

第三讲: Boosting原理——重回XGBoost

AI100学院 2017年6月

Roadmap

- Boosting
- Gradient Boosting
- XGBoost

Boosting

- Boosting: 将弱学习器组合成强分类器
 - 构造一个性能很高的预测(强学习器)是一件很困难的事情
 - 但构造一个性能一般的预测(弱学习器)并不难
 - 弱学习器:性能比随机猜测好(层数不深的CART是一个好选择)
- 亦可视为一种自适应基模型:

$$f(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m \phi_m(\mathbf{x})$$

= 其中 $\phi_m(\mathbf{x})$ 为基函数 / 弱学习器。

► AdaBoost

- 样本权重 / "过滤 "
 - 没有先验知识的情况下,初始的分布为等概分布,即训练集如果有N个样本,每个样本的分布概率为 1/N
 - 每次循环后提高误分样本的分布概率,误分样本在训练集中所占权重增大,使得下一次循环的弱学习器能够集中力量对这些误分样本进行判断
- 模型组合: 弱学习器线性组合
 - 准确率越高的弱学习机权重越高
 - $-f(\mathbf{x}) = \operatorname{sgn}(\sum_{m=1}^{M} \alpha_m \phi_m(\mathbf{x}))$

► AdaBoost M1算法

- 给定训练集: $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$, 其中. $y_i \in \{1, -1\}$ 表示 \mathbf{x}_i 的类别标签
- 训练集上样本的初始分布: $W_{1,i} = \frac{1}{N}$
- $\forall m=1:M$,
- 对训练样本采用权重 $w_{m,i}$ 计算弱分类器 $\phi_m(\mathbf{x})$
- 计算该弱分类器在分布 w_m 上的误差: $\varepsilon_m = \frac{\sum_{i=1}^N w_{m,i} \mathbb{I}(\phi_m(\mathbf{x}_i) \neq \mathbf{y}_i)}{\sum_{i=1}^N w_{m,i}}$
- 计算该弱分类器的权重: $\alpha_m = \frac{1}{2} log \frac{1-\varepsilon_m}{\varepsilon_m}$
- 更新训练样本的分布: $w_{m+1,i} = \frac{w_{m,i}exp(-\alpha_m y_i \phi_m(\mathbf{x}_i))}{Z_m}$

其中 Z_m 为归一化常数,使得 w_{m+1} 是一个分布。

http://www.ai100.ai/

I(condition): 指示 (Indicator) 函数

满足条件值为1,否则为0

▶证明

$$f(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m \phi_m(\mathbf{x})$$

• 1. 对w_{M+1} 进行迭代展开

$$w_{M+1,i} = w_{M,i} \frac{exp(-\alpha_M y_i \phi_M(\mathbf{x}_i))}{Z_M} = w_{1,i} \frac{exp(-y_i \sum_{m=1}^M \alpha_m \phi_m(\mathbf{x}_i))}{\prod_{m=1}^M Z_m}$$
$$= w_{1,i} \frac{exp(-y_i f(\mathbf{x}_i))}{\prod_{m=1}^M Z_m}$$

- 由于 W_{M+1} 是一个分布,所以 $\sum_{i=1}^{N} W_{M+1,i} = 1$
- $\text{FFU}\prod_{m=1}^{M} Z_m = w_{1,i} \sum_{i=1}^{N} exp(-y_i f(\mathbf{x}_i)) = \frac{1}{N} \sum_{i=1}^{N} exp(-y_i f(\mathbf{x}_i))$.

►证明 (cont.)

$$\prod_{m=1}^{M} Z_m = \frac{1}{N} \sum_{i=1}^{N} exp(-y_i f(\mathbf{x}_i))$$

• 2. 训练误差为: $ERR_{train}(f(\mathbf{x})) = \frac{1}{N} |\{i: y_i \neq sgn(f(\mathbf{x}_i))\}|$

$$= \frac{1}{N} \sum_{i=1}^{N} \begin{cases} 1 & y_i \neq sgn(f(\mathbf{x}_i)) \\ 0 & esle \end{cases}$$
 0-1损失
$$\leq \frac{1}{N} \sum_{i=1}^{N} \exp(-y_i f(\mathbf{x}_i))$$
 指数损失
$$= \prod_{m=1}^{M} Z_m$$

►证明 (cont.)

