

Recap Variabile AleaToria

CDF

$$F_{x} \cdot x \in \mathbb{R} \longrightarrow F_{x}(x) = P(i \times \{x\})$$

Non consideriomo piv' lo spazio dei compioni!

La CDF e una Probabilità!

$$\lim_{\alpha \to 0^+} F_{x}(x+\alpha) = F_{x}(x)$$

PMF - Probability Mass Function

$$X \in A_X \longrightarrow P_X(x) = P(X = x)$$

Alfabeto di $\subseteq R$

Definita come la prob. che
la variabile aleatoria assuma
il valore di X

il valore di x

1.
$$P_{x}(x) > 0 \quad \forall x \in \mathcal{A}_{x}$$

2.
$$\sum_{\alpha \in \Lambda_X} P_X(\alpha) = 1$$

Calcolare un evento specifico:

$$P(\{x \in A\}) = \sum_{x \in A_{x} \cap A} P_{x}(x)$$

Intersezione Tra Alfabe to ed evento A Come ricavare la CDF dalla PMF?

$$F_{x}(x) = \sum_{v \in A_{x}: v \in x} P_{x}(x)$$

Prendiamo solo i valori 12 minon o uguali ad x

PDF: Funzione di densita' di probabilita'

$$\int_{X} : \alpha \in \mathbb{R} \longrightarrow \int_{X} (x) = \frac{d}{dx} F_{x}(\alpha)$$

Istanti di arrivo del viaggiatore

Esempio: Temperatura di una stouza

-D Qual'e la probabilita che la Temperatura sia di 20,1 c°?

Ammesso di definire una V.A. Continua su questi Valori, quanti "Slot" abbiomo tra 17° e 21,5°?

-D Infiniti

Approccio frequentistico

Integriamo la funzione (PDF)

$$\int_{-\infty}^{x} \int_{x} (x) dx = \int_{-\infty}^{x} \frac{d F_{x}(x)}{d x} dx = \left[F_{x}(x) \right]_{-\infty}^{x} = F_{x}(x) - \left(F_{x}(-x) \right) = F_{x}(x)$$

$$= D \left(\begin{array}{c} F_{X}(x) = \int_{-\infty}^{x} f_{X}(x) dx \\ CDF - \infty \end{array} \right)$$

Proprieta' della PDF

$$\int_{-\infty}^{+\infty} f_{X}(x) dx = 1$$

Dimostrazione

$$\int \frac{d}{dx} F_X(x) dx = F_X(+\infty) - F_X(+\infty) = 1$$

Se
$$P(\{x_1 < X \leq x_2\}) = F_X(x_2) - F_X(x_1) = \int_{X_1}^{X_2} f_X(x) dx$$

Equivale a dire che se conosco la CDF e devo calcolare la probabilita che la variabile aleatoria appartenga oud un intervallo, ci basta prendere il valore della CDF valutata nell'estremo superiore, lo sottraiamo alla Fx(x1) e Troviomo la probabilita.

la PDF ci basta calcolare l'integrale esteso a (x,,x2) Se si conosce

Dimostra zione

Calcoliamo le probabilità:
$$P(AUB) = P(A) + P(B) = P\left(\frac{1}{1}X \leq X_{2}\right) = \left(P(X \leq X_{1}) + P(\frac{1}{1}X_{1} \leq X \leq X_{2}\right)$$

$$F_{1}(X_{1}) = \frac{P(X \leq X_{1})}{F_{2}(X_{1})} + \frac{P(X \leq X_{2})}{F_{2}(X_{1})} + \frac{P(X \leq X_{2})}{F_{2}(X_{1})} + \frac{P(X \leq X_{2})}{F_{2}(X_{1})}$$

$$= D F_{x}(x_{2}) = F_{x}(x_{1}) + P(\langle x_{1} < x \leq x_{2} \rangle)$$

$$= \mathbb{P}\left(\mathbb{P}\left(\left\{x_{1} < X \leqslant x_{2}\right\} = \mathbb{F}_{X}\left(x_{2}\right) - \mathbb{F}_{X}\left(x_{1}\right)\right)$$

$$= \mathbb{P}\left\{\left\{\left\{x_{1} < X \leqslant x_{2}\right\} = \left\{f_{X}\left(x_{2}\right) - \left\{f_{X}\left(x_{1}\right)\right\}\right\}\right\} = \int_{-\infty}^{x_{2}} f_{X}(x) dx - \mathbb{P}\left\{\left\{x_{1} < X \leqslant x_{2}\right\}\right\} = \int_{-\infty}^{x_{2}} f_{X}(x) dx - \int_{-\infty}^{x_{2}} f_{X}(x) dx$$

Fare
$$\int_{-\infty}^{x_2} f - \int_{\infty}^{x_1} f$$
 owero $(A+B) - (B)$

Fare
$$\int_{-\infty}^{X_2} f - \int_{-\infty}^{X_1} f$$
 owero $(A+B) - (B)$

equivale a fare $\int_{-X_2}^{X_2} f_X(x) dx = A$

Variabile Aleatoria di Tipo Rayleigh

$$f_{x}(x) = \frac{x}{\sigma^{2}} \cdot e^{\frac{x^{2}}{2\sigma^{2}}} \cdot u(x)$$
"gradino"

$$u(x) = \begin{cases} 1 & \text{se } x > 0 \\ 0 & \text{se } x < 0 \end{cases}$$

