

Compiladores Aula 11

Celso Olivete Júnior

olivete@fct.unesp.br

Análise sintática ascendente analisadores LR

☐ Resposta: reconhecer a cadeia id*id+id

- (1) <E>::=<E>+<T>
- (2) <E>::=<T>
- (3) <T>::=<T>*<F>
- (4) <T>::=<F>
- (5) <F>::=(<E>)
- (6) <F>::=id

Na tabela, tem-se que:

- s_i indica "empilhar i"
- r_i indica "reduzir por regra i"

Exemplo:

s5: significa empilhar e ir para o estado 5r5: significa reduz a produção 5

			Transições						
Estados	id	+	*	()	\$	Е	Т	F
0	s5			s4			1	2	3
1		s6				ОК			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Análise sintática ascendente analisadores LR

Na tabela, tem-se que:

- s, indica "empilhar i"

- r_i indica "reduzir por regra i"

Exemplo:

Ações

s5: significa empilhar e ir para o estado 5

Transicões

r5: significa reduz a produção 5

	Pilha	Cadeia	Regra	
5	0	id*id+id\$		١
				1

			7,	063	- 114					
Estados	id	+	*	()	\$	Е	Т	F	
0	s5			s4			1	2	3	
1		s6				OK				
2		r2	s7		r2	r2				
3		r4	r4		r4	r4				
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4					10	
8		s6			s11			(1)	4Ex.	AES .
9		r1	s7		r1	r1			<e>::= <e>::=</e></e>	
10		r3	r3		r3	r3		(3)	<t>::=</t>	: <t>*</t>
11		r5	r5		r5	r5			<t>::= <f>::=</f></t>	
									<f>::=</f>	

Análise sintática ascendente analisadores LR

Na tabela, tem-se que:

- s, indica "empilhar i"

- r; indica "reduzir por regra i"

Exemplo:

s5: significa empilhar e ir para o estado 5

r5: significa reduz a produção 5

Pilha	Cadeia	Regra
0	id*id+id\$	s5

			Αç	ões			Tra	ansiçĉ	ões	
Estados	id	+	*	()	\$	Е	Т	F	
0	s5			s4			1	2	3	
1		s6				OK				
2		r2	s7		r2	r2				
3		r4	r4		r4	r4				
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4					10	
8		s6			s11			(1)	∠E\ -	: <e>+<t></t></e>
9		r1	s7		r1	r1			<e>::=</e>	
10		r3	r3		r3	r3		(3)	<t>::=</t>	<t>*<f></f></t>
11		r5	r5		r5	r5			<t>::= <f>::=</f></t>	: <f> :(<e>)</e></f>
									<f>::=</f>	

Análise sintática ascendente analisadores LR

Na tabela, tem-se que:

- s, indica "empilhar i"

- r_i indica "reduzir por regra i"

Exemplo:

s5: significa empilhar e ir para o estado 5

(6) <F>::=id

r5: significa reduz a produção 5

- ' i '	muica rea	uzii p	or reg	ji u i	13.	73. significa reduz a produção 3								
				Aç	ões			Tra	nsiçõ					
	Estados	id	+	*	()	\$	Е	Т	F				
	0	s5			s4			1	2	3				
	1		s6				OK							
	2		r2	s7		r2	r2							
	3		r4	r4		r4	r4							
	4	s5			s4			8	2	3				
	5		r6	r6		r6	r6							
	6	s5			s4				9	3				
	7	s5			s4					10				
	8		s6			s11				-				
	9		r1	s7		r1	r1			<e>::= <e>::=</e></e>	<e>+<t> <t></t></t></e>			
	10		r3	r3		r3	r3		(3) <	<t>::=</t>	<t>*<f></f></t>			
	11		r5	r5		r5	r5			<t>::= <f>::=</f></t>				
		_					_		(3)					

Pilha	Cadeia	Regra	
0	id*id+id\$	s5	1
0id5	*id+id\$	r6	
0F3	*id+id\$	r4	
0T2	*id+id\$	s7	
0T2*7	id+id\$	s5	
0T2*7id5	+id\$	r6	
T2*7F <u>10</u>	+id\$	r3	
0T2	+id\$	r2	
0E1	+id\$	s6	
0E1+6	id\$	s5	
0E1+6id5	\$	r6	
0E1+6F3	\$	r4	
0E1+6T9	\$	r1	
0E1	\$	ОК	5

Análise sintática ascendente analisadores LR

- Três técnicas para construir tabelas sintáticas para gramáticas LR
 - Simple LR (SLR)
 - ✓ Mais fácil de implementar, mas o menos poderoso
 - > LR canônico
 - ✓ Mais complexo, mas mais poderoso
 - Look Ahead LR (LALR)
 - √ Complexidade e poder intermediários
- □ Tabelas possivelmente distintas para cada técnica, determinando o poder do analisador

☐ A análise sintática por meio de uma tabela SLR é chamada análise sintática SLR

☐ Uma gramática é SLR se for possível construir uma tabela SLR para ela

- A construção da tabela SLR se baseia no conjunto de itens SLR
 - > Cada conjunto distinto será um estado do analisador
 - Nestes conjuntos, utiliza-se um ponto (.) para indicar quais símbolos já foram analisados
 - > Os conjuntos são criados utilizando duas operações
 - 1. Transição(E,S): esta operação calcula como ficarão as produções do estado E caso o símbolo S seja reconhecido
 - 2. Fechamento(N): esta operação calcula quais produções podem ser alcançadas partindo do símbolo N (não terminal).

Transição(E,S): Dado um conjunto de itens I e um símbolo X, o conjunto transição(I,X) é o conjunto de todos os itens $A \to \alpha X \bullet \beta$ onde $A \to \alpha \bullet X \beta \in I$. Ou seja, o conjunto de todos os itens de I que tinham um ponto antes de X com este ponto passado para depois de X.

 \square Dado o conjunto I_0 , a transição(I_0 ,E) é:

```
\begin{array}{c}
\mathbf{I_0} \\
S \rightarrow \bullet E \\
E \rightarrow \bullet E + T \\
E \rightarrow \bullet T \\
T \rightarrow \bullet T * F \\
T \rightarrow \bullet F \\
F \rightarrow \bullet (E) \\
F \rightarrow \bullet id
\end{array}
```

Transição(E,S): esta operação calcula como ficarão as produções do estado E caso o símbolo S seja reconhecido

```
I_1 = Transição(I_0, E)

S \rightarrow E \bullet

E \rightarrow E \bullet + T
```

No conjunto I_0 os itens (produções) que tem um ponto antes do "E", são repassadas movendo-se o ponto para depois do "E".

- ☐ Fechamento(I): é o conjunto de itens construídos a partir do conjunto I segundo as regras abaixo:
- 1. Todo item ∈ fechamento(I)
- 2. Se A $\rightarrow \alpha \bullet X\beta \in \text{fechamento}(I)$ e $X \rightarrow \gamma$ é produção, então inclui $X \rightarrow \bullet \gamma$ no fechamento(I).

 \square Exemplo: dada a gramática e o conjunto I_0 , o fechamento é dado pelo conjunto I_1

```
S \rightarrow E
E \rightarrow E+T
E \rightarrow T
T \rightarrow T*F
T \rightarrow F
F \rightarrow (E)
F \rightarrow id
```

```
E \rightarrow E + \bullet T
```

```
I_{1} = fechamento(I_{0})
E \rightarrow E + \bullet T
T \rightarrow \bullet T * F
T \rightarrow \bullet F
F \rightarrow \bullet (E)
F \rightarrow \bullet id
```

Fechamento(N): esta operação calcula quais produções podem ser alcançadas partindo do símbolo N (não terminal).

