# GigaDevice Semiconductor Inc.

GD32103E-EVAL User Guide V2.1



## **Table of Contents**

| Ta  | ble d | of Contents                     |    |
|-----|-------|---------------------------------|----|
| Lis | st of | f Tables                        | 3  |
| 1   |       | ummary                          |    |
| 2   |       | unction Pin Assign              |    |
| 3   | Ge    | etting started                  | 6  |
| 4   | На    | ardware layout overview         | 7  |
|     | 4.1   | Power                           | 7  |
|     | 4.2   | Boot                            | 7  |
|     | 4.3   | LED                             | 8  |
|     | 4.4   | KEY                             | 8  |
|     | 4.5   | USART                           | 9  |
|     | 4.6   | ADC                             | 9  |
|     | 4.7   | DAC                             | 9  |
|     | 4.8   | I2S                             | 10 |
|     | 4.9   | I2C                             | 10 |
|     | 4.10  | SPI                             | 11 |
|     | 4.11  | CAN                             | 11 |
|     | 4.12  | SDIO                            | 12 |
|     | 4.13  | NAND                            | 12 |
|     | 4.14  | LCD                             | 13 |
|     | 4.15  | USBD                            | 13 |
|     | 4.16  | Extension                       | 14 |
|     | 4.17  | GD-Link                         | 14 |
| 5   | Ro    | outine use guide                | 15 |
|     | 5.1   | GPIO_Runing_Led                 | 15 |
| ;   | 5.2   | GPIO_Keyboard_Polling_mode      | 15 |
|     | 5.3   | GPIO_KeyBoard_Interrupt_mode    | 16 |
|     | 5.4   | USART_Printf                    | 16 |
| ;   | 5.5   | USART_Echo_Interrupt_mode       | 17 |
| ;   | 5.6   | USART_DMA                       | 18 |
| ;   | 5.7   | ADC_Temperature_Vrefint         | 18 |
| ,   | 5.8   | ADC0_ADC1_Follow_up_mode        | 19 |
| ;   | 5.9   | ADC0_ADC1_Regular_Parallel_mode | 20 |
| ;   | 5.10  | DAC_Output_Voltage_Value        | 21 |
| ;   | 5.11  | I2C_EEPROM                      | 21 |
| ;   | 5.12  | P SPI_SPI_Flash                 | 22 |
|     | 5.13  | l2S_Audio_Player                | 23 |
|     | 5.14  | •                               |    |
| ,   | 5.15  | EXMC_TouchScreen                | 25 |
|     | 5.16  | SDIO_SDCardTest                 | 26 |
| ;   | 5.17  | CAN_Network                     | 27 |



| ıgabevi | c e                     | ODOZIOOL LVIL |
|---------|-------------------------|---------------|
| 5.18    | RCU_Clock_Out           | 27            |
| 5.19    | PMU_sleep_wakeup        | 28            |
| 5.20    | RTC_Calendar            | 28            |
| 5.21    | TIMER_Breath_LED        | 29            |
| 5.22    | USBD_HID_custom         | 29            |
| 5.23    | USBD_MSC_internal_flash | 30            |
| 6 Re    | vision history          | 32            |
|         |                         |               |



## **List of Tables**

| Table 1 Function pin assign | . 4 |
|-----------------------------|-----|
| Table 2 Revision history    | 32  |



## 1 Summary

GD32103E-EVAL uses GD32F103ZET6 as the main controller. It uses Mini USB interface or DC-005 connector to supply 5V power. SWD, Reset, Boot, User button key, LED, CAN, I2C, I2S, USART, RTC, LCD, SPI, ADC, DAC, EXMC, SDIO, USBD, GD-Link and Extension Pins are also included. For more details please refer to GD32103E-EVAL-V1.2 schematic.

## **2** Function Pin Assign

Table 1 Function pin assign

| Function | Pin  | Description  |
|----------|------|--------------|
|          | PF0  | LED2         |
| LED      | PF1  | LED3         |
| LED      | PF2  | LED4         |
|          | PF3  | LED5         |
| RESET    |      | K1-Reset     |
|          | PA0  | K2-Wakeup    |
| KEY      | PC13 | K3-Tamper    |
| KEY      | PF5  | K4-User key1 |
|          | PF4  | K5-User key2 |
| LICADTO  | PA9  | USART0_TX    |
| USART0   | PA10 | USART0_RX    |
| LICADT4  | PA2  | USART1_TX    |
| USART1   | PA3  | USART1_RX    |
| ADC      | PC3  | ADC012_IN13  |
| DAC      | PA4  | DAC_OUT0     |
| DAC      | PA5  | DAC_OUT1     |
| 100      | PB6  | I2C0_SCL     |
| I2C      | PB7  | I2C0_SDA     |
|          | PA5  | SPI0_SCK     |
| OD!      | PA6  | SPI0_MISO    |
| SPI      | PA7  | SPI0_MOSI    |
|          | PE3  | SPI0_CS      |
|          | PA4  | MSEL         |
|          | PA5  | MCLK         |
|          | PA7  | MDIN         |
| 128      | PB12 | I2S_WS       |
|          | PB13 | I2S_CK       |
|          | PB15 | I2S_DIN      |
|          | PC6  | I2S_MCK      |



