送 MRS 0 命令时对应的值
tCKE 55:48 读写 0x70 DRAM 初始化从复位释放到 CKE 有效时间单位为 4096 个时钟周期 tXPR 47:40 读写 0x80 DRAM 初始化从 CKE 有效到 MRS 命令的时间单位为时钟周期 tMOD 39:32 读写 0x0C 发送 MRS 命令后至下一条命令的时间间隔	0x1C0				
tCKE 55:48 读写 0x70 DRAM 初始化从复位释放到 CKE 有效时间单位为 4096 个时钟周期 tXPR 47:40 读写 0x80 DRAM 初始化从 CKE 有效到 MRS 命令的时间单位为时钟周期 tMOD 39:32 读写 0x0C 发送 MRS 命令后至下一条命令的时间间隔	tRESET	63:56	读写	0x28	DRAM 初始化前的复位时间
tXPR 47:40 读写 0x80 DRAM 初始化从 CKE 有效到 MRS 命令的时间单位为时钟周期 tMOD 39:32 读写 0x0C 发送 MRS 命令后至下一条命令的时间间隔					单位为 4096 个时钟周期
tXPR 47:40 读写 0x80 DRAM 初始化从 CKE 有效到 MRS 命令的时间单位为时钟周期 tMOD 39:32 读写 0x0C 发送 MRS 命令后至下一条命令的时间间隔	tCKE	55:48	读写	0x70	DRAM 初始化从复位释放到 CKE 有效时间
tMOD 39:32 读写 0x0C 发送 MRS 命令后至下一条命令的时间间隔					单位为 4096 个时钟周期
tMOD 39:32 读写 0x0C 发送 MRS 命令后至下一条命令的时间间隔	tXPR	47:40	读写	0x80	DRAM 初始化从 CKE 有效到 MRS 命令的时间
					单位为时钟周期
M. D. M. w. L. L. PR. 100	tMOD	39:32	读写	0x0C	发送 MRS 命令后至下一条命令的时间间隔
単位为时钟周期					单位为时钟周期

tZQCL	31:24	读写	0x03	发送 ZQCL 命令后至下一条命令的时间间隔
				单位为 256 个时钟周期
tZQ_CMD	23:16	读写	0x03	不同片选之间发送 ZQ 命令的时间间隔
				单位为时钟周期
tWLDQSEN	15:8	读写	0x20	Write Leveling 中,从 MRS 到 DQS 为低的时间间隔
				单位为时钟周期
tRDDATA	7:0	读写	0x07	从发送读命令到发送读数据有效命令的时间间隔。
				单位为时钟周期
				与其他几个参数需要满足关系式:
				tRDDATA - Cmd_delay - Cmd_timing = CASLAT - 3
				该参数最小设置值为2
0x1C8				
tFAW	61:56	读写	0x30	连续打开 4 个 Bank 的最小允许时间
				 单位为时钟周期
tRRD	50:48	读写	0x06	打开两个行之间的最小间隔时间
				 单位为时钟周期
tRCD	43:40	读写	0x09	打开行到对应行的读写操作之间的最小间隔时间
				 单位为时钟周期
tRP	39:32	读写	0x09	Precharge 操作需要时间
				 单位为时钟周期
tREF	31:24	读写	0x03	同一片选刷新操作之间的时间间隔
				单位为 256 个时钟周期
tRFC	23:16	读写	0x85	刷新操作需要时间
				单位为时钟周期
tZQCS	15:8	读写	0x40	ZQCS 操作需要时间
				单位为时钟周期
tZQperiod	7:0	读写	0x04	同一片选 ZQCS 操作之间的时间间隔
d		,,,,		单位为 tREF(刷新操作之间的时间间隔)
0x1D0				
tODTL	59:56	读写	0x0A	Write Leveling 中从 ODT 无效到 MRS 命令时间间隔
		, ,		单位为时钟周期
tXSRD	55:48	读写	0x02	从自刷新模式恢复到第一条访问的最小时间间隔
	23.10	~ ,	0.102	单位为 256 个时钟周期
tPHY_RDLAT	43:40	读写	0x9	读内存操作的 PHY 内部读数据同步时间
u III_KDLAI	43.40	庆一	UAJ	医自己不住的1111 自即医数值图少时间

				<u> </u>
				0x5 时一般可以正常工作,极端情况下可以将这个值
				增加或减小。减小可能会影响到读数据的正确性,增
				加会增加读操作的延迟
				当 Rdfifo_valid 有效时,这个配置不起作用
				单位为时钟周期
tPHY_WRLAT	36:32	读写	0x04	从发送写命令到发送写数据的时间间隔。
				单位为时钟周期
				与其他几个参数需要满足关系式:
				tPHY_WRLAT - Cmd_delay - Cmd_timing = WRLAT
				-4
				该参数最小设置值为 2
tRAS_max	25:8	读写	0x20000	行打开的最长有效时间
				单位为时钟周期
tRAS_min	5:0	读写	0x1C	行打开的最短有效时间
				单位为时钟周期
0x1D8				
tXPDLL	63:56	读写	0x14	从离开 Power down (DLL 关闭)状态到下一个命令
				的间隔时间
				单位为始终周期
tXP	55:48	读写	0x05	从离开 Power down (DLL 打开)状态到下一个命令
				的间隔时间
tWR	44:40	读写	0x0C	写恢复时间
				单位为时钟周期
				该参数设置值应大于等于 MRS 中设置值
tRTP	34:32	读写	0x06	读到 Precharge 操作的间隔时间
				单位为时钟周期
tRL	27:24	读写	0x0a	读操作延迟,相当于 CASLAT
				单位为时钟周期
				该参数设置值应大于等于 MRS 中设置值
tWL	19:16	读写	0x08	写操作延迟,相当于 WRLAT
				单位为时钟周期
				该参数设置值应大于等于 MRS 中设置值
tCCD	11:8	读写	0x04	两个读写操作之间的最小间隔时间
		~, ,		单位为时钟周期
		1	<u> </u>	, ,—, v : v · i /: v//v

操作到读操作之间的最小间隔时间
位为时钟周期
「同 CS 上的写操作到读操作之间间隔时间减 1
位为时钟周期,最小值等于 tCCD+tWL-tRL.
同 CS 上的写操作到写操作之间的附加间隔时间
位为时钟周期,最小值等于 tCCD-1
目目 Bank 上的读操作到 Precharge 之间附加间隔时间
· 位为时钟周期
目目 Bank 上的写操作到 Precharge 之间附加间隔时间
· · 位为时钟周期
目 Bank 上的读操作到读操作之间的附加间隔时间
!位为时钟周期
目 Bank 上的读操作到写操作之间的附加间隔时间
!位为时钟周期
同 Bank 上的写操作到读操作之间的附加间隔时间
!位为时钟周期
目 Bank 上的写操作到写操作之间的附加间隔时间
!位为时钟周期
同 CS 上的读操作到读操作之间的附加间隔时间
位为时钟周期,最小值等于 tCCD-1
「同 CS 上的读操作到写操作之间间隔时间减 1
· · · · · · · · · · · · · · · · · · ·
CCD+tRL(+1)-tWL.
同 CS 上的读操作到 Precharge 之间的间隔时间减
: 1 的值
位为时钟周期
l同 CS 上的写操作到 Precharge 之间的间隔时间减
; 1 的值
L位为时钟周期
目同 CS 上的读操作到读操作之间的附加间隔时间
位为时钟周期

_dly				单位为时钟周期
tW2R_sameCS_adj	13:8	读写	0x0	相同 CS 上的写操作到读操作之间的附加间隔时间
_dly				单位为时钟周期
tW2W_sameCS_ad	5:0	读写	0x0	相同 CS 上的写操作到写操作之间的附加间隔时间
j_dly				单位为时钟周期
0x1F0				
Power_up	59:56	读写	0x0	分别对应四个 CS。设为 1 时,可以使对应的 CS 离开
				或者不进入 Power down 状态。
Age_step	55:48	读写	0x08	Power down 计数器步长。
tCPDED	47:40	读写	0x01	CKE 为 0 后,命令和地址总线失效时间
				单位为时钟周期
Cs_map	39:32	读写	0x0	CS 地址映射控制,每两位分别对应地址译码后的 CS
				与真实 CS 之间的映射关系
Bs_config	31:24	读写	0xFF	命令调度 CS 状态使能
				Bit7: CS3 对应状态机状态使能
				1-使能; 0-禁用(下同)
				Bit6: CS3 对应状态机状态重置
				1-解复位; 0-重置(下同)
				Bit5: CS2 对应状态机状态使能
				Bit4: CS2 对应状态机状态重置
				Bit3: CS1 对应状态机状态使能
				Bit2: CS1 对应状态机状态重置
				Bitl: CSO 对应状态机状态使能
				Bit0: CSO 对应状态机状态重置
Nc	18:16	读写	0x0	多通道模式使能
				000 – 普通 64 位模式
				001 – 多通道模式
				011 – 普通 16 位模式
				101 – 普通 32 位模式
				其它 – 保留
Pr_r2w	11:8	读写	0x1	读操作优先级是否高于写操作
Placement_en	0:0	读写	0x1	使能读写命令重排逻辑
0x1F8				
Hw_pd_3	59:56	读写	0x0	从低到高分别对应 Active Standby, Fast Power Down,

				Slow Power Down 和 Self Refresh。设为 1 表示允许
				CS3 进入对应的低功耗状态。
Hw_pd_2	51:48	读写	0x0	设为 1 表示允许 CS2 进入对应的低功耗状态。
Hw_pd_1	43:40	读写	0x0	设为1表示允许 CS1 进入对应的低功耗状态。
Hw_pd_0	35:32	读写	0x0	设为1表示允许 CSO 进入对应的低功耗状态。
Credit_16	29:24	读写	0x4	16 位通道优先级设置
Credit_32	21:16	读写	0x8	32 位通道优先级设置
Credit_64	13:8	读写	0x10	64 位通道优先级设置
Selection_en	0:0	读写	0x1	不同通道优先级调度使能
0x200				
Cmdq_age_16	59:48	读写	0xC00	16 位通道调度初始年龄。0xFFF 为超时。
Cmdq_age_32	43:32	读写	0xC00	32 位通道调度初始年龄。0xFFF 为超时。
Cmdq_age_64	27:16	读写	0xC00	64 位通道调度初始年龄。0xFFF 为超时。
tCKESR	15:8	读写	0x07	进入自刷新时,CKE 为低的最短时间
				单位为时钟周期
tRDPDEN	7:0	读写	0x0C	从发出 RD/RDA 命令到进入低功耗状态的时间间隔
				单位为时钟周期
0x208				
Wfifo_age	59:48	读写	0xC00	写队列中命令初始年龄。0xFFF 为超时。
	59:48 43:32	读写	0xC00 0xC00	写队列中命令初始年龄。0xFFF 为超时。 读队列中命令初始年龄。0xFFF 为超时。
Wfifo_age				
Wfifo_age Rfifo_age	43:32	读写	0xC00	读队列中命令初始年龄。0xFFF 为超时。
Wfifo_age Rfifo_age	43:32	读写	0xC00	读队列中命令初始年龄。0xFFF 为超时。 从低到高分别对应 Active Standby, Fast Power Down,
Wfifo_age Rfifo_age	43:32	读写	0xC00	读队列中命令初始年龄。0xFFF 为超时。 从低到高分别对应 Active Standby,Fast Power Down, Slow Power Down 和 Self Refresh。
Wfifo_age Rfifo_age Power_stat3	43:32 27:24	读写 只读	0xC00 0x0	读队列中命令初始年龄。0xFFF 为超时。 从低到高分别对应 Active Standby, Fast Power Down, Slow Power Down 和 Self Refresh。 设为 1 表示 CS3 处于对应的低功耗状态。
Wfifo_age Rfifo_age Power_stat3 Power_stat2	43:32 27:24 19:16	读写 只读 只读	0xC00 0x0	读队列中命令初始年龄。0xFFF 为超时。 从低到高分别对应 Active Standby, Fast Power Down, Slow Power Down 和 Self Refresh。 设为 1 表示 CS3 处于对应的低功耗状态。 设为 1 表示 CS2 处于对应的低功耗状态。
Wfifo_age Rfifo_age Power_stat3 Power_stat2 Power_stat1	43:32 27:24 19:16 11:8	读写 只读 只读 只读	0xC00 0x0 0x0 0x0	读队列中命令初始年龄。OxFFF 为超时。 从低到高分别对应 Active Standby, Fast Power Down, Slow Power Down 和 Self Refresh。 设为 1 表示 CS3 处于对应的低功耗状态。 设为 1 表示 CS2 处于对应的低功耗状态。 设为 1 表示 CS1 处于对应的低功耗状态。
Wfifo_age Rfifo_age Power_stat3 Power_stat2 Power_stat1 Power_stat0	43:32 27:24 19:16 11:8	读写 只读 只读 只读	0xC00 0x0 0x0 0x0	读队列中命令初始年龄。OxFFF 为超时。 从低到高分别对应 Active Standby, Fast Power Down, Slow Power Down 和 Self Refresh。 设为 1 表示 CS3 处于对应的低功耗状态。 设为 1 表示 CS2 处于对应的低功耗状态。 设为 1 表示 CS1 处于对应的低功耗状态。
Wfifo_age Rfifo_age Power_stat3 Power_stat2 Power_stat1 Power_stat0 0x210	43:32 27:24 19:16 11:8 3:0	读写 只读 只读 只读	0xC00 0x0 0x0 0x0 0x0	读队列中命令初始年龄。0xFFF 为超时。 从低到高分别对应 Active Standby,Fast Power Down, Slow Power Down 和 Self Refresh。 设为 1 表示 CS3 处于对应的低功耗状态。 设为 1 表示 CS2 处于对应的低功耗状态。 设为 1 表示 CS1 处于对应的低功耗状态。 设为 1 表示 CS1 处于对应的低功耗状态。
Wfifo_age Rfifo_age Power_stat3 Power_stat2 Power_stat1 Power_stat0 0x210 Active_age	43:32 27:24 19:16 11:8 3:0	读写 只读 只读 只读 只读	0xC00 0x0 0x0 0x0 0x0 0x0	读队列中命令初始年龄。0xFFF 为超时。 从低到高分别对应 Active Standby,Fast Power Down, Slow Power Down 和 Self Refresh。 设为 1 表示 CS3 处于对应的低功耗状态。 设为 1 表示 CS2 处于对应的低功耗状态。 设为 1 表示 CS1 处于对应的低功耗状态。 设为 1 表示 CS1 处于对应的低功耗状态。
Wfifo_age Rfifo_age Power_stat3 Power_stat2 Power_stat1 Power_stat0 0x210 Active_age	43:32 27:24 19:16 11:8 3:0	读写 只读 只读 只读 只读	0xC00 0x0 0x0 0x0 0x0 0x0	读队列中命令初始年龄。0xFFF 为超时。 从低到高分别对应 Active Standby,Fast Power Down,Slow Power Down 和 Self Refresh。 设为 1 表示 CS3 处于对应的低功耗状态。 设为 1 表示 CS2 处于对应的低功耗状态。 设为 1 表示 CS1 处于对应的低功耗状态。 设为 1 表示 CS1 处于对应的低功耗状态。
Wfifo_age Rfifo_age Power_stat3 Power_stat2 Power_stat1 Power_stat0 0x210 Active_age	43:32 27:24 19:16 11:8 3:0	读写 只读 只读 只读 只读	0xC00 0x0 0x0 0x0 0x0 0x0	读队列中命令初始年龄。0xFFF 为超时。 从低到高分别对应 Active Standby,Fast Power Down,Slow Power Down 和 Self Refresh。 设为 1 表示 CS3 处于对应的低功耗状态。 设为 1 表示 CS2 处于对应的低功耗状态。 设为 1 表示 CS1 处于对应的低功耗状态。 设为 1 表示 CS1 处于对应的低功耗状态。 公为 1 表示 CS0 处于对应的低功耗状态。
Wfifo_age Rfifo_age Power_stat3 Power_stat2 Power_stat1 Power_stat0 0x210 Active_age Cs_place_0	43:32 27:24 19:16 11:8 3:0 63:48 40:40	读写 只读 只读 只读 只读 实写 读写	0xC00 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x	读队列中命令初始年龄。0xFFF 为超时。 从低到高分别对应 Active Standby,Fast Power Down,Slow Power Down 和 Self Refresh。 设为 1 表示 CS3 处于对应的低功耗状态。 设为 1 表示 CS2 处于对应的低功耗状态。 设为 1 表示 CS1 处于对应的低功耗状态。 设为 1 表示 CS1 处于对应的低功耗状态。 公为 1 表示 CS0 处于对应的低功耗状态。

	1			
				Bit [1:0]: 窗口使用 DRAM 位数
				11-64位; 10-32位; 01-16位; 00-保留
Cs_diff_0	27:24	读写	0x0	普通模式或窗口 0 实际使用的 CS 译码前地址与 2 之
				差
				当 Pm_nc 有效时,
				对于 64 位窗口,应该为 2;
				对于 32 位窗口,应该为 1;
				对于 16 位窗口,应该为 0
Row_diff_0	19:16	读写	0x2	普通模式或窗口 0 实际使用的行地址线个数与 16 之
				差
				这个值等于 16 - 实际使用的行地址线个数
Ba_diff_0	9:8	读写	0x0	普通模式或窗口 0 实际使用的 BA 线个数与 3 之差
				这个值等于 3 - 实际使用的 BA 线个数
Col_diff_0	3:0	读写	0x6	普通模式或窗口 0 实际使用的列地址线个数与 16 之
				差
				这个值等于 16 - 实际使用的列地址线个数
0x218				
Fastpd_age	63:48	读写	0x0008	Fast Powerdown 低功耗状态计数器
Cs_place_1	40:40	读写	0x0	普通模式或窗口 1 译码时 CS 在地址中的位置
Cs_place_1	40:40	读写	0x0	普通模式或窗口 1 译码时 CS 在地址中的位置 0 - 译码方式为{CS、ROW、BA、COL}
Cs_place_1	40:40	读写	0x0	
Cs_place_1 Addr_win_1	40:40 35:32	读写读写	0x0 0xF	0 – 译码方式为{CS、ROW、BA、COL}
-				0 – 译码方式为{CS、ROW、BA、COL} 1 – 译码方式为{ROW、CS、BA、COL}
-				0 – 译码方式为{CS、ROW、BA、COL} 1 – 译码方式为{ROW、CS、BA、COL} 普通模式或窗口 1 地址命中及配置
-				 0 - 译码方式为{CS、ROW、BA、COL} 1 - 译码方式为{ROW、CS、BA、COL} 普通模式或窗口 1 地址命中及配置 Bit [3:2]: 窗口使用 DRAM 的 Bank 数
-				0 - 译码方式为{CS、ROW、BA、COL} 1 - 译码方式为{ROW、CS、BA、COL} 普通模式或窗口 1 地址命中及配置 Bit [3:2]: 窗口使用 DRAM 的 Bank 数 11 - 8 bank; 10 - 4 bank; 01 - 2 bank; 00 - 保留
-				0 - 译码方式为{CS、ROW、BA、COL} 1 - 译码方式为{ROW、CS、BA、COL} 普通模式或窗口 1 地址命中及配置 Bit [3:2]: 窗口使用 DRAM 的 Bank 数 11 - 8 bank; 10 - 4 bank; 01 - 2 bank; 00 - 保留 Bit [1:0]: 窗口使用 DRAM 位数
Addr_win_1	35:32	读写	0xF	0 - 译码方式为{CS、ROW、BA、COL} 1 - 译码方式为{ROW、CS、BA、COL} 普通模式或窗口 1 地址命中及配置 Bit [3:2]: 窗口使用 DRAM 的 Bank 数 11 - 8 bank; 10 - 4 bank; 01 - 2 bank; 00 - 保留 Bit [1:0]: 窗口使用 DRAM 位数 11 - 64 位; 10 - 32 位; 01 - 16 位; 00 - 保留
Addr_win_1	35:32	读写	0xF	0 - 译码方式为{CS、ROW、BA、COL} 1 - 译码方式为{ROW、CS、BA、COL} 普通模式或窗口 1 地址命中及配置 Bit [3:2]: 窗口使用 DRAM 的 Bank 数 11 - 8 bank; 10 - 4 bank; 01 - 2 bank; 00 - 保留 Bit [1:0]: 窗口使用 DRAM 位数 11 - 64 位; 10 - 32 位; 01 - 16 位; 00 - 保留 普通模式或窗口 1 实际使用 CS 译码前地址与 2 之差
Addr_win_1	35:32	读写	0xF	0 - 译码方式为{CS、ROW、BA、COL} 1 - 译码方式为{ROW、CS、BA、COL} 普通模式或窗口 1 地址命中及配置 Bit [3:2]: 窗口使用 DRAM 的 Bank 数 11 - 8 bank; 10 - 4 bank; 01 - 2 bank; 00 - 保留 Bit [1:0]: 窗口使用 DRAM 位数 11 - 64 位; 10 - 32 位; 01 - 16 位; 00 - 保留 普通模式或窗口 1 实际使用 CS 译码前地址与 2 之差 当 Pm_nc 有效时,
Addr_win_1	35:32	读写	0xF	0 - 译码方式为{CS、ROW、BA、COL} 1 - 译码方式为{ROW、CS、BA、COL} 普通模式或窗口 1 地址命中及配置 Bit [3:2]: 窗口使用 DRAM 的 Bank 数 11 - 8 bank; 10 - 4 bank; 01 - 2 bank; 00 - 保留 Bit [1:0]: 窗口使用 DRAM 位数 11 - 64 位; 10 - 32 位; 01 - 16 位; 00 - 保留 普通模式或窗口 1 实际使用 CS 译码前地址与 2 之差 当 Pm_nc 有效时, 对于 64 位窗口,应该为 2;
Addr_win_1	35:32	读写	0xF	0 - 译码方式为{CS、ROW、BA、COL} 1 - 译码方式为{ROW、CS、BA、COL} 普通模式或窗口 1 地址命中及配置 Bit [3:2]: 窗口使用 DRAM 的 Bank 数 11 - 8 bank; 10 - 4 bank; 01 - 2 bank; 00 - 保留 Bit [1:0]: 窗口使用 DRAM 位数 11 - 64 位; 10 - 32 位; 01 - 16 位; 00 - 保留 普通模式或窗口 1 实际使用 CS 译码前地址与 2 之差 当 Pm_nc 有效时, 对于 64 位窗口,应该为 2; 对于 32 位窗口,应该为 1;
Addr_win_1 Cs_diff_1	35:32 27:24	读写	0xF 0x0	0 - 译码方式为{CS、ROW、BA、COL} 1 - 译码方式为{ROW、CS、BA、COL} 普通模式或窗口 1 地址命中及配置 Bit [3:2]: 窗口使用 DRAM 的 Bank 数 11 - 8 bank; 10 - 4 bank; 01 - 2 bank; 00 - 保留 Bit [1:0]: 窗口使用 DRAM 位数 11 - 64 位; 10 - 32 位; 01 - 16 位; 00 - 保留 普通模式或窗口 1 实际使用 CS 译码前地址与 2 之差 当 Pm_nc 有效时, 对于 64 位窗口,应该为 2; 对于 32 位窗口,应该为 1; 对于 16 位窗口,应该为 0

