阻尼振动和受迫振动实验报告

四	不	日初化尔
班	级:	自 02 班
学生	姓名: _	彭程
学	号: _	2020011075
组	号: _	单一晚 M
成 於	; 早·	# 13

目录

1	实验	经名称	2
2	实验	注目的	2
3	实验 3.1 3.2	法原理 阻尼振动运动方程	2 2 2
4	实验	全仪器	3
5	实验 5.1 5.2	後任务 实验步骤 注意事项	3 3
6	数据	异处理	4
	6.1	测量最小阻尼时的阻尼比 ζ 和固有角频率 ω_0	4
		6.1.1 阻尼比 ζ 的计算	4
		6.1.2 周期计算	5
	6.2	6.1.3 固有角频率计算	6
	0.2	侧里共尔二种阻比恒位的阻比比和固有用频率 · · · · · · · · · · · · · · · · · · ·	6
		6.2.2 阻尼档 3	8
		6.2.3 阻尼档 4	9
		6.2.4 参数汇总	11
	6.3	测定受迫振动的幅频特性和相频特性曲线	11
7	实验	沙 /	14
	7.1	思考题	14
	7.2	总结	15
8	预习]思考题	16
9	原始	数据记录	17

1 实验名称

直流电桥测电阻

2 实验目的

- 1. 观测阻尼振动, 学习测量振动系统基本参数的方法。
- 2. 研究受迫振动的幅频特性和相频特性,观察共振现象。
- 3. 观测不同阻尼对受迫振动的影响。

3 实验原理

3.1 阻尼振动运动方程

对弹簧与撰轮的振动系统而言,设转动惯量为 J , 转角 θ , 阻力矩 $\gamma^{\underline{e}\theta}_{dt}$, 弹簧力矩 $-k\theta_0$ 令 $\omega_0=\sqrt{k/J}$, 阻尼系数 $\beta=\gamma/2J$, 可得摆轮运动方程为:

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + 2\beta \frac{\mathrm{d}\theta}{\mathrm{d}t} + \omega_0^2 \theta = 0$$

当 $\beta^2 - \omega_0^2 < 0$ 时, 解为

$$\theta(t) = \theta_i \exp(-\beta t) \cos\left(\sqrt{\omega_0^2 - \beta^2 t} + \phi\right)$$

周期

$$T_d = \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}}$$

3.2 电机运动时的受迫振动运动方程

电机通过连杆 E 策动摆轮, 摇杆 M 转角 $\alpha(t)=\frac{r}{R}\cos\omega t$ 。 令 $\alpha_m=\frac{r}{R}$, 得摆轮运动方程:

$$J\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + \gamma \frac{\mathrm{d}\theta}{\mathrm{d}t} + k\theta = k\alpha_m \cos \omega t$$

同理, 可求得解为

$$\theta_{\text{force}} = \theta_{\text{damp}} + \theta_m \cos(\omega t - \phi_0)$$

其中:

$$\theta_m = \frac{\alpha \omega_0^2}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\beta^2 \omega^2}}, \phi_0 = \arctan\left(\frac{2\beta\omega}{\omega_0^2 - \omega^2}\right)$$

令阻尼比 $\zeta = \frac{\beta}{\omega_0}$,频率比 $r = \frac{\omega}{\omega_0}$ 故幅频特性和相频特性分别为

$$\theta_m = \frac{\alpha_m}{\sqrt{(1-r^2)^2 + 4\zeta^2 r^2}}, \phi = \arctan\left(\frac{2\zeta r}{1-r^2}\right)$$

4 实验仪器

波耳共振仪

5 实验任务

5.1 实验步骤

- (1) 调整仪器。打开电源开关,关断电机和闪光灯开关;阻尼开关置于"0"档;将有机玻璃转盘 F 归零;拨动摆轮偏离平衡位置 $150 \circ -200 \circ$,检查摆轮的自由摆动情况。
- (2) 测量最小阻尼时(阻尼开关置于"0"档)的阻尼比 ζ 和固有角频率 ω_0 。阻尼开关置"摆轮",选择最小阻尼周期选择置于"10"位置。拨动摆轮偏离平衡位置 $150\circ-200\circ$,读取显示窗中的振幅值。计时停止后,读取数据 10Td 并立即按复位按钮启动周期测量。
- (3) 仿照上述方法,测量其他阻尼状态的振幅。要求振动次数大于 10 次,需要测量每次振动的周期,周期选择置于"1"位置。
- (4) 测定受迫振动的幅频特性和相频特性曲线。开启电机开关,开关置强迫力,周期选择置于"1",调节旋钮改变电机转动频率 ω ,在稳定后读取振幅 θ_m 、周期 T_d 、相位差 ϕ_0 。至少要有 12 个数据点,其中要包括共振点,即 $\phi = \pi/2$ 的点。
- (5) 对数据进行分析处理,描绘曲线。

