Intro to Econometrics: Recitation 4

Gustavo Pereira

September 30, 2019

1/8

Roadmap for today

- Review:
 - Statistical problem
 - Bayes rules, expected posterior loss
- PS3

• Components of a decision problem:

- Components of a decision problem:
 - Statistical model: $\{P_{\theta}\}_{\theta \in \Theta}$

- Components of a decision problem:
 - Statistical model: $\{P_{\theta}\}_{\theta \in \Theta}$
 - Action space A

- Components of a decision problem:
 - ▶ Statistical model: $\{P_{\theta}\}_{\theta \in \Theta}$
 - ightharpoonup Action space $\mathcal A$
 - ▶ Loss function $\mathcal{L}: \mathcal{A} \times \Theta \rightarrow \mathbf{R}$

- Components of a decision problem:
 - ▶ Statistical model: $\{P_{\theta}\}_{\theta \in \Theta}$
 - ightharpoonup Action space $\mathcal A$
 - ▶ Loss function $\mathcal{L}: \mathcal{A} \times \Theta \rightarrow \mathbf{R}$
 - ▶ Decision rules: $d: \mathfrak{X} \to \mathcal{A}$

- Components of a decision problem:
 - Statistical model: $\{P_{\theta}\}_{\theta \in \Theta}$
 - ightharpoonup Action space $\mathcal A$
 - ▶ Loss function $\mathcal{L}: \mathcal{A} \times \Theta \rightarrow \mathbf{R}$
 - ▶ Decision rules: $d: \mathfrak{X} \to \mathcal{A}$
- Risk function: expected loss from decision d when parameter is θ :

$$R(d(\cdot), \theta) = \int_{\mathfrak{X}} \mathcal{L}(d(x), \theta) f_{\theta}(x) dx$$

• Decision rule d_1 is dominated by d_2 iff, for all $\theta \in \Theta$,

$$d_1 \lesssim_{\theta} d_2$$

and $d_1 \prec_{\theta_{\mathbf{0}}} d_2$ for at least one θ_0

• Decision rule d_1 is dominated by d_2 iff, for all $\theta \in \Theta$,

$$d_1 \lesssim_{\theta} d_2$$

and $d_1 \prec_{\theta_0} d_2$ for at least one θ_0

▶ What does it mean for a rule to be *not dominated* by another rule?

• Decision rule d_1 is dominated by d_2 iff, for all $\theta \in \Theta$,

$$d_1 \lesssim_{\theta} d_2$$

and $d_1 \prec_{\theta_0} d_2$ for at least one θ_0

- What does it mean for a rule to be not dominated by another rule?
- A rule d that is not dominated by any other rule is called admissible

• Decision rule d_1 is dominated by d_2 iff, for all $\theta \in \Theta$,

$$d_1 \lesssim_{\theta} d_2$$

and $d_1 \prec_{\theta_0} d_2$ for at least one θ_0

- ▶ What does it mean for a rule to be *not dominated* by another rule?
- A rule d that is not dominated by any other rule is called admissible
 - Expand the definition of admissible

• Decision rule d_1 is dominated by d_2 iff, for all $\theta \in \Theta$,

$$d_1 \lesssim_{\theta} d_2$$

and $d_1 \prec_{\theta_0} d_2$ for at least one θ_0

- ▶ What does it mean for a rule to be not dominated by another rule?
- A rule d that is not dominated by any other rule is called admissible
 - Expand the definition of admissible
- It is generally hard to find admissible rules.

ullet Suppose model is $\{f_{ heta}\}_{ heta\in\Theta}$, i.e., data has a density for all possible parameters

5/8

- Suppose model is $\{f_{\theta}\}_{\theta\in\Theta}$, i.e., data has a density for all possible parameters
- Suppose also $\Theta \subseteq \mathbf{R}^k$, and pdf $\pi(\theta)$ summarizes some prior belief about θ

- Suppose model is $\{f_{\theta}\}_{{\theta}\in\Theta}$, i.e., data has a density for all possible parameters
- Suppose also $\Theta \subseteq \mathbf{R}^k$, and pdf $\pi(\theta)$ summarizes some prior belief about θ
 - lacktriangle With this, we're interpreting the parameter heta as a random variable

