Upload and Execute the Pipeline to Kubeflow Pipelines

The following steps upload and execute the compiled pipeline on Kubeflow Pipelines:

1. Upload the pipeline to Kubeflow Pipelines (Figure 47-1).

Figure 47-1. Upload the compiled pipeline to Kubeflow Pipelines

2. Click the pipeline to see the static graph of the flow (Figure 47-2).

Figure 47-2. Pipeline summary graph

3. Create an Experiment and run to execute the pipeline (Figure 47-3).

CHAPTER 47 DEPLOYING AN END-TO-END MACHINE LEARNING SOLUTION ON KUBEFLOW PIPELINES

Figure 47-3. Create and run the Experiment

4. Completed Pipeline run (Figure 47-4).

Figure 47-4. Completed Pipeline run

Completed Dataflow Pipeline: The completed run of the second component of the Pipeline, which is to transform the dataset with Cloud Dataflow, is illustrated in Figure 47-5.

CHAPTER 47 DEPLOYING AN END-TO-END MACHINE LEARNING SOLUTION ON KUBEFLOW PIPELINES

Figure 47-5. Completed Dataflow run

Deployed model on Cloud MLE: The deployed model on Cloud MLE, which is the fifth component of the Pipeline, is illustrated in Figure 47-6.

Figure 47-6. Deployed model on Cloud MLE

Note Always remember to clean up cloud resources when they are no longer needed.

Delete Kubeflow: Run the script to delete the deployment.

```
# navigate to kubeflow app
cd ${KFAPP}
# run script to delete the deployment
${KUBEFLOW SRC}/scripts/kfctl.sh delete all
```

Delete the Kubernetes cluster: Replace name with your own cluster name.

```
# delete the kubernetes cluster
gcloud container clusters delete ekaba-gke-cluster
```

This chapter covered building an end-to-end machine learning product as a containerized application on Kubernetes with Kubeflow and Kubeflow pipelines. Again, the code for this chapter may be accessed by cloning the book repository to the Cloud Shell.

This concludes this book.

Index

A	В
Accuracy, 181, 294	Backpropagation
Activation functions	algorithm, 337, 338
hyperbolic tangent (tanh), 341	Backpropagation through time
Leaky ReLU, 342, 343	(BPTT), 453, 454
Maxout, 343	Bar plot, 154, 155
non-linear function, 339	Batch gradient descent
ReLU, 342	algorithm, 205
sigmoid, 340	Batch learning, 199-200
Adaptive learning rates, 413	Batch normalization, 408-410
Alpine Linux package, <mark>661</mark>	Beam programming
append() method, 76, 128, 129	data processing pipeline
Area under the receiver operating curve	build/run, 541, 542
(AUC-ROC), 183-184, 294	creation, 540
argparse.ArgumentParser()	preprocessing, 543
method, 558	pipeline transformation
Artificial neural network	I/O transforms, 539
(ANN), 329, 331, 332	Pcollection, 538
assign method, 127	Ptransform, 538
Autoencoder	Bias vs. variance trade-Off
architecture, 476	hidden layers, 402–403
defined, 475	high bias, 178
denoising, 481, 482	high variance, 178
undercomplete, 475	machine learning, 177
AutoML NLP	quality/performance, 178
custom language classification	BigQuery
model (see Custom language	defined, 485
classification model)	first query
dataset, training, 602-604	census_bureau_international, 490
GCP, 599-601	Query editor, 491

[©] Ekaba Bisong 2019