- ☐ Algoritmo para construção do conjunto de itens
 - 1. Acrescentar à gramática a produção S'→S
 (em que S é o símbolo inicial da gramática)
 - 2. computar as funções fechamento e transição para a nova gramática

Função fechamento

- ☐ Seja I um conjunto de itens
 - 1. Todo item em I pertence ao fechamento(I)
- 2. Se A $\rightarrow \alpha$.X β está em fechamento(I) e X $\rightarrow \gamma$ é uma produção, então adiciona-se X $\rightarrow .\gamma$ ao conjunto
- ☐ Em outras palavras
 - ☐ Inicializa-se o conjunto I com as regras iniciais da gramática, colocando-se o indicador (.) no início de cada regra
 - ☐ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

☐ Exemplo

$$S' \rightarrow S$$

 $S \rightarrow a \mid [L]$
 $L \rightarrow L; S \mid S$

- ☐ Inicializa-se o conjunto I com as regras iniciais da gramática, colocando-se o indicador (.) no início de cada regra
- □Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

$$I=\{S\rightarrow[.L]\}$$
 fechamento(I)=

Fechamento(N): esta operação calcula quais produções podem ser alcançadas partindo do símbolo N (não terminal).

Exemplo

$$S' \rightarrow S$$

 $S \rightarrow a \mid [L]$
 $L \rightarrow L; S \mid S$

☐ Inicializa-se o conjunto I com as regras iniciais da gramática, colocando-se o indicador (.) no início de cada regra

□Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

Se não for terminal, deriva

É terminal, não deriva

$$I=\{S\rightarrow[.L]\}$$

fechamento(I)= $\{S\rightarrow[.L], L\rightarrow.L; S, L\rightarrow.S, S\rightarrow.a, S\rightarrow.[L]\}$

É terminal, não deriva

Fechamento(N): esta operação calcula quais produções podem ser alcançadas partindo do símbolo N (não terminal).

☐ Função transição

□ transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

□ Exemplo

$$I=\{S\rightarrow[L.], L\rightarrow L.;S\}$$

transição(I,;)=

$$S' \rightarrow S$$

 $S \rightarrow a \mid [L]$
 $L \rightarrow L; S \mid S$

☐ Função transição

□ transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento*

para o novo conjunto

□ Exemplo

$$I=\{S\rightarrow[L.], L\rightarrow L.;S\}$$

transição(I,;)= $\{L\rightarrow L; S, S\rightarrow a, S\rightarrow .[L]\}$

Como S não é terminal, obtêm-se o Fechamento de S → Adicionar as regras para S

$$S' \rightarrow S$$

$$S \rightarrow a \mid [L]$$

$$L \rightarrow L;S \mid S$$

☐ Função transição

- □ transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto
- □ Exemplo

```
I=\{S\rightarrow[L.], L\rightarrow L.;S\}
```

transição(I,;)= $\{L\rightarrow L; S, S\rightarrow a, S\rightarrow [L]\}$

```
O a é terminal?
- Sim
- Então não tem como obter o fechamento

S' → S
S → a | [L]
L → L;S | S
```


☐ Função transição

- □ transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto
- □ Exemplo

```
I=\{S\rightarrow[L.], L\rightarrow L.;S\}
```

transição(I,;)= $\{L\rightarrow L; S, S\rightarrow .a, S\rightarrow .[L]\}$

O [é terminal?
- Sim
- Então não tem
como obter o
fechamento

$$S' \rightarrow S$$
 $S \rightarrow a \mid [L]$
 $L \rightarrow L;S \mid S$

☐ Algoritmo para obter o conjunto canônico de itens LR(0)

□ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

□transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

□ Exemplo

0)
$$S' \rightarrow S$$

1)
$$S \rightarrow a$$

2) S
$$\rightarrow$$
 [L]

$f \square$ Inicializa-se o	conjunto	I com	as regra	s iniciais	da	gramática,	colocando-se	o indicador	(.)	no	início	de
cada regra												

□ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

□transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

I₀ = {S'→.S, S→.a, S→.[L]}
 transição(I₀,S) = {S'→S.} = I₁

☐ Conjunto de itens

início Fechamento de S

Não tem como obter o fechamento \rightarrow .

0)
$$S' \rightarrow S$$

1)
$$S \rightarrow a$$

2) S
$$\rightarrow$$
 [L]

Em I_o avança o . sobre o S

☐ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

□transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função fechamento para o novo conjunto

Conjunto de itens

0)
$$S' \rightarrow S$$

1)
$$S \rightarrow a$$

2) S
$$\rightarrow$$
 [L]

1.
$$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$$

2. transição(
$$I_0$$
,S) = {S' \rightarrow S.} = I_1
3. transição(I_0 ,a) = {S \rightarrow a.} = I_2

Não tem como obter o fechamento \rightarrow .

Em I_o avança o . sobre o S

☐ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

□transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função fechamento para o novo conjunto

0)
$$S' \rightarrow S$$

1)
$$S \rightarrow a$$

2) S
$$\rightarrow$$
 [L]

3) L
$$\rightarrow$$
L;S

- 1. $I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$
- 2. transição(I_0 ,S) = {S' \Rightarrow S.} = I_1
- 3. transição(I_0 ,a) = {S \rightarrow a.} = I_2 Fechamento de L 4. transição(I_0 ,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

☐ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

 \Box transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

0)
$$S' \rightarrow S$$

1) S
$$\rightarrow$$
 a

2) S
$$\rightarrow$$
 [L]

3) L
$$\rightarrow$$
L;S

1.
$$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$$

2. transição(
$$I_0$$
,S) = {S' \rightarrow S.} = I_1

3. transição(
$$I_0$$
,a) = {S \rightarrow a.} = I_2

4. transição(
$$I_0$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

5. transição(
$$I_3,L$$
) = {S \rightarrow [L.], L \rightarrow L.;S} = I_4

☐ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

 \Box transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

Conjunto de itens

0)
$$S' \rightarrow S$$

1) S
$$\rightarrow$$
 a

2) S
$$\rightarrow$$
 [L]

3) L
$$\rightarrow$$
L;S

1.
$$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$$

2. transição(
$$I_0$$
,S) = {S' \rightarrow S.} = I_1

3. transição(
$$I_0$$
,a) = {S \rightarrow a.} = I_2

4. transição(
$$I_0$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

5. transição(
$$I_3,L$$
) = {S \rightarrow [L.], L \rightarrow L.;S} = I_4

6. transição(
$$I_3$$
,S) = {L \rightarrow S.} = I_5

27

☐ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

 \Box transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

0)
$$S' \rightarrow S$$

1) S
$$\rightarrow$$
 a

2) S
$$\rightarrow$$
 [L]

1.
$$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$$

2. transição(
$$I_0$$
,S) = {S' \rightarrow S.} = I_1

3. transição(
$$I_0$$
,a) = {S \rightarrow a.} = I_2

4. transição(
$$I_0$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

5. transição(
$$I_3,L$$
) = {S \rightarrow [L.], $L\rightarrow$ L.;S} = I_4

6. transição(
$$I_3$$
,S) = {L \rightarrow S.} = I_5

7. transição(
$$I_3$$
,a) = {S \rightarrow a.} = I_2

□ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

 \Box transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

0)
$$S' \rightarrow S$$

1) S
$$\rightarrow$$
 a

2) S
$$\rightarrow$$
 [L]

3) L
$$\rightarrow$$
L;S

1.
$$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$$

2. transição(
$$I_0$$
,S) = {S' \rightarrow S.} = I_1

3. transição(
$$I_0$$
,a) = {S \rightarrow a.} = I_2

4. transição(
$$I_0$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

5. transição(
$$I_3,L$$
) = {S \rightarrow [L.], L \rightarrow L.;S} = I_4

6. transição(
$$I_3$$
,S) = {L \rightarrow S.} = I_5

7. transição(
$$I_3$$
,a) = {S \rightarrow a.} = I_2

8. transição(
$$I_3$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

☐ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

 \Box transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

0)
$$S' \rightarrow S$$

1)
$$S \rightarrow a$$

2) S
$$\rightarrow$$
 [L]

