

2D PCA

Oshin Gansi KCE074BCT028

2020-09-22

What is PCA?

- Principal component analysis (PCA) is the process of computing the principal components and using them to perform a change of basis on the data, sometimes using only the first few principal components and ignoring the rest.
- PCA explain the variance-covariance structure of a set of variables through linear combinations
- It is used as dimensionality reduction technique.

Steps

- 1. Standardization
- 2. Covariance Matrix Computation
- 3. Compute Eigenvectors and Eigen values
- 4. Feature Vector
- 5. Recast the data along principal component axe

Standardization

- To standardize the range of the continuous initial variables so that each one of them contributes equally to the analysis.
- For example, a variable that ranges between 0 and 100 will dominate over a variable that ranges between 0 and 1), which will lead to biased results.

$$z = \frac{value - mean}{standard\ deviation}$$

Compute Covariance Matrix

• The covariance matrix is a $p \times p$ symmetric matrix (where p is the number of dimensions)

Eigenvectors and Eigenvalues

• Eigen values can be calculated using characteristic polynomial.

Let
$$\Sigma = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Using Characteristic polynomial:

For Eigen vectors: $\Sigma \cdot v = \lambda \cdot v$

V = Eigenvector λ = Eigenvalue

Feature vector

 The feature vector is simply a matrix that has as columns the eigenvectors of the components.

$$\begin{bmatrix} x1 & x2 \\ y1 & y2 \end{bmatrix}$$

• To choose whether to keep all these components or discard those of lesser significance(of low eigen values).

Recast the data

- The aim is to use the feature vector formed using the eigenvectors of the covariance matrix
- To reorient the data from the original axes to the ones represented by the principal components

Application

- Facial Recognition
- Computer vision
- Image compression
- Finding pattern in data of high dimension
- Data mining

1	2	3
4	5	6
7	8	9

	\rightarrow

10	11	12
13	14	15
16	17	18

1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18

PCA

5.5	6.5	7.5
8.5	9.5	10.5
11.5	12.5	13.5

2D PCA

1	2	3
4	5	6
7	8	9

10	11	12
13	14	15
16	17	18

1	2	3
4	5	6
7	8	9

10	11	12
13	14	15
16	17	18

5.5	6.5	7.5
8.5	9.5	10.5
11.5	12.5	13.5

PCA

2D PCA

THANK YOU!