0.1 群论与数论

定义 0.1 (整除)

令 $n \in \mathbb{Z} \setminus \{0\}$, 而 $m \in \mathbb{Z}$. 我们说n整除m, 记作 $n \mid m$, 若

 $m \in n\mathbb{Z} = \{kn : k \in \mathbb{Z}\}$

命题 0.1

注 这里的加法和乘法都是通常意义下的整数加法和整数乘法.

$$f(m) = mn$$
.

则对 $\forall m_1, m_2 \in (\mathbb{Z}, +)$, 都有

 $f(m_1 + m_2) = (m_1 + m_2)n = m_1n + m_2n = f(m_1) + f(m_2).$

故 $f \in (\mathbb{Z}, +)$ 到 $(\mathbb{Z}, +)$ 的群同态. 因此由命题**??**可知 $n\mathbb{Z} = \operatorname{im}(f) < \mathbb{Z}$. 又因为 \mathbb{Z} 是阿贝尔群, 因此由命题**??**可知 $n\mathbb{Z} < \mathbb{Z}$.

命题 0.2

证明 (i) 若 $A = \{0\}$, 则 $A = 0\mathbb{Z}$.

(ii) 若 $A \neq \{0\}$, 则由 $(A, +) < (\mathbb{Z}, +)$ 可知,A 在加法逆元下封闭. 从而 $A \cap \mathbb{N}_1 \neq \emptyset$, 否则 $A \subset \mathbb{Z} - \mathbb{N}_1$ 且 $A \neq \{0\}$, 于是任取 $x \in A \subset \mathbb{Z} - \mathbb{N}_1$ 且 $x \neq 0$, 则其加法逆元 $-x \in A$, 但 $-x \in \mathbb{N}_1$, 这与 $A \subset \mathbb{Z} - \mathbb{N}_1$ 矛盾!

注意到 $n\mathbb{Z} = \{nm : m \in \mathbb{Z}\} = \langle n \rangle$, 故我们只需证 $A = \langle n \rangle$.

任取 $m \in \mathbb{Z}$,则由 $n \in A$ 及 A 在加法下封闭可知, $nm = n + n + \cdots + n \in A$. 故 $\langle n \rangle \subset A$.

 m^{\uparrow}

任取 $a \in A$, 假设 $a \notin n\mathbb{Z}$, 则由带余除法可知, 存在 $q, r \in \mathbb{Z}$, 使得 a = qn + r, 其中 $0 \le r \le n - 1$. 因为 $a \notin n\mathbb{Z}$, 所以 $r \ne 0$. 又 $qn \in \langle n \rangle \subset A$, $a \in A$. 故由 A 对加法和加法逆元封闭可知, $r = a - qn \in A$. 而 $1 \le r \le n - 1 < n$, 这与 $n = \min(A \cap \mathbb{N}_1)$ 矛盾! 故 $a \in n\mathbb{Z}$.

推论 0.1

任意的无限循环群 $\langle x \rangle$ ($|x| = \infty$) 的子群都是形如 $\langle x^n \rangle = \{x^{nm} : m \in \mathbb{Z}\}$ 的形式, 进而都是正规子群. 即对任意的无限循环群 $\langle x \rangle$ ($|x| = \infty$), 任取 $A < \langle x \rangle$, 则一定存在 $n \in \mathbb{Z}$, 使得 $A = \langle x^n \rangle = \{x^{nm} : m \in \mathbb{Z}\}$, 并且 $A \lhd \langle x \rangle$.

证明 由命题??可知, 任意无限循环群 $\langle x \rangle (|x| = \infty)$ 都同构于整数加群 $(\mathbb{Z}, +)$, 故 A 一定同构于 \mathbb{Z} 的某一子群. 于是由命题 0.2可知, 存在 $n \in \mathbb{Z}$, 使得 A 同构于 $n\mathbb{Z}$. 因此 $A = \langle x^n \rangle = \{x^{nm} : m \in \mathbb{Z}\}$. 又由命题 0.1可知 $n\mathbb{Z} \triangleleft \mathbb{Z}$. 故 $A \triangleleft \langle x \rangle$.

