Álgebra Lineal 1

Tarea-examen 1

Prof.- Vicente Carrión Ayud.- Mauricio Farrugia

- 1. Demuestre que dado un espacio vectorial cualquiera, $V_{\mathbb{F}}$, y $\overline{u}, \overline{v} \in V_{\mathbb{F}}$, entonces $\langle \{\overline{u}, \overline{v}\} \rangle = \langle \{\overline{u}\} \rangle \oplus \langle \{\overline{v}\} \rangle$.
- 2. Demuestre o refute que los siguientes conjuntos son espacios vectoriales sobre \mathbb{R} :
 - (a) \mathbb{C} ;
 - (b) \mathbb{Q}^n ; y
 - (c) $C_{\infty} = \{ f \in \mathbb{R}^{\mathbb{R}} : f^{(n)}(x) \text{ existe } \forall n \in \mathbb{N}, \ \forall x \in \mathbb{R} \}.$
- 3. Mostrar que $\forall \alpha, \beta \in \mathbb{F}$, y $\forall A, B \in M_{n \times m}(\mathbb{F})$, se tiene que

$$(\alpha A + \beta B)^t = \alpha A^t + \beta B^t.$$

- 4. Muestre que el conjunto $\{\operatorname{sen}(x), \cos(x)\}$ es un conjunto linealmente independiente del espacio \mathcal{C}_{∞} del ejercicio 2.
- 5. Demostrar que $\frac{1}{2}(C+C^t)$ es simétrica y $\frac{1}{2}(C-C^t)$ es antisimétrica $\forall C \in M_{n \times n}(\mathbb{R}).$
- 6. Demuestre o refute que los siguientes conjuntos son subespacios del espacio vectorial indicado:
 - (a) $X = \{(a, b) \in \mathbb{R}^2 : a + 3b = 0\}$, con $\mathbb{V}_{\mathbb{F}} = \mathbb{R}^2 \ \mathbf{y} \ \mathbb{F} = \mathbb{R}$;
 - (b) $X = \{ f \in \mathbb{R}^{\mathbb{R}} : f(x) = -f(-x) \ \forall x \in \mathbb{R} \}, \text{ con } \mathbb{V}_{\mathbb{F}} = \mathcal{C}_{\infty} \text{ y } \mathbb{F} = \mathbb{R};$
 - (c) $X = \{(a, b) \in \mathbb{C}^2 : a b = 0\}, \text{ con } \mathbb{V}_{\mathbb{F}} = \mathbb{C}^2 \text{ y } \mathbb{F} = \mathbb{C}.$
- 7. Demuestre que cualquier conjunto de k+1 vectores en un espacio de dimensión k es linealmente dependiente.

- 8. Demuestre que un conjunto de vectores S es linealmente independiente syss cada subconjunto finito de S es linealmente independiente.
- 9. Dados $V_{\mathbb{F}}$ y $\overline{u}, \overline{v} \in V_{\mathbb{F}}$. Demuestre que si $\{\overline{u}, \overline{v}\}$ es base de $V_{\mathbb{F}}$, entonces para cada $a, b \in \mathbb{F} \setminus \{\overline{0}\}, \{a\overline{u}, b\overline{v}\}$ también lo es.
- 10. Sean β_1, β_2 bases ajenas de dos subespacios vectoriales W_1, W_2 , respectivamente, de $V_{\mathbb{F}}$. Pruebe que si $\beta_1 \cup \beta_2$ es una base de $V_{\mathbb{F}}$, entonces $V_{\mathbb{F}} = W_1 \oplus W_2$.
- 11. Dados $\overline{u}, \overline{v}, \overline{w} \in V_{\mathbb{F}}$. Demuestre que si $\{\overline{u}, \overline{v}, \overline{w}\}$ es una base de $V_{\mathbb{F}}$, entonces $\{\overline{u} + \overline{v} + \overline{w}, \overline{v} + \overline{w}, \overline{w}\}$ también lo es.
- 12. ¿El conjunto $\{(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)\}$ es una base para \mathbb{F}^4 , con \mathbb{F} un campo cualquiera? Si lo és, encuentre la representación de (a_1, a_2, a_3, a_4) como combinación lineal de ella.