Package 'Manifoldgstat'

March 26, 2019

Type Package

Version 1.0.0

Title Kriging prediction for manifold-valued data.

Description Inference and prediction for manifold-valued data analysis. This package provides a C++ implementation of the functions to create a model, for spatial dependent manifold valued data, in order to perform kriging. In each location, specified by a vector of coordinates ([lat,long], [x,y] or [x,y,z]), the datum is supposed to be a symmetric and positive definite matrix (possibly a correlation matrix). The algorithm exploits a projection of these data on a tangent space, where the tangent point is either provided by the user or computed as intrinsic mean of the data in input.	
Depends R (>= 3.2.0), Rcpp (>= 0.12.16), RcppEigen (>= 0.3.3.4.0), plyr(>= 1.8.4)	
LinkingTo Rcpp, RcppEigen	
NeedsCompilation yes	
SystemRequirements C++11	
License What license is it under?	
Encoding UTF-8	
LazyData true	
RoxygenNote 6.1.1	
R topics documented:	
bootstrapVar . distance_manifold . full_RDD . intrinsic_mean . kriging . mixed_RDD . model_GLS . model_kriging . 1 Index	2 2 3 4 6 8 10 12

2 distance_manifold

	b	ootstrapVar	Compute the bootstrap variance
--	---	-------------	--------------------------------

Description

Compute the bootstrap variance

Usage

```
bootstrapVar(res.boot, res.aggr, K, metric_manifold)
```

Arguments

res.boot A list of length B. Each field contains the predictions for the corresponding iter-

ation

res.aggr A list as long as the number of the prediction. Each field a single prediction

K number of neighbourhood used in the analysis

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEu-

clidean", "SquareRoot"

Value

It returns a vector, as long as the number of predictions, containing the the variance at the predicted locations

Description

Compute the manifold distance between symmetric positive definite matrices

Usage

```
distance_manifold(data1, data2, metric_manifold = "Frobenius")
```

Arguments

data1 list or array [p,p,B1] of B1 symmetric positive definite matrices of dimension

p*p. Or a single p*p matrix

data2 list or array [p,p,B2] of B2 symmetric positive definite matrices of dimension

p*p. Or a single p*p matrix.

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEu-

clidean", "SquareRoot", "Correlation"

full_RDD 3

Details

If B2=B1 then the result is a vector of length B1=B2 containing in position i the manifold distance beetween data1[,,i] and data2[,,i]. Instead if B2=1 and B1!=1 the result is a vector of length B1 containing in position i the manifold distance between data1[,,i] and data2[,,1]

Value

A double or a vector of distances

Examples

```
data_manifold_model <- Manifoldgstat::rCov
distances <-distance_manifold(data_manifold_model, diag(2), metric_manifold = "Frobenius")
print(distances)</pre>
```

full_RDD

Perform full_RDD

Description

It uses a repetition of simple and local analyses, instead of an unique global and complex one, through a *divide* et *impera* strategy. In the *divide* step, the domain is randomly decomposed in subdomains where local tangent-space models are estimated in order to predict at new locations (in each subregion is performed exactly the analysis described in the description of model_kriging function). This is repeated K times with different partitions of the domain. Then, in the *impera* step, the results of these iterations are aggregated, by means of the intrinsic mean, to provide a final prediction.

Usage

```
full_RDD(data_coords, data_val, K, grid, nk_min = 1, B = 100,
    suppressMes = F, tol = 1e-12, max_it = 100, n_h = 15,
    tolerance_intrinsic = 10^(-6), X = NULL, X_new = NULL,
    ker.width.intrinsic = 0, ker.width.vario = 1.5,
    graph.distance.complete, data.grid.distance, N_samples, p,
    aggregation_mean, aggregation_kriging, method.analysis = "Local mean",
    metric_manifold, metric_ts, model_ts, vario_model, distance = NULL)
```

Arguments

data_coords	N*2 or N*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees
data_val	array [p,p,N] of N symmetric positive definite matrices of dimension p*p
K	number of neighborhood (i.e., centers) to sample at each iteration
grid	prediction grid
nk_min	minimum number of observations within a neighborhood
В	number of divide iterations to perform
suppressMes	{TRUE, FALSE} controls the level of interaction and warnings given
tol	tolerance for the main loop of model kriging

