VEREENVOUDIGINGSTECHNIEKEN

Les 4: DE KARNAUGHKAART

Handboek

Inhoud voor deze les vanaf p. 102 t.e.m. p. 116

DE KARNAUGH-KAART

Inleiding

- Karnaugh-kaart = Kn-map (n variabelen)
- Rechthoeking raster
 - ledere <u>standaardproductterm</u> (=stp) = minterm = elk bitpatroon op de ingang → vakje met logische niveau-uitgang
 - Benoemen rijen en kolommen vaste afspraak
- Hulpmiddel voor vereenvoudigen van logische vergelijkingen
- Bruikbaar tot 4 variabelen
- Meer dan 4 variabelen: andere methodes zoals Quine-McCluskey

Vorm Karnaugh-kaart

n variabelen $\rightarrow 2^n$ vakken = aantal ingangscombinaties

vorm: liefst vierkant, tenzij niet anders kan dan rechthoekig

aantal variabelen	2	3	4	5	6
aantal vakjes	4	8	16	32	64
schikking (h × b)	2×2	2×4	4×4	4×8	8×8 4×16

K2 K3 K4 K5

Karnaugh-kaarten voor 2 tot 6 variabelen

Hoogstens 4 variabelen

- Doel: combinatorische functies snel reduceren
- Geeft simpelste/kortste SoP-vorm
 - → eventueel ook PoS-vorm
- Gegeven: waarheidstabel
 - → eventueel opgave zelf converteren naar WT

Lokaliseren van de vakken

- 1 vakje/ingangscombinatie
- Voorwaarde: een buurstrook mag slechts één variabele veranderen
- Buurstrook = links, rechts, boven, onder (niet diagonaal!)
- Bitpatroon volgt Gray-code (zie later)

Lokaliseren van de vakken

Eenvoudiger met 'banden' voor elke variabele (in cursus)

Of vermelding van binaire waarden (Gray)

Aflopende volgorde DCBA → bitpatroon rechtstreeks noteren

Lokaliseren van de vakken

- Twee tegenover elkaar liggende zijlijnen vallen samen dus: vakjes aan deze zijlijnen zijn naburig
- Met 3 onafhankelijke veranderlijken

 Met 4 onafhankelijke veranderlijken

Andere voorstellingswijzen (vb. bij K4-map)

verschillende sjablonen voor dezelfde karnaugh-kaart

Nummering van de vakken

- "adres" = rangnummer is decimale waarde van bitpatroon
- Denkbeeldig gewicht aan A-B-C-D is 1-2-4-8
- Rangnummer = standaardnotatie bij mintermen en maxtermen

$$\begin{cases}
 # & B & A \\
 0 & 0 \\
 1 & 0 & 1 \\
 2 & 1 & 0 \\
 3 & 1 & 1
\end{cases}$$

6

C B 0

nummering van de karnaugh-vakken

#	D	\mathbf{C}	B	\mathbf{A}
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1 0
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	0
10	1	0	1	0
11	1	0	1	1
12	1	1	0	
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Invullen Karnaugh-kaart

Invullen = voor elke ingangscombinatie → uitgangswaarde in juiste vak

voorbeeld

$$\mathbf{Y} = \overline{D} \overline{C} B \overline{A} + \overline{D} \overline{C} B A$$

$$+ \overline{D} C \overline{B} \overline{A} + \overline{D} C \overline{B} A$$

$$+ \overline{D} C B A + \overline{D} \overline{C} \overline{B} \overline{A}$$

$$+ \overline{D} \overline{C} B A + \overline{D} C \overline{B} A$$

$$+ \overline{D} C B A$$

$$\mathbf{Y} = \Sigma \text{ m} (2, 3, 4, 5, 7, 8, 11, 13, 15)$$

#	D	C	В	A	Y
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	1

van waarheidstabel ...

