Solve two of the following problems. Place an X through the problem you do not want me to grade, otherwise I will grade the first two problems worked on. Show all work clearly and in order. Please box your answers. 10 minutes.

1. Show: $\forall n \ge 1, \sum_{j=1}^{n} (2j-1) = n^2$.

proof (by induction)

Base Case:
$$(n=1)$$
. Observe $\sum_{j=1}^{n} (2_{j}-1) = 2(1)-1 = (1=1)^{2} = 1$

Inductive Step: Induction hypothesis: at $k \ge 1$ and $\sum_{j=1}^{n} (2_{j}-1) = k^{2}$

(Goal: $\sum_{j=1}^{n} (2_{j}-1) = (k+1)^{2}$)

Observe: $\sum_{j=1}^{n} (2_{j}-1) = \left(\sum_{j=1}^{n} (2_{j}-1)\right) + (2(k+1)-1) = k^{2} + 2k+2-1$
 $= k^{2} + 2k + 1$

how: $\forall n \ge 7, n! > 3^{n}$.

2. Show: $\forall n \geq 7, n! > 3^n$.

Discrete (by induction)

Base Case:
$$(n=7)$$
. Observe $7! = 5040 < 2187 = 3^{7}$

Base Case: $(n=7)$. Observe $7! = 5040 < 2187 = 3^{7}$

Triductive Step: Induction hypothesis: Let $k \ge 7$ and $k! > 3^{k}$

(Goal: $(k+1)! > 3^{k+1}$)

Observe: $(k+1)! = (k+1) \cdot k! > (k+1) \cdot 3^{k}$. Notice that since $k \ge 7$
 $(3) \cdot 3^{k} = 3^{k+1}$

Hence, $(k+1)! > 3^{k+1}$

3. Let $\{s_n\}$ be the sequence defined by

$$s_0 = 0, s_1 = 1$$
, and $\forall n \ge 2, s_n = 3s_{n-1} - 2s_{n-2}$

Show: $\forall n \geq 0, s_n = 2^n - 1.$

proof (by Strong Induction)

Base (ases :
$$(n=0, n=1)$$

 $S_0 = 2^0 - 1 = 1 - 1 = 0$
 $S_1 = 2^1 - 1 = 2 - 1 = 1$

Inductive Step: Induction hypothesis: Let K ≥ 1, and Si = 2'-1 for all Osi ≤ K (Goal: Sk+1 = 2 +1 -1)

Observe
$$S_{k+1} = 3S_k - 2S_{k-1}$$

 $= 3(2^k - 1) - 2(2^{k-1} - 1)$
 $= 3.2^k - 3 - 2.2^{k-1} + 2$
 $= 3.2^k - 2^k - 1$
 $= 2.2^k - 1$
 $= 2^{k+1} - 1$

 \Box