# Assignment 6 Probability and random Variables

Shreyas Wankhede

Indian Institute of Technology Hyderabad

May 23, 2022



#### Outline

Example Question

Explanation

## **Example Question**

#### Papoulis book example 4.5

A telephone call occurs at random in the interval (0, 1). In this experiment. the outcomes are time distances t between 0 and 1 and the probability that t is between t1 and t2 is given by

$$P\{t_1 \le t \le t_2\} = t_2 - t_1$$

We define the random variable x such that

$$x(t) = t \quad 0 \le t \le 1$$



## Explanation

Thus the variable t has a double meaning: It is the outcome of the experiment and the corresponding value x(t) of the random variable:x. We shall show that the distribution function F(x) of x is a ramp as in Fig. 4-4. If x > 1, then  $X(t) \le x$  for every outcome of. Hence,

$$F(x) = P\{X \le x\} = P\{0 \le t \le 1\} = P(S) = 1$$



If 
$$x > 1$$
, then  $X(t) \le x$  for every outcome. Hence,  $F(x) = P\{X \le x\} = P\{0 \le t \le 1\} = P(S) = 1$ 

If 
$$0 \le x \le 1$$
, then  $X(t) \le x$  for every  $t$  in the interval  $(0, x)$ . Hence,  $F(x) = P\{X \le x\} = P\{0 \le t \le x\} = x \quad 0 \le x \le 1$ 

If 
$$x < 0$$
, then  $\{X \le x\}$  is the impossible event for  $x(t) \ge 0$ . Hence,  $F(x) = P\{X \le x\} = 0$   $x < 0$ 

