Stage de Toussaint Ensimag 1A Compte-rendu TP Scilab/Latex

Maxime Gourgoulhon

Julie Saouli

Novembre 2016

1 Sensibilisation à l'arithmétique machine

Exercice 1

En exécutant les commandes données dans Scilab, on obtient :

--> z = 0.

--> w = 1.

Dans le calcul de z, comme x >> y, y est négligable devant x dans l'addition de ces deux valeurs. De ce fait, $(y+x)-x \simeq x-x=0$. Dans le calcul de w, les parenthèses évitent ce problème car toutes les opérations sont effectuées entre des termes de même ordre ou avec 0.

Exercice 2

Le script associé à cet exercice est le script exercice2.sce.

D'après le graphe, on constate que on n'obtient pas du tout le résultat théorique attendu, c'est-à-dire f(x) = x.

En fait, y est arrondi à 1 pour tout $x \in [1,4]$. En calculant f(x), on obtient alors 1. Sur l'intervalle [0,1[, y tend également vers 1 mais est arrondi en dessous de 1 (à 0,9999...99). En calculant f(x), on obtient donc 0.

Le calcul de y demande trop de précision à la machine pour pouvoir différencier les valeurs de 1, ce qui entraîne le résultat observé.

Exercice 3

1. On commence par calculer les premiers termes de la suite $I_n = \int_0^1 x^n e^x dx$.

$$I_0 = \int_0^1 e^x dx = [e^x]_0^1 = e - 1$$

$$I_1 = \int_0^1 x e^x dx = [x e^x]_0^1 - I_0 = e - I_0 = 1$$

$$I_2 = \int_0^1 x^2 e^x dx = [x^2 e^x]_0^1 - 2I_1 = e - 2I_1 e - 2$$

On en déduit la relation suivante : $I_n = e - nI_{n-1}$, que l'on vérifie par récurrence :

$$I_{n+1} = \int_0^1 x^{n+1} e^x dx = [x^{n+1} e^x]_0^1 - (n+1)I_n = e - (n+1)I_n$$

Avec Scilab on évalue I_{20} et on obtient que $I_{20} \simeq -129,26371$. Ce résultat est évidemment faux car par définition $I_{20} > \geqslant 0$. En calculant I_{20} de cette manière, on accumule les erreurs de calcul des termes précédents. Ces erreurs sont faibles mais deviennent significatives lorsque n est suffisament grand (à partir de I_{18} d'après nos observations). Cela est dû au fait qu'en effectuant la multiplication nI_{n-1} , on multiplie également l'erreur sur I_{n-1} par n.

2. On cherche maintenant à évaluer I_{20} par un développement en série entière de e^x .

$$I_{20} = \int_0^1 x^{20} e^x dx = \int_0^1 x^n \sum_{n=0}^{+\infty} \frac{x^n}{n!} dx = \sum_{n=0}^{+\infty} \frac{1}{n!} \int_0^1 x^{n+20} dx = \sum_{n=0}^{+\infty} \frac{1}{(n+21)n!}$$

Avec Scilab on évalue à nouveau I_{20} mais avec cette nouvelle formule : on obtient $I_{20} \simeq 0,12380$.

3. En calculant I_{20} par la première méthode, on accumule les erreurs de calcul des termes précédents. Ces erreurs sont faibles mais deviennent significatives lorsque n est suffisament grand (à partir de I_{18} d'après nos observations). Cela est dû au fait qu'en effectuant la multiplication nI_{n-1} , on multiplie également l'erreur sur I_{n-1} par n.

Avec la seconde méthode, on calcule une somme. On a de faibles erreurs sur chacun des termes de la somme. Ces erreurs sont suffisamment faibles et peuvent se compenser donc elle ne fausse pas le résultat. Celui-ci n'est pas dénué d'erreur, car il a été obtenu expérimentalement, mais cette erreur est bien plus faible que l'ordre de grandeur du résultat.

Exercice 4

Le script associé à cet exercice est nommé exercice 4.sce. Pour n suffisamment grand, on retrouve bien le même résultat qu'à l'exercice 3.2 à 10^{-6} près.

2 Étude du phénomène de Gibbs

Exercice 5

On cherche à calculer la série de Fourier de f. On remarque que f est C^1 par morceaux et impaire donc $\forall n \in \mathbb{N}$ $a_n(f) = 0$. On commence par calculer $b_n(f) \ \forall n \in \mathbb{N}^*$:

$$b_n(f) = 2 \int_{-\frac{1}{2}}^{\frac{1}{2}} f(t) \sin(2\pi nt) dt$$

$$= 2 \left(-\int_{-\frac{1}{2}}^{0} \sin(2\pi nt) dt + \int_{0}^{\frac{1}{2}} \sin(2\pi nt) dt \right)$$

$$= 2 \left(\left[\frac{\cos(2\pi nt)}{2\pi n} \right]_{-\frac{1}{2}}^{0} - \left[\frac{\cos(2\pi nt)}{2\pi n} \right]_{0}^{\frac{1}{2}} \right)$$

$$= \frac{1}{\pi n} \left(1 - \cos(-\pi n) - \cos(\pi n) + 1 \right)$$

$$= \frac{1 - \cos(\pi n)}{\pi n}$$

$$= 2 \frac{1 - (-1)^n}{\pi n}$$

D'où la série de Fourier de f:

$$f(x) = \sum_{n=1}^{+\infty} b_n(f)\sin(2\pi nx) = \frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{1 - (-1)^n}{n}\sin(2\pi nx)$$

