AD NUMBER

AD384856

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

No foreign distribution

AUTHORITY

AFRPL ltr., 15 Mar 1971; AFRPL ltr., 5 Feb 1986

THAT YEAR WED

AFRPL-TR-67-246-Vol II

(Unclassified Title)

FINAL REPORT, ADVANCED AERODYNAMIC SPIKE CONFIGURATIONS

Volume II

Hot-Firing Investigations:

- Basic Performance vs Altitude and Secondary Flow;
 Performance in Slipstream;
 - 3. Liquid (N₂O₄) Side Injection TVC

Rocketdyne Advanced Projects, Large Engines

Roccetdyne
A Division of North American Aviation, Inc.,
TECHNICAL REPORT AFRPL-TR-67-246-Vol II

September 1967

Grour 4
Downgraded at 3- Tear Intervals
Declassified After 12 Years

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18 U.S. C., SECTIONS 793 AND 794. ITS TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROMIBITED BY LAW.

In addition to security requirements which must be met, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL(RPPR-STINFO), Edwards, California 93523.

Air Force Rocket Propulsion Laboratory
Research and Technology Division
Edwards, California 93523
Air Force Systems Command
United States Air Force

NOV 1 1967

MOLASSIFIED

, AD 3848

56

AFREL Itr 15 Mar 71 Sulle E.

AFRE TR-67-246-Vo

AD-384 856 Rocketdyne, Canoga Park Rept. no. Al Sep 67

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procursment operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or persission to manufacture, use, or sell any patented invention that may in any way be related thereto.

OMELASSIFIED

APR PL-TR-67-246-VOL II

(Unclassified Title)

PINAL RETART, ADVANCED
ARRODYNAMIC SPIKE CONFIGURATIONS

Volume II

Bot-Firing Investigations:

1. Basic Performance vs Altitude and Secondary Flow;

2. Performance in Slipstream;

3. Liquid (N₂O₄) Side Injection TVC

Rocketdyne Advanced Projects, Large Engines

Group 4
Downgraded at 3-Year Intervals
Declassified After 12 Years

THIS MATERIAL CONTAINS INFORMATION AFFECTING STATES OF THE UNITED STATES OF THE UNITED STATES WITHIN THE PRODUCT OF THE UNITED STATES OF THE PRODUCT STATES ON THE PRODUCT OF THE REVERSION OF TH

In addition to security requirements which must be met, this document is subject to special export controls and each transmittal to foreign governments or fereign nationals may be made only with prior approval of AFRPL(RPFR-STNFO), Edwards, California 93523.

MINCHASSIFIED

FOREWORD

- (U) This report was prepared in compliance with Contract AFO4(611)-9948 covering the period 1 July 1964 through 28 February 19.7. This atudy was conducted for the Air Force Rocket Propulsion Laboratory, Edwards, California. The program structure number is 750G and the project number is 3058. The Rocketdyne internal report number is R6959. Classified information (Confidential, Group 4) has been extracted from (asterisked) documents listed under References.
- (U) This technical report has been reviewed and is approved.

Roy Silver
Project Engineer
Air Force Rocket Propalsion
Laboratory
Edwards, California

UNCLASSIFIED UNCLASSIFIED

ABSTRACT (VOLUME II)

(C) Three hot-firing aerodynamic spike nozzle programs are described. One program had as its objective to obtain a large background of parametric not-firing aerospice performance data. Performance data were obtained over a range of pressure ratio from approximately 350 down to 22. Thirty 8-second each duration firings, 10 et near sea level conditions and 20 over a range of high pressure ratio, were conducted. Secondary flowrate was varied from zero to 5 percent of primary flowrate and supplied by a gas generator utilizing N204 / ULMH-N2H4 (50-50) propellants. G.G. mixture ratio was varied from approximately 0.10 to 0.18 at 3 percent secondary flowrate to determine the effect of secondary gas energy level. The 12 percent length aerospike thrust chamber had an area ratio of 26 and generated approximately 7400 pounds of thrust at design altitude and 300 psia chamber pressure. Gains in nozzle efficiency were noted with the use of up to 3 percent secondary flowrate. A high degree of altitude compensation was noted with this engine down to a pressure ratio equal to approximately 12 percent of design pressure ratio (approximately 300). A complete tabulation of performance is given. For the second program, the nozzle section of the above engine was lengthened to 25 percent (of an equivalent 15 degree conical nozzle) and modified to incorporate liquid (N₂O₄) side injection TVC capebility. Thirty-three firings of 6 seconds each duration were conducted at altitude to determine liquid injection TVC performance trends with variations in injection parameters. Results are compared with theory and applied to typical applications. LLTVC performance with N2O4 was generally low and other injection fluids and techniques are recommended. A third hot-firing test program was conducted to determine the influence of external flow on in-flight nozzle performance. An eerospike thrust chamber using H2O2 propellants was enclosed by a simulated vehicle body. The engine generated 400 pounds of thrust at a chamber pressure of 200 psia. The 20 percent length aerospike nozzle had an area ratio of 25 and was tested over a renge of pressure ratio from 30 to 470 u.d. at slipstream Mach numbers of 0, 0.55, 0.90, 1.20, 1.40, 1.80 and 2.2. Fifty-seven firings of 1 minute each duration were accomplished. Still air nozzle efficiency was very high and significant performance improvement was obtained with the addition of secondary flow. Nozzle performance was relatively unaffected by slipstream in the nozzle operating region of practical interest for booster engine application.

(CONFIDENTIAL ABSTRACT)

UNGHARSHED UNCLASSIFIED

UNCENSSHIED

ABSTRACT (VOLUME I)

(0)

Investigations of the aerodynamic spike nozzle concept are discussed in this report. These investigations include experimental cold-flow testing of high-area ratio aerospikes, aerospike nozzles with various combustor configurations and various size segments of aerospike nozzles and parametric analytical appliestion studies for the nozzle concept. One cold-flow test series investigated the performance of very high erea ratio ($\epsilon = 150$) short length aerospike nozzles using helium as the test fluid. A ten percent length contoured rozzle and a six percent length conical nozzle were tested. Theoretical and experimental performance results are presented. The second cold-flow test series determined the performance of a series of aerospike nozzles having various combustor configurations. The effect of nozzle base bleed and intermodule bleed on rerformance was investigated. Combustor configurations consisted of shrouded and unshrouded continuous annular (toroidal) combustors and multichamber configurations with eight and sixteen discrete conventional combustors clustered around a common spike. Spaning between chambers. spike length, and engine shrouding were varied for the multichamber configurations. All nozzles had an area ratio of 50. Theoretical and experimental performance results are presented. A third cold-flow test series investigated the relative nozzle wall and base pressures for 45, 90, and 180 degree segments of an aerospike nozzle compared to a full annular aerospike. Experimental results are presented. Analytical and design studies were made to determine effective methods of utilizing toroi al and multichamber constructions for Lerodynamic spike configurations over a wide range of thrust level, chamber pressure, and nozzle area ratio. Design layouts at several thrust levels of interest are presented. Heat transfer studies establishing cooling feasibility and parametric weight studies are described. Combustor effects on nozzle performance are discussed.

(Unclassified abstract)

TABLE OF CONTENTS

ı.	Introduction	1
II.	Summary	3
III.	Performance Evaluation of a Hot-Firing Aerospike Nozzle .	19
	Introduction and Summary	19
	Hardware Description	20
	Water Cooled Thrust Chamber Assembly	20
	Injector	24
	Combustion Chamber Assembly	33
	Throat Assembly	33
	Gas Generator	34
	Base Configurations	36
	Uncooled Thrust Chamber Assembly	38
	Fluic Systems	38
	Test Installation	38
	Instrumentation	52
	Force Measurement	52
	Pressure Measurements, Altitude and Sea Level	
	Testing	58
	Flowrate Measurements	59
	Temperature Measurements, Altitude and Sea	
	Level Testing	61
	Miscellaneous	61
	Procedures	62
	Sea Level Testing	62
	Altitude Testing	64
	Data Reduction	65

	Testing Summary	67
	Gas Generator Tests	68
	Uncooled Thrust Chamber Tests	68
	Cooled Thrust Chember Tests at Sea Level	71
	Water Cooled Hardware Tests at Altitude	7 8
	Data Analysis	91
	Performance Parameters	91
	Theoretical Considerations in Reducing Data	93
	Performance Calculation Procedure	17
	Base Heat Transfer Data Reduction 1	18
	Water Cooled Hardware Test Results 1	29
	Determination of Nozzle Throat Area 1	3 0
	Nozzle Performance	62
	Conclusions and Recommendations	30
IV.	External Flow Effects on Aerospike Performance 19	B 3
	Introduction	33
	Summary	33
	Slipstream Test Program	36
	Preliminary Analysis and Design Studies 16	35
	Test Program	9
	Test Results	21
	Application of Test Results	18
	Mission Analysis	18
	Methods of Reducing Slipstream Effects 25	55
	Conclusions and Recommendations 26	51
٧.	Aerospike Liquid Injection Thrust 'ector Control	
	Investigation	55
	Introduction	55
	Summa err	57

MICLASSIFIED

Thrust Ve	ector Control Study Frogram	268
Prelia	inary Analysis and Design Studies	268
Test F	Program	30 1
Test R	desults	321
Applic	cation of LITYC Test Results	358
Conclusio	ons and Recommendations	372
Appendix 1.	Twelve Percent Length Aerospike Data	
	Summary	379
Appendix 2.	Data Reduction Procedure Used in the	
	External Flow Investigation	436
Appendix 3.	Slipstream Test Data	445
Appendix 4.	Data Reduction and Analysis Procedure for	
	TVC Program	451

ILLUSTRATIONS

	1	Page
1.	Hot-Firing Program Test Schedule	4
2.	Uncooled Aarospike Thrust Chamber	6
3.	Water Cooled 12 Percent Length Aerospike	7
4.	Aerospike Engine With Side Injection TVC Capability	11
5.	Slipsuream Model	16
6.	Water Cocled Aerospike Thrust Chamber	21
7.	Engine Assembly-Advanced Aerodynamic Spike	22
8.	Water Cooled Thrust Chamber Installation at Focketdyne	23
9.	Injector Configuration	25
10.	Ring Set Number 1	27
11.	Injector Number 2	30
12.	Ring Set Number 2	31
. 3.	Ges Generator Assembly	35
14.	Base Configurations Installed on the 12 Fercent Length Aerospike	37
15.	Assembly Uncooled Combustion Chamber	39
16.	Hot-Firing Aerospike Engine Flows	41
17.	Uncooled Thrust Chamber Installation and Firing on Sugar Stand	43
16.	Schematic Flow Diagram of Sugar Test Stand in the Propulsion	
	Research Area	45
19.	Propulsion Engine Test Cell (J-2), Pictorial View	47
20.	Propulsion Engine Test Cell (J-2), Elevation View	48
2 4 •	Test Cell Installation	50
22.	Propellant and Water Supply System Schematics, J-2 Cell	51
23.	Thrust Chamber Acombly Instrumentation	54
24.	Outer Nozzle Instrumentation	55
25•	Base Plate Instrumentation	56
26.	Gas Generator Instrumentation	57

	Page
27.	Fhotocon Locations on the Uncooled Aerospike Throat Chamber 63
28∙	Aerospike Engine Operating Sequence
29.	Hot-Firing Test Schedule - 12 Percent Length Aerospike 69
30.	Condition of Uncooled Hardware After the Initial Five Firings 72
31.	Comparison of Photocon Records for Typical Tests With Injectors
	Number 1 and Number 2
32.	Condition of Inner Throat and hozzle After Five Second Test at
	400 PSIA Chamber Pressure
33.	Water Cooled perospike Test Sequencing Summary
34•	Typical Altitude Transient and Test Duration 83
35.	TCA Chamber Pressure Traces
3 6.	Fingine Condition; Post-Fire AD Series 89
37.	Injector Damage; Post-Fire AD Series
3 6.	Propellant Performance Printout
39.	Theoretical C* vs Nixture Ratio 98
40.	Vacuum Specific Impulse vs Kixture Ratio
41.	Vacuum Specific Impulse vs Mixture Ratio 100
42.	Optimum Specific Impulse vs Pr ssure Ratio 101
43.	Effect of Water on Theoratical Performance
44.	Effect of Heat Loss on η_{cont}
45.	The state of the s
45.	Heat Loss Effects on NC*H.L. vs Mixture Ratio and Chamber
	Pressure
47.	Heat Loss Effects on I s.H.L. vs mixture Ratio and Chamber
	Fresture 1
48.	Buffle Surface Temperature and Heat Absorbed vs Tile, Pc=
	350 PSIA
4ن،	The Surface Temperature and meat absorbed vs Time P.=
	350 PSTA 110

		Page
50.	Paffle Surface Temperature and Heat Absorbed vs Time, Pc=	
	400 PSIA	111
51.	Cocling Water Outlet Temperature, Test AB-11	113
52.	Mozzle meat Transfer Efficiency vs Total Heat Transfered.	
	Regeneratively Cooled Nozzle	115
53.	Integrated Base Pressure	116
54.	Base Heat Transfer	119
55.	Gas-Side Temperature Ratio vs Time and Heat Transfer Coeffi-	
	cient	122
56.	dack-Sice Temperature Ratio vs Time and Local Feat Transfer	
	Coefficient	123
57.	Base Plate Temperature vs Time, Test Number RD03	124
58.	Typical Nozzle Base Plate Temperature	126
59.	Rozzle Thrust Efficiency Trends Using Post Test Throat	
	Area Measurements	133
60.	Nozzle Thrust Efficiency Change With Wg (Determined from	
	Measured Base Pressure	134
61.	Variation of No. During Firing, Constant No. Method	137
62.	Mozzle Thrust Efficiency Trends Based on Constant NC.	138
63.	TCA Injector Flow Resistance	139
64.	Forces Acting On Aerodynamic Spike Nozzle	140
65.	Vacuum vs Mixture Ratio and Area Ratio	141
66.	Twelve Percent Length Nozzle Wall Pressure Profiles	142
67.	Theoretical Primary Thrust Coefficient Variation with Pres-	
	sure Ratio	143
68.	Nozale Base Pressure Distribution	146
٤9.	Linear Throat Area Variation (Altitude Test Series)	148
70.	Throat Area Change vs Firing Duration, AAO1 Through AC14	150
71.	Throat Area Change ve Firing Duration, AC14 through AC21	151

		Page
72.	Throat area Change vs Firing Duration, TVC Engine Firings	
	and Sea Level Tests	152
73.	Characterisitc Velocity Efficiency vs Time	154
74.	Characteristic Velocity Efficiency vs Time	155
75.	Primary Nozzle Specific Impulse vs Time	156
76.	Fricar, l'ozzle Specific Impulse vs Time	157
77.	Water Now Yest of Number 2 Injector	159
78.	Rozzle Thrust Efficiency vs Pressure Ratio, 👣 =0	160
79.	Specific Impulse vs Pressure Ratio, w = 0	163
80.	Mozzle Thrust Efficiency vs Pressure Ratio, O and 1 Fercent	
	Secondary Flow	165
81.	Nozzle Thrust Efficiency, Topping Sycle, vs Pressure Ratio,	
	O and 1 Fercent Secondary Flow	166
82.	Nozzle Thrust Efficiency vs Pressure Ratio, O and 2 Percent	
	Secondary Flow	167
23.	Mozzle Thrust Efficiency vs Pressure Ratio, O and 3 Percent	
	Secondary Flow	168
84.	Nozzle Thrust Efficiency, Topping Cycle, vs Presure Ratio,	
	O and 2 Percent Secondary Flow	169
85.	Mozzle Thrust Efficiency, Topping Cycle, vs Pressure Ratio	
	O and 3 Percent Secondary Flow	170
86.	Pozzle Thrust Efficiency vs Pressure Ratio, O and 5 Percent	
	Secondary Flow	172
87.	Rozzle Thrust Efficiency, Top ing Cycle, vs Pressure Ratio.	
	O and 5 Percent Secondary Flow	173
88.	Effect of Secondary Mixture Ratio on Nozele Thrust Efficiency	174
89.	Effect of Secondary Mixture Ratio on Mozzle Thrust Efficiency,	
	Topping Cycle	175

UNCLASSIFIED

	·	Page
90.	Base Pressure vs Pressure Ratio; 0, 1, 2, 3, 5 Percent	
	Secondary Flow	178
91.	Comparison of Mixture Ratio Effect on Base Pressure, Pp/P	179
92.		185
93.	Aerospike Flow Field	188
94•	Aerodynamic Spike Flowfield at Various Pressure Ratios Pc/Pco	190
95.	Effect of Reduced Missile Base Pressure	192
96.	Effect of Slipstream and Nozzle Flow Interaction	193
97.	Slipstream Effect on the Nozzle Flowfield	195
98.	Slipstream Effect on Nozzle Base Pressure and Performance .	196
99.	Nozzle Efficiency Based on Expansion to Vehicle Base Pressure,	
	Cold-Flow Tests	198
100.	Typical Booster Trajectories	200
101.	Normalized Trajectory Data	201
102.	The Operating Range for Pressure Altitude Simulation in the	
	PAT 16-Foot Supersonic and Transonic Tunnels	505
103.	Permissable Operating Conditions For Various Model Selections	203
134.	Theoretical Nozzle Wall Pressure Profiles	205
105.	Estimated Base Pressure Trend with Altitude and Secondary	
	Flowrate	206
106.	Estimated Performance Trend with Secondary Flowrate	207
107.	Estimated Efficiency Trend with Secondary Flowrate	208
.ec.	Cross Section View of the Rocket Engine	210
109.	Test Installation in the Supersonic Wind Tunnel	211
10.	Test Installation in the Supersonic Wind Tunnel	212
111.	Test Installation in the 16T Test Section	213
12.	Instellation of Slipstream Model in the Transonic Wind Tunnel	
	at AEDC	214

	•	Page
113.	Dimensional Sketch, Slipstream Model	216
114.	Cross Section View of Slipstream Model	217
115.	Nydrogen Ferozide Propellant System	219
116.	Pressure Orifice and Thermocouple Locations	220
117.	Still Air and External Flow Test Conditions	222
118.	Still Air Pozzle Efficiency vs Chamber Pressure Ratio	225
119.	Engine Base Pressure vs Chamber Pressure Ratio in Still Air,	
,	# 1/4 = 0.8 Percent	227
120.	Comparison detween Experimental and Theoretical Wall Pressure	
	Profiles	228
121.	Measured Still Air Efficiency Trend with Secondary Flow	229
122.	Messured Base Pressure Trend with Secondary Flow	231
123.	Still Air Nozzle Efficiency Trend with Secondary Flowrate and	
	Chamber Pressure Ratio Computed From the Measured Change in	
	Nozzle Base Pressure	232
124.	Comparison Between Estimated and Measured Efficiency Using	
	Measured Base Pressure Data	233
125.	Comparison Detween Estimated and Measured Efficiency Trend	
	with Secondary Flowrate	234
126.	Comparison Between Estimated and Measured Base Pressure	235
127.	Comparison Between Monsured and Estimated Base Pressure Trend	
	with Secondary Florrate	237
128.	Aerospike Nozzle Efficiency vs Chamber Pressure Ratio with	
	External Flow	238
129.	Aerospike Kozzle Efficiency vs Percer - Tesign Pressure	
	Ratio	239
130.	Engine Base to-Chamber Pressure Rat . , Chamber Pressure	
	Ratio	241

		Page
131.	Noszle Wall Pressure Trend in External Flow	242
132.	Missile Base-to-Ambient Pressure Ratio vs Chamber Pressure	
	Ratio	243
133.	Flow Regions for the Missile Base Flow	244
134.	Effect of Free Stream Mach Number and Chamber Pressure Ratio	
	on Missile Bass-To-Ambient Pressure Ratio	245
135.	Effective Thrust Efficiency vs Chamber-To-Nismile Base Pressur	•
	Ratio	247
136.	Engine Base-To-Chamber Pressure Ratio vs Effective Chamber	
	Pressure Ratio	249
137.	Trajectory Data Used in Mission Analysis	252
138.	Normalized Performance Data for Mission Analysis	253
139.	In-Flight Specifice Impulse with and without Secondary Flow	254
140.	Boattail Geometry Producing High Missile Base Pressure	256
141.	Effect of Afterbody Geometry on Missile Base Pressure at High	
	Subsonic Mach Numbers (M_= 0.9)	257
142.	Effect of Bleed on Base Pressures in Two-Dimensional Flow	
	Over a Back Step	259
143.	Influence of Flow Interaction on Base Pressure	260
144.	Qualitative Influence Regions of External Ambient Pressures	262
145.	Aerospike T/C Engine. Rocketdyne Installation and Firing at	
	AEDC	26 6
146.	Nozzle Inner Contour Design	270
147.	Kinetic Efficiency Dependence on Axial Length and Thrust	
	Chamber Mixture Ratio	272
148.	Theoretical Wall Pressure Distribution for Aerospike Engine	273
149.	Estimated Base Pressure Dependence on Secondary Flowrate,	
	Closed Wake	274

•		Page
150.	Estimated Nozzle Performance Trend with Secondary Flowrate	
	for Aerospike Engine	275
151.	Analytical Aspects: Flow Model of Fluid Injection	277
152.	Emperical Spreading Coefficient for Gas Injection into Conical	
	Rozzle from Reference 8	279
153.	Geometric Design Parameters with Secondary Liquid Injection TVC	281
154.	Estimated Influence of Injection Flowrate and Velocity	284
155.	Estimated Influence of Injection Velocity on SITVC Performance	
	and System Pressure Drop	286
156.	Estimated Influence of Injector Flowrate and Location	287
157.	Influence of Number of Injection Ports and Port	
	Spacing	290
158.	Effect of Port Spacing on Conical Fozzle Performance	291
159.	Fatimated Influence of the Injectant Flowrate and the Number	
	of Ports (nodd)	292
160.	Estim ted Influence of the Injectant Flowrate and Number of	
	Injecti n Ports (neven)	293
161.	Estimated Influence of the Injectant Flowrate and the Axial	
	rort Inclination	294
162.	Measured Influence of the Axial Fort Inclination for Conical	
	Nozzles	296
163.	Reasured Influence of the Radial Port Inclination with Concial	
	mozzles	297
164.	Measured Effect of Injectant Density	299
165.	Estimated Influence of Injectant Properties	300
166.	Test Configurations at a/L = 0.25	3 02
167.	Test Configurations at #/L = 0.4 and #/L=0.7	303
168.	Ingine Assembly - Advanced Aerodynamic Spike TVC Test Engine	305
160.	Injector and Mamhan Roffley	3/10

(

		Pego
170.	Porous Base Plate Configuration	3 09
171.	TVC Nozzle Ring Configuration Number 1	311
172.	TVC Nozzle Ring Configuration Number 2	312
173.	Typical TVC Flow Ring Assembly	313
174.	Main Engine Chamber Instrumentation	315
175.	Aerospike Engine, Outer Throat Instrumentation	316
176.	Engine Inner Nozzle Instrumentation	317
177.	Gas Generator Instrumentation	318
278.	Six-Component Thrust Stand	319
179.	Test installation at AEDC	320
180.	Test Sequence	322
181.	Facility Propellant and Cooling Water Supply System Instru-	
	mentation	323
182.	TVC Propellant Supply System	324
183.	Hardware Damage Incurred During Test BE32	332
184.	Critical Parameters for a Reference Test (No TVC) with Second-	
	ary Flow	333
185.	Time Variation of Critical SITVC Parameters	336
186.	Side Force Ratio vs Flowrate Ratio for Liquid Injection at	
	.44L = 0.25	337
187.	Side Force Ratio vs Flowrate Ratio for Liquid Injection at	
	A/L= 0.4, 0.7	338
188.	Off Center Force Ratio vs Flowrate Ratio for Liquid Injection	
	at/L/L= 0.25	339
189.	Off Center Force Ratio vs Flowrate Ratio for Liquid Injection	
	at #/L= 0.4, 0.7	340
190.	Relative Change in Axial Thrust vs Flowrate Ratio for Liquid	
	Injection at $d/L = 0.25$	341

.

できる 一日本日 を日本の一日の日本

		Page
191.		
	Injection at A/L = 0.4, 0.7	342
192.	Variation of Side Force Location with Throat Moment-To-Side	
	Force Ratio	344
193.	204 00000000000000000000000000000000000	
	and $\pi/L = 0.7$ for Aerospike Engine	346
194.	Side Thrust Amplification Factor for Liquid N ₂ O ₄ Injection at All = 0.25	
106		347
195.	i and	
	at #/L = 0.4, 0.7	349
196.		
	Injection at A/L= 0.25	<i>3</i> 50
197.	Off Center Thrust Amplification Factor for Liquid N204	
	Injection at 4/L= 0.4, 0.7	3 52
198.	Total Control Moment Amplification Factor for Liquid N204	
	Injection at A/L= 0.25	353
199.	Total Control Moment Amplification Factor for Liquid N204	
	Injection at 4/2 = 0.4, 0.7	355
200.	Change in Engine Performance During Liquid N204 Injection,	
	TVC at A/L= 0.25	3 56
201.	Change in Engine Performance During Liquid N204 Injection	<i>)</i>
	TVC at A/L = 0.4 and 0. 7	357
202.	Side Thrust Amplification Factor for Liquid Injection with	357
	Various Nozzles	7/0
203.		360
	Comparison Between Estimated and Measured SITYC Performance	
204	Level for Aerospike Engines	361
204.	Emperical Spreading Coefficient for Gas Injection into an	
	Aerospike Nozzle	363

		Page
205.	Comparison Between Estimated and Measured SITVC Performance	
	Trends Using the Revised Spreading Coefficient From Pigure 204	364
206.	Comparison Between Liquid and Gaseous Injection Performance wit	h
	an Aerospike	365
207.	Typical In-Flight TWC Duty Cycle Requirements	368
208.	In-Flight Performance Loss Associated with Fluid Injection TVC	
	for a Low Thrust Storable Propellant Booster Engine	369
209.	In-Flight Performance Lass Associated With Fluid Injection TVC	
	for a High Thrust 0/H, Booster Engine	370
S10 -	In-Flight Performance Locs Associated with Fluid Injection TVC	
	for an Upper Stage Engine	371
211.	Improved Bipropellant Injector	375
212.	Integrated Average Pressure Method	439
213.	Gas Temerator Theoretical Specific Impulse	458
214.	Kain Engine Theoretical Specific Impulse	459
215.	Main Engine Theoretical Characteristic Velocity	461
216.	Gas Generator Theoretical Characteristic Velocity	462
217.	Unbalanced Forces with Secondary Injection TVC	454
218.	Location of the Induced Force Vactor	468

TABLES

1.	Primary Bata Acquisition Systems	53
2.	Gas Generator Test Summary	70
3.	Summary of Injector Checkout Tests	74
4.	Water Cooled Chamber, Sea Level Test Summary	75
5.	Altitude Test Summary	81
6.	Nozzle Base Plate Temperatures (Altitude Test Results)	127
7.	Nozzle Throat Area Measurements	131
8.	TCA Characteristic Velocity Efficiency (Altitude Test	
	Program)	132
9.	Nozzle Throat Area Calculations	135
10.	Secondary Flow Parameters	176
11.	Test Summary	223
12.	Planned TVC Test Schedule	325
13.	Reference Performance Data at Pa = 0.7 psia	327
14.	SITVC Performance Data	329
15.	Comparison of Sea Level and Altitude Performance,	
	$\hat{\mathbf{w}}_{\mathbf{g}} = 0 \cdot \cdot$	335
16.	Heat Loss and Water Content Factors Applied to Measured	
	and Theoretical (Primary Only) Data	382
17.	Data Measurements	437
18.	Mission Parameters for Trajectory Analysis	443
19.	TVC Engine Measured Parameters	453
20.	Heat Loss Factors Applied to Measured TVC Data	457

NOMENCLATURE FOR TVC AND THELVE PERCENT LENGTH NOZZLE DISCUSSION

```
Area, in<sup>2</sup>
            Geometric Throat Area, In2
           Nozzle Base Area, in2
           Effective Th-nat Area, A^* = (\mathring{\mathbf{W}}_p / \mathring{\mathbf{W}}_{p,i,i}) \lambda_i, in<sup>2</sup>
            Total Porous Plate Flow Orifice Area, in2
            Characteristic Velocity, ft/sec2
           Flow Discharge Coefficient, C_p = \frac{\hat{v}}{v_{id}}
C
            Nozzle Thrust Efficiency
           Topping Cycle Thrust Efficiency
            Specific Heat at Constant Fresgure, BTJ/lb OF
C<sub>P</sub>
            Specific Heat at Constant Volume, BTU/12 OF
Cw
            Thrust Coefficient, Cp = F/PcA*
            Distance from the Nozzle Throat Plane to the Yaw Force Load Cella,
           Nozzle Exit Diameter, in.
           Nozzle Equivalent Throat Diameter, d_{\pm} = 2\sqrt{\Delta_{\pm}/\pi} , in.
           Thrust, Measured Adiabatic Engine Thrust, 1bs.
           Reference (no TVC) Vacuum Thrust Uncorrected for Heat Loss, 1bs.
Pv
           Measured Axial Thrust, 1bs.
           Change in Axial Thrust During LITVC. 1bs.
           Side Thrust, 1bs.
           Off Center Thrust, 1bs.
           Induced Thrust per Port, 1bs.
```

```
Empirical Spreading Coefficient (Fig. 152)
          Gravitational Constant, 15.ft/15.acc2; throat gap width, in.
          Distance from the Engine Gimbal (Throat) Plane to the Vehicle
          Center of Gravity, in.; Heat Transfer Coefficient, Btu/in2, sec, of
          Enthalpy (per unit mass), BTU/1b
          Specific Impulse, I_a = F/v, sec
          Blast Wave Constant (function of Y)
          Side Thrust Amplification Factor (Appendix 4 )
I,
          Off Center Thrust Amplification Factor (Appendix 4)
K
          Control Moment Amplification Factor (Appendix 4)
          Integral of the First Order Blast Wave Theory Pressure Distribution Function (function of V)
          Summation Index : Thermal conductivity, Btu/in, sec, of
          Arial Length of the Nozzle Measured from the Throat Plane to the
          End of the Nozzle, in.
M<sub>cc</sub>
          Free Stream Mach Number
          Mass Flow Rate, 1b /sec
3:1
           Molecular Weight, lb mole
           Oxidizer-to-Fuel Mixture Ratio (by weight)
MR
           Moment, in.1bs.
           Homent About the Throat Reference Plane, in.1bs.
           Amber of Injection Ports
           Pressure, psia
           Chamber-to-Ambient Pressure Ratio, P/P
           Primary Stream Heat Loss, BTU/1b; Heat Absorbed by Baffles, Btu
```

- Nozzle Exit Radius, in.
- Wetted Contour Length from the Injection Port to the End of the Noszle, in.
- Temperature, OF (or OR)
- t Flight time; time, sec.
- the Flight Time for Stage Burnout, sec.
- Tree Stream Velocity, ft/sec.
- ▼. Injectant Velocity, ft/sec
- w, w Weight Flowrate, 1b/sec
- Length; Axial Distance Keasured from Nozzle Ref, Plane (Fig. 218), in.
- Fadial Distance Measured from the Engine Centerline (Fig.218), in.

Greek

- Contour Wall Angle, degrees (Fig. 218), Also thermal diffusivity
- A Injection Angle with Respect to a Normal to the Engine Centerline (Fig. 218), degrees
- Specific Heat Ratio, $Z = C_p/C_{\psi}$
- € Nozzle Area Ratio, € = A A* p
- No. Characteristic Velocity Efficiency
- MI_ Specific Impulse Efficiency
- Radial Injection Angle (Fig. 218, 0 = 0 Implies Radial Stream Injection, 0 = 1! Implies Parallel Etream Injection, 0 = \(\times \) Implies Convergent Stream Injection), degrees ; also time, sec.
- Axial Injection Angle with Respect to a Tangent to the Nozzle Wall at the Point of Injection (Fig. 218), degrees

V	Function of Y and Mach Number, $V=1+\frac{V-1}{2}$ H_{00}^{2}
م	Density, 1b/ft ³
φ	Equivalent Gimbal Angle (Appendix 4), degrees
¥	Total Radial Arc Included by the TVC Injection Ports (Fig. 218), degrees
ΔΨ	Radial Arc Between Injection Ports (Fig. 218), degrees
ω	Charge Energy Per Unit Mass of Charge Normalized in Terms of the Square of the Free Stream Velocity, \mathbf{u}_{00}

Subscripts

8	Refers to ambinet conditions
A	Denotes an axial force component
A	Denotes an aft load cell (Fig. 178)
В	Refers to nozzle base
C	Refers to chamber; Cold wall conditions
D	Denotes friction performance loss
•	Refers nozzle exit
•	Refers to total engine f owrate (primary plus secondary) exclusive of the TVC flow
7	Denotes a forward load cell (Fig. 178)
g	Gas, gav. side conditions
E	Hot wall conditions
14	Ideal Quantity
i	Induced Force Component; Initial value at time = 0
int.	Refers to intrinsic thrust exclusive of ambient pressure drag
j	Refers to TVC injectant
k	Denotes kinetics performance loss

x	Denotes a measured quantity
X	Refers to the nozzle
opt	Denotes optimum thrust (one dimensional ideal value corresponding to P/Pa)
P	Refers to primary stream
P	Denotes pitch load cells (Fig.178)
R	Denotes roll load cells (Fig. 178)
r	Denotes a jet momentum force component
8	Refers to the secondary stream
\$	Denotes a side force component
th	Refers to theoretical value
top	Topping cycle efficiency or specific impulse
TVC	Refers to the TVC system or flowrate
v, vac	Refers to vacuum conditions
w _.	Refers to the nozzle
x	Refers to length location
Y	Denotes yaw load cells (Fig. 178)

Superscripts

Average quantity (cotained through area integration if the quantity is pressure)

HOMENCLATURE FOR SLIPSTREAM DISCUSSION

A	Area, in ²
A _T	H ₂ O ₂ Engine Area (refer to Fig. 108), in ²
C _p	Thrust Coefficient, Cp = P/(PcAt)
C*	Characteristic Velocity, C* = (PcAts)/W, ft/sec
C _T	Nozzle Thrust Efficiency (refer to Appendix 2)
D	Diameter, in.
•	Thrust, lbs.
•	Gravitational Constant, ft.lbg/lbg. sec2
1.	Specific Impulse, sec.
H	Macin Humber
2	Pressure, lbs/in ²
PB_	Missile Base Pressure, lba/in ²
P _B	Nozzle Base Pressure, lbs/in2
PR	Chamber to Free-Stream Static Pressure Ratio, Pc/Pco
PR) des	Nozzle Design Pressure Ratio
5. 2	Nozzle Axial Length in Percent of the Length of a 15-degree Conical Nozzle with the Same Area Batio and Throat Area
7	Temperature, degrees Rankine (unless otherwise noted)
¥	Weight, 1bs.
¥	Weight flow rate, lbs/sec
x .	Axial Contour Coordinate (Fig. 104). inches
7	Radial Contour Coordinate (Fig. 104), inches
Rt	Equivalent Throat Radius, $R_c = \sqrt{A_b/\pi}$, inches

Greek Mozale Specific Impulse Efficiency (refer to Appendix 2) Nozzle Characteristic Velocity Efficiency (refer to Appendix 2) Nozzle Area Ratio, E = A /At Missile Base Pressure Correlating Parameter (refer to Appendix 2) Missile Base Pressure Correlating Farameter (refer to Appendix 2) Specific Heat Ratio Subscripts throat

nozzle wall

chamber

Vacuu.i

exit

ambient

free stream

nozzle base

ideal

optimum expansion through P/P opt

primary flow

secondary flow

SECTION I

INTRODUCTION

- (U) As discussed in Volume I of this report, the aerospike nozzle represents a departure from conventional conical or bell nozzles. There are many advantages over conventional nozzles inherent in the serospike nozzle concept. The results of contract AFO4(611)-9948, presented in Volume I and II of this report, represent effort designed to verify and quantify such advantages.
- (U) The overall approach included theoretical studies, cold-flow experiments, and hot-flow experiments. Specific goals of the study were:
 - to evaluate aerospike nozzle performance characteristics at high area ratios,
 - 2) to compare methods of applying the concept to advanced vehicle configurations,
 - 3) to demonstrate basic nozzle performance by means of hot-firing tests.
 - 4) to evaluate the hot-firing thrust vector control characteristics of an agrospike nozzle using laquid side injection,
 - 5) to evaluate hot-firing aerospike nozzle performance in a typical flight environment (slipstream)
 - 6) to analytically investigate nozzle base bleed configurations, and perform a hot-firing demonstration of a promising configuration, and
 - ?) to perform a cold-flow investigation of aerospike nozzle segment performance.
- (U) Volume I of this report presents the results of the cold-flow test programs and the analytical and design studies. This volume, Volume II, presents the results of the hot-firing test programs.

- (U) The aerodynamic spike nozzle performance characteristics investigated in the hot-firing tasks (i.e., basic still air performance vs altitude and secondary flow parameters, fluid side injection TVC performance, and performance in slipstream had previously been studied in cold-flow programs under this (Volume I) and other contracts, and internal research and development funding. Correlation of hot- and cold-flow test results serve to substantiate theoretical methods and enables the prediction of hot-firing nozzle performance from relatively inexpensive cold-flow test data. Therefore, the hot firing test results from this program are compared to applicable previous cold-flow test results.
- (U) Although the results of the tests are presented, interpreted and applied to some practical cases in this report, the principal value to be derived from this report will come from the detailed documentation of test results. It is expected that these data shall be referred to frequently in future studies of aerodynamic spike nozzles.

INCLISHED.

SECTION II

SUMMARY

(C) Three hot-firing aerodynamic spike nozzle programs were conducted under Air Force contract AFO4(611)-0048. Each program investigated a different area of interest in characterizing aerodynamic spike nozzle performance. A 12-percent length aerospike thrust chamber generating approximately 7400 pounds altitude thrust with N2O1/UDNH-N2H2 (50-50) propellants was tested over a pressure ratio range from approximately 22 to 350. The objective of this program was to obtain a large background of basic aerospike hotfiring performance data. The nozzle portion of the above engine was lengthened to 25 percent and modified to incorporate liquid (N_2O_L) side injection TVC capability. An extensive series of tests was conducted at altitude to determine liquid injection performance trends with variations in injection parameters. A third hot-firing program investigated the effect of external flow (slipstream) on aerospike mozzle performance. A 400-pound thrust serospiks thrust chamber utilizing H202 propellants was enclosed in a simulated missile body and fired over a range of altitude and Mach number conditions. A schedule showing the time periods during which the actual testing for the three programs was accomplished is shown in Fig. 1.

CONFIDENTIAL

1967	Ŀ																							
12	_	1	· ·		ميسيب ب																_			•
	۴	1_																			-			
	G)			
	Ø.																							
	<u>_</u> ,																							
1966	P 7																							
	2																							
	•									W.100														
	×					-															. · .			
	ß,																							
	5								\Box													_		
	Q																							
	N				:		-																	
	0																							
	8																							
396	4											<u>.</u>												
	J																							
	J				=																			
	×		_						*******													_		
	4		<u> </u>								·													
DAT.	TEST DESCRIPTION	TWELVE PERCENT LENGTH NOZZLE	G.G. Tests (33)	Uncooled Chamber	Injector No. 1 (5)	Injector No. 1-A (1)	Injector No. 2 (4)	Cooled Chamber, Sea Level	Sea Level Performance (6)	Sea Level Performance (4)	Cooled Chamber, Altitude	AA Series (5)	AB and AC Series (14)	AD Series (3)	SLIPSTREAM PROGRAM	Supersonic Tunnel, 16-S (18)	Transonic Turnel, 16-f (39)	TVC ENGINE	Sea Level Checkout (1)	Sea Level Checkout (4).	BA and BB Series (11)	BC Series (7)	ED Series (11)	BE Series (4)

Note: Numbers in parentheses designate the number of tests accomplished.

Figure 1. Hot-Firing Program Test Schodule

.

TWELVE PERCENT LENGTH NOZZLE PROGRAM

(U) In July 1964, a program was initiated to demonstrate the aerodynamic spike mozsle concept with a hot-firing model and to obtain an extensive compilation of basic parametric performance data. At that time essentially no hot-firing performance data existed for this new nozzle concept and performance for proposed new aerospike rocket engines was estimated from cold-flow data. The objective of this program was successfully accomplished with the achievement of valid test data from 26 thrust chamber firings of approximately 8 seconds each duration.

Scope

- (U) Two water cooled and one uncooled aerospike thrust chambers were fabricated. The combustion chamber and nozzle geometries were identical for the two thrust chamber types except the water cooled version had a 12 percent length nozzle and the uncooled version had an 8 percent length nozzle. The same injector was used in both versions. The uncooled chamber was used for injector checkout tests (at Rocketdyne facility) of 0.5 to 0.8 seconds duration (Fig. 2). The water cooled thrust chamber assembly (Fig. 3) was used for relatively long duration (to 8 seconds) data firings at sea level (Rocketdyne) and at altitude (Arnold Engineering Development Center).
- (c) The thrust chambers utilized N₂O₄/UIMH-N₂H₄ (50-50) propellants in both the primary chamber and in a gas generator which supplied secondary bleed gas into the nozzle base region. The uncooled chamber was tested at chamber pressures from 300 to 500 psia, and the water cooled chamber was nominally operated at 300 psia (approximately 7400-pound thrust at design altitude), after three initial firings (to 5 seconds duration) at 400 psia.

Incresonted

THOMASSIELE!

b. Injector Chackout Firing

a. Installation, Sugar Stand, Propulsion Research Area, Santa Susana Field Laboratory

Figure 2 , Uncooled Aerospike Thrust Chamber

CONFIDENTIAL

b. AEDC Installation, Rocket Test Facility, J-2 Cell

a. kocketdyne Installation, Sugar Stand

Figure 3 . Water Cooled Twelve Percent Length Aerospike

CONFIDENTIAL
This page is Unclassified

HACLASSIFIED

of 35 gas generator tests (with a high flowrate and a low flowrate gas generator) was conducted to establish operating characteristics over a range of flowrates and propellant mixture ratio; (2) Ten uncooled thrust chamber firings with three injector configurations were conducted at sea level to obtain an injector suitable for use in the water cooled hardware; (3) Ten sea level firings with the water cooled TCA were conducted to establish hardware integrity and operating characteristics and to obtain low pressure (PR = 22 to 29) ratio performance data over a range of secondary flowrates (0 to 5 percent); (4) Seventeen TCA firings were achieved over a range of high pressure ratios (PR = 35 to 350), secondary flowrates (0 to 5 percent), and gas generator mixture ratios (0.09 to 0.18) to obtain parametric performance data; (5) Three constant altitude firings were conducted with a perforated nozzle base configuration to evaluate the effect of secondary flow injection configuration on performance.

Results

- (U) The 33 gas generator tests successfully characterized the combustion efficiency over a range of mixture ratios from .05 to .185 and flowrates from 0.5 lbs/sec to 2.8 lbs/sec.
- (C) Pive uncooled thrust chamber firings of 0.5 second duration were made with the first injector configuration at chamber pressures from 300 to 500 psia. All tests showed high frequency (2300 cps) chamber pressure oscillations with a peak to peak amplitude of approximately 50 percent of chamber pressure. This injector was modified slightly by tapering and chortening the injector baffles and by plugging fuel orifices adjacent to the baffles. One test was made with this configuration at 410 psia chamber pressure. A low frequency (530 cps) frequency instability with a peak to peak amplitude approximately 75 percent of chamber pressure was experienced.
 - 1. Thrust Chamber Assembly (TCA)

UNCEASSIFIED

- (c) A redesigned injector configuration was constructed and four uncooled thrust chamber tests were conducted at chamber pressures from 300 to 450 psia. No measurable chamber pressure oscillations were experienced in any of these tests and the injector was found suitable for use in the water cooled hardware.
- (c) Nine sea level tests and seventeen altitude tests were accomplished with the water cooled thrust chamber to evaluate the effect of secondary flow-rate and secondary gas energy level on nozzle performance. A nozzle efficiency, C_T, of 96.0 percent was achieved with no secondary flow at design pressure ratio (~300). The addition of from 1 to 3 percent secondary flow increased nozzle efficiency at design pressure ratio to approximately 96.5 percent. Maximum efficiency gains of about 1.5 percent were achieved at intermediate pressure ratios (~120) with the addition of from 1 to 3 percent secondary flow. Over the low pressure ratio range, from 35 to 22, performance with and without 1 to 3 percent secondary flowrate was about the same.
- (c) No significant difference in performance was found among the different energy level secondary flows. A high degree of altitude compensation was obtained over a pressure ratio range from 300 to 35. Nozzle efficiency decreased from 96.0 to 93.8 over this pressure ratio range.
- (c) Three 8-second duration tests were made with a perforated base plate mounted at the nozzle exit plane. Operational difficulties with the gas generator prevented determination of the secondary flowrate for all three tests.

 Low frequency (487 cps) combustion instability in the primary thrust chamber was experienced during the second test. Hardware damage was sufficient to preclude further testing to evaluate base configurations.

Marian

LIQUID (N2OA) SIDE INJECTION TVC PROGRAM

(C) Resent advances in rocket engine technology have resulted in a need for increased study of means for providing directional thrust control for future generation rocket engines. Secondary injection of fluids into the engine exhaust streams has proven to be an effective and efficient method of thrust vector control (TVC) in several present applications; and coldflow testing, complemented by analytical system studies, has shown that this is also a competitive TVC technique for advanced aerospike engines. The objective of this investigation was to supplement current aerospike TVC technology by providing sufficient hot-flow liquid (R2O4) injection TVC test data to establish design criteria and enable quantitative performance evaluations for future high-thrust aerospike engines. The objective was successfully accomplished.

Scope

- (U) A test program was formulated so that the liquid injection TVC technique could be studied using a modified version of the 12 percent length, N2O4/UTMH-N2H4(50-50) aerospike thrust chamber. All thrust chamber assembly components except for the inner nozzle were identical. Performance testing was conducted at altitude at the Rocket Test Facility (J-2 Cell) at Arnold Engineering Development Center after sea level checkout testing at Rocketdyne (Fig. 4).
- (c) Chamber pressure selected for the TVC testing was 200 psia with an attendent vacuum thrust level of 5600 pounds. Area ratio of the aerospike nozzle was 25 and the axial length was 25 percent of an equivalent 15-degree conical mozzle. Injection of the TVC flow was effected through orifices located in uncooled contoured flow rings which comprised the aft section of the nozzle.

UNCLASSIFIED

UNCHROMENAL

b. ANDC Installation, J-2 Cell

a. Rocketdyne Chockout Installation, Sugar Stand

Figure 4 . Aerospike Engine with Side Injection TVC Capability

MEENENHAL

(U) Four uncooled flow rings incorporating 29 different injection patterns were fabricated to investigate injection parameters which could influence TVC performance. These configurations enabled the experimental evaluation of (1) constant-velocity injection flowrate variation, (2) axial location of the point of injection, (3) angle of injection with respect to the mossle contour, (4) one, three, and five-port injection patterns, (5) spacing between holes in an injection pattern, (6) angle of impingement of adjacent holes in an injection pattern and (7) injection velocity variation at constant flowrate.

Results

- (G) Thirty-three firings of 6 seconds each duration were conducted at altitude to establish engine performance without TVC, and to determine LITVC performance trends with variations in the injection parameters. Five sea level checkout tests of from 1/2 to 5 seconds durations were conducted at Rocketdyne prior to the altitude testing. The thrust efficiency of the engine was 95.1 percent for W₈/W_p = 0 and 95.2 percent for W₈/W_p = 0.017. Combustion efficiency (η_{C*}) was nominally 89 percent throughout the program.
- (c) A semi-empirical blast-wave theory was utilized in conjunction with experimental data from various sources to provide a basis for selection of SITVC test configurations. Testing of these configurations established that measured IITVC side-force efficiency trends with an aerospike are similar to those expected on the basis of preliminary analysis: injection near the throat provides higher side-force efficiency than injection near the nozzle exit, multiple-port inclination has no influence on LITVC performance in the range tested near the nozzle exit, and parallel stream injection affords higher performance than radial stream injection at both locations

CONFICENTIAL

UNCLASSIFIED IAL

studied. Control moment and nozzle specific impulse efficiency transser were found to be dependent upon the engine-vehicle geometric relationship. These efficiencies followed trends established by the side-force efficiency for boost vehicles ($r_e/h = 0.25$), but in some cases optimized differently for upper-stage configurations ($r_e/h = 1.0$).

- (C) Comparison of the side-thrust efficiency TVC data obtained in this program with that obtained from other nossles revealed that LITVC performance with an aerospike is equal to or less than with other nossles, because of the relatively short length of the aerospike. The level of side thrust efficiency for N2O4 injection established through this testing was also found to be lower than that estimated using the blast wave analysis in conjunction with an empirical coefficient obtained for gas injection into flow over a flat plate. It was necessary to revise this coefficient to obtain quantitative agreement between theory and experiment for the configuration tested. Application of the test data to full-scale engine systems showed that liquid injection may be competitive with gas injection under certain conditions. In general, fuel injection provides higher in-flight engine specific impulse efficiency but lower density impulse than exidizer injection if vaporisation and reaction do not occur within the nozsle.
- (C) On the basis of these results, it is recommended that the relative merits of liquid injection TVC be investigated through comparative systems analysis using the conservative performance estimates presented herein for full-scale engines. It is also recommended that improved LITVC designs such as a bipropellant injection technique be studied, and that the performance and operating characteristics of attractive systems be evaluated through large-scale environmental hot-flow testing.

ONNO ZALEMU

UNCHASSALED

SLIPSTREAM PROGRAM

(C) Because of interaction which occurs between external and nozzle flows, vehicle base flow characteristics encountered in missile flight differ from those prevalent in quiescent air nossle performance investigations. These base flow characteristics are of little consequence with conventional mosgles since the expansion process is internal in this case; that is, the exhaust gases within the nozzle are shielded from the external flow by the physical expansion surface provided by the nossle. However, with an aerospike nozzle, the external expansion boundary is formed by a gasgas interface, and is influenced by flow interference effects. Since the position of this outer boundary in the flow affects aerospike nozzle performance at low pressure ratios where the base pressure follows changes in ambient pressure ("open wake"), the presence of an external flow can affect aerospike performance under certain conditions. Previous coldflow testing conducted under contract NAS 8-2654 (Ref. 21) established that the effect of external flow is small and is confined to a narrow range of in-flight operating conditions. Experimental study of these effects was continued under contract AF04(611)-9948. The primary objective of this program was to confirm and extend, through hot-flow testing, the results obtained in the cold-flow slipstream study. A secondary objective was to evaluate the effect of base bleed flowrate on nozzle still air performance.

Scope

(c) A bot-flow test program was conducted to determine the influence of external flow on in-flight aerospike nozzle performance. A hot-firing aerospike engine using hydrogen peroxide propellants was enclosed by an aerodynamic fairing constructed in the shape of a missile body to simulate an actual flight configuration. The engine generated 400 pounds of altitude thrust

CONCHUÍ SEIFHE D

THOEKSEMEN

at a chamber pressure of 200 psia. An aerospike nozzle with an area ratio of 25 and a length equal to 20 percent of an equivalent 15 degree conical nozzle was utilized to control the expansion of engine exhaust gases. The secondary flowrate was 0.8 percent of the primary flowrate for all tests with external flow. Testing was conducted in the 16-foot transonic and supersonic propulsion wind tunnels at Arnold Engineering Development Center (AEDC). Installation of the model in these facilities is shown in Fig. 5.

Results

- (C) Fifty-two tests of approximately 1 minute each duration were conducted to obtain still air and slipstream performance trends in the transonic and supersonic wind tunnels. Valid data was obtained from only forty of these, however, because of a seal failure and excessive model leakage. In addition, five tests were conducted in the transonic facility to demonstrate engine performance trends with secondary flowrate. Results of these tests confirmed that high quiescent air performance (approximately 98 percent of ideal at design pressure ratio) can be obtained throughout a representative range of pressure ratios with a properly designed aerospike nozzle. The addition of secondary flow proved beneficial at all pressure ratios. It was found that the correct experimental performance level and trend with pressure ratio could be estimated above pressure ratios at which nozzle recompression occurs using previously developed semiempirical base pressure relationships in conjunction with a potential primary flow analysis and viscous drag computations.
- (C) Nozzle performance was found to be unaffected by external flow in the "closed wake" pressure ratio region (pressure ratios at which nozzle base pressure is constant in still air). At low pressure ratios ("open wake") performance of the model tested decreased at a rate which was dependent

b. Partial Installation, Supersonic Wind Tunnel (16-3), PWT, AEDC

a. Completed Installation. Transonic Wind Tunnel (16-T), PWT, AMDC

Figure 5 . Slipstream Model

CONFIDENTIAL THE PARTIES

CHAMPENAMED

On free stream Mach number and chamber pressure ratio. When strong flow interaction effects occurred, they were found to result in relatively high nossle base pressure, which was also shown by previous cold-flow data. When flow interaction did not influence nozzle base pressure, both hotand cold-flow nozzle performance data correlated with the "effective" chamber pressure ratio, $P_{\rm C}/P_{\rm By}$. On the basis of this result, it was concluded that: (1) missile base pressure approaching ambient pressure will result in nozzle efficiency in slipstream nearly identical to that obtained in still air, and (2) strong slipstream-primary flow interaction results in relatively high in-flight nozzle performance.

(c) In-flight performance estimates generated under severe assumptions demonstrated that the time-integrated external flow effects over a typical mission result in a change in average specific impulse (\overline{I}_g) of less than 0.2 percent. Boat-failing, mass addition to the missile wake flow, and reduction in missile hase area are shown to be effective methods of reducing these effects still further.

17/18

GARLASSIFE

山門城城市

SECTION III

PERPORMANCE EVALUATION OF A HOT-FIRING AEROSPIKE NOZZLE

INTRODUCTION AND SUPMARY

- (U) In July 1964, work was initiated on the design and fabrication of a hotfiring aerodynamic spike nozzle. At that time, essentially no hot-firing
 performance data existed for this new nozzle concept. Basic performance
 for proposed new rocket engines utilizing this new nozzle concept was
 based upon data obtained from cold-flow tests. This program was initiated
 to provide a substantial background of parametric hot-firing performance
 data with an aerodynamic spike nozzle configuration and to correlate
 these data with cold-flow data. The specific objectives were to determine
 the performance of an aerodynamic spike nozzle as a function of nozzle
 pressure ratio, secondary gas flowrate, and secondary gas energy level.
 A secondary objective was the determination of nozzle base thermyl environment.
- (C) A 12 percent length truncated ideal spike nozzle thrust chamber with an area ratio of 25 was constructed and tested at Rocketdyne Propulsion Field Laboratory at near sea level conditions and at varying altitude conditions at the Rocket Test Facility (J-2 cell) of Arnold Engineering Development Center. The thrust chamber utilized N₂O₄/UDME-N₂H₄(50-50) propellants and generated approximately 7400 pounds thrust at design pressure ratio. A gas generator utilizing the same propellants supplied secondary flowrates from 0 to 5 percent of the primary flowrate to the nozzle base region.
- (U) Ten sea level firings and 20 altitude firings were accomplished. The basic program objective of supplying a large quantity of aerospike nozzle parametric data was successfully accomplished.

UKONEDŠNIEH

CONTRACONTES

HARDWARE DESCRIPTION

(U) Two water cooled thrust chambers and one uncooled thrust chamber were constructed for this test program. The water cooled chambers were used for obtaining aerospike performance data in relatively long (to 8 seconds) duration firings. A geometrically identical (except for a shorter nozzle length) uncooled thrust chamber with a firing duration of approximately 0.8 seconds was used for injector evaluation and establishment of test procedures. Both chamber types are of nonflightweight construction.

Nater Cooled Thrust Chamber Assembly

- (U) The water cooled thrust chamber assembly (TCA) is shown in Figs. 6, 7 and 8. It is equipped with an aerospike nozzle having a geometric area ratio of approximately 25 (defined as the ratio of the area enclosed by defined in Fig. 6 to the measured throat area). The nozzle length from the throat to the exit plane is 12 percent of the length of a 15 degree conical nozzle having the same area ratio and throat. Base area (defined by defined by defined in Fig. 6) and design throat area of the nozzle are 167.5 in. 2 and 14.9 in. 2, respectively.
- The TEA is composed of an annular injector, inner and outer combustion comber casing sections, igner and outer nozzle throat sections, and a nozzle base plate (Fig. 6) which attaches to the irner throat section to enclose the nozzle base region. A gas gener tor (GC) for introducing secondary gas flow into the base region is attached to the upstream side of the base plate. Overall length, diameter, and weight of the TCA (with GC attached) are approximately 17 in., 34 in., and 250C lb, respectively. Thrust of the TCA at the design nozzle pressure ratio (FR, 28) of 300 is 7400 lb. Nominal test duration and combustion charter pressure are 7 to 8 seconds and 590 psia, respectively.

CONTINENTARIFIED

2. Nozzla Bare Flate and Gas Generator Assembly

SNEEDS SHAPE

b. Side View

a. Closeup View

Figure 6 . Water Gooled Thrust Chamber Installation at Bocketdyne (Sugar Stend, Propulsion Research Area)

(C) The TCA utilized the two hypergolic propellants, nitrogen tetroxide (N₂O₄) and an equal gravimetric mixture of hydrazine (N₂H₄) and unsymmetrical dimethylhydrazine (N₂H₂ [CH₃]₂). Required total propellant flow rate is approximately 27 lb sec at a nominal mixture ratio (O/F) of 1.8. Design total flow rate range of the GG is from 1 to 5 percent of the TCA flow rate. Operating pressure of the GG, using the same propellants as the TC_h at a nominal mixture ratio of O.1, is from 100 to 400 psia, depending on the flowrate.

Injector

- (U) The TCA injector is constructed from type 347 stainless steel with stainless steel oxidizer and copper fuel ring inserts brazed into slots in the injector face. Three injector configurations were tested before satisfactory combustion stability was achieved.
- (U) Injector No. 1 (Fig. 9a) had an annular three ring self-impinging doublet injection pattern. The outer and inner rings were for fuel injection and each contained 119 elements with orifice diameters of 0.025 i. All fuel fans were oriented in a position parallel to the adjacent chamber or baffle walls were thus oriented parallel to a radial line. Each fuel element was offset from the fuel rings centerline radius a distance of \$\frac{1}{2}\$ 0.025 in. in an alternating plus or minus manner. This prevented fan edge interference of adjacent fuel elements.
- (U) The exidizer ring (center ring) consisted of 210 elements with crifice diameters of 0.031 in. All fans were oriented at a 75 degree angle with a radial line to prevent fan interference of adjacent oxidizer elements. The spacing between rings was nominally 0.544 in. The injector was divided into seven equal peripheral segments by two-inch thick bafiles trazed to its face. A section of the injector face near a baffle is shown in Fig. 9c. A detailed drawing of the injector is shown in Fig. 10.

Oxidizer ring Fuel ring Fuel ring c. Hole Pattern

25/26

a. Injector Musber 1

b. Injector Mumber 1A

Figure 9 Injector Configuration

- Fuel ring

25/26

b. Injector Aucher 14

2. Injector Number 1

The second

立の財産

- (U) Injector number 1 was subsequently modified to injector number 14 (Fig. 9b) in an effort to eliminate high frequency combustion instability. The modification consisted of tapering and reducing the length of the baffles from 4 inches to 3 inches. In addition, the fuel elements adjacent to the baffles were brazed shut. This injector exhibited an unsatisfactory low frequency instability.
- (U) The injector pattern was redesigned and satisfactory operation was achieved with injector number 2 (Figs. 11 and 12). This injector was used for all water cooled hardware tests. Injector number 2 is divided into thirteen equal compartments by uncooled OFHC copper baffles (4 inches in length by 1½ X 2 inches in cross section) brazed to the injector face. The baffles are the only period the engine assembly which run uncooled, and thus are the limiting factor on test duretion. They were designed for 10 seconds duration at 500 psia chamber pressure.
- doublet elements. There are 16 element pairs in each of the 13 baffle compartments. Oxidizer and fuel crifices are 0.031 and 0.026 in. diameter, respectively. All fuel elements are canted 20 degrees toward the central oxidizer ring. Each fuel ring contains a single row of eight doublet elements per compartment. Oxidizer elements are directed perpendicular to the injector face and there are two rows of eight doublet elements per compartment in the single ring. The propellant jet impingement point is 0.150 in. from the injector face for all elements. The spacing between fuel and oxidizer fans in an element pair is set at 0.040 in. Injector elements are equally spaced on the inner fuel ring only. However, the pattern is symmetrical about a radial line through the center of the beffled compartment.

b. Injector Number 2 Pattern

a. Injector Number 2 Assembly

Figure 11 Injector Number 2

Estm

. :.,

Company of the Company

COUNSEASSIFED

Combustion Chamber Assembly

(U) The inner and outer throat and casing sections (Fig. 6) are fabricated from OFAC copper. The sections bolt to the injector to form an annular combustion chamber with an inner diameter of 23.2 in., an outer diameter of 27.3 in., and a length of approximately 7.3 in. Leakage of gas from the chamber is prevented by the use of single O-ring seals at each section-to-section or injector-to-section interface. Cooling of the combustion chamber walls is accomplished by flowing water through 5/16 inch diameter axial water passages (88 and 112 passages in the inner and outer sections, respectively) in the gas side walls. Eight isolated internal manifolds are located fore and aft of each casing. Water is supplied to and returned from the casings through sixteen feed holes in the injector body. The combustion chamber gas side walls are gold-plated to prevent erosion of the copper.

Throat Assembly

- (v) The inner and outer throat sections are so constructed (with OFMC copper) that, when these sections are properly attached to the remainder of the TCA, an annular throat, having a mean diameter and nominal gap of 22.1 and 0.215 in., respectively, is formed (Fig. 6). The inner side of the outer throat section has a contour immediately downstream of the throat with sufficient divergency (30 degrees) to ensure flow separation and thereby free expansion of the outer exhaust plume boundary at the nominal operating pressure ratio (FR) range of the nozzle.
- (y) Cooling of the inner and outer throat sections was accomplished by flowing water through a series of continuous circumferential coolant slots (fourteen and seven slots on the inner and outer throats, respectively) located 0.15 to 0.25 in. from the gas side surface. Water from the casings enters each throat section (inner and outer) through four manifolds. Each

PHOTO SCHIED

manifold contains a set of drilled holes leading into the circumferential coolant slots. Water flows through the slots in each circumferential direction from the inlet holes over an arc of 45 degrees to the adjacent outlets. The flowreturns through four (in each throat section) main throat outlets, the casing, and injector ports. Flow distribution in the throats is accomplished by varying the sizes of holes feeding each slot, directing the majority of the coolant water into the critical areas. The cooling circuit is symmetrical so that the casings and throats may be rotated relative to each other and to the injector without affecting the intended flow distribution. Gas side walls of the inner and outer negative throat sections are also gold-plated to minimize hot-gas erosion.

Gas Generator

(c) The gas generator (Fig. 13) was constructed entirely of type 347 stainless steel and consisted of two interchangeable injectors, a single combustion chamber casing, an internal flow mixer and two interchangeable threat orifices. One injector and a matching orifice (low-flow GG) were used for firings requiring secondary flow from 0 to 3 percent of primary flow; the other injector-orifice combination (high-flow GG) was used for firings requiring 3 to 5 percent secondary flow. The injector orifices were sized for these percentages of a primary flowrate of 41.6 lbs/sec (P_c = 500 psia). However, actual primary flowrate was nominally 27 lbs/sec (P_c = 300 psia) for the majority of the tests. The correspondingly derated flow conditions for the gas generator did not noticeably affect combustion efficiency of the high flowrate system. However, the ombustion efficiency of the low flowrate gas generator was 10 to 20 percent lower with the reduced flow.

b. High Flowrate Injector

大大 医多种性性皮肤性皮肤性皮肤

Figure 13. Gas Generator Assembly

- (U) The injector pattern of both injectors provides four fuel streams impinging on one central exidizer stream. Both injectors contained five pentad elements. To insure good mixing and combustion a high chamber L* (L* = 150 to 450 inches depending on the flow control orifice used) and an internal flow deflector were used.
- (U) The GG sections were bolted to the base plate with the diffuser and orifice downstream side of the plate and the chamber section and injecter on the upstream side (Fig. 6). The GG was pressure fed and required oxidizer and fuel supply systems separate from the TCA systems.

 Operation of the uncooled GG at relatively low mixture ratios (0/P = 0.1) prevented the metal surfaces from exceeding their design temperature of 1800 degrees P.

Pasa Configurations

- (U) Two base configurations were employed for injection of secondary flow.