1.
$$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$$

2. transição(
$$I_0$$
,S) = {S' \rightarrow S.} = I_1

3. transição(
$$I_0$$
,a) = {S \rightarrow a.} = I_2

4. transição(
$$I_0$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

5. transição(
$$I_3,L$$
) = {S \rightarrow [L.], L \rightarrow L.;S} = I_4

6. transição(
$$I_3$$
,S) = {L \rightarrow S.} = I_5

7. transição(
$$I_3$$
,a) = {S \rightarrow a.} = I_2

8. transição(
$$I_3$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

9. transição(
$$I_4$$
,]) = {S \rightarrow [L].} = I_6

☐ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

 \Box transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

0)
$$S' \rightarrow S$$

1) S
$$\rightarrow$$
 a

2) S
$$\rightarrow$$
 [L]

3) L
$$\rightarrow$$
L;S

1.
$$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$$

2. transição(
$$I_0$$
,S) = {S' \rightarrow S.} = I_1

3. transição(
$$I_0$$
,a) = {S \rightarrow a.} = I_2

4. transição(
$$I_0$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

5. transição(
$$I_3,L$$
) = {S \rightarrow [L.], L \rightarrow L.;S} = I_4

6. transição(
$$I_3$$
,S) = {L \rightarrow S.} = I_5

7. transição(
$$I_3$$
,a) = {S \rightarrow a.} = I_2

8. transição(
$$I_3$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

9. transição(
$$I_4$$
,]) = {S \rightarrow [L].} = I_6

10. transição(
$$I_4$$
,;) = {L \rightarrow L;.S, S \rightarrow .a, S \rightarrow .[L]} = I_7

☐ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

 \Box transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

0)
$$S' \rightarrow S$$

1) S
$$\rightarrow$$
 a

2) S
$$\rightarrow$$
 [L]

3) L
$$\rightarrow$$
L;S

1.
$$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$$

2. transição(
$$I_0$$
,S) = {S' \rightarrow S.} = I_1

3. transição(
$$I_0$$
,a) = {S \rightarrow a.} = I_2

4. transição(
$$I_0$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

5. transição(
$$I_3,L$$
) = {S \rightarrow [L.], L \rightarrow L.;S} = I_4

6. transição(
$$I_3$$
,S) = {L \rightarrow S.} = I_5

7. transição(
$$I_3$$
,a) = {S \rightarrow a.} = I_2

8. transição(
$$I_3$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

9. transição(
$$I_4$$
,]) = {S \rightarrow [L].} = I_6

10. transição(
$$I_4$$
,;) = {L \rightarrow L;.S, S \rightarrow .a, S \rightarrow .[L]} = I_7

11. transição(
$$I_7$$
,S) = {L \rightarrow L;S.} = I_8

□ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

 \Box transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

0)
$$S' \rightarrow S$$

1)
$$S \rightarrow a$$

2) S
$$\rightarrow$$
 [L]

1.
$$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$$

2. transição(
$$I_0$$
,S) = {S' \rightarrow S.} = I_1

3. transição(
$$I_0$$
,a) = {S \rightarrow a.} = I_2

4. transição(
$$I_0$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

5. transição(
$$I_3,L$$
) = {S \rightarrow [L.], L \rightarrow L.;S} = I_4

6. transição(
$$I_3$$
,S) = {L \rightarrow S.} = I_5

7. transição(
$$I_3$$
,a) = {S \rightarrow a.} = I_2

8. transição(
$$I_3$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

9. transição(
$$I_4$$
,]) = {S \rightarrow [L].} = I_6

10. transição(
$$I_4$$
,;) = {L \rightarrow L;.S, S \rightarrow .a, S \rightarrow .[L]} = I_7

11. transição(
$$I_7$$
,S) = {L \rightarrow L;S.} = I_8

12. transição(
$$I_7$$
,a) = {S \rightarrow a.} = I_2

□ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

 \Box transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

0)
$$S' \rightarrow S$$

1)
$$S \rightarrow a$$

2) S
$$\rightarrow$$
 [L]

1.
$$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$$

2. transição(
$$I_0$$
,S) = {S' \rightarrow S.} = I_1

3. transição(
$$I_0$$
,a) = {S \rightarrow a.} = I_2

4. transição(
$$I_0$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

5. transição(
$$I_3,L$$
) = {S \rightarrow [L.], L \rightarrow L.;S} = I_4

6. transição(
$$I_3$$
,S) = {L \rightarrow S.} = I_5

7. transição(
$$I_3$$
,a) = {S \rightarrow a.} = I_2

8. transição(
$$I_3$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

9. transição(
$$I_4$$
,]) = {S \rightarrow [L].} = I_6

10. transição(
$$I_4$$
,;) = {L \rightarrow L;.S, S \rightarrow .a, S \rightarrow .[L]} = I_7

11. transição(
$$I_7$$
,S) = {L \rightarrow L;S.} = I_8

12. transição(
$$I_7$$
,a) = {S \rightarrow a.} = I_2

13. transição(
$$I_7$$
,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3

Construção da tabela sintática

- \triangleright Seja C={I₀, I₁, ..., I_n}, os estados são 0...n, com 0 sendo o estado inicial
- A linha i da tabela é construída pelo conjunto I_i

✓ Ações na tabela

- ❖ Se transição(I_i ,a)= I_i , então ação[i,a]= s_i
- ❖ Com exceção da regra S'→S adicionada, para todas as outras regras, se A $\rightarrow \alpha$. está em I_i , então, para todo a em **follow**(A), faça ação[i,a]=rn, em que n é o número da produção A $\rightarrow \alpha$.
- ❖ Se S'→S. está em I_i , então faça ação[i,\$]=OK

✓ Transições na tabela

- \bullet Se transição(I_i ,A)= I_j , então transição(i,A)=j
- □ Entradas não definidas indicam erros
- Ações conflitantes indicam que a gramática não é SLR

Construção da tabela sintática

```
0) S' \rightarrow S
1) S \rightarrow a
```

2) S
$$\rightarrow$$
 [L]

```
Follow(S')={$}
Follow(S)=Follow (S') U Follow(L)={$,],;}
Follow(L)={],;}
```

36

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) $S \rightarrow a$
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

Follow(L)={|,;}

- 1. Se transição(I_i ,a)= I_i , então ação[i,a]= s_i
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_i$, então transição(i,A)=j

					Ações		Trans	sições
1. 2.	$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$ $T(I_0,S) = \{S' \rightarrow S.\} = I_1$ regra 1 - transição	Estados	а	[]	;	\$ S	L
3.	$T(I_0,a) = \{S \rightarrow a.\} = I_2$	0					1	
4. 5.	$T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$ $T(I_3,L) = \{S \rightarrow [L.], L \rightarrow L.;S\} = I_4$	1						
6. 7.	$T(I_3,S) = \{L \rightarrow S.\} = I_5$ $T(I_3,a) = \{S \rightarrow a.\} = I_2$	2						
8. 9.	$T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$ $T(I_{A_1}]) = \{S \rightarrow [L].\} = I_6$	3						
10. 11.	$T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$ $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$	4						
12.	$T(I_7,a) = \{S \rightarrow a.\} = I_2$	5						
13.	$T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$	6						
Follow(S')={\$}		7						
	$llow(S)=Follow(S') \cup Follow(L)=\{\$,],;\}$	8						

√Ações na tabela

 $0) S' \rightarrow S$ 1. Se transição(I_i , a)= I_j , então ação[i, a]= s_j

1) S \rightarrow a

2) S \rightarrow [L]

3) L →L;S

4) L →S

Follow(L)={],;}

- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j

					Ações		Trans	ições
1. 2.	$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$ $T(I_0,S) = \{S' \rightarrow S.\} = I_1 $ regra 1	Estados	а	[]	;	\$ S	L
3.	$T(I_0,a) = \{S \rightarrow a.\} = I_2$	0	> s2				1	
4. 5.	$T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$ $T(I_3,L) = \{S \rightarrow [L.], L \rightarrow L.;S\} = I_4$	1						
6. 7.	$T(I_3,S) = \{L \rightarrow S.\} = I_5$ $T(I_3,a) = \{S \rightarrow a.\} = I_2$	2						
8. 9.	$T(I_3,[) = {S \rightarrow [.L], L \rightarrow .L;S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]} = I_3$ $T(I_4,]) = {S \rightarrow [L].} = I_6$	3						
10. 11.	$T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$ $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$	4						
	$T(I_7,a) = \{S \rightarrow a.\} = I_2$	5						
13.	$T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$	6						
Fo	Follow(S')={\$}							
	llow(S)=Follow (S') U Follow(L)={\$,],;}	8						

Compiladores

38

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) $S \rightarrow a$
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição(I_i , a)= I_i , então ação[i, a]= s_i
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.

