

Bayesian Inference in Gravitational Wave Astronomy

Mukesh Kumar Singh
ICTS Astrophysical Relativity Group

GW Data Analysis Workshop, DTU 14/02/2023

Outline

- Introduction
- Parameter estimation
- Conditional probability & Bayes' theorem
- Bayesian inference
- Stochastic sampling methods
- GW parameter estimation: Bilby
- Summary

Introduction

• Characteristic shape of the gravitational-wave signal encodes the information about the astrophysical properties of the source.

• In a compact binary merger with a quasicircular orbit will have:

Intrinsic parameters: $m_1, m_2, \overrightarrow{S_1}, \overrightarrow{S_2}$

- The 15 dimensional parameter space.
- How to infer the these complex set of parameters?

Problem in hand

Credit: LSC Gravitational-Wave Signal

masses of the binary

Problem in hand

Credit: LSC Gravitational-Wave Signal

Problem in hand

 How can we infer the source parameters of an unknown signal buried in noise and with what accuracy?

Statistical Reasoning: Frequentist of Bayesian?

- Frequentist
 - Probabilities as an outcome of a repeatable experiment (e.g. coin tossing)
 - No prior information required.
 - Hypotheses/theories are not the outcome of a repeatable experiment.
- Bayesian
 - Can talk about the probability of a hypothesis, or of a theory, or the probability that a parameter within a theory takes a given value.
 - No need of a repeatable experiment.
 - Assumes prior information: "degree of belief" (updated in the light of data)
- Question: Which method will be applicable for GW data analysis?
- Answer: Bayesian Inference

Conditional Probability

• $p(A \mid B)$: conditional probability i.e. the probability of A given B.

Conditional Probability: Example

- **Question**: What's the probability of drawing one red-suit card from a pack of 52 cards?
- **Answer**: 1/2 if the deck of cards is a regular one.
- Question: How do you express it mathematically?
- Answer:

$$p(\text{red} - \text{card} \mid I) = \frac{1}{2}$$

where I = "normal 52-card deck" is the background information. The vertical line is read as "given".

Conditional Probability: Example

- **Question**: What's the probability of drawing two red-suit cards from a pack of 52 cards?
- Answer: Let me draw a diagram here

So...

$$R_0 = \frac{26}{52} = \frac{1}{2}$$
 and $R_1 = \frac{26 - 1}{52 - 1} = \frac{25}{51}$

So the probability of occurring both is

$$R_0 R_1 = \frac{25}{102}$$

Conditional Probability: Example

- Question: How do you express it mathematically?
- **Answer**: We need to calculate $p(R_0, R_1 | I)$! Using simple rule of conditional probability

$$p(R_0, R_1 | I) = p(R_1 | R_0, I) p(R_0 | I)$$
 With $p(R_0 | I) = \frac{1}{2}$ and $p(R_1 | R_0, I) = \frac{25}{51}$ So finally

$$p(R_0, R_1 | I) = \frac{1}{2} \times \frac{25}{51}$$

Bayes Theorem

Conditional probability

$$p(A, B \mid I) = p(A \mid B, I)p(B \mid I)$$

We can also write the same thing as

$$p(A, B \mid I) = p(B \mid A, I)p(A \mid I)$$

Rearranging the terms in above two equations

$$p(A \mid B, I) = \frac{p(B \mid A, I)p(A \mid I)}{p(B \mid I)}$$

Bayesian Inference

- Inference means figuring something out from the data (d).
- Inference can be made two ways:
 - 1. **Parameter estimation:** finding out the parameters (θ) of a model (M_A) that best fits the data (d).
 - 2. Model selection: finding out which model, M_A or M_B , fits the data more effectively.

Parameter estimation

• Figuring out the model parameters θ , given the data d and the model M_A

$$p(\theta \mid d, M_A) = \frac{\overbrace{p(d \mid \theta, M_A)}^{Evidence}} \underbrace{p(d \mid M_A)} \underbrace{p(d \mid M_A)}_{Evidence}$$
Used when comparing models

• Evidence is just a normalisation. So..

$$p(\theta \mid d, M_A) \propto p(d \mid \theta, M_A) \quad p(\theta \mid M_A)$$
 The degree of belief After the experiment
$$Prior$$
 The degree of belief before the experiment

• Given some specific observation *y* at time *t*, the data *d*

$$d(t) = y(t) + n \implies n = d(t) - y(t)$$

where n is random noise drawn from a gaussian distribution $\mathcal{N}(0,\sigma)$

• If the model is given by $M_A: y_A(t) = \sin(\omega t)$ with only parameter ω , the likelihood

$$\mathcal{L}(d \mid \omega, M_A) = p(d \mid \omega, y_A) \equiv p(n) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(d - y_A(t, \omega))^2}{2\sigma^2} \right]$$

