Resumo IA - AB2

Classificação:

Identificação da classe a qual um elemento pertence a partir de suas características. Conjunto de possíveis classes é discreto e predefinido.

Exemplos:

- A partir das características de um eail, determinar se é ou não um SPAM;
- A partir das características de um candidato a um empréstimo, estimar se será um bom ou mau pagador.

Mineração de um Modelo de Classificação:

Objetivo:

Construir um modelo capaz de, dado um novo registro, a partir dos valores dos atributos independentes, determinar o valor do seu atributo dependente(determinar sua classe).

Na base de treinamento, os registros já possuem o valor da classe.

Arvore de Decisão:

- · Nós internos: atributos;
- · Arestas: predicados;
- · Folhas: valores de classes;
- Nó interno + Aresta: condição.

Regras de classificação:

- Cada caminho da raiz até a folha representa uma regra, definida como a conjunção das condições percorridas, implicando no valor da classe encontrada na folha em questão;
- A árvore deve ser definida de forma que, para um mesmo registro, haja um e apenas um caminho da raiz até a folha.

Exemplos:

```
(Sal <= 5k) ⇒ Classe = B

(Sal > 5k) \Lambda (Idade > 40) ⇒ Classe = C

(Sal > 5k) \Lambda (Idade <= 40) \Lambda (TEmpr = Autônomo) ⇒ Classe = A

(Sal > 5k) \Lambda (Idade <= 40) \Lambda ((TEmpr = Indústria) V (TEmpr = Pesquisa)) ⇒ Classe = B
```

Taxa de Erro de uma Regra:

É uma classe que não queremos chegar dividido pelo total de instâncias que entraram na condição.

Exemplos:

ID	Salary	Age	Employment	Group
1	30K	30	Self	В
2	40K	35	Industry	В
9	40K	45	Industry	В

```
(Salary <= 50K) => Group = B erro: 0%
```

ID	Salary	Age	Employment	Group

ID	Salary	Age	Age Employment	
6	60K	35	Industry	В
11	60K	35	Industry	В
12	70K	30	Industry	В
13	60K	30	Industry	Α

(Salary>50K) and (Age <= 40) and (Employment = Industry) => Group = B erro: 25%

ID	Salary	Age	Employment	Group
7	60K	35	Self	А
8	70K	30	Self	А
10	70K	35	Self	В

(Salary > 50K) and (Age <= 40) and (Employment = Self) => Group = A erro: 33%

ID	Salary	Age Employment		Group
3	70K	50	Academia	С
4	60K	45	Self	С

```
(Salary > 50K) and (Age > 40) => Group = C erro: 0%
```

Taxa de Erro de uma Árvore de Decisão:

A taxa de erro total equivale à soma ponderada das taxas de erro de cada folha, considerando-se a probabilidade, associada a cada folha.

```
Erro total = 0.25 * x + 0.33 * y

x = 4 / 13

y = 3 / 13

Erro total = 0.25 * (4 / 13) + 0.33 * (3 / 13)

Erro total = 0.15
```

Mineração de Árvores de Decisão: (Algoritmo ID3)

• Utilizado para construir árvores de decisão

Entrada:

- base de treinamento que contém os registros;
- · lista dos atributos independentes;
- definição do atributo dependente (classe).

Saída:

• Árvore de decisão que permite definir o valor da classe de um novo registro a partir de seus atributos independentes.

Como escolher o atributo:

- ID3 utiliza uma medida conhecida como Ganho de Informação que se baseia no conceito de entropia;
- Heurística para selecionar o atributo, tentando minimizar o número de testes necessários para classificar um registro.

Medida Ganho de Informação:

Mede quão bem um determinado atributo separa os registros de treino de acordo com o valor da classe.

- Entropia: medida da quantidade de "desordem" de um conjunto de registros.
- Ganho(Atr): redução da entropia escolhendo-se Atr.
- Ganho(Atr) = E(S) E(S,Atr), onde:
 - E(S): entropia de uma partição S da base.
 - E(S,Atr): entropia, considerando-se o particionamento de S de acordo com os valores do atributo Atr.