|            |      | *- *- * - * * - * * * - * * * * * * * * |
|------------|------|-----------------------------------------|
| CAN        | PD0  | CAN0_RX                                 |
| CAN        | PD1  | CAN0_TX                                 |
|            | PD2  | SDIO_CMD                                |
|            | PC12 | SDIO_CLK                                |
| SDIO       | PC8  | SDIO_DAT0                               |
|            | PC9  | SDIO_DAT1                               |
|            | PC10 | SDIO_DAT2                               |
|            | PC11 | SDIO_DAT3                               |
|            | PD14 | EXMC_D0                                 |
|            | PD15 | EXMC_D1                                 |
|            | PD0  | EXMC_D2                                 |
|            | PD1  | EXMC_D3                                 |
|            | PE7  | EXMC_D4                                 |
|            | PE8  | EXMC_D5                                 |
|            | PE9  | EXMC_D6                                 |
| NAND Flash | PE10 | EXMC_D7                                 |
|            | PD11 | EXMC_A16                                |
|            | PD12 | EXMC_A17                                |
|            | PD4  | EXMC_NOE                                |
|            | PD5  | EXMC_NWE                                |
|            | PD6  | EXMC_NWAIT                              |
|            | PD7  | EXMC_NCE1                               |
|            | PD14 | EXMC_D0                                 |
|            | PD15 | EXMC_D1                                 |
|            | PD0  | EXMC_D2                                 |
|            | PD1  | EXMC_D3                                 |
|            | PE7  | EXMC_D4                                 |
|            | PE8  | EXMC_D5                                 |
|            | PE9  | EXMC_D6                                 |
|            | PE10 | EXMC_D7                                 |
|            | PE11 | EXMC_D8                                 |
|            | PE12 | EXMC_D9                                 |
| LCD        | PE13 | EXMC_D10                                |
|            | PE14 | EXMC_D11                                |
|            | PE15 | EXMC_D12                                |
|            | PD8  | EXMC_D13                                |
|            | PD9  | EXMC_D14                                |
|            | PD10 | EXMC_D15                                |
|            | PE2  | EXMC_A23                                |
|            | PD4  | EXMC_NOE                                |
|            | PD5  | EXMC_NWE                                |
|            | PG9  | EXMC_NE1                                |



| USBD | PA11 | USB_DM |
|------|------|--------|
| USBD | PA12 | USB_DP |

## 3 Getting started

The EVAL board uses Mini USB connecter or DC-005 connector to get power DC +5V, which is the hardware system normal work voltage. A J-Link tool or GD-Link on board is necessary in order to download and debug programs. Select the correct boot mode and then power on, the LED1 will turn on, which indicates that the power supply is OK.

There are Keil version and IAR version of all projects. Keil version of the projects are created based on Keil MDK-ARM 4.74 uVision4. IAR version of the projects are created based on IAR Embedded Workbench for ARM 7.40.2. During use, the following points should be noted:

- 1. If you use Keil uVision4 to open the project, install the GD32F10x\_Addon.2.0.0.exe to load the associated files.
- If you use Keil uVision5 to open the project, there are two ways to solve the "Device Missing (s)" problem. One is to install GigaDevice.GD32F10x\_DFP.2.0.0.pack. In Project menu, select the Manage sub menu, click on the "Version Migrate 5 Format..." menu, the Keil uVision4 project will be converted to Keil uVision5 project. Then add "C:\Keil\_v5\ARM\Pack\ARM\CMSIS\4.2.0\CMSIS\Include" to C/C++ in Option for Target. The other is to install Addon directly. Select the installation directory of Keil uVision5 software, such as C:\Keil\_v5, in Destination Folder of Folder Selection. Select the corresponding device in Device of Option for Target and add "C:\Keil\_v5\ARM\Pack\ARM\CMSIS\4.2.0\CMSIS\Include" to C/C++ in Option for Target. 3. If you use IAR to open the project, install IAR\_GD32F10x\_Addon.2.0.0.exe to load the associated files.



## 4 Hardware layout overview

## 4.1 Power



#### 4.2 Boot





## 4.3 LED



## 4.4 KEY





#### 4.5 USART



#### 4.6 ADC



## 4.7 DAC





## 4.8 I2S



## 4.9 I2C





#### 4.10 SPI



#### 4.11 CAN





#### 4.12 SDIO



#### 4.13 NAND





#### 4.14 LCD



#### 4.15 USBD





#### 4.16 Extension



#### **4.17 GD-Link**





## 5 Routine use guide

#### 5.1 GPIO\_Runing\_Led

#### 5.1.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED
- Learn to use SysTick to generate 1ms delay

GD32103E-EVAL board has four LEDs. The LED2, LED3, LED4 and LED5 are controlled by GPIO. This demo will show how to light the LEDs.

## 5.1.2 **DEMO** Running Result

Download the program <01\_GPIO\_Runing\_Led> to the EVAL board, LED2, LED3, LED4 will turn on in sequence with interval of 200ms, and turn off together, 200ms later, repeat the process.

## 5.2 **GPIO\_Keyboard\_Polling\_mode**

## 5.2.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED and the KEY
- Learn to use SysTick to generate 1ms delay

GD32103E-EVAL board has five keys and four LEDs. The five keys are Reset key, Tamper key, Wakeup key, User1 key and User2 key. The LED2, LED3, LED4 and LED5 are controlled by GPIO.

This demo will show how to use the Tamper key to control the LED2. When press down the Tamper Key, it will check the input value of the IO port. If the value is 0 and will wait for 50ms. Check the input value of the IO port again. If the value still is 0, it indicates that the button is pressed successfully and toggle LED2.



#### 5.2.2 DEMO Running Result

Download the program <02\_GPIO\_KeyBoard\_Polling\_mode> to the EVAL board, press down the Tamper Key, LED2 will be turned on. Press down the Tamper Key again, LED2 will be turned off.

## 5.3 **GPIO\_KeyBoard\_Interrupt\_mode**

#### 5.3.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED and the KEY
- Learn to use EXTI to generate external interrupt

GD32103E-EVAL board has five keys and four LEDs. The five keys are Reset key, Tamper key, Wakeup key, User1 key and User2 key. The LED2, LED3, LED4 and LED5 are controlled by GPIO.