4 full_RDD

max_it maximum number of iterations for the main loop of model_kriging

n_h number of bins in the empirical variogram

tolerance_intrinsic

Χ

tolerance for the computation of the intrinsic mean. Not needed if Sigma is provided

matrix (N rows and unrestricted number of columns) of additional covariates for

the tangent space model, possibly NULL

X_new matrix (with the same number of rows of new_coords) of additional covariates

for the new locations, possibly NULL

ker.width.intrinsic

parameter controlling the width of the Gaussian kernel for the computation of the local mean (if 0, no kernel is used)

ker.width.vario

parameter controlling the width of the Gaussian kernel for the computation of the empirical variogram (if 0, no kernel is used)

graph.distance.complete

N*N distance matrix (the [i,j] element is the length of the shortest path between points i and j)

data.grid.distance

N*dim(grid)[1] distance matrix between locations where the datum has been observed and locations where the datum has to be predicted

N_samples number of samples

p dimension of the manifold matrices

aggregation_mean

"Weighted" if the prediction obtained using the intrinsic mean, must be aggregated using different weights, "Equal" to use equal weights

aggregation_kriging

"Weighted" if the prediction obtained using Kriging, must be aggregated using different weights, "Equal" to use equal weights

method.analysis

"Local mean" to predict just with the mean, "Kriging" to predict via Kriging procedure

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot"

metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "Frobe-

niusScaled", "Correlation"

model_ts type of model fitted on the tangent space. It must be chosen among "Intercept",

"Coord1", "Coord2", "Additive"

vario_model type of variogram fitted. It must be chosen among "Gaussian", "Spherical",

"Exponential"

distance type of distance between coordinates. It must be either "Eucldist" or "Geodist"

Value

According to the analysis chosen:

• If method. analysis = "Local mean" it returns a list with the following fields

intrinsic_mean 5

- resBootstrap On its turn it is a list consisting of
 - * fmean It is a list with length B. Each field contains, for each new location, its prediction (at iteration b) obtained as intrinsic mean of the data inside the tile it belongs to
 - * kervalues_mean Weights used for aggregating fmean
- resAggregatedPredictions, for each new location, obtained aggregating fmean using kervalues_mean as weights
- If method. analysis = "Kriging" it returns a list with the following fields
 - resBootstrap On its turn it is a list consisting of
 - * fmean It is a list with length B. Each field contains, for each new location, its prediction (at iteration b) obtained as intrinsic mean of the data inside the tile it belongs to
 - * fpred It is a list with length B. Each field contains, for each new location, the prediction (at iteration b) obtained using Kriging
 - * kervalues_mean Weights used for aggregating fmean
 - * kervalues_krig Weights used for aggregating fpred
 - * variofit It is a list with length B. Each field contains, for each tile, the parameters of the fitted variogram
 - resAggregated Predictions, for each new location, obtained aggregating fpred using kervalues_krig as weights
 - resLocalMean Predictions, for each new location, obtained aggregating fmean using kervalues_mean as weights

intrinsic_mean

Intrinsic mean

Description

Evaluate the intrinsic mean of a given set of symmetric positive definite matrices

Usage

```
intrinsic_mean(data, metric_manifold = "Frobenius",
  metric_ts = "Frobenius", tolerance = 1e-06,
  weight_intrinsic = NULL, weight_extrinsic = weight_intrinsic,
  tolerance_map_cor = 1e-06)
```

Arguments

data list or array [p,p,B] of B symmetric positive definite matrices of dimension p*p metric manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation"

metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "Frobenius Scaled", "Correlation"

tolerance tolerance for the computation of the intrinsic_mean weight_intrinsic

vector of length B to weight the matrices in the computation of the intrinsic mean. If NULL a vector of ones is used

6 kriging

Value

A matrix representing the intrinsic mean of the data

References

X. Pennec, P. Fillard, and N. Ayache. A riemannian framework for tensor computing. International Journal of computer vision, 66(1):41-66, 2006.

Examples

kriging

Kriging prediction given the model

Description

Given the GLS model kriging prediction on new location is performed.

