

FACHINFORMATIKER SYSTEMINTEGRATION

Protokoll über die durchgeführte Projektarbeit

Das Protokoll ist der Dokumentation als Anhang beizufügen!						
Prüfungsteilnehmer/-in						
Ausbildungsberuf/ Prüfungsausschuss						
1. Arbeitszeit						
Das Projekt wurde von mir in der kalkt erforderlicher Nacharbeit	ulierten Zeit komple □ ja	tt fertiggestellt, einschließlich				
Nein, die Zeit wurde um Stunden	☐ unterschritten	☐ überschritten.				
Begründung						
2. Ausführung						
2.1 Das Projekt habe ich nach dem ein	ngereichten Projekta	ntrag ausgeführt				
□ ja □ nein						
2.2 Hilfestellung war erforderlich						
□ ja □ nein						
Begründung bei Hilfestellung						
Umfang bei Hilfestellung						

2.3 Das Projekt habe ich ohne Nacharbeit in einem ku	ndengerechten Zustand übergeben
□ ja □ nein	
Begründung bei Nacharbeit	
Umfang der Nacharbeit	
2.4 Das Projekt war ein Einzelprojekt	
□ ja □ nein	
3. Dokumentation	
3.1 Die Dokumentation habe ich selbst, ohne fremde l	Hilfe, erstellt.
□ ja □ nein	
j	
Hilfestellung	
Persönliche Erklärung	
Ich versichere durch meine Unterschrift, dass ich die Projekta	<u> </u>
Dokumentation selbstständig angefertigt, alle Stellen, die ich Veröffentlichungen entnommen, als solche kenntlich gemach	
keiner anderen Prüfungsinstitution vorgelegen.	it habe. Die Arbeit hat in dieser Form
g g	
Datum	
Unterschrift Prüfungsteilnehmer/-in Un	terschrift Projektverantwortliche/-r des Auftraggebers

Abschlussprüfung Sommer 2023

Fachinformatiker für Systemintegration Dokumentation zur betrieblichen Projektarbeit

Erweiterung eines Schulnetzwerkes um ein kabelloses Netzwerk

Implementierung einer WLAN Lösung

Abgabetermin: Berlin, den 08.06.2023

Prüfungsbewerber:

Marcel Akremi Streitstraße 55 13587 Berlin

Ausbildungsbetrieb:

ARKTIS IT SOLUTIONS GMBH
Brunsbütteler Damm 156-172
13581 Berlin

Dieses Werk einschließlich seiner Teile ist **urheberrechtlich geschützt**. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtgesetzes ist ohne Zustimmung des Autors unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen sowie die Einspeicherung und Verarbeitung in elektronischen Systemen.

Inhaltsverzeichnis

Abbild	Abbildungsverzeichnis				
Tabell	lenverzeichnis	1			
Listing	gs	1			
Abkür	zungsverzeichnis	1			
1	Einleitung	2			
1.1	Projektumfeld	2			
1.2	Projektziel	2			
1.3	Projektbegründung	2			
1.4	Projektschnittstellen	3			
1.5	Projektabgrenzung	3			
2	Projektplanung	3			
2.1	Projektphasen	3			
2.2	Abweichungen vom Projektantrag	3			
2.3	Ressourcenplanung	4			
2.4	Entwicklungsprozess	4			
3	Analysephase	4			
3.1	Ist-Analyse	4			
3.2	Wirtschaftlichkeitsanalyse	4			
3.2.1	"Make or Buy"-Entscheidung	4			
3.2.2	Projektkosten	4			
3.2.3	Amortisationsdauer	5			
3.3	Nutzwertanalyse	6			
3.4	Anwendungsfälle	6			
3.5	Qualitätsanforderungen	6			
3.6	Schutzbedarf	6			
3.7	Schutzmaßnahmen	6			
4	Entwurfsphase	7			
4.1	Zielplattform	7			
4.2	Architekturdesign	7			
4.3	Entwurf der Benutzeroberfläche	7			
4.4	Datenmodell	8			
4.5	Geschäftslogik	8			
4.6	Maßnahmen zur Qualitätssicherung	8			
4.7	Pflichtenheft/Datenverarbeitungskonzept	9			

Erweiterung eines Schulnetzwerkes um ein Kabelloses Netzwerk Implementierung einer WLAN Lösung

^														
Д	h	h	11	d	11	n	σc	1/6	erz	2	10	h.	n	IC
<i>'</i> '	$\boldsymbol{\nu}$	v	,,	u	и	"	ςυ	v		. •			•	J

5	Implementierungsphase	9
5.1	Implementierung der Datenstrukturen	9
5.2	Implementierung der Benutzeroberfläche	9
5.3	Implementierung der Geschäftslogik	10
6	Abnahmephase	10
7	Einführungsphase	10
8	Dokumentation	11
9	Fazit	11
9.1	Soll-/Ist-Vergleich	11
9.2	Lessons Learned	11
9.3	Ausblick	12
Literat	tur	12
Α	Anhang	i
A.1	Detaillierte Zeitplanung	i
A.2	Use Case-Diagramm	ii
A.3	Pflichtenheft (Auszug)	ii
A.4	Datenbankmodell	iv
A.5	Oberflächenentwürfe	٧
A.6	Screenshots der Anwendung	vii
A.7	Entwicklerdokumentation	ix
A.8	Testfall und sein Aufruf auf der Konsole	xi
A.9	Klasse: ComparedNaturalModuleInformation	xii
A.10	Klassendiagramm	xvi
A.11	Benutzerdokumentation	xvii
Abbi	ldungsverzeichnis	
1	Vereinfachtes ER-Modell	8
2	Prozess des Einlesens eines Moduls	9
3	Use Case-Diagramm	ii
4	Datenbankmodell	iv
5	Liste der Module mit Filtermöglichkeiten	٧
6	Anzeige der Übersichtsseite einzelner Module	vi
7	Anzeige und Filterung der Module nach Tags	vi
8	Anzeige und Filterung der Module nach Tags	vii
9	Liste der Module mit Filtermöglichkeiten	viii

