X光实验报告

张锦程 材84 2018012082

本项目利用 X 射线谱来进行微晶的尺寸测定和未知样品的物相分析,X 射线采用 $Cu-K_{\alpha}$ 特征辐射 (1.54178 Å) 。

实验目的

- 1. 掌握利用 X 射线衍射技术测定微晶样品晶体尺寸的理论以及操作方法;
- 2. 掌握利用 X 射线衍射技术测定位置样品物相的方法;
- 3. 了解查找物质 PDF 卡片的方法;
- 4. 了解常用的 X 射线衍射仪及其操作方法;

实验原理

微晶尺寸的测定

微晶是指尺度在 $1 \sim 100 nm$ 的晶粒,这种尺度的晶粒足以引起可观测的衍射线宽化。

这种效应可由厄瓦尔德图解描述,如图 1 所示,在厄瓦尔德图中,干涉函数的主峰区与干涉球相交就会形成衍射线。而干涉函数主峰区的形状由微晶的形状决定,微晶晶粒越小,干涉函数的主峰区就越大,衍射线就越宽。

图一. 微晶宽化效应厄瓦尔德图解

- (a) 某一特定取向立方形微晶的厄瓦尔德图解,图面为(001)*面,图中的小方块都是微晶的倒易结点;
 - (b) 多晶的微晶试样的厄瓦尔德图解, 图中的环带为某一倒易球壳与图面的截面

这一结论可由布拉格公式推导如下:图 2(a) 为某一微晶的 (hkl) 面列,共 N 层,面间距为 d,两相邻晶面 反射之间的光程差为 Δl ,在满足布拉格条件时,应有 $\Delta l = 2dsin\theta = \lambda$

(b) 衍射线线形的宽度 β_{hkl} 与布拉格角偏离 $\epsilon_{1/2}$ 的关系

图二. 微晶的宽化微观模型效应

- (a) 某一特定取向立方形微晶的厄瓦尔德图解,图面为(001)*面,图中的小方块都是微晶的倒易结点;
 - (b) 多晶的微晶试样的厄瓦尔德图解, 图中的环带为某一倒易球壳与图面的截面

如果晶粒中的 (hkl) 面列无限厚,则仅在满足布拉格条件时才会有 hkl 衍射线产生。而当 (hkl) 面列包含的晶面数目有限时,入射 θ 与布拉格角呈微小偏离 ϵ ,也能够观测到 hkl 衍射线,产生宽化,这时的光程差:

$$\Delta l = 2 dsin(heta + arepsilon) = \lambda + 2 \epsilon dcos heta$$

所对应的相差为:

$$\Delta\phi = \frac{2\pi\Delta l}{\lambda} = 2\pi + \frac{4\pi\epsilon dcos\theta}{\lambda} = \frac{4\pi\epsilon dcos\theta}{\lambda}$$

N层 (hkl) 面的总振幅为: $A=A_0\sum\limits_{k=0}^{N-1}e^{ik\Delta\phi}$

利用等比数列求和: $\sum\limits_{k=0}^{N-1}e^{ik\Delta\phi}=rac{1-e^{i2\pi N\Delta\phi}}{1-e^{i2\pi\Delta\phi}}$

求得总强度值:

$$I = I_0 (\sum_{k=0}^{N-1} e^{ik\Delta\phi})^2 = I_0 |\frac{1 - e^{i2\pi N\Delta\phi}}{1 - e^{i2\pi\Delta\phi}}|^2 = I_0 \frac{1 - e^{i2\pi N\Delta\phi}}{1 - e^{i2\pi\Delta\phi}} \frac{1 - e^{-i2\pi N\Delta\phi}}{1 - e^{-i2\pi\Delta\phi}} = I_0 \frac{sin^2 \frac{N}{2} \Delta\phi}{sin^2 \frac{1}{2} \Delta\phi}$$

利用 ϵ 和 $\Delta\phi$ 均为小值: $I=I_0rac{N^2sin^2rac{N}{2}\Delta\phi}{(rac{N}{\alpha}\Delta\phi)^2}$

