

第五章 线性空间与欧氏空间

5.1 线性空间的基本概念

数学与统计学院 李继成

主要内容

- 1 线性空间的定义
- 2 线性空间的基本性质
- 3 线性子空间的定义
- 4 基、维数和向量的坐标
- 5 基变换与坐标变换

1 线性空间的定义

定义(线性空间) 设V是一个非空集合,F是一个数域,

在V上定义一种(加法)运算: $\forall \alpha \in V, \beta \in V, \alpha + \beta \in V$,

。在V与F之间定义一种(数乘)运算: $\forall \alpha \in V, k \in F, k\alpha \in V;$

满足: $\forall \alpha, \beta, \gamma \in V, \forall k, l \in F$

(1) $\alpha + \beta = \beta + \alpha$;

 $(2) \quad (\alpha + \beta) + \gamma - \alpha + (\beta + \gamma).$

(2) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$; (3) V中存在一个零元,

使得 $\forall \alpha \in V$,有 $\alpha + 0 = \alpha$;

(4) $\forall \alpha \in V, \exists$ 负元 $-\alpha \in V,$ 使得 $\alpha + (-\alpha) = 0;$

 $(5) 1\alpha = \alpha;$

(6) $k(l\alpha) = (kl)\alpha;$

(7) $k(\alpha + \beta) = k\alpha + k\beta$;

(8) $(k+l)\alpha = k\alpha + l\alpha;$

则称V对此加法和数乘在数域F 上做成一个线性空间,或称向量 空间。 V中的元素称为向量。

例1 几种常见的线性空间

(1)
$$F^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in F, i = 1, 2, \dots, n\}$$

 $(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$
 $k(x_1, x_2, \dots, x_n) = (kx_1, kx_2, \dots, kx_n)$
 F^n 是数域 F 上的线性空间。

类似地, R^n , C^n 分别构成数域R, C上的线性空间.

$$(2) F^{m \times n} = \{(a_{ij})_{m \times n} | a_{ij} \in F, i = 1, \dots, m, j = 1, \dots, n\}$$

$$R^{m \times n} = \{(a_{ij})_{m \times n} | a_{ij} \in R, i = 1, \dots, m, j = 1, \dots, n\}$$

按照矩阵加法和数乘运 算,分别构成 F或R上的线性空间.

(3)
$$F[x] = \{a_0 + a_1x + \dots + a_nx^n + \dots | a_i \in F, i = 1, 2, \dots \}$$

对多项式加法和数与多 项式的乘法构成数域 F上的线性空间.

 $(4) C[a,b] = \{f(x) | f(x) \neq [a,b] \}$ 对函数的加法和实数与 函数的乘法构成线性空 间.

(5)
$$S = \{x \in R^n \mid A \in R^{m \times n}, Ax = 0\}$$
 对向量的加法与数乘构 成线性空间. 称为 $Ax = 0$ 的解空间注意: $\{x \in R^n \mid A \in R^{m \times n}, Ax = b\}$ 对向量的加法和数乘不构成线性空间.

例2 判定下列集合对定义的加法和数乘运算是否构成 线性空间?

$$(1)V = \{(a,b)|a,b \in R\},$$

加法: $(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2)$

数乘:k(a,b) = (ka,0)

(1)
$$\alpha + \beta = \beta + \alpha$$
;

(5)
$$1\alpha = \alpha$$
;

(2)
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma);$$

(6)
$$k(l\alpha) = (kl)\alpha$$
;

$$(3)$$
 V 中存在一个零元,

(7)
$$k(\alpha + \beta) = k\alpha + k\beta$$
;

使得
$$\forall \alpha \in V$$
,有 $\alpha + 0 = \alpha$;

(8)
$$(k+l)\alpha = k\alpha + l\alpha$$
;

(4)
$$\forall \alpha \in V, \exists$$
负元 $-\alpha \in V,$ 使得 $\alpha + (-\alpha) = 0;$

例2 判定下列集合对定义的加法和数乘运算是否构成线性空间?

$$(1)V = \{(a,b)|a,b \in R\},$$
加法: $(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2)$
数乘: $k(a,b)=(ka,0)$

(2)
$$V = \{(x, y, z) | x + y + z = 0, x, y, z \in R \}$$
,

加法: $(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$
数乘: $k(x_1, y_1, z_1) = (kx_1, ky_1, kz_1)$

主要内容

- 1 线性空间的定义
- 2 线性空间的基本性质
- 3 线性子空间的定义
- 4 基、维数和向量的坐标
- 5 基变换与坐标变换

2 线性空间的基本性质

性质5.1.1 线性空间的零元素是惟一的;

性质5.1.2 线性空间的任一元素的负元素是惟一的;

性质5. 1. 3 $0\alpha = 0$; $(-1)\alpha = -\alpha$; k0 = 0.

性质5. 1. 4 若 $k\alpha = 0$,则k = 0或 $\alpha = 0$

主要内容

- 1 线性空间的定义
- 2 线性空间的基本性质
- 3 线性子空间的定义
- **基、维数和向量的坐标**
- 5 基变换与坐标变换

3 线性子空间的定义

定义5.1.2(子空间)设W是线性空间V的一个非空子集,

如果W按照V所定义的加法、数乘运算也构成一个线性空间,

则称W为V的子空间.

(1)
$$\alpha + \beta = \beta + \alpha$$
;

(2)
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma);$$

(3)
$$V$$
中存在零元,使得 $\forall \alpha \in V$,有 $\alpha + 0 = \alpha$;

(4)
$$\forall \alpha \in V, \exists$$
 负元 $-\alpha \in V,$ 使得 $\alpha + (-\alpha) = 0;$

(5)
$$1\alpha = \alpha$$
; (6) $k(l\alpha) = (kl)\alpha$;

(7)
$$k(\alpha + \beta) = k\alpha + k\beta$$
; (8) $(k+l)\alpha = k\alpha + l\alpha$;

3 线性子空间的定义

- 定义5.1.2(子空间)设W是线性空间V的一个非空子集,如果W按照V所定义的加法、数乘运算也构成一个线性空间,则称W为V的子空间。
- **定理5.1.1** 设W是线性空间V的非空子集,则:W为V的子空间当且仅当W对V中的加法、数乘(线性运算)封闭
- 例1 (1) 线性空间V中的零向量做成的集合 $\{0\}$ 是V的一个子空间,称为V的零 (子) 空间.

例2 设 α_1 , α_2 是数域F上线性空间V中的两个向量,则

$$W = \{k_1\alpha_1 + k_2\alpha_2 | k_i \in F, i = 1,2\}$$

对线性空间V上的加法与数乘运算封闭,是V的一个子空间.

一般地: 称W为由向量 α_1 , α_2 生成的V的子空间, 记作:

$$span\{\alpha_1, \alpha_2\} = \{k_1\alpha_1 + k_2\alpha_2 | k_1, k_2 \in F\}.$$

更一般地: 设 $\alpha_1, \alpha_2, \dots, \alpha_m$ 是线性空间V中的m个向量,

$$span\{\alpha_1,\alpha_2,\cdots,\alpha_m\} = \{k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m | k_i \in F, i = 1,2,\cdots,m\}$$

为由向量 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 生成的V的子空间.

例3 判断 R^3 的下列子集是否构成 R^3 的子空间:

(1)
$$W_1 = \{(x,2x,3y)^T | x, y \in R\};$$

(2)
$$W_2 = \{(1, x, y)^T | x, y \in R\}.$$

 $m{\mu}$ $(1) \ \forall \alpha \in W_1$,有

$$\alpha = (x,2x,3y)^T = x(1,2,0)^T + y(0,0,3)^T$$

因此 W_1 是由 $\alpha_1 = (1,2,0)^T$ 和 $\alpha_2 = (0,0,3)^T$ 生成的 R^3 的子空间.

(2)
$$\forall \alpha = (1, x, y)^T \in W_2$$
, $有2\alpha = (2, 2x, 2y)^T \notin W_2$.

所以 W_2 不构成 R^3 子空间。

主要内容

- 1 线性空间的定义
- 2 线性空间的基本性质
- 3 线性子空间的定义
- 4 基、维数和向量的坐标
- 5 基变换与坐标变换

4 基、维数和向量坐标

定义5.1.3(基、维数和向量坐标)

设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是线性空间 V中的一组向量,满足 :

(1) $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关; (2) $\forall \alpha \in V, \alpha$ 可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示 $\alpha = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n, (x_i \in F, i = 1, 2, \dots, n)$

则称 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 为 V的一个基,基中所含向量个数 n为 V的维数,记为 $\dim(V)=n(称 V)$ n 维线性空间).

称向量 $x = (x_1, x_2, \dots, x_n)^T$ 为 α 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的坐标 .

例1 F^n 是n维向量空间,向量组 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 就是 F^n 的一个基, $\alpha = (a_1, a_2, \dots, a_n)^T$ 在该组基下的坐标为 α .

4 基、维数和向量坐标

定义5.1.3(基、维数和向量坐标)

$$\partial \alpha_1, \alpha_2, \dots, \alpha_n$$
是线性空间 V 中的-(1) $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关; (2) $\forall \alpha$

$$\alpha_1, \alpha_2, \dots, \alpha_n > 1 + 2 + 2 + 2 + \cdots + x_n \alpha_n, (x_n + x_n + x_n$$

则称
$$\alpha_1, \alpha_2, \dots, \alpha_n$$
为 V 的一个基,基记为 $\dim(V) = n(\pi V) + n$ 维线性3

称向量
$$x = (x_1, x_2, \dots, x_n)^T$$
为 α 在

设:
$$k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = \alpha$$

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 4 & 2 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

 $1 \quad 5 \quad 3 \downarrow k_3 \downarrow \quad 3$ α 在此基下的坐标:

$$x = (k_1, k_2, k_3)^T = (-1, -1, 3)^T$$

例2 证明: $\alpha_1 = (1,0,1)^T$, $\alpha_2 = (2,4,5)^T$, $\alpha_3 = (1,2,3)^T$ 是 \mathbb{R}^3 的一个基, 并求 $\alpha = (0,2,3)^T$ 在此基下的坐标。

证明
$$|\alpha_1 \quad \alpha_2 \quad \alpha_3| = 2 \neq 0$$
,dim $(R^3) = 3$, $\Rightarrow \alpha_1, \alpha_2, \alpha_3$ 可作为 R^3 的基.

4 基、维数和向量坐标

定义5.1.3(基、维数和向量坐标)

设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是线性空间 V中的一组向量,满足:

(1)
$$\alpha_1, \alpha_2, \dots, \alpha_n$$
线性无关; (2) $\forall \alpha \in V, \alpha$ 可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示
$$\alpha = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n, (x_i \in F, i = 1, 2, \dots, n)$$

则称 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为 V的一个基,基中所含向量个数 n为 V的维数,记为 $\dim(V) = n(\pi V)$ n 维线性空间).

称向量 $x = (x_1, x_2, \dots, x_n)^T$ 为 α 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的坐标 .

- ●零空间(维数为0),有限维空间,无限维线性空间
- ●线性空间的基不惟一,但基所含向量的个数惟 一.
- n维线性空间V中任意n个线性无关的向量都可作为V的基.
- ●*V*中的向量用基线性表示时表示式惟一.

