متثل ا

CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGGATCCTCTAGAGATCCCT CGACCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGA CAGGCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGC AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGGC TCCAGCAGCATCAGCAGCCCCCAGGACCGGGGGGGGCACAGGTGGCCCCCACCACCCGGAGG AGCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGA ${\tt AGGCCACCCGGCTGGAGGCCACAGGCCATGAGGGGGCTCTCAGGAGGTGCTGATGTGGCT}$ TCTGGTGTTGGCAGTGGGCGCACAGAGCACGCCTACCGGCCCGGCCGTTAGGGTGTGCT GTCCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCC TCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATTTATAGGACCGCCTAC CGCCGCAGCCCTGGCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAG GACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAG GGAGCTGTGTCCAGCCTGGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAG TCAGATGTGGATGAATGCAGTGCTAGGAGGGGGGGGCTGTCCCCAGCGCTGCATCAACACCGC CGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTACACTCTGTG TGCCCAAGGGAGGGCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAG GAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCT GGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCC $\tt CTGGAGGAGCAGCTGGGGTCCTGCTGCAAGAAAGACTCG{\color{red}{\textbf{TGA}}}CTGCCCAGCGCCCCAGG$ CTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGCCCCAACATGCTGGGGGTC CCACCCTGGCTACCCCCACCCTGGTTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCA GCTGAGGGAAGGTACGAGTTCCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCC CGGAGGCTGGGGGCCTCAGTGGGGGCTGCTGCCTGACCCCCAGCACAATAAAAATGAAA AGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGT TACAAAT

MTDSPPPGHPEEKATPPGGTGHEGLSGGAADVASGVGSGRHRARLPARPLGCVLSRAHGDPV SESFVQRVYQPFLTTCDGHRACSTYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGAC GAAICQPPCRNGGSCVQPGRCRCPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCW EGHSLSADGTLCVPKGGPPRVAPNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLAS QALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 93-97, 270-274

N-myristoylation sites.

amino acids 19-25, 78-84, 97-103, 100-106, 103-109, 157-163, 191-197, 265-271

Amidation site.

amino acids 26-30

Aspartic acid and asparagine hydroxylation site. amino acids 152-164

Cell attachment sequence.

amino acids 130-133

EGF-like domain cysteine pattern signature. amino acids 123-135

GTCAGCCCACGGGGGACTATGGTGAAATTCCCGGCGCTCACGCACTACTGGCCCCTGATC CGGTTCTTGGTGCCCCTGGGCATCACCAACATAGCCATCGACTTCGGGGAGCAGGCCTTGAA CCGGGGCATTGCTGTCAAGGAGGATGCAGTCGAGATGCTGGCCAGCTACGGGCTGGCGT ACTCCCTCATGAAGTTCTTCACGGGTCCCATGAGTGACTTCAAAAATGTGGGCCTGGTGTTT GTGAACAGCAAGAGACAGGACCAAAGCCGTCCTGTGTATGGTGGTGGCAGGGGCCATCGC TGCCGTCTTTCACACACTGATAGCTTATAGTGATTTAGGATACTACATTATCAATAAACTGC ACCATGTGGACGAGTCGGTGGGGAGCAAGACGAGAGGGCCTTCCTGTACCTCGCCGCCTTT CCTTTCATGGACGCAATGGCATGGACCCATGCTGGCATTCTCTTAAAACACAAATACAGTTT CCTGGTGGGATGTCCCAATCTCAGATGTCATAGCTCAGGTTGTTTTTGTAGCCATTTTGC TTCACAGTCACCTGGAATGCCGGGAGCCCCTGCTCATCCCGATCCTCTCCTTGTACATGGGC GCACTTGTGCGCTGCACCACCCTGTGCCTGGGCTACTACAAGAACATTCACGACATCATCCC GGCCTTTGGCTCTAATTCTGGCCACACAGAGAATCAGTCGGCCTATTGTCAACCTCTTTGTT TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGGGATTTTGACAGCCACATA CCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTATCCTGCTTTCG AAGAAGTTCACCTTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTTGGAC ACCCAACGTGTCTGAGAAAATCTTGATAGACATCATCGGAGTGGACTTTGCCTTTTGCAGAAC TCTGTGTTGTTCCTTTGCGGATCTTCTCCTTCTTCCCAGTTCAGTGAGGGCGCAT CTCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTCCTTGCCCCCAGCTCTGTGCTGCG GATCATCGTCCTCATCGCCAGCCTCGTGGTCCTACCCTACCTGGGGGTGCACGGTGCGACCC TGGGCGTGGGCTCCCTGGCGGGCTTTGTGGGAGAATCCACCATGGTCGCCATCGCTGCG TGCTATGTCTACCGGAAGCAGAAAAAGAAGATGGAGAATGAGTCGGCCACGGAGGGGGAAGA GAAAGAGGCCTTGATTTAAAGGTTTCGTGTCAATTCTCTAGCATACTGGGTATGCTCACACT TTCATACCCCTGCCTCACGAAAACCCAAAAGACACAGCTGCCTCACGGTTGACGTTGTCCC TCCTCCCTGGACAATCTCCTCTTGGAACCAAAGGACTGCAGCTGTGCCATCGCGCCTCGGT CACCCTGCACAGCAGGCCACAGACTCTCCTGTCCCCCTTCATCGCTCTTAAGAATCAACAGG TTAAAACTCGGCTTCCTTTGATTTGCTTCCCAGTCACATGGCCGTACAAAGAGATGGAGCCC CGGTGGCCTCTTAAATTTCCCTTCTGCCACGGAGTTCGAAACCATCTACTCCACACATGCAG GAGGCGGGTGGCACGCTGCAGCCCGGAGTCCCCGTTCACACTGAGGAACGGAGACCTGTGAC CACAGCAGGCTGACAGATGGACAGAATCTCCCGTAGAAAGGTTTGGTTTGAAATGCCCCGGG GGCAGCAAACTGACATGGTTGAATGATAGCATTTCACTCTGCGTTCTCCTAGATCTGAGCAA GCTGTCAGTTCTCACCCCCACCGTGTATATACATGAGCTAACTTTTTTAAATTGTCACAAAA CTTTCCTGAAGGTCGCATTAGAGCGAGTCACATGGAGCATCCTAACTTTGCATTTTAGTTTT TACAGTGAACTGAAGCTTTAAGTCTCATCCAGCATTCTAATGCCAGGTTGCTGTAGGGTAAC TTTTGAAGTAGATATATTACCTGGTTCTGCTATCCTTAGTCATAACTCTGCGGTACAGGTAA TTGAGAATGTACTACGGTACTTCCCTCCCACACCATACGATAAAGCAAGACATTTTATAACG ATACCAGAGTCACTATGTGGTCCTCCCTGAAATAACGCATTCGAAATCCATGCAGTGCAGTA TATTTTCTAAGTTTTGGAAAGCAGGTTTTTTCCTTTAAAAAAATTATAGACACGGTTCACT AAATTGATTTAGTCAGAATTCCTAGACTGAAAGAACCTAAACAAAAAAATATTTTAAAGATA TAAATATATGCTGTATATGTTATGTAATTTATTTTAGGCTATAATACATTTCCTATTTTCGC ATTTTCAATAAAATGTCTCTAATACAAAAA

MVKFPALTHYWPLIRFLVPLGITNIAIDFGEQALNRGIAAVKEDAVEMLASYGLAYSLMKFF
TGPMSDFKNVGLVFVNSKRDRTKAVLCMVVAGAIAAVFHTLIAYSDLGYYIINKLHHVDESV
GSKTRRAFLYLAAFPFMDAMAWTHAGILLKHKYSFLVGCASISDVIAQVVFVAILLHSHLEC
REPLLIPILSLYMGALVRCTTLCLGYYKNIHDIIPDRSGPELGGDATIRKMLSFWWPLALIL
ATQRISRPIVNLFVSRDLGGSSAATEAVAILTATYPVGHMPYGWLTEIRAVYPAFDKNNPSN
KLVSTSNTVTAAHIKKFTFVCMALSLTLCFVMFWTPNVSEKILIDIIGVDFAFAELCVVPLR
IFSFFPVPVTVRAHLTGWLMTLKKTFVLAPSSVLRIIVLIASLVVLPYLGVHGATLGVGSLL
AGFVGESTMVAIAACYVYRKQKKKMENESATEGEDSAMTDMPPTEEVTDIVEMREENE

Transmembrane domains:

amino acids 86-106, 163-179, 191-205, 237-253, 327-343, 357-374, 408-423, 431-445

CCTGACAGAAGTGCCCCGGAGCTGGGGGAGATNCAACATTAAGAAGATGCTGAGCTTCTGGT
GCCNTTTGGCTCTAATTCTGGCCACACAGAGAANCAGTCGGCCTATTGTCAACCTCTTTGTT
TCCCGGGACCTTGGTGGCAGTTCTGCAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATA
CCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAAATCCGTGCTGTGTATCCTGCTTTCG
ACAAGAATAACCCCAGCAACAAACTGGTGAGCACGAGCAACACAGTCACGGCGGCCCACATC
AAGAAGTTCACCTTCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTGGAC
ACCCAACGTGTCTGNGAAAATCTTGATAGACATCATCGGAGTGGACTTTGCCTTTTGCAGAAC
TCTGTGTTGTTCCTTTGCGGATCTTCTCCTTCTTCCCAGTTCCAGTGAGGGCGCCAT
CTCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTC

GCCTGCTCCCTGCTCAGCTGCGCGTCCTGCCTCTGCGGCTCTGCCCCCCTGCATCCTGTGCAG CTGCTGCCCGCCAGCCGCAACTCCACCGTGAGCCGCCTCATCTTCACGTTCTTCCTCTTCC TGGGGGTGCTGGTGCCATCATTATGCTGAGCCCGGGCGTGGAGAGTCAGCTCTACAAGCTG CCCTGGGTGTGTGAGGAGGGGCCGGGATCCCCACCGTCCTGCAGGGCCACATCGACTGTGG $\tt CTCCCTGCTTGGCTACCGCGTGTCTACCGCATGTGCTTCGCCACGGCGGCCTTCTTCTTCT$ TCTTTTTCACCCTGCTCATGCTCTGCGTGAGCAGCCGGGACCCCCGGGCTGCCATCCAG AATGGGTTTTGGTTCTTTAAGTTCCTGATCCTGGTGGGCCTCACCGTGGGTGCCTTCTACAT TCCTCATCCAGCTGGTGCTCATCGACTTTGCGCACTCCTGGAACCAGCGGTGGCTGGGC CTACTTGCTGTCGATCGCGGCCGTGGCGCTGATGTTCATGTACTACACTGAGCCCAGCGGCT GCCACGAGGGCAAGGTCTTCATCAGCCTCAACCTCACCTTCTGTGTCTGCGTGTCCATCGCT GCTGTCCTGCCCAAGGTCCAGGACGCCCAGCCCAACTCGGGTCTGCTGCAGGCCTCGGTCAT CACCCTCTACACCATGTTTGTCACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCA ACCCCCATTTGCCAACCCAGCTGGGCAACGAGACAGTTGTGGCAGGCCCCGAGGGCTATGAG ACCCAGTGGTGGGATGCCCCGAGCATTGTGGGCCTCATCATCTTCCTCCTGTGCACCCTCTT CATCAGTCTGCGCTCCTCAGACCACCGGCAGGTGAACAGCCTGATGCAGACCGAGGAGTGCC CACCTATGCTAGACGCCACACAGCAGCAGCAGCAGCAGCAGCCTGTGAGGGCCGGGCC TTTGACAACGAGCAGGACGCCTCACCTACAGCTACTCCTTCTTCCACTTCTGCCTGGTGCT GGCCTCACTGCACGTCATGATGACGCTCACCAACTGGTACAAGCCCGGTGAGACCCCGGAAGA TGATCAGCACGTGGACCGCCGTGTGGGTGAAGATCTGTGCCAGCTGGGCAGGGCTGCTCCTC ${ t TACCTGTGGACCCTGGTAGCCCCACTCCTCCTGCGCAACCGCGACTTCAGC{ t TGA}{ t GGCAGCCT}}$ CACAGCCTGCCATCTGGTGCCTCCTGCCACCTGGTGCCTCTCGGCTCGGTGACAGCCAACCT GCCCCTCCCCACACCAATCAGCCAGGCTGAGCCCCCACCCCTGCCCCAGCTCCAGGACCTG CCCCTGAGCCGGGCCTTCTAGTCGTAGTGCCTTCAGGGTCCGAGGAGCATCAGGCTCCTGCA TGCCCATACTCAGCATCTCGGATGAAAGGGCTCCCTTGTCCTCAGGCTCCACGGGAGCGGGG $\tt CTGCTGGAGAGGGGGAACTCCCACCACAGTGGGGCATCCGGCACTGAAGCCCTGGTGTT$ CCTGGTCACGTCCCCAGGGGACCCTGCCCCCTTCCTGGACTTCGTGCCTTACTGAGTCTCT

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVE
SQLYKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFFTLLMLCVSSSRD
PRAAIQNGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQLVLLIDFAHSW
NQRWLGKAEECDSRAWYAGLFFFTLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFC
VCVSIAAVLPKVQDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVA
GPEGYETQWWDAPSIVGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVA
ACEGRAFDNEQDGVTYSYSFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICAS
WAGLLLYLWTLVAPLLLRNRDFS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257, 272-283, 324-340, 391-406, 428-444

GAGCGAGGCCGGGACTGAAGGTGTGGGTGTCGAGCCCTCTGGCAGAGGGTTAACCTGGGTC AAATGCACGGATTCTCACCTCGTACAGTTACGCTCTCCCGCGGCACGTCCGCGAGGACTTGA AGTCCTGAGCGCTCAAGTTTGTCCGTAGGTCGAGAGAAGGCCATGGAGGTGCCGCCACCGGC ACCGCGGAGCTTTCTCTGTAGAGCATTGTGCCTATTTCCCCGAGTCTTTGCTGCCGAAGCTG TGACTGCCGATTCGGAAGTCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCC TATTACCCGGAATCTGGATGGGACCGCCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAG AATTTCAAAGGACCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGG TGTATGGGGGAATACCAGCTTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCA GAAATTTATCATAACCGGTTTGATGCTGTGCAATCTGCACATCGTGCTGCCACACGAGGCTT CATTCGTTATGGCTGGCGCTGGGGTTGGAGAACTGCAGTGTTTGTGACTATATTCAACACAG TGAACACTAGTCTGAATGTATACCGAAATAAAGATGCCTTAAGCCATTTTGTAATTGCAGGA AATTGGAGCCTTGCTGGGCACTCCTGTAGGAGGCCTGCTGATGGCATTTCAGAAGTACGCTG GTGAGACTGTTCAGGAAAGAAAACAGAAGGATCGAAAGGCACTCCATGAGCTAAAACTGGAA GAGTGGAAAGGCAGACTACAAGTTACTGAGCACCTCCCTGAGAAAATTGAAAGTAGTTTACG GGAAGATGAACCTGAGAATGATGCTAAGAAAATTGAAGCACTGCTAAACCTTCCTAGAAACC CTTCAGTAATAGATAAACAAGACAAGGACTGAAAGTGCTCTGAACTTGAAACTCACTGGAGA TGACAAATTTAAGTGCTGGTACCTGTGGTGGCAGTGGCTTGCTCTTGTCTTTTTCTT GCAGTAAATAAAACATTTCGCAAAAGATTAAAGTTGAATTTTACAGTTT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA23318

><subunit 1 of 1, 285 aa, 1 stop

><MW: 32190, pI: 9.03, NX(S/T): 2

MEVPPPAPRSFLCRALCLFPRVFAAEAVTADSEVLEERQKRLPYVPEPYYPESGWDRLRELF GKDEQQRISKDLANICKTAATAGIIGWVYGGIPAFIHAKQQYIEQSQAEIYHNRFDAVQSAH RAATRGFIRYGWRWGWRTAVFVTIFNTVNTSLNVYRNKDALSHFVIAGAVTGSLFRINVGLR GLVAGGIIGALLGTPVGGLLMAFQKYAGETVQERKQKDRKALHELKLEEWKGRLQVTEHLPE KIESSLREDEPENDAKKIEALLNLPRNPSVIDKQDKD

Important Features:

Signal Peptide:

amino acids 1-24

Transmembrane domains:

amino acids 76-96 and 171-195

N-glycosylation site:

amino acids 153-156

IDDIYOKK IDDICK

FIGURE 12

CGGAAGTCCCTTGAGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATCTGGATGGACCGCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAGAATTTCAAAGGA
CCTTGCTAATATCTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGGTGTATGGGGGAA
TACCAGCTTTTATTCATGCTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTTATCAT
AACCGGTTTGATGCTGCAATCTGCACATCGTGCTGCCACACGAGGCTTCATTCGTTCATG
GCTGGCGCCGAACC

TCAAGTTTGTCCGTAGGTCGAGAGAAGGCCATGGAGGTGCCGCCACCGGCACCGCGGAGCTT
TTTTCTGTAGAGCATTGTGCCTATTTCCCCGAGTTTTTGCTGCCGAAGCTGTGACTGCCGAT
TCGGAAGTCCTTGAGGGAGCGTCAGAAGCGGCTTCCCTACGTCCCAGAGCCCTATTACCCGGA
ATTTGGATGGGACCGCCTCCGGGAGCTGTTTGGCAAAGATGAACAGCAGAGAATTTCAAAGG
ACCTTGCTGATATNTGTAAGACGGCAGCTACAGCAGGCATCATTGGCTGGTGTATGGGGGA
ATACCAGCTTTTATTCATGNTAAACAACAATACATTGAGCAGAGCCAGGCAGAAATTTATNA
TAACC

GCGTTGCTGCCCCGCCTGGGCCAGGCCCCAAAGGCAAGGACAAAGCAGCTGTCAGGGAACCT GCTTCGCGTGTTCCAAGAACTGCCTGTGCGCCCTCAACCTGCTTTACACCTTGGTTAGTCTG CTGCTAATTGGAATTGCTGCGTGGGGCATTGGCTTCGGGCTGATTTCCAGTCTCCGAGTGGT CGGCGTGGTCATTGCAGTGGGCATCTTCTTGTTCCTGATTGCTTTAGTGGGTCTGATTGGAG GTTCAGTTTTCTGTATCTTGCGCTTGTTTAGCCCTGAACCAGGAGCAACAGGGTCAGCTTCT GGAGGTTGGTTGGAACAATACGGCAAGTGCTCGAAATGACATCCAGAGAAATCTAAACTGCT GTGGGTTCCGAAGTGTTAACCCAAATGACACCTGTCTGGCTAGCTGTGTTAAAAGTGACCAC TCGTGCTCGCCATGTGCTCCAATCATAGGAGAATATGCTGGAGAGGTTTTGAGATTTGTTGG TGGCATTGGCCTGTTCTTCAGTTTTACAGAGATCCTGGGTGTTTTGGCTGACCTACAGATACA GGAACCAGAAAGACCCCCGCGCGAATCCTAGTGCATTCCTT<u>TGA</u>TGAGAAAACAAGGAAGAT TTCCTTTCGTATTATGATCTTGTTCACTTTCTGTAATTTTCTGTTAAGCTCCATTTGCCAGT TTAAGGAAGGAAACACTATCTGGAAAAGTACCTTATTGATAGTGGAATTATATTTTTTACT CTATGTTTCTCTACATGTTTTTTTTTCTTTCCGTTGCTGAAAAATATTTGAAACTTGTGGTCTC TGAAGCTCGGTGGCACCTGGAATTTACTGTATTCATTGTCGGCCACTGTCCACTGTGGCCTT TCTTAGCATTTTTACCTGCAGAAAAACTTTGTATGGTACCACTGTGTTGGTTATATGGTGAA TCTGAACGTACATCTCACTGGTATAATTATATGTAGCACTGTGCTGTGTAGATAGTTCCTAC TGGAAAAAGAGTGGAAATTTATTAAAAATCAGAAAGTATGAGATCCTGTTATGTTAAGGGAAA TCCAAATTCCCAATTTTTTTTGGTCTTTTTAGGAAAGATTGTTGTGGTAAAAAGTGTTAGTA TAAAAATGATAATTTACTTGTAGTCTTTTATGATTACACCAATGTATTCTAGAAATAGTTAT GTCTTAGGAAATTGTGGTTTAATTTTTGACTTTTACAGGTAAGTGCAAAGGAGAAGTGGTTT CATGAAATGTTCTAATGTATAATAACATTTACCTTCAGCCTCCATCAGAATGGAACGAGTTT TGAGTAATCAGGAAGTATATCTATATGATCTTGATATTGTTTTATAATAATTTGAAGTCTAA AAGACTGCATTTTTAAACAAGTTAGTATTAATGCGTTGGCCCACGTAGCAAAAAGATATTTG ATTATCTTAAAAATTGTTAAATACCGTTTTCATGAAATTTCTCAGTATTGTAACAGCAACTT GTCAAACCTAAGCATATTTGAATATGATCTCCCATAATTTGAAATTGAAATCGTATTGTGTG ATTAAAAGAAAGTAATGGAAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA39979

><subunit 1 of 1, 204 aa, 1 stop

><MW: 22147, pI: 8.37, NX(S/T): 3

MVCGGFACSKNCLCALNLLYTLVSLLLIGIAAWGIGFGLISSLRVVGVVIAVGIFLFLIALV GLIGAVKHHQVLLFFYMIILLLVFIVQFSVSCACLALNQEQQGQLLEVGWNNTASARNDIQR NLNCCGFRSVNPNDTCLASCVKSDHSCSPCAPIIGEYAGEVLRFVGGIGLFFSFTEILGVWL TYRYRNQKDPRANPSAFL

Signal Peptide:

amino acids 1-34

Transmembrane domains:

amino acids 47-63, 72-95 and 162-182

TGATTGGAGCTGTAAAAAANTCTTCAGGTGTTGTNATTTTTTATATGATTATTCTGTAANT
TGTATTTATTGTTCAGTTTTNTGTATCTTGCGCTTGTTTAGCCNTGAACCAGGAGCAACAGG
GTCAGNTTNTGGAGGTTGGTTGGAACAATACGGCAAGTGCTCGAAATGACATCCAGAGAAAT
NTAAACTGCTGTGGGTTCCGAAGTGTTAACCCAAATGACACCTGTNTGGCTAGCTGTGTTAA
AAGTGACCACTNGTGCTCGCCATGTGCTCCAATCATAGGAGAATATGCTGGAGAGGTTTTGA
GATTTGTTGGTGGCATTGGCCTGTTNTTCAGTTTTACAGAGATCCTGGGTGTTTGGCTGACC
TACAGATACAGGAACCAG

AATCCCAAATTCCCCAATTTTTTTGGNCTTTTTAGGGAAAGATGTGTTGTGGTAAAAAGTGT
TAGTATAAAAAATGATAATTTACTTGTAGTCTTTTATGATTACACCAATGTATTCTAGAATAG
TTATGTCTTAGGAAATTGTGGTTTAATTTTTGACTTTTACAGGTAAGTGCAAAGGAGAAGTG
GTTTCATGAAATGTTCTAATGTATAATAACATTTACCTTCAGCCTCCCATCAGAATGGAACG
AGTTTTGAGTAATCCAGGAAGTATATCTATATGATCTTGATATTGTTTTATATAATTTGAAG
TCTAAAAGACTGCATTTTTAAACAAGTTAGTATTAATGCGTTGGCCCACGTAGCAAAAAGAT
ATTTGATTATCTTAAAAATTGTTAAATACCGTTTTCATGAAAGTTCTCAGTATTGTAACAGC
AACTTGTCAAACCTAAGCATATTTGAATATGATCTCCCATAATTTGAAATTGAAATCGTATT
GTGTGGAGGAAATGGCAATCTTATGTGTGCTGAAGGACACAGTAAGAGCACCAAGTTGTGCC
CCACTTGC

ATGATTATTCTGTTACTTGTATTTATTGTTCAGTTTTATGGTATCTTGCGCTTGTTTAGCCC
CTGAAACCAGGAGCAACAGGGNNCAGCTTCCTGGAGGTTGGTTGGCAACAATCACGGCCAAG
TGACTCCGCAAATGACATCCCAGAGAAATCCTAAACTGCTGTGGGTTCCGAAGTGTTAACCC
AAATGACACCTGTCTGGCTNGCTGTGTTAAAAGTGACCACTCGTGCTCGCCATGTGCTCCAA
TCATAGGAGAATATGC

CAGTCACCATGAAGCTGGGCTGTGTCCTCATGGCCTGGGCCCTCTACCTTTCCCTTGGTGTG CTCTGGGTGGCCCAGATGCTACTGGCTGCCAGTTTTGAGACGCTGCAGTGTGAGGGACCTGT CTGCACTGAGGAGCAGCTGCCACACGGAGGATGACTTGACTGATGCAAGGGAAGCTGGCT TCCAGGTCAAGGCCTACACTTTCAGTGAACCCTTCCACCTGATTGTGTCCTATGACTGGCTG ATCCTCCAAGGTCCAGCCAAGCCAGTTTTTGAAGGGGACCTGCTGGTTCTGCGCTGCCAGGC CTGGCAAGACTGGCCACTGACTCAGGTGACCTTCTACCGAGATGGCTCAGCTCTGGGTCCCC CCGGGCCTAACAGGGAATTCTCCATCACCGTGGTACAAAAGGCAGACAGCGGGCACTACCAC TGCAGTGGCATCTTCCAGAGCCCTGGTCCTGGGATCCCAGAAACAGCATCTGTTGTGGCTAT CACAGTCCAAGAACTGTTTCCAGCGCCAATTCTCAGAGCTGTACCCTCAGCTGAACCCCAAG CAGGAAGCCCCATGACCCTGAGTTGTCAGACAAAGTTGCCCCTGCAGAGGTCAGCTGCCCGC CTCCTCTTCTCCTCTACAAGGATGGAAGGATAGTGCAAAGCAGGGGGCTCTCCTCAGAATT CCAGATCCCCACAGCTTCAGAAGATCACTCCGGGTCATACTGGTGTGAGGCAGCCACTGAGG ACAACCAAGTTTGGAAACAGAGCCCCCAGCTAGAGATCAGAGTGCAGGGTGCTTCCAGCTCT GCTGCACCTCCCACATTGAATCCAGCTCCTCAGAAATCAGCTGCTCCAGGAACTGCTCCTGA GGAGGCCCCTGGGCCTCTGCCTCCGCCGCCAACCCCATCTTCTGAGGATCCAGGCTTTTCTT CTCCTCTGGGGATGCCAGATCCTCATCTGTATCACCAGATGGGCCTTCTTCTCAAACACATG CAGGATGTGAGAGTCCTCCTCGGTCACCTGCTCATGGAGTTGAGGGAATTATCTGGCCACCA GAAGCCTGGGACCACAAAGGCTACTGCTGAATAGAAGTAAACAGTTCATCCATGATCTCACT TAACCACCCCAATAAATCTGATTCTTTATTTTCTCTTCCTGTCCTGCACATATGCATAAGTA CTTTTACAAGTTGTCCCAGTGTTTTGTTAGAATAATGTAGTTAGGTGAGTGTAAATAAATTT ATATAAAGTGAGAATTAGAGTTTAGCTATAATTGTGTATTCTCTCTTTAACACAACAGAATTC TGCTGTCTAGATCAGGAATTTCTATCTGTTATATCGACCAGAATGTTGTGATTTAAAGAGAA CTAATGGAAGTGGATTGAATACAGCAGTCTCAACTGGGGGCAATTTTGCCCCCCAGAGGACA TTGGGCAATGTTTGGAGACATTTTGGTCATTATACTTGGGGGGTTGGGGGATGGTGGGATGT GTGTCTACTGGCATCCAGTAAATAGAAGCCAGGGGTGCCGCTAAACATCCTATAATGCACAG GGCAGTACCCCACAACGAAAAATAATCTGGCCCAAAATGTCAGTTGTACTGAGTTTGAGAAA CCCCAGCCTAATGAAACCCTAGGTGTTGGGCTCTGGAATGGGACTTTGTCCCTTCTAATTAT TATCTCTTTCCAGCCTCATTCAGCTATTCTTACTGACATACCAGTCTTTAGCTGGTGCTATG GTCTGTTCTTTAGTTCTAGTTTGTATCCCCTCAAAAGCCATTATGTTGAAATCCTAATCCCC AAGGTGATGGCATTAAGAAGTGGGCCTTTGGGAAGTGATTAGATCAGGAGTGCAGAGCCCTC ATGATTAGGATTAGTGCCCTTATTTAAAAAGGCCCCAGAGAGCTAACTCACCCTTCCACCAT ATGAGGACGTGGCAAGAAGATGACATGTATGAGAACCAAAAAACAGCTGTCGCCAAACACCG ACTCTGTCGTTGCCTTGATCTTGAACTTCCAGCCTCCAGAACTATGAGAAATAAAATTCTGG TTGTTTGTAGCCTAA

FIGURE 20

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40594</pre>

><subunit 1 of 1, 359 aa, 1 stop

><MW: 38899, pI: 5.21, NX(S/T): 0

MKLGCVLMAWALYLSLGVLWVAQMLLAASFETLQCEGPVCTEESSCHTEDDLTDAREAGFQV
KAYTFSEPFHLIVSYDWLILQGPAKPVFEGDLLVLRCQAWQDWPLTQVTFYRDGSALGPPGP
NREFSITVVQKADSGHYHCSGIFQSPGPGIPETASVVAITVQELFPAPILRAVPSAEPQAGS
PMTLSCQTKLPLQRSAARLLFSFYKDGRIVQSRGLSSEFQIPTASEDHSGSYWCEAATEDNQ
VWKQSPQLEIRVQGASSSAAPPTLNPAPQKSAAPGTAPEEAPGPLPPPPTPSSEDPGFSSPL
GMPDPHLYHQMGLLLKHMQDVRVLLGHLLMELRELSGHQKPGTTKATAE

Signal sequence:

amino acids 1-17

Leucine zipper pattern sequence: amino acids 12-33

Protein kinase C phosphorylation site: amino acids 353-355

CCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGGGCCACCAGAAGTT TGAGCCTCTTTGGTAGCAGGAGGCTGGAAGAAAGGACAGAAGTAGCTCTGGCTGTG**ATG**GGG ATCTTACTGGGCCTGCTACTCCTGGGGCACCTAACAGTGGACACTTATGGCCGTCCCATCCT GGAAGTGCCAGAGAGTGTAACAGGACCTTGGAAAGGGGGATGTGAATCTTCCCTGCACCTATG ACCCCTGCAAGGCTACACCCAAGTCTTGGTGAAGTGGCTGGTACAACGTGGCTCAGACCCT GTCACCATCTTTCTACGTGACTCTTCTGGAGACCATATCCAGCAGGCAAAGTACCAGGGCCG CCTGCATGTGAGCCACAAGGTTCCAGGAGATGTATCCCTCCAATTGAGCACCCTGGAGATGG ATGACCGGAGCCACTACACGTGTGAAGTCACCTGGCAGACTCCTGATGGCAACCAAGTCGTG AGAGATAAGATTACTGAGCTCCGTGTCCAGAAACTCTCTGTCTCCAAGCCCACAGTGACAAC TGGCAGCGGTTATGGCTTCACGGTGCCCCAGGGAATGAGGATTAGCCTTCAATGCCAGGCTC GGGGTTCTCCCCATCAGTTATATTTGGTATAAGCAACAGACTAATAACCAGGAACCCATC AAAGTAGCAACCCTAAGTACCTTACTCTTCAAGCCTGCGGTGATAGCCGACTCAGGCTCCTA TTTCTGCACTGCCAAGGGCCAGGTTGGCTCTGAGCAGCACAGCGACATTGTGAAGTTTGTGG TCAAAGACTCCTCAAAGCTACTCAAGACCAAGACTGAGGCACCTACAACCATGACATACCCC TGGAGAGACCAGTGCTGGGCCAGGAAAGAGCCTGCCTGTCTTTGCCATCATCCTCATCATCT CCTTGTGCTGTATGGTGGTTTTTACCATGGCCTATATCATGCTCTGTCGGAAGACATCCCAA ${\tt CAAGAGCATGTCTACGAAGCAGCCAGG} \underline{{\tt TAA}} {\tt GAAAGTCTCTCCTCTTCCATTTTGACCCCGT}$ CCCTGCCCTCAATTTTGATTACTGGCAGGAAATGTGGAGGAAGGGGGGGTGTGGCACAGACCC AATCCTAAGGCCGGAGGCCTTCAGGGTCAGGACATAGCTGCCTTCCCTCTCTCAGGCACCTT CTGAGGTTGTTTTGGCCCTCTGAACACAAAGGATAATTTAGATCCATCTGCCTTCTGCTTCC AGAATCCCTGGGTGGTAGGATCCTGATAATTAATTGGCAAGAATTGAGGCAGAAGGGTGGGA AACCAGGACCACAGCCCCAAGTCCCTTCTTATGGGTGGTGGGCTCTTGGGCCATAGGGCACA TGCCAGAGAGGCCAACGACTCTGGAGAAACCATGAGGGTGGCCATCTTCGCAAGTGGCTGCT CCAGTGATGAGCCAACTTCCCAGAATCTGGGCAACAACTACTCTGATGAGCCCTGCATAGGA TCTGGATTATGAGTTTCTGGCCACTGAGGGCAAAAGTGTCTGTTAAAAATGCCCCATTAGGC CAGGATCTGCTGACATAATTGCCTAGTCAGTCCTTGCCTTCTTCTGCATGGCCTTCTTCCCTGCT ACCTCTCTTCCTGGATAGCCCAAAGTGTCCGCCTACCAACACTGGAGCCGCTGGGAGTCACT GGCTTTGCCCTGGAATTTGCCAGATGCATCTCAAGTAAGCCAGCTGCTGGATTTGGCTCTGG GCCCTTCTAGTATCTCTGCCGGGGGCTTCTGGTACTCCTCTCTAAATACCAGAGGGAAGATG CCCATAGCACTAGGACTTGGTCATCATGCCTACAGACACTATTCAACTTTGGCATCTTGCCA CCAGAAGACCCGAGGGAGGCTCAGCTCTGCCAGCTCAGAGGACCAGCTATATCCAGGATCAT TTCTCTTTCTTCAGGGCCAGACAGCTTTTAATTGAAATTGTTATTTCACAGGCCAGGGTTCA ATCATAACAGC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45416

><subunit 1 of 1, 321 aa, 1 stop

><MW: 35544, pI: 8.51, NX(S/T): 0

MGILLGLLLGHLTVDTYGRPILEVPESVTGPWKGDVNLPCTYDPLQGYTQVLVKWLVQRGS
DPVTIFLRDSSGDHIQQAKYQGRLHVSHKVPGDVSLQLSTLEMDDRSHYTCEVTWQTPDGNQ
VVRDKITELRVQKLSVSKPTVTTGSGYGFTVPQGMRISLQCQARGSPPISYIWYKQQTNNQE
PIKVATLSTLLFKPAVIADSGSYFCTAKGQVGSEQHSDIVKFVVKDSSKLLKTKTEAPTTMT
YPLKATSTVKQSWDWTTDMDGYLGETSAGPGKSLPVFAIILIISLCCMVVFTMAYIMLCRKT
SQQEHVYEAAR

Signal Sequence:

amino acids 1-19

Glycosaminoglycan attachment site:

amino acids 149-152

Transmembrane domain:

amino acids 282-300

GGCTGCAGCCACCTCGCGCGCACCCCGAGGCGCCCGCGCCCCAGCTCGCCCGAGGTCCGTCGGA GGCGCCCGGCCCCCGGAGCCAAGCAGCAACTGAGCGGGGAAGCGCCCGCGTCCGGGGATC ${\tt GGG}{\color{blue}{\textbf{A}}}{\color{blue}{\textbf{T}}}{\color{blue}{\textbf{C}}}{\color{blue}{\textbf{C}}}{\color{blue}{\textbf{C}}}{\color{blue}{\textbf{T}}}{\color{blue}{\textbf{C$ CACTGAGATCAAGAGAGTGGCAGAGGAAAAGGTCACTTTGCCCTGCCACCATCAACTGGGGC TTCCAGAAAAAGACACTCTGGATATTGAATGGCTGCTCACCGATAATGAAGGGAACCAAAAA GTGGTGATCACTTACTCCAGTCGTCATGTCTACAATAACTTGACTGAGGAACAGAAGGGCCG AGTGGCCTTTGCTTCCAATTTCCTGGCAGGAGATGCCTCCTTGCAGATTGAACCTCTGAAGC CCAGTGATGAGGGCCGGTACACCTGTAAGGTTAAGAATTCAGGGCGCTACGTGTGGAGCCAT GTCATCTTAAAAGTCTTAGTGAGACCATCCAAGCCCAAGTGTGAGTTGGAAGGAGAGCTGAC AGAAGGAAGTGACCTGACTTTGCAGTGTGAGTCATCCTCTGGCACAGAGCCCATTGTGTATT ACTGGCAGCGAATCCGAGAGAAAGAGGGAGAGGATGAACGTCTGCCTCCCAAATCTAGGATT GACTACAACCACCCTGGACGAGTTCTGCTGCAGAATCTTACCATGTCCTACTCTGGACTGTA CCAGTGCACAGCAACGAAGCTGGGAAGGAAAGCTGTGTGGTGCGAGTAACTGTACAGT ATGTACAAAGCATCGGCATGGTTGCAGGAGCAGTGACAGGCATAGTGGCTGGAGCCCTGCTG GAGACCTAATGAAATTCGAGAAGATGCTGAAGCTCCAAAAGCCCGTCTTGTGAAACCCAGCT CCTCTTCCTCAGGCTCTCGGAGCTCACGCTCTGGTTCTTCCTCCACTCGCTCCACAGCAAAT ${\tt ACGGTC}{\color{blue}{\bf TGA}}{\tt ATTACAATGGACTTGACTCCCACGCTTTCCTAGGAGTCAGGGTCTTTGGACTC}$ TTCTCGTCATTGGAGCTCAAGTCACCAGCCACACCAGATGAGAGGTCATCTAAGTAGCA GTGAGCATTGCACGGAACAGATTCAGATGAGCATTTTCCTTATACAATACCAAACAAGCAAA AGGATGTAAGCTGATTCATCTGTAAAAAGGCATCTTATTGTGCCTTTAGACCAGAGTAAGGG AAAGCAGGAGTCCAAATCTATTTGTTGACCAGGACCTGTGGTGAGAAGGTTGGGGAAAGGTG AGGTGAATATACCTAAAACTTTTAATGTGGGATATTTTGTATCAGTGCTTTGATTCACAATT TTCAAGAGGAAATGGGATGCTGTTTGTAAATTTTCTATGCATTTCTGCAAACTTATTGGATT ATTAGTTATTCAGACAGTCAAGCAGAACCCACAGCCTTATTACACCTGTCTACACCATGTAC TGAGCTAACCACTTCTAAGAAACTCCAAAAAAGGAAACATGTGTCTTCTATTCTGACTTAAC TTCATTTGTCATAAGGTTTGGATATTAATTTCAAGGGGAGTTGAAATAGTGGGAGATGGAGA AGAGTGAATGAGTTTCTCCCACTCTATACTAATCTCACTATTTGTATTGAGCCCAAAATAAC TATGAAAGGAGACAAAAATTTGTGACAAAGGATTGTGAAGAGCTTTCCATCTTCATGATGTT ATGAGGATTGTTGACAAACATTAGAAATATATAATGGAGCAATTGTGGATTTCCCCTCAAAT CAGATGCCTCTAAGGACTTTCCTGCTAGATATTTCTGGAAGGAGAAAATACAACATGTCATT TATCAACGTCCTTAGAAAGAATTCTTCTAGAGAAAAAGGGATCTAGGAATGCTGAAAGATTA CCCAACATACCATTATAGTCTCTTCTTTCTGAGAAAATGTGAAACCAGAATTGCAAGACTGG TGGTGCCAGGCACCTGTAGGAAAATCCAGCAGGTGGAGGTTGCAGTGAGCCGAGATTATGCC ATTGCACTCCAGCCTGGGTGACAGAGCGGGACTCCGTCTC

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45419</pre>

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41281, pI: 8.33, NX(S/T): 3

MSLLLLLLVSYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGNQKV VITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRYVWSHV ILKVLVRPSKPKCELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERLPPKSRID YNHPGRVLLQNLTMSYSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVTGIVAGALLI FLLVWLLIRRKDKERYEEEERPNEIREDAEAPKARLVKPSSSSSGSRSSRSGSSSTRSTANS ASRSQRTLSTDAAPQPGLATQAYSLVGPEVRGSEPKKVHHANLTKAETTPSMIPSQSRAFQTV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 232-251

GTCGTTCCTTTGCTCTCCGCGCCCAGTCCTCCTCCTGGTTCTCCTCAGCCGCTGTCGGAGGAGAGCACCCGGA GACGCGGGCTGCAGTCGCGGCGGCTTCTCCCCGCCTGGGCGGCCTCGCCGCTGGGCAGGTGCTGAGCGCCCCTAG AGCCTCCCTTGCCGCCTCCTCCTCTGCCCGGCCGCAGCAGTGCACATGGGGTGTTGGAGGTAGATGGGCTCCCG GCCCGGGAGGCGGCGGTGGATGCGGCGCTGGGCAGAAGCAGCCGCCGATTCCAGCTGCCCCGCGCGCCCCCGGGGCG $\tt CCCCTGCGAGTCCCCGGTTCAGCC\underline{ATG}GGGACCTCTCCGAGCAGCAGCACCGCCCTCGCCTCCTGCAGCCGCATC$ $\overline{\mathtt{GCCCGCCGAGCCACGATGATCGCGGGCTCCCTTCTCCTGCTTGGATTCCTTAGCACCACCACAGCTCAGGCT$ CCAGAACAGAAGGCCTCGAATCTCATTGGCACATACCGCCATGTTGACCGTGCCACCGGCCAGGTGCTAACCTGT GACAAGTGTCCAGCAGGAACCTATGTCTCTGAGCATTGTACCAACACAAGCCTGCGCGTCTGCAGCAGTTGCCCCT GTGGGGACCTTTACCAGGCATGAGAATGGCATAGAGAAATGCCATGACTGTAGTCAGCCATGCCCATGGCCAATG ATTGAGAAATTACCTTGTGCTGCCTTGACTGACCGAGAATGCACTTGCCCACCTGGCATGTTCCAGTCTAACGCT ACCTGTGCCCCCCATACGGTGTGTCCTGTGGGTTGGGGTGTGCGGAAGAAAGGGACAGAGACTGAGGATGTGCGG TGTAAGCAGTGTGCTCGGGGTACCTTCTCAGATGTGCCTTCTAGTGTGAAAATGCAAAGCATACACAGACTGT ${\tt CTGAGTCAGAACCTGGTGGTGATCAAGCCGGGGACCAAGGAGACAACGTCTGTGGGCACACTCCCGTCCTTC}$ TCCAGCTCCACCTCACCTTCCCCTGGCACAGCCATCTTTCCACGCCCTGAGCACATGGAAACCCATGAAGTCCCT TCCTCCACTTATGTTCCCAAAGGCATGAACTCAACAGAATCCAACTCTTCTGCCTCTGTTAGACCAAAGGTACTG CCAAACCTTCAGGTAGTCAACCACCAGCAAGGCCCCCACCACAGACACATCCTGAAGCTGCTGCCGTCCATGGAG GCCACTGGGGGGGAGAAGTCCAGCACGCCCATCAAGGGCCCCAAGAGGGGGACATCCTAGACAGAACCTACACAAG CATTTTGACATCAATGAGCATTTGCCCTGGATGATTGTGCTTTTTCCTGCTGCTGCTTGTTGTGGTGATTGTGGTG TGCAGTATCCGGAAAAGCTCGAGGACTCTGAAAAAGGGGCCCCGGCAGGATCCCAGTGCCATTGTGGAAAAGGCA GGGCTGAAGAAATCCATGACTCCAACCCAGAACCGGGAGAAATGGATCTACTACTGCAATGGCCATGGTATCGAT ATCCGGGGCCCCGAGCCAGCCTCGCCCAGCTAATTAGCGCCCTGCGCCAGCACCGGAGAAACGATGTTGTGGAG AAGATTCGTGGGCTGATGGAAGACACCACCCAGCTGGAAACTGACAAACTAGCTCTCCCGATGAGCCCCAGCCCG CTTAGCCCGAGCCCCATCCCCAGCCCCAACGCGAAACTTGAGAATTCCGCTCTCCTGACGGTGGAGCCTTCCCCA ${\tt CAGGACAAGAACAAGGGCTTCTTCGTGGATGAGTCGGAGCCCCTTCTCCGCTGTGACTCTACATCCAGCGGCTCC}$ TCCGCGCTGAGCAGGAACGGTTCCTTTATTACCAAAGAAAAGAAGGACACAGTGTTGCGGCAGGTACGCCTGGAC ${\tt CCCTGTGACTTGCAGCCTATCTTTGATGACATGCTCCACTTTCTAAATCCTGAGGAGCTGCGGGTGATTGAAGAG}$ $\tt CTCCTGGACTCTGTTTATAGCCATCTTCCTGACCTGCTG{\color{blue}{TAG}} ACATAGGGATACTGCATTCTGGAAATTACTCA$ $\overline{\text{ATTTAGTGGCAGGGTGGTTTTTAATTTTCTTCTGTTTC}}\overline{\text{TGA}}$ GTGTGTGTGTGTGTGTGTGTGTGTGTTTTAACAGAGAATATGGCCAGTGCTTGAGTTCTTCTCCTTCTC TCTCTCTCTTTTTTTTAAATAACTCTTCTGGGAAGTTGGTTTATAAGCCTTTGCCAGGTGTAACTGTTGTGAA ATACCCACCACTAAAGTTTTTTAAGTTCCATATTTTCTCCATTTTTGCCTTCTTATGTATTTTCAAGATTATTCTG ${ t TGCACTTTAAATTTACTTAACTTACCATAAATGCAGTGTGACTTTTCCCACACACTGGATTGTGAGGCTCTTAAC$ TTCTTAAAAGTATAATGGCATCTTGTGAATCCTATAAGCAGTCTTTATGTCTCTTAACATTCACACCTACTTTTT AAAAACAAATATTATTACTATTTTTATTATTGTTTGTCCTTTATAAATTTTCTTAAAGATTAAGAAAATTTAAGA ${\tt CCCCATTGAGTTACTGTAATGCAATTCAACTTTGAGTTATCTTTTAAATATGTCTTGTATAGTTCATATTCATGG}$ ${\tt CTGAAACTTGACCACCACTATTGCTGATTGTATGGTTTTCACCTGGACACCGTGTAGAATGCTTGATTACTTGTAC}$ TCTTCTTATGCTAATATGCTCTGGGCTGGAGAAATGAAATCCTCAAGCCATCAGGATTTGCTATTTAAGTGGCTT GACAACTGGGCCACCAAAGAACTTGAACTTCACCTTTTAGGATTTGAGCTGTTCTGGAACACATTGCTGCACTTT GGÀAAGTCAAAATCAAGTGCCAGTGGCGCCCTTTCCATAGAGAATTTGCCCAGCTTTGCTTTAAAAGATGTCTTG ${ t TTTTTATATACACATAATCAATAGGTCCAATCTGCTCTCAAGGCCTTGGTCCTGGTGGGATTCCTTCACCAATT$ ACTTTAATTAAAAATGGCTGCAACTGTAAGAACCCTTGTCTGATATATTTGCAACTATGCTCCCATTTACAAATG AAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52594

><subunit 1 of 1, 655 aa, 1 stop

><MW: 71845, pI: 8.22, NX(S/T): 8

MGTSPSSSTALASCSRIARRATATMIAGSLLLLGFLSTTTAQPEQKASNLIGTYRHVDRATG
QVLTCDKCPAGTYVSEHCTNTSLRVCSSCPVGTFTRHENGIEKCHDCSQPCPWPMIEKLPCA
ALTDRECTCPPGMFQSNATCAPHTVCPVGWGVRKKGTETEDVRCKQCARGTFSDVPSSVMKC
KAYTDCLSQNLVVIKPGTKETDNVCGTLPSFSSSTSPSPGTAIFPRPEHMETHEVPSSTYVP
KGMNSTESNSSASVRPKVLSSIQEGTVPDNTSSARGKEDVNKTLPNLQVVNHQQGPHHRHIL
KLLPSMEATGGEKSSTPIKGPKRGHPRQNLHKHFDINEHLPWMIVLFLLLVLVVIVVCSIRK
SSRTLKKGPRQDPSAIVEKAGLKKSMTPTQNREKWIYYCNGHGIDILKLVAAQVGSQWKDIY
QFLCNASEREVAAFSNGYTADHERAYAALQHWTIRGPEASLAQLISALRQHRRNDVVEKIRG
LMEDTTQLETDKLALPMSPSPLSPSPIPSPNAKLENSALLTVEPSPQDKNKGFFVDESEPLL
RCDSTSSGSSALSRNGSFITKEKKDTVLRQVRLDPCDLQPIFDDMLHFLNPEELRVIEEIPQ
AEDKLDRLFEIIGVKSQEASOTLLDSVYSHLPDLL

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 350-370

ATGGGAAGCCAGTAACACTGTGGCCTACTATCTCTTCCGTGGTGCCATCTACATTTTTGGGA CTCGGGAATTATGAGGTAGAGGTGGAGGCGGAGCCGGATGTCAGAGGTCCTGAAATAGTCAC CATGGGGGAAAATGATCCGCCTGCTGTTGAAGCCCCCTTCTCATTCCGATCGCTTTTTGGCC TTGATGATTTGAAAATAAGTCCTGTTGCACCAGATGCAGATGCTGTTGCTGCACAGATCCTG TCACTGCTGCCATTGAAGTTTTTTCCAATCATCGTCATTGGGATCATTGCATTGATATTAGC ACTGGCCATTGGTCTGGGCATCCACTTCGACTGCTCAGGGAAGTACAGATGTCGCTCATCCT TTAAGTGTATCGAGCTGATAGCTCGATGTGACGGAGTCTCGGATTGCAAAGACGGGGAGGAC GAGTACCGCTGTGTCCGGGTGGTCAGAATGCCGTGCTCCAGGTGTTCACAGCTGCTTC GTGGAAGACCATGTGCTCCGATGACTGGAAGGGTCACTACGCAAATGTTGCCTGTGCCCAAC TGGGTTTCCCAAGCTATGTGAGTTCAGATAACCTCAGAGTGAGCTCGCTGGAGGGGCAGTTC CGGGAGGAGTTTGTCTCCATCGATCACCTCTTGCCAGATGACAAGGTGACTGCATTACACCA $\tt CTCAGTATATGTGAGGGAGGGATGTGCCTCTGGCCACGTGGTTACCTTGCAGTGCACAGCCT$ TGGCCCTGGCAGGCCAGCCTTCAGTTCCAGGGCTACCACCTGTGCGGGGGCTCTGTCATCAC GCCCCTGTGGATCATGACTGCTGCACACTGTGTTTATGACTTGTACCTCCCCAAGTCATGGA CCATCCAGGTGGGTCTAGTTTCCCTGTTGGACAATCCAGCCCCATCCCACTTGGTGGAGAAG ATTGTCTACCACAGCAAGTACAAGCCAAAGAGGCTGGGCAATGACATCGCCCTTATGAAGCT GGCCGGGCCACTCACGTTCAATGAAATGATCCAGCCTGTGTGCCCTGCCCAACTCTGAAGAGA ACTTCCCCGATGGAAAAGTGTGCTGGACGTCAGGATGGGGGGCCCACAGAGGATGGAGGTGAC GCCTCCCTGTCCTGAACCACGCGGCCGTCCCTTTGATTTCCAACAAGATCTGCAACCACAG GGACGTGTACGGTGGCATCATCTCCCCCTCCATGCTCTGCGCGGGCTACCTGACGGGTGGCG TGGACAGCTGCCAGGGGGACAGCGGGGGGCCCCTGGTGTGTCAAGAGAGGGGGCTGTGGAAG TTAGTGGGAGCGACCAGCTTTGGCATCGGCTGCGCAGAGGTGAACAAGCCTGGGGTGTACAC GAGGAAGGGGACAAGTAGCCACCTGAGTTCCTGAGGTGATGAAGACAGCCCGATCCTCCCCT GGACTCCCGTGTAGGAACCTGCACACGAGCAGCACCCTTGGAGCTCTGAGTTCCGGCACCA GTAGCAGGCCCGAAAGAGGCACCCTTCCATCTGATTCCAGCACAACCTTCAAGCTGCTTTTT GTTTTTTTTTTTTTGAGGTGGAGTCTCGCTCTGTTGCCCAGGCTGGAGTGCAGTGGCGAAA TCCCTGCTCACTGCAGCCTCCGCTTCCCTGGTTCAAGCGATTCTCTTGCCTCAGCTTCCCCA GTAGCTGGGACCACAGGTGCCCGCCACCACCCAACTAATTTTTGTATTTTAGTAGAGAC AGGGTTTCACCATGTTGGCCAGGCTGCTCTCAAACCCCTGACCTCAAATGATGTGCCTGCTT CAGCCTCCCACAGTGCTGGGATTACAGGCATGGGCCACCACGCCTAGCCTCACGCTCCTTTC TGATCTTCACTAAGAACAAAAGAAGCAGCAACTTGCAAGGGCGGCCTTTCCCACTGGTCCAT CTGGTTTTCTCTCCAGGGTCTTGCAAAATTCCTGACGAGATAAGCAGTTATGTGACCTCACG TGCAAAGCCACCAACAGCCACTCAGAAAAGACGCACCAGCCCAGAAGTGCAGAACTGCAGTC TTTCACATGTGGGGAGGTTAATCTAGGAATGACTCGTTTAAGGCCTATTTTCATGATTTCTT CATTGTCTGGCGTGTCTGCGTGGACTGGTGACGTGAATCAAAATCATCCACTGAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45234

><subunit 1 of 1, 453 aa, 1 stop

><MW: 49334, pI: 6.32, NX(S/T): 1

MGENDPPAVEAPFSFRSLFGLDDLKISPVAPDADAVAAQILSLLPLKFFPIIVIGIIALILA LAIGLGIHFDCSGKYRCRSSFKCIELIARCDGVSDCKDGEDEYRCVRVGGQNAVLQVFTAAS WKTMCSDDWKGHYANVACAQLGFPSYVSSDNLRVSSLEGQFREEFVSIDHLLPDDKVTALHH SVYVREGCASGHVVTLOCTACGHRRGYSSRIVGGNMSLLSOWPWOASLOFOGYHLCGGSVIT PLWIITAAHCVYDLYLPKSWTIQVGLVSLLDNPAPSHLVEKIVYHSKYKPKRLGNDIALMKL ${\tt AGPLTFNEMIQPVCLPNSEENFPDGKVCWTSGWGATEDGGDASPVLNHAAVPLISNKICNHR}$ DVYGGIISPSMLCAGYLTGGVDSCQGDSGGPLVCQERRLWKLVGATSFGIGCAEVNKPGVYT

RVTSFLDWIHEOMERDLKT

Signal Peptide:

amino acids 1-20

Transmembrane domain:

amino acids 240-284

GCTCAGCGGCGCGCGCGCGCGCGCGAGGCTCCGGAGCTCACTCGCCGAGGCAGAAATCCCTCCGGTCGCGA CGCCCGGCCCGGCTCGGCGCCCGCGTGGGATGGTGCAGCGCTCGCCGCCCGGGCCCGAGAGCTGCTGCACTGAAG GCCGGCGACG<u>ATG</u>GCAGCGCCGCTGCCCGTGTCCCCGCCGCCGCCCTCCTGCTCGCCCTGGCCGGTGCTCT GCTCGCGCCCTGCGAGGCCCGAGGGGTGAGCTTATGGAACCAAGGAGAGGCTGATGAAGTTGTCAGTGCCTCTGT TCGGAGTGGGGACCTCTGGATCCCAGTGAAGAGCTTCGACTCCAAGAATCATCCAGAAGTGCTGAATATTCGACT ACAACGGGAAAGCAAAGAACTGATCATAAATCTGGAAAGAATGAAGGTCTCATTGCCAGCAGTTTCACGGAAAC CCACTATCTGCAAGACGGTACTGATGTCTCCCTCGCTCGAAATTACACGGGTCACTGTTACTACCATGGACATGT ACGGGGATATTCTGATTCAGCAGTCAGTCTCAGCACGTGTTCTGGTCTCAGGGGGACTTATTGTGTTTGAAAATGA AAGCTATGTCTTAGAACCAATGAAAAGTGCAACCAACAGATACAAACTCTTCCCAGCGAAGAAGCTGAAAAGCGT CCGGGGATCATGTGGATCACATCACAACACCAAACCTCGCTGCAAAGAATGTGTTTTCCACCACCCTCTCAGAC ATGGGCAAGAGGCATAAAAGAGAGACCCTCAAGGCAACTAAGTATGTGGAGCTGGTGATCGTGGCAGACAACCG AGAGTTTCAGAGGCAAGGAAAAGATCTGGAAAAAGTTAAGCAGCGATTAATAGAGATTGCTAATCACGTTGACAA GTTTTACAGACCACTGAACATTCGGATCGTGTTGGTAGGCGTGGAAGTGTGGAATGACATGGACAAATGCTCTGT AAGTCAGGACCCATTCACCAGCCTCCATGAATTTCTGGACTGGAGGAAGATGAAGCTTCTACCTCGCAAATCCCA TGACAATGCGCAGCTTGTCAGTGGGGTTTATTTCCAAGGGACCACCATCGGCATGGCCCCAATCATGAGCATGTG CACGGCAGACCAGTCTGGGGGAATTGTCATGGACCATTCAGACAATCCCCTTGGTGCAGCCGTGACCCTGGCACA-TGAGCTGGGCCACAATTTCGGGATGAATCATGACACACTGGACAGGGGCTGTAGCTGTCAAATGGCGGTTGAGAA GGAGACCAGCCTGGAGAAAGGAATGGGGGTGTGCCTGTTTAACCTGCCGGAAGTCAGGGAGTCTTTCGGGGGCCA GAAGTGTGGGAACAGATTTGTGGAAGAAGGAGGAGTGTGACTGTGGGGAGCCAGAGGAATGTATGAATCGCTG CTGCAATGCCACCACCTGTACCCTGAAGCCGGACGCTGTGTGCGCACATGGGCTGTGCTGTGAAGACTGCCAGCT GAAGCCTGCAGGAACAGCGTGCAGGGACTCCAGCAACTCCTGTGACCTCCCAGAGTTCTGCACAGGGGCCAGCCC TCACTGCCCAGCCAATGTGTACCTGCACGATGGGCACTCATGTCAGGATGTGGACGGCTACTGCTACAATGGCAT CTGCCAGACTCACGAGCAGTGTGTCACGCTCTGGGGACCAGGTGCTAAACCTGCCCCTGGGATCTGCTTTGA GAGAGTCAATTCTGCAGGTGATCCTTATGGCAACTGTGGCAAAGTCTCGAAGAGTTCCTTTGCCAAATGCGAGAT GAGAGATGCTAAATGTGGAAAAATCCAGTGTCAAGGAGGTGCCAGCCGGCCAGTCATTGGTACCAATGCCGTTTC CATAGAAACAACATCCCTCTGCAGCAAGGAGGCCGGATTCTGTGCCGGGGGACCCACGTGTACTTGGGCGATGA CATGCCGGACCCAGGGCTTGTGCTTGCAGGCACAAAGTGTGCAGATGGAAAAATCTGCCTGAATCGTCAATGTCA AAATATTAGTGTCTTTGGGGTTCACGAGTGTGCAATGCAGTGCCACGGCAGAGGGGTGTGCAACAACAGGAAGAA CATCCGGCAAGCAGGCAAGCAAGGCAGGAAGCTGCAGAGTCCAACAGGGGAGCGGCGGCCAGGGGCCAGGAGCCCGTGGG ATCGCAGGAGCATGCGTCTACTGCCTCACTGACACTCATC<u>TGA</u>GCCCTCCCATGACATGGAGACCGTGACCAGTG CTGCTGCAGAGGAGGTCACGCGTCCCCAAGGCCTCCTGTGACTGGCAGCATTGACTCTGTGGCTTTGCCATCGTT TCCATGACAACAGACACAACAGTTCTCGGGGCTCAGGAGGGGAAGTCCAGCCTACCAGGCACGTCTGCAGAAA CAGTGCAAGGAAGGGCAGCTTCCTGGTTGAGCTTCTGCTAAAACATGGACATGCTTCAGTGCTGCTCGTGAG AGAGTAGCAGGTTACCACTCTGGCAGGCCCCAGCCCTGCAGCAAGGAGGAAGAGGACTCAAAAGTCTGGCCTTTC ACTGAGCCTCCACAGCAGTGGGGGAGAAGCAAGGGTTGGGCCCAGTGTCCCCTTTCCCCAGTGACACCTCAGCCT TGGCAGCCCTGATGACTGGTCTCTGGCTGCAACTTAATGCTCTGATATGGCTTTTAGCATTTATTATATGAAAAT TGAAACAAACTGGAGAAGAAGGTAGGAGAAAGGGCGGTGAACTCTGGCTCTTTGCTGGACATGCGTGACCAGC AGTACTCAGGTTTGAGGGTTTGCAGAAAGCCAGGGAACCCACAGAGTCACCAACCCTTCATTTAACAAGTAAGAA TGTTAAAAAGTGAAAACAATGTAAGAGCCTAACTCCATCCCCCGTGGCCATTACTGCATAAAATAGAGTGCATTT

箇

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49624</pre>

><subunit 1 of 1, 735 aa, 1 stop

><MW: 80177, pI: 7.08, NX(S/T): 5

MAARPLPVSPARALLLALAGALLAPCEARGVSLWNQGRADEVVSASVRSGDLWIPVKSFDSK
NHPEVLNIRLQRESKELIINLERNEGLIASSFTETHYLQDGTDVSLARNYTGHCYYHGHVRG
YSDSAVSLSTCSGLRGLIVFENESYVLEPMKSATNRYKLFPAKKLKSVRGSCGSHHNTPNLA
AKNVFPPPSQTWARRHKRETLKATKYVELVIVADNREFQRQGKDLEKVKQRLIEIANHVDKF
YRPLNIRIVLVGVEVWNDMDKCSVSQDPFTSLHEFLDWRKMKLLPRKSHDNAQLVSGVYFQG
TTIGMAPIMSMCTADQSGGIVMDHSDNPLGAAVTLAHELGHNFGMNHDTLDRGCSCQMAVEK
GGCIMNASTGYPFPMVFSSCSRKDLETSLEKGMGVCLFNLPEVRESFGGQKCGNRFVEEGEE
CDCGEPEECMNRCCNATTCTLKPDAVCAHGLCCEDCQLKPAGTACRDSSNSCDLPEFCTGAS
PHCPANVYLHDGHSCQDVDGYCYNGICQTHEQQCVTLWGPGAKPAPGICFERVNSAGDPYGN
CGKVSKSSFAKCEMRDAKCGKIQCQGGASRPVIGTNAVSIETNIPLQQGGRILCRGTHVYLG
DDMPDPGLVLAGTKCADGKICLNRQCQNISVFGVHECAMQCHGRGVCNNRKNCHCEAHWAPP
FCDKFGFGGSTDSGPIRQAEARQEAAESNRERGQGQEPVGSQEHASTASLTLI

Signal peptide:

amino acids 1-28

HOUNTHE HERT

FIGURE 31

TCCCAAGGCTTCTTGGATGGCAGATGATTNTGGGGTTTTGCATTGTTTCCCTGACAACGAAA
ACAAAACAGTTTTGGGGGTTCAGGAGGGGAANTCCAGCCTACCCAGGAAGTTTGCAGAAACA
GTGCAAGGAAGGGCAGGANTTCCTGGTTGAGNTTTTTGNTAAAACATGGACATGNTTCAGTG
CTGCTCNTGAGAGAGTAGCAGGTTACCACTTTTGGCAGGCCCCAGCCCTGCAGCAAGGAGGA
AGAGGACTCAAAAGTTTGGCCTTTCACTGAGCCTCCACAGCAGTGGGGGAGAAGCAAGGGTT
GGGCCCAGTGTCCCCTTTCCCCAGTGACACCTCAGCCTTGGCAGCCCTGATAACTGGTNTNT
GGCTGCAANTTAATGCTNTGATATGGCTTTTAGCATTTATTATATGAAAATAGCAGGGTTTT
AGTTTTAATTTATCAGAGACCCTGCCACCCATTCCATNTCCATCCAAG

CATCCTGCAACATGGTGAAACCACGCCTGGCTAATTTTGTTGTATTTTTGGTAGAGATGGGA TTTCACCGTGTTAGCCAGGATTGTCTCAATCTGACCTCATGATCTGCCCGCCTCGGCCTCCC AAAGTGCTGGGATTACAGGCGAGTGCAACCACACCCGGCCACAAACTTTTTAAGAAGTTAAT GAAACCATACCTTTTACATTTTTAATGACAGGAAAATGCTCACAATAATTGTTAACCCAAAA TTCTGGATACAAAGTACAATCTTTACTGTGTAAATACATGTATATGTACTATATGAAAATA TACCAAATATCAATAATACTTATCTCTGGGTAAAAACCTCTTCTCATACCCTGTGCTAACAA CTTTTAACAAAAATTTGCATCACTTTTAAGAATCAAGAAAATTTCTGAAGGTCATATGGG ACAGAAAAAAAACCAAGGGAAAAATCACGCCACTTGGGAAAAAAAGATTCGAAATCTGCCT TTTTATAGATTTGTAATTAATAAGGTCCAGGCTTTCTAAGCAACTTAAATGTTTTGTTTCGA AACAAAGTACTTGTCTGGATGTAGGAGGAAAGGGAGTGATGTCACTGCCATTATGATGCCCC TTGAATATAAGACCCTACTTGCTATCTCCCCTGCACCAGGCCAGGAGCCACCCATCCTCCAGC ACACTGAGCAGCAAGCTGGACACACGGCACACTGATCCAAATGGGTAAGGGGATGGTGGCGA TGCTCATTCTGGGTCTGCTACTTCTGGCGCTGCTACCCGTGCAGGTTTCTTCATTTGTT CCTTTAACCAGTATGCCGGAAGCTACTGCAGCCGAAACCACAAAGCCCTCCAACAGTGCCCT ${\tt ACAGCCTACAGCCGGTCTCCTTGTGGTCTTGCTTGCCCTTCTACATCTCTACCAT} {\color{red}{\bf TAA}{\bf A}{\bf GAGG}}$ CAGGTCAAGAACAGCTACAGTTCTCCAACCCATACACTAAAACCGAATCCAAATGGTGCCT AGAAGTTCAATGTGGCAAGGAAAAAACCAGGTCTTCATCAAATCTACTAATTTCACTCCTT GACTAGATGATAAATGCCTGTACTCCCAGTACTTTGGGAGGCCTAGGCCGGCGGATCACCTG AGGTCAGGAGTTTGAGACTAACCTGGCCAAAATGGTGAAACCCCATCTGTACTAAAAATACA AATATTGACTGGGCGTGGTGAGTGCCTGTGATCCCAGCTACTCAGGTGGCTGAAGCAGG ACAATCACTTGAACTCAGGAGGCAGAGGTTGCAGTGAGCTGAGATCGCGCTACTGCACTCTA CACGCCTGTAATCCCGGCACTTTGGGAGGCCGAGGTGGGCGGATCACGAGGTCAGGAGATCA AGACCATCCTGGCTAATACAGTGAAACCCTGTCTCTACTAAAAATACAAAAATTAGCCGGG GATGGTGGCAGGCACCTGGAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATAGCGTGAA CTCAGGAGGCGGAGCTTGCAGTGAGCCGAGATTGCGCTACTGCACTCCAGCCTGGGCGACAG

ـــــا أ

-

Щ

Ę.