And, the posterior

$$p(\omega \mid d, y_A) \propto p(d \mid \omega, y_A) p(\omega \mid y_A)$$

A good idea to work with log-likelihood for the sake of stability

$$\ln \mathcal{L} = -\frac{1}{2} \left(\frac{(d(t) - y_A(t, \omega))^2}{\sigma^2} + \ln(2\pi\sigma^2) \right)$$

• For multiple observations,

$$\mathcal{L}(\mathbf{d} \mid \omega, M_A) = \prod_i \mathcal{L}(\mathbf{d_i} \mid \omega, M_A)$$

Or,
$$\ln \mathcal{L} = -\frac{1}{2} \Sigma_i \left(\frac{(d_i - y_A(t_i, \omega))^2}{\sigma^2} + \ln(2\pi\sigma^2) \right)$$

• Choose, say $\sigma = 0.1$ and $\omega_{\text{true}} = 1.2$, to simulate the data $d_i = y(t_i, \omega_{\text{true}}) + n_i$.

• For multiple observations,

$$\mathcal{L}(\mathbf{d} \mid \omega, M_A) = \prod_i \mathcal{L}(\mathbf{d_i} \mid \omega, M_A)$$

Or,
$$\ln \mathcal{L} = -\frac{1}{2} \Sigma_i \left(\frac{(d_i - y_A(t_i, \omega))^2}{\sigma^2} + \ln(2\pi\sigma^2) \right)$$

• For multiple observations,

$$\mathcal{L}(\mathbf{d} \mid \omega, M_A) = \prod_i \mathcal{L}(\mathbf{d_i} \mid \omega, M_A)$$

Or,
$$\ln \mathcal{L} = -\frac{1}{2} \Sigma_i \left(\frac{(d_i - y_A(t_i, \omega))^2}{\sigma^2} + \ln(2\pi\sigma^2) \right)$$

• Choose, say $\sigma = 0.1$ and $\omega_{\text{true}} = 1.2$, to simulate the data $d_i = y(t_i, \omega_{\text{true}}) + n_i$.

Posterior probability distribution

• Compute the likelihood on grid of ω . The posterior \propto likelihood if prior is constant.

For multiple observations,

$$\mathcal{L}(\mathbf{d} \mid \omega, M_A) = \prod_i \mathcal{L}(\mathbf{d_i} \mid \omega, M_A)$$

• For multiple observations,
$$\mathcal{L}(\mathbf{d} \mid \omega, M_A) = \prod_i \mathcal{L}(\mathbf{d_i} \mid \omega, M_A)$$
 0.006 Or,
$$\ln \mathcal{L} = -\frac{1}{2} \Sigma_i \left(\frac{(d_i - y_A(t_i, \omega))^2}{\sigma^2} + \ln(2\pi\sigma^2) \right)$$
 0.000 1.18 1.19 1.20 1.21 1.22

Choose, say $\sigma = 0.1$ and $\omega_{\text{true}} = 1.2$, to simulate the data $d_i = y(t_i, \omega_{\text{true}}) + n_i$.

- Posterior probability distribution
- Compute the likelihood on grid of ω . The posterior \propto likelihood if prior is constant.
- Why is the peak (median) not consistent with the true value? Noise!
- How to quantify this? Bayesian answer is credible interval.
- We should always report inferences as ω has a median of XX and lies between YY and ZZ with 90% probability.

• For multiple observations,

$$\mathcal{L}(\mathbf{d} \mid \omega, M_A) = \prod_i \mathcal{L}(\mathbf{d_i} \mid \omega, M_A)$$

Or,
$$\ln \mathcal{L} = -\frac{1}{2} \Sigma_i \left(\frac{(d_i - y_A(t_i, \omega))^2}{\sigma^2} + \ln(2\pi\sigma^2) \right)$$

• Choose, say $\sigma = 0.1$ and $\omega_{\text{true}} = 1.2$, to simulate the data $d_i = y(t_i, \omega_{\text{true}}) + n_i$.

Posterior probability distribution

- Compute the likelihood on grid of ω . The posterior \propto likelihood if prior is constant.
- Why is the peak (median) not consistent with the true value? Noise!
- How to quantify this? Bayesian answer is credible interval.
- What if the dimensionality (D) is reasonably high, then number of computations ~ (no . of grid points)^D. Not feasible! Stochastic methods can come handy?!

Stochastic Sampling

- First, let's try building a peak finding algorithm
 - 1. Choose a random value, say ω_0 , and evaluate likelihood \mathcal{L}_0
 - 2. Find a new $\omega_1 = \omega_0 + \delta \omega$ (random shift) and calculate likelihood \mathcal{L}_1 .
 - 3. Store the new ω and likelihood \mathcal{L}_1 if $\mathcal{L}_1 > \mathcal{L}_0$.

