Background information

Introduction to bioinformatics (NGS data analysis)

Alexander Jueterbock

2016 June

Got your sequencing data - now, what to do with it?

```
File size: several Gb
```

Background information

Number of lines: >1.000.000

```
@MO2443:17:000000000-ABPBW:1:1101:12675:1533 1:N:0:1
TCGATAATTCTTACTTTCTCTCTGGTCTGAGCGTTTCACATCAACGACAAGCTCGA
TTTTTTTTTTTTTTTTT
8B6-@-,CFFED9CFAE@@C6;@,CFEEF9<@6FGGF9F<CC,,CB,@::8CF,6+
,,3733>>00,,,3880,,8*,773333,3,333738,*,,,,,76,,2,,2
0*).1.))(0*)***
@MO2443:17:000000000-ABPBW:1:1101:18658:1535 1:N:0:1
TCCCTAATTCTCTGTCTTCAAATTTTCCTTCTAAATCGTCCCTCGTTTCTACCT
TTTTCTTCTTTTTCT
-<<9-@CCEF9CE-<,,,,,;,,<C,=,6,C9,C<=C,,,;,86C,6:C,,,;<;,,
,,,,5,5:,,9++4,,,:,,,,,,,,38,853,5,,3,,7,,,6,,,,,7,,,,
+0.()+++)11.*)*
                                    4 D > 4 B > 4 B > 4 B > B
```

Before library preparation

What you need to know to steer your way through the analysis

- Research question
 - Identify adaptive genes
 - *De novo* genome assembly
 - Population genetic structure
 - Phylogenetic relation
- Experimental design
 - Number of individuals
 - Treatment of samples (e.g. heat stress)
- Sample collection
 - Samples degraded (e.g. stored in Formalin)
 - Tissue (reproductive, vegetative)

Library preparation

- DNA-seq, RNA-seq, Bis-Seq, Chip-Seq...
 - RNA reads (which lack introns) require splice-aware mappers.
 - Bis-seq changes GC ratio (bisulphite converts cytosine to uracil, but leaves 5-methylcytosine unaffected)
 - Chip-Seq enriches binding-sites of DNA-associated proteins
- Pooled samples?
 - Demultiplexing
 - Remove barcodes
- Adapter sequences that have to be trimmed off?
- Targeted coverage

Single- or Paired end sequencing, read length

Library fragment

Adapter
Flowcell/bead binding sequences
Amplification primers
Sequencing primers
Barcodes

Adapter
Flowcell/bead binding sequences
Amplification primers
Sequencing primers
Barcodes

Single- or paired-end sequencing, read length - why does it matter

Platform	Max. length	Reads/run	Consideration
Illumina	2×150	5 billion	
HiSeq series			
Illumina	2×300	25 million	
MiSeq series			
Illumina			
NextSeq series	2×150	400 million	
Roche 454	700	0.7 million	High error rate

Primary analysis

- Demultiplexing
- Adapter trimming
- Quality control

Demultiplexing of pooled samples (if barcoded inline)

AATTANNNNNNNNNNNNNN File 1

Background information

AGTCGNNNNNNNNNNNNNNN File 2

AGTCGNNNNNNNNNNNNNN File 2

AATTANNNNNNNNNNNNNN File 1

AGTCGNNNNNNNNNNNNNN File 2

References

Trimmig: Adapter removal

Mostly 3'adapters disturb assembly and alignment

GATTTGGGGTTCAANNNNNNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNATTAGTATCGAT

TTGGGGTTCAANNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNNNNNATTAGTATCGAT

ATTTGGGGTTCAANNNNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNNNNTTAGTATCGAT

Fastq file - 4 lines for each read

```
@HWI-ST141_0365:2:1101:2983:2114#TTAGGC/1
GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CC
```

- sequence id (specifications can differ slightly between sequencing platforms)
 - =@=instrument name : flowcell lane : tile number: flowcell x coordinate : flowcell y coordinates : #barcode sequence: pair number for paired-end sequencing
- 2 sequence
- 3 + optionally followed by sequence identifier again
- 4 quality scores

