# برقى ومقناطيسيات

خالد خان بوسفز کی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالو جی،اسلام آباد khalidyousafzai@comsats.edu.pk

## عنوان

| •  |                                                                      | <u> </u> | - |
|----|----------------------------------------------------------------------|----------|---|
| 1  | مقداری اور سمتیه                                                     | 1.1      |   |
| 2  | سمتي الجبرا                                                          | 1.2      |   |
| 3  | كارتيسي محدد                                                         | 1.3      |   |
| 5  | اكائبي سمتيات                                                        | 1.4      |   |
| 9  | ميداني سمتيم                                                         | 1.5      |   |
| 9  | سمتى رقبہ                                                            | 1.6      |   |
| 10 | غیر سمتی ضرب                                                         | 1.7      |   |
| 14 | سمتی ضرب یا صلیبی ضرب                                                | 1.8      |   |
| 17 | گول نلكى محدد                                                        | 1.9      |   |
| 20 | 1.9.1 نلکی اکائی سمتیات کا کارتیسی اکائی سمتیات کے ساتھ غیر سمتی ضرب |          |   |
| 20 | 1.9.2 نلکی اور کارتیسی اکائی سمتیات کا تعلق                          |          |   |
| 25 | 1.9.3 نلكي لامحدود سطحين                                             |          |   |
| 27 | کروی محدد                                                            | 1.10     |   |
| 37 | کا قانون                                                             | كولومب   | 2 |
| 37 | قوت کشش یا دفع                                                       | 2.1      |   |
| 41 | برقبی میدان کی شدت                                                   | 2.2      |   |
| 44 | یکسان چارج بردار سیدهی لامحدود لکیر کا برقی میدان                    | 2.3      |   |
| 49 | يكسان چارج بردار بموار لامحدود سطح                                   | 2.4      |   |
| 53 | چارج بردار حجم                                                       | 2.5      |   |
| 54 | مزید مثال                                                            | 2.6      |   |
| 61 | برقی میدان کے سمت بہاو خط                                            | 2.7      |   |
| 63 | سوالات                                                               | 2.8      |   |

iv arieli

| 65 | کا قانون اور پهیالاو                                                 | گاؤس    | 3 |
|----|----------------------------------------------------------------------|---------|---|
| 65 | ساکن چارج                                                            | 3.1     |   |
| 65 | فیراڈے کا تجربہ                                                      | 3.2     |   |
| 66 | گاؤس كا قانون                                                        | 3.3     |   |
| 68 | گاؤس کے قانون کا استعمال                                             | 3.4     |   |
| 68 | 3.4.1 نقطہ چارج                                                      |         |   |
| 70 | 3.4.2 يكسان چارج بردار كروى سطح                                      |         |   |
| 70 | 3.4.3 يكسان چارج بردار سيدهي لامحدود لكير                            |         |   |
| 71 | ېم محوری تار                                                         | 3.5     |   |
| 73 | يكسان چارج بردار بموار لامحدود سطح                                   | 3.6     |   |
| 73 | انتہائی چھوٹی حجم پر گاؤس کے قانون کا اطلاق                          | 3.7     |   |
| 76 | پهيلاو                                                               | 3.8     |   |
| 78 | نلکی محدد میں پھیلاو کی مساوات                                       | 3.9     |   |
| 80 | پهيلاو کبي عمومي مساوات                                              | 3.10    |   |
| 82 | مسئلہ پھیلاو                                                         | 3.11    |   |
| 85 | اور برقی دیاو                                                        | توانائي | 4 |
| 85 | توانائے اور کام                                                      | 4.1     |   |
| 86 | لکیری تکملہ                                                          | 4.2     |   |
| 91 | برقی دباو                                                            | 4.3     |   |
|    | نقطہ چارج کی برقی دباو                                               |         |   |
|    | متعدد نقطہ چارجوں کی برقی دباو                                       |         |   |
|    |                                                                      | 4.6     |   |
| 99 | 4.6.1 نلكى محدد ميں ڈھلان                                            |         |   |
|    | 4.6.2 كروى محدد ميں څھلان                                            |         |   |
|    | -<br>جفت قطب                                                         | 4.7     |   |
|    | 4.7.1 جفت قطب کے سمت بہاو خط                                         |         |   |
|    | ساکن برقی میدان کی کثافت توانائی   .   .   .   .   .   .   .   .   . | 4.8     |   |
|    |                                                                      |         |   |

| 113 | ذو برق اور کپیسٹر                 | موصل،  | 5 |
|-----|-----------------------------------|--------|---|
| 113 | برقی رو اور کثافت برقی رو         | 5.1    |   |
| 115 | استمراری مساوات                   | 5.2    |   |
| 117 | موصل                              | 5.3    |   |
| 122 | موصل کے خصوصیات اور سرحدی شرائط   | 5.4    |   |
| 125 | عکس کی ترکیب                      | 5.5    |   |
| 128 | نيم موصل                          | 5.6    |   |
| 129 | دو برق                            | 5.7    |   |
| 134 | کامل ذو برق کے سرحد پر برقی شرائط | 5.8    |   |
| 138 | موصل اور ذو برقی کے سرحدی شرائط   | 5.9    |   |
| 138 |                                   | 5.10   |   |
| 141 |                                   | سوالات | 6 |
| 141 | توانائی باب کے سوالات             | 6.1    |   |
| 141 | كپيسٹر                            | 6.2    |   |

عنوان

باب 5

## موصل، ذو برق اور كپيسٹر

اس باب میں ہم برقی رواور کثافت برقی روسے شروع ہو کر بنیادی استمراری مساوات احاصل کریں گے۔اس کے بعداد ہم کے قانون کی نقطہ شکل اوراس کی بڑی شکل حاصل کریں گے۔دواجسام کے سرحد پر سرحدی شرائط 2 حاصل کرتے ہوئے عکس 3 کے طریقے کا استعال دیکھیں گے۔

ذو برق⁴ کی تقطیب <sup>5</sup> پر غور کرتے ہوئے جزو برقی مستقل حاصل کریں گے۔اس کے بعد کپیسٹر پر غور کیا جائے گا۔سادہ شکل وصورت رکھنے والے کپیسٹر کی قیمتیں حاصل کی جائیں گیں۔ایسا گزشتہ بابوں کے نتائج استعال کرتے ہوئے کیا جائے گا۔

5.1 برقمی رو اور کثافت برقی رو

جیسے پانی کے حرکت کو پانی کا بہاو کہتے ہیں، اسی طرح برقی چارج کے حرکت کو برقی رو کہتے ہیں۔ برقی رو کو i اور I سے ظاہر کیا جاتا ہے۔ برقی رو کی اکائی ایمپیئر (A) ہے۔ کسی نقط یا سطح سے ایک کولمب چارج فی سیکٹر کے گزر کو ایک ایمپیئر کہتے ہیں۔ یوں

$$(5.1) I = \frac{dQ}{dt}$$

لکھا جائے گا۔

الی موصل تارجس کی ایک سرے سے دوسری سرے تک موٹائی مسلسل کم ہوتی ہو کے بالکل محور پر برتی چارج محوری ست میں حرکت کرے گا جبکہ محور سے دور چارج کی حرکت تارکی موٹائی کم یا زیادہ ہونے کی وجہ سے قدرِ ترچھی ہو گی۔یوں اگرچہ تار میں ہر مقام پر برتی روکی مقدار برابر ہے لیکن برتی روکی سمتیں مختلف ہو سکتی ہیں۔اسی بناپر ہم برتی روکو مقداری تصور کریں گے۔اگر تارکی موٹائی انتہائی کم ہو تب برتی روسمتیہ مانند ہوگالیکن الیں صورت میں بھی ہم اسے مقداری ہی تصور کرتے ہوئے تارکی لمبائی کو سمتیہ لیس گے۔

continuity equation<sup>1</sup>

boundary conditions<sup>2</sup>

images<sup>3</sup>

dielectric<sup>4</sup>

باب 5. موصل، ذو برق اور كېيسٹر



شکل 5.1: سطح سے گزرتی برقی رو۔

کثافت برقی رو  $^0$ سے مراد برقی رو فی اکائی مربع سطح  $\left(rac{
m A}{
m m^2}
ight)$  ہے اور اسے J سے ظاہر کیا جاتا ہے۔اگر چھوٹی سطح  $\Delta S$  سے عمودی سمت میں  $\Delta I$  برقی روگزرے تب

$$\Delta I = J_n \Delta S$$

کے برابر ہو گا۔اگر کثافت برقی رواور سمتی رقبہ کی سمتیں مختلف ہول تب

$$\Delta I = \boldsymbol{J} \cdot \Delta S$$

کھا جائے گا اور پوری سطح سے کل گزرتی برقی رو تھمل کے ذریعہ حاصل کی جائے گا۔

$$(5.4) I = \int_{S} \boldsymbol{J} \cdot d\boldsymbol{S}$$

مثال 5.1: شکل 5.1 میں سید تھی سطح  $S=2a_{\mathrm{X}}$  و کھائی گئی ہے جہاں کثافت برقی رو $J=1a_{\mathrm{X}}+1a_{\mathrm{Y}}$  پائی جاتی ہے۔ سطح سے گزرتی برقی رو اور اس کی سمت کیا ہوں گے۔ اور اس کی سمت دریافت کریں۔اگر سطح کی دوسری سمت کو سطح کی سمت کی جائے تب برقی رو کی مقدار اور اس کی سمت کیا ہوں گے۔

حل: چونکہ یہاں J مستقل مقدار ہے للذااسے مساوات 5.4 میں تکمل کے باہر لایا جا سکتا ہے اور یوں اس تکمل سے

$$I = \boldsymbol{J} \cdot \boldsymbol{S} = 2 \,\mathrm{A}$$

حاصل ہوتا ہے۔ برقی رو چونکہ مثبت ہے للذا یہ سطح کی سمت میں ہی سطح سے گزر رہی ہے۔

ا گرسطح کی دوسری طرف کو سطح کی ست لی جائے تب  $S=-2a_{
m X}$  کھھا جائے گا اور یول

$$I = \boldsymbol{J} \cdot \boldsymbol{S} = -2 \,\mathrm{A}$$

حاصل ہو گا۔ برقی رو کی مقدار اب بھی دوایمپیئر ہی ہے البتہ اس کی علامت منفی ہے جس کا مطلب سے ہے کہ برقی رو سطح کے سمت کی الٹی سمت میں ہے۔ یوں اب بھی برقی رو بائیں سے دائیں ہی گزر رہی ہے۔

اس مثال سے آپ د کچھ سکتے ہیں کہ 8 کی سمت میں برقی رو کو مثبت برقی رو کہا جاتا ہے۔

dt عیں a اور b اطراف کی تار میں لمبائی کی سمت میں v ر فتار سے چارج حرکت کر رہا ہے۔ شکل میں اس تار کا کچھ حصہ د کھایا گیا ہے۔ یوں dt دورانیہ میں چارج b فاصلہ طے کرے گا۔ اس طرح اس دورانیہ میں سے لگائی گئی نقطہ دار لکیر n پہنچ جائے گی۔ آپ د کیھ سکتے ہیں کہ اس دورانیہ میں

5.2. استمراری مساوات



شکل 5.2: حرکت کرتے چارج کی رفتار اور کثافت برقی رو۔

m اور n کے در میان موجود چارج سطح  $\Delta S$  سے گزر جائے گا۔ m سے n تک حجم abv dt کے برابر ہے۔ اگر تارین چارج کی حجمی کثافت  $ho_h$  ہو تب اس مجم میں کل چارج  $ho_h$  موگا۔ یوں برقی رو

$$I = \frac{\Delta Q}{\Delta t} = \frac{\rho_h abv \, dt}{dt} = \rho_h \Delta Sv$$

لکھتے ہوئے کثافت برقی رو

$$J = \frac{I}{\Delta S} = \rho_h v$$

حاصل ہوتی ہے جس کی سمتی شکل

$$(5.5) J = \rho_h v$$

ہے۔

یہ مساوات کہتا ہے کہ محجی چارج کثافت بڑھانے سے کثافت برقی رواسی نسبت سے بڑھتی ہے۔اسی طرح چارج کی رفتار بڑھانے سے کثافت برقی رواسی نسبت سے بڑھتی ہے۔یہ ایک عمومی نتیجہ ہے۔یوں سڑک پر زیادہ لوگ گزارنے کا ایک طریقہ انہیں تیز چلنے پر مجبور کرنے سے حاصل کیا جا سکتا ہے۔دوسرا طریقہ یہ ہے کہ انہیں قریب قریب کر دیا جائے۔

## 5.2 استمراری مساوات

قانون بقائے چارج کہتا ہے کہ چارج کو نہ تو پیدااور ناہی اسے ختم کیا جا سکتا ہے، اگرچہ برابر مقدار میں مثبت اور منفی چارج کو ملاکی انہیں ختم کیا جا سکتا ہے۔ ہے اور اسی طرح برابر مقدار میں انہیں پیدا بھی کیا جا سکتا ہے۔

یوں اگر ڈب میں ایک جانب C اور دوسر کی جانب C – چارج موجود ہو تو اس ڈب میں کل C کے چارج ہے۔اگر ہم C کو C ک ساتھ ملا کر ختم کر دیں تب بھی ڈب میں کل 2 C ہی چارج رہے گا۔

مثال 5.2: ایک ڈبہ جس کا حجم 8 m 5 ہے میں حجمی کثافت چارج 8 C/m 3 ہے۔اس ڈبے سے چارج کی نکائی ہور ہی ہے۔دوسینڈ میں حجمی کثافت چارج 1 C/m 3 رہ جاتی ہے۔ان دوسکینڈوں میں ڈبے سے خارج برقی رو کا تخمینہ لگائیں۔ باب 5. موصل، ذو برق اور كپيسٹر

عل: شروع میں ڈب میں  $Q_1 = 1 \times 5 = 0$  ہوں وہ سینڈ بعد اس میں  $Q_1 = 1 \times 5 = 0$  رہ جاتا ہے۔ یوں دو سینڈ میں ڈب سے  $Q_1 = 1 \times 5 = 0$  ہوتا ہے۔ اس طرح ڈب سے خارج برقی رو  $Q_1 = \frac{10}{2}$  ہے۔ اس کو یوں کھا جا سکتا ہے۔

$$I = -\frac{\Delta Q}{\Delta t} = -\frac{(5-15)}{2} = 5 \text{ A}$$

اس مثال میں آپ نے دیکھا کہ ڈیے میں  $\Delta Q$  منفی ہونے کی صورت میں خارجی برقی رو کی قیت مثبت ہوتی ہے۔آئیں اس حقیقت کو بہتر شکل دیں۔

