알고리즘의 이해

강의 1

알고리즘이란 무엇인가?

- 어떤 값이나 값의 집합을 입력으로 받아 또 다른 값이나 값의 집합을 출력하는 잘 정의된 계산 절차.
- 어떤 입력을 어떤 출력으로 변환하는 일련의 계산과정.
- 문제 해결 절차를 체계적으로 기술한 것
- 문제의 요구조건
 - 입력과 출력으로 명시할 수 있다
 - 알고리즘은 입력으로부터 출력을 만드는 과정을 기술

입출력의 예

- 문제
 - 100명의 학생의 시험 점수의 최댓값을 찾으라
- 입력
 - 100명의 학생들의 시험 점수
- 출력
 - 위 100개의 시험 점수들 중 최댓값

- 어떤 값이나 값의 집합을 입력으로 받아 또 다른 값이나 값의 집합을 출력하는 잘 정의된 계산 절차.
- 어떤 입력을 어떤 출력으로 변환하는 일련의 계산과정.
- 예시 최대값 찾기.

60 80 70 90 40 20 60 100

• 예시 – 최대값 찾기

• 입력: 60 80 70 90 40 20 60 100

• 출력: 100

• 예시 – 최대값 찾기

• 입력: 60 80 70 90 40 20 60 100

• 출력: 100

• 예시 – 최대값 찾기

• 입력: 60 80 70 90 40 20 60 100

• 출력: 100

바람직한 알고리즘

- 명확해야 한다
 - 이해하기 쉽고 가능하면 간명하도록
 - 지나친 기호적 표현은 오히려 명확성을 떨어뜨림
 - 명확성을 해치지 않으면 일반언어의 사용도 무방
- 효율적이어야 한다
 - 같은 문제를 해결하는 알고리즘들의 수행 시간이 수백만 배 이상 차이 날 수 있다

- 알고리즘 표현방법
 - 자연어 표현
 - 흐름도(flow chart) 표현
 - 유사코드(pseudo code) 표현
 - 프로그래밍 언어 표현

 최대값 찾기 문제 - 주어진 수들 중 최대값을 찾는 방법을 어떻게 표현 할 수 있을 까?

60 80 70 90 40 20 60 100

알고리즘의 기술 언어 자연어로 표현된 알고리즘

- 장점:
- 단점:

60 80 70 90 40 20 60 100

```
ArrayMax(A, n)

1.
2.
```

알고리즘의 기술 언어 자연어로 표현된 알고리즘

- 장점: 가장 읽기 쉽다.
- 단점: 의미 전달이 모호해질 우려가 있다.

60 80 70 90 40 20 60 100

ArrayMax(A, n)

- 1. 배열 A의 첫 요소를 변수 tmp에 복사
- 2. 배열 A의 다음 요소들을 차례대로 tmp와 비교하며 더 크면 tmp로 복사
- 3. 배열 A의 모든 요소를 비교했으면 tmp를 반환

흐름도(flowchart)로 표현된 알고리즘

• 장점:

• 단점:

배열 A: 60 80 70 90 40 20 60 100

http://www.rff.com/flowchart_shapes.htm

흐름도(flowchart)로 표현된 알고리즘

• 장점: 이해하기 쉽다.

 단점: 알고리즘이 복잡하면 흐름도가 매우 복잡해지며 작성에도 많은 시간이 소요된다.

배열 A: 60 80 70 90 40 20 60 100

http://www.rff.com/flowchart_shapes.htm

알고리즘의 기술 언어 프로그래밍 언어로 표현된 알고리즘

```
장점:단점:
```

```
#define MAX_ELEMENTS 100
int score[MAX_ELEMENTS];
int find_max_score(int n)
{
```

알고리즘의 기술 언어 프로그래밍 언어로 표현된 알고리즘

- 장점: 가장 정확하다.
- 단점: 구현관련 세부 사항들로 인해 알고리즘
 핵심내용을 파악하는 데에는 오히려 방해가 될 수 있다.

```
#define MAX_ELEMENTS 100
int score[MAX_ELEMENTS];
int find_max_score(int n)
{
    int i, tmp;
    tmp=score[0];
    for(i=1;i<n;i++){
        if( score[i] > tmp ){
            tmp = score[i];
        }
    }
    return tmp;
}
```