Trimmig of low-quality bases

Background information

- Trim bases with a Phred quality score <20
- $Quality = -10 * log_{10}P$

Phred Score	Probability of incorrect base	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%

Fastq file contains both sequence reads and base quality scores

```
Fastq file

@SEQ_ID

GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
+
!''**((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CC

Fasta file

>SEQ_ID

GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
```

Base qualities are encoded in ascii format

ASCII stands for American Standard Code for Information Interchange. An ASCII code is the numerical representation for a character.

```
Dec Hx Oct Html Chrl Dec Hx Oct Html Chr
Dec Hx Oct Char
                                      Dec Hx Oct Html Chr
    0 000 NUL (null)
                                                             64 40 100 6#64; 8
                                       32 20 040   Space
                                                                                96 60 140 6#96:
   1 001 SOH (start of heading)
                                       33 21 041 4#33; !
                                                             65 41 101 6#65; A
                                                                                97 61 141 6#97; 8
    2 002 STX (start of text)
                                       34 22 042 4#34; "
                                                             66 42 102 a#66; B
                                                                                98 62 142 6#98; b
    3 003 ETX (end of text)
                                       35 23 043 4#35; #
                                                             67 43 103 a#67; C
                                                                                99 63 143 4#99; 0
                                                                                100 64 144 @#100; 4
    4 004 EOT (end of transmission)
                                       36 24 044 4#36; $
                                                             68 44 104 D D
                                       37 25 045 6#37; %
                                                                               101 65 145 @#101; e
    5 005 ENQ (enquiry)
                                                             69 45 105 E E
    6 006 ACK (acknowledge)
                                       38 26 046 6#38; 6
                                                             70 46 106 6#70; F
                                                                               102 66 146 @#102; f
   7 007 BEL (bell)
                                                             71 47 107 6#71; G 103 67 147 6#103; g
                                       39 27 047 6#39; 1
    8 010 BS
              (backspace)
                                       40 28 050 6#40; (
                                                             72 48 110 6#72; H
                                                                               104 68 150 6#104; h
                                                             73 49 111 6#73; I 105 69 151 6#105; i
   9 011 TAB (horizontal tab)
                                       41 29 051 6#41; )
              (NL line feed, new line) 42 2A 052 6#42; *
                                                             74 4A 112 6#74; J 106 6A 152 6#106; j
   A 012 LF
                                                             75 4B 113 4#75; K 107 6B 153 4#107; k
11 B 013 VT
              (vertical tab)
                                       43 2B 053 6#43; +
              (NP form feed, new page) 44 2C 054 4#44;
                                                             76 4C 114 4#76; L
12 C 014 FF
                                                                               108 6C 154 6#108; 1
13 D 015 CR
              (carriage return)
                                       45 2D 055 6#45; -
                                                             77 4D 115 6#77; M 109 6D 155 6#109; M
14 E 016 SO
                                       46 2E 056 6#46; .
                                                             78 4E 116 6#78; N 110 6E 156 6#110; n
              (shift out)
                                                             79 4F 117 6#79; 0 111 6F 157 6#111; 0
15 F 017 SI
              (shift in)
                                       47 2F 057 6#47; /
16 10 020 DLE (data link escape)
                                       48 30 060 4#48; 0
                                                             80 50 120 6#80; P 112 70 160 6#112; P
                                                             81 51 121 6#81; Q 113 71 161 6#113; Q
17 11 021 DC1 (device control 1)
                                       49 31 061 4#49; 1
18 12 022 DC2 (device control 2)
                                       50 32 062 4#50; 2
                                                             82 52 122 6#82; R 114 72 162 6#114; r
                                       51 33 063 4#51; 3
                                                             83 53 123 4#83; $ 115 73 163 4#115; $
19 13 023 DC3 (device control 3)
20 14 024 DC4 (device control 4)
                                       52 34 064 4#52; 4
                                                             84 54 124 6#84; T 116 74 164 6#116; t
21 15 025 NAK (negative acknowledge)
                                       53 35 065 4#53; 5
                                                             85 55 125 6#85; U 117 75 165 6#117; U
                                       54 36 066 6#54; 6
                                                             86 56 126 6#86; V 118 76 166 6#118; V
22 16 026 SYN (synchronous idle)
                                       55 37 067 6#55; 7
                                                             87 57 127 6#87; ₩ 119 77 167 6#119; ₩
23 17 027 ETB (end of trans. block)
24 18 030 CAN (cancel)
                                       56 38 070 4#56; 8
                                                             88 58 130 6#88; X 120 78 170 6#120; X
25 19 031 EM
              (end of medium)
                                       57 39 071 6#57; 9
                                                             89 59 131 6#89; Y
                                                                               121 79 171 6#121; Y
                                       58 3A 072 6#58; :
                                                             90 5A 132 6#90; Z 122 7A 172 6#122; Z
26 1A 032 SUB (substitute)
27 1B 033 ESC (escape)
                                                                              123 7B 173 6#123;
                                       59 3B 073 4#59;;
                                                             91 5B 133 6#91; [
                                                             92 5C 134 6#92; \
                                                                               124 7C 174 6#124;
28 1C 034 FS
              (file separator)
                                       60 3C 074 4#60; <
                                                             93 5D 135 6#93; ] 125 7D 175 6#125;
29 1D 035 GS
              (group separator)
                                       61 3D 075 4#61; =
30 1E 036 RS
              (record separator)
                                       62 3E 076 4#62; >
                                                             94 5E 136 6#94; A 126 7E 176 6#126;
                                                             95 5F 137 6#95; _ 127 7F 177 6#127; DEL
31 1F 037 US
              (unit separator)
                                       63 3F 077 4#63; ?
```


