Introducción Estado del arte Solucion Tests y resultados Conclusiones

Reverse Proxy con capacidades de Firewall de aplicación web y aceleración TLS

Alumno: Pedro Pozuelo Rodríguez Directora: Ana del Valle Corrales Paredes

> Universidad Europea Proyecto de Fin de Grado

18 de julio de 2019

Agenda

- Introducción:
 - Aplicaciones web y la seguridad.
 - Mecanismos de protección.
- Situación actual. Estado del arte:
 - Soluciones WAF privativas.
 - Soluciones WAF de software libre.
 - Comparativa soluciones actuales.
- Solución.
 - Objetivo.
 - Diseño.
 - Arquitectura.
- Conclusiones.
- Test y resultados.

Reverse Proxy + WAF + aceleración TLS

- Introducción
 - Aplicaciones web y la seguridad
 - Mecanismos de protección
 - Aplicaciones web y la seguridad
- Estado del arte
 - Soluciones WAF privativas
 - Soluciones WAF de software libre
 - Comparativa soluciones WAF
- Solucion
 - Objetivo
 - Diseño
 - Arquitectura
- 4 Tests y resultados
- Conclusiones

Aplicaciones web y la seguridad

Algunos ejemplos de uso de protocolos HTTP y HTTPS:

- Aplicaciones web.
- Aplicaciones móviles.
- Internet of things (IoT):edificios inteligentes, wearables, etc.
- Arquitectura de microservicios.
- DNS over HTTPS (DoH [1].

HTTP + TLS

HTTPS es cada vez más utilizado en todo tipo de aplicaciones y no se limita a las aplicaciones web como venía siendo tradicionalmente.

Aplicaciones web y la seguridad

Premisa

La seguridad 100 % no existe.

Las aplicaciones web están siendo atacadas continuamente.

Figura: Ataques en capa de aplicación (fuente Arbor [2])

Conclusión

Se debe realizar un esfuerzo continuo para mejor la seguridad de las plataformas web.

Vulnerabilidades en plataformas web

Existen múltiples vulnerabilidades en las plataformas web (referencia *Open Web Application Security Project*, OWASP [3]).

Figura: Tipo de Vulnerabilidades por Impacto [4]

Histórico del riesgo

Muchas de estas vulnerabilidades están presentes en el Top 10 de vulnerabilidades OWASP desde 2007 y existen controles que permiten mitigar el riesgo.

Vulnerabilidades recientes en canales cifrados

Otro componente en el que se han descubierto múltiples vulnerabilidades críticas son los canales SSL/TLS.

Vulnerabilidad	Componente afectado		
POODLE	SSL ver. 3.0		
BEAST	TLS ver. 1.0		
CRIME	TLS compression		
BREACH	HTTP compression		
Heartbleed	OpenSSL ver. 1.0.1		

Conclusión

La solución, en la mayoría de de los casos, consiste en desactivar las versiones o el componente afectados y el riesgo de afectar la funcionalidad de la plataforma es bajo (dependiendo del entorno).

Soluciones en el ciclo de desarrollo

Como respuesta a éstas y otras vulnerabilidades existen múltiples soluciones:

- Desarrollo de código seguro: metodologías de desarrollo seguro de aplicaciones, herramientas de análisis de código. Retos:
 - Costes en tiempo y recursos
 - Conocimiento y herramientas.
 - Nuevas vulnerabilidades no están consideradas.
- Aplicar un ciclo de vida de aplicaciones: Aplicar actualizaciones y configuración segura de aplicaciones. Retos:
 - El objetivo es que la aplicación dé servicio. Los demás aspectos son secundarios.
 - Una actualización puede afectar al entorno.
 - chmod 777 o iptables -A INPUT -j ACCEPT funcionan.

Soluciones en la infraestructura

Como respuesta a éstas y otras vulnerabilidades existen múltiples soluciones:

- Herramientas de protección perimetral de red: Firewall de red, Sistema de Prevención de Intrusos.
 Reto:
 - Desconoce la lógica de aplicación. Lógica limitada a las capas
 3 y 4 de red o firmas (cadenas de texto).
 - Mínima visibilidad con el tráfico cifrado.
- Herramientas de protección perimetral de aplicación.
 Reto: Elevado coste o complejo de mantener.

Soluciones. Estándares y protocolos

Existen múltiples iniciativas cuyo objetivo es mejorar la seguridad de las aplicaciones web:

- Metodología del Ciclo de Vida de Desarrollo de Software (SDLC del inglés).
- Estándares como el Payment Card Industry Data Security Standard (PCI DSS [5]).
- TLS versión 1.3.
- HTTP/2.
- TLS Server Name Indication (SNI [6]).
- Security Headers.

