Analyse intégrative avec RGCCA

ACTIVITE DE GROUPE

La méthode RGCCA

ACP

RA: $P^{T}(X^{T}X)^{-1}P = Q^{T}Q = I$

When
$$\tau = 1$$
, $\mathbf{P}^{\mathsf{T}}\mathbf{P} = \mathbf{I}$
When $\tau = 0$, $\mathbf{P}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{P} = \mathbf{I}$

- Start from Component 1
 - Loadings a_X
 - Latent variables

is **Max**

 \mathbf{X}_3

- Start from Component 1
 - Loadings a_X
 - Latent variables

What is this?

Sum of Cross-Product (SCP) or Covariance When SS = 1, covariance = correlation

$$\tau \cdot \mathbf{a}^{\mathsf{T}} \mathbf{a} + (1 - \tau) \cdot \mathbf{a}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{a} = \mathbf{I}$$

When $\tau = 1$, **covariance** is max

When $\tau = 0$, **correlation** is max

- Start from Component 1
 - Loadings a_X
 - Latent variables

- Start from Component 1
 - Loadings a_X
 - Latent variables

$$\tau \cdot \mathbf{a}^{\mathsf{T}} \mathbf{a} + (1 - \tau) \cdot \mathbf{a}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{a} = \mathbf{I}$$

- Start from Component 1
 - Loadings a_X
 - Latent variables
 - Connection matrix C

$$\tau \cdot \mathbf{a}^{\mathsf{T}} \mathbf{a} + (1 - \tau) \cdot \mathbf{a}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{a} = \mathbf{I}$$

- Start from Component 1
 - Loadings a_X
 - Latent variables
 - Connection matrix C

$$\tau \cdot \mathbf{a}^{\mathsf{T}} \mathbf{a} + (1 - \tau) \cdot \mathbf{a}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{a} = \mathbf{I}$$

Path model

- Start from Component 1
 - Loadings a_X
 - Latent variables
 - Connection matrix C

$$\tau \cdot \mathbf{a}^{\mathsf{T}} \mathbf{a} + (1 - \tau) \cdot \mathbf{a}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{a} = \mathbf{I}$$

Sélectionner des variables : bootstrap, parcimonie, rotations etc.

Bootstrap

https://www.stat.auckland.ac.nz/~wild/BootAnim/index.html

- In psychometric tradition: rotation (Thurstone, 1935; Kaiser, 1958)
 - Works when data have clear factor structure
 - Does not work when, ...
 - Number of dimensions is unknown *a-priori*
 - Current data-driven approach

- Modern statistics: sparsification (Tibshirani, 1996; Zou, Hastie, & Tibshirani, 2006)
 - Simplify the interpretation
 - Explain the largest amount of variance
 - Smallest number of strong variables

Credits: Ju-Chi Yu

Une méthode adaptative

Schémas : g(x)

$$-g(x) = x$$

Horst

$$- g(x) = |x|$$
 Centroïde

Le critère SGCCA

Sparse Generalized Canonical Correlation Analysis

Soient J blocs \mathbf{X}_j de variables centrées, de dimensions $n \times p_j$ décrivant n individus. Soit un réseau de connexions entre les blocs, défini par la matrice $\mathbf{C} = (c_{jk}) : c_{jk} = 1$ si \mathbf{X}_j et \mathbf{X}_k sont connectés et 0 sinon. Ici, $\tau = 1$, pour j = 1, ..., J. Application d'une pénalité sur la norme \mathbf{I}_1 des vecteurs de poids \mathbf{a}_j .

$$\begin{cases} \max_{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_J} \sum_{j,k=1; j \neq k}^J c_{jk} g(\text{cov}(\mathbf{X}_j \mathbf{a}_j, \mathbf{X}_k \mathbf{a}_k)) \\ \text{sous contraintes} \quad \|\mathbf{a}_j\|_2^2 = 1 \text{ et } \|\mathbf{a}_j\|_1 \leq s_j, j = 1, \dots, J \end{cases}$$

Tenenhaus, Philippe et al (2014)

Validation croisée (I)

Validation croisée (II)

Application aux données pHGG

Cascade

Complet

Hiérarchique

Performances en prédiction

Composante 1

Supervised CCA Witten et Tibshirani (2009)

L1-LDA Witten et Tibshirani (2011)

