Alex Psomas: Lecture 17.

Random Variables: Expectation, Variance

Alex Psomas: Lecture 17.

Random Variables: Expectation, Variance

- 1. Random Variables, Expectation: Brief Review
- 2. Independent Random Variables.
- 3. Variance

Definition

Definition

A random variable, X, for a random experiment with sample space Ω is a variable that takes as value one of the random samples.

Definition

A random variable, X, for a random experiment with sample space Ω is a variable that takes as value one of the random samples. NO!

Random Variables: Definitions Definition

Definition

A random variable, X, for a random experiment with sample space Ω is a

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X:\Omega\to\Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines the **event**

$$X^{-1}(a) := \{\omega \in \Omega \mid X(\omega) = a\}.$$

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X:\Omega\to\Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines the **event**

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \Re$, one defines the **event**

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X:\Omega\to\Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines the **event**

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \Re$, one defines the **event**

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines the **event**

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \Re$, one defines the **event**

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as

$$Pr[X \in A] = Pr[X^{-1}(A)].$$

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines the **event**

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \Re$, one defines the **event**

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as

$$Pr[X \in A] = Pr[X^{-1}(A)].$$

(e) The distribution of a random variable X, is

$$\{(a, Pr[X = a]) : a \in \mathscr{A}\},\$$

where \mathscr{A} is the *range* of X.

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines the **event**

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \Re$, one defines the **event**

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as

$$Pr[X \in A] = Pr[X^{-1}(A)].$$

(e) The distribution of a random variable X, is

$$\{(a, Pr[X=a]): a \in \mathscr{A}\},$$

where \mathscr{A} is the *range* of X. That is, $\mathscr{A} = \{X(\omega), \omega \in \Omega\}$.

Flip a fair coin three times.

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

X = number of H's: $\{3,2,2,2,1,1,1,0\}$.

Range of X?

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

X = number of H's: $\{3, 2, 2, 2, 1, 1, 1, 0\}$.

▶ Range of X? {0,1,2,3}. All the values X can take.

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- $X^{-1}(2)$?

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ► $X^{-1}(2)$? $X^{-1}(2) = \{HHT, HTH, THH\}$. All the **outcomes** ω such that $X(\omega) = 2$.

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ► $X^{-1}(2)$? $X^{-1}(2) = \{HHT, HTH, THH\}$. All the **outcomes** ω such that $X(\omega) = 2$.
- ▶ Is $X^{-1}(1)$ an event?

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ► $X^{-1}(2)$? $X^{-1}(2) = \{HHT, HTH, THH\}$. All the **outcomes** ω such that $X(\omega) = 2$.
- ▶ Is $X^{-1}(1)$ an event? **YES**. It's a subset of the outcomes.

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ► $X^{-1}(2)$? $X^{-1}(2) = \{HHT, HTH, THH\}$. All the **outcomes** ω such that $X(\omega) = 2$.
- ▶ Is $X^{-1}(1)$ an event? **YES**. It's a subset of the outcomes.
- ▶ Pr[X]?

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? $\{0,1,2,3\}$. All the values X can take.
- ► $X^{-1}(2)$? $X^{-1}(2) = \{HHT, HTH, THH\}$. All the **outcomes** ω such that $X(\omega) = 2$.
- ▶ Is $X^{-1}(1)$ an event? **YES**. It's a subset of the outcomes.
- ▶ Pr[X]? This doesn't make any sense bro....

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ► $X^{-1}(2)$? $X^{-1}(2) = \{HHT, HTH, THH\}$. All the **outcomes** ω such that $X(\omega) = 2$.
- ▶ Is $X^{-1}(1)$ an event? **YES**. It's a subset of the outcomes.
- ▶ Pr[X]? This doesn't make any sense bro....
- ▶ Pr[X = 2]?

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ► $X^{-1}(2)$? $X^{-1}(2) = \{HHT, HTH, THH\}$. All the **outcomes** ω such that $X(\omega) = 2$.
- ▶ Is $X^{-1}(1)$ an event? **YES**. It's a subset of the outcomes.
- ▶ Pr[X]? This doesn't make any sense bro....
- ▶ Pr[X = 2]?

$$Pr[X = 2] = Pr[X^{-1}(2)] = Pr[\{HHT, HTH, THH\}]$$

= $Pr[\{HHT\}] + Pr[\{HTH\}] + Pr[\{THH\}] = \frac{3}{8}$

Definition

Definition

Let X, Y, Z be random variables on Ω and $g: \Re^3 \to \Re$ a function.

Definition

Let X,Y,Z be random variables on Ω and $g:\mathfrak{R}^3\to\mathfrak{R}$ a function. Then g(X,Y,Z) is the random variable that assigns the value $g(X(\omega),Y(\omega),Z(\omega))$ to ω .

Definition

Let X,Y,Z be random variables on Ω and $g:\mathfrak{R}^3\to\mathfrak{R}$ a function. Then g(X,Y,Z) is the random variable that assigns the value $g(X(\omega),Y(\omega),Z(\omega))$ to ω .

