Smart HVAC Systems: RL Approach

Aniket Dixit

PhD Candidate, Computer Science
Tech University
June 15, 2025

Advisor: Prof. James Brusey

Committee: Prof. James Brusey, Prof. Matthew England

Research Overview

- Problem: Current sequential models struggle with long-range dependencies
- Approach: Novel attention mechanism with adaptive memory
- Contribution: 15% improvement over transformer baselines
- Impact: Applications in machine translation, summarization, and dialogue
- Validation: Comprehensive evaluation across 8 benchmark datasets

Core Innovation: Dynamic attention weights that adapt based on sequence complexity and context relevance

Problem Statement

Sequential Data Processing Challenges

Current Limitations

- Computational Complexity: Standard attention scales quadratically with sequence length
- Memory Constraints: Limited ability to maintain long-term context
- Training Instability: Gradient vanishing in very deep architectures
- Domain Adaptation: Poor generalization across different text domains

Research Questions

- How can we design attention mechanisms that scale efficiently?
- What architectural changes improve long-range dependency modeling?
- Can we achieve better performance with fewer parameters?

Hypothesis: Adaptive attention with hierarchical memory structures can overcome current limitations while maintaining computational efficiency

Reward Function

We model sequential data processing as learning a mapping function:

Objective Function:

$$\mathcal{L}(heta) = \sum_{i=1}^N \ell(f_ heta(X^{(i)}), Y^{(i)}) + \lambda \Omega(heta)$$

Where f_{θ} represents our proposed attention-based architecture, ℓ is the loss function, and $\Omega(\theta)$ is a regularization term.

Methodology

Proposed Architecture: AdaptiveNet

Key Components

- Multi-Head Adaptive Attention: Dynamic attention weights
- Hierarchical Memory Module: Long-term context storage
- Residual Gating: Improved gradient flow
- Layer-wise Learning Rates: Optimized training dynamics

AdaptiveNet Architecture
[Insert detailed network diagra]

Innovation Details

The adaptive attention mechanism computes context-dependent weights:

$$lpha_{ij} = rac{\exp(e_{ij} \cdot \operatorname{adapt}(c_i))}{\sum_{k=1}^n \exp(e_{ik} \cdot \operatorname{adapt}(c_i))}$$

Training Algorithm

```
Algorithm 1: AdaptiveNet Training

Input: Training dataset \mathcal{D}, model parameters \theta_0, learning rate \eta

Output: Optimized parameters \theta^*

1. Initialize model parameters \theta_0 and memory states M_0

2. for epoch = 1 to max_epochs do

3. &ention}(X, M)$

ard pass: \Lambda0

4. end for
```

Theoretical Analysis

Theorem 1: Convergence Guarantee

Under standard assumptions of bounded gradients and Lipschitz continuity, the AdaptiveNet training algorithm converges to a stationary point with probability 1.

Proof Sketch:

- 1. Show that the adaptive attention preserves the contraction property
- 2. Apply stochastic approximation theory for the memory update rule
- 3. Use martingale convergence theorem for the parameter updates

Complexity Analysis

- Time Complexity: $O(n \log n)$ for sequence length n (vs. $O(n^2)$ for standard attention)
- Space Complexity: O(n+m) where m is memory size
- Parameter Efficiency: 23% fewer parameters than comparable transformer models

Experimental Results

Experimental Setup

Datasets

- Machine Translation: WMT14 En-De, En-Fr
- Text Summarization: CNN/DailyMail, XSum
- Question Answering: SQuAD 2.0, Natural Questions
- Dialogue: PersonaChat, MultiWOZ

Baseline Models

- Transformer-Base: Standard attention mechanism
- Linformer: Linear attention approximation
- Performer: Fast attention via random features
- Longformer: Sparse attention patterns

Experimental Pipeline [Insert flowchart showing data preprocessing, model training, evaluation metrics, and statistical testing procedures]

Main Results

**Performance
Comparison
Across
Tasks**
[Figure]

Key Findings

TASK	ADAPTIVENET	TRANSFORMER	IMPROVEMENT
Translation (BLEU)	34.2	29.8	+14.8%
Summarization (ROUGE-L)	42.1	38.7	+8.8%
QA (F1)	89.3	85.2	+4.8%
Dialogue (BLEU)	28.6	24.1	+18.7%

Ablation Study

Component Analysis

COMPONENT	PERFORMANCE IMPACT	STATISTICAL SIGNIFICANCE
Adaptive Attention	+12.3%	p < 0.001
Hierarchical Memory	+8.7%	p < 0.001
Residual Gating	+4.2%	p < 0.01
Layer-wise LR	+2.8%	p < 0.05

Critical Finding: The adaptive attention mechanism provides the largest performance gain, with hierarchical memory being the second most important component

Computational Efficiency

Speed and Memory Comparison [Insert line graphs showing training time, inference speed, and memory usage across different sequence lengths for all baseline models]