Marcel Akremi II

Erweiterung eines Schulnetzwerkes um ein Kabelloses Netzwerk Implementierung einer WLAN Lösung

T '			
Lahei	llenverze	⊃ı⊂l	hnis

10		Κij
11	Klassendiagramm	vi
Tabel	lenverzeichnis	
1	Zeitplanung	3
2	Kostenaufstellung	5
3	Entscheidungsmatrix	7
4	Soll-/Ist-Vergleich	L2
Listing	gs	
1	Testfall in PHP	xi
2		кіі
Abkür	rzungsverzeichnis	
API	Application Programming Interface	L1
CSV		iii
EPK	·	6
ERM		8
HTML	Hypertext Markup Language	9
MVC		9 7
NatInfo		
Natural		iii
PHP		iv 7
	Hypertext Preprocessor	7
SQL	Structured Query Language	9 :::
SVN		iii
XML	Extensible Markup Language	9

1 Einleitung

Die folgende Projektdokumentation erläutert den Ablauf des IHK-Abschlussprojektes, das der Autor im Rahmen seiner Ausbildung zum Fachinformatiker für Systemintegration durchgeführt hat. Alle Einkaufspreise und Kalkulationen wurden abgeändert, da sie unter das Betriebsgeheimnis fallen. Aufgrund von Datenschutzbestimmungen müssen Personen und Organisationen, die im Zusammenhang mit diesem Projekt stehen, anonym bleiben und IP-Adressen und Gerätenamen aufgrund des Datenschutzes abgeändert werden. Daher werden Personen und Organisationen, die die Dienste der ARKTIS IT Solutions GmbH in Anspruch nehmen im Folgenden nur als Kunde bezeichnet.

1.1 Projektumfeld

Der Ausbildungsbetrieb ist die ARKTIS IT Solutions GmbH (kurz ARKTIS GmbH) ist ein mittelständischer IT-Dienstleister mit Hauptsitz in Berlin. Die ARKTIS GmbH beschäftigt zur Zeit ca. 158 MitarbeiterInnen und bietet Technologielösungen mit den Schwerpunkten IT Security, IT-Infrastrukturmanagement, Integrierte Kommunikationslösungen, Intelligente Gebäudetechnik und Digitalisierung an. Das Projekt wurde in einer Schule durchegführt, welche

Falls ein anderes Projekt wichtig für dieses Abschlussprojekt ist, soll das deutlich abgegrenzt werden (bzw. schon im Antrag, siehe auch Projektabgrenzung 1.5).

Zum Umfeld gehören auch die Schnittstellen, s. 1.4.

1.2 Projektziel

- Worum geht es eigentlich?
- Was soll erreicht werden?

1.3 Projektbegründung

- Warum ist das Projekt sinnvoll (z. B. Kosten- oder Zeitersparnis, weniger Fehler)?
- Was ist die Motivation hinter dem Projekt?

1.4 Projektschnittstellen

- Mit welchen anderen Systemen interagiert die Anwendung (technische Schnittstellen)?
- Wer genehmigt das Projekt bzw. stellt Mittel zur Verfügung?
- Wer sind die Benutzer der Anwendung?
- Wem muss das Ergebnis präsentiert werden?

1.5 Projektabgrenzung

• Was ist explizit nicht Teil des Projekts (insb. bei Teilprojekten)?

2 Projektplanung

2.1 Projektphasen

Beginn war der 10. Januar 2022 und Ende im März 2022.

• Verfeinerung der Zeitplanung, die bereits im Projektantrag vorgestellt wurde.

Beispiel Tabelle 1 zeigt ein Beispiel für eine grobe Zeitplanung.

Projektphase	Geplante Zeit
Analysephase	9 h
Entwurfsphase	19 h
Implementierungsphase	29 h
Abnahmetest der Fachabteilung	1 h
Einführungsphase	1 h
Erstellen der Dokumentation	9 h
Pufferzeit	2 h
Gesamt	70 h

Tabelle 1: Zeitplanung

Eine detailliertere Zeitplanung findet sich im Anhang A.1: Detaillierte Zeitplanung auf Seite i.

2.2 Abweichungen vom Projektantrag

• Sollte es Abweichungen zum Projektantrag geben (z. B. Zeitplanung, Inhalt des Projekts, neue Anforderungen), müssen diese explizit aufgeführt und begründet werden.

2.3 Ressourcenplanung

- Detaillierte Planung der benötigten Ressourcen (Hard-/Software, Räumlichkeiten usw.).
- Ggfs. sind auch personelle Ressourcen einzuplanen (z. B. unterstützende Mitarbeiter).
- Hinweis: Häufig werden hier Ressourcen vergessen, die als selbstverständlich angesehen werden (z. B. PC, Büro).

2.4 Entwicklungsprozess

Welcher Entwicklungsprozess wird bei der Bearbeitung des Projekts verfolgt (z. B. Wasserfall, agiler Prozess)?

3 Analysephase

3.1 Ist-Analyse

- Wie ist die bisherige Situation (z. B. bestehende Programme, Wünsche der Mitarbeiter)?
- Was gilt es zu erstellen/verbessern?

3.2 Wirtschaftlichkeitsanalyse

• Lohnt sich das Projekt für das Unternehmen?