Thus, if V = g(X, Y, Z), then $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$.

Definition

Let X,Y,Z be random variables on Ω and $g:\mathfrak{R}^3\to\mathfrak{R}$ a function. Then g(X,Y,Z) is the random variable that assigns the value $g(X(\omega),Y(\omega),Z(\omega))$ to ω .

Thus, if V = g(X, Y, Z), then $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$.

Examples:

Definition

Let X,Y,Z be random variables on Ω and $g:\mathfrak{R}^3\to\mathfrak{R}$ a function. Then g(X,Y,Z) is the random variable that assigns the value $g(X(\omega),Y(\omega),Z(\omega))$ to ω .

Thus, if V = g(X, Y, Z), then $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$.

Examples:

➤ X^k

Definition

Let X,Y,Z be random variables on Ω and $g:\mathfrak{R}^3\to\mathfrak{R}$ a function. Then g(X,Y,Z) is the random variable that assigns the value $g(X(\omega),Y(\omega),Z(\omega))$ to ω .

Thus, if V = g(X, Y, Z), then $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$.

Examples:

- ➤ X^k
- $(X-a)^2$

Random Variables: Definitions

Definition

Let X,Y,Z be random variables on Ω and $g:\mathfrak{R}^3\to\mathfrak{R}$ a function. Then g(X,Y,Z) is the random variable that assigns the value $g(X(\omega),Y(\omega),Z(\omega))$ to ω .

Thus, if V = g(X, Y, Z), then $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$.

Examples:

- ► $(X a)^2$
- $\rightarrow a + bX + cX^2 + (Y Z)^2$

Random Variables: Definitions

Definition

Let X,Y,Z be random variables on Ω and $g:\mathfrak{R}^3\to\mathfrak{R}$ a function. Then g(X,Y,Z) is the random variable that assigns the value $g(X(\omega),Y(\omega),Z(\omega))$ to ω .

Thus, if V = g(X, Y, Z), then $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$.

Examples:

- ► $(X a)^2$
- $\rightarrow a + bX + cX^2 + (Y Z)^2$
- ► $(X Y)^2$

Random Variables: Definitions

Definition

Let X,Y,Z be random variables on Ω and $g:\mathfrak{R}^3\to\mathfrak{R}$ a function. Then g(X,Y,Z) is the random variable that assigns the value $g(X(\omega),Y(\omega),Z(\omega))$ to ω .

Thus, if V = g(X, Y, Z), then $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$.

Examples:

- ➤ X^k
- ► $(X a)^2$
- $\rightarrow a + bX + cX^2 + (Y Z)^2$
- ► $(X Y)^2$
- $\blacktriangleright X\cos(2\pi Y+Z).$

Definition: The expected value

Definition: The **expected value** (or mean, or expectation)

Definition: The **expected value** (or mean, or expectation) of a random variable X is

$$E[X] = \sum_{a} a \times Pr[X = a].$$

Definition: The **expected value** (or mean, or expectation) of a random variable X is

$$E[X] = \sum_{a} a \times Pr[X = a].$$

Theorem:

Definition: The **expected value** (or mean, or expectation) of a random variable X is

$$E[X] = \sum_{a} a \times Pr[X = a].$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

An Example

Flip a fair coin three times.

$$\stackrel{\cdot}{\Omega} = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}. \ X = \text{number of H's: } \{3,2,2,2,1,1,1,0\}. \ \text{Thus,}$$

$$\sum_{\omega} X(\omega) Pr[\omega] = 3\frac{1}{8} + 2\frac{1}{8} + 2\frac{1}{8} + 2\frac{1}{8} + 1\frac{1}{8} + 1\frac{1}{8} + 1\frac{1}{8} + 0\frac{1}{8}.$$

An Example

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}. X =$ number of H's: $\{3,2,2,2,1,1,1,0\}.$ Thus,

$$\sum_{\omega} X(\omega) Pr[\omega] = 3\frac{1}{8} + 2\frac{1}{8} + 2\frac{1}{8} + 2\frac{1}{8} + 1\frac{1}{8} + 1\frac{1}{8} + 1\frac{1}{8} + 0\frac{1}{8}.$$

Also,

$$\sum_{a} a \times Pr[X = a] = 3\frac{1}{8} + 2\frac{3}{8} + 1\frac{3}{8} + 0\frac{1}{8}.$$

Expected winnings for heads/tails games, with 3 flips?

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable *X*:

{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-1,-3}.

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HHT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-3}.

$$E[X]=3\frac{1}{8}$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8}$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8}$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3,1,1,-1,1,-1,-1,-3\}.$

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of *X* is not the value that you expect!

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

 $\{HHH,HHT,HTH,HTT,THH,THT,TTH,TTT\} \rightarrow \{3,1,1,-1,1,-1,-1,-3\}.$

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times.