جم کو مکمل طور پر گھیرتی سطح کو ہند سطح کہتے ہیں۔ کسی بھی مقام پر ایسی سطح کی سمت سطح کے عمودی باہر کو ہوتی ہے۔مساوات 5.4 کے تحت برقی رو کو کثافت برقی رو کے سطحی تکمل سے بھی حاصل کیا جا سکتا ہے۔ یوں

$$I = \oint_{S} \mathbf{J} \cdot d\mathbf{S} = -\frac{dQ}{dt}$$

کھا جا سکتا ہے جہاں جم کی سطح بند سطح ہونے کی بناپر بند تکمل کی علامت استعال کی گئی ہے اور Q جم میں کل چارج ہے۔

مساوات 5.6 استمراری مساوات 7 کی تکمل شکل ہے۔آئیں اب اس کی نقطہ شکل حاصل کریں۔

مسئلہ پھیلاو کو صفحہ 82 پر مساوات 3.42 میں بیان کیا گیا ہے۔مسئلہ پھیلاو کسی بھی سمتی تفاعل کے لئے درست ہے لہذا اسے استعال کرتے ہوئے مساوات 5.6 میں بند سطحی تکمل کو حجمی تکمل میں تبدیل کرتے ہیں۔

$$\oint_{S} \mathbf{J} \cdot d\mathbf{S} = \int_{h} (\nabla \cdot \mathbf{J}) \, dh$$

ا گر مجم میں حجمی کثافت جارج  $\rho_h$  ہو تب اس میں کل جارج

$$Q = \int_{h} \rho_h \, \mathrm{d}h$$

ہو گا۔ان دو نتائج کو استعال کرتے ہوئے

$$\int_{h} (\nabla \cdot \boldsymbol{J}) \, \mathrm{d}h = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{h} \rho_{h} \, \mathrm{d}h$$

کھا جا سکتا ہے۔اس مساوات میں  $rac{\mathrm{d}}{\mathrm{d}t}$  دومتغیرات پر لا گو ہو گا۔ یہ متغیرات تکمل کے اندر حجمی چارج کثافت  $ho_h$  اور حجم h ہے۔

آپ جانتے ہیں کہ دومتغیرات کے تفرق کو جزوی تفرق کی شکل میں

$$\frac{\mathrm{d}(uv)}{\mathrm{d}t} = \frac{\partial u}{\partial t}v + u\frac{\partial v}{\partial t}$$

کھا جا سکتا ہے جہال v کو مستقل رکھتے ہوئے  $rac{\partial u}{\partial t}$  اور u کو مستقل رکھتے ہوئے  $rac{\partial v}{\partial t}$  حاصل کیا جاتا ہے۔

5.3. موصل

اگر ہم یہ شرط لا گو کریں کہ مجم کی سطح تبدیل نہیں ہو گی تب حجم بھی تبدیل نہیں ہو گا اور یوں ط dt کو جزوی تفرق میں تبدیل کرتے ہوئے تکمل کے اندر کھتے ہوئے

$$\int_{h} (\nabla \cdot \boldsymbol{J}) \, \mathrm{d}h = \int_{h} -\frac{\partial \rho_{h}}{\partial t} \, \mathrm{d}h$$

$$(\nabla \cdot \boldsymbol{J}) \, \mathrm{d} h = -\frac{\partial \rho_h}{\partial t} \, \mathrm{d} h$$

ہی ہے جس سے

$$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho_h}{\partial t}$$

حاصل ہوتا ہے۔مساوات 5.7 استمراری مساوات کی نقطہ شکل ہے۔

پھیلاو کی تعریف کو ذہن میں رکھتے ہوئے آپ دیکھ سکتے ہیں کہ مساوات 5.7 کہتا ہے کہ ہر نقطے پر چھوٹی سی جم سے فی سینڈ چارج کا اخراج، یعنی برقی رو، فی اکائی جم مساوی ہے چارج کے گھٹاو فی سینڈ فی اکائی حجم۔

#### 5.3 موصل

غیر چارج شدہ موصل میں منفی الیکٹران اور مثبت ساکن ایٹوں کی تعداد برابر ہوتی ہے البتہ اس میں برقی رو آزاد الیکٹران کے حرکت سے پیدا ہوتا ہے۔موصل میں الیکٹران آزادی سے بے ترتیب حرکت کرتار ہتا ہے۔ یہ حرکت کرتا ہوا کمحہ بہ لمحہ ساکن ایٹم سے عکراتا ہے اور ہر عکر سے اس کے حرکت کی سمت تبدیل ہو جاتی ہے۔ یوں ایسے الیکٹران کی اوسط رفتار صفر کے برابر ہوتی ہے۔آئیں دیکھیں کہ برقی میدان کے موجود گی میں کیا ہوتا ہے۔

برقی میدان E میں الیکٹران پر قوت

$$\mathbf{F} = -e\mathbf{E}$$

عمل کرے گی جہاں الکیٹران کا چارج e ہے۔ الکیٹران کی رفتار اس قوت کی وجہ سے اسراع کے ساتھ قوت کی سمت میں بڑھنے شروع ہو جائے گی۔ یوں بلا ترتیب رفتار کے ساتھ ساتھ قوت کے سمت میں الکیٹران رفتار پکڑے گا۔ موصل میں پائے جانے والا الکیٹران جلد کسی ایٹم سے نکرا جاتا ہے اور یوں اس کی سمت تبدیل ہو جاتی ہے۔ جس لمحہ الکیٹران کسی ایٹم سے ٹکراتا ہے اگر لا گو میدان کو صفر کر دیا جائے توالکیٹران دوبارہ بلا ترتیب حرکت کرتار ہے گا اور اس کی اوسط رفتار دوبارہ صفر ہی ہو گی، البتہ اس کی رفتار اب پہلے سے زیادہ ہو گی۔ اگر الکیٹران ایٹم سے نہ ٹکراتا تب برقی میدان صفر کرنے کے بعد سے برقرار قوت کی سمت میں حاصل کردہ رفتار سے حرکت کرتار ہتا۔ یوں آپ دیکھ سکتے ہیں کہ ہر ٹکر سے الکیٹران کی اوسط رفتار صفر ہو جاتی ہے۔ اس طرح ہم دیکھتے ہیں کہ E کے موجود گی میں موصل میں الکیٹران کی رفتار مسلسل نہیں بڑھتی بلکہ یہ قوت کی سمت میں اوسط رفتار ہم حاصل کرتا ہے اور جیسے ہی میدان صفر کر دیا جائے الکیٹران کی اوسط رفتار بھی صفر ہو جاتی ہے۔ v کو رفتار بہاو e کہتے ہیں۔ رفتار بہاو کا دارومدار e کی قیمت پر ہے المذا ہم میں میٹران کی اوسط رفتار بھی صفر ہو جاتی ہے۔ v کو رفتار بہاو e کہتے ہیں۔ رفتار بہاو کا دارومدار e کی قیمت پر ہے المذا ہم

$$(5.9) v_d = -\mu_e \mathbf{E}$$

E ککھ سکتے ہیں جہاں مساوات کے مستقل  $\mu_e$  کو الیکٹران کی حرکت پذیری $^0$  کہتے ہیں۔حرکت پذیری کی مقدار مثبت ہے ۔چونکہ  $v_d$  کو میٹر فی سینڈ اور  $v_d$  کو وولٹ فی میٹر میں نایا جاتا ہے لہذا حرکت پذیری کو  $\frac{m^2}{V_S}$  میں نایا جائے گا۔

مساوات 5.9 کو صفحہ 115 پر دیئے مساوات 5.5 میں پر کرتے ہوئے

$$(5.10) J = -\rho_e \mu_e E$$

حاصل ہوتا ہے جہاں موصل میں آزاد الیکٹران کی محجی چارج کثافت کو  $ho_e$  کھا گیا ہے۔ $ho_e$  منفی مقدار ہے۔ یاد رہے کہ غیر چارج شدہ موصل میں محجی کثافت چارج صفر کے برابر ہوتے ہیں۔اس مساوات کو عموماً

$$(5.11) J = \sigma E$$

کھا جاتا ہے جو اوہم کے قانون کی نقطہ شکل ہے اور جہاں

$$\sigma = -\rho_e \mu_e$$

کھا گیا ہے۔ $\sigma$  کو موصلیت کا مستقل 10 کہتے ہیں اور اس کی اکائی 11 سمنز فی میٹر  $\frac{s}{m}$  ہے۔ سمنز کو بڑے S سے جبکہ سینڈ کو چھوٹے S سے ظاہر کیا جاتا ہے۔ اس کتاب کے آخر میں صفحہ 143 پر جدول 6.1 میں کئی موصل اور غیر موصل اشیاء کی موصلیت بیش کی گئی ہیں۔

مثال 5.3: تا نبے 12 کی موصلیت کے مستقل کی قیت  $\frac{S}{m} \times 10^7 + 5.8$  ہیں۔اگر ہر ایٹم ایک عدد الیکٹران آزاد کرتا ہو تب تا نبے میں الیکٹران کی حرکت پذیری حاصل کریں۔برقی میدان E=0.1 کی صورت میں الیکٹران کار فبار بہاو حاصل کریں۔

 $^{3}$  عل: اینگی کمیت  $^{23}$  یعنی ایک مول  $^{13}$  اینگم کی کمیت کو کہتے ہیں۔ چونکہ ایک مربع میٹر میں  $^{8940}$  این المذاایک مربع میٹر میں  $^{30}$  این المذاایک مربع میٹر میں  $^{30}$   $= 8.48 \times 10^{28}$ 

ایٹم پائیں جائیں گے۔ ہرایٹم ایک الیکٹران آزاد کرتا ہے للذا nm 1.01طراف کے مربع میں اوسطاً 0.848 یعنی تقریباً ایک عدد آزاد الیکٹران پایا جائے گا۔ اس طرح ایک مربع میٹر میں کل آزاد الیکٹران چارج یعنی حجمی آزاد چارج کثافت

(5.13) 
$$\rho_e = -1.6 \times 10^{-19} \times 8.48 \times 10^{28} = -1.36 \times 10^{10} \, \text{C/m}^3$$

ہو گی۔ایک مربع میٹر میں یوں انتہائی زیادہ آزاد چارج پایا جاتا ہے۔اس طرح مساوات 5.12 کی مدد سے

$$\mu_e = -\frac{\sigma}{\rho_e} = \frac{5.8 \times 10^7}{-1.36 \times 10^{10}} = 0.00427 \, \frac{\text{m}^2}{\text{V s}}$$

حاصل ہوتا ہے جہاں 2 1.004 27 1.000 کو 0.004 27 1.000 کھھا گیا ہے۔ آپ تسلی کر سکتے ہیں کہ یہ برابر مقدار ہیں۔اب مساوات 5.9 استعال کرتے ہوئے الیکٹران کی رفتار بہاو

$$v_d = -0.00427 \times 0.1 = -0.000427 \frac{\text{m}}{\text{s}}$$

حاصل ہوتی ہے۔ منفی رفتار کا مطلب ہے کہ الکیٹران E کے الٹ سمت حرکت کر رہا ہے۔اس رفتار 14 سے الکیٹران ایک کلو میٹر کا فاصلہ ستائیس دن و رات چل کر طے کرے گا۔ یہاں بیہ بتلاتا چلوں کہ عام درجہ حرارت مثلاً X 300 پر تانبے میں حرارتی توانائی سے حرکت کرتے الکیٹران کی رفتار تقریباً 1000 ہوتی ہے۔

conductivity<sup>10</sup>

<sup>11.</sup> یہ اکائی جرمنی کے جناب ارنسٹ ورنر وان سیمنز (1892-1816) کے نام ہے جنہوں نے موجودہ سیمنز کمپنی کا بنیاد رکھا۔ 22

copper<sup>12</sup>

 $mole^{13}$ 

<sup>&</sup>lt;sup>14</sup>کھودا پہاڑ، نکلا چوہا۔آزاد الیکٹران تو کچھوے سے بھی آبستہ چلتا ہے۔

5.3. موصل



شکل 5.3: اوہم کے قانون کی بڑی شکل

یوں موصل میں آزاد الیکٹرانوں کو نئی جگہ منتقل ہوتے شہد کے مکھیوں کا حجنٹر سمجھا جا سکتا ہے۔ایسے حجنٹر میں کوئی ایک مکھی نہایت تیز رفتار سے آگے پیچھے اڑتی ہے جبکہ پورا حجنٹر نسبتا آہتہ رفتار سے ایک سمت میں حرکت کرتا ہے۔موصل میں بھی کوئی ایک الیکٹران نہایت تیز رفتار سے ایٹوں سے طکراتا ہوا حرارتی توانائی کی وجہ سے ایسے تمام الیکٹران نہایت آہتہ رفتار سے میدان کی وجہ سے ایسے تمام الیکٹران نہایت آہتہ رفتار سے میدان کی سمت میں حرکت کرتے ہیں۔

اگر موصل میں آزاد الیکٹران اتنے کم رفتار سے بیرونی لا گو میدان کی سمت میں صفر کرتے ہیں تب بجلی چالو کرتے ہی بلب کس طرح روشن ہوتا ہے۔اس کو سبجھنے کی خاطر برقی تار کو پانی بھرے ایک لمبے پائپ مانند سبجھیں۔ایسے پائپ میں جیسے ہی ایک جانب سے مزید پانی داخل کیا جائے، اسی وقت پائپ کے دوسرے سرے سے برابر پانی خارج ہو گا۔امید ہی سبجھ آگئی ہوگی۔

مندرجہ بالا مثال میں بتلایا گیا کہ تانبے کا ہر ایٹم ایک عدد الیکٹران آزاد کرتا ہے۔اس حقیقت کو یوں سمجھا جا سکتا ہے کہ تانبے کا ایٹمی عدد 29 ہے۔ایٹم کے کسی بھی مدار میں 2n<sup>2</sup> الیکٹران ہو سکتے ہیں جہاں پہلے مدار کے لئے n = 2 کسی بھی مدار کے لئے 2 = n وغیرہ لیا جاتا ہے۔یوں اس کے پہلے مدار میں 2n دوسرے مدار میں 8 تارہ کرتا ہے۔آئیں اب مدار میں 2 دوسرے مدار میں 8 تارہ کرتا ہے۔آئیں اب بڑی شکل میں او ہم کا قانون حاصل کریں۔

