In [1]: #1.Loading data.(10 points). Begin by downloading the file FakeData.csv and savir
# We will load the data in jupyter notebook using the read.csv() command.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.read\_csv('OneDrive\Desktop\Fakedata.csv')
df.head()

#df.shape
#df.dtypes

## Out[1]:

|   | ID  | Year | FavColor | Region | Age | Breakfast | Height | Handspan | Pinkylen | Gender |
|---|-----|------|----------|--------|-----|-----------|--------|----------|----------|--------|
| 0 | 858 | 2013 | Grey     | East   | 69  | Multiple  | 58     | 8.4      | 2.81     | F      |
| 1 | 791 | 2013 | Other    | West   | 68  | Dairy     | 59     | 8.5      | 2.65     | М      |
| 2 | 155 | 2013 | Other    | West   | 52  | Multiple  | 65     | 9.3      | 2.90     | М      |
| 3 | 546 | 2013 | Brown    | East   | 70  | Meat      | 59     | 8.9      | 3.01     | М      |
| 4 | 286 | 2013 | Green    | West   | 68  | Multiple  | 63     | 9.5      | 3.19     | М      |

```
In [2]: #2.Histogram.(10 points). Create a histogram of the Pinkylen variable, adjust the
# set the main title to Histogram of Pinky Length and the x-axis label to an appr
hist = df.hist(column='Pinkylen', color='blue')
plt.xlabel('Pinky Length')
plt.ylabel('Quantity')
plt.title('Histogram of Pinky Length')
```

## Out[2]: Text(0.5, 1.0, 'Histogram of Pinky Length')



```
In [3]: #3.Boxplots.(10 points) Construct a blue boxplot of the Height variable and label
#Provide the command and the output in your lab report.
box = df.boxplot(column = 'Height', color='Blue', notch=True, patch_artist=True)
plt.title('Boxplot of Height')
plt.ylabel('Height in Inches')
```

Out[3]: Text(0, 0.5, 'Height in Inches')



```
In [4]: #4.Pie Chart.(10 points) Construct a pie chart of the FavColor variable based on
# Provide the command and the output in your lab report.
def rel_freq(x):
    freqs = [(value, x.count(value) / len(x)) for value in set(x)]
    return freqs

relFreqs = rel_freq(list(df['FavColor']))
#plot = plot.pie(y='relFreq', figsize=(5, 5))
relFreqs

freqs = [.1916, .4072, .3024, .0988]
marks = ["Grey", "Green", "Other", "Brown"]

plt.figure(figsize=(4, 4))
plt.pie(freqs, labels=marks)
plt.title("Relative Frequency of Colors")
```

Out[4]: Text(0.5, 1.0, 'Relative Frequency of Colors')

## Relative Frequency of Colors



```
In [21]: #5.Scatter Plot.(20 points)Construct a scatter plot of the Height variable for mo
#(Show in one graph)

colors = {'M':'blue', 'F':'pink'}

scatter = plt.scatter(x=df['Age'], y=df['Height'], c=df['Gender'].map(colors))
plt.title('Scatterplot of Height by Age')
```

Out[21]: Text(0.5, 1.0, 'Scatterplot of Height by Age')



In [25]: #6.Bar Graph.(10 points)Construct bar graph for the Breakfast variable and label
# Provide the command and the output in your lab report

df['Breakfast'].value\_counts().plot(kind='bar')
plt.title("Breakfast Preferences")

Out[25]: Text(0.5, 1.0, 'Breakfast Preferences')



```
In [39]: #7.Line Chart.(30 points)Construct a line chart of the Height variable based on a
         # (There will be 3 subplots in one graph.)
         x = df['Height']
         y1 = df['FavColor'] == 'Grey'
         y2 = df['FavColor'] == 'Brown'
         y3 = df['FavColor'] == 'Green'
         y4 = df['FavColor'] == 'Other'
         plt.figure(num = 3, figsize=(8, 5))
         plt.plot(y1, x)
         plt.show()
         plt.plot(y2, x,
                  color='brown',
                  linewidth=1.0,
                  linestyle='--'
         plt.show()
         plt.plot(y3, x,
                   color='green',
                   linewidth=1.0,
                   linestyle='--'
         plt.show()
         plt.plot(y4, x,
                   color='black',
                   linewidth=1.0,
                  linestyle='--'
         plt.show()
```









| In [ ]: |  |
|---------|--|
| In [ ]: |  |