Вершинная 3-раскрашиваемость графа

Дмитрий Камальдинов

1 Введение

Целью данного проекта является имлементация алгоритмов проверки 3-раскрашиваемости графов.

Определение 1. Правильной раскраской графа G = G(V, E) в k цветов называется такое разбиение $V = V_1 \sqcup V_2 \sqcup \cdots \sqcup V_k$ множества его вершин на k подмножеств, что $\forall e \in V_i \times V_j : e \notin E \quad (i \neq j)$.

Определение 2. Граф называется k-раскрашиваемым, если для него существует правильная раскраска в k цветов.

Определение 3. Пусть имеются множество V из n объектов и множество C из k цветов. Множество цветов, в которые может быть раскрашен объект $v \in V$ обозначим через c(v). Также имеется множество ограничений $W \subset 2^{(V \times C)}$. Задача удовлетворения ограничений $(CSP, constraint \ satisfaction \ problem)$ заключается в отыскании такой раскраски $\alpha: V \to C$, что

- $\forall v \in V\alpha(v) \in c(v)$
- $\forall w \in W \exists (v, c) \in w : \alpha(v) \neq c$.

Определение 4. (n, m)–CSP — такая задача CSP, что

- \bullet |C|=n
- $\forall w \in W : |w| = m$

Лемма 1. Задача k-раскрашиваемости сводится κ (k,2)-CSP.

Доказательство. Обозначим данный граф через G. Следующая задача CSP эквивалентна задаче k-раскрашиваемости G:

- V = G(V)
- $C = \{1, \dots, k\}$
- c(v) = C
- $\bullet \ W = \{\{(v,c),(u,c)\} | \{v,u\} \in E(G), c \in C\}$

2 Описание алгоритма решения (3,2)-CSP

Определим *порядок* задачи CSP как мощность множества объектов. Объекты будут также называться *вершинами*.

Пемма 2. Если в задаче (3,2)–CSP порядка n существует объект, который может быть покрашен в не более, чем 2 цвета, то эта задача эквивалентна некоторой порядка n-1.

Доказательство. Обозначим этот объект через v. Рассмотрим 3 случая.

- 1. |c(v)| = 0. Тогда правильной раскраски не существует, то есть задача уже решена.
- 2. |c(v)| = 1. Обозначим единственный доступный цвет v через c. Тогда если задача имеет решение, то v обязана быть покрашеной в c. Значит, для каждого ограничения $\{(v,c),(u,\widehat{c})\}$, у вершины u можно запретить цвет \widehat{c} , после чего удалить вершину v. Полученная задача эквивалентна исходной c учетом уже выбранного цвета для v, а её порядок на 1 меньше.
- 3. |c(v)|=2. Обозначим через c_1,c_2 доступные цвета для v. $C_i:=\{(u,c)|\{(v,c_i),(u,c)\}\in W\}$. Добавим ограничения $\{(u,c),(w,\widehat{c})\}$ $\forall (u,c)\in C_1,(w,\widehat{c})\in C_2$ и удалим вершину v. Тогда полученная задача эквивалентна исходной. Действительно, пусть α решение (раскраска) исходной задачи. Не умаляя общности, предположим, $\alpha(v)=c_1\implies \forall (u,c)\in C_1:\alpha(u)\neq c$, следовательно, все новые ограничения также будут удовлетворены. Тогда $\alpha|_{V\setminus\{v\}}$ решение новой. Напротив, пусть β решение новой задачи. Покрасим $V\setminus\{v\}$ с помощью β . Предположим противное: невозможно покрасить v в один из цветов c_1,c_2 так, чтобы получилась правильная покраска вершин исходной задачи. Тогда существуют такие (u,c) и (w,\widehat{c}) , что $\{(u,c),(v,c_1)\}\in W,\ \{(w,\widehat{c}),(v,c_2)\}\in W,\$ и $\beta(u)=c,\ \beta(w)=\widehat{c}.$ Но тогда $(u,c)\in C_1$ и $(w,\widehat{c})\in C_2$, и одно из добавленных ограничений не удовлетворено.

Лемма 3. Дана задача (3,2)–CSP порядка n, имеющая решение. Предположим, существуют два таких объекта v u u, что |c(v)| = |c(u)| = 3 u $\exists c_u, c_v : \{(v, c_v), (u, c_u)\} \in W$. Тогда эта задача эквивалентна некоторой порядка n-2.

