Parameter inference for small biochemical systems using likelihood-free MCMC

Eric Kernfeld¹

¹University of Washington Department of Statistics

Paper

Darren Wilkinson's "Parameter inference for stochastic kinetic models of bacterial gene regulation," a chapter of the proceedings in [1].

Cast of characters

- Simulation begins at time 0 and proceeds in continuous time.
- \mathcal{R}_i is a chemical reaction.
- $R_j(t) \in \mathbb{Z}_{\geq 0}$ counts occurrences of \mathcal{R}_j up to time t.
- $\theta_j \in \mathbb{R}_{\geq 0}$ is the rate at which \mathcal{R}_j happens. More on this in future slides.
- $X_i(t) \in \mathbb{Z}_{\geq 0}$ is the number of molecules of type i
- $\mathcal{D}_t \in \mathbb{R}$ is an incomplete observation of X(t) with error.

Wilkinson's eXample-reaction requirement

Figure : Roles of chemicals in various reactions. Green means the molecule is involved and blue means no involvement.

$$R_1(t) \sim PP(\theta_1 X_1(t))$$

$$R_5(t) \sim PP(\theta_5 X_4(t) X_5(t))$$

Wilkinson's eXample-net change

Figure : Roles of chemicals in various reactions. Green means the molecule is involved and blue means no involvement.

$$R_1(t) \sim PP(\theta_1 X_1(t))$$

$$R_5(t) \sim PP(\theta_5 X_4(t) X_5(t))$$

Some notes

- Assume reaction \mathcal{R}_j occurs independently of the others (given the state).
- ullet Priors on heta and X(0), plus the dynamics already mentioned, determine the whole system.
- EXact forward simulations are easy.

Forward simulation

Given:

Duration T and initial particle counts X(0)

 $S_{i,j}$, net change in molecules of type i in a reaction of type j, and $P_{i,j}$ number of molecules of type i entering a reaction of type j θ , a vector of reaction rates

Do this:

Initialize X to X(0) and t to 0.

While true:

Calculate $\alpha_j = \theta_j \prod_i {X_i \choose P_{ij}}$

Increment t by EXponential(rate= $\sum_{j} \alpha_{j}$)

If t > T, quit and return X.

Otherwise, choose an integer j with probability $\frac{\alpha_j}{\sum_j \alpha_j}$.

Increment X by adding column j of S.

Likelihoods

Likelihood if reaction ν_i happens at t_i :

$$\prod_{i=1}^{\text{events}} \theta_{\nu_i} \prod_{j=1}^{\text{rXn types}} \binom{X_j(t_{i-1})}{p_{\nu_i j}} \exp\left(-\theta_{\nu_i}(t_i - t_{i-1}) \binom{X_j(t_{i-1})}{p_{\nu_i j}}\right)$$

Likelihood from observing $X(t_i)$. Sum is over "eligible" paths for ν and integral is over a simpleX of possible wait-time tuples.

$$\sum_{\nu} \int_{t}^{\text{events in } \nu} \prod_{i=1}^{\nu} \theta_{\nu_{i}} \prod_{j=1}^{\text{rXn types}} \binom{X_{j}(t_{i-1})}{p_{\nu_{i}j}} \exp\left(\text{same as above}\right).$$

Angles of attack

Likelihood

$$\sum_{\nu} \int_{t}^{\text{events in } \nu} \theta_{\nu_i} \prod_{j=1}^{\text{rXn types}} \binom{X_j(t_{i-1})}{p_{\nu_i j}} \exp\left(-\theta_{\nu_i}(t_i - t_{i-1}) \binom{X_j(t_{i-1})}{p_{\nu_i j}}\right)$$

You might try:

- EM-still requires nasty sum.
- Metropolis-Hastings on θ -still requires likelihood evaluation.
- Gibbs sampling-how do you update ν ?
- Rejection sampling-most samples get rejected.

Solutions will need to either approXimate the likelihood or avoid it completely.