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48309</pre>

><subunit 1 of 1, 67 aa, 1 stop

><MW: 6981, pI: 7.47, NX(S/T): 0

MGKGMVAMLILGLLLLALLLPVQVSSFVPLTSMPEATAAETTKPSNSALQPTAGLLVVLLAL

LHLYH

Signal peptide:

amino acids 15-27

GCCGCGGCGAGAGCGCCCAGCCCCGCCGCGATGCCCCGCGCGCCCAGGACGCCTCCTCCCGCTGCTGGCCCGGC CGGCGCCCTGACTGCTGCTGCTGCTGCTGCTGGCCATGGCGGCGCGGCGCGCTGGGGCGCCCGGGCCCAGG AGGCGCGCGGCGGCGGCGGCCCCCCCGCGCAGACGCGAGACGGACAGGACCCGCACAGCAAGCACCC TGTACACGGCCGACATGTTCACGCACGGGATCCAGAGCGCCGCGCACTTCGTCATGTTCTTCGCGCCCTGGTGTG GACACTGCCAGCGGCTGCAGCCGACTTGGAATGACCTGGGAGACAAATACAACAGCATGGAAGATGCCAAAGTCT ATGTGGCTAAAGTGGACTGCACGGCCCACTCCGACGTGTGCTCCGCCCAGGGGGTGCGAGGATACCCCACCTTAA AGCTTTTCAAGCCAGGCCAAGAAGCTGTGAAGTACCAGGGTCCTCGGGACTTCCAGACACTGGAAAACTGGATGC GGCTGTATGAGCTCTCAGCAAGCAACTTTGAGCTGCACGTTGCACAAGGCGACCACTTTATCAAGTTCTTCGCTC CGTGGTGTGGTCACTGCAAAGCCCTGGCTCCAACCTGGGAGCAGCTGGCTCTGGGCCTTGAACATTCCGAAACTG TCAAGATTGGCAAGGTTGATTGTACACAGCACTATGAACTCTGCTCCGGAAACCAGGTTCGTGGCTATCCCACTC TTCTCTGGTTCCGAGATGGGAAAAAGGTGGATCAGTACAAGGGAAAGCGGGATTTGGAGTCACTGAGGGAGTACG TGGAGTCGCAGCTGCAGCGCACAGAGACTGGAGCGACGGAGACCGTCACGCCCTCAGAGGCCCCGGTGCTGGCAG TAACCTTCATCAAGTTTTATGCTCCATGGTGTGGTCATTGTAAGACTCTGGCTCCTACTTGGGAGGAACTCTCTA AAAAGGAATTCCCTGGTCTGGCGGGGTCAAGATCGCCGAAGTAGACTGCACTGCACCGAACAGCAACAGCA AGTATTCGGTACGAGGCTACCCCACGTTATTGCTTTTCCGAGGAGGAAAAGTCAGTGAGCACAGTGGAGGCA GAGACCTTGACTCGTTACACCGCTTTGTCCTGAGCCAAGCGAAAGACGAACTTTAGGAACACAGTTGGAGGTCAC CTCTCCTGCCCAGCTCCCGCACCCTGCGTTTAGGAGTTCAGTCCCACAGAGGCCACTGGGTTCCCAGTGGTGGCT ATTCTTTATTAAGTTAAGTTTCTCTAAGTAAATGTGTAACTCATGGTCACTGTGTAAACATTTTCAGTGGCGATA TATCCCCTTTGACCTTCTCTTGATGAAATTTACATGGTTTCCTTTGAGACTAAAATAGCGTTGAGGGAAATGAAA ${\tt CCACGAGTTCTGGAAAGGTGGCCTTGTGGCAGTATTGACGTTCCTCTGATCTTAAGGTCACAGTTGACTCAATAC}$ TGTGTTGGTCCGTAGCATGGAGCAGATTGAAATGCAAAAACCCACACCTCTGGAAGATACCTTCACGGCCGCTGC TGGAGCTTCTGTTGCTGTGAATACTTCTCTCAGTGTGAGAGGTTAGCCGTGATGAAAGCAGCGTTACTTCTGACC GTGCCTGAGTAAGAGAATGCTGATGCCATAACTTTATGTGTCGATACTTGTCAAATCAGTTACTGTTCAGGGGAT CCTTCTGTTTCTCACGGGGTGAAACATGTCTTTAGTTCCTCATGTTAACACGAAGCCAGAGCCCACATGAACTGT TGGATGTCTTCCTTAGAAAGGGTAGGCATGGAAAATTCCACGAGGCTCATTCTCAGTATCTCATTAACTCATTGA AAGATTCCAGTTGTATTTGTCACCTGGGGTGACAAGACCAGACAGGCTTTCCCAGGCCTGGGTATCCAGGGAGGC TCTGCAGCCCTGCTGAAGGGCCCTAACTAGAGTTCTAGAGTTTCTGATTCTCAGTAGTCCTTTTAGAGG CTTGCTATACTTGGTCTGCTTCAAGGAGGTCGACCTTCTAATGTATGAAGAATGGGATGCATTTGATCTCAAGAC CAAAGACAGATGTCAGTGGGCTGCTCTGGCCCTGGTGTGCACGGCTGTGGCAGCTGTTGATGCCAGTGTCCTCTA ACTCATGCTGTCCTTGTGATTAAACACCTCTATCTCCCTTGGGAATAAGCACATACAGGCTTAAGCTCTAAGATA CCCATACGCAAGGGGATGTGGATACTTGGCCCAAAGTAACTGGTGGTAGGAATCTTAGAAACAAGACCACTTATA CTGTCTGTCTGAGGCAGAAGATAACAGCAGCATCTCGACCAGCCTCTGCCTTAAAGGAAATCTTTATTAATCACG TATGGTTCACAGATAATTCTTTTTTTAAAAAACCCAACCTCCTAGAGAAGCACAACTGTCAAGAGTCTTGTACA GATACTTTCTAAATAAACTCTTTTTTTTTAA

><subunit 1 of 1, 432 aa, 1 stop

><MW: 47629, pI: 5.90, NX(S/T): 0

MPARPGRLLPLLARPAALTALLLLLLGHGGGGRWGARAQEAAAAAADGPPAADGEDGQDPHS
KHLYTADMFTHGIQSAAHFVMFFAPWCGHCQRLQPTWNDLGDKYNSMEDAKVYVAKVDCTAH
SDVCSAQGVRGYPTLKLFKPGQEAVKYQGPRDFQTLENWMLQTLNEEPVTPEPEVEPPSAPE
LKQGLYELSASNFELHVAQGDHFIKFFAPWCGHCKALAPTWEQLALGLEHSETVKIGKVDCT
QHYELCSGNQVRGYPTLLWFRDGKKVDQYKGKRDLESLREYVESQLQRTETGATETVTPSEA
PVLAAEPEADKGTVLALTENNFDDTIAEGITFIKFYAPWCGHCKTLAPTWEELSKKEFPGLA
GVKIAEVDCTAERNICSKYSVRGYPTLLLFRGGKKVSEHSGGRDLDSLHRFVLSQAKDEL

Signal sequence:

amino acids 1-32

 $\tt CTTTTCTGAGGAACCACAGCA{\color{blue} ATG} AATGGCTTGCATCCTTGCTTCGAAGAAACCAATTTAT$ CCTCCTGGTACTATTCTTTTGCAAATTCAGAGTCTGGGTCTGGATATTGATAGCCGTCCTA CCGCTGAAGTCTGTGCCACACACACAATTTCACCAGGACCCAAAGGAGATGATGGTGAAAAA GGAGATCCAGGAGAAGGGAAAGCATGGCAAAGTGGGACGCATGGGGCCGAAAGGAATTAA AGGAGAACTGGGTGATATGGGAGATCAGGGCAATATTGGCAAGACTGGGCCCATTGGGAAGA AGGGTGACAAAGGGAAAAAGGTTTGCTTGGAATACCTGGAGAAAAAGGCAAAGCAGGTACT GTCTGTGATTGTGGAAGATACCGGAAATTTGTTGGACAACTGGATATTAGTATTGCTCGGCT CAAGACATCTATGAAGTTTGTCAAGAATGTGATAGCAGGGATTAGGGAAACTGAAGAGAAAT TCTACTACATCGTGCAGGAAGAAGAACTACAGGGAATCCCTAACCCACTGCAGGATTCGG GGTGGAATGCTAGCCAAGGATGAAGCTGCCAACACACTCATCGCTGACTATGTTGC TGTCCACAGACAACACTCCACTGCAGAACTATAGCAACTGGAATGAGGGGGAACCCAGCGAC CCCTATGGTCATGAGGACTGTGTGGAGATGCTGAGCTCTGGCAGATGACACAGAGTG CCATCTTACCATGTACTTTGTCTGTGAGTTCATCAAGAAGAAAAGTAACTTCCCTCATCCT ATTGTACTACATTTGATCTGAGTCAACATAGCTAGAAAATGCTAAACTGAGGTATGGAGCCT CCATCATCAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50980

><subunit 1 of 1, 277 aa, 1 stop

><MW: 30645, pI: 7.47, NX(S/T): 2

MNGFASLLRRNQFILLVLFLLQIQSLGLDIDSRPTAEVCATHTISPGPKGDDGEKGDPGEEG
KHGKVGRMGPKGIKGELGDMGDQGNIGKTGPIGKKGDKGEKGLLGIPGEKGKAGTVCDCGRY
RKFVGQLDISIARLKTSMKFVKNVIAGIRETEEKFYYIVQEEKNYRESLTHCRIRGGMLAMP
KDEAANTLIADYVAKSGFFRVFIGVNDLEREGQYMSTDNTPLQNYSNWNEGEPSDPYGHEDC
VEMLSSGRWNDTECHLTMYFVCEFIKKKK

Signal peptide:

amino acids 1-25

GGTTCTATCGATTCGAATTCGGCCACACTGGCCGGATCCTCTAGAGATCCCTCGACCTCGAC GCCAGCGCACGCGCTCCCTGGAAGGAGAAGTCTCAGCTAGAACGAGCGGCCCTAGGTTTT CGGAAGGGAGGATCAGGGATGTTTGCGAGCGGCTGGAACCAGACGGTGCCGATAGAGGAAGC AGCTACACCTCTGGCCGCAGTTGCGCTGGCTTCCGGCGGACTTGGCCTTTGCGGTGCGAGCT CTGTGCTGCAAAAGGGCTCTTCGAGCTCGCGCCCTGGCCGCGGCTGCCGCCGACCCGGAAGG ACACCTTTCTCATTCACGGCTCGCGGCGCTTTAGCTACTCAGAGGCGGAGCGCGAGAGTAAC AGGGCTGCACGCGCCTTCCTACGTGCGCTAGGCTGGGACTGGGGACCCGACGGCGGCGACAG CGGCGAGGGGAGCGCTGGAGAAGGCGAGCGGGGCAGCCGGGAGATGCAGCGGCCG GAAGCGGCGCGAGTTTGCCGGAGGGGACGGTGCCGCCAGAGGTGGAGGAGCCGCCGCCCCT CTGTCACCTGGAGCAACTGTGGCGCTGCTCCCCCGCTGGCCCAGAGTTTCTGTGGCTCTG GTTCGGGCTGGCCAAGGCCGGCCTGCGCACTGCCTTTGTGCCCACCGCCCTGCGCCGGGGCC CCCTGCTGCACTGCCCAGCTGCGGCGCGCGCGCGCTGGTGCTGGCGCCAGAGTTTCTG GAGTCCCTGGAGCCGGACCTGCCCGCCCTGAGAGCCATGGGGCTCCACCTGTGGGCTGCAGG GGCCAGTGCCAGGATACCTCTCTCCCCCCAGAGCATAACAGACACGTGCCTGTACATCTTC ACCTCTGGCACCACGGCCTCCCCAAGGCTGCTCGGATCAGTCATCTGAAGATCCTGCAATG CCAGGGCTTCTATCAGCTGTGTGTGTCCACCAGGAAGATGTGATCTACCTCGCCCTCCCAC TCTACCACATGTCCGGTTCCCTGCTGGGCATCGTGGGCTGCATGGGCCATTGGGGCCACAGTG GTGCTGAAATCCAAGTTCTCGGCTGGTCAGTTCTGGGAAGATTGCCAGCAGCACAGGGTGAC GGTGTTCCAGTACATTGGGGAGCTGTGCCGATACCTTGTCAACCAGCCCCCGAGCAAGGCAG AACGTGGCCATAAGGTCCGGCTGGCAGTGGGCAGCGGCTGCGCCCAGATACCTGGGAGCGT TTTGTGCGGCGCTTCGGGCCCCTGCAGGTGCTGGAGACATATGGACTGACAGAGGGCAACGT ${ t ATATCTTCCCCTTCTCCTTGATTCGCTATGATGTCACCACAGGAGAGCCAATTCGGGACCCC}$ CAGGGGCACTGTATGGCCACATCTCCAGGTGAGCCAGGGCTGCTGGTGGCCCCGGTAAGCCA GCAGTCCCCATTCCTGGGCTATGCTGGCCGGGCCAGAGCTGGCCCAGGGGAAGTTGCTAAAGG ATGTCTTCCGGCCTGGGGATGTTTTCTTCAACACTGGGGACCTGCTGGTCTGCGATGACCAA GGTTTTCTCCGCTTCCATGATCGTACTGGAGACACCTTCAGGTGGAAGGGGGAGAATGTGGC CACAACCGAGGTGGCAGAGGTCTTCGAGGCCCTAGATTTTCTTCAGGAGGTGAACGTCTATG GAGTCACTGTGCCAGGGCATGAAGGCAGGGCTGGAATGGCAGCCCTAGTTCTGCGTCCCCCC CACGCTTTGGACCTTATGCAGCTCTACACCCACGTGTCTGAGAACTTGCCACCTTATGCCCG GCCCCGATTCCTCAGGCTCCAGGAGTCTTTGGCCACCACAGAGACCTTCAAACAGCAGAAAG TTCGGATGGCAAATGAGGGCTTCGACCCCAGCACCCTGTCTGACCCACTGTACGTTCTGGAC CAGGCTGTAGGTGCCTACCTGCCCCTCACAACTGCCCGGTACAGCGCCCTCCTGGCAGGAAA CCTTCGAATCTGAGAACTTCCACACCTGAGGCACCTGAGAGGGAACTCTGTGGGGTGGGGG CCGTTGCAGGTGTACTGGGCTGTCAGGGATCTTTTCTATACCAGAACTGCGGTCACTATTTT AAAAAAAAGGGCGGCCGACTCTAGAGTCGACCTGCAGTAGGGATAACAGGGTAATAAGC TTGGCCGCCATGGCCCAACTTGTTTATTGCAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50913

><subunit 1 of 1, 730 aa, 1 stop

><MW: 78644, pI: 7.65, NX(S/T): 2

MGVCQRTRAPWKEKSQLERAALGFRKGGSGMFASGWNQTVPIEEAGSMAALLLLPLLLLLPL
LLLKLHLWPQLRWLPADLAFAVRALCCKRALRARALAAAAADPEGPEGGCSLAWRLAELAQQ
RAAHTFLIHGSRRFSYSEAERESNRAARAFLRALGWDWGPDGGDSGEGSAGEGERAAPGAGD
AAAGSGAEFAGGDGAARGGGAAAPLSPGATVALLLPAGPEFLWLWFGLAKAGLRTAFVPTAL
RRGPLLHCLRSCGARALVLAPEFLESLEPDLPALRAMGLHLWAAGPGTHPAGISDLLAEVSA
EVDGPVPGYLSSPQSITDTCLYIFTSGTTGLPKAARISHLKILQCQGFYQLCGVHQEDVIYL
ALPLYHMSGSLLGIVGCMGIGATVVLKSKFSAGQFWEDCQQHRVTVFQYIGELCRYLVNQPP
SKAERGHKVRLAVGSGLRPDTWERFVRRFGPLQVLETYGLTEGNVATINYTGQRGAVGRASW
LYKHIFPFSLIRYDVTTGEPIRDPQGHCMATSPGEPGLLVAPVSQQSPFLGYAGGPELAQGK
LYKHIFPFSLIRYDVTTGEPIRDPQGHCMATSPGEPGLLVAPVSQQSPFLGYAGGPELAQGK
LLKDVFRPGDVFFNTGDLLVCDDQGFLRFHDRTGDTFRWKGENVATTEVAEVFEALDFLQEV
NVYGVTVPGHEGRAGMAALVLRPPHALDLMQLYTHVSENLPPYARPRFLRLQESLATTETFK
QQKVRMANEGFDPSTLSDPLYVLDQAVGAYLPLTTARYSALLAGNLRI

Type II transmembrane domain:

amino acids 45-65

IJ

Other transmembrane domain:

amino acids 379-398

cAMP- and cGMP-dependent protein kinase phosphorylation site starting at amino acid 136

CUB domain protein motif amino acids 254-261

putative AMP-binding domain siganture amino acids 332-343

N-glycosylation sites amino acids 37-40 and 483-486

CCTGTGTTAAGCTGAGGTTTCCCCTAGATCTCGTATATCCCCAACACATACCTCCACGCACA GCTTGTCCATCTCCCTCCCGGGGGAGCCGGCGCGCGCTCCCACCTTTGCCGCACACTCCGGC GAGCCGAGCCCGCAGCGCTCCAGGATTCTGCGGCTCGGAACTCGGATTGCAGCTCTGAACCC CCATGGTGGTTTTTTAAACACTTCTTTTCCTTCTCTTCCTCGTTTTGATTGCACCGTTTCCA CCATCTGGCTTATAAAAGTTTGCTGAGCGCAGTCCAGAGGGCTGCGCTGCTCGTCCCCTCGG CTGGCAGAAGGGGGTGACGCTGGGCAGCGGCGAGGAGCGCGCCGCTGCCTCTGGCGGGCTTT CGGCTTGAGGGGCAAGGTGAAGAGCGCACCGGCCGTGGGGTTTACCGAGCTGGATTTGTATG TCCCCGCCGGGGCGGATGTGAAGGCTCGGAGCTGCGGAGAGGTCCGCCAGGCGTACGGTGCC AAGGGATTCAGCCTGGCGGACATCCCCTACCAGGAGATCGCAGGGGAACACTTAAGAATCTG TCCTCAGGAATATACATGCTGCACCACAGAAATGGAAGACAAGTTAAGCCAACAAAGCAAAC TCGAATTTGAAAACCTTGTGGAAGAGACAAGCCATTTTGTGCGCACCACTTTTGTGTCCAGG CATAAGAAATTTGACGAATTTTTCCGAGAGCTCCTGGAGAATGCAGAAAAGTCACTAAATGA TATGTTTGTACGGACCTATGGCATGCTGTACATGCAGAATTCAGAAGTCTTCCAGGACCTCT TCACAGAGCTGAAAAGGTACTACACTGGGGGTAATGTGAATCTGGAGGAAATGCTCAATGAC TTTTGGGCTCGGCTCCTGGAACGGATGTTTCAGCTGATAAACCCTCAGTATCACTTCAGTGA AGACTACCTGGAATGTGTGAGCAAATACACTGACCAGCTCAAGCCATTTGGAGACGTGCCCC GGAAACTGAAGATTCAGGTTACCCGCGCCTTCATTGCTGCCAGGACCTTTGTCCAGGGGCTG ACTGTGGGCAGAGAGTTGCAAACCGAGTTTCCAAGGTCAGCCCAACCCCAGGGTGTATCCG TGCCCTCATGAAGATGCTGTACTGCCCATACTGTCGGGGGCCTTCCCACTGTGAGGCCCTGCA ACAACTACTGTCTCAACGTCATGAAGGGCTGCTTGGCAAATCAGGCTGACCTCGACACAGAG TGGAATCTGTTTATAGATGCAATGCTCTTGGTGGCAGAGCGACTGGAGGGGCCATTCAACAT TGAGTCGGTCATGGACCCGATAGATGTCAAGATTTCTGAAGCCATTATGAACATGCAAGAAA ACAGCATGCAGGTGTCTGCAAAGGTCTTTCAGGGATGTGGTCAGCCCAAACCTGCTCCAGCC CTCAGATCTGCCCGCTCAGCTCCTGAAAATTTTAATACACGTTTCAGGCCCTACAATCCTGA GGAAAGACCAACAACTGCTGCAGGCACAAGCTTGGACCGGCTGGTCACAGACATAAAAGAGA AATTGAAGCTCTCTAAAAAGGTCTGGTCAGCATTACCCTACACTATCTGCAAGGACGAGAGC GTGACAGCGGCCACGTCCAACGAGGAGGAATGCTGGAACGGGCACAGCAAAGCCAGATACTT GCCTGAGATCATGAATGATGGGCTCACCAACCAGATCAACAATCCCGAGGTGGATGTGGACA TCACTCGGCCTGACACTTTCATCAGACAGCAGATTATGGCTCTCCGTGTGATGACCAACAAA CTAAAAAACGCCTACAATGGCAATGATGTCAATTTCCAGGACACAAGTGATGAATCCAGTGG CTCAGGGAGTGGCAGTGCATGGATGACGTGTCCCACGGAGTTTGAGTTTGTCACCA CAGAGGCCCCGCAGTGGATCCCGACCGGAGAGAGGTGGACTCTTCTGCAGCCCAGCGTGGC CACTCCCTGCTCTCCTGGTCTCTCACCTGCATTGTCCTGGCACTGCAGAGACTGTGCAGA<u>TA</u> ${f \underline{A}}$ TCTTGGGTTTTTGGTCAGATGAAACTGCATTTTAGCTATCTGAATGGCCAACTCACTTCTT TTCTTACACTCTTGGACAATGGACCATGCCACAAAAACTTACCGTTTTCTATGAGAAGAGAG CAGTAATGCAATCTGCCTCCCTTTTTGTTTTCCCAAAGAGTACCGGGTGCCAGACTGAACTG CTTCCTCTTCCTTCAGCTATCTGTGGGGACCTTGTTTATTCTAGAGAGAATTCTTACTCAA ATTTTTCGTACCAGGAGATTTTCTTACCTTCATTTGCTTTTATGCTGCAGAAGTAAAGGAAT CTCACGTTGTGAGGGTTTTTTTTTTTTCTCATTTAAAAT

ᆂ

m

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50914

><subunit 1 of 1, 555 aa, 1 stop

><MW: 62736, pI: 5.36, NX(S/T): 0

MPSWIGAVILPLLGLLLSLPAGADVKARSCGEVRQAYGAKGFSLADIPYQEIAGEHLRICPQ
EYTCCTTEMEDKLSQQSKLEFENLVEETSHFVRTTFVSRHKKFDEFFRELLENAEKSLNDMF
VRTYGMLYMQNSEVFQDLFTELKRYYTGGNVNLEEMLNDFWARLLERMFQLINPQYHFSEDY
LECVSKYTDQLKPFGDVPRKLKIQVTRAFIAARTFVQGLTVGREVANRVSKVSPTPGCIRAL
MKMLYCPYCRGLPTVRPCNNYCLNVMKGCLANQADLDTEWNLFIDAMLLVAERLEGPFNIES
VMDPIDVKISEAIMNMQENSMQVSAKVFQGCGQPKPAPALRSARSAPENFNTRFRPYNPEER
PTTAAGTSLDRLVTDIKEKLKLSKKVWSALPYTICKDESVTAGTSNEEECWNGHSKARYLPE
IMNDGLTNQINNPEVDVDITRPDTFIRQQIMALRVMTNKLKNAYNGNDVNFQDTSDESSGSG
SGSGCMDDVCPTEFEFVTTEAPAVDPDRREVDSSAAQRGHSLLSWSLTCIVLALQRLCR

Signal peptide:

amino acids 1-23

FIGURE 42A

CGGACGCGTGGGCGGACGCGTGGGCAAAAGAACTCGGAGTGCCAAAGCTAAATAAGTTAGCTGAGAAAACGCACG GGAGGGAGATCAGGAAACGGCTTCTTCCTCACTTCGCCGCCTGGTGAGTGTCGGGGAGATTGGCAAACGCCTAGG AAAGGACTGGGGAAAATAGCCCTGGGAAAGTGGAGAAGGTGATCAGGAGGCCGGTCCACTACGGCAGTTTATCTG TCTGATCAGAGCCAGACGCGACGCGTCCACTTCGCAGTTCTTTCCAGGTGTGGGGACCGCAGGACAGACGGCCGA TCCCGCCGCCCTCCGTACCAGCACTCCCAGGAGAGTCAGCCTCGCTCCCCAACGTCGAGGGCGCTCTGGCCACGA CGGACATGGTGACAGCTGAGAGGAGGAGGAGTTTCTTGCCAGGTGGAGAGTCTTCACCGTCTGTTGGGTGCATG ${\tt TGTGCGCCCGCAGCGGGGGGGGGGGGGTTCTCCGCGTGGAGTCTCACCTGGGACCTGAGTGA{\color{red} {\tt ATG} {\tt GCTCCCA} } \\$ AAGAAGGGGCCTTACTAGCTCAAGCTGGAGAGAAACTAGAGCCCAGCACAACTTCCACCTCCCAGCCCCATCTCA ${\tt TTTTCATCCTAGCGGATGATCAGGGATTTAGAGATGTGGGTTACCACGGATCTGAGATTAAAACACCTACTCTTG}$ ACAAGCTCGCTGCCGAAGGAGTTAAACTGGAGAACTACTATGTCCAGCCTATTTGCACACCATCCAGGAGTCAGT TTATTACTGGAAAGTATCAGATACACCCGGACTTCAACATTCTATCATAAGACCTACCCAACCCAACTGTTTAC $\tt CTCTGGACAATGCCACCCTACCTCAGAAACTGAAGGAGGTTGGATATTCAACGCATATGGTCGGAAAATGGCACT$ TGGGTTTTAACAGAAAAGAATGCATGCCCACCAGAAGAGGATTTGATACCTTTTTTGGTTCCCTTTTGGGAAGTG ${\tt GGGATTACTATACACACTACAAATGTGACAGTCCTGGGATGTGTGGCTATGACTTGTATGAAAACGACAATGCTG}$ CCTGGGACTATGACAATGGCATATACTCCACACAGATGTACACTCAGAGAGTACAGCAAATCTTAGCTTCCCATA TCGAACACTACCGATCCATTATCAACATAAACAGGAGAAGATATGCTGCCATGCTTTCCTGCTTAGATGAAGCAA TCAACAACGTGACATTGGCTCTAAAGACTTATGGTTTCTATAACAACAGCATTATCATTTACTCTTCAGATAATG GTGGCCAGCCTACGGCAGGAGGAGTAACTGGCCTCTCAGAGGTAGCAAAGGAACATATTGGGAAGGAGGGATCC GGGCTGTAGGCTTTGTGCATAGCCCACTTCTGAAAAACAAGGGAACAGTGTGTAAGGAACTTGTGCACATCACTG ACTGGTACCCCACTCTCATTTCACTGGCTGAAGGACAGATTGATGAGGACATTCAACTAGATGGCTATGATATCT GGGAGACCATAAGTGAGGGTCTTCGCTCACCCCGAGTAGATATTTTGCATAACATTGACCCCTATACACCAAGGC AAAAAATGGCTCCTGGGCAGCAGGCTATGGGATCTGGAACACTGCAATCCAGTCAGCCATCAGAGTGCAGCACTG GAAATTGCTTACAGGAAATCCTGGCTACAGCGACTGGGTCCCCCCTCAGTCTTTCAGCAACCTGGGACCGAACCG GTGGCACAATGAACGGATCACCTTGTCAACTGGCAAAAGTGTATGGCTTTTCAACATCACAGCCGACCCATATGA ${\tt GAGGGTGGACCTATCTAACAGGTATCCAGGAATCG}{{\tt TGA}}{\tt AGAAGCTCCTACGGAGGCTCTCACAGTTCAACAAAAC}$ TGCAGTGCCGGTCAGGTATCCCCCCAAAGACCCCAGAAGTAACCCTAGGCTCAATGGAGGGGTCTGGGGACCATG GAAGAAGAAACAGCAGAAAGCAGTCTCAGGTAAACCAGCAAATTTGGCTCGATAATATCGCTGGCCTAAGCGTCA ${\tt GGCTTGTTTTCATGCTGTGCCACTCCAGAGACTTCTGCCACCTGGCCGCCACACTGAAAACTGTCCTGCTCAGTG}$ CCAAGGTGCTACTCTTGCAAGCCACACTTAGAGAGAGTGGAGATGTTTATTTCTCTCGCTCCTTTAGAAAACGTG GTGAGTCCTGAGTTCCACTGCTGTGCTTCAGTCAACTGACCAAACACTGCTTTGAATTATAGGAGGAGAACAATA ACCTACCATCCGCAAGCATGCTAATTTGATGGAAGTTACAGGGTAGCATGATTAAAACTACCTTTGATAAATTAC

FIGURE 42B

CACATGTGAACAGCTTGCACCTCATTTTACCATGCGTGAGGGAATGGCAAATAAGAATGTTTGAGCACACTGCCC ATTTTATTTCATTTCTTCAAATTATCAAGCACTGTAATACTATAAATTAATGTAATACTGTGTGAATTCAGACTA ATTACTTGGAAATTCAATGTTTGTGCAGAGTTGAGACAACTTTATTGTTTCTATCATAAACTATTTATGTATCTT AATTATTAAAATGATTTACTTTATGGCACTAGAAAATTTACTGTGGCTTTTCTGATCTAACTTCTAGCTAAAATT GTATCATTGGTCCTAAAAATAAAAATCTTTACTAATAGGCAATTGAAGGAATGGTTTGCTAACAACCACAGTAA TATAATATGATTTTACAGATAGATGCTTCCCCTTGGCTATGACATGGAGAAAGATTTTCCCATAATAACTAA TATTTATATTAGGTTGGTGCAAAACTAGTTGCGGTTTTTCCCATTAAAAGTAATAACCTTACTCTTATACAAAGT ACATGCAAACGTCATGAGGAGAATTAAAGGAGTATTATCAGTAATGAAGTTTATCATGGGTCATCAATGAGCATA GATTGGTGTGGATCCTGTAGACCCTGGTGTTTTCTTTGAAGTGCCCTCTCCTAATGCAGAGGCCTTGAAGCTTAC AGTATACACTTGAAAAGTCACAGATAGCTAGAATTATGATCTTTGAAGTTATAACTGTGATCTGAAAATGTGTGT GGTGGTATGACAGCATACCATTAAATACATTTACATCACAGCTCAAAGGACTGTGATATAATCCATTTATATCAC AACTCAAAGGACTGTGATATAATCCATTTATATCACAGCTCACAGTTTCTGAAAATGTATAAAAGAATCTATAAT CTAGTACTGAAATTACTAAATTGGGTAAGATGATTTAAATGATTTTAACTTTTAACATTTTATTTCTAGAATATAT GGCTCCATTTTATTTTATAGTGTAAAGTTGTATTTCCTAAAGTTTGTGTTTTTGTCGACAGTATCTTTTAAATGAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48296</pre>

><subunit 1 of 1, 515 aa, 1 stop

><MW: 56885, pI: 6.49, NX(S/T): 5

MAPRGCAGHPPPPSPQACVCPGKMLAMGALAGFWILCLLTYGYLSWGQALEEEEEGALLAQA
GEKLEPSTTSTSQPHLIFILADDQGFRDVGYHGSEIKTPTLDKLAAEGVKLENYYVQPICTP
SRSQFITGKYQIHTGLQHSIIRPTQPNCLPLDNATLPQKLKEVGYSTHMVGKWHLGFNRKEC
MPTRRGFDTFFGSLLGSGDYYTHYKCDSPGMCGYDLYENDNAAWDYDNGIYSTQMYTQRVQQ
ILASHNPTKPIFLYTAYQAVHSPLQAPGRYFEHYRSIININRRRYAAMLSCLDEAINNVTLA
LKTYGFYNNSIIIYSSDNGGQPTAGGSNWPLRGSKGTYWEGGIRAVGFVHSPLLKNKGTVCK
ELVHITDWYPTLISLAEGQIDEDIQLDGYDIWETISEGLRSPRVDILHNIDPYTPRQKMAPG
QQAMGSGTLQSSQPSECSTGNCLQEILATATGSPLSLSATWDRTGGTMNGSPCQLAKVYGFS
TSQPTHMRGWTYLTGIQES

Important Features:

Signal Peptide:

amino acids 1-37

Sulfatases signature 1.

amino acids 120-132

Sulfatases signature 2.

amino acids 168-177

Tyrosine kinase phosphorylation site.

amino acids 163-169

N-glycosylation sites.

amino acids 157-160, 306-309 and 318-321

CGGACGCGTGGGTGCGAGTGGAGCGGAGCCCGAGCGGCTGAGGAGAGAGGAGGCGGCGGC CCGTGCGAGAATGCCTCTGCCCTGGAGCCTTGCGCTCCCGCTGCTGCTCCTCCTGGGTGGCAG GTGGTTTCGGGAACGCGGCCAGTGCAAGGCATCACGGGTTGTTAGCATCGGCACGTCAGCCT GGGGTCTGTCACTATGGAACTAAACTGGCCTGCTGCTACGGCTGGAGAAGAAACAGCAAGGG GCAGATGCTTTCCAGGATACACCGGGAAAACCTGCAGTCAAGATGTGAATGAGTGTGGAATG AAACCCCGGCCATGCCAACACAGATGTGTGAATACACACGGAAGCTACAAGTGCTTTTGCCT CAGTGGCCACATGCTCATGCCAGATGCTACGTGTGTGAACTCTAGGACATGTGCCATGATAA ACTGTCAGTACAGCTGTGAAGACACAGAAGAAGGGCCACAGTGCCTGTGTCCATCCTCAGGA CTCCGCCTGGCCCCAAATGGAAGAGACTGTCTAGATATTGATGAATGTGCCTCTGGTAAAGT CATCTGTCCCTACAATCGAAGATGTGTGAACACATTTGGAAGCTACTACTGCAAATGTCACA ATGGATAGCCATACGTGCAGCCACCATGCCAATTGCTTCAATACCCAAGGGTCCTTCAAGTG TAAATGCAAGCAGGGATATAAAGGCAATGGACTTCGGTGTTCTGCTATCCCTGAAAATTCTG AAAAACAGCATGAAAAAGAAGGCAAAAATTAAAAATGTTACCCCAGAACCCACCAGGACTCC TACCCCTAAGGTGAACTTGCAGCCCTTCAACTATGAAGAGATAGTTTCCAGAGGCGGGAACT CTCATGGAGGTAAAAAAGGGAATGAAGAGAAATGAAAGAGGGGCCTTGAGGATGAGAAAAGAG AAGAGAAAGCCCTGAAGAATGACATAGAGGAGCCGAAGCCTGCGAGGAGATGTTTTTTCCCT AAGGTGAATGAAGCAGGTGAATTCGGCCTGATTCTGGTCCAAAGGAAAGCGCTAACTTCCAA ACTGGAACATAAAGATTTAAATATCTCGGTTGACTGCAGCTTCAATCATGGGATCTGTGACT GGAAACAGGATAGAGAAGATGATTTTGACTGGAATCCTGCTGATCGAGATAATGCTATTGGC CCTACCTGACCTGCAACCCCAAAGCAACTTCTGTTTGCTCTTTGATTACCGGCTGGCCGGAG ACAAAGTCGGGAAACTTCGAGTGTTTGTGAAAAACAGTAACAATGCCCTGGCATGGGACAAG ACCACGAGTGAGGATGAAAAGTGGAAGACAGGGAAAATTCAGTTGTATCAAGGAACTGATGC TACCAAAAGCATCATTTTTGAAGCAGAACGTGGCAAGGGCAAAACCGGCGAAATCGCAGTGG ATGGCGTCTTGCTTGTTTCAGGCTTATGTCCAGATAGCCTTTTATCTGTGGATGACTGAATG GACCTCTGGCATTTTAGAATTACTAGCTGAAAAATTGTAATGTACCAACAGAAATATTATTG TAAGATGCCTTTCTTGTATAAGATATGCCAATATTTGCTTTAAATATCATATCACTGTATCT TCTCAGTCATTTCTGAATCTTTCCNCATTATATATAAAATNTGGAAANGTCAGTTTATCTC CCCTCCTCNGTATATCTGATTTGTATANGTANGTTGATGNGCTTCTCTCTACAACATTTCTA GAAAATAGAAAAAAAGCACAGAGAAATGTTTAACTGTTTGACTCTTATGATACTTCTTGGA AACTATGACATCAAAGATAGACTTTTGCCTAAGTGGCTTAGCTGGGTCTTTCATAGCCAAAC TTGTATATTAATTCTTTGTAATAATAA

MPLPWSLALPLLLSWVAGGFGNAASARHHGLLASARQPGVCHYGTKLACCYGWRRNSKGVCE
ATCEPGCKFGECVGPNKCRCFPGYTGKTCSQDVNECGMKPRPCQHRCVNTHGSYKCFCLSGH
MLMPDATCVNSRTCAMINCQYSCEDTEEGPQCLCPSSGLRLAPNGRDCLDIDECASGKVICP
YNRRCVNTFGSYYCKCHIGFELQYISGRYDCIDINECTMDSHTCSHHANCFNTQGSFKCKCK
QGYKGNGLRCSAIPENSVKEVLRAPGTIKDRIKKLLAHKNSMKKKAKIKNVTPEPTRTPTPK
VNLQPFNYEEIVSRGGNSHGGKKGNEEK

Signal peptide:

amino acids 1-21

EGF-like domain cysteine pattern signature.

amino acids 80-91

Calcium-binding EGF-like domains

amino acids 103-124, 230-251 and 185-206

GGGAGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTCCTTGGTGCAGCTGCTG CGCTTCCTGAGGGCTGACGGCGACCTGACGCTACTATGGGCCGAGTGGCAGGGACGACGCCC AGAATGGGAGCTGACTGATATGGTGGTGTGGGTGACTGGAGCCTCGAGTGGAATTGGTGAGG AGCTGGCTTACCAGTTGTCTAAACTAGGAGTTTCTCTTGTGCTGTCAGCCAGAAGAGTGCAT GAGCTGGAAAGGGTGAAAAGAAGATGCCTAGAGAATGGCAATTTAAAAGAAAAAGATATACT TGTTTTGCCCCTTGACCTGACCGACACTGGTTCCCATGAAGCGGCTACCAAAGCTGTTCTCC AGGAGTTTGGTAGAATCGACATTCTGGTCAACAATGGTGGAATGTCCCAGCGTTCTCTGTGC ATGGATACCAGCTTGGATGTCTACAGAAAGCTAATAGAGCTTAACTACTTAGGGACGGTGTC CTTGACAAAATGTGTTCTGCCTCACATGATCGAGGGAAGCAAGGAAGATTGTTACTGTGA CTCCGGGGTTTTTTTAATGGCCTTCGAACAGAACTTGCCACATACCCAGGTATAATAGTTTC TAACATTTGCCCAGGACCTGTGCAATCAAATATTGTGGAGAATTCCCTAGCTGGAGAAGTCA CAAAGACTATAGGCAATAATGGAGACCAGTCCCACAAGATGACAACCAGTCGTTGTGTGCGG CTGATGTTAATCAGCATGGCCAATGATTTGAAAGAAGTTTGGATCTCAGAACAACCTTTCTT GTTAGTAACATATTTGTGGCAATACATGCCAACCTGGGCCTGGTGGATAACCAACAAGATGG GGAAGAAAAGGATTGAGAACTTTAAGAGTGGTGTGGATGCAGACTCTTCTTATTTTAAAATC GAAAACATGAAAACAGCAATCTTCTTATGCTTCTGAATAATCAAAGACTAATTTGTGATTTT ATTGCCATGAATCTTGCAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA36343

><subunit 1 of 1, 289 aa, 1 stop

><MW: 32268, pI: 9.21, NX(S/T): 0

MVVWVTGASSGIGEELAYQLSKLGVSLVLSARRVHELERVKRRCLENGNLKEKDILVLPLDL
TDTGSHEAATKAVLQEFGRIDILVNNGGMSQRSLCMDTSLDVYRKLIELNYLGTVSLTKCVL
PHMIERKQGKIVTVNSILGIISVPLSIGYCASKHALRGFFNGLRTELATYPGIIVSNICPGP
VQSNIVENSLAGEVTKTIGNNGDQSHKMTTSRCVRLMLISMANDLKEVWISEQPFLLVTYLW
QYMPTWAWWITNKMGKKRIENFKSGVDADSSYFKIFKTKHD

Important Features:

Signal Peptide:

amino acids 1-31

Transmembrane domain:

amino acids 136-157

Tyrosine kinase phosphorylation site.

106-113 and 107-114

Homologous region to Short-chain alcohol dehydrogenase amino acids 80-90, 131-168, 1-13 and 176-185

GCGACGTGGGCACCGCCATCAGCTGTTCGCGCGTCTTCTCCTCCAGGTGGGGCAGGGGTTTC TTGCATCTTCTACACACTACAGCTATTGTTAGGTTGCCTGCGGACACGCTGGGCCTCTGTCC ${\tt TG} \underline{{\tt ATG}} {\tt CTGCTGAGCTCCCTGGTGTCTCTCGCTGGTTCTGTCTACCTGGCCTGGATCCTGTTC}$ TTCGTGCTCTATGATTTCTGCATTGTTTGTATCACCACCTATGCTATCAACGTGAGCCTGAT GTGGCTCAGTTTCCGGAAGGTCCAAGAACCCCAGGGCAAGGCTAAGAGGCACTGAGCCCTCA ACCCAAGCCAGGCTGACCTCATCTGCTTTGCTTTGGTCTTCAAGCCGCTCAGCGTGCCTGTG GACAGCGTGGCCCCGGCCCCCAAGCCTCAGGAGGGCAACACAGTCCCTGGCGAGTGGCCC TGGCAGGCCAGTGTGAGGAGGCAAGGAGCCCACATCTGCAGCGGCTCCCTGGTGGCAGACAC CTGGGTCCTCACTGCTGCCCACTGCTTTGAAAAGGCAGCAGCAACAGAACTGAATTCCTGGT CAGTGGTCCTGGGTTCTCTGCAGCGTGAGGGACTCAGCCCTGGGGCCGAAGAGGTGGGGGTG GCTGCCCTGCAGTTGCCCAGGGCCTATAACCACTACAGCCAGGGCTCAGACCTGGCCCTGCT CCTTTGGAGCCTCCTGCTGGGCCACTGGCTGGGATCAGGACACCAGTGATGCTCCTGGGACC CTACGCAATCTGCGCCTGCGTCTCATCAGTCGCCCCACATGTAACTGTATCTACAACCAGCT GCACCAGCGACACCTGTCCAACCCGGCCCGGCCTGGGATGCTATGTGGGGGCCCCCAGCCTG GGGTGCAGGGCCCCTGTCAGGGAGATTCCGGGGGCCCTGTGCTGTGCCTCGAGCCTGACGGA CACTGGGTTCAGGCTCATCAGCTTTGCATCAAGCTGTGCCCAGGAGGACGCTCCTGT GCTGCTGACCAACACAGCTGCTCACAGTTCCTGGCTGCAGGCTCGAGTTCAGGGGGCAGCTT TCCTGGCCCAGAGCCCAGAGACCCCGGAGATGAGTGATGAGGACAGCTGTGTAGCCTGTGGA TCCTTGAGGACAGCAGGTCCCCAGGCAGGAGCACCCTCCCCATGGCCCTGGGAGGCCAGGCT GATGCACCAGGGACAGCTGGCCTGTGGCGGAGCCCTGGTGTCAGAGGAGGCGGTGCTAACTG CTGCCCACTGCTTCATTGGGCGCCCAGGGCCCCAGAGGAATGGAGCGTAGGGCTGGGGACCAGA TCTGCCTGCCCTATCCTGACCACCACCTGCTGATGGGGAGCGTGGCTGGGTTCTCGGGACGG GCCCGCCCAGGAGCAGCATCAGCTCCCTCCAGACAGTGCCCGTGACCCTCCTGGGGCCTAG GGCCTGCAGCCGGCTGCATGCAGCTCCTGGGGGTGATGGCAGCCCTATTCTGCCGGGGATGG TGTGTACCAGTGCTGTGGGTGAGCTGCCCAGCTGTGAGGGCCTGTCTGGGGCACCACTGGTG CATGAGGTGAGGGCACATGGTTCCTGGCCGGGCTGCACAGCTTCGGAGATGCTTGCCAAGG CCCCGCCAGGCCGGCGTCTTCACCGCGCTCCCTGCCTATGAGGACTGGGTCAGCAGTTTGG ACTGGCAGGTCTACTTCGCCGAGGAACCAGAGCCCGAGGCTGAGCCTGGAAGCTGCCTGGCC AGGCAGGCAAATGGCATTACTGCCCCTGTCCTCCCCACCCTGTCATGTGTGATTCCAGGCAC CTCCCACCCTGCAGGACAGGGGTGTCTGTGGACACTCCCACACCCAACTCTGCTACCAAGC AAAATAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40571

MLLSSLVSLAGSVYLAWILFFVLYDFCIVCITTYAINVSLMWLSFRKVQEPQGKAKRHGNTV
PGEWPWQASVRRQGAHICSGSLVADTWVLTAAHCFEKAAATELNSWSVVLGSLQREGLSPGA
EEVGVAALQLPRAYNHYSQGSDLALLQLAHPTTHTPLCLPQPAHRFPFGASCWATGWDQDTS
DAPGTLRNLRLRLISRPTCNCIYNQLHQRHLSNPARPGMLCGGPQPGVQGPCQGDSGGPVLC
LEPDGHWVQAGIISFASSCAQEDAPVLLTNTAAHSSWLQARVQGAAFLAQSPETPEMSDEDS
CVACGSLRTAGPQAGAPSPWPWEARLMHQGQLACGGALVSEEAVLTAAHCFIGRQAPEEWSV
GLGTRPEEWGLKQLILHGAYTHPEGGYDMALLLLAQPVTLGASLRPLCLPYPDHHLPDGERG
WVLGRARPGAGISSLQTVPVTLLGPRACSRLHAAPGGDGSPILPGMVCTSAVGELPSCEGLS
GAPLVHEVRGTWFLAGLHSFGDACQGPARPAVFTALPAYEDWVSSLDWQVYFAEEPEPEAEP
GSCLANISQPTSC

Important features:

Signal peptide:

amino acids 1-15

Homologous region to Serine proteases, trypsin family amino acids 79-95, 343-359 and 237-247

F
 N-glycosylation sites.

amino acids 37-40 and 564-567

Kringle domains

IU

amino acids 79-96, 343-360 and 235-247

CGGGCCGCCCCGGCCCCATTCGGGCCGGGCCTCGCTGCGCGGCGACTGAGCCAGGCTGG GCCGCGTCCCTGAGTCCCAGAGTCGGCGCGCGCGCGGGGGGCAGCCTTCCACCACGGGGAG $\tt CCCAGCTGTCAGCCGCCTCACAGGAAG{\color{red} ATG}CTGCGTCGGCGGGGCAGCCCTGGCATGGGTGT$ GCATGTGGGTGCAGCCCTGGGAGCACTGTGGTTCTGCCTCACAGGAGCCCTGGAGGTCCAGG TCCCTGAAGACCCAGTGGTGGCACTGGTGGGCACCGATGCCACCCTGTGCTGCTCCTTCTCC CCTGAGCCTGGCTTCAGCCTGGCACAGCTCAACCTCATCTGGCAGCTGACAGATACCAAACA GCTGGTGCACAGCTTTGCTGAGGGCCAGGACCAGGGCAGCGCCTATGCCAACCGCACGGCCC GACGAGGCCAGCTTCACCTGCTTCGTGAGCATCCGGGATTTCGGCAGCGCTGCCGTCAGCCT GCAGGTGGCCGCTCCCTACTCGAAGCCCAGCATGACCCTGGAGCCCAACAAGGACCTGCGGC CAGGGGACACGGTGACCATCACGTGCTCCAGCTACCAGGGCTACCCTGAGGCTGAGGTGTTC TGGCAGGATGGCCAGGTGTGCCCCTGACTGGCAACGTGACCACGTCGCAGATGGCCAACGA GCAGGGCTTGTTTGATGTGCACAGCGTCCTGCGGGTGGTGCTGGGTGCGAATGGCACCTACA GCTGCCTGGTGCGCAACCCCGTGCTGCAGCAGGATGCGCACRGCTCTGTCACCATCACAGGG TGCACTGCTGGTGGCCCTGGCTTTCGTGTGCTGGAGAAAGATCAAACAGAGCTGTGAGGAGG AGAATGCAGGAGCTGAGGACCAGGATGGGGAGGGGAGAAGGCTCCAAGACAGCCCTGCAGCCT CTGAAACACTCTGACAGCAAAGAAGATGATGGACAAGAAATAGCC<u>TGA</u>CCATGAGGACCAGG GAGCTGCTACCCCTCCCTACAGCTCCTACCCTCTGGCTGCAATGGGGCTGCACTGTGAGCCC TGCCCCCAACAGATGCATCCTGCTCTGACAGGTGGGCTCCTTCTCCAAAGGATGCGATACAC AGACCACTGTGCAGCCTTATTTCTCCAATGGACATGATTCCCAAGTCATCCTGCTGCCTTTT GCCTTATTTCACAGTACATACATTTCTTAGGGACACAGTACACTGACCACATCACCACCCTC TTCTTCCAGTGCTGCGTGGACCATCTGGCTGCCTTTTTTCTCCAAAAGATGCAATATTCAGA CTGACTGACCCCTGCCTTATTTCACCAAAGACACGATGCATAGTCACCCCGGCCTTGTTTC TCCAATGGCCGTGATACACTAGTGATCATGTTCAGCCCTGCTTCCACCTGCATAGAATCTTT TCTTCTCAGACAGGGACAGTGCGGCCTCAACATCTCCTGGAGTCTAGAAGCTGTTTCCTTTC CCCTCCTTCCTCCCTGCCCCAAGTGAAGACAGGGCCAGGGCCAGGAATGCTTTGGGGACACCG AGGGGACTGCCCCCACCCACCATGGTGCTATTCTGGGGGCTGGGGCAGTCTTTTCCTGGC TTGCCTCTGGCCAGCTCCTGGCCTCTGGTAGAGTGAGACTTCAGACGTTCTGATGCCTTCCG GATGTCATCTCCCCTGCCCCAGGAATGGAAGATGTGAGGACTTCTAATTTAAATGTGGGAC ΑΑΑΑΑΑΑΑΑΑΑΑ

N

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41386

><subunit 1 of 1, 316 aa, 1 stop, 1 unknown

><MW: -1, pI: 4.62, NX(S/T): 4

MLRRRGSPGMGVHVGAALGALWFCLTGALEVQVPEDPVVALVGTDATLCCSFSPEPGFSLAQ
LNLIWQLTDTKQLVHSFAEGQDQGSAYANRTALFPDLLAQGNASLRLQRVRVADEGSFTCFV
SIRDFGSAAVSLQVAAPYSKPSMTLEPNKDLRPGDTVTITCSSYQGYPEAEVFWQDGQGVPL
TGNVTTSQMANEQGLFDVHSVLRVVLGANGTYSCLVRNPVLQQDAHXSVTITGQPMTFPPEA
LWVTVGLSVCLIALLVALAFVCWRKIKQSCEEENAGAEDQDGEGEGSKTALQPLKHSDSKED
DGQEIA

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 251-270

N-glycosylation site.

amino acids 91-94, 104-107, 189-192 and 215-218

Homologous region to Immunoglobulins and MHC amino acids 217-234

TTCGTGACCCTTGAGAAAAGAGTTGGTGGTAAATGTGCCACGTCTTCTAAGAAGGGGGAGTC CTGAACTTGTCTGAAGCCCTTGTCCGTAAGCCTTGAACTACGTTCTTAAATCTATGAAGTCG AGGGACCTTTCGCTGCTTTTGTAGGGACTTCTTTCCTTGCTTCAGCAACATGAGGCTTTTCT TGTGGAACGCGGTCTTGACTCTGTTCGTCACTTCTTTGATTGGGGGCTTTGATCCCTGAACCA GAAGTGAAAATTGAAGTTCTCCAGAAGCCATTCATCTGCCATCGCAAGACCAAAGGAGGGGA TTTGATGTTGGTCCACTATGAAGGCTACTTAGAAAAGGACGGCTCCTTATTTCACTCCACTC ACAAACATAACAATGGTCAGCCCATTTGGTTTACCCTGGGCATCCTGGAGGCTCTCAAAGGT TGGGACCAGGGCTTGAAAGGAATGTGTGTAGGAGAGAAGAGAAAGCTCATCATTCCTCCTGC TCTGGGCTATGGAAAAGAAGGAAAAGGTAAAATTCCCCCAGAAAGTACACTGATATTTAATA TTGATCTCCTGGAGATTCGAAATGGACCAAGATCCCATGAATCATTCCAAGAAATGGATCTT AATGATGACTGGAAACTCTCTAAAGATGAGGTTAAAGCATATTTAAAGAAGGAGTTTGAAAA ACATGGTGCGGTGGAATGAAAGTCATCATGATGCTTTGGTGGAGGATATTTTTGATAAAG AAGATGAAGACAAAGATGGGTTTATATCTGCCAGAGAATTTACATATAAACACGATGAGTTA TAGAGATACATCTACCCTTTTAATATAGCACTCATCTTTCAAGAGAGGGCCAGTCATCTTTAA GGGAAGAAAAGCTAATTGGTCTTTGAATAGAAGACTTCTGGACAATTTTTCACTTTCACAG ATATGAAGCTTTGTTTTACTTTCTCACTTATAAATTTAAAATGTTGCAACTGGGAATATACC ACGACATGAGACCAGGTTATAGCACAAATTAGCACCCTATATTTCTGCTTCCCTCTATTTTC ${\tt TCCAAGTTAGAGGTCAACATTTGAAAAGCCTTTTGCAATAGCCCAAGGCTTGCTATTTTCAT$ GTTATAATGAAATAGTTTATGTGTAACTGGCTCTGAGTCTCTGCTTGAGGACCAGAGGAAAA TGGTTGTTGGACCTGACTTGTTAATGGCTACTGCTTTACTAAGGAGATGTGCAATGCTGAAG TTAGAAACAAGGTTAATAGCCAGGCATGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAG GCTGAGGCGGGCGGATCACCTGAGGTTGGGAGTTCGAGACCAGCCTGACCAACACGGAGAAA CCCTATCTCTACTAAAAATACAAAGTAGCCCGGCGTGGTGATGCGTGCCTGTAATCCCAGCT ACCCAGGAAGGCTGAGGCGGCAGAATCACTTGAACCCGAGGCCGAGGTTGCGGTAAGCCGAG ATATGTATGCATTGAGACATGCTACCTAGGACTTAAGCTGATGAAGCTTGGCTCCTAGTGAT TGGTGGCCTATTATGATAAATAGGACAAATCATTTATGTGTGAGTTTCTTTGTAATAAATG TATCAATATGTTATAGATGAGGTAGAAAGTTATATTTATATTCAATATTTACTTCTTAAGGC TAGCGGAATATCCTTCCTGGTTCTTTAATGGGTAGTCTATAGTATATTATACTACAATAACA TTGTATCATAAGATAAAGTAGTAAACCAGTCTACATTTTCCCATTTCTGTCTCATCAAAAAC TGAAGTTAGCTGGGTGTGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGGGGCCAAGGAGGG TGGATCACTTGAGATCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCTTGTCTCTA CTAAAAATACAAAAATTAGCCAGGCGTGGTGGTGCACACCTGTAGTCCCAGCTACTCGGGAG GCTGAGACAGGAGATTTGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCAAGATTGTGCC CCTACAGCAGCTACTATTGAATAAATACCTATCCTGGATTTT

14

Œ

1 1

⊨≟

Ш

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44194</pre>

><subunit 1 of 1, 211 aa, 1 stop

><MW: 24172, pI: 5.99, NX(S/T): 1

MRLFLWNAVLTLFVTSLIGALIPEPEVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSL FHSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEGKGKIPPEST LIFNIDLLEIRNGPRSHESFQEMDLNDDWKLSKDEVKAYLKKEFEKHGAVVNESHHDALVED IFDKEDEDKDGFISAREFTYKHDEL

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 176-179

Casein kinase II phosphorylation site.

amino acids 143-146, 156-159, 178-181 and 200-203

Endoplasmic reticulum targeting sequence.

amino acids 208-211

FKBP-type peptidyl-prolyl cis-trans isomerase amino acids 78-114 and 118-131

EF-hand calcium-binding domain.

amino acids 191-203, 184-203 and 140-159

S-100/ICaBP type calcium binding domain

amino acids 183-203

CCAACCATTCCTCCCTTGTAGTTCTCGCCCCCTCAAATCACCCTCTCCCGTAGCCCACCCGA CTAACATCTCAGTCTCTGAAA<u>ATG</u>CACAGAGATGCCTGGCTACCTCGCCCTGCCTTCAGCCT CTGCCACCCTCAACGTCCTCAATGGCTCTGACGCCCGCCTGCCCTGCACCTTCAACTCCTGC TACACAGTGAACCACAAACAGTTCTCCCTGAACTGGACTTACCAGGAGTGCAACAACTGCTC TGAGGAGATGTTCCTCCAGTTCCGCATGAAGATCATTAACCTGAAGCTGGAGCGGTTTCAAG ACCGCGTGGAGTTCTCAGGGAACCCCAGCAAGTACGATGTGTCGGTGATGCTGAGAAACGTG CAGCCGGAGGATGAGGGGATTTACAACTGCTACATCATGAACCCCCCTGACCGCCACCGTGG CCATGGCAAGATCCATCTGCAGGTCCTCATGGAAGAGCCCCCTGAGCGGGACTCCACGGTGG CCGTGATTGTGGGTGCCTCCGTCGGGGGCTTCCTGGCTGTGGTCATCTTGGTGCTGATGGTG GTCAAGTGTGTGAGGAGAAAAAAAGAGCAGAAGCTGAGCACAGATGACCTGAAGACCGAGGA GGAGGGCAAGACGGACGGTGAAGGCAACCCGGATGATGGCGCCCAAG<u>TAG</u>TGGGTGGCCGGCC CTCTTGGTGTGCTTCCCGTGACCTAGGACCCCAGGGCCCACCTGGGGCCTCCTGAACCCCCG ACTTCGTATCTCCCACCCTGCACCAAGAGTGACCCACTCTCTTCCATCCGAGAAACCTGCCA TGCTCTGGGACGTGTGGGCCCTGGGGAGAGAGAGAAAGGGCTCCCACCTGCCAGTCCCTGG GGAGGGCCGCTGTCACCTGCCCAGTGCTTGCCTGGCAGTGGCTTCAGAGAGGACCTGGTGG GGAGGGAGGCTTTCCTGTGCTGACAGCGCTCCCTCAGGAGGGCCTTGGCCTGGCACGGCTG TGCTCCTCCCTGCTCCCAGCCCAGAGCAGCCATCAGGCTGGAGGTGACGATGAGTTCCTGA AACTTGGAGGGCATGTTAAAGGGATGACTGTGCATTCCAGGGCACTGACGGAAAGCCAGGG $\tt CTGCAGGCAAAGCTGGACATGTGCCCTGGCCCAGGAGGCCATGTTGGGCCCTCGTTTCCATT$ GCTAGTGGCCTCCTTGGGGCTCCTGTTGGCTCCTAATCCCTTAGGACTGTGGATGAGGCCAG ACTGGAAGAGCAGCTCCAGGTAGGGGGCCATGTTTCCCAGCGGGGACCCACCAACAGAGGCC AGTTTCAAAGTCAGCTGAGGGGCTGAGGGGTGGGGCTCCATGGTGAATGCAGGTTGCTGCAG GCTCTGCCTTCTCCATGGGGTAACCACCCTCGCCTGGGCAGGGGGGCAGCCAAGGCTGGGAAAT GAGGAGGCCATGCACAGGGTGGGGCAGCTTTCTTTGGGGCTTCAGTGAGAACTCTCCCAGTT GCCCTTGGTGGGGTTTCCACCTGGCTTTTGGCTACAGAGAGGGAAAGCCTGAGGCCG GCATAAGGGGAGGCCTTGGAACCTGAGCTGCCAATGCCAGCCCTGTCCCATCTGCGGCCACG CTACTCGCTCCTCCCAACAACTCCCTTCGTGGGGACAAAAGTGACAATTGTAGGCCAGGC ACAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCGGGTGGATTACCTCCAT CTGTTTAGTAGAAATGGGCAAAACCCCATCTCTACTAAAAATACAAGAATTAGCTGGGCGTG GTGGCGTGTGCCTGTAATCCCAGCTATTTGGGAGGCTGAGGCAGGAGAATCGCTTGAGCCCG GGAAGCAGAGGTTGCAGTGAACTGAGATAGTGATAGTGCCACTGCAATTCAGCCTGGGTGAC ATAGAGAGACTCCATCTCAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45415</pre>

<subunit 1 of 1, 215 aa, 1 stop</pre>

<MW: 24326, pI: 6.32, NX(S/T): 4

MHRDAWLPRPAFSLTGLSLFFSLVPPGRSMEVTVPATLNVLNGSDARLPCTFNSCYTVNHKQ FSLNWTYQECNNCSEEMFLQFRMKIINLKLERFQDRVEFSGNPSKYDVSVMLRNVQPEDEGI YNCYIMNPPDRHRGHGKIHLQVLMEEPPERDSTVAVIVGASVGGFLAVVILVLMVVKCVRRK KEQKLSTDDLKTEEEGKTDGEGNPDDGAK

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 161-179

Immunoglobulin-like fold:

amino acids 83-127

N-glycosylation sites.