当偏差 $\epsilon = 0$ 时, I 有最大值

$$I_{max}=I_0N^2$$

设偏差 $\epsilon=\epsilon_{1/2}$ 时,I 衰减到一半的强度 $I_{1/2}$,并设

$$lpha = N\Delta\phi_{1/2} = 4\pi N\epsilon_{1/2} d\; cos heta/\lambda$$

则有

$$rac{I_{1/2}}{I_{max}}=rac{sin^2rac{lpha}{2}}{(rac{lpha}{2})^2}=rac{1}{2}$$

上式的数值解为 $\frac{\alpha}{2} = 1.4$, 于是:

$$\epsilon_{1/2} = rac{1.40 \lambda}{2 \pi N d \; cos heta}$$

由图二显示,衍射线线型宽度 $\beta_{hkl}=4\epsilon_{1/2}$;

到此,再根据微晶尺寸 $D_{hkl}=Nd_{hkl}$,可得到由衍射图样的半高宽计算微晶尺寸的 Scherrer 公式:

$$eta_{hkl} = rac{0.89 \lambda}{D_{hkl} \; cos heta} \ D_{hkl} = rac{0.89 \lambda}{eta_{hkl} \; cos heta}$$

此公式的使用范围在 $3 \sim 200 nm$, 求得的是平均的晶粒尺寸, 且是晶面法向尺寸。

物相的定性分析

定性相分析是指以样品的 X 射线衍射数据为基本依据来得到样品物相组成的分析工作。对于各种物相,其晶胞大小和内容各不相同,因而衍射图样也会不一样,这就是定性相分析的基础。化学分析与物相分析不能互相代替。例如即使得到钢的化学成分——碳、锰、硅、硫、磷等的含量,也不能判断钢的物相组成。反过来,即使知道钢中含有马氏体和一定量的奥氏体,也不能因此得出钢的化学成分。

定性相分析的基本方法是:将试样的衍射图样(或 I-20 图)与各种已知晶体的衍射图样(或 I-20 图)进行对比。目前大量应用的是粉末衍射卡片库,其中包括各种晶体的卡片,每张卡片上列出粉末衍射图样的基本数据:各条衍射线的指数、面间距和强度。作定性相分析,就是从试样衍射图样中取得上述各类数据,并将其与卡片进行比较。定性相分析的核心,就是如何运用卡片库。

粉末衍射标准联合委员会 (JCPDS) 的 PDF 卡片以衍射数据(一张晶面间距 d 对应于衍射强度 I 的表)代替 衍射图,应用时需要将所测得的衍射谱图提取出一张 d 对应于 I 的表,与标准 PDF 卡直接进行对比。从衍射图 中提出的 d-I 表与获取衍射图谱时使用的 X 射线的波长无关。

常用的 PDF 卡片检索方法主要有字序检索和哈拉华特检索法两种,前者按物质化学名称的英文书写法的字母顺序排列,而后者按强线的 d 值排列,每个条目一共列出 8 条强线的d 值。原则上,第一条线是最强线,第二条线是次强线。全手册将最强线从超过 10.00Å 到 1Å 分为 45 组。在每组中,按次强线的 d 值顺序排列,其余 6 条线按强度大小依次排列在次强线之后。

利用粉末衍射卡片库进行相分析,一般有如下几个步骤:

- ① 获得试样的衍射图样。
- ② 计算d值和测定 I/I_1 ——这些数据是定性相分析的依据,要使 d 值有足够的精确度。因为进行相分析时,主要是根据 d 值并参考 I/I_1 值来判定物相,从而对 I/I_1 值的精确度相对要求不高。
- ③ 检索卡片——例如,可以用最强线 d 值判定卡片在哈氏检索手册中所在的大组,用次强线 d 值判定卡片在大组中所在的位置,用全部 8 条强线的 d 值检验判断是否正确。如果 8 条强线已基本相符,即可以从卡片库中抽取该卡片,将试样的衍射数据与其进行全面对照。

如果试样是由多种物相构成,分析的难度就会大大增加。解决问题的基本办法仍然是尝试法。通过任意搭配"最强线-次强线"线对,尝试找出其中一种物相的衍射线。去除该物相的衍射线以后,再将余下的衍射线重新进行搭配,再进行尝试;直到全部衍射线都得到解释为止。

