An Introduction to amang

Shixiang Chen, Justin Huang, Benjamin Jochem, Lingzhou Xue, Hui Zou

2022-10-02

Contents

- Introduction
 - Algorithm
 - Convergence
 - Pseudocode
- Installation
- Documentation
 - R Usage
 - Python Usage
 - Arguments
 - Values
- Quick Start
 - R Quick Start
 - Python Example
- References

Introduction

sparsepca and amanpg find sparse loadings in principal component analysis (PCA) via an alternating manifold proximal gradient method (A-ManPG). Seeking a sparse basis allows the leading principal components to be easier to interpret when modeling with high-dimensional data. PCA is modeled as a regularized regression problem under the elastic net constraints (linearized L1 and L2 norms) in order to induce sparsity. Due to the nonsmoothness and nonconvexity numerical difficulties, A-ManPG is implemented to guarantee convergence.

The package provides a function for performing sparse PCA and a function for normalizing data.

The authors of A-ManPG are Shixiang Chen, Shiqian Ma, Lingzhou Xue, and Hui Zou. The Python and R packages are maintained by Justin Huang and Benjamin Jochem. A MATLAB implementation is maintained by Shixiang Chen.

Algorithm Description The A-ManPG algorithm can be applied to solve the general manifold optimization problem

$$\min F(A,B) := H(A,B) + f(A) + g(B) \text{ subject to (s.t.) } A \in \mathcal{M}_1, B \in \mathcal{M}_2$$
 (1)

where H(A, B) is a smooth function of A, B with a Lipschitz continuous gradient, $f(\cdot)$ and $g(\cdot)$ are lower semicontinuous (possibly nonsmooth) convex functions, and $\mathcal{M}_1, \mathcal{M}_2$ are two embedded submanifolds in the Euclidean space.

For sparse PCA, the following function definitions are used:

- $H(A,B) = \text{Tr}(B^T X^T X B) 2\text{Tr}(A^T X^T X B)$
- $f(A) \equiv 0$

- $g(B) = \lambda_2 \sum_{j=1}^k \|B_j\|_2^2 + \sum_{j=1}^k \lambda_{1,j} \|B_j\|_1$ $\mathcal{M}_1 = \operatorname{St}(p,k)$ $\mathcal{M}_2 = \mathbb{R}^{p \times k}$

where X is the $n \times p$ data matrix or $n \times n$ covariance matrix, A is the scores and B is the loadings, k is the rank of the matrices (in other words, how many principal components are desired), λ_1 is the L1 norm penalty and λ_2 is the L2 norm penalty. Both the L1 and L2 norm are used as elastic net regularization to impose sparseness within the loadings. Note that a different L1 norm penalty is used for every principal component, and the algorithm operates differently when the L2 norm penalty is set to a large constant (np.inf or Inf).

The A-ManPG algorithm uses the following subproblems with an alternating updating scheme to solve sparse PCA, computed in a Gauss-Seidel manner for faster convergence.

$$D_k^A := \arg\min_{D^A} \langle \nabla_A H(A_k, B_k), D^A \rangle + f(A^k + D^A) + \frac{1}{2t_1} \|D^A\|_F^2 \quad \text{s.t.} \quad D^A \in \mathcal{T}_{A_k} \mathcal{M}_1$$
 (2)

$$D_k^B := \arg\min_{D^B} \langle \nabla_A H(A_{k+1}, B_k), D^B \rangle + f(B^k + D^B) + \frac{1}{2t_2} ||D^B||_F^2 \quad \text{s.t.} \quad D^B \in \mathcal{T}_{B_k} \mathcal{M}_2$$
 (3)

where A_{k+1} is obtained via a retraction operation (in this case, polar decomposition), $t_1 \leq L_A$, and $t_2 \leq L_B$. L_A and L_B are the least upper bounds of the Lipschitz constants for $\nabla_A H(A,B)$ and $\nabla_B H(A,B)$, respectively. The subproblems are solved using an adaptive semismooth Newton method.