5.2 注意事项

- 1. 为避免剩磁影响,阻尼开关不要随便拨动;
- 2. 只有测受迫振动相频特性时才开启仪器面板上的闪光灯开关, 读完数据后迅即关闭;
- 3. 相频特性与幅频特性测量要在振动稳定后进行,可根据测量数据计算 ω 值和达到稳定态 ($e^{-t/\tau} < 0.01$) 所需要的时间;
- 4. 在共振点附近要注意随时调节 勿使振幅过大($A_max < 220\circ$)以免损坏波耳共振仪,在阻尼较小时尤其要小心操作。
- 5. 几种阻尼状态下的幅频特性曲线和相频特性曲线要画在同一张坐标纸上,以便进行比较。

清华大学 3 物理实验 B(1)

6 数据处理

6.1 测量最小阻尼时的阻尼比 ζ 和固有角频率 ω_0

6.1.1 阻尼比 (的计算

测量最小阻尼时的振幅值 θ_j , 共测得 50 个 θ_j 的值。由于:

$$\ln \theta_j - \ln \theta_{j-1} = -\beta T_d = -\beta \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}} = -\frac{2\pi}{\sqrt{\zeta^{-2} - 1}}$$

根据上一表达式,考虑对振幅 θ_j 取对数,则 $\ln\theta_j$ 为等差级数,利用逐差法处理数据: 设 $I=\left[\frac{n}{2}\right]=25$,定义逐差值 $D_j=\ln\theta_{j+25}-\ln\theta_j (j=1,\cdots,25)$,计算结果如下表。

		I		ı		1	
次数 i	振幅 $\theta_j/^\circ$	$\ln \theta_j$	次数 i	振幅 θ_i /°	$\ln \theta_i$	序号	$D_j = \ln \theta_{j+I} - \ln \theta_j$
1	168	5.124	26	141	4.949	1	-0.175
2	167	5.118	27	140	4.942	2	-0.176
3	166	5.112	28	139	4.934	3	-0.178
4	165	5.106	29	138	4.927	4	-0.179
5	163	5.094	30	137	4.920	5	-0.174
6	163	5.094	31	136	4.913	6	-0.181
7	161	5.081	32	135	4.905	7	-0.176
8	160	5.075	33	134	4.898	8	-0.177
9	159	5.069	34	133	4.890	9	-0.179
10	158	5.063	35	132	4.883	10	-0.180
11	157	5.056	36	131	4.875	11	-0.181
12	156	5.050	37	130	4.868	12	-0.182
13	155	5.043	38	129	4.860	13	-0.183
14	153	5.030	39	128	4.852	14	-0.178
15	153	5.030	40	127	4.844	15	-0.186
16	151	5.017	41	126	4.836	16	-0.181
17	150	5.011	42	125	4.828	17	-0.183
18	149	5.004	43	124	4.820	18	-0.184
19	148	4.997	44	123	4.812	19	-0.185
20	147	4.990	45	122	4.804	20	-0.186
21	146	4.983	46	121	4.796	21	-0.187
22	145	4.977	47	120	4.787	22	-0.190
23	144	4.970	48	119	4.779	23	-0.191
24	143	4.962	49	118	4.771	24	-0.191
25	142	4.956	50	117	4.762	25	-0.194

$$\bar{D} = \frac{1}{I} \sum_{j=1}^{I} D_j = \frac{-4.557}{25} = -0.182:$$

$$b = \frac{1}{I^2} \sum_{j=1}^{I} (y_{j+I} - y_j) = \frac{-4.557}{25^2} = -0.00729$$

$$S_b = \frac{1}{I} \sqrt{\sum (D_j - \bar{D})^2 / (I - 1)} = \frac{1}{25} \sqrt{7.09 \times 10^{-4} / 24} = 2.174 \times 10^{-4}$$

而:

$$b = -\frac{2\pi}{\sqrt{\zeta^2 - 1}}$$

可得:

$$\zeta = \sqrt{\frac{b^2}{4\pi^2 + b^2}} = \sqrt{\frac{(-0.00729)^2}{4\pi^2 + (-0.00729)^2}} = 1.160 \times 10^{-3}$$

结合 ζ 与 b 的关系式推导阻尼比的不确定度:

$$\frac{\Delta_{\zeta}}{\zeta} = \sqrt{\left(\frac{\partial \ln \zeta}{\partial b} \Delta_b\right)^2} = \frac{4\pi^2}{|b| (4\pi^2 + b^2)} \Delta_b$$
$$\Delta_{\zeta} = \zeta \frac{-4\pi^2}{4\pi^2 b + b^3} \Delta_b = 3.5 \times 10^{-5}$$

将不确定度保留两位有效数字,得(的最终结果为:

$$\zeta = (1.160 \pm 0.035) \times 10^{-3}$$

测得的连续 10 个周期的数据见下表:

序号	1	2	3	4	5
$T_i = 10\overline{T_d}/s$	15.052	15.062	15.054	15.047	15.049

6.1.2 周期计算

根据所测数据, 计算 $\overline{T_d}$ 及不确定度 $\Delta_{\overline{T_d}}$

$$\overline{T_d} = \frac{\sum_{i=1}^5 T_i}{50} = 1.5053s$$

$$\Delta_{\overline{T_d}} = \frac{T_d}{10^5} + 0.001 = 1.015 \times 10^{-3}s$$

周期的最终计算结果为:

$$\overline{T_d} = (1.5053 \pm 0.0010)s$$

6.1.3 固有角频率计算

计算 ω_0 :

$$\omega_0 = \frac{2\pi}{\overline{T_d}\sqrt{1-\zeta^2}} = \frac{2\pi}{1.5053\sqrt{1-(1.160\times10^{-3})^2}} = 4.1740$$
rad/s

