

Predicting whether a patient is likely to have a stroke or not

Business Problem:

A hospitals' board of directors would like to predict whether a patient is likely to have a stroke or not based on demographic and health-related data.

Dataset:

- Data sourced from WHO
- 5110 rows, 11 columns
- Includes patient demographic data such as age, gender, marital status, work type, and residence type.
- Also includes health-related data such as patient glucose levels, BMI, smoking status, heart disease and hypertension.

- The plot above shows the average age of patients that had a stroke is higher than those that did not have a stroke
- The average age of patients that did not have a stroke is around 40 years, but there's a large number of patients older than 40 who has not had a stroke.
- There's a few outliers where younger patients had strokes

Heart Disease vs Stroke

- The proportional count plot shows that 4,2% of people that do not have a heart disease are likely to have a stroke
- This percentage increases to 17% for people that have a heart disease

Model Results

precision

0

accuracy

macro avg

weighted avg

0.99

0.12

0.55

0.95

Model Results

- Test scores and train scores are similar indicating the model is not over fit
- The dataset was unbalanced and various techniques of balancing were attempted.
 Under sampling achieved the best results.
- Various models were trained an tested. The logistic regression model resulted in the best results.
- The model predicted 82% of patients that had a stroke correct, but failed to predict the remaining 18%.
- The model also incorrectly predicted 30% of patients that did not have a stroke as having a stroke.

Balanced - Under Sampling:			0 0		
	рі	recision	recall	f1-score	support
	0	0.99	0.70	0.82	3644
	1	0.13	0.86	0.22	187
2.5.5.11				0.71	2021
accuracy				0.71	3831
macro	avg	0.56	0.78	0.52	3831
weighted	avg	0.95	0.71	0.79	3831
Balanced	- Under	Sampling:	LogReg 1	Γest	

recall f1-score

0.82

0.21

0.71

0.52

0.79

0.70

0.82

0.76

0.71

support

1216

1278

1278

1278

62

Final Recommendations

For this task, the priority was to reduce the type 2 error of the model as it is more costly to predict someone not having a stroke when they actually do have a stroke

To further reduce type 1 and type 2 errors, features with better correlations to the target should be sourced and used for modeling.

