Práctica 3:

Transformaciones lineales. Continuación

- 1. Sea V el espacio vectorial de los números complejos y $\mathbb K$ el cuerpo de los números reales. Con las operaciones usuales, V es un espacio vectorial sobre \mathbb{K} . Describir explícitamente un isomorfismo de este espacio con \mathbb{R}^2 .
- 2. Una matriz $n \times n$, $A = (a_{ij})_{i,j=1}^n$ con entradas en $\mathbb C$ tal que $A = \overline{A}^t$, i.e. $a_{ij} = \overline{a_{ji}}$, para todos $i, j = 1, \cdots, n$ se dice Hermitiana.

Sea W el conjunto de todas las matrices Hermitianas 2×2 .

- i) Verificar que W es un espacio vectorial sobre \mathbb{R} .
- ii) Verificar que la aplicación

$$(x, y, z, t) \mapsto \begin{bmatrix} t + x & y + iz \\ y - iz & t - x \end{bmatrix}$$

es un isomorfismo de \mathbb{R}^4 en W.

- 3. Mostrar que $\mathbb{K}^{m \times n}$ es isomorfo a \mathbb{K}^{mn} .
- 4. Sean V y W dos espacios vectoriales de dimensión finita sobre \mathbb{K} . Probar que V y W son isomorfos si y sólo $\operatorname{sidim} V = \operatorname{dim} W$.
- 5. Sea T la transformación lineal de \mathbb{R}^3 en \mathbb{R}^2 definida por

$$T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 - x_1).$$

- i) Si \mathcal{B} es la base ordenada estándar de \mathbb{R}^3 y \mathcal{B}' es la base ordenada estándar para \mathbb{R}^2 , determinar la matriz de T relativa al par $(\mathcal{B}, \mathcal{B}')$.
- *ii*) Si $\mathcal{B} = \{(1,0,-1),(1,1,1),(1,0,0)\}$ y $\mathcal{B}' = \{(0,1),(1,0)\}$ ¿Cuál es la matriz de T relativa a al par $(\mathcal{B}, \mathcal{B}')$.
- 6. Sea T un operador lineal sobre \mathbb{K}^n y sea A la matriz de T relativa a la base estándar de \mathbb{K}^n . Sea W el subespacio de \mathbb{K}^n generado por los vectores columnas de A. ¿Qué relación existe entre W y T?
- 7. Sea V un espacio vectorial de dimensión finita sobre el campo \mathbb{K} y sean S y T operadores lineales sobre V. Probar que existen dos bases ordenadas \mathcal{B} y \mathcal{B}' en V tales que $[S]_{\mathcal{B}} = [T]_{\mathcal{B}'}$ si y sólo si existe un operador lineal inversible U sobre V tal que $T = USU^{-1}$.
- 8. En \mathbb{R}^3 , sean $v_1 = (1, 0, 1)$, $v_2 = (0, 1, 2)$ y $v_3 = (-1, -1, 0)$.
 - i) Si f es un funcional lineal sobre \mathbb{R}^3 tal que $f(v_1) = 1$, $f(v_2) = -1$ y $f(v_3) = 3$ y si v = (a, b, c), hallar
 - ii) Describir explícitamente un funcional lineal f sobre \mathbb{R}^3 tal que $f(v_1 = f(v_2) = 0$ pero $f(v_3) \neq 0$.
 - iii) Sea f cualquier funcional lineal tal que $f(v_1) = f(v_2) = 0$ pero $f(v_3) \neq 0$. Si v = (2, 3, -1), muestre que $f(v) \neq 0$.
- 9. Sea $\mathcal{B} = \{(1,0,-1), (1,1,1), (2,2,0)\}$ una base de \mathbb{C}^3 . Hallar la base dual de \mathcal{B} .
- 10. Sean $v_1=(1,0,-1,2)$ y $v_2=(2,3,1,1)$ y sea $W=<\{v_1,v_2\}>$. ¿Qué funcionales lineales de la forma $f(x_1, x_2, x_3, x_4) = c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$ están en el anulador de W?.
- 11. Sea $V = \mathcal{M}_{2\times 2}(\mathbb{R})$ y sean

$$B = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Sea W el subespacio de V que consiste de todas las matrices A tales que AB = 0. Sea f, un funcional lineal sobre V que está en el anulador de W. Supongamos que f(I) = 0 (I matriz identidad) y f(C) = 3. Hallar f(B).

- 12. Sean W_1 y W_2 subespacios de un espacio vectorial V de dimensión finita.
 - i) Probar que $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$. ii) Probar que $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$.
- 13. Sea V un espacio vectorial de dimensión finita sobre \mathbb{K} y sea W un subespacio de V. Si f es un funcional lineal sobre W, pruebe que existe un funcional lineal g sobre V tal que $g(v) = f(v), \forall v \in W$.

14. Sea $v \in V$ espacio vectorial, entonces v induce un funcional lineal L_v en V^* definido por

$$L_v: V^* \to \mathbb{K}$$

$$f \mapsto L_v(f) = f(v)$$

- a) Mostrar que L_v es lineal.
- b) Probar que si V es de dimensión finita y $v \neq 0$, entonces existe un funcional lineal f tal que $f(v) \neq 0$.
- c) Probar que si V es de dimensión finita, la aplicación $v\mapsto L_v$ es un isomorfismo de V en V^{**} . V^{**} se conoce como el doble dual de V.
- d) Probar que si L es un funcional lineal sobre el espacio dual V^* del espacio vectorial V de dimensión finita, entonces existe un único vector $v \in V$ tal que L(f) = f(v) para todo $f \in V^*$.
- e) Mostrar que en un espacio vectorial V de dimensión finita, toda base de V^* es la dual de alguna base de V.