Ch6-7: Heapsort & Quicksort

25 Sep 2012 CMPT231 Dr. Sean Ho Trinity Western University

- Overview of sorting algorithms
- Binary max-heaps
 - heapify(): maintaining the max-heap property
 - build_max_heap(): creating a max-heap
 - Application: Heap Sort
 - Application: Priority Queue
- Quicksort
 - Partition & pivot
 - Randomised quicksort
 - Complexity analysis
- Review for exam next week (ch1-4)

Summary of sorting algorithms

- Comparison sorts (ch2, 6, 7)
 - Insertion sort: ⊖(n²), easy to program, slow
 - Merge sort: ⊖(n lg(n)), out-of-place sorting, slow due to lots of copying / memory operations
 - Heap sort: ⊖(n lg(n)), in-place, uses max-heap
 - Quick sort: Θ(n²) worst-case, Θ(n lg(n)) average, in-place, fast (small) constant factors
- Linear-time non-comparison sorts (ch8):
 - Counting sort: k distinct values: ⊖(k)
 - Radix sort: d digits w/k values: Θ(d(n+k))
 - Bucket sort: for uniform distrib. of values: Θ(n)

- Overview of sorting algorithms
- Binary max-heaps
 - heapify(): maintaining the max-heap property
 - build_max_heap(): creating a max-heap
 - Application: Heap Sort
 - Application: Priority Queue
- Quicksort
 - Partition & pivot
 - Randomised quicksort
 - Complexity analysis
- Review for exam next week (ch1-4)

Binary trees

- Graph: collection of nodes and edges
 - Edges may be directed or undirected
- Tree: directed acyclic graph (DAG)
 - Choose a node as root
 - Parent: immediate neighbour toward root
 - Leaf: node with no children
 - Degree: maximum number of children
 - Node height: max # edges to leaf child
 - Node depth: # edges to root
 - Level: all nodes of same depth
 - Binary tree: tree with degree=2

root

parent

CMPT231: heapsort & quicksort

Binary heaps

Array storage for certain binary trees

- Children of node i are at 2i and 2i+1
- Must fill tree left-to-right, one level at a time
- Max-heap: value of a node is ≤ value of its parent
 - Min-heap: ≥
- max_heapify() (O(lg n)): reposition a given node i so it satisfies the max-heap property
- build_max_heap() (O(n)): construct a max-heap from an unordered array
- heapsort() (O(n lg n)): sort array in-place

max_heapify(): for single node

- max_heapify(A, i):
 - Precondition: left and right sub-trees of i satisfy the max-heap property
 - Postcondition: subtree at i satisfies max-heap
- Algorithm:
 - Amongst {i, left(i), right(i)}, find the largest
 - If i is not the largest, then
 - Swap i with the largest, and
 - Recurse/iterate on that subtree

max_heapify(): pseudocode

- max heapify(A, i):
 - largest = i
 - if 2i ≤ length(A) and A[2i] > A[largest]:
 - → largest = 2i
 - else if $2i+1 \le length(A)$ and A[2i+1] > A[largest]:

6

- \rightarrow largest = 2i+1
- if largest ≠ i:
 - swap(A[i], A[largest])
 - max heapify(A, largest)
- \blacksquare A=[2, 8, 4, 7, 5, 3, 1, 6], i=1: (7)

- Overview of sorting algorithms
- Binary max-heaps
 - heapify(): maintaining the max-heap property
 - build_max_heap(): creating a max-heap
 - Application: Heap Sort
 - Application: Priority Queue
- Quicksort
 - Partition & pivot
 - Randomised quicksort
 - Complexity analysis
- Review for exam next week (ch1-4)

Building a max-heap

- build_max_heap(A):
 - Input: array of items in any order
 - Output: array has max-heap property
- Algorithm:
 - Leave last half of array as all leaves
 - Apply max_heapify() to each item in first half:
 - for i = floor(length(A)/2) .. 1:
 - → max heapify(A, i)
 - Descending order: each time max_heapify() is called on a node, its subtrees are already max-heaps
- Exercise: try it on [5, 2, 7, 4, 8, 1]

build_max_heap(): complexity

- Group iterations of for loop by height h of node:
 - Each call to max_heapify(i) takes O(h)
 - # of nodes with height h is \leq ceil(n / 2^{h+1})
 - Attains that bound when tree is full
- So algorithmic complexity is $\Sigma((n/2^{h+1})O(h))$
 - ◆ Sum for h = 0 .. lg(n) is \leq sum for h = 0 .. ∞
 - = n O(Σ (1/2)^{h+1}), where sum is for h = 0.. ∞
 - $\bullet = O(n)$
- We can build a max heap in linear time!
 - But it's not quite a sorting algorithm....

