

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 2.5.1

Измерение коэффициента поверхностного натяжения жидкости

Автор: Чикин Андрей Павлович Б05-304

Список иллюстраций

1	Схема экспериментальной установки	3
2	Зависимость коэффицента поверхностного натяжения воды от температуры	5
3	Зависимость теплоты образования единицы поверхности жидкости от температуры и поверхностной энергии единицы площади	6
Спи	сок таблиц	
$\frac{1}{2}$	Радуис иглы, измеренный через эталонную жидкость (спирт)	4 5

1 Цель работы:

- 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта;
- 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

2 В работе используются:

Прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

3 Теоретическая часть:

Из-за поверхностного натяжения возникают разные давления с разных сторон искривленной поверхности жидкости:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{r}$$
 (формула Лапласа) (3.1)

 σ - коэффицент поверхностного натяжения, r - радиус кривизны поверхности.

4 Экспериментальная установка:

Рис. 1: Схема экспериментальной установки

Схема экспериментальной установки представлена на рисунке 1. Тестовая жидкость (этиловый спирт) наливается в сосуд, через пробку в него входит полая металлическа игла. При создании достаточно разреженного воздуха в колбе пузырьки воздуха начинают пробулькивать, поверхностное натяжение измеряется по величине разряжения. Разряжение создается с помощью аспиратора, разность давлений измеряется спиртовым микроманометром.

Для стабилизации температуры через рубашку колбы с исследуемой жидкостью прогоняется вода из термостата. Из-за большой теплопроводности трубки температура в разных частях трубки заметно различна и ввиду теплового расширения поднимается уровень жидкости при изменении температуры. Поэтому при температурном измерениии кончик иглы опускают до самого дна сосуда, тогда:

$$\Delta P = P - \rho g h \tag{4.1}$$

ho - плотность жидкости, h - высота погружения иглы.

5 Измерения и обработка данных

Измерение радиуса иглы

Измерение радиусы иглы проводится двумя различными способами: с помощью коэффиента поверхностного натяжения спирта и непосредственно на микроскопе. При измерении давления нужно умножить показания прибора на $0.2 \cdot 9.80665$ Для спирта максимальное давление $\Delta P = 82.38$

Таблица 1: Радуис иглы, измеренный через эталонную жидкость (спирт).

При измерении на микроскопе получается диаметр иглы, равный:

$$d = (1.10 \pm 0.05) \text{ MM} \tag{5.1}$$

В дальнейшем примем d, равный измеренному микроскопом, так как рехультаты измерений близки друг к другу.

Измерения глубины погружения

При погружении получаем значение, измеренное линейкой, равное 2.1 см, а перепад давлений равен 93 пункта или 182.4 Па, что соответствует 1.9 см столба воды.

Коэффициент поверхностного натяжения от температуры

После обработки с известным радиусом иглы и перепадом высот, получим значения коэффицента поверхностного натяжения, представим в виде графика (2)

Рис. 2: Зависимость коэффицента поверхностного натяжения воды от температуры

Значения коэффицента натяжения при измерениях на глубине сосуда близки к табличным, их и будем учитывать при дальнейших расчетах. Несовпадение с результами измерений на поверхности жидкости объясняется теплопроводностью металла.

Из аппроксимации графика найдем $\frac{d\sigma}{dt}$, а также построим график теплоты образования единицы поверхности жидкости от температуры и график поверхностной энергии единицы площади.

$\frac{d\sigma}{dt}$, $10^{-3} \frac{MH}{M \cdot K}$	$\sigma_{\sigma}, 10^{-3} \frac{MH}{M \cdot K}$	ε , %
-0.13	0.04	20

Таблица 2: Зависимость коэффицента поверхностного натяжения воды от температуры.

$$q = -T\frac{\mathrm{d}\sigma}{\mathrm{d}T} \tag{5.2}$$

$$U_{\Pi} = (\sigma + q) \cdot \Pi \tag{5.3}$$

Рис. 3: Зависимость теплоты образования единицы поверхности жидкости от температуры и поверхностной энергии единицы площади

6 Выводы

- 1. Измерены коэффциенты поверхностного натяжения при разных температур, пронаблюдалась близость полученных результатов к табличным значениям. (см. рис. 2)
- 2. Получена температурная зависимость коэффициента поверхностного натяжения воды от температуры.

$$\frac{d\sigma}{dt} = (-0.13 \pm 0.04) \text{ MH/(M} \cdot \text{K)}$$

при теоретическом значении

$$\frac{d\sigma}{dt} = -0.15 \text{ MH/(M \cdot K)}$$

3. Вычислены зависимости теплоты образования единицы поверхности жидкости от температуры и поверхностной энергии единицы площади, постоянство второй из них подтверждается теоретически.