例3 证明: $F^{2\times 2}$ 中的向量组

$$A_1 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

是
$$F^{2\times 2}$$
的一个基,并求 $A = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}$ 在此基下的坐标。

证明 首先证明 A_1 , A_2 , A_3 , A_4 线性无关

$$0 = k_1 A_1 + k_2 A_2 + k_3 A_3 + k_4 A_4 = \begin{bmatrix} -k_1 + k_2 & k_1 + k_2 \\ k_3 & k_4 \end{bmatrix}$$

$$\Rightarrow k_1 = k_2 = k_3 = k_4 = 0;$$

例3 证明: $F^{2\times 2}$ 中的向量组

$$A_1 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

是
$$F^{2\times 2}$$
的一个基,并求 $A = \begin{vmatrix} 2 & 0 \\ -1 & 3 \end{vmatrix}$ 在此基下的坐标。

证明 首先证明 A_1 , A_2 , A_3 , A_4 线性无关

其次证明任一 $A \in F^{2\times 2}$,都可由 A_1 , A_2 , A_3 , A_4 线性表出

设有 x_1, x_2, x_3, x_4 使得 $x_1A_1 + x_2A_2 + x_3A_3 + x_4A_4 = A$

$$x_{1} \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} + x_{2} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + x_{3} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + x_{4} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -x_{1} + x_{2} & x_{1} + x_{2} \\ x_{3} & x_{4} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

 $F^{2\times 2}$ 是4维线性空间。

例3 证明: $F^{2\times 2}$ 中的向量组

$$A_1 = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, A_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

是 $F^{2\times 2}$ 的一个基,并求 $A = \begin{vmatrix} 2 & 0 \\ -1 & 3 \end{vmatrix}$ 在此基下的坐标。

证明 首先证明 A_1 , A_2 , A_3 , A_4 线性无关

其次证明任一 $A \in F^{2\times 2}$,都可由 A_1 , A_2 , A_3 , A_4 线性表出

设有 x_1, x_2, x_3, x_4 使得 $x_1A_1 + x_2A_2 + x_3A_3 + x_4A_4 = A$

$$x_{1} \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} + x_{2} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + x_{3} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + x_{4} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -x_{1} + x_{2} & x_{1} + x_{2} \\ x_{3} & x_{4} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}$$

 $\Rightarrow x_1 = -1, x_2 = 1, x_3 = -1, x_4 = 3, A$ 在此基下的坐标为 $(-1,1,-1,3)^T$

主要内容

- 1 线性空间的定义
- 2 线性空间的基本性质
- 3 线性子空间的定义
- **基、维数和向量的坐标**
- 5 基变换与坐标变换

5 基变换与坐标变换

定义5.1.4(过渡矩阵)设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 和 $\beta_1,\beta_2,\cdots,\beta_n$ 是n维线性

空间V的两个基,且

$$\begin{cases} \beta_1 = a_{11}\alpha_1 + a_{21}\alpha_2 + \dots + a_{n1}\alpha_n & 其中 a_{ij}(i, j = \beta_2 = a_{12}\alpha_1 + a_{22}\alpha_2 + \dots + a_{n2}\alpha_2 & 则称矩阵 A = \beta_n = a_{1n}\alpha_1 + a_{2n}\alpha_2 + \dots + a_{nn}\alpha_n & \dots, \alpha_n 到基 \beta_1, \dots \end{cases}$$

其中 $a_{ii}(i,j=1,2,\cdots,n)$ 为常数, 则称矩阵 $A = (a_{ii})_{n \times n}$ 为由基 α_1, α_2 \dots, α_n 到基 $\beta_1, \beta_2, \dots, \beta_n$ 的过渡矩阵

"矩阵形式"表示: $[\beta_1, \beta_2, \dots, \beta_n] = [\alpha_1, \alpha_2, \dots, \alpha_n]A$

$$[\alpha_1,\alpha_2,\cdots,\alpha_n] = [\beta_1,\beta_2,\cdots,\beta_n]B = [\alpha_1,\alpha_2,\cdots,\alpha_n]AB$$

AB = I 结论: 基之间的过渡矩阵是可逆的.

定理5.1.2 设n维线性空间 V有两个基:

(I) $\alpha_1, \alpha_2, \dots, \alpha_n$; (II) $\beta_1, \beta_2, \dots, \beta_n$;

且由基(I)到基(II)的过渡矩阵为A,设V中向量 α 在基(I)下的坐标

为
$$x = (x_1, x_2, \dots, x_n)^T$$
,在基(II)下的坐标为 $y = (y_1, y_2, \dots, y_n)^T$,

则有: x = Ay或 $y = A^{-1}x$ (坐标变换公式)

证明思路:
$$[\beta_1, \beta_2, \dots, \beta_n] = [\alpha_1, \alpha_2, \dots, \alpha_n]A$$

$$\alpha = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n = [\alpha_1, \alpha_2, \dots, \alpha_n]$$
即: $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n]x$
同理: $\alpha = [\beta_1, \beta_2, \dots, \beta_n]y = [\alpha_1, \alpha_2, \dots, \alpha_n]Ay$

由坐标的唯一性可知: x = Ay或 $y = A^{-1}x$

例1 已知 R^3 的两个基:

(I):
$$\alpha_1 = (1,1,1)^T$$
, $\alpha_2 = (1,0,-1)^T$, $\alpha_3 = (1,0,1)^T$

(II):
$$\beta_1 = (1,2,1)^T$$
, $\beta_2 = (2,3,4)^T$, $\beta_3 = (3,4,3)^T$

求:(1)由基(I)到基(II)的过渡矩阵
$$A$$
;

(2)求向量
$$\alpha = \alpha_1 + 2\alpha_2 - \alpha_3$$
在基(II)下的坐标.

$$(1) [\beta_1, \beta_2, \beta_3] = [\alpha_1, \alpha_2, \alpha_3] A \implies A = [\alpha_1, \alpha_2, \alpha_3]^{-1} [\beta_1, \beta_2, \beta_3]$$

$$[\alpha_{1},\alpha_{2},\alpha_{3}]^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{bmatrix} \quad A = [\alpha_{1},\alpha_{2},\alpha_{3}]^{-1} [\beta_{1},\beta_{2},\beta_{3}] = \begin{bmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{bmatrix}$$

 Θ 1 已知R3的两个基:

(I):
$$\alpha_1 = (1,1,1)^T$$
, $\alpha_2 = (1,0,-1)^T$, $\alpha_3 = (1,0,1)^T$
(II): $\beta_1 = (1,2,1)^T$, $\beta_2 = (2,3,4)^T$, $\beta_3 = (3,4,3)^T$

求:(1)由基(I)到基(II)的过渡矩阵A;

(2)求向量 $\alpha = \alpha_1 + 2\alpha_2 - \alpha_3$ 在基(II)下的坐标.

解 (2) 由
$$\alpha = \alpha_1 + 2\alpha_2 - \alpha_3$$
知 α 在基(I)下的坐标为 $x = (1,2,-1)^T$ 若设其在基(II)下的坐标为 $y = (y_1, y_2, y_3)^T$,

则由坐标变换公式得 $y = A^{-1}x$

$$\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -3 \\ -4 \\ 5 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -3 \\ -4 \\ 5 \end{bmatrix}$$

主要内容

线性空间的同构

子空间的交与和

引例:坐标映射

设V 是数域F 上的n 维线性空间, $B = \{\alpha_1, ..., \alpha_n\}$ 是V 的一个基. 对 $\forall \alpha \in V$,存在唯一的坐标向量x,使 $\alpha = x \mid \alpha + \dots + x \mid \alpha \in E$ 对任意 $x = (x \mid x \mid x)^T \in E^n$

 $\alpha = x_1\alpha_1 + \cdots + x_n\alpha_n$; 反之, 对任意 $x = (x_1, \dots, x_n)^T \in F^n$,

 $x_1\alpha_1 + \cdots + x_n\alpha_n$ 确定的向量 $\alpha \in V$.

这样,确定了V到 F^n 的双射 $f:f(\alpha)=x$,满足:

- (1) $\forall \alpha, \beta \in V$, 恒有 $f(\alpha + \beta) = f(\alpha) + f(\beta)$;
- (2) $\forall \alpha \in V, \forall k \in F,$ 恒有 $f(k\alpha) = kf(\alpha)$.

称此映射为坐标映射.

线性空间V和它的坐标空间 F^n 同构。

线性空间的同构

定义5.1.5(线性空间的同构)

设 V_1,V_2 是数域F 上的线性空间, V_1,V_2 的映射

- σ 叫做同构映射(简称为同构),如果
 - (1) σ 是 V_1 到 V_2 的双射;
 - $(2) \forall \alpha, \beta \in V_1$, 恒有 $\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$;
 - (3) $\forall \alpha \in V_1, \forall k \in F$, 恒有 $\sigma(k\alpha) = k\sigma(\alpha)$.
- 如果两个线性空间之间可以建立一个同构映射,则称两个线性空间同构.

线性空间到其坐标空间的坐标映射是同构映射.

注1 定义中的条件(2)(3)与如下等式等价

- 注2 如果 σ 是 V_1 到 V_2 的同构, 则 σ^{-1} 是 V_2 到 V_4 的同构.
- 注3 同构作为线性空间之间的关系,具有下列性质:
 - ①自反性: V 与自身同构;
 - ②对称性: V_1 与 V_2 同构 \Rightarrow V_2 与 V_1 同构;
 - ③传递性: V_1 与 V_2 同构, V_2 与 V_3 同构 $\Rightarrow V_1$ 与 V_3 同构.

同构映射的基本性质

定理5.1.3 设 $T \in V_1$ 到 V_2 的同构映射

(1)
$$T(0) = 0;$$
 (2) $T(-\alpha) = -T(\alpha);$

(3)
$$T(k_1\alpha_1 + \cdots + k_r\alpha_r) = k_1T(\alpha_1) + \cdots + k_rT(\alpha_r);$$

- (4) V 中向量组 S 线性相关 $\Leftrightarrow T(S)$ 线性相关.
- (5) $B \in V_1$ 的基 $\Leftrightarrow T(B) \in V_2$ 的基.

证 仅证(4). 设 $\alpha_1, ..., \alpha_r \in V_1$ 线性相关,则有 $k_1, ..., k_r$ 不全 为零,使得 $k_1\alpha_1 + \cdots + k_r\alpha_r = 0$,从而

$$0=T(0)=T(k_1\alpha_1+\cdots+k_r\alpha_r)=k_1T(\alpha_1)+\cdots+k_rT(\alpha_r)$$

所以, $T(\alpha_1),\dots,T(\alpha_r)$ 是W中的线性相关组.

设T(S) 在 V_2 中线性相关,则 $S = T^{-1}(T(S))$ 在 V_1 中线性相关.

定理5.1.4 数域 F 上的两个线性空间同构的充分必要条件是它们的维数相同.

证 若 V_1 与 V_2 同构,它们之间的同构映射把 V_1 的基映成 V_2 ,的基,所以, V_1 与 V_2 ,维数相同.

反之,若 $\dim(V_1) = \dim(V_2) = n$,则它们都与 F^n 同构, 所以它们也同构.

维数是有限维线性空间的唯一本质特性.

基扩充定理

定理5.1.5 设 $\alpha_1,...,\alpha_r$ 是 n 维线性空间 V 中的一个线性无关组,且 r < n,则存在 $\alpha_{r+1},...,\alpha_n \in V$,使得 $\alpha_1,...,\alpha_r,\alpha_{r+1},...,\alpha_n$ 成为 V 的基.

证 任取 V 的基: $e_1,...,e_n$, 设 α_i 在此基下的坐标为 $x_i(i=1,...,r)$.由于 $V 与 F^n$ 之间的坐标映射是同构, 且 $\alpha_1, \ldots, \alpha_r$ 线性无关, 所以 x_1, \ldots, x_r 线性无关,从而 存在 $x_{r+1},...,x_n \in F^n$, 使 $x_1,...,x_r,x_{r+1},...,x_n$ 成为 F^n 的基.令 $\alpha_i = [e_1, ..., e_n] x_i \ (j = r + 1, ..., n)$, 由 $V 与 F^n$ 同构知: $\alpha_1,...,\alpha_r,\alpha_{r+1},...,\alpha_n$ 是 V 的基.

主要内容

线性空间的同构

子空间的交与和

子空间的交与和也是子空间

定理5.1.6 设 V_1 , V_2 都是线性空间 V 的子空间,则它们的交 $V_1 \cap V_2$ 也是 V 的子空间.

证 首先 $0 \in V_1 \cap V_2$,所以 $V_1 \cap V_2$ 非空. 其次,若 α , $\beta \in V_1$ 且 α , $\beta \in V_2$,则 $\alpha + \beta \in V_1$ 且 $\alpha + \beta \in V_2$,所以, $\alpha + \beta \in V_1 \cap V_2$,即 $V_1 \cap V_2$ 对 V 中加法封闭.

第三,类似可证, $V_1 \cap V_2$ 对数乘封闭. 故 $V_1 \cap V_2$ 是子空间.

子空间的并还是子空间吗?

在 R^3 中, 过原点的直线表示 R^3 的一维子空间,但在任意交于 O 的两条直线 L_1, L_2 上分别取向量 α_1 和 α_2 , $\alpha_1 + \alpha_2$ 不在 $L_1 \cup L_2$ 中, $L_1 \cup L_2$ 对加法不封闭,所以, $L_1 \cup L_2$ 不是 R^3 的子空间。但由 L_1 , L_2 决定的平面是 R^3 的子空间,且其中任一向量 $\beta = \beta_1 + \beta_2$, $\beta_i \in L_i$.