3.2.1 "Make or Buy"-Entscheidung

- Gibt es vielleicht schon ein fertiges Produkt, dass alle Anforderungen des Projekts abdeckt?
- Wenn ja, wieso wird das Projekt trotzdem umgesetzt?

3.2.2 Projektkosten

Welche Kosten fallen bei der Umsetzung des Projekts im Detail an (z. B. Entwicklung, Einführung/-Schulung, Wartung)?

3 Analysephase

Beispielrechnung (verkürzt) Die Kosten für die Durchführung des Projekts setzen sich sowohl aus Personal-, als auch aus Ressourcenkosten zusammen. Laut Tarifvertrag verdient ein Auszubildender im dritten Lehrjahr pro Monat 1000 € Brutto.

$$8 \text{ h/Tag} \cdot 220 \text{ Tage/Jahr} = 1760 \text{ h/Jahr} \tag{1}$$

$$1000 €/Monat · 13,3 Monate/Jahr = 13300 €/Jahr$$
 (2)

$$\frac{13300 \, \text{€/Jahr}}{1760 \, \text{h/Jahr}} \approx 7,56 \, \text{€/h} \tag{3}$$

Es ergibt sich also ein Stundenlohn von 7,56 €. Die Durchführungszeit des Projekts beträgt 40 Stunden. Für die Nutzung von Ressourcen¹ wird ein pauschaler Stundensatz von 15 € angenommen. Für die anderen Mitarbeiter wird pauschal ein Stundenlohn von 25 € angenommen. Eine Aufstellung der Kosten befindet sich in Tabelle 2 und sie betragen insgesamt 2739,20 €.

Vorgang	Zeit	Kosten pro Stunde	Kosten
Entwicklungskosten	70 h	7,56 € + 15 € = 22,56 €	1579,20€
Fachgespräch	3 h	25 € + 15 € = 40 €	120€
Abnahmetest	1 h	25 € + 15 € = 40 €	40€
Anwenderschulung	25 h	25 € + 15 € = 40 €	1000€
			2739,20€

Tabelle 2: Kostenaufstellung

3.2.3 Amortisationsdauer

- Welche monetären Vorteile bietet das Projekt (z. B. Einsparung von Lizenzkosten, Arbeitszeitersparnis, bessere Usability, Korrektheit)?
- Wann hat sich das Projekt amortisiert?

Beispielrechnung (verkürzt) Bei einer Zeiteinsparung von 10 Minuten am Tag für jeden der 25 Anwender und 220 Arbeitstagen im Jahr ergibt sich eine gesamte Zeiteinsparung von

$$25 \cdot 220 \text{ Tage/Jahr} \cdot 10 \text{ min/Tag} = 55000 \text{ min/Jahr} \approx 917 \text{ h/Jahr}$$
 (4)

Dadurch ergibt sich eine jährliche Einsparung von

$$917h \cdot (25 + 15) \notin /h = 36680 \notin \tag{5}$$

¹Räumlichkeiten, Arbeitsplatzrechner etc.

3 Analysephase

Die Amortisationszeit beträgt also $\frac{2739,20\, {\it \in}}{36680\, {\it \in}/{\rm Jahr}} \approx 0,07\, {\it Jahre} \approx 4\, {\it Wochen}.$

3.3 Nutzwertanalyse

 Darstellung des nicht-monetären Nutzens (z. B. Vorher-/Nachher-Vergleich anhand eines Wirtschaftlichkeitskoeffizienten).

Beispiel Ein Beispiel für eine Entscheidungsmatrix findet sich in Kapitel 4.2: Architekturdesign.

3.4 Anwendungsfälle

- Welche Anwendungsfälle soll das Projekt abdecken?
- Einer oder mehrere interessante (!) Anwendungsfälle könnten exemplarisch durch ein Aktivitätsdiagramm oder eine Ereignisgesteuerte Prozesskette (EPK) detailliert beschrieben werden.

Beispiel Ein Beispiel für ein Use Case-Diagramm findet sich im Anhang A.2: Use Case-Diagramm auf Seite ii.

3.5 Qualitätsanforderungen

 Welche Qualitätsanforderungen werden an die Anwendung gestellt (z. B. hinsichtlich Performance, Usability, Effizienz etc. (siehe ISO/IEC 9126-1 [2001]))?

3.6 Schutzbedarf

 Welcher Schutzbedarf wird an die Anwendung gestellt (z. B. hinsichtlich Sicherheit, Wichtigtkeit, ... etc. (siehe BSI [2017]))?

3.7 Schutzmaßnahmen

• Welche Schutznahmen werden unternommen um das System abzichern (z. B. gegenüber fremden Zugriff, Sicherheitslücken, Updates, Ausfall des Systems etc.)?

4 Entwurfsphase

4.1 Zielplattform

 Beschreibung der Kriterien zur Auswahl der Zielplattform (u. a. Programmiersprache, Datenbank, Client/Server, Hardware).

4.2 Architekturdesign

- Beschreibung und Begründung der gewählten Anwendungsarchitektur (z. B. Model View Controller (MVC)).
- Ggfs. Bewertung und Auswahl von verwendeten Frameworks sowie ggfs. eine kurze Einführung in die Funktionsweise des verwendeten Frameworks.

Beispiel Anhand der Entscheidungsmatrix in Tabelle 3 wurde für die Implementierung der Anwendung das Hypertext Preprocessor (PHP)-Framework Symfony²ausgewählt.

