

A vertical orange rectangle containing a white graphic of several overlapping diamond shapes pointing right. The graphic is composed of approximately 10-12 diamonds of varying sizes.

Agenda	
hour 1	<ul style="list-style-type: none">• Part 1: Motion Sensors Overview• Part 2: Movement and Orientation• Part 3: Introduction to Sensor Fusion• Part 4: Freescale Sensor Fusion Toolbox• Part 5: Lab #1 – Play with fusion options
	Break
hour 2	<ul style="list-style-type: none">• Part 6: Freescale Sensor Fusion Library
	Break
hour 3	<ul style="list-style-type: none">• Part 7: Lab #2 – Build the embedded firmware• Part 8: Optional Lab #3 – Make some changes• Part 9: Odds & Ends and Wrap-up

Sensor Portfolio	
	Pressure
	Accelerometer
	Magnetometer
	Gyroscope
	Sensing systems
	Automotive, industrial, medical and consumer absolute and differential sensors <i>Flow, comfort management, HVAC, medical, engine control</i>
	Consumer and industrial low-g sensors and tilt sensors Automotive medium- and high-g crash sensors <i>Vehicle stability, airbag, vibration monitor, tilt alignment</i>
	Consumer and industrial magnetic field sensor and 3D compass <i>Orientation alignment, proximity detection, magnetic switch</i>
	Consumer and industrial angular rate sensors and 6/9-DOF IMU Automotive roll sensor and IMU <i>Stabilization, motion and gesture HMI, inertial navigation, gaming</i>
	Consumer and industrial MCU and sensor integrated platforms Automotive tire pressure monitoring system <i>Smart sensors, pedometer, anti-tamper, fault prognostication</i>

The diagram illustrates the Kinetis Microcontrollers Family, showing seven series: K, L, V, M, W, EA, and MINI. The K series is at the top right, labeled 'Performance and Integration' for Cortex-M4-based MCUs. The L series is below it, labeled 'Ultra-Low Power' for Cortex-M0-based MCUs. The V series is to the right, labeled 'Motor Control and Power Conversion' for Cortex-M0+M4 cores. The M series is below V, labeled 'Metrology' for Cortex-M0+ core. The W series is at the bottom right, labeled 'Wireless Connectivity' for Cortex-M0+M4 cores. The EA series is at the bottom left, labeled 'Automotive' for Cortex-M0-based MCUs. The MINI series is at the bottom center, labeled 'Miniature chip-scale packages' and 'World's smallest ARM-based MCUs'.

Series	Core	Primary Function	MCU Type
K Series	Cortex-M4	Performance and Integration	Cortex-M4-based MCUs
L Series	Cortex-M0	Ultra-Low Power	Cortex-M0-based MCUs
V Series	Cortex-M0+M4	Motor Control and Power Conversion	Cortex-M0+M4 cores
M Series	Cortex-M0+	Metrology	Cortex-M0+ core
W Series	Cortex-M0+M4	Wireless Connectivity	Cortex-M0+M4 cores
EA Series	Cortex-M0	Automotive	Cortex-M0-based MCUs
MINI	ARM	Miniature chip-scale packages World's smallest ARM-based MCUs	ARM-based MCUs

Freedom Boards K64F / K24F

Kinetis IDE Options (www.freescale.com/kide)

Featured IDEs:

Atollic TrueSTUDIO

Professional Eclipse/GNU based IDE with a MISRA-C compliant code analysis and source code review feature.

- Advanced RTOS-aware debugger with ETM/ETB/SWIM tracing, live variable view and fault analyzer. Dual core and multi-processor debugging.
- Strong support for software engineering, workflow management, team collaboration and improved software quality.

Green Hills MULTI

Complete & integrated software and hardware environment with advanced multicore debugger.

- Industry first TimeMachine trace debugging & profiler
- EEMBC certified top performing C/C++ compilers

Complimentary Solutions:

Kinetis Design Studio

- Complimentary basic capability integrated development environment (IDE) for Kinetis MCUs
- Eclipse/GCC-based IDE for C/C++ editing, compiling and debugging

KEIL µVision

Specialized for real-time controller applications, designed for reuse, yet powerful enough for the most demanding embedded applications.

- ARM C/C++ build toolchain and Execution Profiler and Performance Analyzer enable highly optimized programs.
- Complete Code Coverage information about your program's execution.

IAR Embedded Workbench

A powerful and reliable IDE designed for ease of use with outstanding compiler optimizations for size and speed.

- The broadest Freescale ARM/Cortex MCU offering with dedicated versions available with functional safety certification
- Support for multi-core, low power debugging, trace, ...

mbed Development Platform

- The fastest way to get started with Kinetis MCUs
- Online project management and build tools – no installation required; option to export to traditional IDEs
- Includes comprehensive set of drivers, stacks and middleware with a large community of developers.

Kinetis IDE Comparison

	Atollic TrueStudio Pro	Green Hills MULTI	IAR Embedded Workbench for ARM (EWARM)	Keil PRO Edition Microcontroller Development Kit (MDK)	Kinetis Design Studio
Free version / Limitations	TrueSTUDIO Lite: 32KB S8K for Cortex-M0(+)	Evaluation: 30 days	Evaluation: 30-days KickStart Edition: 32KB	MDK Lite: 32KB	Unlimited
Processor Expert support	Yes	Yes	Proprietary/Eclipse	Proprietary	Eclipse
IDE Framework	Improved/Eclipse	Proprietary	Proprietary/Eclipse	Proprietary	Eclipse
Debugger	GDB + proprietary extensions	Multi	IAR C-SPY	uVision	GDB
Compiler	Atollic GNU gcc v4.7.3 newlib v1.19 newlib-nano v1.0 libstdc++ v.6.17	Multi	IAR ic/c++	armcc	GNU gcc 4.8 newlib 1.19 newlib-nano 1.0
Standard Libraries		Multi	IAR DLIB/CMSIS	ARM MicroLIB	ARM Standard
Run Control Interfaces	P&E, SEGGER, CMSIS-DAP (coming soon), gdobserver compatible probes	GHS Probe, GHS SuperTrace Probe, OpenOCD, CMSIS-DAP (coming soon)	i-jet, P&E, SEGGER, OpenOCD, CMSIS-DAP	ULINK, ULINKPro, CMSIS-DAP, P&E, SEGGER	OpenOCD/CMSIS-DAP
Trace/Profiling Support	Yes	-	Yes	Yes	No
Kinetis-DK Support	1.0 GA (Summer 2014)	-	1.0 Beta (April 2014)	1.0 GA (Summer 2014)	1.0 GA (Summer 2014)
Freescale MOX Kernel / Task Awareness	Yes	-	Yes	Yes	Coming Soon
Other RTOS Support Includes	FreeRTOS, uCOS	uveliOSity	FreeRTOS, uCOS	FreeRTOS, uCOS, Keil RTX	FreeRTOS, uCOS

External Use | 12

Austin Marathon – Freescale Survey

External Use | 14

Wearable Market Forecast

Sources: IHS Research, ABI Research, Credit Suisse Equity Research, Berg Insight, Juniper

External Use | 15

Smart Watches Available NOW

Full Feature OS	Function Specific OS
WIMM	Pebble
Shanda	Basis
I'm Watch	Martian Watches
Bambook	Impulse
Samsung Galaxy Gear	Metawatch
Sony SmartWatch2	Garmin
Vea	Kreyos
	Cuckoo
	Aframe Digital
	Samsung
	Motorola ACTV
	Casio

External Use | 16

Wearable Market: Segmentation

Vertical	Categories
Fitness & Wellness	Sports & Heart Rate Monitors Pedometers, Activity Monitors Smart Sport Glasses Smart Clothing Sleep Monitors Emotional Measurements
Healthcare & Medical	CGM (Continuous Glucose Monitoring) ECG Monitoring Pulse Oximetry Blood Pressure Monitors Drug Delivery (Insulin Pumps) Wearable Patches (ECG, HRM, SpO2)
Infotainment	Smart Watches Augmented Reality Headsets Smart Glasses Wearable Imaging Devices
Industrial & Military	Hand-worn Terminals Augmented Reality Headsets Smart Clothing

External Use | 17

Smart Watches Available NOW – SONY SWR10

freescale External Use | 24

Smart Watches Available NOW – SONY SWR10

freescale External Use | 25

Smart Watches Available NOW – SONY SWR10

freescale External Use | 26

Smart Watches Available in the future – SONY SWR30

freescale External Use | 27

Smart Watches Available in the future – SONY SWR50

freescale External Use | 28

Smart Watches Available in the future – SONY SWR50

freescale External Use | 29

Alessandro's arm in the future

 Wearables in the future - <http://youtu.be/-nVhBXuK-EI>

Wireless Charger

External Use | 32

WCT-5W1COILTX – EVALUATION BOARD

Take Charge. Anywhere.

Freescale is redefining wireless charging.