Calcoliamo la CDF della variabile Aleatoria di Rayleigh

$$F_{X}(x) = \int_{-\infty}^{x} f_{X}(v) dv = \int_{-\infty}^{tX} \frac{v}{\sigma^{2}} \cdot e^{\frac{v^{2}}{2\sigma^{2}}} \cdot u(v) dv$$

$$= \int_{-\infty}^{x} \int_{-\infty}^{t} f_{X}(v) dv = \int_{-\infty}^{tX} \frac{v}{\sigma^{2}} \cdot e^{\frac{v^{2}}{2\sigma^{2}}} \cdot u(v) dv$$

$$= \int_{-\infty}^{tX} \int_{-\infty}^{tX} e^{\frac{v^{2}}{2\sigma^{2}}} dv = \int_{-\infty}^{tX} \int_{-\infty}^{tX} e^{\frac{v^{2}}{2\sigma^{2}}} dv$$

$$= \int_{0}^{tX} \int_{0}^{tX} e^{\frac{v^{2}}{2\sigma^{2}}} ds = -\left[e^{\frac{v^{2}}{2\sigma^{2}}} - e^{\frac{v^{2}}{2\sigma^{2}}} + 1\right]$$

L'estromo cambia con la sostituzione

quindi
$$F_{x}^{CDF}(x) = (1 - e^{\frac{-x^{2}}{2\sigma^{2}}}) \cdot \mathcal{M}(x)$$

In (0,0) la $f_x(x)$ vale zero, e per $x-p+\omega$ vale 1, Proprio come una CDF dovrebbe

Variabile Aleatoria Uniforme

$$X \sim U(a,b)$$

$$F_{x}(x) = \begin{cases} 0 & x < \alpha \\ \frac{x \cdot \alpha}{b \cdot \alpha} & \alpha < x < b \\ 1 & x > b \end{cases}$$

CDF di una variabile uniforme

$$\oint_{X} (x) = \frac{dF_{x}}{dx} = \begin{cases}
\frac{1}{b-a} & a < x < b \\
0 & x > b \\
0 & x < a
\end{cases}$$

PDF a partire da una V.A. uniforme

Variabile Aleatoria Esponenziale

$$X \sim \xi_{x}(\lambda)$$

La Sua PDF e del tipo:

$$\int_{X} (x) = \lambda \cdot e \cdot u(x) \quad \text{con } \lambda > 0$$

$$\lambda = 2$$

$$\lambda = 0.5$$

Calcolare la CDF dalla PDF

Limitiamo l'inTervallo a dove non si annulla

$$F_{x}(x) = \int_{-\infty}^{x} f_{x}(x) dx = \int_{-\infty}^{x} \frac{1}{e} \cdot u(v) dv = \int_{0}^{x} \frac{1}{e} \cdot u(v) dv$$

-D Sostituzione -D
$$S = -\lambda V = D$$
 $dS = -\lambda dV = D$ $\int_{0}^{\infty} e^{S} dS = \left[-e^{S} \right]_{0}^{\infty} = 1 - e^{-\lambda x} \mathcal{M}(x)$

Nuovo

Intervallo

Variabile Aleatoria Gaussiana (Standard) $X_0 \sim \mathcal{N}(0,1)$

La Gaussiana viene anche definita come Normal Distribution

Una gaussiana Standard e definita qu'omobo Ha la PDF come.

Ricavare la CDF dalla PDF $\frac{x}{x_0}(x) = \int_{-\infty}^{x} f_{x}(x) dx = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{\frac{t^2}{2}} dt$ Non e esprimibile in forma chiusa

$$Q(x) = \int_{x}^{+\infty} \frac{e^{x^{2}}}{\sqrt{2\pi x}} e^{x} du = \underbrace{1 - F_{x_{0}}(x)}_{x_{0}}$$
Stessa idea di P(A) = 1 - A

Per via degli estremi di integnazione _.
opposti rispetto alla definizione della
CDF, e detta la COMPLEMENTARE della CDT

Proprieta di Qxo(x)

- · Q (-00) = 1
- Q (+00) = O

Variabili Aleatorie Gaussiane Non Standard

$$X \sim \mathcal{N}(\mathcal{M}, \sigma)$$

$$\int_{mu"}^{\infty} Sigma"$$
N "calligrafica"

Trasformazioni lineari della gaussiona Stondard

Definizione di CDF

$$F_{x}(x) = P(X \le x)$$

$$F_{x}(x) = P(X \leq x)$$

× grande x piccolo

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) = \mathbb{P} \left\{ \begin{cases} \chi(x) + \mathcal{M} \leq \chi \right\} \right\} \\ = \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\} \end{cases}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi(x) + \mathcal{M} \leq \chi \right\} \right\}$$

$$= \mathbb{P} \left\{ \begin{cases} \chi(x) \leq \chi(x) + \mathcal{M} \leq \chi(x) + \mathcal$$

