The emergence of geometric order in proliferating metazoan epithelia.

by Gibson *et al Nature*, 2006 – Computational Biology and Bioinformatics Seminar

Philip Hartout

May 26, 2020

ETH Zurich

Table of contents

Introduction

Motivation

'The organisation of cells into epithelial sheets is an essential feature of animal design.'

Gibson et al [?]

Context

Predictable geometries arise when *minimising surface energy* or *maximising space filling* in biological and non-biological structures:

Examples

- Drosophila Melanogaster's retinal cells
- Honeycombs
- Coins on tabletops

Context

Predictable geometries arise when *minimising surface energy* or *maximising space filling* in biological and non-biological structures:

Examples

- Drosophila Melanogaster's retinal cells
- Honeycombs
- Coins on tabletops

How is the geometry of growing epithelial cells organized and how can it be explained?

Emergent behaviour

Emergent behaviour

It is the behaviour of a system that can *only* be explained by examination of a system's **parts** and their **relationships**.

Here, it can be applied to growing epithelia.

Model Assumptions

Post-mitotic relationship between two daughter cells

Stochastically marked cell lineages with GFP revealed stable post-mitotic patterns.

Figure 1: Daugher-cell relationship.

Figure 2: Observed post-mitotic relationship between daughter cells.

Typical topology changes of a dividing cell

Figure 3: Topology changes during cell division

A Discrete Markov Model for

Proliferating Epithelia

Markov models

A Markov chain is a discrete stochastic process with the Markov property:

$$P(X_t|X_{t-1},...,X_1) = P(X_t|X_{t-1})$$

where X_t is the time-dependent r.v. describing the state of the system at time t.

It is determined by a probability transition matrix P and an initial probability distribution x where $x_i = P(X_0 = i)$.

7

Applying a discrete M.M. to growing epethelia

S	state of the cell as its number of sides, where $s > 3$.
p_s	the relative frequency of s-sided cells in the population
$\mathbf{p}^{(t)}$	the infinite row vector $\mathbf{p}^{(t)} = [p_4, p_5, p_6, \ldots]$ state of the population at generation t .
$\mathbf{p}^{(t+1)} = \mathbf{p}^{(t)} PS$	the state dynamics, where P and S are the probabilistic transition matrices.
P_{ij}	the probabilty that an i sided cell divides to produce a j -sided daughter cell.
S_{ij}	the probability of an i-sided cell will gain sides from dividing neighbour cells divisions
-	to become <i>j</i> -sided.

8

Transition matrices

$$P = \begin{bmatrix} 4 & 5 & 6 & 7 & 8 & 9 & \dots \\ 4 & 1 & & & & & \\ 5 & 1 & 1 & & & & & \\ 6 & 1 & 2 & 1 & & & & \\ 1 & 3 & 3 & 1 & & & & \\ 8 & 1 & 4 & 6 & 4 & 1 & & \\ 9 & 1 & 5 & 10 & 10 & 5 & 1 & & \\ \vdots & & & & \ddots & \end{bmatrix}$$

 P_{ij} : the probability that an i sided cell divides to produce a j-sided daughter cell.

 S_{ij} the probability of an *i*-sided cell will gain sides from dividing neighbour cells divisions

Predicting the equilibrium E from T = PS

The Perron-Frobenius theorem guarantees that a Markov chain will converge to a unique equilibrium E which is the principal eigenvector of the transition matrix T = PS.

Figure 4: Distribution of the predicted and observed polygons (yellow: predicted equilibirum)

Robust equilibrium topology

Figure 5: Discrete state dynamics

Figure 6: Figure showing the same attained equilibirum, no matter the initial conditions

Additional insights on mitotic cells

As seen in *S*, a mitotic cell gains on average one side, and daughter cells have one less side. Experimental evidence confirms this:

Non-mitotic cells	(5.94 ± 0.06)
Mitotic cells	(6.99 ± 0.07)

Figure 7: Polygon distributions of mitotic cells vs. non-mitotic cells

Polygon distribution of mitotic cells in non-proliferating tissues

The polygon distribution of proliferating cells in a non-proliferating tissue is not the same as that in proliferating tissue. This is demonstrated by forcing mitosis (using a proten named *string*, abbreviated *stg*) in some cells in quiescent tissue.

Figure 8: Distribution of polygons in non-proliferating titsue

ightarrow Differential proliferation influences cell shape and morphogenesis (not modelled here).

Subsequent works

Subsequent work

Work on 3D structures:

Figure 9: The scutoid has been discovered as a solution to 3D cell packing.[?]

Work on dynamics

Figure 10: Modelling and prediction of speed and direction of proliferating epithelia. [?]

The proposed **discrete Markov chain**:

1. shows how epithelial topology can be irregular, but **not random**.

- 1. shows how epithelial topology can be irregular, but **not random**.
- 2. explains the hexagonal topology of growing epithelia

- 1. shows how epithelial topology can be irregular, but **not random**.
- 2. explains the hexagonal topology of growing epithelia
- 3. predicts the **overall distribution** of polygonal cell types

- 1. shows how epithelial topology can be irregular, but **not random**.
- 2. explains the hexagonal topology of growing epithelia
- 3. predicts the **overall distribution** of polygonal cell types
- 4. shows an **emergent mechanism** by which epithelia accommodate **rapid proliferation** while maintaining **structural integrity**.

- 1. shows how epithelial topology can be irregular, but **not random**.
- 2. explains the hexagonal topology of growing epithelia
- 3. predicts the **overall distribution** of polygonal cell types
- 4. shows an **emergent mechanism** by which epithelia accommodate **rapid proliferation** while maintaining **structural integrity**.
- 5. Provides a **framework** for investigating other models for **cell division** such as **cleavage plane** choices or **aberrant cell division**.

Geometry of growing epithelial cells

Time-lapse movies collected revealed the following findings:

- Initially polygonal prophase cells rounded up and divided
- Cell-neighbour relationships were stably maintained throughout the cell cycle
- The topology of the divided cells is invariant over time.

Figure 11: General hexagon-dominated topology of growing epithelial in *Drosophila Melanogaster*.

- P_{ij}: the probabilty that an i sided cell divides to produce a j-sided daughter cell.
- K_t: the number of junctions distributed to one daughter cell on division at generation
 t. s_{t-1} - K_t are left for the other.

- P_{ij}: the probabilty that an i sided cell divides to produce a j-sided daughter cell.
- K_t: the number of junctions distributed to one daughter cell on division at generation
 t. s_{t-1} - K_t are left for the other.
- Because no triangular cells are observed, each daughter receives at least two junctions, leaving s_t - 4 junctions to be distributed among the daughters with equal probability.
- So, the number of junctions received by the first daughter is $K_t 2 \sim \mathcal{B}(n = s_{t-1}, p = \frac{1}{2}).$

- P_{ij}: the probabilty that an i sided cell divides to produce a j-sided daughter cell.
- K_t: the number of junctions distributed to one daughter cell on division at generation
 t. s_{t-1} - K_t are left for the other.
- Because no triangular cells are observed, each daughter receives at least two junctions, leaving s_t - 4 junctions to be distributed among the daughters with equal probability.
- So, the number of junctions received by the first daughter is $K_t 2 \sim \mathcal{B}(n = s_{t-1}, p = \frac{1}{2}).$

• As a result $P_{ij} = P(K_t + 2 = j | s_{t-1} = i) = \binom{i-4}{j-4} \cdot \frac{1}{2^{j-4}}$

- P_{ij}: the probabilty that an i sided cell divides to produce a j-sided daughter cell.
- K_t: the number of junctions distributed to one daughter cell on division at generation
 t. s_{t-1} - K_t are left for the other.
- Because no triangular cells are observed, each daughter receives at least two junctions, leaving s_t - 4 junctions to be distributed among the daughters with equal probability.
- So, the number of junctions received by the first daughter is $K_t 2 \sim \mathcal{B}(n = s_{t-1}, p = \frac{1}{2}).$

- As a result $P_{ij} = P(K_t + 2 = j | s_{t-1} = i) = \binom{i-4}{i-4} \cdot \frac{1}{2^{i-4}}$
- Therefore, the unnormalized entries of P are the coefficients of Pascal's triangle:

Derivation of Markov state dynamics - transition matrix ${\mathcal S}$

 S_{ij}: the probability of an *i*-sided cell will gain sides from dividing neighbour cells divisions

Derivation of Markov state dynamics - transition matrix ${\mathcal S}$

- S_{ij}: the probability of an *i*-sided cell will gain sides from dividing neighbour cells divisions
- On mitosis, a cell adds one side to each of two neighbouring cells.

- S_{ij}: the probability of an *i*-sided cell will gain sides from dividing neighbour cells divisions
- On mitosis, a cell adds one side to each of two neighbouring cells.
- Assuming N cells in an epithelium, the number of cells after one round of divisions is 2N

- S_{ij}: the probability of an *i*-sided cell will gain sides from dividing neighbour cells divisions
- On mitosis, a cell adds one side to each of two neighbouring cells.
- Assuming N cells in an epithelium, the number of cells after one round of divisions is 2N
- On average the number of sides gained per cell is $\frac{2N}{2N}=1$. That is, a cell will gain 1 side every cycle on average.

- S_{ij}: the probability of an *i*-sided cell will gain sides from dividing neighbour cells divisions
- On mitosis, a cell adds one side to each of two neighbouring cells.
- Assuming N cells in an epithelium, the number of cells after one round of divisions is 2N
- On average the number of sides gained per cell is $\frac{2N}{2N} = 1$. That is, a cell will gain 1 side every cycle on average.
- Thus, $S_{ij} = 1$ if j = i + 1 and 0 otherwise.

Backup slides - Assumptions of the recurrence system

From the aforementioned observations observations we make the following assumptions about the mathematical modelling of cell epithelia:

- Cells are polygons with a minimum of four sides
- Cells do not resort
- Mitotic siblings retain a common common junctional interface
- Cells have asynchronous but uniform cell cycle times
- Cleavage places cut a side rather than a vertex of the mother polygon
- Mitotic cleavage orientation randomly distributes existing tricellular junctions to both daughter cells.

Recurrence system

Table 1: Cell features, topological equivalence and evolution at division t

Cell feature	Graph equivalent	Evolution at division t
Tricellular junction	Vertex, v_t	$v_t = v_{t-1} + 2f_t$
Cell side	Edge, e_t	$e_t = e_{t-1} + 3f_{t-1}$
Apical cell surface	Face, f_t	$e_t = e_{t-1} + 3f_{t-1}$

So we can construct the following system:

$$s_t = \frac{2(e_t + 3f_{t-1})}{2f_{t-1}} = \frac{s_{t-1}}{2} + 3$$

which exponentially converges to 6 provided the initial condition:

$$s_t = 6 + 2^{-t}(s_0 - 6)$$

References i