This demo will show how to use the EXTI interrupt line to control the LED2. When press down the Tamper Key, it will produce an interrupt. In the interrupt service function, the demo will toggle LED2.

## 5.3.2 DEMO Running Result

Download the program <03\_GPIO\_KeyBoard\_Interrupt\_mode> to the EVAL board, Press down the Tamper Key, LED2 will be turned on. Press down the Tamper Key again, LED2 will be turned off.

### 5.4 USART\_Printf

## 5.4.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED
- Learn to retarget the C library printf function to the USART



#### 5.4.2 DEMO Running Result

Download the program < 04\_USART\_Printf > to the EVAL board, connect serial cable to EVAL\_COM0. This implementation outputs "USART printf example: please press the Tamper key" on the HyperTerminal using EVAL\_COM0. Press the Tamper key, serial port will output "USART printf example".

The output information via the serial port is as following.

USART printf example: please press the Tamper key
USART printf example

#### 5.5 USART\_Echo\_Interrupt\_mode

#### 5.5.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use the USART transmit and receive interrupts to communicate with the serial terminal tool

## 5.5.2 **DEMO** Running Result

Download the program < 05\_USART\_Echo\_Interrupt\_mode > to the EVAL board, connect serial cable to EVAL\_COM0. Firstly, all the LEDs are turned on and off for test. Then, the EVAL\_COM0 sends the tx\_buffer array (from 0x00 to 0xFF) to the serial terminal tool supporting hex format communication and waits for receiving data of BUFFER\_SIZE bytes from the serial terminal. The data MCU have received is stored in the rx\_buffer array. After that, compare tx\_buffer with rx\_buffer. If tx\_buffer is same with rx\_buffer, LED2, LED3, LED4, LED5 flash by turns. Otherwise, LED2, LED3, LED4, LED5 toggle together.

The output information via the serial port is as following.

```
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B
                21
                          24
                              25
                                 26 27
                                        28
                                               2A 2B
                                                         2D 2E
             20
                                           29
                                                     20
   39 3A 3B 3C 3D
                   3E 3F 4O 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 5O 51 52 53
      56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B
   8D 8E 8F 90 91 92 93 94 95 96 97
                                        98 99 9A 9B 9C 9D 9E 9F AO A1 A2 A3 A4 A5 A6 A7
   A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF C0 C1 C2 C3
   C5 C6 C7 C8 C9 CA CB CC CD CE CF DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB
FC FD FE FF
```



#### 5.6 USART\_DMA

#### 5.6.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

Learn to use the USART transmit and receive data using DMA

#### 5.6.2 DEMO Running Result

Download the program < 06\_USART\_DMA > to the EVAL board, connect serial cable to EVAL\_COM0. Firstly, all the LEDs are turned on and off for test. Then, the EVAL\_COM0 sends the tx\_buffer array (from 0x00 to 0xFF) to the serial terminal tool supporting hex format communication and waits for receiving data of same bytes as tx\_buffer from the serial terminal. The data MCU have received is stored in the rx\_buffer array. After that, compare tx\_buffer with rx\_buffer. If tx\_buffer is same with rx\_buffer, LED2, LED3, LED4, LED5 flash by turns. Otherwise, LED2, LED3, LED4, LED5 toggle together.

```
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
              21
3D
                                                   2D 2E
                                          2A 2B
                                                2C
                                    28
                              26 27
                     3F
                                       45 46 47
                        40
                           41 42 43
                                                48 49 4A 4B 4C 4D
                                                                  4E
                                                                     4F
                                    44
        57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
                 76 77
                        78
                           79 7A 7B
                                    70
                                       7D 7E 7F 80 81 82
                                       99 9A 9B 9C 9D 9E 9F AO A1 A2
  8D 8E 8F 90 91 92 93 94 95 96 97
                                    98
        AB AC AD AE AF BO B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF CO C1
  C5 C6 C7 C8 C9
                 CA CB CC CD CE CF DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB
FC FD FE FF
```

## 5.7 ADC\_Temperature\_Vrefint

## 5.7.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use the ADC to convert analog signal to digital data
- Learn to get the value of inner channel 16(temperature sensor channel) and channel 17 (VREFINT channel)

## 5.7.2 DEMO Running Result

Download the program <07\_ADC\_Temperature\_Vrefint> to the GD32103E-EVAL-V1.1 board. Connect serial cable to EVAL\_COM0, open the HyperTerminal.

When the program is running, HyperTerminal display the value of temperature and internal voltage reference (VREFINT).



Notice: because there is an offset, when inner temperature sensor is used to detect accurate temperature, an external temperature sensor part should be used to calibrate the offset error.

the temperature data is 41 degrees Celsius the reference voltage data is 1.182V

the temperature data is 40 degrees Celsius the reference voltage data is 1.192V

the temperature data is 40 degrees Celsius the reference voltage data is 1.183V

the temperature data is 41 degrees Celsius the reference voltage data is 1.196V

the temperature data is 40 degrees Celsius the reference voltage data is 1.198V

#### 5.8 ADC0\_ADC1\_Follow\_up\_mode

#### 5.8.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use the ADC to convert analog signal to digital data
- Learn to use ADC0 and ADC1 follow-up mode

### 5.8.2 **DEMO Running Result**

Download the program <08\_ADC0\_ADC1\_Follow\_up\_mode> to the GD32103E-EVAL-V1.1 board. Connect serial cable to EVAL\_COM0, open the HyperTerminal. PC3 and PC5 pin voltage access by external voltage.

TIMER0\_CH0 is the trigger source of ADC0 and ADC1. When the rising edge of TIMER0\_CH0 coming, ADC0 starts immediately and ADC1 starts after a delay of several ADC clock cycles. The values of ADC0 and ADC1 are transmitted to array adc\_value[0] and adc\_value[1] by DMA.

