Probability and Statistics Understanding the Basics

DRME

December 27, 2023

The Set of All Possible Events

- Overview of the concept:
 - A fundamental concept in probability theory.
 - Represents all potential outcomes or occurrences in an experiment or situation.
- Significance in probability theory:
 - Forms the sample space for a given experiment.
 - Essential for defining probabilities of specific events.

Example: Coin Toss

- Consider the experiment of tossing a fair coin.
- ▶ The set of all possible events: {Heads, Tails}.
- ► Each outcome in the set is a possible event.

Example: Rolling a Die

- Experiment: Rolling a six-sided die.
- ► The set of all possible events: {1, 2, 3, 4, 5, 6}.
- Each face of the die represents a possible event.

Coin Flips: Why You Should Care

- Illustration using coin flips.
- ▶ Linking the concept to real-world scenarios.

Probability: Outside or Inside the Head

- ▶ Outside the head: Long-run relative frequency.
- Inside the head: Subjective belief.
- Probabilities assign numbers to possibilities.

Outside the Head: Long-run Relative Frequency

- Simulating a long-run relative frequency.
- Deriving a long-run relative frequency.

Inside the Head: Subjective Belief

- ► Calibrating a subjective belief by preferences.
- Describing a subjective belief mathematically.

Probabilities Assign Numbers to Possibilities

- Probabilities are assigned to different outcomes to quantify uncertainty.
- The assignment of probabilities is a fundamental concept in probability theory.

Understanding How Probabilities Are Assigned

- ► Probabilities are numerical measures representing the likelihood of events.
- Assigning probabilities involves assessing the chance of different outcomes.
- Probabilities are expressed as values between 0 and 1, where 0 indicates impossibility, 1 indicates certainty, and values in between represent varying degrees of likelihood.

Example: Coin Toss

- Consider a fair coin toss.
- ▶ There are two possible outcomes: heads (H) or tails (T).
- ➤ Since the coin is fair, the probability of getting heads is 0.5, and the probability of getting tails is also 0.5.

Example: Rolling a Six-sided Die

- ► Suppose you roll a standard six-sided die.
- Each face has an equal chance of landing face up.
- The probability of rolling a specific number, say 3, is $\frac{1}{6}$ because there are six possible outcomes.

Example: Drawing a Card from a Deck

- Consider drawing a single card from a standard deck of 52 playing cards.
- ► The probability of drawing an Ace is $\frac{4}{52}$ since there are four Aces in the deck.
- ► The probability of drawing a red card is $\frac{26}{52}$ since half of the cards are red.

Probability Distributions

Overview of Probability Distributions [[see distributions.pdf]].

Discrete Distributions: Probability Mass

- ▶ Definition: Probability mass function for discrete distributions.
- Examples:
 - Bernoulli distribution.
 - Binomial distribution.
 - Poisson distribution.

Continuous Distributions: Rendezvous with Density

- ▶ Definition: Probability density function for continuous distributions.
- Examples:
 - Uniform distribution.
 - Exponential distribution.
 - Normal distribution.

Appendix A

Probability Distributions and Conjugate Priors

TABLE A.1
Probability Distributions Used in Ecological Modeling to Represent Stochasticity in Discrete Random Variables (c)

Discrete Random Variables (z)				
Distribution	Random variable	Parameters	Moments	
Poisson $[z]\lambda] = \frac{\lambda^z e^{-\lambda}}{z}$	Counts of things that occur randomly over time or space, e.g., the number of birds in a forest stand, the number of fish in a kilometer of river, the number of prey captured per minute	$\lambda,$ the mean number of occurrences per time or space $\lambda = \mu$	$\mu = \lambda$ $\sigma^2 = \lambda$	
Binomial $ [z \mid \eta, \phi] = \begin{pmatrix} \eta, \phi \\ z \end{pmatrix} \phi^z (1 - \phi)^{\eta - z} $ $ \begin{pmatrix} \eta \\ z \end{pmatrix} \phi^z \frac{\eta!}{z!(\eta - z)!} $	Number of "successes" on a given number of trials, e.g., number of survivors in a sample of individuals, number of plots containing an exotic species from a sample, number of terrestrial pixels that are vegetated in an image	η , the number of trials ϕ , the probability of a success $\phi = 1 - \sigma^2/\mu$ $\eta = \mu^2/\left(\mu - \sigma^2\right)$	$\mu = \eta \phi$ $\sigma^2 = \eta \phi (1 - \phi)$	
Bernoulli $[z \phi] = \phi^z (1-\phi)^{1-z}$	A special case of the binomial where the number of trials= 1 and the random variable can take on values 0 or 1; widely used in survival analysis, occupancy models	ϕ , the probability that the random variable= 1 $\phi = \mu$ $\phi = 1/2 + 1/2\sqrt{1 - 4\sigma^2}$	$\mu = \phi$ $\sigma^2 = \phi (1 - \phi)$	
Negative binomial $[z \lambda, \kappa] = \frac{\Gamma(z+\kappa)}{\Gamma(\kappa)z^{k}} \left(\frac{\kappa}{\kappa+\lambda}\right)^{\kappa} \times \left(\frac{\lambda}{\kappa+\lambda}\right)^{z}$	Counts of things occurring randomly over time or space, as with the Poisson; includes dispersion parameter κ allowing the variance to exceed the mean	λ , the mean number of occurrences per time or space κ , the dispersion parameter $\lambda = \mu$ $\kappa = \mu^2/(\sigma^2 - \mu)$		

