INTRODUCTION TO STATISTICAL INFERENCE

Sangita Das, notes by Ramdas Singh

Third Semester

List of Symbols

Placeholder

Contents

1	SUF	FICIENCY	1
	1.1	Introduction to Sufficient Statistics	1
	1.2	Factorization Theorems	2
	1.3	Minimal Sufficiency	4
	1.4	Location Scale Family	6
Inc	lex		9

Chapter 1

SUFFICIENCY

1.1 Introduction to Sufficient Statistics

We start by defining terms for the sake of completion, whilst assuming the most basic definitions.

Definition 1.1. An *estimator* is any function of the random sample which is used to estimate the unknown value of the given parameteric function $g(\theta)$.

If $\underline{X} = (X_1, \dots, X_n)$ is a random sample from a population with a probability distribution P_{θ} , a function d(X) used for estimating $g(\theta)$ is known as an estimator. Let $\underline{x} = (x_1, \dots, x_n)$ be a realization of $\underline{X} = (X_1, \dots, X_n)$. Then $d(\underline{x})$ is called an *estimate*.

Definition 1.2. The parameter space is the set of all possible values of a parameter.

For example, the normal distribution $N(\mu, \sigma^2)$ has the parameter space $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Similarly, the binomial distribution Bin(n, p) has the constraints $n \in \mathbb{N}$ and $p \in [0, 1]$.

Throughout this course, we will assume any data, otherwise stated, will be *independent and identically distributed*; the are separate datapoints that follow the same probability distribution and are independent.

Definition 1.3. Let X_1, \ldots, X_n be a random sample from a population P_{θ} , where $\theta \in \Theta$. A statistic $T = T(X_1, \ldots, X_n) = T(\underline{X})$ is said to be a *sufficient statistic* for the family $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ if the conditional distribution of X_1, \ldots, X_n given T = t is independent of θ .

We shall look at some examples.

Example 1.4. Let X_1, \ldots, X_n be a random sample from the Bernoulli distribution with parameter $p \in (0,1)$. We claim that $T = \sum_{i=1}^{n} X_i$ is sufficient for $\{Ber(p) \mid 0 . To show this, we simply have$

$$P(X_{i} = x_{i} \text{ for all } i | T = t) = \frac{P(X_{1} = x_{1}, \dots, X_{n-1} = x_{n-1}, X_{n} = t - \sum_{i=1}^{n-1} x_{i})}{P(\sum_{i=1}^{n} X_{i} = t)}$$

$$= \frac{P(X_{1} = x_{1}) \cdots P(X_{n-1} = x_{n-1}) \cdot P(X_{n} = t - \sum_{i=1}^{n-1} x_{i})}{\binom{n}{t} p^{t} (1 - p)^{n-t}}$$

$$= \frac{p^{x_{1}} (1 - p)^{1 - x_{1}} \cdots p^{x_{n-1}} (1 - p)^{1 - x_{n-1}} p^{t - \sum x_{i}} (1 - p)^{1 - t + \sum x_{i}}}{\binom{n}{t} p^{t} (1 - p)^{n-t}}$$

$$= \frac{1}{\binom{n}{t}}.$$

$$(1.2)$$

Thus, the statistic T is sufficient. The above expression is valid when $\sum_{i=1}^{n} x_i = t$, and the probability

SUFFICIENCY Factorization Theorems

evaluates to 0 if $\sum_{i=1}^{n} x_i \neq t$.