On effectue un changement de variable en posant n = k + 1:

$$f(x) = \frac{2}{\pi} \sum_{k=0}^{+\infty} \frac{1 - (-1)^{2k+1}}{n} \sin(2(2k+1)\pi x) = \frac{4}{\pi} \sum_{k=0}^{+\infty} \frac{\sin(2(2k+1)\pi x)}{2k+1}$$

La fonction f est discontinue en $\{\frac{1}{2}k|k\in\mathbb{Z}\}$. De ce fait, la série de Fourier ci-dessus n'est valable que sur $\mathbb{R}\setminus\{\frac{1}{2}k|k\in\mathbb{Z}\}$.

Exercice 6

Le script associé à cet exercice est le script exercice 6.sce. Voici les graphes obtenus pour différentes valeurs de Ntermes:

On observe une forte augmentation de l'amplitude des oscillations de la série de Fourier associé à f au niveau des discontinuités. En augmentant Ntermes, l'amplitude des oscillations à l'endroit des discontinuités reste identique mais la zone d'oscillation est réduite. La série de Fourier converge donc simplement vers f mais pas uniformément.

3 Théorème de Gerschgörin

Exercice 7

1. Soit A une matrice carrée d'ordre N. Soit λ une valeur propre de A et v le vecteur propre associé à λ . On note $A = (a_{i,i})_{i,i=1,\dots,N}$ et $v = (v_i)_{i=1,\dots,N}$.

associé à λ . On note $A=(a_{i,j})_{i,j=1,\dots,N}$ et $v=(v_j)_{j=1,\dots,N}$. On suppose qu'il existe $i\in\{1,\dots,N\}$ tel que $|v_i|=\max\{|v_j|:j\in\{1,\dots,N\}\}$. Comme v est un vecteur propre de $A,\,v\neq 0$ donc $|v_i|>0$, et v vérifie l'égalité $Av=\lambda v$, d'où :

$$\sum_{j=1}^{N} a_{i,j} v_j = \lambda v_i \Longleftrightarrow \sum_{j=1, j \neq i}^{N} a_{i,j} v_j + a_{i,i} v_i = \lambda v_i \Longleftrightarrow \sum_{j=1, j \neq i}^{N} a_{i,j} v_j = (\lambda - a_{i,i}) v_i$$

Ainsi:

$$|\lambda - a_{i,i}| = \left| \frac{\sum\limits_{j=1, j \neq i}^{N} a_{i,j} v_j}{v_i} \right| \leqslant \sum\limits_{j=1, j \neq i}^{N} \left| \frac{a_{i,j} v_j}{v_i} \right|$$

Or par hypothèse $\forall j \in \{1,...,N\}: j \neq i, \left|\frac{v_i}{v_j}\right| \leqslant 1$. Alors $|\lambda - a_{i,i}| \leqslant \sum\limits_{i=1}^N |a_{i,j}|$.

- Donc $\lambda \in \bigcup_{k=1}^{N} D_k$. 2. Le script associé à cet exercice est le script *exercice*7.sce. Le script est testé sur la matrice fournie à la question 3.
 - $3.\ {\rm Le}$ graphe des disques de Gerschgörin associé à la matrice donnée est le suivant :

Les cercles rouges correspondent aux contours des disques de Gerschgörin. Les valeurs propres correspondent aux points bleus. Cet exemple vérifie bien le théorème de Gerschgörin.

4. Soit A une matrice carrée d'ordre N à diagonale strictement dominante. On note A = $(a_{i,j})_{i,j=1,...,N}$. A est à diagonale strictement dominante alors $\forall i,j \in \{1,...,N\}$:

$$\sum_{i \neq j} |a_{i,j}| < |a_{i,i}|.$$

Donc $0 \notin \bigcup_{k=1}^{N} D_k$. En effet si $0 \in \bigcup_{k=1}^{N} D_k$, alors :

$$|a_{k,k}| \leqslant \sum_{k \neq j} |a_{k,j}|$$

Cela est impossible car A est à diagonale strictement dominante. Comme $0 \notin \bigcup^N D_k$, alors 0 n'est pas une valeur propre de A par le théorème de Gerschgörin. Donc $det(A) \neq 0 \Longrightarrow A$ est inversible.