MATLAB code instruction for the Generalized Sparse Precision matrix Selection (GSPS) algorithm for fitting univariate/multivariate, isotropic/anisotropic Gaussian Random Field (GRF) models

http://arxiv.org/abs/1405.5576

Sam Davanloo Tajbakhsh https://u.osu.edu/davanloo/

System Requirement

The code works on Macintosh and Windows operating systems. On Macintosh systems, the code is tested on OS X Mavericks, Yosemite, and El Capitan. On Windows systems, it is tested on Windows 7 and 8. These tests are done on MATLAB 2014 and 2015b.

The SPS Package

The GSPS package includes a script driver file *driverGeneralSPS.m*. All of the functions are available in the *SPS_V05* folder which should be added to the MATLAB path.

The Training Data

Let $X \in \mathbb{R}^{n \times d}$ be the matrix of input/independent variables with d features and $Y \in \mathbb{R}^{n \times N \times 1}$ (for *univariate* response) or $Y \in \mathbb{R}^{n \times r \times N}$ (for *r-variate* response) be N realizations of the Gaussian Random Field (GRF) observed over n distinct points. X and Y are considered as the training data; so if cross-validation is required, it should be performed before this stage.

Main Variables

blk: A cell array containing the segmentation (blocking) information.

op1: A cell array containing the setting for the STAGE-I problem of the SPS algorithm.

hyper: A cell array containing the setting for the covariance function.

process: A cell array containing the setting for computational capabilities.

How to Run the GSPS Code

In this section, we briefly discuss how to run the GSPS code. First, open the *driverGeneralSPS.m* file. The lines with left arrow sign (\leftarrow) at the end are those that need to be

tuned by the user. Below, we will go over these lines starting from the top:

- blk.scheme determines the segmentation scheme. User may chose either 'SS' (Spatial Segmentation) or 'RS' (Random Segmentation). Please refer to the paper for more information on these two blocking schemes.
- uX variable in the 'SS' segmentation scheme is a $d \times 1$ vector containing the number blocks along each coordinate. A vector of all ones basically impose no segmentation scheme which is used when n is not big.
- blk.K determines the number of blocks in the 'RS' segmentation scheme. blk.K=1 defines only one block.
- opt1.monitor allows visual monitoring of the STAGE-I problem. If set to 'on' shows information on iterations of the ADMM algorithm; otherwise, set it to 'off'.
- opt1.tol.primal is the primal feasibility threshold for the ADMM algorithm. If both primal and dual feasibilities (see the next item) go below their thresholds, the algorithm will terminate.
- opt1.tol.dual is the dual feasibility threshold for the ADMM algorithm. If both primal and dual feasibilities go below their thresholds, the algorithm will terminate.
- opt1.maxItr is the maximum number of iterations of the ADMM algorithm and is another stopping criterion.
- hyper.covFunc determines the parametric covariance function of interest. User may select from the list below:
 - SEiso: Isotropic Squared-Exponential covariance function.
 - PEiso: Isotropic Powered-Exponential covariance function if selected, then
 hyper.p determines the power where it should be an integer number. Otherwise,
 set to [].
 - Materniso: Isotropic Matern covariance function if selected, then hyper.nu determines the smoothness parameter which can be equal to 1/2, 3/2, or 5/2. Otherwise, set it to [].
 - Expiso: Isotropic Exponential covariance function.
 - AnisDiag: Anisotropic covariance function with a diagonal M matrix of the form

$$c(\mathbf{x}, \mathbf{x}'; M, \sigma^2) = \sigma^2 \exp\left(-(\mathbf{x} - \mathbf{x}')^{\top} M(\mathbf{x} - \mathbf{x}')\right)$$
(1)

where $M = \operatorname{diag}(\ell)^{-1}$, $\ell \in \mathbb{R}^d$. For more information refer to Gaussian Processes for Machine Learning, by Rasmussen and Williams (2006), page 106. If selected, the lower bound (LB) and upper bound (UB) for elements of ℓ should be selected in the following lines.

- AnisGeneral: Anisotropic covariance function as (1) with the matrix M constructed as

$$M = \Delta \Delta^{\top} + \operatorname{diag}(\ell)^{-1}$$

where $\Delta \in \mathbb{R}^{d \times g}$ with g < d. If selected, the lower bound (LB) and upper bound (UB) for elements of ℓ and Δ should be selected in the following lines. Note that a too large UB for Δ elements may result in an invalid covariance matrix.

- hyper.nugget If set to 'true', then it includes the nugget into the model; otherwise, user may set it to 'false'.
- process.type determines if parallel processing capabilities are available or not. If so, set it to 'parallel'; otherwise, set it to 'single'.
- process.nCores determines the number of accessible processing cores and is considered only if process.type is 'parallel'.

Outputs

In the *univariate* case, the *spsEstimatorHyper* function begins the GSPS algorithm. It outputs the GSPS estimates of the covariance function parameter available in *hyper.param.val.*

In the multivariate case, the spsEstimatorMultVar function begins the GSPS algorithm. It outputs the GSPS estimates of the correlation function parameters available in hyper.param.val. Furthermore, the between-response covariance matrix estimate $\hat{\Gamma}$ is available in GammaHat variable.