Colors (part 1)

Graphics

Gaston Sanchez

CC BY-NC-SA 4.0

R Coding Compendium

About

In this slides we cover the base graphics system: "graphics" packages

Colors in R

Colors in Plots

In R plots, many objects can take on different colors

- points
- lines
- axes (and tick marks)
- filling areas
- borders
- text
- legends
- background

Example: Colored points

```
x \leftarrow -4:4

y \leftarrow x^2

plot(x, y, pch = 19, cex = 3, col = rainbow(length(x)))
```


Example: Colored lines

```
# data
Time <-0:120
Periods <- data.frame(
 Period1 = cos(2 * pi * Time/120),
 Period2 = cos(2 * pi * Time/90),
 Period3 = cos(2 * pi * Time/150))
# graphical parameters
line_cols <- c("#5984d4", "#d45984", "#84d459")
line types <- c("solid", "dotted", "dashed")</pre>
# plot
matplot(Periods, type = "l", xlab = "Time", ylab = "Expression",
        col = line_cols, lty = line_types, lwd = 3, las = 1)
legend("bottomleft",
       c("120 min period", " 90 min period", "150 min period"),
       col = line_cols, lty = line_types)
```


Specifying Colors

Specifying colors

There are various ways to specify colors in R

- by using the color's name (in English): e.g. "turquoise"
- by using a hexadecimal string: "#FFAA00"
- by using standard color space functions: e.g. rgb()
- color space functions: e.g. hsv(), hcl()

Function colors()

The easiest way to specify a color in R is simply to use the color's name. The R function colors() provides the names of 657 available colors

```
# first 30 colors
colors()[1:30]
 [1]
     "white"
                       "aliceblue"
                                          "antiquewhite"
                                                            "antiquewhite1"
     "antiquewhite2"
                       "antiquewhite3"
                                          "antiquewhite4"
                                                            "aquamarine"
 [9]
     "aquamarine1"
                       "aquamarine2"
                                          "aquamarine3"
                                                            "aquamarine4"
Γ137
     "azure"
                       "azure1"
                                          "azure2"
                                                            "azure3"
[17]
    "azure4"
                       "beige"
                                          "bisque"
                                                            "bisque1"
[21]
    "bisaue2"
                       "bisque3"
                                          "bisque4"
                                                            "black"
[25]
     "blanchedalmond" "blue"
                                          "blue1"
                                                            "blue2"
[29] "blue3"
                       "blue4"
```

657 R built-in colors

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
26	27	28	29	30	31	32	33	34	35		37	38	39	40	41	42	43	44	45	46	47	48	49	50
51	52	53	54	55		57	58	59	60		62	63	64	65	66	67	68	69	70	71				75
76	77	78	79	80		82	83		85	86	87	88	89	90	91	92	93	94	95	96	97	98		100
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125
126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225
226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250
251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275
276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325
326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350
351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375
376 401	377	378 403	379 404	380 405	381 406	382 407	383 408	384	385 410	386	387	388	389	390 415	391 416	392 417	393 418	394	395 420	396 421	397	398 423	399 424	400
401	402	403	404	430	431	432	433	434	410	411	412	413	414	415	416	417	418	419	445	446	447	423	449	450
451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475
476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500
501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525
526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550
551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575
576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600
601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625
626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650
651	652	653	654	655	656	657																		

```
# Code by Earl F. Glynn
SetTextContrastColor <- function(color) {</pre>
  ifelse( mean(col2rgb(color)) > 127, "black", "white")
TextContrastColor <- unlist(lapply(colors(), SetTextContrastColor))</pre>
colCount <- 25 # number per row
rowCount <- 27
op \leftarrow par(mar = c(0, 0, 4, 0))
plot(c(1, colCount), c(0, rowCount), type = "n", axes=FALSE,
     ylab = "", xlab = "", ylim = c(rowCount, 0))
title("657 R built-in colors")
for (j in 0:(rowCount-1))
  base <- j * colCount
  remaining <- length(colors()) - base
  RowSize <- ifelse(remaining < colCount, remaining, colCount)</pre>
  rect((1:RowSize)-0.5, j-0.5, (1:RowSize)+0.5, j+0.5,
       border = "black", col = colors()[base + (1:RowSize)])
  text((1:RowSize), j, paste(base + (1:RowSize)), cex = 0.7,
       col = TextContrastColor[base + (1:RowSize)])
par(op)
```

Gray colors()

```
Note that there is a wide range of gray (grey) colors:
```

```
# gray and grey colors
grays <- colors()[grep("gr[a|e]y", colors())]</pre>
length(grays)
## [1] 224
head(grays, 10)
##
    [1] "darkgray"
                          "darkgrey"
                                           "darkslategray"
##
   [5] "darkslategray2" "darkslategray3" "darkslategray4"
##
    [9] "dimgray"
                          "dimgrey"
```

RGB Color Model

RGB Colors

Computers create the colors we see on a monitor by combining 3 primary colors of light:

- Red
- Green
- Blue

This combination is known as **RGB color model**. Each color light is also referred to as a **channel**

Red-Green-Blue

A computer screen displays a color by combining red light, green light and blue light, the so-called RGB model.

RGB Colors

Any color you see on a monitor can be described by a series of 3 numbers (in the following order):

- a red value
- a green value
- a blue value

The amount of light in each color channel is typically described on a scale from 0 (none) to 255 (full-blast)

Alternatively, scales can be provided as percent values from 0 (none) to 1 (100%)

RGB Colors

Some reference colors:

RGB Values	Color
(255, 0, 0)	red
(0, 255, 0)	green
(0, 0, 255)	blue
(0, 0, 0)	black
(255, 255, 255)	white

The closer the three values get to 255 (100%), the closer the resulting color gets to white.

