软件学院 2 0 0 8 级软件工程专业(2008-2)

《线性代数》期中试题试卷

(考试形式: 闭 卷 考试时间:120分钟)

《中山大学授予学士学位工作细则》第六条 考 试 作 弊 不 授 予 学 士 学 位

ᆂᆸ	脏夕.	坐旦	出体	
力问:	 灶石:	 チケ:		

1. Fill the blank (4 titles * 5 points/title = 20 points)

- (1) Given a linear system $\begin{cases} x_1+x_2=-a_1\\ x_2+x_3=a_2\\ x_3+x_4=-a_3\\ x_1+x_4=a_4 \end{cases}$, and if the system is consistent, the constants a_1, a_2, a_3, a_4 must satisfy
- (2) The reduced echelon form of $A = \begin{bmatrix} 2 & -1 & -1 & 1 \\ 1 & 1 & -2 & 1 \\ 4 & -6 & 2 & -2 \end{bmatrix}$ is _____.
- (3) Suppose T: $R^2 \rightarrow R^2$ is a transformation, which reflection through the x_1 -axis first, and then reflection through the line x₂=x₁. So the standard matrix of T is _____.

$$A = \begin{bmatrix} 1 & 2 & -2 & 0 & 7 \\ -2 & -3 & 1 & -1 & -5 \\ -3 & -4 & 0 & -2 & -3 \\ 3 & 6 & -6 & 5 & 1 \end{bmatrix},$$
(4) Given matrix the basis of Col A is _____;

Nul A is a _____, the rank of A is _____.

2. Mark each statement True or False, and descript your reasons (3titles * 5 points/title = 15 points)

(1) Suppose vectors \mathbf{v}_1 and \mathbf{v}_2 span a plane in \mathbb{R}^3 , and \mathbf{v}_3 is not in this plane. Then

 $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linear independent.

- (2) If 3*3 matrices A and B each have three pivot positions, then A can be transformed into B by elementary row operations.
- (3) If A is 3*3 matrix, there exist element matrices $E_1,...,E_p$ such that $E_1,...,E_pA = I$

3. Problem issues (12 + 8 + 10 + 8 = 38 points)

(1) Determine the vectors below linear dependent or not. Describe your reasons. (2 titles* 6 points/title = 12 points)

a.
$$\begin{bmatrix} -4 & 12 \\ 1 & -3 \\ -3 & 8 \end{bmatrix}$$
 b.
$$\begin{bmatrix} 2 & 7 & 0 \\ -4 & -6 & 5 \\ 6 & 13 & -3 \end{bmatrix}$$

- (2) Calculate LU factorization of $\begin{bmatrix} -5 & 3 & 4 \\ 10 & -8 & 9 \\ 15 & 1 & 2 \end{bmatrix}$ matrix. (8 points).
- (3) Let $e_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $e_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $y_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, and $y_2 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, Suppose $T: R^2 \mapsto R^3$ is a linear

transformation which mapping e_1 into y_1 , and mapping e_2 into y_2 . Find the image of $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$. (10 points).

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 5 & 3 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \text{ find A}^{-1}.(8 \text{ points}).$$

(4) Suppose matrix

4. Prove issues (10 + 7 = 17 points)

(1) Suppose the vectors $\alpha_1,...,\alpha_t$ are solutions of homogeneous linear system Ax=0 and the vectors is linear independent. β is not the solution of Ax=0. Please prove

that $\beta + \alpha_1, \dots, \beta + \alpha_t$ are linear independent. (10 points).

(2) Suppose A is 6*4 matrix, B is 4*6 matrix, prove 6*6 matrix AB is not invertible. (7 points).

5. Synthesis (10 points)

Suppose A is an nxn matrix, and satisfy A^2 -A+I_n=0, show A is invertible, and find A^{-1} . (10 points).