شکل 5.3 میں موصل سلاخ دکھایا گیا ہے جس کی لمبائی L اور رقبہ عمودی تراش S ہیں۔سلاخ کو  $a_y$  سمت میں لیٹا تصور کریں۔سلاخ میں لمبائی کی ست میں مستقل اور کیساں برقی میدان  $E=-Ea_y$  اور کثافت برقی رو  $J=-Ja_y$  پائے جاتے ہیں۔یوں اگر سلاخ کا بایاں سرا برقی زمین تصور کیا جائے تب اس کے دائیں سرے پر برقی د باو کو صفحہ 91 پر دئے مساوات 4.11 سے یوں

$$V = -\int_0^L \mathbf{E} \cdot d\mathbf{L} = \int_0^L E \mathbf{a}_y \cdot dy \mathbf{a}_y = \int_0^L E dy = E \int_0^L dy = EL$$

حاصل کرتے ہیں۔ رقبہ عمودی تراش کو شکل میں گہرے رنگ سے اجاگر کیا گیا ہے۔ سمتی رقبہ عمودی تراش بند سطح نہیں ہے للذااس کے دو مکنہ رخ ہیں۔ سلاخ کے دائیں سرے سے داخل برقی رو حاصل کرنے کی غرض سے رقبہ عمودی تراش کو  $S=-Sa_y$  کھتے ہیں۔ یوں دائیں سرے سے داخل برتی روکی مقدار شبت ہوگی۔ برقی رو

$$I = \int_{S} \mathbf{J} \cdot d\mathbf{S} = JS$$

حاصل ہوتی ہے۔ان معلومات کو شکل 5.11 میں پُر کرتے ہوئے

$$\frac{I}{S} = \sigma \frac{V}{L}$$

$$V = I \frac{L}{\sigma S}$$

حاصل ہوتا ہے جہاں

$$(5.14) R = \frac{L}{\sigma S}$$

کو مزاحمت لکھتے ہوئے

$$(5.15) V = IR$$

حاصل ہوتا ہے جو اوہم کے قانون کی جانی پیچانی شکل ہے۔

مساوات 5.14 یکسان رقبہ عمودی تراش رکھنے والے موصل سلاخ کی مزاحمت¹ دیتا ہے جہاں مزاحمت کی اکائی اوہم ¹ ہے جسے Ω سے ظاہر کیا جاتا ہے۔ کیساں رقبہ عمودی تراش کے سلاخ میں برقی میدان کیساں ہوتا ہے۔اگر سلاخ کارقبہ عمودی تراش کیساں نہ ہوتب اس میں برقی میدان بھی کیساں نہ ہو گا اور ایسی صورت میں مساوات 5.14 استعال نہیں کیا جا سکتا البتہ ایسی صورت میں بھی مزاحت کو مساوات 5.15 کی مدد سے برقی دیاو فی اکائی برقی رو سے بیان کیا جاتا ہے۔ یوں مساوات 4.11 اور مساوات 5.4 استعال کرتے ہوئے سلاخ کے b سے a سرے تک مزاحمت

(5.16) 
$$R = \frac{V}{I} = \frac{-\int_{b}^{a} \mathbf{E} \cdot d\mathbf{L}}{\int_{S} \mathbf{J} \cdot d\mathbf{S}} = \frac{-\int_{b}^{a} \mathbf{E} \cdot d\mathbf{L}}{\int_{S} \sigma \mathbf{E} \cdot d\mathbf{S}}$$

سے حاصل ہو گی جہاں برقی روسلاخ کے مثبت برقی دباو والے سرے سے سلاخ میں داخل ہوتے برقی رو کو کہتے ہیں۔یوں مندر جہ بالا مساوات میں سطحی 'گلل سلاخ کے مثبت سم بے ہر حاصل کیا جائے گا جہاں سطح عمودی تراش کی سمت سلاخ کی جانب لی جائے گی۔

مثال 5.4: تانیے کی ایک کلو میٹر کمبی اور تین ملی میٹر رداس کے تار کی مزاحت حاصل کریں۔

 $\sigma=5.8 imes10^7$  اور  $S=\pi r^2=2.83 imes10^{-7}\,\mathrm{m}^2$  جبران  $L=1000\,\mathrm{m}$  اور  $L=1000\,\mathrm{m}$ 

$$R = \frac{1000}{5.8 \times 10^7 \times 2.83 \times 10^{-7}} = 0.61 \,\Omega$$

حاصل ہوتا ہے۔

مثق 5.1: المونيم ميں کثافت برقی رو مندر جه ذیل صورتوں میں حاصل کریں۔(الف) برقی میدان کی شدت  $\frac{mV}{m}$  50 ہے۔ (ب) آزاد الیکٹران کی ر فتار بہاو <u>mm</u> 0.12 ہے۔ (پ)ایک ملی میٹر موٹی تار جس میں 2 A برقی رو گزر رہی ہے۔

resistance<sup>16</sup>

ہم دیکھ چکے ہیں کہ موصل کے اندر داخل کیا گیا چارج جلد موصل کے سطح پر پہنچ کر سطحی چارج کثافت پیدا کرتا ہے۔ یہ جانتے ہوئے کہ حقیقت میں موصل کے اندر چارج کا پیدا ہونا یا وہاں چارج داخل کرنا معمول کی بات ہر گزنہیں، ہم ایسے داخل کئے گئے چارج کی حرکت پر غور کرتے ہیں۔

اوہم کے قانون

 $J = \sigma E$ 

اور استمراری مساوات

$$abla \cdot oldsymbol{J} = -rac{\partial 
ho_h}{\partial t}$$

دونوں میں صرف آزاد چارج کی بات کی جاتی ہے۔ان مساوات سے

$$\nabla \cdot \sigma \boldsymbol{E} = -\frac{\partial \rho_h}{\partial t}$$

یا

$$\nabla \cdot \frac{\sigma}{\epsilon} \mathbf{D} = -\frac{\partial \rho_h}{\partial t}$$

کھا جا سکتا ہے۔اگر موصل میں  $\sigma$  اور  $\epsilon$  کی قیمتیں اٹل ہوں تب اس مساوات کو

$$\nabla \cdot \boldsymbol{D} = -\frac{\epsilon}{\sigma} \frac{\partial \rho_h}{\partial t}$$

لکھا جا سکتا ہے۔صفحہ 78 پر مساوات 3.33 جو میکس ویل کی پہلی مساوات ہے کی مدد سے یوں

$$\rho_h = -\frac{\epsilon}{\sigma} \frac{\partial \rho_h}{\partial t}$$

حاصل ہوتا ہے۔مساوات 5.12 کہتا ہے کہ موصلیت کی قیمت آزاد الیکٹران کی تحجی چارج کثافت  $ho_e$  اور الیکٹران کی حرکت پذیری پر منحصر ہے۔مساوات 5.13 تانبے میں  $ho_e=-1.36 imes10^{10}\,\mathrm{C/m^3}$  دیتا ہے جو انتہائی بڑی مقدار ہے۔اتنے چارج میں بیرونی داخل چارج نمک برابر بھی حیثیت نہیں رکھتا للذا $\sigma$  کی قیمت کو اٹل تصور کیا جا سکتا ہے۔ یوں مندرجہ بالا مساوات کو نئی شکل

$$\frac{\partial \rho_h}{\rho_h} = -\frac{\sigma}{\epsilon} \partial t$$

میں لکھتے ہوئے،اس کا تکمل

$$\rho_h = \rho_0 e^{-\frac{\sigma}{\epsilon}t}$$

 $^{18}$  ما ما کرتے ہیں جہاں وقت t=0 پر داخل کئے گئے چارج کا محجی چارج کثافت  $ho_0$  ہے۔اس مساوات کے تحت محجی چارج کثافت  $^{2}_{\epsilon}$  وقتی مستقل  $^{81}$  رکھتا ہے۔ تقطیر شدہ پانی کا وقتی مستقل جدول  $^{6.2}$  اور جدول  $^{6.2}$  کی مدد سے

$$\frac{\epsilon}{\sigma} = \frac{80}{36\pi\times10^9\times10^{-4}} = 7.07\,\mathrm{\mu s}$$

حاصل ہوتا ہے۔اگرچہ تقطیر شدہ پانی انتہائی کم موصل ہے لیکن اس میں بھی کثافت چارج صرف سات مائیکرو سینڈ میں ابتدائی قیمت کے صرف 37 فی صدرہ جاتا ہے۔یوں کسی بھی موصل کے اندر انتہائی کم دورانیے کے لئے اضافی چارج پایا جا سکتا ہے۔اس کھاتی چارج کثافت کے علاوہ اندرون موصل کو چارج سے پاک تصور کیا جا سکتا ہے۔

ذو برق میں مخلف وجوہات کی بنا پر لگاتار آزاد چارج پیدا ہوتے رہتے ہیں جس کی بنا پر ذو برق صفر سے زیادہ موصلیت رکھتے ہوئے برقی رو گزارتا ہے۔ذو برق کے اندر چارج بھی آخر کار سطح پر پہنچ جاتا ہے۔

## 5.4 موصل کر خصوصیات اور سرحدی شرائط

غیر چارج شدہ موصل میں کل آزاد الیکٹران اور مثبت ایٹم برابر تعداد میں پائے جاتے ہیں۔ یوں اس میں برقی میدان صفر کے برابر ہوتا ہے۔ فرض کریں کہ غیر چارج شدہ موصل کے اندر کسی طرح چند الیکٹران نمودار ہو جاتے ہیں۔ یہ الیکٹران برقی میدان کے پیدا کریں گے جس کی وجہ سے موصل میں آزاد الیکٹران موصل کے سطح کی جانب چل پڑیں گے۔ سطح کے باہر غیر موصل خلاء پائی جاتی ہے جس میں الیکٹران حرکت نہیں کر سکتے للذا الیکٹران موصل کے سطح پر پہنچ کر رک جائیں گے۔موصل میں نمودار ہونے والے الیکٹران کے برابر تعداد میں الیکٹران موصل کے سطح پر منتقل ہوں گے جس کے بعد موصل میں دوبارہ منفی الیکٹران اور مثبت ایٹوں کی تعداد برابر ہو جائے گی اور یہ غیر چارج شدہ صورت اختیار کرلے گا۔

آپ نے دیکھا کہ اضافی چارج موصل میں زیادہ دیر نہیں رہ سکتا اور یہ جلد سطح پر منتقل ہو جاتا ہے۔یوں اضافی چارج موصل کے سطح پر بیر ونی جانب چیٹار ہتا ہے۔یہ موصل کی پہلی اہم خاصیت ہے۔

موصل کی دوسری خاصیت برقی سکون ۱۹ کی حالت کے لئے بیان کرتے ہیں۔ برقی سکون سے مراد ایسی صورت ہے جب چارج حرکت نہ کر رہا ہو یعنی جب برقی روصفر کے برابر ہو۔ برقی سکون کی حالت میں موصل کے اندر ساکن برقی میدان صفر رہتا ہے۔ا گراییانہ ہوتاتو میدان کی وجہ سے اس میں آزاد الکیٹران حرکت کرکے برقی روکو جنم دیتے جو غیر ساکن حالت ہے۔

یوں برقی سکون کی حالت میں موصل کے اندر اضافی چارج اور برقی میدان دونوں صفر کے برابر ہوتے ہیں البتہ اس کے سطح پر بیرونی جانب چارج پایا جا سکتا ہے۔آئیں دیکھیں کہ سطح پر پائے جانے والا چارج موصل کے باہر کس قشم کا برقی میدان پیدا کرتا ہے۔

موصل کے سطح پر چارج، موصل کے باہر برقی میدان پیدا کرتا ہے۔ سطح پر کسی بھی نقطے پر ایسے میدان کو دوا جزاء کے مجموعے کی شکل میں لکھا جا سکتا ہے۔ پہلا جزو سطح کے مماسی اور دوسرا جزو سطح کے عمودی رکھتے ہوئے ہم دیکھتے ہیں کہ مماسی جزو صفر ہو گا۔اگر ایسانہ ہو تواس میدان کی وجہ سے سطح پر پائے جانے والے آزاد الیکٹران حرکت میں آئیں گے جو غیر ساکن حالت ہو گی۔یوں ہم

$$(5.17) E_{\mathcal{S}\mathcal{V}} = 0$$

کھ سکتے ہیں۔ سطح پر عمودی برقی میدان گاوس کے قانون کی مدد سے حاصل کیا جا سکتا ہے جو کہتا ہے کہ کسی بھی بند سطح سے کل برقی بہاو کا اخراج، سطح میں گھیرے چارج کے برابر ہوتا ہے۔چونکہ سطح پر مماسی برقی میدان صفر ہے اور موصل کے اندر بھی برقی میدان صفر ہے لندا سطح پر چارج سے کا اخراج صرف عمود کی سمت میں ہو سکتا ہے۔یوں ۵۶ سطح سے عمود کی اخراج DAS اس سطح پر چار کا جم کے برابر ہوگا جس سے

$$D_{(5.18)} \qquad \qquad D_{(5.9)} = \rho_S$$



شکل 5.4: موصل اور خلاء کے سرحد پر برقی شرائط۔

حاصل ہوتا ہے۔آئیں اسی بحث کو بہتر جامہ پہنائیں۔ایسا کرتے ہوئے ہم ایک عمومی ترکیب سکھ لیں گے جو مختلف اقسام کے اشیاء کے سرحد پر میدان کے حصول کے لئے استعال کیا جاتا ہے۔

شکل 5.4 میں موصل اور خالی خلاء کے در میان سرحد موٹی لکیر سے دکھایا گیا ہے۔اس سرحد پر خلاء میں E اور E دکھائے گئے ہیں۔خلاء میں E اور E دکھائے گئے ہیں۔خلاء میں E اور E کے مجموعے کے طور پر بھی دکھایا گیا ہے جو بالترتیب سرحد کے ممائی اور عمود کی اجزاء ہیں۔اسی طرح E کو بھی ممائی اور عمود کی اجزاء کے مجموعہ کے طور پر دکھایا گیا ہے۔ہم صرف اس حقیقت کو لے کر آگے بڑھتے ہیں کہ موصل کے اندر E اور E دونوں صفر کے برابر ہیں۔آئیں اس حقیقت کی بنا پر خلاء میں E کی بنا پر خلاء میں E کی قبیت حاصل کریں۔ہم E کے مجموعے E اور E حاصل کریں گے۔پہلے E حاصل کرتے ہیں۔

