Functional Dependencies and Boyce-Codd Normal Form

Babies Schema

 At a birth, there is one baby (twins would be represented by two births), one mother, any number of nurses, and a doctor.

Babies Table

Births(baby, mother, nurse, doctor)

Some facts and assumptions

- a) For every baby, there is a unique mother.
- b) For every (existing) combination of a baby and a mother there is a unique doctor.
- c) There are many nurses assisting in a birth.

Anomalies

Baby	Mother	Nurse	Doctor
Ben	Mary	Ann	Brown
Ben	Mary	Alice	Brown
Ben	Mary	Paula	Brown
Jason	Mary	Angela	Smith
Jason	Mary	Peggy	Smith
Jason	Mary	Rita	Smith

Redundancy.

Information may be repeated unnecessarily in several tuples.

A Fix

Baby	Mother	
Ben	Mary	
Jason	Mary	

Baby	Doctor	
Ben	Brown	
Jason	Smith	

Redundancy in **Baby** column is a necessary redundancy.

Baby	Nurse
Ben	Ann
Ben	Alice
Ben	Paula
Jason	Angela
Jason	Peggy
Jason	Rita

Redundancy in **Mother** and **Doctor** columns removed.

Alternative Fix

Baby	Mother	Doctor
Ben	Mary	Brown
Jason	Mary	Smith

Baby	Nurse
Ben	Ann
Ben	Alice
Ben	Paula
Jason	Angela
Jason	Peggy
Jason	Rita

Functional Dependencies

- X → A for a relation R means that
 - whenever two tuples of R agree on all the attributes of X,
 then they must also agree on attribute A.
 - We say: "X functionally determines A"

Example

```
baby → mother baby mother → doctor
```

Convention:

X, Y, Z represent sets of attributes; A, B, C,... represent single attributes. will write just ABC, rather than {A,B,C}.

Another Example

Drinkers(name, addr, beersLiked, manf, favBeer)

Reasonable FD's to assert:

- name → addr
- 2. name → favBeer
- 3. beersLiked → manf

Example Data

Because beersLiked -> manf

FD's With Multiple Attributes

- No need for FD's with more than one attribute on the right.
 - But convenient to combine FD's as a shorthand. E.g.

```
name -> addr and
name -> favBeer become
name -> addr favBeer
```

 More than one attribute on the left may be essential. E.g. bar beer -> price

An FD A₁A₂...A_n→B is trivial if B is one of A's. E.g. bar beer → beer

Keys of Relations

- K is a superkey for relation R if K functionally determines all of R's attributes.
- K is a key for R if
 - K is a superkey, and
 - Can't remove some attribute from K and still be superkey

E.g. K={baby, nurse} is a key for Births.

Boyce-Codd Normal Form

- Boyce-Codd Normal Form (BCNF): simple condition under which the anomalies can be guaranteed not to exist.
- Relation R is in BCNF if:

Whenever there is a nontrivial dependency

$$A_1...A_n \rightarrow B_1...B_m$$

for R, it must be the case that

 $\{A_1, \ldots, A_n\}$ is a **superkey** for R.

BCNF Violation - Example

Relation **Babies** isn't in **BCNF**.

- FD: baby→mother
- Left side isn't a superkey.
 - We know: baby doesn't functionally determine nurse.

Decomposition into BCNF

- Goal of decomposition is to replace a relation by several that don't exhibit anomalies.
- Decomposition strategy is:
 - Find a non-trivial FD $A_1A_2...A_n \rightarrow B_1B_2...B_m$ that **violates** BCNF, i.e. $A_1A_2...A_n$ isn't a superkey.
 - Decompose relation schema into two schemas:
 - One is all the attributes involved in the violating dependency and
 - the other is the **left side** and **all the other attributes** not involved in the dependency.
- By repeatedly, choosing suitable decompositions, we can break any relation schema into a collection of smaller schemas in BCNF.

Babies Decomposition

Births(baby, mother, nurse, doctor)

baby mother is a violating FD, so we decompose.

Baby	Mother	
Ben	Mary	
Jason	Mary	

Baby	Nurse	Doctor
Ben	Ann	Brown
Ben	Alice	Brown
Ben	Paula	Brown
Jason	Angela	Smith
Jason	Peggy	Smith
Jason	Rita	Smith

This relation needs to be further decomposed using baby→doctor

We'll see a formal algorithm for deducing this FD.

