Trabalho 4, Aluno: Erick Amorim Fernandes, Matrícula: 86301, Data 11/10/2020, Disciplina ELT 432

Tabela comparativa de motores de indução.						
Tipo	3 fios	6 fios	12 fios			
Tensão de entrada (V)	220	220/380	220/380/440/760			
Modo de ligação	triângulo	triângulo e estrela	triângulo, estrela, duplo triângulo e dupla estrela.			
Inversão de Rotação	sim	sim	sim			

b)

Para alterar o sentido de rotação de um motor trifásico faz-se necessário realizar a inversão de pelo menos duas fases que alimentam o motor, pois o torque é gerado pelas forças magnéticas de atração e repulsão, desenvolvidas entre os polos magnéticos do rotor e do estator. Essas forças puxam e empurram os polos móveis do rotor, produzindo os torques e fazendo o rotor girar rapidamente até que os atritos ligados ao eixo o reduzam a zero. Depois desse ponto, o rotor passa a girar com velocidade angular constante. Portanto, ao se alterar a ordem de alimentação teremos uma indução magnética no sentido contrário ao original gerando um torque contrário e consequentemente alterando o sentido de direção do motor.

7 – Memorial de cálculo:

a)

Contator:

2
$$CV = 1471 W$$

 $P = V.i \rightarrow In = \frac{P}{V} = \frac{1471}{220} = 6,69 A$
 $Ie \ge In : Ie \ge 6,69 A$

b)

Contator:

$$3 \ CV = 2206,5 \ W$$

$$P = V. \ i \rightarrow In = \frac{P}{V} = \frac{2206,5}{220} = 10,03 \ A$$

$$Ie(k1, k2) \ge 0,58 \ x \ In \ge 5,82 \ A$$

$$Ie(K3) \ge 0,33 \ x \ In \ge 3,31 \ A$$

c)

Contator:

$$2 CV = 1471 W$$

$$P = V. i \rightarrow In = \frac{P}{V} = \frac{1471}{220} = 6,69 A$$

$$Ie(k1, k2) \ge 6,69 A$$

d)

Contator:

$$2 \ CV = 1471 \ W$$

$$P = V.i \rightarrow In = \frac{P}{V} = \frac{1471}{220} = 6,69 \ A$$

$$Ie(k1, k2) \ge 0,58 \ x \ In \ge 3,88 \ A$$

$$Ie(K3) \ge 0,33 \ x \ In \ge 2,21 \ A$$

Relé de Sobrecarga:

Deve conter o valor de corrente In = 6,69A

Fusíveis:

$$\frac{Ip}{In} = 7.5 \to Ip = 7.5 \ x \ 6.69 = 50.175 \ A$$
$$Tp = 2s$$

Relé de Sobrecarga:

Deve conter o valor de corrente $0.58 \times In = 5.82 A$

Fusíveis:

$$Ip, real = \frac{Ip}{In}x In x 0,33 = 23,17 A$$

$$Tp = 5s$$

Relé de Sobrecarga:

Deve conter o valor de corrente In = 6.69A

Fusíveis:

$$\frac{lp}{ln} = 7.5 \to lp = 7.5 \ x \ 6.69 = 50.175 \ A$$
$$Tp = 3s$$

Relé de Sobrecarga:

Deve conter o valor de corrente $0.58 \times In = 3.88 A$

Fusíveis:

$$Ip, real = \frac{Ip}{In}x In x 0,33 = 11,04 A$$
$$Tp = 3s$$

O exemplo de cada componente dimensionado encontra-se na tabela a seguir:

Exemplo dos componentes dimensionados						
Contator	CWB9-11- 30D23	CWB12-11- 30D23	CWB9-11- 30D232	CWB9-11- 30D233		
Preço	R\$ 135,00	R\$ 100,09	R\$ 135,00	R\$ 135,00		
Relé de Sobrecarga	AZ RW17- 1D2- U008	AZ RW17-1D2- D063	AZ RW17- 1D2- U008	AZ RW17- 1D2- U004		
Preço	R\$ 89,06	R\$ 89,06	R\$ 89,06	R\$ 89,06		
Fusíveis	Fusível gL/Gg tipo FDW-16S	Fusível gL/Gg tipo FDW-6S	Fusível gL/Gg tipo FDW- 16S	Fusível gL/Gg tipo FDW-6S		
Preço	R\$ 5,99	R\$ 6,90	R\$ 5,99	R\$ 7,90		
* Todos os produtos foram consultados em https://www.weg.net/						

^{**} O preço de cada produto basea-se em pesquisa de mercado pelo google