

 $t(\cdot)$

Graph Contrastive Learning with Stable and Scalable Spectral Encoding

Deyu Bo¹, Yuan Fang², Liu Yang¹, Chuan Shi¹ Beijing University of Posts and Telecommunications¹, Singapore Management University²

 $f(\cdot)$

Graph View Generation

> Spatial Domain

Edge Dropping

Feature Masking

Node Dropping

Learnable (GIB)

- Spectral Domain
- Revisiting Graph Contrastive Learning from the Perspective of Graph Spectrum (NeurIPS 2022)
- Spectral Augmentation for Self-Supervised Learning on Graphs (ICLR 2023)

Spectral View of Graph Graph Eigenvector Eigenvalue Adjacency u_1 **EVD** λ_2 u_2 $u_1|u_2|u_3|u_4|$ u_3 **(4**) u_4 \triangleright Perturb Eigenvalues: $L' = U(\Lambda + \Delta)U^{\mathsf{T}}$, Complexity: $\mathcal{O}(N^2) \sim \mathcal{O}(N^3)$ \triangleright Perturb Eigenvectors : $L = U\Lambda U^{\mathsf{T}} = (U\sqrt{\Lambda})(U\sqrt{\Lambda})^{\mathsf{T}}$, Complexity: $\mathcal{O}(N)$

 $r(\cdot)$

Pitfall of Eigenvectors

>Sign-ambiguity > Basis-ambiguity

 $Lu_i = \lambda_i u_i$

 $Lu_i = \frac{\lambda_i}{\lambda_i}u_i$

 $\boldsymbol{u}_i^{\mathsf{T}} L \boldsymbol{u}_i = (\pm \boldsymbol{u}_i^{\mathsf{T}}) L (\pm \boldsymbol{u}_i)$

 $Lu_i = \frac{\lambda_i}{\lambda_i}u_i$

 W_1

Method: Sp2GCL & EigenMLP

- ➤ Multilayer Perceptron (MLP)
 - Efficient and scalable
 - Sensitive to input
 - $H = \sigma(U\Lambda W)$

 $\left(u_1^i\right)$

≻EigenMLP

- Efficient and scalable
- Invariant to the input
- $H = \sigma(\varphi(U) \rho(\Lambda) W)$

Sign- and Basis-invariant

 \triangleright Sign-invariant function $\varphi(U)$

$$\mathbf{ ilde{U}} = \left[\psi(\phi(\mathbf{u}_i) + \phi(-\mathbf{u}_i))
ight]_{i=1}^N$$

 \triangleright Basis-invariant function $\rho(\Lambda)$

$$\rho(\lambda) = [\sin(\lambda), \cos(\lambda), \cdots \sin(T\lambda), \cos(T\lambda)]$$

➤ Why basis-invariant?

• Eigenvalues are equivariant to the rotation of eigenvectors

Eigenvectors, $N \times k$ Fourier features of eigenvalues, $k \times 2T$

Experiments

			LAPCII					
	Data	Small Graphs (Full-Batch)			Large Graphs (Mini-Batch)			
Model		PubMed	Wiki-CS	Facebook	arXiv	Flickr	PPI	
GCN GAT	$egin{aligned} \mathbf{A}, \mathbf{X}, \mathbf{Y} \ \mathbf{A}, \mathbf{X}, \mathbf{Y} \end{aligned}$	79.0 79.0±0.3	77.19±0.12 77.65±0.11	90.65±0.16 90.47±0.15	71.74±0.29 71.82±0.23	49.20±0.31 54.48±0.21	82.28±0.24 98.85±0.05	
DGI BGRL MVGRL GRACE CCA-SSG	A, X A, X A, X A, X	76.8±0.6 79.6±0.5 80.1±0.7 80.6±0.4 81.0±0.4	75.35±0.14 79.98±0.13 77.52±0.08 80.14±0.48 78.85±0.32	84.42±0.43 89.71±0.35 87.29±0.28 89.32±0.40 89.45±0.60	70.32±0.25 71.54±0.17 - - 71.21±0.20	50.59±0.28 51.87±0.15 - - 51.66±0.10	63.80±0.20 73.63±0.16 71.45±0.14 69.71±0.17 73.34±0.17	
SpCo SPAN	$egin{array}{c} \mathbf{A}, \mathbf{X}, \mathbf{\Lambda} \ \mathbf{A}, \mathbf{X}, \mathbf{\Lambda} \end{array}$	81.5±0.4 81.5±0.2	79.16±0.27 82.13±0.15	89.98±0.45 -	-	- -	-	
Sp ² GCL	$\mathbf{A}, \mathbf{X}, \mathbf{\Lambda}, \mathbf{U}$	82.3±0.3	79.42±0.19	90.43±0.13	71.83±0.19	52.05±0.33	74.28±0.22	

Task	Regres	ssion (Metric: R	MSE ↓)	Classification (Metric: ROC-AUC% ↑)					
Dataset	molesol	mollipo	molfreesolv	molbace	molbbbp	molclintox	moltox21	molsider	
Supervised	1.173±0.057	0.757±0.018	2.755±0.349	72.97±4.00	68.17±1.48	88.14±2.51	74.91±0.51	57.60±1.40	
InfoGraph	1.344±0.178	1.005±0.023	10.005±4.819	74.74±3.64	66.33±2.79	64.50±5.32	69.74±0.57	60.54±0.90	
GraphCL	1.272±0.089	0.910±0.016	7.679±2.748	74.32±2.70	68.22±1.89	74.92±4.42	72.40±1.01	61.76±1.11	
MVGRL	1.433±0.145	0.962±0.036	9.024±1.982	74.20±2.31	67.24±1.39	73.84±4.25	70.48±0.83	61.94±0.94	
JOAO	1.285±0.121	0.865 ± 0.032	5.131±0.722	74.43±1.94	67.62±1.29	78.21±4.12	71.83±0.92	62.73±0.92	
AD-GCL	1.217±0.087	0.842 ± 0.028	5.150±0.624	76.37±2.03	68.24±1.47	80.77±3.92	71.42±0.73	63.19±0.95	
SPAN	1.218±0.052	0.802±0.019	4.531±0.463	76.74±2.02	69.59±1.34	80.28 ± 2.42	72.83±0.62	64.87±0.88	
Sp ² GCL	1 235+0 119	0.835+0.026	4 144+0 573	78 76+1 43	68 72+1 53	80 88+3 86	73 06+0 75	64 23+0 96	