amino acids 42-45, 66-69 and 74-77

GTTGTATATGTCCTGAAGTACATCCGTGCATTTTTTTTAGCATCCAACCATCCTCCCTTGTA
GTTCTCGCCCCCTCAAATCACCTTCTCCCTTAGCCCACCCNACTAACATCTCAGTCTCTGAA
AATGCACAGAGATGCCTGGCTACCTCGCCCTGCCTTCAGCCTCACGGGGCTCAGTCTCTTT
TCTCTTTGGTGCCACCAGGACGGAGCATGGAGGTCCACAGTACCTGNCCACCCTCAACGTCC
TCAATGGCTCTGACGCCCGCCTGCCCTTCAACTCCTGCTACACAGTGAACCACAAAC
AGTTCTCCCTGAACTGGACTTACCAGGAGTGCAACAACTGCTCTGAGGAGATGTTCCTCCAG
TTCCGCATGAAGATCATTAACCTGAAGCTGGAGCGGTTTCAAGACCGCGTGGAGTTCTCAGG
GAACCCCAGCAAGTACGATGTCTCGGTGATGCTGAGAAACGTGCAGCCGGAGGATGAGGGGA
TTTACAACTGCTACATCATGAACCCCCC

roter ingovinos

FIGURE 57

TGCGGCGACCGTCGTACACC<u>ATG</u>GGCCTCCACCTCCGCCCTACCGTGTGGGGCTGCTCCCGGATGGCCTCCTGT CTGGTGATTTGGGTAACCAACTGGAAGCCAAGCTGGACAAGCCGACAGTGGTGCACTACCTCTGCTCCAAGAAGA $\tt CCGAAAGCTACTTCACAATCTGGCTGAACCTGGAACTGCTGCTGCTGTCATCATTGACTGCTGGATTGACAATA$ TCAGGCTGGTTTACAACAACATCCAGGGCCACCCAGTTTCCTGATGGTGTGGATGTACGTGTCCCTGGCTTTG GGAAGACCTTCTCACTGGAGTTCCTGGACCCCAGCAAAAGCAGCGTGGGTTCCTATTTCCACACCATGGTGGAGA GCCTTGTGGGCTGGGGCTACACACGGGGTGAGGATGTCCGAGGGGCTCCCTATGACTGGCGCCCGAGCCCCAAATG AAAACGGGCCCTACTTCCTGGCCCTCCGCGAGATGATCGAGGAGATGTACCAGCTGTATGGGGGCCCCGTGGTGC TGGTTGCCCACAGTATGGGCAACATGTACACGCTCTACTTTCTGCAGCGGCAGCCGCAGGCCTGGAAGGACAAGT ATATCCGGGCCTTCGTGTCACTGGGTGCGCCCTGGGGGGGCGTGGCCAAGACCCTGCGCGTCCTGGCTTCAGGAG ACAACAACGGATCCCAGTCATCGGGCCCCTGAAGATCCGGGAGCAGCAGCGGTCAGCTGTCTCCACCAGCTGGC TGCTGCCCTACAACTACACATGGTCACCTGAGAAGGTGTTCGTGCAGACACCCCACAATCAACTACACACTGCGGG AAGCCACGATGCCACCTGGCGTGCAGCTGCACTGCCTCTATGGTACTGGCGTCCCCACACCAGACTCCTTCTACT ATGAGAGCTTCCCTGACCGTGACCCTAAAATCTGCTTTGGTGACGGCGATGGTACTGTGAACTTGAAGAGTGCCC TGCAGTGCCAGGCCTGGCAGAGCCGCCAGGAGCACCAAGTGTTGCTGCAGGAGCTGCCAGGCAGCAGCACATCG AGATGCTGGCCAACGCCACCACCCTGGCCTATCTGAAACGTGTGCTCCTTGGGCCCTGACTCCTGTGCCACAGGA CTCCTGTGGCTCGGCCGTGGACCTGCTGTTGGCCTCTGGGGCTGTCATGGCCCACGCGTTTTGCAAAGTTTGTGA GTGGCAGTGAAGAAGGAAGAAATGAGAGTCTAGACTCAAGGGACACTGGATGGCAAGAATGCTGCTGATGGTGGA TGTCCCCCTATTCCTGTGGGCTTTTCATACTTGCCTACTGGGCCCTGGCCCCGCAGCCTTCCTATGAGGGATGTT ACTGGGCTGTGGTCCTGTACCCAGAGGTCCCAGGGATCGGCTCCTGGCCCCTCGGGTGACCCTTCCCACACACCA GCCACAGATAGGCCTGCCACTGGTCATGGGTAGCTAGAGCTGCTGGCTTCCCTGTGGCTTAGCTGGTGGCCAGCC CCTGGGACATCTCACTCCACTCCTACCTCCCTTACCACCAGGAGCATTCAAGCTCTGGATTGGGCAGCAGATGTG CCCCAGTCCCGCAGGCTGTTCCCAGGGGCCCTGATTTCCTCGGATGTGCTATTGGCCCCAGGACTGAAGCTGC CTCCCTTCACCCTGGGACTGTGGTTCCAAGGATGAGAGCAGGGGTTGGAGCCATGGCCTTCTGGGAACCTATGGA GAAAGGGAATCCAAGGAAGCAGCCAAGGCTGCTCGCAGCTTCCCTGAGCTGCACCTCTTGCTAACCCCACCATCA CACTGCCACCCTGCCCTAGGGTCTCACTAGTACCAAGTGGGTCAGCACAGGGCTGAGGATGGGGCTCCTATCCAC CCTGGCCAGCACCCAGCTTAGTGCTGGGACTAGCCCAGAAACTTGAATGGGACCCTGAGAGAGCCAGGGGTCCCC TGAGGCCCCCTAGGGGCTTTCTGTCTGCCCCAGGGTGCTCCATGGATCTCCCTGTGGCAGCAGGCATGGAGAGT CAGGGCTGCCTTCATGGCAGTAGGCTCTAAGTGGGTGACTGGCCACAGGCCGAGAAAAGGGTACAGCCTCTAGGT GGGGTTCCCAAAGACGCCTTCAGGCTGGACTGAGCTGCTCTCCCACAGGGTTTCTGTGCAGCTGGATTTTCTCTG TTGCATACATGCCTGGCATCTGTCTCCCCTTGTTCCTGAGTGGCCCCACATGGGGCTCTGAGCAGGCTGTATCTG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44189</pre>

><subunit 1 of 1, 412 aa, 1 stop

><MW: 46658, pI: 6.65, NX(S/T): 4

MGLHLRPYRVGLLPDGLLFLLLLMLLADPALPAGRHPPVVLVPGDLGNQLEAKLDKPTVVH
YLCSKKTESYFTIWLNLELLLPVIIDCWIDNIRLVYNKTSRATQFPDGVDVRVPGFGKTFSL
EFLDPSKSSVGSYFHTMVESLVGWGYTRGEDVRGAPYDWRRAPNENGPYFLALREMIEEMYQ
LYGGPVVLVAHSMGNMYTLYFLQRQPQAWKDKYIRAFVSLGAPWGGVAKTLRVLASGDNNRI
PVIGPLKIREQQRSAVSTSWLLPYNYTWSPEKVFVQTPTINYTLRDYRKFFQDIGFEDGWLM
RQDTEGLVEATMPPGVQLHCLYGTGVPTPDSFYYESFPDRDPKICFGDGDGTVNLKSALQCQ
AWQSRQEHQVLLQELPGSEHIEMLANATTLAYLKRVLLGP

Important features:

Signal peptide:

amino acids 1-28

Potential lipid substrate binding site:

amino acids 147-164

N-glycosylation sites.

amino acids 99-102, 273-276, 289-292 and 398-401

Lipases, serine proteins

amino acids 189-201

Beta-transducin family Trp-Asp repeat

amino acids 353-365

GCCTACGGCGCCAAGGCGGCGCTCCTTCGACCTGCGCCGCTTCCTGACGCAGCCGCA GGTGGTGGCGCGCGCGTGTGCTTGGTCTTCGCCTTGATCGTGTTCTCCTGCATCTATGGTG AGGGCTACAGCAATGCCCACGAGTCTAAGCAGATGTACTGCGTGTTCAACCGCAACGAGGAT GCCTGCCGCTATGGCAGTGCCATCGGGGTGCTGGCCTTCCTGGCCTCGGCCTTCTTCTTGGT GGTCGACGCGTATTTCCCCCAGATCAGCAACGCCACTGACCGCAAGTACCTGGTCATTGGTG ACCTGCTCTTCTCAGCTCTCTGGACCTTCCTGTGGTTTGTTGGTTTCTGCTTCCTCACCAAC CAGTGGGCAGTCACCAACCCGAAGGACGTGCTGGTGGGGGCCGACTCTGTGAGGGCAGCCAT CACCTTCAGCTTCTTTTCCATCTTCTCCTGGGGTGTGCTGGCCTCCCTGGCCTACCAGCGCT ACAAGGCTGGCGTGGACGACTTCATCCAGAATTACGTTGACCCCACTCCGGACCCCAACACT GCCTACGCCTCCTACCCAGGTGCATCTGTGGACAACTACCAACAGCCACCCTTCACCCAGAA CGCGGAGACCACCGAGGGCTACCAGCCGCCCCTGTGTACTGAGTGGCGGTTAGCGTGGGAA GGGGGACAGAGAGGGCCCTCCCCTCTGCCCTGGACTTCCCATCAGCCTCCTGGAACTGCCA GCCCTCTCTTTCACCTGTTCCATCCTGTGCAGCTGACACACAGCTAAGGAGCCTCATAGCC CACTCCTCCAGGGCACTTTTAGGAAAGGGTTTTTAGCTAGTGTTTTTCCTCGCTTTTAATGA CCTCAGCCCGCCTGCAGTGGCTAGAAGCCAGCAGGTGCCCATGTGCTACTGACAAGTGCCT CAGCTTCCCCCGGCCCGGGTCAGGCCGTGGGAGCCGCTATTATCTGCGTTCTCTGCCAAAG ACTCGTGGGGGCCATCACACCTGCCCTGTGCAGCGGAGCCGGACCAGGCTCTTGTGTCCTCA CTCAGGTTTGCTTCCCCTGTGCCCACTGCTGTATGATCTGGGGGCCACCACCCTGTGCCGGT GGCCTCTGGGCTGCCCCGTGGTGTGAGGGCGGGCTGGTGCTCATGGCACTTCCTCCTTG CTCCCACCCTGGCAGCAGGGAAGGGCTTTGCCTGACAACACCCAGCTTTATGTAAATATTC TGCAGTTGTTACTTAGGAAGCCTGGGGAGGGCAGGGGTGCCCCATGGCTCCCAGACTCTGTC TGTGCCGAGTGTATTATAAAATCGTGGGGGAGATGCCCGGCCTGGGATGCTGTTTGGAGACG GAATAAATGTTTTCTCATTCAAAG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48304</pre>

<subunit 1 of 1, 224 aa, 1 stop</pre>

<MW: 24810, pI: 4.75, NX(S/T): 1

MESGAYGAAKAGGSFDLRRFLTQPQVVARAVCLVFALIVFSCIYGEGYSNAHESKQMYCVFN RNEDACRYGSAIGVLAFLASAFFLVVDAYFPQISNATDRKYLVIGDLLFSALWTFLWFVGFC FLTNQWAVTNPKDVLVGADSVRAAITFSFFSIFSWGVLASLAYQRYKAGVDDFIQNYVDPTP DPNTAYASYPGASVDNYQQPPFTQNAETTEGYQPPPVY

Important features:

Type II Transmembrane domain:

amino acids 1-45

Other transmembrane domains:

amino acids 74-90, 108-126 and 145-161

N-glycosylation site.

amino acids 97-100

GAGCCACCTACCCTGCTCCGAGGCCAGGCCTGCAGGGCCTCATCGGCCAGAGGGTGATCAGTGAGCAGAAGGATG CCCGTGGCCGAGGCCCCCAGGTGGCTGGCGGGCAGGGGGGGAGCTGATGGCGAGGAGCCGAGCCAGAGGG ATGTTCAAGGCCTGTGAGGACTCCAAGAGAAAAGCCCGGGGCTACCTCCGCCTGGTGCCCCTGTTTGTGCTGCTG GCCCTGCTGCTGGCTGGCGTGGGGGGGTGCTACTCTGGTATTTCCTAGGGTACAAGGCGGAGGTGATGGTCAGC CAGGTGTACTCAGGCAGTCTGCGTGTACTCAATCGCCACTTCTCCCAGGATCTTACCCGCCGGGAATCTAGTGCC TTCCGCAGTGAAACCGCCAAAGCCCAGAAGATGCTCAAGGAGCTCATCACCAGCACCCGCCTGGGAACTTACTAC CACCGCCGGCTGATGCTGAGCCCCGAGGTGGTGCAGGCACTGCTGGTGGAGGAGCTGCTGTCCACAGTCAACAGC TCGGCTGCCGTCCCTACAGGGCCGAGTACGAAGTGGACCCCGAGGGCCTAGTGATCCTGGAAGCCAGTGTGAAA GACATAGCTGCATTGAATTCCACGCTGGGTTGTTACCGCTACAGCTACGTGGGCCAGGGCCAGGTCCTCCGGCTG AAGGGGCCTGACCACCTGGCCTCCAGCTGCCTGTGGCACCTGCAGGGCCCCAAGGACCTCATGCTCAAACTCCGG ATCACCTCGGTGTACGGCTGCAGCCGCCAGGAGCCCGTGGTGGAGGTTCTGGCGTCGGGGGCCATCATGGCGGTC GTCTGGAAGAGGGCCTGCACAGCTACTACGACCCCTTCGTGCTCTCCGTGCAGCCGGTGGTCTTCCAGGCCTGT GAAGTGAACCTGACGCTGGACAACAGGCTCGACTCCCAGGGCGTCCTCAGCACCCCGTACTTCCCCAGCTACTAC TCGCCCAAACCCACTGCTCCTGGCACCTCACGGTGCCCTCTCTGGACTACGGCTTGGCCCTCTGGTTTGATGCC TATGCACTGAGGAGGCAGAAGTATGATTTGCCGTGCACCCAGGGCCAGTGGACGATCCAGAACAGGAGGCTGTGT GGCTTGCGCATCCTGCAGCCCTACGCCGAGAGGATCCCCGTGGTGGCCACGGCCGGGATCACCATCAACTTCACC TCCCAGATCTCCCTCACCGGGCCCGGTGTGCGGGTGCACTATGGCTTGTACAACCAGTCGGACCCCTGCCCTGGA GAGAGAAACTGCGTTTGCAGAGCCACATTCCAGTGCAAAGAGGACAGCACATGCATCTCACTGCCCAAGGTCTGT GATGGGCAGCCTGATTGTCTCAACGGCAGCGATGAAGAGCAGTGCCAGGAAGGGGTGCCATGTGGGACATTCACC TTCCAGTGTGAGGACCGGAGCTGCGTGAAGAAGCCCAACCCGCAGTGTGATGGGCGGCCCGACTGCAGGGACGGC TCGGATGAGGAGCACTGTGACTGTGGCCTCCAGGGCCCCTCCAGCCGCATTGTTGGTGGAGCTGTGTCCTCCGAG GGTGAGTGGCCATGGCAGGCCAGCCTCCAGGTTCGGGGTCGACACATCTGTGGGGGGGCCCTCATCGCTGACCGC TGGGTGATAACAGCTGCCCACTGCTTCCAGGAGGACAGCATGGCCTCCACGGTGCTGTGGACCGTGTTCCTGGGC AAGGTGTGGCAGAACTCGCGCTGGCCTGGAGAGGTGTCCTTCAAGGTGAGCCGCCTGCTCCTGCACCCGTACCAC GAAGAGGACAGCCATGACTACGACGTGGCGCTGCTGCAGCTCGACCACCCGGTGGTGCGCTCGGCCGCCGTGCGC CCCGTCTGCCTGCCCGCGCGCTCCCACTTCTTCGAGCCCGGCCTGCACTGCTGGATTACGGGCTGGGGCGCCTTG GCCTATCGCTACCAGGTGACGCCACGCATGCTGTGTGCCGGCTACCGCAAGGGGCAAGAAGGATGCCTGTCAGGGT GACTCAGGIGGTCCGCTGGTGTGCAAGGCACTCAGTGGCCGCTGGTTCCTGGCGGGGCTGGTCAGCTGGGGCCTG GGCTGTGGCCGGCCTAACTACTTCGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGGTG ACC<u>TGA</u>GGAACTGCCCCCTGCAAAGCAGGCCCACCTCCTGGACTCAGAGAGCCCAGGGCAACTGCCAAGCAGG GGGACAAGTATTCTGGCGGGGGGGGGGGGAGAGAGCAGGCCCTGTGGTGGCAGGAGGTGGCATCTTGTCTCGTCC CTGATGTCTGCTCCAGTGATGGCAGGAGGATGGAGAAGTGCCAGCAGCTGGGGGTCAAGACGTCCCCTGAGGACC GCAGTGGCTCAGCAGCAAGAATGCTGGTTCTACATCCCGAGGAGTGTCTGAGGTGCGCCCCACTCTGTACAGAGG CTGTTTGGGCAGCCTTGCCTCCAGAGAGCAGATTCCAGCTTCGGAAGCCCCTGGTCTAACTTGGGATCTGGGAAT GGAAGGTGCTCCCATCGGAGGGGACCCTCAGAGCCCTGGAGACTGCCAGGTGGGCCTGCTGCCACTGTAAGCCAA AAGGTGGGGAAGTCCTGACTCCAGGGTCCTTGCCCCACCCCTGCCACCCTGGGCCCTCACAGCCCAGACCCT

COLYCOP LODE

FIGURE 63

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49152</pre>

><subunit 1 of 1, 802 aa, 1 stop

><MW: 88846, pI: 6.41, NX(S/T): 7

MPVAEAPQVAGGQGDGGDGEEAEPEGMFKACEDSKRKARGYLRLVPLFVLLALLVLASAGVL
LWYFLGYKAEVMVSQVYSGSLRVLNRHFSQDLTRRESSAFRSETAKAQKMLKELITSTRLGT
YYNSSSVYSFGEGPLTCFFWFILQIPEHRRLMLSPEVVQALLVEELLSTVNSSAAVPYRAEY
EVDPEGLVILEASVKDIAALNSTLGCYRYSYVGQGQVLRLKGPDHLASSCLWHLQGPKDLML
KLRLEWTLAECRDRLAMYDVAGPLEKRLITSVYGCSRQEPVVEVLASGAIMAVVWKKGLHSY
YDPFVLSVQPVVFQACEVNLTLDNRLDSQGVLSTPYFPSYYSPQTHCSWHLTVPSLDYGLAL
WFDAYALRRQKYDLPCTQGQWTIQNRRLCGLRILQPYAERIPVVATAGITINFTSQISLTGP
GVRVHYGLYNQSDPCPGEFLCSVNGLCVPACDGVKDCPNGLDERNCVCRATFQCKEDSTCIS
LPKVCDGQPDCLNGSDEEQCQEGVPCGTFTFQCEDRSCVKKPNPQCDGRPDCRDGSDEEHCD
CGLQGPSSRIVGGAVSSEGEWPWQASLQVRGRHICGGALIADRWVITAAHCFQEDSMASTVL
WTVFLGKVWQNSRWPGEVSFKVSRLLLHPYHEEDSHDYDVALLQLDHPVVRSAAVRPVCLPA
RSHFFEPGLHCWITGWGALREGGPISNALQKVDVQLIPQDLCSEAYRYQVTPRMLCAGYRKG
KKDACQGDSGGPLVCKALSGRWFLAGLVSWGLGCGRPNYFGVYTRITGVISWIQQVVT

Important features:

Type II transmembrane domain:

amino acids 46-67

Serine proteases, trypsin family, histidine active site.

amino acids 604-609

N-glycosylation sites.

amino acids 127-130, 175-178, 207-210, 329-332, 424-427, 444-447 and 509-512

Kringle domains.

amino acids 746-758 and 592-609

Homologous region to Kallikrein Light Chain:

amino acids 568-779

Homologous region to Low-density lipoprotein receptor:

amino acids 451-567

GCACCCAGGGCCAGTGGACGATCCAGAACAGGAGGCTGTGTGGCCTTGCGCATCCTGCAGCCC TACGCCGAGAGGATCCCCGTGGTGGCCACGGCCGGGATCACCATCAACTTCACCTCCCAGAT CTCCCTCACCGGGCCCGGTGTGCGGGTGCACTATGGCTTGTACAACCAGTCGGACCCCTGCC TGCCCCAACGGCCTGGATGAGAGAAACTGCGTTTGCAGAGCCACATTCCAGTGCAAAGAGGA CAGCACATGCATCTCACTGCCCAAGGTCTGTGATGGGCAGCCTGATTGTCTCAACGGCAGCG ATGAAGAGCAGTGCCAGGAAGGGGTGCCATGTGGGACATTCACCTTCCAGTGTGAGGACCGG AGCTGCGTGAAGAAGCCCAACCCGCAGTGTGATGGGCGGCCCGACTGCAGGGACGGCTCGGA TGAGGAGCACTGTGACTGTGGCCTCCAGGGCCCCTCCAGCCGCATTGTTGGTGGAGCTGTGT GGGGCCCTCATCGCTGACCGCTGGGTGATAACAGCTGCCCACTGCTTCCAGGAGGACAGCAT GGCCTCCACGGTGTGGACCGTGTTCCTGGGCAAGGTGTGGCAGAACTCGCGCTGGCCTG GAGAGGTGTCCTTCAAGGTGAGCCGCCTGCTCCTGCACCCGTACCACGAAGAGGGACAGCCAT GACTACGACGTGGCGCTGCAGCTCGACCACCCGGTGGTGCGCCTCGGCCGCCGTGCGCCC CGTCTGCCTGCCCGCGCCTCCCACTTCTTCGAGCCCGGCCTGCACTGCTGGATTACGGGCT GGGGCGCCTTGCGCGAGGGCCGCCCCATCAGCAACGCTCTGCAGAAAGTGGATGTGCAGTTG ATCCCACAGGACCTGTGCAGCGAGGCCTATCGCTACCAGGTGACGCCACGCATGCTGTGTGC CGGCTACCGCAAGGGCAAGAAGGATGCCTGTCAGGGTGACTCAGGTGGTCCGCTGGTGTGCA CCTAACTACTTCGGCGTCTACACCCGCATCACAGGTGTGATCAGCTGGATCCAGCAAGTGGT GACCTGAGGAACTGCCCCCTGCAAAGCAGGGCCCACCTCCTGGACTCAGAGAGCCCAGGGC AACTGCCAAGCAGGGGGGACAAGTAT

ICCIPONE ICE

GGACGAGGCAGATCTCGTTCTGGGGCAAGCCGTTGACACTCGCTCCCTGCCACCGCCCGGG CTCCGTGCCGCCAAGTTTTCATTTTCCACCTTCTCTGCCTCCAGTCCCCCAGCCCCTGGCCG TTTCTGGAGCCTCTGCTATTGCTTGCTGCGGGGAGCCCCGTACCTTTTGGTCCAGAGGGAC GGCTGGAAGATAAGCTCCACAAACCCAAAGCTACACAGACTGAGGTCAAACCATCTGTGAGG TTTAACCTCCGCACCTCCAAGGACCCAGAGCATGAAGGATGCTACCTCTCCGTCGGCCACAG CCAGCCCTTAGAAGACTGCAGTTTCAACATGACAGCTAAAACCTTTTTCATCATCACTGGAT GGACGATGAGCGGTATCTTTGAAAACTGGCTGCACAAACTCGTGTCAGCCCTGCACACAAGA GAGAAAGACGCCAATGTAGTTGTGGTTGACTGGCTCCCCCTGGCCCACCAGCTTTACACGGA TGCGGTCAATAATACCAGGGTGGTGGGACACAGCATTGCCAGGATGCTCGACTGGCTGCAGG AGAAGGACGATTTTTCTCTCGGGAATGTCCACTTGATCGGCTACAGCCTCGGAGCGCACGTG GCCGGGTATGCAGGCAACTTCGTGAAAGGAACGGTGGGCCGAATCACAGGTTTGGATCCTGC CGGGCCCATGTTTGAAGGGGCCGACATCCACAAGAGGCTCTCTCCGGACGATGCAGATTTTG TGGATGTCCTCCACACCTACACGCGTTCCTTCGGCTTGAGCATTGGTATTCAGATGCCTGTG TCCACCTCTTTGTTGACTCTCTGGTGAATCAGGACAAGCCGAGTTTTGCCTTCCAGTGCACT GACTCCAATCGCTTCAAAAAGGGGATCTGTCTGAGCTGCCGCAAGAACCGTTGTAATAGCAT TGGCTACAATGCCAAGAAAATGAGGAACAAGAGGAACAGCAAAATGTACCTAAAAACCCGGG ${\tt CAGGCATGCCTTTCAGAGGTAACCTTCAGTCCCTGGAGTGTCCC} {\color{red}{\bf TGA}{\bf GGAAGGCCCTTAATA}}$ CCTCCTTCTTAATACCATGCTGCAGAGCAGGCACATCCTAGCCCAGGAGAAGTGGCCAGCA CAATCCAATCAAATCGTTGCAAATCAGATTACACTGTGCATGTCCTAGGAAAGGGAATCTTT ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49646

><subunit 1 of 1, 354 aa, 1 stop

><MW: 39362, pI: 8.35, NX(S/T): 2

MSNSVPLLCFWSLCYCFAAGSPVPFGPEGRLEDKLHKPKATQTEVKPSVRFNLRTSKDPEHE GCYLSVGHSQPLEDCSFNMTAKTFFIIHGWTMSGIFENWLHKLVSALHTREKDANVVVVDWL PLAHQLYTDAVNNTRVVGHSIARMLDWLQEKDDFSLGNVHLIGYSLGAHVAGYAGNFVKGTV ${\tt GRITGLDPAGPMFEGADIHKRLSPDDADFVDVLHTYTRSFGLSIGIQMPVGHIDIYPNGGDF}$ QPGCGLNDVLGSIAYGTITEVVKCEHERAVHLFVDSLVNQDKPSFAFQCTDSNRFKKGICLS CRKNRCNSIGYNAKKMRNKRNSKMYLKTRAGMPFRGNLQSLECP

Important features:

Signal peptide:

amino acids 1-16

Lipases, serine active site.

amino acids 163-172

N-glycosylation sites.

amino acids 80-83 and 136-139

 $\tt CGGCAAAGTTTGGCCCGAAGAGGAAGTGGTCTCAAACCCCGGCAGGTGGCGACCAGGCCAGACCAGGGGGGCGCTCG$ AGAAGAGTGCGGCGGCGGAGAAAACAACTCCAAAGTTGGCGAAAGGCACCGCCCCTACTCCCGGGCTGCCG ${\tt GCACCTCTGGACAGCCCAGG} \underline{{\tt ATG}} {\tt CTGTTGGCCACCCTCCTCCTCCTCCTTGGAGGCGCTCTGGCCCATCCAG}$ ACCGGATTATTTTCCAAATCATGCTTGTGAGGACCCCCCAGCAGTGCTCTTAGAAGTGCAGGGCACCTTACAGA GGCCCCTGGTCCGGGACAGCCGCACCTCCCCTGCCAACTGCACCTGGCTCATCCTGGGCAGCAAGGAACAGACTG TGATCTCCCTGTGTGAGGCACCTCCCAGCCCTCTGCAGCTGCCCGGGGGCAACGTCACCATCACTTACAGCTATG CTGGGGCCAGAGCACCCATGGGCCAGGGCTTCCTGCTCTCCTACAGCCAAGATTGGCTGATGTGCCTGCAGGAAG $A \verb|GTTTCAGTGCCTGAACCACCGCTGTGTATCTGCTGTCCAGCGCTGTGATGGGGTTGATGCCTGTGGCGATGGCT|$ TCACCTTGGAGGACTTCTATGGGGTCTTCTCCTCTCCTGGATATACACACCTAGCCTCAGTCTCCCACCCCCAGT GAGATGCAGTGCATGTGTATGACGGCCCTGGGCCCCCTGAGAGCTCCCGACTACTGCGTAGTCTCACCCACTTCA ${\tt GCAATGGCAAGGCTGTCACTGTGGAGACACTGTCTGGCCAGGCTGTTGTGTCCTACCACACAGTTGCTTGGAGCA}$ GTGCTGACGGCACAGATGAGGAGGACTGCCCAGGCTGCCCACCTGGACACTTCCCCTGTGGGGGCTGCTGGCACCT $\tt CTGGTGCCACAGCCTGCTGCCTGCTGACCGCTGCAACTACCAGACTTTCTGTGCTGATGGAGCAGATGAGA$ GACGCTGTCGGCATTGCCAGCCTGGCAATTTCCGATGCCGGGACGAGAAGTGCGTGTATGAGACGTGGGTGTGCG ATGGGCAGCCAGACTGTGCGGACGGCAGTGATGAGTGGGACTGCTCCTATGTTCTGCCCCGCAAGGTCATTACAG $\tt CTGCAGTCATTGGCAGCCTAGTGTGCGGCCTGCTCCTGGTCATCGCCCTGGGCTGCACCTGCAAGCTCTATGCCA$ TTCGCACCCAGGAGTACAGCATCTTTGCCCCCCTCTCCCGGATGGAGGCTGAGATTGTGCAGCAGCAGCACCCC CTTCCTACGGGCAGCTCATTGCCCAGGGTGCCATCCCACCTGTAGAAGACTTTCCTACAGAGAATCCTAATGATA ${\tt ACTCAGTGCTGGGCAACCTGCGTTCTCTGCTACAGATCTTACGCCAGGATATGACTCCAGGAGGTGGCCCAGGTG}$ ${\tt CCCGCCGTCGTCAGCGGGGCCGCTTGATGCGACGCCTGGTACGCCGTCTCCGCCGCTGGGGGCTTGCTCCCTCGAA}.$ CAGGACCAACCCGGAGCCCCCTGGACCCCACACAGCAGTCCTGGCCCTGGAAGATGAGGACGATGTGCTACTGG ACCACTTCCTTCCCTGTCCCTGGATTTCAGGGACTTGGTGGGCCTCCCGTTGACCCTATGTAGCTGCTATAAAGT TAAGTGTCCCTCAGGCAGGGAGAGGGCTCACAGAGTCTCCTCTGTACGTGGCCATGGCCAGACACCCCAGTCCCT TCACCACCACCTGCTCCCCACGCCACCACTTTGGGTGGCTGTTTTTAAAAAGTAAAGTTCTTAGAGGATCATA GGTCTGGACACTCCATCCTTGCCAAACCTCTACCCAAAAGTGGCCTTAAGCACCGGAATGCCAATTAACTAGAGA CCCTCCAGCCCCAAGGGGAGGATTTGGGCAGAACCTGAGGTTTTGCCATCCACAATCCCTCCTACAGGGCCTGG CTCACAAAAAGAGTGCAACAAATGCTTCTATTCCATAGCTACGGCATTGCTCAGTAAGTTGAGGTCAAAAATAAA **GGAATCATACATCTC**

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49631</pre>

<subunit 1 of 1, 713 aa, 1 stop</pre>

<MW: 76193, pI: 5.42, NX(S/T): 4

MLLATLLLLLGGALAHPDRIIFPNHACEDPPAVLLEVQGTLQRPLVRDSRTSPANCTWLIL
GSKEQTVTIRFQKLHLACGSERLTLRSPLQPLISLCEAPPSPLQLPGGNVTITYSYAGARAP
MGQGFLLSYSQDWLMCLQEEFQCLNHRCVSAVQRCDGVDACGDGSDEAGCSSDPFPGLTPRP
VPSLPCNVTLEDFYGVFSSPGYTHLASVSHPQSCHWLLDPHDGRRLAVRFTALDLGFGDAVH
VYDGPGPPESSRLLRSLTHFSNGKAVTVETLSGQAVVSYHTVAWSNGRGFNATYHVRGYCLP
WDRPCGLGSGLGAGEGLGERCYSEAQRCDGSWDCADGTDEEDCPGCPPGHFPCGAAGTSGAT
ACYLPADRCNYQTFCADGADERRCRHCQPGNFRCRDEKCVYETWVCDGQPDCADGSDEWDCS
YVLPRKVITAAVIGSLVCGLLLVIALGCTCKLYAIRTQEYSIFAPLSRMEAEIVQQQAPPSY
GQLIAQGAIPPVEDFPTENPNDNSVLGNLRSLLQILRQDMTPGGGPGARRRQRGRLMRRLVR
RLRRWGLLPRTNTPARASEARSQVTPSAAPLEALDGGTGPAREGGAVGGQDGEQAPPLPIKA
PLPSASTSPAPTTVPEAPGPLPSLPLEPSLLSGVVQALRGRLLPSLGPPGPTRSPPGPHTAV
LALEDEDDVLLVPLAEPGVWVAEAEDEPLLT

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 442-462

LDL-receptor class A (LDLRA) domain proteins amino acids 411-431, 152-171, 331-350 and 374-393

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49645

><subunit 1 of 1, 152 aa, 1 stop

><MW: 17170, pI: 9.62, NX(S/T): 1

MDNVQPKIKHRPFCFSVKGHVKMLRLALTVTSMTFFIIAQAPEPYIVITGFEVTVILFFILL YVLRLDRLMKWLFWPLLDIINSLVTTVFMLIVSVLALIPETTTLTVGGGVFALVTAVCCLAD GALIYRKLLFNPSGPYQKKPVHEKKEVL

Important features:

Potential type II transmembrane domain:

amino acids 26-42

Other potential transmembrane domain:
amino acids 44-65, 81-101 and 109-129

Leucine zipper pattern

amino acids 78-99 and 85-106

N-myristoylation site.
amino acids 110-115

Ribonucleotide reductase large subunit protein amino acids 116-127

GGGCGAGAAGTAGGGGAGGCGTGTTCCGCCGCGGTGGCGGTTGCTATCGTTTTGCAGAACC
TACTCAGGCAGCCAGNTGAGAAGAGTTGAGGGAAAGTGCTGCTGCTGGGTCTGCAGACGCGA
TGGATAACGTGCAGCCGAAAATAAAACATCGCCCCTTCTGCTTCAGTGTGAAAGGCCACGTG
AAGATGCTGCGGCTGGCACTAACTGNGACATCTATGACCTTTTTTTTATNATCGCACAAGCCCC
TGAACCATATATTGTTATCACTGGATTTGAAGTCACCGTTATCTTATTTTTCATACTTTTAT
ATGTACTCAGACTTGATCGATTAATGAAGTGGTTATTTTGGCCTTTGCTTGATATTATCAAC
TCACTGGTAACAACAGTATTCATGCTCATCGTATCTGTTTGGCACTGATACCAGAAACCAC
AACATTGACAGTTGGTGGAGGGGTTTTGCACTTGTACAGCAGCAGTATGCTGTNTTGCCGAC

CAGCCCGCGCCGGCCGAGTCGCTGAGCCGCGGCTGCCGGACGGGACCGGCTAGG CTGGGCGCCCCCGGGCCCCGTGGGCATGGGCGCACTGGCCCGGGCGCTGCTGCTGC CTCTGCTGGCCCAGTGGCTCCTGCGCCCCCGGAGCTGGCCCCCGCGCCCTTCACGCTG CCCCTCCGGGTGGCCGCGCCACGGACCCCGGGACCCCGGGACCCC TGCCGAGCGCCACGCCGACGGCTTGGCGCTCGCCCTGGAGCCTGCCCTGGCGTCCCCCGCGG GCGCCGCCAACTTCTTGGCCATGGTAGACAACCTGCAGGGGGACTCTGGCCGCGGCTACTAC CTGGAGATGCTGATCGGGACCCCCCCGCAGAAGCTACAGATTCTCGTTGACACTGGAAGCAG TAACTTTGCCGTGGCAGGAACCCCGCACTCCTACATAGACACGTACTTTGACACAGAGAGGT CTAGCACATACCGCTCCAAGGGCTTTGACGTCACAGTGAAGTACACACAAGGAAGCTGGACG GGCTTCGTTGGGGAAGACCTCGTCACCATCCCCAAAGGCTTCAATACTTCTTTTCTTGTCAA CATTGCCACTATTTTTGAATCAGAGAATTTCTTTTTGCCTGGGATTAAATGGAATGGAATAC TTGGCCTAGCTTATGCCACACTTGCCAAGCCATCAAGTTCTCTGGAGACCTTCTTCGACTCC $\tt CTGGTGACACAAGCAAACATCCCCAACGTTTTCTCCATGCAGATGTGTGGAGCCGGCTTGCC$ ATAAAGGAGACATCTGGTATACCCCTATTAAGGAAGAGTGGTACTACCAGATAGAAATTCTG AAATTGGAAATTGGAGGCCAAAGCCTTAATCTGGACTGCAGAGAGTATAACGCAGACAAGGC CATCGTGGACAGTGGCACCACGCTGCTGCGCCCCAGAAGGTGTTTGATGCGGTGGTGG AAGCTGTGGCCCGCGCATCTCTGATTCCAGAATTCTCTGATGGTTTCTGGACTGGGTCCCAG CTGGCGTGCTGGACGAATTCGGAAACACCTTGGTCTTACTTCCCTAAAATCTCCATCTACCT GAGAGACGAGAACTCCAGCAGGTCATTCCGTATCACAATCCTGCCTCAGCTTTACATTCAGC CCATGATGGGGGCCGGCCTGAATTATGAATGTTACCGATTCGGCATTTCCCCATCCACAAAT GCGCTGGTGATCGGTGCCACGGTGATGGAGGGCTTCTACGTCATCTTCGACAGAGCCCAGAA GAGGGTGGGCTTCGCAGCGAGCCCCTGTGCAGAAATTGCAGGTGCTGCAGTGTCTGAAATTT CCGGGCCTTTCTCAACAGAGGATGTAGCCAGCAACTGTGTCCCCGCTCAGTCTTTGAGCGAG CCCATTTTGTGGATTGTGTCCTATGCGCTCATGAGCGTCTGTGGAGCCATCCTCCTTGTCTT AATCGTCCTGCTGCTGCCGTTCCGGTGTCAGCGTCGCCCCCGTGACCCTGAGGTCGTCA ATGATGAGTCCTCTCTGGTCAGACATCGCTGGAAATGAATAGCCAGGCCTGACCTCAAGCAA CCATGAACTCAGCTATTAAGAAAATCACATTTCCAGGGCAGCAGCCGGGATCGATGGTGGCG CTTTCTCCTGTGCCCACCCGTCTTCAATCTCTGTTCTGCTCCCAGATGCCTTCTAGATTCAC TGTCTTTTGATTCTTGATTTTCAAGCTTTCAAATCCTCCCTACTTCCAAGAAAATAATTAA AAAAAAACTTCATTCTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45493</pre>

><subunit 1 of 1, 518 aa, 1 stop

><MW: 56180, pI: 5.08, NX(S/T): 2

MGALARALLLPLLAQWLLRAAPELAPAPFTLPLRVAAATNRVVAPTPGPGTPAERHADGLAL
ALEPALASPAGAANFLAMVDNLQGDSGRGYYLEMLIGTPPQKLQILVDTGSSNFAVAGTPHS
YIDTYFDTERSSTYRSKGFDVTVKYTQGSWTGFVGEDLVTIPKGFNTSFLVNIATIFESENF
FLPGIKWNGILGLAYATLAKPSSSLETFFDSLVTQANIPNVFSMQMCGAGLPVAGSGTNGGS
LVLGGIEPSLYKGDIWYTPIKEEWYYQIEILKLEIGGQSLNLDCREYNADKAIVDSGTTLLR
LPQKVFDAVVEAVARASLIPEFSDGFWTGSQLACWTNSETPWSYFPKISIYLRDENSSRSFR
ITILPQLYIQPMMGAGLNYECYRFGISPSTNALVIGATVMEGFYVIFDRAQKRVGFAASPCA
EIAGAAVSEISGPFSTEDVASNCVPAQSLSEPILWIVSYALMSVCGAILLVLIVLLLLPFRC
QRRPRDPEVVNDESSLVRHRWK

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 466-494

N-glycosylation sites.

amino acids 170-173 and 366-369

Leucine zipper pattern.

amino acids 10-31 and 197-118

Eukaryotic and viral aspartyl proteases

amino acids 109-118, 252-261 and 298-310

 $\tt GGCAT\underline{G}GAGGCGCTGCTGGGCGCGGGGTTGCTGCTGGGCGCGTTACGTGCTTGTCTACTA$ CAACCTGGTGAAGGCCCCGCCGTGCGGCGGCATGGGCAACCTGCGGGGCCGCACGGCCGTGG CGCGTGGTGCTGCCTGCCGCAGCCAGGAGCGCGGGGGAGGCGGCTGCCTTCGACCTCCGCCA GGAGAGTGGGAACAATGAGGTCATCTTCATGGCCTTGGACTTGGCCAGTCTGGCCTCGGTGC GGGCCTTTGCCACTGCCTTTCTGAGCTCTGAGCCACGGTTGGACATCCTCATCCACAATGCC GGTATCAGTTCCTGTGGCCGGACCCGTGAGGCGTTTAACCTGCTGCTTCGGGTGAACCATAT TGGTGGTGGTAGCCTCAGCTGCCCACTGTCGGGGACGTCTTGACTTCAAACGCCTGGACCGC CCAGTGGTGGCGCGCAGGAGCTGCGGGCATATGCTGACACTAAGCTGGCTAATGTACT GTTTGCCCGGGAGCTCGCCAACCAGCTTGAGGCCACTGGCGTCACCTGCTATGCAGCCCACC CAGGGCCTGTGAACTCGGAGCTGTTCCTGCGCCATGTTCCTGGATGGCTGCGCCCACTTTTG CGCCCATTGGCTGGCTGCTCCGGGCACCAAGAGGGGGTGCCCAGACACCCCTGTATTG TGCTCTACAAGAGGGCATCGAGCCCCTCAGTGGGAGATATTTTGCCAACTGCCATGTGGAAG AGGTGCCTCCAGCTGCCCGAGACGACCGGCCAGCCCATCGGCTATGGGAGGCCAGCAAGAGG CTGGCAGGCTTGGGCCTGGGAGGATGCTGAACCCGATGAAGACCCCCAGTCTGAGGACTC AGAGGCCCCATCTTCTCTAAGCACCCCCCACCCTGAGGAGCCCACAGTTTCTCAACCTTACC CCAGCCCTCAGAGCTCACCAGATTTGTCTAAGATGACGCACCGAATTCAGGCTAAAGTTGAG ${\tt CCTGAGATCCAGCTCTCC} \underline{{\tt TAA}} {\tt CCCTCAGGCCAGGATGCTTGCCATGGCACTTCATGGTCCTT}$ GAAAACCTCGGATGTGTGAGGCCATGCCCTGGACACTGACGGGTTTGTGATCTTGACCTC CGTGGTTACTTTCTGGGGCCCCAAGCTGTGCCCTGGACATCTCTTTTCCTGGTTGAAGGAAT AATGGGTGATTATTTCTTCCTGAGAGTGACAGTAACCCCAGATGGAGAGATAGGGGTATGCT AGACACTGTGCTTCTCGGAAATTTGGATGTAGTATTTCAGGCCCCACCCTTATTGATTCTG ATCAGCTCTGGAGCAGAGGCAGGGAGTTTGCAATGTGATGCACTGCCAACATTGAGAATTAG TGAACTGATCCCTTTGCAACCGTCTAGCTAGGTAGTTAAATTACCCCCCATGTTAATGAAGCG GAATTAGGCTCCCGAGCTAAGGGACTCGCCTAGGGTCTCACAGTGAGTAGGAGGAGGGCCTG GGATCTGAACCCAAGGGTCTGAGGCCAGGGCCGACTGCCGTAAGATGGGTGCTGAGAAGTGA

GTCAGGGCAGGCAGCTGGTATCGAGGTGCCCCATGGGAGTAAGGGGACGCCTTCCGGGCGG ATGCAGGGCTGGGGTCATCTGTATCTGAAGCCCCTCGGAATAAAGCGCGTTGACCGCCAAAA

ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48227</pre>

<subunit 1 of 1, 377 aa, 1 stop</pre>

<MW: 40849, pI: 7.98, NX(S/T): 0

MEALLLGAGLLLGAYVLVYYNLVKAPPCGGMGNLRGRTAVVTGANSGIGKMTALELARRGAR
VVLACRSQERGEAAAFDLRQESGNNEVIFMALDLASLASVRAFATAFLSSEPRLDILIHNAG
ISSCGRTREAFNLLLRVNHIGPFLLTHLLLPCLKACAPSRVVVVASAAHCRGRLDFKRLDRP
VVGWRQELRAYADTKLANVLFARELANQLEATGVTCYAAHPGPVNSELFLRHVPGWLRPLLR
PLAWLVLRAPRGGAQTPLYCALQEGIEPLSGRYFANCHVEEVPPAARDDRAAHRLWEASKRL
AGLGPGEDAEPDEDPQSEDSEAPSSLSTPHPEEPTVSQPYPSPQSSPDLSKMTHRIQAKVEP
EIOLS

Important features:

amino acids 1-16

Glycosaminoglycan attachment site.

amino acids 46-49

Short-chain alcohol dehydrogenase family

amino acids 37-49 and 114-124

GGAGGAGACAGCCTCCTGGGGGGCAGGGGTTCCCTGCCTCTGCTGCTCCTCATCATCGGAGGCATGGCTCAG GACTCCCCGCCCAGATCCTAGTCCACCCCCAGGACCAGCTGTTCCAGGGCCCTGCCCTGCCAGGATGAGCTGC CAAGCCTCAGGCCAGCCCCCCCCCCCCTCGCTGGTTGCTGAATGGGCAGCCCCTGAGCATGGTGCCCCCAGAC CCACACCACCTCCTGCTGATGGGACCCTTCTGCTGCTACAGCCCCCTGCCCGGGGACATGCCCACGATGGCCAG GCCCTGTCCACAGACCTGGGTGTCTACACATGTGAGGCCAGCAACCGGCTTGGCACGGCAGTCAGCAGAGGCGCT CGGCTGTCTGTGGCTGTCCTCCGGGAGGATTTCCAGATCCAGCCTCGGGACATGGTGGCTGTGGGTGAGCAG TTTACTCTGGAATGTGGGCCGCCCTGGGGCCACCCAGAGCCCACAGTCTCATGGTGGAAAGATGGGAAACCCCTG GCCCTCCAGCCCGGAAGGCACACAGTGTCCGGGGGGTCCCTGCTGATGGCAAGAGCAGAGAAGAGTGACGAAGGG CAGGACTACACGGAGCCTGTGGAGCTTCTGGCTGTGCGAATTCAGCTGGAAAATGTGACACTGCTGAACCCGGAT TCTTACACGGCCTTGTTCAGGACCCAGACTGCCCCGGGAGGCCAGGGGGCTCCGTGGGCAGAGGAGCTGCTGGCC GGCTGGCAGAGCGCAGAGCTTGGAGGCCTCCACTGGGGCCAAGACTACGAGTTCAAAGTGAGACCATCCTCTGGC ${\tt CGGGCTCGAGGCCCTGACAGCAACGTGCTGCTGCTGAGGCTGCCGGAAAAAGTGCCCAGTGCCCCACCTCAGGAA}$ GTGACTCTAAAGCCTGGCAATGGCACTGTCTTTGTGAGCTGGGTCCCACCACCTGCTGAAAACCACAATGGCATC ATCCGTGGCTACCAGGTCTGGAGCCTGGGCAACACATCACTGCCACCAGCCAACTGGACTGTAGTTGGTGAGCAG ACCCAGCTGGAAATCGCCACCCATATGCCAGGCTCCTACTGCGTGCAAGTGGCTGCAGTCACTGGTGCTGGAGCT GGTCCCTGGACCCTGGAGCAGCTGAGGGCTACCTTGAAGCGGCCTGAGGTCATTGCCACCTGCGGTGTTGCACTC TGGCTGCTGCTTCTGGGCACCGCCGTGTGTATCCACCGCCGGCGCCCAGGCTAGGGTGCACCTGGGCCCAGGTCTG TGGCGTTCCACCTCTGGCTCTCGGGACCTGAGCAGCAGCAGCAGCCTCAGCAGTCGGCTGGGGGCGGATGCCCGG GACCCACTAGACTGTCGTCGTCCTTGCTCTCCTGGGACTCCCGAAGCCCCGGCGTGCCCCTGCTTCCAGACACC GGACTCTCTCTCCCCGCTTGTCTCTGGCCCCTGCAGAGGCCTTGGAAGGCCCAAAAAGAAGCAGGAGCTGCAGCAT GCCAACAGTTCCCCACTGCTCCGGGGCAGCCACTCCTTGGAGCTCCGGGCCTGTGAGTTAGGAAATAGAGGTTCC AGCTCCTCAAATGAGCTGGTTACTCGTCATCTCCCTCCAGCACCCCTCTTTCCTCATGAAACTCCCCCAACTCAG CTTAGCCCCTGCAGTCCCCCTAGCCCCCAGGCCTCTCCCTCTCTGGCCCCAGCCCAGCTTCCAGTCGCCTGTCC CTCAGTGAGGGTGAGGAGACTCCCAGGAACAGCGTCTCTCCCATGCCAAGGGCTCCTTCACCCCCCACCACCTAT GGGTACATCAGCGTCCCAACAGCCTCAGAGTTCACGGACATGGGCAGGACTGGAGGAGGGGTGGGGCCCAAGGGG GGAGTCTTGCTGTGCCCACCTCGGCCCTGCCTCACCCCCACCCCCAGCGAGGGCTCCTTAGCCAATGGTTGGGGC GCTCACTTTGCCCGGGCCCTGGCAGTGGCTGTGGATAGCTTTGGTTTCGGTCTAGAGCCCAGGGAGGCAGACTGC GTCTTCATAGATGCCTCATCACCTCCCTCCCCACGGGATGAGATCTTCCTGACCCCCAACCTCTCCCTGCCCCTG TGGGAGTGGAGGCCAGACTGGTTGGAAGACATGGAGGTCAGCCACCCAGCGGCTGGGAAGGGGGATGCCTCCC TGGCCCCTGACTCTCAGATCTCTTCCCAGAGAAGTCAGCTCCACTGTCGTATGCCCAAGGCTGGTGCTTCTCCT ACCTGGGCTGTGTGTGTGGGCTTTGGCCTGTGTTTCTCTGCAGCTTGGGGTCCACCTTCCCAAGCCTCCAGAGAG TTCTCCCTCCACGATTGTGAAAACAAATGAAAACAAAATTAGAGCAAAGCTGACCTGGAGCCTCAGGGAGCAAA ACATCATCTCCACCTGACTCCTAGCCACTGCTTTCTCCTCTGTGCCATCCACTCCCACCACCAGGTTGTTTTGGC CTGAGGAGCAGCCCTGCTGCTCTTCCCCCACATTTGGATCACAGGAAGTGGAGGAGCCAGAGGTGCCTTT GTGGAGGACAGCAGTGGCTGCTGGGAGAGGGCTGTGGAGGAGGAGGAGCTTCTCGGAGCCCCCTCTCAGCCTTACCT TATGAGACCGTAGGTCAAAAGCACCATCCTCGTACTGTTGTCACTATGAGCTTAAGAAATTTGATACCATAAAAT GGТААААААААААААААААААААААААААААААА

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41404</pre>

<subunit 1 of 1, 985 aa, 1 stop</pre>

<MW: 105336, pI: 6.55, NX(S/T): 7

MGGMAQDSPPQILVHPQDQLFQGPGPARMSCQASGQPPPTIRWLLNGQPLSMVPPDPHHLLP DGTLLLLQPPARGHAHDGQALSTDLGVYTCEASNRLGTAVSRGARLSVAVLREDFQIQPRDM VAVVGEQFTLECGPPWGHPEPTVSWWKDGKPLALQPGRHTVSGGSLLMARAEKSDEGTYMCV ATNSAGHRESRAARVSIQEPQDYTEPVELLAVRIQLENVTLLNPDPAEGPKPRPAVWLSWKV SGPAAPAQSYTALFRTQTAPGGQGAPWAEELLAGWQSAELGGLHWGQDYEFKVRPSSGRARG PDSNVLLLRLPEKVPSAPPQEVTLKPGNGTVFVSWVPPPAENHNGIIRGYQVWSLGNTSLPP ANWTVVGEQTQLEIATHMPGSYCVQVAAVTGAGAGEPSRPVCLLLEQAMERATOEPSEHGPW TLEQLRATLKRPEVIATCGVALWLLLLGTAVCIHRRRRARVHLGPGLYRYTSEDAILKHRMD HSDSQWLADTWRSTSGSRDLSSSSSLSSRLGADARDPLDCRRSLLSWDSRSPGVPLLPDTST FYGSLIAELPSSTPARPSPQVPAVRRLPPQLAQLSSPCSSSDSLCSRRGLSSPRLSLAPAEA WKAKKKQELQHANSSPLLRGSHSLELRACELGNRGSKNLSQSPGAVPQALVAWRALGPKLLS SSNELVTRHLPPAPLFPHETPPTOSOOTOPPVAPOAPSSILLPAAPIPILSPCSPPSPOASS LSGPSPASSRLSSSSLSSLGEDQDSVLTPEEVALCLELSEGEETPRNSVSPMPRAPSPPTTY GYISVPTASEFTDMGRTGGGVGPKGGVLLCPPRPCLTPTPSEGSLANGWGSASEDNAASARA SLVSSSDGSFLADAHFARALAVAVDSFGFGLEPREADCVFIDASSPPSPRDEIFLTPNLSLP LWEWRPDWLEDMEVSHTORLGRGMPPWPPDSOISSORSOLHCRMPKAGASPVDYS

Important features:

Transmembrane domain:

amino acids 448-467

N-glycosylation sites:

amino acids 224-227, 338-341, 367-370, 374-377, 658-661 and 926-929

N-myristoylation sites.

amino acids 47-52, 80-85, 88-93, 99-104, 105-110, 181-186, 272-277, 290-295, 355-360, 403-408, 462-467, 561-566, 652-657, 849-854 and 876-881

Phosphotyrosine interaction domain proteins

amino acids 740-753

CCCAGGTTATGAAGCCCTGGAGGGCCCAGAGGAAATCAGCGGGTTCGAAGGGGACACTGTGT CCCTGCAGTGCACCTACAGGGAAGAGCTGAGGGACCACCGGAAGTACTGGTGCAGGAAGGGT GGGATCCTCTCTCTCGCTGCTCTGGCACCATCTATGCAGAAGAAGAAGACCCAGGAGACAAT GAAGGCAGGTGTCCATCCGTGACAGCCGCCAGGAGCTCTCGCTCATTGTGACCCTGTGGA ACCTCACCCTGCAAGACGCTGGGGAGTACTGGTGTGGGGTCGAAAAACGGGGCCCCGATGAG CTTCCAGCCTCTGGCTACAACACGCCTGCAGCCCAAGGCAAAAGCTCAGCAAACCCAGCCCC CAGGATTGACTTCTCCTGGGCTCTACCCGGCAGCCACACCAGCCAAGCAGGGGAAGACAGGG GCTGAGGCCCCTCCATTGCCAGGGACTTCCCAGTACGGGCACGAAAGGACTTCTCAGTACAC AGGAACCTCTCCTCACCCAGCGACCTCTCCTCCTGCAGGGAGCTCCCGCCCCCCCATGCAGC TGGACTCCACCTCAGCAGAGGACACCAGTCCAGCTCTCAGCAGTGGCAGCTCTAAGCCCAGG GTGTCCATCCCGATGGTCCGCATACTGGCCCCAGTCCTGGTGCTGCTGAGCCTTCTGTCAGC CGCAGGCCTGATCGCCTTCTGCAGCCACCTGCTCCTGTGGAGAAAGGAAGCTCAACAGGCCA ⁻CGGAGACACAGAGGAACGAGAAGTTCTGGCTCTCACGCTTGACTGCGGAGGAAAAGGAAGCC CCTTCCCAGGCCCCTGAGGGGGACGTGATCTCGATGCCTCCCCTCCACACATCTGAGGAGGA GCTGGGCTTCTCGAAGTTTGTCTCAGCGTAGGGCAGGAGGCCCTCCTGGCCAGGCCAGCAGT GAAGCAGTATGGCTGGCTGGATCAGCACCGATTCCCGAAAGCTTTCCACCTCAGCCTCAGAG TCCAGCTGCCCGGACTCCAGGGCTCTCCCCACCCTCCCAGGCTCTCCTCTTGCATGTTCCA GCCTGACCTAGAAGCGTTTGTCAGCCCTGGAGCCCAGAGCGGTGGCCTTGCTCTTCCGGCTG GAGACTGGGACATCCCTGATAGGTTCACATCCCTGGGCAGAGTACCAGGCTGCTGACCCTCA GCAGGCCAGACAAGGCTCAGTGGATCTGGTCTGAGTTTCAATCTGCCAGGAACTCCTGGGC TGGCGTCCTCAGACTTAGTCCCACGGTCTCCTGCATCAGCTGGTGATGAAGAGGAGCATGCT GGGGTGAGACTGGGATTCTGGCTTCTCTTTGAACCACCTGCATCCAGCCCTTCAGGAAGCCT GTGAAAAACGTGATTCCTGGCCCCACCAAGACCCACCAAAACCATCTCTGGGCTTGGTGCAG GACTCTGAATTCTAACAATGCCCAGTGACTGTCGCACTTGAGTTTGAGGGCCCAGTGGGCCTG ATGAACGCTCACACCCCTTCAGCTTAGAGTCTGCATTTGGGCTGTGACGTCTCCACCTGCCC CAATAGATCTGCTCTGTCTGCGACACCAGATCCACGTGGGGACTCCCCTGAGGCCTGCTAAG TCCAGGCCTTGGTCAGGTCAGGTGCACATTGCAGGATAAGCCCAGGACCGGCACAGAAGTGG TTGCCTTTNCCATTTGCCCTCCCTGGNCCATGCCTTCTTGCCTTTGGAAAAAATGATGAAGA AAACCTTGGCTCCTTGTCTGGAAAGGGTTACTTGCCTATGGGTTCTGGTGGCTAGAGA GAAAAGTAGAAAACCAGAGTGCACGTAGGTGTCTAACACAGAGGAGAGTAGGAACAGGGCGG ATACCTGAAGGTGACTCCGAGTCCAGCCCCCTGGAGAAGGGGTCGGGGGTGGTGGTAAAGTA GCACAACTACTATTTTTTTTTTTTTCCATTATTATTGTTTTTTAAGACAGAATCTCGTGCT GCTGCCCAGGCTGGAGTGCAGTGGCACGATCTGCAAACTCCGCCTCCTGGGTTCAAGTGATT TTTGTACTTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGAC CTCAAATGAGCCTCCTGCTTCAGTCTCCCAAATTGCCGGGATTACAGGCATGAGCCACTGTG TCTGGCCCTATTTCCTTTAAAAAGTGAAATTAAGAGTTGTTCAGTATGCAAAACTTGGAAAG ATGGAGGAGAAAAGAAAAGGAAGAAAAAATGTCACCCATAGTCTCACCAGAGACTATCAT TATTTCGTTTTGTTGTACTTCCTTCCACTCTTTTCTTCTTCACATAATTTGCCGGTGTTCTT TTTACAGAGCAATTATCTTGTATATACAACTTTGTATCCTGCCTTTTCCACCTTATCGTTCC GCTGCATAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44196</pre>

<subunit 1 of 1, 332 aa, 1 stop

<MW: 36143, pI: 5.89, NX(S/T): 1

MRLLVLLWGCLLLPGYEALEGPEEISGFEGDTVSLQCTYREELRDHRKYWCRKGGILFSRCS GTIYAEEEGQETMKGRVSIRDSRQELSLIVTLWNLTLQDAGEYWCGVEKRGPDESLLISLFV FPGPCCPPSPSPTFQPLATTRLQPKAKAQQTQPPGLTSPGLYPAATTAKQGKTGAEAPPLPG TSQYGHERTSQYTGTSPHPATSPPAGSSRPPMQLDSTSAEDTSPALSSGSSKPRVSIPMVRI LAPVLVLLSLLSAAGLIAFCSHLLLWRKEAQQATETQRNEKFWLSRLTAEEKEAPSQAPEGD VISMPPLHTSEEELGFSKFVSA

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 248-269

N-glycosylation site.

amino acids 96-99

Fibrinogen beta and gamma chains C-terminal domain. amino acids 104-113

Ig like V-type domain:

amino acids 13-128

TTGTGACTAAAAGCTGGCCTAGCAGGCCAGGGAGTGCAGCTGCAGGCGTGGGGGTGGCAGGA GCCGCAGAGCCAGACAGCCGAGAAACAGGTGGACAGTGTGAAAGAACCAGTGGTCTC GCTCTGTTGCCCAGGCTAGAGTGTACTGGCGTGATCATAGCTCACTGCAGCCTCAGACTCCT GGACTTGAGAAATCCTCCTGCCTTAGCCTCCTGCATATCTGGGACTCCAGGGGTGCACTCAA GCCCTGTTCTCCTCTGTGAGTGGACCACGGAGGCTGGTGAGCTGCCTGTCATCCCAA AGCTCAGCTCTGAGCCAGAGTGGTGGTGGCTCCACCTCTGCCGCCGGCATAGAAGCCAGGAG ${\tt CAGGGCTCTCAGAAGGCGGTGGTGCCCAGCTGGGATC} \underline{{\tt ATG}} {\tt TTGTTGGCCCTGGTCTGTCTGC}$ TCAGCTGCCTGCTACCCTCCAGTGAGGCCAAGCTCTACGGTCGTTGTGAACTGGCCAGAGTG $\tt CTACATGACTTCGGGCTGGACGGATACCGGGGATACAGCCTGGCTGACTGGGTCTGCCTTGC$ TTATTTCACAAGCGGTTTCAACGCAGCTGCTTTGGACTACGAGGCTGATGGGAGCACCAACA ACGGGATCTTCCAGATCAACAGCCGGAGGTGGTGCAGCAACCTCACCCCGAACGTCCCCAAC GTGTGCCGGATGTACTGCTCAGATTTGTTGAATCCTAATCTCAAGGATACCGTTATCTGTGC CATGAAGATAACCCAAGAGCCTCAGGGTCTGGGTTACTGGGAGGCCTGGAGGCATCACTGCC ${\tt AGGGAAAAGACCTCACTGAATGGGTGGATGGCTGTGACTTC}$ CAGCAGGCTGGGAAATGTGGTTTGGTTCCTGACCTAGGCTTGGGAAGACAAGCCAGCGAATA AAGGATGGTTGAACGTGAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52187</pre> <subunit 1 of 1, 146 aa, 1 stop <MW: 16430, pI: 5.05, NX(S/T): 1 MLLALVCLLSCLLPSSEAKLYGRCELARVLHDFGLDGYRGYSLADWVCLAYFTSGFNAAALD YEADGSTNNGIFQINSRRWCSNLTPNVPNVCRMYCSDLLNPNLKDTVICAMKITQEPQGLGY WEAWRHHCQGKDLTEWVDGCDF

Important features: Signal peptide: amino acids 1-18

N-myristoylation site.

amino acids 67-72

Homolgous region to Alpha-lactalbumin / lysozyme C protes

amino acids 34-58 (catalytic domain), 111-132 and 66-107 Homolgous region to Alpha-lactalbumin / lysozyme C proteins.