				这个值等于 3 - 实际使用的 BA 线个数
Col_diff_1	3:0	读写	0x6	普通模式或窗口1实际使用列地址线个数与16之差
				这个值等于 16 - 实际使用的列地址线个数
0x220				
Slowpd_age	63:48	读写	0x0008	Slow Powerdown 低功耗状态计数器
Cs_place_2	40:40	读写	0x0	普通模式或窗口 2 译码时 CS 在地址中的位置
				0 – 译码方式为{CS、ROW、BA、COL}
				1 – 译码方式为{ROW、CS、BA、COL}
Addr_win_2	35:32	读写	0xF	普通模式或窗口 2 地址命中及配置
				Bit [3:2]:窗口使用 DRAM 的 Bank 数
				11-8 bank; 10-4 bank; 01-2 bank; 00- 保留
				Bit [1:0]: 窗口使用 DRAM 位数
				11-64位; 10-32位; 01-16位; 00-保留
Cs_diff_2	27:24	读写	0x0	普通模式或窗口 2 实际使用 CS 译码前地址与 2 之差
				当 Pm_nc 有效时,
				对于 64 位窗口,应该为 2;
				对于 32 位窗口,应该为 1;
				对于 16 位窗口,应该为 0
Row_diff_2	19:16	读写	0x2	普通模式或窗口2实际使用行地址线个数与16之差
				这个值等于 16- 实际使用的行地址线个数
Ba_diff_2	9:8	读写	0x0	普通模式或窗口 2 实际使用的 BA 线个数与 3 之差
				这个值等于 3 - 实际使用的 BA 线个数
Col_diff_2	3:0	读写	0x6	普通模式或窗口2实际使用列地址线个数与16之差
				这个值等于 16 - 实际使用的列地址线个数
0x228				
Selfref_age	63:48	读写	0x0008	Selfrefresh 低功耗状态计数器
Cs_place_3	40:40	读写	0x0	普通模式或窗口 3 译码时 CS 在地址中的位置
				0 – 译码方式为{CS、ROW、BA、COL}
				1 – 译码方式为{ROW、CS、BA、COL}
Addr_win_3	35:32	读写	0xF	普通模式或窗口 3 地址命中及配置
				Bit [3:2]: 窗口使用 DRAM 的 Bank 数
				11-8 bank; 10-4 bank; 01-2 bank; 00-保留
				Bit [1:0]: 窗口使用 DRAM 位数
				11-64位; 10-32位; 01-16位; 00-保留

			I	
Cs_diff_3	27:24	读写	0x0	普通模式或窗口 3 实际使用 CS 译码前地址与 2 之差
				当 Pm_nc 有效时,
				对于 64 位窗口,应该为 2;
				对于 32 位窗口,应该为 1;
				对于 16 位窗口,应该为 0
Row_diff_3	19:16	读写	0x2	普通模式或窗口3实际使用行地址线个数与16之差
				这个值等于 16 - 实际使用的行地址线个数
Ba_diff_3	9:8	读写	0x0	普通模式或窗口 3 实际使用的 BA 线个数与 3 之差
				这个值等于 3 – 实际使用的 BA 线个数
Col_diff_3	3:0	读写	0x6	普通模式或窗口 3 实际使用列地址线个数与 16 之差
				这个值等于 16 – 实际使用的列地址线个数
0x230				
Win_mask_0	59:32	读写	0xFFFF	0 号窗口 MASK,对应地址[47:20]
			F00	
Win_base_0	27:0	读写	0x00000	0 号窗口 BASE,对应地址[47:20]
			00	-
0x238				
Win_mask_1	59:32	读写	0xFFFF	1 号窗口 MASK,对应地址[47:20]
			F00	
Win_base_1	27:0	读写	0x00001	1 号窗口 BASE,对应地址[47:20]
			00	
0x240				
Win_mask_2	59:32	读写	0xFFFF	2 号窗口 MASK,对应地址[47:20]
WIII_IIIdSK_2	37.32		F00	2 7 M H MASK, ALEXEMET (20)
Win_base_2	27:0	读写	0x00002	2 号窗口 BASE,对应地址[47:20]
wm_base_2	27.0	()	00	2 5 图 口 DASE, 对处地址[47.20]
0.249			00	
0x248	ZO 22	注 亿	0 0000	2 日常日 MAGW 社会地址14 G AC
Win_mask_3	59:32	读写	0xFFFF	3 号窗口 MASK,对应地址[47:20]
		\+ F	F00	a Didden proprietation
Win_base_3	27:0	读写	0x00003	3 号窗口 BASE,对应地址[47:20]
			00	
0x250				
Cmd_monitor	55:48	读写	0x0	Bit 7: 使能命令队列 3 监控功能
				Bit 6: 复位命令队列 3 性能计数值

				Bit 5: 使能命令队列 2 监控功能
				Bit 4: 复位命令队列 2 性能计数值
				Bit 3: 使能命令队列 1 监控功能
				Bit 2: 复位命令队列 1 性能计数值
				Bit 1: 使能命令队列 0 监控功能
				Bit 0: 复位命令队列 0 性能计数值
Axi_monitor	41:32	读写	0x0	使能 AXI 命令队列性能监控,每两位控制一个 AXI
				监控模块,控制方法与 Cmd_monitor 相同
Ecc_code	31:24	只读	0x0	第一次发生 ECC 错误时从内存读出的校验码
				记录的出错信息的时机由 Int_vector[0]或
				Int_vector[1]由 0 变 1 时触发,使用 Ecc_enable[3]进
				行配置
Ecc_enable	18:16	读写	0x0	ECC 功能使能
				Bit-3: 设置保存 ECC 出错信号时机
				0 - 出现 ECC 错时触发; 1 – 出现两位错时触发
				Bit-2: 使能写时 ECC 校验错的内部总线报错(异常)
				Bit-1: 使能读时 ECC 校验错的内部总线报错(异常)
				Bit-0: 使能 ECC 功能(只在 64 位模式下有效)
Int_vector	9:8	读写	0x0	中断向量寄存器
				Bit-1:ECC 两位校验错
				Bit-0: ECC 校验错(包括一位错与两位错)
				对这个寄存器的读操作将得到当前的ECC出错情况,
				对这个寄存器的"写 1"操作将清除对应的位
Int_enable	1:0	读写	0x0	中断使能寄存器
				Bit-1: ECC 两位较验错中断使能
				Bit-0: ECC 较验错中断使能(包括一位错与两位错)
0x258				
0x260				
Ecc_addr	63:0	只读	0x0	第一次发生 ECC 错误时向内存读的出错地址
				记录的出错信息的时机由 Int_vector[0]或
				Int_vector[1]由 0 变 1 时触发,使用 Ecc_enable[3]进
				行配置
0x268				

Ecc_data	63:0	只读	0x0	第一次发生 ECC 错误时从内存读出的数据
				记录的出错信息的时机由 Int_vector[0]或
				Int_vector[1]由 0 变 1 时触发,使用 Ecc_enable[3]进
				行配置
0x270				
Lpbk_ecc_mask	58:57	只读	0x0	自循环测试第一次出错时的 ECC MASK 值
				Bit 1:对应于 ECC MASK 的上升沿数据
				Bit 0:对应于 ECC MASK 的下降沿数据
Prbs_init	54:32	只写	0x10	自循环测试时使用的 PRBS 初始值
Lpbk_error	25:25	只读	0x0	自循环测试出错
Prbs_23	16:16	读写	0x0	自循环测试时使用的编码方式
				1 – PRBS 23
				0 – PRBS 7
Lpbk_start	8:8	读写	0x0	自循环测试开始
Lpbk_en	0:0	读写	0x0	自循环测试模式使能
0x278				
Lpbk_ecc	63:49	只读	0x0	自循环测试第一次出错时的 ECC 值
				Bit [63:57]: 对应于 ECC 的上升沿数据的低 15 位
				Bit [56:49]: 对应于 ECC 的下降沿数据
Lpbk_data_mask	48:33	只读	0x0	自循环测试第一次出错时的 DQM 值
				Bit [48:41]: 对应于 DQM 的上升沿数据
				Bit [40:33]: 对应于 DQM 的下降沿数据
Lpbk_correct	32:17	只读	0x0	自循环测试第一次出错时的 PRBS 编码
				Bit [32:25]: 对应于上升沿数据
				Bit [24:17]: 对应于下降沿数据
Lpbk_counter	16:1	只读	0x0	自循环测试第一次出错时的计数周期
0x280				
Lpbk_data_r	63:0	只读	0x0	自循环测试第一次出错时的 DQ 上升沿数据
0x288				
Lpbk_data_f	63:0	只读	0x0	自循环测试第一次出错时的 DQ 下降沿数据
0x290				
Axi0_bw_w	63:32	只读	0x0	AXI0 写带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
Axi0_bw_r	31:0	只读	0x0	AXI0 读带宽性能计数值

				表示 64K 个时钟周期里总线数据有效的周期数
0x298				
Axi0_latency_w	63:32	只读	0x0	AXI0 写延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
Axi0_latency_r	31:0	只读	0x0	AXI0 读延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
0x2A0				
Axi1_bw_w	63:32	只读	0x0	AXII 写带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
Axi1_bw_r	31:0	只读	0x0	AXII 读带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
0x2A8				
Axi1_latency_w	63:32	只读	0x0	AXII 写延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
Axi1_latency_r	31:0	只读	0x0	AXII 读延迟性能计数值
,				这个值表示 64K 个访问的总延迟周期之和
0x2B0				
Axi2_bw_w	63:32	只读	0x0	AXI2 写带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
Axi2_bw_r	31:0	只读	0x0	AXI2 读带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
0x2B8				
Axi2_latency_w	63:32	只读	0x0	AXI2 写延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
Axi2_latency_r	31:0	只读	0x0	AXI2 读延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
0x2C0				
Axi3_bw_w	63:32	只读	0x0	AXI3 写带宽性能计数值
	55.52	7,6		表示 64K 个时钟周期里总线数据有效的周期数
Axi3_bw_r	31:0	只读	0x0	AXI3 读带宽性能计数值
11A13_0W_1	51.0	八次	UAU	表示 64K 个时钟周期里总线数据有效的周期数
0x2C8				スカ UTK 「FJ FJ FI
	62.22	日本	00	AVI2 写证识析允认举估
Axi3_latency_w	63:32	只读	0x0	AXI3 写延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和

Axi3_latency_r	31:0	只读	0x0	AXI3 读延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
0x2D0				
Axi4_bw_w	63:32	只读	0x0	AXI4 写带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
Axi4_bw_r	31:0	只读	0x0	AXI4 读带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
0x2D8				
Axi4_latency_w	63:32	只读	0x0	AXI4 写延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
Axi4_latency_r	31:0	只读	0x0	AXI4 读延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
0x2E0				
Cmdq0_bw_w	63:32	只读	0x0	命令队列 0 写带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
Cmdq0_bw_r	31:0	只读	0x0	命令队列 0 读带宽性能计数值
		, , , ,	****	表示 64K 个时钟周期里总线数据有效的周期数
0x2E8				
Cmdq0_latency_w	63:32	只读	0x0	命令队列 0 写延迟性能计数值
emaqo_natemey_w	03.32	716	ONO	这个值表示 64K 个访问的总延迟周期之和
Cmdq0_latency_r	31:0	只读	0x0	命令队列0读延迟性能计数值
Cindqo_iatency_i	31.0	八庆	UXU	这个值表示 64K 个访问的总延迟周期之和
0250				之于恒农小 04K
0x2f0	£2.22	ED V±	0.0	A A D 70 - 57 # 67 M 68 V M 64
Cmdq1_bw_w	63:32	只读	0x0	命令队列1写带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
Cmdq1_bw_r	31:0	只读	0x0	命令队列 1 读带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
0x2f8				
Cmdq1_latency_w	63:32	只读	0x0	命令队列1写延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
Cmdq1_latency_r	31:0	只读	0x0	命令队列1读延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
0x300				
Cmdq2_bw_w	63:32	只读	0x0	命令队列 2 写带宽性能计数值

	1			
				表示 64K 个时钟周期里总线数据有效的周期数
Cmdq2_bw_r	31:0	只读	0x0	命令队列2读带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
0x308				
Cmdq2_latency_w	63:32	只读	0x0	命令队列 2 写延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
Cmdq2_latency_r	31:0	只读	0x0	命令队列 2 读延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
0x310				
Cmdq3_bw_w	63:32	只读	0x0	命令队列 3 写带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
Cmdq3_bw_r	31:0	只读	0x0	命令队列 3 读带宽性能计数值
				表示 64K 个时钟周期里总线数据有效的周期数
0x318				
Cmdq3_latency_w	63:32	只读	0x0	命令队列 3 写延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和
Cmdq3_latency_r	31:0	只读	0x0	命令队列 3 读延迟性能计数值
				这个值表示 64K 个访问的总延迟周期之和

9. 2 DDR2/3 SDRAM 软件编程指南

9.2.1 初始化操作

初始化操作由软件向寄存器 Init_start(0x018)写入 1 时开始,在设置 Init_start 信号之前,必须将其它所有寄存器设置为正确的值。

软硬件协同的 DRAM 初始化过程如下:

- (1) 软件向所有的寄存器写入正确的配置值,但是 Init_start (0x018) 在这一过程中必须保持为 0;
- (2) 软件将 Init_start (0x018) 设置为 1, 这将导致硬件初始化的开始;
- (3) PHY 内部开始初始化操作,DLL 将尝试进行锁定操作。如果锁定成功,则可以从 Dll_init_done (0x000) 读出对应状态,并可以从 Dll_value_ck (0x000) 读写当前锁 定延迟线个数;如果锁定不成功,则初始化不会继续进行(此时可以通过设置 Dll_bypass (0x018) 使得初始化继续执行);
- (4) DLL 锁定(或者 bypass 设置)之后,控制器将根据对应 DRAM 的初始化要求向

DRAM 发出相应的初始化序列,例如对应的 MRS 命令,ZQCL 命令等等;

(5) 软件可以通过采样 Dram init (0x160) 寄存器来判断内存初始化操作是否完成。

9.2.2 Leveling

Leveling 操作是在 DDR3 中,用于智能配置内存控制器读写操作中各种信号间相位关系的操作。通常它包括了 Write Leveling、Read Leveling 和 Gate Leveling。在本控制器中,只实现了 Write Leveling 与 Gate Leveling,Read Leveling 没有实现,软件需要通过判断读写的正确性来实现 Read Leveling 所完成的功能。除了在 Leveling 过程中操作的 DQS 相位、GATE相位之外,还可以根据这些最后确认的相位来计算出写 DQ 相位、读 DQ 相位的配置方法。

Write Leveling

Write Leveling 用于配置写 DQS 与时钟之间的相位关系,软件编程需要参照如下步骤。

- (1) 完成控制器初始化,参见上一小节内容;
- (2) 将 Dll_wrdqs_x (x = 0...8) 设置为 0;
- (3) 设置 Lvl_mode (0x180) 为 2'b01;
- (4) 采样 Lvl ready (0x180) 寄存器,如果为1,表示可以开始 Write Leveling 请求;
- (5) 设置 Lvl_req (0x180) 为 1;
- (6) 采样 Lvl_done (0x180) 寄存器,如果为 1,表示一次 Write Leveling 请求完成;
- (7) 采样 Lvl_resp_x (0x180、0x188) 寄存器,如果为 0 则跳至步骤(8)。否则(采样 Lvl_resp_x 结果为 1),将对应的 Dll_wrdqs_x[6:0]增加 1,并重复执行 5-7 直至采样 Lvl_resp_x 结果为 0;
 - (8) 采样 Lvl_resp_x (0x180、0x188) 寄存器,如果为 0,则将对应的 Dll_wrdqs_x[6:0] 增加 1,并重复执行步骤 5,6,8 直至采样 Lvl_resp_x 结果为 1;
 - (9) 此时 Dll_wrdqs_x 的值就应该是正确的设置值。

至此 Write Leveling 操作结束。

- (10) 接着根据 Dll_wrdqs_x 的值是否小于 0x40 来设置 Wrdqs_lt_half_x;
- (11) 根据 Dll_wrdqs_x 的值是否小于 0x20 来设置 Dll_wrdata_x。如果 Dll_wrdqs_x > 0x20, Dll_wrdata_x = Dll_wrdqs_x 0x20, 否则 Dll_wrdata_x = Dll_wrdqs_x + 0x60;
 - (12) 根据 Dll_wrdata_x 的值是否小于 0x40 来设置 Wrdata_lt_half_x;
 - (13) 接下来需要根据 DIMM 类型进行不同的操作

对于 UDIMM, Slice0-7 的 Dll_wrdata 的值依次增大(当跨越 0x7F 边界时也视为依次增大)。如果所有 Wrdq_lt_half_x 都为 1,即所有 Dll_wrdata_x 都小于 0x40,则将 tPHY_WRDATA 与 tRDDATA 的值减 1;如果有的 Wrdq_lt_half_x 为 1,有的 Wrdq_lt_half_x 为 0,即 Dll_wrdata_x 的值有跨越 0x40 边界的情况,则将 0x40 边界右边(不一定是大于 0x40,因为有可能有的 Dll_wrdata_x 的值跨越 0x7F 边界)的 Slice 对应的 Wrdq_clkdelay_x 设为 1,然后

将 tPHY_WRDATA 与 tRDDATA 的值减 1; 如果所有 Wrdq_lt_half_x 都为 0, 即所有 Dll wrdata x 都大于等于 0x40, 不做任何处理。

对于 RDIMM, tPHY_WRDATA 与 tRDDATA 的默认配置值需要在 UDIMM 的基础上增加 1。然后分别对于 Slice8,3,2,1,0 和 Slice4,5,6,7 作同 UDIMM 的处理。

(14)将 Lvl_mode (0x180) 设置为 2'b00, 退出 Write Leveling 模式;

Gate Leveling

Gate Leveling 用于配置控制器内使能采样读 DQS 窗口的时机,软件编程参照如下步骤。

- (1) 完成控制器初始化,参见上一小节内容;
- (2) 完成 Write Leveling,参见上一小节内容;
- (3) 将 Dll_gate_x (x = 0...8) 设置为 0;
- (4) 设置 Lvl_mode (0x180) 为 2'b10;
- (5) 采样 Lvl_ready (0x180) 寄存器,如果为 1,表示可以开始 Gate Leveling 请求;
- (6) 设置 Lvl_req (0x180) 为 1;
- (7) 采样 Lvl_done (0x180) 寄存器,如果为1,表示一次 Gate Leveling 请求完成;
- (8) 采样 Lvl_resp_x[0](0x180、0x188)寄存器。如果第一次采样发现 Lvl_resp_x[0]为 1,则将对应的 Dll_gate_x[6:0]增加 1,并重复执行 6-8,直至采样结果为 0,否则进行下一步。在这个过程中如果 Dll_gate_x[6:0]的值增加到 0x7F 还没采样到 Lvl_resp_x[0]为 0,则将 对应的 Rd_oe_begin_x 和 Rd_oe_end_x 增加 1;
- (9) 采样 Lvl_resp_x[0] (0x180、0x188) 寄存器,如果采样结果为 0,则将对应的 Dll_gate_x[6:0]增加 1,并重复执行 6、7、9,直至采样结果 1,则表示 Gate Leveling 操作已 经成功;

至此 Gate Leveling 操作结束,此时 Dll_gate_x[6:0]与 Dll_wrdata_x[6:0]的和实际上就是 读 DQS 相对于 PHY 内部时钟的相位关系。下面根据 Leveling 的结果对各个参数进行调整。

- (10)如果 Dll_gate_x[6:0]与 Dll_wrdata_x[6:0]的和小于 0x20 或者大于 0x60,那么 Dll_rddqs_lt_halt 设置为 1。因为 rddqs 的相位关系实际上等于在输入的读 DQS 基础上再延迟 1/4。
- (11)此时如果 Dll_gate_x 的值大于 0x20,则将 Dll_gate_x 的值减去 0x20;否则将其设为 0即可。
- (12)调整完毕后,再分别进行两次 Lvl_req 操作,观察 Lvl_resp_x[7:5]与 Lvl_resp_x[4:2] 的值变化,如果各增加为 Burst_length/2,则继续进行第 13 步操作;如果不为 Burst_length/2,可能需要对 Rd_oe_begin_x 进行加一或减一操作,如果大于 Burst_length/2,很可能需要对 Dll_gate_x 的值进行一些微调
 - (13)将 Lvl_mode(0x180)设置为 2'b00,退出 Gate Leveling 模式;

9.2.3 单独发起 MRS 命令

内存控制器向内存发出的 MRS 命令次序分别为:

MR2_CS0、MR2_CS1、MR2_CS2、MR2_CS3、

MR3_CS0、MR3_CS1、MR3_CS2、MR3_CS3、

MR1_CS0、MR1_CS1、MR1_CS2、MR1_CS3、

MR0_CS0\, MR1_CS1\, MR1_CS2\, MR1_CS3\,

其中,对应 CS 的 MRS 命令是否有效,是由 Cs_mrs 决定,只有 Cs_mrs 上对应每个片选的位有效,才会真正向 DRAM 发出这个 MRS 命令。对应的每个 MR 的值由寄存器 Mr*_cs* 决定。这些值同时也用于初始化内存时的 MRS 命令。

具体操作如下:

- (1) 将寄存器 Cs_mrs(0x168)、Mr*_cs*(0x190 0x1B8)设置为正确的值;
- (2) 设置 Command_mode (0x190) 为 1, 使控制器进入命令发送模式;
- (3) 采样 Status_cmd (0x190),如果为 1,则表示控制器已进入命令发送模式,可以进行下一步操作,如果为 0,则需要继续等待;
 - (4) 写 Mrs req (0x198) 为 1, 向 DRAM 发送 MRS 命令;
- (5) 采样 Mrs_done (0x198), 如果为 1, 则表示 MRS 命令已经发送完毕,可以退出, 如果为 0, 则需要继续等待;
 - (6) 设置 Command_mode (0x190) 为 0, 使控制器退出命令发送模式。

9.2.4 任意操作控制总线

内存控制器可以通过命令发送模式向 DRAM 发出任意的命令组合,软件可以设置 Cmd_cs、Cmd_cmd、Cmd_ba、Cmd_a (0x190),在命令发送模式下向 DRAM 发出。

具体操作如下:

- (1) 将寄存器 Cmd_cs、Cmd_cmd、Cmd_ba、Cmd_a (0x190) 设置为正确的值;
- (2) 设置 Command_mode (0x190) 为 1, 使控制器进入命令发送模式:
- (3) 采样 Status_cmd (0x190),如果为 1,则表示控制器已进入命令发送模式,可以进行下一步操作,如果为 0,则需要继续等待;
 - (4) 写 Cmd req (0x190) 为 1, 向 DRAM 发送命令;
 - (5) 设置 Command_mode (0x190) 为 0, 使控制器退出命令发送模式。

9.2.5 自循环测试模式控制

自循环测试模式可以分别在测试模式下或者正常功能模式下使用,为此,本内存控制器 分别实现了两套独立的控制接口,一套用于在测试模式下由测试端口直接控制,另一套用于

在正常功能模式下由寄存器配置模块进行配置使能测试。

这两套接口的复用使用端口 test_phy 进行控制,当 test_phy 有效时,使用控制器的 test_* 端口进行控制,此时的自测试完全由硬件控制;当 test_phy 无效时,使用软件编程的 pm_* 的参数进行控制。使用测试端口的具体信号含义可以参考寄存器参数中的同名部分。

这两套接口从控制的参数来说基本一致,仅仅是接入点不同,在此介绍软件编程时的控制方法。具体操作如下:

- (1) 将内存控制器所有的参数全部正确设置。需要注意的是,Dqs_oe_begin_*、Dqs_oe_end_* 应该设为 0,Rd_oe_begin_*、Rd_oe_end_* 应该设为 1 或 2,否则可能会导致测试出错:
- (2) 将寄存器 Lpbk_en(0x270)设为 1;
- (3) 将寄存器 Init start (0x018) 设为 1;
- (4) 采样寄存器 Dll_init_done (0x000), 如果这个值为 1,表示 DLL 已经锁定,可以进行下一步操作; 如果这个值为 0,则需要继续等待; (当使用测试端口进行控制的时候,因为看不到这个寄存器的输出,所以不需要采样这个寄存器,而只需要在此处等待一定的时间,以确保 DLL 锁定完成,再进行下一步操作);
- (5) 将寄存器 Lpbk_start(0x270) 设为 1; 此时自循环测试正式开始。 到此为止自循环测试已经开始,软件需要经常检测是否有错误发生,具体操作如下:
- (6) 采样寄存器 Lpbk_error (0x270),如果这个值为 1,表示有错误发生,此时可以通过 Lpbk_*等观测用寄存器 (0x270、0x278、0x280、0x288)来观测第一个出错时的错误数据和正确数据;如果这个值为 0,表示还没有出现过数据错误。

9.2.6 细粒度多通道模式控制

硬件连接

需要使用细粒度多通道模式,硬件连接时每个 CS/ODT 连接 16 位 DQ, 也即 CS0/ODT0 对应 DQ[15:0], CS1/ODT1 对应 DQ[31:16], CS2/ODT2 对应 DQ[47:32], CS3/ODT3 对应 DQ[63:48]。地址线与其它控制线连接所有内存颗粒。

软件编程

进行软件初始化时,与普通模式时不同的是,需要打开所有的 Cs_enable、Cs_mrs、Lvl_cs,以便对所有的颗粒进行初始化及 Leveling 操作。

需要将 Rdfifo valid 设为 0,并正确设置 tPHY RDLAT 的值。

接下来按照需要设置四个 Addr_win/Cs_diff/Row_diff/Ba_diff/Col_diff 的值。

四组不同的窗口每组表示总地址空间的 1/4。需要进行分别配置。

9.2.7 ECC 功能使用控制

ECC 功能只有在 64 位模式下可以使用。

Ecc enable 包括以下 4 个控制位:

Ecc enable[0]控制是否使能 ECC 功能,只有设置了这个有效位,才会使能 ECC 功能。

Ecc_enable[1]控制是否通过处理器内部的读响应通路进行报错,以使得出现 ECC 两位错的读访问能立即导致处理器核的异常发生。

Ecc_enable[2]控制是否通过处理器内部的写响应通路进行报错,以使得出现 ECC 两位错的写访问(读后写)能立即导致处理器核的异常发生。

Ecc_enable[3]控制寄存器内记录出错信息的触发时机。这些出错信息在没有软件进行处理的情况下不会连续触发,只会记录第一次出错时的信息。这些信息包括 Ecc_code,Ecc_addr,Ecc_data。当 Ecc_enable[3]为 0 的情况下,只要出现了 ECC 错误(包括 1 位错与 2 位错),这个记录就会被触发,当 Ecc_enable[3]为 1 的情况下,只有出现了 ECC 两位错,这个记录才会被触发。而这个"第一次"指的是中断向量寄存器的对应位被置位。也就是说,记录的是导致中断发生的那一次访问。

除此之外, ECC 出错还可以通过中断方式通知处理器核。这个中断通过 Int_enable 进行控制。中断包括两个向量, Int_vector[0]表示出现 ECC 错误(包括1位错与2位错), Int_vector[1]表示出现 ECC 两位错。Int_vector 的清除通过向对应位写1实现。

9.2.8 32/16 位窄通道使用控制

除了 64 位模式,通过配置还可以将内存控制器置于 32 位或者 16 位工作模式,具体的配置如下:

对于 32 位模式:

- (1) 将寄存器 Nc (0x1F0) 设为 0x5;
- (2) 将寄存器 Addr_win_*(0x210, 0x218, 0x220, 0x228) 设为 0xe;
- (3) 将寄存器 Cs_diff_* (0x210, 0x218, 0x220, 0x228) 设为 0x1。

对于 16 位模式:

- (1) 将寄存器 Nc (0x1F0) 设为 0x3;
- (2) 将寄存器 Addr_win_* (0x210, 0x218, 0x220, 0x228) 设为 0xd:
- (3) 将寄存器 Cs_diff_*(0x210, 0x218, 0x220, 0x228) 设为 0x0。

10 HyperTransport 控制器

龙芯 3B1500 中,HyperTransport 总线用于实现外部设备连接以及多芯片互联。用于外设连接时,可由用户程序自由选择是否支持 IO Cache 一致性(通过地址窗口 Uncache 进行设置,详见 10.5.13 节): 当配置为支持 Cache 一致性模式时,IO 设备对内 DMA 的访问对于 Cache 层次透明,即由硬件自动维护其一致性,而无需软件通过程序 Cache 指令进行维护;当 HyperTransport 总线用于多芯片互联时,HTO 控制器(初始地址为 0x0C00_0000_0000 - 0x0DFF_FFFF_FFFF)可通过硬件自动维护各个 CPU 之间的 Cache 一致性,而 HT1 控制器(初始地址为 0x0E00_0000_0000 - 0x0FFF_FFFF_FFFF)不支持片间 Cache 一致性维护,详见 9.6节。

HyperTransport 控制器最高支持双向 16 位宽度以及 800MHz 运行频率。在系统自动初始化建立连接后,用户程序可以通过修改协议中相应的配置寄存器,实现对宽度和运行频率的更改,并重新进行初始化,具体方法见 10.1 节。

龙芯 3B1500 HyperTransport 控制器的主要特征如下:

- 支持 200/400/800MHz 运行频率
- 支持 8/16 位宽度
- 每个 HT 控制器 (HT0/HT1) 可以配置为两个 8 位 HT 控制器
- 总线控制信号(包括 PowerOK, Rstn, LDT Stopn)方向可配置
- 外设 DMA 空间 Cache/Uncache 可配置
- HTO 控制器用于多片互联时可配置为 Cache 一致性模式

10.1 HyperTransport 硬件设置及初始化

HyperTransport 总线由传输信号总线和控制信号引脚等组成,下表给出了 HyperTransport总线相关的引脚及其功能描述。

描述 引脚 名称 HT0_8x2 总线宽度配 1: 将 16 位 HyperTransport 总线配置为两个独立的 8 位总线,分 置 别由两个独立的控制器控制,地址空间的区分为 $HT0_Lo: address[40] = 0;$ $HT0_Hi: address[40] = 1;$ 0:将16位HyperTransport总线作为一个16位总线使用,由HT0_Lo 控制, 地址空间为 HTO_Lo 的地址, 即 address[40] =0; HTO_Hi 所有信号无效。 主设备模式 1: 将 HTO_Lo 设为主设备模式,这个模式下,总线控制信号等由 HT0_Lo_mode HTO_Lo 驱动,这些控制信号包括 HTO_Lo_Powerok,

表 10-1 HyperTransport 总线相关引脚信号

HTO_Lo_Ram_HTO_Lo_Ldt_Stopn。这个模式下,这些控制信号也可以为双向驱动。同时这个引脚决定(取反)寄存器"Act as Slave"的初始值。这个寄存器为0 时,知果可以可以为现分取过设有产利用的技术的不是一个企业的,是有一个人们的证明,这个特别为10元,没有的,则性为错误请求他进设有产利制器的技术的工作。			
Powerok			号也可以为双向驱动。同时这个引脚决定(取反)寄存器"Act as Slave"的初始值,这个寄存器为 0 时,HyperTransport 总线上的包中的 Bridge 位为 1,否则为 0。另外,这个寄存器为 0 时,如果 HyperTransport 总线上的请求地址没有在控制器的接收窗口命中时,将作为 P2P 请求重新发回总线,如果这个寄存器为 1 时,没有命中,则作为错误请求做出响应。 0:将 HT0_Lo 设为从设备模式,这个模式下,总线控制信号等由对方设备驱动,这些控制信号包括 HT0_Lo_Powerok,HT0_Lo_Rstn,HT0_Lo_Ldt_Stopn。这个模式下,这些控制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正
Powerok	HTO Lo Powerok	总 线	HyperTransport 总线 Powerok 信号。
HTO_Lo_Mode 为 0 时,由对方设备控制。 HTO_Lo_Mode 为 1 时,由 HTO_Lo 控制; HTO_Lo_Mode 为 1 时,由 HTO_Lo 控制; HTO_Lo_Mode 为 0 时,由对方设备控制。 HTO_Lo_Ldt_Stopn			
B.		1 o werok	
HTO_Lo_Mode 为 1 时,由 HTO_Lo 控制; HTO_Lo_Mode 为 0 时,由对方设备控制。	HTO Lo Petn	台建 Detn	
HTO_Lo_Mode 为 0 时,由对方设备控制。	1110_Lo_Rsui	الاخلار Kaui	* ' '
括TO_Lo_Ldt_Stopn			
Ldt_Stopn	HTO Lo Ldt Stopp	当	
HT0_Lo_Mode 为 0 时,由对方设备控制。 HT0_Lo_Ldt_Reqn	1110_L0_Ldt_Stopii	·	
HTO_Lo_Ldt_Reqn		Lut_Stopii	
Ldt_Reqn	HTO Lo Ldt Rean	当	
HT0_Hi_mode 主设备模式 1: 将 HT0_Hi 设为主设备模式,这个模式下,总线控制信号等由 HT0_Hi 驱动,这些控制信号包括 HT0_Hi_Powerok, HT0_Hi_Rstn, HT0_Hi_Ldt_Stopn。这个模式下,这些控制信号也可以为双向驱动。同时这个引脚决定(取反)寄存器"Act as Slave"的初始值,这个寄存器为0时,HyperTransport 总线上的包中的 Bridge 位为1,否则为0。另外,这个寄存器为0时,如果 HyperTransport 总线上的请求地址没有在控制器的接收窗口命中时,将作为 P2P 请求重新发回总线,如果这个寄存器为1时,没有命中,则作为错误请求做出响应。 0: 将 HT0_Hi 设为从设备模式,这个模式下,总线控制信号等由对方设备驱动,这些控制信号包括 HT0_Hi_Powerok, HT0_Hi_Rstn, HT0_Hi_Ldt_Stopn。这个模式下,这些控制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正确工作。 HT0_Hi_Powerok 总 线 HyperTransport 总线 Powerok 信号, Powerok HT0_Lo_Mode 为1时,由 HT0_Hi 控制; HT0_Lo_Mode 为0时,由对方设备控制。HT0_8x2 为1时,控制高 8 位总线; HT0_8x2 为0时,无效。 HT0_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号, HT0_Lo_Mode 为1时,由 HT0_Hi 控制; HT0_Lo_Mode 为0时,由对方设备控制。	1110_E0_Edt_Requ	,	Tryper transport /ws/x Eut_Require 35
HT0_Hi 驱动,这些控制信号包括 HT0_Hi_Powerok, HT0_Hi_Rstn, HT0_Hi_Ldt_Stopn。这个模式下,这些控制信号电可以为双向驱动。同时这个引脚决定(取反)寄存器"Act as Slave"的初始值,这个寄存器为 0 时,HyperTransport 总线上的包中的 Bridge 位为 1, 否则为 0。另外,这个寄存器为 0 时,如果 HyperTransport 总线上的请求地址没有在控制器的接收窗口命中时,将作为 P2P 请求重新发回总线,如果这个寄存器为 1 时,没有命中,则作为错误请求做出响应。 0:将T0_Hi 设为从设备模式,这个模式下,总线控制信号等由对方设备驱动,这些控制信号包括 HT0_Hi_Powerok,HT0_Hi_Rstn,HT0_Hi_Ldt_Stopn。这个模式下,这些控制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正确工作。 HT0_Hi_Powerok 总 线 HT0_Hi_Powerok Ht0_Lo_Mode为1时,由 HT0_Hi 控制;HT0_Lo_Mode为0时,由对方设备控制。HT0_8x2为1时,控制高8位总线;HT0_8x2为0时,无效。 HT0_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号,HT0_Lo_Mode为1时,由 HT0_Hi 控制;HT0_Lo_Mode为1时,由 HT0_Hi 控制;HT0_Lo_Mode为1时,由 HT0_Hi 控制;HT0_Lo_Mode为1时,由 HT0_Hi 控制;HT0_Lo_Mode为1时,由 HT0_Hi 控制;HT0_Lo_Mode为0时,由对方设备控制。	HTO Hi mode		1. 将 HT0 Hi 设为主设备模式, 这个模式下, 总线控制信号等由
HT0_Hi_Rstn, HT0_Hi_Ldt_Stopn。这个模式下,这些控制信号也可以为双向驱动。同时这个引脚决定(取反)寄存器"Act as Slave"的初始值,这个寄存器为 0 时, HyperTransport 总线上的包中的 Bridge 位为 1, 否则为 0。另外,这个寄存器为 0 时,如果 HyperTransport 总线上的请求地址没有在控制器的接收窗口命中时,将作为 P2P 请求重新发回总线,如果这个寄存器为 1 时,没有命中,则作为错误请求做出响应。 0:将HT0_Hi 设为从设备模式,这个模式下,总线控制信号等由对方设备驱动,这些控制信号包括 HT0_Hi_Powerok,HT0_Hi_Rstn,HT0_Hi_Ldt_Stopn。这个模式下,这些控制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正确工作。 HT0_Hi_Powerok 总 At yperTransport 总线 Powerok 信号,Powerok HT0_Lo_Mode为1时,由HT0_Hi 控制;HT0_Lo_Mode为0时,由对方设备控制。HT0_8x2为1时,控制高8位总线;HT0_8x2为0时,无效。 HT0_Hi_Rstn 总线 Rstn HT0_Lo_Mode为1时,由HT0_Hi 控制;HT0_Lo_Mode为1时,由HT0_Hi 控制;HT0_Lo_Mode为1时,由HT0_Hi 控制;HT0_Lo_Mode为0时,由对方设备控制。	mode	工权田队入	
HTO_Hi_Powerok 总 4 4 日本的区中的以为双向驱动。同时这个引脚决定(取反)寄存器"Act as Slave"的初始值,这个寄存器为 0 时,HyperTransport 总线上的包中的 Bridge 位为 1,否则为 0。另外,这个寄存器为 0 时,如果 HyperTransport 总线上的请求地址没有在控制器的接收窗口命中时,将作为 P2P 请求重新发回总线,如果这个寄存器为 1 时,没有命中,则作为错误请求做出响应。 0:将 HTO_Hi 设为从设备模式,这个模式下,总线控制信号等由对方设备驱动,这些控制信号包括 HTO_Hi_Powerok,HTO_Hi_Rstn,HTO_Hi_Ldt_Stopn。这个模式下,这些控制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正确工作。 HTO_Hi_Powerok 总 线 HyperTransport 总线 Powerok 信号,Powerok 信号,Powerok HTO_Lo_Mode 为 1 时,由 HTO_Hi 控制;HTO_Lo_Mode 为 0 时,由对方设备控制。HTO_8x2 为 1 时,控制高 8 位总线;HTO_8x2 为 0 时,无效。 HTO_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号,HTO_Lo_Mode 为 1 时,由 HTO_Hi 控制;HTO_Lo_Mode 为 0 时,由对方设备控制。			
as Slave"的初始值,这个寄存器为 0 时,HyperTransport 总线上的包中的 Bridge 位为 1,否则为 0。另外,这个寄存器为 0 时,如果 HyperTransport 总线上的请求地址没有在控制器的接收窗口命中时,将作为 P2P 请求重新发回总线,如果这个寄存器为 1 时,没有命中,则作为错误请求做出响应。 0:将 HT0_Hi 设为从设备模式,这个模式下,总线控制信号等由对方设备驱动,这些控制信号包括 HT0_Hi_Powerok,HT0_Hi_Rstn,HT0_Hi_Ldt_Stopn。这个模式下,这些控制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正确工作。 HT0_Hi_Powerok 总线 HyperTransport 总线 Powerok 信号,Powerok HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;HT0_Lo_Mode 为 0 时,由对方设备控制。HT0_8x2 为 1 时,控制高 8 位总线;HT0_8x2 为 0 时,无效。 HT0_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号,HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;HT0_Lo_Mode 为 0 时,由 HT0_Hi 控制;			_
上的包中的 Bridge 位为 1,否则为 0。另外,这个寄存器为 0时,如果 HyperTransport 总线上的请求地址没有在控制器的接收窗口命中时,将作为 P2P 请求重新发回总线,如果这个寄存器为 1 时,没有命中,则作为错误请求做出响应。 0:将 HT0_Hi 设为从设备模式,这个模式下,总线控制信号等由对方设备驱动,这些控制信号包括 HT0_Hi_Powerok,HT0_Hi_Rstn,HT0_Hi_Ldt_Stopn。这个模式下,这些控制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正确工作。 HT0_Hi_Powerok 总 线 HyperTransport 总线 Powerok 信号,Powerok HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;HT0_Lo_Mode 为 0 时,由对方设备控制。HT0_8x2 为 1 时,控制高 8 位总线;HT0_8x2 为 0 时,无效。 HT0_Hi_Rstn 总线 Rstn 以线 Rstn 信号,HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;HT0_Mode 为 0 时,由对方设备控制。			
HT0_Hi_Powerok 总 4 HyperTransport 总线上的请求地址没有在控制器的接收窗口命中时,将作为 P2P 请求重新发回总线,如果这个寄存器为1时,没有命中,则作为错误请求做出响应。 0:将 HT0_Hi 设为从设备模式,这个模式下,总线控制信号等由对方设备驱动,这些控制信号包括 HT0_Hi_Powerok,HT0_Hi_Rstn,HT0_Hi_Ldt_Stopn。这个模式下,这些控制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正确工作。 HT0_Hi_Powerok 总 线 HyperTransport 总线 Powerok 信号,Powerok HT0_Lo_Mode为1时,由 HT0_Hi 控制;HT0_Lo_Mode为0时,由对方设备控制。HT0_8x2为1时,控制高8位总线;HT0_8x2为1时,控制高8位总线;HT0_8x2为0时,无效。 HT0_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号,HT0_Lo_Mode为1时,由 HT0_Hi 控制;HT0_Lo_Mode为1时,由 HT0_Hi 控制;HT0_Lo_Mode为0时,由对方设备控制。			**
W窗口命中时,将作为 P2P 请求重新发回总线,如果这个寄存器为 1 时,没有命中,则作为错误请求做出响应。 0:将 HT0_Hi 设为从设备模式,这个模式下,总线控制信号等由对方设备驱动,这些控制信号包括 HT0_Hi_Powerok,HT0_Hi_Rstn,HT0_Hi_Ldt_Stopn。这个模式下,这些控制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正确工作。 HT0_Hi_Powerok 总 线 HyperTransport 总线 Powerok 信号,Powerok HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;HT0_Lo_Mode 为 0 时,由对方设备控制。HT0_8x2 为 1 时,控制高 8 位总线;HT0_8x2 为 0 时,无效。 HT0_Hi_Rstn 总线 Rstn HYperTransport 总线 Rstn 信号,HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;HT0_Lo_Mode 为 0 时,由对方设备控制。			
HTO_Hi_Powerok 总 4			
0: 将 HT0_Hi 设为从设备模式,这个模式下,总线控制信号等由 对方设备驱动,这些控制信号包括 HT0_Hi_Powerok, HT0_Hi_Rstn,HT0_Hi_Ldt_Stopn。这个模式下,这些控制信 号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正 确工作。 HT0_Hi_Powerok			
対方设备驱动,这些控制信号包括 HTO_Hi_Powerok,HTO_Hi_Rstn,HTO_Hi_Ldt_Stopn。这个模式下,这些控制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正确工作。 HTO_Hi_Powerok 总线 HyperTransport 总线 Powerok 信号,Powerok HTO_Lo_Mode 为 1 时,由 HTO_Hi 控制;HTO_Lo_Mode 为 0 时,由对方设备控制。HTO_8x2 为 1 时,控制高 8 位总线;HTO_8x2 为 0 时,无效。 HTO_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号,HTO_Lo_Mode 为 1 时,由 HTO_Hi 控制;HTO_Lo_Mode 为 0 时,由对方设备控制。HTO_8x2 为 0 时,无效。			
HT0_Hi_Rstn,HT0_Hi_Ldt_Stopn。这个模式下,这些控制信号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正确工作。 HT0_Hi_Powerok 总线 HyperTransport 总线 Powerok 信号, Powerok HT0_Lo_Mode为1时,由 HT0_Hi 控制; HT0_Lo_Mode为0时,由对方设备控制。 HT0_8x2为1时,控制高8位总线; HT0_8x2为0时,无效。 HT0_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号, HT0_Lo_Mode为1时,由 HT0_Hi 控制;			
号由对方设备驱动,如果没有被正确驱动,则 HT 总线不能正确工作。 HT0_Hi_Powerok 总 线 HyperTransport 总线 Powerok 信号, Powerok HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制; HT0_Lo_Mode 为 0 时,由对方设备控制。 HT0_8x2 为 1 时,控制高 8 位总线; HT0_8x2 为 0 时,无效。 HT0_Hi_Rstn 总线 Rstn 信号, HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制; HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;			
			•
HT0_Hi_Powerok 总 线 HyperTransport 总线 Powerok 信号, Powerok HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制; HT0_Lo_Mode 为 0 时,由对方设备控制。 HT0_8x2 为 1 时,控制高 8 位总线; HT0_8x2 为 0 时,无效。 HT0_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号, HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制; HT0_Lo_Mode 为 0 时,由对方设备控制。			
Powerok HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制; HT0_Lo_Mode 为 0 时,由对方设备控制。 HT0_8x2 为 1 时,控制高 8 位总线; HT0_8x2 为 0 时,无效。 HT0_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号, HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制; HT0_Lo_Mode 为 0 时,由对方设备控制。	HT0_Hi_Powerok	总 线	
HT0_Lo_Mode 为 0 时,由对方设备控制。 HT0_8x2 为 1 时,控制高 8 位总线; HT0_8x2 为 0 时,无效。 HT0_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号, HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制; HT0_Lo_Mode 为 0 时,由对方设备控制。		·	• • • • • • • • • • • • • • • • • • • •
HT0_8x2 为 1 时,控制高 8 位总线; HT0_8x2 为 0 时,无效。 HT0_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号, HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制; HT0_Lo_Mode 为 0 时,由对方设备控制。			
HT0_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号, HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制; HT0_Lo_Mode 为 0 时,由对方设备控制。			HT0_8x2 为 1 时,控制高 8 位总线;
HT0_Hi_Rstn 总线 Rstn HyperTransport 总线 Rstn 信号, HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制; HT0_Lo_Mode 为 0 时,由对方设备控制。			
HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制; HT0_Lo_Mode 为 0 时,由对方设备控制。	HT0_Hi_Rstn	总线 Rstn	
HT0_Lo_Mode 为 0 时,由对方设备控制。			
77770 0 0 N 4 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			HT0_Lo_Mode 为 0 时,由对方设备控制。
H10_8x2 为 1 时,控制局 8 位总线;			HT0_8x2 为 1 时,控制高 8 位总线;