유사코드(pseudo code)

- 프로그래밍 언어와 유사하나 세부 표현은 생략하고
 조금 더 간략하게 표현한 언어로 정해진 법칙은 없음.
- 변수 보통은 선언 없이 그냥 사용 [i=1 A[i]=1
- 반복문

```
while M>0 i=i+1
```

```
for i=1 to M
...
```

```
for (i=1; i<N; i=i+2) {
...
}
```

• 조건문

```
if i<M
statement
else
statement
```

• 함수

add(a,b) return (a+b)

유사코드(pseudo code)로 표현된 알고리즘

• 장점:	
• 단점:	
특징:	

A	rrayMax(A,n)			

유사코드(pseudo code)로 표현된 알고리즘

- 장점: 고수준의 구조적 표현법. 구현상 세부 문제를 감춤으로써 알고리즘 핵심내용에 보다 집중할 수 있음.
- 단점: 프로그래밍 언어에 비해 덜 구체적임.
- 특징: 알고리즘 기술에 가장 많이 사용됨.

```
\begin{aligned} & \text{ArrayMax}(A,n) \\ & \text{tmp} \leftarrow A[0] \\ & \text{for } i \leftarrow 1 \text{ to } n\text{-}1 \\ & \text{if } \text{tmp} < A[i] \\ & \text{tmp} \leftarrow A[i] \\ & \text{return } \text{tmp} \end{aligned}
```

- 데이터 구조는 알고리즘 효율에 크게 영향을 미침.
- 일반적으로 데이터 구조가 복잡할 경우 연산의 횟수가 줄어들고, 데이터 구조가 단순할 경우 연산 횟수가 많아져 수행시간이 늘어나는 경향이 있다.
- 배열 (array) 10 50 30 40 20 15
 - 장점 각 원소의 접근 시간이 동일, 임의의 원소에 접근 속도가 빠르다.
 - 단점 새로운 원소를 중간에 삽입/삭제가 용이하지 않음
- 연결리스트 (linked list)··· → 10 → 50 → 30 → 40 → ···
 - 장점 원소의 삽입 삭제 연산이 간단하다.
 - 단점 자료접근이 어렵다(링크를 따라가야함), 자료를 위한 메모리 외에 링크를 위한 메모리 필요하다.

Insert 10, 20, 30, 40

• 큐 (queue)

In — 40 30 20 10 — Out

FIFO (First In First Out)

• 스택 (stack)

LIFO (Last In First Out)

40

30

20

10

- 그래프 (graph)
 - G=(V, E)

V: 정점, vertex,

E: 간선, edge

• 무방향 그래프 (undirected graph)

- 방향 그래프 (directed graph)
- 루프 (loop)

- 정점의 차수 (degree, in-degree, out-degree) 정점에 연결된 간선의 갯수
- 정점 v_1 에서 v_2 까지의 경로 (path) 간선으로 연결된 정점들의 순차열

• 그래프 (graph)

• 사이클(cycle) - 시작 정점과 끝정점이 같은 경로

• 완전 그래프 (complete graph) - 모든 정점끼리 간선으로

연결된 그래프

<i>K</i> ₁ : 0	K ₂ : 1	K ₃ : 3	K ₄ : 6
•	•		
K ₅ : 10	K ₆ : 15	K ₇ : 21	K ₈ : 28
K ₉ : 36	K ₁₀ : 45	K ₁₁ : 55	K ₁₂ : 66

- 그래프 (graph)
 - 사이클(cycle) 시작 정점과 끝정점이 같은 경로
 - 완전 그래프 (complete graph) 모든 정점끼리 간선으로 연결된 그래프
 - 여러가지 그래프의 예

• 나무 (tree) – 연결된 무사이클 무방향 그래프

- 그래프 (graph)
 - 나무 (tree)

뿌리나무 (rooted tree) – 나무의 정점 중 하나가 뿌리로 지정된 나무

이진 나무 (binary tree) – 각 노드의 자식이 2개 이하인 나무

조상(ancestor)

자손(descendant)

부모(parent)

자식(child)

동기(sibling) – 부모가 같은 노드

깊이(depth)- 뿌리에서 노드까지 경로의 길이

높이(height)

알고리즘의 평가기준

정당성 (Accuracy)

An algorithm is said to be correct(정당하다) if it halts with the correct output for every input instance.