Base qualities are encoded in ascii format

Background information

ASCII stands for American Standard Code for Information Interchange. An ASCII code is the numerical representation for a character.

ASCII encodings of sequencing platforms

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijk
33
              59
                                       104
0.2......41
        Phred+33, raw reads typically (0, 40)
S - Sanger
X - Solexa
          Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
  with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Figure: Quality score encodings

Quality control tool: FastQC

Informs on:

- Base quality
- Duplication
- Overrepresentation of sequences
 - contamination?
 - adapters?
- GC content (should be around 50%, in Bis-Seq lower)

Quality before trimming

Figure: Base-quality generally decreases with increasing sequencing length

Quality after trimming

Figure: Quality after trimming

Sequence bias

For example in:

- First bases of Illumina RNAseq due to 'random' hexamer primers for reverse transcription
- RADseq fragments (cutting sites)

Hexamer primers for cDNA synthesis cause sequence bias

PCR Duplicates

Duplicates are generally removed in quantitative analyses (e.g. RNA-seq)

Figure: Duplication levels (FastQC output)

De novo assembly

Task: Look for overlapping regions and create contigs (contiguous sequences)

- Genome assembly software
 - SOAP de NOVO
 - Velvet
 - MIRA (we use this one in the course)
- Transcriptome assembly software
 - Review: Martin and Wang, (2011)
 - Trinity
 - MIRA

De novo assembly: Step by step

De novo assembly: The N50 metric

 ${\sf N50}$ is a single measure of the contig length size distribution in an assembly

- Sort contigs in descending length order
- Size of contig above which the assembly contains at least 50% of the total length of all contigs

Figure: From Kane, N.C.

Mapping against reference genome/transcriptome

- Main purposes:
 - Identify variants (SNPs, InDels)

Mapping against reference genome/transcriptome

■ Main purposes:

Quantify gene expression

Population 1

Population 2

Mapping: global alignment

- Implemented in e.g. BWA, Bowtie2
- Needleman-Wunsch algorithm
- Aligns sequences in their full length
- Used for multiple sequence alignment when sequences are similar

Figure: Global alignment from rosalind.info

Mapping: local alignment

- Smith-Waterman algorithm
- Clipping of terminal unmatched bases
- Only aligned bases contribute to the alignment's score
- Used to target smaller portions of genes with high similarity

```
\label{tccAGTTATGTCAGgggacacgagcatgcagagac} \texttt{|||||||||||} \texttt{aattgccgccgtcgttttcagCAGTTATGTCAGatc}
```

Figure: Local alignment from rosalind.info

Splice-aware alignment of RNAseq reads to the genome

Figure: Adapted from Haas and Zody, (2010)