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

$$\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3, 1, 1, -1, 1, -1, -1, -3\}.$$

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times. Let X_1 be your winnings the first time you play the game, X_2 are your winnings the second time you play the game, and so on.

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable *X*:

$$\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3, 1, 1, -1, 1, -1, -1, -3\}.$$

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times. Let X_1 be your winnings the first time you play the game, X_2 are your winnings the second time you play the game, and so on. (Notice that X_i 's have the same distribution!)

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times. Let X_1 be your winnings the first time you play the game, X_2 are your winnings the second time you play the game, and so on. (Notice that X_i 's have the same distribution!) When $n \gg 1$:

$$\frac{X_1+\cdots+X_n}{n}\to 0$$

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

$$\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3, 1, 1, -1, 1, -1, -1, -3\}.$$

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times. Let X_1 be your winnings the first time you play the game, X_2 are your winnings the second time you play the game, and so on. (Notice that X_i 's have the same distribution!) When $n \gg 1$:

$$\frac{X_1+\cdots+X_n}{n}\to 0$$

The fact that this average converges to E[X] is a theorem:

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3, 1, 1, -1, 1, -1, -1, -3\}.$

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times. Let X_1 be your winnings the first time you play the game, X_2 are your winnings the second time you play the game, and so on. (Notice that X_i 's have the same distribution!) When $n \gg 1$:

$$\frac{X_1+\cdots+X_n}{n}\to 0$$

The fact that this average converges to E[X] is a theorem: the Law of Large Numbers. (See later.)

Law of Large Numbers

Law of Large Numbers

An Illustration: Rolling Dice

Law of Large Numbers

An Illustration: Rolling Dice

Definition

Definition

Let A be an event. The random variable X defined by

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that
$$Pr[X = 1] =$$

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that
$$Pr[X = 1] = Pr[A]$$
 and $Pr[X = 0] =$

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A].

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

Indicators

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

$$1\{\omega \in A\}$$
 or $1_A(\omega)$.

Indicators

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

$$1\{\omega \in A\}$$
 or $1_A(\omega)$.

Thus, we will write $X = 1_A$.

Theorem:

Theorem: Expectation is linear

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note:

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note: If we had defined $Y = a_1 X_1 + \cdots + a_n X_n$ has had tried to compute $E[Y] = \sum_y y Pr[Y = y]$, we would have been in trouble!

Roll a die *n* times.

Roll a die n times.

Roll a die *n* times.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in n rolls.

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in n rolls.

$$E[X] = E[X_1 + \cdots + X_n]$$

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n],$

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in n rolls.

$$E[X] = E[X_1 + \cdots + X_n]$$

= $E[X_1] + \cdots + E[X_n]$, by linearity

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$,

Roll a die *n* times.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Roll a die n times.

 X_m = number of dots on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in *n* rolls.

$$E[X] = E[X_1 + \cdots + X_n]$$

= $E[X_1] + \cdots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} =$$

Roll a die *n* times.

 X_m = number of dots on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} =$$

Roll a die n times.

 X_m = number of dots on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Roll a die n times.

 X_m = number of dots on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X] = \frac{7n}{2}.$$

Roll a die n times.

 X_m = number of dots on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X] = \frac{7n}{2}.$$

Note: Computing $\sum_{X} xPr[X = x]$ directly is not easy!

Flip n coins with heads probability p.

Flip n coins with heads probability p. X - number of heads

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i]$$

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Flip n coins with heads probability p. X - number of heads

Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"]$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots X_n$ and

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover
$$X = X_1 + \cdots X_n$$
 and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n]$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots X_n$ and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i]$$

Flip n coins with heads probability p. X - number of heads

Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots X_n$ and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday.

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

Let $X_{i,j}$ be the indicator random variable for the event that two people i and j have the same birthday.

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

$$E[X] = E[\sum_{i,j} X_{i,j}]$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

$$E[X] = E[\sum_{i,j} X_{i,j}]$$
$$= \sum_{i,j} E[X_{i,j}]$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

$$E[X] = E[\sum_{i,j} X_{i,j}]$$
$$= \sum_{i,j} E[X_{i,j}]$$
$$= \sum_{i,j} Pr[X_{i,j}]$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

$$E[X] = E[\sum_{i,j} X_{i,j}]$$

$$= \sum_{i,j} E[X_{i,j}]$$

$$= \sum_{i,j} Pr[X_{i,j}]$$

$$= \sum_{i,j} \frac{1}{365}$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

$$E[X] = E\left[\sum_{i,j} X_{i,j}\right]$$

$$= \sum_{i,j} E[X_{i,j}]$$

$$= \sum_{i,j} Pr[X_{i,j}]$$

$$= \sum_{i,j} \frac{1}{365} = \binom{k}{2} \frac{1}{365}$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

$$E[X] = E[\sum_{i,j} X_{i,j}]$$

$$= \sum_{i,j} E[X_{i,j}]$$

$$= \sum_{i,j} Pr[X_{i,j}]$$

$$= \sum_{i,j} \frac{1}{365} = \binom{k}{2} \frac{1}{365} = \frac{k(k-1)}{2} \frac{1}{365}$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

Let $X_{i,j}$ be the indicator random variable for the event that two people i and j have the same birthday. $X = \sum_{i,j} X_{i,j}$.

