1 Information Measures

1.1 Entropy Basics

Axiomatic view of Information: Non-negative, Zero for definite events, Monotonicity (i.e. if $p \le p'$ then $\psi(p) \ge \psi(p')$, the less likely the event is, more information is learnt), Continuity, Ad**ditive** under independence (i.e. $\psi(p_1p_2) = \psi(p_1) + \psi(p_2)$).

Axiomatic view of Entropy: $\psi(\mathbf{p})$ is continuous, increasing in uniform case (i.e. uniform over larger set means more uncertain),

$$\psi(p_1,\dots,p_n) = \psi(p_1+p_2,\dots,p_n) + (p_1+p_2)\psi\left(\frac{p_1}{p_1+p_2} + \frac{p_2}{p_1+p_2}\right)$$

Joint Entropy: Entropy of random vector (X, Y). Conditional Entropy:

$$H(Y|X) = E_{P_{XY}}\left[\frac{1}{\log P_{Y|X}(Y|X)}\right] = \sum_x P_X(x)H(Y|X=x)$$

Entropy Properties:

- Bounds: $0 < H(X) < \log |\mathcal{X}|$
- Differentiation: $H'(p) = \log \frac{1-p}{p}$
- · Chain Rule:

$$\begin{split} H(X,Y) &= H(X) + H(Y|X) = H(Y) + H(X|Y) \\ H(X_1,\ldots,X_n) &= \sum_{i=1}^n H(X_i|X_1,\ldots,X_{i-1}) \end{split}$$

- Conditioning reduces entropy: H(X|Y) < H(X), with equality iff X and Y are independent.
- Sub-additivity: $H(X_1,...,X_n) \leq \sum H(X_i)$, with equality iff X_i are independent.
- Applying Function: For deterministic $f, H(f(X)) \leq H(X)$, with equality iff f is one-one.

1.2 Relative Entropy

Relative Entropy or Kullback-Leibler Divergence: Measure of inefficiency of assuming distribution q, when truly it is p.

$$\begin{split} D(p \parallel q) &= \sum p(x) \log \frac{p(x)}{q(x)} = E_p \left[\log \frac{p(X)}{q(X)} \right] \\ D(p(y|x) \parallel q(y|x)) &= E_p \left[\log \frac{p(Y|X)}{q(Y|X)} \right] \end{split}$$

- Gibb's Inequality: $D(p \parallel q) \ge 0$, with equality iff p = q.
- Chain Rule: D(p(x,y) || q(x,y)) = D(p(x) || q(x)) + D(p(y|x) ||q(y|x)).

1.3 Mutual Information

Mutual Information: Relative entropy between join distribution and product distribution:

$$I(X;Y) = \sum_{(x,y)} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} = E_{P_{XY}} \left[\log \frac{p(X,Y)}{p(X)p(Y)} \right]$$

• Expansion:

$$\begin{split} I(X;Y) &= I(Y;X) = H(X) - H(X|Y) = H(Y) - H(Y|X) \\ &= H(X) + H(Y) - H(X,Y) \end{split}$$

- I(X;X) = H(X)
- I(X;Y) = 0 iff X and Y are independent.
- Chain Rule:

$$I(X_1,\ldots,X_n;Y) = \sum_{i=1}^n I(X_i;Y|X_1,\ldots,X_{i-1})$$

- Data Processing Inequality: If Z depends on (X,Y) only via Y, then $X \to Y \to Z$, and $I(X;Z) \leq I(X;Y)$, with equality iff I(X;Y|Z) = 0. Processing cannot increase information available.
- -X and Z conditionally independent given Y.
- I(X;Y|Z) < I(X;Y) if $X \to Y \to Z$.
- $-P_{X|YZ} = P_{X|Y}$ and $P_{Z|XY} = P_{Z|Y}$.
- Partial Sub-additivity: If Y_1, \dots, Y_n are conditionally independent given (X_1, \dots, X_n) , in addition Y_i only depends on X_i ,

$$I(X_1,\ldots,X_n;Y_1,\ldots Y_n) \leq \sum I(X_i;Y_i)$$

If X_1, \dots, X_n are mutually independent, then it is \geq instead. 2.2 Shannon-Fano Code

- Information Preserving Transform: If $X \to f(X) \to Y$, then H(Y|X) = H(Y|f(X)), and I(Y;X) = I(Y;f(X)).
- I(X;Y|Z) can be both smaller (X=Y=Z) or larger (Z=X+Y) than I(X;Y).

