、經濟價值觀點的利率 主題五

風險衡量

一、債券的評價與風險

二、持續期間與凸性

三、固定利率證券市場

四、DV01 與利率風險

◆ 債券表徵發行者與投資者之間的債券/債務關係。

任何金融工具的價格即為該金融工具預期產生之現金流量的現值

> 在決定價格時,我們需要下面的資訊:

) 預期現金流量的估計值

/ 適當必要報酬率的估計值

,關於債券的預期現金流量,大致有兩類產生的原因,即債息收入與本金收入

在此我們假設債券沒有提前贖回,而且也沒有違約的情況。

> 債息每六個月支付一次。

- ◆ 至於必要報酬率的決定,則需要到市場上查看相似債券的收益率來決定。
- 所謂相似債券指信用風險程度相當的債券
- 一 包括信用風險與到期日兩個因素。
- ▶ 我們可將債券價格表示為下面的一般化公式

$$P = \frac{C}{(1+r/2)} + \frac{C}{(1+r/2)^2} + \frac{C}{(1+r/2)^3} + \dots + \frac{C}{(1+r/2)^{2n}} + \frac{M}{(1+r/2)^{2n}}$$

$$P = \sum_{t=1}^{2n} \frac{C}{(1+r/2)^t} + \frac{M}{(1+r/2)^{2n}}$$

✓ P=債券價格,C=每半年支付的債息,M=債券面額,n=到期的年數,r=必要報酬率

- ▶ 範例: 一債券 20 年到期, 債息 10%, 面值\$1,000。
- ▶ 若必要報酬率為 11%,則價格可如下求約 C=\$1,000×0.1/2=50,n=20,r=0.11。

$$P = \sum_{t=1}^{2n} \frac{C}{(1+r'_2)^t} + \frac{M}{(1+r'_2)^{2n}}$$

$$= C \left[\frac{1}{(1+r'_2)^{2n}} \right] + \frac{M}{(1+r'_2)^{2n}}$$

$$= C \left[\frac{r}{r'_2} \right] + \frac{M}{(1+r'_2)^{2n}}$$

$$= 50 \left[\frac{1}{(1.055)^{40}} \right] + \frac{1,000}{(1.055)^{40}}$$

=\$802.31+\$117.46=\$919.77

董夢雲 dongmy@ms5.hinet.net

(二)債券的收益率

- ▶ 一項投資的收益率為使該項投資所產生的現金流量現值,等於該項投資價格的利率
- ▶ 此投資的收益率 Ŋ,為滿足下面關係式的利率

$$P = \frac{CF_1}{(1+y)} + \frac{CF_2}{(1+y)^2} + \frac{CF_3}{(1+y)^3} + \dots + \frac{CF_N}{(1+y)^N}$$

$$P = \sum_{t=1}^{N} \frac{CF_t}{(1+y)^t}$$

- ✓ CF_t=t期現金流量,P=投資的價格,N=年數
- 前式所計算出的收益率又稱之為內部報酬率(internal rate of return, IRR)。 A

債券收益率公式可表示為

$$P = \frac{C}{(1+\frac{y}{2})} + \frac{C}{(1+\frac{y}{2})^2} + \dots + \frac{C}{(1+\frac{y}{2})^{2n}} + \frac{M}{(1+\frac{y}{2})^{2n}}$$

將上式左右同除M,且提出C可得

$$\frac{P}{M} = \frac{C}{M} \sum_{t=1}^{2n} \frac{1}{(1+\frac{y}{2})^t} + \frac{1}{(1+\frac{y}{2})^{2n}}$$

> 利用固定年金公式,可進一步化簡為

$$\frac{P}{M} = \frac{C}{M} \left[\frac{1 - (1 + \frac{y}{2})^{-2n}}{\frac{y}{2}} \right] + \frac{1}{(1 + \frac{y}{2})^{2n}}$$

▶ 前式中 P/M 稱為面值關係(Par Value Relationship),通常以百分比表示。

✓ 如果 P/M=1,則此債券為平價(at par)出售

✓ 如果>1,則為溢價(premium)出售;

✓ 如果<1,則為折價(discount)。

✓ C/M 則為半年的息票利率。

▶ 40 筆每六個月支付的債息\$3.5

▶ 20 年後收到面值\$100

代入下面不同的半年收益率 y/2,分别得到下面的 P/M 值 A

0.5756 6.5% 0.6238 6.0% 0.6791 5.5% 0.7426 5.0% 0.8160 4.5% 0.9010 4.0% P/M: 1.0000 3.5% y/2:

當 y/2=5.0%時,P/M=0.7426 即為目前債券的面值關係(74.26/100)。 A

)因此,此債券之半年收益率為5%,年收益率 A=10%。

(三)零息債券

- 零息債券的評價
- ▶ 由於零息債券在到期前並不支付利息,只於期末給付等同面值的現金,因此前述評價公式中的C需

設為零,可簡化如下:

$$P = \frac{M}{(1+\Gamma/2)^{2n}}$$

▶ 範例:15 年到期,面值\$1,000 的零息債券,必要報酬率為 9.4%,則目前價格為

$$P = \frac{\$1,000}{(1+0.047)^{30}} = \$252.12$$

零息債券的收益率:針對零息債券,公式中的 C/M 為零,可得到下面公式

$$\frac{P}{M} = \frac{1}{(1+\frac{y}{2})^{2n}}$$
$$\frac{y}{2} = \left[\frac{M}{P}\right]^{\frac{1}{2n}} - 1$$

範例:一 10 年到期,面值\$1,000 的零息債券。若售價為\$439.18,則

$$\frac{y}{2} = \left[\frac{1000}{439.18} \right]^{\frac{1}{20}} - 1 = 0.042$$

- 故年收益率為8.4%。 A
- ▶ 零息債券的重要性
- 一支息票債券可視為一組零息債券的組合
- 零息债券的價格可由即期利率求得,故如何求得完整的期限結構,便成為債券訂價的核心議題 A
- 息票债券收益率不可由零息债券的收益率加權求得 A

(四)債券價格的波動性

- ◆ 債券價格由利率與時間決定,利率的變動為債券價格波動的主因。
- > 通常隨著債券工具的到期日愈長,因利率變動所造成的價格變化也愈大。
- 债券所附有的債息也會影響價格的改變,這個現象稱之為息票效果(coupon effect)。

▶ 分別為(1)9%債息,5年到期(2)9%債息,20年到期(3)5%債息,5年到期(4)5%債息,20年到期。

6.00%		÷ 97°%	5%,5年	± 97°,%5
	112.7953	134.6672	95.7349	88.4426
7.00	108.3166	121.3551	91.6834	78.6449
8.00	104.0554	109.8964	87.8337	70.3108
8.50	102.0027	104.7693	85.9809	66.6148
8.90	100.3966	100.9267	84.5322	63.8593
8.99	100.0396	100.0921	84.2102	63.2626
9.00	100.0000	100.0000	84.1746	63.1968
9.01	99.9604	99.9081	84.1389	63.1311
9.10	99.6053	99.0865	83.8187	62.5445
9.50	98.0459	95.5592	82.4132	60.0332
10.00	96.1391	91.4205	80.6957	57.1023
11.00	92.4624	83.9539	77.3871	51.8616
12.00	88.9599	77.4306	74.2397	47.3380

二、持續期間與凸性

(一)債券的持續期間

- ◆ 債券市場的參與者,需要衡量債券價格波動性的方法。
- 目的在於一方面可用以評估利率風險,另一方面可以執行投資組合的避險策略 A

$$P = \frac{C}{(1+y)} + \frac{C}{(1+y)^2} + \dots + \frac{C+M}{(1+y)^n}.$$
 (5.2.1)

> 上式對y取一次導數,然後左右同除以P可得

$$\frac{dP}{dy} \times \frac{1}{P} = -D \frac{1}{(1+y)}.$$
 (5.2.2)

/ 其中

$$D = \frac{C \times 1}{(1+y)} + \frac{C \times 2}{(1+y)^2} + \frac{C \times 3}{(1+y)^3} + \dots + \frac{(C+M) \times n}{(1+y)^n} = \frac{C}{(1+y)} \times 1 + \frac{C}{(1+y)^2} \times 2 + \dots + \frac{(C+M)}{(1+y)^n} \times n$$

$$= w_1 \times 1 + w_2 \times 2 + \dots + w_n \times n = \sum_{t=1}^n w_t \times CF_t.$$
(5.2.3)

- ▶ 持續期間為債券成份現金流量到期日的加權表示法,
- 人 其中每筆現金流量的時點,都以其現值加權之。分母則為所有權數的和,也就是債券的價格。
- > Macaulay 持續期間將債券價格的變動與收益率的變動連結起來。
- ✓ 隨著 Macaulay 持續期間愈大,債券價格對收益率的敏感性也愈大。

> 此债券的收益率即為9%。由於債券利息每半年支付一次,因此,我們必須作部份的調整

$t \times \frac{C}{(1+1.045)^t}$	4.30622 8.24156 11.83000 15.09410 18.05514 20.73318 23.14709 25.31466 27.25262 672.90442	826.87899
$\frac{C}{(1+1.045)^t}$	4.306220 4.120785 3.943335 3.773526 3.611030 3.455531 3.306728 3.164333 3.028070 67.290443	100.000000
C	\$4.5 4.5 4.5 4.5 4.5 104.5	
t	1 7 8 4 5 9 7 8 6 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	總計

8.27以年為單位之持續期間= 2/13(年)

