

PubChem as a Biologics Database

Noel O'Boyle and Roger Sayle

NextMove Software

Evan Bolton

PubChem, NCBI-NIH

PUBCHEM INTERFACE

PubChem Classification Browser

Browse PubChem data using a classification of interest, or search for PubChem records a Gene Ontology: DNA repair). More...

$$\neg$$
 (

CID16139356

— Pro — Gly — Asn — Pro — Cys — Cys — Asp — Ala — Ala — Thr —

— Cys — Lys — Leu — Arg — Gln — Gly — Ala — Gln — Cys — Ala —

— Glu — Gly — Leu — Cys — Cys — Asp — Gln — Cys — Arg — Phe —

igspace Met - Lys - Lys - Gly - Thr - Val - Cys - Arg - Ile - Ala -

— Arg — Gly — Asp — Asp — Met — Asp — Asp — Tyr — Cys — Asn –

— Gly — Ile — Ser — Ala — Gly — Cys — Pro — Arg — Asn — Pro —

— Phe—он

CID56842075 Rhodostomin

CID56842075 Rhodostomin

CID91852014

CID91852014

PUBCHEM - A SMALL MOLECULE DATABASE?

- People don't think of PubChem as a peptide database
 - ~110K X-rays of proteins in PDB
 - ~500K peptides in PubChem
- People don't think of PubChem as a saccharide database
 - ~80K oligosaccharides in GlyTouCan
 - ~67K oligosaccharides in PubChem

531,618 contain a monosaccharide, of which 66,740 can be depicted

HOW MANY MONOSACCHARIDES PRESENT?

113 aldoses, ketoses, aldonic and uronic acids with from 5-9 carbons AltA, Glc, L-Man, L-Gal, Fru, L-gro-D-glcHept

407 including deoxy variants, ring variants

L-Glcf, Mans, 2-deoxy-D-manHept, 3-deoxy-D-glcOct2ulo-onic

971 including anomeric

a-Man, 3,4-deoxy-a-D-eryHex, b-Tyv

7094 including common substituents at non-anomeric positions

Xylf5Me, a-L-ManNAc3Ac4Ac6Ac, Glc2P3P6P

26641 including any substituent anywhere

Bz(-2)[Tos(-3)]Ara4Ac(b)-O-Me, TMS(-4)[TMS(-6)]GlcNAc3Me(a)-O-Me

AMINO ACIDS IN PUBCHEM STRUCTURES CONTAINING AT LEAST THREE AMINO ACIDS

HOW MANY AMINO ACIDS PRESENT?

20 common amino acids

Ala, Cys, Lys, Thr

87 amino acids

Ala, Cys, Hcy, Lys, 2Nal, Ncy, Thr

1095 including substituents

3546 including stereo variants, terminal variants, linker variants, α-methylated

Thr, D-Thr, DL-Thr, aThr, Thr-ol, aMeThr

8125 including N-substituted variants

Thr, Me-Thr, Boc-Thr, Me₂-Thr, Fmoc-N(Me)Thr

HOW MANY PEPTIDES PRESENT?

- Depends how you count...
- 447,026 have 3 or more amino acids
- 668,229 structures are recognised in their entirety as peptides

SEQUENCE REPRESENTATION

- Depending on the task or quality of datasource, different sequence representations may be preferred
 - Distinguish between D-/L-/DL- amino acids using upper/lowercase?
 - D-Ala as a or A
 - Distinguish between sidechain stereo variants?
 - alloThr as X or T
 - Distinguish between substituted amino acids and their parent?
 - Ser(PO3H2) as X or S

EXACT SEQUENCE SEARCH

- Given that features of the structure are normalized or ignored
 - Exact sequence search can be used to find similar structures (sequence as hash)
- Create hierarchy of similarity
 - First, those structures with the same sequence, if we normalise as much as possible
 - Then successively discriminate based on stereochemistry, side-chain substitution