Eigenschaft	Gewichtung	Akelos	CakePHP	Symfony	Eigenentwicklung
Dokumentation	5	4	3	5	0
Reenginierung	3	4	2	5	3
Generierung	3	5	5	5	2
Testfälle	2	3	2	3	3
Standardaufgaben	4	3	3	3	0
Gesamt:	17	65	52	73	21
Nutzwert:		3,82	3,06	4,29	1,24

Tabelle 3: Entscheidungsmatrix

4.3 Entwurf der Benutzeroberfläche

- Entscheidung für die gewählte Benutzeroberfläche (z. B. GUI, Webinterface).
- Beschreibung des visuellen Entwurfs der konkreten Oberfläche (z. B. Mockups, Menüführung).
- Ggfs. Erläuterung von angewendeten Richtlinien zur Usability und Verweis auf Corporate Design.

Beispiel Beispielentwürfe finden sich im Anhang A.5: Oberflächenentwürfe auf Seite v.

²Vgl. ja

4.4 Datenmodell

Entwurf/Beschreibung der Datenstrukturen (z. B. ERM und/oder Tabellenmodell, XML-Schemas)
 mit kurzer Beschreibung der wichtigsten (!) verwendeten Entitäten.

Beispiel In Abbildung 1 wird ein Entity-Relationship-Modell (ERM) dargestellt, welches lediglich Entitäten, Relationen und die dazugehörigen Kardinalitäten enthält.

Abbildung 1: Vereinfachtes ER-Modell

4.5 Geschäftslogik

- Modellierung und Beschreibung der wichtigsten (!) Bereiche der Geschäftslogik (z. B. mit Komponenten-, Klassen-, Sequenz-, Datenflussdiagramm, Programmablaufplan, Struktogramm, EPK).
- Wie wird die erstellte Anwendung in den Arbeitsfluss des Unternehmens integriert?

Beispiel Ein Klassendiagramm, welches die Klassen der Anwendung und deren Beziehungen untereinander darstellt kann im Anhang A.10: Klassendiagramm auf Seite xvi eingesehen werden.

Abbildung 2 zeigt den grundsätzlichen Programmablauf beim Einlesen eines Moduls als EPK.

4.6 Maßnahmen zur Qualitätssicherung

- Welche Maßnahmen werden ergriffen, um die Qualität des Projektergebnisses (siehe Kapitel 3.5: Qualitätsanforderungen) zu sichern (z. B. automatische Tests, Anwendertests)?
- Ggfs. Definition von Testfällen und deren Durchführung (durch Programme/Benutzer).

5 Implementierungsphase

Abbildung 2: Prozess des Einlesens eines Moduls

4.7 Pflichtenheft/Datenverarbeitungskonzept

 Auszüge aus dem Pflichtenheft/Datenverarbeitungskonzept, wenn es im Rahmen des Projekts erstellt wurde.

5 Implementierungsphase

5.1 Implementierung der Datenstrukturen

 Beschreibung der angelegten Datenbank (z. B. Generierung von Structured Query Language (SQL) aus Modellierungswerkzeug oder händisches Anlegen), Extensible Markup Language (XML)-Schemas, usw..

5.2 Implementierung der Benutzeroberfläche

- Beschreibung der Implementierung der Benutzeroberfläche, falls dies separat zur Implementierung der Geschäftslogik erfolgt (z. B. bei Hypertext Markup Language (HTML)-Oberflächen und Stylesheets).
- Ggfs. Beschreibung des Corporate Designs und dessen Umsetzung in der Anwendung.
- Screenshots der Anwendung

Beispiel Screenshots der Anwendung in der Entwicklungsphase mit Dummy-Daten befinden sich im Anhang A.6: Screenshots der Anwendung auf Seite vii.

5.3 Implementierung der Geschäftslogik

- Beschreibung des Vorgehens bei der Umsetzung/Programmierung der entworfenen Anwendung.
- Ggfs. interessante Funktionen/Algorithmen im Detail vorstellen, verwendete Entwurfsmuster zeigen.
- Quelltextbeispiele zeigen.
- Hinweis: Wie in Kapitel 1: Einleitung zitiert, wird nicht ein lauffähiges Programm bewertet, sondern die Projektdurchführung. Dennoch würde ich immer Quelltextausschnitte zeigen, da sonst Zweifel an der tatsächlichen Leistung des Prüflings aufkommen können.

Beispiel Die Klasse ComparedNaturalModuleInformation findet sich im Anhang A.9: Klasse: ComparedNaturalModuleInformation auf Seite xii.

6 Abnahmephase

- Welche Tests (z. B. Unit-, Integrations-, Systemtests) wurden durchgeführt und welche Ergebnisse haben sie geliefert (z. B. Logs von Unit Tests, Testprotokolle der Anwender)?
- Wurde die Anwendung offiziell abgenommen?

Beispiel Ein Auszug eines Unit Tests befindet sich im Anhang A.8: Testfall und sein Aufruf auf der Konsole auf Seite xi. Dort ist auch der Aufruf des Tests auf der Konsole des Webservers zu sehen.

7 Einführungsphase

- Welche Schritte waren zum Deployment der Anwendung nötig und wie wurden sie durchgeführt (automatisiert/manuell)?
- Wurden ggfs. Altdaten migriert und wenn ja, wie?
- Wurden Benutzerschulungen durchgeführt und wenn ja, Wie wurden sie vorbereitet?

8 Dokumentation

- Wie wurde die Anwendung für die Benutzer/Administratoren/Entwickler dokumentiert (z. B. Benutzerhandbuch, Application Programming Interface (API)-Dokumentation)?
- Hinweis: Je nach Zielgruppe gelten bestimmte Anforderungen für die Dokumentation (z. B. keine IT-Fachbegriffe in einer Anwenderdokumentation verwenden, aber auf jeden Fall in einer Dokumentation für den IT-Bereich).

Beispiel Ein Ausschnitt aus der erstellten Benutzerdokumentation befindet sich im Anhang A.11: Benutzerdokumentation auf Seite xvii. Die Entwicklerdokumentation wurde mittels PHPDoc³ automatisch generiert. Ein beispielhafter Auszug aus der Dokumentation einer Klasse findet sich im Anhang A.7: Entwicklerdokumentation auf Seite ix.

