

CLAIMS

What is claimed is:

1 1. A method for processing a speech signal, comprising:
2 receiving an input speech signal;
3 constructing a phoneme lattice for the input speech signal;
4 searching the phoneme lattice to produce a likelihood score for each
5 potential path; and
6 determining a processing result for the input speech signal based on the
7 likelihood score of each potential path.

8
1 2. The method of claim 1, wherein constructing the phoneme lattice
2 comprises:
3 segmenting an input speech signal into frames;
4 extracting acoustic features for a frame of the input speech signal;
5 determining K-best initial phoneme paths leading to the frame based on a
6 first score of each potential phoneme path leading to the frame; and
7 calculating a second score for each of the K-best phoneme paths for the
8 frame.

9
1 3. The method of claim 2, further comprising:
2 clustering together K-best initial phoneme paths for at least one
3 consecutive frame;
4 selecting M-best refined phoneme paths among the clustered phoneme
5 paths based on second scores of these paths; and
6 identifying vertices and arc parameters of the phoneme lattice for the
7 input speech signal.

8
1 4. The method of claim 2, wherein the first score and the second score
2 comprise a score based on phoneme acoustic models and language models.
3

1 5. The method of claim 1, wherein searching the phoneme lattice
2 comprises:

3 receiving a phoneme lattice;
4 traversing the phoneme lattice via potential paths;
5 computing a score for a traversed path based on at least one of a
6 phoneme confusion matrix and a plurality of language models; and
7 modifying the score for the traversed path.

8
1 6. The method of claim 5, wherein modifying the score comprises
2 adjusting the score by at least one of the following: allowing repetition of
3 phonemes and allowing flexible endpoints for phonemes in a path.

4
1 7. The method of claim 1, wherein determining the processing result
2 comprises determining at least one of the following: at least one candidate
3 textual representation of the input speech signal and a likelihood that the input
4 speech signal contains targeted keywords.

5
1 8. A method for constructing a phoneme lattice for an input audio signal
2 comprising:

3 segmenting the input audio signal into frames;
4 extracting acoustic features for a frame of the input audio signal;
5 determining K-best initial phoneme paths leading to the frame based on a
6 first score of each potential phoneme path leading to the frame; and
7 calculating a second score for each of the K-best phoneme paths for the
8 frame.

9
1 9. The method of claim 8, further comprising:
2 clustering together K-best initial phoneme paths for at least one
3 consecutive frame;
4 selecting M-best refined phoneme paths among the clustered phoneme
5 paths based on second scores of these paths; and

6 identifying vertices and arc parameters of the phoneme lattice for the
7 input speech signal.

8

1 10. The method of claim 8, wherein the first score and the second score
2 comprises a score based on phoneme acoustic models and language models.

3

1 11. A method for searching a phoneme lattice, comprises:
2 receiving a phoneme lattice;
3 traversing the phoneme lattice via potential paths; and
4 computing a score for a traversed path based on at least one of a
5 phoneme confusion matrix and a plurality of language models.

6

1 12. The method of claim 11, further comprising modifying the score for
2 the traversed path.

3

1 13. The method of claim 12, wherein modifying the score comprises
2 adjusting the score by at least one of the following: allowing repetition of
3 phonemes and allowing flexible endpoints for phonemes in a path.

4

1 14. The method of claim 11, further comprising determining a search
2 result for the input audio signal based on the modified score of each searched
3 path.

4

1 15. A method for distributing speech processing, comprising:
2 receiving an input speech signal by a client;
3 constructing a phoneme lattice for the input speech signal by the client;
4 transmitting the phoneme lattice from the client to a server; and
5 searching the phoneme lattice to produce a result for the input speech
6 signal for the purpose of at least one of recognizing speech and spotting
7 keywords, in the input speech signal.

8

1 16. The method of claim 15, wherein constructing the phoneme lattice
2 comprises:

3 segmenting an input speech signal into frames;
4 extracting acoustic features for a frame of the input speech signal;
5 determining K-best initial phoneme paths leading to the frame based on a
6 first score of each potential phoneme path leading to the frame; and
7 calculating a second score for each of the K-best phoneme paths.