A correct algorithm solves the given problem.

An incorrect algorithm might not halt at all or it might halt with an answer other than the desired one.

- 효율성 (Efficiency)
 - 컴퓨터가 상당히 빠를수는 있지만 무한히 빠를 수는 없고 메모리도 매우 저렴할 수 있지만 비용이 전혀 들지 않을 수는 없다.
 - 한정된 자원 (계산시간과 메모리 공간) 을 가지고 시간(time)과 <mark>공간(space)</mark>측면에서 효율적인 알고리즘이 필요하다.

시간 효율성 평가

빅오 표기법 (Big-O Notation)

N을 N번 더하는 문제
 각 알고리즘이 수행하는 연산의 갯수를 세어 본다
 (단, for 루프 제어 연산 등 세세한 것은 무시)

알고리즘 A	알고리즘 B	알고리즘 C
sum ←n*n;	sum ← 0; for i ← 1 to n do sum ←sum + n;	sum ← 0; for i←1 to n do for j←1 to n do sum ←sum + 1;

	알고리즘 A	알고리즘 B	알고리즘 C
대입 연산			
덧셈 연산			
곱셈 연산			
나눗셈 연산			
전체 연산수			

시간 효율성 평가

빅오 표기법 (Big-O Notation)

N을 N번 더하는 문제
 각 알고리즘이 수행하는 연산의 갯수를 세어 본다
 (단, for 루프 제어 연산 등 세세한 것은 무시)

알고리즘 A 알고리즘 B		알고리즘 C
sum ←n*n;	sum ← 0; for i ← 1 to n do sum ←sum + n;	sum ← 0; for i←1 to n do for j←1 to n do sum ←sum + 1;

	알고리즘 A	알고리즘 B	알고리즘 C
대입 연산	1	n + 1	n*n + 1
덧셈 연산		n	n*n
곱셈 연산	1		
나눗셈 연산			
전체 연산수	2	2n + 1	2n ² + 1

```
sample1(A[], n)
{
k = \lfloor n/2 \rfloor ;
return A[k];
}
```

```
sample1(A[], n)
{
k = \lfloor n/2 \rfloor ;
return A[k];
}
```

✓ n에 관계없이 상수 시간이 소요된다.

```
sample2(A[], n)
      sum \leftarrow 0;
      for i \leftarrow 1 to n
             sum \leftarrow sum + A[i];
       return sum;
```

```
sample2(A[], n)
      sum \leftarrow 0;
      for i \leftarrow 1 to n
            sum \leftarrow sum + A[i];
      return sum;
 ✓ n에 비례하는 시간이 소요된다.
```

```
sample3(A[], n)
       sum \leftarrow 0;
       for i \leftarrow 1 to n
              for j \leftarrow 1 to n
                     sum \leftarrow sum + A[i]*A[j];
       return sum;
```

```
sample3(A[], n)
       sum \leftarrow 0;
       for i \leftarrow 1 to n
             for j \leftarrow 1 to n
                    sum \leftarrow sum + A[i]*A[j];
       return sum;
}
✓ n²에 비례하는 시간이 소요된다.
```

```
sample4(A[], n)
       sum \leftarrow 0;
       for i \leftarrow 1 to n-1
              for j \leftarrow i+1 to n
                     sum \leftarrow sum + A[i]*A[j];
       return sum;
```

```
sample4(A[], n)
      sum \leftarrow 0;
      for i \leftarrow 1 to n-1
             for j \leftarrow i+1 to n
                   sum \leftarrow sum + A[i]*A[j];
      return sum;
}

✓ n²에 비례하는 시간이 소요된다.
```

알고리즘의 수행 시간

```
sample5(A[], n)
      sum \leftarrow 0;
      for i \leftarrow 1 to n
             for j \leftarrow 1 to n \{
                    k \leftarrow A[1 ... n]에서 임의로 \lfloor n/2 \rfloor개를 뽑을 때 이들 중 최댓값;
                    sum \leftarrow sum + k;
      return sum;
```