 A hat shaped diffuser (Fig. 14) constructed of 347 stainless steel was used for all tests except the last three (AD test series at AEDC). Four I inch holes diffused the GG flow (secondary flow) radially outward into the base cavity.
- Prior to the last test series this diffuser was modified by plugging the inch holes and replacing them with twenty-eight inch radial holes. The modified diffuser was installed along with the perforated base plate for the AD test series. A perforated base plate was fabricated and bulted to the nozzle exit face for use in the AD test series. The base plate was constructed of inch 347 stainless steel and contained 578 holes of 3/32 inch diameter. An extensive series of steady state tests at AEDC with the perforated plate and the modified flow diffuser were planned. However, operational difficulties and hardware demage prevented the obtaining of satisfactory data with either of the later base configurations.

Figure 14. Base Configurations Installed on the 12 Percent Length Aerospike

Unrooled Thrust Chamber Assembly

(U) A solid wall, uncooled thrust chamber (Fig. 15) was used for evaluation of injector performance and checkout of operational procedures. The uncooled chamber is dimensionally identical to the water cooled configuration with the exception that the nozzle length was eight percent instead of twelve percent and the base diameter was therefore larger (base area of 201 in²). The chamber casings are constructed of 347 stainless steel and the nozzle sections are constructed of OFEC copper. The inner nozzle was plated with a thin dense chrome coating. The thrust chamber is capable of approximately 0.8 second firing durations at 500 pain chamber pressure. A base plate and gas generator were mounted to the inner nozzle in a manner similar to that employed with the water-cooled thrust chamber.

Fluid Systems

(U) Fluid fittings provided on the thrust chamber assembly consist of four primary fuel inlets, four primary oxidizer inlets, one secondary oxidizer inlet, one secondary fuel inlet, eight water inlets (four for the sumulus and four for the outer annulus) and eight water outlets. The fitting locations and the fluid flow paths are illustrated schematically in Fig. 16.

TEST INSTALLATION

(U) Trity-three gas generator tests, ten uncooled thrust chamber tests and ten water cooled thrust chamber tests were conducted at Rocketdyne sea level facilities. Twenty water cooled thrust chamber firings were accomplished at the altitude facility (Rocket Test Facility, J-2 Cell) of Arnold Engineering Development Center (AEDC).

Mary and the second second

the transition of a signal was become

Pigure 16. Hot-Firing Aerospike Engine Flows.

Sea Level Test Installation

- (ii) Sea level tests with the GG and with the uncooled and water cooled TCA's were conducted on Sugar Stand at the Propulsion Research Area of the Santa Susana Field Laboratory. The horizontal firing thrust structure (Fig. 17) was newly constructed for this test program. The engine assembly attaches to the main support pylon which is attached by axial and yaw flexures to the main support stand. The aft section of the engine is supported by structure having only axial flexures.
- (U) The propellant system (Fig. 18) included a 300-gal primary fuel tank, a 200-gal primary oxidizer tank, 43-gal secondary fuel and oxidizer tanks, a gaseous nitrogen pressurization system, and the required valves and fittings. Gaseous nitrogen systems were also provided for system purging and secondary propellant and water valve actuation. A hydraulic system was utilized for primary propellant valve actuation. Coolant water was supplied from a nitrogen pressurized 800-gal tank. Control of both propellant and coolant water flow was obtained by the use of automatic preset pressure regulators in the tank pressurization systems.

Altitude Test Installation (AEDC)

(U) Propulsion Engine Test Cell (J-2) (Fig. 19 and 20 and Ref. 25) is a water-jacketed test cell, 20 ft. in diameter, used for captive horizontal testing of propulsion systems at pressure altitude conditions. J-2 is capable of producing constant pressure altitudes in excess of 100,000 ft. by the use of parallel primary and secondary steam ejector-diffusers operating in series with the RTF facility exhausters. However, for this test program, nozzle pressure ratio transients (hence test cell pressure transients) were obtained by essentially isolating the test cell and

Thrust Ged braton

20,000 1b Load Cell

b. Nrdag

e. Installation

Aft Support

43/44

Figure 17. Uncooled Thrust Chamber Installation and Firing on Sugar Stand (Propulation Research Area, Santa Susana Field Laboratory)

45/46

The second of the said of the second of the second

Mgure 19 . Propulsion Engine Test Cell (J-2), Pictorial View

Figure 20, Proppileton Engine Test Cell (J-2), Elevation View (Ref. Reproduced from Esf. 25)

allowing engine exhaust gases to increase test cell pressure during the firings. Test cell isolation was obtained by valving-off the primary exhaust duct and orificing the inlet to the secondary exhaust duct. Both the range and gradient of the transients were controlled by the use of two remotely interchangeable exhaust inlet orifices and the inbleeding of steam into the test cell during the firings. Desired pre-firing test cell pressures were obtained by setting pumping ratios on the facility exhausters.

- (U) Firings requiring constant nozzle pressure ratios (constant test cell pressures) were conducted with the primary exhaust ducting open to the facility exhausters and without steam inbleed. By thus creating a sufficiently large test cell outbleed area, test cell pressure remained essentially at pre-firing levels throughout the firings.
- (U) The engine was mounted horizontally in an engine support assembly, which consisted of a thrust abutment, an aft support stand, and an engine pylon (Fig. 21). The TCA was mounted rigidly to the engine pylon which was attached to the aft support stand in both the pitch and yau planes by universal flexures. Axial force was measure by two series-mounted load cells attached to the thrust abutment and the engine pylon by universal flexures which permitted forces to be transmitted only along the longitudinal axis of the load cells.
- The propellant system (Fig. 22) utilized for this test program included primary (1500 gal) oxidizer and fuel supply tanks, a gaseous nitrogen pressurization system, and the required valves and fittings. Gaseous nitrogen systems were also provided for both TCA and GG injector purging and propellant valve actuation. Mater for TCA cooling was provided by a high-pressure supply system (Fig. 22) utilizing a 1000-gal tank pressurised by gaseous nitrogen. Control of both propellant and cooling water flow to the TCA and GG was obtained by the use of automatic preset pressure regulators in the tank pressurization systems.

a. Side View

b. Closeup View

Pigure 21. Test Cell Installation

Migure 22 . Propellant and Water Supply System Schemation, J-2 rell, 4302 (Reproduced from vet. 25)

INSTRUMENTATION

And the world of the Service of the

Instrumentation was provided to obtain measurements of axial thrust, (0) TCA and GG combustion chamber and injector pressures, nozzle outer wall and base pressures, test cell pressures, nozzle base plate temperatures, GG combustion temperatures, propellant and cooling water flow rates, and propellant and cooling water system pressures and temperatures. Visual monitoring of the testing was provided by closed-circuit television and motion-picture cameras. Table 1 presents transducer ranges, recording systems used for primary data acquisition, and estimated measurement accuracies for the AEDC test program. For the sea level test program instrumentation ranges and accuracies were similar. However, all performance and base heating parameters (chamber pressures, flow rates, nozzle and base pressures, thrust, and response temperatures were recorded by a Beckman model 210 digital data acquisition system and reduced by computer program. Location of TCA and CC instrumentation is shown in Figs. 23, 24, 25 and 26. Location of water and propellant system instrumentation is shown in Fig. 18 and 22 .

Force Keasurement

Altitude Testing. Axial thrust was measured using two dual-output strain-gage-type load cells mounted in series having ranges from 0 to 10,000 log an . to 20,000 lbg, respectively. Primary data recordings of the load cell outputs were in frequency form on magnetic tape. Calibration of the thrust measuring system was accomplished by a remotely controlled dealweight calibrator. The accuracy of the thrust calibrator was determined by comparison to a National Bureau of Standards certified standard to be within 0.2 percent. Overall thrust measurement accuracy is estimated to be within 1.0 percent.

TABLE 1
PRIMARY DATA ACQUISITION SYSTEMS

(Reproduced From Ref. 25)

		remove from Est. 201		
Parameter	Trans Mear Ruige	Data Conditioning	Recorder	Estimated Accuracy
Ferce, ing Axial	0-°7,000	Analog-to-Frequency Converter	Magnetic Tape	±1.0 percent
Pressure, pais				
TCA Combustion Chamber	0-300	Analog-to-Frequency Converter	Magnetic Tape	±0.5 percent
GG Combustion Chember	0-500	!	1 1	
Test Call Main Oxidizer Tank	0-15 0-750)	1 1	
Main Fuel Tank	9-730	i i	1 1 I	
Secondary Oxidizer Tank	1 1	1 1 .	1 1	
Secondary Fuel Tank	1 1	l l	1 1	
Water Tank	9-1500	 	} {	i 1 1
TCA Oxidizer Supply Line	0-750	Analog-to-Digital Commutator	1 1	1 1
TCA Fuel Supply Line			1 1	
GG Oxidizer Supply	(i i	1 1	1 1
GG Fuel Supply Line	1 1 1	į į	1 1	1 1 1
GG 'midizer Injector Inlet	1 1		i (1 1 1
GG Fuel Injector Inlet	8-500		! •	1 1
GG Oxidizer Injector	1 1	i i	ł Į	1 1 !
GG Fuel Injector	1 1 .	1	1 1	
TCA Oxidizer Injector	1		1 1	1 1
TCA Fuel Injector Noszle Base	0-25		l' ł	1 1
Nonzie Outer Wall	P A		}	}
TCA Oxidizer Purge	0-300	Direct	Recording Nu. Balance	±2.0 percent
TCA Fuel Purge	י שייי ו		Potentioneter	
GG Oxidiser Purge	1 1	l l		1 1 1
GG Fuel Purge	(()		! !	1 + 1
TCA Water Inlet	0-1500	Analog-to-Digital Commutator	Magnetic Tape	±0,5 percent
TCA Inser Water Outlet	[]	1	1 1	
TCA Outer Water Outlet	1 1	1	l 1	1 1
Flow Sensor Statis	0-20	•) }
Pressure Differential, paid	l	·	i .	:
TCA Water Inner Orifice	0-300	Analog-to-Frequency Converter	Magnetic Tape	±0,5 percent
TCA Vister Outer Orlice	1 1		l t	i
Flow Sensor Upstream	±3 .	Analog-to-Digital Commutator		
Flow Sensor Downstream	±3	Analog-to-Digital Commutator	,	
Flow Rate, 1bm/sec	1			
TCA Oxidizer	5-45	Direct	Magnetic Tepe	±1.0 percent
TCA Fuel	3-27	1	lea diamin	
GG Oxidiser			Computed from	±3.0 percent
GG Fuel TCA Water	30-170	Direct	Pressure Deta Magnetic Tape	#1.0 percent
	1 30-1/0	OT CO.		
Temperature, *F			Manage #===	±1°W
TCA Oxidiser	0-200	Analog-to-Frequency Converter	Magnetic Tape	***
TCA Fuel	i i	l l	l i	
GG Oxidizer GG Foel	1 1	1 .	1 1	1 1
TCA Water Inlet	1 1	ł 1	1 1	1 1
TCA Inner Water Outlet	1 1	l i	1 1	!
TCA Outer Water Outlet	1 1	1	1 1	(1
GG Combustion Gas	0-2000	Analog-te-Digital Commutator	j j	14 CFF
Nousie hase Pinte	0-2000	Analog-to-Digital Commutator	, ·	#3°F
Valve Position	!]		1
TCA Oxidizer	Open-Clove	Direct	Light-Stam	
TCA Puel)]	1	Oscillograph	
GG Oxidirer	1 1	1 1	1 1	
GG Fuel	j t	;	, ,	
Time, sec			Light-Beam	±0.002 sec
	I	1	Oscillograph	

gure 23. Thrust Chamber Assembly Instrumentation

Hom AA Outer Throat Section L. A.
Figure 24. Outer Nossle Instrumentation

おから からから からの 中間 丁丁

TO THE PROPERTY OF THE PROPERT

Figure 25. Base Plate Instrumentation

Figure 26. Gas Generator Instrumentation

THE PARTY OF THE P

(U) Sea Lovel Testing. Thrust was measured using a Baldwin bonded strain gage, load cell rated at 20,000 lb. Calibration of the thrust measuring system was accomplished by hydraulically loading the system and comparing measurements with an in-line, strain gage type thrust ring. The thrust ring was calibrated at the NBS and certified to have a precision of .0.1 percent. Overall precision of the thrust measurement and recording system was determined from periodic calibrations during the testing to be _0.7 percent.

Pressure Measurements, Altitude and Sea Level Testing

- type transducers having ranges from 0 to 300 and 0 to 500 psia, respectively.

 Nozzle base (Fig. 23) pressures were sensed by the same type of transducers having ranges from 0 to 25 psia. Test cell pressures were sensed by bonded strain-gage-type transducers with ranges from 0 to 15 and 0 to 20 psia. Propellant and water system pressures were sensed by strain-gage-type transducers having various ranges (Table 1). Sensing of TCA and GG injector pressures was by 0- to 500-psia, strain-gage-type transducers. Primary data recordings of all pressure transducer outputs, with the exception of both TCA and GG purge pressure transducers, were on magnetic tape in either frequency or digital form. Recordings of the purge pressure transducer outputs were on strip charts (recording null-balance potentiometers).
- (U) All pressure transducers were calibrated under laboratory conditions by comparison to secondary standards. Preselected precision electrical resistances were used in the transducer circuitry to simulate applied pressures electrically. The pressure values thus simulated were determined by comparing the outputs of the resistance-shunted transducers with outputs obtained during the previous secondary standard calibrations. Prior to an actual firing, these same precision shunt resistances were used to obtain calibrations of each of the pressure data recording systems.

(U) The precision of pressure measurements obtained using electrical resistance calibrations of both the frequency and digital tape recording systems is estimated to be within 0.5 percent.

Flowrate Measurements

- (U) Altitude Testing. Propellant flowrates to the thrust chamber assembly were measured by dual-output, turbine-type flowreters. Two such flow-meters were installed in series in both the oxidizer and fuel supply lines to the TCA. Calibrations of the flowreters were obtained under laboratory conditions on a flow-calibration bench using water as the working fluid.
- (U) A flow calibration using water as the working fluid was made to determine the pressure drop-flowrate relationship for each secondary system. The pressure drop-flowrate functions thus determined were used with tank and GG combustion chamber pressure differentials to determine flowrates to the GG during the test firings.
- edged orifices were used to determine total cooling water flowrate and flowrates to the inner and outer sections of the TCA, respectively.

 Calibration of the water flowmeter was obtained in a laboratory flow calibration bench. The two orifices were individually calibrated in place using the flowmeter as a calibration standard. Pressure differentials across the orifices were sensed by 0- to 300-paid, strain-gage-type pressure transducers. Recording systems and calibration methods used with the orifice transducers were identical to those described previously.

(U) The precision of pressure measurements obtained using electrical resistance calibrations of both the frequency and digital tape recording systems is estimated to be within 0.5 percent.

Flourate Heasurements

- (U) Altitude Testing. Propellant flowrates to the thrust chamber assembly were measured by dual-output, turbine-type flowmeters. Two such flow-meters were installed in series in both the oxidizer and fuel supply lines to the TCA. Calibrations of the flowmeters were obtained under laboratory conditions on a flow-calibration bench using water as the working fluid.
- (U) A flow calibration using water as the working fluid was made to determine the pressure drop-flowrate relationship for each secondary system. The pressure drop-flowrate functions thus determined were used with tank and GG combustion chamber pressure differentials to determine flowrates to the GG during the test firings.
- (U) A single, dual-output, turbine-type flowmeter and two calibrated square-edged orifices were used to determine total cooling water flowrate and flowrates to the inner and outer sections of the TCA, respectively.

 Calibration of the water flowmeter was obtained in a laboratory flow calibration bench. The two orifices were individually calibrated in place using the flowmeter as a calibration standard. Pressure differentials across the orifices were sensed by 0- to 300-psid, strain-gage-type pressure transducers. Recording systems and calibration methods used with the orifice transducers were identical to those described previously.

- (U) Primary data recordings of all flowmeter outputs were in frequency form on magnetic tape. The flowmeter data recording systems were calibrated by applying input signals of known frequency. Overall measurement accuracies of the secondary propellant flow data and the orifice water flow data are estimated to be within 3.0 percent.
- (U) Sea Level Testing. Primary and secondary propellant and coolant water flowrates were measured with single, Fisher-Porter turbine type flowmeters. Because of the low flowrate in the secondary oxidizer feed system, this meter was calibrated using N_2O_4 . All other flowmeters were calibrated with water. The water calibrations were corrected by the viscosity ratio of water to propellant to make the calibrations applicable for the respective propellant.
- (U) The precision of the propellant flowmeters was determined from periodic calibration to be *0.25 percent. The precision of the water flowmeter is within 2.0 percent (manufacturer's certification).

Temperature Measurements. Altitude and Sea Level Tenting

(U) Fuel, exidizer, and water temperatures were measured by immersion-type resistance temperature transducers (RTT) located as shown in Figs. 18 and 22. Nozzle base plate temperatures were sensed by thermocouples attached to the base plate at locations shown in Fig. 25. GG combustion gas temperatures were measured by thermocouple probes as shown in Fig. 26. Primary recordings of the temperature sensor data were in either frequency or digital form on magnetic tape. Calibration of the RTT recording systems and spanning of the thermocuple recording systems were obtained electrically. Estimated overall measurement accuracies of fluid temperature data are _IF. Nozzle base, plate and GG gas temperature accuracies are _40F.

Miscellaneous

- (U) Altitude Testing. A pitot-st tic flow sensor was installed near the TCA to determine direction and magnitude of any external flow field that might influence nozzle performance. This flow sensor used a O- to 15-psia, strain-gage-type transducer which measured local static pressure and two similar *3-psid transducers which measured the difference between the static pressure and the total pressure in two directions parallel to the longitudinal axis of the TCA. Data recording and calibrations of the flow sensor instrumentation were identical to those described previously.
- (U) Indications of propellant valve functions required for TCA and CG operation were recorded on light-beam oscillographs. Oscillographs were also used for redundant recording of primary data and for time correlation. Strip charts were used to monitor the firings and to provide immediate access data. Events in the test cell during the firings were monitored by a closed-circuit television system and recorded by five 16-mm. motion picture cameras using color film.

- (U) See Level Testing. The uncooled thrust chamber was instrumented with three photocoms for the first five firings and with five photocoms for the last five firings (Fig. 27). Photocom output was recorded on light-beam oscillographs and high speed tape with a frequency resolution of approximately 15,000 cps.
- (U) Indications of valve functions were recorded on Easterline Angus recorders.

 Cacillographs and strip charts were used to record primary data for immediate access. Three 15-mm motion picture cameras provided visual records of the firings.

PROCEDURES

Sea Level Testing

- (U) Pro-test procedures consisted of system and hardware leak checks, calibration of instrumentation, and measurement of nozzle throat area.

 Nextle throat gap measurements were made at six or more locations around the throat circumference with a ball micrometer.
- (U) The propellant and water supply tank were pressurized. Coolant water flow was initiated manually and the flowrate observed on a strip chart. When adequate water flow was achieved, the automatic fixing sequencer was activated. This sequencer controlled primary purges, all propellant valves, and the recording system. Venting of the water tank, closing the water valve, and post-fire purging of the GG were performed manually. Posttest calibrations, inspection of the hardware and measurement of the throat area were then performed.

a. Pland View of Injector Figure 27. Photocom Locations on the Uncooled Acrosytic Thrust Chamber

Altitude Testing

- (U) The test program consisted of four test periods with three to nine
 TCA firings conducted at either transient or constant pressure altitude
 conditions during each test period.
- (U) Pre-test procedures, including electrical and mechanical checks of all test hardware, measurement of the nozzle throat area and static leakage checks of the propellant and water-supply systems, the thrust chamber assembly, and the gas generator, were conducted prior to each test period. The propellant tanks were loaded, and samples were taken from the primary tanks and analyzed to determine propellant specific gravity variations with temperature and to determine that the propellants met applicable specifications. The test cell hatch was closed, and pre-test instrumentation calibrations were performed at atmospheric pressure.

 The test cell was then evacuated to a pressure of approximately 0.5 psia by the facility exhausters, and pre-test instrumentation calibrations were repeated. Propellant, water, and steam system bleed-ins were accomplished at pressure altitude conditions.
- (U) For each of the firings requiring test cell pressure transients, the primary exhaust duct was valved off, and the proper orifice was positioned at the inlet to the secondary exhaust duct. The steam inbleed system valve controller was positioned so that when the steam inbleed valve was opened at TCA ignition, the required flow rate of steam would enter the test cell. Test cell pressure was set at the required pre-firing level using the facility exhausters. The propellant water, and steam systems were then pressurized.

- (U) The final 60 seconds of the firing countdown was performed automatically by an electrical sequencer which activated all firing systems started the recording instrumentation, initiated cooling water flow to the TCA, initiated nitrogen purges through both the TCA and GG injectors, and sequenced both TCA and GG propellant valves to fire the engine for the prescribed firing duration. A typical sequence of major events is shown in Fig. 28 for a nine second firing with the GG shutdown two seconds before the main engine.
- (U) The firings requiring a constant test cell pressure were conducted in the same manner, except that the primary exhaust system was not valved off and steam was not incled into the test cell.
- (U) At the completion of each test period, instrumentation calibrations were again performed at low test cell pressure. The test cell was vented to atmospheric pressure, and posttest atmospheric pressure calibrations were taken. Posttest procedures including measurement of the nozzle throat area were then performed on the test article.

Data Reduction

(U) For the sea level testing all data necessary for determining engine performance (except for propellent temperature and pressure, which were recorded on direct inking graphic recorders) were recorded in digital form on tape using a Beckman 210 system. These data, with the proper calibration adjustments, were reduced to engineering quantities and units by a computer program. The data was printed out in 0.01-necond intervals. Approximately fourteen 0.01-second interval data points were used to obtain 0.5 second average data. Flowrates were printed out in open and reduced to lbs/sec by hard.

Figure 28 . Aerocpike Engine Operating Sequence

CHOLASSMED

- (U) For the altitude testing, all data recorded in frequency form on magnetic tape were translated into digital form. The digital-form data thus obtained and the data originally recorded in digital form on magnetic tape were reduced to standard engineering units and tabulated by a digital computer at 0.1-second intervals for each firing. The computer was also programmed to use the measured data to compute average TCA and GG performance parameters over 0.1- and 0.5-second intervals for each firing. The performance parameters computed by this program were not used for the final performance computations, but were used for preliminary interpretation of engine performance and operating characteristics.
- (U) Basic engineering data (propellant flows, ambient pressure, chamber and base pressures, temperatures, throat areas, and thrust) from both sea level and altitude test series were supplied to a computer program which computed, tabulated and plotted pertinent performance parameters averaged over 0.5—second intervals.

TESTING SUMMARY

(U) The basic objective of this test program was to demonstrate the performance of an aerospike nozzle over a range of altitude from sea level to design altitude and to determine the influence of secondary flowrate and properties on performance over this same altitude range. In achieving this objective, testing activity was divided into four main areas: (1) a large number of gas generator tests were accomplished to determine operating characteristics over a range of flowrates and mixture ratios, (2) uncooled thrust chamber testing was conducted to evaluate primary injector performance prior to its use in the water cooled hardware and to establish test procedures, (3) sea level testing with water cooled hardware was conducted to establish engine operating characteristics, to uncover and correct engine structural deficiencies and to obtain performance data, and (4) tests were conducted over

CONTRACTION

a pressure ratio range from approximately 350 to 40 at AFDC to determine nozzle performance. The chronological sequence of the test activity is shown in Fig. 29. A description of the testing accomplished and operational difficulties is presented.

Gas Generator Tests

- (U) During April and May 1965, 33 gas generator firings (13 low flowrate and 20 high flowrate) were conducted. The objectives of the gas generator testing program weres (1) establish propellant valve sequencing and special operating procedures, (2) determine injector and overall pressure losses, (3) determine C* efficiencies and combustion gas temperature over a broad range of mixture ratios and propellant flowrates, and (4) demonstrate the feasibility of 19-second duration gas generator firings at a chamber pressure of 400 psia and a gas temperature of approximately 1800°F.
- (U) All objectives of the test program were met and the hardware was in good condition after 33 tests. Test results are summarized in Table 2.

Uncooled Thrust Chamber Tests

- (U) The objective of the uncooled hardware test program was primarily to conduct short duration (to 0.8 second) sea level tests to obtain a stable injector with reasonable performance for use in obtaining performance data with the longer duration cooled hurdware.
- (c) Five tests were conducted using Injector No. 1 with the uncooled aerodynamic spike engine. The tests covered a range of chamber pressures from 293 to 507 psia and a mixture ratio range of 1.63 to 1.94. These variations were purposely imposed to insure stability over a wide range of potential operating conditions. High-frequency

-	\$2 4		<u>- 4-</u> 4		•	············		_ 					ier Base Conflgurations Hardware Demnee, Progrem Concluded
-	7							-	3				-ŭ
+	-		. <u></u>				}	_ _	ğ		L		Progra
+	*					, , , , , , , , , , , , , , , , , , , 	{	7-			 :	Domtur.	Test New Base Configurations Handware Demoge, Progra
	4			<i>y</i>			a		i — —			§ —	se Con
ľ	×					Operation	•	Nater Leaks, nours	ก้			Facility 	est Bas
	*					Oper						E	est 🗵
	6					Stable							
	А			g _	x -	<i>5</i> 3							
	M			Operation	Unstable Operation	8			·				
	0			전 이 -	व्य व								
	Ø	\$		Unstable	nstab						·		
	4	[d 8 0)		5	5						. <u> </u>		
1965	79	Program Complete			•						·		
	5	Æ		(1)		 :							
	=		 										
_	_								······································				
SIVO	TEST DESCRIPTION	33 GG fests	Uncooled Chamber	5 Tests, Injector 1	1 Test, Injector 1-A	4 Tests, Injector 2	Cooled Chamber, Ses Level	6 Tests	4 Tests	Cooled Chamber, Altitude	3 Tests	14 Tests	5 Tests
<u></u>	E4	1 "				TU	W Lay	Ų	AL				

Figure 29 . Hot-Firing Test Schedule - 12 Isvent Length Asrospike

MCEASSHED

The section of the section

The Marie and the same

13				IABLE 2	OAS GEN	gas generator test s	SUMMARY	2	CONPIDENTIAL
444 0.007	Test	Po psia	Mixture Ratio	Mc*	*Comb. Temp. 1 deg F	*Comb. Temp. 2 deg F	Duration Seconds	6.6. Type	(1b /sec)
444 0.007									
444 0.007 2.23 449 0.109 90.9 2.23 449 0.108 89.5 2.23 534 0.068 85.5 2.23 534 0.068 87.5 2.23 450 0.105 89.0 11880 3.24 450 0.105 89.0 1750 3.23 253 0.016 89.0 1750 3.24 254 0.005 89.0 1760 3.23 255 0.007 89.0 1760 3.23 256 0.006 80.5 3.23 3.09 257 0.007 80.5 3.23 3.09 258 0.008 80.5 3.09 3.09 259 0.009 85.8 10.00 3.09 250 0.009 85.8 1	ឧ	:	:	!	1	1	1	1.5*	1
489 0.062 2.22 449 0.109 89.2 2.24 447 0.084 89.2 2.24 450 0.108 87.5 3.26 450 0.108 87.0 3.26 450 0.105 89.0 1750 3.26 450 0.105 89.0 1750 3.26 357 0.005 89.0 1750 3.26 455 0.073 86.5 3.27 3.26 455 0.073 86.5 3.26 3.31 455 0.073 86.5 3.37 455 0.073 86.5 3.26 455 0.073 87.7 3.27 455 0.073 89.8 2.22 475 0.084 80.5 2.22	14	777	0.077	1	1	1	,	15	0.50
449 0.109 90.9 2.23 534 0.068 89.2 2.23 450 0.108 89.0 1880 2.23 450 0.119 89.0 1880 3.26 450 0.105 89.0 1750 3.27 357 0.105 89.0 1750 3.27 357 0.105 89.0 1750 3.27 455 0.076 86.5 3.29 3.27 455 0.076 86.5 3.27 3.27 455 0.076 86.5 3.29 3.29 455 0.076 86.5 3.29 3.29 459 0.050 80.5 2.25 3.29 465 0.060 80.5 2.25 3.29 476 0.073 87.8 1650 10.75 3.17	23	687	0.062	!	1		2.23	1 5	727
417 0.084 89.2 2.23 450 0.108 87.5 3.27 450 0.119 89.0 1750 3.27 253 0.015 89.0 1750 3.26 357 0.011 89.0 1750 3.27 358 0.076 86.5 1620 3.31 358 0.076 86.5 3.31 465 0.076 86.5 3.31 465 0.069 80.5 3.31 465 0.073 36.7 3.31 465 0.089 80.5 3.09 465 0.087 35.7 3.09 465 0.087 35.7 3.09 465 0.087 89.8 150 3.09 469 0.087 89.8 2.25	16	6777	0.109	6.06	1	•	2.2%	2 2	070.0
534 0.068 85.5 3.26 461 0.108 87.9 3.26 253 0.018 87.9 3.27 314 0.018 86.5 1620 3.27 357 0.011 89.0 1750 3.27 357 0.073 54.1 3.29 455 0.073 78.6 3.39 455 0.073 78.6 3.39 455 0.073 78.6 3.39 455 0.073 78.6 3.39 455 0.050 80.5 2.25 465 0.057 89.8 3.39 465 0.057 89.8 2.25 475 0.057 89.8 2.25 476 0.057 89.8 10.0 10.0 10.0		177	0.034	89.2	•		2, 23	1 5	3 5
461 0.108 87.9 3.26 450 0.119 89.0 1880 3.26 253 0.015 89.0 1750 3.30 374 0.011 89.0 1760 3.26 363 0.073 89.0 1760 3.30 465 0.073 50.5 3.31 465 0.073 35.7 2.25 465 0.060 80.5 2.25 465 0.073 35.7 3.09 476 0.087 94.8 1560 3.09 446 0.087 94.0 1076 3.17 446 0.095 85.8 1175 1075 3.17 446 0.006 85.8 1175 1076 3.17 446 0.007 85.8 1175 1076 3.17 446 0.006 87.8	82	39.6	990.0	85.5	•	•	35	¥ .	2,2,2
450 0.119 89.0 1880 3.27 314 0.105 89.0 1750 3.28 357 0.105 89.0 1750 3.29 358 0.076 54.1 3.31 359 0.076 54.1 3.31 465 0.059 78.6 710 3.09 465 0.060 80.5 1265 3.09 475 0.087 89.8 1260 3.09 475 0.087 89.8 1660 3.09 475 0.085 87.8 1070 3.17 476 0.085 87.8 1070 3.17 476 0.085 87.8 1070 3.17 476 0.085 87.8 1660 3.17 471 0.086 89.5 1719 1620 3.17 471 0.096 89.5 1719 1620 3.17 472 0.095 92.0 1770 1620 3.17 473 0.095 89.5 1779 1620 3.17 474 0.096 89.5 1779 1620 3.17 475 0.097 89.6 1779 1620 3.17 476 0.097 89.7 1779 1620 3.17 477 1729 3.18	19	797	0.108	87.9	1		3.26	4 5	
253 0.105 89.0 1750 3.39 357 0.105 89.0 1760 3.39 358 0.0076 85.1 1.760 3.39 465 0.0073 50.5 1265 465 0.0059 80.5 1265 465 0.0059 80.5 1265 465 0.0057 89.8 1550 3.09 445 0.007 85.8 1175 1075 3.17 446 0.007 85.8 1175 1075 3.17 446 0.007 85.8 1175 1075 3.17 446 0.007 85.8 1175 1075 3.17 447 0.005 88.2 1650 1530 3.17 411 0.005 89.5 1719 1620 3.17 412 0.005 89.5 1719 1620 3.17 414 0.005 92.8 1747 1729 3.15 415 0.005 92.8 1747 1729 3.15	ଛ	720	0.119	89.0	1880	1	3,0		
314 C.084 86.5 1760 3.31 3.53 3.54 0.075 54.1 3.31 3.53 0.076 54.1 3.31 3.53 0.076 54.1 3.31 3.53 0.076 54.1 3.31 3.53 0.076 54.1 3.31 3.53 0.055 80.5 3.55 3.09 0.085 89.8 1560 1195 3.09 0.087 89.8 1560 1195 3.17 0.086 89.7 1175 1075 3.17 0.086 89.7 1175 1075 3.17 0.086 89.5 1719 1620 3.17 0.096 89.5 1719 1620 3.17 0.096 89.5 1719 1620 3.17 0.096 89.5 1719 1620 3.17 0.096 89.5 1719 1620 3.17 0.096 89.6 1719 1620 3.17 0.096 89.8 1719 1620 3.17 0.096 89.8 1719 1620 3.17 0.096 89.8 1719 1620 3.17 0.096 89.8 1719 1620 3.17 0.096 89.8 1719 1620 3.17 0.096 89.8 1719 1620 3.17 0.096 89.8 1719 1620 3.17 0.096 87.8 1719 1620 3.17 0.096 87.8 1719 1620 3.17 0.096 87.8 1719 1729 3.17 0.096 87.8 1719 1729 3.17 0.096 87.8 1719 1729 3.17 0.096 87.8 1719 1729 3.17 0.096 87.8 1719 1729 3.15	ನ	253	0,105	89.0	1750	1	2.4	4 5	70.2
357 0.111 89.0 1760 3.31 355 0.076 54.1 710 3.09 3.31 355 0.077 50.5 710 3.09 3.31 355 0.077 50.5 710 3.09 3.09 218 0.059 80.5 1265 3.09 3.09 3.09 6.057 85.8 1560 1195 3.17 6.050 85.8 1175 1075 3.17 6.050 85.8 1175 1075 3.17 6.050 85.8 1175 1075 3.17 6.050 85.8 1650 1530 3.17 6.050 85.8 1650 1530 3.17 6.050 85.8 1650 1530 3.17 6.050 85.8 1650 1530 3.17 6.050 85.8 1650 1530 3.17 6.050 85.8 1650 1530 3.17 6.050 85.8 1650 1530 3.17 6.050 85.8 1650 1530 3.17 6.050 85.8 1650 1530 3.17 6.050 85.8 1650 1530 3.17 6.050 85.8 1719 1620 3.17 6.050 85.8 1719 1620 3.17 6.050 85.8 1719 1620 3.17 6.050 85.8 1719 1620 3.17 6.050 85.8 1719 1620 3.17 6.050 85.8 1719 1620 3.17 6.050 85.8 1710 1729 3.15 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 85.8 1720 8720 3.17 6.050 8720 8720 8720 8720 8720 8720 8720 872	22	716	0.084	86.5	3,620	1 1	200	1	CT or
363 0.076 54.1 355 0.073 50.5 465 0.073 70.5 465 0.060 80.5 465 0.060 80.5 469 0.063 35.7 469 0.087 89.8 469 0.087 89.8 469 0.087 89.8 470 0.087 85.8 470 0.070 85.8 470 0.070 85.8 471 0.070 85.8 471 0.070 85.8 471 0.070 85.8 471 0.070 85.8 471 0.070 85.8 471 0.070 87.8 471 0.070 87.8 472 0.070 87.9 473 0.070 87.9 474 0.070 87.9 475 36.9 3.17 476 0.070 3.17 476 0.070 3.17 476 0.070 3	33	343	ונויט	S C	0761	1	7.67	a !	9;
355 0.073 78.6 710 3.09 455 0.050 78.6 1265 3.09 459 0.053 35.7 2.25 459 0.063 35.7 3.09 492 0.085 89.8 1640 3.09 469 0.067 89.8 1530 3.17 446 0.067 85.8 1175 1075 3.17 446 0.070 85.8 1175 1075 3.17 446 0.070 85.8 1175 1075 3.17 234 0.075 85.8 1175 1075 3.17 246 0.076 87.8 1650 1530 3.17 241 0.085 87.8 1650 1530 3.17 241 0.096 87.5 1719 1620 3.17 241 0.096 87.5 1747 1729 3.17 241 0.096 92.8 1747 1729 3.18	12	363	0.076	2,75	3 1) (7.7	1	79-7
455 0.059 78.6 1265 3.09 218 0.053 35.7 1265 3.09 218 0.053 35.7 1560 3.09 22 0.087 89.8 1530 3.09 24,5 0.087 85.8 1175 1075 3.17 24,6 0.085 89.5 1175 1075 3.17 24,6 0.085 89.5 1179 1620 3.17 24,1 0.085 89.5 1719 1620 3.17 24,1 0.096 89.5 1719 1620 3.17 24,1 0.096 89.5 1719 1620 3.17 25,1 0.097 92.8 1177 1620 3.17 26,0 0.097 92.8 1177 1729 3.15 27,0 0.095 92.8 1777 1729 3.15 27,0 0.095 92.8 1777 1729 3.15	, K	356	2000	1 2	J	1 6	7.7	±!	2.72
459 0.060 80.5 1265 3.09 218 0.053 35.7 1660 3.09 459 0.087 89.8 1530 3.09 445 0.087 89.8 1530 3.09 445 0.087 85.8 1070 3.17 446 0.070 85.8 1175 1070 3.17 446 0.070 85.8 1175 1075 3.17 246 0.070 85.8 1175 1075 3.17 246 0.085 87.8 1650 1530 3.17 241 0.085 87.8 1650 1530 3.17 241 0.095 89.5 1719 1620 3.17 241 0.096 89.5 1779 1729 3.17 241 0.097 43.6 1729 3.17 242 0.096 89.5 1747 1729 3.17 244 0.096 92.8 1747 1729 3.17 <td>3%</td> <td>(4)</td> <td>0.00</td> <td>200</td> <td>8 (</td> <td>07.</td> <td>3.09</td> <td>当!</td> <td>2.83</td>	3%	(4)	0.00	200	8 (07.	3.09	当!	2.83
218 0.053 35.7 350 3.09 469 0.087 89.8 1640 3.09 446 0.087 85.8 1175 1070 3.17 446 0.085 88.8 1175 1075 3.17 224 0.085 88.2 1660 3.17 224 0.085 88.2 1660 3.17 224 0.085 88.3 1650 1630 3.17 225 0.085 88.5 1779 1620 3.17 226 0.085 89.5 1779 1620 3.17 227 0.086 89.5 1779 1620 3.17 228 0.096 89.5 1779 1620 3.17 229 0.097 99.2 200 3.17 221 0.096 92.8 1747 1729 3.08 220 0.096 92.8 1747 1729 3.18 221 0.096 92.8 1747 1729 3.18		647	300	, v) ;	770	4.45	ž į	2.40
22 0.087 89.8 1530 3.09 469 0.087 89.8 1530 3.09 469 0.087 85.8 1175 1070 3.17 446 0.070 85.8 1175 1075 3.17 246 0.070 85.8 1175 1070 3.17 224 0.086 80.7 940 850 3.17 224 0.052 69.1 495 530 3.17 226 0.085 87.8 1650 1650 3.17 221 0.096 89.5 1779 1620 3.17 221 0.057 39.2 20 3.17 221 0.096 92.8 1747 1729 3.08 221 0.096 92.8 1747 1729 3.08 221 0.096 92.8 1747 1729 3.08 221 0.085 93.0 1776 1729 3.17	i č	36	250	3 6	:	2027	70.0		2.32
469 0.067 89.8 1530 3.09 469 0.065 82.4 990 1070 3.17 446 0.070 85.8 1175 1075 3.17 224 0.052 69.1 495 530 3.17 234 0.052 69.1 495 530 3.17 226 0.052 69.1 495 530 3.17 227 0.085 87.8 1650 1650 3.17 221 0.096 89.5 1719 1620 3.17 221 0.096 89.5 1779 1630 3.17 221 0.057 39.2 3.08 221 0.096 92.8 1747 1729 3.08 221 0.096 92.8 1747 1729 3.18 221 0.085 93.0 1776 1729 3.18	3 8	207	185		•	250	88	台	2.51
4.5 0.104 90.5 1530 3.09 4.5 0.055 82.4 990 1070 3.17 4.6 0.055 85.8 1175 1075 3.17 4.6 0.070 85.8 1175 1075 3.17 234 0.086 80.7 495 530 3.17 245 69.1 495 530 3.17 246 0.085 87.8 1650 1650 3.17 241 0.096 89.5 1719 1620 3.17 221 0.096 89.5 1779 1620 3.17 221 0.057 39.2 3.08 221 0.096 92.8 1747 1729 3.08 221 0.096 92.8 1747 1729 3.15 221 0.085 93.0 1736 3.15 221 0.085 93.0 1726 3.15 222 0.085 93.0 1726 3.15	` `	277	250	1000) 	Otor	33	H	8
44.5 0.104 940.5 1195 3.17 459 0.055 82.4 990 1070 3.17 446 0.070 85.8 1175 1075 3.17 294 0.086 80.7 940 850 3.17 294 0.052 69.1 495 530 3.17 246 0.052 69.1 495 530 3.17 246 0.085 87.8 1650 1650 3.17 241 0.085 89.5 1719 1620 3.17 211 0.096 89.5 1719 1620 3.17 221 0.057 39.2 220 3.17 221 0.096 92.8 1747 1729 3.08 414 0.085 93.0 1776 1729 3.18 414 0.085 92.0 1776 1720 3.18	3,5	407	2000	87.8	1 1	1530	3.89	HF	2.10
459 0.055 82.4 990 1070 3.17 446 0.070 85.8 1175 1075 3.17 212 0.086 80.7 940 850 3.17 294 0.052 69.1 495 530 3.17 246 0.052 69.1 495 530 3.17 246 0.085 87.8 1650 1650 3.17 211 0.096 89.5 1719 1620 3.17 221 0.057 39.2 1690 3.17 221 0.057 39.2 1729 3.08 410 0.096 92.8 1747 1729 3.15 414 0.085 93.0 1736 3.17	ત ફ	45	0.104	90.5	1650	1195	3.17	当	0.601
459 0.055 82.4 990 1070 3.17 446 0.070 85.8 1175 1075 3.17 312 0.086 80.7 940 850 3.17 234 0.085 89.1 495 530 3.17 236 0.085 87.8 1650 1530 3.17 241 0.085 89.5 1779 1620 3.17 211 0.096 89.5 1779 1620 3.17 221 0.057 39.2 220 3.17 221 0.057 39.2 220 3.17 221 0.096 92.8 1747 1729 3.08 221 0.096 92.8 1747 1729 3.15 221 0.096 92.8 1747 1729 3.15	X	1	1	1			;	1	1
446 0.070 85.8 1175 1075 3.17 312 0.086 80.7 940 850 3.17 294 0.052 69.1 495 530 3.17 431 0.085 87.8 1650 1530 3.17 226 0.085 87.8 1650 1530 3.17 231 0.095 43.6 375 365 3.17 221 0.057 39.2 220 3.17 221 0.057 39.2 3.17 221 0.056 92.8 1747 1729 3.18 414 0.085 92.0 1736 1729 3.15	£ ;	627	0.055	82.4	8	1070	3.17	ង	0.691
312 0.086 80.7 940 850 3.17 294 0.052 69.1 495 530 3.17 431 0.080 88.2 1660 1660 3.17 226 0.085 87.8 1650 1530 3.17 211 0.096 89.5 1719 1620 3.17 231 0.052 43.6 375 365 3.17 221 0.057 39.2 220 3.17 410 0.096 92.8 1747 1729 3.18 414 0.085 93.0 1736 1729 3.15	*	9777	0.070	85.8	1175	1075	3.17		0.641
294 0.052 69.1 495 530 3.17 431 0.080 88.2 1660 1660 3.17 246 0.085 87.8 1650 1530 3.17 411 0.091 91.0 1690 3.17 211 0.096 89.5 1719 1620 3.17 231 0.057 39.2 220 3.17 414 0.085 92.8 1747 1729 3.18 414 0.085 93.0 1736 1729	32	312	980.0	2008	076	850	3.17	ä	0.477
431 0.080 68.2 1660 1660 3.17 246 0.085 87.8 1650 1530 3.17 411 0.096 89.5 1719 1620 3.17 211 0.096 89.5 1719 1620 3.17 116 0.057 39.2 220 3.17 221 0.154 94.8 1840 1630 3.08 410 0.096 92.8 1747 1729 3.15 414 0.085 93.0 1736 1729 1736	፠	594	0.052	69.1	567	530	3.17	1.75	0.530
246 0.085 87.8 1650 1530 3.17 211 0.091 91.0 1690 3.17 211 0.096 89.5 1719 1620 3.17 231 0.057 39.2 320 221 0.154 94.8 1840 1630 3.08 414 0.085 93.0 1736 1729 3.15	33	431	0.080	58.2	1660	0991	3.17	EF	25.4
411 0.091 91.0 1690 3.17 211 0.096 89.5 1719 1620 3.17 231 0.052 43.6 375 365 3.17 116 0.057 39.2 320 3.17 221 0.154 94.8 1840 1630 3.08 410 0.096 92.8 1747 1729 3.15 414 0.085 93.0 1736 1740 11.57		276	0.085	87.8	1650	1530	3.17		14
211 0.096 89.5 1719 1620 3.17 231 0.052 43.6 375 365 3.17 116 0.057 39.2 320 3.17 221 0.154 94.8 1840 1630 3.08 410 0.096 92.8 1747 1729 3.15 414 0.085 93.0 1736 1729	33	17	0.091	92.0	.¦	1690	3.17	fl.	
231 0.052 43.6 375 365 3.17 116 0.057 39.2 320 3.17 221 0.154 94.8 1840 1630 3.08 410 0.096 92.8 1747 1729 3.15 414 0.085 93.0 1736 1749	9	211	960.0	89.5	1719	1620	3.17		77.
116 0.057 39.2 520 3.17 221 0.154 94.8 1840 1630 3.08 410 0.096 92.8 1747 1729 3.15 414 0.085 93.0 1736 1749 11.57	7	231	0.052	43.6	375	365	3.17	G. C.	5
221 0.154 94.8 1840 1630 3.08 410 0.096 92.8 1747 1729 3.15 414 0.085 93.0 1736 1749 11.57	7	911	0.057	39.2	1	220	3.17	i ii	3/1
414 0.085 93.0 1736 1729 3.15	3	221	0.154	8.76	1840	1630	3.08	i k	- :
414 0.085 93.0 1736 17.69 11.67	\$	770	960.0	92.8	1771	1729	3,15	Î	: ::
	45	77,7	0.085	93.0	1736	17.69	11.57		7

Low flowrate gas generator - IF High flowrate gas generator - HF

Thermocouples 1 and 2 are located approximately 1.25 inches and 0.25 inch from the 3.40 inch ID combustor wall, respectively.

UNCLOSIFE

oscillations (predominantly 2300 cps) were experienced during these initial tests. No hardware damage was sustained during any of the tests (Fig. 30). The injector was subsequently modified (designated 1A) and fired in the uncooled thrust chamber at a chamber pressure of 410 pair for 0.75 second. Low frequency (530 cps) pressure oscillations were present over the entire run duration. No hardware damage was sustained from this test.

- (U) Since the injector operating characteristics of Injector No. 1 did not meet the standards desired, a different injector pattern (designated Injector No. 2) was fabricated and tested.
- (C) Four tests were conducted with Injector No. 2 in the uncooled thrust chamber. All four tests with Injector No. 2 exhibited extremely stable operation over a wide range of chamber pressure and mixture ratio with essentially no chamber pressure oscillations (Fig. 31). The hardware was in excellent condition after the tests. A summary of the uncooled test series conducted during June and November of 1965 is shown in Table 3.

Cooled Thrust Chamber Tests at Sea Level

- (U) The objective of the water-cooled thrust champer test series was to demonstrate the durability of the hardware assembly and obtain sea level data. Tem firings were conducted at Bocketdyne and the results are summarized in Table 4.
- (C) The water-cooled thrust chamber was initially designed to operate at a chamber pressure of 500 pais and deliver a sea level thrust of approximately 10,000 pounds. However, during preliminary water blowdowns of the coolant system, it became apparent that the pressure grop required to supply the desired water flowrate was higher than theoretically estimated and above the normal capabilities of both the Rocketdyne and AEDC facilities selected

MOLENSAL IN

JANUER STREET

b. Close Up View

a. Front View

Figure 30. Condition of Uncooled Hardware After the Initial Five Firings

72

This page is Unclassified

A. Test 48, Injector No. 1

B. Test 64, Injector No. 2

Figure 31 Comparison of Photocon Records for Typical Tests with Injectors No. 1 and No. 2.

WICE DENTIFIED

SUCHARY OF INJECTOR CHECKOUT TESTS (Incooled Thrust Chember)

			(Uncooled Thrust Chamber)	ust Chamber		U	CONFIDERTIAL
			Oppreting Conditions	onditions		Stability	ग्रस
Injector Configuration	Date	Test Number	Chamber Preasure pata	Mixture Ratio	Duretion Seconds	Frequency ops	Amplitude psi
No. 1	59/61/9	3	293	1.63	0.51	1	1
•	6/22/65	43	201	1.74	0.55	2300	8
*	6/22/65	8	904	1.87	0.52	2300	8
-	6/23/65	6	414	1.71	0.40	2300	8
-	6/23/65	ß	507	₹.	0.47	2300	8
bo. 1-1	29/91/2	ک	C. 4	1.85	0.73	530	320
76. 2	11/10/65	3	238	1.43	0.50	Stable Operation	retion
N .	11/10/65	65	38	1.58	0.52	Stable Operation	retion
8	11/12/65	8.	453	8:1	0.58	Stable Operation	ration
~	11/12/65	29	418	1.89	0.74	Stable Operation	retton
		:					

EMAKANSAMAHA.

DRELASSIFIED

		ATER COOL	ED CHAMBER, SI	water cooled chamber, sea level test summax	SUPPLIET	8	COUPTDEATIAL
Run No.	Date	P.C. P.E.C.	Duration Seconds	w/w Percent	E.	84	ă
89Œ	12/20/65	00£-	0.5	o	-		21.9
RVG	12/22/85	% %	1.51	٥	1.75		29.2
1001	12/28/65	388	2.92	0	1.82	1	28.4
RDO1	1/4/66	396	2.02	0	1.73	1	28.7
RDOA	1/4/66	336	2.02	1.63	1.73	0.046	28.7
RD02	1/6/66	867	7.2	0	1.67	-	21.6
R002	1/6/66	299	7.2	6.10	1.67	0.263	21.6
RDOS	1/10/66	8	7.9	0	1.72	1	21.9
REO3	1/10/66	302	7.9	1.96	1.72	0.092	21.9
R103	1/10/66	305	7.9	0	1.72	.	21.9
RTOS	4/1/66	314	1.66	0	1.74	1	23.0
RTOG	4/1/66	321	5.16		1.84	1	23.5
RDCS	4,4/66	311	5.16	3.22	1.8	0.165	22.5
8008	4/4/66	31	5.16	0	8.	1	22.5
R003	4/4/66	314	8.17	8.8	1.87	0.162	22.8
RT09	4/4/66	314	8.17	0	1.87	1	22.8

HARTING MAHAD

DAGESTREE

to conduct the test program. The static ater pressure within the hardware would also have been higher than desirable with operation at 500 gain chamber pressure. The first series of hot-firing tests (No's. 68, 69, 71, and 01, Table 4), therefore, was planned to evaluate thrust chamber integrity and performance at a chamber pressure of 400 psis.

- (c) The first three firings were conducted with increasing durations up to three seconds. The gas generator was not used for these tests. Inspection of the hardware after the third test showed a slight discoloration above one of the 14 circumferential coolant slots of the inner throat and covering a 45-degree section of the throat. This indicated overheating suggested partial blockage of a 45-degree section of the circumferential coolant slot in the throat region.
- (C) The fourth test in the series (3DO1) was conducted at a chamber pressure of approximately 400 pair for a duration of 5 seconds. Posttest inspection of the injector and thrust chamber revealed no ha dware damage but a discoloration and slight "aniting" (~ 0.50-inch dismeter area) of the inner throat (Fig. 32). This occurred only on the same 45-degree section of the inner throat where a discoloration had been noted during the previous test.

 Because of this evidence of overheating and the limitation on increased coolant flow, the chamber pressure was decreased to 300 pair, while maintaining the same coclant flowrate, for succeeding tests. The gas generator was used during test RDO1; however, a very low mixture ratio was obtained and the gas generator "flamed out." The fifth and mixth tests (RDO2 and RDO3) were conducted with increasing duration and the gas generator was employed satisfactorily for these tests. Combustion stability was excellent for all tests.
- (C) Prior to conducting further tests, water leakage was noted. Upon disassembly and inspection, leakage was noted from braze joints in the inner and outer throat sections and in the outer casing. Prior to further testing, design

MUNSTEED.

Figure 72 . Condition of Inner Throat and Nozzle After Five Second Test at 400 psia. Chamber Pressure.

This This od

MEDITARIO

modifications and hardware rework were accomplished. Testing was resumed in April 1966, and the final four planned tests were conducted succerafully without incident. These tests were at a chamber pressure of approximately 515 pais, and with secondary flowrates of 0, 3.2, and 5.5 percent of primary flowrate.

(U) Because of the small changes in efficiency expected with secondary flow, it was desirable to operate with and without secondary flow during a single firing. This allows a comparison of the change in efficiency with the addition of secondary flow during a firing without dependence on knowing the absolute level of efficiency. Therefore, during the sea level testing, the sequencing of secondary flow was varied (Fig. 33) to establish the best method of obtaining data with and without secondary flow for a single test. It was determined that when secondary flow was initiated after several seconds of main engine operation, or was cut off several seconds prior to the completion of main engine operation, an accurate representation of performance changes was achieved. Based on the results achieved in the sea level test program, the test sequence selected for the altitude testing was eight to nine seconds duration primary thrust chamber firings with gas generator operation initiating simultaneously with the primary chamber and terminating 2 seconds before primary cutoff.

Water Cooled Hardware Tests at Altitude

(U) The primary objective of the altitude test program was to determine nozzle performance as a function of pressure ratio (PR), secondary gas flowrate, secondary gas mixture ratio, and secondary gas injection method (hase configuration). A secondary objective was the determination of nozzle base thermal environment.

CONTREASON FO

MOLASSIFIED

Ungeassate).

Monra 33 . Water Anlah ternerika Mant Commoder Comm

- (C) Twenty thrust chamber firings were achieved (Table 5) in four test
 periods (distinguished by the second letter in the test number). The
 test cell remained closed and evacuated to altitude conditions during
 a test period, hence, inspection of the hardware and throat area measure—
 ments between firings were not accomplished. The first sixteen thrust
 chember firings (AAO1 through AC2O) were conducted with a varying
 smhient-to-chamber pressure ratio and the final four firings (AC21 through
 AL2A) were conducted at a constant pressure ratio of approximately 350.
- (C) Figure 34 illustrates typical engine operation and the transients obtained for two 8 second mainstage duration firings with constant secondary flowrate (AGI3 and 15, $\hat{\mathbf{v}}_{p}/\hat{\mathbf{v}}_{p} = 3.0$ percent). Typically, two 8 second firings with constant secondary flowrate were used to cover a pressure ratio range from approximately 350 to 40. The GG firing was initiated simultaneously with the primary but was cut 2 seconds prior to primary thrust chamber cutoff.
- (C) The high altitude firing started above design pressure ratio and continued through the pressure ratio at which the nozzle base wake opens (PR≈150 to 180 with 0 to 5 percent V_g, respectively). Dueng the last two seconds, the GG was turned off to obtain zero secondary flow data.
- (6) The low altitude firing started with the nozzle operating in the open wake and continued through a pressure ratio of approximately 40. The GG was turned off 2 seconds before primary engine cutoff to obtain nozzle performance with ne secondary flow. However, because of the slew decay of secondary chamber pressure after GG cutoff, valid performance data could not be obtained during the final 2 seconds of any altitude test with secondary flow.

the company of the second second

TABLE 5 ALTITUDE TEST SUPMARY

			1	Prinary (combustion	Chamber	GG C	ombuation	Chumber	Test Col			
Test Period	Date	Firing	Firing Duration, sec	r _{cp} , peia	v pt lb_sec	MR ()	P _{cs} ' psia	ib /sec)(<u>—</u>)	Pamin psia	P _a nar paia		
44	6/30/66	1	2.9	280	25.3	1.70	-	0	-	0,42	1.85		
1		2	7.5	304	27.3	1.77	-	0	-	0:51	3.46		
		3	1	305	27.4	1.77	_	0	_	2.65	8.74		
AB	8/9/66	4	6	-	0	-	-	_	-	_	-		
		5		-	0	_	_	_	_	-	_		
		6]]	-	0	-	_ .	-	-	-	_		
		7	♦	-	0	- .	-	-	-	-			
		8	1.0	-	-	-	-	_	_	0.59	1.85		
		9	8.2	3 00	26.6	1.73	270	0.703	0.088	0.64	5.10		
		10		295	26.2	1.75	116	0.325	0.109	0.81	5.44		
		11		300	26.6	1.76	246	0.624	0.114	2.00	8.77		
		12		298	26.4	1.71	116	0.320	0.111	1.98	8.87		
AC .	8/17/66	13		307	27.1	1.67	147	0.834	0.111	0.46	3.45		
		14		304	26.8	1.79	249	1.34	0.118	0.48	3.35		
		15		307	26.8		151	0.823	0.114	1.96	8.00		
		16		305	26.7	1.71	251	1.33	0.117	2.00	8.25		
		17		306	26.8	1.73	145	0.828	0.096	1.96	8.51		
		18		305	26.6	1.73	144	0.817	0.097	0.57	3.75		
		19		307	26.8	1.75	151	0.792	0.176	0.55	3.36		
		20		306	26•8	1.74	154	0.794	0.174	1,98	7.83		
		21		306	26.7	1.72	153	0.803	0.113	Pave	- 0.88		
AD CA	9/19/66	22		306	26.8	1.66	-	-	-	-avg	0.83		
ļ		23		318	25.8	1.66	-	-			1.00		
		24		318	26.1	1.74	-	-	-		0.96		

Mainstage operation
 During firing duration

3.

During stabilized TCA and GG opera Shutdown caused by spurious signal safety circuit designed to initiat TCA cooling water outlet pressure

TABLE 5 ALMITUDE TEST SUPPLARY

CONFIDENTIAL

CONFIDENT												
on	Chamber	GG Combustion Chamber		Te	et Cell		Hosz.	le				
;) (—)	P _{cs} , psia	W _s , lb_/sec	ЖЖ (—)	Panin peia	P _{enax} psia	PR min	PR MACK (—)	w /w p percent	Remarks		
	1.70	_	0	-	0.42	1.85	150	406	0	TCA Checkout Firing		
	1.77	-	0	_	0,51	3.46	88	422	0	100 0100000 211226		
	1.77	_	0	_	2,65	8.74	35	93	o			
	-	_	-	_		-	-			GG Checkout Firing		
	-	-	_	_	_	 	_	_	_			
	-	-	_	_	_	_	_	_ ,	_			
	-	_	-	_	_	_	_	_	_			
	-	-	_	-	0,59	1./35	200	257	2.60	Premature Shutdown		
	1.73	270	0.703	0.088	0.64	5.10	65	360	2.64			
	1.75	116	0.325	0.109	0,81	5.44	60	284	1.23			
	1.76	246	0.624	0.114	2.00	8.77	39	143	2.34			
	1.71	116	0.320	0.111	1.98	8.37	39	133	1.22			
	1.67	147	0.834	0.111	0.46	3.45	103	532 ·	3.08			
j	1.79	249	1.34	0.118	0.48	3.39	100	512	5.01			
	1,68	151	0,823	0.114	1.96	8.00	44	154	3.05			
	1.71	251	1.35	0.117	2,00	8.28	42	146	4.96	Í		
	1.73	145	0.828	0.096	1.96	8.51	41	147	3.08			
	1.73	144	0.817	0.097	0.57	3.75	97	504	3.06			
	1.75	151	0.792	0.176	0.55	3.36	102	526	2.94			
1	1.74	154	0.794	0.174	1,98	7.83	44	146	2.90			
١	1.72	153	0.803	0.113	Paave	≈ 0.8 8	PR =	347	3.00	rGG Oxidizer Inlet Orifice		
	1.66	-	-	-	-avg	0.83		378	- 40	Plugged at Ignition		
	1.66	- [-	-		1.00		317	j -	Unstable TCA Combustion GG Drain Plug Lost at Ignition		
- 1	1.74	-	-	-		0.96		340	-	GG Drain Plug Off		

^{3.} During stabilized TCA and GG operation
4. Shutdown caused by spurious signal from automatic safety circuit designed to initiate shutdown on low TCA cooling water outlet pressure

GHATASALED

Pigure 34 . Typical Altitude Transient and Test Duration

CHNOLASSIFIED

- (U) The first firing (AAO1) was a 3-second checkout test with no secondary flow. Tests AAO2 and AAO3 were 7.4-second firings with no secondary flow over pressure ratios from 422 to 88 and 93 to 35, respectively. After these tests the engine was disassembled, inspected and reassembled with new seals and with the outer engine bolts reversed from the position shown in Fig. 7. With the hex nuts located on the aft end of the engine, checking of the bolt torque and tightening of the outer casing and throat were more easily accomplished. Throat area data from the sea level and altitude firings indicated that the outer throat was not adequately tightened when the nuts were torqued on the injector end of the engine. Relatively large (to 3.5 percent) increases in measured throat area were noted after a single engine firing for tests with the engine assembled in this manner, whereas relatively small decreases in throat area were noted for the assembly configuration used for tests ABOS through AD24. This will be discussed again in the presentation of test results.
- (U) The AB test series was to evaluate nozzle performance with 1 and 2 percent secondary flow using the low flowrate GG. Tests ABO4 through ABO7 were GG checkout firings to establish operating procedures. GG performance data was not obtained because of plugging of a ΔP control orifice in the oxidizer supply system. Fill times required for the oxidizer and fuel systems were approximately 7.5 and 0.4 seconds, respectively. Because of the large capacity of the feed system, the GG chamber pressure did not decay rapidly enough to establish zero secondary flow nozzle performance in the two second period between GG cutoff and primary engine cutoff.

BNGLASSHIPD

- (U) Test ABOS was a scheduled 8-second firing with 2.6 percent secondary flow which was prematurely shut down by an erroneous signal to a low coolant water pressure cutoff switch. Tests ABO9 and ABIO were 8-second duration tests covering the high slittude transient with approximately 2.6 and 1.2 percent secondary flow, respectively. Tests ABII and 12 were 8-second tests covering the low altitude transient with 2.35 and 1.2 percent secondary flow.
- (U) The AC series of tests investigated nozzle performance with secondary flowrates of 3 and 5 percent. The high flowrate GG injector and orifice were installed for this series. Tests AC13 through AC16 were 8-second transient altitude tests with 3 and 5 percent secondary flow and a GG mixture ratio of .11. These tests completed the series designed to evaluate the effect of secondary flowrate (O to 5 percent) at constant mixture ratio (> 0.1) on nozzle performance.
- (U) Tests AC17 through AC20 were transient altitude tests to investigate the effect of GG mixture ratio on performance at a constant secondary flowrate of 3 percent. GG mixture ratios of 0.096 and 0.175 were tested.

 The low mixture ratio obtained was (0.096) somewhat higher than intended (.08) because of difficulties in precisely controlling the small oxidizer flow.
- The last test in the series, AC21, was conducted at a constant pressure ratio of approximately 350. This test was with 3 percent secondary flow and a GG mixture ratio of O.1, identical to AC13 except for the constant altitude condition. Because the critical closed wake data was obtained over a very short (2 seconds) portion of meinstage operation, this test at constant altitude was conducted to provide more high altitude performance data. As will be shown later, excellent agreement was obtained between results for this test and the comparable transient altitude tests. The AG test series completed the planned program to evaluate secondary flow effects on performance.

TINGLASSIFIED

- (U) Eighteen constant altitude tests subsequent to the AC series were planmed. The tests were to evaluate the effect of lase configuration on nozzle; rformance and to provide additional high altitude data with various secondary flowrates. The first four tests were to evaluate a perforated base configuration (Fig. 14b) with secondary flowrates of 1, 2, and 3 percent. The remaining 14 tests were to be conducted with the open base and the modified (24 hole) flow diffuser (Fig. 14a) at constant pressure ratios of 300, 120 and 70 and secondary flowrates of 0, 1, 2, and 3 percent. However, operational difficulties were encountered during all three tests in the AD series and hardware demage was sustained precluding further testing.
- (U) Test AD22 was a constant altitude test (PR = 378) with approximately 1 percent secondary flow. Main tarast chamber operation was satisfactory; however, the GG exidizer inlet orifice plugged at start causing a reduced and unknown exidizer flowrate(GG flowrates determined from system pressure drop) and poor combustion ($\eta_{\text{CW}} \approx 30$ percent).
- (C) Combustion instability occurred in the primary combustion chamber during firing AD23. Propellant flowrate and mixture ratio for this firing were nominal, and ignition was normal; however, approximately 0.5 seconds after ignition, TCA combustion became unstable (Fig. 35). Heasured fundamental frequency and peak-to-peak amplitude of combustion instability pressure fluctuations were 457 cps and 60 psi (Fig. 35b).

b. Combustion Pressure Waveforms

CONFIDERTIAL

The state of the s

a. Ignition Transient

Figure 35 . TCA Chamber Pressure Traces (Reproduced from Reference 25)

CÚM**eles**baued

- (U) A cap on the GG drain fitting blew off during GG ignition in Test AD23, thereby venting an unknown portion of secondary flow upstream of the mounting plate. Test AD24 was conducted without knowledge of these operational difficulties and, although stable TCA combustion was obtained, the results are of questionable value.
- Inspection of the test hardware after firing 24 revealed extensive melting of the combustion chamber baffles, heavy deposits of melted copper from the baffles in the nozzle convergent section, several radial cracks in the injector outer fuel ring and excessive water leakage from a yielded braze joint in the outer threat. The damage, apparently caused by the severe thermal environment within the combustion chamber associated with the instability, was sufficient to preclude further testing (Figs. 36 and 37).

b. Cuter Throat

a. Assembly With Outer Throat lemoved

Figure 36 . Engine Condition; Post-Fire AD Series

b. Ring Cracking

a. Baffle Erosion

Figure 37. Injector Danage; Post-Fire AD Series

DATA AWALYSTS

- (U) Several studies were conducted to analyze the performance and determine the influence of operating conditions upon the performance of the cooled thrust chamber. The major studies were determination of the effect of heat loss to the model and cooling water, the effect of propellant impurities, and theoretical determination of nozzie performance. Using the results of these studies, a precedure to calculate performance from hot-firing 'sta was developed and programmed for automatic computation.

