实验名称 热敏电阻温度特性研究实验

姓名。		专业班	实验班	组号
教师_	陈学谦 张震 成绩	批阅教师签名_		批阅日
期				

实验内容包括: 实验目的,原理,仪器,操作步骤,数据记录与处理,分析讨论

实验目的: 研究热敏电阻温度特性

原理: 半导体热敏电阻的电阻 — 温度特性

热敏电阻的电阻值与温度的关系为:

$$R = Ae^{\frac{B}{T}}$$

A, B 是与半导体材料有关的常数, T 为绝对温度, 根据定义, 电阻温度系数为:

$$\alpha = \frac{1}{R_t} \frac{dR}{dt}$$

Rt 是在温度为 t 时的电阻值。

2. 惠斯通电桥的工作原理,如图所示:

四个电阻 R1, R2, R3, Rx 组成一个四边形,即电桥的四个臂,其中 Rx 就是待测热敏电阻。在四边形的一对对角 A 和 C 之间连接电源,而在另一对对角 B 和 D 之间接入检流计 G。当 B 和 D 两点电位相等时,G 中无电流通过,电桥便达到了平衡。平衡时必有 Rx=(R2/R1)•R3,(R2/R1) 和 R3 都已知,Rx 即可求出。

电桥灵敏度的定义为:

$$S = \frac{\Delta n}{\Delta R_x / R_x}$$

式中 $\triangle Rx$ 指的是在电桥平衡后 Rx 的微小改变量, $\triangle n$ 越大,说明电桥灵敏度越高。

仪器: 热敏电阻测温实验装置包括: 自耦调压器、待测热敏电阻和温度计、直流单 臂电桥、电压源、滑线变阻器(2个)、四线电阻箱(3个)、检流计、单刀开关,

操作步骤:

1. 用箱式电桥研究热敏电阻温度特性

(1) 主窗口介绍

热敏电阻温度特性研究实验内容场景图

(2) 实验连线

当鼠标移动到实验仪器接线柱的上方,拖动鼠标,便会产生 "导线",当鼠标移动到另一个接线柱的时候,松开鼠标,两个接线柱之间便产生一条导线,连线成功;如果松开鼠标的时候,鼠标不是在某个接线柱上,画出的导线将会被自动销毁,此次连线失败。根据实验电路图正确连线,连线操作完成,如下图所示:

根据电路图连接好电路,然后在数据表格中点击 "连线" 模块下的 "确定状态" 按钮,保存连线状态。

(3) 调节电桥箱初始状态

双击主场景中电桥箱视图,在弹出的电桥箱窗体中选择合适的比例臂,并将电桥箱的电阻旋 钮调节为 $4000\,\Omega$ 左右,通过鼠标左击或右击调零旋钮,将电桥箱的检流计进行调零。

(4) 调节电桥平衡

先按下 B 按钮, 打开电桥箱内部电源, 再左键按下检流计开关 G 按钮; 如果弹出电流过大的提示,则调节电桥箱上的电阻值 Ro, 然后再左键按下检流计开关 G 按钮,直到按下 G 按钮时无提示时,则右键按下检流计开关 G 按钮; 此时再微调电桥箱上的电阻值 Ro 使电桥达到平衡。

(5) 测量电桥灵敏度

根据所选择的比例臂,点击保存状态按钮,在此比例臂下测量电桥的灵敏度;

调节电桥箱上的电阻值 Ro,使检流计指针发生偏转,记下电阻值的相对变化量和指针偏转 格数,并根据公式计算出电桥此时的灵敏度 S,重复测量三次,求取平均值。

(6) 测量升温时,热敏电阻各温度点对应的 Rt

双击打开自耦调压器,选择合适的电压值进行加热。

双击打开温度计读数窗体以及电桥箱窗体,一边观察温度计读数,一边调节电桥箱上的电阻 值 Ro 使电桥不断地处于平衡状态,同时分别记下 $20^{\circ}\mathbb{C}$ 、 $25^{\circ}\mathbb{C}$ 、 $30^{\circ}\mathbb{C}$ 、 $35^{\circ}\mathbb{C}$ 、 $40^{\circ}\mathbb{C}$ 、 $45^{\circ}\mathbb{C}$ 、 $50^{\circ}\mathbb{C}$ 、 $55^{\circ}\mathbb{C}$ 、 $60^{\circ}\mathbb{C}$ 、 $65^{\circ}\mathbb{C}$ 、 $70^{\circ}\mathbb{C}$ 、 $75^{\circ}\mathbb{C}$ 、 $80^{\circ}\mathbb{C}$ 、 $85^{\circ}\mathbb{C}$ 时对应的热敏电阻值,填到数据表格中 相应的位置。

(7) 测量降温时,热敏电阻各温度点对应的 Rt

将自耦调压器电压调为 0V,让烧杯中的水自然冷却,随着水温值的下降,依次再记下 20 ℃、25 ℃、30 ℃、35 ℃、40 ℃、45 ℃、50 ℃、55 ℃、60 ℃、65 ℃、70 ℃、75 ℃、80 ℃、85 ℃ 时对

应的热敏电阻值,填到数据表格中相应的位置;并求取各温度点升降温过程中对应的热敏电阻平均值。

(8) 根据测量结果,计算温度 T 趋于无穷时的热敏电阻阻值 R^{∞} 、热敏电阻的材料常数 B 以及 50℃时的电阻温度系数 α 。

数据记录与处理

内容 1 2 3 电阻臂 R0 Ω 4500 4500 4500 变化率 Δ R0 Ω 150 320 180 偏转格数 △ n0 2 1 1 电桥灵敏度 30 28.1 25

电桥灵敏度 S=27.7

测定电阻阻值

温度°C	20	25	30	35	40	45
升温电阻值 (Ω)	3920	3180	2590	2130	1760	1460
降温电阻值(Ω)	3920	3180	2590	2130	1760	1460
电阻平均值 (Ω)	3920	3180	2590	2130	1760	1460

50	55	60	65	70	75	80	85
1210	1000	870	730	630	540	460	400
1210	1010	860	730	630	530	460	400
1210	1005	865	730	630	535	460	400

 $\underline{\underline{fr}} \ln R = B \cdot \frac{1}{T} + \ln A$ 直线得到

根据 $In(Rt)\sim (-1/T)$ 曲线,确定 T 趋于无穷时热敏电阻的阻值 Roo (单位: Ω) =0.0132

热敏电阻的材料常数 B (单位: K) =3698.4

$$\alpha = -\frac{B}{T^2}$$

<u>50℃C</u> 时的电阻温度系数 α (单位: 1/K) =-0.03534

分析讨论

实验体会 在实验过程中,温度的上升难以控制,所以要多做几次,逐步缩小每次测量的 误差。同时要保证温度变化幅度慢,便于控制。