1. 验证旋转矩阵是正交矩阵

解析:先搞清楚旋转矩阵与正交矩阵的定义。

旋转矩阵:是在乘以一个向量的时候有改变向量的方向但不改变大小的效果并保持了手性的 矩阵。

正交矩阵:如果 $AA^T = E$,则 A 为正交矩阵。方阵 A 为正交矩阵的充要条件是 A 的行(列)向量组是单位正交向量组。

根据《视觉 SLAM 十四讲》第 41~42 页,设某个单位正交基(e_1,e_2,e_3),经过一次旋转变成了(e_1,e_2,e_3),根据正交矩阵以及旋转矩阵的定义,(e_1,e_2,e_3)与(e_1,e_2,e_3)均为正交矩阵(列向量两两正交)。那么对于同一个向量 a,它在两个坐标系下的坐标为[a_1,a_2,a_3] 和 [a_1,a_2,a_3] 。根据坐标系的定义,有:

$$\begin{bmatrix} e_1, e_2, e_3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} e_1, e_2, e_3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

上述等式两边同时左乘 $\begin{bmatrix} e_1^T \\ e_2^T \\ e_3^T \end{bmatrix}$,可得到:

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} e_1^T e_1^{'} & e_1^T e_2^{'} & e_1^T e_3^{'} \\ e_2^T e_1^{'} & e_2^T e_2^{'} & e_2^T e_3^{'} \\ e_3^T e_1^{'} & e_3^T e_2^{'} & e_3^T e_3^{'} \end{bmatrix} \begin{bmatrix} a_1^{'} \\ a_2^{'} \\ a_3^{'} \end{bmatrix} = Ra^{'}$$

其中,
$$R = \begin{bmatrix} e_1^T \\ e_2^T \\ e_3^T \end{bmatrix} \cdot \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix}$$
,则 $R^T = \begin{bmatrix} e_1^T \\ e_2^T \\ e_3^T \end{bmatrix} \cdot \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix}$,那么

$$R \cdot R^{T} = \begin{bmatrix} e_{1}^{T} \\ e_{2}^{T} \\ e_{3}^{T} \end{bmatrix} \begin{bmatrix} e_{1} & e_{2} & e_{3} \end{bmatrix} \begin{bmatrix} e_{1}^{T} \\ e_{2}^{T} \\ e_{3}^{T} \end{bmatrix} \begin{bmatrix} e_{1} & e_{2} & e_{3} \end{bmatrix}$$

由于 $(\mathbf{e'_1,e'_2,e'_3})$ 为正交矩阵,则 $\begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix}$ $\begin{bmatrix} e_1^T \\ e_2^T \\ e_3^T \end{bmatrix} = E$,因此,

$$R \cdot R^T = \begin{bmatrix} e_1^T \\ e_2^T \\ e_3^T \end{bmatrix} \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix}$$
,又由于($\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$)也为正交矩阵,

则 $R \cdot R^T = E$,所以R为正交矩阵,证明完毕。

2. 寻找罗德里格斯公式的推导过程并加以理解。

解析:参考维基百科,

https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula

以及博客:

https://blog.csdn.net/q583956932/article/details/78933245

图 1

如图 1 所示,设空间中一向量 v,绕 k 转 θ 角度后,得到的向量为 v_{rot} 。假设将 v 分别沿着 k 的方向以及垂直于 k 的方向分解为两个向量 v_{\parallel} , v_{\perp} , 那么 $v=v_{\parallel}+v_{\perp}$, $v_{\parallel}=(v\cdot k)k$,由向量的叉乘得到,

$$v_{\perp} = v - v_{\parallel} = v - (k \cdot v)k = -k \times (k \times v)$$
 (1),

 $w = k \times v$ 可以得到,

$$v_{rot} = v_{\parallel} + \cos(\theta)v_{\perp} + \sin(\theta)w$$

引入向量叉积矩阵的概念:记 K 为 $k = \begin{bmatrix} k_x & k_y & k_z \end{bmatrix}^T$ 叉积矩阵,则

$$K = \begin{bmatrix} 0 & -k_z & k_y \\ k_z & 0 & -k_x \\ -k_y & k_x & 0 \end{bmatrix}$$

根据叉积向量的性质,

$$k \times v = Kv$$

由(1)可得:

$$v_{\parallel} = v + k \times (k \times v)$$

$$v_{rot} = v + k \times (k \times v) - \cos(\theta)k \times (k \times v) + \sin(\theta)k \times v$$

