Two Dimensional Viewing

The Viewing Pipeline

- Graphics package allows the user to specify which part of a defined picture is to be displayed and where that part is to be displayed on the display device
- Window
 - A world-coordinate area selected for display.
 defines what is to be viewed
- ☐ Viewport
 - An area on a display device to which a window is mapped.
 defines where it is to be displayed
- **□** Viewing transformation
 - The mapping of a part of a world-coordinate scene to device coordinates.
 - The two dimensional viewing transformation is referred as windowing transformations or window-to-viewport transformation.

Two-Dimensional Viewing

Two-Dimensional Viewing

 Rectangular rotated window viewing transformation is done the following steps Construct the scene in world coordinates using the output primitives and attributes. Obtain the particular orientation for the window, set up a two dimensional viewing coordinate system in the world coordin plane and define a window in the viewing coordinate system Once the reference frame is established transform the description world coordinates to viewing coordinates. We then define a viewport in normalized coordinates and matricipates and religious accordinates. 	
 primitives and attributes. □ Obtain the particular orientation for the window, set up a two dimensional viewing coordinate system in the world coordinate and define a window in the viewing coordinate system □ Once the reference frame is established transform the description in world coordinates to viewing coordinates. □ We then define a viewport in normalized coordinates and management 	using
 dimensional viewing coordinate system in the world coordinate plane and define a window in the viewing coordinate system Once the reference frame is established transform the description in world coordinates to viewing coordinates. We then define a viewport in normalized coordinates and management. 	
in world coordinates to viewing coordinates. We then define a viewport in normalized coordinates and ma	nate
^	ptions
viewing coordinate of the scene to normalized coordinates	ap the

The Viewing Pipeline

- ☐ All parts of the picture that lie outside the viewport are clipped.
- ☐ Contents of the viewport are transferred to device coordinates.

Two-Dimensional Viewing

- By changing the position of the viewport we can view objects at different positions on the display area of the output device.
- ☐ Zooming effects
 - Successively mapping different-sized windows on a fixedsized viewports.
- Panning effects
 - Moving a fixed-sized window across the various objects in a scene.
- **□** Device independent
 - Viewports are typically defined within the unit square. (normalized coordinates)
 - This provides means for separating the viewing and other transformations from specific output device requirements.

Viewing Coordinate Reference Frame

- ☐ The reference frame for specifying the world-coordinate window.
 - Viewing-coordinate origin: P0 = (x0, y0)
 - **E**stablish the orientation or rotation of this reference frame.
 - Specify View up vector V: Define the viewing y_v direction

Viewing Coordinate Reference Frame

- Given V calculate the components of unit vectors v_x, v_y and u_x, u_y for the viewing reference frame y_y and x_y .
- These unit vectors aligns the viewing x_v, y_v axes with world axes x_w, y_w
- ☐ The composite two dimensional transformation to convert world coordinates to viewing coordinates is
 - Translate the viewing origin to the world origin
 - Rotate to align the two coordinate reference frames.

 $M_{wc,vc}=R.T$

Window-to-Viewport Coordinate Transformation

Window-to-Viewport Coordinate Transformation

$$\frac{xv - xv_{\min}}{xv_{\max} - xv_{\min}} = \frac{xw - xw_{\min}}{xw_{\max} - xw_{\min}}$$

$$\frac{yv - yv_{\min}}{yv_{\max} - yv_{\min}} = \frac{yw - yw_{\min}}{yw_{\max} - yw_{\min}}$$

$$xv = xv_{\min} + (xw - xw_{\min})sx$$
$$yv = yv_{\min} + (yw - yw_{\min})sy$$

$$sx = \frac{xv_{\text{max}} - xv_{\text{min}}}{xw_{\text{max}} - xw_{\text{min}}}$$
$$yv_{\text{max}} - yv_{\text{min}}$$

$$sy = \frac{yv_{\text{max}} - yv_{\text{min}}}{yw_{\text{max}} - yw_{\text{min}}}$$

A point at poisition (x_w, y_w) is mapped into position (x_v, y_v)

Workstation transformation

Workstation Transformtion

- ☐ From normalized coordinates, object descriptions are mapped to various display devices.
- Any no. of output devices can be open in a particular application and window to viewport transformation can be performed for each open output device.
- ☐ This mapping is called the **workstation transformation**.
- ☐ We can control the positioning of parts of a scene on individual output devices.

Clipping Operations

Clipping

- Identify those portions of a picture that are either inside or outside a specified region of space.
- Clip window
 - The region against which an object is to be clipped.
- Applications of clipping :extracting part of the defined scene for viewing, identifying visible surfaces in 3d views etc.
- World-coordinate clipping: Clipping algorithm can be applied to the world coordinate, so the contents of the window are mapped to device coordinates.

Clipping Operations

- **☐** Types of clipping
 - Point clipping
 - Line clipping
 - Area (Polygon) clipping
 - Curve clipping
 - Text clipping

Point clipping

Point clipping

- \square Is point (x,y) inside the clip window?
- Considering the clip window is a rectangular window.
- ☐ A point is inside if it satisfies the following inequalities are satisfied
 - $\mathbf{X}\mathbf{W}_{\min} \leq \mathbf{x} \leq \mathbf{X}\mathbf{W}_{\max}$
 - \blacksquare YW_{min} <=y <= YW_{max}
- where the edges of the clip window can be either world coordinate window boundaries or viewport boundaries
- ☐ If any of the inequalities is not satisfied the point is clipped.

Line Clipping

 Possible relationships between line positions and a standard rectangular clipping region

Line Clipping

- Possible relationships
 - Completely inside the clipping window
 - Completely outside the window
 - Partially inside the window
- Parametric representation of a line segment with endpoints (x1,y1) and (x2,y2)

$$x = x_1 + u(x_2 - x_1)$$

 $y = y_1 + u(y_2 - y_1)$ 0<=u<= 1

can be used to determine u for intersections with clipping boundary

- ☐ The value of u for an intersection with a rectangle boundary edge
 - Outside the range 0 to 1, line does not enter the interior of the window at that boundary
 - Within the range from 0 to 1, the line segment crosses the clipping area.