 $E[X] = E[\sum_{i,j} X_{i,j}]$

$$= \sum_{i,j} E[X_{i,j}]$$

$$= \sum_{i,j} Pr[X_{i,j}]$$

$$= \sum_{i,j} \frac{1}{365} = \binom{k}{2} \frac{1}{365} = \frac{k(k-1)}{2} \frac{1}{365}$$

For a group of 28 it's about 1. For 100 it's 13.5. For 280 it's 107.

Calculating E[g(X)]Let Y = g(X).

Let Y = g(X). Assume that we know the distribution of X.

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1:

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \Re : g(x) = y\}.$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{\mathbf{x} \in \mathscr{A}(X)} g(\mathbf{x}) Pr[X = \mathbf{x}].$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega))Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega))Pr[\omega] = \sum_{X} \sum_{\omega \in X^{-1}(X)} g(X(\omega))Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega)) Pr[\omega]$$
$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x) Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega))Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega))Pr[\omega]$$
$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x)Pr[\omega] = \sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \Re : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega))Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega))Pr[\omega]$$

$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x)Pr[\omega] = \sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} Pr[\omega]$$

$$= \sum_{x} g(x)Pr[X = x].$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$.

Let *X* be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

Let also
$$g(X) = X^2$$
 . Then (method 2)

 $E[g(X)] = \sum_{x=-2}^{3} x^2 \frac{1}{6}$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Method 1 - We find the distribution of $Y = X^2$:

Let *X* be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $q(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Method 1 - We find the distribution of
$$Y=X^2$$
:
$$Y=\left\{\begin{array}{ccc} 4, & \text{w.p. } \frac{2}{6} \end{array}\right.$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Method 1 - We find the distribution of
$$Y = X^2$$

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \end{cases}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

$$Y = \left\{ egin{array}{ll} 4, & ext{w.p. } rac{2}{6} \ 1, & ext{w.p. } rac{2}{6} \ 0, & ext{w.p. } rac{1}{6} \end{array}
ight.$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ 0, & \text{w.p. } \frac{1}{6} \\ 9, & \text{w.p. } \frac{1}{6} . \end{cases}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ 0, & \text{w.p. } \frac{1}{6} \\ 9, & \text{w.p. } \frac{1}{6} . \end{cases}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Method 1 - We find the distribution of $Y = X^2$:

$$Y = \left\{ egin{array}{ll} 4, & ext{w.p. } rac{2}{6} \ 1, & ext{w.p. } rac{2}{6} \ 0, & ext{w.p. } rac{1}{6} \ 9, & ext{w.p. } rac{1}{6}. \end{array}
ight.$$

Thus,

Thus,
$$E[Y] = 4\frac{2}{6} + 1\frac{2}{6} + 0\frac{1}{6} + 9\frac{1}{6} = \frac{19}{6}.$$

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X,Y,Z)] = \sum g(x,y,z)Pr[X=x,Y=y,Z=z].$$

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X, Y, Z)] = \sum_{y,y,z} g(x, y, z) Pr[X = x, Y = y, Z = z].$$

An Example.

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X, Y, Z)] = \sum_{x,y,z} g(x, y, z) Pr[X = x, Y = y, Z = z].$$

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X, Y, Z)] = \sum_{x,y,z} g(x, y, z) Pr[X = x, Y = y, Z = z].$$

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X, Y, Z)] = \sum_{x,y,z} g(x,y,z) Pr[X = x, Y = y, Z = z].$$

$$(X,Y) = \begin{cases} (0,0), & \text{w.p. } 0.1\\ (1,0), & \text{w.p. } 0.4\\ (0,1), & \text{w.p. } 0.2\\ (1,1), & \text{w.p. } 0.3 \end{cases}$$

$$E[\cos(2\pi X + \pi Y)] =$$

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X, Y, Z)] = \sum_{x,y,z} g(x,y,z) Pr[X = x, Y = y, Z = z].$$

$$(X,Y) = \begin{cases} (0,0), & \text{w.p. } 0.1\\ (1,0), & \text{w.p. } 0.4\\ (0,1), & \text{w.p. } 0.2\\ (1,1), & \text{w.p. } 0.3 \end{cases}$$

$$E[\cos(2\pi X + \pi Y)] = 0.1\cos(0) + 0.4\cos(2\pi) + 0.2\cos(\pi) + 0.3\cos(3\pi)$$

We have seen that $E[g(X)] = \sum_{x} g(x) Pr[X = x]$.

