Application exercise 1.4: Randomization testing

Write your responses on a piece of paper. WRITE LEGIBLY! Only one submission per team is required. One team will be randomly selected and their responses will be discussed and graded.

Student-to-faculty ratio data collected from random samples of public and private four-year colleges:

	public	private
\overline{mean}	18	14
\overline{sd}	4.6	7.3
\overline{n}	57	85

- 1. We would like to test if there is a *difference* between the average student-to-faculty ratio between public and private four-year colleges using a randomization test. What are the hypotheses?
- 2. Fill in the blanks below for the appropriate set up for this test:

We write the student-to-faculty ratio of each public and private college in this sample on a total of ______ index cards. Then, we shuffle these cards and split them into two groups: one group of size ______ representing public colleges, and another group of size ______ representing private colleges. We calculate the difference between the average student-to-faculty ratios in the public and private colleges ($\bar{x}_{public} - \bar{x}_{private}$) and record this value. We repeat this many times to build a randomization distribution, which should be centered at ______. Lastly, we calculate the p-value as the proportion of simulations where the simulated differences in means are ______.

3. The dot plot below is created using 100 simulations. What is the p-value?

4. Based on the p-value, do these data provide convincing evidence to suggest that the student-to-faculty ratio in public four-year colleges is different than that of private four-year colleges.