IN THE CLAIMS:

Please amend the claims as follows:

- (Withdrawn) In a magnetic read head having an air bearing surface 1 l. 2 (ABS), a magnetic tunnel junction (MTJ) sensor for connection to sense circuitry for detecting changes in electrical resistance within the sensor, the 3 4 sensor comprising: a MTJ stack with an active region disposed at the ABS and having two opposite sides 5 each disposed generally orthogonally to the ABS, the MTJ stack comprising: 6 7 an antiferromagnetic (AFM) layer spanning the active region, a pinned layer of ferromagnetic (FM) material in contact with the AFM layer, 8 9 a free layer of FM material spanning the active region and extending beyond 10 each of the two opposite sides thereof, and a tunnel junction layer of electrically nonconductive material disposed between 11 12 the pinned layer and the free layer in the active region; and a longitudinal bias layer formed on and in contact with the free layer outside of 13 14 the active region for biasing the magnetic moment of the free layer in 15 substantially a predetermined direction in the absence of an external magnetic 16 field.
 - 2. (Cancelled)
 - 3. (Cancelled)
 - 4. (Cancelled)

	٦,	(Carcened)		
	6.	(Cancelled)		
	7.	(Cancelled)		
	8.	(Cancelled)		
	9.	(Cancelled)		
. 1	10.	(Withdrawn) sensor of claim 1 wherein the longitudinal bias layer comprises an		
2	electrically nonconductive HM material disposed outside of the active region and in			
3	abutting contact with the two opposite sides of the active region.			
1	11.	(Withdrawn) A direct access storage device (DASD) comprising:		
2		a magnetic recording disk having at least one surface for storing magnetically		
3	recorded data;			
4	a magnetic read head having an air bearing surface (ABS) disposed for reading			
5	the data from the magnetic recording disk surface;			
6	in the magnetic read head, a magnetic tunnel junction (MTJ) sensor comprising:			
7	a MTJ stack with an active region disposed at the ABS and having two			
8	opposite sides each disposed generally orthogonally to the ABS, the MTJ			
9	stack comprising:			
10		an antiferromagnetic (AFM) layer spanning the active region,		
11	a pinned layer of ferromagnetic (FM) material in contact with the AFM layer,			
12	a free layer of FM material spanning the active region and extending beyond each of			
13	the two opposite sides thereof, and			

14	a tunnel junction layer of electrically nonconductive material disposed between the
15	pinned layer and the free layer in the active region; and
16	a longitudinal blas layer formed on and in contact with the free layer outside of
17	the active region for biasing the magnetic moment of the free layer in substantially a
18	predetermined direction in the absence of an external magnetic field;
19	an actuator for moving the magnetic read head across the magnetic recording
20	disk surface to access the data stored thereon; and
21	a data channel having sense circuitry coupled electrically to the MTJ sensor for
22	detecting changes in resistance of the MTJ sensor caused by rotation of the magnetic
23	moment of the free ferromagnetic layer relative to the fixed magnetic moment of the
4	pinned layer responsive to magnetic fields representing the data stored on the magnet
25	recording disk surface.

- 12. (Cancelled)
- 13. (Cancelled)
- 14. (Cancelled)
- 15. (Cancelled)
- 16. (Cancelled)
- 17. (Cancelled)
- 18. (Cancelled)

19. (Cancelled)

1	20. (Withdrawn) The DASD of claim 11 wherein the longitudinal bias layer		
2	comprises an electrically nonconductive AFM material disposed outside of the		
3	active region and in abutting contact with the two opposite sides of the active		
4	region.		
1	21. (Currently Amended) In a magnetic read head having an air bearing		
2	surface (ABS), a magnetic tunnel junction (MTJ) sensor for connection to sense		
3	circuitry for detecting changes in electrical resistance within the sensor, the		
4	sensor comprising:		
5	first and second electrically conductive leads;		
6	a MTJ stack sandwiched between the first and second electrically		
7	conductive leads with an active region disposed at the ABS and		
8	having two opposite sides each disposed generally orthogonally		
9	to the ABS, the first and second electrically conductive leads		
10	extending laterally beyond the active region, the MTJ stack		
11	comprising:		
12	an antiferromagnetic (AFM) layer spanning the active region,		
13	a pinned layer of ferromagnetic (FM) material in contact with the AFM layer,		
14	a free layer of FM material spanning the active region, and		
15	a tunnel junction layer of electrically nonconductive material disposed between		
16	the pinned layer and the free layer in the active region; and		
17	a nonconductive longitudinal bias layer formed outside of the active region and		
18	in abutting contact with the two opposite sides of the active region for biasing		
19	the magnetic moment of the free layer in substantially a predetermined direction		
20	in the absence of an external magnetic field, the longitudinal bias layer		
21	consisting of a layer of electrically insulating hard magnetic material comprising		

a layer of nickel-oxide extending from the first shield lead to the second lead					
shield.					
22. (Cancelled)					
23. (Currently Amended) A direct access storage device (DASD)					
(DASD)					
comprising:					
a magnetic recording disk having at least one surface for storing magnetically					
recorded data;					
a magnetic read head having an air bearing surface (ABS) disposed for reading					
the data from the magnetic recording disk surface;					
in the magnetic read head, a magnetic tunnel junction (MTJ) sensor comprising:					
first and second electrically conductive leads;					
a MTJ stack, sandwiched between the first and second electrically conductive					
leads, with an active region disposed at the ABS and having two opposite sides					
each disposed generally orthogonally to the ABS, the first and second					
electrically conductive leads extending laterally beyond the active region, the					
MTJ stack comprising:					
an antiferromagnetic (AFM) layer spanning the active region,					
a pinned layer of ferromagnetic (FM) material in contact with the AFM layer,					
a free layer of FM material spanning the active region, and					
a tunnel junction layer of electrically nonconductive material disposed between the					
pinned layer and the free layer in the active region; and					
a nonconductive longitudinal bias layer formed outside of the active region and in					
abutting contact with the two opposite sides of the active region for biasing the					
magnetic moment of the free layer in substantially a predetermined direction in the					
absence of an external magnetic field, the longitudinal bias layer consisting of a					

23	mayor of electrically instrating hard-magnetic material comprising a layer of nickel-					
24	oxide extending from the first lead shield to the second lead shield;					
25	an actuator for moving the magnetic read head across the magnetic recording					
26	disk surface to access the data stored thereon; and					
27	a data channel having sense circuitry coupled electrically to the MTJ sensor for					
28	detecting changes in resistance of the MTJ sensor caused by rotation of the					
29	magnetic moment of the free ferromagnetic layer relative to the fixed magnetic					
30	moment of the pinned layer responsive to magnetic fields representing the data					
31	stored on the magnetic recording disk surface.					
1	24.	(Cancelled)				
	25.	(Cancelled)				
	26.	(Cancelled)				
	27.	(Cancelled)				
	28.	(Cancelled)				
	29.	(Cancelled)				
	30.	(Cancelled)				
	31.	(Cancelled)				
	32.	(Cancelled)				
	33.	(Cancelled)				

- 34. (Cancelled)
- 35. (Caucelled)
- 36. (Cancelled)
- 37. (Cancelled)
- 38. (Cancelled)
- 39. (Cancelled)
- 40. (Cancelled)
- 41. (Cancelled)
- 42. (Cancelled)
- 43. (Cancelled)
- 44. (Cancelled)
- 45. (Cancelled)
- 46. (Cancelled)