Принятые обозначения

$$\delta(x-x_0) = \begin{cases} \infty, \ x = x_0 \\ 0, \ x \neq x_0 \end{cases} - \text{дельта-функция;} \qquad \qquad \int f(x) \delta(x-x_0) \ dx = f(x_0)$$

$$H(x-a) = \begin{cases} 0, & x < a \\ 1, & x \ge a \end{cases}$$
 - функция Хевисайда

$$H(a-x) = \begin{cases} 1, & x \le a \\ 0, & x > a \end{cases}$$

- зеркально отраженная функция Хевисайда

$$erf(z)=rac{2}{\pi}\int_{z}^{+\infty}e^{-\xi^{2}}d\xi$$
 $erfc(z)=rac{2}{\pi}\int_{0}^{z}e^{-\xi^{2}}d\xi$ $\sqrt{\pi}=\int_{-\infty}^{+\infty}e^{-\xi^{2}}d\xi$ -интеграл Пуассона

1. ЭКСПОНЕНЦИАЛЬНОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ

$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(\lambda) e^{i\lambda x} d\lambda$	$F(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-i\lambda x} dx$
f'(x)	$\mathtt{i}\lambda\mathtt{F}(\lambda)$
f"(x)	$- \lambda^2 { t F}(\lambda)$
f ⁽ⁿ⁾ (х)- n-ая производная	$(i\lambda)^n F(\lambda)$
f(ax), a > 0	$\frac{1}{a}F\left(\frac{\lambda}{a}\right)$
f(x-a)	$e^{-ia\lambda}$ F (λ)
$f(x) * g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(\xi)g(x - \xi)d\xi$	$F(\lambda)G(\lambda)$
$\frac{a}{x^2 + a^2}$	$\sqrt{\frac{2}{\pi}}e^{-a \lambda }$
Cos(ax)	$\sqrt{\frac{2}{\pi}}(\delta(\lambda+a)+\delta(\lambda-a))$
Sin(ax)	$i\sqrt{\frac{2}{\pi}}(\delta(\lambda+a)-\delta(\lambda-a))$
$e^{-a x }$	$\sqrt{\frac{2}{\pi}} \frac{a}{a^2 + \lambda^2}$

Экспоненциальное преобразование Фурье (продолжение)

$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(\lambda) e^{i\lambda x} d\lambda$	$F(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-i\lambda x} dx$
$H(x+\alpha) - H(x-\alpha) = \begin{cases} 1, & x < a \\ 0, & x > a \end{cases}$	$\sqrt{rac{2}{\pi}} rac{Sin(a\lambda)}{\lambda}$
$e^{-lpha^2 x^2}$	$rac{1}{lpha\sqrt{2}}e^{-rac{\lambda^2}{4lpha^2}}$
$\delta(x-a)$	$rac{1}{\sqrt{2\pi}}e^{-ia\lambda}$
$xe^{-a x }, a>0$	$-2\sqrt{\frac{2}{\pi}}\frac{ia\lambda}{\left(a^2+\lambda^2\right)^2}$
$\frac{1}{2} \left[\delta(x+a) + \delta(x-a) \right]$	$\frac{1}{\sqrt{2\pi}}\cos(a\lambda)$