Using max-heaps for sorting

- Algorithm:
 - Make array a max-heap
 - Repeat, working backwards from end of array:
 - Swap root of max-heap with last leaf of heap
 - Shrink heap by 1 and apply max_heapify()
- At each iteration of the loop:
 - First portion of array is a max-heap
 - Last portion is a sorted array (largest items)
- Complexity: $\Theta(n)$ calls to max_heapify() ($\Theta(\lg n)$)
 - $\bullet \Rightarrow \Theta(n \lg(n))$
- Exercise: try it on [5, 2, 7, 4, 8, 1]

- Overview of sorting algorithms
- Binary max-heaps
 - heapify(): maintaining the max-heap property
 - build_max_heap(): creating a max-heap
 - Application: Heap Sort
 - Application: Priority Queue
- Quicksort
 - Partition & pivot
 - Randomised quicksort
 - Complexity analysis
- Review for exam next week (ch1-4)

Binary heap for priority queue

- Binary heaps can implement a priority queue:
 - Set of items with attached priorities
- Interface (set of operations):
 - insert(A, item, pri): add item to the queue A
 - find_max(A): return item with highest priority
 - pop_max(A): same but also delete item
 - set_pri(A, item, pri): set new priority for item (must be higher than old priority)
- Setup queue by building a max-heap
 - find_max() is easy: return A[1]
 - pop_max() also easy: remove A[1] and heapify

Inserting into priority queue

- set_pri(A, i, pri): starting from i,
 "bubble" item up until we find the right place:
 - → A[i] = pri
 - → while i>1 and A[i/2] < A[i]:</p>
 - swap(A[i/2], A[i])
 - i = i/2
 - Complexity: # iterations = $\Theta(\lg n)$
- insert(A, pri): make a new node and set its priority
 - → A.length++
 - → set_pri(A, A.length, pri)
 - Typically, use pre-allocated fixed-length array, and use separate variable to track size of queue
 - Complexity: same as set_pri(): ⊖(lg n)

Priority queue: summary

- Build priority queue using a max-heap: Θ(n)
- **Get** highest priority item: $\Theta(1)$
- Get and delete highest priority item: ⊖(lg n)
- Set new priority for an item: ⊖(|g n)
- Insert new item into queue: Θ(lg n)

- Overview of sorting algorithms
- Binary max-heaps
 - heapify(): maintaining the max-heap property
 - build_max_heap(): creating a max-heap
 - Application: Heap Sort
 - Application: Priority Queue
- Quicksort
 - Partition & pivot
 - Randomised quicksort
 - Complexity analysis
- Review for exam next week (ch1-4)

Quicksort

- Divide: partition array A[p .. r] such that:
 - → max(A[p..q-1]) \le A[q] \le min(A[q+1..r])
- Conquer: recurse on each part:
 - quicksort(A, p, q-1) and quicksort(A, q+1, r)
- No combine/merge step needed
- In-place sort
- Worst-case turns out to still be $\Theta(n^2)$, but average-case is $\Theta(n | g(n))$, with small constants
- In practise, quicksort is one of the best algorithms when input values can be arbitrary

Quicksort: partition

- How to do the partitioning?
 - Pick last item as the pivot
 - Walk through array, partitioning array into items ≤ pivot and items > pivot
 - Lastly, swap pivot into place
 - partition(A, p, r):
 - pivot = A[r]
 - split = p
 - for cur = p .. r-1:
 - if A[cur] ≤ pivot:
 - swap(A[split], A[cur])
 - split++
 - swap(A[split], A[pivot])
 - return split

Complexity?

