Números Reais

Gláucio Terra

glaucio@ime.usp.br

Departamento de Matemática IME - USP

DEFINIÇÃO Seja K um conjunto munido de duas operações, denotadas por "+" e "·". Diz-se que $(K,+,\cdot)$ é um *corpo* se satisfizer as seguintes condições:

DEFINIÇÃO Seja K um conjunto munido de duas operações, denotadas por "+" e "·". Diz-se que $(K,+,\cdot)$ é um *corpo* se satisfizer as seguintes condições:

(A1)
$$\forall x, y, z : (x + y) + z = x + (y + z)$$

(A2)
$$\forall x, y : x + y = y + x$$

(A3)
$$\exists 0 \in K, \forall x : x + 0 = x$$

(A4)
$$\forall x, \exists (-x) : x + (-x) = 0$$

(M1)
$$\forall x, y, z : (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

(M2)
$$\forall x, y : x \cdot y = y \cdot x$$

(M3)
$$\exists 1 \in K, 1 \neq 0, \forall x : x \cdot 1 = x$$

(M4)
$$\forall x, \exists x^{-1} : x \cdot x^{-1} = 1$$

(M1)
$$\forall x, y, z : (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

(M2)
$$\forall x, y : x \cdot y = y \cdot x$$

(M3)
$$\exists 1 \in K, 1 \neq 0, \forall x : x \cdot 1 = x$$

(M4)
$$\forall x, \exists x^{-1} : x \cdot x^{-1} = 1$$

(D)
$$\forall x, y, z : x \cdot (y+z) = x \cdot y + x \cdot z$$

Propriedades da Adição e Multiplicação

PROPOSIÇÃO Seja $(K, +, \cdot)$ um corpo. As seguintes propriedades decorrem de (A1)-(A4):

- 1. o elemento neutro da adição é único;
- 2. dado $x \in K$, o simétrico de x é único; além disso, -(-x) = x;
- 3. lei do cancelamento: $x + z = y + z \Leftrightarrow x = y$;

Propriedades da Adição e Multiplicação

Proposição Seja $(K, +, \cdot)$ um corpo. As seguintes propriedades decorrem de (M1)-(M4):

- 1. o elemento neutro da multiplicação é único;
- 2. dado $x \in K, x \neq 0$, o inverso multiplicativo de x é único; além disso, $(x^{-1})^{-1} = x$;
- 3. lei do cancelamento:

$$x \cdot z = y \cdot z e z \neq 0 \Rightarrow x = y;$$

Propriedades da Adição e Multiplicação

Proposição Seja $(K, +, \cdot)$ um corpo. Tem-se:

1.
$$\forall x : 0 \cdot x = 0$$

2.
$$\forall x, y : (-x) \cdot y = x \cdot (-y) = -(x \cdot y)$$

3.
$$x \cdot y = 0 \Rightarrow x = 0$$
 ou $y = 0$

DEFINIÇÃO Sejam A um conjunto e $\leqslant \subset A \times A$ uma relação em A. Diz-se que \leqslant é uma relação de ordem parcial se:

DEFINIÇÃO Sejam A um conjunto e $\leqslant \subset A \times A$ uma relação em A. Diz-se que \leqslant é uma relação de ordem parcial se:

(O1) $(\forall x \in A)x \leqslant x$ (i.e., \leqslant é reflexiva);

DEFINIÇÃO Sejam A um conjunto $e \leqslant \subset A \times A$ uma relação em A. Diz-se que \leqslant é uma relação de ordem parcial se:

(O1)
$$(\forall x \in A)x \leqslant x$$
 (i.e., \leqslant é reflexiva);

(O2)
$$(\forall x, y \in A)$$
 se $x \leq y$ e $y \leq x$, então $x = y$ (i.e., \leq é anti-simétrica);

DEFINIÇÃO Sejam A um conjunto e $\leqslant \subset A \times A$ uma relação em A. Diz-se que \leqslant é uma relação de ordem parcial se:

- (O1) $(\forall x \in A)x \leqslant x$ (i.e., \leqslant é reflexiva);
- (O2) $(\forall x, y \in A)$ se $x \leqslant y$ e $y \leqslant x$, então x = y (i.e., \leqslant é anti-simétrica);
- (O3) $(\forall x, y, z \in A)$ se $x \leq y$ e $y \leq z$, então $x \leq z$ (i.e., \leq é transitiva).

Uma relação de ordem parcial diz-se *total* ou *linear* se também satisfizer:

(O4)
$$(\forall x, y \in A) \ x \leqslant y \text{ ou } y \leqslant x$$
.