Using a similar derivation, one can show that

$$E[g(X, Y, Z)] = \sum_{x,y,z} g(x,y,z) Pr[X = x, Y = y, Z = z].$$

$$(X,Y) = \begin{cases} (0,0), & \text{w.p. } 0.1\\ (1,0), & \text{w.p. } 0.4\\ (0,1), & \text{w.p. } 0.2\\ (1,1), & \text{w.p. } 0.3 \end{cases}$$

$$E[\cos(2\pi X + \pi Y)] = 0.1\cos(0) + 0.4\cos(2\pi) + 0.2\cos(\pi) + 0.3\cos(3\pi)$$
$$= 0.1 \times 1 + 0.4 \times 1 + 0.2 \times (-1) + 0.3 \times (-1) = 0.$$

Center of Mass

Center of Mass

The expected value has a *center of mass* interpretation:

Center of Mass

The expected value has a *center of mass* interpretation:

If you only know the distribution of X, it seems that E[X] is a 'good guess' for X.

If you only know the distribution of X, it seems that E[X] is a 'good guess' for X.

The following result makes that idea precise.

If you only know the distribution of X, it seems that E[X] is a 'good guess' for X.

The following result makes that idea precise.

Theorem

The value of a that minimizes $E[(X-a)^2]$ is a=E[X].

If you only know the distribution of X, it seems that E[X] is a 'good guess' for X.

The following result makes that idea precise.

Theorem

The value of a that minimizes $E[(X-a)^2]$ is a = E[X].

Unfortunately, we won't talk about this in this class...

Definition: Independence

Definition: Independence

The random variables *X* and *Y* are **independent** if and only if

Definition: Independence

The random variables *X* and *Y* are **independent** if and only if

$$Pr[Y = b|X = a] = Pr[Y = b]$$
, for all a and b .

Definition: Independence

The random variables *X* and *Y* are **independent** if and only if

$$Pr[Y = b|X = a] = Pr[Y = b]$$
, for all a and b.

Fact:

Definition: Independence

The random variables *X* and *Y* are **independent** if and only if

$$Pr[Y = b|X = a] = Pr[Y = b]$$
, for all a and b .

Fact:

X, Y are independent if and only if

$$Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b]$$
, for all a and b .

Definition: Independence

The random variables *X* and *Y* are **independent** if and only if

$$Pr[Y = b|X = a] = Pr[Y = b]$$
, for all a and b .

Fact:

X, Y are independent if and only if

$$Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b]$$
, for all a and b .

Obvious.

Example 1

Roll two die. X = number of dots on the first one, Y = number of dots on the other one. X, Y are independent.

Example 1

Roll two die. X = number of dots on the first one, Y = number of dots on the other one. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 1

Roll two die. X = number of dots on the first one, Y = number of dots on the other one. X, Y are independent.

Indeed:
$$Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$$

Example 2

Roll two die. X = total number of dots, Y = number of dots on die 1 minus number on die 2. X = number of dots

Example 1

Roll two die. X = number of dots on the first one, Y = number of dots on the other one. X, Y are independent.

Indeed:
$$Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$$

Example 2

Roll two die. X = total number of dots, Y = number of dots on die 1 minus number on die 2. X and Y are not independent.

Example 1

Roll two die. X = number of dots on the first one, Y = number of dots on the other one. X, Y are independent.

Indeed:
$$Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$$

Example 2

Roll two die. X = total number of dots, Y = number of dots on die 1 minus number on die 2. X and Y are not independent.

Indeed: $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$.

Example 1

Roll two die. X = number of dots on the first one, Y = number of dots on the other one. X, Y are independent.

Indeed:
$$Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$$

Example 2

Roll two die. X = total number of dots, Y = number of dots on die 1 minus number on die 2. X and Y are not independent.

Indeed: $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$.

Functions of Independent random Variables

Theorem Functions of independent RVs are independent Let X, Y be independent RV. Then

f(X) and g(Y) are independent, for all $f(\cdot), g(\cdot)$.

Mean of product of independent RV

Theorem

Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Theorem

Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:

Theorem

Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y]$$

Theorem

Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y]$$

Theorem

Let *X*, *Y* be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} [\sum_{y} xyPr[X = x]Pr[Y = y]]$$

Theorem

Let *X*, *Y* be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} \left[\sum_{y} xyPr[X = x]Pr[Y = y]\right] = \sum_{x} \left[xPr[X = x]\left(\sum_{y} yPr[Y = y]\right)\right]$$

Theorem

Let *X*, *Y* be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:

$$E[XY] = \sum_{x,y} xy Pr[X = x, Y = y] = \sum_{x,y} xy Pr[X = x] Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} \left[\sum_{y} xy Pr[X = x] Pr[Y = y] \right] = \sum_{x} \left[xPr[X = x] \left(\sum_{y} yPr[Y = y] \right) \right]$$

$$= \sum_{x} \left[xPr[X = x] E[Y] \right]$$

Theorem

Let *X*, *Y* be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} \left[\sum_{y} xyPr[X = x]Pr[Y = y]\right] = \sum_{x} \left[xPr[X = x](\sum_{y} yPr[Y = y])\right]$$

$$= \sum_{x} \left[xPr[X = x]E[Y]\right] = E[X]E[Y].$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

Wait. Isn't X independent with itself?

