

Nome: Werikson Frederiko de Oliveira Alves Matrícula: 96708 Turma: 2 Data: 18/09/2020

ROTEIRO DE AULA PRÁTICA 1

DIODO - SIMULAÇÃO

MATERIAL

01 - Diodo 1N4007 01 - Resistor de 1kΩ

OBJETIVOS:

Introduzir os conceitos básicos sobre diodo. Levantar a curva característica de um diodo.

PARTE TEORICA:

- 1- O que é a dopagem de um semicondutor?
- 2 O que são semicondutores tipo n e tipo p?
- 3 De que forma a temperatura altera a condutividade elétrica de um semicondutor?
- 4 O que ocorre imediatamente após a formação de uma junção pn?
- 5 Sob que condições um diodo entra em condução ou em bloqueio?
- 6- Qual o valor típico de tensão que deve ser aplicada a um diodo de germânio para que ele conduza? E para o diodo de silício?

PARTE PRÁTICA:

- a) Monte o circuito da figura (DIODO 1N4007).
- b) Ajuste a tensão da fonte de alimentação Vf e preencha os quadros. Meça VR (TENSÃO NO RESISTOR) e Id.

Região direta:

OBS: VD - Tensão do diodo / Vf - Tensão direta / VRf - Tensão reversa / VR - Tensão no resistor /Id - Corrente do diodo

Vf (V)	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7
VD (V)	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
VR (V)	0	0	0	0	0	0	0	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
Id(mA)	0	0	0	0	0	0	0	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
Vf (V)	1,8	1,9	2	2,2	2,4	2,6	2,8	3	3,5	4	4,5	5	5,5	6	6,5	7	7,5	8
VD (V)	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
VR (V)	1,1	1,2	1,3	1,5	1,7	1,9	2,1	2,3	2,8	3,3	3,8	4,3	4,8	5,3	5,8	6,3	6,8	7,3
Id(mA)	1,1	1,2	1,3	1,5	1,7	1,9	2,1	2,3	2,8	3,3	3,8	4,3	4,8	5,3	5,8	6,3	6,8	7,3

Vf (V)	8,5	9	9,5	10
VD (V)	0,7	0,7	0,7	0,7
VR (V)	7,8	8,3	8,8	9,3
Id(mA)	7,8	8,3	8,8	9,3

Região reversa:

Vf (V)	0	-0,1	-0,2	-0,3	-0,4	-0,5	-0,6	-0,7	-0,8	-0,9	-1	-1,5	-2
VD (V)	0	-0,1	-0,2	-0,3	-0,4	-0,5	-0,6	-0,7	-0,8	-0,9	-1	-1,5	-2
VR (V)	0	0	0	0	0	0	0	0	0	0	0	0	0
Id(mA)	0	0	0	0	0	0	0	0	0	0	0	0	0
10(11111)	Ü	Ü	Ü	Ü	Ü	Ů	Ü	Ü	Ü			Ů	

Vf (V)	-2,5	-3	-3,5	-4	-4,5	-5	-5,5	-6,0	-7	-8	-9	-10	-15	-20
VD (V)	-2,5	-3	-3,5	-4	-4,5	-5	-5,5	-6,0	-7	-8	-9	-10	-15	-20
VR (V)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Id(mA)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- c) Com os dados obtidos nos quadros, construa a curva característica do diodo (VD X ID).
- d) Compare a curva obtida com a curva teórica do diodo (polarização direta e polarização reversa). Conclua suas observações.
- e) Coloque os resultados da simulação:
 - 1. Esquema elétrico.
- 2. Diagramas nos principais pontos. Explique detalhadamente os resultados da simulação e seus valores.
- f) Conclua seus resultados e observações.

Rspostas da parte teórica

- 1) A dopagem de um semicondutor é um processo químico no qual são adicionados impurezas em algum elemento, de forma que será alterada as caracteristicas relacionadas a condução de corrente do mesmo.
- 2) Os semicondutores do tipo p são aqueles nos quais ocorre a dopagem com impurezas de cargas majoritarias positivas. Já os materiais do tipo tipo n são materiais com cargas majoritarias negativas.
- 3) Ao aumentaar a temperatura de um semicondutor, ocorre o fornecimento de energia para o sistema, fazendo com que haja uma liberação de eletrons na camada de valência, aumentando a condutividade do material.
- Logo após a formação de uma junção pn, é possivel observar uma diferença de potencial entre os lados N e P.
- 5) O diodo entra em condução quando é polarizado diretamente, ou seja, ao colocarmos um potencial elétrico maior no lado com abundancia de cargas positivas ele irá conduzir. Caso contrário ele irá bloquear.
- 6) 0,3 V; 0,7 V

Rspostas da parte prática

a) Simulação feita no Simulink:

- b) Tabela preenchida acima.
- c) Curva obtida a partir da Simulação:

d), e) e f)A curva simulada se assemelha muito a curva teórica do diodo, logo, comparando ambos os gráficos é possível observar e verificar que o diodo não conduz corrente até que a tensão atinja a tensão de joelho (neste caso 0,7 V), e ao superar esse valor o módulo da corrente tende a aumentar rapidamente. Já para a tensão reversa, a corrente permanece praticamente zerada, pois junto com o aumento do potencial reverso (Vr) ocorre o aumento da região de depleção no diodo, entretanto, ao atingir um determinado valor de potencial reverso o diodo entra na região zener e passa a conduzir uma corrente de módulo mais elevado em relação a antes.

Polarização Direta:

Polarização Reversa:

