Exploratory Data Analysis on Haberman Survival Data Set

Exercise:

- 1. Download Haberman Cancer Survival dataset from Kaggle. You may have to create a Kaggle account to donwload data. (https://www.kaggle.com/gilsousa/habermans-survival-data-set)
- 2. Perform a similar alanlaysis as above on this dataset with the following sections:
- 3. High level statistics of the dataset: number of points, numer of features, number of classes, data-points per class.
- 4. Explain our objective.
- 5. Perform Univaraite analysis(PDF, CDF, Boxplot, Voilin plots) to understand which features are useful towards classification.
- 6. Perform Bi-variate analysis (scatter plots, pair-plots) to see if combinations of features are useful in classfication.
- 7. Write your observations in english as crisply and unambigously as possible. Always quantify your results.

Information regarding data set:

- 1. Title: Haberman's Survival Data
- 2. Sources: (a) Donor: Tjen-Sien Lim (limt@stat.wisc.edu) (b) Date: March 4, 1999
- 3. **Relevant Information**: The dataset contains cases from a study that was conducted between 1958 and 1970 at the University of Chicago's Billings Hospital on the survival of patients who had undergone surgery for breast cancer.
- 4. Past Usage:
 - Haberman, S. J. (1976). Generalized Residuals for Log-Linear Models, Proceedings of the 9th International Biometrics Conference, Boston, pp. 104-122.
 - Landwehr, J. M., Pregibon, D., and Shoemaker, A. C. (1984), Graphical Models for Assessing Logistic Regression Models (with discussion), Journal of the American Statistical Association 79: 61-83.
 - Lo, W.-D. (1993). Logistic Regression Trees, PhD thesis, Department of Statistics, University of Wisconsin, Madison, WI.

Objective:

It is a classification problem, where we have to analyze and provide observation which evaluates whether a patient would survive a cancer treatment or not.

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [2]: # Load heberman.csv in panda's daraframe.
haberman = pd.read_csv("haberman.csv")
haberman
```

	30	64	1	1.1
0		62	3	
1	30	65	0	1
2	31	59	2	1
3	31	65	4	1
4	33	58	10	1
5	33	60	0	1
6	34	59	0	2
7	34	66	9	2
8	34	58	30	1
9	34	60	1	1
10	34	61	10	1
11	34	67	7	1
12	34	60	0	1
13	35	64	13	1
14	35	63	0	1
15	36	60	1	1
16	36	69	0	1
17	37	60	0	1
18	37	63	0	1
19	37	58	0	1
20	37	59	6	1
21	37	60	15	1
22	37	63	0	1
23	38	69	21	2
24	38	59	2	1
25	38	60	0	1
26	38	60	0	1
27	38	62	3	1
28	38	64	1	1
29	38	66	0	1
275	67	66	0	1
276	67	61	0	1
277	67	65	0	1
278	68	67	0	1
279	68	68	0	1
280	69	67	8	2
281	69	60	0	1
282	69	65	0	1
283	69	66	0	1
284	70	58	0	2
285	70	58	4	2
286	70	66	14	1
287	70	67	0	1
288	70	68	0	1
289	70	59	8	1
290	70	63	0	1
291	71	68	2	1
292	72	63	0	2

- -

	30	64	1	1.1
293	72	58	0	1
294	72	64	0	1
295	72	67	3	1
296	73	62	0	1
297	73	68	0	1
298	74	65	3	2
299	74	63	0	1
300	75	62	1	1
301	76	67	0	1
302	77	65	3	1
303	78	65	1	2
304	83	58	2	2

305 rows × 4 columns

haberman