Usage

```
kriging(GLS_model, coords, new_coords, model_ts = "Additive",
  vario_model = "Gaussian", metric_manifold = "Frobenius",
  X_new = NULL, distance = "Geodist", tolerance_map_cor = 1e-06)
```

Arguments

GLS_model	the object returned by model_GLS, or a list containing the fields: Sigma (tangent point), beta (vector of the beta matrices of the fitted model), gamma_matrix (N*N covariogram matrix), residuals (vector of the N residual matrices), fitted_par_vario (estimates of <i>nugget</i> , <i>sill-nugget</i> and <i>practical range</i>)
coords	N*2 or $N*3$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees
new_coords	matrix of coordinates for the new locations where to perform kriging
model_ts	type of model fitted on the tangent space. It must be chosen among "Intercept", "Coord1", "Coord2", "Additive"
vario_model	type of variogram fitted. It must be chosen among "Gaussian", "Spherical", "Exponential"

kriging 7

```
metric_manifold
```

metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation"

X_new

matrix (with the same number of rows of new_coords) of additional covariates

for the new locations, possibly NULL

distance

type of distance between coordinates. It must be either "Eucldist" or "Geodist"

tolerance_map_cor

tolerance to use in the maps.

Required only if metric_manifold=="Correlation"

data_grid_dist_mat

Matrix of dimension N*M of distances between data points and grid points. If not provided it is computed using distance

Details

The model provided is used to perform simple kriging on the tangent space in correspondence of the new locations. The estimates are then mapped to the manifold to produce the actual prediction.

Value

A list with a single field:

prediction

vector of matrices predicted at the new locations

References

D. Pigoli, A. Menafoglio & P. Secchi (2016): Kriging prediction for manifold-valued random fields. Journal of Multivariate Analysis, 145, 117-131.

Examples

```
data_manifold_tot <- Manifoldgstat::fieldCov</pre>
data_manifold_model <- Manifoldgstat::rCov</pre>
coords_model <- Manifoldgstat::rGrid</pre>
coords_tot <- Manifoldgstat::gridCov</pre>
Sigma <- matrix(c(2,1,1,1), 2,2)
model = model_GLS(data_manifold = data_manifold_model, coords = coords_model, Sigma = Sigma,
              metric_manifold = "Frobenius", metric_ts = "Frobenius", model_ts = "Coord1",
                 vario_model = "Spherical", n_h = 15, distance = "Eucldist", max_it = 100,
                   tolerance = 1e-7, plot = TRUE)
result = kriging (GLS_model = model, coords = coords_model, new_coords = coords_model,
              model_ts="Coord1", vario_model= "Spherical", metric_manifold = "Frobenius",
                  distance="Eucldist")
result_tot = kriging (GLS_model = model, coords = coords_model, new_coords = coords_tot,
               model_ts="Coord1", vario_model= "Spherical", metric_manifold = "Frobenius",
                       distance="Eucldist")
x.min=min(coords_tot[,1])
x.max=max(coords_tot[,1])
y.min=min(coords_tot[,2])
y.max=max(coords_tot[,2])
dimgrid=dim(coords_tot)[1]
radius = 0.02
```

8 mixed_RDD

```
par(cex=1.25)
plot(0,0, asp=1, col=fields::tim.colors(100), ylim=c(y.min,y.max), xlim=c(x.min, x.max),
     pch='', xlab='', ylab='', main = "Real Values")
for(i in 1:dimgrid){
  if(i \% 3 == 0)
     car::ellipse(c(coords_tot[i,1],coords_tot[i,2]), data_manifold_tot[,,i],
                    radius=radius, center.cex=.5, col='navyblue')
rect(x.min, y.min, x.max, y.max)
for(i in 1:250)
{ car::ellipse(c(coords_model[i,1],coords_model[i,2]), data_manifold_model[,,i],
               radius=radius, center.cex=.5, col='green')}
rect(x.min, y.min, x.max, y.max)
par(cex=1.25)
plot(0,0, asp=1, col=fields::tim.colors(100), ylim=c(y.min,y.max),xlim=c(x.min, x.max),
     pch='', xlab='', ylab='',main = "Predicted values")
for(i in 1:dimgrid){
  if(i \% 3 == 0)
     car::ellipse(c(coords_tot[i,1],coords_tot[i,2]), result_tot$prediction[[i]],
                   radius=radius, center.cex=.5, col='navyblue' )
rect(x.min, y.min, x.max, y.max)
for(i in 1:250)
{ car::ellipse(c(coords_model[i,1],coords_model[i,2]), result$prediction[[i]],
                 radius=radius, center.cex=.5, col='red')}
rect(x.min, y.min, x.max, y.max)
```

