Tiling arrays, ChIP, and localizing protein-DNA interaction

•

Statistics 246

April 6, 2006

Richard Bourgon

bourgon@stat.berkeley.edu

Protein-DNA interaction

Protein-DNA interaction

Proteins interact with DNA to

- Carry out transcription of "activated" genes.
- Carry out DNA replication.
- Repair damaged DNA.
- Mediate recombination in meiosis.
- Modify or "remodel" the chromatin.
- Enhance or suppress gene transcription.
- Etc.

Transcription factor (TF) proteins regulate gene expression, and recognize short, degenerate motifs in the DNA.

ChIP-chip and protein-DNA interaction

ChIP-chip permits *in vivo*, genome-wide localization of transcription factor binding sites.

Other applications:

- Localization of transcriptional machinery.
- Histone modifying or chromatin remodeling proteins, or the modified (e. g., methylated) forms themselves.
- Origin recognition complexes.

Enhancers

Transcription factors and expression regulation

Identification of TF binding sites

In vitro?

 Oligo-selection or gel-shift assays are often poor predictors of in vivo binding.

With expression arrays?

- Change in expression may be through intermediaries.
- If required co-factors aren't present, genes which are direct targets may not exhibit differential expression.

In silico?

- Consensus sites appear far too often.
- Motifs are degenerate.

Chromatin immunoprecipitation

TFs associate with binding sites in vivo

TF/DNA crosslinking in vivo

Sonication

TF-specific antibody

Immunoprecipitation

Crosslink reversal and DNA purification

Amplification

Chromatin immunoprecipitation

Summary of ChIP assay:

- Cross-link all proteins to genomic DNA.
- Fragment DNA (with cross-linked proteins still attached).
- ChIP: enrichment of TF-associated fragments.
- Reverse cross-linking and purify DNA.

Identification of enriched DNA regions:

- Sequence and map back to the genome
- For anticipated binding sites, PCR with specific primers
- Amplify non-specifically, then hybridize to tiling array.

ChIP and tiling arrays

Early human ChIP-chip studies: spotted arrays

Paper	TF	Array
Ren et al. '02	E2F1 E2F4	PCR products for 1.4K 5'- proximal promoters (≈1000bp)
Trinklein et al. '04	HSF1	786 promoter clones, many with HSE motif
Mao et al. '03	с-Мус	7.8K CpG island clones
Martone et al. '03	NF-κΒ	Chr 22, 21K PCR products
Euskirchen <i>et al.</i> '04	CREB	"

Short oligonucleotide microarrays

D. melanogaster tiling arrays

- 6M in situ synthesized 25-mer oligo probes.
- PM/MM pairs which differ by one base.
- Median distance between probe starts: 36 bp.
- Repetitive sequence is omitted.
- Probes with expected hybridization or synthesis problems are omitted.

D. melanogaster tiling arrays

3'-biased expression arrays vs. tiling arrays

Target abundance and measured fluorescence intensity

Definitions

Target abundance (A_{ii})

• The **unobservable** number of DNA fragments in sample *j* which contain sequence complementary to the probes in feature *i*.

Fluorescence intensity (/_{ii})

• The **observable**, scanned intensity reading for feature *i*, sample *j*.

Abundance and intensity are related, but not in a simple way...

Probe affinity effects

The simplest model...

For probe *i* of sample *j*, assume that

When control data are available, we can eliminate the probe affinity effects with a ratio of intensities:

$$LR_i = \log A_i^T - \log A_i^C + \delta_i$$

Improved signal-to-noise ratio

A statistical model

•

Abundance, intensity, and derived statistics

A model for the assay

Step	Model	
Source material	N strands of extracted DNA.	
Sonication	Uniform fragmentation of chromatin, with no interference. Probability of a break at any base is θ .	
IP	Fragments with no binding site pass with probability ϕ ; fragments with a binding site pass with probability ϕ' , and $\phi' \gg \phi$.	
Amplification	Z, a random multiplier for each fragment passing IP. (For PCR, Z is a branching process with t cycles and efficiency p .)	

A model for the assay

Sonication

Immunoprecipitation

Immunoprecipitation (closer to binding site)

Expected fragment size

For a single strand of length L, assume M breaks, making fragments of length F_1, \ldots, F_M , with $\sum_m F_m = L$.

$$\mathbb{E}\overline{F} = \mathbb{E}\left(\mathbb{E}(\overline{F} \mid M)\right)$$

$$= \mathbb{E}\left(\frac{L}{M+1}\right)$$

$$= \sum_{m=0}^{L} \frac{L}{m+1} \binom{L}{m} \theta^{m} (1-\theta)^{L-m}$$

$$= \frac{1}{\theta} \frac{L}{L+1} (1-(1-\theta)^{L+1})$$

$$\approx \frac{1}{\theta}.$$

Expected target abundance

Under the model, the abundance of fragments available for hybridization to probe *i* is...