 All measured data were averaged over a 0.5-second interval for input to the program. A discussion of these studies and the computational procedure is presented in the following sub-section.
- (U) In addition, base heating information can be determined through analysis of temperature measurements by probes located in the base plate. A method of analysis is presented for determining the adiabatic wall temperature and heat transfer coefficient of the gases adjacent to the nozzle base plate.

Performance Parameters

(U) The basic parameters which were used to appraise the performance of the hot-firing model are the characteristic exhaust velocity efficiency of the primary combustion chamber, specific impulse efficiency of the thrust chamber and thrust efficiency of the nozzle. In addition, the base pressure is of prime concern since the base pressure acting over the base area contributes a significant portion of the thrust. Measured changes in base pressure with secondary flew can also be used to compute changes in nozzle performance independent of an accurate knowledge of engine thrust and flow changes and hence provide a check on there measurements. Base pressure and thrust efficiency are the parameters which are used to correlate accordynamic spike hot-firing and cold-flow data.

- (0) Characteristic velocity (C*p) efficiency of the primary flow is defined by $\prod_{C^{n}} C^{n}_{p} = \frac{P_{C} L^{n}_{p} g_{0}}{C^{n}_{th} \dot{v}_{n}}$
- (U) Specific impulse efficiency of the aerodynamic spike thrust chamber is defined as the total nozzle thrust compared to the sum of the theoretical thrusts of the primary and secondary flows when optimally expanded to local ambient pressure.

$$\gamma_{I_n} = \frac{r}{r_{\rm opt,p} + r_{\rm opt,s}}$$

- (U) Theoretical optimum specific impulses are based on the respective properties of the primary and secondary flows, however, the reference pressure ratio is the primary chamber pressure ratio for both flows.
- (U) An alternate definition of specific impulse efficiency in common use and computed for this engine is

This definition references the measured thrust to the total theoretical thrust delivered if both the primary and secondary flows are considered to have a theoretical optimum I based on the primary flow properties. This is commonly referred to as a topping cycle efficiency.

UNGLASSWEET

(U) Nozzle thrust efficiency, C_T, is a measure of the nozzle expansion process including the base region and does not include combustion chamber effects or inefficiencies. It is defined in a similar manner to specific impulse efficiency with the exception that the reference thrusts are based upon actual characteristic velocities.

$$c_{T} = \frac{r}{r_{\text{opt,p}} N_{C_{p}^{*}} + r_{\text{opt,s}} N_{C_{s}^{*}}}$$

(U) When a theoretical primary reference only is used, a topping cycle nozzle thrust efficiency is defined by

$$c_{T, \text{ top}} = \frac{P}{N_{C^*_p} I_{s, \text{opt}, p} (P_p + V_s)}$$

$$\frac{P}{N_{C^*_p} P_{\text{opt}, p} (1 + V_s / V_p)}$$

with no secondary flow, either definition reduces to

$$c_{\underline{T}} = \frac{\mathcal{N}_{\underline{I}_{\underline{S}}}}{\mathcal{N}_{C^{+}}}$$

Theoretical Considerations in Reducing Data

(U) In determining the above parameters from the test data, all of the potential fact we which may influence performance were considered. The areas which were considered included nozzle stagnation pressure, acredynamic throat area, theoretical performance, propellant impurity, heat less effects, and base pressure. In reducing data, factors whose effect was becaused to be less than 0.1 percent were neglected.

- (U) Notate Standation Pressure. Two chamber pressure taps (PC-1 and PC-2) are located near the injector, and one tap (PC-3) is located downstream of the injector near the contraction zone (Fig. 23, page 54). The chamber taps are located at a contraction ratio of approximately 10 where P_{statio}/P_{total} = 0.9978 from one-dimensional ideal flow, and therefore, the pressure reading is corrected by 0.22 percent for static to total pressure.
- Combustion effects on the nozzle stagnation pressure were considered because there is a loss in total pressure for heat addition to a gas flowing in a constant area duct. Because a pressure tap (PC-3) is located 4 inches downstream of the injector just prior to the contraction zone, the combustion process can be considered to be completed and the combustion effect on P_c downstream of this tap is negligible. A drag (friction) analysis was conducted for this model, and the effect of drag between the pressure tap and throat was negligible. Nozzle total pressure was therefore computed from P_c = PC-3/.9978.
- (U) <u>Aerodynamic Throat Area.</u> To accurately distinguish between nozzle efficiency and characteristic velocity efficiency a transonic potential flow analysis and boundary layer analysis of the throat region was conducted. Fotential flow and frictional flow discharge coefficients were determined to be .9954 and .9939, respectively, with a resulting actual flow discharge coefficient, C_n equal to 0.9893.
- (C) From geometry, the geometric throat area Ap is based upon the average threat gap (g) as determined by pretest and posttest measurements.

$$A_p = \pi(R_1 + R_2) g$$

where

R, = 11.664 in. (outer throat redius at the throat)

R, = 11.048 ir. (immer throat radius at the throat)

er 'A_n = 69.53 g

MAKSHEI

- (C) Applying the discharge coefficients C_D the aerodynamic throat area A_P^* is $A_D^* = 69.53 \ C_D \ g = 68.79 \ g$
- During the sea level test program the throat gap was measured in six locations around the throat circumference. During the altitude test program, the throat gap was measured in sixteen locations and two sets of sixteen readings each were taken. A ball micrometer was used to obtain the measurements.
- (U) A stress analysis was performed to determine the deformation of the throat region caused by thermal and pressure stress under hot firing conditions. There was an uncertainty as to the manner and direction of the throat deformations. However, the maximum deflection that could reasonably be expected would give a throat area change of 1 percent. The major effect on throat deflections was found to be a cyclic thermal buckling of the throat coolant slot walls.
- (U) Because of the uncertainty as to the manner and exact magnitude of the throat deflection, an analytical stress correction to the throat area was not used in the data analysis. The determination of the throat area during a firing was made by considering both the measured pre- and posttest throat areas and a throat change established by the change in primary thrust during the firing. This method is discussed in detail in the results section.
- Theoretical Performance. Theoretical propellant performance was calculated for MTO/UNH-N₂H₄(50-50) based upon one-dimensional expansion in chemical equilibrium (shifting performance) for mixture ratios of 1.4, 1.6, 1.8 and 2.2 at chamber pressures of 300, 400, and 500 paia. Figure 38 is a sample page of the IBM printout (from Rocketdyne's theoretical propellant performance program) at a mixture ratio of 1.8 and chamber pressure of 300.

		_				•	ක්					Į	ηί	H.	4	U	L	Į.	Ī	L										
		DENSITY	1.4330	C. 8064	•		L 8-SEC/L	0	_	218.6	-	•	ė	· 🛋	_	297.2	`•	303.6	306.0	308.1	309.9	311.4	314.1	316.4	319.9	322.5	324.7	326.4	327.9	
		ELATIVE VOLUME	0.9770	1,1282		CF-0PT	_	•		1.2263		•	1.5212	1.5501	1.609.1	. 1.6674	1.6870	1.7030	1.7165	1.7281	1.7352	1.7472	1.7623	1.7748	1.7944	1.8094	1.8214	1.8312	1.8396	, , ,
NOTETSOANOS		- a		!		20,		0	0.59	61.1	2.10	2.97	3.57	4.16	5.94	8.91	9.01	11.88	13.37	4	ø	~	0	23.77	O	5	-4	41.54	4	
COMPOS	• .	MASS FRACTION	0.5833	0.4167		I-VAC	LU-SEC/LB	•	21.	. 9.092	81,	91°	95.	66	96.	14.	17,	19.	320.9	25.	323.7	24.	27.	28.	31.	33.	34.	336.3	37.	1
SHIFTING		AT I VE I GHT	1.4600	1.0000		CF-VAC.		0.	•	1.4677	•	1.6323	1,6583	1.6788	1.7216	1,7637	18774	1.7900	1.8000	1.8086	1.8162	1.8229	1.8342	1.8437	1.8585	1.8698	1.6789	1.8864	1.8928	
; ir	PSIA	KELA	1.4	1.0		EPSILUN		0.	1.00	2.00	3.54	2.00	9.00	7.00	10.00	15.00	17,50	20.00	22.50	25.00	27.50	30.00	35,00	00°04	20.00	00.09	70.00	80.00	90.00	
SUPPLICATED STATES	P = 300	HEAT UF FORMATION	-4.680	29,373		GAMMA		1.178	1.192	1.236	1.256	1.255	1.257	1.258	192.1	1.262	1,262	1.262	1.262	1,261	1.261	1.261	1.201	1.261	1.201	1.262	1.253	1.262	1.258	
II - EXII						- ·	DEG. K		2777.2	2118.2	اه خارجه	~	•	•	•	1177.3	11.27.3	1005.4	1050.8	1020.5	8.865	970.2	929.9	496.4	443.3		769.2	741.8	716.9	
IABLE	11/24/65	LLANT			•	٦	PSIA	300.000	170.087	35.345	9		6.056	5.516	j.357	•	1.502	1.304	1.113	996.0	0.850	0.757	0.617	0.516	0.384	0.302	0.247	0.207	0.177	
*	TAPE 35	PRUPELLANT	198K			PC/PE		1.00	1.76	64.8	j.	33.74	3	اه	64.38	155.83	192.05	230.07	269.60	S.	352.61	w	466.54	560.93	780.40	992.59	1215.91	1449.01	4.0	
	CATA		N204, 298K	HUDNH56	7.0060				THRUAT		7	Ph:	in	pr	Y		3	SUN	ēj Š	I	53				9	×6				

Figure 38. Propellant Performance Printout

A summary of theoretical primary performance is presented in Figs. 39 to

42. A surmary of the gas generator combustion gas properties is shown
in Appendix, 4, Figs. 213 to 216. Theoretical performance, as shown in
the figures was used in a data reduction program to determine nozzle reference
performance reported in Ref. 25. Although theoretical primary C* were
properly accounted for as a function of mixture ratio, primary theoretical

Isopt was programmed as a function of pressure ratio at a constant mixture
ratio. Unfortunately this tends to prejudice the results towards those
tests at high mixture ratio. As an example, one—high altitude test
with no secondary flow (AAOI) was conducted at a primary mixture ratio of
1.77 whereas one high altitude test with 3 percent secondary flow was
conducted at a primary mixture ratio of 1.67. (ACI3). At a mixture ratio of
1.67 and a pressure ratio PR of 300, Isopt = 311.0 whereas at the same
FR and a mixture ratio of 1.77, Isopt = 312.5. From the expression

$$C_{\mathbf{T}} = \frac{F}{\sqrt{C^* \mathbf{I}_{\mathbf{S}, \mathrm{opt}, \mathbf{p}} \mathbf{V}_{\mathbf{p}}}}$$

and with correct value of VC*n

$$\frac{(c_{T})}{(c_{T})} = \frac{312.5}{311.0} = 1.0048$$

$$\frac{(c_{T})}{(c_{T})} = \frac{312.5}{311.0} = 1.0048$$

(U) A difference of 0.1 unit in mixture ratio results in a difference of 0.48 percent in both the relative C_T and N(I_S for two tests performing equally but at this difference in mixture ratio. For the altitude test program (see Table 5) the no secondary flow tests were "automatically" higher performing

Pigure 39. Theoretical C* vs Mixture Ratio

Figure 40 . Vacuum Specific Impulse vs Kixture Ratie

Figure 41. Vacum Specific Impulse vs Mixture Ratio

by from 0.2 to 0.5 percent than the tests with secondary flew as reported in Ref. 25 because they were accomplished at a higher mixture ratio. Since these performance differences are in the order of magnitude of the gains expected with secondary flow it is necessary to include the effect of mixture ratio as theoretical reference performance.

网络阿拉特阿达特阿拉特阿拉特斯特克斯特斯特克斯特的阿拉特斯特的阿拉特斯特的阿拉特斯特的阿拉特斯特的阿拉特斯特的阿拉特斯特的阿拉特斯特的阿拉特斯特的阿拉特斯特的

- (U) A computer program using tabulated theoretical performance data and interpolating mixture ratio, PR, and P effects was written at Rocketdyne and used to obtain the final performance data presented in this report. The measured quantities of thrusts, flows, pressures and temperatures obtained from the test sources were used for input.
- (U) Propellant Invertey. Because water content in the fuel and oxidizer will change the theoretical performance, theoretical propellant performance was determined for MTO/50-50 with various concentrations of water. In general, water in the propellants increases C₁ and decreases C* with a net decrease in I₈. The changes in C* and I₈ at a chamber pressure of 400 pais are presented in Fig. 43. These changes are valid for a chamber pressure range of 300 to 500 pais since the change in performance is only slightly dependent upon chamber pressure.
- (0) Values of $N_{\text{C*}_{\text{H}20}}(=1-\Delta N_{\text{C*}_{\text{H}20}})$ and $\Delta I_{s_{\text{H}20}}$ were hand computed for each test and are t-hulated in Appendix 1. Maximum values were $\Delta I_{s_{\text{H}20}} = -.30$ seconds and $N_{\text{C*}_{\text{H}20}} = .9987$.
- (U) East Loss Effects. The effect of heat loss to the cooling water was determined using a computer program. This program calculates one-dimensional theoretical nozzle performance with heat removal or addition at the injector and heat removal in the nozzle. Heat removal in the nozzle is performed in increments by a constant pressure process. The program maintains the propellant in chemical equilibrium through the expansion with heat removal. The magnitude and schedule of the theoretical heat loss per pound of primary propellant, Q_{tn} for input to the program was determined from a theoretical heat transfer analysis of the actual thrust chamber. At chamber pressures of 300, 400, and 500 psia and a mixture ratio of 1.8, Q_{th} was computed to be 193.1, 184.9, and 177.9 Btu/1b.

Figure #3. Effect of Water on Theoretical Performance

(U) The decrease of C* efficiency caused by heat removal from the combustion chamber is shown in Fig.44 for P_o of 300 and 400 and HR = 1.8. The ratio of the sould total heat loss per pound of propellant, Q_o to the theoretical less per pound of propellants, Q_{th}, is used as a normalizing parameter. Because the hot-fixing tests performed on this nozzle were at various altitudes and because \(\bigcap_{H.L.}\) \(\bigcap_{H.L.} = \bigcap_{S, vac, H.L.} \bigcap_{S, vac}\), adiabatic where

I savac, H.L. = theoretical vacuum specific impulse for a given heat removal rate and schedule

Is, vac, adiabatic = theoretical vacuum specific impulse with no heat removal can only be directly applied to vacuum specific impulse, a curve of $\Delta I_{z,H,L}$. (defined as (I s, vac, adiabatic)) we heat removed was computed (Fig. 45). The $\Delta I_{z,H,L}$ was directly applied to the site specific impulse to obtain an adiabatic specific impulse.

- (U) The effects of variations in heat loss, chamber pressure and mixture ratio were determined by perturbating each of these parameters over a range of 50 to 200 percent of the heat 1 5%, chamber pressures from 300 to 500 psia and mixture ratios from 1.4 to 2.2. In Fig. 46, and 47 are shown the performance variation of N_{C*} and ΔI_{S*} if or variations in mixture ratio and chamber pressure.
- (U) Total heat transfer to the model includes the heat transfer to the cooling water plus the heat absorbed by the injector baffles in the combustion chamber. For a given test, the actual heat transfer to the cooling water is determined by measuring the bulk temperature rise and water flowrate. The heat absorbed by injector baffles is estimated from a heat transfer analysis rather than test data since the actual heat absorption or baffle temperature at a given point is difficult to measure.
- (U)Maximum baffle surface temperatures are shown in Fig. 48 to 50 for chamber pressures of 300, 350, and 400 psia and for C* efficiencies of 100 and 90 percent. Also shown are total heat absorption for the baffles as a function of test duration. These results are based upon the assumption that heating occurs along the surface exposed directly to the gas and to the blunt trailing edge but not to the surfaces immediately adjacent to the chamber walls. These

Figure 46. Heat Loss Effects on $7/c^4$ vs Mixture Ratio and Chamber Pressure

Figure 48. Baffle Surface Temperature and Total Heat Absorbed vs. Time

Figure 49. Baffle Surface Temperature and Heat Absorbed vs Time

assumptions are considered to be the most realistic. The rate of absorption is not constant but decreases with increasing duration. Results indicate that the baffle heat absorption rates are approximately one-sixth the coolant absorption rates.

- (I) Heat loss effects were hand computed from measured water flowrate and temperature rise data. A typical outlet water temperature profile is shown in Fig. 51. Since there is a lag in water temperature rise the maximum temperature achieved was used in the heat loss computation. A constant beffle heating rate of 445 BTU/sec was used. The heating rate for all tests were compared at the same firing duration by comparing water temperature rise curves and adjusting for the temperature rise over the difference in mainstage duration. This correction was approximately 10/sec or less.
- (U) The ratio of the "measured" heat loss per pound of propellant, Q, to the theoretical heat loss, Q_{th}, was computed from

$$Q/Q_{th} = \frac{C_{pH_{2}O} \left[\left(\int \dot{w}_{H_{2}O} \Delta T_{H_{2}O} \right)_{inner} + \left(\int \dot{w}_{H_{2}O} \Delta T_{H_{2}C} \right)_{outer} \right]}{193.1 \int \dot{w}_{p}} + \frac{445}{193.1 \ \dot{w}_{p}}$$

for the eltitude tests and from

$$\sqrt{q_{th}} = \frac{c_p \dot{w}_{H_2O} \Delta T_{H_2O}}{193.1 \dot{w}_p} + \frac{445}{193.1 \dot{w}_p}$$

for the sea level tests.

(U) For the initial tests at approximately 400 psia chamber pressure, a reference constant of 184.9 was used in place of 195.1.

113

- (U) It should be noted that the heat loss effects are corrected to that of an adiabatic engine. This is slightly conservative when considering the engine in a regeneratively cooled application. The effect of the heat being removed and added to the inlet propellants was investigated for this engine operating at 400 psia chamber pressure using the same computer program. The effect of the overall heat removal and addition cycle as shown in Fig. 52 was to slightly improve engine performance over an adiabatic engine.
- (U) Base Pressure. Six pressure taps are located in the nozzle base cavity and exit lip to measure the base pressures as shown in Fig. 53. The resulting average base pressure is determined by taking a weighted average of the six readings by area. Each of the two lines of taps is weighted by one-half the base cavity area, and the lip tap is weighted by the lip area. Based on the geometry of the base region, Fig. 53 presents the areas used to weight the pressure readings.
- (U) Change in engine performance with secondary flow relative to performance without secondary flow can be computed from the equations

$$\gamma_{\mathbf{I}_{\mathbf{S},\dot{\mathbf{W}}_{\mathbf{S}}} = \mathbf{Y}_{\mathbf{I}_{\mathbf{S},\dot{\mathbf{W}}_{\mathbf{S}}=\mathbf{O}}} = \underbrace{\frac{1 + \left(\Delta \tilde{\mathbf{P}}_{\mathbf{B}}\right) \left(\frac{\mathbf{P}_{\mathbf{C}}}{\tilde{\mathbf{W}}_{\mathbf{D}}}\right) \left(\frac{\tilde{\mathbf{W}}_{\mathbf{B}}}{\tilde{\mathbf{I}}_{\mathbf{S},\dot{\mathbf{W}}_{\mathbf{S}}=\mathbf{O}}\right)}}_{1 + \left(\frac{\mathbf{I}_{\mathbf{S},\mathrm{opt},\mathbf{S}}}{\tilde{\mathbf{I}}_{\mathbf{S},\mathrm{opt},\mathbf{P}}}\right) \left(\frac{\tilde{\mathbf{W}}_{\mathbf{S}}}{\tilde{\mathbf{W}}_{\mathbf{P}}}\right)}$$

$$C_{\mathbf{T}, \dot{\mathbf{W}}_{\mathbf{S}}} = C_{\mathbf{T}, \dot{\mathbf{W}}_{\mathbf{S}} = \mathbf{O}}$$

$$\frac{1 + \left(\frac{\Delta \hat{\mathbf{P}}_{\mathbf{B}}}{\hat{\mathbf{P}}_{\mathbf{C}}}\right) \left(\frac{\mathbf{P}_{\mathbf{C}}}{\dot{\mathbf{W}}_{\mathbf{p}}}\right) \left(\frac{\mathbf{A}_{\mathbf{B}}}{\mathbf{I}_{\mathbf{S}, \dot{\mathbf{W}}_{\mathbf{S}} = \mathbf{O}}}\right)}{1 + \frac{\gamma_{C^*_{\mathbf{S}}}}{\gamma_{C^*_{\mathbf{p}}}} \left(\frac{\mathbf{I}_{\mathbf{S}, \text{opt, S}}}{\mathbf{I}_{\mathbf{S}, \text{opt, p}}}\right) \left(\frac{\dot{\mathbf{W}}_{\mathbf{S}}}{\dot{\mathbf{W}}_{\mathbf{p}}}\right)}{1 + \frac{\gamma_{C^*_{\mathbf{S}}}}{\gamma_{C^*_{\mathbf{p}}}} \left(\frac{\mathbf{I}_{\mathbf{S}, \text{opt, S}}}{\mathbf{I}_{\mathbf{S}, \text{opt, p}}}\right) \left(\frac{\dot{\mathbf{W}}_{\mathbf{S}}}{\dot{\mathbf{W}}_{\mathbf{p}}}\right)}{1 + \frac{\gamma_{C^*_{\mathbf{S}}}}{\gamma_{C^*_{\mathbf{S}}}} \left(\frac{\mathbf{I}_{\mathbf{S}, \text{opt, p}}}{\mathbf{I}_{\mathbf{S}, \text{opt, p}}}\right) \left(\frac{\dot{\mathbf{W}}_{\mathbf{S}}}{\dot{\mathbf{W}}_{\mathbf{p}}}\right)}{1 + \frac{\gamma_{C^*_{\mathbf{S}}}}{\gamma_{C^*_{\mathbf{S}}}} \left(\frac{\mathbf{I}_{\mathbf{S}, \text{opt, p}}}{\mathbf{I}_{\mathbf{S}, \text{opt, p}}}\right) \left(\frac{\dot{\mathbf{W}}_{\mathbf{S}}}{\dot{\mathbf{W}}_{\mathbf{S}}}\right)}{1 + \frac{\gamma_{C^*_{\mathbf{S}}}}{\gamma_{C^*_{\mathbf{S}}}} \left(\frac{\dot{\mathbf{W}}_{\mathbf{S}}}{\dot{\mathbf{W}}_{\mathbf{S}}}\right)}{1 + \frac{\gamma_{C^*_{\mathbf{S}}}}{\gamma_{C^*_{\mathbf{S}}}} \left(\frac{\dot{\mathbf{W}}_{\mathbf{S}}}{\dot{\mathbf{W}}_{\mathbf{S}}}\right)}{1 + \frac{\gamma_{C^*_{\mathbf{S}}}}{\gamma_{C^*_{\mathbf{S}}}} \left(\frac{\dot{\mathbf{W}}_{\mathbf{S}}}{\dot{\mathbf{W}}_{\mathbf{S}}}\right)}{1 + \frac{\gamma_{C^*_{\mathbf{S}}}}{\gamma_{C^*_{\mathbf{S}}}} \left(\frac{\dot{\mathbf{W}}_{\mathbf{S}}}{\dot{\mathbf{W}}_{\mathbf{S}}}\right)} \left(\frac{\dot{\mathbf{W}}_{\mathbf{S}}}{\dot{\mathbf{W}}_{\mathbf{S}}}\right)$$

Propellant: N2O4/UDMH-N2H4

Pc = 400 paia

MR # 1.811

Nozzle:

Advanced Aerospike

6= 25:1 12% Length

Regeneratively Cooled

Heat Removed and Added:

Q = 184.9 Btu/lb. th

Total Heat Removed and Added

Figure 52. Nozzle Heat Transfer Efficiency Versus Total Heat Transferred-Regeneratively Cooled Nozzle

BASE REGION

Base Cavity Area Base Lip Area 120.3 47.2

167.5 sq. in.

Integrated Base Pressure = $\sum P_b = A$ a Factor

P _k Tap I.D.	Area - Sq In.	Area Factor, Percent of Total Area
23–1	20.1	12.0
FB-2	30.1	17.9
PB-5	20.1	12.0
PB-4	30.1	17.9
	20.3	12.0
PB=5 PB=6	47.1	28.2
	167.5	100.0

Figure 53. Integrated Base Pressure

Performance Calculation Procedure

- (U) The equations used to determine engine performance are described below. The equations with an asterisk were used in the Rocketdyne data reduction program. Other computed quantities were hand computed or supplied by the Rocketdyne Research and AEDC RTF test organizations.
- (U) Measured thrusts, flows (except H20), and pressures are 0.5 second averages except for two tests (RDC2 and RDC3) which were 0.5 second Beckman data slices.

```
1. P_c = PC-3/.9978 (See Fig. 23, page 54 for location of PC-3)
```

3.
$$\Delta I_{8,H,L} = f(Q, P_p, P_c)$$
 Figs.45 and 47

4.
$$\sqrt[7]{C^*}_{H_2O} = f \text{ (percent } H_2O, MR_p)$$
 Fig. 43

5.
$$\Delta I_{8,H_2O} = f$$
 (percent H₂O, MR_p) Fig. 43

6.
$$\overline{P}_B = .12 (PB-1 + PB-3 + PB-5) + .179 (PB-2 + PB-4) + .282 PB-6$$

$$7. \ \overline{P}_{B}/P_{c} = \overline{P}_{B}/P_{c}$$

*8.
$$C_p^* = g_0 P_c A_p^* / d_p / C_{H.L.}^*$$
 $g_0 = 32.174 \ lb_f - ft / lb_m - sec^2$

*14.
$$\gamma_{\text{C*}_p} = c*_p/c*_{\text{th},p} \gamma_{\text{C*}_{B_2O}}$$

16.
$$\dot{W}_{p} = \dot{W}_{0,p} + \dot{W}_{f,p}$$

$$1^p \quad \hat{\mathbf{W}}_T = \hat{\mathbf{W}}_p + \hat{\mathbf{W}}_g$$

*21.
$$F = F_A + \Delta I_{s,H.L.} \dot{W}_p$$
 (F_A is measured axial thrust)

22.
$$A_p^* = 68.79 \text{ g (g is average measured throat gap, in.)}$$

^{23.} $A_s^{\frac{1}{2}} = \pi D_s^{2}/4$ (D_g is average measured orifice diameter, in.)

*24. opt,p = (I₈,opt,p + ΔI_{8H2O}) w̄_p

*25. opt,s = I₈,opt,p s

*26. √I₈ = P/(P_{opt,p} + P_{opt,s})

*27. √I₈,opt = P/(P_{opt,p} (1 + w̄_s/w̄_p))

*28. C_f = F/(√C_p p_{opt,p} + √C_s p_{opt,s})

*29. C_{T,opt} = P/(P_{C_p} p_{opt,p} (1 + w̄_s/w̄_p))

*30. I_s = P/w̄_T

*31. (w̄_p/w̄_s)_{eff} = (w̄_p/w̄_s)(C_p/C_p)

*32. E * = A_p/A*_p (A_p = 371.5 in², nozzle exit ares)

*35. PR = P_c/P_a

Base Heat Transfer Data Reduction

- (U) Surface temperature measurements were recorded on the base plate of the aerospike model to gain information on the local heat transfer coefficients and the recirculating gas temperatures. These results will indicate the existance of certain problem areas, such as base cooling requirements. Also, the calculated recirculating gas temperature may indicate the amount of mixing between the secondary and primary flow. The method of analysis and experimental results are presented in the following pages.
- (U) Analysis. The experimental method consists of thermoccuples embedded on the gas-side and the insulated surface. A circular slot is formed around the thermoccuples to isolate and to obtain one-dimensional flow as shown in Fig. 54.

 The actual measurements that are recorded are both surface temperatures vs time. Based on an analytical model, the local heat transfer coefficients and recirculating gas temperatures can be computed.

Figure 54. Base Heat Transfer

(U) The experimental model can be readily analyzed by assuming one-dimensional heat flow, with one side exposed to the hot gas flow and the other insulated.

Consider a slab as shown in Fig. 54. To express the temperature distribution in the slab in terms of nor-dimensional module, the distribution is written as:

$$\frac{T_{g} - T_{x}}{T_{g} - T_{i}} = 2 \sum_{n=1}^{\infty} \left\{ e^{-\delta_{n}^{2} (\Theta \alpha / L^{2})} - \left[\frac{\sin \delta_{n} \cos (\delta_{n} x / L)}{\delta_{n} + \sin \delta_{n} \cos \delta_{n}} \right] \right\}$$

where

$$F_0 = \theta \circ V_L^2$$

$$\delta_n \tan \delta_n = \frac{hL}{k} = E_L$$

(U) Thus, the temperature ratio

$$\frac{T_g - T_z}{T_g - T_1}$$

can be expressed in terms of dimensionless terms. Fo, Bi, and x/L.

(U) Another assumption which is required in the data reduction is that the gas-side condition remain constant from $\theta = 0^+$. This is a basic requirement in the derivation of the one-dimensional heat conduction equation. Since the heat loss from natural convection on the back-side of the base plate is small in comparison to the heat input, the condition that the surface is insulated is valid.

- (U) Data Reduction and Test Results Local heat transfer coefficient and gas temperature are the two desired quantities. In order to solve explicitly for the aforement! " ... d values, two degrees of freedoms must exist. By considering a time slice in the two surface temperatures vs time curves and substituting the temperatures and time into the basic conduction equation, two equations are obtained. Solving the equations, simultaneously, the local heat transfer coefficient and gas temperature can be determined. This is the theoretical approach to the data reduction. However, the direct application is almost insurmountable because of the complexity of the one-dimensional conduction equation. In order to converge the equation to an acceptable value, many terms must be solved. Thus, the temperature ratios were predetermined under expected heat transfer conditions and time. Figure 55 and 56 illustrate the temperature ratios for the gas-side surface and back-side surface, respectively. The material is 347 stainless steel with a wall thickness of 0.5 inches.
- (U) The more desirable procedure in the data reduction is to obtain the back-side and gas-side surface 'emperatures for a given time slice. Employing these values in conjunction with Fig. 55 and 56, the local heat transfer coefficient and gas temperature can be obtained from a trial and error solution. However, for early time slices, the back-side temperature will be equal to the initial temperature of the base plate as seen in Fig. 57. Consequently, the above approach cannot be employed for initial time slices. However, two different time slices incorporating two gas-side temperatures can be employed for a trial-and-error solution.
- (C) As an example, Fig. 57 depicts a typical surface temperature history for a thermocouple set. Superimposed on the graph is the secondary flow temperature. From the datum slice of five seconds to eight seconds, the recirculating fluid consists of primary flow gases. At the eight-second point, secondary flow was injected. A solution was tried for two time slices, and the following results were obtained.

UNCLASSITIED

Pigure 55. Gas-Side Temperature Ratio vs Time and Heat Transfer Coefficient

This page is shouse

DIGHT TO THE

Figure 56. Back-Side Temperature Ratio vs Time and Local Heat Transfer Coefficient

123

CONFIDENTIAL THIS IN THE PARTY ASSESSED.

CONFIDENTIAL

Figure 57. Base Plate Temperatures vs. Time, Tent No. RD03

CONFIDENTIAL

MOLESCAPE

e, sec	TH'	Te, Y	hg, BIU/in2-sec-F
. 2	435	5000	1.75 x 10 ⁻⁴
3	530	5000	1.75 x 10-4

(C) Typical nozzle base plate temperatures obtained in the altitude test program are shown in Fig. 58. A summary of nozzle base plate temperatures obtained during this test program is presented in Table 6. Maximum gas-side and upstream-side plate temperatures measured were 440 and 180°F, respectively. A general trand of higher gas-side temperatures (TEP-3) during the high test cell pressure transient firings (firings AAO3, ABI1, ABI2, AC15, AC16, AC17 and AC2O) was noted. However, this trend was expected, since nozzle base pressure for these firings was proportional to ambient pressure (open wake regime) and the gaseous film heat transfer coefficients are directly proportional to local pressure to the 0.8 power.

126

COM**DIDENTIAL**

	MUZGLE	BASE FLATE	TAMPERAT	FLATE TEMPERATURES (ALTITUDE	TITION TES	TEST RESULTS)		COUPIDENTIAL
			Nos	Mossle Base Plate	Plate Ten	Temperature,	ďo	
	Thermocouple	7	E-apsed Time from	ine from	Engine Ignition	nition Si	Signal, sec	
Firing	Munber	0	1.0	2.0	4.5	7.0	6.0	9.0
M 02	TBP-2	82	8	775	192	253	752	252
	T8P-4	8	82	13 	78	8	8	103
4403	~	87	8	135	क्ष	323	356	359
	4	88	88	8	8	101	106	211
6087	Ŷ	103	011	360	191	. 269	787	306
,	7	106	306	101	235	109	71	121
VB10	Ŷ	125	326	156	195	243	892	283
	7	130	135	127	927	85	क्र	136
1187	e,	107	114	170	772	311	386	717
	7	धाः	311	2115	n	121	129	131
AB12	ñ	163	162	175	259	319	36;	77
	7-	391	170	168	165	168	173	177
AC13	T	7.4	88	132	198	259	280	282
	7	78	80	63	78	\$	100	101
AC14	~	80	102	150	777	. 588	308	321
	7	8	88	26	92	8	102	n
4015	~	108	121	187	280	345	365	394
	7	122	921	721	621	ij	135	7

CO**THIST** TENTED

9
bld.
£3

TO SERVED TO THE TOTAL OF THE PARTY OF THE P

COFTERMIAL	SIZZON	BASE PLATE TEMPERATURES (ALTITUDE TEST RESULTS) (CONT'D)	TEMPERAT	URES (ALT	ltude test	r RESULTS	(cont'E)	
			Noz	Nozzle Base	. ate Ten	ate Temporature,	op	
	a Concooning The		Elapsed Time from		Engine ign	Ignition Signal,	gral, 600	
Firing	Munber	0	1.0	2.0	4.5	7.0	8.0	9.0
AC16	-	801	131	197	333	387	107	567
	7-	131	130	128	129	131	143	153
AC17	ጥ	125	138	178	280	347	367	6.77
	7	77	139	133	137	135	777	150
ACIB	ጥ	EII	127	162	228	277	295	304
	7	128	128	129	129	133	133	137
4C19	T	200	127	17.4	238	298	315	327
2 · · · · · · · · · · · · · · · · · · ·	7	771	115	311	711	125	130	139
AC20	Ţ	133	160	217	315	391	413	C777
	7	160	159	158	156	165	172	180
AC21	ጉ	123	138	182	243	. 281	2%	310
	7	143	143	139	777	147	154	160
1022	~	•	ı	•	i		ı	1
	7	78	82	. 85	85	88	88	8
1023	ñ	1		•	1	,	•	•
	7-	8	. 91	8	ctt ,	177	131	781
17201	٣	1					•	
	7-	106	113	121	138	161	169	178

7 see after engine ignition signal. (6 see after ignition) Gas generator was cut off (Reproduced from Ref. 25) Note:

CONTRIBUTION SAFIED

WATER COOLED HARDWARE TEST RESULTS

- (U) Nine sea level test firings and twenty-one altitude test firings were conducted with an experimental, 12 percent length aerodynamic spike thrust chamber. The nozzle had a nominal area ratio of 25 and utilized N₂O₄/UDMH-N₂H₄(50-50) propellants for both primary and secondary propellants.
- (U) Sea level testing was conducted over a range of pressure ratios from

 22 to 29 (P_C = 300 to 400 psia) and a secondary flowrate range from 0 to
 5.3 percent of primary flowrate. Altitude testing was conducted over a
 pressure ratio range from approximately 40 to 350, a secondary flowrate
 range from 0 to 5 percent, and a G.C. mixture ratio range from 0.10 to
 0.18.
- (U) Satisfactory operation of the gas generator was not obtained during firings AD22, AD23, and AD24; therefore, performance data for these firings are not presented.
- (U) Determination of the characteristic velocity of the thrust chamber and subsequent nozzle thrust efficiency from the test data required a considerable effort resulting in the development of an aerospike nozzle throat analysis method which should be useful in future testing efforts with this type nozzle. This method is described in detail.
- (U) Nozzle performance in terms of C_T , $C_{T_{\mathrm{top}}}$ and base pressure are presented as a function of secondary flowrate and gas generator mixture ratio.

CONTENSIMED

Determination of Nozzle Throat Area

- (C) Post Test Throat Area Method. Originally it was planned to use the nozzle post test measured throat area (Table 7) for the determination of $\eta_{C_n}^{\bullet}$ and Cm. However, it became evident that this measurement alone was inadequate because (1) the throat area was obviously increasing in a seemingly repeatable manner during the first 3 or 4 seconds of a test (this conclusion was also reached during testing of the nearly identical TVC engine, Ref. 26) and (2) from 3 to 9 thrust chamber firings were accomplished between throat area measurements in the altitude test program with a likely throat area variation for each test. Characteristic velocity efficiencies (Table 8) showed considerable variation among the altitude firings. Nozzle efficiency trends with altitude did not follow the theoretical trend (Fig. 59) and tests with secondary flow showed gains substantially greater than indicated by base pressure measurements (Fig. 60). This method was therefore considered inadequate for determining nozzle performance.
- Constant η_C* Assumption. Since normally one would expect a close grouping of characteristic velocity efficiency values for repeated tests with the same injector, altitude performance was computed using this method and reported in Ref. 25. Post test throat area measurements were used to obtain an initial value of average η_C* over a 2-second interval beginning 4 seconds after ignition (Table 9). An average η_C* was then computed for each of the three test periods and these averages were in turn averaged to obtain a test program average η_C*. This is an arbitrary weighting and hence the absolute level of performance is also arbitrary. A constant A_p was computed for each test using this η_C* and 2-second average values of Ψ_p and P_c. Using this constant A_p, 0.5 second interval average performance was computed over the duration of each test.

COUNDERSAIFIED

CNCLASSIFIED

TABLE 7

NOZZIE THROAT AREA MEASUREMENTS CONFIDENTIAL Percent Change in Appa (Pre-Post/Pre) x 100 Post Tost Ap,m Pretest Ap,m Tast + 3.58 15.067 RD 69 14.546 + 2.00 15.213 RD 71 14.914 ÷ 1,27 15.311 15.505 RD O1 RD 02 15.450 + 1.58 15,206 14.970 RD 03 14,198 **ED 05** RD 06 14.198 13.892 **RD 08** 13.989 + 0.70 RD 09 13.892 + 3.59 14.347 AA01-03 13.850 13.8282 ¹abo8-12 - 1.73 14.071 13.507 - 2.24 AC13-21 13.816

¹ Outer throat bolts reversed (torque applied at nozzle end) for tests subsequent to AA test series.

² This value differs slightly from that reported in Ref. 25.

CONFIDENTIAL

Table 8

TCA CHARACTERISTIC VELOCITY EFFICIENCY
(ALTITUDE TEST PROGRAM)

CONFIDENTIAL

_			CONFIDENTIAL
	Characteristi	c Velocity Efficiency ¹	
Firing	Pre-Test Period Ap,m	Post-Test Period Ap,m	Average A _{p,m}
AA02	0.855	0.887	0.871
AAG3	0.855	0.888	0.871
AB09	0.878	0.869	0.873
AB10	0.875	0.867	0.871
AB11	0.878	0.870	0.874
AB12	0.878	0.870	0.874
AC13	0.864	0.845	0.854
AC14	0.867	0.848	0.857
AC15	0.871	0.85 2	0.861
AC16	0.871 ·	0.851	0.861
AC17	0.872	0.852	0.862
AC18	0.873	0.854	0.864
AC19	0.875	0.855	0.865
AC20	0.875	0.855	0.865
AC21	. 0.880	0.860	0.870
عينية المستحدد المستحدد			

Average of data for 5 to 7 sec after ignition signal. Values are uncorrected for heat loss and water content. (keproduced from Ref. 25)

CONFIDENTIAL

COMMICTABOLFED

COLINGEAS HIFIED

Table 9
NOZZLE THROAT AREA CALCULATIONS

		Characteria	Characteristic Velocity Efficiency	Efficiency 1	
Test	Firing		Test	Test	Nozzle Throat Area, Ap
rerion		Firing Average	Period Average	Program Average	Assuming 1 _{c*} = 0.8694
ĄĄ	7	0.8872	0.8874	0.8694	14.06
	•	0.8875			14.08
AB	6	0.8694	0.8690		13.94
	10	0.8666			13.99
	11	0.8701			13.93
	12	0.8701	>		13.93
ĄĊ	13	0.8445	0.8510		13.91
	14	0.8477			13.86
	15	0.8516			13.79
	16	0.8510			13.80
	17	0.8522			13.78
	18	0.8538	-		13.76
	19	0.8553			13.73
	20	0.8549			13.74
	21	0.8599	>	→	13.72

Average of data from 4 to 6 sec after ignition, using post-test period throat area measurement. Values uncorrected for heat loss and water content. (Reproduced from Ref. 25)

CONFIDENTIAL

- (c) The time variation of η_{Cp}^{**} (Fig. 61) indicates that η_{Cp}^{**} initially decreases and then increases as the firing progresses. Nozsle thrust efficiency trends (Fig. 62) indicated substantial deviation from theoretical trends with altitude and secondary flowrate. Changing injector flow characteristics (Fig. 63) further indicated that a variation in η_{Cp}^{**} was possible. Based on these results and considerations an alternate method of establishing performance was sought.
- (U) Nozzle Primary Thrust Method. Since the nozzle throat area can alternately be deduced from measurements of chamber pressure and the primary thrust of the nozzle and since small variations in ncp should likely result in even smaller variations in the primary thrust coefficient Cp, the use of this quantity in determining throat area was investigated.
- (U) The thrust F_p developed by the primary nozzle (Fig. 64) can be expressed in terms of the resultant measured axial thrust F_A and other pressure forces acting over the engine by

$$F_p = F_A + F_{a,c} - F_B + (F_{a,covl} - F_{N,covl}) = P_c A_p^* n_{C_p} C_{Pvac} = P_c A_p^* C_{P_p}$$

(U) The primary mozzle efficiency \mathcal{N}_{C_p} is a function of the nozzle design and is essentially unaffected by small changes in nozzle throat area. The theoretical $C_{P_{VRC}}$ is a function of nozzle area ratio and propellant mixture ratio (Fig. 65). From Fig. 65 the sensitivity of $C_{P_{VRC}}$ to a and mixture ratio variations indicates that two percent changes in a and mixture ratio result in approximately 0.10 and 0.25 percent changes, respectively, in $C_{P_{VRC}}$. A potential flow analysis of the nozzle contour (Fig. 66 and 67) indicates that $C_{P_{VRC}}$ is unaffected by ambient conditions until a pressure ratio of approximately 50 is reached.

CONFIDENTIAL

COUNCENSSHIED

Figure 61. Variation of $\eta_{\text{C*}}$ During Firing, Constant $\eta_{\text{C*}}$ Method

CONNOENTREED

CHIEDISSIVED.

Migure 62. Fozzle Thrust Lfficiency Trends Based on Constant

Candle Thrust Efficiency, C, Percent

ed injector Flow Restatance Factor, b

Figure 64. Forces Acting on Aerodynamic Spike Nozzle

140

CONFILENTIAL THE PARTY OF THE P

THE POSTED

Figure 65. Vacuum Cp vs Mixture Ratio and Area Ratio

This Coll Asset Ted

141

UNCENSIFIED

Dimensionless Distance Along Nozzle, x/Rt

142
Pigure 66. Twelve Percent Length Nozzle Theoretical Pressure Profiles

CONFIDENTIAL

ENNAMED

CON**ÉMENTAN**IFIED

CONFIDENTIAL

(U) The above equation expressed in terms of A is

$$A_{p}^{*} = \frac{P_{p}}{P_{c} \gamma_{C_{p}} c_{P_{vac}}}$$

(U) The ratio of the throat area at my time relative to some reference throat area is then

$$\frac{A_p^*}{A_{p,ref}^*} = \frac{(F/P_c) \bigcap_{C_{p}} c_{p,ef}}{(F/P_c)_{ref} \bigcap_{C_p} c_{p,ec}}$$

(ii) With the assumption that C_{p} vac ref C_{p} vac C_{p} C_{p} vac ref C_{p} $C_$

where
$$C_{\overline{P}_{VAC}} = f (MR, \epsilon)$$

- (c) This expression does not establish an absolute throat area but it does establish the throat area change during a firing and the relative throat areas among tests operating above the pressure ratio at which nozzle . recompression starts. In the recompression region, $\mathcal{N}_{C_{\mathbf{F}}}$ ($c_{\mathbf{F}}$ / $c_{\mathbf{F}}$) is a strong function of P_c/P_a (Fig. 67) and hence no attempt was made to determine relative throat areas for the altitude tests operating in this region. Fortunately the altitude tests over the low pressure ratio range achieved a stabilized (constant) throat area before recompression occurred. The above expression was not used to compare the sea level throat areas among the different tests because f small differences in P_c and hence P_c/P_c However, it was felt adequate to determine the change in throat area with time during • given test, since P_c/P_a and \mathcal{N}_{C_F} are essentially constant. The steps in the calculation of throat area variation with time for each test and the reletive stabilized throat areas among the altitude tests were as follows:
- (U) 1. A reference point in the firing (3 to 5 seconds after ignition) was 53lected. For the altitude firings, a point was selected which avoided the recompression region (..., $P_a > 50$).

 CONFIDENTIAL

(C) 2. The primary thrust was computed at 0.5 second intervals from 0.5 second averaged measured test data by

$$P_p = P_A + P_a A_o - P_B A_B$$

Since $P_a \approx P_{H}$, the term $(P_{a,cowl} - P_{H,cowl}) \approx 0$

- (c) Outer nozzle lip pressures PN-1, PN-2, and HN-3 (Fig. 24, p. 55) were carefully examined for each test. Results presented in Ref. 25 which indicate some aspiration of the cuter nozzle are not representative of the actual condition and were caused by a lag in response of pressures PN-2 and PN-3. All constant attitude runs (AC21 and AD series) in this test program and the TVC test program indicate PN-1, PN-2, and PN-3 = P.
- (c) When computing F values it was noted that distinct decreases in F of 22 and 31 pounds occurred during G.G. cutoff for the AC series with 3 and 5 percent secondary flow, respectively. This was a definite indication that the base thrust contribution determined from the average base pressures was too low. Primary thrusts computed for the AS test series by equation 1 were therefore reduced by 24 and 31 pounds for 3 (22 pounds for test #C19 and 20: MR = 0.18) and 5 percent secondary flow, respectively. No such effect was noted for the AB series of tests with 1.2 and 2.5 percent secondary flow.
- (c) Increasing base pressure gradients with increasing secondary flowrate (Fig. 68) may have caused the base pressure averaging technique to be less accurate. During the last two seconds of the tests with secondary flow, the secondary flowrate decreased to less than 0.5 percent. Hence relatively uniform base pressures were achieved and a more accurate base thrust could be computed.
- (c) Values of PBP tabulated for the AC test series in Appendix 1 were determined from the measured average base pressures and should be increased by .00048, (00044 for AC19 and 20) and .00062 for 3 and 5 percent secondary flows to give a more accurate representation of the effective base presente ratio.

= 3.0 percent

- 5.0 percent

(See Fig.25 for Location of Base Pressure Taps)

CONFIDENTIAL

Pigure 68 . Nezzle Base Pressure Distribution, (Reproduced from Ref. 25)

HMATY SERVED

- (U) 3. The primary thrust was normalized to 300 peia. (400 peia for tests RD59, 71, and 01.)
 - An initial area ratio was selected for each test from available measurements. For the sea level tests, the posttest measurements except for kD69 (\(\gamma_{\mathbb{C}_p}\), \(\mathbb{E}_{\mathbb{D}}\), \(\mathbb{E}_{\mathbb{E}}\), \(\mathbb{E}_{\mathbb{D}}\), \(\mathbb{E}_{\mathbb{D}}\), \(\mathbb{E}_{\mathbb{E}}\), \) and EDO6 (average of pretest RDO6 and posttest RDO8) . For the altitude tests pre- and posttest values were used for the first and last tests in the AB and AC series with a linear throat area variation assumed for intermediate tests (Fig. 69). The test period initial area is adjusted slightly lower than measured because a factor was applied which assumed that the decrease in throat area was caused by a uniform buildup of deposits on the throat. For the AA series the posttest throat area was used for AAO3 and throat areas for AAO2, and AAO1 were extrapolated using an average of the slopes of the AB and AC series. The changes in nozzle throat area indicated in Table 7 , page 131 suggested that the method of mounting the outer throat in the sea level test series and in the AA test series was not adequately accuring the nozzle assembly. During several disassemblies of the engine it was note, that considerable effort was required to remove the outer throat bolts. This fact and the indicated significant area increases suggested that applying torque to the nuts on the injector end of the engine was not securing the outer throat. Therefore, posttest throat area measurements were considered more reliable for the RD and AA test series. It should be noted that the variation of throat areas in lig. 69 about the mean value results in a change of only ± 0.33 percent in theoretical C

THEOLEGAPED

17.00

Linear Throat Area Variation (Altitude Test Series)

Figure 68.

CONTINUE ASSIFIED

UNGLASSIFIED

- (U) 5. Cp was determined as a function of area ratio (const. for a given test) and 0.5-second average mixture ratio.
- (C) 6. A* /A* was computed vs. time for each test. Results (Figs. 70, 71 and 72) indicated that the throat area increased approximately 1.5 to 2.2 percent and reached a constant value within from 3 to 6 seconds after ignition, for the initial tests in a series. As the number of consecutive firings increased, the magnitude of the throat change decreased. Since test AC21 showed very little change, and since it was the only valid test performed at constant altitude, the same technique of analysis was applied to several subsequent tests with a nearly identical TVC engine. The TVC engine tests were all conducted at a constant altitude. Figure 72 shows that tests BAO1 and BC12 (each the first test of a series) exhibited similar behavior, i.e., the throat area increased from 1.5 to 2.0 percent during the first 3 to 4 seconds of operation. The throat area change on ignition was noticeably reduced by the eighth firing in the series (BC18). It would appear that some form of slow recovery from thermal cycling in the engine may be occurring.
- (C) The scatter in the data between six and seven seconds after ignition is caused by unstable conditions associated with cutoff and rapid chamber pressure decay of the gas generator.
- (C) The unusual trend exhibited for tests RDO2 and RDO3 may have been caused by water leakage into the engine.
- (C) 7. For the altitude test series, the stabilized reference throat areas were then compared to the stabilized throat area for test AC13 by the relationship

$$\frac{(A^*_{p,ref})}{(A^*_{p,ref})_{act3}} = \frac{(F_p/P_c)_{ref} U_{Fyac,ref, AC13}}{(F_p/P_c)_{ref, AC13} U_{Fyac, ref}}$$

to establish the relative stabilized throat areas for the altitude test program.

Time From Ignition, Sec. CONFIDENTIAL,
Figure 70. Throat Area Charge vs. Firing Duration, AAO: Through AC14

CONFUZESTIED

Figure 71. Throat Area Change vs. Firing Duretion, AC14 Through AC21

CONFIDENTIALED

RD05 RD06 RD08 RD09 0 RDJ3 Percent Change in Throat Area (RD69 **RD71** RD01 BC12 **BC16** BC!7 BC18 Time From Ignition, Sec.

Pigure 72. Throat Area Change vs. Firing Duration, TVC Engine Firings and Soa Level Tests

CONFLOENTIAL 152

CONTIDENTIAL

- (c) 8. Absolute values of throat areas for the altitude test program were determined by selecting the protest throat area measurement prior to the AC test series for test ACI3 and following the area change curve indicated in Fig. 70 . The absolute values of all the throat areas at any time could then be determined by using the A* p,ref, AC13 equation to crtablish the hot stabilized throat area for each test and the $A^*_p/A^*_{p,ref}$ equation to establish the time variation of A^*_p during a test. The overall process was repeated for the majority of the tests using the new A* to account for differences between the initially (*) value and the one calculated on the first iteration. 71 , and 72 are the area change curves from the Figures 70 . second iteration. The final throat area values (A^*_p) are tabulated in Appendix 1 as a function of time for each test. Sea level throat areas were computed using posttest throat area measurements (except for RD69 and RFO6) and the throat area change curves shown in Fig. No posttest area was available for EDO5 and an average of pre EDO6 and post RDOS values was 'used. The same C* efficiency was used for test RD69 that was obtained with RD71.
- Typical characteristic velocity efficiencies obtained using this method are shown in Figs. 73 and 74 for typical sea level and altitude tests. The values of N_{C^*} indicate a gradual upward trend. Some of the curves (AAO2 and RDO5) appear to have the same initial shape as the throat area change curves. However, test AC13, which has the steepest area change, has the same gradual upward drift of test AC21 which has essentially no throat area change. The fact that N_{C^*} is actually varying in the manner indicated is substantiated by identical trends in the vacuum specific impulse of the primary nozzle $(I_{g_n} = P_p/\tilde{w}_p)$ as shown in Figs. 75 and 76.

153

CONFIDENTIAL

The said the said of the said

Figure 73. Characteristic Velocity Efficiency vs Time

154

COUNCEADOFIED

CONCLASSIFIED

Figure 74. Characteristic Velocity Efficiency vs Time, Tests AC14 and AC21

CONNOCATOME IED

Figure 75. Primary Nozzle Specific Impulse va Time

CONTRACTOR FIED

Figure 76, Primary Nozzle Specific Impulse vs Time, Tests AC14 and ACC

157

COUNDENTS FIED

- It is not certain what causes the upward drift in efficiency. One possible reason is that there is a heat sink effect occurring within the chamber. A rough estimate of the difference in heating rate for the engine with cold walls and hot walls (\$\omega\$ 800°F) indicated that approximately three seconds of specific impulse would be gained during the transition. Reference to the theoretical bafile heating rate curves (Fig. 48, page 109) indicates that relatively constant heating rate occurs after approximately one second of operation. The water-cooled walls should achieve a stabilized surface temperature within even less time. However, in initial sea level tests at 400 psia chamber pressure, melting on a portion of the nozzle surface occured only after five seconds of operation.
- (U) Another possible reason for the increase in efficiency is indicated by the injector flow pattern relative to the baffle surface (Fig. 77). One quarter of the wrifice pattern is adjacent to the baffle surface. An appreciable portion of flow appears to impinge on the baffle walls. As the baffles heat up, vaporization and more efficient compustion may be promoter.
- Nozzle thrust efficiency results obtained with the primary thrust method are illustrated for zero secondary flow in Fig. 73. The altitude tests showed the proper trend with pressure ratio and a very close grouping among the three tests. The results achieved with secondary flow and presented in the next section showed equally consistent agreement with theoretical trends and an exceptionally close grouping of comparable or overlapping tests (high and lew pressure ratio) with the same secondary flowrate. The experimental efficiency data obtained with a scaled cold-flow model (See Volume I of this report) are also shown. Except for theoretical friction and kinetic differences, the efficiencies would be virtually the same.

UNCLASSIFIED

Figure 77. Mater Flow Test of Number 2 Injector

159

CONFIDENTIAL This pres ACT TASSACED

CUNCOLOSIATED

Pressure Ratae, P./P.

Figure 78. Nozzle Thrust Efficiency vs Pressure Ratio, Wg = 0 160

CONFIDENTIAL UNCLASSIFIED

MICELASSIFIED

- (c) The theoretical performance estimate for the hot-firing model is comprised of a constant & (&=1.25) transomic flow analysis of the throat region, a variable & (corresponding to shifting equilibrium properties during expansion) potential flow analysis of the nezzle, an analysis of theoretical reaction kinetics (using Bray criteria), a viscous flow analysis (drag) and measured base pressures. An area ratio of 26.1 was used for the theoretical computations because this corresponded closely to the actual area ratio during the firings with no secondary . flow.
- (c) The theoretical efficiency curve shows a peak efficiency of .9565 at a design pressure ratio of 300 compared to an experimental maximum efficiency of 96.0. The experimental data agrees within 1 percent of the theoretical performance from a pressure ratio of 450 to a pressure ratio of 50 where nozzle compression begins. The experimental hot-firing efficiency is approximately 3 percent higher than the theoretical estimates in the pressure ratio range from 35 to 45. The fact that the cold-flow efficiency trend is the same as the hot-firing data suggests that the theoretical trend in the recompression region is in error.
- (c) The results achieved using this method were definitely more logical in indicating performants trends than any other method attempted and were adopted for the final interpretation of data presented here. The absolute level of thrust efficiency, however, probably has an uncertainty on the order of 1 percent. If the posttest throat area for AAO3 were selected as the reference, the altitude results would be based on 0.9 percent higher throat areas. If either the pre-or posttest Ap for the AB series were selected as the reference, the throat areas would be one percent smaller than the areas actually used. The absolute performance level presented is a mean value and is probably representative of the actual preformance level.

CHACLASSIFED

Nozzle Performance

- (U) Tabulated values of thrust chamber and nozzle performance in total of \mathcal{N}_{C^*} , \mathcal{N}_{C^*} , \mathcal{N}_{I_S} , are presented vs time in Appendix 1 along with other pertinent data defining engine performance.
- (c) For this discussion nowzle performance is described by nozzle thrust efficiency, $\mathbf{C}_{\underline{\mathbf{T}}}$ and $\mathbf{C}_{\underline{\mathbf{T}}_{1,1,2}}$. Specific impulse efficiency data is not a good indicator of nozzle performence for this engine because of variations in C* efficiency among the tests and during a test. This is illustrated by Fig. 79 which shows the effect of time (pressure ratio decreases with increasing time) on $N_{
 m I}$ for two long duration (7.4 seconds) elutude tests with no secondary flow. It can be seen that for the high pressure ratio test, $\eta_{\rm I}$ at 1/3 of design pressure ratio is equal to N_{I} at design pressure ratio. The same trend is shown for test AAO3. Except for the first data point, which is in a peak performance region of pressure ratio, the $N_{
 m T}$ curve is increasing steadily in a pressure ratio region where it should be decreasing. At approximately 14 percent of decign pressure ratio $\eta_{_{
 m T}}$ has decreased only 1/2 percent. Therefore Ti is not a good indicator of nozzle performance for this particular aerospike engine because its combustion performance is improving with time.
- Sea level data is also shown in Fig. 79. There is a difference of 3.8 percent in I_g efficiency between the data. There is, however, a difference of approximately 2.5 percent in N_{C*} between the three sea level testa PD69, 71, 01 and the test AAO3. However, the average slope of the thrust efficiency curve shown previously (Fig. 78) could readily be extrapolated quite close to the altitude data. Actual differences in N_{C*} between tests, therefore, can lead to erroneous conclusione about hozzle performance. It can be seen by comparing

Pigure .79.. Specific Impulse Efficiency vs. Pressure Ratio, * = 0

COMPOENS HIED

COMPARABLED

Fig. 78 and 79 that the use of $N_{\rm I}$ does not give an accurate representation of nozzle thrust efficiency trends for this engine.

- (c) The effect of approximately 1.2 percent secondary flow on aerospike performance is shown in Figs. 80 and 81. An improvement in $C_{\rm sp}$ on the order of 0.3 to 0.5 percent, is indicated at design pressure ratio with this flowrate. A maximum performance increase of approximately 1.5 percent is achieved at pressure ratios from approximately 90 to 130. From the pressure ratio where nozzle recompression begins (~ 50), to a pressure ratio of 22, the performance with 1.2 percent secondary flow is equal to the performance without secondary flow. With performance referenced to primary properties only (CT , Fig. 81), performance with 1.2 percent secondary fl ; is equal to zero secondary flow performance at design pressure ratio, and a maximum of 1 percent greater than O secondary flow performance at a pressure ratio of approximately 110. From a pressure ratio of 50 down to 22, CT, top, with 1.2 percent secondary flow, is approximately 0.3 percent lower than with zero secondar; flow. For the sea level tests, a line joins the efficiencies obtained with and without secondary flow for the same firing.
- (C) Pigures 82 through 85 show the comparison of nozzle C_T and C_{T, top} values for 2 to 3 percent secondary flow with those for zero secondary flow. C_T gains with secondary flow on the order of .2 to .3 percent are indicated at design pressure ratio. With 2 to 3 percent secondary flow, a maximum performance improvement of about 1.2 percent is achieved at a pressure ratio of approximately 110. Again, the C_T curves with and without secondary flow converge at a pressure ratio of 50. At a pressure ratio of 22, a loss in C_T of 0.4 percent results with the use cf. 2 to 3 percent secondary flow.

164

CONCRASSIFIED

COMMOENSONFIED

Figure 20. Nozzle Thrust Efficiency vs. Pressure Batio, O and 1 Percent Secondary Flow

CONFIDERASSIFIED

COMPERSALIED

Figure 81. Nozzle Thrust Efficiency, Topping Cycle, vs. Pressure Ratio,
O and 1 Percent Secondary Flow

166

COUNCEARS FIED

ANCTUME

Figure 82. Rozzle Thrust Efficiency vs. Pressure Ratio, O and 2 Percent Secondary Flow

CON MICHARIFIED

COMPAGNASSIFIED

Figure 83. Bozzle Throat Pfficiency vs. Pressure Ratio, 2 and 3 Percent Secondary Flow

の対象は特別の対象を対象を表現が、これはようをあり、あるとうできる。

Figure 84. Nozzle Thrust Efficiency, Topping Cycle, vs. Pressure Ratio,
O and 2 Percent Secondary Flow

CONNINA SIFIED

Figure 85. Nozzle Thrust Ffficiency, Topping Cycle, vs. Pressure Ratio, O and 3 Percent Secondary Flow

CONFIDENTIAL ED

MULASTA

- (C) When performance is compared using the topping cycle definition of efficiency.