定义 0.2 (同余 (模 n))

设 $n \in \mathbb{N}_1$, 而 $a, b \in \mathbb{Z}$. 我们说a 同余b (模n), 记作 $a \equiv b \mod n$, 若

$$a + n\mathbb{Z} = b + n\mathbb{Z}$$
,

或

 $a-b\in n\mathbb{Z}$.

或

 $n \mid (a-b)$.

或

 $a nb \pmod{n}$ 的余数相同.

证明 $n \mid (a-b) \Leftrightarrow a-b \in n\mathbb{Z}$ 是显然的. 由引理??可知 $a+n\mathbb{Z}=b+n\mathbb{Z} \Leftrightarrow a-b \in n\mathbb{Z}$. 下证 $a-b \in n\mathbb{Z} \Leftrightarrow a$ 和 $b \pmod{n}$ 的余数相同.

⇒: 由 $a-b \in n\mathbb{Z}$ 可知, 存在 $m \in \mathbb{Z}$, 使得 a-b=nm. 从而 a=b+nm. 由带余除法可知, 存在 $q,r \in \mathbb{Z}$, 使得 b=qn+r, 其中 $0 \le r \le n-1$. 于是

$$a = b + nm = (q + m)n + r.$$

故 a 和 $b \pmod{n}$ 的余数都是 r.

 \Leftarrow : 由 a 和 b(mod n) 的余数相同可知, 存在 $q, p, r \in \mathbb{Z}$, 使得

$$a = qn + r$$
, $b = pn + r$.

其中 $0 \le r \le n-1$. 于是 $a-b=(q-p)n \in n\mathbb{Z}$.

综上所述, a 同余b (模n) 是良定义的.

命题 0.3 (同余 (模 n) 是 (\mathbb{Z} 上的) 等价关系)

设 $n \in \mathbb{N}_1$,对 $\forall a,b,c \in \mathbb{Z}$,都满足

自反性: $a \equiv a \pmod{n}$.

传递性: 若 $a \equiv b \pmod{n}$, $b \equiv c \pmod{n}$, 则 $a \equiv c \pmod{n}$.

证明 自反性: 由 $a + n\mathbb{Z} = a + n\mathbb{Z}$ 可知 $a \equiv a \pmod{n}$.

对称性: 由 $a \equiv b \pmod{n}$ 可知 $a + n\mathbb{Z} = b + n\mathbb{Z}$, 从而 $b + n\mathbb{Z} = a + n\mathbb{Z}$, 故 $b \equiv a \pmod{n}$.

传递性: 由 $a \equiv b \pmod{n}$, $b \equiv c \pmod{n}$ 可知 $a + n\mathbb{Z} = b + n\mathbb{Z}$, $b + n\mathbb{Z} = c + n\mathbb{Z}$. 从而 $a + n\mathbb{Z} = c + n\mathbb{Z}$. 故 $a \equiv c \pmod{n}$.

命题 0.4

设 $n \in \mathbb{N}_1, a \in \mathbb{Z}$, 记在同余 (mod n) 的等价关系下以 a 为代表元的等价类为 $\overline{a} = [a]$, 则

$$\overline{a} = [a] = a + n\mathbb{Z}.$$

证明 若 $b \in \overline{a}$, 则 $a \equiv b \pmod{n}$. 从而 $a + n\mathbb{Z} = b + n\mathbb{Z}$. 于是 $b = b + 0 \in b + n\mathbb{Z} = a + n\mathbb{Z}$. 故 $\overline{a} \subset a + n\mathbb{Z}$.

若 $b \in a + n\mathbb{Z}$, 则存在 $m \in \mathbb{Z}$, 使得 b = a + nm. 从而 $a - b = nm \in n\mathbb{Z}$. 故 $a \equiv b \pmod{n}$. 因此 $b \in \overline{a}$. 故 $a + n\mathbb{Z} \subset \overline{a}$.