定义5. 1. 6 设 $V_1,...,V_s$ 是线性空间V 的子空间,定义 $V_1+\cdots+V_s \triangleq \{\alpha_1+\cdots+\alpha_s \big| \alpha_i \in V_i, i=1,...,s\}$ 称为子空间 $V_1,...,V_s$ 的和.

定理5.1.7 设 $V_1,...,V_s$ 是线性空间V 的子空间,则

- $(1) V_1 + \cdots + V_s$ 是 V 的子空间;
- (2) 取每个 V_i 的基 M_i (i=1,...,s),则 $M_1 \cup \cdots \cup M_s$ 的生成空间等于 $V_1 + \cdots + V_s$;
- $(3) \dim(V_1 + \cdots + V_s) \leq \dim(V_1) + \cdots + \dim(V_s).$

证 记 $W = V_1 + \cdots + V_s, M = M_1 \cup \cdots \cup M_s$

(1) 任取 $u = u_1 + \cdots + u_s \in W, v = v_1 + \cdots + v_s \in W, 则$ $u + v = (u_1 + v_1) + \cdots + (u_s + v_s), 因 V_i$ 是子空间,所以 $u_i, v_i \in V_i \Rightarrow u_i + v_i \in V_i \longrightarrow u + v \in W \longrightarrow W$ 对加法封闭.

类似可证,W 对数乘封闭. 从而,W 是 V 的子空间.

(2) 每个 V_i 是 M_i 的线性组合, 而W 是 $V_1 + \cdots + V_s$

的线性组合,因而W是M的线性组合,等于span(M).

(3)
$$W = \operatorname{span}(M) \Rightarrow$$

$$\frac{\operatorname{dim}(W) \leq M \operatorname{中的向量个数}|M|}{=|M_1|+\cdots+|M_s|=\operatorname{dim}(M_1)+\cdots+\operatorname{dim}(M_s)._{\blacksquare}}$$

维数公式

定理5. 1. 8 设 V_1, V_2 都是线性空间V 的子空间,则 $\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$.

证 任取 $V_1 \cap V_2$ 的基 $M_0 = \{\alpha_1, ..., \alpha_r\}$, 扩充成: V_1 的基 $M_1 = \{\alpha_1, ..., \alpha_r, \alpha_{r+1}, ..., \alpha_m\}$, V,的基 M,= $\{\alpha_1, ..., \alpha_r, \beta_{r+1}, ..., \beta_n\}$,则

 $M = M_1 \cup M_2 = \{\alpha_1, ..., \alpha_r, \alpha_{r+1}, ..., \alpha_m, \beta_{r+1}, ..., \beta_n\}$

生成 V_1+V_2 ,所含元素个数为

 $|M| = |M_1| + |M_2| - |M_0| = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2).$

下证 M 线性无关(从而是 $V_1 + V_2$ 的基).

$$\alpha \in V_1$$
 $\beta \in V_2$ 所以 $\alpha = \beta \in (V_1 \cap V_2)$

eta 可以被 $V_1 \cap V_2$ 的基 M_0 线性表示,即 $\exists y_1, \dots, y_r$,使 $y_1\alpha_1 + \dots + y_r\alpha_r = \beta = y_{r+1}\beta_{r+1} + \dots + y_n\beta_n$ $y_1\alpha_1 + \dots + y_r\alpha_r - y_{r+1}\beta_{r+1} - \dots - y_n\beta_n = 0$

由于 $M_2 = \{\alpha_1, ..., \alpha_r, \beta_{r+1}, ..., \beta_n\}$ 是 V_2 的基, 线性无关,

所以,诸 y_i 均为零,代入(1)式,得

$$x_1\alpha_1 + \ldots + x_m\alpha_m = 0$$

由于 $M_1 = \{\alpha_1, ..., \alpha_m\}$ 是 V_1 的基,线性无关, 所以

诸 x_i 均为零.至此,

$$x_1\alpha_1 + \ldots + x_m\alpha_m - y_{r+1}\beta_{r+1} - \cdots - y_n\beta_n = 0$$

成立当且仅当诸 x_i, y_i 均为零,所以

$$M = M_1 \cup M_2 = \{\alpha_1, ..., \alpha_r, \alpha_{r+1}, ..., \alpha_m, \beta_{r+1}, ..., \beta_n\}$$

线性无关.■

推论 设 V_1,V_2 是线性空间V 的子空间,则

(1)
$$\dim(V_1 + V_2) \le \dim(V_1) + \dim(V_2)$$

(2)
$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) \Leftrightarrow V_1 \cap V_2 = \{0\}$$

例1 设 $V_1 \triangleq \operatorname{span}\{\alpha_1, \alpha_2, \}, V_2 \triangleq \operatorname{span}\{\beta_1, \beta_2, \},$ 其中

$$\alpha_1 = (1, 2, 0, 1)^T, \alpha_2 = (1, 1, 1, 0)^T, \beta_1 = (1, 0, 1, 0)^T, \beta_2 = (1, 3, 0, 1)^T$$

求
$$V_1 + V_2, V_1 \cap V_2$$
的基与维数.

$$egin{pmatrix} 1 & 0 & 0 & 1 \ 0 & 1 & 0 & 1 \ 0 & 0 & 1 & -1 \ 0 & 0 & 0 & 0 \end{pmatrix} riangleq B$$

故 dim
$$(V_1 + V_2)$$
 = rank (A) = 3, $V_1 + V_2$ 的基为: $\{\alpha_1, \alpha_2, \beta_1\}$.

$$:: \dim(V_1 \cap V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 + V_2) = 2 + 2 - 3 = 1$$

$$X \beta_2 = \alpha_1 + \alpha_2 - \beta_1, \quad \alpha_1 + \alpha_2 = \beta_1 + \beta_2 = (2,3,1,1)^T \in V_1 \cap V_2$$

$$\therefore V_1 \cap V_2 = \operatorname{span}\{(2,3,1,1)^T\}$$

子空间的直和

$$W = W_1 + \dots + W_t$$
 中的每个向量 α 都能写成 $\alpha = \alpha_1 + \dots + \alpha_t$ $\alpha_i \in W_i (i = 1, \dots, t)$

的形式,什么条件下表达式唯一?

若 $0 \neq \alpha_0 \in W_1 \cap W_2$,则 $\alpha \in W_1 + W_2$ 的分解就不唯一.

$$\alpha = \alpha_1 + \alpha_2 = (\alpha_1 + \alpha_0) + (\alpha_2 - \alpha_0)$$
$$(\alpha_1 + \alpha_0) \in W_1, (\alpha_2 - \alpha_0) \in W_2$$

定义5.1.6(子空间的直和)

设 $W_1,...,W_t$ 都是V的子空间, $W = W_1 + \cdots + W_t$,如果W中的每个向量 α 的分解式

$$\alpha = \alpha_1 + \cdots + \alpha_t$$
 $\alpha_i \in W_i (i = 1, ..., t)$ 都是唯一的,就称 $W \in W_1, ..., W_t$ 的直和,记为

$$W = W_1 \oplus \cdots \oplus W_t$$

类比: 子空间 $W_1,...,W_t$ 的和是直和 $\Leftrightarrow \alpha \in W_1 + \cdots + W_t$ 分解式唯一: $\alpha = \alpha_1 + \cdots + \alpha_t$.

向量组 $\beta_1,...,\beta_t$ 线性无关 $\Leftrightarrow \beta \in \text{span}(\beta_1,...,\beta_t)$ 分解式唯一: $\beta = x_1\beta_1 + \cdots + x_t\beta_t$.

定理5.1.8 $W_1 + \cdots + W_r$ 是直和的充要条件是

$$\alpha_1 + \cdots + \alpha_t = 0$$
 $(\alpha_i \in W_i, i = 1, \dots, t) \Rightarrow \alpha_i = 0_i$ $(i = 1, \dots, t)$ 证 必要性(\Rightarrow)若 $u_i = 0 \in W_i$ $(i = 1, \dots, t)$,则 $u_1 + \cdots + u_t = 0$; 另一方面,如果 $W_1 + \cdots + W_t$ 是直和,由直和的定义,有 $u_1 + \cdots + u_t = 0 \Rightarrow u_i = 0 \in W_i$ $(i = 1, \dots, t)$. 充分性(\Leftarrow) 设 $w \in W_1 + \cdots + W_t$ 有两个分解: $w = w_1 + \cdots + w_t$, $w = u_1 + \cdots + u_t$ $(w_i, u_i \in W_i)$ 两式相减: $0 = (w_1 - u_1) + \cdots + (w_t - u_t)$, $w_i - u_i \in W_i$ 由假设条件知: $w_i = u_i$, $(i = 1, \dots, t)$, w 的分解式唯一,所以 $W_1 + \cdots + W_t$ 是直和. \blacksquare

定理5. 1. 9 $W_1 + W_2$ 是直和 $\Leftrightarrow W_1 \cap W_2 = \{0\}$. 证 $\forall u \in W_1 \cap W_2$, 有 u + (-u) = 0, 且 $u \in W_1$, $(-u) \in W_2$ 由于向量分解唯一,所以,u=0. 从而, $W_1 \cap W_2 = \{0\}$. 设 $W_1 \cap W_2 = \{0\}$. $0=u_1+u_2, u_1 \in W_1, u_2 \in W_2$, 则 $u_1 = -u_2 \in W_1 \cap W_2$, $\mathbb{M}\overline{m}, u_1 = u_2 = 0$. 推论 $W_1 + W_2$ 是直和 \Leftrightarrow dim $(W_1 + W_2) = \text{dim}(W_1) + \text{dim}(W_2)$. 定理5.1.10 $W_1 + \cdots + W_r$ 是直和的充要条件是 $\dim(W_1 + \cdots + W_t) = \dim(W_1) + \cdots + \dim(W_t).$ 证明略.

第五章 线性空间与欧氏空间

5.2 欧氏空间的基本概念

数学与统计学院 李继成

主要内容

- 1 内积及其基本性质
- 2 范数和夹角
- 3 标准正交基及其基本性质
- Gram-Schmidt正交化方法
- 5 正交矩阵

定义(内积和欧氏空间) 设V是一个实线性空间, 如果对于V中任意两个向量 α 、 β ,都指定了一个实数与之对应(记为 $\langle \alpha, \beta \rangle$),满足: $\forall \alpha, \beta, \gamma \in V$, $\forall k \in R$,

对称性 $(1)\langle\alpha,\beta\rangle=\langle\beta,\alpha\rangle;$ $(2)\langle\alpha+\beta,\gamma\rangle=\langle\alpha,\gamma\rangle+\langle\beta,\gamma\rangle;$ 可加性 齐次性 $(3)\langle k\alpha,\beta\rangle=k\langle\alpha,\beta\rangle;$ $(4)\langle\alpha,\alpha\rangle\geq0,$ 且 $\langle\alpha,\alpha\rangle=0\Leftrightarrow\alpha=0$ 非负性 则称 $\langle\alpha,\beta\rangle$ 为V中元素 α 与 β 的内积。

称定义了内积的实线性空间V为实内积空间或欧氏空间。

例1 在线性空间 R^n 中,任意向量 $\alpha = [a_1, a_2, \dots, a_n]^T$, $\beta = [b_1, b_2, \dots, b_n]^T$ 可以验证: $\langle \alpha, \beta \rangle = a_1b_1 + a_2b_2 + \dots + a_nb_n = \alpha^T\beta = \beta^T\alpha$ 满足 R^n 上的内积定义, R^n 按此内积构成一个欧氏空间.

定义(内积和欧氏空间) 设V是一个实线性空间, 如果对于V中任意

两个向量 α 、 β ,都指定了一个实数与之对应(记为 $\langle \alpha, \beta \rangle$),满足: $\forall \alpha, \beta, \gamma \in V$, $\forall k \in R$,

对称性 $(1)\langle \alpha,\beta\rangle = \langle \beta,\alpha\rangle$; $(2)\langle \alpha+\beta,\gamma\rangle = \langle \alpha,\gamma\rangle + \langle \beta,\gamma\rangle$; 可加性 齐次性 $(3)\langle k\alpha,\beta\rangle = k\langle \alpha,\beta\rangle$; $(4)\langle \alpha,\alpha\rangle \ge 0$, 且 $\langle \alpha,\alpha\rangle = 0 \Leftrightarrow \alpha = 0$ 非负性

则称 $\langle \alpha, \beta \rangle$ 为V中元素 α 与 β 的内积。 称定义了内积的实线性空间V为实内积空间或欧氏空间。

例2 在实线性空间 $R^{n\times n}$ 中,对于矩阵 $A = (a_{ij})_{n\times n}$, $B = (b_{ij})_{n\times n}$ 定义: $\langle A,B \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ij}$

可以验证它满足内积定义, $R^{n\times n}$ 对此内积构成一个欧氏空间.