AGCCGCTGCCCCGGGCCGGCCCCCGCGCGCGCACCATGAGTCCCCGCTCGTGCCTGCGTTC GCTGCGCCTCCTCGTCTTCGCCGTCTTCTCAGCCGCCGCGAGCAACTGGCTGTACCTGGCCA AGCTGTCGTCGGTGGGGAGCATCTCAGAGGAGGAGACGTGCGAGAAACTCAAGGGCCTGATC CAGAGGCAGGTGCAGATGTGCAAGCGGAACCTGGAAGTCATGGACTCGGTGCGCCGCGGTGC CCAGCTGGCCATTGAGGAGTGCCAGTACCAGTTCCGGAACCGGCGCTGGAACTGCTCCACAC TCGACTCCTTGCCCGTCTTCGGCAAGGTGGTGACGCAAGGGACTCGGGAGGCGGCCTTCGTG TACGCCATCTCTCGGCAGGTGTGGCCTTTGCAGTGACGCGGGCGTGCAGCAGTGGGGAGCT GGAGAAGTGCGGCTGTGACAGGACAGTGCATGGGGTCAGCCCACAGGGCTTCCAGTGGTCAG GATGCTCTGACAACATCGCCTACGGTGTGGCCTTCTCACAGTCGTTTGTGGATGTGCGGGAG AGAAGCAAGGGGGCCTCGTCCAGCAGAGCCCTCATGAACCTCCACAACAATGAGGCCGGCAG GAAGGCCATCCTGACACACATGCGGGTGGAATGCAAGTGCCACGGGGTGTCAGGCTCCTGTG AGGTAAAGACGTGCTGGCGAGCCGTGCCGCCCTTCCGCCAGGTGGGTCACGCACTGAAGGAG AAGTTTGATGGTGCCACTGAGGTGGAGCCACGCCGCGTGGGCTCCTCCAGGGCACTGGTACC ACGCAACGCACAGTTCAAGCCGCACACAGATGAGGACCTGGTGTACTTGGAGCCTAGCCCCG ACTTCTGTGAGCAGGACATGCGCAGCGGCGTGCTGGGCACGAGGGGCCGCACATGCAACAAG ACGTCCAAGGCCATCGACGCTGTGAGCTGTGTGTGTGCTGTGCCGCGCTTCCACACGCCGCA GGTGGAGCTGGACGCTGCAGCTGCAAATTCCACTGGTGCTGCTTCGTCAAGTGCCGGC AACCACCTAGTGGCCCAGGGAAGGCCGATAATTTAAACAGTCTCCCACCACCTACCCCAAGA ACCAGGCAGCCAACCCCAAGGGCACCAACCAGGGCCTCCCCAAAGCCTGGGCCTTTGTGGCT GCCACTGACCAAAGGGACCTTGCTCGTGCCGCTGGCTGCCCGCATGTGGCTGCCACTGACCA CTCAGTTGTTATCTGTGTCCGTTTTTCTACTTGCAGACCTAAGGTGGAGTAACAAGGAGTAT TACCACCACATGGCTACTGACCGTGTCATCGGGGAAGAGGGGGCCTTATGGCAGGGAAAATA GGTACCGACTTGATGGAAGTCACACCCTCTGGAAAAAAGAACTCTTAACTCTCCAGCACACA TACACATGGACTCCTGGCAGCTTGAGCCTAGAAGCCATGTCTCTCAAATGCCCTGAGAAAGG GAACAAGCAGATACCAGGTCAAGGGCACCAGGTTCATTTCAGCCCTTACATGGACAGCTAGA GGTTCGATATCTGTGGGTCCTTCCAGGCAAGAAGAGGGGAGATGAGAGCAAGAGACGACTGAA GTCCCACCCTAGAACCCAGCCTGCCCCAGCCTGCCCCTGGGAAGAGGAAACTTAACCACTCC CCAGACCCACCTAGGCAGGCATATAGGCTGCCATCCTGGACCAGGGATCCCGGCTGTGCCTT GAGAGGGAGGAAAGGGCTGTGCCTTTGCAGTCATGCCCGAGTCACCTTTCACAGCACTGTTCCTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48328</pre>

<subunit 1 of 1, 351 aa, 1 stop

<MW: 39052, pI: 8.97, NX(S/T): 2

MSPRSCLRSLRLLVFAVFSAAASNWLYLAKLSSVGSISEEETCEKLKGLIQRQVQMCKRNLE VMDSVRRGAQLAIEECQYQFRNRRWNCSTLDSLPVFGKVVTQGTREAAFVYAISSAGVAFAV TRACSSGELEKCGCDRTVHGVSPQGFQWSGCSDNIAYGVAFSQSFVDVRERSKGASSSRALM NLHNNEAGRKAILTHMRVECKCHGVSGSCEVKTCWRAVPPFRQVGHALKEKFDGATEVEPRR VGSSRALVPRNAQFKPHTDEDLVYLEPSPDFCEQDMRSGVLGTRGRTCNKTSKAIDGCELLC CGRGFHTAQVELAERCSCKFHWCCFVKCRQCQRLVELHTCR

Important features:

Signal peptide:

amino acids 1-22

N-glycosylation sites.

amino acids 88-91 and 297-300

Wnt-1 family signature.

amino acids 206-215

Homologous region to Wnt-1 family proteins

amino acids 183-235, 305-350, 97-138, 53-92 and 150 -174

CGGACGCGTGGGCGGACGCGTGGGCGGACGCGTGGGCTGGGTGCCTGCAT ${\tt CCTGGGGACGCTGGGTGCACTGGAGCAGGAGACCCCTCTTCTTGGCCCTGGCTGTCTTGGTC}$ ACCACAGTCCTTTGGGCTGTGATTCTGAGTATCCTATTGTCCAAGGCCTCCACGGAGCGCGC GGCGCTGCTTGACGGCCACGACCTGCTGAGGACAAACGCCTCGAAGCAGACGGCGCGCTGG GTGCCCTGAAGGAGGAGGTCGGAGACTGCCACAGCTGCTCGGGGACGCAGCCGCAGCTG CAGACCACGCGCGCGGAGCTTGGGGAGGCGCAGGCGAAGCTGATGGAGCAGGAGAGCGCCCT GCGGGAACTGCGTGAGCGCTGACCCAGGGCTTGGCTGAAGCCGGCAGGGGCCGTGAGGACG TCCGCACTGAGCTGTTCCGGGCGCTGGAGGCCGTGAGGCTCCAGAACAACTCCTGCGAGCCG TGCCCCACGTCGTGGCTGTCCTTCGAGGGCTCCTGCTACTTTTTCTCTGTGCCAAAGACGAC GTGGGCGCGCGCAGATCACTGCGCAGATGCCAGCGCGCACCTGGTGATCGTTGGGGGCC CAGCCACTGGAACCAGGGAGAGCCCAATGACGCTTGGGGGGCGCGAGAACTGTGTCATGATGC TGCACACGGGGCTGTGGAACGACGCCGCTGTGACAGCGAGAAGGACGGCTGGATCTGTGAG AAAAGGCACAACTGC<u>TGA</u>CCCCGCCCAGTGCCCTGGAGCCGCCCCATTGCAGCATGTCGTA TCCTGGGGGCTGCTCACCTCCCTGGCTCCTGGAGCTGATTGCCAAAGAGTTTTTTTCTTCCT CATCCACCGCTGCTGAGTCTCAGAAACACTTGGCCCAACATAGCCCTGTCCAGCCCAGTGCC TGGGCTCTGGGACCTCATGCCGACCTCATCCTAACTCCACTCACGCAGACCCAACCTAACC TCCACTAGCTCCAAAATCCCTGCTCCTGCGTCCCCGTGATATGCCTCCACTTCTCTCCCTAA CCAAGGTTAGGTGACTGAGGACTGGAGCTGTTTGGTTTTCTCGCATTTTCCACCAAACTGGA AGCTGTTTTTGCAGCCTGAGGAAGCATCAATAAATATTTGAGAAATGAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56352
<subunit 1 of 1, 293 aa, 1 stop
<MW: 32562, pI: 6.53, NX(S/T): 2</pre>

MDTTRYSKWGGSSEEVPGGPWGRWVHWSRRPLFLALAVLVTTVLWAVILSILLSKASTERAA LLDGHDLLRTNASKQTAALGALKEEVGDCHSCCSGTQAQLQTTRAELGEAQAKLMEQESALR ELRERVTQGLAEAGRGREDVRTELFRALEAVRLQNNSCEPCPTSWLSFEGSCYFFSVPKTTW AAAQDHCADASAHLVIVGGLDEQGFLTRNTRGRGYWLGLRAVRHLGKVQGYQWVDGVSLSFS HWNQGEPNDAWGRENCVMMLHTGLWNDAPCDSEKDGWICEKRHNC

Important features:

Type II transmembrane domain:

amino acids 31-54

N-glycosylation sites.
amino acids 73-76 and 159-162

Leucine zipper pattern.
amino acids 102-123

N-myristoylation sites.
amino acids 18-23, 133-138 and 242-247

C-type lectin domain signature. amino acids 264-287

HODENOMF HODES

GCCAGGGGAAGAGGTGATCCGACCCGGGGAAGGTCGCTGGGCAGGGCGAGTTGGGAAAGCG GCAGCCCCGCCGCCCCCCCCCTTCTCCTCTTTCTCCCACGTCCTATCTGCCTCTCG CGCGCTCCCGCTGCTGCCGGGTGATGGAAAACCCCAGCCCGGCCGCCCCTGGGCAAG GCCCTCTGCGCTCTCCTGGCCACTCTCGGCGCCGGCCAGCCTCTTGGGGGAGAGTC CATCTGTTCCGCCAGAGCCCCGGCCAAATACAGCATCACCTTCACGGGCAAGTGGAGCCAGA CGGCCTTCCCCAAGCAGTACCCCCTGTTCCGCCCCCCTGCGCAGTGGTCTTCGCTGCGGG GCCGCGCATAGCTCCGACTACAGCATGTGGAGGAAGAACCAGTACGTCAGTAACGGGCTGCG CGACTTTGCGGAGCGCGGCGAGGCCTGGCGCGTGATGAAGGAGATCGAGGCGGCGGGGGAGG CGCTGCAGAGCGTGCACGAGGTGTTTTCGGCGCCCGCCGTCCCCAGCGGCACCGGGCAGACG TCGGCGGAGCTGCAGCGCAGCACTCGCTGGTCTCGTTTGTGGTGCGCATCGTGCC CAGCCCGACTGGTTCGTGGGCGTGGACAGCCTGGACCTGTGCGACGGGGACCGTTGGCGGG AACAGGCGGCTGGACCTGTACCCCTACGACGCCGGGACGGCGGCTTCACCTTCTCC TCCCCCAACTTCGCCACCATCCCGCAGGACACGGTGACCGAGATAACGTCCTCCTCCCCAG CCACCGGCCAACTCCTTCTACTACCGGGGGTGAAGGCCCTGCCTCCCATCGCCAGGGTGA AGGGACAATGAGATTGTAGACAGCGCCTCAGTTCCAGAAACGCCGCTGGACTGCGAGGTCTC CCTGTGGTCCTGGGGACTGTGCGGAGGCCACTGTGGGAGGCTCGGGACCAAGAGCAGGA CTCGCTACGTCCGGGTCCAGCCCGCCAACAACGGGAGCCCCTGCCCCGAGCTCGAAGAAGAG GCTGAGTGCGTCCTGATAACTGCGTCTAAGACCAGAGCCCCGCAGCCCCTGGGGCCCCCCG GAGCCATGGGGTGTCGGGGGCTCCTGTGCAGGCTCATGCTGCAGGCGCCGAGGGCACAGGG GGTTTCGCGCTGCTCCTGACCGCGGTGAGGCCGCCGCCGACCATCTCTGCACTGAAGGGCCCT CTGGTGGCCGGCACGGCATTGGGAAACAGCCTCCTCCTTTCCCAACCTTGCTTCTTAGGGG CCCCGTGTCCCGTCTGCTCTCAGCCTCCTCCTGCAGGATAAAGTCATCCCCAAGGCTC CAGCTACTCTAAATTATGTCTCCTTATAAGTTATTGCTGCTCCAGGAGATTGTCCTTCATCG TCCAGGGGCCTGGCTCCCACGTGGTTGCAGATACCTCAGACCTGGTGCTCTAGGCTGTGCTG AGCCCACTCTCCCGAGGGCGCATCCAAGCGGGGCCACTTGAGAAGTGAATAAATGGGGCGG TTTCGGAAGCGTCAGTGTTTCCATGTTATGGATCTCTCTGCGTTTGAATAAAGACTATCTCT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53971</pre>

><subunit 1 of 1, 331 aa, 1 stop

><MW: 35844, pI: 5.45, NX(S/T): 2

MENPSPAAALGKALCALLLATLGAAGQPLGGESICSARAPAKYSITFTGKWSQTAFPKQYPL FRPPAQWSSLLGAAHSSDYSMWRKNQYVSNGLRDFAERGEAWALMKEIEAAGEALQSVHEVF SAPAVPSGTGQTSAELEVQRRHSLVSFVVRIVPSPDWFVGVDSLDLCDGDRWREQAALDLYP YDAGTDSGFTFSSPNFATIPQDTVTEITSSSPSHPANSFYYPRLKALPPIARVTLLRLRQSP RAFIPPAPVLPSRDNEIVDSASVPETPLDCEVSLWSSWGLCGGHCGRLGTKSRTRYVRVQPA NNGSPCPELEEEAECVPDNCV

Important features:

Signal peptide:

amino acids 1-26

GGCGGCGTCCGTGAGGGGCTCCTTTGGGCAGGGGTAGTGTTTGGTGTCCCTGTCTTGCGTGA TATTGACAAACTGAAGCTTTCCTGCACCACTGGACTTAAGGAAGAGTGTACTCGTAGGCGGA CAGCTTTAGTGGCCGGCCGCCGCTCTCATCCCCCGTAAGGAGCAGAGTCCTTTGTACTGAC CAAGATGAGCAACATCTACATCCAGGAGCCTCCCACGAATGGGAAGGTTTTATTGAAAACTA CAGCTGGAGATATTGACATAGAGTTGTGGTCCAAAGAAGCTCCTAAAGCTTGCAGAAATTTT ATCCAACTTTGTTTGGAAGCTTATTATGACAATACCATTTTTCATAGAGTTGTGCCTGGTTT CATTCAAAGATGAATTCATTCACGGTTGCGTTTTAATCGGAGAGGACTGGTTGCCATGGCA AATGCTGGTTCTCATGATAATGGCAGCCAGTTTTTCTTCACACTGGGTCGAGCAGATGAACT TAACAATAAGCATACCATCTTTGGAAAGGTTACAGGGGATACAGTATATAACATGTTGCGAC TGTCAGAAGTAGACATTGATGATGACGAAAGACCACATAATCCACACAAAATAAAAAGCTGT GAGGTTTTGTTTAATCCTTTTGATGACATCATTCCAAGGGAAATTAAAAGGCTGAAAAAAGA GAAACCAGAGGAGGAAGTAAAGAAATTGAAACCCAAAGGCACAAAAAATTTTAGTTTACTTT CATTTGGAGAGGAAGCTGAGGAAGAAGAGGAGGAAGTAAATCGAGTTAGTCAGAGCATGAAG GGCAAAAGCAAAAGTAGTCATGACTTGCTTAAGGATGATCCACATCTCAGTTCTGTTCCAGT TGTAGAAAGTGAAAAAGGTGATGCACCAGATTTAGTTGATGATGGAGAAGATGAAAGTGCAG AGCATGATGAATATATTGATGGTGATGAAAAGAACCTGATGAGAAAAGAATTGCCAAAAAA TTAAAAAAGGACACAAGTGCGAATGTTAAATCAGCTGGAGAAGGAGGAAGTGGAGAAGAAATC AGTCAGCCGCAGTGAAGAGCTCAGAAAAGAAGCAAGACAATTAAAACGGGAACTCTTAGCAG CAAAACAAAAAAAGTAGAAAATGCAGCAAAACAAGCAGAAAAAAAGAAGTGAAGAGGAAGAA GCCCTCCAGATGGTGCTGTTGCCGAATACAGAAGAAAAGCAAAAGTATGAAGCTTTGAG GAAGCAACAGTCAAAGAAGGGAACTTCCCGGGAAGATCAGACCCTTGCACTGCTGAACCAGT TTAAATCTAAACTCACTCAAGCAATTGCTGAAACACCTGAAAATGACATTCCTGAAACAGAA GTAGAAGATGATGAAGGATGGATGTCACATGTACTTCAGTTTGAGGATAAAAGCAGAAAAGT GAAAGATGCAAGCATGCAAGACTCAGATACATTTGAAATCTATGATCCTCGGAATCCAGTGA GAGAATAATGATAACCAGAACTTGCTGGAAATGTGCCTACAATGGCCTTGTAACAGCCATTG TTCCCAACAGCATCACTTAGGGGTGTGAAAAGAAGTATTTTTGAACCTGTTGTCTGGTTTTG AAAAACAATTATCTTGTTTTGCAAATTGTGGAATGATGTAAGCAAATGCTTTTGGTTACTGG TACATGTGTTTTTTCCTAGCTGACCTTTTATATTGCTAAATCTGAAATAAAATAACTTTCCT TCCACAAAAAAAAAAAAAAAAAAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50919</pre>

><subunit 1 of 1, 472 aa, 1 stop

><MW: 53847, pI: 5.75, NX(S/T): 2

MSNIYIQEPPTNGKVLLKTTAGDIDIELWSKEAPKACRNFIQLCLEAYYDNTIFHRVVPGFI
VQGGDPTGTGSGGESIYGAPFKDEFHSRLRFNRRGLVAMANAGSHDNGSQFFFTLGRADELN
NKHTIFGKVTGDTVYNMLRLSEVDIDDDERPHNPHKIKSCEVLFNPFDDIIPREIKRLKKEK
PEEEVKKLKPKGTKNFSLLSFGEEAEEEEEEVNRVSQSMKGKSKSSHDLLKDDPHLSSVPVV
ESEKGDAPDLVDDGEDESAEHDEYIDGDEKNLMRERIAKKLKKDTSANVKSAGEGEVEKKSV
SRSEELRKEARQLKRELLAAKQKKVENAAKQAEKRSEEEEAPPDGAVAEYRREKQKYEALRK
QQSKKGTSREDQTLALLNQFKSKLTQAIAETPENDIPETEVEDDEGWMSHVLQFEDKSRKVK
DASMQDSDTFEIYDPRNPVNKRRREESKKLMREKKERR

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 109-112 and 201-204

Cyclophilin-type peptidyl-prolyl cis-trans isomerase signature. amino acids 49-66

Homologous region to Cyclophilin-type peptidyl-prolyl cis-trans isomerase

amino acids 96-140, 49-89 and 22-51

FIGURE 90

CCCGCCTCGGCTTTGAGGCGAGAGAAGTGTCCCAGACCCATTTCGCCTTGCTGACGGCGTCG ${\tt AGCCCTGGCCAGAC}$ GTGGCCGCCGGCGGACCAGCACAGGCGGCGTTTTCTCCTTCGGAACGGGAACGTCTAGCAA CCCTTCTGTGGGGCTCAATTTTGGAAATCTTGGAAGTACTTCAACTCCAGCAACTACATCTG CTCCTTCAAGTGGTTTTGGAACCGGGCTCTTTGGATCTAAACCTGCCACTGGGTTCACTCTA GGAGGAACAAATACAGGTGCCTTGCACACCAAGAGGCCTCAAGTGGTCACCAAATATGGAAC CCTGCAAGGAAAACAGATGCATGTGGGGAAGACACCCATCCAAGTCTTTTTAGGAGTCCCCT TCTCCAGACCTCCTCTAGGTATCCTCAGGTTTGCACCTCCAGAACCCCCGGAGCCCTGGAAA GGAATCAGAGATGCTACCACCTACCCGCCTGGATGGAGTCTCGCTCTGTCGCCAGGCTGGAG TGCAGTGGCACGATCTCGGCTCACTGCAACCTCCGCCTCCCGGGTTCAAGCGAGTCTCCTGC CTCAGCCTCTGAGTGTCTGGGGCTACAGGTGCCTGCAGGAGTCCTGGGGCCAGCTGGCCTCG GAACGTGTACGCGCGCGCGCGCGCGCGCGCGGGATCCCCAGCTGCCAGTGATGGTCTGGTTCC GAGAAAGTGGTGCTGGTGTTTCTGCAGCACAGGCTCGGCATCTTCGGCCTTCCTGAGCACGGA AGGAGAACATCGCAGCCTTCGGGGGAGACCCAGGAAATGTGACCCTGTTCGGCCAGTCGGCG GGGGCCATGAGCATCTCAGGACTGATGATGTCACCCCTAGCCTCGGGTCTCTTCCATCGGGC CATTTCCCAGAGTGGCACCGCGTTATTCAGACTTTTCATCACTAGTAACCCACTGAAAGTGG CCAAGAAGGTTGCCCACCTGGCTGGATGCAACCACAACAGCACACAGATCCTGGTAAACTGC CTGAGGGCACTATCAGGGACCAAGGTGATGCGTGTGTCCAACAAGATGAGATTCCTCCAACT GAACTTCCAGAGAGACCCGGAAGAGATTATCTGGTCCATGAGCCCTGTGGTGGATGGTGTGG TGATCCCAGATGACCCTTTGGTGCTCCTGACCCAGGGGAAGGTTTCATCTGTGCCCTACCTT CTAGGTGTCAACAACCTGGAATTCAATTGGCTCTTGCCTTATAATATCACCAAGGAGCAGGT ACCACTTGTGGTGGAGGAGTACCTGGACAATGTCAATGAGCATGACTGGAAGATGCTACGAA ACCGTATGATGGACATAGTTCAAGATGCCACTTTCGTGTATGCCACACTGCAGACTGCTCAC TACCACCGAGAAACCCCAATGATGGGAATCTGCCCTGCTGGCCACGCTACAACAAGGATGAA AAGTACCTGCAGCTGGATTTTACCACAAGAGTGGGCA<u>TGA</u>AGCTCAAGGAGAAGAAGATGGC TTTTTGGATGAGTCTGTACCAGTCTCAAAGACCTGAGAAGCAGAGGCAATTCTAAGGGTGGC TATGCAGGAAGGAGCCAAAGAGGGGTTTGCCCCCACCATCCAGGCCCTGGGGAGACTAGCCA TGGACATACCTGGGGACAAGAGTTCTACCCACCCCAGTTTAGAACTGCAGGAGCTCCCTGCT GCCTCCAGGCCAAAGCTAGAGCTTTTGCCTGTTGTGTGGGACCTGCACTGCCCTTTCCAGCC TGACATCCCATGATGCCCCTCTACTTCACTGTTGACATCCAGTTAGGCCAGGCCCTGTCAAC ACCACACTGTGCTCAGCTCTCCAGCCTCAGGACAACCTCTTTTTTTCCCTTCTTCAAATCCT CCCACCCTTCAATGTCTCCTTGTGACTCCTTCTTATGGGAGGTCGACCCAGACTGCCACTGC TCACATTGGCCTGGAGGCCTAGGGCAGGTTGTGACATGGAGCAAACTTTTGGTAGTTTGGGA TCTTCTCTCCCACCCACACTTATCTCCCCCAGGGCCACTCCAAAGTCTATACACAGGGGTGG TCTCTTCAATAAAGAAGTGTTGATTAGAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44179</pre>

<subunit 1 of 1, 545 aa, 1 stop</pre>

<MW: 58934, pI: 9.45, NX(S/T): 4

MSTGFSFGSGTLGSTTVAAGGTSTGGVFSFGTGTSSNPSVGLNFGNLGSTSTPATTSAPSSG FGTGLFGSKPATGFTLGGTNTGALHTKRPQVVTKYGTLQGKQMHVGKTPIQVFLGVPFSRPP LGILRFAPPEPPEPWKGIRDATTYPPGWSLALSPGWSAVARSRLTATSASRVQASLLPQPLS VWGYRCLQESWGQLASMYVSTRERYKWLRFSEDCLYLNVYAPARAPGDPQLPVMVWFPGGAF IVGAASSYEGSDLAAREKVVLVFLQHRLGIFGFLSTDDSHARGNWGLLDQMAALRWVQENIA AFGGDPGNVTLFGQSAGAMSISGLMMSPLASGLFHRAISQSGTALFRLFITSNPLKVAKKVA HLAGCNHNSTQILVNCLRALSGTKVMRVSNKMRFLQLNFQRDPEEIIWSMSPVVDGVVIPDD PLVLLTQGKVSSVPYLLGVNNLEFNWLLPYNITKEQVPLVVEEYLDNVNEHDWKMLRNRMMD IVQDATFVYATLQTAHYHRETPMMGICPAGHATTRMKSTCSWILPQEWA

Important features:

Signal peptide:

amino acids 1-29

Carboxylesterases type-B serine active site.

amino acids 312-327

Carboxylesterases type-B signature 2.

amino acids 218-228

N-glycosylation sites.

amino acids 318-321, 380-383 and 465-468

GAGAACAGGCCTGTCTCAGGCAGGCCCTGCGCCTCCTATGCGGAGATGCTACTGCCACTGCT GCTGTCCTCGCTGGCGGGGTCCCAGGCTATGGATGGAGATTCTGGATACGAGTGCAGG AGTCAGTGATGGTGCCGGAGGGCCTGTGCATCTCTGTGCCCTGCTCTTTCTCCTACCCCCGA CAAGACTGGACAGGGTCTACCCCAGCTTATGGCTACTGGTTCAAAGCAGTGACTGAGACAAC CAAGGGTGCTCCTGTGGCCACAAACCACCAGAGTCGAGAGGTGGAAATGAGCACCCGGGGCC GATTCCAGCTCACTGGGGATCCCGCCAAGGGGAACTGCTCCTTGGTGATCAGAGACGCGCAG ATGCAGGATGAGTCACAGTACTTCTTTCGGGTGGAGAGGGAAGCTATGTGACATATAATTT CATGAACGATGGGTTCTTTCTAAAAGTAACAGTGCTCAGCTTCACGCCCAGACCCCAGGACC ACAACACCGACCTCACCTGCCATGTGGACTTCTCCAGAAAGGGTGTGAGCGCACAGAGGACC GTCCGACTCCGTGTGGCCTATGCCCCCAGAGACCTTGTTATCAGCATTTCACGTGACAACAC GCCAGCCTGGAGCCCCAGCCCCAGGGAAATGTCCCATACCTGGAAGCCCAAAAAAGGCCAGT TCCTGCGGCTCCTCTGTGCTGACAGCCAGCCCCCTGCCACACTGAGCTGGGTCCTGCAG AACAGAGTCCTCTCCTCGTCCCATCCCTGGGGCCCTAGACCCCTGGGGCTGGAGCTGCCCGG GGTGAAGGCTGGGGATTCAGGGCGCTACACCTGCCGAGCGGAGAACAGGCTTGGCTCCCAGC AGCGAGCCCTGGACCTCTCTGTGCAGTATCCTCCAGAGAACCTGAGAGTGATGGTTTCCCAA GCAAACAGGACAGTCCTGGAAAACCTTGGGAACGGCACGTCTCTCCCAGTACTGGAGGGCCA GGGGACAGGTTCTGAGCCCCTCCCAGCCCTCAGACCCCGGGGTCCTGGAGCTGCCTCGGGTT CAAGTGGAGCACGAAGGAGAGTTCACCTGCCACGCTCGGCACCCACTGGGCTCCCAGCACGT CTCTCTCAGCCTCTCCGTGCACTATAAGAAGGGACTCATCTCAACGGCATTCTCCAACGGAG CGTTTCTGGGAATCGGCATCACGGCTCTTCTTTTCCTCTGCCTGGCCCTGATCATCATGAAG ATTCTACCGAAGAGACGGACTCAGACAGAAACCCCGAGGCCCAGGTTCTCCCGGCACAGCAC GATCCTGGATTACATCAATGTGGTCCCGACGGCTGGCCCCCTGGCTCAGAAGCGGAATCAGA AAGAACCAGAAAAAGCAGTATCAGTTGCCCAGTTTCCCAGAACCCAAATCATCCACTCAAGC CCCAGAATCCCAGGAGAGCCAAGAGGAGCTCCATTATGCCACGCTCAACTTCCCAGGCGTCA GACCCAGGCCTGAGGCCCGGATGCCCAAGGGCACCCAGGCGGATTATGCAGAAGTCAAGTTC CAATGAGGGTCTCTTAGGCTTTAGGACTGGGACTTCGGCTAGGGAAGGTAGAGTAAGAG CTCTCTTTCTCTCTTTTTAAAAAAACATCTGGCCAGGGCACAGTGGCTCACGCCTGTAATC CCAGCACTTTGGGAGGTTGAGGTGGGCAGATCGCCTGAGGTCGGGAGTTCGAGACCAGCCTG GCCAACTTGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGCATGGTGGCAGG CGCCTGTAATCCTACCTACTTGGGAAGCTGAGGCAGGAGAATCACTTGAACCTGGGAGACGG AGGTTGCAGTGAGCCAAGATCACACCATTGCACGCCAGCCTGGGCAACAAAGCGAGACTCCA TCTCAAAAAAAAATCCTCCAAATGGGTTGGGTGTCTGTAATCCCAGCACTTTGGGAGGCTA AGGTGGGTGGATTGCTTGAGCCCAGGAGTTCGAGACCAGCCTGGGCAACATGGTGAAACCCC ATCTCTACAAAAATACAAAACATAGCTGGGCTTGGTGGTGTGCCTGTAGTCCCAGCTGT CAGACATTTAAACCAGAGCAACTCCATCTGGAATAGGAGCTGAATAAAATGAGGCTGAGACC TACTGGGCTGCATTCTCAGACAGTGGAGGCATTCTAAGTCACAGGATGAGACAGGAGGTCCG ATCCCACCAAAACCAAGTTGGCCACGAGAGTGACCTCTGGTCGTCCTCACTGCTACACTCCT GACAGCACCATGACAGTTTACAAATGCCATGGCAACATCAGGAAGTTACCCGATATGTCCCA AAAGGGGGAGGAATGAATAATCCACCCCTTGTTTAGCAAATAAGCAAGAAATAACCATAAAA GTGGGCAACCAGCAGCTCTAGGCGCTGCTCTTGTCTATGGAGTAGCCATTCTTTTGTTCCTT TACTTTCTTAATAAACTTGCTTTCACCTTAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA54002</pre>

><subunit 1 of 1, 544 aa, 1 stop

><MW: 60268, pI: 9.53, NX(S/T): 3

MLLPLLLSSLLGGSQAMDGRFWIRVQESVMVPEGLCISVPCSFSYPRQDWTGSTPAYGYWFK
AVTETTKGAPVATNHQSREVEMSTRGRFQLTGDPAKGNCSLVIRDAQMQDESQYFFRVERGS
YVTYNFMNDGFFLKVTVLSFTPRPQDHNTDLTCHVDFSRKGVSAQRTVRLRVAYAPRDLVIS
ISRDNTPALEPQPQGNVPYLEAQKGQFLRLLCAADSQPPATLSWVLQNRVLSSSHPWGPRPL
GLELPGVKAGDSGRYTCRAENRLGSQQRALDLSVQYPPENLRVMVSQANRTVLENLGNGTSL
PVLEGQSLCLVCVTHSSPPARLSWTQRGQVLSPSQPSDPGVLELPRVQVEHEGEFTCHARHP
LGSQHVSLSLSVHYKKGLISTAFSNGAFLGIGITALLFLCLALIIMKILPKRRTQTETPRPR
FSRHSTILDYINVVPTAGPLAQKRNQKATPNSPRTPPPPGAPSPESKKNQKKQYQLPSFPEP
KSSTQAPESQESQEELHYATLNFPGVRPRPEARMPKGTQADYAEVKFQ

Important features:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 100-103, 297-300 and 306-309

Immunoglobulins and major histocompatibility complex proteins signature.

amino acids 365-371

TGAAGAGTAATAGTTGGAATCAAAAGAGTCAACGCAATGAACTGTTATTTACTGCTGCGTTT TATGTTGGGAATTCCTCTCTATGGCCTTGTCTTGGAGCAACAGAAAACTCTCAAACAAGA AAGTCAAGCAGCCAGTGCGATCTCATTTGAGAGTGAAGCGTGGCTGGGTGTGGAACCAATTT TTTGTACCAGAGGAAATGAATACGACTAGTCATCACATCGGCCAGCTAAGATCTGATTTAGA CAATGGAAACAATTCTTTCCAGTACAAGCTTTTGGGAGCTGGAAGTACTTTTATCA TTGATGAAAGAACAGGTGACATATATGCCATACAGAAGCTTGATAGAGAGGAGCGATCCCTC TACATCTTAAGAGCCCAGGTAATAGACATCGCTACTGGAAGGGCTGTGGAACCTGAGTCTGA GTTTGTCATCAAAGTTTCGGATATCAATGACAATGAACCAAAATTCCTAGATGAACCTTATG AGGCCATTGTACCAGAGATGTCTCCAGAAGGAACATTAGTTATCCAGGTGACAGCAAGTGAT GCTGACGATCCCTCAAGTGGTAATAATGCTCGTCTCCTCTACAGCCTTACTTCAAGGCCAGCC ATATTTTCTGTTGAACCAACAACAGGAGTCATAAGAATATCTTCTAAAATGGATAGAGAAC TGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGATTGGTCAGCCAGGAGCGTTG TCTGGAACAACAAGTGTATTAATTAAACTTTCAGATGTTAATGACAATAAGCCTATATTTAA AGAAAGTTTATACCGCTTGACTGTCTCTGAATCTGCACCCACTGGGACTTCTATAGGAACAA TCATGCATATGATAATGACATAGGAGAATGCAGAAATGGATTACAGCATTGAAGAGGAT GATTCGCAAACATTTGACATTATTACTAATCATGAAACTCAAGAAGGAATAGTTATATTAAA AAAGAAAGTGGATTTTGAGCACCAGAACCACTACGGTATTAGAGCAAAAGTTAAAAACCATC ATGTTCCTGAGCAGCTCATGAAGTACCACACTGAGGCTTCCACCACTTTCATTAAGATCCAG GTGGAAGATGTTGATGAGCCTCCTCTTTTCCTCCTTCCATATTATGTATTTGAAGTTTTTGA AGAAACCCCACAGGGATCATTTGTAGGCGTGGTGTCTGCCACAGACCCAGACAATAGGAAAT CTCCTATCAGGTATTCTATTACTAGGAGCAAAGTGTTCAATATCAATGATAATGGTACAATC ACTACAAGTAACTCACTGGATCGTGAAATCAGTGCTTGGTACAACCTAAGTATTACAGCCAC AGAAAAATACAATATAGAACAGATCTCTTCGATCCCACTGTATGTGCAAGTTCTTAACATCA ATGATCATGCTCCTGAGTTCTCTCAATACTATGAGACTTATGTTTGTGAAAATGCAGGCTCT GGTCAGGTAATTCAGACTATCAGTGCAGTGGATAGAGATGAATCCATAGAAGAGCACCATTT TTACTTTAATCTATCTGTAGAAGACACTAACAATTCAAGTTTTACAATCATAGATAATCAAG ATAACACAGCTGTCATTTTGACTAATAGAACTGGTTTTAACCTTCAAGAAGAACCTGTCTTC TACATCTCCATCTTAATTGCCGACAATGGAATCCCGTCACTTACAAGTACAAACACCCTTAC CATCCATGTCTGTGACTGTGGTGACAGTGGGAGCACAGACCTGCCAGTACCAGGAGCTTG TGCTTTCCATGGGATTCAAGACAGAAGTTATCATTGCTATTCTCATTTGCATTATGATCATA TTTGGGTTTATTTTTTGACTTTGGGTTTAAAACAACGGAGAAAACAGATTCTATTTCCTGA GAAAAGTGAAGATTTCAGAGAGAATATATTCCAATATGATGAAGGGGGGTGGAGAAGAAG ATACAGAGGCCTTTGATATAGCAGAGCTGAGGAGTAGTACCATAATGCGGGAACGCAAGACT CGGAAAACCACAAGCGCTGAGATCAGGAGCCTATACAGGCAGTCTTTGCAAGTTGGCCCCGA CAGTGCCATATTCAGGAAATTCATTCTGGAAAAGCTCGAAGAAGCTAATACTGATCCGTGTG CCCCTCCTTTTGATTCCCTCCAGACCTACGCTTTTGAGGGGAACAGGGTCATTAGCTGGATCC CTGAGCTCCTTAGAATCAGCAGTCTCTGATCAGGATGAAAGCTATGATTACCTTAATGAGTT GGGACCTCGCTTTAAAAGATTAGCATGCATGTTTGGTTCTGCAGTGCAGTCAAATAAT**TAG**G GCTTTTTACCATCAAAATTTTTAAAAGTGCTAATGTGTATTCGAACCCAATGGTAGTCTTAA AGAGTTTTGTGCCCTGGCTCTATGGCGGGGAAAGCCCTAGTCTATGGAGTTTTCTGATTTCC CTGGAGTAAATACTCCATGGTTATTTTAAGCTACCTACATGCTGTCATTGAACAGAGATGTG GGGAGAAATGTAAACAATCAGCTCACAGGCATCAATACAACCAGATTTGAAGTAAAATAATG TAGGAAGATATTAAAAGTAGATGAGAGGACACAAGATGTAGTCGATCCTTATGCGATTATAT CATTATTTACTTAGGAAAGAGTAAAAATACCAAACGAGAAAATTTAAAGGAGCAAAAATTTG CAAGTCAAATAGAAATGTACAAATCGAGATAACATTTACATTTCTATCATATTGACATGAAA ATTGAAAATGTATAGTCAGAGAAATTTTCATGAATTATTCCATGAAGTATTGTTTCCTTTAT TTAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53906

><subunit 1 of 1, 772 aa, 1 stop

><MW: 87002, pI: 4.64, NX(S/T): 8

MNCYLLLRFMLGIPLLWPCLGATENSQTKKVKQPVRSHLRVKRGWVWNQFFVPEEMNTTSHH
IGQLRSDLDNGNNSFQYKLLGAGAGSTFIIDERTGDIYAIQKLDREERSLYILRAQVIDIAT
GRAVEPESEFVIKVSDINDNEPKFLDEPYEAIVPEMSPEGTLVIQVTASDADDPSSGNNARL
LYSLLQGQPYFSVEPTTGVIRISSKMDRELQDEYWVIIQAKDMIGQPGALSGTTSVLIKLSD
VNDNKPIFKESLYRLTVSESAPTGTSIGTIMAYDNDIGENAEMDYSIEEDDSQTFDIITNHE
TQEGIVILKKKVDFEHQNHYGIRAKVKNHHVPEQLMKYHTEASTTFIKIQVEDVDEPPLFLL
PYYVFEVFEETPQGSFVGVVSATDPDNRKSPIRYSITRSKVFNINDNGTITTSNSLDREISA
WYNLSITATEKYNIEQISSIPLYVQVLNINDHAPEFSQYYETYVCENAGSGQVIQTISAVDR
DESIEEHHFYFNLSVEDTNNSSFTIIDNQDNTAVILTNRTGFNLQEEPVFYISILIADNGIP
SLTSTNTLTIHVCDCGDSGSTQTCQYQELVLSMGFKTEVIIAILICIMIIFGFIFLTLGLKQ
RRKQILFPEKSEDFRENIFQYDDEGGGEEDTEAFDIAELRSSTIMRERKTRKTTSAEIRSLY
RQSLQVGPDSAIFRKFILEKLEEANTDPCAPPFDSLQTYAFEGTGSLAGSLSSLESAVSDQD
ESYDYLNELGPRFKRLACMFGSAVOSNN

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 597-617

N-glycosylation sites.

amino acids 57-60, 74-77, 419-423, 437-440, 508-511, 515-518, 516-519 and 534-537

Cadherins extracellular repeated domain signature.

amino acids 136-146 and 244-254

ATTTCAAGGCCAGCCATATTTTTNTGTTGAACCAACAGCAGTCATAAGAATATTTTNTA
AAATGGATAGAGAACTGCAAGATGAGTATTGGGTAATCATTCAAGCCAAGGACATGATTGGT
CAGCCAGGAGCGTTGTNTGGAACAACAAGTGTATTAATTAAACTTTCAGATGTTAATGACAA
TAAGCCTATATTTAAAGAAAGTTTATACCGCTTGACTGTNTNTGAATCTGCACCCACTGGGA
NTTNTATAGGAACAATCATGGCATATGATAATGACATAGGAGAGAATGCAGAAATGGATTAC
AGCATTGAAGAGAGGATGATTCGCAAACATTTGACATTATT

GCAACCTCAGCTTCTAGTATCCAGACTCCAGCGCCCCCGGGCGCGGGCCCCAACCCCGAC CCCAGCCACCTTCGGGAGTCCGGGTTGCCCACCTGCAAACTCTCCGCCTTCTGCACCTGCCA CCCCTGAGCCAGCGGGCCCCCGAGCGAGTCATGGCCAACGCGGGGCTGCAGCTGTTGGGC TTCATTCTCGCCTTCCTGGGATGGATCGGCGCCATCGTCAGCACTGCCCTGCCCCAGTGGAG GATTTACTCCTATGCCGGCGACAACATCGTGACCGCCCAGGCCATGTACGAGGGGCTGTGGA TGTCCTGCGTGTCGCAGAGCACCGGGCAGATCCAGTGCAAAGTCTTTGACTCCTTGCTGAAT CTGAGCAGCACTTGCAAGCAACCCGTGCCTTGATGGTGGTTGGCATCCTCCTGGGAGTGAT AGCAATCTTTGTGGCCACCGTTGGCATGAAGTGTATGAAGTGCTTGGAAGACGATGAGGTGC AGAAGATGAGGATGGCTGTCATTGGGGGGTGCGATATTTCTTCTTGCAGGTCTGGCTATTTTA GTTGCCACAGCATGGTATGGCAATAGAATCGTTCAAGAATTCTATGACCCTATGACCCCAGT TTCTGGGAGGTGCCCTACTTTGCTGTTCCTGTCCCGAAAAACAACCTCTTACCCAACACCA AGGCCCTATCCAAAACCTGCACCTTCCAGCGGGAAAGACTACGTGTGACACAGAGGCAAAAG GAGAAAATCATGTTGAAACAAACCGAAAATGGACATTGAGATACTATCATTAACATTAGGAC ACCCATGTGTTAAAATACTCAGTGCTAAACATGGCTTAATCTTATTTTATCTTCCTCA ATATAGGAGGGAAGATTTTTCCATTTGTATTACTGCTTCCCATTGAGTAATCATACTCAAAT GGGGGAAGGGGTGCTCCTTAAATATATATAGATATGTATATACATGTTTTTCTATTAAAA ATAGACAGTAAAATACTATTCTCATTATGTTGATACTAGCATACTTAAAATATCTCTAAAAT AGGTAAATGTATTTAATTCCATATTGATGAAGATGTTTATTGGTATATTTTCTTTTTCGTCC TTATATACATATGTAACAGTCAAATATCATTTACTCTTCATTAGCTTTGGGTGCCTTTG CCACAAGACCTAGCCTAATTTACCAAGGATGAATTCTTTCAATTCTTCATGCGTGCCCTTTT CATATACTTATTTTTATTTTTACCATAATCTTATAGCACTTGCATCGTTATTAAGCCCCTTAT TTGTTTTGTGTTTCATTGGTCTCTATCTCCTGAATCTAACACATTTCATAGCCTACATTTTA GTTTCTAAAGCCAAGAAGAATTTATTACAAATCAGAACTTTGGAGGCAAATCTTTCTGCATG ACCAAAGTGATAAATTCCTGTTGACCTTCCCACACAATCCCTGTACTCTGACCCATAGCACT CTTGTTTGCTTTGAAAATATTTGTCCAATTGAGTAGCTGCATGCTGTTCCCCCAGGTGTTGT AACACAACTTTATTGATTGAATTTTTAAGCTACTTATTCATAGTTTTATATCCCCCTAAACT ACCTTTTTGTTCCCCATTCCTTAATTGTATTGTTTTCCCAAGTGTAATTATCATGCGTTTTA TATCTTCCTAATAAGGTGTGGTCTGTTTGTCTGAACAAAGTGCTAGACTTTCTGGAGTGATA ATCTGGTGACAAATATTCTCTCTGTAGCTGTAAGCAAGTCACTTAATCTTTCTACCTCTTTT TTCTATCTGCCAAATTGAGATAATGATACTTAACCAGTTAGAAGAGGTAGTGTGAATATTAA TTAGTTTATTACTCTTATTCTTTGAACATGAACTATGCCTATGTAGTGTCTTTATTTGCT CAGCTGGCTGAGACACTGAAGAGTCACTGAACAAAACCTACACGCTACCTTCATGTGATT GTGGTTCAGTGCCTTCCTCTCTCTACCAGTCTATTTCCACTGAACAAAACCTACGCACATAC CTTCATGTGGCTCAGTGCCTTCTCTCTCTACCAGTCTATTTCCATTCTTTCAGCTGTGTCT GACATGTTTGTGCTCTGTTCCATTTTAACAACTGCTCTTACTTTTCCAGTCTGTACAGAATG CTATTCACTTGAGCAAGATGATGTAATGGAAAGGGTGTTGGCACTGGTGTCTGGAGACCTG GATTTGAGTCTTGGTGCTATCAATCACCGTCTGTGTTTTGAGCAAGGCATTTGGCTGCTGTAA GCTTATTGCTTCATCTGTAAGCGGTGGTTTGTAATTCCTGATCTTCCCACCTCACAGTGATG TTGTGGGGATCCAGTGAGATAGAATACATGTAAGTGTGGTTTTGTAATTTAAAAAGTGCTAT ACTAAGGGAAAGAATTGAGGAATTAACTGCATACGTTTTGGTGTTTGCTTTTCAAATGTTTGA AAATAAAAAAAATGTTAAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52185</pre>

><subunit 1 of 1, 211 aa, 1 stop

><MW: 22744, pI: 8.51, NX(S/T): 1

MANAGLQLLGFILAFLGWIGAIVSTALPQWRIYSYAGDNIVTAQAMYEGLWMSCVSQSTGQI QCKVFDSLLNLSSTLQATRALMVVGILLGVIAIFVATVGMKCMKCLEDDEVQKMRMAVIGGA IFLLAGLAILVATAWYGNRIVQEFYDPMTPVNARYEFGQALFTGWAAASLCLLGGALLCCSC PRKTTSYPTPRPYPKPAPSSGKDYV

Important features:

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-102, 118-142 and 161-187

N-glycosylation site.

amino acids 72-75

PMP-22 / EMP / MP20 family proteins amino acids 70-111

ABC-2 type transport system integral membrane protein amino acids 119-133

| |

FIGURE 99

GGGCCCGACCATTATCCAACCGGGNTCACTGTTGGCTCATCTCCCTCCTGGATGAANCGCGC
CATCNTCAGACTCCCTGCCCCATGGAGATTTNNCCTATGCTGGCGACAACATCNTGACCCCC
AGCCATGTACGAGGGGCTTTGAACGTCNGCGTGTCGCAGANCACCGGGCAGATCCAGTGCAA
AGTCTTTGACTCCTTGCTGAATCTGNGCAGCACATTGCAGCAACCCNTGCCCTGATGGTGGT
TGGCATCCTCCTGGGAGTGATAGCAATCTTTGTGGCCACCGTTGGCATGAAGTGTATGAAGT
GCTTGGAAGACGATGAGGTGCAGAAGATGAGGATGGCTGTCATTGGGGGGCGCGATATTTCTT
CTTGCAGGTCTGGCTATTTNNNGTTGCCACAGCATGGTATGGCAATAGAATCGTTCAAGAAT
TCTATGACCCTATGACCCCAGTCAATGCCAGGTACGAATTTGGTCAGGCTCTCTTCACTGGC
TGGGCTGCTGCTTCTCTCTGCCTTCTGGGAGGTGCCCTACTTTGCTGTTCCTGCGA

 ${\tt TCATAGGGGGGGGGGGGATATTTTTCTTGCAGGTNTGGTTATTTTAGTTGCCACAGCATGGTA} \\ {\tt TGGCAATAGAATCGTTCAAGAATTNTATGACCCTATGACCCCAGTCAATGCCAGGTACGAAT} \\ {\tt TTGGTCAGGCTCTNTTCACTGGNTGGGCTGCTGCTTCTNTNNGCCTTNTGGGAGGTGCCCTACTTTGCTGTTCCTG} \\ {\tt CTTTGCTGTTCCTG} \\$

GCGTGCCGTCAGCTCGCCGGGCACCGCGCCTCGCCCTCCGCCCTGCGCCTGCAC ACCGGTCCCCGCCTTTTTGTAAAACTTAAAGCGGGCGCAGCATTAACGCTTCCCGCCCCGGT CAGGTCCTGAGCCTCGAGCCGCAGCACGAGCTCAAATTCCGAGGTCCCTTCACCGATGTTGT CACCACCAACCTAAAGCTTGGCAACCCGACAGACCGAAATGTGTGTTTTAAGGTGAAGACTA CAGCACCACGTAGGTACTGTGAGGCCCAACAGCGGAATCATCGATGCAGGGGCCTCAATT AATGTATCTGTGATGTTACAGCCTTTCGATTATGATCCCAATGAGAAAAGTAAACACAAGTT TATGGTTCAGTCTATGTTTGCTCCAACTGACACTTCAGATATGGAAGCAGTATGGAAGGAGG CAAAACCGGAAGACCTTATGGATTCAAAACTTAGATGTGTGTTTTGAATTGCCAGCAGAGAAT GATAAACCACATGATGTAGAAATAAATAAAATTATATCCACAACTGCATCAAAGACAGAAAC ACCAATAGTGTCTAAGTCTCTGAGTTCTTCTTTGGATGACACCGAAGTTAAGAAGGTTATGG AAGAATGTAAGAGGCTGCAAGGTGAAGTTCAGAGGCTACGGGAGGAGAACAAGCAGTTCAAG GAAGAAGATGGACTGCGGATGAGGAAGACAGTGCAGAGCAACAGCCCCATTTCAGCATTAGC CCCAACTGGGAAGGAAGAAGGCCTTAGCACCCGGCTCTTGGCTCTGGTGGTTTTGTTCTTTA TCGTTGGTGTAATTATTGGGAAGATTGCCTTG**TAG**AGGTAGCATGCACAGGATGGTAAATTG GATTGGTGGATCCACCATATCATGGGATTTAAATTTATCATAACCATGTGTAAAAAGAAATT AGATACACACACAAATATAATGTAACGATCTTTTAGAAAGTTAAAAATGTATAGTAACTG ATTGAGGGGAAAAAGAATGATCTTTATTAATGACAAGGGAAACCATGAGTAATGCCACAAT GGCATATTGTAAATGTCATTTTAAACATTGGTAGGCCTTGGTACATGATGCTGGATTACCTC TCTTAAAATGACACCCTTCCTCGCCTGTTGGTGCTGGCCCTTGGGGAGCTGGAGCCCAGCAT GCTGGGGAGTGCGGTCAGCTCCACACAGTAGTCCCCACGTGGCCCACTCCCGGCCCAGGCTG CTTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTGATGAACAGAGTCAGA AGCCCAAAGGAATTGCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTGTGT TGACTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGACCAA GCTAAATTTGTATTGGTTCATGTGAGTCAAACTGTTATTCAGAGATGTTTAATGCATA TTTAACTTATTTAATGTATTTCATCTCATGTTTTCTTATTGTCACAAGAGTACAGTTAATGC TGCGTGCTGCAACTCTGTTGGGTGAACTGGTATTGCTGCTGGAGGGCTGTGGGCTCCTCT GTCTCTGGAGAGTCTGGTCATGTGGAGGTGGGGTTTATTGGGATGCTGGAGAAGAGCTGCCA CCACCTCTCAACCATTACTCACACTTCCAGCGCCCAGGTCCAAGTCTGAGCCTGACCTCCCC TTGGGGACCTAGCCTGGAGTCAGGACAAATGGATCGGGCTGCAGAGGGTTAGAAGCGAGGGC ACCAGCAGTTGTGGGTGGGGAGCAAGGGAAGAGAGAAACTCTTCAGCGAATCCTTCTAGTAC TAGTTGAGAGTTTGACTGTGAATTAATTTTATGCCATAAAAGACCAACCCAGTTCTGTTTGA CTATGTAGCATCTTGAAAAGAAAATTATAATAAAGCCCCCAAAATTAAGAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53977</pre>

<subunit 1 of 1, 243 aa, 1 stop</pre>

<MW: 27228, pI: 7.43, NX(S/T): 2

MAKVEQVLSLEPQHELKFRGPFTDVVTTNLKLGNPTDRNVCFKVKTTAPRRYCVRPNSGIID AGASINVSVMLQPFDYDPNEKSKHKFMVQSMFAPTDTSDMEAVWKEAKPEDLMDSKLRCVFE LPAENDKPHDVEINKIISTTASKTETPIVSKSLSSSLDDTEVKKVMEECKRLQGEVQRLREE NKQFKEEDGLRMRKTVQSNSPISALAPTGKEEGLSTRLLALVVLFFIVGVIIGKIAL

Important features:

Transmembrane domain:

amino acids 224-239

N-glycosylation site.

_ amino acids 68-71

amino acids 59-64, 64-69 and 235-240

TATTGTAAAGGCCATTTTAAACCATTGGTAGGCCTTGGTACATGATGCTGGATTACCTCCTT
AAATGACACCNTTCCTCGCCTGTTGGTGCTGGCCNTTGGGGAGCCCCAGCATGCTG
GGGAGTGCGGTCAGCTCCACACAGTAGTCCCCACGTGGCCCACTCCCGGCCCAGGCTGCTTT
CCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTGATGAACAGAGTCAGAAGCC
CAAAGGAATTGCCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTGTTTGA
CTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGACCAAGCT
AAATTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTAATGCATATTTA
ACTTATTTAATGTATTCATCTCATGTTTTCTTATTGTCACAAGAGTACAGTTAATGCTGCG
TGCTGCTGAACTCTGTTGGGTGAACTGGTATTGCTGCTGGAGGGCTG

HOOLYOSK HOBECH

FIGURE 112

CCCTGGTGGTTTTGTTCTTTAATTCGTTGGTGTAATTNTTGGGAAGATTGCTTGTAGAGGTA
GNATGCACCNGGCTGGTAAATTGGATTGGTGGATCCACCATATCCATGGGATTTAAATTTAT
CATAACCATGTGTAAAAAGAAATTAATGTATGATGACATNTCACAGGTATTGCCTTTAAATT
ACCCATCCCTGNANACACATACACAGATACACANANACAAATNTAATGTAACGATNTTTTAG
AAAGTTAAAAATGTATAGTAAC

TGCTTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGACTTGATGAACAGAGTC
AGAAGCCCAAAGGAATTGCACTGTGGCAGCATCAGACGTACTCGTCATAAGTGAGAGGCGTG
TGTTGACTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCACTTAAAGGGAC
CAAGCTAAATTTGTATTGGTTCATGTAGTGAAGTCAAACTGTTATTCAGAGATGTTTAATGC
ATATTTAACTTATTTAATGTATTTCATCTCATGTTTTCTTATTGTCACAAGAGTACAGTTAA
TGCTGCGTGC

AAACCTTTAAAAGTTGAGGGGAAAAGAATGATCCTTTATTAATGACAAGGGAAACCNTGNGT
AATGCCACAATGGCATATTGTAAATGTCATTTTAAACATTGGTAGGCCTTGGTACATGATGC
TGGATTACCTCTCTTAAAATGACACCCTTCCTCGCCTGTTGGTGCCCCTTGGGGAGCTN
GAGCCCAGCATGCTGGGGAGTGCGGTCTGCTCCACACAGTAGTCCCCANGTGGCCCANTCCC
GGCCCAGGCTGCTTTCCGTGTCTTCAGTTCTGTCCAAGCCATCAGCTCCTTGGGANTGATGA
ACAGAGTCAGAAGCCCAAAGGAATTGCANTGTGGCAGCATCAGANGTANTNGTCATAAGTGA
GAGGCGTGTTTGANTGATTGACCCAGCGCTTTGGAAATAAATGGCAGTGCTTTGTTCANTT
AAAGGGNCCAAGNTAAATTTGTATTGGTTCATGTAGTGAAGTCAAANTGTTATTCAGAGATG
TTTAATGCATATTTAANTTATTTAATGTATTTCATNTCATGTTTTCTTATTGTCACAAGGGT
ACAGTTAATGCTGCGGTGCTGCTGAANTCTGTTGGGTGAANTGGTATTGCTG

GGCTCCCAGCTGCAGCGTCCCCGCCCCCCCTCGGGAGCTCTGATCTCAGCTGACAGTGCC CTCGGGGACCAAACAAGCCTGGCAGGGTCTCACTTTGTTGCCCAGGCTGGAGTTCAGTGCCA TGATCATGGTTTACTGCAGCCTTGACCTCCTGGGTTCAAGCGATCCTGCTGAGTAGCTGGGA CTACAGGACAAAATTAGAAGATCAAAATGGAAAATATGCTGCTTTGGTTGATATTTTTCACC GGTACCCCGGATTGTCAGTGAAAGGACTTTCCATCTCACCAGCCCCGCATTTGAGGCAGATG CTTTCTGAATTGGAGGATTATCTTTCCTATGAGACTGTCTTTGAGAATGGCACCCGAACCTT AACCAGGGTGAAAGTTCAAGATTTGGTTCTTGAGCCGACTCAAAATATCACCACAAAGGGAG TATCTGTTAGGAGAAAGAGACAGGTGTATGGCACCGACAGCAGGTTCAGCATCTTGGACAAA AGGTTCTTAACCAATTTCCCTTTCAGCACAGCTGTGAAGCTTTCCACGGGCTGTAGTGGCAT TCTCATTTCCCCTCAGCATGTTCTAACTGCTGCCCACTGTGTTCATGATGGAAAGGACTATG TCAAAGGGAGTAAAAAGCTAAGGGTAGGGTTGTTGAAGATGAGGAATAAAAGTGGAGGCAAG AAACGTCGAGGTTCTAAGAGGAGCAGGAGAGAGCTAGTGGTGGTGACCAAAGAGAGGGTAC CAGAGAGCATCTGCAGGAGAGAGCGAAGGGTGGGAGAAGAAGAAAAAATCTGGCCGGGGTC AGAGGATTGCCGAAGGGAGGCCTTCCTTTCAGTGGACCCGGGTCAAGAATACCCACATTCCG AAGGGCTGGGCACGAGGAGGCATGGGGGACGCTACCTTGGACTATGACTATGCTCTTCTGGA GCTGAAGCGTGCTCACAAAAGAAATACATGGAACTTGGAATCAGCCCAACGATCAAGAAAA LGCCTGGTGGAATGATCCACTTCTCAGGATTTGATAACGATAGGGCTGATCAGTTGGTCTAT CGGTTTTGCAGTGTGTCCGACGAATCCAATGATCTCCTTTACCAATACTGCGATGCTGAGTC GGGCTCCACCGGTTCGGGGGTCTATCTGCGTCTGAAAGATCCAGACAAAAAGAATTGGAAGC GCAAAATCATTGCGGTCTACTCAGGGCACCAGTGGGTGGATGTCCACGGGGTTCAGAAGGAC FTACAACGTTGCTGTTCGCATCACTCCCCTAAAATACGCCCAGATTTGCCTCTGGATTCACGG GAACGATGCCAATTGTGCTTACGGCTAACAGAGACCTGAAACAGGGCGGTGTATCATCTAAA TCACAGAGAAAACCAGCTCTGCTTACCGTAGTGAGATCACTTCATAGGTTATGCCTGGACTT GAACTCTGTCAATAGCATTTCAACATTTTTCAAAAATCAGGAGATTTTCGTCCATTTAAAAAA TGTATAGGTGCAGATATTGAAACTAGGTGGGCACTTCAATGCCAAGTATATACTCTTCTTTA CATGGTGATGAGTTTCATTTGTAGAAAATTTTGTTGCCTTCTTAAAAATTAGACACACTTT AAACCTTCAAACAGGTATTATAAATAACATGTGACTCCTTAATGGACTTATTCTCAGGGTCC TACTCTAAGAAGAATCTAATAGGATGCTGGTTGTGTATTAAATGTGAAATTGCATAGATAAA GGTAGATGGTAAAGCAATTAGTATCAGAATAGAGACAGAAAGTTACAACACAGTTTGTACTA CTCTGAGATGGATCCATTCAGCTCATGCCCTCAATGTTTATATTGTGTTATCTGTTTGGGTCT CAAAACTAATAACTGTTTTACTGCTTTAAGAAATAACAATTACAATGTGTATTATTTAAAAA TGGGAGAAATAGTTTGTTCTATGAAATAAACCTAGTTTAGAAATAGGGAAGCTGAGACATTT TAAGATCTCAAGTTTTTATTTAACTAATACTCAAAATATGGACTTTTCATGTATGCATAGGG AAGACACTTCACAAATTATGAATGATCATGTGTTGAAAGCCACATTATTTTATGCTATACAT CTTTTTCTCCTTGACAAATCCAGCTTTTGTATGAGGACTATAGGGTGAATTCTCTGATTAG TAATTTTAGATATGTCCTTTCCTAAAAATGAATAAAATTTATGAATATGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57253
<subunit 1 of 1, 413 aa, 1 stop</pre>

<MW: 47070, pI: 9.92, NX(S/T): 3

MENMLLWLIFFTPGWTLIDGSEMEWDFMWHLRKVPRIVSERTFHLTSPAFEADAKMMVNTVC
GIECQKELPTPSLSELEDYLSYETVFENGTRTLTRVKVQDLVLEPTQNITTKGVSVRRKRQV
YGTDSRFSILDKRFLTNFPFSTAVKLSTGCSGILISPQHVLTAAHCVHDGKDYVKGSKKLRV
GLLKMRNKSGGKKRRGSKRSRREASGGDQREGTREHLQERAKGGRRRKKSGRGQRIAEGRPS
FQWTRVKNTHIPKGWARGGMGDATLDYDYALLELKRAHKKKYMELGISPTIKKMPGGMIHFS
GFDNDRADQLVYRFCSVSDESNDLLYQYCDAESGSTGSGVYLRLKDPDKKNWKRKIIAVYSG
HQWVDVHGVQKDYNVAVRITPLKYAQICLWIHGNDANCAYG

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 90-93, 110-113 and 193-196

Glycosaminoglycan attachment site.

amino acids 236-239

Serine proteases, trypsin family, histidine active site. amino acids 165-170

AATGTGAGAGGGGCTGATGGAAGCTGATAGGCAGGACTGGAGTGTTAGCACCAGTACTGGAT GTGACAGCAGGCAGAGGACCACTTAGCAGCTTATTCAGTGTCCGATTCTGATTCCGGCAAGG ATCCAAGCATGGAATGCTGCCGTCGGGCAACTCCTGGCACACTGCTCCTCTTTCTGGCTTTC CTGCTCCTGAGTTCCAGGACCGCACGCTCCGAGGAGGACCGGGACGGCCTATGGGATGCCTG GCCTGAGCAGCAGGAGCTGTGAAGGAAGAATATCCGATACAGAACATGCAGTAATGTGGAC TGCCCACCAGAAGCAGGTGATTTCCGAGCTCAGCAATGCTCAGCTCATAATGATGTCAAGCA CCATGCCCAGTTTTATGAATGCCTTCCTGTGTCTAATGACCCTGACAACCCATGTTCACTCA AGTGCCAAGCCAAAGGAACAACCCTGGTTGTTGAACTAGCACCTAAGGTCTTAGATGGTACG CGTTGCTATACAGAATCTTTGGATATGTGCATCAGTGGTTTATGCCAAATTGTTGGCTGCGA TCACCAGCTGGGAAGCACCGTCAAGGAAGATAACTGTGGGGTCTGCAACGGAGATGGGTCCA CCTGCCGGCTGGTCCGAGGGCAGTATAAATCCCAGCTCTCCGCAACCAAATCGGATGATACT GTGGTTGCACTTCCCTATGGAAGTAGACATATTCGCCTTGTCTTAAAAGGTCCTGATCACTT . : ATATCTGGAAACCAAAACCCTCCAGGGGACTAAAGGTGAAAACAGTCTCAGCTCCACAGGAA CTTTCCTTGTGGACAATTCTAGTGTGGACTTCCAGAAATTTCCAGACAAAGAGATACTGAGA ATGGCTGGACCACTCACAGCAGATTTCATTGTCAAGATTCGTAACTCGGGCTCCGCTGACAG ─ CTTGCTCAGCAACCTGTGGAGGAGGTTATCAGCTGACATCGGCTGAGTGCTACGATCTGAGG AGCAACCGTGTGGTTGCTGACCAATACTGTCACTATTACCCAGAGAACATCAAACCCAAACC CAAGCTTCAGGAGTGCAACTTGGATCCTTGTCCAGCCAGTGACGGATACAAGCAGATCATGC CTTATGACCTCTACCATCCCCTTCCTCGGTGGGAGGCCACCCCATGGACCGCGTGCTCCTCC TCGTGTGGGGGGGCATCCAGAGCCGGCAGTTTCCTGTGTGGAGGAGACATCCAGGGGCA TGTCACTTCAGTGGAAGAGTGGAAATGCATGTACACCCCTAAGATGCCCATCGCGCAGCCCT GCAACATTTTTGACTGCCCTAAATGGCTGGCACAGGAGTGGTCTCCGTGCACAGTGACATGT GGCCAGGGCCTCAGATACCGTGTGGTCCTCTGCATCGACCATCGAGGAATGCACACAGGAGG CTGTAGCCCAAAAACAAGCCCCACATAAAAGAGGAATGCATCGTACCCACTCCCTGCTATA AACCCAAAGAGAAACTTCCAGTCGAGGCCAAGTTGCCATGGTTCAAACAAGCTCAAGAGCTA GAAGAAGGAGCTGCTGTCAGAGGAGCCCTCG**TAA**GTTGTAAAAGCACAGACTGTTCTATA TTTGAAACTGTTTTGTTTAAAGAAAGCAGTGTCTCACTGGTTGTAGCTTTCATGGGTTCTGA AAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58847
<subunit 1 of 1, 525 aa, 1 stop
<MW: 58416, pI: 6.62, NX(S/T): 1</pre>

MECCRRATPGTLLLFLAFLLLSSRTARSEEDRDGLWDAWGPWSECSRTCGGGASYSLRRCLS
SKSCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVKHHGQFYEWLPVSNDPDNPCSLKCQ
AKGTTLVVELAPKVLDGTRCYTESLDMCISGLCQIVGCDHQLGSTVKEDNCGVCNGDGSTCR
LVRGQYKSQLSATKSDDTVVALPYGSRHIRLVLKGPDHLYLETKTLQGTKGENSLSSTGTFL
VDNSSVDFQKFPDKEILRMAGPLTADFIVKIRNSGSADSTVQFIFYQPIIHRWRETDFFPCS
ATCGGGYQLTSAECYDLRSNRVVADQYCHYYPENIKPKPKLQECNLDPCPASDGYKQIMPYD
LYHPLPRWEATPWTACSSSCGGGIQSRAVSCVEEDIQGHVTSVEEWKCMYTPKMPIAQPCNI
FDCPKWLAQEWSPCTVTCGQGLRYRVVLCIDHRGMHTGGCSPKTKPHIKEECIVPTPCYKPK
EKLPVEAKLPWFKQAQELEEGAAVSEEPS

Important features:

Signal peptide:

amino acids 1-25

N-glycosylation site.

amino acids 251-254

Thrombospondin 1

amino acids 385-399

von Willebrand factor type C domain proteins amino acids 385-399, 445-459 and 42-56

CGGACGCGTGGGCGGCTGCGGAACTCCCGTGGAGGGGCCGGTGGGCCCTCGGGCCTGAC GCCCGCCGGTTCGTGGGGCCCAGGGTCCAGCGGCTGCGCAGAGGCGGGGACCCCGGCCTCAT GCGCCGGTCAGCTCCGCCGCGAGCTCCGCCAGGCCGCGGAGTGCGGCCCAGAGCCTGGCGT CAGCGGGGTGGGCGAGCTCATAGTCCGGGAGCTGGACCTCGCCTCGCTGCGCTCGGTGCGCG CCTTCTGCCAGGAAATGCTCCAGGAAGAGCCTAGGCTGGATGTCTTGATCAATAACGCAGGG ATCTTCCAGTGCCCTTACATGAAGACTGAAGATGGGTTTGAGATGCAGTTCGGAGTGAACCA TCTGGGGCACTTTCTACTCACCAATCTTCTCCTTGGACTCCTCAAAAGTTCAGCTCCCAGCA GGATTGTGGTAGTTTCTTCCAAACTTTATAAATACGGAGACATCAATTTTGATGACTTGAAC AGTGAACAAAGCTATAATAAAAGCTTTTGTTATAGCCGGAGCAAACTGGCTAACATTCTTTT TACCAGGGAACTAGCCCGCCGCTTAGAAGGCACAAATGTCACCGTCAATGTGTTGCATCCTG GTATTGTACGGACAAATCTGGGGAGGCACATACACATTCCACTGTTGGTCAAACCACTCTTC GGCCTCTTCACCTGAGGTAGAAGGAGTGTCAGGAAGATACTTTGGGGATTGTAAAGAGGAAG AACTGTTGCCCAAAGCTATGGATGAATCTGTTGCAAGAAACTCTGGGATATCAGTGAAGTG ATGGTTGGCCTGCTAAAATAGGAACAAGGAGTAAAAGAGCTGTTTATAAAACTGCATATCAG TTATATCTGTGATCAGGAATGGTGTGGATTGAGAACTTGTTACTTGAAGAAAAAGAATTTTG ATATTGGAATAGCCTGCTAAGAGGTACATGTGGGTATTTTGGAGTTACTGAAAAATTATTTT GTACAATGAAAAATACAATTATATTGTAAAATTATAACTGGGCAAGCATGGATGACATATTA ATATTTGTCAGAATTAAGTGACTCAAAGTGCTATCGAGAGGTTTTTCAAGTATCTTTGAGTT TCATGGCCAAAGTGTTAACTAGTTTTACTACAATGTTTGGTGTTTGTGGGAAATTATCTGC CTGGTGTGCACACAAGTCTTACTTGGAATAAATTTACTGGTAC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58747</pre>

<subunit 1 of 1, 336 aa, 1 stop

<MW: 36865, pI: 9.15, NX(S/T): 2

MAVATAAAVLAALGGALWLAARRFVGPRVQRLRRGGDPGLMHGKTVLITGANSGLGRATAAE LLRLGARVIMGCRDRARAEEAAGQLRRELRQAAECGPEPGVSGVGELIVRELDLASLRSVRA FCQEMLQEEPRLDVLINNAGIFQCPYMKTEDGFEMQFGVNHLGHFLLTNLLLGLLKSSAPSR IVVVSSKLYKYGDINFDDLNSEQSYNKSFCYSRSKLANILFTRELARRLEGTNVTVNVLHPG IVRTNLGRHIHIPLLVKPLFNLVSWAFFKTPVEGAQTSIYLASSPEVEGVSGRYFGDCKEEE LLPKAMDESVARKLWDISEVMVGLLK

Important features:

Signal peptide:

amino acids 1-21

Short-chain alcohol dehydrogenase family protein
amino acids 134-144, 44-56 and 239-248

N-glycosylation site.