综上,
$$\overline{a} = a + n\mathbb{Z}$$
.

定义 0.3 (模 n 的同余类)

令 $n \in \mathbb{N}_1$,则 \mathbb{Z}_n 定义为

 $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$.

 \mathbb{Z}_n 中的每个元素, 被称为一个模 n 的同余类.

4

 $\widehat{\Psi}$ 笔记 不难发现, $0,\cdots,n-1$ 分别代表了n个同余类.并且由命题 0.1可知 \mathbb{Z}_n 是一个商群.

命题 0.5

$$\mathbb{Z}_n = \{k + n\mathbb{Z} : 0 \leqslant k \leqslant n - 1\}$$

其中枚举法(上述集合)中的这些陪集是两两不同的.

室 筆记 这个命题和命题 0.4表明:

$$\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} = \{n\mathbb{Z}, 1 + n\mathbb{Z}, \cdots, n - 1 + n\mathbb{Z}\} = \{\overline{0}, \overline{1}, \cdots, \overline{n - 1}\}.$$

证明 首先证明这里列完了所有的陪集. 令 $m \in \mathbb{Z}$, 根据带余除法, 我们可以找到 $q \in \mathbb{Z}$, 以及 $0 \leqslant r \leqslant n-1$, 使得

$$m = qn + r$$
.

由于

$$qn \in n\mathbb{Z}$$
,

因此 $m+n\mathbb{Z}=r+n\mathbb{Z}\in\{k+n\mathbb{Z}:0\leqslant k\leqslant n-1\}$. 这就证明了最多只有这 n 个同余类.

接下来证明这 n 个同余类是互异的. 假如 $k + n\mathbb{Z} = k' + n\mathbb{Z}$, 其中 $0 \le k, k' \le n - 1$, 则 $k - k' \in n\mathbb{Z}$. 但是 $-(n-1) \le k - k' \le (n-1)$. 而在这个范围内唯一 n 的倍数就是 0, 于是 k - k' = 0, 或 k = k'. 这就证明了这 n 个同余类是互异的.

综上所述,

$$\mathbb{Z}_n = \{k + n\mathbb{Z} : 0 \leqslant k \leqslant n - 1\}.$$

命题 0.6

令 $n \in \mathbb{N}_1$, 则 \mathbb{Z}_n 是个 n 阶循环群.

章 笔记 由命题??可知, 给定 n, 所有 n 阶循环群都是同构的. 因此我们只要研究了 \mathbb{Z}_n , 就研究了所有的有限循环群. 证明 我们只须证明 \mathbb{Z}_n 是一个循环群即可, 也即 $\mathbb{Z}_n = \langle 1 + n \mathbb{Z} \rangle$. 任取 $A \in \mathbb{Z}_n$, 则由命题 0.5可知, $A = k + n \mathbb{Z}$, 其中 $0 \le k \le n - 1$. 又由命题 0.1可知 $(n \mathbb{Z}, +) \triangleleft (\mathbb{Z}, +)$. 从而

$$\underbrace{(1+n\mathbb{Z})+\cdots+(1+n\mathbb{Z})}_{k^{\uparrow\uparrow}}=k+n\mathbb{Z}=A.$$

(注意 $0 \uparrow 1 + n\mathbb{Z}$ 相加规定为 $0 + n\mathbb{Z} = n\mathbb{Z}$). 因此 $\mathbb{Z}_n = \langle 1 + n\mathbb{Z} \rangle$. 而由命题 0.5可知, 这个群又是 n 阶的, 因此是 n 阶 循环群.

定义 0.4

定义乘法·: $\mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$, $(a + n\mathbb{Z}) \cdot (b + n\mathbb{Z}) \mapsto ab + n\mathbb{Z}$. 也即 $\overline{a} \cdot \overline{b} \mapsto \overline{ab}$.