Example 1.5. Let X_1, \ldots, X_n be a random sample from Poisson(λ) for $\lambda > 0$. We claim that the statistic $T = \sum_{i=1}^n X_i$ is sufficient. Recall that the probability mass function is $f(x, \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$ where x is a non-negative integer, and $\lambda > 0$. We have

$$P(X_{i} = x_{i} \mid T = t) = \frac{P(X_{1} = x_{1}) \cdots P(X_{n-1} = x_{n-1}) \cdot P(X_{n} = t - \sum_{i=1}^{n-1} x_{i})}{P(\sum_{i=1}^{n} X_{i} = t)}$$

$$= \frac{\frac{e^{-\lambda} \lambda^{x_{1}}}{x_{1}!} \cdots \frac{e^{-\lambda} \lambda^{x_{n-1}}}{x_{n-1}!} \cdot \frac{e^{-\lambda} \lambda^{t-\sum x_{i}}}{(t-\sum x_{i})!}}{\frac{e^{-n\lambda} (n\lambda)^{t}}{t!}}$$

$$= \frac{e^{-n\lambda} \lambda^{t}}{x_{1}! \cdots x_{n-1}! (t - \sum_{i=1}^{n-1} x_{i})!} \cdot \frac{t!}{e^{-n\lambda} (n\lambda)^{t}}$$

$$= \frac{t!}{x_{1}! \cdots x_{n-1}!} \frac{1}{t}$$

$$= \left(\frac{t}{x_{1}, x_{2}, \dots, x_{n}}\right) \cdot \frac{1}{n^{t}}.$$
(1.3)

This shows that the conditional distribution of (X_1, \ldots, X_n) given T = t does not depend on λ , so by the definition of sufficiency, T is a sufficient statistic for λ .

Definition 1.6. A regular model may be one of two things.

- 1. All P_{θ} are continuous with probability density function $f(x \mid \theta)$.
- 2. All P_{θ} are discrete with prbability mass function $p(x \mid \theta)$, and there exists a countable set $S = \{x_1, x_2, \ldots\}$ independent of θ such that $\sum_{i=1}^{\alpha} p(x_i \mid \theta) = 1$.

1.2 Factorization Theorems

The following theorem proves to be useful for finding sufficiency.

Theorem 1.7 (The Neyman-Fisher factorization theorem). Let $f(\underline{x} \mid \theta)$ be the density of \underline{X} under the probability model P_{θ} for $\theta \in \Theta$. Then if the model is regular, a statistic $T(\underline{X})$ is sufficient for θ if and only if there exist functions g and h such that

$$f(\underline{x} \mid \theta) = g(T(\underline{x}), \theta)h(\underline{x}). \tag{1.5}$$

Note that the functions are defined with $T: \mathbb{R}^n \to I \subseteq \mathbb{R}^k$ (for $k \leq n$), $g: I \times \Theta \to \mathbb{R}_{\geq 0}$, and $h: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$. The functions g and h need not be unique.

A little less formally, the theorem basically states this: let X be a random variable with probability mass/density function $f(x,\theta)$ for $\theta \in \Theta$. Then T(X) is sufficient if and only if $f(x,\theta) = g(T(x),\theta)h(x)$ for all $\theta \in \Theta$. We now provide a proof.

Proof. We show only for the discrete case. Let us first assume such a faztorization exists. With

$$P_{\theta}(X = x' \mid T(X) = t) = \begin{cases} \frac{P_{\theta}(X = x', T(X) = t)}{P_{\theta}(T(X) = t)} & \text{if } T(x') = t, \\ 0 & \text{if } T(x') \neq t, \end{cases}$$
(1.6)

we then have

$$P_{\theta}(T(x) = t) = \sum_{\{x \mid T(x) = t\}} f_{\theta}(x \mid \theta) = g(T(x), \theta) \sum_{\{x \mid T(x) = t\}} h(x). \tag{1.7}$$

SUFFICIENCY Factorization Theorems

Thus, using the above, and the fact that $\{X = x\} \subseteq \{T(X) = T(x)\}$, gives us

$$\frac{P_{\theta}(X = x', T(X) = t)}{P_{\theta}(T(X) = t)} = \frac{P_{\theta}(X = x')}{g(T(x), \theta) \sum_{\{x \mid T(x) = t\}} h(x)} = \frac{g(t, \theta)h(x')}{g(T(x), \theta) \sum_{\{x \mid T(x) = t\}} h(x)} = \frac{h(x')}{\sum_{\{x \mid T(x) = t\}} h(x)}.$$
(1.8)