سر حدیہ abcd مستطیل بنایا گیاہے جہال ab اور cd سر حد کے مماسی جبکہ bc سر حد کے عمودی ہیں۔ ab خالی خلاء میں سر حد سے  $\Delta h/2$  فاصلے پر جبکہ bc موصل میں سر حدسے  $\Delta h/2$  فاصلے پر ہیں۔ ab اور cd کی لمبائیاں  $\Delta h/2$  ہیں جبکہ cd اور da کی لمبائیاں  $\Delta h/2$  ہے۔ صفحہ 97 پر دئے مساوات 4.25

$$\oint \mathbf{E} \cdot \mathrm{d}\mathbf{L} = 0$$

کو abcd پر لا گو کرتے ہیں۔اس تکمل کو چار ٹکڑوں کا مجموعہ لکھا جا سکتا ہے۔

$$\oint \mathbf{E} \cdot d\mathbf{L} = \int_a^b \mathbf{E} \cdot d\mathbf{L} + \int_b^c \mathbf{E} \cdot d\mathbf{L} + \int_c^d \mathbf{E} \cdot d\mathbf{L} + \int_d^a \mathbf{E} \cdot d\mathbf{L} = 0$$

اب a سے d تک

$$\int_a^b \mathbf{E} \cdot \mathrm{d}\mathbf{L} = E_m \Delta w$$

حاصل ہوتا ہے۔خلاء میں نقطہ b پر عمودی میدان کو  $E_{n,b}$  ککھتے ہوئے b سے c تک

$$\int_{b}^{c} \mathbf{E} \cdot \mathrm{d}\mathbf{L} = -E_{n,b} \frac{\Delta h}{2}$$

حاصل ہوتا ہے۔یاد رہے کہ bc کی آدھی لمبائی موصل کے اندر ہے جہاں E=0 ہے۔c سے d تک تکمل صفر کے برابر ہے چونکہ یہ راستہ موصل کے اندر ہے جہاں E=0

$$\int_{c}^{d} \mathbf{E} \cdot d\mathbf{L} = 0$$

خلاء میں نقطہ a پر عمودی میدان کو  $E_{n,a}$  کھتے ہوئے a تک

$$\int_{d}^{a} \mathbf{E} \cdot \mathrm{d}\mathbf{L} = E_{n,a} \frac{\Delta h}{2}$$

ان چار نتائج سے

$$\oint \mathbf{E} \cdot d\mathbf{L} = E_m \Delta w + (E_{n,a} - E_{n,b}) \frac{\Delta h}{2} = 0$$

کھا جا سکتا ہے۔ سرحد کے قریب میدان حاصل کرنے کی خاطر ہمیں سرحد کے قریب تر ہونا ہو گا یعنی  $\Delta h$  کو تقریباً صفر کے برابر کرنا ہو گا۔ایبا کرنے سے کھا جا سکتا ہے۔ ہم  $\Delta t$  کو اتنا چھوٹا لیتے ہیں کہ اس کی پوری لمبائی پر میدان کو یکسال تصور کرنا ممکن ہو۔ایبا کرتے ہوئے اس میاوات سے

$$\oint \mathbf{E} \cdot \mathrm{d}\mathbf{L} = E_m \Delta w = 0$$

ليعني

 $(5.19) E_m = 0$ 

حاصل ہوتا ہے۔ آئیں اب  $E_n$  حاصل کریں۔  $E_n$  کی بجائے گاوس کے قانون

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = Q$$

کی مدد سے  $D_n$  کا حصول زیادہ آسان ثابت ہوتا ہے لہذا ہم اسی کو حاصل کرتے ہیں۔

شکل 5.4 میں موصل اور خالی خلاء کے سرحد پر ۵۸ لمبائی کا بیلن د کھایا گیا ہے۔اس بیلن کے ڈھکنوں کارقبہ ۵۶ ہے۔اگر سرحد پر 6۶ پایا جائے تب بیلن ۶۵۵ چارج کو گھیرے گا۔گاوس کے قانون کے تحت بیلن سے اسی مقدار کے برابر برقی بہاو کا اخراج ہو گا۔ برقی بہاو کا اخراج بیلن کے دونوں سروں اور اس کے نکلی نما سطح سے ممکن ہے۔یوں

$$\oint\limits_{S} \boldsymbol{D} \cdot \mathrm{d}\boldsymbol{S} = \int\limits_{\boldsymbol{\mathcal{V}}} \boldsymbol{D} \cdot \mathrm{d}\boldsymbol{S} + \int\limits_{\boldsymbol{\mathcal{V}}} \boldsymbol{D} \cdot \mathrm{d}\boldsymbol{S} + \int\limits_{\boldsymbol{\mathcal{V}}} \boldsymbol{D} \cdot \mathrm{d}\boldsymbol{S} = \rho_{S} \Delta S$$

لکھا جا سکتا ہے۔اب بیلن کی نچلی سطح موصل کے اندر ہے جہاں میدان صفر کے برابر ہے لہذا

$$\int _{\mathbf{v}} oldsymbol{D} \cdot \mathrm{d} oldsymbol{S} = 0$$

ہو گا۔مساوات 5.19 کے تحت سر حدیر خلاء میں مماسی میدان صفر ہوتا ہے۔موصل میں بھی میدان صفر ہوتا ہے لہذا

$$\int _{\mathcal{U}} \, oldsymbol{D} \cdot \mathrm{d} oldsymbol{S} = 0$$

ہو گا۔ بیلن کے اوپر والے سرے پر

$$\int_{\mathbf{D}} \mathbf{D} \cdot \mathrm{d}\mathbf{S} = D_n \Delta S$$

ہو گا۔ان تین نتائج کو استعال کرتے ہوئے

$$\oint_{S} \mathbf{D} \cdot \mathrm{d}\mathbf{S} = D_{n} \Delta S = \rho_{S} \Delta S$$

5.5. عکس کی ترکیب

لعيني

$$D_n = \rho_S$$

حاصل ہوتا ہے۔ چونکہ  $D=\epsilon_0 E$  ہوتا ہے للذا یوں

 $(5.20) D_n = \epsilon_0 E_n = \rho_S$ 

لکھا جا سکتا ہے۔

مساوات 5.19 اور مساوات 5.20 موصل اور خالی خلاء کے سرحد پر برقی میدان کے شرائط بیان کرتے ہیں۔ موصل اور خلاء کے سرحد پر برقی میدان کے شرائط بیان کرتے ہیں۔ موصل اور خلاء کے سرحد پر برقی میدان موصل کی موصل سے عمود کی خارج ہوتا ہے جبہہ اس کے سرحد کے ممائی میدان صفر کے برابر ہوتا ہے۔ نتیجتاً موصل کی سطح ہم قوہ سطح ہوتی ہے۔ یوں موصل کی سطح پر دو نقطوں کے مابین کسی بھی راتے پر برقی میدان کا تکمل صفر کے برابر ہوگا یعنی  $E \cdot d L = 0$  ہوگا۔ یاد رہے کہ برقی میدان کا تکمل صفر کے دیتا ہے جو تکمل کے راتے پر منحصر نہیں ہوتا لہذا اس راتے کو موصل کی سطح پر ہی رکھا جا سکتا ہے جہاں  $E \cdot d L = 0$  ہونے کی وجہ سے تکمل صفر کے برابر ہوگا۔

 $E_n$ ،  $E_m$  برابر ہے۔ اس نقطے پر پایا جاتا ہے جہاں N(2,-3,5) موصل کی سطح پر پایا جاتا ہے جہاں N(2,-3,5) مشق N(2,-3,5) موصل کی سطح پر پایا جاتا ہے جہاں اور  $\rho_S$  حاصل کریں۔

 $3.71 \, \frac{nC}{m^2}$  وابات: 0،  $\frac{V}{m}$  420 اور

## 5.5 عکس کی ترکیب

جفت قطب کے خطوط صفحہ 105 پر شکل 4.10 میں دکھائے گئے ہیں جہاں دونوں چارجوں سے برابر فاصلے پر لامحدود برقی زمین سطح دکھائی گئی ہے۔ برقی زمین پر انتہائی باریک موٹائی کی لامحدود موصل سطح رکھی جاسکتی ہے۔ایسی موصل سطح پر برقی دباو صفر وولٹ ہو گا اور اس پر میدان عمودی ہو گا۔موصل کے اندر برقی میدان صفر رہتا ہے اور اس سے برقی میدان گزر نہیں پاتا۔

اگراس موصل سطح کے بنچ سے جفت قطب کا منفی چارج ہٹا دیا جائے تب بھی سطح کے اوپر جانب میدان عمودی ہی ہو گا۔یاد رہے برقی زمین صفر وولٹ پر ہوتا ہے۔موصل سطح کے اوپر جانب میدان جول کا تول رہے گا جبکہ اس سے بنچ میدان صفر ہو جائے گا۔اسی طرح سطح کے اوپر جانب سے جفت قطب کا مثبت چارج ہٹانے سے سطح کے نچلے میدان پر کوئی اثر نہیں پڑتا جبکہ سطح سے اوپر میدان صفر ہو جاتا ہے۔

آئیں ان حقائق کو دوسری نقطہ نظر سے دیکھیں۔فرض کریں کہ لامحدود موصل سطح یا برتی زمین کے اوپر شبت نقطہ چارج پایا جاتا ہے۔چونکہ ایک صورت میں سطح کے اوپر جانب برتی میدان بالکل جفت قطب کے میدان کی طرح ہو گا للذا ہم برتی زمین کے نجلی جانب عین مثبت چارج کے نیچے اور استے ہی فاصلے پر برابر مگر منفی چارج رکھتے ہوئے برتی زمین کو ہٹا سکتے ہیں۔اوپر جانب کے میدان پر ان اقدام کا کوئی اثر نہیں ہوگا۔یوں جفت قطب کے تمام مساوات بروئے کار لاتے ہوئے زمین کے اوپر جانب کا میدان حاصل کیا جا سکتا ہے۔یاد رہے کہ سطح کے نیچے برتی زمین کو صفر ہی تصور کیا جائے



شكل 5.5: عكس كي تركيب.

گا۔اگر برقی زمین کی سطح کو آئینہ تصور کیا جائے تب مثبت چارج کا عکس اس آئینہ میں اس مقام پر نظر آئے گا جہاں ہم نے تصوراتی منفی چارج رکھا۔یوں اس منفی چارج کو حقیقی چارج کا عکس <sup>20</sup> کہتے ہیں۔

الیی ہی ترکیب لامحدود زمینی سطح کے ایک جانب منفی چارج سے پیدا میدان حاصل کرنے کی خاطر بھی استعال کیا جاتا ہے۔ایسی صورت میں زمین کی دوسری جانب عین منفی چارج کے سامنے،اتنے ہی فاصلے پر برابر مقدار مگر مثبت چارج رکھتے ہوئے برقی زمین کو ہٹایا جا سکتا ہے۔

کسی بھی چارج کو نقطہ چارجوں کا مجموعہ نصور کیا جا سکتا ہے۔ لہذا لا محدود برقی زمین یا لا محدود موصل سطح کی ایک جانب کسی بھی شکل کے چارجوں کا میدان، سطح کی دوسری جانب چارجوں کا عکس رکھتے اور زمین کو ہٹاتے ہوئے حاصل کیا جاتا ہے۔اس ترکیب کو عکس کی ترکیب کہتے ہیں۔ یاد رہے کہ کسی بھی لا محدود موصل سطح جس کے ایک جانب چارج پایا جاتا ہو پر سطحی چارج پایا جائے گا۔ عمواً مسئلے میں لا محدود سطح اور سطح کے باہر چارج معلوم ہوں گے۔ایسے مسئلے کو حل کرنے کی خاطر سطح پر سطحی چارجوں کا علم بھی ضروری ہوتا ہے۔ سطحی چارج دریافت کرنا نسبتاً مشکل کام ہے جس سے چھٹکارا حاصل کرنا عمواً زیادہ آسان ثابت ہوتا ہے۔

شکل 5.5 میں لامحدود موصل سطح کے اوپر جانب مختلف اقسام کے چارج دکھائے گئے ہیں۔اسی شکل میں مسئلے کو عکس کے ترکیب کی نقطہ نظر سے بھی دکھایا گیا ہے۔موصل سطح کے مقام پر دونوں صور توں میں صفر وولٹ ہی رہتے ہیں۔

مثال 5.5: لا محدود موصل سطح z=2 قریب N(5,7,8) پر N(5,7,8) چارج پایا جاتا ہے۔ موصل کی سطح پر نقطہ E بر E عاصل کرتے ہوئے اس مقام پر موصل کی سطحی کثافت چارج عاصل کریں۔

مان کا کا منکس C لا محدود سطح کے دوسری جانب نقطہ P(5,7,-2) پر رکھتے ہوئے موصل سطح ہٹاتے ہیں۔اب M سے M تک سمتیہ C نقطہ M پر C سے C

$$\boldsymbol{E}_{+} = \frac{5 \times 10^{-6} (-3\boldsymbol{a}_{\mathrm{X}} - 3\boldsymbol{a}_{\mathrm{Y}} - 5\boldsymbol{a}_{\mathrm{Z}})}{4\pi\epsilon_{0} (3^{2} + 3^{2} + 5^{2})^{\frac{3}{2}}} = \frac{5 \times 10^{-6} (-3\boldsymbol{a}_{\mathrm{X}} - 3\boldsymbol{a}_{\mathrm{Y}} - 5\boldsymbol{a}_{\mathrm{Z}})}{4\pi\epsilon_{0} (43)^{\frac{3}{2}}}$$

5.5. عکس کی ترکیب

پیدا کرے گا۔ای طرح D µC چارج نقطہ M پر

$$\boldsymbol{E}_{-} = \frac{-5 \times 10^{-6} (-3\boldsymbol{a}_{\mathrm{X}} - 3\boldsymbol{a}_{\mathrm{Y}} + 5\boldsymbol{a}_{\mathrm{Z}})}{4\pi\epsilon_{0}(3^{2} + 3^{2} + 5^{2})^{\frac{3}{2}}} = \frac{-5 \times 10^{-6} (-3\boldsymbol{a}_{\mathrm{X}} - 3\boldsymbol{a}_{\mathrm{Y}} + 5\boldsymbol{a}_{\mathrm{Z}})}{4\pi\epsilon_{0}(43)^{\frac{3}{2}}}$$

میدان پیدا کرے گا۔ چونکہ برقی میدان خطی نوعیت کا ہوتا ہے لہذا کسی بھی نقطے پر مختلف چار جوں کے پیدا کردہ میدان جمع کرتے ہوئے کل میدان حاصل کیا جا سکتا ہے۔ یوں نقطہ M پر کل میدان

$$E_{\mathcal{J}} = E_{+} + E_{-} = rac{-50 imes 10^{-6} a_{\mathrm{Z}}}{4 \pi \epsilon_{0} (43)^{rac{3}{2}}}$$