External Use | 33

WCT-5W1COILTX – EVALUATION BOARD

WCT-5W1COILTX Single-Coil Wireless Charger Block Diagram

Energy Harvesting

External Use | 35

Some Sensors are Physical, Some are “Virtual”

Sensor Type	Caveat	Physical / Virtual
Accelerometer	With gravity	Physical
Linear Acceleration	Without gravity	Virtual
Gravity		Virtual
Magnetic Field	Uncalibrated	Physical
Magnetic Field	Calibrated	Virtual
Gyroscope	Uncalibrated	Physical
Gyroscope	Calibrated	Virtual
Orientation	Rotation Matrix	Virtual
Orientation	Azimuth, pitch, roll and rotation matrix	Virtual
Ambient Temperature		Physical
Light		Physical
Pressure		Physical
Proximity		Physical
Relative Humidity		Physical

Items in red are not supported by Freescale sensors.

freescale External Use | 41

Some Sensors are Physical, Some are “Virtual”

Sensor Type	Caveat	Physical / Virtual
Rotation Vector	9-axis	Virtual
Game Rotation Vector	Accel/gyro only	Virtual
Geomagnetic Rotation Vector	Accel/mag only	Virtual
Significant Motion		Virtual
Step Detector		Virtual
Step Counter		Virtual

- The list above summarizes sensors & sensor fusion components that might be expected components for modern operating systems.
- All but the last 4 listed are supported by Android 4.3. “KitKat” offers support for the last four.
- Other OS’s continue to evolve in a similar fashion.
- The possible list of sensors and types of sensor fusion is virtually unlimited.

External Use | 42

In this workshop...

- Because “Sensor Fusion” is an extremely broad topic, this course focuses on some specific examples:
 - Magnetic calibration
 - Electronic compass
 - Virtual gyro
 - Compute orientation
 - Compute linear acceleration sans gravity
- Sensors used include: Accelerometer + Magnetometer + Gyro
- For today’s session, we are ignoring: vibration analysis, gesture detection, contextual awareness, navigation / location, auto crash detection, auto stability control, etc.

External Use | 43

Sensor Strengths & Weaknesses

Sensor	Strengths	Weaknesses
Accelerometer	<ul style="list-style-type: none"> Inexpensive Extremely low power Very linear Very low noise 	<ul style="list-style-type: none"> Measures the sum of gravity and acceleration. We need them separate.
Magnetometer	<ul style="list-style-type: none"> The only sensor that can orient itself with regard to “North” Insensitive to linear acceleration 	<ul style="list-style-type: none"> Subject to magnetic interference Not “spatially constant”
Gyro	<ul style="list-style-type: none"> Relatively independent of linear acceleration Can be used to “gyro-compensate” the magnetometer 	<ul style="list-style-type: none"> Power hog Long startup time Zero rate offset drifts over time
Pressure Sensor	<ul style="list-style-type: none"> The only stand-alone sensor that can give an indication of altitude 	<ul style="list-style-type: none"> Not well understood A “relative” measurement Subject to many interferences and environmental factors

External Use | 44

An Accelerometer Measures Linear Acceleration plus Gravity

An accelerometer by itself is a “3 axis” system

When any axis is vertical, we cannot detect rotation about that axis

External Use | 45

What do we mean: Accelerometers measure linear acceleration plus gravity?

When horizontal, and at rest:
 X = 0
 Y = 0
 Z = 1g

When horizontal, and accelerating at 1g in the direction of the arrow:
 X = 1g
 Y = 0
 Z = 1g

External Use | 46

Adding a gyroscope

This “6 axis” system is known as an Inertial Measurement Unit or “IMU”. This is a Right Hand System (RHS)

A 3-axis gyroscope measures angular velocity about each of the 3 axes.

External Use | 47

Adding a magnetometer

This "9 axis" system is known as a magnetic, angular rate & gravity (MARG) sensor
Add a processor and you have an attitude & heading reference system (AHRS)

A 3-axis magnetometer gives you the X/Y/Z components of the magnetic field.

External Use | 48

As an aside...

In Grapevine Texas, during the week of FTF2014, almost 2/3 of the earth's magnetic field is directed DOWN

External Use | 49

As an aside...

In Grapevine Texas, during the week of FTF2014, almost 2/3 of the earth's magnetic field is directed DOWN

External Use | 50

Adding a pressure sensor

This is a "10 axis" system

Pressure is a scalar (versus vector) quantity

External Use | 51

Pressure can give you an estimate of altitude

Altitude = K1 X (1 - (P/P0)^{K2})
 • K1 = 44330.77 meters
 • K2 = 0.190263 (unitless)
 • P0 = 101325 Pascals

External Use | 52

Notice this is a log scale... (think in dB, ok???)

External Use | 53

Gyro Ready to active = 2/ODR + 10ms (now, think linear)

External Use | 54

Some observations

- Accelerometers are the most power efficient motion sensor you'll find
- They often include motion detection circuits – use those to power the system up/down for idle periods
- Accelerometers are low power because they are usually "passive" devices. The proof mass moves only when the device is in motion.
- Gyros have continuously moving proof masses, requiring much higher currents to keep them in motion
- TMR1-based magnetic sensors are arranged in a Wheatstone bridge formation – requiring DC biases
- Another good sensor to "gate" others is an ambient light sensor

¹ TMR = Tunneling MagnetoResistive

External Use | 55

Typical "Minimum" Sensor Complements / Application

Application	Acc	Mag	Gyro	Pressure
Portrait/landscape, tap detect, fall detection	X			
Pedometry, vibration analysis, tiltmeter	X			
eCompass, pointing/remote control, augmented/virtual reality	X	X		
Virtual gyro	X	X		
Gyro-compensated eCompass	X	X	X	
Activity monitors	X	X		
	X		X	
Motion capture	X	X	X	
3D mapping & localization	X	X	X	X
Image stabilization, gesture recognition	X		X	

External Use | 56

Part 2: Movement and Orientation

External Use | 57

Movement

Any movement from point A to point B can be decomposed into a translation plus optional rotation

We need at least 6 degrees of freedom (DOF) to describe a movement in 3 dimensions: $\Delta X, \Delta Y, \Delta Z, \Phi, \theta, \Psi$

External Use | 58

Frames of Reference

- Most systems use a Cartesian frame of reference, *but which one?*

External Use | 59

There can be multiple, concurrent, frames of reference

External Use | 60

There are multiple representations for rotation

Options are:

- Euler Angles – intuitive (roll, pitch & yaw), but subject to gimbal lock
- Rotation Matrices – rotation as a matrix multiplication
- Axis / Angle – easy to understand, difficult to use
- Quaternions – similar to axis/angle, with a theoretical background that makes them useful

Freescale sensor fusion libraries support all forms!!!!!!

 source: <http://en.wikipedia.org/wiki/File:Euler2a.gif>

External Use | 61

Part 3: Introduction to Sensor Fusion

External Use | 62

What is Sensor Fusion?

External Use | 63

Sensor fusion encompasses a variety of techniques which:

- Trade off strengths and weaknesses of the various sensors to compute something more than can be calculated using the individual sensors;
- Improve the quality and noise level of computed results by taking advantage of:
 - Known data redundancies between sensors
 - Knowledge of system transfer functions, dynamic behavior and/or expected motion

Learn more at: www.freescale.com/sensorfusion

Freescale Sensor Fusion Library

Product Features

- Full featured sensor fusion library, including the award winning e-compass software
- Fully open source, eliminating proprietary constraints, increasing flexibility, and decreasing time-to-market

Customer Application		
Software and Hardware Evaluation & Dev Tools	Libraries (csp, Mem, Sensors)	Operating System
Stack's (TCP/IP, USB)	Middleware	Application Specific
BSP, Drivers & HAL	Bootloader	MCU Hardware

[Configure, Power State, Data Control](#)

Product Features

- Functionality
 - 3-axis, 2-axis heading, 6-axis eCompass, 6-axis indirect Kalman filter, 3-axis relative rotation, and 9-axis indirect Kalman filter
 - Programmable sampling, fusion rates, and frame of reference,
- Included projects
 - Kinetis K20, KL25Z, KL26Z, KL46Z, and K64F Freedom boards
 - Use of Freescale Multi sensor boards
 - CodeWarrior and Kinetis Design Studio
 - Additional commercial support and services available

External Use | 64

Sensor Fusion Data Flow for Consumer Devices

Sensor Hub Functions

Sensor Fusion

ForR = Frame of Reference Mapping

Calculated hard/soft iron parameters

hi/low band pass filtering

Shake detection

Acc $\omega_{x,y,z}$

$\omega_{x,y,z}$

$B_{x,y,z}$

Rotation matrix

Quaternion

Tilt-compensated mag heading

Orientation (q, θ, ϕ)

External Use | 65

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, mobileGT, PEG, PowerQUICC, Processor Expert, CorIQ, Qorivva, SafeAssure, the SafeAssure logo, StarCore, Symphony and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. AirFast, BeeKit, BeeStack, CoreNet, Flexis, Layerscape, MagniV, MXC, Platform in a Package, CorIQ Converge, QUICC Engine, Ready Play, SMARTMOS, Tower, TurboLink, Vybird and Freescale are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2014 Freescale Semiconductor, Inc.

