Siemens S7-1200

CPU 1212C AC/DC/Relay

Move Operations

• MOV EN ENO %MW2

Tag_11 IN ** OUT1 Tag_12*

. SWAP VV. Codean

Exercise Example

Understanding Move Operations - MOVE

Move Instructions

The **MOVE** instruction **copies** a single data element from the **source address** specified by the *IN parameter* to the **destination addresses** specified by the *OUT parameter*.

Example: O Copying the value from MW10 to MW12 D C C C O M

Understanding Move Operations – MOVE_BLK

Move Block Instruction /

The MOVE_BLK instructions have an additional COUNT parameter. The COUNT specifies how many data elements are copied. The number of bytes per element copied depends on the data type assigned to the IN and OUT parameter tag names in the PLC tag table.

Understanding Move Operations – FILL_BLK

'Block 1".

Fill Block Instruction

You can use the "Fill block" instruction to fill a memory area (destination area) with the value of the IN input. The destination area is filled beginning with the address specified at the OUT output.

> %MO_0 "Start"

Copying the constant value (45) to Block_1

Array 1[2] Comment

				001	7410y_1[2
	i	Name		Disp	Monitor value
1		"Block_1".Array_1[0]		DEC	10
2		"Block_1".Array_1[1]		DEC	20
3		"Block_1".Array_1[2]	,—-	DEC	45
4		"Block_1".Array_1[3]	(′	DEC	45
5		"Block_1".Array_1[4]	Į	DEC	45
6		"Block_1".Array_1[5]		DEC	45
7		"Block_1".Array_1[6] -	حا	DEC	45
8		"Block_1".Array_1[7]		DEC	44
9		"Block_1".Array_1[8]		DEC	99
10		"Block_1".Array_1[9]		DEC	100
11		"Block_1".Array_1[10]		DEC	110
		"Block_1".Array_1[10]		DEC	110
		"Block_1".Array_1[9]		DEC	

FILL BLK

Understanding Move Operations – **SWAP**

SWAP Instruction

You can use the "Swap" instruction to change the order of the bytes at input IN and query the result at output OUT. The following figure shows how the bytes of an operand of the DWORD data type are swapped using the "Swap" instruction

Understanding Move Operations – **SWAP**

Example:

Exercise Example:

Make a **ladder logic** to continuously update the date from **one block** to **another block** after every 10 seconds.

Ladder Logic

FBD Logic

Network 1: Move Logic

What did we learn today?

- MOV instruction is used to copy the data from source to destination
- MOV_BLK instruction is used to copy the block of source to block of destination using arrays
- Fill instruction is used to fill the destination block with source
- SWAP instruction is used to SWAP the data in the data/memory register.

Thank you

Get copy of this presentation in the course!

Code and Compile
Learning Made Easy

www.codeandcompile.com

