Introduction To Artificial Intelligence

Learning Objectives

After completing this lecture, you will be able to:-

- Describe the 4 categories of Al
- Define and differentiate AI, ML, and DL
- Explain key historical developments in AI, in particular related to the "hype-AI winter" cycle
- Discuss the practical and current applications of AI in an industrial context
- Install and access modern tools for AI

Where can AI be found?

Weak vs Strong AI – Claims

Weak Al

- Machines can be made to act as if they were intelligent
- Eg. most of today's commercial versions of artificial intelligence (IBM's Deep Blue)
- Strong Al
 - Machines that act intelligently and have real, conscious minds
 - Eg. movie portrayals (refer slide 2)

What is AI?

- We consider intelligence a particularly human trait
- Homo sapiens means "man wise", Sapient refers to the ability to act with judgement
- Artificial Intelligence then, means creating/building an intelligent entity

What is AI?

Views of AI falls into four categories

Thinking Humanly Thinking Rationally

Acting Humanly

Acting Rationally

Thinking Humanly

- Cognitive modeling from the 1960's "cognitive revolution": information-processing psychology
- Requires scientific theories of internal activities of the brain. To validate:-
 - Predict and test behaviour of human subjects (top-down)
 - Directly identify neurological data (bottom-up)
- Both are now separate fields of research from Al (Cognitive Science/Cognitive Neuroscience)

Acting Humanly

Name the actor, the movie, and the character

Acting Humanly

- Turing (1950) "Computing machinery and intelligence"
- Problem area "Can machines think?"
- Redefined as "Can machines behave intelligently?"
- Devised an Imitation Game to test for intelligence

- Developed by Alan Turing in 1950
- Objective: decide whether a particular machine was intelligent or not
- Origin: The Imitation Game
 - Involves 3 people (interrogator, man, woman)
 - Interrogator has to determine the gender of the two persons by asking questions via teletype

- Modification: The Turing Test
 - Replace the man (or woman) with a machine
- The Turing Test takes place between:-
 - A machine
 - A human
 - An interrogator

- Interrogator communicates with the machine and human via teletype
- Objective of each party:-
 - Interrogator ask a series of questions and determine which is human and which is machine
 - Machine Confuse the interrogator sufficiently to make the wrong decision
 - Human Convince the interrogator to make the right decision

- Turing Test deliberately avoids physical interaction, since physical simulation of a person is unnecessary for intelligence
- Thus, to pass the Total Turing Test, computer needs to add:-
 - Computer vision object perception
 - Robotics object manipulation and locomotion

http://www.eurekalert.org/ pub_releases/2012-09/uotaaig092612.php

- Competition sponsored by 2K Games in UT2004
- Aim have robots achieve a humanness rating > 52%
- Points scored by eliminating (killing) opponents
- Players also have a 'judging gun' to tag an opponent as human or bot

- Team from University of Texas submitted UT^2
- Computer Scientist Mihai Polceanu submitted MirrorBot
- Both achieved 52%
- Average human player ratings 40%

- Requirements mimic humans
 - Moving in 3-D space
 - Engage in combat against multiple opponents
 - Reason about best strategy in real-time
- Also
 - Exhibit irrational behaviour (grudge kill)
 - Imperfect aim (constraints on long distance accuracy and rapid movements)

Thinking Rationally

- Aristotle "What are correct arguments/thought processes?" giving rise to "laws of thought"
- Logic to think/behave reasonably
- Various forms of logic including notation and rules of derivation for thoughts – theoretically any solvable problem can be solved using logic-based programs

Thinking Rationally

- Arithmetic statements about numbers
- Logic statements about objects
- Directly gives rise through mathematics and philosophy to modern Al
- Problems:-
 - Not all intelligence is logical (missing information)
 - 'Can be' solved does not imply anything on the cost of finding the solution (time or otherwise)
 - What is the purpose of thinking?

Acting Rationally

- Rational behaviour doing the right thing
- The 'right' thing that which is expected to maximize goal achievement, given the information currently available
 - Often but not always logical
 - May not even involve thinking (reflex actions)
- Relies on skills required by Turing Test
- Performed by a Rational Agent

Acting Rationally – Rational Agents

- Agent an entity that perceives and acts
- This course is about designing rational agents
- In abstract, an agent is a function from percept histories to actions:

$$[f \cdot P^{\star} \to A]$$

- For any given class of environments/tasks, we seek the agent (or class of agents) with the best performance
- Caveat: computational limitations make perfect rationality unachievable
 - Design best program for given machine resources

AI, ML, and DL defined

- Artificial Intelligence
- Machine Learning
- Deep Learning

Artificial Intelligence Defined

- A branch of computer science dealing with the simulation of intelligent behavior in computers – Merriam-Webster
- A program that can sense, reason, act, and adapt Intel
- Colloquially, the term 'artificial intelligence' is applied when a machine mimics 'cognitive' functions that humans associate with other human minds, such as 'learning' and 'problem solving' – Wikipedia

Machine Learning Defined

 The study and construction of programs that are not explicitly programmed, but learn patterns as they are exposed to more data over time – Intel

Machine Learning Defined

 ML programs learn from repeatedly seeing data, rather than being explicitly programmed by humans

Machine Learning Terminology

 For example, when classifying flower species from a set of measurements...