8
1 17. The method of claim 16, further comprising:

2 clustering together K-best initial phoneme paths for at least one
3 consecutive frame;
4 selecting M-best refined phoneme paths among the clustered phoneme
5 paths based on second scores of these paths; and
6 identifying vertices and arc parameters of the phoneme lattice for the
7 input speech signal.

8
1 18. The method of claim 16, wherein the first score and the second score
2 comprise a score based on phoneme acoustic models and phoneme language
3 models.

4
1 19. The method for claim 15, wherein searching the phoneme lattice
2 comprises:

3 receiving a phoneme lattice;
4 traversing the phoneme lattice via potential paths;
5 computing a likelihood score for a traversed path based on at least a
6 phoneme confusion matrix and a plurality of language models;
7 modifying the score for the traversed path; and
8 determining a search result for the input audio signal based on the
9 modified score of each searched path.

10

- 1 20. The method of claim 19, wherein modifying the score comprises
2 adjusting the score by at least one of the following: allowing repetition of
3 phonemes and allowing flexible endpoints for phonemes in a path.
- 4
- 1 21. A method for training a phoneme confusion matrix, comprising:
2 initializing the phoneme confusion matrix;
3 estimating confusion probabilities between phonemes based on a training
4 database, and the initial phoneme confusion matrix; and
5 updating the phoneme confusion matrix based on the estimated confusion
6 probabilities.
- 7
- 1 22. The method of claim 21, wherein the training database comprises a
2 plurality of utterances, actual phoneme sequences corresponding to the plurality
3 of utterances, and time alignment information between utterances and actual
4 phoneme sequences of the utterances.
- 5
- 1 23. The method of claim 21, wherein estimating the confusion
2 probabilities comprises:
3 constructing a phoneme lattice for each utterance in the training
4 database;
5 searching the phoneme lattice to produce a phoneme sequence
6 hypothesis for the corresponding utterance; and
7 estimating the confusion probabilities between phonemes based on
8 statistics obtained by comparing actual phoneme sequences and corresponding
9 phoneme sequence hypotheses.
- 10
- 1 24. A speech processing system, comprising:
2 a phoneme lattice constructor to construct a phoneme lattice for an input
3 speech signal;

4 a phoneme lattice search mechanism to search the phoneme lattice for
5 the purpose of at least of recognizing speech and spotting keywords, in the input
6 speech signal;

7 a plurality of models for lattice construction; and
8 a plurality of models for lattice search.

9

1 25. The system of claim 24, wherein the phoneme lattice constructor
2 comprises:

3 an acoustic feature extractor to segment the input speech signal into
4 frames and to extract acoustic features for a frame;

5 a phoneme path estimator to determine K-best initial phoneme paths
6 leading to the frame;

7 a global score evaluator to determine M-best refined phoneme paths
8 based on a cluster of K-best paths of at least one consecutive frame; and

9 a lattice parameter identifier to identify lattice vertices and arc parameters
10 based on M-best refined phoneme paths of each frame.

11

1 26. The system of claim 24, wherein the plurality of models for lattice
2 construction comprise a plurality of phoneme acoustic models and a plurality of
3 language models.

4

1 27. The system of claim 24, wherein the plurality of models for lattice
2 search comprise a phoneme confusion matrix and a plurality of language
3 models.

4

1 28. A system for constructing a phoneme lattice, comprising:
2 an acoustic feature extractor to segment an input speech signal into
3 frames and to extract acoustic features for a frame;
4 a phoneme path estimator to determine K-best initial phoneme paths
5 leading to the frame;

6 a global score evaluator to determine M-best refined phoneme paths
7 based on a cluster of K-best paths of at least one consecutive frame; and
8 a lattice parameter identifier to identify lattice vertices and arc parameters
9 based on M-best refined phoneme paths of each frame.

10
1 29. The system of claim 28, wherein the phoneme path estimator
2 comprises a likelihood score evaluator to calculate a first score for a potential
3 phoneme path leading to each frame.

4
1 30. The system of claim 28, wherein the global score evaluator comprises
2 a score computation component to calculate a second score for each of K-best
3 initial phoneme paths for each frame.