DEFINIÇÃO Sejam $(K, +, \cdot)$ um corpo e \leq uma relação de ordem total em K. Diz-se que $(K, +, \cdot, \leq)$ é um corpo ordenado se os seguintes axiomas forem satisfeitos:

DEFINIÇÃO Sejam $(K, +, \cdot)$ um corpo e \leq uma relação de ordem total em K. Diz-se que $(K, +, \cdot, \leq)$ é um corpo ordenado se os seguintes axiomas forem satisfeitos:

(OA)
$$x \leqslant y \Rightarrow x + z \leqslant y + z$$

DEFINIÇÃO Sejam $(K, +, \cdot)$ um corpo e \leq uma relação de ordem total em K. Diz-se que $(K, +, \cdot, \leq)$ é um corpo ordenado se os seguintes axiomas forem satisfeitos:

(OA)
$$x \leqslant y \Rightarrow x + z \leqslant y + z$$

(OM)
$$x \leqslant y e z \geqslant 0 \Rightarrow x \cdot z \leqslant y \cdot z$$

Propriedades de Corpos Ordenados

Proposição Seja $(K, +, \cdot, \leq)$ um corpo ordenado. Tem-se:

1. Regra de sinais:

(a)
$$x > 0$$
 e $y > 0 \Rightarrow x \cdot y > 0$

(b)
$$x < 0$$
 e $y > 0 \Rightarrow x \cdot y < 0$

(c)
$$x < 0$$
 e $y < 0 \Rightarrow x \cdot y > 0$

2. se $x \neq 0$, x e x^{-1} têm o mesmo sinal;

3.
$$0 < x < y \Rightarrow 0 < y^{-1} < x^{-1}$$

4.
$$0 > x > y \Rightarrow 0 > y^{-1} > x^{-1}$$

DEFINIÇÃO Sejam $(K,+,\cdot)$ e $(F,+,\cdot)$ corpos. Diz-se que $\phi:K\to F$ é um homomorfismo de corpos se: (i) $\phi(x+y)=\phi(x)+\phi(y)$, (ii) $\phi(x\cdot y)=\phi(x)\cdot\phi(y)$ e (iii) $\phi(1)=1$.

DEFINIÇÃO Sejam $(K,+,\cdot)$ e $(F,+,\cdot)$ corpos. Diz-se que $\phi:K\to F$ é um homomorfismo de corpos se: (i) $\phi(x+y)=\phi(x)+\phi(y)$, (ii) $\phi(x\cdot y)=\phi(x)\cdot\phi(y)$ e (iii) $\phi(1)=1$.

Se $(K, +, \cdot, \leqslant)$ e $(F, +, \cdot, \leqslant)$ forem corpos ordenados, $\phi: K \to F$ diz-se um homomorfismo de corpos ordenados se for um homomorfismo de corpos e se preservar ordem, i.e.

$$x \leqslant y \Rightarrow \phi(x) \leqslant \phi(y)$$
.

DEFINIÇÃO Seja $(K, +, \cdot)$ um corpo. Dados $x \in K$ e $n \in \mathbb{N}$, define-se $n \cdot x$ indutivamente por:

- 1. $1 \cdot x \doteq x$
- **2.** $(n+1) \cdot x = n \cdot x + x$

DEFINIÇÃO Seja $(K, +, \cdot)$ um corpo. Dados $x \in K$ e $n \in \mathbb{N}$, define-se $n \cdot x$ indutivamente por:

- 1. $1 \cdot x \doteq x$
- **2.** $(n+1) \cdot x = n \cdot x + x$

Proposição Seja $(K,+,\cdot)$ um corpo. Tem-se, $\forall m,n\in\mathbb{N}, \forall x,y\in K$:

- 1. $(m+n) \cdot x = m \cdot x + n \cdot x$
- **2.** $n \cdot (x + y) = n \cdot x + n \cdot y$
- **3.** $n \cdot (x \cdot y) = (n \cdot x) \cdot y = x \cdot (n \cdot y)$

Proposição Para todo $n \in \mathbb{N}$, tem-se:

- 1. $n \cdot 0 = 0$
- **2.** $n \cdot 1 > 0$

Proposição Para todo $n \in \mathbb{N}$, tem-se:

- **1.** $n \cdot 0 = 0$
- **2.** $n \cdot 1 > 0$

Proposição Sejam $(K,+,\cdot,\leqslant)$ um corpo ordenado e $\phi:\mathbb{Q}\to K$ dada por $(\forall m/n\in\mathbb{Q})\phi(m/n)\doteq (m\cdot 1)/(n\cdot 1)$. Então ϕ é um homomorfismo de corpos ordenados.