计算 ω_0 的不确定度:

$$\frac{\Delta_{\omega_0}}{\omega_0} = \sqrt{\left(\frac{\partial \ln \omega_0}{\partial T_d} \Delta_{T_d}\right)^2 + \left(\frac{\partial \ln \omega_0}{\partial \zeta} \Delta_{\zeta}\right)^2}$$

由上式变换, 代入数据得:

$$\begin{split} \Delta_{\omega_0} &= \omega_0 \sqrt{\left(\frac{\Delta_{\overline{T_d}}}{\overline{T_d}}\right)^2 + \left(\frac{\zeta \cdot \Delta_{\zeta}}{1 - \zeta^2}\right)^2} \\ &= 4.1740 \sqrt{\left(\frac{1.015 \times 10^{-3}}{1.5053}\right)^2 + \left(\frac{1.160 \times 10^{-3} \times 3.5 \times 10^{-5}}{1 - \left(1.160 \times 10^{-3}\right)^2}\right)^2} \\ &= 2.814 \times 10^{-3} \mathrm{rad/s} \end{split}$$

将不确定度保留两位有效数字, 固有角频率的最终计算结果为:

$$\omega_0 = (4.1740 \pm 0.0028) \text{rad/s}$$

6.2 测量其余三种阻尼档位的阻尼比和固有角频率

6.2.1 阻尼档 2

测量数据如下:

次数 i	周期 T_d	振幅 $\theta_j/^\circ$	$\ln \theta_j$	次数 i	周期 T_d	振幅 θ_i / $^{\circ}$	$\ln \theta_i$	逐差值 D_j
1	1.498	184	5.214936	7	1.504	109	4.691348	-0.52359
2	1.499	169	5.129899	8	1.504	99	4.59512	-0.53478
3	1.501	155	5.043425	9	1.505	91	4.51086	-0.53257
4	1.501	142	4.955827	10	1.505	83	4.418841	-0.53699
5	1.502	130	4.867534	11	1.505	75	4.317488	-0.55005
6	1.503	119	4.779123	12	1.506	69	4.234107	-0.54502

同理无阻尼情况的计算:

$$\bar{D} = \frac{1}{I} \sum_{j=1}^{I} D_j = \frac{-3.223}{6} = -0.537:$$

$$b = \frac{1}{I^2} \sum_{j=1}^{I} (y_{j+I} - y_j) = \frac{-3.223}{6^2} = -0.0895$$

$$S_b = \frac{1}{I} \sqrt{\sum (D_j - \bar{D})^2 / (I - 1)} = \frac{1}{6} \sqrt{4.39 \times 10^{-4} / 5} = 1.562 \times 10^{-3}$$

$$\zeta = \sqrt{\frac{b^2}{4\pi^2 + b^2}} = \sqrt{\frac{(-0.0895)^2}{4\pi^2 + (-0.0895)^2}} = 1.424 \times 10^{-2}$$

$$\Delta_{\zeta} = \zeta \frac{-4\pi^2}{4\pi^2 b + b^3} \Delta_b = 2.485 \times 10^{-4}$$

将不确定度保留两位有效数字,得(的最终结果为:

$$\zeta = (1.424 \pm 0.025) \times 10^{-2}$$

计算 $\overline{T_d}$ 及不确定度 $\Delta_{\overline{T_d}}$

$$\overline{T_d} = \frac{\sum_{i=1}^{12} T_i}{12} = 1.5028s$$

$$\Delta_{\overline{T_d}} = \frac{T_d}{10^5} + 0.001 = 1.015 \times 10^{-3}s$$

周期的最终计算结果为:

$$\overline{T_d} = (1.5028 \pm 0.0010)s$$

计算 ω_0 :

$$\omega_0 = \frac{2\pi}{\overline{T_d}\sqrt{1-\zeta^2}} = \frac{2\pi}{1.5028\sqrt{1-(1.42\times10^{-2})^2}} = 4.1814$$
rad/s

计算 ω_0 的不确定度:

$$\begin{split} \Delta_{\omega_0} &= \omega_0 \sqrt{\left(\frac{\Delta_{\overline{T_d}}}{\overline{T_d}}\right)^2 + \left(\frac{\zeta \cdot \Delta_{\zeta}}{1 - \zeta^2}\right)^2} \\ &= 4.1814 \sqrt{\left(\frac{1.015 \times 10^{-3}}{1.5028}\right)^2 + \left(\frac{1.424 \times 10^{-2} \times 2.5 \times 10^{-4}}{1 - \left(1.424 \times 10^{-2}\right)^2}\right)^2} \\ &= 2.824 \times 10^{-3} \text{rad/s} \end{split}$$