Uso e implementación

Estas soluciones están disponibles y ofrecen mecanismos válidos para mejorar la seguridad de las plataformas web pero su implementación puede ser compleja.

Uso e implementación

Las alternativas implican un coste elevado, implementar soluciones complejas o aceptar el riesgo de seguridad. Y el resultado es el siguiente:

Figura: Tráfico HTTP versus HTTPS [7]

Figura: Máxima versión SSL/TLS soportada [7]

Uso e implementación

Se ha elegido la versión SSL/TLS como ejemplo de un vector de ataque conocido popularmente cuya mitigación es sencilla.

Visibilidad reducida

Causas: TLS 1.3.

Causas: Diffie-Hellman.

Causas: Autenticación con certificado de cliente.

Consecuencia: Visibilidad muy reducida

Web Application Firewall (WAF)

¿Qué es un WAF?

Definición

Un WAF es una herramienta especializada en filtrar, monitorizar y bloquear las conexiones desde y hacia una aplicación web (Fuente: Instituto Nacional de Ciberseguridad [8]).

Características principales:

- Analiza el tráfico web.
- Listas blancas o negras de User Agents, IP, caracteres aceptados en URL o formularios, etc.
- Se aplican políticas y reglas de filtrado. Por ejemplo:

```
admin'--
' or 1=1#
```

- Modelo de seguridad negativa.
 - Busca patrones de ataques conocidos y bloquea las peticiones o respuestas.
- Modelo de seguridad positiva.
 - Proceso de aprendizaje.
 - Deniega las peticiones por defecto y sólo acepta aquellas que considera válidas.

Reverse Proxy + WAF + aceleración TLS

- Introducción
 - Aplicaciones web y la seguridad
 - Mecanismos de protección
 - Aplicaciones web y la seguridad
- Estado del arte
 - Soluciones WAF privativas
 - Soluciones WAF de software libre
 - Comparativa soluciones WAF
- Solucion
 - Objetivo
 - Diseño
 - Arquitectura
- Tests y resultados
- Conclusiones

Soluciones WAF privativas

Destacan las siguientes soluciones:

- **Soluciones WAF SaaS**. Desplegados en las instalaciones del fabricante o el Cloud y gestionados por el mismo.
 - Cloud Web Application Firewall [9] de Cloudflare[10].
 - Kona WAF[11] de Akamai[12].
 - Incapsula[13].
- Soluciones WAF tipo appliance o máquina virtual.
 Máquinas o instancias dedicadas en las que se tiene un acceso exclusivamente a la configuración de la aplicación.
 - Imperva WAF Gateway[14].
 - Fortiweb[15] de la empresa Fortinet[16].

Soluciones WAF privativas SaaS

Las soluciones WAF SaaS ofrecen una serie de funcionalidades adicionales:

- Red de distribución de contenidos (Content Delivery Network del inglés).
- Protección contra ataques de denegación de servicio (DoS del inglés) en capa de aplicación.
- Caché de contenido estático.
- Suscripción a listas de reputación de IP, dominios o Localizador de recursos uniforme (URL del inglés).
- Bloqueo de bots maliciosos.
- Sistema de creación de informes.

Soluciones WAF privativas tipo appliance

Las soluciones WAF de tipo appliance ofrecen a su vez las siguientes funcionalidades adicionales:

- Crear perfiles de las aplicaciones web y filtrar parámetros no permitidos.
- Parcheo virtual de vulnerabilidades mediante la integración con escaneadores de vulnerabilidades.
- Suscripción a listas de reputación de IP, dominios o URL.
- Aceleración TLS.
- Bloqueo de bots maliciosos.
- Sistema de creación de informes.
- Antivirus.

Ventajas e inconvenientes

Ventajas:

- Sencillas de implementar (especialmente en las soluciones SaaS).
- Relativa independencia de la infraestructura de la plataforma web.
- Permite implementar seguridad basada en roles (RBAC del inglés).
- Buen soporte técnico.
- Funcionalidades adicionales.

Desventajas:

- Elevado coste económico.
- No es posible adaptar la solución a necesidades específicas.
- Capacidad muy limitada de crear o modificar reglas (especialmente en las soluciones SaaS).

Soluciones WAF de software libre

Existen múltiples soluciones de software libre

- IronBee[17].
- WebCastellum[18].
- RAPTOR[19].
- NAXSI[20].
- OpenWAF[21].
- FreeWAF[22].
- Shadow Daemon[23].
- AQTRONiX WebKnight[24].
- Vulture[25].
- ModSecurity [26].

ModSecurity

Entre ellas destaca ModSecurity por ser la solución de software libre más extendida y activa de la comunidad e implementa un número significativo de los controles de seguridad deseables en un WAF.