 Cr. top is a proximately 0.5 percent lower with 3.0 percent secondary flow at design pressure ratio.
- (c) From a pressure ratio of 150 to 50, C_{T, top} is higher with secondary flow by a maximum of approximately 0.5 percent. At a pressure ratio of 22, C_{T, top} with 3 percent secondary flow is 0.8 percent lower than with no secondary flow.
- (c) With 5.0 percent secondary flow, C_T at design pressure ratio was lower (Fig. 86) than the zero secondary flow C_T by approximately 0.6 percent. Thrust efficiency with 5.0 percent flow was slightly higher than with zero secondary flow from a pressure ratio of 150 down to approximately 50. At a pressure ratio of approximately 23, C_T was about 0.6 percent lower than 5 percent secondary flow.
- (C) C, with 5 percent secondary flow was approximately 1.8 lower than top
 the no secondary flow C, at design pressure ratio, and generally top
 lower over the entire pressure ratio range (Fig. 87).
- (C) Figures 88 and 89 show the results of the tests to determine the effect of mixture ratio on nozzle efficiency. All the tests were with approximately 3 percent secondary flow. AC13 and AC15 were high and low pressure ratio range rivings, respectively, at a GG mixture ratio of .11. Test AC18 and AC17 were at a slightly lower mixture ratio of 0.10 and tests AC19 and AC20 were at a significantly higher mixture ratio of 0.18. Test AC21 was a constant altitude test at a mixture ratio of 0.11, (similar to AC13 and AC15). Table 10 lists typical secondary flow C* values for the test program. The effect of

171

CONFIDENTIAL UNCLASSIFIED

CHICEASHIED

Figure 86. Novele Torust Efficiency vs. Pressure Ratio, 0 and 5 Percent Secondary Flow

CONCENSATED

Figure . 87. Nozzle Trynst Efficiency, Topping Cycle, vs. Pressure Ratio, O. ard 5 Percent Secondary Flow

COMPANY ED

Figure 88. Effect of Secondary Mixture Ratio on Nozzle Thrust Efficiency

CONNECTANALFIED

Pressure Ratio, P/Pa

Figure 89. Effect of Secondary Mixture Ratio on Nozzle Thrust Efficiency, Topping Cycle

CONFUNERTIASSIFIED

TABLE 10

	8	SECONDARY FLOW	PARAMETERS	CONFIDENTIAL
Test	W _a /W _p Percent	иR	Cg rt/sec	η _{C*} Percent
RDO2	1.10	.260	3768	-
RDO3	1.96	.092	3632	83.7
RDOS	3.23	.165	3885	88.5
RD09	5.30	.163	3979	90.0
ABO8	2.59	.085	3139	72.4
AB09	2.64	.089	3138	72.5
AB10	1.21	.110	2996	69.5
AB11	2.33	.114	3233	74.1
/812	1,22	.111	2913	67.6
AC13	3.07	.111	3661	84.6
AC14	5.03	.118	2775	86.4
AC15	3.05	.115	3801	87.7
AC16	5.02	.117	3801	87.0
AC17	3.07	•096	3651	84.8
AC18	3.06	.097	3645	84.6
AC19	2.94	.177	3944	89.8
BU17	\ ~•/ ~	1		1

.175

.114

を受けたいできない。 「「「「「「「」」」というできない。 「「」」というないできないできない。 「「「」」というないできない。 「「」」というないできない。 「「」」というないできない。 「「」」というないできない。 「「」」というないできない。 「「」」というないできない。 「「」」というないできない。 「「」」というないできない。 「「」」というないできない。 「「」」というないできない。 「」」というないできない。 「「」」というないできない。 「「」」というないできない。 「」」

AC20

AC21

2.96

3.00

CONFIDENTIAL ED

4000

3929

91.1

*→*0.7

energy level is not apparent by examining Fig. 88 alone. C_T for the high GG energy level firings (AC19 and AC20) appears generally lower than the other tests. When comparing $C_{T, \text{top}}$ values, however, tests AC19 and AC20 appear to have shifted upward approximately 0.3 percent relative to the other tests. This shift is a consequence of the defining equations (page 93) and the lower reference energy level of the lew mixture ratio (\sim .10) secondary flow. The topping cycle definition indicates no significant differences in efficiency with energy level.

Nozzle Base Pressures

- (U) Figure 90 shows the nozzle base pressures with secondary flowrates from 0 to 5 percent. Also shown are the base pressures obtained with the scaled cold-flow model (CF₄) described in Volume I of this report.
- (c) With no secondary flow and in the closed wake region $F_B^{'}P_C^{'}$ is constant at a value of .0066. Transition to the open wake region $(P_B^{'})$ influenced by $P_a^{'}$) occurs at a pressure ratio of approximately 140. From a pressure ratio of 140 to 100, $P_B^{'}$ is slightly below ambient pressure. At lower pressure ratios $P_B^{'}$ is higher than ambient pressure. The cold-flow data base pressures appear to be almost identical to the hot-firing values.
- (c) Base pressure increases continuously with increasing secondary flowrate.

 It can also be seen that base pressure is influenced by ambient pressure at higher pressure ratios than with no secondary flow.
- (c) Figure 91 shows the bace pressures obtained with 3 percent secondary flow and different GG mixture ratios. It is difficult to distinguish any effect of GG mixture ratio on the base pressures.

177

CANCEL SSITTED

•

Pigure . 90. Base Pressure vs. Pressure Ratio; 0, 1, 2, 3, 5 Percent Secondary Flow

CONFIDENTIAL DNGLASSIFIED

Pigure . 91. Comparison of Kixture Ratio Effect on Base Pressure, Pg/Pc

CONNECTION

CONCLUSIONS AND RECORDEDATIONS

- (C) Kajor conclusions from the test results are
 - The method of determining relative nozzle threat areas developed in this study is an analytical approach which should prove useful in the interpretation of future data with this type nezzle.
 - 2. A relatively high level of nozzle efficiency was achieved (\$\sim 96.0\$) at design pressure ratio with a 12 percent length aerodynamic spike nozzle with zero secondary flow. Nozzle efficiency decreased by only 2.2 percent over the pressure ratio range (\$\sim 350\$ to \$\sim 35\$) investigated at AEDC. Sea level tests with \$r\$ to secondary flow at pressure ratios from 22 (\$\sim 8\$ percent of design PR) to 29 (10.8 percent of design PR) indicates nozzle efficiency decreased in this region to a value of about 89.5 percent.
 - 3. Secondary flowrates from zero to 3 percent gave nozzle performance (C_n) increases of approximately 0.5 percent at design pressure ratio. The maximum gains in C_n (1 to 1.5 percent) with zero to 3 percent secondary flow were achieved over a pressure ratio range from 150 to 50.
 - 4. At very low pressure ratios (~22) small lesses in C_T(0.1 to .3 percent) resulted with the introduction secondary flew.
 - 5. Nozzle C_q gains at all pressure ratios were approximately the same with secondary flowrates of 1 to 3 percent.
 - 6. Nozzle C_T was noticeably lower with 5 percent secondary flow than with the other flowrates tested.
 - 7. When the nozzle efficiency is referenced to primary properties, a decrease in C_{T,top} of from 0 to 0.5 percent results at design pressure ratio with the introduction of from 1 to 3 percent secondary. It should be noted that this small decrease in C_{T,top} still represents an efficient utilization of low energy turbine exhaust gases.

180

CONFIDENTIAL

No significant difference in thrust efficiency was noted for different energy level secondary flows.

9. Nozzle thrust efficiency and base pressure corresponded quite closely for the cold-flow (CP₄) model and the hot-firing thrust chamber. This suggests the use of inexpensive cold-flow tests with CF₄ will provide near quantitatively applicable design information for hot-firing engines.

Major recommendations resulting from this test program are

- 1. For future testing efforts, special effort should be made to determine the base thrust contribution from base pressure measurements. These measurements can provide an accurate determination of nozzle efficiency trends and serve as a valuable and independent check on efficiency trends determined from measurements of engine thrust, flows, chamber pressure and throat area.
- Base configuration and the method of introduction of secondary
 flow appreciably affects performance. Hot-firing tests

 should be conducted to provide performance data, heat transfer
 rates, and other design technology with various base configurations.
- 3. Recent analytical studies indicate that aerospike contours other than a truncated ideal may provide a significant improvement in low pressure ratio performance. Contours can be designed specifically for the low pressure ratio region and still give altitude performance close to that or an ideal spike. Analytical contour design and cold-flow testing of several different contour designs should be conducted to verify initial analytical work.

181/182

CONTIDENTIAL

SECTION IV

EXTERNAL FLOW EFFECTS ON AEROSPIKE PERFORMANCE

INTRODUCTION

(C) Because of interaction which occurs between external and nozzle flows. vehicle base flow characteristics encountered in missile flight differ from those prevalent in quiescent air nozzle performance investigations. These base flow characteristics are of little consequence with conventional nozzles since the expansion process is internal in this case; that is, the exhaust games within the nozzle are shielded from the external flow by the physical expansion surface provided by the nozzle. Eswever, with an aerospike nozzle, the external expansion boundary is formed by a gas-gas interface, and is influenced by flow interference effects. Since the position of this outer boundary in the flow affects aerospike nozzle performance at low pressure ratios where the base pressure follows changes in ambient pressure ("open wake"), the presence of an external flow can affect aerospike performance under certain conditions. Previous coldflow testing conducted under contract NAS 8-2654 (Ref. 21) established that the effect of external flow is small and is confined to a narrow range of in-flight operating conditions. Experimental study of these effects was continued under contract AFO4(611)-5948. The primary objective of this program was to confirm and extend, through hot-flow testing, the results obtained in the cold-flow slipstress study. A secondary objective was to evaluate the effect of base bleed flowrate on nozzle still air performance. Results of this investigation are discussed in the following sections.

SUMMARY

(c) A hot-flow test program was conducted to determine the influence of external flow on in-flight aerospike nozzle performance. A hot-firing aerospike engine using hydrogen peroxide propellants was enclosed by an

CONFIDENTIAL SSIFIED

aerodynamic fairing constructed in the shape of a missile body to simulate an actual flight configuration. The engine generated 400 pounds of altitude thrust at a chamber pressure of 200 psia. An aerospike nozzle with an area ratio of 25 and a length equal to 20 percent of an equivalent 15 degree conical nozzle was utilized to control the expansion of engine exhaust gases. The secondary flowrate was 0.8 percent of the primary flowrate for all tests with external flow. Testing was conducted in the 16-foot transonic and supersonic propulsion wind tunnals at Arnold Engineering Development Center (AEDC). Installation of the model in the transonic wind tunnel is shown in Fig. 92.

- (c) Forty tests were conducted to obtain still air and slipstreem performance trends in the transonic and supersonic wind tunnels. In addition, five tests were conducted in the transonic facility to demonstrate engine performance transs with secondary flowrate. Results of these tests confirmed that high quiescent air performance (approximately 98 percent of ideal at design pressure ratio) can be obtained throughout a representative range of pressure ratios with a properly designed aerospike negate. The addition of secondary flow proved beneficial at all pressure ratios. It was found that the correct experimental performance level and trend with pressure ratio could be estimated above pressure ratios at which nogale recompression occurs using previously developed semi-empirical base pressure relationships (Ref. 2) in conjunction with a potential primary flow analysis and viscous drag computations.
- (c) Nozzle performance was found to be unaffected by external flow in the "closed wake" pressure ratio region (pressure ratios at which nozzle base pressure is constant in still air). At low pressure ratios ("open wake") performance of the model tested decreased at a rate which was dependent on free stream Mach number and chamber pressure ratio. When strong flow interaction effects occurred, they were found to result in

185

This page is Uncleusified

Figure 92. Test Installation in the Transonic Wind Tunnel

relatively high nozzle base pressure, which was also shown by previous cold-flow data (Ref. 21). When flow interaction did not influence nozzle base pressure, both hot- and cold-flow nozzle performance data correlated with the "effective" chamber pressure ratio, $P_{\rm c}/P_{\rm By}$. On the basis of this result, it was concluded that: (1) missile base pressure approaching ambient pressure will result in nozzle efficiency in slipstream nearly identical to that obtained in still air, and (2) strong slipstream-primary flow interaction results in relatively high in-flight nozzle performance.

(C) In-flight performance estimates generated under severe assumptions demonstrated that the time-integrated external flow effects over a typical mission result in a change in average specific impulse (I_s) of less than 0.2 percent. Boat-tailing, mass addition to the missile wake flow, and reduction in missile base area are shown to be effective methods of reducing these effects still further.

SLIPSTREAK TEST PROGRAM

Preliminary Analysis and Design Studies

(c) The slipstream investigation was designed to confirm and extend, through hot-flow testing, the results of previous analytical and cold-flow studies into the effects of an external flow on aerospike performance. The engine selected as the test model was a modified version of a hydrogen removide monopropellant engine previously used to verify cold-flow aerospike performance trends with secondary flowrate (Ref. 15). This selection was based on the demonstrated high performance of the engine, the excellent decomposition characteristics of the H₂O₂ propellant using the selected catalyst pack design, and repeatability of test results. The use of H₂O₂ monopropellant allowed a very accurate measurement of combustion efficiency, resulting in consistent and reliable determination of nozzle efficiency, CT. C* efficiency (approximately 97.5 percent) was determined directly from the measured combustion temperature (\$1350F). Testing was conducted in the Propulsion Wind Tunnel at AEDC because of the

CONINDEMSALFIED

CHARLASSIFIED

operating conditions. Pertinent nozzle flowfield and mission operating characteristics leading to the selection of the model design and simulated test conditions and the expected nozzle performance and base pressure trends are discussed in the following paragraphs.

- (c) The external flow studies described in Ref. 21 provided invaluable insight into the flow process encountered when an aerospike nozzle operates in the presence of an external flow, and established many guidelines for the test program discussed herein. In the cold-flow testing it was established that, for the conditions investigated, the presence of an external flow influences aerospike performance only in the open wake region. In still air, the open wake region occurs below pressure ratios at which the nozzle base pressure just begins to feel the influence of ambient pressure as the chamber pressure ratio decreases. The external flow influence at these pressure ratios was found to alter the compression waves, or envelope shock, in the primary flow field which induces a change in engine thrust. This phenomena was explained on the basis of the still air mozzle flow field (illustrated schematically in Fig. 93) as follows.
- (C) Initially, the primary flow undergoes a controlled expansion from the mozzle throat to the shroud exit. Beyond this point the flow expands freely about the point at the shroud exit to the local ambient pressure, PBy. The left running expansion waves in the vicinity of the shroud exit are reflected from the outer free jet boundary as compression waves, which, in some cases, coalesce to form an envelope shock. The altitude compensating characteristics of the aerospike under still air conditions are directly related to the position of these compression waves in the flow.

CONFINENTIAL SIFIED

Figure '93. Aerospike Flow Field

- (C) At very low pressure ratios (large Pop) the position of the outer free jet boundary is such that these compression waves reflect onto the mozsle contour and internal free jet boundary as shown in Fig. 94a. Both the pressures along the affected portion of the contour surface and the mozale base pressure, PR, are subjected to a relatively high recompression pressure (approximately equal to the local ambient pressure) which results in high mozzle performance at off-design conditions. As the ambient pressure is decreased the outer free jet boundary moves outward so that the compression waves move down the nozzle contour. Once the azbient pressure reaches a certain low value these recompression waves can no longer intersect the contour surface and the thrust developed along this surface remains unchanged with further decreases in ambient pressure. The nozzle base pressure, however, remains under the influence of the local ambient pressure (Fig. 94b) until the position of the outer free jet boundary is such that the recompression waves no longer intersect the internal free jet boundary (Fig. 94c). Decreases in the ambient pressure below this value, which corresponds to a pressure ratio that is usually twenty to rifty percent of the nozzle design pressure ratio depending on the nozzle configuration, have no further effect on the nozzle base pressure.
- (C) These trends with the local ambient pressure are changed slightly in the presence of an external flow. In this case there are two interrelated phenomena which influence the primary flow field. First, the local smbient pressure to the nozzle, PB_v, changes relative to the slipstream static pressure, and in turn changes the initial structure of the primary flow free jet boundary. Because this missils base pressure, PB_v, is normally lower than ambient (the magnitude of base pressure decrease depends on afternody geometry and external and primary noszle flow conditions), the position of the outer free jet boundary is moved further away from the nozzle centerline than in still air. Thus, the compression

Figure 94 . Aerdynamic Spike Florfield at Various Pressure Ratios, E

waves emaninating from the initial portion of the outer jet boundary strike the inner jet boundary farther downstress than for still air operation as shown in Fig. 95. This effect results in reduced recompression effects in slipstress with attendant lower nozzle base pressure than obtained in still air.

- (c) Secondly, the structure of the free jet boundary of the primary exhaust stream is further altered downstream of the impingement point between the external and nozzle flows (point A in Fig. 95). Because of the flow interaction at this point, the compression waves reflecting from the free jet boundary downstream of this point, and the free jet boundary itself, are turned inward, as shown in Fig. 98. Under these conditions, the compression waves may intersect the inner free jet boundary farther upstream and with a higher pressure than in still air. This causes the nozzle base pressure to be sensitive to changes in the ambient pressure for lower values of P_{OD} than the corresponding still air case.
- (C) The net result of these two effects can be either an increase or decrease in base pressure from that obtained in still air operation, depending upon the relative strengths of the two compensating processes. The first effect described above is referred to as the influence of missile base pressure in all subsequent discussion. To facilitate this discussion the second effect is referred to as shock flow interaction, or simply interaction, in succeeding sections. However, it must be remembered that in reality both influences are interrelated, and are the result of interaction between external and mosale flow.
- (C) In the cold-flow test program it was found that missile base pressure was nearly equal to the free stream static pressure for subsonic external flow. Under these conditions, the position of the outer free jet boundary

Will a sold of

¥

Figure 95 Effect of Reduced Missile Base Pressure

192

MONTONED

Figure 96. Effect of Slipstream and Mossle Flow Interaction.

CHANNED

is marrly the same as in still air at the corresponding pressure ratio $(P_{\rm C}/P_{\rm CO})$, as shown in Fig. 97a). Hence, the influence of low missile base pressure was nearly negligible, and the shock flow interaction influence was predominate. As shown by the cold-flow data presented in Fig. 98 , the nozzle base pressures in this case are increased over those obtained in still air over a short interval in pressure ratio because of the influence of the relatively high interaction pressure acting along the affected recompression waves. This increase in base pressure results in a nozzle thrust increase as indicated in Fig. 98b .

- (c) Conversely, relatively low missile base pressures were encountered in the cold-flow evaluation of supersonic external flow. In this case the position of the outer free jet boundary is as shown in Fig. 97b. Thus, although the compression waves are turned inward by the shock flow interaction process, as in the subsonic case, the initial portion of the free jet boundary is such that these waves intersect the internal free jet boundary farther downstream than in the still air case. This causes the nozzle base pressure to remain insensitive to changes in the ambient pressure, Po, up to higher values of Po than in still air (Fig.98a) with a subsequent loss in nozzle thrust in this region (Fig. 98 b).
- (c) Since in external flow the primary flow f...e. initially expands according to the missile base pressure, P_{B_V}, nozzle performance and base pressure may correlate with P_{B_V} depending upon the relative strength of the interaction effect. Therefore, a correlating performance term has been defined to enable computation of nozzle performance under flight conditions from still air data. This parameter, φ, is defined by the equation (refer to Appendix 2 for nomenclature):

$$\underline{d} = \frac{(f)_{P_{c}/P_{B_{v}}}}{\left(F_{idp}/\frac{T_{c}}{T_{id}} + F_{ids}/\frac{T_{c}}{T_{id}}\right)_{P_{c}/P_{B_{v}}}} \tag{1}$$

CONFIDENTIAL NICLASSIFIED

CAPACIONE)

a) Subsonic External Flow

b) Supersonic External Plow

CONFIDENTIAL

Figure 97. Slipstream

t on the Nozzle Flowfield

CON**VINGENTOR**IFIED

Hyure 98. Slinstream Effects on Nozzle Base Pressure and Performance

CONFIDENTIAL

and is referred to as a normalized thrust coefficient in subsequent discussion. When shock interaction effects do not influence mossle performance, Eq. (1) reduces to the definition of mossle efficiency (compare the above equation with Eq. (6) of Appendix 2), and the normalized thrust coefficient in external flow is identical to that obtained in still air for corresponding values of $P_{\rm c}/P_{\rm B_{\rm c}}$. However, if shock interaction effects are strong (i.e., compression waves reflecting from the outer free jet boundary downstream of the impingement point are turned inward and intersect the inner free jet boundary farther upstream than if the expansion was governed only by the missile base pressure) the nossle base pressure is higher than would be expected from the value of $P_{\rm B_{\rm c}}$ alone. Under these conditions, the value of $\Phi_{\rm c}$ obtained for nossle operation in slipstream is higher than that obtained for still air operation at corresponding values of $\Phi_{\rm c}/P_{\rm B_{\rm c}}$.

- (C) The nature of the normalized thrust coefficient, &, for the cold-flow test conditions is shown in Fig. 99. It can be seen that external flow thrust coefficient data correlate with still air nozzle efficiency at all but the transition pressure ratios with subsonic external flow. The base pressure data in Fig. 98a indicate that interaction effects were predominate for these conditions. Interaction effects resulted in an increased normalized thrust coefficient over that obtained in still air through the transition pressure ratios as would be expected on the basis of preceding discussion. The objective of the current program was to confirm and extend these cold-flow results.
- (c) Since external flow effects on aerospike performance are dependent on the nature of both the external and nozzle flows, a trajectory study was conducted to establish representative operating conditions in terms of free stream Mach number and chamber pressure ratio combinations for pump-

Pigure 99 . Nozzle Efficiency Based on Expansion to Vehicle Base Pressure, Cold-Flow Tests

CONFIDENCE

and pressure-fed booster engines. Lass study revealed that due to differences in operating parameters a wide range of environmental conditions may arise depending on the application as shown in Fig. 100. However, while the nature of the external flow and engine operating conditions are determined by the data in Fig. 100, the expansion characteristics of the nozzle are not reflected by these curves. In order to couple conditions in the free stream with the flow characteristics of the nozzle used in each of these applications, the ordinate in Fig. 100 was normalized in terms of the nozzle design pressure ratio, and the trajectory data were replotted versus this normalized pressure ratio as shown in Fig. 101. The normalized trajectories allow the testing of a single nozzle at a fixed chamber pressure over a small range of ambient pressures with valid application of the data to other nozzles with different chamber pressure, expansion area ratio, and mission Mach number profile.

- (U) The operating limits of the test facilities at AEDC (discussed in Ref. 20) are shown in Fig. 102. These data, and the normalized trajectory data shown in Fig. 101 were used to establish the permissable operating ranges shown in Fig. 103 for test models with various area ratios and chamber pressures. It can be seen that the desired flight conditions can be simulated with a wide range of model area ratios by proper selection of the model chamber pressure (or vice versa).
- (C) The availability of comparable cold-flow data and condensation limits of the decomposition products of the hydrogen peroxide propellant led to the selection of a 25:1 nozzle area ratio and a chamber pressure of 200 psia. As shown in Fig. 103, this allows testing throughout a representative range of Mach numbers and chamber pressure ratios. A short outer shroud was utilized which was designed to yield parallel axial flow at the throat and across a linear control surface drawn from the shroud exit to the end of the full length ideal spike contour. The spike contour

COM**UNITATI**

CONTROPLANT FLED

COMPREMIED

UNCLASSIFIED

る、そのようというといいとうとかがいとなったのではないないのとのないないので

201

COMFIDENTIAL

Figure 101 . Normalized Trajectory Data

CONFIDENCE

Figure 102. The Operating Range for Pressure Altitude Simulation in the FW 16-Ft Supersonic and Transonic Turnels

CONFIDENTIAL 202
This page NOT ASSIFED

COMPRESSIELED

was truncated to an axial length which is twenty percent of the axial length of an equivalent fifteen degree conical nozzle. Ninety percent concentration hydrogen peroxide which ideally decomposes at temperatures around 1400 degrees F (depending on inlet temperature) was selected as the propellant for both the primary and secondary flows.

- (C) Theoretical performance trends for this engine were determined. The primary flowfield of the nozzle was analyzed using the axially symmetric method of characteristics (programmed for automatic computation) to develop velocity and pressure profiles, and a boundary layer analysis was conducted to establish friction losses along the contour. Predicted primary nozzle wall pressure profiles are illustrated for various chamber-to-ambient pressure ratios in Fig. 104. The rise in nozzle wall pressure at low pressure ratios is caused by the recompression phenomena. This effect was found to cease at pressure ratios above approximately 63. These primary nozzle wall pressures were integrated over the nozzle surface area and combined with the pressure and momentum thrust at the throat to establish ideal primary thrust. This primary thrust value was corrected for drag losses and added to the base thrust established by estimated base pressures to obtain total nozzle thrust. Base pressure estimates were made using the empirical techniques described in Ref. 2, and are shown as a function of chamber pressure ratio for various secondary flowrates in Fig. 105. For these calculations it was assumed that 7/C*s = 7/C*p.
- (C) Predicted nozzle thrust efficiency with 0.8 percent secondary flow is shown in Fig. 106: a function of the chamber pressure ratio. Efficiency gains with secondary flowrate are evident at all pressure ratios of interest; optimum secondary flowrate at design pressure ratio (PR ≈ 410) is approximately one percent of the primary flowrate as shown by the estimated performance trend with secondary flowrate in Fig. 107.

CONFIDENTIAL

Figure 104. Theoretical Nozale Wall Pressure Profiles

205

UNBERSSEET

Figure 105. Estimated Base Pressure frend With Altitude and Secondary Flowrate

206

207 DENTIAL

CONFIDENTIAL

Figure 107. Estimated Efficiency Trend with Secondary Florrate

208

Test Program

- (c) Hardware Description. The engine assembly is shown schematically in Fig. 108. The engine was operated with hydrogen peroxide monopropellent (90 percent concentration) in both the primary and secondary systems. The peroxide was decomposed in a concentric arrangement of silver screen catalyst packs located within the engine. Radial outward secondary flow injection is effected through sonic orifices located in the center of a deep base cavity. The secondary flowrate was maintained at a constant value of 0.8 percent of the primary flowrate throughout the slipstream phase of the test program. Still air tests were conducted with 0 and 1.7 percent secondary flow at the conclusion of the program. The engine is fabricated of 347 stainless steel and is uncooled with a steady state operating temperature of 1350°F (combustor and throat regions). Model dimensions were set to achieve a chamber pressure of 200 psia, design thrust level of approximately 410 lbs, and an expansion area ratio of 25 when the steady-state operating temperature was reached.
- (U) The location and installation of the test article in the 16 foot transonic and supersonic wind tunnels at AEDC is shown in Figs. 109 through 112. These wind tunnels are continuous flow, closed circuit tunnels capable of operating over a range of Mach numbers from 0.55 to 1.6 and 1.7 to 3.1, respectively. Operating limits of these facilities were presented earlier in Fig.102, page 202. A detailed facility description is contained in Ref. 20.
- (U) The engine was mounted on a water cooled force balance which was supported by a strut extending from the floor of the test section. In order to simulate a typical launch vehicle, the engine and force balance assembly were enclosed in an aerodynamic fairing constructed in

Cross Section View of the Rocket Engine

Figure 108.

1 2 m

THE PERSON AND THE PE

Figure 109. Test Installation in the Supersonic kind Tunnel

Figure 110. Test Installation in the Supersonic Wind Tunnel

Figure ill. Test Installation in the 16" Test Section

Figure 112. Installation of Slipstream Nodel in the Transonic Wind Tunnel at AEDC

the shape of a missile body. A dimensional sketch of the model is shown in Fig. 113, and a cross sectional view of the assembly is shown in Fig.114. The exit plane of the model extended approximately two strut chord lengths downstream of the strut trailing edge to reduce the strut interference on the model base to a minimum. In order to obtain nozzle performance as a function of the pressure which controls the expansion of primary exhaust gases, a flat, cylindrical missile boat tail was selected to insure a separated flow over the missile base with an attendant uniformly distributed missile base pressure. This is not necessarily typical of future configurations because of the relatively low missile base pressures characteristic of this geometry. Extensive testing would be required to cover all possible future boat tail geometries, and the flat, cylindrical base was thosen to simplify the interpretation of test dats.

(U) Pressures along the missile base were equalized with the pressure within the simulated vehicle by providing an annular passage between the engine and outer skin which allows a gas flow from the model base to the interior of the missile body. This enables direct measurement of nozzle thrust referenced to the pressure that controls the nozzle expansion (i.e., the missile base pressure) exclusive of the missile base and skin drag. Concentricity between the engine and the missile skin was maintained by means of adjustable set screws located in the thrust mount. Pressure instrumentation was provided along the forward face of the engine and on the fore and aft sections of the force balance as a precautionary measure to enable thrust corrections in the event of an unbalance between the missile base and internal missile pressures.

Figure 113 . Dimensioned Sketch, Slipstreem Model

1. Propellant Supply Line
2. Model Strut Support
5. Cavitating Venturi
4. Force Balance
5. Force Balance
6. Propellant Manifold
7. Secondary Propellant Line
8. Secondary Injector
9. Primary Injector
10. Primary Silver Screen Pack
11. Secondary Silver Screen Pack
12. Primary Combustion Chamber
13. Primary Propellant Line
14. Secondary Combustion Chamber
15. 20-Percent Length Aerospike

Figure 114. Cross Section View of Slipstress Model

- (U) Engine propellant lines, coolant lines for the force balance, and instrumentation lines were routed to the model assembly along the strut and enclosed by aerodynamic fairings. Propellants and coolant were supplied through rigid tubing which was free floating through a right angle turn down to a fixed cantilever point well within the support atrut. This cantilever point was located such that undesirable tare forces on the balance system were negligible.
- (U) As shown in Fig. 114, peroxide was supplied through four descrete feed lines to the primary annular catalyst pack from a toroidal distribution manifold located on the aft section of the force balance. A fifth feed line supplied propellant to the central secondary catalyst pack. Drilled passages in the shell separating the annular and central catalyst packs allowed communication between primary and secondary supply systems after peroxide decomposition. A facility flow schematic for these tests is shown in Fig. 115.
- (U) Pressure orifice and thermocouple locations on the H₂O₂ engine and model are shown in Fig. 116. Steady-state pressures were measured with differential pressure transducers located in the tunnel plenum and referenced to test section wall static pressure. The rocket engine chamber pressure and injection pressures were measured with model-mounted, absolute strain-gage-type transducers. The total H₂O₂ flow rate (primary + secondary) was measured with a turbine-type flowmeter located outside the tunnel shell. A thermocouple located in the H₂O₂ supply line just upstream of the flowmeter was used to correct the measured volume flow for the H₂O₂ density. A bench calibration of the secondary flow discharge orifice was used to calculate the secondary flow rate.

Figure 115. Hydrogen Peroxide Propellant System

Figure 116. Pressure Orifice and Thermocouple Locations

INCLICATION

- (U) Test Procedure. The test program was designed to systematically cover the range of conditions indicated in Fig. 103. The "as tested" operating parameters are plotted along with the data of Fig. 103 in Fig. 117. As indicated, both the transonic and supersonic facilities at AEDC were used to cover the desired range of operating conditions. It can be seen that, although the testing was conducted over repeated increments in chamber pressure ratio, most of the data points were taken at conditions which closely approximate those along the trajectories in Fig. 103.
- (U) During a typical test sequence, the engine was fired after the propellant system was pressurized and the desired test conditions of Mach number and total pressure were established in the test section. The correct propellant weight flow was maintained throughout the firing by supplying the run tank with regulated nitrogen flow. The rocket engine was operated for approximately 50 seconds at each of the tunnel test conditions to allow the combustion temperature to reach equilibrium. Transient data recorders and motion picture cameras were turned on just prior to the rocket firing; steady-state data points were obtained at 5-sec. intervals throughout the firing in the supersonic facility, and at 3-sec. intervals in the transonic facility.

Test Results

(U) A summary of the testing conducted in each facility is indicated in Table 11. Forty tests with $\dot{V}_{a} = 0.8$ percent were conducted to evaluate slipstream effects. The remaining five tests were conducted to establish nozzle performance trends with secondary flowrate. Reduced data for each test include: nozzle thrust and specific impulse efficiency based on both ambient and missile base pressure; wall pressure ratios; P_{a}/P_{c} ; average engine and missile base pressure ratios, \overline{P}_{B}/P_{c} and $\overline{P}_{B_{v}}/P_{c}$; chamber and

CONTIGARMATED

		·	·		
CONFIDENTIAL	Secondary Flowrate (Percent)		0 0 0 0 0 0 0 0 0		8 8 8 0 0
Table III Test survart	Pressure Ratio Range	Transonic facility	67 - 202 14 - 361 211 132 67 - 209 36 - 216 66 - 311	STPERSONIC FACILITY	33 - 357 110 - 469 223 - 467
	Kech Kumber		0 0 0.55 0.9 1.2	·	0 1.8 2.2
	Number of Tests		40 m m 0 m 4		04 10

CONFIDENTIAL UNGLASSIFIED

The state of the s

GNULASSIFIED

missile base to ambient pressure ratios, P_c/P_{00} and $\overline{P}_{B_v}/P_{00}$ and secondary flowrate ratio, W_s/W_p . Data reduction was performed at AEDC using automatic digital computation equipment. The techniques utilized to obtain these parameters from the measured data are discussed in Appendix 2. Measured parameters and reduced data for each test are listed in Table 17 of Appendix 2 and Appendix 3, respectively. Engine operating characteristics established by these data in still air and in slipstream are discussed below.

(C) <u>Cuiescent Air</u>. As indicated in Fig. 117, extensive testing was conducted under still air conditions to quantitatively establish performance trends with altitude and secondary flowrate for reference purposes. This testing confirmed that thrust efficiency values greater than 98 percent can be achieved at design pressure ratio with a properly designed aerospike nozzle operating with secondary flow. It was also established that off design performance with 0.8 percent secondary flow remains above 94 percent down to pressure ratios of approximately 10 percent of design pressure ratio (corresponds to sea level for most engine applications; of Fig. 102) as demonstrated by the data presented in Fig. 118. Altitude compensation is in evidence at all pressure ratios investigated down to three percent of design pressure ratio; performance of the aerospike is seen to be considerably above that of a noncompensating nozzle at all pressure ratios below 140. The noncompensating efficiency curve was determined using the standard equations for conventional nozzle performance in conjunction with the assumption that design efficiency of the conventional and aerospike nozzles were the same. It can also be seen in Fig. 118 that good data repeatability was obtained between the transonic and supersonic test facilities at AEDC. Decomposition efficiency was nominally 97.5 percent for these tests. The shaded symbol in Fig. 118 represents questionable efficiency data and has been excluded from the remainder of the plots presented herein.

COMPLETANTED

Figure 118. Still Air Nozzle Efficiency vs Chamber Pressure Ratio

225

CINCLESSIAFD

- (C) Aerospike "open wake" performance trends with altitude can be attributed directly to the influence of ambient pressure on nozzle base and wall pressures. Average nozzle base pressure ratio, $\overline{P}_{\rm p}/P_{\rm c}$, with 0.8 percent secondary flow is shown as a function of chamber pressure ratio in lightly. For this nozzle and secondary flowrate, base pressure remains constant (closed wake conditions) with decreasing ambient pressure for all pressure ratios greater than 150, which corresponds to a low point in the efficiency curve in Fig.118. Below this pressure ratio, base pressure is greater than ambient pressure for all of the conditions investigated. Thus, a positive thrust is developed across the engine base at all pressure ratios. The base thrust and nozzle recompression contribution becomes substantial at low pressure ratios and results in the high nozzle efficiency indicated for the aerospike at low altitudes (Fig.118).
- (C) The recompression phenomena which causes base pressure to adjust to ambient pressure at low pressure ratios also causes the primary nozzle wall pressures to increase at very low pressure ratios as shown by the wall pressure data presented in Fig. 120. As indicated, the wall pressure trend with ambient pressure at locations near the end of the nozzle is similar to that predicted theoretically; good agreement between experiment and theory is evident for stations near the end of the nozzle. However, experimental data deviate from the predicted trend within the shrouded portion of the nozzle.
- (C) Experimental data that show performance trends with secondary flow are presented in Fig.121. It is readily seen that the addition of so condary flow is beneficial to performance at all pressure ratios.

Pigure 119. Engine Base Pressure vs Chamber Pressure Ratio in Still Air, Waring = 0.8 percent

Pigure 120. Comparison Between Experimental and Theoretical Wall Pressure Profiles

229 CONFIDENTIAL

- 1.7 percent are shown as a function of chamber pressure ratio in Fig.122.

 Norse efficiency computed using the measured base pressure differential from base pressure for 0.8 percent secondary flow (refer to eq (10) of Appendix 2) is presented in Fig.123. Efficiency gains with secondary flow are again swident throughout the range of pressure ratios investigated, but computed efficiency without secondary flow is nominally one percent above the measured values (compare Fig.121). Also, computed performance for 1.7 percent secondary flow is nearly identical to that for 0.8 percent flow as compared to the substantial loss (= 2 percent) indicated for 1.7 percent secondary flow in Fig.121. Although no reason could be found for this discrepancy between the measured and computed magnitude of performance gain with secondary flowrate, these hot flow data do establish the expected performance trend in both cases.
- (C) A comparison between the theoretical and measured nozzle efficiency is presented in Fig.124. Measured base pressure (from Fig.122) was utilized to compute the predicted performance. As indicated, good agreement exists between experiment and theory.

 The efficiency trend with accordary flow computed from the measured change in base pressure follows the predicted trend very closely as shown in Fig.125.
- (C) hase pressure estimated using the empirical technique developed in Ref. 2 (Fig.105, mage 206) as found to be slightly higher than that measured for 0.8 percent secondary flow in the "closed wake" and "transition" pressure ratio regimes as shown in Fig.126. A cross-over point between measured and estimated base pressure occurs at a pressure ratio of 100. Estimated base pressures fall slightly below the measured values at pressure ratios less than 100. The percent deviation ranges from -7 percent at low pressure

230 Confidential

Figure 127. Still Air Nozzle Efficiency Trend with Secondary Flowrate and Chamber Pressure Ratio Computed from the Measured Change in Nozzle Base Pressure.

Figure 125. Comparison Between Estimated and Reasured Efficiency Trend with Secondary Flowrate

CONFIDENTIAL

ratios to +17 percent at a pressure ratio of 150 and back to +3 percent in the closed wake regime. Similar results were obtained with zero and 1.7 percent secondary flow as shown in Fig.127.

- (C) External Flow. Slipstream testing was conducted over a range of Mach numbers from 0.55 to 2.2 and a range of chamber pressure ratios from 8 to 115 percent of the model design pressure ratio (FR=410). Nozzle efficiency data (referenced to the static pressure of the free stream as in eq 6 of Appendix 2) obtained under these conditions are presented as a function of the chamber pressure ratio, P_c/P_{co}, in Fig. 128. Performance is seen to be unaffected by free stream conditions at all pressure ratios above approximately 150, which closely approximates the pressure ratio of base closure as shown by the data in Fig.122. Below this pressure ratio, efficiency decreases at a rate which is dependent on the free stream Mach number; performance at low pressure ratios is lowest for high (supersonic) Mach numbers.
- (C) These efficiency data are replotted as a function of percent of design pressure ratio in Fig.129. The flight trajectory data shown in Fig.101, page 201, were used to obtain the indicated nozzle efficiency limits for the most adverse flight conditions. Typical aerospike booster performance below the closed-wake pressure ratio (in still air) will lie above the shaded region and the non-compensating performance curve. For higher pressure ratios, nozzle performance is unaffected by Mach number. It can be seen that nozzle performance is only moderately reduced under typical flight conditions. Application of the data to a typical trajectory will be discussed in more detail in a later section.
- (c) The indicated decrease in performance with increasing free steam Mach number was found to result directly from a similar trend in nozzle base pressures at low pressure ratios. Engine base pressure data measured

237 CONFIDENTIAL

238 CONFIDENTIAL

Figure 129. Aerospike Nozzle Efficiency vs Percent of Design Pressure Ratio

under the aforementioned external flow conditions are indicated in Fig. 130. As shown, a closed wake condition occurs at lower pressure ratios in slip-stream than in still air, and base pressure is unaffected by the presence of external flow at high pressure ratios. Also, at low pressure ratios, base pressure does not recover to the same value in slipstream as it does in still air. The magnitude of base pressure in the open wake is seen to be a strong function of free stream Mach number, and forms the basis for the trend in rozzle efficiency indicated in Fig. 128.

- (c) Nozzle wall pressures were found to be unaffected by external flow except at Mach number 0.9 at a pressure ratio of 32 where a slight decrease occurred. These data are presented in Fig. 131.
- (C) These efficiency and nozzle base pressure trends in slipstream are similar to those obtained through the cold-flow testing discussed previously at pressure ratios above which base pressure is constant in still air. Trends at low pressure ratios with subsonic external flow differ from those established by the cold-flow data, and were found to be the result of lower missile base pressures than those measured in the cold-flow program. The average pressure acting over the missile base with the hot-flow model is shown plotted against the chamber pressure ratio of the engine in Fig. 132. It is readily seen that sub-embient missile base pressures were obtained for all tests with external flow. Missile base pressure ratio decreases with increasing pressure ratio in subsonic external flow, while the opposite trend occurs with supersonic slipstream air. A reversal in this trend is observed at very low pressure ratios with free stream Mach number of 1.2. indicating a probable "opening" of the wake flow downstream of the missile (Fig.133) with corresponding tendency for missile base pressure to approach the free stream static prossure.
- (c) A crossplot of the curves in Fig. 132 was made to show the effect of free stream velocity, and is presented along with cold-flow data from Ref. 21 in Fig. 134. As shown, the rate of missile base pressure decrease with increasing

240

Figure 131. Nozzle Wall Pressure Trend in External Flow

re 132. Missile Base-To-Ambient Pressure Ratio vs Chamber Pressure Ratio

Andreas

Figure 155. Flow Regions for the Missile Base Flow

Figure 134. Effect of Free Stream Mach Number and Chamber Pressure Ratio on Missile Base-To-Ambient Pressure Ratio (Cross Plot From Fig. 41)

- (C) Mach number is approximately the same in subscnic flow as in supersonic flow in both cases. A discontinuity occurs for sonic slipstream velocity. At this free stream velocity, a reversal in trend with chamber pressure ratio also occurs except at a chamber pressure ratio of 36 (PR/PR = 0.088) which is felt to be an "open wake" condition at the base of the missile with the hot-flow engine. The hot-flow missile base pressures fall below those obtained with the cold-flow configuration for subscnic free stream Mach numbers. This is apparently a consequence of slightly dissimilar gas properties, nozzle contours, and afterbody configurations between the hot- and cold-flow models.
- (C) The open-wake nozzle performance trends in external flow (Fig. 128, page 238) are attributable to the combined influence of the reduced missile base shown in Fig. 134, and shock flow interaction effects. It was discussed previously that the relative influence of these effects could be distinguished by means of the normalized thrust coefficient, \$\overline{\pi}\$ (cf Eq. (7), page 441). If the effect of reduced missile base pressure predominates, this parameter reduces to the definition of nozzle efficiency, and the thrust coefficient data obtained in external flow correlates with that obtained in still air when plotted versus the "effective" chamber pressure ratio, $P_{\rm A}/\bar{P}_{\rm B}$. When shock flow interaction occurs the normalized thrust coefficient is higher than that obtained in still air for corresponding values of P_c/P_B , because of higher nozzle base pressure under these conditions than would be expected on the basis of PB alone. The shock interaction effect was defined earlier as an influence on performance caused by compression waves emanating from the outer free jet boundary downstream of the impingement point (point A in Fig. 96, page 193) which are turned inward as a result of strong flow interaction. These compression waves intersect the inner free jet boundary farther upstream than if the expansion were controlled only by the missile base pressure.
- (C) Normalized thrust coefficient trends with the chamber-to-missile base pressure ratio, $P_{\rm c}/P_{\rm B}$, are shown in Fig.135. The normalized thrust coefficient is higher than that obtained in still air for $M_{\rm co}=1.2$ and 1.4 at effective pressure ratios of 350 and 410 respectively. For these two tests, the nozzle

CONFIDENTIAL

base pressure was increased through relatively strong flow interaction at these effective pressure ratios as shown in Fig. 136. The correlations in Figs.135 and 136 indicate that the influence of reduced missile base pressure was the predominate effect in establishing nozzle performance and base pressure trends in Figs.128 and 130 for all of the remaining hot-flow test conditions. The absence of flow interaction effects with subsonic external flow in the transition pressure ratio regime explains the discrepancy between hot- and cold-flow efficiency trends in this region. The correlating parameter, Φ , in Fig. 135 can be used to obtain in-flight performance estimates by means of still air performance and known missile base pressure, but these estimates will be conservative because shock effects are neglected using this procedure.

(C) The results in Figs. 134 and 136 indicate that both missile base pressure and interaction effects are dependent on the physical and dynamic properties of the primary and slipstream flows, and on the missile and nozzle geometry. However, more work is needed to establish the relative influence of these parameters on missile base pressure and interaction effects. Once the nature of these effects is fully defined, a more detailed study of nozzle performance trends in external flow can be conducted. It is felt that, for the most part, these aspects can be evaluated theoretically.

APPLICATION OF TEST RESULTS

Mission Analysis

THE PROPERTY OF THE PROPERTY O

(c) The nozzle efficiency data discussed in the previous section is a combined function of Mach number and pressure ratio. Therefore, a typical booster trajectory must be examined to assess the overall effect on in-flight system performance. The correlations presented in Figs. 135 and 136 demonstrate that aerospike nozzle performance and base pressure trends in slipstream are identical to those in still air (except when slipstream

248

249 CONFIDENTIAL

interaction occurs) if represented as a function of the local ambient pressure. $(P_{B_{\psi}})$ to the nozzle. Therefore, nozzle performance trends such as those in Fig. 128can be established for any engine-vehicle configuration through knowledge of still air performance and missile base pressure as a function of altitude by means of the normalized thrust coefficient, $\tilde{\Psi}_{\bullet}$.

(C) For cases without interaction, nozzle performance based on the chamber-to-ambient pressure ratio, $P_{\rm C}/P_{\rm 00}$ can be obtained by first determining $P_{\rm C}/P_{\rm B_V}$. Then, engine thrust is obtained from the still air performance curve for the nozzle in question through the normalized thrust coefficient, ϕ , and the estimated value of $P_{\rm C}/P_{\rm B_V}$ as follows:

$$F) = (F_{id_p} + F_{id_s})_{\underline{P_c}} \underline{\Phi}$$

(c) The thrust corresponding to the true ambient pressure, Poo, is then obtained from:

$$P_{\underline{P_C}} = P_{\underline{P_C}} - A_{\bullet} (P_{\odot} - P_{\underline{P_C}})$$

where $\textbf{A}_{\textbf{e}}$ is the nozzle exit area. Performance corresponding to $\textbf{P}_{\textbf{co}}$ is given by:

$$c_{T_{\infty}} = \frac{P_{c}/P_{c}}{(P_{id_{p}} + P_{id_{a}})} P_{c}/P_{\infty}$$

(c) For isoenergetic primary and secondary flows with equal specific heat ratios, this procedure can be abbreviated as follows:

$$C_{T_{\infty}} = \frac{(\frac{1}{2} C_{F_{\text{opt}}})_{P_{\text{c}}/P_{\text{B}_{\text{v}}}} - \frac{\epsilon}{P_{R_{\text{oo}}}} (1 - \frac{P_{\text{B}_{\text{v}}}}{P_{\text{oo}}})}{(C_{P_{\text{opt}}})_{P_{\text{c}}/P_{\text{oo}}}}$$
(2)

CCTRENTAL

- (c) As indicated by the results of this hot-flow program, the occurrence of external flow interaction effects are difficult to predict without detailed study of flow processes involved in each case. However, occuservative estimates of nozzle efficiency in external flow can be obtained simply by ignoring interaction effects (both the hot-flow and cold-flow data indicate that these effects are beneficial to performance).
- (c) In order to obtain a "worst case" estimate for the magnitude of external flow influence over a typical booster mission, it was assumed that the still air expansion characteristics in Fig.118 (in percent of design pressure ratio), and missile base pressure trends in Fig. 134 were representative of an 10 /IH, aerospike engine with area ratio of 80 and chumber pressure of 15:0 psia. Interaction effects were assumed to be negligible. The assumed trajectory corresponds to Case II in Fig.101, page 201 (two-stage vehicle), which is reproduced in Fig. 137. In order to facilitate performance computations, the nozzle efficiency in slipstream was normalized in terms of the still air nozzle performance, and plotted versus the free stream Mach numbers for various values of the percent of the nozzle design pressure ratio as shown in Fig.138. The interpolation at subsonic Mach numbers was accomplished by using the data in Fig. 134in conjunction with eq (2). These performance estimates are somewhat conservative, because in-flight missile base pressure can probably be made higher than indicated in Fig. 134 as discussed in a later section.
- (C) Application of the generalized efficiency data in Fig.133 leads to an inflight specific impulse variation as shown in Fig.139. It can be seen that slipstream effects are influential only during approximately 15 percent of the total trajectory time. The overall slipstream effect is to decrease the time-integrated specific impulse by 0.17 percent.

Figure 138. Normalized Performance Data For Mission Analysis

Figure 139. In-Flight Specific Impulse With and Without External Flow

Methods of Reducing Slipstream Effects

- (C) The hot- and cold-flow data discussed herein have shown that the presence of an external flow can influence aerospike nozzle performance in two ways; both are closely coupled with the gas properties and expansion characteristics of the nozzle. The first effect of slipstream results from a decrease in vehicle base pressure with increasing free stream Mach number which causes the nozzle exhaust flow to expand through higher pressure ratios than in still air. Secondly, nozzle performance is affected. when strong shock interaction between slipstream and nozzle flows is such that some of the recompression waves emanating from the outer free jet boundary strike the inner free jet boundary farther upstream than for the case where the missile base pressure is the sole factor governing the nozzle expansion process.
- (C) The increased expansion caused by low missile base pressures results in lew nozzle base pressure relative to that obtained in still air with an attendant reduction in performance at low pressure ratios. This is caused by increased turning of the outer free jet boundary of the aerospike thereby reducing the effectiveness of recompression waves in the nozzle flow as "! lustrated in Fig. 95, page 192. Thus, one way of increasing in-flight nozzle performance at low altitudes is to increase the pressure acting along the outer free jet boundary which controls the expansion process. Missile base pressures approaching ambient pressure result in negligible slipstream effects. Past study has shown that the most effective means of obtaining high missile base pressure is through proper design of the missile base geometry and/or through mass addition into the base wake flow. Afterbody configurations found to result in relatively high afterbody thrust through previous investigation (e. g. Ref. 22 and illustrated in Fig. 140. Missile base pressures obtained from the circular arc boat-tail configuration (Fig. 140b) are shown in Fig. 141 compared to that

Figure 140. Boattail Geometry Producing High Missile-Base Pressure

Figure 141. Effect of Afterbody Geometry on Missile Base Pressure at High Subsonic Each Numbers (Mome 0.9)

obtained from a simple cylindrical boat-tail similar to that tested in this program. It can be seen that substantial increases in missile base pressure are possible through proper afterbody design. The effect of mass addition into the wake flow downstream of a rearward facing step is illustrated achematically in Fig. 142, and is discussed in Ref. 23. As shown in Fig. 142 the base pressure increases markedly through the addition of a small amount of bleed flow.

(C) Results obtained to date have shown that when flow interaction does change the intrinsic operation of the nozzle, the overall effect is an increase in base pressure over that obtained without flow interaction as shown in Fig. 136. To show the nature of interaction effects, the average curve through the missile base pressure data in Fig. 132, page 243, is shown along with nozzle base pressure data from Fig. 136, page 249, in Fig. 143. The nozzle base pressure tends to follow changes in the free stream static pressure in the "open-wake regime just as in still air (also shown by the date in Fig. 130). In slipstream, communication between the nozzle flow field and free stream conditions is achieved directly through the missile bese pressure as shown by the majority of this data, and through flow interaction $(M_{\infty} = 1.2, 1.4)$ at chamber-to-missile base pressure ratios of 300 and 410, respectively. However, only the portion of the outer free jet boundary of the nozzle downstream of the point of flow impingement (point & in Fig. 95, page 192) is influenced by Po in the latter case. Therefore, the base pressure increase is not as pronounced as it is for the corresponding case in still air.

というないというないというないというないのでは、これのないないできないないというないないというないないできないないできない。

where f = mass bleed flow per unit area

Figure 142. Effect of Bleed on Base Pressures in Two-Dimensional Flow Over a Back Step.

gure 143 . Influence of Flow Interaction on Base Pressure

260

(c) Reducing the portion of the nozzle free jet boundary exposed to the relatively low missile base pressure as shown in Fig. 144 b will alleviate this situation. Altering the afterbody design in this manner will allow the free stream static pressure to act over nearly the entire free jet bourdary, and nozzle base pressure will recover to this pressure rather than the missile base pressure, just as in still air. Consequently, nozzle performence in slipstream will be similar to that in still air. Actually, if compression waves in the nozzle flow are turned inward by the interaction process as illustrated in Fig.96, performance obtained in external flow may be slightly higher than that obtained in still air at low pressure ratios. This apparently was the case in the cold-flow program where relatively high missile base pressures combined with flow interaction resulted in an increase in efficiency with subsonic external flow. Since the missile base pressure is no longer the predominate influence for small base areas, the correlation presented in Figs.135 and 136 will not represent a true indication of the expansion process. Of course, this afterbody design will also be beneficial to vehicle base drag characteristics, since the area subjected to sub-ambient pressure is minimized.

A recent paper (Ref.24) presented results of an experimental study of the performance of low angle plug nozzle performance in alipstream. The same interaction effects discussed herein were observed and the use of a slender base lip improved performance considerably.

CONCLUSIONS AND RECOMMENDATIONS

(c) Analysis of the data presented herein leads to several conclusions regarding aerospike performance in still air and with external flow. These are the following:

¥

Figure 144. Qualitative Influence Regions of External Ambient Pressures

262

Celificantal

- Still air performance of a properly designed aerospike thrust chamber is approximately 98 percent of ideal at design pressure ratio under the conditions tested in this program. Altitude compensation is obtained at all pressure ratios.
 - a) The addition of secondary flow is beneficial to performance at all pressure ratios. Optimum secondary flow is between 0.8 and 1.7 percent of the primary flow for the conditions tested.
 - b) Excellent agreement between predicted and experimental performance was obtained for all pressure ratios greater than 32.
- 2) Aerospike performance is unaffected by external flow in the closed wake pressure ratio region. In the open wake region, performance and base processes at a rate which is Mach number and pressure ratio dependent. Similar results are obtained through cold-flow testing except when flow interaction influences performance.
 - a) For cases without flow interaction, both not- and coldflow nozzle performance and base pressure data tend to correlate with the chamber-to-missile base pressure ratio. This indicates that the missile base pressure, in most cases, controls the nozzle expansion and can be used to form the basis for concervative in-flight performance estimates.
 - b) Hot- and cold-flow gaussile base pressure and interaction effects differ indicating an influence of nozzle gas properties on slipstream effects.

COMPREHIMAL

- External flow effects integrated over a typical mission are small and can be further reduced by proper afterbody design.
 - a) Conservative performance estimates based on the misable base pressure data presented herein indicate that time integrated specific impulse (I) is reduced by 0.17 percent because of the influence of external flow.
 - b) Missile base pressure can be increased substantially through boat-tailing (Fig. 141) and/or mass addition to the base wake (Fig. 142) thereby increasing performance in external flow.
 - c) Communication with free stream static pressure can be induced at all altitudes by causing flow interaction for all conditions through minimization of vehicle base area. Nozzle performance under these conditions will be similar to that obtained in still air at low pressure ratios.
- Based on these results, it can be seen that external flow effects are small even under sovere conditions, and can be reduced still further by proper afterbody design. Further analytical studies can be conducted to theoretically determine missile base pressure trends with the following: primary nozzle geometry, gas properties and flow conditions of the primary flowfield, missile afterbody geometry, and external flow conditions. These studies should also attempt to establish the nature of external and nozzle flow interaction effects, and the conditions under which these effects influence performance. The results of these studies should be used to devise methods of reducing adverse slipstream effects incurred because of sub-ambient missile base pressure, and to quantitati amine various means of using flow interaction effects to advantage. Enter antal testing should be conducted to verify the results of the snalytical study.

SECTION V

AEROSPIKE LIQUID INJECTION THRUST VECTOR CONTROL INVESTIGATION

INTRODUCTION

- (U) Recent advances in rocket engine technology have resulted in a need for increased study of means for providing directional thrust control for future generation rocket vehicles. Secondary injection of fluids into the engine exhaust streams has proven to be an effective and efficient method of thrust vector control (TVC) in several present applications; and cold-flow testing, complemented by analytical engine system studies, has shown that this is also a competitive TVC technique for advanced aerospike engines. One of the objective of the Advanced Aerodynamic Spike Configurations Program (AFO4(611)-9948) was to supplement current aerospike TVC technology by providing sufficient hot-flow liquid injection thrust vector control (LITVC) test data to establish design criteria and enable quantitative performance evaluations for future high-thrust aerospike engines.
- (C) A test program was formulated so that this TVC technique could be studied using a modified version of the storable propellant (N_04/UDNH-N_H4,50-50) aerospike thrust chamber tested previously in this program. Chamber pressure selected for the TVC testing was 200 psia with an attendant thrust level of approximately 5600 pounds at vacuum. Area ratio of the aerospike nozzle was 25:1, and the axial length was 25 percent of the axial length of a 15-degree conical nozzle with equivalent area ratio. Injection of the TVC flow was effected through orifices located in uncooled contoured flow rings which comprised the aft section of the nozzle. Testing was conducted in an altitude facility at Arnold Engineering Development Center (AEDC), J2 cell. A typical test configuration is illustrated along with the flow field accompanying liquid NoO4 injection into aerospike mainstream gases in Fig.145. The previous SITVC analytical and test results leading to the selection of test configurations are described in the following sections, along with the TVC performance trends that were established through this testing.

b. AEDC Altitude Firing

Sea Level Checkout Instaliation

Figure 145. Aerospike TVC Engine. Rocketdyne Installation and Firing at AEDC

CONFIDENTIAL
This page is Unclassified

CONFIDERMAL

SUMMARY

- (U) Thirty-three firings of 6 second's duration were conducted at altitude to establish engine performance without TVC, and to determine LITVC performance trends with variations in the injection parameters. Five sea level check-out tests of from 1/2 to 5 second's durations were conducted at Rocketdyns prior to the altitude testing. Measured thrust efficiency of the engine was 95.1 percent for $\mathring{\mathbf{v}}_s/\mathring{\mathbf{v}}_p = 0$ and 95.2 percent for $\mathring{\mathbf{v}}_s/\mathring{\mathbf{v}}_p = 0.017$. Combustion efficiency ($?_{C_s}$) was nominally 89 percent throughout the program. The measured nozzle thrust efficiency without secondary flow was 0.8 percent greater than that estimated theoretically. Because of its magnitude, this discrepancy was attributed to effects such as downstream burning which may result from the relatively low combustion efficiency, and which cannot be accounted for theoretically.
- (C) The semi-empirical blast-wave theory of Ref. 1 was utilized in conjunction with experimental data from various sources to provide a basis for selection of SITVC test configurations. Testing of these configurations established that measured LITVC side-force efficiency trends with an aerospike are similar to those expected on the basis of preliminary analysis: injection near the throat provides higher side-force efficiency than injection near the nozzle exit, multiple-port injectors are superior to single-port designs, port spacing and axial port inclination have no influence on LITVC performance in the range tested near the nozzle exit, and parallel stream injection affords higher performance than radial stream injection at both locations studied. Control moment and nozzle specific impulse efficiency trends were found to be dependent upon the engine-vehicle geometric relationship. These efficiencies followed trends established by the side-force efficiency for boost vehicles (r/h = 0.25), but in some cases optimized differently for upper-stage configurations (r/h = 1.0).

- (C) Comparison of the side-thrust efficiency TVC data obtained in this program with that obtained from other nozzles revealed that LIT/C performance with an aerospike is equal to or less than with other nozzles, because of the relatively short length of the aerospike. The level of side thrust efficiency for N₂O₄ injection established through this testing was also found to be lower than that estimated using the blast wave analysis in conjunction with an empirical coefficient obtained for gas injection into flow over a flat plate. It was necessary to revise this coefficient to obtain quantitative agreement between theory and experiment for the configuration tested. Application of the test data to full-scale engine systems showed that liquid injection may be competitive with gas injection under certain conditions. In general, fuel injection provides higher in-flight engine specific impulse efficiency but lower density impulse than oxidizer injection if vaporization and reaction do not occur within the nozzle.
- (c) On the basis of these results, it is recommended that the relative merits of liquid injection TVC be investigated through comparative systems analysis using the conservative performance estimates presented herein for full-scale engines. It is also recommended that improved LITVC designs such as a bipropellant injection technique be studied, and that the performance and operating characteristics of attractive systems be evaluated through large-scale environmental hot-flow testing.

THRUST VECTOR CONTROL STUDY PROGRAM

Preliminary Analysis and Design Studies

(C) The design of the engine utilized for the TVC testing was basically identical to that of the 12-percent length engine tested previously in this program.

Modification to the previous test hardware consisted of: an increase in

268

length from 12 to 25 percent of the length of an equivalent area ratio ($\epsilon = 25$) 15-degree conical nozzl; to accommodate the liquid injection orifices in uncooled nozzle extensions, and use of a porous base plate flush with the base exit plane for injection of secondary bleed flow. The engine was operated with N₂0₄/UDMH-N₂H₄,(50-50) propellants at a mixture ratio of 2.0 and with a chamber pressure of 200 psia. Under these conditions vacuum thrust of the engine was approximately 5600 pounds. The nozzle contour 's shown in Fig. 146.

(C) This modified engine was analyzed for constant * expansion using the axially symmetric method of characteristics to describe the inviscid portion of the primary flow field from which the intrinsic primary thrust is determined, a boundary layer analysis to establish thrust corrections for viscosity effects, and a Bray analysis to determine thrust corrections for reaction kinetics. The total primary thrust coefficient, C_F, is derived from the summation of these contributions by the expression (Refer to Nomenclature):

$$c_{p} = \frac{r_{p}}{r_{c}A_{p}^{*}} = c_{p-1} - \Delta c_{p} - (1 - \gamma_{K}) c_{p,id_{p}}$$

where C_F is the full shifting one-dimensional ideal thrust coefficient $id_{\overline{g}}$

at vacuum for $\epsilon = 25$. The performance contributions from these analyses for a thrust chamber mixture ratio of 2.0 are as follows:

$$c_{\text{Fint}} = 1.7364$$

$$\Delta c_{\text{D}} = 0.0245$$

$$\gamma_{\text{X}} = 0.9749$$

$$c_{\text{Fid}} = 1.387$$

(U) The mossie base pressure, PB, was obtained by means of the semicompirical techniques outlined in Ref. 2 and utilized to obtain a base thrust coefficient through the relations

$$c_{FB} = \frac{F_B}{P_C A_P^*} = \frac{P_B}{P_C} \frac{A_B}{A_P^*} = \frac{P_B}{P_C} \epsilon_B$$

(U) Thus, the nozzle thrust coefficient at any pressure ratio is given by: $C_F = C_{F_D} + C_{F_B} - \epsilon/PR$

and the nozzle specific impulse and thrust efficiency are obtained from Eq. (1) and (2) below.

$$\eta_{I_8} = \frac{\eta_{C_p} \cdot C_p}{C_{P_{opt_p}} \left(1 + \frac{I_{sopt_s} \cdot \hat{W}_s}{I_{sopt_p} \cdot \hat{W}_p}\right) \Big|_{P_C/P_a}} \tag{1}$$

$$C_{T} = \frac{C_{p}}{C_{f_{opt_{p}}} \left(1 + \frac{\eta_{C_{a}^{*}} I_{sopt_{a}} \frac{u_{a}}{u_{p}}}{I_{sopt_{p}} \frac{u_{a}}{u_{p}}}\right)_{p/p}}$$
(2)

(C) The variation in kinetic efficiency with engine mixture ratio is shown in Fig.147 for 12- and 25-precent length nozzles with chamber pressure of 200 psia. A theoretical wall pressure profile for vacuum expansion is shown in Fig.148. The base pressure trend with secondary flowrate was estimated using the empirical design procedure discussed in Ref. 2, and is shown in Fig.149. These data were used in conjunction with the theoretical primary nozzle thrust contribution to develop semiempirical nozzle performance estimates as a function of secondary flowrate. These estimates are shown in Fig. 150. Values used for nop and not were 0.89 and 0.60, respectively, on the basis of previous testing. Reference performance data were obtained both with and without secondary flow. Reference data for the TVC testing were obtained with a nominal secondary flowrate which was 1.6 percent of the primary flowrate. As shown in Fig.150a, this corresponds to the peak value of nozzle thrust efficiency, Cr.

Figure 147 . Minetic Efficiency Dependence on Axial Length and Thrust Chamber Mixture Zatie

Reaction Kinetic Efficiency, $N_{\rm K}$

Figure 148. Theoretical Wall Pressure Distribution for Aerospike Engine

Base Pressure Ratio, P. P.

274 CONFIDENTIAL

Figure 150. Estimated Nozzle Performance Trend with Secondary Flowrate for Aerospike Engine

- (U) To establish guidelines for the TVC testing, a literature review was conducted to determine high-performing TVC injector designs and performance trends with the system variables. This preliminary study revealed that the efficiency of this TVC technique is a function of parameters such as the physical and chemical properties of the injectant, orientation and location of the injector, injection velocity and flow characteristics, etc. The secondary injectant may be an inert or reactive gas or liquid, giving rise to complex fluid dynamics and chemical kinetic interference with the supersonic mainstream flow.
- (c) Theoretical interpretation of this flow process is desirable since it enables comparisons on a common basis, facilitates isolated study of influential parameters, and provides a basis for design selections. Because of the complex interference phenomena induced by secondary fluid injection, a rigorous solution is intractable. Nevertheless, flow visualization such as that reported in Ref. 3 and 4 have provided a basis for formulating a simplified model of fluid injection which is amenable to practical analysis. The data presented in these references indicate that the TVC flow remains essentially intact after injection, and forms an effective body downstream of the injection port which provides an obstruction to the mainstream flow (i.e., very little mixing occurs between the two streams for some distance downstream of the injection port). Based upon this result, an idealized flow model can be constructed as illustrated in Fig. 151.
- (C) A variety of approaches used in the analysis of this flow model are reported in the general literature. Several of these have been evaluated and it has been found that, of the techniques investigated, the semi-empirical blast wave theory developed in Ref. 1 provided the most accurate representation of the flow process illustrated in Fig. 151. This theory was use to establish

THE TAXABLE PROPERTY.