Performances en prédiction

Composante 1

Supervised CCA Witten et Tibshirani (2009)

L1-LDA Witten et Tibshirani (2011)

Visualisation des données

Stabilité des signatures

$$\kappa_{Fleiss} = \frac{\bar{P} - \bar{P}_e}{1 - \bar{P}_e}$$

Method	Fleiss' κ (GE)	Length of the GE signature	Fleiss' κ (CGH)	Length of the CGH signature
Supervised CCA	0.130	455.3	0.116	36.5
ℓ_1 -LDA	0.476	9790.0	0.322	480.9
Horst SGCCA (Design 1)	0.103	132.2	0.071	35.9
Factorial SGCCA (Design 1)	0.071	79.0	0.014	59.6
Centroid SGCCA (Design 1)	0.137	73.6	0.105	22.6
Horst SGCCA (Design 2)	0.468	61.1	0.296	33.6
Factorial SGCCA (Design 2)	0.439	42.0	0.343	37.6
Centroid SGCCA (Design 2)	0.478	40.6	0.317	34.8
Horst SGCCA (Design 3)	0.071	83.6	0.074	40.7
Factorial SGCCA (Design 3)	0.061	118.3	0.026	49.2
Centroid SGCCA (Design 3)	0.040	75.5	0.035	40.2

Stabilité des signatures

$$\kappa_{Fleiss} = \frac{\bar{P} - \bar{P}_e}{1 - \bar{P}_e}$$

Method	Fleiss' κ (GE)	Length of the GE signature	Fleiss' κ (CGH)	Length of the CGH signature
Supervised CCA	0.130	455.3	0.116	36.5
ℓ_1 -LDA	0.476	9790.0	0.322	480.9
Horst SGCCA (Design 1)	0.103	132.2	0.071	35.9
Factorial SGCCA (Design 1)	0.071	79.0	0.014	59.6
Centroid SGCCA (Design 1)	0.137	73.6	0.105	22.6
Horst SGCCA (Design 2)	0.468	61.1	0.296	33.6
Factorial SGCCA (Design 2)	0.439	42.0	0.343	37.6
Centroid SGCCA (Design 2)	0.478	40.6	0.317	34.8
Horst SGCCA (Design 3)	0.071	83.6	0.074	40.7
Factorial SGCCA (Design 3)	0.061	118.3	0.026	49.2
Centroid SGCCA (Design 3)	0.040	75.5	0.035	40.2

Interprétation biologique

 SGCCA: signature de 82 gènes dont 23 impliqués dans le développement et l'organisation spatiale du cerveau.

 Identification de plusieurs gènes de la voie Wnt : SFRP2, WNT5A, DAAM2, FZD7, VAX2.

Zhang et al (2011)

Conclusion (I)

- RGCCA : cadre statistique général
 - Vaste exploration des données
 - Faibles temps de calcul
- KGCCA:
 - Gestion des données de grandes dimensions
- SGCCA:
 - listes de variables très courtes
- Multiblog :
 - Prédiction d'une variable binaire
 - Optimisation du calcul
- Multiblox:
 - Modélisation du risque instantané

Tenenhaus et Guillemot (2013)

Grande couverture des questions biologiques fréquemment rencontrées

Conclusion (II)

- Identification de gènes liés à la localisation et donc peut-être liés à la tumorigenèse des gliomes malins pédiatriques → validation en humide
- Outils pour modéliser le risques instantané de décès → mise en œuvre de la version parcimonieuse sur la cohorte afin de sélectionner les gènes liés au pronostic
- Rôle modeste des données de CGH

La liste des méthodes

Methods	g(x)	$ au_j$	C
Canonical Correlation Analysis (Hotelling 1936)	x	$ au_1= au_2=0$	$\mathbf{C}_1 = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$
Inter-battery Factor Analysis (Tucker 1958) or PLS Regression (Wold, Martens, and Wold 1983)	x	$ au_1= au_2=1$	${f C}_1$
Redundancy Analysis (Van den Wollenberg 1977)	x	$\tau_1=1\ ; \tau_2=0$	\mathbf{C}_1
Regularized Redundancy Analysis (Takane and Hwang 2007; Bougeard, Hanafi, and Qannari 2008; Qannari and Hanafi 2005)	x	$0 \le \tau_1 \le 1 \; ; \tau_2 = 0$	${f C}_1$
Regularized Canonical Correlation Analysis (Vinod 1976; Leurgans <i>et al.</i> 1993; Shawe-Taylor and Cristianini 2004)	x	$0 \le \tau_1 \le 1$; $0 \le \tau_2 \le 1$	${f C}_1$