Convergence Let ϵ represent a tolerance level to detect convergence. An ϵ -stationary point is defined as a point (A, B) with corresponding D^A and D^B that satisfy the following:

$$||D^A/t_1||_F^2 + ||D^B/t_2||_F^2 \le \epsilon^2 \tag{4}$$

The algorithm reaches an ϵ -stationary point in at most

$$\frac{2(F(A_0, B_0) - F^*)}{((\gamma \bar{\alpha}_1 t_1 + \gamma \bar{\alpha}_2 t_2)\epsilon^2)}$$

iterations, where:

- (A_0, B_0) are the initial values
- F^* is the lower bound of F, from the general manifold optimization problem
- $\bar{\alpha}_1$ and $\bar{\alpha}_2$ are positive constants

Pseudocode The following describes the algorithm used for solving the general manifold optimization problem using A-ManPG. For solving sparse PCA, the algorithm is implemented with the aforementioned definitions.

```
Input initial point (A0,B0) and necessary parameters for the required problem
for i=0,1,... do
  Solve the first subproblem for Da
  Set alpha = 1
  while F(Retr(alpha * Da), B) > F(A, B) - alpha * norm(Da)^2 / (2 * t1) do
    alpha = gamma * alpha
  end while
  Set A = Retr(alpha * Da)
```

```
Solve the second subproblem for Db
Set alpha = 1

while F(A,Retr(alpha * Db)) > F(A,B) - alpha * norm(Db)^2 / (2 * t2) do
    alpha = gamma * alpha
    end while

Set B = Retr(alpha * Db)
end for

Return A as the scores and B as the sparse loadings
```

Installation

To install the R package, install amanpg directly from CRAN.

```
install.packages("amanpg")
```

To install the Python package, use pip to obtain sparsepca from PyPI. pip3 install sparsepca

Documentation

```
spca.amanpg(z, lambda1, lambda2,
    f_palm = 1e5, x0 = NULL, y0 = NULL, k = 0, type = 0,
    gamma = 0.5, maxiter = 1e4, tol = 1e-5,
    normalize = TRUE, verbose = FALSE)
```

R Usage

```
spca(z, lambda1, lambda2,
    x0=None, y0=None, k=0, gamma=0.5, type=0,
    maxiter=1e4, tol=1e-5, f_palm=1e5,
    normalize=True, verbose=False):
```

Python Usage

Arguments

Name	Python Type	R Type	Description
z	numpy.ndarray	matrix	Either the data matrix or sample covariance matrix
lambda1	float list	numeric vector	List of parameters of length n for L1-norm penalty
lambda2	float or numpy.inf	numeric or Inf	L2-norm penalty term

Name	Python Type	R Type	Description
x0	numpy.ndarray	matrix	Initial x-values for the gradient method, default value is the first n right singular vectors
у0	numpy.ndarray	matrix	Initial y-values for the gradient method, default value is the first n right singular vectors
k	int	int	Number of principal components desired, default is 0 (returns min(n-1, p) principal components)
gamma	float	numeric	Parameter to control how quickly the step size changes in each iteration, default is 0.5
type	int	int	If 0, b is expected to be a data matrix, and otherwise b is expected to be a covariance matrix; default is 0
maxiter	int	int	Maximum number of iterations allowed in the gradient method, default is 1e4
tol	float	numeric	Tolerance value required to indicate convergence (calculated as difference between iteration f-values), default is 1e-5
f_palm	float	numeric	Upper bound for the F-value to reach convergence, default is 1e5
normalize	bool	logical	Center and normalize rows to Euclidean length 1 if True, default is True
verbose	bool	logical	Function prints progress between iterations if True, default is False

Values Python returns a dictionary with the following key-value pairs, while R returns a list with the following elements:

Key	Python Value Type	R Value Type	Value
loadings	numpy.ndarray	matrix	Loadings of the sparse principal components
f_manpg	float	numeric	Final F-value
х	numpy.ndarray	matirx	Corresponding ndarray in subproblem to the loadings
iter	int	numeric	Total number of iterations executed
sparsity	float	numeric	Number of sparse loadings (loadings == 0) divided by number of all loadings
time	float	numeric	Execution time in seconds

Quick Start

Consider the two examples below for running sparse PCA on randomly-generated data: one using a finite λ_2 , and the other using a large constant λ_2 .