Compiladores

3. Se S' \rightarrow S. está em I_i , então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_i$, então transição(i,A)=j

1	$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$
1.	I ₀ = {3 7.3, 37.a, 37.[L]}

2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$

regra 1

- 3. $T(I_0,a) = {S \rightarrow a.} = I_2$
- 4. $T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3 \longrightarrow .B$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4, I) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_{A}, j) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}	
<pre>Follow(S)=Follow(S') U Follow(L)={\$,],;</pre>	}
Follow(L)={],;}	

			Transições				
Estados	а]]	;	\$	S	L
0	s2	s3				1	
1							
2							
3							
4							
5							
6							
7							
8							

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) S \rightarrow a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição $(I_i,a)=I_j$, então ação $[i,a]=s_i$
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_i$, então transição(i,A)=j

1.	$I_{\alpha} = \{$	$S' \rightarrow .S$	S→.a.	$S \rightarrow .[L]$
- .	יט ני	J 7.J,	, J , .u,	J / .[[-]]

- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$
- 4. $T(I_{0},[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$ regra 1
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_{A}, j) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}
Follow(S)=Follow(S') U Follow(L)={\$,],;}
Follow(L)={],;}

			Transições				
Estados	а	[]	;	\$	S	L
0	s2	s3				1	
1							
2							
3							4
4							
5							
6							
7							
8							

√Ações na tabela

- $0) S' \rightarrow S$
- 1) S \rightarrow a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição $(I_i,a)=I_j$, então ação $[i,a]=s_j$
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i , então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j

1	1 - 1	[S' → .S,	$c \Delta_{a}$	C- 2	۲ı ۱۱
1.	ı _∩ – ነ	رد. <i>ح</i> ر	, 3 🗾 .a	, S 🔰 .	[∟]∫

- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$
- 4. $T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L.], L \rightarrow L.; S\} = I_4$ regra 1
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}	
Follow(S)=Follow(S') U Follow(L)={\$,],;}
Follow(L)={],;}	

			Transições				
Estados	а	[]	;	\$	S	L
0	s2	s3				1	
1							
2							
3						5	4
4							
5							
6							
7							
8							

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) S \rightarrow a
- 2) S →[L]
- 3) L →L;S
- 4) L →S

- 1. Se transição $(I_i,a)=I_j$, então ação $[i,a]=s_j$
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j

1	I. = ·	$\{\varsigma' \rightarrow \varsigma$	$S \rightarrow a$	S→.[L]}
Ι.	יח —	[] / .]	, J / .u,	J / .[L]]

- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$
- 4. $T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$ regra 1
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4, :) = \{L \rightarrow L; .S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_{7},[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_{3}$

Follow (S')={\$}	
Follow(S)=Follow (S') \cup Follow(L)={\$,]	;;}
Follow(L)={],;}	

			Transições				
Estados	а	[]	;	\$	S	L
0	s2	s3				1	
1							
2							
3	s2					5	4
4							
5							
6							
7							
8							

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) S \rightarrow a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição $(I_i,a)=I_i$, então ação $[i,a]=s_i$
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_i$, então transição(i,A)=j

1.	$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$
2.	$T(I_0,S) = \{S' \rightarrow S.\} = I_1$
3.	$T(I_0,a) = \{S \rightarrow a.\} = I_2$
4.	$T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
5.	$T(I_3,L) = \{S \rightarrow [L.], L \rightarrow L.;S\} = I_4$
6.	$T(I_3,S) = \{L \rightarrow S.\} = I_5$
7.	$T(I_3,a) = \{S \rightarrow a.\} = I_2$ regra 1
8.	$T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
9.	$T(I_4,]) = \{S \rightarrow [L].\} = I_6$
10.	$T(I_4,;) = \{L \rightarrow L;.S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
11.	$T(I_{7},S) = \{L \rightarrow L;S.\} = I_{8}$
12.	$T(I_7,a) = \{S \rightarrow a.\} = I_2$
13.	$T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

	ESTAGOS	а	[]	;	\$ S	L	
	0	s2	s3			1		
	1							
	2							
	3	s2	s3			5	4	
	4							
	5							
	6							
1	7							
	8							
ı.								

Ações

Follow(S')={\$}
Follow(S)=Follow (S') U Follow(L)={\$,],;}
Follow(L)={],;}

Transições

√Ações na tabela

- 0) S' → S
- 1) $S \rightarrow a$
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição(I_i ,a)= I_i , então ação[i,a]= s_i
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.

Compiladores

3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_i$, então transição(i,A)=j

1	1 - 1	(c/\rightarrow c	$c \leftarrow 2$	S→.[L]}
1.	I ₀ = 1	∖o →.o,	. ⊃ ∵ .a,	37.[L]}

- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$
- 4. $T(I_{0},[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$ regra 1
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4, I) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_{7},[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_{3}$

Follow (S')={\$}	
Follow(S)=Follow (S') \cup Follow(L)={\$,],;}	}
Follow(L)={],;}	

			Transições				
Estados	а]]	;	\$	S	L
0	s2	s3				1	
1							
2							
3	s2	s3				5	4
4			s6				
5							
6							
7							
8							

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) S \rightarrow a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição(I_i ,a)= I_i , então ação[i,a]= s_i
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_i$, então transição(i,A)=j

1.	$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$
Τ.	

- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$
- 4. $T(I_{0},[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$ regra 1
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4, :) = \{L \rightarrow L; .S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}	
Follow(S)=Follow(S') U Follow(L)={\$,],;	}
Follow(L)={],;}	

	Ações					Ações Transiçõ	
Estados	а	[]	;	\$	S	L
0	s2	s3				1	
1							
2							
3	s2	s3				5	4
4			s6	s7			
5							
6							
7							
8							

√Ações na tabela

- 0) S' → S
- 1) S → a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição(I_i , a)= I_i , então ação[i, a]= s_i
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i , então faça ação[i,\$]=OK

√Transições(T) na tabela

- 1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j
- 1. $I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$
- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$
- 4. $T(I_{0},[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$
- 6. $T(I_2,S) = \{L \rightarrow S.\} = I_S$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$ regra 1
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}	
Follow(S)=Follow (S') \cup Follow(L)={\$,],;}	}
Follow(L)={],;}	

			Transições				
Estados	а]]	;	\$	S	_
0	s2	s3				1	
1							
2							
3	s2	s3				5	4
4			s6	s7			
5							
6							
7						> 8	
8							

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) S → a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição $(I_i,a)=I_i$, então ação $[i,a]=s_i$
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i , então faça ação[i,\$]=OK

√Transições(T) na tabela

- 1. Se transição $(I_i,A)=I_i$, então transição(i,A)=j
- 1. $I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$
- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$
- 4. $T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$ regra 1
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4, I) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4, :) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

			Trans	sições				
Estados	а	[]	;	\$	S	L	
0	s2	s3				1		
1								
2								
3	s2	s3				5	4	
4			s6	s7				
5								
6								
7	s2					8		
8								

Follow(S')={\$}
Follow(S)=Follow (S') U Follow(L)={\$,],;}
Follow(L)={],;}

√Ações na tabela

- $0) S' \rightarrow S$
- 1) S \rightarrow a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição $(I_i,a)=I_j$, então ação $[i,a]=s_i$
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

- 1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j
- 1. $I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$
- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$
- 4. $T(I_{0},[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$ regra 1
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}
Follow(S)=Follow(S') U Follow(L)={\$,],;}
Follow(L)={],;}

			Trans	sições			
Estados	а	[]	;	\$	S	L
0	s2	s3				1	
1							
2							
3	s2	s3				5	4
4			s6	s7			
5							
6							
7	s2	s3				8	
8							

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) S \rightarrow a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição $(I_i,a)=I_j$, então ação $[i,a]=s_i$
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.