4
1 31. A distributed speech processing system, comprising:
2 a client to receive an input speech signal and to construct a phoneme
3 lattice for the input speech signal; and
4 a server to search the phoneme lattice to produce a result for the input
5 speech signal for the purpose of at least one of recognizing speech and spotting
6 keywords, in the input speech signal.

7
1 32. The system of claim 31, wherein the client comprises a phoneme
2 lattice constructor to construct a phoneme lattice and a transmitting component
3 to transmit the phoneme lattice to the server.

4
1 33. The system of claim 31, wherein the server comprises a receiving
2 component to receive the phoneme lattice from the client and a phoneme lattice
3 search mechanism to search the phoneme lattice.

4
1 34. A system for training a phoneme confusion matrix, comprising:
2 a confusion matrix initializer to initialize the phoneme confusion matrix;

3 a phoneme lattice constructor to construct a phoneme lattice for each
4 utterance in a training database; and

5 a phoneme lattice search mechanism to search the phoneme lattice to
6 produce a phoneme sequence hypothesis for the corresponding utterance,
7 based on the initial phoneme confusion matrix and a plurality of language
8 models.

9

1 35. The system of claim 34, further comprising a confusion matrix
2 updater to update the initial phoneme confusion matrix using confusion
3 probabilities between phonemes estimated from statistics obtained by comparing
4 actual phoneme sequences and corresponding phoneme sequence hypotheses.

5

1 36. The system of claim 35, wherein the phoneme confusion matrix
2 updater comprises a confusion probability estimator to estimate confusion
3 probabilities between phonemes based on the training database.

4

1 37. An article comprising: a machine accessible medium having content
2 stored thereon, wherein when the content is accessed by a processor, the
3 content provides for processing a speech signal by:

4 receiving an input speech signal;

5 constructing a phoneme lattice for the input speech signal;

6 searching the phoneme lattice to produce a likelihood score for each
7 potential path; and

8 determining a processing result for the input speech signal based on the
9 likelihood score of each potential path.

10

1 38. The article of claim 37, wherein content for constructing the phoneme
2 lattice comprises content for:

3 segmenting an input speech signal into frames;

4 extracting acoustic features for a frame of the input speech signal;

5 determining K-best initial phoneme paths leading to the frame based on a
6 first score of each potential phoneme path leading to the frame; and
7 calculating a second score for each of the K-best phoneme paths for the
8 frame.

9

1 39. The article of claim 38, further comprising content for:
2 clustering together K-best initial phoneme paths for at least one
3 consecutive frame;
4 selecting M-best refined phoneme paths among the clustered phoneme
5 paths based on second scores of these paths; and
6 identifying vertices and arc parameters of the phoneme lattice for the
7 input speech signal.

8

1 40. The article of claim 38, wherein the first score and the second score
2 comprise a score based on phoneme acoustic models and language models.

3

1 41. The article of claim 37, wherein content for searching the phoneme
2 lattice comprises content for:
3 receiving a phoneme lattice;
4 traversing the phoneme lattice via potential paths;
5 computing a score for a traversed path based on at least one of a
6 phoneme confusion matrix and a plurality of language models; and
7 modifying the score for the traversed path.

8

1 42. The article of claim 41, wherein content for modifying the score
2 comprises content for adjusting the score by at least one of the following:
3 allowing repetition of phonemes and allowing flexible endpoints for phonemes in
4 a path.

5

1 43. The article of claim 37, wherein content for determining the
2 processing result comprises content for determining at least one of the following:

3 at least one candidate textual representation of the input speech signal and a
4 likelihood that the input speech signal contains targeted keywords.
5

1 44. An article comprising: a machine accessible medium having content
2 stored thereon, wherein when the content is accessed by a processor, the
3 content provides for constructing a phoneme lattice for an input audio signal by:
4 segmenting the input audio signal into frames;
5 extracting acoustic features for a frame of the input audio signal;
6 determining K-best initial phoneme paths leading to the frame based on a
7 first score of each potential phoneme path leading to the frame; and
8 calculating a second score for each of the K-best phoneme paths for the
9 frame.