		HT0_8x2 为 0 时,无效。
HT0_Hi_Ldt_Stopn	总 线	HyperTransport 总线 Ldt_Stopn 信号,
	Ldt_Stopn	HT0_Lo_Mode 为 1 时,由 HT0_Hi 控制;
		HT0_Lo_Mode 为 0 时,由对方设备控制。
		HT0_8x2 为 1 时,控制高 8 位总线;
		HT0_8x2 为 0 时,无效。
HT0_Hi_Ldt_Reqn	总 线	HyperTransport 总线 Ldt_Reqn 信号,
	Ldt_Reqn	HT0_8x2 为 1 时,控制高 8 位总线;
		HT0_8x2 为 0 时,无效。
HT0_Rx_CLKp[1:0]	CLK[1:0]	HyperTransport 总线 CLK 信号
HT0_Rx_CLKn[1:0]		HT0_8x2 为 1 时,CLK[1]由 HT0_Hi 控制
HT0_Tx_CLKp[1:0]		CLK[0]由 HT0_Lo 控制
HT0_Tx_CLKp[1:0]		HT0_8x2 为 0 时,CLK[1:0]由 HT0_Lo 控制
HT0_Rx_CTLp[1:0]	CTL[1:0]	HyperTransport 总线 CTL 信号
HT0_Rx_CTLn[1:0]		HT0_8x2 为 1 时,CTL[1]由 HT0_Hi 控制
HT0_Tx_CTLp[1:0]		CTL[0]由 HT0_Lo 控制
HT0_Tx_CTLn[1:0]		HT0_8x2 为 0 时,CTL[1]无效
		CTL[0]由 HT0_Lo 控制
HT0_Rx_CADp[15:0]	CAD[15:0]	HyperTransport 总线 CAD 信号
HT0_Rx_CADn[15:0]		HT0_8x2 为 1 时,CAD[15:8]由 HT0_Hi 控制
HT0_Tx_CADp[15:0]		CAD[7:0]由 HT0_Lo 控制
HT0_Tx_CADn[15:0]		HT0_8x2 为 0 时,CAD[15:0]由 HT0_Lo 控制

HyperTransport 的初始化在每次复位完成后自动开始,冷启动后 HyperTransport 总线将自动工作在最低频率 (200MHz)与最小宽度(8bit),并尝试进行总线初始化握手。初始化是否已处于完成状态可以由寄存器"Init Complete"(见 10.5.2 节)读出。初始化完成后,总线的宽度可以由寄存器"Link Width Out"与"Link Width In"(见 10.5.2 节)读出。初始化完成后,总线的宽度可以由寄存器"Link Width Out"、"Link Width In"以及"Link Freq",同时还需要配置对方设备的相应寄存器,配置完成后需要热复位总线或者通过"HT_Ldt_Stopn"信号进行重新初始化操作,以便使寄存器重写后的值生效。重新初始化完成后 HyperTransport 总线将工作在新的频率和宽度。需要注意的是,HyperTransport 两端的设备的配置需要一一对应,否则将使得 HyperTransport 接口不能正常工作。

10.2 HyperTransport 协议支持

龙芯 3B1500 的 HyperTransport 总线支持 1.03 版协议中的大部分命令,并且在支持多芯片互联的扩展一致性协议中加入了一些扩展指令。在以上两种模式下, HyperTransport 接收端可接收的命令如下表所示。需要注意的是,不支持 HyperTransport 总线的原子操作命令。

表 10-2 HyperTransport 接收端可接收的命令

编码	通道	命令	标准模式	扩展(一致性)
000000	-	NOP	空包或流控	
000001	NPC	FLUSH	无操作	

x01xxx	NPC	Write	bit 5: 0 - Nonposted	bit 5:必为 1,POSTED
	or		1 - Posted	
	PC		bit 2: 0 – Byte	bit 2: 0 – Byte
			1 – Doubleword	1 – Doubleword
			bit 1: Don't Care	bit 1: Don't Care
			bit 0: Don't Care	bit 0: 必为 1
01xxxx	NPC	Read	bit 3: Don't Care	bit 3: Don't Care
			bit 2: 0 – Byte	bit 2: 0 – Byte
			1 – Doubleword	1 – Doubleword
			bit 1: Don't Care	bit 1: Don't Care
			bit 0: Don't Care	bit 0: 必为 1
110000	R	RdResponse	读操作返回	
110011	R	TgtDone	写操作返回	
110100	PC	WrCoherent		写命令扩展
110101	PC	WrAddr		写地址扩展
111000	R	RespCoherent		读响应扩展
111001	NPC	RdCoherent		读命令扩展
111010	PC	Broadcast	无操作	
111011	NPC	RdAddr		读地址扩展
111100	PC	FENCE	保证序关系	
111111	-	Sync/Error	Sync/Error	

对于发送端,在两种模式下会向外发送的命令如下表所示。

命令 扩展 (一致性) 编码 通道 标准模式 000000 NOP 空包或流控 bit 5: 必为 1, POSTED bit 5: 0 - Nonposted 1 - Posted NPC or bit 2: 0 - Bytebit 2: 0 - Bytex01x0x Write PC 1 – Doubleword 1 – Doubleword bit 0: 必为 0 bit 0: 必为 1 bit 2: 0 - Bytebit 2: 0 - Byte1 – Doubleword 1 – Doubleword 010x0x NPC Read bit 0: Don't Care bit 0: 必为 1 110000 R RdResponse 读操作返回 110011 写操作返回 R TgtDone 110100 PC WrCoherent 写命令扩展 ----110101 PC WrAddr ----写地址扩展 R RespCoherent 读响应扩展 111000 111001 NPC RdCoherent 读命令扩展 NPC 111011 RdAddr读地址扩展 ----111111 Sync/Error 只会转发

表 10-3 两种模式下会向外发送的命令

10.3 HyperTransport 中断支持

HyperTransport 控制器提供了 256 个中断向量,可以支持 Fix, Arbiter 等类型的中断,但是,没有对硬件自动 EOI 提供支持。对于以上两种支持类型的中断,控制器在接收之后会自动写入中断寄存器中,并根据中断屏蔽寄存器的设置对系统中断控制器进行中断通知。

具体的中断控制请见10.5节中的中断控制寄存器组。

另外,控制器对 PIC 中断做了专门的支持,以加速该类型的中断处理。

一个典型的 PIC 中断由下述步骤完成: ①PIC 控制器向系统发送 PIC 中断请求; ②系统 向 PIC 控制器发送中断向量查询; ③PIC 控制器向系统发送中断向量号; ④系统清除 PIC 控制器上的对应中断。只有上述 4 步都完成后,PIC 控制器才会对系统发出下一个中断。对于 龙芯 3B1500 HyperTransport 控制器,将自动进行前 3 步的处理,并将 PIC 中断向量写入 256 个中断向量中的对应位置。而软件系统在处理了该中断之后,需要进行第 4 步处理,即向 PIC 控制器发出清中断。之后开始下一个中断的处理过程。

10.4 HyperTransport 地址窗口

10.4.1 HyperTransport 空间

龙芯 3B1500 处理器中,默认的 4个 HyperTransport 接口的地址窗口分布如下:

基地址	结束地址	大小	定义
0x0E00_0000_0000	0x0EFF_FFFF_FFFF	1 Tbytes	HT0_LO 窗口
0x0F00_0000_0000	0x0FFF_FFFF_FFFF	1 Tbytes	HT0_HI 窗口
0x1E00_0000_0000	0x1EFF_FFFF_FFFF	1 Tbytes	HT1_LO 窗口
0x1F00_0000_0000	0x1FFF_FFFF_FFFF	1 Tbytes	HT1_HI 窗口

表 10-4 默认的 4个 HyperTransport 接口的地址窗口分布

在默认情况下(未对系统地址窗口另行配置),软件根据上述地址空间对各个 HyperTransport 接口进行访问,此外,软件还可以通过对交叉开关上的地址窗口进行配置实 现用其它的地址空间对其进行访问(详见 2.5 节)。每个 HyperTransport 接口的内部 40 位 地址空间其地址窗口分布如下表所示。

表 10-5 龙心 5 亏处理备 Hyper Hansport 接口內部的地址園口方布						
基地址	结束地址	大小	定义			
0x00_0000_0000	0xFC_FFFF_FFFF	1012 Gbytes	MEM 空间			
0xFD_0000_0000	0xFD_F7FF_FFFF	3968 Mbytes	保留			
0xFD_F800_0000	0xFD_F8FF_FFFF	16 Mbytes	中断			
0xFD_F900_0000	0xFD_F90F_FFFF	1 Mbyte	PIC 中断响应			
0xFD_F910_0000	0xFD_F91F_FFFF	1 Mbyte	系统信息			
0xFD_F920_0000	0xFD_FAFF_FFFF	30 Mbytes	保留			
0xFD_FB00_0000	0xFD_FBFF_FFFF	16 Mbytes	HT 控制器配置空间			
0xFD_FC00_0000	0xFD_FDFF_FFFF	32 Mbytes	I/O 空间			
0xFD_FE00_0000	0xFD_FFFF_FFFF	32 Mbytes	HT 总线配置空间			
0xFE_0000_0000	0xFF_FFFF_FFFF	8 Gbytes	保留			

表 10-5 龙芯 3 号处理器 HyperTransport 接口内部的地址窗口分布

10.4.2 HyperTransport 控制器内部窗口配置

龙芯 3B1500 处理器的 HyperTransport 接口中提供了多种丰富的地址窗口供用户使用,这些地址窗口的作用和功能描述如下表所示。

表 10-6 龙芯 3B1500 处理器 HyperTransport 接口中提供的地址窗口

地址窗口	窗口数	接受总线	作用	备注
接收窗口 (窗口配置见 10.5.7 节)	3	HyperTransport	判 断 是 否 接 收 HyperTransport 总 线上发出的访问。	处于主桥模式时(即配置寄存器中 act_as_slave 为 0),只有落在这些地址窗口中的访问会被内部总线所响应,其它访问将会被认为是 P2P 访问 重新发回到HyperTransport 总线上;处于设备模式时(即配置寄存器中act_as_slave为 1),只有落在这些地址窗口中的访问会被内部总线所接收并处理,其它访问将会按照协议给出错误返回。
Post 窗口 (窗口配置见 10.5.11 节)	2	内部总线	判断是否将内部 总 线 对 HyperTransport 总 线的写访问作为 Post Write	落在这些地址空间中的对外写访问将作为 Post Write。 Post Write: HyperTransport 协议中,这种写访问不需要等待写完成响应,即在控制器向总线发出这个写访问之后就将对处理器进行写访问完成响应。
可预取窗口 (窗口配置见 10.5.12 节)	2	内部总线	判断是否接收内部的 Cache 访问,取指访问。	当处理器核乱序执行时,会对总线发出一些猜测读访问或是取指访问,这种访问对于某些 IO 空间是错误的。在默认情况下,这种访问 HT 控制器将直接返回而不对 HyperTransport 总线进行访问。通 过 这 些 窗 口 可 以 使 能 对 HyperTransport 总线的这类访问。
Uncache 窗口 (窗口配置见 10.5.13 节)	2	HyperTransport	判 断 是 否 将 HyperTransport 总 线上的访问作为 对内部的 Uncache 访问	龙芯 3B1500 处理器内部的 IO DMA 访问,在情况下将作为 Cache 方式访问经由 SCache 判断 是命中,从而维护其 IO 一致性信息。而通过这些窗口的配置,可以使在这些窗口命中的访问以 Uncache 的方式直接访问内存,而不通过硬件维护其 IO 一致性信息。

10.5 配置寄存器

配置寄存器模块主要用于控制从 AXI SLAVE 端或是 HT RECEIVER 端到达的配置寄存器访问请求,进行外部中断处理,并保存了大量软件可见的用于控制系统各种工作方式的配置寄存器。

首先,用于控制 HT 控制器各种行为的配置寄存器的访问与存储都在本模块中,本模块

的访问偏移地址在 AXI 端为 0xFD_FB00_0000 到 0xFD_FBFF_FFFF。本模块中所有软件可见寄存器如下表所示:

表 10-7 本模块中所有软件可见寄存器

(株) (大) (大	And who tall I		本
0x34	偏移地址	名称	描述
0x38			
0x3c Bridge Control Bus Reset Control 0x44 Capability Registers Command. Capabilities Pointer. Capability ID 0x44 Capability Registers Link Config. Link Control 0x4c Revision ID. Link Freq. Link Error. Link Freq Cap 0x5d 技校诊断寄存器 MISC 0x5e 技收缓存寄存器 MISC 0x5c 技收缓存寄存器 Are m8h 由方式选择			
Ox44			
Capability Register		Bridge Control	
Capability Registers Ox4c	0x40		Command, Capabilities Pointer, Capability ID
Nate	0x44	Canability Pagistars	Link Config, Link Control
0x50 自定义寄存器 MISC 0x54 接收诊断寄存器 用于诊断接收端采样的信号 0x58 中断路由方式选择寄存器 对应于 3 种中断路由方式寄存器 0x60 接收缓存寄存器 HT 总线接收地址窗口 0 使能(外部访问) 0x60 按收缓存寄存器 HT 总线接收地址窗口 0 基址(外部访问) 0x62 配置寄存器 HT 总线接收地址窗口 1 基址(外部访问) 0x70 HT 总线接收地址窗口 2 使能(外部访问) 0x70 HT 总线接收地址窗口 2 基址(外部访问) 0x72 HT 总线接收地址窗口 2 基址(外部访问) 0x70 HT 总线接收地址窗口 2 基址(外部访问) 0x80 HT 总线中断向量寄存器[31:0] 0x80 HT 总线中断向量寄存器[19:160] 0x92 HT 总线中断向量寄存器[19:160] 0x94 HT 总线中断向量寄存器[255:224] 0x04 HT 总线中断使能寄存器[3:3:2] 0x08 HT 总线中断使能寄存器[17:96] 0x1 HT 总线中断使能寄存器[159:128] HT 总线中断使能寄存器[159:128] HT 总线中断使能寄存器[159:128] HT 总线中断使能寄存器[159:128] HT	0x48	Capability Registers	Revision ID, Link Freq, Link Error, Link Freq Cap
0x54 接收诊断寄存器 用于诊断接收端深样的信号 0x58 中断路由方式选择 寄存器 材应于 3 种中断路由方式 0x50 接收缓存寄存器 HT 总线接收地址窗口 0 使能(外部访问) 0x60 接收地址窗口 HT 总线接收地址窗口 0 使能(外部访问) 0x62 配置寄存器 HT 总线接收地址窗口 1 使能(外部访问) 0x70 HT 总线接收地址窗口 2 使能(外部访问) 0x74 HT 总线接收地址窗口 2 使能(外部访问) 0x7a HT 总线接收地址窗口 2 基址(外部访问) 0x7b HT 总线按收地址窗口 2 基址(外部访问) 0x7c HT 总线按收地址窗口 2 基址(外部访问) 0x7c HT 总线按收地址窗口 2 基址(外部访问) 0x8d HT 总线中断向量寄存器[19:160] 0x8d HT 总线中断向量寄存器[19:160] 0x8d HT 总线中断向量寄存器[19:160] 0x9d HT 总线中断向量寄存器[19:160] 0x9d HT 总线中断向量寄存器[19:160] 0x9d HT 总线中断向量寄存器[19:160] 0x0d HT 总线中断向量寄存器[19:160] 0xAd HT 总线中断使能寄存器[19:160] 0xAd HT 总线中断使能寄存器[19:160] 0xAd HT 总线中断使能寄存器[19:160] 0xBd HT 总线中断使能寄存器[19:160] 0xBd HT 总线中断使能寄存器[19:160] 0xBd HT 总线中断使能寄存器[19:160]	0x4c		Feature Capability
	0x50	自定义寄存器	MISC
S	0x54		用于诊断接收端采样的信号
N		寄存器	对应于3种中断路由方式
0x64 接收地址窗口 田工島线接收地址窗口 0 基址 (外部访问) 0x6c 配置寄存器 HT息线接收地址窗口 1 捷址 (外部访问) 0x70 HT息线接收地址窗口 2 捷能 (外部访问) 0x74 HT息线接收地址窗口 2 捷址 (外部访问) 0x78 HT息线接收地址窗口 2 基址 (外部访问) 0x78 Pund 0x7c Pund 0x8d HT息线中断向量寄存器[31:0] 0x8d HT息线中断向量寄存器[63:32] 0x8d HT息线中断向量寄存器[127:96] 0x9d HT息线中断向量寄存器[191:160] 0x9d HT息线中断向量寄存器[191:160] 0x9d HT息线中断向量寄存器[191:160] 0x9d HT息线中断向量寄存器[19:160] 0xAd HT息线中断使能寄存器[19:160] 0xAd HT息线中断使能寄存器[19:160] 0xAd HT息线中断使能寄存器[19:160] 0xBd HT息线中断使能寄存器[19:160] 0xCD Interrupt Capability 0xCD Interrupt Capabi	0x5c	接收缓存寄存器	
0x6c 接收地址窗口 HT 总线接收地址窗口 1 使能(外部访问) 0x70 配置寄存器 HT 总线接收地址窗口 2 使能(外部访问) 0x74 HT 总线接收地址窗口 2 捷址(外部访问) 0x78 P 0x7c P 0x8d HT 总线中断向量寄存器(1:0) 0x84 HT 总线中断向量寄存器(63:32) 0x85 HT 总线中断向量寄存器(95:64) 0x90 HT 总线中断向量寄存器(127:96) 0x94 HT 总线中断向量寄存器[19:160] 0x94 HT 总线中断向量寄存器[19:160] 0x96 HT 总线中断向量寄存器[23:192] 0x97 HT 总线中断向量寄存器[19:160] 0x98 HT 总线中断使能寄存器[19:160] 0x90 HT 总线中断使能寄存器[19:160] 0xAd HT 总线中断使能寄存器[159:128] 0xAd HT 总线中断使能寄存器[159:128] 0xAC HT 总线中断使能寄存器[159:128] 0xBC HT 总线中断使能寄存器[25:524] 0xBC HT 总线中断使能寄存器[25:524] 0xCO Interrupt Discovery & Interrupt Capability 0xCB Interrupt Capability 0xCC Interrupt Capability 0xCD Intrinfo[31:0] 0xD0 POST 地址窗口 0 使能(内部访问) 0xD4	0x60		
0x6c 配置寄存器 HT 总线接收地址窗口 1 基址(外部访问) 0x70 HT 总线接收地址窗口 2 使能(外部访问) 0x74 HT 总线接收地址窗口 2 基址(外部访问) 0x78 PHT 总线接收地址窗口 2 基址(外部访问) 0x7c PHT 总线中断向量寄存器(31:0] 0x8d HT 总线中断向量寄存器(63:32] 0x8d HT 总线中断向量寄存器(95:64] 0x9d HT 总线中断向量寄存器(159:128] 0x9d HT 总线中断向量寄存器(23:192] 0x9d HT 总线中断向量寄存器(23:192] 0x9d HT 总线中断向量寄存器(23:192] 0x9d HT 总线中断向量寄存器(23:192] 0xAd HT 总线中断向量寄存器(23:192] 0xAd HT 总线中断向量寄存器(23:192] 0xAd HT 总线中断使能寄存器(23:192) 0xAd HT 总线中断使能寄存器(95:64] 0xAd HT 总线中断使能寄存器(159:128] 0xBd HT 总线中断使能寄存器(159:128] 0xBd HT 总线中断使能寄存器(159:128] 0xBd HT 总线中断使能寄存器(23:192] 0xBd HT 总线中断使能寄存器(23:192] 0xCD Interrupt Capability 0xCD Interrupt Capability 0xCD Interrupt Capability 0xDd POST 地址窗口 0 使能(内部访问) 0xDd	0x64		HT 总线接收地址窗口 0 基址(外部访问)
○x70	0x68	接收地址窗口	HT 总线接收地址窗口 1 使能(外部访问)
0x74 田T 总线接收地址窗口 2 基址 (外部访问) 0x78 (大きな) 0x7c (大きな) 0x80 (大きな) 0x84 (大きな) 0x88 (大きな) 0x80 (大きな) 0x82 (大きな) 0x90 (大きな) 0x91 (大きな) 0x92 (大きな) 0x93 (大きな) 0x94 (大きな) 0x95 (大きな) 0x96 (大きな) 0x97 (大きな) 0x98 (大きな) 0x90 (大きな) 0x90 (大きな) 0x90 (大きな) 0xA0 (大きな) 0xA1 (大きな) 0xA2 (大きな) 0xA3 (大きな) 0xA4 (大きな) 0xA5 (大きな) 0xB6 (大きな) 0xB7 (大きな) 0xB8 (大きな) 0xB0 (大きな) 0xB1 (大きな) 0xB2 (大きな) 0xB3 (大きな) 0xB4	0x6c	配置寄存器	HT 总线接收地址窗口 1 基址(外部访问)
0x7c HT 总线中断向量寄存器[31:0] 0x8d HT 总线中断向量寄存器[31:0] 0x84 HT 总线中断向量寄存器[63:32] 0x88 HT 总线中断向量寄存器[95:64] 0x8c HT 总线中断向量寄存器[127:96] 0x90 HT 总线中断向量寄存器[159:128] 0x94 HT 总线中断向量寄存器[159:128] 0x98 HT 总线中断向量寄存器[191:160] 0x99 HT 总线中断向量寄存器[223:192] 0x90 HT 总线中断向量寄存器[255:224] 0xA0 HT 总线中断使能寄存器[159:128] 0xA4 HT 总线中断使能寄存器[159:128] 0xAC HT 总线中断使能寄存器[127:96] 0xB0 HT 总线中断使能寄存器[127:96] 0xB1 HT 总线中断使能寄存器[191:160] 0xB2 HT 总线中断使能寄存器[191:160] 0xB2 HT 总线中断使能寄存器[223:192] 0xC0 Interrupt Discovery & Unitary One Discover	0x70		HT 总线接收地址窗口 2 使能(外部访问)
0x7c 0x80 HT 总线中断向量寄存器[31:0] 0x84 HT 总线中断向量寄存器[63:32] HT 总线中断向量寄存器[63:32] 0x88 HT 总线中断向量寄存器[127:96] HT 总线中断向量寄存器[127:96] 0x90 HT 总线中断向量寄存器[159:128] 0x94 HT 总线中断向量寄存器[19:160] 0x98 HT 总线中断向量寄存器[19:160] 0x9C HT 总线中断向量寄存器[223:192] 0xA0 HT 总线中断向量寄存器[31:0] 0xA4 HT 总线中断使能寄存器[63:32] 0xA8 HT 总线中断使能寄存器[63:32] 0xAC HT 总线中断使能寄存器[159:128] 0xB0 HT 总线中断使能寄存器[191:160] 0xB2 HT 总线中断使能寄存器[223:192] 0xB0 HT 总线中断使能寄存器[255:224] 0xC0 HT 总线中断使能寄存器[255:224] 0xC0 Interrupt Discovery & DataPort 0xC2 Intrlnfo[31:0] 0xC0 Intrlnfo[63:32] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 HT 总线 POST 地址窗口 0 基址(内部访问) 0xD8 配置寄存器 HT 总线 POST 地址窗口 1 使能(内部访问)	0x74		HT 总线接收地址窗口 2 基址(外部访问)
0x80 内状 急线中断向量寄存器[31:0] 0x84 内状 急线中断向量寄存器[63:32] 0x88 中断向量寄存器 0x8c HT 总线中断向量寄存器[127:96] 0x90 HT 总线中断向量寄存器[159:128] 0x94 HT 总线中断向量寄存器[191:160] 0x98 HT 总线中断向量寄存器[223:192] 0x9C HT 总线中断向量寄存器[223:192] 0xA0 A 其本	0x78		
0x84 内形向量寄存器 HT 总线中断向量寄存器[63:32] 0x8c 中断向量寄存器 HT 总线中断向量寄存器[127:96] 0x90 HT 总线中断向量寄存器[127:96] 0x94 HT 总线中断向量寄存器[19:160] 0x98 HT 总线中断向量寄存器[19:160] 0x98 HT 总线中断向量寄存器[223:192] 0x90 HT 总线中断向量寄存器[223:192] 0xA0 PHT 总线中断向量寄存器[63:23] 0xA4 HT 总线中断使能寄存器[63:32] 0xA8 HT 总线中断使能寄存器[63:32] 0xAC HT 总线中断使能寄存器[127:96] 0xB0 HT 总线中断使能寄存器[127:96] HT 总线中断使能寄存器[19:160] HT 总线中断使能寄存器[19:160] 0xB0 HT 总线中断使能寄存器[223:192] 0xC0 HT 总线中断使能寄存器[255:224] 0xC0 Interrupt Discovery & Configuration Interrupt Capability 0xC2 Configuration Intrinfo[31:0] 0xD0 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 0 使能(内部访问) 0xD8 配置寄存器	0x7c		
0x88 中断向量寄存器 HT 总线中断向量寄存器[95:64] 0x90 中断向量寄存器 HT 总线中断向量寄存器[127:96] 0x94 HT 总线中断向量寄存器[191:160] 0x98 HT 总线中断向量寄存器[191:160] 0x9C HT 总线中断向量寄存器[223:192] 0x9C HT 总线中断向量寄存器[225:224] 0xAO HT 总线中断向量寄存器[255:224] 0xAA HT 总线中断向量寄存器[31:0] 0xAA HT 总线中断使能寄存器[33:32] 0xAC HT 总线中断使能寄存器[27:96] 0xBO HT 总线中断使能寄存器[127:96] HT 总线中断使能寄存器[19:160] HT 总线中断使能寄存器[19:160] 0xBC HT 总线中断使能寄存器[223:192] 0xCO Interrupt Discovery & DataPort 0xCC Intrinfo[31:0] 0xCC Intrinfo[63:32] 0xD0 POST 地址窗口 HT 总线 POST 地址窗口 0 棲能(内部访问) 0xD4 POST 地址窗口 HT 总线 POST 地址窗口 0 基址(内部访问) HT 总线 POST 地址窗口 1 使能(内部访问) HT 总线 POST 地址窗口 1 使能(内部访问)	0x80		HT 总线中断向量寄存器[31:0]
0x8c 中断向量寄存器 HT 总线中断向量寄存器[127:96] 0x90 HT 总线中断向量寄存器[159:128] 0x94 HT 总线中断向量寄存器[191:160] 0x98 HT 总线中断向量寄存器[223:192] 0x9C HT 总线中断向量寄存器[255:224] 0xA0 PARA	0x84		HT 总线中断向量寄存器[63:32]
0x90 中断向量寄存器 HT 总线中断向量寄存器[159:128] 0x94 HT 总线中断向量寄存器[191:160] 0x98 HT 总线中断向量寄存器[223:192] 0x9C HT 总线中断向量寄存器[255:224] 0xA0 AF 总线中断向量寄存器[255:224] 0xA4 HT 总线中断使能寄存器[31:0] 0xA5 HT 总线中断使能寄存器[63:32] 0xA6 HT 总线中断使能寄存器[127:96] 0xB0 HT 总线中断使能寄存器[159:128] 0xB4 HT 总线中断使能寄存器[191:160] 0xB8 HT 总线中断使能寄存器[223:192] 0xBC HT 总线中断使能寄存器[255:224] 0xC0 Interrupt Discovery & DataPort 0xC8 Configuration 0xC0 IntrInfo[31:0] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 0xD8 配置寄存器	0x88		HT 总线中断向量寄存器[95:64]
N	0x8c	上MC4目立于III	HT 总线中断向量寄存器[127:96]
0x98 HT 总线中断向量寄存器[223:192] 0x9C HT 总线中断向量寄存器[255:224] 0xA0 A	0x90	一 中断问重奇仔器	HT 总线中断向量寄存器[159:128]
0x9C HT 总线中断向量寄存器[255:224] 0xA0 P断使能寄存器[31:0] 0xA4 HT 总线中断使能寄存器[63:32] 0xA8 HT 总线中断使能寄存器[95:64] 0xAC HT 总线中断使能寄存器[127:96] 0xB0 HT 总线中断使能寄存器[159:128] 0xB4 HT 总线中断使能寄存器[191:160] 0xB8 HT 总线中断使能寄存器[223:192] 0xBC HT 总线中断使能寄存器[255:224] 0xC0 Interrupt Discovery & Configuration Interrupt Capability 0xC8 Configuration IntrInfo[31:0] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 HT 总线 POST 地址窗口 0 基址(内部访问) 0xD8 配置寄存器 HT 总线 POST 地址窗口 1 使能(内部访问)	0x94		HT 总线中断向量寄存器[191:160]
0xA0 0xA4 HT 总线中断使能寄存器[31:0] 0xA8 HT 总线中断使能寄存器[63:32] 0xAC HT 总线中断使能寄存器[95:64] 0xB0 HT 总线中断使能寄存器[127:96] 0xB4 HT 总线中断使能寄存器[199:160] 0xB8 HT 总线中断使能寄存器[191:160] 0xBC HT 总线中断使能寄存器[223:192] 0xC0 HT 总线中断使能寄存器[255:224] 0xC4 Accepted With The State of the Stat	0x98		HT 总线中断向量寄存器[223:192]
0xA4 Phf 总线中断使能寄存器[63:32] 0xA8 HT 总线中断使能寄存器[95:64] 0xB0 HT 总线中断使能寄存器[127:96] 0xB4 HT 总线中断使能寄存器[159:128] 0xB8 HT 总线中断使能寄存器[191:160] 0xBC HT 总线中断使能寄存器[223:192] 0xC0 Interrupt Discovery & Interrupt Capability 0xC4 Augustion 0xCC Intrlnfo[31:0] 0xCC Intrlnfo[63:32] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 0xD8 HT 总线 POST 地址窗口 0 基址(内部访问) HT 总线 POST 地址窗口 1 使能(内部访问)	0x9C		HT 总线中断向量寄存器[255:224]
0xA8 P断使能寄存器 HT 总线中断使能寄存器[95:64] 0xB0 HT 总线中断使能寄存器[127:96] 0xB4 HT 总线中断使能寄存器[159:128] 0xB8 HT 总线中断使能寄存器[191:160] 0xBC HT 总线中断使能寄存器[223:192] 0xC0 Interrupt Discovery & Interrupt Capability 0xC4 Accompliance 0xC8 Configuration 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 0xD8 配置寄存器	0xA0		HT 总线中断使能寄存器[31:0]
0xAC 0xB0 中断使能寄存器 HT 总线中断使能寄存器[127:96] 0xB4 HT 总线中断使能寄存器[159:128] 0xB8 HT 总线中断使能寄存器[191:160] 0xBC HT 总线中断使能寄存器[223:192] 0xC0 HT 总线中断使能寄存器[255:224] 0xC0 Interrupt Discovery & DataPort 0xC8 Configuration IntrInfo[31:0] 0xCC IntrInfo[63:32] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 HT 总线 POST 地址窗口 0 基址(内部访问) 0xD8 配置寄存器 HT 总线 POST 地址窗口 1 使能(内部访问)	0xA4		HT 总线中断使能寄存器[63:32]
0xAC 0xB0 中断使能寄存器 HT 总线中断使能寄存器[127:96] 0xB4 HT 总线中断使能寄存器[159:128] 0xB8 HT 总线中断使能寄存器[191:160] 0xBC HT 总线中断使能寄存器[223:192] 0xC0 HT 总线中断使能寄存器[255:224] 0xC0 Interrupt Discovery & DataPort 0xC8 Configuration IntrInfo[31:0] 0xCC IntrInfo[63:32] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 HT 总线 POST 地址窗口 0 基址(内部访问) 0xD8 配置寄存器 HT 总线 POST 地址窗口 1 使能(内部访问)	0xA8		
0xB0 HT 总线中断使能寄存器[159:128] 0xB4 HT 总线中断使能寄存器[191:160] 0xB8 HT 总线中断使能寄存器[223:192] 0xBC HT 总线中断使能寄存器[255:224] 0xC0 Interrupt Discovery & DataPort 0xC8 Configuration IntrInfo[31:0] 0xCC IntrInfo[63:32] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 HT 总线 POST 地址窗口 0 基址(内部访问) 0xD8 配置寄存器 HT 总线 POST 地址窗口 1 使能(内部访问)	0xAC	Nµr /+ ∆ν /→ -/- пп	HT 总线中断使能寄存器[127:96]
0xB8 HT 总线中断使能寄存器[223:192] 0xBC HT 总线中断使能寄存器[255:224] 0xC0 Interrupt Discovery & DataPort 0xC8 Configuration 0xCC IntrInfo[31:0] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 0xD8 配置寄存器	0xB0	一 中断便能奇仔器	HT 总线中断使能寄存器[159:128]
0xB8 HT 总线中断使能寄存器[223:192] 0xBC HT 总线中断使能寄存器[255:224] 0xC0 Interrupt Obscovery & DataPort 0xC8 Configuration IntrInfo[31:0] 0xCC IntrInfo[63:32] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 HT 总线 POST 地址窗口 0 基址(内部访问) 0xD8 配置寄存器 HT 总线 POST 地址窗口 1 使能(内部访问)	0xB4		HT 总线中断使能寄存器[191:160]
0xBC HT 总线中断使能寄存器[255:224] 0xC0 Interrupt Discovery & DataPort 0xC8 Configuration IntrInfo[31:0] 0xCC IntrInfo[63:32] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 0xD8 配置寄存器	0xB8		HT 总线中断使能寄存器[223:192]
0xC4 Interrupt Discovery & DataPort 0xC8 Configuration IntrInfo[31:0] 0xCC IntrInfo[63:32] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 0xD8 配置寄存器 HT 总线 POST 地址窗口 1 使能(内部访问) HT 总线 POST 地址窗口 1 使能(内部访问)	0xBC		
0xC4 & DataPort 0xC8 Configuration IntrInfo[31:0] 0xCC IntrInfo[63:32] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 1 使能(内部访问) 0xD8 配置寄存器 HT 总线 POST 地址窗口 1 使能(内部访问)	0xC0	.	Interrupt Capability
0xC8 Configuration IntrInfo[31:0] 0xCC IntrInfo[63:32] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 1 使能(内部访问) 0xD8 配置寄存器 HT 总线 POST 地址窗口 1 使能(内部访问) HT 总线 POST 地址窗口 1 使能(内部访问)	0xC4	•	DataPort
0xCC IntrInfo[63:32] 0xD0 HT 总线 POST 地址窗口 0 使能(内部访问) 0xD4 POST 地址窗口 0xD8 配置寄存器 HT 总线 POST 地址窗口 1 使能(内部访问) HT 总线 POST 地址窗口 1 使能(内部访问)	0xC8		IntrInfo[31:0]
0xD4 POST 地址窗口 HT 总线 POST 地址窗口 0 基址(内部访问) 0xD8 配置寄存器 HT 总线 POST 地址窗口 1 使能(内部访问)	0xCC	Comiguiation	IntrInfo[63:32]
0xD8 配置寄存器 HT 总线 POST 地址窗口 1 使能(内部访问)	0xD0		HT 总线 POST 地址窗口 0 使能(内部访问)
	0xD4	POST 地址窗口	HT 总线 POST 地址窗口 0 基址(内部访问)
	0xD8	配置寄存器	HT 总线 POST 地址窗口 1 使能(内部访问)
	0xDC		
0xE0 可预取地址窗口 HT 总线可预取地址窗口 0 使能(内部访问)	0xE0	可预取地址窗口	HT 总线可预取地址窗口 0 使能(内部访问)

0xE4	配置寄存器	HT 总线可预取地址窗口 0 基址(内部访问)
0xE8		HT 总线可预取地址窗口 1 使能(内部访问)
0xEC		Ht 总线可预取地址窗口 1 基址(内部访问)
0xF0		HT 总线 Uncache 地址窗口 0 使能(内部访问)
0xF4	Uncache 地址窗口	HT 总线 Uncache 地址窗口 0 基址(内部访问)
0xF8	配置寄存器	HT 总线 Uncache 地址窗口 1 使能(内部访问)
0xFC		HT 总线 Uncache 地址窗口 1 基址(内部访问)
0x100	发送端缓存大小寄	发送端命令缓存大小寄存器
0x104	存器	发送端数据缓存大小寄存器
0x108	发送端缓存调试寄	用于人工设置发送端缓存的大小(调试用)
	存器	
0x10C	预加重和输出阻抗	用于设置 HT 接口预加重和输出阻抗
	寄存器	

每个寄存存器的具体含义如下节如示:

10.5.1 Bridge Control

偏移量: 0x3C

复位值: 0x00000000

名称: Bus Reset Control

表 10-8 Bus Reset Control 寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31:23	Reserved	4	0x0		保留
22	Reset	12	0x0	R/W	总线复位控制:
					0->1: HT_RSTn 置 0,总线复位
					1->0: HT_RSTn 置 1,总线解复位
21:0	Reserved	5	0x0		保留

10.5.2 Capability Registers

偏移量: 0x40

复位值: 0x20010008

名称: Command, Capabilities Pointer, Capability ID

表 10-9 Command, Capabilities Pointer, Capability ID 寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31:29	HOST/Sec	3	0x1	R	Command 格式为 HOST/Sec
28:27	Reserved	2	0x0	R	保留

26	Act as Slave	1	0x0	R/W	HOST/SLAVE 模式
			/0x1		初始值由引脚 HOSTMODE 决定
					HOSTMODE 上拉: 0
					HOSTMODE 下拉: 1
25	Reserved	1	0x0		保留
24	Host Hide	1	0x0	R/W	是否禁止来自 HT 总线的寄存器访问
23	Reserved	1	0x0		保留
22:18	Unit ID	5	0x0	R/W	HOST 模式时:可用于记录使用 ID 个数
					SLAVE 模式时:记录自身 Unit ID
17	Double Ended	1	0x0	R	不采用双 HOST 模式
16	Warm Reset	1	0x1	R	Bridge Control 中 reset 采用热复位方式
15:8	Capabilities Pointer	8	0xa0	R	下一个 Cap 寄存器偏移地址
7:0	Capability ID	8	0x08	R	HyperTransport capability ID

偏移量: 0x44

复位值: 0x00112000

名称: Link Config, Link Control

表 10-10 Link Config, Link Control 寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31	ht_phase_select	1	0x0		相位选择使能
	_disable				0: 使能相位选择功能
					1: 禁用相位选择功能
30:28	Link Width Out	3	0x0	R/W	发送端宽度
					冷复位后的值为当前连接的最大宽度,写入此寄
					存器的值将会在下次热复位或是 HT
					Disconnect 之后生效
					000: 8 位方式
					001:16 位方式
27	Reserved	1	0x0		保留
26:24	Link Width In	3	0x0	R/W	接收端宽度
					冷复位后的值为当前连接的最大宽度,写入此寄
					存器的值将会在下次热复位或是 HT
					Disconnect 之后生效
23	Dw Fc out	1	0x0	R	发送端不支持双字流控
22:20	Max Link Width out	3	0x1	R	HT 总线发送端最大宽度:16bits

19	Dw Fc In	1	0x0	R	接收端不支持双字流控
18:16	Max Link Width In	3	0x1	R	HT 总线接收端最大宽度:16bits
15:14	Reserved	2	0x0		保留
13	LDTSTOP#	1	0x1	R/W	当 HT 总线进入 HT Disconnect 状态时,是否关
	Tristate Enable				闭 НТ РНҮ
					1: 关闭
					0: 不关闭
12:10	Reserved	3	0x0		保留
9	CRC Error (hi)	1	0x0	R/W	高 8 位发生 CRC 错
8	CRC Error (lo)	1	0x0	R/W	低 8 位发生 CRC 错
7	Trans off	1	0x0	R/W	HT PHY 关闭控制
					处于 16 位总线工作方式时
					1: 关闭 高/低 8 位 HT PHY
					0: 使能 低 8 位 HT PHY,
					高 8 位 HT PHY 由 bit 0 控制
6	End of Chain	0	0x0	R	HT 总线末端
5	Init Complete	1	0x0	R	HT 总线初始化是否完成
4	Link Fail	1	0x0	R	指示连接失败
3:2	Reserved	2	0x0		保留
1	CRC Flood Enable	1	0x0	R/W	发生 CRC 错误时,是否 flood HT 总线
0	Trans off (hi)	1	0x0	R/W	使用 16 位 HT 总线运行 8 位协议时,
					高 8 位 PHY 关闭控制
					1: 关闭 高 8 位 HT PHY
					0: 使能 高 8 位 HT PHY

偏移量: 0x48

复位值: 0x80250023

名称: Revision ID, Link Freq, Link Error, Link Freq Cap

表 10-11 Revision ID, Link Freq, Link Error, Link Freq Cap 寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31:16	Link Freq Cap	16	0x0025	R	支持的 HT 总线频率(根据 CLKSEL[15:10]的设
					置,可支持的频率各不相同,详见表 2-1 的设
					置说明),包括
					200Mhz, 400Mhz, 800Mhz, 1000MHz, 1200MHz,
					1400MHz,1600MHz

15:14	Reserved	2	0x0		保留
13	Over Flow Error	1	0x0	R	HT 总线包溢出
12	Protocol Error	1	0x0	R/W	协议错误,
					指 HT 总线上收到不可识别的命令
11:8	Link Freq	4	0x0	R/W	HT 总线工作频率
					写入此寄存器的值后将在下次热复位或是 HT
					Disconnect 之后生效
					0000: 200MHz
					0010: 400MHz
					0101: 800MHz
					0110: 1000MHz
					0111: 1200MHz
					1000: 1400MHz
					1001: 1600MHz
7:0	Revision ID	8	0x23	R/W	版本号: 1.03

偏移量: 0x4C

复位值: 0x00000002

名称: Feature Capability

表 10-12 Feature Capability 寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31:9	Reserved	25	0x0		保留
8	Extended Register	1	0x0	R	没有
7:4	Reserved	3	0x0		保留
3	Extended CTL Time	1	0x0	R	不需要
2	CRC Test Mode	1	0x0	R	不支持
1	LDTSTOP#	1	0x1	R	支持 LDTSTOP#
0	Isochronous Mode	1	0x0	R	不支持

10.5.3 自定义寄存器

偏移量: 0x50

复位值: 0x00904321

名称: MISC

表 10-13 MISC 寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31	Reserved	1	0x0		保留
30	Ldt Stop Gen	1	0x0	R/W	使总线进入 LDT DISCONNECT 模式
					正确的方法是: 0 -> 1
29	Ldt Req Gen	1	0x0	R/W	从 LDT DISCONNECT 中唤醒 HT 总线,设置
					LDT_REQ_n
					正确的方法是先置 0 再置 1: 0 -> 1
					除此之外,直接向总线发出读写请求也可以自动
					唤醒总线
28:24	Interrupt Index	5	0x0	R/W	将除了标准中断之外的其它中断重定向到哪个
					中断向量中(包括 SMI,NMI,INIT,INTA,
					INTB, INTC, INTD)
					总共 256 个中断向量,本寄存器表示的是中断向
					量的高 5 位,内部中断向量如下:
					000: SMI
					001: NMI
					010: INIT
					011: Reservered
					100: INTA
					101: INTB
					110: INTC
					111: INTD
23	Dword Write	1	0x1	R/W	对于 32/64/128/256 位的写访问, 是否采用 Dword
					Write 命令格式
					1:使用 Dword Write
					0:使用 Byte Write(带 MASK)
22	Coherent Mode	1	0x0	R	是否是处理器一致性模式
					由引脚 ICCC_EN 决定
21	Not Care Seqid	1	0x0	R/W	是否不关心 HT 序关系