根据叉积矩阵的性质,

$$v_{rot} = v + (1 - \cos(\theta))K^2v + \sin(\theta)Kv$$

$$v_{rot} = (I + (1 - \cos(\theta))K^2 + \sin(\theta)K)v$$

由旋转矩阵的定义

$$v_{rot} = Rv$$

所以,可得罗德里格斯公式:

$$R = I + (1 - \cos(\theta))K^{2} + \sin(\theta)K$$

3.验证四元数旋转某个点后,结果是一个虚四元数(实部为零),所以 仍然对应到一个三维空间点(式 3.34)。

解析:把三维空间点用一个虚四元数来描述:

$$p = [0, x, y, z] = [0, v]$$

用四元数 q 表示这个旋转:

$$q = \left[\cos\frac{\theta}{2}, n\sin\frac{\theta}{2}\right]$$

旋转后的点 p'为:

$$p' = qpq^{-1}$$

这里需要用到四元数乘法法则, 设四元数

$$q_a = s_a + x_a i + y_a j + z_a k$$
 , $q_b = s_b + x_b i + y_b j + z_b k$, 写成向量形式:

$$q_a = [s_a, v_a], \quad q_b = [s_b, v_b], \quad \text{M}$$

$$q_a q_b = [s_a s_b - v_a^T v_b, s_a v_b + s_b v_a + v_a \times v_b]$$

由四元数逆以及共轭的性质,

$$q^{-1} = [\cos \frac{\theta}{2}, -n \sin \frac{\theta}{2}] \cdot \frac{1}{\|q\|^2}$$
,则 q 为单位四元数,因此 $\|q\|^2 = 1$,所以

$$q^{-1} = \left[\cos\frac{\theta}{2}, -n\sin\frac{\theta}{2}\right]$$

$$qp = \left[-n^{T}\sin\frac{\theta}{2}v, \cos\frac{\theta}{2}v + (n \times v)\sin\frac{\theta}{2}\right]$$

为了表示方便,设 $p'=[p_1,p_2]$

$$p_1 = -n^T v \sin \frac{\theta}{2} \cos \frac{\theta}{2} + (\cos \frac{\theta}{2} v^T + (n \times v)^T \sin \frac{\theta}{2}) \cdot (n \sin \frac{\theta}{2})$$
$$= -n^T v \sin \frac{\theta}{2} \cos \frac{\theta}{2} + v^T n \sin \frac{\theta}{2} \cos \frac{\theta}{2} + (n \times v)^T \cdot n \cdot (\sin \frac{\theta}{2})^2$$

由向量的叉乘性质,

$$(n \times v)^T \cdot n = 0$$

而 n 与 v 同为 3*1 的向量, 因此,

$$n^T v = v^T n$$

因此

P1=0, 即实部为零, 证明完毕。

4.画表总结旋转矩阵、轴角、欧拉角、四元数的转换关系。

	旋转矩阵(R)	轴角(θ ,n)	欧拉角 $(\theta_x, \theta_y, \theta_z)$	四元数(q₀+q₁i+q₂j+q₃k)
旋 转 矩 阵 (R)		$\theta = \arccos(\frac{tr(R)-1}{2})$ Rn=n, (n 为特征值 1 对应的特征向量)	$\theta_x = a \tan 2(r_{32}, r_{33})$ $\theta_y = a \tan 2(-r_{31}, \sqrt{r_{32}^2 + r_{33}^2})$ $\theta_z = a \tan 2(r_{21}, r_{11})$	$q_0 = \frac{\sqrt{tr(R) + 1}}{2}$ $q_1 = \frac{r_{23} - r_{32}}{4q_0}$ $q_2 = \frac{r_{31} - r_{13}}{4q_0}$ $q_3 = \frac{r_{12} - r_{21}}{4q_0}$
轴角 (θ ,n)	$R = \cos\theta I + (1 - \cos\theta)nn^{T} + \sin\theta n^{}$			
欧 拉 角 (ψ.θ,φ)	$R = R_{z}(\theta_{z})R_{y}(\theta_{y})R_{x}(\theta_{x})$ $= \begin{bmatrix} \cos\theta_{y}\cos\theta_{z} & \sin\theta_{x}\sin\theta_{y}\cos\theta_{z} - \cos\theta_{x}\sin\theta_{z} & \cos\theta_{x}\sin\theta_{y}\cos\theta_{z} + \sin\theta_{x}\sin\theta_{z} \\ \cos\theta_{y}\sin\theta_{z} & \sin\theta_{x}\sin\theta_{y}\sin\theta_{z} + \cos\theta_{x}\cos\theta_{z} & \cos\theta_{x}\sin\theta_{y}\sin\theta_{z} - \sin\theta_{x}\cos\theta_{z} \\ -\sin\theta_{y} & \sin\theta_{x}\cos\theta_{y} & \cos\theta_{x}\cos\theta_{y} \end{bmatrix}$			$q_{0} = \cos \frac{\theta_{z}}{2} \cos \frac{\theta_{y}}{2} \cos \frac{\theta_{x}}{2}$ $-\sin \frac{\theta_{z}}{2} \sin \frac{\theta_{y}}{2} \sin \frac{\theta_{x}}{2}$ $q_{1} = \cos \frac{\theta_{z}}{2} \cos \frac{\theta_{y}}{2} \sin \frac{\theta_{x}}{2}$ $+\sin \frac{\theta_{z}}{2} \sin \frac{\theta_{y}}{2} \cos \frac{\theta_{x}}{2}$ $q_{2} = \cos \frac{\theta_{z}}{2} \sin \frac{\theta_{y}}{2} \cos \frac{\theta_{x}}{2}$ $-\sin \frac{\theta_{z}}{2} \cos \frac{\theta_{y}}{2} \sin \frac{\theta_{x}}{2}$ $q_{3} = \sin \frac{\theta_{z}}{2} \cos \frac{\theta_{y}}{2} \cos \frac{\theta_{x}}{2}$ $+\cos \frac{\theta_{z}}{2} \sin \frac{\theta_{y}}{2} \sin \frac{\theta_{x}}{2}$
四元数	$R = \begin{bmatrix} 1 - 2q_2^2 - 2q_3^2 & 2q_1q_2 + 2q_0q_3 & 2q_1q_3 - 2q_0q_2 \\ 2q_1q_2 - 2q_0q_3 & 1 - 2q_1^2 - 2q_3^2 & 2q_2q_3 + 2q_0q_1 \\ 2q_1q_3 + 2q_0q_2 & 2q_2q_3 - 2q_0q_1 & 1 - 2q_1^2 - 2q_2^2 \end{bmatrix}$		$\psi = a \tan 2(2(q_0q_1 + q_2q_3), 1 - 2(q_1^2 + q_2^2))$ $\theta = \arcsin(2(q_0q_2 - q_1q_3))$ $\phi = a \tan 2(2(q_0q_3 + q_1q_2), 1 - 2(q_2^2 + q_3^2))$	

