Quantum Algorithms for Lattice-based Cryptography

Yixin Shen

November 4, 2022

NIST selected algorithms:

- encryption: the only selected candidate is based on lattices
- signatures: 2 out of 3 based on lattices

What is a (Euclidean) lattice?

Definition

$$\mathcal{L}(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n) = \left\{\sum_{i=1}^n x_i \boldsymbol{b}_i : x_i \in \mathbb{Z}\right\}$$
 where $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n$ is a basis of \mathbb{R}^n .

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Lattice-based cryptography: fundamental idea

- good basis: private information, makes problem easy
- bad basis: public information, makes problem hard

Basis reduction: transform a bad basis into a good one Main tool: BKZ algorithm and its variants

Requires to solve the (approx-)SVP problem in smaller dimensions.

Shortest Vector Problem (SVP): Given a basis for the lattice \mathcal{L} , find a shortest nonzero lattice vector. $\lambda_1(\mathcal{L}) = \text{length of such a vector.}$

Shortest Vector Problem (SVP):

Given a basis for the lattice \mathcal{L} , find a shortest nonzero lattice vector.

 $\lambda_1(\mathcal{L}) = \text{length of such a vector.}$

γ -approx-SVP ($\gamma > 1$):

Given a basis of \mathcal{L} , find a nonzero lattice vector of length at most $\gamma \cdot \lambda_1(\mathcal{L})$.

 γ is approximation factor.

Depending on the dimension *n*:

- ► NP-Hardness (randomized reduction)
- ► NP ∩ co-NP
- Subexponential-time algorithms
- Poly-time algorithms

Approx factor:

- **▶** *O*(1)
- $ightharpoonup \sqrt{n}$
- **≥** 2√*n*
- \triangleright 2 $\frac{n \log \log n}{\log n}$

Depending on the dimension *n*:

- NP-Hardness (randomized reduction)
- ► NP ∩ co-NP
- Subexponential-time algorithms
- ▶ Poly-time algorithms

Approx factor:

- ► O(1)
- **>** √n
- $\triangleright 2^{\sqrt{n}}$
- ▶ 2 nog log n

Main approaches for SVP:

- ► Enumeration: $2^{O(n \log(n))}$ time and poly(n) space
- ► Sieving: $2^{O(n)}$ time and $2^{O(n)}$ space

quantum access

quantum data

Assumption: O(1) time cost

Interlude: quantum memory models

Assumption: O(1) time cost

Interlude: quantum memory models

Assumption: O(1) time cost

 $|y \oplus x_i\rangle$ $|i\rangle$

Interlude: quantum memory models

Assumption: O(1) time cost

