WovenCell

Xie Yu

1 介绍

Composite_WovenCell用来计算复合材料编织元胞的等效材料力学性能。

2 原理

首先需要在TexGen^[1]中生成对应编织结构的几何元胞。

导出来vtu格式,该文件记录了节点、单元、纱线和树脂属性、纤维方向等信息。利用Composite_WovenCell可读取相关信息,并生成对应的ANSYS网格。

对不胞施加边界条件如下所示,其中一个边界施加位移边界,其他边界施加对称边界条件,即可求解等效的材料属性。

			Face					
Loading case	Displacement direction		x=0	x=a	y=0	y=a	z=0	z=t
Longitudinal tensile (11)	3	U_1	0	l/a	_	_		
	2	U_2	0	0	0	0	0	0
	1	U_3	0	0	0	0	0	0
Transverse tensile (22)	3	U_1	0	0	0	0	0	0
	2	U_2			0	l/a		
	1	U_3	0	0	0	0	0	0
Z-direction tensile (33)	3	U_1	0	0	0	0	0	0
	2	U_2	0	0	0	0	0	0
	1	U_3	_	_	_	_	0	l/t
In-plane shear (12)	3	U_1	0	0	0	0	0	0
	2	U_2	0	l/a				
		U_3	0	0	0	0	0	0
Out-of-plane shear (13)	3	U_1	_	_	_	_	0	l/a
	2	U_2	0	0	0	0	0	0
	1	U_3	0	0	0	0	0	0
Out-of-plane shear (23)	3	U_1	0	0	0	0	0	0
	2	U_2	0	0	0	0	0	0
	1	U_3	_	_	0	l/a		

3 类结构

Object Structure

输入 input:

Matrix:基底材料属性
Fiber:纤维材料属性
Dimension: 元胞尺寸
FileName: 文件名

参数 params:

• Name : 名称

• Vf: 纱线纤维填充率

输出 output:

YarnVolumeRatio: 纱线体积率Property: 计算得到的材料属性

• Orientation: 纤维方向

• SurfaceDistance: 纱线和表面距离

Location:网格位置
YarnIndex:纱线标识
SolidMesh:实体网格
Assembly:网格装配体

• Yarn: 纱线材料属性 (MT法估算)

4 案例

4.1 WovenCell demo1 (Flag=1)

对于一个2D编织结构, 其元胞如下所示:

在TexGen中生成对应的参数(以下单位均为mm):

af	aw	hf	hw	gf	gw
1.03	1.03	0.08	0.08	0.22	0.22

材料为T300/Epoxy,求解其对应的等效力学参数

```
S=RMaterial('Composite');
1
    mat=GetMat(S,[32,2]');
    inputStruct.FileName='Weave1';
   inputStruct.Dimension=[50,50,20];
    inputStruct.Fiber=mat{1,1};
    inputStruct.Matrix=mat{2,1};
    paramsStruct.Vf=0.77;
   W= method.Composite.WovenCell(paramsStruct, inputStruct);
   W=W.solve();
   Plot3D(W,'Matrix',0,'SurfaceDistance',1);
10
   W=CalProperties(W);
11
12
   disp(W.output.Property)
```

建立的网格如下所示:

WovenCell会自动建立局部坐标系并旋转单元方向建立网格,并求解。该结构计算得到的材料属性如下:

Name: 'Weave1' E1: 5.5151e+04 E2: 5.7207e+04 E3: 1.1172e+04 G12: 4.1842e+03 G13: 2.8477e+03 G23: 2.8498e+03 v12: 0.0974 v13: 0.4571

5 参考文献

v23: 0.4596

[1] <u>https://sourceforge.net/projects/texgen/</u>