9 Fazit

9.1 Soll-/Ist-Vergleich

- Projektziel erreicht?
- Ist der Auftraggeber mit dem Projektergebnis zufrieden und wenn nein, warum nicht?
- Wurde die Projektplanung (Zeit, Kosten, Personal, Sachmittel) eingehalten oder haben sich Abweichungen ergeben und wenn ja, warum?
- Hinweis: Die Projektplanung muss nicht strikt eingehalten werden. Vielmehr sind Abweichungen sogar als normal anzusehen. Sie müssen nur vernünftig begründet werden (z. B. durch Änderungen an den Anforderungen, unter-/überschätzter Aufwand).

Beispiel (verkürzt) Wie in Tabelle 4 zu erkennen ist, konnte die Zeitplanung bis auf wenige Ausnahmen eingehalten werden.

9.2 Lessons Learned

Was hat der Prüfling bei der Durchführung des Projekts gelernt (z. B. Zeitplanung, Vorteile der eingesetzten Frameworks, Änderungen der Anforderungen)?

³Vgl. PHPDOC.ORG [2010]

Phase	Geplant	Tatsächlich	Differenz
Entwurfsphase	19 h	19 h	
Analysephase	9 h	10 h	+1h
Implementierungsphase	29 h	28 h	-1 h
Abnahmetest der Fachabteilung	1 h	1 h	
Einführungsphase	1 h	1 h	
Erstellen der Dokumentation	9 h	11 h	+2 h
Pufferzeit	2 h	0 h	-2 h
Gesamt	70 h	70 h	

Tabelle 4: Soll-/Ist-Vergleich

9.3 Ausblick

• Wie wird sich das Projekt in Zukunft weiterentwickeln (z. B. geplante Erweiterungen)?

renew command Literatur Literatur verzeichn is

Literatur

[BSI 2017] BSI: BSI-Standard-200-2 – IT Grundschutz-Methodik. https://www.bsi.bund.de. Version: Oktober 2017, Abruf: 11.05.2023

[ISO/IEC 9126-1 2001] ISO/IEC 9126-1: Software-Engineering – Qualität von Software-Produkten – Teil 1: Qualitätsmodell. Juni 2001

[phpdoc.org 2010] PHPDOC.ORG: phpDocumentor-Website. Version: 2010. http://www.phpdoc.org/, Abruf: 20.04.2010

A Anhang

A.1 Detaillierte Zeitplanung

Analysephase			9 h
1. Analyse des Ist-Zustands		3 h	
1.1. Fachgespräch mit der EDV-Abteilung	1 h		
1.2. Prozessanalyse	2 h		
2. "Make or buy"-Entscheidung und Wirtschaftlichkeitsanalyse		1 h	
3. Erstellen eines "Use-Case"-Diagramms		2 h	
4. Erstellen des Lastenhefts mit der EDV-Abteilung		3 h	
Entwurfsphase			19 h
1. Prozessentwurf		2 h	
2. Datenbankentwurf		3 h	
2.1. ER-Modell erstellen	2 h		
2.2. Konkretes Tabellenmodell erstellen	1 h		
3. Erstellen von Datenverarbeitungskonzepten		4 h	
3.1. Verarbeitung der CSV-Daten	1 h		
3.2. Verarbeitung der SVN-Daten	1 h		
3.3. Verarbeitung der Sourcen der Programme	2 h		
4. Benutzeroberflächen entwerfen und abstimmen		2 h	
5. Erstellen eines UML-Komponentendiagramms der Anwendung		4 h	
6. Erstellen des Pflichtenhefts		4 h	
Implementierungsphase			29 h
1. Anlegen der Datenbank		1 h	
2. Umsetzung der HTML-Oberflächen und Stylesheets		4 h	
3. Programmierung der PHP-Module für die Funktionen		23 h	
3.1. Import der Modulinformationen aus CSV-Dateien	2 h		
3.2. Parsen der Modulquelltexte	3 h		
3.3. Import der SVN-Daten	2 h		
3.4. Vergleichen zweier Umgebungen	4 h		
3.5. Abrufen der von einem zu wählenden Benutzer geänderten Module	3 h		
3.6. Erstellen einer Liste der Module unter unterschiedlichen Aspekten	5 h		
3.7. Anzeigen einer Liste mit den Modulen und geparsten Metadaten	3 h		
4. Nächtlichen Batchjob einrichten		1 h	
Abnahmetest der Fachabteilung			1 h
1. Abnahmetest der Fachabteilung		1 h	
Einführungsphase			1 h
1. Einführung/Benutzerschulung		1 h	
Erstellen der Dokumentation			9 h
1. Erstellen der Benutzerdokumentation		2 h	
2. Erstellen der Projektdokumentation		6 h	
3. Programmdokumentation		1 h	
3.1. Generierung durch PHPdoc	1 h		
Pufferzeit			2 h
1. Puffer		2 h	
Gesamt			70 h

A.2 Use Case-Diagramm

Use Case-Diagramme und weitere UML-Diagramme kann man auch direkt mit LATEX zeichnen, siehe z.B. http://metauml.sourceforge.net/old/usecase-diagram.html.

