DAG パス幅に基づく種々のアルゴリズムの設計 及びDAG 木幅への拡張

2025/02/05

伊豆 真哉

京都大学大学院情報学研究科湊研究室

発表の流れ

- 1. 研究背景
- 2. DAGパス分解とDAGパス幅の定義
- 3. 有向シュタイナー木問題への応用
- 4. 幅の小さなDAGパス分解を求めるアルゴリズム
- 5. まとめ

1. 研究背景

今回考えるグラフ構造【DAG】

■ DAG (Directed Acyclic Graph): 有向非巡回グラフ. サイクルのない 有向グラフ

■今回は入力グラフがDAGの場合の組合せ問題を考える

パス幅とは

■パス幅[Robert et al. 83]: 無向グラフがどれだけパスに近いか

■有向パス幅[Johnson et al. 01]: 有向グラフがどれだけDAGに近いか

■有用性:パラメータ化アルゴリズムで利用

- 最大独立集合問題 : $2^{O(w)}n$ 時間 (n: 頂点数, w: パス幅) [Lim et al. 18]

■ 有向ハミルトン閉路問題: $n^{O(w)}$ 時間 (w: 有向パス幅) [Johnson et al. 01]

有向パス幅はDAGに対して有用でない

有向パス幅の欠点:入力グラフがDAGだと常に0 (DAGはDAGへの近さ0)

DAGにも 対応させたい...

■ **DAGパス幅** [Kasahara et al. 23] : 有向グラフがどれだけ<u>有向パス</u>に近いか → DAGの複雑さも表現可能

有向支配集合問題 (入力がDAGでもNP-hard)

有向パス幅 →解けない DAGパス幅: w $\rightarrow O(2^w wn)$

本研究の成果【DAGパス幅に関する種々のアルゴリズムを設計】

1 DAGパス幅に基づくアルゴリズム

有向支配集合問題 $\rightarrow O(2^w wn)$

最大葉分岐数問題 $\rightarrow O(2^w wn)$

k-有向点素パス問題 $\rightarrow O((k+1)^w(w^2+k)n)$

k-有向シュタイナー木問題 $\rightarrow O(2^w(k+w)n)$

n: 頂点数, w: DAGパス幅

3nによらない幅を 求めるアルゴリズム

幅が高々 $O(ld^k)$ のDAGパス分解 \rightarrow グラフの埋め込みを利用

l: 根数, d: 最大出次数, k: 入力整数

②DAGパス幅を求める 近似アルゴリズム

 $O(\log^2 n)$ -近似

→セパレータを利用

 $O(\log^{3/2} n)$ -近似

→Pebbling gameを利用

4 DAG木幅への拡張

DAG木幅→ 有向木への近さを表現→ DAGパス幅より小

有向支配集合問題 $\rightarrow O(2^w w^2 n)$

本研究の成果【DAGパス幅に関する種々のアルゴリズムを設計】

(1) DAGパス幅に基づくアルゴリズム

有向支配集合問題 $\rightarrow O(2^w wn)$

最大葉分岐数問題 $\rightarrow O(2^wwn)$ k-有向点素パス問題 $\rightarrow O((k+1))$ 今回説明

k-有向シュタイナー木問題 $\rightarrow O(2^w(k+w)n)$

n: 頂点数, w: DAGパス幅

(3) nによらない幅を 求めるアルゴリズム

今回説明

幅が高々 $O(ld^k)$ のDAGパス分解 →グラフの埋め込みを利用

l: 根数, d: 最大出次数, k: 入力整数

(2) DAGパス幅を求める 近似アルゴリズム

 $O(\log^2 n)$ -近似

→セパレータを利用

 $O(\log^{3/2} n)$ -近似

→Pebbling gameを利用

4 DAG木幅への拡張

DAG木幅 → 有向木への近さを表現 → DAGパス幅より小

有向支配集合問題 $\rightarrow O(2^w w^2 n)$

2. DAGパス分解とDAGパス幅の定義

DAGパス分解・DAGパス幅 [Kasahara et al. 23]