A complication: measurement error

If reactions occur at times t_i and observations occur at times s_k , the likelihood becomes a sum over possible values of X at times s_0 , s_1 , ... $s_{(num\ obs)}$ of:

$$P(\mathcal{D}|X) \times$$

$$\sum_{\nu} \int_{t}^{\text{events in } \nu} \theta_{\nu_i} \prod_{j=1}^{r \text{Xn types}} \binom{X_j(t_{i-1})}{p_{\nu_i j}} \exp\left(-\theta_{\nu_i}(t_i - t_{i-1}) \binom{X_j(t_{i-1})}{p_{\nu_i j}}\right) \exp\left(-\theta_{\nu_i}(t_i - t_{i-1}) \binom{X_j(t_{i-1})}{p_{\nu_i j}}\right)$$

Another view of the problem

Likelihood free MCMC intro-the M-H recipe

To produce a chain of samples from $P(\theta|D)$, using a proposal $q(\theta^*|\theta)$, accept with probability $p_{rej}(\theta^*|\theta) \equiv \min\{1,A\}$ if

$$A = \frac{q(\theta, X | \theta^*, X^*)}{q(\theta^*, X^* | \theta, X)} \times \frac{P(\theta^*, X^* | \mathcal{D})}{P(\theta, X | \mathcal{D})}$$

Can just as well use $\frac{P(\theta^*, X^*, \mathcal{D})}{P(\theta, X, \mathcal{D})}$.

Likelihood Free MCMC

$$\begin{split} &\frac{q(\theta^*, X^*|\theta, X)}{q(\theta, X|\theta^*, X^*)} \times \frac{P(X|\theta)}{P(X^*|\theta^*)} \frac{P(\theta)}{P(\theta^*)} \frac{P(\mathcal{D}|X, \theta)}{P(\mathcal{D}|X^*, \theta^*)} \\ &= \frac{f(\theta^*|\theta)}{f(\theta|\theta^*)} \frac{P(X^*|\theta^*)}{P(X|\theta)} \times \frac{P(X|\theta)}{P(X^*|\theta^*)} \frac{P(\theta)}{P(\theta^*)} \frac{P(\mathcal{D}|X, \theta)}{P(\mathcal{D}|X^*, \theta^*)} \\ &= \frac{f(\theta^*|\theta)}{f(\theta|\theta^*)} \times \frac{P(\theta)}{P(\theta^*)} \frac{P(\mathcal{D}|X, \theta)}{P(\mathcal{D}|X^*, \theta^*)}. \end{split}$$

This approach, from 2003, is due to Marjoram et al. (paper title: "MCMC Without Likelihoods") [2].

Wilkinson's adaptation of LF-MCMC

LF-MCMC fails for the same reason as everything else: $P(\mathcal{D}|X,\theta)$ is tiny for almost all X resulting from simulations.

The graphic on the following slides is from [3].

Likelihood Free Particle MCMC

Given a hidden continuous-time Markov process $\{X_t\}_{t=0}^T$ with:

Unknown parameters $\boldsymbol{\theta}$ and known initial state X_0

Data points \mathcal{D}_{t_i} at times t_i , $i \in \{1, ...I\}$

A simple, tractable error model $P(\mathcal{D}_{t_i}|X_{t_i},\theta)$

A simulator for paths of X given θ

An array B_0 of 1,000,000 samples from a prior on θ, X_0

Empty arrays B_i of the same length

For each time point (for $i \in \{1, ...I\}$):

Until B_i is full:

Draw $(\theta^*, X_{t_{i-1}}^*)$ from B_{i-1} or a KDE of its contents

Using $(\theta^*, X_{t_{i-1}}^*)$, simulate up to $X_{t_i}^*$, the state at time t_i

Set
$$A = \min(1, \frac{P(\mathcal{D}_{t_i}|X_{t_i}^*, \theta^*)}{P(\mathcal{D}_{t_i}|X_{t_i}, \theta)})$$