将不确定度保留两位有效数字, 固有角频率的最终计算结果为:

$$\omega_0 = (4.1814 \pm 0.0028) \text{rad/s}$$

计算阻尼系数 β :

$$\beta = \frac{1}{\tau} = \frac{b}{-T_d} = 0.0596 \text{rad/s}$$

可以得到:

$$\tau = \frac{1}{\zeta\omega} = 16.79s, \quad \frac{\Delta_{\tau}}{\tau} = \sqrt{\left(\frac{\Delta_{\zeta}}{\zeta}\right)^2 + \left(\frac{\Delta_{\omega_0}}{\omega_0}\right)^2} = 0.017, \quad \Delta_{\tau} = 0.29$$

所以得到:

$$\tau = 16.79 \pm 0.29s$$

同时有:

$$Q = \frac{1}{2\zeta} = 35.11, \frac{\Delta_Q}{Q} = \sqrt{\left(\frac{\Delta_\zeta}{\zeta}\right)^2} = 0.017, \Delta_Q = 0.61$$

所以得到:

$$Q = 35.11 \pm 0.61$$

6.2.2 阻尼档 3

测量数据如下:

NATIONAL	1/11.							
次数 i	周期 T_d	振幅 $\theta_j/^\circ$	$\ln \theta_j$	次数 i	周期 T_d	振幅 $\theta_i/^\circ$	$\ln \theta_i$	逐差值 D_j
1	1.496	191	5.252273	7	1.504	97	4.574711	-0.67756
2	1.499	171	5.141664	8	1.505	87	4.465908	-0.67576
3	1.501	153	5.030438	9	1.505	77	4.343805	-0.68663
4	1.501	137	4.919981	10	1.505	69	4.234107	-0.68587
5	1.502	122	4.804021	11	1.506	61	4.110874	-0.69315
6	1.504	109	4.691348	12	1.506	54	3.988984	-0.70236

同理无阻尼情况的计算:

$$\bar{D} = \frac{1}{I} \sum_{j=1}^{I} D_j = \frac{-4.121}{6} = -0.687:$$

$$b = \frac{1}{I^2} \sum_{j=1}^{I} (y_{j+I} - y_j) = \frac{-4.121}{6^2} = -0.114$$

$$S_b = \frac{1}{I} \sqrt{\sum_{j=1}^{I} (D_j - \bar{D})^2 / (I - 1)} = \frac{1}{6} \sqrt{4.91 \times 10^{-4} / 5} = 1.652 \times 10^{-3}$$

$$\zeta = \sqrt{\frac{b^2}{4\pi^2 + b^2}} = \sqrt{\frac{(-0.114)^2}{4\pi^2 + (-0.114)^2}} = 1.814 \times 10^{-2}$$

$$\Delta_{\zeta} = \zeta \frac{-4\pi^2}{4\pi^2 b + b^3} \Delta_b = 2.627 \times 10^{-4}$$

将不确定度保留两位有效数字, 得 ζ 的最终结果为:

$$\zeta = (1.814 \pm 0.027) \times 10^{-2}$$

计算 $\overline{T_d}$ 及不确定度 $\Delta_{\overline{T_d}}$

$$\overline{T_d} = \frac{\sum_{i=1}^{12} T_i}{12} = 1.5028s$$

$$\Delta_{\overline{T_d}} = \frac{T_d}{10^5} + 0.001 = 1.015 \times 10^{-3}s$$

周期的最终计算结果为:

$$\overline{T_d} = (1.5028 \pm 0.0010)s$$

计算 ω_0 :

$$\omega_0 = \frac{2\pi}{\overline{T_d}\sqrt{1-\zeta^2}} = \frac{2\pi}{1.5028\sqrt{1-(1.814\times10^{-2})^2}} = 4.1817\text{rad/s}$$

清华大学 8 物理实验 B(1)

计算 ω_0 的不确定度:

$$\begin{split} \Delta_{\omega_0} &= \omega_0 \sqrt{\left(\frac{\Delta_{\overline{T_d}}}{\overline{T_d}}\right)^2 + \left(\frac{\zeta \cdot \Delta_{\zeta}}{1 - \zeta^2}\right)^2} \\ &= 4.1817 \sqrt{\left(\frac{1.015 \times 10^{-3}}{1.5028}\right)^2 + \left(\frac{1.814 \times 10^{-2} \times 2.7 \times 10^{-4}}{1 - \left(1.814 \times 10^{-2}\right)^2}\right)^2} \\ &= 2.824 \times 10^{-3} \mathrm{rad/s} \end{split}$$

将不确定度保留两位有效数字,固有角频率的最终计算结果为:

$$\omega_0 = (4.1817 \pm 0.0028) \rm{rad/s}$$

计算阻尼系数 β :

$$\beta = \frac{1}{\tau} = \frac{b}{-T_d} = 0.0759 \mathrm{rad/s}$$

可以得到:

$$\tau = \frac{1}{\zeta\omega} = 13.18s, \quad \frac{\Delta_{\tau}}{\tau} = \sqrt{\left(\frac{\Delta_{\zeta}}{\zeta}\right)^2 + \left(\frac{\Delta_{\omega_0}}{\omega_0}\right)^2} = 0.014, \quad \Delta_{\tau} = 0.18$$

所以得到:

$$\tau = 13.18 \pm 0.18s$$

同时有:

$$Q = \frac{1}{2\zeta} = 27.56, \frac{\Delta_Q}{Q} = \sqrt{\left(\frac{\Delta_{\zeta}}{\zeta}\right)^2} = 0.014, \Delta_Q = 0.40$$