알고리즘의 수행 시간

```
sample5(A[], n)
      sum \leftarrow 0;
      for i \leftarrow 1 to n
           for j \leftarrow 1 to n \{
                 k \leftarrow A[1 \dots n]에서 임의로 |n/2|개를 뽑을 때 이들 중 최댓값;
                 sum \leftarrow sum + k;
      return sum;
》

✓ n³에 비례하는 시간이 소요된다.
```

점근적 분석Asymptotic Analysis

- 입력의 크기가 충분히 큰 경우에 대한 분석
- 이미 알고있는 점근적 개념의 예

$$\lim_{n\to\infty} f(n)$$

• 점근법 표기법(Asymptotic Notations)

Ο, Ω, Θ, ω, ο 표기법

- 연산 횟수를 대략적(점근적)으로
 표기한 것으로 함수의 상한을 의미함.
- 두 개의 함수 f(n)과 g(n)이 주어졌을 때,
 모든 n≥n₀에 대하여 |f(n)| ≤ c|g(n)|을
 만족하는 2개의 상수 c와 n₀가 존재하면 f(n)
 = O(g(n)) 이다.

- **Big O notation** is a mathematical notation that describes the <u>limiting behavior</u> of a <u>function</u> when the <u>argument</u> tends towards a particular value or infinity. Big O is a member of a <u>family of notations</u> invented by German mathematicians <u>Paul Bachmann</u>, <u>Edmund Landau</u>, and others, collectively called **Bachmann–Landau notation** or **asymptotic notation**. The letter O was chosen by Bachmann to stand for <u>Ordnung</u>, meaning the <u>order of approximation</u>.
- In <u>computer science</u>, big O notation is used to <u>classify</u> <u>algorithms</u> according to how their run time or space requirements grow as the input size grows. [3] In <u>analytic number theory</u>, big O notation is often used to express a bound on the difference between an <u>arithmetical function</u> and a better understood approximation; a famous example of such a difference is the remainder term in the <u>prime number theorem</u>. Big O notation is also used in many other fields to provide similar estimates.

- 연산 횟수를 대략적(점근적)으로
 표기한 것으로 함수의 상한을 의미함.
- 두 개의 함수 f(n)과 g(n)이 주어졌을 때,
 모든 n≥n₀에 대하여 |f(n)| ≤ c|g(n)|을
 만족하는 2개의 상수 c와 n₀가 존재하면 f(n)
 = O(g(n)) 이다.

- 성능의 대략적 표기
 - 예 n≥2 이면 n²+n+1⟨2n² 이므로 n²+n+1 = O(n²)
 - n=1000 인 경우,

빅오 표기법 (Big-O Notation)

$$2n^{2}-5n+7=O(n^{2})$$

$$f_{1}(n) = O(g_{1}(n)), \quad f_{2}(n) = O(g_{2}(n))$$

$$(1) f_{1}(n)+f_{2}(n) = (2)f_{1}(n)\cdot f_{2}(n) = (2)f_{1}(n)\cdot f_{2}(n) = (2)f_{2}(n)$$

빅오 표기법 (Big-O Notation)

$$2n^{2}-5n+7=O(n^{2})$$

$$f_{1}(n) = O(g_{1}(n)), \quad f_{2}(n) = O(g_{2}(n))$$

$$(1) f_{1}(n)+f_{2}(n) = O(g_{1}(n)+g_{2}(n)) = O(\max(g_{1}(n),g_{2}(n)))$$

$$(2) f_{1}(n) \cdot f_{2}(n) = O(g_{1}(n) \cdot g_{2}(n))$$

빅오 표기법 (Big-O Notation)

$$2n^{2}-5n+7=O(n^{2})$$

$$f_{1}(n) = O(g_{1}(n)), \quad f_{2}(n) = O(g_{2}(n))$$

$$(1) f_{1}(n) + f_{2}(n) = O(g_{1}(n) + g_{2}(n)) = O(\max(g_{1}(n), g_{2}(n)))$$

$$(2) f_{1}(n) \cdot f_{2}(n) = O(g_{1}(n) \cdot g_{2}(n))$$

$$g_1 < g_2$$
,
 $n > n_0$, $f_1(n) \le c_1 g_1(n) < c_1 g_2(n)$

빅오 표기법 (Big-O Notation)