Figure 151 . Analytical Aspects: Flow Model of Fluid Injection

qualitative liquid injection TVC performance trends with the injection parameters to select meaningful test conditions. Experimental data and results of similar analytical studies obtained from various sources were used to support the theoretical trends where necessary, and to provide the basis for design selections for parameters whose influence is not predictable by the theory (e.g., interaction losses between ports in multiport configurations).

(C) The blast wave theory is based upon the similarity that exists between the effective body formed by the injectant in the mainstream flow and a linear explosion in the plane of the wall and parallel to the mainstream, which, on detonation, supplies a uniform energy per unit length of charge to the surroundings. The energy supplied to the mainstream is derived through consideration of the work that is done on portions of the primary fluid by the secondary injectant through various thermodynamic processes, and through consideration of certain modifications required to satisfy the boundary conditions specified in the original blast wave theory of Ref. 6 and 7 (used to compute the flow field surrounding the charge). The treatment in Ref. 1 results in the following approximate expression for the interaction force induced by secondary injection through single circular ports. (Refer to Nomenclature):

$$P_{si} = G \left(\frac{4}{\pi J_0}\right)^{3/4} \left(k_1^2 M_{\infty} s \sqrt{p_{\infty} n_1^3 u_{\infty}^3 w_2^3}\right)^{1/2} \cos \infty$$
 (3)

(C) A format for prediction of either liquid or gaseous SITVO data is provided by Eq. (3). Correlations presented for gas injection in Ref. 8 indicated that to obtain agreement with the experimental data, Eq. (3) must be prefixed by a spreading correction denoted by G in Eq. (3) which empirically was found to depend upon the distance between the TVC port and the nozzle exit. The form of this correction for gas injection into conical nozzles is illustrated in Fig. 152. The quantity W2 in Eq. (3) is related to the charge energy per unit mass of

Barriot Stranger Contra

Pigure 152. Empirical Spreading Coefficient for Gas Injection into Conical Mossle from Ref. 6.

to 19240 Darkogang foo la hand

charge which is in turn related to the energy of the secondary injectant. It is pointed out in Ref. 9 that this quantity can be represented in the following manner for both gaseous and liquid injection:

$$u_2 = \frac{1}{2} + \frac{v_1}{u_\infty} \cos \lambda + \frac{1}{2} \left(\frac{v_1}{u_\infty} \right)^2 + \frac{m_p/m_1}{(\gamma-1) R_\infty^2} \left(1 + \frac{\overline{m_1 C_{p_1}}}{\overline{m_p C_{p_\infty}}} \right)$$
 (4)

where \mathcal{M}_j C_{pj} is the effective molar specific heat of all processes occurring (evaporation, reaction, etc.), and is defined as $\sum \Delta H/T_{\infty}$. This quantity is dependent upon factors such as: mixing efficiency of injectant and mainstream gases, injectant stay time within the nozzle, droplet formation and vaporisation. Since mixing efficiency is normally low, and injectant stay times are very short for small-scale nozzles this term has been assumed negligible in subsequent discussion relating to the short length aerospike tested in this program. Inserting Eq. (4) into Eq. (3) and rearranging results in the following expression for F_{gi} ;

$$F_{si} = G(\frac{4k_1^{4/3}}{\pi J_0})^{3/4} \left(H_{\infty} \sqrt{p_{\infty} + \frac{1}{3}u_{\infty}^3}\right)^{1/2} \left\{ \frac{1}{2} + \frac{v_1}{u_{\infty}} \cos \lambda + \frac{1}{2} \left(\frac{v_1}{u_{\infty}}\right)^2 + \frac{m_p/m_1}{(\gamma-1) + \frac{1}{2}} \right\}^{3/4} \cos \kappa$$
(5)

(C) The geometric parameters appearing in the above equation and in subsequent equations are illustrated in Fig. 153. For the aerospike engine used in this test program, the dimensionless induced force becomes:

$$\frac{F_{si}}{F_{v}} = (0.233) e_{H}^{1/4} \cos \left(\frac{M_{co}^{5/4}}{V_{co}^{1.625}}\right) \left(\frac{s}{d_{e}}\right)^{\frac{1}{2}} \left\{\frac{1}{2} + \frac{v_{i}}{u_{co}} \cos x + \frac{1}{2} \left(\frac{v_{i}}{u_{co}}\right)^{2} + \frac{7n_{o}/7n_{i}}{(\gamma-1)M_{co}^{2}}\right\}^{3/4} \left(\frac{\dot{w}_{i}}{\dot{w}_{e}}\right)^{3/4}$$

Meure 153. Geometric Design Parameters with Secondary Liquid Injection 1VC

since

$$\mathfrak{M}_{p} = 23.7$$
 $\mathfrak{F}_{p} = 1.25$
 $\mathfrak{e}_{n}^{\dagger} = 2.24$
 $\mathfrak{C}_{p}^{*} = 5029 \text{ ft/sec (MR} = 2.0, $\eta_{C_{p}^{*}} = 0.89)$$

(C) Since liquid injection test data were not available for the aerospike nozzle prior to this program, a constant value of 0.7 (flat plate from Ref. 8 used for the empirical spreading coefficient, G. Thus, the form of the expression for the side thrust amplification factor, which is a measure of LITVC efficiency relative to main engine performance as discussed in Appendix 4, is as follows:

$$K_{s} = I_{ss}/I_{se} = \frac{(F_{si} + F_{sr})/P_{v}}{\mathring{v}_{TVC} / \mathring{v}_{e}}$$

$$= (0.521) \cos \infty \left(\frac{M^{1.25}}{V_{\infty}^{1.625}}\right) \left(\frac{s}{d_{e}}\right)^{\frac{1}{2}} \left\{\frac{1}{2} + \frac{v_{i}}{u_{\infty}} \cos \lambda + \left(\frac{v_{i}}{u_{\infty}}\right)^{2} + \frac{m_{p}/m_{i}}{(\gamma-1) N_{\infty}^{2}}\right\}^{3/4} \left(\frac{\mathring{v}_{i}}{V_{o}}\right)^{-\frac{1}{4}} + (1.105)(10^{-4}) v_{i} \sin (\infty + \lambda)$$
(6)

where

$$P_{sr} \approx \dot{x}_j v_j \sin(\alpha + \lambda)$$

(c) For multiport injection, it was assumed that flow interaction losses between ports are small if the proper port spacing is maintained. Under this assumption, the amplification factor, Kg, can be expressed as:

$$K_s = K_s$$
 $= 1 \left[1 + 2 \sum_{k=1,3,5,...}^{n} \cos(\frac{k-1}{2}) \triangle \Psi \right] \left(\frac{1}{n}\right)$ (7)

for odd port groupings and:

$$K_{\mathbf{g}} = K_{\mathbf{g}} \Big|_{\mathbf{n}=1} \left[\frac{2}{n} \sum_{k=2,4,6...}^{\mathbf{n}} \cos\left(\frac{k-1}{2}\right) \Delta \Psi \right]$$
 (8)

for even port groupings.

(c) It is demonstrated by Eq. (6, 7, and 8) that the performance of liquid injection TVC systems is sensitive to a wide range of operating variables. These variables include: injection flowrate and velocity, injector location, number of ports and port spacing, axial and radial port inclination, and injectant properties. The influence of injection flowrate and velocity is illustrated graphically in Fig. 154 for upstream injection through a single port located near the nozzle throat. The TVC flowrate is seen to have a strong influence upon the efficiency of this secondary injection system;

264

performance decreases sharply with increasing flowrate for all injection velocities. Performance is a weaker function of the injection velocity, and, since $(v_j/u_{co})^2 \ll 1$, K_s increases almost linearly with increasing velocity. However, a large expenditure in system pressure drop is required to achieve a relatively small gain in efficiency as shown by the data in Fig. 155.

- (C) At first glance it would appear that the best simulation of a full-scale, high-chamber-pressure engine would be to test with an injection velocity and pressure drop compatible with the large engine operating conditions; e.g., $v_j = 300$ ft/sec and $\Delta p = 1800$ psia. However, this requires abnormally small TVC orifices for the weight flowrates of the small-scale test configuration. From previous testing with this type of configuration (Ref. 11) it has been shown that very low performance may be encountered because of breakup and atomization of the injectant stream at the injection port (experience to date indicates that the best performance is obtained with a well-collinated fluid stream at the injection orifice as discussed in Ref. 12). Thus, an injection velocity of 100 ft/sec was selected for the majority of the testing conducted in this program. This value results in an orifice Ap compatible with the engine chamber pressure as shown in Fig. 155; that is, similitude between small- a... 'arge-scale engines is maintained through the parameter Pj/Pg rather than through the absolute magnitude of the injection velocity. Since this study and various experimental data (e.g., Ref. 12 and 13) indicate that the injection velocity is an influential parameter, the test program was designed to evaluate several injection velocities over a range of TVC flowrates at two injector locations.
- (C) The theoretical performance trend with flowrate at various injector locations, and with injector location for various TVC flowrates is shown in Fig. 156.

 Both parameters are seen to have a strong influence on performance, and the performance trend with flowrates noted earlier for constant velocity injection near the nozzle throat persists for injection near the end of the

Pigure 155. Estimated Influence of Injection Velocity on SITVC Performance and System Pressure Drop

CONFIDENTIAL

nozzle. It should be pointed out that to develop these curves, it was assumed that the location of the effective side force vector is at the injection port so the angle of in Eq. (6) is the wall angle at the point of injection. In reality, the effective side-force vector is located some distance downstream of the TVC port so the wall angle at the point of application of this vector is less than that at the injection port. Also, the spreading coefficient, G, was assumed to be independent from the injector location. In view of the trend established for conical nozzles (Fig. 152), some variation in the spreading coefficient with axial location can be expected for the aerospike. Thus, while the approximation that vaporization, decomposition, and reactivity influences are negligible become less valid for injector locations for upstream of the nozzle exit and offsets these latter approximations, both of these assumptions tend to exaggerate the influence of the parameter X/1. Nevertheless, the results of this and related study (e.g., the experimental and theoretical data for the Lance thrust chamber discussed in Ref. 12) do indicate that the injector location is an important performance parameter. Therefore the test configuration was designed to incorporate TVC injectors at three locations: x/L = 0.25, x/L = 0.40, and x/L = 0.7. Separate contoured TVC flow rings were used for each location.

(C) The pronounced decrease in performance with increasing flowrate indicated for single-port injection in Fig. 156 demonstrates the desirability of operating continuously in the low flowrate range. This can be accomplished by injecting the TVC flow through a number of ports, each operating over a range of relatively low flowrates. Because the pressure acting over the downstream area affected by overlapping induced shock fields is not increased significantly by overlap, care must be taken to space the TVC ports around the nozzle circumference such that these flow interaction losses are held to a minimum. Cosine losses coupled with interference effects lead to the

288

the type of optimization indicated in Fig.157 and discussed in detail in Ref. 12. Data for conical nozzles compiled in Ref.10 indicate that near-optimum performance is obtained for ports radially spaced approximately 15 degrees apart around the nozzle circumference as shown in Fig.158. Assuming that interaction effects are negligible for this port spacing, theoretical LITVC performance varies with the number of ports as shown in Fig. 159, odd port groupings and as shown in Fig.160 for even port groupings. Substantial performance increases are realized by increasing the number of ports from one to five (or six), which is near optimum for ports spaced 15 degrees apart.

THE PROPERTY OF THE PROPERTY O

CANCELL SANGE OF COMMENT OF SANGER WITH

- (C) Identical results are obtained for both odd and even port groupings, so odd groupings were arbitrarily chosen for evaluation in this program.

 Because spreading and interaction losses are dependent upon the injector location, provision was made to test three- and five-port configurations at each of the three selected injector locations. The ports were spaced 15 degrees apart in all cases. A single port configuration was incorporated into a flow ring at ×/1 = 0.25 to provide reference data. A three-port configuration with 30 degrees between ports was included in the flow ring at ×/1 = 0.7 to allow evaluation of flow interference effects at this location. The nominal flowrate selected for this testing was 8 percent for n = 1 and 3, and 13 percent for n = 5. Provisions were also made to confirm the theoretical performance trend with flowrate at constant velocity by testing various port sizes at ×/1 = 0.25 with the flowrates indicated in Fig. 159 and with flowrates of 4 and 8 percent (n = 3) and 7 and 13 percent (n = 5) at ×/2 = 0.4.
- (C) For the nominal injection velocity of 100 ft/sec selected for the majority of this testing, it was found theoretically (Eq. 6) that the effect of the injector axial inclination is nearly negligible as shown in Fig. 161. Similar results have been obtained experimentally for moderate variations in

289

Figure 157. Influence of Number of Injection Ports and Port Specing

AND THE PROPERTY OF THE PROPER

Figure 158. Effect of Port Spacing on Contoel Mozzle Performance (Ref., 10)

CONFIDENTIAL

CONFIDENTIAL

ときのないのできたのできているというないのできないがられているというできない。

 λ as shown by the data from Ref. 10 presented in Fig. 162. Thus, this parameter was not emphasized in this program. An exial inclination of 45 degrees measured with respect to the contour as shown in Fig.153 was chosen as the nominal value to prolong the injectant stay time within the nozzle. To verify the indicated trend for the aerospike, three and five port configurations with an exial inclination of 60 degrees were provided at $\times 1/2 = 0.4$ and $\times 1/2 = 0.7$.

(C) Because of the variable influence of flow interference effects with multiport injection and asymmetric flow field surrounding radially inclined ports, the effect of the radial inclination of ports is not predictable theoretically. However, experimental data such as those presented in Fig. 163 (from Ref. 13) indicate that this may be an influential parameter for certain configurations. As indicated in the figure, injecting the flow through parallel ports resulted in a performance loss as compared with radial injection. This can be attributed to an unfavorable spread of the pressure field surrounding the parallel injectors in a conical nozzle which increases cosine losses to a point where they more than offset the gain in side thrust produced by the increased injection momentum in the lateral direction. Because of a reversal in nozzle geometry, including the ports in an aerospike such that all of the TVC flow streams are parallel or convergent may tend to concentrate the pressure field in a more favorable manner if the ports are spaced far enough apart to avoid severe interaction losses. Therefore, capability was incorporated into the LITVC system design to test parallel stream injectors at each of the three selected injector locations with 8 and 13 percent flow for n = 3 and n = 5 respectively. Additionally, capability for testing a parallel stream injector with 4 percent (n = 3) and 6 (n =5) percent flow and a converging stream injector with 8 (n = 3) and 13 (n = 5) percent flow was included at $\times 1 = 0.25$. All of the remaining parameters were investigated with radial injection orifices.

Figure 162. Knasured Influence of the Axial Port Inclination for Conical Nozzles (Ref. 10)

THE PROPERTY OF THE PROPERTY O

HELDER BELLEVICE BETTER BETTER

CONFIDENTIAL

Measured Influence of the Radial Port Inclination with Convel Nossles (Ref. 15) Hours 163.

- (c) Fast testing with various nozzles has shown that, in addition to the injector and flow characteristics discussed above, injectant properties exert a strong influence on the performance of the TVC systems. Parametric studies conducted in conjunction with the Lance engine optimization study (Ref. 16) indicate that side force tends to correlate with the volume flowrate of injectant for systems with equal pressure drop as shown in Fig. 164. This correlation, if valid for the aerospike, results in the LITVC performance comparison between N2O4 and UNMH-N2H4 (50-50) shown in Fig. 165a. The accompanying data in Fig. 165b represent the trend estimated theoretically by using Eq. (6) and neglecting the energy release caused by vaporization, decomposition, and reaction. The estimated influence of injectant properties is weaker using the latter method, but the trend is the same in both cases. In view of the apparent performance advantage of UNMH-N2H4 (50-50) over N2O4, the test program was arranged to allow evaluation of UNMH-N2H4 (50-50) as an injectant with the injector designs selected at n2/2=0.25 and n2/2=0.4.
- (C) Nozzle recompression at low altitudes strongly affects the undisturbed nozzle pressure profile indicating that the ambient pressure may have a strong influence on LITVC performance at low pressure ratios. Therefore, provisions were incorporated into the test program to study this influence by testing at low altitudes with the flow sing at scale 0.4.
- (U) To summarize, the engine was designed to enable experimental study of:

 (1) constart-velocity flowrate variation, and radial, parallel and convergent stream injection with three-and five-port configurations at $\mu/\ell = 0.25$, and single port injection at $\mu/\ell = 0.25$; (2) constant-velocity flowrate variation, radial and parallel stream injection and variable axial inclination with three-and five-port configurations at $\mu/\ell = 0.4$; (3) radial and parallel stream injection and variable axial inclination for three- and

298

CONFIDENTIAL

Pigure 164. Measured Effect of Injectant Density (Ref. 16)

THE REPORT OF THE PERSON OF TH

five-port configurations along with variable port spacing for a three-port configuration at X/1= 0.7. TVC flow rings designed to incorporate these features are illustrated schematically in Figs. 166 and 167. It is readily seen from the selected designs that the intent of the program was to determine the varameters which exert the strongest influence on LITYC performance with an aerospike and to establish the relative magnitude of this influence, rather than to optimize each of the many variables for one particular test configuration.

Test Program

- (U) Hardware Description. The aerospike thrust chamber tested in the TVC phase of the Advanced Aerodynamic Spike Configuration Program is shown in Fig. 168. The TVC hardware assembly is identical to the 12-percent length nozzle tested previously in the program with the exception that a new inner throat and nozzle section with liquid injection thrust vector control capability was utilized. The inner contour is 25 percent of the axial length of an equivalent 15-degree conical nozzle with an area ratio of 25. Secondary gas is supplied from a gas generator mounted directly within the center of the inner nozzle. The secondary gas is diffused through a porous base plate mounted at the nozzle exit. Fluid systems consist of the primary propellant (1204/UDNH-N2H4, 50-50), secondary propellant (N204/UDNH-N2H4, 50-50), TVC fluid (1204 and UDNH-N2H4, 50-50).
- (U) The thrust chamber contains the following basic components: the injector, a removable water cooled combustion chamber, a water cooled throat and inner nozzle section, and removable uncooled nozzle extensions which contain the TVC injection orifices. Each of these components, except for the nozzle extensions, was discussed in detail previously, but is reviewed below to show the relationship between the hardware assemblies.

301

CONFIDENTIAL
This page is Unclassified

Quadrant	v v v _p (%)	ψ	λ	θ
1	16	30	45	0
2	12,20	30,60	45	٥
3	8,13	₹0,60	45	0
4	4, 7	30,60	45	n

Nominal of = 100 PPS

Figure 166a, Nominal Geometry, Ring A

A = 0: Radial Streams

0 = A: Converging Streams

0 = 1: Parallel Streams

Quadrant	₩ ₩ _p (%)	Ψ	λ	θ
1	8	0	45	0
2	ರ ,13	30,60	45	Δ
3	8,13	30,60	45	ш
4	4,7	30,60	45	-11

Nominal v = 100 FPS

Figure 166t, Parallel and Converging Ports, Ring B

Test Configurations at x/2 = 0.25
302
CONFIDENTIAL Figure 166.

Figure	167a,	x/2	= 0.4	,	Ring	C
--------	-------	-----	-------	---	------	---

Quadrant	(5)	Ψ	λ	Ø
1	ε,13	30,60	60	0
2	8,13	30,60	45	0
3	6,13	30,60	45	11
4	4, 7	30,60	45	0
Non	inal $v_j =$	100 FP	3	

9 = 0: Radial Streams

e = ||: Parallel Streams

Quadrant	[₩] 1 (%)	ψ	ょ	θ
1	8,13	30,60	60	0
2	8,13	30,60	45	0
3	3,13	70,60	45	11
4	8	30,60	45	0
1			<u> </u>	<u> </u>
No	ominal v	= 100	FPS	

Figure 167. Test Configurations at $x/\lambda = 0.4$ and $x/\lambda = 0.7$

- (U) The stainless ateel injector face (Fig. 169) contains three propellant injectant rings, the center ring (stainless steel) has the oxidizer orifices and is bounded on each side by fuel rings (copper). A like-on-like doublet orifice pattern is used. Distribution manifolds behind the injector rings and machined into the body and are fed through a series of drilled holes from the primary manifolds. The injector is divided into thirteen equal compartments by uncooled copper baffles brazed to the injector face.
- (U) The water cooled casings and throat assemblies are constructed entirely of oxygen-free, high-conductivity copper. Coolan+ water enters the thrust charber assembly through posts in the injector body. Four water inlets and four water outlets are provided for both the inner and outer sections of the charber; each section having independent cooling circuits. The straight inner and outer charber pieces have eight water manifolds at either end between 5/16inch axially drilled coolant holes. The cooling circuit in each throat piece consists of eight drilled manifolds (four inlets and four outlets) from which a series of smaller holes lead into circumferential passages. Water enters these small holes from the four manifolds, passes circumferentially along a 45-degree arc, and is discharged through adjacent outlet holes.
- (U) A gas generator, designed to operate on the same propellants as the main chamber, supplies the secondary flow to the base region of the nozzle. It is designed to operate uncooled at a maximum steady-state temperature of apploximately 1800 F, based upon hardware (347 CHES) limitations. The low-flow injector, which supplies secondary flow in the range from 1 to 2 percent of the primary flow, was used for the TVC testing. The injector flow pattern consists of four fuel streams impinging on one oxidizer stream. The porous plate base configuration is shown in Fig. 170.

Figure 169. Injector and Chamber Baffles

Figure 170. Porus Base Plate Configuration

- (U) The uncooled portion of the nozzle is made up of three in-line removable stainless steel flow rings, two of which (Fig.168) contain TVC injection orifices in all four quandrants. The TVC flow is supplied to short circumferential manifolds in each quadrant though discrete feed lines (eight in all) so that the operation of one quadrant is independent from the other three. The manifolds serve as a common plenum for the drilled injection crifices in each quadrant.
- (U) A total of six flow rings, two for each injection location, was fabricated. The second flow ring at each location was used to serve as a backup in the event of hardware damage, and to provide a means of extending the range of parametric variation if necessary. Both rings at x/2 = 0.25 contain injection orifices in each quadrant. At each of the other locations, x/2 = 0.4 and 0.7, one blank ring and one ring with TVC injection orifices was employed. The injection orifice pattern in each operational flow ring is illustrated in Fig. 166 and 167.
- (U) As shown in these figures, most of the configurations contain five injection orifices in each quadrant and make up the five-port geometries discussed previously. During the testing, the ports indicated by the darkened symbols in these figures, were plugged with steel pins to provide three-port configurations. The assemblies that were used in the TVC testing at AEDC are shown in Fig. 171, and 172. Note that by providing the passages in the blank ring at x/2: 0.4 through to the flow ring at x/2: 0.7, this piece becomes an integral part of the system design. This procedure is advantageous since it simplifies the propellant feed system to the flow rings at x/2: 0.4 and 0.7 (both rings are supplied with TVC flow through the same feed lines); however, it also required that the operational rings at these locations be tested separately. A typical set of flow rings used in this testing (RE series) is shown in Fig. 173.

Figure 171. TVC Nozzle Ring Configuration Number 1

Pigure 172. TVC Nozzle Ring Configuration Number 2

Figure 173. Typical TVG Flow Ring Assembly

- (U) The thrust chamber was instrumented to provide information regarding primary and secondary chamber pressure, primary wall pressure, secondary cavity pressure, primary and secondary injection pressures, and secondary chamber temperature. The approximate location of this instrumentation is shown in Fig. 174 through 177. Facility instrumentation provided: force, weight flow, tank pressure, propollant line temperature, water temperature and cell pressure data. Approximate ranges for these parameters are indicated in Table 19 of Appendix 4.
- (U) Test Procedure. TVC testing was conducted at design pressure ratio for this nozzle (PR*290) in an altitude chamber (J-2 cell) at the Rocket Test Facility, AEDC. The operational characteristics of this facility are discussed in Ref. 20. A six-component load cell arrangement was used to monitor the forces and moments induced by secondary injection during each test. The engine mounting assembly is illustrated schematically in Fig. 178, and a photo of the test installation is shown in Fig. 179. Only the flow-ring quadrants situated in the yaw plane were tested in any given "air-on" (test) period.

 The cort configurations were evaluated initially. The outer two orifices were her plugged (during the "air-on" period whenever possible) and these quadrants in the yaw plane were retested to evaluate the three port geometries. After the quadrants initially in the yaw plane were tested, both flow rings were rotated through an angle of 90 degrees and retested to evaluate the parameters contained in the remaining two quadrants.
- (U) During each test, the engine was initially operated for 3-1/2 seconds without TVC flow to establish reference data for each parameter. Nitrogen tetroxide was injected for thrust vector control during the last 2-1/2 seconds of each firing. Nitrogen purges were used to clear all propellant lines. Primary oxidizer and fuel purges were operative continuously prior to ignition and came on immediately at engine shutdown. Secondary purges were on

Ą

b. Front View

a. Side View

Figure 179. Test Installation at AEDC

- prior to each run sequence, and were performed manually at the conclusion of the firing. A typical run sequence is illustrated in Fig. 180, and the facility flow system used for this testing is shown in Figs. 181 and 182.
- (U) The planned altitude test schedule is shown in Table 12. Provisions to supply TVC flow to two quadrants during each test were incorporated into the plumbing system, and it was originally planned to test both TVC quadrants during 10-second firings as indicated in the table. However, after the program was initiated, it was found more desirable to shorten the test duration to 6 seconds, and test only one TVC quadrant in each firing. Hardware difficulties encountered during the checkout testing at Rocketdyne caused a decay in the program, so several of the originally planned tests were not conducted. Only the data in Table 12 denoted by an asterisk were obtained in the resulting abbreviated program.

Test Results

(U) Thirty-three firings were conducted over a series of five test periods.

Performance and thrust vector control data from these firings are presented in Tables 13 and 14 respectively. A sea level data point (5-second duration test) obtained in the checkout testing conducted at Rocketdyne is included in Table 13. Four additional short-duration (two at 0.5 seconds and two at 1.5 seconds) checkout tests were conducted at Rocketdyne; however, performance data were not obtained and these tests are not tabulated. The measurements indicated in Table 19, Appendix 4 were used to compute reference nozzle performance without TVC, side forces and total control moments generated during TVC operation, and nozzle wall and base pressure profiles for each test. The meth is by which these parameters were determined from the measured data obtained in this test program are discussed in Appendix 4.

NOTE: Propellant Flow Times Refer to Full Injection Pressure and not to Valve Openings.

figure 180, Test Sequence

Time, Seconds

- TO ...

		-				areid bioth	
Vacuum Period	Firing	Ring	Quadrant	Flowrate, percent Wp	Yourats 1b/sec	TVC Velocity ft/sec	TVC Cupy Process 16/in
la	1 2 3 4 5	D1	CHECKOUT 2 4 2 4	TEST 13.33* 8.00* 20.00* 6.67*	2.67 1.60 4.00 1.33	106 105 105 110	239 233 234 263
16	6 7 8 9 10	⊉ 2	2 4 2 4 4 2, 4	8.00* 8.00* 12.00* 4.00* 5.65* 11.68*, 4.13	1.60 1.60 2.40 0.60 1.13 2.34, 0.83	106 105 105 110 156 107, 108	239 233 234 263 559 249
2 a	12 13	DI Al	1, 3 3, 1	12.63* 14.20* 13.30* 16.10*	2.53, 2.84 2.66, 3.22	100, 113 106, 109	252 : 233
2ზ	14 15 16 17 18 19 20 21	D2 A2 D2 -	1, 3 3, 1 3, 1 3, 1 3, - 1	7.58* 8.51* 7.98* 16.10* 3.99* 8.10* 5.65* 11.40* 11.27* 11.31*	1.52, 1.71 1.60, 3.22 0.80, 1.62 1.13, 2.28 2.26, -	100, 113 106, 109 53, 55 75, 77 150, -	252 233 52 114 495 1000
2c	22 23	-	-	-	-	-	-
3a	24 25	B1 C1	4 2 4 2	7.05, 13.29 6.31, 14.20	1.41, 2.60 1.26, 2.84	108, 101 98, 101	207 215
36	26 27 28 29 30 31 32	B2 C2	\$ 2 4 2 4 2 4 2 4 2 4 2 4 2	4.23, 7.98 3.79, 8.52 3.79, 8.52 3.79, 8.52 3.79, 8.52 2.68, 6.04 5.35 12.08	0.85, 1.56 0.76, 1.71 0.76, 1.71 0.76, 1.71 0.76, 1.71 0.54, 1.21 1.08, 2.42	108, 101 98, 101 98, 101 98, 101 98, 101 69, 72 139, 143	207 215 215 215 215 215 105 439
4a	33 34 35 36 37	B1 C1	3 1 1 - 1 - 1 - 1 3	13.93* 7.70* 3.85, - 5.45, - 10.90, - 13.22* 13.46	2.79, 1.54 0.77, - 1.09, - 2.18, - 2.65, 270	111, 103 57, - 73, - 146, - 108, 107	243 61 115 503 227
46	38 39	B2 C2	3 1 3 1	8.35, 7.70 7.94, 8.06	1.68, 1.54 1.59, 1.62	111, 103 108, 107	243 227
5	40 41 42 43 44 45	A2 C2	4 2 4 - 4 2 4 2 4 2 4 2	2.58, 7.30 3.65, 2.58, 7.30 2.37, 5.34 1.68, 3.78 3.34, 7.55	0.52, 1.46 0.74, - 0.52, 1.46 0.48, 1.07 0.34, 0.76 0.68, 1.51	107, 108 156, - 107, 108 98, 101 69, 72 139, 143	149 549 149 134 66 274
6	46 47 48 49	A2 C2	3 1 3 1 3 - 3 1	4.99, 10.07 3.53, 7.12 7.04, 4.96, 5.05	1.00, 2.01 0.71, 1.43 1.41, - 0.99 1.01	106, 109 75, 77 150, - 108, 107	146 71 310 142

1					CONFIDENTIAL	
ity eu	evo snoply Presence 16/in ²	Princity Mixture Estio	Wy Wp percent	Number of Ports	Ambient Pressure, psia	Duration, seconds
	239 233 234 263	1.8	1.5	5	0.65	6
108	239 233 234 263 559 249	1.6		3		10
113 109	252 233	1.8	1.5	5 5, 3	0.65	10
113 109 55 77	252 233 52 114 495 1000		1.5 0* 1.5*	3 - -		6
	-		1.5	-		
101	207 215	1.8	1,5	5	0.65	10
101 101 101 101 101 72 143	207 215 215 215 215 215 105 439			3	7.27 4.85 3.64 .65	
103	243 61 115 503 227	1.8	1.5	5, 1 1 5	0.65	10
103 107	243 227			3, 1 3		·
108 108 101 72 143	149 349 149 134 66 274	1.8 2.0 1.8	1.5	3	0.65	10
109 77 107	146 71 310 142	1.8	1.5	3	0.65	10 .

CONFIDENTIAL

TABLE 12

PLANNED TVC TEST SCREDULE

Note: Only those tests marked with an asterisk were accomplished.

325/326

TABLE 13

REFERENCE PERFORMANCE DATA AT P = 0.7 pala confidental	A* E* C* C* TC* TC* TIB TIB CT CT CT CT.	23.6 - 5104 - 0.897 0.835 0.656 0.532 24.1 - 4999 - 0.891 0.846 0.846 0.549 2770 5004 0.650 0.892 0.844 0.840 0.946 2750 4978 0.625 0.805 0.840 0.837 0.953 2750 4937 0.641 0.885 0.844 0.841 0.555	407 24.1 2712 4948 0.653 0.878 0.345 0.842 0.967 0.959 2822 4944 0.658 0.877 0.843 0.840 0.965 0.553 2728 4967 0.636 0.876 0.844 0.841 0.965 0.953 2655 4943 0.619 0.876 0.845 0.841 0.963 0.954 2720 4940 0.634 0.847 0.841 0.959 0.951 2720 4940 0.634 0.847 0.841 0.959 0.955	.325 23.4 2796 4992 0.559 0.683 0.843 0.635 0.955 0.947 2472 5011 0.577 0.686 0.843 0.839 0.955 0.947 2499 5023 0.583 0.886 0.844 0.840 0.554 0.945 2559 5027 0.592 0.886 0.843 0.879 0.953 0.945 2562 5009 0.597 0.889 0.847 0.847 0.953 0.953 2569 5028 0.289 0.889 0.847 0.859 0.952 0.954	637 0.885 0.839 0.636 0.951 738 0.893 0.846 0.845 0.549 723 0.892 0.844 0.842 0.949	*Performance corrected for heat loss **Rocketdyne mes level test (Performance Data Computed for P = 1% 7 ms(s)
	*	15.750 2: 15.407 24	15.407 24	15.825	15.999 23	Performance Rockethyne
	Test	L CO	8000 8000 8000 8000 8000 8000 8000	BC12 BC13 BC14 BC15 BC16 BC17	8030 8020 8021	- 1

TABLE 13

				(Cont.	(Continued)			CO 3	CONFIDENTIAL
Test	ą, υ	8 / d	ည္	e v	d s	• ;:=	and d	8	I
. 1**	197.2	14.4	•	3932	0	19.58	1.54	1	230.8
BAOL	196.9	281	ı	5275	0	19.70	2,10	0	267.8
Bros	197.5	282	106.9	5335	0.0162	20.02	2.08	0.100	266.0
BA03	197.7	78 ;	106.2	5334	0.0164	20.13	2.03	660.0	265.2
BAOA	197.1	292	104.5	5339	0.0163	20.15	2.07	9000	265.0
BAOS	197.4	782	106.3	5368	0,0162	20.16	2.07	0.099	266.3
3306	197.4	282	307.6	5414	0.0165	20.31	2°.04	0.054	266.6
BECT	157.4	. 382	110.1	5398	2910.0	20.30	8	0.095	265.9
BECG	197.6	282	108.5	5369	9910.0	20.25	2.03	0.097	266.1
6038	197.6	29.5	107.3	5384	0,0168	80.7%	2.02	0.098	264.7
BBIO	197.4	282	109.7	5415	0.0165	20.74	2.02	0.037	266.2
BB11	197.5	282	109.1	5431	9970°C	20°24	2.01	0.097	267.0
(BC)12	195.4	279	97.3	5406	0.0168	20.45	1.99	0.103	264.4
EC13	196.3	88	101.7	5419	0.0170	20.40	1.99	0,038	265.6
BC14	196.3	290	102.5	5420	0.0170	20.40	1.99	660.0	265.7
BC15	196.4	280	103.4	5422	0.0168	20.42	1.99	0.130	265.5
9138	195.2	230	103.8	5420	0.0167	20.45	2.99	0.101	264.9
BC17	196.1	2 <u>8</u> 2	ı	5368	0	න් දි	1.99	1	267.9
BC18	196.1	82	103.8	5412	0.0167	20.39	2.99	0.100	265.4
ED19	195.6	279	102.5	5442	0.0153	20.60	1.97	0.115	264.2
88	196.2	280	110.0	5442	0.0143	20.43	2.8	0.113	266.4
1203	196.0	83	109.3	2440	0,0145	20.44	1.95	0,113	266.1
							į		

*Ferformance corrected for heat loss **Rocketd_me sea level test (Performance Data Computed for P = 15.7 pais)

TABLE 14

	r	
TIMETIMOS	2 €*	285.3 144.6 119.9 151.0 171.0 171.0 165.3 165.3 165.3 165.3 111.0
SITWC FERFORMANCE DATA	E. TO	10.2 14.1 88 89 57 88 87 11.2 11.2 11.4 14.4 15.2 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11
	\$ D	5483 5483 5584 5509 5509 5546 5533 5533 5562 5563 5563 5563 5770 5770 5770 5770
	な	502 503 503 503 503 503 503 503 503 503 503
	θ	000.0 000000 0000 000
	K	5.4.4.4.5.5.4.5.5.4.5.5.5.5.5.5.5.5.5.5
	Ą٧	28 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25
	ĸ	י האהה המהטטט הההט טטט האה
	x/x	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
	Test	BAG2 BAG4 BAG4 BAG5 BBG7 BBG10 BB11 BC13 BC14 BC15 BC15 BC16 BC15 BC15 BC15 BC15 BC15 BC15 BC15 BC15

*Measured vacuum thrust (not corrected for heat loss)

TABLE 14

(Continued)

					inom. Tomon	2 3031			8	CONFIDERTIAL
	Test	∆F _A	N TVC	B _M , DATE	F /F	Foc Fy	AFA/F	$\Delta I_{\mathbf{g}}/I_{\mathbf{g}}$	X B	K _M
	B 402	44	2.712	0.135	0,0190	0,0065	0,0000	0.112	0.140	0.048
	BA03	22	1.651	0.082	0.0115	0.0024	0.0040	0.072	0.140	0.029
	3404	82	4.136	0.205	0.0257	0,0084	0.0150	0.153	0,125	0.041
	BAOS	36	1.280	0.064	0.0125	0.0030	0,0065	0.054	0.194	0.04 7
	3305	56	.1*693	0.033	0.0108	0.0076	0.0047	0.073	0.129	0.092
	3307	25	1.637	0.081	0.0110	0.0019	0,0045	0.070	0.137	0.023
	3508	24	2.771	0.137	0.0148	0900.0	0,0098	0.112	0.109	0.04
	BB09	23	0.838	0.041	0500°u	0,0003	0,0345	0.035	0.218	2000
	BB10	ĸ	1.213	050.0	0.0099	5,0005	0,0045	0.052	0.166	800.0
	1183	54	2,745	0.135	0.0158	0.0072	0.0377	0,112	0.117	0.053
	BC13	44	2,608	0.128	0.0146	7010.0	0,0079	0,106	0.114	0.084
	3014	43	3.483	0.171	0.0230	0,0057	0,0058	0.135	0.135	0.033
	3015	39	2.965	0.145	0.0219	0.0010	0,0070	0.121	C.151	2000
	BC16	8	3.944	0,193	0.0209	0.0031	0.0050	751.0	0.108	0.016
	ED19	15	1.392	6,063	9010.0	0.0046	0,0027	61	0.157	6,069
	30 50	13	1.689	0.083	0.0138	0.0036	0,0023	0.074	791.0	0.043
	1201	ষ	1.629	090.0	0.0133	0.0027	0.0043	0.070	191.0	0.034
	85%	62	2.40	9110	0.0205	0.0043	0.0051	0.100	0.176	-0.037
	BE31	9	1.40	890.0	0.0085	0.0018	0.0011	: 0.063	0.125	920.0
	BE33	ି ୧୪	3.36	0,161	0.0190	0000	0.0050	0.134	0,118	0.001
ļ			***************************************							

Note: Six tests (ED22 through ED29) were invalid because of broken load cell linkage. Test EE32 was invalid because of instability.

1,-

- (U) Post test inspection of the engine after the BB test series revealed that a substantial water leakage along the contour occurred during this tert series, and, to a lesser degree, during the BA test series. Therefore, the reference performance data listed in Table 13 for these tests is somewhat questionable. However, the TVC performance data for these tests are consistent with the trends established by the data obtained in subsequent testing after the water leakage along the contour was eliminated. Thus, the TVC performance data for the BA and BB test series in Table 14 are felt to be of good quality. A failure in the aft yaw plane load cell which occurred during test BD22 resulted in inaccurate side and axial thrust data for firings HD22 through HD29, and therefore, data from these firings have been excluded from Tables 13 and 14. A low frequency (\$\approx\$ 180 cpm) instability with peak-to-peak amplitude of approximately 60 psia occurred during test BE32 which resulted in rederate hardware damage. Post test inspection of the hardware indicated that portions of the chamber baffles and throat region had been eroded (Fig. 183). Hence, the TVC data for test BE31 (in Table 14) is also considered questionable. Reference and LITVC performance trends established by the romaining data presented in Tables 13 and 14 are discussed in the following paragraphs.
- (D) Reference Performance. Except for the sea-level firing, all of the data listed in Table 13 were obtained from a 0.5-second time slice approximately 3 seconds after the beginning of the run. Because of the shorter duration of the sea-level firing (five seconds), TVC flow was injected during the final 2 seconds of the test, and performance data were averaged over a 0.5-second time interval just prior to actuation of the thrust vector control system. Time variations of critical parameters for a typical altitude test without TVC are shown in Fig. 184. It can be seen that all performance parameters reach essentially stable values after approximately 2.5 seconds of test operation.

a. Demage to Chamber Baffles

Figure 183. Hardware Damage Incurred During Test RE32

Pigure 124. Critical Parameters for a Reference Test (No TVC) with Secondary Flow 333

- (c) Average thrust efficiency of the nozzle is 95.1 percent without secondary flow from Table 13. This value is 0.8 percent above the predicted nozzle efficiency without secondary flow as seen by comparison with Fig. 150 page 275. The difference could arise from any of the following factors:
 - 1 Experimental inaccuracies
 - 2) Primary inviscid flow field analysis
 - 3) Boundary layer analysis
 - 4) Rinetics analysis
 - 5) Base pressure estimate
 - 6) Downstream combustion phenomena
 - 7) Differences in geometry between analytical model and actual
 - 8) Differences in overall gas properties between the analytical model and the actual hardware
- (c) Consideration of each of these factors indicated items (7) and (8) to be the most probable causes for the difference noted.

(3) A comparison of the nozzle and specific impulse efficiencies between the Rocketdyne sea level test and the AEDC altitude tests is represented in the table below. A decrease of only 2 percent in nozzle efficiency and 1 percent

TABLE 15

COMPARISON OF SEA LEVEL AND ALTITUDE PERFORMANCE, V = 0

Test	P_c/P_a	77 _{C*}	$\mathcal{T}_{\mathbf{I_s}}$	c _T	$MR_{\mathbf{p}}$	P _c , psia
1	14.4	0.897	0.836	0.932	1.54	197.2
BAO1	281	0.891	0.846	0.949	2.10	196.1
.9C17	280	0.889	0.847	0.953	1.99	196.9

in specific impulse efficiency was experienced with operation between 100 percent and 5 percent of design pressure ratio. It should be noted that the mixture ratio was significantly different for the sea level test, and chemical reaction effects could be a factor causing a relatively higher nozzle efficiency for the lower mixture ratio. The results clearly show a high degree of altitude compensation was obtained.

(C) LITVC Performance. Liquid N₂O₄ performance data were obtained from a O.5-second average time slice near the end of the firing after all critical parameters were essentially stabilized. Time variations of these parameters during a typical test with TVC are shown in Fig.185. As seen, these data stabilized approximately O.5-second after signaling for the injection of TVC flow. Basic test results are presented as curves of F_g/F_v, P_{OC}/F_v, and AP_A/F_v vs W_{TVC}/W_e in Fig.186 through 191. Each of these parameters is defined and discussed in Appendix 4. The off-center force ratio represents the dimensionless moment about the reference set of axis used to define the nozzle contour design (Fig.146, page 270).

のでは、「大きないできない。」というでは、「これないない」というというというながら、ならならなった。これでは、「ないない」というできない。 「「「「「「「「」」」「「「」」」「「」」」「「」」「「」」

Figure 185. Time Variation of Critical SITVC Parameters

Figure 186. Side Force Ratio vs Flowrate Ratio for Liquid Injection at $\frac{x}{2} = 0.25$

Figure 187. Side Force Ratio vs Flowrate Ratio for Liquid Injection at $\frac{1}{2}$ = 0.4, 0.7

338 ·

Figure 187. Side Force Ratio vs Flowrate Ratio for Liquid Injection at %/x = 0.4, 0.7

Figure 188. Off Genter Force Ratio vs Flowrate Ratio for Liquid Injection at X/2 = 0.25

これとうというとうとうことのかから 大きのないないないので

Figure 189. Off Center Force Ratio vs Flowrate Ratio for Liquid Injection at $\frac{\chi}{g} = 0.4$, 0.7

CONFIDENTIAL

Injectant Weight Flowrate Ratio, WTVC/We

Pigure 191. Relative Change in Avial Thrust vs Flowrate Ratio for Liquid Injection at ×/2 = 0.4, 0.7

- (C) Side force increases with the addition of TVC flow throughout the range of flowrates tested at x/2 = 0.25 as shown by the data in Fig. 186. For a given flowrate, injecting liquid N₂0₄ through multiple orifices results in higher side force than single-port injection at this location. Parallel stream injection (θ = || .) also yields higher side force than radial stream injection (θ = 0) with five injection ports at x/2 = 0.25. Similar results were obtained at x/2 = 0.7 with both three- and five-port configurations as shown in Fig. 187. However, port spacing and axial inclination did not appear to influence the induced side force significently at the latter location.
- (C) Both positive and negative off-center forces were generated during this testing as shown by the data in Fig. 188 and 189. The trends at */L= 0.25 imply that at low flows, the side force vector effectively acts near the injection ports, thereby producing a subtractive moment about the throat plane. As the TVC flowrate is increased this vector moves down the contour causing the throat moment to become positive. The relationship between side-force location and throat moment derived and discussed in Appendix 4 is illustrated in Fig. 192. It can be seen that to obtain additive moments, the effective side-force vector must be located along the aft portion of the nozzle. Five port injection results in lower throat plane moments than three-port injection because of a higher concentration of side force (Fig. 186) near the nozzle throat. Off-center forces are understandably slightly higher for injection near the nozzle exit (Fig. 189) simply because of the more favorable port location as shown by the curve in Fig. 192.

The axial thrust data in Fig. 190 and 191 reflect trends that are similar to those established by the side force data in Fig. 186 and 187 as would be expected if the effective TVC forces are normal to the contour. However,

CONFIDENTIAL

because of the small magnitude of the axial thrust differences it is not possible to distinguish trends in the change in axial thrust with variations in the injection parameters.

- (c) The change in nozzle wall pressure during TVC is illustrated by the data in Fig. 193. It can be seen that pressure is increased both upstream and down-stream of the TVC port, and remains above the undisturbed wall pressure for some distance downstream of the injector. The test-to-test base pressure variation noted earlier during the reference performance testing persisted throughout the TVC testing. In general, it appeared that nozzle base pressure remained constant or decreased slightly during liquid injection, but definite trends with the injection parameters could not be determined from the measured data.
- (c) The basic data presented in Fig. 186 and 187 were used to develop side thrust amplification factors to provide LITVC efficiency comparisons for N₂O₄ injection with this aerospike nozzle. The constant velocity SITVC performance trend with flowrate established for three- and five-port injection at ×2 = 0.25 is similar to the expected trend (Fig. 159 as shown by the data in Fig. 194. Performance decreases with increasing flowrate, and five-port injection provides the highest performance in the range tested. Parallel-stream injection affords slightly higher performance than radial-stream injection for the five-port configuration, indicating that a more concentrated injection pattern such as that provided by radial streams in a conical nozzle (Fig. 163) is superior to a divergent flow pattern. The magnitude of performance benefit is expected to be a function of factors such as: port spacing, exposed the downstream of the port, axial inclination, and injectant properties.
- (C) Parallel-stream injection also affords higher side thrust efficiency than radial injection with both three- and five-port configurations at x/2 = 0.7

Dimensionless Axial Distance, X/R_t
Wall Pressure Profile with Liquid N₂O₄ Injection at x/L = 0.25 and x/L = 0.7 for Aerospike Engine

Figure 193.

347 CONFIDENTIAL

as shown in Fig. 195. However, the absolute performance level at this location is lower than at A/l=0.25 as can be seen by comparison with the nominal performance trend for three- and five-pert injection at A/l=0.25 (from Fig. 194). The indicated performance insensitivity to the port spacing may not hold true for injection nearer the throat because interference losses are a direct function of the influenced area downstream of the injection port. That is, the parameter, $\Delta \Psi$, may optimize differently for different stations along the nozzle.

- (C) As expected, the axial inclination of the TVC ports did not significantly influence performance with the variation investigated at $A/L \approx 0.7$. Although the data for injection at $A/L \approx 0.4$ is somewhat questionable (Test BE33), the performance level established with the five-port configuration at this location is consistent with the data obtained at the other locations tested.
- (C) A parameter similar to the side thrust amplification factor was used to represent off-center thrust efficiency for the various injection techniques. This parameter, which is termed the off-center thrust amplification factor, K_{1} (defined and discussed in Appendix 4) is shown for $V_{2}O_{4}$ injection at A/L = 0.25 in Fig. 196. At low flows, negative off-center thrust amplification factors were obtained because the effective side force vector is apparently located near the injection port as discussed previously. The off-center thrust amplification factor increases with flowrate throughout the range of flowrates. Except for the data points that denote variations in injection velocity, those conditions that yield high side force amplification (Fig. 194) also yield relatively low off-center thrust amplification at this location.

Figure 195. Side Thrust Amplification Factor for Liquid N₂O₄ Injection at $\frac{x}{2} \approx 0.4$, 0.7

Figure 196. Off Center Thrust Amplification Factor for Liquid N2O4 Injection at X/2 = 0.25

- (C) Off-center thrust performance data for injection at x/L = 0.4 and x/L = 0.7 are shown along with the nominal trends at x/L = 0.25 (from Fig. 196) in Fig.197. It can be seen that for locations near the end of the nozzle, the off-center thrust efficiency is higher than for injection near the nozzle throat, and tends to follow side thrust efficiency trends more closely than in the latter case. No reason could be found for the relatively low off-center thrust efficiency displayed for the configuration with $\Delta = 30$ degrees at x/L = 0.7 and with $\Delta = 60$ degrees at x/L = 0.4; these data points are considered questionable in view of the performance level established by the other data and the relationship required between side and off-center thrust indicated by the curve in Fig. 192.
- (C) To provide a basis for more meaningful comparison of injection techniques, the side and off-center thrust amplification factors in Fig.194 through 197 were combined to form a control moment performance factor, K, which reflects the influence of both quantities. Since K is indicative of the total control moment about the vehicle center of gravity, a geometric relationship between the engine and vehicle must be assumed to completely determine this quantity. As discussed in Appendix 4, this is accomplished by means of the parameter re/h where re is the engine radius and h is the distance from the reference gimbal plane to the vehicle center of gravity.
- (c) Results are presented for N_2O_4 injection at x/L = 0.25 and for r_e/h values of 0.25 (typical boost vehicle) and 1.0 (typical upper stage vehicle) in Fig. 198a and 198b, respectively. Overall TVC performance trends with flowrate are nearly identical to side-force efficiency trends for $r_e/h = 0.25$, because of the relatively weak influence of the quantity, K_{H^0} However, performance trends with flowrate and configuration are changed for r_e/h 1.0 indicating that the vehicle geometry may have an influence on the selection of an LITVC injector design under certain conditions. Similar results were obtained for injection at x/L = 0.7 as shown

まるとき、見るものとは、これでは、これにいるとうなるとのできる。 おいまれるのでは、これにはないないない

Figure 197. Off Center Thrust Amplification Factor for Liquid N204 Injection at $\frac{1}{4}$ = 0.4, 0.7

by the data in Fig. 199. The nominal trends established for three- and five-port injection at x/2=0.25 are included in Fig.199 for comparison. Control moment efficiency is seen to be higher when the TVC flow is injected near the nozzle throat if $r_1/h = 0.25$, while the opposite is true if $r_1/h = 1.0$.

(c) The moment efficiency data in Fig.193 and 199 were used in conjunction with the axial thrust data in Fig.193 and 191 to establish the change in engine specific impulse as a function of the equivalent gimbal angle, \$\phi\$, developed during liquid injection thrust vector control. The relative change in engine specific impulse was obtained from the relation:

$$\frac{\Delta I_s}{I_s} = \frac{1 + \Delta Y_A/F_V}{1 + \Psi_{TVC}/\Psi_o}$$

and the equivalent gimbal angle is defined as (from Appendix 4):

$$\varphi = \arcsin \left(\frac{\dot{v}_{TV^{*}}}{\dot{v}_{*}}\right)$$

(C) These results are presented for N₂O₄ injection at $x/\ell = 0.25$ and $x/\ell = 0.4$, 0.7 in Fig. 200 and 201, respectively. Reference to Fig. 200 shows that engine specific impulse decreases sharply with increases in the control requirements. The rate of decrease is dependent upon the number of injection ports and the engine-vehicle similarity parameter, r/h. Five-port injection provides the highest engine performance for r/h = 0.25, while three-port injection appears to be optimum for r/h = 1.0 (at least for the port spacing utilized in this program). Engine performance during TVC for injection at x/2 = 0.7 is nearly identical to that obtained at x/2 = 0.25 for r/h = 0.25 as shown in Fig. 201a. However, if r/h = 1.0 the data in Fig. 201b indicate that engine performance is higher for injection of TVC flow near the end of the nozzle than for injection near the throat.

Charles on Section 1

CENTINENTIAL

(C) In general, these trends in engine performance during TVC are identical to those exhibited by the control mement coefficient, K, with variations in TVC flowrate ratio (or with variations in the equivalent gimbal angle since these quantities are proportional). This indicates that the TVC injector designs that result in high side force and mement efficiency will also result in high engine performance during liquid injection TVC, which is a result that is not necessarily true of gaseous injection TVC systems as shown by the data presented in Ref. 15.

Application of IJTVC Test Results

- Comparison with LITVC Performance Data for Other Nozzles. Previous test programs conducted by Rocketdyne have established performance trends for liquid oxidizer injection into high area ratio bell and H-F nozzles (Ref. 14) and a low area ratio annular bell nozzle (Ref. 16).

 The LITVC design utilized for the high-area-ratio testing incorporated multiple, closely spaced ports that were inclined 30 degrees upstream with respect to the engine centerline. Testing was conducted over a range of axial locations and TVC flowrates with both engines. Vacuum thrust and chamber pressure of these engines were 10,000 pounds and 225 psia respectively. Propellants were N₂O₄/OIMH-N₂H₄, 50-50 for the bell nozzle, and N₂O₄/UIMH for the F-H nozzle.
- (C) The Lince annular bell negate ($\epsilon = 5.6$) utilizes single-port injection at a location near the throat. The TVC flow is injected into the nozzle at an angle of ninety degrees with respect to the engine centerline. Flow modulation is accomplished by means of a variable-area pintle valve. Experimental evaluation of this LITVC design was conducted with a 90-degree segment of the full-scale Lance engine, which operates with IRFNA/UDMH propellants at a chamber pressure of approximately 900 psia. Thrust level of the segment is approximately 10,000 pounds under these conditions.

358

(c) Typical SITYC performance results from these programs are shown in Fig. 202 along with aerospike LITYC side-force efficiency data from Fig. 194. Since the injection ports were closely spaced in the high-area-ratic nozzles, the trends displayed for these configurations are more representative of single- than multiple-port injection as shown by the data in Ref. 10. It can be seen that the performence level of liquid injection with an aerospike nozzle is somewhat lower than with high-area-ratio bell and H-F nozzles. This can be attributed to the much chorter length of the lower area ratio aerospike nozzle (even at the same area ratio, axiai length of the aerospike nozzle is only 30 percent of the bell and 60 percent of the H-F nozzles). Similar results can be expected at higher thrust levels, but if scale effects exist, they are expected to be slightly more influential with an agrospike because of its shorter length. Thrust vector control demands for the Lance engine are relatively small so testing was conducted over a limited range of low flowrates. Comparison with aerospike side force efficiency under these conditions is difficult because of the rapidly changing slope of the side force efficiency curve at low flows. However, the level of acrospike side force efficiency does appear to be consistent with that obtained with the annular bell configuration at low flows.

AND THE PROPERTY OF THE PROPER

· 1000 1

(C) Comparison with Semi Fundrical LITVC Performance Estimates. The side force efficiency data presented in Fig.194 and 195 have established performance trends with injection variables. that are in qualitative agreement with the estimated performance trends presented earlier. However, the measured performance level is lower than that estimated theoretically as shown in Fig. 203.

Figure 202. Side Thrust Amplification Factor for Liquid Injection with Various Nozzles

Figure 203. Comparison Between Estimated and Measured SITVC Performance Level for Aerospike Engines

- (C) To obtain agreement with the test data the spreading coefficient, G. was revised to match the single port data at x/L = 0.25 and the three port data with $\Delta \Psi = 30$ degress at $x/\mathcal{L} = 0.7$ (interference effects are minimal with the latter configuration). Because it was derived from experimental data, this revised spreading coefficient, G, which is presented in Fig. 204, includes: (1) corrections for nonuniform nozzle flow similar to the coefficient for gas injection into flow over a flat plate used in previous analysis, (2) corrections for variable wall angle and spreading (cosine) losses with length, and (3) corrections for the effects of injectant vaporization and reaction. While the data in Fig. 204 applies quantitatively only to the aerospike nozzle geometry tested in this program, its use to estimate LITVU performance trends for larger engines than that tested should yield conservative results. The correlation shown in Fig. 205 indicates that once the performance level is established, correct trends with the injection parameters are predicted by the blast wave theory. The deviation in Fig.25a can be attributed to flow interference effects (which are apparently small) and/or to slight inaccuracy in the blast wave representation of the influence of the injectant flowrate (the blast wave theory indicates that $K_B = \left(\frac{V_{TVC}}{\hat{V}}\right)^{-\frac{1}{2}}$ which may not be exactly true for the aerospike).
- (C) Comparison Between Acrospike Liquid and Gas Injection Performance. Coldflow testing conducted during the Acrodynamic fozzle Study (Ref. 15)
 established the like-into-like gaseous injection performance characteristics
 to be expected from an acrospike nozzle. Injection parameters studied
 include: TVC injection location and axial inclination, TVC flowrate
 and injection velocity, and the nozzle chamber to ambient pressure ratio.

 Area ratio of the acrospike nozzle tested was 25:1 and its length was
 16 percent of a conical nozzle with equivalent area ratio and throat area.
 Typical results of this investigation are shown in Fig. 206.
 comparable LITVC data obtained for five-port *204 injection at x/2 = 0.25.

Wotted Distance from Injection Port to Nozzle Exit/Nozzle Exit Dismeter, s/de

Figure 204. Empirical Spreading Coefficient for Gas Injection into Conical Nozzles (Ref. 8) and Liquid Injection into an Aerospike Nozzle.

Empirical Spreading Coefficient, G

おりませんぎ 生世時十八十二年十五年十八十二年

CONFIDENTIAL

- (c) Reference to Fig. 206n eveals that much lower flows are required to produce the same side force if liquid NO is replaced by a highenergy gaseous fluid. As indicated, performance trends with the injection variables are more pronounced with gaseous injection than with liquid injection; it was found in the cold-flow testing that those injector designs which provide high control moment efficiency for gas injection also result in relatively low nozzle performance at the corresponding TVC flowrate. This characteristic resulted in nearly identical nozzle performance during TVC from all of the configurations tested in the coldflow program as indicated in Fig. 206b. The nozzle performance level established by this cold-flow data (Fig. 206b) is significantly higher than that obtained with liquid $N_2^0_4$ injection, because of the lower flows needed to produce equivalent control moments. The high-area-ratio tell and H-F nozzle TVC data presented in Ref. 14 indicate that similar comparisons can be expected from hot-flow gaseous injection TVC systems.
- (C) Estimated SITVC Performance For Full Scale Engines. To make a more meaningful comparison between injectants and to provide a basis for future systems analysis, the data obtained in this program were used to generate performance estimates subject to the operating requirements expected of future aerospike engine applications. Two methods were used to estimate LITVC performance to ensure that realistic efficiencies were obtained.

The first method involved direct scaling of the LITVC control moment and nozzle efficiency data obtained for five-port injection at x/L = 0.25 (Fig. 198 and 200) by means of the volumetric flowrate correlation discussed earlier. With the other method, performance was estimated theoretically using the blast wave analysis and corrected for spreading losses by means of the revised spreading coefficient obtained for the aerospike nozzle tested in this program (Fig. 204). Both methods of estimating liquid injection performance should tend towards conservations since the influence of injectant vaporization and reaction is assumed

constant and is believed to be negligible for the nozzle size tested. In reality, these effects become more pronounced as the engine thrust level and size increase. Like-into-like gas injection performance was obtained through direct scaling of the cold-flow data in Fig. 204. Performance of low-energy gas injection was estimated by means of the characteristic velocity correlation discussed in Ref. 15.

- (C) High- and low-energy gas injection performance was compared with that of liquid fuel and oxidizer injection for two potential aerospike booster engine applications, and an upper-stage engine system. The first of these boost applications utilizes a 1.8-million-pound thrust engine (sea level)with N₂O₄/50-50 propellants. Chamber pressure of the engine is 2000 psia, and the area ratio of the aerospike nozzle is 55. The other booster engine also operates with a chamber pressure of 2000 psia. Propellants in the latter case are IO₂/IH₂, sea-level thrust is 24 million pounds, and the area ratio of the nozzle is 78. Vacuum thrust of the upper stage engine is 250K; area ratio of the aerospike nozzle is 78. This engine operates with IO₂/IH₂ propellants at a chamber pressure of 1500 psia. Thrust vector control requirements expected of these engines are shown in Fig. 207.
- (c) Results of this analysis are presented in Fig. 208 through 210. Reference to Fig. 208 reveals that in-flight engine performance with liquid injection TVC is considerably lower than when gas injection is used for TVC in typical storable propellant booster engine applications. Comparison between Fig. 208a and Fig. 208b shows that similar results are obtained for both methods of LITVC performance prediction, but the influence of liquid injectant properties is more pronounced for performance data generated using the volumetric flowrate correlation. Liquid hydrogen injection can be expected to provide in-flight performance comparable to low-energy gas injection TVC in a typical LOX/H₂ booster engine system as shown in Fig. 209. The data in Fig.210 indicate that similar results are obtained from upper-stage LOX/H₂ engines.

367

CGIFFEENTIAL

Ednivalent Gimbal Angle, degrees

Figure 209. In-Flight Performance Loss Associated with Fluid Injection TVC for a High Thrust 02/H2 Booster Engine (F = 24 Million Pounds in Figure 207.)

CONFIDENTIAL

371

In-Filght Performance Loss Associated With Fluid Injection TVC for an Upper Stage Engine (Thrust = 250K in Figure 207). Figure 210.

(C) It can be seen that in all cases liquid fuel injection affords higher engine specific impulse efficiency than liquid oxidizer injection. However, liquid fuel injection also results in much lower density impulse than obtained with liquid oxidizer injectants. For example, the tank mixture ratio for the LOX/H, booster engine (engine MR without TVC is 6.0) with liquid fuel injection (Fig. 209) is approximately 5.6 for the mission shown in Fig 207 as opposed to the more favorable mixture ratio of 6.7 if liquid oxygen is utilized for thrust vector control. A detailed systems study is required to determine the overall merits including total system weight, of each injectant. The data in Fig. 209 indicate that liquid injection with N₂O₄ or UDMH-N₂H₄ (50-50) is not competitive with practical (low energy) gaseous injection TVC systems. However, LOX/H, engine utilizing either liquid fuel or oxidizer as the TVC injectant may be competitive since both fluids are expected to exhibit much more favorable vaporization and reaction characteristics than the N_2^{00} data which was used as the basis for the above analysis.

CONCLUSIONS AND RECOMMENDATIONS

- (C) The performance data obtained in the hot-flow test program discussed above lead to several conclusions regarding engine efficiency and liquid injection thrust vector control with an acrospike nozzle. These conclusions are as follows:
 - 1. Measured thrust efficiency (without TVC flow) at design pressure ratio of the aerospike engine tested in this program was 95.1 percent without secondary flow and 95.2 percent with secondary flow. The measured thrust efficiency without secondary flow was 0.8 percent above the theoretical estimate. The difference is probably attributable to variations between the theoretical and actual geometries and gas properties.

- 2. Test data indicate that a large degree of altitude compensation was obtained with this aerospike engine in the range from 100 to 5 percent of design pressure ratio.
- 3. SITVC side-force efficiency trends were as expected for the most part, indicating that the effects of the injection variables can be qualitatively determined through analysis.
 - a. Multiport injection is superior to single-port injection; five-port injection provided the highest side-force efficiency of the configurations tested.
 - b. Farallel-stream injection affords higher performance than radialstream injection. The exial port inclination did not influence performance in the range tested.
 - c. Port spacing did not influence performance at x/L = 0.7, but the influence of this parameter is expected to be variable with axial location.
 - d. Side-force efficiency is higher if the TVC flow is injected near the throat than if injection is affected near the nozzle exit.
- 4. Control moment and nozzle performance trends with the injection variables are dependent upon the vehicle application.
 - a. For $r_e/h = 0.25$, (typical boost vehicle) control moment and nozzle performance trends duplicate side force efficiency trends with variations in the injection parameters.
 - b. If $r_0/h = 1.0$ (typical upper stage) three port injection appears to be optimum at x/L = 0.25; also, cultiport injection near the nozzle exit provides higher performance than injection near the thrust.

