Lecture 05, Math 447

Marius Junge

University of Illinois at Urbana-Champaign

Real Numbers

Last time:

 $\mathbb{R} = \{ D \subseteq \mathbb{Q} \mid D \text{ Dedekind}, D \neq \mathbb{Q} \}.$ has structure $D_1 + D_2 = \{d_1 + d_2 \mid d_1 \in D_1 \mid d_2 \subset D_2\}.$ multiplication similar, adjusting for negatives.

- Properties: 1) \mathbb{Q} are dense in \mathbb{R} .
 - 2) \mathbb{R} are not countable.
 - 3) $\forall a \in \mathbb{R}, a > 0 \quad \exists n \in \mathbb{N} \quad n > a$. (Archimedian property)

We'll prove 3 later

ad 1) Let $D_1 < D_2 \in \mathbb{R}$ Dedekind cuts. (show \exists rational in between.)

This means $D_1 \subsetneq D_2$.

This means $\exists d \in D_2 \quad d \notin D_1$.

This means
$$D_1 \subsetneq \underbrace{(-\infty,d)}_{\varphi(d)} \subsetneq D_2$$
. (recall $\varphi(d) = (-\infty,d)$)

This means $D_1 < \varphi(d) < D_2$.

timestamp: 00:03

Lemma: $2^{\mathbb{N}}$ is not countable

Notes $\mathbb Q$ complete wrt. order; only way to fill all the holes. The other algebraic relations follow from the relations of $\mathbb Q$. Density comes for free.

ad 2) **Lemma** $2^{\mathbb{N}}$ is not countable.

<u>Proof</u> Assume $2^{\mathbb{N}}$ is countable: $\exists \varphi \colon \mathbb{N} \to 2^{\mathbb{N}}$ which is a bijection.

Consider $\{n \in \mathbb{N} \mid n \notin \varphi(n)\} = B$ (which is $\subset \mathbb{N}$).

Since $B \in 2^{\mathbb{N}}$ and φ is a bijection, $\exists m \ \varphi(m) = B$.

$$\begin{cases} \text{case 1: } m \in B \Rightarrow m \notin \varphi(m) = B, \longrightarrow \\ \text{case 2: } m \notin B = \varphi(m) \Rightarrow m \in B, \longrightarrow \end{cases}.$$

Note $\mathbb N$ and $2^{\mathbb N}$ are sets; countability of $2^{\mathbb N} \iff \exists$ bijection φ above.

There is no set-theoretic problem here like in Russel's antinomy.

[0, 1] is not countable

We want to show \mathbb{R} are uncountable.

If a set is countable then every subset is either countable or finite (since every subset of \mathbb{N} is either countable or finite).

Lemma Let $\varphi \colon 2^{\mathbb{N}} \to [0,1]$ be defined by

$$\varphi(A) = \sum_{k \in A} 3^{-k} = \sup \left\{ \sum_{\substack{k \in A \\ k \le n}} 3^{-k} \mid n \in \mathbb{N} \right\}.$$

Claim 1) $\varphi(A)$ well-defined (sup exists).

$$\sum_{\substack{k \in A \\ k \le n}} 3^{-k} \le \sum_{1 \le k \le n} 3^{-k} = \frac{1}{3} \left[\sum_{k \le n-1} 3^{-k} \right] = \frac{1}{3} \left[\frac{1-3^{-n}}{1-1/3} \right]$$
$$\le \frac{1}{3} \left(\frac{1}{2/3} \right) \le \frac{1}{2} \implies \text{ set is bounded above.}$$

Claim 2) $A \neq B \implies \varphi(A) \neq \varphi(B)$ (φ is injective).

This is sufficient for our goal, since then [0,1] has an uncountable subset $(\text{Im}(\varphi) \subset [0,1])$, and so [0,1] cannot be countable.

timestamp: 15:31

Proof continued: injectivity of φ

If $A \neq B$ there is a first place this pattern disagrees.

Let
$$m_0 = \min\{m \in A \mid m \notin B\}$$
. $\forall j < m_0 \quad j \in A \iff j \in B$.