When the first rising edge of TIMER0\_CH0 coming, the value of the ADC0 conversion of PC3 pin is stored into the low half word of adc\_value[0], and after a delay of several ADC clock cycles the value of the ADC1 conversion of PC5 pin is stored into the high half word of adc\_value[0]. When the second rising edge of TIMER0\_CH0 coming, the value of the ADC0 conversion of PC5 pin is stored into the low half word of adc\_value[1], and after a delay of several ADC clock cycles the value of the ADC1 conversion of PC3 pin is stored into the high half word of adc\_value[1].

When the program is running, HyperTerminal display the regular value of ADC0 and ADC1 by adc\_value[0] and adc\_value[1].



the data adc\_value[0] is 0F450FFA the data adc\_value[1] is 0FFB0FBB the data adc\_value[0] is 0F430FFD the data adc\_value[1] is 0FFB0FC2 the data adc\_value[0] is 0F3C0FFD the data adc\_value[1] is 0FFB0FB9 the data adc\_value[1] is 0FFD0FC1 the data adc\_value[1] is 0FFD0FC1 the data adc\_value[1] is 0FFD0FBC the data adc\_value[1] is 0FFD0FBC the data adc\_value[1] is 0FFD0FBC the data adc\_value[1] is 0FFD0FBC

#### 5.9 ADC0\_ADC1\_Regular\_Parallel\_mode

#### 5.9.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use the ADC to convert analog signal to digital data
- Learn to use ADC0 and ADC1 regular parallel mode

#### 5.9.2 DEMO Running Result

Download the program <09\_ADC0\_ADC1\_Regular\_Parallel\_mode> to the GD32103E-EVAL-V1.1 board. Connect serial cable to EVAL\_COM0, open the HyperTerminal. PC3 and PC5 pin connect to external voltage input.

TIMER0\_CH0 is the trigger source of ADC0 and ADC1. When the rising edge of TIMER0\_CH0 coming, ADC0 and ADC1 convert the regular channel group parallelly. The values of ADC0 and ADC1 are transmitted to array adc\_value[0] and adc\_value[1] by DMA

When the first rising edge of TIMER0\_CH0 coming, the value of the ADC0 conversion of PC3 pin is stored into the low half word of adc\_value[0], the value of the ADC1 conversion of PC5 pin is stored into the high half word of adc\_value[0]. When the second rising edge of TIMER0\_CH0 coming, the value of the ADC0 conversion of PC5 pin is stored into the low half word of adc\_value[1], the value of the ADC1 conversion of PC3 pin is stored into the high half word of adc\_value[1].

When the program is running, HyperTerminal displays the regular value of ADC0 and ADC1 stored in adc\_value[0] and adc\_value[1].



```
the data adc_value[0] is 0F400FFC the data adc_value[1] is 0FFD0FC1

the data adc_value[0] is 0F3A0FFB the data adc_value[1] is 0FFB0F87

the data adc_value[0] is 0F3A0FFC the data adc_value[1] is 0FFC0F8A

the data adc_value[0] is 0F400FFC the data adc_value[1] is 0FFD0F93

the data adc_value[1] is 0FFC0F88

the data adc_value[0] is 0F3A0FFC the data adc_value[1] is 0FFC0F88
```

#### 5.10 DAC\_Output\_Voltage\_Value

#### 5.10.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

Learn to use DAC to output voltage on DAC0 output

#### 5.10.2 DEMO Running Result

Download the program <10\_DAC\_Output\_Voltage\_Value> to the EVAL board and run, all the LEDs will turn on and turn off for test. The digital value is 0x7FF0, its converted analog voltage should be 1.65V (VREF/2), using the voltmeter to measure PA4 or DA0 on JP7, its value is 1.65V.

## 5.11 I2C\_EEPROM

## 5.11.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use the master transmitting mode of I2C module
- Learn to use the master receiving mode of I2C module
- Learn to read and write the EEPROM with I2C interface

## 5.11.2 DEMO Running Result

Download the program <11\_I2C\_EEPROM> to the EVAL board and run. Connect serial cable to COM0, and open the HyperTerminal to show the print message.



