

• General Description

The AGMH022P10H combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{DS(ON)}$.

This device is ideal for load switch and battery protection applications.

Features

- Advance high cell density Trench technology
- Low R_{DS(ON)} to minimize conductive loss
- ■Low Gate Charge for fast switching
- ■Low Thermal resistance
- ■100% Avalanche tested
- ■100% DVDS tested

Application

- ■MB/VGA Vcore
- ■SMPS 2nd Synchronous Rectifier
- ■POL application
- ■BLDC Motor driver

Product Summary

BVDSS	RDSON	ID
-100V	15mΩ	-65A

TO-263 Pin Configuration

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
AGMH022P10H	AGMH022P10H	TO-263	330mm	25mm	800

Table 1. Absolute Maximum Ratings (TA=25℃)

Symbol	Parameter	Value	Unit
VDS	Drain-Source Voltage (VGS=0V)	-100	V
VGS	Gate-Source Voltage (VDS=0V)	±20	V
ID	Drain Current-Continuous(Tc=25℃) (Note 1)	-65	А
	Drain Current-Continuous(Tc=100℃)	-41	А
IDM (pluse)	Drain Current-Pulsed (Note 2)	-260	А
PD	Maximum Power Dissipation(Tc=25℃)	250	W
	Maximum Power Dissipation(Tc=100℃)	100	w
EAS	Avalanche energy (Note 3)	676	mJ
TJ,TSTG	Operating Junction and Storage Temperature Range	-55 To 150	$^{\circ}$

Table 2. Thermal Characteristic

Symbol	Parameter	Тур	Max	Unit
RθJA	Thermal Resistance Junction-ambient (Steady State) ¹		62	°C/W
RθJC	Thermal Resistance Junction-Case ¹		0.5	°C/W

Table 2. P-Channel Electrical Characteristics (TJ=25℃unless otherwisenoted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off Sta	tes					
BVDSS	Drain-Source Breakdown Voltage	VGS=0V ID=-250µA	-100			V
IDSS	Zero Gate Voltage Drain Current	VDS=-100V,VGS=0V			1	μA
IGSS	Gate-Body Leakage Current	VGS=±20V,VDS=0V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS,ID=-250μA	-2	-3	-4	V
gFS	Forward Transconductance	VDS=-5V,ID=-5A		18		S
RDS(on)	Drain-Source On-State Resistance	VGS=-10V, ID=-10A		15	24	mΩ
Dynamic C	Characteristics					
Ciss	Input Capacitance	VDS=-40V,VGS=0V,		4276		pF
Coss	Output Capacitance	F=1MHZ		402		pF
Crss	Reverse Transfer Capacitance			58		pF
Rg	Gate resistance	VGS=0V, VDS=0V,f=1.0MHz		3.2		Ω
Switching	Times					
td(on)	Turn-on Delay Time			15		nS
tr	Turn-on Rise Time	ID =-20A VDS = -50V		18		nS
td(off)	Turn-Off Delay Time	VGS = -10V - RG = 5Ω		50		nS
tf	Turn-Off Fall Time	- KG - 312		19		nS
Qg	Total Gate Charge			52.1		nC
Qgs	Gate-Source Charge	VGS=-10V, VDS=-50V, ID=-20A		16.7		nC
Qgd	Gate-Drain Charge			7.1		nC
Source-Dr	ain Diode Characteristics		•			
ISD	Source-Drain Current(Body Diode)				-65	А
VSD	Forward on Voltage	VGS=0V,IS=-10A			-1.2	V
trr	Reverse Recovery Time	IS=-10A, VDD=-50V		55		ns
Qrr	Reverse Recovery Charge	dl/dt=100A/µs		102		nc

Notes 1. The maximum current rating is package limited.

 $Notes 2. Repetitive \ Rating: Pulse width limited \ by maximum junction temperature \ Notes$

3.EAS condition: TJ=25 $^{\circ}\text{C}$,VDD=-50V,Vgs=-10V , ID=-52A,L=0.5mH,RG=25ohm

0

[¥]

0

1

Characteristics Curve:

Typ. output characteristics
-I_D=f(-V_{DS})

160
140
120
100

80
60
40
20

Typ. transfer characteristics - $I_D {=} f({\text{-}}V_{GS})$

-VDS[V]

4

5

Drain-source on-state resistance $R_{DS(on)} = f(T_j)$; $I_D = -10A$; $V_{GS} = -10V$

 $\begin{array}{l} \textbf{Gate Threshold Voltage} \\ \textbf{-} V_{TH} \text{=-} f(T_j); \ I_D \text{=-} 250 uA \end{array}$

 $\begin{array}{c} \textbf{Drain-source breakdown voltage} \\ \textbf{-}V_{BR(DSS)} \!\!=\!\! f(T_j); \ I_D \!\!=\!\! -250 uA \end{array}$

Qg[nC]³⁰

40

50

20

0

10

Test Circuit and Waveform:

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

•Dimensions (TO-263)

SYMBOL	MILLIMETER			
SIMDUL	MIN	Typ.	MAX	
A	4.370	4.570	4.770	
A1	0.000		0.250	
A2	1.220	1. 270	1.420	
А3	2.490	2. 690	2.890	
b	0.700	0.810	0.960	
b1	1.170	1. 270	1. 470	
С	0.300	0.380	0.530	
D	9.860	10. 160	10.360	
D1		8.400 REF		
D2		7.073 REF		
Е	8.500	8. 700	8. 900	
E1	1.070	1.270	1.470	
е	2.540 TYP			
L	14.700	15. 100	15. 500	
L1	1.400	1.550	1. 700	
L2	2.000	2.300	2. 600	
θ	0°		9°	
θ 1	7° TYP			
θ2	7° TYP			
θ 3	3° TYP			

Dim.	Min.	Max.		
A	9.8	10. 2		
В	6. 1	6. 7		
С	1.1	1.4		
D	0.5	1.0		
Е	4.6	5.0		
F	1.4	1.6		
G	0.7	0.9		
Н	1. 17	1. 37		
Ι	Typ2	2. 54		
J	9	9. 2		
K	K 4.3			
L	1. 25	1.35		
M	0.02	0.23		
N	2.2	2.8		
0	0.45	0.55		
All Dimensions in millimeter				

TO-263 Marking Instructions:

Disclaimer:

The information provided in this document is believed to be accurate and reliable. However, Shenzhen Core Control Source Electronics Technology Co., Ltd. does not assume any responsibility for the following consequences. Do not consider the use of such information or use beyond its scope.

The information mentioned in this document may be changed at any time without notice.

The products and information provided in this document do not infringe patents. Shenzhen Core Control Source Electronics Technology Co., Ltd. assumes no responsibility for any infringement of any other rights of third parties. The result of using such products and information.

This document is the fourth version issued on April 10th, 2024. This document replaces all previously provided information.

It is a registered trademark of Shenzhen Core Control Source Electronics Technology Co., Ltd.

Copyright © 2017 Shenzhen Core Control Source Electronics Technology Co., Ltd. all rights reserved.