11

Magnetic Calibration

Soft iron *in fixed spatial relationship to the sensor* distorts the measured field. The sphere is distorted into an ellipsoid.

Hard iron (permanent magnet) *in fixed spatial relationship to the sensor* adds an offset.

Both are linear effects¹, and can be reversed – if you know what you are doing!

¹ Assuming there is no magnetic hysteresis present

External Use | 66

Freescale Magnetic Calibration Library

- Now bundled into the sensor fusion library
- 4 and 7 and now 10 element solvers are available *in source form*
- As a virtual sensor in Freescale's Intelligent Sensing Framework (ISF)
- Freescale's eCompass software received the Electronic Products Magazine 2012 Product of the Year Award.

External Use | 67

Magnetic Calibration Variations

$$\mathbf{B}_c = \mathbf{W}^{-1}(\mathbf{B}_p - \mathbf{V}) \quad \Rightarrow \quad \begin{matrix} \mathbf{B}_{cx} \\ \mathbf{B}_{cy} \\ \mathbf{B}_{cz} \end{matrix} = \begin{matrix} \mathbf{s}_1 & \mathbf{s}_2 & \mathbf{s}_3 \\ \mathbf{s}_2 & \mathbf{s}_4 & \mathbf{s}_5 \\ \mathbf{s}_3 & \mathbf{s}_5 & \mathbf{s}_6 \end{matrix} \begin{matrix} \mathbf{B}_{px} - \mathbf{V}_x \\ \mathbf{B}_{py} - \mathbf{V}_y \\ \mathbf{B}_{pz} - \mathbf{V}_z \end{matrix}$$

where:
 \mathbf{B}_c : Calibrated magnetic vector
 \mathbf{W}^{-1} : Inverse Soft Iron Matrix
 \mathbf{B}_p : Physical magnetic measurement
 \mathbf{V} : Hard Iron Offset Vector

The 4-element calibration computes \mathbf{V}_x , \mathbf{V}_y and \mathbf{V}_z ; hard iron offsets plus magnitude of the geomagnetic vector. \mathbf{W}^{-1} = Identity matrix

$$\mathbf{W}^{-1} = \begin{bmatrix} \mathbf{s}_1 & 0 & 0 \\ 0 & \mathbf{s}_4 & 0 \\ 0 & 0 & \mathbf{s}_6 \end{bmatrix}$$

The 7-element calibration also computes \mathbf{s}_1 , \mathbf{s}_4 and \mathbf{s}_6 . Off diagonal components of \mathbf{W}^{-1} are 0.

$$\mathbf{W}^{-1} = \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 & \mathbf{s}_3 \\ \mathbf{s}_2 & \mathbf{s}_4 & \mathbf{s}_5 \\ \mathbf{s}_3 & \mathbf{s}_5 & \mathbf{s}_6 \end{bmatrix}$$

Approximations.docx
 Coordinate Systems.docx
 license.rtf
 Matrix Algebra.docx
 Orientation Matrices.docx
 Quaternions.docx

Everyone uses the same equation.
 The magic is in how you compute the coefficients.

External Use | 68

Electronic Compass

Once you have performed magnetic calibration, computing magnetic north is easy using cross products

Step 1: $\mathbf{East}_{est} = \mathbf{A} \times \mathbf{A}$
 Step 2: Normalize East = $\mathbf{East}_{est} / |\mathbf{East}_{est}|$
 Step 3: Normalize Up = $\mathbf{A} / |\mathbf{A}|$
 Step 4: Magnetic North = $\mathbf{A} \times \mathbf{East}_{est}$

See getRotationMatrix function at:
<http://developer.android.com/reference/android/hardware/SensorManager.html>

External Use | 69

eCompass – Virtual Gyro

Freescale Semiconductor User's Guide

Document Number: MAGCALSWUG
 Rev. 0, 02/2012

Implementing aTilt-Compensated eCompass with Magnetic Calibration

Software User's Guide

by: Mark Pedley
 Freescale Semiconductor, Tempe, AZ

External Use | 70

Virtual Gyro

If you calculate orientation from accel + mag, computing outputs for a virtual gyro is easy:

angular rates = the time derivative of orientation

For rotation of fixed reference frame relative to body frame (equivalent to a gyro output), we have:

$$\text{Small signal rotation matrix } \mathbf{R} = \mathbf{R}_q \mathbf{R}_p \mathbf{R}_q = \begin{bmatrix} 1 & -\psi & \phi \\ \psi & 1 & -\phi \\ \phi & \phi & 1 \end{bmatrix}$$

$$d\mathbf{R}/dT = d(\mathbf{R}_q \mathbf{R}_p \mathbf{R}_q)/dT = \begin{bmatrix} 0 & -\omega_x & \omega_y \\ \omega_x & 0 & -\omega_z \\ \omega_y & \omega_z & 0 \end{bmatrix} = (1/\Delta t) (\mathbf{R}_{q,T} \mathbf{R}_p^T - \mathbf{I}_{3x3}) = \begin{bmatrix} 0 & \Omega_{1,2} & \Omega_{1,3} \\ \Omega_{1,2} & 0 & \Omega_{2,3} \\ \Omega_{1,3} & \Omega_{2,3} & 0 \end{bmatrix}$$

$$\begin{aligned} \omega_x &= (2\Delta t)^{-1} (\Omega_{3,2} - \Omega_{2,3}) \\ \omega_y &= (2\Delta t)^{-1} (\Omega_{1,3} - \Omega_{3,1}) \\ \omega_z &= (2\Delta t)^{-1} (\Omega_{2,1} - \Omega_{1,2}) \end{aligned}$$

This derivation utilizes small angle approximations. See <https://community.freescale.com/community/the-embedded-bean/thread/201303/12/building-a-virtual-gyro>, for derivation details.

External Use | 71

eCompass – Virtual Gyro

CIRCUIT CELLAR
THE WORLD'S SOURCE FOR EMBEDDED ELECTRONICS ENGINEERING INFORMATION
ISSUE 265 REPRINT

EMBEDDED DEVELOPMENT

Electronic Compass: Tilt Compensation & Calibration

by Mark Pedley (USA)

eCompass
Build and Calibrate a Tilt-Compensating Electronic Compass

A modern smartphone contains a built-in electronic compass (eCompass). How does the tilt compensation work, and how is the eCompass calibrated for the magnetic interference from the circuit board? This article describes how you can use the high-performance consumer accelerometers and magnetometers developed for the smartphone market to add a tilt-compensated eCompass to your own microcontroller project for less than \$5.

freescale External Use | 72

eCompass – Virtual Gyro

1.4 Software architecture

Figure 1.

freescale External Use | 73

eCompass – Virtual Gyro

Sensor interface board, **Compass Pointing Direction**, **USB interface board**, **Sensor daughter board with MMA8451 accelerometer and MAG3110 magnetometer**

Figure 1. PCB assembly

Xtrinsic Sensing Development Tools

Part Number	Description
RD4247XQXS8700	FASTRIDE 8-in-1 Development Board
RD4247MAG3110	Magnetometer Development Board
KITMAG3110EVK	MAG3110 Smart Sensing Platform DEMOSTBMP3110A2
KITMAG3110EVK	MAG3110 Smart Sensing Platform DEMOSTBMP3110A2 Development Kit
KITSUPER2EVK	Sensor ToolBox Starter Kit to support multiple sensors including MMA8451, MAG3110, MPU9130, and LIS331LH
KITSTRUCT2EVK	FATIGUE Development Kit for MMA8451
KITSTARTER2EVK	Sensor Toolbox Starter Kit 1
RDMMA865X	Sensor Toolbox Starter Kit 2
LIS3DPROTOT	LIS3DPI Prototype Board
KITMP903EVK	MPU9130 Development Kit
KITMP903EVK	MPU9130 Development Kit

freescale External Use | 74

eCompass – Virtual Gyro

Xtrinsic Sensor Demonstration

eCompass **Orientation** **Navigation** **Advanced Settings**

Calibrated Mag	Orientation and Virtual Gyro
X: 210.50, Y: 267.00, Z: 0.40	(deg) Roll: 0.8, Pitch: 3.1, Yaw: 308.3
X: -0.054, Y: 0.012, Z: 0.995	Rate (deg/s) X: 0.00, Y: 0.00, Z: 0.00
X: 210.39, Y: 266.98, Z: -7.81	Axis Vector X: -0.97, Y: 0.19, Z: -0.12

Hard Iron Vector

Inverse Soft Iron Matrix	
X: 0.00, Y: 0.00, Z: 0.00	X: 1.000, Y: 0.000, Z: 0.000
X: 0.000, Y: 1.000, Z: 0.000	X: 0.000, Y: 1.000, Z: 0.000
X: 0.000, Y: 0.000, Z: 1.000	X: 0.000, Y: 0.000, Z: 1.000

Calibration

Measurements: 1 element, 7 element, 4 element, Active, Save, Reset

Field Magnitude (uT): 0.00, Inclination (deg): -1.1

Compass: 308.3 (deg), N: 0, NE: 45, ENE: 90, E: 135, SE: 180, S: 225, SW: 270, WSW: 315, NW: 360

Data Log: Start

Figure 5. eCompass initial screen at launch

Orientation

Orientation can be thought of as a rotation from some standard reference (usually the global frame).