... naar karnaugh-kaart

Enen (1) en nullen (0) <u>ALTIJD</u> invullen (blanco = don't care → zie later)

Twee buurvakken (-groepen) worden 1 nieuwe groep

Booleaanse vereenvoudiging

$$DCBA + \overline{D}CBA = (D+\overline{D}) \cdot CBA = 1 \cdot CBA = CBA$$

sterke vereenvoudiging (ook componenten en bedrading)

Versmelting met buurvak = 1 variabele minder!

- sterke vereenvoudiging van combinatorische functie!
 - → want minder variabelen in logische vergelijking
- Groeperen (vakversmelting) naar grotere groepen

Voorbeeld K4-map:

D C B A Een 1-vak wordt bepaald door 4 variabelen.

Elk 1-vak heeft 4 buurvakken.

Twee aangrenzende 1-vakken kunnen versmelten tot een 2-vak.

voorbeeld

 $D C B A + D \overline{C} B A = D B A$

B A Een 2-vak wordt bepaald door 3 variabelen.

Elk 2-vak heeft 3 buurgroepen.

Twee aangrenzende 2-vakken kunnen versmelten tot een 4-vak.

voorbeeld

 $\mathbf{D} \ \mathbf{B} \ \mathbf{A} + \mathbf{D} \ \mathbf{B} \ \overline{\mathbf{A}} = \mathbf{D} \ \mathbf{B}$

Een 4-vak wordt bepaald door 2 variabelen.

Elk 4-vak heeft 2 buurgroepen.

Twee aangrenzende 4-vakken kunnen versmelten tot een 8-vak.

voorbeeld

 $\mathbf{D} \ \mathbf{B} \ + \ \overline{\mathbf{D}} \ \mathbf{B} \quad = \ \mathbf{B}$

Een 8-vak wordt bepaald door 1 variabele.

Elk 8-vak heeft 1 buurgroep.

Twee aangrenzende 8-vakken kunnen versmelten tot een 16-vak - de functie is dan een identiteit 1.

voorbeeld

 $\mathbf{B} + \overline{\mathbf{B}} = \mathbf{1}$

- Buurvelden vlot herkennen!
- Grotere groep = sterke vereenvoudiging
- Groeperen via overstaande zijde(n) of hoek(en)
- Enkele voorbeelden:

al de grijze velden zijn aangrenzende vakken en kunnen telkens een groep vormen

Vereenvoudigen van functies

- Vereenvoudigen = minimaliseren = reduceren
- Via booleaanse algebra:
 - Omslachtig
 - Vergt uiterste aandacht
 - Vaardigheid na veel oefenen!
 - Gevoelig voor schrijffouten (vb. inversiestreepje vergeten)
- Via de methode van Karnaugh:
 - Menselijk brein kan gemakkelijker visuele patronen herkennen
 - Grafische methode = veel sneller = veel efficiënter = trefzekerder optimale vereenvoudiging vinden
- Karnaugh samengevat:

Om de kortste SoP-vorm van een logische functie te vinden moet men op de Karnaugh-kaart alle enen verzamelen in zo weinig mogelijk groepen die zo groot mogelijk gekozen zijn.

Vereenvoudigen van functies

Meer in detail uitgeschreven komt de karnaugh-procedure hier op neer:

- 1. De groepen mogen enkel enen (of don't cares) bevatten geen nullen
- 2. De groepen moeten met zo weinig mogelijk in aantal zijn geen nodeloze groepen
- **3.** De groepen hebben een omvang van 2^n vakken (1, 2, 4, 8, ...)
- **4.** De groepen ontstaan door horizontale of verticale uitbreiding van vakken niet diagonaal
- 5. De groepen moeten altijd zo groot mogelijk gemaakt worden.
- **6.** De groepen kunnen zich uitstrekken over de randen of hoeken van de map heen
- 7. De groepen mogen elkaar gedeeltelijk overlappen (enen mogen in meerdere groepen zitten)
- **8.** De groepen moeten alle enen verzamelen
- **9.** De groepen worden op de karnaugh-kaart aangeduid met lussen.

Vereenvoudigen van functies

Voorbeeld:

ingevulde karnaugh-kaart

omcirkelde groepen

in de onderstaande vijf kaarten zijn de apart te vormen groepen te zien

gereduceerde vergelijking

Nota:

- verder comprimeren kan, maar dan wijk je af van de zuivere SoP-vorm!
- soms meerdere oplossingen, met gelijke graad van vereenvoudiging

Gebieden AND-en of OR-en

AND-en → gebieden worden kleiner: behoud van enkel overlappende gedeelte OR-en → gebieden worden groter: ze verenigen

Gebieden AND-en of OR-en

Een AND-functie van meerdere ingangen komt overeen met een kleiner vak.

Een OR-functie van meerdere ingangen komt overeen met een groter vak.

grootst mogelijk gebied van de karnaugh-kaart, op één vak na

Invullen van de Karnaugh-kaart

Don't cares

- Logische functie kan onbepaalde uitgang hebben: 0 of 1
- Doet er niet toe = don't care
- Ontstaan als:
 - een ingangscombinatie in de praktijk niet voorkomt of
 - een uitgang geen belang heeft
 - Vb. bij een BCD-code (4-bit) komen de getalwaarden 10 t.e.m. 15 niet voor (zie later)
- In WT en Karnaughkaart → x voor een don't care
- Je kiest een 1 voor een grotere groep te kunnen bekomen, je kiest 0 indien hij niet van nut kan zijn
- Eenmaal je kiest ligt het niveau vast in de schakeling

Don't cares

Voorbeeld notatie:

$$Y = \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + ABC$$
 met $dc = \overline{A}B\overline{C} + AB\overline{C}$

#	С	В	Α	Υ
0	0	0	0	0
1	0	0	1	1
2	0	1	0	х
1 2 3 4	0	1	1	х
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

of
$$Y(C,B,A) = \Sigma m(1,4,5,6,7) + \Sigma d(2,3)$$

Quine Mc-Cluskey

- Karnaugh-kaart tot 4 variabelen
- Eventueel 5 en 6 variabelen: te moeilijk om maximale groepen te vinden → niet kennen
- Beter voor 5 tot onbeperkte variabelen: methode van Quine Mc-Cluskey
- Werkt via tabellen, eenvoudiger programmeerbaar
- Indien ooit nodig: via programma zoals WinLogiLab
- Methode zelf niet te kennen

WinLogiLab

Demo voor Karnaugh-kaart te oefenen

Overzicht definities

- Implicant, priemimplicant, noodzakelijke priemimplicant
 - Minterm = standaardproductterm = elk vakje op Karnaughkaart
 - Implicant = groepje in Karnaughkaart = een (deel)oplossing
 - Samengestelde standaardproducttermen
 - Vb. $ABC \ en \ A\overline{B}C \rightarrow implicant : AC$
 - Priem-implicant = grootste groep in Kn-map
 - Niet meer te impliceren met andere implicant
 - Vb. AC en $\bar{A}C \rightarrow priemimplicant : C$
 - Essentiële of noodzakelijke priem-implicant
 - Priem-implicanten die nodig en voldoende zijn om alle standaardproducttermen te bevatten

Overzicht definities

> Voorbeeld

$$X = \bar{C}\bar{B}A + \bar{C}BA + C\bar{B}A + CBA + CB\bar{A}$$
mintermen

Oefeningen: vereenvoudigen met Karnaugh-kaarten

- Voorbeelden

- Voorbeeld 1
$$X = A\overline{B} + AB$$

$$X = A$$

Voorbeeld 2
$$X = \overline{A}B + A\overline{B} + AB$$

$$X = A + B$$

Oefeningen: vereenvoudigen met Karnaugh-kaarten

Voorbeelden

- Voorbeeld 3

$$X = \bar{C}\bar{B}\bar{A} + C\bar{B}\bar{A} + \bar{C}B\bar{A} + CB\bar{A}$$

$$X = \bar{A}$$

- Voorbeeld 4

$$X = \overline{D}\overline{C}\overline{B}\overline{A} + \overline{D}\overline{C}B\overline{A} + \overline{D}C\overline{B}A + \overline{D}CBA + D\overline{C}\overline{B}\overline{A} + D\overline{C}B\overline{A} + DC\overline{B}A + DCBA$$