ہو گا۔ موصل کی سطح پر میدان عمودی ہوتا ہے۔ موجودہ جواب اس حقیقت کی تصدیق کرتا ہے۔ یوں موصل کی سطح پر

$$D = \epsilon_0 E = \frac{-50 \times 10^{-6} a_{\rm Z}}{4\pi (43)^{\frac{3}{2}}} = -14.13 \times 10^{-9} a_{\rm Z}$$

حاصل ہوتا ہے جو سطح میں داخل ہونے کی سمت میں ہے۔ یوں مساوات 5.20 کے تحت سطح پر

$$\rho_S = -14.3 \frac{\text{nC}}{\text{m}^2}$$

پایا جاتا ہے۔

مندرجہ بالا مثال میں اگر N(5,7,8) پر N(5,7,8) پایا جاتا اور لا محدود سطح موجود نہ ہوتا تب M(2,4,3) پر میدان  $E_+$  ہوتا۔ لا محدود موصل سطح کی موجود نہ ہوتا تب M(2,4,3) پر میدان  $E_+$  ہوتا۔ لا محدود موصل سطح کی موجود کی میں یہ قیمت تبدیل ہو کر مثال میں حاصل کی گئی <sub>کی  $E_+$ </sub> ہو جاتی ہے۔ در حقیقت سطح کے قریب چارج کی وجہ سے سطح پر سطحی چارج دونوں کے میدان کا مجموعہ حقیقی میدان ہوتا ہے۔

مثال 5.6 لا محدود موصل سط z=0 میں (0,0,z) پر Q نقطہ جارج سے پیدا کثافت سطی جارج حاصل کریں۔

حل: اس مسئلے کو عکس کے ترکیب سے حل کرنے کی خاطر (0,0,-z) پر Q – چارج رکھتے ہوئے موصل سطح کو ہٹا کر حل کرتے ہیں۔الیی صورت میں سطح کے مقام پر عمومی نقطہ (ρ, φ, 0) پر Q اور Q – چارج

$$egin{aligned} oldsymbol{E}_{+} &= rac{Q(
ho oldsymbol{a}_{
ho} - z oldsymbol{a}_{
m Z})}{4\pi \epsilon_0 (
ho^2 + z^2)^{rac{3}{2}}} \ oldsymbol{E}_{-} &= rac{-Q(
ho oldsymbol{a}_{
ho} + z oldsymbol{a}_{
m Z})}{4\pi \epsilon_0 (
ho^2 + z^2)^{rac{3}{2}}} \end{aligned}$$

میدان پیدا کریں گے۔ $oldsymbol{D}=\epsilon_0oldsymbol{E}$  استعال کرتے ہوئے کل

$$D = rac{-2Qza_{
m Z}}{4\pi(
ho^2 + z^2)^{rac{3}{2}}}$$



شكل 5.6: نقطه چارج سے لامحدود موصل سطح میں پیدا سطحی كثافت چارج.

جا صل ہوتا ہے جس کی سمت ہے۔ جو موصل میں اوپر سے داخل ہونے کی سمت ہے۔ یوں موصل سطح پر 
$$\rho_S = \frac{-2Qz}{4\pi(\rho^2+z^2)^{\frac{3}{2}}} \qquad \frac{C}{m^2}$$

بایا جائے گا۔ شکل 5.6 میں چارج Q اور موصل سطح پر 65 د کھائے گئے ہیں۔

مساوات 5.21 کو استعال کرتے ہوئے لا محدود موصل سطح پر کل چارج حاصل کیا جا سکتا ہے۔ یقینی طور پر اس کی مقدار Q – ہی حاصل ہو گ۔

### 5.6 نيم موصل

نیم موصل اشیاء مثلاً غالص سیکان اور جرمینیم میں آزاد چار جوں کی تعداد موصل کی نسبت ہے کم جبہ غیر موصل کی نسبت سے زیادہ ہوتی ہے۔ یوں ان کی موصلیت موصل اور غیر موصل کے موصلیت ہے درمیان میں ہوتی ہے۔ یہم موصل کی خاص بات میہ ہے کہ ان میں انہائی کم مقدار کے ملاوٹ 12 سے ان کی موصلیت پر انہائی گہرااثر پڑتا ہے۔ یہم موصل دوری جدول 22 کے چوشے جماعت 23 سے تعلق رکھتے ہیں۔ دوری جدول کے پانچویں جماعت کے عناصر مثلاً ناکٹر وجن اور فاسفورس کا ایٹم ایک عدد الکیٹر ان عطاکر نے کار بجان رکھتا ہے۔ یوں انہیں عطاکندہ 24 عناصر کہتے ہیں۔ یہم موصل میں ایسا ہر عطاکندہ ملاوٹی ایٹم ایک عدد آزاد الکیٹر ان کو جنم دیتا ہے۔ ایسے عضر کی نہایت کم مقدار کی ملاوٹ سے نیم موصل میں آزاد الکیٹر ان کی تعداد بڑھ جاتی ہے موصل میں آزاد الکیٹر ان کی تعداد بڑھ جاتی ہے موصل میں آزاد الکیٹر ان کی تعداد بڑھ ایک ہو کو n نیم موصل کہتے ہیں۔ اس کے بر عکس تعرب ہو جاتی ہے۔ ایسے عضر کی نہایت کی موصل جن کی تعداد بڑھا دی گئی ہو کو n نیم موصل کہتے ہیں۔ اس کے بر عکس تعرب ہو حالی المونیم کو قبول کندہ 25 عضر کہا جاتا ہے۔ ملاوٹی المونیم کو قبول کندہ 25 عضر کہا جاتا ہے۔ ملاوٹی المونیم کو قبول کندہ 25 عضر کہا جاتا ہے۔ ایس المونیم کی موصل کی ایٹم ایک موصل کی ایٹم ایک کیٹر ان حاصل کرتے ہوئے الکیٹر ان کی جگہ خالی جگہ نالی جگہ نالی جگہ نالی کی جگہ خالی جگہ نائی موصل کی ایکٹر ان حاصل کرتے ہوئے الکیٹر ان کی جگہ خالی گئر ہوتا ہے۔ ایسا آزاد خول کو جنم ویتا ہے۔ ایسا خرح آزاد خول کی حرکت پذیری n کی جاتا ہے۔ وی المونی کی میں آزاد خول کو تا کہ براج کی سمت ہی ہو گی۔ تیرے جماعت کے عناصر کی ملاوٹ کردہ نیم موصل کو میٹر موصل کی جاتا ہے۔ آزاد الکیٹران اور آزاد خول مل کی سمت ہی ہو گی۔ تیرے جاعت کے عناصر کی ملاوٹ کردہ نیم موصل کو میٹر موصل کہ جاتا ہے۔ آزاد الکیٹران اور آزاد خول مل کی سمت ہی ہو گی۔ تیرے جاعت کے عناصر کی ملاوٹ کردہ نیم موصل کو و جنم موصل کو و جنم دیل مل کی کرت تیرے۔ آزاد الکیٹران اور آزاد خول مل کی سمت تیں ہو گی۔ تیرے جاعت کے عناصر کی ملاوٹ کردہ نیم موصل کو و جنم موصل کو و جنم دیت کی سمت تیں ہوگی۔ تیرے جاعت کے عناصر کی ملاوٹ کردہ نیم موصل کی کردہ نیم موصل کی سمت تیں موصل کو جنم موصل کی

$$\sigma = -\rho_e \mu_e + \rho_h \mu_h$$

doping<sup>21</sup>
periodic table<sup>22</sup>
group<sup>23</sup>
donor<sup>24</sup>
acceptor<sup>25</sup>

5.7. خو برق

موصلیت پیدا کرتے ہیں جہاں ، آزاد خول کی تحجمی چارج کثافت ہے۔خالص نیم موصل میں حرارتی توانائی سے نیم موصل کے ایٹم سے الیکٹران خارج ہو کر آزاد الیکٹران کی حیثیت اختیار کرتا ہے۔یوں خالص نیم موصل میں آزاد الیکٹران اور آزاد خول کی حیثیت اختیار کرتا ہے۔یوں خالص نیم موصل میں آزاد الیکٹران اور آزاد خول کی تعداد برابر ہوتی ہے۔

خالص نیم موصل اوہم کے قانون کی نقطہ شکل پر پورااتر تاہے۔یوں کسی ایک درجہ حرارت پر نیم موصل کی موصلیت تقریباًامُل قیمت رکھتی ہے۔

آپ کو یاد ہو گا کہ درجہ حرارت بڑھانے سے موصل میں آزاد الیکٹران کی رفتار بہاو کم ہوتی ہے جس سے موصلیت کم ہو جاتی ہے۔درجہ حرارت کا موصل میں آزاد الیکٹران کے حجمی چارج کثافت پر خاص اثر نہیں ہوتا۔اگرچہ نیم موصل میں بھی درجہ حرارت بڑھانے سے آزاد چارج کی رفتار بہاو کم ہوتی ہے لیکن ساتھ ہی ساتھ آزاد چارج کی مقدار نسبتاً زیادہ مقدار میں بڑھتی ہے جس کی وجہ سے نیم موصل کی موصلیت درجہ حرارت بڑھانے سے بڑھتی ہے۔یہ موصل اور نیم موصل کے خصوصیات میں واضح فرق ہے۔

 $0.12 \, \frac{\mathrm{m}^2}{\mathrm{V}_8}$  مشق 5.3.  $\times$  300 ورجه حرارت پر خالص سلیکان میں آزاد الیکٹر ان اور آزاد خول کی تعداد  $10^{16} \times 1.5 \times 10^{16}$  فی مربع میٹر، الیکٹر ان کی رفتار بہاو  $\frac{\mathrm{m}^2}{\mathrm{V}_8}$  0.02 ورجہ حرارت پر خالص سلیکان جبہہ خول کی رفتار بہاو  $\frac{\mathrm{m}^2}{\mathrm{V}_8}$  0.02 ہیں۔ خالص سلیکان اور خالص جرمینیم کی موصلیت دریافت کریں۔

 $2\frac{S}{m}$  وابات:  $\frac{S}{m}$  10.348 ور

## 5.7 ذو برق

اس باب میں اب تک ہم موصل اور نیم موصل کی بات کر چکے ہیں جن میں آزاد چارج پائے جاتے ہیں۔ یوں ایسے اشیاء پر برقی دباو لا گو کرنے سے ان میں بر قرار برقی روپیدا کی جا سکتی ہے۔ آئیں الی اشیاء کی بات کریں جن میں آزاد چارج نہیں پائے جاتے لہذا ان میں بر قرار برقی روپیدا کرنا ممکن نہیں ہوتا۔

بعض اشیاء مثلاً پانی کے مالیکیول میں قدرتی طور پر مثبت اور منفی مراکز پائے جاتے ہیں۔ ایسے مالیکیول کو قطببی ہالیکیول کہتے ہیں۔ تطببی مالیکیول کو جفت قطب تصور کیا جا سکتا ہے۔ ہیر ونی میدان کے غیر موجود گی میں کسی بھی چیز میں قطببی مالیکیول بلا ترتیب پائے جاتے ہیں۔ ہیر ونی میدان کا لاگو کرنے سے مالیکیول کے مثبت سرے پر میدان کی صحت میں جبکہ منفی سرے پر میدان کی الٹ سمت میں قوت عمل کرتا ہے۔ ان قوتوں کی وجہ سے مالیکیول کے مثبت اور منفی مراکز ان قوتوں کی سمتوں میں حرکت کرتے ہوئے گھوم جاتے ہیں اور ساتھ ہی ساتھ مراکز کے در میان فاصلہ بھی بڑھ جاتا ہے۔ ٹھوس قطببی اشیاء میں ایٹیوں اور مالیکیول کے در میان قوتیں ان حرکات کو روکنے کی کوشش کرتی ہیں۔ اسی طرح مثبت اور منفی چارج کے مابین قوت کشش ان کے در میان فاصلہ بڑھنے کو روکتا ہے۔ جہاں یہ مخالف قوتیں برابر ہوں وہاں مثبت اور منفی مراکز رک جاتے ہیں۔ ہیر ونی میدان ان تمام بلا ترتیب جفت قطب کو ایک سمت میں لانے کی کوشش کرتا ہے۔

بعض اشیاء میں قدرتی طور پر مثبت اور منفی مراکز نہیں پائے جاتے البتہ انہیں ہیر ونی میدان میں رکھنے سے ان میں ایسے مراکز پیدا ہو جاتے ہیں۔ایسے اشیاء کو غیر قطببی <sup>28</sup> کہتے ہیں۔ ہیرونی میدان مالیکیول کے الیکٹرانوں کو ایک جانب تھینچ کر منفی مرکز جبکہ بقایا ایٹم کو مثبت چھوڑ کر مثبت مرکز پیدا کر تا



شكل 5.7: بيروني ميدان كي موجودگي ميں مقيد چارج كي حركت.

