ALGEBRA	LINEARE	- LEZIONE	14
Note Title			16/10/2018
Ordine Posico	della dimostrazio	xie xie	
0			
-> lemma di	eliminazione		
		liminarione a parti	re da
	le di generatori	(i)	
		(più delicato)	
		so numero di elemen	iti
\rightarrow (4), (5),			
Il vecchio (2)	disenta ora fac	zile.	
Se vy, vm	sous Din rudip	o, allora posso appi	mpere
	ere una passe	, , ,	
Come faccio	? Preudo una bo	rse { ws,, wn} du	e so già
		sostiturione e otter	
muovo sistem	a di generatori		
६ ० ३,	, Um, Wm+1,	, wn }	
e dico che q	ruesti sous Diu	indip. perché se non	lo
laup aussaf	aux somebbe cou	ub. Din depli alon	, wa
allora à eli	minabile e arrei	ottemto una base	zou wew
di n elever	ti, il che è ass		
	0 - 0		
Din lemma	di sostiturione		
Ipoten: Uz,.	, um Qiu indi	Sp.	
w ₂ , _	, who generate	ni	
Tex: m \le \tag{\infty}			
		dei cri con tutti i	Vi
dteue	udo aucora ge	ueratori	

sous aucora generatori. Devo sostituire aucora uno dei uz. Domanda: è rimasto qualanto dei wi? Si! Alhimenti Uz,..., um sombbero generatori e quiudi Um+1 = C1 U1 + -.. + Cm Um e quiusi portando tutto a sx avrei una comb. Din dei vi de vieue o con almeno un coeff. to Guello Di conseguenta è nimasto almeno uno dei uri e quiudi n > m+1. Per fone l'ultima sostituri une scrivo Um+ = C, U, + --. + Cm Um + Cm+ Wm+ 1 ... + Cn Wn e osserso che uno desci ultimi coeff. Cm+1, ..., Cn è 70 perdie attimenti è come prima. Suppositiones sia Continues posso ricavare Women i'u funcione del resto e concludo come prima $V = Span \{ U_2, \dots, U_m, U_{m+1}, \dots, U_m \}$ = Spau { Us, ..., Um, Um+1, Wan+1, ..., Wm} = Spau { v2, __, vm, vm+1, wm,2, ..., wn} Esempio di spario di V che hon ha una bare finita Sia V = IR [x] Do spario vettoriale di teetti i polivorni Que sto non ha un resience d' generatori ficuto e quindi uou ha remmens una bosse finita.

Ora il sistema diventa (C = 1 ns si risolve in modernico $\begin{cases} a+b+c=0\\ a-b=-1 \end{cases}$ Esempio 3 (1,0,1), (0,2,3), (1,1,4), (1,2,4) sous una base di R3? No! Sous troppi sous Diu, rudip. ? No! -> sous troppi! -> U4 = U1+U2 Sous gueratori? Forse: bisognerebbe fore la venifica U, Uz, U, Sous una base di R3? No! Non sous Dia. iruslip.