$$\prod_{m=1}^{M} Z_m = \frac{1}{N} \sum_{i=1}^{N} exp(-y_i f(\mathbf{x}_i))$$

$$Z_m = \sum_{i=1}^{N} w_{m,i} exp(-\alpha_m y_i \phi_m(\mathbf{x}_i))$$

- 3. 证明弱分类器权重为 $\alpha_m = \frac{1}{2} \log \frac{1-\varepsilon_m}{\varepsilon_m}$
- 问题:给定弱分类器的集合 $\Delta = \{\phi_1(\mathbf{x}), \dots, \phi_M(\mathbf{x})\}$,确定弱分类器 ϕ_m 及其权重 α_m
- $(\phi, \alpha)^* = \underset{\phi, \alpha}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} exp(-y_i f(\mathbf{x}_i)) = \underset{\phi, \alpha}{\operatorname{argmin}} \prod_{m=1}^{M} Z_m$
- 具体实现时,首先选一个错误率最小的弱分类器 ϕ_m ,然后确定其权重 α_m :
- $\frac{\partial Z_m}{\partial \alpha_m} = \frac{\partial \sum_{i=1}^N w_{m,i} exp(-\alpha_m y_i \phi_m(\mathbf{x}_i))}{\partial \alpha_m}$
- $= -\sum_{i=1}^{N} w_{m,i} y_i \phi_m(\mathbf{x}_i) exp(-\alpha_m y_i \phi_m(\mathbf{x}_i))$

 $\prod_{m=1}^{M} Z_m = \frac{1}{N} exp(-y_i f(\mathbf{x}_i))$

$$Z_m = \sum_{i=1}^N w_{m,i} exp(-\alpha_m y_i \phi_m(\mathbf{x}_i))$$

•
$$\frac{\partial Z_m}{\partial \alpha_m} = -\sum_{i=1}^N w_{m,i} y_i \phi_m(\mathbf{x}_i) exp(-\alpha_m y_i \phi_m(\mathbf{x}_i))$$

•
$$= \begin{cases} -\sum_{\mathbf{x}_i \in A} w_{m,i} exp(-\alpha_m) & \text{if } \mathbf{x}_i \in A, A = \{\mathbf{x}_i : y_i \phi_m(\mathbf{x}_i) = 1\} \end{cases}$$
 分类正确的样本集合
$$\sum_{\mathbf{x}_i \in \bar{A}} w_{m,i} exp(\alpha_m) & \text{if } \mathbf{x}_i \in \bar{A}, \bar{A} = \{\mathbf{x}_i : y_i \phi_m(\mathbf{x}_i) = -1\}$$
 分类错误的样本集合

•
$$\frac{\partial Z_m}{\partial \alpha_m} = 0 = \sum_{\mathbf{x}_i \in A} w_{m,i} \exp(-\alpha_m) = \sum_{\mathbf{x}_i \in \bar{A}} w_{m,i} \exp(\alpha_m)$$
 两边同乘以 $\exp(\alpha_m)$

•
$$\sum_{\mathbf{x}_{i} \in A} w_{m,i} = exp(2\alpha_{m}) \sum_{\mathbf{x}_{i} \in \bar{A}} w_{m,i} \longrightarrow 1 - \varepsilon_{m} = \varepsilon_{m} exp(2\alpha_{m})$$

 $\alpha_m = \frac{1}{2} \log \frac{1 - \varepsilon_m}{\varepsilon_m}$ 错误率小的弱分类器的权重更大

http://www.ai100.ai/

Gradient Boosting

▶前向逐步递增

Forward stagewise additive modeling

- 还可以从另外一个角度来看AdaBoost:前向逐步递增
 - 要找到最优的 ƒ 很难 → 每次递增
- 损失函数: *L*(*f*(**x**), *y*)
- 目标函数: $\min_{f} \frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i), y_i)$
- 前向逐步递增
 - 初始化: $f_0(\mathbf{x}) = \underset{f}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i), y_i)$

$$f_m(\mathbf{x}_i) = f_{m-1}(\mathbf{x}_i) + \beta_m \phi_m(\mathbf{x}_i)$$
 前向逐步递增 http://www.ai100.ai/

