Université de Paris Master Random Modelling, Finance and Data Science (M2MO)

Mémoire

pour obtenir les diplômes $\label{eq:master} \mbox{``Master of Science \& Diplôme d'ingénieur de l'ENSIIE''} \\ Année 2020/2021$

Modèle de Cheyette et pricing de produits de taux

Awalee Consulting

Rédigé par:

Alexis Houssard

2020 ERANCE

E-Mail: alexis.houssard@hotmail.com

Date de fin: 19 octobre 2021

2021

Date de début: 19 Avril 2021

Abstract

This document deals with a study of the so-called "Cheyette" interest rate model, a specification of the HJM framework which provides a continuous forward curve with a markovian short rate. The main idea of this work is to understand the construction, the parameterization and the capacity to reproduce market's prices of this model with a practical but also theoretical point of view. In order to highlight the properties of this forward curve characterization and to test it in a 'real life' situation, one will carry out all the applications in one of the most common contexts of interest rate modeling: swaption pricing. Our aim is here to introduce briefly the theory of the generic model and to implement its uni-dimensional version with a parametric local volatility of the short rate. Afterwards, some numerical tests will be provided to find out the best way to calibrate the Cheyette model on implied volatility and to price swaption. Some mathematical arguments will follow the observations made to justify our results. To finish with one will pay attention to an extension of the model with a non-parametric local volatility function of the short rate and achieve the same kind of tests as described previously.

Contents

1	Intr	roduction	1
2	Le modèle de Cheyette		3
	2.1	Rappels sur la modélisation de la courbe des taux	3
	2.2	Le cadre HJM	4
	2.3	La spécification de Cheyette: un modèle Markovien	6
	2.4	Volatilité locale linéaire	8
3	Valorisation du swaption		9
	3.1	Valorisation sous la probabilité risque neutre	10
	3.2	Valorisation sous la mesure terminale	10
	3.3	Discrétisation des EDS	11
	3.4	Construction de la courbe Zero Coupon	11
	3.5	Approximation par un modèle "displaced log-normal"	11
4	Courbe de volatilité implicite		12
	4.1	Volatilité implicite log-normale	12
	4.2	Volatilité implicite normale	12
	4.3	Observations et propriétés sur le skew	12
5	Calibration de volatilité locale en dimension 1		13
	5.1	Paramétrisation du problème	13
	5.2	Algorithme et résultats	13
6	Cor	nclusion	14
Références		15	
Annexe			16

1 Introduction

La modélisation de la courbe des taux d'intérêts représente un enjeu central dans le monde des mathématiques financières en ce sens qu'elle intervient dans la valorisation de la majorité des produits financiers. En effet, tous les produits dont le retour sur investissement (nous emploierons le terme payoff dans la suite et cela désignera d'un point de vue mathématique la quantité perçue par le détenteur du produit en l'instant terminal) dépend de la courbe de taux d'intérêt en un ou plusieurs instants nécessitent, pour être correctement valorisés, de se questionner sur le modèle de taux à considérer. Cette considération mène à une certaine forme de la courbe des taux forward avec ses propres caractéristiques mathématiques. L'objectif est alors de faciliter la mise en place d'une méthode de valorisation, d'un point de vue théorique comme pratique, sans altérer la capacité du modèle à reproduire les phénomènes observables sur le marché tels que le skew et le smile de volatilité implicite d'instruments de référence.

Au début des années 1990 apparaît la méthodologie de "Heath-Jarrow-Morton" (HJM) dans plusieurs articles des auteurs du même nom. Celle ci s'imposera comme le cadre théorique le plus fréquemment employé pour modéliser l'entièreté de la courbe forward, de manière continue et dans le contexte d'un marché complet dépourvu de tout arbitrage. Quelques années plus tard, les travaux de O. Cheyette notamment ont conduit à une spécification du cadre HJM, conférant au taux court un caractère aléatoire markovien intéressant.

Ce mémoire fait ainsi l'objet de l'étude d'un modèle de Cheyette traité dans un premier temps dans sa version unidimensionnelle et dans un second temps en dimension multiple. Afin de tester ce modèle et d'en comprendre les fondements, nous concentrerons notre étude sur sa capacité à valoriser les swaptions européens du fait de leur importante liquidité sur le marché. De plus, le payoff de ces options fait intervenir plusieurs sous-jacents avec des maturités différentes, ce qui leur confèrent une utilité particulière dans le processus de calibration d'un modèle dont certains paramètres dépendent du temps.