实验数据分析

微晶尺寸的测定

用衍射仪求得微晶样品的某衍射峰:

仪器参数: 2θ/θ偶合步进扫描 步宽: 0.01度 步进时间: 1.5秒 40kV Cu靶 150mA

经过本底和仪器曲线的修正之后,求出样品的峰值为 $2\theta=100.607^{\circ}$,半高宽为 0.483° ,根据谢乐公式求 得:

$$D_{hkl} = rac{0.89 \lambda}{eta_{hkl} \; cos heta} = rac{0.89 imes 1.54 \, imes}{rac{\pi}{180} imes 0.483 imes cos(50.3035\, imes)} = 254.5512 \, imes$$

物相的定性分析

测得原始数据如下:

样品峰	20	d(A)	$K_{lpha 1}$ 峰高 I
1	25.571	3.4807	14753
2	35.15	2.551	22316
3	37.77	2.3798	9709
4	41.68	2.1652	193
5	43.35	2.0856	24911
6	46.18	1.9641	302

样品峰	20	d(A)	$K_{lpha 1}$ 峰高 I
7	52.549	1.7401	11383
8	57.499	0.6015	22132
9	59.73	0.5469	583
10	61.139	1.5145	954
11	61.309	0.5108	1640
12	66.51	1.4047	8298
13	68.209	1.3738	12945
14	70.379	1.3366	264
15	74.319	1.2752	294
16	76.87	1.2391	3495
17	77.22	1.2344	1961
18	80.671	1.1900	1348
19	84.349	1.1473	1060
20	86.339	1.1259	977
21	89	1.0989	1660

查 PDF 手册可知该物相为:氧化铝($Aluminum\ Oxide,\ Al_2O_3$),对应 FOM 在 0.7 附近。 该过程使用 jade 自带的物相分析功能,具体结果如下:

	RD.txt] 10 1175							S/M	Hit Listin
SC.	AN: 10.02/89.998/0.02/1(sec), Cu, I(max)=23311	, 11/24/	20 10:57						
10	oTE: Intensity = Counts, 2T(0)=0.0(deg), S/M: Sea	a Searcl	h						
	Column: [+] Common/Good Patterns, [?] Uncomm			Patte	rns,[]Int	termedia	te Pattern	s, [D] [Deleted
	Column: C=Calculated, D=Diffractometer, F=Dens								
#	15 Hits Sorted on d/d(0)		FOM	1%	2T(0)	d/d(0)	PDF-#	J D	#d/I
1	✓ Al2O3 - Aluminum Oxide		0.7	85	0.000		75-1863		25
2	✓ Corundum - Al2O3		0.7	85	0.000		74-1081		25
3	✓ Al1.98Cr0.02O3 - Aluminum Chromium Oxid	le	0.7	85	0.000		73-0027		25
4	Corundum - (Al.948Cr.052)2O3		1.3	74	0.080		71-0958		25
5	Corundum (Cr-doped), syn - Al1.92Cr.08O3		3.9	74	0.100	1.000	87-0711	СС	25
3	Al1.54O3Cr.46 - Aluminum Chromium Oxide		24.5	18	-0.060	1.000	77-2188	СС	19
7	☐ NiZn3 - Nickel Zinc		33.0	61	0.000	1.000	47-1019	+ F	58
3	Cu5Zn8 - Copper Zinc		34.4	40	-0.020	1.000	25-1228	+ C	12
)	☐ TaN0.1 - Tantalum Nitride		35.1	23	0.080	1.000	25-1278	+ D	4
0	☐ Fe2C - Iron Carbide		37.3	15	-0.020	1.000	36-1249		5
1	Tungstite - WO3H2O		41.5	41	-0.080				88
2	Zr6CoGa2 - Zirconium Cobalt Gallium		42.2	44	0.080		73-0045		25
3			42.3	20	0.000		74-1420		48
4	. , , .	nate	44.9	100	0.000	1.000			62
5	☐ Fe7W6 - Iron Tungsten		48.3	36	0.000	1.000	42-1209	+ D	64
				ı					
			ı						