Matemática Discreta I Primer parcial	1 ^{er} Apellido:	25 de octubre de 2019 Tiempo 2 horas	
Dpto. Matematica Aplicada TIC ETS Ingenieros Informáticos Universidad Politécnica de Madrid	Nombre: Número de matrícula:	Nota:	

Ejercicio 1 (5 puntos)

- a) Sean los conjuntos D_{1519} , $A = \{n \in \mathbb{N}/2n 14 \le 5\}$ y $B = \{2n + 3/ n \in \mathbb{N} \text{ y } n \ge 2\}$. Obtén el cardinal del conjunto producto cartesiano $D_{1519} \times (A \cap B)$.
- b) En el conjunto de los números enteros \mathbb{Z} definimos la siguiente relación: dados $a, b \in \mathbb{Z}$, decimos que aRb si $\exists c \in \mathbb{Z} : b = a \cdot c$. Razona si es una relación de equivalencia, de orden, ambas o ninguna de las dos.

Solución:

a) Para saber los elementos de D_{1519} necesitamos encontrar los divisores primos de 1519, y para ello estudiamos si tiene algún divisor primo menor o igual que $\sqrt{1519} \approx 38$. Dividimos 1519 entre todos los primos menores o iguales que 38, que son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 y 37. Resultando 1519 = $7^2 \cdot 31$, así $D_{1519} = \{1, 7, 31, 7^2, 7 \cdot 31, 7^2 \cdot 31\}$ y $|D_{1519}| = 3 \cdot 2 = 6$.

Teniendo en cuenta que n solo puede tomar valores en \mathbb{N} , la condición del conjunto A es equivalente a que

$$2n \le 19 \Leftrightarrow n \le \frac{19}{2} = 9, 5 \Leftrightarrow n \le 9.$$

Por tanto, $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ y como $B = \{7, 9, 11, 13,\}$ obtenemos que, $A \cap B = \{7, 9\}$ y $|A \cap B| = 2$. Por tanto, $|D_{1519} \times (A \cap B)| = 6 \cdot 2 = 12$.

b) Reflexiva: a|a ya que $a=a\cdot 1\Rightarrow aRa$, para cualquier $a\in\mathbb{Z}$. Por tanto, R es reflexiva.

Simétrica: 1R2 ya que 1|2, pero 2 R 1 ya que 2 no divide a 1. Por tanto, R no simétrica.

Antisimétrica: 2R - 2 y -2R2 ya que 2|(-2) y (-2)|2, pero $2 \neq (-2)$. Por tanto, R no antisimétrica.

Transitiva: supongamos que aRb y bRc, es decir a|b y b|c, luego $b=a\cdot k_1$ y $c=b\cdot k_2$ con $k_1,k_2\in\mathbb{Z}$. Por tanto, $c=a\cdot k_1\cdot k_2$ con $k_1\cdot k_2\mathbb{Z}\Rightarrow a|c$, y así aRc. Por tanto, R es transitiva.

Conclusión: como R no es simétrica entonces no es relación de equivalencia, y como R no es antisimétrica tampoco es relación de orden. Obviamente hubiera sido suficiente demostrar que no es ni simétrica ni antisimétrica.

Ejercicio 2 (10 puntos)

Dados los conjuntos ordenados $(D_6, |)$ y $(D_5, |)$, donde | representa la relación "divide a":

- a) Representa mediante un diagrama de Hasse el conjunto $(D_6 \times D_5, \text{ Lex})$ (producto cartesiano ordenado mediante el orden Lexicográfico).
- **b)** Dado el subconjunto $A = \{(2,1), (3,1), (6,1)\}$, calcula, si existen: maximales, minimales, máximo, mínimo, cotas superiores e inferiores, supremo e ínfimo de A en $(D_6 \times D_5, \text{ Lex})$.
- c) Representa mediante un diagrama de Hasse el conjunto $(D_6 \times D_5, \text{ Prod})$ (producto cartesiano ordenado mediante el orden Producto).
 - **d)** Razona si $(D_6 \times D_5, \text{ Lex})$ y/o $(D_6 \times D_5, \text{ Prod})$ son Álgebras de Boole.

Solución:

a) Vemos en primer lugar que $D_6 = \{1, 2, 3, 6\}$ y $D_5 = \{1, 5\}$, por lo que su producto cartesiano estará formado por: $D_6 \times D_5 = \{(1, 1), (1, 5), (2, 1), (2, 5), (3, 1), (3, 5), (6, 1), (6, 5)\}$, que aplicando el onden Lexicográfico resulta:

b) El conjunto A tiene un único maximal, (6,1), que por tanto es máximo de A. El conjunto A tiene dos minimales, $\{(2,1),(3,1)\}$, y por tanto carece de mínimo. Las cotas superiores de A en $(D_6 \times D_5, \text{ Lex})$ son $\{(6,1),(6,5)\}$, siendo el supremo (6,1). Las cotas inferiores de A en $(D_6 \times D_5, \text{ Lex})$ son $\{(1,1),(1,5)\}$, siendo el infimo (1,5).

d) El conjunto $(D_6 \times D_5, \text{ Lex})$ no es un Álgebra de Boole puesto que varios de sus elementos no tienen elemento complementario ((1,5),(2,1),(2,5),(3,1),(3,5) y (6,1)). El conjunto $(D_6 \times D_5, \text{ Prod})$ es un Álgebra de Boole puesto que es Isomorfo con $[0,1]^3$, o con $(D_{30},|)$, siendo ambos conjuntos Álgebra de Boole.

