Luthier: Bridging Auto-Tuning and Vendor Libraries for Efficient Deep Learning Inference

Yongin Kwon^{1,2}, JooHyoung Cha², Sehyeon Oh², Misun Yu¹, Jeman Park¹, Jemin Lee^{1,2}*

> ¹ Electronics and Telecommunications Research Institute (ETRI) ²University of Science and Technology (UST)

International Conference on Compilers, Architectures, and Synthesis for Embedded Systems (CASES) 2025

September 29, 2025

000

Importance of Deep Learning Inference Optimization

Widespread Applications of Deep Learning

- Image analysis, speech recognition, NLP
- Increasingly integrated into daily life

Hardware Constraint Scenarios

- Limited by cost, energy, and physical space
- Need to leverage conventional CPUs or new hardware

■ Key Aspects of Inference Efficiency

- Deep Learning Compilers (AutoTVM, Ansor)
- Inference Libraries (ArmNN, XNNPack, ONNXRuntime)

Problems with Existing Approaches

Auto-tuning Compilers

- High flexibility
- Amenable to automation
- Very long tuning time (tens of hours)
- × Still lack support for asymmetric multicores

Vendor Libraries

- Immediate execution
- Optimized kernels
- Lack of flexibility
- × Difficult to adapt to emerging models

Core Problem

No research considers both optimal kernel selection and workload distribution on asymmetric multicore processors

3/17

Luthier: Our Solution

Goal: Combine advantages of auto-tuning and vendor libraries

Key Ideas:

- Leverage vendor-optimized kernels
- Fast optimization with ML-based cost model
- Workload distribution for asymmetric multicores

Main Achievements:

- Execution speed: Up to 2.0x improvement
- Tuning time: 95% reduction
- Support for diverse platforms (CPU, GPU)

Optimization Space Complexity

Motivation

000

Figure: Heatmap of execution time for ResNet18's 2nd conv layer

- Different kernels and workload distributions show varied performance
- Optimal configuration differs between Edge R and Odroid N2+
- ArmNN's default settings are suboptimal

Figure: Workflow of convolution operations on asymmetric multicore architecture

- Inference performance tuning involves three levels
- Algorithm selection (S_A)
- \blacksquare Kernel selection (S_K)
- Workload distribution in asymmetric multicore (S_W)
- Search space = combination of these three knobs
- Workload distribution is the largest and most critical factor

Why existing approaches fail to optimize workload distribution

AutoTVM & Ansor

- Focus only on kernel code tuning
- Runtime creates fixed threads (= big cores)
- Workload by sub-task index modulation
- Cannot dynamically adjust distribution

Inference Libraries

- Support wide range of ops/hardware
- × Need fast runtime decisions
- Static rules (threads = big cores)
- × Predetermined rules → suboptimal

Luthier's Solution

ML-based dynamic optimization for both optimal kernel selection and workload distribution across asymmetric multicores

Luthier System Components

Introduction

Figure: Overall tuning process of Luthier

Three Main Components:

- Task Generator: Generates task queue, groups operations (ResNet101: 104→23 tasks)
- Execution Tuner: Determines optimal configuration using XGBoost cost model
- Execution Engine: Runs optimized configuration with workload distribution

Workload

Distribution

Knob Description Values Algorithm Algorithm to form execution kernels Winograd, Direct, ... Kernel Type of GEMM kernel and shape mla8x4, dot16x8, ...

■ Algorithm and Kernel: Straightforward selection

Batio of workloads for each cluster

(Big, Middle, Little)

- Workload Distribution: High complexity, expands search space
- Search Space: Reduced through task grouping

Big: 0-100%

Middle: 0-100% Little: 0-100%

Experimental Environment

Introduction

Test Platforms:

- Edge R (Cortex-A72 + Cortex-A53, Mali-T860MP4 GPU)
- Odroid N2+ (Cortex-A73 + Cortex-A53, Mali-G52 GPU)
- Snapdragon 865 (3-cluster Kryo CPU, Adreno 650 GPU)

Baselines:

- Libraries: ArmNN, XNNPack, ONNXRuntime, TFLite
- Auto-tuners: AutoTVM, Ansor

Test Models:

- Vision: ResNet, MobileNet, VGG, etc.
- Language: BERT (encoder), GPT (decoder)