With probability A, overwrite (θ, X_{t_i}) with $(\theta^*, X_{t_i}^*)$

After burn-in and thinning, add (θ, X_{t_i}) to B_i

Likelihood Free Particle MCMC

In place of the posterior, use this joint pdf: $P(\mathcal{D}_{t_i}, x(t_{1:i}), \theta | \mathcal{D}_{t_{i:i-1}})$.

induction hypothesis

$$\underbrace{\frac{P(X(t_{1:i-1})^*, \theta^* | \mathcal{D}_{t_{1:i-1}})}{P(X(t_{1:i-1}), \theta | \mathcal{D}_{t_{1:i-1}})}}_{P(X(t_{1:i-1}), \theta | \mathcal{D}_{t_{1:i-1}})} \underbrace{\frac{P(X(t_i)^* | X(t_{1:i-1})^*, \theta^*, \mathcal{D}_{t_{1:i-1}})}{P(X(t_i) | X(t_{1:i-1}), \theta, \mathcal{D}_{t_{1:i-1}})}}_{\text{forward simulation}} \times$$

For that joint PDF, start here...

$$\underbrace{\frac{P(X(t_{1:i-1}), \theta | \mathcal{D}_{t_{1:i-1}})}{P(X(t_{1:i-1})^*, \theta^* | \mathcal{D}_{t_{1:i-1}})}}_{P(X(t_i)^* | X(t_{1:i-1})^*, \theta^*, \mathcal{D}_{t_{1:i-1}})} \underbrace{\frac{P(X(t_i) | X(t_{1:i-1}), \theta, \mathcal{D}_{t_{1:i-1}})}{P(X(t_i)^* | X(t_{1:i-1})^*, \theta^*, \mathcal{D}_{t_{1:i-1}})}}_{P(X(t_i)^* | X(t_{1:i-1})^*, \theta^*, \mathcal{D}_{t_{1:i-1}})} \underbrace{\frac{P(X(t_i) | X(t_{1:i-1}), \theta, \mathcal{D}_{t_{1:i-1}})}{P(X(t_i)^* | X(t_{1:i-1})^*, \theta^*, \mathcal{D}_{t_{1:i-1}})}}_{P(X(t_i)^* | X(t_{1:i-1})^*, \theta^*, \mathcal{D}_{t_{1:i-1}})} \underbrace{\frac{P(X(t_i) | X(t_{1:i-1}), \theta, \mathcal{D}_{t_{1:i-1}})}{P(X(t_i)^* | X(t_{1:i-1})^*, \theta^*, \mathcal{D}_{t_{1:i-1}})}}_{P(X(t_i)^* | X(t_{1:i-1})^*, \theta^*, \mathcal{D}_{t_{1:i-1}})}} \underbrace{\frac{P(X(t_i) | X(t_{1:i-1}), \theta, \mathcal{D}_{t_{1:i-1}})}{P(X(t_i)^* | X(t_{1:i-1})^*, \theta^*, \mathcal{D}_{t_{1:i-1}})}}_{P(X(t_i)^* | X(t_{1:i-1}), \theta, \mathcal{D}_{t_{1:i-1}})}}$$

...then look here...

$$\frac{P(\mathcal{D}_{t_i}|X(t_i),\theta,\mathcal{D}_{t_{1:i-1}})}{P(\mathcal{D}_{t_i}|X(t_i)^*,\theta^*,\mathcal{D}_{t_{1:i-1}})}.$$

...and finally, look here.

Does it mix?

Bivariate marginals of the distribution of production (vertical) and decay (horizontal) log rates in a simple system. From left to right, distributions condition on zero data points, one, two, three, four, and 24.

Sample Impoverishment

Questions? I

Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M., West, M.:
Ninth Valencia international meeting on Bayesian statistics, Benidorm, Spain, 03-08.06.2010.
Oxford U.P., Oxford (2012)

Marjoram, P., Molitor, J., Plagnol, V., Tavaré, S.: Markov chain monte carlo without likelihoods. Proceedings of the National Academy of Sciences **100**(26) (2003) 15324–15328

Finke, A.:
Introduction to sequential monte carlo and particle mcmc methods (July 2013)

Questions? II