Байесовская теория классификации. Логистическая регрессия. Восстановление смеси плотностей.

Bopoнцов Константин Вячеславович vokov@forecsys.ru

http://www.MachineLearning.ru/wiki?title=User:Vokov

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

Видеолекции: http://shad.yandex.ru/lectures

Содержание

- Логистическая регрессия
 - Экспонентные семейства плотностей
 - Обоснование логистической регрессии
 - Задача кредитного скоринга
- Восстановление смеси распределений
 - ЕМ-алгоритм
 - Некоторые модификации ЕМ-алгоритма
 - Сеть радиальных базисных функций

Напоминание. Байесовская теория классификации

X — объекты, Y — ответы, $X \times Y$ — в.п. с плотностью p(x,y);

Две подзадачи:

Дано:

$$X^{\ell}=(x_i,y_i)_{i=1}^{\ell}$$
 — обучающая выборка.

Найти:

эмпирические оценки $\hat{P}(y)$ и $\hat{p}(x|y)$, $y \in Y$ (восстановить плотность каждого класса по выборке).

Дано:

априорные вероятности P(y) и плотности p(x|y), $y \in Y$.

Найти:

классификатор $a: X \times Y$, минимизирующий риск R(a).

Решение:

$$a(x) = \arg \max_{y \in Y} \lambda_y P(y) p(x|y).$$

Логистическая регрессия: базовые предположения

$$ullet$$
 $X=\mathbb{R}^n$, $Y=\pm 1$, выборка $X^\ell=(x_i,y_i)_{i=1}^\ell$ i.i.d. из $p(x,y)=P(y)p(x|y)=P(y|x)p(x)$

• Функции правдоподобия из экспоненциального семейства:

$$p(x|y) = \exp ig(c_y(\delta) \langle heta_y, x
angle + b_y(\delta, heta_y) + d(x, \delta) ig),$$
 где $heta_y \in \mathbb{R}^n$ — параметр *сдвига*; δ — параметр *разброса*; b_y, c_y, d — произвольные числовые функции; причём параметры $d(\cdot)$ и δ не зависят от y .

Экспоненциальное семейство распределений широко: равномерное, нормальное, Лапласа, Пуассона, Парето, Дирихле, биномиальное, Г-распределение, χ^2 -распределение, и др.

Пример: многомерное нормальное распределение

Многомерное нормальное распределение, $\mu \in \mathbb{R}^n$, $\Sigma \in \mathbb{R}^{n \times n}$,

$$\mathcal{N}(x; \mu, \Sigma) = (2\pi)^{-\frac{n}{2}} |\Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^{\mathsf{T}} \Sigma^{-1}(x-\mu)\right)$$

принадлежит экспоненциальному семейству, имеет параметры сдвига $\theta=\Sigma^{-1}\mu$ и разброса $\delta=\Sigma$:

$$\begin{split} \mathcal{N}(x;\mu,\Sigma) &= \exp \Big(\underbrace{\mu^\mathsf{T} \Sigma^{-1} x}_{\langle \theta, x \rangle} - \underbrace{\frac{1}{2} \mu^\mathsf{T} \Sigma^{-1} \Sigma \Sigma^{-1} \mu}_{b(\delta,\theta)} - \underbrace{\frac{1}{2} x^\mathsf{T} \Sigma^{-1} x - \frac{n}{2} \ln(2\pi) - \frac{1}{2} \ln|\Sigma|}_{d(x,\delta)} \Big). \end{split}$$

Нормальный байесовский классификатор линеен, если $\Sigma_y \equiv \Sigma$. Но, может, класс плотностей, для которых он линеен, шире?

Теорема о линейности байесовского классификатора

Оптимальный байесовский классификатор для двух классов:

$$a(x) = \operatorname{sign} \left(\lambda_+ \operatorname{P}(+1|x) - \lambda_- \operatorname{P}(-1|x) \right) = \operatorname{sign} \left(\frac{p(x|+1)P(+1)}{p(x|-1)P(-1)} - \frac{\lambda_-}{\lambda_+} \right).$$

Теорема

Если p(x|y) принадлежат экспоненциальному семейству, параметры $d(\cdot)$ и δ не зависят от y, и среди признаков $f_1(x),\ldots,f_n(x)$ есть константа, то байесовский классификатор линеен:

$$a(x) = sign(\langle w, x \rangle - w_0), \qquad w_0 = ln(\lambda_-/\lambda_+);$$

апостериорные вероятности классов:

$$P(y|x) = \sigma(\langle w, x \rangle y),$$

где $\sigma(z)=rac{1}{1+e^{-z}}$ — логистическая (сигмоидная) функция.