Firstly, the data of 256 bytes will be written to the EEPROM from the address 0x00 and printed by the serial port. Then, reading the EEPROM from address 0x00 for 256 bytes and the result will be printed. Finally, compare the data that were written to the EEPROM and the data that were read from the EEPROM. If they are the same, the serial port will output "I2C-AT24C02 test passed!" and the four LEDs lights flashing, otherwise the serial port will output "Err: data read and write aren't matching." and all the four LEDs light.

```
I2C-24CO2 configured....
The I2CO is hardware interface
The speed is 400000
AT24C02 writing...
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C
                                                                                                         0x2D 0x2E 0x2F
0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x3A 0x3B 0x3C
0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C
                                                                                                         0x4D
0x50 0x51 0x52 0x53 0x54 0x55
0x60 0x61 0x62 0x63 0x64 0x65
                                        0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C
0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C
                                                                                                         0x5D 0x5E
0x6D 0x6E
                                                                                                                          0x6F
0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B 0x7C 0x7D 0x7E 0x7E
0x80 0x81 0x82 0x83 0x84 0x85 0x86 0x87 0x88 0x89 0x8A 0x8B 0x8C 0x8D 0x8E 0x8E
0x90 0x91 0x92 0x93 0x94 0x95 0x96 0x97 0x98 0x99 0x9A 0x9B 0x9C
                                                                                                         Ox9D Ox9E
                                                                                                                          0x9F
0xA0 0xA1 0xA2 0xA3 0xA4 0xA5 0xA6 0xA7 0xA8 0xA9 0xAA 0xAB 0xAC
0xB0 0xB1 0xB2 0xB3 0xB4 0xB5 0xB6 0xB7 0xB8 0xB9 0xBA 0xBB 0xBC
                                                                                                         0xAD
                                                                                                         OxBD OxBE OxBE
OxCO OxC1 OxC2 OxC3 OxC4 OxC5 OxC6 OxC7 OxC8 OxC9 OxCA OxCB OxCC
0xD0 0xD1 0xD2 0xD3 0xD4 0xD5 0xD6 0xD7 0xD8 0xD9 0xDA 0xDB 0xDC 0xDD 0xDE 0xDE
0xE0 0xE1 0xE2 0xE3 0xE4 0xE5 0xE6 0xE7 0xE8 0xE9 0xEA 0xEB 0xEC 0xED 0xEE 0xEF 0xF0 0xF1 0xF2 0xF3 0xF4 0xF5 0xF6 0xF7 0xF8 0xF9 0xFA 0xFB 0xFC 0xFD 0xFE 0xFF
0x00 0x01 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x12 0x12 0x12 0x12 0x12 0x12 0x12 0x10 0x02 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x2F
0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x3A 0x3B 0x3C
                                                                                                         Ox3D Ox3E Ox3E
        0x41 0x42 0x43 0x44 0x45
                                                0x46 0x47 0x48
                                                                         0x49 0x4A 0x4B
0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C
                                                                                                         0x5D 0x5E 0x5E
0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C
                                                                                                         0x6D
0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B 0x7C
                                                                                                         0x7D 0x7E 0x7F
0x80 0x81 0x82 0x83 0x84 0x85 0x86 0x87 0x88 0x89 0x8A 0x8B 0x8C
0x90 0x91 0x92 0x93 0x94 0x95 0x96 0x97 0x98 0x99 0x9A 0x9B 0x9C
                                                                                                         0x9D
                                                                                                                  0x9E
                                                                                                                          0x9F
OxAO OxA1 OxA2 OxA3 OxA4 OxA5 OxA6 OxA7 OxA8 OxA9 OxAA OxAB OxAC
OxBO OxB1 OxB2 OxB3 OxB4 OxB5 OxB6 OxB7 OxB8 OxB9 OxBA OxBB OxBC
                                                                                                         OxAD OxAE OxAF
OxBD OxBE OxBF
0xC0 0xC1 0xC2 0xC3 0xC4 0xC5 0xC6 0xC7 0xC8 0xC9 0xCA 0xCB 0xCC 0xCD 0xCE 0xCE 0xD0 0xD1 0xD2 0xD3 0xD4 0xD5 0xD6 0xD7 0xD8 0xD9 0xDA 0xDB 0xDC 0xDD 0xDE 0xDF
OXEO OXE1 OXE2 OXE3 OXE4 OXE5 OXE6 OXE7 OXE8 OXE9 OXEA OXEB OXEC OXED OXEE OXEF
OxFO OxF1 OxF2 OxF3 OxF4
I2C-AT24CO2 test passed!
                                        OxF5 OxF6 OxF7 OxF8 OxF9 OxFA OxFB OxFC OxFD OxFE OxFF
```

The output information via the serial port is as following.

#### 5.12 SPI\_SPI\_Flash

## 5.12.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use the master mode of SPI unit to read and write NOR Flash with the SPI interface

## 5.12.2 **DEMO** Running Result

The computer serial port line connected to the COM0 port of development board, set the baud rate of HyperTerminal software to 115200, 8 bits data bit, 1 bit stop bit. At the same time jump JP12 to SPI.

Download the program <12\_SPI\_SPI\_Flash> to the EVAL board, the HyperTerminal software can observe the operation condition and will display the ID of the flash, 256