```
(Q) how many data-points and features?
In [3]: | print("Number of data-points present in dataset is {0}".format(haberman.shape[0]))
        print("Number of features/classes present in dataset is {0}".format(haberman.shape[1]))
        Number of data-points present in dataset is 305
        Number of features/classes present in dataset is 4
        (Q) What are the column/attribute names and their information in our dataset?
In [4]: for column in haberman:
            if haberman.columns.get_loc(column) == 0:
                 print("Column name is {0} : It represent age of patient at time of operation (numerical)\n".fo
        rmat(column))
            elif haberman.columns.get_loc(column) == 1:
                 print("Column name is {0} : Patient's year of operation (year - 1900, numerical)\n".format(col
        umn))
            elif haberman.columns.get_loc(column) == 2:
                 print("Column name is {0} : Number of positive axillary nodes detected (numerical)\n".format(c
        olumn))
            elif haberman.columns.get_loc(column) == 3:
                 print("Column name is {0} : Survival status (class attribute)".format(column))
                 print("\t\t\t -- 1 = the patient survived 5 years or longer")
                 print("\t\t\t -- 2 = the patient died within 5 year")
        Column name is 30 : It represent age of patient at time of operation (numerical)
        Column name is 64: Patient's year of operation (year - 1900, numerical)
        Column name is 1 : Number of positive axillary nodes detected (numerical)
        Column name is 1.1 : Survival status (class attribute)
                                  -- 1 = the patient survived 5 years or longer
                                  -- 2 = the patient died within 5 year
In [5]: haberman.columns
Out[5]: Index(['30', '64', '1', '1.1'], dtype='object')
In [6]: # Rename columns for better understanding also modify data for "survival_status" column.
        # 1 --> Yes if the patient survived 5 years or longer
        # 2 --> No the patient died within 5 year
        haberman.columns = ['Patient_age', 'Year_of_operation','Axillary_nodes','Survival_status']
```

haberman['Survival_status'] = haberman['Survival_status'].apply(lambda x: "Yes" if x == 1 else "No")

	Patient age	Year_of_operation	Axillary nodes	Survival status
0	30	62	3	Yes
1	30	65	0	Yes
2	31	59	2	Yes
	31	65	4	Yes
3	33	58	10	
4				Yes
5	33	60	0	Yes
6	34	59	0	No
7	34	66	9	No
8	34	58	30	Yes
9	34	60	1	Yes
10	34	61	10	Yes
11	34	67	7	Yes
12	34	60	0	Yes
13	35	64	13	Yes
14	35	63	0	Yes
15	36	60	1	Yes
16	36	69	0	Yes
17	37	60	0	Yes
18	37	63	0	Yes
19	37	58	0	Yes
20	37	59	6	Yes
21	37	60	15	Yes
22	37	63	0	Yes
23	38	69	21	No
24	38	59	2	Yes
25	38	60	0	Yes
26	38	60	0	Yes
27	38	62	3	Yes
28	38	64	1	Yes
29	38	66	0	Yes
275	67	66	0	Yes
276	67	61	0	Yes
277	67	65	0	Yes
278	68	67	0	Yes
279	68	68	0	Yes
280	69	67	8	No
281	69	60	0	Yes
282	69	65	0	Yes
283	69	66	0	Yes
284	70	58	0	No
285	70	58	4	No
286	70	66	14	Yes
287	70	67	0	Yes
288	70	68	0	Yes
289	70	59	8	Yes
290	70	63	0	Yes
291	71	68	2	Yes
292	72	63	0	No
	!		1	I .

	Patient_age	Year_of_operation	Axillary_nodes	Survival_status
293	72	58	0	Yes
294	72	64	0	Yes
295	72	67	3	Yes
296	73	62	0	Yes
297	73	68	0	Yes
298	74	65	3	No
299	74	63	0	Yes
300	75	62	1	Yes
301	76	67	0	Yes
302	77	65	3	Yes
303	78	65	1	No
304	83	58	2	No

305 rows × 4 columns

(Q) How many data points for each class are present?

