Title of the Document

Your Name

May 15, 2023

Title of the Document

Your Name

May 15, 2023

asd asd

Figure 1: Überblick theoretische Informatik

1 Grundlagen

1.1 Notationen und begriffe

- N bezeichnet die {1, 2, 3}
- \mathbb{N}_0 , sei $[n] = \{1, ..., n\}$ und $[n]_0 = \{0, 1, ..., n\}$
- Für eine Menge A und $n \in \mathbb{N}$ ist $A^n = \{(a_1, \dots, a_n): a_1, \dots a_n \in A\}$
- Für $n \in \mathbb{N}$ ist eine n-äre partielle funktion $\varphi : A^n \leadsto B$ eine Funktion mit $\operatorname{dom}(\varphi) \supseteq A^n$ und $\operatorname{Im}(\varphi) \subseteq B$. Für $a_1, ..., a_n \in A$ bedeuted $\varphi(a_1, ..., a_n) \downarrow$, dass $(a_1, ..., a_n) \in \operatorname{dom}(\varphi)$ gilt und $\varphi(a_1, ..., a_n) \uparrow$ bedeutet, dass $(a_1, ..., a_n) \notin \operatorname{dom}(\varphi)$. Statt $\varphi(a_1, ..., a_n) \uparrow$ schreiben wir auch $\varphi(a_1, ..., a_n) = \uparrow$. Die partielle Funktion φ ist total, wenn $\operatorname{dom}(\varphi) = A^n$ gilt.
- Eine lineare Ordnung, auch totale Ordnung, auf einer Menge A ist eine Relation ≤⊆ Aⁿm sodass die folgende Eigenschaften erfüllt sind. (wie für Relationen üblich verwenden wir hier Infixntation, schreiben also für a,b ∈ A den Ausdruck a ≤ b anstatt (a,b) ∈≤):
 - (i) $a \le a \ \forall \ a \in A \ (Reflexivität)$
 - (ii) $a \le b \land b \le a \Rightarrow a = b \ \forall a,b \in A \ (Antisymetrie)$
 - (iii) $a \le b, b \le c \Rightarrow a \le c \text{ for all } a,b,c \in A \text{ (Transitiität)}$
 - (iv) $a \le b \lor b \le a \ \forall a,b \in A \ (Totalit"at)$

1.2 Alphabet, Wörter und Sprachen

Eingaben und Ausgaben in unseren Berechnungsmodellen werden wörter genannt, wobei wir beliebige Zeichenketten als Wörter zulassen.

asd asd

1.3 Definition (Alphabet)

Ein Alphabet ist eine nichtleere endliche Menge Σ . Das Alphabet Σ wird $|\Sigma|$ - är bezeichnet. Die Elemente von Σ heißen Buchstaben oder Symbole.

1.4 Definition (Wörter)

Ein Wort über einem Alphabet Σ ist eine endliche Folge von Symbolen aus Σ . Die Länge eines Wortes w ist |w|. Für $i \in |w|$ bezeichnet w(i) das i-te Element von w und für Symbole $a_1, \dots, a_n \in \Sigma$ bezeichnet a_1, \dots, a_n das Wort w der Länge v mit v das i-te Element von v und für Symbole v wurde v bezeichnet v das Wort v der Länge v mit v mit v with v der Länge v heißt leeres Wort und wird v bezeichnet. Ein Wort der länge v wird mit dem Symbol v with identifiziert.

1.5 Definition (Binärwörter)

Das Alphabet {0, 1} heißt Binäralphabet. Die Wörter über dem Binäralphabet heißen Binärwörter.

1.6 Definition

Die Menge Aller Wörter über Σ wird mit Σ^* bezeichnet. Für $n \in \mathbb{N}_0$ setzen wir:

$$\Sigma^{\leq n} := \{ \mathbf{w} \in \Sigma^* : |\mathbf{w}| \leq \mathbf{n} \}$$

$$\Sigma^{=n} := \{ \mathbf{w} \in \Sigma^* : |\mathbf{w}| = \mathbf{n} \}$$

$$\Sigma^{\geq n} := \{ \mathbf{w} \in \Sigma^* : |\mathbf{w}| \geq \mathbf{n} \}$$

$$\Sigma^+ := \Sigma^{\leq 1}$$

1.7 Definition (Verkettung)

Für Wörter w_1, w_2 ist die verkettung $w_1 \circ w_2$, auch $w_1 w_2$, von w_1 und w_2 ist definiert durch:

$$w_1 \circ w_2 := w_1 \cdots w_1(|w_1|) w_2 \cdots w_2(|w_2|)$$

Für ein Wort w und $n \in \mathbb{N}_0$ ist w^k induktiv definiert durch $w^n := \lambda$ falls n = 0 und $w^n := w^{n-1} \circ w^n$ falls n = 0. Für eine Sprachen L_1, L_2 sei durch $L_1 \circ L_1$, auch $L_1 L_2$ definiert durch

$$L_1 \circ L_1 := \{ w_1 w_2 : w_1 \in L_1, w_2 \in L_2 \}$$

Für eine Sprache L und