bytes data which are written to and read from flash. Compare the data that were written to the flash and the data that were read from the flash. If they are the same, the serial port will output "SPI-GD25Q16 Test Passed!", otherwise, the serial port will output "Err: Data Read and Write aren't Matching.". At last, turn on and off the leds one by one. The following is the experimental results.

```
GD32103E-EVAL-V1.1 System is Starting up.
|GD32103E-EVAL-V1.1 Flash:512K
GD32103E-EVAL-V1.1 The CPU Unique Device ID:[34303733-32323836-400200]
GD32103E-EVAL-V1.1 SPI Flash:GD25Q16 configured...
The Flash_ID:0xC84015
Write to tx_buffer:
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C
                                                                Ox1D Ox1E Ox1F
0x20 0x21 0x22 0x23 0x24 0x25
                             0x26 0x27
                                       0x28 0x29 0x2A 0x2B 0x2C
                                                                0x2D 0x2E
0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37
                                       0x38 0x39 0x3A 0x3B 0x3C
                                                                Ox3D Ox3E Ox3F
0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47
                                       0x48 0x49 0x4A 0x4B 0x4C
                                                                Ox4D Ox4E Ox4F
              0x53 0x54 0x55
                                       0x58 0x59 0x5A 0x5B
0x50 0x51
         0x52
                             0x56
                                  0x57
                                                           0x50
                                                                0x5D
                                                                     0x5E
0x60 0x61 0x62 0x63 0x64 0x65
                             0x66 0x67
                                       0x68 0x69 0x6A 0x6B 0x6C
                                                                Ox6D Ox6E Ox6F
                                       0x78 0x79 0x7A 0x7B 0x7C
l0x70_0x71_
         0x72
              0x73 0x74 0x75
                             0x76 \ 0x77
                                                                0 \times 70 \ 0 \times 7E
                                                                          0x7F
0x80 0x81
         0x82
              0x83 0x84 0x85
                             0x86
                                  0x87
                                       0x88 0x89 0x8A 0x8B
                                                           0x8C
                                                                Ox8D Ox8E
                                                                          0x8F
0x90 0x91
         0x92 0x93 0x94 0x95
                             0x96 0x97
                                       0x98 0x99 0x9A 0x9B 0x9C
                                                                Ox9D Ox9E
                                                                          0x9F
0xx0
    0xA1
         0xA2
              0xA3 0xA4 0xA5
                             0xA6
                                   0xA7
                                       0xA8
                                            OxA9 OxAA OxAB
                                                           0xAC
                                                                0xAD
                                                                     0xAE
OxBO OxB1 OxB2 OxB3 OxB4 OxB5
                             0xB6
                                  0xB7
                                       OxB8 OxB9 OxBA OxBB OxBC
                                                                OxBD OxBE
                                                                          0xBF
              0x03 \ 0x04 \ 0x05
                                       0xC8 0xC9 0xCA 0xCB 0xCC
NxCO 0xC1 0xC2
                             0xC6 0xC7
                                                                O_XCD O_XCE
                                                                          0xCF
OxDO OxD1 OxD2 OxD3 OxD4 OxD5
                             0xD6 0xD7
                                       OxD8 OxD9 OxDA OxDB OxDC
                                                                OxDD OxDE
                                                                          OxDF
OxEO OxE1 OxE2 OxE3 OxE4 OxE5 OxE6 OxE7 OxE8 OxE9 OxEA OxEB OxEC
                                                                OxED OxEE
OxFO OxF1 OxF2 OxF3 OxF4 OxF5 OxF6 OxF7 OxF8 OxF9 OxFA OxFB OxFC OxFD OxFE OxFE
Read from rx_buffer:0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B
0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17
                                                           0x18 0x19 0x1A 0x1B
    0x1D 0x1E 0x1F 0x20 0x21
                             0x22 0x23 0x24 0x25 0x26 0x27
                                                           0x28 0x29 0x2A 0x2B
0x1C
0x2C 0x2D 0x2E 0x2F 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37
                                                           0x38 0x39 0x3A 0x3B
0x3C
     0x3D 0x3E 0x3F 0x40 0x41
                             0x42 0x43 0x44 0x45 0x46 0x47
                                                           0x48 0x49 0x4A 0x4B
0x4C
    0x4D 0x4E 0x4F 0x50 0x51
                             0x52 0x53
                                       0x54 0x55
                                                 0x56
                                                      0x57
                                                           0x58 0x59
                                                                     Ox5A Ox5B
0x5C 0x5D 0x5E 0x5F 0x60 0x61 0x62 0x63
                                       0x64 0x65 0x66 0x67
                                                           0x68 0x69 0x6A 0x6B
     0x6D 0x6E 0x6F 0x70 0x71
                             0x72 0x73
                                       0x74 0x75 0x76 0x77
0x6C
                                                           0x78 0x79
                                                                     Ox7A Ox7B
0x7C
    0x7D 0x7E 0x7F 0x80 0x81 0x82 0x83 0x84 0x85 0x86 0x87
                                                           0x88 0x89 0x8A 0x8B
0x8C
    0x8D 0x8E 0x8F 0x90 0x91
                             0x92 0x93
                                       0x94 0x95 0x96
                                                      0x97
                                                           0x98 0x99
                                                                     Ox9A Ox9B
     0x9D
         Ox9E Ox9F
                   0xA0
                        0xA1
                             0xA2 0xA3
                                       0xA4 0xA5
                                                  0xA6
                                                      0xA7
                                                           0xA8 0xA9
                                                                     OxAA OxAB
OxAC OxAD OxAE OxAF OxBO OxB1 OxB2 OxB3 OxB4 OxB5 OxB6 OxB7
                                                           OxB8 OxB9 OxBA OxBB
    OxBD OxBE OxBF OxCO OxC1 OxC2 OxC3 OxC4 OxC5 OxC6 OxC7
0xBC
                                                           0xC8 0xC9 0xCA 0xCB
OxCC OxCD OxCE OxCF OxDO OxD1 OxD2 OxD3 OxD4 OxD5 OxD6 OxD7 OxD8 OxD9 OxDA OxDB
OxDC OxDD OxDE OxDF OxEO OxE1 OxE2 OxE3 OxE4 OxE5 OxE6 OxE7 OxE8 OxE9 OxEA OxEB
OxEC OxED OxEE OxEF OxFO OxF1 OxF2 OxF3 OxF4 OxF5 OxF6 OxF7 OxF8 OxF9 OxFA OxFB
OxFC OxFD OxFE OxFF
|SPI-GD25Q16 Test Passed!
```

## 5.13 I2S\_Audio\_Player

## 5.13.1 DEMO Purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use I2S module to output audio file
- Parsing audio files of wav format

GD32103E-EVAL board integrates the I2S (Inter-IC Sound) module, and the module can communicate with external devices using the I2S audio protocol. This Demo mainly



shows how to use the I2S interface of the board for audio output.

#### 5.13.2 DEMO Running Result

Download the program<13\_I2S\_Audio\_Player>to the EVAL board, insert the headphone into the audio port, and then listen to the audio file.