TABLE A.1

(continued)				
Distribution	Random variable	Parameters	Moments	
Multinomial $[\mathbf{z} \mid \eta, \phi] = \eta! \prod_{i=1}^{k} \frac{\phi_i^{\gamma_i}}{z_i}$	Counts that fall into $k > 2$ categories, e.g., number of individuals in age classes, number of pixels in different landscape categories, number of species in trophic categories in a sample from a food web	z, a vector giving the number of counts in each category ϕ , a vector of the probabilities of occurrence in each category $\sum_{i=1}^{d} \phi_i = 1$ $\sum_{i=1}^{d} z_i = \eta$	$\mu_i = \eta \phi_i$ $\sigma_i^2 = \eta \phi_i (1 - \phi_i)$	

Note: We use μ to symbolize the first moment of the distribution, $\mu = E(z)$, and σ^2 to symbolize the second central moment, $\sigma^2 = E\left((z-\mu)^2\right)$.

Probability distributions Used in Ecological Modeling to Represent Stochasticity in Continuous Random Variables (z)

Continuous Distributions	Random variable (z)	Parameters	Moments
Normal $[z \mu, \sigma^2] = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(z-\mu)^2}{2\sigma^2}}$	Continuously distributed quantities that can take on positive or negative values; sums of things.	μ, σ^2	μ, σ^2
Lognormal $ [z \mid \alpha, \beta] = \frac{1}{z \sqrt{2\pi\beta^2}} e^{-\frac{(\log(z) - \mu)^2}{2\beta^2}} $	Continuously distributed quantities with nonnegative values. Random variables with the property that their logs are normally distributed. Thus, if z is normally distributed the exp(z) is lognormally distributed. Represents products of things. The variance increases with the mean sauared.	α , the mean of z on the log scale β , the standard deviation of z on the log scale α = log (median(z)) α = log (μ) - $1/2 \log \left(\frac{e^2 + \mu^2}{\mu^2}\right)$ $\beta = \sqrt{\log \left(\frac{e^2 + \mu^2}{\mu^2}\right)}$	$\mu = e^{\alpha + \frac{\beta^2}{2}}$ $\operatorname{median}(z_t) = e^{\alpha}$ $\sigma^2 = (e^{\beta^2} - 1)e^{2\alpha + \beta^2}$