1.4 Inequalities

- Convex Function: Function f is said to be convex over inverval (a,b) if for every $x_1, x_2 \in (a,b)$ and $\lambda \in [0,1]$, $f(\lambda x_1 + (1-b))$ $\lambda(x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$
- Jensen's Inequality: If f is convex function, then E[f(X)] >f(E[X])
- Markov's Inequality: $P(X \ge a) \le \frac{E[X]}{a}$
- Chebyshev's Inequality: $P(|X E[X]| \ge a) \le \frac{V[X]}{a^2}$
- Log-sum Inequality: For non-negative numbers,

$$\sum a_i \log \frac{a_i}{b_i} \ge \left(\sum a_i\right) \log \frac{\sum a_i}{\sum b_i}$$

- $1 \frac{1}{x} \le \ln x \le x 1$
- $\alpha < \lceil \alpha \rceil < \alpha + 1$

2 Symbol-Wise (Variable Length) Source Coding

2.1 Definitions and Basic Results

Source Code: A code C for a random variable X is a mapping from range of X to finite length strings of symbols from a \hat{D} -ary

Expected Length: $L(C) = \sum_{x \in \mathcal{X}} p(x) l(x)$ where l(x) = |C(x)|.

Non-singular Code: Code that satisfies $C(x) \neq C(x') \iff x \neq x'$. This suffices for uniquely decoding single letters.

Extension of Code: Extension C^* of a code C is mapping from all finite length strings of \mathcal{X} to strings of D: $C(x_1...x_n) =$ $C(x_1) \dots C(x_n)$ (concatenation).

Uniquely Decodable Code: Code whose extension is non-singular. That is $C(x_1 \dots x_n) \neq C(y_1 \dots y_m) \iff x_1 \dots x_n \neq y_1 \dots y_m$.

Prefix-Free Code or Instantaneous Code: If no codeword is a prefix of another codeword.

Kraft's Inequality: For any prefix-free code must satisfy $\sum_{x \in \mathcal{X}} D^{-l(x)} \le 1.$

- **Proof:** Consider D-ary tree and mark the nodes corresponding to codewords. Consider a random walk from the root. Probability of hitting any marked node ≤ 1 .
- Or, write the number of nodes in l_{max} depth in two ways. **Entropy Bound:** For $X \sim P_X$ and any prefix free code $C, L(C) \geq$ H(X) with equality iff $P_X(x) = 2^{-l(x)}$.
- **Proof**: $L(C) H(X) = \sum_{x} p(x) l(x) \sum_{x} p(x) \log \frac{1}{p(x)} =$ $\sum_{x} p(x) \log \frac{p(x)}{2 - l(x)} = D(p \| q) + \log \frac{1}{c} \ge 0$ where $c = \sum_{x} 2^{-l(x)}$ and $q(x) = \frac{2^{-l(x)}}{2}$.

Shannon-Fano Code: Set $l(x) = \left| \log \frac{1}{p(x)} \right|$. Satisfies $H(X) \le$ L(C) < H(X) + 1.

Wrong Shannon-Fano Code: If l(x) is set according to PMF Q, but in reality it is P, then $H(X) + D(P \parallel Q) < L(C) <$ H(X) + D(P || Q) + 1.

Shannon-Fano-Elias Code:

- Suppose F(x) is cumulative distribution function. Let $\bar{F}(x) =$ $\sum_{a < x} p(a) + \frac{1}{2}p(x) \in (F(x-1), F(x)).$
- Taking binary of $\bar{F}(x)$ gives the code, but it can be of infinite length.
- So, truncate $\bar{F}(x)$ to $l(x) = \lceil \log \frac{1}{p(x)} \rceil + 1$ bits.
- $\bar{F}(x)$ truncated $\bar{F}(x) < 2^{-l(x)} < \frac{p(x)}{2} = \bar{F}(x) F(x-1)$. So truncated version still works.
- H(X) + 1 < L(C) < H(X) + 2.

