自由落体法测重力加速度实验报告

实验目的 1

- 1、学会用自由落体法测重力加速度。
- 2、用误差分析的方法,学会选择最有利的测量条件减小测量误差。

实验原理

根据牛顿运动定律,自由落体的运动方程为:

$$h = \frac{1}{2}gt^2,\tag{1}$$

其中 h 是下落距离, t 是下落时间。但在实际工作中, t 的测量精度不高, 利用(1)式很难精确测量重力加速度 g。

本实验用卷尺测 h, 采用双光电门法测 t。光电门 1 的位置固定, 即小 球通过光电门 1 时的速度 0 保持不变,小球通过光电门 1 与光电门 2 的 高度差为 h_i , 时间差为 t_i , 改变光电门 2 的位置,则有:

$$h_1 = v_0 t_1 + \frac{1}{2} g t_1^2,$$

$$h_2 = v_0 t_2 + \frac{1}{2} g t_2^2,$$

$$\dots$$

$$h_n = v_0 t_n + \frac{1}{2} g t_n^2.$$

两端同时除以 t_1 :

$$\overline{v_1} = \frac{h_1}{t_1} = v_0 + \frac{1}{2}gt_1,
\overline{v_2} = \frac{h_2}{t_2} = v_0 + \frac{1}{2}gt_2,
\dots \dots
\overline{v_n} = \frac{h_n}{t_n} = v_0 + \frac{1}{2}gt_n.$$

测出系列 h_i 、 t_i 利用线性拟合可求出当地的重力加速度 g。

实 验 郭耸霄 PB20111712

11 系 20 级 3 班

2021年4月2日

实验器材 3

自由落体装置(刻度精度 1cm, 计时精度 0.1ms)、大小两个小钢球、接球 的小桶、铅垂线。

4 测量记录

实验次数	1	2	3	4	5	6
两个光电门间距/cm	80.0	75.0	70.0	65.0	60.0	55.0
大球通过第一个光电门的时间/ms	158.8	159.0	158.8	158.5	158.8	158.7
大球通过第二个光电门的时间/ms	433.0	421.1	408.0	395.8	383.0	369.4
大球通过两个光电门的时间差/ms	274.2	262.1	250.0	237.3	224.2	210.7
表二——原始数据 2 (小球)						
实验次数	7	8	9	10	11	12
两个光电门间距/cm	80.0	75.0	70.0	65.0	60.0	55.0
小球通过第一个光电门的时间/ms	162.6	162.7	162.6	162.5	162.7	162.6
小球通过第二个光电门的时间/ms	435.3	423.5	411.3	398.7	385.8	372.0
小球通过两个光电门的时间差/ms	272.9	260.8	248.7	236.2	223.1	209.4

5 分析与讨论

5.1 数据处理

图 1: 利用 Origin2020 对大球组数据进行线性拟合的结果

图 2: 利用 Origin2020 对小球组数据进行线性拟合的结果

实验报告

11 系 20 级 3 班

郭耸霄 PB20111712

2021年4月2日

根据实验原理,重力加速度大小为图线斜率的两倍。

对于大球组,有:

$$g_1 = (9.67 \pm 0.05) m/s^2,$$

对于小球组,有:

$$g_2 = (9.67 \pm 0.09) m/s^2$$
.

5.2 误差分析

1、系统误差:

存在不可忽略的空气阻力。由于存在空气阻力,测得的平均速度比真实值略小,以致最终结果比当地重力加速度略小。

2、随机误差:

- (1) 球的体积不可忽略。只要球的任一位置遮挡光电门,便会触发数据采集,这样在球做不易察觉的斜抛时将会造成放大的影响,表现在图 1、2 中的数据点散落在直线的两侧。
- (2) 装置不易竖直放置。即使使用铅垂线校准,也不容易使得标尺杆与水平面垂直,会是下落距离测量不准。

5.3 实验讨论

具体讨论见思考题。

6 思考题

1、在实际工作中,为什么利用(1)式很难精确测量重力加速度?

很难做到释放重物的同时计时,即使使用磁力装置,由于电磁铁有剩磁, 释放的准确时间无法得知,导致时间测量的准确程度较低。

2、为了提高测量精度, 光电门 1 和光电门 2 的位置应如何选取?

应该多次在较大范围等梯度选取。

实验报告

11 系 20 级 3 班

郭耸霄 PB20111712

2021年4月2日

3、利用本实验的装置,如何测量小球下落到某个位置的瞬时速度?

将两个光电门紧贴着放在需要测量速度的位置,可以将其间的平均速度 视为这一点的瞬时速度。

4、利用本实验装置,你还能提出其他测量重力加速度 的实验方案吗?

只使用一个光电门,多次改变光电门的位置,得到相同重物下落不同高度所需时间,根据公式 $\frac{h}{t}=\frac{1}{2}gt$ 得到线性回归方程,数据处理方法与本实验类似。