Compiladores

3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_i$, então transição(i,A)=j

1.	1 = {	$c' \rightarrow c$	$\varsigma \rightarrow a$	$S \rightarrow .[L]$
т.	ו – חי	J /.J	, J / .a,	,

- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$ regra 2
- 4. $T(I_{0},[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L.], L \rightarrow L.; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}	
Follow(S)=Follow(S') U	Follow (L)={\$,],;}
Follow (L)={],;}	

	Ações						ições	
Estados	а]]	;	\$	S	L	
0	s2	s3				1		
1								
2				7	; r1			
3	s2	s3				5	4	
4			s6	s7				
5								
6								
7	s2	s3				8		
8								

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) S → a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição(I_i , a)= I_i , então ação[i, a]= s_i
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.

Compiladores

3. Se S' \rightarrow S. está em I_i , então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_i$, então transição(i,A)=j

1. $I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .a, S \rightarrow .a \}$	•.[L]}
---	--------

- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$ regra 2
- 4. $T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow [L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L.], L \rightarrow L.; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4, I) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4, :) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = {S \rightarrow a.} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}	
Follow (S)= Follow (S') U Follow (L)={\$,],;}
Follow(L)={],;}	

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) S \rightarrow a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição(I_i ,a)= I_i , então ação[i,a]= s_i
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.

Compiladores

3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j

1. $I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .a, S \rightarrow .a \}$	•.[L]}
---	--------

- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$ regra 2
- 4. $T(I_{0},[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow [L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L.], L \rightarrow L.; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_{A}, j) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}	
Follow(S)=Follow (S') U Follow(L)={\$,],;	}
Follow(L)={],;}	

	Ações						ições	
Estados	а	[1	;	\$	S	L	
0	s2	s3				1		
1								
2			r1	r1	r1			
3	s2	s3				5	4	
4			s6	s7				
5								
6								
7	s2	s3				8		
8								

√Ações na tabela

- 0) $S' \rightarrow S$ 1. Se transição(I_i , a)= I_j , então ação[i, a]= S_j
 - 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
 - 3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j

- 1. $I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$
- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$

1) S \rightarrow a

2) S \rightarrow [L]

3) L →L;S

4) L →S

- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$ regra 2
- 4. $T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L.], L \rightarrow L.; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}	
Follow(S)=Follow (S')	U Follow (L)={\$,],;}
Follow(L)={],;}	

			Ações			Transições			
Estados	а	ш]	;	\$	S	٦		
0	s2	s3				1			
1									
2			r1	r1	r1				
3	s2	s3				5	4		
4			s6	s7					
5			r4						
6									
7	s2	s3				8			
8									

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) S → a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição(I_i ,a)= I_i , então ação[i,a]= s_i
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j

1.	1 = {	$c' \rightarrow c$	$\varsigma \rightarrow a$	$S \rightarrow .[L]$
т.	ו – חי	J /.J	, J / .a,	,

- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_{0},a) = \{S \rightarrow a.\} = I_{2}$ regra 2
- 4. $T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L.], L \rightarrow L.; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} L$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_{4}, :) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_{7}$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}	
Follow(S)=Follow(S')	U Follow (L)={\$,],;}
Follow(L)={],;}	

			Transições				
Estados	а	[1	;	\$	S	L
0	s2	s3				1	
1							
2			r1	r1	r1		
3	s2	s3				5	4
4			s6	s7			
5			r4	r4			
6							
7	s2	s3				8	
8							

—— √Ações na tabela

0)
$$S' \rightarrow S$$

1) S
$$\rightarrow$$
 a

2) S
$$\rightarrow$$
 [L]

- 1. Se transição(I_i , a)= I_i , então ação[i, a]= s_i
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j

1	1 - 1	[S' → .S,	$c \Delta_{a}$	C- 2	۲ı ۱۱
1.	ı _∩ – ነ	رد. <i>ح</i> ر	, 3 🗾 .a	, S 🔰 .	[∟]∫

2.
$$T(I_0,S) = \{S' \rightarrow S.\} = I_1$$

3.
$$T(I_0,a) = \{S \rightarrow a.\} = I_2$$
 regra 2

4.
$$T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$$

5.
$$T(I_3,L) = \{S \rightarrow [L.], L \rightarrow L.; S\} = I_4$$

6.
$$T(I_2,S) = \{L \rightarrow S.\} = I_S$$

7.
$$T(I_3,a) = \{S \rightarrow a.\} = I_2$$

8.
$$T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$$

9.
$$T(I_4,]) = \{S \rightarrow [L].\} = I_6$$

10.
$$T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} - I_7$$

11.
$$T(I_7,S) = \{L \rightarrow L; S.\} = I_8$$

12.
$$T(I_7,a) = \{S \rightarrow a.\} = I_2$$

13.
$$T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$$

Follow(S')={\$}	
Follow(S)=Follow(S') U Follow(L)={\$,],;}	}
Follow(L)={],;}	

			Transições				
Estados	а	[]	;	\$	S	L
0	s2	s3				1	
1							
2			r1	r1	r1		
3	s2	s3				5	4
4			s6	s7			
7			r4	r4			
6				r2			
7	<u>s2</u>	53				8	
8							

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) S \rightarrow a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição(I_i , a)= I_i , então ação[i, a]= s_i
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.

Compiladores

3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

- 1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j
- 1. $I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$
- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$ regra 2
- 4. $T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}	
Follow(S)=Follow (S') U Follow(L)={\$,],;	}
Follow(L)={],;}	

	Ações						sições
Estados	а	Γ]	;	\$	S	L
0	s2	s3				1	
1							
2			r1	r1	r1		
3	s2	s3				5	4
4			s6	s7			
5			r4	r4			
6				r2	r2		
7	<u>s2</u>	53				8	
8							

— √Ações na tabela

0)
$$S' \rightarrow S$$

1) S
$$\rightarrow$$
 a

2) S
$$\rightarrow$$
 [L]

- 1. Se transição(I_i ,a)= I_i , então ação[i,a]= s_i
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.

Compiladores

3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_i$, então transição(i,A)=j

4		C/ \ C	c \ -	c > [1]]
1.	$I_0 = \{$	S 7.S,	S→.a,	S→.[L]}

2.
$$T(I_0,S) = \{S' \rightarrow S.\} = I_1$$

3.
$$T(I_0,a) = \{S \rightarrow a.\} = I_2$$
 regra 2

4.
$$T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$$

5.
$$T(I_3,L) = \{S \rightarrow [L.], L \rightarrow L.; S\} = I_4$$

6.
$$T(I_3,S) = \{L \rightarrow S.\} = I_5$$

7.
$$T(I_3,a) = \{S \rightarrow a.\} = I_2$$

8.
$$T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$$

9.
$$T(I_4,]) = \{S \rightarrow [L].\} = I_6$$

10.
$$T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} - I_7$$

11.
$$T(I_7,S) = \{L \rightarrow L; S.\} = I_8$$

12.
$$T(I_7,a) = \{S \rightarrow a.\} = I_2$$

13.
$$T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$$

Follow (S')={\$}
Follow(S)=Follow(S') U Follow(L)={\$,],;}
Follow(L)={],;}

			Ações			Transições		
Estados	а	_]	;	\$	S	L	
0	s2	s3				1		
1								
2			r1	r1	r1			
3	s2	s3				5	4	
4			s6	s7				
5			r4	r4				
6			r2	r2	r2			
7	52	s3				8		
8								

56

√Ações na tabela

- 0) S' → S
- 1) $S \rightarrow a$
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição $(I_i,a)=I_j$, então ação $[i,a]=s_i$
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.

a

Estados

3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j

4		C/ \ C	c \ -	c > [1]]
1.	$I_0 = \{$	S 7.S,	S→.a,	S→.[L]}

- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$ regra 2
- 4. $T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4, :) = \{L \rightarrow L; .S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} =$