Ejercicio 3 (5 puntos)

Obtén una expresión booleana en forma de "mínima suma de productos" para la función booleana cuyo conjunto de verdad es $S(f) = \{1100, 1111, 0111, 1011, 1001, 0001\}$. Resuelve utilizando el método de Quine McCluskey.

Solución:

$$\begin{array}{c|cccc}
* & 0001 \\
* & 1001 \\
\hline
& 1100 \\
* & 0111 \\
* & 1011 \\
\hline
* & 1111
\end{array}
\Rightarrow
\begin{array}{c}
-001 \\
\hline
& 10-1 \\
\hline
& -111 \\
\hline
& 1-11
\end{array}$$

	1100	1111	0111	1011	1001	0001
1100	X					
-001					X	X
10-1				X	X	
-111		X	X			
1-11		X		X		

$$f(x,y,z,t) = xyz't' + y'z't + yzt + xy't = xyz't' + y'z't + yzt + xzt$$

Ejercicio 4 (5 puntos)

Demuestra por inducción que para todo número natural se cumple la igualdad

$$\sum_{k=1}^{n} k2^{k} = 2 + (n-1)2^{(n+1)}.$$

Solución:

La fórmula es cierta si n = 1, puesto que por un lado

$$\sum_{k=1}^{1} k 2^k = 2$$

y por otro

$$2 + (1 - 1)2^{(1+1)} = 2.$$

Hipótesis de inducción:

Supongamos que la fórmula es cierta para n = m.

Comprobemos que en ese caso también lo es si n = m + 1,

$$\sum_{k=1}^{m+1} k 2^k = \sum_{k=1}^{m} k 2^k + (m+1)2^{(m+1)} = 2 + (m-1)2^{(m+1)} + (m+1)2^{(m+1)} = 2 + m2^{(m+2)},$$

que es lo que queríamos demostrar.

Por tanto, se cumple la igualdad para todo $n \geq 1$.

Ejercicio 5 (10 puntos)

En un Instituto se quiere programar una excursión para 246 alumnos más 10 profesores. Para ello se pretenden alquilar 10 autobuses entre los que proporciona la empresa, de capacidades 17, 25 y 40 plazas. Aplica el Algoritmo de Euclides para determinar cuántos autobuses de cada capacidad se deberían alquilar si se desea que los 10 estén completos.

Solución:

Denominamos:

- x = número de autobuses de 17 plazas.
- y = número de autobuses de 25 plazas.
- z = número de autobuses de 40 plazas.

Por tanto la ecuación diofántica a resolver será:

$$17x + 25y + 40z = 256$$

considerando que el número total de autobuses es diez y por tanto x + y + z = 10.

De esta forma la ecuación se reduce a:

$$17x + 25y + 40(10 - x - y) = 256$$

o lo que es lo mismo

$$23x + 15y = 144$$

Por el algoritmo de Euclides y Teorema de Bèzout tenemos que m.c.d.(23,15)=1, por lo que 23 y 15 son primos entre si y la ecuación diofántica tiene solución. Además:

$$23 = 15 \cdot 1 + 8 \rightarrow 8 = 23 - 15$$

$$15 = 8 \cdot 1 + 7 \rightarrow 7 = 15 - (23 - 15) = -23 + 15 \cdot 2$$

$$8 = 7 \cdot 1 + 1 \rightarrow 1 = 23 - 15 - (-23 + 15 \cdot 2) = 23 \cdot 2 - 15 \cdot 3$$

con lo que 23(2) + 15(-3) = 1, y por tanto, 23(288) + 15(-432) = 144.

De esta forma $x_1 = 288, y_1 = -432, z_1 = 154$ sería una solución particular de la ecuación.

A partir de esta solución particular, la solución general será:

$$\begin{cases} x = 288 + 15t \\ y = -432 - 23t, \text{ con } t \in \mathbb{Z} \\ z = 10 - x - y \end{cases}$$

Imponiendo ahora que $x, y \ge 0$, se obtiene t = -19, y sustituyendo resulta x = 3, y = 5, z = 2. Por tanto se deberán utilizar tres autobuses de 17 plazas, cinco de 25 plazas y dos de 40 plazas.