Микропроцессорный комплект К1804

Комплект быстродействующих процессорных БИС серии К1804 предназначен для построения микроЭВМ средней производительности, контроллеров средств цифровой автоматики. Комплект может служить элементной базой СМ ЭВМ и рассчитан на реализацию структур машин с произвольной системой команд. Секционная архитектура БИС комплекта позволяет наращивать разрядустройств. Способ управления ность БИС - микропрограммный. Ориентация на выбранную систему команд реализуетэмуляцией на микропрограммном уровне, путем занесения в ПЗУ необходимых для этого прошивок. На комплекте К1804 реализована микроЭВМ «Электроника-81» с унифицированными интерфейсами и системой команд [1-4].

11.1. Состав комплекта

В состав серии К1804 входят следующие БИС: два типа секционных центральных процессорных элементов (ЦПЭ); два типа секционных блоков микропрограммного управления (СБМУ); контроллер послеловательностей микрокоманд (КПМ); управления блок микропрограммного (БМУ); секционный контроллер адреса (КА); параллельный регистр (РГ); блок ускоренного переноса (БУП); контроллер состояния (КС); три типа секционных магистральных приемо-передатчиков (МПП); генератор синхронизации (ГСИ); многоцелевой буферный регистр (МБР); секционный 8-разрядный порт ввода/вывода (ПВВ).

Основные системные параметры и обозначения БИС комплекта К1804 приведены в табл. 11.1. Все БИС имеют напряжение питания (5 ± 0.25) В и совместимы со стандартными ТТЛ схемами.

При использовании комплект дополняется ИС серий К531, К555, К133, К533, БИС ЗУ серий К541, К556, К133 и другими совместимыми с ТТЛ ИС.

11.2. Центральный процессорный элемент K1804BC1

Большая интегральная схема ЦПЭ предназначена для арифметико-логической обработки данных и временного хранения результатов вычислений во встроенной регистровой памяти. Обладая секционной структурой, ЦПЭ позволяет за счет объединения нескольких БИС строить процессоры произвольной разрядности.

Структура БИС ЦПЭ. Блок-схема ЦПЭ приведена на рис. 11.1 в ее состав входят: 4-разрядное арифметико-логическое устройство (ALU); два сдвигателя (SHL1, SHL2); два регистра-защелки (RGA, RGB); два мультиплексора (MUX); рабочий регистр QR; блок регистров общего назначения с организацией (RAM); декодер микрокоманд (DC).

Структура БИС хорошо приспособлена для обработки сложных алгоритмов арифметических операций. Описание выводов БИС приведено в табл. 11.2.

Система микрокоманд. Микросхема управляется 18-разрядной микрокомандой, включающей 9-разрядный код ми-

Система микрокоманд обеспечивает высокое алгоритмическое быстродействие БИС. Например, наличие микрокоманд (BR, QR) := SLR(BR + AR, QR) и (BR, QR) := SLR(BR, QR) позволяет организовать обработку микропрограммы умножения модулей чисел с быстродействием

Таблица 11.3. Выбор источников операндов в БИС K1804BC1

Мнемо- ника	Ми	кроком М1(2—6	анда 2)	Источник операндов АЛУ				
			-,	R	S			
AQ	0	0	0	A	0			
AQ AB	0	0	1	A	Q B			
ZQ ZB	0	1	0	0				
	0	1	. 1	0	Q B			
ZA	İ	0	0	0	A			
DA	1	0	1	D	A			
DQ DZ	1	1	0	D	Q			
DZ	1	1	1	D	ō			
			<u> </u>	1	Ĺ			