mixed_RDD

Perform mixed_RDD

Description

It employs a *divide* et *impera* strategy only to provide an estimate of a "fictional" field of tangent points, used to encode the information regarding the drift. To this end in the *divide* step, the domain is randomly decomposed and in each subdomain a tangent point (assigned to each location in that subregion) is estimated as the intrinsic mean of the data belonging toit. This is repeated K times with different partitions of the domain and the results are then aggregated in the *impera* stage by means of the intrinsic mean. Eventually, exploiting this "fictional" field of tangent points and the concept of parallel transport, a kriging analysis over the whole domain is performed to predict the field values at new locations.

Usage

```
mixed_RDD(data_coords, data_val, K, grid, nk_min = 1, B = 100,
    suppressMes = F, ker.width.intrinsic = 0, graph.distance.complete,
    data.grid.distance, N_samples, p, aggregation_mean, metric_ts,
    tol = 1e-12, max_it = 100, n_h = 15,
    tolerance_intrinsic = 10^(-6), X = NULL, X_new = NULL,
    create_pdf_vario = FALSE, pdf_parameters = NULL, metric_manifold,
    model_ts, vario_model, distance)
```

mixed_RDD 9

Arguments

data_coords N*2 or N*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are sup-

posed to be provided in signed decimal degrees

data_val array [p,p,N] of N symmetric positive definite matrices of dimension p*p

K number of neighborhood (i.e., centers) to sample at each iteration

grid prediction grid

nk_min minimum number of observations within a neighborhood

B number of \texitdivide iterations to perform

suppressMes {TRUE, FALSE} controls the level of interaction and warnings given

ker.width.intrinsic

parameter controlling the width of the Gaussian kernel for the computation of

the local mean (if 0, no kernel is used)

graph.distance.complete

N*N distance matrix (the [i,j] element is the length of the shortest path between

points i and j)

data.grid.distance

N*dim(grid)[1] distance matrix between locations where the datum has been

observed and locations where

N_samples number of samples

dimension of the manifold matrices

aggregation_mean

"Weighted" if the prediction obtained using the intrinsic mean, must be aggre-

gated using different weights, "Equal" to use equal weights

metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "Frobe-

niusScaled", "Correlation"

tol tolerance for the main loop of model_kriging

max_it maximum number of iterations for the main loop of model_kriging

n_h number of bins in the empirical variogram

tolerance intrinsic

tolerance for the computation of the intrinsic mean. Not needed if Sigma is

provided

X matrix (N rows and unrestricted number of columns) of additional covariates for

the tangent space model, possibly NULL

X_new matrix (with the same number of rows of new_coords) of additional covariates

for the new locations, possibly NULL

create_pdf_vario

boolean. If TRUE the empirical and fitted variograms are plotted in a pdf file

pdf_parameters list with the fields test_nr and sample_draw. Additional parameters to name

the pdf

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEu-

clidean", "SquareRoot"

model_ts type of model fitted on the tangent space. It must be chosen among "Intercept",

"Coord1", "Coord2", "Additive"

vario_model type of variogram fitted. It must be chosen among "Gaussian", "Spherical",

"Exponential"

distance type of distance between coordinates. It must be either "Eucldist" or "Geodist"

10 model_GLS

Details

The manifold values are mapped on the tangent space and then a GLS model is fitted to them. A first estimate of the beta coefficients is obtained assuming spatially uncorrelated errors. Then, in the main the loop, new estimates of the beta are obtained as a result of a weighted least square problem where the weight matrix is the inverse of gamma_matrix. The residuals

(residuals = data_ts - fitted) are updated accordingly. The parameters of the variogram fitted to the residuals (and used in the evaluation of the gamma_matrix) are computed using Gauss-Newton with backtrack method to solve the associated non-linear least square problem. The stopping criteria is based on the absolute value of the variogram residuals' norm if ker.width.vario=0, while it is based on its increment otherwise. Once the model is computed, simple kriging on the tangent space is performed in correspondence of the new locations and eventually the estimates are mapped to the manifold.