Variabile Aleatoria gaussiona Stonolard

x	0	1	2	3	4	5	6	7	8	9
0	0.5000000	0.4960106	0.4920216	0.4880335	0.4840465	0.4800611	0.4760778	0.4720968	0.4681186	0.4641436
0.1	0.4601721	0.4562046	0.4522415	0.4482832	0.4443299	0.4403823	0.4364405	0.4325050	0.4285762	0.4246545
0.2	0.4207402	0.4168338	0.4129355	0.4090458	0.4051651	0.4012936	0.3974318	0.3985801	0.3897387	0.3859081
0.3	0.3820885	0.3782804	0.3744841	0.3706999	0.3669282	0.3631693	0.3594235	0.3556912	0.3519727	0.3482682
0.4	0.3445782	0.3409029	0.3372427	0.3335978	0.3299685	0.3263552	0.3227581	0.3191775	0.3156136	0.3120669
0.5	0.3085375	0.3050257	0.3015317	0.2980559	0.2945985	0.2911596	0.2877397	0.28 13388	0.2809573	0.2775953
0.6	0.2742531	0.2709309	0.2676288	0.2643472	0.2610862	0.2578461	0.2546269	0.2514288	0.2482522	0.2450970
0.7	0.2419636	0.2388520	0.2357624	0.2326950	0.2296499	0.2266273	0.2236272	0.2206499	0.2176954	0.2147638
0.8	0.2118553	0.2089700	0.2061080	0.2032693	0.2004541	0.1976625	0.1948945	0.1921502	0.1894296	0.1867329
0.9	0.1840601	0.1814112	0.1787863	0.1761855	0.1736087	0.1710561	0.1685276	0.1660232	0.1635430	0.1610870
1.0	0.1586552	0.1562476	0.1538642	0.1515050	0.1491699	0.1468590	0.1445722	0.1423096	0.1400710	0.1378565
1.1	0.1356660	0.1334995	0.1313568	0.1292381	0.1271431	0.1250719	0.1230244	0.1210004	0.1190001	0.1170231
1.2	0.1150696	0.1131394	0.1112324	0.1093485	0.1074876	0.1056497	0.1038346	0.1020423	0.1002725	0.0985253
1.3	0.0968004	0.0950979	0.0934175	0.0917591	0.0901226	0.0885079	0.0869149	0.0853434	0.0837933	0.0822644
1.4	0.0807566	0.0792698	0.0778038	0.0763585	0.0749336	0.0735292	0.0721450	0.0707808	0.0694366	0.0681121
1.5	0.0668072	0.0655217	0.0642554	0.0630083	0.0617801	0.0605707	0.0593799	0.0582075	0.0570534	0.0559174
1.6	0.0547992	0.0536989	0.0526161	0.0515507	0.0505025	0.0494714	0.0484572	0.0474596	0.0464786	0.0455139
1.7	0.0445654	0.0436329	0.0427162	0.0418151	0.0409295	0.0400591	0.0392039	0.0383635	0.0375379	0.0367269
1.8	0.0359303	0.0351478	0.0343795	0.0336249	0.0328841	0.0321567	0.0314427	0.0307419	0.0300540	0.0293789
1.9	0.0287165	0.0280666	0.0274289	0.0268034	0.0261898	0.0255880	0.0249978	0.0244191	0.0238517	0.0232954
2.0	0.0227501	0.0222155	0.0216916	0.0211782	0.0206751	0.0201822	0.0196992	0.0192261	0.0187627	0.0183088
2.1	0.0178644	0.0174291	0.0170030	0.0165858	0.0161773	0.0157776	0.0153863	0.0150034	0.0146287	0.0142621
2.2	0.0139034	0.0135525	0.0132093	0.0128737	0.0125454	0.0122244	0.0119106	0.01 6037	0.0113038	0.0110106
2.3	0.0107241	0.0104440	0.0101704	0.0099030	0.0096418	0.0093807	0.0091374	0.0088940	0.0086563	0.0084241
2.4	0.0081975	0.0079762	0.0077602	0.0075494	0.0073436	0.0071428	0.0069468	0.0067556	0.0065691	0.0063871
2.5	0.0062096	0.0060365	0.0058677	0.0057031	0.0055426	0.0053861	0.0052336	0.0050849	0.0049400	0.0047987
2.6	0.0046611	0.0045271	0.0043964	0.0042692	0.0041453	0.0040245	0.0039070	0.0037925	0.0036811	0.0035726
2.7	0.0034669	0.0033641	0.0032640	0.0031667	0.0030719	0.0029797	0.0028900	0.0028028	0.0027179	0.0026354
2.8	0.0025551	0.0024770	0.0024011	0.0023274	0.0022556	0.0021859	0.0021182	0.0020523	0.0019883	0.0019262
2.9	0.0018658	0.0018071	0.0017501	0.0016948	0.0016410	0.0015888	0.0015381	0.0014889	0.0014412	0.0013948

Calcolare la Q-Function di Q(2.37)