15

20

25

ÚĮ

What is claimed is:

- 1. A method for defeating a denial-of-service attack, for use in a communication system in which a client sends a ciphertext of a random number chosen by the client encrypted under a public key of a server to authenticate a server, the method comprising the steps of:
- (a) at the server, generating a random number $r_{\rm B}$ in response to a service request from a client and sending the random number to the client;
- (b) at the server, receiving the ciphertext produced by using the random number $r_{\rm B}$ from the client and a random number $r_{\rm A}$ of the client;
- (c) at the server, recovering a random number r_B from the ciphertext received from the client and comparing the recovered random number with the random number sent to the client; and
- (d) if the Frandom numbers match—at the step (c), providing the service, and, otherwise, denying the service.
- 2. The method as received in claim 1, wherein, at the step (a), the random number r_B obtained by an equation $r_B = H(K_{master}, index_r_B)$ where H is a hash function, K_{master} is a secret master key and $index_r_B$ is an index parameter for the random number.
 - A method for defeating denial-of-service attack,

20

25

5

applicable to a server authentication system in which a client uses a discrete exponentiation g^n as a random challenge the server a private key and a public key of a server are respectively b and g^b , and the ciphertext of the client's challenge using the public key of the server is g^{b_n} , the method comprising the steps of:

- (a) at the server, sending a random number r_A to a client;
- (b) at the server, receiving x and y values which the client computed by using the random number from the server as:

$$\varkappa = (g^b)^{r_A + r_B}$$

where b is the private key of the server and g^b is the public key of the server, and

$$y = h(g^{r_A})$$

where h represents a hash function;

(c) comparing from the client with y as follows:

$$y' = h(x^{b^{-1}}g^{-r_B})$$
; and

- (d) if y and y match, providing a requested service to the client, and, otherwise, denying the service the client.
- 4. In a communication system having a large capability processor in which a client sends a server a ciphertext of a random number energypted under a public-key of the server to authenticate the server, a computer readable medium for recording a program for implementing the functions of:

5

10

15

20

25

- (a) at the server, generating a random number r_0 in response to a service request from a client and sending the random number to the client;
- (b) at the server, receiving the ciphertext which is produced by the client based on the random number r_B sent to the client and a random number r_A of the client;
- (c) at the server, recovering the random number $r_{\rm B}$ from the ciphertext received from the client and comparing the recovered random number with the random number sent to the client; and
- (d). if the random numbers match at the step (c), providing the service, and, otherwise, denying the service.
- 5. In a server authentication system having a large capability processor, in which a client uses a disrecte exponentiation g^{r_1} as a random challenge to a server, a private key and a corresponding public key of the server are respectively b and g^b , and a ciphertext of the client's challenge using the public key of the server is g^{br_1} , a computer readable medium for recording a program for implementing the functions of:
 - (a) at the seriver, sending a random number to a client;
- (b) at the server, receiving x and y values which the client computed by using the random number from the server as:

 $x = (q^b)^{r_A + r_B}$

where b is the private key of the server and g^b is the

public key of the server, and

$$y=h(g^{r_\lambda})$$

where h represents a hash function;

(c) at the server, comparing y from the client with y' as follows:

$$y' = h(x^{b^{-1}}g^{-r_{b}})$$
; and

(d) if y and y match, providing a service to the client, and, otherwise, deriving the service.

10