- 5. LITTUC performance with an aerospike nozzle is generally less than that obtained with other nozzles because of the relatively short length of the aerospike.
- 6. Empirical coefficients utilized in the blast wave emalysis of secondary injection flow phonomena must be revised to obtain quantitative agreement between experimental and theoretical performance for the configuration tested.
- 7. Application of the test results to typical advanced enginevehicle configurations shows that N₂O₄ liquid injection
 TVC systems are not competitive with
 gas injection with the standpoint of in-flight engine
 performance with TVC. However, this TVC technique may be
 attractive for application to IO₂/IH₂ engine systems.
- (c) If the relatively low TVC performance obtained in this program is the result of negligible vaporization and reaction within the nozzle, then performance may be improved through bipropellant injection. However, since maximum injectant collimation and penetration is desirable at the injection port (Ref. 12), the second fluid (fuel or exidizer) should be injected downstream of main port as shown in Fig. 211 to ensure that the initial structure of the injectant stream is not impaired. Injectant stay time should be increased, and mixing and atomization efficiencies should also be improved downstream of the injection port. An attractive source for the secondary TVC flow is the high-temperature, fuel-rich flow available in the form of excess turbine exhaust gases.

Figure 211. Improved Bipropellant Injector

CORPIDENTIAL

UNCLASSIFIED

(c) The test results presented herein have established the level of SITVC performance to be expected for \$204 injection with an aerospike nozzle, and have verified expectations regarding the influence of the injection parameters. While the performance of liquid N204 injection was relatively low with the engine tested, several techniques not investigated may prove attractive pending further study. Liquid UNMH/N2H4 (50-50) should provide higher performance in storable propellant engines, particularly if exothermic decomposition occurs within the nozzle. Both LO, and IM, are expected to yield higher performance than that obtained in this program because of their more favorable reactivity and vaporization characteristics. Bipropellant injection techniques such as that suggested above are attractive because of their potential for chemical reaction without having to rely on mixing with mainstream gases. Tertiary LITYC propellants such as perclorate solutions or hydrogen peroxide may be advantageous as indicated by the high performance shown for these fluids in Refs. 10 and 17. Gaseous injection TVC also yields relatively high performance as shown by the cold-flow data in Fig. 206 , but further work is needed to quantitatively establish the performance of low energy gas injection systems. It is therefore recommended that studies be initiated to more fully investigate these possibilities. Complete evaluation of the SITVC concepts described above would entail the following: (1) comparative systems analysis of operational engine systems that utilize all of the forms of SITVC mentioned above, (2) development and/or refinement of theoretical SITVC performance and design analysis for both liquid and gaseous injection with emphasis on aerospike nozzle geometry, and (3) further hot- and cold-flow experimental study of verious liquid and gaseous injectants.

- (c) The system design studies should include evaluation of engine weights, cost, controls, and reliability as well as performance. Stress and heat transfer analysis should be performed to establish application restrictions, if any.
- (c) The theoretical studies should be conducted to establish a basis for accurately determining induced pressure profiles and side forces for fluid injection TVC. This theory should incorporate provisions to establish the influence of injectant reaction (and vaporization if the injectant is a liquid) and to determine if injectant stay time and mixing is such that reaction will occur. For liquid injection, the theoretical models used in this program could be refined as proposed in Ref. 18 and 19.

 The primary objective of the theoretical study should be to determine attractive injectants, both inert and reactive, and establish performance and design criteria for their use in advanced sersepike SITVC systems.
- (U) Experimental studies should be conducted to support the theoretical analysis where necessary, and to provide required information in areas not covered by analysis.

377/378 CONFIDENTIAL

APPENDIX 1

TWELVE PERCENT LENGTH AEROSPIKE BATA SUMMARY

APPENDIX 1

TWELVE PERCENT LENGTH AFROSPIKE DATA SUMMARY

- (U) A compilation of hot-firing data obtained with the twelve percent length water cooled acrospike is presented. Performance parameters thrust, I, C*p, NC*p, NI, NI, top CT, CT top have heat loss and water content factors applied to them. The values of the factors applied are presented in Table .
- (U) Performance parameters are presented vs. time for each test. For the sea level tests (RD designation), TIME = 0.00 corresponds to ignition. For the AA test series, TIME = 4.70 is thrust chamber ignition. For the AB and AC series, TIME = 3.9% is ignition. Peak thrust occurs within approximately 90 milliseconds for all tests.
- (U) An explanation of the meadings in the data summary is given below.

TIME - Arbitrary reference time during firing, seconds LAMBDAP - P_c/P_a , primary nozzle stagnation pressure to ambient pressure ratio

PA - Pa, ambient pressure, psia

PC - Pc. primary nozzle stagnation pressure, psia

PCS - P. G.G. stagnation pressure, ps.a (PCS = 0.0 designates GG is not firing.) (Pc,s is actually approximately equal to PB at this time.)

PB - Pg, Average nozzle base pressure, psia

F - Measured thrust adjusted for heat loss, pounds

WS/WP - w /w, Secondary to primary flowrate ratio

WS/WP, EFF - $(\hat{\mathbf{w}}_{s}/\hat{\mathbf{w}}_{p})(C^{*}_{p}/C^{*}_{p})$, Effective Secondary flowrate ratio

WT - wm, Total engine propellant flowrate, pounds/sec.

MRP - MR, Primary thrust chamber propellant mixture ratio

MRS - MR, G.G. propellant mixture ratio

IS - $I_n = F/w_n$, Engine specific impulse, sec.

 $A^* - A^*_p = .9893 A_p$, Primary nozzle aerodynamic throat area, sq.in.

EPSILON* - $\in *(= \mathbb{A}^*_{D}/\mathbb{A}_{0})$, Primary nozzle aerodynamic area ratio

PB/PC - PB/Pc

PB/PA - PB/Pa

CFS - C*g, G.G. characteristic velocity, ft./sec.

C*P - C*, Primary thrust chamber characteristic velocity (adjusted for heat loss) ft./sec.

NC*P - $N_{C_p^*}$ (= C_p^*/C_p^* , th). Primary thrust chamber characteristic velocity efficiency (C_p^* , th adjusted for water coolant), ft./sec.

NC*S - N (= C* (5 C* s, th)), G.G. characteristic velocity efficiency, ft./sec.

NIS - $N_{I} = F/(F_{p,th} + F_{s,th})$, Engine specific impulse efficiency referenced to theoretical primary and theoretical secondary propellant properties.

NIS, TOP - $M_{s,top}$ $= P/P_{p,th}(1 + v/v_p)^T$, Engine specific impulse efficiency referenced to theoretical primary propellant properties.

CT - $C_T = F/(N_{c^*p_p, th} + N_{c^*s_p, th}) J$, Nozzle thrust efficiency referenced to theoretical primary and secondary propellant peroperties.

CT, TOP - C_T, top = F/N_{C*} p, th(1 + *s/*,) J, Nozzle thrust efficiency propellant properties.

(c) Tabulated values of P_B/P_c were computed from measured base pressures and the averaging equation (p. 117). Analysis of the last two seconds of each test during which the GU was shut off indicated that base thrust was higher than that computed by the average base pressure method for the AC test series. It is therefore recommended that P_B/P_c values for this series be increased by the following amounts:

 Test
 ΔP/P_C

 AC 14, 16
 .00062

 AC 19,20
 .00044

 AC 13,15,17,18,21
 .00048

381

GENERALIAN

APPENDIX 1 (Cont'd)

TABLE 16

HEAT LOSS AND MATER CONTENT FACTORS APPLIED TO MEASURED AND THEORETICAL

(PRIMARY ONLY) DATA CONFIDENTIAL Δι_{sμ.L.} ΔI_{sh20}, η_{ς*}_{н.L.} N C*H20 Test Sec. sec. -0.30 -0.30 -0.30 RD69 +6.27 +6.05 •9902 •9906 .9987 71 .9987 01 +6.16 .9904 .9987 -0.30 -0.30 02 +7.65 .9878 .9987 03 +8.25 .9872 .9987 05 •9994 •9994 9856 +9.23 -0.20 +9.00 .9860 -0.20 80 +9.12 .9858 -0.20 9994 09 +9.33 .9853 9994 -0.20 AA01 +6.90 .9891 -0.26 •99915 25 +6.70 .9896 -0.26 99915 03 +7.16 .9888 -0.26 -99915 +7.37 +7.37 +7.56 AB08 .9884 -0.21 .99937 09 .9884 -0.21 -99937 10 .9881 -0.21 •99937 •99937 +7.79 .9878 -0.21 11 12 AC13 +7.94 .9875 -0.21 •99937 +7.88 .9874 -0.19 -99943 -99943 14 +7.54 .9883 -0.19 15 +8.29 .9869 -0.19 •99943 16 +8.26 .9867 -0.19 •99943 17 +8.13 .9871 -0.19 -99943 18 +8.06 .9874 -0.19 99943 19 +7.91 .9876 -0.19 .99943 .9872 20 +8.20 •99943 -0.19 .9876 21 +7.91 -0.19 .99943

382

COULABBITAND

•	HOT - F		FIRING TEST PATA	PPENTY 1 (CON 12 PERCENT WAS ABOLD	t'd) Length Aerospike Nozzle Bage 1		
PESTAI (PSTAI (PSTAI (PSTAI D.0			•		A05 4	CONFIDEN	
(PSIA) (PSIA) (PSIA) (PSUV)S 0.0 0.0 1.8621 68784 0.0 1.8656 66384 0.0 1.86380 6550 6550 1.8656 0.0 1.8656 0.0 1.8656 0.0 1.8656 0.0 270.18 1.6927 0.0 259.92 1.6935 0.0 25645	LAM3DAP PA	PA		ာ	PCS	മ	.
1.8038 6961. 1.8038 6961. 1.8621 6878. 1.8621 6878. 1.8621 6878. 1.8621 6878. 1.8656 6763. 1.8656 6763. 1.8657 6580. 1.8657 6580. 1.8657. 1.8657 6877. 1.7218	4	(PSIA)		(PSIA)	(PSIA)	(PSIA)	(P30/V32)
1.662 6878- 1.8656 6763- 1.8656 6763- 1.8607 6638- 1.8607 6638- 1.8607 6638- 1.8607 6638- 1.8607 6639- 1.7218		0.6535		282.91	0.0	1.8038	.1969
6.53 1.8656 6763. 6.50 1.8380 6550. 6.50 1.8380 6550. 6.50 1.8655 6457. 6.634 6550 6457. 6.647 6550 6457. 6.647 6550 6457. 6.647 6550 6550 6457. 6.695 6457 650 650 650 650 650 650 650 650 650 650	319-45	U. 8815		281.59	0.0	1.8621	6878
Color Colo		1,2024		280.09	C. 0	1.8656	6763.
0.0 0.0 1.8380 6550. 0.0 1.8659. 6497. 1.8659. 1.8659. 1.8659. 1.8659. 1.8699. 1.8		1.4903		279,52	0.0	1.8607	6633.
KRO WRS IS CDWLESS (OWNLESS) (SECO43 I-7218 D.O 274.05 I-6929 U.O 274.05 I-6927 D.O 261.82 I-6935 D.O 259.92 I-6935 D.O 259.92	13 1.	1.6918		279.37	0.0	1.8380	6560
KRP WRS IS 10 (DWNLESS) (OKNLESS) (SECO4) 1-72 B D.O 274.05 1-6929 D.O 261.82 1-6927 D.O 261.82 1-6935 D.O 259.92	146.56 1.9047	1.9047		279.16	C.	1.8655	. 1849
KRRP WRS IS LOWNLESS (OWNLESS) (SECOU) L-7218 D.O 274.05 L-7129 D.O 274.18 L-6929 D.O 261.82 1.6935 D.O 259.92 1.6935 D.O 259.92							
KRRP WRS IS IS LOWNLESS (SECOND D.O ZTA.DS I.6929 U.O ZTA.STA.STA.STA.STA.STA.STA.STA.STA.STA.S			•				
KRP WRS IS 107218 0.0 274.05 107218 0.0 274.05 106929 0.0 270.18 106927 0.0 261.82 106935 0.0 259.92							
KR.º IS 1.7218 0.0 274.05 1.7129 0.0 274.05 1.6929 0.0 267.53 1.6927 0.0 261.82 1.6935 0.0 259.92							
KRP KRP IS COWNLESS SECOND SECOND STA.05			,				
(DWNLESS) (DYNLESS) (SECO43 1.7218	MS/NP. EFF			Ä	KRO	* XX	SI
1.7218 0.0 1.7129 0.0 1.6929 0.0 1.6835 0.0	S) CONNES			(LBS/SEC)		ES	SECONS
1.7129 0.0 1.6929 0.0 1.6935 0.0 1.6935 0.0	0.0	•		25.4017	1.7218	0.0	274.05
1.6935 U.C 1.6935 U.O 1.6935 O.O		0.0		25.4558	1.7129	0.0	270.18
1.6927 0.0 1.6835 0.0 1.6935 0.0	0.0	0.0		25,2814	1.6929	ə .	267.53
1.6935 0.0		0.0		25.3527	1.6927	0.0	261.82
1.6935 0.0	0.0	0.0		25.2388	1.6835	0.0	259.92
		0:0		25.1406	1.6935	0.0	258.45

The same of the sa

	CONFT	_
	NOZZLE	C#S (FT/SEC)
	AEROSPIKE	PB/PA
(Cont'4)	INT LENGTH	
APPENDIX 4 (Cont'4)	T DATA 12 PERCENT LENGTH I	DB/PC
	HOT - FIRING TEST DATA 12 PERCENT LENGTH AERDSPIKE NOZZLE TEST NUMBER AADI, PAGE 2	EPSILON*
	FIRING	
	. тон	* 4

CONFIDENTIAL	C#P		CT. TOP COMPLESS 0.9550 0.9598 0.9620 0.9547	0.9462
	(FT/SEC)			0.9462
PAGE 2	PB/PA (DMNLESS) 2.763 2.113 1.552 1.552 1.086		NIS, TOP (DMNLESS) 0.8559 0.8563 0.8626 0.8640	0.8560
TEST NUMBER ADI. PA	PB/PC (OMNLESS) 0.00638 0.00661 0.00666 0.00666	•	NIS (DANLESS) 0.8559 0.8563 0.8566	0.8563
TEST TEST	EPSILON* (OMNLESS) 26.156 26.089 25.985 25.986 25.856		0.0 0.0 0.0 0.0 0.0	000
	A* (\$9. IN.) 14.205 14.241 14.342 14.342 14.392		NC*P (DMNLESS) 0.8962 0.8922 0.8951	0.9004
٠	1 IME 1 SECONDS 1 4.95 5.25 5.75 6.25 6.75 7.25	384 CLATESTINA	114E 4.95 5.25 5.75 6.25	6.75

APPRINDIX 1 (Cont'd)

HOT - FIRING TEST DATA -- 12 PERCENT LENGTH AEROSPIKE NOZZLE Test number aag2, page 1

	•		(SCN0)	7435.	7326.	7208.	7134.	7082.	5976.	29448	5913.	6886.	5862.	5252.	5841.	5825.	. •1035	المسائلة لاستانية	1.5	200	58. 7	55.0	52.3	50.0	5843	55.3	54.3	53.5	25.1	5.25	51.1	m	50.6	49.7
	CONFIDENTIAL		<u>d</u>		•	•	•	•	•	•		•	•	•	•	υ ,	•			(5	~	~	7	ru	2	~	7	7	2	2	2	2	~	~
		a.	PS 1.4	•0.26	.022	. 522	.020	•040	•164	.249	.375	2.5688	.796	.029	.313	.422	.549		SAM	777	0.0	ن. 0	ာ ဝ	د 0	0 •0	o. J	လ လ	ပ ု	ڻ ت	0.0	٥ • ٥	رن	۵. و	ت
PAGE 1		PCS	-			•		•	•	•	•	0.0	•			•	•		d XX	4 2 5	- 4-	$\overline{}$	\sim	.л	_	•	_	\sim 1	~	~	\mathbf{c}	1.7693	CD.	6 0
NUMBER AA32.		ရ ပ	PSIA	9:90	35.8	35.3	24.5	24.5	4.40	34.1	0.40	303,76	03.7	03.7	03.8	03.7	33.6		¥	BS/SE	7.663	7.547	7.476	7.431	7.408	7.314	7.304	7.260	7.312	7.231	7.284	27,2134	7.230	7.232
1631		δq	(PSIA)	• 95	.29	39.	• 80	20.	35.	. 4.5	15.	2.7158	.85	70.	51.	.26	•			IDHNLESSI	0.0	0.0	0.0	o.c	0.0	0.0	0.5	0.0	0.0	0.0	0.3	0.3	٥ ٠ ٥	0.0
		LANBOAP	(DANCESS)	320.47	235.48	10			2	23.8	8	11.1.85		100.66	95.03	3.0	89.83		dW/SM	(DWNLESS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	o•3	0.0
		TIME	(SECONDS)	5.25	~	2	ં હ	~	-	7	•	•	9.75		600 U. 75	***	2,11.75	385	TIME	(SECONDS)	5.25	5.75	6.25	-	7.25	•		8.75	•	9.75	•	0	•	11.75

ŧ

* \$

APPRIDIX 1 (Cont'd)

HOT - FIRING TEST DATA -- 12 PERCENT LENGTH AERUSPIKE NOZZLE

-			INING IEST DATA	MIMBER AA72.	LENGIH AEKUSPIKE DAGE 1	NO 221 E	
-			•			CONFIDENTIAL	TIAL
	TIME	LAMBDAP	PA	PC	S	6	L
		(DMNLESS)	SIA	PSIA	(PSIA)	PSIX	Š
	5.25	320.47	956	36.6	ċ	£26	435
-	5.75	235.48	298	35.8	•	.022	326
_		189.51	609	35.3	•	.022	20
	۲,	168,84	803	34.5		.020	400
	7.25	151.41	2.0115	334.55	0.0	2.0462	7062
		132,32	300	34.4	•	191.	976
	.2	123.83	455	1.40		.249	446
	8.75	118.23	571	34.0		.375	913
	. 9.25	11.1.85	715	33.7	•	.568	886
~	•	106.39	854	53.7	•	.198	862
	10.25	100.66	017	03.7	•	.029	63
-	C.010.75	95.03	197	33.8	•	.313	841
_	\$11.25	93.05	264	33.7	•	.422	62
_	11.75	89.83	380	33.6	•	546	80
							;)
*****	3		•				
	85						
	1						
	11XE	d#/S#	WS/KP. EFF	13	MRP	MRS	1 \$
	(SECONOS)	(DANLESS)	(DWNLESS)	BS/SE	HALLE	(DAVLESS)	X.C.13
	•2	0.0	0.0	7.663	.774	Ģ	58. 7
	5.75	0.0	0.0	7.547	.770	0 •0	65.9
	4	0.0	0.0	7.476	.773	0.0	52.3
	•	0.0	3.0°	7.431	• 766	J•0	60.0
	7	0.0	0.0	7.408	.771	0.0	58,3
	7	0.0	0.0	7.314	.752	0.0	55.3
	7	? •	0.0	7.304	.777	ن	54.3
	. 7	ن د د	0.0	27.2601	1.1729	٥٠٥	253.58
-	~	0.0	0.0	7.312	.763	<u>ن</u>	52, 1
	•	0.0	o •	7.231	.778	0.0	51.9
_	10.25	0.0	0.0	7.284	• 768	<u>.</u> ٥	1.15
	0.7	? •	0.3	7.213	• 169	٥.٠	51.3
	11.25	O	o.	7.230	.778	0.0	50.6
	11.75	0.0	0.0	7.232	•778	<u>ں</u> ۔ ن	49.7
٠							

APPENTX 1 (Cont'd) HUT - FIRING YEST DATA -- 12 PERCENT LENGTH AEROSPIKE NOZZLE TEST NUMBER AAJZ, PAGE 2

				TYTTUTE TANCO	7411
* 4	#NOTIS45	Pa/PC	Polpa	*	\$
(() () () ()	(SSEZNECT)	Ξ	COMNI ESST	(FT/SEC)	7
14.096	26.358	7	2.118	• 0	090
4.5	26.252	7	1.557	• •	100
4.19	25.172	G	1.257	• ©	124
14.225	26.119	7	1.120	.	134
4.24	26.080	~	1.017		147
14.246	26.580	7	0.941	•0	163
14.246	25,080	٥.	3.918		159
ż	≥5.080	-	0.924		597
14.246	20.080	7	0.946		151
14.246	26.080	•	0.980	ໍ່ມ	2
14,246	26.080		1.034	• 0	156
_	26.080		1.036	•	17
14.246	26.083	0.01127	1.048	6	•
14.246	26.080	0.01169	1.050	ċ	5165.
NC*P	NC # S	NI S	0	כע	T. T.
(DANLESS)	(DMNLESS)	(DANLESS)	(OMNLESS)	(DAVLESS)	CORNIES
0.4856	ဝင်္	0.8490	C	.9587	0.558
0.8904	5.	C.8537	.853	0.9589	958
U.8932	0.0	0.8525	.852	0.9546	486
8768.0.	0.0	0.8511	.851	0.9511	156
0.8972	0.0	0.8511	.851	3.9486	9.46
•	0.5	0.8488	.845	3.9434	K+5
6.8994	0.0	6.8486	.848	0.9434	343
9000	0.3	J.8483	0.8498	0.9426	0.9426
C. 8977	ن. ن	0.8474	.847	0*46*0	0.9440
L 900.7	0.0	0.8495	.843	0.9431	6 96
0.8986	5. 0	ٕ8531	.850	0.9460	0.9463
6.9615	e.0	0.8546	•854	0.9479	4+4
6006.0	0;3	£3853	.853	946.	976.0
9006	5.3	0.8522	.852	46	ø

:		- ATAN TEST DATA -		L'A) ENGTH AFPASPIKF MAJ7LF	M1771.F	
	i		TEST NUMPER AAPS, P	DAGE 1	CONFIDENTIAL	MTIAL
	040074	ŶĠ	٥	۵رخ	a.	u i
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		181201	(057.4)	(PC [A]	1 v 1 S a)	IS (NIEd)
SECONDS	0 1 2 CC	2 76.66	307.57		4.20.63	AP57.
2.55	51°2×	000000000000000000000000000000000000000	00 404	٤,	04.00°7	£777.
K	ا يا	7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	20.505	£ . 6	4.57.0	K625.
5-25	£2.74	4.8572	01.00		6.1680	6473
40	57.19	5.3406	74.6.5	. · ·	7 1014	6498.
3.25	53,12	5,7429	302°04			0373
7 7 5	. 69.62	6-1459	374.96	L.	20J2-1	
	ŭ	6,5551	304.91	د. د	K POP P	5643
0462		5860 7	306,36	(<u> </u>	8.2583	A4850
64.45	() .	C006 A	306.20	<u>ر</u> و د	の。インイロ	61K6.
9.25	٠	291.201	10 VC	. c	9-1176	621.6
5.7.0	₽0.0¢.	7.6140	******		7744	6784.
10.25	38.46	7.9047	304.04	., (***************************************	4277
-	37.27	R.1548	303.90	L (11/10	2007
> ~	36.25	8,3935	303.87	ا. ا	٠, الم	•
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35,07	P. 6595	303.65	د .	87E4.01	• 1 / 2
'3	•					
87 178						iet.
1 5						
		10 / LD . REF	3	A & M	V an	
THE LA	M / C M	ACT AT A CA	(1 RS/SEC)	(SSE TOMO)	CORNE FSC1	(シロアレンコン)
(SECONDS)	I DWNE ESSI			3-12-1	٠.	247.63
5.25	• • •		27.6852	1.770	٠. c	247.24
5.15	- ·	· c	27.5615	1.780.2	د. د	246.36
6425	 ن و	ی څ پ	77.4467	1.7762	٠.٢	230.48
6. 75	ب د د	· c	27.4462	1.7762	. .	276.77
7.25		: c	27.4546	1.7621	ر ، د	244.61
7.75	ر ف ا)	27.45.53	1.762	. .	2 3 6. A 7
8.25	ب. د		57. RRSO	1.7625	د • د	21.15
9.75		, c	27.3854	1.7626	٠ ټ	232.08
62.6	- (° (27.2715	1.7506	ί.	231.60
9.75	ر و ن	o 6	27.36 48	1.7773	ί.	235.13
10.25	ا د ا		07.0819	1.7872	(.	44.44
10.75	ر ن	: (21016	2277	(0
11.25			11:10:2	77.7	<u>ر</u> .	22R 35
11.75	·.	د د*	6542.12		, •	•
, , ,						

APPENDIX 1 (Cont'd)

HAT - FIRING TEST DATA -- 12 DEPOENT LENGTH AFPRSPIKE NATALE TEST NUMBER AAMS, PAGE 2

				•	CONFIDENTIAL	TIAL
INE L	*	FPS1 LON*	7a /8d	PR/PA	V*L	4
(SECGNOS)	(SD. TN.)	(SS BINNO)	(DANI FSS)	P. F.S.	(ET/SFr)	(FY/SEC)
5,25	14.162	. 26.235	8921u°j	1.123		r
5.75	14.196	76.172	F. 11 598	1.12	΄ ς'	5120
6.25	14.229	26.111	0.01799	2 m		5128
6.75	14.262	26,051	C, 62500	477		5164.
7.25	14.279	26.020	ñ.02164	1.149		5164
7.75	14.279	26.520	0.02363	1.172		5161.
80	۴.	26.62r	E.0255P	401		5158
8.75	14.279	26.020	0.02714	1.192		5164
9.25	~	26.020	C. n2867	1.105		5143.
9.75	14.279	26.020	166200	1.197		51.03
10.25	14.275	26.020	C.03137	1.206	` c '	5174
10.75	14.270	. 56.020	F.03233	1.205	٠ د	1815
11.25	14.279	26.020	P.03331	1.206		5192
511.75	14.279	26.C20	0.03436	1.2P.F		K 9 70
98						
TINE	a#UN	₩	V 12	MIC. TAD	ť	
(SECGNOS)	CSS INWO	(DANIE CA)	I SUBTRIBUTE	TAN EC		
5.25	C-892		8579	0.850	^	S S S S S S S S S S S S S S S S S S S
5.75	C. 8925	ن	r.5428	ñ .8428	777000	4945
6425		0.0	•	8648	0.9418	A 140 "U
6.75	•	0.0		3.8475	C. 9413	C. C613
7.25	996.	٥.٥	•	5.44.0	7 3 5 4 7	C. 0357
	G. 8993	٥.٠	•	F.8446	6.9392	n. 9392
8.25	. R98	0.0	•	8463	£146.0	C. 0415
8.75		٠ ن	•	E 3 7 8 4 5 3	P.0394	A959.
9.25	9 A 9 9	0.	•	F.8457	117000	7.940
-	26.95.0	ر . ي	•	7.8475	7.0384	A. 42 R4
10.25	•	0.0	æ	0.8451	29260	
.10,75	96•	c • c	œ	D.R485	0 K E O . C	P. 0389
11.25	۰	ن • ی	G.8498	N.8408	•	A. 93 A Q
.11.75	C. 5C30	د.ي	.846	C.8466	0	n. 0376

Bank Brest Street

						Calva				
		u	(SCANCA)	7426.	7261.			ä	(SECOUS)	262.34
	ND22LE COMBIDENTIAL	84	(PSEA)	2,7672	2.7837				(DAVLESS)	0.0850
ਰਿ	12 PERCENT LENGTH ALROSPIKE NOZZLE F NUMBER ABD8, PAGE 1	PCS	(PSTA)	278.54	268.97			9	(DANLESS)	1.7267
APPENDIX (Cont'd)	ATA 12 PERCENT LENGTH TEST NUMBER ABOB, PAGE 1	ပ	(PSIA)	335,36	333.48			5	(LBS/SEC)	27.6777
	TEST DATA	Q Q	(PSIA)	1.1853	1.5126	,		g	(DANLESS)	0.0158
	HOT - FIRING	LANBUAP	COMMLESSI	257.62	200.53				(DMNLESS)	0.0259
		3871	(SECONDS)	4.45	4.75	Cin	389	L	(SECONDS)	5.75

THE PROPERTY OF THE PARTY OF TH

CT, TDP (JMMLESS) 0.9546 0.9502

CT (D4NLESS) 0.9631 0.9596

NIS, TOP (DMNLESS) 0.8574 0.8513

NIS (DANLESS) 0.8625 0.8566

NC*S (DHNLESS) 0.7636 0.7242

NC*P (DMNLESS) 0.8982 0.8960

TIME (SECONDS) 4-45 4-75

390

	NTIAL	1677/SE21 5161. 5148.	telus sales mente el fac
	1022LE CONFIDENTIAL	C#S (FT/SEC) 3311. 3139.	•
nt'd)	NG TEST DATA 12 PERCENT LENGTH AEROSPIKE ND22LE	PB/PA (OMNLESS) 2.335 1.843	
APPENDIX ((Cont'd)	- 12 PERCENT NUMBER ABD8.	PB/PC (DMALESS) 0.00906 0.00917	
	IRING TEST DATA	EPSILO* * (OMNLE,S) 26.467 26.427	
	HOT - FIRE	182. IN.) 14.038 14.059	

TIME (SECONDS) -4.45 4.75

C. 1250

The second second second

			40	7	<u>.</u>			1	٠,	•	•						1	150	~	40	£0	<u>,,</u>	54	46	Ļ	65	2	•	Ņ	eò eò
		MTIAL C	20.5	L	73.63	7014	5259	5059	6850	4634	6796.	6722	6696	6648	6606.		15		264.7	260.01	254.0	253.5	251.5	249.9	249.4	248.9	246.0	245.4	٠.	243.4
	N022LE	CONFIDENTIAL	19.007	7,7705	2.8063	4980	3.3008	3.6479	4.0304	4.4402	4.1747	5.1036	-213	5.5161	8		M.R.S.	(DAVLESS:	0.0873	0.0884	0.0886	0.0886	0.0887	0.0886	0.0886	0.0887	0.0886	0.0886	8	0.0886
4)	LENGTH AEROSPICE NOZZLE PAGE 1	o c		1417L	271.22	269.26	269.43	269.40	269.87	270.29	269.85	270.14	270.68	271.03	•		KRP	(DANLESS)	1.7388	1.7348	1.7261	1.7374	1.7269	1.7320	.741	1.7469	142*	.737	2.47.1	1.7154
APPENDIX 1 (Cont'd)	NUMBER ABD9,	Ţ	1001	335.91	303.74	332,61	301.55	303.94	330.44	330.46	330.26	299.82	299.79	299.18	W		7.7	(L85/SEC)	27.6365	27.5405	27.6044	27,51,53	27.4513	27.4446	27,3933	27.2991	27.3218	197-1	200-	27.1531
	FIRING TEST DATA -	ď	U	1,3597	1,7090	2,1726	2.4032	2.6822	2,9788	3.2650	3.5210	3, 7869	4 0072	4.2388	4.4417		MS/KP, EFF	(DANCESS)	0.0167	0.0160	0.0159	0.0160	0.0160	0.0160	0.0160	0910.0	0910 0	1910°0	•	1910 0
	. HOT - FI	LABBOAP	COS H EXECT	,	177.72	139.28	125.49	112.20	100.86	92.02	85.27	19.17	74.81	70.58	67.18	~	WS/WP	(DAYLESS)	0.0255	0.0262	0.0262	0.0263	0.0263	C-0263	6970.0	6970.0	#97C*3	#070*0 0 070*0	֓֞֜֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֓֓֓֓֡֓֡֓֡֓֡֓֓֓֡֓֡֓֡֡֡֡֡֡	9970*0
		1146	(SECONDS)	4.45	4.75	5.25	5.75	6.25	6.75	7.25	7.7	8.25	2	62.8	€ 9.75	391	-, I IME	(SECONOS)	4.45	4.15	5.25	5.75	6.25	-	(7.7)	() ()	~ 1	8• (J	67.4	4.75

	HOT - FIRING TEST DATA 12 PERCENT LENGTH AEROSPIKE NOZZLE	
(E-10)	LENGTH A	PAGE 2
AFFENDIA I (CCIIL-3)	PERCENT	TEST MIMBER ARS9. PAGE 2
Ver	1 12	T NIMB
	ST DATA	TES
	FIRING TE	
	- 10H	

NTIAL	.,	(FT/SEC)	5143.	5150.	5130.	5137.	5145.	5142.	5157	5177.	5173	5181.	5152.	_	norg moved a general	CT, 13P	(SSETANC)	0.9531	0.9676	0.9639	0.9461	C.9450	19461	0.9474	0.9463	0.9423	0.9425	0.9410	0.9420
CONFIDENTIAL	C#3	(FT/SEC)	3377.	3150.	3119.	3123.	3124.	3133.	3140.	3133.	3178.	314.	3153.	3156.		CT	(DAKEESS)	0.9613	0.9570	0.9534	0.9556	0.9546	0.9557	9.9576	0.9565	0.9519	0.9521	0.9504	0.9516
PAGE 2	P8/PA	(DMNLESS)	2.044	1.642	1.398	1.373	1.360	1.353	1.360	1.356	1.348	1,316	1,331	1.321		NIS, 10P	(DANLESS)	0.8533	849	842	846	846	846	853	853	848	2.8502	844	80
NUMBER AB39.	P8/PC	(OMNLESS)	11600.0	5260.0	0.01003	0.31094	3,31212	0.31341	0.01478	0.01590	9-31702	u.01759	0.01844	0.31966		NIS	(DANLESS)	0.8585	0.8549	0.8483	0.8514	0.8515	0.8522	Ú.856J	0.8589	0.8537	0.8555	0.8495	U-8567
TEST	EPSILON*	OWNLESSI	26.617	26.577	26.521	26.482	26.450	26.423	26.403	26.377	26.348	26.328	26.315	26.291		NC #S	(DWNLESS)	0.7777	0.7257	U. 7186	0,7196	0.7198	U.7218	5.7234	0.7218	0.7229	ů. 7250	0.7264	0.7272
	*	(SD . IN.)	13.959	13,980	14.009	14.030	14.647	14.061	14.072	14.086	14.101	14.112		14.132		NC*P	(DMNLESS)	0.8953	0.8966	6.8928	0.8944	0.8954	0.8952	0.6979	0.9015	0.9803	0.9021	83	0.9037
	uni .	(SECONDS)	4.45	4.75	5.25	5.75	6.25	6.15	N	1.75	8.25	8.75	N	0	392	1 1 KE	(SECONDS)	4.45	4.75	5.25	5.15	6.25	6.75	7.25	7.75	8.25	8.75	9-25	9.75

CSETONDS 261.99 255.02 255.02 252.41 252.69 265.69 265.69 265.69 260.90 (PJUVJS) 6650. 6650. 6743. 6656. 6590. 6592. 6592. 6593. CONFIDENTIAL MRS 0.1075 0.1075 0.1096 0.1092 0.1094 0.1095 0.1096 0.1096 PB 2.4444 2.54113 2.54113 2.56113 3.5929 4.3250 4.5250 5.4037 5.51054 5.9367 HDT - FIRING TEST DATA -- 12 PERCENT LENGTH AFROSPIKE NOZZLE TEST NUMBER AB13, PAGE 1 MRP 105 NLESS 1-7337 1-7239 1-7299 1-7299 1-7526 1-7526 1-7535 1-7535 PCS (PSIA) 91.69 1112.95 1116.66 1116.67 1116.67 1116.97 1116.97 APPENDIX 1 (Cont'd) MT (LBS/SEC) 26.9082 26.9128 26.8033 26.6822 26.6830 26.6630 26.6530 26.5863 26.5863 26.5863 26.5863 26.5926 26.5926 PC (PSIA) 298-81 298-81 296-50 296-50 296-50 296-50 296-50 296-50 296-63 296-63 299-57 WS/WP, EFF (OHNLESS) 0.0055 0.0058 0.0071 0.0071 0.0071 0.0071 0.0071 PA 1.5378 1.5378 1.8901 2.2983 2.6151 2.9216 3.4627 4.9177 4.5303 4.169 LAMBOAP (DMNLESS) 195-16 158-09 129-43 101-32 92-60 85-23 78-06 72-45 68-19 64-93 KS/MP (DHNLESS) 0.0146 0.0137 0.0122 0.0122 0.0122 0.0121 0.0121 · TIME (SECONDS) TIME (SECONDS)

APPENDIX 1 (Cont'd)

HOT - FIRING TEST DATA -- 12 PERCENT LENGTH AEROSPICE NOZZLE TEST NUMBER ABID, PAGE 2

ENTIAL	. .,	(FT/SEC)	5119.	\$000	5102.	5113.	5111.	5116.	5107.	5121.	5117.	5127.	5123.		7.	(DANESS)	0.9590	0.8480	0.9510	0.9542	0.9505	0.9522	0.9526	0.9505	0.9516	0.9484	5	0.9456
CONFIDENTIAL	C.S	(FT/SEC)	1932.	2277.	2780.	2945.	2975.	2973.	2986.	2984.	2996•	3002	3010.	2995•	5	(DAKESS)		956	956	956	0.9553	.957	.957	.955	•926	.953	•	0.9504
· ·	PB/PA	w	• 59	.34	•25	.25	.23	4	.24	.24	•	•25	23	• 52	NIS, TOP	0		•	•	•	0.6462	•	•	•	•	•	•	•
	PB/ PC	(DANLESS)	0.00815	•	•	•	•	•	•	•	•	•	•	0.02021	NIS	COMNLESSI	0.8540	0.8452	0.8475	0.8519	0.9487	0.8533	0.8533	u.8504	0.8507	C-8500	0.8462	6.8529
	EPSI LON*	(DANLE SS)	26.743	26.743	26.649	26.609	26.577	26.550	26,527	26.501	26.474	26.454	26.440	26.416	NC #S	(DMNTESS)	0.4499	6.5300	0.6458	6.6839	9069.0	0.6903	0.6932	. 0.6927	0.6954	L. 6967		0.6952
	**	(SU. EN.)	13.893	13.914	•				14.006	14.020	14.034	14.045	14.052	\ •	NC#P	(DANLESS)	0.8911	0.8876	0.8885	0.8902	C-8902	0.8900	0.8900	0.8921	0.8913	0.8936	0.8925	6.8993
	I INE	(SECONDS)	4.45	4.75	2	5.75	7	~	7.25	7.75	8.25	8.75	539.25	394	1116	(SECONDS)	4.45	. 6.75	5.25	5.75	6.25	6,75	7.25	7.75	8.25	8.75	9.25	9.75

_
Court d
-
PPENDIX

HOT - FIRING TEST DATA -- 12 PERCENT LENGTH AEROSPIKE NOZZLE TEST NUMBER ABII, PAGE 1

Continuation Cont			1631	MORBER ABLIT PAGE	AGE 1		1
CONDUCT CAMENDAY PA PA PC PCS PCS PCS PCS PCS PCS PCS PCS PCS	4 4 4 4		•			CONFIDE	MILKE
(4.75 100NHESS) (PSIA)		LANGUAL	A d	PC	u	e:	u
### 103.77 2.9305 334.13 262.31 4.087 6505 6505 6505 6505 6505 6505 6505 650		CORVIENS	(PSIA)		SIA	27.20	r faith o
# # # # # # # # # # # # # # # # # # #	4.45	103.17	2.9305			700	77407
5.25 72.90 4.1383 37.68 246.63 6.0069 6.0069 6.0079 6.75 6.0089 6.0079 6.75 6.0089 6.0079 6.75 6.0089 6.0079 6.75 6.0089 6.0079 6.75 6.0089 6.0079 6.75 6.0089 6.0079 6.75 6.0089 6.0079	~	87.83	3.4482		שיר יייי	֓֞֜֝֜֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֡֓֓֓֡֓֓֡֓֡֓֡֓֡֓	-1 (
5.75 67.02 4.4833 331.08 246.49 5.5418 6.551. 5.75 67.02 4.4833 331.65 246.49 5.5418 6.551. 5.75 60.96 4.9316 331.65 246.18 7.5310 6.531. 7.15 66.35 6.411 330.58 246.71 8.7916 6.231. 6.39 6.411 330.31 246.71 8.7916 6.231. 6.410 30.13 246.71 8.941. 6.410 30.13 246.71 8.941. 6.410 30.13 246.71 8.951. 6.410 30.13 246.71 8.951. 6.410 30.13 246.71 8.951. 6.410 30.13 246.71 8.951. 6.410 30.13 246.71 8.951. 6.410 30.13 246.71 8.951. 6.510 6.510 6.511. 6.510 6.510 6.511. 6.511 30.13 246.71 8.951. 6.511 30.13 246.71 8.951. 6.511 30.13 246.73 6.511. 6.512 6.0023 6.0014 27.5507 1.7567 6.1133 246.73 6.125. 6.52 6.0023 6.0147 27.3309 1.7567 6.1139 231.26.25 6.0023 6.0147 27.3306 1.7562 6.1140 2334.8 6.52 6.0023 6.0147 27.3306 1.7568 6.1140 2334.8 6.52 6.0023 6.0147 27.3306 1.7568 6.1140 2334.8 6.52 6.0233 6.0147 27.3306 1.7568 6.1140 2334.8 6.52 6.0233 6.0147 27.3306 1.7568 6.1140 2334.8 6.52 6.0233 6.0147 27.3306 1.7568 6.1140 2334.8 6.52 6.0233 6.0147 27.3306 1.7568 6.1140 2334.8 6.52 6.0234 6.0147 27.3306 1.7568 6.1140 2334.8 6.52 6.0234 6.0147 27.3306 1.7568 6.1139 231.26.8 6.52 6.0234 6.0147 27.3306 1.7568 6.1139 231.26.8 6.52 6.0234 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0234 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0234 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0234 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0234 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0234 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0234 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0234 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0235 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0236 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0396 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0396 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0396 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0396 6.0147 27.3306 1.7568 6.1139 221.26.8 6.52 6.0306 6.030	•	72.90	1000		•	9	vi.
6.25 60.96 4.9916 310.86 246.63 6.0069 6.0069 6.73 56.47 5.3244 310.86 246.16 7.5102 6.558 6.47 5.3244 310.56 246.18 7.5102 6.558 6.43 6.4501 310.56 246.71 7.5102 6.527. 6.43.9 6.4501 310.21 246.71 8.476 6.257. 6.43.9 6.430 230.12 246.71 8.476 6.258. 6.43.9 6.430 230.12 246.71 8.476 6.258. 6.43.9 6.430 230.13 246.72 8.424 6.258. 6.43.9 7.5 39.67 7.5402 29.11 246.39 9.8149 6190. S. S	ir	06.27	4.1363		5.4	155.	-
6.72 56.47 5.3244 3.31.65 2.45.16 6.5102 6.556. 7.25 56.47 5.3244 3.30.56 246.18 7.116 6.455. 8.25 6.32 6.4217 3.30.39 2.46.35 6.0906 6.233. 8.43 9.3 6.4217 3.30.39 2.46.36 6.0906 6.233. 8.43 9.42 6.8316 3.30.10 2.46.38 6.263. 9.25 41.63 7.1969 2.99.62 2.46.48 9.424 6.253. 9.25 41.63 7.1969 2.99.61 2.46.39 9.8149 6.190. S. S	• (20-10	4.4893		5.6	.006	-
7.75 56.47 5.3244 3.0.68 246.18 7.1116 6435. 7.75 46.07 6.127 300.56 246.18 7.1116 6435. 8.25 46.35 6.4761 300.10 246.75 8.0006 62734 62735 42.63 6.4761 300.10 246.75 8.0006 62735	Ÿ	٠	4.9316		5.3	516	4 60
7.25 55.20 5.7882 330.56 266.18 7.5534 6425. 7.15 40.07 6.1217 330.39 246.35 8.0906 6273. 8.25 40.63 6.8316 330.12 246.71 8.0906 6273. 9.25 40.63 7.1969 290.52 246.48 9.4243 6253. 9.15 30.67 7.55402 299.11 246.39 9.8149 6100. N. M.S./WP MS/MP, EF WY MS/MP, EF WY MS/MP WS/MP WS/MP, EF WY MS/MP WS/MP WS/MP, EF WY MS/MP WS/MP WS/M	2.	•	5.3244				٠.
7.75	7	2	5.7582		•	4 6	
6.25	~		4 1917		* (700	
9.25 40.35 6.4761 330.21 246.71 8.4763 6.318. 9.25 41.63 7.1969 299.62 246.75 8.9534 6.255. 9.25 41.63 7.1969 299.62 246.75 8.9534 6.255. 9.25 41.63 7.1969 299.62 246.39 9.8149 6190. WAS AND RESULT TO THE STAND RESULT TO THE	• •	•	1777.0			060	-
## ## ## ## ## ## ## ## ## ## ## ## ##	٧i	•	1914.9		5.7	476	
9.25 41.63 7.1969 299.52 246.48 9.8243 6253. 9.85 41.63 7.5402 299.11 246.39 9.8149 6190. SECONDS (CHALESS) (LBS/SEC) (CHALESS) (SEC) 20.825 0.0157 0.0154 0.0157 0.0153 0.0147 0.0157 0.0133 0.0147 0.0154 0.01140 0.0153 0.0147 0.0154 0.01140 0.0154 0.0164 0.0147 0.0154 0.01140 0.0154 0.0164 0.0147 0.0154 0.01140 0.0154 0.0164 0.		ä	6.8316			0.0	
9.75 39.67 7.5402 299.11 246.39 9.8149 6190. ME MS/WP KS/WP, EFF MT NRP WRS 155.00.023 0.0157 27.572 0.0139 246.58 0.0234 0.0147 27.312 0.0139 2.24.84 0.0147 27.3309 1.7512 0.1140 2.34.84 0.0233 0.0147 27.3312 1.7512 0.1140 2.34.84 0.0233 0.0147 27.3312 1.7512 0.1140 2.34.84 0.0233 0.0147 27.3311 1.7512 0.1140 2.34.84 0.0233 0.0147 27.3311 1.7512 0.1140 2.34.84 0.0233 0.0147 27.3311 1.7512 0.1140 2.34.84 0.0233 0.0147 27.3311 1.7513 0.1140 2.34.84 0.0233 0.0147 27.3311 1.7513 0.1139 2.39.88 0.0233 0.0147 27.3221 1.7513 0.1139 2.39.88 0.0235 0.0147 27.2221 1.7513 0.1139 2.29.89 0.0235 0.0147 27.1798 1.7513 0.1139 2.29.89 0.0235 0.0147 27.1798 1.7513 0.1139 2.29.89	•	41.63	7, 1969				
INE WS/WP, EFF WT RRP WRS IS CONUS) (DRNLESS) (LBS/SEC) (DRNLESS) (COULESS) (SEC) (DRNLESS) (COULESS) (SEC) (DRNLESS) (COULESS) (SEC) (COULESS) (COULESS) (COULESS) (COULESS) (COULESS) (SEC)		19.67	7 5603		•	t V	
ME MS/MP KS/MP, EFF MT HRP HRP HRS HS TS CONUS) (DMMLESS) (DMMLESS) (DMMLESS) (DMMLESS) (DMMLESS) (DMMLESS) (DMMLESS) (SEC) (DMMLESS) (DMMLESS) (SEC) (DMMLESS) (DMMLESS) (SEC) (DMMLESS)		•	7010		M.	47B	6190.
INE WS/WP KS/WP, EFF WT KRP WRS 155000 0.0023 0.0157 27.5707 1.7613 0.1140 250.30 26.25 0.0234 0.0147 27.5707 1.7613 0.1139 250.30 0.0154 0.0234 0.0147 27.571 1.7615 0.1139 241.52 0.0233 0.0147 27.3319 1.7515 0.1139 2.39.12 0.0154 0.0147 27.3319 1.7515 0.1140 2.39.12 0.1151 0.1139 2.39.12 0.0233 0.0147 27.3312 1.7515 0.1140 2.39.12 0.1140 2.39.12 0.0147 27.3321 1.7515 0.1140 2.39.12 0.0147 27.3321 1.7515 0.1140 2.39.12 0.0147 27.3321 1.7515 0.1139 2.39.18 0.0234 0.0147 27.2321 1.7518 0.1139 2.29.69 0.0235 0.0147 27.2221 1.7518 0.1139 2.29.69 0.0235 0.0147 27.2221 1.7518 0.1139 2.29.69 0.0157 27.77, 0.1138	erake Mi						
INE WS/WP KS/WP, EFF WT KRP WRS (CONUESS) (CON							
FME MS/MP FF MT MRP MRS IS CONDS) CONNLESS CONNLESS CONNLESS CONNLESS (CONNLESS)		•					
MS/MP MS/MP, EFF MT MRP MRS 15 15 15 15 15 15 15 1							
\$\text{S\$\text{\$\text{MS/MP}\$} \text{MS/MP}\$ RS/MP RFF \text{MS/MP}\$ RS/MP RFF \text{MS/MP}\$ RS/MP RFF \text{MS/MP}\$ RS/MP RFF \text{MS/MP}\$ RS/MLESS \text{COMMLESS}\$ \te							
S) (DHNLESS) (LBS/SEC) (DHNLESS) (CONVLESS) (SEC) (CONVLESS) (CONVLESS) (SEC) (CONVLESS) (CONVLESS) (SEC) (SEC) (CONVLESS) (SEC) (SEC) (CONVLESS) (SEC) (SEC	H KY	67/SR	u	'n	á	- 4	•
0.0223 0.0157 27.5707 1.7613 0.1140 250.35 0.0223 0.0157 27.5707 1.7613 0.1130 250.35 0.0235 0.0147 27.4571 1.7627 0.1136 246.58 0.0234 0.0147 27.3309 1.7546 0.1139 254.65 0.0234 0.0147 27.3312 1.7615 0.1140 235.12 0.0233 0.0147 27.3362 1.7662 0.1140 234.64 0.0233 0.0147 27.3362 1.7662 0.1140 234.64 0.0233 0.0147 27.3362 1.7662 0.1140 233.15 0.0233 0.0147 27.222 1.7663 0.1139 231.26 0.0235 0.0147 27.222 1.7618 0.1139 229.69 0.0235 0.0147 27.2231 1.7620 0.1139 229.69	1 CECONDEN	A COSSUS A COSSUS A	١ ﴿			Y	5
75 0.0157 27.5707 1.7613 0.1140 250.35 .75 0.0235 0.0147 27.4644 1.7627 0.1133 246.58 .25 0.0233 0.0147 27.3309 1.7546 0.1139 241.52 .25 0.0234 0.0147 27.3412 1.7615 0.1140 239.12 .25 0.0233 0.0147 27.3362 1.7586 0.1140 236.50 .25 0.0233 0.0147 27.3362 1.7562 0.1140 236.50 .25 0.0233 0.0147 27.3362 1.7562 0.1140 236.50 .25 0.0233 0.0147 27.3201 1.7563 0.1139 231.26 .25 0.0234 0.0147 27.2222 1.7563 0.1139 2230.68 .26 0.0235 0.0147 27.2222 1.7563 0.1139 2230.68 .27 75 0.0235 0.0147 27.2231 1.7520 0.1139 2230.68	COMPANY.		CORNIESS)	85/8	ANL ESS	AVLESS	CHUIN
0.0235 0.0146 27.4644 1.7627 0.1133 246.9 .25 0.0233 0.0147 27.4571 1.7627 0.1136 243.3 .25 0.0234 0.0167 27.3309 1.7546 0.1139 241.5 .25 0.0234 0.0167 27.3731 1.7512 0.1140 236.9 .25 0.0233 0.0167 27.3362 1.7562 0.1140 234.8 .25 0.0233 0.0167 27.3361 1.7662 0.1140 234.8 .25 0.0233 0.0167 27.2222 1.7663 0.1139 230.8 .75 0.0234 0.0167 27.2222 1.7618 0.1139 229.6 .75 0.0235 0.0167 27.2231 1.7620 0.1139 229.6 .75 0.0235 0.0167 27.2231 1.7577 0.1138 229.6	C***	0.0223	0.0157	7.57	.761	1140	750.30
.25 0.0233 0.0147 27.4571 1.7627 0.1136 243.3 .75 0.0234 0.0147 27.3412 1.7615 0.1139 241.5 .25 0.0234 0.0147 27.3731 1.7512 0.1140 236.9 .25 0.0233 0.0147 27.3362 1.7586 0.1140 234.8 .25 0.0233 0.0147 27.3362 1.7662 0.1140 233.1 .25 0.0233 0.0147 27.3201 1.7663 0.1139 231.2 .75 0.0234 0.0147 27.2222 1.7618 0.1139 229.6 .25 0.0235 0.0147 27.2231 1.7620 0.1138 229.6 .75 0.0235 0.0147 27.2231 1.7620 0.1138 229.6	6.73	0.0235	0.0146	7.46	.763	113	46.0
.75 0.0234 0.0148 27.3309 1.7546 0.1139 241.5 .25 0.0234 0.0147 27.3412 1.7615 0.1140 239.1 .75 0.0233 0.0147 27.3362 1.7586 0.1140 234.8 .25 0.0233 0.0147 27.3362 1.7662 0.1140 234.8 .25 0.0233 0.0147 27.3201 1.7663 0.1139 231.2 .75 0.0234 0.0147 27.2222 1.7618 0.1139 229.6 .25 0.0235 0.0147 27.2231 1.7620 0.1138 2229.6 .75 0.0235 0.0147 27.2231 1.7620 0.1138 2229.6	5.25	0.0233	0.0147	7.45	762		6 4 3
.25 0.0234 0.0167 27.3412 1.7615 0.1140 239.1 .75 0.0233 0.0167 27.3731 1.7572 0.1141 236.9 .25 0.0233 0.0167 27.3362 1.7662 0.1140 233.1 .25 0.0233 0.0167 27.3261 1.7663 0.1139 231.2 .75 0.0234 0.0167 27.2222 1.7618 0.1139 230.0 .25 0.0235 0.0167 27.2231 1.7620 0.1138 2229.0 .75 0.0235 0.0167 27.2231 1.7620 0.1138	5.75	0.0234	0.0148	7.33	754		
.75 0.0233 0.0147 27.3731 1.7572 0.1141 236.9 .25 0.0233 0.0147 27.3362 1.7586 0.1140 234.8 .15 0.0233 0.0147 27.3261 1.7662 0.1140 233.1 .25 0.0234 0.0147 27.2222 1.7618 0.1139 231.2 .25 0.0235 0.0147 27.2231 1.7620 0.1138 22.946 .75 0.0235 0.0147 27.1798 1.7577 0.1138 27.777		0.0234	0.0147	7.34	761	711	
.25 0.0233 0.0147 27.3362 1.7586 0.1140 234.8 .75 0.0233 0.0147 27.3261 1.7662 0.1140 233.1 .25 0.0233 0.0147 27.3201 1.7563 0.1139 231.2 .75 0.0234 0.0147 27.2222 1.7618 0.1139 230.0 .25 0.0235 0.0147 27.2231 1.7620 0.1138 2259.6 .75 0.0235 0.0147 27.1798 1.7577 0.1138	•	0.0233	0.0147	7.37	757	751	7057
.75 0.0233 0.0147 27.3356 1.7662 0.1140 233.1 .25 0.0233 0.0147 27.3201 1.7563 0.1139 231.2 .75 0.0234 0.0147 27.222 1.7618 0.1139 230.0 .25 0.0235 0.0147 27.2231 1.7620 0.1138 2259.6 .75 0.0235 0.0147 27.1798 1.7577 0.1138	7.25	0.0233	U-0147	4.33	47.0	, , , , , , , , , , , , , , , , , , ,	* · · · ·
.25 0.0233 0.0147 27.3201 1.7563 0.1139 231.2 .75 0.0234 0.0147 27.2222 1.7618 0.1139 230.8 .25 0.0235 0.0147 27.2231 1.7620 0.1138 2259.6 .75 0.0235 0.0147 27.2231 1.7620 0.1138 2259.6	•	Ú.0233	0.0147		776	* * * *	34.5
.75 0.0234 0.0147 27.2222 1.7618 0.1139 230.8 .25 0.0235 0.0147 27.2231 1.7620 0.1138 2259.6 .75 0.0235 0.0147 27.1798 1.7577 0.1138 227.7	ě	0.0233	0.0147			* 17 •	33.1
.25 0.0235 0.0147 27.2231 1.7620 0.1139 230.6 .75 0.0235 0.0147 27.2231 1.7620 0.1138 229.6 .75 0.0235 0.0147 27.1798 1.7577 0.1138 227.7	٠,	7860	Э (700	000	113	31.2
-0235 0.0147 27.2231 1.7620 0.1138 2.29.6 -0235 0.0147 27.1798 1.7577 0.1138 2.77.7	- 0	*C*C*C	Э (77.	.761	.113	30.8
••6235 0•0147 27•1796 1•7577 0•1138 5-7-7-7		0+0635	Э (1.22	. 762	.113	39.6
	4:03	70.	0	-1	.757	1113	27.7

ont'd)	
ုပ္သ	
_	
-	
APPENDIX	

NOZZLE	
T LENGTH AEROSPIKE NOZZLE	
LENGTH	
12 PERCENT	C 10.00
12	
1	
DATA	1
TEST	
HOT - FIRING TEST DATA	
H01	

		TEST	NUMBER ABILO	rage 2	CONFIDENTIAL	TAL
		FPCT1 DN#	PB/PC	PB/PA	C*S	4)
		(C) MNLESS)	(DMNLESS)	(DMNL ESS)	(FT/SEC)	
10000 10000	40.00	20.903	0.01344	•39	3568.	
~		26. 752	0.01577	.38	3173.	-
•	0	26.706	0.01837	.33	3219.	5095
	3,04	26.666	5.01997	.33	3228.	•••
• ^	3.94	26.636	0.02165	.32	3203.	-
6.75		26.607	0.32365	Ę	3226.	5112.
		26.586	0.02538	.33	3224.	
JF	١,	26.559	0.02693	.32	3228.	5124.
	3	26.533	0.02823	1.339	3233.	5129.
	1	26.512	0.32982	.31	3234.	5130
- 0		56,400	0.03145	.3]	3228.	5144.
•	۶,	77. 77.	18280	,	3225.	قه
396		·				
11 31 31	S W C N	\$4 03	NIS	NIS, TOP	כב	T. TOP
Ü	TOWN DOC	COMMITTER CO.	(DMM) FSS)	-	KLE	(DHYLESS
÷,	COUNTED A	3	8533	5	585	0.9533
C+ • •	\$ 100 at	2000	849		956	0.9497
. (72000	0.7379	84.9		958	0.9507
7.67	200.5	7399	848		956	0.9473
• 6	•	0. 7342	846		953	0.9448
1 6	•	0. 7394	844	0.8395	950	92%6-0
• ^	•	7390	842		245	1626.0
y i·	•	6, 7398	841		.944	0.9368
• ^	•	L. 7411	835		145.	0.9337
•	0.8973	1,7412	84)		940	0.9328
	0.8963	0.7398	.841		.941	C. 9338
ין נ	0.8970	0, 7393	38		.937	0.9298
•	•	1	•			

vi .