Features:

Attributes of the data.

Target:

Column to be predicted

	sepal length	sepal width	petal length	petal width	species
	6.7	3.0	J.E	2.3	virginica
	6.4	2.8	5.6	2.1	virginica
	4.6	3.4	1.4	0.3	setosa
	6.9	3.1	4.9	1.5	versicolor
	4.4	2.9	1.4	0.2	setosa
	4.8	3.0	1.4	0.1	setosa
	5.9	3.0	5.1	1.8	virginica
	5.4	3.9	1.3	0.4	setosa
	4.9	3.0	1.4	0.2	setosa
	5.4	3.4	1.7	0.2	setosa

Machine Learning Terminology

There are two main types of machine learning

Machine Learning Limitations

- Machine Learning uses features (based on data) to achieve the target classification or value
- Defining these features is easy for some problems, but almost impossible for others
- Suppose you want to determine an image is that of a cat or a dog. What features would you use?

Deep Learning Defined

- Machine learning that involves using very complicated models called "deep neural networks" – Intel
- Models determine best representation of original data; in classic machine learning, humans must do this.

History of Al

 Artificial Intelligence has experienced several hype cycles, oscillating between periods of excitement and disappointment

History of AI – 1950s (Early AI)

- 1950: Alan Turing developed the Turing test to test a machines ability to exhibit intelligent behavior.
- 1956: Artificial Intelligence was accepted as a field at the Dartmouth Conference.
- 1957: Frank Rosenblatt invented the perceptron algorithm. This was the precursor to modern neural networks.
- 1959: Arthur Samuel published an algorithm for a checkers program using machine learning.

History of AI – First AI Winter

- 1966: ALPAC committee evaluated AI techniques for machine translation and determined there was little yield from the investment.
- 1969: Marvin Minsky published a book on the limitations of the Perceptron algorithm which slowed research in neural networks.
- 1973: The Lighthill report highlights Al's failure to live up to promises.
- The two reports led to cuts in government funding for AI research leading to the first "AI Winter."

John R. Pierce, head of ALPAC

History of Al – 1980s (Al Boom)

- Expert Systems systems with programmed rules designed to mimic human experts.
- Ran on mainframe computers with specialized programming languages (e.g. LISP).
- Were the first widely-used AI technology, with two-thirds of "Fortune 500" companies using them at their peak.
- 1986: The "Backpropogation" algorithm is able to train multi-layer perceptrons leading to new successes and interest in neural network research.

Early expert systems machine

History of AI – Second AI Winter

- From late 80s to early 90s
- Expert systems' progress on solving business problems slowed.
- Expert systems began to be melded into software suites of general business applications (e.g. SAP, Oracle) that could run on PCs instead of mainframes.
- Neural networks didn't scale to large problems.
- Interest in AI in business declined.

History of AI – Classical ML

- Advancements in the SVM algorithm led to it becoming the machine learning method of choice.
- Al solutions had successes in speech recognition, medical diagnosis, robotics, and many other areas.
- Al algorithms were integrated into larger systems and became useful throughout industry.
- The Deep Blue chess system beat world chess champion Garry Kasparov.
- Google search engine launched using artificial intelligence technology.

IBM supercomputer

History of AI – Rise of Deep Learning

- 2006: Geoffrey Hinton publishes a paper on unsupervised pre-training that allowed deeper neural networks to be trained.
- Neural networks are rebranded to deep learning.
- 2009: The ImageNet database of human-tagged images is presented at the CVPR conference.
- 2010: Algorithms compete on several visual recognition tasks at the first ImageNet competition.

History of AI – Rise of Deep Learning

- In 2012, deep learning beats previous benchmark on the ImageNet competition.
- In 2013, deep learning is used to understand "conceptual meaning" of words.
- In 2014, similar breakthroughs
- appeared in language translation.
- These have led to advancements in Web Search, Document Search, Document Summarization, and Machine Translation.

History of AI – Rise of Deep Learning

- In 2014, computer vision algorithm can describe photos.
- In 2015, Deep learning platform TensorFlow* is developed.
- In 2016, DeepMind* AlphaGo, developed by Aja Huang, beats Go master Lee Se-dol.

Modern AI – What's the difference?

Modern AI – What's the difference?

- Continued expansion of open source AI, especially in Python, aiding machine learning and big data ecosystems.
- Leading deep learning libraries open sourced, allowing further adoption by industry.
- Open sourcing of large datasets of millions of labeled images, text datasets such as Wikipedia has also driven breakthroughs.

Industrial Examples of Al's Impact

