MAT-032: Intervalos de confianza

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

El objetivo de esta sección es abordar el problema $\theta \in C$, donde $C \subseteq \Theta$, C = C(X) es un conjunto determinado por los datos observados X = x.

Definición 1:

Una estimación intervalar de un parámetro real-valuado θ es cualquier par de funciones $L(x_1,\ldots,x_n)$ y $U(x_1,\ldots,x_n)$ que satisfacen

$$L(\boldsymbol{x}) \leq U(\boldsymbol{x}), \quad \forall \, \boldsymbol{x} \in \mathcal{X}.$$

Para ${\pmb X}={\pmb x}$ tenemos $L({\pmb x}) \le \theta \le U({\pmb x})$, mientras que $[L({\pmb X}),U({\pmb X})]$ es un intervalo aleatorio.

 $^{^{1}}$ Si θ es real-valuado, entonces C corresponde a un intervalo.

Ejemplo:

Considere X_1,X_2,X_3,X_4 una muestra aleatoria desde $\mathsf{N}(\mu,1)$. Un estimador intervalar de μ es $[\overline{X}-1,\overline{X}+1]$, es decir

$$\mu \in [\overline{X} - 1, \overline{X} + 1]$$

Note que $\overline{X} \sim {\sf N}(\mu,1/4)$, pero

$$\mathsf{P}(\overline{X}=\mu)=0.$$

Mientras que,

$$\begin{split} \mathsf{P}(\mu \in [\overline{X}-1,\overline{X}+1]) &= \mathsf{P}(\overline{X}-1 \leq \mu \leq \overline{X}+1) = \mathsf{P}(-1 \leq \mu - \overline{X} \leq 1) \\ &= \mathsf{P}(-1 \leq \overline{X}-\mu \leq 1) = \mathsf{P}\left(-\frac{1}{\sqrt{1/4}} \leq \frac{\overline{X}-\mu}{\sqrt{1/4}} \leq \frac{1}{\sqrt{1/4}}\right) \\ &= \mathsf{P}\left(-2 \leq \frac{\overline{X}-\mu}{\sqrt{1/4}} \leq 2\right) = \mathsf{P}(-2 \leq Z \leq 2) = 0.9544 \end{split}$$

pues
$$Z=(\overline{X}-\mu)/\sqrt{1/4}\sim {\sf N}(0,1).$$

Interpretación:

Tenemos un 95% de chances de cubrir el parámetro verdadero (desconocido) con nuestro estimador intervalar.

Observación:

En este contexto $P_{\theta}(\theta \in [L(\boldsymbol{x}), U(\boldsymbol{x})])$ se denomina probabilidad de cobertura

Definición 2:

El coeficiente de confianza de $[L({m x}),U({m x})]$ es el ínfimo de las probabilidades de cobertura

$$\inf_{\theta} \mathsf{P}_{\theta}(\theta \in [L(\boldsymbol{x}), U(\boldsymbol{x})])$$

Observación:

Estimadores intervalares en conjunto con una medida de confianza (coeficiente de confianza) son conocidos como intervalos de confianza.

Definición 3:

Una variable aleatoria $Q(\boldsymbol{X}; \boldsymbol{\theta}) = Q(X_1, \dots, X_n; \boldsymbol{\theta})$ es una cantidad pivotal o pivote si la distribución de $Q(\boldsymbol{X}; \boldsymbol{\theta})$ no depende de $\boldsymbol{\theta}$. Esto es, si $\boldsymbol{X} \sim F(\boldsymbol{x}; \boldsymbol{\theta})$, entonces $Q(\boldsymbol{X}; \boldsymbol{\theta})$ tiene la misma distribución para todo valor de $\boldsymbol{\theta}$.

Observación:

La técnica confía en la habilidad de hallar un pivote y un conjunto A tal que el conjunto $\{\theta:Q(\boldsymbol{X};\theta)\in A\}$ sea una estimación intervalar para $\theta.$

Ejemplo (CI para μ en poblaciones normales con varianza conocida):

Si X_1, \ldots, X_n es una muestra aleatoria de tamaño n desde $N(\mu, \sigma^2)$, entonces

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1),$$

y por tanto es un pivote para μ (siempre que σ^2 sea conocido). Para cualquier constante a sigue que:

$$\begin{split} \mathsf{P}\left(-a \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq a\right) &= \mathsf{P}\left(-a\frac{\sigma}{\sqrt{n}} \leq \overline{X} - \mu \leq a\frac{\sigma}{\sqrt{n}}\right) \\ &= \mathsf{P}\left(\overline{X} - a\frac{\sigma}{\sqrt{n}} \leq \mu \leq \overline{X} + a\frac{\sigma}{\sqrt{n}}\right), \end{split}$$

es decir obtenemos el intervalo de confianza

$$\left[\overline{X} - a\frac{\sigma}{\sqrt{n}}; \overline{X} + a\frac{\sigma}{\sqrt{n}}\right].$$

Podemos escribir también,

$$CI(\mu) = \Big\{ \mu : \overline{X} - a \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + a \frac{\sigma}{\sqrt{n}} \Big\}.$$

Además suponga que $a=z_{1-\alpha/2}$ para un valor de α dado. Entonces, es fácil notar que

$$\mathsf{P}\left(\mu \in \left[\overline{X} - z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}; \overline{X} + z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right]\right) = 1 - \alpha,$$

corresponde a un intervalo de confianza del $100(1-\alpha)\%$ para μ .

