Assignment 8

Problem Statement Consider the problem of implementing a timestamp object in an asynchronous message passing system with at most one Byzantine process. Whenever a non-faulty process performs GetTS, it must eventually get a timestamp which is larger than all the timestamps returned by GetTS operations performed by non-faulty processes that finished before this GetTS began.

For what number of processes, n, is it possible to solve this problem? Justify your answer.

Claim 1. It is possible to implement a timestamp object when n = 1 or when n > 3.

Proof. It is trivial to implement a timestamp object for one process. The process keeps a local counter and increments it for every call to GetTS. Lemma 2 shows that it is impossible to implement the timestamp object when n = 2 and n = 3.

In the following we will present an algorithm which implements a timestamp object in an asychronous message passing system with at most one Byzantine process when there are ≥ 4 processes. Denote the processes by $p_1, ..., p_n$. The general idea of this algorithm will be similar to that of simulating shared registers using message passing systems (Attiya Section 10.4).

A high-level description of the algorithm is as follows: every process p_i has a local variable t_i which stores the largest timestamp p_i has seen and a vector S_i to store proposed timestamps. t_i is initialized to zero and S_i is empty at the start of a GetTS operation. When p_i executes GetTS, p_i broadcasts message request to all other processes (including itself). When a process p_j gets a request message from p_i , it sends p_i message propose(t_j). Upon receiving propose(t_j), t_j adds t_j to all other processes (again, including itself). Upon receiving message confirm(t_i) from t_j updates $t_j \leftarrow \max(t_i, t_j)$ and sends back $t_j \leftarrow \max(t_i, t_j)$ and sends back $t_j \leftarrow \max(t_i, t_j)$ and outputs $t_j \leftarrow \max(t_i, t_j)$ and sends back $t_j \leftarrow \max(t_i, t_j)$ and outputs $t_j \leftarrow \max(t_j, t_j)$ of $t_j \leftarrow \max(t_j, t_j)$ and outputs $t_j \leftarrow \max(t_j, t_j)$ of $t_j \leftarrow \max(t_j, t$

It remains to show that a GetTS operation g_i which finished before the start of another GetTS operation g_j began will return a smaller timestamps than the one returned by g_j . Suppose p_i performed g_i and received t_i and then p_j performed g_j and received t_j (it is possible that $p_i = p_j$ but then the condition is satisfied trivially). Before g_i ended, p_i sent t_i to all processes and received n-1 $\langle ACK \rangle$ messages. Thus all processes p_k which successfully returned $\langle ACK \rangle$ must have $t_k \geq t_i$. If p_j sent $\langle ACK \rangle$ to p_i in g_i then $t_j \geq \max\{t \in S_j\} + 1 \geq t_i + 1 > t_i$. Suppose not and consider the contents of S_j just before p_j updates t_j during g_j . $|S_j| \geq n - 1$ so p_j must have received n-2 messages from other processes. Since $n \geq 4$, p_j must have received a message from a non-faulty process p_k . p_k sent $\langle ACK \rangle$ to p_i during g_i so $t_k > \geq t_i$. Thus $t_j = \max\{t \in S_j\} + 1 \geq t_k + 1 > t_i$. \square

Lemma 2. When there are 2 or 3 processes and at most one Byzantine process, it is impossible to implement a timestamp object in an asynchronous message passing system.

Proof. It is easy to see that there cannot be an implementation of a time stamp object when n = 2. The adversary simply delays all messages sent between the two processes p_0 and p_1 . From the perspective of p_i , it is unclear if p_{1-i} is byzantine or just slow. Thus the value p_i outputs from a GetTS operation is independent of what p_{i-1} outputs.

Next consider the case when n = 3. Suppose for a contradiction that there exists an implementation of a timestamp object in the stated model. Let the processes be denoted p_0 , p_1 , and p_2 . Let the

initial configuration be C. The adversary will delay all messages passed between p_0 and p_1 .

Suppose p_0 performs a GetTS from C. Since p_0 cannot determine if p_1 is Byzantine (and is pretending to crash) or just slow, p_0 must decide upon some timestamp s_0 at time t_0 . Let α_0 be the execution where p_0 , interacting only with p_2 , gets s_0 at t_0 . Next suppose that p_1 performs a GetTS operation after t_0 . Since messages passed between p_0 and p_1 are still delayed, p_1 also cannot determine if p_0 is Byzantine or just slow so p_1 must decide upon some s_1 at time $t_1 > t_0 + 1$. Let α_1 be the execution where p_1 , interacting only with p_2 , gets s_1 at t_1 . Since the GetTS operation by p_0 finished before the start of the GetTS operation by p_1 , $s_0 < s_1$.

Suppose instead that p_1 performs GetTS from C. p_2 will behave just as it did in α_1 . Since $(C\alpha_0)\alpha_1 \stackrel{p_1}{\sim} C\alpha_1$, p_1 must decide upon timestamp s_1 at time t'_1 . Next p_0 performs GetTS at some time t'_0 after t'_1 . p_2 will behave just as it did in α_0 . Again, since $C\alpha_0 \stackrel{p_0}{\sim} (C\alpha_1)\alpha_0$, p_0 must decide upon timestamp s_0 . This is a contradiction since the GetTS operation by p_1 finished before the start of the GetTS operation by p_0 .