SEARCH FOR KEMPTIDE: LRRASLG

H-Leu - Arg - Arg - Ala - Ser - Leu - Gly-OH

11	LVU	/ vig	7 419	/ YICK	OCI	LCU	Oly

LRRASLG		
LRRASLG		
Ac-DL-Leu-DL-Arg-DL-Arg-DL-Ala-DL-Ser-DL-Leu-Gly-OH	78069426	acetyl-kemptide
Ac-Leu-Arg-Arg-Ala-Ser-Leu-Gly-OH	71429096	acetyl-kemptide
H-DL-Leu-DL-Arg-DL-Arg-DL-Ala-DL-Ser-DL-Leu-Gly-NH2	85062657	kemptide amide
H-DL-Leu-DL-Arg-DL-Arg-DL-Ala-DL-Ser-DL-Leu-Gly-OH	100074	kemptide
H-DL-Leu-DL-Arg-DL-Arg-DL-Ala-DL-Ser-DL-Leu-Gly-OH.TFA	118797564	
H-Leu-Arg-Arg-Ala-Ser-Leu-Gly-NH2	9897033	kemptide amide
H-Leu-Arg-Arg-Ala-Ser-Leu-Gly-OH	9962276	kemptide
Unk-Leu-Arg-Arg-Ala-Ser-Leu-Gly-OH LRRAXLG	11650926,101224399,10	18/8/3/
	102212090	[Car/DO2H2) Elkomptida amida
H-Leu-Arg-Arg-Ala-Ser(PO3H2)-Leu-Gly-NH2 H-Leu-Arg-Arg-Ala-Ser(PO3H2)-Leu-Gly-OH	102212089 13783725	[Ser(PO3H2)-5]kemptide amide [Ser(PO3H2)-5]kemptide
LRraSLG	13/63/23	[Ser(FOSH2)-S]kemplide
LRraSLG		
	F2202600	[D Ava2 D Ala 4] kamantida
H-Leu-Arg-D-Arg-D-Ala-Ser-Leu-Gly-OH LrRASLG	53393688	[D-Arg3,D-Ala4]kemptide
LrRASLG	00064044	FD 4 27
H-Leu-D-Arg-Arg-Ala-Ser-Leu-Gly-OH	99864041	[D-Arg2]kemptide
lrraslg		
1RRASLG		
H-D-Leu-Arg-Arg-Ala-Ser-Leu-Gly-OH	99864040	[D-Leu1]kemptide
lrRASLG		
lrRASLG		
H-D-Leu-D-Arg-Arg-Ala-Ser-Leu-Gly-OH	99864042	[D-Leu1,D-Arg2]kemptide

- Use a sequence representation to find peptides with different disulfide bridges
 - Does not occur naturally
 - Either errors by depositor, or artificially created
- Convert peptides with at least four cysteines to sequence format and collate
 - 16 cases found with different bridges
 - 12 were erroneous, 4 real

ICCNPACGPKYSC

CID11480353

CID101041637

CHEMICAL BIOLOGY & DRUG DESIGN

Explore this journal >

Controlled syntheses of natural and disulfide-mispaired regioisomers of α-conotoxin SI[†]

B. Hargittai, G. Barany

First published: December 1999 Full publication history

DOI: 10.1034/j.1399-3011.1999.00127.x View/save citation

Deposited by Nikajii

GLPRKILCAIAKKKGKCKGPLKLVCKC

CID71597277

CID71597445

CID71597707

Deposited by NIAID (National Institute of Allergies and Infectious Diseases)

GLPRKIL**C**AIAKKKGK**C**KGPLKLV**C**K**C**

CID71597277

CID71597445

H—Gly — Leu — Pro — Arg — Lys — Ile — Leu — Cys — Ala — Ile — Ala — Lys — Lys — Gly — Lys — Cys — Lys — Gly — Pro — Amino Acids (2012) 43:751–761

ORIGINAL ARTICLE

DOI 10.1007/s00726-011-1125-6

Lasiocepsin, a novel cyclic antimicrobial peptide from the venom of eusocial bee *Lasioglossum laticeps* (Hymenoptera: Halictidae)

Lenka Monincová · Jiřina Slaninová · Vladimír Fučík · Oldřich Hovorka · Zdeněk Voburka · Lucie Bednárová · Petr Maloň · Jitka Štokrová · Václav Čeřovský