: I ₃	0	s2	s3				1		
'3	1								
	2			r1	r1	r1			
: I ₃	3	s2	s3				5	4	
	4			s6	s7				
	5			r4	r4				
- J ₂	6			r2	r2	r2			
	7	s 2	53				8		
	8				r 3				

Acões

Follow(S')={\$}
Follow(S)=Follow (S') U Follow(L)={\$,],;}
Follow(L)={],;}

Transições

S

\$

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) S \rightarrow a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição(I_i ,a)= I_i , então ação[i,a]= s_i
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i , então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_i$, então transição(i,A)=j

1	1 - 1	(c/\rightarrow c	$c \leftarrow 2$	S→.[L]}
1.	I ₀ = 1	∖o →.o,	. ⊃ ∵ .a,	37.[L]}

- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$ regra 2
- 4. $T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

			Transições						
Estados	а	[]	;	\$	S	L		
0	s2	s3				1			
1									
2			r1	r1	r1				
3	s2	s3				5	4		
4			s6	s7					
5			r4	r4					
6			r2	r2	r2				
7	52	s3				8			
8		\rightarrow	r3	r3					

Follow(S')={\$}
Follow(S)=Follow (S') U Follow(L)={\$,],;}
Follow(L)={],;}

Compiladores

√Ações na tabela

- 0) $S' \rightarrow S$
- 1) S \rightarrow a
- 2) S \rightarrow [L]
- 3) L →L;S
- 4) L →S

- 1. Se transição $(I_i,a)=I_i$, então ação $[i,a]=s_i$
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i, então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_i$, então transição(i,A)=j

4	1 (0/) 0 0) - 0 > 1	11
1.	$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[I]$	∟]}

- 2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$ regra 3
- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$
- 4. $T(I_0,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}
Follow(S)=Follow(S') U Follow(L)={\$,],;}
Follow(L)={],;}

			Ações			Transições				
Estados	а	[]	;	\$	S	L			
0	s2	s3				1				
1					ok					
2			r1	r1	r1					
3	s2	s3				5	4			
4			s6	s7						
5			r4	r4						
6			r2	r2	r2					
7	s2	s3				8				
8			r3	r3						

√Ações na tabela

- 0) $S' \rightarrow S$ 1. Se transição(I_i , a)= I_j , então ação[i, a]= s_j
 - 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i , então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
 - 3. Se S' \rightarrow S. está em I_i , então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j

1.
$$I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}$$

2. $T(I_0,S) = \{S' \rightarrow S.\} = I_1$

1) S \rightarrow a

2) S \rightarrow [L]

3) L →L;S

4) L →S

- 3. $T(I_0,a) = \{S \rightarrow a.\} = I_2$
- 4. $T(I_{0},[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 5. $T(I_3,L) = \{S \rightarrow [L], L \rightarrow L; S\} = I_4$
- 6. $T(I_3,S) = \{L \rightarrow S.\} = I_5$
- 7. $T(I_3,a) = \{S \rightarrow a.\} = I_2$
- 8. $T(I_3,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$
- 9. $T(I_4,]) = \{S \rightarrow [L].\} = I_6$
- 10. $T(I_4,;) = \{L \rightarrow L; S, S \rightarrow .a, S \rightarrow .[L]\} = I_7$
- 11. $T(I_7,S) = \{L \rightarrow L; S.\} = I_8$
- 12. $T(I_7,a) = \{S \rightarrow a.\} = I_2$
- 13. $T(I_7,[) = \{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\} = I_3$

Follow (S')={\$}	
Follow(S)=Follow (S') U Follow(L)={\$,],;}	}
Follow(L)={],;}	

			Transições				
Estados	а	[]	;	\$	S	L
0	s2	s3				1	
1					ok		
2			r1	r1	r1		
3	s2	s3				5	4
4			s6	s7			
5			r4	r4			
6			r2	r2	r2		
7	s2	s3				8	
8			r3	r3			

Construir a tabela de análise sintática para a gramática abaixo

```
(1) E \rightarrow E+T
```

$$(2) E \rightarrow T$$

(3) T
$$\rightarrow$$
 T*F

$$(4) T \rightarrow F$$

$$(5) F \rightarrow (E)$$

(6)
$$F \rightarrow id$$

Gramática

$$(0) S \rightarrow E$$

(1)
$$E \rightarrow E+T$$

(2)
$$E \rightarrow T$$

(3) T
$$\rightarrow$$
 T*F

$$(4) T \rightarrow F$$

$$(5) F \rightarrow (E)$$

(6)
$$F \rightarrow id$$

Gramática aumentada

Conjuntos de Follows

- ☐ Inicializa-se o conjunto I com as regras iniciais da gramática, colocando-se o indicador (.) no início de cada regra
- □ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

□transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função *fechamento* para o novo conjunto

☐ Conjunto de itens

```
(0) S \rightarrow E
```

(1)
$$E \rightarrow E+T$$

(2)
$$E \rightarrow T$$

$$(3) T \rightarrow T*F$$

$$(4) T \rightarrow F$$

$$(5) F \rightarrow (E)$$

(6)
$$F \rightarrow id$$

$$\begin{split} &I_0 = \{S \rightarrow .E, E \rightarrow .E+T, E \rightarrow .T, T \rightarrow .T*F, T \rightarrow .F, F \rightarrow .(E), F \rightarrow .id\} \\ & transição(I_0,E) = \{S \rightarrow E., E \rightarrow E.+T\} = I_1 \\ & transição(I_0,T) = \{E \rightarrow T., T \rightarrow T.*F\} = I_2 \\ & transição(I_0,F) = \{T \rightarrow F.\} = I_3 \\ & transição(I_0,()) = \{F \rightarrow (.E), E \rightarrow .E+T, E \rightarrow .T, T \rightarrow .T*F, T \rightarrow .F, F \rightarrow .(E), F \rightarrow .id\} = I_4 \\ & transição(I_0,id) = \{F \rightarrow id.\} = I_5 \\ & transição(I_1,+) = \{E \rightarrow E+.T, T \rightarrow .T*F, T \rightarrow .F, F \rightarrow .(E), F \rightarrow .id\} = I_6 \\ & transição(I_2,*) = \{T \rightarrow T*.F, F \rightarrow .(E), F \rightarrow .id\} = I_7 \\ & transição(I_4,E) = \{F \rightarrow (E.), E \rightarrow E.+T\} = I_8 \\ & transição(I_4,T) = \{E \rightarrow T., T \rightarrow T.*F\} = I_2 \\ & transição(I_4,F) = \{T \rightarrow F.\} = I_3 \\ & transição(I_4,F) = \{T \rightarrow F.\} = I_3 \\ & transição(I_4,F) = \{F \rightarrow (.E), E \rightarrow E.+T, E \rightarrow .T, T \rightarrow T.*F, T \rightarrow .F, F \rightarrow .(E), F \rightarrow .id\} = I_4 \\ \end{split}$$

- ☐ Inicializa-se o conjunto I com as regras iniciais da gramática, colocando-se o indicador (.) no início de cada regra
- □ Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem

precedidos pelo indicador (.)