We now suppose that T(X) is sufficient for θ . Let $g(t,\theta) = P_{\theta}(T=t)$. Then,

$$g(t,\theta) = P_{\theta}(T=t) = P_{\theta}(T(X) = T(x')) \text{ where } T(x') = t.$$
 (1.9)

Also set $h(x) = P_{\theta}(X = x' \mid T(X) = T(x'))$, which is independent of θ since T is sufficient. Therefore, we have

$$f_X(x' \mid \theta) = P_{\theta}(X = x') = P_{\theta}(T(X) = T(x')) \cdot P_{\theta}(X = x' \mid T(X) = T(x')) = g(T(x), \theta)h(x). \tag{1.10}$$

Example 1.8. Let X_1, \ldots, X_n be independent and identically distributed $N(\mu, \sigma^2)$ random variables, with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Let us find a sufficient test statistic. We look at cases; the first case being when σ^2 is known ($\sigma^2 = 1$). Since these are independent, we have the joint probability density function of these random variables as

$$f(x_1, \dots, x_n \mid \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = \frac{1}{(2\pi)^{n/2}} e^{-\sum_{i=1}^n (x_i - \mu)^2}$$

$$= \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2} \left(\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n\mu^2\right)\right)$$

$$= \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2} \sum_{i=1}^n x_i^2} \times e^{-\frac{1}{2} (-2\mu \sum_{i=1}^n x_i + n\mu^2)}.$$
(1.11)

Make the former term h(x) and the latter term $g(\sum_{i=1}^n x_i, \mu)$ with $T(x) = \sum_{i=1}^n x_i$. The second case now involves μ being known, and we set it to $\mu = 0$ to get $T(x) = \sum_{i=1}^n x_i^2$, $h(x) = 1/(2\pi)^{n/2}$, and $g(T(x), \sigma^2) = \sigma^{-n} e^{-T(x)/2\sigma^2}$.

We move on to another factorization theorem.

Definition 1.9. The family of distributions $\{P_{\theta} \mid \theta \in \Theta\}$ is said of be a *single parameter exponential family* if there eixst real valued functions $c(\theta), d(\theta)$ on Θ and T(x), S(x) on \mathbb{R}^n and a set $A \subset \mathbb{R}^n$ such that

$$f(x \mid \theta) = \exp(c(\theta)T(x) + d(\theta) + S(x))\mathbf{1}_{A}(x) \tag{1.13}$$

where A must not depend on θ .

Example 1.10. Suppose $X \sim \text{Poisson}(\lambda)$ for $\lambda > 0$. With $A = \{0, 1, 2, \ldots\}$, we have

$$f(x \mid \lambda) = \exp(x \log(\lambda) - \lambda - \log(x!)) \mathbf{1}_A(x)$$
(1.14)

with T(x) = x, $c(\lambda) = \log(\lambda)$, $d(\lambda) = -\lambda$, and $S(x) = -\log(x!)$.

Consider X_1, \ldots, X_n independent and identically distributed random variables following the distribution P_{θ} , and suppose that $\{P_{\theta} \mid \theta \in \Theta\}$ is an exponential family, that is, $f(x \mid \theta) = \exp(c(\theta)T(x_i) + \theta)$

SUFFICIENCY Minimal Sufficiency

 $d(\theta) + S(x))\mathbf{1}_A(x)$. Then,

$$f_{x_1,\dots,x_n}(x_1,\dots,x_n \mid \theta) = \prod_{i=1}^n \exp(c(\theta)T(x_i) + d(\theta) + S(x_i))\mathbf{1}_A(x_i)$$
(1.15)

$$= \exp(c(\theta) \sum_{i=1}^{n} T(x_i) + md(\theta) + \sum_{i=1}^{n} S(x_i)) \mathbf{1}_{A^n}(x_1, \dots, x_n).$$
 (1.16)

 (x_1, \ldots, x_n) has distribution belonging to a single parameter exponential family. Thus, if $\{P_\theta \mid \theta \in \Theta\}$ is a single parameter family with density $f(x, \theta) = \exp(c(\theta)T(x) + d(\theta) + S(x))\mathbf{1}_A(x)$, then T(x) is sufficient for θ .

