Redes de Computadoras Práctica 5: La capa de transporte

Temas

EL SERVICIO DE TRANSPORTE, ELEMENTOS DE LOS PROTOCOLOS DE TRANSPORTE, LOS PROTOCOLOS DE TRANSPORTE DE INTERNET

Herramientas y comandos

TELNET, NETSTAT, NETCAT

Protocolos y normas

RFC 768: UDP, RFC 793: TCP, RFC 854 Y 855: TELNET

Figuras

Figura 6-1. Las capas de red, transporte y aplicación.

Figura 6-3. Anidamiento de las TPDUs, los paquetes y las tramas.

Primitiva	Significado
SOCKET	Crea un nuevo punto terminal de comunicación
BIND	Adjunta una dirección local a un socket
LISTEN	Anuncia la disposición a aceptar conexiones; indica el tamaño de cola
ACCEPT	Bloquea al invocador hasta la llegada de un intento de conexión
CONNECT	Intenta establecer activamente una conexión
SEND	Envía datos a través de la conexión
RECEIVE	Recibe datos de la conexión
CLOSE	Libera la conexión

Figura 6-5. Primitivas de socket para TCP.

Primitiva	Paquete enviado	Significado
LISTEN	(ninguno)	Se bloquea hasta que algún proceso intenta la conexión
CONNECT	CONNECTION REQ.	Intenta activamente establecer una conexión
SEND	DATA	Envía información
RECEIVE	(ninguno)	Se bloquea hasta que llega un paquete DATA
DISCONNECT	DISCONNECTION REQ.	Este lado quiere liberar la conexión

Figura 6-2. Primitivas de un servicio de transporte sencillo.

Figura 6-4. Diagrama de estado de un esquema sencillo de manejo de conexiones. Las transiciones escritas en cursivas son causadas por llegadas de paquetes. Las líneas continuas muestran la secuencia de estados del cliente. Las líneas punteadas muestran la secuencia de estados del servidor.

Figura 6-7. (a) Entorno de la capa de enlace de datos. (b) Entorno de la capa de transporte.

Figura 6-8. TSAPs, NSAPs y conexiones de transporte.

Figura 6-17. (a) Multiplexión hacia arriba. (b) Multiplexión hacia abajo.

Figura 6-23. El encabezado UDP.

Figura 6-9. Manera en que un proceso de usuario del *host* 1 establece una conexión con un servidor de hora del día del *host* 2.

Puerto	Protocolo	Uso
21	FTP	Transferencia de archivos
23	Telnet	Inicio remoto de sesión
25	SMTP	Correo electrónico
69	TFTP	Protocolo de transferencia de archivos trivial
79	Finger	Búsqueda de información sobre un usuario
80	HTTP	World Wide Web
110	POP-3	Acceso remoto al correo electrónico
119	NNTP	Noticias USENET

Figura 6-27. Algunos puertos asignados.

Figura 6-29. Encabezado TCP.

Figura 6-31. (a) Establecimiento de una conexión TCP en el caso normal. (b) Colisión de llamadas.

Estado	Descripción		
CLOSED	No hay conexión activa ni pendiente		
LISTEN	El servidor espera una llamada		
SYN RCVD	Llegó solicitud de conexión; espera ACK		
SYN SENT	La aplicación comenzó a abrir una conexión		
ESTABLISHED	Estado normal de transferencia de datos		
FIN WAIT 1	La aplicación dijo que ya terminó		
FIN WAIT 2	El otro lado acordó liberar		
TIMED WAIT	Espera que todos los paquetes mueran		
CLOSING	Ambos lados intentaron cerrar simultáneamente		
CLOSE WAIT	El otro lado inició una liberación		
LAST ACK	Espera que todos los paquetes mueran		

Figura 6-32. Estados usados en la máquina de estados finitos de administración de conexiones

Figura 6-33. Máquina de estados finitos de administración de conexiones TCP. La línea continua gruesa es la trayectoria normal de un cliente. La línea punteada gruesa es la trayectoria normal de un servidor. Las líneas delgadas son eventos poco comunes. Cada transición está indicada por el evento que la ocasiona y la acción resultante, separada por una diagonal.

Figura 6-34. Administración de ventanas en TCP.

EXPLICAR Y JUSTIFICAR TODAS LAS RESPUESTAS

PROBLEMAS

Problema 1.