Les objectifs du projet développé à travers ce document résident dans trois étapes principales que sont la valorisation du swaption européen dans notre cas particulier, le calcul de la courbe de volatilité implicite ainsi que la calibration de la volatilité locale du modèle de Cheyette considéré. Ces trois étapes sont intrinsèquement liées dans le processus permettant de 'pricer' en temps réels des instruments non disponibles sur le marché tout en étant cohérent avec la tendance de ce dernier. En d'autres termes, il s'agira de calibrer la volatilité locale paramétrique du modèle de Cheyette sur le cube de volatilité des swaptions du marché afin de reproduire au mieux la courbe de volatilité implicite et les prix observés.

Enfin nous explorerons différentes extensions du modèle de Cheyette telles que celle à volatilité non-paramétrique ou stochastique.

Notations

- \bullet Probabilité historique $\mathbb P$ / probabilité risque neutre $\mathbb Q$
- $\bullet \ \mathbb{E}_{\mathbb{Q}}$: espérance sous la probabilité \mathbb{Q}
- ullet filtration ${\cal F}$
- $W^{\mathbb{Q}}$: un mouvement Brownien sous la mesure \mathbb{Q}
- Facteur d'actualisation à l'instant
t $: B(t) = e^{-\int_0^t r(s) \ \mathrm{d}s}$
- Partie positive d'un réel: $x^+ = max(x, 0)$

2 Le modèle de Cheyette

2.1 Rappels sur la modélisation de la courbe des taux

Commencons par introduire les principes fondamentaux de la courbe des taux avec la définition du **taux forward**. Le taux forward est le taux qui annule la valeur initiale d'un contrat du même nom, le *Forward Rate Agreement*. Il s'agit d'un contrat entre deux contreparties assurant un prêt (ou un emprunt selon la contrepartie) à un taux connu en l'instant t où le contrat prend effet, entre deux dates futures T et S.

Ce contrat peut être répliquer à l'aide des obligations zéros coupons (On notera P(t,T) dans l'ensemble du document pour désigner l'obligation zéro coupon entre les dates t et T) si on fait l'hypothèse que leurs valeurs sont connues en l'instant initial t. La stratégie de réplication en considérant un taux en convention exponentielle est la suivante:

On note N le nominal du contrat, t la date à laquelle le contrat prend effet et T, S les dates entre lesquelles le taux est calculé.

- En t: La contrepartie prêteuse paie $NP(t,T) Ne^{(S-T)F(t,T,S)}P(t,S)$
- T: La contrepartie rembourse le nominal -N
- S > T: La contrepartie récupère les intérêts $+Ne^{(S-T)F(t,T,S)}$

En l'absence d'arbitrage, deux stratégies fournissant les mêmes cash-flows ont la même valeur initiale. On en déduit que la valeur du $Forward\ Rate\ Agreement$ en t est de $NP(t,T)-Ne^{(S-T)F(t,T,S)}P(t,S)$.

Le taux forward est le taux qui annule cette quantité, on peut donc exprimer le taux forward F(t,T,S) :

$$F(t,T,S) = \frac{1}{S-T} \ln \frac{P(t,T)}{P(t,S)}$$

Le taux forward instantané peut être défini comme le taux forward pour lequel la durée entre les dates T et S est infiniment courte, à l'instar d'un taux *overnight* pour citer un équivalent sur le marché des taux. De manière quantitative, ce taux f vaut

$$f(t,T) = \lim_{S \to T} F(t,T,S) = -\frac{\partial \ln P(t,T)}{\partial T}$$

La courbe forward $T \to f(t,T)$ permet donc directement de déduire une expression du prix de l'obligation zéro coupon pour toutes les maturités puisque

$$P(t,T) = e^{-\int_t^T f(t,u) \, du}$$

.

Enfin, le taux court en l'instant t est défini de la manière suivante

$$r(t) = f(t, t).$$

Cela ne correspond à aucun actif échangeable sur le marché, mais c'est un taux calculable en chaque instant et qui intervient dans la valorisation des instruments financiers sous la probabilité risque neutre.