- **DAGパス分解**:有向グラフG = (V, E)に対し、以下を満たすパス $X = (X_1, X_2, ..., X_s)$.
 - 1. $X_1 \cup X_2 \cup \cdots \cup X_s = V$
 - 2. $A(u,v) \in E$ に対し, あるiがあり, $u,v \in X_i, v \notin X_{i-1}$
 - 3. 各 $v \in V$ に対し, vを含むバッグは連結なパスを構成する
 - 中福: $\max_{1 \leq i \leq s} |X_i| 1$
- DAGパス幅:最小の幅を与えるDAGパス分解の幅.値が小さいほど有向パスに近いグラフ

成果①

3. 有向シュタイナー木問題への応用

有向シュタイナー木問題

今回はDAG上

- ■input: 枝重み付き有向グラフG = (V, E), $r \in V, R = \{t_1, t_2, ..., t_k\} \subseteq V$
- ■objective: *r*を根とし, *R*を含む有向木の総 枝重みの最小値
- ■DAG上でもNP-hard [Ganian et.al 14]
- ■無向パス幅を使ったFPTの先行研究は(調べた限り)行われていない

総枝重み最小のDSTの例 (総枝重み6)

アルゴリズムの大まかな動作

- ■入力グラフのDAGパス分解が与えられているとする
- ■動的計画法を用いてバッグを左側 (X_1) から順に見る
 - 頂点vが追加 $\rightarrow v$ を解に含めるか否かで**場合分け**
 - 頂点vが削除 $\rightarrow v$ を解に含めるか否かを確定
- ■右端のバッグ(X_s)まで到達したら解が得られている

動的計画法の具体的な計算式

- *ST(i; A_i, B_i)*: 現在のバッグ*X_i*での最適解
- *pred(v)*: vの先行頂点集合
- A_i (解となる頂点集合), B_i (解とならない頂点集合)を用意
- 頂点vが追加 $\rightarrow v$ を解 (A_i) に含めるか否か (B_i) で場合分け頂点vが削除 $\rightarrow v$ を解 (A_i) に含めるか否か (B_i) を確定

頂点vが追加

$$ST(i; A_i, B_i)$$

$$= \begin{cases} ST(i-1; A_i \setminus \{v\}, B_i) + \min_{u \in pred(v) \cap A_i} d(u, v) & (v \in A_i \text{\hbar}) \text{\neg} pred(v) \cap A_i \neq \emptyset) \\ ST(i-1; A_i, B_i \setminus \{v\}) & (v \in B_i \text{\hbar}) \text{\neg} v \notin R \cup \{r\}) \\ \infty & (otherwise) \end{cases}$$

頂点vが削除

 $ST(i; A_i, B_i) = \min \{ST(i-1; A_i \cup \{v\}, B_i), ST(i-1; A_i, B_i \cup \{v\})\}$

■ 計算量 (w: DAGパス幅)

$$\rightarrow O(2^w(w+|R|)n+n^2)$$

r (Ctrl) ▼

本アルゴリズムの利点と問題点

■利点:

DAGパス分解が矢印の向きに沿って構成

- →根から葉に向かって有向木を構築しやすい
- →アルゴリズムが単純に

■問題点:

あらかじめ幅の小さなDAGパス分解が必要

- →実際は構築が難しい
- →成果③で構築

成果③

4. 幅の小さなDAGパス分解を求めるアルゴリズム

パス幅の計算は難しい

- ■入力整数kに対し、Gのパス幅はk以下か? \rightarrow NP-complete
- ■ではどうするか…→ 以下のアルゴリズムを利用する

■DAGパス幅のアルゴリズムは知られていなかった

入力:頂点数nのグラフG,整数k

出力:「パス幅 > kの事実と証拠」or「幅が高々w(k)のパス分解」

時間: f(n,k) (nに対し多項式時間)

