W = emgr(f,g,s,t,w,pr,nf,ut,us,xs,um,xm,dp);

emgr – Empirical Gramian Framework (Version 5.4)

		99.		•			,
Mandatory Arguments				Option	Flags		
f System Vector Field	(Handle)	x = f(x,u,p,t)	i.e.: $f = @(x,u,p,t) A*x+B*u+F*p;$	nf(1)	Trajectory Centering	nf(8)	Extra Input (Wo,Wx,Ws,Wi,Wj only)
g Output Functional	(Handle)	y = g(x,u,p,t)	i.e.: $g = @(x,u,p,t) C*x+D*u;$		None (Default)		 No Extra Input (Default)
	1	y = x			1 Initial State		1 Parameter Perturbation Only
s System Dimensions	(Vector)	s = [M, N, Q]	(Inputs, States, Outputs)		2 Final Steady State	nf(9)	Center Param. Scales (Ws,Wi,Wj only)
t Time	(Vector)	t = [h,T]	(Time Step, Time Horizon)		3 Arithmetic Average		0 No Centering (Default)
w Gramian Type	(Character)			4 Root-Mean-Squared		 Arithmetic Mean Centering
	'c'	Empirical Controllability Gramian (returns Wc)			5 Midrange		2 Logarithmic Mean Centering
	'o'	Empirical Observability Gramian (returns Wo) Empirical Cross Gramian (returns Wx)		nf(2)	Input Scale Sequence O Single (Default)	nf(10) Ws	Gramian variant (Ws,Wi,Wj only)
	'x'						0 Input-State Average (Default)
	'У'	Empirical Linear C	Empirical Linear Cross Gramian (returns Wy)		1 Linear	Ws	1 Input-Output Average
	's'	Empirical Sensitivity Gramian (returns {Wc,Ws}) Empirical Identifiability Gramian (returns {Wo,Wi})			2 Geometric	Wi, Wj	0 Detailed Schur-Complement (Default)
	'i'				3 Logarithmic	Wi, Wj	1 Approximate Schur-Complement
	'j'	Empirical Joint Gra	amian (returns {Wx,Wj})		4 Sparse	nf (11)	Partitioned cross Gramian (Wx,Wj only)
Optional Arguments				nf(3)	State Scale Sequence		o Full cross Gramian
pr Parameters	(Vector)	Set of Parameter Columns ('s','i','j' requires two)			0 Single (Default)1 Linear		<n cross="" gramian="" partition="" size<="" td=""></n>
	(Matrix)					nf(12)	
nf Options Flags	(Vector)	Twelve Components (Default: $\mathbf{nf} = 0$), see Option Flags			2 Geometric		o Full cross Gramian
ut Input Function	(Handle)	Pseudorandom Binary			3 Logarithmic		>0 Partition running index
					4 Sparse		
	1	Delta Impulse		nf(4)	Input Transformation	Custom Solver	
S. 1 S. 1 .	ω (C I)	Exponential Chirp			o Unit (Default)		variable ODE to a handle with signature:
us Steady-State Input	(Scalar)	Uniform Steady-State Input (Default: us = 0)			1 Inverse	y = solver(f,g,t,x,u,p); Default: RK - SSP32	
	(Vector)	Individual Steady-State Input (J x 1)		nf(5)	State Transformation		
xs Steady State	(Scalar)	Uniform Steady State (Default: xs = 0) Individual Steady States (N x 1)			0 Unit (Default)	Minimal Usage: W = emgr(f,g,s,t,w);	
	(Vector)			- (-)	1 Inverse	About Info. V - amout/vousion!).	
um Input Scales	(Scalar)		Input Scales (Default: um = 1)	nf(6)	Normalizing	About Info: V = emgr('version'); More info at: http://gramian.de	
	(Vector) (Matrix)	Custom Input Sca	m Input Scales (J x 1)		None (Default)		
Stoady State Scales		•			1 Jacobi		
xm Steady-State Scales	(Scalar) (Vector)	Uniform Maximum Steady-State Scales (Default: xm = 1) Individual Maximum Steady-State Scales (N x 1)		6 (7)	2 Steady-State Non-Symmetric Cross Gramian (Wx,Wy,Wj only)		
	(Matrix)	Custom Steady-St	-	nf(7)	Off (Default)	iiiiiaii (VVX)	, wy, wy j Only j
dp Dot Product	(Matrix)		inner product $z = dp(x,y)$		1 Non-Sym. Cross Gramian		
up Doct Todacc	(Hariule)	rianule to custom	inner product Z = up(x,y)		1 Non-Synn. Closs Grain	iuii	

Default Matrix product