rok akad. 2009/2010

semestr zimowy

seria 4A

W zadaniach rozwiązywanych komputerowo należy stosować modele elementów opisane w bibliotece EVAL.LIB programu PSpise Eval. 6.2.

[1]. PCSpice Evaluation Center - MicroSim VER. 6.2

- [2]. J. Porębski, P. Korohoda: SPICE program analizy nieliniowej układów elektronicznych. WNT, Warszawa 1992.
- [3]. A. Chwaleba, B. Moeschke, G. Płoszajski: Elektronika. Wydawnictwa Szkolne i Pedagogiczne. Warszawa 1994.
- [4]. Praca zbiorowa pod red. A. Filipkowskiego: Projektowanie i laboratorium z "Elementów i układów elektronicznych" Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1998 r.

Termin oddania: 18 - 23 stycznia 2010 r. w terminach swoich zajęć laboratoryjnych Zaliczenie: 25 - 30 stycznia 2010 r. na zajęciach laboratoryjnych w terminach PR2

Zadanie 1. Stosując program PSpice wykonaj wykresy statycznych charakterystyk wejściowych i wyjściowych tranzystora n-p-n: Q2N2222, dla układu ze wspólnym emiterem - WE. Analizę wykonaj dla temperatury: $t_j = 27$ °C, w zakresie zmian prądu bazy w przedziale $0-120~\mu A$, ze skokiem $10~\mu A$.

Zadanie 2. Wykonaj projekt wzmacniacza jednostopniowego w układzie **WE** dla małych amplitud i 3 - dB zakresu częstotliwości: $\mathbf{f_d} = 15$ Hz, $\mathbf{f_g} = 25$ kHz. Przyjmij napięcie zasilające $\mathbf{E_C} = 12$ V. Określ wartości rezystorów $\mathbf{R_{B1}}$, $\mathbf{R_{B2}}$, $\mathbf{R_C}$ i $\mathbf{R_E}$ oraz pojemności $\mathbf{C_1}$, $\mathbf{C_2}$ i

na charakterystykach uzyskanych w Zad. 1.

C_E dla układu potencjometrycznego ze sprzężeniem emiterowym i tranzystorem Q2N2222 (jak na rysunku).

Oblicz uzyskane wzmocnienia K_u i K_i oraz rezystancję wejściową r_{WE} i wyjściową r_{WY} . Obliczenia wykonaj dla rezystancji obciążenia $R_O = 15 \ k\Omega$ i rezystancji wewnętrznej $R_g = 4,7 \ k\Omega$.

Obliczenia bez użycia komputera dokonaj przy założeniu $\mathbf{r}_{bb}' = \mathbf{0}$ oraz $\mathbf{h}_{22} = \mathbf{1/r}_{ce} = \mathbf{0}$. Dobór punktu pracy tranzystora

Zadanie 3. Wykonaj analizę projektu z Zad.2 stosując program PSpice. Porównaj uzyskane wyniki obliczeń uwzględniając przy porównaniu fakt zastosowania uproszczonych danych w Zad.2.