

© International Baccalaureate Organization 2021

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Matemáticas: Análisis y Enfoques Nivel Medio Prueba 1

Jueves 6 de mayo de 2021 (tarde)

	Núr	nero	de c	onvo	cator	ia de	l alur	mno	

1 hora 30 minutos

Instrucciones para los alumnos

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- En esta prueba no se permite el uso de ninguna calculadora.
- Sección A: conteste todas las preguntas. Escriba sus respuestas en las casillas provistas a tal efecto.
- Sección B: conteste todas las preguntas en el cuadernillo de respuestas provisto. Escriba su número de convocatoria en la parte delantera del cuadernillo de respuestas, y adjúntelo a este cuestionario de examen y a su portada utilizando los cordeles provistos.
- Salvo que se indique lo contrario en la pregunta, todas las respuestas numéricas deberán ser exactas o aproximadas con tres cifras significativas.
- Se necesita una copia sin anotaciones del cuadernillo de fórmulas de Matemáticas: Análisis y Enfoques para esta prueba.
- La puntuación máxima para esta prueba de examen es [80 puntos].

No se otorgará necesariamente la máxima puntuación a una respuesta correcta que no esté acompañada de un procedimiento. Las respuestas deben estar sustentadas en un procedimiento y/o en explicaciones. Aun cuando una respuesta sea errónea, podrán otorgarse algunos puntos si el método empleado es correcto, siempre que aparezca por escrito. Por lo tanto, se aconseja mostrar todo el procedimiento seguido.

Sección A

Conteste **todas** las preguntas. Escriba sus respuestas en las casillas provistas a tal efecto. De ser necesario, se puede continuar desarrollando la respuesta en el espacio que queda debajo de las líneas

1. [Puntuación máxima: 6]

La siguiente figura muestra un círculo de centro O y radio r.

Los puntos A y B pertenecen a la circunferencia del círculo y $A\hat{O}B = 1$ radián.

El perímetro de la región sombreada es igual a 12.

(a)	Halle el valor de r .	[3]
(b)	A partir de lo anterior, halle el área exacta de la región no sombreada .	[3]

2.	[Puntuación máxima:	41
----	---------------------	----

Considere dos números enteros positivos consecutivos, $n \ y \ n+1$.

Muestre que la diferencia de sus cuadrados es igual a la suma de esos dos enteros.

 	 •

- 3. [Puntuación máxima: 6]
 - (a) Muestre que la ecuación $2\cos^2 x + 5\sin x = 4$ se puede escribir en la forma $2\sin^2 x 5\sin x + 2 = 0$.

[1]

(b) A partir de lo anterior, resuelva la ecuación $2\cos^2 x + 5\sin x = 4$, $0 \le x \le 2\pi$.

[5]

4.	[Printi	iación.	máxima:	51

En el desarrollo de $(x+k)^7$, donde $k \in \mathbb{R}$, el coeficiente del término en x^5 es 63 .

Halle los posibles valores de k.

5. [Puntuación máxima: 9]

Considere la función f que viene dada por $f(x) = \ln(x^2 - 16)$ para x > 4.

La siguiente figura muestra una parte del gráfico de f, que corta al eje x en el punto A de coordenadas $(a,\,0)$. La recta L es la tangente al gráfico de f en el punto B.

(a) Halle el valor exacto de a. [3]

(b) Sabiendo que la pendiente de L es igual a $\frac{1}{3}$, halle la coordenada x de B. [6]

											 																 	-	
											 																 	-	
								-			 																 	-	

6. [Puntuación máxima: 7]

La siguiente figura muestra el triángulo ABC, donde AB = 10, BC = x y AC = 2x.

la figura no está dibujada a escala

Sabiendo que $\cos \hat{C} = \frac{3}{4}$, halle el área del triángulo.

Dé la respuesta en la forma $\frac{p\sqrt{q}}{2}$, donde p , $q\in\mathbb{Z}^+$.

-8- 2221-7124

No escriba soluciones en esta página.