ITIAL	u.	3	78	659	541	4	376	325	6304.	285	228	61	158	125.		18	プロコヨ	51.03	46.3	43.5	39.6	237, 79	35.9	35.1	34.9	32.7	32.0	30.3	29.6
CONFIDENTIAL	69	PSIA	.703	6473	.441	.012	,508	.683	7.3237	.742	.053	•614	.035	114.		~	ANLE	.109	.110	.110	.110	0.1111	1111	. 111	111.	1111	1111	1111	11.
•	C	PSIA	1.10	10.9	14.0	16.0	17.5	17.7	~	13.9	14.7	14.9	15.4	16.0		KRP	ill	.753	.708	865.	.715	1.7031	101.	.737	.714	•715	.713	• 705	.715
to determine the second	٦ ک	PSIA	31.4	30.1	99.3	9.80	98.2	98.2	298.30	98.3	5.76	97.7	91.6	97.7	·	1	BS/SE	7.040	7.030	6.853	6.943	26.8220	6.808	6.814	6.149	6.760	6.713	6.734	9.674
	PA	SIA	983	548	212	176	174	530	5.8143	105	454	ED1	175	210		WS/WP. EFF	-	9900.0	9970-0	0.0068	0.0070	6.0073	1.007	C. 0071	C-0568	0.0059	0.0069	6,0069	0.0010
	LAMBDAF	(DMNLESS)	101.02	84.60	70.02	62.53	57.63	53.52	51.31	48.82	46.16	43.78	41.48	39.65		MS/KP	(DANLESS)	0.0129	0.0125	6.0123	0.0120	0.0119	0.0118	0.0118	0.0123	6.0122	فد	~	0.0120
	TINE	(SECONDS)	4.45	-	?	5.15	4		7.25	7.75	.2	8.75	9.25	51.6	397	LINE	(SECOMDS)	4.45	4.75	5.25	~	N	. 7	7,25	۲.	8.25	8.75	6.25	9.75

(april DIX (Cont'd)

HOT - FIRING TEST DATA -- 12 PERCENT LENGTH AEROSPIKE MOZZLE TEST NUMBER ABIZ, PAGE 2

14177	4.3	(FT/SEC)	ഹം		~	5118.	5139.	5148.	5155.	5165.	5160.	5166.	5160.	5113· O	و منا عالم خلف الله الله الله الله الله الله الله ال	CT. 10P	(SSATESS)	1556.0	6.9517	0035.0	1946.0	0.5423	0.9300	0.9381	0.9394	0.9362	0.9371	0.9366	0.9349
COMPIDERTIAL	"	(FT/SEC)	2534	2767.	7858.	2965.	3052.	3666.	3081.	2671.	2913.	2526.	2956.	2989.		73	(DAYLESS)	0.9613	C-9572	0.9551	\$156.0	8945"0	4646.0	0.9425	3.9445	0.9411	0.9425	0.9414	0.9396
2 ii 2	•	(DMNLESS)	•	•	•		-	•	•	•	1.248	•	•	•		NIS, TOP	(DANLESS)	.8516	3.8463	0.8493	•	•	•	•	•	•	•	•	• 84
NUMBER ABIZ, PAGE	PB/PC	(DMNLESS)	0.31228	0.01490	0.01818	0.52013	0.32183	0.12358	0.32455	0.32598	0.02703	0.02893	0.13036	0.33163		SIN	(CHALESS)	0.8542	0.8488	0.8518	0.8454	0.8449	0.8433	0.8437	0.8469	0.8432	0.8449	0.8433	0.8441
TEST	EDS/LON*	COMNLE SS)	26.670	2 ,632	26.578	26,537	26.499	26.465	26.433	26.433	26.433	26.433	25.433	26.433		S# UN	COMMUNICASSI	c	0.6289	0.6636	C. 6881	0.7682	U. 7113	0.7247	0.6665	0.6760	0.6791	09890	0.6936
	**	(SU. 1N.)	3.9	0	13.979	4	14.021	14.039		14.056			14.056	14.056		d#UN	CVV LIZZG	•	0.8892	0,894U	4068-3	0.8940	0.8955	6,8458	3988	0.8980	686P	4.8977	0.9002
	u. X	(SECONOS)	4.45	4.75	5,25	5.45	6.25	6.75	7.25	7.75	7	•	⊘	; •	398	1	CECONDE	54.4		5.25	5.75	~	7			•		7	. 7

APPEL DIX 1 (Cont'd)

東部の関する意見の影響があります。「はなけられていけれないのかけないのかなっていなのですが、ましてくしゅうしゅうなってき まして

TARGET WAS CONTRACTED TO THE CANADA C

	HOT - FIRE	S	TEST DATA 12 PERCENT	LENGTH AERUSPICE NOZZLE	NOZZLE	
		TEST	TEST NUMBER ACL3.	PAGE 1		
					CONFIDENTIAL	MIL
TIME	LAMBDAP	٧ď	၁	PCs	8	u
(SECONDS)	(DANLESS)	(PSIA)	(PSIA)	(PSIA)	(PSIA)	(SCMDEd)
4.45	348.07	0.8980	312.57	148.07	2,8567	7541.
4.75	289-94	1.0738	311,33	147.57	2.8787	7470.
5.25	236.84	1.3080	339.78	147.31	2.8902	7385.
5.75	202.56	1.5229	338.46	147.45	2,9054	7293.
6.25	178.80	1.7218	337.85	147.23	2,9347	7226.
6.75	169,22	1.9181	307,30	147.63	2.5832	7166.
7.25	145.11		336.99	147.26	3.0881	7104.
7.75	136.29	2.2506	336.74	147.51	3,1934	1081.
8.25	124.18		336.15	142.41	3.4254	1026.
8,75	117.29	2.6085	375.95	147.45	3.6025	1002.
9.25	112.37	2.7206	335.71	147.54	3.7552	.6269
51.6	147.50		335.37	147.68	3,9451	6955.
e de la companya de l						

1.6740 1.6740 1.6750 1.6625 1.6634 1.6637 1.6647 1.6690 1.6637 (LBS/SEC) 28.1832 28.1836 28.0129 28.0179 28.0249 27.9884 27.9956 27.9999 27.9999 NS/WP, EFF. (DANLESS) 0.0219 0.0218 0.0219 0.0219 0.0219 0.0219 0.0219 0.0219 CDMNLESS)
0.0307
0.0308
0.0308
0.0307
0.0307
0.0307
0.0307 . INE (SECONDS) . 4-45 5-25 5-25 7-25 8-25 9-25 9-25

265.61 265.61 265.61 260.30 250.30 255.64 255.64 255.60 251.83 250.05

MRS 0-1094 0-1094 0-1109 0-1109 0-1110 0-1110 0-11112 0-11113 A: PENCIN 1 (Cont'd)

A STATE OF THE PARTY

なりない こう

HOF - FIRING TEST DATA -- 12 PERCENT LENGTH AEROSPICE NOZZLE TEST NUMBER AC13, PAGE 2

ILAL	d * : :	(FT/SE3)	5101.	5107.	5111.	5115	200	•	_	•	5130.	5120.	5124.	5169° C	where we have the second	1, 10	せ	354	556	95.5	952	950	8 3 6	946	946	94.5	0.9464	75	0.9481
CONFIDENTIAL	S *3	(FT/SEC)	3638.	3619.	3618.	3634.	3629.	3656.	3645.	3661.	3661.	3666.	3675.	3683.		C7	(DANCESS)	0.9622	0.9627	0.9636	8095-0	n.9587	0.9563	J.9540	Q+0543	3.9534	2956°0	0.9548	Ů.956B
1	PB/PA	(DMNLESS)	3.181	2.681	2.210	1.935	1.734	1.555	1.463	1.419	1.389	1.381	1.380	1.389	·	NIS, TOP	(DMNLESS)	3.8463	0.8473	0.8485	9,8469	0.8423	0.8428	0.8420	0.8411	3.8432	3.8421	3.8434	0.8482
מסטמרע אפרים	PB/PC	(DMALESS)	.3091	.3392	.3393	4600	.1395	0.03971	.3133	.3124	1110.	. 1117	.3122	.3129		NIS	(DWNLESS)	0.8523	0.8533	ù.8546	0.8529	6.8483	6.8488	0.8481	0.8471	U.8493	C.8481	¥6+8•J	0.8543
2	EPSILON*	(DMNLESS)	27.132	27.055	26.947	26.861	26.805	26,760	26.726	26.703	26.685	26.670	26.670	26.670		NC # S	(OMNLESS)	0.8412		•	•	•	•	•	8463	C. 8461	C. 8473	C. 8493	ċ• 8512
	*	7	•		ě		%	13.884	*	ä	3	8	13.931	13.931	· · · · · · · · · · · · · · · · · · ·	NC*P	(DIANLESS)	0.8865	0.8875	0.8881	0.8889	6.8859	6.8886	0.8900	Ç. 8886	8	0.8898	6.8906	C.8947
	HALL	3	4.45	~	~	~			7		2	~	9.25	52.6	100 ONTIVINIAL	3471	(SECONDS)	4.45	4.75		-	6.25	~	7	7.75	7	•	9.25	~

٠			APPENDIX 1 (Cont'd)	(P.		
	HOT - F	IRING TEST DATA .	ERCENT	LENGTH AEROSPIKE NOZZLE	NOZZLE	
		TEST	EST NUMBER AC14, P.	AGE 1	CONFIDENTIAL	NTIAL
1186	LANSDAP	PA	ပ္ရ	PCS	ଧ ପ	U.
(SECONDS)	(DANCESS)	(PSIA)	PS	PSIA	(PSIA)	CPUCA)
4.45	313.28	0,9839	38.2	48.2	3.0998	1692
4.75	269.86	1.1376	37.0	49.1	3.1043	7452
5.25	219.51	1.3927	305.71	252.20	3.0962	7292.
5.75	390.08	1,6931	34.6	51.2	3.1433	7213
•	172.86	1.7597	1.40	51.2	3.1602	7174
	151.72	2.0015	33.6	52.2	3.2943	1001
	142.95	2.1205	33.1	50.5	3.3707	7059
1.75	133.29	2,2733	33.0	47.5	3.5522	7528
-2	124.01	2.4425	02.9	47.0	3.7295	7659
-	S	2.6114	32.5	47.0	3.9434	2959
9.25	9	2,7636	32.4	47.4	4-1354	6935
	104.23	2.9011	32.3	47.9	4.3155	+169
401						
		617 417	,	4	9	-
1111	E /OB	100 + 10 / 0 F	- L C	, L	,	٠
(SECONDS)	COMMICESSI	(OMNCESS)	1185/SEC1	10461655	1044 E321	アンドスト
0 to 1	0.6500	7760.0	28.2844	1.7822	0.1176	761.7
5,25	7670	0.0382	28.2603	1.7729	an)	256.0
5,75	0.0496	0.0361	28.2154	1.7736	8	255.6
6.25	1640.0	0.0381	28.1967	1.7752	m	254.4
6.75	2.0497	0.9382	28.2118	1.7663	0.1178	251.4
7.25	0.0499	Ú• 0380	28-1749	1.7768	•	250.5
7.75	0.0503	0.0376	28.1792	1.7917	er)	245.3
8.25	0.0503	0.0375	28.2212	1.7719	ero .	247.7
8.75	0.0506	0.0376	28.3967	~	~	2
9.25	0.0505	0.0376	28.1344	• 786	~	246.9
9.75	J*0202	0.0377	28.0864	~	0.1177	•

APPENDIX 1 (Cont'1)
HOT - FIRING TEST DATA -- 12 PERCENT LENGTH AEROSPIKE NOZZLE
TEST NUMBER AC14, PAGE 2

The second second second

		4.	一ついいといい	5072.	\$00 8	5064.	566%.	5073.	5059.	5071.	5070.	5065.	5078	5069.	507%.		أ لد	in				(SSETANC)	76454	0.9434	6.9426	0.9401	0.9398	0.9377	0.9367	0.9359	0.9372	0.9377	0.0378	0.9387
	CONFIDENTIAL	C×S	(FT/SEC)	3791.	3820.	3910.	3891.	3888.	3901,	3859.	3788.	3775.	3770.	3777.	3788.						5	(DANEESS)	0.9568	0.9544	0.9520	0.9504	0.9501	0.9479	7.46.0	0.9473	0.0487	0.9495	1010.0	2.9502
PAGE 2		PB/PA	(DANLESS)	3.151	2.729	2,225	1,951	1.796	1.646	1.593	1.563	1.527	1.513	4	1.488						NIS, TOP	(DANLESS)	0.8359	0.8336	0.8312	0.8304	0.8309	0.6282	0.8279	0.8275	6.8265	0.8301	0.8290	0.8308
TEST NUMBER AC14, PA		P8/PC	(DMNLESS)	0.01036	0.01011	0.01013	0.31032	0.01039	0.01085	0.31112	0.31172	0.01231	0.01304	0.01367	0.01427	i					NI S	(DANLESS)	0.8454	0.8430	0.8405	C.8397	0.8403	0.8375	0.8373	0.8370	6.8359	0.8397	U.8385	\sim
TEST		EPSI LON*	(DANLE SS)	27.251	27.197	27,118	27.049	26.998	26.962	26.947	26.947	26.947	26.947	26.947	26,947	•				•	NC # S	(OHNLESS)	0.8681	0.8747	Ŭ-8949	0. 8906	0.8899	0.8930	0.8835	0.8674	0.8644	0.8632	U.8649	0.8674
		*4	(SD . IN.)			13, 701		,,-			•	•			13, 788		-				NC + D	(DMNLESS)	0.884	0.8836	0.8825	•	0.8842	0.8832	U.8838	U. 8841	Ŭ•881R	U.8852	€.8 839	U.8851
		3 KM F	(SECONDS)	4.45	4.	5.25	5,75	6,25	6-75	7.25			• •	9.25	•		4.3	40	2		TIME		4.45	4.75	5.25	5.75	7		7	7.75	.2	7.	9.25	9.75

THE ASSERT

The second secon

			Arrendia 1 (cont'd)	(a)		
	HOT =	FIRING TEST DATA	ATA 12 PERCENT L TEST NUMBER ACIS, P	LENGTH AEROSPIKE PAGE 1	N022LE	
247	940974			•		NTIAL
	L SOOR S		2	PCS	6 2	u.
ו אברחעה א	(DAME ESS)	14174	(PSIA)	(PSIA)	(PSIA)	(NAMA)
	107.57	2.8859	310.45	149.98	37	6998
~	91.38	3.3846	309.29	150.69	4.7658	6695
•	78, 72	3,9137	308.08	153.31	5.4477	6808
	71.99	4.2645	326.99	152.77	5.8186	6747
6.25	65	4.6010	306.68	152.26	6-2781	6649
ć. 7 <u>5</u>	(43	4. 7086	336.46	151.97	6.6638	6651
7.25	51 ′	5.2654	336.14	151.58	7,1055	6581
1.75	*55	5.6!31	336.04	151-21	7.5479	6.55.7
8.25	04.14	5° 9494	335.78	151-11	7.8806	6689
8-75	œ	6.2515	305.48	151,36	8-3672	6662
8.25 III	88.4 4	6.5171	305.50	151.43	8,6271	6625
1.6.75	45.26	6c 7482	335.42	151.42	4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4400
			•		•	
13						
40 3 H						
TIME	d#/S#	MS/WP. EFF	7	Z Q	3	2
- (SECONDS)	(DMNLESS)	(DMNLESS)	(LBS/SEC)	(DMNL ESS)	۱.	(NECES)
4.45	0.0309	0.6223	27.9357	1,6878	.1130	250
4.75	0.0309	0.0225	27.7945	1.6883	0.1132	248.09
5.25	0.0302	0.0229	27.8079	1.6838	•	244.83
5.75	0.0303	0.0228	27,7396	1.6881	•	243,24
6.23	0.0364	0.0228	27.7245	1.6892	•	241.32
6.75	0.0364	0.0227	27,7415	.681	•	239.74
7.25	0.0305	0.,0226	27.6579	•686	•	237,95
	0.0306	U.0225	27.6663	1.6873		237.01
4	20	0.0225	27.6852	9	•	234.39
-	0.0305	0.0225	27.6183	.682	•	233.98
9.25	030	U.0226	27,6568	1.6866	0.1146	232,32
9.75	0.0305	0.6226	27.5648	1.5774	7	-

HOT - FIRING TEST DATA -- 12 PERCENT LENGTH AEROSPIKE NOZZLE TEST NUMBER AC'5, PAGE 2 APPENDIX 1 (Cont'd)

大学 大学 のながら かっ

NIFTAT.		(FT/SE2)	,	10 to	• • • • • • • • • • • • • • • • • • • •	51710	. •8715	5130	5137	5157.	5162.	E142.		• • • • • • • • • • • • • • • • • • • •		51.75		CT . T3P	(SSETATO)	0.9511	0.9500	0.9506	0.9495	0.9473	C. 9453	P. 9399	0.9403	0.9343	C. 9363	0.9343	6750-0	
CONSTITUTATE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	•	• 7500	5 (54 •	3885.	3864.	3842.	3833.	3817.	3862		- 1 72 C	38185	3824.	3826.		נב	(DHALESS)	0.9589	0.5576	0.9572	0.9563	0.400 C	0.9523	0.9470	0.9476	0,9416	. 4	0.9414	7	•
PAGE 2	40,00	44/44 000 1880	•	1.423	1.408	1.392	1.354	1.355	1.358	1.349	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C+C+1	1.325	1.338	1.324	1.319		NIX. TOP	2 2	3	847	770) 4) 4	7 7 3	778	70	770	7	9	74 + C - C		* 0 •
TEST NUMBER AC'S, P.		PB/PC	ž	7	2	6	G) (2	ñ	C	ò	5.02914		2	5 111	2		1+00.0	670000	C C C C C C C C C C C C C C C C C C C	040000	3000		7770	2440	0.48.0		1/48.0
FIRING IEST DATA -		PSILON	(DHNLESS)	27.110	27.06+	\$07 mg/c	26.035	76, 503	176 36	1+8-07	26. 195	26.749	26.706	26:706	26. 796	26-706		4	NC # 2	COMPLESS	U• 8328	G. 8623	8368	6768.0	3,88.0 0,88.0	7 200 2	(8311 (631	0.8778	0.8774	0.8812	6.882	0.8830
14 - 10H		A *	(80. 12.)	13		•	• • •		•	٠	٠	13.890			•	12 012			A. WUN	(DMNLESS)	C- 8900	C.8926	0.8902	0.8915	0.8920	C. 893c	U.8966	C.8975	0.8977	6.8988	0.8976	£.9003
		TIME	(SCHOOL)		7. 7.	•	67.6	2.0	\$2.5	6.15	7.25	7.75	8.25		- (67.6	404		1 IZU	(SECONDS)	4.45	4.75	5.25	5.75	6.25	•	•	4	8.25	8.75	9.25	

12 PFRCFNT LENGTH AFRASPINF NATTLE ľ HOT - FIRING TEST DATA

APPENDIX (Cont'd)

THE TAX TO SELECT THE PROPERTY OF THE PROPERTY

:

1

1 AVROAD			0 L	00
. (د د د د	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
7	(PSIA)	(b / v)	(PSTA)	_
~	2,9313	30 B 31	255 70	7

		1845	THE MUNICIPAL SECTION A	- L-L-		1
			•		CONFID	CONFIDENTIAL
山工工	LAWRDAP	PA	<u>ن</u>	PCS	۵ «	u
(SECONDS)	3	(PSIA)	(PSTA)	(05.14)	(PS 18)	(P C (M) <)
4.45	• .	2,9313	30 B J V V	255.70	4.4585	400B
4.75	86.85	3,5373	3A7.22	10.952	5.167P	6893
5.25	-	4.1157	396,15	254.62	5.0116	6769.
5.75		4,5258	304.49	754.47	6.249R	6706
6.25	61.51	4. 952n	304.50	257.41	6.0136	6649
6.75	56.88	5,3552	304.58	251,01	7.5522	65°4.
7.25	€3.18	5.7300	304.69	240.48	111	457A
7.75	5C.5F	6.0127	304.15	247.48	R.4776	651 8.
8.25	48.97	6.2139	304.27	246.85	4.7437	4491
8.75	47.25	6.4298	343,83	246.82	£ 0.0	6467
9.25	45,39	6.632R	303.80	247.25	4084 O	6434
31.6	43.33	7. 0035	303,49	63.745	9,7053	9400
TIME	MS/MP	MS/ND EFF	H	220	V 0.3	-
(SECONDS)	(OMNEESS)	(DWNLESS)	(LBS/SEC)	(DMNLESS)	(DWNE #SS)	
4.45	C.C487	r.0394	28,3137		0.1167	247.19
4.75	0.0428	/ C. C385	28.1731	1.7178	7.1170	244.5R
5.25	0.5428	6.0383	28.2352	1.7688	n.1172	739.72
5.75	0.6491	C. 0383	28.0799	1.7641	A.1175	74 P. 74
6.25	٠	C. 0380	28.1667	1.7640	0.1176	234.76
6-75	764J*U	C.0376	28,1365	1.7103	0.1176	24.72
7.25	C. C49R	f.0374	28.050B	1.7073	0.1174	234.23
7.75	0.050	0.0371	29.1152	1,7125	A.1174	721.83
•	C. C502	0.0370	28.0670	1.6994	0.1174	231.25
•	ŗ	0.0371	28.0582	1.7134	0.1174	235.56
9.25	C 2C 5	0.0371	28.0093	1.7000	٥.1174	229.78
9.79	6,6563	C.0371	27.9909	1.6998	0.1174	278.65

Commercial Control

APPENDIX 1 (Cont'd)

A Contract C

ŧ

HRT - FIRING TEST DATA -- 12 PFPCENT L'ENGTH AFPRSPIKF NAZZLF TEST NUMBER ACIÉ, PAGE 2

C. 19445 C. 19445 C. 19445 C. 1946 C. 19270 C. 19270 C. 1940 C. 1970 C	(imale 55) 27-173 27-174 27-174 26-913 26-780 26-780 26-780 26-780 26-780
- -	27.17.5 27.17.5 27.17.4 26.91.3 26.78.7 26.78.7 26.78.7 26.78.7
-	27.101 26.913 26.913 26.780 26.780 26.780 26.780 26.780
	26.913 26.847 26.861 26.786 26.786 26.786 26.787
- -	26.847 26.861 26.786 26.786 26.786 26.786 26.786
- -	26.780 26.780 26.780 26.780 26.780 26.780
- -	26.780 26.780 26.780 26.780 26.780
- -	26.780 26.780 26.780 26.780 26.780
- 5	26.790 26.780 26.780 26.780
- -	26.78° 26.78° 26.78°
- -	26.78f 26.78f
.n3228 MIS PWNLESSI F.8446 F.8478 C.8477	26.78 ^C
	₩ ₩
	(DWALESS)
	6.9185
	7.927
	7.9156
	6,9154
	C. 9666
	0.8865
	C. 8765
	7 J B 7 J
	C . R . 7
C . 8417	C. 8726
C. 54.77	(.8717

HOT - FIRING TEST DATA -- 12 PERCENT LENGTH AEROSPIKE NOZZLE TEST NUMBER ACIT: PAGE 1

***		<u>.</u>	(SCADE)	6557	6850.	6716.	6653.	6578.	6517.	6462	6412.	6400.	6372.	6330.	•	الله منها في المنها المنهاد ال المنهاد المنهاد المنها		(SECOLOS)	_	_	_	_^		_	•	m .	_	•	229.66	-
		83	(PSIA)	4.1558	4.6139	5.6307	6.1539	6.6940	7.2746	7.8337	8.3539	8.6277	8.8673	9.1459	4.4787		#RS	(DHALESS)	0.0959	0.0953	0.0954	0.0954	0.0957	9563.0	0.0956	0.0956	0.0959	0.0959	0.0959	0.0960
PAGE 1		PCS	_	-	_	-	_	-	-	~	_	145.70	~	_	146.04	·	MRP	(DMNLESS)	1.7285	1.7290	1.7207	1.7243	1,7251	1.7231	1.7299	1.7259	1.7357	1.7265	1.7366	1.7273
TEST NUMBER ACLT, PA		<u>۵</u>	SIA	9.5	3.2	7.1	6.2	5.7	8.8	5.	5.2	305.45	5.2	6.4	4.8		1-3	(LBS/SEC)	27,9238	27,8365	27.7509	27.7634	27,7256	27.6917	27.6210	27.6616	27.6856	27.6695	27-5378	27.5184
TEST		PA	(PSIA)	2,9152	3,4223	4.0979	4.4879	4.9411	5,3858	5.8411	6.2324	6.4575	6.6728	•	7.2043		HS/ND. EFF		0.6211	0.0217	0.0217	6.0219	0.0219	0.0219	0.0220	0.0220	0.0220	0.0220	U.0221	0.0221
		LAMBDAP	(DAKLESS)	106.17	40-04	74.96	68.23	61.87	ģ	•	8	•	45.74	43.94	42.31		97/57	(DEN FSS)		ú-0312	0.0312	0.0309	0.0310	0.0308	0.0308	0.0306	0.0307	0.0306	0.0307	0.0307
6.1 781	****	TIME	(SECONDS)	4.45		10.0		6.25	52.9	7.25	7.75	8.75	i۲			407	4 140	PEECONDS 1	4.45	7.75	2.25	5,75	64.25	6.75	7.25	7.75	8.25	8.75	50.0	9.75

Service of Service and the con-

HOT - FIRING TEST DATA -- 12 PERCENT LENGTH AEROSPIKE NOZZLE TEST NUMBER AC17. PAGE 2

CONFIDENTIAL

٠. * .	111	(J	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	9	•	9 (00)	00	•	0		_	2	5117.	-	•	4 FI		THE PARTY OF THE P		The state of the s	<u></u>	CT. TOP		2000	1706.0	1156.0	6945.0	0.9458	0.9429	0.9399	0.5380	0.648	2000	2000	7867-0	0.9359	0.9374	
C#S	(FT/SEC)	2277	2 C C C C C C C C C C C C C C C C C C C	01110	9000e	3554.	3594.	3623.		Ė.	36co.	3651.	3664.	24.76.		• 1 100							.		CONCESS!	0796.0	0.9605	0.9549	0.9540	0.9512	0.9431	n. 94.6p	00+00	**************************************	7946-0	0.9460	0.9438	0.9453	
A0/80	COURT NACE	, ,	975-1		1.374																		,	STZ	=	w.	-	3.8386				•	•	•	٠		•		•
20/00		LUMINESSI	0.31343	2.31497	0.01833	0.32309	10100	011100	0.32379	0.32579	0.32737	11.12825	100000	CC620-0	0.03000	Ú. 33113							•	SIN	(DANLESS)	L 8488		6448-5			•	•	•	÷	v.8388		. 7		•
	EPSILUNA	\supset	27.243	27.201	27.139	27.003	20012	000.2	27.033	27.011	27.1111	27 41-	110012	710.77	27.011	27.011					•			NC *S	(DANLESS)	0. 7830	83.00		00.00	*****	0.8343	U. 841.0	0. 8482	J. 35G8	6.8475	4099 TI	1000 C	3,000	U. 8535
	**	(.NI .CS)	.63	4	13 696	•	13.114	•	13.744	13,755	117 755	777 674	13. (55		13,755	13,755								NC#P	COSH SACT		0700.0	0400.0	10.880.0	C. 8844	C.8853	0.8874	C.8902	E 88 73	47.88.11	1000	1700.0	2068.3	6.8908
	TIME	(SECONDS)	,	-		•	5.15	6.25	6-75	200	•	(1.1)	8.25	8.75	9.25	. თ		ខ្មែក		40				1		1500000	7:4	· •	S	5.15	6.25	6.75		,	•	, 1	•	9.25	9.75

TO CONTRACT OF CON

tion and the continue that see the little seed, which continues the see

}

The same and the same same of the same

. TATTER CONVO	u.	(SCNDOA)	7388.	7325.	7234.	7145.	7085	7021.	6978	69.00°	6897	6873.	6837	6815.	•				14220101	1 Section 3		262.31	259.95	-	₩.	~	252.39	C A	250+32	249.51	248.46
	æ	(PSIA)	2.7843	2.8139	2.8228	2.8106	2.8540	2.9430	3°0696	3,2319	3.55I7	3.7044	3.9823	4.2133	:			E SE	ON NO.	^	0.0965	0.0963	0.0963	3,0965	6960.0	0.0971	0.0972	9260.0	0.0975	0	6.0977
LENGTH AEROSPIKE NOZZLE Page 1	PCS	(PSIA)	•	142,36	143.99	145.42	144.97	144.26	144.20	143.95		143.77	143.70	143.73	:			e. e.		1.7206	1.7258	1.7262	1.07124	17287	•	1.7130	1.7322	1.7232	•	(1)	1.7329
NDIX 1 (Con't) - 12 PERCENT NUMBER ACI8,	သူ	(PSIA)	308.22	306.99	305.63	305.18	304.83	304.66	304.72	364.50	304.10	304.02	303.85	303.69				¥		27.7278	27.5866	27.5786	27.4865	27.5224	27.5806	27.4483	27.4950	27.4838	27.4570	7.40	27.4284
ING TEST DAT	A A	(PSIA)	0.9773	1.1359	1.3407	1.5572	1.7564	1.9652	2-140+	2.3461	2.5808	2. 6581	2.8865	3.0642	٠.			101/01/	, • •	COMMENSO C. 0204	0.0216	0.0218	c. 0221	6.0220	0.0219	C. U218	6.0218	6.0218	6.0218	0.0218	0.0218
HOF - FIR	LAMBDAP	LONNLESS	315,38	270.25	228.11	195.98	173.56	155.03	142.37			114,37	105.27	å		•		0.17 U		LUNALESSI.	0.6312	0.0308	0.0304	0305	0.0365	0.6306	0.0306	0.0306	9050-0	0.0306	0.0306
	TIVE	LSECUN: ST	W	4.75	5.25	5.45	6,25	4.75	7.25	7.75	8.25	8-75	9.25	2.6	o ne	40	9			(SBCOMDS)	74.12	5,75	5.75	6-25	-		7.75		8+75	9.25	52.00

### LAMBUAP PA PPC PCS PPS	FC. 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PA (P SIA) (*, 9773 1, 1359 1, 3407 1, 9552 2, 1404 2, 3808 2, 808 2, 865 3, 0642	PC 1951A1 303.22 305.22 305.99 305.83 304.66 304.72 304.50 304.50 303.69		P8 1951A1 2-7843 2-8228 2-8228 2-8540 3-0696 3-2319 3-5517 3-9823 4-2133	(POUNDS) 7386. 7386. 7325. 7234. 7025. 6978. 6873. 6837.
Time	######################################	1, 1359 1, 1359 1, 1359 1, 3407 1, 3572 1, 9652 2, 1404 2, 581 2, 808 3, 0642	1 P 51 A 1 303.22 305.89 305.83 306.83 306.66 306.50 306.50 306.50 303.69	•		e
115.38	700 700 700 700 700 700 700 700 700 700	2. 461 2. 461 1. 3461 1. 3562 1. 9552 2. 3461 2. 5808 2. 6581 3. 0642	303.22 306.99 305.83 306.83 306.72 306.50 303.89 303.89			
\$25 28.11 1.359 306.99 142.36 2.8139 7225. \$25 28.11 1.576 305.83 142.99 2.8139 7225. \$25 28.11 1.576 305.83 145.99 2.8139 7225. \$25 125.03 1.556 306.66 144.97 2.8899 7725. \$25 125.03 1.952 304.66 144.97 2.8899 7725. \$25 125.03 1.952 304.66 144.97 2.8999 7725. \$25 125.03 1.952 304.66 144.97 2.8999 7725. \$25 125.03 1.952 304.66 144.97 2.8999 7725. \$25 117.83 2.5808 304.72 143.91 3.7044 9837. \$25 117.83 2.5808 304.85 143.77 3.9099 6837. \$25 117.83 2.8865 303.89 143.77 3.9094 6837. \$25 117.83 2.8865 303.89 143.77 3.9094 6837. \$25 117.83 2.8865 303.89 143.77 3.9023 6837. \$25 117.83 2.8865 303.89 143.77 3.9024 6837. \$26.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	109 H 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.359 1.35407 1.5572 1.9552 2.3461 2.5808 2.6581 3.0642	305.99 305.83 305.83 304.83 304.72 304.50 303.89 303.89			
5.25 228.11 1.3407 335.83 145.99 2.8228 7724, 2.8128 7724, 2.8128 7724, 2.8128 7724, 2.8128 7724, 2.8128 7724, 2.818 7724, 2.818 7724, 2.818 7724, 2.818 7724, 2.818 7724, 2.818 7724, 2.818 7724, 2.818 7724, 2.818 7724, 2.818 7724, 2.818 7722, 2.818	709 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1. 3407 1. 5572 1. 9552 2. 1404 2. 5808 2. 6581 3. 0642	305.83 305.18 304.83 304.72 304.50 304.02 303.85	•		
6.75 195.98 1.5572 305.18 145.42 2.8106 7125. 6.75 173.56 1.7564 304.83 144.97 2.8540 7705. 6.75 173.56 1.7564 304.83 144.97 2.9460 77051. 6.75 174.37 2.3461 304.72 144.97 2.9460 77051. 6.75 174.37 2.3461 304.72 144.97 2.9460 77051. 6.75 117.83 2.3461 304.92 144.91 3.5577 6.979. 6.75 117.83 2.5461 304.02 143.77 3.7044 6.879. 6.75 105.27 2.8665 303.69 143.77 3.7044 6.879. 6.75 105.27 2.8665 303.69 143.77 3.7044 6.875. 6.75 105.27 2.8665 303.69 143.77 3.7044 6.875. 6.75 0.0304 0.0204 27.7276 0.0779 2.624.94 6.75 0.0304 0.0214 27.7276 0.0779 2.624.94 6.75 0.0304 0.0214 27.7276 0.0779 2.624.94 6.75 0.0304 0.0214 27.7276 0.0779 2.624.94 6.75 0.0306 0.0218 27.7463 1.7724 0.0779 2.624.94 6.75 0.0306 0.0218 27.7463 1.7724 0.0774 2.524.34 6.75 0.0306 0.0218 27.7493 1.7724 0.0974 2.524.34 6.75 0.0306 0.0218 27.7493 1.7724 0.0974 2.524.34 6.75 0.0306 0.0218 27.7493 1.7724 0.0974 2.524.34 6.75 0.0306 0.0218 27.7493 1.7724 0.0974 2.524.34 6.75 0.0306 0.0218 27.7493 1.7724 0.0974 2.524.34 6.75 0.0306 0.0218 27.7493 1.7724 0.0974 2.524.34 6.75 0.0306 0.0218 27.7493 1.7724 0.0974 2.524.34 6.75 0.0306 0.0218 27.7493 1.7724 0.0974 2.524.34 6.75 0.0306 0.0218 27.7493 1.7724 0.0974 2.524.34 6.75 0.0306 0.0218 27.7493 1.7724 0.0974 2.524.34 6.75 0.0306 0.0218 27.7493 1.7724 0.0974 2.524.34 6.75 0.0306 0.0218 27.7493 1.7725 0.0974 2.524.34 6.75 0.0306 0.0218 27.7494 1.7328 0.0974 2.694.34 6.75 0.0306 0.0218 27.7484 1.7329 0.0974 2.694.34 6.75 0.0306 0.0218 27.7484 1.7329 0.0977 2.694.34	109 H 200 H	1.5572 1.7564 1.9652 2.3461 2.5808 2.6581 3.0642	305.18 304.83 304.72 304.72 304.50 304.02 303.85	•		
17.5 173.56 1.7564 344.83 144.97 2.8540 7725. 17.5 15.3.03 1.952 304.65 144.20 2.9480 7725. 17.5 12.3.03 2.3461 304.65 144.20 3.0.696 6979. 17.5 12.3.03 2.3461 304.02 143.70 3.5517 66970. 17.5 114.37 2.8865 303.85 143.70 3.9823 6815. 19.25 125.27 2.8865 303.85 143.70 3.9823 6815. 19.25 125.27 2.8865 303.85 143.70 3.9823 6815. 10.5.27 2.8865 303.69 143.70 3.9823 6815. 10.5.27 2.8865 303.69 143.70 3.9823 6815. 10.5.28 10.887.85 1.7226 0.0075 2.55.70 1.7226 0.0096 2.55.70 1.7226 0.0096 0.0018 27.489 1.7722 0.0097 2.50.79 2.50.79 2.50.79 2.50.79 2.50.79 2.50.79 2.50.79 2.50.79 2.50.79 2.50.79 2.50.79 2.50.79 2.50.79 2.50.79 2.50.79 2.70.70 2.70.7	709 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.7564 1.9652 2.1404 2.3461 2.5808 2.6581 3.0642	304.83 304.72 304.72 304.50 304.02 303.85	1		
6.75 155.03 1.9552 394.66 1144.26 2.9480 1721.6 122	709 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1,9552 2,1404 2,3461 2,5808 2,6581 3,0642	304.66 304.72 304.50 304.10 303.85 303.69	ı		
T.25 142.37 2.1404 344.72 143.95 5.2819 6978, 6873, 68	405 405 405 405 405 405 405 405 405 405	2.1404 2.3461 2.5808 2.6581 2.8865 3.0642	304.72 304.50 304.10 304.02 303.85	44.20 43.91 43.91 43.77 43.77 43.70 43.73		
# 126.79	700 8 8 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.3461 2.5808 2.6581 2.8865 3.0642	304.50 304.10 304.02 303.85 303.69	43.91 43.77 43.77 43.70 43.73		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
8.75 117.83 2.3808 364.10 144.91 3.7557 68737 9.7257 114.37 2.8658 303.89 143.77 3.7044 68737 9.25 115.83 2.8658 303.89 143.77 3.7044 68737 9.25 115.87 2.8658 303.89 143.77 3.7044 68737 9.25 105.27 2.8658 303.89 143.77 3.7044 68737 9.25 105.27 105.82 143.77 3.7044 68737 9.25 105.82 143.77 3.7044 68737 9.75 105.82 143.73 4.2133 6815.82 143.77 3.7044 68737 143.73 143.73 143.73 143.73 163.82 11	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2. 5808 2. 4581 2. 8865 3. 0642	304-10 304-02 303-85 303-69	4444		2
8.75 114.37 2.6581 304.02 143.77 3.7044 0275. 9.25 165.27 2.8865 303.85 143.77 3.7044 0275. 9.25 165.27 2.8865 303.69 143.73 4.2133 6815. 9.75 10.0020	709 25.55	2. 6581 2. 8865 3.0642	304-02 303-85 303-69	£ £ £		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.25 155.27 2.8865 303.85 143.70 3.9823 08376 9.75 99.11 3.0642 303.69 143.73 4.2133 0815. FIRE HSAMP HS/WP, EFF WT HRP HRS CONTROL OF 0.0204 27.7278 1.7256 0.0976 265.59 0.0312 0.0214 27.7276 1.7256 0.0976 265.59 0.0312 0.0214 27.5776 1.7276 0.0976 265.59 0.0315 0.0214 27.5776 1.7276 0.0976 265.59 0.0315 0.0214 27.5786 1.7276 0.0976 265.59 0.0315 0.0214 27.5786 1.7276 0.0976 255.59 0.0306 0.0218 27.4645 1.7276 0.0976 255.59 0.0976 0.0218 27.493 1.7322 0.0974 255.75 0.0306 0.0218 27.493 1.7322 0.0974 250.49 0.0306 0.0218 27.493 1.7232 0.0974 250.49 0.0306 0.0218 27.493 1.7232 0.0974 250.49 0.0306 0.0218 27.4510 1.7378 0.0977 2.50.49 0.0306 0.0218 27.4510 1.7332 0.0977 2.50.49 0.0306 0.0218 27.4510 1.7332 0.0977 2.49.51	25.5	2.8865 3.0642	303.85	£ 4 1	.2133	7 E 8 O
### ### #### #### ####################	109	3.0642	303.69	. :	.2133	
#\$\text{#\$\text{FF}\$ #\$\text{#}\text{#\$\text{#}\text{#}\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$	409			:		,
#SAMP HRS HSAMP HRS HSAMP HRS HSAMP HRS HSAMP HRS HSAMP HRS HSAMP HSS/SEC) (DMNLESS) (ORNLESS) (ORNLESS) (SECURO O.0979 266.45 4.45 0.0312 0.0204 27.7278 1.7256 0.0979 266.53 6.0312 0.0216 27.5786 1.7255 0.0965 265.31 2.525 0.0312 0.0218 27.4865 1.7256 0.0965 265.31 2.525 0.0304 0.0218 27.4865 1.7267 0.0969 2.554.95 0.0304 0.0219 27.4865 1.7267 0.0969 2.554.95 0.0305 0.0219 27.4865 1.7206 0.0969 2.554.26 1.7206 0.0940 2.554.26 1.7206 0.0940 2.554.26 1.7206 0.0940 2.554.26 1.7206 0.0940 2.554.26 1.7206 0.0940 2.554.26 1.7206 0.0940 2.554.26 1.7206 0.0940 2.554.26 1.7206 0.0970 2.50.99 0.0970 0.0918 27.4959 1.7232 0.0970 2.50.99 0.0970 2.50.99 0.0970 0.0970 0.0970 2.50.99 0.75 0.0970 0.09	THE STATE OF THE S					
LONNLESS CONNLESS CONN			Ş		ERS.	\$1
0.0312 0.0204 27.7278 1.7256 0.0955 0.0312 0.0216 27.5866 1.7258 0.0965 0.0312 0.0218 27.5786 1.7262 0.0963 0.0304 0.0221 27.5786 1.7262 0.0963 0.0304 0.0221 27.5806 1.7287 0.0969 0.0305 0.0219 27.5806 1.7206 0.0971 0.0306 0.0218 27.4483 1.7130 0.0971 0.0306 0.0218 27.4838 1.7232 0.0974 0.0306 0.0218 27.4531 1.7232 0.0974 0.0306 0.0218 27.4534 1.7232 0.0974 0.0306 0.0218 27.4534 1.7332 0.0974 0.0306 0.0218 27.4534 1.73378 0.0976 0.0306 0.0218 27.4284 1.7329 0.0976	-4	•	11 BC/CEC1		S	(SECONDS)
0.0312 0.0216 27.5866 1.7258 0.0965 0.0965 0.0312 0.0218 27.5786 1.7262 0.0963 0.0963 0.0304 0.0221 27.5865 1.7287 0.0963 0.0304 0.0220 27.5824 1.7287 0.0969 0.0305 0.0219 27.483 1.7730 0.0974 0.0306 0.0318 27.4838 1.7232 0.0974 0.0306 0.0318 27.4838 1.7232 0.0974 0.0306 0.0218 27.4019 1.7332 0.0975 0.0977 0.0306 0.0218 27.4019 1.7338 0.0976 0.0977		OFFICE SSI	27,7278	1.7236	5260.0	266.45
0.0318	4	0.0214	27.5866	1.7258	0.0965	265,54
0.0304 0.0221 27.4665 1.7124 0.0963 0.0304 0.0220 27.5224 1.7287 0.0965 0.0305 0.0219 27.5806 1.7730 0.0971 0.0306 0.0218 27.4950 1.7732 0.0974 0.0306 0.0218 27.4838 1.7232 0.0974 0.0306 0.0218 27.4570 1.7231 0.0974 0.0306 0.0218 27.4510 1.7251 0.0975 0.0306 0.0218 27.4284 1.7328 0.0976		0.0218	27.5786	1.7262	6960.0	262,31
5 0.0365 0.0220 27.5224 1.7265 0.0969 0.0305 0.0219 27.5806 1.7130 0.0971 0.0306 0.0218 27.4493 1.7130 0.0971 5 0.0306 0.0218 27.4838 1.7232 0.0974 5 0.0306 0.0218 27.4838 1.7232 0.0974 5 0.0306 0.0218 27.4570 1.7251 0.0975 5 0.0306 0.0218 27.4019 1.7378 0.0976 5 0.0306 0.0218 27.4284 1.7329 0.0977		1,022	27.4865	1.7124	0.0963	255,93
15 0.0365 0.0219 27.5806 1.7130 0.0971 25 0.0305 0.0218 27.4483 1.7130 0.0971 75 0.0306 0.0218 27.4838 1.7232 0.0974 25 0.0306 0.0218 27.4570 1.7251 0.0975 25 0.0306 0.0218 27.4019 1.7351 0.0976 25 0.0306 0.0218 27.4284 1.7351 0.0977 25 0.0306 0.0218 27.4284 1.7329 0.0977	0 1	0250	27.5224	1.7287	5967.0	257.42
25 0.6396 0.0218 27.4483 1.7130 9.0971 .75 0.0306 0.0218 27.4838 1.7232 0.0974 .75 0.0306 0.0218 27.4570 1.7251 0.0975 .75 0.0306 0.0218 27.4019 1.7378 0.0977 .75 0.0306 0.0218 27.4284 1.7378 0.0977		0.0219	27.5806	1.7206	6960.0	254,55
25 0.0306 0.0218 27.4950 1.7232 0.0972 25 0.0306 0.0218 27.4838 1.7232 0.0974 27.5 0.0306 0.0218 27.4570 1.7378 0.0975 25 0.0306 0.0218 27.4019 1.7378 0.0977 25 0.0306 0.0218 27.4284 1.7329		6.0218	27.4483	1.7130	0.0971	254,26
25 0.0306 0.0218 27.4838 1.7232 0.0974 .75 0.0306 0.0218 27.4570 1.7378 0.0975 .25 0.0306 0.0218 27.4019 1.7378 0.0977 .75 0.0306 0.0218 27.4284 1.7329	24.	0.0218		1.7322	0,0972	252,39
.75 0.0306 0.0218 27.4570 1.7251 0.0975 .25 0.0306 0.0218 27.4019 1.7378 0.0976 .25 0.0306 0.0218 27.4284 1.7329 0.0977		6.0218		1.7232	\$160.0	250,94
25 0.0306 0.0218 27.4284 1.7378 0.0977 .75 0.0306 0.0218 27.4284 1.7329 0.0977	75	6.0218	•	1.7251	0.0975	250,35
75 0.0306 0.0218 27.4284 1.7329 0.0977	200	0.0218	•	~	0.0976	249.51
	75	0.0218	7.45	1.7329	5	248.40

.

•

The same of the sa

APPENDIX 1 (GON*T) HUI - FIRING TEST DATA 12 PERCENT LENGTH AERUSPIKE NOZZLE TEST NUMBER ACIB, FAGE 2
Ĩ

Lange of the same

TIAL	ů	(FT/SEC)	5091.	5097.	5688.	5102.	50.95	5087.	5117.	51.05.	-0016	5164.	5111.	5103.		CT, TOP	(DRIVESS)	0.9532	C9565	0.5544	6.9524	0.9498	0.9477	6.9465	C.9462	0.9482	P. 940B	(.9471	0.9489
COMPIDENTIAL	\$ * U	(FT/SEC)	3159.	3518.	3611.	3696.	3679.	3648.	3651.	3643.	3645.	3643.	3642.	3648.		CT.	(OMNLESS)	2+96*3	6+96*7	C.9625	J096*≎	0.9575	() • 9555	0.9545	. 29542 ·	ი.956 2	8446.0	2.9551	0°6260
	PB/ PA	(DWNL ESS	2.849	2.477	2.105	1.835	1.625	1.500	1.434	1.378	1.376	1.394	•	1.375		NIS, TOP	(DMNLESS)	0.8444	9.8479	0.8450	0.8452	0.8422	0.8338	0.8426	D.8407	5.8415	9.84¢9	C-8427	0.8429
	20/80	LOWNLESS	6. 30953	0.30917	U. J1923	. 0.00921	0.00936	5.00.968	500100	0.01061	C. J. 168	U. 11218	Ú. 1311	5.31387		NI S	(DANCESS)	0.8510	C.8542	V.8512	C.8513	U.8483	C.8449	C.8487	C. 8468	0.8470	L.8471	6.4489	1.8491
	EPSELCA#	COMMERCE	27.333	27.261	27.199	27.151	27.120	27.092	27.170	27.072	27.070	27.070	27.073	27.570		NC # S	(DMNLESS)	6, 7337	v. 8107	v. 43 82	L. 8578	U. 8539	C. 3457	. 0.8474	L. 8453	L. 8458	L. 8453	C. 845C	v. 8404
	* 4	Sur Ika	13.608	13.629	13.000	13.084	13.700		13,725	13.725	13.725	13,725	13, 725	13.725		NC*P	(DANLESS)	6.8858	6.6659	U.8854	U. 4875	v.8867	6.4851	5,60,0	v. 6685	4765.0	6.3382	6.9880	. 588 p. 7
-	UNITED IN	(SECONDS)	4.43	4.75	5.25	5.45	6.45	•	7.25	7.72	8,45	8.73	67.6	27.5	Unfident	1811	6SECONDS)	4.45	4.7	5.45	~		51.3	7.25	7.75	\$ 7 . 0	6.75	57.0%	9.75

. Kile

4

AND ASSESSMENT OF THE PROPERTY OF THE PARTY OF THE PARTY

HOT - FIRING TEST DATA -- 12 PERCENT LENGTH AEROSPICE 4022LE

CONFIDENTIAL		4		7337	7243	7133	•	5 7030	6970	2	•	•	•	•0		720111	265.2	264.3	192	257.3	255.8	254.4	252.	252.	251.	250.	249.
) ~	, ,	α.	2,792	80	. 85	.93	.14	•22	•39	.68	.77	.98	X X	- 7	0.1742	7		7	7	7	7	7	7	7	7
PAGE 1	Ų	٥.	ے ر کا .	7 (151,36	2	3	50	50	50	50	50	51	5	a. ¥	Ü	726	.745	1.7415	.737	.749	142.	.742	.752	۲,	.752	1.7514
TEST NUMBER AC19.	30	2 2 0		ים כי יים כי	337.52	1.90	36.6	96.3	06.2	9.50	15.7	05.8	05.5	05.5	;= 18		27.8235	.753	~	.715	.672	• 630	.576	•	5	27.5241	č
1	Ψď	מ	ָ ֖֖֓֞֞֞֒	•	1.3722	9	8			?	٠,	•	~	8	NS/MP. EFF		0.0228	0.0229	0.0229	0.0229	0.0229	0.0228	0.0228	0.0228	0.0228	0.0228	0.0229
	A A MADA P	SOUND BOOK	2002	221.20	224-11	189.06	169.00	152.98		0	123.84	114.20	110.25	5.0	da/sh		0.0296	0.0295	0.0294	0.0294	0.6294	3	0	0.0295	0.0294	0.0295	0.0292
	T 2	A CECONDER		36.7	5.25	5,75	6.25	6.75	7.25	7.15	8.25	8.75	9.25	9.75			63ECUNDS1		5.25	5.75	6.25	6.75	7.25	7.75	8.25	8.75	9.25

「 Management of the first o

HUT - FIRING TEST DATA -- 12 PERCENT LENGTH AERDSPIKE NDZZLE TEST NUMBER AC19, PAGE 2

														C	Section 1		مورور البث ا	M	1		. 15												
PT 1. F	do .	(FT/SE3)		5063.	5068.	5062	5075	5083.	5096.	5086.	5005	5098	5031.	5112.						CT, 13P	2 = 1:	9569	0.9565	0.9546	6.9504	0.9473	0.9473	0.9453	1146.0	0.9458	0.9484	0.9479	0.9486
* T L GARCE BUCC			3889	3922.	3944.	3941.	3947.	3938.	3940.	3928.	3944.	3946.	3980.	3984.						5	(OKALESS)	.962	.962	296.	0.9562	.953	.953	.951	.953	.952	.954	.953	σ.
7 70 7	PB/PA	(DMNLESS)	2.874	2.447	2.035	1.730	1.575	1.467	1.432	1.435	1.375	1.375	1,363	1.374						NIS, TOO		0.8419	0.8431	0.8422	0.8375	3.8376	0.8383	0.8387	0.8389	D. 8383	0.6420	0.8387	3.8441
Cal Monden Actas Fi	PB/PC	LES	7	0.00902	-	-3		9	7	4	7	3	•	7		•				NIS	ANCE	.847		e847	6248.0	•	.843	.844	•844	•843	.847	ဆ္	6.8497
	EPSE LUN*	$^{\circ}$	27.390	27.349	27,285	27.239	27.207	27.179	27.157	27.157	27.157	27.157	27.157	27.157						· NC # S	(DWNCESS)	•	C. 8932	6. 8981	U. 8973	o. 8985	9968	6 8 8 9 6 9	0.8944	0.8978	6.8982	6.9658	0.9067
	* <	÷	ě	13.535	٠,	÷	13.656	m	÷		ď,	•	•	13.681						N:C # D	(DAMESS)	6.8807	0.8814	U.8823	6. 6811	C.8837	0.8349	0.8871	C. 4858	4. 8854	Ú.8879	Ú.8848	6638.0
	TINE	(SONCOS)	\$4.4°	4.75	2	~	N	~	7.25	~	8.25	8.75		9.75		41		TIA	1	1 1%E	(SECONOS)	4.45	4.75	5.25	5.75	6-25	~	7.25		1	8.75	9.25	9.75

Military Commence and an artist of the second secon

APPRIDIX 1 (Cont'd)
HDT - FIRING TEST DATA -- 12 PERCENT LENGTH AERUSPIKE NOZZLE
TEST NUMBER AC20, PAGE 1

ATA -- 12 PERCENT LENGTH AEROSPIKE NOZZLE TEST NUMBER AC20, PAGE 2 HOT - FIRING TEST DATA

CONTLIENTLE

17. TDP 17. TDP 0.9538 0.9540 0.9447 0.9445 0.9445 0.9391 1.9362 0.9391 677.583 5068 5065 5082 5082 5103 5081 5091 5091 51103 C*S 13988. 4014. 4045. 4045. 4045. 4045. 4005. 3997. 3984. PB/PA (OMNLESS) 1.374 1.363 1.365 1.352 1.352 1.353 1.354 1.353 PB/PC (DMNLESS) C-01293 0-01531 0-02073 0-02208 0-02648 0-02648 0-02648 0-02648 EPSILON*
(DMNLESS)
27.201
27.261
27.265
27.153
27.126
27.126
27.126
27.126
27.126
27.126 SQ. IN. 1 13.509 13.629 13.652 13.652 13.693 13.697 13.697 13.697 13.697 13.697 (SECONDS) TIKE

0.8415 0.8411 0.8411 0.8384 0.8418 0.8356 0.8356 0.8359 0.8359 CORNLESS)
0.84671
0.8465
0.8439
0.8411
0.8474
0.8413
0.8413
0.8355 NC#S (DMNLESS) 0.5084 0.9142 0.9210 0.9215 0.9209 0.9102 0.9102 0.9072 (DHNLESS) 0.9823 0.88217 0.88517 0.88548 0.8854 0.8854 0.8867 0.8865 (SECONDS) 4.25 1 IME

0.9595 0.9596 0.9596 0.9530 0.9531 0.9531

0.9503 0.9431 0.9449 0.9421

The state of the s

		CONFIDENTIAL	L	(SCADER)	7367	7401	1404.	7425.	.6142	7418.	7432	7423.	7.425.	1399.		7399.							15		704° 70	50.767	20102	268.98	24.802	268.89	26.402	17.802	14.602	268,72	20%52	70.807
	NOZZLE	CONF	6 .	(PSIA)	2.8038	2.8015	2,7827	2.7883	2.7911	2.8017	2.8020	7508*7	2.8011	2.7926	2.7938	2.7841		•					4RS	⊒ :		-	3	-	_	0.1130		3:	3	, in	0.1136	0.1136
(p.	13	AGE 3	PCS	(PSIA)	153.72	153.04	153.11	153.28	153.20	152,98	153.05	.152.85	152.58	2.3	152.01	1.6))						HRP	(DANLESS)	1.7164	1.7218	1.7131	1.7136	1.7150	1.7211	1.7127	1.7338	1.7231	1.7279	~	1.7279
APPENDIX (Cont'd)	- 12 PERCENT	NUMBER ACZIO P	.	(PSIA)	308.63	307.85	335.74	336.47	306.12	305.90	306.36	305.94	30620	305.47	335.,62	135.57							H.	(LBS/SEC)	27.8053	27.7175	27.7049	27.6053	27.6319	27.5893	27.5933	27.5735	27.5595	27.5364	27.4405	27.5425
	FIRING TEST DATA	TEST	δĄ		1.0981	0.9177	0.9611	0.8467	0.8489	0.8394	0.8445	0.8413	0.8560	0.8624	- 0.8794	3 6	•						MS/NP, EFF	ES	0.0231	0.0231	0.0231	0.0232	0.0232	0.0232	0.0231	0.0231	0.0231	0.0231	0.0230	0.0230
	HOT - FI		O A CAMA 1	COURT PARCE	3	71.4.88	94.035	361.46	340.62	366.44	362.77	100 m		•		•	333.14					. ,	GH/SH	(DHNLESS)	6.0299	0.0301	0.0300	0.0300	0.0299	0.0299	0.0299	0.0299	0.0300	0.0300	0,0302	0.0301
		•	u 22 -	1 SURUSIAN	4545			•	•	• •	- r	J F	• (•	- 6	•	03		M	r/m	1		41.1	1 CECONOS P	4.45		5,25	5.75	A-25	6.75	٠ ۸	7.75	• •	!		9.75

UCCLASSIFIED.

ATA -- 12 PERCENT LENGTH AEROSPIKE 40/2LE TEST NUMBER AC21, PAGE 2 HOT - FIRING TEST DATA

APPENDIX 1 (Cont'd)

CONFIDENTIAL 6#1/SEC1 3935. 3935. 3931. 3941. 3941. 3941. 3919. 3889. PB/PC (DMNLESS) 0.00910 0.00910 0.00916 0.00916 0.00917 0.00917 0.00914 0.00914 EPSILON*
(DANLESS)
27.229
27.229
27.127
27.157
27.157
27.157
27.157
27.157
27.157
27.157
27.157 A# 13.645 13.645 13.656 13.681 13.681 13.681 13.681 13.681 13.681 13.681 SECONOS) 6-625 5-75 6

0.9554 0.9554 0.9555 0.9555 0.9555 0.9555 0.9551 0.9551 0.9555 0.9616 0.9616 0.9618 0.9615 0.9615 0.9627 0.9628 0.9598 NIS, TOP (DMNLESS) 00.00 NIS (DMNLESS) 0.6535 0.8535 0.8521 0.8521 0.8527 0.8527 0.8524 0.8524 NC *S (DHNLESS) 0.9087 0.9082 0.9099 0.9099 0.9099 0.9071 0.9071 NC#P UDMNLESS) U.8839 U.8856 U.8866 U.8866 U.8866 U.8866 U.8864 6.5ECOVDS: 4.45 4.75 5.25 6.25 7.25 7.25 8.25 9.25 9.25

HOT - FIRING TEST DATA -- 12 PERCENT LENGTH AEROSPICE VOIZLE TEST NUMBER AC21, PAGE 2

CONFIDENTIAL			50 00 00 00 00 00 00 00 00 00 00 00 00 0	5079.	5097.	5085.	2080	5356.	5093	5100.	5093.		5094.	graf forty gran			61, 139	(SSETWHC)	0.9555	0.9555	0.9554	0.9354	95550	0.9355	1986.0	0.9554	0.9551	0.9551	0.9535	0.9545
	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3025	3902	3917	3937.	3941.	3936.	3947.	3941.	3929.	3919.	3905.	3889.				20	(DANCESS)	0.9616	0.9618		•	•	•	•	•	•	•	•	•
5	40/94 0000 12300	2.553	2.866	3.088	3,293	3.288	3,338	3.318	3.335	3.272	3.238	3-177	3.236				NIS, TOP	(DANLESS)	2+98-0	0.8462	φ,	æ	œ	φ,	8	8	Φ,	٣	φ,	8
•	Jd/Ad	0.00000	01600 0	500	900.	.339	.309	.309	.309	.009	90°	.009	.339				NIS	(OWNLESS)	0.8535	0.8521	0.8500	C.853D	U.8515	0.8521	ú-8541	0.8527	. 0.8544	0.8524	u.8546	U.8523
•		27.22	27.207	27.177	27,157	27.157	27,157	27.157	27.157	27,157	27.157	27.157	27.157				NC #S	(DANLESS)	0. 9087	0.9012	ŭ. 9046	0.9290	0.9039	6. 9088	C.9112	0.9099	0. 9071	0.9049	0.9017	Ç. 8979
	A# 1001	13,645	13.656	13.671	13.681	13,681	13.681	13.681	13.681	13.681	13.681	13.681	13.681		·		NC*P	(DANLESS)	6.8839	6.8856	0.8836	0.8866	U. 8347	0.8856	0.8856	0.5364	€.8875	U. 4863	1,63.3	0.8865
277	# NOXO. 4 NO	4.45	4.75	5.25	5.75	6.25	6.75	7.25	7.75	8.25	8.75	. 9.25	57.6		 16	0.00	TIME	(SECONDS)	4.45	4.75	5.25	5.15	. 6.25	6.15	7.25	7.75	8.25	6.75	5.25	9.75

	F (POUNDS) 6121.	UNCLASSIFIED	15 (SECGKDS) 213.66 213.80
	PB (PSIA) (17.2083		KRS (DKNLESS) 0.0
APPENDIX 1 (Cont'd) TEST DATA 12 PERCENT LENGTH AEROSPIKE NO22LE TEST NUMBER RD69, PAGE 1	PCS (PSIA) 0.0 0.0		HRP (DMNL ESS) 1.7505 1.7554
APPENDIX 1 (Cont'd) 12 PERCENT LENG NUMBER RD69, PAGE	PC (PSIA) 401.06 397.87		HT (LBS/SEC) 38.0076 38.0355
	PA (PSIA) 13.7000 13.7000	·	MS/MP. EFF (DMNLESS) 0.0 0.0
HOT - FIRING	LAMBDAP (DMNLESS) 29.27 29.04		MS/MP (DHNLESS) 0.0
	11.00 0.50 1.00	117	INE CONDS) 0.50 1.00

CT, TOP (DANLESS) 0.9206 · 0.9198

CT (DMNLESS) 0.9206 0.9198

NIS, TOP (DMNLESS) 0.8074 0.8086

NIS DMNLESS 1 0.8074 0.8086

NC+S (DMNLESS) 0.0 0.0

NC*P LDMNLESS) 0.8770 0.8790

| SECONDS | 0.50 | 1.00

CONFIDENTIAL	C*P (FT/SEC) 5042. 5053.	
	C#S (FT/SEC) 0. 0.	
HOT - FIRING TEST DATA 12 PERCENT LENGTH AEROSPIKE NOZZLE TEST NUMBER RD69, PAGE 2	PB/PA (DMNLESS) 1.256 1.256	
- 12 PERCENT LENG NUMBER RD69, PAGE	PB/PC (OMNLESS) 0.04289 0.04325	
RING TEST DATA	EPSILUN* (DMNLESS) 25.263 24.989	
HOT - FI	A* 1. IN.) 1. 707 1. 868	

APPENDIX 1 (Cont'd)

150. IN.) 14.707 14.868

TIME (SECONDS) 0.50 L.00

UNGLASSIFIED

UNCLASSIFIED

CONFIDENTIAL	6004051 60400 60400 60400 60440	UNGLASSIFIED	(SECONDS 209.62 210.19 210.29 210.29 210.67
	PB [PSIA1 17-1689 17-1200 17-1182 17-1246 17-1674	·	MRS COMNLESS) 0.0 0.0 0.0
LENGTH AEROSPIKE NOZZLE PAGE 1	2000 0.00 0.00 0.00		MRP (DMNLESS) 1.8202 1.8233 1.8223 1.8222
DATA - 12 PFRCENT LE TEST NUMBER RD71, PA	PC (PSIA) 391.09 389.26 387.73 387.44	·	MT (LBS/SEC) 38.2840 38.2540 38.2540 38.2780 38.2780
ING TEST	PA (PS1A) 13.7200 13.7200 13.7200 13.7200		MS/WP, EFF (OMMLESS) 0.0 0.0 0.0 0.0
HOT - FIR	LAKEDAP (D#NLESS) 28.51 28.37 28.37 28.24 28.23		#S/#P (DMNLESS) 0.0 0.0 0.0
. ale, 1 area,	Tire (Secunds) 0.50 1.00 1.50 2.00 2.50	UNCLASSIFIED	11%E (SECONDS) 0.50 1.00 1.50 2.50

CONFIDENTIAL

HOI - FIRING TEST DATA -- 12 PERCENT LENGTH AERUSPIKE NOZZLE VEST NUMBER KUTI, PAGE 2

APPENDIT 1 (Cont'd)

(FT/SEC) 5024- 5036- 5036- 5038- 5043-		2000 000 000 000 000 000 000 000 000 00
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		CT (CUNLESS) 0.9068 0.9068 0.9082 0.9082
PB/FA (DMNL ESS) 1-251 1-248 1-248 1-248 1-251		NIS, TOP LUMNLESS) 0.7948 0.7966 0.7989 0.7989
PB/PC (DMNLESS) 0.04390 0.0414 0.04422 0.04422		NIS (DWNLESS) 0.7948 0.7966 0.7989 0.7996
EPSILON* (OMNLESS) 24.535 24.384 24.280 24.219 24.194		CC #5 COMPLESS 0.0 0.0 0.0 0.0
A* (SQ. IN.) 15.237 15.237 15.362 15.341 15.357		NC*F (DANLESS) C.8762 O.8785 U.5796 O.8796
# INE I SECONDS 1 0, 50 1,00 2,00 2,50 2,50	UNCLASSIFIED.	11ME 1SECCNDS) 0.50 1.50 2.00 2.50

UNCLASSIFIED

CONFIDENTIAL	6 PUNDS) 6 421. 6 431. 6 431. 8 431. 8 443. 8 843.	1 SECGNDS 209.88 210.80 210.48 210.48 210.48 210.48 210.48 210.48 210.48 212.84
	P8 17,7936 17,7936 17,7963 17,7963 17,8025 17,8608 17,4643	MRS COMMLESSI 0.0533 0.0474 0.0454 0.0454 0.0454
nt'd) Length Aerdspike NOZZLE Page 1	66 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	HRP (DHNLESS) 1-7242 1-7204 1-7244 1-7244 1-7303 1-7303 1-7303
APPENDIX 1 (CO. 12 PERCENT NUMBER RIDOL.	298.11 298.11 298.11 295.66 295.92 295.61 295.61	WT (LBS/SEC) 40.1488 40.0829 40.1042 40.0285 40.0138 40.0082 39.2898
FIRING TEST DATA -	13.8000 13.8000 13.8000 13.8000 13.8000 13.8000 13.8000	MS/MP. EFF (DMNLESS) 0.0031 0.0024 0.0024 0.0024 0.0024 0.0024
HOT - F	LAMBDAP CUMNLESS! 28-85 28-69 28-69 28-65 28-61 28-61 28-61	US/AP (DWNLESS) 0.0157 0.0162 0.0163 0.0163 0.0263
	SECTION OF	11ME (SECONDS) 0.50 1.50 2.50 2.50 3.45 4.30

THE PARTY OF THE P

THE PROPERTY OF THE PROPERTY O

UNCLASSIFIED

APPENDIX 1 (Cont'd)
HOI - FIRING YEST DATA -- 12 PERCENT LENGTH AEROSPIKE NULLLE
TEST NUHBER RUO1, PAGE 2

CT, TOP (DANEESS) 0.9061 0.9060 0.9060 0.9060 0.9058 0.9071 0.9131 (FI/SECI 5047. 5060. 5058. 5065. 5066. 5073. 5071. CONFIDENTIAL (DANLESS) 997. 751. 751. 738. 748. 00. NIS. TOP LOMNLESSI 0.7948 0.7948 0.7984 0.7984 0.7987 0.7987 0.8065 1.291 1.290 1.287 1.285 1.296 1.266 (DANLESS) PB/PC (DMNLESS) 0.04495 0.04485 0.04485 0.04485 0.04482 0.04482 0.04482 0.04470 EPSILGN+ (UMNLESS) 24.087 (DANLESS) 23.984 23.939 23.919 23.919 23.919 23.919 23.919 1.1 150. IN. 1 15.425 15,491 155,533 1155,533 1155,533 1155,533 1155,533 1155,533 (DANLESS) 0.8772 0.8793 0.8791 0.88791 0.8803 0.8817 0.8815 (SECONDS) (SECONDS) C.50 22.00 44.00 44.00 44.00 0.50 2.50 2.50 2.50 2.50 4.90 4.90 4.90

Incoretical Secondary Properties Outside the Range of Data Reduction Program.

思議者を建設を持続さればは大きには、これのでは、いから、これのないのでは、これのでは

UCLASSIFIED 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.21 200.21 200.79 200.79

		FITAL	u.	(POUNDS)	5936.	5936.	8365	5951.	5961.	.1965	6012.	5997.	•0009	.1009	6004	5982.	5998.	6003		S THE	(SECOND 2)	10661	199.35	200.00	200.05	200.20	200.09	200.04	200.35	199.89	2007	700.99	200.44	90	201-14
•	1022LE	CONFIDERITAL	PB	(PSIA)	15.6112	15.6677	3	S	15.6781	15.7152	16.0193	15.9942	15.9916	15.9815	15.9542	15.9000	15.9267	15.9731		KRS	(Drive ESS)	0.0	0.0	0.0	0.0	0.0	0.0	0.3029	0.2654	0.2599	9097-0	0.2617	0.2628	0.2628	0.2655
	LENGTH AEROSPIKE NOZZLĒ	•	PCS	(PSIA)	0.0	0.0	0.0	0.0	0.0	0.0	164.03	149.86	147.82	148.00	147.88	148.10	147.89	147.86		M2P	(DANKESS)	1.6840	1.6877	1.6699	1.6727	1.6762	1.6752	1.6740	1:6722	1.6710	1.6793	1.5744	1.6788	19.	1.6891
	DATA - 12 PERCENT LE		9 6	(PSIA)	300.12	298.77	298.68	298.01	298.23	298.28	298.79	298.43	298.82	299.20	299.10	299.22	299.99	8		13	(LBS/SEC)	29.8268	29.7894	29.7872	29.7506	29.7742	29.7900	30.0543	29,9328	30.0190	29.9731	29.8696	29.8438	29.8717	29.8453
	FIRING TEST DATA -		PA	(PSIA)	. 13.8400	13.8400	13.8460	13.8400	13.8400	13.8400	13.8400	13,6400	13.8400	13.8400	13.8400	13.8400	13.8400	'n		MS/NP. EFF	(DKNLESS)	0.0	0.0	0.0	0.0	0.0	0.0	0.0091	0.0083	0.0082	0.0082	0.0085	0.0082	0.0082	0.0082
	HOT - F1		LAMBUAP	(OMNLESS)	21.68	ď	S	4	21.55	1	21.59	•	-	-		21.62	~	21.70		dr/SR	(DANLESS)	0.0	0.0	0.0	0.0	0° 0		0.0102	6010.0	0.0110	0.0116	0.0110	0.0110	0.0110	û.0109
			Z L'AE	(SECONDS)	0.50	1.00	1.50	2.00	2.50	3-00	3.50	00.4	4.50	5.00	5.50	00-9-	0.	8.	123 1480 1480	B	(SUCONDS)	0.50	1.00	1.50	2.00	2.50	3.00	3.50	** 00	4.50	5.00	5.50	00.9	6.50	1.00

APPENDIX 1 (Cont'd)

Incia for this test were obtained from 0.5-second Beckman data militar.