ہے۔ مثبت اور منفی چارج کے مابین قوت کشش اس طرح مراکز پیدا ہونے کے خلاف عمل کرتا ہے۔جہاں یہ مخالف قوتیں برابر ہو جائیں وہیں پر چارج کے حرکت کا سلسلہ رک جاتا ہے۔ یہ اشیاء قدرتی طور پر غیر قطببی ہیں البتہ انہیں بیرونی میدان قطبی بنادیتا ہے۔ پیدا کردہ جفت قطب بیرونی میدان کی سمت میں ہی ہوں گے۔

ایسے تمام اشیاء جو یا تو پہلے سے قطببی ہوں اور یا انہیں بیرونی میدان کی مدد سے قطببی بنایا جا سکے ذو برقی 29 کہلاتے ہیں۔

ذو برق میں بیرونی میدان سے مالیکیول کے اندر حرکت پیدا ہوتی ہے البتہ مالیکیول ازخود اس جگہ رہتا ہے۔اییا چارج جو بیرونی میدان کی وجہ سے اپنی جگہ پر معمولی حرکت کرتا ہو کو مقید چارج 30 کہتے ہیں۔اس کے برعکس آزاد چارج بیرونی میدان میں مسلسل حرکت کرتا ہے۔

ذو برق کے جفت قطب کا معیار اثر کو صفحہ 103 میں دئے مساوات 4.62

$$(5.23) p = Qd$$

سے ظاہر کیا جا سکتا ہے جہاں Q ذو برق کے جفت قطب میں مثبت مرکز کا چارج ہے۔

ا گراکائی حجم میں n جفت قطب پائے جائیں تب  $\Delta v$  حجم میں  $\Delta v$  جفت قطب ہوں گے جن کا کل معیار اثر جفت قطب تمام کے سمتی مجموعے

$$\mathbf{p}_{\mathcal{F}} = \sum_{i=1}^{n\Delta v} \mathbf{p}_i$$

کے برابر ہو گا جہاں انفرادی p مختلف ہو سکتے ہیں۔ تقطیب <sup>31</sup> سے مراد اکائی حجم میں کل معیار اثر جفت قطب ہے لیتن

$$(5.25) P = \lim_{\Delta v \to 0} \frac{1}{\Delta v} \sum_{i=1}^{n\Delta v} p_i$$

جس کی اکائی کولمب فی مربع میٹر ہے۔ Δυ کو کم سے کم <sup>32</sup>کرتے ہوئے نقطے پر تقطیب حاصل کی گئی ہے۔ حقیقت میں Δυ کو اتنار کھا جاتا ہے کہ اس میں جفت قطب کی تعداد (nΔυ) اتن ہو کہ انفرادی جفت قطب کے اثر کو نظر انداز کرنا ممکن ہو۔ یوں تقطیب کو یکسال نفاعل تصور کیا جاتا ہے۔

آئیں ان حقائق کو استعال کرتے ہوئے آگے بڑھیں۔

شکل 5.7 کو دیکھتے ہوئے آگے پڑھیں۔ تصور کریں کہ ذو برق میں غیر قطبی مالیکیول پائے جاتے ہیں جن کا مقام بیرونی میدان کی غیر موجودگی میں دائروں سے ظاہر کیا گیا ہے۔ بیرونی میدان کے غیر موجودگی میں P = 0 ہو گا۔ ذو برق کے اندر تصوراتی سطح  $\Delta S$  لیتے ہیں جے موٹی گہری ساہی کی کلیر

dielectric<sup>29</sup>

ound charge<sup>3</sup>

polarization31

یہ ایسے ہی ہے جیسے لمحاتی رفتار  $rac{\Delta x}{\Delta t}$  حاصل کرتے وقت  $\Delta t o 0$  لیا جاتا ہر ۔

5.7. ذو برق

ے ظاہر کیا گیا ہے۔ اس کے دونوں جانب ہگی سیابی سے a تا a کیر بھی دکھائی گئی ہے۔ ہیر ونی میدان لا گو کرنے سے جفت قطب p پیدا ہوتے ہیں جن کا d اور d کے ساتھ d زاویہ بناتے ہیں۔ ان جفت قطب کو سمتیوں سے ظاہر کیا گیا ہے جہاں سمتیہ کی نوک مثبت جبکہ اس کی دم مغی چارج کا مقام دیتی ہے۔ شکل کو دیکھتے ہوئے صاف ظاہر ہے کہ aa' ہے aa' فاصلے نیچے تک تمام مثبت چارج ہیر ونی میدان لا گو کرنے سے aa' ھے aa' گزرتے ہوئے اوپر چلے جائیں گے۔ اس طرح aa' aa' فاصلے اوپر تک تمام منفی چارج ہیر ونی میدان لا گو کرنے سے aa' گزرتے ہوئے اوپر خلکہ ماکائی گزرتے ہوئے اوپر خلکہ میں گے۔ یوں کھر وقب اور کا میں گیرائی کے مجم کھر کر کے جم کھر کھر ہے گئی جفت قطب ہوں ان تمام کا ایک سرا کہ کسے گزرے گا۔ چو نکہ اکائی aa' جو کہ میں معنی رکھتے ہیں لہذا آئی جم میں aa' میں aa' کے جانب حرکت ایک بی معنی رکھتے ہیں لہذا کل جائے گا۔ خاب حرکت اور منفی چارج کا نینچ جانب حرکت ایک بی معنی رکھتے ہیں لہذا کل

$$\Delta Q_m = nQd\Delta S\cos\theta = nQd\cdot\Delta S$$

چارج سطح سے گزرتے ہوئے اوپر جانب جائے گا جہاں QM لکھتے ہوئے اس حقیقت کی یاد دہانی کرائی گئی ہے کہ ہم مقید چارج کی بات کر رہے ہیں۔چونکہ تمام جفت قطب ایک ہی سمت میں ہیں لہٰذا اس حجم کی تقطیب

$$(5.27) P = nQd$$

ہو گی۔یوں مساوات 5.26 کو

$$\Delta Q_m = P \cdot \Delta S$$

کھا جا سکتا ہے۔اگر  $\Delta S$  کو بند سطح کا ٹکڑا سمجھا جائے جہاں  $a_S$  بیر ونی سمت کو ہو تب اس بند سطح سے کل چارج کا اخراج

$$\oint_{S} \boldsymbol{P} \cdot \mathrm{d}\boldsymbol{S}$$

کے برابر ہو گا۔ یوں بند سطح میں مقید چارج کا اضافہ

$$Q_m = -\oint_{S} \mathbf{P} \cdot d\mathbf{S}$$

ہو گا۔ یہ مساوات گاوس کے قانون کی شکل رکھتی ہے لہذا ہم کثافت برقی بہاو کی تعریف یوں تبدیل کرتے ہیں کہ یہ خالی خلاء کے علاوہ دیگر صور توں میں بھی قابل استعمال ہو۔ گاوس کا قانون صحہ 67 پر مساوات 3.6 میں دیا گیا ہے۔ ہم پہلے اس قانون کو  $\epsilon_0 E$  اور کل گھیرے چارج کی شکل میں لکھتے ہیں ہیں

$$Q_{\mathcal{F}} = \oint_{S} \epsilon_0 \mathbf{E} \cdot d\mathbf{S}$$

جہاں

$$Q_{\mathcal{K}} = Q + Q_m$$

کے برابر ہے۔مساوات 5.30 میں بند سطح ک<sup>9</sup> آزاد چارج Q اور مقید چارج Q<sub>m</sub> کو گھیرے ہوئے ہے۔مساوات 5.31 میں مساوات 5.30 اور مساوات 5.30 پر کرتے ہوئے

(5.32) 
$$Q = Q_{\mathcal{S}} - Q_m = \oint_{S} (\epsilon_0 \mathbf{E} + \mathbf{P}) \cdot d\mathbf{S}$$

حاصل ہوتا ہے۔

ہم کثافت برقی بہاو کو اب

$$(5.33) D = \epsilon_0 E + P$$

اب 5. موصل، ذو برق اور كېيسٹر

بیان کرتے ہیں جو زیادہ کارآ مد اور عمومی مساوات ہے۔یوں ذو برق اشیاء کے لئے کثافت برقی بہاو میں اضافی جزو P شامل ہو جاتا ہے۔اس طرح

$$Q = \oint_{S} \mathbf{D} \cdot d\mathbf{S}$$

لکھا جا سکتا ہے جہاں Q گیرا ہوا آزاد چارج ہے۔

ہم آزاد، مقید اور کل چارجوں کے لئے آزاد، مقید اور کل محجی کثافت بیان کرتے ہوئے

$$Q = \int_{h} \rho_{h} \, dh$$

$$Q_{m} = \int_{h} \rho_{m} \, dh$$

$$Q_{s} = \int_{h} \rho_{s} \, dh$$

لکھ سکتے ہیں۔

مسکلہ پھیلاو کے استعال سے مساوات 5.29، مساوات 5.30 اور مساوات 5.34 کے نقطہ اشکال

$$abla \cdot oldsymbol{P} = -
ho_m \ \epsilon_0 
abla \cdot oldsymbol{E} = 
ho_{oldsymbol{\mathcal{S}}}$$

اور

$$\nabla \cdot \boldsymbol{D} = \rho_h$$

لکھے جا سکتے ہیں۔

قلم میں دوراتے طرز پر ایٹم پائے جاتے ہیں۔ قلم میں عموماً کی ایک سمت میں با آسانی جبکہ بقایا ستوں میں مشکل سے تقطیب پیدا کرنا ممکن ہوتا ہے۔ جس سمت میں باآسانی تقطیب پیدا کی جاسے آسان محور 33 یا آسان سمت یا نرم محور کہتے ہیں۔ ایسے اشاء جو ہر طرف یکسال خصوصیات نہیں رکھتے ناہم سموت 34 کہلاتے ہیں۔ ساتھ ہی ساتھ یہ ضروری نہیں کہ ہیرونی لاگو میدان اور تقطیب ایک ہی سمت میں ہوں۔ کچھ ایسے اشاء بھی پائے جاتے ہیں جو برقی چال 35 کی خاصیت رکھتے ہیں۔ ان میں تقطیب کی قیمت ان اشاء کی گزشتہ تاریخ پر مبنی ہوتی ہے۔ یہ عمل بالکل مقناطیسی مادے کی مقناطیسی چال کے طرز کی خصوصیت ہے۔

کچھ ذو برق اشیاء میں لا گو بیر ونی میدان E اور تقطیب P ہر صورت ایک ہی سمت میں ہوتے ہیں۔ ایسے اشیاء ہم سمتی 36 کہتے ہیں۔ انجنیئر نگ میں استعال ہونے والے ذو برق اشیاء عموماً ایسے ہی ہوتے ہیں۔اس کتاب میں صرف انہیں پر تبصرہ کیا جائے گا۔ایسے اشیاء میں تقطیب اور لا گو برقی میدان راست تناسب تعلق

(5.36) 
$$P = \chi_e \epsilon_0 \mathbf{E}$$
$$= (\epsilon_R - 1)\epsilon_0 \mathbf{E}$$

easy axis<sup>33</sup> anisotropic<sup>34</sup> ferroelectric<sup>35</sup> isotropic<sup>36</sup> 5.7. ذو يرق

ر کھتا ہے جہاں مساوات کے مستقل کو  $\chi_e \epsilon_0$  یا  $(\epsilon_R-1)\epsilon_0$  ککھا جاتا ہے۔یوں مساوات 5.33

$$D = \epsilon_0 E + (\epsilon_R - 1)\epsilon_0 E$$

یا

$$(5.37) D = \epsilon_R \epsilon_0 E = \epsilon E$$

شکل اختیار کرتاہے جہاں ذو برق کا برقی مستقل

$$\epsilon = \epsilon_R \epsilon_0$$

ے برابر ہے۔ ماہر طبعیات عموماً  $\chi_e$  جبکہ انجنیئر عموماً  $\epsilon_R$  استعمال کرتے ہیں۔ ان کا تعلق

$$\chi_e = \epsilon_R - 1$$

-2-

ی دو برقی مستقل 37، € جزوی برقی مستقل 38 جبکه و عالی خلاء کا برقی مستقل 99 کہلاتے ہیں۔ اس کتاب کے آخر میں صفحہ 144 پر چند مخصوص اشیاء کے برقی مستقل جدول 6.2 میں دئے گئے ہیں۔

ناہم سموت اشیاءاتنے سادہ مساوات سے نہیں نیٹے جاتے۔ان اشیاء میں E کا ہر کارتیسی جزو کر کے ہر کارتیسی جزو پر اثر انداز ہوتا ہے لہذاان کا تعلق پوں

(5.40) 
$$D_{x} = \epsilon_{xx}E_{x} + \epsilon_{xy}E_{y} + \epsilon_{xz}E_{z}$$
$$D_{y} = \epsilon_{yx}E_{x} + \epsilon_{yy}E_{y} + \epsilon_{yz}E_{z}$$
$$D_{z} = \epsilon_{zx}E_{x} + \epsilon_{zy}E_{y} + \epsilon_{zz}E_{z}$$

کھا جاتا ہے جہاں نو اعدادی  $\epsilon_{ij}$  کو مجموعی طور پر تناوی مستقل 40 کہا جاتا ہے۔اس طرح مساوات 5.40 کے طرز کے مساوات تناوی مساوات کہلاتے ہیں۔ناہم سموت اشیاء میں D اور E (اور E) آپس میں متوازی نہیں ہوتے اور اگرچہ E استعال E ان کے لئے بھی درست ہے، E استعال کرتے وقت اس حقیقت کا خیال رکھنا ہو گا کہ E اب تناوی مستقل ہے۔ناہم سموت اشیاء پر ایک مثال کے بعد بحث روکتے ہیں۔

مثال 5.7: ایک ناہم سموت ذو برق کا تناوی مستقل

$$\epsilon = \epsilon_0 \begin{vmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{vmatrix}$$

اور  $E=1a_{
m X}+1a_{
m Y}+1a_{
m Z}$  اور کیرے  $E=\sqrt{3}a_{
m Y}$  کی صورت میں D حاصل کریں۔

$$D=\epsilon_0(4a_{
m X}+9a_{
m Y}+9a_{
m Z})$$
 ابات  $D=9\epsilon_0a_{
m Y}$  ابات  $D=4\sqrt{3}\epsilon_0a_{
m X}$  ابات  $D=9\epsilon_0a_{
m Y}$ 

susceptibility<sup>37</sup>

relative electric constant, relative permittivity<sup>38</sup> permittivity of vacuum, electric constant of vacuum<sup>39</sup>

اس مثال میں تینوں بار $|E|=\sqrt{3}$ رہا جبکہ D کی قیمتیں خاصی مختلف ہیں۔ یہی ناہم سموت ذو برق کی پہچان ہے۔

 $7.2 \, \frac{\mu C}{m^2}$  وابات:  $\frac{\mu C}{m^2}$  1.156 وربات: جوابات:

5.8 کامل ذو برق کے سرحد پر برقی شرائط

دو مختلف ذو برق کے سرحدی برقی شرائط شکل 5.8 کی مدد سے حاصل کرتے ہیں جہاں پہلے ذو برقی کا برقی مستقل  $\epsilon_1$  جبکہ دوسرے ذو برق کا برقی مستقل  $\epsilon_2$  ہے۔ پہلے مماسی اجزاء حاصل کرنے کی خاطر مستطیلی راستہ abcd پر

$$\oint \mathbf{E} \cdot d\mathbf{L} = 0$$

لعيني

$$E_{m1}\Delta w - E_{n1,b}\frac{\Delta h}{2} - E_{n2,b}\frac{\Delta h}{2} - E_{m2}\Delta w + E_{n2,a}\frac{\Delta h}{2} + E_{n1,a}\frac{\Delta h}{2} = 0$$

لکھتے ہیں جس سے

$$(E_{m1} - E_{m2})\Delta w + (E_{n1,a} + E_{n2,a} - E_{n1,b} - E_{n2,b})\frac{\Delta h}{2} = 0$$

