Bases de Datos

3.- Modelo Relacional

IES La Encantá

Relación 1:N

- La clave primaria de la entidad 1 se incluye en la entidad N como clave ajena.
 - Se añade los atributos de la relación

 $A(\underline{a0}, a1, b0^*)$ $B(\underline{b0}, b1)$

pk:a0 pk:b0

 $fk:b0 \rightarrow B$

Ejemplo 1:N

- PERSONA (<u>dni</u>, nombre, dirección)
 - pk: dni
- TELEFONO (<u>numero</u>, propio, dni)
 - pk: numero
 - fk: dni → PERSONA

Ejemplo 1:N

- PERSONA (<u>dni</u>, nombre, dirección)
 - pk: dni
- TELEFONO (<u>numero</u>, propio, dni)
 - pk: numero
 - VNN: dni
 - fk: dni → PERSONA

Ejemplo 1:N

- PERSONA (<u>dni</u>, nombre, dirección)
 - pk: dni
- TELEFONO (<u>numero</u>, propio, dni)
 - pk: numero
 - *VNN: dni (solo sería en caso 1))
 - fk: dni → PERSONA
- Perdida de semántica no se puede representar la cardinalidad mínima de TIENE TELEFONO

Relación 1:1

 Se crea una relación con las CP de las dos relaciones y los campos que tenga R

A(<u>a0</u>, a1, b0*)

pk:a0

B(<u>b0</u>, b1)

pk:b0

R(a, b)

pk:a

Ak:b

fk: $a \rightarrow A$

fk: $b \rightarrow B$

Ejemplo 1:1

- HOMBRE(<u>dni</u>, nombre)
 - pk: dni
- MUJER(<u>dni</u>, nombre)
 - pk:dni
- MATRIMONIO(<u>hombre</u>, mujer, lugar, fecha)
 - pk:hombre
 - ak:mujer
 - fk: hombre→ HOMBRE
 - Fk: mujer→ MUJER

Ejemplo 1:1

- EMPLEADO (<u>dni</u>, nombre, dirección)
 - pk: dni
- VEHÍCULO (<u>matrícula</u>, marca, modelo, dniEmpleado*)
 - pk: matrícula
 - fk: dniEmpleado → EMPLEADO
 - ak: dniEmpleado

Ejemplo 1:1

- TIENE (<u>dni</u>, nombre, dirección, matrícula, marca, modelo)
 - pk: dni
 - ak: matricula

Relación N:M

 Se crea una nueva tabla, cuya clave primaria se compone de las claves primarias referenciadas, y cada clave primaria es una clave ajena.

A(<u>a0</u>, a1)

pk:a0

B(<u>b0</u>, b1)

pk:b0

R(<u>a0*, b0*</u>)

pk:(a0,b0)

fk: $a0 \rightarrow A$

 $b0 \rightarrow B$

Ejemplo N:M

- CONDUCTOR(<u>dni</u>, nombre, experiencia)
 - pk: dni
- AUTOBUS (<u>matricula</u>, categoria)
 - pk: matrícula
- CONDUCIR (<u>dni*</u>, <u>matricula*</u>, trayecto)
 - pk: (dni, matricula)
 - fk: dni → CONDUCTOR
 - fk: matricula → AUTOBUS

N:M con dimensión temporal

 Si la relación tiene atributos de tipo fecha, será necesario incluir al menos uno en la PK

Ejemplo: Relación entre los clientes que alquilan los vehículos de una empresa de alquileres. Recogemos los alquileres realizados a nuestros clientes a lo largo del tiempo.

Restr. Identificación

La clave ajena forma parte de la clave primaria.

A(<u>a0</u>, <u>b0*</u>, a1)

pk: (a0, b0)

fk: $b0 \rightarrow B$

B(<u>b0</u>, b1)

pk:b0

Ejemplo ID

- CINE (<u>cod_cine</u>, nombre, dirección)
 - pk: cod cine
- SALA (<u>cod_cine*</u>, <u>num_sala</u>, aforo)
 - pk: (cod_cine, num_sala)
 - fk: cod_cine → CINE

Generalización

- Una tabla para el padre y otra para cada hijo -EXPLICITAR
- Los hijos tienen como clave principal y ajena la clave del padre.

B(<u>a0*</u>, b0, b1)

A(<u>a0</u>, a1) **pk: a0**

pk: (a0) fk: $a0 \rightarrow A$

Generalización – otros planteamientos

- Crear una sola tabla -COLAPSAR
 - Los subtipos se diferencian en muy pocos atributos
 - Las relaciones que los asocian al resto de las entidades sean las mismas para los subtipos.
 - + rápida, peor semántica

- Crear una tabla por cada subtipo, pero no para el padre - DIVIDIR
 - Existen muchos atributos distintos entre los subtipos
 - Los accesos a los datos de los subtipos siempre afectan a los atributos comunes.
 - + eficiente en consultas sobre hijos, menos en atributos comunes.
 - redundancia, peor semántica

Ejemplo Generalización

- PERSONA(<u>dni</u>, nombre, dirección, teléfono)
 - pk: dni
- ESTUDIANTE (<u>dni*</u>, nivel_est, lugar_est, horas_cur)
 - pk: dni
 - fk: dni → PERSONA
- TRABAJADOR (<u>dni*</u>, num_Seg_Social, salario)
 - pk: dni
 - fk: dni → PERSONA

Relaciones N-arias

- Similar a N:M
- Se crea una nueva tabla con la unión de las claves primarias de las entidades relaciones.
 - Si una de las entidades tiene cardinalidad máxima
 1, se queda fuera de la PK.
- Se crean tantas claves ajenas como entidades relacionadas

Ejemplo ternaria

- FARMACIA(<u>cod_farm</u>, dirección)
 - pk: cod_farm

- CLIENTE(<u>dni</u>, nombre)
 - pk: dni
- PRODUCTO(<u>cod_prod</u>, nombre, precio)
 - pk: cod_prod

- COMPRA(<u>dni*</u>, <u>cod_prod*</u>, <u>cod_farm*</u>, cantidad)
 - pk: (dni, cod_prod, cod farm)
 - fk: dni → CLIENTE
 - fk: cod prod → PRODUCTO
 - fk: cod_farm → FARMACIA