For a set of sensors at rest, orientation can be considered to be the 3D rotation necessary to map magnetic north into calibrated magnetic field reading and gravity to measured accelerometer reading.

$$B = RM \begin{pmatrix} 0 \\ B_N \\ B_Z \end{pmatrix} \quad A = RM \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

gravity in the ENU frame of reference

magnetic north in the ENU frame of reference. B_N is the horizontal component of the earth field, B_Z is the vertical.

- A = accelerometer reading (in gravities) at rest
- B = measured magnetic field after calibration
- |B| = magnitude of the earth field
- RM = rotation matrix = orientation
- ENU = X=East, Y=North, Z=Up

External Use | 76

¹ Use [0, 0, 1]^T Windows 8. Use [0, 0, -1]^T for Android.

Taking it up a notch

- The MagCal / eCompass example is nice because it can be explicitly calculated
- Other systems can be much more complex
- If we can model a system as a set of state variables, then we can use a Kalman filter to separate noise from desired system behavior
- A Kalman filter essentially does a linear regression between measured and expected system response.
- Results can be proved to be optimum in a least-squares sense.

Computing information is only half the puzzle.
You have to do something with it.
Enter...

freescale External Use | 81

The Freescale Sensor Fusion Toolbox

- Provides visualization functions for the fusion library
- Allows you to experiment with different sensor/algorithm choices
- Gives you access to raw sensor data
- Allows you to log sensor and fusion data for later use
- Works with demo and development versions of the Freescale Sensor Fusion Library
- Platforms
 - Android
 - Windows PC

freescale External Use | 83

The Freescale Sensor Fusion Toolbox Features by Platform

Feature	Android	PC
Bluetooth wireless link	✓	Requires BT on PC (built-in or dongle)
Ethernet wireless link	On Wi/Go board only	-
UART over USB	-	✓ ¹
OS requirements	>= Android 3.0	>= Windows 7.0
Support for native sensors	✓	-
Device View	✓	✓
Panorama View	✓	-
Statistics View	✓	-
Canvas View	✓	-
Orientation XY Plots	-	✓
Inertial XY Plots	-	✓
Magnetics	-	✓
Kalman	-	✓
Altimeter XY Plots	-	✓
Data Logging Capability	✓	✓
Integrated documentation	✓	✓
Availability	Google Play	Freescale website
Price	Free	Free

¹ FRDM_K64F and FRDM_K20D50M projects require a Processor Expert configuration change to run in wired mode.

External Use | 84

PC Version – Sensors Tab

1. Raw Accelerometer Values
2. Calibrated Magnetometer Values
3. Raw Gyroscope Values

The PC is used for display only. All values are computed on the embedded board.

freescale External Use | 85

PC Version – MagneticsTab

1. 2D representation of the data point "cloud" used for hard/soft iron compensation
2. Computed hard iron vector
3. Soft iron matrix
4. Statistics
5. Calibration status light
6. Save to text file

You can use this display to view how the magnetic constellation evolves over time in response to changing magnetic environments.

freescale External Use | 88

PC Version – Device View

1. Rotating 3D PCB display
2. Image align function
3. Navigation Tabs for:
 - Sensors Data Tab
 - Dynamics Tab
 - Magnetics
 - Kalman
 - Altimeter
 - Help
4. Packet information
 - choice of PC comm port
 - packet activity indicator
 - # of packet errors
5. Roll/Pitch/Yaw & MagCal status
6. Choice of sensor set & algorithm
7. Sensor board run time and build parameters, Data logging on/off

This is the most intuitive way to confirm that your sensor fusion is working properly.

freescale External Use | 85

PC Version – Dynamics Tab

1. Roll, pitch & compass heading
2. Current quaternion
3. Angular velocity
4. Linear Acceleration

The PC is used for display only. All values are computed on the embedded board.

freescale External Use | 87

PC Version – Kalman Tab

Use this tab to view how well your sensor fusion "digests" changes in its environment.

1. Error in orientation estimate (X,Y,Z)
2. Computed gyro offset
3. Error in gyro offset estimate (X,Y,Z)

freescale External Use | 89

Important Point

- The template programs contained in the Freescale Sensor Fusion Library for Kinetis MCUs assume that you are utilizing the FRDM-FXS-MULTI-B Bluetooth board.
- KL25Z, KL26Z and KL46Z projects can also be used via UART/USB wired interface by the simple expedient of removing jumper J7, which powers the Bluetooth module.
- This works because the same UART is drives the Bluetooth module and the OpenSDA UART interface.
- K20D50M and K64F use separate physical UARTS for Bluetooth and OpenSDA. You will need to reconfigure the Processor Expert UART component in these projects if you wish to use a wired UART/USB interface. Additional detail is in the user manual.

freescale External Use | 92

Stats Page

For mag / accel / gyro and rotation, the "Statistics" Views displays:

- sensor description
- current sensor value
- min / mean / max values
- standard deviation
- noise / \sqrt{Hz}

When used with the "local" sensor sources, this is a great way to gain insight into devices from the competition!

freescale External Use | 96

If you would like to try it...

<http://play.google.com/store/apps/details?id=com.freescale.sensors.sfusion>

freescale External Use | 97

Part 6: Freescale Sensor Fusion Library for Kinetis

freescale External Use | 98

Freescale Sensor Expansion Boards

Kinetis KL25Z and K20D50M compatible Freescale Sensor Expansion Boards

Part Number	Description	Pricing	Availability
FRDM-FXS-MULTI*	Freescale Sensor Expansion board with I2C, SPI, and I ² S MPL3115A2 MMA8652 FXAS21000 PCOS8700 FXLS8471 MMA955x MAG3110	\$50	Now
FRDM-FXS-MULTI-B*	Freescale Sensor Expansion board with Bluetooth and Battery MPL3115A2 MMA8652 FXAS21000 PCOS8700 FXLS8471 MMA955x MAG3110	\$125	Now
FRDM-FXS-9AXIS*	Freescale Sensor Expansion board with only 2 sensors FXAS21000 PCOS8700	\$30	Now

freescale External Use | 99

Freescale Sensor Expansion Boards

Freedom Development Platform for Xtrinsic Sensors FRDM-FXS-MULTI-B

BT Reset, BT Power Jumper, MAG3110, MMA8652FC, MPL3115A2, FXAS21000, SD Card, Bluetooth, FXOS8700CQ, FXLS8471, MMA955L, 3.3 V Power Jumper, On/Off Switch.

freescale External Use | 100

Freedom Xtrinsic FRDM-FXS development hardware

FRDM-FXS-MULTI-B	FRDM-FXS-MULTI	FRDM-FXS-9AXIS	
Compatible Freedom Development Hardware	FRDM-KL25Z	FRDM-KL25Z	
Arduino R3-compatible board	✓	✓	✓
FXAS21000 Gyroscope	✓	✓	✓
FXOS8700CQ	✓	✓	✓
MMA8652FC Accelerometer	✓	✓	
MPL3115A2 Altitude/Barometer Sensor	✓	✓	
FXLS8471 Accelerometer	✓	✓	
MMA955L Pedometer	✓	✓	
MA33110 Magnetometer	✓	✓	
Bluetooth Module and Battery	✓		

PREÇO CIF NO DIA 02 / 12 / 14 (DÓLAR A R\$ 2,5624)

DS	Part Number	Fabricante	Preço Unitário (R\$)	Estoque (EU)	Prazo de Entrega
	FRDM-FXS-MULTI-B	Freescale / On Semi	\$ 799,1129	2 pçs	Est. USA entrega 2/3 semanas
	FRDM-FXS-MULTI	Freescale / On Semi	\$ 319,6452	0 pçs	7 semanas
	FRDM-FXS-9AXIS	Freescale / On Semi	\$ 191,7871	2 pçs	Est. USA entrega 2/3 semanas
	FRDM-KE06Z	Freescale / On Semi	\$ 82,8069	89 pçs	Est. USA entrega 2/3 semanas
	FRDM-KL25Z	Freescale / On Semi	\$ 68,2160	0 pçs	7 semanas
	FRDM-K64F	Freescale / On Semi	\$ 223,7516	13 pçs	Est. USA entrega 2/3 semanas

External Use | 102

Ordering Details

Component	Price	Location
Sensor Fusion Library for Kinetis MCUs	Free	http://www.freescale.com/sensorfusion
Freescale Freedom Development Platform	KL02Z = \$12.95 KL26Z = \$15.00 KL46Z = \$15.00 K20D = \$16.00 K64F = \$29.00	http://www.freescale.com/freedom
Freescale Freedom Development Platform for Multiple Freescale Sensors	\$30 \$50 \$125	http://www.freescale.com/FRDM-FXS-9AXIS http://www.freescale.com/FRDM-FXS-MULTI http://www.freescale.com/FRDM-FXS-MULTIB
Freescale Sensor Fusion Toolboxes For PC	Free	http://www.freescale.com/sensorfusion
Freescale Sensor Fusion Toolboxes Android	Free	https://play.google.com/store/apps/details?id=com.freescale.sensors
Freescale Sensors	Various	http://www.freescale.com/sensors

Prices are current as of 6 Sept, 2014. They may vary in the future.