حاصل ہوتا ہے۔ $\Delta w$ اتنا چھوٹالیا جاتا ہے کہ اس پر مماسی میدان کو یکساں تصور کرنا ممکن ہو۔ مستطیل کے بائیں اور دائیں اطراف کے میدان کو زیر نوشت میں a اور b سے ظاہر کیا گیا ہے۔ سرحدی شرائط حاصل کرنے کی خاطر سطح کے قریب تر جانا ہو گا۔ایسا کرنے سے  $b \to \Delta h$  ہو گا جس سے

$$(E_{n1,a} + E_{n2,a} - E_{n1,b} - E_{n2,b})\frac{\Delta h}{2} \to 0$$

ہو کر قابل نظر انداز ہو گا۔ یوں

$$(E_{m1} - E_{m2})\Delta w = 0$$

رہ جاتا ہے جس سے

$$(5.41) E_{m1} = E_{m2}$$

حاصل ہوتا ہے۔اس مساوات سے

$$\frac{D_{m1}}{\epsilon_1} = E_{m1} = E_{m2} = \frac{D_{m2}}{\epsilon_2}$$



شکل 5.8: دو مختلف ذو برق کے سرحد پر برقی شرائط۔

لعيني

$$\frac{D_{m1}}{D_{m2}} = \frac{\epsilon_1}{\epsilon_2}$$

لکھا جا سکتا ہے۔

مساوات 5.41 کہتا ہے کہ ایک ذوبر تی سے دوسرے ذوبرق میں داخل ہوتے ہوئے سر حدید مماسی برقی شدت بلا جوڑا 4 ہوتا ہے۔اس کے برعکس مساوات 5.42 کہتا ہے کہ دو ذوبرق کے سر حدید مماسی برقی بہاو جوڑ دار 42 ہوتا ہے۔ یوں ایک ذوبرق سے دوسرے ذوبرق میں داخل ہوتے ہوئے مماسی برقی بہاو میں سیڑھی نما 43 تبدیلی پائی جاتی ہے۔

عمودی اجزاء حاصل کرنے کی خاطر گاوس کا قانون شکل میں رقبہ ۵۶ گھیرتے بیلن پر لا گو کرتے ہوئے

(5.43) 
$$\int_{\Delta S} \mathbf{D}_{n1} \cdot d\mathbf{S} + \int_{\Delta S} \mathbf{D}_{n2} \cdot d\mathbf{S} + \int_{\Delta S} \mathbf{D}_{m} \cdot d\mathbf{S} = \int_{\Delta S} \rho_{S} dS$$

کھا جا سکتا ہے۔ چھوٹے رقبہ پر میدان کو کیسال تصور کرتے ہوئے تکمل کے باہر لے جاتے ہوئے مساوات 5.43 کے پہلے جزوت

$$\int_{\Delta S} \mathbf{D}_{n1} \cdot \mathrm{d}\mathbf{S} = D_{n1} \Delta S$$

حاصل ہوتا ہے۔ یاد رہے کہ بند سطح کی سمت باہر کو ہوتی ہے لہذا  $D_{n1}$  اور بیلن کے اوپر ڈھکن ایک ہی سمت رکھتے ہیں جبکہ  $D_{n2}$  اور بیلن کا نحیلا ڈھکن ایک سمت میں ہیں۔مساوات 5.43 کا دوسرا جوز

$$\int_{\Delta S} \mathbf{D}_{n2} \cdot \mathrm{d}\mathbf{S} = -D_{n2} \Delta S$$

دیتا ہے۔ سطح کے قریب سے قریب ہونے سے 0 → ∆h ہو گا جس سے نکلی سطح کا رقبہ قابل نظر انداز ہو گا جس سے مساوات 5.43 کا تیسرا جزو صفر ہو جاتا ہے جبکہ

$$\int_{\Delta S} \rho_S \, \mathrm{d}S = \rho_S \Delta S$$

continuous<sup>41</sup> discontinuous<sup>42</sup>

باب 5. موصل، ذو برق اور کپیسٹر



شکل 5.9:  $\epsilon_1 > \epsilon_2$  کی صورت میں  $D_1 > D_2$  ہو گا۔اسی طرح  $\epsilon_1 > \epsilon_2$  جبکہ  $\epsilon_1 > \epsilon_2$  ہو گا۔

کے برابر ہے۔ان تمام نتائے سے

$$D_{n1}\Delta S - D_{n2}\Delta S = \rho_S \Delta S$$

لعيني

$$(5.44) D_{n1} - D_{n2} = \rho_S$$

حاصل ہوتا ہے۔

ہم ذو برق کا برقی مستقل  $_{6}$  گنا کرتے ہوئے اس میں مقید چارج کا حساب رکھتے ہیں۔ اس طرح مقید چارج کا علیحدہ طور پر خیال رکھنے کی ضرورت نہیں رہتی۔ یوں مندرجہ بالا مساوات میں  $_{6}$  مقید چارج نہیں ہے۔  $_{6}$  سرحد پر با مقصد طور رکھی گئی سطحی چارج کثافت ہے۔ اس منفر د صورت، جہاں سرحد پر از خود چارج رکھا جائے، کے علاوہ دو ذو برق کی سرحد پر کبھی چارج نہیں پایا جاتا۔ انجنیئر نگ مسائل میں عموماً  $_{6}$  ہوتا ہے۔ الی صورت میں مندرجہ بالا مساوات نسبتاً سادہ شکل

$$(5.45) D_{n1} = D_{n2}$$

اختیار کر لیتی ہے جس سے

$$\epsilon_1 E_{n1} = D_{n1} = D_{n2} = \epsilon_2 E_{n2}$$

 $E_n$  کھا جا سکتا ہے۔ یوں سرحد پار کرتے وقت  $E_n$  میں سیڑھی نما تبدیلی پائے جاتی ہے۔ اس حقیقت کو ہم یوں بیان کرتے ہیں کہ سرحد پر  $E_n$  جوڑ دار  $D_n$  سرحد پر بلا جوڑ ہے۔

آئیں ان جوابات کی مدد سے سرحد کے دونوں جانب برقی میدان کا تعلق حاصل کریں۔شکل 5.9 کو دیکھتے ہوئے ہم

 $D_{m1} = D_1 \sin \theta_1$   $D_{m1} = D_1 \cos \theta_1$  $D_{m2} = D_2 \sin \theta_2$ 

 $D_{n2} = D_2 \cos \theta_2$ 

لکھ سکتے ہیں جن سے

$$\frac{D_{n1}}{D_{n2}} = \frac{D_1 \cos \theta_1}{D_2 \cos \theta_2} = 1$$

$$\frac{D_{m1}}{D_{m2}} = \frac{D_1 \sin \theta_1}{D_2 \sin \theta_2} = \frac{\epsilon_1}{\epsilon_2}$$

لکھا جا سکتا ہے جہال مساوات 5.45 اور مساوات 5.42 کا استعمال کیا گیا ہے۔ انہیں

$$D_1 \cos \theta_1 = D_2 \cos \theta_2$$

$$\epsilon_2 D_1 \sin \theta_1 = \epsilon_1 D_2 \sin \theta_2$$

discontinuous44

لکھ سکتے ہیں۔ان میں دوسری مساوات کو پہلی مساوات سے تقسیم کرتے ہیں

$$\frac{\epsilon_2 D_1 \sin \theta_1}{D_1 \cos \theta_1} = \frac{\epsilon_1 D_2 \sin \theta_2}{D_2 \cos \theta_2}$$

جس سے

$$\frac{\tan \theta_1}{\tan \theta_2} = \frac{\epsilon_1}{\epsilon_2}$$

حاصل ہوتا ہے۔ یہ مساوات سر حد کے دونوں جانب میدان کے زاویوں کا تعلق بیان کرتا ہے۔ چونکہ  $m{D}=m{\epsilon}m{E}$  ہوتا ہے لہذا سر حد کے کسی بھی طرف، اس طرف کا  $m{E}$  اس طرف کا  $m{E}$  اور  $m{D}$  ایک ہی سمت رکھتے ہیں۔ شکل میں  $m{\epsilon}_1>m{\epsilon}_2$  تصور کیا گیا ہے للذا اس میں  $m{\theta}_1>m{\theta}_2$  ہے۔

مساوات 5.47 کے پہلے جزو کا مربع لیتے ہوئے

$$D_1^2 \cos^2 \theta_1 = D_2^2 \cos^2 \theta_2$$
  
=  $D_2^2 (1 - \sin^2 \theta_2)$   
=  $D_2^2 - D_2^2 \sin^2 \theta_2$ 

اس میں مساوات 5.47 کے دوسرے جزوسے  $D_2 \sin \theta_2$  کی قیمت پر کرتے ہوئے

$$D_1^2 \cos^2 \theta_1 = D_2^2 - D_1^2 \left(\frac{\epsilon_2}{\epsilon_1}\right)^2 \sin^2 \theta_1$$

حاصل ہوتاہے جس سے

$$D_2 = D_1 \sqrt{\cos^2 \theta_1 + \left(\frac{\epsilon_2}{\epsilon_1}\right)^2 \sin^2 \theta_1}$$

ماتا ہے۔ چونکہ  $E=rac{D}{\epsilon}$  ہاتا ہندرجہ بالا مساوات سے

$$E_{2} = \frac{D_{2}}{\epsilon_{2}} = \frac{D_{1}}{\epsilon_{2}} \sqrt{\cos^{2} \theta_{1} + \left(\frac{\epsilon_{2}}{\epsilon_{1}}\right)^{2} \sin^{2} \theta_{1}}$$
$$= \frac{\epsilon_{1} E_{1}}{\epsilon_{2}} \sqrt{\cos^{2} \theta_{1} + \left(\frac{\epsilon_{2}}{\epsilon_{1}}\right)^{2} \sin^{2} \theta_{1}}$$

لعني

(5.50) 
$$E_2 = E_1 \sqrt{\left(\frac{\epsilon_1}{\epsilon_2}\right)^2 \cos^2 \theta_1 + \sin^2 \theta_1}$$

حاصل ہوتا ہے۔

جس جانب برقی مستقل کی قیمت زیادہ ہو، سر حد کے اس طرف D کی قیمت بھی زیادہ ہوتی ہے ماسوائے جب  $\theta_1=\theta_2=0$  ہوں جس صورت میں  $E_2=E_1$  ہوتا ہے۔ میں  $D_2=D_1$  ہوتا ہے۔ میں  $D_2=D_1$  ہوتا ہے۔

138 باب 5. موصل، ذو برق اور كپيسٹر



شكل 5.10: كپيسٹنس كى تعريف.

## 5.9 موصل اور ذو برقى كر سرحدى شرائط

موصل اور ذو برق کے سرحد پر صورت حال تقریباً ویہا ہی ہے جیسے موصل اور خالی خلاء کے سرحد پر تھا۔ موصل میں E=0 ہونے کی وجہ سے سرحد پر مستطیلی رائے پر کرچاف کے قانون سے ذو برق میں مماتی  $E_m=0$  حاصل ہوتا ہے۔اس طرح  $D_m=rac{E_m}{\epsilon}=0$  ہو گا۔

اسی طرح سرحد پر چیوٹا بیلن  $ho_S \Delta S$  چارج کو گلیرے گاجو گاوس کے قانون کی مدد سے بیلن کے ذو برق جانب ڈھکن پر عمودی بہاو  $D_n \Delta S$  پیدا  $D_n = \rho_S$  حاصل ہوتا ہے۔  $D_n = \rho_S$  حاصل ہوتا ہے۔

ان نتائے سے صاف ظاہر ہے کہ موصل اور ذو برق کے سرحد پر برقی میدان کے جوابات موصل اور خالی خلاء کے سرحد کے جوابات میں  $\epsilon_0$  کی جگہہ  $\epsilon_0$  پر کرنے سے حاصل ہوتے ہیں یعنی

$$D_m = E_m = 0$$

$$D_n = \epsilon E_n = \rho_S$$

مثال 5.8: سيفلون

## 5.10 كپيسٹر

شکل 5.10 میں دو عدد موصل  $M_1$  اور  $M_2$  دکھائے گئے ہیں جن کے گرد ذو برق پایا جاتا ہے۔ $M_1$  پر کل  $M_2$  اور  $M_2$  کل  $M_2$  چارج پایا جاتا ہے۔ان چارجوں کے علاوہ پورے نظام میں کوئی اور چارج نہیں پایا جاتا۔ یوں پورا نظام غیر چارج شدہ ہے۔چونکہ موصل پر صرف سطحی چارج پایا جاتا ہے المذا دونوں موصل پر چارج سطحی چارج کثافت کی صورت میں پایا جائے گا۔

گاوس کے قانون کے تحت  $M_2$  سے عمودی سمت میں Q+ کے برابر برقی بہاو کا اخراج اور  $M_1$  پر عمودی سمت میں اتنی ہی برقی بہاو کا دخول ہو گا۔ یوں موصل کے گرد ذو برق میں کثافت برقی بہاو D اور برقی میدان کی شدت E پائی جائے گی۔D اور E کی ابتدا E سے ہوگی اور ان کا اختتام E کی بہاو کا دخول ہوگا۔ یہ ہوگا۔ کہ بہاو کا دخول ہوگا۔ کہ بہاو کہ بہاو کا دخول ہوگا۔ کہ بہاو کہ بہاو کا دخول ہوگا۔ کہ بہاو کا دخول ہوگا۔ کہ بہاو کے ایس کے کہ بہاو کہ بہاو کہ بہاو کی ایس کہ بہاو کہ

5.10 كېيستر



شكل 5.11: متوازى چادر كپيسٹر،

اس برقی میدان میں کسی بھی رائے ایک کولمب کا چارج M<sub>1</sub> تا M<sub>2</sub> تا کستان کرنے کی خاطر V<sub>0</sub> توانائی درکار ہو گی۔موصل کی سطح ہم قوہ سطے ہوتی ہے۔ لہذا پہلے موصل کی سطح سے کسی بھی نقط سے دوسرے موصل کی سطح پر کسی بھی نقطے تک چارج منتقل کرنے کی خاطر برابر توانائی درکار ہوتی ہے۔

کیبیسٹنس C<sup>45</sup> کی تعریف

$$(5.52) C = \frac{Q}{V_0}$$

ہے جہاں  $M_1$  کو صفر برتی دباوپر تصور کرتے ہوئے  $M_2$  کی برتی دباو  $N_0$  اور شبت موصل یعنی  $M_2$  کا چارج Q ہے۔ منفی موصل سے شبت موصل تک اکائی شبت چارج نتقل کرنے کے لئے درکار توانائی  $V_0$  کو تکمل کے ذریعے حاصل کیا جاتا ہے۔ اسی طرح شبت موصل پر چارج Q کو گاوس کے قانون کی مدد سے بذریعہ سطحی تکمل حاصل کیا جاتا ہے۔ یوں صفحہ  $V_0$  مساوات  $V_0$  کی مدد سے کیپسٹنس کی عمومی مساوات مدد سے بذریعہ سطحی تکمل حاصل کیا جاتا ہے۔ یوں صفحہ  $V_0$  مساوات  $V_0$  کی مدد سے کیپسٹنس کی عمومی مساوات