Babies Decomposition

Baby	Mother	
Ben	Mary	
Jason	Mary	

Baby	Doctor	
Ben	Brown	
Jason	Smith	

Baby	Nurse
Ben	Ann
Ben	Alice
Ben	Paula
Jason	Angela
Jason	Peggy
Jason	Rita

Deducing FDs

Suppose we are told of a set of FDs
 Based on them we can deduce other FDs.

Example.

```
baby→mother and
baby mother → doctor
imply
baby → doctor
```

But, what's the algorithm?

Closure of a Set of Attributes

- There is a general principle from which all possible FD's follow.
- Suppose {A₁, A₂, ..., A_n} is a set of attributes and S is a set of FD's.
- Closure of $\{A_1, A_2, ..., A_n\}$ under the dependencies in **S** is the **set** of attributes **B**, which are functionally determined by $A_1, A_2, ..., A_n$ i.e. $A_1A_2...A_n \rightarrow B$.
 - Closure is denoted by $\{A_1, A_2, ..., A_n\}^+$.
 - $A_1, A_2, ..., A_n$ are in $\{A_1, A_2, ..., A_n\}^+$

Computing the Closure - Algorithm

Brief

- Starting with the given set of attributes, repeatedly expand the set by adding the right sides of FD's as soon as we have included their left sides.
- Eventually, we cannot expand the set any more, and the resulting set is the closure.

Computing the Closure - Algorithm

Detailed

- 1 Let X be a set of attributes that eventually will become the closure. First initialize X to be $\{A_1, A_2, ..., A_n\}$.
- 2 Now, **repeatedly** search for some **FD** in **S**:

$$B_1B_2...B_m \rightarrow C$$

such that all of B's are in set X, but C isn't. Add C to X.

3 Repeat step 2 as many times as necessary until no more attributes can be added to X.

Since **X** can only grow, and the number of attributes is finite, eventually nothing more can be added to **X**.

4 Set X after no more attributes can be added to it is: $\{A_1, A_2, ..., A_n\}^+$.

Computing the Closure - Example

Consider a relation with schema R(A, B, C, D, E, F) and FD's:

```
AB\rightarrow C, BC\rightarrow AD, D\rightarrow E, CF\rightarrow B. Compute \{A,B\}^+
```

Iterations:

```
X = \{A,B\} Use: AB \rightarrow C

X = \{A,B,C\} Use: BC \rightarrow AD

X = \{A,B,C,D\} Use: D \rightarrow E

X = \{A,B,C,D,E\} No more changes to X are possible so X = \{A,B\}^+.
```

FD: CF→B wasn't used because its left side is never contained in X.

Why Computing the Closure?

- Having {A₁A₂...A_n}+, we can test/generate any given functional dependency A₁A₂...A_n→B.
- If $B \in \{A_1, A_2, \dots, A_n\}^+$ then FD: $A_1A_2...A_n \rightarrow B$ holds.
- If $B \notin \{A_1, A_2, \dots, A_n\}^+$ then FD: $A_1A_2...A_n \rightarrow B$ doesn't hold.

Example

- Consider the previous example: R(A, B, C, D, E, F) and FD's: AB→C, BC→AD, D→E, CF→B.
- Suppose we want to test whether FD: AB→D follows.
 Yes! Since D∈{A,B,C,D,E} = {A,B}+.

- On the other hand consider testing FD: D→A.
 - First compute {D}⁺.
 - $\{D\}^+ = \{D,E\} \text{ and } A \notin \{D\}^+.$
 - We conclude that D→A doesn't follow from the given set of dependencies.

baby functionally determines doctor

```
baby → mother
   baby mother → doctor
Let's compute the closure of baby.
Iterations:
{baby}
{baby, mother}
{baby, mother, doctor}
{baby}+ = {baby, mother, doctor}
i.e. baby → doctor holds.
```

We have

Closures and Keys

```
\{A_1, A_2, \dots, A_n\} is a superkey iff \{A_1, A_2, \dots, A_n\}^+ is the set of all attributes.
```

A Few Tricks

 To deduce all the FDs, compute the closure of each subset of attributes, but

- Never need to compute the closure of the empty set or of the set of all attributes.
- If we find X^+ = all attributes, don't bother computing the closure of any supersets of X.