所以得到:

$$Q = 27.56 \pm 0.40$$

6.2.3 阻尼档 4

测量数据如下:

次数 i	周期 T_d	振幅 $\theta_j/^\circ$	$\ln \theta_j$	次数 i	周期 T_d	振幅 $\theta_i/^\circ$	$\ln \theta_i$	逐差值 D_j
1	1.501	174	5.159055	7	1.51	73	4.290459	-0.8686
2	1.503	151	5.01728	8	1.509	63	4.143135	-0.87415
3	1.505	131	4.875197	9	1.509	55	4.007333	-0.86786
4	1.506	113	4.727388	10	1.51	47	3.850148	-0.87724
5	1.508	98	4.584967	11	1.51	40	3.688879	-0.89609
6	1.508	85	4.442651	12	1.511	35	3.555348	-0.8873

同理无阻尼情况的计算:

$$\bar{D} = \frac{1}{I} \sum_{j=1}^{I} D_j = \frac{-5.271}{6} = -0.879:$$

$$b = \frac{1}{I^2} \sum_{j=1}^{I} (y_{j+I} - y_j) = \frac{-5.271}{6^2} = -0.146$$

$$S_b = \frac{1}{I} \sqrt{\sum_{j=1}^{I} (D_j - \bar{D})^2 / (I - 1)} = \frac{1}{6} \sqrt{6.2 \times 10^{-4} / 5} = 1.856 \times 10^{-3}$$

$$\zeta = \sqrt{\frac{b^2}{4\pi^2 + b^2}} = \sqrt{\frac{(-0.146)^2}{4\pi^2 + (-0.146)^2}} = 2.323 \times 10^{-2}$$

$$\Delta_{\zeta} = \zeta \frac{-4\pi^2}{4\pi^2 b + b^3} \Delta_b = 2.951 \times 10^{-4}$$

将不确定度保留两位有效数字, 得 ζ 的最终结果为:

$$\zeta = (2.323 \pm 0.030) \times 10^{-2}$$

计算 $\overline{T_d}$ 及不确定度 $\Delta_{\overline{T_d}}$

$$\overline{T_d} = \frac{\sum_{i=1}^{12} T_i}{12} = 1.5075s$$

$$\Delta_{\overline{T_d}} = \frac{T_d}{10^5} + 0.001 = 1.015 \times 10^{-3} s$$

周期的最终计算结果为:

$$\overline{T_d} = (1.5075 \pm 0.0010)s$$

计算 ω_0 :

$$\omega_0 = \frac{2\pi}{\overline{T_d}\sqrt{1-\zeta^2}} = \frac{2\pi}{1.5075\sqrt{1-(2.323\times 10^{-2})^2}} = 4.1691 \text{rad/s}$$

计算 ω_0 的不确定度:

$$\begin{split} \Delta_{\omega_0} &= \omega_0 \sqrt{\left(\frac{\Delta_{\overline{T_d}}}{\overline{T_d}}\right)^2 + \left(\frac{\zeta \cdot \Delta_{\zeta}}{1 - \zeta^2}\right)^2} \\ &= 4.1691 \sqrt{\left(\frac{1.015 \times 10^{-3}}{1.5075}\right)^2 + \left(\frac{2.323 \times 10^{-2} \times 2.9 \times 10^{-5}}{1 - \left(2.323 \times 10^{-2}\right)^2}\right)^2} \\ &= 2.807 \times 10^{-3} \mathrm{rad/s} \end{split}$$

将不确定度保留两位有效数字, 固有角频率的最终计算结果为:

$$\omega_0 = (4.1691 \pm 0.0028) \text{rad/s}$$

计算阻尼系数 β :

$$\beta = \frac{1}{\tau} = \frac{b}{-T_d} = 0.0968 \text{rad/s}$$

可以得到:

$$\tau = \frac{1}{\zeta\omega} = 10.33s, \quad \frac{\Delta_{\tau}}{\tau} = \sqrt{\left(\frac{\Delta_{\zeta}}{\zeta}\right)^2 + \left(\frac{\Delta_{\omega_0}}{\omega_0}\right)^2} = 0.013, \quad \Delta_{\tau} = 0.13$$

所以得到:

$$\tau = 10.33 \pm 0.13s$$

同时有:

$$Q = \frac{1}{2\zeta} = 21.52, \frac{\Delta_Q}{Q} = \sqrt{\left(\frac{\Delta_{\zeta}}{\zeta}\right)^2} = 0.013, \Delta_Q = 0.28$$

所以得到:

$$Q=21.52\pm0.28$$

6.2.4 参数汇总

阻尼状态	阻尼比 ζ	周期 T_d/s	$\omega_0/\mathrm{rad}\cdot\mathrm{s}^{-1}$	$\beta/\mathrm{rad}\cdot\mathrm{s}^{-1}$
2	$(1.424 \pm 0.025) \times 10^{-2}$	1.5028 ± 0.0010	4.1814 ± 0.0028	0.0596
3	$(1.814 \pm 0.027) \times 10^{-2}$	1.5028 ± 0.0010	4.1817 ± 0.0028	0.0759
4	$(2.323 \pm 0.030) \times 10^{-2}$	1.5075 ± 0.0010	4.1691 ± 0.0028	0.0968