持續期間	4.13年	9.61	4.43	10.87
到期日	5年	20	2	20
債息	%6	6	2	5

<<ExcelCase07: Bond Duration>>

- 對於零息債券,它的持續期間剛好等於到期期限 A
- 至於息票債券,它的持續期間總是小於到期期限。
- 對相同到期日與收益率的債券而言,債息利率愈低的債券,其持續期間愈長 A
- 對相同債息利率與收益率的債券而言,到期日愈長的債券,其持續期間也愈長 A
- ▶ 稍加整理可以得到下式,在給定的收益率變動 dy 之下,如何求出債券價格的變動比率

$$\frac{dP}{P} = -D\frac{1}{1+y}(dy) \tag{5.2.4}$$

將上式右邊的前兩項結合,稱為債券修正的持續期間(Modified duration), $D_{\scriptscriptstyle M}$, A

$$D_{\rm M} = D \times dy$$

我們可以得到: A

價格變動百分比——修正的持續期間×收益率變動量

$$dP\% = \frac{dP}{P} = -D_{M} \cdot dy \tag{5.2.5}$$

- ♦ 範例:考慮債息 9%,20 年到期之債券,其售價\$63.1968,收益率為 9%。
- ➤ 此債券的 Macaulay 持續期間為 10.87 年。而修正的持續期間則為

$$\frac{10.87}{1.09} = 9.97$$

若收益率由 9%上升到 9.1%,則此債券價格變動比率為 A

$$-9.97 \times 0.1\% = -0.997\%$$

- 其中 dy=9.1%-9.0%=0.1%。
- 因此, 債券售價由\$63.1968下跌至\$61.9429

$$$63.1968 \times (1-0.997\%) = $61.9429$$

相同地, 若收益率下跌到 8.90%, 則價格價上漲 0.997 %, 即由\$63.1968 上升到\$63.8269 A

$$$63.1968 \times (1+0.997\%) = $63.8269 \circ$$

(二)債券的凸性

- ◆ 債券價格與收益率之間的關係並不是線性的,而是非線性的。
- > 之前,我們嘗試使用持續期間,利用線性關係來描述價格與收益率的關係。這存在著一定的誤差
- ◆ 由微積分的基本定理可知,一個數學函數可用泰勒級數(Taylor series)來逼近
- ▶ 而且隨著泰勒級數的項次愈多,近似誤差愈小。
- > 例如,債券價格函數的泰勒級數,若以前兩項表示,則為

$$\frac{dP}{P} = \frac{dP}{dy} \frac{1}{P} dy + \frac{1}{2} \frac{d^2 P}{dy^2} \frac{1}{P} (dy)^2 \tag{5.2.6}$$

- ◆ 由上式可知,修正的持續期間實為泰勒級數的第一項
- ▶ 至於泰勒級數的第二項,則需要對(1)式作二次導數。

◆ (5.2.1)式的二次導數除以 P 可得

(5.2.1) 式的二次導數除以 P 可得
$$\frac{d^2P}{dy^2} \bullet \frac{1}{P} = \frac{\frac{1 \times 2 \times C}{(1+y)} + \frac{2 \times 3 \times C}{(1+y)^2} + \dots + \frac{n \times (n+1) \times (C+M)}{(1+y)^2P}}{(1+y)^2P} \dots (5.2.7)$$

◆ 將上式再除以 2,則可得到所謂債券的凸性(convexity)。亦即

> 凸性可以告訴我們債券價格/收益率之間曲線的近似值。

21

▶ 下表顯示了如何計算債息 9%,5 年到期,面額\$100 平價出售債券的凸性。

▶ 此債券的收益率為9%。

$t \times (t+1) \times \frac{C}{(1+1.045)^t}$	8.6124	24.7242	47.3196	75.4700	108.3300	145.1310	185.1752	227.8296	272.5290	7,401.9440	8,497.0650
$\frac{\mathrm{C}}{(1+1.045)^t}$	4.306220	4.120785	3.943335	3.773526	3.611030	3,455531	3.306728	3.164333	3.028070	67.290443	100.000000
C	\$4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	104.5	
t	\vdash	7	Μ	4	2	9	7	∞	0	10	大三 网络

> 以六個月為單位之凸性= $\frac{1}{2\times(1+0.045)^2\times100} = 38.90(半年)$ 8,497.0650

> 以年為單位之凸性= $\frac{38.90}{2}$ =19.45(年)

- ◆ 在(5.2.6)式中,右方第二項所傳達的即是由於凸性所造成價格變動的百分比。
- > 由(5.2.8)式,此變動比率可表示為
- 由凸性所引起的價格比率變動=凸性×(收益率變動量)²·················(5.2.9)

<<ExcelCase07: Bond Convexity>>

範例:20 年到期,債息 5%的息票債券的凸性為 80.43。當收益率由 9%上升到 11% (dy=

2%)時,單獨由凸性所引起的價格變動比率為:

 $80.43 \times (+0.02)^2 = 3.22\%$

> 相對地,若收益率由9%下跌到7%(dy=-2%),則由凸性所引起的價格變動比率也大致為3.22%。

在使用持續期間與凸性來衡量債券的價格變動時,我們皆假設收益曲線為水平的,而且任 何收益率的變動皆使收益曲線水平移動。

因此,如果收益曲線不是水平移動時,則我們的估計便會產生較大的誤差 A