Лабораторна робота № 1. Вибір та реалізація базових фреймворків та бібліотек

Виконали: Бараніченко Андрій, Гаврилова Анастасія, Дрозд Софія, Зібаров Дмитро, Колесник Андрій

Завдання:

Підгрупа 2A. Порівняння бібліотек OpenSSL, Crypto++, CryptoLib, PyCrypto для розробки гібридної криптосистеми під Windows платформу.

Порівняння бібліотек

Загальне порівняння

Бібліоте ка	Опис функцій	Алгорит ми	Вхідні дані	Вихідні дані	Коди поверненн я	Контрольний приклад	Загальний опис
OpenSSL	Реалізація криптограф ічних примітивів, таких як шифруванн я, хешування, генерація ключів	AES, RSA, SHA-256	Вхідний текст, ключ	Зашифро ваний текст, хеш	0 - успіх, <u>інші</u> - помилки	Generate an RSA key: #include <openssl rsa.h=""> EVP_PKEY_keygen_init(ctx); EVP_PKEY_keygen(ctx, &pkey); openssl genrsa -out example.key [bits]</openssl>	Висока продуктивні сть, підтримка багатьох алгоритмів, активна спільнота
Crypto++	Бібліотека для С++, що підтримує широкий спектр криптограф ічних алгоритмів	AES, RSA, SHA-256	Вхідний текст, ключ	Зашифро ваний текст, хеш	0 - успіх, <u>інші</u> - помилки _(виключення)	#include <cryptlib.h> CryptoPP::RSA::PrivateKey privateKey; privateKey.GenerateRandomWith KeySize(rng, 2048);</cryptlib.h>	Легка інтеграція з С++, велика кількість алгоритмів
CryptLib	Легка бібліотека для базових криптограф ічних операцій	AES, RSA, MD5	Вхідний текст, ключ	Зашифро ваний текст, хеш	0 - успіх, <u>інші</u> - помилки	CryptoLib::AES aes; aes.setKey(key); aes.encrypt(input, output);	Простота використан ня, підходить для базових задач
PyCrypto	Бібліотека для Python, що забезпечує криптограф ічні функції	AES, RSA, SHA-256	Вхідний текст, ключ	Зашифро ваний текст, хеш	0 - успіх, інші - помилки	from Crypto.Cipher import AES cipher = AES.new(key, AES.MODE_ECB) ciphertext = cipher.encrypt(plaintext)	Легка інтеграція з Руthon, зручність використан ня

Порівняння по різних параметрам

• Public key algorithms

Implementation	RSA	DSA	ECDSA	EdDSA	Ed448	DH	ECDH	ECIES	ElGamal	NTRU (IEEE P1363.1)	DSS
cryptlib	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	No	Yes
Crypto++	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No	Yes
OpenSSL	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No

-												
I	PyCrypto	Yes	Yes	Yes	Yes	Yes	-	Yes	-	No	-	-

• Elliptic-curve cryptography (ECC) support

Implementation	NIST	SECG	ECC Brainpool	Curve25519	Curve448	GOST R 34.10	SM2
cryptlib	Yes	Yes	Yes	No	No	No	No
Crypto++	Yes	Yes	Yes	Yes	No	No	No
OpenSSL	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PyCrypto	Yes	No	No	Yes	Yes	No	No

• Public key cryptography standards

Implementation	PKCS #1	PKCS #5, PBKDF2	PKCS #8	PKCS #12	IEEE P1363	ASN.1
cryptlib	Yes	Yes	Yes	Yes	No	Yes
Crypto++	Yes	Yes	Yes	No	Yes	Yes
OpenSSL	Yes	Yes	Yes	Yes	No	Yes
PyCrypto	-	-	Yes	-	-	-

Hash functions

Implementation	MD5	SHA- 1	SHA- 2	SHA-3	RIPEMD- 160	Tiger	Whirlpool	BLAKE2	GOST R 34.11- 94 (aka GOST 34.311- 95)	GOST R 34.11- 2012 (Stribog)	SM3
OpenSSL	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Crypto++	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
cryptlib	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	No	No
PyCrypto	Lega cy	Yes	Yes	Yes	Legacy	No	No	Yes	No	No	No

Block ciphers

Implementation	AES	3DES	Camellia	Blowfish	Twofish	IDEA	CAST5	ARIA	GOST 28147-89 / GOST R 34.12-2015 (Magma & Kuznyechik)	SM4
cryptlib	Yes	Yes	No	Yes	No	Yes	Yes	No	No	No
Crypto++	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Partial	Yes
OpenSSL	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes
PyCrypto	Yes	Legac y	No	Legacy	No	No	No	No	No	No

Stream ciphers

Implementation	RC4	HC-256	Rabbit	Salsa20	ChaCha	SEAL	Panama	WAKE	Grain	VMPC	ISAAC
cryptlib	Yes	No	No	No	No	No	No	No	No	No	No
Crypto++	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No
OpenSSL	Yes	No	No	No	Yes	No	No	No	No	No	No
PyCrypto	Dep	No	No	Yes	Yes	No	No	No	No	No	No
	recat										
	ed										

3 порівняння цих таблиць, найкращими виглядають бібліотеки OpenSSL та Crypto++, оскільки надають найбільше доступних алгоритмів та шифрів.

«Crypto++ надає більше криптографічних примітивів низького рівня. Crypto++ не надає нічого пов'язаного з TLS і DTLS. Crypto++ схожий на низькорівневий криптографічний *швейцарський армійський ніж*.

OpenSSL надає деякі низькорівневі криптографічні примітиви, підтримку апаратних модулів і робочі реалізації TLS і DTLS. Оскільки він підтримує апаратне забезпечення, він забезпечує інтерфейс PKCS 11. Оскільки він підтримує TLS і DTLS, він має розширену підтримку сокетів і аналізатор X509.»

В той же час, CryptoLib - проста у використанні бібліотека, яка підходить для базових криптографічних задач. РуСтурtо - для розробників на Python, має менше різних механізмів та можливостей.

Тенденцій OpenSSL ma Crypto++

OpenSSL		Crypto++
	Repository	
25,477	★ Stars	4,796
1,012	Watchers	195
10,062	₽ Forks	1,487
101 days	⊘ Release Cycle	-
over 4 years ago	⊙ Latest Version	-
2 days ago	⊙ Last Commit	about 2 months ago
	More	
12	Code Quality	(1)
С	Language	C++
Apache License 2.0	© License	GNU General Public License v3.0 or later
Cryptography	● Tags	Cryptography

Бібліотека OpenSSL ϵ значно популярнішою та краще оціненою порівняно з Crypto++. Це призводить до наявності більшої кількості документації, а також до активного обговорення та вирішення різних проблем на форумах і інших платформах користувачів OpenSSL. Проте інтерес до Crypto++ більший і зроста ϵ .

Висновок.

Для розробки гібридної криптосистеми під Windows, найкращим вибором буде **OpenSSL**, завдяки високій продуктивності, широкому спектру доступних алгоритмів та популярності серед користувачів.