定义(内积和欧氏空间) 设V是一个实线性空间, 如果对于V中任意

两个向量 α 、 β ,都指定了一个实数与之对应(记为 $\langle \alpha, \beta \rangle$),满足: $\forall \alpha, \beta, \gamma \in V$, $\forall k \in R$,

对称性 $(1)\langle \alpha,\beta\rangle = \langle \beta,\alpha\rangle;$ $(2)\langle \alpha+\beta,\gamma\rangle = \langle \alpha,\gamma\rangle + \langle \beta,\gamma\rangle;$ 可加性 齐次性 $(3)\langle k\alpha,\beta\rangle = k\langle \alpha,\beta\rangle;$ $(4)\langle \alpha,\alpha\rangle \ge 0$,且 $\langle \alpha,\alpha\rangle = 0 \Leftrightarrow \alpha = 0$ 非负性

则称 $\langle \alpha, \beta \rangle$ 为V中元素 α 与 β 的内积。

称定义了内积的实线性空间V为实内积空间或欧氏空间。

定义: $\langle f,g\rangle = \int_a^b f(x)g(x)dx$,

可以验证它满足内积定义,C[a,b]对此内积构成一个欧氏空间.

定义(内积和欧氏空间) 设V是一个实线性空间, 如果对于V中任意两个向量 α 、 β ,都指定了一个实数与 λ 对应(记为 α , β),

满足: $\forall \alpha, \beta, \gamma \in V$, $\forall k \in R$,

对称性 $(1)\langle \alpha,\beta\rangle = \langle \beta,\alpha\rangle;$ $(2)\langle \alpha+\beta,\gamma\rangle = \langle \alpha,\gamma\rangle + \langle \beta,\gamma\rangle;$ 可加性 齐次性 $(3)\langle k\alpha,\beta\rangle = k\langle \alpha,\beta\rangle;$ $(4)\langle \alpha,\alpha\rangle \geq 0$,且 $\langle \alpha,\alpha\rangle = 0 \Leftrightarrow \alpha = 0$ 非负性

则称 $\langle \alpha, \beta \rangle$ 为V中元素 α 与 β 的内积。

称定义了内积的实线性空间V为实内积空间或欧氏空间。

$$\langle k\alpha + l\beta, \gamma \rangle = k\langle \alpha, \gamma \rangle + l\langle \beta, \gamma \rangle$$

$$\langle \sum_{i=1}^{m} k_i \alpha_i, \beta \rangle = \langle k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m, \beta \rangle = \sum_{i=1}^{m} k_i \langle \alpha_i, \beta \rangle$$

 $\forall \alpha_i, \beta_i \in V, \forall k_i, l_i \in R, i = 1, 2, \dots, m; j = 1, 2, \dots, m$

$$\left\langle \sum_{i=1}^{m} k_{i} \alpha_{i}, \sum_{j=1}^{n} l_{j} \beta_{j} \right\rangle = \left\langle k_{1} \alpha_{1} + k_{2} \alpha_{2} + \dots + k_{m} \alpha_{m}, l_{1} \beta_{1} + l_{2} \beta_{2} + \dots + l_{n} \beta_{n} \right\rangle$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} k_{i} l_{j} \left\langle \alpha_{i}, \beta_{j} \right\rangle \quad \left(c_{ij} = \left\langle \alpha_{i}, \beta_{j} \right\rangle \right)$$

$$\langle k\alpha + l\beta, \gamma \rangle = k\langle \alpha, \gamma \rangle + l\langle \beta, \gamma \rangle$$

$$\langle \sum_{i=1}^{m} k_i \alpha_i, \beta \rangle = \langle k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_m \alpha_m, \beta \rangle = \sum_{i=1}^{m} k_i \langle \alpha_i, \beta \rangle$$

$$\forall \alpha_i, \beta_i \in V, \forall k_i, l_i \in R, i = 1, 2, \dots, m; j = 1, 2, \dots, m$$

$$\left\langle \sum_{i=1}^{m} k_{i} \alpha_{i}, \sum_{j=1}^{n} l_{j} \beta_{j} \right\rangle = \left\langle k_{1} \alpha_{1} + k_{2} \alpha_{2} + \dots + k_{m} \alpha_{m}, l_{1} \beta_{1} + l_{2} \beta_{2} + \dots + l_{n} \beta_{n} \right\rangle$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} k_{i} l_{j} \left\langle \alpha_{i}, \beta_{j} \right\rangle \quad \left(c_{ij} = \left\langle \alpha_{i}, \beta_{j} \right\rangle \right)$$

$$= (k_1 \ k_2 \cdots k_m) \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{pmatrix} \begin{pmatrix} l_1 \\ l_2 \\ \vdots \\ l_n \end{pmatrix}$$

定理5.2.1(柯西-施瓦兹不等式)

设V是一个欧氏空间, $\forall \alpha, \beta \in V$,则有

$$|\langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle| \leq \sqrt{\langle \boldsymbol{\alpha}, \boldsymbol{\alpha} \rangle} \sqrt{\langle \boldsymbol{\beta}, \boldsymbol{\beta} \rangle}$$

其中等号成立的充要条件是 α 与 β 线性相关.

证明 如果 α, β 线性无关,则 $\forall t \in R$,有 $t\alpha + \beta \neq 0$,由内积的非负性:

$$\langle \mathbf{t}\alpha + \boldsymbol{\beta}, \mathbf{t}\alpha + \boldsymbol{\beta} \rangle > 0 \implies \langle \alpha, \alpha \rangle t^2 + 2\langle \alpha, \beta \rangle t + \langle \beta, \beta \rangle > 0$$

$$\Delta = 4\langle \alpha, \beta \rangle^2 - 4\langle \alpha, \alpha \rangle \langle \beta, \beta \rangle < 0 \implies |\langle \alpha, \beta \rangle| < \sqrt{\langle \alpha, \alpha \rangle} \sqrt{\langle \beta, \beta \rangle}$$

如果 α , β 线性相关,不妨设: $\alpha = k\beta(k)$ 为实常数),

$$\begin{aligned} |\langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle| &= |\langle \boldsymbol{k} \boldsymbol{\beta}, \boldsymbol{\beta} \rangle| = |\boldsymbol{k} \langle \boldsymbol{\beta}, \boldsymbol{\beta} \rangle| &= \sqrt{\boldsymbol{k}^2 \langle \boldsymbol{\beta}, \boldsymbol{\beta} \rangle} \sqrt{\langle \boldsymbol{\beta}, \boldsymbol{\beta} \rangle} \\ &= \sqrt{\langle \boldsymbol{k} \boldsymbol{\beta}, \boldsymbol{k} \boldsymbol{\beta} \rangle} \sqrt{\langle \boldsymbol{\beta}, \boldsymbol{\beta} \rangle} &= \sqrt{\langle \boldsymbol{\alpha}, \boldsymbol{\alpha} \rangle} \sqrt{\langle \boldsymbol{\beta}, \boldsymbol{\beta} \rangle} \end{aligned}$$

定理5.2.1(柯西-施瓦兹不等式)

设V是一个欧氏空间, $\forall \alpha, \beta \in V$,则有

$$|\langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle| \leq \sqrt{\langle \boldsymbol{\alpha}, \boldsymbol{\alpha} \rangle} \sqrt{\langle \boldsymbol{\beta}, \boldsymbol{\beta} \rangle}$$

其中等号成立的充要条件是 α 与 β 线性相关.

•
$$R^n$$
: $\alpha = [a_1, a_2, \dots, a_n]^T, \beta = [b_1, b_2, \dots, b_n]^T$

$$|a_1b_1 + \cdots + a_nb_n| \le \sqrt{a_1^2 + \cdots + a_n^2} \sqrt{b_1^2 + \cdots + b_n^2}$$

•
$$C[a,b]$$
: $\forall f(x), g(x) \in C[a,b]$

$$\left| \int_a^b f(x)g(x)dx \right| \leq \left| \int_a^b f^2(x)dx \right|^{\frac{1}{2}} \left| \int_a^b g^2(x)dx \right|^{\frac{1}{2}}$$

柯西-施瓦兹不等式 (Cauchy-Schwarz)

主要内容

- 1 内积及其基本性质
- 2 范数和夹角
- 3 标准正交基及其基本性质
- Gram-Schmidt正交化方法
- 5 正交矩阵

2 范数和夹角

定义5.2.2(向量的范数)在欧氏空间V中,称 $\sqrt{\langle \alpha, \alpha \rangle}$ 为 α 的

范数(或长度),记为 $|\alpha|$, $|\alpha| = \sqrt{\langle \alpha, \alpha \rangle}$.

例: $\forall \alpha = (1,2,2)^T \in \mathbb{R}^3, \mathbb{N} \|\alpha\| = \sqrt{\langle \alpha, \alpha \rangle} = \sqrt{1^2 + 2^2 + 2^2} = 3$

柯西-施瓦兹不等式: $\langle \alpha, \beta \rangle \leq \sqrt{\langle \alpha, \alpha \rangle} \sqrt{\langle \beta, \beta \rangle} \longleftrightarrow \langle \alpha, \beta \rangle \leq \|\alpha\| \cdot \|\beta\|$

范数性质:

$$(1)$$
 $|\alpha| \ge 0$,且 $|\alpha| = 0 \Leftrightarrow \alpha = 0$

$$(2)||k\alpha|| = |k| \cdot ||\alpha|| \quad (k \in R)$$

$$(3)\|\boldsymbol{\alpha}+\boldsymbol{\beta}\| \leq \|\boldsymbol{\alpha}\| + \|\boldsymbol{\beta}\|$$

iii (3)
$$\|\alpha + \beta\|^2 = \langle \alpha + \beta, \alpha + \beta \rangle$$

 $= \langle \alpha, \alpha \rangle + 2\langle \alpha, \beta \rangle + \langle \beta, \beta \rangle$
 $\leq \|\alpha\|^2 + 2|\langle \alpha, \beta \rangle| + \|\beta\|^2$
 $\leq \|\alpha\|^2 + 2\|\alpha\|\|\beta\| + \|\beta\|^2$
 $= (\|\alpha\| + \|\beta\|)^2$

2 范数和夹角

定义5.2.2 (向量的范数) 在欧氏空间V中,称 $\sqrt{\langle \alpha, \alpha \rangle}$ 为 α 的

范数(或长度),记为 $|\alpha|$, $|\alpha| = \sqrt{\langle \alpha, \alpha \rangle}$.

例: $\forall \alpha = (1,2,2)^T \in \mathbb{R}^3$,则 $\|\alpha\| = \sqrt{\langle \alpha, \alpha \rangle} = \sqrt{1^2 + 2^2 + 2^2} = 3$

柯西-施瓦兹不等式: $\langle \alpha, \beta \rangle \leq \sqrt{\langle \alpha, \alpha \rangle} \sqrt{\langle \beta, \beta \rangle} \longleftrightarrow |\langle \alpha, \beta \rangle| \leq ||\alpha|| \cdot ||\beta||$

范数性质:

$$(1)$$
|| α || ≥ 0 ,且|| α || $= 0 \Leftrightarrow \alpha = 0$

$$(2)||k\alpha|| = |k| \cdot ||\alpha|| \quad (k \in R)$$

$$(3)\|\alpha+\beta\|\leq \|\alpha\|+\|\beta\|$$

零向量: 范数为零的向量.

单位向量: 范数为1的向量.