Таблица 11.2. Описание выводов БИС К1804ВС1

Обозначение выводов	Номер контакта	Назначение вывода
$DI(3-\theta)$	22; 23; 24; 25	Входная 4-разрядная параллельная шина данных
$DO(3-\theta)$	39; 38; 37; 36	Выходная 4-разрядная параллельная шина данных
SR1, SL1,	9; 8; 21; 16	Двунаправленные цепи сдвига информации в АЛУ и рабочем
SR2, $SL2$		регистре
AA(3-0)	1; 2; 3; 4	4-разрядная параллельная шина адреса РОН (порт А)
AB(3-0)	20; 19; 18; 17	4-разрядная параллельная шина адреса РОН (порт В)
CI	32	Вход последовательного переноса АЛУ
CO ,	28	Выход последовательного переноса АЛУ
P, G	26; 29	Выходы разрешения и распространения параллельного перено-
		са АЛУ
V	27	Выход признака переполнения результата
\boldsymbol{z}	11	Выход признака нуля результата
N	30	Выход знака результата
OE	40	Вход разрешения выдачи данных в $DO(3-0)$
MI(8-0)	6; 7; 5; 34;	9-разрядная параллельная входная шина микрокоманды
	33; 35; 14;	
	13; 12	
CLK	15	Вход синхронизации
U_{CC}	10	Напряжение питания (+5 В)
GND	31	» » (0 B)

крооперации, строб выдачи данных и два 4-разрядных адреса (RAM). Поля AA и AB ведут выбор регистров на A и B входах MUX. Разряды MI(2-0) определяют выбор источников операндов (табл. 11.3), MI(8-6) — приемник результата (табл. 11.4), а MI(5-3) — операции ALU (табл. 11.5).

один такт на разряд при размещении в QR — множителя, в AR — множимого с образованием произведений в BR и QR.

Являясь типичным представителем секционных микропроцессоров, имеющих микрокоманды с фиксированными полями, ЦПЭ обладает и недостатками, основным среди которых является очень

Таблица 11.4. Выбор приеминков результата в БИС К1804ВС1

	Микрокоманда <i>М1</i> (8 – 6)			_	Код	Сдвигатель				
Мнемо- ника				Фун	Функция			RAM		R
				RAM	QR	·DY	SR1	SL1	SR2	SL2
OREQ	0	0	0	_	(QR):=(F)	F	·X	x	x	Х
VOP .	ŏ	Ō	1	_		F	Х	X	X	X
PAMA	Ŏ	1	0	(BR):=(F)	-	A	Х	X	X	X
RAME	Ŏ	1	1	(BR):=(F)	- ·	F	Х	X	X	X
RAMQD	Ιĭ	0	0	(BR):=SLR(F)	(OR) := SLR(QR)	F	F_0	DI_3	QR_0	DI
RAMD	1 1	0	1	(BR):=SLR(F)		F	F_0	DI_3	QR_0	X
RAMQU	l î	ī	0	(BR):=SLL(F)	(QR) := SLR(QR)	F	DI_0	F_3	DI_0	QF
RAMŪ	i	1	1	(BR): = $SLL(F)$		F	DI_0	F_3	X	QF

Примечания: 1. SLL — сдвиг логический влево (в сторону старших разрядов). 2. SLR — сдвиг логический вправо (в сторону младших разрядов). 3. BR — регистр RAM, выбранный по входам AB(3-0). 4. «—» — пустая операция (NOP). 5. X — произвольное значение ($X \in [0,1]$).