Доказательство: шаг 1

После подстановки экспоненциальных плотностей классов

$$p(x|\pm 1) = \exp(c_{\pm}(\delta)\langle\theta_{\pm},x\rangle + b_{\pm}(\delta,\theta_{\pm}) + d(x,\delta))$$

в формулу байесовского классификатора

$$a(x) = \operatorname{sign}\left(\frac{P(+1|x)}{P(-1|x)} - \frac{\lambda_{-}}{\lambda_{+}}\right) = \operatorname{sign}\left(\ln\frac{P(+1)p(x|+1)}{P(-1)p(x|-1)} - \ln\frac{\lambda_{-}}{\lambda_{+}}\right)$$

получаем

$$\ln \frac{\mathsf{P}(+1|x)}{\mathsf{P}(-1|x)} = \langle \underbrace{c(\delta)(\theta_+ - \theta_-)}_{w = \mathsf{const}(x)}, x \rangle + \underbrace{b_+(\delta, \theta_+) - b_-(\delta, \theta_-) + \ln \frac{P_+}{P_-}}_{\beta = \mathsf{const}(x)}.$$

Добавим β к коэффициенту w_j при константном признаке $f_j=1$

Основная теорема. Доказательство: шаг 2

Таким образом,

$$\frac{\mathsf{P}(+1|x)}{\mathsf{P}(-1|x)} = \mathsf{e}^{\langle w, x \rangle}$$

По формуле полной вероятности P(-1|x) + P(+1|x) = 1,

$$\mathsf{P}(+1|x) = \frac{1}{1 + e^{-\langle w, x \rangle}}; \qquad \mathsf{P}(-1|x) = \frac{1}{1 + e^{\langle w, x \rangle}}.$$

Объединяя эти два равенства в одно $(y=\pm 1)$, получаем:

$$P(y|x) = \frac{1}{1 + e^{-\langle w, x \rangle y}} = \sigma(\langle w, x \rangle y).$$

Следовательно, разделяющая поверхность линейна:

$$\lambda_{-} P(-1|x) = \lambda_{+} P(+1|x),$$
 $\langle w, x \rangle - \ln \frac{\lambda_{-}}{\lambda_{+}} = 0.$

Обоснование логарифмической функции потерь

Максимизация логарифма правдоподобия выборки:

$$L(w) = \log \prod_{i=1}^{\ell} p(x_i, y_i) \rightarrow \max_{w}.$$

Подставим: $p(x,y) = P(y|x) \cdot p(x) = \sigma(\langle w, x \rangle y) \cdot \mathsf{const}(w)$

$$L(w) = \sum_{i=1}^{\ell} \log \sigma(\langle w, x_i \rangle y_i) + \operatorname{const}(w) \to \max_{w}.$$

Максимизация L(w) эквивалентна минимизации Q(w):

$$Q(w) = \sum_{i=1}^{\ell} \log (1 + \exp(-\underbrace{\langle w, x_i \rangle y_i}_{M_i(w)})) o \min_{w}.$$

Задача классификации. Логистическая регрессия (LR)

$$Y=\{-1,+1\}$$
 — два класса, $a(x,w)=\operatorname{sign}(\langle w,x
angle)$, $x,w\in\mathbb{R}^n$.

Функционал аппроксимированного эмпирического риска:

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \leqslant \sum_{i=1}^{\ell} \mathscr{L}(\langle w, x_i \rangle y_i) \to \min_{w},$$

где $\mathscr{L}(M) = \log(1 + e^{-M})$ — логарифмическая функция потерь

$$M_i = \langle w, x_i \rangle y_i$$

Напоминания. Оптимизация параметров LR.

• Метод первого порядка — стохастический градиент:

$$w^{(t+1)} := w^{(t)} + \eta_t y_i x_i (1 - \sigma_i),$$

 η_t — градиентный шаг, $\sigma_i = \sigma(y_i w^{\mathsf{T}} x_i) = \mathsf{P}(y_i | x_i)$ — вероятность правильной классификации x_i .

