凉心模拟 Day1

DL24

题目名称	餐馆	烯烃	三米诺
源程序文件名	restaurant.pas/c/cpp	olefin.pas/c/cpp	tromino.pas/c/cpp
输入文件名	restaurant.in	olefin.in	tromino.in
输出文件名	restaurant.out	olefin.out	tromino.out
每个测试点时限	1s	3s	1s
内存限制	256MB	512MB	512MB
测试点 (或包) 数目	5	10	10
每个测试点分值	见题目	10	10
题目类型	传统型	传统型	传统型
是否有附加文件	否	是	否

评测机配置:

Ubuntu 16.04 LTS

Intel Core i
5-4590 CPU @ $3.7\mathrm{GHz}$

RAM 3864MiB

gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1 16.04.4)

自行本地评测时,时间限制以标程最慢点两倍为准。

对于输入数据较多的题目,请使用较为快速的读入方式。

1 餐馆 (restaurant)

1.1 题目背景

铜企鹅是企鹅餐馆的老板,他正在计划如何使得自己本年度收益增加。

1.2 题目描述

共有 n 种食材,一份食材 i 需要花 t_i 小时**不间断地**进行播种,施肥,直至收获。当然,一份食材 i 是可以直接卖掉得到 w_i 块钱的。

招牌菜共有 m 种,一份招牌菜 i **需要消耗一定的食材**,花 T_i 小时**不间断地**来烹饪,叫卖,并最终卖出得到 W_i 块钱。

整个季度换算下来一共有 T_{max} 小时可供你使用,铜企鹅需要在这期间赚到最多的钱,这样他才有足够多的钱来 steam 剁手,或者氪金手游。

1.3 格式

1.3.1 输入格式

第一行一个整数 T,表示数据组数。

令 i 表示为当前数据内行数。

第一行三个整数 n, m, T_{max} , 含义如题所示。

第二行至第 n+1 行,每行两个整数 t_{i-1}, w_{i-1} ,含义如题所示。

第 n+2 行至第 n+m+1 行,每行两个整数 T_{i-n-1}, W_{i-n-2} ,含义如题所示。

第 n+m+2 行至第 n+2m+1 行, 每行 n 个整数, 第 j 个数 d_j 表示招牌菜 i-n-m-1 需要 d_i 个食材 j。

1.3.2 输出格式

对于每组数据,输出一行一个整数,表示你所能赚到的最多的钱。

1.4 样例

1.4.1 样例输入

3

1 1 48

2 2000

9 21864

5

4 4 46

17 52

4 36

5 43

16 62

9 31659

1 20431

4 623

1 11961

4 5 3 5

5 4 3 4

3 3 3 3

4 4 5 5

10 0 48

10 41

18 48

2 14

22 65

12 77

7 48

4 85

2 61

24 85

8 34

1.4.2 样例输出

53728

410

1464

1.5 数据范围

Subtask	分值	$n \leq$	$m \leq$	$T \leq$
1	3	1	1	0
2	20	1	1	5
3	10	4	4	5
4	17	2000	0	5
5	50	2000	2000	4

对于 100% 的数据,保证 $0 < t_i, T_i \le T_{max} \le 5000, 0 \le w_i, W_i \le 10^9$,每份招牌菜使用的食材的个数总数不超过 10^5 。

2 烯烃 (olefin)

2.1 题目背景

银企鹅非常擅长化学。有一天他在试图命名一个巨大的单烯烃分子的时候,想到了一个问题。

2.2 题目描述

给你一棵树,一些边有标记,对于每条有标记的边,在树中找到包含这 条边的一条最长链,并输出长度。

2.3 格式

2.3.1 输入格式

第一行一个整数 id 表示测试点的编号。

多组数据,第二行一个整数 T 表示数据组数。

对于每组数据,第一行两个整数 n, m 表示节点的个数,和被标记的边的个数。

我们规定 1 是根,第二行 n-1 个整数给出 $2 \sim n$ 父亲的编号,保证 $fa_i < i$ 。

第三行 m 个整数范围在 [2,n] 表示哪个点的父边被标记过。

2.3.2 输出格式

对于每组数据输出一行 m 个整数,必须与输入的边顺序一致,给出的是在这条边必选的情况下树中最长链的长度。

2.4 样例

2.4.1 样例输入

0 1 10 3 1 2 3 1 4 6 7 3 8 10 7 9

2.4.2 样例输出

8 8 6

另有一个样例, 见下发文件。

2.5 数据范围

测试点	$n \leq$	$m \leq$	$T \leq$	特殊约定
1, 2	100	n-1	100	无
3,4	10^{5}	10	100	无
5	10^{5}	n-1	100	树是一条链
6	10^{5}	n-1	100	所有 $fa_i = 1$
7, 8, 9, 10	10^{5}	n-1	100	无

3 三米诺 (tromino)

3.1 题目背景

金企鹅同学非常擅长用 1×2 的多米诺骨牌覆盖棋盘的题。有一天,正在背四六级单词的他忽然想: 既然两个格子的积木叫"多米诺 (domino)",那么三个格子的的积木一定叫"三米诺 (tromino)"了! 用三米诺覆盖棋盘的题怎么做呢?

3.2 题目描述

用三米诺覆盖 $3 \times n$ 的矩形棋盘,共多少种方案? 三米诺可旋转;两种方案不同当且仅当这两种图案直接覆盖在一起无法重叠。

例如 n=2 时, 共 3 种方案:

用三米诺覆盖 3*2 棋盘

3.3 格式

3.3.1 输入格式

一行一个整数 $n(n \le 10^{40000})$, 表示棋盘列数。

3.3.2 输出格式

一行一个整数,表示方案数,对998244353取模。

- 3.4 样例
- 3.4.1 样例 1 输入

2

3.4.2 样例 1 输出

3

3.4.3 样例 2 输入

3

3.4.4 样例 2 输出

10

3.4.5 样例 3 输入

29

3.4.6 样例 3 输出

543450786

3.5 数据范围

对于 10% 的数据, $n \le 5$;

对于 30% 的数据, $n \le 10^6$;

对于 40% 的数据, $n \le 20001000$;

对于 60% 的数据, $n \le 10^9$;

对于 80% 的数据, $n \le 10^{1000}$

对于 100% 的数据, $n \le 10^{40000}$ 。