(Let m_0 be this first disagreement. Assume this occurs with $m_0 \in A \setminus B$; else switch A and B.)

Then
$$\varphi(A) \geq \sum_{\substack{j < m_0 \ j \in A}} 3^{-j} + 3^{-m_0}$$
. Denote $\alpha_{m_0} = \sum_{\substack{j < m_0 \ j \in A}} 3^{-j}$. $\varphi(B) = \sup_k \sum_{\substack{j \leq k \ j \in A}} 3^{-j}$. Denote $\varphi_k(B) = \sum_{\substack{j \leq k \ j \in A}} 3^{-j}$.
$$\frac{\text{fix k}}{\sum_{m_0 < j \leq k}} \varphi_k(B) = \alpha_{m_0} + 0 + \sum_{\substack{m_0 < j \in B \ j \leq k}} 3^{-j}$$
.
$$\sum_{\substack{m_0 < j \leq k \ j \geq m_0}} 3^{-j} \leq \sum_{\substack{j > m_0 \ j \leq k}} 3^{-j} = 3^{-(m_0+1)} \sum_{\substack{j \geq 0 \ 2}} 3^{-j} = 3^{-(m_0+1)} \frac{1}{1-1/3} = 3^{-(m_0+1)} \frac{3}{2} \leq \frac{3^{-m_0}}{2}$$
.
$$\varphi_k(B) \leq \alpha_{m_0} + \frac{3^{-m_0}}{2} < \alpha_{m_0} + 3^{-m_0} \leq \varphi(A)$$
.
$$\implies \varphi(B) = \sup_k \varphi_k(B) \leq \alpha_{m_0} + \frac{3^{-m_0}}{2} < \varphi(A)$$
.
$$\qquad \text{timestamp: 21:57}$$

\mathbb{R} is not countable

Thm \mathbb{R} is not countable.

<u>Proof</u> Let $\varphi: 2^{\mathbb{N}} \to \mathbb{R}$ be given as above. Note that φ is injective.

 \mathbb{R} countable $\Longrightarrow [0,1]$ countable $\Longrightarrow \varphi(2^{\mathbb{N}})$ countable

 $\implies 2^{\mathbb{N}}$ countable. This contradicts Lemma 1.

Usual proof uses function $A \mapsto \sum_{i \in A} 2^{-j}$ instead.

Not injective because $\sum_{j>k} 2^{-j} = 2^{-k}$ (so replacing a final 1 with a 0 followed by an infinite sequence of 1s gives two different sets for the same number).

One must prove the set of all infinite subsets of \mathbb{N} is uncountable (harder).

Archimedean property of $\mathbb N$

Claim $\forall a \in \mathbb{N} \exists n \in \mathbb{N} \quad a < n$.

Proof Assume not.

Then \mathbb{N} are bounded from above.

Let $S = \sup \mathbb{N}$ (exists by completeness of \mathbb{R}).

Why does this not make any sense?

Recall
$$S = \sup A$$
 means: 1) $\forall a \in A \ a \leq S$

1)
$$\forall a \in A \ a \leq S$$

2)
$$\forall \epsilon > 0 \ \exists a \in A \ S - \epsilon < a$$
.

$$\exists n \quad S - \frac{1}{2} < n < S$$

because we can choose $\epsilon = \frac{1}{2}$.

Then
$$n+1 \le S$$
, $n+1 > S - \frac{1}{2} + 1 \ge S + \frac{1}{2} \longrightarrow$.

timestamp: 35:09

Sequences of Real Numbers

$$(x_n)_{n\geq 1}$$
 $(x_n)_{n\in \mathbb{N}}$ what do these mean?

Def A *sequence* of real numbers is given by a function $x : \mathbb{N} \to \mathbb{R}$.

Notation:
$$x_n = x(n)$$

Def (x_n) is *monotone* if either:

- a) $\forall n \quad x(n) \leq x(n+1)$ non-decreasing or "increasing" or
 - b) $\forall n \ x(n) \geq x(n+1)$ non-increasing or "decreasing".

Note: "increasing" (likewise "decreasing") does not mean *strictly* increasing b/c terms could be equal.

Next time:

Every sequence has a monotone subsequence.