

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Fall Semester 2023-2024

CONTINUOUS ASSESSMENT TEST – II (Common Question Paper & Key)

Programme Name & Branch : B.Tech – All Specialization
Course Name & code : BCSE302L – Database Systems

SLOT : A1+TA1 & A2+TA2

Exam Duration : 90 Min. Maximum Marks: 50

ANSWER ALL THE QUESTIONS(5X10=50 Marks)

Q.No	Question	Module	Max Mark	СО	BL
1	a. Consider the following relation and functional dependencies. R(A,B,C,D,E,F), F= { A→BC, AC→DEF, F→AB} i. List all of the candidate keys (1 mark) Answer: A+= A = ABC A→BC = ABCDEF AC→DEF F+= F = FAB F→AB = FABC A→BC = FABCDE AC→DEF Candidate Keys are A and F. ii. Give the minimal cover for F. (5 mark) Answer: A→BC: Case 1: B can be extraneous?		6+4	CO2	BL3

 $F'=\{A \rightarrow C, AC \rightarrow DEF, F \rightarrow AB\}$

A+ on F'= ACDEFB contains attribute B, So B is

extraneous.

 $F = \{A \rightarrow C, AC \rightarrow DEF, F \rightarrow AB\}$

AC→DEF:

Case 1.1: A is extraneous?

C+=C does not contains attribute DEF, So A is not

Extraneous

Case 1.2: C is extraneous?

A+=ADEFCB does contains attribute DEF, So C is

Extraneous

 $F = \{A \rightarrow C, A \rightarrow DEF, F \rightarrow AB\}$

A→DEF:

Case 1.3: D is extranoeus?

 $F' = \{A \rightarrow C, A \rightarrow EF, F \rightarrow AB\}$

A+ on F'=CEFAB not contain D, Hence D is not extra.

Case 1.4: E is extraneous?

 $F' = \{A \rightarrow C, A \rightarrow DF, F \rightarrow AB\}$

A+ on F'=CDFAB not contain E, E is not extra.

Case 1.5: F is extraneous?

 $F' = \{A \rightarrow C, A \rightarrow DE, F \rightarrow AB\}$

A+ on F' = CDEAB does not contain F, F is not extra.

F→AB:

Case 1.6: A is extraneous?

 $F' = \{A \rightarrow C, A \rightarrow DEF, F \rightarrow B\}$

F+ on F'=FB does not contain A, A is not extra.

Case 1.7: B is extraneous?

 $F' = \{A \rightarrow C, A \rightarrow DEF, F \rightarrow A\}$

F+ on F'=FACDEF not contain B, B is not extra.

$Fc = \{A \rightarrow C, A \rightarrow DEF, F \rightarrow AB\} \rightarrow \{A \rightarrow CDEF, F \rightarrow AB\}$

All left hand side are unique and no extraneous attribute in FD.

$A \rightarrow BC$

Case 2: C can be extraneous

$$F'=\{A \rightarrow B, AC \rightarrow DEF, F \rightarrow AB\}$$

A+ on F'= AB not contain attribute C, C is not extra.

So Final minimal cover $Fc = \{A \rightarrow CDEF, F \rightarrow AB\}$

b. Given a relational schema R(A, B, C, D, E) and a set of functional dependencies P and Q such that:

$$P = \{A \rightarrow B, AB \rightarrow C, D \rightarrow AC, D \rightarrow E\}, Q = \{A \rightarrow BC, D \rightarrow AE\}$$

Check whether P and Q are equivalent? (4 mark)

Answer:

To check $P \subseteq Q$

Let's find closure of the left side of each FD of P using FD Q

- 1. A + = ABC(using $A \rightarrow BC$)
- 2. AB+ = ABC (using $A \rightarrow BC$)
- 3. D+ = DAEBC (using D \rightarrow AE and A \rightarrow BC)
- 4. D+ = DAEBC (using D \rightarrow AE and A \rightarrow BC)

Now compare closure of each A, AB, D and D calculated using FD Q with the right-hand side of FD P. Closure of each A, AB, D and D has all the attributes which are on the right-hand side of each FD of P. Hence, we can say **P** is a subset of Q

To check $Q \subseteq P$

Using definition of equivalence of FD set, let us determine the right-hand side of the FD set of Q using FD set P.

Given P = { A
$$\rightarrow$$
 B, AB \rightarrow C, D \rightarrow AC, D \rightarrow E} and Q = { A \rightarrow BC, D \rightarrow AE }

Let us find closure of the left side of each FD of Q using FD P.