□transição(I,X): consiste avan transição(I_0,T) = {E \rightarrow T.,T \rightarrow T correspondentes em I e calcula transição(I_0,F) = {T \rightarrow F.} = I_3

□ Conjunto de itens

```
(0) S \rightarrow E
```

(1) $E \rightarrow E+T$

(2) E \rightarrow T

(3) T \rightarrow T*F

 $(4) T \rightarrow F$

 $(5) F \rightarrow (E)$

(6) $F \rightarrow id$

Follow(S)={\$}
Follow(E)={\$,+,)}
Follow(T)={\$,+,),*}
Follow(F)={\$,+,),*}

```
I_0 = \{S \rightarrow .E, E \rightarrow .E+T, E \rightarrow .T, T \rightarrow .T*F, T \rightarrow .F, F \rightarrow .(E), F \rightarrow .id\}
transição(I_0,E) = {S\rightarrowE.,E\rightarrowE.+T} = I_1
transição(I_0,T) = {E\rightarrowT.,T\rightarrowT.*F} = I_2
transição(I_0,() = {F\rightarrow(.E), E\rightarrow.E+T,E\rightarrow.T, T\rightarrow.T*F, T\rightarrow.F, F\rightarrow.(E),F\rightarrow.id} = I_A
transição(I_0,id) = {F\rightarrowid.} = I_E
transição(I_1,+) = {E\rightarrowE+.T, T\rightarrow.T*F, T\rightarrow.F, F\rightarrow.(E),F\rightarrow.id } = I_c
transição(I_2,*) = {T\rightarrowT*.F, F\rightarrow.(E), F\rightarrow.id} = I_7
transição(I_A,E) = {F\rightarrow(E.), E\rightarrowE.+T} = I<sub>o</sub>
transição(I_4,T) = {E\rightarrowT., T\rightarrowT.*F} = I_2
transição(I_4,id) = {F\rightarrowid.} = I_5
transição(I_4,F) = {T\rightarrow F.} = I_2
transição(I_{A},() = {F\rightarrow(.E), E\rightarrowE.+T,E\rightarrow.T, T\rightarrowT.*F, T\rightarrow.F, F\rightarrow.(E),F\rightarrow.id} = I_{A}
transição(I_6,T) = {E\rightarrowE+T., T\rightarrowT.*F} = I_6
transição(I_6,F) = {T\rightarrowF.} = I_3
transição(I_6,() = {F\rightarrow(.E), E\rightarrowE.+T,E\rightarrow.T, T\rightarrowT.*F, T\rightarrow.F, F\rightarrow.(E),F\rightarrow.id} = I_A
transição(I_6,id) = {F\rightarrowid.} = I_5
transição(I_7,F) = {T\rightarrowT*F.} = I_{10}
transição(I_{7},() = {F\rightarrow(.E), E\rightarrowE.+T,E\rightarrow.T, T\rightarrowT.*F, T\rightarrow.F, F\rightarrow.(E),F\rightarrow.id} = I_A
transição(I_7,id) = {F\rightarrowid.} = I_5
transição(I_{s},)) = {F\rightarrow(E).} = I_{11}
transição(I_{o},+) = {E\rightarrowE+.T, T\rightarrow.T*F, T\rightarrow.F, F\rightarrow.(E),F\rightarrow.id } = I_{o}
transição(I_9,*) = {T\rightarrowT*.F, F\rightarrow.(E),F\rightarrow.id } = I_7
```

(0) S→ E ✓ Ações na tabela

(1) $E \rightarrow E+T$

(3) T \rightarrow T*F

(2) $E \rightarrow T$

 $(4) T \rightarrow F$

 $(5) F \rightarrow (E)$

(6) $F \rightarrow id$

- 1. Se transição $(I_i,a)=I_j$, então ação $[i,a]=s_j$
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se A $\rightarrow \alpha$. está em I_i, então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção A $\rightarrow \alpha$.

64

3. Se S' \rightarrow S. está em I_i , então faça ação[i,\$]=OK

√Transições(T) na tabela

Follow(T)= $\{\$,+,),*\}$ Follow(F)= $\{\$,+,),*\}$

1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j

	Estados	Ações								ões
$I_0 = \{S \rightarrow .E, E \rightarrow .E+T, E \rightarrow .T, T \rightarrow .T*F, T \rightarrow .F, F \rightarrow .(E), F \rightarrow .id\}$	Estados	id	+	*	()	\$	Е	Т	F
$Tr_{-}(I_0,E) = \{S \rightarrow E, E \rightarrow E, +T\} = I_1$	0	s5			s4		\Rightarrow	1	2	3
$Tr_{(I_0,T)} = \{E \rightarrow \underline{T}, T \rightarrow T.*F\} = I_2$ regra 3 $Tr_{(I_0,F)} = \{T \rightarrow F.\} = I_3$	1		s6				ОК			
$Tr_{(l_0,(l))} = \{F \rightarrow (.E), E \rightarrow .E + T, E \rightarrow .T, T \rightarrow .T * F, T \rightarrow .F, F \rightarrow .(E), F \rightarrow .id\} = I_4$	2	\rightarrow	r2	s7		r2	r2			
$Tr_{(l_0,id)} = \{F \rightarrow id.\} = l_5$ $Tr_{(l_1,+)} = \{E \rightarrow E+.T, T \rightarrow .T*F, T \rightarrow .F, F \rightarrow .(E), F \rightarrow .id\} = l_6$	3		r4	r4		r4	r4			
$Tr_{(l_2,*)} = \{T \rightarrow T^*.F, F \rightarrow .(E), F \rightarrow .id\} = I_7$	4	s5			s4			8	2	3
$\operatorname{Tr}_{-}(I_4,E) = \{F \rightarrow (E.), E \rightarrow E.+T\} = I_8$	5									
$Tr_{-}(I_{4},T) = \{E \rightarrow T, T \rightarrow T, *F\} = I_{2}$ $Tr_{-}(I_{4},T) = \{E \rightarrow T, T \rightarrow T, *F\} = I_{2}$	6									
$Tr_{I_4}(I_4, id) = \{F \rightarrow id.\} = I_5$ $Tr_{I_4}(I_4, F) = \{T \rightarrow F.\} = I_3$	7									
$Tr_{(I_4,())} = \{F \rightarrow (.E), E \rightarrow E.+T, E \rightarrow .T, T \rightarrow T.*F, T \rightarrow .F, F \rightarrow .(E), F \rightarrow .id\} = I_4$	8									
	9									
	10									
$Follow(S)=\{\$\} Follow(E)=\{\$,+,\}\}$	11									

Compiladores

(0) S→ E ✓ Ações na tabela

(1) $E \rightarrow E+T$

(3) T \rightarrow T*F

(2) $E \rightarrow T$

 $(4) T \rightarrow F$

 $(5) F \rightarrow (E)$

(6) $F \rightarrow id$

- 1. Se transição $(I_i,a)=I_j$, então ação $[i,a]=s_j$
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se A $\rightarrow \alpha$. está em I_i, então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção A $\rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i , então faça ação[i,\$]=OK

√Transições(T) na tabela

Follow(T)= $\{\$,+,\}$ * Follow(F)= $\{\$,+,\}$ *

1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j

Estados	Ações Estados								Transições			
	id	+	*	()	\$	Е	Т	F			
0	c5			c/l			1	2	3			
U	33			34			_	2	3			
1		s6				OK						
2		r2	s7		r2	r2						
3	\rightarrow	r4	r4		r4	r4						
1				c /1			0	2	3			
4	55			54			٥	2	3			
5												
6												
7												
0												
8												
9												
10												
11												
	3 4 5 6 7 8 9	id 0 s5 1 2 3 4 4 s5 5 6 7 8 9 10	id + 0 s5 1 s6 2 r2 3 r4 4 s5 5 6 7 8 9 10	id + 0 s5 1 s6 2 r2 s7 3 r4 r4 4 s5 5 6 7 8 9 10	id + * (0 s5 s4 1 s6 2 r2 s7 3 r4 r4 4 s5 s4 5 s4 6 7 8 9 10	id + * () 0 s5 s4 1 s6 <t< td=""><td>id + * () \$ 0 s5 s4 OK 1 s6 OK 2 r2 s7 r2 r2 3 r4 r4 r4 r4 r4 5 s4 s4 s4 5 s4 s4 s4 9 s4 s4 s4 10 s4 s4 s4</td><td>id + * () \$ E 0 s5 s4 1 1 s6 OK 2 r2 s7 r2 r2 3 r4 r4 r4 r4 r4 4 s5 s4 8 5 6 7 8 9 10 10 10</td><td>id + * () \$ E T 0 s5 s4 1 2 1 s6 OK OK OK 2 r2 s7 r2 r2 r2 3 r4 r4 r4 r4 r4 r4 s4 8 2 5 6 7 7 7 7 8 9 <</td></t<>	id + * () \$ 0 s5 s4 OK 1 s6 OK 2 r2 s7 r2 r2 3 r4 r4 r4 r4 r4 5 s4 s4 s4 5 s4 s4 s4 9 s4 s4 s4 10 s4 s4 s4	id + * () \$ E 0 s5 s4 1 1 s6 OK 2 r2 s7 r2 r2 3 r4 r4 r4 r4 r4 4 s5 s4 8 5 6 7 8 9 10 10 10	id + * () \$ E T 0 s5 s4 1 2 1 s6 OK OK OK 2 r2 s7 r2 r2 r2 3 r4 r4 r4 r4 r4 r4 s4 8 2 5 6 7 7 7 7 8 9 <			