Mapping: SAM/BAM files example

Output format of most alignment programs

- Header lines preceded by @
- One tab-delimited line per read

Figure: Example from http://samtools.sourceforge.net/SAM1.pdf

- SAM files are large
- BAM: Compressed binary versions, not human-readable

Mapping: Mandatory fields in SAM files

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	Int	[0,2 ¹⁶ -1]	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	[0,2 ³¹ -1]	1-based leftmost mapping POSition
5	MAPQ	Int	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
8	PNEXT	Int	[0,2 ³¹ -1]	Position of the mate/next read
9	TLEN	Int	[-2 ³¹ +1,2 ³¹ -1]	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

Explanation of the flag field (click here: Link1, Link2)

Mapping: Easy decoding of SAM flags

Mapping: CIGAR string in SAM files

Op	BAM	Description
M	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
N	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
H	5	hard clipping (clipped sequences NOT present in SEQ)
P	6	padding (silent deletion from padded reference)
=	7	sequence match
X	8	sequence mismatch

Mapping: CIGAR string example

```
RefPos: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Ref: C C A T A C T G A A C T G A C T
Read: A C T A G A A T G G C T
```

CIGAR: 3M1I3M1D5M

Variant calling

Consistent mismatches in the alignment indicate:

- Single Nucleotide Polymorphisms (SNPs)
- Insertions/Deletions (InDels)

VCF file format

Variant call format

- described in http://www.1000genomes.org/node/101
- informs on location and quality of each SNP

VCF file information

Figure: VCF file info from http://vcftools.sourceforge.net/VCF-poster.pdf

Phased alleles are on the same chromosome strand

VCF file information

Figure: VCF file info from http://vcftools.sourceforge.net/VCF-poster.pdf

Phased alleles are on the same chromosome strand

Identified SNPs vary between programs/algorithms

Venn diagram of the number of SNPs (coverage >400) called with four programs from the same alignment file (ddRAD tags mapped against the genome of Guppy).

Background information Primary analysis Secondary analysis Tertiary analysis Plan References

Differential gene expression analysis

Figure: Log2 fold-change of expression over the mean of counts normalized by size factors. Differentially expressed genes (p<0.1) are red.

From the DESeq2 R package documentation

Background information Primary analysis Secondary analysis Tertiary analysis Plan References

Clustering

Figure: Multivariate grouping of stressed (W) and control (C) seagrass samples. Most variation is explained by the first principle component

Visualizing differential expression

Figure: Heatmap of functions that were differentially expressed between Atlantic and Mediterranean seagrass samples.

Outlier analysis

Based on Vitti et al., (2012)

Outlier detection

Eukaryote genome annotation

Identify the strcuture and functional role

Gene ontologies

Figure: GO terms of unigenes in a moth genome

(Jacquin-Joly et al., 2012)

Cloud of GO term enrichments

Intercond memory operation
established of point indicates the control of the cont

response to stimulus

cell wall organization or biogenesis cell wall modification callular carbohydrate biosynthetic proces. Proceedings of the control of the cont

Figure: Term cloud of heat-responsive functions in seagrass

Bioinformatics-Practical

- Unix Tools (Martin)
- Trimming and Quality Control (Martin)
- Genome Assembly (Alexander)
- Mapping and Variant Calling (Martin)

Background information

- Hansen, KD, SE Brenner, and S Dudoit (2010). "Biases in Illumina transcriptome sequencing caused by random hexamer priming". In: *Nucleic acids research* 38.12, e131–e131.
- Jacquin-Joly, E, F Legeai, N Montagné, C Monsempes, MC François, J Poulain, et al. (2012). "Candidate chemosensory genes in female antennae of the noctuid moth Spodoptera littoralis". In: *International journal of biological sciences* 8.7, p. 1036.
- Martin, J and Z Wang (2011). "Next-generation transcriptome assembly". In: *Nature Reviews Genetics*.
- Vitti, JJ, MK Cho, SA Tishkoff, and PC Sabeti (2012). "Human evolutionary genomics: ethical and interpretive issues". In: *Trends in Genetics* 28.3, pp. 137–145.

References