Règle de Gillespie

Type d'hybridation	$\eta = [m(\sigma) + nE]$	Arrangement spatiale	Angle de liaison	Géométrie	Exemples
sp	2+0=2	Linéaire	180°	x — A — X linéaire	BeH ₂ ; MgCl ₂ ; CO ₂ ; CaCl ₂
sp^2	3 + 0 = 3	Triangulaire plan	120°	Plan triangulaire	AlCl ₃ ; BH ₃ ; COCl ₂ ; CH ₂ =CH ₂
	2 + 1 = 3	Triangulaire plan	120°	Angulaire	SO ₂ ; NO ₃ ⁽⁻⁾ ClO ₃ ⁽⁻⁾ ; SnCl ₂
sp^3	4 + 0 = 4	Tétraédrique	109°30	X X X X X X Y X Y X Y Y Y Y Y Y Y Y Y Y	CH ₄ ; SiH ₄ CHCl ₃ : SO ₄ ⁽²⁻⁾
	3 + 1 = 4	Tétraédrique	107°30	Pyramide trigonale	NH ₃ ; PCl ₃ POCl ₂ ;
	2 + 2 = 4	Tétraédrique	104°30	Angulaire	H ₂ O; ClO ₂ ⁽⁻⁾ ; H ₂ S; SOCl ₂

 $\eta = nombre \ de \ liaisons \ \sigma \ de \ l'atome \ central \ + \ nombre \ de \ doublets \ non \ liants$