GaAs-IR-Lumineszenzdiode GaAs Infrared Emitter

SFH 409

Maße in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified.

Wesentliche Merkmale

- GaAs-IR-Lumineszenzdiode, hergestellt im Schmelzepitaxieverfahren
- Hohe Zuverlässigkeit
- Hohe Impulsbelastbarkeit
- Gruppiert lieferbar
- Gehäusegleich mit SFH 309, SFH 487

Anwendungen

- Lichtschranken für Gleich- und Wechsellichtbetrieb
- IR Fernsteuerungen

Features

- GaAs infrared emitting diode, fabricated in a liquid phase epitaxy process
- High reliability
- High pulse handling capability
- Available in groups
- Same package as SFH 309, SFH 487

Applications

- Photointerrupters
- IR remote control of various equipment

Typ Type	Bestellnummer Ordering Code	Gehäuse Package
SFH 409	Q62702-P860	3-mm-LED-Gehäuse (T 1), grau eingefärbt, An-
SFH 409-1 ¹⁾	Q62702-P1001	schlüsse im 2.54-mm-Raster (¹ / ₁₀ "), Kathodenkennzeichnung: kürzerer Anschluß
SFH 409-2	Q62702-P1002	3 mm LED package (T 1), grey-colored epoxy resin, solder tabs lead spacing 2.54 mm (¹ / ₁₀ "), cathode marking: short lead

¹⁾ Nur auf Anfrage lieferbar.

¹⁾ Available only on request.

Grenzwerte (T_A = 25 °C) **Maximum Ratings**

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit	
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	- 55 + 100	°C	
Sperrschichttemperatur Junction temperature	T_{j}	100	°C	
Sperrspannung Reverse voltage	V_{R}	5	V	
Durchlaßstrom Forward current	I_{F}	100	mA	
Stoßstrom, $\tau \le 10 \mu s$, $D = 0$ Surge current	I_{FSM}	3	A	
Verlustleistung Power dissipation	P_{tot}	165	mW	
Wärmewiderstand Thermal resistance	R_{thJA}	450	K/W	

Kennwerte ($T_A = 25$ °C) **Characteristics**

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}=100$ mA, $t_{\rm p}=20$ ms	λ_{peak}	950	nm
Spektrale Bandbreite bei 50 % von $I_{\rm max}$ Spectral bandwidth at 50 % of $I_{\rm max}$ $I_{\rm F}$ = 100 m A, $t_{\rm p}$ = 20 ms	Δλ	55	nm
Abstrahlwinkel Half angle	φ	± 20	Grad deg.
Aktive Chipfläche Active chip area	A	0.09	mm ²
Abmessungen der aktive Chipfläche Dimension of the active chip area	$L \times B$ $L \times W$	0.3 × 0.3	mm
Abstand Chipoberfläche bis Linsenscheitel Distance chip surface to lens top	Н	2.6	mm
Kapazität, $V_{\rm R}$ = 0 V Capacitance	C_{o}	25	pF

Kennwerte ($T_A = 25 \, ^{\circ}\text{C}$) Characteristics

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit	
Schaltzeiten, I_e von 10 % auf 90 % und von 90 % auf 10 %, bei I_F = 100 mA, R_L = 50 Ω Switching times, I_e from 10 % to 90 % and from 90 % to 10 %, I_F = 100 mA, R_L = 50 Ω	$t_{\rm r},t_{\rm f}$	1	μs	
Durchlaßspannung Forward voltage $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 μ s	$V_{F} \ V_{F}$	1.30 (≤ 1.5) 1.9 (≤ 2.5)	V	
Sperrstrom Reverse current $V_R = 5 \text{ V}$	I_{R}	0.01 (≤ 1)	μΑ	
Gesamtstrahlungsfluß Total radiant flux $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	Φ_{e}	15	mW	
Temperaturkoeffizient von $I_{\rm e}$ bzw. $\Phi_{\rm e}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $I_{\rm e}$ or $\Phi_{\rm e}$, $I_{\rm F}$ = 100 mA	TC ₁	- 0.55	%/K	
Temperaturkoeffizient von $V_{\rm F}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F}$, $I_{\rm F}$ = 100 mA	TC_{\vee}	- 1.5	mV/K	
Temperaturkoeffizient von $\lambda_{\rm peak}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $\lambda_{\rm peak}$, $I_{\rm F}$ = 100 mA	TC_{λ}	+ 0.3	nm/K	

Gruppierung der Strahlstärke I, in Achsrichtung

gemessen bei einem Raumwinkel $\Omega = 0.01$ sr

Grouping of radiant intensity I_e in axial direction

at a solid angle of $\Omega = 0.01$ sr

Bezeichnung Description	Symbol		Werte Values		
		SFH 409	SFH 409-1 ¹⁾	SFH 409-2	
Strahlstärke Radiant intensity					
$I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 μ s	$\begin{matrix} I_{\text{e}} \\ I_{\text{e typ.}} \end{matrix}$	≥ 6.3 -	6.3 12.5 75	> 10 120	mW/sr mW/sr

¹⁾ Nur auf Anfrage lieferbar.1) Available only on request.

Relative spectral emission

 $I_{rel} = f(\lambda)$

Forward current

 $I_{\rm F} = f(V_{\rm F})$, single pulse, $t_{\rm D} = 20 \,\mu \rm s$

$\frac{I_{\rm e}}{I_{\rm e}\,100\;{\rm mA}}=f\left(I_{\rm F}\right)$ Radiant intensity

Single pulse, $t_p = 20 \,\mu\text{s}$

Max. permissible forward current

 $I_{\mathsf{F}} = f(T_{\mathsf{A}})$

Permissible pulse handling capability

 $I_{F} = f(\tau), T_{A} = 25 \, {}^{\circ}\text{C},$ duty cycle D = parameter

Radiation characteristics $I_{rel} = f(\phi)$