Abbildung 3: Use Case-Diagramm

A.3 Pflichtenheft (Auszug)

Zielbestimmung

1. Musskriterien

- 1.1. Modul-Liste: Zeigt eine filterbare Liste der Module mit den dazugehörigen Kerninformationen sowie Symbolen zur Einhaltung des Entwicklungsprozesses an
 - In der Liste wird der Name, die Bibliothek und Daten zum Source und Kompilat eines Moduls angezeigt.
 - Ebenfalls wird der Status des Moduls hinsichtlich Source und Kompilat angezeigt. Dazu gibt es unterschiedliche Status-Zeichen, welche symbolisieren in wie weit der Entwicklungsprozess eingehalten wurde bzw. welche Schritte als nächstes getan werden müssen. So gibt es z. B. Zeichen für das Einhalten oder Verletzen des Prozesses oder den Hinweis auf den nächsten zu tätigenden Schritt.

Marcel Akremi ii

- Weiterhin werden die Benutzer und Zeitpunkte der aktuellen Version der Sourcen und Kompilate angezeigt. Dazu kann vorher ausgewählt werden, von welcher Umgebung diese Daten gelesen werden sollen.
- Es kann eine Filterung nach allen angezeigten Daten vorgenommen werden. Die Daten zu den Sourcen sind historisiert. Durch die Filterung ist es möglich, auch Module zu finden, die in der Zwischenzeit schon von einem anderen Benutzer editiert wurden.
- 1.2. Tag-Liste: Bietet die Möglichkeit die Module anhand von Tags zu filtern.
 - Es sollen die Tags angezeigt werden, nach denen bereits gefiltert wird und die, die noch der Filterung hinzugefügt werden könnten, ohne dass die Ergebnisliste leer wird.
 - Zusätzlich sollen die Module angezeigt werden, die den Filterkriterien entsprechen. Sollten die Filterkriterien leer sein, werden nur die Module angezeigt, welche mit einem Tag versehen sind.
- 1.3. Import der Moduldaten aus einer bereitgestellten Comma Separated Value (CSV)-Datei
 - Es wird täglich eine Datei mit den Daten der aktuellen Module erstellt. Diese Datei wird (durch einen Cronjob) automatisch nachts importiert.
 - Dabei wird für jedes importierte Modul ein Zeitstempel aktualisiert, damit festgestellt werden kann, wenn ein Modul gelöscht wurde.
 - Die Datei enthält die Namen der Umgebung, der Bibliothek und des Moduls, den Programmtyp, den Benutzer und Zeitpunkt des Sourcecodes sowie des Kompilats und den Hash des Sourcecodes.
 - Sollte sich ein Modul verändert haben, werden die entsprechenden Daten in der Datenbank aktualisiert. Die Veränderungen am Source werden dabei aber nicht ersetzt, sondern historisiert.
- 1.4. Import der Informationen aus Subversion (SVN). Durch einen "post-commit-hook" wird nach jedem Einchecken eines Moduls ein PHP-Script auf der Konsole aufgerufen, welches die Informationen, die vom SVN-Kommandozeilentool geliefert werden, an Natural Information System (NATINFO) übergibt.

1.5. Parsen der Sourcen

- Die Sourcen der Entwicklungsumgebung werden nach Tags, Links zu Artikeln im Wiki und Programmbeschreibungen durchsucht.
- Diese Daten werden dann entsprechend angelegt, aktualisiert oder nicht mehr gesetzte Tags/Wikiartikel entfernt.

1.6. Sonstiges

- Das Programm läuft als Webanwendung im Intranet.
- Die Anwendung soll möglichst leicht erweiterbar sein und auch von anderen Entwicklungsprozessen ausgehen können.
- Eine Konfiguration soll möglichst in zentralen Konfigurationsdateien erfolgen.

Marcel Akremi iii

Produkteinsatz

1. Anwendungsbereiche

Die Webanwendung dient als Anlaufstelle für die Entwicklung. Dort sind alle Informationen für die Module an einer Stelle gesammelt. Vorher getrennte Anwendungen werden ersetzt bzw. verlinkt.

2. Zielgruppen

NatInfo wird lediglich von den Programmiersprache der Software AG (NATURAL)-Entwicklern in der EDV-Abteilung genutzt.

3. Betriebsbedingungen

Die nötigen Betriebsbedingungen, also der Webserver, die Datenbank, die Versionsverwaltung, das Wiki und der nächtliche Export sind bereits vorhanden und konfiguriert. Durch einen täglichen Cronjob werden entsprechende Daten aktualisiert, die Webanwendung ist jederzeit aus dem Intranet heraus erreichbar.

A.4 Datenbankmodell

ER-Modelle kann man auch direkt mit LATEX zeichnen, siehe z. B. http://www.texample.net/tikz/examples/entity-relationship-diagram/.

Abbildung 4: Datenbankmodell

Marcel Akremi iv

A.5 Oberflächenentwürfe

Abbildung 5: Liste der Module mit Filtermöglichkeiten

Abbildung 6: Anzeige der Übersichtsseite einzelner Module

Abbildung 7: Anzeige und Filterung der Module nach Tags

Marcel Akremi vi

A.6 Screenshots der Anwendung

Tags

Project, Test

Modulename	Description	Tags	Wiki
DGTEST	Macht einen ganz tollen Tab.	HGP	SMTAB_(EP), b
MALWAS		HGP, Test	
HDRGE		HGP, Project	
WURAM		HGP, Test	
PAMIU		HGP	

Abbildung 8: Anzeige und Filterung der Module nach Tags

Marcel Akremi vii

Modules

Environment	ENTW
Library	Select
Catalog user	Select
Catalog date	Select
Source user	Select
Source date	Select
	Reset Filter

Name	Library	Source	Catalog	Source-User	Source-Date	Catalog-User	Catalog-Date
SMTAB	UTILITY	净	净	MACKE	01.04.2010 13:00	MACKE	01.04.2010 13:00
DGTAB	CON		₩	GRASHORN	01.04.2010 13:00	GRASHORN	01.04.2010 13:00
DGTEST	SUP	遙		GRASHORN	05.04.2010 13:00	GRASHORN	05.04.2010 13:00
OHNETAG	CON			GRASHORN	05.04.2010 13:00	GRASHORN	01.04.2010 15:12
OHNEWIKI	CON	57	5	GRASHORN	05.04.2010 13:00	MACKE	01.04.2010 15:12