Competitive Optimality of Shannon-Fano Code: Shannon-Fano code l(x) vs any other code l'(x) satisfies $Pr[l(X) \ge l'(X) + c] \le$ $\frac{1}{2c-1}$. Probability that Shannon-Fano gives codeword of a randomly drawn symbol c bits bigger is exponentially low.

Improving over 1-bit: Encode blocks of N symbols. Even if we assume all symbols are independent, then we have $NH(X) \leq$ $L(C) \leq NH(X) + 1$, or $H(X) \leq \text{average length per symbol} \leq$ $H(X) + \frac{1}{N}$. Disadvantage is that building coding complexity gets exponentially more complex with N.

2.3 Huffman Code

Keep merging two symbols with lowest probability. Proof outline: For any distribution there is an optimal code where:

- $p_i > p_j$ implies $l_i \le l_j$. (Proof: exchange argument)
- Longest two codes have same length. (Proof: trim if not)
- Longest two code words only differ in last bit, and correspond to two least likely symbols. (Proof: trim if not and rearrange)

3 Block (Fixed Length) Source Coding

Problem: (X_1,\ldots,X_n) mapped to one of [M] and decoded to $(\hat{X}_1,\ldots,\hat{X}_n)$ with some probability of error P_e . Discrete memory less assumption: Each $X_i \in \mathcal{X}$ and i.i.d $\sim P_X$. The (compression) rate is $R = \frac{1}{n}\log M$. The lower the rate, the more compressed.

 $\begin{array}{ll} \textbf{Asymptotic} & \textbf{Equipartition} & \textbf{Property:} & \text{For} & X_1, \dots, X_n \sim p(x), \\ \Pr[\left|\frac{-1}{n}\log p(X_1, \dots, X_n) - H(x)\right| > \epsilon] \to 0 \text{ as } n \to \infty \text{ for any } \epsilon > 0. \end{array}$

Typical Set:

$$T_n(\epsilon) = \{\mathbf{x} \in \mathcal{X}^n : 2^{-n(H(X) + \epsilon)} \leq P_{\mathbf{X}}(\mathbf{x}) \leq 2^{-n(H(X) - \epsilon)}\}$$

Typical Set Properties

- $\bullet \quad H(X) \epsilon \leq \frac{1}{n} \sum \log \frac{1}{P_X(x_i)} \leq H(X) + \epsilon$
- $\Pr[\mathbf{X} \in T_n(\epsilon)] > 1 \epsilon$ for large enough n.
- $|T_n(\epsilon)| \le 2^{n(H(X)+\epsilon)}$.
- $|T_n(\epsilon)| \ge (1-\epsilon)2^{n(H(X)-\epsilon)}$ for large enough n.

Fano's Inequality: $H(X \mid \hat{X}) \leq H_2(P_e) + P_e \log(|\mathcal{X}| - 1) \leq 1 + P_e \log|\mathcal{X}|$.

Fixed-Length Source Coding Theorem:

- (Achievability) If R > H(X), then for any $\epsilon > 0$, \exists a code of rate R with $P_e \le \epsilon$ (for sufficiently large n).
- (Converse) If R < H(X), then $\exists \epsilon > 0$ such any code with rate R has $P_e > \epsilon$ for any n.

Achievability Proof: Let $M=|T_n(\epsilon)|+1.$ Map typical set elements to [M-1] and everything else to M.

 $\begin{array}{l} \textbf{Converse Proof: } nR \geq I(\mathbf{X}; \hat{\mathbf{X}}) \geq H(\mathbf{X}) - H(\mathbf{X} \mid \hat{\mathbf{X}}) \geq nH(X) - \\ 1 - nP_e \log |\mathcal{X}| \Rightarrow P_e \geq \frac{1}{\log |\mathcal{X}|} \left(H(X) - R - \frac{1}{n}\right). \text{ As } n \rightarrow \infty, \ P_e \text{ cannot be arbitrarily small.} \end{array}$

4 Channel Coding

Problem: Encoder takes in one of [M] messages and sends X_1,\ldots,X_n via a channel, which outputs $Y_1,\ldots Y_n$ using distribution $P_{Y|X}$, then decoder decodes that into \hat{m} . Rate $R=\frac{1}{n}\log M$ measured in bits per channel use. High rate better.

Channel Capacity: Maximum rate for which there is some n block code achieving arbitrarily small decoding error. $C = \max_{P_{X}} I(X;Y)$.