TABLE A.2

(continued)				
Continuous Distributions	Random variable (z)	Parameters	Moments	
Gamma $ \begin{aligned} & [z \alpha,\beta] = \\ & [\bar{z} \alpha,\beta] = \\ & \frac{\beta^{\alpha}}{\Gamma(\alpha)} z^{\alpha-1} e^{-\beta z} \\ & \Gamma(\alpha) = \\ & \int_0^{\infty} t^{\alpha-1} e^{-t} \mathrm{d}t \ . \end{aligned} $	The time required for a specified number of events to occur in a Poisson process; any continuous quantity that is nonnegative.	$\alpha = \text{shape}$ $\beta = \text{rate } \alpha = \frac{\mu^2}{\sigma^2}$ $\beta = \frac{\mu}{\sigma^2}$ Note-be very careful about rate, defined as above, and scale $=\frac{1}{\beta}$.	$\mu = \frac{\alpha}{\beta}$ $\sigma^2 = \frac{\alpha}{\beta^2}$	
Inverse gamma $[z \alpha, \beta] = \frac{\beta^{\alpha}}{\Gamma(\alpha)} z^{-\alpha-1} \exp\left(\frac{-\beta}{z}\right)$	The reciprocal of a gamma-distributed random variable.	$\alpha = \text{shape}$ $\beta = \text{scale}$ $\alpha = \frac{\mu^2}{\sigma^2} + 2$ $\beta = \mu \left(\frac{\mu^2}{\sigma^2} + 1\right)$	$\mu = \frac{\beta}{\alpha - 1}$ for $\alpha > 1$ $\sigma^2 = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)}$ for $\alpha > 2$	
Exponential $[z \alpha, \beta] = \lambda e^{-\lambda z}$	Intervals of time between sequential events that occur randomly over time or space. If the number of events is Poisson distributed, then the times between events are exponentially distributed.	$\lambda,$ the mean number of occurrences per time or space $\lambda=\frac{1}{\mu}$	$\mu = \frac{1}{\lambda}$ $\sigma^2 = \left(\frac{1}{\lambda}\right)^2$	
Beta $[z \alpha, \beta] = B z^{\alpha-1} (1-z)^{\beta-1}$ $B = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta)}$ Because B is a normalizing constant, $[z \mid \alpha, \beta] \propto z^{\alpha-1} (1-z)^{\beta-1}$	Continuous random variables that can take on values between 0; and 1, any random variable that can be expressed as a proportion; survival; proportion of landscape invaded by exotic; probabilities of transition from one state to another.	$\alpha = \frac{\left(\mu^2 - \mu^3 - \mu\sigma^2\right)}{\sigma^2}$ $\beta = \frac{\mu - 2\mu^2 + \mu^3 - \sigma^2 + \mu\sigma^2}{\sigma^2}$	$\mu = \frac{\alpha}{\alpha + \beta}$ $\sigma^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$	
$\begin{aligned} & \overline{\text{Dirichlet}} \\ & [z \alpha] = \\ & \Gamma\left(\sum_{i=1}^k \alpha_i\right) \times \\ & \frac{\prod_{j=1}^k z_j^{\alpha_j - 1}}{\Gamma\left(\alpha_j\right)} \end{aligned}$	Vectors of more than two elements of continuous random variables that can take on values between 0 and 1 and that sum to 1.	$\begin{array}{l} \alpha_i = \mu_i \alpha_0 \\ \alpha_0 = \sum_{i=1}^k \alpha_i \end{array}$	$\begin{split} \mu_i &= \frac{a_i}{\sum_{l=1}^{l} a_l} \\ \sigma_i^2 &= \frac{a_i (a_0 - a_l)}{a_0^2 (a_0 + 1)}, \end{split}$	

Properties of Probability Density Functions

- Understanding the properties that characterize probability density functions.
- Emphasis on normalization and non-negativity.

The Normal Probability Density Function

- Special focus on the normal distribution.
- Shape, mean, and standard deviation.
- ► Real-world examples: Height, IQ scores.

Mean and Variance of a Distribution

Mean as minimized variance.

Highest Density Interval (HDI)

Understanding the concept of HDI.

Concept of HDI

▶ It provides a range of values within which a specified portion of the probability density function lies.

Why HDI Matters

- ► HDI is valuable for summarizing uncertainty about a parameter.
- ▶ It's particularly useful when dealing with complex distributions or posterior distributions from Bayesian analysis.

Calculating HDI

- HDI is often calculated numerically using methods such as Markov Chain Monte Carlo (MCMC).
- ▶ It represents the narrowest interval that contains a certain predefined probability mass.

Interpretation of HDI

- ► The width of the HDI reflects the precision of our knowledge about the parameter.
- ▶ A narrow HDI indicates more precise estimation, while a wider HDI suggests greater uncertainty.

Two-Way Distributions

- ► Conditional Probability
- ► Independence of Attributes

Conditional Probability

Conditional probability is the probability of an event occurring given that another event has already occurred. It is denoted by P(A|B), representing the probability of event A given that event B has occurred. The formula for conditional probability is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

where $P(A \cap B)$ is the probability of both events A and B occurring, and P(B) is the probability of event B occurring.

Independence of Attributes

Two events, A and B, are considered independent if the occurrence or non-occurrence of one event does not affect the probability of the other event. Mathematically, events A and B are independent if:

$$P(A \cap B) = P(A) \cdot P(B)$$

In other words, the joint probability of A and B equals the product of their individual probabilities. If this equation holds, A and B are independent; otherwise, they are dependent.

Conditional Probability

- ► Conditional Probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- Example:
 - Suppose you have a deck of cards. Let A be the event of drawing a red card, and B be the event of drawing a heart. The conditional probability of drawing a red card given that it is a heart is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{2}}{\frac{1}{4}} = \frac{2}{1} = 2$$

Independence of Attributes

- ▶ Independence of Attributes: $P(A \cap B) = P(A) \cdot P(B)$
- **Example:**
 - Consider two events: C is the event of rolling a 4 on a six-sided die, and D is the event of getting heads on a fair coin toss. If C and D are independent, then:

$$P(C \cap D) = P(C) \cdot P(D) = \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12}$$

Joint Probability

- ▶ Definition: The probability of the occurrence of two or more events simultaneously.
- ▶ Denoted as $P(A \cap B)$ for events A and B.