Таблица 11.5. Операции ALU БИС K1804BC1

Мнемо-		икр		Функция		Формирование сиг	налов на выходах	
ника		ман (5 —		АЛУ	P	G	CO	V
ADD	0	0	0	R + S + CI	P ₃ P ₂ P ₁ P ₀	$ \overline{G}_3 \vee \overline{P_3G_2} \vee \\ \vee \overline{P_3} \ \overline{P_2} \ \overline{G_1} \vee \\ \vee \overline{P_3} \ \overline{P_2} \ \overline{P_1} \ \overline{G_0} $	C ₄	$C_3 \oplus C_4$
SUBR	0	0	1	S-R+CI	Ан	алогично <i>R</i> + <i>S</i>	с заменой R_i н	a \overline{R}_i
SUBS	0	1	0	R-S+CI	Ана	алогично $R+S$	с заменой S _i на	\bar{S}_i
OR ,	0	1	1	$R \vee S$	0	$P_3P_2P_1P_0$	$ \begin{array}{c c} \hline P_3P_2P_1P_0 \lor \\ \lor CI \end{array} $	$ \begin{array}{c c} \hline P_3P_2P_1P_0 \lor \\ \lor CI \end{array} $
AND	1	0	0	$R \wedge S$	0	$\vec{G_3} \lor \vec{G_2} \lor G_1 \lor \lor \vec{G_0}$	$G_3 \vee G_2 \vee G_1 \vee G_0 \vee CI$	$G_3 \vee G_2 \vee G_1 \vee \\ \vee G_0 \vee CI$
NOTRS	1	0	1	$\overline{R} \wedge S$	0	Аналогично	R ∧ S с замен	ой R_i на \overline{R}_i
EXOR	1	1	0	$R \oplus S$	Ан	алогично $R \overline{\forall S}$	с заменой \overline{R}_i на	ı R _i
EXNOR	1	1	1	R⊕S	$G_3 \vee G_2 \vee \vee G_1 \vee G_0$	$G_3 \vee P_3G_2 \vee V_3P_2G_1 \vee V_3P_2P_1P_0$	$ \overline{G}_{3} \vee \overline{P_{3}G_{2}} \vee \\ \overline{\vee P_{3}P_{2}G_{1}} \vee \\ \vee \overline{P_{3}P_{2}P_{1}P_{0}} \vee \\ \vee (\overline{G_{0}} \vee \overline{C}I) $	*

^{*} $[\bar{P}_2 \vee \bar{G}_2\bar{P}_1 \vee \bar{G}_2\bar{G}_1\bar{P}_0 \vee \bar{G}_2\bar{G}_1\bar{G}_0CI] \forall [\bar{P}_3 \vee \bar{G}_3\bar{P}_2 \vee \bar{G}_3\bar{G}_2\bar{P}_1 \vee \bar{G}_3\bar{G}_2\bar{G}_1\bar{P}_0 \vee \bar{G}_3\bar{G}_2\bar{G}_1\bar{G}_0CI],$ The $P_0 = R_0 \vee S_0$; $G_0 = R_0S_0$; $P_1 = R_1 \vee S_1$; $G_1 = R_1S_1$; $P_2 = R_2 \vee S_2$; $G_2 = R_2S_2$; $P_3 = R_3 \vee S_3$; $G_3 = R_3S_3$; $G_3 = G_2 \vee P_2G_1 \vee P_2P_1G_0 \vee P_2P_1P_0CI$; $C_4 = G_3 \vee P_3G_2 \vee P_3P_2G_1 \vee P_3P_2P_1G_0 \vee P_3P_2P_1P_0CI$.

большая разрядность управляющих кодов. Следует также отметить, что БИС К1804ВС1 выполняет только логические сдвиги, преобразование которых при умножении в арифметические осуществляется контроллером состояний К1804ВР2 (требующим для управления цепями сдвига и переноса еще пяти управляющих сигналов) или внешней логикой, реализованной на ИС серии К531. При расчете быстродействия к задержкам ЦПЭ нужно прибавлять задержки не только в БУП К1804ВР1, но и в контроллере состояний K1804BP2.

Большая интегральная схема ЦПЭ не имеет конвейерного регистра микрокоманд и требует для их хранения использования пяти корпусов ИС К533ИР1. Разрядность конвейерного регистра может быть уменьшена на 8 бит при использовании временной диаграммы работы процессора, учитывающей наличие регистров-защелок данных на обоих выходах RAM (RGA, RGB).

11.6. Блок микропрограммного управления **К1804ВУ4**

Микросхема предназначена для генерации последовательностей адресов микрокоманд разрядностью в 12 бит. БИС K1804BY4 не позволяет наращивать адрес за счет объединения нескольких микросхем и представляет собой законченное устройство с возможностями, адекобъединенным БИС ватными трем БИС K1804BV2. управляемых одной К1804ВУ3.

Структура БМУ. Блок-схема БМУ К1804ВУ4 приведена на рис. 11.4, в ее состав входят: 12-разрядный регистр-вычитающий счетчик, используемый для загрузки начального адреса и принудительной адресации (СТ), а также подсчета числа циклов; пятиуровневый стек адресов микропрограмм (STACK) с регистром - указателем стека (SP); рядный микропрограммный счетчик (РС) с блоком инкремента (INC); 4-входовой мультиплексор (MUX); декодер нулевого адреса (DC); схемы управления БМУ, выполненные в виде программируемой логической матрицы (PLA).