- 1. A+=ABC (using $A \rightarrow B$ and $AB \rightarrow C$)
- 2. D+ = DACEB (using D \rightarrow AC, D \rightarrow E, and A \rightarrow B)

	Now co	mpare closur	e of each A, D calc	culated using FD P with				
				each A and D has all				
	the attributes which are on the right-hand side of each FD of							
	Q. Q is	a subset of P						
	Hence I	P is equivaler	nt to Q					
2	Conside	er a Student	table which has	information about the				
	,			ave enrolled in. Subject				
			e two attributes th	hat are independent of				
	each oth	ner.						
	1			in 4NF? If not, partition				
	the		nvert to 4NF.	(5 mark)				
		<u>Student</u>	Subject	Activity				
		Jones	Data Structures	P01				
		Bella	Algorithms	P03	(111)			
		Bella	Computation	P06	سيال			
		Bella	Algorithms	P07		1		
		Bella	Computation	P08		1		
		Margot	Database	P09				
		Margot	Compiler	P09	3	5+5	CO2	BL6
		Pricy	Network	P06		-		
			AS 1	5 / 5		=/	$^{\sim}$	
	Answer				The state of	/		
		-	6 10 1 1		=//			
	The table consists of multivalue dependency since all the							
	column of the table has duplicate values.							
	And the Subject ad Activity are independent.							
	Hence							
	Student	->->-	and Student-	Activity exists in the	Δ			
	table.	. 7 7Subject	and Student 77.	Activity exists in the	1./			
	All the a	attribute of th	ne table act as key.					
	So the C	Given table is	not in 4NF					
		Siver tuble 15	IIVI III II VI					
<u>[</u>	I.				1			

Table R1:						
	<u>Student</u>	<u>Subject</u>				
	Jones	Data Structures				
	Bella	Algorithms				
	Bella	Computation				
	Margot	Database				
	Margot	Compiler				
	Pricy	Network				
Key: {Student,	Subject}					
Table R2:				nil)		
	Student	Activity	All			
	Jones	P01		1111	l.	
	Bella	P03		1111	/	
	Bella	P06				
	Bella	P07				
	Bella	P08			N.	
	Margot	P09			//>	þ
	Pricy	P06				
Key: {Student,	Activity}	0.00				
,						
Hence the tabl	e are in 4NF		~			
Tience the tubi	AN	1A P/	1 D F	ΗA		
h If the rea	rtition tables	are in 4NF, check wh	ether it is in			

Table R1:		
Table ICI.		
	Student S	<u>Subject</u>
	Jones I	Data Structures
	Bella	Algorithms
	Bella	Computation
	Margot I	Database
	Margot	Compiler
	Pricy	Network
Key: {Student, S	Subject}	
Table R2:		1111
	<u>Student</u>	<u>Activity</u>
	Jones	P01
	Bella	P03
	Bella	P06
	Bella	P07
	Bella	P08
d	Margot	P09
	Pricy	P06
Key: {Student, A	\Lambda \text{Ctivity}	
,		
Table R3:	A.M	APADHAI
Key: {Subject, A	ctivity}	AFADIIAI
	Subject	Activity
	Data Structures	s P01

Computation	P06
Algorithms	P07
Computation	P08
Database	P09
Compiler	P09
Network	P06

Hence the table are in 4NF.

To check R1, R2 and R3 are in 5NF should satisfy

 $R1 \bowtie R3 \bowtie R2 \equiv R$

We perform $R1 \bowtie_{Subject} R3$

<u>Student</u>	<u>Subject</u>	<u>Activity</u>
Jones	Data Structures	P01
Bella	Algorithms	P03
Bella	Algorithms	P07
Bella	Computation	P06
Bella	Computation	P08
Margot	Database	P09
Margot	Compiler	P09
Pricy	Network	P06

We perform (R1 $\bowtie_{Subject}$ R3) $\bowtie_{activitiy}$ R2

Student	Subject	Activity
Jones	Data Structures	P01
Bella	Algorithms	P03
Bella	Algorithms	P07
Bella	Computation	P06
Bella	Computation	P08

