OBSERVACIONES DEL LA PRACTICA

Daniela Alvarez Rodriguez Cod 202020209

Preguntas de análisis

- a) ¿Qué instrucción se usa para cambiar el límite de recursión de Python? Se usa la instrucción setrecursionlimit() del modulo sys.
- b) ¿Por qué considera que se debe hacer este cambio? Porque al manejar grandes volúmenes de datos, a veces es necesario aumentar el límite de recursión para que el programa no genere un error cuando intente acceder a mas espacio de memoria del que le es permitido con esta asignación. En otras palabras, para evitar un "stack overflow".
- c) ¿Cuál es el valor inicial que tiene Python cómo límite de recursión?
 El valor inicial o por "default" de recursión en Python es aproximadamente 10^4
- d) ¿Qué relación creen que existe entre el número de vértices, arcos y el tiempo que toma la operación 4?

Tabla tiamana da ajaquaján anaján A

	<u>l'abla tiempo de ejecución opción 4</u>			
Datos	Vértices	Arcos	Tiempo	
50	74	73	78	
150	146	146	78	
300	295	382	203	
1000	984	1633	765	
2000	1954	3560	2.171	
3000	2922	5773	3.546	
7000	6829	15334	14.937	
10000	9767	22758	31.093	
14000	13535	32270	62.968	

Arriba se encuentran los arcos, vértices y tiempo de ejecución del requerimiento 4 para cada archivo de datos, y analizándolo se encontraron las siguientes relaciones:

- El numero de vértices es casi igual al numero de datos
- El numero de arcos es parecido al numero de vértices en un principip, pero a medida que aumenta el numero de datos, este va aumentando. Lo anterior puede explicarse al encontrarse mas relaciones entre las estaciones.
- El tiempo de ejecución del requerimiento 4 es relativamente bajo en un principio, siendo menor al numero de vértices. Sin embargo, a partir de los 2000 datos este aumenta considerablemente, llegando a ser incluso el quíntuple para los 14000 datos (considerando una relación 1 a 1 entre vértices y tiempo en mseg)

Tabla tiempo de ejecución opción 6

Datos	Vértices	Arcos	Tiempo
50	74	73	31
150	146	146	0
300	295	382	0
1000	984	1633	0
2000	1954	3560	0
3000	2922	5773	0
7000	6829	15334	0
10000	9767	22758	0
14000	13535	32270	0

- e) ¿Qué características tiene el grafo definido? Es un grafo dirijido
- f) ¿Cuál es el tamaño inicial del grafo? 14000
- g) ¿Cuál es la Estructura de datos utilizada? El grafo definido esta implementado como una lista de adjacencia.
- h) ¿Cuál es la función de comparación utilizada? compareStopIds(), que compara el nombre de las estaciones