非零向量单位化: $\alpha \neq 0$, 单位化 $\frac{1}{\|\alpha\|}$ $\alpha = (1,2,2)^T$, $\alpha^0 = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3})^T$

对于几何空间中的两个非零向量 α, β ,其内积为

$$\langle \alpha, \beta \rangle = \|\alpha\| \cdot \|\beta\| \cos \varphi, \qquad \varphi = \arccos \frac{\langle \alpha, \beta \rangle}{\|\alpha\| \cdot \|\beta\|}, \ (0 \le \varphi \le \pi)$$

定义5.2.3 (非零向量的夹角)对于欧氏空间V中两非零向量 α, β ,

定义
$$\alpha, \beta$$
的夹角 $\varphi = \arccos \frac{\langle \alpha, \beta \rangle}{\|\alpha\| \cdot \|\beta\|}, (0 \le \varphi \le \pi)$

- 若 $\alpha \neq 0, \beta \neq 0, \langle \alpha, \beta \rangle = 0, 则 \varphi = \arccos 0 = \frac{\pi}{2}, \quad 即 \alpha \perp \beta.$
- 若 $\langle \alpha, \beta \rangle = 0$,则称 α 与 β 正交(或相互垂直),记为 $\alpha \perp \beta$.
- •由于 $\langle 0, \beta \rangle = \langle 0\alpha, \beta \rangle = 0 \langle \alpha, \beta \rangle = 0$,故零向量与任何向量正交.
- •当 α $\perp \beta$,则 $\|\alpha + \beta\|^2 = \langle \alpha + \beta, \alpha + \beta \rangle = \|\alpha\|^2 + \|\beta\|^2$ m个两两正交的向量: $\|\alpha_1 + \alpha_2 + \dots + \alpha_m\|^2 = \|\alpha_1\|^2 + \|\alpha_2\|^2 + \dots + \|\alpha_m\|^2$

定义5.2.4(距离)对于欧氏空间V中两个向量 $\alpha, \beta, 称 | \alpha - \beta |$

为 α 与 β 的距离,记为 $d(\alpha,\beta)$,即

$$d(\alpha,\beta) = ||\alpha - \beta||$$

基本性质:

- (1)对称性: $d(\alpha,\beta) = d(\beta,\alpha)$;
- (2)非负性: $d(\alpha,\beta) \ge 0$,且 $d(\alpha,\beta) = 0 \Leftrightarrow \alpha = \beta$;
- (3)三角不等式: $d(\alpha,\beta) \leq d(\alpha,\gamma) + d(\gamma,\beta)$.

$$\mathbf{ii} \quad (3) \qquad d(\alpha, \beta) = \|\alpha - \beta\| = \|(\alpha - \gamma) + (\gamma - \beta)\|$$

$$\leq \|\alpha - \gamma\| + \|\gamma - \beta\| = d(\alpha, \gamma) + d(\gamma, \beta)$$

主要内容

- 1 内积及其基本性质
- 2 范数和夹角
- 3 标准正交基及其基本性质
- ✓ Gram-Schmidt正交化方法
- 5 正交矩阵

 $i = (1,0,0)^T, j = (0,1,0)^T, k = (0,0,1)^T = R^3$ 线性空间的一个基:

任意向量 $\alpha = (a,b,c)^T$ 在该基下的坐标为 $\alpha = (a,b,c)^T$.

分析: 基中向量都是单位向量;

基中向量两两正交;

任意向量在此基下的坐标是"本身"。

事实:在这种基下,向量的坐标、内积、范数、距离的计算都变得很容易。

问题:任意一个欧式空间是否一定存在满足此性质的基?

3标准正交基及其基本性质

定义5.2.5(正交向量组与正交单位向量组)

对于欧氏空间V中的一个不含零向量的向量组,如果其中向量两两正交,则称它为一个正交向量组。

如果一个正交向量组中的每一个向量都是单位向量,则称其为一个正交单位向量组(标准正交向量组,正交规范向量组)。

3 标准正交基及其基本性质

定义5.2.5(正交向量组与正交单位向量组)

对于欧氏空间V中的一个不含零向量的向量组,如果其中向量两两正交,则称它为一个正交向量组。

如果一个正交向量组中的每一个向量都是单位向量,则称其为一个正交单位向量组(标准正交向量组,正交规范向量组)。

定理5.2.2 正交向量组必是线性无关向量组.

证设
$$\alpha_1, \alpha_2, \dots, \alpha_m$$
是一正交向量组: $\langle \alpha_i, \alpha_j \rangle = 0, \forall i, j \in \{1, 2, \dots, m\}, i \neq j$ 设有一组数 k_1, \dots, k_m ,使 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = 0$,用 α_1 与上式两端作内积: $\langle \alpha_1, k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m \rangle = \langle \alpha_1, 0 \rangle = 0$ $\Rightarrow k_1 \langle \alpha_1, \alpha_1 \rangle = 0 \Rightarrow k_1 = 0$

同理有 $k_2 = \cdots = k_m = 0$, 故 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关.

定义5.2.6(正交基与标准正交基)

在n维欧氏空间V中,由n个向量组成的正交向量组称为V的一组正交基,由n个向量组成的正交单位向量组称为V的标准正交基(或规范正交基)。

例1 $[1,1,1]^T$, $[0,1,-1]^T$, $[-2,1,1]^T$ 是 R^3 的一个正交基; $[1,0,0]^T$, $[0,1,0]^T$, $[0,0,1]^T$ 是 R^3 的一个标准正交基;

$$\left[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]^{T}$$
, $\left[0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right]^{T}$, $\left[-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right]^{T}$ 是 R^{3} 的一个标准正交基

问题:

在标准正交基下,向量的坐标、内积、范数、距离如何计算?

定理5.2.3 设 $\alpha_1, \dots, \alpha_n$ 是n维欧氏空间V的一个标准正交基

$$\alpha, \beta \in V$$
, 且: $\alpha = x_1\alpha_1 + \dots + x_n\alpha_n$; $\beta = y_1\alpha_1 + \dots + y_n\alpha_n$,则有:

(1)
$$x_i = \langle \alpha, \alpha_i \rangle, (i = 1, \dots, n)$$

(2)
$$\langle \boldsymbol{\alpha}, \boldsymbol{\beta} \rangle = x_1 y_1 + \cdots + x_n y_n$$

(3)
$$\|\alpha\| = \sqrt{x_1^2 + \cdots + x_n^2}$$

(4)
$$d(\alpha, \beta) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

例2在欧氏空间 R^3 中,求 $\alpha = (1,2,3)^T$ 在标准正交基

$$\alpha_1 = (1,0,0)^T, \alpha_2 = (0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})^T, \alpha_3 = (0,-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})^T$$
的坐标.

解 由于
$$\langle \alpha_1, \alpha \rangle = 1$$
, $\langle \alpha_2, \alpha \rangle = \frac{5}{\sqrt{2}}$, $\langle \alpha_3, \alpha \rangle = \frac{1}{\sqrt{2}}$, 故 α 在该基下的坐标为 $(1, \frac{5}{\sqrt{2}}, \frac{1}{\sqrt{2}})^T$.

主要内容

- 1 内积及其基本性质
- 2 范数和夹角
- 3 标准正交基及其基本性质
- ✓ Gram-Schmidt正交化方法
- 5 正交矩阵

4 Gram-Schmidt(格拉姆-斯密特)正交化方法

定理5.2.4设 $\alpha_1, \dots, \alpha_n$ 是n维欧氏空间V的一个基,若令

$$\beta_{1} = \alpha_{1},$$

$$\beta_{2} = \alpha_{2} - \frac{\langle \alpha_{2}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1},$$

$$\beta_{3} = \alpha_{3} - \frac{\langle \alpha_{3}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1} - \frac{\langle \alpha_{3}, \beta_{2} \rangle}{\langle \beta_{2}, \beta_{2} \rangle} \beta_{2},$$

$$\beta_{n} = \alpha_{n} - \frac{\langle \alpha_{n}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1} - \frac{\langle \alpha_{n}, \beta_{2} \rangle}{\langle \beta_{2}, \beta_{2} \rangle} \beta_{2} + \dots + \frac{\langle \alpha_{n}, \beta_{n-1} \rangle}{\langle \beta_{n-1}, \beta_{n-1} \rangle} \beta_{n-1},$$

若再令
$$e_i = \frac{\beta_i}{\|\beta_i\|}$$
, $i = 1, 2, \dots, n$, 则 e_1 , e_2 , \dots , e_n 就是 V 的一组标准正交基

例1 用Gram - Schmidt正交化方法把向量组 $\alpha_1 = [1,0,1,0]^T$,

$$\alpha_2 = [0,1,2,2]^T, \alpha_3 = [-1,0,0,3]^T,$$
化为正交单位向量组。

解 易证该向量组线性无关.

先令:
$$\beta_1 = \alpha_1 = [1,0,1,0]^T$$
, $\beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 = [-1,1,1,2]^T$,

$$\beta_3 = \alpha_3 - \frac{\langle \alpha_3, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 - \frac{\langle \alpha_3, \beta_2 \rangle}{\langle \beta_2, \beta_2 \rangle} \beta_2 = [2, -1, -\frac{1}{2}, 1]^T$$

位
化
$$e_3 = \frac{\beta_3}{\|\beta_3\|} = \left[\frac{4}{5}, -\frac{2}{5}, -\frac{1}{5}, \frac{2}{5}\right]^T$$

主要内容

- 1 内积及其基本性质
- 2 范数和夹角
- 3 标准正交基及其基本性质
- Gram-Schmidt正交化方法
- 5 正交矩阵

5 正交矩阵

定义5.2.7 若实方阵A满足 $AA^T = A^TA = I$,则称A为正交矩阵

性质: 设A,B为同阶正交矩阵,则

- $(1) \det(A) = \pm 1$,即正交矩阵的行列式为1或 -1;
- $(2) A^T, A^{-1} \mathcal{D} A^*$ 均为正交矩阵
- (3) AB为正交矩阵

定理5.2.5 实方阵A为正交矩阵的充要条件是A的列(行)向 量组为标准正交向量组。

$$A^T A = I$$

$$A = [\alpha_1 \ \alpha_2 \cdots \alpha_n]$$

证明思路:
$$A^{T}A = I$$

$$A = [\alpha_{1} \ \alpha_{2} \cdots \alpha_{n}]$$

$$A = [\alpha_{1} \ \alpha_{2} \cdots \alpha_{n}]$$

$$\begin{bmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{bmatrix}$$

$$[\alpha_{1} \ \alpha_{2} \cdots \alpha_{n}] = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ \alpha_{n}^{T} \end{bmatrix}$$

$$\vdots$$

$$1$$

$$\vdots$$

$$0, \quad i \neq j$$

例1 判断下列矩阵是否为正交矩阵.

$$egin{pmatrix} 1 & -rac{1}{2} & rac{1}{3} \ 0 & 1 & rac{1}{2} \ 1 & rac{1}{2} & -1 \end{pmatrix}$$

$$egin{pmatrix} rac{1}{\sqrt{3}} & 0 & -rac{2}{\sqrt{6}} \ rac{1}{\sqrt{3}} & -rac{1}{\sqrt{2}} & rac{1}{\sqrt{6}} \ rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} & rac{1}{\sqrt{6}} \end{pmatrix}$$

定义5.2.8 若P为正交矩阵,则称线性变换y = Px称为正交变换

例2
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$
是 R^2 上的正交变换(旋转变换)

定理5.2.6 设P为n阶正交矩阵, $x_1, x_2 \in R^n$,则有:

$$(1) \quad \langle Px_1, Px_2 \rangle = \langle x_1, x_2 \rangle$$

(2)
$$||Px|| = ||x||$$

4 Gram-Schmidt(格拉姆-斯密特)正交化方法

设 $\alpha_1,\alpha_2,...,\alpha_r$ 是空间V的一个线性无关向量组,如何求一组

与之等价的正交向量组
$$e_1, e_2, ..., e_r$$
? $\beta_1 = \alpha_1$,

$$\prod_{1} \beta_{1} = \alpha_{1},$$

$$\prod_{2} \beta_{2} = \alpha_{2} - \frac{[\alpha_{2}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1},$$

$$\mathcal{L}\beta_3 = \alpha_3 - \frac{[\alpha_3, \beta_1]}{[\beta_1, \beta_1]}\beta_1 - \frac{[\alpha_3, \beta_2]}{[\beta_2, \beta_2]}\beta_2,$$

$$\beta_{r} = \alpha_{r} - \frac{[\alpha_{r}, \beta_{1}]}{[\beta_{1}, \beta_{1}]} \beta_{1} - \frac{[\alpha_{r}, \beta_{2}]}{[\beta_{2}, \beta_{2}]} \beta_{2} - \dots - \frac{[\alpha_{r}, \beta_{r-1}]}{[\beta_{r-1}, \beta_{r-1}]} \beta_{r-1},$$
单位化: $e_{1} = \frac{1}{\|\beta_{1}\|} \beta_{1}, \dots, e_{r} = \frac{1}{\|\beta_{r}\|} \beta_{r}.$

第五章 线性空间与欧氏空间

课后习题选讲

数学与统计学院

主要内容

```
例1-11: 第5章习题
例12-15:
    习题5. 1, A 7, 9, B 1, 2
例16-27:
    习题5. 2. A 4. 8. 14, 15, 16, 17, 19, B
 1, 2, 3, 4, 5
```

例1 设实方阵 $A = (a_{ij})_{3\times 3}$ 满足 $A^T = A^*, a_{11} = -1,$ 向量 $b = (1,0,0)^T,$ 则线性方程组Ax = b的解为 .