6.3 测定受迫振动的幅频特性和相频特性曲线

根据测得数据以及系统参数计算理论相位差 $\phi=\arctan\left(\frac{2\beta\omega}{\omega_0^2-\omega^2}\right)$ 、相位差的相对偏差 $\frac{\phi_0-\phi}{\phi}$ 、测得的 ω 与理论值 ω_0 的比较 $\frac{\omega}{\omega_0}$ 。

阻尼 2 时测量数据和计算结果:

次数 i	$ heta_i/^\circ$	T_d/s	$\omega/\mathrm{rad}\cdot\mathrm{s}^{-1}$	ω/ω_0	$\phi_1/^\circ$	$\phi_2/^\circ$	$\phi_0/^\circ$	理论值 ϕ / $^{\circ}$	$\frac{\phi_0-\phi}{\phi}/\circ$
1	36	1.602	3.922	0.938	10.0	14.5	12.3	12.5	-2.00 %
2	46	1.577	3.984	0.953	14.0	18.5	16.3	16.4	-0.91 %
3	54	1.565	4.015	0.960	17.0	21.0	19.0	19.3	-1.55 %
4	70	1.547	4.062	0.971	26.0	29.0	27.5	26.1	5.36 %
5	91	1.534	4.096	0.980	36.0	38.0	37.0	34.6	6.94 %
6	135	1.511	4.158	0.994	72.0	74.0	73.0	68.8	6.10 %
7	144	1.505	4.175	0.998	79.0	81.0	80.0	83.7	-4.42 %
8	150	1.501	4.186	1.001	91.0	93.0	92.0	85.6	7.48 %
9	143	1.497	4.197	1.004	105.5	107.0	106.3	104.8	1.38 %
10	133	1.493	4.208	1.006	115.5	117.5	116.5	114.3	1.92 %
11	120	1.490	4.217	1.008	123.0	125.0	124.0	120.7	2.73 %
12	97	1.484	4.234	1.013	134.0	136.0	135.0	131.2	2.90 %
13	71	1.473	4.266	1.020	141.5	144.0	142.8	144.4	-1.14 %
14	52	1.458	4.309	1.031	154.0	157.0	155.5	154.7	0.52 %

阻尼 3 时测量数据和计算结果:

次数 i	$\theta_i/^\circ$	T_d/s	$\omega/\mathrm{rad}\cdot\mathrm{s}^{-1}$	ω/ω_0	$\phi_1/^\circ$	$\phi_2/^\circ$	$\phi_0/^\circ$	理论值 φ/°	$\frac{\phi_0-\phi}{\phi}/^{\circ}$
1	36	1.594	3.942	0.943	14.0	19.0	16.5	17.1	-3.32 %
2	42	1.584	3.967	0.949	16.0	20.0	18.0	19.0	-5.09 %
3	45	1.577	3.984	0.953	18.0	21.0	19.5	20.6	-5.17 %
4	50	1.564	4.017	0.961	24.0	27.0	25.5	24.4	4.71 %
5	61	1.550	4.054	0.969	30.0	33.0	31.5	30.3	4.07 %
6	76	1.536	4.091	0.978	41.0	44.0	42.5	39.5	7.62 %
7	99	1.521	4.131	0.988	58.5	61.0	59.8	56.1	6.56~%
8	113	1.512	4.156	0.994	70.5	73.0	71.8	70.9	1.15 %
9	118	1.504	4.178	0.999	87.0	89.5	88.3	86.9	1.50 %
10	113	1.500	4.189	1.002	97.0	99.0	98.0	95.3	2.80 %
11	104	1.493	4.208	1.006	112.5	114.5	113.5	109.3	3.80 %
12	67	1.474	4.263	1.019	139.0	141.0	140.0	136.6	2.50 %
13	54	1.464	4.292	1.026	146.5	150.0	148.3	145.1	2.19 %
14	51	1.455	4.318	1.033	151.0	154.0	152.5	150.6	1.29 %

阻尼 4 时测量数据和计算结果:

次数 i	$\theta_i/^\circ$	T_d/s	$\omega/\mathrm{rad}\cdot\mathrm{s}^{-1}$	ω/ω_0	$\phi_1/^\circ$	$\phi_2/^\circ$	$\phi_0/^\circ$	理论值 φ/°	$\frac{\phi_0-\phi}{\phi}/^\circ$
1	43	1.577	3.984	0.956	23.5	27.5	25.5	27.1	-5.92 %
2	48	1.566	4.012	0.962	29.0	32.0	30.5	31.2	-2.20 %
3	54	1.552	4.048	0.971	36.0	40.0	38.0	38.3	-0.85 %
4	64	1.544	4.069	0.976	43.0	46.0	44.5	43.8	1.57 %
5	69	1.533	4.099	0.983	53.0	56.0	54.5	53.7	1.47 %
6	77	1.522	4.128	0.990	65.0	67.0	66.0	67.0	-1.51 %
7	81	1.515	4.147	0.995	74.0	77.0	75.5	77.3	-2.31 %
8	83	1.508	4.167	0.999	84.0	86.5	85.3	88.5	-3.67 %
9	87	1.504	4.178	1.002	92.0	94.0	93.0	95.0	-2.15 %
10	85	1.498	4.194	1.006	100.0	103.0	101.5	104.6	-2.96 %
11	77	1.489	4.220	1.012	114.0	117.0	115.5	117.5	-1.68 %
12	65	1.476	4.257	1.021	129.0	133.0	131.0	131.9	-0.69 %
13	55	1.465	4.289	1.029	138.0	141.0	139.5	140.7	-0.82 %
14	44	1.451	4.330	1.039	146.0	148.5	147.3	148.5	-0.86 %

