Measure and Integration II (MAA5617), Spring 2021 Homework 1, due Thursday, Jan 28

Below ν is a signed measure on a measurable space (X, \mathcal{M}) .

- **1.** Prove: E is a null set for ν iff $|\nu|(E) = 0$.
- **2.** Let ν_-, ν_+ be the Jordan decomposition of ν . For any $E \in \mathcal{M}$, show:
 - $\nu_+(E) = \sup \{ \nu(F) : F \in \mathcal{M}, F \subset E \};$
 - $\nu_{-}(E) = -\inf\{\nu(F) : F \in \mathcal{M}, F \subset E\};$
 - $|\nu|(E) = \sup\{\left|\int_E f \, d\nu\right| : |f| \le 1\}$, where f are taken to be \mathcal{M} -measurable functions on X.
- **3.** Suppose ψ, ξ are positive measures such that $\nu = \psi \xi$. Show:

$$\psi \ge \nu_+, \qquad \xi \ge \nu_-.$$

4. Using the previous question, show that for finite signed measures ν_1, ν_2 on (X, \mathcal{M}) there holds a triangle inequality for total variation:

$$|\nu_1 + \nu_2| \le |\nu_1| + |\nu_2|.$$

- **5.** (To be solved after the Radon-Nikodym theorem is proved.) Given a σ -finite measure μ on (X, \mathcal{M}) , suppose that $\mathcal{N} \subset \mathcal{M}$ is a σ -algebra, and let $\nu := \mu|_{\mathcal{N}}$. Let further $f \in L^1(\mu)$ be given. Show:
 - there exists an \mathcal{N} -measurable $g \in L^1(\nu)$ such that

$$\int_{E} f \, d\mu = \int_{E} g \, d\nu, \qquad \text{for all } E \in \mathcal{N}.$$

• If g_0 is another such function, $g_0 = g \nu$ -a.e.

In probability theory, measurable functions are called random variables. The random variable g introduced in this problem is known as the conditional expectation of random variable f with respect to the σ -algebra \mathcal{N} .

6. Compute the volume of the unit ball in \mathbb{R}^n .

Express this volume as the integral of n-1-dimensional volumes of sections orthogonal to a coordinate axis, then obtain a recurrence relation. You will need the following standard identity for the B-function:

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$