Deposited by NIAID (National Institute of Allergies and Infectious Diseases)

ys − Cys − Lys − Gly − Pro

KNOTTINS

- Peptides with three disulfide bridges, where one threads through the macrocycle formed by the others (see KNOTTIN Database http://knottin.cbs.cnrs.fr)
- Interesting leads for drug discovery
 - Stable fold, sequence tolerant, small

```
H—Cys — Cys — Asn — Cys — Ser — Ser — Lys — Trp — Cys — Arg — Asp — His — Ser — Arg — Cys — Cys—NH<sub>2</sub>
μ-conotoxin KIIIA (CID73350610)
```

- A necessary (but not sufficient) condition is an arrangement of Cys bridges 123123
 - 90 examples in PubChem

SEQUENCE VARIATION

- Which parts of a sequence have seen the most variants?
 - Of interest for drug discovery, activity modulation

- Looked for variants of a sequence that are one substitution away from a known peptide
 - Required strict matching of the sequence to minimize 'mutations' due to errors

PubChem

Casokefamide YaFaY

$$H$$
Tyr $DAla-$ Phe $DAla-$ Tyr- NH_2

Neuromedin N KIPYIL

$$H$$
Lys $Ile Pro Tyr Ile Leu$ - OH

Setmelanotide RCaHfRWC

Thymulin XAKSQGGSN

$$\operatorname{H--Pyr}-\operatorname{Ala}-\operatorname{Lys}-\operatorname{Ser}-\operatorname{Gln}-\operatorname{Gly}-\operatorname{Gly}-\operatorname{Ser}-\operatorname{Asn--OH}$$

ARE PUBCHEM PEPTIDES VARIANTS OF KNOWN PEPTIDES?

- Hypothesis: observed peptides are close variants of a small number of known peptides
- Curated database of oligopeptides of biological interest (currently 452 entries)
- 10.5% of the 170,708 peptides of length 5 or greater in PubChem can be named as variants of these
 - argipressin (1-8)
 - Cbz-cholecystokinin octapeptide (2-7) amide
 - [Ile1,Ser2,Ser8]cyphokinin

SUMMARY

- PubChem is a rich source of information on oligopeptides and oligosaccharides
 - Often heavily modified, rather than natural
- Due to chemical modifications, we need to think in terms of 10s of thousands of monomers
- Sequence representations act as a key:
 - To collate similar peptides
 - To find sequence variants, sites of variation
 - To find disulfide bridge variants, knottins

ACKNOWLEDGEMENTS

Paul Thiessen PubChem

http://nextmovesoftware.com http://nextmovesoftware.com/blog noel@nextmovesoftware.com

Rank Sales 2016	Trade Name	Name	Type of biologic
1	Humira	adalimumab	Monoclonal antibody
2	Harvoni	ledipasvir/sofosbuvir	
3	Enbrel	etanercept	Protein attached to monoclonal antibody
4	Rituxan	rituximab	Monoclonal antibody
5	Remicade	infliximab	Monoclonal antibody
6	Revlimid	lenalidomide	
7	Avastin	bevacizumab	Monoclonal antibody
8	Herceptin	trastuzumab	Monoclonal antibody
9	Lantus	insulin glargine	Protein
10	Prevnar 13	Pneumococcal vaccine	Polysaccharides attached to carrier protein
11	Xarelto	rivaroxaban	
12	Eylea	aflibercept	Protein attached to monoclonal antibody
13	Lyrica	pregabalin	
14	Neulasta	pegfilgrastim	PEG attached to protein
15	Advair Diskus	fluticasone/salmeterol	

REPRESENTATIONS AT VARIOUS LEVELS

- All-atom
- Hydrogen-suppressed graphs
 - How to handle non-standard valencies, cycles
- Consider monomer as superatom
 - How to handle cycles, monomer variants such as modifications and opposite stereo

MOST COMMON UNRECOGNISED SUBSTITUENTS ON SUGARS

 Increased number of perceived oligosaccharides from 51,273 to 66,740