RECOGNIZING COVID-19 FROM LUNG CT SCAN IMAGES BY VARIOUS BASE MODELS

Team: Profound Studying 🔊

Members:

Lakatos Dorina

Barta Botond

Matyasi Lilla

HOW DOES COVID-19 LOOKS LIKE ON LUNG CT

THE MOTIVATION

THE IMAGES OF THE DATASET

12058 16-bit uint grayscale images with resolution of 512*512

- 9776 Healthy (from 282 people)
- 2282 Covid-19 infected (from 95 people)

RATES OF THE SEPARATED IMAGES

	Train	Validation	Test
Covid	1500 (~65%)	391 (~17,5%)	391 (~17.5%)
Normal	1500 (~15%)	391 (~4%)	7875 (~80.6%)

OUR FIRST TRY ①

TRANSFER LEARNING

Using a pretrained model, that has learned a lot of features from various pictures of the imagenet.

Removed the top FC layers. And replaced them with ours.

Set the base models' layers trainability false, and trained the model.

Set the base models' layers trainability true, and fine-tuned the model.

The models we used: InceptionV3, DenseNet169, VGG16, ResNet50V2

TRAINING FROM SCRATCH

TRANSFER LEARNING

THE EXTENDED MODEL

Containing:

- The pretrainded model without the FC layers
- Dense layers with ReLU activation followed by dropouts
- Output layer with 2 neurons and softmax activation
- Optimizer: Nadam and SGD

HYPERPARAMETER OPTIMIZING

- Keras Tuner
- HyperBand

Hyperparameter	Range
Number of neuron in the first dense layer	[16, 48, 96]
Dropout probability after the first dense layer	[0.1, 0.2, 0.3, 0.4]
Number of neuron in the second dense layer	[16, 48, 96]
Dropout probability after the second dense layer	[0.1, 0.2, 0.3, 0.4]
Learning rate	[1e-5, 1e-4]

LIMITATIONS AND SOLUTIONS

Problems:

- The original dataset's size was 22GB
- Training time
- Lack of GPU

Solutions:

- Smaller dataset, Generator
- Hyperparameter range reduction
- Using Google Colab

EXPERIMENTAL RESULTS

VGG16 Confusion Matrix

EXPERIMENTAL RESULTS

SUMMARY

Resnet50	DenseNet	VGG16	InceptionV3
0.5888	0.0655	0.9993	0.9599

FUTURE PLANS

- New perspective of the lung
- More pictures with covid infection

THANK YOU FOR YOUR ATTENTION!