HW 4

Bailey Wickham MATH 406

May 15, 2020

Problem 1

Define $T: \mathbb{C}^2 \to \mathbb{C}^3$ by

$$T(z_1, z_2) = (z_1 - 3z_2, z_1, 2z_1 + 5z_2)$$

Find T^*

Proof.

$$\langle (x_1, x_2), T^*(y_1, y_2, y_3) \rangle = \langle T(x_1, x_2), (y_1, y_2, y_3) \rangle$$

$$= \langle (x_1 - 3x_2, x_1, 2x_1 + 5x_2), (y_1, y_2, y_3) \rangle$$

$$= x_1 y_1 - 3x_2 y_1 + x_1 y_2 + 2x_1 y_3 + 5x_2 y_3$$

$$= x_1 (y_1 + 2y_3 + y_2) - x_2 (3y_1 + 5y_3)$$

$$\therefore T^*(y_1, y_2, y_3) = (y_1 + y_2 + 2y_3, 3y_1 + 5y_3)$$

Problem 2

Let $P_2(\mathbb{R})$ be equipped by the usual polynomial inner product. Define $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ by $T(a+bx+cx^2)=bx$.

- 1. Show that T is not self adjoint
- 2. Show that M(T) equals it's conjugate transpose. Does this violate 7.10?

Proof. 1. To show: $T^* \neq T$ or $\langle Tv, w \rangle \neq \langle v, Tw \rangle$ Take

$$\langle 1, T(2x) \rangle = \langle T(1), 2x \rangle$$

 $\langle 1, 2x \rangle = \langle 0, x \rangle$
 $1 \neq 0$

2. To show: $M(T) = M(T^*)$

$$M(T) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Taking the conjugate transpose, we get $M(T^*) = M(T)$. This is not a contradiction because theorem 7.10 is an if then, not an if and only if. Equal matricies do not imply an orthonormal basis.

Problem 3

Let U be a subspace of the complex finite dimensional IPS V. Prove or disprove P_U must be self adjoint.

Proof. Let $z=x+y; v=u+w, u, x\in U, w, y\in U^{\perp}$. To show: $Pv=P^*v,$ or $\langle Pv,z\rangle=\langle v,Pz\rangle$

$$\langle Pv, z \rangle =$$
 $\langle u, z \rangle$

$$\langle u, x \rangle + \langle u, y \rangle \text{ u, y are orthogonal}$$

$$\langle u, x \rangle + 0$$

$$\langle u, x \rangle + \langle w, x \rangle$$

$$\langle v, x \rangle$$

$$\langle v, Pz \rangle$$

$$\therefore P_U \text{ is self adjoint}$$

Problem 4

Discuss whether the set of self adjoint operators to a finite dimentional IPS is a subspace.

Proof. The sum of two self adjoint operators is always self adjoint. The zero map is a self adjoint operator. The only time when the the self adjoint operators don't form a subspace is under scalar multiplication over a complex field. They form a subspace over a real field. Axler 7.15 says T is self adjoint iff $Tv, v \in \mathbb{R}$, but under complex scalar multiplication, this isn't always true.

Problem Axler 3

Suppose $T \in L(V)$, prove U is invariant under T iff U^{\perp} is invariant under T^*

Proof. Suppose U is invariant under T. Then $u \in U \implies Tu \in U$. Let $w \in U^{\perp}, u \in U$

$$0 = \langle u, w \rangle$$
$$0 = \langle Tu, w \rangle$$
$$0 = \langle u, T^*w \rangle$$
$$\therefore T^*u \in U^{\perp}$$

So U^{\perp} is invariant under T^* Suppose U^{\perp} is invariant under T^* Let $w \in U^{\perp}, u \in U$

$$0 = \langle Tu, w \rangle$$
$$0 = \langle u, T^*w \rangle$$

 $\therefore w \in U^{\perp}$ using our hypothesis $\therefore u, Tu \in U \therefore U$ invariant under T

Problem Axler 4

Let $T \in L(V, W)$. Prove

- 1. T is injective iff T^* is surjective
- 2. T is surjective iff T^* is injective

Proof. 1. \Leftarrow Let T be injective. Axler 7.7 says that $nullT^* = (rangeT)^{\perp}$, so we want to show that $(rangeT)^{\perp} = 0$, implying that T^* is surjective. From my proof of 4 in last weeks homework, we can say that $(rangeT)^{\perp} = nullT$, and since T is injective nullT = 0, so T^* is surjective.

 \Longrightarrow Let T^* be surjective. Then $nullT=(rangeT^*)^{\perp}$. But T^* is surjective, so $(rangeT^*)^{\perp}=0$.

 $\therefore null T = 0 \therefore T$ is injective

2. This proof follows from 1. by replacing T with T^* and T^* with T

Problem Axler 12

Suppose that T is normal and 3,4 are eigenvalues of T. Prove there exists a $v \in V$ s.t. $||v|| = \sqrt{2}$ and ||Tv|| = 5

Proof. Recall that distinct eigenvalues generate orthogonal eigenvectors for normal operators. Let u, v be the eigenvectors, take w to be their sum.

$$w = u + v$$

$$||w||^2 = (|a|||u||)^2 + (|b|||v||)^2 \text{ where u,v can be scaled to a } ||u||, ||v|| \text{ of } 1$$

$$2 = a^2 + b^2$$

Now apply T.

$$w = u + v$$

$$Tw = Tu + Tv$$

$$Tw = |3|||u|| + |4|||v||$$

$$||Tw||^{2} = 3^{2} + 4^{2}$$

Problem Axler 14

Suppose T is normal on $V, v, w \in V$ satisfy

$$||v|| = ||w|| = 2, Tv = 3v, Tw = 4w$$

Show that ||T(v+w)|| = 10

Proof. Since v, w are eigenvectors, they are orthogonal, so we can use the pythagorean thm.

$$||T(v, w)||^2 = ||T(v) + T(w)||^2$$
$$||3v||^2 + ||4w||^2$$
$$9||v||^2 + 16||w||^2$$
$$9(4)^2 + 16(4)^2 = 10^2$$

Problem Axler 16

Suppose $T \in L(V)$ is normal. Prove

 $rangeT = rangeT^*$

Proof. Using 7.20, we can see that anything T sends to 0, T^* sends to 0, so $nullT = nullT^*$. Using Axler 7.7 we can say that $(rangeT) = (nullT^*)^{\perp}$ and $rangeT^* = (nullT^*)^{\perp}$, so $rangeT = rangeT^*$