Example Channels:

• Noiseless binary channel: C = 1.

- Binary Symmetric Channel: $C = 1 H_2(p)$.
- Binary Erasure Channel: $C = 1 \alpha$.
- Symmetric Channel (rows are permutations of each other, sum of columns same): $C = \log |\mathcal{Y}| H(row)$.

Jointly Typical Sets: $T_n(\epsilon)$ is all (\mathbf{x}, \mathbf{y}) where \mathbf{x} , \mathbf{y} , and (\mathbf{x}, \mathbf{y}) are typical in $P_{\mathbf{X}}$, $P_{\mathbf{Y}}$, and $P_{\mathbf{XY}}$ respectively.

Jointly Typical Set Properties:

- $|T_n(\epsilon)| < 2^{n(H(X,Y)+\epsilon)}$.
- If $(\mathbf{X}, \mathbf{Y}) \sim P_{\mathbf{XY}}$ then $\Pr[(\mathbf{X}, \mathbf{Y}) \in T_n(\epsilon)] > 1 \epsilon$ for large enough n.
- If $(\mathbf{X}', \mathbf{Y}') \sim P_{\mathbf{X}} \times P_{\mathbf{Y}}$ then $\Pr[(\mathbf{X}', \mathbf{Y}') \in T_n(\epsilon)] \leq 2^{-n(I(X;Y)-3\epsilon)}$. For large enough n, also $\geq (1-\epsilon)2^{-n(I(X;Y)+3\epsilon)}$.

Channel Coding Theorem:

- (Achievability) For any rate R < C, \exists code with rate at least R with arbitrarily small error probability.
- (Converse) For any R > C, any code of rate R cannot have arbitrarily small error probability.

Achievability via Random Coding: Generate codebook randomly. Decode by finding a jointly typical code jointly typical with \mathbf{Y} . Error occurs if there is none or more than one. Due to symmetry, average P_e is same as the average probability of decoding error if message 1 was sent.

$$\begin{split} P_e &= \Pr \left[(\mathbf{X}^{(1)}, \hat{\mathbf{X}}) \notin T_n(\epsilon) \text{ or } \bigcup_{i=2}^M (\mathbf{X}^{(i)}, \hat{\mathbf{X}}) \in T_n(\epsilon) \right] \\ &< \epsilon + 2^{-n(I(X;Y) - 3\epsilon - R)} \end{split}$$

If $R < I(X;Y) - 3\epsilon$ then as $n \to \infty$, $P_e \to 0$. So, in a random codebook, if $X \sim p(x)$, we can send up to rate I(X;Y) with $P_e \to 0$. Maximizing over p(x) gives the result.

Converse Proof: $nC \geq I(\mathbf{X}; \mathbf{Y}) \geq I(m, \hat{m}) = H(m) = H(m \mid \hat{m}) \geq nR - 1 - P_e nR \Rightarrow P_e \geq 1 - \frac{C}{R} - \frac{1}{nR}$. If R > C then P_e is bounded away from 1.

Joint Source-Channel Coding: If source block size is k and channel block size is n, then nC > kH is needed.

5 Continuous Alphabet Channels

Examples of Differential Entropy:

- Uniform: $X \sim U(a,b) \Rightarrow h(X) = \log(b-a)$.
- $\bullet \ \ \mathbf{Normal:} \ X \sim N(0,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \Rightarrow h(x) = \frac{1}{2} \log(2\pi e \sigma^2).$
- Exponential: $X \sim \exp(\lambda) = \lambda e^{-\lambda x} \Rightarrow h(X) = \log \frac{e}{\lambda}$.
- Laplace: $X \sim \frac{1}{2b}e^{-|x|/b} \Rightarrow h(X) = \log(2eb)$.

Properties:

- Chain rule, conditioning reduces entropy, sub-additivity holds.
- Non-negativity, invariance under one-one transform doesn't hold.
- h(X) = h(X+c) for constant c.