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

Then

$$E[(X+2Y+3Z)^2] = E[X^2+4Y^2+9Z^2+4XY+12YZ+6XZ]$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

Then

$$E[(X+2Y+3Z)^2] = E[X^2+4Y^2+9Z^2+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

Then

$$E[(X+2Y+3Z)^2] = E[X^2+4Y^2+9Z^2+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0
= 14.

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0
= 14.

(2) Let X, Y be independent and take values from $\{1, 2, ... n\}$ uniformly at random. Then

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

$$= 1+4+9+4\times0+12\times0+6\times0$$

$$= 14.$$

(2) Let X, Y be independent and take values from $\{1, 2, \dots n\}$ uniformly at random. Then

$$E[(X-Y)^2] = E[X^2 + Y^2 - 2XY] = 2E[X^2] - 2E[X]^2$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

Then

$$E[(X+2Y+3Z)^2] = E[X^2+4Y^2+9Z^2+4XY+12YZ+6XZ]$$

= 1+4+9+4×0+12×0+6×0
= 14.

(2) Let X, Y be independent and take values from $\{1, 2, ... n\}$ uniformly at random. Then

$$E[(X-Y)^2] = E[X^2 + Y^2 - 2XY] = 2E[X^2] - 2E[X]^2$$
$$= \frac{1 + 3n + 2n^2}{3} - \frac{(n+1)^2}{2}.$$

Definition

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Theorem

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Theorem

The events A, B, C, \ldots are pairwise (resp. mutually) independent iff the random variables $1_A, 1_B, 1_C, \ldots$ are pairwise (resp. mutually) independent.

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z], \text{ for all } x, y, z.$$

Theorem

The events A, B, C, \ldots are pairwise (resp. mutually) independent iff the random variables $1_A, 1_B, 1_C, \ldots$ are pairwise (resp. mutually) independent.

Proof:

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all x, y, z .

Theorem

The events A, B, C, \ldots are pairwise (resp. mutually) independent iff the random variables $1_A, 1_B, 1_C, \ldots$ are pairwise (resp. mutually) independent.

Proof:

$$Pr[1_A = 1, 1_B = 1, 1_C = 1] = Pr[A \cap B \cap C],...$$

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example: Flip two fair coins, $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y.$

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example: Flip two fair coins,

 $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y. \text{ Then, } X, Y, Z \text{ are pairwise independent.}$

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example: Flip two fair coins,

 $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y. \text{ Then, } X, Y, Z \text{ are pairwise independent. Let } g(Y, Z) = Y \oplus Z.$

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example: Flip two fair coins,

 $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y. \text{ Then,}$ $X, Y, Z \text{ are pairwise independent. Let } g(Y, Z) = Y \oplus Z. \text{ Then } g(Y, Z) = X \text{ is not independent of } X.$

One has the following result:

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent.

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$ are mutually independent.

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$ are mutually independent.

Proof:

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$ are mutually independent.

Proof:

Let $B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1 x_2 (x_3 + x_4)^2 \in A_1\}$. Similarly for B_2, B_3 .

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1:=X_1X_2(X_3+X_4)^2, Y_2:=\max\{X_5,X_6\}-\min\{X_7,X_8\}, Y_3:=X_9\cos(X_{10}+X_{11})$ are mutually independent.

Proof:

Let $B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1 x_2 (x_3 + x_4)^2 \in A_1\}$. Similarly for B_2, B_3 . Then

$$\textit{Pr}[\textit{Y}_1 \in \textit{A}_1, \textit{Y}_2 \in \textit{A}_2, \textit{Y}_3 \in \textit{A}_3]$$

Functions of mutually independent RVs

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

$$Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$$
 are mutually independent.

Proof:

Let $B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1 x_2 (x_3 + x_4)^2 \in A_1\}$. Similarly for B_2, B_3 . Then

$$Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3]$$

= $Pr[(X_1, ..., X_4) \in B_1, (X_5, ..., X_8) \in B_2, (X_9, ..., X_{11}) \in B_3]$

Functions of mutually independent RVs

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

$$Y_1:=X_1X_2(X_3+X_4)^2, Y_2:=\max\{X_5,X_6\}-\min\{X_7,X_8\}, Y_3:=X_9\cos(X_{10}+X_{11})$$
 are mutually independent.

Proof:

Let $B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1x_2(x_3 + x_4)^2 \in A_1\}$. Similarly for B_2, B_3 . Then

$$\begin{split} & Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] \\ & = Pr[(X_1, \dots, X_4) \in B_1, (X_5, \dots, X_8) \in B_2, (X_9, \dots, X_{11}) \in B_3] \\ & = Pr[(X_1, \dots, X_4) \in B_1] Pr[(X_5, \dots, X_8) \in B_2] Pr[(X_9, \dots, X_{11}) \in B_3] \end{split}$$

Functions of mutually independent RVs

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let $\{X_n, n \ge 1\}$ be mutually independent. Then,

 $Y_1:=X_1X_2(X_3+X_4)^2, Y_2:=\max\{X_5,X_6\}-\min\{X_7,X_8\}, Y_3:=X_9\cos(X_{10}+X_{11})$ are mutually independent.