- Suppose model is $\{f_{\theta}\}_{{\theta}\in\Theta}$, i.e., data has a density for all possible parameters
- Suppose also $\Theta \subseteq \mathbf{R}^k$, and pdf $\pi(\theta)$ summarizes some prior belief about θ
 - lacktriangle With this, we're interpreting the parameter heta as a random variable
 - lacktriangle Before the prior was introduced, heta was merely an index

- Suppose model is $\{f_{\theta}\}_{{\theta}\in\Theta}$, i.e., data has a density for all possible parameters
- Suppose also $\Theta \subseteq \mathbf{R}^k$, and pdf $\pi(\theta)$ summarizes some prior belief about θ
 - ightharpoonup With this, we're interpreting the parameter θ as a random variable
 - ightharpoonup Before the prior was introduced, θ was merely an index
- With this structure, we can define the induced joint density of data and parameters,

$$f(x, \theta; \pi) = f_{\theta}(x)\pi(\theta)$$

- Suppose model is $\{f_{\theta}\}_{{\theta}\in\Theta}$, i.e., data has a density for all possible parameters
- Suppose also $\Theta \subseteq \mathbf{R}^k$, and pdf $\pi(\theta)$ summarizes some prior belief about θ
 - ightharpoonup With this, we're interpreting the parameter θ as a random variable
 - \blacktriangleright Before the prior was introduced, θ was merely an index
- With this structure, we can define the induced joint density of data and parameters,

$$f(x, \theta; \pi) = f_{\theta}(x)\pi(\theta)$$

Does this integrate to one?

Given induced joint density,

$$f(x|\theta;\pi) = \frac{f_{\theta}(x)\pi(\theta)}{\pi(\theta)} = f_{\theta}(x)$$

Given induced joint density,

$$f(x|\theta;\pi) = \frac{f_{\theta}(x)\pi(\theta)}{\pi(\theta)} = f_{\theta}(x)$$

• What about the marginal of data?

Given induced joint density,

$$f(x|\theta;\pi) = \frac{f_{\theta}(x)\pi(\theta)}{\pi(\theta)} = f_{\theta}(x)$$

- What about the marginal of data?
 - Recover it by integrating θ out:

$$f(x;\pi) = \int_{\theta \in \Theta} f_{\theta}(x)\pi(\theta)d\theta$$

Given induced joint density,

$$f(x|\theta;\pi) = \frac{f_{\theta}(x)\pi(\theta)}{\pi(\theta)} = f_{\theta}(x)$$

- What about the marginal of data?
 - ▶ Recover it by integrating θ out:

$$f(x;\pi) = \int_{\theta \in \Theta} f_{\theta}(x)\pi(\theta)d\theta$$

• Conditional density of parameter given data?

$$f(\theta|x;\pi) = \frac{f(x,\theta;\pi)}{f(x;\pi)} = \frac{f_{\theta}(x)\pi(\theta)}{\int_{\theta\in\Theta} f_{\theta}(x)\pi(\theta)d\theta}$$

Given induced joint density,

$$f(x|\theta;\pi) = \frac{f_{\theta}(x)\pi(\theta)}{\pi(\theta)} = f_{\theta}(x)$$

- What about the marginal of data?
 - ▶ Recover it by integrating θ out:

$$f(x;\pi) = \int_{\theta \in \Theta} f_{\theta}(x)\pi(\theta)d\theta$$

Conditional density of parameter given data?

$$f(\theta|x;\pi) = \frac{f(x,\theta;\pi)}{f(x;\pi)} = \frac{f_{\theta}(x)\pi(\theta)}{\int_{\theta\in\Theta} f_{\theta}(x)\pi(\theta)d\theta}$$

This is called posterior density in Bayesian jargon

• Let's go back to the statistical decision problem

- Let's go back to the statistical decision problem
- Let $d(\cdot)$ be a decision rule, and π a prior density over Θ

- Let's go back to the statistical decision problem
- Let $d(\cdot)$ be a decision rule, and π a prior density over Θ
- Bayes risk of $d(\cdot)$ given π is

$$r(d(\cdot), \pi) = \int_{\Theta} R(d(\cdot), \theta) \pi(\theta) d\theta$$
$$= \int_{\Theta} \int_{\mathfrak{X}} \mathcal{L}(d(x), \theta) f(x, \theta; \pi) dx d\theta$$