(5.53) 
$$C = \frac{\oint_{S} \epsilon \mathbf{E} \cdot d\mathbf{S}}{-\int_{-}^{+} \mathbf{E} \cdot d\mathbf{L}}$$

لکھی جاسکتی ہے۔

دونوں موصل پر چارج دگنا کرنے سے گاوس کے قانون کے تحت برتی بہاو بھی دگنی ہو جائے گی۔یوں D اور E بھی دگنے ہوں گے جس سے دونوں موصل کے مابین برتی دباو بھی دگنا ہو گا۔اس طرح دگنا چارج تقسیم دگنا دباوا یک بار پھر وہی کپیسٹنس دے گا۔ آپ دیکھ سکتے ہیں کہ کپیسٹنس کی قیمت کا دارومدار موصل کے اشکال، ان کے درمیان فاصلہ اور برقی مستقل پر منحصر ہے ناکہ موصل پر کل چارج کے۔

کپیسٹنس کی اکائی فیراڈ 46 ہے جے F سے ظاہر کیا جاتا ہے۔ایک کولمب فی وولٹ ایک فیراڈ 47 کے برابر ہے۔ایک فیراڈ نہایت بڑی قیمت ہے اور عام طور کپیسٹنس کو مائیکر و فیراڈ £ یا پیکو فیراڈ pF میں ناپا جاتا ہے۔

شکل 5.11 میں دولا محدود متوازی موصل چادر دکھائے گئے ہیں۔ کچلی چادر 0 z=0 پر ہے اور اس پر سطحی چارج کثافت  $-\rho_S$  پائی جاتی ہے جبکہ اوپر چادر z=d پائی جاتی ہے۔ اس مسئلے کو ہم پہلے تفصیلی طور پر دیکھ چکے ہیں۔ دو چادروں کے در میان میدان صفحہ z=d پائی جاتی ہے۔ اس مسئلے کو ہم پہلے تفصیلی طور پر دیکھ چکے ہیں۔ دو چادروں کے در میان میدان صفحہ z=d مساوات z=d اور منفی چادر z=d اور منفی چادر z=d اور منفی چادر z=d اور منفی جادر کھے گئے تھے۔ یوں موجودہ شکل کے مطابق مساوات 2.44 کی صورت

$$E = -\frac{\rho_S}{\epsilon} a_{\mathrm{Z}}$$

ہو گی۔میدان مثبت سے منفی چادر کی سمت میں ہے۔مثبت سطح سے خارج برقی بہاو کی کثافت مثبت ہے یعنی اس سطح پر عمود ی D+ = ρs کے برابر ہے جبکہ منفی چادر پر برقی بہاو داخل ہوتا ہے لہٰذا یہاں D− = −0 ہو گا۔

capacitance<sup>45</sup>

Farad<sup>46</sup>

<sup>&</sup>lt;sup>47</sup>یہ اکائی انگلستانی ماہر طبیعیات مائکل فیراڈے کے نام سے منسوب ہے۔

منفی چادر کو برقی زمین تصور کرتے ہوئے مثبت چادر پر

$$V = -\int_0^d \mathbf{E} \cdot d\mathbf{L} = \int_0^d \frac{\rho_S \mathbf{a}_Z}{\epsilon} \cdot d\mathbf{z} \mathbf{a}_Z = \int_0^d \frac{\rho_S}{\epsilon} d\mathbf{z} = \frac{\rho_S d}{\epsilon}$$

برتی د باو ہو گا۔لامحدود چادر پر لامحدود چارج پایا جائے گا جس سے چادر لامحدود کیپیسٹنس کا حامل ہو گا۔حقیقی کیپیٹر محدود چادر سے بنائے جاتے ہیں۔اگر متوازی چادرول کے سطح ان کے مابین فاصلے سے زیادہ ہو،الی صورت میں برقی میدان تقریباً لامحدود چادرول کے میدان کی مانند ہی ہو گا۔اسی طرح کا رقبے کے چادروں کے کیپیٹر کو لیتے ہوئے ہم دیکھتے ہیں کہ مثبت چادر پر کل

$$Q = \int_{S} \rho_{S} \, \mathrm{d}S = \rho_{S} S$$

چارج پایا جائے گا۔ یوں اس کی سپیسٹنس

$$C = \frac{Q}{V} = \frac{\epsilon S}{d}$$

ہو گی۔

باب 6

سوالات

6.1 توانائی باب کر سوالات

سوال 6.1:

سوال 6.2: برتی میدان  $E = (y+z)a_{\mathrm{X}} + (x+z)a_{\mathrm{Y}} + (x+y)a_{\mathrm{Z}}$  میں  $E = (y+z)a_{\mathrm{X}} + (x+z)a_{\mathrm{Y}} + (x+y)a_{\mathrm{Z}}$  اور فقط (0,0,2) اور علی میدان  $E = (y+z)a_{\mathrm{X}}$  میلان سے نقطہ (0,1,2) لایا جاتا ہے۔ دونوں راستوں کا علیحہ ہ اور کل در کار توانائی حاصل کریں۔

جوابات: 0.2 J ، 0.2 J - اور 0

سوال 6.3: مثال 4.7 کے طرز پر L لمبائی ہم محوری تارییں مخففی توانائی حاصل کریں۔اندرونی تار کارداس a جبکہ بیرونی تار کارداس d ہے۔

$$W=rac{\pi La^2
ho_S^2}{\epsilon_0}\lnrac{b}{a}$$
:واب

6.2 كېيستار

سوال 6.4: N(0,0,2) سے گزرتی y محدد کے متوازی کلیری چارج کثافت

$$\rho_L = 5 \frac{\text{nC}}{\text{m}} \qquad (-\infty < y < \infty, x = 0, z = 2)$$

D پر D حاصل کریں۔ D حاصل کریں۔

$$oldsymbol{D}=rac{5 imes10^{-9}(5oldsymbol{a}_{ ext{X}}-1oldsymbol{a}_{ ext{Z}})}{2\pi imes26}$$
: جاب

باب 6. سوالات

سوال 6.5: لا محدود موصل زمینی سطح z=0 کھتے ہوئے مندرجہ بالا سوال کو دوبارہ حل کریں۔

$$oldsymbol{D}=rac{5 imes10^{-9}(40oldsymbol{a_{ exttt{X}}}-112oldsymbol{a_{ exttt{Z}}})}{2\pi imes884}$$
:باب

سوال 6.6: N(0,0,2) سے گزرتی y محدد کے متوازی کیری چارج کثافت

$$\rho_L = 5 \frac{\text{nC}}{\text{m}} \qquad (-\infty < y < \infty, x = 0, z = 2)$$

پایا جاتا ہے جبکہ z=0 پر لامحدود موصل زمینی سطح موجود ہے۔ سطح کے M(5,3,0) مقام پر سطحی چارج کثافت حاصل کریں۔

 $-0.1097 \, rac{\mathrm{nC}}{\mathrm{m}^2}$  :واب

سوال 6.7: مثق 5.3 میں X 300 درجہ حرارت پر سلیکان اور جر مینیم کے مستقل دئے گئے ہیں۔اگر سلیکان میں المو نیم کا ایک ایٹم فی 10<sup>7</sup> × 1 سلیکان اور جر مینیم کے مستقل دئے گئے ہیں۔اگر سلیکان میں موصلیت کیا ہوگی۔سلیکان کی تعداد کی کثافت 10<sup>28</sup> × 5 ایٹم فی مربع میٹر ہے۔(ہر ملاوٹی المونیم کا ایٹم ایک عدو آزاد خول پیدا کردہ ہوتی ہے لہذا الیمی صورت میں موصلیت صرف ملاوٹی ایٹوں کے پیدا کردہ آزاد خول ہی تعین کرتے ہیں۔)

 $800 \frac{S}{m}$  :جواب

 $ho_S$  سوال 6.8: صفحہ 127 پر مثال 5.6 میں لامحدود موصل سطح z=0 میں z=0 میں پر پائے جانے والے نقطہ چارج Q سے پیدا سطحی چارج کثافت z=0 ماصل کیا گیا۔موصل سطح میں پائے جانے والا کل چارج سطحی کمل سے حاصل کریں۔

-Q جواب

سوال 6.9: صفحہ 118 پر تانبے کے ایک مربع میٹر میں کل آزاد چارج مساوات 5.13 میں حاصل کیا گیا۔ایک ایمپئیر کی برقی رو کتنے وقت میں اسنے چارج کا اخراج کرے گا۔

جواب: چار سواکتیس (431) سال۔

.6.2 كېيستر

جدول 6.1: σ

| $\sigma, \frac{S}{m}$ | چیر                 | $\sigma, \frac{S}{m}$ | چيز         |
|-----------------------|---------------------|-----------------------|-------------|
| $7 \times 10^{4}$     | گريفائٹ             | $6.17 \times 10^{7}$  | چاندى       |
| 1200                  | سليكان              | $5.80 \times 10^{7}$  | تانبا       |
| 100                   | فيرائك (عمومي قيمت) | $4.10 \times 10^{7}$  | سونا        |
| 5                     | سمندری پانی         | $3.82 \times 10^{7}$  | المونيم     |
| $10^{-2}$             | چهونا پتهر          | $1.82 \times 10^{7}$  | ٹنگسٹن      |
| $5 \times 10^{-3}$    | چکنی مثلی           | $1.67 \times 10^{7}$  | جست         |
| $10^{-3}$             | تازه پانی           | $1.50 \times 10^{7}$  | بيتل        |
| $10^{-4}$             | تقطیر شده پانی      | $1.45 \times 10^{7}$  | نکل         |
| $10^{-5}$             | ریتیلی مٹی          | $1.03 \times 10^{7}$  | لوہا        |
| $10^{-8}$             | سنگ مرمر            | $0.70 \times 10^{7}$  | قلعى        |
| $10^{-9}$             | بيك لائٹ            | $0.60 \times 10^{7}$  | كاربن سٹيل  |
| $10^{-10}$            | چینی مٹلی           | $0.227 \times 10^{7}$ | مینگنین     |
| $2 \times 10^{-13}$   | ا بيرا              | $0.22 \times 10^{7}$  | جرمينيم     |
| $10^{-16}$            | پولیسٹرین پلاسٹک    | $0.11 \times 10^{7}$  | سٹینلس سٹیل |
| $10^{-17}$            | كوارثس              | $0.10 \times 10^{7}$  | نائيكروم    |

باب 6. سوالات

 $\sigma/\omega\epsilon$  and  $\epsilon_R$  :6.2 جدول

| $\sigma/\omega\epsilon$ | $\epsilon_R$ | چير                            |
|-------------------------|--------------|--------------------------------|
|                         | 1            | خالي خلاء                      |
|                         | 1.0006       | <b>ب</b> وا                    |
| 0.0006                  | 8.8          | المونيم اكسائذ                 |
| 0.002                   | 2.7          | عمبر                           |
| 0.022                   | 4.74         | بيك لائث                       |
|                         | 1.001        | كاربن ڈائي آكسائڈ              |
|                         | 16           | جرمينيم                        |
| 0.001                   | 4 تا 7       | شیشہ                           |
| 0.1                     | 4.2          | برف                            |
| 0.0006                  | 5.4          | ابرق                           |
| 0.02                    | 3.5          | نائلون                         |
| 0.008                   | 3            | كاغذ                           |
| 0.04                    | 3.45         | پلیکسی گلاس                    |
| 0.0002                  | 2.26         | پلاسٹک (تھیلا بنانے والا)      |
| 0.00005                 | 2.55         | پولیسٹرین                      |
| 0.014                   | 6            | چینی مٹی                       |
| 0.0006                  | 4            | پائریکس شیشہ (برتن بنانے والا) |
| 0.00075                 | 3.8          | كوارٹس                         |
| 0.002                   | 2.5 تا 3     | ָרָאָל<br>תאָל                 |
| 0.00075                 | 3.8          | SiO <sub>2</sub> سلیکا         |
|                         | 11.8         | سليكان                         |
| 0.5                     | 3.3          | قدرتی برف                      |
| 0.0001                  | 5.9          | کھانے کا نمک                   |
| 0.07                    | 2.8          | خشک مثلی                       |
| 0.0001                  | 1.03         | سثائروفوم                      |
| 0.0003                  | 2.1          | ٹیفلان                         |
| 0.0015                  | 100          | ٹائٹینیم ڈائی آکسائڈ           |
| 0.04                    | 80           | تقطیر شده پانی                 |
| 4                       |              | سمندري پاني                    |
| 0.01                    | 1.5 تا 4     | خشک لکڑی                       |
|                         |              |                                |

6.2. كېيسٹر

 $\mu_R$  :6.3 جدول

| $\mu_R$      | چيز                      |
|--------------|--------------------------|
| 0.999 998 6  | بسمت                     |
| 0.99999942   | پيرافين                  |
| 0.999 999 5  | لکڑی                     |
| 0.999 999 81 | چاندى                    |
| 1.00000065   | المونيم                  |
| 1.00000079   | بيريليم                  |
| 50           | نکل                      |
| 60           | ڈھلواں لوہا              |
| 300          | مشين سٹيل                |
| 1000         | فيرائك (عمومي قيمت)      |
| 2500         | پرم بھرت (permalloy)     |
| 3000         | ٹرانسفارمر مرکز          |
| 3500         | سيلكان لوبا              |
| 4000         | خالص لوبا                |
| 20 000       | میو میٹل (mumetal)       |
| 30 000       | سنڈسٹ (sendust)          |
| 100 000      | سوپرم بهرت (supermalloy) |

جدول 6.4: اہم مستقل

| قيمت                                                   | علامت        | چیر                          |
|--------------------------------------------------------|--------------|------------------------------|
| $(1.6021892 \mp 0.0000046) \times 10^{-19} \mathrm{C}$ | e            | اليكثران چارج                |
| $(9.109534 \mp 0.000047) \times 10^{-31} \mathrm{kg}$  | m            | اليكثران كميت                |
| $(8.854187818\mp0.000000071)\times10^{-12}\frac{F}{m}$ | $\epsilon_0$ | برقى مستقل (خالى خلاء)       |
| $4\pi 10^{-7}  \frac{\mathrm{H}}{\mathrm{m}}$          | $\mu_0$      | مقناطیسی مستقل (خالی خلاء)   |
| $(2.997924574 \mp 0.000000011) \times 10^8\frac{m}{s}$ | С            | روشنی کی رفتار خالی خلاء میں |

باب 6. سوالات