Modélisation de la structure par terme

On peut distinguer deux classes de modèles de taux d'intérêts, les modèles appelés "Short rate models" et les modèles dits "Term structure models" (modèles de taux court et à structure par terme en français). Les short rate models ont pour objectif de décrire la dynamique du taux court, la plupart du temps sous la forme d'une diffusion satisfaisant une équation différentielle stochastique générique telle que: $dr(t) = (\theta(t) - \alpha(t)r(t)) dt + \sigma(t)r(t)^{\beta} dW_t$. Certes ces modèles permettent une reconstruction de la courbe zéro coupon grâce à la relation $P(t,T) = \mathbb{E}_{\mathbb{Q}}[e^{-\int_t^T r_s ds}|\mathcal{F}_t]$, mais introduire un modèle de ce type reproduisant une fonction de volatilité réaliste pour les taux forwards s'avère complexe.

La modélisation de la structure par terme, quant à elle, propose de décrire directement la courbe forward et se voit beaucoup plus avantageuse d'un point de vue mathématique. En d'autres termes, connaissant la courbe forward initiale $T \to P(0,T)$, on cherche à modéliser la courbe forward $t \to P(t,T)$ de manière continue pour tous les horizons T. Il s'agit en fait de décrire la dynamique du taux forward f(t,T) sur le domaine désiré. Il paraît en effet plus logique de déduire un taux court instantané de la courbe forward qui, elle, a une dépendance à la maturité, plutôt que de procéder à la démarche inverse.

2.2 Le cadre HJM

La majeure partie des modèles de structure par terme sont issus de ce que l'on appelle le cadre HJM que nous présenterons succinctement ici.

On se propose d'écrire la dynamique du taux forward sous la forme suivante:

$$df(t,T) = \mu_f(t,T) dt + \sigma_f(t,T)^{\top} dW_t , t \leq T$$

où W est un mouvement Brownien sous la probabilité historique \mathbb{P} .

Pour assurer l'absence d'arbitrage dans ce cadre, il est suffisant d'imposer l'existence d'une probabilité risque neutre sous laquelle le prix du zéro coupon actualisé est une martingale. Mathématiquement parlant, cela équivaut à

$$\frac{\mathrm{d}P(t,T)}{P(t,T)} = r(t) \, \mathrm{d}t - \sigma_P(t,T)^{\mathsf{T}} \mathrm{d}W_t^{\mathbb{Q}}.$$

On rappelle l'expression liant le prix du zéro coupon au taux forward $f(t,T) = -\frac{\partial \ln P(t,T)}{\partial T}$.

Pour des raisons évidentes, le prix du zéro coupon est borné et prend ses valeurs dans l'intervalle]0,1]. Puisque la fonction $x \to \ln(x) \in \mathcal{C}^2(\mathbb{R}^{+*},\mathbb{R})$, elle est bornée sur]0,1] et ses deux premières dérivées également. On peut donc appliquer le lemme d'Itô au processus $(P(t,T))_t$.

$$d \ln \left(P(t,T) \right) = \left(r(t) - \frac{1}{2} \sigma_P(t,T)^\top \sigma_P(t,T) \right) dt - \sigma_P(t,T)^\top dW_t^{\mathbb{Q}}$$

.

Par le théorème de Schwarz, on aboutit à la dynamique du taux forward suivante:

$$\begin{split} \mathrm{d}f(t,T) &= \mathrm{d} \, \left(- \tfrac{\partial \ln P(t,T)}{\partial T} \right) \\ &= - \tfrac{\partial}{\partial T} \mathrm{d} \ln \left(P(t,T) \right) \\ &\iff \mathrm{d}f(t,T) &= \tfrac{\partial \sigma_P}{\partial T} (t,T)^\top \sigma_P(t,T) \; \mathrm{d}t + \tfrac{\partial \sigma_P}{\partial T} (t,T)^\top \; \mathrm{d}W_t^\mathbb{Q} \end{split}$$

Si on considère un changement de probabilité tel que l'on ait $W_t^{\mathbb{Q}} = W_t + \int_0^t \lambda_u \, du$ alors on en déduit par identification

$$\sigma_f(t,T) = \frac{\partial \sigma_P}{\partial T}(t,T)$$

, ce qui conduit à

$$\sigma_P(t,T) = \int_t^T \sigma_f(t,u) \, \mathrm{d}u$$

avec la condition initiale $\sigma_P(t,t)=0$.