Описание выводов БМУ приведено в табл. 11.15. Микросхема имеет совмещенную шину задания принудительного

Рис. 11.4

Таблица 11.15. Описание выводов БМУ К1804ВУ4

Обозна- чение выводов	Номер контакта	Назначение вывода
DI (11-00)	27; 25; 23; 21; 19; 17; 4; 2; 40;	12-разрядная парал- лельная входная шина принудительного адреса
MIA (11-00)	38; 36; 34 28; 26; 24; 22; 20; 18; 3; 1; 39;	12-разрядная парал- лельная выходная шина адреса микрокоманд
$MI(3-\theta)$	37; 35; 33 8; 9; 11; 12	Входная 4-разрядная параллельная шина микрокоманд
CC ·	14	Вход условного перехода
EC	13	Вход разрешения ана-
OE	29	лиза условия Вход разрешения вы-
CI	32	дачи адреса Вход разрешения
RE	15	счета Вход разрешения за-
FL	16	писи в регистр адреса Выход признака за-
ME	7	полнения стека Выход разрешения работы ПЗУ начальных адресов

Номер контакта	Назначение вывода
5	Выход выбора источ-
ł	ника адреса
6	Выход разрешения
İ	работы конвейерного
	регистра микрокоманд
31	Вход синхронизации
10	Напряжение питания
	(+5 B)
30	Напряжение питания
	(0 B)
	5 6

и начального адресов, что в ряде применений требует использования внешнего мультиплексора для подключения шины DI к выходам ПЗУ микрокоманд или ПЗУ начальных адресов микропрограмм. БИС не имеет встроенного конвейерного регистра микрокоманд, и ее работа синхронизируется одной серией. Сигналы RE и OE обычно поступают из ПЗУ микрокоманд.

Система микрокоманд БМУ. Работа БИС управляется 8-разрядной микроподаваемой командой. MI(3-0), OE, EC, CI и RLD. В режиме принудительной адресации требуется дополнительно подача 12-разрядного адреса в шину DI, таким образом, суммарная разрядность микрокоманды в ПЗУ достигает 20 бит. Анализ системы микрокоманд (табл. 11.16) указывает на возможность эмуляции с помощью БИС всех микроопераций. выполняемых набором СМУ К1804ВУ2 TDEX И КМП К1804ВУЗ. При этом БМУ обладает и рядом преимуществ, к числу которых следует отнести: большую кратность вложения микропрограмм (до пяти уровней); возможность последовательного адресов в двух регистрах СТ и РС в противоположных направлениях; подсчет числа циклов в БМУ (до 4096 итераций).

Отличительными особенностями БИС являются генерация трех дополнительных сигналов управления VE, PE, ME и выработка сигнала заполнения стека FL. Специфику использования различных микрокоманд БМУ иллюстрирует рис. 11.5.

Рис. 11.5

Таблица 11.16. Система микрокоманд БМУ К1804ВУ4

Мнемо- ника	Микро- команда <i>М1(3-0)</i>	Название операции	Со- стоя- ние	Дейс <i>EC</i> ,	твия при <i>CC</i> = 01	Дейс <i>EC</i> ,	твия при <i>CC</i> = 10	новка	Выда- вае- мый
<u></u>	M1(3-0)		CT	MIA	STACK	MIA	STACK	CT	сигнал
JZ	0000	Переход адреса в нуль	х	0	CLEAR	0	CLEAR		PE
CJS	0001	Переход к подпрограмме	Х	PC	_	DI	PUSH	_	PE
JMAP	. 0010	Вход в команду	Х	DI	_	DI	_	_	ME
CJP	0011	Безусловный переход из	X	PC	- :	DI	-	_	PE
		PC							
PUSH	0100	Загрузка РС в стек	X	PC	PUSH	PC	PUSH	*	PE
JSRP	0101	Вход в две подпрограм-	X	CT	PUSH	DI	PUSH	_	PE
i l		мы						·	
CJV]	0110	Безусловный переход из	X	CT	_	DI			\overline{VE}
	i.	СТ по заданному адресу							' -
JRP	0111	Безусловный переход из	X	CT	_	DI	_	_	\overline{PE}
<u> </u>		CT							

