Introduction to Linear Regression

We need to pick a way to make predictions from our available training data.

We need to pick a way to make predictions from our available training data.

There are many, many ways to do this.

We need to pick a way to make predictions from our available training data.

There are many, many ways to do this.

For example, we can pick a functional form for f()

We need to pick a way to make predictions from our available training data.

There are many, many ways to do this.

For example, we can pick a functional form for $\hat{f}()$

Linear regression use a particularly simple functional form to make predictions - a weighted sum of the predictor variables.

Let's say we want to build a model to predict home price.

Starting simple, let's say we know the square footage of living space and the price of a set of homes.

	id	sqft_living	price
0	7129300520	1180	221900.0
1	6414100192	2570	538000.0
2	5631500400	770	180000.0
3	2487200875	1960	604000.0
4	1954400510	1680	510000.0
5	7237550310	5420	1225000.0
6	1321400060	1715	257500.0
7	2008000270	1060	291850.0
8	2414600126	1780	229500.0
9	3793500160	1890	323000.0

Here's a sample from our observed data.

<u>Predictors</u>

sqft_living

<u>Target</u>

price

Predictors

<u>Target</u>

sqft_living

ргісе

Approach 1: Multiply sqft_living by a constant to predict price.

predicted price = sqft_living

Predictors

<u>Target</u>

sqft_living

price

Approach 1: Multiply sqft_living by a constant to predict price.

predicted price = sqft_living

Determine what goes here based on the observed data.

Predictorssqft living
price

Approach 1.5: Start with a "base price" and then add sqft_living multiplied by a constant to predict price.

predicted price = + sqft_living

Determine what goes here based on the observed data.

How do we find the values for this coefficient?

How do we find the values for this coefficient?

The approach we'll take for this example is to minimize the total squared **residuals** between the predicted and actual values for the data used to fit/train the model.

How do we find the values for this coefficient?

The approach we'll take for this example is to minimize the total squared **residuals** between the predicted and actual values for the data used to fit/train the model. True values

residual for observation
$$i$$
: $y_i - \hat{f}(\vec{x}_i)$

How do we find the values for this coefficient?

The approach we'll take for this example is to minimize the total squared **residuals** between the predicted and actual values for the data used to fit/train the model.

True values

squared residual for observation i:
$$(y_i - \hat{f}(\vec{x}_i))^2$$

Predicted Values

How do we find the values for this coefficient?

The approach we'll take for this example is to minimize the total squared **residuals** between the predicted and actual values for the data used to fit/train the model.

True values

total squared residuals:

$$\sum_{i=1}^{n} (y_i - \hat{f}(\vec{x}_i))^2$$

Predicted Values

How do we find the values for this coefficient?

The approach we'll take for this example is to minimize the total squared **residuals** between the predicted and actual values for the data used to fit/train the model.

True values

$$RSS = \sum_{i=1}^{n} (y_i - \hat{f}(\vec{x}_i))^2$$
Predicted Values

Example: Let's say we have this data available. We want to predict *y* based on our one predictor, *x*.

One possible line: y = 3.5 + 0.5x

One possible line:

$$y = 3.5 + 0.5x$$

For this line, RSS = 20.36

Another possibility: y = 4.5 + 0.35x

Another possibility: y = 4.5 + 0.35x

Here, RSS = 24.28

The best possible: y = 3.84 + 0.386x

The best possible: y = 3.84 + 0.386x

Here, RSS = 17.97

How *exactly* do we minimize RSS?

How exactly do we minimize RSS?

Through some kind of optimization algorithm:

- Analytical solution could be used in this case (using matrix algebra tricks)
- Limited-memory BFGS
 (https://en.wikipedia.org/wiki/Limited-memory BFGS)
- Gradient descent (https://en.wikipedia.org/wiki/Gradient descent)

$$RSS = \sum_{i=1}^{n} (y_i - \hat{f}(\vec{x}_i))^2$$

If we have a lot of observed points, we might instead use **mean** squared error (MSE).

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2}{n}$$

Minimizing RSS is equivalent to minimizing MSE (Why?)

Supervised Learning - Goals

Very Important Note: For linear regression, we find the coefficients by minimizing RSS/MSE on the training data, but this does not guarantee that the model will generalize well.

It is important to do a train/test split and estimate the *generalization error* - the only thing that we care about in evaluating a machine learning model.

