Potentially useful formulas, rules and facts

We will not tell you how to use the following expressions, but provide them here in case they are useful.

Permutations with repetition	n^r	Permutations without repetition	$\frac{n!}{(n-r)!}$
Combinations with repetition	$\frac{(r+n-1)!}{r!\;(n-1)!}$	Combinations without repetition	$\frac{n!}{(n-r)! \; r!}$
Binomial theorem	$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$	Pigeonhole Principle	$\left\lceil rac{N}{k} ight ceil$
Bayes' thoerem	$p(A \mid B) = \frac{p(B \mid A)p(A)}{p(B)}$	Law of total probability	$p(E) = \sum_{i=1}^{N} p(E \mid F_i) p(F_i)$
Cardinality of union of sets	$ A \cup B = A + B - A \cap B $	Conditional probability	$p(A \mid B) = \frac{p(A \cap B)}{p(B)}$

TABLE 6 Logical Equivalences.		
Equivalence	Name	
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws	
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws	
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws	
$\neg(\neg p) \equiv p$	Double negation law	
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws	
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws	
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws	
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws	

TABLE 1 Rules of Inference.				
Rule of Inference	Tautology	Name		
$ \begin{array}{c} p \\ p \to q \\ \therefore q \end{array} $	$(p \land (p \to q)) \to q$	Modus ponens		
	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens		
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism		
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism		
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition		
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification		
$ \begin{array}{c} p \\ q \\ \therefore p \land q \end{array} $	$((p) \land (q)) \to (p \land q)$	Conjunction		
$p \lor q$ $\neg p \lor r$ $\therefore q \lor r$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution		

Relation by implication	$p \to q \equiv \neg p \lor q$
Contropositive	$p \to q \equiv \neg q \to \neg p$
Definition of biconditional	$p \Leftrightarrow q \equiv (p \to q) \land (q \to p)$
Definition of xor	$p \oplus q \equiv (p \vee q) \wedge \neg (p \wedge q)$

TABLE 1 Set Identities.		
Identity	Name	
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws	
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws	
$A \cup A = A$ $A \cap A = A$	Idempotent laws	
$\overline{(\overline{A})} = A$	Complementation law	
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws	
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws	
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws	
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws	
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws	