# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ КАФЕДРА СУПЕРКОМПЬЮТЕРОВ И КВАНТОВОЙ ИНФОРМАТИКИ



СИСТЕМЫ И СРЕДСТВА ПАРАЛЛЕЛЬНОГО ПРОГРАММИРОВАНИЯ ЗАДАНИЕ 4: ПАРАЛЛЕЛЬНЫЙ АЛГОРИТМ УМНОЖЕНИЯ МАТРИЦЫ НА ВЕКТОР

Выполнил: Алёшин Н.А.

#### Постановка задачи и формат данных.

<u>Задача:</u> разработать параллельную программу с использованием технологии MPI, реализующую алгоритм умножения плотной матрицы на вектор Ab = c. Тип данных – float. Провести исследование эффективности разработанной программы на системе BlueGene/P.

<u>Формат командной строки:</u> <имя файла матрицы A размером N x M> <имя файла вектора B длиной M> <имя файла вектора C длиной N>

<u>Формат файла-матрицы:</u> матрицы представляются в виде бинарного файла следующего формата:

| Tun                 | Значение                             | Описание                 |  |
|---------------------|--------------------------------------|--------------------------|--|
| Число типа char     | T – f (float)                        | Тип элементов            |  |
| Число типа size_t   | N – натуральное число                | Число строк матрицы      |  |
| Число типа size_t   | M – натуральное число                | . Число столбцов матрицы |  |
| Массив чисел типа Т | N × M a Harrow (vnovignog Haemayyya) | Массив элементов         |  |
|                     | и × и элементов (хранятся построчно) | матрицы                  |  |

<u>Формат файла-вектора:</u> векторы представляются в виде бинарного файла следующего формата:

| Tun                 | Значение              | Описание                 |  |  |
|---------------------|-----------------------|--------------------------|--|--|
| Число типа char     | T – f (float)         | Тип элементов            |  |  |
| Число типа size_t   | N – натуральное число | Длина вектора            |  |  |
| Массив чисел типа Т | <i>N</i> элементов    | Массив элементов вектора |  |  |

### Результат выполнения.

## Время работы:

| Размеры матрицы Количество поз |      |          | потоков  |          |          |          |          |
|--------------------------------|------|----------|----------|----------|----------|----------|----------|
| M                              | N    | 32       | 64       | 128      | 256      | 512      | 512 map. |
| 512                            | 512  | 0.000519 | 0.000262 | 0.000134 | 0.000070 | 0.000038 | 0,000038 |
| 1024                           | 1024 | 0.002066 | 0.001037 | 0.000523 | 0.000266 | 0.000138 | 0,000149 |
| 2048                           | 2048 | 0.009202 | 0.004149 | 0.002305 | 0.001048 | 0.000577 | 0,000577 |
| 4096                           | 4096 | 0.033518 | 0.016786 | 0.008403 | 0.004214 | 0.002120 | 0,002336 |
| 4096                           | 1024 | 0.009163 | 0.004581 | 0.002066 | 0.001037 | 0.000523 | 0,000574 |
| 1024                           | 4096 | 0.016494 | 0.006716 | 0.002764 | 0.001411 | 0.000717 | 0,000717 |

#### Ускорение:

| Размеры матрицы Количество потоков |      |    |             |          |          |          |          |
|------------------------------------|------|----|-------------|----------|----------|----------|----------|
| M                                  | N    | 32 | 64          | 128      | 256      | 512      | 512 map. |
| 512                                | 512  | 1  | 1,980916031 | 3,873134 | 7,414286 | 13,65789 | 13,65789 |
| 1024                               | 1024 | 1  | 1,992285439 | 3,950287 | 7,766917 | 14,97101 | 13,86577 |
| 2048                               | 2048 | 1  | 2,217883827 | 3,992191 | 8,780534 | 15,94801 | 15,94801 |
| 4096                               | 4096 | 1  | 1,996783033 | 3,988814 | 7,953963 | 15,81038 | 14,34846 |
| 4096                               | 1024 | 1  | 2,000218293 | 4,43514  | 8,836066 | 17,52008 | 15,96341 |
| 1024                               | 4096 | 1  | 2,455926147 | 5,967438 | 11,68958 | 23,00418 | 23,00418 |

## Эффективность:

| Размеры | матрицы | Количеств | Количество потоков |          |          |          |          |  |
|---------|---------|-----------|--------------------|----------|----------|----------|----------|--|
| M       | N       | 32        | 64                 | 128      | 256      | 512      | 512 map. |  |
| 512     | 512     | 1         | 0,990458015        | 0,968284 | 0,926786 | 0,853618 | 0,853618 |  |
| 1024    | 1024    | 1         | 0,996142719        | 0,987572 | 0,970865 | 0,935688 | 0,866611 |  |
| 2048    | 2048    | 1         | 1,108941914        | 0,998048 | 1,097567 | 0,99675  | 0,99675  |  |
| 4096    | 4096    | 1         | 0,998391517        | 0,997203 | 0,994245 | 0,988149 | 0,896779 |  |
| 4096    | 1024    | 1         | 1,000109146        | 1,108785 | 1,104508 | 1,095005 | 0,997713 |  |
| 1024    | 4096    | 1         | 1,227963073        | 1,49186  | 1,461198 | 1,437762 | 1,437762 |  |

### Выводы.

Исследования показывают, что для любых размеров матриц ускорение растет при увеличении числа процессов. Все это означает что данная задача хорошо распараллеливается. Из таблиц можно увидеть, что случайный мэппинг практически не оказывает на решение задачи никакого влияния.