1. Counting Elements Given an integer array arr, count how many elements x there are, such that x + 1 is also in arr. If there are duplicates in arr, count them separately. Example Input: arr = [1,2,3] Output: 2 Explanation: 1 and 2 are counted cause 2 and 3 are in arr. Example 2: Input: arr = [1,1,3,3,5,5,7,7] Output: 0 Explanation: No numbers are counted, cause there is no 2, 4, 6, or 8 in arr.

2. Perform String Shifts You are given a string s containing lowercase English letters, and a matrix shift, where shift[i] = [directioni, amounti]: • directioni can be 0 (for left shift) or 1 (for right shift). • amounti is the amount by which string s is to be shifted. • A left shift by 1 means remove the first character of s and append it to the end. • Similarly, a right shift by 1 means remove the last character of s and add it to the beginning. Return the final string after all operations.

3. Leftmost Column with at Least a One A row-sorted binary matrix means that all elements are 0 or 1 and each row of the matrix is sorted in non-decreasing order. Given a row-sorted binary matrix binaryMatrix, return the index (0-indexed) of the leftmost column with a 1 in it. If such an index does not exist, return -1. You can't access the Binary Matrix directly. You may only access the matrix using a BinaryMatrix interface: ● BinaryMatrix.get(row, col) returns the element of the matrix at index (row, col) (0-indexed). ● BinaryMatrix.dimensions() returns the dimensions of the matrix as a list of 2 elements [rows, cols], which means the matrix is rows x cols. Submissions making more than 1000 calls to BinaryMatrix.get will be judged Wrong Answer. Also, any solutions that attempt to circumvent the judge will result in disqualification. For custom testing purposes, the input will be the entire binary matrix mat. You will not have access to the binary matrix directly.

6.Kids With the Greatest Number of Candies There are n kids with candies. You are given an integer array candies, where each candies[i] represents the number of candies the ith kid has, and an integer extraCandies, denoting the number of extra candies that you have. Return a boolean array result of length n, where result[i] is true if, after giving the ith kid all the extraCandies, they will have the greatest number of candies among all the kids, or false otherwise. Note that multiple kids can have the greatest number of candies.

8. Check If a String Can Break Another String Given two strings: s1 and s2 with the same size, check if some permutation of string s1 can break some permutation of string s2 or vice-versa. In other words s2 can break s1 or vice-versa. A string x can break string y (both of size n) if x[i] >= y[i] (in alphabetical order) for all i between 0 and n-1.

Time:o(n)

9. Number of Ways to Wear Different Hats to Each Other There are n people and 40 types of hats labeled from 1 to 40. Given a 2D integer array hats, where hats[i] is a list of all hats preferred by the ith person. Return the number of ways that the n people wear different hats to each other. Since the answer may be too large, return it modulo 109 + 7.

10. Next Permutation A permutation of an array of integers is an arrangement of its members into a sequence or linear order. \bullet For example, for arr = [1,2,3], the following are all the permutations of arr: [1,2,3], [1,3,2], [2, 1, 3], [2, 3, 1], [3,1,2], [3,2,1]. The next permutation of an array of integers is the next lexicographically greater permutation of its integer. More formally, if all the permutations of the array are sorted in one container according to their lexicographical order, then the next permutation of that array is the permutation that follows it in the sorted container. If such arrangement is not possible, the array must be rearranged as the lowest possible order (i.e., sorted in ascending order). \bullet For example, the next permutation of arr = [1,2,3] is [1,3,2]. \bullet Similarly, the next permutation of arr = [2,3,1] is [3,1,2]. \bullet While the next permutation of arr = [3,2,1] is [1,2,3] because [3,2,1] does not have a lexicographical larger rearrangement. Given an array of integers nums, find the next permutation of nums. The replacement must be in place and use only constant extra memory.

