Solution

Quiz 1, Stat 3

1	In the equation $E(Y) = b_0 + b_1 x$, what is the value of b_1 if x has no linear	
(3)	relationship to Y ? Does this value indicate that there is no relationship between x and Y ? Explain your answers. $b_1 = 0$; no there can be non-linear.	nolation.
01	between x and Y ? Explain your answers. $O_1 - O_2$ in O_2 in O_3	10000

2. The following is the output from a regression analysis in R. Weight is measured in kg and height in cm.

(5)

Call:

lm(formula = weight ~ height) Coefficients:

Estimate Std. Error t value Pr(>|t|) -3.393 0.00105 ** (Intercept) -101.3301 29.8617 5.939 5.92e-08 *** 0.1676 0.9956 height

Residual standard error: 10.07 on 86 degrees of freedom Multiple R-squared: 0.2908

(a) What is the sample size? 86+2=88

(b) What is the estimated weight when height is 1.5 metres? (1.5 x. 9956-101. 3301)kg

- (c) What is the estimated change in weight for 1cm change in height? ~9956 kg
- (d) What is the sample correlation coefficient between height and weight? $\sqrt{-2908}$
- (e) What is the estimated variance of the error? (10.67)2
- 3. Suppose we have paired data $(x_1, y_1), \dots, (x_n, y_n)$ and we are interested in the regression line of y on x.

(a) What can you say about the least squares regression line when $x_1 =$ $x_2 = \cdots = x_n$ and the y's are distinct? Let $x_1 = \cdots = x_n = x_0$. Any line passing (b) What can you say about the least squares regression line when $y_1 = \text{through } (x_0, \overline{y})$ $y_2 = \cdots = y_n$ and the x's are distinct?

Horizonta Straight line y= y-