10 / 17

Hardware Specifications

Edge R	Odroid N2+	SD865						
Big Cluster								
A72	A73	Kryo 585 Gold						
2	4	1						
1.8 GHz	2.4 GHz	2.84 GHz						
Middle Cluster								
-	-	Kryo 585 Gold						
-	-	3						
-	-	2.42 GHz						
Little Cluster								
A53	A53	Kryo 585 Silver						
4	2	4						
1.4 GHz	2.0 GHz	1.8 GHz						
Mobile GPU								
Midgard	Bifrost	Adreno 600 Series						
4	6	2						
800MHz	800 MHz	587MHz						
	A72 2 1.8 GHz M L A53 4 1.4 GHz Midgard 4	High Cluster A72 A73 2 4 1.8 GHz 2.4 GHz Middle Cluster						

Figure: GEMM performance on Odroid N2+ with different matrix sizes

- Luthier reaches 50 GFLOPS, while ArmNN stays around 23 GFLOPS
- Performance changes with matrix size due to workload distribution
- Workload distribution is the key factor for maximizing performance

Introduction Motivation Luthier System Architecture Experiments and Results Conclusion 000 00 000 000 000 000

Convolution Performance Comparison

Figure: Performance comparison on convolution operations

- Luthier shows a geometric mean speedup of 2.8x over ArmNN and 2.6x over XNNPack
- In most cases, Luthier surpasses AutoTVM and Ansor

ACM CASES 2025

	Edge R			Odroid N2+		
Model	Luthier	AutoTVM	Ansor	Luthier	AutoTVM	Ansor
ResNet18	1.4x(1.6h)	1.3x(27.1h)	0.8x(29.2h)	1.7x(1.6h)	1.9x(10.1h)	1.4x(26.0h)
ResNet50	1.6x(2.0h)	1.2x(19.5h)	1.1x(27.1h)	2.0x(1.9h)	1.8x(6.2h)	1.5x(27.1h)
ResNet101	1.6x(2.7h)	1.1x(51.5h)	1.0x(46.2h)	2.0x(2.6h)	1.7x(23.2h)	1.4x(34.7h)
AlexNet	1.6x(0.4h)	0.8x(33.4h)	0.6x(32.7h)	1.3x(0.4h)	0.6x(53.7h)	1.4x(25.8h)
VGG16	1.5x(0.9h)	1.0x(33.3h)	0.5x(30.4h)	1.6x(0.8h)	1.2x(31.0h)	0.8x(25.8h)
GoogLeNet	1.4x(2.4h)	1.3x(49.8h)	1.1x(28.5h)	1.6x(2.3h)	1.6x(22.6h)	1.5x(23.2h)
MobileNetV2	1.1x(1.6h)	1.7x(43.2h)	1.8x(62.7h)	1.5x(1.5h)	1.8x(49.8h)	2.8x(23.8h)
Average	1.5x(1.7h)	1.1x(39.2h)	0.9x(36.5h)	1.7x(1.7h)	1.4x(28.5h)	1.5x(27.0h)

- Luthier consistently achieves best speedup with minimal tuning time
- Speedup values shown relative to ArmNN baseline (in parentheses: tuning time)

Transformer Models Performance

Language Model Results:

- BERT (encoder-only): Up to 1.8x speedup
- GPT (decoder-only): Up to 1.8x speedup

Key Achievement

Superior performance compared to AutoTVM and Ansor while reducing tuning time by 95%

Mobile GPU (Mali-G52) Results:

- Performance improvement even in symmetric core environments
- Meaningful optimization achieved through kernel selection alone

Figure: Speedup by Kernel Selection (KS) and Workload Distribution (WD)

- Both kernel selection and workload distribution crucial
- Combined tuning yields best performance

Luthier System Architecture Experiments and Results

Conclusion

Introduction

Main Contributions:

Motivation

- Integration of vendor-optimized kernels with auto-tuning
- Workload distribution optimization for asymmetric multicores
- Fast tuning enabled by machine learning

Key Results:

- Execution speed: Up to 2.0x faster
- Tuning time: 95% reduction
- Broad support for diverse hardware and models

Takeaway Message

Luthier delivers a practical and efficient solution for deep learning inference, achieving outstanding performance especially on asymmetric multicore platforms.

17 / 17

Conclusion