STATS 310A: Theory of Probability I

Autumn 2016/17

Lecture 20: December 7

Lecturer: Persi Diaconis Scribes: Kenneth Tay

20.1 Characteristic Functions

20.1.1 Inversion and Uniqueness

Let μ be a probability on \mathbb{R} with characteristic function $\phi(t)$.

Theorem 20.1 (Inversion Formula) If a < b with $\mu\{a\} = \mu\{b\} = 0$ (i.e. not atoms of the measure), then

$$\mu(a,b] = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{itb}}{it} \phi(t) dt.$$

Proof: Let $I_T := \frac{1}{2\pi} \int_{-T}^T \frac{e^{-ita} - e^{itb}}{it} \phi(t) dt$. Define $\operatorname{sinc}(T) := \int_0^T \frac{\sin x}{x} dx$. Observe that

• (by change of variables)

$$\int_0^T \frac{\sin(\theta x)}{x} dx = \operatorname{sgn}(\theta) \operatorname{sinc}(T|\theta|).$$

• $\lim_{T \to \infty} \text{sinc}(T) = \frac{\pi}{2}$. (Aside: Note that $\int_0^\infty \frac{\sin x}{x} dx$ doesn't exist as a Lebesgue integral.)

Thus, writing out the characteristic function and using Fubini,

$$\begin{split} I_T &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-T}^{T} \frac{e^{it(x-a)} - e^{it(x-b)}}{it} dt \mu(dx) \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-T}^{T} \frac{\sin[t(x-a)] - \sin[t(x-b)]}{t} dt \mu(dx) \\ &= \int_{-\infty}^{\infty} \frac{\operatorname{sgn}(x-a) \operatorname{sinc}(T|x-a|) - \operatorname{sgn}(x-b) \operatorname{sinc}(T|x-b|)}{\pi} \mu(dx) \\ &=: \int_{-\infty}^{\infty} \psi_{a,b}^T(x) \mu(dx). \end{split}$$

Note that

$$\lim_{T \to \infty} \psi_{a,b}^{T}(x) = \begin{cases} 0 & x < a \\ \frac{1}{2} & x = a \\ 1 & a < x < b \\ \frac{1}{2} & x = b \\ 0 & x > b. \end{cases}$$

20-2 Lecture 20: December 7

Hence, by the Dominated Convergence Theorem,

$$\lim_{T \to \infty} I_T = \lim_{T \to \infty} \int_{-\infty}^{\infty} \psi_{a,b}^T(x) \mu(dx)$$

$$= \int_{-\infty}^{\infty} \lim_{T \to \infty} \psi_{a,b}^T(x) \mu(dx)$$

$$= \int_{-\infty}^{\infty} 1_{(a,b]}(x) \mu(dx)$$

$$= \mu(a,b].$$

Corollary 20.2 If $\phi_{\mu}(t) = \phi_{\nu}(t)$ for all t, then $\mu = \nu$.

Proof: The family $\mathcal{P} = \{(a,b] : \mu\{a\} = \mu\{b\} = \nu\{a\} = \nu\{b\} = 0\}$ is π -system which generates the Borel sets on \mathbb{R} .

By Theorem 20.1, μ and ν agree on \mathcal{P} , thus they also agree on $\sigma(\mathcal{P}) \supseteq \mathcal{B}(\mathbb{R})$.

Remarks:

1. If $\phi(t)$ is integrable, and if F is the corresponding distribution function, then

$$\frac{F(x+h)-F(x)}{h} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{itx}-e^{it(x+h)}}{ith} \phi(t) dt.$$

Taking limits on both sides and switching limit and integral by the Dominated Covergence Theorem, F has density

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi(t) dt.$$

This is known as the **Fourier Transform**.

2. World of questions: What can we deduce about a measure from its transform? Best source is Feller, "Introduction to Probability & Applications Vol II," 2nd ed, Chapter 15.

