Unidad 2.

Diseño conceptual:

El Modelo Entidad/Relación

Bases de Datos 1° D.A.W.

Contenido

- 1. Diseño conceptual y lógico
- 2. Modelo Entidad/Relación
- 3. MER: componentes
- 4. MER extendido
- 5. Elaboración de diagramas E/R

- Modelo conceptual
- 2. Modelo lógico

- □ Proceso de diseño de una base de datos
 - Se establece una secuencia de tareas y sus resultados
 - Se estandariza y facilita así el trabajo de diseñar BDs

- □ Proceso de diseño de una base de datos
 - □ Fase 1: Diseño conceptual
 - Parte de los requisitos o reglas de negocio del sistema
 - Realización de un diagrama conceptual (p.e. DER)
 - Entidades existentes
 - Relaciones entre las entidades
 - Atributos de las entidades y relaciones
 - Restricciones del sistema
 - Suele ser un proceso cíclico y con realimentación
 - Requiere continuas consultas y modificaciones
 - Implica la disponibilidad del cliente

- □ Proceso de diseño de una base de datos
 - □ Fase 2: Diseño lógico
 - Parte del diseño conceptual obtenido en la fase anterior
 - Aplicación de un conjunto de reglas de transformación
 - De modelo conceptual a modelo lógico
 - Ej. : De modelo E/R a modelo relacional
 - Obtención del modelo lógico de datos (p.e. M. relacional)
 - Sirve de esquema de bases de datos

- Proceso de diseño de una base de datos
 - □ Fase 3: Normalización
 - Parte del diseño lógico obtenido en la fase anterior
 - Aplicación de un conjunto de reglas de normalización
 - Refinan el modelo lógico
 - Obtención del modelo lógico de datos normalizado
 - □ Fase 4: Definición de la base de datos
 - Parte del diseño lógico normalizado de la fase anterior
 - Uso del DDL (p.e. SQL) para crear el sistema físico
 - Traducción del esquema lógico a una implementación física
 - Intervención del Sistema Gestor de Bases de Datos (SGBD)

□ Proceso de diseño de una BD con MER y M. relacional

Diseño conceptual: Modelo Entidad/Relación

Diseño lógico: Modelo relacional

Diseño físico: Creación de tablas con un DDL

Explotación: Acceso con un DML

1.1. Modelo conceptual

- □ Es independiente del SGBD que se vaya a usar
- Más cercano al usuario
- □ 1ª aproximación a la BD a partir de los requisitos
- Ejemplos de modelos conceptuales
 - Modelo Entidad Relación (MER)
 - Modelo Relacional/Tasmania (RM/T)
 - Modelos del Lenguaje Unificado de Modelado (UML)

1.1. Modelo conceptual

Diagrama Entidad/Relación

1.2. Modelo lógico

- □ Depende del TIPO de SGBD que se vaya a usar
- Más cercano al modelo físico (usado por el PC)
- □ Paso entre el modelo conceptual y el modelo físico
- Ejemplos de modelos lógicos
 - Modelo jerárquico
 - Modelo en red (Codasyl)
 - Modelo relacional
 - Modelo orientado a objetos

1.2. Modelo lógico

Modelo Relacional

2. Modelo Entidad/Relación

2. Modelo Entidad/Relación (MER)

- Llamado también Modelo Entidad/Interrelación
- □ Esquema conceptual de datos
 - Capta la semántica del mundo real a representar
 - Primer paso en el diseño de bases de datos
 - Creado a partir de los requisitos del cliente
- "Independiente" de los esquemas lógicos de datos
 - Independiente del SGBD que se vaya a usar
 - □ El ME/R no tiene por qué ir vinculado a un M. Relacional