Мнемо- ника	Микро- команда <i>МI(3-0</i>)	Название операции	Со- стоя- ние		твия при СС = 01			Уста- новка <i>СТ</i>	Выда- вае- мый
	M1(3-0)		CT	MIA	STACK	MIA	STACK		сигнал
RFCT	1000	Повторение при							
		$CT \neq 0, RG \neq 0$	≠0	ST	_	ST	· _	DEC	$\overline{P}\overline{E}$
			= 0	PC	POP	POP	POP	-	PE
RPCT	1001	Повторение при						l	
1		$CT \neq 0, RG \neq 0$. ≠ 0	DI	-	DI	-	DEC	$\frac{\overline{PE}}{\overline{PE}}$
1 1		·	= 0	PC	–	PC	_	l –	\overline{PE}
CRTN	1010	Возврат из подпрограм-	X	PC	–	ST	POP	l –	\overline{PE}
1		мы					'	İ	
CJPP	1011	Переход с выбором из стека	Х	PC	_	DI	POP	_	PE
LDCT	1100	Загрузка <i>СТ</i> и продол- жение	X	PC		PC	_	LOAD	PE
LOOP	1101	Организация цикла	x	ST	_	PC	POP		PE
CONT	1110	Последовательная адре-	x	PC	l _	PC	_	l _	$\frac{TE}{PE}$
		сания					,		••
TWB	1111	Ветвление в три точки	≠0	ST	_	PC	POP	DEC	\overline{PE}
		l i i i i i i i i i i i i i i i i i i i	= 0	DI	POP	PC	POP		$\frac{\overline{PE}}{PE}$
				-		- 0			12

Примечания: 1. CLEAR — очистка. 2. PUSH — инкремент SR с последующей загрузкой адреса в стек. 3. POP — выбор адреса из стека с последующим декрементом SR. 4. LOAD — загрузка. 5. X — произвольное значение сигнала $(X \in [0,1])$.

^{*} При CC, $EC \neq 10$ — загрузка, иначе пустая операция (—).

11.8. Контроллер состояний К1804ВР2

Микросхема КС предназначена для управления цепями сдвига, переноса и формирования признаков ветвлений программ и микропрограмм процессоров, построенных на основе секционных ЦПЭ К1804ВС1.

Структура КС К1804ВР2. Структурная схема контроллера состояний приведена на рис. 11.7, в его состав входят: мульти-

плексоры сдвигов SH MUX, переносов C MUX, проверки признаков ветвлений TST MUX и три 4-разрядных мультиплексора информационных цепей MUX; регистры признаков ветвлений микропрограмм NRG и программ MRG; дешифратор микроопераций DC.

Описание выводов КС приведено в табл. 11.19. В составе БИС можно выделить три блока с функционально-различным назначением: логику формирования сдвигов SH MUX; логику управления переносами С MUX и DC; логику формирования признаков ветвлений программ и микропрограмм MRG, NRG, TST MUX и MUX.

Принципы использования КС поясняются приведенной на рис. 11.8 функциональной схемой 16-разрядного процессора, где БИС «вставляется в разрыв» цепи сдвигов и переносов между ЦПЭ, находящимися в старшей и младшей позиции. Так как в самих ЦПЭ К1804ВС1 нет входов задания позиции, то КС формирует необходимые коды на входах сдвигов и таким образом трансформирует логические сдвиги данных в ЦПЭ в логические, арифметические или циклические сдвиги данных в процессоре, гене-

рирует сигналы входного переноса и управляет входом ветвлений устройства микропрограммного управления. Для прерывания подпрограмм с сохранением и восстановлением содержимого регистра состояний процессора в БИС предусмотрена возможность записи информации в MRG и NRG из входной шины I (C, Z, N, V) и выдачи их содержимого в выходную шину Y (C, Z, N, V).