PredictorsTargetsqft_livingprice

Approach 1.5: Start with a "base price" and then add sqft_living multiplied by a constant to predict price.

predicted price = + sqft_living

Determine what goes here based on the observed data.

Predictors Target sqft_living price

Approach 1.5: Start with a "base price" and then add sqft_living multiplied by a constant to predict price.

predicted price = $-42123 + 281 \cdot \text{sqft_living}$

Determine what goes here based on the observed data.

	id	sqft_living	price	predicted_price
0	7129300520	1180	221900.0	289118.0
1	6414100192	2570	538000.0	679309.0
2	5631500400	770	180000.0	174026.0
3	2487200875	1960	604000.0	508074.0
4	1954400510	1680	510000.0	429474.0
5	7237550310	5420	1225000.0	1479340.0
6	1321400060	1715	257500.0	439299.0
7	2008000270	1060	291850.0	255433.0
8	2414600126	1780	229500.0	457546.0
9	3793500160	1890	323000.0	488424.0

Applying this to our data gives these results.

	id	sqft_living	price	predicted_price
0	7129300520	1180	221900.0	289118.0

Let's see how we arrived at this predicted price.

	id	sqft_living	price	predicted_price
0	7129300520	1180	221900.0	289118.0

Let's see how we arrived at this predicted price.

predicted price = $-42123 + 281 \cdot \text{sqft_living}$

	id	sqft_living	price	predicted_price
0	7129300520	1180	221900.0	289118.0

Let's see how we arrived at this predicted price.

predicted price = $-42123 + 281 \cdot \text{sqft_living}$ predicted price = $-42123 + 281 \cdot (1180)$

	id	sqft_living	price	predicted_price	Let's see
0	7129300520	1180 221900	221900.0	289118.0	this predi

Let's see how we arrived at this predicted price.

predicted price =
$$-42123 + 281 \cdot \text{sqft_living}$$

predicted price = $-42123 + 281 \cdot (1180)$

predicted price = -42123 + 331580

	id	sqft_living	price	predicted_price
0	7129300520	1180	221900.0	289118.0

Let's see how we arrived at this predicted price.

predicted price =
$$-42123 + 281 \cdot \text{sqft_living}$$

predicted price = $-42123 + 281 \cdot (1180)$

predicted price = -42123 + 331580predicted price = 289457^*

^{*} This number is slightly different due to rounding the coefficients

This looks okay, but could potentially be improved. What if we add in more information about our observations?

	id	sqft_living	condition	price
0	7129300520	1180	3	221900.0
1	6414100192	2570	3	538000.0
2	5631500400	770	3	180000.0
3	2487200875	1960	5	604000.0
4	1954400510	1680	3	510000.0
5	7237550310	5420	3	1225000.0
6	1321400060	1715	3	257500.0
7	2008000270	1060	3	291850.0
8	2414600126	1780	3	229500.0
9	3793500160	1890	3	323000.0

This looks okay, but could potentially be improved. What if we add in more information about our observations?

Predictors

sqft_living price condition

Predictors

<u>Target</u>

sqft_living condition

price

 $predicted price = \boxed{-192628} + \boxed{282} \cdot sqft_living + \boxed{43067} \cdot condition$

Determine what goes here based on the observed data.

 $predicted\ price = -192628 + 282 \cdot sqft_living + \boxed{43067} \cdot condition$

How do we interpret this value?

predicted price = $-192628 + 282 \cdot \text{sqft_living} + 43067 \cdot \text{condition}$

How do we interpret this value?

If two houses have the same sqft_living, for every one unit difference in condition, their predicted prices will be differ by \$43,067.

$$predicted price = -192628 + 282 \cdot sqft_living + 43067 \cdot condition$$

How do we interpret this value?

predicted price =
$$-192628 + 282 \cdot \text{sqft_living} + 43067 \cdot \text{condition}$$

How do we interpret this value?

If two houses have the same condition for every unit of difference in sqft_living, their predicted prices will differ by \$282.

What if we have even more predictors?

Linear Regression

Given k predictors $x^{(1)}$, $x^{(2)}$,..., $x^{(k)}$, linear regression uses the following equation to predict the target variable:

$$\hat{f}(\vec{x}) = \beta_0 + \beta_1 x^{(1)} + \beta_2 x^{(2)} + \dots + \beta_k x^{(k)}$$

Here, β_0 , β_1 ,..., β_k are constants that are determined by using the available training data.