2. Modelo Entidad/Relación (MER)

- □ Creado por Peter P. Chen
 - A partir de dos artículos suyos de 1976 y 1977
 - Presenta un modelo para realizar esquemas de datos
 - Centrado en la parte lógica y abstracta de los datos
 - Independencia de consideraciones de tipo físico
- Otros autores añaden mejoras posteriores al modelo
 - Modelo Entidad/Relación Extendido (ERE)
 - Resuelve algunas carencias del ME/R

2. Modelo Entidad/Relación (MER)

- Centrado sólo en la parte estática de los datos
 - Estructura semántica del universo que se describe
 - Entidades semánticas desprendidas de los requisitos
 - Relaciones entre esas entidades
 - Atributos o propiedades de las entidades y relaciones
 - Restricciones de las entidades y sus relaciones
 - Apenas cambia con el tiempo (por eso "estática")
 - Se definirán después con un DDL
- No aborda inicialmente la parte dinámica
 - No indica cómo manipular los datos del modelo
 - No propone, originalmente, operaciones con DML

3. MER: Componentes

- 1. Entidades
- 2. Relaciones
- 3. Atributos

3.1. Entidades

1. Concepto

2. Tipos

3. Representación

- Elemento del que se quiere almacenar información en la BD
- No es una propiedad, sino un elemento con propiedades
 - Las entidades tendrán propiedades (campos concretos)

Ejemplos

- □ El alumno Pepe: Pepe Pérez, de 22 años, del grupo A, de 6.7 de media, ...
- La alumna Marta: Marta López, de 31 años, del grupo B, de 7.4 de media, ...
- □ El profesor Luis: Luis Sanz, de 58 años, Matemático, de NIF 12345S, ...
- □ La profesora Ana Ana Ruiz, de 41 años, Química, de NIF 54321N, ...
- La asignatura Sistemas: Sistemas, de 6 horas semanales, de código SIO1
- La asignatura Programación: Programación, de 8 horas semanales, de código PRO3

- Caso concreto del ejemplo
 - Entidad
 - Alumno Pepe
 - □ Atributos de la entidad:
 - Nombre, primer apellido, edad, grupo, nota media
 - Contenido de los atributos, respectivamente
 - Pepe, Pérez, 22, A, 6.7, ...

- Conjuntos de entidades
 - Agrupación formada por entidades con los mismos atributos o propiedades.
 - □ En el ejemplo anterior:
 - Alumnos: para Pepe y Marta
 - Todos tienen los atributos: Nombre, Apellido1, Edad, Grupo, Media
 - Profesores: para Luis y Ana
 - Todos tienen los atributos: Nombre, Apellido 1, Edad, Estudios, Nif
 - Asignaturas: para Sistemas y Programación
 - Todas tiene los atributos: Nombre, Horas, Código

□ Terminología actual

- Entidad
 - Lo que antes se llamaba conjunto de entidades
 - Agrupaciones de elementos con las mismas propiedades
 - Ejemplo: Alumnos
- Ocurrencia o ejemplar
 - Lo que antes se llamaba entidad
 - Elemento particular de una entidad, con valor para sus propiedades
 - Cada ocurrencia tiene que poder distinguirse de las demás
 - Ejemplo: el alumno Pepe (y el valor de sus atributos)
- Atributo o propiedad
 - Cada campo informativo de una entidad
 - Ejemplos: Nombre, Apellido1, Edad, Grupo y media

3.1.2. Entidades: tipos

- Entidades regulares o fuertes
 - Tienen existencia por sí mismas
 - No dependen de la existencia de otras
- □ Entidades débiles
 - Su existencia depende de la existencia de otras
 - Al desaparecer entidad de la que se depende...
 - Desaparecen automáticamente las entidades dependientes
 - Ejemplos:
 - Entidad Ejemplares depende de la entidad Libros
 - Entidad Calificaciones depende de la entidad Alumnos

3.1.3. Entidades: representación

- □ Rectángulo con el nombre de la entidad
 - Entidad regular o fuerte: rectángulo simple