绘制幅频、相频特性曲线如下:

图 1: 幅频特性曲线

图 2: 相频特性曲线

根据测得的共振点 ($\phi=90^\circ$) 的数据,可得测得的 ω 值分别为: $\omega_2=4.183$ 、 $\omega_3=4.178$ 、 $\omega_4=4.175$ 与固有角频率的相对误差分别为: $\Delta E_2=0.04\%$ $\Delta E_3=0.09\%$ $\Delta E_4=0.14\%$ 。 相位差 ϕ 的相对偏差见表格最后一栏。

清华大学 13 物理实验 B(1)

7 实验小结

7.1 思考题

(1) 如何判断受迫振动已处于稳定状态?

可利用时间常数 τ 。经过 $3\sim 5\tau$ 后,随时间衰减的指数下降到初值的 $e^{-5}\sim e^{-3}$,可以认为趋于稳定。

实际测量中,可以通过观察振幅来判断。当仪表上振幅的测量值保持在某个数值不变时,受迫振动已经处于稳定状态。实际操作中,当 20 个周期左右系统的振幅不再改变时,即可认为达到平衡态。

(2) 从幅频曲线的相对振幅比为 1/2 的点,也可求出 β 值。试用你作出的幅频特性曲线进行计算,把结果与练习 2 的结果相比较。

共振时,有:

$$\omega = \sqrt{\omega_0^2 - 2\beta^2}$$

$$\theta_m = \frac{\alpha_m \omega_0^2}{2\beta \sqrt{\omega_0^2 - \beta^2}}$$

因此, 任意振幅下:

$$\frac{\theta}{\theta_m} = \frac{2\beta\sqrt{\omega_0^2 - \beta^2}}{\sqrt{(\omega_0^2 - \omega_2)^2 + 4\beta^2\omega^2}} \approx \frac{\beta}{\sqrt{(\omega_0 - \omega)^2 + \beta^2}}$$

 $\Rightarrow \frac{\theta}{\theta_m} = \frac{1}{2}$

$$\beta = \frac{|\omega - \omega_0|}{\sqrt{3}}$$

作振幅等于一半最大振幅的水平线,与曲线交于两点,计算两点横坐标与固有频率差的绝对值,取平均后代入公式即可计算阻尼系数 β 。

对阻尼 2, $\theta=75^{\circ}$, 读图得交点分别为 $\omega_1/\omega_0=0.973$ 、 $\omega_2/\omega_0=1.018$ 。

$$\beta = \frac{|\omega - \omega_0|}{\sqrt{3}} = \frac{0.5 \times 4.1814(|0.973 - 1| + |1.018 - 1|)}{\sqrt{3}} = 0.0563 \text{rad/s}$$

相对误差为 5.53 %

对阻尼 3, $\theta=59^\circ$, 读图得交点分别为 $\omega_1/\omega_0=0.968$ 、 $\omega_2/\omega_0=1.024$ 。

$$\beta = \frac{|\omega - \omega_0|}{\sqrt{3}} = \frac{0.5 \times 4.1817(|0.968 - 1| + |1.024 - 1|)}{\sqrt{3}} = 0.0736 \text{rad/s}$$

相对误差为 3.03 %

对阻尼 $4, \theta = 44^{\circ}$,读图得交点分别为 $\omega_1/\omega_0 = 0.957$ 、 $\omega_2/\omega_0 = 1.039$ 。

$$\beta = \frac{|\omega - \omega_0|}{\sqrt{3}} = \frac{0.5 \times 4.1691(|0.957 - 1| + |1.039 - 1|)}{\sqrt{3}} = 0.0987 \text{rad/s}$$

相对误差为 1.96 %

(3) 实验中如何判断达到共振?共振频率是多少?

由相频特性曲线与幅频特性曲线:

$$\phi(r) = \arctan\left(\frac{2\zeta r}{1 - r^2}\right)$$

$$\theta_m(r) = \frac{\alpha_m}{\sqrt{(1 - r^2)^2 + 4\zeta^2 r^2}}$$

实验测得的共振频率分别为: $\omega_2=4.181\mathrm{rad/s}$ 、 $\omega_3=4.181\mathrm{rad/s}$ 、 $\omega_4=4.169\mathrm{rad/s}$

实验中通过调节强制力的周期来达到共振,调节过程中,一是可以看振幅的变化,振幅最大时达到共振;二是可以看相位差 ϕ 的变化,达到 90° 的时候达到共振。除此之外,还可以绘制幅频特性曲线,曲线中最高点发生共振,其对应的频率就是共振频率。

共振频率的计算:
$$\omega = \sqrt{\omega_0^2 - (2\beta)^2}, \quad f = \frac{2\pi}{\omega}$$
.

