Probabilistic Methods in Artifical Intelligence

Hadar Tal

Hebrew University of Jerusalem, Israel

May 24, 2024

1 Probability Review

Definition 1.1 (Probability Space)

A probability space is a triple (Ω, \mathcal{F}, P) where:

- 1. Ω is the sample space
- 2. \mathcal{F} is a σ -algebra of subsets of Ω
- 3. P is a probability measure on \mathcal{F} such that $P(\Omega) = 1$

Definition 1.2 (Joint Probability)

The joint probability of two events A and B is:

$$P(A,B) := P(A \cap B)$$

Definition 1.3 (Random Variable)

A random variable X is a function $X: \Omega \to \mathbb{R}$.

 $Val(X) = Image(X) = \{x \in \mathbb{R} : \exists \omega \in \Omega \ s.t. \ X(\omega) = x\}$

Definition 1.4 (Probability Mass Function (PMF))

The probability mass function of a random variable X is:

$$P(X = x) := P(\{\omega \in \Omega : X(\omega) = x\})$$

Definition 1.5 (Joint Distribution)

A joint distribution over a set of RVs $\mathcal{X} = \{X_1, X_2, \dots, X_n\}$ is a probability distribution $P_{\mathcal{X}} : Val(X_1) \times Val(X_2) \times \dots \times Val(X_n) \rightarrow [0, 1]$ defined by:

$$\forall x_1, \dots, x_n : x_i \in Val(X_i) \quad P_{\mathcal{X}}(x_1, x_2, \dots, x_n) := P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

Proposition 1.1 (Law of Total Probability)

For X, Y random variables, we can write:

$$P(X) = \sum_{y \in Val(Y)} P(X, Y = y)$$

Definition 1.6 (Conditional distribution)

For X, Y RVs, and for any $y \in Val(Y)$ where P(Y = y) > 0 the conditional distribution of X given Y=y is:

$$P(X|y) := \frac{P_{X,Y}(X=x,Y=y)}{P_Y(Y=y)}$$

Proposition 1.2 (Chain Rule)

For any set of random variables X_1, X_2, \ldots, X_n :

$$P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots P(X_n|X_1, X_2, \dots, X_{n-1})$$

Proposition 1.3 (Bayes' Rule)

For any two random variables H, E:

$$P(H = h|E = e) = \frac{P(E = e|H = h)P(H = h)}{P(E = e)}$$

where we often call:

- P(H = h) the **prior** probability
- P(H = h|E = e) the **posterior** probability in light of evidence E = e
- P(E = e|H = h) the **likelihood** of the evidence E = e given the hypothesis H = h

Definition 1.7 (Marginal Independence)

Let P be a probability distribution over a set of random variables \mathcal{X} and let $X, Y \in \mathcal{X}$. We say that X is independent of Y, denoted $P \models X \perp Y$, if

$$P(X|Y) = P(X)$$

Definition 1.8 (Conditional Independence)

Let P be a probability distribution over a set of random variables \mathcal{X} and let $X,Y,Z \in \mathcal{X}$. We say that X is independent of Y given Z, denoted $P \models X \perp Y | Z$, if

$$P(X|Y,Z) = P(X|Z)$$

Lemma 1.1 (Equivalent Definitions of Conditional Independence)

Let P be a probability distribution over a set of random variables \mathcal{X} and let $X, Y, Z \in \mathcal{X}$. The following are equivalent:

- 1. $P \models X \perp Y | Z$
- 2. P(X, Y|Z) = P(X|Z)P(Y|Z)
- 3. P(X, Y, Z) = P(X|Z)P(Y, Z)
- 4. $\exists f, g : P(X, Y, Z) = f(X, Z)g(Y, Z)$

Theorem 1.1 (Properties of Conditional Independence)

Let P be a probability distribution over a set of random variables \mathcal{X} and let $X,Y,Z,W\in\mathcal{X}$. The following hold:

- 1. Symmetry $(X \perp Y|Z) \implies (Y \perp X|Z)$
- 2. **Decomposition** $(X \perp Y, W|Z) \implies (X \perp Y|Z) \wedge (X \perp W|Z)$
- 3. Weak Union $(X \perp Y, W|Z) \implies (X \perp Y|W, Z)$
- 4. Contraction $(X \perp Y|Z) \wedge (X \perp W|Y,Z) \implies (X \perp Y,W|Z)$
- 5. Intersection For strictly positive distributions,

$$(X \perp Y|W,Z) \land (X \perp W|Y,Z) \implies (X \perp Y,W|Z)$$

2 Bayesian Networks

2.1 Bayesian Networks Basics

Definition 2.1 (Probabilistic Graphical Model (PGM))

A probabilistic graphical model is a pair (\mathcal{G}, P) where:

- 1. \mathcal{G} is a graph
- 2. P is a probability distribution

Definition 2.2 (Bayesian Network)

A Bayesian Network \mathcal{B} is:

- 1. Bayesian Network Structure A directed acyclic graph (DAG) $\mathcal{G} = (\mathcal{X}, E)$ ($|\mathcal{X}| = n$)
- 2. Set of CPDs $\{P_i(X_i|P_i(X_i))\}_{i=1}^n$

the network defines a probability distribution:

$$P_{\mathcal{B}}(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P_i(X_i | Pa(X_i))$$

A Bayesian Network is the tuple $\mathcal{B} = (\mathcal{G}, P_{\mathcal{B}})$.

Theorem 2.1 (Bayesian Network defines a probability distribution)

For any Bayesian Network B, $P_B(X_1, X_2, ..., X_n)$ is a joint probability distribution over the variables $X_1, X_2, ..., X_n$.

Definition 2.3 (Descendants of a node)

Let G = (V, E) be a directed graph and let $X_i \in V$. The descendants of X_i are:

$$D(X_i) = \{X_j \in \mathcal{X} : \exists \text{ directed path } X_i \to \cdots \to X_j\}$$

Definition 2.4 (Naive Bayes Model)

A Naive Bayes Model is a Bayesian Network where all the features are non adjacent children of the class node.

Definition 2.5 (Naive Bayes Classifier)

A Naive Bayes Classifier is a classifier that uses the Naive Bayes Model to classify instances.

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|x_1, x_2, \dots, x_n) = \underset{c \in C}{\operatorname{argmax}} P(c, x_1, x_2, \dots, x_n) = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{i=1}^n P(x_i|c)$$

2.2 Independencies and Factorization in Bayesian Networks

Definition 2.6 $(I_{LM}(\mathcal{G}))$

The Local Markov Independencies Set of a Bayesian Network B is the set of all independencies that hold in the network:

$$I_{LM}(\mathcal{G}) = \{ (X_i \perp ND(X_i) | Pa(X_i)) \}_{i=1}^{|\mathcal{X}|}$$

Definition 2.7 (I(P))

The set of independencies that hold in a distribution P over \mathcal{X} is:

$$I(P) = \{ (X \perp Y|Z) : (X, Y, Z) \subseteq \mathcal{X}, P \models (X \perp Y|Z) \}$$

Definition 2.8 (I-map)

A DAG \mathcal{G} is an I-map of a distribution P if all independencies assumptions of \mathcal{G} hold in P:

$$I_{LM}(\mathcal{G}) \subseteq I(P)$$

Theorem 2.2 (Factorization)

If G is an I-map of P, then we can write:

$$P(X_1, X_2, \dots, X_n) = \prod_{i=1}^{n} P(X_i | Pa(X_i))$$

Definition 2.9 (Factorization)

We say that P factorizes over \mathcal{G} if there exist CPDs $\{P_i\}_{i=1}^n$ such that:

$$P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P_i(X_i | Pa(X_i))$$

Corollary 2.1 (Independencies implies Factorization)

If \mathcal{G} is an I-map of P ($P \models I_{LM}(\mathcal{G})$), then P factorizes over \mathcal{G} .