Alumnos

■ Entidad débil:

rectángulo doble

Ejemplares

3.2. Relaciones

- 1. Concepto
- 2. Representación
- 3. Grado
- 4. Cardinalidad
- 5. Tipo de correspondencia
- 6. Roles

3.2.1. Relaciones: concepto

- Asociaciones entre entidades
- Permiten relacionar los datos del modelo
 - Ejemplo: entidad Profesores y entidad Asignaturas
 - Se asocian por medio de una relación: *Imparten*
 - Se determina qué <u>Profesores</u> Imparten qué <u>Asignaturas</u>
- □ A través de una relación se asocia...
 - Un ejemplar de una entidad con otro de otra entidad
 - Los mismos ejemplares sólo se pueden asociar una vez
 - A no ser que sea por medio de relaciones diferentes

3.2.1. Relaciones: concepto

Relación Imparten

3.2.2. Relaciones: representación

- □ Rombo que contiene el nombre de la relación
 - Las entidades relacionadas se unen a uno de sus vértices

3.2.3. Relaciones: grado

- Grado de una relación
 - Número de entidades que participan en la relación
 - Permite clasificarlas en...
 - Relaciones binarias (grado 2): Asocian dos entidades
 - Relaciones ternarias (grado 3): Asocian tres entidades
 - A veces se pueden simplificar en relaciones binarias
 - Relaciones n-arias (grado n): Asocian n entidades
 - Recomendable desglosarlas en varias de menor grado
 - Relaciones dobles:
 - Dos relaciones que relacionan a las mismas entidades
 - Su manipulación es comprometida, para diferenciarlas bien
 - Relaciones reflexivas, unarias o recursivas (grado 1)
 - Asocian una entidad consigo misma
 - Ejemplares de la entidad con otros ejemplares de la misma entidad

3.2.3. Relaciones: grado

3.2.3. Relaciones: grado

3.2.4. Relaciones: cardinalidad

- Llamada también cardinalidad "de una entidad"
- Aporta dos datos adicionales a la participación de una entidad en una relación:
 - Cardinalidad mínima
 - Nº mínimo de asociaciones en que aparecerá cada ejemplar
 - Posibilidades
 - 0: participación opcional (puede haber ejemplares sin relacionar)
 - 1: participación obligatoria (todo ejemplar ha de estar relacionado)
 - Cardinalidad máxima
 - Nº máximo de asociaciones en que aparecerá cada ejemplar
 - 1: cada ejemplar participa como máximo una vez en la relación
 - x: valor concreto x con el número de veces que puede participar
 - N: no se indica valor concreto, sino N para indicar "muchas" veces

3.2.4. Relaciones: cardinalidad

Representación

- Entre paréntesis: (c. mínima, c. máxima)
- Junto a la entidad "contraria" a la que se refiere

- -Cada asignatura se impartirá al menos por un profesor (obligatorio)
- -Cada asignatura se impartirá como máximo por un profesor
- -Un profesor puede no impartir asignaturas (opcional)
- -Un profesor puede impartir varias asignaturas

- -Cada grupo tiene al menos un alumno (obligatorio)
- -Cada grupo puede tener varios alumnos máximo

- -Un alumno puede no formar parte de un grupo
- -Un alumno puede ser como máximo de un grupo

3.2.4. Relaciones: cardinalidad

- Combinaciones posibles
 - \Box (0, 1)
 - Participación opcional, y como máximo con una ocurrencia
 - **(1, 1)**
 - Participación obligatoria, y exactamente con una ocurrencia
 - (0, N)
 - Participación opcional, y con posibilidad de varias ocurrencias
 - Se puede indicar numéricamente, en vez de N
 - □ (1, N)
 - Participación obligatoria, incluso con varias ocurrencias
 - Se pude indicar numéricamente, en vez de N