```
In [7]: # From above table we can easily find that we have to classify data on the basis of "Survival_status"
        # Yes = the patient survived 5 years or longer
        # No = the patient died within 5 year.
        # It is an imbalanced datasets as number of value counts are far away from each other.
        haberman['Survival_status'].value_counts()
Out[7]: Yes
               224
                81
        No
        Name: Survival_status, dtype: int64
In [8]: # Similarly, another finding can be done on the basis of "Year_of_operation"
        # It is a partially balanced datasets as number of value counts are not far away from each other.
        haberman['Year_of_operation'].value_counts()
Out[8]: 58
        64
              30
              30
        63
        66
              28
        65
              28
        60
              28
        59
              27
        61
              26
        67
              25
        62
              23
        68
              13
        69
              11
```

Note:

Even though the dataset is not balanced in the case of survival status, still we can perform univariate and bivariate analysis on the feature.

(1) Univariate Analysis:

Name: Year_of_operation, dtype: int64

(1.1) 1D Scatter Plot:

By our understanding we know that,

A more number of positive axillary lymph node are bad for the patient survival.

(1.2) Histograms and Probability Density Functions (PDF):


```
In [11]: # Histograms and Probability Density Functions (PDF) of Patient_age
sns.FacetGrid(haberman,hue="Survival_status",size= 7) \
    .map(sns.distplot,"Patient_age") \
    .add_legend()
plt.show()
```


In [12]: # Histograms and Probability Density Functions (PDF) of Year_of_operation
sns.FacetGrid(haberman,hue="Survival_status",size=7) \
 .map(sns.distplot,"Year_of_operation") \
 .add_legend()
plt.show()

(1.3) Cumulative Distribution Functions (CDF) :

```
In [13]: # Cumulative Density Functions (CDF) for patients who survived >= 5 and < 5
         def showCDF(feature):
             print("\nCumulative Density Functions (CDF) of "+feature+" (patients who survived >= 5 yrs) :- \n
             count,bin_edges = np.histogram(haberman_yes[feature],bins=10,density=True)
             pdf = count/(sum(count))
             print("PDF : \n",pdf)
             print("\nBin Edges : \n",bin_edges)
             cdf = np.cumsum(pdf)
             plt.figure(figsize=(8, 8))
             plt.plot(bin_edges[1:],pdf,label="PDF on "+feature+" \n(patients who survived >= 5 yrs)")
             plt.plot(bin_edges[1:],cdf,label="CDF on "+feature+" \n(patients who survived >= 5 yrs)")
             plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
         \n")
             print("\nCumulative Density Functions (CDF) of "+feature+" (patients who survived < 5 yrs) :- \n")</pre>
             count,bin_edges = np.histogram(haberman_no[feature],bins=10,density=True)
             pdf = count/(sum(count))
             print("PDF : \n",pdf)
             print("\nBin Edges : \n",bin_edges)
             cdf = np.cumsum(pdf)
             plt.plot(bin_edges[1:],pdf,label="PDF on "+feature+"\n(patients who survived < 5 yrs)")</pre>
             plt.plot(bin_edges[1:],cdf,label="CDF on "+feature+"\n(patients who survived < 5 yrs)")</pre>
             plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
         \n")
             plt.show()
         showCDF("Axillary_nodes")
         showCDF("Patient_age")
         showCDF("Year_of_operation")
         Cumulative Density Functions (CDF) of Axillary_nodes (patients who survived >= 5 yrs) :-
         PDF:
          [ 0.83482143  0.08035714  0.02232143  0.02678571  0.01785714  0.00446429
           0.00892857 0. 0.
                                              0.00446429]
         Bin Edges :
          [ 0. 4.6 9.2 13.8 18.4 23. 27.6 32.2 36.8 41.4 46. ]
         Cumulative Density Functions (CDF) of Axillary_nodes (patients who survived < 5 yrs) :-
          [ 0.56790123  0.14814815  0.13580247  0.04938272  0.07407407  0.
           0.01234568 0. 0. 0.01234568]
         Bin Edges :
          [ 0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52. ]
```


Cumulative Density Functions (CDF) of Patient_age (patients who survived >= 5 yrs) :-