Proof:

Let $B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1x_2(x_3 + x_4)^2 \in A_1\}$. Similarly for B_2, B_3 . Then

$$\begin{split} & Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] \\ & = Pr[(X_1, \dots, X_4) \in B_1, (X_5, \dots, X_8) \in B_2, (X_9, \dots, X_{11}) \in B_3] \\ & = Pr[(X_1, \dots, X_4) \in B_1] Pr[(X_5, \dots, X_8) \in B_2] Pr[(X_9, \dots, X_{11}) \in B_3] \\ & = Pr[Y_1 \in A_1] Pr[Y_2 \in A_2] Pr[Y_3 \in A_3] \end{split}$$

Theorem

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \triangle B, C \setminus D, \overline{E}$ are mutually independent.

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \triangle B, C \setminus D, \overline{E}$ are mutually independent.

Theorem

Theorem

Let $X_1, ..., X_n$ be mutually independent RVs.

Theorem

Let $X_1, ..., X_n$ be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Theorem

Let $X_1, ..., X_n$ be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Theorem

Let $X_1, ..., X_n$ be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for *n*.

Theorem

Let $X_1, ..., X_n$ be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for n. (It is true for n = 2.)

Theorem

Let $X_1, ..., X_n$ be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for n. (It is true for n = 2.)

Theorem

Let $X_1, ..., X_n$ be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for n. (It is true for n = 2.)

$$E[X_1\cdots X_nX_{n+1}] = E[YX_{n+1}],$$

Theorem

Let $X_1, ..., X_n$ be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for n. (It is true for n = 2.)

$$E[X_1 \cdots X_n X_{n+1}] = E[Y X_{n+1}],$$

= $E[Y] E[X_{n+1}],$

Theorem

Let $X_1, ..., X_n$ be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for n. (It is true for n = 2.)

$$E[X_1 \cdots X_n X_{n+1}] = E[YX_{n+1}],$$

= $E[Y]E[X_{n+1}],$
because Y, X_{n+1} are independent

Theorem

Let $X_1, ..., X_n$ be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for n. (It is true for n = 2.)

$$E[X_1 \cdots X_n X_{n+1}] = E[YX_{n+1}],$$

$$= E[Y]E[X_{n+1}],$$
because Y, X_{n+1} are independent
$$= E[X_1] \cdots E[X_n]E[X_{n+1}].$$

Flip a coin:

Flip a coin: If H you make a dollar. If T you lose a dollar.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) =

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin:

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let *Y* be the RV indicating how much money you make.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let Y be the RV indicating how much money you make.

$$E(Y) =$$

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let Y be the RV indicating how much money you make. E(Y) = 0.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let Y be the RV indicating how much money you make. E(Y) = 0.

Any other measures???

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let Y be the RV indicating how much money you make. E(Y) = 0.

Any other measures??? What else that's informative can we say?

The variance measures the deviation from the mean value.

The variance measures the deviation from the mean value.

Definition: The variance of *X* is

The variance measures the deviation from the mean value.

Definition: The variance of *X* is

$$\sigma^2(X) := var[X] = E[(X - E[X])^2].$$

Variance

The variance measures the deviation from the mean value.

Definition: The variance of *X* is

$$\sigma^2(X) := var[X] = E[(X - E[X])^2].$$

 $\sigma(X)$ is called the standard deviation of X.

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^2]$$

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2}]$

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2}$
= $E[X^{2}] - E[2XE[X]] + E[E[X]^{2}]$

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2}$
= $E[X^{2}] - E[2XE[X]] + E[E[X]^{2}]$ by linearity

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2}$
= $E[X^{2}] - E[2XE[X]] + E[E[X]^{2}]$ by linearity
= $E[X^{2}] - 2E[X]E[X] + E[X]^{2}$,

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$

 $= E[X^{2} - 2XE[X] + E[X]^{2}$
 $= E[X^{2}] - E[2XE[X]] + E[E[X]^{2}]$ by linearity
 $= E[X^{2}] - 2E[X]E[X] + E[X]^{2},$
 $= E[X^{2}] - E[X]^{2}.$

This example illustrates the term 'standard deviation.'

This example illustrates the term 'standard deviation.'

This example illustrates the term 'standard deviation.'

Consider the random variable X such that

$$X = \begin{cases} \mu - \sigma, & \text{w.p. } 1/2 \\ \mu + \sigma, & \text{w.p. } 1/2. \end{cases}$$

This example illustrates the term 'standard deviation.'

Consider the random variable X such that

$$X = \begin{cases} \mu - \sigma, & \text{w.p. } 1/2\\ \mu + \sigma, & \text{w.p. } 1/2. \end{cases}$$

Then, $E[X] = \mu$ and $(X - E[X])^2 = \sigma^2$.

