Automata & Formal Languages

Homework 1 – Deterministic Finite Automata

Abraham Murciano

March 3, 2020

1. $\mathcal{L} = \{ w \in \{ a, b, c \}^* : (\exists n \in \mathbb{N} : |W| = 2n) \}$

2. $\mathcal{L} = \{ w \in \{ a, b, c \}^* : abc \sqsubseteq w \}$

3.
$$\mathcal{L} = \{ w \in \{ a, b, c \}^* : abc \supseteq w \}$$

For this language, the word "aaaabc" belongs in the language, but "aaa" does not. For the string "aaaabc" the DFA accepts it as follows.

$$q_0 a \rightarrow q_1 a \rightarrow q_1 a \rightarrow q_1 a \rightarrow q_1 b \rightarrow q_2 c \rightarrow q_3$$

4. $\mathcal{L} = \{ w \in \{ \mathbf{a}, \mathbf{b}, \mathbf{c} \}^* : \mathbf{aaa} \not\sqsubseteq w \}$

The transition table for this automata is as follows.

	a	b	c
$\rightarrow q_0$	q_1	q_4	q_4
q_1	q_2	q_4	q_4
q_2	q_3	q_4	q_4
q_3	q_3	q_3	q_3
q_4	q_4	q_4	q_4

5. $\mathcal{L} = \{ w \in \{ \mathbf{a}, \mathbf{b}, \mathbf{c} \}^* : (\exists u, v \in \{ \mathbf{a}, \mathbf{b}, \mathbf{c} \}^* : w = u \circ \mathbf{ab} \circ v \lor w = u \circ \mathbf{ba} \circ v) \}$

6. $\mathcal{L} = \{abba\} \text{ where } \Sigma = \{a, b, c\}$

7. $\mathcal{L} = \{ w \in \{ \mathbf{a}, \mathbf{b}, \mathbf{c} \}^* : \forall u, v \in \{ \mathbf{a}, \mathbf{b}, \mathbf{c} \}^*, w \neq u \circ \mathbf{abc} \circ v \}$

For this language, the string "cbabcba" does not belong in the language, but "cbacba" does. The DFA processes the accepted word as follows.

$$q_0c \rightarrow q_0b \rightarrow q_0a \rightarrow q_1c \rightarrow q_0b \rightarrow q_0a \rightarrow q_1$$

8. $\mathcal{L} = \{w \in \{a, b, c\}^* : w \text{ has the same symbol in all even positions}\}$

The transition table for this automata is as follows.

	a	b	c
$\rightarrow q_0$	q_1	q_1	q_1
q_1	q_2	q_4	q_6
q_2	q_3	q_3	q_3
q_3	q_2	q_8	q_8
q_4	q_5	q_5	q_5
q_5	q_8	q_4	q_8
q_6	q_7	q_7	q_7
q_7	q_8	q_8	q_6
q_8	q_8	q_8	q_8

9. $\mathcal{L} = \{ w \in \{ a, b, c \}^* : (\exists n \in \mathbb{N} : \#_b(w) = 2n) \}$

10. $\mathcal{L} = \{abaa,\,abbaa\} \text{ where } \Sigma = \{a,b\}$