3.2.5. Relaciones: tipo de correspondencia

- Llamada también cardinalidad "de una relación"
 - Nº máximo de ocurrencias de la entidad en una ocurrencia de la relación
 - Nº máximo de ocurrencias de la entidad que se relacionarán con UNA ocurrencia de la otra
- Posibles relaciones entre las entidades A y B
 - Relaciones uno a uno (1:1)
 - Cada ocurrencia de A se relaciona como máximo con 1 de B
 - Cada ocurrencia de B se relaciona como máximo con 1 de A
 - Relaciones uno a N (1:N)
 - Cada ocurrencia de A se puede relacionar con varias de B
 - Cada ocurrencia de B se puede relacionar como máximo con 1 de A
 - Relaciones N a N (N:N)
 - Cada ocurrencia de A se puede relacionar con varias de B
 - Cada ocurrencia de B se puede relacionar con varias de A

3.2.5. Relaciones: tipo de correspondencia

3.2.5. Relaciones: tipo de correspondencia

3.2.5. Relaciones: tipo de correspondencia

3.2.6. Relaciones: roles

- □ Rol
 - Papel que juega cada entidad en una relación
- □ En ocasiones representados en la relación
 - Sobre la línea que va de la entidad a la relación
- Cobra interés en el caso de relaciones reflexivas

- -Cada alumno es representado por exactamente 1 delegado (haría rol de compañero)
- -Cada alumno puede representar a 0 compañeros o a varios (haría rol de delegado)

3.2.6. Relaciones: roles

3.3. Atributos

1. Concepto

2. Representación

3. Tipos

4. Claves

3.3.1. Atributos: concepto

- □ Propiedades de las entidades y de las relaciones
- □ Toman valores de diferentes dominios
- Dominio
 - Conjunto de valores permitidos para un atributo
 - El atributo tomará uno de sus valores en un momento dado
 - Muchos atributos pueden tener dominios comunes
 - Identificado con los "tipos de datos"
 - Cadenas de una longitud, enteros, reales, caracteres, ...

3.3.2. Atributos: representación

- □ Elipse con el nombre del atributo en su interior
 - El nombre ha de ser único para su entidad o relación
 - Recomendable minúsculas
- Línea desde el atributo a su entidad o relación
- Posibilidad de indicar la cardinalidad
 - N° de veces que puede aparecer el atributo en una ocurrencia

3.3.2. Atributos: representación

- Atributos simples vs Atributos compuestos
 - Atributos simples
 - No están formados por otros atributos
 - Se unen a su entidad, relación o atributo compuesto
 - Atributos compuestos
 - Formados a su vez por otros atributos simples
 - Los simples se unen con líneas al atributo compuesto

- Atributos univaluados vs Atributos multivaluados
 - Atributos univaluados
 - Cada ocurrencia sólo puede tener un valor para él
 - Expresado con una cardinalidad máxima de 1 (o sin ella)
 - Atributos multivaluados
 - Puede tener varios valores para la misma ocurrencia
 - Expresado con una cardinalidad máxima de n

- Atributos obligatorios vs Atributos opcionales
 - Atributos obligatorios
 - Todas las ocurrencias han de tener un valor para él
 - No se admiten valores "nulos" para estos atributos
 - Expresado con una cardinalidad mínima de 1
 - Atributos opcionales
 - Pueden no tener valor para alguna/s ocurrencia/s
 - Tienen valor "nulo" para dicha/s ocurrencia/s
 - Expresado con una cardinalidad mínima de 0

- Atributos propios vs Atributos derivados
 - Atributos propios
 - No se pueden obtener a partir de otros atributos existentes
 - No son redundantes
 - Atributos derivados, calculados o almacenados
 - Se pueden obtener a partir del valor de otros atributos
 - Son redundantes

- Clave o identificador o llave
 - Atributo o conjunto de atributos de una entidad
 - Sus valores son únicos en cada ejemplar de la entidad
 - No puede haber dos ejemplares con el mismo valor de la clave
 - Representado con nombre del atributo subrayado
- Identificador alternativo
 - Mismos requisitos que el identificador o clave
 - No se escoge como clave porque existe otro mejor
 - Llamado también clave candidata
 - Representado con nombre del atributo subrayado discontinuo