Value

it returns a list with the following fields

- resBootstrap...
- resAggregated...
- model_pred...

model_GLS

Create a GLS model

Description

Given the coordinates and corresponding manifold values, this function creates a GLS model on the tangent space.

Usage

```
model_GLS(data_manifold, coords, X = NULL, Sigma = NULL,
  metric_manifold = "Frobenius", metric_ts = "Frobenius",
  model_ts = "Additive", vario_model = "Gaussian", n_h = 15,
  distance = "Geodist", max_it = 100, tolerance = 1e-06,
  weight_intrinsic = NULL, tolerance_intrinsic = 1e-06,
  max_sill = NULL, max_a = NULL, param_weighted_vario = NULL,
  plot = FALSE, suppressMes = FALSE, weight_extrinsic = NULL,
  tolerance_map_cor = 1e-06)
```

Arguments

data_manifold	list or array [p,p,N] of N symmetric positive definite matrices of dimension p*p
coords	N*2 or $N*3$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees
X	matrix (N rows and unrestricted number of columns) of additional covariates for the tangent space model, possibly NULL
Sigma	p*p matrix representing the tangent point. If NULL the tangent point is computed as the intrinsic mean of data_manifold

model_GLS 11

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEu-

clidean", "SquareRoot", "Correlation"

metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "Frobe-

niusScaled", "Correlation"

model_ts type of model fitted on the tangent space. It must be chosen among "Intercept",

"Coord1", "Coord2", "Additive"

vario_model type of variogram fitted. It must be chosen among "Gaussian", "Spherical",

"Exponential"

n_h number of bins in the emprical variogram

distance type of distance between coordinates. It must be either "Eucldist" or "Geodist"

max_it max number of iterations for the main loop

tolerance tolerance for the main loop

weight_intrinsic

vector of length N to weight the locations in the computation of the intrinsic mean. If NULL a vector of ones is used. Not needed if Sigma is provided

tolerance_intrinsic

tolerance for the computation of the intrinsic mean. Not needed if Sigma is

provided

max_sill max value allowed for sill in the fitted variogram. If NULL it is defined as

1.15*max(emp_vario_values)

max_a maximum value for a in the fitted variogram. If NULL it is defined as 1.15*h_max param_weighted_vario

List of 7 elements to be provided to consider Kernel weights for the variogram: weight_vario (vector of length N_tot to weight the locations in the computation of the empirical variogram), distance_matrix_tot (N_tot*N_tot matrix of distances between the locations), data_manifold_tot (list or array

[p,p,N_tot] of N_tot symmetric positive definite matrices of dimension p*p), coords_tot (N_tot*2 or N_tot*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees), X_tot (matrix with N_tot rows and unrestricted number of columns, of additional covariates for the tangent space model. Possibly NULL), h_max (maximum value of distance for which the variogram is computed) indexes_model (indexes corresponding to coords in coords_tot).

Required only in the case metric_manifold = "Correlation"

plot boolean. If TRUE the empirical and fitted variograms are plotted

suppressMes boolean. If TRUE warning messagges are not printed

weight_extrinsic

vector of length N to weight the locations in the computation of the extrinsic mean. If NULL weight_intrinsic are used. Needed only if Sigma is not provided and metric_manifold== "Correlation"

tolerance_map_cor

tolerance to use in the maps.

Required only if metric_manifold== "Correlation"

data_dist_mat Matrix of dimension N*N of distances between data points. If not provided it is computed using distance

Details

The manifold values are mapped on the tangent space and then a GLS model is fitted to them. A first estimate of the beta coefficients is obtained assuming spatially uncorrelated errors. Then, in the main the loop, new estimates of the beta are obtained as a result of a weighted least square problem where the weight matrix is the inverse of gamma_matrix. The residuals

(residuals = data_ts - fitted) are updated accordingly. The parameters of the variogram fitted to the residuals (and used in the evaluation of the gamma_matrix) are computed using Gauss-Newton with backtrack method to solve the associated non-linear least square problem. The stopping criteria is based on the absolute value of the variogram residuals' norm if ker.width.vario=0, while it is based on its increment otherwise.