Observación:

Note que este intervalo de confianza es simétrico.

Ejemplo (CI para μ en poblaciones normales con varianza desconocida):

Si X_1,\ldots,X_n es una muestra aleatoria de tamaño n desde $N(\mu,\sigma^2)$ con σ^2 desconocido. Para este caso, podemos usar el pivote

$$T = \frac{\overline{X} - \mu}{s/\sqrt{n}} \sim t(n-1),$$

es decir,

$$P(-a \le T \le a) = P\left(-a \le \frac{\overline{X} - \mu}{s/\sqrt{n}} \le a\right)$$

que lleva al intervalo de confianza

$$CI(\mu) = \Big\{ \mu : \overline{X} - t_{1-\alpha/2}(n-1)\frac{s}{\sqrt{n}} \leq \mu \leq \overline{X} + t_{1-\alpha/2}(n-1)\frac{s}{\sqrt{n}} \Big\}.$$

Ejemplo (CI para la diferencia de medias en poblaciones normales):

Considere X_1,X_2,\ldots,X_n y Y_1,Y_2,\ldots,Y_m muestras aleatorias desde $\mathsf{N}(\mu_X,\sigma_X^2)$ y $\mathsf{N}(\mu_Y,\sigma_Y^2)$, respectivamente. Se desea un CI para $\delta=\mu_X-\mu_Y$. Note que

$$Z = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_X^2}{m}}} \sim \mathsf{N}(0, 1).$$

Así, evidentemente podemos encontrar el valor cuantil $z_{1-lpha/2}$, tal que

$$\mathsf{P}(-z_{1-\alpha/2} \le Z \le z_{1-\alpha/2}) = 1 - \alpha.$$

lo que lleva a

$$\mathsf{P}\left(\overline{X} - \overline{Y} - z_{1-\alpha/2}\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_X^2}{m}} \leq \mu_X - \mu_Y \leq \overline{X} - \overline{Y} + z_{1-\alpha/2}\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_X^2}{m}}\right) = 1 - \alpha$$

Es decir,

$$CI(\mu_X - \mu_Y) = \left[\overline{X} - \overline{Y} \mp z_{1-\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_X^2}{m}}\right]$$

Observación:

Si σ_X^2 y σ_Y^2 son desconocidos pero (se pueden asumir) iguales. Entonces

$$T = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t(n + m - 2),$$

con

$$S_p^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}.$$

De este modo, obtenemos el intervalo:

$$CI(\mu_X - \mu_Y) = \left[\overline{X} - \overline{Y} \mp t_{1-\alpha/2}(n+m-2)s_p\sqrt{\frac{1}{n} + \frac{1}{m}}\right].$$

Ejemplo (CI para σ^2 en poblaciones normales con media desconocida):

Considere ahora,

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

que es cantidad pivotal y elija a y b, satisfaciendo que

$$P(a \le \chi^2 \le b) = P\left(a \le \frac{(n-1)S^2}{\sigma^2} \le b\right) = 1 - \alpha,$$

desde donde obtenemos

$$CI(\sigma^2) = \left\{ \sigma^2 : \frac{(n-1)S^2}{b} \le \sigma^2 \le \frac{(n-1)S^2}{a} \right\}.$$

Las elecciones de a y b que producen el intervalo con el coeficiente de confianza requerido son $a=\chi^2_{1-\alpha/2}(n-1)$ y $b=\chi^2_{\alpha/2}(n-1)$.

Definición 4 (Intervalo de confianza asintótico):

Considere ${\sf SE} = \sqrt{{\sf var}(\widehat{\theta}_n)}$. Entonces $\widehat{\sf SE} = \sqrt{1/\mathcal{F}_n(\widehat{\theta}_n)}$, luego un intervalo del confianza asintótico del $100(1-\alpha)\%$ para θ es dado por:²

$$CI_n(\theta) = [\widehat{\theta}_n - z_{1-\alpha/2}\widehat{\mathsf{SE}}, \widehat{\theta}_n + z_{1-\alpha/2}\widehat{SE}].$$

Este procedimiento está basado en la "cantidad pivotal"

$$\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{\mathsf{D}}{\longrightarrow} \mathsf{N}_1(0, \mathcal{F}_1^{-1}(\theta)),$$

es decir,

$$\frac{\widehat{\theta}_n - \theta}{\sqrt{\operatorname{var}(\widehat{\theta}_n)}} \xrightarrow{\mathsf{D}} \mathsf{N}_1(0,1).$$

²En efecto, $P_{\theta}(\theta \in IC_n(\theta)) \to 1 - \alpha$ para $n \to \infty$.