```
PDF :
```

Bin Edges :

[30. 34.7 39.4 44.1 48.8 53.5 58.2 62.9 67.6 72.3 77.]

Cumulative Density Functions (CDF) of Patient_age (patients who survived < 5 yrs) :-

PDF :

[0.03703704 0.12345679 0.19753086 0.19753086 0.13580247 0.12345679 0.09876543 0.04938272 0.02469136 0.01234568]

Bin Edges :

[34. 38.9 43.8 48.7 53.6 58.5 63.4 68.3 73.2 78.1 83.]

1.0

PDF on Patient_age (patients who survived >= 5 yrs)
CDF on Patient_age (patients who survived >= 5 yrs)
PDF on Patient_age (patients who survived <> 5 yrs)
CDF on Patient_age (patients who survived < 5 yrs)
CDF on Patient_age (patients who survived < 5 yrs)

0.8

0.6

0.4

0.2

0.0

4.0

5.0

6.0

7.0

8.0

```
Cumulative Density Functions (CDF) of Year_of_operation (patients who survived >= 5 yrs) :-
PDF :
[ 0.1875
                0.10714286 0.10267857 0.07142857 0.09821429 0.09821429
  0.06696429 0.09821429 0.09375
                                          0.07589286]
Bin Edges :
 [ 58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69. ]
Cumulative Density Functions (CDF) of Year_of_operation (patients who survived < 5 yrs) :-
PDF:
 [ \ 0.25925926 \ \ 0.04938272 \ \ 0.03703704 \ \ 0.08641975 \ \ 0.09876543 \ \ 0.09876543
 0.16049383 0.07407407 0.04938272 0.08641975]
Bin Edges :
[ 58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69. ]
                                                                            PDF on Year_of_operation
 1.0
                                                                            (patients who survived >= 5 yrs)
                                                                            CDF on Year_of_operation
                                                                            (patients who survived >= 5 yrs)
                                                                            PDF on Year_of_operation
                                                                            (patients who survived < 5 yrs)
                                                                            CDF on Year_of_operation
                                                                            (patients who survived < 5 yrs)
 0.8
 0.6
 0.4
 0.2
```

(1.4) Box-plot with whiskers

0.0

In [14]: # Box-plot with whiskers is an another method of visualizing the 1-D scatter plot more intuitivey.
 plt.figure(figsize=(10, 6))
 sns.boxplot(x="Survival_status",y="Axillary_nodes",data=haberman)
 plt.show()

(1.5) Violin plot

```
In [15]: # A violin plot combines the benefits of the both, PDF and BoxPlot, and simplifies them.
plt.figure(figsize=(10, 6))
sns.violinplot(x="Survival_status",y="Axillary_nodes",data=haberman)
plt.show()
```


(2) Bivariate Analysis:

(2.1) Pair Plot

(2.2) 2D-Scatter plot

```
In [17]: # 2D-Scatter plots is used when number of features is 2.
         # Note: From above pair plot figure we can take,
         # Axillary_nodes and Patient_age as two features for scatter plot.
         sns.set_style("whitegrid")
         sns.FacetGrid(haberman,hue="Survival_status",size=6) \
             .map(plt.scatter,'Patient_age','Axillary_nodes') \
             .add_legend()
         plt.show()
         sns.set_style("whitegrid")
         sns.FacetGrid(haberman,hue="Survival_status",size=6) \
             .map(plt.scatter,'Year_of_operation','Axillary_nodes') \
             .add_legend()
         plt.show()
         sns.set_style("whitegrid")
         sns.FacetGrid(haberman,hue="Survival_status",size=6) \
             .map(plt.scatter,'Year_of_operation','Patient_age') \
             .add_legend()
         plt.show()
```


Observations:

- 1. From univariate analysis we found that Axillary_nodes is useful feature for further analysis.
- 2. From bivariate analysis we found that, in correspondence with Axillary_nodes, we can pair two more features like Patient_age and Year_of_operation.
- 3. All patients who has 0 Axillary_nodes, have greater chance of survival.
- 4. No patient has survived whose Axillary_nodes is greater than 50.
- 5. So whether a patient would survive a cancer treatment or not is dependent on Axillary_nodes.if 0 then he/she has high chance of survival and above 50 has low chance of survival.