External Use | 103

Sensor Fusion Development Kit

Development Kit

- Enables quick development and prototype of sensor fusion applications
- Includes
 - Kinetis FRDM-K64F Freedom board
 - Freedom Development Platform for Freescale Sensors with Bluetooth®
- Part numbers
 - FRDM-SFUSION with community support (\$170)
 - FRDM-SFUSION-S with 50 hours commercial support (\$10K)

Commercial Support

- Reduces project risk, accelerates time to market
- Prioritized and dedicated access
- Guaranteed response time
- Senior level developer access
- Private portal with customer reporting and dedicated escalation path
- Annual Subscription

External Use | 104

Freescale Sensor Fusion Library for Kinetis MCUs

- Optimized for the computation of orientation with respect to a global frame of reference as a function of sensor readings from:
 - accelerometer
 - and/or gyroscope
 - and/or magnetometer
- Along with orientation, also computes:
 - linear acceleration
 - magnetic interference and correction factors for same
 - magnetic inclination angle
 - gyroscope zero-rate offset
 - compass heading
 - virtual gyro from accelerometer / magnetometer

External Use | 105

How to Engage with Sensor Fusion

- <http://www.freescale.com/sensorfusion>
 - Contains the latest sensor fusion information
 - Downloadable SW and demos
 - Blogs and app notes
- Sensor fusion development kits
 - Available November 2014
 - Combination of FRDM-MULTI-B and FRDM-K64F boards
 - Part numbers
 - FRDM-SFUSION-S** with 50 hours of commercial support
 - FRDM-SFUSION** with community support
 - Factory contact
 - SFSW@Freescale.com**
 - Email alias includes sensor and MCU teams

External Use | 106

Freescale Sensor Fusion Library for Kinetis MCUs

- Supplied in source form under license from Freescale
- Implemented as pure C-code sitting on top of device driver and MQX-lite implementations created via Processor Expert
- Shipped in the form of CodeWarrior projects compatible with the Freescale Sensor Fusion Toolbox
- Downloadable from <http://www.freescale.com/sensorfusion>
- Community support available at <https://community.freescale.com/community/sensors/sensorfusion>
- Contact support services offered by Freescale. Contact: sfsw@freescale.com for details.

External Use | 107

Features vs. Sensor Set

Feature	Accel only	Accel + gyro	Accel + mag	Accel + mag + gyro
Filter Type	Low Pass	Indirect Kalman	Low Pass	Indirect Kalman
Roll / Pitch / Tilt in degrees	Yes	Yes	Yes	Yes
Yaw in degrees	No	No	Yes	Yes
Angular Rate ¹ in degrees/second	virtual 2 axis ²	Yes	virtual 3 axis	Yes
Compass heading (magnetic north) in degrees	No	No	Yes	Yes
Quaternion and rotation vector	Yes	Yes	Yes	Yes
Rotation matrix	Yes	Yes	Yes	Yes
Linear acceleration separate from gravity	No	Yes	No	Yes
NED (North-East-Down) Frame of Reference	Yes ³	Yes ³	Yes	Yes
ENU (Windows 8 variant) Frame of Reference	Yes ³	Yes ³	Yes	Yes
ENU (Android variant) Frame of Reference	Yes ³	Yes ³	Yes	Yes
Magnetic calibration included	No	No	Yes	Yes
Gyro offset calibration included	N/A	Yes	N/A	Yes
FRDM-KL25Z board support	Yes	Yes	Yes	Yes
FRDM-KL26Z board support	Yes	Yes	Yes	Yes
FRDM-KL46Z board support	Yes	Yes	Yes	Yes
FRDM-K20D50M board support	Yes	Yes	Yes	Yes
FRDM-K64F board support	Yes	Yes	Yes	Yes

1. Angular rate for configurations with a gyro include corrections for gyro offset
 2. Subject to well-known limitation of being blind to rotation about axes aligned with gravity
 3. These solutions do not include a magnetometer, therefore there is no sense of compass heading

External Use | 108

Option Details

Feature	Details
License	Free when used with Freescale sensors (see license file for details)
CPU selection	The ANSI C99 source code was optimized on Freescale Kinetis MCUs based upon ARM® Cortex® M0+, M4 and M4F processors, but should be portable to any CPU.
Board customizable	Yes ¹
Sensor sample rate	Programmable
Fusion rate	Programmable, typically = sample rate/N
Frame of Reference	Programmable (NED, Android, or Windows 8)
Algorithms Executing	Any combination of those shown in the prior slide
Sleep mode enabled between samples/calculations	Programmable
RTOS	MOX-Lite
Code flexibility	All code is supplied in source form
Access to Processor Expert	Yes
Product Deliverables	<ul style="list-style-type: none"> • Datasheet, User guide, Application Notes • Template CodeWarrior projects • Pre-compiled s-record files

¹ FRDM_KL25Z, KL26Z, KL46Z, K20D50M and K64F are supported "out of the box" and may be used as templates for other board/MCU combinations...

External Use | 109

Part 5: Play with fusion options

External Use | 110

For this demo
You need

- Freescale Freedom boards shown
- USB cable
- Freescale Sensor Fusion Toolbox running on a Windows Laptop
(C:\Program Files\Freescale\Freescale Sensor Fusion Toolbox\SensorFusion.exe)
- Freescale Sensor Fusion Library for Kinetis MCUs

Plug your USB cable in
this connector

Make sure the switch on the top sensor board is "on".

If you have a MULTI-B board, remove jumper J7

External Use | 111

Experiment with each of the following options

#	Option	Comments
1	Accelerometer	Roll & Pitch only, no yaw
2	Gyroscope	Roll, Pitch & Yaw, but no absolute reference
3	Accelerometer + Magnetometer (eCompass)	Roll, Pitch & Yaw relative to earth frame, but sensitive to magnetic interference and linear acceleration
4	Accelerometer + Gyroscope	Roll, Pitch with respect to horizontal plane, yaw is relative
5	9-Axis Accelerometer + Gyroscope + Magnetometer	Roll, Pitch & Yaw relative to earth frame, relatively independent of magnetic interference and linear acceleration

Experiment with each tab function on the fusion toolbox

External Use | 112

Sensor Fusion Library Details

External Use | 113

Development Requirements

- You must have either Kinetis Design Studio 1.1.1 or CodeWarrior 10.6 and Processor Expert to build sensor fusion applications using the Freescale project templates.
- CodeWarrior can be downloaded from <http://www.freescale.com/codewarrior>.
- Kinetis Design Studio can be downloaded from <http://www.freescale.com/kds>
- In order to experiment with the demo program, you will need an Android 3.0 or higher device running the Freescale Sensor Fusion Toolbox OR the PC-based variant of the toolbox. Details are available at <http://www.freescale.com/sensorfusion>
- Fusion libraries and example projects supplied by the Freescale Sensor Solutions Division
- Development board(s)¹ with:
 - Kinetis Cortex-M0+, M4 or M4F MCU
 - Freescale FXOS8700CQ 3-axis magnetometer + 3 axis accelerometer
 - Freescale FXAS21000 3-axis gyroscope

¹ See details on [Freescale Sensor Expansion Boards](#). Additional sensor combinations are supported in build.h. And of course, you can add your own! Future expansion boards may replace the FXAS21000 with the FXAS21002, which is also supported.

External Use | 114

user_tasks.c Template Page 1 of 3

```
#include "Cpu.h"
#include "Events.h"
#include "mrx_tasks.h"
#include "UART.h"
#include "include_all.h"

void UserStartup(void) {
    // The following UART function call initializes Bluetooth communications used by the
    // Freescale Sensor Fusion Toolbox. If the developer is not using the toolbox,
    // this can be removed.
    //
    // Initialize BlueRadios Bluetooth module
    BlueRadios_Initialize(UART2_DeviceData);

    // put code here to be executed at the end of the RTOS startup sequence.
    //
    // PUT YOUR CODE HERE
    //

    return;
}
```


External Use | 115

user_tasks.c Template Page 3 of 3

```
void UserMediumFrequencyTaskRun(void) {
    // This code runs after the Kalman filter loop
    // The default frequency at which this code runs is 25Hz.

    // The following UART function constructs and sends Bluetooth packets used by the
    // Freescale Sensor Fusion Toolbox. If the developer is not using the toolbox,
    // it can be removed.
    // transmit orientation over the radio link
    CreateAndSendBluetoothPacketsViaUART(UART2_DeviceData);

    //
    // PUT YOUR CODE HERE
    //
    return;
}
```

Steps to use:

- Import project into CodeWarrior
- Add your code as shown above
- Build
- Download and run

External Use | 118

Easy to use...