证明 设 $\overline{a} = \overline{a'} \in \mathbb{Z}_n, \overline{b} = \overline{b'} \in \mathbb{Z}_n, \mathbb{N}$

$$a + n\mathbb{Z} = a' + n\mathbb{Z}, \quad b + n\mathbb{Z} = b' + n\mathbb{Z}.$$

从而 $(a-a'),(b-b') \in n\mathbb{Z}$. 于是存在 $k,l \in \mathbb{Z}$, 使得

$$a'-a=kn$$
, $b'-b=ln$.

因此

$$a'b' - ab = (a + kn)(b + ln) - ab = aln + bkn + kln^2 = n(al + bk + ln) \in n\mathbb{Z}.$$

故 $a'b' + n\mathbb{Z} = ab + n\mathbb{Z}$, 即 $\overline{a'b'} = \overline{ab}$. 故上述定义的乘法是良定义的.

命题 0.7

 (\mathbb{Z}_n,\cdot) 是个交换幺半群.

证明 我们先证明乘法是良定义的. 假设 $a'+n\mathbb{Z}=a+n\mathbb{Z}, b'+n\mathbb{Z}=b+n\mathbb{Z}$. 故 a'=a+nk, b'=b+nl, 其中 $k,l\in\mathbb{Z}$. 我们只须证明 $a'b'-ab\in n\mathbb{Z}$. 而这是因为

$$a'b' - ab = (a+nk)(b+nl) - ab = anl + bnk + n^2kl = n(al+bk+nkl) \in n\mathbb{Z}.$$

单位元显然是 $1+n\mathbb{Z}$. 这是因为 $(a+n\mathbb{Z})(1+n\mathbb{Z})=a+n\mathbb{Z}$.

结合律也是显然的,因为 (\mathbb{Z},\cdot) 是幺半群,所以设 $\overline{a},\overline{b},\overline{c}\in\mathbb{Z}_n$,都有

$$\left(\overline{a}\cdot\overline{b}\right)\cdot\overline{c}=\overline{ab}\cdot\overline{c}=\overline{abc}=abc+n\mathbb{Z}=\overline{a}\cdot\overline{bc}=\overline{a}\cdot\left(\overline{b}\cdot\overline{c}\right).$$

交换律, 设 $\overline{a}, \overline{b} \in \mathbb{Z}_n$, 则 $\overline{a} \cdot \overline{b} = \overline{ab} = ab + n\mathbb{Z} = ba + n\mathbb{Z} = \overline{ba}$.

这样, 我们就证明了 (\mathbb{Z}_n, \cdot) 是个幺半群.

定义 0.5

令 $n \in \mathbb{N}_2$, 则 \mathbb{Z}_n^{\times} , 定义为由 (\mathbb{Z}_n ,·) 中所有可逆元素构成的群. 即

$$\mathbb{Z}_n^{\times} = \{k + n\mathbb{Z} : 0 \leqslant k \leqslant n - 1, \exists l \in \mathbb{Z}, kl \equiv 1 \pmod{n}\}$$

也即

$$\mathbb{Z}_n^{\times} = \{ \overline{k} : 0 \leqslant k \leqslant n-1, \exists \overline{l} \in \mathbb{Z}_n, \overline{k} \cdot \overline{l} \equiv \overline{1} \pmod{n} \}.$$

 $\dot{\mathbf{z}}$ 由引理??可知上述定义的 $\mathbb{Z}_n^{\mathsf{x}}$ 确实是一个群. 故上述定义是良定义的.

引理 0.1 (Bézout 定理)

若 $a,b,c\in\mathbb{N}_1$, 则 ax+by=c 有整数解 x,y 当且仅当 $\gcd(a,b)\mid c$.

特别地, 对任意 $a,b \in \mathbb{N}_1$, 我们可以找到 $x,y \in \mathbb{Z}$, 使得 $\gcd(a,b) = ax + by$.

证明

命题 0.8

设 $n \in \mathbb{N}_2$,则

$$\mathbb{Z}_n^{\times} = \{k + n\mathbb{Z} : 1 \leqslant k \leqslant n - 1, \gcd(k, n) = 1\} = \{\overline{k} : 1 \leqslant k \leqslant n - 1, \gcd(k, n) = 1\}.$$

因此

$$|\mathbb{Z}_n^{\times}| = \phi(n).$$

特别地, 若 p 是一个素数, 则

$$\mathbb{Z}_p^{\times} = \{1 + p\mathbb{Z}, 2 + p\mathbb{Z}, \cdots, (p-1) + p\mathbb{Z}\} = \{\overline{k} : 1 \leqslant k \leqslant p-1\}.$$

因此

$$|\mathbb{Z}_p^{\times}| = p - 1.$$

证明 我们只须证明, 若 $0 \le k \le n-1$, 则

$$(\exists l \in \mathbb{Z}, kl \equiv 1 \pmod{n}) \iff \gcd(k, n) = 1.$$

分两类情况. 若 k=0, 则显然左边是错的, 而右边甚至是没有定义的, 当然也是错的. 即便你考虑 k 是 n 的倍数, 那么 gcd(k,n)=n, 也是错的. 若 $1 \le k \le n-1$, 则

$$\exists l \in \mathbb{Z}, kl \equiv 1 \pmod{n}.$$

 $\iff \exists l \in \mathbb{Z}, \exists m \in \mathbb{Z}, kl + mn = 1.$

$$\iff$$
 gcd $(k, n) = 1$.

其中第一个充要条件是因为同余的定义,第二个充要条件是因为引理 0.1. 这样我们就证明了 \mathbb{Z}_n^{\times} 是由那些 n 互素的数所在的陪集所构成的. 特别地, 这样的陪集的数量就是由欧拉 ϕ 函数给出的,即

$$\phi(n) = |\{1 \le k \le n - 1 : \gcd(k, n) = 1\}|.$$

接下来, 若p是一个素数, 则

$$gcd(k, p) = 1 \iff p \nmid k$$
.

当然,从1到p-1的这些数,都和p互素.因此

$$\mathbb{Z}_p^{\times} = \{1 + p\mathbb{Z}, 2 + p\mathbb{Z}, \cdots, (p-1) + p\mathbb{Z}\}.$$

故

$$|\mathbb{Z}_p^{\times}| = p - 1.$$

这就证明了这个命题.

引理 0.2

令 (G, \cdot) 是个有限群, 则对任意 $a \in G, a^{|G|} = e$.

证明 $\Diamond \langle a \rangle$ 是由 a 生成的循环子群. 则由 Lagrange 定理可知,

$$|\langle a \rangle| |G|$$

而由命题??我们知道

$$|a| = |\langle a \rangle|$$

因此,

$$a^{|G|} = (a^{|a|})^{|G|/|a|} = e^{|G|/|a|} = e$$

这就证明了这个引理.

定理 0.1 (Fermat 小定理)

令 p 是一个素数, 而 p ∤ a, 则

$$a^{p-1} \equiv 1 \pmod{p}$$

同时左乘 a, 也可以得到

$$a^p \equiv a \pmod{p}$$

Ŷ 笔记 不妨设1≤a≤p-1的原因:

假设结论对 $1 \le a \le p-1$ 已经成立, 则当 $a \in \mathbb{Z}$ 时, 由带余除法可知, 存在 $m, r \in \mathbb{Z}$ 且 $1 \le r \le p-1$, 使得

$$a = mp + r$$
.

于是 $1 \le r = a - mp \le p - 1$ 且 $p \nmid a$. 从而由假设可知

$$(a-mp)^{p-1}=r^{p-1}\equiv 1\pmod{p}.$$

即

$$(a - mp)^{p-1} - 1 \in p\mathbb{Z}.$$

因此存在 $s \in \mathbb{Z}$, 使得

$$(a - mp)^{p-1} - 1 = ps \iff a^{p-1} + Q(p) - 1 = ps.$$

其中 $Q(p) = (a - mp)^{p-1} - a^{p-1}$. 注意到 Q(p) 的每一项 p 的次数都至少为 1, 故 $p \mid Q(p)$. 进而

$$a^{p-1} - 1 = ps - Q(p) \in p\mathbb{Z}$$
.

