Изображения графов

- Любой граф можно изобразить на поверхности π , сопоставив вершинам различные точки π , а каждому ребру отрезок кривой, соединяющей концы данного ребра
 - \star чаще всего в роли поверхности выступает плоскость
- ullet Изображение Φ графа G=(V,E) на поверхности π это пара инъекций
 - ullet $\phi:V o\pi$ и $\psi_{\phi}:E o\Pi_{\phi}$,
 - где Π_{ϕ} множество несамопересекающихся кривых конечной длины, лежащих на π , концы которых принадлежат множеству $\phi(V)$
 - образы вершин/ребер при изображении тоже называют вершинами/ребрами
 - в правильном изображении у ребер нет общих точек, кроме концов
- ullet Граф G укладывается на поверхности π , если существует правильное изображение G на π
- ullet Гра $\dot{oldsymbol{\phi}}$ G планарен, если существует правильное изображение G на плоскости
 - * плоский граф это пара, состоящая из планарного графа и его правильного изображения на плоскости

Пример:

- \bullet слева правильное изображение полного графа K_4 на плоскости
- ullet справа правильное изображение полного двудольного графа $K_{3,3}$ на торе
 - в полном двудольном графе любые две вершины из разных долей соединены ребром

Где возникают плоские графы?

Плоский граф как ответ

- Рисование графов (Graph Drawing) область Computer Science
 - построение «человекочитаемых» изображений графов на плоскости:
 - ⋆ интернет и социальные сети
 - ⋆ карты и схемы
 - ⋆ диаграммы из лингвистики, биологии и т.д.
 - справа схема московского метро
 - ★ правильные изображения удобнее для чтения
- Проектирование электронных схем
 - например, материнских плат
 - 눚 проводящие дорожки не должны пересекаться

Плоский граф как данные

- Уличная сеть города
 - задачи навигации (кратчайшие маршруты)
 - ⋆ многоуровневые развязки нарушают правильность изображения
- Раскрой ткани или листового металла
 - \star оптимальная траектория режущего инструмента

Теорема об укладке на сфере

• Как соотносится укладываемость графа на плоскости и других поверхностях?

Теорема об укладке графа на сфере

Граф укладывается на сфере тогда и только тогда, когда он планарен.

Доказательство необходимости:

- ullet дано Γ правильное изображение G на сфере
- построим правильное изображение *G* на плоскости
- используем стереографическую проекцию:

- на сфере выберем точку N, не принадлежащую изображению
- в противоположной к точке \emph{N} точке \emph{S} проведем к сфере касательную плоскость π
- рассмотрим произвольную прямую, проходящую через N не параллельно π
- она имеет ровно одну общую точку со сферой, отличную от N, и ровно одну общую точку с плоскостью
- определим функцию f, которая переводит любую точку X сферы, не совпадающую с N, в точку Y плоскости π , лежащую на прямой NX =

Доказательство теоремы об укладке на сфере (окончание)

- \star $f: S \setminus \{N\} o \pi$ биекция
 - разные точки сферы переходят в разные точки плоскости
 - ullet для любой точки $Y \in \pi$ можно найти ее прообраз, проведя прямую YN
- ⋆ f непрерывна

! докажите это на языке arepsilon- δ

- \Rightarrow f-образ кривой кривая
- \Rightarrow $f(\Gamma)$ изображение графа G

- ullet пусть точка Y принадлежит двум ребрам $f(\Gamma)$
- \Rightarrow точка $X=f^{-1}(Y)$ принадлежит двум соответствующим ребрам изображения Г
- ⇒ X вершина в Г, так как Г правильное
- $\Rightarrow Y = f(X)$ вершина в Г
- $\Rightarrow f(\Gamma)$ правильное изображение
- *G* планарный граф

Доказательство достаточности:

- ullet на плоскость, содержащую правильное изображение $ar{\Gamma}$ графа G, «ставим» сферу
- за N берем точку сферы, противоположную точке касания с плоскостью
- \bullet строим биекцию f, как описано выше
- ullet $f^{-1}(ar\Gamma)$ будет правильным изображением G на сфере

Теорема Эйлера о многогранниках

Теорема Эйлера о многогранниках

Если выпуклый многогранник имеет n вершин, m ребер и r граней, то n-m+r=2 .