$$2n^{2}-5n+7=O(n^{2})$$

$$f_{1}(n) = O(g_{1}(n)), \quad f_{2}(n) = O(g_{2}(n))$$

$$(1) f_{1}(n) + f_{2}(n) = O(g_{1}(n) + g_{2}(n)) = O(\max(g_{1}(n), g_{2}(n)))$$

$$(2) f_{1}(n) \cdot f_{2}(n) = O(g_{1}(n) \cdot g_{2}(n))$$

$$g_1 < g_2$$
,
 $n > n_0$, $f_1(n) \le c_1 g_1(n) < c_1 g_2(n)$
 $n > n_0'$, $f_2(n) \le c_2 g_2(n)$
 $n > n^*$, $f_1(n) + f_2(n) \le c_1 g_1(n) + c_2 g_2(n) < c_1 g_2(n) + c_2 g_2(n) = (c_1 + c_2) g_2(n)$

- O(1): 상수형, constant
- O(logn) : 로그형, logarithmic
- O(n): 선형, linear
- O(nlogn):로그선형
- O(n²): 2차형, quadratic
- O(n³): 3차형, cubic
- O(n^k): k차형, polynomial
- O(2ⁿ): 지수형, exponential
- O(n!) : 팩토리얼형

시간복잡도	n							
시신국업포	1	2	4	8	16	32		
1	1	1	1	1	1	1		
Log n	0	1	2	3	4	5		
n	1	2	4	8	16	32		
n Log n	0	2	8	24	64	160		
n²	1	4	16	64	256	1024		
n³	1	8	64	512	4096	32768		
2 ⁿ	2	4	16	256	65536	4294967296		
n!	1	2	24	403 26	209227898 88000	26313×10 ³³		

Big-O Complexity Chart

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < \dots < O(2^n)$$

- 함수의 하한을 의미함
- 모든 $n \ge n_0$ 에 대하여 $|f(n)| \ge$ clg(n)|을 만족하는 2개의 상수 c와 n_0 가 존재하면 f(n) = Ω(g(n))이다.
- (예) n ≥ 0 이면 2n+1 > n 이므로 2n+1 = Ω (n)

시간 효율성 평가 ^{빅세타 표기법 (Big-θ Notation)}

- 빅세타는 함수의 하한인 동시에 상한을 표시한다.
- 모든 $n \ge n_0$ 에 대하여 $c_1 | g(n) | \le | f(n) |$ $\le c_2 | g(n) |$ 을 만족하는 3개의 상수 c_1 , c_2 와 n_0 가 존재하면 $f(n) = \theta(g(n))$ 이다.

• (예) n ≥ 1이면 n ≤ 2n+1 ≤ 3n이므로 2n+1 = θ(n)

점근적 표기법

- O(g(n))
 - Tight or loose upper bound
 - •
- $\Omega(g(n))$
 - Tight or loose lower bound
 - •
- Θ(g(n))
 - Tight bound
 - •
- o(g(n))
 - Loose upper bound
 - •
- $\omega(g(n))$
 - Loose lower bound
 - •

점근적 표기법

- O(g(n)) 빅오
 - Tight or loose upper bound
 - $O(g(n)) = \{ f(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t.} \forall n \ge n_0, f(n) \le c g(n) \}$
- Ω(g(n)) 빅오메가
 - Tight or loose lower bound
 - $\Omega(g(n)) = \{ f(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t.} \forall n \ge n_0, c g(n) \le f(n) \}$
- Θ(g(n)) 빅세타
 - Tight bound
 - $O(g(n)) = \{ f(n) \mid \exists c_1, c_2 > 0, n_0 \ge 0 \text{ s.t.} \forall n \ge n_0, c_1 g(n) \le f(n) \le c_2 g(n) \}$
- o(g(n)) 스몰오
 - Loose upper bound
 - $o(g(n)) = \{ f(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t.} \forall n \ge n_0, f(n) < cg(n) \}$
- ω(g(n)) 스몰오메가
 - Loose lower bound
 - $\omega(g(n)) = \{ f(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t.} \forall n \ge n_0, c g(n) < f(n) \}$

