Denne videoen handler om...

- 1. Gjennomgang av O-notasjon med eksempler
- 2. Hvordan finne riktig $c \log n_0$?
- 3. Hvordan analysere koden sin?
- 4. Når kan "trege" algoritmer være bedre enn "raske"?

O-notasjon – Eksempler

O notasjon

La f(n) være kjøretiden på en instans av størrelse n og la g være en funksjon fra heltall til reelle tall.

f(n) er O(g(n)) hvis det finnes en konstant c og en $n_0 \ge 1$ slikt at for alle $n \ge n_0$:

$$f(n) \leq cg(n)$$

Intuisjon: f(n) vokser mindre raskt enn g(n) for store n.

O notasjon – Eksempel

f(n) er O(g(n)) hvis det finnes en konstant c og en $n_0 \ge 1$ slikt at for alle $n \ge n_0$:

$$f(n) \leq cg(n)$$

Eksempel:

$$7n+3$$
 er $O(n)$:
$$f(n)=7n+3, g(n)=n.$$
 Velg: $c=10$ og $n_0=1$.
$$f(1)=7+3=10, g(1)=1, \text{ altså } f(1)=10g(1)=10$$

$$f(2)=14+3=17, g(2)=2, \text{ altså } f(2)<10g(2)=20$$
 Generelt: $f(n)=7n+3\leq 10n=10g(n)$ for alle $n\geq n_0=1$.

O notasjon – Eksempel

f(n) er O(g(n)) hvis det finnes en konstant c og en $n_0 \ge 1$ slikt at for alle $n \ge n_0$:

$$f(n) \leq cg(n)$$

Eksempel:

$$n^2$$
 er $O(n^3)$: $f(n) = n^2, g(n) = n^3$. Velg: $c = 1$ og $n_0 = 1$. $f(1) = 1, g(1) = 1$, altså $f(1) = 1g(1) = 1$ $f(2) = 4, g(2) = 8$, altså $f(2) < 1g(2) = 8$ Generelt: $f(n) = n^2 \le n^3 = 1g(n)$ for alle $n \ge 1$.

O notasjon – Eksempel

f(n) er O(g(n)) hvis det finnes en konstant c og en $n_0 \ge 1$ slikt at for alle $n \ge n_0$:

$$f(n) \leq cg(n)$$

Eksempel:

$$n^3 + n^2 + 4$$
 er $O(n^3)$:
 $f(n) = n^3 + n^2 + 4$, $g(n) = n^3$.
Velg: $c = 2$ og $n_0 = 2$.
 $f(1) = 6$, $g(1) = 1$, altså $f(1) > 2g(1) = 2$ (!)
 $f(2) = 16$, $g(2) = 8$, altså $f(2) = 2g(2) = 16$
 $f(3) = 40$, $g(3) = 27$, altså $f(3) = 40 < 2g(3) = 56$
Generelt: $f(n) = n^3 + n^2 + 4 < 2n^3 = cg(n)$ for alle $n > 2$.

Oppsummering

ullet K < LOG < LIN < POLY < EXP

Hvordan finne riktig g?

- Det "største leddet" er det som teller:
 - $2^n + n^{23}$ er $O(2^n)$
 - $n^5 + n^4$ er $O(n^5 \text{ (og også, f.eks. } O(2^n))$

Når kan "trege" algoritmer være

bedre enn "raske"?

O-notasjon er forenklende!

- abstreherer bort konstanter, analyse rettet mot store instanser
- men dette kan gjøre en stor forskjell!
- Anta vi har to algoritmer som løser samme problem, en med kjøretid $f_1(n) = 100n^2$ og en med $f_2(n) = n^3$.

- for "store" instanser er $f_1(n) < f_2(n)$
- men for alle n < 100 er $f_2(n) < f_1(n)$
- for små instanser (input størrelse mindre enn 100) er den "trege" algoritmen raskere!