Corollary 1.11. If x_1, \ldots, x_n are independent and indentically distributed random variables following the distribution P_{θ} with density $f(x \mid \theta) = \exp(c(\theta)T(x) + d(\theta) + S(x))\mathbf{1}_A(x)$, then $\sum_{i=1}^n T(X_i)$ is sufficient for θ .

The exponential family is expanded.

Definition 1.12. A family of distributions $\{P_{\theta}: \theta \in \Theta\}$ with density $f(x \mid \theta)$ is called a k-parameter exponential family if there exists real valued functions $c_1(\theta), \ldots, c_k(\theta), d(\theta)$ on Θ and $T_1(\underline{x}), \ldots, T_k(\underline{x}), S(x)$ on \mathbb{R}^n , and a set $A \subset \mathbb{R}^n$ such that

$$f(\underline{x} \mid \theta) = \left(\exp(\sum_{j=1}^{n} c_j(\theta) T_j(\underline{x}) + d(\theta) + S(\underline{x})) \right) \mathbf{1}_A(\underline{x}). \tag{1.17}$$

Here, (T_1, \ldots, T_k) is a k-dimensional sufficient statistic for θ . Note that the parameter here is θ and not $(c_1(\theta), \ldots, c_k(\theta))$.

We look at more examples.

Example 1.13. For a normal distribution with $\sigma^2 = 1$, we have

$$f(x \mid \theta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\theta)^2}{2}} \mathbf{1}_A(x) = \exp\left(-\frac{1}{2}\log(2\pi) - \frac{x^2}{2} + x\theta - \frac{\theta^2}{2}\right) \mathbf{1}_A(x). \tag{1.18}$$

Here, $c(\theta) = \theta$, T(x) = x, $S(x) = -\frac{x^2}{2} - \frac{1}{2}\log(2\pi)$, and $d(\theta) = -\frac{\theta^2}{2}$.

August 1st.

- **Remark 1.14.** 1. The Neyman-Fisher factorization theorem holds if $\underline{\theta}$ and \underline{T} are vectors. Their dimensions need not be equal.
 - 2. If T is sufficient and T is a function of U, then U is also sufficient.
 - 3. If V is a function of T, then V need not be sufficient. But if V is one-to-one with T, then V is also sufficient. V = B(T) and $T = B^{-1}(V)$ shows that $g(T, \theta) = g(B^{-1}(V), \theta) = g^*(V, \theta)$. Note that the inverse exists since it is defined on the image of the original function only.

1.3 Minimal Sufficiency

Again, we being with a few definitions.

SUFFICIENCY Minimal Sufficiency

Definition 1.15. A partition of a space \mathcal{X} is a collection $\{E_i\}$ of subsets of \mathcal{X} such that

$$\bigcup_{n\geq 1} E_i = \mathcal{X} \text{ and } E_i \cap E_j = \emptyset \text{ for } i \neq j.$$
(1.19)

The E_i 's are called *partition sets*. Let $T: \mathcal{X} \to \mathcal{Y}$. The partition of \mathcal{X} induced by the function T is the collection of the sets $T_y = \{x \mid T(x) = y\}$ for $y \in \mathcal{Y}$.

We say that \mathcal{P}_2 is a reduction of \mathcal{P}_1 if each partition set of \mathcal{P}_2 is the union of the same members of \mathcal{P}_1 .

Definition 1.16. A sufficient statistic T(X) is called a *minimal sufficient statistic* if for any other sufficient statistic T'(X), $T(\underline{X})$ is a function of T'(X). That is,

$$T(\underline{X}) = U(T'(X)) \implies \text{if } T'(\underline{x}) = T'(y) \text{ then } T(\underline{x}) = T(y).$$
 (1.20)

In terms of partition sets, if $\{B_{t'} \mid t' \in T'\}$ are partition sets for T'(x) and $\{A_t : t \in T\}$ are partition sets for T(x), then the definition states that every $B_{t'}$ is a subset of some A_t . Thus the partition associated with a minimal sufficient statistic is the coarsest possible partition for a sufficient statistic, and a minimal sufficient statistic achieves the greatest possible data reduction.

