

IIT Madras ONLINE DEGREE

Sets: Examples

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 1

■ Union — combine X and Y, $X \cup Y$ $\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$

- Union combine X and Y, $X \cup Y$ $\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$
- Intersection elements common to X and Y, $X \cap Y$ $\{a, b, c, d\} \cap \{a, d, e, f\} = \{a, d\}$

- Union combine X and Y, $X \cup Y$ $\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$
- Intersection elements common to X and Y, $X \cap Y$ $\{a, b, c, d\} \cap \{a, d, e, f\} = \{a, d\}$
- Set difference elements in X that are not in Y, $X \setminus Y$ or X Y $\{a, b, c, d\} \setminus \{a, d, e, f\} = \{b, c\}$

- Union combine X and Y, $X \cup Y$ $\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$
- Intersection elements common to X and Y, $X \cap Y$ $\{a, b, c, d\} \cap \{a, d, e, f\} = \{a, d\}$
- Set difference elements in X that are not in Y, $X \setminus Y$ or X Y $\{a, b, c, d\} \setminus \{a, d, e, f\} = \{b, c\}$
- Complement elements not in X, \overline{X} or X^c
 - Define complement relative to larger set, universe
 - Complement of prime numbers in N are composite numbers

■ In a class, 30 students took Physics, 25 took Biology and 10 took both, and 5 took neither. How many students are there in the class?

- In a class, 30 students took Physics, 25 took Biology and 10 took both, and 5 took neither. How many students are there in the class?
 - Draw sets for Physics (P) and Biology (Q)

- In a class, 30 students took Physics, 25 took Biology and 10 took both, and 5 took neither. How many students are there in the class?
 - Draw sets for Physics (P) and Biology (Q)
 - 10 students are in $P \cap B$

- In a class, 30 students took Physics, 25 took Biology and 10 took both, and 5 took neither. How many students are there in the class?
 - Draw sets for Physics (P) and Biology (Q)
 - 10 students are in $P \cap B$
 - This leaves 20 students in P \ B
 Took Physics, but did not take Biology

- In a class, 30 students took Physics, 25 took Biology and 10 took both, and 5 took neither. How many students are there in the class?
 - Draw sets for Physics (P) and Biology (Q)
 - 10 students are in $P \cap B$
 - This leaves 20 students in P \ B
 Took Physics, but did not take Biology
 - Likewise 15 students in *B* \ *P*Took Biology, but did not take Physics

- In a class, 30 students took Physics, 25 took Biology and 10 took both, and 5 took neither. How many students are there in the class?
 - Draw sets for Physics (P) and Biology (Q)
 - 10 students are in $P \cap B$
 - This leaves 20 students in P \ B
 Took Physics, but did not take Biology
 - Likewise 15 students in *B* \ *P*Took Biology, but did not take Physics
 - 5 students in P∪B
 In the class, but took neither Physics nor Biology

- In a class, 30 students took Physics, 25 took Biology and 10 took both, and 5 took neither. How many students are there in the class?
 - Draw sets for Physics (P) and Biology (Q)
 - 10 students are in $P \cap B$
 - This leaves 20 students in P \ B
 Took Physics, but did not take Biology
 - Likewise 15 students in B \ P
 Took Biology, but did not take Physics
 - 5 students in P∪B
 In the class, but took neither Physics nor Biology
- Class strength: 5 + 20 + 10 + 15 = 50

■ In a class of 55 students, 32 students took Physics, 11 took both Physics and Biology, and 7 took neither.

■ In a class of 55 students, 32 students took Physics, 11 took both Physics and Biology, and 7 took neither.

$$7 + 21 + 11 + x = 55$$

■ In a class of 55 students, 32 students took Physics, 11 took both Physics and Biology, and 7 took neither.

$$7 + 21 + 11 + x = 55$$

 $x = 55 - 39 = 16$

■ In a class of 55 students, 32 students took Physics, 11 took both Physics and Biology, and 7 took neither.

How many students took Biology but not Physics?

$$7 + 21 + 11 + x = 55$$

 $x = 55 - 39 = 16$

■ In a class of 60 students, 35 students took Physics, 30 took Biology, and 10 took neither. How many took both Physics and Biology?

■ In a class of 55 students, 32 students took Physics, 11 took both Physics and Biology, and 7 took neither.

$$7 + 21 + 11 + x = 55$$

 $x = 55 - 39 = 16$

- In a class of 60 students, 35 students took Physics, 30 took Biology, and 10 took neither. How many took both Physics and Biology?
 - |Y|: Cardinality of Y (number of elements)

■ In a class of 55 students, 32 students took Physics, 11 took both Physics and Biology, and 7 took neither.

$$7 + 21 + 11 + x = 55$$

 $x = 55 - 39 = 16$

- In a class of 60 students, 35 students took Physics, 30 took Biology, and 10 took neither. How many took both Physics and Biology?
 - |Y|: Cardinality of Y (number of elements)

$$|P| + |B| = 35 + 30 = 65$$

In a class of 55 students, 32 students took
 Physics, 11 took both Physics and Biology, and
 7 took neither.

$$7 + 21 + 11 + x = 55$$

 $x = 55 - 39 = 16$

- In a class of 60 students, 35 students took Physics, 30 took Biology, and 10 took neither. How many took both Physics and Biology?
 - |Y|: Cardinality of Y (number of elements)

$$|P| + |B| = 35 + 30 = 65$$

$$|P \cup B| = 60 - 10 = 50$$

■ In a class of 55 students, 32 students took Physics, 11 took both Physics and Biology, and 7 took neither.

How many students took Biology but not Physics?

$$7 + 21 + 11 + x = 55$$

$$x = 55 - 39 = 16$$

- In a class of 60 students, 35 students took Physics, 30 took Biology, and 10 took neither. How many took both Physics and Biology?
 - |Y|: Cardinality of Y (number of elements)

$$|P| + |B| = 35 + 30 = 65$$

$$|P \cup B| = 60 - 10 = 50$$

■ So 65 - 50 = 15 must have taken both

■ In a class of 55 students, 32 students took Physics, 11 took both Physics and Biology, and 7 took neither.

How many students took Biology but not Physics?

$$7 + 21 + 11 + x = 55$$

 $x = 55 - 39 = 16$

- In a class of 60 students, 35 students took Physics, 30 took Biology, and 10 took neither. How many took both Physics and Biology?
 - |Y|: Cardinality of Y (number of elements)

$$|P| + |B| = 35 + 30 = 65$$

$$|P \cup B| = 60 - 10 = 50$$

■ So 65 - 50 = 15 must have taken both

Summary		
Set notation is useful way	to concisely describe collections	s of objects
	,	
Madhavan Mukund	Sets: Examples	

Summary

- Set notation is useful way to concisely describe collections of objects
- Set comprehension combines generators, filters and tranformations to produce new sets from old

Summary

- Set notation is useful way to concisely describe collections of objects
- Set comprehension combines generators, filters and tranformations to produce new sets from old
- Venn diagrams can be useful to work out problems involving sets