В MRG и NRG имеется по четыре триггера, предназначенных для хранения признаков С — переноса, Z — нуля, N — знака, V — переполнения. При реализации специализированных систем в этих триггерах могут храниться и другие признаки, что достигается коммутацией сигналов на входной и выходной шинах.

Система микрокоманд КС. Управление сигналами переноса осуществляется 2-разрядной микрокомандой, поступающей на входы MI(12-11), и сигналами MI(5, 3, 21) согласно табл. 11.20. При этом на вход переноса ЦПЭ, стоящего в младшей позиции, могут быть поданы перенос из предыдущего такта, запомненый в NRG, сдвиг из SHMX, 0,1 или значение входного переноса, считанное из ПЗУ микрокоманд.

Управление типом сдвига осуществляется микрокомандой, поступающей на входы MI(10-6) согласно табл. 11.21. При этом в качестве входных переменных могут использоваться сигналы на выводах сдвига и шине I(C, N, V, Z). Все типы сдвигов данных в ЦПЭ, образуемых с помощью КС, иллюстрируются рис. 11.9, где MI(10-6) дано в восьмеричном коде; BR и QR имеют старшие разряды слева.

Управление регистрами состояния осуществляется кодом на MI(5-0) согласно табл. 11.22, при этом в качестве дополнительных разрядов управления используются сигналы выбора регистров \overline{CEM} , \overline{CES} и сигналы выбора триггеров SRG (\overline{EC} , \overline{EZ} , \overline{EN} , \overline{EV}), благодаря чему возможна селекция как регистров, так и отдельных триггеров в MRG. Управление выходом кода условия CC задается табл. 11.23.

Стробы выдачи \overline{OEV} , \overline{OEC} и \overline{SE} отпирают выходные каскады шин Y(C, Z, N, V), CC и сдвигов, благодаря чему достигается необходимая гибкость управления БИС.

Рис. 11.7

Таблица 11.19. Описание выводов КС К1804ВР2

Обозначение вывода	Номер контакта	Назначение вывода
I(C, Z, N, V)	12; 9; 14; 16	Входная 4-разрядная параллельная шина признаков условных переходов
EC, EZ, EN,	11; 8; 13; 15	Входы разрешения записи меток C , Z , N , V в регистр
EV	_ ;	состояния программ
CEM	7	Входы разрешения записи меток в регистры состоя-
		ния программ и микропрограмм
Y(C, Z, N, V)	31; 32; 29; 28	Выходная 4-разрядная параллельная шина признаков
		условных переходов
OEY	20	Вход разрешения выдачи меток
$MI(12-\theta)$	23; 22; 38; 39;	Входная 13-разрядная параллельная шина микрокоманд
	40; 1; 3; 4; 5; 6;	
	21; 19; 18	
CI	24	Вход переноса подключается к СО АЛУ
CO	25	Выход переноса подключается к СІ АЛУ
SRI, SLI, SR2,	35; 36; 33; 34	Двунаправленные цепи распространения сдвигов в ЦПЭ
SL2	, ,	
CC	27	Выход условия перехода
OECT	26	Вход разрешения выдачи условия
SE	37	Вход разрешения выполнения сдвига
CLK	17	Вход синхронизации
U_{CC}	' 10	Напряжение питания (+5 В)
GND	30	» » (0 B)

Правила управления выдачей информации в шину Y(C, Z, N, V) задает табл. 11.24, а табл. 11.25 — критерии для оценки результата операции вычитания (A - B) в БИС центрального процессора.

Puc. 11.8

Суммарная разрядность поля ПЗУ управляющего КС составляет 15 ÷ 20 бит. БИС не имеет встроенного конвейерного регистра микрокоманд.

Таблица 11.20. Управление сигналами переноса

Вхо**дной пе**ренос из ПЗУ

_	Ko	д микр	окоман	ды		Сигнал
MI12	<i>MI</i> 11	M15	MI3	M12	MI	на вы- ходе <i>СО</i>
0	0	X	х	х	х	0
0	ì	X X X	X	X	X	1
1 .	0.	X	X	X	X	CI
1	1	0	0	Х	X	NC
1	1	0	X	1	Х	NC
1	1	0	X	X	1	NC
1	1	0	1	0	0	NC
1	1	1	0	X	X	MC
1	1	1	X	1	X	MC
1	1	1.	X X	X	1	MC
1	1	1	1	0	0	MC

Примечания: 1. X — безразличное состояние ($X \in [0,1]$). 2. NC и MC — содержимое разрядов C регистров NRG и MRG соответственно.