パス幅の種類	G	w(k)	f(n,k)	参照	
パス幅		$O(2^k)$	$O(2^k n)$	[Kevin et al. 96]	
	無向グラフ	k	$2^{O(k^3)}n$	[Bodlaender 96]	
有向パス幅	有向グラフ	k	$O(mn^{k+1}) \ (m= E(G))$	[Tamaki 2011]	
DAGパス幅	open				

本研究の成果(3)

■「DAGパス幅 > kの事実と証拠」or「幅が高々 $O(ld^k)$ のDAGパス分解」 のいずれか1つを出力するアルゴリズムを初めて構築

(l: Gの根数, d: Gの最大出次数)

パス幅の種類	G	w(k)	f(k)	参照
♪◇ → 市豆		$O(2^k)$	$O(2^k n)$	[Kevin et al. 96]
パス幅	無向グラフ	k	$2^{O(k^3)}n$	[Bodlaender 96]
有向パス幅	有向グラフ	k	$O(mn^{k+1}) \ (m= E(G))$	[Tamaki 2011]
DAGパス幅	DAG	$O(ld^k)$	$O(d^k n^2)$	

アルゴリズム構築の準備

- ■埋め込み (DAG $M \rightarrow DAG G$):
 - Mの頂点をグラフ構造を保ったままGの各頂点に対応付ける
- ■埋め込み可能ならば...
 - $GODAGパス幅 \ge MODAGパス幅$

アルゴリズムのアイデア

- \blacksquare 入力:整数k, DAG G (最大出次数d)
- $\blacksquare M$: 出次数d, 高さk + 2の完全有向木-

DAGパス幅 = k + 1

- $\blacksquare(M \to G)$ に埋め込み可能ならば...
 - GのDAGパス幅 $\geq M$ のDAGパス幅 (= k + 1)

アルゴリズムのアイデア

- \blacksquare 入力:整数k, DAG G (最大出次数d)

DAGパス幅 = k + 1

- $\blacksquare (M \to G)$ に埋め込み可能ならば...
 - GのDAGパス幅 ≥ MのDAGパス幅 (= k + 1)

アルゴリズム1: GrowTokenTree

- ■初めにGの全頂点はblue
 - → tokenが置かれたらredに
 - → tokenが除かれてもredのまま

GrowTokenTree

- $\bullet M$ の木構造を保ったままGにtokenを配置する
- ●tokenを配置できる頂点は,親全てにtokenが置かれているもののみ
- ●最後にtokenを配置した頂点集合を 出力

アルゴリズム2: FindEmbedding

FindEmbedding

・GrowTokenTreeを出力

- ●ある条件(*)を満たす頂点v, token Tを選択
- Tとその子孫をvから1つずつ下にずらす
 - (*) vの子がすべてred & Tの配置済みの子が高々1つ
- = GrowTokenTreeの出力を順に $(X_1, X_2, ...)$ とすると, GODAGパス分解

3つの終了条件とその結果

- 1 途中でGがすべてred
- $\rightarrow (X_1, X_2, ...)$ が幅 $O(ld^k)$ のDAGパス分解
- ②途中でMの全tokenを使い切る
- \rightarrow GのDAGパス幅 > k
- (3)途中で条件(*)を満たすTがなくなる
- \rightarrow GのDAGパス幅 > k

23/28

アルゴリズムの動作例 (①幅 $O(ld^k)$ のDAGパス分解を出力)

先行研究[Kevin et al. 96]との違い

[Kevin et al. 96]

- Gの任意の頂点にtoken λを置く
- 2. $i = 1 \succeq \bigcup$, $X_i \leftarrow call GrowTokenTree$
- 3. until 【Gの全頂点がred】or 【 $|X_i| = |V[M]|$ 】:
 - $token T (on v \in V[G'],$