► AdaBoost as前向逐步递增

- 将指数损失 $L(f(\mathbf{x}), y) = exp(-yf(\mathbf{x}))$ 代入,
- 第m步,最小化
- $L_m = \sum_{i=1}^{N} L(f(\mathbf{x}_i), y_i)$
- $= \sum_{i=1}^{N} exp\left(-y_i(f_{m-1}(\mathbf{x}_i) + \beta\phi(\mathbf{x}_i))\right)$
- $= \sum_{i=1}^{N} \underbrace{exp(-y_i f_{m-1}(\mathbf{x}_i))} exp(-y_i \beta \phi(\mathbf{x}_i))$
- $= \left(e^{-\beta} \sum_{\mathbf{y}_i = \phi(\mathbf{x}_i)} w_{m,i} + e^{\beta} \sum_{\mathbf{y}_i \neq \phi(\mathbf{x}_i)} w_{m,i} \right)$

$$= ((e^{\beta} - e^{-\beta}) \sum_{i=1}^{N} w_{m,i} \mathbb{I}(y_i \neq \phi(\mathbf{x}_i)) + (e^{-\beta}) \sum_{i=1}^{N} w_{m,i})$$

 $\begin{cases} y_i = \phi(\mathbf{x}_i) & y_i \phi(\mathbf{x}_i) = 1 \\ y_i \neq \phi(\mathbf{x}_i) & y_i \phi(\mathbf{x}_i) = -1 \end{cases}$

► AdaBoost as前向逐步递增(cont.)

•
$$L_m = ((e^{\beta} - e^{-\beta}) \sum_{i=1}^N w_{m,i} \mathbb{I}(y_i \neq \phi(\mathbf{x}_i)) + (e^{-\beta}) \sum_{i=1}^N w_{m,i})$$

• 得到 $\phi_m(\mathbf{x}) = \underset{\phi}{\operatorname{argmin}} \sum_{i=1}^N w_{m,i} \mathbb{I} \left(y_i \neq \phi(\mathbf{x}_i) \right)$,即最佳的 ϕ_m 为错误率最小的弱分类器。

推导过程同之前的 $\frac{\partial Z_m}{\partial \alpha_m}$ 推导

• 将
$$\phi_m$$
代入 L_m ,并令 $\frac{\partial L_m}{\partial \beta_m} = 0 = > \beta_m = \frac{1}{2} \log \frac{1 - \varepsilon_m}{\varepsilon_m}$,

• 其中错误率
$$\varepsilon_m = \sum_{i=1}^N w_{m,i} \, \mathbb{I}(y_i \neq \phi_m(\mathbf{x}_i)) / \sum_{i=1}^N w_{m,i}$$
。

▶前向逐步递增—其他损失函数

- 指数损失对outliers比较敏感,而且也不是任何二值变量y 的概率密度取log后的表示。
- 因此另一种选择是损失函数取负log似然损失,得到 logitBoost.
- 对回归问题,损失函数可取L2损失,得到L2boosting

► L2Boosting

- 对L2损失: $L(f(\mathbf{x}), y) = (f(\mathbf{x}) y)^2$ - 初始化: $f_0(\mathbf{x}) = \overline{y}$
- 在第m步,损失函数的形式为
- $L(f_{m-1}(\mathbf{x}_i) + \beta_m \phi_m(\mathbf{x}_i), y_i) = (f_{m-1}(\mathbf{x}_i) + \beta_m \phi_m(\mathbf{x}_i) y_i)^2$
- = $\left(-\left(y_i f_{m-1}(\mathbf{x}_i)\right) + \beta_m \phi_m(\mathbf{x}_i)\right)^2 = \left(r_{m,i} \beta_m \phi_m(\mathbf{x}_i)\right)^2$
- 其中 $r_{m,i} = f_{m-1}(\mathbf{x}_i) y_i$
- 不失一般性,假设 $\beta=1$,因此用弱学习器来预测残差 $r_{m,i}$,称为L2Boosting。

► Shrinkage

• 通常对系数增加一个小的收缩因子(XGBoost中称为学习率), 测试性能更好,即

$$f_m(\mathbf{x}_i) = f_{m-1}(\mathbf{x}_i) + \eta \beta_m \phi_m(\mathbf{x}_i)$$