- Pre-built templates are targeted at specific Freedom boards
- User code easily added to a single .c file within any of the following functions:
 - void UserStartup(void);
 - void UserHighFrequencyTaskInit(void); // runs once, the first time through the 200Hz task
 - void UserHighFrequencyTaskRun(void); // runs each time the 200Hz task runs
 - void UserMediumFrequencyTaskInit(void); // runs once, the first time through the 25Hz task
 - void UserMediumFrequencyTaskRun(void); // runs each time the 25Hz task runs
- Sensor and fusion values are simply read from predefined global structures

External Use | 115

user_tasks.c Template Page 2 of 3

```
void UserHighFrequencyTaskInit(void) {
    // User code to be executed ONE TIME the first time the high frequency task is run.
    //
    // PUT YOUR CODE HERE
    //
    return;
}

void UserMediumFrequencyTaskInit(void) {
    // User code to be executed ONE TIME the first time the medium frequency task is run
    //
    // PUT YOUR CODE HERE
    //
    return;
}

void UserHighFrequencyTaskRun(void) {
    // The default frequency at which this code runs is 200Hz.
    // This code runs after sensors are sampled.
    // In general, try to keep "high intensity" code out of UserHighFrequencyTaskRun.
    // The high frequency task also has highest priority.
    //
    // PUT YOUR CODE HERE
    //
    return;
}
```


External Use | 117

Access Fusion Inputs & Outputs Via a Standard Set of Global Data Structures

Input Global Data Structures defined in build.h

Pointer Function	Structure Name	Structure Type
Accelerometer	thisAccel	AccelSensor
Magnetometer	thisMag	MagSensor
Gyroscope	thisGyro	GyroSensor

Output Global Data Structures defined in tasks.h

Pointer Function	Structure Name	Structure Type
Altimeter results	thisSV_1DOF_P_BASIC	SV_1DOF_P_BASIC
3-axis Accelerometer results	thisSV_3DOF_G_BASIC	SV_3DOF_G_BASIC
2D Magnetic-only eCompass results	thisSV_3DOF_B_BASIC	SV_3DOF_B_BASIC
Gyro-only orientation	thisSV_3DOF_Y_BASIC	SV_3DOF_Y_BASIC
eCompass results	thisSV_6DOF_GB_BASIC	SV_6DOF_GB_BASIC
accel+gyro results	thisSV_6DOF_GY_KALMAN	SV_6DOF_GY_KALMAN
9-axis results	thisSV_9DOF_GBY_KALMAN	SV_9DOF_GBY_KALMAN

External Use | 119

Location of Variables Within the Global Structures

Description	Data Type	Fusion Algorithm Options			
		G (accel)	GB (eCompass)	GY (accel + gyro)	GBY 9-axis
roll in degrees	float	fLPPhi	ILPPhi	fPhiPI	fPhiPI
pitch in degrees	float	fLPThe	ILPThe	fThePI	fThePI
yaw in degrees	float	fLPPsi	ILPPsi	fPsiPI	fPsiPI
compass heading in degrees	float	fLPRho	ILPRho	fRhoPI	fRhoPI
tilt angle in degrees	float	fLPChi	ILPChi	fChiPI	fChiPI
magnetic inclination angle in degrees	float	N/A	fDelta	N/A	fDeltaPI
geomagnetic vector (microTeslas, global frame)	float	N/A	N/A	fmgG[3]	
gyro offset in degrees/sec	float	N/A	N/A	fBPI[3]	fBPI[3]
linear acceleration in the sensor frame in gravities	float	N/A	N/A	fSePI[3]	fSePI[3]
linear acceleration in the global frame in gravities	float	N/A	N/A	fGIP[3]	
quaternion (unitless)	Quaternion	fq	fq	fqPI	fqPI
angular velocity in dps	float	fLPQ	fLPQ		
orientation matrix (unitless)	float	fR[3][3]	fOmega[3]	fOmega[3]	fOmega[3]
rotation vector	float	fLPR[3][3]	fLRP[3][3]	fRP[3][3]	fRP[3][3]
time interval in seconds	float	fLPRVec[3]	fLPRVec[3]	fRVePI[3]	fRVePI[3]

Data elements for altimeter, 2D eCompass, and gyro only are not shown.

External Use | 120

Here is an Example of Grabbing Quaternion Values

```
struct fquaternion fq;           // quaternion
float q0, q1, q2, q3;
```

```
//fq = thisSV_3DOF_G_BASIC.fLpq; // OR
//fq = thisSV_6DOF_GB_BASIC.fLpq; // OR
//fq = thisSV_6DOF_GY_KALMAN.fqPI; // OR
fq = thisSV_9DOF_GBY_KALMAN.fqPI;
```

```
q0 = fq.q0;
q1 = fq.q1;
q2 = fq.q2;
q3 = fq.q3;
```

// more details/examples are presented in the following section

External Use | 121

Example: Reading Euler Angles

Using 3-axis model:

```
float roll = thisSV_3DOF_G_BASIC.fLPPhi;
float pitch = thisSV_3DOF_G_BASIC.fLPThe;
float yaw = thisSV_3DOF_G_BASIC.fLPPsi;
```

Using 6-axis accel + mag (eCompass) model:

```
float roll = thisSV_6DOF_GB_BASIC.fLPPhi;
float pitch = thisSV_6DOF_GB_BASIC.fLPThe;
float yaw = thisSV_6DOF_GB_BASIC.fLPPsi;
```

Using 6-axis accel + gyro Kalman filter model:

```
float roll = thisSV_6DOF_GY_KALMAN.fPhiPI;
float pitch = thisSV_6DOF_GY_KALMAN.fThePI;
float yaw = thisSV_6DOF_GY_KALMAN.fPsiPI;
```

Using 9-axis Kalman filter model:

```
float roll = thisSV_9DOF_GBY_KALMAN.fPhiPI;
float pitch = thisSV_9DOF_GBY_KALMAN.fThePI;
float yaw = thisSV_9DOF_GBY_KALMAN.fPsiPI;
```


External Use | 122

The Development Kit provides:

- Access to raw fusion and magnetic calibration functions
- Control over sampling and fusion rates
- Ability to add custom Hardware Abstraction Layer (HAL)
- Access to MQX-Lite customization via Processor Expert

External Use | 123

Product Development Kit Structure

Files in **bold red** are most likely to be customized on a per project basis.

External Use | 124

3.2 Project Overview

External Use | 125

Source File Descriptions

Files	Description
approximations.c approximations.h	Reduced accuracy/power trig functions
build.h	Build options consolidated into a single file
drivers.c drivers.h	Initialization of hardware timers and I ² C drivers for inertial and magnetic sensors. Contains <code>CreateAndSendBluetoothPacketsViaUART()</code> .
Events.c Events.h	Callback functions for hardware events. Contains <code>UART_OnBlockReceived()</code>
fusion.c fusion.h	This is where the primary sensor fusion routines reside. All 3, 6 and 9-axis fusion routines are here.
include_all.h	A catchall for all the other .h files
magnetic.c magnetic.h	Magnetic calibration functions

External Use | 128

Source File Descriptions

Files	Description
main.c	Initializes and executes MQX
matrix.c matrix.h	Optimized matrix manipulation functions
mqx_tasks.c mqx_tasks.h	Creates and runs the Sampling, Fusion and Calibration tasks which in turn call functions in tasks.c
orientation.c orientation.h	This file contains functions designed to operate on, or compute, orientations. These may be in rotation matrix form, quaternion form, or Euler angles. It also includes functions designed to operate with specific reference frames (Android, Windows 8, NED).
tasks.c tasks.h	tasks.c provides the high level fusion library interface. It also includes the option to apply a Hardware Abstraction Layer (HAL). With proper attention to sensor orientations during PCB design, tasks.c may never need modification.
user_tasks.c user_tasks.h	Placeholder functions for // Put your code here

External Use | 127

High Level Architecture

I²C and UART communications to external devices are encapsulated by drivers.c and Events.c

External Use | 128

The Build Process

Test via Freescale Sensor Fusion Toolbox for Windows or Android

External Use | 130

MCU Resources Used by the Template Projects

Function	FSFK_KL25Z	FSFK_KL26Z	FSFK_KL46Z	FSFK_K20D50M	FSFK_K64F	Description
Cpu	MKL25Z128VLK4	MKL26Z128VLH4	MKL46Z256MC4	MK20DX128VLH5	MK64FN1M0VLL12	
LED_RED	PTE18	PTE29	PTE29	PTC3	PTB22	Illuminated when a magnetic calibration is in progress
LED_GREEN	PTE19	PTE31	PTD5	PTD4	PTE26	Flickers when fusion algorithms are running
LED_BLUE	PTD1	PTD5	PTE31	PTA2	PTB21	Currently unused
FTM	LPTMR0	LPTMR0	LPTMR0	LPTMR0	LPTMR0	Low frequency timer drives the 200 Hz sensor read process
UART	UART0 on PTA2:1	UART0 on PTA2:1	UART0 on PTA2:1	UART1 on PTE1:0	UART3 on PTC17:16	Used for Bluetooth communications
I2C	I2C1 on PTC2:1	I2C1 on PTC2:1	I2C1 on PTC2:1	I2C0 on PTB1:0	I2C1 on PTC11:10	Communicates to sensors
TestPin_KF_Time	PTC10	PTC10	PTC10	PTC10	PTC7	Output lines used for debug purposes
TestPin_MagCal_Time	PTC11	PTC11	PTC11	PTC1	PTC5	