Joint Probability Example

- Consider rolling a six-sided die.
- Let A: The event of rolling an even number.
- Let B: The event of rolling a number greater than 3.
- ▶ Find $P(A \cap B)$.

Calculating Joint Probability

- ▶ Using the formula: $P(A \cap B) = P(A) \times P(B|A)$
- \triangleright P(A): Probability of event A
- ► P(B|A): Probability of event B given that event A has occurred.

Joint Probability Example

- ▶ P(A): Probability of rolling an even number $=\frac{3}{6}=\frac{1}{2}$
- ▶ P(B|A): Probability of rolling a number greater than 3 given that an even number is rolled = $\frac{2}{3}$
- ► $P(A \cap B) = \frac{1}{2} \times \frac{2}{3} = \frac{1}{3}$

Joint Probability Interpretation

- Joint probability provides a measure of the likelihood of multiple events occurring together.
- Important in understanding relationships between events.

Applications

- ► Finance: Probability of a stock both gaining value and exceeding a certain threshold.
- Medicine: Probability of a patient having multiple symptoms simultaneously.
- Weather: Probability of rain and high winds occurring together.

Rule 1: Product Rule

Product Rule

$$P(A \cap B) = P(A|B) \cdot P(B)$$

- Interpretation: Probability of both events A and B occurring.
- or, it expresses the joint probability in terms of the conditional probability of A given B and the marginal probability of B.

Rule 1: Product Rule: Example

- Consider events A and B representing the outcomes of rolling a fair six-sided die.
- Let A be the event of getting an even number (2, 4, or 6), and B be the event of getting a number greater than 3 (4, 5, or 6).
- ► The probability of A given B is $P(A|B) = \frac{2}{3}$, and the probability of B is $P(B) = \frac{1}{2}$.
- ► Applying the product rule:

$$P(A \cap B) = \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{3}$$

Example: Genetic Inheritance

- Event A: Offspring having a specific genetic trait.
- Event B: Parent carrying the gene for the trait.
- Using the product rule to calculate the joint probability.

Example: Species Coexistence in Ecology

- ▶ Event A: Presence of species X in an ecosystem.
- Event B: Availability of a specific environmental condition.
- Applying the product rule to understand coexistence probabilities.

Rule 2: Chain Rule

Chain Rule Formula

$$P(A \cap B \cap C) = P(A|B \cap C) \cdot P(B|C) \cdot P(C)$$

▶ The formula for three events, generalizable to more variables.

Application in Biology

► Example 1: Gene Expression

- ► A: Gene activation, B: Cellular environment, C: External signals.
- Probability of gene activation influenced by the cellular environment AND external signals.

Example 2: Ecosystem Dynamics

- A: Predation occurrence, B: Prey abundance, C: Environmental conditions.
- Probability of predation depends on prey abundance AND environmental conditions.

Generalization

- Rule 2 can be generalized to more variables.
- ► Example 3: Evolutionary Processes
 - A: Adaptation, B: Genetic variation, C: Selection pressure.
 - Probability of adaptation influenced by genetic variation AND selection pressure.

Rule 3: Marginalization

Marginal Probability

$$P(A) = \sum_{B} P(A \cap B)$$

Interpretation and practical implications.

Example: Marginalization

- ► Consider a joint probability distribution table representing the occurrence of two traits in a population.
- Traits: Trait A (dominant/recessive) and Trait B (present/absent).
- ▶ Joint probabilities are given in the table.

Joint Probability Distribution Table

	123	456
Even		
Uneven		

Joint Probability Distribution Table

	123	456
Even	1	2
Uneven	2	1

Joint Probability Distribution Table

	Trait B Present	Trait B Absent
Trait A Dominant	P(A,B)	$P(A, \neg B)$
Trait A Recessive	$P(\neg A, B)$	$P(\neg A, \neg B)$

Calculation of Marginal Probabilities

- ▶ Marginal probability of Trait A: $P(A) = P(A, B) + P(A, \neg B)$
- ▶ Marginal probability of Trait B: $P(B) = P(A, B) + P(\neg A, B)$

Calculation of Marginal Probabilities

► TABLE 3.1 [[@hobbs2015]]

Interpretation

- Marginalization allows us to analyze the probability of individual traits independently.
- ► This is crucial for understanding the genetic composition of a population.