20	Not Axi2Seqid	1	0x1	R	是否把 Axi 总线上的命令转换成不同的 SeqID,如果不转换,则所有的读写命令都会采用 Fixed Seqid 中的固定 ID 号 1: 不转换 0: 转换
19:16	Fixed Seqid	4	0x0	R/W	当 Not Axi2Seqid 有效时,配置 HT 总线发出的 Seqid
15:12	Priority Nop	4	0x4	R/W	HT 总线 Nop 流控包优先级
11:8	Priority NPC	4	0x3	R/W	Non Post 通道读写优先级
7:4	Priority RC	4	0x2	R/W	Response 通道读写先级
3:0	Priority PC	4	0x1	R/W	Post 通道读写优先级 0x0:最高优先级 0xF:最低优先级 对于各个通道的优先级均采用根据时间变化提高的优先级策略,该组存器用于配置各个通道的初始优先级

10.5.4 接收诊断寄存器

偏移量: 0x54

复位值: 0x00000000

名称: 接收诊断寄存器

表 10-14 接收诊断寄存器

位域	位域名称	位宽	复位值	访问	描述
0	Sample_en	1	0x0	R/W	使能采样输入的 cad 和 ctl
					0x0:禁止
					0x1: 使能
15:8	rx_ctl_catch	24	0x0	R/W	保存采样得到的输入 ctl
					(0、2、4、6) 对应 CTL0 采样的四个相位
					(1、3、5、7)对应 CTL1 采样的四个相位
31:16	rx_cad_phase_0	24	0x0	R/W	保存采样得到的输入 CAD[15:0]的值

10.5.5 中断路由方式选择寄存器

偏移量: 0x58

复位值: 0x00000000

名称: 中断路由方式选择寄存器

表 10-15 中断路由方式选择寄存器

位域	位域名称	位宽	复位值	访问	描述
9:8	ht_int_stripe	2	0x0	R/W	对应于 3 种中断路由方式,具体描述见 10.5.8
					中断向量寄存器
					0x0: ht_int_stripe_1
					0x1: ht_int_stripe_2
					0x2: ht_int_stripe_4

10.5.6 接收缓冲区初始寄存器

偏移量: 0x5c

复位值: 0x07778888

名称: 接收缓冲区初始化配置寄存器

表 10-16 接收缓冲区初始寄存器

位域	位域名称	位宽	复位值	访问	描述
27:24	rx_buffer_r_data	4	0x0	R/W	接收缓冲区的读数据 buffer 初始化信息
23:20	rx_buffer_npc_data	4	0x0	R/W	接收缓冲区的 npc 数据 buffer 初始化信息
19:16	rx_buffer_pc_data	4	0x0	R/W	接收缓冲区的 pc 数据 buffer 初始化信息
15:12	rx_buffer_b_cmd	4	0x0	R/W	接收缓冲区的 bresponse 命令 buffer 初始化信息
11:8	rx_buffer_r_cmd	4	0x0	R/W	接收缓冲区的读命令 buffer 初始化信息
7:4	rx_buffer_npc_cmd	4	0x0	R/W	接收缓冲区的 npc 命令 buffer 初始化信息
3:0	rx_buffer_pc_cmd	4	0x0	R/W	接收缓冲区的 pc 命令 buffer 初始化信息

10.5.7 接收地址窗口配置寄存器

HT 控制器中的地址窗口命中公式如下:

hit = (BASE & MASK) == (ADDR & MASK)

addr_out = TRANS_EN ? TRANS | ADDR & ~MASK : ADDR

需要说明的是,配置地址窗口寄存器时,MASK 高位应全为 1,低位应全为 0。MASK 中 0 的实际位数表示的就是地址窗口的大小。

接收地址窗口的地址为HT总线上接收的地址。落在本窗口内的HT地址将被发往CPU内,其它地址的命令将作为P2P命令被转发回HT总线。

偏移量: 0x60

复位值: 0x00000000

名称: HT 总线接收地址窗口 0 使能(外部访问)

表 10-17 HT 总线接收地址窗口 0 使能(外部访问)寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31	ht_rx_image0_en	1	0x0	R/W	HT 总线接收地址窗口 0,使能信号
30	ht_rx_image0_	1	0x0	R/W	HT 总线接收地址窗口 0,映射使能信号
	trans_en				
29:0	ht_rx_image0_	30	0x0	R/W	HT 总线接收地址窗口 0,映射后地址的[53:24]
	trans[53:24]				

偏移量: 0x64

复位值: 0x00000000

名称: HT 总线接收地址窗口 0 基址(外部访问)

表 10-18 HT 总线接收地址窗口 0 基址(外部访问)寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31:16	ht_rx_image0_	16	0x0	R/W	HT 总线接收地址窗口 0,地址基址的[39:24]
	base[39:24]				
15:0	ht_rx_image0_	16	0x0	R/W	HT 总线接收地址窗口 0,地址屏蔽的[39:24]
	mask[39:24]				

偏移量: 0x68

复位值: 0x00000000

名称: HT 总线接收地址窗口 1 使能(外部访问)

表 10-19 HT 总线接收地址窗口 1 使能(外部访问)寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31	ht_rx_image1_en	1	0x0	R/W	HT 总线接收地址窗口 1,使能信号
30	ht_rx_image1_	1	0x0	R/W	HT 总线接收地址窗口 1,映射使能信号
	trans_en				
29:0	ht_rx_image1_	30	0x0	R/W	HT 总线接收地址窗口 1,映射后地址的[53:24]
	trans[53:24]				

偏移量: 0x6c

复位值: 0x00000000

名称: HT 总线接收地址窗口 1 基址(外部访问)

表 10-20 HT 总线接收地址窗口 1 基址(外部访问)寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31:16	ht_rx_image1_	16	0x0	R/W	HT 总线接收地址窗口 1,地址基址的[39:24]
	base[39:24]				
15:0	ht_rx_image1_	16	0x0	R/W	HT 总线接收地址窗口 1,地址屏蔽的[39:24]
	mask[39:24]				

偏移量: 0x70

复位值: 0x00000000

名称: HT 总线接收地址窗口 2 使能(外部访问)

表 10-21 HT 总线接收地址窗口 2 使能(外部访问)寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31	ht_rx_image2_en	1	0x0	R/W	HT 总线接收地址窗口 2,使能信号
30	ht_rx_image2_	1	0x0	R/W	HT 总线接收地址窗口 2,映射使能信号
	trans_en				
29:0	ht_rx_image2_	16	0x0	R/W	HT 总线接收地址窗口 2,转译后地址的[53:24]
	trans[53:24]				

偏移量: 0x74

复位值: 0x00000000

名称: HT 总线接收地址窗口 2 基址(外部访问)

表 10-22 HT 总线接收地址窗口 2 基址(外部访问)寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31:16	ht_rx_image2_	16	0x0	R/W	HT 总线接收地址窗口 2,地址基址的[39:24]
	base[39:24]				
15:0	ht_rx_image2_	16	0x0	R/W	HT 总线接收地址窗口 2,地址屏蔽的[39:24]
	mask[39:24]				

10.5.8 中断向量寄存器

中断向量寄存器共 256 个,其中除去 HT 总线上的 Fix、Arbiter 以及 PIC 中断直接映射到此 256 个中断向量之中,其它的中断,如 SMI, NMI, INIT, INTA, INTB, INTC, INTD可以通过寄存器 0x50 的[28:24]映射到任意一个 8 位中断向量上去,映射的顺序为{INTD, INTC, INTB, INTA, 1'b0, INIT, NMI, SMI}。此时中断向量对应值为{Interrupt Index,内部向量[2:0]}。

LS3A1000E 及以上版本,256个中断向量根据中断路由方式选择寄存器配置的不同映射

到不同的中断线上,具体的映射方式为:

ht_int_stripe_1:

[0,1,2,3 ······63]对应中断线 0/HT HI 对应中断线 4

[64,65,66,67……127]对应中断线 1/HT HI 对应中断线 5

[128,129,130,131……191]对应中断线 2/HT HI 对应中断线 6

[192,193,194,195 ······255]对应中断线 3/HT HI 对应中断线 7

ht_int_stripe_2:

[0,2,4,6……126]对应中断线 0/HT HI 对应中断线 4

[1,3,5,7·····127]对应中断线 1/HT HI 对应中断线 5

[128,130,132,134……254]对应中断线 2/HT HI 对应中断线 6

[129,131,133,135……255]对应中断线 3 /HT HI 对应中断线 7

ht_int_stripe_4:

[0,4,8,12……252]对应中断线 0 /HT HI 对应中断线 4

[1,5,9,13……253]对应中断线 1/HT HI 对应中断线 5

[2,6,10,14……254]对应中断线 2/HT HI 对应中断线 6

[3,7,11,15 ······255]对应中断线 3 /HT HI 对应中断线 7

以下中断向量的描述对应于 ht_int_stripe_1,另外两种方式可由以上说明得到。

对于 LS3A1000D 及以下版本,只能使用 ht_int_stripe_1 的方式。

偏移量: 0x80

复位值: 0x00000000

名称: HT 总线中断向量寄存器[31:0]

表 10-23 HT 总线中断向量寄存器定义(1)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_case	32	0x0	R/W	HT 总线中断向量寄存器[31:0],
	[31:0]				对应中断线 0 /HT HI 对应中断线 4

偏移量: 0x84

复位值: 0x00000000

名称: HT 总线中断向量寄存器[63:32]

表 10-24 HT 总线中断向量寄存器定义(2)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_case	32	0x0	R/W	HT 总线中断向量寄存器[63:32],
	[63:32]				对应中断线 0 /HT HI 对应中断线 4

偏移量: 0x88

复位值: 0x00000000

名称: HT 总线中断向量寄存器[95:64]

表 10-25 HT 总线中断向量寄存器定义(3)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_case	32	0x0	R/W	HT 总线中断向量寄存器[95:64],
	[95:64]				对应中断线 1 /HT HI 对应中断线 5

偏移量: 0x8c

复位值: 0x00000000

名称: HT 总线中断向量寄存器[127:96]

表 10-26 HT 总线中断向量寄存器定义(4)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_case	32	0x0	R/W	HT 总线中断向量寄存器[127:96],
	[127:96]				对应中断线 1 /HT HI 对应中断线 5

偏移量: 0x90

复位值: 0x00000000

名称: HT 总线中断向量寄存器[159:128]

表 10-27 HT 总线中断向量寄存器定义(5)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_case	32	0x0	R/W	HT 总线中断向量寄存器[159:128],
	[159:128]				对应中断线 2 /HT HI 对应中断线 6

偏移量: 0x94

复位值: 0x00000000

名称: HT 总线中断向量寄存器[191:160]

表 10-28 HT 总线中断向量寄存器定义(6)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_case	32	0x0	R/W	HT 总线中断向量寄存器[191:160],
	[191:160]				对应中断线 2 /HT HI 对应中断线 6

偏移量: 0x98

复位值: 0x00000000

名称: HT 总线中断向量寄存器[223:192]

表 10-29 HT 总线中断向量寄存器定义(7)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_case	32	0x0	R/W	HT 总线中断向量寄存器[223:192],
	[223:192]				对应中断线 3 /HT HI 对应中断线 7

偏移量: 0x9c

复位值: 0x00000000

名称: HT 总线中断向量寄存器[255:224]

表 10-30 HT 总线中断向量寄存器定义(8)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_case	32	0x0	R/W	HT 总线中断向量寄存器[255:224],
	[255:224]				对应中断线 3 /HT HI 对应中断线 7

10.5.9 中断使能寄存器

中断使能寄存器共 256 个,与中断向量寄存器——对应。 置 1 为对应中断打开,置 0 则为中断屏蔽。

256 个中断向量根据中断路由方式选择寄存器配置的不同映射到不同的中断线上,具体的映射方式为:

ht_int_stripe_1:

[0,1,2,3……63]对应中断线 0 /HT HI 对应中断线 4

[64,65,66,67……127]对应中断线 1 /HT HI 对应中断线 5

[128,129,130,131……191]对应中断线 2 /HT HI 对应中断线 6

[192,193,194,195……255]对应中断线 3 /HT HI 对应中断线 7

ht_int_stripe_2:

[0,2,4,6……126]对应中断线 0/HT HI 对应中断线 4

[1,3,5,7……127]对应中断线 1/HT HI 对应中断线 5

[128,130,132,134……254]对应中断线 2/HT HI 对应中断线 6

[129,131,133,135……255]对应中断线 3 /HT HI 对应中断线 7

ht_int_stripe_4:

[0,4,8,12……252]对应中断线 0 /HT HI 对应中断线 4

[1,5,9,13……253]对应中断线 1/HT HI 对应中断线 5

[2,6,10,14……254]对应中断线 2/HT HI 对应中断线 6

[3,7,11,15……255]对应中断线 3 /HT HI 对应中断线 7

以下中断向量的描述对应于 ht_int_stripe_1,另外两种方式可由以上说明得到。

偏移量: 0xa0

复位值: 0x00000000

名称: HT 总线中断使能寄存器[31:0]

表 10-31 HT 总线中断使能寄存器定义(1)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_mask	32	0x0	R/W	HT 总线中断使能寄存器[31:0],
	[31:0]				对应中断线 0 /HT HI 对应中断线 4

偏移量: 0xa4

复位值: 0x00000000

名称: HT 总线中断使能寄存器[63:32]

表 10-32 HT 总线中断使能寄存器定义(2)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_mask	32	0x0	R/W	HT 总线中断使能寄存器[63:32],
	[63:32]				对应中断线 0 /HT HI 对应中断线 4

偏移量: 0xa8

复位值: 0x00000000

名称: HT 总线中断使能寄存器[95:64]

表 10-33 HT 总线中断使能寄存器定义(3)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_mask	32	0x0	R/W	HT 总线中断使能寄存器[95:64],
	[95:64]				对应中断线 1 /HT HI 对应中断线 5

偏移量: 0xac

复位值: 0x00000000

名称: HT 总线中断使能寄存器[127:96]

表 10-34 HT 总线中断使能寄存器定义(4)

位域	位域名称	位宽	复位值	访问	描述
	Interrupt_mask	22	00	D/W	HT 总线中断使能寄存器[127:96],
31:0	[127:96]	32	0x0	R/W	对应中断线 1 /HT HI 对应中断线 5

偏移量: 0xb0

复位值: 0x00000000

名称: HT 总线中断使能寄存器[159:128]

表 10-35 HT 总线中断使能寄存器定义(5)

31:0	Interrupt_mask	32	0x0	R/W	HT 总线中断使能寄存器[159:128],
	[159:128]				对应中断线 2 /HT HI 对应中断线 6

偏移量: 0xb4

复位值: 0x00000000

名称: HT 总线中断使能寄存器[191:160]

表 10-36 HT 总线中断使能寄存器定义(6)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_mask	32	0x0	R/W	HT 总线中断使能寄存器[191:160],
	[191:160]				对应中断线 2 /HT HI 对应中断线 6

偏移量: 0xb8

复位值: 0x00000000

名称: HT 总线中断使能寄存器[223:192]

表 10-37 HT 总线中断使能寄存器定义(7)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_mask	32	0x0	R/W	HT 总线中断使能寄存器[223:192],
	[223:192]				对应中断线 3 /HT HI 对应中断线 7

偏移量: 0xbc

复位值: 0x00000000

名称: HT 总线中断使能寄存器[255:224]

表 10-38 HT 总线中断使能寄存器定义(8)

位域	位域名称	位宽	复位值	访问	描述
31:0	Interrupt_mask	32	0x0	R/W	HT 总线中断使能寄存器[255:224],
	[255:224]				对应中断线 3 /HT HI 对应中断线 7

10.5.10 Interrupt Discovery & Configuration

偏移量: 0xc0

复位值: 0x80000008

名称: Interrupt Capability

表 10-39 Interrupt Capability 寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31:24	Capabilities Pointer	8	0x80	R	Interrupt discovery and configuration block
23:16	Index	8	0x0	R/W	读寄存器偏移地址

15:8	Capabilities Pointer	8	0x0	R	Capabilities Pointer
7:0	Capability ID	8	0x08	R	Hypertransport Capablity ID

偏移量: 0xc4

复位值: 0x00000000

名称: Dataport

表 10-40 Dataport 寄存器定义

位域	位域名称	位宽	复位值	访问	描述
31:0	Dataport	32	0x0	R/W	当上一寄存器 Index 为 0x10 时,本寄存器读写
					结果为 0xa8 寄存器,否则为 0xac

偏移量: 0xc8

复位值: 0xF8000000 名称: IntrInfo[31:0]

表 10-41 IntrInfo 寄存器定义(1)

位域	位域名称	位宽	复位值	访问	描述
31:24	IntrInfo[31:24]	32	0xF8	R	保留
23:2	IntrInfo[23:2]	22	0x0	R/W	IntrInfo[23:2],当发出 PIC 中断时,IntrInfo 的值
					用来表示中断向量
1:0	Reserved	2	0x0	R	保留

偏移量: 0xcc

复位值: 0x00000000

名称: IntrInfo[63:32]

表 10-42 IntrInfo 寄存器定义(2)

位域	位域名称	位宽	复位值	访问	描述
31:0		32	0x0	R	保留

10.5.11 POST 地址窗口配置寄存器

地址窗口命中公式详见 10.5.7 节。

本窗口的地址是 AXI 总线上接收到的地址。落在本窗口的所有写访问将立即在 AXI B 通道返回,并以 POST WRITE 的命令格式发给 HT 总线。而不在本窗口的写请求则以 NONPOST WRITE 的方式发送到 HT 总线,并等待 HT 总线响应后再返回 AXI 总线。

偏移量: 0xd0

复位值: 0x00000000

名称: HT 总线 POST 地址窗口 0 使能(内部访问)

表 10-43 HT 总线 POST 地址窗口 0 使能(内部访问)

位域	位域名称	位宽	复位值	访问	描述
31	ht_post0_en	1	0x0	R/W	HT 总线 POST 地址窗口 0,使能信号
30:23	Reserved	15	0x0		保留
15:0	ht_post0_trans	16	0x0	R/W	HT 总线 POST 地址窗口 0,转译后地址的[39:24]
	[39:24]				

偏移量: 0xd4

复位值: 0x00000000

名称: HT 总线 POST 地址窗口 0 基址(内部访问)

表 10-44 HT 总线 POST 地址窗口 0 基址(内部访问)

位域	位域名称	位宽	复位值	访问	描述
31:16	ht_post0_base	16	0x0	R/W	HT 总线 POST 地址窗口 0,地址基址的[39:24]
	[39:24]				
15:0	ht_post0_mask	16	0x0	R/W	HT 总线 POST 地址窗口 0,地址屏蔽的[39:24]
	[39:24]				

偏移量: 0xd8

复位值: 0x00000000

名称: HT 总线 POST 地址窗口 1 使能(内部访问)

表 10-45 HT 总线 POST 地址窗口 1 使能(内部访问)

位域	位域名称	位宽	复位值	访问	描述
31	ht_post1_en	1	0x0	R/W	HT 总线 POST 地址窗口 1,使能信号
30:16	Reserved	15	0x0		保留
15:0	ht_post1_trans	16	0x0	R/W	HT 总线 POST 地址窗口 1,转译后地址的[39:24]
	[39:24]				

偏移量: 0xdc

复位值: 0x00000000

名称: HT 总线 POST 地址窗口 1 基址(内部访问)

表 10-46 HT 总线 POST 地址窗口 1 基址(内部访问)

位域	位域名称	位宽	复位值	访问	描述
31:16	ht_post1_base	16	0x0	R/W	HT 总线 POST 地址窗口 1,地址基址的[39:24]
	[39:24]				

15:0	ht_post1_mask	16	0x0	R/W	HT 总线 POST 地址窗口 1,地址屏蔽的[39:24]
	[39:24]				

10.5.12 可预取地址窗口配置寄存器

地址窗口命中公式详见 10.5.7 节。

本窗口的地址是 AXI 总线上接收到的地址。落在本窗口的取指指令以及 CACHE 访问才会被发往 HT 总线,其它的取指或 CACHE 访问将不会被发往 HT 总线,而是立即返回,如果是读命令,则会返回相应个数的无效读数据。

偏移量: 0xe0

复位值: 0x00000000

名称: HT 总线可预取地址窗口 0 使能(内部访问)

表 10-47 HT 总线可预取地址窗口 0 使能(内部访问)

位域	位域名称	位宽	复位值	访问	描述
31	ht_prefetch0_en	1	0x0	R/W	HT 总线可预取地址窗口 0,使能信号
30:23	Reserved	15	0x0		保留
15:0	ht_prefetch0_trans	16	0x0	R/W	HT 总线可预取地址窗口 0,转译后地址的[39:24]
	[39:24]				

偏移量: 0xe4

复位值: 0x00000000

名称: HT 总线可预取地址窗口 0 基址(内部访问)

表 10-48 HT 总线可预取地址窗口 0 基址(内部访问)

位域	位域名称	位宽	复位值	访问	描述
31:16	ht_prefetch0_	16	0x0	R/W	HT 总线可预取地址窗口 0,地址基址的[39:24]
	base[39:24]				位地址
15:0	ht_prefetch0_	16	0x0	R/W	HT 总线可预取地址窗口 0,地址屏蔽的[39:24]
	mask[39:24]				

偏移量: 0xe8

复位值: 0x00000000

名称: HT 总线可预取地址窗口 1 使能(内部访问)

表 10-49 HT 总线可预取地址窗口 1 使能(内部访问)

位域 位域名称 位宽 复位值 访问 描述

31	ht_prefetch1_en	1	0x0	R/W	HT 总线可预取地址窗口 1,使能信号
30:23	Reserved	15	0x0		保留
15:0	ht_prefetch1_	16	0x0	R/W	HT 总线可预取地址窗口 1,转译后地址的[39:24]
	trans[39:24]				

偏移量: 0xec

复位值: 0x00000000

名称: HT 总线可预取地址窗口 1 基址(内部访问)

表 10-50 HT 总线可预取地址窗口 1 基址(内部访问)

位域	位域名称	位宽	复位值	访问	描述
31:16	ht_prefetch1_	16	0x0	R/W	HT 总线可预取地址窗口 1,地址基址的[39:24]
	base[39:24]				
15:0	ht_prefetch1_	16	0x0	R/W	HT 总线可预取地址窗口 1,地址屏蔽的[39:24]
	mask[39:24]				

10.5.13 UNCACHE 地址窗口配置寄存器

地址窗口命中公式详见 10.5.7 节。

本窗口的地址是 HT 总线上接收到的地址。落在本窗口地址的读写命令,将不会被送往 SCACHE,也不会使一级 CACHE 发生失效,而是会被直接送至内存或是其它的地址空间,也即该地址窗口中的读写命令将不会维持 IO 的 CACHE 一致性。该窗口主要针对一些不会在 CACHE 中命中所以可以提高存问效率的操作,如显存的访问等。