De même, il vient directement l'expression sur les drift, connue sous le nom de **HJM** drift condition:

$$\sigma_f(t,T)^{\mathsf{T}} \lambda_t = \mu_f(t,T) - \sigma_f(t,T)^{\mathsf{T}} \int_t^T \sigma_f(t,u) \, \mathrm{d}u$$

.

Il est donc convenable de réécrire la dynamique du taux forward sous la forme

$$df(t,T) = \sigma_f(t,T)^{\top} \left(\int_t^T \sigma_f(t,u) \, du \right) dt + \sigma_f(t,T)^{\top} \, dW_t^{\mathbb{Q}}$$
(1)

Enfin,

$$r(t) = f(t,t) = f(0,t) + \int_0^t \sigma_f(u,t)^\top \left(\int_u^t \sigma_f(u,s) \, \mathrm{d}s \right) \, \mathrm{d}u + \int_0^t \sigma_f(u,t)^\top \, \mathrm{d}W u^\mathbb{Q}$$
 (2)

2.3 La spécification de Cheyette: un modèle Markovien

Comme il est explicité dans un des papiers originaux d'O. Cheyette sur sa reformulation du modèle HJM, ce dernier présente de nombreux avantages théoriques, toutefois il impose certaines contraintes sur l'aspect pratique de la modélisation des taux. En effet, si le modèle HJM est si générique, c'est grâce à sa capacité à générer une dynamique de taux forward à n'importe quel instant et pour une maturité quelconque à condition de connaître la structure de volatilité forward. Cheyette évoque un espace des dynamiques de dimension infinie. Il n'en reste pas moins que cette généralité impose dans certains cas, par exemple pour des instruments financiers sur de longues maturités avec des échéances régulières, de simuler une dynamique pour le taux forward à chaque échéance. Cette nécessité exclue donc toute possibilité d'employer des méthodes de discrétisation et d'estimation Monte Carlo pour des raisons de complexité. La simple valorisation d'une courbe zero coupon implique encore une fois de générer une infinité de taux forward. De même, on remarque que la modélisation du taux forward précédemment induite (1) est "path dependent", ce qui peut compliquer les simulations.

Pour pallier ces problèmes, O. Cheyette propose un remaniement du cadre HJM mettant en exergue le caractère markovien du taux court. De manière générale, travailler avec un taux court qui s'exprime comme une fonction déterministe d'un processus de Markov permet de faciliter le calcul d'espérance conditionnelle et de contourner les problèmes liés à la "path dependence".

La spécification de Cheyette réside dans l'utilisation d'une **structure de volatilité for**ward à variables séparables. C'est-à-dire,

$$\sigma_f(t, T, \omega) = g(t, \omega) \ h(T) \quad g : \mathbb{R} \to \mathbb{R}$$
$$h : \mathbb{R} \to \mathbb{R}^+$$
(3)

On étudie ici la version mono-facteur et unidimensionnelle et on omettra l'argument ω dans les longues expressions. Dans le cas multi-facteurs, si on considère un mouvement Brownien en dimension d alors $g: \mathbb{R} \to \mathbb{R}^d$.

L'équation (2) devient alors

$$r(t) = f(0,t) + h(t) \int_0^t g(u)^{\top} g(u) \left(\int_u^t h(s) \, ds \right) du + h(t) \int_0^t g(u)^{\top} \, dW u^{\mathbb{Q}}$$

Le taux court peut alors être exprimé (Voir section 4.5.2 de Andersen 2010a) comme solution d'une équation différentielle stochastique de la forme

$$dr(t) = \left[a(t) - \chi(t)r(t) \right] dt + h(t)g(t)^{\top} dW_t^{\mathbb{Q}}$$

Оù

$$\begin{cases} a(t) = \frac{\partial f(0,t)}{\partial t} + \chi(t)f(0,t) + \int_0^t e^{-2\int_u^t \chi(s) \, \mathrm{d}s} \sigma_r(u)^\top \sigma_r(u) \, \mathrm{d}u &, \sigma_r(t) = \sigma_f(t,t) = g(t)h(t) \\ \chi(t) = -\frac{h'(t)}{h(t)} \end{cases}$$

Au vu de la dynamique de r, le taux court est bien un processus de Markov puisque le drift et la volatilité satisfont les conditions du théorème d'existence et d'unicité d'une solution markovienne.

