Introduction and Asymptotic Notation

1.2.1 Secondary goals

- Learn proof techniques
- Learn some mathematics
- Have fun: Algorithms can be beautiful and ever poetic.

1.3 Typical Functions

- polynomials $n, n^{\frac{1}{2}}, n^2, n^{10}, n^k$, etc (grows fast)
- exponentials $-2^n, 3^n, e^n, 11^{2n}$, etc (grows very fast)
- logarithms $\log n = \log_2 n$, $\ln n$, $\log_{10} n$, etc (grows slowly)
- poly logarithms $(\log n)^2$ (grows slowly)
- log-logarithmic log log n (grows slowly)
- $\log^* n$ the number of times you have to take the log of a number before you get something less than 1. (grows very slowly)

1.3.1 Illustrating the Growth of $\log \log n$ and $\log^* n$

- Given: Let N be the number of particles in the Universe. It is estimated that there are over 10^{80} particles in the universe.
 - 1. **Question:** What is the log log of that number?
 - **Answer:** We know that $10^3 \approx 2^{10}$. This means that 10^{80} can be represented as $10^{3(27)}$, which is about 2^{270} . The $\log 2^{270} \approx 270$ and the $\log \log 2^{270}$ is about 8.1.
 - 2. Question: What is the log* of that number?
 - **Answer:** $5 \le \log^*(10^{80}) \le 6$

Moral: $\log \log n$ and $\log^* n$ are very slowly growing functions.

1.4 Review of logs

Here are some basic properties of logs:

- $\log_a x = y \iff x = a^y$
- $\log_a x = y$
- $\log_a(x \cdot y) = \log_a x + \log_a y$
- $\log_a x^y = y \cdot \log_a x$
- $\log_a(\frac{x}{y}) = \log_a x \log_a y$
- Note that 'a' is the base of the log. If omitted, assume base of 2.

1.4.1 Examples of logs

- 1. Claim: $2^{\log n} = n$.
 - **Proof:** Take the log of both sides: $\Rightarrow \log 2^{\log n} = \log n$
- 2. Claim: $n^{\frac{1}{\log n}} = 2$.
 - **Proof:** Let $n = 2^{\log n}$. $\Rightarrow (2^{\log n})^{\frac{1}{\log n}} = 2^1 = 2$.
- 3. Claim: $3^{\log n} = n^{\log 3}$.
 - **Proof:** Let $3 = 2^{\log 3}$. $\Rightarrow (2^{\log 3})^{\log n} = 2^{\log 3 \cdot \log n} = (2^{\log n})^{\log 3} = n^{\log 3}$
- 4. **Question:** How to convert $\log_a n$ to $\log_b n$?
 - Answer: $\frac{\log_b n}{\log_a n} = \log_a b$.
- **1.5** Definitions of: $O(f(n)), \Omega(f(n)), \Theta(f(n)), o(f(n)), \omega(f(n))$

1.5.1 Definitions of O(f(n)) ("Big OH") ("Order")

We use O-notation to give an upper bound on a function, to within a constant factor. Figure 1.1 shows the intuition behind O-notation.

Figure 1.1: f(n) = O(g(n))

The following are three equivalent definitions of O(f(n)):

Definition 1. $f(n) \in O(g(n))$ means \exists constant c > 0 and some number n_0 such that for $n > n_0$, $f(n) \le c \cdot g(n)$

Definition 2. $f(n) \in O(g(n))$ if $\exists c > 0$ such that for sufficiently large $n, c \cdot g(n) \geq f(n)$

Definition 3. $f(n) \in O(g(n))$ if $\exists c > 0$ such that,

$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) \le c.$$

Examples:

- n = O(n)
- $n = O(n^2)$
- $\log n = O(\log n^2)$

We are interested in positive monotonically increasing functions and positive or non negative values of n.

1.5.2 Definitions of $\Omega(f(n))$ ("Omega")

Just as O-notation provides an asymptotic upper bound on a function, Ω -notation provides an **asymptotic lower bound**.

Figure 1.2: $f(n) = \Omega(g(n))$

The following are three equivalent definitions of $\Omega(f(n))$:

Definition 4. $f(n) \in \Omega(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $\forall_n > n_0$, $f(n) \ge c \cdot g(n)$.

