This question paper contains 7 printed pages]

Your Roll No.....

1955

B.Sc. (H) Computer Science/VI Sem. C

Paper 601: THEORY OF COMPUTATION

(Admissions of 2001 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Ouestion No. 1 (Section A) is compulsory.

Question 110.1 (Carried)

Attempt any four questions from Section B.

Parts of a question should be attempted together.

Assume $\Sigma = \{a, b\}$ for all the questions unless specified otherwise.

Section A

1. (a) Let $S = \{ab, bb\}$ and $T = \{ab, bb, bbb\}$.

Show that :

$$S^* = T^*$$
.

(b) Define deterministic finite automata.

2

(c) Consider the CFG

2

S → XaXaX

 $X \rightarrow bX|aX| \wedge$

Describe the language this CFG generates.

- (d) What is a "dead-end state" in a finite automata?

 Explain with an example.
- (e) Write the regular expression for the language having words in which a appears tripled (in clumps of 3), if at all.
- Ø Describe the language for the given finite automata:

(g) Build a finite automata that have only those words that have length fewer than four letters.

- (h) Design a turing machine that erases all characters in its tape.
- (i) Describe the language for the following regular expression:
 - (i) bba*(a + b)
 - (ii) $((a + b)a)^*$.
- (j) Using bypass algorithm, convert the following transition graph into a regular expression:

(k) Construct a PDA for a language $L = \{a^nS, \text{ where } S \text{ starts with } b \text{ and}$ $Length (S) = n\}.$

) 1955

(1) Using pumping lemma, show that language 4

{aⁿ bⁿ where n is square of 1, 2, 3,.......}

- {ab. aaaabbbb. aaaaaaaaabbbbbbbbb,.......}

is non-regular.

Section B

(a) Given finite automata machine FA₁. Using Kleene's theorem algorithm, find (FA₁)*:

(b) Convert the following non-deterministic finite automata to deterministic finite automata:

 (a) For the following pairs of regular language, build a finite automata and regular expression that define

 $L_1 \cap L_2$:

4+2=6

L₁: (ab*)*

 L_2 : a(a + b)*.

4

(b) Prove that the language

 $\{a^n \ b^n \ c^n \ where \ n = 1, 2, 3, 4.....\}$

is non-context free.

- (a) Find the CFG for the language containing all words that
 have different first and last letters.
 - (b) Show that the following CFG is ambiguous:

 $S \rightarrow XaX$

 $X \rightarrow aX|bX| \land$

5. (a) Describe universal Turing Machine.

- (b) Prove that a language is recursive language then its complement L is also recursive.
- 6. (a) Given a PDA:

- (i) Write the language represented by this
- (ii) Trace the PDA for the string bbba.

4

(b) Describe the function of the following Turing Machine using the string Uw <u>U</u> where a is any letter from alphabet set:

- 7. (a) If $\Sigma = \{x\}$, then what is Σ^+ ? Is $\Sigma^+ = \Sigma^*$?
 - (b) Build a finite automata that accepts only those words that do not end with ba.
 - (c) Prove that if L_1 and L_2 are Regular Languages, then $L_1 + L_2$, L_1 , L_2 are also Regular Languages.

1955 7 700