Abbildung 9: Liste der Module mit Filtermöglichkeiten

Marcel Akremi viii

A.7 Entwicklerdokumentation

lib-model

[class tree: lib-model] [index: lib-model] [all elements]

Packages:

lib-model

Files:

Naturalmodulename.php

Classes:

Naturalmodulename

Class: Naturalmodulename

Source Location: /Naturalmodulename.php

Class Overview

BaseNaturalmodulename
|
--Naturalmodulename

Subclass for representing a row from the 'NaturalModulename' table.

Methods

- __construct
- getNaturalTags
- getNaturalWikis
- IoadNaturalModuleInformation
- __toString

Class Details

[line 10]

Subclass for representing a row from the 'Natural Modulename' table.

Adds some business logic to the base.

[Top]

Class Methods

constructor __construct [line 56]

Naturalmodulename __construct()

Initializes internal state of Naturalmodulename object.

Tags:

see: parent::__construct()
access: public

[Top]

method getNaturalTags [line 68]

array getNaturalTags()

Returns an Array of NaturalTags connected with this Modulename.

Marcel Akremi ix

A Anhang

Tags:

return: Array of NaturalTags

access: public

[Top]

method getNaturalWikis [line 83]

array getNaturalWikis()

Returns an Array of NaturalWikis connected with this Modulename.

Tags:

return: Array of NaturalWikis

access: public

[Top]

method loadNaturalModuleInformation [line 17]

ComparedNaturalModuleInformation
loadNaturalModuleInformation()

 ${\it Gets\ the\ Compared Natural Module Information\ for\ this\ Natural Module name}.$

Tags:

access: public

[Top]

method ___toString [line 47]

string __toString()

Returns the name of this NaturalModulename.

Tags:

access: public

[Top]

Documentation generated on Thu, 22 Apr 2010 08:14:01 +0200 by phpDocumentor 1.4.2

A.8 Testfall und sein Aufruf auf der Konsole

Listing 1: Testfall in PHP

```
<?php
    include(dirname( FILE ).'/../bootstrap/Propel.php');
    t = new lime test(13);
     $t->comment('Empty Information');
     $emptyComparedInformation = new ComparedNaturalModuleInformation(array());
    \verb| $t-> is (\$empty Compared Information-> get Catalog Sign(), Compared Natural Module Information:: \\
             EMPTY SIGN, 'Has no catalog sign');
    $t->is($emptyComparedInformation->getSourceSign(), ComparedNaturalModuleInformation::
             SIGN_CREATE, 'Source has to be created');
10
$t->comment('Perfect Module');
$$\frac{12}{12}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{2}$$\frac{1}{
$\frac{13}{$\criteria->add(NaturalmodulenamePeer::NAME, 'SMTAB');}
14 | $moduleName = NaturalmodulenamePeer::doSelectOne($criteria);
    $t->is($moduleName->getName(), 'SMTAB', 'Right modulename selected');
    $comparedInformation = $moduleName->loadNaturalModuleInformation();
    $t->is($comparedInformation->getSourceSign(), ComparedNaturalModuleInformation::SIGN OK,
                'Source sign shines global');
    $t->is($comparedInformation->getCatalogSign(), ComparedNaturalModuleInformation::
             SIGN OK, 'Catalog sign shines global');
    $infos = $comparedInformation->getNaturalModuleInformations();
    foreach($infos as $info)
21
        $env = $info->getEnvironmentName();
22
        $t->is($info->getSourceSign(), ComparedNaturalModuleInformation::SIGN OK, 'Source sign
23
                   shines at ' . $env);
        if($env != 'SVNENTW')
24
        {
25
           $t->is($info->getCatalogSign(), ComparedNaturalModuleInformation::SIGN_OK, 'Catalog
26
                    sign shines at ' . $info->getEnvironmentName());
        }
27
        else
28
        {
29
           $t->is($info->getCatalogSign(), ComparedNaturalModuleInformation::EMPTY_SIGN, '
30
                    Catalog sign is empty at ' . $info->getEnvironmentName());
        }
31
    }
32
    ?>
33
```

Marcel Akremi xi


```
🚜 ao-suse-ws1.ao-dom.alte-oldenburger.de - PuTTY
ao-suse-ws1:/srv/www/symfony/natural # ./symfony test:unit ComparedNaturalModuleInformation
1..13
# Empty Information
ok 1 - Has no catalog sign
ok 2 - Source has to be created
# Perfect Module
ok 3 - Right modulename selected
ok 4 - Source sign shines global
ok 5 - Catalog sign shines global
ok 6 - Source sign shines at ENTW
ok 7 - Catalog sign shines at ENTW
ok 8 - Source sign shines at QS
ok 9 - Catalog sign shines at QS
ok 10 - Source sign shines at PROD
ok 11 - Catalog sign shines at PROD
ok 12 - Source sign shines at SVNENTW
ok 13 - Catalog sign is empty at SVNENTW
ao-suse-ws1:/srv/www/symfony/natural #
```

Abbildung 10: Aufruf des Testfalls auf der Konsole

A.9 Klasse: ComparedNaturalModuleInformation

Kommentare und simple Getter/Setter werden nicht angezeigt.

