Econ 424/Amath 540 Statistical Analysis of Efficient Portfolios

Eric Zivot

August 7, 2012

The CER Model and Efficient Portfolios

Let R_{it} denote the return on asset i in month t and assume that R_{it} follows CER model:

$$R_{it} \sim iid \ N(\mu_i, \sigma_i^2),$$
 $i=1,\ldots,N \ (\text{assets})$ $t=1,\ldots,T \ (\text{months})$ $cov(R_{it},R_{jt})=\sigma_{ij}$

We estimate the CER model parameters using sample statistics giving

$$\hat{\mu}_i, \hat{\sigma}_i^2, \hat{\sigma}_{ij}$$

Remember, the estimates $\hat{\mu}_i, \hat{\sigma}_i^2$ are $\hat{\sigma}_{ij}$ are random variables and are subject to error

Key result: Sharpe ratios and efficient portfolios are functions of $\hat{\mu}_i$, $\hat{\sigma}_i^2$, $\hat{\sigma}_{ij}$; they are random variables and are subject to error

Statistical Properties of Efficient portfolios

- ullet Inputs to portfolio theory are estimates from CER model $\hat{\mu}$ and $\hat{oldsymbol{\Sigma}}$
- Sharpe ratios and efficient portfolios are functions of $\hat{\mu}$ and $\hat{\Sigma}$.
- The estimated Sharpe ratio is

$$\widehat{SR}_i = \frac{\widehat{\mu}_i - r_f}{\widehat{\sigma}_i}$$

• No easy formula for $SE(\widehat{SR}_i)$

The estimated global minimum variance portfolio is

$$\hat{\mathbf{m}} = \frac{\hat{\Sigma}^{-1} \mathbf{1}}{1' \hat{\Sigma}^{-1} \mathbf{1}}$$

 $\hat{\mathbf{m}}$ is estimated with error because we estimate Σ using $\hat{\Sigma}$.

- No easy analytic formulas for the standard errors of the elements of $\hat{\mathbf{m}} = (\hat{m}_1, \dots, \hat{m}_n)'$; i.e. no easy formula for $SE(\hat{m}_i)$
- In addition, the expected return and standard deviation of $R_{p,\hat{m}} = \hat{\mathbf{m}}'\mathbf{R}$ have additional sources of error due to the error in $\hat{\mathbf{m}}$. That is,

$$\hat{\mu}_{p,\hat{m}} = \hat{\mathbf{m}}'\hat{\mu} \ \hat{\sigma}_{p,\hat{m}} = (\hat{\mathbf{m}}'\hat{\Sigma}\hat{\mathbf{m}})^{1/2}$$

No easy analytic formulas for $SE(\hat{\mu}_{p,\hat{m}})$ and $SE(\hat{\sigma}_{p,\hat{m}})$

Bootstrapping Efficient Portfolios

The bootstrap can be used to evaluate the sampling uncertainty of Sharpe ratios and efficient portfolios.

Portfolio statistics to boostrap:

- Portfolio weights
- Portfolio expected returns and standard deviations

The CER Model and Efficient Portfolios

Result: We have seen evidence that the parameters of the CER model for various assets are not constant over time:

• Rolling estimates of μ , σ , and σ_{ij} show variation over time

Implication: Since estimates of μ , σ , and σ_{ij} are inputs to efficient portfolio calculations, then time variation in $\hat{\mu}$, $\hat{\sigma}$, and $\hat{\sigma}_{ij}$ imply time variation in efficient portfolios

Rolling Efficient Portfolios

Idea: Using rolling estimates of μ and Σ compute rolling efficient portfolios

- global minimum variance portfolio
- efficient portfolio for target return
- tangency portfolio
- efficient frontier

Look at time variation in resulting portfolio weights

Rolling Global Minimum Variance Portfolio

Idea: compute estimates of portfolio weights ${\bf m}$ over rolling windows of length n < T :

$$\min_{\mathbf{m}(n)} \ \mathbf{m}_t(n)' \hat{\Sigma}_t(n) \mathbf{m}_t(n)$$
 s.t. $\mathbf{m}_t(n)' \mathbf{1} = \mathbf{1}$

$$t = n, \ldots, T$$

 $\hat{\Sigma}_t(n) = \text{rolling estimate of } \Sigma \text{ in month } t$

lf

$$\hat{\Sigma}_n(n) pprox \hat{\Sigma}_{n+1}(n) pprox \cdots pprox \hat{\Sigma}_T(n)$$

then

$$\mathbf{m}_n(n) \approx \mathbf{m}_{n+1}(n) \approx \cdots \approx \mathbf{m}_T(n)$$

Rolling Efficient Portfolios

Idea: compute estimates of portfolio weights \mathbf{x} over rolling windows of length n < T for $t = n, \dots, T$:

$$\min_{\mathbf{x}(n)} \mathbf{x}_t(n)' \hat{\Sigma}_t(n) \mathbf{x}_t(n)$$
 s.t. $\mathbf{x}_t(n)' \mathbf{1} = \mathbf{1}, \ \mathbf{x}_t(n)' \hat{\mu}_t(n) = \mu_p^{\text{target}}$ $\hat{\mu}_t(n) = \text{rolling estimate of } \mu \text{ in month } t$ $\hat{\Sigma}_t(n) = \text{rolling estimate of } \Sigma \text{ in month } t$

lf

$$\hat{\mu}_n(n) pprox \hat{\mu}_{n+1}(n) pprox \cdots pprox \hat{\mu}_T(n) \ \hat{\Sigma}_n(n) pprox \hat{\Sigma}_{n+1}(n) pprox \cdots pprox \hat{\Sigma}_T(n)$$

then

$$\mathbf{x}_n(n) \approx \mathbf{x}_{n+1}(n) \approx \cdots \approx \mathbf{x}_T(n)$$