Лабораторна робота №1

Андрій Пишко

Варіант 22 (за загальним списком)

1 Теоретична частина

1.1 Постанова задачі

Виконати класифікацію двивимірних даних за допомогою еліпсів Петуніна.

1.2 Ідея побудови

1.2.1 Побудова класифікатора

- Крок 0. Будуємо початкову вибірку за допомогою рандомного генератора по кожній вісі, використовуючи рівномірний або нормальний розподіл.
 - Крок 1. Шукаємо найбільш віддалені точки.
- Крок 2. Приводимо задачу до більш зручної: у моєму випадку виконуємо поворот (перетворення координат) відносно центру прямої між найвіддаленішими точками таким чином, щоб ця пряма стала горизонтальною.
 - Крок 3. Знаходимо висоту та ширину прямокутника.
- Крок 4. Приводимо задачу до квадратного вигляду: за моїм варіантом стискаємо відносно лівої сторони прямокутника.
- Крок 5. Будуємо концентричні кола навколо центру квадрата з радіусами, що відповідають відстанням від центру до кожної точки.
- Крок 6. Виконуємо обернене перетворення квадрату у прямокутник з розтягуванням кіл у еліпси та робимо поворот.

1.2.2 Аналіз

- Крок 0. Ввести дані (до 1000 точок) та виконати побудову відповідних концентричних еліпсів.
- Крок 1. Згенерувати набір даних на перевірку на допустимій області. Відмаштабувати координати точок.
- Крок 2. Для кожного кола порахувати скільки точок знаходяться всередині кола (знаючи відповідні центри та радіуси кіл)
 - Крок 3. Систематизувати результати у таблиці.

2 Результати

	Радіус кола	Кількість точок	Площа еліпса	Ймовірність
0	18.53	28	1686.36	0.28
1	15.22	21	1138.38	0.21
2	8.09	5	321.11	0.05
3	34.64	93	5892.24	0.92
4	31.01	72	4723.94	0.71
95	27.01	59	3583.49	0.58
96	22.32	45	2447.43	0.45
97	23.08	48	2615.71	0.48
98	31.83	78	4976.95	0.77
99	21.01	38	2168.26	0.38