

Cycles and Patterns in the Biosphere

- v The Impact of Plants and Animals on the Landscape
- The Geographical Approach to the Study of Organisms
- v Biochemical Cycles
- v Food Chains
- v Natural Distributions
- v Environmental Relationships

- The Impact of Plants and Animals on the Landscape
 - Biosphere
 - Human Impacts Can Overwhelm the Biosphere

 Biosphere is still an integral part of the landscape

Lithosphere: Land surface

- Organisms survive in the biosphere through systemic flows of energy, water, and nutrients.
- These flows involve biochemical cycles

The Geographical Approach to the Study of Organisms

- Geographical Viewpoint
 - Seeks to explain distributions of phenomena and how their spatial patterns change over time
- Biogeography
 - Study of plant and animal distributions and how their spatial patterns change over time

Biochemical Cycles

- The Flow of Energy
 - Animation •

- 1. Net Primary Productivity
- 2. Biological Productivity in Midlatitude Oceans
- Photosynthesis and Respiration
 - Photosynthesis

$$CO_2 + H_2O \xrightarrow{\text{light}} \text{carbohydrates} + O_2$$

- Respiration
 Carbohydrates + O₂ → CO₂ + H₂O + energy (heat)
- Net Photosynthesis (e.g., gain/loss kg carbon^{-yr})

- Net Primary Productivity
 - Net photosynthesis yr⁻¹ unit area⁻¹ (e.g., kg m⁻² yr⁻¹)

Global Net Primary Productivity

Based on rate of plant absorption of carbon dioxide

North Atlantic Ocean Net Primary Productivity

Based on density of chlorophyll

Hydrologic Cycle

- H₂O most abundant substance of the biosphere
- Two locations
 - In residence in plant and animal tissues

Organism	Percentage Water In Body Mass
Human	65
Elephant	70
Earthworm	80
Ear of corn	70
Tomato	95

- Two locations (continued)
 - In transit from one sphere to another

Carbon Cycle

 Photosynthesis "pulls" atmospheric carbon into the biosphere.

 Carbon moves constantly from the living system to organic reservoirs and back.

Oxygen Cycle

- O₂ is mainly a byproduct of photosynthesis
- Other sources...

- Nitrogen Cycle
 - $-N_2$ Atmospheric nitrogen (78% of air)
 - Nitrogen fixation
- Other Mineral Cycles
 - Trace minerals (e.g., phosphorous, sulfur and calcium)

Food Chains

 Pathways of energy, water and nutrients on which organisms depend for their survival.

A simple food chain

Fundamental Units of a Food Chain

Food Pyramid

Few Secondary Consumers

Many primary consumers

Large predators are at top of the pyramid

A lynx pouncing on a snowshoe hare

Pollutants in the Food Chain

Biological amplification

Natural Distributions

- Evolutionary Development
 - Darwinian theory of natural selection
 - Influence of Plate Tectonics
 - Acacia species widespread distribution before the Pangaea break-up

Acacias are widespread in tropics today

Eucalyptus – Did not exist on Pangaea.

Eucalyptus species developed in geographical isolation in Australia, after the Pangaea break-up.

Migration/Dispersal

 Plants disperse seeds via wind, water, and animals.

Example: Coconuts

Animals migrate via legs, wings, fins, etc.

Example: Cattle egrets

Reproductive Success

 Reproductive success allows one competing population to flourish while another languishes.

Example: American bison

Extinction

 Plant succession. One type of vegetation is replaced by another naturally

Example: Infilling of a small lake

Environmental Relationships

 Plants and animals compete with one another for natural resources in a dynamic environment.

The Influence of Climate

- Light
 - Plant shape
 - Photoperiodism

Effect of light on tree shape

Moisture

• Effect of moisture supply on plant adaptations.

Temperature

- Plant tolerances to cold
- Animal tolerances to cold

Wind

- Animal body heat loss
- Plant desiccation or wind shear

Desiccation and wind-shear effect on trees in a timberline zone

Topographic Influences

- Steepness of slopes
- Orientation of slopes in regards to sunlight
- Porosity of soil on slopes

Wildfire impacts

Environmental Correlations: Example of Selva

- Climate Af
- Flora Tropical rainforest
- Fauna Flyers, crawlers, creepers, and climbers
- Soil Laterization
- Hydrography: Abundance of runoff, heavy sediment loads in rivers

Tropical rainforest scene in Ecuador

Summary

- The biosphere consists of all plant and animal life forms on Earth. It overlaps with the other three environmental spheres.
- All life forms depend on three ingredients: solar energy, water and nutrients. These ingredients are unevenly distributed on Earth's surface.
- The three ingredients continuously cycle through the biosphere, as organisms absorb and return them to the other three spheres.

Summary

- The most prominent geochemical cycles involve water, carbon, oxygen and nitrogen.
- Floral-faunal relationships can be described as a food chain or food pyramid.
- Plants are the "self-feeders"; they are the first link in the food chain and at the bottom of the food pyramid.
- Animals are either primary or secondary consumers of energy stored by plants.

Summary

- Factors in the environment that determine the survival of plants and animals are limiting factors. The main limiting factors are light, water, shelter and nutrients.
- Climate is the main influence on how the limiting factors vary from place to place on Earth, but soils, topography and wildfires also influence local plant and animal distributions.