amino acids 212-215 and 239-242

GAGAGGACGAGGTGCCGCTGCCTGGAGAATCCTCCGCTGCCGTCGGCTCCCGGAGCCCAGCC CTTTCCTAACCCAACCCAACCTAGCCCAGTCCCAGCCGCCAGCGCCTGTCCCTGTCACGGAC CCCAGCGTTACCATGCATCCTGCCGTCTTCCTATCCTTACCCGACCTCAGATGCTCCCTTCT GCTCCTGGTAACTTGGGTTTTTACTCCTGTAACAACTGAAATAACAAGTCTTGCTACAGAGA ATATAGATGAAATTTTAAACAATGCTGATGTTGCTTTAGTAAATTTTTATGCTGACTGGTGT CGTTTCAGTCAGATGTTGCATCCAATTTTTGAGGAAGCTTCCGATGTCATTAAGGAAGAATT TCCAAATGAAAATCAAGTAGTGTTTGCCAGAGTTGATTGTGATCAGCACTCTGACATAGCCC AGAGATACAGGATAAGCAAATACCCAACCCTCAAATTGTTTCGTAATGGGATGATGAAG AGAGAATACAGGGGTCAGCGATCAGTGAAAGCATTGGCAGATTACATCAGGCAACAAAAAG TGACCCCATTCAAGAAATTCGGGACTTAGCAGAAATCACCACTCTTGATCGCAGCAAAAGAA ATATCATTGGATATTTTGAGCAAAAGGACTCGGACAACTATAGAGTTTTTGAACGAGTAGCG AATATTTTGCATGATGACTGTGCCTTTCTTTCTGCATTTGGGGATGTTTCAAAACCGGAAAG TATATAGTGGCGACAACATAATCTACAAACCACCAGGGCATTCTGCTCCGGATATGGTGTACT TGGGAGCTATGACAAATTTTGATGTGACTTACAATTGGATTCAAGATAAATGTGTTCCTCTT GTCCGAGAAATAACATTTGAAAATGGAGAGGAATTGACAGAAGAAGGACTGCCTTTTCTCAT ACTCTTTCACATGAAAGAAGATACAGAAAGTTTAGAAATATTCCAGAATGAAGTAGCTCGGC * AATTAATAAGTGAAAAAGGTACAATAAACTTTTTACATGCCGATTGTGACAAATTTAGACAT CCTCTTCTGCACATACAGAAAACTCCAGCAGATTGTCCTGTAATCGCTATTGACAGCTTTAG U GCATATGTATGTGTTTGGAGACTTCAAAGATGTATTAATTCCTGGAAAACTCAAGCAATTCG TATTTGACTTACATTCTGGAAAACTGCACAGAGAATTCCATCATGGACCTGACCCAACTGAT ACAGCCCCAGGAGAGCAAGCCCAAGATGTAGCAAGCAGTCCACCTGAGAGCTCCTTCCAGAA ACTAGCACCCAGTGAATATAGGTATACTCTATTGAGGGATCGAGATGAGCTTTAAAAACTTG AAAAACAGTTTGTAAGCCTTTCAACAGCAGCATCAACCTACGTGGTGGAAATAGTAAACCTA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57689
<subunit 1 of 1, 406 aa, 1 stop</pre>

<MW: 46927, pI: 5.21, NX(S/T): 0

MHPAVFLSLPDLRCSLLLLVTWVFTPVTTEITSLATENIDEILNNADVALVNFYADWCRFSQ
MLHPIFEEASDVIKEEFPNENQVVFARVDCDQHSDIAQRYRISKYPTLKLFRNGMMMKREYR
GQRSVKALADYIRQQKSDPIQEIRDLAEITTLDRSKRNIIGYFEQKDSDNYRVFERVANILH
DDCAFLSAFGDVSKPERYSGDNIIYKPPGHSAPDMVYLGAMTNFDVTYNWIQDKCVPLVREI
TFENGEELTEEGLPFLILFHMKEDTESLEIFQNEVARQLISEKGTINFLHADCDKFRHPLLH
IQKTPADCPVIAIDSFRHMYVFGDFKDVLIPGKLKQFVFDLHSGKLHREFHHGPDPTDTAPG
EQAQDVASSPPESSFQKLAPSEYRYTLLRDRDEL

Important features:

Signal peptide:

amino acids 1-29

Endoplasmic reticulum targeting sequence.

amino acids 403-406

Tyrosine kinase phosphorylation site.

amino acids 203-211

Thioredoxin family proteins

amino acids 50-66

ATTAAGGAAGAATTTCCAAATGAAAATCAAGTAGTNTTTGCCAGAGTNGATTGTGATCAGCA CTCTGACATAGCCCAGAGATACAGGATAAGCAAATACCCAACCCTCAAATTGTTTCGTAATG GGATGATGAAGAGAGAGAATACAGGGGTCAGCGATCAGTGAAAGCATTGGCAGATTA

 $\tt GCCCACGCGTCCG\underline{ATG}GCGTTCACGTTCGCGGCCCTTCTGCTACATGCTGGCGCTGCTCA$ CTGCCGCGCTCATCTTCTCCGCCATTTGGCACATTATAGCATTTGATGAGCTGAAGACTGAT TACAAGAATCCTATAGACCAGTGTAATACCCTGAATCCCCTTGTACTCCCAGAGTACCTCAT CCACGCTTTCTTGTGTCATGTTTTTTTGTGCAGCAGAGTGGCTTACACTGGGTCTCAATA TGCCCCTCTTGGCATATCATATTTGGAGGTATATGAGTAGACCAGTGATGAGTGGCCCAGGA GTGCAAATTAGCTTTTTATCTTCTAGCATTTTTTTTACTACCTATATGGCATGATCTATGTTT CAAATGAAGGGATTCTATCCAGCAAGATCCTGTCCAAGAGTAGCCTGTGGAATCTGATCAGT TACTTTAAAAAATGACTCCTTATTTTTTAAATGTTTCCACATTTTTTGCTTGGAAAGACTG TTTTCATATGTTATACTCAGATAAAGATTTTAAATGGTATTACGTATAAATTAATATAAAAT GATTACCTCTGGTGTTGACAGGTTTGAACTTGCACTTCTTAAGGAACAGCCATAATCCTCTG AATGATGCATTAATTACTGACTGTCCTAGTACATTGGAAGCTTTTGTTTATAGGAACTTGTA GGGCTCATTTTGGTTTCATTGAAACAGTATCTAATTATAAATTAGCTGTAGATATCAGGTGC ${\tt TTCTGATGAAAATGTATATCTGACTAGTGGGAAACTTCATGGGTTTCCTCATCTGTC}$ ATGTCGATGATTATATGGATACATTTACAAAAATAAAAGCGGGAATTTTCCCTTCGCTT GAATATTATCCCTGTATATTGCATGAATGAGAGATTTCCCATATTTCCATCAGAGTAATAAA TATACTTGCTTTAATTCTTAAGCATAAGTAAACATGATATAAAAATATATGCTGAATTACTT U GTGAAGAATGCATTTAAAGCTATTTTAAATGTGTTTTTATTTGTAAGACATTACTTATTAAG AAATTGGTTATTATGCTTACTGTTCTAATCTGGTGGTAAAGGTATTCTTAAGAATTTGCAGG TACTACAGATTTTCAAAACTGAATGAGAGAAAATTGTATAACCATCCTGCTGTTCCTTTAGT GCAATACAATAAAACTCTGAAATTAAGACTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA23330</pre>

<subunit 1 of 1, 144 aa, 1 stop</pre>

<MW: 16699, pI: 5.60, NX(S/T): 0

MAFTFAAFCYMLALLLTAALIFFAIWHIIAFDELKTDYKNPIDQCNTLNPLVLPEYLIHAFF CVMFLCAAEWLTLGLNMPLLAYHIWRYMSRPVMSGPGLYDPTTIMNADILAYCQKEGWCKLA

FYLLAFFYYLYGMIYVLVSS

Important features:

Signal peptide:

amino acids 1-20

Type II transmembrane domain:

amino acids 11-31

Other transmembrane domain:

_amino acids 57-77 and 123-143

ATTATAGCATTTGATGAGCTGAAGACTGATTACAAGATCCTATAGACCAGTGTAATACCCTG
AATCCCCTTGTACTCCCAGAGTACCTCATCCACGCTTTCTTCTGTGTCATGTTTCTTTTGTGC
AGCAGAGTGGCTTACACTGGGTCTCAATATGCCCCTCTTGGCATATCATATTTGGAGGTATA
TGAGTAGACCAGTGATGAGTGGCCCAGGACTCTATGACCCTACAACCATCATGAATGCAGAT
ATTCTAGCATATTGTCAGAAGGAAGGATGGTGCAAATTAGCTTTTTATCTTCTAGCATTTTT
TTACTACCTATATGGCATGATCTATGTTTTGGTGAGCTCTTAGAACAACACACAGAAGAATT
GGTCCAGTTAAGTGCATGCAAAAAGCCACCAAATGAAGGGATTCTATCCAGCAAGATCCTGT
CCAAGAGTAGCCTGTGGAATCTGATCAGTTACTTTAAAAAATG

CGGACGCGTGGGGGAAACCCTTCCGAGAAAACAGCAACAAGCTGAGCTGCTGTGACAGAGGG GAACAAGATGGCGGCGCGAAGGGGAGCCTCTGGGTGAGGACCCAACTGGGGCTCCCGCCGC TGCTGCTGACCATGGCCTTGGCCGGAGGTTCGGGGACCGCTTCGGCTGAAGCATTTGAC TCGGTCTTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACAC CTACCCTAAGGAAGAGGAGTTGTACGCATGTCAGAGAGGTTGCAGGCTGTTTTCAATTTGTC AGTTTGTGGATGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACA GAAGCATATTCCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCC ATTCGCTGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTC CTCTAACTCTGGTGAGGTCATTCTGGAGTGACATGATGGACTCCGCACAGAGCTTCATAACC TCTTCATGGACTTTTTATCTTCAAGCCGATGACGGAAAAATAGTTATATTCCAGTCTAAGCC AGAAATCCAGTACGCACCACATTTGGAGCAGGAGCCTACAAATTTGAGAGAATCATCTCTAA GCAAAATGTCCTATCTGCAAATGAGAAATTCACAAGCGCACAGGAATTTTCTTGAAGATGGA GAAAGTGATGGCTTTTTAAGATGCCTCTCTCTTAACTCTGGGTGGATTTTAACTACAACTCT TGTCCTCTCGGTGATGGTATTGCTTTGGATTTGTTGTGCAACTGTTGCTACAGCTGTGGAGC CTAAACAGATATCCAGCTTCTTCTCTTGTGGTTGTTAGATCTAAAACTGAAGATCATGAAGA AGCAGGGCCTCTACCTACAAAAGTGAATCTTGCTCATTCTGAAATTTAAGCATTTTTCTTTT TAAAAGACAAGTGTAATAGACATCTAAAATTCCACTCCTCATAGAGCTTTTAAAATGGTTTCA TTGGATATAGGCCTTAAGAAATCACTATAAAATGCAAATAAAGTTACTCAAATCTGTG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA26847</pre>

<subunit 1 of 1, 323 aa, 1 stop</pre>

<MW: 36223, pI: 5.06, NX(S/T): 1

MAAPKGSLWVRTQLGLPPLLLLTMALAGGSGTASAEAFDSVLGDTASCHRACQLTYPLHTYP
KEEELYACQRGCRLFSICQFVDDGIDLNRTKLECESACTEAYSQSDEQYACHLGCQNQLPFA
ELRQEQLMSLMPKMHLLFPLTLVRSFWSDMMDSAQSFITSSWTFYLQADDGKIVIFQSKPEI
QYAPHLEQEPTNLRESSLSKMSYLQMRNSQAHRNFLEDGESDGFLRCLSLNSGWILTTTLVL
SVMVLLWICCATVATAVEQYVPSEKLSIYGDLEFMNEQKLNRYPASSLVVVRSKTEDHEEAG
PLPTKVNLAHSEI

Important features:

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 241-260

N-glycosylation site.

amino acids 90-93

TTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACACCTACCC
TAAGGAAGAGGAGTTGTACGCATGTCAGAGAGGGTTGCAGGCTGTTTTCAATTTGTCAGTTTG
TGGATGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACAGAAGCA
TATTCCCAATCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCCATTCGC
TGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTCCTCTAA
CTCTGGTGAGGTCATTCTGGAGTGACATGATGGACTCCGC

CACACTGGCCGGATCTTTTAGAGTCCTTTGACCTTGACCAAGGGTCNGGAAAACAGCAACAA
GCTGAGCTGCTGTGACAGAGGGAACAAGATGGCGGCGCCGAAGGGAGCCTTTGGGTGAGGAC
CCAACTGGGGCTCCCGCCGCTGCTGCTGCTGACCATGGCCTTGGCCGGAGGTTCGGGGACCG
CTTCGGCTGAAGCATTTGACTCGGTCTTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAG
TTGACCTACCCCTTGCACACCCTAAGGAAGAGGAGTTGTACGCATGTCAGAGAGGTTG
CAGGCTGTTTTCAATTTGTCAGTTTGTGGATGATGGAATTGACTTAAATCGAACTAAATTGG
AATGTGAATCTGCATGTACAGAAGCATATTCCCAATCTGATGAGCAATATGCTTGCCATCTT
GGTTGCCAGAATCAGCTGCCATTCGCTGAACTGAGACAACACTTATGTCCCTGATGCC
AAAAATGCACCTACTCTTTCCTCTAACTCTGGTGAGGTCATTCTGGAGTGACATGATGGACT
CCGC

GCGAGGTGGCGATCGCTGAGAGGCAGGAGGCCGAGGCCGGGCCTGGGAGGCCCCGGAGGT GGGGCGCCGCTGGGGCCCGCACGGGCTTCATCTGAGGGCGCACGGCCCGCGACCGAGC $\tt GTGCGGACTGGCCTCCCAAGCGTGGGGCGACAAGCTGCCGGAGCTGCAAT\underline{G}GGCCGCGGCTG$ GGGATTCTTGTTTGGCCTCCTGGGCGCCGTGTGGCTGCTCAGCTCGGGCCACGGAGAGGAGC AGCCCCCGGAGACAGCGGCACAGAGGTGCTTCTGCCAGGTTAGTGGTTACTTGGATGATTGT ACCTGTGATGTTGAAACCATTGATAGATTTAATAACTACAGGCTTTTCCCAAGACTACAAAA ACTTCTTGAAAGTGACTACTTTAGGTATTACAAGGTAAACCTGAAGAGGCCGTGTCCTTTCT GGAATGACATCAGCCAGTGTGGAAGAAGGGACTGTGCTGTCAAACCATGTCAATCTGATGAA GTTCCTGATGGAATTAAATCTGCGAGCTACAAGTATTCTGAAGAAGCCAATAATCTCATTGA AGGCTGTTCTTCAGTGGACCAAGCATGATGATTCTTCAGATAACTTCTGTGAAGCTGATGAC ATTCAGTCCCCTGAAGCTGAATATGTAGATTTGCTTCTTAATCCTGAGCGCTACACTGGTTA CAAGGGACCAGATGCTTGGAAAATATGGAATGTCATCTACGAAGAAAACTGTTTTAAGCCAC AGACAATTAAAAGACCTTTAAATCCTTTGGCTTCTGGTCAAGGGACAAGTGAAGAGAACACT TTTTACAGTTGGCTAGAAGGTCTCTGTGTAGAAAAAAGAGCATTCTACAGACTTATATCTGG CCTACATGCAAGCATTAATGTGCATTTGAGTGCAAGATATCTTTTACAAGAGACCTGGTTAG AAAAGAAATGGGGACACAACATTACAGAATTTCAACAGCGATTTGATGGAATTTTGACTGAA GGAGAAGGTCCAAGAAGGCTTAAGAACTTGTATTTTCTCTACTTAATAGAACTAAGGGCTTT ATCCAAAGTGTTACCATTCTTCGAGCGCCCAGATTTTCAACTCTTTACTGGAAATAAAATTC AGGATGAGGAAAACAAAATGTTACTTCTGGAAATACTTCATGAAATCAAGTCATTTCCTTTG E CATTTTGATGAGAATTCATTTTTTGCTGGGGATAAAAAAGAAGCACACAAACTAAAGGAGGA GTCTGTGGGGAAAGCTTCAGACTCAGGGTTTGGGCACTGCTCTGAAGATCTTATTTTCTGAG AAATTGATAGCAAATATGCCAGAAAGTGGACCTAGTTATGAATTCCATCTAACCAGACAAGA AATAGTATCATTATTCAACGCATTTGGAAGAATTTCTACAAGTGTGAAAGAATTAGAAAACT TCAGGAACTTGTTACAGAATATTCATTAAAGAAAACAAGCTGATATGTGCCTGTTTCTGGAC AATGGAGGCGAAAGAGTGGAATTTCATTCAAAGGCATAATAGCAATGACAGTCTTAAGCCAA ACATTTTATATAAAGTTGCTTTTGTAAAGGAGAATTATATTGTTTTAAGTAAACACATTTTT AAAAATTGTGTTAAGTCTATGTATAATACTACTGTGAGTAAAAGTAATACTTTAATAATGTG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53974</pre>

<subunit 1 of 1, 468 aa, 1 stop</pre>

<MW: 54393, pI: 5.63, NX(S/T): 2

MGRGWGFLFGLLGAVWLLSSGHGEEQPPETAAQRCFCQVSGYLDDCTCDVETIDRFNNYRLF
PRLQKLLESDYFRYYKVNLKRPCPFWNDISQCGRRDCAVKPCQSDEVPDGIKSASYKYSEEA
NNLIEECEQAERLGAVDESLSEETQKAVLQWTKHDDSSDNFCEADDIQSPEAEYVDLLLNPE
RYTGYKGPDAWKIWNVIYEENCFKPQTIKRPLNPLASGQGTSEENTFYSWLEGLCVEKRAFY
RLISGLHASINVHLSARYLLQETWLEKKWGHNITEFQQRFDGILTEGEGPRRLKNLYFLYLI
ELRALSKVLPFFERPDFQLFTGNKIQDEENKMLLLEILHEIKSFPLHFDENSFFAGDKKEAH
KLKEDFRLHFRNISRIMDCVGCFKCRLWGKLQTQGLGTALKILFSEKLIANMPESGPSYEFH
LTRQEIVSLFNAFGRISTSVKELENFRNLLQNIH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 280-283 and 384-387

Amidation site.

IU

amino acids 94-97

Glycosaminoglycan attachment site.

amino acids 20-23 and 223-226

Aminotransferases class-V pyridoxal-phosphate

amino acids 216-222

Interleukin-7 proteins

amino acids 338-343

GCTGGAAATATGGATGTCATCTACGAGAAACTGTTTTAAGCCACAGACAATTAAAAGACCTT
TAAATCCTTTGGCTTCTGGTCAAGGGACAAGTGAAGAGAACACTTTTTACAGTTGGCTAGAA
GGTCTCTGTGTAGAAAAAAAGAGCATTCTACAGACTTATATCTGGCCTACATGCAAGCATTAA
TGTGCATTTGAGTGCAAGATATCTTTTACAAGAGACCTGGTTAGAAAAGAAATGGGGACACA
ACATTACAGAATTTNAACAGCGATTTGATGGAATTTTGACTGAAGGAGAAGGTCCAAGAAGG
CTTAAGAACTTGTATTTTCTCTACTTAATAGAACTAAGGGCTTTATCCAAAGTGTTACCATT
CTTNGAGCGCCCAGATTTTCAACTNTTTACTGGAAATAAAATTCAGGATGAGGNAACAAAA
TGTTACTTTTGGAAATACTTCATGAAATCAAGTCATTTCCTTTGCATTTTGATGAGAATTCA
TTTTTTTGCTG

AGTGAAGAAAACAGAAAAGGAGGGGACAGAGGCCAGAGGACTTCTCATACTGGACAGAAAC CGATCAGGCATGGAACTCCCCTTCGTCACTCACCTGTTCTTGCCCCTGGTGTTCCTGACAGG TCTCTGCTCCCCCTTTAACCTGGATGAACATCACCCACGCCTATTCCCAGGGCCACCAGAAG GCCCCTGGGATGGCCTTCAGGCGACCGGAGGGGGGACGTTTATCGCTGCCCTGTAGGGGG GGCCCACAATGCCCCATGTGCCAAGGGCCACTTAGGTGACTACCAACTGGGAAATTCATCTC ATCCTGCTGTGAATATGCACCTGGGGATGTCTCTGTTAGAGACAGATGGTGATGGGGGATTC ATGGTGAGCTAAGGAGGGTGGTGGCAGTGTCTCTGAAGGTCCATAAAAGAAAAAAGAAA GTGTGGTAAGGGAAAATGGTCTGTGTGGAGGGGTCAAGGAGTTAAAAACCCTAGAAAGCAAA AGGTAGGTAATGTCAGGGAGTAGTCTTCATGCCTCCTTCAACTGGGAGCATGTTCTGAGGGT GCCCTCCCAAGCCTGGGAGTAACTATTTCCCCCATCCCCAGGCCTGTGCCCCTCTCTGGTCT CGTGCTTGTGGCAGCTCTGTCTTCAGTTCTGGGATATGTGCCCGTGTGGATGCTTCATTCCA GCCTCAGGGAAGCCTGGCACCCACTGCCCAACGTGAGCCAGAGGAAGGCTGAGTACTTGGTT CCCAGAAGGAGATACTGGGTGGGAAAAAGATGGGGCAAAGCGGTATGATGCCTGGCAAAGGG CCTGCATGGCTATCCTCATTGCTACCTAATGTGCTTGCAAAAGCTCCATGTTTCCTAACAGA TTCAGACTCCTGGCCAGGTGTGGCCCACACCTGTAATTCTAGCACTTTGGGAGGCCAAG GTGGCAGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACTCCAT CTCTACTAAAAAAAAAAAATACAAAAATTAGCTGGGTGCGCTAGTGCATGCCTGTAATCTC ATCTACTCGGGAGGCTAAGACAGGAGACTCTCACTTCAACCCAGGAGGTGGAGGTTGCGGTG AGCCAAGATTGTGCCTCTGCACTCTAGCGTGGGTGACAGAGTAAGCGAGACTCCATCTCAAA AATAATAATAATAATTCAGACTCCTTATCAGGAGTCCATGATCTGGCCTGGCACAGTAA CTCATGCCTGTAATCCCAACATTTTGGGAGGCCAACGCAGGAGGATTGCTTGAGGTCTGGAG

N

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57039</pre>

><subunit 1 of 1, 124 aa, 1 stop

><MW: 13352, pI: 5.99, NX(S/T): 1

MELPFVTHLFLPLVFLTGLCSPFNLDEHHPRLFPGPPEAEFGYSVLQHVGGGQRWMLVGAPW

DGPSGDRRGDVYRCPVGGAHNAPCAKGHLGDYQLGNSSHPAVNMHLGMSLLETDGDGGFMVS

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 70-73

N-glycosylation site.

amino acids 98-101

Integrins alpha chain proteins

amino acids 67-81

AAAGTTACATTTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTTTG GGCAGAAAGGAGGTGCTTCGGAGCCCGCCCTTTCTGAGCTTCCTGGGCCGGCTCTAGAACA GAGATGGACAGAATGCTTTATTTTGGAAAGAAACAATGTTCTAGGTCAAACTGAGTCTACCA $\mathtt{A}\underline{\mathtt{ATG}}\mathtt{CAGACTTTCACAATGGTTCTAGAAGAAATCTGGACAAGTCTTTTCATGTGGTTTTTCT$ TCTGTACTCTAACCAACATGAAGCATCTCTTGATGTGGAGCCCAGTGATCGCGCCTGGAGA AACAGTGTACTATTCTGTCGAATACCAGGGGGAGTACGAGAGCCTGTACACGAGCCACATCT GGATCCCCAGCAGCTGGTGCTCACTCACTGAAGGTCCTGAGTGTGATGTCACTGATGACATC ACGGCCACTGTGCCATACAACCTTCGTGTCAGGGCCACATTGGGCTCACAGACCTCAGCCTG GAGCATCCTGAAGCATCCCTTTAATAGAAACTCAACCATCCTTACCCGACCTGGGATGGAGA TCACCAAAGATGGCTTCCACCTGGTTATTGAGCTGGAGGACCTGGGGCCCCAGTTTGAGTTC CTTGTGGCCTACTGGAGGAGGGAGCCTGGTGCCGAGGAACATGTCAAAATGGTGAGGAGTGG GGGTATTCCAGTGCACCTAGAAACCATGGAGCCAGGGGCTGCATACTGTGTGAAGGCCCAGA GGAGAGGCCATTCCCCTGGTACTGGCCCTGTTTGCCTTTGTTGGCTTCATGCTGATCCTTGT GGTCGTGCCACTGTTCGTCTGGAAAATGGGCCGGCTGCTCCAGTACTCCTGTTGCCCCGTGG ■ TGGTCCTCCCAGACACCTTGAAAATAACCAATTCACCCCAGAAGTTAATCAGCTGCAGAAGG GAGGAGGTGGATGCCTGTGCCACGGCTGTGATGTCTCCTGAGGAACTCCTCAGGGCCTGGAT CTCATAGGTTTGCGGAAGGGCCCAGGTGAAGCCGAGAACCTGGTCTGCATGACATGGAAACC 🛂 ATGAGGGGACAAGTTGTGTTTCTGTTTTCCGCCACGGACAAGGGATGAGAGAAGTAGGAAGA GCCTGTTGTCTACAAGTCTAGAAGCAACCATCAGAGGCAGGTGGTTTGTCTAACAGAACAC TTGGGAAAAGTGACTTCATCCCTTCGGTCCTAAGTTTTCTCATCTGTAATGGGGGAATTACC TGTTTCTGGAGAGCAGACATAAATGTATGATGAGAATGATCAAGGACTCTACACACTGGGT GGCTTGGAGAGCCCACTTTCCCAGAATAATCCTTGAGAGAAAAGGAATCATGGGAGCAATGG ${\tt TGTTGAGTTCACTTCAAGCCCAATGCCGGTGCAGAGGGGAATGGCTTAGCGAGCTCTACAGT}$ AGGTGACCTGGAGGAAGGTCACAGCCACACTGAAAATGGGATGTGCATGAACACGGAGGATC GTGCAATGCGACGAGAATGCAGAAGTCAGTAACATGTGCATGTTTTGTTGTGCTCCTTTTTTC TGTTGGTAAAGTACAGAATTCAGCAAATAAAAAGGGCCACCCTGGCCAAAAGCGGTAAAAAA AAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57033
<subunit 1 of 1, 311 aa, 1 stop
<MW: 35076, pI: 5.04, NX(S/T): 2</pre>

MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLLMWSPVIAPGE
TVYYSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQTSAW
SILKHPFNRNSTILTRPGMEITKDGFHLVIELEDLGPQFEFLVAYWRREPGAEEHVKMVRSG
GIPVHLETMEPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAFVGFMLILV
VVPLFVWKMGRLLQYSCCPVVVLPDTLKITNSPQKLISCRREEVDACATAVMSPEELLRAWIS

Important features:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 230-255

N-glycosylation site.

amino acids 40-43 and 134-137

Tissue factor proteins.

Integrins alpha chain proteins amino acids 232-262

amino acids 92-119

GGAGGTGAAGAAGGAGAGGGGAGAAGAGGCAGGAGCTGGAAAGGAGAGAGGAGGAGGAGAG GAGGAGATGCGGGATGGAGACCTGGAGTTAGGTGGCTTGGGAGAGCTTAATGAAAAGAGAAC GGAGAGGAGGTGTGGGTTAGGAACCAAGAGGTAGCCCTGTGGGCAGCAGAAGGCTGAGAGGA GTAGGAAGATCAGGAGCTAGAGGGAGACTGGAGGGTTCCGGGAAAAGAGCAGAGGAAAGAGG AAAGACACAGAGAGAGAGAGAGAGAAGAGTGGGTTTGAAGGGCGGATCTCAGTCCCTG GCTGCTTTGGCATTTGGGGAACTGGGACTCCCTGTGGGGAGGAGAGGGAAAGCTGGAAGTCCT GGAGGGACAGGGTCCCAGAAGGAGGGGGACAGAGGAGCTGAGAGAGGGGGGGCAGGGCGTTGGG ${\tt CAGGGGTCCCTCGGAGGCCTCCTGGGG} \underline{{\tt ATG}} {\tt GGGGCTGCAGCTCGTCTGAGCGCCCCTCGAGC}$ GCTGGTACTCTGGGCTGCACTGGGGGCAGCAGCTCACATCGGACCAGCACCTGACCCCGAGG ${\tt ACTGGTGGAGCTACAAGGATAATCTCCAGGGAAACTTCGTGCCAGGGCCTCCTTTCTGGGGC}$ CTGGTGAATGCAGCGTGGAGTCTGTGTGCTGTGGGGAAGCGGCAGAGCCCCGTGGATGTGGA GCTGAAGAGGGTTCTTTATGACCCCTTTCTGCCCCCATTAAGGCTCAGCACTGGAGGAGAGA GTGGTCAATGTGTCTGGAGGTCCCCTCCTTTACAGCCACCGACTCAGTGAACTGCGGCTGCT GTTTGGAGCTCGCGACGGACCTCGGAACATCAGATCAACCACCAGGGCTTCTCTGCTG AGGTGCAGCTCATTCACTTCAACCAGGAACTCTACGGGAATTTCAGCGCTGCCTCCCGCGGC UCCAATGGCCTGGCCATTCTCAGCCTCTTTGTCAACGTTGCCAGTACCTCTAACCCATTCCT CAGTCGCCTCCTTAACCGCGACACCATCACTCGCATCTCCTACAAGAATGATGCCTACTTTC TTCAAGACCTGAGCCTGGAGCTCCTGTTCCCTGAATCCTTCGGCTTCATCACCTATCAGGGC TCTCTCAGCACCCCGCCCTGCTCCGAGACTGTCACCTGGATCCTCATTGACCGGGCCCTCAA TATCACCTCCCTTCAGATGCACTCCCTGAGACTCCTGAGCCAGAATCCTCCATCTCAGATCT AACAGGGACCCCCGGCACCCCGAGAGGCGCTGCCGAGGCCCCAACTACCGCCTGCATGTGGA CCCACAAGGCGAGGGGAGTTACCCCTAAAACAAAGCTATTAAAGGGACAGAATACTTA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA34353</pre>

<subunit 1 of 1, 328 aa, 1 stop</pre>

<MW: 36238, pI: 9.90, NX(S/T): 3

MGAAARLSAPRALVLWAALGAAAHIGPAPDPEDWWSYKDNLQGNFVPGPPFWGLVNAAWSLC
AVGKRQSPVDVELKRVLYDPFLPPLRLSTGGEKLRGTLYNTGRHVSFLPAPRPVVNVSGGPL
LYSHRLSELRLLFGARDGAGSEHQINHQGFSAEVQLIHFNQELYGNFSAASRGPNGLAILSL
FVNVASTSNPFLSRLLNRDTITRISYKNDAYFLQDLSLELLFPESFGFITYQGSLSTPPCSE
TVTWILIDRALNITSLQMHSLRLLSQNPPSQIFQSLSGNSRPLQPLAHRALRGNRDPRHPER
RCRGPNYRLHVDGVPHGR

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 177-199

N-glycosylation site.

maino acids 118-121, 170-173 and 260-263

Eukaryotic-type carbonic anhydrases proteins amino acids 222-270, 128-164 and 45-92

GGCGCCTGGTTCTGCGCGTACTGGCTGTACGGAGCAGGAGCAAGAGTCGCCGCCAGCCTCCGCCGAGCCTC GTTCGTGTCCCCGCCCTCGCTCCTGCAGCTACTGCTCAGAAACGCTGGGGCGCCCACCCTGGCAGACTAACGAA CGCAGAGGCGGAGGCTCGCGTATTCCTGCAGTCAGCACCCACGTCGCCCCGGACGCTCGGTGCTCAGGCCCTTC CACCTCTCCCAGGAAACTTCACACTGGAGAGCCAAAAGGAGTGGAAGAGCCTGTCTTGGAGATTTTCCTGGGGAA ATCCTGAGGTCATTCATTATGAAGTGTACCGCGCGGGAGTGGCTCAGAGTAACCACAGTGCTGTTCATGGCTAGA GCAATTCCAGCCATGGTGGTTCCCAATGCCACTTTATTGGAGAAACTTTTTGGAAAAAATACATGGATGAGGATGGT GAGTGGTGGATAGCCAAACAACGAGGGAAAAGGGCCATCACAGACAATGACATGCAGAGTATTTTGGACCTTCAT AATAAATTACGAAGTCAGGTGTATCCAACAGCCTCTAATATGGAGTATATGACATGGGATGTAGAGCTGGAAAGA TTGGGAGCACTGGGGAAGATATAGGCCCCCGACGTTTCATGTACAATCGTGGTATGATGAAGTGAAAGACTTT CAGGTCGTGTGGGCAACTAGTAACAGAATCGGTTGTGCCATTAATTTGTGTCATAACATGAACATCTGGGGGCAG ATATGGCCCAAAGCTGTCTACCTGGTGTGCAATTACTCCCCAAAGGGAAACTGGTGGGGCCATGCCCCTTACAAA CATGGGCGGCCCTGTTCTGCTTGCCCACCTAGTTTTGGAGGGGGCTGTAGAGAAAATCTGTGCTACAAAGAAGGG TCAGACAGGTATTATCCCCCTCGAGAAGAGGGAAACAAATGAAATAGAACGACAGCAGTCACAAGTCCATGACACC CATGTCCGGACAAGATCAGATGATAGTAGCAGAAATGAAGTCATAAGCGCACAGCAAATGTCCCAAATTGTTTCT AGTAAAGCTAAAGTTATTGGCAGTGTACATTATGAAATGCAATCCAGCATCTGTAGAGCTGCAATTCATTATGGT ATAATAGACAATGATGGTGGCTGGGTAGATATCACTAGACAAGGAAGAAAGCATTATTTCATCAAGTCCAATAGA AATGGTATTCAAACAATTGGCAAATATCAGTCTGCTAATTCCTTCACAGTCTCTAAAGTAACAGTTCAGGCTGTG ACTTGTGAAACAACTGTGGAACAGCTCTGTCCATTTCATAAGCCTGCTTCACATTGCCCAAGAGTATACTGTCCT ${\tt CGTAACTGTATGCAAGCAAATCCACATTATGCTCGTGTAATTGGAACTCGAGTTTATTCTGATCTGTCCAGTATCGAGTATCAGAGTATCGAGTATCGAGTATCGAGTATCAGAG$ TGCAGAGCAGCAGTACATGCTGGAGTGGTTCGAAATCACGGTGGTTATGTTGATGTTAATGCCTGTGGACAAAAGA AAGACCTACATTGCTTCTTTTCAGAATGGAATCTTCTCAGAAAGTTTACAGAATCCTCCAGGAGGAAAGGCATTC ATTTTGTATAAAACTGTAACATTACTGTACAGAGTACATCAACTATTTTCAGCCCAAAAAGGTGCCAAATGCATA TAAATCTTGATAAACAAAGTCTATAAAATAAAACATGGGACATTAGCTTTGGGAAAAGTAATGAAAATATAATGG TTTTAGAAATCCTGTGTTAAATATTGCTATATTTTCTTAGCAGTTATTTCTACAGTTAATTACATAGTCATGATT ≒ GTTCTACGTTTCATATATTATATGGTGCTTTGTATATGCCACTAATAAAATGAATCTAAACATTGAATGTGAATG GCCCTCAGAAAATCATCTAGTGCATTTAAAAATAATCGACTCTAAAACTGAAAGCAAACCTTATCACATTTTCCCC TGTTAATTTAGGCATATAGAATATTAAATTCTGATATTGCACTTCTTATTTTATATAAAATAATCCTTTAATATC ATGAAAACATTCCTAGTGATCATGTAGTAAATGTAGGGTTAAGCATGGACAGCCAGAGCTTTCTATGTACTGTTA AAATTGAGGTCACATATTTTCTTTTGTATCCTGGCAAATACTCCTGCAGGCCAGGAAGTATAATAGCAAAAAGTT ATATTGCCATATCATGGTACCTATAATGGTGATATATTTGTTTCTATGAAAAATGTATTGTGCTTTGATACTAAA AATCTGTAAAATGTTAGTTTTGGTAATTTTTTTTTCTGCTGGTGGATTTACATATTAAATTTTTTCTGCTGGTGGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45417
<subunit 1 of 1, 500 aa, 1 stop
<MW: 56888, pI: 8.53, NX(S/T): 2</pre>

MKCTAREWLRVTTVLFMARAIPAMVVPNATLLEKLLEKYMDEDGEWWIAKQRGKRAITDNDM
QSILDLHNKLRSQVYPTASNMEYMTWDVELERSAESWAESCLWEHGPASLLPSIGQNLGAHW
GRYRPPTFHVQSWYDEVKDFSYPYEHECNPYCPFRCSGPVCTHYTQVVWATSNRIGCAINLC
HNMNIWGQIWPKAVYLVCNYSPKGNWWGHAPYKHGRPCSACPPSFGGGCRENLCYKEGSDRY
YPPREEETNEIERQQSQVHDTHVRTRSDDSSRNEVISAQQMSQIVSCEVRLRDQCKGTTCNR
YECPAGCLDSKAKVIGSVHYEMQSSICRAAIHYGIIDNDGGWVDITRQGRKHYFIKSNRNGI
QTIGKYQSANSFTVSKVTVQAVTCETTVEQLCPFHKPASHCPRVYCPRNCMQANPHYARVIG
TRVYSDLSSICRAAVHAGVVRNHGGYVDVMPVDKRKTYIASFQNGIFSESLQNPPGGKAFRV

FAVV

Important features:

Signal peptide:

amino acids 1-20

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 protein amino acids 165-186, 196-218, 134-146, 96-108 and 58-77

N-glycosylation site amino acids 28-31

GCGGAGACAAGCGCAGAGCGCACGGCCACAGACAGCCCTGGGCATCCACCGACGGCG CAGCCGGAGCCAGAGAGCCGGAAGGCGCCCCCGGGCAGAAAGCCGAGCAGAGCTGGGT $\tt GGCGTCTCCGGGCCGCCCGACGGGCCAGCGCCCTCCCCATGTCCCTGCTCCCACGCCG$ ACACCGCGCGTGTGGACGGGTCCAAATGCAAGTGCTCCCGGAAGGGACCCAAGATCCGCTAC AGCGACGTGAAGAAGCTGGAAATGAAGCCAAAGTACCCGCACTGCGAGGAGAAGATGGTTAT AGAGCACCAAGCGCTTCATCAAGTGGTACAACGCCTGGAACGAGAAGCGCAGGGTCTACGAA GAATAGGGTGAAAAACCTCAGAAGGGAAAACTCCAAACCAGTTGGGAGACTTGTGCAAAGGA TTTCTCACAGGCATAAGACACAAATTATATATTGTTATGAAGCACTTTTTTACCAACGGTCAG ${\tt TTTTACATTTATAGCTGCGTGCGAAAGGCTTCCAGATGGGAGACCCATCTCTTGTGCT}$ ${\tt CCAGACTTCATCACAGGCTGCTTTTTATCAAAAAGGGGAAAACTCATGCCTTTCCTTTTTAA}$ AAAATGCTTTTTTGTATTTGTCCATACGTCACTATACATCTGAGCTTTATAAGCGCCCGGGA GGAACAATGAGCTTGGTGGACACATTTCATTGCAGTGTTGCTCCATTCCTAGCTTGGGAAGC TTCCGCTTAGAGGTCCTGGCGCCTCGGCACAGCTGCCACGGGCTCTCCTGGGCTTATGGCCG GTCACAGCCTCAGTGTGACTCCACAGTGGCCCCTGTAGCCGGGCAAGCAGGAGCAGGTCTCT ${\tt CTGCATCTGTTCTCTGAGGAACTCAAGTTTGGTTGCCAGAAAAATGTGCTTCATTCCCCCCT}$ GGTTAATTTTTACACACCCTAGGAAACATTTCCAAGATCCTGTGATGGCGAGACAAATGATC CTTAAAGAAGGTGTGGGGTCTTTCCCAACCTGAGGATTTCTGAAAGGTTCACAGGTTCAATA TTTAATGCTTCAGAAGCATGTGAGGTTCCCAACACTGTCAGCAAAAACCTTAGGAGAAAACT TAAAAATATATGAATACATGCGCAATACACAGCTACAGACACACATTCTGTTGACAAGGGAA AACCTTCAAAGCATGTTTCTTTCCCTCACCACAACAGAACATGCAGTACTAAAGCAATATAT TTGTGATTCCCCATGTAATTCTTCAATGTTAAACAGTGCAGTCCTCTTTCGAAAGCTAAGAT GACCATGCGCCCTTTCCTCTGTACATATACCCTTAAGAACGCCCCCTCCACACACTGCCCCC CAGTATATGCCGCATTGTACTGCTGTTATATGCTATGTACATGTCAGAAACCATTAGCAT TGCATGCAGGTTTCATATTCTTTCTAAGATGGAAAGTAATAAAATATATTTGAAATGTAAAA ΑΑΑΑΑΑΑΑΑ

HODY CORF HODES

FIGURE 149

MSLLPRRAPPVSMRLLAAALLLLLLALYTARVDGSKCKCSRKGPKIRYSDVKKLEMKPKYPH CEEKMVIITTKSVSRYRGQEHCLHPKLQSTKRFIKWYNAWNEKRRVYEE

Signal sequence: amino acids 1-34

GTTAACTGCTCTTGCCATCAAGTTCACCCTCATTGACAGCCAAGCACAGTATCCAGTTGTCAACACAAATTATGG ${\tt CAAAATCCGGGGCCTAAGAACACCGTTACCCAATGAGATCTTGGGTCCAGTGGAGCAGTACTTAGGGGTCCCCTA}$ $\tt TGCCTCACCCCCACTGGAGAGAGGCGGTTTCAGCCCCCAGAACCCCCGTCCTCCTGGACTGGCATCCGAAATAC$ TACTCAGTTTGCTGCTGTGTGCCCCCAGCACCTGGATGAGAGATCCTTACTGCATGACATGCTGCCCATCTGGTT TACCGCCAATTTGGATACTTTGATGACCTATGTTCAAGATCAAAATGAAGACTGCCTTTACTTAAACATCTACGT GCCCACGGAAGATGGAGCCAACACAAAGAAAAACGCAGATGATATAACGAGTAATGACCGTGGTGAAGACGAAGA TATTCATGATCAGAACAGTAAGAAGCCCGTCATGGTCTATATCCATGGGGGATCTTACATGGAGGGCACCGGCAA CATGATTGACGGCAGCATTTTGGCAAGCTACGGAAACGTCATCGTGATCACCATTAACTACCGTCTGGGAATACT AGGGTTTTTAAGTACCGGTGACCAGGCAGCAAAAGGCAACTATGGGCTCCTGGATCAGATTCAAGCACTGCGGTG GATTGAGGAGAATGTGGGAGCCTTTGGCGGGGACCCCAAGAGAGTGACCATCTTTGGCTCGGGGGCTGGGGCCTC CTGTGTCAGCCTGTTGACCCTGTCCCACTACTCAGAAGGTCTCTTCCAGAAGGCCATCATTCAGAGCGGCACCGC CCTGTCCAGCTGGGCAGTGAACTACCAGCCGGCCAAGTACACTCGGATATTGGCAGACAAGGTCGGCTGCAACAT GCTGGACACCACGGACATGGTAGAATGCCTGCGGAACAAGAACTACAAGGAGCTCATCCAGCAGACCATCACCCC GGCCACCTACCACATAGCCTTCGGGCCGGTGATCGACGGCGACGTCATCCCAGACGACCCCCAGATCCTGATGGA GCAAGGCGAGTTCCTCAACTACGACATCATGCTGGGCGTCAACCAAGGGGAAGGCCTGAAGTTCGTGGACGGCAT CGTGGATAACGAGGACGGTGTGACGCCCAACGACTTTGACTTCTCCGTGTCCAACTTCGTGGACAACCTTTACGG CTACCCTGAAGGGAAAGACACTTTGCGGGAGACTATCAAGTTCATGTACACAGACTGGGCCGATAAGGAAAACCC GCACGCGCAGTACGGCTCCCCCACCTACTTCTATGCCTTCTATCATCACTGCCAAAGCGAAATGAAGCCCAGCTG ${\tt GGCAGATTCGGCCCATGGTGATGAGGTCCCCTATGTCTTCGGCATCCCCATGATCGGTCCCACCGAGCTCTTCAG}$ ${\tt TTGTAACTTTTCCAAGAACGACGTCATGCTCAGCGCCCGTGGTCATGACCTACTGGACGAACTTCGCCAAAACTGG}$ E GTCCAAGTATAATCCCAAAGACCAGCTCTATCTGCATATTGGCTTGAAACCCAGAGTGAGAGATCACTACCGGGC 🛂 AACGAAAGTGGCTTTCTGGTTGGAACTCGTTCCTCATTTGCACAACTTGAACGAGATATTCCAGTATGTTTCAAC AACCACAAAGGTTCCTCCACCAGACATGACATCATTTCCCTATGGCACCCGGCGATCTCCCGCCAAGATATGGCC AACCACCAAACGCCCAGCAATCACTCCTGCCAACAATCCCCAAACACTCTAAGGACCCTCACAAAACAGGGCCTGA GGACACAACTGTCCTCATTGAAACCAAACGAGATTATTCCACCGAATTAAGTGTCACCATTGCCGTCGGGGCGTC 🖷 GCTCCTCTTCCTCAACATCTTAGCTTTTGCGGCGCTGTACTACAAAAAGGACAAGAGGCGCCATGAGACTCACAG GCGCCCCAGTCCCCAGAGAAACACCACAAATGATATCGCTCACATCCAGAACGAAGAGATCATGTCTCTGCAGAT GAAGCAGCTGGAACACGATCACGAGTGTGAGTCGCTGCAGGCACACGACACACTGAGGCTCACCTGCCCGCCAGA $\tt CTACACCCTCACGCTGCGCCGGTCGCCAGATGACATCCCACTTATGACGCCAAACACCATCACCATGATTCCAAA$ CACACTGACGGGGATGCAGCCTTTGCACACTTTTAACACCTTCAGTGGAGGACAAAACAGTACAAATTTACCCCA $\tt CGGACATTCCACCACTAGAGTA{\color{blue}{\textbf{TAG}}} CITTGCCCTATTTCCCTTCCTATCCCTCTGCCCTACCCGCTCAGCAACAT$ AAGATCAACTTCTGACCCTGTGAAATGTGAGAAGTACACATTTCTGTTAAAATAACTGCTTTAAGATCTCTACCA ${\tt CTCCAATCAATGTTTAGTGTGATAGGACATCACCATTTCAAGGCCCCGGGTGTTTCCAACGTCATGGAAGCAGCT}$ CACACAATGGATGGCTCTCCTTAAGTGAAGAAAGAGTCAATGAGATTTTGCCCAGCACATGGAGCTGTAATCCAG AGAGAAGGAAACGTAGAAATTTATTATTAAAAGAATGGACTGTGCAGCGAAATCTGTACGGTTCTGTGCAAAGAG GTGTTTTGCCAGCCTGAACTATATTTAAGAGACTTTGT

MLNSNVLLWLTALAIKFTLIDSQAQYPVVNTNYGKIRGLRTPLPNEILGPVEQYLGVPYASP
PTGERRFQPPEPPSSWTGIRNTTQFAAVCPQHLDERSLLHDMLPIWFTANLDTLMTYVQDQN
EDCLYLNIYVPTEDGANTKKNADDITSNDRGEDEDIHDQNSKKPVMVYIHGGSYMEGTGNMI
DGSILASYGNVIVITINYRLGILGFLSTGDQAAKGNYGLLDQIQALRWIEENVGAFGGDPKR
VTIFGSGAGASCVSLLTLSHYSEGLFQKAIIQSGTALSSWAVNYQPAKYTRILADKVGCNML
DTTDMVECLRNKNYKELIQQTITPATYHIAFGPVIDGDVIPDDPQILMEQGEFLNYDIMLGV
NQGEGLKFVDGIVDNEDGVTPNDFDFSVSNFVDNLYGYPEGKDTLRETIKFMYTDWADKENP
ETRRKTLVALFTDHQWVAPAVAADLHAQYGSPTYFYAFYHHCQSEMKPSWADSAHGDEVPYV
FGIPMIGPTELFSCNFSKNDVMLSAVVMTYWTNFAKTGDPNQPVPQDTKFIHTKPNRFEEVA
WSKYNPKDQLYLHIGLKPRVRDHYRATKVAFWLELVPHLHNLNEIFQYVSTTTKVPPPDMTS
FPYGTRRSPAKIWPTTKRPAITPANNPKHSKDPHKTGPEDTTVLIETKRDYSTELSVTIAVG
ASLLFLNILAFAALYYKKDKRRHETHRRPSPQRNTTNDIAHIQNEEIMSLQMKQLEHDHECE
SLQAHDTLRLTCPPDYTLTLRRSPDDIPLMTPNTITMIPNTLTGMQPLHTFNTFSGGQNSTN
LPHGHSTTRV

Signal sequence:

amino acids 1-24

Transmembrane domains:

amino acids 189-204, 675-692

GGGAAAG<u>ATG</u>GCGGCGACTCTGGGACCCCTTGGGTCGTGGCAGCAGTGGCGGCGATGTTTGT CGGCTCGGGATGGGTCCAGGATGTTACTCCTTCTTCTTTTTGTTGGGGTCTGGGCAGGGGCCA CAGCAAGTCGGGGCGGTCAAACGTTCGAGTACTTGAAACGGGAGCACTCGCTGTCGAAGCC CTACCAGGGTGTGGGCACAGGCAGTTCCTCACTGTGGAATCTGATGGGCAATGCCATGGTGA TGACCCAGTATATCCGCCTTACCCCAGATATGCAAAGTAAACAGGGTGCCTTGTGGAACCGG GTGCCATGTTTCCTGAGAGACTGGGAGTTGCAGGTGCACTTCAAAATCCATGGACAAGGAAA GAAGAATCTGCATGGGGATGGCTTGGCAATCTGGTACACAAAGGATCGGATGCAGCCAGGGC $\tt CTGTGTTTGGAAACATGGACAAATTTGTGGGGGCTGGGAGTATTTGTAGACACCTACCCCAAT$ GAGGAGAAGCAGCAAGACCGGGTATTCCCCTACATCTCAGCCATGGTGAACAACGGCTCCCT CAGCTATGATCATGAGCGGGATGGGCGGCCTACAGAGCTGGGAGGCTGCACAGCCATTGTCC GCAATCTTCATTACGACACCTTCCTGGTGATTCGCTACGTCAAGAGGCATTTGACGATAATG ATGGATATTGATGGCAAGCATGAGTGGAGGGACTGCATTGAAGTGCCCGGAGTCCGCCTGCC CCGCGGCTACTACTTCGGCACCTCCTCCATCACTGGGGATCTCTCAGATAATCATGATGTCA TTTCCTTGAAGTTGTTTGAACTGACAGTGGAGAGAACCCCCAGAAGAGGGAAAAGCTCCATCGA GATGTGTTCTTGCCCTCAGTGGACAATATGAAGCTGCCTGAGATGACAGCTCCACTGCCGCC CCTGAGTGGCCTGGCCCTCTTCCTCATCGTCTTTTTCTCCCTGGTGTTTTTCTGTATTTGCCA TAGTCATTGGTATCATACTCTACAACAAATGGCAGGAACAGAGCCGAAAGCGCTTCTACTGA GCCCTCCTGCTGCCACCACTTTTGTGACTGTCACCCATGAGGTATGGAAGGAGCAGGCACTG GCCTGAGCATGCAGCCTGGAGAGTGTTCTTGTCTCTAGCAGCTGGTTGGGGACTATATTCTG TCACTGGAGTTTTGAATGCAGGGACCCCGCATTCCCATGGTTGTGCATGGGGACATCTAACT CTGGTCTGGGAAGCCACCCACCCAGGGCAATGCTGCTGTGATGTGCCTTTCCCTGCAGTCC TTCCATGTGGGAGCAGAGGTGTGAAGAGAATTTACGTGGTTGTGATGCCAAAATCACAGAAC ☼ AGAATTTCATAGCCCAGGCTGCCGTGTTGTTTGACTCAGAAGGCCCTTCTACTTCAGTTTTG TCTTCCCTGCCTTACCTTCCTTTCACTCCATTGTCCTCTCTGTGTGCA1.CCTGAGCTG GGAAAGGCATTTGGATGCCTCTCTGTTGGGGCCTGGGGCTGCAGAACACACCTGCGTTTCAC TGGCCTTCATTAGGTGGCCCTAGGGAGATGGCTTTCTGCTTTGGATCACTGTTCCCTAGCAT GGGTCTTGGGTCTATTGGCATGTCCATGGCCTTCCCAATCAAGTCTCTTCAGGCCCTCAGTG AAGTTTGGCTAAAGGTTGGTGTAAAAATCAAGAGAAGCCTGGAAGACATCATGGATGCCATG E GATTAGCTGTGCAACTGACCAGCTCCAGGTTTGATCAAACCAAAAGCAACATTTGTCATGTG GTCTGACCATGTGGAGATGTTTCTGGACTTGCTAGAGCCTGCTTAGCTGCATGTTTTGTAGT TACGATTTTTGGAATCCCACTTTGAGTGCTGAAAGTGTAAGGAAGCTTTCTTCTTACACCTT TGCTGTTCTCATGTTCCAAGTCTGAGAGCAACAGACCCTCATCATCTGTGCCTGGAAGAGTT CACTGTCATTGAGCAGCACAGCCTGAGTGCTGGCCTCTGTCAACCCTTATTCCACTGCCTTA TTTGACAAGGGGTTACATGCTGCTCACCTTACTGCCCTGGGATTAAATCAGTTACAGGCCAG AGTCTCCTTGGAGGGCCTGGAACTCTGAGTCCTCCTATGAACCTCTGTAGCCTAAATGAAAT ACCTGCAGTAGGGATAACAGGGTAATAAGCTTGGCCGCCATGG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50911

><subunit 1 of 1, 348 aa, 1 stop

><MW: 39711, pI: 8.70, NX(S/T): 1

MAATLGPLGSWQQWRRCLSARDGSRMLLLLLLLGSGQGPQQVGAGQTFEYLKREHSLSKPYQ GVGTGSSSLWNLMGNAMVMTQYIRLTPDMQSKQGALWNRVPCFLRDWELQVHFKIHGQGKKN LHGDGLAIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVFPYISAMVNNGSLSY DHERDGRPTELGGCTAIVRNLHYDTFLVIRYVKRHLTIMMDIDGKHEWRDCIEVPGVRLPRG YYFGTSSITGDLSDNHDVISLKLFELTVERTPEEEKLHRDVFLPSVDNMKLPEMTAPLPPLS GLALFLIVFFSLVFSVFAIVIGIILYNKWQEQSRKRFY

Signal sequence:

amino acids 1-38

Transmembrane domain:

amino acids 310-329

FIGURE 154

CCGAGCCGGCGCGCAGCGAGCTGGGGCCTGGGACCATGGGCGTGAGTGCAATCTACGGATCAGTCT GACATGTTCCCGATTTGAGGTGAAACCATGAAGAGAAAATAGAATACTTAATAATGCTTTTCCGCAACCGCTTCT TGCTGCTGGCCGGCTGCGCTGCTGGCCTTTGTGAGCCTCAGCCTGCAGTTCTTCCACCTGATCCCGGTGT CGACTCCTAAGAATGGAATGAGTAGCAAGAGTCGAAAGAGAATCATGCCCGACCCTGTGACGGAGCCCCCTGTGA CAGACCCCGTTTATGAAGCTCTTTTGTACTGCAACATCCCCAGTGTGGCCGAGCGCAGCATGGAAGGTCATGCCC CGCATCATTTTAAGCTGGTCTCAGTGCATGTGTTCATTCGCCACGGAGACAGGTACCCACTGTATGTCATTCCCA AAACAAAGCGACCAGAAATTGACTGCACTCTGGTGGCTAACAGGAAACCGTATCACCCAAAACTGGAAGCTTTCA TTAGTCACATGTCAAAAGGATCCGGAGCCTCTTTCGAAAGCCCCTTGAACTCCTTGCCTCTTTACCCAAATCACC CATTGTGTGAGATGGGAGAGCTCACACAGACAGGAGTTGTGCAGCATTTGCAGAACGGTCAGCTGCTGAGGGATA TCTATCTAAAGAAACACAAACTCCTGCCCAATGATTGGTCTGCAGACCAGCTCTATTTAGAGACCACTGGGAAAA GGCACCAGCCAAGTGCGCTGTTCTGCTCTGGAAGCTGCTATTGCCCGGTAAGAAACCAGTATCTGGAAAAGGAGC AGCGTCGTCAGTACCTCCTACGTTTGAAAAACAGCCAGCTGGAGAAGACCTACGGGGAGATGGCCAAGATCGTGG ATGTCCCCACCAAGCAGCTTAGAGCTGCCAACCCCATAGACTCCATGCTCTGCCACTTCTGCCACAATGTCAGCT TTCCCTGTACCAGAAATGGCTGTGTTGACATGGAGCACTTCAAGGTAATTAAGACCCATCAGATCGAGGATGAAA GGGAAAGACGGGAGAAGAAATTGTACTTCGGGTATTCTCTCTGGGTGCCCACCCCATCCTGAACCAAACCATCG GCCGGATGCAGCGTGCCACCGAGGGCAGGAAAGAAGAGCTCTTTGCCCTCTACTCTGCTCATGATGTCACTCTGT ${\tt CACCAGTTCTCAGTGCCTTGGGCCTTTCAGAAGCCAGGTTCCCAAGGTTTGCAGCCAGGTTGATCTTTGAGCTTT}$ GGCAAGACAGAGAAAAGCCCAGTGAACATTCCGTCCGGATTCTTTACAATGGCGTCGATGTCACATTCCACACCT CTTTCTGCCAAGACCACACAGCGTTCTCCCAAGCCCATGTGCCCGCTTGAAAACTTGGTCCGCTTTGTGAAAA GGGACATGTTTGTAGCCCTGGGTGGCAGTGGTACAAATTATTATGATGCATGTCACAGGGAAGGATTCTAAAAGG AAGCACATTGCTGCAATGTGGTACGTGAATTGCTTGGTACAAAATGGCCAGTTCACAGAGGAATAGAAGGTACTT TATCATAGCCAGACTTCGCTTAGAATGCCAGAATAATATAGTTCAAGACCTGAAGTTGCCAATCCAAGTTTGCAC TTTACCTTGTCCTTGTTAAGAATTTCTTGAAGTGATTTATCTAAAATAAAGGTTGGCAAACTTTTTCTGTAAAGG GCCAGATTGTAAATATTTCAGACTGTGTGGACCAAAAGGCCACATACAGTCTCTGTCATAACTACTCAACTCTGT TTCTGAAGCAGGAAAGCCACCACAGACAGTACATAAAGGAATATGTGTAGCTGGGTTCCCAGGCCAGACAAAACA GATGGTGACCAGACTTGGCCCCTGGGCTGTAGTTTGCTGACCCCTCATCTAAAAAATAGGCTATACTACAATTGC ACTTCCAGCACTTTGAGAACGAGTTGAATACCAAGAATTATTCAATGGTTCCTCCAGTAACTTCTGCTAGAAACA AACTGATTAGAAGAATACTTGATGTTTATGATGATTGTGGTACAAGATAGTTTTAAGTATGTTCTAAATATTTGT CTGCTGTAGTCTATTTGCTGTATATGCTGAAATTTTTTGTATGCCATTTAGTATTTTTTATAGTTTTAGGAAAATATT TTCTAAGACCAGTTTTAGATGACTCTTATTCCTGTAGTAATATTCAATTTGCTGTACCTGCTTGGTGGTTAGAAG GAGGCTAGAAGATGAATTCAGGCACTTTCTTCCAATAAAACTAATTATGGCTCATTCCCTTTGACAAGCTGTAGA AGAACTTTGCTATTAGGTAGTTTACAGATCTTTATAAGGTGTTTTATATATTAGAAGCAATTATAATTACATCTG TGATTTCTGAACTAATGGTGCTAATTCAGAGAAATGGAAAGTGAAAGTGAGATTCTCTGTTGTCATCGGCATTCC

FIGURE 155

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48329</pre>

><subunit 1 of 1, 480 aa, 1 stop

><MW: 55240, pI: 9.30, NX(S/T): 2

MLFRNRFLLLLALAALLAFVSLSLQFFHLIPVSTPKNGMSSKSRKRIMPDPVTEPPVTDPVY
EALLYCNIPSVAERSMEGHAPHHFKLVSVHVFIRHGDRYPLYVIPKTKRPEIDCTLVANRKP
YHPKLEAFISHMSKGSGASFESPLNSLPLYPNHPLCEMGELTQTGVVQHLQNGQLLRDIYLK
KHKLLPNDWSADQLYLETTGKSRTLQSGLALLYGFLPDFDWKKIYFRHQPSALFCSGSCYCP
VRNQYLEKEQRRQYLLRLKNSQLEKTYGEMAKIVDVPTKQLRAANPIDSMLCHFCHNVSFPC
TRNGCVDMEHFKVIKTHQIEDERERREKKLYFGYSLLGAHPILNQTIGRMQRATEGRKEELF
ALYSAHDVTLSPVLSALGLSEARFPRFAARLIFELWQDREKPSEHSVRILYNGVDVTFHTSF
CQDHHKRSPKPMCPLENLVRFVKRDMFVALGGSGTNYYDACHREGF

Signal sequence:

amino acids 1-18

AAAAAAGCTCACTAAAGTTTCTATTAGAGCGAATACGGTAGATTTCCATCCCCTTTTGAAGAACAGTACTGTGGA GCTATTTAAGAGATAAAAACGAAATATCCTTTCTGGGAGTTCAAGATTGTGCAGTAATTGGTTAGGACTCTGAGC ${\tt GCCGCTGTTCACCAATCGGGGAGAGAAAGCGGAGATCCTGCTCGCCTTGCACGCGCCTGAAGCACAAAGCAGAT}$ AGCTAGGAATGAACCATCCCTGGGAGTATGTGGAAACAACGGAGGAGCTCTGACTTCCCAACTGTCCCATTCTAT GGGCGAAGGAACTGCTCCTGACTTCAGTGGTTAAGGGCAGAATTGAAAATAATTCTGGAGGAAGATAAGAATGAT TCCTGCGCGACTGCACCGGGACTACAAAGGGCTTGTCCTGCTGGGAATCCTCCTGGGGACTCTGTGGGAGACCGG ATGCACCCAGATACGCTATTCAGTTCCGGAAGAGCTGGAGAAAGGCTCTAGGGTGGGCGACATCTCCAGGGACCT GGGGCTGGAGCCCCGGGAGCTCGCGGAGCGCGGAGTCCCCATCATCCCCAGAGGTAGGACGCAGCTTTTCGCCCT GAATCCGCGCAGCGCAGCTTGGTCACGGCGGCAGGATAGACCGGGAGGAGCTCTGTATGGGGGCCATCAAGTG TCAATTAAATCTAGACATTCTGATGGAGGATAAAGTGAAAATATATGGAGTAGAAGTAGAAGTAAGGGACATTAA CGACAATGCGCCTTACTTTCGTGAAAGTGAATTAGAAATTAGAAAATTAGTGAAAATGCAGCCACTGAGATGCGGTT CCCTCTACCCCACGCCTGGGATCCGGATATCGGGAAGAACTCTCTGCAGAGCTACGAGCTCAGCCCGAACACTCA CGAAGAAAAGGCTGCTCACCACCTGGTCCTTACGGCCTCCGACGGGGGCGACCCGGTGCGCACAGGCACCGCGCG CATCCGCGTGATGGTTCTGGATGCGAACGACAACGCACCAGCGTTTGCTCAGCCCGAGTACCGCGCGAGCGTTCC GGAGAATCTGGCCTTGGGCACGCAGCTGCTTGTAGTCAACGCTACCGACCCTGACGAAGGAGTCAATGCGGAAGT GAGGTATTCCTTCCGGTATGTGGACGACAAGGCGGCCCAAGTTTTCAAACTAGATTGTAATTCAGGGACAATATC ${\tt TTCTGCGCGAGCCAAAGTCCTGATCACTGTTCTGGACGTGAACGACAATGCCCCAGAAGTGGTCCTCACCTCTCT}$ CGCCAGCTCGGTTCCCGAAAACTCTCCCAGAGGGACATTAATTGCCCTTTTAAATGTAAATGACCAAGATTCTGA GGAAAACGGACAGGTGATCTGTTTCATCCAAGGAAATCTGCCCTTTAAATTAGAAAAATCTTACGGAAATTACTA TAGTTTAGTCACAGACATAGTCTTGGATAGGGAACAGGTTCCTAGCTACAACATCACAGTGACCGCCACTGACCG ${\tt GGGAACCCCGCCCTATCCACGGAAACTCATATCTCGCTGAACGTGGCAGACACCCAACGACAACCCGCCGGTCTT}$ CCCTCAGGCCTCCTATTCCGCTTATATCCCAGAGAACAATCCCAGAGGAGTTTCCCTCGTCTCTGTGACCGCCCA CGACCCCGACTGTGAAGAGACGCCCAGATCACTTATTCCCTGGCTGAGAACACCATCCAAGGGGCAAGCCTATC GTCCTACGTGTCCATCAACTCCGACACTGGGGTACTGTATGCGCTGAGCTCCTTCGACTACGAGCAGTTCCGAGA CTTGCAAGTGAAAGTGATGGCGCGGGACAACGGGCACCCGCCCCTCAGCAGCAACGTGTCGTTGAGCCTGTTCGT GGCTCCCCGCTCCGCAGAGCCCGGCTACCTGGTGACCAAGGTGGTGGCGGTGGACAGAGACTCCGGCCAGAACGC CTGGCTGTCCTACCGTCTGCTCAAGGCCAGCGAGCCGGGACTCTTCTCGGTGGGTCTGCACACGGGCGAGGTGCG CACGGCGCGAGCCCTGCTGGACAGAGACGCGCTCAAGCAGAGCCTCGTAGTGGCCGTCCAGGACCACGGCCAGCC CCCTCTCTCCGCCACTGTCACGCTCACCGTGGCCGTGGCCGACAGCATCCCCCAAGTCCTGGCGGACCTCGGCAG $\tt CCTCGAGTCTCCAGCTAACTCTGAAACCTCAGACCTCACTCTGTACCTGGTGGTGGCGGGTGGCCGGGTCTCCTG$ $\tt CGTCTTCCTGGCCTTCGTCATCTTGCTGCTGCGCGCTCAGGCTGCGGCGCTGCCAGGCCTGCTGCCAGGC$ TTCAGGAGGCGGCTTGACAGGAGCGCCGGCGTCGCACTTTGTGGGCGTGGACGGGGTGCAGGCTTTCCTGCAGAC CTATTCCCACGAGGTTTCCCTCACCACGGACTCGCGGAAGAGTCACCTGATCTTCCCCCAGCCCAACTATGCAGA ${\tt CATGCTCGTCAGCCAGGAGAGCTTTGAAAAAAGCGAGCCCCTTTTGCTGTCAGGTGATTCGGTATTTTCTAAAGA}$ TGGAGTGCAGCGGTACGATCATAGCTCACTGCGGCCTCAAACTCCTAGGCTCAAGCAATTATCCCACCTTTGCCT ${\tt CTATCTATCTATCTATTACTTTCTTGTACAGACGGGAGTCTCACGCCTGTAATCCCAGTACTTTGGGAGGC}$ $\tt CGAGGCGGGTGGATCACCTGAGGTTGGGAGTTTGAGACCAGCC\underline{TGA}CCAACATGGAGAAACCCCGTCTATACTAA$ AAAAATACAAAATTAGCCGGGCGTGGTGGTGCATGTCTGTAATCCCAGCTACTTGGGAGGCTGAGTCAGGAGAAT TGCTTTAACCTGGGAGGTGGAGGTTGCAATGAGCTGAGATTGTGCCATTGCACTCCAGCCTGGGCAACAAGAGTG AAACTCTATCTCA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48306