¿Qué es UDP? Dibuje el esquema básico del paquete. Ejemplifique para qué puede ser utilizado.

Problema 2.

¿Qué diferencias hay entre UDP y TCP con respecto a los servicios que ofrece? ¿En qué escenarios es preferible cada uno?

Problema 3.

Ofrezca algunos ejemplos de parámetros de protocolo que podrían negociarse al establecerse una conexión TCP.

Problema 4.

¿Por qué existe UDP? ¿No sería suficiente dejar que el proceso de nivel 7 simplemente envíe paquetes IP?

Problema 5.

Explique con la ayuda de un diagrama qué se entiende por multiplexación en el nivel de transporte.

Problema 6.

Completar el siguiente cuadro para los protocolos TCP y UDP.

Elemento del protocolo	TCP	UDP
Establecimiento de conexiones		
Particionamiento de mensajes largos en distintos segmentos		
Transferencia de segmentos		
Numeración de los segmentos		
Control de flujo de nivel de transporte		
Multiplexación		
Retransmisión debida a timeout		
Resecuenciamiento de segmentos		
Checksum de nivel de transporte		

Problema 7.

A un proceso en el host 1 le ha sido asignado el port p, y a un proceso en el host 2 el port q. ¿Es posible que existan dos o más conexiones TCP entre esos dos ports al mismo tiempo?

Problema 8.

¿Con qué tipo de servicio de red está diseñado para trabajar el protocolo TCP? ¿Y UDP?

Problema 9

¿Por qué cree que el protocolo UDP no utiliza números de secuencia en los paquetes? ¿O sí los utiliza? ¿Con qué fin los utiliza?

Problema 10.

El protocolo UDP brinda a su nivel superior servicios:

- a. Sin conexión / sin reconocimiento
- b. Sin conexión / con reconocimiento
- c. Orientado a conexión
- d. Sin conexión u orientado a conexión
- e. Ninguna de los anteriores
- f. Cualquiera de las anteriores

Problema 11.

¿Por qué cree que el protocolo TCP no utiliza números de secuencia en los paquetes? ¿O sí los utiliza? ¿Con qué fin los utiliza?

Problema 12.

Esta es la salida simplificada del comando netstat –an, ejecutado en un servidor. La salida ha sido modificada de manera de introducir algunos errores. Indique los errores que encuentre. Explicar.

Local Address	Remote Address	State
200.11.163.35.110	200.11.163.155.1454	ESTABLISHED
200.11.163.35.25	200.11.163.19.1626	TIME_WAIT
200.11.163.35.110	172.18.105.129.1579	TIME_WAIT
200.11.163.35.110	200.114.139.238.2751	ESTABLISHED
200.11.163.35.110	200.11.163.110.1924	TIME_WAIT
200.11.163.35.110	200.5.114.77.3888	ESTABLISHED
200.11.163.35.110	64.76.45.189.1348	TIME_WAIT
200.11.163.35.110	200.5.114.77.3888	ESTABLISHED
200.11.163.35.25	200.11.163.19.1624	TIME_WAIT
200.11.163.35.110	200.11.163.135.1454	ESTABLISHED

Problema 13.

A continuación se presenta una lista de paquetes capturados. Estos paquetes corresponden a más de una sesión TCP.

- a) Separe las sesiones TCP, explicando el criterio usado para separarlas.
- p) Para cada conexión, indique los segmentos que componen el inicio y cierre de la misma.
- c) En una sesión ocurrió una retransmisión. Identifique el segmento original y la retransmisión.

Paq	Origen	Destino	Seq	ACK	Length	Flags
1	10.1.0.1:1234	10.3.2.4:80	1000000		0	S
2	10.3.2.4:80	10.1.0.1:1234	42	10000001	0	SA
3	3.14.15.92:654	2.71.82.81:82	1		0	S
4	10.1.0.1:1234	10.3.2.4:80	1000001	43	0	Α
5	2.71.82.81:82	3.14.15.92:654	1	2	0	SA