- $h(cX) = h(X) + \log|c|$. If $X \sim f_X$. Then $cX \sim \frac{1}{|c|} f_X(\frac{x}{c})$.
- I and D works as expected.
- I(f(X);g(Y)) = I(X;Y) for inevitable functions f and g.
- $\bullet \quad \sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2.$

Maximum Entropy:

- Fixed σ^2 : $h(X) \leq \frac{1}{2} \log(2\pi e \sigma^2)$ with equality iff Gaussian.
- Fixed range [l,r]: $h(X) \le \log(r-l)$ with equality iff uniform.
- Fixed μ : $h(X) \leq \log(e\mu)$ with equality iff $X \sim \exp(\mu) = \frac{1}{\mu}e^{-x/\mu}$.

Additive White Gaussian Noise Channel: Output Y = X + Z where $Z \sim N(0, \sigma^2)$. Encoder need to ensure $E[\mathbf{X}^2] \leq P$. The average can be either over each codeword, or over each element of each codeword.

Channel Capacity for AWGN: $C=\max_{f_X:E[X^2]\leq P}I(X;Y)=\frac{1}{2}\log(1+\frac{P}{\sigma^2}).$ Capacity achieving f_X is N(0,P).

6 Practical Codes

Encoder gets bit vector $\mathbf{u}_{1\times k}$ and outputs $\mathbf{x}_{1\times n}$. Channel gives $\mathbf{y} = \mathbf{x} \oplus \mathbf{z}$ for some random vector \mathbf{z} . Decoder decodes into $\hat{\mathbf{u}}$. Rate $R = \frac{k}{n}$.

Linear Code: Where $\mathbf{x}_{1\times n} = \mathbf{u}_{1\times k}\mathbf{G}_{k\times n}$ modulo 2. Symmetric parity-check code if first k columns of \mathbf{G} is I_k , i.e. $x_i = u_i$ for $i \leq k$. Codewords are therefore linear combination of rows of \mathbf{G} . If \mathbf{x} , \mathbf{x}' correspond to \mathbf{u} , \mathbf{u}' then $\mathbf{x} \oplus \mathbf{x}'$ correspond to $\mathbf{u} \oplus \mathbf{u}'$.

Parity Check Matrix: $\mathbf{x}_{1\times n}\mathbf{H}_{n\times (n-k)}=0$ iff \mathbf{x} is a codeword. If $\mathbf{G}=[I_k \ P_{k\times (n-k)}]$ then \mathbf{H} is P stacked on top of I_k . We have $\mathbf{y}\mathbf{H}=\mathbf{z}\mathbf{H}$ which helps in decoding.

Hamming Distance: $d_H(\mathbf{x}, \mathbf{x}')$ is number of unmatched bits.

Minimum Distance: $d_{\min} = d_H(\mathbf{x}, \mathbf{x}')$ for any two $\mathbf{x} \neq \mathbf{x}' \in \text{codebook}$.

- Can correct $d_{\min} 1$ erasures (that is bit replaced with '?')
- Can correct $\frac{1}{2}(d_{\min}-1)$ flips.
- Let $w(\mathbf{x})$ be the popcount of \mathbf{x} . Then $d_{\min} = \min w(\mathbf{x})$, $\mathbf{x} \neq 0$. Proof: $d_{\min} = d_H(\mathbf{x}, \mathbf{x}') = w(\mathbf{x} \oplus \mathbf{x}') = w(\mathbf{x}'')$ and $w(\mathbf{x}) = d_H(0, \mathbf{x})$.

Maximum A Posteriori Decoding (MAP): Decode to $\mathbf{x}^{(j)}$ which has maximum $P_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}^{(j)}|\mathbf{y})$. Always optimal in terms of P_e .

Maximum Likelihood Decoding: If m uniform on [M] then decode to $\mathbf{x}^{(j)}$ which maximizes $P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}^{(j)})$.

Minimum Distance Decoding (on BSC): Maximum Likelihood Decoding is equivalent to decoding to $X^{(j)}$ with minimum d_H .

Syndrome Decoding (Linear Code on BSC): Syndrome associated with \mathbf{y} is $\mathbf{S}_{1\times(n-k)}=\mathbf{y}_{1\times n}\mathbf{H}_{n\times(n-k)}$. Find $\hat{\mathbf{z}}$ that minimizes $w(\hat{\mathbf{z}})$ and satisfies $\hat{\mathbf{z}}\mathbf{H}=S$. Decode $\mathbf{x}=\mathbf{y}\oplus\hat{\mathbf{z}}$. Equivalent to Minimum Distance Decoding.