Corollary 2.2 (Independencies implies Factorization (2))

If \mathcal{G} is an I-map of P ($P \models I_{LM}(\mathcal{G})$), then (\mathcal{G}, P) is a Bayesian Network.

Theorem 2.3 (Independencies in P_B)

For $P_{\mathcal{B}}$ it holds for all i that

- 1. $X_i \perp ND(X_i)|Pa(X_i)$ $(I_{LM}(\mathcal{G}))$
- 2. $P_{\mathcal{B}}(X_i|ND(X_i)) = P_i(X_i|Pa(X_i))$

Corollary 2.3 (Factorization implies Independencies)

If P factorizes over \mathcal{G} , then \mathcal{G} is an I-map of P $(P \models I_{LM}(\mathcal{G}))$.

Theorem 2.4 (Fundmental Theorem of Bayesian Networks)

Let \mathcal{G} be a BN structure over $\mathcal{X} = X_1, X_2, \dots, X_n$ and let P be a joint distribution over \mathcal{X} . Then \mathcal{G} is an I-map of $P \Leftrightarrow P$ factorizes over \mathcal{G} .

Definition 2.10 (Minimal I-map)

A DAG \mathcal{G} is a minimal I-map of a distribution P if

- 1. G is an I-map of P
- 2. If $\mathcal{G}' \subset \mathcal{G}$ then \mathcal{G}' is not an I-map of P

2.3 Reasoning Patterns in Bayesian Networks

Definition 2.11 (Reasoning Patterns in Bayesian Networks)

There are 4 main reasoning patterns in Bayesian Networks:

- Downstream (causal) reasoning $X \rightarrow Z \rightarrow Y$
- Upstream (evidential) reasoning $X \leftarrow Z \leftarrow Y$
- Common Causal reasoning $X \leftarrow Z \rightarrow Y$
- Common Effect reasoning $X \rightarrow Z \leftarrow Y$

Figure 1: Reasoning Patterns in Bayesian Networks

2.4 D-separation

Question 2.1

If P factorizes over \mathcal{G} , then \mathcal{G} is an I-map of P $(P \models I_{LM}(\mathcal{G}))$.

Can p satisfy more independencies than those implied by G? Yes.

Given $X, Y, Z \in \mathcal{X}$, we would like to characterize when does $P \models I_{LM}(\mathcal{G}) \implies P \models X \perp Y | Z$. Or characterize the complement - Can we find P that factorizes over \mathcal{G} but $P \not\models X \perp Y | Z$?

Definition 2.12 (Active Trail)

A trail $X = X_1 - X_2 - \cdots - X_n$ between X and Y in a BN is active given a set of observed RVs Z, if whenever there is a v-structure along the trail $X_{i-1} \to X_i \leftarrow X_{i+1}$, then X_i or one of its descendants is in Z, and all other nodes along the trail are not in Z.

Definition 2.13 (d-separation)

The sets X and Y are d-separated given Z in G, denoted d-sep_G(X; Y|Z), if there is no active trail between any node in X and any node in Y given Z.

Definition 2.14 (Global Markov Independencies)

The set of global Markov Independencies of a BN structure \mathcal{G} is the set of all independencies that correspond to d-separation:

$$I(\mathcal{G}) := I_{GM}(\mathcal{G}) := \{ (X \perp Y | Z) : d\text{-}sep_{\mathcal{G}}(X; Y | Z) \}$$

d-separation characterizes precisely the full set of independencies that a BN structure encodes.

Theorem 2.5 (Soundness)

If a distribution P factorizes over a BN structure \mathcal{G} , then $I(\mathcal{G}) \subseteq I(P)$.

Note - the other direction is not true. If a distribution P factorizes over \mathcal{G} , then it is not necessarily true that $I(P) \subseteq I(\mathcal{G})$.

Theorem 2.6 (completness)

If $(X \perp Y|Z) \notin I(\mathcal{G})$, then there exists a distribution P that factorizes over \mathcal{G} in which $P \not\models (X \perp Y|Z)$.

3 Bayesian Networks