Movie Example

Movies(title, year, studioName, president, presAddr)

and FDs:

```
title year → studioName
```

studioName → president

president → presAddr

Last two violate **BCNF**. Why?

Compute {title, year}+, {studioName}+, {president}+ and see if you get all the attributes of the relation.

If not, you got a BCNF violation, and need to decompose.

Example (Continued)

Let's decompose starting with:

studioName → president

Optional rule of thumb:

Add to the right-hand side any other attributes in the closure of studioName.

{studioName}+ = {studioName, president, presAddr}

Thus, we get:

studioName > president presAddr

Example (Continued)

Using: studioName → president presAddr we decompose into:

Movies1(studioName, president, presAddr)

Movies2(title, year, studioName)

Movie2 is in BCNF.

What about Movie1?

FD president -> presAddr violates BCNF.

Why is it bad to leave Movies1 as is?

If many studios share the same president than we would have redundancy when repeating the **presAddr** for all those studios.

Example (Continued)

We decompose Movies1, using FD: president→presAddr

The resulting relation schemas, both in **BCNF**, are:

Movies11(president, presAddr)

Movies12(studioName, president)

So, finally we got Movies11, Movies12, and Movies2.

In general, we must keep applying the decomposition rule as many times as needed, until all our relations are in **BCNF**.

FDs in the decomposed relations

Let **S** be one of the resulting relations in a decomposition of **R**.

Projecting FDs (or computing FDs in a decomposed relation)

Algorithm

Input: R, S, FDs in R

Output: FDs in S

- For each subset X of attributes of S.
 - Compute X+ using the FD on R.
 - Remove from X+ the attributes not in S.
 - For each A in X+ X print X→A as FD in S.

Example

R(A,B,C,D,E) FDs: $C \rightarrow B, B \rightarrow D, A \rightarrow CD$

A→CD is a BCNF violating FD.

Decomposition:

S(A,C,D) and some other table.

In **S** we have $C \rightarrow D$, inferred by using B which is not in **S**. $\{C\}+=\{C,B,D\}$ using the FDs in **R**;

Further decomposition of **S**:

S1(A,C), **S2**(C,D)

Recovering Info from a Decomposition

- Why a decomposition based on an FD preserves the information of the original relation?
- Because: The projections of the original tuples can be "joined" again to produce all and only the original tuples.

Example:

- Consider R(A, B, C) and FD B→C, which suppose is a BCNF violation.
- Let's decompose based on B→C: R₁(A,B) and R₂(B,C).
- Let (a,b,c) be a tuple of R, it projects as (a,b) for R₁, and as (b,c) for R₂.
- It's possible to join a tuple from R₁ with a tuple from R₂, when they agree on the B component.
 - In particular, (a,b) joins with (b,c) to give us the original tuple (a,b,c) back again.
- Getting back those tuples we started with isn't enough.
- Do we also get false tuples, i.e. that weren't in the original relation?

Example continued

- What might happen if there were two tuples of R, say (a,b,c) and (d,b,e)?
- We get:
 - (a,b) and (d,b) in R₁
 - **(b,c)** and **(b,e)** in **R**₂
- Now if we join R₁ with R₂ we get:
 - (a,b,c)
 - (d,b,e)
 - (a,b,e) (is it bogus?)
 - (d,b,c) (is it bogus?)
- They aren't bogus. By the FD B→C we know that if two tuples agree on B, they
 must agree on C as well. Hence c=e and we have:
 - (a,b,c)
 - (d,b,e)
 - (a,b,e) = (a,b,c)
 - (d,b,c) = (d,b,e)

What if $\mathbf{B} \rightarrow \mathbf{C}$ isn't a true FD?

Suppose R consists of two tuples:

<u>A</u>	В	<u>C</u>
1	2	3
4	2	5

 The projections of R onto the relations with schemas R₁(A,B) and R₂(B,C) are:

<u>A</u>	<u>B</u>	and	<u>B</u>	<u>C</u>
1	2		2	3
4	2		2	5

 When we try to reconstruct R by joining, we get:

<u>A</u>	В	C
1	2	3
1	2	5
4	2	3
4	2	5

That is, we get "too much."

Problems

For

```
R(A,B,C,D) with AB\rightarrowC, C\rightarrowD, and D\rightarrowA, and R(A,B,C,D) with B\rightarrowC, and B\rightarrowD
```

- Indicate all BCNF violations.
- Decompose into relations that are in BCNF.