Таблица 11.21. Упрявление выполнением сдвигов (при SE=0)

MI* (10 - 6)	Ин	формация сдвиг	я на выхо ов КС	одах	Загрузка _ в МС	MI* (10 – 6)	Ин	Загрузка			
	SL1	SR1	SL2	SR2			SLI	SRI	SL2	SR2	в МС
00	ΗZ	0	HZ	0	-	20	0	HZ	0	HZ	SR1
01	HZ	1	HZ	1	_	21	ì	HZ	i	HZ	SRI
02	HZ	0/	HZ	MN	SL1	22	0	HZ	0	HZ	_
03	HZ	1	HZ	SLI	-	23	1	HZ	1	HZ	! _
04	HZ	MC	HZ	SL1	_	24	SR2	HZ	0	HZ	SRI
05	HZ	MN	HZ	SL1	- 1	25	SR2	HZ	1	HZ	SRI
06	HZ	0	HZ	SL1	1 - 1	26	SR2	HZ	0	ΗZ	_
07	HZ	0	HZ	<i>SL</i> 1	SL2	27	SR2	HZ	1	HZ	_

MI* (10-6)	Ин			сдвигов КС Загрузка А		MI* (10-6)					
SL1	SRI	SL2	SR2		(10 0)	SL1	SR1	SL2	SR2	вМС	
10	HZ	SL1	HZ	SL2	SL1	30	SR1	HZ	SR2	HZ	SRI
11	HZ	MC	HZ	SL2	SL1	31	MC	HZ	SRI	HZ	SRI
12	HZ	SL1	HZ	SL2		32	SR1	HZ	SRI	HZ	
13	HZ	IC	HZ	SL1	-	33	MC	HZ	0	HZ	_
14	HZ	MC	HZ	SL1	SL2	34	SR2	HZ	мс	HZ	SR1
15	HZ	SL2	HZ	SL1	SL2	35	SR2	HZ	SR1	HZ	SR1
16	HZ	$IN \oplus IV$	HZ	SL1	_	36	SR2	HZ	MC	HZ	J
17	HZ	SL2	HZ	SL1	-	37	SR2	HZ	SR1	HZ	_

Примечание. HZ – высокоимпедансное состояние выхода; «-» – отсутствие операции загрузки MC.

^{*} Кодировка МІ в восьмеричном коде.

Рис. 11.9

Таблица 11.22. Операции загрузки регистров

Операции в <i>NRG</i>		Операции в <i>MRG</i>			
Код в M/*(5-0)	CEN = 0	Код в <i>МІ</i> * (5-0)	CEM = EZ = EC = EN = EV = 0		
00 01 02 03	(NRG) := (MRG) (NRG) := 1111 $(NRG) \leftrightarrow (MRG)$ (NRG) := 0000	00 01 02 03	(MRG) := Y(C, Z, N, V) (MRG) := 1111 (MRG) := (NRG) (MRG) := 0000		
06; 07	(NZ) := (IZ), (NC) := (IC). (NN) := (IN), (NV) := (IV) + (NV)	05	$(MRG) := (\overline{MRG})$ $(MZ) := (IZ),$ $(MC) := (MV),$ $(MN) := (IN),$		
10 11 12 13 14 15	(NZ) := 0 (NZ) := 1 (NC) := 0 (NC) := 1 (NN) := 0 (NN) := 1	10; 11; 30; 31; 50; 51; 70; 71	(MV) := (MC) (MZ) := (IZ). (MC) := (IC), (MN) := 'IN), (MV) := (IV)		
16 17 30; 31; 50; 51;	(NV) := 0 (NV) := 1 (NZ) := (IZ) (NC) := (IC)	06; 07; 12-17; 20-27; 32-37; 40-47; 52-67; 72-77	(MZ) := (IZ), (MC) := (IC), (MN) := (IN), (MV) := (IV)		
70; 71 04; 05; 20-27; 32-47; 52-67; 72-77	(NN) := (IN), (NV) := (IV) (NZ) := (IZ), (NC) := (IC), (NN) := (IN), (NV) := (IV)	Примечание. Команды сдвигов с участие разряда переноса загружают МС независимо кода $MI(5-0)$ * Восьмеричная кодировка микрокоманды.			