><subunit 1 of 1, 916 aa, 1 stop

><MW: 100204, pI: 4.92, NX(S/T): 4

MIPARLHRDYKGLVLLGILLGTLWETGCTQIRYSVPEELEKGSRVGDISRDLGLEPRELAER
GVRIIPRGRTQLFALNPRSGSLVTAGRIDREELCMGAIKCQLNLDILMEDKVKIYGVEVEVR
DINDNAPYFRESELEIKISENAATEMRFPLPHAWDPDIGKNSLQSYELSPNTHFSLIVQNGA
DGSKYPELVLKRALDREEKAAHHLVLTASDGGDPVRTGTARIRVMVLDANDNAPAFAQPEYR
ASVPENLALGTQLLVVNATDPDEGVNAEVRYSFRYVDDKAAQVFKLDCNSGTISTIGELDHE
ESGFYQMEVQAMDNAGYSARAKVLITVLDVNDNAPEVVLTSLASSVPENSPRGTLIALLNVN
DQDSEENGQVICFIQGNLPFKLEKSYGNYYSLVTDIVLDREQVPSYNITVTATDRGTPPLST
ETHISLNVADTNDNPPVFPQASYSAYIPENNPRGVSLVSVTAHDPDCEENAQITYSLAENTI
QGASLSSYVSINSDTGVLYALSSFDYEQFRDLQVKVMARDNGHPPLSSNVSLSLFVLDQNDN
APEILYPALPTDGSTGVELAPRSAEPGYLVTKVVAVDRDSGQNAWLSYRLLKASEPGLFSVG
LHTGEVRTARALLDRDALKQSLVVAVQDHGQPPLSATVTLTVAVADSIPQVLADLGSLESPA
NSETSDLTLYLVVAVAAAVSCVFLAFVILLLALRLRRWHKSRLLQASGGGLTGAPASHFVGVD
GVQAFLQTYSHEVSLTTDSRKSHLIFPQPNYADMLVSQESFEKSEPLLLSGDSVFSKDSHGL
IEVSLYQIFFLFFFNCSVSQAGVQRYDHSSLRPQTPRLKQLSHLCLRCNRDYRCKPPTVCLS
IYLSIYLSIYLSIYLLISCTDGSLTPVIPVLWEAEAGGSPEVGSLRPA

Signal sequence:

ī

amino acids 1-30

Transmembrane domains:

amino acids 693-711, 809-823, 869-888

CCCAGGCTCTAGTGCAGGAGGAGGAGGAGGAGGAGGAGGTGGAGATTCCCAGTTAAAAG GCTCCAGAATCGTGTACCAGGCAGAGAACTGAAGTACTGGGGCCTCCTCCACTGGGTCCGAA ${\tt TCAGTAGGTGACCCCGCCCCTGGATTCTGGAAGACCTCACC} \underline{{\tt ATG}} {\tt GGACGCCCCGACCTCGT}$ ACAGGAGACAAGGTGCTGGGGGGTCATGAGTGCCAACCCCATTCGCAGCCTTGGCAGGCGG ${\tt CCTTGTTCCAGGGCCAGCAACTACTCTGTGGCGGTGTCCTTGTAGGTGGCAACTGGGTCCTT}$ ACAGCTGCCCACTGTAAAAAACCGAAATACACAGTACGCCTGGGAGACCACAGCCTACAGAA TAAAGATGGCCCAGAGCAAGAAATACCTGTGGTTCAGTCCATCCCACACCCCTGCTACAACA GCAGCGATGTGGAGGACCACAACCATGATCTGATGCTTCTTCAACTGCGTGACCAGGCATCC $\tt CTGGGGTCCAAAGTGAAGCCCATCAGCCTGGCAGATCATTGCACCCAGCCTGGCCAGAAGTG$ CACCGTCTCAGGCTGGGGCACTGTCACCAGTCCCCGAGAGAATTTTCCTGACACTCTCAACT GTGCAGAAGTAAAAATCTTTCCCCAGAAGAAGTGTGAGGATGCTTACCCGGGGCAGATCACA GATGGCATGGTCTGTGCAGGCAGCAGCAAAGGGGCTGACACGTGCCAGGGCGATTCTGGAGG CCCCCTGGTGTGTGATGGTGCACTCCAGGGCATCACATCCTGGGGCTCAGACCCCTGTGGGA GGTCCGACAAACCTGGCGTCTATACCAACATCTGCCGCTACCTGGACTGGATCAAGAAGATC ${ t ATAGGCAGCAAGGGC}{ t TGA}{ t TCTAGGATAAGCACTAGATCTCCCTTAATAAACTCACAACTCT}$ **CTGGTTC**

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48336</pre>

<subunit 1 of 1, 260 aa, 1 stop</pre>

<MW: 28048, pI: 7.87, NX(S/T): 1

MGRPRPRAAKTWMFLLLLGGAWAGHSRAQEDKVLGGHECQPHSQPWQAALFQGQQLLCGGVL VGGNWVLTAAHCKKPKYTVRLGDHSLQNKDGPEQEIPVVQSIPHPCYNSSDVEDHNHDLMLL QLRDQASLGSKVKPISLADHCTQPGQKCTVSGWGTVTSPRENFPDTLNCAEVKIFPQKKCED AYPGQITDGMVCAGSSKGADTCQGDSGGPLVCDGALQGITSWGSDPCGRSDKPGVYTNICRY LDWIKKIIGSKG

Important Features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 51-71

N-glycosylation site.

amino acids 110-113

Serine proteases, trypsin family, histidine active site. amino acids 69-74 and 207-217

Tyrosine kinase phosphorylation site. amino acids 182-188

Kringle domain proteins motif amino acids 205-217

GGCGCCGGTGCACCGGGCGGGCTGAGCGCCTCCTGCGGCCCGGCCTGCGCCCCGGCCCGGC CCCCGGCCGGCGGGGAACCGGGCGGATTCCTCGCGCGTCAAACCACCTGATCCCATAAAAC ATTCATCCTCCCGGCGGCCCGCGCTGCGAGCGCCCCGCCAGTCCGCGCCGCCGCCCCTCG TGCGGACCCGGCGGGGGAGACGGCCCCGCCCCGAAACGACTTTCAGTCCCCGACGCGC CTGTGGCTGCAGGCCTGCCAGGTGCCCAGGTGCCTGCGTATGCTACAATGA GCCCAAGGTGACGACAAGCTGCCCCCAGCAGGGCCTGCAGGCTGTGCCCGTGGGCATCCCTG CTGCCAGCCAGCGCATCTTCCTGCACGGCAACCGCATCTCGCATGTGCCAGCTGCCAGCTTC CGTGCCTGCCGCAACCTCACCATCCTGTGGCTGCACTCGAATGTGCTGGCCCGAATTGATGC GGCTGCCTTCACTGGCCTGGCCCTCCTGGAGCAGCTGGACCTCAGCGATAATGCACAGCTCC GGTCTGTGGACCCTGCCACATTCCACGGCCTGGGCCGCCTACACACGCTGCACCTGGACCGC TGCGGCCTGCAGGAGCTGGGCCCGGGGCTGTTCCGCGGCCTGGCTGCCCTGCAGTACCTCTA CCTGCAGGACAACGCGCTGCAGGCACTGCCTGATGACACCTTCCGCGACCTGGGCAACCTCA CACACCTCTTCCTGCACGGCAACCGCATCTCCAGCGTGCCCGAGCGCGCCTTCCGTGGGCTG CACAGCCTCGACCGTCTCCTACTGCACCAGAACCGCGTGGCCCATGTGCACCCGCATGCCTT CCGTGACCTTGGCCGCCTCATGACACTCTATCTGTTTGCCAACAATCTATCAGCGCTGCCCA CTGAGGCCCTGGCCCCTGCGTGCCCTGCAGTACCTGAGGCTCAACGACAACCCCTGGGTG TGTGACTGCCGGGCACGCCCACTCTGGGCCTGCAGAAGTTCCGCGGCTCCTCCTCCGA GGTGCCCTGCAGCCTCCCGCAACGCCTGGCCGGCCGTGACCTCAAACGCCTAGCTGCCAATG ACCTGCAGGGCTGCGCTGTGGCCACCGGCCCTTACCATCCCATCTGGACCGGCAGGGCCACC ACTGGAGCCTGGAAGACCAGCTTCGGCAGGCAATGCGCTGAAGGGACGCGTGCCGCCCGGTG ACAGCCCGCCGGGCAACGGCTCTGGCCCACGGCACATCAATGACTCACCCTTTGGGACTCTG CCTGGCTCTGCTGAGCCCCCGCTCACTGCAGTGCGGCCCGAGGGCTCCGAGCCACCAGGGTT CCCCACCTCGGGCCCTCGCCGGAGGCCAGGCTGTTCACGCAAGAACCGCACCCGCAGCCACT GCCGTCTGGGCCAGGCAGCCGGGGGTGGCGGGACTGGTGACTCAGAAGGCTCAGGTGCC CTACCCAGCCTCACCTGCAGCCTCACCCCCCTGGGCCTGGCGCTGGTGCTGTGGACAGTGCT TGGGCCCTGC<u>TGA</u>CCCCCAGCGGACACAAGAGCGTGCTCAGCAGCCAGGTGTGTACATAC GGGGTCTCTCTCCACGCCGCCAAGCCAGCCGGGCGGCCGACCCGTGGGGCAGGCCAGGCCAG GTCCTCCCTGATGGACGCCTGCCGCCCCCCCCCCCATCTCCACCCCATCATGTTTACAGGG GCATTTTATTTTACTTGTGTAAAAATATCGGACGACGTGGAATAAAGAGCTCTTTTCTTAAA AAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44184

><subunit 1 of 1, 473 aa, 1 stop

><MW: 50708, pI: 9.28, NX(S/T): 6

MKRASAGGSRLLAWVLWLQAWQVAAPCPGACVCYNEPKVTTSCPQQGLQAVPVGIPAASQRI FLHGNRISHVPAASFRACRNLTILWLHSNVLARIDAAAFTGLALLEQLDLSDNAQLRSVDPA TFHGLGRLHTLHLDRCGLQELGPGLFRGLAALQYLYLQDNALQALPDDTFRDLGNLTHLFLH GNRISSVPERAFRGLHSLDRLLLHQNRVAHVHPHAFRDLGRLMTLYLFANNLSALPTEALAP LRALQYLRLNDNPWVCDCRARPLWAWLQKFRGSSSEVPCSLPQRLAGRDLKRLAANDLQGCA VATGPYHPIWTGRATDEEPLGLPKCCQPDAADKASVLEPGRPASAGNALKGRVPPGDSPPGN GSGPRHINDSPFGTLPGSAEPPLTAVRPEGSEPPGFPTSGPRRRPGCSRKNRTRSHCRLGQA GSGGGTGDSEGSGALPSLTCSLTPLGLALVLWTVLGPC

Important features:

Signal peptide:

amino acids 1-26

Leucine zipper pattern.

amino acids 135-156

Glycosaminoglycan attachment site.

amino acids 436-439

N-glycosylation site. amino acids 82-85, 179-183, 237-240, 372-375 and 423-426

VWFC domain amino acids 411-425

GGAAGTCCACGGGGAGCTTGGATGCCAAAGGGAGGACGGCTGGGTCCTCTGGAGAGGACTAC TCACTGGCATATTTCTGAGGTATCTGTAGAATAACCACAGCCTCAGATACTGGGGACTTTAC AGTCCCACAGAACCGTCCTCCCAGGAAGCTGAATCCAGCAAGAACAATGGAGGCCAGCGGGA GGCGCGGCGAACCTAGAAGCTATTCTGTGGTGGAGGAAACTGAGGGCAGCTCCTTTGTCAC CAATTTAGCAAAGGACCTGGGTCTGGAGCAGAGGGAATTCTCCAGGCGGGGGGTTAGGGTTG TTTCCAGAGGGAACAAACTACATTTGCAGCTCAATCAGGAGACCGCGGATTTGTTGCTAAAT GAGAAATTGGACCGTGAGGATCTGTGCGGTCACACAGAGCCCTGTGTGCTACGTTTCCAAGT GTTGCTAGAGAGTCCCTTCGAGTTTTTTCAAGCTGAGCTGCAAGTAATAGACATAAACGACC ACTCTCCAGTATTTCTGGACAAACAAATGTTGGTGAAAGTATCAGAGAGCAGTCCTCCTGGG ACTACGTTTCCTCTGAAGAATGCCGAAGACTTAGATGTAGGCCAAAACAATATTGAGAACTA TATAATCAGCCCCAACTCCTATTTTCGGGTCCTCACCCGCAAACGCAGTGATGGCAGGAAAT ACCCAGAGCTGGTGCTGGACAAAGCGCTGGACCGAGAGGAAGAAGCTGAGCTCAGGTTAACA CTCACAGCACTGGATGGTGGCTCTCCGCCCAGATCTGGCACTGCTCAGGTCTACATCGAAGT CCTGGATGTCAACGATAATGCCCCTGAATTTGAGCAGCCTTTCTATAGAGTGCAGATCTCTG AGGACAGTCCGGTAGGCTTCCTGGTTGTGAAGGTCTCTGCCACGGATGTAGACACAGGAGTC AACGGAGAGATTTCCTATTCACTTTTCCAAGCTTCAGAAGAGATTGGCAAAACCTTTAAGAT CAATCCCTTGACAGGAGAAATTGAACTAAAAAAACAACTCGATTTCGAAAAACTTCAGTCCT ATGAAGTCAATATTGAGGCAAGAGATGCTGGAAACCTTTTCTGGAAAATGCACCGTTCTGATT CAAGTGATAGATGTGAACGACCATGCCCCAGAAGTTACCATGTCTGCATTTACCAGCCCAAT ACCTGAGAACGCGCCTGAAACTGTGGTTGCACTTTTCAGTGTTTCAGATCTTGATTCAGGAG AAAATGGGAAAATTAGTTGCTCCATTCAGGAGGATCTACCCTTCCTCCTGAAATCCGCGGAA AACTTTTACACCCTACTAACGGAGAGACCACTAGACAGAGAAAGCAGAGCGGAATACAACAT CACTATCACTGTCACTGACTTGGGGACCCCTATGCTGATAACACAGCTCAATATGACCGTGC TGATCGCCGATGTCAATGACAACGCTCCCGCCTTCACCCAAACCTCCTACACCCTGTTCGTC CACCAACGCCCAGGTCACCTACTCGCTGCTGCCGCCCCAGGACCCGCACCTGCCCCTCACAT CCCTGGTCTCCATCAACGCGGACAACGGCCACCTGTTCGCCCTCAGGTCTCTGGACTACGAG GCCCTGCAGGGGTTCCAGTTCCGCGTGGGCGCTTCAGACCACGGCTCCCCGGCGCTGAGCAG CGAGGCGCTGGTGCTGGTGCTGGACGCCAACGACAACTCGCCCTTCGTGCTGTACC CGCTGCAGAACGGCTCCGCGCCCTGCACCGAGCTGGTGCCCCGGGCGGCCGAGCCGGGCTAC CTGGTGACCAAGGTGGTGGCGGTGGACGGCGACTCGGGCCAGAACGCCTGGCTGTCGTACCA GCTGCTCAAGGCCACGGAGCTCGGTCTGTTCGGCGTGTGGGCGCACAATGGCGAGGTGCGCA CCGCCAGGCTGCTGAGCGCGCGACGCGGCCAAGCACAGGCTGGTGGTGCTGGTCAAGGAC AATGGCGAGCCTCCGCGCCACCGCCACGCTGCACGTGCTCCTGGTGGACGGCTTCTC CCAGCCCTACCTGCCTCTCCCGGAGGCGGCCCCGACCCAGGCCCAGGCCGACTTGCTCACCG TCTACCTGGTGGCGTTGGCCTCGGTGTCTTCGCTCTTTTCCGGTGCTCCTGTTC GTGGCGGTGCGGCTGTGTAGGAGGAGCAGGGCGGCCTCGGTGGGTCGCTGCTTGGTGCCCGA GGGCCCCCTTCCAGGGCATCTTGTGGACATGAGCGGCACCAGGACCCTATCCCAGAGCTACC AGTATGAGGTGTGTCTGGCAGGAGGCTCAGGGACCAATGAGTTCAAGTTCCTGAAGCCGATT ATCCCCAACTTCCCTCCCCAGTGCCCTGGGAAAGAAATACAAGGAAATTCTACCTTCCCCAA TTACTCTTGATTTTTCTCATGTTCTTTCTCCCTTTGTTTTAAAGTGAACATTTACCTTTATT CCTGGTTCTT

Ш

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48314</pre>

<subunit 1 of 1, 798 aa, 1 stop

<MW: 87552, pI: 4.84, NX(S/T): 5

MEASGKLICRQRQVLFSFLLLGLSLAGAAEPRSYSVVEETEGSSFVTNLAKDLGLEQREFSR
RGVRVVSRGNKLHLQLNQETADLLLNEKLDREDLCGHTEPCVLRFQVLLESPFEFFQAELQV
IDINDHSPVFLDKQMLVKVSESSPPGTTFPLKNAEDLDVGQNNIENYIISPNSYFRVLTRKR
SDGRKYPELVLDKALDREEEAELRLTLTALDGGSPPRSGTAQVYIEVLDVNDNAPEFEQPFY
RVQISEDSPVGFLVVKVSATDVDTGVNGEISYSLFQASEEIGKTFKINPLTGEIELKKQLDF
EKLQSYEVNIEARDAGTFSGKCTVLIQVIDVNDHAPEVTMSAFTSPIPENAPETVVALFSVS
DLDSGENGKISCSIQEDLPFLLKSAENFYTLLTERPLDRESRAEYNITITVTDLGTPMLITQ
LNMTVLIADVNDNAPAFTQTSYTLFVRENNSPALHIRSVSATDRDSGTNAQVTYSLLPPQDP
HLPLTSLVSINADNGHLFALRSLDYEALQGFQFRVGASDHGSPALSSEALVRVVVLDANDNS
PFVLYPLQNGSAPCTELVPRAAEPGYLVTKVVAVDGDSGQNAWLSYQLLKATELGLFGVWAH
NGEVRTARLLSERDAAKHRLVVLVKDNGEPPRSATATLHVLLVDGFSQPYLPLPEAAPTQAQ
ADLLTVYLVVALASVSSLFLFSVLLFVAVRLCRRSRAASVGRCLVPEGPLPGHLVDMSGTRT
LSQSYQYEVCLAGGSGTNEFKFLKPIIPNFPPQCPGKEIQGNSTFPNNFGFNIQ

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 685-712

Cadherins extracellular repeated domain signature.

amino acids 122-132, 231-241, 336-346, 439-449 and 549-559

ATP/GTP-binding site motif A (P-loop).

amino acids 285-292

N-glycosylation site.

amino acids 418-421, 436-439, 567-570 and 786-789

Ħ [1]

FIGURE 164

ACCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGCGCGTAGCCGTGC ${\tt GCCGATTGCCTCTCGGCCTGGGCA} \underline{{\tt ATG}} \underline{{\tt GTCCCGGCTGCCGGTCGACGACCGCCCCGCGTCAT}$ GCGGCTCCTCGGCTGGCAAGTATTGCTGTGGGTGCTGGGACTTCCCGTCCGCGCGTGG AGGTTGCAGAGGAAAGTGGTCGCTTATGGTCAGAGGAGCAGCCTGCTCACCCTCTCCAGGTG GGGGCTGTGTACCTGGGTGAGGAGGAGCTCCTGCATGACCCGATGGGCCAGGACAGGGCAGC AGAAGAGGCCAATGCGGTGCTGGGGCTGGACACCCAAGGCGATCACATGGTGATGCTGTCTG TGATTCCTGGGGAAGCTGAGGACAAAGTGAGTTCAGAGCCTAGCGGCGTCACCTGTGGTGCT GGAGGAGCGGAGGACTCAAGGTGCAACGTCCGAGAGAGCCTTTTCTCTCTGGATGGCGCTGG AGCACACTTCCCTGACAGAGAAGAGGAGTATTACACAGAGCCAGAAGTGGCGGAATCTGACG CAGCCCCGACAGAGGACTCCAATAACACTGAAAGTCTGAAATCCCCCAAAGGTGAACTGTGAG GAGAGAAACATTACAGGATTAGAAAATTTCACTCTGAAAATTTTAAATATGTCACAGGACCT ${\tt TATGGATTTTCTGAACCCAAACGGTAGTGACTGTACTCTAGTCCTGTTTTACACCCCGTGGT}$ GCCGCTTTTCTGCCAGTTTGGCCCCTCACTTTAACTCTCTGCCCCGGGCATTTCCAGCTCTT CACTTTTTGGCACTGGATGCATCTCAGCACAGCACCCTTTCTACCAGGTTTGGCACCGTAGC TGTTCCTAATATTTTATTATTTCAAGGAGCTAAACCAATGGCCAGATTTAATCATACAGATC GAACACTGGAAACACTGAAAATCTTCATTTTTAATCAGACAGGTATAGAAGCCAAGAAGAAT GTGGTGGTAACTCAAGCCGACCAAATAGGCCCTCTTCCCAGCACTTTGATAAAAAGTGTGGA $\tt CTGAGAGTATTCGGTGGCTAATTCCAGGACAAGAGCAGGAACATGTGGAG{\color{red}{TAG}}TGATGGTCT$ GAAAGAAGTTGGAAAGAGGAACTTCAATCCTTCGTTTCAGAAATTAGTGCTACAGTTTCATA CATTTTCTCCAGTGACGTGTTGACTTGAAACTTCAGGCAGATTAAAAGAATCATTTGTTGAA CAACTGAATGTATAAAAAATTATAAACTGGTGTTTTAACTAGTATTGCAATAAGCAAATGC AAAAATATTCAATAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48333</pre>

><subunit 1 of 1, 360 aa, 1 stop

><MW: 39885, pI: 4.79, NX(S/T): 7

MVPAAGRRPPRVMRLLGWWQVLLWVLGLPVRGVEVAEESGRLWSEEQPAHPLQVGAVYLGEE ELLHDPMGQDRAAEEANAVLGLDTQGDHMVMLSVIPGEAEDKVSSEPSGVTCGAGGAEDSRC NVRESLFSLDGAGAHFPDREEEYYTEPEVAESDAAPTEDSNNTESLKSPKVNCEERNITGLE NFTLKILNMSQDLMDFLNPNGSDCTLVLFYTPWCRFSASLAPHFNSLPRAFPALHFLALDAS QHSSLSTRFGTVAVPNILLFQGAKPMARFNHTDRTLETLKIFIFNQTGIEAKKNVVVTQADQ IGPLPSTLIKSVDWLLVFSLFFLISFIMYATIRTESIRWLIPGQEQEHVE

Important features:

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 321-340

Homologous region to dilsufide isomerase

amino acids 212-302

N-glycosylation site.

amino acids 165-168, 181-184, 187-190, 194-197, 206-209, 278-281 and 293-296

Thioredoxin domain

amino acids 211-227

 $\tt CCCGGCTCCGCTCTGCCCCCTCGGGGTCGCGCCCCACG{\color{red} {\bf ATG}} CTGCAGGGCCCTGGCT$ TTTGGCCAGCCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCCATCCCGGTCAACCTGCA GCTGTGCCACGGCATCGAATACCAGAACATGCGGCTGCCCAACCTGCTGGGCCACGAGACCA TGAAGGAGGTGCTGGAGCAGGCCGGCGCTTGGATCCCGCTGGTCATGAAGCAGTGCCACCCG GACACCAAGAAGTTCCTGTGCTCGCTCTTCGCCCCCGTCTGCCTCGATGACCTAGACGAGAC CATCCAGCCATGCCACTCGCTCTGCGTGCAGGTGAAGGACCGCTGCGCCCCGGTCATGTCCG ${\tt CCTTCGGCTTCCCCTGGCCCGACATGCTTGAGTGCGACCGTTTCCCCCCAGGACAACGACCTT}$ TGCATCCCCTCGCTAGCAGCGACCACCTCCTGCCAGCCACCGAGGAAGCTCCAAAGGTATG TGAAGCCTGCAAAAATAAAAATGATGATGACAACGACATAATGGAAACGCTTTGTAAAAATG ATTTTGCACTGAAAATAAAAGTGAAGGAGATAACCTACATCAACCGAGATACCAAAATCATC CTGGAGACCAAGAGCAAGACCATTTACAAGCTGAACGGTGTGTCCGAAAGGGACCTGAAGAA ATCGGTGCTGTGGCTCAAAGACAGCTTGCAGTGCACCTGTGAGGAGATGAACGACATCAACG CGCCCTATCTGGTCATGGGACAGAAACAGGGTGGGGAGCTGGTGATCACCTCGGTGAAGCGG TGGCAGAAGGGGCAGAGAGAGTTCAAGCGCATCTCCCGCAGCATCCGCAAGCTGCAAAGCTA **G**TCCCGGCATCCTGATGGCTCCGACAGGCCTGCTCCAGAGCACGGCTGACCATTTCTGCTCC GGGATCTCAGCTCCCGTTCCCCAAGCACACTCCTAGCTGCTCCAGTCTCAGCCTGGGCAGCT TCCCCCTGCCTTTTGCACGTTTGCATCCCCAGCATTTCCTGAGTTATAAGGCCACAGGAGTG GATAGCTGTTTTCACCTAAAGGAAAAGCCCACCCGAATCTTGTAGAAATATTCAAACTAATA AAATCATGAATATTTTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50920</pre>

><subunit 1 of 1, 295 aa, 1 stop

><MW: 33518, pI: 7.74, NX(S/T): 0

MLQGPGSLLLLFLASHCCLGSARGLFLFGQPDFSYKRSNCKPIPVNLQLCHGIEYQNMRLPN LLGHETMKEVLEQAGAWIPLVMKQCHPDTKKFLCSLFAPVCLDDLDETIQPCHSLCVQVKDR CAPVMSAFGFPWPDMLECDRFPQDNDLCIPLASSDHLLPATEEAPKVCEACKNKNDDDNDIM ETLCKNDFALKIKVKEITYINRDTKIILETKSKTIYKLNGVSERDLKKSVLWLKDSLQCTCE EMNDINAPYLVMGQKQGGELVITSVKRWQKGQREFKRISRSIRKLQC

Important features:

Signal peptide:

amino acids 1-20

Cysteine rich domain, homolgous to frizzled N terminus amino acids 6-153

GTGGAGGCCGCCGACG<u>ATG</u>GCGGGGCCGACGGAGGCCGAGACGGGGTTGGCCGAGCCCCGGG CCCTGTGCGCGCACCGCACCTACGCGCGCCGCTGGGTGTTCCTGCTCGCGATC AGCCTGCTCAACTGCTCCAACGCCACGCTGTGGCTCAGCTTTGCACCTGTGGCTGACGTCAT TGCTGAGGACTTGGTCCTGTCCATGGAGCAGATCAACTGGCTGTCACTGGTCTACCTCGTGG TATCCACCCCATTTGGCGTGGCGGCCATCTGGATCCTGGACTCCGTCGGGCTCCGTGCGGCG ACCATCCTGGGTGCGTGAACTTTGCCGGGAGTGTGCTACGCATGGTGCCCTGCATGGT TGTTGGGACCCAAAACCCATTTGCCTTCCTCATGGGTGGCCAGAGCCTCTGTGCCCC AGAGCCTGGTCATCTTCTCCAGCCAAGCTGGCTGCCTTGTGGTTCCCAGAGCACCAGCGA GCCACGGCCAACATGCTCGCCACCATGTCGAACCCTCTGGGCCGTCCTTGTGGCCCAATGTGCT GTCCCCTGTGCTGGTCAAGAAGGGTGAGGACATTCCGTTAATGCTCGGTGTCTATACCATCC CTGCTGGCGTCGTCTGCCTGTCCACCATCTGCCTGTGGGAGAGTGTGCCCCCCACCCCG CCCTCTGCCGGGGCTGCCAGCTCCAGAGAAGTTCCTGGATGGGCTCAAGCTGCAGCT CATGTGGAACAAGGCCTATGTCATCCTGGCTGTGTGCTTGGGGGGAATGATCGGGATCTCTG ${\tt CCAGCTTCTCAGCCCTCCTGGAGCAGATCCTCTGTGCAAGCGGCCACTCCAGTGGGTTTTCC}$ GGCCTCTGTGGCGCTCTCTTCATCACGTTTGGGATCCTGGGGGGCACTGGCTCTCGGCCCCTA TGTGGACCGGACCAAGCACTTCACTGAGGCCACCAAGATTGGCCTGTGCCTGTTCTCTCTGG CCTGCGTGCCCTTTGCCCTGGTGTCCCAGCTGCAGGGACAGACCCTTGCCCTGGCTGCCACC TGCTCGCTGCTCGGGCTGTTTGGCTTCTCGGTGGGCCCCGTGGCCATGGAGTTGGCGGTCGA GTGTTCCTTCCCCGTGGGGGGGGGGCTGCCACAGGCATGATCTTTGTGCTGGGGCAGGCCG AGGGAATACTCATCATGCTGGCAATGACGGCACTGACTGTGCGACGCTCGGAGCCGTCCTTG TCCACCTGCCAGCAGGGGGAGGATCCACTTGACTGGACAGTGTCTCTGCTGCTGATGGCCGG CCTGTGCACCTTCTTCAGCTGCATCCTGGCGGTCTTCTTCCACACCCCATACCGGCGCCTGC AGGCCGAGTCTGGGGAGCCCCCTCCACCCGTAACGCCGTGGGCGGCGCAGACTCAGGGCCG GGTGTGGACCGAGGGGGGGCAGGAAGGGCTGGGGTCCTGGGGCCCAGCACGGCGACTCCGGA GCCACCGAGCGACTCCCCGTGCGCAAGGCCCAGCAGCCACCGACGCCCCCCGCCCCGGC AGACTCGCAGGCAGGGTCCAAGCGTCCAGGTTTATTGACCCGGCTGGGTCTCACTCCTCTT ${ t CTCCTCCCGTGGGTGATCACG}{ t TAG}{ t CTGAGCGCCTTGTAGTCCAGGTTGCCCGCCACATCGA}$ CCGGGAGCGAATTACAAGCGCGCACCTGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50988</pre>

><subunit 1 of 1, 560 aa, 1 stop

><MW: 58427, pI: 6.86, NX(S/T): 2

MAGPTEAETGLAEPRALCAQRGHRTYARRWVFLLAISLLNCSNATLWLSFAPVADVIAEDLV
LSMEQINWLSLVYLVVSTPFGVAAIWILDSVGLRAATILGAWLNFAGSVLRMVPCMVVGTQN
PFAFLMGGQSLCALAQSLVIFSPAKLAALWFPEHQRATANMLATMSNPLGVLVANVLSPVLV
KKGEDIPLMLGVYTIPAGVVCLLSTICLWESVPPTPPSAGAASSTSEKFLDGLKLQLMWNKA
YVILAVCLGGMIGISASFSALLEQILCASGHSSGFSGLCGALFITFGILGALALGPYVDRTK
HFTEATKIGLCLFSLACVPFALVSQLQGQTLALAATCSLLGLFGFSVGPVAMELAVECSFPV
GEGAATGMIFVLGQAEGILIMLAMTALTVRRSEPSLSTCQQGEDPLDWTVSLLLMAGLCTFF
SCILAVFFHTPYRRLQAESGEPPSTRNAVGGADSGPGVDRGGAGRAGVLGPSTATPECTARG
ASLEDPRGPGSPHPACHRATPRAQGPAATDAPSRPGRLAGRVQASRFIDPAGSHSSFSSPWVIT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 61-79, 98-112, 126-146, 169-182, 201-215, 248-268, 280-300, 318-337, 341-357, 375-387, 420-441

N-glycosylation site.

amino acids 40-43 and 43-46

Glycosaminoglycan attachment site.

amino acids 468-471

TAGTTCCCCAGTAGGGGGTCTCCCCTGGCAATTCTTGATCGGCGTTTGGACATCTCAGATCGCTTCCAATGAAGA TGGCCTTGCGTTGGTTCTTTCATAATCATCTAACTATGGGACAAGGTTGTGCCGGCAGCTCTGGGGG AAGGAGCACGGGGCTGATCAAGCCATCCAGGAAACACTGGAGGACTTGTCCAGCCTTGAAAGAACTCTAGTGGTT $\overline{\mathtt{CTACTTATTCTTTTAGGGGATTGTCAG}}\overline{\mathtt{GAGGTGACCACTCTCACGGTGAAATACCAAGTGTCAGAGGAAGTGCC}}$ ATCTGGTACAGTGATCGGGAAGCTGTCCCAGGAACTGGGCCGGGAGGAGAGGCGGAGGCAAGCTGGGGCCGCCTT GGCTCTGATCCATGTGGAGATCCAAGTGCTGGACATCAATGACCACCAGCCACGGTTTCCCAAAGGCGAGCAGGA GCTGGAAATCTCTGAGAGCGCCTCTCTGCGAACCCGGATCCCCCTGGACAGAGCTCTTGACCCAGACACAGGCCC TAACACCCTGCACACCTACACTCTGTCTCCCAGTGAGCACTTTGCCTTGGATGTCATTGTGGGCCCTGATGAGAC CTATGACAATGGGAACCCCCCCAAGTCAGGTACCAGCTTGGTCAAGGTCAACGTCTTGGACTCCAATGACAATAG CCCTGCGTTTGCTGAGAGTTCACTGGCACTGGAAATCCAAGAAGATGCTGCACCTGGTACGCTTCTCATAAAACT GACCGCCACAGACCCTGACCAAGGCCCCAATGGGGAGGTGGAGTTCTTCCTCAGTAAGCACATGCCTCCAGAGGT GCTGGACACCTTCAGTATTGATGCCAAGACAGGCCAGGTCATTCTGCGTCGACCTCTAGACTATGAAAAGAACCC TGCCTACGAGGTGGATGTTCAGGCAAGGGACCTGGGTCCCAATCCTATCCCAGCCCATTGCAAAGTTCTCATCAA GGTTCTGGATGTCAATGACAACATCCCAAGCATCCACGTCACATGGGCCTCCCAGCCATCACTGGTGTCAGAAGC TCTTCCCAAGGACAGTTTTATTGCTCTTGTCATGGCAGATGACTTGGATTCAGGACACAATGGTTTGGTCCACTG CACACTGGACAGAGAGCAGTGGCCCAAATATACCCTCACTCTGTTAGCCCAAGACCAAGGACTCCAGCCCTTATC AGCCAAGAAACAGCTCAGCATTCAGATCAGTGACATCAACGACAATGCACCTGTGTTTGAGAAAAGCAGGTATGA AGTCTCCACGCGGGAAAACAACTTACCCTCTCTCACCTCATTACCATCAAGGCTCATGATGCAGACTTGGGCAT TAATGGAAAAGTCTCATACCGCATCCAGGACTCCCCAGTTGCTCACTTAGTAGCTATTGACTCCAACACAGGAGA GGTCACTGCTCAGAGGTCACTGAACTATGAAGAGATGGCCGGCTTTGAGTTCCAGGTGATCGCAGAGGACAGCGG GCAACCCATGCTTGCATCCAGTGTCTCTGTGTGGGTCAGCCTCTTGGATGCCAATGATAATGCCCCAGAGGTGGT CATCGAGACTCCCAATGGCTTGGGCCCAGCGGGCACTGACACCCTCCACTGGCCACTCACAGCTCCCGGCCATT CCTTTTGACAACCATTGTGGCAAGAGATGCAGACTCGGGGGCAAATGGAGAGCCCCTCTACAGCATCCGCAATGG ${\tt AAATGAAGCCCACCTCTTCATCCTCAACCCTCATACGGGGCAGCTGTTCGTCAATGTCACCAATGCCAGCAGCCT}$ $\hbox{\tt CATTGGGAGTGAGTGGAGATAGTAGTAGAGGACCAGGGAAGCCCCCCTTACAGACCCGAGCCCTGTT}$ GAGGGTCATGTTTGTCACCAGTGTGGACCACCTGAGGGGACTCAGCCGCAAGCCTGGGGCCTTGAGCATGTCGAT GCTGACGGTGATCTGCCTGGCTGTACTGTTGGGCATCTTCGGGTTGATCCTGGCTTTGTTCATGTCCATCTGCCG GACAGAAAAGAAGGACAACAGGGCCTACAACTGTCGGGAGGCCGAGTCCACCTACCGCCAGCAGCCCAAGAGGCC ${\tt CCACCTCACCCGACCCTGTACAGGACGCTGCGTAATCAAGGCAACCAGGGAGCACCGGGGAGAGCCGAGAGGT}$ GCTGCAAGACACGGTCAACCTCCTTTTCAACCATCCCAGGCAGAGGAATGCCTCCCGGGGAGAACCTGAACCTTCC TGGAGACCAGGGCAGTGAGGAAGCCCCACAGAGGCCACCAGCCTCCTCTGCAACCCTGAGACGGCAGCGACATCT TGCCTTCGCCGAGCGGAACCCCGTGGAGGAGCTCACTGTGGATTCTCCTCCTGTTCAGCAAATCTCCCAGCTGCT AGGGCCTTTGGATCCTGAAGAGGACCTCTCTGTGAAGCAACTGCTAGAAGAAGAGCTGTCAAGTCTGCTGGACCC CAGCACAGGTCTGGCCCTGGACCGGCTGAGCGCCCTGACCCGGCCTGGATGGCGAGACTCTCTTTGCCCCTCAC CACCAACTACCGTGACAATGTGATCTCCCCGGATGCTGCAGCCACGGAGGAGCCGAGGACCTTCCAGACGTTCGG ${\tt CAAGGCAGAGCCAGAGCTGAGCCCAACAGGCACGAGGCTGGCCAGCACCTTTGTCTCGGAGATGAGCTCACT}$ GCTGGAGATGCTGCTGGAACAGCGCTCCAGCATGCCCGTGGAGGCCGCCTCCGAGGCGCTGCGGCGCTCTCGGT CTGCGGGAGGACCCTCAGTTTAGACTTGGCCACCAGTGCAGCCTCAGGCATGAAAGTGCAAGGGGACCCAGGTGG ${ t AAAGACGGGGACTGAGGGCAAGAGCAGCAGCAGCAGCAGCAGGTGCCTG}{ t TGA}{ t ACATACCTCAGACGCCT}$ CGGCGGCCTGAGAACTTTAGGGTGACTGATGCTACCCCCACAGAGGGGGCAAGAGCCCCCAGGACTAACAGCTGAC TGACCAAAGCAGCCCCTTGTAAGCAGCTCTGAGTCTTTTGGAGGACAGGGACGGTTTGTGGCTGAGATAAGTGTT ${\tt AAAGGGTGGCCTTCTTGGGTAGCAGGAGTCAGGGGGGGTGCCTGGGGGTGCCAGGAAATGCTCTCTGACCTAT}$ CAATAAAGGAAAAGCAGTAAAAAAAAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48331</pre>

<subunit 1 of 1, 1184 aa, 1 stop

<MW: 129022, pI: 5.20, NX(S/T): 5

MMQLLQLLLGLLGPGGYLFLLGDCQEVTTLTVKYQVSEEVPSGTVIGKLSOELGREERRROA GAAFQVLQLPQALPIQVDSEEGLLSTGRRLDREQLCRQWDPCLVSFDVLATGDLALIHVEIQ VLDINDHQPRFPKGEQELEISESASLRTRIPLDRALDPDTGPNTLHTYTLSPSEHFALDVIV GPDETKHAELIVVKELDREIHSFFDLVLTAYDNGNPPKSGTSLVKVNVLDSNDNSPAFAESS LALEIQEDAAPGTLLIKLTATDPDQGPNGEVEFFLSKHMPPEVLDTFSIDAKTGQVILRRPL DYEKNPAYEVDVQARDLGPNPIPAHCKVLIKVLDVNDNIPSIHVTWASQPSLVSEALPKDSF IALVMADDLDSGHNGLVHCWLSQELGHFRLKRTNGNTYMLLTNATLDREQWPKYTLTLLAQD QGLQPLSAKKQLSIQISDINDNAPVFEKSRYEVSTRENNLPSLHLITIKAHDADLGINGKVS YRIQDSPVAHLVAIDSNTGEVTAQRSLNYEEMAGFEFQVIAEDSGOPMLASSVSVWVSLLDA NDNAPEVVQPVLSDGKASLSVLVNASTGHLLVPIETPNGLGPAGTDTPPLATHSSRPFLLTT IVARDADSGANGEPLYSIRNGNEAHLFILNPHTGOLFVNVTNASSLIGSEWELEIVVEDOGS PPLQTRALLRVMFVTSVDHLRDSARKPGALSMSMLTVICLAVLLGIFGLILALFMSICRTEK KDNRAYNCREAESTYRQQPKRPQKHIQKADIHLVPVLRGQAGEPCEVGQSHKDVDKEAMMEA GWDPCLQAPFHLTPTLYRTLRNQGNQGAPAESREVLQDTVNLLFNHPRQRNASRENLNLPEP QPATGQPRSRPLKVAGSPTGRLAGDQGSEEAPQRPPASSATLRRQRHLNGKVSPEKESGPRQ ILRSLVRLSVAAFAERNPVEELTVDSPPVQQISQLLSLLHQGQFQPKPNHRGNKYLAKPGGS RSAIPDTDGPSARAGGQTDPEQEEGPLDPEEDLSVKQLLEEELSSLLDPSTGLALDRLSAPD PAWMARLSLPLTTNYRDNVISPDAAATEEPRTFQTFGKAEAPELSPTGTRLASTFVSEMSSL LEMLLEQRSSMPVEAASEALRRLSVCGRTLSLDLATSAASGMKVQGDPGGKTGTEGKSRGSS SSSRCL

Important features:

Signal peptide:

amino acids 1-13

Transmembrane domain:

amino acids 719-739

N-glycosylation site.

amino acids 415-418, 582-585, 659-662, 662-665 amd 857-860

Cadherins extracellular repeated domain signature.

amino acids 123-133, 232-242, 340-350, 448-458 and 553-563

CGGACGCGTGGGCGACGCGTGGGGGAGAGCCGCAGTCCCGGCTGCAGCACCTGGGAGAAGG CAGACCGTGTGAGGGGGCCTGTGGCCCAGCGTGTGGCCTCGGGGAGTGGGAAGTGGAG GCAGGAGCCTTCCTTACACTTCGCCATGAGTTTCCTCATCGACTCCAGCATCATGATTACCT CCCAGATACTATTTTTGGATTTGGGTGGCTTTTCTTCATGCGCCAATTGTTTAAAGACTAT GAGATACGTCAGTATGTTGTACAGGTGATCTTCTCCGTGACGTTTGCATTTTCTTGCACCAT GTTTGAGCTCATCATCTTTGAAATCTTAGGAGTATTGAATAGCAGCTCCCGTTATTTTCACT GGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTTTCATGGTGCCTTTTTACATTGGC TATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTTTTCCTGTCTCTT ATGGCTGACCTTTATGTATTTCTTCTGGAAACTAGGAGATCCCTTTCCCATTCTCAGCCCAA AACATGGGATCTTATCCATAGAACAGCTCATCAGCCGGGTTGGTGTGATTGGAGTGACTCTC ATGGCTCTTCTTTCTGGATTTGGTGCTGTCAACTGCCCATACACTTACATGTCTTACTTCCT CAGGAATGTGACTGACACGGATATTCTAGCCCTGGAACGGCGACTGCTGCAAACCATGGATA TGATCATAAGCAAAAAGAAAAGGATGGCAATGGCACGGAGAACAATGTTCCAGAAGGGGGAA GTGCATAACAAACCATCAGGTTTCTGGGGAATGATAAAAAGTGTTACCACTTCAGCATCAGG TTTTTCTGGAAACAGCTGATCTATATGCTACCAAGGAGAGAATAGAATACTCCAAAACCTTC AAGGGGAAATATTTTAATTTTCTTGGTTACTTTTTCTCTATTTACTGTGTTTTGGAAAATTTT CATGGCTACCATCAATATTGTTTTTGATCGAGTTGGGAAAACGGATCCTGTCACAAGAGGCA TTGAGATCACTGTGAATTATCTGGGGAATCCAATTTGATGTGAAGTTTTGGTCCCAACACATT TCCTTCATTCTTGGGAATAATCATCGTCACATCCATCAGAGGATTGCTGATCACTCTTAC CAAGTTCTTTTATGCCATCTCTAGCAGTAAGTCCTCCAATGTCATTGTCCTGCTATTAGCAC AGATAATGGGCATGTACTTTGTCTCCTCTGTGCTGCTGATCCGAATGAGTATGCCTTTAGAA TACCGCACCATAATCACTGAAGTCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTT TGATGTGATCTTCCTGGTCAGCGCTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAAC ${f AGGCACCAGAGAAGCAAATGGCACCT}{f TGAACTTAAGCCTACTACAGACTGTTAGAGGCCAGT}$ GGTTTCAAAATTTAGATATAAGAGGGGGGAAAAATGGAACCAGGGCCTGACATTTTATAAAC AAACAAAATGCTATGGTAGCATTTTTCACCTTCATAGCATACTCCTTCCCCGTCAGGTGATA GCAGAGAGCATCCCGTGTGGATATGAGGCTGGTGTAGAGGCGGAGAGGAGCCAAGAAACTAA AGGTGAAAAATACACTGGAACTCTGGGGCAAGACATGTCTATGGTAGCTGAGCCAAACACGT AGGATTTCCGTTTTAAGGTTCACATGGAAAAGGTTATAGCTTTGCCTTGAGATTGACTCATT ACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEI
LGVLNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFF
WKLGDPFPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDI
LALERRLLQTMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQ
QEVDALEELSRQLFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVF
DRVGKTDPVTRGIEITVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISS
SKSSNVIVLLLAQIMGMYFVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSA
LSSILFLYLAHKQAPEKQMAP

Important features: _

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

CATGGGAAGTGGAGCCGGAGCCTTCCTTACACTCGCCATGAGTTTCCTCATCGACTCCAGCA
TCATGATTACCTCCCNGANACTATTTTTTGGATTTGGGTGGCTTTTCTTCNGCGCCAATGTT
TAAAGACTATGAGATACGTCAGTATGTTGTACNGGTGATCTTCTCCGTGACGTTTGCCATTT
CTTGCACCATGTTTGAGCTCATCATCTTTGAAATCTTNGGAGTATTGAATAGCAGCTCCCGT
TATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTNTCATGGTGCCTTT
TTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTTTT
CCTGTCTCTTATGGCTGACCTTTATGTATTTCCAG

TOUTSOEL INDI

FIGURE 175

GTGTTGCCCTTGGGGAGGGAAGGGGAGCCNGGCCCTTTCCTAAAATTTGGCCAAGGGTTTC
TTTNTTGAATTCCGGGTTNNGNATACCTTCCCAGAAAATATTTTTTTGGATTTGGGGTAGNTT
TTTTTCATGCGCCAATTGTTTAAAGACTATGAGATACGTCAGTATGTTGTACAGGTGATNTT
NTCCGTGACGTTTGCATTTTCTTGCACCATGTTTGAGCTCATCATNTTTGAAATNTTAGGAG
TATTGAATAGCAGCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATC
CTGGTTTTCATGGTGCCTTTTTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCA
TAAACAACGACTGCTTTTTTCCTGTCTNTTATGGCTGACCTTTATGTATTTNTTNTGGAAAN
TAGGAGATCCCTTTCCCATTCTC

 $\tt CTCGCGCAGGGATCGTCCC\underline{ATG}GCCGGGGCTCGGAGCCGCGACCCTTGGGGGGCCTCCGGGATTTGCTACCTTTT$ ${\tt TGGCTCCTGGTCGAACTGCTCTTCTCACGGGCTGTCGCCTTCAATCTGGACGTGATGGGTGCCTTGCGCAA}$ GGAGGGCGAGCCAGGCAGCCTCTTCGGCTTCTCTGTGGCCCTGCACCGGCAGTTGCAGCCCCGACCCCAGAGCTG GCTGCTGGTGGGTGCTCCCCAGGCCCTGGCTCTTCCTGGGCAGCAGCGAATCGCACTGGAGGCCTCTTCGCTTG CCCGTTGAGCCTGGAGGAGACTGACTGCTACAGAGTGGACATCGACCAGGGAGCTGATATGCAAAAGGAAAGCAA GGAGAACCAGTGGTTGGGAGTCAGTGTTCGGAGCCAGGGGCCTGGGGGCAAGATTGTTACCTGTGCACACCGATA ${\tt TGAGGCAAGGCAGGTGGACCAGATCCTGGAGACGCGGGATATGATTGGTCGCTGCTTTGTGCTCAGCCAGGA}$ ${\tt CCTGGCCATCCGGGATGAGTTGGATGGGGAATGGAAGTTCTGTGAGGGGACGCCCCCAAGGCCATGAACAATT}$ TGGGTTCTGCCAGCAGGGCACAGCTGCCGCCTTCTCCCCTGATAGCCACTACCTCCTCTTTGGGGCCCCAGGAAC TCCCTACGAGGCGGGGGGAGAAGGAGCAGGACCCCCGCCTCATCCCGGTCCCTGCCAACAGCTACTTTGGCTT CTCTATTGACTCGGGGAAAGGTCTGGTGCGTGCAGAAGAGCTGAGCTTTGTGGCTGGAGCCCCCCGCGCCAACCA CAAGGGTGCTGTGGTCATCCTGCGCAAGGACAGCGCCAGTCGCCTGGTGCCCGAGGTTATGCTGTCTGGGGAGCG TGCCCCCTACTTCTTTGAGCGCCAAGAAGAGCTGGGGGGTGCTGTGTATGTGTACTTGAACCAGGGGGGTCACTG GGCTGGGATCTCCCCTCTCCGGCTCTGCGGCTCCCCTGACTCCATGTTCGGGATCAGCCTGGCTGTCCTGGGGGGA ${\tt CCTCAACCAAGATGGCTTTCCAGATATTGCAGTGGGTGCCCCCTTTGATGGTGATGGGAAAGTCTTCATCTACCA}$ TGGGAGCAGCCTGGGGGTTGTCGCCAAACCTTCACAGGTGCTGGAGGGCGAGGCTGTGGGCATCAAGAGCTTCGG ${\tt CGCAGTGCTCTTCAGGGCCAGACCCATCCTCCATGTCTCCCATGAGGTCTCTATTGCTCCACGAAGCATCGACCT}$ $\tt GGAGCAGCCCAACTGTGCGGCCGACTCGGTCTGTGTGGACCTAAGGGTCTGTTTCAGCTACATTGCAGTCCC$ ${\tt CAGCAGCTATAGCCCTACTGTGGCCCTGGACTATGTGTTAGATGCGGACACAGACCGGAGGCTCCGGGGCCAGGT}$ TCCCCGTGTGACGTTCCTGAGCCGTAACCTGGAAGAACCCAAGCACCAGGCCTCGGGCACCGTGTGGCTGAAGCA ${\tt CCAGCATGACCGAGTCTGTGGAGACGCCATGTTCCAGCTCCAGGAAAATGTCAAAGACAAGCTTCGGGCCATTGT}$ ${\tt AGTGACCTTGTCCTACAGTCTCCAGACCCCTCGGCTCCGGCGACAGGCTCCTGGCCAGGGGGCTGCCTCCAGTGGC}$ $\tt CCCCATCCTCAATGCCCACCCAGCCCCAGCCCCAGCGGGCAGAGATCCACTTCCTGAAGCAAGGCTGTGGTGAAGA$ ${\tt CAAGATCTGCCAGAGCAATCTGCAGCTGGTCCACGCCCGCTTCTGTACCCGGGTCAGCGACACGGAATTCCAACC}$ ${\tt TCTGCCCATGGATGGATGGAACAACAGCCCTGTTTGCACTGAGTGGGCAGCCAGTCATTGGCCTGGAGCTGAT}$ GGTCACCAACCTGCCATCGGACCCAGCCCAGCCCCAGGCTGATGGGGGATGATGCCCATGAAGCCCAGCTCCTGGT ${\tt CATGCTTCCTGACTCACTGCACTACTCAGGGGTCCGGGCCCTGGGACCCTGCGGAGAAGCCACTCTGCCTGTCCAA}$ TGAGAATGCCTCCCATGTTGAGTGTGAGCTGGGGAACCCCATGAAGAGAGGTGCCCAGGTCACCTTCTACCTCAT CCTTAGCACCTCCGGGATCAGCATTGAGACCACGGAACTGGAGGTAGAGCTGCTGTTGGCCACGATCAGTGAGCA GGAGCTGCATCCAGTCTCTGCACGAGCCCGTGTCTTCATTGAGCTGCCACTGTCCATTGCAGGAATGGCCATTCC CAAGTATGAGGTCACGGTTTCCAACCAAGGCCAGTCGCTCAGAACCCTGGGCTCTGCCTTCCTCAACATCATGTG GCAGAAAGGGCTTTGCTCTCCCAGGCCCAACATCCTCCACCTGGATGTGGACAGTAGGGATAGGAGGCGGCGGGA GCTGGAGCCACCTGAGCAGCAGGAGCCTGGTGAGCGGCAGGAGCCCAGCATGTCCTGGTGGCCAGTGTCCTCTGC TGAGAAGAAGAAAAACATCACCCTGGACTGCGCCCGGGGCACGGCCAACTGTGTGGTGTTCAGCTGCCCACTCTA ${\tt CAGCTTTGACCGCGGCTGTGCTGCATGTCTGGGGCCGTCTCTGGAACAGCACCTTTCTGGAGGAGTACTCAGC}$ TGTGAAGTCCCTGGAAGTGATTGTCCGGGCCAACATCACAGTGAAGTCCTCCATAAAGAACTTGATGCTCCGAGA TGCCTCCACAGTGATCCCAGTGATGGTATACTTGGACCCCATGGCTGTGGTGGCAGAAGGAGTGCCCTGGTGGGT ${\tt CATCCTGGCTGTACTGGCTGGCTGCTGGTGCTAGCACTGCTGGTGCTGCTGTGGAAGATGGGATTCTT}$ CAAACGGGCGAAGCACCCGAGGCCACCGTGCCCCAGTACCATGCGGTGAAGATTCCTCGGGAAGACCGACAGCA GTTCAAGGAGGAGAAGACGGCACCATCCTGAGGAACAACTGGGGCAGCCCCCGGCGGGAGGGCCCGGATGCACA ${\tt CCCCATCCTGGCTGACGGGCATCCCGAGCTGGGCCCCGATGGGCATCCAGGGCCAGGCACCGCC{\tt TAGGTTCC}}$ ${\tt CATGTCCCAGCCTGGCCTGTGCCCTCCATCCCTTCCCCAGAGATGGCTCCTTGGGATGAAGAGGGTAGAGT}$ TCCTCCCACCCAACTTCCCCTTAGAGTGCTGTGAGATGAGAGTGGGTAAATCAGGGACAGGGCCATGGGGTAGGG ${\tt TGAGAAGGGCAGGGGTGTCCTGATGCAAAGGTGGGGAGAAGGGATCCTAATCCCTTCCTCTCCCATTCACCCTGT}$ GTAACAGGACCCCAAGGACCTGCCTCCCGGAAGTGCCTTAACCTAGAGGGTCGGGGAGGAGGTTGTGTCACTGA ${ t CTCAGGCTGCTCCTTCTCTAGTTTCCCCTCTCATCTGACCTTAGTTTGCTGCCATCAGTCTAGTGGTTTCGTGGT$

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA55737</pre>

><subunit 1 of 1, 1141 aa, 1 stop

><MW: 124671, pI: 5.82, NX(S/T): 5

 ${\tt MAGARSRDPWGASGICYLFGSLLVELLFSRAVAFNLDVMGALRKEGEPGSLFGFSVALHRQL}$ QPRPQSWLLVGAPQALALPGQQANRTGGLFACPLSLEETDCYRVDIDQGADMOKESKENOWL GVSVRSQGPGGKIVTCAHRYEARQRVDQILETRDMIGRCFVLSQDLAIRDELDGGEWKFCEG RPQGHEQFGFCQQGTAAAFSPDSHYLLFGAPGTYNWKGTARVELCAQGSADLAHLDDGPYEA GGEKEQDPRLIPVPANSYFGFSIDSGKGLVRAEELSFVAGAPRANHKGAVVILRKDSASRLV PEVMLSGERLTSGFGYSLAVADLNSDGWPDLIVGAPYFFERQEELGGAVYVYLNQGGHWAGI ${\tt SPLRLCGSPDSMFGISLAVLGDLNQDGFPDIAVGAPFDGDGKVFIYHGSSLGVVAKPSQVLE}$ GEAVGIKSFGYSLSGSLDMDGNQYPDLLVGSLADTAVLFRARPILHVSHEVSIAPRSIDLEQ PNCAGGHSVCVDLRVCFSYIAVPSSYSPTVALDYVLDADTDRRLRGQVPRVTFLSRNLEEPK HQASGTVWLKHQHDRVCGDAMFQLQENVKDKLRAIVVTLSYSLQTPRLRRQAPGQGLPPVAP ILNAHQPSTQRAEIHFLKQGCGEDKICQSNLQLVHARFCTRVSDTEFQPLPMDVDGTTALFA $\verb|LSGQPVIGLELMVTNLPSDPAQPQADGDDAHEAQLLVMLPDSLHYSGVRALDPAEKPLCLSN|$ ENASHVECELGNPMKRGAQVTFYLILSTSGISIETTELEVELLLATISEQELHPVSARARVF IELPLSIAGMAIPQQLFFSGVVRGERAMQSERDVGSKVKYEVTVSNQGQSLRTLGSAFLNIM WPHEIANGKWLLYPMQVELEGGQGPGQKGLCSPRPNILHLDVDSRDRRRRELEPPEQQEPGE RQEPSMSWWPVSSAEKKKNITLDCARGTANCVVFSCPLYSFDRAAVLHVWGRLWNSTFLEEY SAVKSLEVIVRANITVKSSIKNLMLRDASTVIPVMVYLDPMAVVAEGVPWWVILLAVLAGLL VLALLVLLLWKMGFFKRAKHPEATVPQYHAVKIPREDRQQFKEEKTGTILRNNWGSPRREGP DAHPILAADGHPELGPDGHPGPGTA

Important features:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 1040-1062

N-glycosylation sites.

amino acids 86-89, 746-749, 949-952, 985-988 and 1005-1008

Integrins alpha chain proteins.

amino acids 1064-1071, 384-408, 1041-1071, 317-346, 443-465, 385-407, 215-224, 634-647, 85-99, 322-346, 470-479, 442-466, 379-408 and 1031-1047

AAGCAGCGAGTTGGCAGAGCAGGGCTGCATTTCCAGCAGGAGCTGCGAGCACAGTGCTGGCT TGGATGATAAACAATGGCTCACCACAATCTCTCAGTATGACAAGGAAGTCGGACAGTGGAAC AAATTCCGAGACGAAGTAGAGGATGATTATTTCCGCACTTGGAGTCCAGGAAAACCCTTCGA TCAGGCTTTAGATCCAGCTAAGGATCCATGCTTAAAGATGAAATGTAGTCGCCATAAAGTAT GCATTGCTCAAGATTCTCAGACTGCAGTCTGCATTAGTCACCGGAGGCTTACACACAGGATG AAAGAAGCAGGAGTAGACCATAGGCAGTGGAGGGGTCCCATATTATCCACCTGCAAGCAGTG CCCAGTGGTCTATCCCAGCCCTGTTTGTGGTTCAGATGGTCATACCTACTCTTTTCAGTGCA AACTAGAATATCAGGCATGTGTCTTAGGAAAACAGATCTCAGTCAAATGTGAAGGACATTGC CCATGTCCTTCAGATAAGCCCACCAGTACAAGCAGAAATGTTAAGAGAGCATGCAGTGACCT GGAGTTCAGGGAAGTGGCAAACAGATTGCGGGACTGGTTCAAGGCCCTTCATGAAAGTGGAA GTCAAAACAAGAAGACAAAAACATTGCTGAGGCCTGAGAGAAGCAGATTCGATACCAGCATC TTGCCAATTTGCAAGGACTCACTTGGCTGGATGTTTAACAGACTTGATACAAACTATGACCT GCTATTGGACCAGTCAGAGCTCAGAAGCATTTACCTTGATAAGAATGAACAGTGTACCAAGG CATTCTTCAATTCTTGTGACACATACAAGGACAGTTTAATATCTAATAATGAGTGGTGCTAC TGCTTCCAGAGACAGCAAGACCCACCTTGCCAGACTGAGCTCAGCAATATTCAGAAGCGGCA AGGGGTAAAGAAGCTCCTAGGACAGTATATCCCCCTGTGTGATGAAGATGGTTACTACAAGC CAACACAATGTCATGGCAGTGTTGGACAGTGCTGGTGTTGACAGATATGGAAATGAAGTC ATGGGATCCAGAATAAATGGTGTTGCAGATTGTGCTATAGATTTTGAGATCTCCGGAGATTT TGCTAGTGGCGATTTTCATGAATGGACTGATGATGAGGATGATGAAGACGATATTATGAATG CATGATGTATACATT<u>TGA</u>TTGATGACAGTTGAAATCAATAAATTCTACATTTCTAATATTTA CAAAAATGATAGCCTATTTAAAATTATCTTCTTCCCCAATAACAAAATGATTCTAAACCTCA CATATATTTTGTATAATTTGAAAAATTGCAGCTAAAGTTATAGAACTTTATGTTTAAAT AAGAATCATTTGCTTTGAGTTTTTATATTCCTTACACAAAAAGAAAATACATATGCAGTCTA GTCAGACAAATAAAGTTTTGAAGTGCTACTATAATAAATTTTTCACGAGAACAAACTTTGT AAATCTTCCATAAGCAAAATGACAGCTAGTGCTTGGGATCGTACATGTTAATTTTTTGAAAG ATAATTCTAAGTGAAATTTAAAATAAATTATTTTAATGACCTGGGTCTTAAGGATTTAGG AAAAATATGCATGCTTTAATTGCATTTCCAAAGTAGCATCTTGCTAGACCTAGATGAGTCAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49829</pre>

><subunit 1 of 1, 436 aa, 1 stop

><MW: 49429, pI: 4.80, NX(S/T): 0

MLKVSAVLCVCAAAWCSQSLAAAAAVAAAGGRSDGGNFLDDKQWLTTISQYDKEVGQWNKFR
DEVEDDYFRTWSPGKPFDQALDPAKDPCLKMKCSRHKVCIAQDSQTAVCISHRRLTHRMKEA
GVDHRQWRGPILSTCKQCPVVYPSPVCGSDGHTYSFQCKLEYQACVLGKQISVKCEGHCPCP
SDKPTSTSRNVKRACSDLEFREVANRLRDWFKALHESGSQNKKTKTLLRPERSRFDTSILPI
CKDSLGWMFNRLDTNYDLLLDQSELRSIYLDKNEQCTKAFFNSCDTYKDSLISNNEWCYCFQ
RQQDPPCQTELSNIQKRQGVKKLLGQYIPLCDEDGYYKPTQCHGSVGQCWCVDRYGNEVMGS
RINGVADCAIDFEISGDFASGDFHEWTDDEDDEDDIMNDEDEIEDDDEDEGDDDDGGDDHDVYI