解由
$$A^T = A^*, a_{11} = -1$$
知 $|A|^2 = |A| = a_{11}^2 + a_{12}^2 + a_{13}^2 = a_{11}^2 + a_{21}^2 + a_{31}^2 = 1,$

$$a_{12} = a_{13} = a_{21} = a_{31} = 0$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{bmatrix} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

所以线性方程组Ax = b的解为 $(-1 \ 0 \ 0)^T$.

例2 设 4×5 矩阵A按列分块为 $A = [\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \alpha_5]$,已知 $\alpha_1,\alpha_2,\alpha_4$ 线性无关,且 $\alpha_3 = \alpha_1 + 2\alpha_2,\alpha_5 = 2\alpha_1 - \alpha_2 + 3\alpha_4$, 则齐次线性方程组Ax = 0的解空间的标准正交基为 .

的两个正交的解向量.

 $egin{aligned} \mathbf{M} & \text{由已知得} r(A) = 3, \hat{\mathbf{x}} \otimes \mathbf{K} \otimes \mathbf{K}$

 $\frac{1}{\sqrt{6}}\eta_1, \frac{1}{\sqrt{15}}\eta_2$ 是齐次线性方程组Ax = 0的解空间的标准正交基.

例3 若 $F[x]_2$ 中的向量组 $f_1 = x^2 - 2x + 3$, $f_2 = 2x^2 + x + a$, $f_3 = x^2 + 8x + 7$ 线性相关,则常数a =_.

解 由于 $x^2, x, 1$ 是线性空间 $F[x]_2$ 的一组基.

$$\overline{m}(f_1 \quad f_2 \quad f_3) = \begin{pmatrix} x^2 & x & 1 \end{pmatrix} \begin{bmatrix} 1 & 2 & 1 \\ -2 & 1 & 8 \\ 3 & a & 7 \end{bmatrix} = \begin{pmatrix} x^2 & x & 1 \end{pmatrix} A$$

 f_1, f_2, f_3 线性相关,因此,|A| = 0,即a = 8

例4 R^4 的子空间 $W = \{(a+b,a-b+2c,b,c)^T | a,b,c \in R\}$ 的基为_.

 \mathbf{R}^{4} 的子空间 \mathbf{W} 中的任一元素 α 可以表示为:

$$\alpha = \begin{pmatrix} a+b \\ a-b+2c \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ a \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} b \\ -b \\ b \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 2c \\ 0 \\ c \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

向量
$$\eta_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix}^T, \eta_2 = \begin{pmatrix} 1 & -1 & 1 & 0 \end{pmatrix}^T, \eta_3 = \begin{pmatrix} 0 & 2 & 0 & 1 \end{pmatrix}^T$$

线性无关,就是子空间W的一组基.

设 $\alpha_1,\alpha_2,\alpha_3$ 是 R^3 的基,则从基 $\alpha_1,\frac{1}{2}\alpha_2,\frac{1}{3}\alpha_3$ 到基 $\alpha_1+\alpha_2$,

$$\alpha_2 + \alpha_3, \alpha_3 + \alpha_1$$
的过渡矩阵为_.

解
$$\left[\alpha_{1} + \alpha_{2} \quad \alpha_{2} + \alpha_{3} \quad \alpha_{3} + \alpha_{1}\right] = \left[\alpha_{1} \quad \frac{1}{2}\alpha_{2} \quad \frac{1}{3}\alpha_{3}\right] \begin{bmatrix} 1 & 0 & 1\\ 2 & 2 & 0\\ 0 & 3 & 3 \end{bmatrix}$$

所以,过渡矩阵
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{bmatrix}$$

例6 记矩阵
$$A = \begin{bmatrix} 1 & -2 & 1 & 1 & 2 \\ -1 & 3 & 0 & 2 & -2 \\ 0 & 1 & 1 & 3 & 4 \\ 1 & 2 & 5 & 13 & 5 \end{bmatrix}$$
的第 j 个列向量为 $\alpha_j(j=1,\cdots,5)$,

(1)求向量空间 $W = \{Ax | x \in F^5\}$ 的基与维数;(2)求 α_3, α_4 在该基下的坐标.

$$(1)W = \{Ax | x \in F^5\} = \left\{ \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \middle| x_i \in F, i = 1, \dots, 5 \right\}$$

=
$$\{x_1\alpha_1 + \cdots + x_5\alpha_5 | x_i \in F, i = 1, \cdots, 5\}$$

例6 记矩阵
$$A = \begin{bmatrix} 1 & -2 & 1 & 1 & 2 \\ -1 & 3 & 0 & 2 & -2 \\ 0 & 1 & 1 & 3 & 4 \\ 1 & 2 & 5 & 13 & 5 \end{bmatrix}$$
的第 j 个列向量为 $\alpha_j (j = 1, \dots, 5)$,

(1)求向量空间
$$W = \{Ax | x \in F^5\}$$
的基与维数;
(2)求 α 。 α .在该基下的坐标。

$$(2)$$
求 α_3 , α_4 在该基下的坐标. (1) W就是由 A 的列向量组 α_1 , α_2 ,···, α_5 生成的线性空间,所以, α_1 , α_2 ,···, α_5 的极大无关组就是 W 的一组基,且 $r(A)=r(\alpha_1,\cdots,\alpha_5)=\dim(W)$ 容易得到: W 的一组基是 α_1 , α_2 , α_3 ; $\dim(W)=3$

 $(2)\alpha_3 = 3\alpha_1 + \alpha_2$, 坐标(3,1,0); $\alpha_4 = 7\alpha_1 + 3\alpha_2$, 坐标(7,3,0).

例7设 $A_{m\times n}$ 和 $B_{m\times n}$ 为行等价的两个矩阵, $\pi W_1 = \{Ax | x \in F^n\}$ 和 $W_2 = \{Bx | x \in F^n\}$ 分别为A,B的列空间.(1)证明: $\dim(W_1) = \dim(W_2)$ $(2)W_1 = W_2$ 吗? 若是,给出证明;若不是,举出反例. 证明 (1)矩阵A与B行等价,则r(A) = r(B).又 dim $(W_1) = r(A)$,

$$(2)W_1 = W_2$$
吗?若是,给出证明;若不是,举出反例.
正明(1)矩阵 $A = B$ 行等价,则 $r(A) = r(B)$.又 $\dim(W_1) = r(A)$, $\dim(W_2) = r(B)$.所以, $\dim(W_1) = \dim(W_2)$

 $A = egin{bmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \ 0 & 0 \end{bmatrix}, B = egin{bmatrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix} \quad A 与 B 行 等 价,但 <math>W_1
eq W_2$

$$W_1 = W_2$$
時? 石走,结山证明;石不走,华山及例。 (1) 矩阵 A 与 B 行等价,则 $r(A) = r(B)$.又 $\dim(W_1) = r(A)$, $\dim(W_2) = r(B)$.所以, $\dim(W_1) = \dim(W_2)$ $(2)W_1 \neq W_2$.举例如下:

证明 由 $A_{m\times n}B_{n\times m}=I_m$ 得 $r(AB)=m; m=r(AB)\leq r(A_{m\times n})\leq m$ 所以 $r(A_{m\times n})=m.W=\{A_{m\times n}x|x\in F^n\}, \dim(W)=m$

故 $W = F^m$

$(1,2,0)^T$, $(1,2,1)^T$.求从(I)到(II)的过渡矩阵及向量

$$\alpha = 3\alpha_1 + 2\alpha_2 - \alpha_3$$
在基(II)下的坐标.

解

$$egin{align*} \mathcal{U} = 3\mathcal{U}_1 + 2\mathcal{U}_2 - \mathcal{U}_3$$
 证 $\mathcal{U}(II)$ 作的 \mathcal{U} 。 $\mathcal{U} = 1$ 。 \mathcal{U}

设 F^3 有两个基 $(I):(1,1,1)^T,(2,3,2)^T,(1,5,4)^T;(II):(1,1,0)^T,$

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 5 \\ 1 & 2 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -4 & -10 & -3 \\ 4 & 7 & 3 \\ -1 & -1 & 0 \end{bmatrix}$$

设 F^3 有两个基 $(I):(1,1,1)^T,(2,3,2)^T,(1,5,4)^T;(II):(1,1,0)^T,$ $(1,2,0)^T$, $(1,2,1)^T$.求从(I)到(II)的过渡矩阵及向量

$$(1,2,0)^{\prime}$$
, $(1,2,1)^{\prime}$.求从 (I) 到 (II) 的过渡矩阵及向量 $\alpha = 3\alpha_1 + 2\alpha_2 - \alpha_3$ 在基 (II) 下的坐标.

$$\alpha = 3\alpha_1 + 2\alpha_2 - \alpha_3$$
在基(II)下的坐标为(8 -5 3)^T.

例10 设 $\alpha_1,\alpha_2,\alpha_3$ 为3维欧氏空间V的标准正交基,证明:

$$\beta_1 = \frac{1}{3}(2\alpha_1 + 2\alpha_2 - \alpha_3), \beta_2 = \frac{1}{3}(2\alpha_1 - \alpha_2 + 2\alpha_3),$$

$$eta_3 = rac{1}{3}(lpha_1 - 2lpha_2 - 2lpha_3)$$
也是 V 的标准正交基。

($eta_1 \quad eta_2 \quad eta_3$) = $(lpha_1 \quad lpha_2 \quad lpha_3)$ A

 $A^{T}A = I$,即A是正交矩阵.故 $(\beta_{1} \beta_{2} \beta_{3})$ 也是V的标准正交基.

例11 (1)设实矩阵 $Q_{m\times n}$ 的列向量组为标准正交向量组,证明:

$$Q^TQ = I_n$$
;(2)设矩阵 $A = QR$,其中

$$Q = \frac{1}{5} \begin{bmatrix} 1 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & -4 & 2 \\ 4 & 2 & -1 \end{bmatrix}, R = \begin{bmatrix} 5 & -2 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

证明:线性方程组 $Ax = b \Rightarrow Rx = Q^T b$,当 $b = (-1,1,1,2)^T$ 时,求方程组Ax = b的解.

证明

(1)设 $Q = [\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_n]$,其中 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 为 R^m 的标准正交向量组,

$$Q_{n\times m}^{T}Q_{m\times n} = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \quad \alpha_{2} \quad \cdots \quad \alpha_{n}) = \begin{bmatrix} \alpha_{1}^{T}\alpha_{1} & \alpha_{1}^{T}\alpha_{2} & \cdots & \alpha_{1}^{T}\alpha_{n} \\ \alpha_{2}^{T}\alpha_{1} & \alpha_{2}^{T}\alpha_{2} & \cdots & \alpha_{2}^{T}\alpha_{n} \\ \vdots \\ \alpha_{n}^{T}\alpha_{1} & \alpha_{n}^{T}\alpha_{2} & \cdots & \alpha_{n}^{T}\alpha_{n} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I_n$$

$$QQ = \frac{1}{5} \begin{vmatrix} 2 & 1 & 2 \\ 2 & -4 & 2 \end{vmatrix}, Q^TQ = I_3, A = Q$$

所以,线性方程组
$$Ax = b$$
即 $QR = b$,两端左乘 Q^T 得 $Q^TQRx = Q^Tb$,

即
$$Rx = Q^T b$$
,所以,线性方程组 $Ax = b$ 即 $QR = b$

当
$$b = (-1,1,1,2)^T$$
时,非齐次线性方程组 $Ax = b$ 的增广矩阵

$$\begin{vmatrix} 0 & 0 & 0.5 \\ -2 & 0 & -1.5 \\ 0 & 1 & 0 \\ 0 & 0 & 6 \end{vmatrix}$$

无解.