최선, 평균, 최악의 경우의 성능표기

- 알고리즘의 수행시간은 입력 자료 집합에 따라 다를 수 있다.
- 예순차탐색
 - 최선의 경우(best case)

• 최악의 경우(worst case)

• 평균의 경우(average case)

최선, 평균, 최악의 경우의 성능표기

- 알고리즘의 수행시간은 입력 자료 집합에 따라 다를 수 있다.
- 예 순차탐색
 - 최선의 경우(best case)
 - -> 의미 없는 경우가 많다.
 - 평균의 경우(average case)
 - -> 계산하기가 상당히 어렵다.
 - 최악의 경우(worst case)
 - -> 가장 널리 사용된다. 계산하기 쉽고 응용에 따라 중요한 의미를 가질 수도 있다.

점근적 복잡도의 예

• 정렬 알고리즘들의 복잡도 표현 예 (정렬에서 공부함)

- 선택정렬
 - $\Theta(n^2)$
- 힙정렬
 - O(nlogn)
- 퀵정렬
 - $O(n^2)$
 - 평균 Θ(nlogn)

Common Data Structure Operations

Data Structure	Time Complexity								Space Complexity
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Array	Θ(1)	Θ(n)	Θ(n)	Θ(n)	0(1)	0(n)	0(n)	0(n)	0(n)
Stack	Θ(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Queue	Θ(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	Θ(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	Θ(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Skip List	θ(log(n))	Θ(log(n))	Θ(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n log(n))
Hash Table	N/A	Θ(1)	Θ(1)	Θ(1)	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree	θ(log(n))	Θ(log(n))	Θ(log(n))	θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)
Cartesian Tree	N/A	Θ(log(n))	θ(log(n))	θ(log(n))	N/A	0(n)	0(n)	0(n)	0(n)
B-Tree	θ(log(n))	Θ(log(n))	θ(log(n))	θ(log(n))	0(log(n))	O(log(n))	0(log(n))	O(log(n))	0(n)
Red-Black Tree	θ(log(n))	Θ(log(n))	Θ(log(n))	θ(log(n))	0(log(n))	O(log(n))	0(log(n))	O(log(n))	0(n)
Splay Tree	N/A	Θ(log(n))	Θ(log(n))	θ(log(n))	N/A	O(log(n))	O(log(n))	O(log(n))	0(n)
AVL Tree	θ(log(n))	θ(log(n))	θ(log(n))	θ(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
KD Tree	Θ(log(n))	θ(log(n))	Θ(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)

http://bigocheatsheet.com/

Array Sorting Algorithms

Algorithm	Time Compl	Space Complexity		
	Best	Average	Worst	Worst
Quicksort	$\Omega(n \log(n))$	θ(n log(n))	0(n^2)	O(log(n))
Mergesort	$\Omega(n \log(n))$	θ(n log(n))	0(n log(n))	0(n)
<u>Timsort</u>	<u>Ω(n)</u>	θ(n log(n))	0(n log(n))	0(n)
<u>Heapsort</u>	$\Omega(n \log(n))$	θ(n log(n))	0(n log(n))	0(1)
Bubble Sort	<u>Ω(n)</u>	Θ(n^2)	0(n^2)	0(1)
Insertion Sort	<u>Ω(n)</u>	Θ(n^2)	0(n^2)	0(1)
Selection Sort	Ω(n^2)	θ(n^2)	0(n^2)	0(1)
Tree Sort	$\Omega(n \log(n))$	$\theta(n \log(n))$	0(n^2)	0(n)
Shell Sort	$\Omega(n \log(n))$	$\theta(n(\log(n))^2)$	0(n(log(n))^2)	0(1)
Bucket Sort	$\Omega(n+k)$	Θ(n+k)	0(n^2)	0(n)
Radix Sort	$\Omega(nk)$	θ(nk)	0(nk)	0(n+k)
Counting Sort	$\Omega(n+k)$	Θ(n+k)	0(n+k)	0(k)
Cubesort	<u>Ω(n)</u>	$\theta(n \log(n))$	0(n log(n))	0(n)

http://bigocheatsheet.com/