Important features:
Signal peptide:

amino acids 1-16

Leucine zipper pattern. amino acids 246-267

N-myristoylation sites.
amino acids 357-362, 371-376 and 376-381

Thyroglobulin type-1 repeat proteins amino acids 353-365 and 339-352

 $\tt CTCTTTCAGCCCGGGATCGCCCCAGCAGGGATCGGCGACAAGATCTGGCTGCCCTTCCCGTGCTCCTTCTGGCC$ GCTCTGCCTCCGGTGCTGCCTGGGGCGGCCGGCTTCACACCTTCCCTCGATAGCGACTTCACCTTTACCCTT CCCGCCGGCCAGAAGGAGTGCTTCTACCAGCCCATGCCCCTGAAGGCCTCGCTGGAGATCGAGTACCAAGTTTTA GATGGAGCAGGATTAGATATTGATTTCCATCTTGCCTCTCCAGAAGGCAAAACCTTAGTTTTTGAACAAAGAAAA TCAGATGGAGTTCACACTGTAGAGACTGAAGTTGGTGATTACATGTTCTGCTTTGACAATACATTCAGCACCATT TCTGAGAAGGTGATTTTCTTTGAATTAATCCTGGATAATATGGGAGAACAGGCACAAGAACAAGAAGATTGGAAG AAATATATTACTGGCACAGATATATTGGATATGAAACTGGAAGACATCCTGGAATCCATCAACAGCATCAAGTCC AGACTAAGCAAAAGTGGGCACATACAAATTCTGCTTAGAGCATTTGAAGCTCGTGATCGAAACATACAAGAAAGC AACTTTGATAGAGTCAATTTCTGGTCTATGGTTAATTTAGTGGTCATGGTGGTGGTGTCAGCCATTCAAGTTTAT ATGCTGAAGAGTCTGTTTGAAGATAAGAGGAAAAGTAGAACT<u>TAA</u>AACTCCAAACTAGAGTACGTAACATTGAAA AATGAGGCATAAAAATGCAATAAACTGTTACAGTCAAGACCATTAATGGTCTTCTCCAAAATATTTTGAGATATA AAAGTAGGAAACAGGTATAATTTTAATGTGAAAATTAAGTCTTCACTTTCTGTGCAAGTAATCCTGCTGATCCAG AGTCTGTTTTTAACAGGTTCTATTACCCAGAACTTTTTTGTAAATGCGGCAGTTACAAATTAACTGTGGAAGTTT CTTTTCTCTATTTACATATGCATCTCCTCTATAATGTAAATAGAATAATAGCTTTGAAATACAATTAGGTTTTTG AGATTTTTATAACCAAATACATTTCAGTGTAACATATTAGCAGAAAGCATTAGTCTTTGTACTTTGCTTACATTC CCAAAAGCTGACATTTTCACGATTCTTAAAAACACAAAGTTACACTTACTAAAAATTAGGACATGTTTTCTCTTTG AAATGAAGAATATAGTTTAAAAGCTTCCTCCTCCATAGGGACACATTTTCTCTAACCCTTAACTAAAGTGTAGGA TTTTAAAATTAAATGTGAGGTAAAATAAGTTTATTTTTAATAGTATCTGTCAAGTTAATATCTGTCAACAGTTAA TÄATCATGTTATGTTAACTTTAACATGATTGCTGACTTGGATAATTCATTATTACCAGCAGTTATGAAGGAAATA TTGCTAAAATGATCTGGGCCTACCATAAATAAATATCTCCTTTTCTGAGCTCTAAGAATTATCAGAAAACAGGAA AAACTTTGGCTGTAGGTTTTTATTTTCTACAAGAATTCTGGTTTGAATTATTTTTTGTAAGCAGGTACATTTTATA TAAAATGGCCTTTCTGAACACTTTATTTATTGATGTTGAAGTAAGGATTAGAAACATAGACTCCCCAAGTTTTAAA CACCTAAATGTGAATAACCCATATATACAACAAAGTTTCTGCCATCTAGCTTTTTGAAGTCTATGGGGGTCTTAC TCAAGTACTAGTAATTTAACTTCATCATGAATGAACTATAATTTTTAAGTTATGCCCATTTATAACGTTGTTTAT GACTACATTGTGAGTTAGAAACAAACTTAAAATTTGGGGTATAGAACCCCTCAACAGGTTAGTAATGCTGGAATT $\tt CTTGATGAGCAATAATGATAACCAGAGAGTGATTTCATTTACACTCATAGTAGTAGTAAAAAAGAGATACATTTCCC$ TCTTAGGCCCCTGGGAGAAGAGCAGCTTAGATTTCCCTACTGGCAAGGTTTTTAAAAATGAGGTAAATGCCGTAT ATGATCAATTACCTTAATTGGCCAAGAAAATGCTTCAGGTGTCTAGGGGTATCCTCTGCAACACTTGCAGAACAA AGGTCAATAAGATCCTTGCCTATGAATACCCCTCCCTTTTGCGCTGTTAAATTTGCAATGAGAAGCAAATTTACA GTACCATAACTAATAAAGCAGGGTACAGATATAAACTACTGCATCTTTTCTATAAAACTGTGATTAAGAATTCTA CCTCTCTGTATGGCTGTTACTGTACTGTACTCTCTGACTCCTTACCTAACAATGAATTTGTTACATAATCTTCT ACATGTATGATTTGTGCCACTGATCTTAAACCTATGATTCAGTAACTTCTTACCATATAAAAACGATAATTGCTT TATTTGGAAAAGAATTTAGGAATACTAAGGACAATTATTTTTATAGACAAAGTAAAAAGACAGATATTTAAGAGG CATAACCAAAAAAGCAAAACTTGTAAACAGAGTAAAAATCTTTAATATTTCTAAAGACATACTGTTTATCTGCTT CATATGCTTTTTTTAATTTCACTATTCCATTTCTAAATTAAAGTTATGCTAAATTGAGTAAGCTGTTTATCACTT AACAGCTCATTTTGTCTTTTTCAATATACAAATTTTTAAAAATACTACAATATTTAACTAAGGCCCAACCGATTTC CATAATGTAGCAGTTACCGTGTTCACCTCACACTAAGGCCTAGAGTTTGCTCTGATATGCATTTGGATGATTAAT GTTATGCTGTTCTTTCATGTGAATGTCAAGACATGGAGGGTGTTTGTAATTTTATGGTAAAATTAATCCTTCTTA CACATAATGGTGTCTTAAAATTGACAAAAAATGAGCACTTACAATTGTATGTCTCCTCAAATGAAGATTCTTTAT GTGAAATTTTAAAAGACATTGATTCCGCATGTAAGGATTTTTCATCTGAAGTACAATAATGCACAATCAGTGTTG CTCAAACTGCTTTATACTTATAAACAGCCATCTTAAATAAGCAACGTATTGTGAGTACTGATATGTATATAATAA AAATTATCAAAGGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52196</pre>

><subunit 1 of 1, 229 aa, 1 stop

><MW: 26017, pI: 4.73, NX(S/T): 0

MGDKIWLPFPVLLLAALPPVLLPGAAGFTPSLDSDFTFTLPAGQKECFYQPMPLKASLEIEY QVLDGAGLDIDFHLASPEGKTLVFEQRKSDGVHTVETEVGDYMFCFDNTFSTISEKVIFFEL ILDNMGEQAQEQEDWKKYITGTDILDMKLEDILESINSIKSRLSKSGHIQILLRAFEARDRN IQESNFDRVNFWSMVNLVVMVVVSAIQVYMLKSLFEDKRKSRT

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 195-217

N-myristoylation site.

amino acids 43-48

Tyrosine kinase phosphorylation site.

amino acids 55-62

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56965</pre>

<subunit 1 of 1, 175 aa, 1 stop

<MW: 19330, pI: 7.25, NX(S/T): 1

MLPPMALPSVSWMLLSCLILLCQVQGEETQKELPSPRISCPKGSKAYGSPCYALFLSPKSWM DADLACQKRPSGKLVSVLSGAEGSFVSSLVRSISNSYSYIWIGLHDPTQGSEPDGDGWEWSS TDVMNYFAWEKNPSTILNPGHCGSLSRSTGFLKWKDYNCDAKLPYVCKFKD

Important features:

Signal peptide:

amino acids 1-26

C-type lectin domain signature.

amino acids 146-171

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56405</pre>

<subunit 1 of 1, 125 aa, 1 stop

<MW: 13115, pI: 5.90, NX(S/T): 1

MRGTRLALLALVLAACGELAPALRCYVCPEPTGVSDCVTIATCTTNETMCKTTLYSREIVYP

 ${\tt FQGDSTVTKSCASKCKPSDVDGIGQTLPVSCCNTELCNVDGAPALNSLHCGALTLLPLLSLRL}$

Important features:

Signal peptide:

amino acids 1-17

N-glycosylation site. amino acids 46-49

CTGCAGTCAGGACTCTGGGACCGCAGGGGGCTCCCGGACCCTGACTCTGCAGCCGAACCGGC ACGGTTTCGTGGGGACCCAGGCTTGCAAAGTGACGGTCATTTTCTCTTTTCTTCTCCCTCTT GAGTCCTTCTGAGATGATGGCTCTGGGCGCAGCGGGGCTACCCGGGTCTTTGTCGCGATGG TAGCGGCGGCTCTCGGCGGCCACCCTCTGCTGGGAGTGAGCGCCACCTTGAACTCGGTTCTC AATTCCAACGCTATCAAGAACCTGCCCCCACCGCTGGGCGGCGCTGCGGGGCACCCAGGCTC TGCAGTCAGCGCCGCGCGGAATCCTGTACCCGGCGGGAATAAGTACCAGACCATTGACA ACTACCAGCCGTACCCGTGCGCAGAGGACGAGGAGTGCGGCACTGATGAGTACTGCGCTAGT CTGCATGCGTCACGCTATGTGCTGCCCCGGGAATTACTGCAAAAATGGAATATGTGTGTCTT CTGATCAAAATCATTTCCGAGGAGAAATTGAGGAAACCATCACTGAAAGCTTTGGTAATGAT CATAGCACCTTGGATGGGTATTCCAGAAGAACCACCTTGTCTTCAAAAATGTATCACACCAA AGGACAAGAAGGTTCTGTTTGTCTCCGGTCATCAGACTGTGCCTCAGGATTGTGTTGTGCTA GACACTTCTGGTCCAAGATCTGTAAACCTGTCCTGAAAGAAGGTCAAGTGTGTACCAAGCAT AGGAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGTTGTTACTGTGGAGAAGGTCTGTC TTGCCGGATACAGAAAGATCACCATCAAGCCAGTAATTCTTCTAGGCTTCACACTTGTCAGA GACACTAAACCAGCTATCCAAATGCAGTGAACTCCTTTTATATAATAGATGCTATGAAAACC TTTTATGACCTTCATCAACTCAATCCTAAGGATATACAAGTTCTGTGGTTTCAGTTAAGCAT TCCAATAACACCTTCCAAAAACCTGGAGTGTAAGAGCTTTGTTTCTTTATGGAACTCCCCTG TGATTGCAGTAAATTACTGTATTGTAAATTCTCAGTGTGGCACTTACCTGTAAATGCAATGA AACTTTTAATTATTTTCTAAAGGTGCTGCACTGCCTATTTTTCCTCTTGTTATGTAAATTT TTGTACACATTGATTGTTATCTTGACTGACAAATATTCTATATTGAACTGAAGTAAATCATT TCAGCTTATAGTTCTTAAAAGCATAACCCTTTACCCCATTTAATTCTAGAGTCTAGAACGCA AGGATCTCTTGGAATGACAAATGATAGGTACCTAAAATGTAACATGAAAATACTAGCTTATT TTCTGAAATGTACTATCTTAATGCTTAAATTATATTTCCCTTTAGGCTGTGATAGTTTTTGA AATAAAATTTAACATTTAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57530
<subunit 1 of 1, 266 aa, 1 stop
<MW: 28672, pI: 8.85, NX(S/T): 1</pre>

MMALGAAGATRVFVAMVAAALGGHPLLGVSATLNSVLNSNAIKNLPPPLGGAAGHPGSAVSA APGILYPGGNKYQTIDNYQPYPCAEDEECGTDEYCASPTRGGDAGVQICLACRKRRKRCMRH AMCCPGNYCKNGICVSSDQNHFRGEIEETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEG SVCLRSSDCASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRCYCGEGLSCRIQ KDHHQASNSSRLHTCQRH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site. amino acids 256-259

Fungal Zn(2)-Cys(6) binuclear cluster domain amino acids 110-126

GAGGAACCTACCGGTACCGGCCGCGCGCTGGTAGTCGCCGGTGTGGCTGCACCTCACCAATCCCGTGCGCCGCGG GGGTTTGAGGATGGGGGAGTAGCTACAGGAAGCGACCCCGCGATGGCAAGGTATATTTTTGTGGAATGAAAAGGA AGTATTAGAAATGAGCTGAAGACCATTCACAGATTAATATTTTTTGGGGACAGATTTGTGATGCTTGATTCACCCT TGAAGTAATGTAGACAGAAGTTCTCAAATTTGCATATTACATCAACTGGAACCAGCAGTGAATCTTAATGTTCAC TTAAATCAGAACTTGCATAAGAAAGAGA<u>ATG</u>GGAGTCTGGTTAAATAAAGATGACTATATCAGAGACTTGAAAAG GATCATTCTCTGTTTTCTGATAGTGTATATGGCCATTTTAGTGGGCACAGATCAGGATTTTTACAGTTTACTTGG AGTGTCCAAAACTGCAAGCAGTAGAGAAATAAGACAAGCTTTCAAGAAATTGGCATTGAAGTTACATCCTGATAA TCTACGGAAAAAGTATGACAAATATGGAGAAAAGGGACTTGAGGATAATCAAGGTGGCCAGTATGAAAGCTGGAA $\tt CTATTATCGTTATGATTTTTGGTATTTATGATGATCCTGAAATCATAACATTGGAAAGAAGAAGAATTTGATGC$ TGCTGTTAATTCTGGAGAACTGTGGTTTGTAAATTTTTACTCCCCAGGCTGTTCACACTGCCATGATTTAGCTCC CACATGGAGAGTTTTGCTAAAGAAGTGGATGGGTTACTTCGAATTGGAGCTGTTAACTGTGGTGATGATAGAAT GCTTTGCCGAATGAAAGGAGTCAACAGCTATCCCAGTCTCTTCATTTTTCGGTCTGGAATGGCCCCAGTGAAATA TCATGGAGACAGATCAAAGGAGAGTTTAGTGAGTTTTGCAATGCAGCATGTTAGAAGTACAGTGACAGAACTTTG AGGAGGAGATTGTTTGACTTCACAGACACGACTCAGGCTTAGTGGCATGTTGTTTCTCAACTCATTGGATGCTAA AGAAATATATTTGGAAGTAATACATAATCTTCCAGATTTTGAACTACTTTCGGCAAACACACTAGAGGATCGTTT GGCTCATCATCGGTGGCTGTTATTTTTCATTTTGGAAAAAATGAAAATTCAAATGATCCTGAGCTGAAAAAACT AAAAACTCTACTTAAAAATGATCATATTCAAGTTGGCAGGTTTGACTGTTCCTCTGCACCAGACATCTGTAGTAA TCTGTATGTTTTCAGCCGTCTCTAGCAGTATTTAAAGGACAAGGAACCAAAGAATATGAAATTCATCATGGAAA GAAGATTCTATATGATATACTTGCCTTTGCCAAAGAAAGTGTGAATTCTCATGTTACCACGCTTGGACCTCAAAA TTTTCCTGCCAATGACAAGAACCATGGCTTGTTGATTTCTTTGCCCCCTGGTGTCCACCATGTCGAGCTTTACT ACCAGAGTTACGAAGAGCATCAAATCTTCTTTATGGTCAGCTTAAGTTTGGTACACTAGATTGTACAGTTCATGA GGGACTCTGTAACATGTATAACATTCAGGCTTATCCAACAACAGTGGTATTCAACCAGTCCAACATTCATGAGTA TGAAGGACATCACTCTGCTGAACAAATCTTGGAGTTCATAGAGGATCTTATGAATCCTTCAGTGGTCTCCCTTAC ACCCACCACCTTCAACGAACTAGTTACACAAAGAAAACACAACGAAGTCTGGATGGTTGATTTCTATTCTCCGTG GTGTCATCCTTGCCAAGTCTTAATGCCAGAATGGAAAAGAATGGCCCGGACATTAACTGGACTGATCAACGTGGG CAGTATAGATTGCCAACAGTATCATTCTTTTTGTGCCCAGGAAAACGTTCAAAGATACCCTGAGATAAGATTTTT TCCCCCAAAATCAAATAAAGCTTATCAGTATCACAGTTACAATGGTTGGAATAGGGATGCTTATTCCCTGAGAAT CTGGGGTCTAGGATTTTACCTCAAGTATCCACAGATCTAACACCTCAGACTTTCAGTGAAAAAGTTCTACAAGG GAAAAATCATTGGGTGATTGATTTCTATGCTCCTTGGTGTGGACCTTGCCAGAATTTTGCTCCAGAATTTGAGCT CTTGGCTAGGATGATTAAAGGAAAAGTGAAAGCTGGAAAAGTAGACTGTCAGGCTTATGCTCAGACATGCCAGAA AGCTGGGATCAGGGCCTATCCAACTGTTAAGTTTTATTTCTACGAAAGAGCAAAGAGAAATTTTCAAGAAGAGCA GATAAATACCAGAGATGCAAAAGCAATCGCTGCCTTAATAAGTGAAAAATTTGGAAACTCTCCGAAATCAAGGCAA GAGGAATAAGGATGAACTT<u>TGA</u>TAATGTTGAAGATGAAGAAAAAGTTTAAAAGAAATTCTGACAGATGACATCAG GAATTATCTACAGCACTGGTGTAAAAGAAGGGTCTGCAAACTTTTTCTGTAAAGGGCCGGTTTATAAATATTTTA GACTTTGCAGGCTATAATATATGGTTCACACATGAGAACAAGAATAGAGTCATCATGTATTCTTTGTTATTTGCT TTTAACAACCTTTAAAAAATATTAAAACGATTCTTAGCTCAGAGCCATACAAAAGTAGGCTGGATTCAGTCCATG ATCTACATAAATGTCTAAGTTGTATAAAGTCCACTTTCCCTTCACGTTTTTTGGCTGACCTGAAAAGAGGTAACT TAGTTTTTGGTCACTTGTTCTCCTAAAAATGCTATCCCTAACCATATATTTATATTTCGTTTTAAAAACACCCAT AAATTTGAGCAACAGTAAGTGCACAAATTCTGTAGTTTGCTGTATCATCCAGGAAAACCTGAGGGAAAAAATTA TAGCAATTAACTGGGCATTGTAGAGTATCCTAAATATGTTATCAAGTATTTAGAGTTCTATATTTTAAAGATATA TGTGTTCATGTATTTTCTGAAATTGCTTTCATAGAAATTTTCCCACTGATAGTTGATTTTTGAGGCATCTAATAT TTTTTCACTCCTGTCCAGTCTATTTATTATTCAAATAGGAAAAATTACTTTACAGGTTGTTTTACTGTAGCTTAT AATGATACTGTAGTTATTCCAGTTACTAGTTTACTGTCAGAGGGCTGCCTTTTTCAGATAAATATTGACATAATA ACTGAAGTTATTTTTATAAGAAAATCAAGTATATAAATCTAGGAAAGGGATCTTCTAGTTTCTGTGTTTTAGA $\tt CTCAAAGAATCACAAATTTGTCAGTAACATGTAGTTGTTTAGTTATAATTCAGAGTGTACAGAATGGTAAAAATT$

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56439</pre>

<subunit 1 of 1, 747 aa, 1 stop

<MW: 86127, pI: 7.46, NX(S/T): 2

MGVWLNKDDYIRDLKRIILCFLIVYMAILVGTDQDFYSLLGVSKTASSREIRQAFKKLALKL
HPDKNPNNPNAHGDFLKINRAYEVLKDEDLRKKYDKYGEKGLEDNQGGQYESWNYYRYDFGI
YDDDPEIITLERREFDAAVNSGELWFVNFYSPGCSHCHDLAPTWRDFAKEVDGLLRIGAVNC
GDDRMLCRMKGVNSYPSLFIFRSGMAPVKYHGDRSKESLVSFAMQHVRSTVTELWTGNFVNS
IQTAFAAGIGWLITFCSKGGDCLTSQTRLRLSGMLFLNSLDAKEIYLEVIHNLPDFELLSAN
TLEDRLAHHRWLLFFHFGKNENSNDPELKKLKTLLKNDHIQVGRFDCSSAPDICSNLYVFQP
SLAVFKGQGTKEYEIHHGKKILYDILAFAKESVNSHVTTLGPQNFPANDKEPWLVDFFAPWC
PPCRALLPELRRASNLLYGQLKFGTLDCTVHEGLCNMYNIQAYPTTVVFNQSNIHEYEGHHS
AEQILEFIEDLMNPSVVSLTPTTFNELVTQRKHNEVWMVDFYSPWCHPCQVLMPEWKRMART
LTGLINVGSIDCQQYHSFCAQENVQRYPEIRFFPPKSNKAYQYHSYNGWNRDAYSLRIWGLG
FLPQVSTDLTPQTFSEKVLQGKNHWVIDFYAPWCGPCQNFAPEFELLARMIKGKVKAGKVDC
QAYAQTCQKAGIRAYPTVKFYFYERAKRNFQEEQINTRDAKAIAALISEKLETLRNOGKRNKDEL

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 744-747

Cytochrome c family heme-binding site signature. amino acids 158-163

Nt-dnaJ domain signature. amino acids 77-96

N-glycosylation site. amino acids 484-487

GCCATGAACATCATCCTAGAAATCCTTCTGCTTCTGATCACCATCATCTACTCCTACTTGGA GTCGTTGGTGAAGTTTTTCATTCCTCAGAGGAGAAAATCTGTGGCTGGGGAGATTGTTCTCA TTACTGGAGCTGGGCATGGAATAGGCAGGCAGACTACTTATGAATTTGCAAAACGACAGAGC ATATTGGTTCTGTGGGATATTAATAAGCGCGGTGTGGAGGAAACTGCAGCTGAGTGCCGAAA ACTAGGCGTCACTGCGCATGCGTATGTGGTAGACTGCAGCAACAGAGAAGAGATCTATCGCT CTCTAAATCAGGTGAAGAAGAAGTGGGTGATGTAACAATCGTGGTGAATAATGCTGGGACA GTATATCCAGCCGATCTTCTCAGCACCAAGGATGAAGAGATTACCAAGACATTTGAGGTCAA CATCCTAGGACATTTTTGGATCACAAAAGCACTTCTTCCATCGATGATGGAGAGAAATCATG GCCACATCGTCACAGTGGCTTCAGTGTGCGGCCACGAAGGGATTCCTTACCTCATCCCATAT TGTTCCAGCAAATTTGCCGCTGTTGGCTTTCACAGAGGTCTGACATCAGAACTTCAGGCCTT GGGAAAAACTGGTATCAAAACCTCATGTCTCTGCCCAGTTTTTGTGAATACTGGGTTCACCA AAAATCCAAGCACAAGATTATGGCCTGTATTGGAGACAGATGAAGTCGTAAGAAGTCTGATA GATGGAATACTTACCAATAAGAAAATGATTTTTGTTCCATCGTATATCAATATCTTTCTGAG ACTACAGAAGTTTCTTCCTGAACGCGCCTCAGCGATTTTAAATCGTATGCAGAATATTCAAT TATGCATGATAATGATATGAATAGTTTCGAATCAATGCTGCAAAGCTTTATTTCACATTTTT TCAGTCCTGATAATATTAAAAACATTGGTTTGGCACTAGCAGCAGTCAAACGAACAAGATTA ATTACCTGTCTTCCTGTTTCTCAAGAATATTTACGTAGTTTTTCATAGGTCTGTTTTTCCTT TCATGCCTCTTAAAAACTTCTGTGCTTACATAAACATACTTAAAAGGTTTTCTTTAAGATAT TTTATTTTTCCATTTAAAGGTGGACAAAAGCTACCTCCCTAAAAGTAAATACAAAGAGAACT TATTTACACAGGGAAGGTTTAAGACTGTTCAAGTAGCATTCCAATCTGTAGCCATGCCACAG ATCTCAACCTGGACATATTTTAAGATTCAGCATTTGAAAGATTTCCCTAGCCTCTTCCTTTT TCATTAGCCCAAAACGGTGCAACTCTATTCTGGACTTTATTACTTGATTCTGTCTTCTGTAT AACTCTGAAGTCCACCAAAAGTGGACCCTCTATATTTCCTCCCTTTTTATAGTCTTATAAGA TACATTATGAAAGGTGACCGACTCTATTTTAAATCTCAGAATTTTAAGTTCTAGCCCCATGA TAACCTTTTTCTTTGTAATTTATGCTTTCATATATCCTTGGTCCCAGAGATGTTTAGACAAT TTTAGGCTCAAAAATTAAAGCTAACACAGGAAAAGGAACTGTACTGGCTATTACATAAGAAA CAATGGACCCAAGAGAAGAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56409</pre>

<subunit 1 of 1, 300 aa, 1 stop

<MW: 33655, pI: 9.31, NX(S/T): 1

MNIILEILLLITIIYSYLESLVKFFIPQRRKSVAGEIVLITGAGHGIGRQTTYEFAKRQSI LVLWDINKRGVEETAAECRKLGVTAHAYVVDCSNREEIYRSLNQVKKEVGDVTIVVNNAGTV YPADLLSTKDEEITKTFEVNILGHFWITKALLPSMMERNHGHIVTVASVCGHEGIPYLIPYC SSKFAAVGFHRGLTSELQALGKTGIKTSCLCPVFVNTGFTKNPSTRLWPVLETDEVVRSLID GILTNKKMIFVPSYINIFLRLQKFLPERASAILNRMQNIQFEAVVGHKIKMK

Important features:

Signal peptide:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 30-33 and 58-61

Short-chain alcohol dehydrogenase family protein amino acids 165-202, 37-49, 112-122 and 210-219

ATGCCCCGGCTCTGCAGGAAGCTGAAGTGAGAGGCCCGGAGAGGGCCCCAGCCCGCGCGCC AGGATGACCAAGGCCCGGCTGTTCCGGCTGTGGCTGGTGCTGGGGTGTTCATGATCCT GCTGATCATCGTGTACTGGGACAGCGCAGGCGCGCGCGCACTTCTACTTGCACACGTCCTTCT CTAGGCCGCACACGGGGCCGCCGCCCCACGCCCGGGCCGGACAGGGACAGGGAGCTCACG GCCGACTCCGATGTCGACGAGTTTCTGGACAAGTTTCTCAGTGCTGGCGTGAAGCAGAGCGA CCTTCCCAGAAAGGAGACGGAGCAGCCGCCTGCGCCGGGGAGCATGGAGGAGAGCGTGAGAG GCTACGACTGGTCCCCGCGCGCGCCGCGCGCGCAGCCCAGACCAGGCCGGCAGCCGGCAG CGGAGGAGCGTGCTGCGGGGCTTCTGCGCCAACTCCAGCCTGGCCTTCCCCACCAAGGAGCG CGCATTCGACGACATCCCCAACTCGGAGCTGAGCCACCTGATCGTGGACGACCGGCACGGGG CCATCTACTGCTACGTGCCCAAGGTGGCCTGCACCAACTGGAAGCGCGTGATGATCGTGCTG AGCGGAAGCCTGCTGCACCGCGGTGCGCCCTACCGCGACCCGCTGCGCATCCCGCGCGAGCA CGTGCACAACGCCAGCGCGCACCTGACCTTCAACAAGTTCTGGCGCGCCGCTACGGGAAGCTCT CCCGCCACCTCATGAAGGTCAAGCTCAAGAAGTACACCAAGTTCCTCTTCGTGCGCGACCCC TTCGTGCGCCTGATCTCCGCCTTCCGCAGCAAGTTCGAGCTGGAGAACGAGGAGTTCTACCG CAAGTTCGCCGTGCCCATGCTGCGGCTGTACGCCAACCACCAGCCTGCCCGCCTCGGCGC GCGAGGCCTTCCGCGCTGGCCTCAAGGTGTCCTTCGCCAACTTCATCCAGTACCTGCTGGAC CCGCACACGGAGAAGCTGGCGCCCTTCAACGAGCACTGGCGGCAGGTGTACCGCCTCTGCCA CCCGTGCCAGATCGACTACGACTTCGTGGGGAAGCTGGAGACTCTGGACGACGACGCCGCGC AGCTGCTGCAGCTACTCCAGGTGGACCGGCAGCTCCGCTTCCCCCCGAGCTACCGGAACAGG ACCGCCAGCAGCTGGGAGGAGGACTGGTTCGCCAAGATCCCCCTGGCCTGGAGGCAGCAGCT GTATAAACTCTACGAGGCCGACTTTGTTCTCTTCGGCTACCCCAAGCCCGAAAACCTCCTCC AGTTTTTTTTATGACCTACGATTTTGCAATCTGGGCTTCTTGTTCACTCCACTGCCTCTATCC ATTGAGTACTGTATCGATATTGTTTTTTAAGATTAATATATTTCAGGTATTTAATACGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56112</pre>

<subunit 1 of 1, 414 aa, 1 stop</pre>

<MW: 48414, pI: 9.54, NX(S/T): 4

MTKARLFRLWLVLGSVFMILLIIVYWDSAGAAHFYLHTSFSRPHTGPPLPTPGPDRDRELTA DSDVDEFLDKFLSAGVKQSDLPRKETEQPPAPGSMEESVRGYDWSPRDARRSPDQGRQQAER RSVLRGFCANSSLAFPTKERAFDDIPNSELSHLIVDDRHGAIYCYVPKVACTNWKRVMIVLS GSLLHRGAPYRDPLRIPREHVHNASAHLTFNKFWRRYGKLSRHLMKVKLKKYTKFLFVRDPF VRLISAFRSKFELENEEFYRKFAVPMLRLYANHTSLPASAREAFRAGLKVSFANFIQYLLDP HTEKLAPFNEHWRQVYRLCHPCQIDYDFVGKLETLDEDAAQLLQLLQVDRQLRFPPSYRNRT ASSWEEDWFAKIPLAWRQQLYKLYEADFVLFGYPKPENLLRD

Important features:

Signal peptide:

amino acids 1-31

N-glycosylation sites.

amino acids 134-137, 209-212, 280-283 and 370-373

TNFR/NGFR family cysteine-rich region protein amino acids 329-332

FIGURE 195

TCGGGCCAGAATTCGGCACGAGGCGGCACGAGGCGACGGCCTCACGGGGCTTTGGAGGTGA AAGAGGCCCAGAGTAGAGAGAGAGAGAGACCGACGTACACGGGATGGCTACGGGAACGCGCT ATGCCGGGAAGGTGGTGGTCGTGACCGGGGCGGGGCGCGCATCGGAGCTGGGATCGTGCGC GCCTTCGTGAACAGCGGGGCCCGAGTGGTTATCTGCGACAAGGATGAGTCTGGGGGCCGGGC CCTGGAGCAGGAGCTCCCTGGAGCTGTCTTTATCCTCTGTGATGTGACTCAGGAAGATGATG TGAAGACCCTGGTTTCTGAGACCATCCGCCGATTTGGCCGCCTGGATTGTGTTGTCAACAAC GCTGGCCACCACCCCCCACAGAGGCCTGAGGAGACCTCTGCCCAGGGATTCCGCCAGGCT GCTGGAGCTGAACCTACTGGGGACGTACACCTTGACCAAGCTCGCCCTCCCCTACCTGCGGA AGAGTCAAGGGAATGTCATCAACATCTCCAGCCTGGTGGGGGCAATCGGCCAGGCCAGGCA GTTCCCTATGTGGCCACCAAGGGGGCAGTAACAGCCATGACCAAAGCTTTGGCCCTGGATGA AAGTCCATATGGTGTCCGAGTCAACTGTATCTCCCCAGGAAACATCTGGACCCCGCTGTGGG AGGAGCTGGCAGCCTTAATGCCAGACCCTAGGGCCACAATCCGAGAGGGCATGCTGGCCCAG CCACTGGGCCGCATGGGCCAGCCCGCTGAGGTCGGGGCTGCGGCAGTGTTCCTGGCCTCCGA AGCCAACTTCTGCACGGGCATTGAACTGCTCGTGACGGGGGTGCAGAGCTGGGGTACGGGT GCAAGGCCAGTCGGAGCACCCCGTGGACGCCCCCGATATCCCTTCCTGATTTCTCTCATTT CTACTTGGGGCCCCTTCCTAGGACTCTCCCACCCCAAACTCCAACCTGTATCAGATGCAGC CCCCAAGCCCTTAGACTCTAAGCCCAGTTAGCAAGGTGCCGGGTCACCCTGCAGGTTCCCAT AAAAACGATTTGCAGCC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56045</pre>

<subunit 1 of 1, 270 aa, 1 stop

<MW: 28317, pI: 6.00, NX(S/T): 1

MATGTRYAGKVVVVTGGGRGIGAGIVRAFVNSGARVVICDKDESGGRALEQELPGAVFILCD VTQEDDVKTLVSETIRRFGRLDCVVNNAGHHPPPQRPEETSAQGFRQLLELNLLGTYTLTKL ALPYLRKSQGNVINISSLVGAIGQAQAVPYVATKGAVTAMTKALALDESPYGVRVNCISPGN IWTPLWEELAALMPDPRATIREGMLAQPLGRMGQPAEVGAAAVFLASEANFCTGIELLVTGG AELGYGCKASRSTPVDAPDIPS

Important features:

N-glycosylation site.

amino acids 138-141

Short-chain alcohol dehydrogenase family protein amino acids 10-22, 81-91, 134-171 and 176-185

AGGCGGCAGCAGCTGCAGGCTGACCTTGCAGCTTGGCGGAATGGACTGGCCTCACAACCTG
CTGTTTCTTACCATTTCCATCTTCCTGGGGCTGGGCCAGCCCAGGAGCCCCAAAAGCAA
GAGGAAGGGGCAAGGGCGGCCTGGGCCCCTGGCCCTCACCAGGTGCCACTGGACC
TGGTGTCACGGATGAAACCGTATGCCCGCATGGAGGAGTATGAGAGGAACATCGAGGAGATG
GTGGCCCAGCTGAGGAACAGCTCAGAGCTGGCCCAGAGAAAGTGTGAGGTCAACTTGCAGCT
GTGGATGTCCAACAAGAGGAGCCTGTCTCCCTGGGGCTACAGCATCAACCACGACCCCAGCC
GTATCCCCGTGGACCTGCCGGAGGCACGGTGCCTGTTCTGGGCTGTTTCAGCC
ATGCAGGAGGACCGCAGCATGGTGAGCGTGCCGGTGTTCAGCCAGGTTCCTGTGCGCCGCCG
CCTCTGCCCGCCACCGCCCCGCACAGGGCCTTGCCGCCAGCGCCAGTCATGGAGACCATCG
CTGTGGGCTGCACCTGCATCTTCTGAATCACCTGGCCCAGAAGCCAGGCCAGCCCGAGA
CCATCCTCCTTGCACCTTTTGTGCCAAGAAAGGCCTATGAAAAGTAAACACTGACTTTTGAAA
GCAAG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59294
<subunit 1 of 1, 180 aa, 1 stop
<MW: 20437, pI: 9.58, NX(S/T): 1
MDWPHNLLFLLTISIFLGLGQPRSPKSKRKGQGRPGPLAPGPHQVPLDLVSRMKPYARMEEY
ERNIEEMVAQLRNSSELAQRKCEVNLQLWMSNKRSLSPWGYSINHDPSRIPVDLPEARCLCL
GCVNPFTMQEDRSMVSVPVFSQVPVRRRLCPPPPRTGPCRQRAVMETIAVGCTCIF</pre>

Important features:
Signal peptide:
amino acids 1-20

N-glycosylation site. amino acids 75-78

Homologous region to IL-17 amino acids 96-180.

GCGCCGCCAGGCGTAGGCGGGTGGCCCTTGCGTCTCCCGCTTCCTTGAAAAACCCGGCGG GCGCCCAACATGGCGGGTGGGCGCTGCGGCCCGCAGCTAACGGCGCTCCTGGCCGCCTGGAT CGCGGCTGTGGCGGCGACGGCACGCCCCGAGGAGCCGCGCTGCCGCCGGAGCAGAGCCGGG TCCAGCCCATGACCGCCTCCAACTGGACGCTGGTGATGGAGGGCGAGTGGATGCTGAAATTT TACGCCCCATGGTGTCCATCCTGCCAGCAGACTGATTCAGAATGGGAGGCTTTTGCAAAGAA TGGTGAAATACTTCAGATCAGTGTGGGGAAGGTAGATGTCATTCAAGAACCAGGTTTGAGTG GCCGCTTCTTTGTCACCACTCTCCCAGCATTTTTTCATGCAAAGGATGGGATATTCCGCCGT TATCGTGGCCCAGGAATCTTCGAAGACCTGCAGAATTATATCTTAGAGAAGAAATGGCAATC AGTCGAGCCTCTGACTGGCTGGAAATCCCCAGCTTCTCTAACGATGTCTGGAATGGCTGGTC TTTTTAGCATCTCTGGCAAGATATGGCATCTTCACAACTATTTCACAGTGACTCTTGGAATT CCTGCTTGGTGTTCTTATGTGTTTTTCGTCATAGCCACCTTGGTTTTTTGGCCCTTTTTATGGG TCTGGTCTTGGTGGTAATATCAGAATGTTTCTATGTGCCACTTCCAAGGCATTTATCTGAGC GTTCTGAGCAGAATCGGAGATCAGAGGAGGCTCATAGAGCTGAACAGTTGCAGGATGCGGAG GAGGAAAAAGATGATTCAAATGAAGAAGAAAACAAAGACAGCCTTGTAGATGATGAAGAAGA GAAAGAAGATCTTGGCGATGAGGATGAAGCAGAGGAGAAGAGAGGAGGAGAACTTGGCTG CTGGTGTGGATGAGGAGAAGTGAGGCCAATGATCAGGGGCCCCCAGGAGAGGACGGTGTG ACCCGGGAGGAAGTAGAGCCTGAGGAGGCTGAAGAAGGCATCTCTGAGCAACCCTGCCCAGC TGACACAGAGGTGGTGGAAGACTCCTTGAGGCAGCGTAAAAGTCAGCATGCTGACAAGGGAC TGTAGATTTAATGATGCGTTTTCAAGAATACACACCAAAACAATATGTCAGCTTCCCTTTGG CCTGCAGTTTGTACCAAATCCTTAATTTTTCCTGAATGAGCAAGCTTCTCTTAAAAGATGCT CTCTAGTCATTTGGTCTCATGGCAGTAAGCCTCATGTATACTAAGGAGAGTCTTCCAGGTGT GACAATCAGGATATAGAAAAACAAACGTAGTGTTGGGATCTGTTTGGAGACTGGGATGGGAA CAAGTTCATTTACTTAGGGGTCAGAGAGTCTCGACCAGAGGAGGCCATTCCCAGTCCTAATC AGCACCTTCCAGAGACAAGGCTGCAGGCCCTGTGAAATGAAAGCCAAGCAGGAGCCTTGGCT CCTGAGCATCCCCAAAGTGTAACGTAGAAGCCTTGCATCCTTTTCTTGTGTAAAGTATTTAT TTTTGTCAAATTGCAGGAAACATCAGGCACCACAGTGCATGAAAAATCTTTCACAGCTAGAA ATTGAAAGGGCCTTGGGTATAGAGAGCAGCTCAGAAGTCATCCCAGCCCTCTGAATCTCCTG TGCTATGTTTTATTTCTTACCTTTAATTTTTCCAGCATTTCCACCATGGGCATTCAGGCTCT CCACACTCTTCACTATTATCTCTTGGTCAGAGGACTCCAATAACAGCCAGGTTTACATGAAC TGTGTTTGTTCATTCTGACCTAAGGGGTTTAGATAATCAGTAACCCATAACCCCTGAAGCTGT GACTGCCAAACATCTCAAATGAAATGTTGTGGCCATCAGAGACTCAAAAGGAAGTAAGGATT AAGTTTTCTAAGCAATATTTTTCAAGCCAGAAGTCCTCTAAGTCTTGCCAGTACAAGGTAGT CTTGTGAAGAAAAGTTGAATACTGTTTTGTTTTCATCTCAAGGGGTTCCCTGGGTCTTGAAC TACTTTAATAATAACTAAAAAACCACTTCTGATTTTCCTTCAGTGATGTGCTTTTGGTGAAA GAATTAATGAACTCCAGTACCTGAAAGTGAAAGATTTGATTTTGTTTCCATCTTCTGTAATC TTCCAAAGAATTATATCTTTGTAAATCTCTCAATACTCAATCTACTGTAAGTACCCAGGGAG GCTAATTTCTTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56433</pre>

<subunit 1 of 1, 349 aa, 1 stop

<MW: 38952, pI: 4.34, NX(S/T): 1

MAGGRCGPQLTALLAAWIAAVAATAGPEEAALPPEQSRVQPMTASNWTLVMEGEWMLKFYAP WCPSCQQTDSEWEAFAKNGEILQISVGKVDVIQEPGLSGRFFVTTLPAFFHAKDGIFRRYRG PGIFEDLQNYILEKKWQSVEPLTGWKSPASLTMSGMAGLFSISGKIWHLHNYFTVTLGIPAW CSYVFFVIATLVFGLFMGLVLVVISECFYVPLPRHLSERSEQNRRSEEAHRAEQLQDAEEEK DDSNEEENKDSLVDDEEEKEDLGDEDEAEEEEEEDNLAAGVDEERSEANDQGPPGEDGVTRE EVEPEEAEEGISEQPCPADTEVVEDSLRQRKSQHADKGL

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 191-211

N-glycosylation site.

amino acids 46-49

Thioredoxin family proteins. (homologous region to disulfide isomerase) amino acids 56-72

Flavodoxin proteins

amino acids 173-187

ATCTGGTTGAACTACTTAAGCTTAATTTGTTAAACTCCGGTAAGTACCTAGCCCACATGATT CAAATGCTATATCTATTCAGGGGCTCTCAAGAACAATGGAATATCATCCTGATTTAGAAAAT TTGGATGAAGATGGATATACTCAATTACACTTCGACTCTCAAAGCAATACCAGGATAGCTGT TGTTTCAGAGAAAGGATCGTGCTGCATCTCCTCCTTGGCGCCTCATTGCTGTAATTTTGG GAATCCTATGCTTGGTAATACTGGTGATAGCTGTGGTCCTGGGTACCATGGGGGTTCTTTCC AGCCCTTGTCCTCCTAATTGGATTATATATGAGAAGAGCTGTTATCTATTCAGCATGTCACT AAATTCCTGGGATGGAAGTAAAAGACAATGCTGGCAACTGGGCTCTAATCTCCTAAAGATAG ACAGCTCAAATGAATTGGGATTTATAGTAAAACAAGTGTCTTCCCAACCTGATAATTCATTT CTCTTCTAACTTATTTCAGATCAGAACCACAGCTACCCAAGAAAACCCATCTCCAAATTGTG TATGGATTCACGTGTCAGTCATTTATGACCAACTGTGTAGTGTGCCCTCATATAGTATTTGT GAGAAGAAGTTTTCAATG**TAA**GAGGAAGGGTGGAGAAGGAGAGAAATATGTGAGGTAGTA AGGAGGACAGAAAACAGAACAGAAAAGAGTAACAGCTGAGGTCAAGATAAATGCAGAAAATG TTTAGAGAGCTTGGCCAACTGTAATCTTAACCAAGAAATTGAAGGGAGAGGCTGTGATTTCT ${\tt CTCAGCCCTCAAGTAGCTGGGACTACAGGTGCATGCCACGATGCCAGGCTAATTTTTGGTG}$ TTTTTTGTAGAGACTGGGTTTTGCCATGTTGACCAAGCTGGTCTCTAACTCCTGGGCTTAAG TGATCTGCCCGCCTTGGCCTCCCAAAGTGCTGGGATTACAGATGTGAGCCACCACACCTGGC CCCAAGCTTGAATTTTCATTCTGCCATTGACTTGGCATTTACCTTGGGTAAGCCATAAGCGA ATCTTAATTTCTGGCTCTATCAGAGTTGTTTCATGCTCAACAATGCCATTGAAGTGCACGGT GTGTTGCCACGATTTGACCCTCAACTTCTAGCAGTATATCAGTTATGAACTGAGGGTGAAAT ATATTTCTGAATAGCTAAATGAAGAAATGGGAAAAAATCTTCACCACAGTCAGAGCAATTTT ATTATTTTCATCAGTATGATCATAATTATGATTATCATCTTAGTAAAAAGCAGGAACTCCTA CTTTTTCTTTATCAATTAAATAGCTCAGAGAGTACATCTGCCATATCTCTAATAGAATCTTT TTTTTTTTTTTTTTTTTGAGACAGAGTTTCGCTCTTGTTGCCCAGGCTGGAGTGCAACGG CACGATCTCGGCTCACCGCAACCTCCGCCCCCTGGGTTCAAGCAATTCTCCTGCCTCAGCCT CCCAAGTAGCTGGGATTACAGTCAGGCACCACCACCCGGCTAATTTTGTATTTTTTAGT AGAGACAGGGTTTCTCCATGTCGGTCAGGGTAGTCCCGAACTCCTGACCTCAAGTGATCTGC CTGCCTCGGCCTCCCAAGTGCTGGGATTACAGGCGTGAGCCACTGCACCCAGCCTAGAATCT TGTATAATATGTAATTGTAGGGAAACTGCTCTCATAGGAAAGTTTTCTGCTTTTTAAATACA ${f ACAAGTATTAACATTTTGGAATATGTTTTATTAGTTTTTGTGATGTACTGTTTTACAATTTTTT$ ACCATTTTTTTCAGTAATTACTGTAAAATGGTATTATTGGAATGAAACTATATTTCCTCATG TGCTGATTTGTCTTATTTTTTTCATACTTTCCCACTGGTGCTATTTTTATTTCCAATGGATA TTTCTGTATTACTAGGGAGGCATTTACAGTCCTCTAATGTTGATTAATATGTGAAAAGAAAT TGTACCAATTTTACTAAATTATGCAGTTTAAAATGGATGATTTTATGTTATGTGGATTTCAT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53912</pre>

<subunit 1 of 1, 201 aa, 1 stop

<MW: 22563, pI: 4.87, NX(S/T): 1

MEYHPDLENLDEDGYTQLHFDSQSNTRIAVVSEKGSCAASPPWRLIAVILGILCLVILVIAV VLGTMGVLSSPCPPNWIIYEKSCYLFSMSLNSWDGSKRQCWQLGSNLLKIDSSNELGFIVKQ VSSQPDNSFWIGLSRPQTEVPWLWEDGSTFSSNLFQIRTTATQENPSPNCVWIHVSVIYDQL CSVPSYSICEKKFSM

Important features:

Type II transmembrane domain:

amino acids 45-65

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 197-200

N-myristoylation sites.
amino acids 35-40 and 151-156

Homologous region to LDL receptor amino acids 34-67 and 70-200.

GGAAGGGGAGGAGCAGGCCACACAGGCACAGGCCGGTGAGGGACCTGCCCAGACCTGGAGGGTCTCGCTCTGTCA CACAGGCTGGAGTGCAGTGTGATCTTGGCTCATCGTAACCTCCCCGGGTTCAAGTGATTCTCATGCC TCAGCCTCCCGAGTAGCTGGGATTACAGGTGGTGACTTCCAAGAGTGACTCCGTCGGAGGAAAATGACTCCCCAG TCGCTGCTGCAGACGACACTGTTCCTGCTGAGTCTGCTCTTCCTGGTCCAAGGTGCCCACGGCAGGGGCCACAGG GAAGACTTTCGCTTCTGCAGCCAGCGGAACCAGACACAGGGGGGGCGCCTCCACTACAAACCCACACCAGACCTG CGCATCTCCATCGAGAACTCCGAAGAGGCCCTCACAGTCCATGCCCCTTTCCCTGCAGCCCACCCTGCTTCCCGA TCCTTCCCTGACCCCAGGGGCCTCTACCACTTCTGCCTCTACTGGAACCGACATGCTGGGAGATTACATCTTCTC TATGGCAAGCGTGACTTCTTGCTGAGTGACAAAGCCTCTAGCCTCCTCTGCTTCCAGCACCAGGAGGAGAGCCTG GCTCAGGGCCCCCGCTGTTAGCCACTTCTGTCACCTCCTGGTGGAGCCCTCAGAACATCAGCCTGCCCAGTGCC GCCAGCTTCACCTTCCCCCACAGTCCTCCCCACACGCCGCTCACAATGCCTCGGTGGACATGTGCGAGCTC AAAAGGACCTCCAGCTGCTCAGCCAGTTCCTGAAGCATCCCCAGAAGGCCTCAAGGAGGCCCTCGGCTGCCCCC ${\tt GCCAGCCAGCAGTTGCAGAGCCTGGAGTCGAAACTGACCTCTGTGAGATTCATGGGGGACATGGTGTCCTTCGAG}$ GAGGACCGGATCAACGCCACGGTGTGGAAGCTCCAGCCCACAGCCCGCCTCCAGGACCTGCACATCCACTCCCGG CAGGAGGAGGAGCAGAGCCAGATCATGGAGTACTCGGTGCTGCTGCCTCGAACACTCTTCCAGAGGACGAAAGGC CGGAGCGGGAGGCTGAGAAGAGACTCCTCCTGGTGGACTTCAGCAGCCAAGCCCTGTTCCAGGACAAGAATTCC AGCCAAGTCCTGGGTGAGAAGGTCTTGGGGGATTGTGGTACAGAACACCAAAGTAGCCAACCTCACGGAGCCCGTG GTGCTCACTTTCCAGCACCAGCTACAGCCGAAGAATGTGACTCTGCAATGTGTGTTCTGGGTTGAAGACCCCACA TTGAGCAGCCCGGGCATTGGAGCAGTGCTGGGTGTGAGACCGTCAGGAGAAACCCAAACATCCTGCTTCTGC AACCACTTGACCTACTTTGCAGTGCTGATGGTCTCCTCGGTGGAGGTGGACGCCGTGCACAAGCACTACCTGAGC GTGCCCTGCCGTGCAGGAGAAACCTCGGGACTACACCATCAAGGTGCACATGAACCTGCTGCTGGCCGTCTTC ATCTTCCTGCACTTCTCCCTGCTCACCTGCCTTTCCTGGATGGGCCTCGAGGGGTACAACCTCTACCGACTCGTG GTGGAGGTCTTTGGCACCTATGTCCCTGGCTACCTACTCAAGCTGAGCGCCATGGGCTGGGGCTTCCCCATCTTT CTGGTGACGCTGGTGGACTGTGGACAACTATGGCCCCATCATCTTGGCTGTGCATAGGACTCCAGAG GGCGTCATCTACCCTTCCATGTGCTGGATCCGGGACTCCCTGGTCAGCTACATCACCAACCTGGGCCTCTTCAGC CTGGTGTTCTGTTCAACATGGCCATGCTAGCCACCATGGTGGTGCAGATCCTGCGGCTGCGCCCCCACACCCAA AAGTGGTCACATGTGCTGACACTGCTGGGCCTCAGCCTGGTCCTTGGCCTGGCCCTGGGCCTTGATCTTCTTCTCC TTTGCTTCTGGCACCTTCCAGCTTGTCGTCCTCTACCTTTTCAGCATCACCTCCTTCCAAGGCTTCCTCATC TTCATCTGGTACTGGTCCATGCGGCTGCAGGCCCGGGGTGGCCCCTCCCCTCTGAAGAGCAACTCAGACAGCGCC AGGCTCCCATCAGCTCGGGCAGCACCTCGTCCAGCCGCATC<u>TAG</u>GCCTCCAGCCCACCTGCCCATGTGATGAAG ${\tt CAGAGATGCGGCCTCGTCGCACACTGCCTGTGGCCCCCGAGCCCAGGCCCAGGCCAGGCCAGGCCAGACT}$ GCCTTGGGGACTACTCGGCTCTCACTCAGCTCCCACGGGACTCAGAAGTGCGCCGCCATGCTGCCTAGGGTACTG TCCCCACATCTGTCCCAACCCAGCTGGAGGCCTGGTCTCTCCTTACAACCCCTGGGCCCAGCCCTCATTGCTGGG GTTGCTCTGTCTCTCGTGGTCACCCTGAGGGCACTCTGCATCCTCTGTCATTTTAACCTCAGGTGGCACCCAGGG TCCTCCTCTCCCAGGGCCTCCTTGCTCCTTCGTTCACAGCTGGGGGTCCCCGATTCCAATGCTGTTTTTTGGGGA GTGGTTTCCAGGAGCTGCCTGGTGTCTGCTGTAAATGTTTGTCTACTGCACAAGCCTCGGCCTGCCCCTGAGCCA GGCTCGGTACCGATGCGTGGGCTGGGCTAGGTCCCTCTGTCCATCTGGGCCTTTGTATGAGCTGCATTGCCCTTG CTCACCCTGACCAAGCACACGCCTCAGAGGGGCCCTCAGCCTCTCCTGAAGCCCTCTTGTGGCAAGAACTGTGGA CCATGCCAGTCCGTCTGGTTTCCATCCCACCACTCCAAGGACTGACCTGACCTCCTCTGGTGACACTGGCCTA GAGCCTGACACTCTCCTAAGAGGTTCTCTCCAAGCCCCCAAATAGCTCCAGGCGCCCCTCGGCCGCCCATCATGGT GGGAGCCATCATTCCTGCCTGGGAATCCTGGAAGACTTCCTGCAGGAGTCAGCGTTCAATCTTGACCTTGAAGAT GGGAAGGATGTTCTTTTACGTACCAATTCTTTTGTCTTTTGATATTAAAAAGAAGTACATGTTCATTGTAGAGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50921</pre>

<subunit 1 of 1, 693 aa, 1 stop

<MW: 77738, pI: 8.87, NX(S/T): 7

MTPQSLLQTTLFLLSLLFLVQGAHGRGHREDFRFCSQRNQTHRSSLHYKPTPDLRISIENSE
EALTVHAPFPAAHPASRSFPDPRGLYHFCLYWNRHAGRLHLLYGKRDFLLSDKASSLLCFQH
QEESLAQGPPLLATSVTSWWSPQNISLPSAASFTFSFHSPPHTAAHNASVDMCELKRDLQLL
SQFLKHPQKASRRPSAAPASQQLQSLESKLTSVRFMGDMVSFEEDRINATVWKLQPTAGLQD
LHIHSRQEEEQSEIMEYSVLLPRTLFQRTKGRSGEAEKRLLLVDFSSQALFQDKNSSQVLGE
KVLGIVVQNTKVANLTEPVVLTFQHQLQPKNVTLQCVFWVEDPTLSSPGHWSSAGCETVRRE
TQTSCFCNHLTYFAVLMVSSVEVDAVHKHYLSLLSYVGCVVSALACLVTIAAYLCSRVPLPC
RRKPRDYTIKVHMNLLLAVFLLDTSFLLSEPVALTGSEAGCRASAIFLHFSLLTCLSWMGLE
GYNLYRLVVEVFGTYVPGYLLKLSAMGWGFPIFLVTLVALVDVDNYGPIILAVHRTPEGVIY
PSMCWIRDSLVSYITNLGLFSLVFLFNMAMLATMVVQILRLRPHTQKWSHVLTLLGLSLVLG
LPWALIFFSFASGTFQLVVLYLFSIITSFQGFLIFIWYWSMRLQARGGPSPLKSNSDSARLP
ISSGSTSSSRI

Important features:

Signal peptide:

amino acids 1-25

Putative transmembrane domains:

amino acids 382-398, 402-420, 445-468, 473-491, 519-537, 568-590 and 634-657

Microbodies C-terminal targeting signal.

amino acids 691-693

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 198-201 and 370-373

N-glycosylation sites.

amino acids 39-42, 148-151, 171-174, 234-237, 303-306, 324-327 and 341-344

G-protein coupled receptors family 2 proteins amino acids 475-504

TGCCTGGCCTGCCTTGTCAACAATGCCGCTTACTCTGCTTCCAGGTTGCCCTGCCTTGCAGA
GGAAANCNTCGGGACTACACCNTCAAGTGCACATGAACCTGCTGCTGGCCGTCTTCCTGCTG
GACACGAGCTTCCTGCTCAGCGNAGCCGGTGGCCCTGACAGGCTCTGAAGGCTGGCTGCCGA
GCCAGTGCCATCTTCCTGCACTTCTCCTGCTCACCTGCCTTTCCTGGATGGGCCTCGAGGGG
TACAACCTCTACCGACTCGTGGTGGAGGTCTTTGGCACCTATGTCCCTGGCTACCTCAA
GCTGAGCGCCATGGGCTGGGGGCTTCCCCATCTTTCTGGTGACGCTGGTGGCCCTGGTGGATG
TGGACAACTATGGCCCCATCATCTTGGCTGTGCATAGGACTCCAGAGGGCGTCATCTACCCT
TCCATGTGCTGGATCCGGGACTCCCTGGTCAGCTACATCACCAACCTGGGCCTCTTCAGCCT
GGTGTTTCTGTTCAACATGG

CGGACGCGTGGGCGGACGCGTGGGCGGACGCGTGGGCGGACGCTTGGGTTCAGGTCCAGGTTTTGCTTTGA TCCTTTTCAAAAACTGGAGACACAGAAGAGGGCTCTAGGAAAAAGTTTTGGATGGGATTATGTGGAAACTACCCT GCGATTCTCTGCTGCCAGAGCAGGCTCGGCGCTTCCACCCCAGTGCAGCCTTCCCCTGGCGGTGGAAAGAGAC TCGGGAGTCGCTGCTTCCAAAGTGCCCGCCGTGAGTGAGCTCTCACCCCAGTCAGCCAA<u>ATG</u>AGCCTCTTCGGGC ${\tt TTCTCCTGCTGACATCTGCCCTGGCCGGCCAGAGACAGGGGGACTCAGGCGGAATCCAACCTGAGTAGTAAATTCC}$ AGTTTTCCAGCAACAAGGAACAGAACGGAGTACAAGATCCTCAGCATGAGAGAATTATTACTGTGTCTACTAATG GAAGTATTCACAGCCCAAGGTTTCCTCATACTTATCCAAGAAATACGGTCTTGGTATGGAGATTAGTAGCAGTAG AGGAAAATGTATGGATACAACTTACGTTTGATGAAAGATTTGGGCTTGAAGACCCAGAAGATGACATATGCAAGT ATGATTTTGTAGAAGTTGAGGAACCCAGTGATGGAACTATATTAGGGCGCTGGTGTGGTTCTGGTACTGTACCAG GAAAACAGATTTCTAAAGGAAATCAAATTAGGATAAGATTTGTATCTGATGAATATTTTCCTTCTGAACCAGGGT ${ t TCTGCATCCACTACAACATTGTCATGCCACAATTCACAGAAGCTGTGAGTCCTTCAGTGCTACCCCCTTCAGCTT$ ${ t TGCCACTGGACCTGCTTAATAATGCTATAACTGCCTTTAGTACCTTGGAAGACCTTATTCGATATCTTGAACCAG$ ${f AGAGATGGCAGTTGGACTTAGAAGATCTATATAGGCCAACTTGGCAACTTCTTGGCAAGGCTTTTGTTTTTGGAA}$ GAAAATCCAGAGTGGTGGATCTGAACCTTCTAACAGAGGGGGGTAAGATTATACAGCTGCACACCTCGTAACTTCT CAGTGTCCATAAGGGAAGAACTAAAGAGAACCGATACCATTTTCTGGCCAGGTTGTCTCCTGGTTAAACGCTGTG ${\tt ACCATGAGGAGTGTGACTGTGTGCAGGAGGGAGCACAGGAGGAGTAGCCGCATCACCACCAGCAGCTCTTGCCCA}$ GAGCTGTGCAGTGCAGTGGCTGATTCTATTAGAGAACGTATGCGTTATCTCCATCCTTAATCTCAGTTGTTTGCT TCAAGGACCTTTCATCTTCAGGATTTACAGTGCATTCTGAAAGAGGAGACATCAAACAGAATTAGGAGTTGTGCA TAAATAGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTATTTCAGTTCTTTC GATACGGCTTAGGGTAATGTCAGTACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCCTTAAC ATGTAAACCAGAACATTCTATGTACTACAAACCTGGTTTTTAAAAAGGAACTATGTTGCTATGAATTAAACTTGT ${\tt GTCATGCTGATAGGACAGACTGGATTTTCATATTTCTTATTAAAATTTCTGCCATTTAGAAGAAGAACTACA}$ TTCATGGTTTGGAAGAGATAAACCTGAAAAGAAGAGTGGCCTTATCTTCACTTTATCGATAAGTCAGTTTATTTG TTTCATTGTGTACATTTTTATATTCTCCTTTTGACATTATAACTGTTGGCTTTTCTAATCTTGTTAAATATATCT ATTTTTACCAAAGGTATTTAATATTCTTTTTTATGACAACTTAGATCAACTATTTTTAGCTTGGTAAATTTTTCT AAACACAATTGTTATAGCCAGAGGAACAAAGATGATATAAAATATTGTTGCTCTGACAAAAATACATGTATTTCA TTCTCGTATGGTGCTAGAGTTAGATTAATCTGCATTTTAAAAAACTGAATTGGAATAGAATTGGTAAGTTGCAAA GACTTTTTGAAAATAATTAAATTATCATATCTTCCATTCCTGTTATTGGAGATGAAAATAAAAAGCAACTTATGA AAGTAGACATTCAGATCCAGCCATTACTAACCTATTCCTTTTTTGGGGAAATCTGAGCCTAGCTCAGAAAAACAT AAAGCACCTTGAAAAAGACTTGGCAGCTTCCTGATAAAGCGTGCTGTGCTGCAGTAGGAACACATCCTATTTA TTGTGATGTTGTGGGTTTTATTATCTTAAACTCTGTTCCATACACTTGTATAAATACATGGATATTTTTATGTACA GAAGTATGTCTCTTAACCAGTTCACTTATTGTACTCTGGCAATTTAAAAGAAAATCAGTAAAATATTTTGCTTGT AAAATGCTTAATATNGTGCCTAGGTTATGTGGTGACTATTTGAATCAAAAATGTATTGAATCATCAAATAAAAGA

MSLFGLLLTSALAGQRQGTQAESNLSSKFQFSSNKEQNGVQDPQHERIITVSTNGSIHSPR FPHTYPRNTVLVWRLVAVEENVWIQLTFDERFGLEDPEDDICKYDFVEVEEPSDGTILGRWC GSGTVPGKQISKGNQIRIRFVSDEYFPSEPGFCIHYNIVMPQFTEAVSPSVLPPSALPLDLL NNAITAFSTLEDLIRYLEPERWQLDLEDLYRPTWQLLGKAFVFGRKSRVVDLNLLTEEVRLY SCTPRNFSVSIREELKRTDTIFWPGCLLVKRCGGNCACCLHNCNECQCVPSKVTKKYHEVLQ LRPKTGVRGLHKSLTDVALEHHEECDCVCRGSTGG

Signal sequence:

amino acids 1-14

AGACTAAAA<u>ATG</u>GTGTTTCCAATGTGGACACTGAAGAGACAAATTCTTATCCTTTTTAACATAATCCTAATTTCC AAACTCCTTGGGGCTAGATGGTTTCCTAAAACTCTGCCCTGTGATGTCACTCTGGATGTTCCAAAGAACCATGTG ATCGTGGACTGCACAGACAAGCATTTGACAGAAATTCCTGGAGGTATTCCCACGAACACCACGAACCTCACCCTC ACCATTAACCACATACCAGACATCTCCCCAGCGTCCTTTCACAGACTGGACCATCTGGTAGAGATCGATTTCAGA TGCAACTGTGTACCTATTCCACTGGGGTCAAAAAACAACATGTGCATCAAGAGGCTGCAGATTAAACCCAGAAGC ${\tt CCTAGCTTACAGCTTCAGCCTTGAGGCCAACAACATCTTTTCCATCAGAAAAGAGAATCTAACAGAACTGGCC}$ AACATAGAAATACTCTACCTGGGCCAAAACTGTTATTATCGAAATCCTTGTTATGTTTCATATTCAATAGAGAAA GATGCCTTCCTAAACTTGACAAAGTTAAAAGTGCTCTCCCTGAAAGATAACAATGTCACAGCCGTCCCTACTGTT TTGCCATCTACTTTAACAGAACTATATCTCTACAACAACATGATTGCAAAAATCCAAGAAGATGATTTTAATAAC $\tt CTCAACCAATTACAAATTCTTGACCTAAGTGGAAATTGCCCTCGTTGTTATAATGCCCCATTTCCTTGTGCGCCG$ TGTAAAAATAATTCTCCCCTACAGATCCCTGTAAATGCTTTTGATGCGCTGACAGAATTAAAAGTTTTACGTCTA CACAGTAACTCTCTTCAGCATGTGCCCCCAAGATGGTTTAAGAACATCAACAAACTCCAGGAACTGGATCTGTCC CAAAACTTCTTGGCCAAAGAAATTGGGGATGCTAAATTTCTGCATTTTCTCCCCAGCCTCATCCAATTGGATCTG TCTTTCAATTTTGAACTTCAGGTCTATCGTGCATCTATGAATCTATCACAAGCATTTTCTTCACTGAAAAGCCTG AAAATTCTGCGGATCAGAGGATATGTCTTTAAAGAGTTGAAAAGCTTTAACCTCTCGCCATTACATAATCTTCAA AATCTTGAAGTTCTTGATCTTGGCACTAACTTTATAAAAATTGCTAACCTCAGCATGTTTAAACAATTTAAAAGA $\tt CTGAAAGTCATAGATCTTTCAGTGAATAAAATATCACCTTCAGGAGATTCAAGTGAAGTTGGCTTCTGCTCAAAT$ GCCAGAACTTCTGTAGAAAGTTATGAACCCCAGGTCCTGGAACAATTACATTATTTCAGATATGATAAGTATGCA ${f A}{f G}{f G}{f A}{f G}{f T}{f C}{f T}{f C}{f T}{f C}{f T}{f C}{f T}{f C}{f T}{f A}{f T}{f A}{f A}{f G}{f C}{f T}{f A}{f C}{f C}{f C}{f A}{f C}{f C}$ AATCTGTCAGGAAATCTCATTAGCCAAACTCTTAATGGCAGTGAATTCCAACCTTTAGCAGAGCTGAGATATTTG GACTTCTCCAACAACCGGCTTGATTTACTCCATTCAACAGCATTTGAAGAGCTTCACAAACTGGAAGTTCTGGAT ATAAGCAGTAATAGCCATTATTTTCAATCAGAAGGAATTACTCATATGCTAAACTTTACCAAGAACCTAAAGGTT ACTCTGGAATTCAGAGGAAATCACTTAGATGTTTTATGGAGAGAAGGTGATAACAGATACTTACAATTATTCAAG ${\tt AATCTGCTAAAATTAGAGGAATTAGACATCTCTAAAAATTCCCTAAGTTTCTTGCCTTCTGGAGTTTTTGATGGT}$ ATGCCTCCAAATCTAAAGAATCTCTCTTTGGCCAAAAATGGGCTCAAATCTTTCAGTTGGAAGAAACTCCAGTGT AGAAGCCTCAAGAATCTGATTCTTAAGAATAATCAAATCAGGAGTCTGACGAAGTATTTTCTACAAGATGCCTTC ${\tt CAGTTGCGATATCTGGATCTCAGCTCAAATAAAATCCAGATGATCCAAAAGACCAGCTTCCCAGAAAATGTCCTC}$ AACAATCTGAAGATGTTGCTTTTGCATCATAATCGGTTTCTGTGCACCTGTGATGCTGTGTGGTTTGTCTGGTGG GTTAACCATACGGAGGTGACTATTCCTTACCTGGCCACAGATGTGACTTGTGTGGGGCCAGGAGCACACAAGGGC CAAAGTGTGATCTCCCTGGATCTGTACACCTGTGAGTTAGATCTGACTAACCTGATTCTGTTCTCACTTTCCATA ${\tt TCTGTATCTCTTTTCTCATGGTGATGATGACAGCAAGTCACCTCTATTTCTGGGATGTGTGGTATATTTACCAT$ TTCTGTAAGGCCAAGATAAAGGGGTATCAGCGTCTAATATCACCAGACTGTTGCTATGATGCTTTTATTGTGTAT GACACTAAAGACCCAGCTGTGACCGAGTGGGTTTTGGCTGAGCTGGTGGCCAAACTGGAAGACCCAAGAGAGAAAA CATTTTAATTTATGTCTCGAGGAAAGGGACTGGTTACCAGGGCAGCCAGTTCTGGAAAACCTTTCCCAGAGCATA CAGCTTAGCAAAAAGACAGTGTTTGTGATGACAGACAAGTATGCAAAGACTGAAAATTTTAAGATAGCATTTTAC TTGTCCCATCAGAGGCTCATGGATGAAAAGTTGATGTGATTATCTTGATATTTCTTGAGAAGCCCTTTCAGAAG ${\tt TCCAAGTTCCTCCAGCTCCGGAAAAGGCTCTGTGGGAGTTCTGTCCTTGAGTGGCCAACAAACCCGCAAGCTCAC}$ ${\tt CCATACTTCTGGCAGTGTCTAAAGAACGCCCTGGCCACAGACAATCATGTGGCCTATAGTCAGGTGTTCAAGGAA}$ ${ t ACGGTC}{ t TAG}{ t CCCTTCTTTGCAAAACACAACTGCCTAGTTTACCAAGGAGAGGCCTGGC}$