因此 $a^{p-1} \equiv 1 \pmod{p}$.

证明 根据 (\mathbb{Z}_p,\cdot) 中乘法的良定义性和 $p \nmid a$, 我们不失一般性, 假设

$$1 \leqslant a \leqslant p - 1$$
.

从而 $\overline{a} \in \mathbb{Z}_{p}^{\times}$ (实际上, 由 $p \nmid a$ 就直接可以得到 $\overline{a} \in \mathbb{Z}_{p}^{\times}$). 根据引理 0.2, 可得

$$\overline{a^{p-1}} = \overline{a}^{p-1} = \overline{a}^{|\mathbb{Z}_p^{\times}|} = \overline{1}.$$

此即

$$a^{p-1} \equiv 1 \pmod{p}$$
.

同时左乘后的结论是显然的. 综上所述, 我们用群论证明了费马小定理.

定理 0.2 (Euler 定理)

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
.

~

注 注意, 当 n = p 的时候, 欧拉定理就退化为费马小定理.

笔记 这个定理叫欧拉定理,这也在一定程度上解释了为什么 ϕ 函数被称为欧拉函数. 欧拉定理显然是费马小定理的推广(当p为素数时,就有 $\phi(p) = p - 1$.). 通过群论来证明的思路是一致的.

注 这里不妨设 $1 \le a \le n-1$, gcd(a,n) = 1 的原因与费马小定理的证明类似.

证明 首先, 根据 (\mathbb{Z}_n ,) 中乘法的良定义性和 $\gcd(a,n)=1$, 我们不失一般性, 假设

$$1 \leqslant a \leqslant n - 1, \gcd(a, n) = 1.$$

从而 $\overline{a} \in \mathbb{Z}_n^{\times}$ (实际上, 由 $n \nmid a$ 就直接可以得到 $\overline{a} \in \mathbb{Z}_n^{\times}$). 利用引理 0.2, 可得

$$\overline{a^{\phi(n)}} = \overline{a}^{\phi(n)} = \overline{a}^{|\mathbb{Z}_n^{\times}|} = \overline{1}.$$

此即

$$a^{\phi(n)} \equiv 1 \pmod{n}.$$

这就证明了欧拉定理.

定理 0.3 (Wilson 定理)

若 p 是一个奇素数 (即除了 2 以外的素数),则

$$(p-1)! \equiv -1 \pmod{p}$$
.

其中!表示阶乘.

0

证明 我们令p是一个奇素数,故 \mathbb{Z}_p^{\times} 包含p-1(偶数)个元素.我们希望将逆元进行配对.注意到每一个元素都对应了一个逆元.而元素和逆元相等当且仅当这个元素的平方是单位元,即

$$\overline{a} = \overline{a}^{-1} \iff \overline{a}^2 = \overline{1} \iff a^2 \equiv 1 \pmod{p}.$$

而这就是

$$p \mid (a^2 - 1) = (a - 1)(a + 1).$$

所以要么 $p \mid (a-1)$,要么 $p \mid (a+1)$.即 $a \equiv \pm 1 \pmod{p}$. 这就等价于 $a \equiv 1$ 或 $p-1 \pmod{p}$. 这就说明了所有逆元是自己的元素恰好是 $\overline{1}$ 和 $\overline{p-1}$ 这两个.我们去掉这两个元素,剩下p-3(偶数)个元素一定是两两配对的. 因此

剩下所有元素的乘积是1. 因此

$$\overline{(p-1)!} = \overline{1} \cdot \overline{(p-1)} \cdot \underbrace{\overline{1} \cdots \overline{1}}_{\frac{p-3}{2} \uparrow} = \overline{p-1} = \overline{-1}.$$

即 $(p-1)! \equiv -1 \pmod{p}$. 这就证明了威尔逊定理.