例12设
$$R^3$$
有两个基: (I) : $\alpha_1 = (1,2,1)^T$, $\alpha_2 = (2,3,3)^T$, $\alpha_3 = (3,7,1)^T$; (II) : $\beta_1 = (9,24,-1)^T$, $\beta_2 = (8,22,-2)^T$, $\beta_3 = (12,28,4)^T$.

$$(II)$$
: $\beta_1 = (9,24,-1)$, $\beta_2 = (8,22,-2)$, $\beta_3 = (12,28,4)$.
 (1) 求由基 (I) 到基 (II) 的过渡矩阵 A ;

(2)若向量
$$\alpha$$
在基(I)下的坐标为 $x = (0,1,-1)^T$,求 α 在基(II)下的坐标 y .

解 (1)[β_1 β_2 β_3] = [α_1 α_2 α_3] A

$$A = [α_1 α_2 α_3]⁻¹[β_1 β_2 β_3] = $\begin{bmatrix} 1 & 0 & 0 \\ -2 & -2 & 0 \\ 4 & 4 & 4 \end{bmatrix}$

$$(2)\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = A^{-1} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -0.5 \\ 0.25 \end{bmatrix}$$$$

例13 设有 R^4 的两个向量组(I): $\alpha_1 = (1,1,0,0)^T$, $\alpha_2 = (1,0,1,1)^T$; $(II): \beta_1 = (2,-1,3,3)^T, \beta_2 = (0,1,-1,-1)^T.$ 证明:(I)和(II)是 R^4 的 同一子空间的两个基,并求由基(II)到基(I)的过渡矩阵C.

$$(\beta_1 \quad \beta_2 \quad \alpha_1 \quad \alpha_2) = \begin{bmatrix} 2 & 0 & 1 & 1 \\ -1 & 1 & 1 & 0 \\ 3 & -1 & 0 & 1 \\ 3 & -1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1/2 & 1/2 \\ 0 & 1 & 3/2 & 1/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$r(\alpha_1 \quad \alpha_2) = r(\beta_1 \quad \beta_2) = r(\beta_1 \quad \beta_2 \quad \alpha_1 \quad \alpha_2) = 2$$

所以 $(\alpha_1 \quad \alpha_2)$ 与 $(\beta_1 \quad \beta_2)$ 等价, $span(\alpha_1 \quad \alpha_2) = span(\beta_1 \quad \beta_2)$

例13 设有 R^4 的两个向量组(I): $\alpha_1 = (1,1,0,0)^T$, $\alpha_2 = (1,0,1,1)^T$; $(II): \beta_1 = (2,-1,3,3)^T, \beta_2 = (0,1,-1,-1)^T.$ 证明:(I)和(II)是 R^4 的 同一子空间的两个基,并求由基(II)到基(I)的过渡矩阵C.

同一子空间的两个基,并求由基(II)到基(I)的过渡矩阵
$$C$$
.

$$\alpha_1 = \frac{1}{2}\beta_1 + \frac{3}{2}\beta_2, \alpha_2 = \frac{1}{2}\beta_1 + \frac{1}{2}\beta_2, \text{即}(\alpha_1 \quad \alpha_2) = (\beta_1 \quad \beta_2) \begin{bmatrix} 1/2 & 1/2 \\ 3/2 & 1/2 \end{bmatrix}$$

故
$$(I)$$
和 (II) 是 R^4 的同一子空间的两个基基 (II) 到基 (I) 的过渡矩阵 $C=\frac{1}{2}\begin{bmatrix}1&1\\3&1\end{bmatrix}$.

例14

$$\begin{bmatrix} 1 & 0 \end{bmatrix}$$

设矩阵
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{bmatrix}$$
,其中 $\omega = \frac{1}{2} \left(-1 + \sqrt{3}i \right)$,,为虚单位.

V是由A的全体实系数多项式组成的集合按照通常的矩阵线性 运算所构成的线性空间.求V的基与维数.

解
$$\omega = \frac{1}{2} (-1 + \sqrt{3}i), \omega^2 = \frac{1}{2} (-1 - \sqrt{3}i), \omega^3 = 1; 所以, \omega^{3k+1} = \omega, \omega^{3k+2} = \omega^2,$$
 $\omega^{3k} = 1;$ 因此, $A^{3k+1} = A, A^{3k+2} = A^2 = diag(1, \omega, \omega^2), A^{3k} = I.$

故V中任一多项式都可由 I,A,A^2 线性表示,且知 I,A,A^2 线性无关.

所以: I,A,A^2 是V的基.dim(V) = 3.

例15 设3维线性空间V有两个基(I): $\alpha_1,\alpha_2,\alpha_3$; (II): β_1,β_2,β_3 .

已知由基
$$(I)$$
到基 (II) 的过渡矩阵为 $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 3 & 3 \\ 0 & 2 & 2 \end{bmatrix}$

$$\begin{bmatrix} 0 & 2 & 2 \end{bmatrix}$$
(1)求向量 $\alpha = 2\beta_1 - \beta_2 + 3\beta_3$ 在基(*I*)下的坐标;
(2)求向量 $\beta = 2\alpha_1 - \alpha_2 + 3\alpha_3$ 在基(*II*)下的坐标;

$$(3)$$
若向量 γ 在基 (I) 下的坐标为 $(4,2,-3)^T$,试选择 V 的一个新基,使 γ

在这个新基下的坐标是
$$(1,0,0)^T$$
.

解 $(1)[\beta_1 \quad \beta_2 \quad \beta_3] = [\alpha_1 \quad \alpha_2 \quad \alpha_3]A$,

 $\alpha = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}^T = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 3 & 4 & 4 \end{bmatrix}^T$

$$(2)\beta = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}^T$$

$$-\begin{bmatrix} \alpha & \alpha & \alpha \end{bmatrix} A^{-1} \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}^T$$

$$= \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix} A^{-1} \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}^T$$

$$= \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix} \begin{bmatrix} 11/2 & -5 & 13/2 \end{bmatrix}^T$$

(3)设基(
$$III$$
): e_1,e_2,e_3 满足要求,且设由基(I)到基(III)的过渡矩阵为 $B = (b_{ij})_{3\times 3}$,则由坐标变换公式可得 B 的第

因此得
$$e_1=4lpha_1+2lpha_2-3lpha_3$$
,从如此是 a_1 ,以为 a_2 ,从为 a_3 ,以为 a_4 ,以为 a_4 ,以为 a_5 ,以为 a_5 ,以为 a_6 ,以

例16设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 是欧氏空间V中的一组向量,令行列式

$$D = \begin{vmatrix} \langle \alpha_1, \alpha_1 \rangle & \langle \alpha_1, \alpha_2 \rangle & \cdots & \langle \alpha_1, \alpha_m \rangle \\ \langle \alpha_2, \alpha_1 \rangle & \langle \alpha_2, \alpha_2 \rangle & \cdots & \langle \alpha_2, \alpha_m \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle \alpha_m, \alpha_1 \rangle & \langle \alpha_m, \alpha_2 \rangle & \cdots & \langle \alpha_m, \alpha_m \rangle \end{vmatrix}$$

证明: $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关 $\Leftrightarrow D \neq 0$.

证明 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关 $\Leftrightarrow x_1\alpha_1 + x_2\alpha_2 + \dots + x_m\alpha_m = 0$ 只有零解. $D \neq 0 \Leftrightarrow Dx = 0$ 只有零解.

只要证明 $(I): x_1\alpha_1 + x_2\alpha_2 + \cdots + x_m\alpha_m = 0$ 与(II): Dx = 0同解即可.

(I)两端分别与 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 做内积,知(I)的解是(II)的解.

若 $\sum_{j=1}^{m} \langle \alpha_i, \alpha_j \rangle x_j = 0 \Rightarrow \sum_{j=1}^{m} \langle \alpha_i, x_j \alpha_j \rangle = 0 \Rightarrow \langle \alpha_i, \sum_{j=1}^{m} x_j \alpha_j \rangle = 0$

$$\Rightarrow \left\langle x_i \alpha_i, \sum_{j=1}^m x_j \alpha_j \right\rangle = 0 \Rightarrow \left\langle \sum_{i=1}^m x_i \alpha_i, \sum_{j=1}^m x_j \alpha_j \right\rangle = 0 \Rightarrow \sum_{i=1}^m x_i \alpha_i = 0$$

知(II)的解是(I)的解.即(I)与(II)同解.证毕

例17 令线性空间 $R[x]_2$ 的内积为 $\langle f,g\rangle = \int_{-1}^1 f(x)g(x)dx$,应用

Gram - Schmidt正交化方法,由 $R[x]_2$ 的基 $1, x, x^2$ 求 $R[x]_2$ 的标准正交基.

解 设
$$\alpha_1 = 1, \alpha_2 = x, \alpha_3 = x^2$$
.
先正交化: $\beta_1 = \alpha_1 = 1, \beta_2 = \alpha_2 - \frac{\langle \alpha_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 = x$,

$$eta_3 = oldsymbol{lpha}_3 - rac{\langle oldsymbol{lpha}_3, oldsymbol{eta}_1
angle}{\langle oldsymbol{eta}_1, oldsymbol{eta}_1
angle} eta_1 - rac{\langle oldsymbol{lpha}_3, oldsymbol{eta}_2
angle}{\langle oldsymbol{eta}_2, oldsymbol{eta}_2
angle} eta_2 = x^2 - rac{4}{3},$$

再单位化:
$$\gamma_1 = \frac{\sqrt{2}}{2}, \gamma_2 = \frac{\sqrt{6}}{2}x, \gamma_3 = \frac{\sqrt{10}}{4}(x^2 - 1).$$

例18 设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是欧氏空间V的一个标准正交基, α 是V中任一非零向量, φ_i 是 α 与 α_i 的夹角.

证明:
$$\cos^2 \varphi_1 + \cdots + \cos^2 \varphi_n = 1$$

证明 设
$$\alpha = x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n$$
.

$$\cos \varphi_i = \frac{\left\langle \boldsymbol{lpha}, \boldsymbol{lpha}_i \right\rangle}{\|\boldsymbol{lpha}\| \cdot \|\boldsymbol{lpha}_i\|}; \cos^2 \varphi_i = \frac{\left\langle \boldsymbol{lpha}, \boldsymbol{lpha}_i \right\rangle^2}{\|\boldsymbol{lpha}\|^2 \cdot \|\boldsymbol{lpha}_i\|^2}; i = 1, 2, \cdots, n.$$

$$\|\alpha\|^2 = x_1^2 + x_2^2 + \dots + x_n^2, \langle \alpha, \alpha_i \rangle^2 = x_i^2; \|\alpha_i\|^2 = 1; i = 1, 2, \dots, n.$$

$$\sum_{i=1}^{n} \cos^{2} \varphi_{i} = \sum_{i=1}^{n} \frac{\langle \alpha, \alpha_{i} \rangle^{2}}{\|\alpha\|^{2} \cdot \|\alpha_{i}\|^{2}} = \frac{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}} = 1.$$

例19设A,B为n阶正交矩阵,证明:(1)[det(A)]² = 1;

 $(2)A^{T},A^{-1},A*和AB$ 都是正交矩阵;

(3)记A的(i,j)元素 a_{ij} 的代数余子式为 A_{ij} ,则 $A_{ij} = det(A) \cdot a_{ij}$.

证明 (1)A,B为正交矩阵,即 $A^TA=I,B^TB=I$,由 $A^TA=I\Rightarrow \left|A^T\right|\cdot \left|A\right|=\left|I\right|=0$

$$\Rightarrow |A|^2 = 1$$
(2)由 $A^T A = I \Rightarrow (A^T)^T A^T = I \Rightarrow A^T$ 为正交矩阵.

由 $A^T A = I \Rightarrow (A^T)^{-1} A^{-1} = I \Rightarrow (A^{-1})^T A^{-1} = I \Rightarrow A^{-1}$ 为正交矩阵.

曲
$$(A^{-1})^T A^{-1} = I \Rightarrow \left(\frac{1}{|A|}A^*\right)^T \frac{1}{|A|}A^* = I \Rightarrow \frac{1}{|A|^2}(A^*)^T A^* = I$$

$$\Rightarrow (A^*)^T A^* = I \Rightarrow A^*$$
为正交矩阵.