$$X = CA + \bar{C}\bar{A}$$

DE KARNAUGH-KAART

Voorbeelden

 $= \overline{D}\overline{C}\overline{B}\overline{A} + \overline{D}\overline{C}\overline{B}A + \overline{D}\overline{C}BA + \overline{D}\overline{C}B\overline{A} + D\overline{C}\overline{B}\overline{A} + D\overline{C}\overline{B}A$ $\mathbf{01} \quad \mathbf{11} \quad \mathbf{10} \quad + D\overline{C}BA + D\overline{C}B\overline{A}$

$$X = \bar{C}$$

- Voorbeeld 6

 $X = \overline{D}\overline{C}\overline{B}\overline{A} + \overline{D}C\overline{B}\overline{A} + \overline{D}C\overline{B}A + \overline{D}CBA + D\overline{C}\overline{B}\overline{A} + DC\overline{B}\overline{A} + DCBA$

$$X = CA + \bar{B}\bar{A}$$

Oefeningen: Los op met een Karnaughkaart

1.
$$\mathbf{X} = \mathbf{ab} + \overline{\mathbf{ab}}$$

2.
$$\mathbf{X} = \mathbf{a}\mathbf{\bar{b}} + \mathbf{\bar{a}b} + \mathbf{\bar{a}\bar{b}}$$

3.
$$\mathbf{X} = \mathbf{abc} + \overline{\mathbf{abc}} + \overline{\mathbf{abc}} + \overline{\mathbf{abc}} + \overline{\mathbf{abc}}$$

4.
$$\mathbf{X} = \overline{\mathbf{a}}\overline{\mathbf{b}}\overline{\mathbf{c}} + \mathbf{a}\overline{\mathbf{b}}\overline{\mathbf{c}} + \overline{\mathbf{a}}\mathbf{b}\overline{\mathbf{c}} + \overline{\mathbf{a}}\mathbf{b}\overline{\mathbf{c}} + \overline{\mathbf{a}}\overline{\mathbf{b}}\mathbf{c} + \overline{\mathbf{a}}\overline{\mathbf{b}}\mathbf{c} + \overline{\mathbf{a}}\overline{\mathbf{b}}\mathbf{c}$$

Oefeningen: Los op met een Karnaughkaart

1.
$$X = ab\overline{c} + \overline{a}bc + abc + \overline{a}b\overline{c}$$

2.
$$Y = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}\overline{c} + a\overline{b}\overline{c} + a\overline{b}\overline{c}$$

3.
$$\mathbf{F} = \mathbf{ABCD} + \overline{\mathbf{ABCD}} + \mathbf{ABCD} + \overline{\mathbf{ABCD}}$$

4.
$$\mathbf{F} = \mathbf{A}\mathbf{B} + \mathbf{\overline{B}}\mathbf{D} + \mathbf{\overline{A}}\mathbf{D} + \mathbf{\overline{A}}\mathbf{B}\mathbf{\overline{D}}$$

5.
$$\mathbf{X} = \sum \mathbf{m}(1, 3, 4, 6, 9, 11, 12, 14)$$

6.
$$\mathbf{Y} = \sum \mathbf{m}(1, 2, 3, 4, 5, 6, 13, 14, 15)$$

7.
$$\mathbf{Z} = \sum \mathbf{m}(0,1,2,3,4,6,8,9,10,11,12,14)$$

8.
$$\mathbf{F} = \mathbf{a} + \overline{\mathbf{d}} + \mathbf{cd}$$

Oefeningen: Los op met een Karnaughkaart

1.
$$Y = \Sigma m(0,2,6,7,9,13,14,15)$$

2.
$$Z = \Sigma m(0,3,4,8,12,14,15)$$

3.
$$X = \sum m(2,8,12,13,15) + \sum d(0,4,5,6,7,9,10)$$