5、假设有一个大的 Eigen 矩阵,想把它的左上角 3×3 的矩阵块取出来。然后赋值为 $I_{3\times3}$ 。请编程实现。

解析: 详见 code3/q5.cpp

6、一般线性方程 Ax=b 有哪几种做法?你能在 Eigen 中实现吗?

线性方程组的数值解法主要有两大类:直接法、迭代法;

直接法是指在没有舍入误差影响的条件下,经过有限次四则运算可以求得方程组得准确解得一些方法,常用的方法有高斯消元法、LU 三角分解、QR 分解、奇异值分解、Cholesky 分解法等。

迭代法是用某种极限过程去逐步逼近方程组的准确解的一些方法。由于实际计算时,只能做有限步,从而得到的也是近似解,所以要估计截断误差的大小。当系数矩阵是高阶稀疏矩阵时,一般优先考虑迭代法。迭代法有: Jacobi 迭代法、Seidel 迭代法、逐次超松弛迭代法和快迭代法;

question6.cpp 里展示了 Eigen 自带的求解方法以及 Jacobi 迭代法

这里推导一下 Jacobi 迭代法的公式:

我们求线性方程组 Ax = b 的解,为了便于迭代,则需要将解得形式表示为 x = Bx + g 的形式,这是我们推导的目标。设 A 的对角线袁术为 a_{ii} (i=1,2,···,n) 均为非零,记 \mathbf{D} =diag($a_{11},a_{22},\cdots,a_{nn}$)。作 A 的分裂:

$$A = D - (D - A) \tag{1}$$

将公式(1)两边同时乘以x,则可以得到

$$Ax = Dx - (D - A)x = b$$

即:

$$x = D^{-1}(D-A)x + D^{-1}b$$

得到递推公式:

$$x^{k+1} = D^{-1}(D-A)x^k + D^{-1}h$$

另 $J = D^{-1}(D-A) = I - D^{-1}A$.则得到

$$x^{k+1} = Jx^k + D^{-1}b$$

代码实现见 code3/question6.cpp

7、设有小萝卜一号和小萝卜二号位于世界坐标系中。小萝卜一号的位姿为 q_1 =[0.35,0.2,0.3,0.1], t_2 =[0.3,0.1,0.1]^T(q 的第一项为实部。请把 q 归一化后再进行计算)。这里的 q 和 t 表达的是 T_{cw} ,也就是世界坐标系到相机坐标系的变换关系。小萝卜二号的位姿为 q_2 =[-0.5,0.4,-0.1,0.2],t=[-0.1,0.5,0.3]^T。现在,小萝卜一号看到某个点在自身坐标系下坐标为 p=[0.5,0,0.2]^T,求该向量再小萝卜二号坐标系下的坐标。请编程实现。

代码实现见 code3/question7.cpp,运行结果:[-0.0309731,0.73499,0.296108]^T