Value

A list with the following fields:

beta vector of the beta matrices of the fitted model

gamma_matrix N*N covariogram matrix

residuals vector of the N residual matrices

emp_vario_values

vector of empircal variogram values in correspondence of h_vec

h_vec vector of positions at which the empirical variogram is computed

fitted_par_vario

estimates of nugget, sill-nugget and practical range

iterations number of iterations of the main loop

Sigma tangent point

References

D. Pigoli, A. Menafoglio & P. Secchi (2016): Kriging prediction for manifold-valued random fields. Journal of Multivariate Analysis, 145, 117-131.

Examples

model_kriging

Create a GLS model and directly perform kriging

Description

Given the coordinates and corresponding manifold values, this function firstly creates a GLS model on the tangent space, and then it performs kriging on the new locations.

Usage

```
model_kriging(data_manifold, coords, X = NULL, Sigma = NULL,
    metric_manifold = "Frobenius", metric_ts = "Frobenius",
    model_ts = "Additive", vario_model = "Gaussian", n_h = 15,
    distance = NULL, data_dist_mat = NULL, data_grid_dist_mat = NULL,
    max_it = 100, tolerance = 1e-06, weight_intrinsic = NULL,
    tolerance_intrinsic = 1e-06, max_sill = NULL, max_a = NULL,
    param_weighted_vario = NULL, new_coords, X_new = NULL,
    create_pdf_vario = TRUE, pdf_parameters = NULL,
    suppressMes = FALSE, weight_extrinsic = NULL,
    tolerance_map_cor = 1e-06)
```

Arguments

list or array [p,p,N] of N symmetric positive definite matrices of dimension p*p data_manifold coords N*2 or N*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees Χ matrix (N rows and unrestricted number of columns) of additional covariates for the tangent space model, possibly NULL Sigma p*p matrix representing the tangent point. If NULL the tangent point is computed as the intrinsic mean of data_manifold metric_manifold metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation" metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "FrobeniusScaled", "Correlation" model_ts type of model fitted on the tangent space. It must be chosen among "Intercept", "Coord1", "Coord2", "Additive" type of variogram fitted. It must be chosen among "Gaussian", "Spherical", vario_model "Exponential" n_h number of bins in the emprical variogram distance type of distance between coordinates. It must be either "Eucldist" or "Geodist" data_dist_mat Matrix of dimension N*N of distances between data points. If not provided it is computed using distance data_grid_dist_mat Matrix of dimension N*M of distances between data points and grid points. If not provided it is computed using distance

max_it max number of iterations for the main loop

tolerance tolerance for the main loop

weight_intrinsic

vector of length N to weight the locations in the computation of the intrinsic mean. If NULL a vector of ones is used. Not needed if Sigma is provided

tolerance_intrinsic

tolerance for the computation of the intrinsic mean. Not needed if Sigma is provided

max_sill max value allowed for sill in the fitted variogram. If NULL it is defined as 1.15*max(emp_vario_values)

maximum value for a in the fitted variogram. If NULL it is defined as 1.15*h_max max a param_weighted_vario

> List of 7 elements to be provided to consider Kernel weights for the variogram: weight_vario (vector of length N_tot to weight the locations in the computation of the empirical variogram), distance_matrix_tot (N_tot*N_tot matrix of distances between the locations), data_manifold_tot (list or array

> [p,p,N_tot] of N_tot symmetric positive definite matrices of dimension p*p, coords_tot (N_tot*2 or N_tot*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees), X_tot (matrix with N_tot rows and unrestricted number of columns, of additional covariates for the tangent space model. Possibly NULL), indexes_model (indexes corresponding to coords in coords_tot)

X_new matrix (with the same number of rows of new_coords) of additional covariates

matrix of coordinates for the new locations where to perform kriging

for the new locations, possibly NULL

create_pdf_vario

new_coords

boolean. If TRUE the empirical and fitted variograms are plotted in a pdf file

pdf_parameters list with the fields test_nr and sample_draw. Additional parameters to name

the pdf

suppressMes boolean. If TRUE warning messagges are not printed

weight_extrinsic

vector of length N to weight the locations in the computation of the extrinsic mean. If NULL weight_intrinsic are used. Needed only if Sigma is not provided and metric_manifold== "Correlation"

tolerance_map_cor

tolerance to use in the maps.