例19设A,B为n阶正交矩阵,证明:(1)[det(A)]² = 1;

- $(2)A^{T},A^{-1},A*和AB$ 都是正交矩阵;
- (3)记A的(i,j)元素 a_{ij} 的代数余子式为 A_{ij} ,则 $A_{ij} = det(A) \cdot a_{ij}$.
- 证明 $(AB)^T(AB) = B^TA^TAB = I \Rightarrow AB$ 为正交矩阵.

$$(3)A^{-1} = A^T \Rightarrow \frac{1}{|A|}A^* = A^T \Rightarrow A^* = |A|A^T$$
.即 $A_{ij} = \det(A) \cdot a_{ij}$.

例20 设 α 为 R^n 中的单位列向量,I为n阶单位矩阵,

证明:矩阵 $A = I - 2\alpha\alpha^T$ 为正交矩阵.

证明 因为
$$\alpha^T \alpha = 1, A = I - 2\alpha\alpha^T$$

国内
$$\alpha^T \alpha = 1, A = I - 2\alpha\alpha^T$$

$$A^T A = (I - 2\alpha\alpha^T)^T (I - 2\alpha\alpha^T) = (I - 2\alpha\alpha^T)(I - 2\alpha\alpha^T)$$

$$= I - 4\alpha\alpha^T + 4\alpha\alpha^T \alpha\alpha^T = I - 4\alpha\alpha^T + 4\alpha\alpha^T = I.$$
 证毕

n阶方阵,证明A,C是正交矩阵且B = O.

证明 $P = \begin{bmatrix} A & B \\ O & C \end{bmatrix}_{(m+n)\times(m+n)}$, P为正交矩阵.

$$\begin{bmatrix} I_m & O \\ O & I_n \end{bmatrix} = I = P^T P = \begin{bmatrix} A & B \\ O & C \end{bmatrix}^T \begin{bmatrix} A & B \\ O & C \end{bmatrix} = \begin{bmatrix} A^T & O \\ B^T & C^T \end{bmatrix} \begin{bmatrix} A & B \\ O & C \end{bmatrix}$$

$$=\begin{bmatrix}A^TA & A^TB \\ B^TA & B^TB+C^TC\end{bmatrix}\Rightarrow \begin{cases}A^TA=I_m, 说明A为正交矩阵. \\ A^TB=O, B^TA=O, 由A可逆知, B=O. \\ B^TB+C^TC=O, 得C^TC=I, C为正交矩阵.\end{cases}$$

例22 设A是秩为n-1的n阶实方阵, α_i 为A的第i个行向量

 $(i=1,\dots,n)$.求一个非零向量 $x \in R^n$,使x与 $\alpha_1^T,\dots,\alpha_n^T$ 都正交.

证明 由已知知: $|A| = 0, A^* \neq O$.故 A^* 至少有一列向量 $\xi \neq O$.

由 $AA^* = |A|I = O$,因此知 $\alpha_i^T \xi = 0 (i = 1, \dots, n)$.

故向量 $\xi \in \mathbb{R}^n$ 为所求向量.

例23 设A是反对称矩阵且I + A可逆.证明 $(I - A)(I + A)^{-1}$ 是正交矩阵.

证明 由已知知:
$$A = -A^T$$
; 且 $(I - A)(I + A) = (I + A)(I - A)$.
$$[(I - A)(I + A)^{-1}]^T[(I - A)(I + A)^{-1}]$$

$$= [(I + A)^{-1}]^T(I - A)^T(I - A)(I + A)^{-1}$$

$$= [(I+A)^{T}]^{-1}(I-A)^{T}(I-A)(I+A)^{-1}$$

$$= (I + A^{T})^{-1} (I + A)(I - A)(I + A)^{-1}$$
$$= (I - A)^{-1} (I - A)(I + A)(I + A)^{-1}$$

=I 证毕.

例24设 e_1,e_2,\cdots,e_5 是欧氏空间V的一个标准正交基. $V_1 = span\{\alpha_1, \alpha_2, \alpha_3\}, \not\exists + \alpha_1 = e_1 + e_5, \alpha_2 = e_1 - e_2 + e_4,$

$$\alpha_3 = 2e_1 + e_2 + e_3$$
.利用 $Gram - Schmidt$ 正交化方法求 V_1

$$\alpha_3 = 2e_1 + e_2 + e_3$$
.利用 $Gram - Schmidt$ 止父化力法 XV_1 的一个标准正交基。

的一个标准正交基.
先正交化:
$$\beta_1 = \alpha_1 = e_1 + e_5$$
,

$$\beta_{2} = \alpha_{2} - \frac{\langle \alpha_{2}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1} = \frac{1}{2} e_{1} - e_{2} + e_{4} - \frac{1}{2} e_{5},$$

$$\beta_{3} = \alpha_{3} - \frac{\langle \alpha_{3}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{2} \rangle} \beta_{1} - \frac{\langle \alpha_{3}, \beta_{2} \rangle}{\langle \beta_{1}, \beta_{2} \rangle} \beta_{2} = e_{1} + e_{2} + e_{3} - e_{5},$$

 $oldsymbol{eta}_3 = oldsymbol{lpha}_3 - rac{\left<oldsymbol{lpha}_3, oldsymbol{eta}_1
ight>}{\left<oldsymbol{eta}_1, oldsymbol{eta}_1
ight>} oldsymbol{eta}_1 - rac{\left<oldsymbol{lpha}_3, oldsymbol{eta}_2
ight>}{\left<oldsymbol{eta}_2, oldsymbol{eta}_2
ight>} oldsymbol{eta}_2 = e_1 + e_2 + e_3 - e_5,$

再单位化: $\gamma_1 = \frac{1}{\sqrt{2}}(e_1 + e_5), \gamma_2 = \frac{1}{\sqrt{10}}(e_1 - 2e_2 + 2e_4 - e_5), \ \gamma_3 = \frac{1}{2}(e_1 + e_2 + e_3 - e_5).$

例25 设 e_1, e_2, \dots, e_k 是n维欧氏空间V中的标准正交向量组.

证明:对V中任何向量 α 成立不等式 $\sum_{i=1}^{n} \langle \alpha, e_i \rangle^2 \leq \|\alpha\|^2$,

并且等号成立当且仅当k = n.

证明 因为 e_1, \dots, e_k 是n维欧氏空间V中的标准正交向量组,利用扩充 定理将 e_1, \dots, e_k 扩充为V的一个标准正交基 $e_1, \dots, e_k, e_{k+1}, \dots, e_n$.

因此, α 可表示成: $\alpha = x_1 e_1 + x_2 e_2 + \dots + x_k e_k + x_{k+1} e_{k+1} + \dots + x_n e_n$

$$\langle \alpha, e_i \rangle^2 = x_i^2, i = 1, \dots, n. \|\alpha\|^2 = \langle \alpha, \alpha \rangle = x_1^2 + x_2^2 + \dots + x_n^2.$$

$$\sum_{i=1}^{n} \langle \alpha, e_i \rangle^2 = x_1^2 + x_2^2 + \dots + x_k^2 \leq \|\alpha\|^2.$$
等号成立当且仅当 $k = n$.

例26证明: 欧氏空间V的标准正交基到标准正交基的过渡矩阵

是正交矩阵;反过来,如果V的两个基中有一个是标准正交

基,而且过渡矩阵是正交矩阵,则另一个基也是标准正交基.

证明 设 $\alpha_1,\alpha_2,\dots,\alpha_n$ 及 $\beta_1,\beta_2,\dots,\beta_n$ 是欧氏空间V的两个标准正交基.

自
$$lpha_1, lpha_2, \cdots, lpha_n$$
到 $eta_1, eta_2, \cdots, eta_n$ 的过渡矩阵为 $A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$
则 $eta_1 \quad eta_2 \quad \cdots \quad eta_n \end{bmatrix} = egin{bmatrix} lpha_1 & lpha_2 & \cdots & lpha_n \end{bmatrix} A$

即 $\beta_i = a_{i1}\alpha_1 + a_{i2}\alpha_2 + \cdots + a_{in}\alpha_n, i = 1, 2, \cdots, n.$

由定理5.2.3(2)知:
$$\langle \beta_i, \beta_j \rangle = a_{i1}a_{1j} + a_{i2}a_{2j} + \cdots + a_{in}a_{nj} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

故 $A^T A = I.$ 即 A 为正交矩阵.

反过来,若
$$\alpha_1,\alpha_2,\cdots,\alpha_n$$
为 V 的标准正交基; $\beta_1,\beta_2,\cdots,\beta_n$ 为 V 的一个基.

则 $\beta_i = a_{i1}\alpha_1 + a_{i2}\alpha_2 + \cdots + a_{in}\alpha_n, i = 1, 2, \cdots, n.$

由定理5.2.3(2)知: $\langle \beta_i, \beta_j \rangle = a_{i1}a_{1j} + a_{i2}a_{2j} + \dots + a_{in}a_{nj} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

故: $\beta_1,\beta_2,\cdots,\beta_n$ 为V的标准正交基.

由于正交矩阵的逆矩阵也为正交矩阵.

所以,若 $\beta_1, \beta_2, \dots, \beta_n$ 为V的标准正交基; $\alpha_1, \alpha_2, \dots, \alpha_n$ 为V的一个基.

由 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 到 $\beta_1,\beta_2,\cdots,\beta_n$ 的过渡矩阵为A,且A为正交矩阵.

同样可以证明 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 为V的标准正交基. 证毕.

例27 在线性空间 $R^{2\times 2}$ 中,对于矩阵 $A = \begin{vmatrix} a_1 & a_2 \\ a_2 & a_3 \end{vmatrix}$, $B = \begin{vmatrix} b_1 & b_2 \\ b_2 & b_3 \end{vmatrix}$.问

$$\langle A,B\rangle = a_1b_1 + a_2b_3 + a_3b_2 + a_4b_4$$
是否满足内积公理?

否.不满足内积公理第四条.

例如:
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, $\langle A, A \rangle = -2 < 0$.

 $V = \{X | XA = AX\}$ 是否是 $R^{3\times3}$ 的子空间.若是,求出它的维数和基.

解 任取 $X,Y \in V, k \in R$,由(X+Y)A = A(X+Y),(kX)A = A(kX)知V是 $R^{3\times3}$ 的子空间.

令
$$B = A - I_3 = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 0 & 0 \\ -2 & 0 & 0 \end{pmatrix}$$
,则 $XA = AX \Leftrightarrow XB = BX$.设 $X = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$ 则由 $XB = BX$ 知有如下式子:

$$\begin{pmatrix}
2a_1 + a_2 - 2a_3 & 0 & 0 \\
2b_1 + b_2 - 2b_3 & 0 & 0 \\
2c_1 + c_2 - 2c_3 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
2a_1 & 2a_2 & 2a_3 \\
a_1 & a_2 & a_3 \\
-2a_1 & -2a_2 & -2a_3
\end{pmatrix}$$

即
$$a_2 = a_3 = 0.2b_1 + b_2 - 2b_3 = a_1.2c_1 + c_2 - 2c_3 = -2a_1$$
,于是必有:

$$X = \begin{pmatrix} a_1 & 0 & 0 \\ b_1 & 2(b_3 - b_1) + a_1 & b_3 \\ c_1 & 2(c_3 - c_1) - 2a_1 & c_3 \end{pmatrix} = a_1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 0 \end{pmatrix} + b_1 \begin{pmatrix} 0 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{vmatrix} c_1 & 2(c_3 - c_1) - 2a_1 & c_3 \end{vmatrix} = \begin{vmatrix} c_1 & c_3 & c_3 \end{vmatrix} = \begin{vmatrix} c_1 & c_3 & c_3 & c_4 \end{vmatrix} = \begin{vmatrix} c_1 & c_3 & c_4 & c_4 \end{vmatrix} = \begin{vmatrix} c_1 & c_2 & c_4 & c_4 \end{vmatrix} = \begin{vmatrix} c_1 & c_3 & c_4 & c_4 & c_4 \end{vmatrix} = \begin{vmatrix} c_1 & c_2 & c_4 & c_4 & c_4 \end{vmatrix} = \begin{vmatrix} c_1 & c_2 & c_4 & c_4 & c_4 & c_4 \end{vmatrix} = \begin{vmatrix} c_1 & c_2 & c_4 \end{vmatrix} = \begin{vmatrix} c_1 & c_2 & c_4 & c_4$$

于是dimV = 5,基为

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$