Definition 5. $f(n) \in \Omega(g(n))$ if $\exists c > 0$ such that for sufficiently large n, $f(n) \geq c \cdot g(n)$.

Definition 6. $f(n) \in \Omega(g(n))$ if $\exists c > 0$ such that,

$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) > c.$$

Examples:

- $n^2 = \Omega(n)$.
- $\bullet \ n^2 = \Omega(n^2).$
- $n^c = \Omega(\log n)$ for any constant c.

1.5.3 Definitions of $\Theta(f(n))$ ("Theta")

 Θ -notation is used to provide **asymptotic tight bound** on a given function.

Figure 1.3: $f(n) = \Theta(g(n))$

The following are three definitions of $\Theta(f(n))$:

Definition 7. $f(n) \in \Theta(g(n))$ means that $\exists c_1, c_2 > 0$ and $n_0 > 0$ such that $\forall_n > n_0$ $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ where $c_1 \leq c \leq c_2$

Definition 8. $f(n) \in \Theta(g(n))$ if $\exists c \ such \ that$

$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = c.$$

Definition 9. $f(n) \in \Theta(g(n)) \iff f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$

Counter Example

Shows that the second definition and third definition of $\Theta(g(n))$ are not equivalent.

- Let $f(n) = 3^n$, if n is even, $f(n) = 2 * 3^n$, if n is odd, and $g(n) = 3^n$.
- Then f(n) is still strictly increasing, but $\frac{f(n)}{g(n)} = 1$, if n is even, and $\frac{f(n)}{g(n)} = 2$, if n is odd.
- So the limit of $\frac{f(n)}{g(n)}$ does not exit.
- Therefore, the third definition is correct.

1.5.4 Definition of o(f(n)) ("little oh")

Definition 10. $f(n) \in o(g(n))$ means

$$\lim_{n\to\infty}\left(\frac{f(n)}{g(n)}\right)=0.$$

Also read "g(n) dominates f(n)"

Examples:

- Given: Suppose a > b.
 - 1. Question: Does n^a dominate n^b ?
 - **Answer:** Yes. Because,

$$\lim_{n\to\infty}\left(\frac{n^b}{n^a}\right)=0.$$

- 2. Question: What about $\log_a n$ and $\log_b n$. Does $\log_a n$ dominate $\log_b n$?
 - **Answer:** No. Because,

$$\lim_{n\to\infty}\left(\frac{\log_b n}{\log_a n}\right)=\log_a b\neq 0.$$

1.5.5 Definition of $\omega(f(n))$ ("little omega")

Definition 11. If f(n) is $\Omega(g(n))$, but not $\Theta(g(n))$, then f(n) is said to be $\omega(g(n))$.

Definition 12.
$$f(n) \in \omega(g(n)) \iff g(n) \in o(f(n))$$

1.6 Examples:

1.6.1 True & False Questions:

- 1. Claim: $\log_2 n \in o(\log_{10} n)$
 - Answer: FALSE.
 - Counter Example: Let n=1000, $\Rightarrow \log_2 1000 \approx 10$ and $\log_{10} 1000 = 3$. 10 > 3 therefore, $\log_2 n$ is not $\in o(\log_{10} n)$.
- 2. Claim: $\log_2 n \in \Theta(\log_2 n)$.
 - Answer: TRUE.
 - Proof:

$$\lim_{n\to\infty}\left(\frac{\log_2 n}{c\cdot\log_2 n}\right)=c\Rightarrow\log_2 n\in\Theta(\log_2 n).$$

- 3. Claim: $\log_{10} n \in \Theta(\log_2 n)$.
 - Answer: TRUE.
 - Proof: Let $\log_{10} n = \frac{\log_2 n}{\log_2 10}$,

$$\lim_{n\to\infty}\left(\frac{\frac{\log_2 n}{\log_2 10}}{c\cdot\log_2 n}\right)=\frac{1}{c\cdot\log_2 10}\Rightarrow\log_{10}n\in\Theta(\log_2 n).$$

- 4. Claim: $3^n \in O(2^n)$.
 - **Answer:** FALSE.
 - Counter Example:

$$\lim_{n\to\infty}\left(\frac{2^n}{3^n}\right)=0\Rightarrow 2^n\in o(3^n).$$