Methods	g(x)	$ au_j$	\mathbf{C}
SUMCOR (Horst 1961)	x	$ au_j=0, j=1,\ldots,J$	$\mathbf{C}_2 = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 1 \end{pmatrix}$
SSQCOR (Kettenring 1971) SABSCOR (Hanafi 2007) SUMCOV-1 (Van de Geer 1984)		$ au_j = 0, j = 1, \ldots, J \ au_j = 0, j = 1, \ldots, J \ au_j = 1, j = 1, \ldots, J$	$egin{array}{ccc} \mathbf{C}_1 & \cdots & 1 & 1 \end{pmatrix} \ \mathbf{C}_2 & & & \\ \mathbf{C}_2 & & & \\ \mathbf{C}_2 & & & \end{array}$
SSQCOV-1 (Hanafi and Kiers	x^2	$ au_j=1, j=1,\ldots,J$	\mathbf{C}_2
2006) SABSCOV-1 (Tenenhaus and Tenenhaus 2011; Kramer	x	$ au_j=1, j=1,\ldots,J$	\mathbf{C}_2
2007)			$\begin{pmatrix} 0 & 1 & \cdots & 1 \end{pmatrix}$
SUMCOV-2 (Van de Geer 1984)	x	$ au_j=1, j=1,\ldots,J$	$\mathbf{C}_3 = egin{pmatrix} 0 & 1 & \cdots & 1 \ 1 & 0 & \ddots & dots \ dots & \ddots & \ddots & 1 \ 1 & \cdots & 1 & 0 \end{pmatrix}$
SSQCOV-2 (Hanafi and Kiers 2006)	x^2	$ au_j=1, j=1,\dots,J$	\mathbf{C}_3
PLS path modeling - mode B (Wold 1982; Tenenhaus, Vinzi, Chatelin, and Lauro 2005)	x	$ au_j=0, j=1,\ldots,J$	$c_{jk}=1$ for two connected block and $c_{jk}=0$ otherwise

Methods	g(x)	$ au_j$	\mathbf{C}
Generalized CCA (Carroll 1968a)	x^2	$ au_j=0, j=1,\ldots,J+1$ $ au_j=0, j=1,\ldots,J_1$;	$\mathbf{C}_4 = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \\ 1 & \cdots & 1 & 0 \end{pmatrix}$
Generalized CCA (Carroll	x^2	$ au_j = 0, j = 1, \dots, J_1;$	\mathbf{C}_4
1968b) Hierarchical PCA (Wold, S. and Kettaneh, N. and Tjessem, K. 1996)	x^4	$ au_j = 1, j = J_1 + 1, \dots, J \ au_j = 1, j = 1, \dots, J \ au_{J+1} = 0$	\mathbf{C}_4
Multiple Co-Inertia Analysis (Chessel and Hanafi 1996; Westerhuis <i>et al.</i> 1998; Smilde	x^2	$ au_j = 1, j = 1, \dots, J;$ $ au_{J+1} = 0$	\mathbf{C}_4
et al. 2003) Multiple Factor Analysis (Escofier and Pages 1994)	x^2	$\tau_j = 1, j = 1, \dots, J+1$	${\bf C}_4$

Les équations

Analyse en Composantes Principales

L'Analyse en Composantes Principales de la matrice des données centrées \mathbf{X} , de dimension $n \times p$, avec éventuellement p > n, est la recherche d'une combinaison linéaire des variables de \mathbf{X} , notée $\mathbf{y} = \mathbf{X}\mathbf{w}$ (première composante principale de \mathbf{X}) avec $\mathbf{w} \in \mathbb{R}^p$, telle que la variance de \mathbf{y} soit maximale. Cela revient à résoudre le problème d'optimisation suivant :

$$\begin{cases}
\mathbf{w}_1 = \underset{\mathbf{w}}{argmax} \ var(\mathbf{X}\mathbf{w}) \\
sous \ contrainte \ \|\mathbf{w}\| = 1
\end{cases}$$
(3.1)