Any triplet of equal values generates a shade of gray: (50, 50, 50)

Function rgb()

R provides the function rgb() to specify RGB colors

```
# 0 to 1 (default scale)
rgb(red = 1, green = 0, blue = 0)

## [1] "#FF0000"

# 0 to 255
rgb(red = 255, green = 0, blue = 0, maxColorValue = 255)

## [1] "#FF0000"
```


Colors in Hexadecimal Notation

Hex Colors

Storing RGB colors in decimal notation would require 9 digits:

255,255,255

In order to have a more efficient storage system, computers use **hexadecimal digits**

Hex Colors

A color can also be specified as a string beginning with a hash symbol "#" and followed by six hexadecimal digits

- ▶ "#FF0000" (red)
- "#00FF00" (green)
- "#0000FF" (blue)
- "#FF6347" (tomato)

This is actually the output format of rgb()

Hexadecimal code

Hexadecimal: numeral system with base 16, or hex

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

Hexadecimal code

R uses the hexadecimal system to name colors

- ▶ The hexadecimal representation uses 16 different symbols
- ▶ The 16 symbols are all 10 digits (0-9) and 6 first letters (A-F)
- ▶ The digits 0-9 represent values zero to nine
- ► The letters A, B, C, D, E, F (or a, b, c, d, e, f) represent values ten to fifteen

Hexadecimal Notation

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F
```

Two hexadecimal digits together can make $16 \times 16 = 256$ different values (from 0 to 255)

Six hexadecimal digits together can make $16^6=16,777,216$ different values.

Hexadecimal code

Hexadecimal color: #975015

- # declares that this "is a hex number"
- ▶ The other six are really three sets of pairs
- Each pair controls one primary additive color
- The first pair corresponds to red
- ► The second pair corresponds to green
- The last pair corresponds to blue

There are 256 possible shades each of red, green, and blue

RGB Hexadecimal Notation

Hexadecimal code

Hexadecimal digits

- ▶ 0 is the smallest representation of a color (absence of color)
- ▶ F is 15 times the intensity of color 0
- ▶ 00 is equal to zero hue
- FF is equal to a pure color
- ► #000000 black
- #FFFFFF white
- equal digits produce a shade of gray

RGB and Hex

RGB Cube Representation

http://drmoron.org/is-black-a-color/

RGB Inconvenience

- ▶ The RGB color model is the most commonly used
- However, specifying RGB colors in not intuitive
- It is no straightforward how to make a color stronger, darker or lighter with RGB values
- ▶ It is also hard to "read" RGB values (and being able to identify the corresponding hue)

Cylindrical-coordinate Representations

Cylindrical Models

- An alternative to RGB values is the HSV model
- ► HSV: Hue (color), Saturation, Value
- ► HSV rearranges the geometry of RGB following cyclindrical coordinates

HSV Representation

Cylindrical-coordinate Representations

HSV Model

- ▶ Hue values are measured in degrees around the circle
 - Red at 0 degrees
 - Green at 120°
 - Blue at 240°
 - other colors in between
- ▶ Saturation is a percentage value from 0 (gray) to 1 (full blast)
- Value is also a percentage value from 0 (darkest) to 1 (lightest)

Function hsv()

```
hsv(h = 1, s = 0.8, v = 0.9)
```

Note that the Hue value ranges from 0 (0 degrees) to 1 (360 degrees)

About HSV

- ► HSV is a more intuitive system
- ► HSV is also more perceptually relevant
- ▶ Once you select a hue, it is easy to make it stronger, darker, or lighter

Other models: HCL Model

Another model is HCL

- ► HCL: Hue, Chroma, Luminance
- Hue values are measured in degrees around the circle
 - Red at 0 degrees
 - Green at 120°
 - Blue at 240°
 - other colors in between
- ► Luminance is also a percentage value from 0 (darkest) to 100 (lightest)
- Chroma depends on Hue and Luminance

Color transparency

All R colors are stored with an **alpha** transparency channel.

- ► An alpha value of 0 means fully transparent
- An alpha value of 1 means fully opaque

When using any of the color space functions, transparency is indicated with the parameter alpha:

- ightharpoonup rgb(1, 0, 0, alpha = 0.5)
- \blacktriangleright hsv(h = 1, s = 0.8, v = 0.8, alpha = 0.5)
- \blacktriangleright hcl(h = 0, c = 35, 1 = 85, alpha = 0.5)

When using hexadecimal notation, transparency is indicated by using a hexadecimal string of **eight digits**. The last two digits indicate transparency:

- a hex digit "00" indicates an alpha value of 0 (fully transparent)
- ▶ a hex digit "FF" indicates an alpha value of 1 (fully opaque)

For example, "#FFA50080" specifies a semitransparent orange. Note that "#FFA500" is equivalent to "#FFA500FF"

Hex notation with alpha channel

Converting Colors

R provides a set of functions for converting between different color spaces

Function	Packages
col2rgb()	"grDevices"
hex2RGB()	"colorspace"
<pre>convertColor()</pre>	"grDevices"

Donation

If you find any value and usefulness in this set of slides, please consider making a one-time donation in any amount (via paypal). Your support really matters.

Donate

https://www.paypal.com/donate?business=ZF6U7K5MW25W2¤cy_code=USD