 Метод второго порядка (Ньютона-Рафсона) приводит к IRLS, Iteratively Reweighted Least Squares:

$$w^{(t+1)} := w^{(t)} + \eta_t (F^{\mathsf{T}} \Lambda F)^{-1} F^{\mathsf{T}} \tilde{y},$$

F — матрица объекты—признаки $\ell imes n$, $ilde{y} = ig(y_i(1-\sigma_i)ig)$, $\Lambda = \mathrm{diag}ig((1-\sigma_i)/\sigma_iig)$,

Пример. Бинаризация признаков и скоринговая карта

Задача кредитного скоринга:

- х_i заёмщики
- $y_i \in \{-1(bad), +1(good)\}$

Бинаризация признаков:

$$b_{jk}(x) = \left[f_j(x) \in D_{jk} \right]$$

 $b_{jk}(x)$ — биномиальные с.в., из ехр-семейства (многомерное распределение Бернулли)

Возраст	до 25	5
	25 - 40	10
	40 - 50	15
	50 и больше	10
Собственность	владелец	20
	совладелец	15
	съемщик	10
	другое	5
Работа	руководитель	15
	менеджер среднего звена	10
	служащий	5
	другое	0
Стаж	1/безработный	0
	13	5
	310	10
	10 и больше	15
Работа_мужа /жены	нет/домохозяйка	0
	руководитель	10
	менеджер среднего звена	5
	служащий	1

Оценивание рисков

Оценка риска (математического ожидания) потерь объекта x:

$$R(x) = \sum_{y \in Y} D_{xy} P(y|x) = \sum_{y \in Y} D_{xy} \sigma(\langle w, x \rangle y),$$

где D_{xy} — величина потери для (x, y).

Методика VaR (Value at Risk)

Оценивается не ожидаемая потеря, а распределение потерь:

- ullet для каждого x_i разыгрывается N раз исход $y_i \sim P(y|x_i)$;
- ullet строится эмпирическое распределение потерь $V = \sum\limits_{i=1}^\ell D_{\mathsf{x}_i \mathsf{y}_i};$
- 99%-квантиль эмпирического распределения определяет величину резервируемого капитала

Задача восстановления смеси распределений

Порождающая модель смеси распределений:

$$p(x) = \sum_{j=1}^{k} w_j p_j(x; \theta_j), \qquad \sum_{j=1}^{k} w_j = 1, \qquad w_j \geqslant 0,$$

 $p_j(x;\theta_j)$ — функция правдоподобия j-й компоненты смеси; w_i — её априорная вероятность; k — число компонент смеси.

Задача 1: имея простую выборку $X^m \sim p(x)$ и зная k, оценить вектор параметров $\Theta = (w_1, \dots, w_k, \theta_1, \dots, \theta_k)$.

Задача 2: оценить ещё и k.

Максимизация правдоподобия и ЕМ-алгоритм

Задача максимизации логарифма правдоподобия

$$L(\Theta) = \ln \prod_{i=1}^m p(x_i) = \sum_{i=1}^m \ln \sum_{j=1}^k w_j p_j(x_i; \theta_j) \to \max_{\Theta}.$$

при ограничениях
$$\sum\limits_{j=1}^k w_j=1;\;\;w_j\geqslant 0.$$

Проблема: задача не решается аналитически «в лоб».

Итерационный алгоритм Expectation–Maximization:

- 1: начальное приближение вектора параметров Θ ;
- 2: повторять
- 3: $G := \mathsf{E}\text{-шаг}(\Theta)$; // оцениваются скрытые переменные G
- 4: $\Theta := M$ -шаг (Θ, G) ;
- 5: **пока** Θ и G не стабилизируются.

ЕМ-алгоритм как способ решения системы уравнений

Теорема (необходимые условия экстремума)

Точка $\Theta = (w_j, \theta_j)_{j=1}^k$ локального экстремума $L(\Theta)$ удовлетворяет системе уравнений относительно Θ и $G = (g_{ij})$:

Е-шаг:
$$g_{ij} = \frac{w_j p_j(x_i; \theta_j)}{\sum_{s=1}^k w_s p_s(x_i; \theta_s)}, \quad i = 1, \dots, m, \quad j = 1, \dots, k;$$
М-шаг: $\theta_j = \arg\max_{\theta} \sum_{i=1}^m g_{ij} \ln p_j(x_i; \theta), \quad j = 1, \dots, k;$
 $w_j = \frac{1}{m} \sum_{i=1}^m g_{ij}, \quad j = 1, \dots, k.$

ЕМ-алгоритм — это метод простых итераций для её решения

Вероятностная интерпретация

Е-шаг — это формула Байеса:

$$g_{ij} = P(j|x_i) = \frac{P(j)p(x_i|j)}{p(x_i)} = \frac{w_j p_j(x_i; \theta_j)}{p(x_i)} = \frac{w_j p_j(x_i; \theta_j)}{\sum_{s=1}^k w_s p_s(x_i; \theta_s)}.$$

Очевидно, выполнено условие нормировки: $\sum_{j=1}^k g_{ij} = 1$.