Ventajas e inconvenientes

Ventajas:

- Más económicos.
- Acceso al código fuente y la capacidad de modificarlo.
- (en la mayoría de las soluciones) elimina la dependencia del proveedor.
- Más adaptables a las necesidades de cada entorno.

Desventajas:

- Dependencia de la plataforma web (tradicionalmente un módulo de ésta).
- Más difíciles de implementar y de mantener.
- Proceso de depuración de errores es más complejo.
- Actualización o migración de la plataforma web y el WAF deben realizarse conjuntamente.

Comparativa soluciones

A continuación se muestra un resumen de las características de las distintas soluciones y la solución del presente proyecto:

Características	WAF SaaS	WAF Appliance	WAF Software libre	Propuesta
Independencia de la plataforma web	↑ Muy buena	↑ Buena	↓ Mala	↑ Buena
Independencia operacional (RBAC)	↑ Muy buena	↑ Buena	↓ Mala	↑ Buena
Complejidad de despliegue y administración	↑ Muy baja	↑ Baja	↓ Alta	⇒ Media
Coste económico	↓ Alto	↓ Alto	↑ Bajo	↑ Bajo
Soporte técnico	↑ Bueno	↑ Bueno	↓ Limitado	↓ Limitado
Información accesible por terceros	↓ Sí	↑ No	↑ No	↑ No
Adaptabilidad / Personalización	↓ Muy baja	↓ Baja	↑ Alta	↑ Alta
Acceso al código fuente	↓ No	↓ No	∱ Sí	∱ Sí
Funcionalidades adicionales (por defecto)	↑ Muy buenas	↑ Buenas	↓ Limitadas	↑ Buenas

Reverse Proxy + WAF + aceleración TLS

- Introducción
 - Aplicaciones web y la seguridad
 - Mecanismos de protección
 - Aplicaciones web y la seguridad
- Estado del arte
 - Soluciones WAF privativas
 - Soluciones WAF de software libre
 - Comparativa soluciones WAF
- Solucion
 - Objetivo
 - Diseño
 - Arquitectura
- Tests y resultados
- Conclusiones

Objetivo

Como respuesta a la situación actual, se define el siguiente objetivo:

Objetivo

Construir una solución de software libre con capacidades de WAF y aceleración SSL/TLS, que sea fácilmente desplegable y que minimice el esfuerzo y el impacto que dicha solución tiene sobre la plataforma web actual o futura.

También debe ser fácilmente adaptable a diferentes necesidades y entornos.

Usuario

Certification Authority

Diseño

Figura: Diseño a alto nivel de la solución

Componentes

Componentes de la solución:

Web Application Firewall

Software criptográfico

virtualización (contenedores)

Automatización y orquestación.

Gestión de certificados.

Políticas y controles de seguridad.

Componentes

Componentes de la solución:

- Web Application Firewall
- Software criptográfico.
- Software de virtualización.
- Software de orquestación.
- Software de aprovisionamiento y gestión de certificados.
- Políticas de auditoría y controles de seguridad.

Componentes externos:

- Servicio DNS.
- Servicio de almacenamiento NFS [27].

Arquitectura

Reverse Proxy + WAF + aceleración TLS

- Introducción
 - Aplicaciones web y la seguridad
 - Mecanismos de protección
 - Aplicaciones web y la seguridad
- Estado del arte
 - Soluciones WAF privativas
 - Soluciones WAF de software libre
 - Comparativa soluciones WAF
- Solucion
 - Objetivo
 - Diseño
 - Arquitectura
- Tests y resultados
- Conclusiones

Resultados TLS

Se ha ejecutado la batería de pruebas proporcionada por Qualys. SSL Labs [28] con el siguiente resultado:

Entre otros, los test ejecutados incluyen: Configuración TLS, vulnerabilidades TLS y configuración de certificados.

Resultados cabeceras HTTP de seguridad

Se ha ejecutado la batería de pruebas proporcionada por Netsparker [29] con el siguiente resultado:

Entre otros, los test ejecutados incluyen: HTTP Strict Transport Security[30, Wikipedia] (HSTS), X-XSS-Protection, Content-Security-Policy o la reciente Feature-Policy.

Reverse Proxy + WAF + aceleración TLS

- Introducción
 - Aplicaciones web y la seguridad
 - Mecanismos de protección
 - Aplicaciones web y la seguridad
- Estado del arte
 - Soluciones WAF privativas
 - Soluciones WAF de software libre
 - Comparativa soluciones WAF
- Solucion
 - Objetivo
 - Diseño
 - Arquitectura
- Tests y resultados
- Conclusiones

Conclusiones

TODO

Ruegos y preguntas

¿Preguntas?

Referencias I

- Internet Engineering Task Force (IETF). Estándar RFC8484.