Required only if metric_manifold== "Correlation"

Details

The manifold values are mapped on the tangent space and then a GLS model is fitted to them. A first estimate of the beta coefficients is obtained assuming spatially uncorrelated errors. Then, in the main the loop, new estimates of the beta are obtained as a result of a weighted least square problem where the weight matrix is the inverse of gamma_matrix. The residuals

(residuals = data_ts - fitted) are updated accordingly. The parameters of the variogram fitted to the residuals (and used in the evaluation of the gamma_matrix) are computed using Gauss-Newton with backtrack method to solve the associated non-linear least square problem. The stopping criteria is based on the absolute value of the variogram residuals' norm if ker.width.vario=0, while it is based on its increment otherwise. Once the model is computed, simple kriging on the tangent space is performed in correspondence of the new locations and eventually the estimates are mapped to the manifold.

Value

list with the following fields:

beta vector of the beta matrices of the fitted model

gamma_matrix N*N covariogram matrix

vector of the N residual matrices residuals

emp_vario_values

vector of empircal variogram values in correspondence of h_vec

h_vec vector of positions at which the empirical variogram is computed fitted_par_vario estimates of nugget, sill-nugget and practical range iterations number of iterations of the main loop

Sigma tangent point prediction vector of matrices predicted at the new locations

References

D. Pigoli, A. Menafoglio & P. Secchi (2016): Kriging prediction for manifold-valued random fields. Journal of Multivariate Analysis, 145, 117-131.

Examples

```
data_manifold_tot <- Manifoldgstat::fieldCov</pre>
data_manifold_model <- Manifoldgstat::rCov</pre>
coords_model <- Manifoldgstat::rGrid</pre>
coords_tot <- Manifoldgstat::gridCov</pre>
Sigma <- matrix(c(2,1,1,1), 2,2)
result = model_kriging (data_manifold = data_manifold_model, coords = coords_model,
                         Sigma = Sigma, metric_manifold = "Frobenius"
                         metric_ts = "Frobenius", model_ts = "Coord1",
                         vario_model = "Spherical", n_h = 15, distance = "Eucldist",
                         max_it = 100, tolerance = 10e-7, new_coords = coords_model)
result_tot = model_kriging (data_manifold = data_manifold_model, coords = coords_model,
                             metric_ts = "Frobenius", Sigma = Sigma,
                             metric_manifold = "Frobenius", model_ts = "Coord1",
                             vario_model = "Spherical", n_h = 15, distance = "Eucldist",
                             max_it = 100, tolerance = 10e-7, new_coords = coords_tot,
                             create_pdf_vario = FALSE)
x.min=min(coords_tot[,1])
x.max=max(coords_tot[,1])
y.min=min(coords_tot[,2])
y.max=max(coords_tot[,2])
dimgrid=dim(coords_tot)[1]
radius = 0.02
par(cex=1.25)
plot(\emptyset,\emptyset,\ asp=1,\ col=fields::tim.colors(100),\ ylim=c(y.min,y.max),\ xlim=c(x.min,\ x.max),
      pch='', xlab='', ylab='', main = "Real Values")
for(i in 1:dimgrid){
 if(i %% 3 == 0)
    car::ellipse(c(coords_tot[i,1],coords_tot[i,2]) , data_manifold_tot[,,i],
                                  radius=radius, center.cex=.5, col='navyblue')
rect(x.min, y.min, x.max, y.max)
for(i in 1:250)
{ car::ellipse(c(coords_model[i,1],coords_model[i,2]) , data_manifold_model[,,i],
               radius=radius, center.cex=.5, col='green')}
rect(x.min, y.min, x.max, y.max)
par(cex=1.25)
plot(0,0, asp=1, col=fields::tim.colors(100), ylim=c(y.min,y.max),xlim=c(x.min, x.max),
```

Index

```
bootstrapVar, 2
distance_manifold, 2
full_RDD, 3
intrinsic_mean, 5
kriging, 6
mixed_RDD, 8
model_GLS, 10
model_kriging, 12
```