М-шаг — это максимизация взвешенного правдоподобия, с весами объектов g_{ij} для j-й компоненты смеси:

$$heta_j = \arg\max_{ heta} \sum_{i=1}^m g_{ij} \ln p_j(x_i; heta),$$
 $w_j = \frac{1}{m} \sum_{i=1}^m g_{ij}.$

Доказательство. Условия Каруша-Куна-Таккера

Лагранжиан оптимизационной задачи « $L(\Theta) o \max$ »:

$$\mathscr{L}(\Theta) = \sum_{i=1}^{m} \ln \left(\underbrace{\sum_{j=1}^{k} w_{j} p_{j}(x_{i}; \theta_{j})}_{p(x_{i})} \right) - \lambda \left(\underbrace{\sum_{j=1}^{k} w_{j} - 1}_{p(x_{i})} \right).$$

Приравниваем нулю производные:

$$\frac{\partial L}{\partial w_j} = 0 \quad \Rightarrow \quad \lambda = m; \quad w_j = \frac{1}{m} \sum_{i=1}^m \underbrace{\frac{w_j p_j(x_i; \theta_j)}{p(x_i)}}_{g_{ij}} = \frac{1}{m} \sum_{i=1}^m g_{ij},$$

$$\frac{\partial L}{\partial \theta_j} = \sum_{i=1}^m \frac{w_j p_j(x_i; \theta_j)}{p(x_i)} \frac{\partial}{\partial \theta_j} \ln p_j(x_i; \theta_j) = \frac{\partial}{\partial \theta_j} \sum_{i=1}^m g_{ij} \ln p_j(x_i; \theta_j) = 0.$$

ЕМ-алгоритм

Вход:
$$X^m = \{x_1, \dots, x_m\}$$
, k , δ , начальное $\Theta = (w_j, \theta_j)_{j=1}^k$; Выход: $\Theta = (w_j, \theta_j)_{j=1}^k$ — параметры смеси распределений 1: повторять

2: E-шаг (expectation):

для всех
$$i=1,\ldots,m,\;j=1,\ldots,k$$
 $g_{ij}^0:=g_{ij};\;\;g_{ij}:=rac{w_jp_j(x_i; heta_j)}{\sum_{s=1}^k w_sp_s(x_i; heta_s)};$

3: M-шаг (maximization):

для всех
$$j=1,\ldots,k$$
 $heta_j:=rg\max_{\theta}\sum_{i=1}^mg_{ij}\ln p_j(x_i; heta); \qquad w_j:=rac{1}{m}\sum_{i=1}^mg_{ij};$

- 4: **пока** $\max_{i,j} |g_{ij} g_{ij}^0| > \delta;$
- 5: **вернуть** $(w_j, \theta_j)_{j=1}^k$;

Пример

Две гауссовские компоненты k=2 в пространстве $X=\mathbb{R}^2.$ Расположение компонент в зависимости от номера итерации L:

ЕМ-алгоритм с добавлением и удалением компонент

Проблемы базового варианта ЕМ-алгоритма:

- Как выбирать начальное приближение?
- Как определять число компонент?
- Как ускорить сходимость?

Добавление и удаление компонент в ЕМ-алгоритме:

- Если слишком много объектов x_i имеют слишком низкие правдоподобия $p(x_i)$, то создаём новую k+1-ю компоненту, по этим объектам строим её начальное приближение.
- ullet Если у j-й компоненты слишком низкий w_j , удаляем её.

Регуляризация
$$L(\Theta) - \tau \sum_{j=1}^k \ln w_j o \max$$
:

$$w_j \propto \left(\frac{1}{m} \sum_{i=1}^m g_{ij} - \tau\right)_+$$

GEM — обобщённый **EM**-алгоритм

Идея:

Не обязательно добиваться высокой точности на М-шаге. Достаточно лишь сместиться в направлении максимума, сделав одну или несколько итераций, и затем выполнить Е-шаг.

