Übungen Probeklausur FK Experimentalphysik III

Blatt 5

A# 1:

a)
$$\lambda = \frac{c}{\nu} = \frac{3.10^8 \frac{\text{m}}{\text{s}}}{10^7 \text{Hz}} = 30 \text{m}$$

b) $\vec{E} = E_0 \vec{e}_x \exp\left(2\pi i(\nu t - \frac{z}{\lambda})\right)$

Mit dem Faraday'schen Gesetz:

$$-\partial_t \vec{B} = \nabla \times \vec{E} = \begin{pmatrix} \partial_x \\ \partial_y \\ \partial_z \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} E_0 \exp\left(2\pi i(\nu t - \frac{z}{\lambda})\right) = \begin{pmatrix} 0 \\ \partial_z \\ -\partial_y \end{pmatrix} E_0 \exp\left(2\pi i(\nu t - \frac{z}{\lambda})\right)$$

$$= \frac{-2\pi i}{\lambda} \vec{e}_y E_0 \exp\left(2\pi i(\nu t - \frac{z}{\lambda})\right)$$

$$\vec{B} = \frac{2\pi i}{\lambda} E_0 \vec{e}_y \int \exp\left(2\pi i(\nu t - \frac{z}{\lambda})\right) dt = \frac{E_0}{\lambda \nu} E_0 \vec{e}_y \exp\left(2\pi i(\nu t - \frac{z}{\lambda})\right)$$

$$= \frac{E_0}{c} \vec{e}_y \exp\left(2\pi i(\nu t - \frac{z}{\lambda})\right)$$

c) Energieflussdichte: $|\vec{S}|$

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} = \frac{E_0^2}{\mu_0 c} \vec{e}_x \times \vec{e}_y \exp\left(4\pi i(\nu t - \frac{z}{\lambda})\right)$$

$$|\vec{S}| = \frac{E_0^2}{\mu_0 c} = \frac{(8 \cdot 10^{-2})^2 \frac{V^2}{m^2}}{1.26 \cdot 10^{-6} \frac{N}{A^2} 3 \cdot 10^8 \frac{m}{s}} = \frac{64}{1.26 \cdot 3} 10^{-6} \frac{V^2 A^2 s}{Nm^3} = 1.69 \cdot 10^{-5} \frac{W}{m^2}$$

A# 2:

Zu verwenden: 1/f = 1/g + 1/b und v = B/G = -b/g

Zuerst Abbildung durch die Sammellinse:

(1) $1/b_1 = 1/f_1 - 1/g_1 = > b_1 = 0.57 \text{ m};$

(2) $B_1 = -G_1b_1/g_1 = -0.0286 \text{ m}.$

Bild der Sammellinse wird Gegenstand der Zerstreuungslinse: $B_1 = G_2$;

 $g_2 = b_1 - d$; weil G_2 recht von der Zerstreuungslinse liegt, muss $g_2 < 0$ sein: g_2 =-0.17 m

(4) $1/b_2 = 1/f_2 - 1/g_2 \Rightarrow b_2 = 0.231 \text{ m};$

(5) $B_2/G_2 = B_2/B_1 = -b_2/g_2 \Rightarrow B_2 = -B_1b_2/g_2 = -0.0385 \text{ m}$

Skizze:

Das Bild ist reell, verkleinert und umgekehrt

A# 3:

a) $g \sin \theta = m\lambda_1$; $(\tan \theta = y/d)$ und $\sin \theta = y/\sqrt{d^2 + y^2}$ (oder über $\tan(\arcsin y/d)$) m=2; $g = 2\lambda_1\sqrt{d^2 + y^2}/y = 3882 \text{ nm} = 3.88 \mu\text{m}$

b) $\sin \theta_2 = 5\lambda_2/g = 4250 \text{ nm}/3882 \text{ nm} > 1$; geht nicht!

A # 4:

Verwende das Planck'sche Strahlungsgesetz: $P=\sigma AT^4\Leftrightarrow T\sim P^{1/4}$ Die eingestrahlte Leistung verdoppelt sich, daher $T\sim 2^{1/4}=1,19$ Vor der Supernova hat es auf der Erde $T_E{=}300$ K. $\Rightarrow T_E'{=}357$ K $\Delta T{=}57$ K