• 其中 $0 < \eta < 1$,通常取一个较小的值,如 $\eta = 0.1$ 。

• 较小的收缩因子通常意味着更多弱分学习器。

► Boosting as 函数梯度下降

• 前向逐步递增建模部分我们讨论了不同损失函数对应的 boosting算法,其实可推导更一般的模型: gradient boosting

- 目标: $\min_{\mathbf{f}} \frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i), y_i)$,
- 其中 $\mathbf{f} = \{f(\mathbf{x}_1), ..., f(\mathbf{x}_N)\}$ 为"参数"

• 优化:逐步梯度下降 (stagewise, gradient boosting)

► Gradient Boosting

- 目标: $\min_{\mathbf{f}} \frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i), y_i)$,
- 在第m步 , $\mathbf{f} = \mathbf{f}_{m-1}$
- 梯度为: $g_{m,i} = \left[\frac{\partial L(y_i, f(\mathbf{x}_i))}{\partial f(\mathbf{x}_i)}\right]_{\mathbf{f} = \mathbf{f}_{m-1}}$
- 然后更新: $\mathbf{f} = \mathbf{f}_{m-1} \beta_m \mathbf{g}_m$,其中 $\mathbf{g}_m = (g_{m,1}, ..., g_{m,N})^T$
- 其中 $\beta_m = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} L(f_{m-1}(\mathbf{x}_i) \beta g_{m,i}, y_i)$ 为步长

► Gradient Boosting

- 上述算法只在N个数据点优化f
- 将上述算法修改为用一个弱学习器近似负梯度,即

•
$$\phi_m = \underset{\phi}{\operatorname{argmin}} \sum_{i=1}^{N} \left(-g_{m,i} - \phi(\mathbf{x}_i) \right)^2$$

- 对上述算法,损失函数取L2,得到L2Boosting
- 该一般框架对很多损失函数都适用
 - Logistic损失

► Gradient Boosting Algorithm

- 1. Initialize $f_0(\mathbf{x}) = \underset{f}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(\mathbf{x}_i))$
- 2. **for** m = 1:M **do**
- 3. Compute the gradient residual using $r_{m,i} = -\left[\frac{\partial L(y_i, f(\mathbf{x}_i))}{\partial f(\mathbf{x}_i)}\right]_{\mathbf{f} = \mathbf{f}_{m-1}}$
- 4. Use the weak learner which minimizes $\sum_{i=1}^{N} \left(r_{m,i} \phi_m(\mathbf{x}_i) \right)^2$
- 5. Update $f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \eta \phi_m(\mathbf{x})$
- 6. return $f(\mathbf{x}) = f_M(\mathbf{x})$

► Scikit-learn中的GBM

- 分类器: GradientBoostingClassifier
- sklearn.ensemble.**GradientBoostingClassifier**(loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_split=1e-07, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto')
 - 由于弱学习器为CART,所以很多参数与树模型的参数相同
 - 额外的参数(红色)主要关于弱学习器组合

参数	说明
loss	待优化的目标函数,'deviance'表示采用logistic损失,输出概率值;'exponential'表示采用指数损失。缺省'deviance'
learning_rate	学习率或收缩因子。学习率和迭代次数 / 弱分类器数目n_estimators相关。 缺省:0.1
n_estimators	当数 / 弱分类器数目. 缺省:100
subsample	学习单个弱学习器的样本比例。缺省为:1.0

► XGBoost

- XGBoost : eXtreme Gradient Boosting
 - 可自定义损失函数:损失函数采用二阶近似
 - 规范化的正则项:叶子节点数目、叶子结点的分数
 - 建树与剪枝:先建完全树后剪枝
 - 支持分裂点近似搜索
 - 稀疏特征处理
 - 缺失值处理
 - 特征重要性与特征选择
 - 并行计算

▼ 内存缓存

▶损失函数的二阶近似

 Gradient Boosting算法虽然对常见损失函数适用,但除了 L2损失函数,其他损失函数推导还是比较复杂

• XGBoost:对损失函数用二阶Taylor展开近似

► 损失函数的二阶近似 $f(x + \Delta x) \cong f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)\Delta x^2$

$$f(x + \Delta x) \cong f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)\Delta x^2$$

- XGBoost: 对损失函数的二阶Taylor展开近似
- 在第m步时,令 $g_{m,i} = \left[\frac{\partial L(f(\mathbf{x}_i), y_i)}{\partial f(\mathbf{x}_i)}\right]_{\mathbf{f} = \mathbf{f}_{m-1}}$, $h_{m,i} = \left[\frac{\partial^2 L(f(\mathbf{x}_i), y_i)}{\partial^2 f(\mathbf{x}_i)}\right]_{\mathbf{f} = \mathbf{f}_{m-1}}$
- $L(y_i, f_{m-1}(\mathbf{x}_i) + \phi(\mathbf{x}_i)) = L(f_{m-1}(\mathbf{x}_i), y_i) + g_{m,i} \phi(\mathbf{x}_i) + \frac{1}{2} h_{m,i} \phi(\mathbf{x}_i)^2$ 与未知量 $\phi(\mathbf{x}_i)$ 无关
- $\text{FFILL}(f_{m-1}(\mathbf{x}_i) + \phi(\mathbf{x}_i), y_i) = g_{m,i} \phi(\mathbf{x}_i) + \frac{1}{2} h_{m,i} \phi(\mathbf{x}_i)^2$
- 对L2损失, $L(f(\mathbf{x}; \boldsymbol{\theta}), y) = \frac{1}{2}(f(\mathbf{x}; \boldsymbol{\theta}) y)^2$, $\nabla_f L(\boldsymbol{\theta}) = f(\mathbf{x}; \boldsymbol{\theta}) y$, $\nabla_f^2 L(\boldsymbol{\theta}) = 1$
- $\text{FIL}g_{m,i} = f_{m-1}(\mathbf{x}_i) y_i, \quad h_{m,i}=1$

▶树

- Recall: 树的定义: 把树拆分成结构部分q和叶子分数部分w
- $\phi(\mathbf{x}) = w_{q(\mathbf{x})}$, $\mathbf{w} \in R^T$, $q: R^D \to \{1, ..., T\}$
 - 结构函数q:把输入映射到叶子的索引号
 - w:给出每个索引号对应的叶子的分数
 - T为树中叶子结点的数目, D为特征维数

http://www.ai100.ai/

▶树的复杂度

- 树的复杂度定义为(不是唯一的定义方式)
- $\Omega(\phi(\mathbf{x})) = \gamma T + \frac{1}{2}\lambda \sum_{t=1}^{T} w_t^2$
 - 叶子节点的数目、叶子节点分数的L2正则

w3 = -1

http://www.ai100.ai/

▶目标函数

- 令每个叶子t上的样本集合为 $I_t = \{i | q(\mathbf{x}_i) = t\}$
- $J(\mathbf{\theta}) = \sum_{i=1}^{N} L(f(\mathbf{x}_i; \mathbf{\theta}), y_i) + \Omega(\mathbf{\theta})$
- $\cong \sum_{i=1}^{N} g_{m,i} \phi(\mathbf{x}_i) + \frac{1}{2} h_{m,i} \phi(\mathbf{x}_i)^2 + \gamma T + \frac{1}{2} \lambda \sum_{t=1}^{T} w_t^2$
- $= \sum_{i=1}^{N} g_{m,i} w_{q(\mathbf{x}_i)} + \frac{1}{2} h_{m,i} w_{q(\mathbf{x}_i)}^2 + \gamma T + \frac{1}{2} \lambda \sum_{t=1}^{T} w_t^2$
- $= \sum_{t=1}^{T} \left| \sum_{i \in I_{t}} g_{m,i} w_{t} + \frac{1}{2} \sum_{i \in I_{t}} h_{m,i} w_{t}^{2} + \frac{1}{2} \lambda \sum_{t=1}^{T} w_{t}^{2} \right| + \gamma T$
- $= \sum_{t=1}^{T} \left[\underbrace{\sum_{i \in I_t} g_{m,i}}_{C} w_t + \frac{1}{2} \left(\underbrace{\sum_{i \in I_t} h_{m,i}}_{H} + \lambda \right) w_t^2 \right] + \gamma T$

 $= \sum_{t=1}^{T} \left| G_t w_t + \frac{1}{2} (H_t + \lambda) w_t^2 \right| + \gamma T$ http://www.ai100.ai/

`独立的二次函数之和

▶目标函数

- 假设我们已经知道树的结构q,
- $J(\mathbf{\theta}) = \sum_{t=1}^{T} \left[G_t w_t + \frac{1}{2} (H_t + \lambda) w_t^2 \right] + \gamma T$
- $\mathbb{I} = \frac{\partial J(\theta)}{\partial w_t} = G_t + (H_t + \lambda)w_t = 0$
- 得到最佳的 $\mathbf{w}: w_t = -\frac{G_t}{H_t + \lambda}$
- 以及最佳的w对应的目标函数,可视为树的分数:
- $J(\mathbf{\theta}) = -\frac{1}{2} \sum_{t=1}^{T} \left[\frac{G_t^2}{H_t + \lambda} \right] + \gamma T$ 分数越小的树越好!