Módulo

DEFINIÇÃO Seja $(K, +, \cdot, \leqslant)$ um corpo ordenado. Definimos $|\cdot|: K \to K$ por:

$$|x| \doteq \begin{cases} x, & \text{se } x \geqslant 0 \\ -x, & \text{se } x < 0 \end{cases}$$

Módulo

PROPOSIÇÃO Seja $(K, +, \cdot, \leqslant)$ um corpo ordenado. Tem-se, $\forall x, y \in K$:

- 1. $|x| = \max\{x, -x\}$
- 2. $|x \cdot y| = |x| \cdot |y|$ e, se $y \neq 0$, $|\frac{x}{y}| = \frac{|x|}{|y|}$
- 3. $||x| |y|| \le |x + y| \le |x| + |y|$
- 4. dado $a \geqslant 0$, tem-se $|x-y| \leqslant a \Leftrightarrow y-a \leqslant x \leqslant y+a$

Definição Sejam X um conjunto munido de uma ordem parcial \leqslant , $A \subset X$ e $a \in X$.

DEFINIÇÃO Sejam X um conjunto munido de uma ordem parcial \leqslant , $A \subset X$ e $a \in X$.

1. a diz-se um majorante ou limitante superior de A se $(\forall x \in A)x \leq a$;

DEFINIÇÃO Sejam X um conjunto munido de uma ordem parcial \leqslant , $A \subset X$ e $a \in X$.

- 1. a diz-se um majorante ou limitante superior de A se $(\forall x \in A)x \leqslant a$;
- 2. a diz-se supremo de A se for o menor majorante de A;

Definição Sejam X um conjunto munido de uma ordem parcial \leqslant , $A \subset X$ e $a \in X$.

- 1. a diz-se um majorante ou limitante superior de A se $(\forall x \in A)x \leqslant a$;
- 2. a diz-se supremo de A se for o menor majorante de A;
- 3. a diz-se $m\acute{a}ximo$ de A se for majorante de A e se $a \in A$.

Axioma do Supremo

DEFINIÇÃO Seja X um conjunto munido de uma relação de ordem parcial \leq . Diz-se que (X, \leq) satisfaz o axioma do supremo se o seguinte axioma for satisfeito:

(S) Todo subconjunto não-vazio de X limitado superiormente admite supremo.

Axioma do Supremo

DEFINIÇÃO Seja X um conjunto munido de uma relação de ordem parcial \leq . Diz-se que (X, \leq) satisfaz o axioma do supremo se o seguinte axioma for satisfeito:

(S) Todo subconjunto não-vazio de X limitado superiormente admite supremo.

DEFINIÇÃO Seja $(K, +, \cdot, \leqslant)$ um corpo ordenado. Diz-se que o mesmo é um corpo ordenado completo se o conjunto ordenado (K, \leqslant) satisfizer o axioma (S).

Axioma do Supremo

PROPOSIÇÃO Seja X um conjunto munido de uma relação de ordem total \leq . São equivalentes:

- 1. Todo subconjunto não-vazio de X limitado superiormente admite supremo.
- 2. Todo subconjunto não-vazio de *X* limitado inferiormente admite ínfimo.

Corpos Ordenados Completos

PROPOSIÇÃO Seja $(K, +, \cdot, \leq)$ um corpo ordenado. São equivalentes:

- 1. N não é limitado superiormente
- **2.** $\forall a, b > 0, \exists n \in \mathbb{N} : na > b$
- **3.** $\forall a > 0, \exists n \in \mathbb{N} : 1/n < a$

Corpos Ordenados Completos

PROPOSIÇÃO Seja $(K, +, \cdot, \leq)$ um corpo ordenado. São equivalentes:

- 1. № não é limitado superiormente
- **2.** $\forall a, b > 0, \exists n \in \mathbb{N} : na > b$
- **3.** $\forall a > 0, \exists n \in \mathbb{N} : 1/n < a$

DEFINIÇÃO Seja $(K, +, \cdot, \leqslant)$. Se uma das condições equivalentes da proposição anterior for satisfeita, diz-se que $(K, +, \cdot, \leqslant)$ é um corpo arquimediano.

Corpos Ordenados Completos

PROPOSIÇÃO Se $(K, +, \cdot, \leq)$ é um corpo ordenado completo, então é arquimediano.

O Corpo dos Reais

Admitiremos que existe um corpo ordenado completo $(\mathbb{R}, +, \cdot, \leq)$, e o chamaremos de corpo dos números reais.

Intervalos Encaixados

Teorema Seja $I_1\supset \cdots \supset I_n\supset I_{n+1}\supset \cdots$ uma seqüência decrescente de intervalos fechados e limitados de \mathbb{R} , $I_n=[a_n,b_n]$. Então existe $x\in \cap_{n\in \mathbb{N}}I_n$.

TEOREMA

- 1. R não é enumerável.
- 2. Se $A \subset \mathbb{R}$ é um intervalo não-degenerado, então A é não-enumerável.
- 3. Todo intervalo não-degenerado de ℝ contém números racionais e irracionais.

Referências Complementares

- W. Rudin, Principles of Mathematical Analysis, McGrawHill, New York, 1976.
- L. H. J. Monteiro, Elementos de Álgebra, Impa, Rio de Janeiro, 1969.