Remarque: Ce type de modèle est dit Quasi-Gaussien à un facteur. Quasi Gaussien en raison du caractère stochastique de g, si cette fonction avait été déterministe, le taux court serait gaussien car somme d'un terme déterministe et de l' intégrale stochastique d'une fonction déterministe. Le modèle est mono-facteur car il n'admet qu'une seule source d'aléa W.

Toute la puissance de cette spécification réside dans capacité à développer les calculs pour obtenir une forme simplifiée du prix de l'obligation zero coupon que l'on pourra contrôler avec les paramètres du modèle. Nous nous proposons ici de retranscrire le raisonnement développé dans (Andersen 2010b, Chap.13) afin d'obtenir ce résultat clé. On a donc, avec ce qui précède, $h(t) = e^{-\int_0^t \chi(s) \, ds}$. D'après (2),

$$f(t,T) = f(0,T) + h(T) \int_0^t g(u)^2 \int_u^T h(s) \, ds \, du + h(T) \int_0^t g(u) \, dW_u^{\mathbb{Q}}. \tag{4}$$

Si on pose

$$x(t) = h(t) \int_0^t g(u)^2 \int_u^t h(s) ds du + h(t) \int_0^t g(u) dW_u^{\mathbb{Q}}$$

, on remarque d'abord que f(t,t) = f(0,t) + x(t) = r(t).

Ensuite, il s'agit de différencier l'expression de x pour en déduire une dynamique en appliquant la formule de Leibniz, il vient:

$$dx(t) = \frac{h'(t)}{h(t)}x(t) dt + y(t) dt + \sigma_r(t) dW_t^{\mathbb{Q}}$$

= $(y(t) - \chi(t)x(t)) dt + \sigma_r(t) dW_t^{\mathbb{Q}}$

où on a posé $y(t) = h(t)^2 \int_0^t g(u)^2 du$.

De plus, on va exprimer le taux forward en fonction de notre nouvelle variable x par une transformation sur (4).

$$f(t,T) = f(0,T) + h(T) \left[\int_0^t g(u)^2 \left(\int_u^t h(s) \, ds + \int_t^T h(s) \, ds \right) \, du + \frac{h(t)}{h(t)} \int_0^t g(u) \, dW_u^{\mathbb{Q}} \right]$$

$$= f(0,T) + \frac{h(T)}{h(t)} x(t) + h(T) \int_0^t g(u)^2 \, du \int_t^T h(s) \, ds$$

$$= f(0,T) + \frac{h(T)}{h(t)} \left[x(t) + y(t) G(t,T) \right] , G(t,T) = \frac{1}{h(t)} \int_t^T h(s) \, ds$$

A l'aide de ce qui précède, on obtient facilement:

$$P(t,T) = e^{-\int_t^T f(t,u) \, du}$$

$$= e^{-\int_t^T f(0,u) \, du - \int_t^T \frac{h(u)}{h(t)} \left(x(t) + y(t)G(t,u) \right) \, du}$$

$$= P(0,T)e^{-G(t,T)x(t) - \frac{y(t)}{h(t)} \int_t^T h(u)G(t,u) \, du}$$

Or par interversion d'intégrales,

$$\begin{array}{ll} \frac{1}{h(t)} \int_t^T h(u) G(t,u) \; \mathrm{d}u &= \frac{1}{h(t)^2} \int_t^T h(u) \int_t^u h(s) \; \mathrm{d}s \; \mathrm{d}u \\ &= \frac{1}{h(t)^2} \int_t^T h(s) \int_s^T h(u) \; \mathrm{d}u \; \mathrm{d}s \\ &= G(t,T)^2 - \frac{1}{h(t)^2} \int_t^T h(s) \int_t^s h(u) \; \mathrm{d}u \; \mathrm{d}s \end{array}$$

$$\iff \qquad \qquad \frac{1}{h(t)^2} \int_t^T h(s) \int_t^s h(u) \; \mathrm{d}u \; \mathrm{d}s = \frac{1}{2} G(t,T)^2$$

Finalement, on aboutit à l'important résultat qui suit:

Proposition 1

$$\forall 0 \le t \le T, \quad r(t) = f(0,t) + x(t)$$

$$Et \quad P(t,T,x(t),y(t)) = \frac{P(0,T)}{P(0,t)} e^{-G(t,T)} x(t) - \frac{1}{2}G(t,T)^{2} y(t)$$

$$Où \quad \begin{cases} dx(t) = (y(t) - \chi(t)x(t)) dt + \sigma_{r}(t,\omega) dW_{t}^{\mathbb{Q}}, \\ dy(t) = (\sigma_{r}(t,\omega)^{2} - 2\chi(t)y(t)) dt, \\ x(0) = y(0) = 0 \end{cases}$$

Cette proposition nous permet de conclure que, dans le modèle de Cheyette, la courbe forward et à plus forte raison la courbe zéro coupon sont entièrement caractérisées par les deux variables d'état x et y. Ces dernières seront au coeur de notre étude puisqu'elles contrôlent le prix des swaptions à travers celui des zéro coupon, nous nous intéresseront plus particulièrement à l'effet de la structure de la volatilité σ_r sur les prix et la volatilité implicite des swaptions européens.

2.4 Volatilité locale linéaire

Le modèle décrit dans la section précédente est valable pour tous les types de volatilité locale. Nous nous focaliserons ici à l'étude du cas où la volatilité locale est linéaire. En d'autres termes, on choisit une structure de volatilité sous la forme d'une fonction linéaire des variables d'état x et y avec des paramètres dépendant du temps.

On note ainsi

$$\sigma_r(t, x, y) = \lambda(t) (a(t) + b(t) x)$$
(5)

Deux raisons justifient en grande partie ce choix de volatilité (voir également Chap.13 Andersen 2010b). D'une part, cette structure laisse paraître de manière quasi transparente l'effet des paramètres et des variables d'état sur le comportement de la volatilité. De plus, la calibration sera facilitée puisqu'elle ne portera que sur deux fonctions, à savoir $\lambda * a$ et $\lambda * b$. D'autre part, nous verrons que cette forme simplifie les équations et confère une liberté qui conduira à un certain nombre d'approximations utiles. On notera que y joue le rôle d'une variable d'ajustement, c'est pourquoi il ne semble pas aberrant de considérer la volatilité comme fonction de x uniquement.

3 Valorisation du swaption

On se propose de rappeller brièvement la définition du swaption européen. Il s'agit d'une option conférant le droit et non l'obligation d'entrer dans un swap européen à la maturité que l'on notera T_0 . Le swap est un contrat entre deux contreparties qui assure l'échange d'un taux fixe, le strike noté K, contre un taux variable aux différentes échéances $T_1 < T_2 < ... < T_N$. Nous considérerons le taux forward composé entre T_i et T_{i+1} en tant que taux variable échangé en T_{i+1} , i = 0, N-1. Mathématiquement, on peut écrire le payoff du swap de la manière suivante:

$$Swap(T_0) = B(t) \mathbb{E}_{\mathbb{Q}} \left[\sum_{i=0}^{N-1} B(T_{i+1})^{-1} \tau_i \left(F(T_i, T_i, T_{i+1}) - K \right) | \mathcal{F}_t \right]$$

= $B(t) \sum_{i=0}^{N-1} \mathbb{E}_{\mathbb{Q}} \left[B(T_{i+1})^{-1} \left(\frac{1}{P(T_i, T_{i+1})} - 1 \right) | \mathcal{F}_t \right] - K \sum_{i=0}^{N-1} \tau_i P(t, T_{i+1}) \right]$

Or d'après la propriété de la tour et le fait que les zero coupons actualisés soient des martingales sous $\mathbb Q$ en tant qu'actifs échangeables, il vient:

$$\mathbb{E}_{\mathbb{Q}}\Big[B(T_{i+1})^{-1}\big(\frac{1}{P(T_{i},T_{i+1})}-1\big)|\mathcal{F}_{t}\Big] = \mathbb{E}_{\mathbb{Q}}\Big[\big(\frac{1}{P(T_{i},T_{i+1})}-1\big)\mathbb{E}_{\mathbb{Q}}\Big[B(T_{i+1})^{-1}|\mathcal{F}_{T_{i}}\Big]|\mathcal{F}_{t}\Big] \\
= \mathbb{E}_{\mathbb{Q}}\Big[\big(\frac{1}{P(T_{i},T_{i+1})}-1\big)B(T_{i})^{-1}P(T_{i},T_{i+1})|\mathcal{F}_{t}\Big] \\
= B(t)^{-1}\Big(P(t,T_{i})-P(t,T_{i+1})\Big)$$