Sección B

Conteste **todas** las preguntas en el cuadernillo de respuestas provisto. Empiece una página nueva para cada respuesta.

7. [Puntuación máxima: 14]

Un colegio de gran tamaño tiene alumnos desde el curso 6 hasta el curso 12.

Se escogió aleatoriamente a un grupo de 80 alumnos del curso 12 y se les hizo una encuesta para saber cuántas horas a la semana dedica cada uno de ellos a hacer deberes. Los resultados obtenidos se representan en el siguiente gráfico de frecuencias acumuladas.

(Esta pregunta continúa en la página siguiente)

No escriba soluciones en esta página.

(Pregunta 7: continuación)

(a) Halle la mediana del número de horas a la semana que dedican estos alumnos del curso 12 a hacer deberes.

[2]

(b) Sabiendo que el 10% de estos alumnos del curso 12 dedican más de k horas a la semana a hacer deberes, halle el valor de k.

[3]

Esta misma información aparece representada en la siguiente tabla.

Horas (h) dedicadas a hacer deberes	$2 < h \le 7$	7 < h ≤ 15	15 < h ≤ 21	21 < h ≤ 24
Frecuencia	4	p	16	q

(c) Halle el valor de p y el valor de q.

[4]

[3]

En este colegio hay 320 alumnos en el curso 12.

- (d) Estime el número de alumnos del curso 12 que dedican cada semana más de 15 horas a hacer deberes.
- (e) (i) Explique por qué es posible que este método de muestreo no ofrezca una representación precisa de la cantidad de horas que **la totalidad de** los alumnos de este colegio dedican a hacer deberes.
 - (ii) Sugiera un método de muestreo más apropiado.

[2]

No escriba soluciones en esta página.

8. [Puntuación máxima: 15]

Considere la función f que viene dada por $f(x) = 6 + 6\cos x$, para $0 \le x \le 4\pi$.

La siguiente figura muestra el gráfico de y = f(x).

El gráfico de f toca el eje x en los puntos A y B, tal y como se muestra en la figura. La región sombreada está delimitada por el gráfico de y = f(x) y el eje x, entre los puntos A y B.

(a) Halle las coordenadas x de A y B.

[3]

(b) Muestre que el área de la región sombreada es igual a 12π .

[5]

(Esta pregunta continúa en la página siguiente)

- 11 - 2221-7124

No escriba soluciones en esta página.

(Pregunta 8: continuación)

En la siguiente figura se muestra un cono recto. El área total de su superficie es 12π , igual que el área sombreada de la figura anterior.

En dicho cono, el radio de la base mide 2, la altura h, y la generatriz l.

la figura no está dibujada a escala

(c) Halle el valor de l. [3]

(d) A partir de lo anterior, halle el volumen del cono.

[4]

No escriba soluciones en esta página.

9. [Puntuación máxima: 14]

La partícula A se mueve en línea recta, de modo tal que su desplazamiento (s metros) respecto a un origen fijo al cabo de t segundos viene dado por $s(t) = 8t - t^2$, para $0 \le t \le 10$, tal y como se muestra en la siguiente figura.

La partícula A comienza en el origen y vuelve a pasar por el origen cuando t = p.

(a) Halle el valor de p.

[2]

La partícula A cambia de sentido cuando t = q.

- (b) (i) Halle el valor de q.
 - (ii) Halle el desplazamiento de la partícula A respecto al origen cuando t = q.
- (c) Halle a qué distancia del origen está la partícula A cuando t = 10. [2]

Sea d la distancia total que ha recorrido la partícula A.

(d) Halle el valor de d.

[2]

[4]

Una segunda partícula (la partícula B) se desplaza a lo largo de la misma recta, de modo tal que su velocidad viene dada por v(t) = 14 - 2t, para $t \ge 0$.

Cuando t = k, la distancia que ha recorrido la partícula B es igual a d.

(e) Halle el valor de k.

[4]

Fuentes:

© Organización del Bachillerato Internacional, 2021