例:树的分数

Instance index

gradient statistics

1

g1, h1

2

g2, h2

3

g3, h3

4

g4, h4

5

g5, h5

$$Obj = -\sum_{j} \frac{G_j^2}{H_j + \lambda} + 3\gamma$$

The smaller the score is, the better the structure is

▶建树

- 枚举可能的树结构
- 计算结构分数

•
$$J(\mathbf{\theta}) = -\frac{1}{2} \sum_{t=1}^{T} \left[\frac{G_t^2}{H_t + \lambda} \right] + \gamma T$$

• 选择分数最小的树结构,并且运用最优的权重/分数

但是,树结构有很多可能 → 贪心算法

►建树 (cont.)

- 实践中,我们贪婪的增加树的叶子结点数目:
- (1)从深度为0的树开始
- (2)对于树的每个叶子节点,尝试增加一个分裂点:
 - 令 I_L 和 I_R 分别表示加入分裂点后左右叶子结点的样本集合 , $I=I_L\cup I_R$,
 - $-G_L=\sum_{i\in I_L}g_{m,i}$, $G_R=\sum_{i\in I_R}g_{m,i}$, $H_L=\sum_{i\in I_L}h_{m,i}$, $H_R=\sum_{i\in I_R}h_{m,i}$,
 - 则增加分裂点后目标函数的变化为

$$Gain = \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G_L^2 + G_R^2}{H_L + H_R + \lambda} - \gamma$$

•_ 但是:怎么找到最优的分裂点?

▶建树——精确搜索算法

- 对每一个结点,穷举所有特征、所有可能的分裂点
 - 对每个特征,通过特征值将实例进行排序
 - 运用线性扫描来寻找该特征的最优分裂点
 - 对所有特征,采用最佳分裂点

- 深度为k的树的时间复杂度:
 - 对于一层排序,需要时间Nlog(N),N为样本数目
- 由于有D个特征, k层, 所以为kDNlog(N)

Algorithm 1: Exact Greedy Algorithm for Split Finding

Input: I, instance set of current node

Input: D, feature dimension

 $qain \leftarrow 0$

$$G \leftarrow \sum_{i \in I} g_i, H \leftarrow \sum_{i \in I} h_i$$

for k = 1 to D do (\sqrt{y}) (\sqrt{y})

$$G_L \leftarrow 0, \ H_L \leftarrow 0$$

 $\mathbf{for}\ j\ in\ sorted(I,\ by\ \mathbf{x}_{jk})\ \mathbf{do}$ (以第k维特征为分裂特征,第j个样本 \mathbf{x}_{jk} 的值为阈值)

$$G_L \leftarrow G_L + g_j, \ H_L \leftarrow H_L + h_j$$

$$G_L \leftarrow G_L + g_j, \ H_L \leftarrow H_L + h_j$$

$$G_R \leftarrow G - G_L, \ H_R \leftarrow H - H_L$$

$$score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda})$$

end

end

Output: Split with max score

▶建树——近似搜索算法

- 当数据太多不能装载到内存时,不能进行精确搜索分裂,只能
 - 根据特征分布的百分位数,提出特征的一些候选分裂点
 - 将连续特征值映射到桶里(候选点对应的分裂),然后根据桶里 样本的统计量,从这些候选中选择最佳分裂点
- 根据候选提出的时间,分为
 - 全局近似:在构造树的初始阶段提出所有的候选分裂点,然后对 各个层次采用相同的候选
 - 提出候选的次数少,但每次的候选数目多(因为候选不更新)
- □ 局部近似:在每次分裂都重新提出候选 □ 对层次较深的树更适合

Algorithm 2: Approximate Algorithm for Split Finding

for k = 1 to D do

Propose $S_k = \{s_{k1}, s_{k2}, \dots s_{kl}\}$ by percentiles on feature k.