Traduction: on cherche une variable latente qui ait une variance maximale

Analyse des Corrélations Canoniques

Posons X_1 et X_2 , les blocs correspondants aux deux ensembles de variables mesurées sur un ensemble de n individus. L'Analyse Canonique des Corrélations de X_1 et X_2 est la recherche des vecteurs canoniques $\mathbf{a}_1 \in \mathbb{R}^{p_1}$ et $\mathbf{a}_2 \in \mathbb{R}^{p_2}$ tels que les variables canoniques $\mathbf{y}_1 = \mathbf{X}_1 \mathbf{a}_1$ et $\mathbf{y}_2 = \mathbf{X}_2 \mathbf{a}_2$ soient de corrélation maximale.

$$\begin{cases} \max_{\mathbf{a}_1, \mathbf{a}_2} cor(\mathbf{X}_1 \mathbf{a}_1, \mathbf{X}_2 \mathbf{a}_2) \\ sous \ contraintes \ var(\mathbf{X}_1 \mathbf{a}_1) = var(\mathbf{X}_2 \mathbf{a}_2) = 1 \end{cases}$$
(3.3)

Traduction : on cherche une variable latente par bloc qui soient les plus corrélées

Analyse Inter-Batteries

LAFIB de \mathbf{X}_1 et \mathbf{X}_2 est la recherche de combinaisons linéaires des variables de \mathbf{X}_1 , notée $\mathbf{y}_1 = \mathbf{X}_1 \mathbf{a}_1$ avec $\mathbf{a}_1 \in \mathbb{R}^{p_1}$ et une combinaison linéaire des variables de \mathbf{X}_2 , notée $\mathbf{y}_2 = \mathbf{X}_2 \mathbf{a}_2$ avec $\mathbf{a}_2 \in \mathbb{R}^{p_2}$ telle que la covariance entre ces deux variables soit maximale.

$$\begin{cases}
\max_{\mathbf{y}_1 \text{ et } \mathbf{y}_2} cov(y_1, y_2) = cor(\mathbf{X}_1 \mathbf{a}_1, \mathbf{X}_2 \mathbf{a}_2) \sqrt{var(\mathbf{X}_1 \mathbf{a}_1)} \sqrt{var(\mathbf{X}_2 \mathbf{a}_2)} \\
sous \text{ contraintes } \|\mathbf{a}_1\| = \|\mathbf{a}_2\| = 1
\end{cases}$$
(3.6)

Traduction: on cherche une variable latente par bloc dont la covariance soit maximale

Regularized Generalized Canonical Correlation Analysis
Regularized = compatible grandes dimensions (# variables >> # samples)

On considère J blocs \mathbf{X}_j de variables centrées, de dimension $n \times p_j$ décrivant n individus. On considère également un réseau de connexions entre les blocs, en définissant la matrice $\mathbf{C} = (c_{jk}) : c_{jk} = 1$ si \mathbf{X}_j et \mathbf{X}_k sont connectés et 0 sinon. On recherche les combinaisons linéaires standardisées $\mathbf{y}_j = \mathbf{X}_j \mathbf{a}_j$ solution du problème d'optimisation suivant :

$$\begin{cases} \max_{\mathbf{a}_{1},\mathbf{a}_{2},...,\mathbf{a}_{J}} \sum_{j,k=1;j\neq k}^{J} c_{jk} g\left(cov(\mathbf{X}_{j}\mathbf{a}_{j},\mathbf{X}_{k}\mathbf{a}_{k})\right) \\ sous \ contraintes \ Var(\mathbf{X}_{j}\mathbf{a}_{j}) = \mathbf{a}_{j}^{T} \Sigma_{jj} \mathbf{a}_{j} = 1, \quad j = 1,...,J \end{cases}$$
(3.25)

SGCCA

Sparse Generalized Canonical Correlation Analysis Sparse = sélection de variables

$$\begin{cases} \max_{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_J} \sum_{j,k=1; j \neq k}^J c_{jk} g(\text{cov}(\mathbf{X}_j \mathbf{a}_j, \mathbf{X}_k \mathbf{a}_k)) \\ \text{sous contraintes} \quad \|\mathbf{a}_j\|_2 = 1 \text{ et } \|\mathbf{a}_j\|_1 \leq s_j, j = 1, \dots, J \end{cases}$$