Lecture 3 Autocorrelation

Lars A. Lochstoer
UCLA Anderson School of Management

Winter 2019

Overview of Lecture 3

Autocorrelation

- Introduction to autocorrelations
 - ▶ The autocorrelation function
- The Ljung-Box Q-test

Correlation

Definition

The **correlation** between two random variables X and Y is defined as

$$\rho_{\mathrm{x},\mathrm{y}} = \frac{\mathit{Cov}(\mathrm{X},\mathrm{Y})}{\sqrt{\mathit{Var}(\mathrm{X})\mathit{Var}(\mathrm{Y})}}$$

- $oldsymbol{
 ho}_{ imes, imes}$ is known as Pearson's correlation
- measures linear dependence
- \bullet bounded between -1 and 1
- two variables are uncorrelated if $\rho_{x,y}=0$, perfectly (negatively) correlated if $\rho_{x,y}=1$ ($\rho_{x,y}=-1$)
- \bullet if X and Y are random normal variables, then $\rho_{x,y}=0$ if and only if X and Y are independent

Sample Correlation

Definition

The **sample correlation** between two random variables X and Y is:

$$\widehat{\rho}_{x,y} = \frac{\sum_{t=1}^{T} (x_t - \overline{x})(y_t - \overline{y})}{\sqrt{\sum_{t=1}^{T} (x_t - \overline{x})^2 \sum_{t=1}^{T} (y_t - \overline{y})^2}}$$

where \overline{x} and \overline{y} are the sample means.

- this is **not** a regression coefficient
- $\widehat{\rho}_{x,y}$ consistently estimates $\rho_{x,y}$
- $oldsymbol{\hat{
 ho}}_{{\scriptscriptstyle X},{\scriptscriptstyle Y}}$ is built from **method of moments** estimators

Autocorrelation

Definition

The **autocorrelation** for a series $\{r_t\}$ is defined as:

$$\rho_j = \frac{\mathsf{Cov}(\mathit{r}_t, \mathit{r}_{t-j})}{\sqrt{\mathit{Var}(\mathit{r}_t)\mathit{Var}(\mathit{r}_{t-j})}} = \frac{\mathsf{Cov}(\mathit{r}_t, \mathit{r}_{t-j})}{\mathit{Var}(\mathit{r}_t)} = \frac{\gamma_j}{\gamma_0}.$$

- ullet a covariance-stationary series r_t is not serially correlated if $ho_i=0$ for all j
- autocorrelations are a key signature of the dynamics of the time series you're interested in modeling

1st Order Autocorrelation

Definition

The sample autocorrelation for a series $\{x_t\}$ is:

$$\widehat{\rho}_{1} = \frac{\sum_{t=2}^{T} (x_{t} - \overline{x})(x_{t-1} - \overline{x})}{\sum_{t=1}^{T} (x_{t} - \overline{x})^{2}}, 0 \le j \le T - 1$$

where \overline{x} are the sample means.

- ullet under some conditions, $\widehat{
 ho}_1$ is a consistent estimator of ho_1
- $\widehat{\rho}_1$ is asymptotically normal with mean zero and variance (1/T) if $\{x_t\}$ are independently and identically distributed over time.
- ullet to test $H_0:
 ho_1=0$, use t-stat :

$$t = \sqrt{T} \hat{\rho}_1$$

Autocorrelation in stock returns?

Scatter plot of monthly log returns (VW-CRSP) 1925-2013.

Autocorrelation in Real Estate Returns?

Scatter plot for Monthly log House Price Changes in AZ. Case-Shiller Index. 1987.1-2013.10

Higher-order Autocorrelations

Definition

The sample autocorrelation for a series $\{x_t\}$ at lag j is:

$$\widehat{\rho}_j = \frac{\sum_{t=j+1}^T (x_t - \overline{x})(x_{t-j} - \overline{x})}{\sum_{t=1}^T (x_t - \overline{x})^2}, 0 \le j \le T - 1$$

where \overline{x} are the sample means.

Autocorrelation

- financial time series: e.g. stock returns and housing returns
 - financial returns tend to be only very weakly autocorrelated [if markets are fairly efficient and liquid]
 - strong autocorrelations in returns would create huge profit opportunities!
- macroeconomic time series: e.g. GDP growth rates
 - macroeconomic time series have growth rates that are highly autocorrelated
 - macroeconomic shocks tend to have very persistent effects (e.g. think about the effect of the subprime crisis on GDP growth rates)

The Autocorrelation Function (ACF)

Definition

The sample autocorrelation function (ACF) of a time series is defined as $\widehat{\rho}_1, \widehat{\rho}_2, \dots, \widehat{\rho}_k, \dots$

Autocorrelation in Quarterly GDP Growth

Autocorrelation Function for Quarterly U.S. GDP growth. Two standard error bands around zero. 1947.I-2012.IV

Autocorrelation in Monthly Inflation

Autocorrelation Function for Monthly U.S. Inflation. 1950-2007. $\hat{\rho}_1=0.52.$

Autocorrelation of Annual Log Stock Returns

Autocorrelation Function for Annual log Returns on VW-CRSP Index. Two standard error bands around zero. 1926-2012 . $\hat{\rho}_1=0.05$.