Par sommation, on a:

$$Swap(T_0) = 1 - P(T_0, T_N) - K \sum_{i=0}^{N-1} \tau_i P(t, T_{i+1})$$
(6)

Finalement, le prix du swaption, à l'instant présent, V_0 de strike K, de maturité T_0 et de tenor structure (la maturité du swap sous-jacent ainsi que la fréquence de paiement) $T_0 < T_1 < ... < T_N$ s'exprime de la manière suivante:

$$V_0 = \mathbb{E}_{\mathbb{Q}}\left[e^{-\int_0^{T_0} r(s) \, \mathrm{d}s} Swap(T_0)^+\right]$$
(7)

3.1 Valorisation sous la probabilité risque neutre

Afin de valoriser les swaptions, nous allons exploiter leur expression sous la forme d'espérance afin de l'approximer grâce à une méthode de Monte Carlo très classique.

Reprenons la formule du prix du swaption européen 7 adaptée à notre modèle, cela donne:

$$V_{0} = \mathbb{E}_{\mathbb{Q}} \left[e^{-\int_{0}^{T_{0}} r(s) \, ds} Swap(T_{0}, x(T_{0}), y(T_{0}))^{+} \right]$$

$$= P(0, T_{0}) \, \mathbb{E}_{\mathbb{Q}} \left[e^{-\int_{0}^{T_{0}} x(s) \, ds} \left(1 - P(T_{0}, T_{N}, x(T_{0}), y(T_{0})) - K \sum_{n=0}^{N-1} \tau_{n} P(T_{0}, T_{n+1}, x(T_{0}), y(T_{0}))^{+} \right]$$
(8)

Où on rappelle que

$$\forall n \in [|0, N|], \quad P(T_0, T_n, x, y) = \frac{P(0, T_n)}{P(0, T_0)} e^{-G(T_0, T_n)x - \frac{1}{2}G(T_0, T_n)^2 y}$$

Nous allons ainsi calculer un estimateur Monte Carlo de l'espérance \hat{V}_0 à partir de M simulations indépendantes (dans la pratique, les simulations sont pseudos indépendantes) $(S_m)_{m=1,M}$ tel que:

$$\begin{cases} \hat{V_0} = \frac{1}{M} \sum_{m=1}^{M} S_m \\ \forall m, \ S_m = e^{I_m} \left(P(0, T_0) - P(0, T_0) P(T_0, T_N, x_m, y_m) - K P(0, T_0) A(T_0, x_m, y_m) \right)^+ \end{cases}$$

Où on note x_m, y_m, I_m la m-ième simulation des variables aléatoire $x(T_0), y(T_0), I(T_0)$ grâce à un schéma d'Euler sur lequel nous donnerons des précisions dans la section 3.3. Nous allons également donner une notation à la somme qui subsiste dans le payoff de (8), que l'on nomme souvent "Annuity".

$$A(t, x, y) = \sum_{n=0}^{N-1} \tau_n \frac{P(0, T_{n+1})}{P(0, t)} e^{-G(t, T_{n+1})x - \frac{1}{2}G(t, T_{n+1})^2 y}$$

Remarque: La forme de volatilité locale (5) est générique car elle autorise des fonctions λ, a, b déterministes quelconques. Toutefois, en gardant à l'esprit l'objectif de calibration de la volatilité qui se fera avec des paramètres constants par morceaux, nous simulerons les prix de swaption dans les tests avec des paramètres constants.

3.2 Valorisation sous la mesure terminale

Dans cette section, notre but est de se débarasser du terme "path dependent" $e^{-\int_0^{T_0} x(s) \, ds}$ dans l'espérance en introduisant une mesure de probabilité appropriée. Une solution classique est de choisir le prix zero coupon comme numéraire. Mais il est préférable d'opter pour un numéraire qui reste "en vie" pour toutes les dates de la struc-

ture de tenor. On se porte ainsi vers le numéraire $P(t, T_N)$ et la mesure associée est appelée la mesure terminale.

