WHAT IS CLAIMED IS:

- 1 1. An interference-aided signal acquisition and tracking system comprising: a vehicle having at least two receivers configured to detect external 2 signals, the at least two receivers having an output dependent on attitude of the vehicle; 3 4 an interference detector that measures the output of at least one of the at 5 least two receivers; a noise canceller that combines the output of the at least two receivers; and 6 a signal processor that extracts a desired signal from the output of the 7 8 noise canceller, wherein the output of the interference detector is used to control the noise 9 canceller as to reject unwanted signals and enhance performance of the signal processor 10 in extracting the desired signal.
- 1 2. The system of claim 1, wherein the vehicle is a missile.
- 1 3. The system of claim 1, wherein the interference detector comprises a rotation tracker that provides a rotation estimate.
- 1 4. The system of claim 3, wherein the noise canceller comprises an 2 interference cancellation controller that applies modulations to null an interference signal 3 as a function of the rotation estimate.
- The system of claim 1, further comprising phase modulators.
- 1 6. The system of claim 1, wherein the interference detector comprises an 2 analog intensity detector.
- 7. The system of claim 1, wherein the interference detector and noise canceller are embodied in programmed instructions in a rotation preprocessor.
- 1 8. The system of claim 1, wherein the noise canceller modulates to null 2 interference in the detected external signals.

1	9.	A method of signal acquisition and tracking comprising:
2		receiving external signals at a spinning vehicle;
3		measuring the received external signals;
4		modulating the received external signals to null an interference signal; and
5		extracting a desired signal from the combined external signals.
1	10.	The method of claim 9, further comprising providing a rotation estimate of
2	the rotation of	f the spinning vehicle.
1	11.	The method of claim 9, wherein modulating the received signals to null an
2	interference signal comprises combining the measured external signals and rejecting	
3	unwanted signals.	
1	12.	The method of claim 9, further comprising correcting phase of an output
2	signal from the modulation for rotation effects.	
1	13.	The method of claim 9, wherein modulating the received external signals
2	is performed	on a pre-satellite basis using satellite geometry information.
1	14.	A signal acquisition and tracking system where interference is cancelled
2	for jamming immunity with spinning vehicles operating in interference environments, the	
3	system comprising:	
4		a number of signal receivers associated with a spinning vehicle;
5		a rotation tracker that obtains signals from the number of signal receivers
6	and provides a rotation estimate;	
7		a global positioning system (GPS) processor that provides satellite
8	geometry information; and	
9		an interference cancellation controller that obtains the rotation estimate
10	and the satelli	ite geometry information and modulates to null interference received by the
11	number of signal receivers.	
1	15.	The system of claim 14, wherein the signal receivers are antennas on a
2	missile.	

1 16. The system of claim 14, wherein the modulation done by the interference cancellation controller is done on a per-region-of-sky basis.

1

2

- 17. The system of claim 14, wherein the modulation done by the interference cancellation controller is done on a per-satellite basis.
- 1 18. The system of claim 14, wherein the interference cancellation controller corrects the phase of the signals from the number of signal receivers for rotation effects.
- 1 19. The system of claim 14, wherein the interference cancellation controller 2 predetermines modulation commands as functions of roll and pitch angles.
- 1 20. The system of claim 14, wherein the rotation tracker and interference 2 cancellation controller are implemented by an application specific integrated circuit 3 (ASIC).