Projection onto 1D subspaces

Consider a vector space V with the dot product at the inner product and a subspace U of V. With a basis vector \mathbf{b} of U, we obtain the **orthogonal projection** of any vector $\mathbf{x} \in V$ onto U via

$$\pi_U(x) = \lambda b, \quad \lambda = \frac{b^\top x}{b^\top b} = \frac{b^\top x}{\|b\|^2}$$

where λ is the **coordinate** of $\pi_U(x)$ with respect to b. The **projection matrix** P is

$$P = rac{bb^ op}{b^ op b} = rac{bb^ op}{\|b\|^2}$$

such that

$$\pi_U(x) = Px$$

for all $x \in V$.