MIT2020029

Ours > 1)

×	4	×-×	4-4	$(x-\overline{x})^2$	(Y-Y)2
2006	18	-2	-16-4	+	32.8
2007	25	-1	-9.4	1	9.4
2008	35	0	0 . 6	0	0
2009	43	THE RES	8.6	1	8.6
2010	51	2	16.6	4	33.2
	1		1	110	(1811)

Abo =
$$\overline{X} = 2008$$
, $\overline{y} = 34.4$
Abo $y = 6x + 9$
 $6 = (y - \overline{y})^2 = (x - \overline{x})^2 = (x - \overline{x})^2 = (x - \overline{x})^2$

$$9 = \hat{y} - 65c = 34.4 - (8.4 * 2008)$$

= -16832.8

(9) line of regression - 2

8 alus =
$$y = 8.4 \times 2013 - 16832.8$$

= 76.4

(2)

Our => 5)

ANDE

1 Single link clusturing - 8 In this clustering the similarity of this most

similar members. The single-link merge criturion is local. We pay attention. Bolely to the area where 2 dustors come desist to each other.

@ Complete-link dustring-3 the similarity of 2 dustres is the similarity of this most un-similar members.

Solution -8

	35	A	13	<u>_</u>	D	-
	A	0		2	2	3
	B		0	2	4	3
	C	rois	VELLE.	0	9	5
-	D		-		0	3
7	E	1=4				0

Aug link-8

Distanse b/o A and B=1 is minimum we cluster A and B @ C1.

We need to opdate the distance Using the Following Formular

dA+dB 2

		CI(A,B)	C	D	E	(B)
(CI(A,B)	0	2	3	3	(3)
	C		0		5	
= 1	D	10 8 10 1	NO A	0	3	
	E	(A. A)13)	574000	a time	6	34.
					13	

Distanse C-D is minimum (1) Hense 2nd duster will be (C,D).

	CI(A/B)	C2((,D)	(Figure)
CI(AB)	0	2.5	3
C2(C,D)		0	4
E			0

Distance b/w dusters @ and @ = [2.5] which is minimum. Hence, we menge

	Ci(A,B,G,D)	NOF
Cr(A,B,GD)	0	3.5
E		0

Finally, we make a with E to form 1 complete clusters.

(dendogram

Distanse 6/w A and B is minimum =1. Hence we make cluster CI(A,B)

Uldate distance	(1)	C1(A,13) C1-D	E
as	CR(A,13)	0 2 4	3
max(d1, d2)	(a. \$ 183	(MA)100 1	5
2	D'	6, 10, 10	3
	E		0

Distance (Da) c and D is minimum (=1). Hence two make another duster C2(GD).

	CI(A,B)	(C2(C,D)	E
CI(A,B)	0,0	4	3
-C2(40)		0	5
8-18 E	- ICA	0.01.4212	0

Diotance b/20 G and E) is minimum. Hence We dustern them together.

	(CI(AB,E)	C2(C,D)
CI(A,B,E)	0	max (4,5)=5
C2(CID		0

finally, we merge dustures

and co form

the final dusture

C=(A,B,E,G,D)

AN =)(2)

MT2020029

(#) We have to apply FP growth on given datawe need to convert this in Horizontal

Transaction	1 itemset
TI	A4B,T
T2	A,C
1- T3	A,S
T ₄	A,B,C
Ts	Bos
T6 ,	Ass
T7	B,5
T8	A,B,S,T
Ta	AgBoS

For Frequency

A	7
B	6
C	2
5	6
T	2

AFAN Sorting

Now Frequent Pathern set, accounding to min support

ordered item set

TI	A,13,T
12	AIC
T3	4,5
Tu	A,B,C
T3	B/S
To	A,5
TZ	BIS
T8	A, B, S,T
Ta	A, BIS
- 1	1. 109

Now insut itemset in Tree

Nule

(2,4) io a core Point.

Doing similar calculation for all the other points we get . //

Points	Niedaba	
(1,4)	Nieghbourhood Points	
(2,4)	(14) (2,3)(34) (2,5,5)	9
(2,3)	(14) (24)(2,3) (2,6) (3,6) (2.5,5)	A
[2,6]	$(7,4)(2A)(3,4)(2\cdot 5,5)$	
(3.6)	(4.5) (2,6) (2,7) (2,4) (3,4)	7
(6.9)	(6/9) $(3/6)$	
(7,8)	(G19) (7,8) (7,7.5)	0011
7,7.5	(6/9) (7,7) (7,7s)	
7,6	(6/9)(7,8)(7,7.5)(7/6)	
40	(7B) (77,7·5)	7 (49)

 $(C_{1}+)(C_{1}+)(C_{2}+)(C_{2}+)(C_{2}+)(C_{2}+)(C_{3}+)(C_{3}+)(C_{4}+)(C_{$

All the points belongs in 1 cluster. There are no hoise of outlier points (4,8) is a border point.

D'All points other than (4,8) are core points.

CM12020029 oeus=36) Let us consider the derived output to be o When the inputs X, and Xz are equal=1 y3 = 8iq (x, w13 + x2 w23 - 03) 1+e-(1*·5+1×·4-1*·8) = .5256 JA= 8ig (x, w,4+x2w24-64) 1+ c- (1x.9+1x0.4-1x0.8) Now calculating the output of neuron 5, ys=8ig(y3w35+ y4w95-05) 1+e-(-052×102+08081×1-1×·3) = .5097 then evor obtained, is=ts-ys=0-0.5097 =-0.5097. Where to istanget value

To update the wieghts and from in all networks. ue propogate the error backwards. Calculating error gradient for névron 5 = 8= 85(1-72) es =·5097(1-·5097)(-·5097) = -0.1274 Change in wieghts-9 4 635 = ×. 73.85 - 0.1 * .5250 ×(-.1275) = -,0067 AW45 = 4.74.84.85= [-0.0112] $\Delta \Theta_{5} = -0.00$ Gradient for newson - 9 [S3 = 0.0381] [S4= -0.0147 Determing the wienghts correction -A W13 = .1*1*0.381 = 0.0038 A W23 = 1/1/1 = 0.0038 A & = - 11 = -0.0038AWIA (-1/x (-0.14) = -0.0015 A w2, + (·1×-1)*(-.047) = 0.0015 181= ·1*(-1)*(-0.017) = 0.0015