Ejemplo (CI para la proporción en datos dicotómicos):

Sea X_1,\ldots,X_n muestra aleatoria desde ${\sf Ber}(p).$ Sabemos que el MLE de p es $\widehat p_n=rac{1}{n}\sum_{i=1}^n x_i,$ y

$$\log f(x; p) = x \log p + (1 - x) \log(1 - p),$$

así

$$U(x;p) = \frac{x}{p} - \frac{1-x}{1-p}, \qquad U'(x;p) = \frac{x}{p^2} + \frac{1-x}{(1-p)^2}.$$

De este modo,

$$\mathcal{F}_1(p) = \mathsf{E}\{-U'(X;p)\} = \frac{p}{p^2} + \frac{1-p}{(1-p)^2} = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)},$$

de ahí que

$$\widehat{\mathsf{SE}} = \frac{1}{\sqrt{\mathcal{F}_n(\widehat{p}_n)}} = \frac{1}{\sqrt{n\mathcal{F}_1(\widehat{p}_n)}} = \sqrt{\frac{\widehat{p}_n(1-\widehat{p}_n)}{n}},$$

luego, un intervalo de confianza del $100(1-\alpha)\%$ para p es dado por

$$\widehat{p}_n \mp z_{1-\alpha/2} \sqrt{\frac{\widehat{p}_n (1-\widehat{p}_n)}{n}}.$$

Observación:

Considere $\lambda=g(\theta).$ Sabemos que el estimador ML de λ es dado por $\widehat{\lambda}_n=g(\widehat{\theta}_n).$ Además, usando el método Delta, sigue que

$$\frac{\widehat{\lambda}_n - \lambda}{\widehat{\mathsf{SE}}(\widehat{\lambda}_n)} \xrightarrow{\mathsf{D}} \mathsf{N}(0,1),$$

donde

$$\widehat{\mathsf{SE}}(\widehat{\lambda}_n) = |g'(\widehat{\theta}_n)| \, \widehat{\mathsf{SE}}(\widehat{\theta}_n).$$

Lo que lleva al intervalo de confianza asintótico

$$CI_n(\lambda) = [\widehat{\lambda}_n - z_{1-\alpha/2} \widehat{\mathsf{SE}}(\widehat{\lambda}_n), \widehat{\lambda}_n + z_{1-\alpha/2} \widehat{\mathsf{SE}}(\widehat{\lambda}_n)].$$

Ejemplo:

Sea X_1,\ldots,X_n muestra aleatoria desde $\mathsf{N}(\mu,\sigma^2)$. Suponga que μ es conocido y considere $\psi=\log\sigma^2$. Sabemos que

$$\ell(\sigma^2) = -\frac{n}{2}\log\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2,$$

У

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2.$$

Además,

$$U_n(\sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2, \qquad U'_n(\sigma^2) = \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{i=1}^n (x_i - \mu)^2.$$

De este modo,

$$\begin{split} \mathcal{F}_n(\sigma^2) &= \mathsf{E}\{-U_n'(\sigma^2)\} = -\frac{n}{2\sigma^4} + \frac{1}{\sigma^6} \sum_{i=1}^n \mathsf{E}\{(X_i - \mu)^2\} \\ &= -\frac{n}{2\sigma^4} + \frac{1}{\sigma^6} \sum_{i=1}^n \mathsf{var}(X_i) = -\frac{n}{2\sigma^4} + \frac{n\sigma^2}{\sigma^6} = \frac{n}{2\sigma^4}. \end{split}$$

De ahí que,

$$\widehat{\mathsf{SE}}(\sigma^2) = \frac{1}{\sqrt{\mathcal{F}_n(\widehat{\sigma}^2)}} = \sqrt{\frac{2\sigma^4}{n}}.$$

Sea $\psi = g(\sigma^2) = \log \sigma^2$. Notando que $g'(\sigma^2) = 1/\sigma^2$, obtenemos:

$$\widehat{\mathsf{SE}}(\psi) = |g'(\sigma^2)| \widehat{\mathsf{SE}}(\sigma^2) = \frac{1}{\sigma^2} \sqrt{\frac{2\sigma^4}{n}} = \sqrt{\frac{2}{n}}.$$

Finalmente,

$$CI_n(\psi) = \left[\widehat{\psi} - z_{1-\alpha/2}\sqrt{\frac{2}{n}}; \widehat{\psi} + z_{1-\alpha/2}\sqrt{\frac{2}{n}}\right],$$

 $\text{donde } \widehat{\psi} = \log \widehat{\sigma}^2.$