Qualitative Analysis

Attention Visualization

Attention Patterns [Insert heatmaps showing attention weights for sample sentences, demonstrating long-range dependencies and adaptive behavior]

Example Outputs

Translation Quality:

- Our Model: "This is a very complex scientific article"
- Baseline: "This is a complex scientific paper"

Key Improvements:

- Better preservation of semantic meaning
- More accurate handling of technical terms
- Improved coherence in long documents

Error Analysis

Failure Cases

- Very Short Sequences (<10 tokens): Adaptive mechanism adds unnecessary overhead</p>
- Highly Repetitive Text: Memory module can get stuck in local patterns
- Code-Switching: Limited training data for multilingual scenarios

Robustness Testing

PERTURBATION TYPE	PERFORMANCE DROP	RECOVERY METHOD
Noise Injection	-8.2%	Data augmentation
Domain Shift	-12.5%	Few-shot adaptation
Adversarial	-15.3%	Adversarial training

Contributions & Impact

Primary Contributions

Technical Innovations

- Novel Architecture: First adaptive attention mechanism with hierarchical memory
- Theoretical Framework: Convergence guarantees for adaptive training dynamics

Scientific Impact

- Performance: State-of-the-art results on 6 out of 8 benchmark datasets
- **Efficiency**: 40% faster training, 60% faster inference than baselines

Broader Impact: This work enables deployment of advanced NLP models in resource-constrained environments while achieving superior performance

Future Directions

Short-term Goals (6-12 months)

- Multimodal Extension: Adapt architecture for vision-language tasks
- Few-shot Learning: Improve performance with limited training data
- Hardware Optimization: Develop GPU-optimized implementations

Long-term Vision (2-5 years)

- Foundation Models: Scale to billion-parameter models
- Real-time Applications: Deploy in production systems
- Cross-lingual Transfer: Universal language understanding

Collaboration Opportunities

- Industry Partnerships: Google, Microsoft, Meta Al research teams
- Academic Networks: Stanford HAI, MIT CSAIL, CMU LTI
- Open Science: Contributing to Hugging Face, PyTorch ecosystem

References

- 1. Vaswani, A., et al. (2017). Attention is All You Need. Neural Information Processing Systems, 5998-6008.
- 2. Devlin, J., et al. (2019). BERT: Pre-training of Deep Bidirectional Transformers. NAACL-HLT, 4171-4186.
- 3. Wang, S., et al. (2020). Linformer: Self-Attention with Linear Complexity. arXiv preprint arXiv:2006.04768.
- 4. Choromanski, K., et al. (2021). Rethinking Attention with Performers. ICLR.
- 5. Beltagy, I., et al. (2020). Longformer: The Long-Document Transformer. arXiv preprint arXiv:2004.05150.
- 6. **Brown, T., et al.** (2020). Language Models are Few-Shot Learners. *Neural Information Processing Systems*, 1877-1901.

Thank You

Questions & Discussion

Contact Information:

- iane.smith@techuniversity.edu
 - @janesmith_ai
 - janesmith-research.com

Resources:

- Code: github.com/janesmith/adaptivenet
 - Paper: arxiv.org/abs/2025.54321
 - ♣ Demo: adaptivenet-demo.com

Appendix: Implementation Details

Software Architecture

Core Dependencies

- Framework: PyTorch 2.0 + Transformers 4.28
- Optimization: AdamW with cosine scheduling
- Distributed Training: DeepSpeed ZeRO Stage 2

Hardware Configuration

- Training: 8× NVIDIA A100 (80GB) GPUs
- Evaluation: Single V100 (32GB) GPU
- Storage: High-speed NVMe SSD array

Hyperparameter Configuration:

Learning Rate: 1e-4 (adaptive attention), 5e-5 (other components)

Batch Size: 32 per GPU (256 total)

Sequence Length: 512 (training), 1024 (evaluation)

Memory Size: 256 slots

Attention Heads: 16

Hidden Dimension: 768

Dropout: 0.1

Weight Decay: 0.01

Appendix: Extended Results

Detailed Performance Analysis [Insert comprehensive results table with confidence intervals, statistical significance tests, and cross-validation scores for all experiments]

Statistical Analysis

- Sample Sizes: 10 random seeds \times 3 dataset splits \times 5 cross-validation folds
- Significance Testing: Paired t-tests with Bonferroni correction
- ► Effect Sizes: Cohen's d > 0.8 for all major improvements
- Confidence Intervals: 95% bootstrapped intervals reported

Computational Profiling

OPERATION	TIME (MS)	MEMORY (MB)	GPU UTILIZATION (%)
Forward Pass	12.3	2,840	87%
Backward Pass	18.7	3,120	92%
Memory Update	3.2	480	45%
Attention Computation	8.9	1,760	78%

Thank You

Questions & Discussion

Contact Information:

- [your.email@university.edu]
 - [@your_twitter_handle]
 - (your-website.com)

Resources:

- Code: [github.com/username/repo]
 - Paper: [arxiv.org/abs/xxxx.xxxxx]
 - ♣ Demo: [project-website.com]