Преимущества:

- сохраняется свойство слабой локальной сходимости (в смысле увеличения правдоподобия на каждом шаге)
- повышается скорость сходимости при сопоставимом качестве решения

SEM — стохастический EM-алгоритм

Идея: на М-шаге вместо максимизации

$$heta_j := rg \max_{ heta} \sum_{i=1}^m g_{ij} \ln p_j(x_i; heta)$$

максимизируется обычное, невзвешенное, правдоподобие

$$\theta_j := \arg \max_{\theta} \sum_{x_i \in X_j} \ln p_j(x_i; \theta),$$

выборки X_j строятся путём стохастического моделирования: для каждого $i=1,\ldots,m$ генерируется $j\sim \mathsf{P}(\theta_j|x_i)\equiv g_{ij}$ и объект x_i помещается в X_i .

Преимущества:

ускорение сходимости, предотвращение зацикливаний.

НЕМ — иерархический ЕМ-алгоритм

Идея:

«Плохо описанные» компоненты расщепляются на две или более *дочерних* компонент.

Преимущество:

автоматически выявляется иерархическая структура каждого класса, которую затем можно интерпретировать содержательно.

Гауссовская смесь с диагональными матрицами ковариации

Гауссовская смесь GMM — Gaussian Mixture Model

Допущения:

- 1. Функции правдоподобия классов p(x|y) представимы в виде смесей k_v компонент, $y \in Y = \{1, \dots, M\}$.
- 2. Компоненты имеют *п*-мерные гауссовские плотности с некоррелированными признаками:

$$\mu_{yj} = (\mu_{yj1}, \dots, \mu_{yjn}), \quad \Sigma_{yj} = \operatorname{diag}(\sigma_{yj1}^2, \dots, \sigma_{yjn}^2), \quad j = 1, \dots, k_y$$
:

$$p(x|y) = \sum_{j=1}^{k_y} w_{yj} p_{yj}(x), \quad p_{yj}(x) = \mathcal{N}(x; \mu_{yj}, \Sigma_{yj}),$$
 $\sum_{j=1}^{k_y} w_{yj} = 1, \quad w_{yj} \geqslant 0;$

Эмпирические оценки средних и дисперсий

Числовые признаки: $f_d\colon X o \mathbb{R},\ d=1,\ldots,n.$

Решение задачи М-шага:

для всех классов $y \in Y$ и всех компонент $j = 1, \ldots, k_v$,

$$w_{yj} = \frac{1}{\ell_y} \sum_{i: y_i = y} g_{yij}$$

для всех размерностей (признаков) $d=1,\ldots,n$

$$\hat{\mu}_{yjd} = \frac{1}{\ell_y w_{yj}} \sum_{i: y_i = y} g_{yij} f_d(x_i);$$

$$\hat{\sigma}_{yjd}^2 = \frac{1}{\ell_y w_{yj}} \sum_{i: y_i = y} g_{yij} (f_d(x_i) - \hat{\mu}_{yjd})^2;$$

Замечание: компоненты «наивны», но смесь не «наивна».

Алгоритм классификации

Подставим гауссовскую смесь в байесовский классификатор:

$$a(x) = \arg\max_{y \in Y} \lambda_y P_y \sum_{j=1}^{k_y} w_{yj} \underbrace{\mathcal{N}_{yj} \exp\left(-\frac{1}{2}\rho_{yj}^2(x, \mu_{yj})\right)}_{p_{yj}(x)},$$

 $\mathcal{N}_{yj}=(2\pi)^{-\frac{n}{2}}(\sigma_{yj1}\cdots\sigma_{yjn})^{-1}$ — нормировочные множители; $ho_{yj}(x,\mu_{yj})$ — взвешенная евклидова метрика в $X=\mathbb{R}^n$:

$$\rho_{yj}^{2}(x,\mu_{yj}) = \sum_{d=1}^{n} \frac{1}{\sigma_{yjd}^{2}} (f_{d}(x) - \mu_{yjd})^{2}.$$

Сеть радиальных базисных функций

Radial Basis Functions (RBF) — трёхуровневая суперпозиция:

Преимущества EM-RBF

ЕМ — один из лучших алгоритмов обучения радиальных сетей.

Преимущества EM-алгоритма (перед SVM, ANN):

- ЕМ-алгоритм легко сделать устойчивым к шуму
- ЕМ-алгоритм довольно быстро сходится
- автоматически строится структурное описание каждого класса в виде совокупности компонент — кластеров

Недостатки ЕМ-алгоритма:

- ЕМ-алгоритм чувствителен к начальному приближению
- Определение числа компонент трудная задача (простые эвристики могут плохо работать)