R Example As with other libraries, begin by loading amanpg in R.

```
library(amanpg)
```

Before proceeding, it is helpful to determine a few parameters. Let the rank of the sparse loadings matrix be k=4 (returning four principal components), the input data matrix be $n \times p$ where n=1000 and p=500, λ_1 be a 4×1 "matrix" where $\lambda_{i,1}=0.1$, and $\lambda_2=1$.

```
# parameter initialization
k <- 4
n <- 1000
p <- 500
lambda1 <- matrix(data=0.1, nrow=k, ncol=1)
lambda2 <- 1</pre>
```

For this example, the data matrix **z** is randomly generated from the normal distribution. Although it should be centered to mean 0 and normalized to Euclidean length 1, the function will automatically preprocess the input matrix when normalize=TRUE.

```
# data matrix generation
set.seed(10)
z <- matrix(rnorm(n * p), n, p)

# only show a subset of the data matrix for brevity
knitr::kable(as.data.frame(z)[1:10,1:4])</pre>
```

V1	V2	V3	V4
0.0187462	1.0500137	-0.3078650	0.4605151
-0.1842525	0.2860926	0.7580856	0.2350253
-1.3713305	0.2405648	-0.5738634	0.6432573
-0.5991677	0.8327052	-0.9387445	0.9131981
0.2945451	-0.2229832	-0.0276993	0.9882860
0.3897943	0.2883442	-1.0662487	0.1127413
-1.2080762	-0.3403921	-1.3503703	-1.4900499
-0.3636760	1.0613346	0.0754557	-0.4432356
-1.6266727	-1.2090489	-0.9022730	1.3623441
-0.2564784	1.0524069	3.6667710	1.0452357

Alternatively, the data can be normalized beforehand and the parameter is set to FALSE in the function call. However, this example won't do so, but the output of normalize is displayed below.

```
# see the effects of normalize()
knitr::kable(as.data.frame(normalize(z))[1:10,1:4])
```

V1	V2	V3	V4
0.0003430	0.0481267	-0.0132514	0.0219345
-0.0089624	0.0123909	0.0357869	0.0112677
-0.0647869	0.0105393	-0.0258082	0.0306516
-0.0295190	0.0395046	-0.0442725	0.0446800
0.0121050	-0.0102003	-0.0001986	0.0427144
0.0180233	0.0129888	-0.0496851	0.0058898
-0.0571080	-0.0166729	-0.0621594	-0.0692690
-0.0166791	0.0465040	0.0043809	-0.0192257
-0.0708954	-0.0530047	-0.0380530	0.0594355
-0.0118741	0.0459610	0.1635723	0.0468201

Now the function is called, passing through matrix a, lambda1, lambda2, and our desired rank k. The output is stored as a list in fin_sprout. Note that if a different initial point is desired, x0 and y0 should be modified, but the default value as the first k right singular vectors is sufficient for this example.

If further printout is desired, set verbose=TRUE for progress updates (time, difference for convergence, F value) per iteration.

```
# function call
fin_sprout <- spca.amanpg(z, lambda1, lambda2, k=4)
print(paste(fin_sprout$iter, "iterations,", fin_sprout$sparsity, "sparsity,", fin_sprout$time))</pre>
```

[1] "280 iterations, 0.491 sparsity, 1.50452303886414"

The loadings can be viewed from fin_sprout\$loadings. Note that many entries are set to zero as a result of the induced sparsity.

```
# View loadings. Only first 10 rows for brevity
knitr::kable(as.data.frame(fin_sprout$loadings)[1:10,])
```