Theorem 1.17. Let $f(x \mid \theta)$ be the probability mass/density function of a sample \underline{X} . Suppose there exists a function $T(\underline{x})$ such that for every two sample points \underline{x} and \underline{y} , the ratio $f(\underline{x} \mid \theta)/f(\underline{y} \mid \theta)$ is constant as a function of θ if and only if $T(\underline{x}) = T(\underline{y})$. Then $T(\underline{X})$ is a minimal sufficient statistic for θ .

We look at an example first before proving the theorem.

Example 1.18. Let X_1, \ldots, X_n be independent and identically distributed $\text{Exp}(\theta)$ for $\theta > 0$. Recall that the probability density function is $f(x \mid \theta) = \theta \exp(-\theta x)$. We show that $T(\underline{X}) = \sum_{i=1}^{n} X_i$ is minimal sufficient for θ . The joint density in this case is

$$f(\underline{X} = \underline{x} \mid \theta) = \prod_{i=1}^{n} \theta \exp(-\theta x_i) = \theta^n \exp\left(-\theta \cdot \sum_{i=1}^{n} x_i\right). \tag{1.21}$$

The ratio is now

$$\frac{f(\underline{x} \mid \theta)}{f(\underline{y} \mid \theta)} = \exp\left(-\theta \sum_{i=1}^{n} (x_i - y_i)\right) = \exp(-\theta (T(\underline{x}) - T(\underline{y}))). \tag{1.22}$$

This expression is constant as a function of θ if and only if $T(\underline{x}) = T(\underline{y})$. Thus, T is minimal sufficient statistic for θ .

Proof. We shall assume that $f(x \mid \theta) > 0$ for all $x \in X, \theta \in \Theta$. Suppose there exists T(X) such that $f(x \mid \theta)/f(y \mid \theta)$ is constant as a function of θ if and only if T(x) = T(y). We first show that T is sufficient. The map is really $T: \mathcal{X} \to \mathcal{T} = \{t \mid T(x) = t \text{ for some } x \in \mathcal{X}\}$. Let $A_t = \{x \in \mathcal{X} \mid T(x) = t\}$. Then the collection of sets $\{A_t\}_{t \in \mathcal{T}}$ is a partition of \mathcal{X} .

For each A_t , fix an element $x_t \in A_t$. For any $x \in \mathcal{X}$, we have $x \in A_{T(x)}$ and hence $x_{T(x)}$ is the fixed element which belongs to the same partitioning set as x does. Thus, $T(x) = T(x_{T(x)})$ since x and $x_{T(x)}$ belong to $A_{T(x)}$. $\frac{f(x|\theta)}{f(x_{T(x)}|\theta)}$ is a constant function of θ , so $h(x) = \frac{f(x|\theta)}{f(x_{T(x)}|\theta)}$ independent of θ and $h: \mathcal{X} \to \mathbb{R}_{\geq 0}$. Define $g: \mathcal{T} \times \Theta \to \mathbb{R}_{\geq 0}$ by $g(t, \theta) = f(x_t \mid \theta)$. Then

$$f(x \mid \theta) = \frac{f(x \mid \theta)}{f(x_{T(x)} \mid \theta)} f(x_t \mid \theta) = h(x)g(t, \theta).$$
 (1.23)

Now that we have shown T is sufficient, we show its minimality. Let T'(X) be any other sufficient statistic. Then there exist functions g' and h' such that

$$f(x \mid \theta) = g'(T'(x), \theta)h'(x). \tag{1.24}$$

Let x and y be any two sample points such that T'(x) = T'(y). Then

$$\frac{f(x\mid\theta)}{f(y\mid\theta)} = \frac{g'(T'(x),\theta)h'(x)}{g'(T'(y),\theta)h'(y)} = \frac{h'(x)}{h'(y)} \text{ is independent of } \theta. \tag{1.25}$$

We already know that T(x) = T(y) whenever the above ratio is a constant function of θ . Hence, $T'(x) = T'(y) \implies T(x) = T(y)$. This means that T is coarser.