偏移量: 0xf0

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 0 使能(内部访问)

表 10-51 HT 总线 Uncache 地址窗口 0 使能(内部访问)

位域	位域名称	位宽	复位值	访问	描述
31	ht_uncache0_en	1	0x0	R/W	HT 总线 uncache 地址窗口 0,使能信号
30	ht_uncache0_	1	0x0	R/W	HT 总线 uncache 地址窗口 1,映射使能信号
	trans_en				
29:0	ht_uncache0_	16	0x0	R/W	HT 总线 uncache 地址窗口 0,转译后地址的
	trans[53:24]				[53:24]

偏移量: 0xf4

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 0 基址(内部访问)

表 10-52 HT 总线 Uncache 地址窗口 0 基址(内部访问)

位域	位域名称	位宽	复位值	访问	描述
31:16	ht_uncache0_	16	0x0	R/W	HT 总线 uncache 地址窗口 0, 地址基址的[39:24]
	base[39:24]				
15:0	ht_uncache0_	16	0x0	R/W	HT 总线 uncache 地址窗口 0, 地址屏蔽的[39:24]
	mask[39:24]				

偏移量: 0xf8

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 1 使能(内部访问)

表 10-53 HT 总线 Uncache 地址窗口 1 使能(内部访问)

位域	位域名称	位宽	复位值	访问	描述
31	ht_uncache1_en	1	0x0	R/W	HT 总线 uncache 地址窗口 1,使能信号
30	ht_uncache1_	1	0x0	R/W	HT 总线 uncache 地址窗口 1,映射使能信号
	trans_en				
29:0	ht_uncache1_	16	0x0	R/W	HT 总线 uncache 地址窗口 1,转译后地址的
	trans[53:24]				[53:24]

偏移量: 0xfc

复位值: 0x00000000

名称: HT 总线 Uncache 地址窗口 1 基址(内部访问)

表 10-54 HT 总线 Uncache 地址窗口 1 基址(内部访问)

位域	位域名称	位宽	复位值	访问	描述
31:16	ht_uncache1_	16	0x0	R/W	HT 总线 uncache 地址窗口 1 , 地址基址的[39:24]
	base[39:24]				
15:0	ht_uncache1_	16	0x0	R/W	HT 总线 uncache 地址窗口 1 , 地址屏蔽的[39:24]
	mask[39:24]				

10.5.14 命令发送缓存大小寄存器

命令发送缓存大小寄存器用于观测发送端可用各个命令通道的缓存个数。

偏移量: 0x100

复位值: 0x00000000

名称: 命令发送缓存大小寄存器

表 10-55 命令发送缓存大小寄存器

位域	位域名称	位宽	复位值	访问	描述
31:24	B_CMD_txbuffer	8	0x0	R	发送端 B 通道命令缓存个数
2316	R_CMD_txbuffer	8	0x0	R	发送端 R 通道命令缓存个数
15:8	NPC_CMD_txbuffer	8	0x0	R	发送端 NPC 通道命令缓存个数
7:0	PC_CMD_txbuffer	8	0x0	R	发送端 PC 通道命令缓存个数

10.5.15 数据发送缓存大小寄存器

数据发送缓存大小寄存器用于观测发送端可用各个数据通道的缓存个数。

偏移量: 0x104

复位值: 0x00000000

名称: 数据发送缓存大小寄存器

表 10-56 数据发送缓存大小寄存器

位域	位域名称	位宽	复位值	访问	描述
31:24	Reserved	8	0x0	R	保留
2316	R_DATA_txbuffer	8	0x0	R	发送端 R 通道数据缓存个数
15:8	NPC_DATA_txbuffer	8	0x0	R	发送端 NPC 通道数据缓存个数
7:0	PC_DATA_txbuffer	8	0x0	R	发送端 PC 通道数据缓存个数

10.5.16 发送缓存调试寄存器

发送缓存调试寄存器用于人工设置 HT 控制器发送端缓冲区的个数,通过增或减的方式对不同的发送缓存个数进行调整。

偏移量: 0x108

复位值: 0x00000000

名称: 发送缓存调试寄存器

表 10-57 发送缓存调试寄存器

位域	位域名称	位宽	复位值	访问	描述
31	B_interleave	1	0x0	R/W	一致性写响应通道交错使能

					(片间互连模式时必须设置)
30	NOP_interleave	1	0x0	R/W	流控包交错使能(片间互连模式时必须设置)
29	Tx_neg	1	0x0	R/W	发送端缓存调试符号
					0: 增加相应个数
					1: 减少(相应寄存器个数+1)个
28	Tx_buff_adj_en	1	0x0	R/W	发送端缓存调试使能寄存器
					0->1: 使本寄存器的值产生一次增减效果
27:24	R_DATA_txadj	4	0x0	R/W	发送端 R 通道数据缓存增减个数
					当 tx_neg 为 0 时,增加 R_DATA_txadj 个;
					当 tx_neg 为 1 时,减少 R_DATA_txadj+1 个
23:20	NPC_DATA_txadj	4	0x0	R/W	发送端 NPC 通道数据缓存增减个数
					当 tx_neg 为 0 时,增加 NPC_DATA_txadj 个;
					当 tx_neg 为 1 时,减少 NPC_DATA_txadj+1 个
19:16	PC_DATA_txadj	4	0x0	R/W	发送端 PC 通道数据缓存增减个数
					当 tx_neg 为 0 时,增加 PC_DATA_txadj 个;
					当 tx_neg 为 1 时,减少 PC_DATA_txadj+1 个
15:12	B_CMD_txadj	4	0x0	R/W	发送端 B 通道命令缓存增减个数
					当 tx_neg 为 0 时,增加 B_CMD_txadj 个;
					当 tx_neg 为 1 时,减少 B_CMD_txadj+1 个
11:8	R_CMD_txadj	4	0x0	R/W	发送端 R 通道命令缓存增减个数
					当 tx_neg 为 0 时,增加 R_CMD_txadj 个;
					当 tx_neg 为 1 时,减少 R_CMD_txadj+1 个
7:4	NPC_CMD_txadj	4	0x0	R/W	发送端 NPC 通道命令/数据缓存增减个数
					当 tx_neg 为 0 时,增加 NPC_CMD_txadj 个;
					当 tx_neg 为 1 时,减少 NPC_CMD_txadj+1 个
3:0	PC_CMD_txadj	4	0x0	R/W	发送端 PC 通道命令缓存增减个数
					当 tx_neg 为 0 时,增加 PC_CMD_txadj 个;
					当 tx_neg 为 1 时,减少 PC_CMD_txadj+1 个

10.5.17 预加重和输出阻抗寄存器

调整 TX 端预加重和输出阻抗

偏移量: 0x10c

复位值: 0x00000030

名称: 预加重和输出阻抗寄存器

表 10-58 预加重和输出阻抗寄存器

位域	位域名称	位宽	复位值	访问	描述
7	csr_phy_tx_comp_ok	1	0x0	R	1: 输出阻抗自动校准完成
6	csr_phy_tx_code_en	1	0x1	R/W	0:输出阻抗自动校准
					1: 输出阻抗人工校准
5:4	csr_phy_tx_ncode	2	0x3	R/W	下拉阻抗
					csr_phy_tx_code_en=0: not care
					csr_phy_tx_code_en=1:人工设置
3:2	csr_phy_tx_pcode	2	0x0	R/W	上拉阻抗
					csr_phy_tx_code_en=0: not care
					csr_phy_tx_code_en=1:人工设置
1:0	csr_phy_tx_de_tap	2	0x0	R/W	预加重
					00: normal
					01 or 10: 3dB
					11: 6dB

10.5.18 HyperTransport 总线配置空间的访问方法

HyperTransport 接口软件层的协议与 PCI 协议基本一致,由于配置空间的访问直接与底层协议相关,具体访问细节略有不同。在表 9-5 中已列出,HT 总线配置空间的地址范围是 $0xFD_FE00_0000 \sim 0xFD_FFFF_FFFF$ 。对于 HT 协议中的配置访问,在龙芯 3B1500 中采用如下格式实现。

图 10-1 龙芯 3B1500 中 HT 协议的配置访问

10.6 HyperTransport 多处理器支持

龙芯 3B1500 处理器使用 HyperTransport 接口进行多处理器互联,并且硬件可以自动维护 2 个芯片之间的一致性请求。下面介绍两片龙芯 3B1500 处理器的互联方法。

两片龙芯 3号互联结构

根据固定路由算法的特性,我们在构建两片处理器互联时,有两种不同的方法。首先是 采用 8 位 HT 总线互联。在这种互联方式下,两个处理器之间只能采用 8 位 HT 互联。如下 所示:

图 10-2 两片龙芯 3B1500 8 位互联结构

此外,龙芯 3B1500 的 HT 总线最高可以采用 16 位宽度,因此还可以采用最大化带宽的 16 位互联方式。将龙芯 3B1500 中的 HT0 控制器设置为 16 位模式后,所有发到 HT0 控制器的命令都会被发往 HT0_LO,而不会像第一种互联方式一样按照路由表分别发至 HT0_HI 或是 HT0_LO。所以只需正确配置 CPU0 与 CPU1 的 16 位模式,并正确连接高低位总线,即可使用 16 位的 HT 总线互联方式。同时,该互联结构也支持使用 8 位的 HT 总线协议进行相互访问。该互联结构如下图所示:

图 10-3 两片龙芯 3B1500 16 位互联结构

11 低速 IO 控制器配置

龙芯 3B1500 I/O 控制器包括 PCI/PCI-X 控制器、LPC 控制器、UART 控制器、SPI 控制器、GPIO 以及配置寄存器。这些 I/O 控制器共享一个交叉开关端口,CPU 的请求经过地址译码后发送到相应的设备。

11.1 PCI/PCI-X 控制器

龙芯 3B1500 的 PCI/PCI-X 控制器既可以作为主桥控制整个系统,也可以作为普通 PCI/PCI-X 设备工作在总线上。龙芯 3B1500 的 PCI/PCI-X 控制器内置 PCI 仲裁器。

PCI/PCI-X 控制器的配置头位于 0x1FE00000 开始的 256 字节,如表 11-1 所示。

字节3 字节2 字节0 字节1 地址 Device ID 00 Vendor ID Status Command 04 Class Code Revision ID 08 **BIST** Header Type Latency Timer CacheLine Size 0CBase Address Register 0 10 Base Address Register 1 14 Base Address Register 2 18 Base Address Register 3 1C Base Address Register 4 20 Base Address Register 5 24 28 Subsystem ID Subsystem Vendor ID 2C 30 Capabilities Pointer 34 38 Minimum Grant Interrupt Pin Interrupt Line 3C Maximum Latency Implementation Specific Register(ISR40) 40 Implementation Specific Register(ISR44) 44 Implementation Specific Register(ISR48) 48 Implementation Specific Register(ISR4C) 4C Implementation Specific Register(ISR50) 50 Implementation Specific Register(ISR54) 54 Implementation Specific Register(ISR58) 58 PCIX Command Register E0 PCIX Status Register E4

表 11-1 PCIX 控制器配置头

龙芯 3B1500 的 PCIX 控制器支持三个 64 位窗口,由{BAR1,BAR0}、{BAR3,BAR2}、 {BAR5,BAR4}三对寄存器配置窗口 0、1、2 的基址。窗口的大小、使能以及其它细节由另外三个对应寄存器 PCI_Hit0_Sel, PCI_Hit1_Sel, PCI_Hit2_Sel 控制,具体位域请参见表 11-2。

表 11-2 PCI 控制寄存器

	表 11-2 PCI 控制奇怪商					
位域	字段名	访问	复位值	说明		
REG	G_40	1				
31	tar_read_io	读写 (写 1 清)	0	target 端收到对 IO 或者是不可预取区域的访问		
30	tar_read_discard	读写 (写 1 清)	0	0 target 端的 delay 请求被丢弃		
29	tar_resp_delay	读写	0	target 访问何时给出 delay/split 0: 超时后 1: 马上		
28	tar_delay_retry	读写	0	target 访问重试策略 0: 根据内部逻辑(见 29 位) 1: 马上重试		
27	tar_read_abort_en	读写	0	若 target 对内部的读请求超时,是否允许 target-abort 回应		
26:25	Reserved	-	0			
24	tar_write_abort_en	读写	0	若 target 对内部的写请求超时,是否允许 target-abort 回应		
23	tar_master_abort	读写	0	是否允许 master-abort		
22:20	tar_subseq_timeout	读写	000	target 后续延迟超时 000: 8 周期 其它: 不支持		
19:16	tar_init_timeout	读写	0000	target 初始延迟超时 PCI 模式下 0: 16 周期 1-7: 禁用计数器 8-15: 8-15 周期 PCIX 模式下超时计数固定为 8 周期,此处配置影响最大的 delay 访问数 0: 8 delay 访问 8: 1 delay 访问 9: 2 delay 访问 10: 3 delay 访问 11: 4 delay 访问 12: 5 delay 访问 13: 6 delay 访问 14: 7 delay 访问 15: 8 delay 访问		
15:4	tar_pref_boundary	读写	000h	可预取边界配置(以 16 字节为单位)		
13.4 tal_prei_boundary			50011	FFF: 64KB 到 16byte		

				1
				FFE: 64KB 到 32byte
				FF8: 64KB 到 128byte
				使用 tar_pref_boundary 的配置
3	tar_pref_bound_en	读写	0	0: 预取到设备边界
				1: 使用 tar_pref_boundary
2	Reserved	-	0	
				target split 写控制
1	tar_splitw_ctrl	读写	0	0: 阻挡除 Posted Memory Write 以外的访问
				1: 阻挡所有访问,直至 split 完成
				禁用 mater 访问超时
0	mas_lat_timeout	读写	0	0: 允许 master 访问超时
				1: 不允许
REC	G_44			
31:0	Reserved	-	-	
REC	G_48			
21.0	ton monding sos	读写	0	target 未处理完的请求号位向量
31:0	tar_pending_seq) 决与	U	对应位写 1 可清
REC	G_4C			
31:30	Reserved	-	-	
20	1 C)去 <i>信</i>	0	允许后续的读越过前面未完成的写
29	mas_write_defer	读写	0	(只对 PCI 有效)
20	1 1-6	读写	0	允许后续的读写越过前面未完成的读
28	mas_read_defer) 以与	0	(只对 PCI 有效)
				在外的最大 IO 请求数
27	mas_io_defer_cnt	读写	0	0: 由控制
				1:1
				master 支持在外读的最大数(只对 PCI 有效)
26:24	mas_read_defer_cnt	诗写	010	0: 8
20.24	mas_read_derer_ent	读写		1-7: 1-7
				注: 一个双地址周期访问占两项
23:16	err_seq_id	只读	00h	target/master 错误号
15	err_type	只读	0	target/master 出错的命令类型
13	en_type	八庆	U	0:
				出错的模块
14	err_module	只读	0	0: target
				1: master
13	system_error	读写	0	target/master 系统错(写 1 清)
12	data_parity_error	读写	0	target/master 数据奇偶错(写 1 清)
11	ctrl_parity_error	读写	0	target/master 地址奇偶错(写 1 清)
10:0	Reserved	-	-	
REG_	_50			
31:0	mas_pending_seq	读写	0	master 未处理完的请求号位向量

				对应位写 1 可清	
REG	G_54				
31:0	mas_split_err	读写	0	split 返回出错的请求号位向量	
REG	G_58				
31:30	Reserved	-	-		
20.28	ton onlit majority	读写	0	target split 返回优先级	
29.20	tar_split_priority) 决河	U	0 最高, 3 最低	
27.26		选定	0	master 对外的优先级	
27:20	mas_req_priority	读写	U	0 最高, 3 最低	
				仲裁算法(在 master 的访问和 target 的 split 返回间做仲裁)	
25	Priority_en	读写	0	0: 固定优先级	
				1: 轮转	
24:18	保留	-	-		
17	mas_retry_aborted	读写	0	master 重试取消(写 1 清)	
16	mas_trdy_timeout	读写	0	master TRDY 超时计数	
				master 重试次数	
15:8	mas_retry_value	读写	00h	0: 无限重试	
				1-255: 1-255 次	
				master TRDY 超时计数器	
7:0	mas_trdy_count	读写	00h	0: 禁用	
				1-255: 1-255 拍	

在发起配置空间读写前,应用程序应先配置好 PCIMap_Cfg 寄存器,告诉控制器欲发起的配置操作的类型和高 16 位地址线上的值。然后对 0x1fe80000 开始的 2K 空间进行读写即可访问对应设备的配置头。设备号根据 PCIMap_Cfg[15:0]从低到高优先编码得到。

配置操作地址生成见图 11-1。

图 11-1 配置读写总线地址生成

PCI/PCIX 仲裁器实现了两级轮转仲裁、总线停靠和损坏主设备的隔离。其配置和状态见 PXArb_Config 和 PXArb_Status 寄存器。PCI/PCIX 总线请求与应答线分配见表 11-3。

表	11-3 PCI/PCIX	总线请求与应答线分配
w	11-51 CI/1 CI/1	心况阴外一丛口况力癿

请求与应答线	描述
0	内部集成 PCI/PCIX 控制器
7:1	外部请求 6~0

基于轮转的仲裁算法提供两个级别,第二级整体作为第一级中的一员一起调度。当多个设备同时申请总线时每轮转完一次第一级设备,第二级中优先级最高的设备可以得到总线。

仲裁器被设计成任何时候只要条件允许就可以切换,对于一些不符合协议的 PCI 设备,这样做可能会使之不正常。使用强制优先级可以让这些设备通过持续请求来占有总线。

总线停靠是指当没有设备请求使用总线时是否选择其中一个给出允许信号。对于已经得到允许的设备而言,直接发起总线操作能够提高效率。 龙芯 2F 的 PCI 仲裁器提供两种停靠模式:最后一个主设备和默认主设备。如果在特殊场合下不能够停靠,可以将仲裁器设置为停靠到默认 0 号主设备(内部控制器),且依靠延迟为 0。

11.2 LPC 控制器

LPC 控制器具有以下特性:

- 符合 LPC1.1 规范
- 支持 LPC 访问超时计数器
- 支持 Memory Read、Memory write 访问类型
- 支持 Firmware Memory Read、Firmware Memory Write 访问类型(单字节)
- 支持 I/O read、I/O write 访问类型
- 支持 Memory 访问类型地址转换
- 支持 Serizlized IRQ 规范,提供 17 个中断源

LPC 控制器的地址空间分布见表 11-4:

表 11-4 LPC 控制器地址空间分布

地址名称	地址范围	大小
LPC Boot	0X1FC0_0000-0X1FD0_0000	1MByte
LPC Memory	0X1C00_0000-0X1E00_0000	32MByte
LPC I/O	0X1FF0_0000-0X1FF1_0000	64KByte
LPC Register	0X1FE0_0200-0X1FE0_0300	256Byte

LPC Boot 地址空间是系统启动时处理器最先访问的地址空间。这个地址空间支持 LPC Memory 或 Firmware Memory 访问类型。系统启动时发出哪种访问类型由 LPC_ROM_INTEL 引脚控制。LPC_ROM_INTEL 引脚上拉时发出 LPC Firmware Memory 访问,

LPC_ROM_INTEL 引脚下拉时发出 LPC Memory 访问类型。

LPC Memory 地址空间是系统用 Memory/Firmware Memory 访问的地址空间。LPC 控制器发出哪种类型的 Memory 访问,由 LPC 控制器的配置寄存器 LPC_MEM_IS_FWH 决定。处理器发往这个地址空间的地址可以进行地址转换。转换后的地址由 LPC 控制器的配置寄存器 LPC_MEM_TRANS 设置。

处理器发往 LPC I/O 地址空间的访问按照 LPC I/O 访问类型发往 LPC 总线。地址为地址空间低 16 位。

LPC 控制器配置寄存器共有 3 个 32 位寄存器,基地址为 0x1FE0_0200。配置寄存器的含义见表 11-5:

位域 字段名 说明 访问 复位值 REG0 REG0[31:31] SIRQ_EN 读写 0 SIRO 使能控制 LPC Memory 空间地址转换控制使 REG0[23:23] LPC_MEM_TRANS_EN 读写 0 能控制 LPC Memory 空间地址转换控制, 读写 0 REG0[22:16] LPC_MEM_TRANS 对应于 LPC 总线地址的[31:25] LPC_SYNC_TIMEOUT 读写 REG0[15:0] 0 LPC 访问超时计数器 REG1 LPC Memory 空间 Firmware REG1[31:31] LPC MEM IS FWH 读写 0 Memory 访问类型设置 读写 LPC SIRQ 中断使能 REG1[17:0] LPC_INT_EN 0 REG2 读写 REG2[17:0] LPC_INT_SRC 0 LPC SIRQ 中断源指示 REG3 写 0 LPC SIRQ 中断清除 REG3[17:0] LPC_INT_CLEAR

表 11-5 LPC 配置寄存器含义

11.3 UART 控制器

UART 控制器具有以下特性

- 全双工异步数据接收/发送
- 可编程的数据格式
- 16 位可编程时钟计数器

- 支持接收超时检测
- 带仲裁的多中断系统
- 仅工作在 FIFO 方式
- 在寄存器与功能上兼容 NS16550A

本模块有两个并行工作 UART 接口,功能寄存器完全一样,只是访问基址不同。

UARTO 寄存器物理地址基址为 0x1FE001E0。

UART1 寄存器物理地址基址为 0x1FE001E8。

11.3.1 数据寄存器(DAT)

中文名: 数据传输寄存器

寄存器位宽: [7:0]

偏移量: 0x00

复位值: 0x00

表 11-6 数据传输寄存器定义

位域	位域名称	位宽	访问	描述
7:0	Tx FIFO	8	W	数据传输寄存器

11.3.2 中断使能寄存器(IER)

中文名: 中断使能寄存器

寄存器位宽: [7:0]

偏移量: 0x01

复位值: 0x00

表 11-7 中断使能寄存器定义

位域	位域名称	位宽	访问	描述
7:4	Reserved	4	RW	保留
3	IME	1	RW	Modem 状态中断使能 '0' – 关闭 '1' – 打开
2	ILE	1	RW	接收器线路状态中断使能 '0' - 关闭 '1' - 打开
1	ITxE	1	RW	传输保存寄存器为空中断使能 '0' - 关闭 '1' - 打
				开
0	IRxE	1	RW	接收有效数据中断使能 '0' - 关闭 '1' - 打开

11.3.3 中断标识寄存器(IIR)

中文名: 中断源寄存器

寄存器位宽: [7:0]