		Margot	Database	P09					
		Margot	Compiler	P09					
		Pricy	Network	P06					
				I	_				
			$R1 \bowtie R3 \bowtie R2$	$\equiv R$					
	Hence R	1, R2 and R3	are in 5NF.						
3				abase, where the	primary				
	keys are	e under <mark>lined</mark>			-				
			oyee (<u>emp-name</u>						
		works (<u>err</u>	np-name, compa	ny-name, salary),		mil			
		comj	pany (<u>company-</u>	name, city),	W				
		manage	es (<u>emp-name</u> , m	anager-name)		and the			
		expression owing querie		algebra to express	s each of (5 X2 =10		1		
	marks)	ownig querie	25.		(3/2-10				
	a. Fir	nd the empl	oyee's name wh	ose salary is grea	ater than				
	500 Answer				/=				
	THISWCI	- 4	1	(v. 140)		4	10	CO3	BL6
		-	$_{-name} \Big(\sigma_{salary>50}$			37			
				, and cities of resi Ionda Company a	1000				
	mo	ore than 10,0							
	Answer				S.				
	D /	\ I /	I _{e.emp-name, e.stre}		D L	A L	1		
	(σ_{com})		honda" \land salary>100 $o_e(employee) imes$	00 ∧ e.emp–na me=e mp works))	o–name	1 A			
	c. Fir	nd the names	s of all employee	s in this database	who live				
	in Answer	-	y as the company	y for which they w	ork.				
	71115WEI	•	П	(
			$\prod_{emp-name}$						

		1		
$(emp \bowtie \rho_w(works) \bowtie \rho_c(company))$				
d. Find the names of all employees in this database who do not work for Honda Company.Answer:				
$\Pi_{emp-name}(works) - \Pi_{emp-name}\left(\sigma_{company="honda"}(works)\right)$				
e. Find the total salary, minimum salary and maximum salary for each company.Answer:				
$company-name\ \mathcal{G}_{sum(salary), min(salary), max(salary)}(works)$				
Consider an ordered file with 50,000 records stored on a disk with block size $B = 512$ bytes. File records are of fixed size and are un-spanned, with record length $R = 50$ bytes.				
a. How many blocks are needed for the file? (1)Answer:	P			
Blocking Factor	_			
$bfr = \lfloor (B/R) \rfloor = \lfloor (512/50) \rfloor = 10 \text{ record/block}$				
Block needed for file				
b = [(r/bfr)] = [(50000/10)] = 5000 blocks				
b. How many blocks access is needed if a binary search is performed?(1)	4	10	C O 3	BL3
Answer:				
Binary search takes = $\lceil log_2b \rceil = \lceil log_25000 \rceil = 13$ block access.				
 c. Consider the ordering key field of the file is 8 bytes long, a block pointer, P = 5 bytes long, and a primary index is constructed for the file. i. What is the size of the index file? 	ŀΑ			
(1)				
Answer:				
Size of index R _i = V+P = 8+5 = 13 bytes.				

ii. What is the blocking factor for the primary index file?(1)

Answer:

Blocking factor

$$bfr_i = \lfloor (B/R_i) \rfloor = \lfloor (512/13) \rfloor = 39 \text{ record/block}$$

iii. How many numbers of index entries will be there for the primary index file? (1)

Answer:

No.of index entries = No.of blocks of file b = 5000 entries

iv. How many numbers of index block are needed? And how many block access will be performed to search for a record using the index? **(2)**

Answer:

No. of index block $b_i = [(r_i/bfr_i)] = [(5000/39)] = 129$ blocks

For Linear search = 129 block access in worst case.

For Binary search = $\lceil log_2b \rceil = \lceil log_2129 \rceil = 7+1=8$ block access

- **d.** Consider non-ordering key field of the file is 10 bytes long and the block pointer, P = 5 bytes long, and a secondary index is constructed on the non-ordering key field of the file.
 - i. What is the size of secondary index? (1)

Answer:

Size of Secondary index R_i = V+P = 10+5 = 15 bytes.

ii. What is blocking factor for secondary index? (1)

Answer:

Blocking factor

$$bfr_i = \lfloor (B/R_i) \rfloor = \lfloor (512/15) \rfloor = 34 \text{ record/block}$$

	iii. How many numbers of index blocks are needed? and how many block access will be performed to search for a record using the secondary index? (1) Answer:
	No.of index entries r_i = No.of records in file = 50000 entries
	No. of index block
	$b_i = [(r_i/bfr_i)] = [(50000/34)] = 1471 \text{ blocks}$
	For Linear search = 1471 block access in worst case.
	For Binary search = $\lceil log_2b \rceil$ = $\lceil log_21471 \rceil$ = 11+1=12 block access
5	Find which of these terms refers to Atomicity, Consistency,
	Isolation, Durability; and explain with example.
	a. The changes of a successful transaction occurs even if the system fail occurs.b. The transaction takes place at once or doesn't happen at all.
	c. Multiple transactions occur independently without interference. 5 10 C04 BL2
	d. The database must be consistent before and after the transaction.
	Answer:
	a. Durability b. Atomicity c. Isolation
	d. Consistency

PAJAMA PADHAI