Proposal can be done per tree (global), or per split(local).

end

for k = 1 to D do

$$G_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \geq \mathbf{x}_{jk} > s_{k,v-1}\}} g_j$$

$$H_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \geq \mathbf{x}_{jk} > s_{k,v-1}\}} h_j$$

end

Follow same step as in previous section to find max score only among proposed splits.

▶建树——稀疏特征

- 在实际任务中, 极有可能遇到稀疏特征
 - 缺失数据
 - 人工设计的特征: 如one-hot编码

• XGBoost:在树的每个结点设置一个缺省方向

Example	Age	Gender
X1	?	male
X2	15	?
Х3	25	female

建树

稀疏特征

- 统一的稀疏特征处理方案: 将稀疏特征视为缺失值
- 最佳缺省方向确定:
 - 只访问非缺失数据
 - 一 计算复杂度与非缺失数据数目 线性相关

在数据高度稀疏的 Allstate-10K数据 集上稀疏算法比基 本算法快近50倍


```
Algorithm 3: Sparsity-aware Split Finding
```

Input: I instance set of current node
Input: I instance set of current node
Input: I D, $\{i \in I | x_{ik} \neq \text{missing}\}$ Input: d, feature dimension
Also applies to the approximate setting, only collect statistics of non-missing entries into buckets $gain \leftarrow 0$ $G \leftarrow \sum_{i \in I} a_i A_i D = \sum_{i \in I} h_i$

$$G \leftarrow \sum_{i \in I}, g_i, l^{-D} - \sum_{i \in I} h_i$$
 for $k = 1$ to m do (假设缺省方向为右边)

// enumerate missing value goto right $G_L \leftarrow 0, \ H_L \leftarrow 0$ for j in $sorted(I_k, ascent order by <math>\mathbf{x}_{jk})$ do $G_L \leftarrow G_L + g_j, \ H_L \leftarrow H_L + h_j$ $G_R \leftarrow G - G_L, \ H_R \leftarrow H - H_L$ $score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda})$ end (假设缺省方向为左边) // enumerate missing value goto left $G_R \leftarrow 0, \ H_R \leftarrow 0$ for j in $sorted(I_k, descent order by <math>\mathbf{x}_{jk})$ do $G_R \leftarrow G_R + g_j, \ H_R \leftarrow H_R + h_j$ $G_L \leftarrow G - G_R, \ H_L \leftarrow H - H_R$

end

end

Output: Split and default directions with max gain

 $score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_D + \lambda} - \frac{G^2}{H + \lambda})$

http://www.ai100.ai/

▶剪枝和正则

• Recall 分裂的增益:

$$Gain = \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G_L^2 + G_R^2}{H_L + H_R + \lambda} - \gamma$$

- 增益可能为负:引入新叶子有复杂度惩罚
- 提前终止
 - 如果出现负值,提前停止(scikit-learn中采用的策略)
 - 但被提前终止掉的分裂可能其后续的分裂会带来好处
- 过后剪枝
 - 将树分裂到最大深度,然后再基于上述增益计算剪枝
 - **_** 有必要:在实现时还有学习率 / 收缩 , 给后续轮留机会 , 进一步防止
- 过拟合: $f_m(\mathbf{x}_i) = f_m(\mathbf{x}_i) + \eta \phi_m(\mathbf{x}_i)$

▶再探XGBoost

- xgboost.**XGBClassifier**(max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective='binary:logistic', nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5, random_state=0, seed=None, missing=None, **kwargs)
- sklearn.ensemble.**GradientBoostingClassifier**(*loss='deviance'*, *learning_rate=0.1*, *n_estimators=100*, *subsample=1.0*, *criterion='friedman_mse'*, *min_samples_split=2*, *min_samples_leaf=1*, *min_weight_fraction_leaf=0.0*, *max_depth=3*, *min_impurity_split=1e-07*, *init=None*, *random_state=None*, *max_features=None*, *verbose=0*, *max_leaf_nodes=None*, *warm_start=False*, *presort='auto'*)