2. СИНУС-ПРЕОБРАЗОВАНИЕ ФУРЬЕ

$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} F(\lambda) Sin(\lambda x) d\lambda$	$F(\lambda) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} f(x) Sin(\lambda x) dx$
$0 < x < \infty$	$0 < \lambda < \infty$
f"(x)	$-\lambda^2 F(\lambda) + \sqrt{\frac{2}{\pi}} \lambda f(0)$
$(f * g)_s = \frac{1}{\sqrt{2\pi}} \int_0^\infty f(\xi) [g(x - \xi) - g(x + \xi)] d\xi$	$\mathbb{F}ig(\lambdaig)G(\lambda)$
f(ax)	$\frac{1}{a} F\left(\frac{\lambda}{a}\right)$
e^{-ax}	$\sqrt{\frac{2}{\pi}} \frac{\lambda}{a^2 + \lambda^2}$
x^{-1}	$\sqrt{\frac{2}{\pi}}$ 1
$x^{-\frac{1}{2}}$	$\frac{1}{\sqrt{\lambda}}$
H(a - x)	$\sqrt{\frac{2}{\pi}} \left[1 - Cos(\lambda a) \right]$
$\frac{x}{a^2 + x^2}$	$\sqrt{rac{2}{\pi}}e^{- a \lambda}$
$\frac{1}{x(x^2+a^2)}$	$\sqrt{\frac{2}{\pi}} \frac{1 - e^{-a\lambda}}{a^2}$
$arctg\left(\frac{a}{x}\right)$	$\sqrt{rac{2}{\pi}}rac{_{1-e^{-a\lambda}}}{^{\lambda}}$
$-x^2f(x)$	$\sqrt{rac{2}{\pi}}F''(\lambda)$

3. КОСИНУС-ПРЕОБРАЗОВАНИЕ ФУРЬЕ

$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} F(\lambda) Cos(\lambda x) d\lambda$	$\mathbb{F}(\lambda) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} f(x) Cos(\lambda x) dx$
$0 < x < \infty$	$0 < \lambda < \infty$
f"(x)	$0 < \lambda < \infty$ $-\lambda^2 F(\lambda) - \sqrt{\frac{2}{\pi}} \lambda f'(0)$
$(f * g)_c = \frac{1}{\sqrt{2\pi}} \int_0^\infty f(\xi) [g(x - \xi) + g(x + \xi)] d\xi$	$\mathrm{F}ig(\lambdaig)G(\lambda)$
f(ax)	$\frac{1}{a} F\left(\frac{\lambda}{a}\right)$
e^{-ax}	$\sqrt{\frac{2}{\pi}} \frac{a}{a^2 + \lambda^2}$
$\delta(x)$	$\sqrt{\frac{2}{\pi}}$
$x^{-\frac{1}{2}}$	$\sqrt{\frac{1}{\lambda}}$
H(a - x)	$\sqrt{\frac{2}{\pi}} \frac{Sin(a\lambda)}{\lambda}$
e^{-ax^2}	$\frac{1}{\sqrt{2a}}e^{-\lambda^2/4a}$
$\frac{Sin(ax)}{x}$	$\sqrt{\frac{2}{\pi}}H(a-\lambda)$
$\frac{a}{a^2 + x^2}$	$\sqrt{rac{2}{\pi}}e^{-\lambda a}$
$-x^2f(x)$	$\sqrt{\frac{2}{\pi}}F''(\lambda)$

4. Преобразование Лапласа
$$L[f] = \int_{0}^{\infty} f(t) \cdot e^{-st} dt = F(s) \qquad \qquad L^{-1}[F] = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) \cdot e^{st} ds = f(t)$$

Основные теоремы	
$f(\alpha \cdot t)$	$\frac{1}{\alpha}F(\frac{s}{\alpha})$
$f(\frac{t}{\alpha})$	$\alpha \cdot F(\alpha \cdot s)$
$e^{\alpha \cdot t} \cdot f(t)$	$F(s-\alpha)$
$H(t-\lambda)\cdot f(t-\lambda)$	$e^{-\lambda s} \cdot F(s)$
$\int_{0}^{t} f(\tau)d\tau$	$\frac{F(s)}{s}$
$f^{(n)}(t)-$	$s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\dots$
п — ая производная	$ s^{0} f^{(n-2)}(0) - f^{(n-1)}(0) $

