Inzidenzaxiome

- **I1** Durch je zwei Punkte geht eine Gerade.
- 12 Durch je zwei verschiedene Punkte geht höchstens eine Gerade.
- 13 Jede Gerade enthält mindestens zwei verschiedene Punkte.
- **14** Es gibt drei Punkte, die nicht auf einer Geraden liegen.

Anordnungsaxiome

- **A1** Falls q zwischen p und r liegt, so sind p, q und r drei paarweise verschiedene Punkte auf einer Geraden.
- A2 Liegt q zwischen p und r, so liegt q auch zwischen r und p.
- **A3** Zu je zwei verschiedenen Punkten p und q gibt es einen Punkt r, so dass q zwischen p und r liegt.
- A4 Unter je drei Punkten liegt höchstens einer zwischen den beiden anderen.
- **A5** Seien p, q und r drei Punkte, die nicht auf einer Geraden liegen, sei L eine Gerade, die keinen dieser drei Punkte enthält. Schneidet L die Strecke \overline{pq} , so schneidet L auch genau eine der beiden anderen Strecken \overline{pr} oder \overline{qr} .

Kongruenzaxiome

K1 Streckenabtragung Sei \overline{pq} eine Strecke, sei L₁ eine Gerade, seien p₁, r₁ \in L₁, r₁ \neq p₁. Dann gibt es einen Punkt q₁ \in L₁ auf derselben Seite von p₁ wie r₁, sodass \overline{pq} zu $\overline{p_1q_1}$ kongruent ist.

K2 Sind die Strecken $\overline{p_1q_1}$ und $\overline{p_2q_2}$ beide zur Strecke \overline{pq} kongruent, so ist auch $\overline{p_1q_1}$ zu $\overline{p_2q_2}$ kongruent.

K3 Addierbarkeit von Strecken Seien L und L₁ Geraden, seien p, q, r \in L und p₁, q₁, r₁ \in L₁ jeweils drei paarweise verschiedene Punkte auf diesen Geraden. Die Strecken \overline{pq} und \overline{qr} mögen keine gemeinsamen Punkte haben, $\overline{pq} \cap \overline{qr} = \emptyset$. Analog sei $\overline{p_1q_1} \cap \overline{q_1r_1} = \emptyset$.

Sind dann $\overline{pq} \equiv \overline{p_1q_1}$ und $\overline{qr} \equiv \overline{q_1r_1}$ so ist auch $\overline{pr} \equiv \overline{p_1r_1}$.

K4 Die Kongruenz von Winkeln bildet eine Äquivalenzrelation auf der Menge der Winkel.

K5 Winkelabtragung Seien p, q, r Punkte, die nicht auf einer Geraden liegen, und seien p_1 , q_1 , s_1 ebenfalls Punkte, die nicht auf einer Geraden liegen. Dann gibt es einen Punkt r_1 auf derselben Seite von $L(p_1, q_1)$ wie s_1 , sodass der Winkel $\not \leq (p_1, q_1, r_1)$ kongruent ist zu dem Winkel $\not \leq (p, q, r)$.

Ist ferner r_2 ein weiterer Punkt mit derselben Eigenschaft wie r_1 , d.h. liegt r_2 ebenfalls auf derselben Seite von $L(p_1, q_1)$ wie s_1 und gilt $\not = (p_1, q_1, r_2) \equiv \not = (p, q, r)$, so ist $\not = (p_1, q_1, r_1) = \not = (p_1, q_1, r_2)$.

K6 Seien (p, q, r) und (p_1, q_1, r_1) zwei Tripel von Punkten, die jeweils nicht auf einer Geraden liegen.

Gilt $\overline{pq} \equiv \overline{p_1q_1}$ und $\overline{pr} \equiv \overline{p_1r_1}$ und $\measuredangle(q, p, r) = \measuredangle(q_1, p_1, r_1)$, so gilt auch $\measuredangle(p, q, r) \equiv \measuredangle(p_1, q_1, r_1)$.

Sätze, auf die in Beweisen verwiesen wird

Satz 1.1.6 Seien (p, q, r) und (p_1, q_1, r_1) zwei Tripel von Punkten, die jeweils nicht auf einer Geraden liegen.

Gilt
$$\overline{pq} \equiv \overline{p_1q_1}$$
 und $\overline{pr} \equiv \overline{p_1r_1}$ und $\measuredangle(q, p, r) = \measuredangle(q_1, p_1, r_1)$, so gilt auch $\measuredangle(p, q, r) \equiv \measuredangle(p_1, q_1, r_1)$, $\measuredangle(p, r, q) \equiv \measuredangle(p_1, r_1, q_1)$, $\overline{qr} \equiv \overline{q_1r_1}$.

Satz 1.1.7 (Kongruenz der Nebenwinkel) Es mögen die paarweise verschiedenen Punkte p, q und s auf einer Geraden L liegen, dagegen $r \notin L$. Analog seien $p_1, q_1, s_1 \in L_1$ paarweise verschieden, $r_1 \notin L_1$. Sind $\not \leq (p, q, r) \equiv \not \leq (p_1, q_1, r_1)$, so auch $\not \leq (s, q, r) \equiv \not \leq (s_1, q_1, r_1)$.

Satz 1.1.8 (Kongruenz der Gegenwinkel) Seien L und M zwei verschiedene Geraden, die sich in p schneiden. Seien $r,q \in L$ auf zwei verschiedenen Seiten von p, und seien $s,t \in M$ ebenfalls auf zwei verschiedenen Seiten von p. Dann ist $\measuredangle(q,p,s) \equiv \measuredangle(r,p,t)$.