 DNS Queries over HTTPS (DoH)

 . URL: https://tools.ietf.org/html/rfc8484.
- Dr. Gulshan Kumar Ahuja. «Denial of service attacks an updated perspective». En: *Systems Science and Control Engineering* 4 (ene. de 2016), págs. 285-294. DOI: 10.1080/21642583.2016.1241193.
- Open Web Application Security Project. OWASP Top 10. URL: https://www.owasp.org/images/5/5e/OWASP-Top-10-2017-es.pdf.

Referencias II

Vicente Aguilera Díaz. Controles técnicos de seguridad para la protección de aplicaciones web

. URL: http://www.vicenteaguileradiaz.com/pdf/SIC94_Seguridad_Aplicaciones_OWASP.pdf.

TLS compatibility with PCI DSS (Payment Card Industry Data Security Standard)

. URL: https://blog.wao.io/tls-compatibility-with-pci-dss/.

Wikipedia. Server Name Indication

. URL: https://es.wikipedia.org/wiki/Server_Name_Indication.

Referencias III

Hashed Out Blog. Nearly 21 % of the world's top 100,000 websites still aren't using HTTPS

. URL: https://www.thesslstore.com/blog/nearly-21-of-the-worlds-top-100000-websites-still-arent-using-https/.

INCIBE. WAF: cortafuegos que evitan incendios en tu web . URL: https://www.incibe.es/protege-tu-empresa/blog/waf-cortafuegos-evitan-incendios-tu-web.

Cloudflare WAF

. URL: https://www.cloudflare.com/waf/.

Referencias IV

Cloudflare

. URL: https://www.cloudflare.com/.

Kona WAF

. URL:

https://www.akamai.com/uk/en/resources/waf.jsp.

Akamai

. URL: https://www.akamai.com/es/es/.

Incapsula Web Application Firewall

. URL: https://www.incapsula.com/website-security/web-application-firewall.html.

Referencias V

Imperva WAF Gateway

- . URL: https://www.imperva.com/products/on-premises-waf/.
- FortiWeb: Web Application Firewall
 - . URL: https://www.fortinet.com/products/web-application-firewall/fortiweb.html.
- **Fortinet**
 - . URL: https://www.fortinet.com/.
- Página oficial de IronBee
 - . URL: https://github.com/ironbee/ironbee.

Referencias VI

- Repositorio de código oficial de WebCastellum
- . URL: https:
- //sourceforge.net/p/webcastellum/code/HEAD/tree/.
- Repositorio de código oficial de Raptor WAF
- . URL: https://github.com/CoolerVoid/raptor_waf.
- Página oficial de NAXSI
- . URL: https://github.com/nbs-system/naxsi.
- Página oficial de OpenWAF
- . URL: https://github.com/titansec/OpenWAF.
- Blog oficial de FreeWAF / lua-resty-waf
- . URL: https://www.cryptobells.com/reintroducing-lua-resty-waf/.

Referencias VII

- Página oficial de Shadow Daemon
- . URL: https:
- //shadowd.zecure.org/overview/introduction/.
- Página oficial de AQTRONiX WebKnight
- . URL: https://www.aqtronix.com/?PageID=99.
- Página oficial de Vulture WAF
- . URL: https://www.vultureproject.org/.
- Página oficial de Modsecurity
- . URL: https://www.modsecurity.org/.
- Internet Engineering Task Force (IETF). Estándar RCF7530.

 Network File System (NFS) Version 4 Protocol
 - . URL: https://tools.ietf.org/html/rfc7530.

Referencias VIII

- Qualys. SSL Labs. SSL Server Test
 - . URL: https://www.ssllabs.com/ssltest/index.html.
- Netsparker. Security Headers Test
 - . URL: https://securityheaders.com/.
- Wikipedia. HTTP Strict Transport Security
 - . URL: https://es.wikipedia.org/wiki/HTTP_Strict_ Transport Security.
- Wikipedia. Systems Development Life Cycle
 - . URL: https://es.wikipedia.org/wiki/Systems_ Development_Life_Cycle.

Glosario I

```
CDN Content Delivery Network. 16
```

- DoH DNS over HTTPS. 4, 34
- DoS Denial-of-service. 16
- HSTS HTTP Strict Transport Security[30, Wikipedia]. 30
- HTTP Hypertext Transfer Protocol. 4
- HTTPS Hypertext Transfer Protocol Secure. 4
- OWASP Open Web Application Security Project. 6, 34
 - RBAC role-based access control, 18

Glosario II

SaaS Software as a Service. 16

SDLC Systems Development Life Cycle[31, Wikipedia]. 10

URL Uniform Resource Locator. 16

WAF Web Application Firewall. 13, 25, 26