External Use | 131

Fusion Options Are Controlled Via build.h

```
#ifndef BUILD_H
#define BUILD_H

// PCB HAL options
#define BOARD_WING_REV05 0 // with sensor shield
#define BOARD_FRDM_KL25Z 1 // with sensor shield
#define BOARD_FRDM_K20D50M 2 // with sensor shield
#define BOARD_FRDM_FXLC9500DCL 3
#define BOARD_FRDM_XL16Z 4 // with sensor shield
#define BOARD_FRDM_XL46Z 5 // with sensor shield
#define BOARD_FRDM_XL46Z_6 // with sensor shield
#define BOARD_FRDM_XL46Z_7 // with sensor shield
#define BOARD_FRDM_XL46Z_8 // without sensor shield

// enter new PCBs here with incrementing values
// C Compiler Preprocessor define in the CodeWarrior project will choose which board to use
#ifndef REV05
#define THIS_BOARD_ID BOARD_WING_REV05
#endif
#ifndef KL25Z
#define THIS_BOARD_ID BOARD_FRDM_KL25Z
#endif


External Use | 132
```


Fusion Options Are Controlled Via build.h

```
#ifdef K20D50M
#define THIS_BOARD_ID BOARD_FRDM_K20D50M
#endif
#ifndef FXLC9500DCL
#define THIS_BOARD_ID BOARD_FRDM_FXLC9500DCL
#endif
#ifndef KL26Z
#define THIS_BOARD_ID BOARD_FRDM_KL26Z
#endif
#ifndef K64F
#define THIS_BOARD_ID BOARD_FRDM_K64F
#endif
#ifndef KL16Z
#define THIS_BOARD_ID BOARD_FRDM_XL16Z
#endif
#ifndef KL46Z
#define THIS_BOARD_ID BOARD_FRDM_XL46Z
#endif
#ifndef KL46Z_STANDALONE
#define THIS_BOARD_ID BOARD_FRDM_XL46Z_STANDALONE
#endif
#define THISCOORDSYSTEM NED
#define THISCOORDSYSTEM_NED 0 // identifier for NED angle output
#define THISCOORDSYSTEM_ANDROID 1 // identifier for Android angle output
#define THISCOORDSYSTEM_WINDOWS 2 // identifier for Windows 8 angle output
#define THISCOORDSYSTEM_ANDROID // the coordinate system to be used
```


External Use | 133

Fusion Options Are Controlled Via build.h

```
// sensors to be enabled: compile errors will warn if the sensors are not compatible with the algorithms.
// avoid enabling FXOS8700 plus MMA8652 and MAG3110 which will result in sensor read from all sensors
// with the data read first from FXOS8700 and then over-written by data from MMA8652 and MAG3110.
// it will still work but it's a waste of clock cycles.
#define USE_I2C 11
#define USE_FXOS8700
#define USE_FXAS1000
#define USE_MMA8652
// #define USE_MAG3110
// #define USE_MMA8652
// #define USE_MAG3110

// enforce a fatal compilation error if the K20D50M board is used with MMA8652
#if (THIS_BOARD_ID == BOARD_FRDM_K20D50M) && defined USE_MMA8652
#error This build creates an I2C conflict between MMA8651 on K20D50M board and MMA8652 on sensor board
#endif
...
// normally all enabled: degrees of freedom algorithms to be executed
#define COMPUTE_DOF_Z_BASIC // DOF pressure, orientation and temperature: (lx pressure)
#define COMPUTE_DOF_G_BASIC // DOF accel tilt: (lx accel)
#define COMPUTE_DOF_B_BASIC // DOF mag eCompass (vehicle): (lx mag)
#define COMPUTE_DOF_Y_BASIC // DOF gyro integration: (lx gyro)
#define COMPUTE_DOF_X_BASIC // DOF mag integration: (lx mag)
#define COMPUTE_EDOF_GY_KALMAN // 9DOF accel and gyro (Kalman): (lx accel + lx mag)
#define COMPUTE_EDOF_GY_KALMAN // 9DOF accel, mag and gyro (Kalman): (lx accel + lx mag + lx gyro)
```


External Use | 134

Fusion Options Are Controlled Via build.h

```
// int16 Build number sent in Bluetooth debug packet
#define THISBUILD 420

// Sampling rate and kalman filter timing
#define SAMPLINGRATE 100000 // int32: IMU FTW timer frequency set in PBI do not change
#define SENSORS 200 // int32: 200Hz: frequency (Hz) of sensor sampling process
#define OVERSAMPLE_RATIO 8 // int32: 8x: 3DOF, 6DOF, 9DOF run at SENSORS / OVERSAMPLE_RATIO Hz

// power saving deep sleep
#define DEEPSLEEP // define to enable deep sleep power saving

// UART (Bluetooth) serial port control
#define UART_OFF // define to measure MCU+algorithm current only
```


External Use | 135

Part 7: Explore the Sensor Fusion Library

External Use | 136

For this lab

You need:

- Freescale Freedom boards shown
- USB cable
- Freescale Sensor Fusion Toolbox running on a Windows Laptop
(C:\Program Files\Freescale\Freescale Sensor Fusion Toolbox\SensorFusion.exe)
- FSFK_KL25Z project template
(pre-installed on FTF laptop at C:\Temp)

Plug your USB cable in this connector

You will install updated software images on your board.

Make sure the KL25Z switch is "on"

Note: The same process described here works for any of the fusion library template projects. You can use any of KL25Z, KL26Z, KL46Z, K20D50M and K64F Freedom boards.

External Use | 137

IF your PC has the template pre-installed...

- SKIP to Step 8
- Otherwise, repeat Steps 1 through 7 on the following pages

External Use | 138

Installation Step 1

- a. Copy installer into your working directory
- b. Double-click FreescaleSensorFusionInstaller.exe

External Use | 139

Installation Step 2

Read the license terms, click "I Agree"

External Use | 140

Installation Step 3

- a. Review the system requirements.
- b. Click "Next"

External Use | 141

Installation Step 4

- a. Select the destination folder (automatically defaults to the folder in which you placed the installer).
- b. Click "Next"

External Use | 142

Installation Step 5

- a. Select your choice of kits (defaults to CodeWarrior Fusion Projects and documentation).
- b. Click "Install"

External Use | 143

Lab 3, Step 2: Rebuild & experiment

What should be the effect of the changes on the prior page?

Hint: iChi is tilt angle in degrees

- Rebuild the project
- Download and experiment with changes via the "Dynamics" tab in the Freescale Sensor Fusion Toolbox running on your PC

Don't forget to refer to the slides which specify available fusion outputs.

This concludes the 3rd lab.

External Use | 158

Reminder: Global Data Structures

Pointer Function	Structure Name	Structure Type	defined in include file
Accelerometer	thisAccel	AccelSensor	proj_config.h
Magnetometer	thisMag	MagSensor	
Gyroscope	thisGyro	GyroSensor	
3-axis results	thisSV_3DOF_G_BASIC	SV_3DOF_G_BASIC	tasks_func.h
eCompass results	thisSV_6DOF_GB_BASIC	SB_6DOF_GB_BASIC	
accel+gyro results	thisSV_6DOF_GY_KALMAN	SV_6DOF_GY_KALMAN	
9-axis results	thisSV_9DOF_GBY_KALMAN	SV_9DOF_GBY_KALMAN	

External Use | 157

Reminder: Location of variables within the global structures

Description	data type	Fusion Algorithm Options			
		G (accel)	GB (eCompass)	GY	GBY 9-axis
roll in degrees	float	ILPPhi	ILPPhi	fPhiPI	fPhiPI
pitch in degrees	float	ILPThe	ILPThe	fThePI	fThePI
yaw in degrees	float	ILPPsi	ILPPsi	fPsiPI	fPsiPI
compass heading in degrees	float	ILPRho	ILPRho	fRhoPI	fRhoPI
tilt angle in degrees	float	ILPChi	ILPChi	fChiPI	fChiPI
magnetic inclination angle in degrees	float	N/A	IDelta	N/A	fDeltaPI
geographic vector (microTesla, global frame)	float	N/A	N/A	N/A	fmG[3]
gyro offset in degrees/sec	float	N/A	N/A	fbPI[3]	fbPI[3]
linear acceleration in the sensor frame in gravites	float	N/A	N/A	faSePI[3]	faSePI[3]
linear acceleration in the global frame in gravites	float	N/A	N/A	N/A	faGPI[3]
quaternion (unitless)	quaternion	fq	fq	fqPI	fqPI
angular velocity in dps	float	lOmega[3]	lOmega[3]	fOmega[3]	fOmega[3]
orientation matrix (unitless)	float	IR[3][3]	IR[3][3]	fR[3][3]	fR[3][3]
IR[3][3]		ILPR[3][3]	ILPR[3][3]	fRPI[3][3]	fRPI[3][3]
rotation vector	float	lPRVec[3]	lPRVec[3]	fRVecPI[3]	fRVecPI[3]
time interval in seconds	float	fDeltaT	fDeltaT	fDeltaT	fDeltaT

