Forecasting electricity consumption and production using ARIMA time series models

Barbu Paul - Gheorghe

Advanced Computing Systems

COORDINATOR: Conf. dr. ing. Árpád GELLÉRT

Sibiu, 2019

Objectives

- Furthering previous research (Feilmeier, Antonescu, Gellert)
- Forecasting electrical en. consumption & production

Last 10 days of ph1

AutoRegressive Integrated Moving Average (ARIMA)

- Data has to be stationary (statistical properties constant over time)
- ARIMA(p, d, q)
- ARIMA(p, d, q)(P, D, Q)[m]
- AutoCorrelation Function (ACF)
- Partial AutoCorrelation Function (PACF)
- Residuals

$$y'_t = c + \phi_1 y'_{t-1} + \dots + \phi_p y'_{t-p} + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

- phi AR coefficients
- theta MA coefficients
- epsilon errors

I(d)

- Integrated the opposite of differencing
- The algorithm differences the data, hence it has to be "integrated" when we start

$$egin{aligned} y_t' &= y_t - y_{t-1} \ y_t'' &= y_t' - y_{t-1}' \ &= (y_t - y_{t-1}) - (y_{t-1} - y_{t-2}) \ &= y_t - 2y_{t-1} + y_{t-2}. \end{aligned}$$

AR(p)

$$y_t' = c + \phi_1 y_{t-1}' + \dots + \phi_p y_{t-p}' + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

- p how many previous values affect this one
- phi in what proportion does the previous value affect the present one
- ACF decaying or sinusoidal we do have correlation between several lags
- PACF critical at lag p up to which lag the correlation is significant

MA(q)

$$y_t' = c + \phi_1 y_{t-1}' + \dots + \phi_p y_{t-p}' + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

- q how many previous errors affect this value
- epsilon in what proportion does the previous errors affect the present value
- ACF critical at lag q up to which lag the correlation is significant
- PACF decaying or sinusoidal we do have correlation between several lags

ARMAX
$$y'_t = c + \beta x_t + \phi_1 y'_{t-1} + \dots + \phi_p y'_{t-p} + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

- x external regressors
- beta external regressors coefficient

External regressors:

- Seasonal dummies: quarter, month, events, etc.
- Dummies: trend, **time**, etc.
- Fourier terms

ph1

- 7 training days
- 2 forecast days
- ARIMA(1, 0, 0)
 - 2 Fourier terms
 - 0 11:00 12:00
- MAE = 218.04

Data series

Forecasts

Original

5min vs subsampled data

Time	Model		Dummies Trai		Test	Running	RMSE	MAE
series			(start:length)	days	days	time [s]	KNISE	MAE
2hrs ph1	Arima $(1, 0, 0)$	2	2	7	2	6.15	467.94	220.87
2hrs ph1	Arima $(1, 0, 0)$	2	12:6	7	2	6.80	463.00	218.81
2hrs ph1	Arima $(1, 0, 0)(1, 0, 0)$	2	-	7	2	4.83	469.44	223.40
2hrs ph1	Arima(1, 0, 0)(1, 0, 0)	2	12:6	7	2	5.08	464.96	222.06
1hrs ph1	1hrs ph1 Arima(1, 0, 0)		-	7	2	5.25	454.62	217.44
1hrs ph1	Arima(1,0,0)	2	11:1	7	2	5.97	450.00	215.51
1hrs ph1	Arima(1, 0, 0)(1, 0, 0)	2	15.	7	2	6.70	455.76	218.36
1hrs ph1	Arima $(1, 0, 0)(1, 0, 0)$	2	11:1	7	2	5.89	452.21	217.18
ph1	mean	-		7	1	7.65	576.53	352.93
ph1	naive	-	1.5	7	1	7.75	655.62	286.68
ph1	snaive	-	-	7	1	2,906.22	587.99	231.19
ph1	Arima $(1, 0, 0)$	2	-	7	2	8.42	460.42	223.15
ph1	ph1 Arima(1, 0, 0)		11:1	7	2	10.59	452.44	218.04

Table 2.6: Models for the Ph1 data series

ph2

- 4 training days
- 3 forecast days
- ARIMA(1, 0, 0)
 - 3 Fourier terms
 - 08:00 11:00
- MAE=161.40

ph3

- 7 training days
- 2 forecast days
- ARIMA(1, 0, 0)
 - o 2 Fourier terms
 - 09:00 11:00
- MAE = 183.96

PV1

- 5 training days
- 2 forecast days
- ARIMA(1, 0, 0)
- MAE = 225.91

PV₂

- 5 training days
- 2 forecast days
- ARIMA(1, 0, 0)
- MAE = 220.00

ARIMA vs Markov vs Neural

Benchmark vs ARIMA on the ph3 data

Method	naive	meanf	snaive	ARIMA (1, 0, 0) 2 Fourier terms	ARIMA (1, 0, 0) 2 Fourier terms 09:00 to 11:00 dummies
MAE	215.26	216.88	218.67	187.96	183.96

Benchmark vs ARIMA on the PV1 data

Method	naive	meanf	snaive	ARIMA (1, 0, 0) 2 Fourier terms	ARIMA (1, 0, 0) 2 Fourier terms 16:00 to 20:00 dummies	ARIMA (1, 0, 0) 3 Fourier terms 11:00 to 17:00 dummies
MAE	445.33	516.38	262.57	238.26	237.10	225.91

Conclusions

- Only short periods of time can be predicted
- PV1, PV2 data sets are time-of-day correlated
- ARIMA is time consuming, simpler methods exist
- ARIMA models are not very suited for high frequency data

Future work

- Downsampling with interval averages instead of snapshots
- Automating the predictions for industry use
- Alternative algorithms: bats, tbats, ETS.

Critical values for ACF & PACF

Z distribution and p values

95% confidence interval - Z=1.96

(P)ACF critical value $\pm 1.96/\sqrt{T}$ (two std. dev. - assume an almost stationary series)

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-2.0 -1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
	0050	2251		2226	0000	2222		2227	0204	0204

Differences

Figure 8.17: Quarterly retail trade index in the Euro area (17 countries), 1996–2011, covering wholesale and retail trade, and the repair of motor vehicles and motorcycles. (Index: 2005 = 100).

Quaterly data

AR(2)

MA(1) and SMA(1)