- Переведем эту теорему на язык теории графов
- \star Если рассматривать ребро многогранника как пару соединяемых им вершин, то любой многогранник P задает граф G_P , вершины и ребра которого совпадают с вершинами и ребрами P
 - ullet граф G_P является обыкновенным и связным

Лемма о выпуклом многограннике

Если многогранник P выпуклый, то граф G_{P} планарный.

Доказательство:

- ullet выберем внутри P произвольную точку C
- ullet возьмем сферу σ с центром C такую, что P находится внутри сферы
- рассмотрим все лучи с началом С
- \star каждый луч пересекает P в единственной точке (в силу выпуклости) и σ тоже в единственной точке
- ullet пусть f отображает каждую точку P в точку σ , находящуюся на том же луче
- \star f биекция и f непрерывна
- \Rightarrow f отображает вершины и ребра P в правильное изображение графа G_P на сфере
 - правильность доказывается как в теореме об укладке на сфере

ullet по теореме об укладке графа на сфере граф G_P планарен

А. М. Шур (*kф* УрФУ)

Грани плоского графа

- В формулировке теоремы Эйлера о многогранниках есть грани
- Грань плоского графа это максимальная область плоскости, любые две точки которой можно соединить непрерывной линией, не пересекающей изображение
 - \star плоский граф состоит из графа G и его правильного изображения Γ на плоскости!
 - точки изображения не принадлежат никакой грани
 - число граней плоского графа обозначается через $r(\Gamma)$
 - ★ плоский граф имеет одну неограниченную грань (грань бесконечной площади)
 - неограниченная грань называется внешней
- Границей грани F плоского графа (G,Γ) называется подграф графа G, состоящий в точности из всех вершин и ребер, изображения которых состоят из предельных точек F

Пример:

- \bullet слева изображение плоского графа G и его грани F_1 , F_2 , F_3 и F_4 (внешняя)
- справа изображены границы граней

- \star не внешняя грань имеет конечную площадь \Rightarrow ее граница замкнутая кривая
- 🛨 граница любой не внешней грани плоского графа содержит цикл

Теорема Эйлера о плоских графах

Теорема Эйлера о плоских графах

Если обыкновенный связный плоский граф имеет n вершин, m ребер и r граней, то n-m+r=2.

- ⋆ Часто именно эту теорему называют «теорема Эйлера о многогранниках»
- Равенство n m + r = 2 из формулировки теоремы тождество Эйлера

Лемма о числе границ

Лемма о числе границ

Ребро e плоского графа (G, Γ) принадлежит границе ровно одной его грани, если оно является мостом в G, и границе ровно двух граней, если не является мостом.

Доказательство:

- изображение Г правильное
- ⇒ найдется область плоскости, пересекающаяся с Г в точности по образу ребра е:

- ullet все точки «верхней половины» области принадлежат одной и той же грани (F_1)
- все точки «нижней половины» области принадлежат одной и той же грани (F_2)
- ullet границе граней, отличных от F_1 и F_2 , ребро e не принадлежит
- \Rightarrow лемма эквивалентна утверждению $\emph{F}_1 = \emph{F}_2 \Leftrightarrow \emph{e} \emph{moct}$

Доказательство необходимости: пусть e не мост

- \Rightarrow е лежит в цикле по свойству моста \Rightarrow е лежит в простом цикле
- \star изображение простого цикла замкнутая кривая
- \star замкнутая кривая делит плоскость на внутреннюю и внешнюю области
 - \star любая линия, соединяющая точки из разных областей, пересекает кривую
- \Rightarrow одна из граней F_1 , F_2 лежит во внутренней, а другая во внешней области
- $\Rightarrow F_1 \neq F_2$

Лемма о числе границ (окончание доказательства)

$F_1 = F_2 \Leftrightarrow e$ — мост

Доказательство достаточности: пусть e- мост

- \Rightarrow по свойству моста граф G-e состоит из двух компонент связности, G' и G''
- 🖈 изображение одной компоненты находится внутри грани изображения другой:

- ... либо изображения компонент находятся во внешней грани друг друга! анализ аналогичен, разобрать самостоятельно
 - ullet у изображений G' и G'' нет общих точек
- \Rightarrow можно провести замкнутую кривую (пунктир на рисунке), внутри которой находится изображение G', а снаружи G''
 - при «возвращении» ребра е на место точки из областей F_1 и F_2 остаются соединенными фрагментом этой кривой $\Rightarrow F_1 = F_2$

Доказательство теоремы Эйлера о плоских графах

- ullet Пусть обыкновенный связный плоский граф (G, Γ) имеет n вершин, m ребер и r граней
- ullet Если в G нет циклов, то
 - \star в Γ нет граней, отличных от внешней $\Rightarrow r=1$
 - \star G дерево по определению $\Rightarrow n=m+1$ по свойству деревьев $\Rightarrow n-m+r=2$
- ullet Пусть G содержит циклы и ребро e принадлежит циклу
- Положим $G_1 = G e$, $\Gamma_1 = \Gamma \setminus \psi_\phi(e)$, $n_1 = n(G_1)$, $m_1 = m(G_1)$, $r_1 = r(G_1)$
- \star (G_1, Γ_1) плоский граф
- ⋆ G₁ связен по лемме о разрыве цикла
- \star Ребро e не является мостом в G по свойству моста
- \Rightarrow По лемме о числе границ e принадлежит границе ровно двух граней графа G
- ⇒ При удалении е эти грани сольются в одну, остальные грани не изменятся
- $\Rightarrow n_1 m_1 + r_1 = n (m-1) + (r-1) = n m + r$
- Будем повторять процедуру удаления ребра, принадлежащего циклу, до тех пор, пока очередной граф G_i с параметрами n_i , m_i , r_i не будет деревом
- Используя доказанное выше равенство для деревьев, получим $n-m+r=n_1-m_1+r_1=\ldots=n_i-m_i+r_i=2$

Следствия из теоремы Эйлера

Следствие об инвариантности

Все изображения планарного графа имеют одинаковое число граней.

- ★ Число граней характеристика планарного графа, сохраняющаяся при изоморфизме
 - хотя у планарного графа никаких граней нет
- ★ В формулировке теоремы Эйлера можно заменить плоский граф на планарный
 - Выпуклый многогранник, рассматриваемый как планарный граф, имеет число граней, которое совпадает с числом его граней как многогранника
 - ! убедитесь в этом, проследив доказательство планарности многогранника
- ⇒ теорема Эйлера о многогранниках частный случай теоремы о плоских графах
 - многие невыпуклые многогранники также являются планарными графами, а значит, подчиняются тождеству Эйлера
 - ! придумайте пример многогранника, являющегося непланарным графом

Следствия из теоремы Эйлера (2)

Следствие о несвязных графах

Если плоский граф G имеет n вершин, m ребер, r граней и c компонент связности, то n-m+r=c+1.

Доказательство: индукцией по с

- ullet база индукции (c=1): теорема Эйлера о плоских графах
- шаг индукции:
- пусть c>1 и утверждение верно для всех графов, имеющих c-1 компоненту связности
- ullet обозначим одну из компонент связности графа G через G_1 , а объединение всех остальных компонент связности через G'
- ПУСТЬ $n(G_1)=n_1$, $m(G_1)=m_1$, $r(G_1)=r_1$, n(G')=n', m(G')=m' и r(G')=r'
- $\Rightarrow n_1-m_1+r_1=2$ по теореме Эйлера, n'-m'+r'=c-1+1=c по предположению индукции
 - \star $n=n_1+n'$, $m=m_1+m'$ (определение компоненты связности)
- \star $r=r_1+r'-1$ (изображение G_1 принадлежит некоторой грани изображения G')
- $\Rightarrow n m + r = (n_1 + n') (m_1 + m') + (r_1 + r' 1) = (n_1 m_1 + r_1) + (n' m' + r') 1 = 2 + c 1 = c + 1$

Следствия из теоремы Эйлера (3)

Следствие о числе ребер

Если обыкновенный связный планарный граф G содержит n вершин и m ребер и $n\geqslant 3$, то $m\leqslant 3n-6$.

