$\begin{array}{c} {\rm Universit\acute{e}\ Toulouse\ III-Paul\ sabatier} \\ {\rm L2\ Informatique} \end{array}$

Complexité des algorithmes

Semestre 3

Table des matières

1 Introduction		oduction	4
	1.1	Complexité	4
	1.2	Complexité asymptotique	5
	1.3	Exemple de complexités d'algorithmes	7
	1.4	Comportement symptotique de fonctions usuelles	7
2	Complexité des boucles		9
	2.1	Complexité de boucles "pour"	9
	2.2	Complexité de boucles "tant que"	10
3	Complexité d'algorithmes définis par réccurence		9
4	Stru	ucture de données et complexité	10
\mathbf{A}	Exe	ercices	11
	A.1	TD 1	11

Complexité des boucles

2.1 Complexité de boucles "pour"

```
pour i:= 1 a n faire
    -- Corps de la boucle
fin pour;
```

Notions I_i la i^e itération (les instructions executées lors du i^e passage dans la boucle) et $T(I_i)$ sa complexité temporelle. :

Par exemple, $T_{\text{moy}}(n) = T \max(n) = \Theta(n)$ si $T(I_i)$ constant et $= \Theta(n^2)$ si $T(I_i) = an + b$ (boucle imbriquée.

2.1.1 Exemple

Calculer A = BC, le produit de 2 matrics. Rappel :

$$a_{ik} = \sum_{j=1}^{n} = b_{ij}C_{ji}$$

```
pour i = 1 a n faire
pour k = 1 a n faire
aik 0
pour j = 1 a n faire
aik = aik + bij * cjk;
fin pour;
fin pour;
fin pour;
fin pour;
```

$$T_{\text{moy}}(n) = T_{\text{max}}(n) = \sum_{i=1}^{n} \sum_{k=1}^{n} (1+n) = \Theta(n^3)$$

2.2 Complexité de boucles "tant que"

```
tantque C faire
-- Corps de la boucle
fin tantque;
```

$$T_{\text{moy}} = 1 + \sum_{i=1}^{\infty} \text{Prob}$$

On ajoute 1 pour le test de la condition C lorsque C = faux.

Soit E_i l'événement C = Vrai au début de i_i Si $\forall i, j E_i, E_j$ sont indépendantes et $\operatorname{prob}(E_i) = p < 1$, où p est une constante, alors $\operatorname{prob}(\operatorname{on exécute} I_i) = \operatorname{prob}(E_1 \cdots E_i) = p^i$ d'où

$$T_{\text{moy}}(n) = 1 + \sum_{i=1}^{\infty} p^{i} * T(I_{i})$$

Si $T(I_i)$ est constante, alors

$$T_{\text{moy}}(n) = \Theta(1 + \frac{p}{1-p}) = \Theta(\frac{1}{1-p}) = \Theta(1)$$

2.2.1 Exemple

Comparaison de 2 suites $\{A_i\}, \{b_i\}.$

```
i := 1;
tantque (ai = bi et i <= n) faire
i := i + 1;
fin tantque;</pre>
```