Таблица 11.23. Упрявление выходом кода условия

Код мик- рокоман- ды *	Правила образования выходного сигнала CC , индицируемого при $OEC=0$						
MI(3-0)	MI(5, 4) = 00	MI(5, 4) = 01	MI(5, 4) = 10	MI(5, 4) = 11			
7 8 9 A B	$(NN \oplus NV) + NZ$ $(\overline{NN \oplus NV}) \cdot \overline{NZ}$ $NN \oplus NV$ $\overline{NN \oplus NV}$ NZ \overline{NZ} NV \overline{NV} $NC + NZ$ $\overline{NC} \cdot \overline{NZ}$ NC \overline{NC} $\overline{NC} + NZ$	$(NN \oplus NV) + NZ$ $(NN \oplus NV) \cdot \overline{NZ}$ $NN \oplus NV$ NZ \overline{NZ} NV \overline{NV} $NC + NZ$ $\overline{NC} \cdot \overline{NZ}$ NC \overline{NC} $\overline{NC} + NZ$	$(MN \oplus MV) + MZ$ $(\overline{MN} \oplus \overline{MV}) + \overline{MZ}$ $MN \oplus MV$ MZ MZ MZ MV \overline{MV} $MC + MZ$ MC \overline{MC} MC \overline{MC}	$(IN \oplus IV) + IZ$ $(\overline{IN} \oplus \overline{IV}) \cdot \overline{IZ}$ $IN \oplus IV$ $\overline{IN} \oplus \overline{IV}$ IZ \overline{IZ} IV \overline{IV} $IC + IZ$ \overline{IC} \overline{IC} $\overline{IC} + IZ$			
Д Е F	$ \begin{array}{c} NC \overline{NZ} \\ IN \oplus MN \\ \overline{IN \oplus MN} \end{array} $	NC·NZ NN NN	$MC + \overline{MZ}$ MN \overline{MN}	IC · ĪZ IN ĪN			
* Шест	—— надцатиричный код.	·		447			

Таблица 11.24. Управление выходной шиной Y(C, Z, N, V)

Код на входах управления			
OÉY	M15	MI4	Информация на шине Y(C, Z, N, V)
1	х	X	Y(C, Z, N, V) := HZ
0	0	х	Y(C, Z, N, V) := (NRG)
0	1	0	Y(C, Z, N, V) := (MRG)
0	ì	1	Y(C, Z, N, V) := I(C, Z N, V)

Примечания: 1. При $MI(5-\theta)=00000$ шина Y(C,Z,N,V) является входом независимо от OEY. 2. X— произвольное значение $(X\in[0,1])$. 3. HZ— высоконмпедансное состояние выхода.

T а блица 11.25. Правила сравнения чисел после вычитания (A-B)

Комбинации А и В	Для чисел без знака			Для чисел в дополнительном коде		
	Состояние MRG	MI(3-0)		Состояние МКС	MI(3-0)	
	или NRG	CC = 1	CC = 0	или NRG	CC = 1	CC = 0
A = B	Z = 1	4	5	Z=1	4	5
$A \neq B$	Z = 0	5	4	Z = 0	5	4
$A \ge B$	C = 1	A	В	$N \oplus V = 1$	3	2
A < B	C = 0	В	A	$N \oplus V = 1$	2	3
A > B	$C \wedge \bar{Z} = 1$	Д	C	$\overline{(N \oplus V)} \wedge \overline{Z} = 1$	1	0
$A \leq B$	$\bar{C} + Z = 1$	C .	Д	$(N \oplus V) + Z = 1$	Q	1

Примечания. 1. $MI(3-\theta)$ в шестнадцатиричном коде. 2. Для K1804BV4 на вход CC следует подавать выход KC CC = 0.