```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn import preprocessing, svm
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
```

```
In [2]: dt=pd.read_csv(r"C:\Users\91903\Downloads\bottle.csv")
dt
```

C:\Users\91903\AppData\Local\Temp\ipykernel_25376\3720528792.py:1: DtypeWarni
ng: Columns (47,73) have mixed types. Specify dtype option on import or set 1
ow_memory=False.

dt=pd.read_csv(r"C:\Users\91903\Downloads\bottle.csv")

Out[2]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O25
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	Ni
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	Ni
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	Ni
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	Ni
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	Ni
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	SaInty	O2ml_L	STheta	O28
864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0015A-3	15	17.533	33.3880	5.774	24.15297	105.

864863 rows × 74 columns

```
In [3]: dt=dt[['Salnty','T_degC']]
    dt.columns=['Sal','Temp']
```

```
In [4]: dt.head(10)
```

_				٦.
- / \	117	- 1	71	
v	u	LI	4	ь.
		- 6		

	Sal	Temp
0	33.440	10.50
1	33.440	10.46
2	33.437	10.46
3	33.420	10.45
4	33.421	10.45
5	33.431	10.45
6	33.440	10.45
7	33.424	10.24
8	33.420	10.06
9	33.494	9.86

```
In [16]: sns.lmplot(x='Sal',y='Temp',data=dt,order=2,ci=None)
```

Out[16]: <seaborn.axisgrid.FacetGrid at 0x2915c8a4970>


```
In [17]: dt.info()
```

```
In [18]: dt.describe()
```

Out[18]:

	Sal	Temp
count	814247.000000	814247.000000
mean	33.841337	10.860287
std	0.461636	4.224930
min	28.431000	1.440000
25%	33.489000	7.750000
50%	33.866000	10.110000
75%	34.197000	13.930000
max	37.034000	31.140000

```
In [19]: | dt.fillna(method='ffill')
```

Out[19]:

	Sal	Temp
0	33.4400	10.500
1	33.4400	10.460
2	33.4370	10.460
3	33.4200	10.450
4	33.4210	10.450
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533

814247 rows × 2 columns

```
In [20]: x=np.array(dt['Sal']).reshape(-1,1)
y=np.array(dt['Temp']).reshape(-1,1)
```

```
In [21]: |dt.dropna(inplace=True)
```

C:\Users\91903\AppData\Local\Temp\ipykernel_25376\735218168.py:1: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

dt.dropna(inplace=True)

```
In [22]: X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    reg=LinearRegression()
    reg.fit(X_train,y_train)
    print(reg.score(X_test,y_test))
```

0.25894156633387044

```
In [23]: y_pred=reg.predict(X_test)
    plt.scatter(X_test,y_test,color='b')
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```



```
In [24]: dt500=dt[:][:500]
sns.lmplot(x="Sal",y="Temp",data=dt500,order=1,ci=None)
```

Out[24]: <seaborn.axisgrid.FacetGrid at 0x2913035d810>


```
In [27]: dt500.fillna(method='ffill',inplace=True)
    X=np.array(dt500['Sal']).reshape(-1,1)
    y=np.array(dt500['Temp']).reshape(-1,1)
    dt500.dropna(inplace=True)
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
    reg=LinearRegression()
    reg.fit(X_train,y_train)
    print("Regression:",reg.score(X_test,y_test))
    y_pred=reg.predict(X_test)
    plt.scatter(X_test,y_test,color="b")
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```

Regression: 0.8846089899631949


```
In [30]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    mode1=LinearRegression()
    mode1.fit(X_train,y_train)
    y_pred=mode1.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.8846089899631949

#conclusion: Linear regression is best fit for the model

In []: