

Monitoreo de Cámaras Frigoríficas

Autor:

Ing. Diego Villarraza

Director:

Título y Nombre del director (pertenencia)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar
2. Identificación y análisis de los interesados
3. Propósito del proyecto
4. Alcance del proyecto
5. Supuestos del proyecto
6. Requerimientos
7. Historias de usuarios (<i>Product backlog</i>)
8. Entregables principales del proyecto
9. Desglose del trabajo en tareas
10. Diagrama de Activity On Node
11. Diagrama de Gantt
12. Presupuesto detallado del proyecto
13. Gestión de riesgos
14. Gestión de la calidad
15. Procesos de cierre

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	23 de abril de 2024

Acta de constitución del proyecto

Buenos Aires, 23 de abril de 2024

Por medio de la presente se acuerda con el Ing. Diego Villarraza que su Trabajo Final de la Carrera de Especialización en Internet de las Cosas se titulará "Monitoreo de Cámaras Frigoríficas" y consistirá en el desarrollo de un sistema que permita la supervisión remota de la temperatura de las cámaras. El trabajo tendrá un presupuesto preliminar estimado de 610 horas y un costo estimado de \$ 1860000, con fecha de inicio el 23 de abril de 2024 y fecha de presentación pública el 9 de diciembre de 2024.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Ing. Javier Villarraza Diac Ingeniería SRL

Título y Nombre del director Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

La empresa DIAC Ingeniería SRL se dedica al desarrollo e implementación de sistemas de automatización para el control de equipos, principalmente instalados en la operación de frigoríficos para el almacenamiento de frutas. En la actualidad la empresa para sus proyectos implementa un Sistema propio tipo SCADA (acrónimo de Supervisory Control And Data Acquisition) de operación local, que se encarga de controlar el funcionamiento de toda la planta donde solo los operarios calificados tienen acceso.

Los clientes necesitan que operarios no calificados puedan monitorear ciertos valores del SCADA como por ejemplo el valor de temperatura de las cámaras de manera remota. Ante esta demanda y considerando que las PC's tienen acceso a internet se plantea una solución utilizando las herramientas de la internet de las cosas. En el diagrama de la figura 1 se muestra la solución propuesta que se puede separar en tres bloques:

- Servicios locales: se encargan de tomar información de la base de datos de cada sistema SCADA y guardarla en la base de datos remota.
- Back-end: alojado en una maquina virtual en la nube se encarga de la comunicación entre el front-end y la base de datos.
- Front-end: encargado de a través de una pagina web de mostrar la temperatura de las cámaras.

Figura 1. Diagrama en bloques del sistema.

La solución propuesta permitirá a los usuarios acceder a la información en cualquier momento, eliminando la necesidad de estar físicamente en las plantas, las cuales suelen estar alejadas. El acceso a la página web estará protegido por un sistema de usuario y contraseña, lo que permitirá a los clientes visualizar únicamente la información correspondiente a su o sus frigoríficos.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante	Ing. Javier Villarraza	Diac Ingeniería SRL	Dueño
Responsable	Ing. Diego Villarraza	FIUBA	Alumno
Orientador	Título y Nombre del	pertenencia	Director del Trabajo Final
	director		
Usuario final	Clientes de Diac	-	-

- Auspiciante: Javier Villarraza es hermano del responsable del proyecto y junto con él integran la dirección de la empresa Diac Ingeniería SRL.
- Responsable: es quien estará a cargo del análisis, planificación y desarrollo del proyecto.
- Usuario final: son clientes de la empresa con sistemas ya adquiridos que se beneficiarán con los alcances del proyecto.

3. Propósito del proyecto

El propósito de este proyecto es ofrecer a los clientes de la empresa una herramienta para que puedan monitorear la temperatura de la fruta que tienen almacenadas en sus frigoríficos de manera remota. Se plantea la creación de una herramienta amigable y segura orientada a usuarios no especializados, que con unos simples pasos, puedan visualizar las temperaturas actuales o históricas a través de gráficos y tablas.

4. Alcance del proyecto

El alcance del proyecto incluye:

- Desarrollo del servicio local que se encargue de:
 - Conectarse a la base de datos y leer periódicamente el valor de temperatura de los sensores que va almacenando el SCADA.
 - Conectarse al servidor en la nube para guardar los datos leídos.
 - Gestión de altas, bajas y modificaciones de los tags en la base remota.
- Desarrollo del back-end que debe tener:
 - Una API que genere todos los recursos para que desde el front-end se pueda acceder a la base de datos.
 - Gestión de usuarios.

• Creación del front-end compuesto de una pagina web que muestre los valores de temperatura que corresponda con los usuarios de cada frigorífico.

El presente proyecto no incluye la instalación y programación de los dispositivos industriales (PLCs, sensores, etc.) que se utilizan para el funcionamiento del frigorífico. Tampoco la compra de ninguna licencia de software que se vaya a utilizar, la premisa es utilizar software libre.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- El sistema SCADA se simulará en el ambiente de desarrollo para generar datos de temperatura en la base de datos local.
- Se dispondrá el acceso a una maquina virtual para montar el back-end y la base de datos remota.
- Se contará con el acceso a los sistemas de algunos clientes para la realización de pruebas.
- Se dispondrá de parte del horario laboral para la realización del proyecto.

6. Requerimientos

Los requerimientos deben enumerarse y de ser posible estar agrupados por afinidad, por ejemplo:

- 1. Requerimientos funcionales:
 - 1.1. El sistema debe...
 - 1.2. Tal componente debe...
 - 1.3. El usuario debe poder...
- 2. Requerimientos de documentación:
 - 2.1. Requerimiento 1.
 - 2.2. Requerimiento 2 (prioridad menor)
- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Levendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

¡¡¡No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

7. Historias de usuarios (*Product backlog*)

Descripción: en esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

Se debe indicar explícitamente el criterio para calcular los story points de cada historia.

El formato propuesto es:

"Como [rol] quiero [tal cosa] para [tal otra cosa]."
 Story points: 8 (complejidad: 3, dificultad: 2, incertidumbre: 3)

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de usuario.
- Diagrama de circuitos esquemáticos.
- Código fuente del firmware.
- Diagrama de instalación.
- Memoria del trabajo final.
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1 (suma h)
 - 1.1. Tarea 1 (tantas h)
 - 1.2. Tarea 2 (tantas h)
 - 1.3. Tarea 3 (tantas h)
- 2. Grupo de tareas 2 (suma h)
 - 2.1. Tarea 1 (tantas h)
 - 2.2. Tarea 2 (tantas h)
 - 2.3. Tarea 3 (tantas h)
- 3. Grupo de tareas 3 (suma h)
 - 3.1. Tarea 1 (tantas h)
 - 3.2. Tarea 2 (tantas h)
 - 3.3. Tarea 3 (tantas h)
 - 3.4. Tarea 4 (tantas h)
 - 3.5. Tarea 5 (tantas h)

Cantidad total de horas: tantas.

¡Importante!: la unidad de horas es h y va separada por espacio del número. Es incorrecto escribir "23hs".

Se recomienda que no haya ninguna tarea que lleve más de 40 h. De ser así se recomienda dividirla en tareas de menor duración.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Una herramienta simple para desarrollar los diagramas es el Draw.io (https://app.diagrams.net/). Draw.io

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semi críticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color.

Figura 2. Diagrama de Activity on Node.

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de Gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + *plugins*. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Las fechas pueden ser calculadas utilizando alguna de las herramientas antes citadas. Sin embargo, el siguiente ejemplo fue elaborado utilizando esta hoja de cálculo.

Es importante destacar que el ancho del diagrama estará dado por la longitud del texto utilizado para las tareas (Ejemplo: tarea 1, tarea 2, etcétera) y el valor x unit. Para mejorar la apariencia del diagrama, es necesario ajustar este valor y, quizás, acortar los nombres de las tareas.

Figura 3. Diagrama de gantt de ejemplo

Figura 4. Ejemplo de diagrama de Gantt (apaisado).

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

Incluir la aclaración de si se emplea como moneda el peso argentino (ARS) o si se usa moneda extranjera (USD, EUR, etc). Si es en moneda extranjera se debe indicar la tasa de conversión respecto a la moneda local en una fecha dada.

COSTOS DIRECTOS						
Descripción	Valor unitario	Valor total				
SUBTOTAL						
COSTOS INDIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
TOTAL						

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

Severidad (S): X.
 Justificación...

• Ocurrencia (O): Y. Justificación...

Riesgo 3:

- Severidad (S): X. Justificación...
- Ocurrencia (O): Y. Justificación...
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación:

- Severidad (S*): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O*): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Elija al menos diez requerimientos que a su criterio sean los más importantes/críticos/que aportan más valor y para cada uno de ellos indique las acciones de verificación y validación que permitan asegurar su cumplimiento.

• Req #1: copiar acá el requerimiento con su correspondiente número.

- Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar.
- Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar.

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc.

Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno.

En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 - Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, los problemas que surgieron y cómo se solucionaron:
 - Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores:
 - Indicar esto y quién financiará los gastos correspondientes.