Listing 2: Klasse: ComparedNaturalModuleInformation

```
<?php
  class ComparedNaturalModuleInformation
2
3
  {
   const EMPTY SIGN = 0;
   const SIGN OK = 1;
   const SIGN_NEXT_STEP = 2;
6
7
   const SIGN CREATE = 3;
   const SIGN CREATE AND NEXT STEP = 4;
   const SIGN_ERROR = 5;
9
10
   private $naturalModuleInformations = array();
11
12
   public static function environments()
13
14
     return array("ENTW", "SVNENTW", "QS", "PROD");
15
16
17
   public static function signOrder()
18
19
     return array(self::SIGN_ERROR, self::SIGN_NEXT_STEP, self::SIGN_CREATE_AND_NEXT_STEP,
20
          self::SIGN_CREATE, self::SIGN_OK);
21
   }
22
   public function __construct(array $naturalInformations)
23
```

Marcel Akremi xii


```
$this->allocateModulesToEnvironments($naturalInformations);
     $this->allocateEmptyModulesToMissingEnvironments();
26
     $this->determineSourceSignsForAllEnvironments();
27
   }
28
29
   private function allocateModulesToEnvironments(array $naturalInformations)
30
31
     foreach ($naturalInformations as $naturalInformation)
32
33
       $env = $naturalInformation->getEnvironmentName();
34
35
       if(in array($env, self::environments()))
36
        $this->naturalModuleInformations[array search($env, self::environments())] =
37
            $naturalInformation;
       }
38
     }
39
   }
40
41
   private function allocateEmptyModulesToMissingEnvironments()
42
43
     if(array_key_exists(0, $this->naturalModuleInformations))
44
45
       $this->naturalModuleInformations[0]->setSourceSign(self::SIGN OK);
46
47
     }
48
     for($i = 0;$i < count(self::environments());$i++)</pre>
49
50
       if(!array key exists($i, $this->naturalModuleInformations))
51
52
        $environments = self::environments();
53
        $this->naturalModuleInformations[$i] = new EmptyNaturalModuleInformation(
54
            $environments[$i]);
        $this->naturalModuleInformations[$i]->setSourceSign(self::SIGN_CREATE);
55
       }
56
     }
57
58
59
   public function determineSourceSignsForAllEnvironments()
60
61
     for($i = 1; $i < count(self::environments()); $i++)</pre>
62
63
       $currentInformation = $this->naturalModuleInformations[$i];
64
65
       $previousInformation = $this->naturalModuleInformations[$i - 1];
       if($currentInformation->getSourceSign() <> self::SIGN_CREATE)
66
67
        if($previousInformation->getSourceSign() <> self::SIGN CREATE)
68
69
          if($currentInformation->getHash() <> $previousInformation->getHash())
70
71
           if($currentInformation->getSourceDate('YmdHis') > $previousInformation->
72
               getSourceDate('YmdHis'))
```

Marcel Akremi xiii


```
73
              $currentInformation->setSourceSign(self::SIGN ERROR);
74
75
             else
76
77
              $currentInformation->setSourceSign(self::SIGN_NEXT_STEP);
78
             }
79
80
           else
81
           {
82
83
             $currentInformation->setSourceSign(self::SIGN OK);
           }
84
         }
85
         else
86
87
         {
           $currentInformation->setSourceSign(self::SIGN ERROR);
88
         }
89
        }
90
        elseif($previousInformation->getSourceSign() <> self::SIGN CREATE &&
91
            $previousInformation->getSourceSign() <> self::SIGN_CREATE_AND_NEXT_STEP)
        {
92
         $currentInformation->setSourceSign(self::SIGN CREATE AND NEXT STEP);
93
        }
94
95
      }
96
97
    private function containsSourceSign($sign)
98
99
100
      foreach($this->naturalModuleInformations as $information)
101
        if($information->getSourceSign() == $sign)
102
        {
103
104
         return true;
        }
105
106
      return false;
107
108
109
    private function containsCatalogSign($sign)
110
111
      foreach($this->naturalModuleInformations as $information)
112
113
114
        if($information->getCatalogSign() == $sign)
115
         return true;
116
        }
117
118
      return false;
119
120
121
  ?>
122
```

Marcel Akremi xiv

Erweiterung eines Schulnetzwerkes um ein Kabelloses Netzwerk Implementierung einer WLAN Lösung

A Anhang

Marcel Akremi xv

A.10 Klassendiagramm

Klassendiagramme und weitere UML-Diagramme kann man auch direkt mit LATEX zeichnen, siehe z.B. http://metauml.sourceforge.net/old/class-diagram.html.

Abbildung 11: Klassendiagramm

Marcel Akremi xvi

A.11 Benutzerdokumentation

Ausschnitt aus der Benutzerdokumentation:

Symbol	Bedeutung global	Bedeutung einzeln
*	Alle Module weisen den gleichen Stand auf.	Das Modul ist auf dem gleichen Stand wie das Modul auf der vorherigen Umgebung.
(6)	Es existieren keine Module (fachlich nicht möglich).	Weder auf der aktuellen noch auf der vorherigen Umgebung sind Module angelegt. Es kann also auch nichts übertragen werden.
	Ein Modul muss durch das Übertragen von der vorherigen Umgebung erstellt werden.	Das Modul der vorherigen Umgebung kann übertragen werden, auf dieser Umgebung ist noch kein Modul vorhanden.
选	Auf einer vorherigen Umgebung gibt es ein Modul, welches übertragen werden kann, um das nächste zu aktualisieren.	Das Modul der vorherigen Umgebung kann übertragen werden um dieses zu aktualisieren.
77	Ein Modul auf einer Umgebung wurde entgegen des Entwicklungsprozesses gespeichert.	Das aktuelle Modul ist neuer als das Modul auf der vorherigen Umgebung oder die vorhe- rige Umgebung wurde übersprungen.

Marcel Akremi xvii