This example illustrates the term 'standard deviation.'

Consider the random variable X such that

$$X = \begin{cases} \mu - \sigma, & \text{w.p. } 1/2\\ \mu + \sigma, & \text{w.p. } 1/2. \end{cases}$$

Then, $E[X] = \mu$ and $(X - E[X])^2 = \sigma^2$. Hence,

$$var(X) = \sigma^2$$
 and $\sigma(X) = \sigma$.

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$

 $E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100.$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$

 $E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100.$
 $Var(X) \approx 100 \Longrightarrow \sigma(X) \approx 10.$

1. $Var(cX) = c^2 Var(X)$, where c is a constant.

1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant.

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$

= $c^2 E(X^2) - c^2 (E(X))^2$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$

= $c^2 E(X^2) - c^2 (E(X))^2 = c^2 (E(X^2) - E(X)^2)$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

$$= E((X-E(X))^{2})$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

$$= E((X-E(X))^{2}) = Var(X)$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

$$= E((X-E(X))^{2}) = Var(X)$$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

Hence,

$$var(X+Y) = E((X+Y)^2)$$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2)$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$

$$= E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$$

$$= E(X^2) - (E(X))^2 + E(Y^2) - (E(Y))^2$$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$

$$= E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$$

$$= E(X^2) - (E(X))^2 + E(Y^2) - (E(Y))^2 = var(X) + var(Y).$$

Theorem: If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0.$$

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X+Y+Z+\cdots) = E((X+Y+Z+\cdots)^2)$$

Theorem:

If X, Y, Z, \dots are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^{2})$$

= $E(X^{2} + Y^{2} + Z^{2} + \cdots + 2XY + 2XZ + 2YZ + \cdots)$

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^{2})$$

$$= E(X^{2} + Y^{2} + Z^{2} + \cdots + 2XY + 2XZ + 2YZ + \cdots)$$

$$= E(X^{2}) + E(Y^{2}) + E(Z^{2}) + \cdots + 0 + \cdots + 0$$

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^{2})$$

$$= E(X^{2} + Y^{2} + Z^{2} + \cdots + 2XY + 2XZ + 2YZ + \cdots)$$

$$= E(X^{2}) + E(Y^{2}) + E(Z^{2}) + \cdots + 0 + \cdots + 0$$

$$= var(X) + var(Y) + var(Z) + \cdots$$

Gigs so far:

1. How to tell random from human.

Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.

Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.

Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox

Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox

Today:

Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox

Today: Simpson's paradox.

Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox

Today: Simpson's paradox.

How come this show is still around?

Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox

Today: Simpson's paradox.

How come this show is still around?

Wait...

Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox

Today: Simpson's paradox.

How come this show is still around?

Wait... Wrong Simpson.

In 1314 English women were surveyed in 1972-1974 and again after 20 years about smoking:

In 1314 English women were surveyed in 1972-1974 and again after 20 years about smoking:

Smoker	Dead	Alive	Total	% Dead
Yes	139	443	582	24
No	230	502	732	31
Total	369	945	1314	28

In 1314 English women were surveyed in 1972-1974 and again after 20 years about smoking:

Smoker	Dead	Alive	Total	% Dead
Yes	139	443	582	24
No	230	502	732	31
Total	369	945	1314	28

Not smoking kills!

In 1314 English women were surveyed in 1972-1974 and again after 20 years about smoking:

Smoker	Dead	Alive	Total	% Dead
Yes	139	443	582	24
No	230	502	732	31
Total	369	945	1314	28

Not smoking kills!

A closer look:

A closer look:

Age group	18-	-24	25-	-34	35–44		45–54		55–54	
Smoker	Y	N	Y	N	Y	N	Y	N	Y	N
Dead	2	1	3	5	11	7	27	12	51	40
Alive	53	61	121	152	95	114	103	66	64	81
Ratio	2	.3	0.	75	2	.4	1.4	4	1.	61

A closer look:

Age group	18–24		25-34		35–44		45–54		55–54	
Smoker	Y	N	Y	N	Y	N	Y	N	Y	N
Dead	2	1	3	5	11	7	27	12	51	40
Alive	53	61	121	152	95	114	103	66	64	81
Ratio	2.3		0.75		2.4		1.44		1.61	

In each separate category, the percentage of fatalities among smokers is higher, and yet the overall percentage of fatalities among smokers is lower!

Summary

Random Variables

- ▶ A random variable X is a function $X : \Omega \to \Re$.
- ► $Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$
- ▶ $Pr[X \in A] := Pr[X^{-1}(A)].$
- ▶ The distribution of X is the list of possible values and their probability: $\{(a, Pr[X = a]), a \in \mathcal{A}\}.$
- g(X, Y, Z) assigns the value
- $\blacktriangleright E[X] := \sum_a aPr[X = a].$
- Expectation is Linear.
- Independent Random Variables.
- Variance.