6	10.1.0.1:1234	10.3.2.4:80	1000001	43	25	Α
7	3.14.15.92:654	2.71.82.81:82	2	2	0	Α
8	3.14.15.92:654	2.71.82.81:82	2		300	
9	10.3.2.4:80	10.1.0.1:1234	43	10000026	1000	Α
10	2.71.82.81:82	3.14.15.92:654	2	302	0	Α
11	10.1.0.1:1234	10.3.2.4:80	1000026	1043	0	Α
12	3.14.15.92:654	2.71.82.81:82	302		1000	
13	10.3.2.4:80	10.1.0.1:1234	1043	10000026	1000	Α
14	10.1.0.1:1234	10.3.2.4:80	1000026	2043	0	Α
15	3.14.15.92:654	2.71.82.81:82	302		1000	
16	10.3.2.4:80	10.1.0.1:1234	2043	10000026	0	FΑ
17	2.71.82.81:82	3.14.15.92:654	2	1302	0	Α
18	2.71.82.81:82	3.14.15.92:654	2		0	F
19	10.1.0.1:1234	10.3.2.4:80	1000026	2044	0	FΑ
20	3.14.15.92:654	2.71.82.81:82	1302	3	0	Α
21	3.14.15.92:654	2.71.82.81:82	1303		0	F
22	10.3.2.4:80	10.1.0.1:1234	2044	10000027	0	Α
23	2.71.82.81:82	3.14.15.92:654	3	1303	0	Α

Problema 14.

Indique cuantas conexiones TCP hay en esta secuencia de segmentos. Asocie cada segmento con cada una de las conexiones. Indique el criterio usado para determinar a qué conexión pertenece un segmento.

Pag	Orig	Dest	Flags	Seq	Ack	Length
1 .	157.92.75.5:1024	157.92.23.3:801	S	1 '		o
2	157.92.23.3:801	157.92.75.5:1024	SA	1000000	2	0
3	190.30.132.239:3623	157.92.23.3:801	S	42		0
4	157.92.75.5:1024	157.92.23.3:801	S	2	1000001	0
5	157.92.23.3:801	190.30.132.239:3623	SA	204	43	0
6	190.30.132.239:3623	157.92.23.3:801	Α	43	205	0
7	157.92.75.5:1024	157.92.23.3:801	Α	2	1000001	100
8	157.92.23.3:801	157.92.75.5:1024	Α	1000001	102	0
9	157.92.23.3:801	190.30.132.239:3623		205		40
10	157.92.75.5:1024	157.92.23.3:801	Α	202	1000001	100
11	190.30.132.239:3623	157.92.23.3:801	Α	43	245	100
12	157.92.23.3:801	157.92.75.5:1024	Α	1000001	102	0
13	157.92.75.5:1024	157.92.23.3:801	Α	302	1000001	100
14	157.92.23.3:801	190.30.132.239:3623	Α	245	143	0
15	190.30.132.239:3623	157.92.23.3:801	F	143		0
16	157.92.23.3:801	157.92.75.5:1024	Α	1000001	102	0
17	157.92.75.5:1024	157.92.23.3:801	Α	402	1000001	100
18	157.92.23.3:801	190.30.132.239:3623	Α	245	144	0
19	157.92.23.3:801	157.92.75.5:1024	Α	1000001	102	0
20	157.92.75.5:1024	157.92.23.3:80	Α	102	1000001	100
21	157.92.23.3:801	190.30.132.239:3623	F	245		0
22	157.92.23.3:801	157.92.75.5:1024	Α	1000001	502	0
23	157.92.75.5:1024	157.92.23.3:801	Α	502	1000001	100
24	157.92.23.3:801	157.92.75.5:1024	Α	1000001	602	0
25	157.92.75.5:1024	157.92.23.3:801	FA	602	1000001	0
26	190.30.132.239:3623	157.92.23.3:801	Α	144	246	0
27	157.92.23.3:801	157.92.75.5:1024	FA	1000001	603	0
28	157.92.75.5:1024	157.92.23.3:801	Α	602	1000002	0

Problema 15.

Un servidor Web cuya dirección IP es 168.83.72.5 levanta el servicio en el puerto TCP/80. En una PC cuya dirección es 157.92.27.33 alguien abre dos ventanas de un navegador y en cada una de ellas abre simultáneamente una página distinta del mismo servidor. ¿Es esto posible? ¿Cómo se distinguen los paquetes que son para una ventana de los que son para la otra?

Problema 16.

En una conexión TCP, durante el three-way handshake se produce lo siguiente: El cliente envía un segmento con el flag SYN activado y número de secuencia 100. El servidor envía un segmento con los flags SYN y ACK activados, número de secuencia 200 y número de ACK 100. ¿Qué sucede después?