- Características de un buen identificador
 - Distingue unívocamente cada ejemplar de la entidad o relación
 - No puede haber dos ejemplares que repitan valor
 - Todos los ejemplares tienen el mismo
 - Puede estar compuesto por más de un atributo
 - Puede haber varios candidatos
 - Uno elegido, por tener más relevancia en nuestro sistema
 - Los demás, alternativos
- □ Si una entidad no tiene identificador
 - Puede ser síntoma de haber sido mal modelada
 - Se genera un identificador artificial (id_nombreEntidad)

- □ Proceso de búsqueda de clave primaria: conceptos
 - Superclave
 - Conjunto de atributos que identifican unívocamente cada ejemplar
 - Puede contener atributos prescindibles para la identificación
 - Clave candidata
 - Superclave que no tiene atributos prescindibles
 - Clave primaria
 - Clave candidata elegida por el diseñador para identificar
 - Claves alternativas
 - Claves candidatas no seleccionadas por el diseñador

4. MER extendido

- 1. Relaciones ISA
 - 1. Concepto
 - 2. Representación
 - 3. Exclusividad
 - 4. Tipos
- 2. Entidades débiles
- 3. Agregaciones

4.1.1. Relaciones ISA: concepto

- □ Llamadas relaciones "es un" (is a) o de "herencia"
- □ Relación de generalización/especialización
 - Entidad general: atributos compartidos
 - Entidad especializada: atributos diferenciadores
- Referidas a "tipos de entidades"
 - Otra entidad "es un" (is a) tipo de entidad
 - Otra entidad "hereda de" un tipo de entidad
 - Una subentidad hereda atributos de una superentidad
 - Tendrá las características compartidas y las particulares

- Triángulo
 - Apuntando a la entidad general (notación clásica)
 - Apuntando a la entidad especializada (en España)
- Posibilidad de indicar cardinalidad
 - De no hacerse, se entiende (0,1)

- Relación ISA con clave heredada de la superentidad
- No puede haber "Personas" como tales

- Relación ISA con claves distintas en cada subentidad
- No puede haber "Personas" como tales

- Relación ISA con claves distintas en cada subentidad
- Puede haber "Personas" como tales (no alumnos, ni profesores, ni conserjes)

4.1.3. Relaciones ISA: exclusividad

- Modalidad más común de relación ISA
- Cada ejemplar sólo puede participar en una rama
- Representado con un arco entre las relaciones

Una persona sólo puede ser alumno O profesor O conserje

- Según se relacionen superentidad y subentidad...
 - Atendiendo a la <u>obligatoriedad</u>
 - Relaciones de jerarquía **parcial**: puede haber entidades que no pertenezcan a ninguno de los subtipos especializados
 - Relaciones de jerarquía **total**: todas las entidades son de algunos de los subtipos especializados
 - Atendiendo al número de relaciones (exclusividad)
 - Relaciones de jerarquía **solapada** o **inclusiva**: una entidad puede relacionarse con más de uno de los subtipos especializados
 - Relaciones de jerarquía **no solapada** o **exclusiva**: una entidad solo puede relacionarse con uno de los subtipos especializados

- Atendiendo a la obligatoriedad
 - □ ¿Todo ejemplar se ha de relacionar con una subendidad?
 - ¿Puede haber personas que no sean alumno, profesor o conserje?
 - Tipos
 - Relaciones de jerarquía parcial
 - Hay ejemplares de superentidad sin relacionar con una subentidad
 - Cardinalidad mínima en la superentidad = 0
 - Puede haber personas que no sean alumno, profesor o conserje
 - Relaciones de jerarquía total
 - Todo ejemplar de superentidad se relaciona con una subentidad
 - Cardinalidad mínima en la superentidad = 1
 - Toda persona ha de ser alumno, profesor o conserje

