

TensorFlow Definition

TensorFlow is an open-source high-performance library for numerical computation that uses directed graph

TensorFlow toolkit hierarchy

High-level "out-of-box" API does distributed training

Components useful when building custom NN models

Python API gives you full control

C++ API is quite low-level

TF runs on different hardware

tf.estimator

tf.layers, tf.losses, tf.metrics

Core TensorFlow (Python)

Core TensorFlow (C++)

── CPU

GPU

TPU

Android

Cloud ML Engine

Link access

- 1. https://github.com/arifromadhan19/tensorflow-mini-workshop (run in own laptop)
- 2. https://www.kaggle.com/arifromadhan19/kernels (run in kaggle kernel)
- 3. http://172.16.70.20:8890/tree/arif/tensorflow-mini-workshop (run in jupyter server)

TensorFlow toolkit

The Python API

High-level "out-of-box" API does tf.estimator distributed training tf.layers, tf.losses, tf.metrics Components useful when building Cloud ML Engine custom NN models Python API gives you full control **Core TensorFlow (Python)** Core TensorFlow (C++) C++ API is quite low-level TF runs on different hardware **GPU CPU TPU Android**

Tensors and Operations

TensorFlow does have its own data structure for the purpose of performance and ease of use.

Tensor is the data structure used in Tensorflow and it is at the core of TensorFlow.

- 1. Constant
- 2. Variabel
- 3. Placeholder

https://www.easy-tensorflow.com/tf-tutorials/basics/tensor-types

The Python API Build and run directed Graphs

```
c = tf.add(a, b)
```

```
session = tf.Session()
numpy_c = session.run(c, feed_dict= ....)
```


TensorFlow does lazy evaluation: you need to run the graph to get results

numpy

```
a = np.array([5, 3, 8])
b = np.array([3, -1, 2])
c = np.add(a, b)
print c
[ 8 2 10]
```

*tf Eager, however, allows you to execute operations imperatively

TensorFlow

Let's do it in Practice

Link: https://www.kaggle.com/arifromadhan19/tensorflow

http://172.16.70.20:8890/notebooks/arif/tensorflow mini wor

kshop/Simple Neural Network.ipynb

The High-level API

High-level "out-of-box" API does tf.estimator distributed training tf.layers, tf.losses, tf.metrics Components useful when building Cloud ML Engine custom NN models **Core TensorFlow (Python)** Python API gives you full control Core TensorFlow (C++) C++ API is quite low-level TF runs on different hardware **GPU CPU TPU Android**

Estimators

01 LinearRegressor

02 DNNRegressor

03 DNNLinearCombinedRegressor

04 LinearClassifier

05 DNNClassifier

06 DNNLinearCombinedClassifier

Working with Estimator

Set up machine learning model

- 1. Regression or classification?
- 2. What is the label?
- 3. What are the features?

Carry out ML steps

- 1. Train the model
- 2. Evaluate the model
- 3. Predict with the model

Let's do it in Practice

Link:

http://172.16.70.20:8890/notebooks/arif/tensorflow mini wor

kshop/2.%20Estimator%20in%20Classification%20Case.ipynb

Neural Network models

High-level "out-of-box" API does tf.estimator distributed training Components useful when building tf.layers, tf.losses, tf.metrics Cloud ML Engine custom NN models Python API gives you full control **Core TensorFlow (Python)** Core TensorFlow (C++) C++ API is quite low-level TF runs on different hardware **GPU CPU TPU Android**

Working with Neural Network models

Set up machine learning model

- 1. Regression or classification?
- 2. What is the label?
- 3. What are the features?

Carry out ML steps

- 1. Train the model
- 2. Evaluate the model
- 3. Predict with the model

Let's do it in Practice

Link:

https://www.kaggle.com/arifromadhan19/mnist-classification-tensorflowhttps://www.kaggle.com/arifromadhan19/mnist-classification-keras

Bonus

Link:

https://developers.google.com/machine-learning/practica/image-classification/exercise-3