配置済の子tokenが高々1個)を選択

- Tをvから取り除く
- **-** *T*が配置済の子*T* ⋅ *b*をもつ:

 $T \cdot b \cdot S \longleftrightarrow T \cdot S$

• $i = i + 1 \succeq \bigcup_{i} X_i \leftarrow \text{call } GrowTokenTree$

このような*T* が**必ず**存在

Tが存在する とは限らない

提案アルゴリズム

- 1. Gの根にtoken λを置く
- 2. $i = 1 \succeq \bigcup$, $X_i \leftarrow call\ GrowTokenTree$
- until 【Gの全頂点がred】or 【 $|X_i| = |V[M]|$ 】 if $\{$ ある $token\ T\ (on\ v \in V[G'])$ があり,

suc(v)が全てred,かつTの配置済の子tokenが高々1個 $}:$

- Tをvから取り除く
- *T*が配置済の子*T* · *b* をもつ: *T* · *b* · *S* ↔ *T* · *S*

else:

• return X_i

 $i = i + 1 \succeq \bigcup$, $X_i \leftarrow call GrowTokenTree$

- ■有向グラフの埋め込みは無向グラフよりも難しい
- $\blacksquare token T が見つからず(3)で終了しても「<math>GODAGパス幅>k$ 」を示した

証明の方針

- (1):幅 $O(ld^k)$ のDAGパス分解を出力
- $\rightarrow X_i$ の列がDAGパス分解の3つのルールを満たし、かつ高々|V[M]|個のtokenのみ使う
- (2): GのDAGパス幅> k
- $\rightarrow X_s$ がMからGへの埋め込みになっている
- (3): GのDAGパス幅> k
- \rightarrow M上で根 λ から葉までの配置済の tokenのみからなるパスP (|P|>k+1)が存在し、任意のDAGパス分解は必ずあるバッグ $X'\subseteq X_s$ ($|X'|\geq |P|>k+1$)をもつ

- 1. Gの根にtoken λを置く
- 2. $X_1 \leftarrow GrowTokenTree$.これをDAGパス分解の最初のバッグ
- 3. until 【Gの全頂点がred】 or 【 $|X_i| = |V[M]|$ 】 : 2
 - $\mathbf{1}$ if $\{$ ある $token\ T\ (on\ v\in V[G])$ があり, suc(v)が全てred, かつTの配置済の子tokenが高々1個 $\}$:
 - Tをvから取り除く
 - Tが配置済の子 $T \cdot b$ をもつ: $T \cdot b \cdot S \leftrightarrow T \cdot S$

else:

• return X_i

 $X_{i+1} \leftarrow GrowTokenTree$. これをi+1番目のバッグ

③で終了するとき

4. まとめ

DAGパス幅に関する種々のアルゴリズムを設計した

①DAGパス幅に基づくアルゴリズム

有向支配集合問題 $\rightarrow O(2^w wn)$

最大葉分岐数問題 $\rightarrow O(2^w wn)$

k-有向点素パス問題 $\rightarrow O((k+1)^w(w^2+k)n)$

k-有向シュタイナー木問題 $\rightarrow O(2^w(k+w)n)$

n: 頂点数, w: DAGパス幅

③nによらない幅を 求めるアルゴリズム

幅が高々 $O(ld^k)$ のDAGパス分解 \rightarrow グラフの埋め込みを利用

l: 根数, d: 最大出次数, k: 入力整数

②DAGパス幅を求める 近似アルゴリズム

 $O(\log^2 n)$ -近似

→セパレータを利用

 $O(\log^{3/2} n)$ -近似

→Pebbling gameを利用

4 DAG木幅への拡張

DAG木幅→有向木への近さを表現 → **DAGパス幅より小**

有向支配集合問題 $\rightarrow O(2^w w^2 n)$

- ■今後の課題
- ・幅 $O(ld^k)$ のdを定数に改善できないか検討
- DAG木幅の利用が適した問題の特徴づけ

コメント用