5. We're always walking uphill.

• Limitations:

- (i) Does not tell us anything about the "structure" (shape of the distribution)
- (ii) bad if multimodal posteriors.

Metropolis-Hastings Sampler

- Let us add some "randomness" in the steps
 - 1. Choose a random value, say ω_0 , and evaluate likelihood \mathcal{L}_0
 - 2. Find a new $\omega_1 = \omega_0 + \delta \omega$ (random shift) and calculate likelihood \mathcal{L}_1 .
 - 3. Store the new ω and likelihood \mathcal{L}_1 if $\mathcal{L}_1 > \mathcal{L}_0 \alpha$, where α is a random number $\in [0,1]$.
 - 4. The samplers will walk both uphill and downhill.

Metropolis-Hastings Sampler

0

1.18

- Let us add some "randomness" in the steps
 - 1. Choose a random value, say ω_0 , and evaluate likelihood \mathcal{L}_0
 - 2. Find a new $\omega_1 = \omega_0 + \delta \omega$ (random shift) and calculate likelihood \mathcal{L}_1 .
 - 3. Store the new ω and likelihood \mathcal{L}_1 if $\mathcal{L}_1 > \mathcal{L}_0 \alpha$, where α is a random number $\in [0,1]$.
 - 4. The samplers will walk both uphill and downhill.
- Limitations: (i) not efficient if multimodal posterior.

1.19

ω

1.20

1.21

Nested Sampling

• Defining the prior volume as X such that $dX = p(\theta \mid M_A)d\theta$ where

$$X(\mathcal{L}) = \int_{p(d|\theta, M_A) > \mathcal{L}} d\theta \ p(\theta \mid M_A)$$

The total probability volume within a likelihood contour defined by $p(d \mid \theta, M_A) = \mathcal{L}$.

• The evidence,

$$Z \equiv p(d \mid M_A) = \int_0^1 \mathcal{L}(X) \ dX$$

• Evaluating the likelihoods $\mathcal{L}_i = \mathcal{L}(X_i)$ associated with monotonically decreasing sequence of prior volumes X_i : $0 < X_N < \ldots < X_2 < X_1 < X_0 = 1$

$$Z = \sum_{i=1}^{N} \frac{1}{2} (X_{i+1} - X_i) \, \mathcal{L}_i \implies p(\theta \,|\, d, M_A) = \frac{\frac{1}{2} (X_{i+1} - X_i) \, \mathcal{L}_i}{Z}$$

Nested Sampling

- Select a set of initial live points sampled from the prior.
- The point with the lowest likelihood is replaced with a new sample with higher likelihood.

- Iterate this until reaching the stopping condition $\mathcal{L}_{\max} X_i / Z_i > e^{0.1}$ with \mathcal{L}_{\max} is the maximum likelihood value.
- Checking whether the evidence estimate would change by more than a factor of ~0.1 if all the prior support were at the maximum likelihood.

Sampling Takeaways

- Stochastic samplers are about drawing random samples from a posterior distribution.
- MCM methods need tuning
 - Parallel tempering to recover the multi-modal posteriors
 - Does not calculate evidence by default. But not advised.
- Nested sampling is better than MCMC
 - It deals with multi-modal posteriors more effectively
 - Provides you evidences that can be useful for model selection.

GW Parameter Estimation: Bilby

Credit: Greg Ashton

- A generic Bayesian Inference Library.
- Special support to gravitational-wave transients.
- Structure

 - Priors as python dictionaries

Bilby Output

- Let the model M_A $y(t) = A \sin(\omega t + \phi_0)$ parameters A, ω , and ϕ_0 .
- Result object contains information about posteriors, priors, and likelihood, ..., etc.
- Just result.plot_corner() will give us

Bilby Trace Plots

Conclusion

- Parameter estimation of a compact binary merger in GW is a high dimensionality problem.
- Need stochastic samplers to sample the likelihood in such case.
- Output is probability distributions of the parameters due to noise uncertainty in the data.
- Bayesian inference is key to the parameter estimation in GW sources, especially for compact binary mergers.
- Bilby is one such Bayesian Inference Library to perform parameter estimation.

References

- Bilby: Ashton et al 2018 (https://lscsoft.docs.ligo.org/bilby/)
- Data Analysis: A Bayesian Tutorial by D. S. Sivia & J. Skilling
- An Introduction to Bayesian Inference in GW Astronomy, Thrane & Talbot (2018)
- GWOSC: https://www.gw-openscience.org/
- GWpy: https://gwpy.github.io/
- PyCBC: https://pycbc.org/