MVFPMWTLKRQILILFNIILISKLLGARWFPKTLPCDVTLDVPKNHVIVDCTDKHLTEIPGG IPTNTTNLTLTINHIPDISPASFHRLDHLVEIDFRCNCVPIPLGSKNNMCIKRLOIKPRSFS GLTYLKSLYLDGNOLLEIPOGLPPSLOLLSLEANNIFSIRKENLTELANIEILYLGONCYYR NPCYVSYSIEKDAFLNLTKLKVLSLKDNNVTAVPTVLPSTLTELYLYNNMIAKIQEDDFNNL NQLQILDLSGNCPRCYNAPFPCAPCKNNSPLQIPVNAFDALTELKVLRLHSNSLQHVPPRWF KNINKLQELDLSONFLAKEIGDAKFLHFLPSLIOLDLSFNFELOVYRASMNLSOAFSSLKSL KILRIRGYVFKELKSFNLSPLHNLQNLEVLDLGTNFIKIANLSMFKQFKRLKVIDLSVNKIS PSGDSSEVGFCSNARTSVESYEPQVLEQLHYFRYDKYARSCRFKNKEASFMSVNESCYKYGQ TLDLSKNSIFFVKSSDFQHLSFLKCLNLSGNLISQTLNGSEFQPLAELRYLDFSNNRLDLLH STAFEELHKLEVLDISSNSHYFQSEGITHMLNFTKNLKVLQKLMMNDNDISSSTSRTMESES LRTLEFRGNHLDVLWREGDNRYLOLFKNLLKLEELDISKNSLSFLPSGVFDGMPPNLKNLSL AKNGLKSFSWKKLOCLKNLETLDLSHNOLTTVPERLSNCSRSLKNLILKNNOIRSLTKYFLO DAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLLLHHNRFLCTCDAVWFVWWVNHTEVTIP YLATDVTCVGPGAHKGQSVISLDLYTCELDLTNLILFSLSISVSLFLMVMMTASHLYFWDVW YIYHFCKAKIKGYQRLISPDCCYDAFIVYDTKDPAVTEWVLAELVAKLEDPREKHFNLCLEE RDWLPGQPVLENLSQSIQLSKKTVFVMTDKYAKTENFKIAFYLSHQRLMDEKVDVIILIFLE KPFQKSKFLQLRKRLCGSSVLEWPTNPQAHPYFWQCLKNALATDNHVAYSQVFKETV

Signal sequence: amino acids 1-26

Transmembrane domain: amino acids 840-860

GGGTACCATTCTGCGCTGCTGCAAGTTACGGAATGAAAAATTAGAACAACAGAAACATGGAAAACATGTTCCTTC AGTCGTCAATGCTGACCTGCATTTTCCTGCTAATATCTGGTTCCTGTGAGTTATGCGCCGAAGAAAATTTTTCTA GAAGCTATCCTTGTGATGAGAAAAAGCAAAATGACTCAGTTATTGCAGAGTGCAGCAATCGTCGACTACAGGAAG CATTTCAAGGGCTGCAAAATCTCACTAAAATAAATCTAAACCACAACCCCAATGTACAGCACCAGAACGGAAATC CCGGTATACAATCAAATGGCTTGAATATCACAGACGGGGCATTCCTCAACCTAAAAAACCTAAGGGAGTTACTGC TTGAAGACAACCAGTTACCCCAAATACCCTCTGGTTTGCCAGAGTCTTTGACAGAACTTAGTCTAATTCAAAACA ATATATACAACATAACTAAAGAGGGCATTTCAAGACTTATAAACTTGAAAAATCTCTATTTGGCCTGGAACTGCT ATTTTAACAAAGTTTGCGAGAAAACTAACATAGAAGATGGAGTATTTGAAACGCTGACAAATTTGGAGTTGCTAT CACTATCTTTCAATTCTCTTTCACACGTGCCACCCAAACTGCCAAGCTCCCTACGCAAACTTTTTCTGAGCAACA CCCAGATCAAATACATTAGTGAAGAAGATTTCAAGGGATTGATAAATTTAACATTACTAGATTTAAGCGGGAACT GTCCGAGGTGCTTCAATGCCCCATTTCCATGCGTGCCTTGTGATGGTGCTTCAATTAATATAATAGATCGTTTTG CTTTTCAAAACTTGACCCAACTTCGATACCTAAACCTCTCTAGCACTTCCCTCAGGAAGATTAATGCTGCCTGGT TTAAAAATATGCCTCATCTGAAGGTGCTGGATCTTGAATTCAACTATTTAGTGGGAGAAATAGTCTCTGGGGCAT TTTTAACGATGCTGCCCCGCTTAGAAATACTTGACTTGTCTTTTAACTATAAAGGGGAGTTATCCACAGCATA TTAATATTTCCAGAAACTTCTCTAAACTTTTGTCTCTACGGGCATTGCATTTAAGAGGTTATGTGTTCCAGGAAC TCAGAGAAGATGATTTCCAGCCCCTGATGCAGCTTCCAAACTTATCGACTATCAACTTGGGTATTAATTTTATTA AGCAAATCGATTTCAAACTTTTCCAAAATTTCTCCAATCTGGAAATTATTTACTTGTCAGAAAACAGAATATCAC CGTTGGTAAAAGATACCCGGCAGAGTTATGCAAATAGTTCCTCTTTTCAACGTCATATCCGGAAACGACGCTCAA CAGATTTTGAGTTTGACCCACATTCGAACTTTTATCATTTCACCCGTCCTTTAATAAAGCCACAATGTGCTGCTT ATGGAAAAGCCTTAGATTTAAGCCTCAACAGTATTTTCTTCATTGGGCCAAACCAATTTGAAAATCTTCCTGACA TTGCCTGTTTAAATCTGTCTGCAAATAGCAATGCTCAAGTGTTAAGTGGAACTGAATTTTCAGCCATTCCTCATG TCAAATATTTGGATTTGACAAACAATAGACTTAGACTTTGATAATGCTAGTGCTCTTACTGAATTGTCCGACTTGG AAGTTCTAGATCTCAGCTATAATTCACACTATTTCAGAATAGCAGGCGTAACACATCATCTAGAATTTATTCAAA ATTTCACAAATCTAAAAGTTTTAAACTTGAGCCACAACACATTTATACTTTAACAGATAAGTATAACCTGGAAA GCAAGTCCCTGGTAGAATTAGTTTTCAGTGGCAATCGCCTTGACATTTTGTGGAATGATGATGACAACAGGTATA TCTCCATTTTCAAAGGTCTCAAGAATCTGACACGTCTGGATTTATCCCTTAATAGGCTGAAGCACATCCCAAATG AAGCATTCCTTAATTTGCCAGCGAGTCTCACTGAACTACATATAAATGATAATATGTTAAAGTTTTTTAACTGGA TATCTGACTTTACATCTTCCCTTCGGACACTGCTGCTGAGTCATAACAGGATTTCCCACCTACCCTCTGGCTTTC TTTCTGAAGTCAGTAGTCTGAAGCACCTCGATTTAAGTTCCAATCTGCTAAAAACAATCAACAAATCCGCACTTG AAACTAAGACCACCAAATTATCTATGTTGGAACTACACGGAAACCCCTTTGAATGCACCTGTGACATTGGAG ATTTCCGAAGATGGATGGATCAACATCTGAATGTCAAAATTCCCAGACTGGTAGATGTCATTTGTGCCAGTCCTG GGGATCAAAGAGGGAAGAGTATTGTGAGTCTGGAGCTAACAACTTGTGTTTCAGATGTCACTGCAGTGATATTAT TTTTCTTCACGTTCTTTATCACCACCATGGTTATGTTGGCTGCCCTGGCTCACCATTTGTTTTACTGGGATGTTT GGTTTATATATATATGTGTGTTTAGCTAAGGTAAAAGGCTACAGGTCTCTTTCCACATCCCAAACTTTCTATGATG AGAGCCGAGACAAAAACGTTCTCCTTTGTCTAGAGGAGAGGGATTGGGACCCGGGATTGGCCATCATCGACAACC TCATGCAGAGCATCAACCAAAGCAAGAAAACAGTATTTGTTTTAACCAAAAAATATGCAAAAAAGCTGGAACTTTA AAACAGCTTTTTACTTGGCTTTGCAGAGGCTAATGGATGAGACATGGATGTGATTATATTTATCCTGCTGGAGC CAGTGTTACAGCATTCTCAGTATTTGAGGCTACGGCAGCGGATCTGTAAGAGCTCCATCCTCCAGTGGCCTGACA ACCCGAAGGCAGAAGGCTTGTTTTGGCAAACTCTGAGAAATGTGGTCTTGACTGAAAATGATTCACGGTATAACA ATATGTATGTCGATTCCATTAAGCAATACTAACTGACGTTAAGTCATGATTTCGCGCCCATAATAAAGATGCAAAG GAATGACATTTCTGTATTAGTTATCTATTGCTATGTAACAAATTATCCCAAAACTTAGTGGTTTAAAACAACACA TTTGCTGGCCCACAGTTTTTGAGGGTCAGGAGTCCAGGCCCAGCATAACTGGGTCCTCTGCTCAGGGTGTCTCAG AGGCTGCAATGTAGGTGTTCACCAGAGACATAGGCATCACTGGGGTCACACTCATGTGGTTGTTTTTCTGGATTCA ATCAGAGCTAGCAAAAAAGAGAGGTTGCTAGCAAGATGAAGTCACAATCTTTTGTAATCGAATCAAAAAAGTGAT ATCTCATCACTTTGGCCATATTCTATTTGTTAGAAGTAAACCACAGGTCCCACCAGCTCCATGGGAGTGACCACC TCAGTCCAGGGAAAACAGCTGAAGACCAAGATGGTGAGCTCTGATTGCTTCAGTTGGTCATCAACTATTTTCCCT TGACTGCTGTCCTGGGATGGCCTGCTATCTTGATGATAGATTGTGAATATCAGGAGGCAGGGATCACTGTGGACC ATCTTAGCAGTTGACCTAACACATCTTCTTTTCAATATCTAAGAACTTTTGCCACTGTGACTAATGGTCCTAATA ${\tt TTAAGCTGTTGTTTATATTTATCATATATCTATGGCTACATGGTTATATTATGCTGTGGTTGCGTTCGGTTTTAT}$ TTACAGTTGCTTTTACAAATATTTTGCTGTAACATTTGACTTCTAAGGTTTAGATGCCATTTAAGAACTGAGATGG ATAGCTTTTAAAGCATCTTTTACCTTCTTACCATTTTTTAAAAGTATGCAGCTAAATTCGAAGCTTTTGGTCTATA

MENMFLQSSMLTCIFLLISGSCELCAEENFSRSYPCDEKKQNDSVIAECSNRRLQEVPQTVG KYVTELDLSDNFITHITNESFQGLQNLTKINLNHNPNVQHQNGNPGIQSNGLNITDGAFLNL KNLRELLLEDNQLPQIPSGLPESLTELSLIQNNIYNITKEGISRLINLKNLYLAWNCYFNKV CEKTNIEDGVFETLTNLELLSLSFNSLSHVPPKLPSSLRKLFLSNTQIKYISEEDFKGLINL ${ t TLLDLSGNCPRCFNAPFPCVPCDGGASINIDRFAFQNLTQLRYLNLSSTSLRKINAAWFKNM}$ PHLKVLDLEFNYLVGEIVSGAFLTMLPRLEILDLSFNYIKGSYPQHINISRNFSKLLSLRAL HLRGYVFQELREDDFQPLMQLPNLSTINLGINFIKQIDFKLFQNFSNLEIIYLSENRISPLV KDTRQSYANSSSFQRHIRKRRSTDFEFDPHSNFYHFTRPLIKPQCAAYGKALDLSLNSIFFI GPNQFENLPDIACLNLSANSNAQVLSGTEFSAIPHVKYLDLTNNRLDFDNASALTELSDLEV LDLSYNSHYFRIAGVTHHLEFIQNFTNLKVLNLSHNNIYTLTDKYNLESKSLYELVFSGNRL DILWNDDDNRYISIFKGLKNLTRLDLSLNRLKHIPNEAFLNLPASLTELHINDNMLKFFNWT LLQQFPRLELLDLRGNKLLFLTDSLSDFTSSLRTLLLSHNRISHLPSGFLSEVSSLKHLDLS SNLLKTINKSALETKTTTKLSMLELHGNPFECTCDIGDFRRWMDEHLNVKIPRLVDVICASP GDQRGKSIVSLELTTCVSDVTAVILFFFTFFITTMVMLAALAHHLFYWDVWFIYNVCLAKVK GYRSLSTSQTFYDAYISYDTKDASVTDWVINELRYHLEESRDKNVLLCLEERDWDPGLAIID NLMQSINQSKKTVFVLTKKYAKSWNFKTAFYLALQRLMDENMDVIIFILLEPVLQHSQYLRL RQRICKSSILQWPDNPKAEGLFWQTLRNVVLTENDSRYNNMYVDSIKQY

Signal sequence: amino acids 1-26

Transmembrane domain: amino acids 826-848

CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCT CGACCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGA CAGGCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGC AAGGGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGGC TCCAGCAGCATCAGCAGCCCCCAGGACCGGGGAGGCACAGGTGGCCCCCACCACCGGAGGA GCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAA GGCCACCCGCCTGGAGGCACAGGCCATGAGGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTT CCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCA CCACCTGCGACGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGC CGCAGCCCTGGCCCGGCCCGGCCTGCCAGGCCTCGCTGCCCCGGCTGCAAGAGGAC CAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGCCGCCATGCCGGAACGGAGGGA GCTGTGTCCAGCCTGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCA GATGTGGATGAATGCAGTGCTAGGAGGGGGGGGCTGTCCCCAGCGCTGCATCAACACCGCCGG CCAAGGGAGGCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCAATGAAGGAA GAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGC CCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCC GAGGAGCAGCTGGGGTCCTGCTGCAAGAAAGACTCGTGACTGCCCAGCGCCCCAGGCTG GACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGCCCCTGCCCAACATGCTGGGGGTCCAG AAGCCACCTCGGGGTGACTGAGCGGAAGGCCAGGCAGGCCTTCCTCCTCTCCTCCCCC TTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCAC CCCTGGCTACCCCACCCTGGCTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCAGCTG AGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGACCCATGGCACAGGCCAGGCAGCCCGGAG GCTGGGTGGGGCCTCAGTGGGGGCTGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTGA CGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAAT

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR CPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

GCCAGGCAGGTGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAG GGCTAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGGCCACCATGGCCACGCCTGGGCTCC AGCAGCATCAGAGCAGCCCCTGTGGTTGGCAGCAAAGTTCAGCTTGGCTGGGCCCGCTGTGA GGGGCTTCGCGCTACGCCCTGCGGTGTCCCGAGGGCTGAGGTCTCCTCATCTTCTCCCTAGC AGTGGATGAGCAACCCAACGGGGGCCCGGGGAGGGAACTGGCCCCGAGGGAGAGGAACCCC AAAGCCACATCTGTAGCCAGGATGAGCAGTGTGAATCCAGGCAGCCCCCAGGACCGGGGAGG CACAGGTGGCCCCACCACCACCGGAGGAGCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTC TCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCCGCCTGGAGGCACAGGCCATGAGGGGC TCTCAGGAGGTGCTGATGTGGCTTCTGGTGTTGGCAGTGGGCGGCACAGAGCACGCCTA CCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCG TGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTAC CGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCTGCCAGGCCTCGCTA CGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGGCCTGTGGAGCAGCAATAT GCCAGCCGCCATGCCGGAACGGAGGGAGCTGTCCAGCCTGGCCGCTGCCGCTGCCA GGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTG TCCCCAGCGCTGCATCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCC TGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCG ACAGGAGTGGACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCT GGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGC ATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCATCGAC $\tt CTCG\underline{TGA} \tt CTGCCCAGCGCTCCAGGCTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATG$ CCCCTGCCCAACATGCTGGGGGTCCAGAAGCCACCTCGGGGTGACTGAGCGGAAGGCCAGGC AGGGCCTTCCTCCTCCTCCCCCTTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGAT GGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACCCCCACCCTGGCTACCCCAACGGCA TCCCAAGGCCAGGTGGACCCTCAGCTGAGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGAC CCATGGCACAGGCCAGGCAGCCCGGAGGCTGGGTGGGGCCTCAGTGGGGGGCTGCCTGAC CCCCAGCACAATAAAAATGAAACGTG

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR CPAGWRGDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

CCCACGCGTCCGAAGCTGGCCCTGCACGGCTGCAAGGGAGGCTCCTGTGGACAGGCCAGGCA GGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGCTAGGG TCCATCTCCAGTCCCAGGACACAGCAGCGCCACCATGGCCACGCCTGGGCTCCAGCAGCAT CAGCAGCCCCCAGGACCGGGGAGGCACAGGTGGCCCCCACCACCGGGAGGAGCAGCTCCTGC CCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCCGC CTGGAGGCACAGGCCATGAGGGGCTCTCAGGAGGTGCTGATGTGGCTTCTGGTGTTGGC AGTGGGCGCACAGAGCACGCCTACCGGCCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACG GGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGAC GGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGG GCTGGCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCTTC CTGGGGCCTGTGGAGCAGTATGCCAGCCGCCATGCCGGAACGGAGCGGAGCTGTCCAG CCTGGCCGCTGCCCTGCAGGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGA ATGCAGTGCTAGGAGGGGGGGTGTCCCCAGCGCTGCGTCAACACCGCCGGCAGTTACTGGT GCTGCAGTCCAGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGTGCTGGCCCCACTGCACA GCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCC ${\tt TTCCAGCAGCTCGGCCGCA'ICGACTCCCTGAGCGAGCAGATTTCCTTCCTGGAGGAGCAGCT}$ GGGGTCCTGCTGCAAGAAAGACTCGTGACTGCCCAGCGCCCCAGGCTGGACTGAGCCCC TCACGCCGCCCTGCAGCCCCATGCCCCAACATGCTGGGGGTCCAGAAGCCACCTCG GGGTGACTGAGCGGAAGGCCAGGCAGGCCTTCCTCCTCTCTCCTCCCCCTTCCTCGGGAG GCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACC CCCACCCTGGCTACCCCAACGGCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAGGTAC CCTCAGTGGGGGCTGCTGCCTGACCCCCAGCACAATAAAAATGAAACGTG

TODIVOCA LODICA

FIGURE 217

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRAC
STYRTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCR
CPAGWRGDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVA
PNPTGVDSAMKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLG
RIDSLSEQISFLEEQLGSCSCKKDS

Signal sequence:

1-19

GGTTGCCACAGCTGGTTTAGGGCCCCGACCACTGGGGCCCCTTGTCAGGAGGAGACAGCCTCCCGGCCCGGGGAG AGTTGGGTCTCCGTGTTTCAGGCCGGCTCCCCCTTCCTGGTCTCCCCTTCTCCCGCTGGGCCGGTTTATCGGGAGG AGATTGTCTTCCAGGGCTAGCAATTGGACTTTTGATGATGTTTGACCCAGCGGCAGGAATAGCAGGCAACGTGAT TTCAAAGCTGGGCTCAGCCTCTGTTTCTTCTCTCGTGTAATCGCAAAACCCATTTTGGAGCAGGAATTCCAATC<u>A</u> ATGGCCGCGTCATGATGGCCCGGCAAAAGGGCATTTTCTACCTGACCCTTTTCCTCATCCTGGGGACATGTACAC TCTTCTTCGCCTTTGAGTGCCGCTACCTGGCTGTTCAGCTGTCTCCTGCCATCCCTGTATTTGCTGCCATGCTCT TCCTTTTCTCCATGGCTACACTGTTGAGGACCAGCTTCAGTGACCCTGGAGTGATTCCTCGGGCGCTACCAGATG AAGCAGCTTTCATAGAAATGGAGATAGAAGCTACCAATGGTGCGGTGCCCCAGGGCCAGCGACCACCGCCTCGTA TCAAGAATTTCCAGATAAACAACCAGATTGTGAAACTGAAATACTGTTACACATGCAAGATCTTCCGGCCTCCCC CTCTCAACCAGACAACCAATGAAGACATCAAAGGATCATGGACAGGGAAGAATCGCGTCCAGAATCCCTACAGCC ATGGCAATATTGTGAAGAACTGCTGTGAAGTGCTGTGTGGCCCCCTTGCCCCCAGTGTGCTGGATCGAAGGGGTA TTTTGCCACTGGAGGAAAGTGGAAGTCGACCTCCCAGTACTCAAGAGACCAGTAGCAGCCTCTTGCCACAGAGCC CAGCCCCCACAGAACACCTGAACTCAAATGAGATGCCGGAGGACAGCAGCACTCCCGAAGAGATGCCACCTCCAG TAATTAGGGCTATGAGAGATTTCAGGTGAGAAGTTAAACCTGAGACAGAGGAGCAAGTAAGCTGTCCCTTTTAACT ${ t GTTTTCTTTGGTCTTTAGTCACCCAGTTGCACACTGGCATTTTCTTGCTGCAAGCTTTTTTAAATTTCTGAACT$ CAAGGCAGTGGCAGAAGATGTCAGTCACCTCTGATAACTGGAAAAATGGGTCTCTTGGGCCCTGGCACTGGTTCT CCATGGCCTCAGCCACAGGGTCCCCTTGGACCCCTCTCTTCCCTCCAGATCCCAGCCCTCCTGCTTGGGGTCAC TGGTCTCATTCTGGGGCTAAAAGTTTTTGAGACTGGCTCAAATCCTCCCAAGCTGCTGCACGTGCTGAGTCCAGA GGCAGTCACAGAGACCTCTGGCCAGGGGATCCTAACTGGGTTCTTGGGGTCTTCAGGACTGAAGAGGAGGAGAG TGGGGTCAGAAGATCTCCTGGCCACCAAGTGCCAGCATTGCCCACAAATCCTTTTAGGAATGGGACAGGTACCT CAGGAATGGCAGTAATAAAAGTCTGCACTTTGGTCATTTCTTTTCCTCAGAGGAAGCCCGAGTGCTCACTTAAAC ACTATCCCCTCAGACTCCCTGTGTGAGGCCTGCAGAGGCCCTGAATGCACAAATGGGAAACCAAGGCACAGAGAG CGGCTGAGTGAGGGAAAGCCCAGCACTGCTGCCCTCTCGGGTAACTCACCCTAAGGCCTCGGCCCACCTCTGGCT ATGGTAACCACACTGGGGGCTTCCTCCAAGCCCCGCTCTTCCAGCACTTCCACCGGCAGAGTCCCAGAGCCACTT CACCCTGGGGGTGGGCTGTGGCCCCCAGTCAGCTCTGCTCAGGACCTGCTCTATTTCAGGGAAGAGATTTATGT ATTATATGTGGCTATATTTCCTAGAGCACCTGTGTTTTCCTCTTTCTAAGCCAGGGTCCTGTCTGGATGACTTAT GCGGTGGGGGAGTGTAAACCGGAACTTTTCATCTATTTGAAGGCGATTAAACTGTGTCTAATGCA

MSVMVVRKKVTRKWEKLPGRNTFCCDGRVMMARQKGIFYLTLFLILGTCTLFFAFECRYLAV QLSPAIPVFAAMLFLFSMATLLRTSFSDPGVIPRALPDEAAFIEMEIEATNGAVPQGQRPPP RIKNFQINNQIVKLKYCYTCKIFRPPRASHCSICDNCVERFDHHCPWVGNCVGKRNYRYFYL FILSLSLLTIYVFAFNIVYVALKSLKIGFLETLKETPGTVLEVLICFFTLWSVVGLTGFHTF LVALNQTTNEDIKGSWTGKNRVQNPYSHGNIVKNCCEVLCGPLPPSVLDRRGILPLEESGSR PPSTQETSSSLLPQSPAPTEHLNSNEMPEDSSTPEEMPPPEPPPQEAAEAEK

Putative transmembrane domains:

amino acids 36-55 (type II TM), 65-84, 188-208, 229-245

AAAACCCTGTATTTTTTACAATGCAAATAGACAATNANCCTGGAGGTCTTTGAATTAGGTAT
TATAGGGATGGTGGGGTTGATTTTTNTTCCTGGAGGCTTTTGGCTTTTGGACTCTCNCTTTCT
CCCACAGAGCNCTTCGACCATCACTGCCCCTGGGTGGGGAATTGTGTTTGGAAAGAGGAACTA
CCGCTANTTCTACCTCTTCATCCTTTNTCTCTCCCNCCTCACAATCTATGTCTTCGCCTTCA
ACATCGT

GTTGTGTCCTTCAGCAAAACAGTGGATTTAAATCTCCTTGCACAAGCTTGAGAGCAACACAA TCTATCAGGAAAGAAAGAAAAAAAAACCGAACCTGACAAAAAAGAAGAAAAAAGAAGAAGA AAAAAAATCATGAAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAATCTTCAC GGGGCTGCTGTGTCTCTTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTTCC CCAAAGCTATGGACAACGTGACGGTCCGGCAGGGGGAGAGCGCCACCCTCAGGTGCACTATT GACAACCGGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTATGCTGGGAATGA CAAGTGGTGCCTGGATCCTCGCGTGGTCCTTCTGAGCAACACCCAAACGCAGTACAGCATCG CACCCAAAGACCTCTAGGGTCCACCTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATTTC TTCAGATATCTCCATTAATGAAGGGAACAATATTAGCCTCACCTGCATAGCAACTGGTAGAC GAATACTTGGAAATTCAGGGCATCACCCGGGAGCAGTCAGGGGACTACGAGTGCAGTGCCTC CAATGACGTGGCCGCGCCCGTGGTACGGAGAGTAAAGGTCACCGTGAACTATCCACCATACA TTTCAGAAGCCAAGGGTACAGGTGTCCCCGTGGGACAAAAGGGGACACTGCAGTGTGAAGCC TCAGCAGTCCCCTCAGCAGAATTCCAGTGGTACAAGGATGACAAAAGACTGATTGAAGGAAA GAAAGGGGTGAAAGTGGAAAACAGACCTTTCCTCTCAAAACTCATCTTCTTCAATGTCTCTG AACATGACTATGGGAACTACACTTGCGTGGCCTCCAACAAGCTGGGCCACCACCAATGCCAGC ATCATGCTATTTGGTCCAGGCGCCGTCAGCGAGGTGAGCAACGGCACGTCGAGGAGGGCAGG $\tt CTGCGTCTGGCTGCTCTTCTGGTCTTGCACCTGCTTCTCAAATTT\underline{TGA}TGTGAGTGCC$ ACTTCCCCACCGGGAAAGGCTGCCGCCACCACCACCACCAACACACAGCAATGGCAACAC CGACAGCAACCAATCAGATATATACAAATGAAATTAGAAGAAACACAGCCTCATGGGACAGA AATTTGAGGGAGGGGAACAAAGAATACTTTGGGGGGAAAAGAGTTTTAAAAAAGAAATTGAA AATTGCCTTGCAGATATTTAGGTACAATGGAGTTTTCTTTTCCCAAACGGGAAGAACACAGC ACACCCGGCTTGGACCCACTGCAAGCTGCATCGTGCAACCTCTTTGGTGCCAGTGTGGGCAA GGGCTCAGCCTCTCTGCCCACAGAGTGCCCCCACGTGGAACATTCTGGAGCTGGCCATCCCA AATTCAATCAGTCCATAGAGACGAACAGAATGAGACCTTCCGGCCCAAGCGTGGCGCTGCGG GCACTTTGGTAGACTGTGCCACCACGGCGTGTGTTGTGAAACGTGAAATAAAAAGAGCAAAA AAAAA

MKTIQPKMHNSISWAIFTGLAALCLFQGVPVRSGDATFPKAMDNVTVRQGESATLRCTIDNR
VTRVAWLNRSTILYAGNDKWCLDPRVVLLSNTQTQYSIEIQNVDVYDEGPYTCSVQTDNHPK
TSRVHLIVQVSPKIVEISSDISINEGNNISLTCIATGRPEPTVTWRHISPKAVGFVSEDEYL
EIQGITREQSGDYECSASNDVAAPVVRRVKVTVNYPPYISEAKGTGVPVGQKGTLQCEASAV
PSAEFQWYKDDKRLIEGKKGVKVENRPFLSKLIFFNVSEHDYGNYTCVASNKLGHTNASIML
FGPGAVSEVSNGTSRRAGCVWLLPLLVLHLLLKF

Signal peptide:

amino acids 1-28

ATCACCGCCTGGCCCGACTCCACCATGAACGTCGCGCTGCAGGAGCTGGGAGCTGGCAGCAACGTGGGATTCCAG AAGGGGACAAGACAGCTGTTAGGCTCACGCACGCAGCTGGAGCTGGTCTTAGCAGGTGCCTCTCTACTGCTGGCT GCACTGCTTCTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCATCCCACAGCACCTGCCTTACA GAGGCCTGCATTCGAGTGGCTGGAAAAATCCTGGAGTCCCTGGACCGAGGGGTGAGCCCCTGTGAGGACTTTTAC CAGTTCTCCTGTGGGGGCTGGATTCGGAGGAACCCCCTGCCCGATGGGCGTTCTCGCTGGAACACCTTCAACAGC CAGAAGACACAGCGCTTCTACCTATCTTGCCTACAGGTGGAGCGCATTGAGGAGCTGGGAGCCCAGCCACTGAGA GACCTCATTGAGAAGATTGGTGGTTGGAACATTACGGGGCCCTGGGACCAGGACAACTTTATGGAGGTGTTGAAG GCAGTAGCAGGACCTACAGGGCCACCCCATTCTTCACCGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAGC AATGTTATCCAGGTGGACCAGTCTGGGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAG GAGGAGAAGATCTACCACAAGATGAGCATTTCGGAGCTGCAGGCTCTGGCGCCCTCCATGGACTGGCTTGAGTTC CTGTCTTTCTTGCTGTCACCATTGGAGTTGAGTGACTCTGAGCCTGTGGTGGTGTATTGGGATTGTTTTGCAG CAGGTGTCAGAGCTCATCAACCGCACGGAACCAAGCATCCTGAACAATTACCTGATCTGGAACCTGGTGCAAAAG ACAACCTCAAGCCTGGACCGACGCTTTGAGTCTGCACAAGAGAGCTGCTGGAGACCCTCTATGGCACTAAGAAG TCCTGTGTGCCGAGGTGGCAGACCTGCATCTCCAACACGGATGACGCCCTTGGCTTTGCTTTGGGGTCACTCTTC GTGAAGGCCACGTTTGACCGGCAAAGCAAAGAAATTGCAGAGGGGATGATCAGCGAAATCCGGACCGCATTTGAG GAGGCCCTGGGACAGCTGGTTTGGATGAGAGAAGACCCGCCAGGCAGCCAAGGAGAAAGCAGATGCCATCTAT GATATGATTGGTTTCCCAGACTTTATCCTGGAGCCCAAAGAGCTGGATGATGTTTATGACGGGTACGAAATTTCT GAAGATTCTTTCTACAAAACATGTTGAATTTGTACAACTTCTCTGCCAAGGTTATGGCTGACCAGCTCCGCAAG CCTCCCAGCCGAGACCAGTGGAGCATGACCCCCCAGACAGTGAATGCCTACTACCTTCCAACTAAGAATGAGATC GTCTTCCCCGCTGGCATCCTGCAGGCCCCCTTCTATGCCCGCAACCACCCCAAGGCCCTGAACTTCGGTGGCATC GGTGTGGTCATGGGCCATGACTTGACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGGAACCTG CGGCCCTGGTGGCAGAATGAGTCCCTGGCAGCCTTCCGGAACCACACGGCCTGCATGGAGGAACAGTACAATCAA TACCAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGAGAACATTACTGACAACGGGGGGCTGAAG AACCACCAGCTCTTCTTCGTGGGATTTGCCCAGGTGTGGTGCTCGGTCCGCACACCAGAGAGCTCTCACGAGGGG CTGGTGACCGACCCCCACAGCCCTGCCCGCTTCCGCGTGCTGCGGCACTCTCTCCAACTCCCGTGACTTCCTGCGG $\tt CACTTCGGCTGCCCTGTCGGCTCCCCCATGAACCCAGGGCAGCTGTGTGAGGTGTGG\underline{TAG}ACCTGGATCAGGGGA$ ${\tt GAAATGGCCAGCTGTCACCAGACCTGGGGCAGCTCTCCTGACAAAGCTGTTTGCTCTTGGGTTGGGAGGAAGCAA}$ ATGCAAGCTGGGCTGGGTCTAGTCCCTCCCCCCACAGGTGACATGAGTACAGACCCTCCTCAATCACCACATTG TGCCTCTGCTTTGGGGGTGCCCCTGCCTCCAGCAGAGCCCCCACCATTCACTGTGACATCTTTCCGTGTCACCCT

MNVALQELGAGSNVGFQKGTRQLLGSRTQLELVLAGASLLLAALLLGCLVALGVQYHRDPSH
STCLTEACIRVAGKILESLDRGVSPCEDFYQFSCGGWIRRNPLPDGRSRWNTFNSLWDQNQA
ILKHLLENTTFNSSSEAEQKTQRFYLSCLQVERIEELGAQPLRDLIEKIGGWNITGPWDQDN
FMEVLKAVAGTYRATPFFTVYISADSKSSNSNVIQVDQSGLFLPSRDYYLNRTANEKVLTAY
LDYMEELGMLLGGRPTSTREQMQQVLELEIQLANITVPQDQRRDEEKIYHKMSISELQALAP
SMDWLEFLSFLLSPLELSDSEPVVVYGMDYLQQVSELINRTEPSILNNYLIWNLVQKTTSSL
DRRFESAQEKLLETLYGTKKSCVPRWQTCISNTDDALGFALGSLFVKATFDRQSKEIAEGMI
SEIRTAFEEALGQLVWMDEKTRQAAKEKADAIYDMIGFPDFILEPKELDDVYDGYEISEDSF
FQNMLNLYNFSAKVMADQLRKPPSRDQWSMTPQTVNAYYLPTKNEIVFPAGILQAPFYARNH
PKALNFGGIGVVMGHELTHAFDDQGREYDKEGNLRPWWQNESLAAFRNHTACMEEQYNQYQV
NGERLNGRQTLGENITDNGGLKAAYNAYKAWLRKHGEEQQLPAVGLTNHQLFFVGFAQVWCS
VRTPESSHEGLVTDPHSPARFRVLGTLSNSRDFLRHFGCPVGSPMNPGOLCEVW

Type II Transmembrane domain:

amino acids 32-57

GCGGTGCCTGGGACCCGGGGCAGCCCCCGGGGCGCGCACACGGCGCGAGCTGGGCAGCCCCCAGC GGAGCCATTCGGGGTGATGCGCTGCGTGCTGCGCCTGCGAGGCGCAGTGGGGTCGCCGTACCAGGGGCCCTGG CAGGGTCAGCTGCAAGAACATCAAACCAGAGTGCCCAACCCCGGCCTGTGGGCAGCCGCGCCAGCTGCCGGGACA CTGCTGCCAGACCTGCCCCCAGGACTTCGTGGCGCTGCTGACAGGCCCAGGTCGCAGGCGGTGGCACGAGCCCG AGTCTCGCTGCTGCGCTCTAGCCTCCGCTTCTCTATCTCCTACAGGCGGCTGGACCGCCCTACCAGGATCCGCTT CCCTTCAGGGGAGGTCTGGGGGCCTCTCATCCGGCACCGGGCCCTGTCCCCAGAGACCTTCAGTGCCATCCTGAC TCTAGAAGGCCCCCACCAGCAGGGCGTAGGGGGCATCACCCTGCTCACTCTCAGTGACACAGAGGACTCCTTGCA TTTTTTGCTGCTCTTCCGAGGCCTTGCAGGACTAACCCAGGTTCCCTTGAGGCTCCAGATTCTACACCAGGGGCA GCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAGGAACCAGGCTTTGCTGAGGTGCTGCCCAACCTGACAGT CAGTGGACACATTGCTGCCAGGAAGAGCTGCGACGTCCTGCAAAGTGTCCTTTGTGGGGCTAATGCCCTGATCCC ${\tt AGTCCAAACGGGTGCTGCCGGCTCAGCCTCACTCTGCTAGGAAATGGCNCCCTGATCCTCCAGGTGCAATT}$ GGTAGGGACAACCAGTGAGGTGGTGGCCATGACACTGGAAACCAAGCCTCAGCGGAGGGATCAGCCCACTGTCCT GTGCCACATGGCTGGCCTATCCTCCCCTGCCCCCAGGCCGTGGGTATCTGCCCTGGGCTGGGGTGCCCGAGGGGGC ${\tt ACGTGGCTGCCCTACTGTGGGGGCATAGCGCCCGCCCTGCCCCTAGCAGGAGCCCTGGTGCTACCC}$ CCCTGTGAAGAGCCAAGCAGCAGGCACGCCTGGCTTTCCTTGGATACCCACTGTCACCTGCACTATGAAGTGCT GCACCTGGCAAAAGGCATGGCTTCCCTGATGATCACCACCAAGGTAGCCCCAGAGGGGAGCTCCGAGGGCAGCCT CAAACCTGGTGGTCCTGGGCGGCCCCGAGACCCCAACACTGCTTCTTCGAGGGGCAGCAGCAGCCCCCCACGGGGC TCGCTGGGCGCCCAACTACGACCCGCTCTGCTCACTCTGCACCTGCCAGAGACGAACGGTGATCTGTGACCCGGT GGTGTGCCCACCGCCCAGCTGCCCACACCCGGTGCAGGCTCCCGACCAGTGCTGCCCTGTTTGCCCTGGCTGCTA GTGTGCTGTCTGCACCTGCAAGCAGGGGGGCACTGGAGAGGTGCACTGTGAGAAGGTGCAGTGTCCCCGGCTGGC $\tt CTGTGCCCAGCCTGTGCGAACCCCACCGACTGCTGCAAACAGTGTCCAGGTGAGGCCCACCCCCAGCTGGG$ GGACCCCATGCAGGCTGATGGGCCCCGGGGCTGCCGTTTTGCTGGGCAGTGGTTCCCAGAGAGTCAGAGCTGGCA ${\tt CCCCTCAGTGCCCCCGTTTGGAGAGATGAGCTGTATCACCTGCAGATGTGGGGGTAAGTGGGGAGCAGAGGCTTGT}$ GTGAGGTGGGTACTGGGAGCCTGGTCTGGAGTAGGGAGACCTTCCCAGGGAGGTCCCTGAAGAAGCTGAAGGTCA GGGATGACTGTTCACTGCCACTGTCCTGTGGCTCGGGGAAGGAGAGTCGATGCTGTTCCCGCTGCACGGCCCACC ACCTGGTGGAATTGTTATTTATGACCTTTTCTTTACAAATGAGATTTCTGAAGCTCAGAGAAATTAAGCAACGAG ${ t ATGAAGGTCACCCAGCTGTGTGCACTGACCTGTTTAGAAAATACTGGCCTTTCTGGGACCAAGGCAGGGATGCTT}$ AAGTGACCAAGAGGATGGGGCCTGAGCTGGGGAAGGGGTGGCATCGAGGACCTTCTTGCATTCTCCTGTGGGAAG ${\tt CCCAGTGCCTTTGCTCCTGTCCTGCCTCTACTCCCACCCCCACTACCTCTGGGAACCACAGCTCCACAAGGGG}$ ${\tt GAGAGGCAGCTGGGCCAGACCGAGGTCACAGCCACTCCAAGTCCTGCCACCCTCGGCCTCTGTCCTGGAA}$ GCCCCACCCTTTCTTCCTGTACATAATGTCACTGGCTTGTTGGGATTTTTAATTTATCTTCACTCAGCACCAAG ATTTCTTTTTCAGTCTTTGGGCATGAGGTTGGCTCTTTGTGGCCAGGAACCTGAGTGGGGCCTGGTGGAGAAGGG ${\tt CGTGGCNNTTGGCTGGCATNCCTGGGTTCCGCAGAGGGGCTGGGGATGGTTCTTGAGATGGTCTAGAGACTCAAG}$ AATTTAGGGAAGTAGAAGCAGGATTTTGACTCAAGTTTAGTTTCCCACATCGCTGGCCTGTTTGCTGACTTCATG TTTGAAGTTGCTCCAGAGAGAGAATCAAAGGTGTCACCAGCCCCTCTCTCCCTTCCCTTCCCTTCCCTTTCT TTCCCTCCCCTCCCCTCCCCTCC

GGCCGAGCGGGGGTGCTGCGCGGCGGCCGTGATGGCTGGTGACGGCGGGCCGGGCAGGGGA CCGGGGCCGGGCCCGGGGCCAGCTGCCGGGAGCCCTGAATCACCGCCTGGCCCGAC TCCACCATGAACGTCGCGCTGCAGGAGCTGGGAGCTGGCAACGTGGGATTCCAGAAGGG GACAAGACAGCTGTTAGGCTCACGCACGCAGCTGGAGCTGGTCTTAGCAGGTGCCTCTCTAC TGCTGGCTGCACTGCTTCTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCA TCCCACAGCACCTGCCTTACAGAGGCCTGCATTCGAGTGGCTGGAAAAATCCTGGAGTCCCT GGACCGAGGGGTGAGCCCCTGTGAGGACTTTTACCAGTTCTCCTGTGGGGGCTGGATTCGGA GGAACCCCCTGCCCGATGGGCGTTCTCGCTGGAACACCCTTCAACAGCCTCTGGGACCAAAAC CAGGCCATACTGAAGCACCTGCTTGAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAGCA GAAGACACAGCGCTTCTACCTATCTTGCCTACAGGTGGAGCGCATTGAGGAGCTGGGAGCCC AGCCACTGAGAGACCTCATTGAGAAGATTGGTGGTTGGAACATTACGGGGCCCTGGGACCAG GACAACTTTATGGAGGTGTTGAAGGCAGTAGCAGGGACCTACAGGGCCACCCCATTCTTCAC CGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAGCAATGTTATCCAGGTGGACCAGTCTG GGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAGAAAGTAAGGAAC ATCTTCCGAACCCCCATCCCTACCCCTGGCTGAGCTGGGCTGATCCCTGTTGACTTTTCCCT TTGCCAAGGGTCAGAGCAGGGAAGGTGAGCCTATCCTGTCACCTAGTGAACAAACTGCCCCT TCTTATTCTTCTAGTAGGTTTCATAGACACCTACTGTGTGCCAGGTCCAGTGGGGGAATTCG GAGATATAAGTTTCCGAGCCATTGCCACAGGAAGCGTTCAGTGTCGATGGGTTCATGGACCT AGATAGGCTGATAACAAAGCTCACAAGAGGGTCCTGAGGATTCAGGAGAGACTTATGGAGCC AGCAAAGTCTTCCTGAAGAGATTGCATTTGAGCCAGGTCCTGTAG

ATGCCTACTACCTTCCAACTAAGAATGAGATCGTCTTCCCCGCTGGCATCCTGCAGGCCCCC TTCTATGCCCGCAACCACCCCAAGGCCCTGAACTTCGGTGGCATCGGTGTGGTCATGGGCCA TGAGTTGACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGGAACCTGCGGC CCTGGTGGCAGAATGAGTCCCTGGCAGCCTTCCGGAACCACGGCCTGCATGGAGGAACAG TACAATCAATACCAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGAGAACAT TGCTGACAACGGGGGGCTGAAGGCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATG GGGAGGAGCAGCAGCCAGCCGTGGGGCTCACCAACCACCAGCTCTTCTTCGTGGGATTT CCACAGCCCTGCCGCGTTCCGCGTGCTGGGCACTCTCTCCAACTCCCGTGACTTCCTGCGGC ACTTCGGCTGCCCTGTCGGCTCCCCCATGAACCCAGGGCAGCTGTGTGAGGTGTGGTAGACC TGGATCAGGGGAGAAATGGCCAGCTGTCACCAGACCTGGGGCAGCTCTCCTGACAAAGCTGT GGTGACATGAGTACAGACCCTCCTCAATCACCACATTGTGCCTCTGCTTTGGGGGGTGCCCCT GTCTGGGTGGGGAGGCCAGTTCCCATAGGAAGGAGTCTGCCTCTTCTGTCCCCAGGCTCACT CAGCCTGGCGGCCATGGGGCCTGCCGTGCCCCACTGTGACCCACAGGCCTGGGTGGTG TACCTCCTGGACTTCTCCCCAGGCTCACTCAGTGCGCACTTAGGGGTGGACTCAGCTCTGTC TGGCTCACCCTCACGGGCTACCCCCACCTCACCCTGTGCTCCTTGTGCCACTGCTCCCAGTG CTGCTGCTGACCTTCACTGACAGCTCCTAGTGGAAGCCCAAGGGCCTCTGAAAGCCTCCTGC TGCCCACTGTTTCCCTGGGCTGAGAGGGGGAAGTGCATATGTGTAGCGGGTACTGGTTCCTGT GTCTTAGGGCACAAGCCTTAGCAAATGATTGATTCTCCCTGGACAAAGCAGGAAAGCAGATA GAGCAGGGAAAAGGAAGAACAGAGTTTATTTTTACAGAAAAGAGGGTGGGAGGGTGTGGTCT TGGCCCTTATAGGACC

CCCACGCGTCCGAGCCCCCGAGAATTAGACACTCCGGACGCGGCCAAAAGCAACCGAGA AAAAAAAAAATCCTGTGGCGCGCCGCCTGGTTCCCGGGAAGACTCGCCAGCACCAGGGGG TGGGGGAGTGCGAGCTGAAAGCTGCTGGAGAGTGAGCAGCCCTAGCAGGGATGGACATGATG CTGTTGGTGCAGGGTGCTTGTTGCTCGAACCAGTGGCTGCCGGCGGGGGGTGCTCCTCAGCCTGTG CTGCCTGCTACCCTCCTGCCTCCCGGCTGGACAGAGTGTGGACTTCCCCTGGGCGGCCGTGG ACAACATGATGGTCAGAAAAGGGGACACGGCGGTGCTTAGGTGTTATTTGGAAGATGGAGCT ${ t TCAAAGGGTGCCTGGCTGAACCGGTCAAGTATTATTTTTGCGGGAGGTGATAAGTGGTCAGT$ GGATCCTCGAGTTTCAATTTCAACATTGAATAAAAGGGACTACAGCCTCCAGATACAGAATG ATGCAGGTGCATCTAACTGTGCAAGTTCCTCCTAAGATATATGACATCTCAAATGATATGAC CGTCAATGAAGGAACCAACGTCACTCTTACTTGTTTGGCCACTGGGAAACCAGAGCCTTCCA TTTCTTGGCGACACATCTCCCCATCAGCAAAACCATTTGAAAATGGACAATATTTGGACATT TATGGAATTACAAGGGACCAGGCTGGGGAATATGAATGCAGTGCGGAAAATGCTGTGTCATT CCCAGATGTGAGGAAAGTAAAAGTTGTTGTCAACTTTGCTCCTACTATTCAGGAAATTAAAT CTGGCACCGTGACCCCGGACGCAGTGGCCTGATAAGATGTGAAGGTGCAGGTGTGCCGCCT CCAGCCTTTGAATGGTACAAAGGAGAGAGAAGCTCTTCAATGGCCAACAAGGAATTATTAT TCAAAATTTTAGCACAAGATCCATTCTCACTGTTACCAACGTGACACAGGAGCACTTCGGCA CCAAGTACAGCCCAGTATGGAATTACCGGGAGCGCTGATGTTCTTTTCTCCTGCTGGTACCT TGTGTTGACACTGTCCTCTTTCACCAGCATATTCTACCTGAAGAATGCCATTCTACAA<u>TAA</u>A ${ t TTCAAAGACCCATAAAAGGCTTTTAAGGATTCTCTGAAAGTGCTGATGGCTGGATCCAATCT}$ GGTACAGTTTGTTAAAAGCAGCGTGGGATATAATCAGCAGTGCTTACATGGGGATGATCGCC TTCTGTAGAATTGCTCATTATGTAAATACTTTAATTCTACTCTTTTTTGATTAGCTACATTA CCTTGTGAAGCAGTACACATTGTCCTTTTTTTAAGACGTGAAAGCTCTGAAATTACTTTTAG AGGATATTAATTGTGATTTCATGTTTGTAATCTACAACTTTTCAAAAGCATTCAGTCATGGT CTGCTAGGTTGCAGGCTGTAGTTTACAAAAACGAATATTGCAGTGAATATGTGATTCTTTAA GGCTGCAATACAAGCATTCAGTTCCCTGTTTCAATAAGAGTCAATCCACATTTACAAAGATG TAACACATATCTAGATTTTTCTGCTTGCATGATATTCAGGTTTCAGGAATGAGCCTTGTAAT ATAACTGGCTGTGCAGCTCTGCTTCTCTTTCCTGTAAGTTCAGCATGGGTGTGCCTTCATAC AATAATATTTTTCTCTTTGTCTCCAACTAATATAAAATGTTTTGCTAAATCTTACAATTTGA AAGTAAAAATAAACCAGAGTGATCAAGTTAAACCATACACTATCTCTAAGTAACGAAGGAGC TATTGGACTGTAAAAATCTCTTCCTGCACTGACAATGGGGTTTGAGAATTTTGCCCCACACT AACTCAGTTCTTGTGATGAGAGACAATTTAATAACAGTATAGTAAATATACCATATGATTTC TTTAGTTGTAGCTAAATGTTAGATCCACCGTGGGAAATCATTCCCTTTAAAATGACAGCACA GTCCACTCAAAGGATTGCCTAGCAATACAGCATCTTTTCCTTTCACTAGTCCAAGCCAAAAA TTTTAAGATGATTTGTCAGAAAGGCCACAAAGTCCTATCACCTAATATTACAAGAGTTGGTA ${\tt AGCGCTCATCATTATTTTTTTTTGTGGCAGGTATTATGACAGTCGACCTGGAGGGTATGGA}$ TATGGATATGGACGTTCCAGAGACTATAATGGCAGAAACCAGGGTGGTTATGACCGCTACTC AGGAGGAAATTACAGAGACAATTATGACAACTGAAATGAGACATGCACATAATATAGATACA CAAGGAATAATTTCTGATCCAGGATCGTCCTTCCAAATGGCTGTATTTATAAAGGTTTTTGG AGCTGCACTGAAGCATCTTATTTTATAGTATATCAACCTTTTGTTTTTAAATTGACCTGCCA

MMLLVQGACCSNQWLAAVLLSLCCLLPSCLPAGQSVDFPWAAVDNMMVRKGDTAVLRCYLED GASKGAWLNRSSIIFAGGDKWSVDPRVSISTLNKRDYSLQIQNVDVTDDGPYTCSVQTQHTP RTMQVHLTVQVPPKIYDISNDMTVNEGTNVTLTCLATGKPEPSISWRHISPSAKPFENGQYL DIYGITRDQAGEYECSAENAVSFPDVRKVKVVVNFAPTIQEIKSGTVTPGRSGLIRCEGAGV PPPAFEWYKGEKKLFNGQQGIIIQNFSTRSILTVTNVTQEHFGNYTCVAANKLGTTNASLPL NPPSTAQYGITGSADVLFSCWYLVLTLSSFTSIFYLKNAILQ

Important features of the protein: Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 326-345

N-glycosylation sites.

amino acids 71-75, 153-157, 273-277, 284-288, 292-296, 305-309

Casein kinase II phosphorylation site.

amino acids 147-151, 208-212, 224-228

Tyrosine kinase phosphorylation site.

amino acids 178-186

N-myristoylation sites.

amino acids 7-13, 63-70, 67-73, 151-157, 239-245, 291-297, 302-308, 319-325

Myelin P0 protein:

amino acids 92-121

AGTGGTTCGATGGGAAGGATCTTTCTCCAAGTGGTTCCTCTTGAGGGGAGCATTTCTGCTGG CTCCAGGACTTTGGCCATCTATAAAGCTTGGCA<u>ATG</u>AGAAATAAGAAAATTCTCAAGGAGGA CGAGCTCTTGAGTGAGACCCAACAAGCTGCTTTTCACCAAATTGCAATGGAGCCTTTCGAAA TCAATGTTCCAAAGCCCAAGAGGAGAAATGGGGTGAACTTCTCCCTAGCTGTGGTGGTCATC TACCTGATCCTGCTCACCGCTGGCGCTGGGCTGCTGGTGGTCCAAGTTCTGAATCTGCAGGC GCGGCTCCGGGTCCTGGAGATGTATTTCCTCAATGACACTCTGGCGGCTGAGGACAGCCCGT CCTTCTCCTTGCTGCAGTCAGCACCCCTGGAGAACACCTGGCTCAGGGTGCATCGAGGCTG CAAGTCCTGCAGGCCCAACTCACCTGGGTCCGCGTCAGCCATGAGCACTTGCTGCAGCGGGT AGACAACTTCACTCAGAACCCAGGGATGTTCAGAATCAAAGGTGAACAAGGCGCCCCAGGTC TTCAAGGTCACAAGGGGGCCATGGCATGCCTGGTGCCCCTGGCCCGCGGGACCACCTGGT GAGAAGGGAGCCAAGGGGGCTATGGGACGAGATGGAGCAACAGGCCCCTCGGGACCCCAAGG CCCACCGGGAGTCAAGGGAGGGGGGCCTCCAAGGACCCCAGGGTGCTCCAGGGAAGCAAG GAGCCACTGGCACCCCAGGACCCCAAGGAGAAGGGCAAAGGCGATGGGGGTCTCATT GGCCCAAAAGGGGAAACTGGAACTAAGGGAGAGAAGGAGACCTGGGTCTCCCAGGAAGCAA AGGGGACAGGGGCATGAAAGGAGATGCAGGGGTCATGGGGCCTCCTGGAGCCCAGGGGAGTA AAGGTGACTTCGGGAGGCCAGGCCCACCAGGTTTGGCTGGTTTTCCTGGAGCTAAAGGAGAT CAAGGACAACCTGGACTGCAGGTGTTCCGGGCCCTCCTGGTGCAGTGGGACACCCAGGTGC CAAGGGTGAGCCTGGCAGTGCTCCCCTGGGCGAGCAGGACTTCCAGGGAGCCCCGGGA GTCCAGGAGCCACAGGCCTGAAAGGAAGCAAAGGGGACACAGGACTTCAAGGACAGCAAGGA AGAAAAGGAGAATCAGGAGTTCCAGGCCCTGCAGGTGTGAAGGGAGAACAGGGGAGCCCAGG GCTGGCAGGTCCCAAGGGAGCCCCTGGACAAGCTGGCCAGAAGGGAGACCAGGGAGTGAAAG GATCTTCTGGGGAGCAAGGAGTAAAGGGAGAAAAAGGTGAAAAGAGGTGAAAACTCAGTGTCC GTCAGGATTGTCGGCAGTAGTAACCGAGGCCGGGCTGAAGTTTACTACAGTGGTACCTGGGG GACAATTTGCGATGACGAGTGGCAAAATTCTGATGCCATTGTCTTCTGCCGCATGCTGGGTT GTTCAGTGTCGGGGCACGGAGAGTACCCTGTGGAGCTGCACCAAGAATAGCTGGGGCCATCA ${\tt TGACTGCAGCCACGAGGAGGACGCAGGCGTGGAGTGCAGCGTC}{\tt TGA}{\tt CCCGGAAACCCTTTCA}$ CTTCTCTGCTCCCGAGGTGTCCTCGGGCTCATATGTGGGAAGGCAGAGGATCTCTGAGGAGT TCCCTGGGGACAACTGAGCAGCCTCTGGAGAGGGGCCATTAATAAAGCTCAACATCATTGA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA68886

><subunit 1 of 1, 520 aa, 1 stop

><MW: 52658, pI: 9.16, NX(S/T): 3

MRNKKILKEDELLSETQQAAFHQIAMEPFEINVPKPKRRNGVNFSLAVVVIYLILLTAGAGL LVVQVLNLQARLRVLEMYFLNDTLAAEDSPSFSLLQSAHPGEHLAQGASRLQVLQAQLTWVR VSHEHLLQRVDNFTQNPGMFRIKGEQGAPGLQGHKGAMGMPGAPGPPGPPAEKGAKGAMGRD GATGPSGPQGPPGVKGEAGLQGPQGAPGKQGATGTPGPQGEKGSKGDGGLIGPKGETGTKGE KGDLGLPGSKGDRGMKGDAGVMGPPGAQGSKGDFGRPGPPGLAGFPGAKGDQGQPGLQGVPG PPGAVGHPGAKGEPGSAGSPGRAGLPGSPGSPGATGLKGSKGDTGLQGQQGRKGESGVPGPA GVKGEQGSPGLAGPKGAPGQAGQKGDQGVKGSSGEQGVKGEKGERGENSVSVRIVGSSNRGR AEVYYSGTWGTICDDEWQNSDAIVFCRMLGYSKGRALYKVGAGTGQIWLDNVQCRGTESTLW SCTKNSWGHHDCSHEEDAGVECSV

Transmembrane domain:

amino acids 47-66 (type II)

N-glycosylation sites.

amino acids 43-47, 83-87, 136-140

Tyrosine kinase phosphorylation site.

amino acids 432-440

N-myristoylation sites.

amino acids 41-47, 178-184, 253-259, 274-280, 340-346, 346-352, 400-406, 441-447, 475-481, 490-496, 515-521

Amidation site.

amino acids 360-364

Leucine zipper pattern.

amino acids 56-78

Speract receptor repeat

amino acids 422-471, 488-519

Clq domain proteins.

amino acids 151-184, 301-334, 316-349

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52758
<subunit 1 of 1, 98 aa, 1 stop
<MW: 11081, pI: 6.68, NX(S/T): 1
MKLMVLVFTIGLTLLLGVQAMPANRLSCYRKILKDHNCHNLPEGVADLTQIDVNVQDHFWDG
KGCEMICYCNFSELLCCPKDVFFGPKISFVIPCNNQ</pre>

Important features:
Signal peptide:
amino acids 1-20

N-glycosylation site. amino acids 72-76

Tyrosine kinase phosphorylation site. amino acids 63-71

CCCACGCGTCCGCGGACGCGTGGGCTGGACCCCAGGTCTGGAGCGAATTCCAGCCTGCAGGG CTGATAAGCGAGGCATTAGTGAGATTGAGAGAGACTTTACCCCGCCGTGGTGGTTGGAGGGC GCGCAGTAGAGCAGCACAGGCGCGGGTCCCGGGAGGCCGGCTCTGCTCGCGCCGAGATG TAAAATCCTCCAATGAAGCTACTAACATTACTCCAAAGCATAATATGAAAGCATTTTTGGAT GAATTGAAAGCTGAGAACATCAAGAAGTTCTTACATAATTTTACACAGATACCACATTTAGC AGGAACAGAACAAAACTTTCAGCTTGCAAAGCAAATTCAATCCCAGTGGAAAGAATTTGGCC TGGATTCTGTTGAGCTAGCTCATTATGATGTCCTGTTGTCCTACCCAAATAAGACTCATCCC AACTACATCTCAATAATTAATGAAGATGGAAATGAGATTTTCAACACATCATTATTTGAACC ACCTCCTCCAGGATATGAAAATGTTTCGGATATTGTACCACCTTTCAGTGCTTTCTCTCCTC AAGGAATGCCAGAGGGCGATCTAGTGTATGTTAACTATGCACGAACTGAAGACTTCTTTAAA TTGGAACGGGACATGAAAATCAATTGCTCTGGGAAAATTGTAATTGCCAGATATGGGAAAGT TTTCAGAGGAAATAAGGTTAAAAATGCCCAGCTGGCAGGGGCCAAAGGAGTCATTCTCTACT $\tt CCGACCCTGCTGACTACTTTGCTCCTGGGGTGAAGTCCTATCCAGACGGTTGGAATCTTCCT$ GGAGGTGGTGCCAGCGTGGAAATATCCTAAATCTGAATGGTGCAGGAGACCCTCTCACACC AGGTTACCCAGCAAATGAATATGCTTATAGGCGTGGAATTGCAGAGGCTGTTGGTCTTCCAA GTATTCCTGTTCATCCAATTGGATACTATGATGCACAGAAGCTCCTAGAAAAAATGGGTGGC TCAGCACCACCAGATAGCAGCTGGAGAGGAAGTCTCAAAGTGCCCTACAATGTTGGACCTGG CTTTACTGGAAACTTTTCTACACAAAAAGTCAAGATGCACATCCACTCTACCAATGAAGTGA CTGGGAGGTCACCGGGACTCATGGGTGTTTGGTGGTATTGACCCTCAGAGTGGAGCAGCTGT CAATTTTGTTTGCAAGCTGGGATGCAGAAGAATTTGGTCTTCTTGGTTCTACTGAGTGGGCA GAGGAGAATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATATTAATGCTGACTCATCTAT AGAAGGAAACTACACTCTGAGAGTTGATTGTACACCGCTGATGTACAGCTTGGTACACAACC TAACAAAAGAGCTGAAAAGCCCTGATGAAGGCTTTGAAGGCAAATCTCTTTATGAAAGTTGG ACTAAAAAAAGTCCTTCCCCAGAGTTCAGTGGCATGCCCAGGATAAGCAAATTGGGATCTGG AAATGATTTTGAGGTGTTCTTCCAACGACTTGGAATTGCTTCAGGCAGAGCACGGTATACTA AAAATTGGGAAACAAATTCAGCGGCTATCCACTGTATCACAGTGTCTATGAAACATAT GAGTTGGTGGAAAAGTTTTATGATCCAATGTTTAAATATCACCTCACTGTGGCCCAGGTTCG AGGAGGGATGGTGTTTGAGCTAGCCAATTCCATAGTGCTCCCTTTTGATTGTCGAGATTATG CTGTAGTTTTAAGAAAGTATGCTGACAAAATCTACAGTATTTCTATGAAACATCCACAGGAA ATGAAGACATACAGTGTATCATTTGATTCACTTTTTTTCTGCAGTAAAGAATTTTACAGAAAT TGCTTCCAAGTTCAGTGAGAGACTCCAGGACTTTGACAAAAGCAACCCAATAGTATTAAGAA TGATGAATGATCAACTCATGTTTCTGGAAAGAGCATTTATTGATCCATTAGGGTTACCAGAC AGGCCTTTTTATAGGCATGTCATCTATGCTCCAAGCAGCCACAACAAGTATGCAGGGGAGTC ATTCCCAGGAATTTATGATGCTCTGTTTGATATTGAAAGCAAAGTGGACCCTTCCAAGGCCT ${ t TTGAGTGAAGTAGCC}{ t TAA}{ t GAGGATTTTTTAGAGAATCCGTATTGAATTTGTGTGGTATGTCA$ CTCAGAAAGAATCGTAATGGGTATATTGATAAATTTTAAAATTGGTATATTTGAAATAAAGT **TGAATATTATATAA**

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA52756</pre>

><subunit 1 of 1, 750 aa, 1 stop

><MW: 84305, pI: 6.93, NX(S/T): 10

MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEATNITPKHNMKAFL
DELKAENIKKFLHNFTQIPHLAGTEQNFQLAKQIQSQWKEFGLDSVELAHYDVLLSYPNKTH
PNYISIINEDGNEIFNTSLFEPPPPPGYENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFF
KLERDMKINCSGKIVIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDGWNL
PGGGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYYDAQKLLEKMG
GSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTNEVTRIYNVIGTLRGAVEPDRYV
ILGGHRDSWVFGGIDPQSGAAVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEW
AEENSRLLQERGVAYINADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYES
WTKKSPSPEFSGMPRISKLGSGNDFEVFFQRLGIASGRARYTKNWETNKFSGYPLYHSVYET
YELVEKFYDPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDYAVVLRKYADKIYSISMKHPQ
EMKTYSVSFDSLFSAVKNFTEIASKFSERLQDFDKSNPIVLRMMNDQLMFLERAFIDPLGLP
DRPFYRHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTVQAAAE
TLSEVA

Signal sequence:

amino acids 1-40

N-glycosylation sites.

amino acids 76-80, 121-125, 140-144, 153-157, 195-199, 336-340, 459-463, 476-480, 638-642

Tyrosine kinase phosphorylation sites.

amino acids 363-372, 605-613, 606-613, 617-626

N-myristoylation sites.

amino acids 85-91, 168-174, 252-258, 256-262, 282-288, 335-341, 360-366, 427-433, 529-535, 707-713