- Atendiendo al número de relaciones
 - □ ¿Con cuántas subentidades se relaciona la superentidad?
 - ¿Una persona puede ser a la vez profesor y alumno?
 - Tipos
 - Relaciones de jerarquía solapada
 - Un ejemplar de superentidad puede relacionarse con más de una subentidad
 - No lleva arco de exclusividad
 - Una persona puede ser a la vez profesor y alumno
 - Relaciones de jerarquía exclusiva
 - Un ejemplar de superentidad sólo puede relacionarse con una subentidad
 - Lleva arco de exclusividad
 - Una persona no puede ser a la vez profesor y alumno

Solapada: una persona puede ser profesor, alumno y conserje a la vez

Relación ISA solapada total

Exclusiva: una persona no puede ser profesor, alumno y conserje a la vez

Relación ISA exclusiva total

Solapada: una persona puede ser profesor, alumno y conserje a la vez

Relación ISA solapada parcial

Exclusiva: una persona no puede ser profesor, alumno y conserje a la vez

Relación ISA exclusiva parcial

4.2. Entidades débiles

- Una entidad depende de otra
 - Entidad fuerte o regular: la entidad independiente
 - Entidad débil: la entidad dependiente
- □ Tipos de dependencia
 - Dependencia en existencia
 - La existencia de una entidad depende de la de otra
 - Sin la entidad fuerte, la entidad débil carece de sentido
 - Siempre se da en una relación entidad fuerte / débil
 - Dependencia en identificación
 - La identificación de la débil necesita atributos de la fuerte
 - No tiene por qué darse en una relación entidad fuerte/débil

4.2. Entidades débiles

Dependencia en existencia: SÍ (necesaria)

Dependencia en identificación: NO (opcional): carné se identifica con número

4.2. Entidades débiles

Dependencia en existencia: SÍ (necesaria)

Dependencia en identificación: SÍ (opcional): ejemplar se identifica con título + número

4.3. Agregaciones

- □ Permiten representar relaciones
 - Entre relaciones
 - Entre entidades y relaciones
- Conjunto de entidades y relaciones = Otra entidad
 - Esa entidad "virtual" se relacionará con otras entidades
- □ Representación
 - Rectángulo que abarca al conjunto de entidades y relaciones
 - Nombre de la nueva entidad virtual sobre ese rectángulo

4.3. Agregaciones

- □ Ejemplo:
 - Caso inicial:
 - Un equipo juega un partido con otro equipo
 - El partido tendrá un resultado

4.3. Agregaciones

□ Ejemplo:

- Caso ampliado:
 - Se quiere saber quién arbitra cada partido
 - Se quiere saber qué empresas se anuncian en cada partido
- Solución:
 - Surge el concepto de Partido
 - Un Partido serán los Equipos que lo Juegan
 - Entidad Equipos
 - Relación Juegan
 - El Partido (entidades y relaciones) se relaciona con
 - Árbitros
 - Patrocinadores

4.3. Agregaciones

5. Elaboración de diagramas E/R

- 1. Proceso
- 2. Características deseables
- 3. Resumen de notaciones
- 4. Herramientas

- 1. Identificación de entidades
- 2. Identificación de relaciones
- 3. Establecimiento de cardinalidades y roles
- 4. Identificación de atributos, entidades débiles y jerarquías
- Selección de claves

- Identificación de entidades
 - A partir de la especificación de requisitos
 - Localizar unidades semánticas del sistema a diseñar
 - Identificación mediante nombres o sustantivos
 - Objetos importantes del sistema
 - Evitar confundir con características o propiedades
 - Elementos con existencia por sí mismos
 - Identificación por agrupación de un conjunto de propiedades
 - Obtención de un número manejable de entidades
 - Identificación: nombre representativo
 - Mayúsculas
 - Guiones bajos para nombres compuestos