$$A_i = \sum_{n=1}^{N} X_{in} Z_{in}$$
0/1 indicator: does fragment n pass IP? Amplification multiplier

If probe *i* is Δ_i bases from a binding site τ ,

$$\mathbb{P}(X_{in} = 1) = (1 - \theta)^{\Delta_i} \phi' + (1 - (1 - \theta)^{\Delta_i}) \phi$$

$$\equiv \pi(\Delta_i),$$

and then...

$$\mathbb{E}A_i = N \pi(\Delta_i) \mathbb{E}Z$$

Spatial correlation in target abundance

Now consider two probes, i and j. Away from binding sites, $\pi(\Delta_i) \approx \pi(\Delta_j) \approx \phi$ because $\pi(\Delta)$ quickly decays from ϕ' to ϕ . Under the model,

$$\operatorname{Corr}(A_{i}, A_{j}) = (1 - \theta)^{d(i,j)} \sqrt{\frac{\pi(\Delta_{j}) \left(1 - \pi(\Delta_{j}) + \operatorname{CV}^{2}(Z)\right)}{\pi(\Delta_{i}) \left(1 - \pi(\Delta_{i}) + \operatorname{CV}^{2}(Z)\right)}}$$

$$\approx (1 - \theta)^{d(i,j)}.$$

Spatial correlation in target abundance

Under the model, the expected fragment length after sonication is $1/\theta$.

For an average fragment length of 500 bases,

$$\operatorname{Corr}(A_i, A_j) \approx (1 - \theta)^{d(i,j)}$$

is appreciable over a large number of probes in the tiling.

Intensity and log-ratio

Near a binding site, target abundance varies regularly with Δ_i , but intensity doesn't:

$$\mathbb{E}I_{i} = \alpha_{i}\mathbb{E}A_{i} = \alpha_{i}N \pi(\Delta) \mathbb{E}Z.$$

If the multiplicative intensity model is approximately correct, expansion of $\log(A_i/\mathbb{E}A_i)$ around 1 gives:

$$\mathbb{E}LR_{i} = \mathbb{E}\log A_{i}^{T} - \mathbb{E}\log A_{i}^{C} + \mathbb{E}\delta_{i}$$

$$\approx \log \frac{\pi^{T}(\Delta_{i})}{\pi^{C}(\Delta_{i})} + \log \frac{\mathbb{E}Z^{T}}{\mathbb{E}Z^{C}} + \mathbb{E}\delta_{i}.$$

Expected log-ratio

Normalization generally cleans up the constants.

Peak amplitude and width depend on the efficiency ratio:

$$\frac{\phi'}{\phi}$$
.

Note: ϕ' is binding-site specific.

CG69554-RA and RB

- D. melanogaster chromosome 2L
- Log ratios (unsmoothed) from 3 vs. 3 comparisons, two different IP/PCR/hybridization groups.

CG6604

CG6944 or CG7269, CG6957

CG9261

Spatial correlation in log-ratio

Again, abundance is not observable but the logscale intensity ratios are:

$$LR_i = \log I_i^T - \log I_i^C = \log A_i^T - \log A_i^C + \delta_i$$

Approximating $\log(A_i / \mathbb{E}A_i)$ as before, it follows that

$$\operatorname{Corr}(LR_{i}, LR_{j}) \approx (1 - \theta)^{d(i,j)} \left(1 + \frac{\operatorname{Var} \delta}{\operatorname{Var}(\log A^{T}) + \operatorname{Var}(\log A^{C})} \right)^{-1}.$$

Spatial correlation in log-ratio

Spatial correlation in log-ratio

- For simplicity, ignore irregularity of probe spacing.
- Compute autocorrelation at various lags.

For both data sets, there is statistically significant auto-correlation up to a lag of ≈15 positions.

Set 2

Summarizing...

- The model predicts peak-like signal response near binding sites.
- The model predicts spatial correlation in both target abundance and log-ratio. Target sequence for neighboring probes tends to end up on the same fragment. IP and amplification take place at the fragment level.
- Data are consistent with these predictions.

Data pre-processing and analysis

•

Background correction, normalization summary statistics, and significance

A common framework for current methods

Additive background

A better (though still imperfect!) model for intensity:

$$I_{ij} = \alpha_i A_{ij} \epsilon_{ij} + B_{ij}$$
.
Additive background

$$LR_{i} = \log \left(\frac{\alpha_{i} A_{i}^{T} \varepsilon_{i}^{T} + B_{i}^{T}}{\alpha_{i} A_{i}^{C} \varepsilon_{i}^{C} + B_{i}^{C}} \right)$$

In the presence of positive background, the log-ratio will be biased towards 0.

Background correction methods

Approach	Examples
Do nothing.	TiMAT (from BDTNP)
Mismatch subtraction, then set non- positive values to 1 before taking logs.	Cawley et al., <i>Cell</i> , '04; G-TRANS
Mismatch subtraction, transformed by a family of "generalized log" functions.	PLIER
Global intensity-based correction.	RMA convolution method
Sequence-based background estimation.	GC-RMA "affinities" method; MAT
Hybrid: smoothly combine MM subtraction and sequence-based estimates.	GC-RMA "full model"

Unnormalized log-intensities

Common ChIP-chip normalization scheme:

- Quantile within treatment condition.
- Median scaling between treatment and control.