Доказательство. Изменим исходную задачу четырьмя способами: в каждом сохраним все ограничения, но оставим для v и u только по 2 возможных цвета:

- 1. $c(v) = \{c_v, c_v + 1\}; \quad c(u) = \{c_u + 1, c_u + 2\}$
- 2. $c(v) = \{c_v, c_v + 2\}; \quad c(u) = \{c_u + 1, c_u + 2\}$
- 3. $c(v) = \{c_v + 1, c_v + 2\}; \quad c(u) = \{c_u, c_u + 1\}$
- 4. $c(v) = \{c_v + 1, c_v + 2\};$ $c(u) = \{c_u, c_u + 2\}$ (везде сложение по модулю 3)

Пусть одна из этих задач имеет решение β . Тогда β также есть решение исходной задачи, так как в каждом случае невозможно покрасить v и u одновременно в c_v и c_u . Напротив, пусть α — решение исходной задачи, и $\alpha(v) = \hat{c}_v$, $\alpha(u) = \hat{c}_u$, где $(\hat{c}_v, \hat{c}_u) \neq (c_v, c_u)$. Несложным перебором можно убедиться, что в **двух**(!) из изменённых задач $c(v) \ni \hat{c}_v$ и $c(u) \ni \hat{c}_u$. Тогда α есть решение этих задач.

Для завершения доказательства осталось избавиться от этих двух вершин с двумя доступными цветами, используя лемму 2.

Лемма 4. Дана задача (3,2)–CSP I порядка n. Существуют два таких объекта v u u, что |c(v)| = |c(u)| = 3 u $\exists c_u, c_v : \{(v, c_v), (u, c_u)\} \in W$. Тогда её можно свести за полиномиальное время κ такой I', что если I' разрешима, то I имеет решение, а если I разрешима, то I' имеет решение c вероятностью 1/2.

Доказательство. Очевидно следует из леммы 3.

Используя лемму 4, несложно убедиться в корректности следующего алгоритма (n- количество вершин):

```
1: function SATISFIABLE(I)
       for i = 1..2^{n/2} do
2:
           if \exists v \in V : |c(v)| = 3 and v has any constraints then
3:
               reduce I \to I' randomly using lemma 4
 4:
               return satisfiable(I')
 5:
           else if \exists v \in V : |c(v)| = 0 then
 6:
               return false
 7:
 8:
           else
9:
               choose any v (now 0 < |c(v)| \le 2 and reduce I \to I' using lemma 2
               return satisfible (I')
10:
           end if
11:
       end for
12:
       return false
13:
14: end function
```

Действительно, если n/2 раз случайно выбирать вариант меньшей задачи, то, согласно лемме 4, вероятность получить правильную раскраску есть $2^{-n/2}$, то есть если вызвать алгоритм $2^{n/2}$ раз, то верный ответ будет получен с вероятностью 1. Итого время работы этого алгоритма $O(n^{O(1)}2^{n/2}) = O(1.4142135623730951^n)$

- более подробным разбором случаев можно улучшить константу до 1.3645 ([2])
- в случае задачи 3-раскрашиваемости константа (3,2)-CSP улучшается до 1.3289 с помощью некоторого препроцессинга на графе (см. "bushy forest" в [1] и [2])

3 Эксперименты

- Алгоритм тратит на подтверждение 3-раскрашиваемости графа на 2000 вершинах до 16 секунд, в среднем 6 (плотность 0.6).
- До 14 секунд на нераскрашиваемых на 35 вершинах (плотность 0.5)
- Алгоритм работает дольше на графах с меньшей плостностью

Список литературы

[1] Richard Beigel, David Eppstein, 3-Coloring in time $O(1.3446^n)$: a no-MIS algorithm, 36th Symposium on Foundations of Computer Science, 444-453, October 1995

```
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=492575
```

[2] David Eppstein, Improved algorithms for 3–Coloring, 3–Edge–Coloring, and Constraint Satisfaction, 12th ACM-SIAM Symp. Discrete Algorithms, Washington, 2001, pp. 32–337.

```
https://www.ics.uci.edu/~eppstein/pubs/Epp-SODA-01.pdf
```