- Let's go back to the statistical decision problem
- Let $d(\cdot)$ be a decision rule, and π a prior density over Θ
- Bayes risk of $d(\cdot)$ given π is

$$r(d(\cdot), \pi) = \int_{\Theta} R(d(\cdot), \theta) \pi(\theta) d\theta$$
$$= \int_{\Theta} \int_{\mathfrak{X}} \mathcal{L}(d(x), \theta) f(x, \theta; \pi) dx d\theta$$

• A Bayes decision rule d^* is one that minimizes Bayes risk given a prior π .

$$d_{\pi}^*(\cdot) = \arg\min_{d(\cdot)} r(d(\cdot), \pi)$$

- Let's go back to the statistical decision problem
- Let $d(\cdot)$ be a decision rule, and π a prior density over Θ
- Bayes risk of $d(\cdot)$ given π is

$$r(d(\cdot), \pi) = \int_{\Theta} R(d(\cdot), \theta) \pi(\theta) d\theta$$
$$= \int_{\Theta} \int_{\mathfrak{X}} \mathcal{L}(d(x), \theta) f(x, \theta; \pi) dx d\theta$$

• A Bayes decision rule d^* is one that minimizes Bayes risk given a prior π .

$$d_{\pi}^*(\cdot) = \arg\min_{d(\cdot)} r(d(\cdot), \pi)$$

• Important feature: under mild assumptions, Bayes rules are admissible

• Rewrite the Bayes risk using Fubini's theorem

$$r(d(\cdot),\pi) = \int_{\mathfrak{X}} \left[\int_{\Theta} \mathcal{L}(d(x),\theta) f(\theta|x;\pi) d\theta \right] f(x;\pi) dx$$
$$= \int_{\mathfrak{X}} \psi(d(x),x) f(x;\pi) dx$$

where

$$\psi(\mathbf{a}, \mathbf{x}) = \int_{\Theta} \mathcal{L}(\mathbf{a}, \theta) f(\theta | \mathbf{x}; \pi) d\theta$$

Rewrite the Bayes risk using Fubini's theorem

$$r(d(\cdot),\pi) = \int_{\mathfrak{X}} \left[\int_{\Theta} \mathcal{L}(d(x),\theta) f(\theta|x;\pi) d\theta \right] f(x;\pi) dx$$
$$= \int_{\mathfrak{X}} \psi(d(x),x) f(x;\pi) dx$$

where

$$\psi(\mathbf{a}, \mathbf{x}) = \int_{\Theta} \mathcal{L}(\mathbf{a}, \theta) f(\theta | \mathbf{x}; \pi) d\theta$$

• Let $d^*(x) = \arg\min_{a \in \mathcal{A}} \psi(a, x)$

• Rewrite the Bayes risk using Fubini's theorem

$$r(d(\cdot),\pi) = \int_{\mathfrak{X}} \left[\int_{\Theta} \mathcal{L}(d(x),\theta) f(\theta|x;\pi) d\theta \right] f(x;\pi) dx$$
$$= \int_{\mathfrak{X}} \psi(d(x),x) f(x;\pi) dx$$

where

$$\psi(a,x) = \int_{\Theta} \mathcal{L}(a,\theta) f(\theta|x;\pi) d\theta$$

- Let $d^*(x) = \arg\min_{a \in \mathcal{A}} \psi(a, x)$
 - ▶ Immediate consequence: for any decision rule $d(\cdot)$,

$$\psi(d^*(x),x) \le \psi(d(x),x)$$

• Rewrite the Bayes risk using Fubini's theorem

$$r(d(\cdot),\pi) = \int_{\mathfrak{X}} \left[\int_{\Theta} \mathcal{L}(d(x),\theta) f(\theta|x;\pi) d\theta \right] f(x;\pi) dx$$
$$= \int_{\mathfrak{X}} \psi(d(x),x) f(x;\pi) dx$$

where

$$\psi(a,x) = \int_{\Theta} \mathcal{L}(a,\theta) f(\theta|x;\pi) d\theta$$

- Let $d^*(x) = \arg\min_{a \in \mathcal{A}} \psi(a, x)$
 - ▶ Immediate consequence: for any decision rule $d(\cdot)$,

$$\psi(d^*(x),x) \le \psi(d(x),x)$$

▶ Important: optimization in space A is easier than in the space of all $d: \mathfrak{X} \to A!$