#### 5.14 EXMC\_NandFlash

#### 5.14.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

Learn to use EXMC control the NAND flash

#### 5.14.2 **DEMO** Running Result

GD32103E-EVAL board has EXMC module to control NAND flash. Before running the demo, P2 and P3 must be fitted to the EXMC port, JP24 must be fitted to the Nwait port. Download the program <14\_EXMC\_NandFlash> to the EVAL board. This demo shows the write and read operation process of NAND flash memory by EXMC module. If the test pass, LED2 will be turned on. Otherwise, turn on the LED4. Information via a HyperTerminal output as following:

```
NAND flash initialized!
Read NAND ID!
Nand flash ID:0xAD 0xF1 0x80 0x1D
Write data successfully!
Read data successfully!
Check the data!
Access NAND flash successfully!
The data to be read:
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F
0x20 0x21 0x22
               0x23 0x24 0x25
                              0x26 0x27 0x28
                                             0x29 0x2A 0x2B
                                                            0x2C
                                                                  0x2D 0x2E
0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x3A 0x3B 0x3C
                                                                 Ox3D Ox3E Ox3F
0x40 0x41 0x42 0x43 0x44 0x45
                              0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C
                                                                 0x4D 0x4E
                                                                            0x4F
0x50 0x51 0x52 0x53 0x54 0x55
                              0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C
                                                                  0x5D 0x5E
                                                                            0x5F
0x60 0x61 0x62 0x63 0x64 0x65
                              0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C
                                                                  Ox6D Ox6E Ox6F
0x70 0x71 0x72
               0x73
                    0x74 0x75
                              0x76
                                   0x77
                                        0x78
                                             0x79 0x7A 0x7B
                                                            0x7C
                                                                  Ox7D Ox7E
0x80 0x81 0x82 0x83 0x84 0x85
                                   0x87 0x88 0x89 0x8A 0x8B 0x8C
                              0x86
                                                                 Ox8D Ox8E
                                                                            0x8F
0x90 0x91 0x92 0x93 0x94 0x95
                              0x96 0x97 0x98
                                             0x99 0x9A 0x9B
                                                            0x9C
                                                                 Ox9D Ox9E
                                                                            0x9F
0xA0 0xA1 0xA2 0xA3 0xA4 0xA5
                              0xA6
                                   OxA7 OxA8 OxA9 OxAA OxAB OxAC
                                                                  OxAD OxAE
                                                                            0xAF
0xB0 0xB1 0xB2 0xB3 0xB4 0xB5
                              OxB6 OxB7 OxB8 OxB9 OxBA OxBB OxBC
                                                                 OxBD OxBE OxBF
0xC0 0xC1 0xC2
               0xC3 0xC4 0xC5
                              0xC6
                                   0xC7
                                        0xC8
                                             OxC9 OxCA OxCB
                                                            0xCC
                                                                  OxCD OxCE
0xD0 0xD1 0xD2 0xD3 0xD4 0xD5
                              OxD6 OxD7 OxD8 OxD9 OxDA OxDB OxDC
                                                                 ONDD ONDE ONDE
OxEO OxE1 OxE2 OxE3 OxE4 OxE5
                              OxE6 OxE7 OxE8 OxE9 OxEA OxEB OxEC
                                                                 OxED OxEE
                                                                            0xEF
OxFO OxF1 OxF2 OxF3 OxF4 OxF5 OxF6 OxF7 OxF8 OxF9 OxFA OxFB OxFC
                                                                 OxFD OxFE
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x2F
```



## 5.15 EXMC\_TouchScreen

#### 5.15.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use EXMC control LCD

#### 5.15.2 **DEMO Running Result**

GD32103E-EVAL board has EXMC module to control LCD. Before running the demo, JP12 must be fitted to the SPI port, P2 and P3 must be fitted to the EXMC port. Download the program <15\_EXMC\_TouchScreen> to the EVAL board. This demo displays GigaDevice logo and four green buttons on the LCD screen by EXMC module. Users can touch the green button to turn on the corresponding LED on board, and then the color of button you had touched will change to red.





#### 5.16 SDIO\_SDCardTest

#### 5.16.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use SDIO to single block or multiple block write and read
- Learn to use SDIO to erase, lock and unlock a SD card

GD32103E-EVAL board has a secure digital input/output interface (SDIO) which defines the SD/SD I/O /MMC CE-ATA card host interface. This demo will show how to use SDIO to operate on SD card.

#### 5.16.2 DEMO Running Result

Download the program <16\_SDIO\_SDCardTest> to the EVAL board and run. Connect serial cable to EVAL\_COM0, open the HyperTerminal. Firstly, all the LEDs flash once for test. Then initialize the card and print out the information of the card. After that, test the function of single block operation, lock and unlock operation, erase operation and multiple blocks operation. If any error occurs, print the error message and turn on LED2, LED4 and turn off LED3 and LED5. Otherwise, turn on all the LEDs.

Uncomment the macro DATA\_PRINT to print out the data and display them through HyperTerminal. Set bus mode(1-bit or 4-bit) and data transfer mode(polling mode or DMA mode) by comment and uncomment the related statements.

Information via a serial port output as following.

```
Card init success!
 Card information:
## Card version 3.0x ##
## SDHC card ##
## Device size is 7782400KB ##
## Block size is 512B ##
## Block count is 15564800 ##
## CardCommandClasses is: 5b5 ##
## Block operation supported ##
## Erase supported ##
## Lock unlock supported ##
## Application specific supported ##
## Switch function supported ##
 Card test:
 Block write success!
 Block read success!
 The card is locked!
 Erase failed!
 The card is unlocked!
 Erase success!
 Block read success!
 Multiple block write success!
 Multiple block read success!
```



#### 5.17 CAN\_Network

#### 5.17.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use the CAN0 communication between two boards

GD32103E-EVAL development board integrates the CAN(Controller Area Network) bus controller, which is a common industrial control bus. CAN bus controller follows the CAN bus protocol of 2.0 A and 2.0 B. This demo mainly shows how to communicate two EVAL boards through CAN0.

## 5.17.2 DEMO Running Result

This example is tested with two GD32103E-EVAL boards. Jump P2, P3 to CAN with the jumper cap. Connect L pin to L pin and H pin to H pin of JP14 on the boards for sending and receiving frames. Download the program <17\_CAN\_Network> to the two EVAL boards, and connect serial cable to EVAL\_COM0. Firstly, the EVAL\_COM0 sends "please press the Tamper key to transmit data!" to the HyperTerminal. The frames are sent and the transmit data are printed by pressing Tamper Key push button. When the frames are received, the receive data will be printed and the LED2 will toggle one time.