Problema 17.

Se desea usar Internet para realizar llamadas telefónicas. ¿Si debe diseñar el protocolo para las llamadas, sobre que protocolo existente lo implementaría, TCP o UDP? ¿Por qué?

Problema 18.

¿Cómo identifica el host A a cuál de las dos conexiones iniciadas por él corresponde la respuesta del host B?

Host A: TCP SYN → Host B Host A: TCP SYN → Host B

Host A ← Host B: TCP SYN + ACK

Problema 19.

Indique cuáles de las siguientes secuencias de finalización de una conexión TCP entre dos hosts pueden ser correctas:

- a. SYN SYN/ACK
- b. SYN ACK SYN ACK
- c. SYN SYN/ACK ACK
- d. SYN/ACK ACK
- e. SYN ACK SYN ACK- SYN/ACK
- f. SYN ACK

Problema 20.

Ayer a la noche, Ernesto se conectó a Internet y envió email al server SMTP de su proveedor. El siguiente es el registro de los paquetes de aquella conexión:

Frame	Source Address	Dest. Address	Summary
1	[209.13.34.94]	[200.61.33.5]	DNS: C ID=93 OP=Query Name=mail.sinectis.com.ar
2	[200.61.33.5]	[209.13.34.94]	DNS: R ID=93 OP=Query STAT=OK NAME=mail.sinectis.com.ar
3	[209.13.34.94]	odin.sinectis.com	TCP: D=25 S=1204 SYN SEQ=3405653374 WIN=16384
4	odin.sinectis.com	[209.13.34.94]	TCP: D=1204 S=25 SYN ACK=3405653375 SEQ=2978859689
5	[209.13.34.94]	odin.sinectis.com	TCP: D=25 S=1204 ACK=2978859690 WIN=16560
6	odin.sinectis.com	[209.13.34.94]	SMTP: R PORT=1204 220 mail.sinectis.com.ar ESMTP
7	[209.13.34.94]	odin.sinectis.com	TCP: D=25 S=1204 ACK=2978859755 WIN=28495
8	[209.13.34.94]	odin.sinectis.com	SMTP: C PORT=1204 Text Data
9	odin.sinectis.com	[209.13.34.94]	TCP: D=1204 S=25 ACK=3405653376 WIN=31740
10	[209.13.34.94]	odin.sinectis.com	SMTP: C PORT=1204 Text Data
11	odin.sinectis.com	[209.13.34.94]	TCP: D=1204 S=25 ACK=3405653410 WIN=31740
12	[209.13.34.94]	odin.sinectis.com	SMTP: C PORT=1204 Text Data
13	odin.sinectis.com	[209.13.34.94]	TCP: D=1204 S=25 ACK=3405653426 WIN=31740
14	[209.13.34.94]	odin.sinectis.com	SMTP: C PORT=1204 Text Data
15	odin.sinectis.com	[209.13.34.94]	SMTP: R PORT=1204 mail.sinectis.com.ar closing connection
16	odin.sinectis.com	[209.13.34.94]	TCP: D=1204 S=25 FIN ACK=3405654203 SEQ=2978859944
17	[209.13.34.94]	odin.sinectis.com	TCP: D=25 S=1204 FIN ACK=2978859780 SEQ=3405654203
18	odin.sinectis.com	[209.13.34.94]	TCP: D=1204 S=25 ACK=3405654204

- a) Explique cómo se eligen esos números de puertos en los mensajes TCP.
- b) ¿Qué realizan los frames 3, 4 y 5 en función de TCP? ¿Por qué se usan esos números de SEQ y ACK?

Problema 21.

En una conexión TCP iniciada entre los hosts A y B, los paquetes de A hacia B toman diferentes caminos, mientras que los de B hacia A usan el único camino disponible. El throughput final que le ofrece la red a esta conexión es suficiente para lo que se está usando pero igualmente en el host A se detectan retransmisiones. Indique ejemplos de porqué puede suceder esto.

Bibliografía

- ✓ Redes de Computadoras. Quinta edición. Andrew S. Tanenbaum y David J. Wetherall. Pearson Educación, México, 2012. 6 LA CAPA DE TRANSPORTE.
- ✓ Redes de Computadoras. Cuarta edición. Andrew S. Tanenbaum. Pearson Educación, México, 2003. 6 LA CAPA DE TRANSPORTE.