 偏移量:
 0x02

 复位值:
 0xc1

表 11-8 中断源寄存器定义

位域	位域名称	位宽	访问	描述
7:4	Reserved	4	R	保留
3:1	II	3	R	中断源标志位,详见下表
0	INTp	1	R	中断标志位

表 11-9 中断控制功能表

Bit 3	Bit 2	Bit 1	优先级		中断源	中断复位控制
0	1	1	1st	接收线路状态	奇偶、溢出或帧错误,或 打断中断	读 LSR
0	1	0	2nd	接收到有效数据	FIFO 的字符个数达到 trigger 的水平	FIFO 的字符个数低 于 trigger 的值
1	1	0	2nd	接收超时	在 FIFO 至少有一个字符, 但在 4 个字符时间内没有 任何操作,包括读和写操 作	读接收 FIFO
0	0	1	3rd	传输保存寄 存器为空	传输保存寄存器为空	写数据到 THR 或者 多 IIR
0	0	0	4th	Modem 状态	CTS, DSR, RI or DCD.	读 MSR

11.3.4 FIFO 控制寄存器(FCR)

中文名: FIFO 控制寄存器

寄存器位宽: [7: 0] 偏移量: 0x02

复位值: 0xc0

表 11-10 FIFO 控制寄存器

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
位域	位域名称	位宽	访问	描述	
				接收 FIFO 提出中断申请的 trigger 值	
7:6	TL	2	W	'00'-1 字节 '01'-4 字节	
				'10'-8 字节 '11'-14 字节	
5:3	Reserved	3	W	保留	
2	Txset	1	W	'1' 清除发送 FIFO 的内容,复位其逻辑	
1	Rxset	1	W	'1' 清除接收 FIFO 的内容,复位其逻辑	

0	Reserved	1	W	保留
---	----------	---	---	----

11.3.5 线路控制寄存器(LCR)

中文名: 线路控制寄存器

寄存器位宽: [7: 0]

偏移量: 0x03

复位值: 0x03

表 11-11 线路控制寄存器

位域	位域名称	位宽	访问	描述
7	dlab	1	RW	分频锁存器访问位 '1' - 读写分频锁存器 '0' - 读写正常寄存器
6	bcb	1	RW	打断控制位 '1'-此时串口的输出被置为0(打断状态). '0'-正常操作
5	spb	1	RW	指定奇偶校验位 '0'-不用指定奇偶校验位 '1'-如果 LCR[4]位是 1 则传输和检查奇偶校验位为 0。如果 LCR[4]位是 0 则传输和检查奇偶校验验位为 1。
4	eps	1	RW	奇偶校验位选择 '0' - 在每个字符中有奇数个 1(包括数据和奇偶校验位) '1'-在每个字符中有偶数个1
3	pe	1	RW	奇偶校验位使能 '0'-没有奇偶校验位 '1'-在输出时生成奇偶校验位,输入则判断奇
2	sb	1	RW	定义生成停止位的位数 '0'-1个停止位 '1'-在5位字符长度时是1.5个停止位,其他长 度是2个停止位

				设定每个字符的位数
1:0	bec	2	RW	'00'-5 位 '01'-6 位
				'10'-7位 '11'-8位

11.3.6 MODEM 控制寄存器(MCR)

中文名: Modem 控制寄存器

寄存器位宽:[7: 0]偏移量:0x04复位值:0x00

表 11-12 Modem 控制寄存器

位域	位域名称	位宽	访问	描述
7:5	Reserved	3	W	保留
4	Loop	1	W	回环模式控制位 '0' - 正常操作 '1' - 回环模式。在在回环模式中,TXD 输出一直为 1, 输出移位寄存器直接连到输入移位寄存器中。其他连接如下。 DTR DSR RTS CTS Outl RI Out2 DCD
3	OUT2	1	W	在回环模式中连到 DCD 输入
2	OUT1	1	W	在回环模式中连到 RI 输入
1	RTSC	1	W	RTS 信号控制位
0	DTRC	1	W	DTR 信号控制位

11.3.7 线路状态寄存器(LSR)

中文名: 线路状态寄存器

寄存器位宽: [7: 0]偏移量: 0x05复位值: 0x00

表 11-13 线路状态寄存器

位域	位域名称	位宽	访问	描述
7	ERROR	1	R	错误表示位 '1'- 至少有奇偶校验位错误,帧错误或打断中断

				的一个。
				'0' - 没有错误
				传输为空标志位
			D	'1' – 传输 FIFO 和传输移位寄存器都为空。给传
6	TE	1	R	输 FIFO 写数据时清零
				'0'- 有数据
				传输 FIFO 为空标志位
_	and the second			'1' – 当前传输 FIFO 为空,给传输 FIFO 写数据
5	TFE	1	R	时清零
				'0'- 有数据
				打断中断标志位
4	DI		D	'1' –接收到 起始位+数据+奇偶位+停止位都
4	BI	1	R	是 0, 即有打断中断
				'0'- 没有打断
				帧错误标志位
3	FE	1	R	'1'- 接收的数据没有停止位
				'0' – 没有错误
				奇偶校验位错误标志位
2	PE	1	R	'1'- 当前接收数据有奇偶错误
				'0'- 没有奇偶错误
				数据溢出标志位
1	OE	1	R	'1'- 有数据溢出
				'0'— 无溢出
				接收数据有效标志位
0	DR	1	R	'0' – 在 FIFO 中无数据
				'1' – 在 FIFO 中有数据

对这个寄存器进行读操作时,LSR[4:1]和 LSR[7]被清零,LSR[6:5]在给传输 FIFO 写数 据时清零,LSR[0]则对接收 FIFO 进行判断。

11.3.8 MODEM 状态寄存器 (MSR)

中文名: Modem 状态寄存器

寄存器位宽: [7: 0]偏移量: 0x06复位值: 0x00

表 11-14 Modem 状态寄存器

位域	位域名称	位宽	访问	描述	
----	------	----	----	----	--

7	CDCD	1	R	DCD 输入值的反,或者在回环模式中连到 Out2
6	CRI	1	R	RI 输入值的反,或者在回环模式中连到 OUT1
5	CDSR	1	R	DSR 输入值的反,或者在回环模式中连到 DTR
4	CCTS	1	R	CTS 输入值的反,或者在回环模式中连到 RTS
3	DDCD	1	R	DDCD 指示位
2	TERI	1	R	RI 边沿检测。RI 状态从低到高变化
1	DDSR	1	R	DDSR 指示位
0	DCTS	1	R	DCTS 指示位

11.3.9 分频锁存器

中文名: 分频锁存器 1

寄存器位宽: [7:0]

偏移量: 0x00

复位值: 0x00

表 11-15 分频锁存器 1

位域	位域名称	位宽	访问	描述
7:0	LSB	8	RW	存放分频锁存器的低 8 位

中文名: 分频锁存器 2

寄存器位宽: [7:0]

偏移量: 0x01

复位值: 0x00

表 11-16 分频锁存器 2

位域	位域名称	位宽	访问	描述
7:0	MSB	8	RW	存放分频锁存器的高8位

11.4 SPI Flash 控制器

串行外围设备接口 SPI 总线技术是 Motorola 公司推出的多种微处理器、微控制器以及外围设备之间的一种全双工、同步、串行数据接口标准。

SPI 控制器具有以下特性:

- 全双工同步串口数据传输
- 支持到 4 个的变长字节传输
- 主模式支持
- 极性和相位可编程的串行时钟
- 支持系统启动

● 支持标准读、连续地址读、快速读、双路 I/O 等 SPI Flash 读模式

龙芯 3A 中 SPI 控制器模块寄存器物理地址基址为 0x1FE001F0。 龙芯 3B1500 中 SPI 控制器模块寄存器物理地址基址为 0x1FE00220。

11.4.1 控制寄存器(SPCR)

中文名: 控制寄存器

寄存器位宽: [7:0]

偏移量: 0x00

复位值: 0x10

表 11-17 控制寄存器

位域	位域名称	位宽	访问	描述
7	Spie	1	RW	中断输出使能信号 高电平有效
6	spe	1	RW	系统工作使能信号高电平有效
5	Reserved	1	RW	保留
4	mstr	1	RW	master 模式选择位,此位一直保持 1
3	cpol	1	RW	时钟极性位
2	cpha	1	RW	时钟相位,为1位则相位相反,为0则相同
1:0	spr	2	RW	sclk_o 分频设定,需要与 sper 的 spre 一起使用

11.4.2 状态寄存器(SPSR)

中文名: 状态寄存器

寄存器位宽: [7:0]

偏移量: 0x01

复位值: 0x05

表 11-18 状态寄存器

位域	位域名称	位宽	访问	描述
7	spif	1	RW	中断标志,1表示有中断申请,写1则清零
				写寄存器溢出标志位,1表示已经溢出,写1则清
6	wcol	1	RW	零
5:4	Reserved	2	RW	保留
3	wffull	1	RW	写寄存器满标,1表示已经满
2	wfempty	1	RW	写寄存器空标志,1表示空
1	rffull	1	RW	读寄存器满标志,1表示已经满
0	rfempty	1	RW	读寄存器空标志,1表示空

11.4.3 数据寄存器(TxFIFO)

中文名: 数据传输寄存器

寄存器位宽: [7: 0]偏移量: 0x02复位值: 0x00

表 11-19 数据传输寄存器

位域	位域名称	位宽	访问	描述
7:0	Tx FIFO	8	W	数据传输寄存器

11.4.4 外部寄存器(SPER)

中文名: 外部寄存器

寄存器位宽: [7: 0] 偏移量: 0x03

复位值: 0x00

表 11-20 外部寄存器

位域	位域名称	位宽	访问	描述	
7:6	icnt	2	RW	在传输完多少个字节后送出中断请求信号 00-1字节 01-2字节 10-3字节 11-3字节	
5:3	Reserved	4	RW	保留	
2	mode	1	RW	spi 接口模式控制 0: 采样与发送时机同时 1: 采样与发送时机错开半周期	
1:0	spre	2	RW	与 Spr 一起设定分频的比率	

表 11-21 分频系数

spre	00	00	00	00	01	01	01	01	10	10	10	10
spr	00	01	10	11	00	01	10	11	00	01	10	11
分频系数	2	4	16	32	8	64	128	256	512	1024	2048	4096

11.4.5 参数控制寄存器(SFC_PARAM)

中文名: SPI Flash 参数控制寄存器

寄存器位宽: [7: 0] 偏移量: 0x04

复位值: 0x21

表 11-22 SPI Flash 参数控制寄存器

位域	位域名称	位宽	访问	描述
7:4	clk_div	4	RW	时钟分频数选择(分频系数与{spre,spr}组合相同)
3	dual_io	1	RW	使用双 I/O 模式,优先级高于快速读模式
2	fast_read	1	RW	使用快速读模式
1	burst_en	1	RW	spi flash 支持连续地址读模式
0	memory_en	1	RW	spi flash 读使能,无效时 csn[0]可由软件控制。

11.4.6 片选控制寄存器(SFC_SOFTCS)

中文名: SPI Flash 片选控制寄存器

寄存器位宽: [7: 0]偏移量: 0x05复位值: 0x00

表 11-23 SPI Flash 片选控制寄存器

位域	位域名称	位宽	访问	描述
7:4	csn	4	RW	csn 引脚输出值
3:0	csen	4	RW	为 1 时对应位的 cs 线由 7:4 位控制

11.4.7 时序控制寄存器(SFC_TIMING)

中文名: SPI Flash 时序控制寄存器

寄存器位宽: [7: 0]偏移量: 0x06复位值: 0x03

表 11-24 SPI Flash 时序控制寄存器

位域	位域名称	位宽	访问	描述
7:2	Reserved	6	RW	保留
				SPI Flash 的片选信号最短无效时间,以分频后时
				钟周期 T 计算
1:0	tCSH	2	RW	00: 1T
				01: 2T
				10: 4T

	11: 8T
--	--------

11.4.8 SPI Flash 控制器结构

串行外围设备接口 SPI 总线技术是 Motorola 公司推出的多种微处理器、微控制器以及外围设备之间的一种全双工、同步、串行数据接口标准。

SPI Flash 控制器是在一个简单 SPI 控制器的基础上增加专门的硬件逻辑,使得控制器对外(软件)除了有若干 IO 寄存器外还有一段只读 memory 空间。这段 memory 空间映射到 SPI Flash 中,复位后不需要软件干预就可以直接访问。从而支持处理器从 SPI Flash 启动。

本模块结构如下图所示,由 AXI 接口、简单的 SPI 主控制器、SPI Flash 读引擎和总线选择模块组成。根据访问的地址和类型,AXI 上的合法请求转发到 SPI 主控制器或者 SPI Flash 读引擎中(非法请求被丢弃)。

图 11-2 SPI Flash 控制器结构

SPI 主控制器只接收单字节的读写访问,实现了 SPI 主设备的功能,并为 SPI Flash 读引擎提供参数配置。SPI 主控制器的结构如图 11-3 所示。系统寄存器包括控制寄存器,状态寄存器、外部寄存器和 SPI Flash 相关控制寄存器。分频器生成 SPI 总线工作的时钟信号,数据读、写缓冲器(FIFO)允许 SPI 同时进行串行发送和接收数据。

图 11-3 SPI 主控制器结构

SPI Flash 读引擎结构如图 11-3 所示。它将读请求打包成 SPI Flash 的读命令,读出数据 后返回。为了加快接口速度,SPI Flash 生产厂商在最早的 SPI Flash 协议基础上作了若干扩展。根据受支持的情况和实现开销,本引擎实现了三种增强模式,分别为

- 连续地址读:在传送完一个字节数据后 SPI Flash 自动准备好下一个地址的数据,只要片选不拉高就可以继续传输。
- 快速读模式:可工作在高频率的读模式,在命令地址后还附了一个字节的空数据供数据读出。
- 双 I/O 模式: 在发完命令编码后, SDI 和 SDO 两根线不再遵循 SPI 协议, 而是同时同向进行数据传输。

双 I/O 模式与快速读模式互斥, 二者只能选其一。连续地址读则与其它两种模式可共存。

图 11-4 SPI Flash 读引擎结构

11.4.9 SPI 主控制器外部接口时序图

如图 11-5 所示, SPI 主控制器发送数据时,数据提前半拍放在 MOSI 引线上,接着从设

备端用时钟边沿锁存数据。根据时钟极性(CPOL)和时钟相位(CPHA)的设定,有 4 种可能的时序关系(sper.mode=1)。

图 11-5 SPI 主控制器时序图

11.4.10 SPI Flash 访问时序图

● 标准读模式

图 11-6 SPI 标准读时序

● 快速读模式

图 11-7 SPI 快速读时序

● 双 I/O 模式

图 11-8 SPI 双 I/O 读时序

在所有模式下,若没有使能连续地址读,则 CS 将在传输完一个字节数据后拉高。

11.4.11 SPI Flash 控制器使用指南

本模块寄存器物理地址基址为 0x1FE00220。

SPI主控制器的读写操作

1. 模块初始化

- 设置片选控制寄存器(SFC_SOFTCS),并使能控制寄存器
- 停止 SPI 控制器工作,对控制寄存器 spcr 的 spe 位写 0
- 重置状态寄存器 spsr,对寄存器写入 8'b1100_0000
- 设置外部寄存器 sper,包括中断申请条件 sper[7:6]和分频系数 sper[1:0],具体参考寄存器说明
- 配置 SPI 时序,包括 spcr 的 cpol、cpha 和 sper 的 mode 位。mode 为 1 时是标准 SPI 实现,为 0 时为兼容模式。
- 配置中断使能, spcr 的 spie 位
- 启动 SPI 控制器,对控制寄存器 spcr 的 spe 位写 1

2. 模块的发送/传输操作

- 往数据传输寄存器写入数据
- 传输完成后从数据传输寄存器读出数据。由于发送和接收同时进行,即使 SPI 从设备没有发送有效数据也必须进行读出操作。

3. 中断处理

- 接收到中断申请
- 读状态寄存器 spsr 的值,若 spsr[2]为 1 则表示数据发送完成,若 spsr[0]为 1 则表示已经接收数据
- 读或写数据传输寄存器
- 往状态寄存器 spsr 的 spif 位写 1,清除控制器的中断申请

硬件 SPI Flash 读

1. 初始化

- 将 SFC_PARAM 的 memory_en 位写 1。当 SPI 被选为启动设备时此位复位为 1。
- 设置读参数(时钟分频、连续地址读、快速读、双 I/O、tCSH 等)。这些参数复位值 均为最保守的值。

2. 更改参数

如果所使用的 SPI Flash 支持更高的频率或者提供增强功能,修改相应参数可以大大加快 Flash 的访问速度。参数的修改不需要关闭 SPI Flash 读使能(memory_en)。具体参考寄存器说明。

混合访问 SPI Flash 和 SPI 主控制器

1. 使用多个 SPI 外设

SPI Flash 控制器提供 4 个软件可控制的片选 cs[3:0],其中 cs[0]专用于 SPI Flash。在龙芯 3B1500 中,SPI Flash 控制器的片选与 GPIO[3:0]对应。软件可通过 SFC_SOFTCS 控制寄存器设置 cs[3:1],来访问所选择的 SPI 设备,当 SFC_SOFTCS 的 csen 有效时,对应的 GPIO 位由 SPI Flash 控制器控制。如果软件选中了其它 SPI 设备,此时又出现 SPI Flash 读访问(比如取指),cs[3:1]会自动无效,Flash 访问结束后恢复原值。

2. 对 SPI Flash 进行读以外的访问

将 SPI Flash 读使能关闭后,软件就可直接控制 cs[0],并通过 SPI 主控制器访问 SPI 总线。这意味着在进行此操作时,不能从 SPI Flash 中取指。除了读以外, SPI Flash 还实现了很多命令(如擦除、写入),具体参见相关文档。

11.5 IO 控制器配置

配置寄存器主要用于配置 PCI/PIC-X 控制器的地址窗口、仲裁器以及 GPIO 控制器。表 10-25 列出了这些寄存器,表 10-26 给出寄存器的详细说明。这部分寄存器基地址为 0x1FE00100。

地 址	寄存器	说明
00	PonCfg	上电配置
04	GenCfg	常规配置
08	保留	
0C	保留	
10	PCIMap	PCI 映射
14	PCIX_Bridge_Cfg	PCI/X 桥相关配置
18	PCIMap_Cfg	PCI 配置读写设备地址
1C	GPIO_Data	GPIO 数据
20	GPIO_EN	GPIO 方向
24	保留	
28	保留	
2C	保留	
30	保留	
34	保留	
38	保留	
3C	保留	
40	Mem_Win_Base_L	可预取窗口基址低 32 位
44	Mem_Win_Base_H	可预取窗口基址高 32 位
48	Mem_Win_Mask_L	可预取窗口掩码低 32 位

表 11-25 IO 控制寄存器

4C	Mem_Win_Mask_H	可预取窗口掩码高 32 位
50	PCI_Hit0_Sel_L	PCI 窗口 0 控制低 32 位
54	PCI_Hit0_Sel_H	PCI 窗口 0 控制高 32 位
58	PCI_Hit1_Sel_L	PCI 窗口 1 控制低 32 位
5C	PCI_Hit1_Sel_H	PCI 窗口 1 控制高 32 位
60	PCI_Hit2_Sel_L	PCI 窗口 2 控制低 32 位
64	PCI_Hit2_Sel_H	PCI 窗口 2 控制高 32 位
68	PXArb_Config	PCIX 仲裁器配置
6C	PXArb_Status	PCIX 仲裁器状态
70		
74		
78		
7C		
80~f0	Chip configure related	芯片配置相关寄存器

表 11-26 寄存器详细描述

位域	字段名	访问	复位值	说明
CR00:	PonCfg			
15:0	pcix_bus_dev	只读		PCIX Agent 模式下 CPU 取指所使用的总 线、设备号
23:16	pon_pci_configi	只读	pci_configi	PCI_Configi 引脚值
31:24	保留	只读		
CR04:	保留			
31:0	保留	只读	0	
CR08:	保留			
31:0	保留	只读	0	
CR10:	PCIMap			
5:0	trans_lo0	读写	0	PCI_Mem_Lo0 窗口映射地址高 6 位
11:6	trans_lo1	读写	0	PCI_Mem_Lo1 窗口映射地址高 6 位
17:12	trans_lo2	读写	0	PCI_Mem_Lo2 窗口映射地址高 6 位
31:18	保留	只读	0	
CR14:	PCIX_Bridge_Cfg			
5:0	pcix_rgate	读写	6'h18	PCIX 模式下向 DDR2 发读取数门限
6	pcix_ro_en	读写	0	PCIX 桥是否允许写越过读
31:18	保留	只读	0	

CD 10.	DCD4 Cf-			
15:0	PCIMap_Cfg dev_addr	读写	0	PCI 配置读写时 AD 线高 16 位
16		读写	0	配置读写的类型
	conf_type 保留	只读	0	印具供与的大生
31:17		八庆	0	
CR1C	: GPIO_Data			
15:0	gpio_out	读写	0	GPIO 输出数据
31:16	gpio_in	读写	0	GPIO 输入数据
CR20:	GPIO_EN			
15:0	gpio_en	读写	FFFF	高为输入,低输出
31:16	保留	只读	0	
CR3C	: 保留		'	
31:0	保留	只读	0	保留
CR24,	2C,30,34,38:保留			
见表 1	.1-3			
CR50,	54/58,5C/60,64: PCI_Hit*	*_Sel_*		
0	保留	只读	0	
2:1	pci_img_size	读写	2'b11	00: 32 位; 10: 64 位; 其它: 无效
3	pref_en	读写	0	预取使能
11:4	保留	只读	0	
62:12	bar_mask	读写	0	窗口大小掩码(高位1,低位0)
63	burst_cap	读写	1	是否允许突发传送
CR68:	PXArb_Config			
0	device_en	读写	1	外部设备允许
1	disable_broken	读写	0	禁用损坏的主设备
				总线停靠到默认主设备
				0: 停靠到最后一个主设备
2	default_mas_en	读写	1	1: 停靠到默认主设备
5:3	default_master	读写	0	总线停靠默认主设备号
				从没有设备请求总线开始到触发停靠默认
				设备行为的延迟
				00: 0 周期
				01: 8 周期
				10: 32 周期
7:6	park_delay	读写	2'b11	11: 128 周期
15:8	level	读写	8'h01	处于第一级的设备
		读写	0	强制优先级设备

				为 1 的位对应的 PCI 设备在得到总线后可			
				以通过持续请求来占住总线			
31:13	保留	只读	0				
CR6C: I	PXArb_Status						
7:0	broken_master	只读	0	损坏的主设备(改变禁用策略时清零)			
10:8	Last_master	只读	0	最后使用总线的主设备			
31:11	保留	只读	0				
CR80: C	Thip config(见 2.6 节)	,					
CR90: C	Chip sample(见 2.6 节)						
CRa0: 1	呆留						
CRb0: (CRb0: (见 2.6 节)						
CRc0:(见 2.6 节)							
CRd0: (〔见 2.6 节〕						