20.1.2 Examples of Fourier Transforms

Here are some examples of Fourier transforms:

	Density	Fourier Transform
Normal	$\frac{e^{-x^2/2}}{\sqrt{2\pi}}$	$e^{-x^2/2}$
Uniform	$\frac{1}{2a} \text{ for } -a < x < a$	$\frac{\sin(ax)}{ax}$
"Tent"	1 - x for x < 1	$\frac{4\sin^2(x/2)}{x^2}$
"Tent" Converse	$\frac{1}{\pi} \frac{\sin^2(x)}{x^2}$	1 - x for x < 1

Lecture 20: December 7 20-3

Note that if $\{\phi_i\}_{i=1}^k$ are characteristic functions and we have weights $p_j \geq 0$ such that $\sum p_j = 1$, then $\sum_{j=1}^k p_j \phi_j$ is also a characteristic function.

Apply this to the family of "tent" functions: for every $a_j > 0$ and $\{p_j\}$ with $\sum p_j = 1$, $\sum_{j=1}^k p_j \phi\left(\frac{t}{a_j}\right)$ is a characteristic function, where ϕ is the "tent" function. We use this fact to prove the following:

Corollary 20.3 (Pólya's Criteria) If ϕ is a continuous function such that:

- 1. $\phi(t) \geq 0$ for all t,
- 2. $\phi(0) = 1$,
- 3. $\phi(t) = \phi(-t)$ (i.e. ϕ is even), and
- 4. ϕ is convex on $(0,\infty)$ and $(-\infty,0)$,

then ϕ is a characteristic function.

Proof: If ϕ is given, we can make a finite approximation to it by picking points on $y = \phi(t)$ symmetric about the y-axis and drawing straight lines between them. This finite approximation is a characteristic function of the form $\sum_{j=1}^{k} p_j \phi\left(\frac{t}{a_j}\right)$. By taking increasingly fine approximations and using the continuity theorem, ϕ is also a characteristic function.

We state the following fact without proof:

Proposition 20.4 If ϕ is a characteristic function with compact support, then the periodic repetition of ϕ is the characteristic function of a lattice distribution.

This fact allows us to prove the following theorem, which is useful in finding counterexamples:

Theorem 20.5 Two characteristic functions can agree in a neighborhood of 0 without having the same measure.

Proof: Just consider a characteristic function ϕ with compact support and its periodic repetition.

Some notes:

• It is possible to have μ_1, μ_2, μ_3 probabilities on \mathbb{R} such that $\mu_1 * \mu_2 = \mu_1 * \mu_3$ but $\mu_2 \neq \mu_3$ (i.e. cannot "cancel" μ_1 from both sides).

(Take
$$\mu_1 = \text{tent}$$
, $\mu_2 = \mu_1$, $\mu_3 = \text{periodic continution of } \mu_1$.)

- μ corresponding to the "tent" function has density $\propto \frac{\sin^2 x}{x^2}$, and so does not have a mean. We can make a characteristic function ϕ with compact support and as many moments as we want by convolving μ with itself (and renormalizing).
- However, we can't have a characteristic function with compact support and is analytic near 0.

20-4 Lecture 20: December 7

20.1.3 Characteristic functions in \mathbb{R}^d

Characteristic functions also make sense in \mathbb{R}^d . If μ is a probability on \mathbb{R}^d , then for each vector $t \in \mathbb{R}^d$ we define

$$\phi_{\mu}(t) := \mathbb{E}_{\mu}[e^{it \cdot X}].$$

All theorems for characteristic functions in \mathbb{R}^d are essentially the same as the \mathbb{R}^1 case.

Proposition 20.6 (Cramer-Wold Device) If $X \in \mathbb{R}^d$ is a random vector and if we know the law of $\sum_{i=1}^d a_i X_i$ for all a_i , then we know the law of X.

Proof: Since we know that law of $t \cdot X$ for all $t \in \mathbb{R}^d$, we know $\mathbb{E}[e^{it \cdot X}]$ for all t.