Quicksort: complexity

- Worst-case if every partition is the most uneven:
 - pivot (last item) is either largest or smallest item
 - $T(n) = T(n-1) + T(0) + \Theta(n)$
 - $\bullet \Rightarrow T(n) = \Theta(n^2)$
 - Example inputs that give worst case?
- Best-case if every partition is exactly in half:
 - $T(n) = 2T(n/2) + \Theta(n)$
 - $\bullet \Rightarrow T(n) = \Theta(n \lg(n))$
 - Example inputs that give best case?
- Average-case, assuming random input?

Quicksort: average case

- Not every partition will be best-case ½ ½
 - On average, in between best and worst cases
 - Even if average split is, say, 9/10 1/10:
 - ⇒ $T(n) = T((9/10)n) + T((1/10)n) + \Theta(n)$
 - \rightarrow \Rightarrow T(n) = O(n lg(n))
- E.g., assume splits alternate between best+worst:
 - Only adds O(n) work to each of O(lg n) levels
 - $\bullet \Rightarrow$ still $O(n \log(n))$ (albeit w/higher constant)

Quicksort with constant splits

- p.178, #7.2-5: assume every split is α vs 1- α , with constant 0 < α < $\frac{1}{2}$.
 - Min/max depth of a leaf in the recursion tree?
- Min depth: follow smaller side (α) of each split
 - How many splits until reach leaf (1 item)?
 - $\alpha^{m} n = 1 \implies m = -\lg(n) / \lg(\alpha)$
- Max depth: follow larger side $(1-\alpha)$ of each split
 - How many splits until reach leaf (1 item)?
 - $(1-\alpha)^m n = 1 \implies m = -\lg(n) / \lg(1-\alpha)$
- Both are \(\theta(\left|g n)\), so with constant-ratio splits, depth of recursion tree is \(\theta(\left|g n)\), \(\theta\) total complexity is \(\theta(n)\) \(\theta(n)\)

- Overview of sorting algorithms
- Binary max-heaps
 - heapify(): maintaining the max-heap property
 - build_max_heap(): creating a max-heap
 - Application: Heap Sort
 - Application: Priority Queue
- Quicksort
 - Partition & pivot
 - Randomised quicksort
 - Complexity analysis
 - Regiew for exam next week (ch1-4)

Randomised quicksort

- We saw how giving quicksort pre-sorted data results in worst-case behaviour
 - Always chose last element (r) as pivot
- We can alleviate this risk by randomising our choice of pivot:
 - → rand_partition(A, p, r):
 - swap(A[r], A[rand(p, r)]) # swap w/random item
 - partition(A, p, r)
 - It is still possible our random pivot choices result in worst-case ⊖(n²) time – but unlikely!

Randomised quicksort: average

- Assume items are distinct, and name them in order: $\{z_1, z_2, ..., z_n\}$. How many comparisons?
 - Worst case: all pairs (z_i, z_i) compared $\Longrightarrow \Theta(n^2)$
 - A pair cannot be compared >1 time, because comparisons are only made against pivots, and once a pivot is used by partition(), it is not revisited
- When is a pair (z, z) compared?
 - Only if either z_i or z_j are chosen as a pivot before any other item inbetween {z_i, z_{i+1}, ..., z_j}
 - (If any other item is chosen first, then z_i, z_j will be on opposite sides of the split, and will not be compared)
 - $\bullet \Rightarrow$ probability is 2(1/(j-i+1))

Randomised quicksort: average

■ Summing over all pairs (z, z):

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr(compare z_{i} with z_{j})$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \quad (let k = j-i)$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$

$$= \sum_{i=1}^{n-1} O(lg n)$$

$$= O(n lg n)$$

- Overview of sorting algorithms
- Binary max-heaps
 - heapify(): maintaining the max-heap property
 - build_max_heap(): creating a max-heap
 - Application: Heap Sort
 - Application: Priority Queue
- Quicksort
 - Partition & pivot
 - Randomised quicksort
 - Complexity analysis
- Review for exam next week (ch1-4)

Review for Exam1: ch1-4

- Open-book, open (paper) notes!
 - But no laptop/mobile/tablet, no communication
 - Similar to textbook Exercises

- Algorith. complexity: $\Theta(=)$, $O(\leq)$, $\Omega(\geq)$, o(<), $\omega(>)$
 - Know their technical definitions!
 - Proofs!
- Solving recurrences: induction, master method
- Algorithms to be familiar with:
 - Insertion sort, bubble, merge, max subarray
 - Matrix multiply (3 algorithms!)