UNOLASSIFIED

APPENDIX 1 (Cont'd)

HUT - FIRING TEST DATA -- 12 PERCENT LENGTH AERUSPIKE NOZZLE TEST NUMBER ROUZ, PAGE 2

		TEST	NUMBER ROOZ. P.	PAGE 2	CONF	CONFIDENTIAL
TIME	**	EPSILON*	PB/PC	PB/PA	C*S	C*P
(SECONDS)	(SQ. IN.)	(CHALESS)	(DANLESS)	LORNE ESS	(FT/SEC)	(FT/SEC)
0.50	15.357	24.194	0.05202	1.128	•	5033.
1.00	15.413	24.106	0.05244	1.132	•	5035.
1.50	15.441	24.062	U.05257	1.135	ċ	5043
2.00	1.5.474	24.011	0.05260	1.133	ဒံ	5049
2.50	15.478	24.004	0.05257	1.133	.	5050
3.00	15.465	24.025	0.05269	1.135	ં	5044.
3.50	15.438	24.067	0.05361	1-157	4518.	5050
00.4	15.437	24.068	0.05359	1,156	3869.	5057.
4.50	15.424	24.038	0.05352	1.155	3768.	5056.
2.00	15.408	24.113	0-05341	1-155	3785.	5065.
5.50	15.396	24.132	0.05323	1.153	3906	5067.
S. U	15.398	24-129	0.05314	1.149	3820.	5084.
S. 5.	15.379	24.159	0.05309	1.151	3809.	5086
37.05	15,355	. 24.197	0.05318	7	3816.	5089.
N.						
		•	•			
15/1						
Œ		,				
	N * D	*C *C	- V-2	NIC. TOB	-	(1, 100
	TOWN FOOD	NACT	NHO!		I DOG INTO	SO CAROL
1 35 COND 35	G. 8757	0.0	0.7809	0.7809	7	0.80.9
000	1010 + O		0.200	, , , , , , , , , , , , , , , , , , ,	0 4 0 0 C	0100
	6.8773	0.0	0 7855	0.7855	0.8954	0.805A
2,60	0.8783	0	6.7858	0.7858	0.8947	F489.7
2.50	0.8785	0.0	0.7863	0.7863	0.8950	0.3950
3.30	6.8774	0.0	0.7859	0.7859	0°8956	6.8956
3.50	0.8785	1	I	0.7855	j	1969.0
4.00	0.8815	ì	ı	0.7869	;	0.8926
4.50	6.8795	1	1	0.7849	ı	J. 8925
5.00	0.8812		1	0.7859	1	6158.0
5.50	0.8850	1	1	0.7889	1	0.6915
9.00	0.8845	;	l	0.7869	1	0.8897
6.50	Ú.8847	I	1	0.7880	!	C. 8907
7.00	0.8855	1	1	0.7891	1	0.8911

Theoretical Secondary Properties Outside the Range of Data Reduction Program.

NO22LE	
FIRING TEST DATA 12 PERCENT LENGTH AEROSPIKE NOZZLE	
LENGTH	PAGE 1
PERCENT	R RDU3.
- 12	NUMBE
DATA -	TEST
TEST	
FIRING	
ı	
HOT -	

Data for this test were obtained from O.5-second Beckman data slices.

	2LE CONFIDENTIAL	C#S C#S C C			C. 501	004 200	0. 501	· 562					3639. 504			
(1q)	- FINING TEST DATA 12 PERCENT LENGTH AEXUSPIKE NOZZLE TEST NUMBER RUD3, PAGE 2	PB/PA	100NE 5337	1.126	1.121	1.126	1,123	1 113	1.151	1.143	1.145	1.149	1.142	1-144	1.121	1.123
APENDIN (Cont'd)	- 12 PERCENT L	29/84	0.05082	0.05114	0.55122	0.05144	0.05141	0.05127	0.05257	U.05228	0.05227	0.05250	0.05207	0.05210	0.05693	0.05101
	RING TEST DATA TEST	EPSILON*	2%-581	24.472	24.350	24.354	24.315	24.295	24.341	24.317	24-305	24.384	24.370	24.411	24.435	54.479
	HOT - FI	***	1 S. 1 1 S.	15.182	15.248	15.255	15.280	15.293	15.264	15.279	15.249	15,237	15.246	15.220	15.205	15.178

White the state of the state of

- 1	(FT/SEC)	4598	5010 •	5015.	2004	5014.	5C20°	5025.	5037.	5030	5030 c	5040.		5056		يده الاساط ال		. 64.6	CT, 102	COMPLESS!	0.8905	0.8926	0.6911	0.8927	•	0.8903	•	•	0.8328	C. 8829	0.8810	Ú.8815	₽,	0.8915
\$ * 3	(FT/SEC)	•	•	់	•	ં	•.,	4036.	3670.	3632.	3619.	3639.	3623.	ં	ٿ				Ü	CONTRACT	0.8906	0.8926	0.6911	0.8927	0.8915	0.8903	0.4882	Û•8865	0.8875	0.8877	0.8857	Ů• 8863	•	0.8915
P8/PA	COMME ESS)	1.123	1.126	1.121	•	1,123		1.151	•	•	1.149	1.142	1-144	1.121	٦.	,			NIS. TOP	_)	0.7788	0.7782	0.7786	0.7785	0.7783	0.7745	ŭ.7735	0.7733	0.7735	4612°0	0.7739	• 78	0.7846
PB/PC	(CMNLESS)	0.05082	0.05114	0.05122	0.05144	Ū.0>141	0.05127	0.05257	U.05228	0.05227	0.05250	0.05207	0.05210	0.05693	0.05101				SIN	I DANN ECC.	,	0.7788	0.7782	0.7786	Ü.7785	6.7783	0.7780	0.7772	6,1769	0.7171	0.777.0	ċ.1176	•	0.7846
EPSILON*	(DANLESS)	24.581	24.472	24.350	24,354	24.315	24.295	24.341	24.317	24.305	24.384	24.370	24.411	;	*				S#:5%	CO ST INTO	0-0	3	· 0	0.0	0.0	o•0	0.9266	0.8456	0.8368	0.8337	0.8384	0.8350	0.0	0.0
A *	(SO. 12.)	15.115	15,182	15.248	15.255	5.28	Š		5.2	5.2	7	~	7	7	15.178	÷	~		Q# CN	SOME FOCA	0.8703	0.8725	0.8733	0.8722	0.8732	0.8742	0.8752	0.8772	0.8766	Ū. 876C	6.8779	0.8780	G. #804	•
出来了一	(SECUNDS)	0,50	1.00	1,000	2,00	2.50	00*6	3,000	00.4	4-50	00.8	5.50	00.0	00.2	25.20	is	126	YIA	J		1 SECUNDS 1 0 - 50	1.00	1.50	2-00		3.00	3,50	4.00	4.50	30.0	200.50	•	2007	7.56

UNCLASSIFIED

CNITAL	F (PGUNDS) 5824. 5840. 5850.		Coul Luchel Lude	15 (SECONDS) 201.07 201.69 202:05
1022LE CONFIDENTIAL	PB (PSIA) 14.7595 14.7660 14.7627			MRS (DMNLESS) 0.0 0.0
TEST DATA 12 PERCENT LENGTH AEROSPIKE NOZZLE TEST NUMBER RDOS, PAGE 1	PCS (PSIA) 0.0 0.0	;		MRP (DMNLESS) 1.7430 1.7438 1.7370
- 12 PERCENT LEI NUMBER RD05, PA	PC (PSIA) 315.38 314.25			WT (LBS/SEC) 28.9664 28.9294 28.9543
	PA (PSIA) 13.7060 13.7060			MS/WP. EFF LDMMLESS) G.0 0.0
HOT - FIRING	LAHBDAP (DANLESS) 23.02 22.94 22.93			WS/WP (DMNLESS) 0.0 0.0
	rfE ONDS) 1-50		427	IME CONDS) 0.50 1.00

APPENDIX 1 (Cont'd)

MCLASSIFIED)
-------------	---

HOT - FIRE	TIME A* (SECONDS) (SQ. IN.) 0.50 14.134 1.00 14.209 1.38 14.231	428	TIME NC*P (SECONDS) (PANLESS) 0.50 0.8744 1.00 0.8771 1.39 0.8773
'NG TEST DATA -	EPSILON* (DMNLESS) 26.287 26.148 26.108		NC #S (DMNLESS) 0.0 0.0
- 12 PERCENT LI	PB/PC LDMNLESS) 0.04680 0.04699		NIS (DMNLESS) 0.7622 0.7857 0.7865
ING YEST DATA 12 PERCENT LENGTH AEROSPIKE NOZZLE TEST NUMBER RDO5, PAGE 2	PB/PA (DMNL ESS) 1.077 1.078 1.078		NIS, TOP (DMNLESS) 0.7822 0.7857
NOZZLE COMPTDENTIAL	C#S (FT/SEC) 0. 0.		CT (DMNLESS) 0.8946 0.8958 0.8958
TIAL	C#2 (FT/SEC) 5023- 5039- 5041-		61, 10P 60FRLES 0.6946 0.8958 0.8965

AFPENDIX 1 (Cont'd)

UNGLASSEET

ont'd)	
<u>ဗ</u>	
N N	

Ì

												٠		U		U	H	Į,		r	ıt.			_	•											
	TIAL	(POUNDS)		5050		9913	5988	5977.	5970.	5077		1566	5982	5985.			•			·			51	(SECOMOS	203.55	203.52	204,56	204.58	204.51	204.35	20%	C 7 70 C	70-107	A - + 0 7	77.407	,
	CONFIDENTIAL	FB (0514)		14.9164	÷	÷	14.9292	4	14 8454	0000	D.	14.	14.8488	14.8234									KRS	CORNESSI	0.0	0.0	0-0	0-0	0.0	0-0) (3 (•	0.0	
LENGTH AEROSPIKE NOZZLE PAGE I		PCS	TYSTY.	0.0	0.0	0.0	0.0			9	0.3	0.0	0-0	0.0			•						AR P	(DANLESS)	1.8371	1-8446				1 6348	777004	1.8363		•	1.8445	
- 12 PERCENT LE		2	(PSIA)	324.01	322.09	321,78	121.91	70100	22.00	320.82	32 ; • 06	321.71	-	216	• • • •							•	. 3	SUPPLIED A	20,5002	20-22-0	20 2221	1617.65	27.52	6977067	0417-67	29.2161	29.2770	29.2090	79.2190	
FIRING TEST DATA -		PA	(PSIA)	13. 7000	15.7000	13, 7000	3 7000	0001 454	73. COO	13.7000	13,7000	0002.4	307 64	•	13. /000											3 G		5	•	٠ ټ	0.0	0.0	0.0	0.0	0.0	
19 - 10H		LAMBDAP	(DANCESS)	23.65	23, 43	22.40	V	73.50	23.44	23 - 42	13.60	22 69	D**C7	23.46	23.46				*	-					LUMALESSI	3°5	ာ ပိ	0.0	0.0	0.0	0.0	0-0	0.00		0-13	,)
		TIME	(SECONDS)	0.50	000) () () () () () () () () () (7.00	2.00	2.50	3-00			20.4	4.45	3:	IN		U	7	S 1	29	ĒĪ		IN I	(SECONDS)	0.50	1.00	1.50	2.00	2.50	3,00	04.4			7) •

											U	NEW SOLETIE
	(FT/SEC)	5046.	5058.	5056.	5064.	5071.	5068.	5071.	.5071.	5078.	5076.	

	COHPIDENTIAL		C) (FT/S)		505	505							
NOZZLE		**	(FT/SEC)	Ó	Ó	Ŏ	Ó	Ö	Ö	ð	ô	Ö	Ó
FIRING TEST DATA 12 PERCENT LENGTH AERUSPIKE MOZZLE TEST NUMBER RODS. PAGE 2	}	PB/PA	COMNIESS)	1.089	1.088	1.089	1.090	1.630	1.085	1.085	1.086	1.084	1.082
A 12 PERCENT		PB/PC	(SSETNAC)	0.04604	0.64627	0.04637	0.04638	0.04631	0.04634	0.04628	0.04624	61940.0	0.04612
FIRING TEST DATA		EPSILUN#	. (DMALESS)	26-569	26.420	26,350	26,330	20.272	. 25.272	26-272	26.272	26.272	26.272
HOT - 1		A×	(50. IN.)	15.984	14.063	14.095	14.111	14-342	14.142	14.142	14.142	14.142	14.142

TIME NC#P NC#S NIS NIS. TOP CT CT, TOP SECONDSI (DMNLESSI) (DMNLESSI)							
COMMLESS COMMLESS COMMLESS COMMLESS Co-B315	TINE	NC #P	NC#S	SIN	NIS, TOP	15	CT, 10P
6-8315 0.0 0.7891 0.8953 0.8839 0.0 0.7912 0.7912 0.8552 0.8836 0.0 0.7918 0.7918 0.8952 0.8836 0.0 0.7938 0.7931 0.8952 0.8857 0.0 0.7937 0.7937 0.8961 0.8859 0.0 0.7940 0.7940 0.8961 0.8859 0.0 0.7940 0.7940 0.8962 0.8874 0.0 0.7948 0.7948 0.8956 0.8871 0.0 0.7945 0.7945 0.8956	SECONDS	(OMNLESS)	(DANLESS)	(DANLESS)	(DANL ESS)	(DMNLESS)	(DANLESS)
0.8839 0.0 0.7912 0.8552 0.8836 0.0 0.7918 0.7916 0.8962 0.8848 0.0 0.7938 0.7933 0.8972 0.8857 0.0 0.7937 0.7937 0.8961 0.8859 0.0 0.7940 0.7940 0.8961 0.8859 0.0 0.7940 0.7940 0.8962 0.8874 0.0 0.7948 0.7948 0.8956 0.8871 0.0 0.7945 0.7945 0.8956	0.50	6-8315	0-0	0.7891	0.7891	0.8953	6538.0
0. 8836 0.0 0.7918 0.7918 0.8962 0. 8848 0.0 0.7938 0.7933 0.8972 0. 8857 0.0 0.7937 0.8961 0.8961 0. 8859 0.0 0.7940 0.8961 0.8961 0. 8859 0.0 0.7940 0.7940 0.8962 0. 8874 0.0 0.7948 0.7948 0.8956 0. 8871 0.0 0.7945 0.7945 0.8956	1.00	0.8839	0.0	0.7912	0.7912	0.8552	0.8952
0.8448 0.0 0.7938 0.4972 0.48457 0.0 0.7937 0.8961 0.8857 0.0 0.7932 0.8961 0.8859 0.0 0.7940 0.7940 0.8963 0.8859 0.0 0.7940 0.7940 0.8562 0.8874 0.0 0.7948 0.7948 0.8956 0.8871 0.0 0.7945 0.7945 0.8956	1.50	0.8836	0.0	0.7918	0.7918	0.8962	0.8962.
6,857 0.0 0.7937 0.896; 0,852 0.0 0.7932 0.8961 0,859 0.0 0.7940 0.7940 0.8963 0,859 0.0 0.7940 0.8962 0.8962 0,837 0.0 0.7948 0.8956 0.8956 0,8871 0.0 0.7945 0.7945 0.8956	2.00	0.8448	0.0	6.7938	0.7933	0.8972	0.8972
0.8852 0.0 0.7932 0.8961 0.8859 0.0 0.7940 0.1940 0.8963 0.8859 0.0 0.7940 0.7940 0.8562 0.8374 0.0 0.7948 0.8956 0.8871 0.0 0.7945 0.8956	2.50	6, 6357	0.0	0.7937	0.7937	7968.0	0.8961
0.8859 0.0 0.7940 0.8963 0.8859 0.0 0.7940 0.8562 0.8374 0.0 0.7948 0.8956 0.8871 0.0 0.7945 0.8956	3.00	0.8852	0.0	ù.7932	0.7932	0.8961	1989.0
Ú.8859 Ú.0 Ú.794J Ú.852 Ú.8374 Ú.0 Ú.7948 Ú.8956 Ú.8871 Ú.0 Ú.7945 Ú.8956	3.50	0.8859	0.0	0.7940	0.7940	0.8963	0.8963
0.8374	4.60	Ú. 8859	0.0	Ú-794Ú	0.7940	0.8962	0.8962
0.8871 0.0 0.1945 0.7945 0.8956	14.4	0.8374	0.0	0.7948	0.7948	0.8956	0.8956
	4 . E :	0.8871	0•3	6.7945	0.7945	0.8956	0.8956

CONFIDENTIAL

HUT - FIRING YEST DATA -- 12 PERCENT LENGTH AEROSPIKE NOZZLE TEST NUMBER RD08, PAGE 1

APPENDIX 1 (Cont'd)

FOUNDS1 5621. 5831. 5855. 5851. 5775. 5789.		1.5 (.SECCIDS) 199.18 199.18 199.18 200.31 203.75 203.75
(PSIA+ 14-9661 14-9654 15-0238 14-9968 14-5761 14-5585		MRS CDMNLESSP 0.1656 0.1644 0.1649 0.1660 0.0 0.0
PCS (PSIA) 170-52 171-02 171-18 170-93 0.0 0.0		MRP (DKNL &SS) 1.8916 1.9055 1.8999 1.8965 1.8997 1.8998
PC (PSIA) 314.05 311.32 310.49 310.42 310.42		WT (LBS/SEC) 29.3466 29.2848 29.2765 29.2485 29.2642 28.3326 28.3326
PA (PSIA) 13.8000 13.8000 13.8000 13.8000 13.8000 13.8000		MS/MP: EFF (DENLESS) 0.0249 0.0250 0.0250 0.0249 0.0
LAMBDAP (DMNLESS) 22-76 22-59 22-56 22-56 22-50 22-51 22-51 22-55 22-55		WS/NP 6.0322 0.0322 0.0323 0.0324 0.0321 0.0
(SECONDS) (SECONDS) (CONDS) (CONDS) 1.50 1.50 1.50 2.35 4.35	UNCLASSIFIED	TIME (SECONDS) 0.50 1.00 1.50 2.35 5.72 4.82

APPRIDIG 1 (Cont'd)

The second secon

HOT - FIRING TEST DATA -- 12 PERCENT LENGTH AEROSPIKE NOZZLE TEST NUMBER RDO8, PAGE 2

KTIAL	C#9	(FI/SEC)	4993	5009	5018.	5020.	5022.	5022.	5025.	5036.		CT, 10P	CORNLESSI	0.8843	0.8850	0.8874	0.8877	0.8883	1,06.0	0.9034	0.9035
CONFIDENTIAL	S*3	(FT/SEC)	3870.	3872.	3877.	3885.	3897.	•	•	•		CT	(DANLESS)	C.8507	C*8915	0.8939	1+69-0	0.8946	0.9041	0.9034	0.9035
4	PB/PA	(SSETWHO)	1.084	1.084	1.069	1.089	1.086	1.056	1.052	1.055	·	NIS, TOP	COMNI ESS!	0.7736	0.7775	0.7807	0.7811	0.7523	0.7960	0.7956	0.7976
	PB/PC	(DWNESS)	J.04766	0.04800	0.04627	0.04840	0.04826	96940.0	0.04679	0.04677		SIN	COMPLESS	6.7793	0.7832	0.7865	0.7869	0.7880	0.7960	0.7956	0.7976
	EPSILUN*		26.828	26.603	26.529	26-470	26.454	26.454	26.454	26.454		NC + S	COMNESSI	0.8812	0.8819	0.8830	0.8847	0,8873	0.0	0.0	0.0
	* V	(SU. IN.)	13,849	13.966	14.005	14.036	14.045	14.045	14.045	14.045		NC *P	(DHNLESS)	0.8748	0.8785	0.8797	0.8799	0.8807	0.8805	0.8806	0.8828
	TIME	(SECONDS)	0.50	1.00	1.50	1.95	2,35	3.72	4.32	4.82	UNCLACSIFIED	TIME	(SECONDS)	6.50	1.00	1.50	1.95	2.35	3.72	4.32	4.82

			*														1	G	И	SSFED	L														
	i			CONFIDENTIAL	<u>د</u> د د د د د د د د د د د د د د د د د د	3	2	2888	000	6006.	• 800 9	6616	6028.	60213	6020°	6631.	10 c	100	- r		S	(SECONDS)	- 1	- 4	100,000	۸ (1	٠	er)	20 1	~ :	95.002	206.93	. (40
	•		NOZZLE		2 5	4134	2 2	5.552	, K	'n	5.5	5.5	S	5.5	'n	ທີ່ ໜ່	4.0	4. 4	0000°		u	XIII	~ *	7.	• (7		•	•	•	•	•	9 0	0.0	0.0
		'a)	ENGTH AEROSPIKE AGE 1	; ;	PCS	(PSIA)	20° 20° 50° 50° 50° 50° 50° 50° 50° 50° 50° 5	248.21	287.95	288.61	288.97	289.17	. 289.66	289.22	290.09	289.62	0.0	9 0				Z.	æ (0593.1	1.8674	9 6	1.8680	∞	8	.867	.867	\$		860	865
	•	APPENDIX 1 (Cont'd)	- 12 PERCENT LE		د	A I S	316.44	-	313.75		-	_	14.	14.		14.	14.6	*:	15.0	→	ja; B	(LBS/SEC)	30.1480	30.0228	30-0202	3000.05	59.999	30.0132	30.0166	29.9811	29.9900	30.0111	28-4207	28.3669	28.4514
			FIRIN, TEST DATA	}	⋖:	5 C	13.8060	13,8000	13,8000	13.8000	13.8000	13,8300	13.8060	13.8000	13.8000	13.8000	ത	90	0008-61	2		ORNLES	140.	150.	0.0413	0.0415	0.0416	0.3415	0.6:16	3	0.0416	150.	90	•	
			HO1 - F		LANBUAP	(ONFILESS)	22.93	22.22	22.74	22.74	22,73	42.76	22.79	22.17	22.17	22°81	22.80	22-82	3) (: 3	d#/S#	COMMESSI	0.0530	0.0532	7660.0	0.630	0.0530	0.0530	0.0530	0.0530	0.0530	0.0529	3 6		0.0
~		,			¥	C)	0,00	000	2,00	2.50	3.00	3.50	4.00	4.50	4.95	5.35	\$2.0 TO			133 CALE 18	TIME	د	0.50	1.00	000	. C	00.6	3.50	00.4	4.50	4.95	5,35	6.24	- ^	7.7

APPENDIX 1 (Cont'd)

				TOVE TOO
* <	EPS1LON*	P8/8C	PB/PA	S*3
(SO. 1N.)	LONNLESSI	LOWNLESS	CONNIESSI	(FT/SEC)
600 5	76 705	01070	1.124	2950.

TTAL	وپ ي	(FT/SEC)	5025.	5042.	5054.	\$050°	5067.	5065.	5057.	5074.	5075.	5075.	5078. N	S088.	5096.	5103.	2065		CT. 10P	(DEMESS)	0.6778	0.6780	0.8752	1033.0	0.8303	0. 830 6	0.8810	0.8812	0.8812	0.8807	6.880	0.9055	406	. 903	U.9028
CONFIDENTIAL	C*S	(FT/SEC)	2950.	3944.	3946.	3955.	3954.	3968.	3973.	3979.	3979.	3987.	3989.	•	ö	•	•			(OKNLESS)	887	61880	0.8892	0.8900	0.8903	0.8905	0.8958	0.8910	0169.0	0.8905	0.8907	0.9055	*36	05.	6.9028
	PB/PA	(DANLESS)	. 1.126	1-127	1.127	1.128	1.128	1.127	1-128	1-130	1.128	1.127	1-127	1.062	1.056	1.055	•05		NIS, TOP	(DHINE ESS)	-	4422-0	11	29	0.7802	å	7	0.1825	ŭ.7826	0.7823	0.7830	Ú•8063	0.8061	8	0.8045
	PB/PC	(DANLESS)	0.04910	0.04943	1.640.0	0.04963	0.04950	0.04956	0.04958	0.04958	0.04956	6+5+0.0	0.04940	0.04657	0.04629	0.04624	0.04622	•	SIN	(DNNLESS)	0.7805	٦.	7				! ~	i-	•	-	0.7921	•	8	6.8064	0.8045
	EPS1LON*	LONNLESSI	26.685	26.556	26.670		26.378	26.378	26.378		26.378		26.378	26.378	26.378	26.378	26.378		NC+S	CONNESSI	0.8911	O.8898	0.8916	0.8941	0.8937	0.8971	w	w	0.8995	S	0.9018	0.0	0.0	0.0	0.0
	**	(SO. (N.)		13.991	14.030	14.075	14-085	14.085	14.085	14,085	14.085	14.085	14.085	14.085		14.085	14.085	÷.	NC #P	CONNESSE	0.8790	0.8821	Ú.8842	0.8453	U. 8863	0.3663	0.8867	0.8880		0.8882	C. 8888	90.8904	0.8916	0.8927	0.8911
	777	(SECONDS)	0.50	1.00	1.50	2,00	2.50	3.00	3.50	\$ 00°	05.4	50.4	5.35	7	2.0	21.20	ここ	13h	3471	(SECONDS)	0.50	1.00	1.50	2.00	2.50	3,00	. W	70.4	4.50	4.55	5,35	6.24	6-74	•	7.74

APPENDIX 2

DATA REDUCTION PROCEDURES USED IN THE EXTERNAL FLOW INVESTIGATIONS

APPENDIX 2

DATA REDUCTION PROCEDURE USED IN THE EXTERNAL FLOW INVESTIGATION

- (U) The basic data measured during each test are listed in Table 17. The relations utilized to convert these data to parameters representative of still air and slipstream performance are discussed below.
- (U) Average pressures acting across the forward face of the engine, the base of the missile body, and the engine base were obtained from the measured pressure and area data (see Figs. 116 and 212) by means of the following relation:

$$\overline{P} = \frac{P_p}{A} = \frac{\sum_i P_i A_i}{A} \tag{1}$$

(I) These average pressures were used in conjunction with chamber pressure (corrected for gas velocity in the chamber) and cell pressure to form the ratios: \overline{P}_B/P_c , \overline{P}_c/P_D , $\overline{P}_c/\overline{P}_B$, and \overline{P}_B/P_D . Measured thrust was corrected for initial readings before each test. A thrust correction was also made for cases in which a pressure unbalance occurred between average engine and missile base pressure using the relation:

$$P_{M} = P_{A} + A_{T} (\vec{P}_{EF} - \vec{P}_{B_{U}}) \qquad (?)$$

(U) Specific impulse efficiency based on free stream conditions is defined

$$\mathcal{P}_{I_{B}}\rangle_{\omega} = \frac{P_{M} + (\overline{P}_{B_{V}} - P_{\omega}) A_{e}}{(P_{id_{P}} + P_{id_{B}}) P_{\sigma}/P_{\omega}}$$
(3)

TABLE 17
DATA MEASUREMENTS

Parameter	Location (Refer to Fig. 116)	Ampli tude
Thrust, Axial	Facility	410
Prinary Cha. Press.	P9	200
Primary Cha. Press.	P8	200
Primary Cha. Press.	P10	200 -
Secondary Cha. Press.	P3	200
Primary Inj. Press.	P2	225
Secondary Inj. Press.	P1	225
Nozzle Base Pressure	F4	Variable
Nozzle Base Pressure	P5	Variable
Mozzle Base Pressure	P6	Variable
Nozzle Base Pressure	27	Variable
Nonzle Wall Pressure	P16	50·
Nozzle Wall Pressure	P19	•5
Missile Base Pressure	P13	Variable
Missile Base Pressure	P14	Variable
Missile Base Pressure	P15	Variable
Missile Base Pressure	P26	Variable
Missile Skin Pressure	P27	Variable
Engine Face Pressure	P22	Variable
Engine Face Pressure	P12 .	Yariable
Engine Face Pressure	P23	Variable
Engine Face Pressure	P24	Variable

TABLE 17 (Continued) DATA MEASUREMENTS

Parameter	Location (Refer to Fig. 116)	Amplitude
Engine Face Pressure	P11	Variable
Engine Face Pressure	P25	Variable
Balance Pressure	P17	Variable
Balance Prossure	P18	Variable
Balance Pressure	P21	Variable
Balance Pressure	P28	Variable
Primary Cha. Temp.	T2	1400
Primary Cha. Temp.	13	1400
Secondary Cha. Temp.	71	1400
Base Temperature	T4	1400
Primary Flowmeter	Facility	2.460
Secondary Flowmeter	Facility	0.025
Peroxide Tank Pressure	Facility	300
Cell Press. (Static)	Pacility	Variable
Cell Temperature	Facility	Variable
Cell Press. (Total)	Facility	Variable
Slot Pressure	P20 ·	Variable

Figure 212. Integrated-Average Pressure Method

(U) When referenced to the missile base pressure this relation becomes:

$$\Phi' = \frac{P_{\text{M}}}{(F_{\text{id}_p} + F_{\text{id}_s})} \qquad (4)$$

(U) The quantities Fidp and Fid are obtained from the following relation:

$$F_{id}/P_{c}/P = \begin{bmatrix} \dot{v} c *_{ic} \\ g \end{bmatrix} c_{f_{id}}/P_{c}/P$$
 (5)

where flowrate corresponds to the measured value for each test and the ideal thrust coefficient C_T and characteristic velocity C^* are obtained from computed ideal performance of the decomposition products of hydrogen peroxide at the correct concentration and inlet temperature. Thrust efficiency C_T is obtained from eqs (3) and (5) by correcting the ideal thrusts in these relations for the measured decomposition temperature of the primary and secondary gas flows which is essentially a characteristic velocity efficiency correction. This results in the following relations for thrust efficiency:

$$C_{T})_{\infty} = \frac{\left[\frac{\dot{v}_{p} C_{p}^{*} C_{p}}{g} \sqrt{\frac{T_{c}}{T_{id}}} + \frac{\dot{v}_{g} C_{g}^{*} C_{f}}{g} \sqrt{\frac{T_{g}}{T_{id}}} \right] P_{c}^{/p}_{\infty}}$$

$$(6)$$

and

$$\tilde{\Phi} = \begin{bmatrix}
\frac{\tilde{v}_{p}^{C*} p^{C} p_{id_{p}}}{g} \int_{T_{id}}^{T_{c}} + \frac{\tilde{v}_{s}^{C*} g^{C} p_{id_{s}}}{g} \int_{T_{id}}^{T_{s}}
\end{bmatrix} p_{c}^{P_{B_{v}}}$$
(7)

(U) Note that since $T_c \approx T_s$, this is essentially a topping cycle efficiency for the results in this program. Aerodynamic threat area was computed from measured chamber pressure, primary flowrate, and chamber temperature in conjunction with ideal properties as follows:

$$A^* = \frac{\dot{w}_p^{C^*}id_p}{\dot{T}_{c}} \sqrt{\frac{T_c}{T_{id_p}}}$$
 (8)

and used to form the expansion area ratio, where:

$$\epsilon = A_e/A^* \tag{9}$$

(U). The change in nozzle efficiency with the addition of secondary flow was computed from the measured change in base pressure as follows:

$$\Delta C_{T} = \begin{bmatrix} C_{T})_{W_{S}=0}^{\bullet} + \frac{\Delta P_{0}}{P_{C}} & \frac{\epsilon_{B}}{C_{P_{1d}}} \\ \frac{1}{1 + \frac{W_{S}C_{S}C_{P_{1d}}}{W_{D}C_{D}}} \end{bmatrix} - C_{T_{W_{S}}=0}$$
(10)

(U) Mission parameters applicable to the trajectories in Figs. 100 and 101 are listed in Table 18. Pertinent performance and pressure data obtained using the above procedure are listed for each test in Appendix 3.

TABLE 18. MISSION PARAMETERS FOR TRAJECTORY ANALYSIS

THE PROPERTY OF THE PROPERTY O

нī	1						
CONFIDENTIAL		PR) _{des}	1063	1065	1063	91.4	865
	778 1	A O	1500	1500	1500	3.3	2000
	Booster Engine Parameters	γ	1,25	1.25	1.25	1,25	1.25
į	ig La	ϵ	80	8	8	10	55
	Booster	Pro- pellants	² e1/ ² 01	² m/ ² 01	10 ₂ /1H ₂	Storable 110	Storable
		Feed System	Pump	Pump	Ришр	Pressure	पृष्णस
	rame ters	#/ <u>3</u>	1,29	1.29	1.29	1.93	1,25
	Vehicle Parameters	No. of Stages	1	N	N	2	H
		uestgnation	I	Ħ	Ш	ΔI	A

N204/UNE-N214 (50-50)

443/444

ONULASSIAED

UNIVARIATE

APPENDIX 3

SLIPSTREAM TEST DATA

This car is the massified

CHARLASHED

APPENDIX 3 SLIPSTREAM TEST DATA DATA SURMARY, TRANSONIC WIND TUNNEL

r	······································											-								_			_			_		-
ONFIDENTIAL	leia ,	14.72	1.53	1.71	2.05	3.79	1.62	3.48	1.45	1.33	0.97	1.76	1,59	1.14	1.57	6.36	3,14	1.43	1.40	2.70	1.32	4.24	1.35	1.35	1.33	1.30	2.3	1.36
3	P B	14.12	1.24	1.42	1.62	2.86	0.55	2.86	1,62	1.43	0.93	0.92	1.27	0.65	1.41	5.29	2,45	1.15	1.07	0.53	0.30	3.26	0.41	0.39	0.23	0.26	0.48	0.37
	P E	14.19	1.24	1.43	1.62	2.87	0.55	2.87	1.63	1.44	0.94	0.93	1.29	99.0	1.44	5.40	2,52	1.17	60.1	0.60	0.34	3.47	0.45	0.42	0.26	0.28	0.52	0.40
	***	1,209	1.244	1.256	1.249	1.230	1.243	1,231	1.247	1,251	1.245	1.223	1.244	1.242	1.246	1.235	1.234	1.240	1.250	1.244	1.251	1.249	1.236	1.250	1,249	1,251	1.244	1.247
	g,Xi	272.4	368.5	260.0	365.3	345.9	387.7	540.2	354.4	357.1	370.7	.381.9	362.8	369.6	350.3	326.3	351.1	371.4	380.3	405.6	395.9	347.6	389.6	394.3	405.4	399.4	405.3	397.6
	•2	2.570	2.531	2.524	2.556	2.528	2.518	2,537	2,540	2,554	2.544	2.576	2,531	2,122	2.441	2,518	2.527	2.533	2.591	2,509	. 206.	2.544	2.505	2.525	2.553	2.535	2.543	2,526
	E4 0	1277	1287	1276	1290	1281	1285	1295	1295	1296	1297	1305	1289	1299	1296	1304	1284	1292	1285	1301	1303	1298	1286	1292	1302	1503	1288	1295
	, ^M O	193.8	189.2	185.9	190.1	190.9	187.6	192.1	189.4	190.1	190.3	196.2	189.4	182.1	182.8	1,00.8	190.6	190:1	192.9	188.3	187.2	192.0	186.6	188.2	191.0	189.1	190.3	188.6
	ж Э	0	0	0	٥	0	0	0	0	0	0	0	0.55	8.0	0.00	8.0	0.00	0.00	0.0	1.20	2.50	1.20	1.20	1.20	1.40	1.60	1.40	1.40
	rest	К	37	<u>ع</u>	33	4:	43	9*	47	48	49	25	36	18	ද	2	88	82	8	22	23	31	25	33	तं	22	34	35

ONCERSORED

APPENDIX 3 SLIPSTREAM TEST DATA

(Continued)

DATA SUMMARY, TRANSONIC WIND TUNNEL

			DATA	Data Summany, T	TRANSONIC WIND	TOWNET CO		CC	CONFIDENTIAL
198¢	x ⁸	P /P	d W/s	70°P	,07°	7, 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Φ	ဦး	Ю
	c	13.7	0.0073	0,972	0,945	0.852	0.852	0.892	0,892
37	0	153	9200.0	0.974	0,945	0.935	0.935	0.959	0.959
. 28		141	0.0075	0.971	0.945	0.925	0.925	0.952	0.952
	0	118	0.0075	0.975	0.945	0.931	0.931	095.0	0.960
. 4	0	99	0.0075	0.975	0.945	0.927	0.927	0.949	676.0
43	0	361	0.0075	9260	0.945	0.959	0.959	0.982	0.982
4	0	23		0.979	1	0.912	0,912	0.932	0.932
47	0	117	0	0.979	1	0.918	0.918	0.939	0.939
48	0	133	0	0.979	1	0.913	0.913	0.935	0.935
9	0	202	0	0360	1	0.931	0.931	0.951	0.951
52	0	211	0.0170	0.982	0.945	0.930	0.930	0.950	0.950
36	0.55	132	0.0076	0.975	0.945	0.926	0.935	0.549	C.957
9, 9	0	602	0.0076	0.978	C.945	0.947	0.953	0.968	0.974
2	06.00	106	0.0076	0.977	0.945	0.915	0.931	0.935	0.951
7	06.0	31.0	0.0077	0.979	0.945	0.859	0.917	0.876	0.936
28	06-0	67	0.0076	0.97¢	0.945	0.903	0.028	0.928	0.952
8	06.0	131	9,0000	0.976	0.945	0.925	0.939	0.947	0.968
200	8	142	0.0075	0.974	0.945	0.925	0.935	0.947	0.958
22	20.	65	0.0076	0.978	0.945	0.886	.00.	0.903	1.022
23	2.50	216	0,0076	626*0	0.945	0.954	0.971	0.961	0.973
3.6	1.20	35.8	9200.0	7770	0.945	0.783	0.931	0.800	0.952
3	1.20	114	0.0075	0.974	0.945	0.915	0.955	0.977	0.979
33	1.20	138	0.0075	0.976	0.945	0.650	0.956	626.0	0.952
25	1.40	311.	9,0000	626.0	0.945	0.958	0.955	0.577	0.974
25	1.40	215	9,0000	64b*0	0.945	0.948	0,952	0,968	0.972
34	1.40	99	0.0075	0,975	0.945	929.0	0.976	C.897	.00.
35	1.40	114	0.0075	0.977	0.945	0.924	0.961	0.945	986.0
	1	7		1					

Note: Ideal Decomposition Temperature was 1840 OR and 1831 OR for Yests 3 through 39 and Yests 42 through 52, respectively. Ideal Characteristic Velocity was 3068 ft/sec and 3051 ft/sec for Tests 3 through 39 and Yests 42 through 52, respectively.

447

APPENDIX 5 SLIPSTREAN TEST DATA (Continued) DATA SURMARY, SUPERSONIC WIND TURNEL

		-	_	-	_	_	_	_	_	-	-	_	_	_				_	_	_		
CONFIDERTIAL	lo _s co	1/2	2 .	1.44	1.45	7.34	3,96	2.81	2.23	N C C C C C C C C C C C C C C C C C C C	3 5	3.0	2.	1.46	1.47	5.67	4.46	1	54.	1.47	1.46	1.45
CONT	104	1 23	770	3	0.67	6.05	3.02	2.19	1.73	1				4.0	0.13	0.12	50.0		3 1	0.19	0.17	0.13
	្រ ^រ ឡ 2	1 23	100	600	69°0	6.07	3.03	2.19	1.73	1,51	5	3	, u	5 (0.13	0.12	92.0	20.0		2.0	0.17	0.13
Tamar	*Α	1.222	322	6220	1.232	1.204	1.234	1.225	1.228	1.234	1.227	1,236	720	07.0	200-1	1.240	1.232	1.236		1.238	1.232	1.239
TOWNS THE TOWNS	e.	364.5	387.0		294.7	325.5	350.3	362.4	357.4	366.9	393.9	9,604	407	000	0.00	407.5	408.5	407.3	70.0	6010	411.9	409.0
	•:3€	2,442	2,530		1,500	2.523	2,540	2.535	2.538	2,523	2.520	2.551	2,526	0 500	5000	2.555	2,530	2,524	0 570	2000	2,549	2.529
	. E1	1323	675	1330		0261	1,528	1324	1323	1326	1328	1311	1316	1320	22.6	4161	1330	1333	1333	1 1 1 1	1741	1358
	ດຸບ	187.1	193.6	105.3		1,00° 4	1920	194.3	1.961	192.2	193.0	193.1	191.5	191.6		0-10-	192.0	192.3	193.0	000	2000	192.5
	× 8	0	0	c	•	> <	> ·	0 (0 (0	0	2.5	2.5	2.2		u (0	χ. Σ	8.	α	0 0	0.1
	Test	4	9	-	: 0	0,00	3 7	2 6	22	01	38	27	23	31	33	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	22	- - -	41	72	7	÷

COUNCENDALFIED

APPENDIX 3 SLIPSTREAM TEST DATA (Continued)

DATA SUMMARY, SUPERSONIC WIND TUNNEL

					-	THE STREET STREET	3	COS	COMPIDERTIAL
Test	*8	P _c /P _o	ď /ử	7(c*	nc*,	$^{\infty_{_{\mathbf{B}}}}_{\infty}$,⊕	ω ₁ ,	Ю
14	0	154	0,0083	0,972	0.872	0.942	0.944	0.971	0.973
16	0	220	0.0082	0.974	0.374	0.949	0.950	0.976	0.977
12	0	284	0,0082	0.974	0.875	0.949	0.949	0.576	0.975
19	0	32.5	0.0083	0,973	0.873	0.907	0.908	0.934	0.935
20	0	64.0	0.0082	0.974	0.873	0.919	0.920	0.946	0.946
2	0	88.6	0.0085	0.973	0.873	0.932	0,932	096.0	0,960
25	0	:12	0.0085	0.972	0.872	0.931	0.931	096.0	0.960
53	0	127	0.0084	0.973	0.870	0.929	0.929	956.0	0.957
3 0	c	757	0.0084	0.974	0.864	0.952	0.952	0.979	ر ا ا
22	2.5	223	0.0083	0.970	0.865	0.946	0.944	6250	0.976
53	2.5	313	0.0082	0.971	0.864	0.954	0.945	0.985	9250
34	2.5	297	0.0082	0.972	0.862	0.950	0.938	086.0	0.958
33	2.5	467	0.0083	0.970	0.861	0.949	0.937	0.981	0.958
35	8.	110	0.0083	0.974	0.866	0.919	0.959	0.945	986.0
<u>χ</u>	8.	158	0.0083	0.975	0.865	0.943	0.956	696.0	0.982
41	1.8	224	0,0084	0.975	0.865	0.948	0.948	0.974	0.974
42	8.	322	0.0083	0.977	0.866	0.957	0.950	0.981	0.974
43	ω. -	469	0.0083	0.977	0.864	0.955	0.944	0.0%	0.968

Note: For these tests Ideal Decomposition Temperature was 1830 0R, and Ideal Characteristic Velocity was 3110 ft/sec.

449/450 **UNION SENTIE**

APPENDIX 4

DATA REDUCTION AND AUALYSIS PROCEDURE
FOR TVC PROGRAM

APPENDIX 4

DATA REDUCTION AND ANALYSIS PROCEDURE FOR TVC PROGRAM

(U) The basic parameters measured during each test are listed in Table 19.

The measurements were used to compute nozzle performance with and without TVC, and side forces and total control moments generated during TVC opposition. The methods by which these parameters were determined in this test program are discussed in the folloting paragraphs.

BASIC ENGINE PERFORMANCE

(U) Nozzle performance was computed as it was for the 12-percent length nozzle. Heat loss and propellant impurity corrections were obtained from the theoretical data presented previously after computing the heat loss and propellant water content as follows:

$$Q/Q_{th} = \frac{\mathring{W}_{H_2O} (\Delta T_{H_2O}) + (450)}{(\mathring{W}_p) (205.1)}$$

Percent H₂O = (Percent H₂O in oxidizer)(MR_p) + (Percent H₂O in fuel)
1 + (MR_p)

(U) The constants in the heat loss relation were adjusted from those obtained for the 12-percent length nozzle to account for the revised hardware geometry and operating conditions. Specific impulse corrections, $\Delta I_{\text{H-L}}$, and $\Delta I_{\text{H-L}}$, and the characteristic velocity corrections, $\gamma_{\text{C*}}$ and $\gamma_{\text{H-L}}$.

TABLE 19
TVC ENGINE MEASURED PARAMETERS

AND THE PERSON OF THE PERSON O

Parameter	Syrbol	LOCATION	NOMINAL VALUE	instrument Range
Force, pounds Axial Fore Yaw Fore Pitch Aft Yaw Aft Fitch Roll	PA PYP PPP PYA PP4 PR	Facility Facility Facility Facility Facility Facility Facility	5600 0-10 0-10 0-100 0-10 0-20	0-10,000 0-1000 0-1000 0-1000 0-1000 0-1000
Primary Chamber Pressure, Psia	PC-1 PC-2 PC-3	P3 P4 P5	200 200 200	0-300 0-300 0-300
Primary Injection Pressure, Paia Oxidizer Fuel	Poj Prj	P1	330 360	0-500 0-500
Secondary Chamber Pressure, Psis	PCG-1 PCG-2 PCG-3	P8 P9 P10	100 100 100	0-100 0-100 0-100
Secondary Injection Pressure, Psia Oxidizer Fuel Oxidizer Fuel	Pojg FFJG Pojg-1 FFJG-1	P6 P7 Facility Facility	145 150 200 175	0-500 0-500 0-500 0-500
Base Pressure, Psia	PB1 PB2 PB3 PB4	P22 P23 P24 P29	1 1 1	0-25 0-25 0-25 0-25

TABLE 19 . TVC EPOINE MEASURED PARAMETERS

PARAPETER	SYMBOL	LOCATION	NOMINAL VALUE	instrument range
Force, nounda				-
Axial	P.	Facility	5600	0- 10-00 0
Fore Yaw	F _V	Pacility	0-10	0-1000
Fore Pitch	Fnp	Facility	0-10	0-1000
Art Yew	P _{YA}	Facility	0-100	G=1000
Aft Pitch	F _{DA}	Facility	0-10	0-1000
Roll	Fyp Fyp Pya Fpa Pa	Facility	0-20	0-1000
Primary Chamber	}			
Pressure, Psia	PC-1	P3	200	0-300
j	PC-2	P4	200	0-300
	PC-3	P5	200	0-300
Primary Injection				
Pressure, Psia	.			
Oxidizer	POI	P1	330	0-500
Puel	PFJ	P2	360	0-500
Secondary Chamber				
Pressure, Psia	PCG-1	P8	100	0-100
	PCG-2	P9	100	0-100
	PCG-3	P10	100	0-100
Secondary Injection				
Pressure, Psia]			
Oxidizer	POJG	P6	145	0-500
Fuel	Peug	P 7	150	0-500
Oridizer	POJC-1	Facility	200	0-500
Fuel	ZFJG-1	Facility	175	0-500
Base Pressure, Paia	PB1	P22	1	025
	PB2	353	1	025
	PB3	F24	1	0-25
	PB4	P2 9	1	0-25
	1		1	

TABLE 19

		TADLE 19		
		(Continued)		
	1	1	NOMINAL	INSTRUMENT
PARAMETER	SYFBOL	LOCATION	VALUE	RANGE
Nozzle Skirt Pressure,	•		_	
Psia	PNS-1	P25	3	0-25
	PNS-2	P26	3	0-25
	Pris-3	P27 P28	3 3	0-25 0-25
	PNS-4	120		0-25
Outer Nozzla Pressure,	3	ļ		}
Psia .	PN-1	P15	Ambient	0-25
•	PN-2	P16	Ambient	0-25
•	PN-3	P17	Ambient	0-25
	PN-4	P16	Abmient	0-25
	PN-5	P19	Ambient	C-25
Secondary Chamber	{			1
Temperature, F	TCG-1	T3	1600	0-2000
•	TCG-2	T4	1600	0-2000
Water Temperature, F				
Inlet	2W1	Facility	Ambient	0-150
Outlet	TWO	Facility	160	0-250
Primary Flow, 1b/sec				
Oxidizer	WOP	Facility	12.5	0-23
Fuel	WFF	Facility	7.5	0-8
Secondary Flow, 1b/sec				
Oxidizer	wos	Facility	0.03	System AP
Fuel	WFS	Facility	0.30	System ΔP
r uc.	410	12011103	0.50	Jystem Zr
TVC Flow, lb/sec	WIVC	Facility	0–6	0-6
Coolant Water Flow,				ł
lb/sec	WCW	Facility	60	0-120
Primary Tank Pressure				,
Oxidizar	PTOP	Facility		
Fuel	PTFP	Facility	_	
* MC*	CARE	EGULLEON	-	1
				1

TABLE 19 (Continued)

		•		\
Parameter	SYMBOL	LOCATION	nominal Value	Instrument Range
Secondary Tank Pressure Oxidizer Fuel	PTOS PTFS	Facility Facility	-	-
TVC Tank Pressure				
TVC Purge Pressure				
(Line), Psia	PPLT	Facility	Variable	0-500
Primary Line Temp., F				·
Oxidizer	TLOP	Facility	Ambient	0-60
Fuel	TLFP	. Facility	Ambient	0-50
Secondary Line Temp, F			!	
Oxidizer	TLOS	Facility	Ambient	0-60
Fuel	TLFS	Facility	Ambient	060
TVC Line Temp., F		Facility	Ambient	060
Water Pressure (Inner),				
Psia Inlet	PWII	Inlet Tee	730	0-1500
Inlet Outlet	PWOI	Outlet Tee	160	0-1000
00 NTO A			,55	3 .000
Water Pressure (Outer)				
Psia Inlet	PWIO	Inlet Tee	520	0-1500
Outlet	PWOO	Cutlet Tee	220	0-1000
Cell Pressure. Psia	Pa	Facility	0.7	0-15
	4		_ 4	

 $^{70}C^{10}H_{2}O_{2}$ are given as functions of \overline{Q} and percent $H_{2}O$ in a previous section. Values of these factors applied to each test are given in Table 20. Specific impulse efficiency was obtained from

$$\gamma_{I_s} = \frac{r_{A_c}}{r_{opt_p} + r_{opt_s}}$$

where

 F_{A_g} = measured axial thrust corrected for impurities and heat loss $= F_A + (\Delta I_{B_{H_a}L_a}) \mathring{v}_p$ $F_{opt_p} = (I_{B_{opt_p}} - \Delta I_{B_{Q_o}}) \mathring{v}_p$

Popt sopt for topping cycle specific impulse efficiency)

where I theoretical shifting equilibrium specific impulse at P/P (Fig. 213 and 214).

(U) The thrust and efficiency data in Tables 13 and 14 are measured values corrected to P = 0.7 psis. Characteristic velocity (C*) efficiency is defined as:

TABLE 20
HEAT LOSS FACTORS APPLIED TO MEASURED TVC DATA*

		CONFIDENTIAL
Test	No* _{H.L.}	△I _{sH.L.} (Sec)
144	0.990	0.0
BAO1	0.991	5 .7
BAO2	0.991	5.6
BAO3	0.990	6.0
BAO4	0.990	6.0
BA05	0.990	0.3
BB06	0.990	5.9
BB07	0.991	5.6
BB 08	0.991	5.8
BB09	0.991	5.6
BB10	0.991	5.5
BB11	0.991	5.6
BC12	0.991	5.6
BC13	0.991	5.9
BC14	0.991	5.9
BC15	0.991	5.9
BC16	0.991	5.9
BC17	0.991	5.9
BC18	0.990	6.0
BD19	0.990	6.5
BD20	C-990	6.3
BD21	0.990	6.7

^{*} $\gamma_{C^*_{H_2O}} = 1.000; \Delta_{I_{B_{H_2O}}} = 0.0 \text{ Sec.}$

457

^{**}Rocketdyne Sea-Level Checkout Test. Factors were assumed.

INVESTIGATION

Gas Generator Theoretical Specific Impulse

Pigure 215.

CONTRACTOR OF This page is Unclassified

A STATE OF THE PARTY OF THE PAR

C* = Theoretical shifting equilibrium characteristic velocity (Fig. 215 and 216)

P_c = PC-3/0.998)

A*_p = 1.0135 C_D A_p meas.

where C_D is the theoretical throat discharge coefficient (= .9893). $A_a^*=(0.85)$ A_a Meas.

(U) As indicated, the primary throat area was increased by a factor of 1.35 percent to account for the change in throat area during this test up to the time at which all reference data were computed. This correction was obtained in the same manner as for the 12-percent length engine but was constant throughout the TVC testing. The nozzle thrust efficiency exclusive of combustion chamber effects and combustion efficiency was obtained from:

$$C_{\eta} = \frac{P_{A_{G}}}{P_{\text{opt}_{p}} \mathcal{N}_{G^{+}_{p}} + P_{\text{opt}_{S}} \mathcal{N}_{G^{+}_{S}}}$$

Topping cycle thrust efficiency was obtained from:

$$c_{\text{T}_{\text{top}}} = \frac{c}{F_{\text{th}_{p}} \gamma (c_{p}^{*} + I_{s_{\text{opt}_{p}}} \frac{a}{s} \gamma c_{p}^{*})}$$

LITYC PERFORMANCE

(U) The umbalanced forces generated during liquid injection TVC were corrected for initial thrust misalignment (determined from average force data obtained during the 0.5-second period prior to signalling for TVC flow), and used to compute induced forces and control moments about a reference axis in the throat plane as follows:

$$\begin{aligned} \mathbf{F}_{YF} &= \mathbf{F}_{YF})_{TVC} - \mathbf{F}_{YF})_{ref} \\ \mathbf{F}_{YA} &= \mathbf{F}_{YA})_{TVC} - \mathbf{F}_{YA})_{ref} \\ \mathbf{F}_{g} &= \mathbf{F}_{Y} = \mathbf{F}_{YA} + \mathbf{F}_{YF} \\ \mathbf{M}_{T} &= \mathbf{M}_{Y} = (\mathbf{F}_{YA})_{d_{1}} + (\mathbf{F}_{YF})_{d_{2}} \end{aligned}$$

Pigure 216. Gas Generator Theoretical Characteristic Velocity

(U) The dimensionless moment about an arbitrary axis a distance h from the reference plane (nondimensionalized in terms of the reference thrust without TVC and the distance, h) was found from:

$$\frac{M}{P_{\psi}h} = \frac{r_{\theta}}{P_{\psi}} + \frac{M_{T}}{P_{\psi}r_{\phi}} - \frac{r_{\phi}}{h}$$

$$= \frac{r_{\phi}}{P_{\psi}} + \frac{r_{\phi}c}{P_{\psi}} - \frac{r_{\phi}}{h}$$

where the dimensionless axial thrust and axial thrust displacement were combined to form a new quantity designated as the dimensionless off-center force. This quantity may be interpreted as a fictitious force aligned in the axial direction (i.e., parallel to the engine centerline) which produces a moment about the reference axis that is equivalent to the moments produce, by the secondary injection system as shown schematically in Fig. 217. Thus,

$$\frac{\mathbf{r}_{oc}}{\mathbf{r}_{\mathbf{v}}} = \frac{\mathbf{r}_{\mathbf{r}}}{\mathbf{r}_{\mathbf{v}}}$$

(U) The off-center force is a fictitious quantity in that it contributes nothing to the axial thrust of the nozzle even though it has been defined above as a force vector acting in the axial direction. However, representing the TVC effectiveness in this fashion enables a more convenient comparison of injection methods since only two quantities, F_a and F_{oc}, are needed to establish a control moment for a given geometry; also, nozzle performance and TVC effectiveness comparisons can be examined separately.

a) Actual force representation

Figure 217. Unbalanced Forces with Secondary Injection TVC

(U) Engine performance during TVC was represented in terms of the change in engine specific impulse with a change in TVC flowrate. This quantity was computed from:

$$\Delta I_{g} = 1 - \left(\frac{1 + (\Delta P_{A}/P_{V})}{1 + W_{TVC}/W_{p}} \right)$$

where:

$$\Delta P_A = P_m)_{TVC} - P_m)_{REF}$$

and represents the change in engine thrust (vacuum) during TVC.

(U) A commonly used representation of the moment produced under various injection SITVC conditions is the equivalent gimbal angle which is defined as the angle to which the engine would have to be gimbaled about the reference plane to produce a moment about the vehicle center of gravity which is equivalent to the moment generated by fluid injection. This equivalence is illustrated in the sketch below.

Mgimbal - MSITVC

(U) For the gimbaled engine:

$$\sin \phi = \frac{P_B}{P_F} = \frac{P_B}{P_F h} = \frac{N_{CR}}{P_F h}$$

or

$$Q = Arcsin \left[\frac{N_{CR}}{F_{\mu}h} \right]$$

(U) Thus, for the fluid injection system:

$$Q = \arcsin\left[\frac{N_{\text{cg.}}}{V_{\text{h}}}\right] = \arcsin\left[\frac{V_{\text{e}}}{V_{\text{w}}} + \frac{V_{\text{o}}}{V_{\text{w}}}\right]$$

(U) The quantities: F_Y, M_Y. ϕ , F_B, F_{CC}, F_A, W_{TVC}, were computed from the data obtained during the last 0.5-second time interval during each test, and were used to form the basis for presenting and comparing nozzle performance during TVC, and the TVC effectiveness of the various injection techniques. Comparisons were made in terms of quantities designed to characterize various specific aspects of fluid injection operation. The effectiveness with which the SITVC system generates side thrust if often represented in terms of a side thrust amplification factor defined as:

$$R_{s} = \frac{I_{s}}{I_{s}} = \frac{F_{s}/F_{\psi}}{W_{TVC}/W_{e}}$$

(U) A similar quantity can be used to represent the off-center thrust efficiency and is defined as:

$$K_{M} = \frac{P_{oc}/P_{V}}{\dot{V}_{TVC}/\dot{V}_{e}}$$

(U) For the serospike, the total efficiency of the system must reflect the influence of both forces so that the control moment efficiency becomes:

$$\overline{K} = K_e + K_H \left[\frac{r_e}{h} \right]$$

(U) Of interest in the design of engine systems utilizing LITVC is the location of the resultant induced force vector along the contour. If it is assumed that flow interference effects are negligible and that injectant momentum is small compared to the induced pressure force so that discrete forces normal to the nozzle wall are produced downstream of each port, the effective location of the induced force vector can be ascertained from the test data and the nozzle geometry (Fig. 218) by considering the following:

1)
$$P_8 = f_8 \left[1 \cdot 2 \sum_{k=1}^{2} \cos k \Psi \right]$$

- 2) f = f tan a
- 3) f_s is constrained to lie on the curve x = f(x) where x and f(x) are the coordinates of the nozzle contour.

Figure 216. Location of the Induced Force Vector

(U) Thus:
$$\frac{n-1}{2}$$

$$M_{T} = f_{g} \left[1 + 2 \sum_{k=1}^{\infty} \cos k \psi \right] x - (\Delta f_{g}) f(x) \left[1 + 2 \sum_{k=1}^{\infty} \cos k \psi \right]$$

OI

$$x = \frac{K_m}{F_{m_0}} + f(x) \tan \alpha \zeta$$

(U) Since f(x) tan \(\precedex \) is known, the quantity x can be obtained through an iterative solution of the above equation using the measured values of F and M_T. Unless flow interference effects are severe, the above relation remains qualitatively correct even if these phenomena do occur.

REFERENCES 1

- 1. Dahm, T. J., The Development of an Analogy to Blast Wave Theory for the Prediction of Interaction Forces Associated with Gaseous Secondary Injection into a Supersonic Stream, Vidya Corp., Vidya Technical Note 9166, TN-3, Nay 1964.
- * 2. Final Report, Aerodynemic Nozzle Study, Vol. 1, Rockntuyne, A Division of North American Aviation, Inc., F.-6582, July 1966. Confidential
 - 3. Hsia, H. S. and Karamcheti, K., Shocks Induced by Secondary Fluid Injection, Journal of Spacecraft and Rockets, Vol. 2, Number 1, Jan-Feb. 1965.
 - 4. Zukoski, E. E., and Spaid, F. W., <u>Secondary Injection of Gases Into a Supersonic Flow</u>, AIAA Journal, Vol. 2. Number 10, Cctober 1964.
 - 5. Newton, J. F., Jr., and Spaid, F. W., Experiments on the Interaction of Secondary Injectants and Rocket Exhaust for Thrust Vector Control, Technical Report No. 32-303, Jet Propulsion Laboratory, Feb. 1962.
 - 6. Sukari, A., On the Propagation and Structure of the Blast Wave-I,
 Journal of the Physical Sciences of Japan, Vol. 8, Number 5, Sept.-Oct. 1953.
 - 7. Less, L. and Kubota, T., <u>Inviscid Hypersonic Flow Over Blunt Nosed Slender</u>
 <u>Bodies</u>, Journal of the Aeronautical Sciences, Vol. 24, No. 3, 1957.
- 8. <u>Design Criteria for Hot Gas Secondary Injection Thrust Vector Control of Solid Propellant Rocket Motors</u>, Thiocol Chamical Corporation, Wasatch Division, TW93-2-65, Vol. I, Book I, Fab. 1965. Confidential
 - 1. Classified material (all Confidential, Group 4) from asterisked documents has been reproduced in this report.

- 9. Zimmerman, C. A., et al., Secondary Injection Thrust Vector Control.
 Lockherd Missiles and Space Co., AD 617 689, April 1965.
- * 10. Hair, L. M., and Baumgartner, A. T., <u>An Empirical Model of Secondary Injection Thrust Vector Control</u>, Lockheed Missiles and Space Co., LMSC/IREC A710184, Oct. 1964. Confidential.
- 11. Fox, J. J., et al., Thrust Vector Control by Reactive Liquid Secondary
 Injection, Bulletin of the 18th Meeting, JANAF-ARPA-NASA, Solid Propellant Group, Vol. III, June 1962, pp. 61-177. Confidential.
 - 12. LeCount, R. L., et al, An Analysis of the Effects of Injection Parameters
 on the Thrust Vector Control Performance of the Lance Missile, Lockheed
 Missiles and Space Company, LMSC-664523, May 1965. Confidential
 - 13. Green, C. J. and McCullough, F., Liquid Injection Thrust Vector Control, AIAA Journal, Vol. I, No. 3, pp. 573-578, Karch 1363.
- * 14. Pauckert, R., <u>High Area Ratio N rele Study</u>, Rocketdyne, A Division of North American Aviation, Inc., T. Confidential.
- * 15. Interim Report, Aerodynamic Nozzle Study, Vol. II. Rocketdyne, A Division of North American Aviation, Inc., R-6273, 1965. Confidential.
- * 16. Parametric Study of the Lance Booster Engine Liquid Injection TVC System.

 Rocketdyne, A Division of North American Aviation, Inc., RR-66-21. Confidential.
 - 17. Erickson, L. H. and Bell, H. S., Optimum Design Investigation of Secondary Injection Thrust Vector Control Systems, Thiocol Chemical Corporation, AFSC-TR-61-1, TW-965-12-61, March 1962. Confidential.

- 18. Sengel, R., and Wu, J. M., Thrust Vector Control by Liquid Injection into Rocket Nozzles, Journal of Spacecraft and Rockets, Vol. I, Number 5, September-October, 1964.
- 19. LeCount, R. L., et al., <u>Analysis of the Physical and Chemical Aspects of Fluid Injection Thrust Vector Control</u>, Lockheed Missiles and Space Corporation, LMSC A-24-65-1, TM-55-12-6, May 1965.
- 20. Test Facilities Handbook, Arnold Engineering Development Center, Arnold Air Force Station, Tennessee, November 1966.
- * 21. Interim Report, Aerodynamic Nozzle Study, Vol. III Slipstream Studies,

 Hockstdyne, A Division of North American Aviation, Inc., R-6273, 1965. Confid.
 - 22. Salmi, R. J., <u>Preliminary Investigation of Methods to Increase Base Pressure</u> of Plug Nozales at Mach C.9, NACA RM E56 JO5, 1956.
 - 23. Korst, H. H., et al., <u>A Theory for Base Pressures in Transonic and Super-</u>
 sonic Flow, University of Illinois, METN392-2, OSE-TN-55-89, May 1962.
 - 24. Rabone, G.R., Low Angle Plug Nozzle Performance Characteristics, presented to the AIAA, Second Propulsion Joint Specialist Conference, Colorado Springs, Colorado, June 13-17, 1966, AIAA Paper No. 66-664.
- * 25. Davidson, D. L., <u>Performance Evaluation of a Rocketdyne Aerodynamic Spike Mozzle Configuration</u>, Rocket Test Facility, Arnold Engineering Development Center, Arnold Air Force Station, Tennessee, AEDC-TR-67-8, March 1967. Confidential.
 - 26. Smith, R. E., and Runyan, R. B., <u>Performance Evaluation of an Aerodynamic Spike Nozzlo Engine with Liquid (NoO4) Injection TVC</u>, Rocket Test Facility, Arnold Engineering Development Center, Arnold Air Force Station, Tennessee, AEDC-TR-67-16 1967. Confidential.