Таблица некоторых оригиналов и изображений

	Таблица некоторых
f(t)	F(s)
С	$\frac{c}{s}, c-const$
$\frac{a}{2\sqrt{\pi}t^{\frac{3}{2}}}e^{-\frac{a^2}{4t}}$	$e^{-a\sqrt{s}}$
$\frac{e^{-\alpha t}}{\sqrt{\pi t}}$	$\frac{1}{\sqrt{s+\alpha}}$
$e^{lpha t}$	$\frac{1}{s-\alpha}$
sh (a · t)	$\frac{a}{s^2 - a^2}, s > a$
ch (a · t)	$\frac{s}{s^2 - a^2}, s > a$
$\frac{1}{\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}$
$\frac{1}{\sqrt{a}}erf(\sqrt{at})$	$\frac{1}{s\sqrt{s+a}}$
t^n , $n \succ 0$, целое	$\frac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{a}}e^{at}erf(\sqrt{at})$	$\frac{1}{\sqrt{s}(s-a)}$

f(t)	F(s)
	1 (5)
$Sin(a \cdot t)$	а
	$\overline{s^2 + a^2}$
$Cos(a \cdot t)$	
$\cos(a \cdot i)$	<u>s</u>
	$\frac{\overline{s^2 + a^2}}{e^{-\alpha\sqrt{s}}}$
$_{c}\left(a\right)$	$e^{-\alpha\sqrt{s}}$
$\operatorname{erfc}\!\left(\frac{a}{2\sqrt{t}}\right)$	·
$(2\sqrt{t})$	S
a^2	$\frac{e^{-\alpha\sqrt{s}}}{\sqrt{s}}$,
$1 \frac{-\frac{\alpha}{4}}{4}$	$\frac{e}{-}$,
$\frac{1}{\sqrt{}}e^{-4t}$	\sqrt{s}
$\frac{1}{\sqrt{\pi t}}e^{-\frac{a^2}{4t}}$	
	e^{-as}
H(t-a)	
	S
1 .	$\frac{S}{\frac{1}{s(s-a)}}$
$\frac{1}{2}(e^{at}-1)$	s(s-a)
$\frac{1}{a}(e^{at}-1)$	
$\delta(t)$	1
, ,	
2/	9.9
$\delta(+-a)$	e^{-as}
$\delta(t-a)$	e^{-as}
δ(t-a)	e^{-as}
,	
,	1
,	1
$\frac{1}{\sqrt{\pi t}} - a e^{a^2 t} \operatorname{erfc}(a \sqrt{t})$	
,	$\frac{1}{\sqrt{s}+a}$
$\frac{1}{\sqrt{\pi t}} - a e^{a^2 t} \operatorname{erfc}(a \sqrt{t})$	$\frac{1}{\sqrt{s}+a}$
$\frac{1}{\sqrt{\pi t}} - a e^{a^2 t} \operatorname{erfc}(a \sqrt{t})$ $e^{a^2 t} \operatorname{erfc}(a \sqrt{t})$	$\frac{1}{\sqrt{s} + a}$ $\frac{1}{\sqrt{s}(\sqrt{s} + a)}$ 1
$\frac{1}{\sqrt{\pi t}} - a e^{a^2 t} \operatorname{erfc}(a \sqrt{t})$	$\frac{1}{\sqrt{s}+a}$

Операция «свёртка».

$$(f * g) = \int_{0}^{t} f(\tau) g(t - \tau) d\tau$$

5. ОПЕРАТОР ЛАПЛАСА

1. На плоскости

– Декартовая система координат: $\Delta U = U_{xx} + U_{yy}$

- Полярная система координат: $\Delta U = U_{rr} + \frac{1}{r}U_{r} + \frac{1}{r^{2}}U_{\varphi\varphi}$

2. В пространстве -

- Цилиндрическая система координат: $\Delta U = U_{rr} + \frac{1}{r}U_{r} + \frac{1}{r^{2}}U_{\varphi\varphi} + U_{zz}$

- Сферическая система координат:

$$\Delta U = U_{rr} + \frac{2}{r}U_{r} + \frac{1}{r^{2}}U_{\theta\theta} + \frac{ctg\theta}{r^{2}}U_{\theta} + \frac{1}{r^{2}Sin^{2}\theta}U_{\varphi\varphi}$$