7.2 总结

通过本次观测阻尼振动和受迫振动的实验,我更好地理解阻尼振动与受迫振动,成功测量了阻 尼振动和受迫振动的参数,画出受迫振动幅频特性曲线和相频特性曲线。

同时,根据实验结果所反映出的误差,我也仔细分析和反思了实验中一些可能引起误差的地方,如:测量十倍周期时可能因为复位不及时造成误差;测量受迫振动时,需要等待振动稳定下来再读数,虽然已等待一段时间,但仍可能振动实际上并未稳定,带来误差;仪器误差,如光电门安装位置不准等,可能带来误差,这个也是本实验误差的重要原因。

总体来说,本实验整体进行的比较顺利,但是因为在实验过程中需要等待振动稳定等原因,实 验整体持续了很长时间。

最后感谢助教的悉心指导!

8 预习思考题

姓名 截程 学号 2020/1075 班级 直02 组号单- 晚 图 座位号 井13

阻尼振动和受迫振动预习思考题

- (1) 阻尼振动和受迫振动在工程、医学等领域有哪些应用场景?
- (2) 举例说明阻尼振动和受迫振动有哪些危害? 如何避免?
- (3) 如何判断受迫振动已处于稳定状态?
- (4) 如何判断一个体系已达到共振? 共振频率是多少?
- (1) 阻尼振动:电压表.电流表指针利用阻尼达到稳定。 汽车利用阻尼振动防震... 受迫振动:收音机调谐利用扩振,医学上利用核磁共振成像。 微破炉加热危物.乐器中的共鸣箱。
- [1] 阻尼振动:产生能耗、发热、 改进:减小阻系数 , 受迫振动:脚步,风引起桥的长振、改进:提高桥的抗长振强度 ,
- (3) 当受追振动的振幅和周期不更时,受直振动即达到稳定。 在实验中,当振幅连续至次稳定在某一个值附近时可受追振动已处于稳定状态、

9 原始数据记录

阻尼振动和受迫振动实验记录

班级102 姓名182 学号220011075 组号13-晚州 座位号173.

1、"0"档小阻尼的阻尼振动特性

10 倍周期测量结果

10 10/10/99.	11)
$10\overline{T_d}$	
15.052	
15.062	
15.054	
15.047	
15.049	1

振幅 θ 测量结果 (50 个点)

TICLE O MITELLI	The cool i will			
168	167	166	165	163
163	161	160	159	821
157	156	155	153	153
151	150	149	148	147
146	145	144	143	142
141	140	139	138	137
136	135	134	133	132
131	130	129	128	127
126	125	124	123	122
121	120	119	118	117

2、"2-4"(后排 1-3)阻尼档的阻尼振动特性

阻尼档:	2
$\overline{T_d}$	θ
1.498	184
1.499	169
1.501	155
1.501	142
1.502	130
1.503	119
1.504	109
1.504	99
1.505	91
1.5.5	83
1.505	75
1.506	69

阻尼档:	3
$\overline{T_d}$	θ
1.496	191
1.499	171
1.501	153
1.501	137
1.502	122
1.504	109
402.1	97
1.505	87
1.505	77
1.505	69
1.106	61
1.506	54
1.106	61

17

3、"2-4"(后排 1-3)阻尼档的受迫振动幅频特性

	2.		
$\overline{T_d}$	θ	ϕ_1	ϕ_2
1.633	27	6.5	11.5.
1.620	29	_ 7	12.5.
1.613	34	8.5	13.5
1.602	36.	10	14.5
1.595	37	10.5	15
1.577	46	14	18.5
1.565	54	7	21
1.547	70	26	29
1.534	91	36	3g.
1.511	135	72	74.
1.505	144	79	81
1.501	150_	79 91	93
1.500	149	92.5	94
1.497	143	105.5	107
1.493	133	115.5	117.5
1.490	120	123	125
1.484	97	134	136
1.473	71	141.5	144
1.458	\$2	154	157
1.445	41	158	161.5
1-435	36	161	164

mm Et ble			
阻尼档:	3		
$\overline{T_d}$	θ	ϕ_1	ϕ_2
1.594	36.	14	19
1.584	42	16	70.
1.577.	45.	18	21
1.564	50	24	27.
1.550	61	30	33
1.536	76	41	44
1.521	99	£3.5	61
1.512	113	70.5	73.
1.504	118.	87	89.5
1.500	113	97	99
1.493	104	112.5	114.5.
1.474	67	139	141
1.464	54	146.5	150.
1.455	. 31	151	154
, .,			

阻尼档:	4.		
$\overline{T_d}$	θ	ϕ_1	ϕ_2
1.577	43	23.5	27.5
1.566	48	29	32
1.552	54	36	40.
1.544	64.	43	46 -
1.533	69.	53	56.
1-522	77 -	65	67
1.515	81	74	77
1.508	83	84	86.5
4024	87	92	94
1.498	85	100	103
1-489	_77	114	117
1.476	65	129	133
1.465	_22_	138	141
1.451	44.	146	148.5