The output information via the serial port is as following.

```
please press the Tamper key to transmit data!

CANO transmit data: ab, cd

CANO recive data: ab, cd
```

#### 5.18 RCU\_Clock\_Out

#### 5.18.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED
- Learn to use the clock output function of RCU
- Learn to communicate with PC by USART



#### 5.18.2 DEMO Running Result

Download the program <18\_RCU\_Clock\_Out> to the EVAL board and run. Connect serial cable to EVAL\_COM0, open the HyperTerminal. When the program is running, HyperTerminal will display the initial information. Then user can choose the type of the output clock by pressing the TAMPER button. After pressing, the corresponding LED will be turned on and HyperTerminal will display which mode be selected. The frequency of the output clock can be observed through the oscilloscope by PA8 pin.

Information via a serial port output as following:

/====== Gigadevice Clock output Demo =======/
press tamper key to select clock output source
CK\_OUTO: system clock
CK\_OUTO: IRC8M
CK\_OUTO: HXTAL
CK\_OUTO: system clock

#### 5.19 PMU\_sleep\_wakeup

#### 5.19.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

Learn to use the USART receive interrupt to wake up the PMU from sleep mode

### 5.19.2 DEMO Running Result

Download the program < 19\_PMU\_sleep\_wakeup > to the EVAL board, connect serial cable to EVAL\_COMO. After power-on, all the LEDs are off. The mcu will enter sleep mode and the software stop running. When the USARTO receives a byte of data from the HyperTerminal, the mcu will wake up from a receive interrupt. And all the LEDs will flash together.

#### 5.20 RTC\_Calendar

#### 5.20.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use RTC module to implement calendar and alarm function
- Learn to use USART module to implement time display



#### 5.20.2 DEMO Running Result

Download the program <20\_RTC\_Calendar> to the EVAL board and run. Connect serial cable to EVAL\_COM0, open the HyperTerminal. After start-up, the program will ask to set the time on the HyperTerminal. The calendar will be displayed on the HyperTerminal. At the same time, set current time add 10 second as alarm time. After 10 second, the alarm note will displayed on the HyperTerminal and turn on LEDs.

RTC not yet configured....

RTC configured....

Please Set Hours: 22 Please Set Minutes: 22 Please Set Seconds: 22 Set Alarm Time: 22:22:32

Time: 22:22:22 Time: 22:22:22 Time: 22:22:23 Time: 22:22:24

#### 5.21 TIMER\_Breath\_LED

#### 5.21.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use Timer output PWM wave
- Learn to update channel value

#### 5.21.2 DEMO Running Result

Use the DuPont line to connect the TIMER0\_CH0 (PA8) and LED2 (PF0), and then download the program <21\_TIMER\_Breath\_LED> to the GD32103E-EVAL board and run. PA8 should not be reused by other peripherals.

When the program is running, you can see LED2 lighting from dark to bright gradually and then gradually darken, ad infinitum, just like breathing as rhythm.

### 5.22 USBD\_HID\_custom

## 5.22.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

Learn how to use the USBD peripheral mode



Learn how to implement USB HID(human interface) device

GD32103E-EVAL board has five keys and one USBD interface. The five keys are Reset key, Wakeup key, Tamper key, User key1 and User key2. In this demo, the GD32103E-EVAL board is enumerated as an USB HID device, which uses the native PC Host HID driver, as shown below. The USB HID uses two keys (wakeup key, tamper key) which are indicated about the buttons of upper monitor. In addition, the upper monitor could control the LED on the board.

#### 5.22.2 DEMO Running Result

Download the program <22\_USBD\_HID\_custom > to the EVAL board and run. If you press the Wakeup key, the "Button1" would turn to be green, and so is Tamper key to the "Button2". If you check or uncheck the box led1, led2, led3 and led4, corresponding LED on the board will be on or off.



### 5.23 USBD\_MSC\_internal\_flash

## 5.23.1 DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn how to use the USBD
- Learn how to implement USB MSC(mass storage) device



This demo mainly implements a U disk. U disk is currently very widely used removable MSC devices. MSC, the Mass Storage device Class, is a transport protocol between a computer and mobile devices, which allow a universal serial bus (USB) equipment to access a host computing device, file transfer between them, mainly including mobile hard disk, mobile U disk drive, etc. The MSC device must have a storage medium, and this Demo uses the MCU's internal SRAM as the storage medium. For more details of the MSC protocol please refer to the MSC protocol standard.

MSC device will use a variety of transport protocols and command formats for communication, so it need to choose the appropriate protocol and command format in the realization of the application. This Demo selects the BOT (bulk only transport) protocol and the required SCSI (small computer interface) command, and is compatible with a wide variety of Window operating systems. Specific BOT protocol and SCSI command specification please refer to the standard of their agreement.

#### 5.23.2 DEMO Running Result

Download the program < 23\_USBD\_MSC\_internal\_flash> to the EVAL board and run. When the EV-board connect to the PC, you will find a USB large capacity storage device is in the universal serial bus controller, and there is 1 more disk drives in the equipment manager of PC.

Then, after opening the resource manager, you will see more of the 1 disk, as shown in the following diagram:



At this point, the write/read/formatting operation can be performed as the other mobile devices.



## 6 Revision history

#### **Table 2 Revision history**

| Revision No. | Description                         | Date          |
|--------------|-------------------------------------|---------------|
| 1.0          | Initial Release                     | Dec. 26, 2014 |
| 2.0          | CU version                          | Jun. 30, 2017 |
| 2.1          | Firmware Update, Consistency Update | Jul. 31, 2018 |



#### **Important Notice**

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2018 GigaDevice - All rights reserved