V1	V2	V3	V4
0.0880974	0.00000000	0.0000000	0.0000000
0.0000000	0.0000000	0.0000000	0.0000000
0.0285272	0.0324180	0.0000000	0.0784247

V4	V3	V2	V1
0.0906653	0.0000000	-0.0456984	0.0000000
-0.2210455	0.0000000	-0.0010865	0.0103526
0.0000000	0.0000000	0.0000000	0.0000000
0.0000000	0.0000000	0.0000000	0.0586876
0.0996718	0.0000000	0.0000000	0.0012639
0.0000000	0.0000000	0.0000000	0.0046010
0.0000000	-0.0019561	0.0012141	0.0000000

The resulting scree plot (Figure 1) looks like this.

The resulting biplot (Figure 2), with the zero loadings filtered out, can be obtained using the following:

```
y_sub = apply(fin_sprout$loadings, 1, function(row) all(row != 0))
loadings = fin_sprout$loadings[y_sub, ]

par(mfrow=c(1,1))
biplot(fin_sprout$x, loadings, xlab="PC 1", ylab="PC 2")
```

Now consider an alternative situation where we set λ_2 to a large constant Inf. The algorithm changes by directly retracting B without using a while loop to determine an appropriate retraction step size and only iterating A.

```
# infinite lambda2
inf_sprout <- spca.amanpg(z, lambda1, lambda2=Inf, k=4)
print(paste(inf_sprout$iter, "iterations,", inf_sprout$sparsity, "sparsity,", inf_sprout$time))
## [1] "344 iterations, 0.253 sparsity, 1.56649899482727"
# extract loadings. Only first 10 rows for brevity
knitr::kable(as.data.frame(inf_sprout$loadings)[1:10,])</pre>
```

V1	V2	V3	V4
0.0612782	0.0070632	0.0148628	0.0000000
0.0000000	0.0080497	0.0000000	0.0000000
0.0000000	0.0670739	-0.0796881	0.0616913
0.0000000	0.0000000	0.0050157	0.1115940
0.0674123	-0.0194809	0.0490605	-0.1250086
0.0000000	0.0000000	0.0000000	-0.0207933

V1	V2	V3	V4
0.0600291	0.0475967	0.0000000	0.0000000
0.0000000	0.0428026	-0.0131852	0.0699779
0.0156305	0.0448186	0.0000000	0.0000000
0.0222292	0.0000000	-0.0138957	0.0000000

We obtain the scree plot (Figure 3) and the biplot (Figure 4) using the same method.

For data with high dimensionality, the biplot is still much harder to read with to a lower sparsity value.

```
y_sub = apply(inf_sprout$loadings, 1, function(row) all(row != 0))
loadings = inf_sprout$loadings[y_sub, ]

par(mfrow=c(1,1))
biplot(inf_sprout$x, loadings, xlab="PC 1", ylab="PC 2")
```

Python Example Note that the Python package depends on numpy.

The following example accomplishes the same situation (down to the same randomly-generated data) but in Python.

Figure 1: Scree plots for the finite lambda case.

Figure 2: Biplot for the finite lambda case.

Figure 3: Scree plot for lambda=inf case.

Figure 4: Biplot for lambda=inf case. Observe that with lower sparsity in the loadings and high-dimensional data, the biplot becomes less readable.

References

Chen, S., Ma, S., Xue, L., and Zou, H. (2020) "An Alternating Manifold Proximal Gradient Method for Sparse Principal Component Analysis and Sparse Canonical Correlation Analysis" INFORMS Journal on Optimization 2:3, 192-208 doi:10.1287/ijoo.2019.0032>.

Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2), 265-286 <doi:10.1198/106186006X113430>.

Zou, H., & Xue, L. (2018). A selective overview of sparse principal component analysis. Proceedings of the IEEE, 106(8), 1311-1320 < doi:10.1109/JPROC.2018.2846588>.