10
1 45. The article of claim 44, further comprising content for:
2 clustering together K-best initial phoneme paths for at least one
3 consecutive frame;
4 selecting M-best refined phoneme paths among the clustered phoneme
5 paths based on second scores of these paths; and
6 identifying vertices and arc parameters of the phoneme lattice for the
7 input speech signal.

8
1 46. The article of claim 44, wherein the first score and the second score
2 comprises a score based on phoneme acoustic models and language models.
3

1 47. An article comprising: a machine accessible medium having content
2 stored thereon, wherein when the content is accessed by a processor, the
3 content provides for searching a phoneme lattice by:
4 receiving a phoneme lattice;
5 traversing the phoneme lattice via potential paths; and
6 computing a score for a traversed path based on at least one of a
7 phoneme confusion matrix and a plurality of language models.

8

1 48. The article of claim 47, further comprising content for modifying the
2 score for the traversed path.

3

1 49. The article of claim 48, wherein content for modifying the score
2 comprises content for adjusting the score by at least one of the following:
3 allowing repetition of phonemes and allowing flexible endpoints for phonemes in
4 a path.

5

1 50. The article of claim 47, further comprising content for determining a
2 search result for the input audio signal based on the modified score of each
3 searched path.

4

1 51. An article comprising: a machine accessible medium having content
2 stored thereon, wherein when the content is accessed by a processor, the
3 content provides for distributing speech processing by:
4 receiving an input speech signal by a client;
5 constructing a phoneme lattice for the input speech signal by the client;
6 transmitting the phoneme lattice from the client to a server; and
7 searching the phoneme lattice to produce a result for the input speech
8 signal for the purpose of at least one of recognizing speech and spotting
9 keywords, in the input speech signal.

10

1 52. The article of claim 51, wherein content for constructing the phoneme
2 lattice comprises content for:
3 segmenting an input speech signal into frames;
4 extracting acoustic features for a frame of the input speech signal;
5 determining K-best initial phoneme paths leading to the frame based on a
6 first score of each potential phoneme path leading to the frame; and
7 calculating a second score for each of the K-best phoneme paths.

8

1 53. The article of claim 52, further comprising content for:
2 clustering together K-best initial phoneme paths for at least one
3 consecutive frame;
4 selecting M-best refined phoneme paths among the clustered phoneme
5 paths based on second scores of these paths; and
6 identifying vertices and arc parameters of the phoneme lattice for the
7 input speech signal.

8

1 54. The article of claim 52, wherein the first score and the second score
2 comprise a score based on phoneme acoustic models and phoneme language
3 models.

4

1 55. The article for claim 51, wherein content for searching the phoneme
2 lattice comprises content for:
3 receiving a phoneme lattice;
4 traversing the phoneme lattice via potential paths;
5 computing a likelihood score for a traversed path based on at least a
6 phoneme confusion matrix and a plurality of language models;
7 modifying the score for the traversed path; and
8 determining a search result for the input audio signal based on the
9 modified score of each searched path.

10

1 56. The article of claim 55, wherein content for modifying the score
2 comprises content for adjusting the score by at least one of the following:
3 allowing repetition of phonemes and allowing flexible endpoints for phonemes in
4 a path.

5

1 57. An article comprising: a machine accessible medium having content
2 stored thereon, wherein when the content is accessed by a processor, the
3 content provides for training a phoneme confusion matrix by:
4 initializing the phoneme confusion matrix;

5 estimating confusion probabilities between phonemes based on a training
6 database, and the initial phoneme confusion matrix; and

7 updating the phoneme confusion matrix based on the estimated confusion
8 probabilities.

9

1 58. The article of claim 57, wherein the training database comprises a
2 plurality of utterances, actual phoneme sequences corresponding to the plurality
3 of utterances, and time alignment information between utterances and actual
4 phoneme sequences of the utterances.

5

1 59. The article of claim 57, wherein content for estimating the confusion
2 probabilities comprises content for:

3 constructing a phoneme lattice for each utterance in the training
4 database;

5 searching the phoneme lattice to produce a phoneme sequence
6 hypothesis for the corresponding utterance; and

7 estimating the confusion probabilities between phonemes based on
8 statistics obtained by comparing actual phoneme sequences and corresponding
9 phoneme sequence hypotheses.

10