Compiladores

65

ightharpoonupSeja C={ I_0 , I_1 , ..., I_n }, os estados são 0...n, com 0 sendo o estado inicial ightharpoonupA linha i da tabela é construída pelo conjunto I_i

(0) $S \rightarrow E$ (1) $E \rightarrow E+T$ (2) $E \rightarrow T$ (3) $T \rightarrow T*F$ (4) $T \rightarrow F$

 $(5) F \rightarrow (E)$

(6) $F \rightarrow id$

√Ações na tabela

- 1. Se transição $(I_i,a)=I_j$, então ação $[i,a]=s_j$
- 2. Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se A $\rightarrow \alpha$. está em I_i, então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção A $\rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i , então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição $(I_i,A)=I_j$, então transição(i,A)=j

$Tr_{(I_6,T)} = \{E \rightarrow E+T., T \rightarrow T.*F\} = I_9$
$Tr_{(l_6,F)} = \{T \rightarrow F.\} = l_3$
$Tr_{(l_6,l)} = \{F \rightarrow (.E), E \rightarrow E.+T,E \rightarrow .T, T \rightarrow T.*F, T \rightarrow .F, F \rightarrow .(E),F \rightarrow .id\} = l_4$
$Tr_{(l_6,id)} = \{F \rightarrow id.\} = l_5$
$Tr_{(17,F)} = \{T \rightarrow T*F.\} = I_{10}$
$Tr_{(1_7,(1))} = \{F \rightarrow (.E), E \rightarrow E.+T,E \rightarrow .T, T \rightarrow T.*F, T \rightarrow .F, F \rightarrow .(E),F \rightarrow .id\} = I_4$
$Tr_{I_7}(I_7,id) = \{F \rightarrow id.\} = I_5$
$Tr_{(1_8,1)} = \{F \rightarrow (E).\} = I_{11}$
$Tr_{(1_9,*)} = \{T \rightarrow T^*.F, F \rightarrow .(E), F \rightarrow .id\} = I_7$

Follow(S)={\$} Follow(E)={\$,+,)}
Follow(T)={\$,+,),*} Follow(F)={\$,+,),*}

Estados	Ações						Transições		
2514405	id	+	*	()	\$	Е	Т	F
0	s5			s4			1	2	3
1		s6				ОК			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Reconhecer a cadeia id*(id+id)

Pilha	Cadeia	Regra
	id*(id+id)\$	

☐ **Exercício**: construir o conjunto de itens para a gramática abaixo

```
S \rightarrow \text{if E then C | C}
E \rightarrow a
C \rightarrow b
```


 \square Passo 1: adicionar a regra S' \rightarrow S

```
S' \rightarrow S
S \rightarrow \text{ if E then C}
S \rightarrow C
E \rightarrow a
C \rightarrow b
```


□ Passo 2: construir o conjunto de itens

- 0) $S' \rightarrow S$
- 1) $S \rightarrow if E then C$
- 2) $S \rightarrow C$
- 3) $E \rightarrow a$
- 4) $C \rightarrow b$

Passo 2: construir o conjunto de itens

0)
$$S' \rightarrow S$$

1)
$$S \rightarrow if E then C$$

2)
$$S \rightarrow C$$

3)
$$E \rightarrow a$$

4)
$$C \rightarrow b$$

1.
$$I_0 = \{S' \rightarrow .S, S \rightarrow .if E \text{ then C, } S \rightarrow .C, C \rightarrow .b\}$$

2.
$$t(I_0,S) = \{S' \rightarrow S.\} = I_1$$

3.
$$t(I_0,if) = \{S \rightarrow if .E then C, E \rightarrow .a\} = I_2$$

4.
$$t(I_0,C) = \{S \rightarrow C.\} = I_3$$

5.
$$t(I_0,b) = \{C \rightarrow b.\} = I_4$$

6.
$$t(I_2,E) = \{S \rightarrow \text{if } E \text{ .then } C\} = I_5$$

7.
$$t(I_2,a) = \{E \rightarrow a.\} = I_6$$

8.
$$t(I_5, then) = \{S \rightarrow if E then .C, C \rightarrow .b\} = I_7$$

9.
$$t(I_7,C) = \{S \rightarrow \text{ if E then C.}\} = I_8$$

10.
$$t(I_7,b) = \{C \rightarrow b.\} = I_4$$

Passo 3: construir a tabela sintática: obter os

Follows

```
0) S' \rightarrow S
```

1) $S \rightarrow if E then C$

2) $S \rightarrow C$

3) $E \rightarrow a$

4) $C \rightarrow b$

Follow(S')={\$}

Follow(S)=**Follow** (S')={\$}

Follow(E)={then}

Follow(C)=Follow(S)={\$}

√Ações na tabela

- 1. Se transição(I_i ,a)= I_i , então ação[i,a]= s_i
- 2. Com exceção da regra S'→S adicionada, para todas as outras regras, se $A \rightarrow \alpha$. está em I_i, então, para todo a em follow(A), faça ação[i,a]=rn, em que n é o número da produção $A \rightarrow \alpha$.
- 3. Se S' \rightarrow S. está em I_i , então faça ação[i,\$]=OK

√Transições(T) na tabela

1. Se transição(I_i ,A)= I_i , então transição(i,A)=i

- $I_0 = \{S' \rightarrow .S, S \rightarrow .if E \text{ then C, } S \rightarrow .C, C \rightarrow .b\}$
- 2. $t(I_0,S) = \{S' \rightarrow S.\} = I_1$
- 3. $t(I_0, if) = \{S \rightarrow if \text{ if } E \text{ then } C, E \rightarrow .a\} = I_2$
- 4. $t(I_0,C) = \{S \rightarrow C.\} = I_3$
- 5. $t(l_0,b) = \{C \rightarrow b.\} = l_4$
- 6. $t(I_2,E) = \{S \rightarrow \text{if E .then C}\} = I_5$
- 7. $t(I_2, a) = \{E \rightarrow a.\} = I_6$ 8. $t(I_5, then) = \{S \rightarrow if \ E \ then \ .C, \ C \rightarrow .b\} = I_7$
- 9. $t(I_{7},C) = \{S \rightarrow \text{ if E then C.}\} = I_{8}$
- 10. $t(I_7,b) = \{C \rightarrow b.\} = I_A$

0)	S	\rightarrow	S)		
1)	S	\rightarrow	if	Е	then	C
2)	S	\rightarrow	C			

- 3) $E \rightarrow a$
- 4) $C \rightarrow b$

Follow (S')={\$}
Follow(S)=Follow (S')={\$}
Follow(E)={then}
Follow(C)=Follow(S)={\$}

Ações						Transições		
Estados	if	then	а	b	\$	S	E	С
0	s2			s4		1		3
1					OK			
2			s6				5	
3					r2			
4					r4			
5		s7						
6		r3						
7				s4				8
8					r1			

Reconhecer a cadeia *if a then b*

Pilha	Cadeia	Regra
	if a then b\$	

Reconhecer a cadeia *if a then b*

Pilha	Cadeia	Regra
0	if a then b\$	s2
0 if 2	a then b\$	s6
0 if 2 a 6	then b\$	r3
0 if 2 E 5	then b\$	s7
0 if 2 E 5 then 7	b\$	s4
0 if 2 E 5 then 7 b 4	\$	r4
0 if 2 E 5 then 7 C 8	\$	r1
0 S 1	\$	ОК