参数	说明
max_depth	树的最大深度。树越深通常模型越复杂,更容易过拟合
learning_rate	学习率或收缩因子。学习率和迭代次数 / 弱分类器数目n_estimators相关。 缺省:0.1 (与直接调用xgboost的eta参数含义相同)
n_estimators	弱分类器数目. 缺省:100
slient	参数值为1时,静默模式开启,不输出任何信息
objective	待优化的目标函数,常用值有: binary:logistic 二分类的逻辑回归,返回预测的概率 multi:softmax 使用softmax的多分类器,返回预测的类别(不是概率)。 multi:softprob 和 multi:softmax参数一样,但是返回的是每个数据属于各个类别的概率。支持用户自定义目标函数
nthread	用来进行多线程控制。 如果你希望使用CPU全部的核,那就不用缺省值-1,算法会自动检测它。
booster	选择每次迭代的模型,有两种选择: gbtree:基于树的模型,为缺省值。 gbliner:线性模型
gamma	节点分裂所需的最小损失函数下降值
min_child_weight	叶子结点需要的最小样本权重 (hessian) 和
max_delta_step	允许的树的最大权重

勾造每棵树的所用样本比例(样本采样比例),同GBM
勾造每棵树的所用特征比例
对在每层每个分裂的所用特征比例
」,正则的惩罚系数
2 正则的惩罚系数
E负样本的平衡,通常用于不均衡数据
事个样本的初始估计,全局偏差
道机种 了
道机种 了
当数据缺失时的填补值。缺省为np.nan
KGBoost Booster的Keyword参数

▶特征重要性

- 采用树集成学习(如Gradient Boosting)的好处之一是可以从训练好的预测模型得到特征的重要性
- 单棵树中的特征重要性:每个特征分裂点对性能的提 升量,并用每个结点的样本数加权。
 - 性能测量可以是用于选择分裂点的指标(纯度)或其他更特别的误差函数
- 整个模型中的特征重要性:模型中每棵树的平均

▶特征重要性(cont.)

- 在XGBoost中已经自动算好,存放在feature_importances_
 - from matplotlib import pyplotpyplot.bar(range(len(model_XGB.feature_importances_)), model_XGB.feature_importances_)
 - pyplot.show()
 - 按特征顺序打印
- 还可以使用XGBoost内嵌的函数,按特征重要性排序
 - from xgboost import plot_importance
 - plot_importance(model_XGB)
 - = pyplot.show()

例:蘑菇数据集的特征重要性

▶特征选择

- 可以根据特征重要性进行特征选择
 - from sklearn.feature_selection import SelectFromModel
- 输入一个(在全部数据集上)训练好的模型
- 给定阈值,重要性大于阈值的特征被选中
 - selection = SelectFromModel(model, threshold=thresh, prefit=True)select_X_train = selection.transform(X_train)

例:蘑菇数据集上的特征选择

- Thresh=0.000, n=22, Accuracy: 100.00%
- Thresh=0.004, n=18, Accuracy: 100.00%
- Thresh=0.004, n=18, Accuracy: 100.00%
- Thresh=0.004, n=18, Accuracy: 100.00%
- Thresh=0.013, n=15, Accuracy: 100.00%
- 1111 esi1 = 0.013, ii = 13, 1 te curue y. 100.0070
- Thresh=0.013, n=15, Accuracy: 100.00%
- Thresh=0.013, n=15, Accuracy: 100.00%
- Thresh=0.019, n=12, Accuracy: 100.00%
- Thresh=0.030, n=11, Accuracy: 100.00%
- Thresh=0.032, n=10, Accuracy: 100.00%
- Thresh=0.036, n=9, Accuracy: 100.00%
- Thresh=0.043, n=8, Accuracy: 100.00%
- 1111esti=0.043, ii=8, Accuracy. 100.00%
- Thresh=0.043, n=8, Accuracy: 100.00%
- Thresh=0.043, n=8, Accuracy: 100.00%
- Thresh=0.047, n=5, Accuracy: 100.00%
- Thresh=0.051, n=4, Accuracy: 99.51%

Thresh=0.083, n=3, Accuracy: 99.45%

• Thresh=0.152, n=2, Accuracy: 99.45%

5个特征就足够好了:odor spore-print-color

population

gill-spacing

gill-size

http://www.ai100.ai/

► Kaggle案例: Higgs Boson竞赛

- 竞赛官网: https://www.kaggle.com/c/higgs-boson/
- 两类分类任务:将事件分类为"tau tau decay of a Higgs boson" 或 "background"
 - 每个事件有一个ID,30个特征,权重,和标签
 - 用交叉验证选择迭代次数:3_HiggsBoson_cv.ipynb
 - 与sklearn中的GBM速度与性能比较(3_higgsboson_speed.ipynb)

THANK YOU

北京智百科技有限公司