- Identificación de relaciones
 - A partir de la especificación de requisitos
 - Localizar relaciones entre las entidades encontradas
 - Identificación mediante verbos o expresiones de acción
 - Conectan dos entidades: relaciones binarias
 - Conectan varias entidades: relaciones ternarias, n-arias
 - Conectan la propia entidad: relaciones unarias (reflexivas)
 - Identificación: verbo que representa la conexión
 - Guiones bajos para expresiones compuestas

- 3. Establecimiento de cardinalidades y roles
 - A partir de las entidades, relaciones y requisitos
 - Establecer e indicar para todas las relaciones
 - Tipos de correspondencia de las relaciones
 - Cardinalidades (mínimas y máximas) de cada entidad en ellas
 - Para las relaciones reflexivas indicar los roles

- 4. Identificación de atributos, entidades débiles y jerarquías
 - A partir de la especificación de requisitos y la lógica
 - Localizar características de las entidades y relaciones
 - Identificación mediante nombres o sustantivos en requisitos
 - Determinar propiedades que es necesario conocer (lógica)
 - De cada entidad
 - De cada relación
 - Determinar si algún atributo localizado es compuesto
 - Afirmativo... → Descomponer en atributos simples
 - Determinar si hay atributos comunes en varias entidades
 - Afirmativo... → Establecer jerarquía entre entidades
 - Identificación: nombre representativo de la propiedad
 - Minúsculas

- Selección de claves
 - Para cada entidad
 - Localización de claves candidatas
 - Selección de una de ellas como clave primaria
 - Si no la tiene: débil
 - Representación a partir de las conclusiones
 - Claves candidatas: subrayado discontinuo
 - Clave primaria: subrayado continuo
 - Entidades débiles: rectángulo doble

5.2. DER: características deseables

Completo

- Todos los requisitos se plasman en el diagrama
- Todos los elementos del DER proceden de los requisitos

Correcto

- Se siguen las convenciones del Modelo Entidad/Relación
 - Corrección sintáctica
 - Las representaciones son correctas
 - Corrección semántica:
 - Los elementos representados son los que se desprenden de los requisitos

■ Mínimo

- No contiene redundancias: no sobra ningún elemento
 - De suprimirse alguno, se perdería información

5.2. DER: características deseables

- □ Sencillo
 - Se representan los requisitos sin complejidades
- Legible
 - Es fácil de interpretar
 - La distribución espacial de componentes es adecuada
 - Se evitan cruces de líneas, etc
- Escalable
 - Posibles modificaciones se introducirían sin dificultad
 - Está preparado para incorporar nuevos requisitos

Cardinalidades

Atributos opcionales

- Características a tener en cuenta al decidir
 - Software libre o no
 - Software gratuito o no
 - Sistemas operativos soportados
 - □ Facilidad de uso
 - Posibilidad de generación de código SQL posterior
 - Soporte para ingeniería inversa
 - Posibilidad de integrarse con un SGBD concreto
 - Posibilidad de creación de otro tipo de diagramas

- Herramientas gratuitas para creación de diagramas
 - Dia
 - BD Designer Fork
 - MySQL Workbench
 - DDT (Database Design Tool)
 - Open System Architect
 - PG Designer
 - Power Architect Data Modeling Tool
 - **...**
- Herramientas proporcionadas con los SGBDs
 - SQL Developer Data Modeler (Oracle)
 - SQL Server Enterprise Manager
 - MySQL Workbench
 - ...

	Herramientas de pago para diseño de bases de datos
	□ DB Designer 4
	□ Toad Data Modeler
	ModelRight
	-
	Herramientas de pago para diseño de software (varios diagramas)
	□ Visual Paradigm
	Microsoft Visio
	Power Designer
	-
	Herramientas ofimáticas con posibilidad de creación de diagramas
	PowerPoint
	Word
	-

Unidad 2.

Diseño conceptual:

El Modelo Entidad/Relación

Bases de Datos 1° D.A.W.