Доказательство: пусть (G,Γ) — плоский граф

- \bullet положим r = r(G)
- можно считать, что G не является путем длины 2 (для него неравенство выполнено)
- длиной границы грани назовем число ребер в этой границе
- пусть $t(\Gamma)$ сумма длин границ всех граней изображения Γ
- \star граница грани не может состоять менее чем из трех ребер $\Rightarrow t(\Gamma) \geqslant 3r$
- \star по лемме о числе границ при подсчете $t(\Gamma)$ каждое ребро учтено не более чем дважды $\Rightarrow t(\Gamma) \leqslant 2m$
- \Rightarrow 3r \leq 2m
 - \star по тождеству Эйлера $r=m-n+2 \Rightarrow 3m-3n+6 \leqslant 2m \Rightarrow m \leqslant 3n-6$
- ★ В планарных графах многие алгоритмы работают быстрее, чем в общем случае
 - ullet например, алгоритмы поиска, работающие за время O(m)
- ★ Следствие о числе ребер позволяет доказывать непланарность графов
 - ! докажите, что обратное к следствию утверждение неверно

Следствия из теоремы Эйлера (4)

Следствие о графе K_5

Полный граф К₅ не планарен.

Доказательство:

- граф K_5 содержит 5 вершин и 10 ребер

Следствие о графе $K_{3,3}$

Полный двудольный граф $K_{3,3}$ не планарен.

Доказательство: от противного

- пусть граф $K_{3,3}$ планарен, Γ его правильное изображение на плоскости
- ullet в $K_{3,3}$ 6 вершин и 9 ребер \Rightarrow число граней равно 5 по тождеству Эйлера
- ullet по критерию двудольности граф $K_{3,3}$ не содержит треугольников
- \Rightarrow каждая грань Γ ограничена как минимум 4 ребрами $\Rightarrow t(\Gamma) \geqslant 4r(K_{3,3}) = 20$
- \star по лемме о числе границ $t(\Gamma)\leqslant 2m(K_{3,3})=18$
- ⇒ 20 ≤ 18, противоречие
- 🛨 Данное следствие решает известную головоломку о домах и колодцах:
 - в деревне есть три дома и три общих колодца, можно ли проложить тропинку от каждого дома к каждому колодцу, чтобы никакие две тропинки не пересекались?
- \star Поскольку граф $K_{3,3}$ укладывается на торе, тор не эквивалентен плоскости (или сфере) с точки эрения укладки графов
 - укладка графов связана с топологической эквивалентностью поверхностей

Стягивание

- Следствия из теоремы Эйлера дают два необходимых условия планарности:
 - \star в планарном графе с n вершинами не более 3n-6 ребер
 - ★ в планарном графе нет подграфов K_5 и $K_{3,3}$
 - если граф имеет правильное изображение, то и любой его подграф имеет такое изображение
- Оба условия легко проверить алгоритмически, но они не являются критериями
- ? Существует ли эффективно проверяемый критерий планарности?
 - достаточно неожиданно, ответ да, причем критериев два
- Определим операцию стягивания ребра в графе:
 - \bullet пусть G = (V, E) граф, $(u, v) \in E$ ребро
 - \bullet возьмем граф G-u-v
 - ullet добавим в него вершину w и множество ребер $\{(w,x) \mid (u,x) \in E \$ или $(v,x) \in E \}$
 - полученный граф обозначается G/(u,v)

Пример (заодно объясняет термин «стягивание»):

Миноры и теорема Вагнера

- Граф G' называется минором графа G, если G' можно получить из G последовательностью из 0 или более операций удаления ребра, удаления вершины и стягивания ребра
 - \star все подграфы графа G являются его минорами, но обратное неверно

Теорема Вагнера

Граф G планарен тогда и только тогда, когда у него нет миноров K_{5} и $K_{3,3}.$

Необходимость очевидна:

ullet из правильного изображения G легко получить правильное изображение G/e

Достаточность — в курсе Графы и матроиды

Пример: в графе Петерсена (слева) стянем синие ребра, получая K_5

- \star Похожий критерий теорема Понтрягина-Куратовского
 - вместо стягивания используется другая операция
- \star Алгоритм Хопкрофта-Тарьяна проверяет планарность за время $O(\underline{m})$