Exemplo:

ID	Age	Income	Student	Credit_rating	Buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	31 40	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	1ow	yes	fair	yes
Q	>40	1ow	yes	excellent	no
7.	31 40	1ow	yes	excellent.	yes
8	<=30	medium	no	fair	no
2	<=30	1ow	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	3140	medium	no	excellent	yes
13	31 40	high	yes	fair	yes
14	>40	medium	no	excellent	no

O atributo classificatório **Buys_computer** possui dois valores distintos (*yes, no*). Sendo assim, o número de classes é igual a 2, ou seja, m=2. Se a classe 1 corresponde ao *yes* e a classe 2 ao *no*, uma vez que temos 9 registros pertencentes a classe *yes* e 5 registros pertencentes a classe *no*, a entropia é calculada da seguinte forma:

$$E(S) = -\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0,940$$

Calculando a entropia considerando o atributo Age:

$$v \implies \text{``} <= 30\text{''} \qquad s_{11} = 2 \text{ e } s_{21} = 3 \qquad |S_v| = 5$$

$$E(S_{<=30}) = -\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} = 0,971$$

$$v \implies \text{``} 31 \dots 40\text{''} \qquad s_{12} = 4 \text{ e } s_{22} = 0 \qquad |S_v| = 4$$

$$E(S_{31\dots 40}) = -\frac{4}{4} \log_2 \frac{4}{4} - \frac{0}{4} \log_2 \frac{0}{4} = 0$$

$$v \implies \text{``} > 40\text{''} \qquad s_{13} = 3 \text{ e } s_{23} = 2 \qquad |S_v| = 5$$

$$E(S_{>40}) = -\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5} = 0,971$$

Calculando a entropia considerando o atributo Age:

$$E(S, Age) = \frac{5}{14}E(S1) + \frac{4}{14}E(S2) + \frac{5}{14}E(S3)$$

$$E(S, Age) = \frac{5}{14} \times 0.971 + \frac{4}{14} \times 0 + \frac{5}{14} \times 0.971 = 0.694$$

Calculando os ganhos para os outro atributos obtém-se:

Ganho(Income) = 0,029. Ganho(Student) = 0,151. Ganho($Credit_rating$) = 0,048.

Uma vez que o atributo **Age** obteve o maior <u>Ganho de</u> <u>Informação</u>, ele será o atributo escolhido para criar um nó da árvore de decisão. Novos ramos também são criados, um para cada partição que representa um valor diferente de Age.

$$Ganho(Atr) = E(S) - E(S,Atr)$$

Ainda utilizando os dados do exemplo anterior, temos que:

$$Ganho(Age) = E(S) - E(S, Age) = 0.940 - 0.694 = 0.246$$

K-NN(k-Nearest Neighbor):

- Baseiam-se na ideia de aprendizagem por analogia, ou seja, a classe de uma tupla de entrada será determinada pelo conhecimento das classes de tuplas similares da base de treinamento;
- Cada tupla possui n atributos e, portanto, pode ser caracterizada por um ponto em um espaço ndimensional;
- A técnica procura pelas k tuplas de treinamento mais próximas à tupla a ser classificada no espaço ndimensional. Essas tuplas serão os k vizinhos mais próximos;
- Depois de identificados os k vizinhos mais próximos da tupla t de entrada a ser classificada, o k-NN atribui a t a classe predominante entre esses k vizinhos;
- O classe atribuída pode variar de acordo com o valor do parâmetro k escolhido; Um valor adequado de k pode ser escolhido empiricamente (experiência prática, opondo-se à teoria).

Classificadores K-NN:

- Proximidade (ou semelhança, similaridade) é definida a partir de uma métrica de distância;
 - Exemplo: Euclidiana. (dist(x, y)) = sqrt((X2 x1)² + (y2 y1)²)
- · Essa fórmula exige atributos numéricos;
- Quanto menor dist(x, y), mais próximos, semelhantes, similares são as tuplas x e y.
- Normalização [0, 1] dos valores dos atributos para evitar que atributos diferentes (Exemplo: idade e salário) contribuam de formas diferentes no cálculo da distância.

Observações:

• De uma forma geral, o k-NN apresenta um alto custo computacional para classificar uma nova tupla t, pois tem que calcular a distância de t para todas as tuplas da base.

• Por outro lado, a atualização da base é automaticamente refletida no classificador.

Comparações Classificadores Eager(Árvore de Decisão) e Lazy(K-NN):

Eager:

- o modelo é construído previamente
- · classifica rapidamente a tupla de entrada
- necessita retreinar o modelo em caso de atualização da base
- exemplo: árvores de decisão

Lazy:

• não há construção de modelos

• custo computacional mais caro para classificar a tupla de entrada

- não necessita retreinar o modelo em caso de atualização da base
- exemplo: k-NN