Theorem 1.19. Suppose \mathcal{P} is a family of probability models with common support and $\mathcal{P}_0 \subset \mathcal{P}$. If T is minimal sufficient for \mathcal{P}_0 and sufficient for \mathcal{P} , then it is minimal sufficient for \mathcal{P} also.

Proof. Let U be any sufficient statistic for \mathcal{P} . Then it is sufficient for \mathcal{P}_0 . But T is minimal for \mathcal{P}_0 . Therefore, T = H(U). Now consider \mathcal{P} . T is sufficient for \mathcal{P} and for any other sufficient statistic U, T = H(U). Thus, T is minimal sufficient.

Example 1.20. Let X_1, \ldots, X_n be independent and identically distributed Poisson(λ) random variables. The probability mass function in this case is

$$f(x_1, \dots, x_n \mid \lambda) = e^{-n\lambda} \frac{\lambda^{x_1 + \dots + x_n}}{x_1! \cdots x_n!}.$$
(1.26)

We find whether $\sum_{i=1}^{n} X_i$ is sufficient for λ . We have

$$\frac{f(\underline{x} \mid \theta)}{f(y \mid \theta)} = \theta^{-\left(\sum_{i=1}^{n} x_i - \sum_{j=1}^{n} y_j\right)} \frac{y_1! \cdots y_n!}{x_1! \cdots x_n!}$$
(1.27)

which is a constant with respect to θ if and only if T(x) = T(y).

Definition 1.21. Two statistics S_1 and S_2 are said to be *equivalent statistics* if $S_1(x) = S_1(y)$ if and only if $S_2(x) = S_2(y)$. Note that if S_1 and S_2 are equivalent, then then provide the same

- 1. partition of the sample space,
- 2. reduction, and
- 3. information.

Definition 1.22. A statistic $S(\underline{X})$ whose distribution does not depend on the parameter θ is called an *ancillary statistic*. An example is the chi-squared distribution.

1.4 Location Scale Family

With examples as context, we define the following families.

Example 1.23. Consider $U \sim \text{Unif}(-1,1)$. Then $f_U(u) = \frac{1}{2}I_{(-1,1)}(u)$. Let $X = \mu + U$. Then $X \sim \text{Unif}(\mu - 1, \mu + 1)$. Thus,

$$f_X(x) = \frac{1}{2}I_{(\mu-1,\mu+1)}(x) = \frac{1}{2}I_{(-1,1)}(x-\mu) = f_U(x-\mu). \tag{1.28}$$

The family of distributions for X indexed by μ is called a location family with location parameter μ . Note that μ is the location for X if $X - \mu$ has a distribution which is free of μ . **Example 1.24.** Suppose $Z_1 \sim N(0,1)$ with density $f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$. If we set $X = \sigma Z$ with $\sigma > 0$, then $X \sim (0, \sigma^2)$. Thus,

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}} = \frac{1}{\sigma}f_Z(\frac{x}{\sigma}).$$
 (1.29)

Here, σ is called the *scale parameter* for the family of distributions X indexed by it, which is called a *scale family*. Together, we have the changed distribution as

$$f_X(x) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right).$$
 (1.30)

Index

k-parameter exponential family, 4

ancillary statistic, 6

equivalent statistics, 6 estimate, 1 estimator, 1

independent and identically distributed, 1

location family, 6 location parameter, 6

minimal sufficient statistic, 5

Neyman-Fisher factorization theorem, 2

parameter space, 1 partition, 5 partition set, 5

reduction, 5 regular model, 2

scale family, 7 scale parameter, 7 single parameter exponential family, 3 sufficient statistic, 1