External Use | 158

Q & A Opportunity

External Use | 159

Part 8: Odds & Ends & Review

External Use | 160

In summary

Freescale offers the **lowest cost, most complete, sensor fusion solution available anywhere**, with:

- Free when used with Freescale sensors (see license file for details)
- 3, 6 and 9-axis sensor fusion options
- Source code for all functions
- Working template programs
- Low cost hardware options
- Extensive documentation (data sheet, user manual and multiple app notes, training slides and videos)
- Free Windows and Android applications to visualize fusion results
- Freescale community support at <https://community.freescale.com/community/sensors/sensorfusion>
- Paid support available from Freescale's Software Services team (sisw@freescale.com)
- For more details, please visit <http://www.freescale.com/sensorfusion>

External Use | 161

More Information on Freescale Sensor Solutions

- <http://www.freescale.com/freedom>
- <http://www.freescale.com/gyro>
- <http://www.freescale.com/sensors>
- <http://www.freescale.com/sensortoolbox>
- www.twitter.com/Sensorfusion
- Blogs: Smart Mobile Devices
 - <http://blogs.freescale.com/author/michaalestanley/>
- Android App available on Google Play
 - [Freescale Sensor Fusion Toolbox](#)

<http://www.freescale.com/sensorfusion>

External Use | 162

Wrap-up

In this course, we have:

- Learned some motion sensor basics
- Learned what "orientation" is
- Reviewed a basic introduction to motion sensor fusion
- Learned about Freescale's Freescale Sensor Fusion Library, and how we might use it to create our own custom functions
- Experimented with the Freescale Sensor Fusion Toolbox
- Learned where to look for more information

External Use | 164

Additional Resources

- [Orientation Representations: Part 1](#)
- [Orientation Representations: Part 2](#)
- [Hard and soft iron magnetic compensation explained](#)
- [Freescale E-Compass Software](#)
- ["Euler Angles" at \[http://en.wikipedia.org/wiki/Euler_Angles\]\(http://en.wikipedia.org/wiki/Euler_Angles\)](#)
- ["Introduction to Random Signals and Applied Kalman Filtering", 3rd edition, by Robert Grover brown and Patrick Y.C. Hwang, John Wiley & Sons, 1997.](#)
- ["Quaternions and Rotation Sequences", Jack B. Kuipers, Princeton University Press, 1999.](#)
- [Matlab computer software by MathWorks - <http://www.mathworks.com/products/matlab/>](#)

External Use | 163

Thank you for your time and interest.

External Use | 165

www.Freescale.com

© 2014 Freescale Semiconductor, Inc. | External Use

Auxiliary Slides

Use the right rotation representation at each stage of your calculation

Topic	Quaternion	Rotation Matrix
Storage	Requires 16 bytes of storage in single precision floating point (4 elements at 4 bytes each)	Requires 36 bytes of storage (9 elements at 4 bytes each)
Computation (for 2 sequential rotations)	4 elements each requiring 4 multiplies and 3 additions = 28 operations	9 elements, each requiring 3 multiplies and 2 additions = 45 operations
Vector rotation	Rotating a vector by pre- and post-multiplication of quaternion requires 52 operations	Rotating a vector via rotation matrix requires 15 operations (3 elements each requiring 3 multiplies and 2 additions)
Discontinuities	α° about any axis of rotation XYZ is equivalent to $-\alpha^\circ$ about axis of rotation -XYZ .	None
Ease of Understanding	Generally takes a lot of study to understand the details	Easily understood by most engineers
Conversion	From rotation matrix = we have: $q_0 = 0.5 \sqrt{m_{11} + m_{22} + m_{33} + 1}$ $q_1 = (m_{12} - m_{21}) / (4q_0)$ $q_2 = (m_{13} - m_{31}) / (4q_0)$ $q_3 = (m_{23} - m_{32}) / (4q_0)$	RM = $\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} 2q_0^2 - 1 + 2q_1^2 & 2q_0q_2 - 2q_0q_3 & 2q_1q_2 + 2q_0q_1 \\ 2q_0q_3 + 2q_1q_2 & 2q_0^2 - 1 + 2q_2^2 & 2q_1q_3 - 2q_0q_2 \\ 2q_1q_3 - 2q_0q_2 & 2q_1q_3 + 2q_0q_2 & 2q_0^2 - 1 + 2q_3^2 \end{bmatrix}$

External Use | 168

A couple of really useful math identities

If a and b are 3x1 vectors, then

- The **dot product** ($a \cdot b$) is a scalar:

$$a \cdot b = a_1b_1 + a_2b_2 + a_3b_3 = |a||b| \cos \theta$$
- θ is the angle between the two vectors = $\cos^{-1}(a \cdot b / (|a||b|))$

- The **cross product** ($a \times b$) is another vector:

$$a \times b = |a||b| \sin \theta n, \text{ where } n \text{ is a unit vector perpendicular to the plane containing } a \text{ and } b$$

$$a \times b = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} = \begin{bmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

External Use | 169

tasks.c

- Defines the following functions:
 - RdSensData_Init (void)
 - RdSensData_Run (void)
 - Fusion_Init (void)
 - Fusion_Run (void)
 - MagCal_Run (void)
 - ApplyHal (struct AccelSensor *phsAccel, struct MagSensor *phsMag, struct GyroSensor *phsGyro, int32 row)
- Compile options for tasks.c are responsible for binding in various algorithms into the final application

These are the main functions called from MQX

External Use | 170

Project Configuration

- build.h contains standard defines to control the build process
 - THISCOORDINATESYSTEM = NED | ANDROID | WIN8
- Boolean controls (uncomment #define to enable):

#define name	Function
DEEPSLEEP	Enable deep sleep in idle task()
UART_OFF	Disables UART communication for power measurements
COMPUTE_3DOF_G_BASIC	Enable 3-axis accelerometer tilt algorithm
COMPUTE_6DOF_GB_BASIC	Enable 6-axis accel/mag eCompass algorithm
COMPUTE_6DOF_GY_KALMAN	Enable 6-axis accel/gyro Kalman algorithm
COMPUTE_9DOF_GBY_KALMAN	Enable 9-axis Kalman algorithm

External Use | 171

Project Configuration

```
#define SENSORFS 200 // int32: frequency (Hz) of sensor sampling process
#define OVERSAMPLE_RATIO 8 // ODR = SENSORFS/OVERSAMPLE_RATIO
```

Other configuration file changes are best made by the Freescale software and services team

External Use | 172

Events.c

- NMI interrupt handlers (not used)
- Low frequency counter restart
- UART control functions
 - UART_On-BlockReceived()** is where the application command interpreter is located
 - This is example code only, not a formal part of the fusion library

External Use | 173

drivers.c major functions

FXOS8700_Init() initializes the FXOS8700CQ combo sensor
FXAS21000_Init() initializes the FXAS21000 gyro
MMA8652_Init() initializes the MMA8652 accelerometer
MAG3110_Init() initializes the MAG3310 magnetometer

FXAS21000_ReadData()
FXOS8700_ReadData()
MMA8652_ReadData()
MAG3110_ReadData()

CreateAndSendBluetoothPacketsViaUART() sends data packets via Bluetooth

External Use | 174

main.c

- “C” main()
 - PE_low_level_init()
 - PEX_RTOS_START()

External Use | 176

mqx_tasks.c

- Main_task() sets up periodic tasks then exits
- RdSensData_task() is the high frequency sample task
- Fusion_task() is the medium frequency fusion task
 - flash green LED
 - calls **Fusion_Run()**
 - send new packet via Bluetooth via **CreateAndSendBluetoothPacketsViaUART()**
 - set MagCal event as necessary
- MagCal_task()
 - flash red LED
 - run **MagCal_run()**, which is part of the fusion library

External Use | 175

Dependencies Between Project & Fusion Library/Source

Calling Function	Calling Function File	Calls	From
RdSensData_Init	tasks.c	MPL3115_Init FXOS8700_Init FXAS21000_Init MMA8652_Init MAG3110_Init	drivers.c
RdSensData_Run		MPL3115_ReadData FXOS8700_ReadData FXAS21000_ReadData MMA8652_ReadData MAG3110_ReadData	
RdSensData_Task	mqx_tasks.c	RdSensData_Run RdSensData_Init	tasks.c
Fusion_Task		Fusion_Init Fusion_Run	
MagCal_Task		MagCal_Run	

External Use | 177

www.Freescale.com

© 2014 Freescale Semiconductor, Inc. | External Use