Here, distributional differences at 00hr are much stronger than at 02hr.

ENCODE Pol2: B1 (2x), B2 (2x), B3 (2x).

#52

Unnormalized log-intensities

Common ChIP-chip normalization scheme:

- Quantile within treatment condition.
- Median scaling between treatment and control.

Here, distributional differences at 00hr are much stronger than at 02hr.

ENCODE Pol2: B1 (2x), B2 (2x), B3 (2x).

Spatial correlation in probe GC content

#54

Normalization methods

Approach	Examples
Do nothing.	MAT
Scaling.	
Quantile normalization within condition, scaling across conditions.	Cawley et al., <i>Cell</i> , '04; G-TRANS
Full quantile normalization.	TileMap; Li, Meyer and Liu, Bioinformatics '05; G-TRANS

Combining probe-level statistics

- Actual binding site signal spans multiple positions.
- Single probes are...
 - ...prone to gross error.
 - ...frequently either lazy or promiscuous hybridizers.

Statistical approaches:

- Two-state hidden Markov models. Li, Meyer and Liu, *Bioinformatics*, '05; TileMap
- Smoothed or windowed probe-level statistics Cawley et al., Cell, '04; Keles et al., '04; MAT; Buck, Nobel and Lieb, Genome Biology '05
- Ad hoc post-processing of probe-level calls
- Peak fitting

Assessing significance

- HMMs: posterior distributions on states
- Windowed methods:

Approach	Examples
Non-parametric: Wilcoxon rank sum	Cawley et al., <i>Cell</i> , '04; G-TRANS (now "TAS"?)
A global null distribution: assume common variance for window-level statistics.	TiMAT; Buck, Nobel and Lieb, Genome Biology '05
Standard <i>t</i> statistics.	Keles et al., '04
Moderated <i>t</i> statistics via empirical Bayes.	TileMap, limma in R
Moderated <i>t</i> statistics via direct estimation.	MAT

Standard HMMs

In a traditional hidden Markov model, hidden multinomial state variables S_1, \ldots, S_T lead to observable "emitted values."

- ▶ The hidden states $\{S_t\}_{t=1}^T$ form a Markov chain on n states, with transition matrix $A \equiv (a_{ij})_{i,j=1}^n$.
- ▶ The distribution of the observable variable depends on the hidden state: $Y_t|_{S_t} \sim p_{S_t}$.

Standard HMMs miss the mark...

- We don't expect sharp transitions.
- A single "enriched" state ignores real variety.
- Forced geometric state duration distributions.
- Ignores expected spatial structure.
- Conditional independence of observations given the sequence of hidden states?

Affy/G-TRANS Wilcoxon rank sum

Affy/G-TRANS Wilcoxon rank sum

Pooled Wilcoxon rank sum

Pooled Wilcoxon rank sum

Windowing probe-level statistics

Apply some function f (e.g., mean, median), to all scores within w bases of probe i, and call the result T_i . Typically rescale by $\sqrt{n_i}$.

Windowed log-ratios

ENCODE data: Pol2, 00hr, B1 vs. B1,4,5 pooled.

Bicoid vs. Input, 2x each

Windowed log-ratios

ENCODE data: Pol2, 00hr, B1 vs. B1,4,5 pooled.

Non-parametric *p*-values

Non-parametric *p*-values

Gibbons et al., *Genome Biology*, 2005 propose a parametric version which is similar. Also see Efron, *JASA*, 2004.

What works best (so far!)

Background correction

- If skipped, there is some bias in probe-level statistics towards high-affinity probes and away from low-affinity.
- Using MM adds a lot of noise, probably offsetting any gains in dynamic range and unbiasing. (Moderated MM methods, e.g. look better.)

Normalization

 Yes! Full quantile normalization is often advantageous, and doesn't seem to hurt too much even when unnecessary.

Statistics and significance

- Moderated t-statistics. Moving windows aren't perfect, but seem to perform well.
- Normality is probably not always a safe assumption.

Work to be done...

- A better understanding of hybridization dynamics, permitting more effective, sequence-specific background correction and calibration.
- A model which more naturally accommodates signal runs of varying size. (HSMM?)
- Integration with...
 - ...expression arrays.
 - …algorithms for binding site motif identification.
- In multi-factor experiments, methods for assessing coordinated binding.

Acknowledgments

U.C. Berkeley

Terry Speed, support from VIGRE (NSF).

LBNL

Mike Eisen, Mark Biggin, Xiaoyong Li.

Affymetrix

Simon Cawley, Tom Gingeras, Antonio Piccolboni, Stefan Bekiranov, Srinka Ghosh, David Nix.