 $\left(e^{-\int_0^t r(s) \, ds} P(t, T_N)\right)_t$ est une martingale strictement positive sous la mesure risque neutre, on pose donc

 $\frac{\mathrm{d}\mathbb{Q}^{T_N}}{\mathrm{d}\mathbb{Q}}\Big|_{\mathcal{F}_t} = \frac{P(t, T_N)}{P(0, T_N)} e^{-\int_0^t r(s) \, \mathrm{d}s}$

Cela implique

$$V_{0} = P(0, T_{N}) \mathbb{E}_{\mathbb{Q}^{T_{N}}} \left[\frac{1}{P(T_{0}, T_{N})} \left(Swap(T_{0}) \right)^{+} \right]$$

$$= P(0, T_{N}) \mathbb{E}_{\mathbb{Q}^{T_{N}}} \left[\frac{1}{P(T_{0}, T_{N})} \left(1 - P(T_{0}, T_{N}, x(T_{0}), y(T_{0})) - KA(T_{0}, x(T_{0}), y(T_{0})) \right)^{+} \right]$$

Focalisons nous à présent sur la dynamique de x et y sous la nouvelle mesure. Pour commencer, en l'absence d'arbitrage, l'obligation actualisée de maturité T_N est une martingales sous la mesure terminale, donc:

$$d\left(\frac{P(t,T_N)}{B(t)}\right) = -\frac{P(t,T_N)}{B(t)}\sigma_P(t,T_N)^{\top} dW_t.$$

$$\implies \frac{P(t, T_N)}{\beta(t)} = P(0, T_N) e^{-\int_0^t \sigma_P(s, T_N)^\top dW_s - \frac{1}{2} \int_0^t \sigma_P(s, T_N)^\top \sigma_P(s, T_N) ds}$$

D'après le théorème de Girsanov,

$$W_t^{T_N} = W_t + \int_0^t \sigma_P(s, T_N) \, ds \quad \text{est un MB sous } \mathbb{Q}^{T_N}$$

Rappelons les hypothèses du modèle, $\sigma_f(t,T)=g(t)h(T)$ and $\sigma_P(t,T)=\int_t^T\sigma_f(t,u)\,\mathrm{d}u=g(t)\int_t^Th(u)\,\mathrm{d}u=\sigma_r(t)G(t,T)$

Ainsi

$$dx(t) = (y(t) - \chi(t)x(t)) dt + \sigma_r(t) (dW_t^{T_N} - \sigma_P(t, T_N)dt)$$

= $(y(t) - \sigma_r(t)^2 G(t, T_N) - \chi(t)x(t)) dt + \sigma_r(t) dW_t^{T_N}$

Les conditions pour que x conserve la propriété $x(t) \ge \frac{-a(t)}{b(t)}$ (nous le démontrerons dans la section suivante) sous cette mesure n'est pas aussi évidente que sous la mesure risque neutre.

3.3 Discrétisation des EDS

3.4 Construction de la courbe Zero Coupon

3.5 Approximation par un modèle "displaced log-normal"

4 Courbe de volatilité implicite

Utilité du calcul de la vol implicite pour la calibration: calibrage sur la courbe de vol. plutôt que sur le prix car évite des calculs de prix dans notre modèle coûteux en temps.

4.1 Volatilité implicite log-normale

4.2 Volatilité implicite normale

4.3 Observations et propriétés sur le skew

Limite de l'approx Log displaced : montrer forme IV LD (décroissante rigide) ne reproduit pas des smiles observés sur le marché et est 'trop rigide' par rapport à la courbe de vol. impli de Monte Carlo. (voir P. 456 Brigo mercurio)

- 5 Calibration de volatilité locale en dimension 1
- 5.1 Paramétrisation du problème
- 5.2 Algorithme et résultats

6 Conclusion

References

- [1] Piterbarg Andersen. Interest rate modeling. Vol. 1. 2010.
- [2] Piterbarg Andersen. $Interest\ rate\ modeling.$ Vol. 2. 2010.

Annexe

Tables/graphics that are too large or more detailed explanations can be inserted here. On the next pages is the full-page image from ??, one version with a caption on the side and another with a caption on the bottom.

Figure 1: Substitutable goods Source: Own Illustration

Figure 2: Substitutable goods
Source: Own Illustration