Autocorrelation Function for Monthly log Returns on VW-CRSP Index. Two standard error bands around zero. 1926-2012 . $\hat{\rho}_1=0.088$.

Autocorrelation Function for Monthly log Returns on EW-CRSP Index (equal weighted). Two standard error bands around zero. 1926-2012 . $\hat{\rho}_1 = 0.12$.

Autocorrelation Function for Monthly log Returns on VW-CRSP Index. Two standard error bands around zero. 1990-2012. $\hat{\rho}_1=0.09$.

Autocorrelation Function for Monthly log Returns on EW-CRSP Index (equal weighted). Two standard error bands around zero. 1990-2012. $\hat{\rho}_1=0.17$.

Monthly ACF for the Stock Market

- some positive autocorrelation in stock returns (for the market) at the one-month horizon
- autocorrelation is stronger for small stocks (see EW-CRSP)
 - ho $\widehat{
 ho}_1$ varies between 0.09 (VW) and 0.17 (EW) on the short sample
 - ightharpoonup $\widehat{
 ho}_1$ varies between 0.08 (VW) and 0.12 (EW) on the long sample

Autocorrelation Function for Daily log Returns on VW-CRSP Index (value-weighted). Two standard error bands around zero. 1926-2012. $\hat{\rho}_1=0.07$.

Autocorrelation Function for Daily log Returns on EW-CRSP Index (equal-weighted). Two standard error bands around zero. 1926-2012. $\hat{\rho}_1=0.21$.

Autocorrelation Function for Daily log Returns on VW-CRSP Index. Two standard error bands around zero. 1990-2012 . $\hat{\rho}_1=0.01$.

Autocorrelation Function for Daily log Returns on EW-CRSP Index. Two standard error bands around zero. 1990-2012 . $\hat{\rho}_1=0.13$.

Daily ACF for the Stock Market

- some positive autocorrelation in stock returns (for the market) at the one-day horizon, but only for small stocks
 - $\widehat{\rho}_1$ varies between -0.01 (VW) and 0.13 (EW) on the short sample
 - $ightharpoonup \widehat{
 ho}_1$ varies between 0.07 (VW) and 0.21 (EW) on the long sample

Benchmark Model of Portfolio Theory

- In the benchmark model of portfolio theory, returns are assumed to be independently and identically distributed (i.i.d.) over time.
 - ▶ If returns are i.i.d., the variance grows linearly in the investment horizon
 - The investor's horizon turns out to be irrelevant for optimal portfolio allocation.
- Not quite true in the data

Autocorrelation of Monthly Log House Price Changes

Autocorrelation Function for Monthly log House Price Changes. Two standard error bands around zero. 1987-2013

Testing for autocorrelation: Ljung and Box (1978)

Definition

The **Ljung-Box** statistic tests the null that $H_0: \rho_1 = \ldots = \rho_m = 0$

$$Q(m) = T(T+2) \sum_{i=1}^{m} \frac{\widehat{\rho}_{i}^{2}}{T-i}$$

Q(m) is asymptotically χ^2 with m degrees of freedom.

• reject the null if $Q(m)>\chi^2(\alpha)$ where $\chi^2(\alpha)$ denotes the $(1-\alpha)\times 100$ -th percentile

Q-test on Monthly Returns

Q-test for Monthly log Returns on VW-CRSP Index. 1926-2012

Monthly Stock Returns

- choice of m matters: rule of thumb m = ln(T)
- if we use this rule of thumb, m=6 and Q(6)=26 and p-value is 1.9e-4
- in any case, we reject the null that there is no autocorrelation in monthly U.S. stock returns for all holding periods considered.
- even though these autocorrelations are small, they're measured rather precisely, allowing us to reject the null.

White Noise

Definition

A time series ε_t is said to be **white noise** if $\{\varepsilon_t\}$ is a sequence of independent and identically distributed random variables.

Notation: $\varepsilon_t \sim \mathsf{WN}\left(0, \sigma_\varepsilon^2\right)$

If ε_t is white noise + normally distributed with mean zero and variance σ^2 , then it is called **Gaussian white noise**.

Notation: $\varepsilon_t \sim \mathsf{GWN}\left(0, \sigma_\varepsilon^2\right)$

• There is no autocorrelation. ACF's are all zero